Advanced Behavioral Cloning

open lid

Instructor: Daniel Brown

Implicit Behavioral Cloning

• Paper: https://arxiv.org/abs/2109.00137

Video: https://www.youtube.com/watch?v=QslGqRUSRzs

Action Chunking with Transformers (ACT)

• Paper: https://arxiv.org/pdf/2304.13705

Videos: https://tonyzhaozh.github.io/aloha/

Variational Autoencoders (VAEs)

Autoencoders learn latent representations

Variational Autoencoders (VAEs)

- Autoencoders learn latent representations
- VAEs map input into a distribution over latent variables z
- Loss function is reconstruction plus KL divergence

$$\mathcal{L} = \mathbb{E}_{q(z|x)}[\log p(x|z)] - D_{ ext{KL}}(q(z|x)||p(z))$$

Conditional Variational Autoencoders (CVAEs)

 Encoder and decodre both condition on extra info y

 Loss function is reconstruction plus KL divergence

$$\mathcal{L} = \mathbb{E}_{q(z|x,y)}[\log p(x|z,y)] - D_{ ext{KL}}(q(z|x,y)||p(z|y))$$

Transformers

• State of the art ways to ingest and output sequential data.

BERT

Encoder

the number of tokens in the vocabulary

[BOS] Sylvester Stallone has

the logits vector

"+" softmax

i-th dimension ~ the "probability" [not really] that the **next token** is the i-th token in the vocabulary

select the token with the high(est) "probability" as a token to display (generate)

Read about other sampling strategies here: https://huggingface.co/blog/how-to-generate

Neural sequence modeling

Problems:

- How do we deal with different length inputs?
- How do we model long-range dependencies?

Recurrent Neural Networks

Standard RNN

Large Language Models

Input	Thinking	Machines	
Embedding	X ₁	X ₂	
Queries	q ₁	q ₂	WQ
Keys	k ₁	k ₂	Wĸ
Values	V1	V ₂	Wv

Perform dot product between query and all keys to get a raw score for each previous word (including current word).

Normalize these scores via a softmax to get a probability distribution. Then return a weighted sum of the values.

Word	Value vector	Score	Value X Score
<s></s>		0.001	
a		0.3	
robot		0.5	
must		0.002	
obey		0.001	
the		0.0003	
orders		0.005	
given		0.002	
it		0.19	
		Sum:	

Diffusion Policy

- Paper: https://arxiv.org/pdf/2303.04137v4
- Videos: https://diffusion-policy.cs.columbia.edu/

Denoising Diffusion (high-level)

