Variational Inference with Implicit and Semi-Implicit Distributions

Francisco J. R. Ruiz
Research Scientist - DeepMind, London

ProbAl Summer School June 17, 2021

Probabilistic Modeling Pipeline

- ▶ Posit generative process with hidden and observed variables
- ▶ Given the data, reverse the process to infer hidden variables
- Use hidden structure to make predictions, explore the dataset, etc.

Probabilistic Modeling Pipeline

- ► Incorporate domain knowledge
- Separate assumptions from computation
- ► Facilitate collaboration with domain experts

Applications: Consumer Preferences

Can we use mobile location data to find the most promising location for a new restaurant?

Restaurants in the Bay Area

Applications: Gene Signature Discovery

Can we identify de novo gene expression patterns in scRNA-seq?

Applications: Shopping Behavior

Can we use past shopping transactions to learn customer preferences and predict demand under price interventions?

Inference

6

Notation

- ▶ Model: Joint distribution p(x, z)
- ► Latent variables z
- Observations x

The Posterior Distribution

$$p(z \mid x) = \frac{p(x, z)}{\int p(x, z) dz}$$

- ▶ The posterior allows us to explore the data and make predictions
- ► Intractable in general
- Approximate the posterior: Bayesian inference

$$p(z \mid x) = \frac{p(x, z)}{\int p(x, z) dz}$$

- **Define** a simple family of distributions $q_{\theta}(z)$ with parameters θ
- ightharpoonup Fit θ by minimizing the KL divergence to the posterior,

$$\theta^* = \operatorname*{arg\,min}_{\theta} \operatorname{KL} (q_{\theta}(z) \mid\mid p(z \mid x))$$

Variational inference solves an optimization problem

▶ Minimizing the KL ≡ Maximizing the ELBO

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[\log p(x, z) - \log q_{\theta}(z) \right]$$

▶ Variational inference finds θ to maximize $\mathcal{L}(\theta)$

Mean-Field Variational Inference

Classical VI: Mean-field variational distribution:

$$q_{\theta}(z) = \prod_{n} q_{\theta_n}(z_n)$$

▶ Useful, simple, and fast, but might not be accurate

This Lecture: Expand the Variational Family

Beyond the Mean-Field Family

- ► Structured VI [Saul+, 1996; Ghahramani+, 1997; Titsias+, 2011]
- Mixtures [Bishop+, 1998; Gershman+, 2012; Salimans+, 2013; Guo+, 2016; Miller+, 2017]
- Sampling mechanisms [Salimans+, 2015; Hoffman, 2017; Maddison+, 2017;
 Naesseth+, 2017; Li+, 2017; Titsias, 2017; Naesseth+, 2018; Le+, 2018;
 Grover+, 2018; Zhang+, 2018; Habib+, 2019; Neklyudov+, 2019; Ruiz+, 2019]
- Spectral methods [Shi+, 2018]
- Linear response estimates [Giordano+, 2015; Giordano+, 2017]
- Copulas [Tran+, 2015; Han+, 2016]
- Invertible transformations [Rezende+, 2014; Kingma+, 2014; Titsias+, 2014; Kucukelbir+, 2015] & Normalizing flows [Rezende+, 2015; Kingma+, 2016; Papamakarios+, 2017; Tomczak+, 2016; Tomczak+, 2017; Dinh+, 2017]
- Hierarchical models [Ranganath+, 2016; Tran+, 2016; Maaløe+, 2016; Sobolev+, 2019]
- Implicit distributions [Mescheder+, 2017; Huszár, 2017; Tran+, 2017; Shi+, 2018] & Semi-implicit distributions [Yin+, 2018; Titsias+, 2019; Molchanov+, 2019]

