

UNITED STATES AIR FORCE ARMSTRONG LABORATORY

TCE FLAGSHIP TECHNICAL PAPER: DATA FOR VALIDATION OF HUMAN PBPK MODEL

Elaine A. Merrill Teresa R. Sterner Lisa A. May

OPERATIONAL TECHNOLOGIES CORPORATION 1010 WOODMAN DRIVE, SUITE 160 DAYTON, OH 45432

DITIC QUALITY INSPECTED &

September 1997

Occupational and Environmental Health Directorate Toxicology Division 2856 G Street Wright-Patterson AFB OH 45433-7400

NOTICES

When US Government drawings, specifications or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copies of this report from the Air Force Armstrong Laboratory. Additional copies may be purchased from:

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Federal Government agencies and their contractors registered with the Defense Technical Information Center should direct requests for copies of this report to:

Defense Technical Information Service 8725 John J. Kingman Rd., Ste 0944 Ft. Belvoir, Virginia 22060-6218

DISCLAIMER

This Technical Report is published as received and has not been edited by the Technical Editing Staff of the Air Force Armstrong Laboratory.

TECHNICAL REVIEW AND APPROVAL

AL/OE-SR-1997-0006

The voluntary, informed consent of the subjects used in this research was obtained as required by Air Force Instruction 40-402.

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE DIRECTOR

STEPHEN R. CHANNEL, Maj, USAF, BSC Branch Chief, Operational Toxicology Branch Air Force Armstrong Laboratory

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DAT	ES COVERED			
	September 1997	September 1997 Interim Report - Apr				
	. TITLE AND SUBTITLE					
TCE Flagship Technical Paper: Data for Validaton of Human PBPK Model			Contract F41624-94-D-9003			
			PE 62202F			
0 41171100/01			PR 7757			
6. AUTHOR(S)	II M Mov		TA 7757A2			
E.A. Merrill, T.R. Sterner, and	L.M. May		WU 7757A201			
7. PERFORMING ORGANIZATION NAME(S)	AND ADDRESS(ES)		8. PERFORMING ORGANIZATION			
Operational Technologies Corpo	pration		REPORT NUMBER			
1010 Woodman Dr., Suite 160						
Dayton, OH 45432						
,						
9. SPONSORING/MONITORING AGENCY NA	AME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING			
Armstrong Laboratory, Occupat	tional and Environmental Health	Directorate	AGENCY REPORT NUMBER			
Toxicology Division, Human Sy	stems Center		11 (OF OF 100F 0006			
Air Force Materiel Command			AL/OE-SR-1997-0006			
Wright-Patterson AFB, OH 454	33-7400					
11. SUPPLEMENTARY NOTES						
12a. DISTRIBUTION AVAILABILITY STATEM	IENT		12b. DISTRIBUTION CODE			
Approved for public release; dis	tribution is unlimited.					
13. ABSTRACT (Maximum 200 words)						
	occupational and Environmental	Health Directorate, Tox	icology Division is supporting the			
			ducted by the U.S. Environmental			
Protection Agency (EPA). Oper						
			h used TCE or its known metabolites			
			dume, percent body fat and body			
			unteer subjects exposed to TCE at			
			gical studies on dichloroacetic acid			
			efforts performed at the Toxicology			
			fication of PBPK modeling work.			
		•				
	•					
14. SUBJECT TERMS	•		15. NUMBER OF PAGES			
			16. PRICE CODE			
•			TO. FRICE GODE			
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION				
OF REPORT	OF THIS PAGE	OF ABSTRACT	ABSTRACT			
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIE	D UL			

THIS PAGE INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

LIST OF TABLES	iv
LIST OF ATTACHMENTS	
LIST OF ABBREVIATIONS	
PREFACE	
INTRODUCTION	
LITERATURE SEARCHES FOR TCE METABOLITES DATA	1
METHOD FOR EXTRACTION OF PUBLISHED TCE METABOLITES DATA	3
CALCULATION OF EXPOSURE LEVEL OF HUMAN VOLUNTEERS AT RESEARCH	
TRIANGLE PARK	3
LITERATURE SEARCHES FOR PHYSIOLOGICAL PARAMETERS	
METHOD FOR PHYSIOLOGICAL PARAMETER EVALUATION	
SUMMARIZATION OF DCA DOSING STUDIES	7
Human Data Summaries	
Animal Data Summaries	
Other/Review Articles	16
CONCLUSIONS AND RECOMMENDATIONS	
BIBLIOGRAPHY	19

LIST OF TABLES

Summary of Literature Searches for Pharmacokinetic Data on TCE Summary of TCE TWAs Before and During Exposure Research	2
Triangle Park, 1995	4
Summary of Literature Searches for Physiological Parameters	

LIST OF ATTACHMENTS

Attachment I	Metabolites Data Over Time: Trichloroethylene Dosing Studies
Attachment II	Metabolites Data Over Time: Dichloroacetic Acid Dosing Studies
Attachment III	Metabolites Data Over Time: Sodium Trichloroacetate Dosing Study
Attachment IV	Metabolites Data Over Time: Trichloroethanol Dosing Studies
Attachment V	Metabolites Data Over Time: Choral Hydrate Dosing Studies
Attachment VI	Human Physiological Parameters for Use in PBPK Modeling

LIST OF ABBREVIATIONS

 $\begin{array}{lll} \mu \text{Ci} & \text{micro-Curie} \\ \mu g & \text{microgram} \\ \text{CH} & \text{chloral hydrate} \\ \text{CO}_2 & \text{carbon dioxide} \\ \text{DCA} & \text{dichloroacetic acid} \\ \text{DCAC} & \text{dichloroacetate} \\ \end{array}$

dy day

EPA Environmental Protection Agency

g gram

GC gas chromatograph

hr hour

IARC International Agency for Research on Cancer

iv intravenous kg kilogram

K_m dissociation constant

_ liter

LD₅₀ lethal dose for 50% of study animals

LDH lactate dehydrogenase

mg milligram
min minute
mL milliliter
mL milliliter
mmol millimole
mol mole

n number of study subjects

NA not applicable

PBPK physiologically-based pharmacokinetic

ppm parts per million red blood cell

RTP Research Triangle Park

 $t_{1/2}$ second half life

TCA trichloroacetic acid TCAC trichloroacetate TCE trichloroethylene TCOH trichloroethanol

TWA time weighted average

V_{max} maximum velocity

yr year

PREFACE

This effort was performed by Operational Technologies Corporation, 1010 Woodman Drive, Suite 160, Dayton OH 45432 under the Project Management of Mr. Erik Vermulen. The work was completed under U.S. Air Force Contract F41624-94-D-9003 between April 1996 and February 1997. Lt Col Terry Childress, Director of Armstrong Laboratory Occupational and Environmental Health Directorate Toxicology Division, served as contract monitor.

Operational Technologies Corporation (OpTech) would like to extend special thanks to the Principal Investigator of this effort, Dr. Jeffrey W. Fisher, for his instruction and guidance in this effort.

TCE FLAGSHIP TECHNICAL PAPER: DATA FOR VALIDATION OF HUMAN PBPK MODEL

INTRODUCTION

A flagship review of the environmental risks of trichloroethylene (TCE) is currently being conducted by the U.S. Environmental Protection Agency (EPA). The Armstrong Laboratory Occupational and Environmental Health Directorate, Toxicology Division is supporting this review. The work completed by Operational Technologies on the TCE Flagship review was divided into the following objectives: 1) gather physiologically-based pharmacokinetic (PBPK) data from published human studies which used TCE or its known metabolites as the dosing agent, 2) compile physiological parameters (i.e., organ weight, blood volume, percent body fat and body weight) used in PBPK models, 3) calculate time weighted averages (TWAs) of 17 volunteer subjects exposed to TCE at Research Triangle Park (RTP) and 4) summarize available human and animal toxicological studies on dichloroacetic acid (DCA). The main purpose of these tasks was to assist in refining TCE PBPK modeling efforts performed at the Toxicology Division by providing human data which may be used for statistical analysis and/or verification of PBPK modeling work. OpTech was not requested to perform analysis on the data collected, however considerable evaluation of the data was performed in order to find data best suited for PBPK modeling.

In addition, OpTech was requested to summarize select human and animal studies, including review articles, and provide background information on human pharmacokinetics, toxicity, carcinogenicity and teratogenicity of DCA. Dichloroacetic acid is not only a major metabolite of TCE, but both chloroform and DCA are byproducts of water chlorination. This information was used by the Principle Investigator (PI), who serves on the steering committee to evaluate chloroform and dichloroacetic acid as case studies for application of EPA's proposed guidelines for carcinogen risk assessment.

LITERATURE SEARCHES FOR TCE METABOLITES DATA

Comprehensive literature searches were performed on TCE and its known metabolites: trichloroacetic acid (TCA), DCA, choral hydrate (CH) and trichloroethanol (TCOH). The objective of searching for studies in which the metabolites were the dosing agents was to obtain additional PBPK data that may not be reflected in existing TCE models. Searches were performed in available National Library of Medicine's Medline databases from 1966 through 1995 and Toxline databases from 1990 through 1995. Dialog's Occupational Safety and Health database (based on National Institute of Occupational Safety and Health's NIOSHTIC) was also accessed to some extent as available.

Study articles were retrieved from the Wright-Patterson Air Force Base toxicology, medical and technical libraries as well as from Wright State University and University of Cincinnati libraries. Table 1 presents a brief summary of topics searched during this effort.

Summary of Literature Searches for Pharmacokinetic Data on TCE Table 1

Pharmacokinetic*	ac	ac	a	w			
рв-рк ог рврк	۵	۵	q	۵			
Metabol* (Human)	ac	ac	æ	Ø			
гузге	ø	۵	a	Ф			
Human		a	Ø	q		q	
нѕо	Ø	q	q	ą			
enoirtistul (Ø	q	q	q			
Expos* and Human	<u>a</u>	a C	B	Ø			
Exhal*	Ø	B	q .				
Dichlorovinylcysteine	Ø	q	q	q			
Blood or Urine (Human)	a	ас	В	а			
Biologic* and Monitor*	a	рс	q	a			
Databases Accessed	abc	abc	аþ	аþ	а	q	a
	Trichloroethylene (79-01-6)	Chloral/Chloral Hydrate (75-87-6/302-17-0)	Dichloroacetic/Dichloroacetate (79-43-6/13425-80-4)	Trichloroethanol (115-20-8)	Dekant-W	PB-PK or PBPK	Stacpoole

a Medline 1966-95 Toxline 1990-95 b Medline 1966-82, 1990-95 Toxline 1990-95

c Occupational Safety & Health on Dialog 1 Refined with Occupat*, then with Volunt*

METHOD FOR EXTRACTION OF PUBLISHED TCE METABOLITES DATA

The actual process of extracting relevant data from kinetic studies was labor intensive. Once the selected studies were retrieved from area libraries, each was evaluated as to the usefulness of its data. Human TCE and TCE-metabolite dosing studies were considered useful only if the dose was defined and measurements of metabolites were identifiable with respect to time from the initial dose. Additionally, total urine collected over time was necessary; urine sampling at given intervals was not acceptable. Also, the analytical method for TCOH in blood and urine had to be defined. The analytical method is relevant because it determines whether the measured TCOH represents free TCOH or a total TCOH complex with glucuronide. Consultation with the PI occurred as needed to delineate any questionable data extrapolation procedures. All references used within the studies were scanned to identify other potential sources of measured human metabolite data.

Research on TCE and metabolites in human subjects is limited. Of the literature evaluated, only 24 studies satisfied the criteria above. These studies were conducted primarily during and prior to the 1970s.

Data from useful studies were entered into spreadsheets. Concentrations vs. time data available only in charts and graphs were digitized into a coordinate system using EASYDIJ[©] (Version 8.0) and entered into spreadsheets. All continuous variables were entered so that measured concentrations and time of measurement from the initial dose corresponded. This format readily allows for statistical analysis of the published data. Categorical variables such as sex, age and weight were also entered into the spreadsheets to correspond with individual metabolite data.

For the purpose of making the data comparable from one study to another, all measured variables were converted to common units (e.g., time from initial dose in hours, doses in mg/kg and plasma concentrations in mg/L). Time data within the human studies were normalized to hours from the initial dose or start of the exposure. Measured urinary metabolites were calculated as cumulative excretion over time. The completed spreadsheets of human TCE metabolite data are presented in Attachments I through V.

The final databases (spreadsheets) were quality control checked against the original studies. Approximately 60% of all data taken from graphs and tables were checked against the spreadsheets for accuracy.

CALCULATION OF EXPOSURE LEVEL OF HUMAN VOLUNTEERS AT RESEARCH TRIANGLE PARK

TWAs were calculated for 17 human volunteers exposed to TCE under controlled environmental conditions at Research Triangle Institute, Research Triangle Park (RTP), North Carolina (Kizakevich, 1996). These TWAs are actual exposure levels that will be used to develop the PBPK model (see Table 2), whereas human data gathered previously from existing, published studies will be used for validation purposes. Each subject was exposed to approximately 50 or 100 ppm TCE over a period of 4 hours. Subject numbers beginning with 100 were male participants and those beginning with 200 were females.

Table 2
Summary of TCE TWAs Before and During Exposure
Research Triangle Park, 1995

Subject #	Time in booth before removing masks (hr:min:sec)	TWA before exposure (ppm)	Time exposed (masks off) (hr:min:sec)	TWA during exposure (ppm)
101	3:19:13	2.46	4:00:18	55.12
102	1:50:04	3.30	4:00:15	52.97
103	2:36:05	3.39	3:59:14	105.46
103	2:09:08	6.13	4:00:08	102.54
105	0:57:03	11.97	4:00:09	101.41
106	1:32:03	5.37	4:00:09	49.27
107	NA	NA NA	~4:00:00	~101.99
107	NA	NA	~4:00:00	~101.99
109	2:09:06	5.13	4:05:12	97.71
110	2:05:11	8.99	3:59:12	101.04
111	1:38:06	11.81	3:59:17	103.32
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
201	3:24:13	3.63	4:00:18	55.21
202	1:55:04	5.18	4:00:15	53.10
203	2:41:05	6.44	4:00:14	105.51
204	2:14:08	9.54	4:00:08	102.64
205	1:02:03	17.51	4:00:09	101.50
206	no subject			
207	NA	NA	~4:00:00	~101.99
208	NA	NA	~4:00:00	~101.99
209	2:14:06	8.42	4:05:12	97.76
210	2:10:11	11.24	3:59:12	101.12
211	1:42:06	15.89	3:59:17	103.40

TWA - Time Weighted Average

LITERATURE SEARCHES FOR PHYSIOLOGICAL PARAMETERS

This literature search was performed with the intent of gathering physiological parameters used in PBPK modeling. Although the PBPK models in use by the Toxicology Division already contained estimated values for all fields, measured data are preferable. The search objective was to gather both measured and estimated human physiological data needed in PBPK modeling such as body weight, percent body fat, organ volumes and organ blood flows. These physiological parameters are listed below:

- age
- sex
- ethnicity
- body weight
- volumes (expressed as a fraction of body weight): body fat, slowly perfused organs, rapidly perfused organs, liver, lung and kidney
- blood flow rates (expressed as a fraction of cardiac output): body fat, slowly perfused organs, rapidly perfused organs, liver, lung and kidney
- cardiac output
- breathing rate

Medline (1966 to 1995) and Toxline (1990 to 1995) were searched for this data. Abstracts were reviewed by the PI and articles were selected for review. The key terms summarized in Table 3 were used in the search for physiological parameters and PBPK models. Various textbooks were also used to gather human physiological parameters. Published resources were retrieved from area libraries. Once literature was gathered, article reference lists were reviewed for older sources of valuable information.

METHOD FOR PHYSIOLOGICAL PARAMETER EVALUATION

Both measured and default physiological parameter values were obtained from the articles and entered into spreadsheets. Information regarding how default estimates were made was also included. The values from all studies were then converted to standard units. Organ volumes had to be expressed as percent body weight and blood flow as percent cardiac output. Both the measured and default physiological parameters found in the literature are compiled in Attachment VI. For this task alone, 90 articles were obtained and reviewed.

Summary of Literature Searches for Physiological Parameters Table 3

Trichloroethylene, Trichloroethene (79-01-6)			۵		
(115-20-8) (115-20-8)			۵		
noitslumiS					a
Reference-Values	a 1				
ճսո <mark>ղ</mark>					Ø
Kidney				Ø	
Нитап			q		
Dichloroacetic, Dichloroacetate (79-43-6, 13425-80-4)			q		
Chloral (75-87-6, 302-17-0)			а		
βody-Weight					В
Age-Factor	a 1				
Databases Accessed	В	Ø	аp	а	a
	Body-Composition	ICRP Reference Man	ЬВРК	Volume	Individual Authors (Referenced in Articles)

a Medline 1966-95 Toxline 1990-95 b Medline 1966-82, 1990-95 Toxline 1990-95 1 Refined with Human*

SUMMARIZATION OF DCA DOSING STUDIES

Human and animal DCA studies were collected and summarized into a quick review article for reference by the PI, who serves on the International Life Science Institute's expert panel to evaluate chloroform and DCA as case studies for application of EPA's proposed cancer guidelines for carcinogen risk assessment. Additional literature searches were conducted for human data that may have been missed during the focused PBPK data search. Due to the limited number of human studies on DCA, toxicity and carcinogenicity data from available animal studies and review articles were also summarized. The study material summarized included information such as dose level and technique, clinical and non-clinical responses and tumor incidence. Eighteen study summaries are presented below.

Human Data Summaries

Curry SH, Chu PI, Baumgartner TG, Stacpoole PW. 1985. Plasma concentrations and metabolic effects of intravenous sodium dichloroacetate. Clin Pharmacol Ther. 37:89-93.

Eleven subjects (seven healthy men and five healthy women) between the ages of 22 and 57 received five doses of 10, 25 or 50 mg/kg intravenous sodium dichloroacetate (DCAC) at 2-hour intervals. Three subjects received the 10 mg/kg DCAC, five subjects (which included one individual from the 10 mg/kg dosing group) received 25 mg/kg and the remaining four received 50 mg/kg. Baseline glucose and lactate levels were established after an overnight fast.

The male and female subjects were unevenly distributed over the three dose levels with respect to sex, but the difference was not significant ($\chi^2 = 5.04$). Blood DCA concentrations rose and fell during and after each infusion. There was variation between subjects, even among those receiving the same dose. Lactate levels fell as the result of DCAC treatment.

With repeated doses of 50 mg/kg DCAC, mean 24-hour urinary oxalate excretion was approximately 200 mg/g creatinine, which is about seven times the daily excretion rate for healthy subjects (29.5 mg/g creatinine).

Blood pressure and pulse remained stable. Subjects receiving 10 or 25 mg/kg doses did not experience any unpleasant effects. After the second or third infusion, the three subjects who received 50 mg/kg experienced mild drowsiness that lasted several hours after the final dose.

Lukas G, Vyas R, Brindle SD, LeSher AR, Wagner WE. 1980. Biological disposition of sodium dichloroacetate in animals and humans after intravenous administration. J Pharm Sci. 69(4):419-421.

¹⁴C-Sodium dichloroacetate (DCAC) was administered to rats, dogs and humans. Plasma and urine samples were collected over time. Three male Sprague-Dawley rats (169-179 g) were given 100 mg/kg ¹⁴C-sodium DCAC (in a 10% aqueous solution) intravenously (iv) and blood samples were collected. Following the 100 mg/kg iv dose to the three rats, maximal plasma concentrations of unchanged sodium DCAC ranged between 120 and 164 μg/mL. Subsequent declines of plasma concentrations occurred with half-lives of 2.1-4.4 hours. Declines of

radioactivity were slow. Apparent half-lives of 21-36 hours indicated extensive metabolism and slow elimination of metabolites.

Two male beagles (9-10.5 kg) were given 100 mg/kg 14 C-sodium DCAC (in a 20% aqueous solution) intravenously. The maximum concentrations of 447 and 508 μ g/mL were measured in plasma at 5 minutes. Subsequent declines were slow with a half life of 17.1 - 24.6 hours, also indicating extensive metabolism and slow elimination.

Four healthy humans were dosed after an overnight fast. Subjects 1 and 2, ages 42 and 38 both weighed 70 kg and received a 10 mg/kg dose in 100 mL of saline infused over 20 min. Subjects 3 and 5, ages 52 and 26 years (80 and 83 kg, respectively) received 20 mg/kg DCAC. No subjective or objective changes or signs or clinical activity were noted in any human subject upon intravenous infusion of either the 10 or 20 mg/kg doses of ^{14}C -sodium DCAC. The highest plasma concentrations were obtained immediately after the end of the infusions. Subjects 1 and 2 receiving 10 mg/kg had maximum values of 20 and 35 µg/mL, respectively. Maximum concentrations of 57.3 and 74.9 µg/mL were seen in Subjects 3 and 4 after 20 mg/kg. Human plasma levels declined mono-exponentially over a 200-500 fold concentration range, corresponding to a range of 7-9 hour half-lives. Metabolites were not explored in detail in this study.

Urinary excretion of unchanged ¹⁴C-sodium DCAC was negligible after the first 8 hours; in all humans, cumulative excretion amounted to considerably less than 1% of the dose. The intrinsic clearance of ¹⁴C-sodium DCAC was considerably greater than, and the elimination presumably limited by, blood flow in subjects receiving 10 mg/kg. In subjects receiving 20 mg/kg, intrinsic clearance was lower. A doubling of the dose led to an approximately seven-fold decrease in intrinsic clearance, yet the systemic (plasma or blood) clearance values decreased only by a factor of two or three.

This study demonstrates the difficulty in predicting the toxicity of therapeutic drug dosage in humans from comparatively large doses used in animal toxicity testing due to differences in elimination rates between species. The elimination rate in humans was dose dependent and limited by hepatic blood flow, whereas elimination of high doses was not flow limited in rats and dogs since hepatic blood flow greatly exceeded intrinsic clearance.

Wells PG, Moore GW, Rabin D, Wilkinson GR, Oates JA, Stacpoole PW. 1980. Metabolic effects and pharmacokinetics of intravenously administered dichloroacetate in humans. Diabetologia 19:109-113.

DCAC was infused over 30 minutes to 16 healthy subjects (15 male, 1 female, ages 25 to 45 years, mean age 30 and within 10% of ideal body weight) following an overnight fast. Doses of 1, 5, 10, 15, 20, 25, 30, 35 and 50 mg/kg were administered in increasing strength. Blood samples were taken every 30-60 minutes over 12 hours. Plasma was separated and analyzed by gas chromatograph (GC) for pH, glucose, lactate, alanine, bicarbonate and DCA concentrations.

Plasma concentrations of DCA were linearly related to dose (r = 0.98, p < 0.001) up to 30 mg/kg, above which 4 of 7 subjects had disproportionately high plasma DCA concentrations,

indicating nonlinear pharmacokinetics. This may be expected with increasing dosages or multiple dosing. Plasma clearance of DCA decreased with doses greater than 20 mg/kg.

At 1 and 10 mg/kg, DCAC had no effect on lactate, glucose and alanine. Maximum lactate depression for DCAC doses between 15 and 50 mg/kg occurred 1 to 2 hours after beginning of infusions. Lactate levels then remained below baseline for 8 to 10 hours and returned to baseline by 12 hours. Within 2 hours of administration of the maximally effective dose (35 mg/kg), plasma lactate concentrations fell 75% below baseline, which blood glucose did not change. With both 35 (n = 3) and 50 (n = 6) mg/kg doses, plasma alanine concentrations decreased 50% in 1 hour, remained maximally depressed for 6 hours, and were still below baseline at 12 hours. Decreases in plasma lactate and alanine were linearly correlated with DCAC dose and peak plasma concentrations from doses of 20 mg/kg up to 35 mg/kg (r = 0.93, p < 0.01). Glucose levels fell slightly after 12 hours in subjects receiving the 50 mg/kg dose (n = 6). Plasma bicarbonate, pH, blood pressure, pulse and ECG did not change at any DCAC dose. One subject complained of drowsiness following a dose of 50 mg/kg.

Animal Data Summaries

Pharmacokinetics

Ribes G, Valette G, Loubatieres-Mariani MM. 1979. Metabolic effects of sodium dichloroacetate in normal and diabetic dogs. Diabetes 28:852-857.

In an acute exposure study, mongrel dogs were dosed with 150 mg/kg DCAC through gastric intubation and observed for 48 hours. Normal dogs (14 to 18 kg) were fasted for 18 hours prior to dosing, but were fed at 10 and 32 hours after dosing. Diabetes was produced in dogs (12 to 16 kg) through iv administration of 50 mg/kg alloxan. These dogs had been diabetic at least two months prior to the experiment and insulin was withheld 72 hours prior to dosing. Nine dogs received DCAC and six received 20 mL 9% sodium chloride via intubation.

To determine the effects of repeated exposure, normal dogs received 150 mg/kg DCAC for seven days with a meal. Three diabetic dogs received subcutaneous insulin with 75 mg DCAC/kg orally for seven days. Fasting blood levels were taken 18 hours after daily meals.

In normal dogs, acute exposure resulted in rapid decreases in blood lactate, pyruvate and triglyceride levels (35, 27 and 62% of starting values, respectively). Decreases persisted for 24 to 48 hours. Blood glucose did not begin to decrease until four hours post exposure; the decrease was significant at 24 (p<0.01), 26 (p<0.01) and 28 hours (p<0.05). Repeated exposure resulted significantly lower (p<0.001) levels of blood glucose after 24 hours; the decreased levels persisted two days post exposure. Blood lactate, pyruvate and triglyceride levels again decreased rapidly (36, 20 and 20% of starting values, respectively) and persisted for four to six days or longer. Plasma cholesterol was reduced (p<0.001), recovering five days post exposure. Blood β -hydroxybutyrate and acetoacetate levels increased rapidly and returned to basal values on the sixth post exposure day. Ketone bodies were not present in the urine of normal dogs.

In diabetic dogs, blood glucose levels were decreased significantly (p<0.05) from sodium chloride controls at four hours after acute exposure. Glucose was decreased to a maximum of 80% of the starting value and the decrease persisted longer than 24 hours. Blood lactate, pyruvate and oxaloacetate levels decreased rapidly and stayed low for 24 to 48 hours. DCAC did not significantly lower the plasma lipid or blood ketone concentrations as compared to the controls. Urinary levels of acetone and β -hydroxybutyrate were not decreased. Glucosuria levels were significantly decreased (p<0.02); the decrease persisted for 48 hours. Repeated exposure resulted in blood glucose decreases (p<0.001) which lasted 48 hours post exposure. Blood lactate, pyruvate and oxaloacetate also rapidly decreased. Plasma lipids (triglyceride, cholesterol and total lipids) were all significantly (p<0.001) decreased. Blood β -hydroxybutyrate and acetoacetate levels were not decreased. Glucosuria decreased rapidly while urinary β -hydroxybutyrate and acetone increased.

Ward RA, Wathen RL, Harding GB, Thompson LC. 1985. Comparative metabolic effects of acetate and dichloroacetate infusion in the anesthetized dog. Metabolism 34(7):680-687.

Five dogs (13 to 36 kg) were exposed to saline (10 mmol/hr-kg), acetate (10 mmol/hr-kg) or DCAC (1 or 10 mmol/hr-kg) for 60 minutes via intravenous infusion. Prior to exposure, the dogs were fasted for 48 hours, anesthetized and infused with saline (control period) for 30 minutes. Following exposure, saline was infused for a 30 minute recovery period. All significance levels are 2p<0.05.

The low dose of DCAC (1 mmol/hr-kg) resulted in increased blood bicarbonate levels (over baseline and saline control) and increased arterial serum potassium and inorganic phosphorus levels over baseline levels. Low doses decreased arterial blood lactate and pyruvate over baseline and saline control levels. Arterial citrate levels were decreased while acetoacetate levels increased over baseline levels. Arterial alanine was dramatically decreased from baseline levels.

High doses of DCAC (10 mmol/hr-kg) increased arterial CO₂ partial pressure as compared to baseline and saline control levels. Arterial serum sodium and inorganic phosphorus increased over baseline and saline control values; serum potassium levels increased over baseline levels. DCAC decreased arterial pyruvate and citrate over baseline and control values while it increased acetoacetate concentrations above baseline. Arterial alanine concentrations, free fatty acids and plasma insulin levels decreased as compared to baseline.

Lin EL, Mattox JK, Daniel FB. 1993. Tissue distribution, excretion and urinary metabolites of dichloroacetic acid in the male Fischer 344 rat. J Toxicol Environ Health. 38:19-32.

Two doses of $2-(^{14}C)$ -DCA (28.2 and 282 mg/kg), which are approximately 1/100 and 1/10 of the LD₅₀ (Smyth, 1951), and one dose level of $1-(^{14}C)$ -DCA (282 mg/kg) were administered by oral gavage to Fischer 344 male rats (in groups of 4,5 and 6 respectively). The dosing solutions were prepared by mixing labeled and unlabeled DCA so that each animal received

about 20 μ Ci of ¹⁴C (40-450 μ Ci/mmol). The rats weighed between 180-240 g. They were fed water and chow throughout the experiment, except during an overnight fast before dosing.

Exhaled CO₂ was collected in ethanolamine and exhaled volatile organics were adsorbed using charcoal tubes and later extracted with methanol. Feces and intestinal contents were extracted. Urine, ethanolamine, methanol extracts of charcoal tubes and water extracts of feces were analyzed for radioactivity. At termination, as much blood was collected as possible. Whole organs and samples of muscle, skin and adipose (testicular) were removed and weighed. Blood and tissue digest were analyzed for radioactivity.

The major routes of disposition for DCA were urinary excretion and exhalation of CO_2 . Expiration of CO_2 accounted for ~29% of the 282 mg/kg 1-DCA dose and ~25-34% of the 28.2 and 282 mg/kg 2-DCA doses. Only about 2% of the 282 mg/kg doses of 1- and 2-DCA and <1% of the 28.2 mg/kg dose of 2-DCA were recovered from the feces after 48 hours. Exhaled volatile organics accounted for 0.1% of the DCA in all cases. About 33.3 and 35.2% of the dose was cumulatively excreted in urine and 28.8 and 25.0% was exhaled as CO_2 for 1- and 2-DCA, respectively, at the 282 mg/kg dose. There was not a significant difference between the excretion patterns of the 1- and 2-DCA doses (p < 0.01; however, compared to the 28.2 mg dose of 2-DCA, a significantly greater percentage of the dose was expired as CO_2 (34.4% vs. 25%) and a lesser percentage was excreted in urine (12.7% vs. 35.2%) and feces (0.8% vs. 2.0%) at 28.2 mg/kg relative to the 282 mg/kg dose, respectively.

Analysis of urinary metabolites by HPLC showed oxalic acid, glycolic acid, and glyoxylic acid in the urine, accounting for about 10% and 22% of the administered dose of 1- and 2- DCA, respectively. At termination, the tissues retained 20.8% of the ¹⁴C associated with 1-DCA (282 mg/kg dose) and 26.2 and 36.4% of that with 2-DCA, 282 and 28.2 mg/kg, respectively. Liver and muscle tissues contained the highest amounts, followed by the skin, blood and intestines. Significantly higher percentages of the dose were retained in tissues of rats receiving the lower 2-DCA dose compared to the higher 2-DCA dose.

