DM2C: Deep Mixed-Modal Clustering

Yangbangyan Jiang^{1,2}, Qianqian Xu³, Zhiyong Yang^{1,2}, Xiaochun Cao^{1,2,5}, Qingming Huang^{2,3,4,5}

¹Institute of Information Engineering, CAS ²University of Chinese Academy of Sciences ³Institute of Computing Technology, CAS ⁴BDKM, CAS ⁵Peng Cheng Laboratory

Motivation

Traditional multi-modal learning requires extra pairing information among modalities for feature alignment.

Table 1: Types of learning under multiple modalities

	Supervision		
Type	Class Label	Modality Pairing	
Supervised Multi-modal Learning	√	√	
Unsupervised Multi-modal Learning	X		
Unsupervised Mixed-modal Learning	X	X	

Mixed-modal Clustering

Mixed-modal: Each instance is represented in only one modality.

Dataset
$$\mathcal{D}$$
 \longrightarrow $\mathcal{D}_A = \left\{m{x}_i^{(a)}
ight\}_{i=1}^{n_a} \text{ and } \mathcal{D}_B = \left\{m{x}_i^{(b)}
ight\}_{i=1}^{n_b}$

Multi-modal data

Mixed-modal data

Goal: learning <u>unified representations</u> for the modalities, then grouping the samples into k categories.

Modality unifying

learn the cross-modal translation

- easy to obtain via cycle-consistency
- unifying: transforming all the samples into a modality specific space

Framework

$$\mathcal{L}(\mathbf{\Theta}) = \mathcal{L}_{adv}^{A} + \mathcal{L}_{adv}^{B} + \lambda_{1}(\mathcal{L}_{cyc}^{A} + \mathcal{L}_{cyc}^{B}) + \lambda_{2}(\mathcal{L}_{rec}^{A} + \mathcal{L}_{rec}^{B})$$

• Modality-specific Auto-Encoder: latent representations for each modality

$$egin{aligned} \mathcal{L}_{ ext{rec}}^{ ext{A}}(oldsymbol{\Theta}_{ ext{AE}_{ ext{A}}}) &= \|oldsymbol{x}_i^{(a)} - ext{Dec}_{ ext{A}}(ext{Enc}_{ ext{A}}(oldsymbol{x}_i^{(a)}))\|_2^2, \ \mathcal{L}_{ ext{rec}}^{ ext{B}}(oldsymbol{\Theta}_{ ext{AE}_{ ext{B}}}) &= \|oldsymbol{x}_i^{(b)} - ext{Dec}_{ ext{B}}(ext{Enc}_{ ext{B}}(oldsymbol{x}_i^{(b)}))\|_2^2, \end{aligned}$$

• Unpaired Cross-Modal Mappings via cycle-consistency

$$egin{aligned} \mathcal{L}_{ ext{cyc}}^{ ext{A}}(oldsymbol{\Theta}_{G_{AB}},oldsymbol{\Theta}_{G_{BA}}) &= \mathbb{E}_{oldsymbol{z}_a \sim \mathcal{X}_A} \left[\|oldsymbol{z}_a - G_{BA}(G_{AB}(oldsymbol{z}_a))\|_1
ight], \ \mathcal{L}_{ ext{cyc}}^{ ext{B}}(oldsymbol{\Theta}_{G_{AB}},oldsymbol{\Theta}_{G_{BA}}) &= \mathbb{E}_{oldsymbol{z}_b \sim \mathcal{X}_B} \left[\|oldsymbol{z}_b - G_{AB}(G_{BA}(oldsymbol{z}_b))\|_1
ight]. \end{aligned}$$

• Adversarial learning between Cross-modal Mappings (Generators) and Discriminators

$$\mathcal{L}_{\text{adv}}^{A}(\boldsymbol{\Theta}_{G_{BA}}, \boldsymbol{\Theta}_{D_{A}}) = \mathbb{E}_{\boldsymbol{z}_{a} \sim \mathcal{X}_{A}}[D_{A}(\boldsymbol{z}_{a})] - \mathbb{E}_{\boldsymbol{z}_{b} \sim \mathcal{X}_{B}}[D_{A}(G_{BA}(\boldsymbol{z}_{b}))],$$

$$\mathcal{L}_{\text{adv}}^{B}(\boldsymbol{\Theta}_{G_{AB}}, \boldsymbol{\Theta}_{D_{B}}) = \mathbb{E}_{\boldsymbol{z}_{b} \sim \mathcal{X}_{B}}[D_{B}(\boldsymbol{z}_{b})] - \mathbb{E}_{\boldsymbol{z}_{a} \sim \mathcal{X}_{A}}[D_{B}(G_{AB}(\boldsymbol{z}_{a}))].$$

Results

Table 1: Dataset statistics.

crooked back and although normally healthy, is prone to range of illnesses.

Wikipedia image text (article) 1910		ining Test aples samples	
NUS-WIDE-10K image text (tag) 7500	-		10 10

Table 2: Performance comparisons on Wikipedia.

Algorithm	Accuracy	ARI	NMI	F-score	Purity
k-means	0.2291	0.0166	0.1003	0.1857	0.2301
DKM	0.2173	0.0108	0.1170	0.1729	0.2429
DCN	0.2215	0.0137	0.1172	0.1688	0.2465
IDEC	0.2153	0.0375	0.0849	0.1654	0.2606
IMSAT	0.2521	0.0573	0.1093	0.1738	0.2720
Ours	0.2720	0.0558	0.1543	0.1878	0.3075

Table 3: Performance comparisons on NUS-WIDE-10K.

		1			
Algorithm	Accuracy	ARI	NMI	F-score	Purity
k-means	0.2744	0.0044	0.0469	0.3008	0.5208
DKM	0.2932	0.0130	0.0116	0.2901	0.5036
DCN	0.3036	0.0144	0.0512	0.2959	0.5296
IDEC	0.3045	0.0006	0.0082	0.3048	0.5036
IMSAT	0.3080	0.0038	0.0064	0.3422	0.5036
Ours	0.3300	0.0710	0.0951	0.3043	0.5492