Drill Machine Failure Analysis

December 6, 2023

Data Source

- CNC machines
- Data consists of 20,000 drilling operations
- Each with 10 features consisting of thing like
 - Process duration
 - Cutting speed
 - Cooling level
 - Power consumption
 - Drill bit type
 - Material being drilled
 - Main failure
 - Subgroup failures

Basic Analysis

Material and drill bit type needed more analysis...

Hypothesis testing showed that that it did differ.

Further exploration showed it differed A LOT.

Classic ML

Decision Tree

Accuracy=99.5

KNN

Accuracy = 97.5

Random Forest

Accuracy = 99.7

Attempted to predict machine failures. All performed extremely well. Grid search on the random forest dropped accuracy to 99.6

Deep Learning

Custom ANN

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 64)	640
dense_1 (Dense)	(None, 32)	2,080
dense_2 (Dense)	(None, 1)	33

Total params: 2,753 (10.75 KB)
Trainable params: 2,753 (10.75 KB)
Non-trainable params: 0 (0.00 B)

Training Accuracy: 0.9829 Testing Accuracy: 0.9907

Further tuning (smaller and with different activation function)

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 32)	320
dense_1 (Dense)	(None, 1)	33

Total params: 353 (1.38 KB)
Trainable params: 353 (1.38 KB)
Non-trainable params: 0 (0.00 B)

Training Accuracy: 0.9441 Testing Accuracy: 0.9678

Results/Takeaways

- Best performing model was the baseline random forest.
- This analysis used synthetic data. Real data could present much more noise and complexity that would be able to better showcase the power of deep learning.

Intended uses:

- Predicting operations that strain drilling machines.
- Predicting operation that cause machines to fail
- Predicting catastrophic failures (multiple failure types at once).
- Create more effective scheduled maintenance schedule.
- Identifying which operations in which to take equipment precautions.

"An ounce of prevention is worth a pound of cure."

Thank You!

https://github.com/JoeyBarlia

-Joey Barlia

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

