■ Danièle BEAUQUIER, Jean BERSTEL et Philippe CHRETIENNE:

Eléments d'algorithmique, Masson 1992

(ce livre est épuisé, mais téléchargeable sur le Web à l'adresse http://www-igm.univ-mlv.fr/~berstel/Elements/Elements.html)

Il comporte plusieurs chapitres qui peuvent (doivent?) vous intéresser à différents titres (cours d'algorithmique, maths discrètes) et le chapitre 9 qui concerne les automates.

■ John HOPCROFT, Jeffrey ULLMAN: Introduction to Automata Theory and Computation, Addison Wesley, 1979.

Nouvelle édition, revue et corrigée :

John HOPCROFT, Rajeev MOTWANI, Jeffrey ULLMAN: Introduction to Automata Theory, Languages and Computation, Addison Wesley, 2001. Dernière révision 2006.

 Michael SIPSER: Introduction to the Theory of Computation, PWS publishing comp. 1997. (nouvelle édition: mai 2012)

Jacques STERN: Fondements mathématiques de l'informatique, McGraw Hill, 1990.

Pierre WOLPER: Introduction à la calculabilité, Inter Éditions 1991 (troisième édition: Dunod, 2006).

2º cycle • Écoles d'ingénieurs

INTRODUCTION À LA CALCULABILITÉ

3º édition

Pierre Wolper

DUNOD

Concaténation

- Σ^* = collection de tous les mots finis sur Σ = ensemble de tous les mots finis
- Opération interne associée: concaténation "." $\Sigma^* \times \Sigma^* \to \Sigma^*$ $(u,v) \to u.v$

$$u = ES, v = SI, u.v = ESSI$$

- Élément neutre: mot vide $m.\varepsilon = \varepsilon.m = m$
- concaténation = opération associative : (u.v).w = u.(v.w)
- $(\Sigma^*,)$ est un monoïde

Monoide

de Wikipédia:

- Un monoïde est une structure algébrique consistant en un ensemble muni d'une loi de composition interne associative et d'un élément neutre.
- En d'autres termes, (E, *) est un monoïde si :
 - $\forall x,y \in E, x^*y \in E$ (composition interne)
 - $\forall x,y,z \in E, x^*(y^*z) = (x^*y)^*z$ (associativité)
 - $\exists e \in E t.q. : \forall x \in E, x^*e=e^*x=x$

Autre vision des langages

- Langage = ensemble de mots (infini?)
- Langage = sous-ensemble de Σ^* ensemble des nombres ordinaires ensemble des programmes Java (syntaxiquement corrects)
- Langage vide $L = \{\} = \emptyset \neq \{\epsilon\}$
- $L = \{\varepsilon\}$, langage du mot vide
- Langage fini de mots finis L={ab,ba,aca}
- Langage infini dénombrable de mots finis
 L={mots binaires pairs}

Opération * de Kleene

Lun langage, L^* = concaténation de mots de L $L^0 = \{\epsilon\}, L^1 = L, L^{i+1} = L^i . L \ \forall i \ge 0$ $L^* = \bigcup_{i \ge 0} L^i, \qquad L^+ = \bigcup_{i \ge 1} L^i$

- L= $\{a,0\}$ $L^2=\{aa,a0,0a,00\}$ $L^3=\{aaa,aa0,a0a,a00,0aa,0a0,000,00a,000\}$
- L* = plus petit langage de Σ^* clos pour la concaténation contenant ϵ et L. C'est un sous-monoïde de Σ^*
- Opération idempotente: (L*)*=L*

Langages rationnels

- Intérêt particulier pour la suite
- sous-ensemble de l'ensemble des langages
- définition inductive
- Notation simplifiée par expressions rationnelles (recherche sur le Web, etc...)

