Turbulence phenomenology

The Gioia way.

刘宁

浙江大学

2025年7月19日

Velocity component at s scale

$$u_{\rm s}^2 = \int_0^{\rm s} E(\sigma)\sigma^{-2}d\sigma = \int_{1/{\rm s}}^{\infty} E(k)dk.$$

with $\mathit{E}(\sigma) \sim \varepsilon^{2/3} \sigma^{5/3} \mathbf{c_d} \left(\eta/\sigma \right) \mathbf{c_e} \left(\mathit{R}/\sigma \right)$ and $\mathit{E}(\mathit{k}) \sim \varepsilon^{2/3} \mathit{k}^{-5/3} \mathbf{c_d} (\eta \mathit{k}) \mathbf{c_e} \left(\mathit{Rk} \right)^{1}$.

$$\begin{cases} \mathbf{c_d}(x) = \exp(-\beta_d x) \\ \mathbf{c_e}(x) = (1 + \beta_e x^{-2})^{-17/6} \end{cases}.$$

 ${f c_d}$ 形式来自Gioia 等(2006), ${f c_e}$ 取自 von Kármán. 在惯性区 $\eta \ll s \ll R$, 两个修正项均为 1.

 $^{^1}$ Note: Gioia 等(2006) 中使用 $\mathbf{c_e}$ (σ/R) 形式,注意到 $R/\sigma=Rk$,为了 $\mathbf{c_e}$ 的统一形式将其定义为 $\mathbf{c_e}/\sigma$

The uniform form of velocity u_s

Let $\xi = sk = s/\sigma$, rewrite u_S in a uniform form:

$$u_{\rm s} \sim (\varepsilon {\rm s})^{1/3} \left[\int_1^\infty \xi^{-5/3} {\bf c_d} \left(\frac{\eta}{{\rm s}} \xi \right) {\bf c_e} \left(\frac{R}{{\rm s}} \xi \right) d\xi \right]^{1/2} \triangleq (\varepsilon {\rm s})^{1/3} \sqrt{\mathcal{I}}.$$

Takeaway msg

- $u_{\rm s} \sim (\varepsilon {\rm s})^{1/3}$ in inertial range ($\eta \ll {\rm s} \ll {\it R}$).
- ・提取涡体 (尺度为 s) 特征速度 u_s 的问题转化为修正函数 \mathcal{I} 的讨论, $\mathcal{I}(\eta/s,R/s) \triangleq \int_1^\infty \xi^{-5/3} \mathbf{c_d} \left(\frac{\eta}{s}\xi\right) \mathbf{c_e} \left(\frac{R}{s}\xi\right) d\xi$.

The phenomenology big picture

• Energy cascade

$$u_s^3/s \sim u_R^3/R$$
.

- With
$$\varepsilon \sim u_R^3/R$$
, $\eta = \left(\nu^3/\varepsilon\right)^{1/4} \sim R \cdot Re^{-\frac{3}{4}}$.

The Gioia way: Local shear stress model

Eddies (u_s, s) that straddle wetted surface $W_v \implies$ shear stress τ ,

- ・ v_t 代表涡体能够传递的动量大小,取决于湿面积两侧的动量差 $(\propto \frac{\partial u}{\partial v} \cdot s)$
- ・ v_n 代表涡体传递动量的速率,取决于涡体的特征速度 $(\sim u_s)$

$$\tau \sim \rho v_t v_n$$
.

- Local wall shear stress model (Gioia 等, 2006): $v_t \sim V$, $v_n \sim u_{r+a\eta}$
- Local water column shear stress model (Gioia 等, 2010): $v_t \sim u(y+s) u(y-s) \approx 2su'(y) \sim 2y \cdot u'(y), v_n \sim u_v$

Unify the local shear stress model

图 1: The unified picture of the Gioia model.

Unify the local shear stress model

• v_n : 近床面位置,特征涡体由粗糙高度 k_s 和黏性底层 $a\eta$ 共同控制 $s = k_s + a\eta$; 外区部分的特征涡体完全由床面高度 y 控制²

• V_t: Gioia 的贡献。

²Townsend 附着涡模型存在类似的特征尺度正比于床面距离的涡体。或许可视作仅考虑外区 经体的特例。

参考文献 I

GIOIA G, CHAKRABORTY P, 2006. Turbulent Friction in Rough Pipes and the Energy Spectrum of the Phenomenological Theory[J/OL]. Phys. Rev. Lett., 96: 044502. https://link.aps.org/doi/10.1103/PhysRevLett.96.044502. DOI: 10.1103/PhysRevLett.96.044502.

GIOIA G, GUTTENBERG N, GOLDENFELD N, et al., 2010. Spectral Theory of the Turbulent Mean-Velocity Profile[J/OL]. Phys. Rev. Lett., 105:184501. https://link.aps.org/doi/10.1103/PhysRevLett.105.184501. DOI: 10.1103/PhysRevLett.105.184501.