

Data Communication Part-6

Prep Smart. Stay Safe. go Gradeup

gradeup.co

gradeup

Data communication Part-6

Content:

- 1. Unguided Media
- 2. Propagation method
- 3. Infrared Signals
- 4. Radio waves
- 5. Micro waves
- 6. Switching methods

Unguided (Wireless) Media:

- Unguided or Wireless media does not use conductor or wire as a communication channel
- Instead it uses the air or vacuum as medium to carry the information from transmitter to receiver .
- The transmitter first converts the data signal into electromagnetic waves and transmits them using suitable antenna .
- The receiver receives them using a receiving antenna and converts the EM waves into data signal again as shown is diagram given below:

Note: The electromagnetic spectrum used for wireless communication is diagram below

Propagation Methods:

- The unguided can travel from the transmitter to receiver in many different way.
 The most important methods are :
 - 1. Ground wave propagation
 - 2. Sky propagation
 - 3. Space propagation or line of sight propagation

Bands: The electromagnetic spectrum is divided into several sub-bands. Table gives various frequency bands, corresponding type of propagation and application.

S.No.	Name	Frequency	Wavelength	Propagation Method
1	Extremely low frequency(ELF)	30-300 Hz	10 ⁷ to 10 ⁶ m	Ground
2	Voice frequency (VF)	300-3000 Hz	10 ⁶ to 10 ⁵ m	Sky
3	Very low frequency (VLF)	3-30 Hz	10 ⁵ to 10 ⁴ m	Sky
4	Low frequency (LF)	30-300 kHz	10 ⁴ to 10 ³ m	Sky
5	Medium frequency (MF)	300kHz- 3 Mhz	10 ³ to 10 ² m	Sky
6	High frequency(HF)	3-30 Mhz	10 ² to 10 m	Sky and line of signal
7	Very high frequencies(VHF)	30-300Mhz	10 to 1 m	Sky and line of signal
8	Ultra high frequencies(UHF)	300 Mhz- 3 Ghz	1 to 10 ⁻¹ m	Sky and line of signal
9	Super high frequencies (SHF)	3-30 Ghz	10 ⁻¹ to 10 ⁻² m	LOC
10	Extremely high frequency (EHF)	30-300Ghz	10 ⁻² to 10 ⁻³ m	LOC
11	Infrared	-	0.7 to 10 pm	LOC
12	Visible high	-	0.4 to 0.8 pm	LOC

EM spectrum and communication Application:

In the radio communication system the frequencies ranging from few kilohertz to many gigahertz all are being used for various purpose .

Detailed table for entire usable frequency spectrum and applications

S.No.	Frequency Band	Wavelength	Applications
1	30Hz – 300 Hz Extremely low frequency ELF	10 ⁴ to 10 ³ Km	Power transmission
2	300 Hz – 3 KHz Voice frequencies (VF)	10 ³ to 10 ² km	Audio applications
3	3 kHz – 30 kHz Very low frequencies (VLF)	10 ² to 10 ¹ km	Submarine communications , navy , military communications
4	30kHz – 300 kHz Low frequency (LF)	10 to 1 km Long waves	Aeronautical and marine , navigation these frequencies act as sub carriers
5	300 kHz – 30 MHz Medium frequencies (MF)	1 km to 100 m Medium waves	AM radio broadcast , Marine and aeronautical communication
6	3 MHz – 30 MHz High frequencies (HF)	100 to 10 m Short waves	Shortwave transmission , amateur and CB communication
7	30 MHz – 300 MHz Very high frequencies (VHF)	10 to 1 m	TV and FM broadcasting
8	300 MHz – 3 GHz Ultra high frequencies(UHF)	1 m to 10 cm Microwaves	UHF TV channels. Cellular phones , Military applications
9	3GHz – 30 GHz(SHF)	10 ⁻¹ to 10 ⁻² m	Satellites communication and radar
10	30 GHz – 300 GHz(EHF)	10 ⁻² to 10 ⁻³ m	Satellites and specialized radars

INFRARED Signals:

- The EM signals having frequencies above 300 GHz are not referred as radio waves
- The signal occupying the range between 0.1 mm and 700 nanometers (nm) are called infrared signals.
- These used in various special kinds of communication as listed below :
 - 1. In astronomy to detect stars and other heavenly body
 - 2. For guidance in weapon systems
 - 3. Tv remote control

Visible Light:

- Light is a special type of electromagnetic radiation. It was wavelength in the range of 0.4 to 0.8 um.
- · Light is used in various kind of communications.
- Light waves can be modulated and transmitted through the glass fibers in the optical fiber communication systems.
- Light signals can also be transmitted through free space. Laser is a type of light which can be easily modulated with voice and data information

Type of Wireless Media:

- It does not use an electrical or optical conductor. In most cases the earths atmosphere is the physical path for the data
- Wireless media is used when distance or obstructions make cable media difficult
 There is three main types
 - 1. Radio -Wave
 - 2. Microwave
 - 3. Infrared