Beyond the Mean-Field Family

- Structured VI [Saul+, 1996; Ghahramani+, 1997; Titsias+, 2011]
- Mixtures [Bishop+, 1998; Gershman+, 2012; Salimans+, 2013; Guo+, 2016; Miller+, 2017]
- Sampling mechanisms [Salimans+, 2015; Hoffman, 2017; Maddison+, 2017;
 Naesseth+, 2017; Li+, 2017; Titsias, 2017; Naesseth+, 2018; Le+, 2018;
 Grover+, 2018; Zhang+, 2018; Habib+, 2019; Neklyudov+, 2019; Ruiz+, 2019]
- Spectral methods [Shi+, 2018]
- Linear response estimates [Giordano+, 2015; Giordano+, 2017]
- Copulas [Tran+, 2015; Han+, 2016]
- Invertible transformations [Rezende+, 2014; Kingma+, 2014; Titsias+, 2014; Kucukelbir+, 2015] & Normalizing flows [Rezende+, 2015; Kingma+, 2016; Papamakarios+, 2017; Tomczak+, 2016; Tomczak+, 2017; Dinh+, 2017]
- Hierarchical models [Ranganath+, 2016; Tran+, 2016; Maaløe+, 2016; Sobolev+, 2019]
- Implicit distributions [Mescheder+, 2017; Huszár, 2017; Tran+, 2017; Shi+, 2018] & Semi-implicit distributions [Yin+, 2018; Titsias+, 2019; Molchanov+, 2019]

This Lecture

- **Expand** the variational family $q_{\theta}(z)$
- ► Use implicit distributions
 - **Easy** to sample from, $z \sim q_{\theta}(z)$
 - Intractable density, $q_{\theta}(z)$
- lacktriangle Challenge: Solve the optimization problem with intractable $q_{ heta}(z)$

objective:
$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(z)} [\log p(x, z) - \log q_{\theta}(z)]$$

Goal: More Expressive Variational Distributions

Part I:

Implicit Distributions and Adversarial Training

How to Form an Expressive Implicit Distribution

- ▶ Generate random noise $\varepsilon \sim q(\varepsilon)$
- ightharpoonup Pass the noise through a NN with parameters heta
- ► Let *z* be the output of the NN

How to Form an Expressive Implicit Distribution

- ▶ Implicit distribution $q_{\theta}(z)$:
 - Easy to draw samples:

sample
$$\varepsilon \sim q(\varepsilon)$$
; set $z = f_{\theta}(\varepsilon)$

- ► Cannot evaluate the density $q_{\theta}(z)$
- ► Flexible distribution $q_{\theta}(z)$ due to the NN
- ▶ Goal: Tune θ so that $q_{\theta}(z)$ approximates the posterior $p(z \mid x)$

Why VI with Implicit Distributions is Hard

▶ The VI objective is the ELBO (equivalent to minimizing KL),

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[\underbrace{\log p(x, z)}_{ ext{model}} - \underbrace{\log q_{\theta}(z)}_{ ext{entropy}} \right]$$

• Gradient of the objective $\nabla_{\theta} \mathcal{L}(\theta)$ (reparameterization)

$$\nabla_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{q(\varepsilon)} \Big[\nabla_{\theta} \Big(\log p(x, f_{\theta}(\varepsilon)) - \log q_{\theta} (f_{\theta}(\varepsilon)) \Big) \Big]$$

Why VI with Implicit Distributions is Hard

• Gradient of the objective $\nabla_{\theta} \mathcal{L}(\theta)$ (reparameterization)

$$\nabla_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{q(\varepsilon)} \Big[\nabla_{\theta} \Big(\log p(x, f_{\theta}(\varepsilon)) - \log q_{\theta} \left(f_{\theta}(\varepsilon) \right) \Big) \Big]$$

For the model term:

$$\mathbb{E}_{q(\varepsilon)}\left[\nabla_{\theta}\log p(x,f_{\theta}(\varepsilon))\right] \approx \frac{1}{S}\sum_{s=1}^{S}\nabla_{\theta}\log p(x,f_{\theta}(\varepsilon^{(s)})), \quad \varepsilon^{(s)} \sim q(\varepsilon)$$

Why VI with Implicit Distributions is Hard

▶ Gradient of the objective $\nabla_{\theta} \mathcal{L}(\theta)$ (reparameterization)

$$\nabla_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{q(\varepsilon)} \Big[\nabla_{\theta} \Big(\log p(x, f_{\theta}(\varepsilon)) - \log q_{\theta} (f_{\theta}(\varepsilon)) \Big) \Big]$$

