

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 07107546 A

(43) Date of publication of application: 21 . 04 . 95

(51) Int. CI

H04Q 7/36 H04J 3/00

(21) Application number: 05269996

(22) Date of filing: 30 . 09 . 93

(71) Applicant:

MATSUSHITA ELECTRIC IND CO

LTD

(72) Inventor:

KOBAYASHI TAKUYA IWAMOTO KEIMEI

(54) RADIO COMMUNICATIONS SYSTEM

(57) Abstract:

PURPOSE: To provide a radio communications system which can improve communication efficiency by efficiently using slots in respective frames.

CONSTITUTION: Concerning the radio communications system to use a bidirectional time division multiple access(TDMA) system, the setting part of a base station 11 sets the configuration of incoming and outgoing slots in the frames based on the quantity of communication with respective mobile stations 12 and 13. Corresponding to the slot configuration designated by the setting part, the radio control parts of the base station 11 and the mobile stations 12 and 13 control the slot configuration in the respective frames to be transmitted/received. In this case, the setting part designates the slot configuration for each frame or several frames.

COPYRIGHT: (C)1995,JPO

JP7-107546

[0010]

[Operation]

In the invention according to claim 1, a main station determines the ratio of slots on the up-link to those on the down-link on a frame basis (for example, based on the quantity of communication with each substation, and controls the number of slots on the down-link on a frame basis which are used for communication with each substation, according to the determined ratio of the slots. Further, the main station notifies all substations in a radio zone of the determined ratio of the slots. Meanwhile, each of the substations controls the number of slots on the up-link on a frame basis which are used for communication with the main station, according to the notified ratio of the slots.

[0011] In the invention according to claim 2, a main station determines the ratio of slots on the up-link to those on the down-link on a predetermined plural frames basis (for example, based on the quantity of communication with each substation, and controls the number of slots on the down-link on a predetermined plural frames basis which are used for communication with each substation, according to the determined ratio of the slots. Further, the main station notifies all substations in a radio zone of the determined ratio of the slots. Meanwhile, each of the substations controls the number of slots on the up-link on a predetermined plural frames basis which are used for communication with the main station, according to the notified ratio of the slots.

[0012] In the invention according to claim 3, a main station assigns slots on a predetermined number of frames basis which are used for communication with each substation to each of the substations respectively (for example, based on the quantity of communication with each substation), and communicates with each of the substations using the assigned slots. Further, the main station notifies the present substation of the number of

particularly assigned slots. Meanwhile, each of the substations communicates with the main station using the notified number of slots.

[0035] In addition, in the first and second embodiments, radio control sections 29 and 36 change a slot constitution to a new one in a next frame or superframe when the new slot constitution is determined. However, change of slot constitutions may be performed at another period of time. For example, it is acceptable that change starting time is determined in option information 66, thereby making starting time of changing slot constitutions variable. Similarly in the third embodiment, change starting time is determined in option information 95, thereby making starting time of changing slot constitutions variable, in the same way as the above-mentioned case. [0036] Further, in the second embodiment, a superframe length is set to 2 frames. However the superframe length is not limited to 2 frames, and the length may be any frames more than 3. [0037] Furthermore, in the third embodiment, the ratio of slots on up-link to slots on down-link in a frame is fixed. However, it is acceptable to assign an optimal number of slots to each communication channel, while the ratio of slots may be variable by combining with the first and second embodiments. possible to assign more slots to a communication channel of high priority by prioritizing communication channels. Then, this priority can be determined from each of mobile stations 12 and 13.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-107546

(43)公開日 平成7年(1995)4月21日

(51) Int.Cl. ⁶		酸別記号	F I				技術表示箇所	
H04Q	7/36				•			-
H04J	3/00		8226-5K	H 0 4 B				
			7304-5K		7/ 26	105	D	
				審査請求	未請求	請求項の数3	FD	(全 11 頁)
(21)出顧番号		特顧平5-269996		(71)出顧人	0000058	321		
					松下電	居産業株式会社		
(22)出顧日		平成5年(1993)9		大阪府門真市大字門真1006番地				
				(72)発明者	小林 .	卓也		
						門真市大字門真 式会社内	1006番:	地 松下電器
				(72)発明者				
				(12) 72914		ロフィ 門真市大字門真	1006 28	的 松下番嬰
						式会社内	1000 pg (
				(74) 代理人		小笠原 史朗		
				(, 2) (42)	71-35-34			·
		•						

