RLC 稳态电路实验报告

郑晓旸

2024年3月20日

目录

1	实验	注目的	2				
2	实验	2仪器	2				
3	实验原理						
	3.1	电感器和电容器	2				
	3.2	RLC 串联谐振电路	2				
	3.3	实验过程和数据分析	3				
		3.3.1 搭建 RLC 电路	3				
		3.3.2 调整输入频率、测量共振频率	4				
		3.3.3 在谐振频率下测量 Q 值					
		3.3.4 测量不同频率下增益和相位差	5				
4	分析	有 与讨论	5				
	4.1	实验结果分析	5				
5	附录	Į.	6				
	5.1		6				
	5.2		8				

1 实验目的

- 1. 了解电感和电容的电学特性
- 2. 深入理解 RLC 串联谐振电路的特性
- 3. 掌握用示波器观察和测量稳态信号的方法

2 实验仪器

- 1. 数字示波器
- 2. 信号发生器
- 3. 九孔电路实验板
- 4. 电学元件 (电阻、电容、电感、导线等)
- 5. 数字多用表

3 实验原理

3.1 电感器和电容器

电感器和电容器是常见的无源电路元件。理想电感器的伏安特性为:

$$u(t) = L\frac{di(t)}{dt} \tag{1}$$

其中,u(t) 为电感两端电压,i(t) 为通过电感的电流,L 为电感值,单位为亨利 (H)。

理想电容器的伏安特性为:

$$i(t) = C\frac{du(t)}{dt} \tag{2}$$

其中,i(t) 为流经电容的电流,u(t) 为电容两端电压,C 为电容值, 单位为法拉 (F)。

3.2 RLC 串联谐振电路

如图 1所示,RLC 串联谐振电路由电阻 R、电感 L 和电容 C 串联而成, 交流电压源为 $u(t)=u_0\sin(\omega t)$ 。

根据基尔霍夫电压定律, 电路方程为:

$$L\frac{d^{2}u_{C}(t)}{dt^{2}} + R\frac{du_{C}(t)}{dt} + \frac{1}{C}u_{C}(t) = u_{0}\sin(\omega t)$$
(3)

其中, $u_C(t)$ 为电容两端电压。引入固有频率 ω_0 和品质因数 Q:

$$\omega_0 = \frac{1}{\sqrt{LC}}, \quad Q = \frac{1}{R} \sqrt{\frac{L}{C}} \tag{4}$$

电路方程可改写为:

$$\frac{1}{\omega_0^2} \frac{d^2 u_C(t)}{dt^2} + \frac{1}{Q\omega_0} \frac{du_C(t)}{dt} + u_C(t) = u_0 \sin(\omega t)$$
 (5)

图 1: RLC 串联谐振电路

该方程的稳态解为:

$$\begin{cases} \frac{u_C(t)}{u_0} = -\frac{Q\omega_0}{\omega} A \cos(\omega t + \phi) \\ \frac{u_R(t)}{u_0} = A \sin(\omega t + \phi) \\ \frac{u_L(t)}{u_0} = \frac{Q\omega}{\omega_0} A \cos(\omega t + \phi) \end{cases}$$

$$(6)$$

其中,

$$A = \frac{1}{\sqrt{1 + Q^2(\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0})^2}}, \quad \phi = \arctan\left[Q\left(\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0}\right)\right]$$
 (7)

 $A(\omega)$ 和 $\phi(\omega)$ 分别称为电路的幅频特性和相频特性, 统称为频率特性。当 $\omega=\omega_0$ 时, 电路达到谐振状态, 此时 $A(\omega_0)=1,\phi(\omega_0)=0$ 。品质因数 Q 反映了谐振时的电压放大倍数、频率选择性以及能量耗散的快慢。

3.3 实验过程和数据分析

本实验使用九孔板搭建 RLC 串联谐振电路, 并通过示波器观察电压波形, 测量电压幅值和相位差。实验过程如下:

3.3.1 搭建 RLC 电路

按图 1搭建 RLC 串联谐振电路, 其中电路元件参数如下表。

表 1: 电路元件参数 特征值 单位 电阻值 单位 元件 电感 10 mH14.25Ohm 电阻 1000 Ohm 990 Ohm 电容 N/AN/A1 uf

接入交流信号源,在输入和电阻两端接入示波器并保证两者共地,观察电压波形。搭建电路实物图如下:

图 2: RLC 串联谐振电路实物图

3.3.2 调整输入频率、测量共振频率

- 1. 调整信号发生器, 使用 X-Y 模式观察输入波形与电流波形的相位差;
- 2. 逐步调整信号发生器频率使示波器波形显示为近似一条直线,记录此时的频率为共振频率。