Yount EA, Felten SY, O'Connor BL, Peterson RG, Powell RS, Yum MN, Harris RA. 1982. Comparison of the metabolic and toxic effects of 2-chloropropionate and dichloroacetate. J Pharmacol Exper Ther. 222(2):501-508.

Acute and subchronic toxicity studies of 2-chloropropionate and DCAC were conducted on male Wistar rats and male and female ICR mice. Blood samples were taken, but urine samples were not collected. Five dose levels from 24 to 53 mmol/kg DCAC were administered by gavage to five male and five female mice. Mice were observed for one week for mortality. The oral LD $_{50}$ values were 15.4±1.1 mmol/kg body weight. To study prolonged toxicity, DCAC was feed orally to male rats (0.04 mol/kg of feed) for 12 weeks. Rats feed DCAC consumed less food and gained less weight than control rats. Hind limb weakness and abnormal gait were observed in the rats within two to four weeks after DCAC was added to feed. The absolute weights of the spleen, lungs, heart, testes plus epidermis and brain were significantly less (p < 0.05) than the weights of these organs in the control group. Glucose levels were approximately the same in the control and DCAC groups. Free glycerol in plasma was not significantly different from the control group.

Nerve conduction velocities were significantly less than in the control group. Cross sections of the tibial nerve showed that the group treated in DCAC had significantly smaller diameters of the tibial nerves than those of the control groups, indicating possible impaired nerve maturation.

Larson JL, Bull RJ. 1992. Metabolism and lipoperoxidative activity of trichloroacetate and dichloroacetate in rats and mice. Toxicol Appl Pharmacol. 115:268-277.

Male F344 rats (331 \pm 24g) and male B6C3F1 mice (27 \pm 2 g) were administered 5,20 or 100 mg/kg [C¹⁴]trichloroacetate (TCAC) or [C¹⁴]DCAC as a single oral dose in water after a 24 hour fast. Blood was collected over time for the 20 and 100 mg/kg doses. Radioactivity in urine, feces, plasma, exhaled air and carcasses was counted. DCAC was much more extensively metabolized than TCAC. In both species, 48 to 65% of the initial dose of TCAC was excreted unchanged in urine, whereas < 2% of DCAC was excreted unchanged in urine. The relative amount of unresolved nonchlorinated acids, as a percent of initial dose recovered in urine from DCAC dosed rodents, was about twice that of TCAC dosed rodents. Nonchlorinated acids accounted for 10-15% of the overall DCAC dose. Thiodiacetic acid in urine represented 6-10% of the initial dose.

Exhalation of CO_2 accounted for 24-30% of the initial dose of DCAC in rats (representing the major excretory route for DCAC). This compared to 6-8% of initial dose of TCAC in rats. Most radio-labeled CO_2 was recovered within two hours from dosing. Mice only excreted about 2% of the dose as CO_2 .

Blood concentration curves for the two species were similar, but were markedly greater in rats. Peak plasma concentrations of TCA ranged from 3 to 60 fold higher than peak plasma concentrations of DCA in comparably dosed animals from the same species. The half life values were also greater in TCAC-treated than in DCAC-treated animals.

To evaluate the ability of acute doses of TCAC and DCAC to elicit a lipoperoxidative response, additional groups of mice were administered 0, 100, 300, 1000 and 2000 mg/kg TCAC and DCAC. Both TCAC and DCAC enhanced the formation of hepatic thiobarbituric acid-reactive substances in a dose-dependent manner; however TCA's effect was greater.

Carcinogenicity/Toxicity Studies

Snyder RD, Pullman J, Carter JH, Carter HW, DeAngelo AB. 1995. *In vivo* administration of dichloroacetic acid suppresses spontaneous apoptosis in murine hepatocytes. Cancer Res. 55:3702-3705.

Male B6C3F1 mice were exposed to DCA at 0.5 or 5.0 g/L in drinking water for 5, 10, 15, 20, 25 or 30 days. DCA significantly depressed apoptosis in hepatocytes as compared to agematched controls. Through regression analysis, apoptosis was found to decrease in the untreated controls over the 30 day period; apoptotic frequency ranged from 0.09 to 0.04%. The 0.5 g/L DCA dose group was found to have a similar, but more depressed, apoptosis trend. Apoptosis frequency was significantly different from the control on days 5, 15, 25 and 30 days and ranged from 0.06 to 0.02%. The 5.0 g/L group reached the maximum depression of apoptosis (0.01%) at 5 days. Depression persisted for the duration of exposure, ranging from

0.03 to 0.01%. Apoptosis frequency was significantly depressed on days 5, 10, 15, 25 and 30 (p<0.02). These results support the hypothesis that the carcinogenicity of DCA involves suppression of the liver's ability to remove initiated cells through apoptosis.

Daniel FB, DeAngelo AB, Stober JA, Olson GR, Page NP. 1992. Hepatocarcinogenicity of chloral hydrate, 2-chloroacetaldehyde and dichloroacetic acid in the male B6C3F1 mouse. Fundam Appl Toxicol. 19:159-68.

Chloral hydrate, 2-chloroacetaldehyde and DCA were administered to male B6C3F1 mice over a period of 104 weeks. Mice (n = 58) were exposed to approximately 93 mg DCA/kg-day (0.5 g/L) via drinking water. The mean daily water consumption volume was slightly decreased as compared to controls but was not statistically significant.

Exposure resulted in increased (0.01<p<0.03) liver and relative liver weights at 104 weeks. Of the 24 animals examined, 33% had hepatocellular necrosis and hyperplasia. Fully 100% of the 24 had cytoplasmic vacuolization; 92% had cytomegaly and 46% were found to have chronic active inflammation. Liver tumor incidence was significantly (p<0.01) increased; 63% of exposure survivors presented with hepatocellular carcinomas and 42% had adenomas. The prevalence of carcinomas plus adenomas was 75%.

Bull RJ, Sanchez IM, Nelson MA, Larson JL, Lansing AJ. 1990. Liver tumor induction in b6c3f1 mice by dichloroacetate and trichloroacetate. Toxicology. 63:341-359.

Male and female B6C3F1 mice were exposed via drinking water to 1 or 2 g/L of DCAC or trichloroacetate daily for up to 52 weeks. Hepatoproliferative lesions were significantly increased for both substances; lesions included hepatocellular nodules, adenomas and carcinomas.

DCAC did not produce any carcinomas in animals exposed for 37 or 52 weeks (sacrifice time for both groups was 52 weeks). DCAC induced lesions increased sharply and disproportionally with increase in total dose over time. In the 1 g/L-dy, 52 week exposure group, 2 of 11 male mice had lesions. At 2 g/L-dy for 52 weeks, 23 of 24 male mice bore lesions while 7 of the 11 male mice exposed for 37 weeks had lesions. Three of the ten female mice exposed to 2 g/L-dy for 52 weeks responded with hyperplastic nodules observable only on microscopic examination.

Both male and female DCAC treated mice had enlarged livers and significantly (p<0.05) increased liver weights with cytomegaly, massive accumulation of glycogen within hepatocytes and multiple focal points of necrosis. Although there was substantial reversal of liver damage in the 37 week exposed male mice, liver weights were still significantly increased at the 52 week sacrifice. Tumorigenesis of DCAC appears to depend on stimulation of cell division after hepatic damage.

Herren-Freund SL, Pereira MA, Khoury MD, Olson G. 1987. The carcinogenicity of trichloroethylene and its metabolites, trichloroacetic acid and dichloroacetic acid, in mouse liver. Toxicol Appl Pharmacol. 90:183-189.

Male B6C3F1 mice were administered trichloroethylene, trichloroacetic acid or DCA with or without an initiator to determine the carcinogenic potential of these compounds. The initiator, ethylnitrosourea, was administered intraperitoneally at 0 or 2.5 μ g/g to 15 day old mice; 2 μ L/g sodium acetate was injected as the solvent control. DCA was administered in the drinking water at 2 or 5 g/L for 61 weeks starting at 28 days of age.

Noncancer effects of DCA included increased (p<0.001) liver weight and relative liver weights in the initiated 2 g/L dose group (n = 29). Liver weights were also increased in the initiated 5 g/L dose group (n = 32); kidney weights but not relative kidney weights and body weights were decreased at p<0.05 and p<0.001 significance levels, respectively. DCA dosing alone without initiation (n = 26) resulted in decreased body and kidney weights and increased liver and relative liver weights, all at p<0.001 significance.

The 5 g/L DCA dose induced hepatocellular carcinomas in 81% of the mice without initiation. Adenomas and the number of adenomas per mouse was also significantly increased at 5 g/L. Initiation of 2 or 5 g/L DCA with 2.5 μ g/g ethylnitrosourea resulted in 66 or 78% carcinomas, respectively, as compared to just 5% incidence of carcinomas in the initiated controls. DCA is therefore a complete hepatic carcinogen.

Daniel FB, DeAngelo AB, Stober JA, Olson GR, Page NP. 1992. Hepatocarcinogenicity of chloral hydrate, 2-chloroacetaldehyde and dichloroacetic acid in the male B6C3F1 mouse. Fundam Appl Toxicol. 19:159-169.

Male B6C3F1 mice were exposed to chloral hydrate, 2-chloroacetaldehyde (CAA) and DCA in drinking water over 104 weeks. The drinking water solutions were GC analyzed biweekly to determine actual concentrations of test chemicals. The mean daily ingested dose of DCA was 93 mg/kg-day. The dose levels selected were estimated to be at a level in which minimal or no taste aversions would occur, yet at a level which would approximate a maximum tolerated dose. Evaluations included mortality, body weight, organ weights, gross pathology and histopathology. Prevalence rates for each treatment group were calculated as the ratio of the number of animals with a specific lesion to the number of animals examined. In addition to the separate analysis of each lesion type, carcinomas, adenomas and nodules were combined for an analysis of the total proliferative lesions. All tumors were detected at necropsy and were not responsible for premature mortality.

There were no significant difference in the mortality observed in the DCA and water (control) groups. No specific non-neoplastic lesions in tissues other than the liver were seen. The most prominent non-neoplastic liver lesions were hepatocellular cytomegaly and vacuolization noted in DCA-treated animals. At the 104-week terminal necropsy 15 of the 24 (63%) DCA-treated animals had carcinomas compared to 2 of 20 (20%) in the control group (significantly different at p \leq 0.01). Three additional DCA-treated animals and one animal in the control group displayed adenomas for a total tumor prevalence of 75% and 15%, respectively. DCA appeared to exhibit a threshold-like response, with the threshold lying between 0.5 and 2 g/L.

DeAngelo AB, Daniel FB, Stober JA, Olson GR. 1991. The carcinogenicity of dichloroacetic acid in the male B6C3F mouse. Fundam Appl Toxicol. 16:337-347.

Male B6C3F mice (21 days old) were weighed and randomly distributed into groups (N=50) and dosed with drinking water containing 2 g/L sodium chloride (control group), 0.05, 0.5 and 5 g/L DCA. Mean daily doses of 7.6, 77, 410 and 486 mg/kg-dy were calculated for 0.05, 0.5, 3.5 and 5 g/L DCA treatments, respectively. Water intake and body weights were recorded weekly during the first month and monthly afterward. At 4 (3.5 g/L DCA),15, 30 and 45 weeks, 5 animals from each treatment group were killed by CO₂ asphyxiation. At 60 weeks, 9 from the control, 0.05, 0.5 g/L DCA and 30 from the 5 g/L DCA groups were killed. Remaining mice from the control, 0.05 g/L DCA, and 0.5 g/L DCA groups were continued on treatment for 15 more weeks. Liver, kidney, testes and spleen were weighed and examined for lesions or irregularities.

Mice receiving 5 g/L DCA restricted their intake of drinking water to 60% as compared to the controls. The mean daily dose for this group was high at the beginning of the exposure period. Those drinking 5 and 3.5 g/L had significantly lower final body weights (17 and 13%, p < 0.001) than the mean body weights of the control. Relative liver weights were increased 351, 230 and 118% (5, 3.5, and 0.5 g/L groups at 75 weeks). No changes in the weights of testes or spleen were observed.

Three types of proliferate lesions were seen in the livers: hyperplastic nodules, hepatocellular adenomas and hepatocellular carcinomas. A significant positive dose-related trend was found between incidental live tumors and age (p<0.001). The prevalence of liver tumors in each group increased precipitously and exceeded 90% by 60 weeks. Neoplasia was first observed in the 0.5 g/L DCA group at 45 weeks. Tumor multiplicity was characteristic of DCA-induced carcinogenicity.

Cicmanec JL, Condie LW, Olson GR, Wang SR. 1991. 90-day toxicity study of dichloroacetate in dogs. Fundam Appl Toxicol. 17:376-389.

Beagle dogs were orally administered 12.5, 39.5 or 72 mg DCAC/kg-day in gelatin capsules for 90 days. Forty dogs were used; five females (6.1-9.4 kg) and five males (8.6-13.6 kg) were used in each dose group. Blood samples were taken every 15 days.

Total RBC counts were decreased (p<0.05) in the high dose females at 30, 45, 60 and 90 days; high dose males had decreased RBCs from day 30 until completion. Hemoglobin levels were also decreased in the high dose groups; female hemoglobin counts were down (p<0.03) on days 45, 60 and 90 whereas male counts were low (p<0.01) from day 30 until the end of exposure. Serum LDH levels were increased (p<0.01) in high dose females on days 30 and 45. Male LDH levels were high (p<0.01) on days 75 and 90.

External presentations during dosing included conjunctivitis and clear ocular discharge in nearly all treated and some control animals. The discharge became purulent and the conjunctivitis increased in high dose dogs. Diarrhea was observed among some of the mid and high dose dogs, progressing in some to necessitate supportive care. At 45 days, dyspnea was noted in four mid and 8 high dose animals. The severity of dyspnea increased over time; all high dose

dogs had severe symptoms by 90 days. Several high dose dogs presented with partial hind limb paralysis; paralysis was persistent but not progressive. One female and two males from the high dose group died on days 50, 51 and 74, respectively. Cause of death was pneumonia and dehydration.

At necropsy, relative liver weight were found to be significantly (p<0.05) increased in both male and female dogs at all dose levels. Relative kidney weights were also increased (p<0.03) in the mid and high dose groups for both male and female dogs. Chronic hepatitis and vacuole changes were found in animals of all dose groups. Many of the high and some of the mid dose groups responded with suppurative bronchopneumonia and chronic pancreatitis. Mild vacuolization of the myelinated white tracts in the cerebrum, cerebellum and spinal cord were observed in several high dose dogs as well as a few mid and low dose animals. Males in all dose groups showed evidence of testicular germinal epithelium degeneration and syncytial giant cell formation.

Other/Review Articles

Stacpoole PW, Gonzalez MG, Vlasak J, Oshiro Y, Bodor N. 1987. Dichloroacetate derivatives: Metabolic effects and pharmacodynamics in normal rats. Life Sci. 41:2167-2176.

Nine male Sprague-Dawley rats (210±10g) were fasted for 24 hours prior to a single gavage dose of saline, 100 mg DCAC/kg in saline, or one of four DCAC derivatives equivalent to 100 mg/kg DCAC anions. Acute dosing resulted in universal decrease (p<0.001) of serum glucose and lactate by DCAC or its derivatives as compared to controls. DCAC maximally decreased glucose by 18%; the maximum decrease occurred at six hours post exposure. DCAC decreased glucose levels for 18 hours. DCAC maximally reduced lactate levels by 36% at 4 hours; the effect lasted more than 24 hours. DCAC plasma concentration peaked at approximately 24 minutes (maximum concentration) and again at 12 hours.

Stacpoole PW. 1989. The pharmacology of dichloroacetate. Metabolism. 38(11):1124-1144.

Pharmacokinetics

It is assumed that DCAC undergoes removal of chloride by cytochrome P450-dependent microsomal dehalogenases present in liver and possibly in other tissues, and is hydroxylated to glyoxylate (Pohl LR *et al.* 1978. Biochem Pharm. 27:335-341; Halpert J *et al.* Biochem Pharm. 30:1366-1368). However less than 5% of an oral or iv dose of 50 mg/kg DCAC administered to healthy volunteers is excreted unchanged or as oxalate in urine and negligible quantities are bound to plasma proteins or taken up by red blood cells (Wells PG *et al.* 1980. Diabetologia 19:109-113; Curry SH *et al.* 1985. Clin Pharm Ther. 37:89-93).

Wells *et al.* (1980) and Curry *et al.* (1985) reported that peak plasma levels in humans following an initial oral or intravenous DCAC dose of 50 mg/kg are approximately 150 μ g/mL, or about 1 mmol/L, and has a half-life in plasma between 0.5 and 2 hours, similar to that obtained after a

single intravenous infusion dose. Chu also reported no observed difference in the area under the plasma concentration curve for DCAC between oral and iv doses, indicating equivalent bioavailability. The renal clearance of the drug is low (approximately 4 mL/hr) and is independent of urinary flow rate or pH (Chu Pl. 1987. Pharmacokinetics of DCAC. Doctoral Dissertation. University of Florida).

Wells *et al.* (1980) reported single (1 to 50 mg/kg) iv doses to exhibit nonlinear kinetics at dose \geq 35 mg/kg. Intravenous administration of up to 50 mg/kg DCAC in normal subjects demonstrated that the drug is metabolized increasingly slowly with repeated dosing, consistent with progressive changes in $t_{1/2}$, V_{max} and K_m . In these studies, first order decay kinetics were retained, presumably because a high enzyme to substrate concentration ratio was preserved. In healthy individuals, both the area under the plasma concentration curve for DCAC and the increase in urinary oxalate were linearly related to dose, with a mean DCAC apparent volume of distribution of 0.30 L/kg that was independent of dose (Curry *et al.*, 1985). In patients with hypotension and lactic acidosis, however, the change in the volume of distribution, was directly related to dose.

Toxicology

The LD_{50} of DCAC in most species is 1-5 g/kg orally or 0.5-1 g/kg iv. Death is usually from progressive central nervous system depression. Early chronic toxicity studies with daily iv DCAC doses between 100 and 250 mg/kg in rats for greater than 30 days were nontoxic. Chronic doses exceeding 1g/kg usually lead to anorexia and weight loss. When given doses greater than 50 mg/kg DCAC orally for weeks, rats and dogs exhibit neurotoxicity by reversible hind limb motor weakness and demyelination of cerebral and cerebellar white matter.

Katz R *et al.* (1981. Toxicol Appl Pharmacol. 57:273-287) reported morphologic changes in testes of rats and irreversible lenticular opacities in beagle dogs with doses as low as 75 mg/kg of DCAC. Subsequent studies, however, have not confirmed these affects even with rats receiving up to 1.1 g/kg DCAC.

DCAC stimulates at least two thiamine-dependent enzymes *in vivo*. Chronic DCAC treatment may induce thiamine deficiency through an increased demand for this vitamin. Coadministration of thiamine with DCAC to rats significantly reduced the incidence of hind limb weakness seen with both DCAC and thiamine deficiency. Oxalate excretion increases in humans and rats treated with DCAC, but is reduced in animals concurrently supplemented with thiamine. Oxalate is a metabolite known to cause peripheral neuropathy and cataracts.

IARC. 1995. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. WHO. Lyon, France. 63:271-90.

Cancer Studies

The International Agency for Research on Cancer (IARC) was unable to find cancer studies of humans exposed specifically to DCA. Therefore, there is Inadequate Evidence in humans for carcinogenicity of DCA.

IARC cited Herren-Freund *et al.* (1987), Bull *et al.* (1990), DeAngelo *et al.* (1991) and Daniel *et al.* (1992) for DCA cancer studies in animals. They found Limited Evidence of carcinogenicity in laboratory animals. Overall, the IARC lists DCA in Group 3 - Not Classifiable as to its Carcinogenicity to Humans.

Toxic Effects

IARC cited Stacpoole (1989) concerning toxic effects of DCA in humans. IARC reported additionally that drowsiness is a frequent side-effect of DCA use and has been observed in healthy and ill subjects. Reversible (within several weeks) peripheral neuropathy with loss of reflexes and muscle weakness was observed in a hypercholesterolaemia patient taking 50 mg/kg-dy for four months (Moore GW *et al.* 1979. Arteriosclerosis. 33:285-93).

Male and female Sprague-Dawley rats exposed to DCA at 10 to 600 mg/kg-dy for 14 days through drinking water responded with increased excretion of ammonia and changed activities of ammoniagenesis enzymes, which indicates renal adjustment to an acid load. The 600 mg/kg-dy dose group had decreased weight gain (Davis ME. 1986. Environ Health Perspect. 69:209-14).

A 7-week drinking water study in which male Sprague-Dawley rats were dosed with approximately 50 or 1100 mg/kg DCA daily resulted in neurotoxic effects at the higher dose. The 1100 mg/kg-dy caused severe hind limb weakness with demyelination of the cerebral and cerebellar parenchyma. Thiamine depletion was noted and these effects could be partially prevented by providing increased thiamine during dosing (Stacpoole PW *et al.* 1990. Fundam Appl Toxicol. 14:327-37). These results are confirmed in other studies. The hypothesized mechanism includes stimulation of thiamine-dependent enzymes by DCA, which causes increased use of thiamine (Katz R *et al.* 1981. Toxicol Appl Pharmacol. 57:273-87; Yount *et al.*, 1982). A metabolite of DCA in humans and rodents, oxalate, causes peripheral neuropathy and cataracts. The accompanying renal and testicular crystals of oxalate have not been observed with DCA administration, even in high doses (Yount *et al.*, 1982; Stacpoole *et al.*, 1990).

Male Sprague-Dawley rats given approximately 4, 35 or 350 mg/kg-dy for 90 days in the drinking water responded with decreased body weights. The 350 mg/kg-dy dose group also had increased hepatic peroxisomal oxidation activities with histological and biochemical evidence of liver and kidney damage (Mather GG et al. 1990. Toxicology. 64:71-80).

In another study, male Sprague-Dawley rats were administered approximately 1100 mg/kg-dy (80.5 mmol/L or 10 g/L) for 90 days. Body weights were decreased and histopathological changes were found in the liver and lung. Additionally, liver weights increased 11% while testicular weights decreased 34% (Bhat HK *et al.* 1991. Fundam Appl Toxicol. 17:240-53).

Male and female Sprague-Dawley rats exposed to 1000 and 2000 mg/L DCA in drinking water for up to 52 weeks showed severe cytomegaly accompanying excessive glycogen accumulation and multiple focal areas which had progressed to necrosis, regenerative cell division and hepatomegaly (Bull *et al.*, 1990; Sanchez IM and Bull RJ. 1990. Toxicology. 64:33-46; Bull RJ *et al.* 1993. Toxicology. 63:341-59).

Beagle dogs dosed with 1100 mg/kg-dy via drinking water for 13 weeks showed signs of ocular toxicity. These dogs are susceptible to drug induced cataracts. This organ specific effect has not been seen in other species or studies (Katz *et al.*, 1981).

Reproductive Effects

IARC could not find available data on human reproductive effects of DCA. DCA and metabolites were found to accumulate in fetuses when pregnant rats were dosed with DCA (Roth AC *et al.* 1991. Teratology. 43:428). Pregnant rats treated with 140 to 2400 mg/kg-dy on days 6 through 15 of gestation resulted primarily in heart and major vessel development problems in fetuses. Other effects included development problems in kidneys and ocular orbits (Randall JL *et al.* 1991. Teratology. 43:454; Smith MK *et al.* 1991. Teratology. 43:453-4; Epstein DL *et al.* 1992. Teratology. 46:225-35; Smith MK *et al.* 1992. Teratology. 46:217-23).

Male Long-Evans rats gavaged with 31.3 or 62.5 mg DCA/kg-dy for 10 weeks presented with sperm and reproductive accessory organ (epididymus and preputial gland) toxicity. Rats dosed with 125 mg/kg-dy had testicular toxicity, decreased late-step spermatid head counts and decreased number of viable implantations at 14 days after mating to unexposed females (Toth GP *et al.* 1992. Fundam Appl Toxicol. 19:57-63).

CONCLUSIONS AND RECOMMENDATIONS

Comprehensive literature searches were found to be effective in identifying sources of physiological parameters as well as TCE and TCE-metabolite human dosing studies. The data extracted from these sources will be used in modeling efforts at Armstrong Laboratory Occupational and Environmental Health Directorate, Toxicology Division. These efforts will be reported separately.

Many TCE and TCE-metabolite human dosing studies located in this effort were of limited use for pharmacokinetic modeling. Many studies lacked time course data; total urine measurements were frequently missing. When costs of collecting time course data are not prohibitive, investigators should consider reporting not only precise initial dosages but also breath, blood, urine and other kinetic data over the complete time course of their experiments. Currently, there is considerable effort to improve PBPK models. Because PBPK studies on humans are few, presentation of actual metabolite data in both tabular and graphic form would provide the scientific community an invaluable resource for validation of new models.

BIBLIOGRAPHY

Please note that this bibliography contains all references collected. Appropriate references are located within the spreadsheets and summaries.

Absy M, Metreweli C, Matthews C, Al Khader A. 1987. Changes in transplanted kidney volume measured by ultrasound. Br J Radiol. 60(714):525-9.

Allen, B C, J W Fisher. 1993. Pharmacokinetic Modeling of Trichloroethylene and Trichloroacetic Acid in Humans. Risk Analysis. 13:71-86.

Andersen ME. 1995. Development of physiologically based pharmacokinetic and physiologically based pharmacodynamic models for applications in toxicology and risk assessment. Toxicol Lett. 79(1-3):35-44.

Andersen ME, Clewell HJ, 3d, Gargas ML, MacNaughton MG, Reitz RH, Nolan RJ, McKenna MJ. 1991. Physiologically based pharmacokinetic modeling with dichloromethane, its metabolite, carbon monoxide, and blood carboxyhemoglobin in rats and humans. Toxicol Appl Pharmacol. 108(1):14-27.

Andersen ME, Clewell HJ, 3d, Gargas ML, Smith FA, Reitz RH. 1987. Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Toxicol Appl Pharmacol. 87(2):185-205.

Andersen ME, Gargas ML, Clewell HJ, 3d, Severyn KM. 1987. Quantitative evaluation of the metabolic interactions between trichloroethylene and 1,1-dichloroethylene in vivo using gas uptake methods. Toxicol Appl Pharmacol. 89(2):149-57.

Andersen ME, Krishnan K. 1994. Physiologically based pharmacokinetics and cancer risk assessment. Environ Health Perspect. 102(Suppl 1):103-8.

Andersen ME, MacNaughton MG, Clewell HJ, 3d, Paustenbach DJ. 1987. Adjusting exposure limits for long and short exposure periods using a physiological pharmacokinetic model. Am Ind Hvg Assoc J. 48(4):335-43.

Anna CH, Maronpot RR, Pereira MA, Foley JF, Malarkey DE, Anderson MW. 1994. ras protooncogene activation in dichloroacetic acid-, trichloroethylene- and tetrachloroethylene-induced liver tumors in B6C3F1 mice. Carcinogenesis. 15(10):2255-61.

Anyebuno MA, Rosenfeld CR. 1991. Chloral hydrate toxicity in a term infant. Dev Pharmacol Ther. 17(1-2):116-20.

Arito H, Takahashi M, Tsuruta H, Ishikawa T. 1994. Age-related changes in electrocardiographic responses to trichloroethylene inhalation in conscious rats. Ind Health. 32(3):129-44.

Astrand I, Ovrum P. 1976. Exposure to trichloroethylene I. Uptake and distribution in man. Scand J Work Environ Health. 2(4):199-211.

Austin EW, Okita JR, Okita RT, Larson JL, Bull RJ. 1995. Modification of lipoperoxidative effects of dichloroacetate and trichloroacetate is associated with peroxisome proliferation. Toxicology. 97(1-3):59-69.

Axelson O, Selden A, Andersson K, Hgstedt C. 1994. Updated and expanded Swedish cohort study on trichloroethylene and cancer risk. J Occup Med. 36(5):556-62.

Barlett HL, Puhl SM, Hodgson JL, Buskirk ER. 1991. Fat-free mass in relation to stature: ratios of fat-free mass to height in children, adults, and elderly subjects. Am J Clin Nutr. 53(5):1112-6.

Bartonicek, V. 1962. Metabolism and Excretion of Trichloroethylene After Inhalation by Human Subjects. British Journal of Industrial Medicine. 19:134-41.

Bernareggi A, Rowland M. 1991. Physiologic modeling of cyclosporin kinetics in rat and man. J Pharmacokinet Biopharm. 19(1):21-50.

Bernauer U, Gerhard B, Dekant W. 1996. Biotransformation of tricholoroethene: dose-dependent excretion of 2,2,2-trichloro-metabolites and mercapturic acids in rats and humans after inhalation. Arch Toxicol. 70:338-46.

Birner G, Vamvakas S, Dekant W, Henschler D. 1993. Nephrotoxic and genotoxic N-acetyl-S-dichlorovinyl-L-cysteine is a urinary metabolite after occupational 1,1,2-trichloroethene exposure in humans: implications for the risk of trichloroethene exposure. Environ Health Perspect. 99:281-4.

Birner G, Rutkowska A, Dekant W. 1996. Two Novel Metabolites of Tetrachloroethene in Humans after Occupational Exposure. Drug Metab Disposit. 24(1):41

Bogen KT. 1988. Pharmacokinetics for regulatory risk analysis: the case of trichloroethylene. Regul Toxicol Pharmacol. 8(4):447-66.

Bois FY, Zeise L, Tozer TN. 1990. Precision and sensitivity of pharmacokinetic models for cancer risk assessment: tetrachloroethylene in mice, rats, and humans. Toxicol Appl Pharmacol. 102(2):300-15.

Breimer, D D, H C J Ketelaars, J M Van Rossum. 1974. Gas Chromatographic Determination of Chloral Hydrate, Trichloroethanol and Trichloroacetic Acid in Blood and in Urine Employing Head-Space Analysis. Journal of Chromatography. 88:55-63.

Bruckner JV, Davis BD, Blancato JN. 1989. Metabolism, toxicity, and carcinogenicity of trichloroethylene. Crit Rev Toxicol. 20(1):31-50.

Bruschi SA, Bull RJ. 1993. In vitro cytotoxicity of mono-, di-, and trichloroacetate and its modulation by hepatic peroxisome proliferation. Fundam Appl Toxicol. 21(3):366-75.

Bull, R J, M Templin, J L Larson, D K Stevens. 1993. The Role of Dichloroacetate in the Hepatocarcinogenicity of Trichloroethylene. Toxicology Letters. 68:203-11.

Buur T, Larsson R, Norlander B. 1988. Pharmacokinetics of chloral hydrate poisoning treated with hemodialysis and hemoperfusion. Acta Med Scand. 223(3):269-74.