For the entropy term:

$$\nabla_{\theta} \log q_{\theta} \left(f_{\theta}(\varepsilon) \right) = \nabla_{z} \log q_{\theta}(z) \times \nabla_{\theta} f_{\theta}(\varepsilon) + \underbrace{\nabla_{\theta} \log q_{\theta}(z) \big|_{z = f_{\theta}(\varepsilon)}}_{=0 \text{ (in expectation)}}$$

► Monte Carlo estimates require $\nabla_z \log q_\theta(z)$ (not available)

How Density Ratio Estimation Can Help

► The VI objective is the ELBO (equivalent to minimizing KL),

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[\underbrace{\log p(x, z)}_{ ext{model}} - \underbrace{\log q_{\theta}(z)}_{ ext{entropy}} \right]$$

Rewrite the ELBO as "log-likelihood minus KL to prior,"

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[\log p(x \mid z) \right] - \text{KL} \left(q_{\theta}(z) \mid\mid p(z) \right)$$
$$= \mathbb{E}_{q_{\theta}(z)} \left[\log p(x \mid z) \right] - \mathbb{E}_{q_{\theta}(z)} \left[\log \frac{q_{\theta}(z)}{p(z)} \right]$$

How Density Ratio Estimation Can Help

► ELBO objective:

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[\log p(x \mid z) \right] - \mathbb{E}_{q_{\theta}(z)} \left[\log \frac{q_{\theta}(z)}{p(z)} \right]$$

• Key idea: Approximate the density ratio $\log \frac{q_{\theta}(z)}{p(z)}$

Density Ratio Estimation

► ELBO objective:

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[\log p(x \mid z) \right] - \mathbb{E}_{q_{\theta}(z)} \left[\log \frac{q_{\theta}(z)}{p(z)} \right]$$

- ▶ Imagine that we had labelled samples from $q_{\theta}(z)$ and p(z):
 - Class y=1: The sample z comes from $q_{\theta}(z)$
 - Class y = 0: The sample z comes from p(z)
- ▶ If you observe z, what is the class? (under equal class prior)
 - ▶ Optimal classifier is $D^*(z) = \frac{q_{\theta}(z)}{q_{\theta}(z) + p(z)}$
- ▶ The density ratio can be expressed as a function of the classifier:

$$\log \frac{q_{\theta}(z)}{p(z)} = \log D^{*}(z) - \log(1 - D^{*}(z))$$

Density Ratio Estimation

▶ The density ratio can be expressed as a function of the classifier:

$$\log \frac{q_{\theta}(z)}{p(z)} = \log D^{\star}(z) - \log(1 - D^{\star}(z))$$

▶ Train a (flexible) classifier D(z) that distinguishes samples:

$$D^{\star}(z) = \max_{D} \mathbb{E}_{q_{\theta}(z)} \left[D(z) \right] + \mathbb{E}_{p(z)} \left[\log(1 - D(z)) \right]$$

▶ Rewrite the ELBO using D(z),

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[\log p(x \mid z) \right] - \mathbb{E}_{q_{\theta}(z)} \left[\log D(z) - \log(1 - D(z)) \right]$$

Density Ratio Estimation: Optimization

► ELBO objective:

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[\log p(x \mid z) \right] - \mathbb{E}_{q_{\theta}(z)} \left[\log D(z) - \log(1 - D(z)) \right]$$

- Algorithm:
 - 1. Follow gradient estimates of the ELBO w.r.t. θ (reparameterization)
 - 2. For each θ , fit a flexible classifier D(z) so that $D(z) \approx D^{\star}(z)$

Limitations of Density Ratio Estimation

► ELBO objective:

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[\log p(x \mid z) \right] - \mathbb{E}_{q_{\theta}(z)} \left[\log D(z) - \log(1 - D(z)) \right]$$

