Analyzing Spotify Data in Python

August 9, 2022

1 Analyzing Spotify Data in Python

1.1 Naim Sejtanic

```
[]: import pandas as pd
     import matplotlib.pyplot as pplt
     import seaborn as sb
     pplt.xkcd()
[]: <matplotlib.pyplot._xkcd at 0x26a1dc309a0>
[]: data_year = pd.read_csv("data_by_year.csv")
     data_year.head()
[]:
        year
                            danceability
                                             duration_ms
                                                            energy
              acousticness
      1920
     0
                  0.631242
                                 0.515750
                                           238092.997135
                                                          0.418700
     1 1921
                                 0.432171
                                           257891.762821
                                                          0.241136
                  0.862105
     2 1922
                  0.828934
                                 0.575620 140135.140496
                                                          0.226173
     3 1923
                  0.957247
                                0.577341
                                           177942.362162
                                                          0.262406
      1924
                  0.940200
                                0.549894 191046.707627
                                                          0.344347
        instrumentalness
                          liveness
                                      loudness
                                                speechiness
                                                                           valence
                                                                  tempo
     0
                0.354219
                          0.216049 -12.654020
                                                   0.082984
                                                             113.226900
                                                                          0.498210
     1
                0.337158
                          0.205219 -16.811660
                                                   0.078952
                                                             102.425397
                                                                          0.378276
     2
                0.254776
                          0.256662 -20.840083
                                                   0.464368
                                                             100.033149
                                                                          0.571190
     3
                0.371733
                          0.227462 -14.129211
                                                   0.093949
                                                             114.010730
                                                                          0.625492
                0.581701
                          0.235219 -14.231343
                                                   0.092089
                                                             120.689572
                                                                          0.663725
        popularity
                    key
                         mode
     0
          0.610315
                      2
                            1
     1
          0.391026
                      2
                             1
     2
                      5
                            1
          0.090909
     3
          5.205405
                      0
                            1
          0.661017
                     10
                            1
[]:
```

[]: <AxesSubplot:>


```
[]: fig,ax = pplt.subplots(figsize=(15,8))
sb.lineplot(x="year",y="loudness",data=data_year,ax=ax)
```

[]: <AxesSubplot:xlabel='year', ylabel='loudness'>


```
[]: fig,ax = pplt.subplots(figsize=(15,8))
sb.lineplot(x="year",y="tempo",data=data_year,ax=ax)
```

[]: <AxesSubplot:xlabel='year', ylabel='tempo'>


```
[]: data_genre = pd.read_csv("data_by_genres.csv")
     data_genre["genres"]=[i.capitalize() for i in data_genre["genres"]]
     data_genre[["genres", "popularity"]].sort_values("popularity", ascending=False)[0:
      →10]
[]:
                       genres
                               popularity
                                79.000000
     565
           Chinese electropop
          Korean mask singer
     1768
                                78.000000
     3213
                                77.000000
     996
                Dutch rap pop
                                77.000000
     2544
          Rochester mn indie
                                76.000000
     945
                      Dong-yo
                                76.000000
     44
                                75.333333
                    Afroswing
     1616
                                75.000000
                        J-rap
     1066
                 Estonian pop
                                75.000000
     1539
                    Irish pop
                                74.625000
[]: data_genre[["genres","loudness"]].sort_values("loudness",ascending=False)[0:10]
[]:
                          genres loudness
     1607
                          J-idol -0.862000
     912
                       Denpa-kei -1.577000
     2676
                           Seiyu -1.577000
     945
                         Dong-yo -1.746000
     2537
                     Rhythm game -1.800500
     1919
               Metal catarinense -1.894000
     358
           Brazilian black metal -1.894000
     1583
                     Italian pop -1.957000
     1814
              Lexington ky indie -2.168000
     2955
                           Tekno -2.366444
[]: data_artist=pd.read_csv("data_by_artist.csv")
     artists by most songs=data artist[["artists", "count"]].
      ⇔sort_values("count",ascending=False)[0:10]
     pplt.figure(figsize=(10,8))
     chart=sb.barplot("artists","count",data=artists_by_most_songs,palette="vlag")
     chart.set_xticklabels(chart.get_xticklabels(),rotation=45)
     chart.set(xlabel="Artist", ylabel="# of songs")
    c:\Python\Python310\lib\site-packages\seaborn\_decorators.py:36: FutureWarning:
    Pass the following variables as keyword args: x, y. From version 0.12, the only
    valid positional argument will be `data`, and passing other arguments without an
    explicit keyword will result in an error or misinterpretation.
      warnings.warn(
[]: [Text(0.5, 0, 'Artist'), Text(0, 0.5, '# of songs')]
```


[]: data_artist[["artists","liveness"]].sort_values("liveness",ascending=False)[0:

[]:		artists	liveness
	26771	Stevie Ray Vaughan And Double Trouble with Jef	0.986
	15057	Karen Clark Sheard	0.985
	29884	Toy Dolls	0.985
	5543	Club Killers	0.981
	23707	Ricardo Da Force	0.980
	20207	N-Trance	0.980
	32067	ryo (supercell)	0.978
	702	Alan Davey's Eclectic Devils	0.977
	3143	Bill Engvall	0.977
	5596	Col. Bruce Hampton & The Aquarium Rescue Unit	0.977

```
[]: sb.

⇒jointplot(x="tempo",y="danceability",data=data_artist[["tempo","danceability"]],kind="hex")

⇒set_axis_labels("Tempo","Danceability")
```

[]: <seaborn.axisgrid.JointGrid at 0x26a442b14e0>

