Homework 4

Chapter 2

- **2.** (a) Prove 2.1(6): When $f \in L^{\infty}(\Omega) \cap L^{q}(\Omega)$ for some q, then $f \in L^{p}(\Omega)$ for all p > q and $||f||_{\infty} = \lim_{p \to \infty} ||f||_{p}$.
 - (b) Prove that when $\infty \ge r \ge q \ge 1$,

$$f \in L^r(\Omega) \cap L^q(\Omega) \implies f \in L^p(\Omega)$$

for all $r \geq p \geq q$.

Proof (a) Let $f \in L^q$, and p > q with $||f||_{\infty} < \infty$. We need to show that $|f|^p$ is summable, that is, $\int |f|^p < \infty$.

$$\int |f|^p = \int |f|^q |f|^{p-q}$$

$$\leq \int |f|^q \cdot ||f||_{\infty}^{p-q}$$

$$= ||f||_{\infty}^{p-q} \int |f|^q$$

$$< \infty.$$

Thus $f \in L^p(\Omega)$.

Now observe that for all p > q, $||f||_p \le ||f||_{\infty}$.

$$||f||_{p} = \left(\int |f|^{p}\right)^{\frac{1}{p}}$$

$$\leq \left(\int ||f||_{\infty}^{p}\right)^{\frac{1}{p}}$$

$$= \left(||f||_{\infty}^{p} \mu(\Omega)\right)^{\frac{1}{p}}$$

$$= ||f||_{\infty} \cdot \left(\mu(\Omega)\right)^{\frac{1}{p}}$$

and since $\mu(\Omega)$ is finite, then

$$\lim_{p \to \infty} \left(\left| \left| f \right| \right|_{\infty} \cdot \left(\mu(\Omega) \right)^{\frac{1}{p}} \right) = \left| \left| f \right| \right|_{\infty}.$$

Thus part (a) is proved.

[†]To suppress notation, we will omit the region of integration to denote that the region is all of Ω . We will also omit the measure unless it is needed.

(b) Let p such that $\infty \geq r \geq p \geq q \geq 1$, and $f \in L^r(\Omega) \cap L^q(\Omega)$. Denote

$$\{|f| \le 1\} = \{x \in \Omega : |f(x)| \le 1\}, \text{ and } \{|f| > 1\} = \{x \in \Omega : |f(x)| > 1\}.$$

then observe that $|f|^p$ is summable:

$$\int |f|^p = \int_{\{|f| \le 1\}} |f|^p + \int_{\{|f| > 1\}} |f|^p$$

$$= \int_{\{|f| \le 1\}} |f|^q + \int_{\{|f| > 1\}} |f|^r$$

$$= \int |f|^q + \int |f|^r$$

$$\leq \infty$$

- **9.** In Sect. 2.9 three ways are shown for which an $L^p(\mathbb{R}^n)$ sequence f^k can converge weakly to zero but f^k does not converge to anything strongly. Verify this for the three examples given in 2.9 (page 56):
 - (i) f_k 'oscillates to death': An example is $f_k(x) = \sin kx$ for $0 \le x \le 1$ and zero otherwise.

Proof As we did in HW1 Problem 5, we use integration by parts and find that $\forall g \in C(\mathbb{R})$,

$$\int_0^1 g(x)\sin(kx) \, dx = -g(x)\frac{1}{k}\cos(kx) - \int_0^1 g'(x)\frac{1}{k}\cos(kx) \, dx$$
$$= \frac{1}{k} \left[-g(x)\cos(kx) - \int_0^1 g'(x)\cos(kx) \, dx \right],$$

and in the limit as $n \to \infty$, everything goes to 0.

For arbitrary $g \in L^2(\mathbb{R})$, g' may not so exist, so we use Weierstrauss Approximation Theorem, for every $\varepsilon > 0$, there exists a polynomial h such that $\sup_I |g - h| \le \varepsilon$. Thus,

$$\int g(x)\sin(kx) dx = \int g(x)\sin(kx) dx - \int h(x)\sin(kx) dx + \int h(x)\sin(kx) dx$$
$$= \int (g(x) - h(x))\sin(kx) dx + \int g(x)\sin(kx) dx,$$

and this integral is bounded above and below by

$$\int (\pm \varepsilon + h(x)) \sin(kx) \, dx$$

respectively, which integrands are themselves polynomials, so they vanish in the limit. Therefore $\lim_{n\to\infty} \int g(x) \sin(kx) dx = 0$ by the squeeze theorem, and we conclude that $f_k \stackrel{w}{\to} 0$.

Finally, note that if we fix x and let $k \to \infty$, then $\sin(x)$ takes values all over [0,1], so it doesn't converge pointwise. Therefore, f_k doesn't converge strongly to anything.

(ii) f_k 'goes up the spout': An example is $f_k(x) = k^{1/p}g(kx)$ where g is any fixed function in $L^p(\mathbb{R}^1)$. This sequence becomes very large near x = 0.

Proof $f_k \xrightarrow{w} 0$ because for any $h \in L^{p'}(\mathbb{R})$,

$$\int f_k(x)h(x) \, dx = k^{1/p} \int g(kx)h(x) \, dx$$

$$= k^{1/p} \int g(kx)h(x) \, dx$$

$$\leq k^{1/p} \left(\int |g(kx)|^p \right)^{\frac{1}{p}} ||h||_{p'}$$

$$\leq \frac{k^{1/p}}{k^p} ||g||_p ||h||_{p'}$$

by change in variables

and as $k \to \infty$, this all goes to zero.