达到共振时,示波器图形如下图 3所示

图 3: 共振时示波器图形

测量得到的共振频率为 $f_0=1.558kHz$ 。使用公式计算为 $f_0=\frac{1}{2\pi\sqrt{LC}}=1.592kHz$ 。两者相差不大,说明实验测量结果较为准确。

测量值稍小于理论值可能原因是电路中寄生的电容和电感所致。

3.3.3 在谐振频率下测量 Q 值

1. 调整电路交换电阻电容位置

2. 使用示波器测量电容两侧电压峰峰值和输入电压峰峰值

测量得到 $V_{pp,in}, V_{pp,C}$, 计算得到电路的品质因数 $Q = \frac{V_{pp,C}}{V_{pn,in}} = 0.100$

3.3.4 测量不同频率下增益和相位差

- 1. 改变电路结构,交换电阻和电容位置,将示波器接入电阻两端;
- 2. 调整信号发生器频率,测量不同频率下两信号电压幅值和相位差
- 3. 作图并分析

根据上述实验得到数据进行绘图,并使用公式

$$A = \frac{1}{\sqrt{1 + Q^2 (\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0})^2}}, \quad \phi = \arctan \left[Q \left(\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0} \right) \right]$$
 (8)

计算得到的理论幅值和相位差进行对比。如图 4和图 5所示。理论值计算中使用的参数为:

$$f_0 = \frac{1}{2\pi\sqrt{LC}} = 1.558kHz \; ; \; Q = \frac{1}{R}\sqrt{\frac{L}{C}} = 0.0.996$$
 (9)

图 4: 增益-频率特性曲线

图 5: 相位差-频率特性曲线

图中黑色虚线为

另外,我们还使用回归计算方法得到电路的品质因数和谐振频率:

$$f_0 = 1580.42Hz$$
; $Q = 0.101$

增益-频率特性曲线和相位差-频率特性曲线与理论值符合较好,说明实验结果较为准确。其中在 10^4Hz 附近有一个数据点为离群值,可能是由于测量失误所致。

4 分析与讨论

4.1 实验结果分析

1. 通过实验第一部分测量得到的共振频率与理论值相差不大,实验测量结果较为准确。

- (a) 实验测量值为 $f_0 = 1.558kHz$, 理论值为 $f_0 = 1.592kHz$ 。
- (b) 实验值略小于理论值,可能是电路中寄生的电容和电感所致。
- (c) 不排除由于测量中无法准确判断相位差零点的影响。
- 2. 通过实验测量得到的品质因数与理论值相差不大,实验测量结果较为准确。
 - (a) 实验测量值为 Q = 0.10,理论值为 Q = 0.996。
 - (b) 测量值略大于理论值,这是在实验误差之内的结果。
- 3. 通过实验测量得到的增益-频率特性曲线和相位差-频率特性曲线与理论值符合较好,说明实验结果较为准确。
 - (a) 由理论值计算得到的增益-频率特性曲线和相位差-频率特性曲线与实验测量值拟合得到符合较好,在全频段均无较大差异。
 - (b) 实验数据点与理论以及拟合曲线有一到两个数据点的偏离,可能是由于测量失误所致。
 - (c) 拟合结果在特征频率上相较第一部分结果更接近理论值,但依然小于理论值进一步说明 了电路中寄生的电容和电感所致。
 - (d) 得到的拟合曲线在半对数坐标轴上符合理论预测的特征:
 - i. 增益在特征频率上有一个单峰且关于特征频率对称;
 - ii. 相位差在关于频率单调且在特征频率上有一个零点,且为奇函数。
 - (e) 在频率最高的两个数据点处有一定便宜,这可能是由于电路元件的非线性以及测量仪器的频率响应特性所致。

5 附录

5.1 原始数据

元件	特征值	单位	电阻值	单位	谐振频率	U_c	U_0	Q	
电感	10	mH	14.25	Ohm	1558 hz	0.96	9.31	0.10	
电阻	1,000	Ohm	990	Ohm					
电容	1	uf	N/A	N/A					

