UNL FICH

Universidad Nacional del Litoral

Mecánica Computacional

Docentes:

Norberto Marcelo Nigro (nnigro@intec.unl.edu.ar)
Gerardo Franck (gerardofranck@yahoo.com.ar)
Diego Sklar (diegosklar@gmail.com)
Carlos Gentile (csgentile@gmail.com)

GUIA DE TRABAJOS PRACTICOS Nº 1

INTRODUCCIÓN A MODELOS DE ECUACIONES MÉTODO DE DIFERENCIAS FINITAS

Transferencia de calor

El modelo de transferencia de calor se puede considerar un caso particular de la ecuación general de transporte para una sustancia de concentración Ø dada por:

$$\rho c_p \frac{\partial \emptyset}{\partial t} + v \cdot \nabla \emptyset = k \Delta \emptyset - c \emptyset + G$$

con condiciones de contorno:

.
$$\phi = \overline{\phi}$$
, $en \Gamma_{\phi}$ (Dirichlet) $-k \frac{\partial \phi}{\partial \eta} = q$, $en \Gamma_{q}$ (Neumann) $-k \frac{\partial \phi}{\partial \eta} = h(\phi - \phi_{\infty})$, $en \Gamma_{h}$ (Robin)

Los términos involucrados en la ecuación se denominan:

$$\rho c_p \frac{\partial \emptyset}{\partial t} = \text{término temporal}$$

$$v. \, \nabla \emptyset = \text{término convectivo o de transporte}$$

$$k \Delta \emptyset = \text{término difusivo}$$

$$c \emptyset = \text{término reactivo}$$

$$G = \text{término fuente o producción}$$

y sus respectivas constantes son:

$$v[m/s] = \text{velocidad}$$

 $k[m^2/s] = \text{difusividad}$
 $c[1/s] = \text{reacción}$

Ejercicio 1

Dada la siguiente ecuación diferencial en una dimensión que modela la transferencia de calor en una barra:

$$\rho c_p \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2} - cT + G, \quad \forall \mathbf{x} \in [\mathbf{L}_1, \mathbf{L}_2]$$

Resuelva los problemas propuestos en la siguiente tabla, donde se describen los valores de las constantes del modelo y las condiciones de borde. Consideraciones a tener en cuenta:

- Compare siempre la solución obtenida con la solución analítica brindada.
- Analice los órdenes de aproximación al utilizar aproximaciones de 1^{er} y 2^{do} orden para las condiciones de borde.
- Analice los órdenes de aproximación al utilizar mallas uniformes y no uniformes.
- Implemente los tres esquemas temporales: Forward Euler, Backward Euler y Crank-Nicholson. Considerar siempre la condición inicial nula (T(x,0)=0).

	Extremos		Condiciones de borde		Constantes del modelo				
Ítem	L1	L2	L1	L1	ρc_p	k	c	G	Solución analítica
a	0	1	T=10	T=50	0	2	0	100	$T(x) = -25x^2 + 65x + 10$
b	0	2	T=100	q=0	0	1	1	0	$T(x) = \frac{100e^{-x}(e^{2x} + e^4)}{1 + e^4}$
с	1	5	q=2	T=0	0	1	0	$100(x-3)^2$	$T(x) = \frac{-25x^4 + 300x^3 + ax^2 + bx + c}{3}$ $a = -1350, b = 1906, c = 2345$
d	0	1	T=10	$h=0.2 \phi_{inf}=50$	0	1	1	50	$T(x) = -36.6897e^{-x} - 3.3103e^x + 50$
e	5	10	h=2 φ _{inf} =100	T=50	1	2	0	\mathbf{x}^3	$T(x) = -\frac{x^5}{40} + \frac{1225x}{3} - \frac{4600}{3}$
f	0	1	T=0	h=2 φ _{inf} =10	2	2	2	75	$T(x) = -\frac{5}{4}e^{-(x+1)}(e^x - 1)(11e^x + a)$ $a = 11 - 30e$
g	0	1	T=50	q=5	1	2	-2	0	$T(x) = 73.2433\sin(x) + 50\cos(x)$

Ejercicio 2

Implementar una función [T] = difFinitas(xnode, model, cb, et) que resuelva el modelo completo de transferencia de calor donde:

- xnode es el vector de coordenadas nodales.
- model es un struct que contiene todas las constantes del modelo $(\mathbf{k}, \mathbf{c}, \boldsymbol{\rho}, c_p, \mathbf{y}, \mathbf{G})$.
- cb es una matriz de dos filas y tres columnas que contiene los datos de las condiciones de borde. La primera fila indica la condición de borde del lado izquierdo y la segunda fila, la del derecho. La primera columna indica el tipo de condición de borde: 1-Dirichlet, 2-Neumann, 3-Robin. La segunda columna contiene el valor de temperatura, flujo, o coeficiente de convección h dependiendo el dato de la primera columna. La tercera columna será de valor -1 para la condición 1 y 2, y tendrá el valor de temperatura externa en caso de la condición 3.
- et es un escalar que indica el esquema temporal a utilizar (o resolver en estado estacionario).

Ejercicio 3

a) ¿Qué orden de error posee el siguiente stencil para la derivada tercera?

$$\frac{\partial^3 \emptyset}{\partial x^3} \cong -\frac{3}{h^3} \emptyset_{i+1} - \frac{1}{h^3} \emptyset_{i-1} + \frac{1}{h^3} \emptyset_{i+2} + \frac{3}{h^3} \emptyset_i$$

b) Determine los valores de las constantes asociadas a los puntos para la siguiente aproximación, considerando una malla uniforme:

$$\frac{\partial^3 \emptyset}{\partial x^3} \cong a \emptyset_{i-2} + b \emptyset_{i-1} + c \emptyset_i + d \emptyset_{i+1} + e \emptyset_{i+2}$$

c) Probar que:

si
$$u(x) \in C^6 \mathbb{R} \Rightarrow \frac{\partial^2 \emptyset}{\partial x^2} = \frac{-u(x+2h)+16u(x+h)-30u(x)+16u(x-h)-u(x-2h)}{12h^2} + o(h^4)$$