Définition inductive

- Base:
 - Ø est un langage rationnel
 - $\{\epsilon\}$ est un langage rationnel
 - $\forall a \in \Sigma$, {a} est un langage rationnel
- Induction:
 - Si R et S sont deux langages rationnels, $R \cup S$, R. S et R^* sont aussi rationnels

Expressions rationnelles (ER)

- Base:
 - Ø est une expression rationnelle (ER)
 - ϵ est une ER qui représente $\{\epsilon\}$
 - ∀a ∈Σ, a est un ER qui représente {a} (le mot a)
- Induction: Si r et s sont des ER,
 - (r+s) est une ER qui représente $R \cup S$
 - (rs) est une ER qui représente R.S
 - (r^*) est une ER qui représente R^*

Exemples

(a+b)* tous les mots avec des a et des b

-(a+b)*ab(a+b)*=(b*a*)*ab(a+b)*

 (b+ba)* mots sans facteur aa et qui ne commencent pas par un a

- (a+ε)(b+ba)* mots sans facteur aa

Résumé

Le théorème de Kleene

Théorème de Kleene

- Rat(Σ^*)=classe des ER sur Σ
- Rec(Σ^*)=classe des langages reconnus par AF sur Σ
- Théorème: Un langage sur Σ est rationnel si et seulement si il est reconnu par un automate fini.
- On veut montrer que $Rat(\Sigma^*) \subseteq Rec(\Sigma^*)$ i.e. étant donnée une ER, on peut construire un AF qui la reconnaît
- Et que $Rec(\Sigma^*) \subseteq Rat(\Sigma^*)$ i.e. étant donné un AF, on peut trouver une ER qui le dénote (prochaine fois)

Preuve $Rat(\Sigma^*)\subseteq Rec(\Sigma^*)$

 Par induction sur le nombre d'opérateurs de l'ER

Base

- Ø est une ER,

- ϵ est une ER,

- $\forall a \in S$, a est une ER

Preuve pour t=(r+s)

■ r et s ont strictement moins d'opérateurs que t; par HR, il existe N_1 et N_2 , deux AFND tq $L(N_1)$ =r et $L(N_2)$ =s.

Preuve pour t=(r.s)

■ r et s ont strictement moins d'opérateurs que t; par HR, il existe N_1 et N_2 , deux AFND tq $L(N_1)$ =r et $L(N_2)$ =s.

Preuve pour t=(r)*

■ r a strictement moins d'opérateurs que t; par HR, il existe N₁ un AFND tq L(N₁)=r.

Le théorème de Kleene

- $Rec(\Sigma^*)$ = langages reconnus par AF
- Rat(Σ^*) = ensemble des ER (construit inductivement)
 - Base : \emptyset , ε , et $a \in \Sigma$ sont des ER
 - Induction: ret s des ER, (r+s), (r.s) et (r)* sont des
- Théorème: Un langage sur Σ est rationnel si et seulement si il est reconnu par un automate fini.
- On a montré (cours 2) que $Rat(\Sigma^*)$ Rec (Σ^*) (étant donnée une ER, on peut construire un AF qui la reconnaît)
- On montre la réciproque : $Rec(\Sigma^*) \subseteq Rat(\Sigma^*)$ (étant donné un AF, on peut trouver une ER qui le dénote) 24

Le problème

Donnée: A un automate fini déterministe

 Problème: trouver une expression rationnelle qui représente le langage reconnu par A, L(A).

Idée de résolution

Étant donné un AFD

- On considère les chemins de i vers tout t
 ∈ T
- L'ER correspondant à chacun de ces chemins est obtenue en concaténant les étiquettes des transitions en traitant les boucles par une *
- L'ER finale est l'union des différentes ER ainsi obtenues.