(54) 【発明の名称】 無線通信システム

(57) 【要約】

【目的】 各フレーム中のスロットを効率的に使用し、 通信効率を向上させ得る無線通信システムを提供するこ とを目的とする。

【構成】 双方向の時分割多元接続方式(TDMA)を用いる無線通信システムであって、基地局11の設定部28は、各移動局との通信量に基づいて、フレーム中の上り下りのスロット構成を設定する。基地局11および移動局12,13の無線制御部29,36は、設定部28の指定したスロット構成に応じて、送受信する各フレーム中のスロット構成を制御する。なお、設定部28は、1フレームまたは数フレーム毎に、スロット構成の指定を行なう。

2.

【特許請求の範囲】

【請求項1】 各フレームの下りスロットで主局から複数の従局対して通信を行い、各フレームの上りスロットで複数の従局から主局に対して通信を行うような時分割多元接続方式により、主局と複数の従局との間で信号を送受信する無線通信システムであって、

前記主局は、

単位フレーム当たりの上りと下りのスロット数比を設定 するスロット数比設定手段と、

前記スロット数比設定手段により設定されたスロット数 10 比に従って、各前記従局との通信に用いる単位フレーム 当たりの下りのスロット数を制御する下りスロット数制 御手段と、

前記スロット数比設定手段により設定されたスロット数 比を、無線ゾーン内の全ての従局に報知する報知手段と を備え、

各前記従局は、

前記報知されたスロット数比に従って、前記主局との通信に用いる単位フレーム当たりの上りのスロット数を制御する上りスロット数制御手段を備える、無線通信シス 20 テム。

【請求項2】 各フレームの下りスロットで主局から複数の従局に対して通信を行い、各フレームの上りスロットで複数の従局から主局に対して通信を行うような時分割多元接続方式により、主局と複数の従局との間で信号を送受信する無線通信システムであって、

前記主局は、

予め定められた複数フレーム当たりの上りと下りのスロット数比を設定するスロット数比設定手段と、

前記スロット数比設定手段により設定されたスロット数 30 比に従って、各前記従局との通信に用いる前記予め定め られた複数フレーム当たりの下りのスロット数を制御す る下りスロット数制御手段と、

前記スロット数比設定手段により設定されたスロット数 比を、無線ゾーン内の全ての従局に報知する報知手段と を備え、

各前記従局は、

前記報知されたスロット数比に従って、前記主局との通信に用いる前記予め定められた複数フレーム当たりの上りのスロット数を制御する上りスロット数制御手段を備 40 える、無線通信システム。

【請求項3】 各フレームの下りスロットで主局から複数の従局に対して通信を行い、各フレームの上りスロットで複数の従局から主局に対して通信を行うような時分割多元接続方式により、主局と複数の従局との間で信号を送受信する無線通信システムであって、

前記主局は

各従局との通信に用いる所定数フレーム当たりのスロット数を、各従局に対して個別的に割り当てるスロット数割当手段と、

前記スロット数割当手段によって割り当てられた数のスロットを用いて、各前記従局と通信する主局側通信制御 手段と、

前記スロット数割当手段により各従局に割り当てられた スロット数を当該従局に通知する通知手段とを備え、 冬前記従長は

自局に通知されたスロット数を用いて、前記主局と通信 する従局側通信制御手段とを備える、無線通信システ ム

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、無線通信システムに関し、より特定的には、双方向の時分割多元接続(TDMA)方式を用いた無線通信システムに関する。

[0002]

【従来の技術】従来、上り方向と下り方向とで異なる周波数を割り当てることにより、双方向の無線通信を行うようにしていたが、近年、双方向の時分割多元接続(TDMA)方式を採用することによって複数の回線の通信を同一周波数上で実現することが可能となった。以下、図面を参照しながら、上記した従来の時分割多元接続方式の一例について説明する。

【0003】図13は、従来の双方向の時分割多元接続方式におけるフレーム構成の一例を示す図である。図13において、上りと下りの送受信が1度づつ行なわれる送受信の1周期Tをフレームと呼ぶ。各フレームは、さらにスロットと呼ばれる時分割された単位から構成される。図13において、S1↑~S4↑およびS1↓~S4↓が、それぞれスロットを表している。ここで、S1↑~S4↑は移動局から基地局への(上り方向の)通信用のスロットであり、S1↓~S4↓は基地局から移動局への(下り方向の)通信用のスロットである。1つの回線には、1フレーム毎に、1対の上りスロットSn↑および下りスロットSn↓が割り当てられる。