- Limitations:
 - The discriminator D(z) needs to be trained to optimum after each update of θ (in practice, optimization is truncated to a few iterations)
 - Unstable training when discriminator does not catch up quickly
 - In high dimensions, the discriminator overfits easily, giving values close to 0 or 1

Alternatives

- ► Kernel-based density ratio estimation (KIVI) [Shi+, 2018]
- ► Semi-implicit distributions [Yin+, 2018; Titsias+, 2019; Molchanov+, 2019]

Alternatives

- ► Kernel-based density ratio estimation (KIVI) [Shi+, 2018]
- ► Semi-implicit distributions [Yin+, 2018; Titsias+, 2019; Molchanov+, 2019]

Part II:

Semi-Implicit Distributions

Recap: VI with Implicit Distributions

ELBO objective:

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[\underbrace{\log p(x, z)}_{ ext{model}} - \underbrace{\log q_{\theta}(z)}_{ ext{entropy}} \right]$$

• Gradient of the objective $\nabla_{\theta} \mathcal{L}(\theta)$ (reparameterization)

$$\nabla_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{q(\varepsilon)} \Big[\nabla_{\theta} \Big(\log p(\mathsf{x}, f_{\theta}(\varepsilon)) - \log q_{\theta} \left(f_{\theta}(\varepsilon) \right) \Big) \Big]$$

▶ Monte Carlo estimates require $\nabla_z \log q_\theta(z)$ (not available)

Semi-Implicit Distributions

► ELBO objective:

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[\underbrace{\log p(x, z)}_{ ext{model}} - \underbrace{\log q_{\theta}(z)}_{ ext{entropy}} \right]$$

- ► Goal: Tractable inference avoiding density ratio estimation
- ► Two methods:
 - Lower-bound the ELBO (SIVI) [Yin+, 2018; Molchanov+, 2019]
 - Estimate gradients with sampling (UIVI) [Titsias+, 2019]
- First step: use a semi-implicit construction of $q_{\theta}(z)$

Implicit distribution:

► (Semi-)implicit distribution:

► (Semi-)implicit distribution

Example: The conditional $q_{\theta}(z \mid \varepsilon)$ is a Gaussian,

$$q_{\theta}(z \mid \varepsilon) = \mathcal{N}(z \mid \mu_{\theta}(\varepsilon), \Sigma_{\theta}(\varepsilon))$$

► (Semi-)implicit distribution

- ► The distribution $q_{\theta}(z)$ is still **implicit**,
 - Easy to sample,

sample
$$\varepsilon \sim q(\varepsilon)$$
,
obtain $\mu_{\theta}(\varepsilon)$ and $\Sigma_{\theta}(\varepsilon)$
sample $z \sim \mathcal{N}(z | \mu_{\theta}(\varepsilon), \Sigma_{\theta}(\varepsilon))$

▶ The variational distribution $q_{\theta}(z)$ is not tractable,

$$q_{\theta}(z) = \int q(\varepsilon)q_{\theta}(z \mid \varepsilon)d\varepsilon$$

► (Semi-)implicit distribution

- **Assumptions** on the conditional $q_{\theta}(z \mid \varepsilon)$:
 - Reparameterizable
 - ► Tractable gradient $\nabla_z \log q_\theta(z | \varepsilon)$ Note: this is different from $\nabla_z \log q_\theta(z)$ (still intractable)

► (Semi-)implicit distribution

- ► The Gaussian meets both assumptions:
 - Reparameterizable,

$$u \sim \mathcal{N}(u \mid 0, I), \qquad z = h_{\theta}(u; \varepsilon) = \mu_{\theta}(\varepsilon) + \Sigma_{\theta}(\varepsilon)^{1/2}u$$

Tractable gradient,

$$\nabla_z \log q_{\theta}(z \mid \varepsilon) = -\Sigma_{\theta}(\varepsilon)^{-1}(z - \mu_{\theta}(\varepsilon))$$