Idée de résolution (suite)

- Arcs étiquetés par des lettres et il faut prendre en compte les boucles.
- Mots reconnus en partant de *i* et arrivant dans l'état *j* en ne passant que par les états {1,2,...,k} :

$$R_{ij}^{k} = \{m \in \Sigma^{*} | \delta(i,m) = j \text{ et } \forall p <_{pref} m, \delta(i,p) = n, \\ n \leq k \}$$

Algorithme de McNaughton-Yamada

Intuitivement

 R_{ij}^{k} = ensemble des mots permettant d'aller de i à j en ne passant que par $\{1,...,k\}$. Ces mots sont soit

- dans R_{ij}^{k-1} i.e. ils ne passent que par états ≤ k-1
- composés de R_{ik}^{k-1}

(mènent A dans l'état k pour la première fois) suivis de l'itération des mots de R_{kk}^{k-1}

(forment un cycle pour k sans passer par des états d'un numéro supérieur à k) suivis des mots de R_{kj}^{k-1} (qui mènent A de l'état k à l'état j).

Définition inductive des Rijk

Base:

- $R_{ij}^0 = \{a \mid \delta(i,a) = j\}$ pour $i \neq j$ R_{ij}^0 peut être \emptyset si la transition n'est pas définie
- $R_{ii}^{0} = \{a \mid \delta(i,a) = i\} \cup \{\epsilon\}$ $R_{ii}^{0} = \epsilon \text{ si } i \text{ sans boucle}$

Règle :

Reste à prouver que les Rijk sont rationnels!

les Riik sont rationnels

```
R_{ij}^{0} = \{a : \delta(i,a) = j \} \text{ pour } i \neq j

R_{ii}^{0} = \{a : \delta(i,a) = i \} \cup \{\epsilon\}

R_{ij}^{k} = R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1} \cup R_{ij}^{k-1}
```

- On montre par induction sur k, que pour chaque i,j,k il existe r_{ij}^k, ER qui représente le langage R_{ij}^k
- Base : R_{ij}^{0} : ensemble fini de chaînes composées soit de $a \in \Sigma$ soit de ϵ
 - pour $i=j: r_{ii}^0 = \varepsilon + a_1 + ... + a_p$ (ε , s'il n'y a pas de boucle sur i)
 - pour $i \neq j$: $r_{ij}^{0} = a_1 + ... + a_p \{a_1, ..., a_p\} = \{a \in \Sigma : \delta(i, a) = j\}$ (∅, s'il n'y a pas de transition de i vers j.)

les Riik sont rationnels

```
R_{ij}^{0} = \{a : \delta(i,a) = j \} \text{ pour } i \neq j

R_{ii}^{0} = \{a : \delta(i,a) = i \} \cup \{\epsilon\}

R_{ij}^{k} = R_{ik}^{k-1} (R_{kk}^{k-1}) * R_{kj}^{k-1} \cup R_{ij}^{k-1}
```

- Induction (HR): pour tout l et m r_{lm}^{k-1} , est une ER qui représente R_{lm}^{k-1} . L'ER pour r_{ij}^{k} est $r_{ij}^{k} = r_{ik}^{k-1}.(r_{kk}^{k-1})^*$. $r_{kj}^{k-1} + r_{ij}^{k-1}$
- R_{1j}ⁿ représente les chemins qui conduisent de l'état initial (état 1) vers les états de reconnaissance de A, l'ER qui représente L(A) est :

$$\sum_{m \in F} r_{1m}^n$$

Exemple

 $R_{ij}^{0} = \{a : \delta(i,a) = j \} \text{ pour } i \neq j$ $R_{ii}^{0} = \{a : \delta(i,a) = i \} \cup \{\epsilon\}$ $R_{ij}^{k} = R_{ik}^{k-1} (R_{kk}^{k-1}) * R_{kj}^{k-1} \cup R_{ij}^{k-1}$

	k=0	k=1	k=2	k=3
r ₁₁ k				
r ₁₂ k				
r ₁₃ k				
r ₂₁ k				
r ₂₂ k				
r ₂₃ k				
r ₃₁ k				
r ₃₂ k				
r ₃₃ k				33

