

Linguaggi formali e compilatori

UNITN - Lazzerini Thomas ${\it Marzo~2021}$

Indice

1	For	mulario :	3
	1.1	Unità di misura	3
2	Intr	roduzione	3
	2.1	Il metodo sperimentale	3
3	Cin	netica dei punti	3
	3.1	Sistema di riferimento	3
	3.2	Diagramma dello spazio	1
	3.3	Caso semplice	1
	3.4	Moto rettilineo uniforme	5
	3.5	Velocità	5
		3.5.1 Velocità istantanea	õ
		3.5.2 Accelerazione	ĵ
		3.5.3 Moto rettilineo uniformemente accellerato	3
		3.5.4 Esercizi vari sui moti con formule	7
		3.5.4.1 Esempio 1 (moto rettilineo uniforme)	7
		3.5.4.2 Esempio 2 (moto rettilineo uniformemente accellerato)	7
	3.6	Moto armonico	9
		3.6.1 Esempio di moto armonico)
	3.7	I moti piani	1
		3.7.1 I vettori	1
		3.7.2 Sistema di riferimento	1
		3.7.3 Rappresentare velocità ed accelerazione	3
		3.7.4 Esempio	3
	3.8	Il moto parabolico	5
		3.8.1 Sistema di riferimento	5
		3.8.2 Rappresentare spazio, gittata γ , altezza massima h_{max} e velocità	ô
		3 8 2 1 Riassunto	7

1 Formulario

1.1 Unità di misura

T	=>	10^{12}	G	=>	10^{9}
M	=>	10^{6}	k	=>	10^{3}
m	=>	10^{-3}	μ	=>	10^{-6}
n	=>	10^{-9}	p	=>	10^{-12}

2 Introduzione

2.1 Il metodo sperimentale

Distingue discipline sperimentali da discipline non sperimentali. Si compone di diverse fasi:

- 1. formulazione ipotesi: si fa un'ipostesi descrittiva (in linguaggio matematico) della porzione di mondo che si vuole analizzare, di conseguenza si decide di non considerare altre caratteristiche del mondo che non centrano con l'ipotesi che stiamo formulando;
- 2. **esperimento**: si va a ricreare una situazione dove l'aspetto che vogliamo analizzare è **sicuramente** presente e influenzato il meno possibile da fattori esterni;
- 3. **esecuzione dell'esperimento**: si verifica l'ipotesi, formulata in modo matematico, confrontando i valori ottenuti con l'esperimento con quelli che si ottengono dalla nostra ipotesi.

In base alla "verifica" dell'ipotesi possiamo fare una differenziazione:

- teoria: l'ipotesi non è ancora verificata, o è verificata parzialmente;
- legge fisica: l'ipotesi è verificata (in un certo ambito);

3 Cinetica dei punti

Descrive il movimento dei corpi.

3.1 Sistema di riferimento

Specifichiamo un sistema di riferimento per il seguente argomento:

Una cosa importante da notare è che un numero singolo può rappresentare solo cose "mono-dimensionali" e che, soprattutto, non tutte le unità di misura possono rappresentare qualsiasi cosa (ad es.: l'età dell'universo non si può rappresentare con i metri).

3.2 Diagramma dello spazio

Rappresentiamo lo spostamento nel tempo tramite un "diagramma dello spazio":

In particolare, in questo diagramma rappresentiamo sull'asse Y lo **spostamento** (s) (rappresentato come **valore uni-dimensionale**) e sull'asse X il **tempo** (t) (anche rappresentato come **valore uni-dimensionale**). Nota che il diagramma NON RAPPRESENTA una posizione, ma lo spostamento in relazione al tempo.

