k-tape Turing machine	 A finite set A, called the alphabet. A collection of k tapes, each an infinite sequence of cells each containing an element of A. One tape is declared to be the input and another one is declared to be the output. A set S of states, including two special states: S_{init} and S_{halt}. A transition function δ: A^k × S → A^k × S × {L, N, R}. A head which is in a state and a position on each tape.
turing-machine turing-machine-def	
Complexity class P	$f \in \mathbf{P}$ iff there exists a Turing machine T and a polynomial p such that, for all x, T computes $f(x)$ in time at most $p(x)$.
complexity-class-p-def	
Non-deterministic Turing machine	A non-deterministic Turing machine T is like a Turing machine except that it has two transition functions, and we say that T computes f if, for all input x , $f(x) = 1$ iff there's a sequence of choices between the two transition functions such that the output tape is 1 when T halts.

turing-machine::nondet
non-deterministic-turing-machine-def

Complexity class ${\bf NP}$

complexity-class::np turing-machine::nondet
complexity-class-np-def

 $f \in \mathbf{NP}$ iff there exists a non-deterministic Turing machine T and a polynomial p such that, for all x, T computes f(x)in time at most p(x).

Alternative	definition	of NP
Antenanve	аениыон	OLINI

 $f \in \mathbf{NP}$ iff there is a polynomial p and a function $g \in P$ such that, for every x, f(x) = 1 iff $\exists y \in \{0,1\}^{p(|x|)}, g(x,y) = 1$.

Proof.

- \implies Use y to encode the choices made by the non-deterministic TM. Then the TM for g is "Run the non-deterministic TM, reading y to know which transition function to follow.".
- \leftarrow Non-deterministically write down y and apply g.

J 3.

complexity-class:np
complexity-class-np-def-alt

Complexity class $\mathbf{co} - \mathbf{NP}$

complexity-class:co-np complexity-class-co-np

Polynomial hierarchy

complexity-class:ph complexity-class-ph

If P = NP, then P = PH

 $f \in \mathbf{co} - \mathbf{NP} \text{ iff } \neg f \in \mathbf{NP}$

Alternatively, $f \in \mathbf{co} - \mathbf{NP}$ iff there is a polynomial p and a function $g \in P$ such that, for every x, f(x) = 1 iff $\forall y \in \{0,1\}^{p(|x|)}, g(x,y) = 1$.

Define $\Sigma_0^{\mathbf{P}}$ and $\Pi_0^{\mathbf{P}}$ to be \mathbf{P} and

$$\begin{split} f \in \mathbf{\Sigma_{k+1}^{P}} &\iff \exists \text{ polynomial } p \text{ and } g \in \mathbf{\Pi_{k}^{P}}, \\ &\forall x, f(x) = 1 \iff \exists y, g(x, y) = 1 \\ f \in \mathbf{\Pi_{k+1}^{P}} &\iff \exists \text{ polynomial } p \text{ and } g \in \mathbf{\Sigma_{k}^{P}}, \\ &\forall x, f(x) = 1 \iff \forall y, g(x, y) = 1 \end{split}$$

Define

$$\mathbf{PH} = igcup_k oldsymbol{\Sigma_k^P} \cup oldsymbol{\Pi_k^P}$$

Induction on k:

- $\Sigma_1^{\mathbf{P}}$ by assumption. $\Pi_1^{\mathbf{P}} = P$ since we can negate, calculate in polynomial time, negate again.
- If $f \in \Sigma_{k+1}^P$, then there exists $g \in \Pi_k^P$ such that $\forall x, f(x) = 1 \iff \exists y, g(x, y) = 1$. By induction hypothesis, $g \in \mathbf{P}$. So $f \in \mathbf{NP} = \mathbf{P}$. Similarly, $\Pi_{\mathbf{k+1}}^{\mathbf{P}} = \mathbf{P}$.

time if $g \in \mathbf{P}$.

