Отчёт по лабораторной работы No 1

Операционные системы

Нелиа Нджову

Содержание

1	Цель работы	6
2	Задание	7
3	Выполнение лабораторной работы	8
4	Выводы	28
Сп	исок литературы	29

Список иллюстраций

3.1	VirtualBox	8
3.2	Создание вм	9
3.3	обьем основной памяти	9
3.4	жесткого диска	10
3.5	установка VDI	10
3.6		11
3.7		12
3.8		13
3.9	загрузчика	13
3.10	интерфейс начальной конфигурации	14
		14
		15
3.13	места установки	15
		16
		16
		17
3.17	диск	17
3.18		18
3.19		18
3.20	запуски терминала	19
		19
		19
3.23	программы для автоматического обновления	19
3.24	запуски таймера	20
3.25	пойск файла	20
3.26	изменение файла	21
3.27		21
		21
3.29	1 / 1	21
3.30	пакет dkms	22
3.31	примонтирование диска	22
		22
3.33	перезагрузка витуальной машины	22
3.34	запуск терминального мультиплексора	23
3.35		23
3.36	редактирование файла	23
		24

3.38	установка pandoc				24
3.39	установка texlive				24
3.40	анализ последователности				24
3.41	поиск версии ядра				25
3.42	поиск чистоты процессора				25
3.43	поиск модели процессора				25
3.44	поиск объёма доступной оперативной памяти				25
3.45	поиск типа обнаруженного гипервизора				25
3.46	поиск типа файловой системы корневого раздела				26
3.47	Последовательности монтирования файловых систем				26

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Создание виртуальной машины
- 2. Установка операционной системы
- 3. Работа после установки
- 4. Установка программного обеспечения для создания документации
- 5. Допольнительные задания

3 Выполнение лабораторной работы

1. Создание виртуальной машины

Я установила и настроила VirtualBox во время выполнения лабораторной работы в прошлом семестре в этом предмете раздел 'Архитектура компьютера', поэтому я сразу открываю VirtualBox(рис.1).

Рис. 3.1: VirtualBox

Нажав 'создать', я создаю новую витуалную машину, указывая ее имя, путь к папке машины по умольчанию меня устраивает, выбираю тип и версию ОС(рис.2)

Рис. 3.2: Создание вм

Я указываю объем основной памяти витуальной машины размером 4096МБ(рис.3)

Рис. 3.3: объем основной памяти

Я выбираю создание нового витуального жесткого диска(рис.4)

Рис. 3.4: жесткого диска

Я установила конфигурацию жесткого диска: загрузочный VDI(рис.5)

Рис. 3.5: установка VDI

Я устанавливаю размер диска равным 120 ГБ, расположение жесткого диска

оставляю как есть, потому что меня устраивает(рис.6)

Рис. 3.6: размер жесткого диска

Я выбираю динамический виртуальный жесткий диск при указании формата хранения(рис.7)

Рис. 3.7: формат хранения жесткого диска

Я выбираю конфигурацию своей витуальной машины в VirtualBox. Я захожу в раздел 'Носители', добавляю новый оптический дискодов и выбираю загруженныйй образ операционной системы Fedora(рис.8)

Рис. 3.8: оптический системы

2. Установка операционной системы

Я запускаю созданую витуальную машину для установки(рис.9)

Рис. 3.9: загрузчика

Я вижу интерфейс начальной конфигурации. Я нажимаю Enter, чтобы создать

конфигурацию по умольчанию, затем нажимаю Enter,чтобы выбрат клавишу Win в качестве модификатора(рис.10)

Рис. 3.10: интерфейс начальной конфигурации

Я нажмаю Win+Enter для запуска терминала. В терминала запускаю liveinst(рис.11)

```
Please type liveinst and press Enter to start the installer liveuser@localhost-live:~$ liveinst localuser:root being added to access control list
```

Рис. 3.11: терминал

Чтобы переключиться на расположение окон с вкладками, я нажимаю Win+w. Я выбираю язык для использования в процессе установки- английский, потому что мне так удобнее(рис.12)

Рис. 3.12: языка

Я проверяю место установки и сохраняю значение по умольчанию (рис. 13)

