

MATHEMATISCHE MODELLE DER KONTINUUMSMECHANIK [MA2904] SoSe 2019
PROF. DR. DANIEL MATTHES matthes@ma.tum.de
BENEDIKT GRASWALD benedikt.graswald@ma.tum.de

Aufgabenblatt 1

Tutorübungen am 24./25. April und 2. Mai

Aufgabe T1.1 (Stokes'sches Gesetz)

Ein Körper der Masse m wird von der Erdoberfläche mit der Geschwindigkeit v_0 senkrecht in die Höhe geworfen. Der Luftwiderstand bei der Geschwindigkeit v soll durch das Stokesche Gesetz $F_R = -cv$ für den Strömungswiderstand berücksichtigt werden. Das ist für kleine Geschwindigkeiten sinnvoll. Dabei ist c ein von der Form und Größe des Körpers abhängiger Koeffizient. Die auf den Körper wirkende Gravitationskraft soll durch $F_G = -mg$ approximiert werden. Die Bewegung hänge von der Masse m, der Anfangsgeschwindigkeit v_0 , der Gravitationsbeschleunigung g und dem Reibungskoeffizienten c mit Dimension $[c] = \frac{\mathcal{M}}{\mathcal{T}}$ ab.

- a) Stellen Sie ein geeignetes Anfangswertproblem für die Höhe des Körpers auf.
- b) Bestimmen Sie die Variablen und Parameter mit den dazugehörigen Dimensionen.
- c) Gewinnen Sie alle möglichen dimensionslosen Darstellungen der Differentialgleichung.
- d) Diskutieren Sie verschiedene Möglichkeiten eines reduzierten Modells, falls $\beta = \frac{cv_0}{mq}$ klein ist.

Aufgabe T1.2 (Wiederholung Differentialgleichungen)

Bestimmen Sie die Lösung zu den folgenden Anfangswertproblemen:

a)
$$x''(t) - 3x'(t) + 2x(t) = t$$
, $x(0) = x'(0) = 0$

b)
$$x'(t) + x(t) = \sin(t), \quad x(0) = \frac{1}{2}$$

c)
$$x'(t) + tx^3(t) = 0$$
, $x(1) = 2$

Betrachten Sie danach die Differentialgleichung

$$x''(t) + 2\alpha x'(t) + \omega_0^2 x(t) = K \cos(\omega t)$$

und diskutieren Sie das Verhalten der Lösung für verschiedene Parameter α, ω_0 .