complexity-class:ph complexity-class:pspace ph-subset-pspace

Complexity class EXPTIME	$f \in \mathbf{EXPTIME}$ iff f can be computed by a Turing machine in time $\exp(O(n^k))$ for some k
complexity-class:exptime complexity-class-exptime	
$\mathbf{PSPACE}\subseteq\mathbf{EXPTIME}$	If a Turing machine takes polynomial space to compute inputs of size n , say $p(n)$, then its configuration (combination of the state, the position on the tapes, the values of each cell on the tapes) goes through at most $p(n)^k S A ^{kp(n)} = \exp(O(p(n)))$ possibilities. Further, if it went through one possibility twice, it would loop. Hence the computation takes exponential time.
<pre>complexity-class:pspace complexity-class:exptime pspace-subset-exptime</pre>	
Complexity class NEXPTIME	$f \in \mathbf{NEXPTIME}$ iff there is a polynomial p and a function $g \in \mathbf{EXPTIME}$ such that, for every $x, f(x) = 1$ iff $\exists y \in \{0,1\}^{p(x)}, g(x,y) = 1$.
complexity-class:nexptime complexity-class-nexptime	
Complexity class EXPSPACE	$f \in \mathbf{EXPSPACE}$ iff f can be computed using tapes of length $\exp(O(n^k))$ for some k

 $\mathbf{P}\subseteq\mathbf{NP}\subseteq\mathbf{PSPACE}$

 \subseteq

$\mathbf{EXPTIME} \subseteq \mathbf{NEXPTIME} \subseteq \mathbf{EXPSPACE}$

complexity-class:pspace complexity-class:pspace complexity-class:exptime basic-complexity-classes-hierarchy

Circuit

circuit

Fan-in of a circuit

circuit

Straight-line computations

A *circuit* is a directed acyclic graph (DAG) such that each vertex is labelled as either an *input*, an **AND** gate, an **OR** gate or a **NOT** gate.

- An input is a vertex of in-degree 0.
- A **NOT** gate has in-degree 1.
- All vertices of in-degree > 1 are **AND** or **OR** gates.
- Vertices of out-degree 0 are outputs.

The value at an **AND/OR** is the min/max of its predecessors. The value at a **NOT** is 1-x where x is the value at its predecessor.

The fan-in of a circuit is the maximum in-degree of any **AND** or **OR** gate.

A straight-line computation of $f: \{0,1\}^n \to \{0,1\}$ of length m is a sequence of functions f_1, \ldots, f_m starting with $f_i(x) = x_i$ for $i = 1, \ldots, n$, ending with $f_m = f$, and for each i > n there are some $j_1, \ldots, j_k < i$ such that either

$$f_i = f_{j_1} \wedge \dots \wedge f_{j_k}$$

$$f_i = f_{j_1} \vee \dots \vee f_{j_k}$$

This is the same as taking intersections and unions of halfspaces in an hypercube in order to get to some set. The smallest size of a circuit computing f is the shortest length of a straight line computing f

A straight-line computation is the same as a circuit whose vertices have been totally ordered in a way that respects its edges.

circuit straight-line-computation straight-line-computation-circuit

Every function $f: \{0,1\}^n \to \{0,1\}$ can be computed by a circuit of size exponential in n.

For every possible input x, build a circuit that recognises x (using at most n **AND** gates and n **NOT** gates) and outputs f(x) if it's recognised. Then take a giant **OR** gate of all of those. This circuit has size at most 2^{n+1} and computes f since

$$f(x_1) \wedge (x_1 = x_i) \vee \dots f(x_{2^n}) \wedge (x_{2^n} = x_i) = f(x_i)$$

circuit circuit-exponential

Family of circuits that each computes the output of a Turing machine on inputs of a given size

Let f be a function computed by a k-tapes Turing machine T in time p(n) for inputs of size n. Then there is a family C_n of circuits such that C_n computes f for inputs of size n and

$$|C_n| = O(p(n)^{k+2})$$

Proof. WLOG assume the alphabet is $\{0,1\}$. Encode the configuration of the machine in |S| variables for the state, 2kp(n) variables for the position of the heads, 2kp(n) variables for the values of the reachable cells. The transition function has k+|S| inputs, hence can be computed in a circuit of size O(p(n)). Updating the variables takes a circuit of size O(p(n)). Hence the whole circuit has size $O(p(n)^2)$. \square

circuit turing-machine turing-machine-to-circuits

Complexity class P/poly

 $f \in \mathbf{P/poly}$ if one (hence all) of the following holds

- There is a family C_n of polynomial-size circuits such that $C_{|x|}$ computes f(x).
- There is a polynomial p and a sequence y_n with $|y_n| = p(n)$ and a function $g \in \mathbf{P}$ such that $f(x) = 1 \iff g(x, y_{|x|}) = 1$. y_n should be thought of as an "advice string" to help compute f.
- There is a sequence of Turing machines T_n and a polynomial p such that T_n has $\leq p(n)$ states and computes f(x) when |x| = n.