Radio Wave Transmission Systems

- Radio waves have frequencies between 10 kHz and 1 gigahertz. The range of electromagnetic spectrum between 10 kHz and 1 GHz is called radio frequency(RF)
- Radio waves include the following types:
 - 1. Short wave used in AM radio
 - 2. Very high frequency (VHF) used in FM radio and TV
 - 3. Ultra High Frequency(UHF) used in TV
- The radio frequency bands are regulated and require a license from the regulator body unregulated frequency bands are also present which operate at less than 1 watt transmitted power.
- Radio waves can be broadcast directionally or omnidirectional. various kinds of antennas area are used to broadcast these signals as shown in figure.

www.gradeup.co

- The power of the RF signal is determined by the antenna and transceiver.
- Each range has characteristic that affect its use in computer network . For example network application , radio waves fall into three categories :
 - 1. Low power , single frequency
 - 2. High power, single frequency
 - 3. Spread spectrum

Microwave Transmission System:

It makes use of the lower gigahertz frequencies of the electromagnetic spectrum . These frequencies , are higher than the RF and they produce better throughput and performance

Two types of microwave data communication systems are:

- 1. Terrestrial
- 2. Satellite

Microwaves:

- Microwave are basically electromagnetic waves having frequencies between 1 and 300 Ghz
- Microwave are unidirectional
- The microwave band is wide (299 Ghz) so it is possible to allot wider sub bands. Therefore it can support high data rates.

Terrestrial Microwave Systems:

- These systems use directional parabolic antennas to transmit and receive signals in the lower gigahertz range ass shown in diagram
- The signals are highly focused and the physical path must be line of sight
- Relay tower are used to extend signals. Smaller terrestrial microwave systems can be used within building
- Microwaves LANs operate at low power using small transmitters that communicate with omnidirectional hubs. Hubs can then be connected to form the entire networks

Characteristics of Terrestrial Microwave Systems:

- The frequency range used in from 4-6 GHz and 21-23 GHz
- It supports a bandwidth from 1 to 10 mbps
- Attenuation is affected by frequency, signal strength, atmospheric conditions and antenna size.
- The signals are affected by EMI effect, eavesdropping and jamming
- Line of sight requirements make installation difficult
- Short distance system can be inexpensive but long distance systems are relatively expensive.

Advantages of Microwave Link:

- Installation of tower and associated equipments is cheaper than lying down a cable of 100km length
- Less maintenance as compared to cables
- Repeaters can be used. So effect of noise is reduced
- No adverse effects such as cable breakage etc.
- Due to the use of highly directional antenna, these links do not make any interference with other communication systems.
- Size of transmitter and receiver reduces due to the use of higher frequency

Disadvantages:

- Signal strength at the receiving antenna reduces due to multipath reception
- The transmission will be affected by the thunderstorms and other atmospheric phenomenon's

Applications of Microwave Transmission:

- One-to-one communication
- In cellular phones
- In satellite networks
- In wireless LANs

Point-to-point and Broad Cast Infrared Media:

(b) Broadcast infrared media

S.No.	Factors	Point to point	Broadcast	
1	Frequency range	100 GHz to 1000 terahertz	100 GHz to 1000 terahertz	
2	Bandwidth	Data rates between 100 kbps to 16 mbps	Data rates less than 1 mbps	
3	Node Capacity	2 (source to destination)	More than one	
4	Attenuation	Depends on quality of emitted light , its purity , atmospheric conditions and signal obstructions	Depends on the quality of emitted light, its purity atmospheric conditions	
5	EMI	Affected by intense light	Affected by intense light	
6	Installation	Requires prices alignment	Fairly simple	
7	Cost	Moderately high if laser is used	High if laser is used	

Switching methods:

- It is an important technique that can determine how connections are made and how data movement is handled in wide area network(WAN).
- Data sent across point switched telephone network or other internetworks can travel along different paths from sender to receiver
- Switching sends data along different routes. These are three switching techniques:
 - 1. Circuit switching
 - 2. Message switching
 - 3. Packet switching

S.no.	Parameter	Message Switching	Circuit Switching	Packet switching
1	Application	Telegraph network for	Telephone network	Internet for datagram
		transmission of	for bi-directional ,	and reliable stream
		telegrams	real time transfer of	service between
			voice signals	computers
2	End terminal	Telegraph , teletypes	Telephone , modem	Computer
3	Information type	Morse, boudot , ASCII	Analogvoice or PCM	Binary Information
			digital voice	
4	Transmission	Digital data over	Analog and digital	Digital data over
	system	different transmission	data over different	different transmission
		media	transmission media	media
5	Addressing	Geographical addresses	Hierarchical	Hierarchical address
	Scheme		numbering plan	space
6	Routing Scheme	Manual	Route selected	Each packet routed
			during call setup	independently
7	Multiplexing	Character or message	Circuit multiplexing	Packet multiplexing
	Scheme	multiplexing		shared media access
				network

Gradeup UGC NET Super Superscription

Features:

- 1. 7+ Structured Courses for UGC NET Exam
- 2. 200+ Mock Tests for UGC NET & MHSET Exams
- 3. Separate Batches in Hindi & English
- 4. Mock Tests are available in Hindi & English
- 5. Available on Mobile & Desktop

Gradeup Super Subscription, Enroll Now