【0004】上記したような従来の双方向の時分割多元接続方式では、1フレーム中に割り当てられる上り、下りそれぞれのスロットの数は、常に一定であり、固定的なものであった。図13の例では、1フレームは上下4スロットずつに分割されていて同一フレームを同時に使用できる回線数は4である。このようにフレームをスロットに分割し、1回線の通信に上り下りのスロットを1つずつ使用することによって、基地局と複数の移動局との間で双方向の多元接続が実現されている。

[0005]

【発明が解決しようとする課題】しかしながら、上記のような従来の双方向の時分割多元接続方式では、1つの回線は上りと下りのスロットを必ず1つずつ使用することから、上りと下りのスロット数およびその比が常に一定となる。そのため、上りと下りのトラフィック量に差があるような通信に上記従来の双方向時分割多元接続方

式を適用した場合、トラフィック量の少ない方向のスロットに未使用部分が生じ、かつそれを他の使用中の回線 のために利用することができないため、通信効率の低下 をもたらすという問題点があった。

【0006】それ故に、本発明の目的は、各フレーム中のスロットを効率的に使用し、通信効率を向上させ得る無線通信システムを提供することである。

[0007]

【課題を解決するための手段】請求項1に係る発明は、 各フレームの下りスロットで主局から複数の従局に対し て通信を行い、各フレームの上りスロットで複数の従局 から主局に対して通信を行うような時分割多元接続方式 により、主局と複数の従局との間で信号を送受信する無 線通信システムであって、主局は、単位フレーム当たり の上りと下りのスロット数比を設定するスロット数比設 定手段と、スロット数比設定手段により設定されたスロ ット数比に従って、各従局との通信に用いる単位フレー ム当たりの下りのスロット数を制御する下りスロット数 制御手段と、スロット数比設定手段により設定されたス ロット数比を、無線ゾーン内の全ての従局に報知する報 20 知手段とを備え、各従局は、報知されたスロット数比に 従って、主局との通信に用いる単位フレーム当たりの上 りのスロット数を制御する上りスロット数制御手段を備 えている。

【0008】請求項2に係る発明は、各フレームの下り スロットで主局から複数の従局に対して通信を行い、各 フレームの上りスロットで複数の従局から主局に対して 通信を行うような時分割多元接続方式により、主局と複 数の従局との間で信号を送受信する無線通信システムで あって、主局は、予め定められた複数フレーム当たりの 上りと下りのスロット数比を設定するスロット数比設定 手段と、スロット数比設定手段により設定されたスロッ ト数比に従って、各従局との通信に用いる予め定められ た複数フレーム当たりの下りのスロット数を制御する下 りスロット数制御手段と、スロット数比設定手段により 設定されたスロット数比を、無線ゾーン内の全ての従局 に報知する報知手段とを備え、各従局は、報知されたス ロット数比に従って、主局との通信に用いる予め定めら れた複数フレーム当たりの上りのスロット数を制御する 上りスロット数制御手段を備えている。

【0009】請求項3に係る発明は、各フレームの下りスロットで主局から複数の従局に対して通信を行い、各フレームの上りスロットで複数の従局から主局に対して通信を行うような時分割多元接続方式により、主局と複数の従局との間で信号を送受信する無線通信システムであって、主局は、各従局との通信に用いる所定数フレーム当たりのスロット数を、各従局に対して個別的に割り当てるスロット数割当手段と、スロット数割当手段によって割り当てられた数のスロットを用いて、各従局と通信する主局側通信制御手段と、スロット数割当手段によ50

り各従局に割り当てられたスロット数を当該従局に通知 する通知手段とを備え、各従局は、自局に通知されたス ロット数を用いて、主局と通信する従局側通信制御手段 とを備えている。

[0010]