The three definitions of P/poly are equivalent

complexity-class:p-poly
complexity-class-p-poly-alt

P-uniformity

p-uniformity p-uniformity-def

If P = NP, then search problems are equivalent to decision problems

complexity-class:p complexity-class:np p-np-search-decision-problem

If $\mathbf{NP} \subseteq \mathbf{P/Poly}$, and $f \in \mathbf{NP}$, then we can compute certificates for f using polynomial-size circuits

- Family of circuits \implies advice string. Let y_n be an encoding of C_n and let g(x,y)=1 if the circuit encoded by y outputs 1 with input x.
- Advice string \Longrightarrow family of circuits. Let C'_n compute g and make C_n to be C'_n with the last p(n) inputs set to y_n .
- Advice string \implies family of TMs. Let T compute g and let T_n be a Turing machine that prints out y_n and then uses T to compute $g(x, y_n)$.
- Family of TMs \implies advice string. Let y_n be an encoding of T_n and let g(x,y)=1 if the Turing machine encoded by y outputs 1 with input x (g is encoded by a universal TM).

A family of circuits C_n is **P**-uniform if there is an algorithm that generates it in polynomial-time (in n).

If $\mathbf{P} = \mathbf{NP}$ and $f \in \mathbf{NP}$, say $f(x) = 1 \iff \exists y, |y| = p(|x|)$ and g(x,y) = 1 where $g \in \mathbf{P}$, then there is some polynomial-time algorithm h such that if f(x) = 1 then g(x,h(x)) = 1.

Proof. For each i, let g_i be the function with input x and u_i where $|u_i|=i$ and output whether it can be extended by a 1. Now calculate $u_1=g_0(x),\,u_2=g_1(x,u_1),\,u_3=g_1(x,u_1,u_2),$ etc. At the end we obtain $h(x)=(u_1,\ldots,u_{p(|x|)})$ such that g(x,u)=1.

Each g_i is obviously in $\mathbf{NP} = \mathbf{P}$, so h can be computed in polynomial time (assuming the g_i are uniformly in polynomial time).

Say $f(x) = 1 \iff \exists y, g(x, y) = 1$ where $g \in \mathbf{P}$. Define $g_i(x, u_1, \dots, u_i) = 1 \iff \exists y, g(x, u_1, \dots, u_i, 1, y).$ $g_i \in \mathbf{NP} \subseteq \mathbf{P/Poly}$, hence find a polynomial-size circuit family $C_{i,n}$ that computes g_i . Now put circuits $C_{0,n}, \dots, C_{p(n),n}$ together as follows:

- $C_{0,n}$ takes inputs x_1, \ldots, x_n and outputs u_1
- $C_{1,n}$ takes inputs $x_1, \ldots x_n, u_1$ and outputs u_2
- ..

The resulting circuit C_n is such that if $\exists y, g(x, y) = 1$ then $g(x, C_n(x)) = 1$.

Karp-Lipton theorem

 $\label{lem:complexity-class:p-poly} \begin{center} $\operatorname{complexity-class:p-poly} \\ \operatorname{complexity-class:p-poly} \\ \operatorname{complexity-class:p$

For every k, there's a boolean function f that can be computed by a circuit family of size n^{k+1} but not by a circuit family of size n^k .

circuit boolean-function-precise-polynomial

For every k, there is a boolean function $f \in \Sigma_4^{\mathbf{P}}$ that cannot be computed by a family of circuits of size n^k

circuit complexity-class:ph
boolean-function-sigma-four-not-polynomial

Kannan's theorem

If $NP \subseteq P/poly$, then $\Sigma_2^P = \Pi_2^P$.

