МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №8

по дисциплине: «Исследование операций» Вариант 23

Выполнил: ст. группы ПВ-211

Чувилко Илья Романович

Проверил:

Куртова Лилиана Николаевна

Вирченко Юрий Петрович

Тема: Задачи дробно-линейного программирования

Цель работы: освоить метод сведения задачи ДЛП к задаче ЛП с помощью введения новых переменных. Изучить алгоритм решения задачи ДЛП.

Ход работы:

$$z = \frac{-5x_1 + 7x_2}{4x_1 + 9x_2} \to \text{max};$$

$$\begin{cases} 2x_1 + 8x_2 + x_3 = 21, \\ 5x_1 + 3x_2 - x_4 = 17, \\ 6x_1 - 2x_2 + x_5 = 25, \end{cases}$$

$$x_i \ge 0 \ (i = \overline{1, 5}).$$

- 1.Изучить постановку задачи ДЛП, а также подходы к ее решению
- 2. Ознакомиться с введением новых переменных, при которых задача ДЛП превращается в задачу ЛП.
- 3. Изучить метод и алгоритм решения задачи ДЛП, составить и отладить программу решения этой задачи, используя в качестве тестовых данных одну из нижеследующих задач, решенную вручную.

$$Z = \frac{-5X_1 + 7X_2}{4X_1 - 3X_2} \rightarrow max$$

$$\begin{cases} 3X_1 + 8X_2 + X_3 = 18 \\ -5X_1 - 3X_2 + X_4 = -17 \\ 7X_1 - 2X_2 + X_5 = 26 \\ X_i \gg 0, (i = \overline{1,5}) \end{cases}$$

Введем новые переменные $y0 = 1/(4x_3-3x_2)$, yi = y0 * xi, (i = 1,5). Получим задачу линейного программирования:

$$Z = -5Y_1 + 7Y_2 \rightarrow MOX$$

$$(34_1 + 84_2 + 4_3 - 184_6 = 0)$$

$$-54_1 - 34_2 + 44_4 + 174_6 = 0$$

$$74_1 - 34_2 = 1$$

$$43_1 - 34_2 = 1$$

$$4i > 0, (i = 0.5)$$

Построим M-задачу при M = 100:

$$Z_{M} = -5y_{1} + 7y_{2} - |000 \rightarrow max$$

$$3y_{1} + 8y_{2} + y_{3} - |8y_{0} = 0$$

$$-5y_{1} - 3y_{2} + y_{4} + |7y_{0} = 0$$

$$7y_{1} - 2y_{2} + y_{5} - 26y_{0} = 0$$

$$4y_{1} - 3y_{2} + u = 1$$

$$y_{1} = 0$$

Исключим из целевой функции базисную переменную и составим первую симплекс-таблицу:

$$U = 1 - 44, +34$$

$$Z_{M} = -54, +74, -100 + 4004, -3004$$

$$Z_{M} = 3954, -2934, -100$$

$$Z_{M} - 3954, +2934, = -100$$

Таблица 1

Б	C	y1↓	y2	у3	y4	y5	yO	u	Отн
← y3	0	3	8	1	0	0	-18	0	0
y4	0	-5	-3	0	1	0	17	0	0
y5	0	7	2	0	0	1	-26	0	0
u	1	4	-3	0	0	0	0	1	1/4
z	-100	-395	293	0	0	0	0	0	

Таблица 2

Б	C	y1	y2		у3		y4	y5	yo↓	u	Отн
y1	0	1	2	2/3		1/3	0	0	-6	0	0
y4	0	0	10	1/3	1	2/3	1	0	-13	0	0
←y5	0	0	-16	2/3	-2	1/3	0	1	16	0	0
u	1	0	-13	2/3	-1	1/3	0	0	24	1	1/24
Z	-100	0	1346	1/3	131	2/3	0	0	-2370	0	

Таблица 3

Б	C	y1	y2↓		y3		y4	y5		y0	u	Отн
y1	0	1	-3	7/12		13/24	0		3/8	0	0	0
y4	0	0	-3	5/24		11/48	1		13/16	0	0	0
yO	0	0	-1	1/24		7/48	0		1/16	1	0	0
←u	1	0	11	1/3	2	1/6	0	-1	1/2	0	1	3/34
z	-100	0	-1122	5/12	-213	23/24	0	148	1/8	0	0	

Таблица 4

Б	C	y1	y2	y3	y4	y5↓	y0	u		Отн
y1	43/136	1	0	39/272	0	- 27/272	0		43/136	-3 5/27
<-y4	77/272	0	0	209/544	1	211/544	0		77/272	154/211
y0	25/272	0	0	29/544	0	- 41/544	1		25/272	-1 9/41
y2	3/34	0	1	13/68	0	- 9/68	0		3/34	- 2/3
Z	- 131/136	0	0	169/272	0	- 117/272	0	99	5/136	

Таблица 5

Б	С	y1	y2	у3	y4	y5	y0	u
y1	82/211	1	0	51/211	54/211	0	0	82/211
y5	154/211	0	0	209/211	2 122/211	1	0	154/211
y0	31/211	0	0	27/211	41/211	0	1	31/211
y2	39/211	0	1	68/211	72/211	0	0	39/211
Z	- 137/211	0	0	1 10/211	1 23/211	0	0	99 74/211

Решение М-задачи:

$$Z_{\text{Mmax}} = -\frac{137}{211}, \quad Y_0 = \frac{31}{211}, \quad Y_1 = \frac{82}{211}, \quad Y_2 = \frac{39}{211}, \quad Y_3 = 0, \quad Y_4 = 0, \quad Y_5 = \frac{159}{211}$$

Решение исходной задачи:

$$Z_{\text{max}} = -\frac{137}{211}, X_i = \frac{9i}{90} (i = 1.5)$$

$$X_1 = \underbrace{82}_{31}, X_2 = \underbrace{39}_{31}, X_3 = 0, X_4 = 0, X_5 = \underbrace{154}_{31}_{\text{min}}$$

Вывод: Освоил метод сведения задачи ДЛП к задаче ЛП с помощью введения новых переменных. Изучил алгоритм решения задачи ДЛП