ОТЧЕТ

ПО

ЛАБОРАТОРНОЙ РАБОТЕ

«Имитационное моделирование одноканальной системы массового обслуживания с групповым поступлением заявок и неограниченной очередью»

бакалавриат по направлению 01.03.04 Прикладная математика

Учебная дисциплина «Имитационное моделирование»

Группа: БПМ-19-1

Учащийся: Альмиева Р.Р.

Преподаватель: доц., к.т.н. Кожаринов А.С.

Отметка:

Дата защиты: 09.03.2022

Постановка задачи

Объект моделирования и исследования

Дана абстрактная система массового обслуживания (СМО) с групповым характером поступления заявок (требований) на обслуживание следующего вида:

Рис. 1. Общая структура моделируемой системы массового обслуживания.

«Архитектура» данной СМО традиционная – источник входного потока групп заявок на обслуживание; очередь; устройство обслуживания и пункт выхода обработанных заявок из системы.

Поскольку на очередь не наложено никаких ограничений, то множество состояний считается бесконечным.

Заданы следующие условия функционирования СМО:

- все заявки обезличены и одинаковы по набору свойств;
- данная система есть СМО без отказов;
- входной поток в систему появляется из **источника**, который генерирует группы заявок в случайные моменты времени;
- поступающие на обслуживание *группы* **образуют стационарный пуассоновский поток** с параметром λ ;
- количество заявок в каждой группе есть случайная величина с равномерным законом распределения в интервале [1; r], а среднее число заявок в группе есть l = (r + 1)/2;
- перед **устройством** возникает **очередь** из *групп* заявок, ожидающих обслуживания, которые обслуживаются поодиночке в порядке их поступления;
 - дисциплина очереди относительно групп заявок **FCFS** (FIFO);
 - в очереди заявки разных групп не перемешиваются;
- правило выбора заявки из группы для обслуживания в устройстве на усмотрение исследователя;
 - ограничений на длину очереди, времени ожидания обслуживания не существует;

- время обслуживания в устройстве одной заявки есть случайная величина с экспоненциальным законом распределения с интенсивностью µ;
 - устройство одновременно может обслуживать только одну заявку;
- после окончания обслуживания в устройстве заявка покидает устройство и систему в целом без каких-либо задержек;
 - на начало моделирования в системе заявок нет;
- освобождение устройства обслуженным требованием и занятие первым из очереди происходит в следующие друг за другом моменты модельного времени («выталкивание»).

Численные значения характеристик СМО

Задача

Разработать имитационную модель заданной СМО, используя систему имитационного моделирования Anylogic.

Требования

Разработанная имитационная модель в процессе функционирования должна определять заданное множество статистик (табл. 1).

Разработанная имитационная модель в процессе функционирования должна визуально отображать заданное множество статистик на форме ИМ указанными в табл. способами.

Название характеристики (показателя) СМО		Способ отображения	
		График (диаграмм а)	
Интенсивность входного потока	+	_	
Интенсивность обслуживания в устройстве	+	_	
Условие существования стационарного режима	+	+	
Оценка начальной предельной вероятности p_{θ}	+	_	
Среднее число групп в системе	+	+	
Среднее время пребывания группы заявок в системе	+	_	
Среднее число заявок в системе	+	+	
Среднее время пребывания заявки в системе	+	_	
Среднее число заявок в очереди	+	+	
Среднее время пребывания заявки в очереди	+	_	

Средняя длина операционного цикла ¹	+	+
Максимальное число заявок в очереди за время	+	_
моделирования		

Табл. Определяемые характеристики и показатели эффективности СМО.

Все перечисленные показатели эффективности работы СМО вычисляются для каждого момента модельного времени.

- 1. Единица модельно времени минуты.
- 2. Рассчитать теоретические (аналитические) значения по представленным формулам для тех характеристик заданной СМО, для которых такие формулы известны. Рассчитанные аналитические значения соответствующих характеристик СМО должны быть также отображены на форме ИМ.
- 3. По достижению в процессе моделирования устойчивого стационарного режима работы ИМ необходимо зафиксировать и сравнить полученные модельные оценки статистик СМО с их аналитическими (теоретическими) значениями.