3.3 Caso semplice

Vediamo un semplice caso di utilizzo per capire come usare i diagrammi dello spazio:

Possiamo immaginare di avere un oggetto in movimento su una retta tra i punti A e B, come possiamo rappresentare questo movimento nel diagramma? Come prima cosa posizioniamo i "fenomeni" ($def.\ qual-cosa\ che\ appare\ evidente\ all'osservazione$), ovvero i **punti A e B**, nota che non è detto che questi punti coincidano con dei "punti particolari" (ad esempio l'origine) nel nostro diagramma. In particolare, a questi punti associamo un valore sull'asse del tempo (t_i, t_f) ed un valore sull'asse dello spazio (s_i, s_f). A questo punto esistono infiniti possibili percorsi tra il punto A ed il punto B, ad esempio:

Importante notare che *non tutti questi percorsi*, *pur avendo senso matematico*, *hanno senso fisico*! Ad esempio, il percorso in rosso "torna indietro nel tempo"!

3.4 Moto rettilineo uniforme

STUB################## (In teoria lo fa dopo, controllare)

3.5 Velocità

Possiamo immaginare la velocità (v) come la "def. variazione dello spazio rapportato al tempo impiegato per percorrerlo", in particolare la velocità è data dalla formula:

$$v = \frac{s_f - s_i}{t_f - t_i} = \frac{\Delta s}{\Delta t}$$

Vediamo un semplice esempio:

$$s_i = 400m, \ s_f = 700m, \ t_i = 7:30 = 450min, \ t_f = 7:40 = 460min$$

$$v = \frac{700m - 400m}{460min - 450min} = \frac{300m}{600s} = 0,5m/s$$

Nota che nella seconda uguaglianza nell'esempio abbiamo **convertito i minuti in secondi**, puoi immaginare che abbiamo posto "min = (60s)", quindi abbiamo fatto "10min = 10 * (60s) = 600s".

3.5.1 Velocità istantanea

Quella che abbiamo calcolato prima possiamo vederla come "velocità media" di tutto il percorso, la **velocità istantanea** invece possiamo vederla come la *def. velocità in un punto specifico del percorso*. Immagina quindi di fare la formula:

$$v_{ist} = lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{\delta s}{\delta t}$$

Nota che quando si usa la lettera " δ " stiamo ad indicare una **piccola** (infinitesima) **variazione**. Ora, se il valore di s viene espresso **in funzione di t**, quindi abbiamo s(t), e la funzione "s(t)" è **derivabile**, allora la **velocità istantanea corrisponde alla derivata prima della funzione** s(t), che a sua volta corrisponde a $\frac{ds}{dt}$.

Supponendo che il **moto del nostro punto** venga identificato dalla curva in verde, il rapporto tra la lunghezza dei 2 cateti C_1C_2 (Δt) e C_2C_3 (Δs) rappresenta la **tangente** α , che in questo caso rappresenta la **velocità media**. Ora, se restringiamo l'intervallo di t in modo che tenda a 0 e calcoliamo il valore della derivata in quel punto otterremo la velocità istantanea.

3.5.2 Accelerazione

Nel paragrafo precedente abbiamo visto che la velocità in un punto corrisponde al valore della derivata prima (della funzione che rappresenta il moto del nostro corpo) in quel punto, per quanto riguarda l'accelerazione abbiamo che l'accelerazione corrisponde al rapporto tra la derivata della velocità e la derivata del tempo, ottenendo quindi la formula $\frac{dv}{dt}$, operativamente dobbiamo fare la derivata seconda della funzione che rappresenta il moto del nostro punto.