Caldicott LD, Hawley K, Heppell R, Woodmansey PA, Channer KS. 1993. Intravenous enoximone or dobutamine for severe heart failure after acute myocardial infarction: a randomized double-blind trial. Eur Heart J. 14(5):696-700.

Caster WO, Poncelet J, Simon AB, Armstrong WD. 1956. Tissue Weights of the Rat. I. Normal Values Determined by Dissection and Chemical Methods. Proc Soc Exp Biol Med. 91:122-6.

Chiara A, Chirico G, Barbarini M, De Vecchi E, Rondini G. 1993. Ultrasonic evaluation of kidney volume in term and preterm infants. Am J Perinatol. 10(2):109-11.

Chinery RL, Gleason AK. 1993. A compartmental model for the prediction of breath concentration and absorbed dose of chloroform after exposure while showering. Risk Anal. 13(1):51-62.

Christiansen JS, Pedersen MM, Schmitz A, Christensen CK, Christensen T, Mogensen CE. 1988. Low-dose dopamine infusion, renal haemodynamics and urinary albumin excretion rate in insulin-dependent diabetics and in normal man. Scand J Clin Lab Invest. 48(7):679-83.

Clewell HJ, Gentry PR, Gearhart JM, Allen BC, Andersen ME. 1995. Considering pharmacokinetic and mechanistic information in cancer risk assessments for environmental contaminants: examples with vinyl chloride and trichloroethylene. Chemosphere. 31(1):2561-78.

Clewell HJ, 3d. 1993. Coupling of computer modeling with in vitro methodologies to reduce animal usage in toxicity testing. Toxicol Lett. 68(1-2):101-17.

Clewell HJ. 1995. The application of physiologically based pharmacokinetic modeling in human health risk assessment of hazardous substances. Toxicol Lett. 79(1-3):207-17.

Clewell HJ, Andersen ME. 1994. Physiologically-based pharmacokinetic modeling and bioactivation of xenobiotics. Toxicol Ind Health. 10(1-2):1-24.

Clewell HJ, Lee TS, Carpenter RL. 1994. Sensitivity of physiologically based pharmacokinetic models to variation in model parameters: methylene chloride. Risk Anal. 14(4):521-31.

Clewell HJ, Andersen ME. 1995. Report on the Trichloroethylene Workshop. Williamsburg, VA. May 18-19, 1995. KS Crump Division, ICF Kaiser International.

Clewell HJ, Gentry PR, Gearhart JM, Allen BC, Covington TR, Andersen ME. 1995. Applying mechanistic information, pharmacokinetic modeling and margin of exposure evaluations in a novel risk assessment for trichloroethylene and its active carcinofenic metabolites: Chloral hydrate, trichloroacetic acid, dichloroacetic acid, and dichlorovinylcysteine. KS Crump Division, ICF Kaiser International.

Clewell HJ, III, Gentry PR, Gearhart JM, Allen BC. 1994. Evaluation of Pharmacokinetic Models for use in Risk Assessment: Example with Trichloroethylene. K S Crump Division, ICF Kaiser International.

Cohn SH, Ellis KJ, Wallach S. 1974. In vivo neutron activation analysis. Clinical potential in body composition studies. Am J Med. 57(5):683-6.

Cole WJ, Mitchell RG, Salamonsen RF. 1975. Isolation, characterization and quantitation of chloral hydrate as a transient metabolite of trichloroethylene in man using electron capture gas chromatography and mass fragmentography. J Pharm Pharmacol. 27(3):167-71.

Cooper AJ, Abraham DG, Gelbard AS, Lai JC, Petito CK. 1993. High activities of glutamine transaminase K (dichlorovinylcysteine beta-lyase) and omega-amidase in the choroid plexus of rat brain. J Neurochem. 61(5):1731-41.

Cooper J, Friedman P. 1958. The Engymatic Oxidation of CH to TCA. Biochem Pharmacol. 1:795.

Corley RA, Mendrala AL, Smith FA, Staats DA, Gargas ML, Conolly RB, Andersen ME, Reitz RH. 1990. Development of a physiologically based pharmacokinetic model for chloroform. Toxicol Appl Pharmacol. 103(3):512-27.

Cosby, N C, W R Dukelow. 1992. Toxicology of Maternally Ingested Trichloroethylene (TCE) on Embryonal and Fetal Development in Mice and of TCE Metabolites on In Vitro Fertilization. Fundamental and Applied Toxicology. 19:268-74.

Cowles AL, Borgstedt HH, Gillies AJ. 1971. Tissue weights and rates of blood flow in man for the prediction of anesthetic uptake and distribution. Anesthesiology. 35(5):523-6.

Cox LA, Jr. 1995. Simple relations between administered and internal doses in compartmental flow models. Risk Anal. 15(2):197-204.

Cox LA, Jr., Ricci PF. 1992. Reassessing benzene cancer risks using internal doses [see comments]. Risk Anal. 12(3):401-10.

Csanady GA, Mendrala AL, Nolan RJ, Filser JG. 1994. A physiologic pharmacokinetic model for styrene and styrene-7,8-oxide in mouse, rat and man. Arch Toxicol. 68(3):143-57.

Curry SH. 1989. Lactate-lowering effect of dichloroacetic acid: a model for investigation of anxiolytic drugs? Psychopharmacol Bull. 25(2):202-3.

Curry SH, Lorenz A, Chu PI, Limacher M, Stacpoole PW. 1991. Disposition and pharmacodynamics of dichloroacetate (DCA) and oxalate following oral DCA doses. Biopharm Drug Dispos. 12(5):375-90.

Curry SH, Lorenz A, Henderson GN, Mars DR, Stacpoole PW. 1991. Haemodialysis studies with dichloroacetate. Eur J Clin Pharmacol. 40(6):613-7.

Daniel, F B, A B DeAngelo, J A Stober, G R Olson, N P Page. 1992. Hepatocarcinogenicity of Chloral Hydrate, 2-Chloroacetaldehyde, and Dichloroacetic Acid in the Male B6C3F1 Mouse. Fundamental and Applied Toxicology. 19:159-68.

Dankovic DA, Bailer AJ. 1994. The impact of exercise and intersubject variability on dose estimates for dichloromethane derived from a physiologically based pharmacokinetic model. Fundam Appl Toxicol. 22(1):20-5.

Davidson IW, Beliles RP. 1991. Consideration of the target organ toxicity of trichloroethylene in terms of metabolite toxicity and pharmacokinetics. Drug Metab Rev. 23(5-6):493-599.

Davis NR, Mapleson WW. 1981. Structure and quantification of a physiological model of the distribution of injected agents and inhaled anaesthetics. Br J Anaesth. 53(4):399-405.

DeAngelo AB, Daniel FB, McMillan L, Wernsing P, Savage RE, Jr. 1989. Species and strain sensitivity to the induction of peroxisome proliferation by chloroacetic acids. Toxicol Appl Pharmacol. 101(2):285-98.

Dekant W, Metzler M, Henschler D. 1984. Novel metabolites of trichloroethylene through dechlorination reactions in rats, mice and humans. Biochem Pharmacol. 33(13):2021-7.

Dong MH. 1994. Microcomputer programs for physiologically-based pharmacokinetic (PB-PK) modeling. Comput Methods Programs Biomed. 45(3):213-21.

Droz, PO, JG Fernandez. 1978. Trichloroethylene Exposure. Biological Monitoring by Breath and Urine Analyses. British Journal of Industrial Medicine. 35:35-42.

Droz PO, Wu MM, Cumberland WG. 1989. Variability in biological monitoring of organic solvent exposure. II. Application of a population physiological model. Br J Ind Med. 46(8):547-58.

Droz PO, Wu MM, Cumberland WG, Berode M. 1989. Variability in biological monitoring of solvent exposure. I. Development of a population physiological model. Br J Ind Med. 46(7):447-60.

Durnin JV, Womersley J. 1973. Total body fat, calculated from body density, and its relationship to skinfold thickness in 571 people aged 12-72 years. Proc Nutr Soc. 32(1):45A.

Ellis KJ. 1990. Reference man and woman more fully characterized. Variations on the basis of body size, age, sex, and race. Biol Trace Elem Res. 26-27:385-400.

Enser M, Whittington FM. 1983. The actions of dichloroacetic acid on blood glucose, liver glycogen and fatty acid synthesis in obese-hyperglycaemic (ob/ob) and lean mice. Horm Metab Res. 15(5):225-9.

Ertle, T, D Henschler, G Mueller, M Spassowski. 1972. Metabolism of Trichloroethylene in Man. Archives of Toxicology. 29:171-88.

Fernandez, J G, B E Humbert, P O Droz, J R Caperos. 1975. Trichlorethylene Exposure. Percentage Studies of Absorption, Excretion and Metabolism by Human Subjects. Archives des Maladies Professionnelles de Medecine du Travail et de Securite Sociale. 36:397-407.

Fernandez JG, Droz PO, Humbert BE, Caperos JR. 1977. Trichloroethylene exposure. Simulation of uptake, excretion, and metabolism using a mathematical model. Br J Ind Med. 34(1):43-55.

Filser JG. 1992. The closed chamber technique--uptake, endogenous production, excretion, steady-state kinetics and rates of metabolism of gases and vapors. Arch Toxicol. 66(1):1-10.

Filser JG, Johanson G, Kessler W, Kreuzer PE, Stei P, Baur C, Csanady GA. 1993. A pharmacokinetic model to describe toxicokinetic interactions between 1,3-butadiene and styrene in rats: predictions for human exposure. IARC Sci Publ. (127):65-78.

Fisher JW, Allen BC. 1993. Evaluating the risk of liver cancer in humans exposed to trichloroethylene using physiological models. Risk Anal. 13(1):87-95.

Fort DJ, Stover EL, Rayburn JR, Hull M, Bantle JA. 1993. Evaluation of the developmental toxicity of trichloroethylene and detoxification metabolites using Xenopus. Teratog Carcinog Mutagen. 13(1):35-45.

Garrett ER, Lambert HJ. 1966. Gas chromatographic analysis of trichloroethanol, chloral hydrate, trichloroacetic acid, and trichloroethanol glucuronide. J Pharm Sci. 55(8):812-7.

Garrett ER, Lambert HJ. 1973. Pharmacokinetics of trichloroethanol and metabolites and interconversions among variously referenced pharmacokinetic parameters. J Pharm Sci. 62(4):550-72.

Gilbert R, Auchincloss JH, Jr., Brodsky J, Boden W. 1972. Changes in tidal volume, frequency, and ventilation induced by their measurement. J Appl Physiol. 33(2):252-4.

Gist GL, Burg JR. 1995. Trichloroethylene--a review of the literature from a health effects perspective. Toxicol Ind Health. 11(3):253-307.

Goeptar AR, Commandeur JN, van Ommen B, van Bladeren PJ, Vermeulen NP. 1995. Metabolism and kinetics of trichloroethylene in relation to toxicity and carcinogenicity. Relevance of the mercapturic acid pathway. Chem Res Toxicol. 8(1):3-21.

Gorecki DK, Hindmarsh KW, Hall CA, Mayers DJ, Sankaran K. 1990. Determination of chloral hydrate metabolism in adult and neonate biological fluids after single-dose administration. J Chromatogr. 528(2):333-41.

Guberan E. 1977. Proposed biological threshold limit values for industrial exposure to trichloroethylene vapor. Scand J Work Environ Health. 3(2):80-90.

Gupta RN. 1990. Determination of trichloroethanol, the active metabolite of chloral hydrate, in plasma by liquid chromatography. J Chromatogr. 500:655-9.

Hake CL, Stewart RD, Peterson JE, Dodd HC. 1973. Urinary Metabolites From Controlled Exposures of Humans to Trichloroethylene. National Institute of Occupational Safety and Health. NIOSH-00080951.

Hara A, Yamamoto H, Deyashiki Y, Nakayama T, Oritani H, Sawada H. 1991. Aldehyde dismutation catalyzed by pulmonary carbonyl reductase: kinetic studies of chloral hydrate metabolism to trichloroacetic acid and trichloroethanol. Biochim Biophys Acta. 1075(1):61-7.

Heistad DD, Abboud FM. 1974. Factors that influence blood flow in skeletal muscle and skin. Anesthesiology. 41(2):139-56.

Heller PF, Goldberger BA, Caplan YH. 1992. Chloral hydrate overdose: trichloroethanol detection by gas chromatography/mass spectrometry. Forensic Sci Int. 52(2):231-4.

Henschler D, Vamvakas S, Lammert M, Dekant W, Kraus B, Thomas B, Ulm K. 1995. Increased incidence of renal cell tumors in a cohort of cardboard workers exposed to trichloroethene. Arch Toxicol. 69(5):291-9.

Hinrichsen H, Halabi A, Fuhrmann G, Kirch W. 1993. Dose-dependent heart rate reducing effect of nizatidine, a histamine H2-receptor antagonist. Br J Clin Pharmacol. 35(5):461-6.

Hobara, T, H Kobayashi, T Kawamoto, S Iwamoto, T Sakai. 1988. The Absorption of Trichloroethylene and Its Metabolites from the Urinary Bladder of Anesthetized Dogs. Toxicology. 48:141-53.

Hobara T, Kobayashi H, Kawamoto T, Iwamoto S, Sakai T. 1987. Extrahepatic metabolism of chloral hydrate, trichloroethanol and trichloroacetic acid in dogs. Pharmacol Toxicol. 61(1):58-62.

Hobara T, Kobayashi H, Kawamoto T, Iwamoto S, Sakai T. 1988. Intestinal absorption of chloral hydrate, free trichloroethanol and trichloroacetic acid in dogs. Pharmacol Toxicol. 62(5):250-8.

Hoener B. 1993. Disposition of trichloroethylene in rats and chloral hydrate in children. Crisp Data Base. National Institutes of Health.

HOENER B. 1994. DISPOSITION OF TRICHLOROETHYLENE IN RATS AND CHLORAL HYDRATE IN CHILDREN. Crisp Data Base. National Institutes of Health.

Humbert L, Jacquemont MC, Leroy E, Leclerc F, Houdret N, Lhermitte M. 1994. Determination of chloral hydrate and its metabolites (trichloroethanol and trichloracetic acid) in human plasma and urine using electron capture gas chromatography. Biomed Chromatogr. 8(6):273-7.

Hurtado A, Fray WW, Kaltreider NL, Brooks WDW. 1934. Studies of Total Pulmonary Capacity and its Subdivisions. V. Normal Values in Female Subjects. J Clin Invest. 13:169.

Ikeda, M. 1977. Metabolism of Trichloroethylene and Tetrachloroethylene in Human Subjects. Environmental Health Perspectives. 21:239-45.

Ikeda M, Imanura T. 1973. Biological half-life of trichloroethylene and tetrachloroethylene in human subjects. Int Arch Arbeitsmed. 31(3):209-24.

Ikeda M, Otsuji H, Imamura T, Komoike Y. 1972. Urinary excretion of total trichloro-compounds, trichloroethanol, and trichloroacetic acid as a measure of exposure to trichloroethylene and tetrachloroethylene. Br J Ind Med. 29(3):328-33.

Ikeda M, Ohtsuji H, Kawai H, Kuniyoshi M. 1971. Excretion kinetics of urinary metabolites in a patient addicted to trichloroethylene. Brit J industr Med. 28:203-6.

Inoue, O, K Seiji, T Kawai, C Jin, Y-T Liu, Z Chen, S-X Cai, S-N Yin, G-L Li, H Nakatsuka, T Watanabe, M Ikeda. 1989. Relationship between Vapor Exposure and Urinary Metabolite Excretion among Workers Exposed to Trichloroethylene. American Journal of Industrial Medicine. 15:103-10.

International Life Sciences Institute, Risk Science Institute. 1994. Physiological Parameter Values for PBPK Models. Under Cooperative Agreement with U.S. EPA Office of Health and Environmental Assessment.

Ishikawa I, Onouchi Z, Saito Y, Tateishi K, Shinoda A, Suzuki S, Kitada H, Sugishita N, Fukuda Y. 1985. Sex differences in acquired cystic disease of the kidney on long-term dialysis. Nephron. 39(4):336-40.

Itoh, H. 1989. Determination of Trichloroacetate in Human Serum and Urine by Ion Chromatography. Analyst. 114:1637-40.

Jacobson SH, Wang Y, Jacobsson H, Larsson S, Ostenson CG. 1992. Determination of functional kidney volume by single-photon emission computed tomography in patients with insulin-dependent diabetes mellitus. Nephrol Dial Transplant. 7(11):1085-91.

Kadry AM, Turkall RM, Skowronski GA, Abdel Rahman MS. 1991. Soil adsorption alters kinetics and bioavailability of trichloroethylene in orally exposed female rats. Toxicol Lett. 58(3):337-46.

Kawai R, Lemaire M, Steimer JL, Bruelisauer A, Niederberger W, Rowland M. 1994. Physiologically based pharmacokinetic study on a cyclosporin derivative. J Pharmacokinet Biopharm. 22(5):327-65.

Kawamoto T, Hobara T, Kobayashi H, Iwamoto S, Sakai T, Takano T, Miyazaki Y. 1987. The metabolite ratio as a function of chloral hydrate dose and intracellular redox state in the perfused rat liver. Pharmacol Toxicol. 60(5):325-9.

Kimmerle, G, A Eben. 1973. Metabolism, Excretion and Toxicology of Trichloroethylene after Inhalation. 2. Experimental Human Exposure. Archives of Toxicology. 30:127-38.

Kizakevich, P.N. 1996. Noninvasive ambulatory assessment of cardiac function and myocardial ischemia in healthy subjects exposed to carbon monoxide. Special study: Trichloroethylene exposure in women and men. Draft. US Army Medical Research and Materiel Command. Grant No. DAMD17-91-C-1007.

Knaak JB, al Bayati MA, Raabe OG. 1995. Development of partition coefficients, Vmax and Km values, and allometric relationships. Toxicol Lett. 79(1-3):87-98.

Knaak JB, al Bayati MA, Raabe OG, Blancato JN. 1993. Development of in vitro Vmax and Km values for the metabolism of isofenphos by P-450 liver enzymes in animals and human. Toxicol Appl Pharmacol. 120(1):106-13.

Kodama H, Yamaguchi S, Okabe I, Kodama M, Orii T, Kamoshita S. 1986. Renal effects of dichloroacetate in vivo. Clin Chim Acta. 160(3):265-71.

Koizumi A. 1989. Potential of physiologically based pharmacokinetics to amalgamate kinetic data of trichloroethylene and tetrachloroethylene obtained in rats and man. Br J Ind Med. 46(4):239-49.

Kramer GH, Burns L, Noel L. 1991. The BRMD BOMAB phantom family. Health Phys. 61(6):895-902.

Krewski D, Withey JR, Ku LF, Andersen ME. 1994. Applications of physiologic pharmacokinetic modeling in carcinogenic risk assessment. Environ Health Perspect. 102(Suppl 11):37-50.

Krishna S, Agbenyega T, Angus BJ, Bedu Addo G, Ofori Amanfo G, Henderson G, Szwandt IS, O'Brien R, Stacpoole PW. 1995. Pharmacokinetics and pharmacodynamics of dichloroacetate in children with lactic acidosis due to severe malaria. QJM. 88(5):341-9.

Krishna S, Supanaranond W, Pukrittayakamee S, Karter D, Supputamongkol Y, Davis TM, Holloway PA, White NJ. 1994. Dichloroacetate for lactic acidosis in severe malaria: a pharmacokinetic and pharmacodynamic assessment. Metabolism. 43(8):974-81.

Krishnan K, Clewell HJ, Andersen ME. 1994. Physiologically based pharmacokinetic analyses of simple mixtures. Environ Health Perspect. 102(Suppl 9):151-5.

Larson JL, Bull RJ. 1992. Metabolism and lipoperoxidative activity of trichloroacetate and dichloroacetate in rats and mice. Toxicol Appl Pharmacol. 115(2):268-77.

Larson JL, Bull RJ. 1992. Species differences in the metabolism of trichloroethylene to the carcinogenic metabolites trichloroacetate and dichloroacetate. Toxicol Appl Pharmacol. 115(2):278-85.

Layton DW. 1993. Metabolically consistent breathing rates for use in dose assessments [published erratum appears in Health Phys 1993 May; 64(5):561] [see comments]. Health Phys. 64(1):23-36.

Leung, H-W. 1992. Use of Physiologically Based Pharmacokinetic Models to Establish Biological Exposure Indexes. American Industrial Hygiene Association Journal. 53:369-74.

Leung HW. 1991. Development and utilization of physiologically based pharmacokinetic models for toxicological applications. J Toxicol Environ Health. 32(3):247-67.

Leung HW, Paustenbach DJ. 1995. Physiologically based pharmacokinetic and pharmacodynamic modeling in health risk assessment and characterization of hazardous substances. Toxicol Lett. 79(1-3):55-65.

Levine B, Park J, Smith TD, Caplan YH. 1985. Chloral hydrate: unusually high concentrations in a fatal overdose. J Anal Toxicol. 9(5):232-3.

Lowry, L K. 1987. The Biological Exposure Index: Its Use in Assessing Chemical Exposures in the Workplace. Toxicology. 47:55-69.

Luecke RH, Wosilait WD, Pearce BA, Young JF. 1994. A physiologically based pharmacokinetic computer model for human pregnancy. Teratology. 49(2):90-103.

Lukas G, Vyas KH, Brindle SD, Le Sher AR, Wagner WE, Jr. 1980. Biological disposition of sodium dichloroacetate in animals and humans after intravenous administration. J Pharm Sci. 69(4):419-21.

Marshall E, Owens A. 1955. Absorption Excretion and Metabolism Fate of CH and TCOH. Bulletin John Hopkins Hospital. 97(1-18)

Mayers DJ, Hindmarsh KW, Gorecki DK, Sankaran K. 1992. Sedative/hypnotic effects of chloral hydrate in the neonate: trichloroethanol or parent drug? Dev Pharmacol Ther. 19(2-3):141-6.

Mayers DJ, Hindmarsh KW, Sankaran K, Gorecki DK, Kasian GF. 1991. Chloral hydrate disposition following single-dose administration to critically ill neonates and children. Dev Pharmacol Ther. 16(2):71-7.

Mazess RB, Peppler WW, Gibbons M. 1984. Total body composition by dual-photon (153Gd) absorptiometry. Am J Clin Nutr. 40(4):834-9.

McBay AJ, Boling VR, Jr., Reynolds PC. 1980. Spectrophotometric determination of trichloroethanol in chloral hydrate poisoning. J Anal Toxicol. 4(2):99-101.

McLaren J, Boulikas T, Vamvakas S. 1994. Induction of poly(ADP-ribosyl)ation in the kidney after in vivo application of renal carcinogens. Toxicology. 88(1-3):101-12.

Medinsky MA. 1995. The application of physiologically based pharmacokinetic / pharmacodynamic (PBPK/PD) modeling to understanding the mechanism of action of hazardous substances. Toxicol Lett. 79(1-3):185-91.

Meyer E, Van Bocxlaer JF, Lambert WE, Piette M, De Leenheer AP. 1995. Determination of chloral hydrate and metabolites in a fatal intoxication. J Anal Toxicol. 19(2):124-6.

Monster, A.C. 1984. Biological Monitoring and Surveillance of Workers Exposed to Chemicals. Trichloroethylene. National Institute of Occupational Safety and Health. NIOSH-00165065. 111-30.

Monster AC, Boersma G, Duba WC. 1976. Pharmacokinetics of trichloroethylene in volunteers, influence of workload and exposure concentration. Int Arch Occup Environ Health. 38(2):87-102.

Moore GW, Swift LL, Rabinowitz D, Crofford OB, Oates JA, Stacpoole PW. 1979. Reduction of serum cholesterol in two patients with homozygous familial hypercholesterolemia by dichloroacetate. Atherosclerosis. 33(3):285-93.

Muller G, Spassovski M, Henschler D. 1972. Trichloroethylene exposure and trichloroethylene metabolites in urine and blood. Arch Toxikol. 29(4):335-40.

Muller G, Spassovski M, Henschler D. 1974. Metabolism of trichloroethylene in man. II. Pharmacokinetics of metabolites. Arch Toxicol. 32(4):283-95.

Muller G, Spassowski M, Henschler D. 1975. Metabolism of trichloroethylene in man. III. Interaction of trichloroethylene and ethanol. Arch Toxicol. 33(3):173-89.

Nagaya T, Ishikawa N, Hata H, Otobe T. 1993. Subclinical and reversible hepatic effects of occupational exposure to trichloroethylene. Int Arch Occup Environ Health. 64(8):561-3.

Nagel S, Schmechta H. 1970. [Toxicological-chemical findings by a lethal poisoning with chloral hydrate] Toxikologisch-chemische Befunde bei einer todlichen Vergiftung durch Chloralhydrat. Arch Toxikol. 27(1):67-70.

Naito E, Kuroda Y, Toshima K, Takeda E, Saijo T, Kobashi H, Yokota I, Ito M. 1989. Effect of sodium dichloroacetate on human pyruvate metabolism. Brain Dev. 11(3):195-7.

Nomiyama, K, H Nomiyama. 1971. Metabolism of Trichloroethylene in Human. Internationales Archiv fuer Arbeitsmedizin. 28:37-48.

Nomiyama H, Nomiyama K. 1979. Host and Agent Factors Modifying Metabolism of trichloroethylene. Industrial Health. 17:21

Nomiyama K, Nomiyama H. 1971. Metabolism of trichloroethylene in human. Sex difference in urinary excretion of trichloroacetic acid and trichloroethanol. Int Arch Arbeitsmed. 28(1):37-48.

Onks DL, Robertson AF, Brodersen R. 1992. The effect of chloral hydrate and its metabolites, trichloroethanol and trichloroacetic acid, on bilirubin-albumin binding. Pharmacol Toxicol. 71(3 Pt 1):196-7.

Opdam JJ. 1989. Respiratory input in inhalation experiments. Br J Ind Med. 46(3):145-56.

Opdam JJ. 1989. Intra and interindividual variability in the kinetics of a poorly and highly metabolising solvent. Br J Ind Med. 46(12):831-45.

Overton JH, Jarabek AM. 1989. Estimating equivalent human concentrations of no observed adverse effect levels: a comparison of several methods. Exp Pathol. 37(1-4):89-94.

Owens A, Marshall E. 1955. Further studies on the Metabolism Fate of CH and TCOH. Bulletin Johns Hopkins Hospital. 97(320-6)

Peer G, Graf H. 1990. [Sodium dichloroacetate--a substance with manifold therapeutic potential]. Wien Klin Wochenschr. 102(3):65-9.

Pekari K, Aitio A. 1985. Determination of 2,2,2-trichloroethanol in urine. IARC Sci Publ. (68):473-8.

Pellizzari ED, Wallace LA, Gordon SM. 1992. Elimination kinetics of volatile organics in humans using breath measurements. J Expo Anal Environ Epidemiol. 2(3):341-55.

Perbellini L, Mozzo P, Olivato D, Brugnone F. 1990. "Dynamic" biological exposure indexes for n-hexane and 2,5-hexanedione, suggested by a physiologically based pharmacokinetic model. Am Ind Hyg Assoc J. 51(7):356-62.

Perbellini L, Olivato D, Zedde A, Miglioranzi R. 1991. Acute trichloroethylene poisoning by ingestion: clinical and pharmacokinetic aspects. Intensive Care Med. 17(4):234-5.

Pirpiris M, Yeung S, Dewar E, Jennings GL, Whitworth JA. 1993. Hydrocortisone-induced hypertension in men. The role of cardiac output. Am J Hypertens. 6(4):287-94.

Ramsey JC, Andersen ME. 1984. A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol Appl Pharmacol. 73(1):159-75.

Reimche LD, Sankaran K, Hindmarsh KW, Kasian GF, Gorecki DK, Tan L. 1989. Chloral hydrate sedation in neonates and infants--clinical and pharmacologic considerations. Dev Pharmacol Ther. 12(2):57-64.

Reitz RH, Mendrala AL, Guengerich FP. 1989. In vitro metabolism of methylene chloride in human and animal tissues: use in physiologically based pharmacokinetic models. Toxicol Appl Pharmacol. 97(2):230-46.

Reitz RH, Gargas ML, Hays S. 1995. Development of a Physiologically-Based Pharmacokeinetic Model for Trichloroethylene and its Major Metabolites. ChemRisk Division, McLaren/Hart Environmental Engineering.

Roberts N, Cruz Orive LM, Reid NM, Brodie DA, Bourne M, Edwards RH. 1993. Unbiased estimation of human body composition by the Cavalieri method using magnetic resonance imaging. J Microsc. 171(Pt 3):239-53.

Robinson DE, Balter NJ, Schwartz SL. 1992. A physiologically based pharmacokinetic model for nicotine and cotinine in man. J Pharmacokinet Biopharm. 20(6):591-609.

Roche AF, Heymsfield SB, Lohman TG, eds. 1996. Human body composition. Human Kinetics, Champaign, IL.

Rosenberg J, Benowitz NL, Pond S. 1981. Pharmacokinetics of drug overdose. Clin Pharmacokinet. 6(3):161-92.

Roth AC, Crocker W, Wessendarp TK, Smith MK, Gordon DA. 1991. Dose related absorption and distribution of dichloroacetate (DCA) in pregnant Long-Evans rats. Teratology. 43(5):428.

Sarna S, Laine J, Sipila I, Koistinen R, Holmberg C. 1995. Differences in linear growth and cortisol production between liver and renal transplant recipients on similar immunosuppression. Transplantation. 60(7):656-61.

Sato A. 1993. Confounding factors in biological monitoring of exposure to organic solvents. Int Arch Occup Environ Health. 65(1 Suppl):S61-7.

Sato A, Endoh K, Kaneko T, Johanson G. 1991. A simulation study of physiological factors affecting pharmacokinetic behaviour of organic solvent vapours. British Journal of Industrial Medicine. 48(5):342-347.

Sato A, Endoh K, Kaneko T, Johanson G. 1991. Effects of consumption of ethanol on the biological monitoring of exposure to organic solvent vapours: a simulation study with trichloroethylene. Br J Ind Med. 48(8):548-56.

Sato A, Endoh K, Kaneko T, Johanson G. 1991. A simulation study of physiological factors affecting pharmacokinetic behaviour of organic solvent vapours. Br J Ind Med. 48(5):342-7.

Sato A, Endoh K, Kaneko T, Johanson G. 1991. Effects of consumption of ethanol on the biological monitoring of exposure to organic solvent vapours: a simulation study with trichloroethylene. Br J Ind Med. 48(8):548-56.

Sato A, Nakajima T. 1978. Differences following skin or inhalation exposure in the absorption and excretion kinetics of trichloroethylene and toluene. Br J Ind Med. 35(1):43-9.

Sato A, Nakajima T, Fujiwara Y, Murayama N. 1977. A pharmacokinetic model to study the excretion of trichloroethylene and its metabolites after an inhalation exposure. Br J Ind Med. 34(1):56-63.

Selden A, Hultberg B, Ulander A, Ahlborg G, Jr. 1993. Trichloroethylene exposure in vapour degreasing and the urinary excretion of N-acetyl-beta-D-glucosaminidase. Arch Toxicol. 67(3):224-6.

