EECS101 Discussion 8

Yongfan Liu

Optical Flow

- The key is to find out u(x,y,t) and v(x,y,t) where u and v are the velocity of the object in the x and y direction respectively
 - Draw some instances of E(x,y,t) at different t. Can you figure out u and v?

Optical Flow

- $Example: E(x,y,t) = \cos(y bt) + C$
 - When $t = t_0$, $E(x, y, t_0) = \cos(y bt_0) + C$
 - When $t = t_1, E(x, y, t_1) = \cos(y bt_1) + C$
 - v(x, y, t) = b, u(x, y, t) = 0
- Optical flow constraint equation

$$E_x u + E_y v + E_t = 0$$

https://www.youtube.com/watch?v=oPNS5FmotcU

Figure 13-1. Simple camera geometry for stereo photography. The optical axes are parallel to one another and perpendicular to the baseline connecting the two cameras.

Stereo Photography

Application of disparity equations

$$x = \frac{b(x_l' + x_r')}{2(x_l' - x_r')}$$

•
$$y = \frac{b(y'_l + y'_r)}{2(x'_l - x'_r)}$$

$$\circ \ z = \frac{bf}{x_l' - x_r'}$$

- Where (x,y,z) is the world coordinate of the point and (x'_l, y'_l) , (x'_r, y'_r) are the image coordinates of the point in the left and right images respectively
- Note coordinate orders should be consistent in the left and right images. If not, switch the points.

Surface Normal

The plane normal can be found out by the cross product of any two vectors determined by the three points

- $\bullet A = (a_{1,} a_{2,} a_{3})$
- \circ B = (b_1, b_2, b_3)
- A x B = $(a_2b_3-a_3b_2, a_3b_1-a_1b_3, a_1b_2-a_2b_1)$
- The normal is related to (p, q) by
 - N = (-p, -q, 1)

Bayes' theorem

 Application of Bayes' theorem, which relates posterior probability to prior and likelihood function, given by

$$p(c|x) = \frac{p(x,c)}{p(x)} = \frac{p(c)p(x|c)}{\sum_{i} p(c_i)p(x|c_i)}$$

- Where c is the parameter (i.e., the class, tail or head) and x is the observation (brightness)
- p(c) is the a priori (or prior) probability
- p(c|x) is the posterior probability
- p(x|c) is the probability density function, or likelihood
- p(x) is the normalization term

Bayes' theorem

- p(c) priori: the frequency of class c
- p(x|c) likelihood: given class c, the frequency of x observed
- p(c|x) posterior: x observed, the probability x belongs to class c.
- $p(c|x) \propto p(c)p(x|c)$
- Pick the max p(c|x) to obtain the category of x

Criterial

- Homework #8 due is on March 17th
- 7 points for each sub question
- 2 points for free!