Funkcije – vežbe

1. Dati su skupovi A = {1, 2, 3}, B = {a, b, c, d} i relacije:

$$f_1 = \{(\underline{1}, a), (2, b), (3, c), (\underline{1}, d)\},\$$

$$f_2 = \{(1, a), (2, a)\}, (3, \frac{9}{2})$$

$$f_3 = \{(1,d), (2,a), (3,c)\}.$$
 (?

Popuniti tablicu:

fi

 f_1

 f_2

 f_3

fi je funkcija

$$f_i:A\longrightarrow B$$

$$f_i:A\stackrel{"1-1"}{\longrightarrow}B$$

$$f_i:A\stackrel{"na"}{\longrightarrow}E$$

$$f_i: A \xrightarrow{"na"} B$$

 $f_i: A \xrightarrow{"1-1"} B$

Da li se može definisati sirjektivna funkcija skupa A u skup B?

2. Dati su skupovi $A = \{x, y, z\}, B = \{1, 2\}$ i relacije:

$$f_1 = \{(x,1)\},\$$

$$f_2 = \{(x,1), (y,1), (z,1)\},\$$

$$f_3 = \{(x,1), (y,1), (z,2)\}.$$

$$f_4 = \{(x,1), (y,2), (x,2)\}.$$

Popuniti tablicu:

fi

 f_1

 f_2

 f_3

 f_4

fi je funkcija

$$f_i:A\longrightarrow B$$

$$f_i: \{x\} \longrightarrow B$$

$$f_i:A\stackrel{"1-1"}{\longrightarrow} B$$

$$f_i:A\overset{"na"}{\longrightarrow}B$$

$$f_i:A\stackrel{?}{=}\stackrel{1}{=}^{B}B$$

Da li se može definisati injektivna funkcija skupa A u skup B?

3. Dati su skupovi $A = \{1, 2, 3\}, B = \{a, b, c\}$ i relacije:

$$f_1 = \{(1, a), (2, b), (3, a)\},\$$

$$f_2 = \{(1, a)\},\$$

$$f_3 = \{(1,c),(2,b),(3,a)\}.$$

$$f_4 = \{(1, a), (2, a), (3, a)\}.$$

Popuniti tablicu:

fi f_1 f_2 f_3 f_4

fi je funkcija

 $f_i:A\longrightarrow B$

 $f_i:\{1\}\longrightarrow B$

 $f_i: A \stackrel{"1-1"}{\longrightarrow} B$

 $f_i: A \xrightarrow{"na"} B$ $f_i: A \xrightarrow{"1-1"} B$

ZAKLJUČAK: Za dva konačna skupa A i B važi:

Card (A) = Card (B) \rightarrow 3f, $f_i : A \stackrel{\text{``} 1-1"}{\text{``} B}$

Card (A) \leq Card (B) \rightarrow $\exists f, f_i : A \xrightarrow{i=1}^n B$

► Card (A) \geq Card (B) $\iff \exists f, f : A \xrightarrow{"na"} B$.

4.

Za funkcije $f:\mathbb{R}\longrightarrow\mathbb{R}$ i $g:\mathbb{R}\longrightarrow\mathbb{R}$ definisane sa

 $f(x) = x^3 + 1$ i g(x) = 2x,

odrediti: $f \circ g$, $g \circ f$, $f \circ f$, $g \circ g$, f^{-1} i g^{-1} ako postoje.

5.

Za funkcije
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 i $g: \mathbb{R} \longrightarrow \mathbb{R}$ definisane sa
$$f(x) = 1 - 3x \quad \text{i} \quad g(x) = \frac{x^2 - 1}{3},$$
 odrediti: $f \circ g$, $g \circ f$, $f \circ f$, $g \circ g$, f^{-1} i g^{-1} ako postoje.

$$f = \begin{pmatrix} \begin{pmatrix} a & b & c & d \\ \hline b & a & d & c \end{pmatrix} & i & g = \begin{pmatrix} a & b & c & d \\ c & d & a & b \end{pmatrix}.$$

Odrediti: $f \circ g$, $g \circ f$, $f \circ f$, $g \circ g$, f^{-1} i g^{-1} ako postoje.

7.

Neka su f i g funkcije definisane sa $f_{1}g$; $f_{1,2,3}$ \longrightarrow $f_{1,2,3}$

$$f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
 i $g = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$.

Odrediti: f^{-1} , g^{-1} , $f\circ g$, $(f\circ g)^{-1}$, $g^{-1}\circ f^{-1}$, ako postoje.

8.

A je domen

B de kodomer

Neka je A <u>najveći</u> podskup skupa \mathbb{R} , a B najmanji podskup skupa \mathbb{R} za koje je dobro definisana funkcija $f:A\longrightarrow B$. Za date funkcije f odrediti skupove A i B i ispitati injektivnost, sirjektivnost.

8.1
$$f(x) = x^2 - x - 2$$
;

8.2
$$f(x) = \frac{1-x}{2x+5}$$
;

8.3
$$f(x) = -\sqrt{1-x^2}$$
;

8.4
$$f(x) = \ln \frac{1}{1+x^2}$$
;

- 9. Za koje vrednosti realnih parametara a i b formula $f(x) = \underline{ax + b}$ definiše:
 - 9.1 funkciju $f: \mathbb{R} \longrightarrow \mathbb{R}$;
 - 9.2 injektivnu funkciju $f: \mathbb{R} \longrightarrow \mathbb{R}$;
 - 9.3 sirjektivnu funkciju $f: \mathbb{R} \longrightarrow \mathbb{R}$;
 - 9.4 bijektivnu funkciju $f: \mathbb{R} \longrightarrow \mathbb{R}$?
- ,

- 10. Za koje vrednosti realnih parametara a i b formula $f(x) = ax^2 + bx + c$ definiše:
 - 10.1 funkciju $f: \mathbb{R} \longrightarrow \mathbb{R}$;
 - 10.2 injektivnu funkciju $f: \mathbb{R} \longrightarrow \mathbb{R}$;
 - 10.3 sirjektivnu funkciju $f: \mathbb{R} \longrightarrow \mathbb{R}$;
 - 10.4 bijektivnu funkciju $f: \mathbb{R} \longrightarrow \mathbb{R}$?