Selinsky BS, Perlman ME, London RE. 1988. In vivo nuclear magnetic resonance studies of hepatic methoxyflurane metabolism. II. A reevaluation of hepatic metabolic pathways. Mol Pharmacol. 33(5):567-73.

Sellers EM, Lang Sellers M, Koch Weser J. 1978. Comparative metabolism of chloral hydrate and triclofos. J Clin Pharmacol. 18(10):457-61.

Sellers EM, Lang M, Koch Weser J, LeBlanc E, Kalant H. 1972. Interaction of chloral hydrate and ethanol in man. I. Metabolism. Clin Pharmacol Ther. 13(1):37-49.

Shephard RJ. 1990. Human body composition [editorial]. Can J Sport Sci. 15(2):88.

Shireman RB, Mace L, Davidson S. 1984. Effects of dichloroacetate and glyoxylate on low density lipoprotein uptake and on growth of cultured fibroblasts. Proc Soc Exp Biol Med. 175(4):420-3.

Skender, L J, V Karacic, D Prpic-Majic. 1991. A Comparative Study of Human Levels of Trichloroethylene and Tetrachloroethylene after Occupational Exposure. Archives of Environmental Health. 46:174-8.

Skender L, Karacic V, Bosner B, Prpic Majic D. 1993. Assessment of exposure to trichloroethylene and tetrachloroethylene in the population of Zagreb, Croatia. Int Arch Occup Environ Health. 65(1 Suppl):S163-5.

Skender L, Karacic V, Bosner B, Prpic Majic D. 1994. Assessment of urban population exposure to trichloroethylene and tetrachloroethylene by means of biological monitoring. Arch Environ Health.49(6):445-51.

Smith JJ, Kampine JP, eds. 1990. Circulatory physiology: The essentials. 3rd Edition. Williams & Wilkins, Baltimore, MD.

Snyder, W.S., Cook, M.J., Nasset, E.S., Karhausen, L.R., Howells, G.P., Tipton, I.H. 1975. Report of the task group on reference man: A report. International Commission on Radiological Protection. Task Group on Reference Man. Pergamon Press, Oxford. ICRP No. 23.

Soucek, B, D Vlachova. 1960. Excretion of Trichloroethylene Metabolites in Human Urine. British Journal of Industrial Medicine. 17:60-4.

Spirtas R, Stewart PA, Lee JS, Marano DE, Forbes CD, Grauman DJ, Pettigrew HM, Blair A, Hoover RN, Cohen JL. 1991. Retrospective cohort mortality study of workers at an aircraft maintenance facility. I. Epidemiological results. Br J Ind Med. 48(8):515-30.

Stacpoole PW. 1989. The pharmacology of dichloroacetate. Metabolism. 38(11):1124-44.

Stacpoole PW, Harman EM, Curry SH, Baumgartner TG, Misbin RI. 1983. Treatment of lactic acidosis with dichloroacetate. N Engl J Med. 309(7):390-6.

Stacpoole PW, Harwood HJ, Jr., Varnado CE. 1983. Regulation of rat liver hydroxymethylglutaryl coenzyme A reductase by a new class of noncompetitive inhibitors. Effects of dichloroacetate and related carboxylic acids on enzyme activity. J Clin Invest. 72(5):1575-85.

Stacpoole PW, Lorenz AC, Thomas RG, Harman EM. 1988. Dichloroacetate in the treatment of lactic acidosis. Ann Intern Med. 108(1):58-63.

Stacpoole PW, Wright EC, Baumgartner TG, Bersin RM, Buchalter S, Curry SH, Duncan CA, Harman EM, Henderson GN, Jenkinson S, et al. 1992. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group. N Engl J Med. 327(22):1564-9.

Stalker NE, Gambertoglio -JG, Fukumitsu CJ, Naughton JL, Benet LZ. 1978. Acute massive chloral hydrate intoxication treated with hemodialysis: a clinical pharmacokinetic analysis. J Clin Pharmacol. 18(2-3):136-42.

Steinberg AD. 1993. Should chloral hydrate be banned? Pediatrics. 92(3):442-6.

Steinberg AD, DeSesso JM. 1993. Have animal data been used inappropriately to estimate risks to humans from environmental trichloroethylene? Regul Toxicol Pharmacol. 18(2):137-53.

Stewart RD, Dodd HC, Gay HH, Erley DS. 1970. Experimental human exposure to trichloroethylene. Arch Environ Health. 20(1):64-71.

Tardif R, Lapare S, Charest Tardif G, Brodeur J, Krishnan K. 1995. Physiologically-based pharmacokinetic modeling of a mixture of toluene and xylene in humans. Risk Anal. 15(3):335-42.

Templin, M V, J C Parker, R J Bull. 1993. Relative Formation of Dichloroacetate and Trichloroacetate from Trichloroethylene in Male B6C3F1 Mice. Toxicology and Applied Pharmacology. 123:1-8.

Templin MV, Stevens DK, Stenner RD, Bonate PL, Tuman D, Bull RJ. 1995. Factors affecting species differences in the kinetics of metabolites of trichloroethylene. J Toxicol Environ Health. 44(4):435-47.

Tomsig JL, Gruenstein E, Dimlich RV. 1991. Inhibition of lactate-induced swelling by dichloroacetate in human astrocytoma cells. Brain Res. 568(1-2):92-100.

Travis CC, Quillen JL, Arms AD. 1990. Pharmacokinetics of benzene. Toxicol Appl Pharmacol. 102(3):400-20.

Trew DR, James CB, Thomas SH, Sutton R, Smith SE. 1991. Factors influencing the ocular pulse--the heart rate. Graefes Arch Clin Exp Ophthalmol. 229(6):553-6.

Triebig G, Essing HG, Schaller KH, Valentin H. 1976. [Biochemical and psychological examinations of trichloroenthylene exposed volunteers (author's transl)] Biochemische und psychologische Untersuchungen an Trichlorathylen-exponierten Probanden. Zentralbl Bakteriol Orig B. 163(5-6):383-416.

Triebig G, Trautner P, Weltle D, Saure E, Valentin H. 1982. [Investigations on neurotoxicity of chemical substances at the workplace. III. Determination of the motor and sensory nerve conduction velocity in persons occupationally exposed to trichloroethylene] Untersuchungen zur Neurotoxizitat von Arbeitsstoffen. III. Messung der motorischen und sensorischen Nervenleitgeschwindigkeit bei beruflich Trichlorathylen-belasteten Personen. Int Arch Occup Environ Health. 51(1):25-34.

Ulander A, Selden A, Ahlborg G, Jr. 1992. Assessment of intermittent trichloroethylene exposure in vapor degreasing. Am Ind Hyg Assoc J. 53(11):742-3.

Vesterberg O, Astrand I. 1976. Exposure to trichloroethylene monitored by analysis of metabolites in blood and urine. J Occup Med. 18(4):224-6.

Vesterberg O, Gorczak J, Krasts M. 1976. Exposure to trichloroethylene II. Metabolites in blood and urine. Scand J Work Environ Health. 2(4):212-9.

Vogelaere P, Deklunder G, Lecroart J, Savourey G, Bittel J. 1992. Factors enhancing cardiac output in resting subjects during cold exposure in air environment. J Sports Med Phys Fitness. 32(4):378-86.

Voisin EM, Ruthsatz M, Collins JM, Hoyle PC. 1990. Extrapolation of animal toxicity to humans: interspecies comparisons in drug development. Regul Toxicol Pharmacol. 12(2):107-16.

Wargovich TJ, MacDonald RG, Hill JA, Feldman RL, Stacpoole PW, Pepine CJ. 1988. Myocardial metabolic and hemodynamic effects of dichloroacetate in coronary artery disease. Am J Cardiol. 61(1):65-70.

Wells PG, Moore GW, Rabin D, Wilkinson GR, Oates JA, Stacpoole PW. 1980. Metabolic effects and pharmacokinetics of intravenously administered dichloroacetate in humans. Diabetologia. 19(2):109-13.

Williams LR, Leggett RW. 1989. Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas. 10(3):187-217.

Yang RS, el Masri HA, Thomas RS, Constan AA, Tessari JD. 1995. The application of physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling for exploring risk assessment approaches of chemical mixtures. Toxicol Lett. 79(1-3):193-200.

Ziglio G, Beltramelli G, Pregliasco F, Ferrari G. 1985. Metabolites of chlorinated solvents in blood and urine of subjects exposed at environmental level. Sci Total Environ. 47:473-7.

ATTACHMENT I

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Ertle T, et al. 1972, Arch Toxikol (29)171-88, Fig 1-2	, Arch Toxil	kol (29)171-8	8, Fig 1-2						
Subject Age	Mean Weight	Conc. TCE - Inspired	Exposure	Time from beginning of	Conc. Total TCOH in Blood	TCA urinary excretion	Cum. Conc. TCA in Urine	Total TCOH urinary	Cum. Conc. Total TCOH in
	(kg)	air (ppm)	Duration	exposure (hr)	(mg/l) Fig 1	(mg) Fig 2	(mg)	excretion (mg)	Urine (mg)
12,m (5									
per study) 20-28	57-92		5 dy .						
		9 09	6 hr/dy	9	1.605				
				10	1.143				
				24	0.481	17.933	17.933	122.494	122.494
				30	1.86				
				34	1.359				
				48	0.737	40.293	58.226	154.728	277.222
				54	1.821				
				58	1.411				
				72	0.78	71.934	130.16	158.852	436.074
				78	1.977				
				82	1.527				
				96	0.724	96.39	226.55	210.529	646.603
				102	1.993				
				106	1.599				
				120	0.752	105	331.55	219.579	866.182
				126	0.478				
				144	0.278	82.653	414.203	54.449	920.631
				168	0.13	63.444	477.647	22.522	943.153
		100	6 hr/dy	9	3.218				-
				10	2.328				
				24	1.013	15.252	15.252	176.894	176.894
				30	4.928				
	-			34	2.87				
				48	1.32	79.258	94.51	225.405	402.299
				54					
				58	3.05				
				7.5	1.468	142.13	236.64	268.512	670.811

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Conc. Total (mg) Fig 2 4.751 3.171 3.171 4.907 3.008 0.38 205.186 0.133 1.508 1.012 0.441 9.246.4 1.998 1.507 0.826 64.234 2.32 1.586 0.775 0.0579 0.775 0.0695 1.1599	Ertle T, et al. 1972, Arch Toxikol (29)171-88,	72, Arch Toxi	ikol (29)171-8	38, Fig 1-2						
Age Weight - Implied Exposure Puration exposure (hr) (mg/l) Fig 1 (mg) Fig 2 (yrs) (kg) air (ppm) Duration exposure (hr) (mg/l) Fig 1 (mg/l) Fig 2 1 2 3.771 (mg/l) Fig 2 197.604 1 102 4.907 197.604 1 102 4.907 197.604 1 106 3.008 246.4 1 12 1.44 0.38 205.186 1 1 1.012 133.393 133.393 250 12 min/hr, and an					Time from	Conc. Total	TCA urinary	Cum. Conc.	Total TCOH	Cum. Conc.
4.751 82 3.171 82 3.171 96 1.632 19 102 4.907 106 3.008 1168 120 1.496 3.008 120 1.496 3.008 120 1.496 3.008 1.6888 1.6888 1.6888 1.6888 1.6888 1.6888 1.6888 1.6888 1.68888 1.68888 1.68888 1.68888 1.68888 1.68888 1.68888 1.68888 1.688888 1.688888 1.688888 1.688888				Exposure	exposure (hr)	(mg/l) Fig 1	(mg) Fig 2	(mg)	urinary excretion (mg)	Urine (mg)
2. 50) 6 hr/dy 6 1.586 1.586 1.597 1.507 1.008 1.008 1.008 1.009 1					78	4.751				
e. 50) 6 hr/dy 72 hr/dy 6 hr/dy 6 hr/dy 6 hr/dy 72 hr/dy 6 hr/					82	3.171				
2. 50) 6 hr/dy 106 3.008 3.008 1.496 20					96	1.632	197.604	434.244	283.034	953.845
2. 50) 6 hr/dy 6 1.688 20 1.047					102	4.907				
2. 50) 6 hr/dy 126 0.873 13 13 13 13 13 13 13 13 13 13 13 13 13					106					
2. 50) 6 hr/dy 126 0.873 13 13 13 13 13 13 13 13 13 13 13 13 13					120			680.644	263.859	1217.704
2. 50) 6 hr/dy 6 1.688 20 1.012 1.01					126					
12 min/hr, 6 1.688 1.012					144		205.186	885.83	85.852	1303.556
12 min/hr, 6 1.688 1.688 1.012 1.012 1.012 1.012 1.012 1.012 1.098 1.0441 1.507 1.098 1.544 1.567 1.544 1.544 1.586 1.0826 6 0.775 1.0826 6 0.775 1.082 1.586 1.098 1.09					168			1019.223	23.304	1326.86
24 1.688 1.688 1.688 1.688 1.688 1.612 1.012 1.012 1.998 1.507 1.998 1.507 1.507 1.507 1.507 1.508 1.5										
6 hr/dy 6 1.688 1.688 1.012 1.012 1.012 1.998 3.4 1.507 3.4 1.507 3.4 1.544 6.5 1.548 6.5 1.548 6.5 1.548 6.5 1.548 6.5 1.548 6.5 1.548 6.5 1.548 6.5 1.548 6.5 1.548 6.5 1.548 6.5 1.548 6.5 1.548 6.5 1.558 6.558 6.5 1.558 6.55			250	12 min/hr,						
24 0.441 29 0.441 30 1.998 34 1.507 48 0.579 54 2.221 58 1.544 72 0.826 6 72 0.826 6 0.775 96 0.775 102 2.33 108 1.599 1108 108 1108			(ave. 50)	6 hr/dy	9					
0.441 1.998 1.507 0.579 3.2.221 1.544 0.826 6.2.346 1.586 0.775 2.33 1.599 1.599 0.695 1.000					10					
1.998 1.507 0.579 3 2.221 1.544 0.826 6 2.346 1.586 0.775 2.33 1.599 1.599 0.095 1.000					24		9.246	9.246	129.177	129.177
1.507 0.579 2.221 1.544 0.826 6 2.346 1.586 0.775 2.33 1.599 0.695 10.695					30					
2.221 1.544 0.826 0.826 6.346 1.586 0.775 2.33 1.599 1.599 0.695 10.695					34					
2.221 1.544 0.826 2.346 1.586 0.775 2.33 1.599 1.599 0.695 10					48			41.887	132.524	261.701
1.544 0.826 6.2346 1.586 0.775 2.33 1.599 1.599 0.695 1000					54	-				
0.826 6 2.346 1.586 0.775 2.33 1.599 0.695 11	,				58					
2.346 1.586 0.775 2.33 1.599 0.695 11					72			106.121	169.091	430.792
1.586 0.775 2.33 1.599 0.695 0.168					78					
2.33 1.599 0.695 1000					82					
2.33 1.599 0.695 0.168					96			196.681	200.399	631.191
1.599 0.695 0.168					102					
0.695					106					
0.168					120			311.22	207.251	838.442
9800					144			414.034	56.482	894.924
0.000					168	0.036	64.435	478.469	15.321	910.245

Metabolites Data Over Time: Trichloroethylene Dosing Studies

alaules FIOI. de Meu.du Havaii. 30(7-0):337-401	
andard	Standard
viation	Deviation
air (+ Exposure	
ppm) Duration	ppm) Duration
80	97 NA
-	-

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Fernandez, G et al.	z, G et	al. 1975,	Arch. des	1975, Arch. des Maladies Prof. de Med.du Travail. 36(7-8):397-407 Fig.	rof. de Mec	1.du Travail.	. 36(7-8):39	7-407 Fig.	1			
									Mean			Cumula-
									Conc.		Cumula-	tive
				Standard		Time from			TCE-		tive	Conc.
			.:	Deviation		beginning			Expired	Conc.	Conc.	total
		Mean	TCE-	Inspired		o	Mean %		Air after	TCE in	TCA in	TCOH in
Subject	Age	Weight	Inspired	air (+	Exposure	exposure	TCE	Absorbed	Exposure	Aveolar	Urine	Urine
(#,m,f)	(yrs)	(kg)	air (ppm)	(mdd	Duration	(hr)	Retained	TCE (mg)	(mdd)	Air (ppm)	(mg)	(mg)
						145.20					209.41	436.49
						169.56	`				225.39	438.63
						192.94					236.16	439.47
						217.49					244.11	439.08
						239.45					250.61	
						264.96					258.26	
						286.58					262.23	
						311.26					265.46	
			~			335.40					266.63	
						359.54					267.96	
						382.54					270.38	
						406.34					270.76	
						429.38					270.97	
						453.58					270.41	
1 m						476.62					270.47	
						501.58					270.08	
Ca E												
(L BL)	17	4/		AN 18	0		70.80	1046.00		35.00		
						0.13				35.16		
						0.23				25.46		
						0.73				32.86		
						2.01				25.00		
						2.21				30.47		
						3.35				30.13		
						3.42				30.15		

Attachment I

	Cumula-	tive	Conc.	total	TCOH in	Orine	(mg)							355.27	383.39	395.24	398.49	399.64	400.66	401.52	401.61												
		Cumula-	tive	Conc.	TCA in	Urine	(mg)							68.67	106.37	139.19	159.26	170.84	181.47	190.81	197.20	202.46	206.14	210.60	212.70	214.66	214.76	215.11	216.28	216.63	215.93	216.78	
				Conc.	TCE in	Aveolar	Air (ppm)	19.43	24.16	27.02	35.19	27.72	35.45																				
1	Mean	Conc.	TCE.	Expired	Air after	Exposure	(mdd)																										
7-407 Fig. '			•				TCE (mg)																										
36(7-8):397					Mean %	TCE	Retained																										
laladies Prof. de Med.du Travail. 36(7-8):397-407 Fig.			Time from	beginning	o	exposure	(hr)	2.50	5.56	5.63	6.67	09'9	6.84	48.79	73.15	96.17	121.20	145.20	169.56	192.94	217.49	239.45	264.96	286.58	311.26	335.40	359.54	382.54	406.34	429.38	453.58	476.62	
rof. de Med						Exposure	Duration																										
Maladies P			Standard	Deviation	Inspired	air (+	ppm)						A THE COLUMN THE COLUM												A Common of the								
Fernandez, G et al. 1975, Arch. des M				Conc.	TCE-	Inspired	air (ppm)																										
t al. 1975,					Mean	Weight	(kg)																										
,z, G el						Age	(yrs)													Administration and a second second													
Fernande			•			Subject	(#,m,t)																							-			

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Conc. Deviation Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (± Exposure air (ppm) ppm) Duration Mean TCE - Inspired air (ppm) ppm ppm ppm ppm ppm ppm ppm ppm ppm	i			Mean		- E	Cumula-
Standard Conc. Deviation TCE - Inspired Inspired air (+ air (ppm) ppm) 97 NA	į			-		Cumila.	tivo
Standard Conc. Deviation TCE - Inspired Inspired air (+ air (ppm) ppm) 97 NA	Time of free me		-	Conc.		כמוחוחס	- Ac
Conc. Deviation TCE - Inspired Inspired air (+ air (ppm) Ppm) 97 NA	IIIIe IIOIII			TCE -		tive	Conc.
TCE - Inspired linspired air (+ air (ppm) ppm) 97 NA	beginning			Expired	Conc.	Conc.	total
air (ppm) ppm) 97 NA		Mean %		Air after	TCE in	TCA in	TCOH in
\(\frac{\chi}{2}\)	exposure (hr)	TCE Ab	Absorbed E	Exposure (ppm)	Aveolar Air (ppm)	Urine (mg)	Urine (mg)
	8 0.05	72.80	992.00		17.48		
	0.15				27.48		
	0.34				29.17		
	0.81			- The state of the	24.26		
	1.42				36.03		
	2.06				32.64		
	2.90				25.00		
	5.05				20.08		
	5.07				21.16		
	5.28				26.77		
	6.49				27.77		
	6.61				26.18		
	6.71				25.16		
	25.49					15.36	340.72
	48.79					38.55	404.55
	73.15					54.51	414.70
	96.17					65.04	418.58
	121.20					77.38	419.60
	145.20					91.47	420.73
	169.56					98.01	421.14
-	192.94					105.30	422.01
_	217.49					110.25	
	239.45					117.40	
	264.96					121.24	
	286.58					121.59	

Metabolites Data Over Time: Trichloroethylene Dosing Studies

	Cumula-	tive	Conc.	total	TCOH in	Urine	(mg)																									31 09
	O	Cumula-	tive		TCA in T		(mg)	122.95	123.46	126.70	128.01	129.68	130.81	131.84	131.10																	4.61
				Conc.	TCE in	Aveolar	Air (ppm)									7	11.18	12.11	13.20	13.34	11.15	12.39	14.40	11.19	9.36	11.27	13.34	10.28	10.15	10.13	11.04	11.11
_	Mean	Conc.	TCE -	Expired	Air after	Exposure																										
Fig.						Absorbed	TCE (mg)									270	00.276															
36(7-8):39					Mean %	TCE	Retained									1	/ 8.00															
du Travail.			Time from	beginning	o	exposure	(hr)	311.26	335.40	359.54	382.54	406.34	429.38	453.58	476.62	7	1.9.1	1.97	2.06	2.45	2.56	2.66	2.75	3.18	4.28	4.40	4.50	4.61	5.77	5.77	5.82	5.92
rof. de Med			•			Exposure	Duration									C	Ø															
1975, Arch. des Maladies Prof. de Med.du Travail. 36(7-8):397-407			Standard	Deviation	Inspired	air (+	ppm)									<u> </u>	ZZ.															
Arch. des				.:	TCE -	Inspired	air (ppm)										24 NA															
tal. 1975,					Mean	Weight											9															
ez, Ge						Age	(yrs)										67															
Fernandez, G et al.						Subject	(#,m,f)									E ((Fig 1)															

Attachment I

Fernandez, G et al.	z, G et		1975, Arch. des M	Maladies P	rof. de Mec	aladies Prof. de Med.du Travail. 36(7-8):397-407 Fig. 1	. 36(7-8):39	7-407 Fig.	1			
									Mean			Cumula-
									Conc.		Cumula-	tive
				Standard		Time from			TCE-		tive	Conc.
			Conc.	Deviation		beginning			Expired	Conc.	Conc.	total
		Mean	TCE -	Inspired		o	Mean %		Air after	TCE in	TCA in	TCOH in
Subject	Age	Weight	Inspired	air (+	Exposure	exposure	10E	Absorbed	ш		Urine	Urine
(#,m,f)	(yrs)	(kg)	air (ppm)	(mdd	Duration	(hr)	Retained	TCE (mg)	(mdd)	Air (ppm)	(mg)	(mg)
						96.9				12.51		
						7.01				10.06		
						7.08				12.52		
						7.81				12.80		
						7.91				13.59		
						21.89					18.08	99.04
						46.66					58.94	154.45
						71.04					87.67	168.71
						94.32					105.07	171.66
						118.49					116.89	179.77
						142.90					130.38	181.24
						167.16					135.36	184.42
						191.57					139.64	184.16
						215.71					142.67	
						239.90					144.58	
						264.17					146.75	
						287.95					147.81	
						312.00					148.72	
						335.54	-				149.22	
						359.90	-				150.68	
						383.57					150.47	
Ca, m				<u> </u>								
(Fig.1)	77	4/		24 NA	0	0.18	74.40	020.00		11.65		
						0.36	. (0			13.05		

Metabolites Data Over Time: -Trichloroethylene Dosing Studies

	Cumula-	tive	Conc.	total	TCOH in	Urine	(mg)																					39.04				92.61	135.72
		Cumula-	tive	Conc.		Urine	(gm)																					3.82				15.48	53.19
				Conc.	TCE in	Aveolar	Air (ppm)	13.56	14.12	15.76	13.57	14.93	14.07	16.06	15.00	15.61	14.14	14.42	10.15	9.27	9.28	12.12	15.39	13.56	14.07	14.35	14.49	13.29	12.50	17.66	15.99		
	Mean	Conc.	TCE.	Expired	Air after	Exposure	(mdd)																										
-407 Fig. 1							TCE (mg)																										
36(7-8):397					Mean %	TCE	Retained																										
laladies Prof. de Med.du Travail. 36(7-8):397-407 Fig			Time from	beginning	o	exposure	(hr)	0.48	0.56	0.62	0.71	1.14	1.24	1.35	1.89	2.00	2.05	2.14	2.94	3.00	3.09	3.22	4.52	4.60	5.59	5.68	5.81	6.51	6.58	7.86	7.91	21.89	46.66
of. de Med.				_		Exposure	Duration																										
Maladies Pr			Standard	Deviation	Inspired	air (+	(mdd																	,									
Fernandez, G et al. 1975, Arch. des M		-			TCE-	Inspired	air (ppm)																										
t al. 1975,					Mean	Weight	(kg)																										
ez, Ge							(yrs)								,																		
Fernand						Subject	(#,m,f)																										

Attachment I

Metabolites Data Over Time: Trichloroethylene Dosing Studies

	1	_	-		_		-	4	2	7	5	4	0		Τ		1	Т	T		Τ
	Cumula-	tive	Conc.	total	TCOH in	Urine	(mg)	159.84	166.55	171.67	175.51	175.84	176.10								
		Cumula-	tive	Conc.	TCA in	Urine	(mg)	72.57	89.18	98.10	107.81	113.51	117.48	124.36	128.80	129.55	132.02	133.23	134.36	134.95	135 37
		•		Conc.	TCE in	Aveolar	Air (ppm)														
	Mean	Conc.	TCE-	Expired	Air after	Exposure	(mdd)									And the second s					
Fernandez, G et al. 1975, Arch. des Maladies Prof. de Med.du Travail. 36(7-8):397-407 Fig. 1				7		Absorbed	TCE (mg)														
. 36(7-8):39					Mean %	TCE	Retained														
du Travail			Time from	beginning	ō	exposure	(hr)	71.04	94.32	118.49	142.90	167.16	191.57	215.71	239.90	264.17	287.95	312.00	335.54	359.90	383.57
rof. de Mec						Exposure	Duration														
Maladies P			Standard	Deviation	Inspired	air (+	(mdd														
, Arch. des				Conc.	TCE-	Inspired	air (ppm)														
t al. 1975,						>	(kg)														
z, G e						Age	(yrs)						:								
Fernande						Subject	(#,m,f)														

Subject (#,m,f)	Age (yrs)	Mean Weight (kg)	Conc. TCE Inspired air (ppm)	Exposure Duration	Time from beginning of exposure (hr)	Conc. TCE in Aveolar Air (ppm) Fig 2	Cum Conc. TCA in Urine (mg) Fig 4	in Urine
Sub #1,	(3.0)	(9)	(PP)		:3,7		(4.3, 4.3	V 3, 3
sex-NA	NA	NA	54.0	8.0	7.6		3.2	76.6
00X 11X	1.0.				23.0		NA	172.8
	1				46.7		100.7	255.4
	 				70.8		140.7	299.6
•					95.2		169.3	311.7
	1				118.9		190.2	324.1
·					143.2	<u> </u>	206.4	329.3
					166.9		216.8	NA
					191.1		225.1	NA ·
Sub #2,					-			
sex-NA	NA	NA	54.0	8.0	7.6		5.6	54.3
				***************************************	23.0		36.0	189.0
			·		46.7		113.7	289.5
					70.8		166.5	318.8
					95.2		201.3	324.6
					118.9		224.1	342.7
					143.2		249.6	346.1
					166.9		260.0	350.0
					191.1		269.0	NA
Sub #3,								
sex-NA	NA	NA	97.0	8.0	7.6		5.6	104.2
		•			23.0		30.0	253.3
					46.7		71.4	360.0
					70.8		110.9	390.6
					95.2		145.2	404.3
					118.9		163.7	406.6
					143.2		177.9	
					166.9		187.5	
					191.1		199.3	410.7
Sub #4,								
sex-NA	NA	NA	97.0	8.0	7.6		NA	95.2
					23.0		NA	348.7
					46.7		NA	411.4
					70.8		NA	417.0
					95.2		NA	424.2
					118.9		NA	426.
					143.2	L	NA	428.8
					166.9		NA	428.5
	İ				191.1		NA	427.

