Definition (Properties of a relation). Let $R \subseteq A \times B$ be a relation. R is:

1. Surjective if for all $y \in B$ there exists an $x \in A$ such that $\langle x, y \rangle \in R$;

2. Injective if for all $\langle x_1, y_1 \rangle$, $\langle x_2, y_2 \rangle \in R$ it holds: $y_2 = y_2 \Rightarrow x_1 = x_2$;
3. Everywhere-defined if for all $x \in A$ there exists an $y \in B$: $\langle x, y \rangle \in R$

Everywhere-defined if for all x ∈ A there exists an y ∈ B: ⟨x, y⟩ ∈ R;
 Single-valued if ∀⟨x, y₁⟩, ⟨x₂, y₂⟩ ∈ R it holds: x₁ = x₂ ⇒ y₁ = y₂.