Exemple

 $R_{ij}^{0} = \{a : \delta(i,a) = j \} \text{ pour } i \neq j$ $R_{ii}^{0} = \{a : \delta(i,a) = i \} \cup \{\epsilon\}$ $R_{ij}^{k} = R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1} \cup R_{ij}^{k-1}$

$$r_{13}^{3} = r_{13}^{2} (r_{33}^{2}) * r_{33}^{2} + r_{13}^{2} = r_{13}^{2} ((r_{33}^{2}) + \epsilon) = r_{13}^{2} (r_{3}^{2}) *$$

$$r_{13}^{2} = r_{12}^{1} (r_{22}^{1}) * r_{23}^{1} + r_{13}^{1}$$

$$r_{13}^{2} = r_{32}^{1} (r_{22}^{1}) * r_{23}^{1} + r_{33}^{1}$$

$$r_{12}^{1} = r_{11}^{0} (r_{11}^{0}) * r_{12}^{0} + r_{12}^{0} = (r_{11}^{0}) * r_{12}^{0}$$

$$r_{13}^{1} = r_{11}^{0} (r_{11}^{0}) * r_{13}^{0} + r_{13}^{0} = (r_{11}^{0}) * r_{13}^{0}$$

$$r_{22}^{1} = r_{21}^{0} (r_{11}^{0}) * r_{12}^{0} + r_{22}^{0}$$

$$r_{23}^{1} = r_{21}^{0} (r_{11}^{0}) * r_{13}^{0} + r_{23}^{0}$$

$$r_{32}^{1} = r_{31}^{0} (r_{11}^{0}) * r_{12}^{0} + r_{32}^{0}$$

$$r_{33}^{1} = r_{31}^{0} (r_{11}^{0}) * r_{13}^{0} + r_{33}^{0}$$

Exemple

 $R_{ij}^{0} = \{a : \delta(i,a) = j \} \text{ pour } i \neq j$ $R_{ii}^{0} = \{a : \delta(i,a) = i \} \cup \{\epsilon\}$ $R_{ij}^{k} = R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1} \cup R_{ij}^{k-1}$

	k=0	k=1	k=2	k=3
r ₁₁ k				
r ₁₂ k				
r ₁₃ k				
r ₂₁ k				
r ₂₂ k				
r ₂₃ k				
r ₃₁ k				
r ₃₂ k				
r ₃₃ k				

- Base: R_{ii}⁰: ensemble fini de chaînes composées soit de $a \in \Sigma$ soit de ϵ
 - pour $i=j:r_{ii}^0=\epsilon+a_1+...+a_p$ (ϵ , s'il n'y a pas de boucle sur i)
 - pour $i \neq j : r_{ij}^{0} = a_1 + ... + a_p \{a_1, ..., a_p\} = \{a \in \Sigma : \delta(i, a) = j\}$ $(\emptyset, s'il n'y a pas de transition de i vers j.)$
- On obtient :
 - $r_{32}^{0} = \emptyset$
 - $r_{11}^{0} = r_{22}^{0} = \varepsilon$
 - $r_{13}^{0} = r_{23}^{0} = a$
 - $r_{12}^{0} = r_{21}^{0} = r_{31}^{0} = b$
 - $r_{33}^{0} = \epsilon + \alpha$

	k=0	k=1	k=2	k=3
r ₁₁ k	3			
r ₁₂ k	b			
r ₁₃ k	a			
r ₂₁ k	b			
r ₂₂ k	3			
r ₂₃ k	a			
r ₃₁ k	b			
r ₃₂ k	Ø			
r ₃₃ k	ε+a			

$$r_{ij}^{k} = r_{ik}^{k-1} \cdot (r_{kk}^{k-1})^{*} \cdot r_{kj}^{k-1} + r_{ij}^{k-1}$$