					Time from	Conc.		
			Conc.		beginning	TCE in	Cum	Cum Conc
		Mean	TCE		of	Aveolar	Conc. TCA	total TCOH
Subject	Age		Inspired	Exposure	exposure	Air (ppm)	in Urine	in Urine
(#,m,f)	(yrs)	(kg)	air (ppm)	Duration	(hr)	Fig 2	(mg) Fig 4	(mg) Fig 3
Sub #5,	(3.0)	(-3)	VI-I/		` ′			
sex-NA	NA	NA	97.0	8.0	7.6		8.9	109.5
					23.0		25.4	285.9
WV -1 1 -1911 -1911 -1911 -1911 -1911 -1911 -1911 -1911 -1911 -1911 -1911 -1911 -1911 -1911 -1911 -1911 -1911 -	 				46.7	- Amade	88.5	386.9
					70.8		123.8	424.5
					95.2		177.4	436.9
					118.9		193.4	446.2
					143.2		215.7	451.6
	-				166.9		232.5	457.2
					191.1		244.7	460.8
5 subjects,								
sex NA	NA	NA	160.0	8.0	8.3	13.6		
					8.6	8.0		
					8.9	7.1		
					9.1	4.8		
					9.4	3.2		
					10.8	1.9		
					21.7	0.6		
					21.7	0.6		
					22.1	0.6		
					24.7	0.6		· · · · · · · · · · · · · · · · · · ·
					25.2	0.4		
					56.7	0.2		
5 subjects,	N1 A	210	125.0	9.0	8.2	20.7	•	
sex-NA	NA	NA	135.0	8.0	8.6	9.5		
	ļ				9.2	4.4		
					9.4	3.5		
					42.7	0.2		
5 subjects,								
sex-NA	NA	NA	97.0	8.0	8.3	21.6		
					8.3	19.0		
					8.3	16.7		
					8.3	15.1		
					8.3	14.2		
					8.5	6.6		
					8.8	6.6		
					8.9	6.1		
					9.1	3.8		

					Time from	Conc.		
	1		Conc.		beginning	TCE in	Cum	Cum Conc
		Mean	TCE		of	Aveolar	Conc. TCA	total TCOH
Subject	Age	Weight	Inspired	Exposure	exposure	Air (ppm)	in Urine	in Urine
(#,m,f)	(yrs)	(kg)	air (ppm)	Duration	(hr)	Fig 2	(mg) Fig 4	(mg) Fig 3
					9.5	3.9		
					9.5	3.5		
					9.9	3.6		
					10.3	2.8		
					10.8	2.6		
					10.7	2.4		
	:				11.7	2.4		
					11.7	2.3		***
					11.7	2.1	_	
					12.2	1.8		
					12.1	1.4		
					12.7	1.7		
					13.8	1.2		
					22.3	0.9		
					22.4	0.8		
	<u> </u>				22.7	0.8		
		<u> </u>			23.3	0.8		
					23.5	0.7		
	ļ				24.5	0.5		
					24.6	0.4		
		<u> </u>			24.5	0.3		
					25.9	0.7		
					25.8	0.4		
	1				26.0	0.4		
	1				26.1	0.3		
					26.3	0.4		
	<u> </u>				28.5	0.4		
		<u> </u>			28.5			
					28.9	0.2		
					29.3	0.3		
						0.6		
					29.5	0.7		
		<u> </u>			30.0			
	1				30.2	0.4		
					30.1	0.3		
					31.8	0.6		
					31.9			
					31.9	0.3		
					32.1	0.3		
					33.3	0.5		
			<u> </u>		33.5	0.5		

					Time from	Conc.		
			Conc.		beginning	TCE in	Cum	Cum Con
		Mean	TCE		of	Aveolar	Conc. TCA	total TCO
Subject	Age	Weight	Inspired	Exposure	exposure	Air (ppm)	in Urine	in Urine
(#,m,f)	(yrs)	(kg)	air (ppm)		(hr)	Fig 2	(mg) Fig 4	(mg) Fig 3
(,,-)	(3)	(-3)	41.1		36.0	0.3		
					36.2	0.3		
	-				37.2	0.2		
	-				37.5	0.3		
					37.3	0.2		
					38.3	0.4		
	ļ				38.5	0.3		
	-				38.3	0.3		
					40.8	0.3		
					41.0	0.3		
					41.8	0.3		
					42.0	0.3		
					42.6	0.3		
					43.0	0.3		
					43.8	0.2		
					43.9	0.3		
					45.0	0.3		
					46.1	0.3		
					46.1	0.3		
					47.1	0.3		
					47.1	0.3		
					49.5	0.3		
					49.8	0.2		
					52.0	0.2		
					53.8	0.2		
					54.0	0.2		
					57.2	0.2		
Subjects, ex-NA	NA	NA	56.0	8.0	8.3	12.4		
					8.6	8.7		· · · · · · · · · · · · · · · · · · ·
					8.7	5.6		
					9.2	5.8		
					8.9	4.6		
					9.5	4.5		
					9.3	4.1		
					23.9	0.3		
					24.3	0.7		
	<u> </u>				24.5	0.7		
					25.1	0.4		
	1			1	23.1	0.0		

					Time from	Conc.		
			Conc.		beginning	TCE in	Cum	Cum Conc
		Mean	TCE		of	Aveolar	Conc. TCA	total TCOH
Subject	Age	Weight	Inspired	Exposure	exposure	Air (ppm)	in Urine	in Urine
(#,m,f)	(yrs)	(kg)	air (ppm)		(hr)	Fig 2	(mg) Fig 4	(mg) Fig 3
					28.8	0.2		
					30.8	0.2		
					31.0	0.2		
					31.3	0.4		
					31.8	0.2		
					32.1	0.2		
					47.8	0.3		
5 Subjects,								
sex-NA	NA	NA	54.0	8.0	8.3	8.0		
					8.3	7.5		
					8.3	6.9		
					8.3	6.4		
****					8.4	5.8		
,					8.3	5.3		
					8.4	4.6		
					8.7	4.5		
					8.8	3.6		
					9.1	3.4		
					9.0	3.0		
					9.1	2.7	_	
					9.3	2.5		
					9.4	2.8		
					9.6	2.3		
					9.8	. 2.7	`	
					9.9	2.4	·	
					10.2	2.3		
					10.3	2.2		
					11.2	1.5		
					11.3	1.4		
10.00					12.2	1.3		
					12.6	1.1		
					13.0	1.1		
					13.6	1.1		
	1				13.7	1.3		
					14.4	0.9		
1801-8-81 111 190-190-190-1					14.7	0.9		
····	-				15.6	0.9		
					15.7	0.9		
					16.5	0.8		
					16.7	0.8		

Subject (#,m,f)	Age (yrs)	Mean Weight (kg)	Conc. TCE Inspired air (ppm)	Exposure Duration	Time from beginning of exposure (hr)	Conc. TCE in Aveolar Air (ppm) Fig 2	Cum Conc. TCA in Urine (mg) Fig 4	Cum Co total TC0 in Urine (mg) Fig
					17.6	0.7	,	
					17.8	0.6		
					19.5	0.5		
					19.7	0.6		
					20.6	0.5		
					20.6	0.4		
					21.1	0.5		
					21.5	0.5		
	<u> </u>				21.7	0.5		
					21.9	0.5		
					22.2	0.5		
					22.4	0.5		
					22.4	0.4		
					22.6	0.5		
					23.4	0.4		
			,		25.2	0.5		
					25.3	0.3		
					27.7	0.2		
					28.2	0.3		
					28.3	0.4		
					28.7	0.3		
					28.9	0.2		
					29.2	0.2		
					30.3	0.2		
131					30.3	0.2		
					30.4	0.3		
					30.4	0.3		
					30.9	0.4		
					31.7	0.2		
					44.8	0.3		
					48.0	0.2		
					49.4	0.2		
					55.3	0.2		
					55.6	0.2		
					oncentration			

Attachment I

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Hake, C. €	et. al. 1973	, Med Coll	Wis., NTIS	Hake, C. et. al. 1973, Med Coll Wis., NTIS #PB82-151713, NIOSH-00080951 Tbl. III	, NIOSH-000	180951 Tbl.			
			Daily		Time from	Mean Conc TCA	. 8	Mean Conc. total TCOH in	Ē
		Mean	TCE -		of first	in Urine	Conc. TCA	Urine	Conc. total
Subject (#,m,f)	Age (yrs)	Weight (kg)	Inspired air (ppm)	Exposure Duration	exposure (hr)	(mg/24 hr) Tbl III	in Urine (mg)	(mg/24 hr) Tbl III	TCOH in Urine (mg)
4 females	NA	NA	100	100 7.5 hr/d, 5 days	24	28	28	211	211
					48	89	109	291	502
					72	184	293	341	843
				-	96	225	518	294	1137
					120	241	759	296	1433
3 females	NA	NA	100	100 3 hr/d, 5 days	24	24	24	118	118
					48	36	9	102	220
					72	64	124	134	354
					96	74	198	66	453
					120	84	282	113	566
3 females	AN AN	AN	100	1 hr/d, 5 days	24	25	25	39	39
					48	23	48	64	103
					72	26	74	156	259
					96	22	96	51	310
					120	32	128	58	368
Notes:									
Only data	Only data on females	were used t	from this stud	les were used from this study, most males imbibed in light to heavy consumptions during several	bibed in light	to heavy cons	umptions dur	ing several	
evening	evenings during eac	each wk of the study.	study.						

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Kimmerle C	3 & Eben /	4 1973.	Arch Toxik	Kimmerle G & Eben A 1973. Arch Toxikol. 30, 127-38	38								
							Mean Conc. TCE		Conc				
		•	Conc.	Std Dev		Time from	- Expired Air after	Conc. TCE in	total TCOH in	Conc. TCA in		Conc. TCOH in	Cam
:		Mean	TCE -	Inspired	Exp	start of	Exposure	Blood	Blood	Urine	Cum TCA	Urine	TCOH in
Subject (#,m,f)	Age (yrs)	weignt (kg)	inspired air (ppm)	(+ppm)	j. (j.	exposure (hr)	(ppm) Fig.1or 3	(mg/l) Tbl. 1	(mg/l) Tbl. 1	(mg/# of hrs) Tbl.2	in Urine (mg)	(mg/# of hrs) Tbl.2	(mg)
A (f)	20 - 50	ΑN	40.00	7.00	4.00	4.00		0.20	0.71	1.32	1.32	12.05	ŧ
						2.00		0.10	0.69	NA		AN	AN
						00.9		0.08	0.61	NA NA	NA	AN	A
						7.00		not det.	0.57	NA	A	AN	AA
						8.00			09.0	0.33	1.65	3.60	15.64
						24.00			0.47	4.16	5.80	26.10	41.74
						32.00			not det.	NA	AA	AN	AN
						48.00			0.24	12.60	18.40	20.22	61.96
						72.00			0.20	13.93	32.34	13.14	75.10
						96.00			<0.123		40.81	6.52	81.62
						120.00				7.80	48.61	3.65	85.26
						192 (24 hr							
						value)				2.32	AN	1.30	ZA
B (f)	20 - 50	A	44.00	4.00	4.00	4.00		0.48	1.64	0.29	0.29	8.82	8.82
						5.00		0.15	1.62				
						00.9		0.11	1.34				
						7.00		0.08	1.20				
				-		8.00			1.30	1.55	1.84	16.12	24.94
						24.00			0.53	5.19	7.03	19.28	44.22
						32.00			0.66				
						48.00			0.13	12.82		16.70	60.92
						72.00			0.10	11.85	31.70	8.00	68.92
						96.00			<0.009	6.71	38.41	1.98	70.90
						120.00				not det.		not det.	
						192 (24 hr							
						value)				3.68		0.24	

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Kimmerle G & Eben A 1973. Arch Toxik	3 & Eben	A 1973.	Arch Toxik	col. 30, 127-38	-38								
S. C.	Age	Mean	Conc. TCE -	Std Dev Inspired	Exp	Time from start of	Mean Conc. TCE - Expired Air after Exposure	Conc. TCE in Blood (mg/l) Tbl	Conc total TCOH in Blood	Conc. TCA in Urine	Cum TCA	Conc. TCOH in Urine	Cum TCOH in
(#,m,f)	(yrs)	(kg)		(mdd+)	(hr)	(hr)	Fig.1or 3	1	Tbl. 1	hrs) Tbl.2	(mg)	hrs) Tbl.2	(mg)
()		NA	44.00	4.00	4 hr	4.00		0.28	1.78	0.47	0.47	23.80	23.80
						5.00		0.22	1.71				
						00'9		0.11	1.47				
						00'2		80.0	1.32				
						8.00			1.55	0.87	1.33	4.91	28.70
						24.00			0.52	12.76	14.09	30.11	58.81
						32.00			0.54				
						48.00			0.11	16.14	30.24	26.78	85.59
						72.00			0.05	12.41	45.64	7.69	93.28
						96.00			<0.009	8.65	51.29	2.69	95.97
						120.00						not det.	
						192 (24 hr							
						value)				1.52		0.27	
(J)		NA	44.00	4.00	4 hr	4.00		0.26	1.49	1.27	1.27	14.85	14.85
						5.00		0.19	1.34				
A CONTRACTOR OF THE PROPERTY O						00'9		0.10	1.24				
						7.00		0.08	1.17				
						8.00			1.36	2.44	3.72	29.76	44.61
						24.00			0.70	14.72	18.44	37.67	82.28
						32.00			0.67				
						48.00			0.23		40.53	31.06	113.34
						72.00			0.13		57.93	13.44	126.78
						96.00			0.02	11.50	69.43	4.47	131.25
						120.00						not det.	

Cum TCOH in Urine (mg)

Trichloroethylene Dosing Studies Metabolites Data Over Time:

Attachment I

Kimmerie	S & EDen	A 19/3.	Arch loxii	Kimmerie G & Eben A 19/3, Arch Toxikol. 30, 12/-38	38		Mean						
			Conc.	Std Dev		Time from	3 . 4	Conc. TCE in	Conc total TCOH in	Conc. TCA in		Conc. TCOH in	
1.0	*	Mean		Inspired	Exp	start of	Exposure	Blood	Blood	Urine	Cum TCA	Urine	7
(#,m,f)	Age (yrs)	weignt (kg)	air (ppm)	air (+ppm)	(hr)	exposure (hr)	(ppm) Fig.1or 3	(mg/l) l bl. 1	(mg/l) Tbl. 1	hrs) Tbl.2	in Urine (mg)	(mg/# of hrs) Tbl.2	
						192 (24 hr							<u> </u>
						value)				not det.		not det.	
													_
H (m)		NA	44.00	4.00	4 hr	4.00		0.25	1.32			11.72	
						2.00		0.13	1.28				ļ
						00.9		0.08	1.19				
						7.00		0.08	1.04				-
						8.00			1.09	0.59	0.59	25.70	
						24.00			0.55	4.09	4.67	55.44	**
						32.00			0.40				
						48.00			0.16	6.82	6.82	21.44	*
						72.00			0.10	6.57	13.39	6.89	0
						96.00			0.04	5.67	19.06	2.58	m
						120.00				not det.		not det.	. :
			1			192 (24 hr							
F (m)		NA	40.00	2 00	4 hr	value)		0.32	0.78	2.11	0.43	0.23	2 (
								0.12					-
						00.9		0.12	0.64	-			-
						7.00		not det.	0.59				
						8.00			0.57		1.20	8.89	0
						24.00			0.44	5.37	7 6.57	14.04	4
						32.00			not det.				
						48.00			0.20		11.97	7.59	6
						72.00			0.14				ပ
						96.00			<0.110	9.54	4 32.78	2.01	-

25.70

11.72

21.44 28.33 30.91

15.15 29.19

6.26

36.78 42.54 44.55

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Kimmerle G & Eben A 1973. Arch Toxikol. 30, 127-38	A 1973. At	₹	ch Toxik	col. 30, 127.	-38								
							Mean Conc TCF		, Jud				
			•				- Expired	Conc.	total	Conc.		Conc.	
Conc. Std Dev	Conc. Std Dev	Std Dev		L		Time from	Air after	TCE in	TCOH in	TCA in	i	TCOH in	Cum
Age Weight Inspired air Dur	Inspired air	air		Exp Dur		start of exposure	(bpm)	(mg/l) Tbl.	(mg/l)	Urine (mg/# of	Cum TCA in Urine	Urine (mg/# of	TCOH in Urine
air (ppm) (+	air (ppm) (+ppm)	(+bbm)		(hr)		(hr)	Fig.1or3	1	Tbl. 1	hrs) Tbl.2	(mg)	hrs) Tbl.2	(mg)
						120.00				5.19	37.96	1.67	46.22
						192 (24 hr							
00.04	00.04	00.04	1000	-	13	>		C	700	1.28			
MA 40.00	40.00	40.00	00.7	4	= [0.45	0.81	0.21	0.21	12.88	12.88
					1	5.00		0.13	0.68				
					1 7	00.9		0.08	0.61				
					. 7	7.00		not det.	0.55				
						8.00			0.50	0.28	0.49	11.83	24.71
						24.00			0.24	4.33	4.82	33.37	58.08
					1 7	32.00			not det.				
						48.00			0.08	12.42	17.24	14.64	72.72
					I	72.00			<0.047	11.27	28.51	3.68	76.40
	,	,				96.00				9.54	38.05	1.34	77.74
						120.00				5.15	43.20	0.86	78.60
						192 (24 hr							
						>				2.70		0.30	
NA 40.00 7.00 4	40.00 7.00	40.00 7.00	2.00	4	4 hr	4.00		0.27	0.94	0.46	0.46	15.05	15.05
						5.00		0.13	0.69				
-	-					00.9		0.08	0.81				
						7.00		not det.	0.70				
						8.00			99.0	0.36	0.82	6.84	21.90
						24.00			0.34	7.60	8.42	40.89	62.79
						32.00			not det.				
						48.00			0.13	10.63	19.05	22.49	85.28
					ı	72.00			0.09	8.36	27.41	8.02	93.30
						96.00				5.78		2.49	95.79
						120.00				6.31	39.49	1.39	97.18

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Kimmerle G & Eben A 1973. Arch Toxikol	_
	Conc
Conc. Std Dev	total Conc. Conc.
Inspired air (ppm)	(mg/l) Tbl. (mg/l) (mg/# of in Urine (mg/# of Urine 1 Tbl.1 hrs) Tbl.2 (mg) hrs) Tbl.2 (mg)
	3.61 0.32
NA 40.00 7.00 4.00	
NA 40.00 7.00 4.00	
•	
2	
NA 48.00 3.00 days	

Metabolites Data Over Time: Trichloroethylene Dosing Studies

			Cum	Urine	(mg)																								
		Conc.	_	(mg/# of	hrs) Tbl.2												00.00								46.14			75.46	
			401	in Urine																									
		Conc.	TCA in	Jo #/bw)	hrs) Tbl.2												0.00								4.18			14.99	
	(total	TCOH in	(mg/l)	Tbl. 1												0.00	2.05	1.67	1.60	1.41	1.26	1.17		2.00	1.80	0.92	2.38	172
		Conc.	TCE in	(mg/l) Tbl.	1												0.00	0.42	0.13	0.09	0.00	0.00	0.00		0.51	0.17	0.00	0.41	000
	Mean	- Expired	Air after		3	0.25	0.23	2.81	0.48	0.38					,														
			lime from	exposure	(hr)	6.50	7.00	96.00	98.00	99.00							00.00	4.00	2.00	8.00	9.00	10.00	24.00	28 (24 hr	(aline)	33.00	48.00	52.00	57.00
-38			2	d i	(hr)								4 hr/da	× 5	days	у 5	days												
ol. 30, 127-38			Std Dev	air	(+bbm)										3.00		3.00												
Arch Toxik			Conc.	Inspired	air (ppm)										48.00		48.00												
A 1973.			Moan	Weight																									
& Eben					(yrs)										20-30														
Kimmerle G & Eben A 1973. Arch Toxik				Subject	(#,m,f)									3 males &	1 female		Jorl												

Attachment I

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Kimmerle G & Eben A 1973. Arch Toxik	3 & Eben	A 1973.	Arch Toxil	col. 30, 127-38	-38								
							Mean . Conc. TCE	Ć	Conc	(
			Conc.	Std Dev		Time from	- Expired Air after	Conc.	TCOH in	Conc.		Conc. TCOH in	Cum
		Mean		Inspired	Exp	start of	Exposure	Blood	Blood	Urine	Cum TCA	Urine	TCOH in
Subject (#,m,f)	Age (yrs)	Weight (kg)	Inspired air (ppm)	air (+ppm)	Pur (j.	exposure (hr)	(ppm) Fig.1or 3	(mg/l) Tbl. 1	(mg/l) Tbl. 1	(mg/# of hrs) Tbl.2	in Urine (mg)	(mg/# of hrs) Tbl.2	Urine (mg)
						72.00		0.00	0.95				
						76.00		0.51	2.58	27.56		53.95	
						81.00		00.00	2.06				
						96.00		0.00	1.27				
						100.00		0.85	2.51	26.10		62.62	
						104.00		00.00					
						105.00		0.00	2.12				
						120.00			2.11				
						124.00				51.47		120.09	
						144.00			0.51				
						148.00				29.04		20.29	
						168.00			0.27				
						172.00				14.95		17.78	
						192.00			0.14				
						196.00				not det.		not det.	
						216.00			0.08				
						220.00				not det.		not det.	
						240.00			0.05				
						244.00				not det.		not det.	
						264.00			0.03				
						268.00				not det.		not det.	
						388 (24 hr							
						value)				1.37		0.20	
¥			48.00	3.00	days			00.0		0.00		0.00	
						4.00		0.34					
						5.00		0.23	1.60				

Metabolites Data Over Time: Trichloroethylene Dosing Studies

			Ē	-	Urine (mg)											3			2				2				3		-		3	
		(Conc.	Urine	(mg/# of hrs) Tbl.2					88.46			126.08			121.18			117.65				104.52		42.61		37.66		5.11		3.83	-
				Cum TCA	in Urine (mg)																											
			Conc.	Urine	(mg/# of hrs) Tbl.2					6.61			18.79			46.99			63.98				89.66		42.62		32.52		24.47		17.92	
		Conc	total TCOH in	Blood	(mg/l) Tbl. 1	1.37	1.20	1.15	1.04	1.82	1.67	0.81	2.01	1.87	0.59	2.32	1.91	0.85	2.51	2.02	2.02	1.01		0.39		0.10		not det.		0.04		
			Conc.	Blood	(mg/l) Tbl.	0.13	0.00	0.00	00.00	0.34	00.00	00.00	0.48	0.00	00.00	0.27	00.00	00.00	0.78	00.00	00.00											
	Mean	Conc. TCE	- Expired Air after	Exposure	(ppm) Fig.1or 3																							addition of the formula of the form of the first the state of the formula of the				
			Time from	start of	exposure (hr)	8.00	9.00	10.00	24.00	28.00	33.00	48.00	52.00	57.00	72.00	76.00	81.00	96.00	100.00	104.00	105.00	120.00	124.00	144.00	148.00	168.00	172.00	192.00	196.00	216.00	220.00	The same of the sa
-38				Exp	j (j																							,				
col. 30, 127			Std Dev	Inspired	air (+ppm)																Andreas a particular de la companya											
Kimmerle G & Eben A 1973. Arch Toxikol. 30, 127-38			Conc.		Inspired air (ppm)																											
A 1973.				Mean	Weight (kg)																											
G & Eben					Age (yrs)									-																		
Kimmerle				:	Subject (#,m,f)																											

Attachment I

Metabolites Data Over Time: Trichloroethylene Dosing Studies

	Cum TCOH in Urine (mg)																										
		2.03		1.04	80 0									63.33			86.56			84.44			86.00				89.61
	Cum TCA in Urine (mg)																										
	Conc. TCA in Urine (mg/# of hrs) Tbl.2	13.65		11.56	2.10	i								5.34			12.29			31.68			61.15				76.70
	Conc total TCOH in Blood (mg/l) Tbl. 1		00.00				00.00	1.28	1.01	06.0	08.0	0.72	0.57	1.44	1.85		2.09	1.40	0.68	1.57	1.25	0.51	1.97	1.64		0.51	
	Conc. TCE in Blood (mg/l) Tbl.						0.00	0.28	1.18	60.0	00.0	00.00	00.0	0.34	00.00	0.00	0.34	00.00	00.00	0.34	00.00	00'0	0.51	00.00	00.00		
	Mean Conc. TCE - Expired Air after Exposure (ppm)																										
	Time from start of exposure (hr)	244.00	264.00	268.00	388 (24 hr		0.00	4.00	2.00	8.00	9.00	10.00	24.00	28.00	33.00	48.00	52.00	57.00	72.00	76.00	81.00	96.00	100.00	104.00	105.00	120.00	124.00
38	Exp Dur (hr)					>	_																				
ol. 30, 127-38	Std Dev Inspired air (+ppm)						3.00												-								
Arch Toxik	Conc. TCE - Inspired air (ppm)						48.00																				
A 1973.	Mean Weight (kg)																										
G & Eben	Age (yrs)																										
Kimmerle G & Eben A 1973. Arch Toxikol	Subject (#,m,f)						L (sex-NA)																				

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Kimmerle G & Eben A 1973. Arch Toxikol. 30, 127-38	Eben A	1973. /	Arch Toxik	ol. 30, 127-	38								
							Mean						
							Conc. TCE		Conc				
							- Expired	Conc.	total	Conc.		Conc.	
			Conc.	Std Dev		Time from	Air after	TCE in	TCOH in	TCA in		TCOH in	Cum
			- TCE -	Inspired	щ С	start of	Exposure	Blood	Blood	Urine	Cum TCA	Urine	TCOH in
Subject A (#,m,f) (y	Age w	(kg)	air (ppm)	(+ppm)	j (j	exposure (hr)	(ppm) Fig.1or 3	(mg/l) I bl. 1	(mg/l) Tbl. 1	(mg/# of hrs) Tbl.2	in Urine (mg)	(mg/# of hrs) Tbl.2	Grine (mg)
						144.00			0.18				
						148.00				47.81		24.52	
						168.00			not det.				
						172.00				48.33		6.13	
						192.00			0.05				
						196.00				35.77		3.43	
						216.00			0.03				
						220.00				18.71		2.56	
						240.00			0.00				
						244.00				18.33		1.32	
						264.00			0.00				
						268.00				16.35		0.71	
						388 (24 hr							
				٠		value)				2.18		0.07	
M (sex-		,			y 5								
NA)			48.00	3.00	days			00.00	0.00	00.00		0.00	
						4.00		0.17	2.85				
						5.00		0.17	2.39				
						8.00		0.00	2.28				
						00.6		00.00	2.05				
						10.00		0.00	1.98				
						24.00		00.00	1.30				
						28.00		0.34	2.91	2.93		116.10	
						33.00		0.00	2.43				
						48.00		0.00	0.83				
						52.00		0.27		9.26		130.58	
	-					27.00		0.00	2.26				

Metabolites Data Over Time: Trichloroethylene Dosing Studies

			Cum	TCOH in	Urine	(mg)																							
			Conc. TCOH in		4_	hrs) Tbl.2		117.11			95.13				97.56		41.05		40.92		3.07		0.93		0.39		0.13		0.00
				Cum TCA	in Urine	(mg)																							
			Conc. TCA in	Urine	(mg/# of	hrs) Tbl.2		17.29			18.61				63.84		57.88		17.09		19.87		12.08		11.74		8.54		3.56
/		Conc	total TCOH in	Blood	(mg/l)		0.47	2.32	2.42	0.76	2.87	2.52	2.29	1.01		0.20		0.03		not det.		0.00		0.00		0.00			
			Conc. TCE in	Blood	(mg/l) Tbl.	1	00.0	not det.	0.00	0.00	not det.	0.00	0.00																
	Mean	Conc. TCE	- Expired Air after	Exposure	(mdd)	Fig.1or3																							
			Time from	start of	exposure	(hr)	72.00	76.00	81.00	96.00	100.00	104.00	105.00	120.00	124.00	144.00	148.00	168.00	172.00	192.00	196.00	216.00	220.00	240.00	244.00	264.00	268.00	388 (24 hr	value)
-38				Exp	Dur	(hr)																							
ol. 30, 127-38			Std Dev	Inspired	air	(+bbm)																							
Arch Toxik			Conc.	TCE -	Inspired	air (ppm)																					The same of the sa		
A 1973.				Mean	Weight	(kg)																							
& Eben					Age	(yrs)																							
Kimmerle G & Eben A 1973. Arch Toxiko					Subject	(#,m,f)																							

Metabolites Data Over Time: Trichloroethylene Dosing Studies

206.81	27.392	7.55	1.0					22						
153.877	20.381							14						
55.1603	7.306			6.04	0.00072	0.0571242	51.983465	9						
				3.775	0.00064	0.0591909		4						
								0	755	4	140	69.7	29.8	4 males
				2.73				216						
				5.07				144						
				8.58				72						
160.653	41.193	26.52	6.8					70						
158.145	40.55							62						
153.449	39.346							54						
				8.97	3.4E-05	0.0025742	0.5805921	48						
149.175	38.25	18.72	4.8					46						
143.516	36.799							38						
133.676	34.276							30						
				8.19	9.1E-05	0.0105762	2.0320725	24						
113.471	29.095	7.02	1.8					22						
86.4318	22.162							14						
35.3262	9:058			5.07	0.00042	0.0393598	28.521588	9						
				3.51	0.00044	0.042585	188.69244	4						
0	0	0	0					0	390	4	20	2.69	29.8	4 males
(mg)	8 hr (%)	(mg)	8 hr (%)	Fig 6a	Fig 4a	5a	3a	(hr)	(mg) Tbl3	Ę.		4 4		(#,m,f)
TCOH in	of TCOH	TCA in	TCA excreted/	poold	poold	Exposure (nom) Fig.	Exposure (ppm) Fig	of	Dose	Exp F	Inspired	Weight	Age (vrs)	, diding
total	Cum. %	Conc.	Cum. % of	<u>=</u>	TCOH in	Air after	Air after	beginning	-		TCE -			
Conc.		Cum.		Conc.		Expired	- Expired	Time from			Conc.			
Cum				TCA		Conc. TCOH -	Mean Conc. TCE							
						Mean								
								Monster, G., et al. 1976. Arch. Occup. Environ. Hlth (38)87-102	nviron. HIt	up. E	Arch. Oc	al. 1976.	G., et	Monster,

Attachment |

Metabolites Data Over Time: Trichloroethylene Dosing Studies

				4.53				216						
				7.55				144						
				11.325	1.3E-05		0.4214876	72						
292.132	38.693	42.28	5.6					70						
289.505	38.345							62						
283.978	37.613							54						
				12.835	5.8E-05	0.004073	0.983471	48						
276.451	36.616	24.16	3.2					46						
265.277	35.136							38						
243.329	32.229							30						
				11.325	0.00025	0.0184612	3.3719004	24						
Urine (mg)	excreted/ 8 hr (%)	Urine (mg)	excreted/ 8 hr (%)	(mg/l) Fig 6a	(mg/l) Fig 4a	(ppm) Fig 5a	(ppm) Fig 3a	exposure (hr)	Estimate (mg) Tbl3	Pur (h)	air (ppm)	(kg) Tbl 4	(yrs) Tbl 4	Subject (yrs) (kg) Tbl air D (#,m,f) Tbl 4 4 (ppm) (f
total TCOH in	Cum. % of TCOH	Conc. TCA in	Cum. % of TCA	in blood	TCOH in blood	Air after Exposure	Air after Exposure	beginning of		Exp	ICE - Inspired	Mean Weight	Age	
Conc.		Cum.		Conc.		Expired	•	Time from			Conc.			
Cum.				TCA		тсон-	Conc. TCE							
						Mean Conc.	Mean							
								Monster, G., et al. 1976. Arch. Occup. Environ. Hith (38)87-102	Environ. HIt	cnb.	Arch. Oc	al. 1976.	G., et	Monster

Metabolites Data Over Time: Trichloroethylene Dosing Studies

	Cum. Conc. Total TCOH in Urine (mg)								100.807							231.702							373.221						
	Total TCOH excreted (24 hr specimens) (mg) Fig 2								100.807							130.895							141.519						
	Cum. Conc. TCA in Urine (mg)					And the second s			18.44							55.541							120.906						
	TCA excreted (24 hr specimens) (mg) Fig 2								18.44			and a second sec				37.101							65.365						
	Conc. Free TCOH in Blood (mg/l) Fig 1			0.018		1.705		1.329			0.518		2.074		1.353			0.612		2.198		1.499			0.715		2.255		1.515
	Conc. TCA in Plasma (mg/l) Fig 1		5.687		14.154		17.725			18.228		27.441		30.026			28.783		37.621		38.848			36.443		43.685		44.989	
	Time from beginning of exposure (hr)		7	6	13	16	17	20	24	32	34	37	40	42	45	48	55	57	62	65	99	69	72	81	82	88	06	93	94
5-40 Fig 1-2	Exposure Duration	6 hr/dy, 5	50 dy					,																					
Muller G et al. 1972, Arch Toxikol (29) 335-40	Conc. TCE - Inspired air (ppm)		20																										
, Arch To	Mean Weight (kg)		Α̈́																										
al. 1972	Age (yrs)		5 NA																										
Muller G et	Subject (#,m,f)		ĽΩ																										