Proof. By symmetry, it's enough to prove $\Pi_2^{\mathbf{P}} \subseteq \Sigma_2^{\mathbf{P}}$. Let $f \in \Pi_2^{\mathbf{P}}$ and let $g \in \mathbf{NP}, h \in \mathbf{P}$ be such that

$$f(x) = 1 \iff \forall y, g(x, y) = 1$$

 $g(x, y) = 1 \iff \exists z, h(x, y, z) = 1$

By the existence of polynomial certificates when $\mathbf{NP} \subseteq \mathbf{P/poly}$, find a polynomial-size circuit family C_n such that $g(x,y)=1 \implies h(x,y,C_n(x,y))$. Then

$$f(x) = 1 \implies \exists C, \forall y, h(x, y, C_n(x, y)) = 1$$

The converse is true by assumption. Hence $f \in \Sigma_2^{\mathbf{P}}$.

TODO

For sufficiently large n, the lemma gives us $f'_n: \{0,1\}^n \to \{0,1\}$ that can be computed by a circuit of size n^{k+1} but not by a circuit of size n^k . Choose an ordering of the circuits of size $\leq n^{k+1}$ that's computable in polynomial time. Let C_n be the first circuit in this ordering such that no circuit of size $\leq n^k$ computes the same function as C_n . Let $f(x) = C_{|x|}(x)$. Then

$$f(x) = 1 \iff \exists C_n, |C_n| \le n^{k+1} \text{ and } C_n(x) = 1$$

and $\forall D, |D| \le n^k, \exists y, C_n(y) \ne D(y)$
and $\forall E < C_n, \exists F, |F| \le n^k, \forall z, E(z) = f(z)$

The $\exists \forall \exists \forall$ shows that $f \in \Sigma_4^P$.

For every k, there is a function $f \in \Sigma_{\mathbf{2}}^{\mathbf{P}} \cap \Pi_{\mathbf{2}}^{\mathbf{P}}$ that cannot be computed by a circuit family of size n^k .

Proof. If $\mathbf{NP} \subseteq \mathbf{P/poly}$, then $\mathbf{PH} \subseteq \Sigma_{\mathbf{2}}^{\mathbf{P}} \cap \Pi_{\mathbf{2}}^{\mathbf{P}}$ by Karp-Lipton. So the function in $\Sigma_{\mathbf{4}}^{\mathbf{P}}$ that cannot be computed by a circuit of size $\leq n^{k+1}$ does the job.

If $\mathbf{NP} \not\subseteq \mathbf{P/poly}$, then there is some $f \in \mathbf{NP} \subseteq \Sigma_2^{\mathbf{P}} \cap \Pi_2^{\mathbf{P}}$ that cannot be computed by *any* polynomial-size circuit family.

Comp	lorritar	ماموه	Т
Comp.	iexity	Class	L

 $f \in \mathbf{L}$ iff f can be computed with a logarithmic amount of memory. Formally, $f \in \mathbf{L}$ iff it can be computed by some Turing machine with a read-only input tape, a write-only output tape and worktapes of size $O(\log n)$ for inputs of size n.

complexity-class:1 complexity-class-1

Complexity class **NL**

 $f \in \mathbf{NL}$ iff f can be non-deterministically computed with a logarithmic amount of memory. Formally, $f \in \mathbf{NL}$ iff it can be computed by some non-deterministic Turing machine with a read-only input tape, a write-only output tape and worktapes of size $O(\log n)$ for inputs of size n.

complexity-class:nl complexity-class-nl

 $\mathbf{NL} \subseteq \mathbf{P}$

computes f in log-space and G be the configuration graph of T. Then f(x) = 1 iff there is a directed path in G from the initial configuration to one such that T has halted with output 1. Since T runs on $O(\log n)$ space, the number of vertices of G is polynomial in n ($|V(G)| \leq 2^{O(\log n)}|S| = n^{O(1)}$). But note that **REACHABILITY**, the problem of determining whether there is a directed path from a vertex x to a subset S of vertices on a directed graph is easily seen to be in **P**: just brute force search to find the neighbours.