- $r_{12}^1 = (r_{11}^0)^* r_{12}^0 = \epsilon^* b = b$
- $r_{13}^{1} = (r_{11}^{0})^* r_{13}^{0} = \epsilon^* a = a$
- $r_{22}^{1} = r_{21}^{0}(r_{11}^{0})^* r_{12}^{0} + r_{22}^{0} = b\epsilon^*b + \epsilon = \epsilon + bb$
- $r_{23}^{1} = r_{21}^{0}(r_{11}^{0})^* r_{13}^{0} + r_{23}^{0} = b\epsilon^*a + a = a + ba$
- $-r_{32}^{1} = r_{31}^{0}(r_{11}^{0}) + r_{12}^{0} + r_{32}^{0} = b\epsilon + \emptyset = bb$
- $r_{33}^{1} = r_{31}^{0}(r_{11}^{0})^* r_{13}^{0} + r_{33}^{0} = b\epsilon^* a + \epsilon + a = \epsilon + a + ba$

	k=0	k=1	k=2	k=3
r ₁₁ k	3			
r ₁₂ k	b	b		
r ₁₃ k	a	а		
r ₂₁ k	b			
r ₂₂ k	3	ε+bb		
r ₂₃ k	a	a+ba		
r ₃₁ k	b			
r ₃₂ k	Ø	bb		
r ₃₃ k	ε+a	ε+a+ba		

$$r_{ij}^{k} = r_{ik}^{k-1} \cdot (r_{kk}^{k-1})^{*} \cdot r_{kj}^{k-1} + r_{ij}^{k-1}$$

•
$$r_{13}^2 = r_{12}^1(r_{22}^1)^* r_{23}^1 + r_{13}^1 =$$

• $b(\epsilon + bb)^*(a + ba) + a =$

• $b(bb)^*(\epsilon + b)a + a =$

• $b^*a + a =$

• $(b^* + \epsilon)a = b^*a$

$$r_{33}^2 = r_{32}^1 (r_{22}^1)^* r_{23}^1 + r_{33}^1 = b^+ba^+ba^+a^+ε = b^*a^+ε$$

	k=0	k=1	k=2	k=3
r ₁₁ k	3			
r ₁₂ k	b	b		
r ₁₃ k	а	а	b*a	
r ₂₁ k	b			
r ₂₂ k	3	ε+bb		
r ₂₃ k	а	a+ba		
r ₃₁ k	b			
r ₃₂ k	Ø	bb		
r ₃₃ k	ε+a	ε+a+ba	ε+b*a	

$$r_{ij}^{k} = r_{ik}^{k-1} \cdot (r_{kk}^{k-1})^{*} \cdot r_{kj}^{k-1} + r_{ij}^{k-1}$$

•
$$r_{13}^3 = r_{13}^2 (r_{33}^2)^* =$$

• b*a (\varepsilon + b*a)* =

(b*a)*

	k=0	k=1	k=2	k=3
r ₁₁ k	3			
r ₁₂ k	b	b		
r ₁₃ k	a	а	b*a	b*a+
r ₂₁ k	b			
r ₂₂ k	3	ε+bb		
r ₂₃ k	a	a+ba		
r ₃₁ k	b			
r ₃₂ k	Ø	bb		
r ₃₃ k	ε+a	ε+a+ba	ε+b*a	

Complexité

- Il faut calculer pour k=0,1,2,...,n
 - Pour chaque paire d'états

$$R_{ij}^{k} = R_{ik}^{k-1} (R_{kk}^{k-1})^{*} R_{kj}^{k-1} \cup R_{ij}^{k-1}$$

- Soit n fois pour chaque paire d'états
- Au total n³ opérations

■ Complexité $O(n^3)$ (p.e. le cas où il y a O(n) états d'acceptation ...)

Questions

Est-ce que l'ER dépend de la numérotation des états?

Non, puisqu'on parcourt la totalité du graphe

Est-ce qu'il faut tout calculer?

Seulement ce qui nous sert...

$$Rec(\Sigma^*) = Rat(\Sigma^*)$$

 On a donc montré que les langages rationnels sont reconnus par AF et seulement par ceuxci

Les AF caractérisent les langages rationnels