3.5.3 Moto rettilineo uniformemente accellerato

Cominciamo col dire che:

$$a = \frac{dv}{dt}$$

Ricorda che con dv e dt intendiamo le **derivate**. Da questa ricaviamo dv, ovvero:

$$dv = a * dt = \int_{A}^{B} dv = \int_{A}^{B} (a * dt) = v_{B} - v_{A} = a(t_{B} - t_{A})$$

Da questo otteniamo quindi che la velocità in funzione del tempo corrisponde a:

$$v(t) = v_0 + a(t - t_0)$$

Ottenuta questa formula, possiamo passare a calcolare lo spazio in funzione del tempo, ovvero:

$$v(t) = \frac{ds}{dt} \implies ds = v * dt \implies \int_{A}^{B} ds = \int_{A}^{B} v * dt \implies s_{B} - s_{A} = \int_{A}^{B} [v_{0} + a(t - t_{0})] dt \implies$$

$$=> s_{B} - s_{A} = \left[v_{0} * t + a \frac{(t - t_{0})^{2}}{2}\right]_{A}^{B} \implies s_{B} - s_{A} = v_{0} * t_{B} + a \frac{(t_{B} - t_{0})^{2}}{2} - v_{0} * t_{A} + a \frac{(t_{A} - t_{0})^{2}}{2}$$

Da questo otteniamo quindi che la velocità in funzione del tempo corrisponde a:

$$s(t) = s_0 + v_0(t - t_0) + \frac{1}{2}a(t - t_0)^2$$

Terminiamo dicendo che in questo moto l'accelerazione è costante, quindi:

$$a(t) = a$$

3.5.4 Esercizi vari sui moti con formule

Vediamo alcuni esempi:

3.5.4.1 Esempio 1 (moto rettilineo uniforme) Supponiamo di avere un oggetto che si sposta da un punto A (t_0, s_0) ad un punto B (t_1, s_1) tramite un moto rettilineo uniforme, abbiamo i seguenti dati:

$$t_0 = ?$$
 $s_0 = 1, 5Km$ $v = 36m/s$ $s_1 = 11, 5Km$ $t_1 = 0, 3h$

L'obiettivo è trovare i dati mancanti (ovvero t_0). Noi sappiamo che la velocità "v" corrisponde a:

$$v = \frac{\Delta s}{\Delta t} = \frac{s_1 - s_0}{t_1 - t_0} = > \dots = > t_0 = t_1 - \frac{s_1 - s_0}{v}$$

Sostituendo i valori forniti, otteniamo che $t_0 \approx 802, 22s$

3.5.4.2 Esempio 2 (moto rettilineo uniformemente accellerato) Supponiamo di avere un oggetto all'altezza h_0 e di lanciarlo verso l'alto con una velocità v_0 nell'istante t_0 con un'accelerazione a. Dobbiamo trovare l'altezza (h_c) ed il tempo (t_c) di culmine e, supponendo che alla fine l'oggetto raggiunga l'altezza finale " h_f ", trovare il tempo finale " t_f ". Supponiamo di avere i seguenti dati:

$$h_0 = 100m$$
 $t_0 = 0s$ $v_0 = 5m/s$ $a = -9, 8m/s^2$ $t_c = ?$ $t_f = ?$ $h_f = 0m$

Includiamo delle immagini complementari:

Procediamo per punti:

1. Vogliamo trovare il tempo di culmine (t_c) , quindi poniamo v(t) = 0 e troviamo la t che rende vera l'equazione:

$$v(t) = 0 \implies v_0 + a(t - 0) \implies t_c = -\frac{v_0}{a} = -\frac{5m/s}{-9, 8m/s^2} \approx 0,51s$$

2. Vogliamo calcolare l'altezza di culmine (h_c) , per farlo usiamo la formula dello spazio:

$$h_c = s(t_c) = s_0 + v_0(t_c - 0) + \frac{1}{2}a(t_c - 0)^2 =$$

$$= 100m + 5m/s * (0,51s) + 1/2(-9,8m/s^2) * (0,51s)^2 \approx 101,28m$$

3. Vogliamo calcolare il tempo "finale" (t_f) , per farlo usiamo sempre la formula dello spazio:

$$s(t_f) = h_f = 0 =>$$

=> $s_0 + v_0(t_f - 0) + \frac{1}{2}a(t_f - 0)^2 = 0$

A questo punto abbiamo una funzione di secondo grado con $x = t_f$, quindi usiamo la formula solita:

$$t_{f 1/2} = -\frac{v_0}{a} \pm \sqrt{(-\frac{v_0}{a})^2 - 2\frac{s_0}{a}}$$

$$t_f = 0.51s + \sqrt{(0.51s)^2 - 2 * \frac{100m}{-9.8m/s^2}} \approx 5.06s$$

Nota che possiamo subito sostituire il " \pm " con un "+" dato che la radice sarà sicuramente più grande di quel 0,51 che la precede, quindi non avrebbe fisicamente senso fare altrimenti (tempo negativo).

3.6 Moto armonico

Nel moto armonico abbiamo un'accelerazione oscillante, nella forma $\underline{a_0 * sin(t)}$. Il problema è che il sin (come tutte le funzioni matematiche) è adimensionale, quindi dobbiamo aggiungere delle componenti aggiuntive per rendere il tempo "t" adimensionale, in paricolare abbiamo che:

$$a(t) = a_0 * sin(\omega t + \varphi)$$

dove " ω " rappresenta la **pulsazione** e " φ " la **fase**. Nota che **abbiamo già l'accelerazione**, ovvero $a_0 * sin(t)$, quindi per calcolare velocità e spazio procediamo per **integrazioni successive**, con gli estremi di integrazione che corrispondono al **punto di inizio e di fine** della nostra misurazione.

$$v(t) = v_0 + \int_{t_0}^t a(\tau)d\tau = v_0 + \frac{1}{\omega} \int_{t_0}^t \omega a_0 \sin(\omega t + \varphi)d\tau =$$

$$= v_0 + \frac{1}{\omega} \left[-\cos(\omega t + \varphi) \right]_{t_0}^t = v_0 - \frac{a_0}{\omega} \cos(\omega t + \varphi) + \frac{a_0}{\omega} \cos(\omega t_0 + \varphi) =$$

$$= V - \frac{a_0}{\omega} \cos(\omega t + \varphi)$$

Nota che il testo in rosso sopra, in quanto costante, viene raccolto in V, passiamo ora a calcolare lo spazio (che corrisponde all'integrazione della velocità):

$$s(t) = s_0 + \int_{t_0}^t v(\tau)d\tau =$$

$$= s_0 + V(t - t_0) - \frac{a_0}{\omega^2} sin(\omega t + \varphi) + \frac{a_0}{\omega^2} sin(\omega t_0 + \varphi) =$$

$$= S + V(t - t_0) - \frac{a_0}{\omega^2} sin(\omega t + \varphi)$$

In definitiva, le formule che interessano a noi sono:

$$a(t) = a_0 * sin(\omega t + \varphi)$$

$$v(t) = V - \frac{a_0}{\omega} cos(\omega t + \varphi)$$

$$s(t) = S + V(t - t_0) - \frac{a_0}{\omega^2} sin(\omega t + \varphi)$$

Ricorda che le parti in rosso sono costanti (di solito per noi varranno 0), mentre l'accelerazione ci è stata fornita all'intizio, quindi teniamo quella. Vediamo un "esempio":

Esempio di moto armonico 3.6.1

Ipotiziamo di avere una situazione del genere: vogliamo misuare l'andamento dell'ombra di un'altalena (che va solo avanti e indietro) sulla superficie.

Noi assumiamo sempre che φ (ovvero la fase)= 0 e che cominciamo da $t_0=0$, quindi le nostre formule diventano:

$$a(t) = a_0 * sin(\omega t)$$

$$v(t) = -\frac{a_0}{\omega} cos(\omega t)$$

$$v(t) = -\frac{a_0}{\omega} cos(\omega t)$$
$$s(t) = -\frac{a_0}{\omega^2} sin(\omega t)$$

Prima di passare al grafico dobbiamo calcolare il valore della nostra variabile t, ora noi sappiamo che ωt , dato che $\varphi = 0$, deve rappresentare una rotazione completa (2π) :

$$\omega t = 2\pi = > t = \frac{2\pi}{\omega} = T$$

Nota che il nostro T rappresenta il **periodo**. Con queste funzioni/variabili, possiamo passare al calcolo dei grafici temporali:

3.7 I moti piani

Prima di partice con i moti veri e propri, introduciamo velocemente i vettori.