Данные параметры СМО

Вариант №1

- 1. Максимальное число заявок в группе r = 15;
- 2. Плотность входного потока групп $\lambda = 0.06$;
- 3. Интенсивность обслуживания заявки $\mu = 0.65$.

Описание имитационной модели

Рис. 2. Модель СМО.

- 1. Группы заявок генерируются с помощью блока source со свойствами, представленными на рис.3. Здесь также вычисляются условие существования стационарного режима и оценка начальной предельной вероятности (см. рис.4).
- 2. Свойства для блока очереди групп заявок представлены на рис.5.
- 3. Свойства для блока delay для обработки заявок на рис.6. Здесь также просчитывается средняя длина операционного цикла (см. рис.7).
- 4. Sink блок, принимающий обработанные заявки. При выходе из этого блока просчитываются все модельные характеристики за исключением условия

существования стационарного режима, оценки начальной предельной вероятности и средней длины операционного цикла (см. рис. 8).

Имя: source	✓ Отображать имя
Прибывают согласно:	=_ Интенсивности
Интенсивность прибытия:	= λ в минуту ∨
Считать параметры агентов из БД:	=, _
За 1 раз создается несколько агентов:	=, 🔀
Кол-во агентов, прибывающих за 1 раз:	num
Ограниченное кол-во прибытий:	=,

Рис. 3. Свойства source.

Рис. 4. Действия в блоке source.

Рис. 5. Свойства queue.

Имя:	delay 🔽 Отображать имя 🔲 Исключить
Тип задержки:	Определенное времяДо вызова функции stopDelay()
Время задержки:	exponential(μ)
Вместимость:	= 1
Максимальная вместимость:	=, [
Место агентов:	=_
→ Специфические	
Выталкивать агентов:	=,
Вернуть агента в исходную точ	ıky: =, ☑
Включить сбор статистики:	=, ☑

Рис. 6. Свойства delay.

Рис. 7. Действия в блоке delay.

```
При входе:

| average_count_of_groups_in_system = count_of_groups_in_system.mean();
| average_count_of_requests_in_system = count_of_requests_in_system.mean();
| average_count_of_requests_in_queue = count_of_requests_in_queue.mean();
| max_count_of_requests_in_queue = count_of_requests_in_queue.max();
| average_time_of_request_in_system = timeMeasureEnd.distribution.mean();
| average_time_of_request_in_queue = timeMeasureEnd1.distribution.mean();
| request_out_index += 1;
| int group_end_index = requests_in_group_queue.get(group_index + 1);
| if (request_out_index = group_end_index) {
| group_index += 1;
| request_out_index = 0;
| time_for_groups += time();
| average_time_of_group_in_system = time_for_groups / group_index;
| }
```

Рис. 8. Действия в блоке sink.

На рис. 9. Представлены параметры, переменные и статистики:

- 1. В первом столбце расположены параметры, данные по условию задачи.
- 2. Во втором переменны, которые можно просчитать аналитически. Они также соответствуют параллельным значениям из третьего столбца. Они вычисляются сразу же после запуска модели с помощью кода агента main (см. рис. 10), так как для них не требуются результаты работы модели.
- 3. В третьем столбце расположены величины, получаемые в процессе работы имитационной модели.

4. В четвертом – расположены вспомогательные величины для вычисления величин из второго и третьего столбцов.

Рис. 9. Параметры, переменные и статистики.

```
The proof of the proof of
```

Рис. 10. Вычисление аналитических значений в main.

Результаты моделирования

На рис. 11 и рис. 12 представлены результаты работы имитационной модели в течении 1800 минут (30 часов).

Рис. 11. Результаты работы имитационной модели.

Рис. 12. Диаграммы, полученные в результате работы модели.

Выводы по лабораторной работе

В ходе лабораторной работы была разработана имитационная модель для одноканальной системы массового обслуживания с групповым поступлением заявок. Были вычислены модельные параметры СМО, а также некоторые соответствующие им аналитические значения. После сравнения полученных результатов, было выявлено, что средние количества групп в системе и в очереди несколько меньше аналогичных аналитических параметров, а средние времена пребывания заявки в системе и в очереди, полученные при помощи моделирования, незначительно превышают аналитически вычисленные. Однако результаты, полученные обоими методами достаточно близки.