【作用】請求項1に係る発明においては、主局は、(例えば各従局との間の通信量に基づいて)単位フレーム当たりの上りと下りのスロット数比を設定すると、設定されたスロット数比に従って、各従局との通信に用いる単位フレーム当たりの下りのスロット数を制御する。また、設定されたスロット数比を、無線ゾーン内の全ての従局に報知する。一方、各従局は、報知されたスロット数比に従って、主局との通信に用いる単位フレーム当たりの上りのスロット数を制御する。

【0011】請求項2に係る発明においては、主局は、 (例えば各従局との間の通信量に基づいて)予め定められた複数フレーム当たりの上りと下りのスロット数比を 設定すると、設定されたスロット数比に従って、各従局 との通信に用いる予め定められた複数フレーム当たりの 下りのスロット数を制御する。また、設定されたスロット数比を、無線ゾーン内の全ての従局に報知する。一 方、各従局は、報知されたスロット数比に従って、主局 との通信に用いる予め定められた複数フレーム当たりの 上りのスロット数を制御する。

【0012】請求項3に係る発明においては、主局は、 (例えば各従局との間の通信量に基づいて)各従局との 通信に用いる所定数フレーム当たりのスロット数を、各 従局に対して個別的に割り当てると、割り当てられた数 のスロットを用いて、各従局と通信する。また、割り当 てられた各従局別のスロット数を、当該従局に対して通 知する。一方、各従局は、自局に通知されたスロット数 を用いて、主局と通信する。

[0013]

40

【実施例】(第1の実施例)図1は、本発明の第1の実施例に係る移動式無線電話システムの構成を示すシステムブロック図である。図1に示す移動式無線電話システムは、基地局(主局の一例)11と、基地局11の無線ゾーン内に位置する例えば2つの移動局(従局の一例)12,13とを備えている。基地局11は、所定の伝送路を介して通信網14と接続されている。基地局11と移動局12,13との間では、本発明の原理に基づく時分割多元通信が行われている。

【0014】図2は、図1に示す基地局11の内部構成を示すブロック図である。基地局11は、通信網14と通信を行なう回線制御部21と、ユーザとのインタフェイスである入力部22および出力部22と、スロットの設定とそれに基づく通信制御を行う通信制御部24と、移動局12および13との通信を行なうための送信部25,受信部26,アンテナ27と、送信部25,受信部26における通信量に基づいて各移動局へのトラフィッ

Δ

6.

ク量を監視するトラフィック量監視部20とを備えている。なお、通信制御部24は、スロットの設定を行なう設定部28と、送信部25および受信部26を制御するための無線制御部29とを含む。

【0015】図3は、図1に示す各移動局の内部構成を示すプロック図である。各移動局は、ユーザとのインタフェイスである入力部31および出力部32と、基地局11と通信を行なうための送信部33、受信部34、アンテナ35と、基地局11からのスロットの設定に従って送信部33および受信部34を制御するための無線制 10 御部36とを備えている。

【0016】図4は、本発明の第1の実施例における通信シーケンスを説明するためのフレーム構成図である。図4において、横軸は時間を表している。この横軸上には、周期をTとする通信フレームを8つに時分割したスロットが並べられている。ここで、横軸の上側に配置されたスロットは上り方向(移動局→基地局)の通信スロットを表し、横軸の下側に配置されたスロットは下り方向(基地局→移動局)の通信スロットを表している。

【0017】基地局11の設定部28は、トラフィック **量監視部20から与えられるトラフィック監視データに** 基づいて、動的に上り下りのスロット構成を設定し、ス ロット構成情報を自局内の無線制御部29および移動局 12,13内の無線制御部36に報知する。基地局11 の無線制御部29はスロット構成情報を設定部28から 直接受け取り、また移動局12、13の無線制御部36 はスロット構成情報を下りの報知スロットS1↓を通じ て受け取る(図4のタイミングa)。各無線制御部2 9,36は、スロット構成情報を受け取ると、次のフレ ームの開始時である図4のタイミングbから、上りと下 りのスロット構成を変更する。そのために、各無線制御 部29,36は、スロット構成情報中に含まれるスロッ ト構成コードをデコードして上りと下りのスロット数の 比(以下、スロット数比と称す)を変更する。図4の例 では、スロット数比を6:2とし、スロットT1↓とT 2↓を下りの通信、スロットT1↑~T6↑を上りの通 信に使っている。

