CSCI 8360 Data Science Practicum Project 2: Ciliary Motion Extraction

Team-Bruce

Aashish Yadavally, Anirudh K.M. Kakarlapudi, Lei Xian and Yang Shi

Technologies

- ML instance on Google Cloud Platform
 - Packages: 'OpenCV', 'Tensorflow', 'Keras', 'Matplotlib',
 'Sklearn', 'Pandas', 'PIL', 'Numpy'
- Python 3.6

Feature Exploration: Variance

Feature Exploration: Laplacian filter and variance

Feature Exploration: Dense optical flow

Classifiers

- Simple threshold
- K-means
- Unet

Unet

Unet

- 1. Batch normalization
- 2. 50 epochs
- 3. Batch size 32.
- 4. Tried adding a lstm layer on the input, but no luck here (also no time)

Post Processing

- Histogram Binning
- Histograms of 3,5

Classification Results

- 1. Simple threshold: IoU 17.5
- 2. UNet with 30 epochs on raw variance: 15.4
- 3. Laplacian filter + variance + simple threshold: 14.8
- 4. Optical Flow + hard code threshold: 11.6
- 5. Others are pretty much around or below 10.

Lessons

Start early on the models, rather than just EDA.

Code engineering is important.

Try different models rather than stuck in the same place.