Method 1: SIVI

Define a lower bound of the ELBO,

$$\begin{split} &\mathcal{L}(\theta) \geq \overline{\mathcal{L}}(\theta), \quad \text{where} \\ &\overline{\mathcal{L}}(\theta) = \mathbb{E}_{\varepsilon \sim q(\varepsilon)} \bigg[\mathbb{E}_{z \sim q_{\theta}(z \mid \varepsilon)} \bigg[\mathbb{E}_{\varepsilon^{(1)}, \dots, \varepsilon^{(L)} \sim q(\varepsilon)} \bigg[\log p(x, z) \\ &- \log \bigg(\frac{1}{L+1} \left(q_{\theta}(z \mid \varepsilon) + \sum_{\ell=1}^{L} q_{\theta}(z \mid \varepsilon^{(\ell)}) \right) \bigg) \bigg] \bigg] \bigg] \end{split}$$

- Optimize the lower bound instead of the ELBO
- The lower bound does not depend on the intractable $q_{\theta}(z)$

Method 1: SIVI

► SIVI bound:

$$\overline{\mathcal{L}}(\theta) = \mathbb{E}_{\varepsilon \sim q(\varepsilon)} \left[\mathbb{E}_{z \sim q_{\theta}(z \mid \varepsilon)} \left[\mathbb{E}_{\varepsilon^{(1)}, \dots, \varepsilon^{(L)} \sim q(\varepsilon)} \left[\log p(x, z) - \log \left(\frac{1}{L+1} \left(q_{\theta}(z \mid \varepsilon) + \sum_{\ell=1}^{L} q_{\theta}(z \mid \varepsilon^{(\ell)}) \right) \right) \right] \right] \right]$$

- Free parameter L controls the tightness of the bound
 - As $L o \infty$, $\overline{\mathcal{L}}(heta) o \mathcal{L}(heta)$
 - Computational complexity increases with L
- SIVI allows for semi-implicit construction of prior in VAEs [Molchanov+, 2019]

Method 2: UIVI

Recall the reparameterization gradient of the ELBO,

$$\nabla_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{q(\varepsilon)} \Big[\nabla_{\theta} \Big(\log p(x, f_{\theta}(\varepsilon)) - \log q_{\theta} (f_{\theta}(\varepsilon)) \Big) \Big]$$

- ▶ UIVI obtains an unbiased Monte Carlo estimator of $\nabla_z \log q_\theta(z)$
 - Avoid density ratio estimation
 - Directly optimize the ELBO (instead of a bound)
- Key idea: Gradient of the entropy component as an expectation,

$$\nabla_z \log q_{\theta}(z) = \mathbb{E}_{\mathrm{distrib}(\cdot)} [\mathrm{function}(z, \cdot)]$$

Method 2: UIVI

Rewrite as an expectation,

$$\nabla_{z} \log q_{\theta}(z) = \mathbb{E}_{q_{\theta}(\varepsilon' \mid z)} \left[\nabla_{z} \log q_{\theta}(z \mid \varepsilon') \right]$$

► Form Monte Carlo estimate,

$$\nabla_z \log q_{\theta}(z) \approx \nabla_z \log q_{\theta}(z \mid \varepsilon'), \qquad \varepsilon' \sim q_{\theta}(\varepsilon' \mid z)$$

Method 2: UIVI (Full Algorithm)

The gradient of the ELBO is

$$\nabla_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{q(\varepsilon)q(u)} \Big[\nabla_{z} \left(\log p(x, z) - \log q_{\theta}(z) \right) \Big|_{z = h_{\theta}(u; \varepsilon)} \times \nabla_{\theta} h_{\theta}(u; \varepsilon) \Big]$$

- Estimate the gradient based on samples:
 - 1. Sample $\varepsilon \sim q(\varepsilon)$, $u \sim q(u)$ (standard Gaussians)
 - 2. Set $z = h_{\theta}(\varepsilon; u) = \mu_{\theta}(\varepsilon) + \Sigma_{\theta}(\varepsilon)^{1/2}u$
 - 3. Evaluate $\nabla_z \log p(x, z)$ and $\nabla_\theta h_\theta(u; \varepsilon)$
 - 4. Sample $\varepsilon' \sim q_{\theta}(\varepsilon' \mid z)$
 - 5. Approximate $\nabla_z \log q_\theta(z) \approx \nabla_z \log q_\theta(z \mid \varepsilon')$

Method 2: UIVI (The Reverse Conditional)

- ► The distribution $q_{\theta}(\varepsilon' \mid z)$ is the **reverse conditional** The conditional is $q_{\theta}(z \mid \varepsilon)$
- ▶ How to sample from $q_{\theta}(\varepsilon' | z)$ in the UIVI algorithm?