【0018】上記スロット数比を4:4以外に変更した場合、数が少ない方向のスロットは、数が多い方向のスロットを使用中の回線が順番に数フレーム毎に1度ずつ使用する。例えば図4のタイミングbでスロット数比が6:2に変化したとき、報知スロットT1↓を除く下りスロットT2↓は、上りスロットT1↑~T6↑を使用している6つの回線が順番に6フレーム毎に1度ずつ使用する。なお、どの回線がどのフレームでスロットT2↓を使用するかの指定は、図4の報知スロットS1↓内のスロット構成情報中にオプション情報として含められる。

【0019】さらに、図4のタイミングbにおいて、報 知スロットT1↓で次の新たなスロット構成情報が各無 50

線制御部29,36に報知されると、上記と同様にして 次のフレームで新たなスロット構成が再設定される(図 4のタイミングc)。

【0020】図5は、基地局11の設定部28で実行さ れるスロット構成の決定動作を示すフローチャートであ る。以下には、この図5を参照して、設定部28がどの ようにしてスロット構成を決定するかを説明する。ま ず、トラフィック監視部20から設定部28に対して、 上りおよび下りの過去一定時間のトラフィック量に関す る情報が入力される(ステップ51)。次に、設定部2 8は、現在のスロット構成と与えられたトラフィック情 報とを比較する(ステップ52)。現在のスロット数比 と、上りと下りのトラフィック量の比(以下、トラフィ ック量比と称する)とが不一致の場合、設定部28は、 未使用スロットがフレーム中に存在するか否かを調べる。 (ステップ53)。フレーム中に未使用スロットがあれ ば、設定部28は、トラフィック量比にスロット数比が 近付くよう、新たなスロット数比を決定する(ステップ 54)。現在のスロット数比とトラフィック量比とが一 致する場合や、フレーム中に未使用スロットがない場 合、設定部28は、現在の状態を維持する(ステップ5 5)。

【0021】次に、設定部28は、新たに決定したスロット構成を、図6のエンコードテーブルに従ってエンコードする(ステップ56)。このエンコードテーブルは、設定部28内に予め設定されており、上りのスロット数と下りのスロット数の各組み合わせに対応してスロット構成コードが記述されている。例えば、スロット数比を6:2に決定した場合、スロット構成コードは

"3"となる。次に、設定部28は、エンコードの結果得られたスロット構成コードを含むスロット構成情報を作成し、基地局11の無線制御部29に直接報知するとともに、報知スロットS1↓内に格納して送信部25を介して無線ゾーン内の移動局12,13の無線制御部36に報知する(ステップ57)。

【0022】図7は、設定部28から基地局11の無線制御部29および移動局12,13の各無線制御部36に報知されるスロット構成情報の一例を示す図である。図7に示すように、スロット構成情報は、メッセージ種別61と、スロット構成コード62と、着信群アドレス62と、発信元アドレス64と、フレーム周期65と、オプション情報66とを含む。メッセージ種別61には、スロット構成情報メッセージであることを表す種別情報(例えば、"0x80")が記述される。スロット構成一下62には、図5のステップ56でエンコードされたコードが記述される。着信群アドレス63には、スロット構成情報を受信する移動局12,13の共通のアドレスが記述される。このように、各移動局に共通のアドレスを記述することによって、無線ゾーン内の全ての移動局にスロット構成情報が報知される。発信元アドレ

ス64には、基地局11のアドレスが記述される。な お、スロット構成情報を基地局11内の無線制御部29 に直接報知する場合は、着信群アドレス63,発信元ア ドレス64には、何も記述されない。フレーム周期65 には、スロット構成情報を報知する周期が記述される。 本実施例では、フレーム毎にスロット構成を調節するの で、フレーム周期は1フレームと記述される。オプショ ・ン情報66には、フレーム構成の変更開始時期とスロッ トの使用順序が記述される。本実施例では、フレーム毎 にスロット構成を調節するので、フレーム構成の変更開 10 れる。 始時期は、次フレームと記述される。また、スロットの 使用順序としては、移動局12,13の順番と記述され る。