Рис. 3.13: места установки

Я установлю аккаунт администратора и создаю пароль для супер-пользователя(рис.14)

Рис. 3.14: аккаунт администратора

Я создаю пользователя, добавляю адмнистративные привилегии для этой учетной записи, чтобы я мог свободно выполнять команды как суперпользователя(рис.15)

Рис. 3.15: создание пользователя

Далее устанавливается операционная система. После установки я нажимаю "завершить установку" (рис.16)

Рис. 3.16: завершение установки

Диск не выключился автоматически, поэтому я захожу в настройки, чтобы отключить его(рис.17)

Рис. 3.17: диск

Теперь он отключен(рис.18)

Рис. 3.18: диск отключен

3. Работа после установки

Я запускаю виртуальную машину. Я вхожу в ОС под учетной записью, которую я установила во время установки(рис.19)

Рис. 3.19: вход в ОС

Я запускаю Win+Enter, чтобы запустить терминал и переключиться на роль супер-пользователя(рис.20)

```
nelianjovu@nelianjovu:~$ sudo -i

Ne trust you have received the usual lector

Administrator. It usually boils down to the
```

Рис. 3.20: запуски терминала

Я обновляю все пакеты(рис.21)

```
[root@nelianjovu ~]# dnf -y update
Fedora 39 - x86_64
```

Рис. 3.21: обновления

Я устанавливаю программы для удобства работы в консоли;tmux для открытия нескольких "вкладках" в одном терминале,mc так файловый менеджер в терминале(рис.22)

```
Complete!
[root@nelianjovu ~]# dnf -y install tmux mc
```

Рис. 3.22: установка tmux и mc

Я устанавливаю программы для автоматического обновления(рис.23)

```
[root@nelianjovu ~]# dnf install dnf-automatic
_ast metadata expiration check: 1:07:15 ago on Wed
Dependencies resolved.
```

Рис. 3.23: программы для автоматического обновления

Я запускаю таймер(рис.24)

```
Complete!
root@nelianjovu:~# systemctl enable --now dnf-automatic.timer
```

Рис. 3.24: запуски таймера

Я перехожу в каталог /etc/selnux, открываю md и ищу нужный мне файл(рис.25)

Рис. 3.25: пойск файла

Я изменяю открытый файл; SELINUX = enforcing меняю на значение SELINUX = permissive(рис.26)

```
# grubby --update-kernel Al
#
SELINUX=permissive
# SELINUXTYPE= can take one of
# targeted - Targeted proc
```

Рис. 3.26: изменение файла

Перезагружаю витуальную машину(рис.27)

```
oot@nelianjovu:~# rebogt
```

Рис. 3.27: перезагрузка витуальной машины

Я снова вхожу в ОС, снова запускаю терминал и запускаю терминальный мультиплексор(рис.28)

```
nelianjovu@nelianjovu:~$ tmux
```

Рис. 3.28: запуск терминального мультиплексора

Я переключаюсь на роль супер-пользователя(рис.29)

```
nelianjovu@nelianjovu:~$ sudo -i
[sudo] password for nelianjovu:
```

Рис. 3.29: роль супер-пользователя

Я устанавливаю пакет dkms(рис.30)

```
Complete!
root@nelianjovu:~# dnf -y install dkms
```

Рис. 3.30: пакет dkms

В меню витуальную машины я подключаю образ диска гостевой ОС и монтирую диск с помощью утилиты mount(puc.31)

```
root@nelianjovu:~# mount /dev/sr0 /media
mount: /media: WARNING:_source write-protected, mounted read-only.
```

Рис. 3.31: примонтирование диска

Я устанавливаю драйверов(рис.32)

```
root@nelianjovu:~# /media/VBoxLinuxAdditions.run
/erifying archive integrity... All good.
Jncompressing VirtualBox 6.1.50 Guest Additions fo:
```

Рис. 3.32: установка драйверов

Перезагружаю витуальную машину(рис.33)

```
oot@nelianjovu:~# rebogt
```

Рис. 3.33: перезагрузка витуальной машины

Я снова вхожу в ОС, снова запускаю терминал и запускаю терминальный мультиплексор(рис.34)