Let $f \in \mathbf{NL}$, T be a non-deterministic Turing machine that

complexity-class:nl complexity-class:p
nl-subset-p

Low depth-computation classes

The class \mathbf{NC}^i where $i \in \mathbb{N}$ consists of all functions that can be computed by a family of circuits of polynomial size, fan-in 2 and depth $O(\log^i n)$, where depth of a circuit is the length of the longest directed path in the associated DAG.

 \mathbf{AC}^i is like \mathbf{NC}^i except that we allow unbounded fan-in.

We then define

$$\mathbf{NC} = igcup_i \mathbf{NC}^i, \mathbf{AC} = igcup_i \mathbf{AC}^i$$

1	
log-space	uniformity

 $f \in \mathbf{u} - \mathbf{NC}^i$ iff f can be computed by a family of circuits of polynomial size, fan-in 2 and depth $O(\log^i n)$ that can be generated in log-space.

complexity-class:nc log-space-uniformity-def

AC = NC

since a circuit of fan-in k can be replace by a circuit of fan-in 2 which is at most $\log k$ bigger by replacing each gate of in-degree d by $\log d$ gates of in-degree 2.

Obviously, $\mathbf{NC}^i \subseteq \mathbf{AC}^i$. But we also have $\mathbf{AC}^i \subseteq \mathbf{NC}^{i+1}$

complexity-class:nc complexity-class:ac
ac-eq-nc

Complexity classes \mathbf{RP} , $\mathbf{co} - \mathbf{RP}$ and \mathbf{ZPP}

 $f \in \mathbf{RP}$ (randomised polynomial time) iff there is a polynomial p and a function $g \in \mathbf{P}$ such that if |x| = n and m = p(n) then

$$\mathbb{P}_{y \in \{0,1\}^m}(g(x,y) = 1) \begin{cases} = 0 & \text{if } f(x) = 0 \\ \ge \frac{1}{2} & \text{if } f(x) = 1 \end{cases}$$

 $f \in \mathbf{co} - \mathbf{RP} \text{ iff } \neg f \in \mathbf{RP}.$

ZPP (zero-error probabilistic polynomial time) is $\mathbf{RP} \cap \mathbf{co} - \mathbf{RP}$

complexity-class:rp complexity-class:co-rp complexity-class:zpp
complexity-class-rp-co-rp-zpp

How to improve the accuracy of an algorithm in ${\bf RP}$

Run the algorithm many times. Say we're computing f and $g \in \mathbf{P}$ is such that

$$\mathbb{P}(g(x,y)=1) \begin{cases} = 0 & \text{if } f(x) = 0 \\ \ge \frac{1}{2} & \text{if } f(x) = 1 \end{cases}$$

Then if $y_1, \ldots y_k$ are independent samples, we get

$$\mathbb{P}(\exists i, g(x, y_i) = 1) \begin{cases} = 0 & \text{if } f(x) = 0 \\ \ge 1 - 2^{-k} & \text{if } f(x) = 1 \end{cases}$$

Complexity class **BPP**

 $f \in \mathbf{BPP}$ (bounded-error probabilistic polynomial time) iff there is a polynomial p and a function $g \in \mathbf{P}$ such that if |x| = n and m = p(n) then

$$\mathbb{P}_{y \in \{0,1\}^m}(g(x,y) = f(x)) \ge \frac{2}{3}$$

complexity-class:bpp complexity-class-bpp

How to improve the accuracy of an algorithm in ${\bf BPP}$

Run the algorithm many times. Say we're computing f and $g \in \mathbf{P}$ is such that

$$\mathbb{P}(g(x,y) = f(x)) \ge \frac{2}{3}$$

Take y_1, \ldots, y_k independent samples. Compute $g(x, y_1), \ldots, g(x, y_k)$. Output the majority. The probability of getting the wrong answer is at most $\exp(-\frac{k}{48})$ by Chernoff.

complexity-class:bpp bpp-improved-accuracy

 $\mathbf{BPP} \subseteq \mathbf{P/poly}$

If $k \geq 48n$, then the probability that the majority is wrong is $< 2^{-n}$. Therefore there exist y_1, \ldots, y_k such that for **every** x the majority vote is correct. $y_1 \ldots y_k$ serves as an advice string, together with the function that computes the majority vote.

complexity-class:bpp complexity-class:p-poly bpp-subset-p-poly