Observe that f_k converges pointwise to zero, so if it does converge strongly, it must converge to 0: Indeed, since $\chi_{B_1(x_0)}$ is an $L^{p'}(\mathbb{R})$ function for any fixed x_0 , and since $f_k \stackrel{w}{\to} 0$, then

$$\int f_k \cdot \chi_{B_1(x_0)} \to 0,$$

so $f_k(x) \xrightarrow{k} 0$. However, $||f_k||_p$ is constant and nonzero:

$$||f_k||_p = \left(\int |k^{1/p}g(kx)|^p\right)^{\frac{1}{p}}$$

$$= k^{1/p} \left(\int |g(kx)|^p\right)^{\frac{1}{p}}$$

$$= k^{1/p} \left(\frac{1}{k} \int |g(t)|^p\right)^{\frac{1}{p}}$$
 by change in variables
$$= \frac{k^{1/p}}{k^{1/p}} \left(\int |g(t)|^p\right)^{\frac{1}{p}}$$

$$= ||g||_p$$

Thus f_k cannot converge strongly to zero, and it cannot converge strongly to anything else.

(iii) f_k 'wanders off to infinity': An example is $f_k(x) = g(x+k)$ for some fixed function g in $L^p(\mathbb{R}^1)$.

Proof Assuming we can prove that $f_k \xrightarrow{w} 0$, then f_k converges pointwise to zero as well for the same reasons as in (ii). Thus if the sequence converges strongly, then it converges to zero. However f_k clearly cannot converge strongly to zero, since Lebesgue measure is translation-invariant, so $||f_k||_p = ||g||_p$ for all k.

As regards weak convergence, I think we can approximate with compact supported functions and use Dominated Convergence to yield the result. Intuitively, g(x+k) aught to get small as $k \to \infty$, and multiplying by the fixed number h(x) won't stop the small-enizing. As to the details, I ran out of time. This homework was too long.

11. With the usual $j_{\varepsilon} \in C_c^{\infty}$, show that if f is continuous on \mathbb{R} , then $j_{\varepsilon} * f(x)$ converges to f(x) for all x, and it does so uniformly on each compact subset of \mathbb{R}^n .

Proof Let

$$j_{\varepsilon} = \varepsilon \chi_{[0,1/\varepsilon]}$$
.

Then

$$j_{\varepsilon} * f(x) = \int f(x-t)\varepsilon \chi_{[0,1/\varepsilon]}(t) dt$$
$$= \varepsilon \int_0^{1/\varepsilon} f(x-t) dt$$
$$= average value of $f(t)$ on $[x-1/\varepsilon, x]$$$

and since f is continuous, taking $\lim_{\epsilon \to \infty} f$, we obtain $\lim_{t \to x^-} f(x) = f(x)$.

18. Prove that every convex function f has a support plane at every x in the interior of its domain $D \subset \mathbb{R}$, as claimed in Sect. 2.1. See also Exercise 3.1.

Proof We know that every convex function is continuous on an open set (such as int D), but and if f is also differentiable, then clearly it has a tangent plane which is in fact a support plane.

In this spirit, we can find a support plane for a general convex function by using right derivatives, which always exist. The support plane is

$$\mathrm{span}(1, f'_+(x)),$$

To see this, observe that since f is convex, then

$$\frac{f(x+t) - f(x)}{t}$$

[†]I'm very uncomfortable with sending a variable called ε to ∞ . Maybe what I'm doing is fine, but it's late, my brain hurts, and this homework was way too long.

decreases as $t \to 0^+$, so since

$$f'_{+}(x) = \lim_{t \to 0^{+}} \frac{f(x+t) - f(x)}{t},$$

then $f(x) + tf'_{+}(x) \le f(x+t)$ for all nonnegative t.

Now considering negative values of t; since f is convex, then

$$f'_{-} \leq f'_{+},$$

and f'_- increases as $t \to 0^-$, so $f(x) + t f'_+(x) \le f(x) + t f'_-(x) \le f(x+t)$ for t < 0, so

$$f(x) + tf'_{+}(x) \le f(x+t)$$

always, and we're done.

- 23. Find a sequence of functions with the property that
 - (i) $f_n \xrightarrow{w} 0$ in $L^2(\Omega)$, and
 - (ii) $f_n \to 0$ strongly in $L^{\frac{3}{2}}(\Omega)$, but
 - (iii) $f_n \not\to 0$ strongly in $L^2(\Omega)$.

Answer: Let f_n be the following sequence in $g \in L^2(\mathbb{R})$ which "goes up the spout":

$$f_n = \sqrt{n} \ \chi_{[0,1/n]}$$

Proof (i) For any $g \in L^2(\mathbb{R})$,

$$\left| \int f_n g \, d\mu \right| = \left| \int_0^{1/n} \sqrt{n} g \right|$$

$$\leq \sqrt{n} \int_0^{1/n} |g| \qquad \text{by Holder}$$

$$\leq \sqrt{n} \int_0^{1/n} |g|^2 \qquad \text{since } x > x^2 \text{ in } [0, 1/n]$$

And since $\int_{\mathbb{R}} |g|^2$ is finite, then $\lim_{n\to\infty} \int_0^{1/n} |g|^2 = 0$. Thus $f_n \xrightarrow{w} 0$.

(ii) Observe,

$$||f_n||_{\frac{3}{2}} = \left| \int_0^{1/n} \sqrt{n^{\frac{3}{2}}} \right|^{\frac{2}{3}}$$

= $n^{-5/6}$
 $\xrightarrow{n} 0$.

Thus $f_n \to 0$ strongly in $L^{\frac{3}{2}}(\mathbb{R})$.

(iii) However, $||f_n||_2$ is constantly 1, since

$$||f_n||_2 = \left(\int_0^n \sqrt{n^2}\right)^{\frac{1}{2}}$$
$$= \sqrt{1}$$
$$= 1,$$

so $f_n \not\to 0$ in $L^2(\mathbb{R})$.