【0023】基地局11の無線制御部29は、上記図7 のようなスロット構成情報を、例えば図4のタイミング bの直前で受け取ると、当該スロット構成情報中のスロ ット構成コード62をデコードして、次の1フレーム (図4のタイミングb~cのフレーム) 中に含めるべき 下りスロット数と上りスロット数を判読する。そして、 図4のタイミングbから、判読した下りスロット数(図 20 4では、2個)に対応する下りスロットT1↓, T2↓ を送信部25を介して、無線ゾーン内の全ての移動局に 送信する。なお、下りスロットT1↓は、次のフレーム のスロット構成を示すための報知スロットである。ま た、下リスロットT2↓には、オプション情報66中に 記述されたスロットの使用順序に従って、移動局12, 13のいずれかへの伝達情報が格納される。

【0024】一方、移動局12,13の各無線制御部3 6は、既に、図4の報知スロットS1↓に格納されてい るスロット構成情報中のスロット構成コード62をデコ 30 ードしており、1フレーム(図4のタイミングb~cの フレーム) 中に含めるべき下りスロット数と上りスロッ ト数を判読している。そして、移動局12,13の各無 線制御部36は、図4のタイミングbから開始する下り の受信スロット数をカウントし、当該受信スロット数が 上記判読結果の下りスロット数(図4の場合は2)に一 致した時点で、送信部33を能動化し、今度は基地局1 1に対して上りスロットT1↑~T6↑を送信する。

【0025】以後、基地局11および移動局12,13 は、上記と同様の動作を繰り返す。したがって、第1の 40 内容を援用する。 実施例によれば、上りと下りのスロット構成をフレーム 毎に変えることができる。

【0026】(第2の実施例)図8は、本発明の第2の 実施例における通信シーケンスを説明するためのフレー ム構成図である。以下には、この図8を参照して、本発 明の第2の実施例について説明する。なお、第2の実施 例のハード回路構成は、第1の実施例(図1~図3)と 同様である。また、第2の実施例では、第1の実施例と 同様のエンコードテーブル(図6参照)およびスロット 構成情報(図7参照)を用いている。したがって、以下 50 中に未使用スロットが存在すれば、設定部28は、トラ

の説明では、必要に応じて、図1~図3,図6および図 7の内容を援用する。

【0027】図8に示すように、第2の実施例では、1 フレームの長さをTとし、2フレーム周期2Tを1スー パーフレームと規定している。そして、第2の実施例で は、スロット構成の設定および報知や、上り下りのスロ ットの構成変更制御を、スーパーフレームを1単位とし て行っている。なお、スーパーフレームの長さは、図7 に示すスロット構成情報中のフレーム周期65で指定さ

【0028】設定部28は、図8の例えばタイミング a でスーパーフレーム2T内のスロット構成を決定し、エ ンコードする。スロット構成決定のアルゴリズムは、第 1の実施例と同様である(図5参照)。ただし、第2の 実施例では、図7のフレーム周期65を2フレームとす ることにより、スーパーフレームの長さを指定してい る。設定部28が作成したスロット構成情報(図7参 照)は、基地局11の無線制御部29に直接報知され、 また移動局12,13の無線制御部36に報知スロット S1↓を用いて報知される。各無線制御部29および3 6は、受け取ったスロット構成情報に従って、次のスー パーフレーム(図8のタイミングbから始まるスーパー フレーム)のスロット構成を変更する。このとき行われ るスロット構成の変更制御は、第1の実施例と同様であ

【0029】以上のように、第2の実施例によれば、上 りと下りのスロット構成を2フレームを1単位とするス ーパーフレーム毎に変えることができる。したがって、 より柔軟にスロット構成の変更が可能である。特に、1 つの基地局に対する移動局の数が多い場合に有効であ

【0030】 (第3の実施例) 第3の実施例は、前述の 第1および第2の実施例とは異なり、各回線のトラッフ ィク量に基づいて、各回線へ割り当てるスロット数を変 更するようにしている。まず、図9を参照して、基地局 11の設定部28が実行するスロット数の割り当て動作 を説明する。なお、第3の実施例におけるハード回路構 成は、第1の実施例(図1~図3)と同様である。した がって、以下の説明では、必要に応じて、図1~図3の

【0031】設定部28は、トラフィック量監視部10 から過去のトラフィック情報が入力されると(ステップ 101)、各回線のトラフィック量と各回線へのスロッ トの割り当て数とが比例しているか否かを比較する(ス テップ102)。各回線のトラフィック量と各回線への スロットの割り当て数とが比例しておらず、例えば移動 局12に比べ移動局13のトラフィック量が圧倒的に多 い場合、設定部28は、未使用スロットがフレーム中に 存在するか否かを調べる(ステップ103)。フレーム

