Bioquímica Geral

Sumário

TRANSPORTE BIOLÓGICO

Difusão de solutos (revisão)

Transporte: considerações termodinâmicas

Tipos de transporte:

Difusão simples

Difusão facilitada (ionóforos, canais iónicos e transportadores)

Transporte activo primário

Transporte activo secundário

Classificação dos sistemas de transporte

Transporte de solutos

- O carácter altamente hidrofóbico das membranas biológicas conferelhes uma elevada impermeabilidade à maioria dos iões e moléculas polares ⇒ são necessários transportadores proteicos.
- A transferência de solutos através da membrana é determinada:
 - 1. permeabilidade na camada lipídica
 - 2. disponibilidade de energia

As **substâncias lipofílicas**, que se dissolvem na membrana, tais como as hormonas esteróides ou gases como O_2 , N_2 , CO_2 e NO, difundem dos compartimentos de maior concentração para os de menor concentração por **difusão simples** através da camada bilipídica.

Difusão de solutos: revisão

Solutos neutros

C_1 C Co $C_1 >> C_2$ $C_1 = C_2$ não-equilíbrio equilíbrio fluxo nulo fluxo

Solutos carregados

O movimento de solutos de carga neutra é no sentido da menor concentração até se atingir o equilíbrio

⇒ gradiente químico

A difusão de solutos carregados depende da concentração e do **potencial de membrana**

⇒ gradiente electroquímico

Transporte: considerações termodinâmicas

A difusão de uma substância neutra através da membrana é semelhante, do ponto de vista termodinâmico, a um equilíbrio químico:

$$A(out)$$
 \longrightarrow $A(in)$

A energia livre em função da concentração é:

$$\bar{G}_{A} - \bar{G}_{A}^{0'} = RT \ln[A]$$

em que $\dot{G}_{\rm A}$ é o potencial químico (energia livre molar parcial) de A (*a barra indica quantidade por mole*) e $\dot{G}_{\rm A}^{0'}$ é o potencial químico de A no estado padrão.

A diferença de concentrações dos 2 lados da membrana gera uma diferença de potencial químico:

$$\Delta G_{A} = G_{A}(in) - G_{A}(out) = RT \ln \left(\frac{[A]_{in}}{[A]_{out}} \right)$$

se $[A]_{out} > [A]_{in} \Rightarrow$ a energia livre associada ao transporte de A de fora para dentro é negativa; se $[A]_{out} < [A]_{in}$, a energia é positiva e o transporte de A para o interior requer energia.

Transporte: considerações termodinâmicas (cont.)

O movimento transmembranar de iões resulta, também, em diferença de cargas através da membrana, gerando assim uma diferença de potencial eléctrico:

$$\Delta \Psi = \Psi(in) - \Psi(out)$$

(em que $\Delta \Psi$ representa o potencial de membrana)

Se A for uma substância iónica define-se o potencial electroquímico que resulta da soma do potencial químico com o potencial eléctrico. A variação do potencial electroquímico associada ao movimento transmembranar é igual a:

$$\Delta G_{A} = RT \ln \left(\frac{[A]_{in}}{[A]_{out}} \right) + Z_{A}F\Delta\Psi$$

em que Z_A é a carga eléctrica do soluto transportado, F é a constante de Faraday ($F = 96500 \text{ JV}^{-1}\text{mol}^{-1} = 23.1 \text{ kcalV}^{-1}\text{mol}^{-1}$)

que depende do gradiente de concentrações e do gradiente eléctrico ($\Delta\Psi$)

Tipos de transporte através da membrana

1. Transporte não-mediado ou difusão simples. O soluto move-se a favor do gradiente electroquímico (potencial electroquímico) através da bicamada lipídica. O fluxo depende do gradiente e também da solubilidade do soluto na fase apolar da bicamada (que é muito baixa para iões e solutos polares).

- **2. Transporte mediado**, o transporte ocorre pela acção de um transportador proteico específico:
 - **2.1. transporte passivo ou difusão facilitada**, em que o soluto se difunde através do transportador ou canal proteico a favor do gradiente electroquímico. O fluxo aumenta, relativamente à difusão simples, devido ao aumento da permeabilidade por causa da presença do transportador.
 - **2.2. transporte activo**, em que o soluto se move contra o gradiente electroquímico; é um processo endergónico que tem de estar acoplado a um processo exergónico ($\Delta G < 0$) para ocorrer. As bombas permitem o acoplamento dos dois processos.