Рис. 3.34: запуск терминального мультиплексора

Я захожу в каталог /etc/X11/xorg.conf.d/00-keyboard.conf(рис.35)

```
Modify time
                                                                                               Modify time
                                                                    Name
                                                                                    UP--DIR Feb 21 22:13
142 Feb 21 22:13
1222 Feb 21 17:24
                                  4 Feb 21 21:22
                                                           /targeted
   .cache
                                4 Feb 21 21:22
10 Feb 21 21:22
  .config
                                                            .config_backup
config
                                                                                         1188 Feb 21 21:23
  /.local
                               0 Nov 1 04:05
364 Feb 21 22:16
                                                                                                 Jul 20 2023
                               18 Jul 21 2023
141 Jul 21 2023
   .bash_profile
                               429 Jul 21 2023
100 Jul 21 2023
Hint: Tab changes your current panel.
root@nelianjovu:~#
1<mark>Help 2Menu 3View 4Edit 5Copy</mark>
                                 4Edit 5Copy 6Re~ov 7Mkdir 8Delete 9PullDn10Qui
```

Рис. 3.35: пойск файла

Я редактирую конфигурационный файл(рис.36)

```
Terminal - nelianjovu@nelianjovu:-

File Edit View Terminal Tabs Help

00-keyboard.conf [-M--] 31 L:[ 1+ 7 8/ 12] *(334 / 438b) 0105 0x06[*][X]

# Written by systemd-localed(8), read by systemd-localed and Xorg. It's

# probably wise not to edit this file manually. Use localectl(1) to

# instruct systemd-localed to update it.

Section "InputClass"

Identifier "system-keyboard"

MatchIsKeyboard "on"

Option "XkbLayout" "us,ru"

Option "XkbVariant" ",winkeys"

Option "XkbOptions" "grp:rcrtl_toggle,compose:ralt,terminate:crtl_alt

EndSection
```

Рис. 3.36: редактирование файла

Перезагружаю витуальную машину(рис.37)

```
oot@nelianjovu:~# rebogt
```

Рис. 3.37: перезагрузка витуальной машины

4. Установка программного обеспечения для создания документации

Я запускаю терминал, запускаю терминальный мультиплексор tmux, переключаюсь на роль супер-пользователя. Потом я устанавливаю pandoc, испоьзуя команду dnf и флаг - у, который автоматически отвечает на все системные вопросы "да"(рис.38)

```
root@nelianjovu:~# dnf -y install pandoc
Last metadata expiration check: 0:23:06 ago o
Dependencies resolved.
```

Рис. 3.38: установка pandoc

Я устанавливаю дистрибутив texlive(рис.39)

```
root@nelianjovu:~# dnf -y install texlive-scheme-full
Last metadata expiration check: 0:28:46 ago on Fri 23 Feb 2024
Dependencies resolved.
```

Рис. 3.39: установка texlive

5. Допольнительные задания

Домашнее задание

Я вхожу команду dmesg | less в терминале, чтобы проанализировать последовательность загрузки системы(рис.40)

```
nelianjovu@nelianjovu:~$ dmesg | less -
```

Рис. 3.40: анализ последователности

Используя поиск, выполняемый командой "dmesg | grep -i", я ищу: версия ядра Linux;6.7.4-200.fc39.x86 64(рис.41)

```
nelianjovu@nelianjovu:~$ dmesg | grep -i "Linux version"
[ 0.000000] Linux version 6.7.4-200.fc39.x86_64 (mockbuild@
0963d3b29334043cc) (gcc (GCC) 13.2.1 20231205 (Red Hat 13.2.1-
ion 2.40-14.fc39) #1 SMP PREEMPT DYNAMIC Mon Feb 5 22:21:14 U
```

Рис. 3.41: поиск версии ядра

Частота процессора (Detected Mhz processor);2494.336 MHz(рис.42).

```
nelianjovu@nelianjovu:~$ dmesg | grep -i "processor"
[ 0.000054] tsc: Detected 2494.336 MHz processor
[ 0.968715] smpboot: Total of 1 processors activated
[ 1.196230] ACPI: Added _OSI(Processor Device)
[ 1.196237] ACPI: Added _OSI(Processor Aggregator Dev
```