フィック量の大きい移動局13との回線に上り下りのスロット対をさらに多く割り当てるように決定する(ステップ104)。スロットの割り当て数が決定すると、設定部28は、その決定結果をエンコードを含むスロットを含むスロットを含むスロットを含むスロット割り当てコードを含むスロット割り当てコードを含むスロット割り当てコードを含むスロット制力に大き、といいのででは、図9のスロットの13との無線制御部36に通知する(ステップ107)。なお、各回線のトラフィック量と各回線へのスロットの割り当てがない場合、設定部28は、現在の状態を維持する(ステップ105)。

【0032】図10は、第3の実施例における通信シー ケンスを説明するためのフレーム構成図である。図10 において、タイミングa~bのフレームでは、基地局1 1と移動局12との間の回線に対し上り下りのスロット S1↓、S1↑が割り当てられ、基地局11と移動局1 3との間の回線に対し上り下りのスロットS3↓, S3 ↑が割り当てられている。図10のタイミングaで設定 部28が、図9のフローチャートに従って、例えばトラ フィック量の大きい移動局13には未使用スロットS2 ↓、S2↑を割り当てるよう決定すると、当該設定部2 8は、その決定結果を含むスロット割り当て情報を、移 動局13の無線制御部36へ通知する。なお、移動局1 2へは、スロットの割り当て数の変更がなければ何も通 知する必要はない。スロット割り当て情報を受け取った 無線制御部29,36は、当該スロット割り当て情報に 従って図10のタイミングbから割り当てスロット数を 変更して通信する。

【0033】ここで、設定部28が作成し、無線制御部 29および36へ報知するスロット割り当て情報の一例 を図11に示す。図11に示すように、スロット割り当 て情報は、メッセージ種別91と、スロット割り当てコ ード92と、着信先アドレス93と、発信元アドレス9 4と、オプション情報95とを含む。メッセージ種別9 1には、スロット割り当て変更メッセージであることを 表す種別情報(例えば、"0×81")が記述される。 スロット割り当てコード92には、割り当てスロットを 示すビットを立ててコード化したものを格納する。この コード化のために使用するエンコードテーブルの一例 を、図12に示す。例えば、ある移動局にスロットS1 ↓、S2↓、S1↑およびS2↑を割り当てる場合は、 スロット割り当てコード92の値を"OxCC"と設定 する(図12のn行目参照)。以上のように、第3の実 施例によれば、各従局毎に割り当てるスロット数を可変 にすることができる。

【0034】なお、第1および第2の実施例において、

スロット構成情報を移動局に報知するために下りスロットの1つであるスロットS1↓を使用したが、結果的に移動局への報知が果たせれば良く、報知スロットとして他のスロットを用いるようにしてもよい。さらに、他の制御チャネルを使ってスロット構成情報を報知するようにしてもよい。

10 .

【0035】また、第1および第2の実施例において、無線制御部29,36は、スロット構成が指定されると、次のフレームまたはスーパーフレームでスロット構成を新たな構成に変更したが、スロット構成の変更を他の時期に行なうようにしてもよい。例えば、オプション情報66中で変更開始時期を指定し、それによってスロット構成の変更開始時期を可変にすることもできる。同様に、第3の実施例においても、上記と同様にオプション情報95中で変更開始時期を指定し、それによってスロット構成の変更開始時期を可変にすることができる。【0036】また、第2の実施例では、スーパーフレームの長さを2フレームとしたが、スーパーフレームの長さな2フレームに限らず、3フレーム以上の任意の長さであってもよい。

【0037】また、第3の実施例では、フレーム内の上り下りのスロット数比を一定としたが、第1,第2の実施例と組み合わせることによってスロット数比を可変にしつつ、各回線毎に最適なスロット数を割り当てるようにしてもよい。また、通信回線に優先度を付けて、優先度の高い通信回線により多くのスロット数が割り当てられるようにしてもよい。また、この優先度を各移動局12,13から指定できるようにしてもよい。

【0038】また、第1~第3の実施例において、設定 部28は、トラフィック監視部20から与えられるトラフィック情報に基づいて、スロット構成や割り当てスロット数を設定するようにしているが、下りスロットに対するアドレスを生成する毎にキューイングして、アドレス毎の通信量からスロット構成や割り当てスロットを定めるようにしてもよい。