Method 2: UIVI (The Reverse Conditional)

- It turns out we already have a sample $arepsilon \sim q_{ heta}(arepsilon'\,|\,z)$
- Recall the UIVI algorithm,
 - 1. Sample $\varepsilon \sim q(\varepsilon)$, $u \sim q(u)$ (standard Gaussians)
 - 2. Set $z = h_{\theta}(\varepsilon; u) = \mu_{\theta}(\varepsilon) + \Sigma_{\theta}(\varepsilon)^{1/2}u$
 - 3. Evaluate $\nabla_z \log p(x, z)$ and $\nabla_\theta h_\theta(u; \varepsilon)$
 - 4. Sample $\varepsilon' \sim q_{\theta}(\varepsilon' \mid z)$
 - 5. Approximate $\nabla_z \log q_\theta(z) \approx \nabla_z \log q_\theta(z \mid \varepsilon')$
- ▶ We have that $(\varepsilon, z) \sim q_{\theta}(\varepsilon, z) = q(\varepsilon)q_{\theta}(z \mid \varepsilon) = q_{\theta}(z)q_{\theta}(\varepsilon \mid z)$
- ▶ Thus, ε is a sample from $q_{\theta}(\varepsilon \mid z)$

Method 2: UIVI (The Reverse Conditional)

- ▶ But setting $\varepsilon' = \varepsilon$ is not correct, because both must be independent
- \blacktriangleright We use ε to initialize a HMC sampler targeting

$$q(\varepsilon' \mid z) \propto q(\varepsilon')q_{\theta}(z \mid \varepsilon')$$

A few HMC iterations reduce the correlation between ε' and ε

UIVI: Toy Experiments

UIVI: Multinomial Logistic Regression Experiments

UIVI provides better ELBO and predictive performance than SIVI

UIVI: VAE Experiments

- ▶ Model is $p_{\phi}(x,z) = \prod_{n} p(z_n) p_{\phi}(x_n \mid z_n)$
- ▶ Amortized variational distrib. $q_{\theta}(z_n | x_n) = \int q(\varepsilon_n) q_{\theta}(z_n | \varepsilon_n, x_n) d\varepsilon_n$
- lacktriangle Goal: Find model parameters ϕ and variational parameters θ

	average test log-likelihood		
method	MNIST	Fashion-MNIST	
Explicit (standard VAE)	-98.29	-126.73	
SIVI	-97.77	-121.53	
UIVI	-94.09	-110.72	

UIVI provides better predictive performance

Part III:

MCMC-Improved Approximation

[Ruiz+, 2019] 49

Our Goal: More Expressive Variational Distributions

Main Idea: Use MCMC

- Start from an *explicit* variational distribution, $q_{\theta}^{(0)}(z)$
- Improve the distribution with t MCMC steps,

$$z_0 \sim q_{\theta}^{(0)}(z), \qquad z \sim Q^{(t)}(z \,|\, z_0)$$

(the MCMC sampler targets the posterior, p(z|x))

► Implicit variational distribution,

$$q_{\theta}(z) = \int q_{\theta}^{(0)}(z_0) Q^{(t)}(z \mid z_0) dz_0$$

Challenges of Using MCMC in VI

$$\mathcal{L}_{\text{improved}}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[\log p(x, z) - \log q_{\theta}(z) \right]$$

- ► Challenge #1: The variational objective becomes intractable
- lacktriangle Challenge #2: The variational objective may depend weakly on heta

$$q_{\theta}(z) \xrightarrow{t \to \infty} p(z \mid x)$$

Alternative Divergence: VCD

- ▶ We would like an objective that avoids these challenges
- lacktriangle We call the objective Variational Contrastive Divergence, $\mathcal{L}_{\mathrm{VCD}}(\theta)$
- Desired properties:
 - ightharpoonup Non-negative for any heta
 - ightharpoonup Zero only if $q_{\theta}^{(0)}(z) = p(z \mid x)$