Metabolites Data Over Time: Trichloroethylene Dosing Studies

	Cum. Conc. Total TCOH in Urine (mg)	519.23							672.799			706.546			710.96			713.85							
	Total TCOH excreted (24 hr specimens) (mg) Fig 2	146.009							153.569			33.747			4.414			2.89							
	Cum. Conc. TCA in Urine (mg)	193.905							292.194			376.842			421.648			446.046		465.91		479.715		485.283	
	TCA excreted (24 hr specimens) (mg) Fig 2	72.999							98.289			84.648			44.806			24.398		19.864		13.805		5.568	
	Conc. Free TCOH in Blood (mg/l) Fig 1			0.658		2.265		1.633		0.677			0.213				0.08								
	Conc. TCA in Plasma (mg/l) Fig 1		42.645		49.027		51.482				49.608			43.506		29.45			19.701		15.003		11.531		5.994
	Time from beginning of exposure (hr)	96 .	105	106	112	114	116	118	120	132	132	144	153	156	192	212	217	240	260	288	299	336	356	408	429
5-40 Fig 1-2	Exposure Duration	*																							
Muller G et al. 1972, Arch Toxikol (29) 335-40	Conc. TCE - Inspired air (ppm)																								
, Arch Tox	Mean Weight (kg)																			į					
tal. 1972	Age (yrs)																								
Muller G e	Subject (#,m,f)																								

Metabolites Data Over Time:	Trichloroethylene Dosing Studies

	Avg.Cum Conc. total TCOH in	Urine (mg) Fig 2b																244.774		300.78		315.90
	***	(mg/l) rig t 2a	2.42	7.66	AN	11.88	A'N	18.79	AN	¥	AN	AA	26.17	AN	28.59	35.35	38.23	46.65	43.68	39.26	37.44	
	- 4	m Urine (mg) Fig 2b											-					43.215		88.13		133.53
		(ug/mi) rig 2a (0.76	1.74	2.51	3.43	4.18	5.75	5.02	4.47	4.47	4.84	4.42	3.54	3.59	3.03	2.61	1.24	08.0	0.33	0.24	AN
	Avg. Conc. TCE in Blood	(ug/mi) rig	19.0	1.05	0.93	0.83	1.02		0.72	0.52	AN AN	A A	0.31	0.21	0.18	0.13	0.11	0.07	0.04	0.03	0.02	Ą
	Conc. TCE in Aveolar	Fig 1	9.02	9.02	13.44	14.27	18.34	14.06	5.37	3.94	3.91	2.64	2.52	1.50	0.76	0.37	0.37	0.19	0.10	90.06	90.06	
9	Time from beginning of	(hr)	0.97	1.92	2.95	3.97	5.00	5.95	6.38	6.53	7.09	7.03	7.98	8.99	10.00	12.01	14.07	24.55	35.59	48.54	59.51	72.00
y. 1, 2, 3p.28		Duration	00.9																			
)283-295, Fig	Conc. TCE	(bpm)	100						,													
7 Toxicol (32		Weight (kg)	NA																			
Muller G, et al. 1974, Arch Toxicol (32)283-295, Fig. 1, 2, 3p.286		Age (yrs)	20-30													•						
Muller G, et	S. History	(#,m or f)	5 m																			

Metabolites Data Over Time: Trichloroethylene Dosing Studies

	SEM of	Plasma																									
	Conc. TCA in Plasma S		5.629	14.23	17.585		18.327	27.672	30.398		28.781	37.704	39.144		36.45	43.839	45.069		42.906	49.181	51.712		49.746		43.644		20000
	Total TCOH in blood																										
	SEM of Total TCOH	(lm/gn) (lm/gn)																									
	Conc. free TCOH in Blood (ua/ml) Fia	1b	0	1.69	1.312		0.432	2.057	1.306		0.599	2.173	1.493		0.712	2.237	1.503		0.64	2.246	1.615		0.656		0.185		0900
	TCOG in blood (ua/ml)																										
	Conc. Free TCE in Blood	(lm/gn)																									
	Mean Conc. TCE - Expired Air after Exposure	(mdd)																									
	Time from beginning of exposure	(hr)	6.432	13.752	17.664	24	31.56	38.592	42.864	48	55.992	62.88	66.504	72	81.504	87.864	91.608	92	105.96	111.624	115.368	120	130.56	144	153.984	192	209 832
173-189	Exposure	Duration	50 6 hr/d, 5 d																								
xicol (33).	Conc. TCE - Inspired air	(mdd)	20																								
, Arch To	Mean Weight	(kg)	62-77																								
ıl. 1975	Age	(yrs)	20-26																								
Muller et al. 1975, Arch Toxicol (33)173-189	Subject	(#,m,f)	males																								

Attachment I

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Muller et						
Subject (#,m,f)	TCA urinary excretion (mg/time)	Cumulative Conc. TCA in Urine (mg)	Standard Deviation TCA in Urine (+	Total TCOH urinary excretion (mg)	Cumulative Conc. total TCOH in Urine (mg)	Standard Deviation TCOH in Urine (+
males		0			0	
	18.75	18.75	2.9825	101.899	101.899	13.0235
	37.98	56.73	4.2135	133.069	234.968	17.1825
	66.172	122.902	4.9605	143.975	378.943	7.055
	73.705	196.607	7.8065	149.511	528.454	22.2365
	99.253	295.86	6.967	156.983	685.437	17.59
	86.119	381.979	11.701	34.809	720.246	4.518
	45.375	427.354	4.3855	3.862	724.108	1.3635

Metabolites Data Over Time: Trichloroethylene Dosing Studies

				240								
				257.64							19.647	
				288								
				296.808							14.739	
				336								
			-	354.36							11.426	
				408								
				428.688							5.89	
		Conc.		Time from	Mean Conc.	Conc.		Conc.		Total	Conc.	
		TCE.		beginning	TCE - Expired	Free TCE	TCOG in	Free	SEM of	тсон	TCA in	
		ؾ		o	Air after	in Blood	poold	TCOH in	Total	poold ui	Plasma	SEM of
Subject Ag (#,m,f) (yr	Age weignt (yrs) (kg)	(ppm)	Exposure	exposure (hr)	(ppm)	(ug/ml) Fig 4	(ug/mı) Fig 7	(lm/gn)	(lm/gn)	(ug/ml) Fig 7	(ug/ml) Fig 6a	TCA in Plasma
males 20-26	26 62-77	100	9	1.025	6.555	0.804		0.999	0.0675			
				2.06	8.016						4.281	0.5
				3.024	9.934	1.019		2.397	0.196			
				4.045	10.702	1.38	0.689	3.348	0.2475	4.088	8.155	0.822
				5.035	13.444	1.112		3.657	0.2385			
				6.015	11.255	1.318	1.084	4.486	0.3525	5.666		
				6.168	6.558	0.957		4.539	0.3445		13.368	0.729
				6.329	5.298	0.744		4.481	0.3465			
				6.505	3.399	0.633		4.462	0.375			
				6.804		0.745		4.406	0.398			
				7.022	2.85	0.781		4.032	0.305			
				7.557	2.248	0.585	,	4.009	0.2865			
				8.004	2.233	0.44	0.88		0		17.852	1.5
	,			8.46								
				9.029	1.322	0.38		3.611	0.303			
				10.047	1.318	0.298		3.063	0.2325		19.607	0.805
				14.053	0.686	0.173		2.383	0.1835		21.491	1.0675
				24.077	0.566	0.065		1.057	0.09		28.998	0.805

Attachment I

Metabolites Data Over Time: Trichloroethylene Dosing Studies

	23.583	450.937	3.0255	2.255	726.363	1.4005
	19.663	470.6	2.843			
	13.403	484.003	2.4565			
	5.833	489.836	2.057			
100	TCA urinary excretion	Conc. TCA	Standard Deviation TCA in	Urinary excretion of total	Conc. total	Standard Deviation TCOH in
(#,m,f)	Fig 6	(mg)	mg/24 hrs)	(mg/hr)	Urine (mg)	mg/24 hrs)
males						
	0.251	0.251	0.1745	5.846	5.846	0.5365
				15.268	21.114	2.087
	0.917	1.168	0.2955			
				17.344	38.458	NA
	1.207	2.375	0.2965			
	1.943	4.318 NA	NA	17.521	55.979 NA	NA
	1.128	5.446	0.368	6.444	62.423	0.8725

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Nomiyama K & Nomiyama H. 1971, Arch. Arbeitmed. (28):37-48, Fig 1,3b, 3c,5,
S
beginning Mean % TCE of exposure TCE Retained
(hr) Retained (±%)
2.67 34.6
3.231
3.971
4.67
5.67
29:9
7.67
14.67
26.67
38.67
50.67
62.67
74.67
86.67
98.67
110.67
122.67
134.67
146.67
2.67 37.8
3.231
3.971

Attachment i

Metabolites Data Over Time: Trichloroethylene Dosing Studies

lomiyama l	K & No	miyama	H. 1971, Arc	ih. Arbe	Nomiyama K & Nomiyama H. 1971, Arch. Arbeitmed. (28):37-48, Fig 1,3b, 3c,5,	7-48, Fig 1,	3b, 3c,5,								
					****			Mean	Std Dev		·		Conc.	Std Dev	Cum
		Mean	Conc. TCE	Exp	Time from	Mean %	Std Dev	Conc. ICE Expired Air	Expired	TCA in	Std Dev TCA in	Cum	TCOH &	total TCOH in	Conc. Total
Subject (#,m,f) (Age (yrs)				of exposure (hr)	TCE Retained	Retained (+ %)	Exposure (ppm)	Exposure (± ppm)	(mg/12 hr)	mg/12 hrs)	Urine (mg)	Urine (mg/12 hr)	mg/12 hrs)	Urine (mg)
					4.67			9.19	1.91						
					29.67			5.44	0.56						
					6.67			5.01	1.12						
					7.67			3.92	0.98						
					14.67				•	15.99	8.15	15.99	63.92	35.26	63.92
					26.67					39.81	23.70	55.80	74.22	37.36	138.15
					38.67					40.16	16.30	95.96	42.62	12.55	180.76
					20.67					41.16	16.25	137.12	33.68	11.08	214.44
					62.67					39.12	5.75	176.24	16.17	6.13	230.61
					74.67					27.49	6.52	203.73	13.57	3.28	244.19
					86.67					24.53	10.79	228.26	8.74	3.90	252.93
					98.67					18.50	8.68	246.76	4.77	2.37	257.69
					110.67					17.73	4.87	264.49	6.01	2.39	263.70
					122.67					10.74	1.85	275.23	2.96	0.84	266.66
					134.67					11.18	2.83	286.41	4.34	1.94	271.00
					146.67					6.73	0.83	293.14	2.42	1.02	273.42
Note: used	Tanak	(a, 1968 a	approach for	TCOH	Note: used Tanaka, 1968 approach for TCOH analysis, which was subtracting tca from total trichlo-cpds for tcoh	ch was sub	tracting to	a from total t	trichlo-cpds	for tcoh					

Vomiyam	a H & N	omiyama	Nomiyama H & Nomiyama K 1979, Ind Hith (17)21-28 Fig. 1b, 1c	Ith (17)21-28	Fig. 1b, 1c							
					Mean Conc. TCE	Time from			Standard	Urinary		Standard
		Mean	Conc. TCE -		- Expired Air after	beginning of	Urinary excretion	Cumulative Conc. TCA	Deviation TCA in	excretion of total	Conc. total	Deviation TCOH in
Subject (#,m,f)	Age (yrs)	Weight (kg)	Inspired air (ppm)	Exposure Duration	Exposure (ppm)	exposure (hr)	of TCA (mg)	in Urine (mg)	Urine (± mg/24 hrs)	TCOH (mg)	TCOH in Urine (mg)	Urine (+ mg/24 hrs)
			250-380									
5 m	NA	NA	(mean = 315)	2.7		12	8.043	8.043		114.125	114.125	
						24	14.021	22.064		89.27	203.395	
						36	32.779	54.843		57.735	261.13	
						48	27.242	82.085		30.959	292.089	
						09	31.595	113.68		17.122	309.211	
						72	26.464	140.144		9.849	319.06	
						84	22.599	162.743		5.944	325.004	
			٠			96	16.844	179.587		4.228	329.232	
						108	14.034	193.621		3.348	332.58	
						120	10.75	204.371		1.516	334.096	
						132	7.88	212.251		2.354	336.45	
						144	6.764	219.015	111	1.247	337.697	111.1
Notes: T	COH and	alyzed usi	Notes: TCOH analyzed using Tanaka et Ikeda, 1968, Brit. J Ind Med (25)214-219	keda, 1968,	Brit. J Ind N	led (25)214-;	219					

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Г	_ E _	0		Г		33	l	8		Ι		9				1	1	Ī		2	22	ıÜ.	N	1	ø,	6
	Cum. Total TCOH in Urine (mg)	L				13.03		24.03				45.49					81.77			113.22	139.92	173.5	213.2	235.77	252.8	264.3
	Std. Dev. TCOH in Urine (± mg) Tbl	0				3.25		4.66				10.34					5.55			7.15	7.64	5.75	10.99	7.76	3.76	4.95
	Mean Conc Total S TCOH in Urine (mg) Tbl	0				13.03		11.00				21.46					36.28			31.45	26.70	33.58	39.70	22.57	17.03	11.50
	Cum. TCA in Urine (mg)	0				0.21		0.46				1.03					3.4			4.72	5.65	7.8	12.12	20.29	28.08	35.91
		0				0.18		0.08				0.27					1.57			0.61	0.26	0.74	1.31	3.05	1.84	1.48
	Mean Std. Conc. Dev. TCA in TCA in Urine Urine (± mg) Tbi mg) Tbi	0				0.21		0.25				0.57					2.37			1.32	0.93	2.15	4.32	8.17	7.79	7.83
	Std. Dev. TCE in Blood (± mg/24 hrs) Fig	٨×	ΑA	0.082	0.041	0.049	0.04	0.026		0.027		0.022			0.014		0.012		0.007							
	Conc. TCE in Blood (ug/ml) Fig 1	1.823 NA	1.018 NA	0.673	0.445	0.294	0.221	0.179		0.144		0.113			0.078		0.051		0.035							
	Std Dev TCE - Expired Air after Exposure	0.051	0.01		0.009	0.004	0.001	0.003	0.003	0.002	0.002	0.001	0.002	0.002	0.002	0.001	0.001	0.001	0							
	Mean Conc. TCE Expired Air after Exposure (mg/l)	0.256	0.041		0.026	0.017	0.013	0.01	0.008	0.008	0.007	0.006	0.006	0.006	0.005	0.004	0.003	0.003	0.002							
	% Absorbed TCE expired	20 - 30																								
6-63	Time from beginning of exposure (hr)	00:00	0.02	0.14	0.52	1.00	1.51	2.00	2.53	3.04	3.53	4.00	4.49	5.00	5.98	6.99	8.00	9.07	10.01	12.00	16.00	24.00	36.00	48.00	00.09	72.00
d. 34, 5	Exp Dur (hr)	4																								
Sato A, et al. 1977. Brit J Indust Med. 34, 56-63	Conc. TCE - Inspired air (ppm)	100																								
77. Brit J	Mean Weight (kg)	61.6																								
al. 19	Age (yrs)	20-21																								
Sato A, et	Subject (#,m,f)	4 males																								

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Sato A, et	tal. 19	77. Brit J	Sato A, et al. 1977. Brit J Indust Med. 34, 56-63	d. 34, 5	.6-63											
							Mean	Std Dev		Std. Dev.	Mean	Std.		Mean		
					Time from		Conc. TCE	TCE.	Conc.	TCE in		Dev.		Total		Cum.
			Conc.	1	beginning		Expired Air	Expired	TCE in	Blood (+ TCA in		TCA in	Cum.	TCOH in	TCOH in TCOH in	Total
Subject	Age	Wean	Weight Inspired	Exp	of	% Absorbed	Fynosiire	Air after Exposure	Blood (IIII/ml)	mg/24 Urine Urine (± TCA in hrs) Fig (mg) Th mg) Th Illine	Urine (mg) Thi	Urine (± TCA in ma) Thi line		Urine	Urine (+ TCOH in ma) Thi	TCOH in
(#,m,f)	(yrs)	(kg)	air (ppm)		(hr)	TCE expired	(mg/l)	(+mg/l)	Fig 1	1	3	8	-	3	8	(mg)
					84.00						6.95	2.64	42.86	6.52	4.62	270.82
					96.00						4.34	0.91	47.2	3.88	1.58	274.7
					108.00						4.56	1.22	51.76	00.9	1.39	280.7
					120.00						3.32	0.93	55.08	3.14	1.85	283.84
					132.00						3.23	1.18	58.31	2.17	1.29	286.01
					144.00						4.00	2.30	62.31	1.65	0.54	287.66
					156.00						2.44	0.32	64.75	0.88	0.70	288.54
					168.00						1.44	0.53	66.19	1.08	08.0	289.62
					180.00						2.55	0.32	68.74	1.17	0.53	290.79

Attachment I

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Stewart RD, et al.	D, et al.	1970. Arch E	1970. Arch Environ Health 20, 64-71	20, 64-71							
						M	Mean Conc. TCE -			Succi	
					i	Conc. TCE	Breath			total	Cum.
		Conc. TCE		beginning	Time from end of	Expired Air after	during & after	TCA in	Cum. TCA	TCOH in Urine	total TCOH in
Experi- ment #	Subject (#,m,f)	Inspired air (ppm)	Exposure Duration (hr)	exposure (hr)	exposure (hr)	Exposure (ppm)	Exposure (ppm)	Urine (mg/24 hr)	in urine (mg)	(mg/24 hr)	urine (mg)
1.0	5, sex-NA	200.0	7.0	26.6	19.6	3.6					
			OTTO STATE OF THE	31.0	24.0			31.0	31.0	147.0	147.0
				33.5	26.5	2.4					
				46.9	39.9	2.1					
				55.0	48.0			48.0	79.0	71.0	218.0
				70.2	63.2	1.1					
				79.0	72.0			33.0	112.0	94.0	312.0
				94.6	87.6	0.7					
2 thru 6	5-6, sex-NA	198.0	198.0 7/day, 5 days	0.0			0.0				
				3.0			76.0				
				3.5			10.3				
				7.5			10.8				
				8.0	-		8.3				
				10.0			5.1				
				13.0			3.3				
				24.0			1.2	51.0	51.0	308.0	308.0
				27.0			NA				
				27.5			10.9				
				31.5			11.2				
				32.0			9.4				
				34.0			4.4				
				37.0			2.8				
				48.0			1.6	175.0	226.0	359.0	0.799
				51.0			75.0				
				51.5			11.5				

Attachment I

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Stewart RD, et al.	t al.	1970. Arch E	1970. Arch Environ Health 20, 64-71	20, 64-71							
	,						Mean Conc. TCE -				
				Time from		Mean Conc. TCF	Alveolar			Conc.	Ē
				beginning	Time from		during &			TCOH in	total
		Conc. TCE		o	end of	after	after	TCA in	Cum. TCA	Orine	TCOH in
Experi- S	Subject (#,m,f)	Inspired air (ppm)	Exposure Duration (hr)	exposure (hr)	exposure (hr)	Exposure (ppm)	Exposure (ppm)	Urine (mg/24 hr)	in urine (ma)	(mg/24 hr)	urine (ma)
\vdash				55.5			12.0				5
				56.0			9.0				
				58.0			3.5				
				61.0			2.4				
				72.0			1.6	229.0	455.0	399.0	1066.0
				75.0			NA				
				75.5			8.4				
				79.5			8.7				
				80.0			7.7				
				82.0			3.5				
				83.0			2.9				
				0.96			1.6	306.0	761.0	538.0	1604.0
				99.0			NA				
				99.5			8.5				
				103.5			8.7				
				104.0			7.9				
				106.0			3.6				
				109.0			2.9				
				120.0				391.0	1152.0	405.0	2009.0
				136.0	16.2	3.5	_				
				144.0	24.0			255.0	1407.0	145.0	2154.0
				168.0	48.0			194.0	1601.0	149.0	2303.0
				184.0		1.2					
				192.0				114.0	1715.0	52.0	2355.0
				208.0	88.1	0.8					
				216.0	96.0			88.0	1803.0	40.0	2395.0

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Stewart RD, et al.	al.	1970. Arch E	1970. Arch Environ Health 20, 64-71	20, 64-71							
				Time from beginning	ΪΞ	· Sã	Mean Conc. TCE - Alveolar Breath during &			Conc. total TCOH in	Cum. total
Experi- Su ment # (#	Subject (#,m,f)	Conc. 1CE Inspired air (ppm)	Exposure Duration (hr)	of exposure (hr)	end of exposure (hr)	after Exposure (ppm)	after Exposure (ppm)	TCA in Urine (mg/24 hr)	Cum. TCA in urine (mg)	Urine (mg/24 hr)	TCOH in urine (mg)
				240.0	120.0			50.0	1853.0	15.0	2410.0
				264.0	144.0			0.79	1920.0	4.0	2414.0
				336.0	216.0			29.0		14.0	
				408.0	288.0			8.0		14.0	
7	V 4	0000	7	24.0	0.70			45.0	75.0	0.00	0.050
7.0.4, SGX-147	VN-V	0.00		55.0	48.0			45.0		143.0	362.0
				79.0	72.0			104.0		100.0	462.0
8.0 2, sex-NA	N-X	198.0	3.5	23.2	19.7	2.0					
				27.5	24.0			72.0	72.0	135.0	135.0
				30.2	26.7	1.5					
				51.5	48.0			63.0	135.0	22.0	192.0
				75.5	72.0			54.0	189.0	31.0	223.0
9.0 2 s	2 sex-NA	202.0	1.0	1.9	0.0	6.4					
			Control of the Contro	2.8	1.8	4.2					
			-	4.9	3.9	3.0					
				8.9	7.9	1.2					
				24.6	23.6	0.5					
				25.0	24.0			30.0	30.0	17.0	17.0
				39.0	38.0	0.3					
				49.0	48.0			45.0	75.0	0.0	17.0
				73.0	72.0			32.0	107.0	0.0	17.0

Attachment I

Metabolites Data Over Time: Trichloroethylene Dosing Studies

Stewart RD, et al.	D, et al.	1970. Arch E	1970. Arch Environ Health 20, 64-71	20, 64-71							
Experi- ment#	Subject (#,m,f)	Conc. TCE Inspired air (ppm)	Exposure Duration (hr)	Time from beginning of exposure (hr)	Time from beginning Time from Expired Air of end of after exposure exposure (hr) (hr) (ppm)	Mean Conc. TCE Expired Air after Exposure (ppm)	Mean Conc. TCE - Alveolar Breath during & after Exposure (ppm)	TCA in Urine (mg/24 hr)	Cum. TCA in urine (mg)	Conc. total TCOH in Urine (mg/24 hr)	Cum. total TCOH in urine (mg)
10, 1st	VN XOO	100		7		7.7					
oppodyo	Z, 307-147	200		4.8		5.9					
				5.5		4.9					
				9.1	5.1	3.4					
				12.9	8.9	2.3					
				23.6	19.6	1.1					
				28.0	24.0			0.69	0.69	163.0	163.0
				47.8	43.8	9.0					
				52.0	48.0			49.0	118.0	25.0	188.0
				76.0	72.0			0.99	184.0	4.0	192.0
10, repeat											
exposure				28.0	24.0			52.0	52.0	101.0	101.0
				52.0	48.0			57.0		13.0	114.0
				76.0	72.0			42.0	151.0	9.0	123.0

i riebig (et al	. 1976, Z		yg, I Abt (Orig B (163)38		Mean Conc.		Median	
		Mean	Conc. TCE - Inspired	Std Dev Inspired		Time from beginning of		Median Conc. TCE in	Conc. TCOH in	Media Conc TCA is
Subject	Age	Weight	air	air (+	Exposure	exposure	Exposure	Blood	Blood	Blood
(#,m,f)	(yrs)	(kg)	(ppm)	ppm)	Duration	(hr)	(ppm)	(mg/l)	(mg/l)	(mg/l)
3 m & 4 f	NA	NA	135.6	15.1	6 hr/d, day#1	0	0-1	0.00	0.00	0.00
						6	12.3-31.9	1.31	6.20	12.14
			101	14.8	6 hr/d, day#2	24	1-4.6	1.11	3.83	32.81
						30	6.9-15.4	0.57	7.52	50.68
			104.1	16.9	6 hr/d, day#3	48	0-1	1.49	3.08	32.44
						54	6.2-15.4	1.23	7.70	51.31
			102	19.8	6 hr/d, day#4	72	0-1	2.05	3.16	51.29
						78	10.0-15.8	1.32	9.58	55.28
···			99.8	15.8	6 hr/d, day#5	96	1.0-3.9	1.66	5.38	49.42
						102	8.5-13-9	1.38	9.79	65.22
		·				166	NA	0.91	0.58	28.92
					ning and end			h day, for	5 days.	
Last m	easur	ement m	ade 64 hr	s after en	d of exposure	s (at hour '	166)			
Fig. 15										
	NA	NA	135.6	15.1	6 hr/d, day#1	0			0.03	
			101			6			7.48	
			101	14.8	6 hr/d, day#2	24			3.69	
			404.4	40.0	01./1./. #0	30			7.35	
			104.1	16.9	6 hr/d, day#3	48			2.88	
			102	40.0	C b = / = - - - - - - - - -	54			6.56	
			102	19.8	6 hr/d, day#4	72			2.47	-
			99.8	15.8	6 hr/d, day#5	78			6.84	
		•	99.0	15.6	6 nr/u, day#5	96 102			3.35	
			,			102			6.08	
f, sub.#	NA	NA	135.6	15.1	6 hr/d, day#1	0			0.08	
						6			4.02	
			101	14.8	6 hr/d, day#2	24			2.33	
						30			5.57	
			104.1	16.9	6 hr/d, day#3	48			2.43	
						54			5.69	
			102	19.8	6 hr/d, day#4	72			3.11	
						78			9.03	
			99.8	15.8	6 hr/d, day#5	96			5.54	
						102			9.01	
f, sub#	NA	NA	135.6	15.1	6 hr/d, day#1	0			0.04	
						6			4.56	
			101	14.8	6 hr/d, day#2	24			4.09	
						30			8.10	
			104.1	16.9	6 hr/d, day#3	48			6.23	

Subject	Age	Mean Weight	Conc. TCE - Inspired air	Std Dev Inspired air (<u>+</u>	Exposure Duration	Time from beginning of exposure (hr)	Mean Conc. TCE -	Median Conc. TCE in Blood (mg/l)	Median Conc. TCOH in Blood (mg/l)	Median Conc. TCA in Blood (mg/l)
(#,m,f)	(yrs)	(kg)	(ppm)	ppm)	Duration	54	(рр.п)	(4.19.1)	11.82	, ,
			100	40.0	Chald doubte	72			6.51	
			102	19.8	6 hr/d, day#4	78			13.15	
			00.0	45.0	6 hr/d, day#5	96			5.52	
			99.8	15.8	6 fill/u, uay#3	102			9.95	
						166			1.48	
						100				
			405.0	45.4	Chrid dou#1	0			0.04	
#7 Fig.	NA	NA	135.6	15.1	6 hr/d, day#1	6			6.04	
			101	44.0	6 hr/d, day#2	24			1.16	
			101	14.8	6 nr/u, uay#2	30			6.51	
			404.4	40.0	6 hr/d, day#3	48			3.21	
			104.1	16.9	6 nr/a, day#3	54			7.59	
			400	40.0	Chald doutt	72			1.94	
			102	19.8	6 hr/d, day#4	78	·		8.86	<u> </u>
			00.0	45.0	6 hr/d, day#5	96			2.17	
			99.8	15.8	6 H/u, day#5	102			7.70	
						166			0.13	
						100	-		-	
			405.0	15.1	6 hr/d, day#1	0			0.00	
m, Sub#	NA	NA	135.6	15.1	6 m/u, uay#1	6			4.75	
			404	14.8	6 hr/d, day#2	24			1.21	
	Ĺ		101	14.0	O III/u, uay#2	30			3.42	
			404.4	16.9	6 hr/d, day#3				2.74	
			104.1	10.9	6 III/u, uay#3	54			6.40	
			- 400	19.8	6 hr/d, day#4				5.18	
			102	19.0	o III/u, uay ii i	78			10.75	
		-	00.9	15.8	6 hr/d, day#5				7.85	
	-		99.8	15.6	o III/u, day#0	102			13.78	
						166			0.10	
						100		,		
0.1."	ALA.	BIA	135.6	15.1	6 hr/d, day#1	0			0.00	
m, Sub#	NA	NA	133.0	10.1	J III/G, Gay#1	6			6.01	
	-	-	101	14.8	6 hr/d, day#2				4.51	
		-	101	17.0	Jina, dayaz	30			14.02	
			104.1	16.9	6 hr/d, day#3				5.01	
		-	104.1	10.0	5 m. a, aayn o	54			13.00	
			102	19.8	6 hr/d, day#4		1		4.74	
			102	13.0	5 m/a, aayn 1	78			12.88	
		-	99.8	15.8	6 hr/d, day#5				5.27	
			33.0	10.0	3 4, 44, 70	102			12.02	

ATTACHMENT II

	Age		isposit, 12, 375-90 Fig	Time from start of	Conc DCA in
Subjects	(yr)	Weight (kg)	Dose (mg/kg)	exposure (hr)	plasma (mg/l)
4		tub.in. 400/	0		
1 volunteer), sex	10 45	within 10%	Crossover study-50	0.1	44
NA .	18-45	of ideal	mg/kg (oral) Fig 1	0.1	11.
				0.3	24.
				0.6	75.
				0.9	90.
				1.1	115
				1.3	138
				1.6	140
				1.8	135.
				1.0	133.
				2.1	137
				2.6	120.
				3.1	114.
				3.6	99
				4.1	106
				4.6	119
				5.0	80
				5.6	69
				6.1	64
				7.0	54
				8.0	50
				9.0	42
				10.0	41
				11.0	35
				12.0	31
ame volunteer as		within 10%	Crossover study-50 mg/kg (oral + vit. B1)		
bove	18-45	of ideal	Fig. 1	0.0	-0
				0.1	20
				0.2	47
	-			0.4	50
				0.5	55
				0.6	57
	 			0.8	71
		1		0.9	72
	-			1.0	94
				1.3	104
	 			1.5	127
				2.6	154
	-			3.1	158

	Age		isposit, 12, 375-90 Fig	Time from start of	Conc DCA in
Subjects	(yr)	Weight (kg)	Dose (mg/kg)	exposure (hr)	plasma (mg/l)
Cabjeoto	(3.7	1101911 (119)	() ()	3.6	149.9
	-			4.1	148.0
				4.6	152.1
	-			5.1	150.9
				5.6	149.0
				6.1	143.0
				7.1	137.
	-			8.0	146.1
				9.0	146.4
				10.0	127.3
			Crossover study-50		
same volunteer as above			mg/kg by IV Fig 1	5.1	148.4
above			ingrig by it ing i	5.6	145.0
				6.1	147.6
				7.1	140.4
	-			8.1	147.3
				9.0	143.3
				10.0	136.5
				11.0	135.0
				12.0	135.8
				11.0	127.7
			(4 days between Crossover treatments)	12.0	. 128.3
		within 10%	PK study-50 mg/kg		
1 male	18-45	of ideal	(oral) Fig 2	0.0	0.3
				0.1	15.9
				0.2	41.1
				0.4	63.9
				0.5	74.9
				0.8	90.3
				0.9	70.7 73.2
	ļ	<u> </u>		1.0 1.3	97.3
		-		1.3	82.3
				1.8	73.8
	-			2.1	68.
	-	-		2.6	59.9
	-			3.0	45.2
	-			3.5	37.0
	-			4.0	34.4
				4.6	43.3