3.7.1 I vettori

Passiamo ora a considerare i **moti con 2 dimensioni**, per questo motivo dobbiamo introdurre i **vettori** composti da:

- punto di inizio;
- verso;
- modulo (la lunghezza del vettore);
- direzione (la retta su cui giace il vettore);

I vettori, si comportano in modi leggermente diversi rispetto ai numeri "normali", in particolare a noi interessa:

• somma: si fa con la **regola del parallelogramma**, ovvero:

• prodotto per scalare: quando si moltiplica un vettore per uno scalare, semplicemente si va a **moltiplicare** il **modulo del vettore**, in particolare " $\vec{a} = b * \vec{c} => |\vec{a}| = b * |\vec{c}|$ "

3.7.2 Sistema di riferimento

Introduciamo ora il sistema di riferimento per questo moto:

Da questo punto in poi, rappresentiamo il moto sul **piano cartesiano**: rappresenteremo quindi il **movimento "fisico"** del moto in quanto **non più unidimensionale!** Per quanto riguarda gli assi, si usano quelli che vengono definiti **versori** che matematicamente si rappresentano come $\hat{x} = \vec{x}/|\vec{x}|$. In questo modo otteniamo qualcosa di **adimensionale** e che ha **modulo 1 per definizione**.

Quando vogliamo rappresentare un punto, possiamo farlo **attraverso un vettore**, che a sua volta si può rappresentare come la **somma di 2 vettori "unidimensionali"** (uno per ogni asse) che a loro volta si possono rappresentare come **spostamenti sui vari assi moltiplicati per il versore associato**:

$$\vec{P} = \vec{P}_x + \vec{P}_y = S_x * \hat{x} + S_y * \hat{y}$$

Allo stesso modo possiamo rappresentare velocità ed accelerazione!

$$\vec{v} = \vec{v}_x + \vec{v}_y = v_x * \hat{x} + v_y * \hat{y} = \vec{a} = \vec{a}_x + \vec{a}_y = a_x * \hat{x} + a_y * \hat{y}$$

Ora, possiamo anche rappresentare un vettore sottoforma di "matrice", in questo modo:

$$\vec{S} = \begin{bmatrix} S_x \\ S_y \end{bmatrix}$$

Ovvero lo spostamento, ad esempio, è composto dalla somma dello spostamento sull'asse x S_x e di quello sull'asse y S_y

3.7.3 Rappresentare velocità ed accelerazione

Partiamo con la velocità: sappiamo che la velocità per il moto unidimensionale è data dalla **derivata dello spostamento**, per quanto riguarda il moto piano non cambia molto: dobbiamo soltanto **derivare una somma di 2 componenti!** Ovvero:

$$\vec{v} = \frac{d\vec{S}}{dt} = \frac{d[S_x * \hat{x} + S_y * \hat{y}]}{dt} = \frac{dS_x}{dt} * \hat{x} + \frac{S_x}{dt} * \frac{d\hat{x}}{dt} + \frac{dS_y}{dt} * \hat{y} + \frac{S_y}{dt} * \frac{d\hat{y}}{dt}$$

Quelle 2 parti evidenziate in rosso sono speciali: rappresentano il possibile movimento degli assi. Per il momento, le considereremo sempre nulle in quanto i nostri assi non si muoveranno! Quindi, in soldoni, otteremmo che la nostra velocità equivale a:

$$\vec{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix} = \begin{bmatrix} dS_x/dt \\ dS_y/dt \end{bmatrix}$$