Variational Contrastive Divergence

 \blacktriangleright Key idea: The improved distribution $q_{\theta}(z)$ decreases the KL

$$\mathrm{KL}(q_\theta(z)\mid\mid p(z\mid x)) \leq \mathrm{KL}(q_\theta^{(0)}(z)\mid\mid p(z\mid x))$$
 (equality only if $q_\theta^{(0)}(z) = p(z\mid x)$)

► A first objective:

$$\mathcal{L}(\theta) = \mathrm{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) - \mathrm{KL}(q_{\theta}(z) \mid\mid p(z \mid x))$$
 (it is a proper divergence)

Variational Contrastive Divergence

$$\mathcal{L}(\theta) = \mathrm{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) - \mathrm{KL}(q_{\theta}(z) \mid\mid p(z \mid x))$$

- ► Still intractable: $\log q_{\theta}(z)$ in the second term
- Add regularizer,

$$\mathcal{L}_{\text{VCD}}(\theta) = \underbrace{\text{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) - \text{KL}(q_{\theta}(z) \mid\mid p(z \mid x))}_{\geq 0} + \underbrace{\text{KL}(q_{\theta}(z) \mid\mid q_{\theta}^{(0)}(z))}_{\geq 0}$$

(still a proper divergence)

Variational Contrastive Divergence

$$\mathcal{L}_{\text{VCD}}(\theta) = \text{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) - \text{KL}(q_{\theta}(z) \mid\mid p(z \mid x)) + \text{KL}(q_{\theta}(z) \mid\mid q_{\theta}^{(0)}(z))$$

- Addresses Challenge #1 (intractability):
 - ► The intractable term $\log q_{\theta}(z)$ cancels out
- Addresses Challenge #2 (weak dependence):

Taking Gradients of the VCD

$$\mathcal{L}_{\text{VCD}}(\theta) = -\mathbb{E}_{q_{\theta}^{(0)}(z)} \left[\log p(x, z) - \log q_{\theta}^{(0)}(z) \right] + \mathbb{E}_{q_{\theta}(z)} \left[\log p(x, z) - \log q_{\theta}^{(0)}(z) \right]$$

- ▶ The first component is the (negative) standard ELBO
 - ▶ Use reparameterization or score-function gradients
- The second component is the new part,

$$\nabla_{\theta} \mathbb{E}_{q_{\theta}(\mathbf{z})} \left[g_{\theta}(\mathbf{z}) \right] = -\mathbb{E}_{q_{\theta}(\mathbf{z})} \left[\nabla_{\theta} \log q_{\theta}^{(0)}(\mathbf{z}) \right] + \mathbb{E}_{q_{\theta}^{(0)}(\mathbf{z}_0)} \left[\mathbb{E}_{Q^{(t)}(\mathbf{z} \mid \mathbf{z}_0)} [g_{\theta}(\mathbf{z})] \nabla_{\theta} \log q_{\theta}^{(0)}(\mathbf{z}_0) \right]$$
(can be approximated via Monte Carlo)

Algorithm to Optimize the VCD

$$\mathcal{L}_{\text{VCD}}(\theta) = -\mathbb{E}_{q_{\theta}^{(0)}(z)} \left[\log p(x, z) - \log q_{\theta}^{(0)}(z) \right] + \mathbb{E}_{\mathbf{q}_{\theta}(\mathbf{z})} \left[\log p(x, z) - \log q_{\theta}^{(0)}(z) \right]$$

- 1. Sample $z_0 \sim q_{\theta}^{(0)}(z)$ (reparameterization)
- 2. Sample $z \sim Q^{(t)}(z \,|\, z_0)$ (run t MCMC steps)
- 3. Estimate the gradient $\nabla_{\theta} \mathcal{L}_{VCD}(\theta)$
- 4. Take gradient step w.r.t. θ