Curry on, et al.		marin. Drug L	Disposit, 12, 375-90 Fig.		0 004 :
	Age			Time from start of	Conc DCA in
Subjects	(yr)	Weight (kg)	Dose (mg/kg)	exposure (hr)	plasma (mg/l)
				5.0	22.6
				5.5	14.9
				6.0	7.8
				7.0	5.4
				8.0	6.7
				9.1	4.7
				10.0	6.1
				11.0	6.5
				12.0	3.4
		within 10%	PK study-50 mg/kg (iv)		
1 female	18-45	of ideal	Fig. 3	0.0	-0.1
				0.1	20.0
				0.3	84.5
	-			0.4	130.2
				0.5	170.7
				0.7	162.7
				0.8	165.5
				0.9	147.8
				1.0	134.7
				1.5	127.7
				2.0	114.3
				2.5	93.7
				3.5	47.0
				5.0	16.7
				6.0	5.4
				9.0	-0.1
		<u> </u>		· ·	
		within 10%	M/F study-assume 50		47.0
4 males	18-45	of ideal	mg/kg by IV	0.2	47.2
				0.3	103.8
				0.4	152.8
				0.5	179.0
				0.8	155.1
				0.9	150.4 146.3
				1.0	146.3
				1.5 2.0	119.4
		-		2.5	102.2
				3.5	83.2
				4.9	48.7
				5.9	31.5
				9.0	10.1
				10.0	7.6

	Age			Time from start of	Conc DCA in
Subjects	(yr)	Weight (kg)	Dose (mg/kg)	exposure (hr)	plasma (mg/l)
				11.0	7.7
				12.0	6.8
4 females	18-45	within 10% of ideal	M/F study-assume 50 mg/kg by IV	0.0	-0.1
				0.1	38.4
				0.3	78.4
				0.4	112.6
				0.6	166.2
				0.8	146.9
				1.0	141.8
				1.2	136.0
				1.5	118.2
			-	2.0	103.4
				2.5	89.5
				3.5	63.2
				4.9	26.0
				5.9	10.1
				9.0	-0.5
				10.0	0.1
				11.0	0.3
				12.0	-0.6
		within 10%	Multiple dose study-		
1 female	18-45	of ideal	assume 50 mg/kg	2.0	158.4
1 lemale	10-40	Origoni	accame co mg.ng	3.0	97.8
· · · · · · · · · · · · · · · · · · ·				4.0	49.4
				5.0	16.6
· · · · · · · · · · · · · · · · · · ·			Second dose (8		
(same female as			weeks)	3.0	105.8
above)			weeks)	5.1	40.8
				6.2	17.0
				7.2	6.0
(same female as above)			Third dose (6 weeks)	2.1	133.2
a				3.2	116.6
				4.0	78.2
				6.0	34.6
				7.0	24.9

				ci, 69(4) 419. Time from	,		
				start of 20		Urinary	Urinary
				min.	Conc DCA	excretion	excretion
	A ===	Woight	Dose	infusion of		of DCA	of total
Out in a fa	Age	Weight			in plasma		
Subjects	(yr)	(kg)	(mg/kg)	DCA (hr)	(mg/l)	(mg)	TCOH (mg
Subject 1	42	69.5	10	0.33	24.7		
ounjour.				1	3.27		
				2	0.304	, , , , , , , , , , , , , , , , , , ,	
				3	0.086		
				4	<0.04		
				6	<0.04		
				8	<0.04		
				10	<0.04		
				12	<0.04		
				24	<0.04		
				32	<0.04		
				48	<0.04		
Subject 2	38	69.1	10	0.33	19.9		
				1	4.44		
				2	0.585		
				3	0.117		
				4	<0.04	· ·	
				6	<0.04	· · · · · · · · · · · · · · · · · · ·	
				8	sample lost		
				10	<0.04		
		•		12	<0.04		
				24	<0.04		
	1	-		32	<0.04	-	
				48	<0.04		
Subject 3	52	80.0	20	0.33	57.3		
		· •		1	29.3		
				2	5.96		
				3	0.623		
				4	0.140		
				6	<0.04		
				8	<0.04		
				10	<0.04		
				12	<0.04		
		·		24	<0.04		
				32	<0.04		
				48	<0.04		

Subjects	Age (yr)	Weight (kg)	Dose (mg/kg)	Time from start of 20 min. infusion of DCA (hr)	Conc DCA in plasma (mg/l)	Urinary excretion of DCA (mg)	Urinary excretion of total TCOH (mg
Subject 4	26	83.3	20	0.33	74.9		
Subject 4		00.0		1	46.8		
				2	11.2		
				3	4.68		
				4	0.608		
				6	0.175		
				8	<0.04		
				10	<0.04		
				12	<0.04		
				24	<0.04		
				32	<0.04		
				48	<0.04		

Subjects	Age (yr)	Weight (kg)	Dose (mg/kg)	Time from start of 30 min. infusion of DCA (hr)	Concentration DCA in plasma (mg/l) Fig. 4b
1 subj. sex?	Approximately 30	NA	35	0	0
				0.0	0.0
				0.5	117.0
				0.6	128.0
				0.6	117.0
				0.8	117.0
				1.0	119.0
				1.3	112.0
				1.7	89.0
				1.8	82.0
				2.0	64.0
				2.5	42.0
				2.9	25.0
				3.4	14.0
				3.9	7.0
				4.5	4.0
				5.0	2.0
				5.5	0.0

ATTACHMENT III

Metabolites Data Over Time: Sodium Trichloroacetate Dosing Study

Metabolites Data Over Time: Sodium Trichloroacetate Dosing Study

Subjects	Age	Dose of TCA Na (mg/kg)	Time from ingestion of TCA-Na (hr)	Conc TCA in plasma (ug/ml)	Urinary excretion of TCA (mg)	Urinary excretion of total TCOH (mg)
3 m	20-30	3	0.4	22.9		
			0.9	29.5		
			2.9	23.0		
			5.6	24.1		
			10.0	21.8		
			23.7	17.2	41.7	ND
			33.6	15.7		
			48.7	14.2	15.7	ND
			58.7	11.5		
			71.9	8.9	14.8	ND
			82.2	8.4		
			95.9	5.4	12.4	ND
			106.2	5.8		
			120.0	5.0	9.1	ND
			147.7	3.4	7.0	
			168.0	2.5	3.7	
ND = not de	etected					

ATTACHMENT IV

Metabolites Data Over Time: Trichloroethanol Dosing Studies

Metabolites Data Over Time: Trichloroethanol Dosing Studies

Subject (#,m,f)	Age	Dose Chloral Hydrate Ingested (mg/kg)	Time from ingestion (hr)	Conc. TCA in plasma (mg/l)	Conc. total TCOH in plasma (mg/l)	Conc. Free TCOH in plasma (mg/l)	Cum. Percentage of dose excreted as urinary total TCOH (%)
M, 1, m	NA	15		L	19	13	
			0.5	1			
			1	I			
	-		8	NA	9	5	7 15
			24				26
			24				20
O, 1, m	NA	15	0.25	NA	9	9	
0, 1, 111			0.5				
				NA	13	14	
			2	NA	8	6	
			8				18
			24				27
Ri, 1, m	NA	15	0.25		13		
			0.5	0	9		
			1		8	8	
			2				
			8				9
			24				10
S, 1, m	NA	15	0.25	0	6	6	
5, 1, 111	IVA	10	0.5		14		
			1		7	7	
			2				8
	1		8				23
			24				40
Wo, 1, m	NA	15	0.25		NA	22	
			0.5		NA	13	
			1		NA	11	
				NA	NA	NA	8
			0	1			
			24			0	
~			48 72			U	
			12	25			
Fi, 1, m	NA	15	0.25	0	NA	13	
1 1, 1, 111	100	15	0.5		NA	11	
			1		NA	8	
			2				
1110 1500			8				5 19
	1		24	1			
			48	18			

Subject (#,m,f)	Age	Time from ingestion of 10 mg/kg TCOH (hr)	Conc. TCA in plasma (ug/ml)	Urinary excretion of TCA (mg)	Urinary excretion of total TCOH (mg)	Conc. total TCOH in blood (ug/ml)
3 m	20-30	0.0	2.116			
		0.1	3.4			
		0.2	3.931			
		0.4	4.749			6.059
		0.5				5.018
		0.79				4.135
		1.429				3.839
		1.6	6.538			
		3.2	6.932			2.601
		5.8	11.467			1.968
		10.8	18.554			1.223
		23.4	24.531	25.975	83.721	0.504
-		34.6	20.963			0.284
		47.7	17.349	40.529	16.162	
	1.	72.2	12.044	29.178	8.772	0.049
		95.5	9.234	24.095		
		121.6	8.749	20.891	2.579	
		145.9	5.723	8.217		
		170.0	5.275	4.318		

Attachment IV

Metabolites Data Over Time: Trichloroethanol Dosing Studies

Owens, A., et. al. 1955. Bull J.	et. al. 19	55. Bull J	ohns Hopkins Hosp (97)320-326. Tbl III, IV	12 Hosp (97)	320-326. Th	of III, IV				
			Daily Dose	Daily Dose Cum. Dose			Conc. urinary		Conc. urinary	Cum. urinary
			тсон	тсон	Time from	Conc. TCA	excretion of	Cum. urinary		excretion of
Subject (#,m,f)	Age	Weight	Ingested (mg/day)	Ingested (mg/day)	ingestion (hr)	in plasma (mg/l)	TCA (mg/day)	excretion of TCA (mg)	Total TCOH (mg/day)	Total TCOH (mg)
J.B.	۸A	76.4		1000	24	21		9		187
				, 2000	48	29	53	99	316	503
				3000	72	95	75	134	309	812
				4000	96	135	154	288	331	1143
				5000	120	140	265	553	312	1455
				0009	144	146	218	771	285	1740
				2000	168	159	312	1083	358	2098
				8000	192	160	287	1370	370	2468
				0006	216	169	398	1768	335	2803
				10000	240	171	334	2102	380	3183
				11000	264	187	412	2514	485	3668
				12000	288	187	340	2854	406	4074
				13000	312	187	390	3244	384	4458
				14000	336	187	354	3598	009	5058
I	NA A	80	1000	1000	24	13	5	ıc	365	365
				2000			1	1		
				3000	72	52	34	52	315	1050
				4000	96	61	48	100	106	1156
				2000	120	09	43	143	32	1188
				0009	144	90	38		15	1203
				0002	168	09	42	223		1203
				8000	192	9	36	259	53	1256
Note: These doses are daily;	se doses		time indicates the time from the initial dose	es the time	from the init	tial dose				

ATTACHMENT V

Metabolites Data Over Time: Chloral Hydrate Dosing Studies

Attachment V

Metabolites Data Over Time: Chloral Hydrate Dosing Studies

Breimer, D. e.	Breimer, D. et. al. 1974, J of		Chromatography, (88)55-63, Fig. 6	3, Fig. 6				
		·	Dose Chloral	•			Conc Free	
Subject			Hydrate Ingested	Time from ingestion	Conc TCA in blood (mg/l)	Conc total TCOH in	TCOH in blood (mg/l)	Conc TCOG in blood
(#,m,f)	Age	Weight	(mg/kg)	(hr)	Fig. 6	-0	Fig.6	(mg/l) Fig.6
				0.2			0.5	
				0.3			1.0	0.3
1 human, sex NA	AN	NA NA	15	0.4	0.2			
				0.5	0.5		1.8	6.0
				9.0	7.3		3.2	2.7
				1.0	8.6		5.2	2.5
				1.5			3.4	3.4
				1.9	7.2		2.6	3.3
				3.0			2.6	3.0
				5.0	12.3		2.1	2.5
				7.0	12.4		1.7	1.9
				0.6	15.5		1.3	1.6

Ertle T, et al. 1972, Arch Toxikol (29) 171	(al. 151		11 (40) ICUI	1-100, 119.3		_	
			Dose	*Artificial		Conc	
			Chloral	time from	Time	Total	Values for time from start are derived by establishing
			Hydrate	end of	from	TCOH in	peak times as 1 hr and altering other times accordingly.
Subject (#,m,f)	Age	Weight (kg)	Ingested (mg/kg)	exposures (hr)	ingestion blood (hr) (mg/l)		The higher TCOH levels for each time pair was assumed to be from the same volunteer.
2,m	20-28	57-92	15	-0.199	9.0	671	
				-0.256	9.0	4.226	
				0.25	1.0	6.496	"maximum value is attained approx. 1h after ingestion" p.182
				0.312	1.0	7.379	7.379 "maximum value is attained approx. 1h after ingestion" p.182
control de constitue de constit				0.818	1.5		
				0.809	1.6	5.769	The state of the s
				1.222	2.0	4.59	The state of the s
				1.262	2.0	5.267	
				2.145	2.9	4.169	
				2.196	2.9	5.063	AND
				4.131	4.8	4.516	
				4.248	5.0	3.605	The state of the s
				6.102	6.9	2.742	
				6.238	6.9	3.986	THE TAXABLE PROPERTY OF TAXABLE PR
				8.114	8.9	2.318	1 P. T.
				8.157	8.8	2.889	
				11.073	10.8	1.471	
				11.148	11.8	1.787	
				23.384	24.1	1.189	
				23.346	24.1	0.98	
				26.357	27.0	0.76	
				26.359	27.1	0.723	
				32.286			
				32.279		0.626	
				50.21	50.9		0.296 Used average of peak times to determine time from start.
				*Disregard t	nis column;	it serves on	*Disregard this column; it serves only to assist in explanation of assumptions.

Attachment V

Metabolites Data Over Time: Chloral Hydrate Dosing Studies

	y Cum urinary excretion of free TCOH (mg)												4.1	5.1 9.2	5.2 14.4	5.0 19.4	5.1 24.4	.3 29.8				+
	Conc urinary excretion of Free TCOH (mg/12 hr) Fig.3																	5.				
	Cum urinary excretion of TCA (mg)												14.5	45.5	97.0	168.1	300.2	467.3	648.3	841.8	1044.9	Contraction of the Contraction o
	Conc urinary excretion of Cum urinary TCA (mg/12 excretion of hr) Fig.3 TCA (mg)												14.5	31.0	51.5	71.0	132.1	167.2	180.9	193.5	203.1	
	Cum urinary excretion of TCOG (mg)												238.7	555.2	913.3	1287.4	1676.3	2068.9	2462.2	2855.5	3249.4	
	Conc TCOG in urine (mg/12 hrs) Fig.3												238.7	316.4	358.1	374.1	388.9	392.6	393.4	393.3	393.9	
	Conc TCOG in plasma (mg/l) Fig.2											0.1	0.1	0.1	0.0							,
1 Fig. 2	Conc Free TCOH in plasma (mg/l) Fig.2			9.3	8.6	0.9	4.7		4.0	3.4		2.5	2.1	1.0	9.0							
528)333-34	Conc TCA in plasma (mg/l) Fig.2	2.5	12.3		14.1	15.2	14.5	16.0		19.9	21.7	21.4	28.3	33.9	37.8	3 29.0	19.7	3 . 15.8	12.3	7.7	9.9	
atography (Time from ingestion (hr)	9.0	7.0	1.1	2.0	2.2	3.0	3.9	4.5	5.3	7.1	8.7	13.5	24.0	38.2	48.8	73.0	96.8	119.5	143.0	167.9	
et. al. 1990, J Chromatography (528)333-341 Fig. 2	Dose Chloral Hydrate Ingested (mg)	1000																				
t. al. 199	Weight (kg)	91																				
	Age	¥																				
Gorecki, D.	Subject (#,m,f)	1 male																				

Attachment V

Metabolites Data Over Time: Chloral Hydrate Dosing Studies

Marshall et al., 1954. Bull Johns Hopkins Hosp. (95): 1-18 Fig 5, Tbl V	1954. Bull Joh	ins Hopkins Ho	sp. (95): 1-18	Fig 5, Tbl V			
		Dose Chloral	Timo from	ACT Suc	Conc. total	Conc. Free	Cum % of dose
Subject (#,m,f)	Age	Ingested (mg/kg)		in plasma (mg/l)	plasma (mg/l)	plasma (mg/l)	urinary total
Wa, 1 male	AA	16.5	0.25	19.02 NA	NA	8.82	
			0.5	19.01 NA	NA	7.85	
			1	18.95 NA	NA	7.89	
			2				7
			8	57.74	3.72	3.69	17
			24	57.68	3.82	1.8	
			48	55.42			
Bo, 1 male	NA	16.5	0.25	17.55		5.9	
			0.5	8.8		8.71	
				9.47		7.65	
			2				4
			8	17.55	4.95	2.84	18
			24	28.61	2.91	0.16	31
			48				
			72				
P, 1 male	NA	16.5	0.25	2		4	
			2	19	80	7	5
			8				16
			24				31
Mc, 1 male	NA	16.5	0.25	16	13	13	
			2	16	8	2	5
			8				14
			24				26
We, 1 male	NA	16.5	0.25	3		8	
			0.5	13	-	7	

Metabolites Data Over Time: Chloral Hydrate Dosing Studies

Marshall et al., 1954. Bull Johns Hopkins Hosp. (55): 1-10 Fig 5, 101 V	954. Bull Jor	OLI SIIINDOLI SIII	sp. (33). 1-10	ν ιαι ,c βι			
Subject (#.m.f)	Age	Dose Chloral Hydrate Ingested (mg/kg)	Time from ingestion (hr)	Conc. TCA in plasma (mg/l)	Conc. total TCOH in plasma (mg/l)	Conc. Free TCOH in plasma (mg/l)	Cum % of dose excreted as urinary total TCOH (%)
			1	15		8	
	A de la companya de l		2				3
			8	43	2	4	6
			24	54	2	-	16
			48	52			
Fu, 1 male	NA	16.5	0.25	14		13	
			0.5	14		80	
				14		7	
			2				7
			80	19	3	2	23
			24	25	8	0	35
			48	27			
Ar, 1 male	NA	30	0.17	3.93		6.94	
			0.33	8.96		15.94	
			0.5	11.89		19.01	

Attachment V

Metabolites Data Over Time: Chloral Hydrate Dosing Studies

Muller G, et al	1. 1974, Arc	th Toxicol (32)	Muller G, et al. 1974, Arch Toxicol (32)283-295, Fig. 3a, 3b, 4a, 4b p. 288	3a, 3b, 4a, 4b	p. 288		
			Time from		Conc total	Urinary	Urinary
Subject		Conc. Ingested	ingestion of 15 mg/kg CH		_ <u>ş</u>	excretion of TCA (mg)	excretion of total TCOH
(#,m,r) 3 males	Age 20-30	CH (mg/kg)	(nr)	(mg/l) Fig 3b	Fig 3a	Fig 4b	(mg) Fig 4a
			0.5	8.1			
			0.5	13.5			and the state of t
			0.5	16.3	6.9		
			4.1	17.1	5.3		
			1.6		4.3		
			3.0	19.7	3.6		
			5.7		2.4		
			10.3	29.5	1.4		
			24.4	34.1	0.7	53.6	157.7
			32.5	36.2	0.4		
			48.0	30.6	0.2	77.7	58.2
			72.0	20.5	0.1	67.4	20.1
			95.5	16.4	0.0	45.8	4.1
			120.0			27.7	2.7
			147.6	11.8		19.2	
			172.0	7.1		9.3	

Attachment V

Metabolites Data Over Time: Chloral Hydrate Dosing Studies

Owens, A., et. al. 1955. Bull Johns	st. al. 1	1955. Bull		osp (97)32	Hopkins Hosp (97)320-326. Tbl I, II, Fig. 1	II, Fig. 1				
			Daily Dose			Conc TCA	Conc urinary		Conc urinary	Cum urinary
Subject		¥	Chloral Hydrate Ingested		Time from ingestion	in plasma (mg/l) Tbl	excretion of TCA (mg/day)	O		excretion of Total TCOH
(#,m,f)	Age	(kg)	(mg/day)	(mg)	(nr)	1, II, FIG. 1	1011,11	1CA (mg)	(mg/day) 1 bi 1, ii	(mg) 240
				2000	48	52	140	190	295	535
				3000	72	06	234	424	300	835
				4000	96	66	356	780	330	1165
				2000	120	101	362	1142	396	1561
				0009	144	101	337	1479	335	1896
				2000	168	104	415	1894	340	2236
				8000	192	106	445	2339	368	2604
				0006	216	112	460	2799	327	2931
				10000	240	120	433	3232	282	3213
				11000	264	120	548	3780	260	3473
				12000	288	119	670	4450	300	3773
				13000	312	120	439	4889	413	4186
				14000	336	120	809	5497	348	4534
G.B., sex?	Ϋ́	89	1000	1000	24	14	15	15	360	360
				2000	48	36	22	72	455	815
				3000	72	47	92	148	480	1295
				4000	96	53	29	215	357	1652
				2000	120	64	86	313	365	2017
				0009	144	74		313		2017
				2000	168	83	106	419	430	2447
				8000	192	85	130	549	430	2877
			and the state of t	0006	216	83	130	629	400	3277
				10000	240	83	107	786	220	3847
				11000	264	83	80	866	430	4277
				12000	288	85	122	988	260	4537
				13000	312	83	150	1138	348	4885
S.C., sex?	Ϋ́	140	1500	1500	0	0				
				2500	24	18.46				

Attachment V

Metabolites Data Over Time: Chloral Hydrate Dosing Studies

Owens, A., et. al. 1955. Bull Johns	et. al. 1	955. Bull		osp (97)32	Hopkins Hosp (97)320-326. Tbl I, II, Fig. 1	II, Fig. 1				
	1000		Daily Dose			Conc TCA	Conc urinary		Conc urinary	Cum urinary
Subject		Weight	Chloral Hydrate	Cum	Time from	in plasma	excretion of		excretion of	excretion of
(#,m,f)	Age	(kg)	(mg/day)	(mg)	ingestion (hr)	I, II, Fig. 1	Tbl I, II	TCA (mg)	(mg/day) Tbl I, II	(mg)
			-	3200	48	50.33				
				4500	72	80.78				
				2500	96	58.38				
				6500	120	111.81				
				7500	144	109.04	American Control of the Control of t			
				8500	168	104.84				
				9500	192	60.66				
				10500	216	92.35				
				11500	240	83.71			The state of the s	
				12500	264	81.89				
- Committee of the comm				13500	288	82.03				
J.K. Sex?	₹	73	1500	1500	0	0				
				2500	24	19.96				
				3500	48	23.7				
				4500	72	38.19				
				5500	96	50.44				
				. 6500	120	69.59				
				7500	144	80.66				
				8500	168	77.45				
				9500	192	77.56		OTT PARTY OF THE P		
			-	10500	216	80.76				
				11500	240	86.99				- The latest and the
				12500	264	91.33				
				13500	288	98.94				
				14500	312	104.46				
				15500	336	103.99				
				16500	360	107.81				
				17500	384	99.14				
Note: Dail	y Dose	s, time ind	Daily Doses, time indicates hours from initial dose.	initial dos	e,					

Metabolites Data Over Time: Chloral Hydrate Dosing Studies

Sellers E	M, et al.	. Clin Pha	rmacol The	Sellers EM, et al. Clin Pharmacol Therapeut, 13(1) 37-49 Figs 1,2, Table I, p. 43	37-49 Fig	s 1,2, Table	e I, p. 43				
Subject (#,m,f)	Age (yr)	Weight	Dose Chloral Hydrate Ingested (mg/kg)	Time from ingestion (hr)	Conc total TCA in TCOH in plasma (mg/l) Fig (mg/l) Fig	Conc total TCOH in plasma (mg/l) Fig	Conc Free TCOH in plasma (mg/l)	Conc TCOG in plasma (mg/l) Fig 2	Conc TCOG in Cum. urinary plasma excretion of mg/l) Fig TCOG (mg)	Cum. urinary excretion of TCA (mg)	Cum. urinary excretion of free TCOH (mg)
5 males	21-29	ΑĀ	15.0	0.5	5.4	7.6		2.0			
				1.0	7.5	8.4		3.4			
				1.5	8.1	8.1		2.2	19.6	2.9	3.9
				2.0	10.2	7.4		1.8			
				2.5	9.6	7.0		2.7			
				3.0					32.7	4.9	5.7
				3.5	10.0	6.4		1.2		7.78.78	
				4.5					46.9	0.9	7.2
				5.0	11.3	5.8		1.0	The second secon	***************************************	
				0.9					65.5	8.9	8.6
				6.5	13.0	5.4					
		:									
Note: Th	ne figure	caption (on Fig. 2 sa	Note: The figure caption on Fig. 2 says concentrations of TCOG in plasma are given in ml/l of TCOH.	ations of T	COG in pla	sma are gi	iven in ml/l	of TCOH.		

Attachment V

Metabolites Data Over Time: Chloral Hydrate Dosing Studies

Sellers EM, et al. J. of Clin	I, et al. J.	of Clin Pha	Pharmacol , Oct. 78, pp 457-461 Fig. 1	457-461 Fig	. 1				-
Subject			Dose Chloral Hydrate Ingested	Time from ingestion	Time from Conc TCA ingestion in plasma		Conc Free TCOH in	Conc TCOG in	
(#,m,r)	Age	weignt	(mg/kg)	(nr)	(mg/I)	piasma (mg/l) piasma (mg/l) piasma (mg/l)	plasma (mg/l)	plasma (mg/l)	_
7 males	21-29	NA	15.0	0.5	5.3	9.6	7.7	1.9	
				1.0	7.7	11.8	8.5	3.3	ī
		-		1.5	9.2	10.2	8.1	2.1	
				2.1	10.8	9.1	7.4	1.8	_
				2.5	9.7	9.5	6.8	2.7	ī
				3.6	10.5	7.5	6.3	1.1	1
				5.0	11.9	6.7	5.7	1.0	
				6.5	14.0	5.6	5.2	0.4	_
				24.0	35.9	2.3	2.1	0.2	1

ATTACHMENT VI

Human Physiological Parameters for Use in PBPK Modeling

Attachment VI

MEASURE	MEASURED PHYSIOLOGICA	GICA		TA - BL	000.	FLOW	L DATA - BLOOD FLOW RATES				١		
								Blood Fig	ws (fract	Blood Flows (fraction of QC)			
Author	Citation	Subs (m, f)	Age (yrs)	Ethnicity	Body Wt(kg)	Fat (QF)	Slow Per(QS)	Rapid Per	Liver (QL)	Lung (QLung)	Kidney (QK)	Breathing Rate(QP)	Cardiac Output(QC)
Cowles, Borgstedt, Gillies	Cowles, Borgstedt, 1971. Anesthesiology. Gillies 35(5):523-526				*02	0.048m 0.067f	0.10m** _d 0.06f**		0.24m 0.187f		0.197m _a 0.175f _a		378 _a
Smith and Kampine	Circulatory Physiology, 3rd ed. Williams & Wilkins, 114-222				*07		0.20**				0.20		300
							0.90**			0.01 to 0.02 _x			
Mapleson	1963				*02	0.04m 0.056f	0.1-0.24m 0.06-0.14f		0.12m 0.09f		0.2m 0.18f		assumed 3l78
Bell et al.	1968						0.095m 0.057f		0.43m 0.33f		0.07m 0.066f		assumed 378
Brobeck.	1979						0.13m 0.077f		0.154m 0.12f	0.043m 0.034f	0.21m 0.19f		assumed 378
Ganong.	1979						0.129m 0.077f		0.166m 0.129f		0.21m 0.183f		assumed 378
Guyton.	1982			-			0.12m 0.074f		0.21m 0.167f	0.013m 0.011f	0.177m 0.157f		assumed 378
Williams and Leggett	1989. Clin Phys Physiol Meas 10(3):187-217					0.05m 0.085f	0.17m 0.12f		0.25m 0.27f	0.025m 0.025f	0.19m 0.17f		
Layton, DW	1993. Health Physics. 64(1):23-35											450males, 324 fem	
	1003 Br Oliv											390fg	
Hinrichsen et al.	1993. Br J Clin Pharmacol. 35(5): 461 6	7 m 5 f	26.1 avg SD=0.6		66.7 avg SD=2.8			-					384 <u>+</u> 18 _{jj} 382 <u>+</u> 18 _{jj}
													380±12 _{jj} 394.8±18 _{jj}
													$323\pm12_{\rm kk}$ $324\pm12_{\rm kk}$

Attachment VI

323±12_{kk} 329±12_{kk} Output(QC) Cardiac Breathing Rate(QP) Kidney (QK) 388.8 23 421.8_{dd} 298.2 ав 382.8 bb 400.8 cc Blood Flows (fraction of QC) (QLung) Lung Liver (OL) Rapid Per MEASURED PHYSIOLOGICAL DATA - BLOOD FLOW RATES Slow Per(QS) avg 0.241 SD=0.072 Fat (QF) avg SD=7.59 avg SD=6.97 57.15 57.95 20 81.5 SD=18.2 74.6 SD=11.9 62.4 SD=12.6 62.2 SD=10.7 68.7 SD=16.4 Subs Body (m, f) Age (yrs) Ethnicity Wt(kg) canc canc canc canc canc 31.44 avg SD-10.8 29.94 avg SD=11.2 25.9 avg (23-30) 20.2 avg (19-22) 25.5 avg (23-30) 17.5 avg (16-18) 20.6 avg (19-22) 16-34 16-34 20-29 adults adults 82 f 17 m 49 m 129 f 108 f 11 m 10 m 86 m 48 f 50 f 249 f 171 Applied Pharma 97:230 Jackson, Pollock & Science in Sports and Wardee Exercise 12(3):175-182 1989. Toxicology and Clin Nutr. 53:1112-16 1991. Amer Soc for 1958. Handbook of Respiration. 1960. Medicine & Citation D.S. Dittmer and R.M. Grebe Reitz, Mendrala and Guengerich Barlett et al. Wardee Author

Human Physiological Parameters for Use in PBPK Modeling

MEASURE	MEASURED PHYSIOLOGICAL	<u>/ン</u>		IA - BI	000	FLOW	DATA - BLOOD FLOW RATES						
								Blood Fic	ws (frac	Blood Flows (fraction of QC)			
Author	Citation	Subs (m, f)	Age (yrs)	Ethnicity	Body Wt(kg)	Fat (QF)	Slow Per(QS)	Rapid	Liver (QL)	Lung (QLung)	Kidney (QK)	Breathing Rate(QP)	Cardiac Output(QC)
Caldicott et al.	1993. European Heart Journal 14:696-700	10 m 8 f	35-82 _{ff}										174-186 ₉₉ 228-270 _{hh}
	1974. Anesthesiology.						At rest: 60						C
Heistad, Abboud	41(2):139-156						//hr** Stren Ex:						
							1,200-1,800 l/hr**						
			over 18									***************************************	
			avg		79.02								
Muknerjee and Roche _{ll}	1984. Human Biology 56(1):79-109	140 m	S	class									
			over 18		61.51								
			a		SD=10.9								
		135 f	f SD=9.37		8								
Jackson and	1976. Medicine and Science in Sports	9. E	avg 20.2		74.6 2D=10.7								
WELVOOD -	2007-00-200	8											
		83	avg 20.2		57.5 SD=7.4								
			ļ										
Jackson and Pollock _{in}	1978. Br J Nutr 40:497 504	308 m	avg 32.6 n SD=10.8		avg 74.8 SD=11.8								
	1993. American Journal of Hypertension 6:287-												288±6 to
Pirpiris et al.	294				7.								31271

