Homework 2

1. Consider the $1 \mid chain \mid \sum w_j C_j$ problem with the following data

jobs	1	2	3	4	5	6	7
w_j	0	18	12	8	8	17	16
p_{j}	3	6	6	5	4	8	9

The jobs are subject to precedence constraints which take the form of chains:

$$1 \rightarrow 2$$
$$3 \rightarrow 4 \rightarrow 5$$
$$6 \rightarrow 7$$

Find all optimal sequences.

2. Find all optimal sequences for the instance of $1 \mid prec \mid h_{max}$ with the following jobs

jobs	1	2	3	4	5	6	7
$\overline{p_j}$	4	8	12	7	6	9	9
$h_i(C_i)$	$3C_1$	77	C_{3}^{2}	$1.5C_{4}$	$70 + \sqrt{C_5}$	$1.6C_{6}$	$1.4C_{7}$

subject to the following precedence constraints

$$5 \rightarrow 7$$
$$1 \rightarrow 7 \rightarrow 6$$
$$5 \rightarrow 4$$

3. Solve by branch-and-bound the following instance of the $1 \mid r_j, \, prec \mid L_{max}$ problem

jobs	1	2	3	4	5	6	7
$\overline{p_j}$	6	8	12	10	10	17	16
r_{j}	0	0	0	14	25	25	50
d_{j}	8	42	44	24	90	85	68

subject to the following precedence constraints

$$2 \to 1 \to 4$$

$$6 \to 7$$

4. Use the ATC dispatching rule to find a solution for the following instance of the 1 || $\sum w_j T_j$ problem.

jobs	1	2	3	4	5	6	7
$\overline{p_j}$	6	8	12	10	10	17	16
w_{j}	1	5	2	4	1	4	2
d_{j}	8	42	44	24	90	85	68

5. Use the backward-forward heuristic to find a solution to the following instance of the 1 $||\sum T_j$ problem.

jobs	1	2	3	4	5
$\overline{p_j}$	4	3	2	2	5
d_j	2	3	6	10	12