1			ı	
f	U_r	U_0	A	phi
28	1.71	9.97	0.17	-80
43	2.57	9.96	0.26	-75
58	3.35	9.93	0.34	-70
74	4.12	9.90	0.42	-65
92	4.88	9.86	0.49	-60
111	5.56	9.82	0.57	-55
133	6.21	9.79	0.63	-50
158	6.80	9.75	0.70	-45
187	7.33	9.72	0.75	-40
224	7.82	9.67	0.81	-35
268	8.22	9.64	0.85	-30
328	8.58	9.61	0.89	-25
411	8.88	9.59	0.93	-20
523	9.09	9.56	0.95	-15
734	9.24	9.50	0.97	-10
1,028	9.19	9.36	0.98	-5
1,558	9.17	9.30	0.99	0
2,390	9.13	9.32	0.98	5
3,370	9.04	9.33	0.97	10
4,690	8.86	9.35	0.95	15
6,120	8.63	9.37	0.92	20
7,720	8.32	9.40	0.89	25
9,400	7.80	9.43	0.83	30
11,290	7.58	9.46	0.80	35
13,490	7.12	9.50	0.75	40
16,137	6.58	9.54	0.69	45
19,040	6.04	9.58	0.63	50
22,880	5.41	9.62	0.56	55
27,480	4.77	9.66	0.49	60
33,480	4.14	9.69	0.43	65
41,980	3.41	9.72	0.35	70
53,980	2.74	9.77	0.28	75
74,080	2.04	9.79	0.21	80

5.2 代码

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
df = pd.read_excel('data.xlsx', sheet_name='freqA')
# 定义电路数据
R = 990
L = 0.01
C = 1e-6
R_L = 14.25
# 读取实验数据
freq = pd.to_numeric(df['f'], errors='coerce')
U_r = pd.to_numeric(df['U_r'], errors='coerce')
U_0 = pd.to_numeric(df['U_0'], errors='coerce')
phi_exp = -pd.to_numeric(df['phi'], errors='coerce')
f0_{exp} = 1558
Q=exp = 0.103115
# 计算幅值比A和修正后的幅值比A'
A = U_r / U_0
A_{exp} = (R + R_L) / R * A
# 定义理论值计算函数
def A_theory(f, f0, Q):
   return 1 / np.sqrt(1 + Q**2 * (f0/f - f/f0)**2)
def phi_theory(f, f0, Q):
   return np.arctan(Q * (f0/f - f/f0)) * 180 / np.pi
# 计算理想值
w0 = 1 / np.sqrt(L * C)
Q = 1 / (R + R_L) * np.sqrt(L / C)
w = 2 * np.pi * freq
A_{ideal} = 1 / np.sqrt(1 + Q**2 * (w0/w - w/w0)**2)
phi_ideal = np.arctan(Q * (w0/w - w/w0)) * 180 / np.pi
# 定义回归函数
def A_fit(f, f0, Q):
   return A_theory(f, f0, Q)
def phi_fit(f, f0, Q):
   return phi_theory(f, f0, Q)
# 进行数据回归
popt_A, _ = curve_fit(A_fit, freq, A_exp)
popt_phi, _ = curve_fit(phi_fit, freq, phi_exp)
# 计算回归曲线
A_fit_val = A_fit(freq, *popt_A)
phi_fit_val = phi_fit(freq, *popt_phi)
# 定义配色方案
```

```
colors = {'exp': '#E69F00', 'theory': '#56B4E9', 'fit': '#009E73', 'bw': '#D55E00'}
# 绘制幅频响应曲线
plt.figure(figsize=(8, 6))
plt.semilogx(freq, A_exp, 'o', label='Experimental', color=colors['exp'])
plt.semilogx(freq, A_fit_val, '-', label='Fitted', color=colors['fit'])
plt.semilogx(freq, A_ideal, '--', label='Ideal', color=colors['theory'])
plt.xscale('log')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Amplitude Ratio')
plt.legend()
plt.grid(True)
# 绘制带宽横竖线
f1, f2 = popt_A[0] / (1 + 1/(2*popt_A[1])), popt_A[0] * (1 + 1/(2*popt_A[1]))
plt.axvline(f1, color='k', linestyle='--', label='Bandwidth', lw=1)
plt.axvline(f2, color='k', linestyle='--', lw=1)
plt.axhline(max(A_fit_val)/np.sqrt(2), color='k', linestyle='--', lw=1)
plt.tight_layout()
plt.show()
#绘制相频响应曲线
plt.figure(figsize=(8, 6))
plt.semilogx(freq, phi_exp, 'o', label='Experimental', color=colors['exp'])
plt.semilogx(freq, phi_fit_val, '-', label='Fitted', color=colors['fit'])
plt.semilogx(freq, phi_ideal, '--', label='Ideal', color=colors['theory'])
plt.xscale('log')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Phase (deg)')
plt.legend()
plt.grid(True)
#绘制带宽横竖线
plt.axvline(f1, color='k', linestyle='--', lw=1)
plt.axvline(f2, color='k', linestyle='--', lw=1)
plt.axhline(-45, color='k', linestyle='--', lw=1)
plt.axhline(45, color='k', linestyle='--')
plt.tight_layout()
plt.show()
f0_fit, Q_fit = popt_A
print(f"拟合得到的谐振频率: {-f0_fit:.2f} Hz, 品质因数: {Q_fit:.3f}")
```