移動局との間で通信を行うように構成されているが、この発明はこれに限定されることなく、広く主局(移動タイプおよび据置きタイプの両方を含む)と複数の従局(移動タイプおよび据置きタイプの両方を含む)との間で通信を行う通信システムに適用が可能である。 【0040】

【0039】また、上記各実施例では、基地局と複数の

【発明の効果】請求項1の発明によれば、各従局との通信量に基づいて、各フレーム毎の上り下りのスロット数比を可変設定するようにしているので、各フレーム毎のスロットを効率的に使用することができる。これにより、双方向でトラフィック量が異なるファイル転送、データベースアクセス、リモートログイン等の通信や、ブロードキャストなどの単方向通信の通信効率を向上させることができる。また、発呼数および着呼数の変化に対

し、スロット数比を変えることで対応でき、システムの 端末収容台数の増加を図れる利点もある。

【0041】請求項2の発明によれば、予め定められた 複数フレーム(スーパーフレーム)毎に上り下りのスロ ット数比を可変設定するようにしているので、請求項1 のようにフレーム毎にスロット数比を変更する場合に比 べて、各従局への報知もしくは通知の回数を減らすこと ができる。したがって、報知または通知スロットが1ス -パーフレーム毎に1つですむことから、下りの使用ス ロット数を増やすことができ、より効率的なスロットの 10 スを説明するためのフレーム構成図である。 割り当てを図ることが可能となる。

【0042】請求項3の発明によれば、各従局との通信 量に基づいて、各従局との通信に用いるスロット数を個 別的に割り当てるようにしているので、1つの従局との 通信に複数のスロットを割り当てて同時使用することに より、1つの従局が複数の回線を使用することができ、 結果として1従局当たりの通信速度を向上させることが できる。したがって、特に、各従局間で通信量に差が生 じているような場合に有効となる。

【図面の簡単な説明】

【図1】本発明の第1の実施例の移動式無線電話システ ムの構成を示すシステムブロック図である。

【図2】図1に示す基地局の内部構成を示すブロック図 である。

【図3】図1に示す各従局の内部構成を示すブロック図

【図4】第1の実施例における通信シーケンスを説明す るためのフレーム構成図である。

【図5】第1の実施例における設定部が実行するフレー ム構成設定動作を示すフローチャートである。

【図6】第1の実施例における設定部がスロット数比を

エンコードする際に使用するエンコードテーブルの一例 を示す図である。

12

【図7】第1の実施例における設定部が作成するスロッ ト構成情報の一例を示す図である。

【図8】本発明の第2の実施例における通信シーケンス を説明するためのフレーム構成図である。

【図9】第2の実施例における設定部が実行するフレー ム構成設定動作を示すフローチャートである。

【図10】本発明の第3の実施例における通信シーケン

【図11】第3の実施例における設定部が作成するスロ ット割り当て情報の一例を示す図である。

【図12】第3の実施例における設定部がスロット割り 当て数をコード化する際に使用するエンコードテーブル の一例を示す図である。

【図13】従来の無線通信システムにおける通信シーケ ンスを説明するためのフレーム構成図である。

【符号の説明】

11…基地局

12,13…移動局 20

14…通信網

21…回線制御部

22, 31…入力部

23,32…出力部

24…通信制御部

25, 33…送信部

26,34…受信部

27, 35…アンテナ

28…設定部

30 29, 36…無線制御部

[図2]

[図6]

コード	上りスロット数	下りスロット数
0	0	8
1	2	8
2	4	4
3	6	2

【図7】

メッセージ種別 [0x80]	61
スロット構成コード	62
着信群アドレス	63
発信元アドレス	64
フレーム周期	65
オプション情報 変更開始時期 スロット使用順序	66
] ·

【図4】

【図5】

【図12】

コード	S1 l	S2 !	S3 ‡	S4 L	S1 †	S2 †	53 f	S4 †	i
0x00	0	0	0	0	0	0	0	0	
0x01	0	0	0	0	G	0	0	1	
0x02	0	0	0	0	0	.0	1	0	l
:	:	:	:	:	:	:	:	:	l
0x0C	1	1	0	0	1	I	0	0	(
•	l :	:	:	:	:	:	:	:	

[図9]

【図11】

【図13】

