MAT 421: Introduction to Real Analysis I Pranvere 2012, Provim 1, Pergjigje

Stefan Kohl

1. A konvergjojne vargjet dhe seritet e meposhtme?:

1.
$$\lim_{n\to\infty}\frac{1}{n}$$

4.
$$\lim_{n\to\infty} \frac{n^6}{n!}$$

$$7. \sum_{n=1}^{\infty} \frac{1}{n}$$

1.
$$\lim_{n \to \infty} \frac{1}{n}$$
 4. $\lim_{n \to \infty} \frac{n^6}{n!}$ 7. $\sum_{n=1}^{\infty} \frac{1}{n}$ 10. $\sum_{n=1}^{\infty} \frac{3^n}{7^n}$

$$2. \lim_{n \to \infty} \frac{1}{(-1)^n}$$

$$5. \lim_{n \to \infty} \frac{2^n}{n!}$$

2.
$$\lim_{n \to \infty} \frac{1}{(-1)^n}$$
 5. $\lim_{n \to \infty} \frac{2^n}{n!}$ 8. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ 11. $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$

11.
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

3.
$$\lim_{n \to \infty} \frac{n^2 + 1}{5n}$$
 6. $\lim_{n \to \infty} \frac{2^{2^n}}{n!}$ 9. $\sum_{n=1}^{\infty} \frac{1}{5^n}$ 12. $\sum_{n=1}^{\infty} \frac{n!}{n^n}$

6.
$$\lim_{n \to \infty} \frac{2^{2^n}}{n!}$$

9.
$$\sum_{n=1}^{\infty} \frac{1}{5^n}$$

12.
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

(12 pike, nje per cdo pergjigje te sakte)

Pergjigja: Vargjet / seritet 1., 4., 5., 8., 9., 10., 11. dhe 12. konvergjojne, dhe 2., 3., 6. dhe 7. nuk konvergjojne.

2. Gjeni derivatin f'(x) per funksionet e meposhtme:

1.
$$f(x) = 4x^3 + 6x^2$$
 3. $f(x) = \sin(x)^2$ 5. $f(x) = \frac{2x}{x^2 + 1}$

$$3. \ f(x) = \sin(x)^2$$

5.
$$f(x) = \frac{2x}{x^2+1}$$

2.
$$f(x) = (2x+1)^{17}$$
 4. $f(x) = e^{2x}$ 6. $f(x) = \frac{\sin(x)}{x^2+1}$

4.
$$f(x) = e^{2x}$$

6.
$$f(x) = \frac{\sin(x)}{x^2 + 1}$$

(6 pike, nje per cdo pergjigje te sakte)

Pergjigja: Derivatet jane

1.
$$f'(x) = 12x^2 + 12x$$
.

2.
$$f'(x) = 34(2x+1)^{16}$$
.

3.
$$f'(x) = 2\sin(x)\cos(x)$$
.

4.
$$f'(x) = 2e^{2x}$$
.

5.
$$f'(x) = \frac{-2(x^2-1)}{(x^2+1)^2}$$
.

6.
$$f'(x) = \frac{\cos(x)}{x^2+1} - \frac{2x\sin(x)}{(x^2+1)^2}$$
.

3. Gjeni te gjithe pikat e akumulimit te bashkesise $S := \{a^2 \mid a \in \mathbb{Q}\} \subset \mathbb{R}$. (4 pike)

Pergjigja: Bashkesia \mathbb{Q} eshte e ngjeshur ne \mathbb{R} dhe funksioni $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ eshte i vazhdueshem dhe ka imazhin \mathbb{R}_0^+ . Pra bashkesia $S = f(\mathbb{Q})$ eshte e ngjeshur ne bashkesine \mathbb{R}_0^+ , dhe \mathbb{R}_0^+ eshte bashkesia e pikeve te akumulimit te S.

4. Gjeni nje $a \in \mathbb{R}$ te tille qe funksioni

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto \begin{cases} \sin(\frac{1}{x}) & \text{nese } x \neq 0, \\ a & \text{nese } x = 0 \end{cases}$$

eshte i vazhdueshem ne x=0, apo tregoni qe nje $a\in\mathbb{R}$ te tille nuk egziston. (4 pike)

Pergjigja: Ne kemi $\lim_{n\to\infty} \frac{1}{2n\pi} = \lim_{n\to\infty} \frac{1}{(2n+\frac{1}{2})\pi} = 0$, por nga ana tjeter $\lim_{n\to\infty} f(\frac{1}{2n\pi}) = 0$ dhe $\lim_{n\to\infty} f(\frac{1}{(2n+\frac{1}{2})\pi}) = 1$. Pra nje a te tille qe funksioni f eshte i vazhdueshem ne x=0 nuk ekziston.

- 5. Le te jete $S \subset \mathbb{R}$. Vertetoni apo gjeni kundershembuj:
 - 1. Nese S nuk permban nje interval $[a,b] \neq \emptyset$, S eshte e fundem apo e numerueshem.
 - 2. Nese S nuk eshte e ngjeshur ne asnje interval $[a,b] \neq \emptyset$, S eshte e fundem apo e numerueshem.

(4 pike)

Pergjigja: Nje kundershembull per te dyja eshte bashkesia

$$S = \left\{ \sum_{n=1}^{\infty} \frac{a_n}{3^n} \mid a_1, a_2, \dots \in \{0, 2\} \right\}.$$

Bashkesia S eshte e panumerueshem sepse ne kemi nje bijeksion

$$f: S \to [0,1], \sum_{n=1}^{\infty} \frac{a_n}{3^n} \mapsto \sum_{n=1}^{\infty} \frac{a_n}{2^{n+1}}.$$

Nga ana tjeter, cdo interval $[a, b] \neq \emptyset$ permban nje neninterval $[a', b'] \subset [a, b]$ te tille qe $[a', b'] \cap S = \emptyset$, pra bashkesia S nuk eshte e ngjeshur ne [a, b].