Tipos de transporte através da membrana

- Classificação dos tipos de transporte baseado no nº de partículas transportadas e na direcção:
- Transporte de uma única molécula ou ião, mediado por um transportador ou um canal = uniporte
- Transporte simultâneo de duas partículas por cotransporte:
 simporte ou antiporte (normalmente entre duas partículas de carga igual → electroneutralidade; energeticamente mais favorável)

Exemplos:

Uniporte: transportador de glucose nos

eritrócitos

Simporte: transporte activo de glucose

acoplado a Na+ nas células do epitélio intestinal

Antiporte: permutador aniónico cloreto-

bicarbonato dos eritrócitos

Tipos de transporte através da membrana

Transporte: considerações termodinâmicas

Difusão: sempre a favor do gradiente

- (a) Na difusão simples, a remoção da esfera de hidratação do soluto é muito endergónica e tem uma ΔG * muito elevada.
- (b) Na difusão facilitada, a presença de um transportador proteico reduz ∆G[‡], estabelecendo interacções nãocovalentes com o soluto hidratado de forma a substituir as pontes de H com a água e disponibilizando um canal hidrofílico ⇒ Difusão facilitada ou transporte passivo

Difusão facilitada: ionóforos

Ionóforos são moléculas orgânicas (antibióticos ou péptidos) que aumentam a permeabilidade da membrana para um ião específico. Algums funcionam como transportadores ("carriers" ex. Valinomicina) outros formam canais na membrana (ex. Gramicidina).

- o complexo ionóforo-ião tem que ser solúvel em solventes nãopolares.
- ionóforos que formam canais através dos quais o ião pode difundir.

Difusão facilitada (transporte passivo)

- 1. Canais (poros) que possibiltam o movimento rápido de moléculas ou iões específicos através da membrana. São normalmente proteínas oligoméricas intrínsecas, cujas estruturas terciária e quaternária criam um poro aquoso na membrana.
 - a substância a transportar não se liga ao canal
 - a especificidade do canal baseia-se na carga e no tamanho da substância
 - o fluxo é regulado pela abertura / fecho do canal
 - velocidade de translocação elevada: 10⁷ iões/s⁻¹
- 2. Transportadores (carriers, permeases, porters, translocases) transportam a molécula ou ião por ligação ao transportador, seguida de alteração conformacional que conduz a translocação da substância. Apesar de não serem enzimas (não catalisam uma reacção química), a sua actividade pode ser descrita usando o formalismo da cinética enzimática ⇒ substrato, inibidores competitivos e não-competitivos... Apresentam saturação.
 - velocidade de translocação 10² –10³ iões/s⁻¹

1: Canais iónicos selectivos são proteínas integrais que abrem e fecham em resposta a um acontecimento celular. *Exemplos: canal/receptor de acetilcolina (junção neuro-muscular), canais de Na⁺ e K⁺ dependentes da voltagem (transmissão do impulso nervoso).*

- Fluxos superiores aos dos transportadores
- Não apresentam saturação
- São controlados ("gated") por ligandos ou por voltagem

Estrutura do canal K+ sensível à voltagem

Os iões K+ no filtro de selectividade

Representação das interacções entre os iões K+ e o canal

A transmissão do impulso nervoso depende da existência de gradientes iónicos (mantidos por transporte activo: bomba Na+/K+) e de canais iónicos sensíveis à voltagem: canais de Na+ e canais de K+

- •A informação nas células nervosas é codificada por **sinais eléctricos correntes** iónicas de **Na**+ (que entra) e **K**+ (que sai) e provocam alterações no **potencial** de membrana **V**
- •O Na+ e o K+ atravessam a membrana através de canais iónicos específicos.
- •A abertura e fecho destes canais é controlada por voltagem (ou por ligandos) e é responsável pelo aumento da **Condutância G** (Permeabilidade) da membrana a estes iões.

