Math 104 Homework 5

UC Berkeley, Summer 2021 Due by Friday, July 23, 11:59pm PDT

1. Let (X, d_X) and (Y, d_Y) be two metric spaces. Let $X \times Y := \{(x, y) : x \in X, y \in Y\}$ and define the function $d: (X \times Y) \times (X \times Y) \to \mathbb{R}$ by

$$d((x_1, y_1), (x_2, y_2)) = \max\{d_X(x_1, x_2), d_Y(y_1, y_2)\}.$$

- (a) Show that d defines a metric on $X \times Y$.
- (b) Show that E is a compact set in X and F is a compact set in Y, then $E \times F$ is compact in $X \times Y$.
- **2.** Prove that if $\sum a_n$ is a convergent series of nonzero terms then $\sum \frac{1}{a_n}$ diverges.
- **3.** (Ross 14.8) Show that if $\sum a_n$ and $\sum b_n$ are two convergent series of nonnegative real numbers, then $\sum \sqrt{a_n b_n}$ converges. (Hint: Show that $\sqrt{a_n b_n} \le a_n + b_n$ for all n.)
- **4.** (Ross 14.14) Let (a_n) be a sequence of real numbers such that $\liminf |a_n| = 0$. Prove that there exists a subsequence (a_{n_k}) of (a_n) such that $\sum_{k=1}^{\infty} a_{n_k}$ converges.
- **5.** Give an example of a convergent series $\sum a_n$ for which $\sum a_n^2$ diverges.
- **6.** (Ross 15.7) (a) Prove that if (a_n) is a nonincreasing sequence of real numbers and if $\sum a_n$ converges, then $\lim na_n = 0$. (Hint: Consider $|a_N + a_{N+1} + \ldots + a_n|$ for suitable N.) Note that this gives an alternative proof that $\sum \frac{1}{n}$ diverges.
- 7. Determine whether each of the following series converges or diverges and prove it.

(a)
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$$
 (b) $\sum_{n=1}^{\infty} \frac{a^n}{n!}$ $(a \in \mathbb{R})$ (c) $\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ (d) $\sum_{n=2}^{\infty} \frac{1}{n \log n}$

- **8.** (Ross 17.5) (a) Prove that for any $n \in \mathbb{N}$ the function $f(x) = x^n$ is continuous.
- (b) Prove that every polynomial function $p(x) = a_0 + a_1 x + \ldots + a_n x^n$ is continuous.
- **9.** (a) Prove that the function

$$f(x) = \begin{cases} 1 \text{ if } x \ge 0, \\ 0 \text{ if } x < 0 \end{cases}$$

is discontinuous at 0.

(b) Prove that the function

$$f(x) = \begin{cases} \sin(\frac{1}{x}) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$

is discontinuous at 0.

10. Let $f: \mathbb{R} \to \mathbb{R}$ be the function

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \notin \mathbb{Q}. \end{cases}$$

Show that f is discontinuous at every $r \in \mathbb{R}$.