Toy Experiments

Optimizing the VCD leads to a distribution $q_{\theta}^{(0)}(z)$ with higher variance

$$\mathcal{L}_{\mathrm{VCD}}(\theta) \xrightarrow{t \to \infty} \mathrm{KL}_{\mathrm{sym}}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x))$$

Experiments: Latent Variable Models

- ▶ Model is $p_{\phi}(x,z) = \prod_{n} p(z_n) p_{\phi}(x_n \mid z_n)$
- ► Amortized distribution $q_{\theta}(z_n | x_n) = \int Q^{(t)}(z_n | z_0) q_{\theta}^{(0)}(z_0 | x_n) dz_0$
- ▶ Goal: Find model parameters ϕ and variational parameters θ

method	average to	est log-likelihood Fashion-MNIST
$\begin{array}{c} {\sf Explicit} + {\sf KL} \\ {\sf Implicit} + {\sf KL} \ [{\sf Hoffman}, \ 2017] \\ {\sf VCD} \end{array}$	-111.20 -103.61 -101.26	-127.43 -121.86 - 121.11

(a) Logistic matrix factorization

	average test log-likelihood		
method	MNIST	Fashion-MNIST	
Explicit + KL	-98.46	-124.63	
Implicit + KL [Hoffman, 2017]	-96.23	-117.74	
VČD	-95.86	-117.65	
(1)) (4 =			

(b) VAE

Summary

- ▶ Use *implicit distributions* to form expressive variational posteriors
 - Density ratio estimation
 - Semi-implicit distributions (SIVI, UIVI)
 - Refine the variational distribution with MCMC (VCD)
- ► Stable training
- Good empirical results on (deep) probabilistic models

Proof of the Key Equation in UIVI

► Goal: Prove that

$$\nabla_{\mathbf{z}} \log q_{\theta}(\mathbf{z}) = \mathbb{E}_{q_{\theta}(\varepsilon \mid \mathbf{z})} \left[\nabla_{\mathbf{z}} \log q_{\theta}(\mathbf{z} \mid \varepsilon) \right]$$

Start with log-derivative identity,

$$abla_z \log q_{ heta}(z) = rac{1}{q_{ heta}(z)}
abla_z q_{ heta}(z)$$

• Apply the definition of $q_{\theta}(z)$ through a mixture,

$$abla_z \log q_{ heta}(z) = rac{1}{q_{ heta}(z)} \int
abla_z q_{ heta}(z \,|\, arepsilon) q(arepsilon) darepsilon$$

▶ Apply the log-derivative identity on $q_{\theta}(z \mid \varepsilon)$,

$$\nabla_{z} \log q_{\theta}(z) = \frac{1}{q_{\theta}(z)} \int q_{\theta}(z \mid \varepsilon) q(\varepsilon) \nabla_{z} \log q_{\theta}(z \mid \varepsilon) d\varepsilon.$$

Apply Bayes' theorem

1

UIVI Experiments: Multinomial Logistic Regression

$$p(x,z) = p(z) \prod_{n=1}^{N} \frac{\exp\{x_n^{\top} z_{y_n} + z_{0y_n}\}}{\sum_{k} \exp\{x_n^{\top} z_k + z_{0k}\}}$$

Number of HMC iterations does not significantly impact results

Generalized VCD

▶ VCD

$$\mathcal{L}_{\text{VCD}}(\theta) = \text{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) + \text{KL}(q_{\theta}(z) \mid\mid q_{\theta}^{(0)}(z)) - \text{KL}(q_{\theta}(z) \mid\mid p(z \mid x))$$

ightharpoonup α -generalized VCD (0 < $\alpha \le 1$)

$$\mathcal{L}_{\mathrm{VCD}}^{(\alpha)}(\theta) = \mathrm{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) + \alpha \left[\mathrm{KL}(q_{\theta}(z) \mid\mid q_{\theta}^{(0)}(z)) - \mathrm{KL}(q_{\theta}(z) \mid\mid p(z \mid x)) \right]$$

VCD Experiments: Impact of Number of MCMC Steps