Transportadores ou permeases (transporte passivo)

- 2: Transportadores ou permeases: são proteínas integrais que aumentam a permeabilidade da membrana para água (aquaporinas) ou solutos específicos. A proteína forma uma canal aquoso cuja selectividade se baseia no tamanho do soluto.
 - · aumento da velocidade do transporte a favor do gradiente
 - apresentam saturação
 - São específicos

Transporte de glucose nos eritrócitos – GLUT1

GLUT1 existe em duas conformações: T_1 , com o sítio de ligação da glucose exposto ao lado externo da membrana e T_2 , com o sítio de ligação acessível no lado interno.

- ligação da glucose a um sítio estereoespecífico do GLUT1 na superfície externa da membrana (conformação T₁) ⇒ baixa da E₂
- 2. alterações conformacionais de S_{out} - $T_1 \rightarrow S_{in}$ - $T_2 \Rightarrow$ bloqueio do 1° sítio de ligação e exposição do sítio de ligação em T_2
- dissociação da glucose da forma T₂ e libertação no citoplasma
- 4. conversão do transportador à conformação T₁

$$S_{out} + T_1 \xrightarrow{k_1} S_{out} - T_1$$

$$k_{-4} \downarrow k_4 \qquad k_{-2} \downarrow k_2$$

$$S_{in} + T_2 \xrightarrow{k_3} S_{in} - T_2$$

Transporte de glucose nos eritrócitos – GLUT1

Extracellular glucose concentration, [S]_{out} (m_M)

Na difusão simples a velocidade do transporte é sempre directamente proporcional à concentração do soluto

Na difusão facilitada (por permeases) a velocidade do transporte apresenta saturação porque o soluto tem que se ligar ao transportador para atravessar a membrana. Nos canais iónicos também não há saturação mas as velocidades de transporte são muito elevadas.

16

Difusão facilitada: transporte de cloreto-bicarbonato

- Transporte de cloreto-bicarbonato nos eritrócitos por um permutador aniónico essencial no transporte de CO₂ para os pulmões, na forma de HCO₃-
- O permutador aumenta a permeabilidade da membrana dos eritrócitos ao HCO₃⁻ e faz o transporte simultâneo de 2 aniões : por cada HCO₃⁻ translocado num sentido há um ião Cl⁻ que se move no sentido oposto ⇒ cotransporte electroneutro de aniões do tipo antiporte

- nos tecidos, entrada do CO₂ produzido no catabolismo por difusão simples nos eritrócitos.
- conversão do CO₂ a HCO₃ nos eritrócitos pela acção da anidrase carbónica.
- 3. translocação do HCO₃ para a corrente sanguínea onde vai até aos pulmões
- nos pulmões o HCO₃ volta a entrar nos eritrócitos onde é convertido a CO₂, libertado nos pulmões e expelido

Transporte activo: Dá-se contra o gradiente electroquímico.

Por essa razão necessita de "input" de energia.

Transporte activo secundário S é transportado contra o seu gradiente usando a energia do gradiente de X, que é dissipado. O transporte activo secundário depende sempre de um gradiente iónico que é formado e mantido por um transporte activo primário.

Transporte activo primário:

A bomba gasta ATP para exportar o composto X criando um gradiente.

Transporte activo secundário:

O metabolito S é transportado contra o seu gradiente para dentro da célula, à custa da dissipação do gradiente do composto X (que entra na célula a favor do seu gradiente).

Se a bomba for inibida o gradiente de X não é mantido e acaba por se dissipar, nessa altura o transporte de S também pára.

Transporte activo primário (ATPases transportadoras de iões)

Bomba de Na⁺/K⁺

Mantém [Na+] baixa e [K+] elevada dentro da célula.

Bomba de Ca²⁺

Mantém [Ca²⁺] baixa no citoplasma.

Bomba de H⁺

Cria pH baixo no interior de compartimentos

ATPase

Cataliza o transporte de H⁺ contra o seu gradiente à custa da hidrólise de ATP. É reversível.

Existe na mitocôndria, no cloroplasto e na membrana plasmática de bactérias onde catalisa a reacção inversa.

ATPases do tipo P

As ATPases P pertencem a uma família de transportadores de catiões dependentes de ATP.