Nota però che questo ragionamento possiamo farlo **solo se gli assi restano fermi**, altrimenti dovremmo fare delle considerazioni in più. Allo stesso modo, possiamo fare la stessa cosa per l'accelerazione, ottenendo anche qui:

$$\vec{a} = \begin{bmatrix} a_x \\ a_y \end{bmatrix} = \begin{bmatrix} dv_x/dt \\ dv_y/dt \end{bmatrix}$$

3.7.4 Esempio

Vediamo un esempio, dobbiamo calcolare velocità e accelerazione sapendo che:

$$\vec{S}(t) = \begin{bmatrix} 2t\hat{x} \\ \sin(\pi/4\ t)\hat{y} \end{bmatrix} = \begin{bmatrix} 2m/s \\ 1m * \sin(\pi/4\ Hz) \end{bmatrix}$$

Nota che $Hz = s^{-1}$, la prima cosa da fare ora è **rappresentare qalche punto**, possiamo farlo in una tabella:

t	S_x	S_y
0	0	0
1	2	$\sqrt{2}/2$
2	4	1
5	10	$-\sqrt{2}/2$

Rappresentiamo ora questi punti sul piano cartesiano (aggiungendo anche i vettori che rappresentano i punti), ricorda inoltre che il piano ora **rappresenta la traiettoria e NON** più lo spazio/tempo:

Ora calcoliamo la velocità, per farlo ci basta derivare per t:

$$\vec{v}(t) = \begin{bmatrix} 2\hat{x} \\ \frac{\pi}{4}cos(\pi/4\ t)\hat{y} \end{bmatrix}$$

Rifacciamo la tabella e rappresentiamo il tutto sul grafico:

Terminiamo con l'accelerazione, che corrisponde semplicemente alla **derivata della velocità**, otterremo quindi:

$$\vec{a}(t) = \begin{bmatrix} 0 \\ -\left(\frac{\pi}{4}\right)^2 \sin(\pi/4\ t)\hat{y} \end{bmatrix}$$

Ricapitolando i risultati ottenuti, abbiamo che:

$$\vec{S}(t) = \begin{bmatrix} 2t\hat{x} \\ \sin(\pi/4 \ t)\hat{y} \end{bmatrix}$$

$$\vec{v}(t) = \begin{bmatrix} 2\hat{x} \\ \frac{\pi}{4}\cos(\pi/4 \ t)\hat{y} \end{bmatrix}$$

$$\vec{a}(t) = \begin{bmatrix} 0 \\ -\left(\frac{\pi}{4}\right)^2 \sin(\pi/4 \ t)\hat{y} \end{bmatrix}$$

3.8 Il moto parabolico

Iniziamo introducendo il sistema di riferimento che andremo ad utilizzare.

3.8.1 Sistema di riferimento

Vediamo subito un grafico:

Avremmo quindi un oggetto che parte da un punto iniziale, che per convenzione supponiamo (0, 0), con una certa velocità iniziale \vec{v}_0 ed un certo angolo di rialzo α . Inoltre sarà presente una certa accelerazione " $\vec{a} = -g$ " che punterà verso il basso (suppungo che -g indichi l'accelerazione gravitazionale terrestre). In questa sezione assumiam questa convenzione:

$$|\vec{v}_0| = v_0$$

Quindi possiamo riscrivere il vettore della velocità in questo modo:

$$\vec{v} = \begin{bmatrix} \vec{v}_x \\ \vec{v}_z \end{bmatrix} = \begin{bmatrix} v_0 * cos(\alpha) \\ v_0 * sin(\alpha) \end{bmatrix}$$

3.8.2 Rappresentare spazio, gittata γ , altezza massima h_{max} e velocità

Ora, come facciamo a rappresentare i grafici di spazio e velocità? Nota che l'accelerazione non serve, in quanto ci viene fornita in questo caso. Per quanto riguarda lo spazio, possiamo "spezzare" il problema in 2:

- spazio percorso in "larghezza" (x): lo trattiamo come un semprece problema di **moto rettilineo** uniforme, infatti l'accelerazione va solo verso il basso, non avanti o indietro;
- spazio percorso in "altezza" (z): in questo caso lo consideriamo un problema di **moto uniformemente** accelerato, infatti abbiamo un'accelerazione costante che preme verso il basso.