Рис. 3.42: поиск чистоты процессора

Модель процессора (СРИО)(рис.43).

```
nelianjovu@nelianjovu:~$ dmesg | grep -i "CPU0"

[ 0.968118] smpboot: CPU0: Intel(R) Core(TM) i5-24
v: 0x6. model: 0x2a. stepping: 0x7)
```

Рис. 3.43: поиск модели процессора

Объём доступной оперативной памяти (Memory available) (рис.44).

```
nelianjovu@nelianjovu:~$ dmesg | grep -i "Memory"
```

Рис. 3.44: поиск объёма доступной оперативной памяти

Тип обнаруженного гипервизора (Hypervisor detected)(рис.45)

```
nelianjovu@nelianjovu:~$ dmesg | grep -i "Hypervisor detected"

[ 0.000000] Hypervisor ditected: KVM
```

Рис. 3.45: поиск типа обнаруженного гипервизора

Тип файловой системы корневого раздела можно проверить с помощью опции fdisk(puc.46)

```
elianjovu:~$ sudo fdisk -l
[sudo] password for nelianjovu:
Disk /dev/sda: 120 GiB, 128849018880 bytes, 251658240 sectors
Disk model: VBOX HARDDISK
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: 4CC77A75-3E48-4D4C-8ADC-628BBF36BCF1
Device
            Start
                        End Sectors Size Type
/dev/sda1
             2048
                       4095 2048 1M BIOS boot
/dev/sda2
             4096 2101247 2097152 1G Linux filesystem
/dev/sda3 2101248 251656191 249554944 119G Linux filesystem
Disk /dev/zram0: 3.82 GiB, 4100980736 bytes, 1001216 sectors
Units: sectors of 1 * 4096 = 4096 bytes
Sector size (logical/physical): 4096 bytes / 4096 bytes
I/O size (minimum/optimal): 4096 bytes / 4096 bytes
```

Рис. 3.46: поиск типа файловой системы корневого раздела

Последовательности монтирования файловых систем можно просмотреть, введя слово mount в поле поиска результата dmesg(puc.47)

```
nelianjovu@nelianjovu:~$ dmesg | grep -i "mount"
[ 0.860730] Mount-cache hash table entries: 8192 (inear)
```

Рис. 3.47: Последовательности монтирования файловых систем

Ответы на контрольные вопросы

1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (СID) (группа, к к-рой относится пользователь. Она, как минимум, одна,

- по умолчанию одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).
- 2. Для получения справки по команде: –help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в ОС с ядром Linux.
- 4. С помощью команды df, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id процесса >. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

4 Выводы

Выполняя эту лабораторную работу, я приобрел практические навыки установки операционной системы на витуальную машину, а также произвел настройка минимальных сервисов, необходимых для дальнейшей работы

Список литературы

- Dash, P. Getting Started with Oracle VM VirtualBox / P. Dash. Packt Publishing Ltd, 2013. – 86 cc.
- Colvin, H. VirtualBox: An Ultimate Guide Book on Virtualization with VirtualBox.
 VirtualBox / H. Colvin. CreateSpace Independent Publishing Platform, 2015. –
 70 cc.
- 3. Vugt, S. van. Red Hat RHCSA/RHCE 7 cert guide: Red Hat Enterprise Linux 7 (EX200 and EX300): Certification Guide. Red Hat RHCSA/RHCE 7 cert guide / S. van Vugt. Pearson IT Certification, 2016. 1008 cc.
- 4. Робачевский, А. Операционная система UNIX / А. Робачевский, С. Немнюгин, О. Стесик. 2-е изд. Санкт-Петербург : БХВ-Петербург, 2010. 656 сс.
- 5. Немет, Э. Unix и Linux: руководство системного администратора. Unix и Linux / Э. Немет, Г. Снайдер, Т.Р. Хейн, Б. Уэйли. 4-е изд. Вильямс, 2014. 1312 сс.
- 6. Колисниченко, Д.Н. Самоучитель системного администратора Linux : Системный администратор / Д.Н. Колисниченко. Санкт-Петербург : БХВ-Петербург, 2011. 544 сс.
- 7. Robbins, A. Bash Pocket Reference / A. Robbins. O'Reilly Media, 2016. 156 cc. }