CS915/435 Advanced Computer Security - Elementary Cryptography

Block Cipher I

Roadmap

- Symmetric cryptography
 - Classical cryptographic
 - Stream cipher
 - Block cipher I, II
 - Hash
 - MAC
- Asymmetric cryptography
 - Key agreement
 - Public key encryption
 - Digital signature

Block cipher: overview

Canonical examples:

- DES: n=64 bits k=56 bits

- 3DES: n=64 bits k=168 bits

- AES: n=128 bits k=128, 192, 256 bits

Iterated construction

- R(K,.) is called a round function
- DES 16 rounds, 3DES 48 round, AES-128 10 rounds

Performance

AMD Opteron, 2,2 GHz, Linux, Crypto++ 5.6.0 (Wei Dai)

		<u>Cipher</u>	Block/key size	Speed (MB/sec)
(RC4		126
	strear	Salsa20/12		643
	eam	Sosemanuk		727

	3DES	64/168	13
olock	AES-128	128/128	109

Abstractly: PRF and PRP

• Pseudo Random Function (PRF) defined over (K, X, Y)

$$F: K \times X \to Y$$

Such that:

- 1. Exists "efficient" algorithm to evaluate F(k, x)
- Pseudo Random Permutation (PRP) defined over (K, X)

$$E: K \times X \to X$$

Such that:

- 1. Exists "efficient" deterministic algorithm to evaluate E(k, x)
- 2. The function E(k, .) is one-to-one
- 3. Exists "efficient" inversion algorithm D(k, .)

Running example

• Example PRPs: 3DES, AES, ...

AES: $K \times X \rightarrow X$ where $K = X = \{0,1\}^{128}$

3DES: $K \times X \rightarrow X$ where $X = \{0,1\}^{64}$, $K = \{0,1\}^{168}$

- A PRP is a PRF where
 - $1) \quad X = Y$
 - 2) It is invertible

Data Encryption Standard

- Early 1970s: Horst Feistel designed Lucifer at IBM
- 1973: NBS asked for block cipher proposals
 - IBM submitted a variant of Lucifer (128-bit key and 128-bit block size)
- 1977: NBS adopted DES as a federal standard
 - But reduced key to 56 bits and block size to 64 bits
- 1997: DES broken by exhaustive search
 - 56-bit key is too small
- 2000: NIST adopted AES to replace DES

Historical importance of DES (I)

- Before 1970s, crypto was a forbidden science
 - Almost no research papers published
 - National Security Agency had considerable knowledge crypto, but they didn't admit existence
 - But financial transactions must be protected
 - A secure encryption standard was badly needed.

Historical importance of DES (II)

- In 1972, National Bureau of Standards (NBS) initiated to develop a standard cipher
 - Must provide a high level of security
 - Must be completely specified and easy to understand
 - The security must reside in the key not the algorithm
 - Must be available to all users.
 - Must be adaptable for use in diverse applications
 - Must be economically implementable in electronic devices
 - Must be efficient to use
 - Must be able to be validated
 - Must be exportable
- Public interest was high, but public expertise was lacking
- None of the submissions came close to the requirements

Historical importance of DES (III)

- In 1974, NBS issued a second request
 - IBM submitted Lucifer
- NBS requested NSA to help evaluation
 - NSA reduced the key size from 128 to 56 bits
 - But this received widespread criticisms
- 1976, the modified Lucifer adopted as standard
- After 1976, public research on crypto became unstoppable
- "DES did more to galvanize the field of cryptanalysis than anything else." (Bruce Schneier)

A challenge in efficiency

Can we use the same circuit for both Enc/Dec?

Feistel Network

For i = 0, 1, ... n-1
$$L_{i+1} = R_i$$

$$R_{i+1} = L_i \bigoplus F(K_i, R_i)$$
 End

$$L1 = R0$$

$$R1 = L0 XOR F(K0,R0)$$

Invertible design

$$L_i = R_{i+1} XOR F(K_i, L_{i+1})$$

DES Decryption

Ko

DES Decryption

DES: 16 round Feistel network

The F function: $F(k_i, x)$

The S-boxes

$$S_i: \{0,1\}^6 \to \{0,1\}^4$$

	Middle 4 bits of input																
		2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
Outer		14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
bits		4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
		11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
			•	•	•		•	•	•	•	•	•		•			

For example:

• Input = 011011 Outer bits: 01 Middle bits: 1101

• Output = 1001

The P-boxes

 $P: \{0,1\}^{32} \rightarrow \{0,1\}^{32}$

16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	30	6
22	11	4	25

Suppose $C = (c_1, c_2, c_3, c_4, c_5, ..., c_{31}, c_{32})$ Then $P(C) = (c_{16}, c_7, c_{20}, c_{21}, c_{29}, ..., c_4, c_{25})$

Choosing the S-boxes and P-box

- S-boxes and P-box must be a careful choice
- Choosing at random would result in an insecure block cipher
- Several rules used in choice of S and P boxes
 - No output bit should be close to a linear function of the inputs bits
 - S-boxes are 4-to-1 mapping

Brute-force attack on DES

- DES challenge by RSA company
 - Given plaintext/ciphertext pairs, find the key
- 1997:
 - Internet search, 96 days
- 1998
 - DES search machine (EFF), 56 hours
 - Cost: U\$\$250K
 - The prize: US\$10K
- 1999
 - Combined internet search and DES machine: 22 hours
- Conclusion: 56-bit is too weak (128-bit key is the standard)

1 sec

 $2^{(128-56)/3600/24/365} = 100$ millions millions years

Strengthen DES by double encryption

Use double key 112-bits and encrypt twice

$$c = E(k_2, E(k_1, m))$$

Is this secure?

Breaking double encryptions

Meet in the middle attack: knowing a few (m, c) pairs

k ₁ (56 bits)	E(k ₁ , m ₁)	D(k ₂ , c ₁)	k ₂ (56 bits)
00000		•••	00000
00001		•••	00001
			·
11111		•••	11111

Time: $2^{56} \times 2 = 2^{57}$ encryptions, Space: $2^{56} \times 2 \times 15$ bytes

A more secure combination: Triple DES

Variants

- $k_1 \neq k_2 \neq k_3$: key size 168 bits, security 112 bits
- $k_1 = k_3$: key size 112 bits, security 80 bits
- $k_1 = k_2 = k_3$: key size 56 bits, security 56 bits