

1602A 使用说明书

液晶显示器使用手册

目录

- (一) 概述
- (二) 外形尺寸
- (三) 模块主要硬件构成说明
- (四)模块的外部接口
- (五) 指令说明
- (六) 读写操作时序
- (七) 软件初始化

概述

HJ1602A是一种工业字符型液晶,能够同时显示16x02即32个字符。(16列2行)

二、模块尺寸(如图)

三、引脚接口说明表

		1			
编号	符号	引脚说明	编号	符号	引脚说明
1	VSS	电源地	9	D2 数据	
2	VDD	电源正极	10	D3	数据
3	VL	液晶显示偏压	11	D4	数据
4	RS	数据/命令选择	12	D5	数据
5	R/W	读/写选择	13	D6	数据
6	E	使能信号	14	D7	数据
7	D0	数据	15	BLA	背光源正极
8	D1	数据	16	BLK	背光源负极

第1脚: VSS为地电源。

第2脚: VDD接5V正电源。

第3脚: VL为液晶显示器对比度调整端,接正电源时对比度最弱,接地时对比度最高,对比度过高时会产生"鬼影",使用时可以通过一个10K的电位器调整对比度。

第4脚: RS为寄存器选择, 高电平时选择数据寄存器、低电平时选择指令寄存器。

第5脚: R/W为读写信号线,高电平时进行读操作,低电平时进行写操作。当RS和R/W共同为低电平时可以写入指令或者显示地址,当RS为低电平R/W为高电平时可以读忙信号,当RS为高电平R/W为低电平时可以写入数据。

第6脚: E端为使能端, 当E端由高电平跳变成低电平时, 液晶模块执行命令。

第7~14脚: D0~D7为8位双向数据线。

第15脚:背光源正极。

第16脚:背光源负极。

四. 1602LCD的指令说明及时序

1602液晶模块内部的控制器共有11条控制指令,如表所示:

序号	指令	RS	R/W	D7	D6	D5	D4	D3	D2	D1	D0		
1	清显示	0	0	0	0	0	0	0	0	0	1		
2	光标返回	0	0	0	0	0	0	0	0	1	*		
3	置输入模式	0	0	0	0	0	0	0	1	I/D	S		
4	显示开/关控制	0	0	0	0	0	0	1	D	С	В		
5	光标或字符移	0	0	0	0	0	1	S/	R/	*	*		
	位							C	L				
6	置功能	0	0	0	0	1	DL	N	F	*	*		
7	置字符发生存	0	0	0	1	字符发生存贮器地址							
	贮器地址												
8	置数据存贮器	0	0	1	显示数据存贮器地址								
	地址												
9	读忙标志或地	0	1	BF	计数器地址								
	址												
10	写数到	1	0	要写的数据内容									
	CGRAM或												
	DDRAM)												
11	从CGRAM或	1	1	读出	读出的数据内容								
	DDRAM读数												

14: 控制命令表

1602液晶模块的读写操作、屏幕和光标的操作都是通过指令编程来实现的。(说明**: 1**为高电平、**0**为低电平)

指令1:清显示,指令码01H,光标复位到地址00H位置。

指令2: 光标复位, 光标返回到地址00H。

指令3: 光标和显示模式设置 **I/D**: 光标移动方向,高电平右移,低电平左移 **S**:屏幕上所有 文字是否左移或者右移。高电平表示有效,低电平则无效。

指令4:显示开关控制。 D: 控制整体显示的开与关,高电平表示开显示,低电平表示关显示 C: 控制光标的开与关,高电平表示有光标,低电平表示无光标 B: 控制光标是否闪烁,高电平闪烁,低电平不闪烁。

指令5: 光标或显示移位 S/C: 高电平时移动显示的文字, 低电平时移动光标。

指令6: 功能设置命令 DL: 高电平时为4位总线,低电平时为8位总线 N: 低电平时为单行显示,高电平时双行显示 F: 低电平时显示5x7的点阵字符,高电平时显示5x10的点阵字符。指令7: 字符发生器RAM地址设置。

指令8: DDRAM地址设置。

指令**9**: 读忙信号和光标地址 **BF**: 为忙标志位,高电平表示忙,此时模块不能接收命令或者数据,如果为低电平表示不忙。

指令10:写数据。

指令11: 读数据。

五. 基本操作时序表

图: 读操作时序

图: 写操作时序

1602LCD的RAM地址映射及标准字库表

液晶显示模块是一个慢显示器件,所以在执行每条指令之前一定要确认模块的忙标志为低电平,表示不忙,否则此指令失效。要显示字符时要先输入显示字符地址,也就是告诉模块在哪里显示字符。

例如第二行第一个字符的地址是 **40H**,那么是否直接写入 **40H** 就可以将光标定位在第二行第一个字符的位置呢?这样不行,因为写入显示地址时要求最高位 **D7** 恒定为高电平 **1** 所以实际写入的数据应该是 **01000000B** (**40H**) +**10000000B(80H)**=**11000000B(C0H)**。

在对液晶模块的初始化中要先设置其显示模式,在液晶模块显示字符时光标是自动右移的, 无需人工干预。每次输入指令前都要判断液晶模块是否处于忙的状态。

1602液晶模块内部的字符发生存储器(**CGROM**)已经存储了**160**个不同的点阵字符图形,如图**10-58**所示,这些字符有:阿拉伯数字、英文字母的大小写、常用的符号、和日文假名等,每一个字符都有一个固定的代码,比如大写的英文字母"A"的代码是**01000001B**(**41H**),显示时模块把地址**41H**中的点阵字符图形显示出来,我们就能看到字母"A"

0110 0111 1010 1011 1100 1101 1110 1111 位 0000 0010 0011 0100 0101 CGRAM P 9 a P XXXX0000 0 (1) + A Q q п 7 4 9 (2) 1 1 XXXX0001 JII β 0 г 1 1 R b B XXXX0010 (3) 7 00 S C ウ £ . # C 5 XXXXX0011 (4) 3 Ω t D T d t I h # (5) \$ 4 XXXX0100 В 0 U D 才 + E XXXX0101 (6) % 5 P Σ f テ 3 F カ XXXX0110 (7) 8. 6 7 G W W 7 + ヌ * > 7 g (8) XXXX0111 1) X 木 1 1 2 H X h (1) (XXXX1000 14 -1 y 1 Y i (2)) 9 y XXXX1001 千 2 I 7 1) V 1 (3) . J j 2 XXXX1010 万 k 才 # E D × K (4) + XXXX1011 A 7 Q 2 7 ¥ t (5) 7 < L 1 XXXX1100 1 ス 1 7 老 +1 M 1 2 m (6) XXXX1101 n N 3 (7) XXXX1110 7 ö 0 -17 (8) 1 ? -0 ××××1111

表 13-4 CGROM 和 CGRAM 中字符代码与字符图形对应关系

1602LCD的一般初始化(复位)过程

延时15mS

写指令38H(不检测忙信号)

延时5mS

以后每次写指令、读/写数据操作均需要检测忙信号

写指令38H:显示模式设置

写指令**08H**:显示关闭 写指令**01H**:显示清屏

写指令06H:显示光标移动设置

写指令 0CH: 显示开及光标设置