Author	Citation	Subject	Diagnosis	Sex	Age	Wt (kg)	Ventilation Rate (I/hr)
Author	1972. J Applied	Cabjeet	Diagnotic		1.3	(-3)	
	Physiology.						
Gilbert et al.	33(2):252-254	1	N	М	20	73	427.2
Gilbert et al.	33(2).232-234	2	N	M	24	72	516
		3	N	M	26	98	528.6
		4	N	F	44	73	396
		5	N	F	34	60	288
		6	N	F	29	54	396
		7	A	F	62	57	249
		8	A	M	48	67	562.2
		9	CF	F	18	44	654
		10	FA	M	69	51	398.4
		11	GB	M	28	- 01	666
		12	COAD	M	61	60	876
		13	COAD	M	63	76	600
		13	COAD	M	54	94	593.4
		15	N	M	23	93	567.6
		16	COAD	M	75	54	1122
		17	N	M	23	75	411.6
		18	N	M	23	62	370.2
		19	N	M	23	75	492
		20	N	F	64	86	351.6
		21	N	F	24	50	394.2
		22	N	F	21	42	364.2
		23	N	F	23	55	369
		24	N	F	23	56	439.8
		25	N	F	28	58	392.4
Notes:							
N=Normal							
A=Asthma							
CF=Cystic Fib	rosis						
FA=Fibrosing							
GB=Guillain-B							
	c Obstructive Airway	Disease					
Subjects 1-1	4 were tested first by	resting quie	tly in bed with the	e magnet	ometer e	electrodes in	place while tidal volume was
re	corded continuously	with a respire	ometer applied a	fter 1 hr.	Respiro	meter readin	gs were not used.
Subjects 6, 1	4, 15, 16 were studie	ed with the sa	ame initial protoc	ol plus at	ter 1 hr,	a noseclip w	as applied, but instead of the
	respirometer, only a	very short m	outhpiece open	to room a	air was pl	laced in the s	subject's mouth.
					U-1-	-4h	and by recognizations approaches
Subject 1-6,	15 and 17-25 data w	vere obtained	tor normal subje	ects brea	tning qui	etly unninger	ed by respiratory apparatus.
					-t lat 1	O bractha f-	reach set of data. Ventilation
Tidal volume	and respiratory frequ ate was calculated a	ency were of	tained as the av	erage of	at least 1	iu preatns to nt rate is evo	r each set of data. Ventilation ressed as BTPS.
r	ate was calculated a	s trie product	o udai volume	and resp	neq. vei	" Iare is exh	.00000 00 011 0.
	<u> </u>	1.5	_h(AL_AL		n oo ===	acad to off a	e chown by student t test for
lidal volume	e and resp tred are si	gnincantly N	gner with the app paired va		ii as upp	OSCU IO OII A	s shown by student t test for

Human Physiological Parameters for Use in PBPK Modeling

0.0044 0.0043 0.0046 f 0.004_{a} 0.004 m 0.004 m 0.0047 f Kidney (VK) 0.014 5.5 liters e 2.68 liters Lung 0.025 f m 0.02 m m 0.026 Liver (VL) 0.024 f 0.025 m_n 0.025 f 0.026 m₁ Rapid Perf Body Fat (VF) | Slow Perf(VS) 0.43** 0.31-0.51 m_k 0.17-0.36 fk 0.37 m 0.31 f 0.40 m 0.29 f 0.19 m _h 0.23 f h 0.214 SD=18.2 0.191 SD=0.088 SD=12.6 0.265 SD=0.088 SD=10.7 0.259 SD=0.061 SD=11.9 0.167 SD=0.077 (fraction BW) Volume 2 *04 28 70 male 58 female 70.5 m ° 81.5 ***0**2 74 m p 58.5 57 f Body Wt(kg) **MEASURED PHYSIOLOGICAL DATA - ORGAN WEIGHTS** 70 m canc canc canc canc Subs (m, f) Age (yrs) Ethnicity 25.5 avg (23-30) 20.6 avg (19-22) assume 25, 20-30 20.2 avg 17.5 avg (16-18) 35 (19-22)a e 86 m 49 m 129 f ref man 481 1974. Report of the Task Circulatory Physiology, 3rd ed. Williams & Wilkins, 114-222 Williams and Leggett Meas 10(3):187-217 Man. ICRP #23. 40-328 1991. Amer Soc for Clin Nutr. 53:1112-16 1971. Anesthesiology. Group on Reference 35(5):523-526 Citation Smith and Kampine Cowles, Borgstedt, Snyder et al. Barlett et al. Author Gillies

Measured Organ Weights Human Physiological Parameters for Use in PBPK Modeling

MEASURED P	MEASURED PHYSIOLOGICAL DATA - ORGAN WEIGHTS	DATA	- ORG	AN WEI	SHTS						
						Volume (fraction BW)					
Author	Citation	Subs (m, f)	Age (yrs)	Ethnicity	Body Wt(kg)	Body Fat (VF)	Slow Perf(VS)	Rapid Perf	Liver (VL)	Lung	Kidney (VK)
		108 f	25.9 avg (23-30)	canc	68.7 SD=16.4	0.289 SD=0.096					
Jackson, Pollock & Ward _{ee}	1960. Medicine & Science in Sports and Exercise 12(3):175-182	249 f	31.44 avg SD=10.8		57.15 avg SD=7.59	avg 0.241 SD=0.072	1 2				
	•	82 f	29.94 avg SD=11.2		57.95 avg SD=6.97	avg 0.248 SD=0.064	80 4				
Reitz, Mendrala and Guengerich	1989. Toxicology and Applied Pharma 97:230- 246				02				0.031		
Caldicott et al.	1993. European Heart Journal 14:696-700	10 m 8 f	35-82#								
Mukherjee and Roche _{ll}	1984. Human Biology 56(1):79-109	140 m	over 18 avg 33.76 SD=9.82	middle	79.02 SD=12.62	0.197					
		1351	over 18 avg33.47 SD=9.37		61.51 SD=10.98	3 0.284	4				
Jackson and Pollock _{mm}	1976. Medicine and Science in Sports 8(3):196-203	95 m	avg 20.2 SD=1.6		74.6 SD=10.7	0.134	4				

Human Physiological Parameters for Use in PBPK Modeling

Kidney (VK) Lung Liver (VL) Rapid Perf Body Fat (VF) | Slow Perf(VS) avg 0.177 SD=0.08 avg 0.149 SD=0.052 avg 0.106 SD=0.065 avg 0.186 SD=0.057 avg 0.197 SD=0.071 avg 0.283 SD=0.066 avg 0.289 SD=0.081 0.248 0.193 ± 0.06 0.301 ± 0.087 Volume (fraction BW) avg 74.8 SD=11.8 6+19 57.5 SD=7.4 77± 11 Body Wt(kg) **MEASURED PHYSIOLOGICAL DATA - ORGAN WEIGHTS** white white white white black black black white **Ethnicity** avg 32.6 SD=10.8 avg 20.2 SD=1.2 18-32 18-32 20-61 19-50 20-57 19-44 51 ±19 51 + 19Age (yrs) Subs (m, f) 258 f 308 m 179 140 45 187 m men_{pp} 42 fempp 45 fempp men men men 47 83 f 1995. Asia Pacific J Clin Nutr 4:63-67 1978. Br J Nutr 40:497-504 1994. Am J Clin Nutr 60:23-8 Citation Jackson and Pollock_{nn} Wang et al.n Author Roche

MEASURED	MEASURED PHYSIOLOGICAL DA	DAT/	1 - ORG	TA - ORGAN WEIGHTS	GHTS						
						Volume (fraction BW)					
Author	Citation	Subs (m, f)	Age (yrs)	Ethnicity	Body Wt(kg)	Body Fat (VF)	Slow Perf(VS)	Rapid Perf	Liver (VL)	Lung	Kidney (VK)
		110 m	52 + 18	asian	68 ± 10 _{qq}	0.214 ± 0.063 _{qq}					
		132 f	51 ± 17	asian	54 ± 8 _{qq}	0.316 ± 0.065					
III:	1989. USDA/ARS Children's Nutrician Research Center. 385- 400	175 m	20-24	white	79.9±14.2	19.8 kg <u>±</u> 13 kg					
		1134 f	20-24	white	59.2±6.7 58.9±5.9	15.9 kg ± 3.4 kg					
Piroiris et al	1993. American Journal of Hypertension 6:287-				7.1.7						
Wang et al.	1992. American Journal of Human Biology 4:501-510	. 99m 109f	51 <u>+</u> 20 50 <u>+</u> 17	asian	67 <u>+</u> 10 53 <u>+</u> 7	0.21-0.27 0.26-	- 6				
		64m 48f	45±16 43±14	black	80 <u>+</u> 14 65 <u>+</u> 9	0.18-0.27 0.26-	. 10				
		166m 212f		white	77 <u>+</u> 12 59 <u>+</u> 8	0.18-0.27 0.23-	1 00				
Hinrichsen et al.	1993. Br J Clin Pharmacol. 35(5): 461- 6	7 m 5 f	26.1 avg SD=0.6	P (0	66.7 avg SD=2.8						

Attachment VI

Derived from measurements Male data from Anson p.92. adjusted weight for 70 kg adult male. Female data from Roessle and Roulet p.101. for ages 22-35 yrs. average 58 kg Lung air of 2,680 ml composed of the functional residual capacity (FRC) (2,430 ml) plus half of the tidal volume (250 ml). FRC is average of 86 Based on weighted average of 289 determinations by seven investigators: Tonnesen; Lassen, Lindbjerg and Munck; Lindbjerg; Higgendal and The lungs were distended to the dimensions of the internal thoraic cavity. The volume of the inflated lungs both before and after fixation was Average healthy heart cardiac output. Pumping capacity can increase to 1,200 to 1,500 I/hr with modest increase of right atrial pressure and Of flow, only a modest portion is for metabolic needs, so the renal (A-V)O2 difference is relatively small. Greatest part of flow becomes Average liver volumes based on Boyd for 19-20 yr old males (31 samples) and females (26 samples) (70.5 kg and 57 kg respectively). Average liver volumes based on Boyd for 20-29 yr olf males (38 samples) and females (19 samples) (74 kg and 58.5 kg respectively). bKidney blood flow average of 169 determinations by four investigators reviewed by Wade and Bishop. (396 ml/100g/min, wt=300g) Average kidney volumes (both) for male (2,414 samples) and females (1,104 samples) age 20-40 yrs and 72kg/60kg respectively. Ranges for adult males age 20-35 yrs from range of literature values. Female range of literature values for ages 22-35 yrs. Gilbert et al. (1972). Mean ventilation rate of six females between 18 to 30 years and weighing an average of 52 kg. Adapted from Moore et al. pg 162 using standard body weights. See Figures 31 and 32 in ICRP No. 23. (1974). Burger p. 2094. Data obtained by plotting data from several sources and drawing visually smoothed graphs. values determined in studies of males in the supine position by five investigators, reviewed by Svanberg. glomerular filtrate and serves as the main regulator of the body's water and electrolyte balance. Based on statistical analysis of 510 measurements by 45 investigators by Wade and Bishop. "At maximal exercise diversion to the working muscles may be 90% of the cardiac output. Average of data from Stoudt et al. for ages 20-29. See Figure 5 from ICRP No.23. Average of data from Stoudt et al for ages 19-20. See Figure 5 from ICRP No.23. qAverage total volume of both kidneys for reference adult male and female. Reference man from Table 105, pg 280 ICRP No. 23 (Snyder et al. 1974) iver fraction for reference adult male and female (70 kg and 58 kg). * Default value from ICRP "standard man" and EPA 1988 maximum sympathetic stimulation Roy and Courtay (1991) ** Assumed muscle

esSample used to derive generalized regression equations which were validated with a scond sample as recommended by Lord & Novick. Body fat Twenty year study of normal, healthy volunteers from student population and surrounding community (age 6-86 years). Non-ethnic population. The blood supply to the lung is only 1-2% of the left ventricular output (5 I/min) Cavalieri measurements using magnetic resonance imaging of subject. _{cc}Hurtado et al. (1934) Journal of Clinical Investigation 13:169. Body density determined by hydrodensitometry _{dd}Coster et al. (1958) Acta Med Scand. 162:47. _{bb}Robinson (1938) Arbeitsphysiologie 10:251. estimated by skinfold thickness method. Baldwin et al. (1948) Medicine 27:243

All participants of study had an acute myocardial infarction complicated by left ventricular failure.

Baseline cardiac output of diseased heart prior to treatment. Cardiac output was estimated with suprasternal Doppler aortovelography which collows direct reading trends accurately

Study was completed on healthy individuals. Subjects were treated with placebo, nizatidine, and pirenzepine. Data recorded for cardiac outputs in Cardiac output after treatment with enoximone and dobutamine. See footnote gg. for placebo subjects only.

Cardiac output measured by impedance cardiography. Measurements were taken with patient in supine position and holding his or her breath at end-expiration.

«Cardiac output measured by doppler ultrasound. Measurements were taken using dual-beam doppler echo-aortography.

Data gathered by hydrostatic weighing and anthropometry.

mAges range from 18-61 years of age. Body types ranged from athletic to heavy. Anthropometric measurements and hydrostatic weighing were mApproximately 15 percent were physical education majors or athletes. Anthropometric determinations and underwater weighing was used.

used. Relationship between skinfold fat and body density was quadratic.

Describitions & Conway. Anthropometry in blacks: Applicability of generalized skinfold equations and differences in fat patterning between blacks oVickery et al. Prediction of body density from skinfolds in black and white young men. Hum Biol 1988:57:261-71

eqSignificantly different from whites of same sex. and whites. Am J Clin Nutr 1990:52:45-51

"Measurements taken by anthropometry

Human Physiological Parameters for Use in PBPK Modeling

312 (range 276-276)²⁰ 348 rest 603 lt wk 360-480 555.6 bld flow 11.4 372 348 bld flow 16.2 Cardiac Output(QC) alveolar 360-720 comment and Breathing Rate(QP) alveolar 9 alv 15.6 alveolar 555.6 12.9 alveolar 348 alveolar 300 av: 348 rest, 1320 It work 0.18 Kidney (QK) 0.21 Lung (QLung) 0.01 0.25 rest 0.16 lt wk 0.30 0.26 arterial 0.25 0.23 0.26 0.24 Blood Flows(fraction QC) Per(QR) Liver (QL) 0.26 0.51 rest 0.27 lt wk 0.50 0.26 0.52 Rapid 0.44 0.31 0.44 0.51 0.19 rest 0.51lt wk 0.16 0.25 0.19 0.14 Slow 0.25 0.07 0.11 0.14** 0.19** Per(QS) PBPK MODELING PHYSIOLOGICAL DATA - (BLOOD FLOW) 0.05 rest 0.06 lt wk 0.04 0.05 0.05 0.05 0.02 0.05 0.05 0.05 0.051 Fat (QF) females 58 estimated 70 ¥0,4 **10*** 2 22 **10*** Wt(kg) 2 70* males 70 Body avg 712 .06-29 Age (yrs) 21-282 27-34 Subject (m, f) 12 m² 11 m Bois F, Zeise L & Pharma. 102, 300-315 1994. Arch Toxicol. 68, 1992. Tox and Applied 1992. Risk Anal. 13(1), Pharmacokinetics and 1989. Exp. Pathol. 37, Parameter Values for 1992. Am. Ind. Hyg. Assoc. J. 53(6):369-374 1990. Am. Ind. Hyg. Assoc. J. 51(7):356-362 Biopharm. 22(5),327-365 PBPK Models. 1-103 1993. Risk Analysis. Pharmacology, 120, nternational Life 1994. Physiological 1994. Journal of 13(1), 51-62 106-113 Citation 143-157 71-86 89-94 1976 1986 Perbellini et al.⁵ Csanady et al.7 llen B & Fisher Knaak et al. 12 Kawai et al.3 Institute^{9&10} EPA Monte Kerr et al.⁶ Overton & Chinery & Leung 13 Jarabek⁴ Gleason⁸ Sciences Author Fozer T Carlo 18.2

Blood Flow Rates used in PBPK Models

347.9g 17.76(bw)^{0.7}m 347.9 348 501.6 18 (bw)^{0.7} 348 372 312 348 348 594 17.636(bw)^{0.7} 14.9 (bw)^{0.74} 16.02(bw)^{0.7} Cardiac Output(QC) 450 m a 336 m_b 18 (bw)^{0.7} $(bw)^{0.74}$ 347.9 348 Alv Vent 348 Alv Vent Alv Vent 300 13.607(bw)^{0.7} Alv Vent 12.6 Alv Vent 347.9g 348 300 420 1,042.2 Breathing 1,344 Alv Vent Rate(QP) 363 f Aiv Vent Kidney (QK) 0.25 0.25 Lung (QLung) 0.26 0.25 0.25 0.25 0.1616 0.2093 0.2400 0.26 0.24 0.26 0.24 0.069 m 0.069 f 0.25 m_b 0.24 Blood Flows(fraction QC) 0.3077 Per(QR) Liver (QL) 0.25 f_b 0.52 0.44 0.26 0.3188 0.5200 0.38 m_b 0.26 0.52 0.44 0.53 0.44 0.39 f_b 0.4616 0.2494 0.25 0.19 0.19 0.4319 0.18 Slow Per(QS) 0.29 m_b 0.16 0.19 0.2019 0.1900 0.25** 0.25 0.087 f** 0.114 m ** 0.22** 0.5435 0.29 f_b PBPK MODELING PHYSIOLOGICAL DATA - (BLOOD FLOW) 0.053 m 0.092 f 0.05 0.0400 0.05 0.05 0.05 0.050 0.05 0.0288 0.05 0.05 0.05 0.08 m_b 0.08 f_b 0.0455 0.0500 Fat (QF) 70* light 70 m a 2 70* 50W work *****02 70 Wt(kg) 2 40, exercise 70, Body 70* 70* at rest 60 f *****02 Age (yrs) Subject (m, f) male male male male male 1989. Brit J of Ind Med. 1991. Brit J of Ind Med. 1995. Risk Anal. 16(2): 1990. Toxicology and Pharma. 102:400-420 1993. IARC Scientific 1994. Fund & Applied Andersen et al. 16 Pharma, 87:185-205 1987. Tox & Applied 1995. Risk Analysis 1990. Tox & Applied 1992. Risk Analysis 1994. Risk Analysis AFIT/GEE/ENV/94S Applied Pharma. Publications No. 15(3):335-342 14(4):521-531 Tox. 22:20-25 103:512-527 13(1):87-95 46:239-249 48:342-347 127:65-78. 147-160 Citation Clewell, Lee & Corley et al. 14 Fisher & Allen Travis et al. 15 Sato et al. 18 Elizabeth A. Roy et al.²¹ Dankovic & Tardif et al. Filser et al. Carpenter Koizumi r Bailer¹⁷ Author Brown

Human Physiological Parameters for Use in PBPK Modeling

PBPK MOD	PBPK MODELING PHYSIOLOGICAL DATA - (BLOOD FLOW)	LOGICA	L DA	TA - (BL	-00D FI	(MO)						
						Blo	od Flows(f	Blood Flows(fraction QC)				
	Citation	Subject		Body		Slow	Rapid		Lung	Kidney	Breathing	Cardiac
Author		(m, f)	(yrs)	Wt(kg)	Fat (QF)	Per(QS)	Per(QR)	Per(QR) Liver (QL)	(QLung)	(aK)	Rate(QP)	Output(QC)
	1989. Brit J of Ind											
Drozet al.	Med. 46:447-460	-										
	1994. Teratology 49:90 103											
Luecke, Wosilait,												
Pearce & Young		mother		58								
	1992. Jour of											
	Pharmacokinetics &											
Robinson, Balter & Schwartz	Robinson, Balter Biopharm 20(6):591- & Schwartz											
	1991. Tox and Applied											
	Pharma 108:14-27											
Andersen et al.				83	0.05	0.19	0.52	0.24			Alv Vent 395	331
Davis and	1981. Br J Anaesth											
Mapleson	53:399-405		30-39	*0 2	0.053	0.177***		0.069		0.188		
	1991. Journal of											
	Pharma and											
Bernareggi and	Biopharma 19(1):21-50	,										
Rowland ¹⁹				10	0.045	0.129		0.283 _h	0.898	0.1886		350***

Organ Weights used in PBPK Models Human Physiological Parameters for Use in PBPK Modeling

PBPK MODE	PBPK MODELING PHYSIOLOGICAL	DATA	- ORG	ORGAN WEIGHTS	SHTS					
,						,				
							Volume (f	Volume (fraction of BW)		
Author	Citation	Subject (m, f)	Age (yrs)	Body Wt(kg)	Body Fat (VF)	Slowly Perf(VS)	Rapid Perf(VR)	Liver (VL)	Lung	Kidney (VK)
Allen B & Fisher		11 m ¹	27-341	67-90						
J ¹⁸²	1992. Risk Anal. 13(1), 71-86	12 m ²	21-28 ²	avg 71 ²	0.19	0.62	0.05	0.026		
Bois F, Zeise L & Tozer T	1990. Tox and Applied Pharma. 102, 300-315									
EPA Monte Carlo ⁶	1986			02	0.2	0.63	0.05			
Kerr et al. ⁶	1976			55	0.15	0.63	0.1			
Kawai et al.³	1994. Journal of Pharmacokinetics and Biopharm. 22(5),327-365			*02	0.14	0.43**	!	0.02	0.017	0.004
Csanady et al. ⁷	1994. Arch Toxicol. 68, 143-157			70	0.19	0.62	0.05	0.026		
Overton & Jarabek ⁴	1989. Exp. Pathol. 37, 89-94			*02	0.23	0.62	0.04	0.03	0.01	
Chinery & Gleason ⁸	1993. Risk Analysis. 13(1), 51-62			70	0.231	0.51	0.037	0.03		
International Life Sciences Institute 9&10	1994. Physiological Parameter Values for PBPK Models. 1-103			males 70 females 58	0.2142	0.4**		0.03	0.008	0.004
Knaak et al. ¹²	1992. Tox and Applied Pharmacology. 120, 106-113			estimated 70				mass 1.7 kg		
Leung ¹³	1992. Am. Ind. Hyg. Assoc. J. 53(6):369-374			*02	0.16	0.41	0.04	0.02		
Perbellini et al. ⁵	1990. Am. Ind. Hyg. Assoc. J. 51(7):356-362			*02	0.12	0.36	0.07	0.02	0.01 (residual capacity 0.024)	
Elizabeth A. Brown	AFIT/GEE/ENV/94S			70 m a 60 f a	70 m _a 0.2 m _a 0.3 60 f _a f _a	0.64 m c 0.55 f c	0.06 m c 0.05 f c	0.026 m _a 0.023 f _a		

Human Physiological Parameters for Use in PBPK Modeling

0.0044 0.0044 Kidney (VK) 0.0115 0.01 Lung Volume (fraction of BW) 0.026 0.026 0.026 0.0314 0.0314 0.026 0.0314 0.031 Liver (VL) 0.033 0.05 0.05 0.0371 0.0327 0.0371 0.031 Rapid Perf(VR) 0.6105 0.62 0.621 0.51 0.621 0.62** 0.524 0.58** Slowly Perf(VS) 0.19 0.19 0.19 0.195 0.231 0.23 0.231 0.231 Body Fat (VF) PBPK MODELING PHYSIOLOGICAL DATA - ORGAN WEIGHTS 70* light work 70* 50W 2 2 2 *0/ *0 **10 ***02 70* at rest exercise *0 Body Wt(kg) Age (yrs) male male male male male Subject (m, f) 1994. Fund & Applied Tox. 22:20-1993. IARC Scientific Publications No. 127:65-78. 1989. Brit J of Ind Med. 46:239-249 1992. Risk Analysis 13(1):87-95 1990. Tox & Applied Pharma. 102:400-420 1994. Risk Analysis 14(4):521-531 1995. Risk Anal. 16(2): 147-160 1990. Toxicology and Applied Pharma. 103:512-527 1987. Tox & Applied Pharma. 87:185-205 Citation Dankovic & Bailer¹⁷ Roy, Weisel, Lioy, Andersen et al. ¹⁶ Clewell, Lee & Corley et al. 14 Fisher & Allen Georgopoulos Travis et al. 15 Filser et al. Carpenter Koizumi _f Author

Organ Weights used in PBPK Models

PBPK MODE	PBPK MODELING PHYSIOLOGICAL DATA - ORGAN WEIGHTS	DATA	- ORG	AN WEI	SHTS					
							Volume (Volume (fraction of BW)	6	
Author	Citation	Subject (m, f)	Age (yrs)	Body Wt(kg)	Body Fat (VF)	Slowly Perf(VS)	Rapid Perf(VR)	Liver (VL)	Lung	Kidney (VK)
Sato et al. ¹⁸	1991. Brit J of Ind Med. 48:342-347				0.211 m 0.365 f	0.415 m ** 0.315 f **		0.023 m 0.023 f		
Tardif et al.	1995. Risk Analysis 15(3):335-342				0.19	0.62	0.05	0.026		
Droz et al.	1989. Brit J of Ind Med. 46:447-460								0.0091	0.0053
Luecke, Wosilait, Pearce & Young	1994. Teratology 49:90-103	mother		58	0.276	0.297**		0.024	0.0068	0.0047
Robinson, Balter & Schwartz	1992. Jour of Pharmacokinetics & Biopharm 20(6):591-609									
Andersen et al.	1991. Tox and Applied Pharma 108:14-27			83	0.23	0.62	0.0371	0.0314		,
Davis and Mapleson	1981. Br J Anaesth 53:399-405		30-39	*02	0.196	0.524***		0.025	0.0066	0.0041
Bernareggi and Rowland ¹⁹	1991. Journal of Pharma and Biopharma 19(1):21-50			*0 2	10 liters	30 liters**		1.69 liters	1.17 liters	1.17 liters 0.31 liters

Human Physiological Parameters for Use in PBPK Modeling

Footnotes for Parameters used in PBPK Models

Footnotes
* default value from US EPA 1988 and ICRP "reference man"
** assumed muscle
***lean body mass
****assumed from other ref
aSnyder et al. (1975)
_b Smith & Kampline (1990)
c Travis et al. (1990)
_d Reitz et al. (1989).
eSchmidt&Thews 1977
Ramsey & Andersen (1984)
_g Based on 70 kg body weight and 15 I/hr for 1 kg animal using equation Alv Vent =15 I/hr (bw) ^{0.74}
_n Sum of hepatic artery plus portal vein flows.
Total blood flow.
¹ Arms and Travis (1987). Volumes and flow rates come from this reference.
² Astrand et al. (1973). Ventilation rate and cardiac output comes from this reference.
³ Bernareggi & Rowland
³ Jansky & Hart
³ Ichimura, Yokogawa & Yamana
⁴ All values except alveolar ventilation and cardiac output are from Andersen et al. (1987). Alveolar ventilation rates were calculated by assuming
that alveolar ventilation is 67% of minute volumes for humans (U.S. EPA, 1988).
⁴ Minute volume used was recommended by the U.S. EPA default value for human ventilation, 20 m/day.
⁵ Parameter References come from Eger 1974 and Mapelson 1973. Most of data addressed used an alveolar ventilation of 360 I/hr associated with

Values for the Poorly perfused tissue group blood volume parameter were computed at each simulation so that the sum of the volumes was equal

to 90% of the blood volume.

of the total flow.

³Values for Rapidly perfused tissue group blood flow rate were computed at each simulation so that the sum of the blood flows was equal to 100%

a blood flow of 360 l/hr or a alveolar ventilation of 720 l/hr with a blood flow of 480 l/hr.

Human Physiological Parameters for Use in PBPK Modeling Volumes were determined by experimental data (S. Oie, University of California, personal communication). Body weight and flows were assumed using cumulative distribution function $F(x) = (1-\cos(3.14x))//2 (0 \le x \le 1)$ for 500 random samples.

Body Weight was raised to the 0.74 power as a multiplier for the alveolar ventilation rate and total blood flow.

The relationships used to scale parameters were assumed to be known with certainty. This assumption leads to an underestimate of the variance associated with the parameters of the model.

Sensitivity analysis shows that uncertainty in the parameters, other than Vmax and Km, has a limited effect on the results. In the absence of suitable data, certain parameter distributions were based on the judgement of expert researchers.

Physiological parameters were taken from Armes and Travis (1988). Alveolar ventilation comes from Schmidt and Thews (1977). For blood flows and ventilation rates, an idealized symmetric distribution was used, which may not be realistic.

All parameters were the same as used by Corley et al. (1990).

Values come from the International Committee on Radiation Protection (1975) Reference Man. Cardiac output values come from Astrand (1983). Arms and Travis (1988) report mean cardiac output values for unanesthetized humans range from 276 - 390 l/hr.

Regional blood flows are a provisional measure of central tendency from Williams and Leggett (1989)

^oSee Williams and Legget. 1989 in Physiological Measurements worksheet.

Based on values reported in ICRP (1975) and assumptions that dead space= $0.33V_T$ at rest and $0.2V_T$ during physical activity.

Effects of exercise on respiratory analysis used Altman and Dittmer (1971) to adjust Balke (1969). Values for light to moderate work are consistent with Dankovic and Bailer (1994) in the recent reevaluation of Andersen et al. (1987)

Study focused on the development of V_{max} and K_m values for metabolism of isofenphos by p-450 liver enzymes.

³U.S. EPA, Reference Physiological Parameters in Pharmacokinetic Modeling, A.D. Arms and C.C. Travis, (U.S. EPA 600/6-88/004), (1988)

⁴Organ volumes and blood flows were similar to those used by Andersen et al. (1987) or were taken from the literature (Caster et al., 1956; Davis and Mapleson, 1981; Gasiewicz et al., 1983).

15 All values from Arms & Travis (1988)

⁶Taken from ICRP, 1975; Davis and Mapleson, 1981; Caster et al., 1956. Lung wt = $0.0115 * (body wt)^{0.99}$

¹⁷At rest and 50 W exercise values from Astrand (1983), Table 3 & 4; Lt Work values from linear interpolation, assuming that "light work" corresponds to 33.67 W of exercise. ⁸Values for cardiac output for men were chosen assuming at rest for standard man (70kg). Cardiac output for women set at 10% lower than men. Values for men from Davis and Mapleson (1981).

⁹Organ volumes were taken from texbook of anatomy. Blood flows were from Guyton (Texbook of Medical Physiology).

²⁰Cardiac Output: 312 I/hr at rest, 501.6 light work (33.67 W of exercise), 594 slightly more strenuous (50 W), 1800 strenuous exercise.

21Values from Corley et al.