- o transporte envolve a fosforilação reversível do transportador pelo ATP (resíduo Asp conservado)
- a fosforilação implica uma alteração conformacional essencial ao movimento do soluto através da membrana.
- são proteínas integrais, com sequências primárias homólogas, cuja função é manter as concentrações iónicas no interior do citosol.

Exemplos:

Ca²⁺ATPase do retículo sarcoplasmático (células musculares) H+-K+ATPase gástrica (mantém [H+] elevada no estômago) Na+/K+ATPase (mantém gradientes de Na+ e K+ nas células)

β-Phosphorylaspartate

ATPase de Na+/K+

A ATPase de Na⁺/K⁺ acopla a hidrólise de ATP ao transporte simultâneo de 3Na⁺ e 2K⁺ contra os seus gradientes electroquímicos.

Classificação: Transporte activo primário antiporte electrogénico

É responsável pela manutenção das concentrações intracelulares de Na+ e de K+, contribuindo para o potencial eléctrico de membrana.

Û

Transloca 3 iões Na+ para o exterior por cada 2 iões K+ que entram (acoplada à hidrólise de ATP em ADP e P_i)

Nos neurónios, a manutenção dos gradientes de Na+ e K+ é importante na transmissão do impulso nervoso. Além disso, o gradiente de Na+ é usado como força motriz no cotransporte activo secundário de vários solutos.

Mecanismo de transporte da ATPase de Na+/K+ (modelo)

- durante o ciclo de transporte a ATPase existe em 2 formas: fosforilada (P-Enz_{II}) com elevada afinidade para o K⁺ e baixa afinidade para o Na⁺, e desfosforilada (Enz_I) com elevada afinidade para o Na⁺ e baixa para o K⁺
- a hidrólise de ATP ocorre em 2 passos reaccionais:

(1) ATP +
$$Enz_1 \longrightarrow ADP + P-Enz_{11}$$

$$(2) \quad P-Enz_{11} + H_20 \longrightarrow Enz_1 + Pi$$

$$ATP + H_20 \longrightarrow ADP + Pi$$

 devido ao facto de serem transportados 3
 Na⁺ para fora por cada 2 K⁺ que entram, há uma separação de cargas em cada face da membrana – processo electrogénico ⇒ potencial transmembranar de -50 a -70 mV (negativo no interior relativamente ao exterior).

ATPase do tipo F: a ATPase F_oF₁

 Catalisa o transporte transmembranar de H+ (contra o seu gradiente de concentração) acoplado à hidrólise de ATP

- a proteína periférica F₁ é um motor molecular que usa a energia da hidrólise do ATP para mover H⁺ contra o seu gradiente de concentração (α₃β₃δγ)
- a proteína integral F_o (F_o ≡ factor inibido pela oligomicina) forma um canal transmembranar para os H⁺
- A reacção catalisada pela ATPase F_oF₁
 é reversível ⇒ gradiente de protões
 pode fornecer energia necessária à
 síntese de ATP (ATP sintase) :
 mitocôndria e cloroplasto

(4H+ bombeados/ATP hidrolisado)

Transporte activo secundário: Transporte de lactose

 Os gradientes iónicos formados no transporte primário de Na⁺ ou de H⁺ são usados como força motriz no cotransporte de outros solutos (contra o seu gradiente de concentração).

Exemplo: transporte de lactose pela permease de lactose em E. coli

Classificação: transporte activo secundário, simporte, electrogénico

- o transporte primário de H⁺ para o meio exterior produzido na cadeia respiratória estabelece um gradiente de H⁺ e um potencial eléctrico (negativo no interior) através da membrana.
- o transporte activo secundário de lactose para o interior da célula envolve simporte de H+ e de lactose pela permease.
- a acumulação endergónica da lactose (contra o seu gradiente de concentração) está acoplada ao fluxo exergónico de H⁺ para o interior da célula (ΔG_t < 0)

Transportador de lactose de *E. coli* (cont.)

- o transporte de lactose implica alterações conformacionais em que ocorre abertura para o substrato, primeiro do lado periplasmático e depois do lado citoplasmático, onde a lactose é libertada.
- a interconversão entre as 2 formas é mediada pelo grau de protonação do Glu³²⁵ e da Arg³⁰², que é afectado pelo gradiente protónico transmembranar.