Quindi otterremo le formule:

$$x(t) = x_0 + v_{0x}t = x_0 + v_0\cos(\alpha)t = \underbrace{v_0 * \cos(\alpha)t}_{z(t) = z_0 + v_{0z}t + \frac{a_z}{2}t^2} = \underbrace{v_0 * \sin(\alpha)t - \frac{g}{2}t^2}_{z(t) = z_0 + v_{0z}t + \frac{a_z}{2}t^2}$$

In definitiva, abbiamo che lo spazio corrisponde al vettore:

$$\vec{S} = \begin{bmatrix} v_0 * \cos(\alpha)t \\ v_0 * \sin(\alpha)t - \frac{g}{2}t^2 \end{bmatrix}$$

Ora proviamo a mettere insieme le 2 formule in modo da ottenere una funzione da poter rappresentare facilmente sul grafico:

$$t = \frac{x}{v_{0x}}$$

$$z = v_{0z} * t - \frac{g}{2} * t^2 = > \frac{v_{0z}}{v_{0x}} * x - \left(\frac{g}{2v_{0x}^2}\right) * x^2 = > Ax - Bx^2$$

Abbiamo ottenuto l'equazione di una parabola! In particolare, avremmo queste proporzioni:

Ora che abbiamo un grafico disegnato, ci risulta particolarmente semplice trovare altra 2 componenti importanti:

• gittata γ : ovvero la massima distanza percorsa in orizzontale. Possiamo ottenerla tramite la formula:

$$\gamma = \frac{A}{B} = \frac{v_0}{v_{0x}} * \frac{2v_{0x}^2}{g} = \frac{2 * v_{0z} * v_{0x}}{g} = \frac{v_0^2}{g} * 2 * sin(\alpha) * cos(\alpha) = \frac{v_0^2}{g} * sin(2\alpha)$$

• altezza massima h_{max} : ovvero l'altezza di culmine della nostra parabola. Guardando il grafico possiamo vedere che corrisponde a:

$$h_{max} = \frac{A^2}{4B} = \frac{A}{4} * \frac{A}{B} = \frac{v_0 z}{4 v_{0x}} * \frac{2 * v_{0z} * v_{0x}^2}{v_{0x} g} = \frac{v_0 z}{4} * \frac{2 * v_{0z}}{g} = \frac{2 v_{0z}^2}{4g} = \frac{1}{2} * \frac{v_{0z}^2}{g} = \frac{v_0^2 * \sin^2(\alpha)}{2g}$$

Terminiamo velocemente con la velocità che, ricordiamo, è la derivata dello spazio percorso:

$$v_x(t) = \frac{d(v_0 * cos(\alpha)t)}{dt} = v_0 cos(\alpha) = v_{0x}$$
$$v_z(t) = \frac{dS_z}{dt} = v_0 * sin(\alpha) - gt = v_{0z} - gt$$

3.8.2.1 Riassunto Ricapitolando tutte le formule che abbiamo visto:

$$\vec{S} = \begin{bmatrix} v_0 * \cos(\alpha)t \\ v_0 * \sin(\alpha)t - \frac{g}{2}t^2 \end{bmatrix}$$

$$\gamma = \frac{v_0^2}{g} * \sin(2\alpha)$$

$$h_{max} = \frac{v_0^2 * \sin^2(\alpha)}{2g}$$

$$\vec{v} = \begin{bmatrix} v_{0x} \\ v_{0z} - gt \end{bmatrix}$$