ACP

Exemple numérique

• Considérons deux variables X1 et X2 mesurés pour cinq individus

	X1	X2
Ind 1	1	5
Ind 2	2	10
Ind 3	3	8
Ind 4	4	8
Ind 5	9	12

Changement du centre de gravité

• Calcul des moyennes des variables

$$Moy(X1) = ???$$

$$Moy(X2) = ???$$

• Calcul des variances et écarts types des variables

$$Var(X1) = ???$$

$$Var(X2) = ???$$

Moy(X1)= 3,8 Moy(X2) =8,6

$$Var(X1) = 7,76$$

$$Var(X2) = 5,44$$

$$\sigma(X1) = 2,79$$

$$\sigma$$
 (X2) = 2,33

Matrice centrée

Xc

	X1	X2
Ind 1	1	5
Ind 2	2	10
Ind 3	3	8
Ind 4	4	8
Ind 5	9	12

$$Moy(X1) = 3.8$$

$$Moy(X2) = 8,6$$

Matrice variance covariance

$$V = 1/n * X_c^t * X_c$$

Matrice variance covariance

Matrice centrée réduit

$$X_{cr} = X_c * D$$

$$D = \begin{bmatrix} \frac{1}{\sigma_1} & 0 \\ 0 & \frac{1}{\sigma_2} \end{bmatrix}$$

$$X_{cr} = \begin{bmatrix} -1,005 & -1,543 \\ -0,646 & 0,600 \\ -0,287 & -0,257 \\ 0,072 & -0,257 \\ 1,867 & 1,458 \end{bmatrix}$$

Matrice de corrélation

$$R = 1/n * X_{cr}^t * X_{cr}$$

Matrice de corrélation

$$R = \begin{bmatrix} 1 & 0,788 \\ 0,788 & 1 \end{bmatrix}$$

Valeurs propres

Det
$$(R - \lambda I) = 0$$

$$Det \begin{vmatrix} 1 - \lambda & 0,788 \\ 0,788 & 1 - \lambda \end{vmatrix} = 0$$

$$\lambda 1 = ? \quad \lambda 2 = ?$$

Valeurs propres

$$\lambda 1 = 1,788$$

$$\lambda 2 = 0,212$$

•
$$\lambda 1 = 1,788$$
 R * U1 = $\lambda 1$ * U1

$$\begin{bmatrix} 1 & 0,788 \\ 0,788 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \lambda 1 \begin{bmatrix} a \\ b \end{bmatrix}$$

•
$$\lambda 1 = 1,788$$
 R * U1 = $\lambda 1$ * U1

$$\begin{bmatrix} 1 & 0,788 \\ 0,788 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \lambda 1 \begin{bmatrix} a \\ b \end{bmatrix}$$

$$a = b$$

$$U1 = \begin{bmatrix} a \\ a \end{bmatrix}$$

•
$$\lambda 2 = 0.212$$
 R * U2 = $\lambda 2$ * U2

$$\begin{bmatrix} 1 & 0,788 \\ 0,788 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \lambda 2 \begin{bmatrix} a \\ b \end{bmatrix}$$

•
$$\lambda 2 = 0.212$$
 R * U2 = $\lambda 2$ * U2

$$\begin{vmatrix} 1 & 0,788 \\ 0,788 & 1 \end{vmatrix} \begin{vmatrix} a \\ b \end{vmatrix} = \lambda 2 \begin{vmatrix} a \\ b \end{vmatrix}$$

$$\begin{aligned}
a &= -b \\
U2 &= \begin{bmatrix} a \\ -a \end{bmatrix} & \text{ou } U2 &= \begin{bmatrix} -b \\ b \end{bmatrix}
\end{aligned}$$

Normalisation des vecteurs propres

$$U1 = \begin{bmatrix} a \\ a \end{bmatrix} \longrightarrow U1 = a \begin{bmatrix} 1 \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{1}{\sqrt{1^2 + 1^2}} \\ \frac{1}{\sqrt{1^2 + 1^2}} \end{bmatrix} \longrightarrow U1 = \begin{bmatrix} 0,707 \\ 0,707 \end{bmatrix}$$

• U2 =
$$\begin{bmatrix} a \\ -a \end{bmatrix}$$
 \longrightarrow U2 =a $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ \longrightarrow $\begin{bmatrix} \frac{1}{\sqrt{1^2+1^2}} \\ \frac{-1}{\sqrt{1^2+1^2}} \end{bmatrix}$ \longrightarrow U2 = $\begin{bmatrix} 0,707 \\ -0,707 \end{bmatrix}$

Qualité de l'ACP

Composantes principales

Xcr * U

```
-1,005 -1,543 -0,646 0,600 0,707 0,707 0,072 -0,257 0,072 0,072 0,458 0,707 0,707 0,707
```

Coordonnées des individus

```
-1,802 0,381 \longrightarrow Ind 1

-0,032 -0,881

-0,385 -0,021

-0,131 0,233

2,351 0,289
```

Coordonnées des variables

* *
$$\sqrt{1,788}$$
 $\sqrt{0,212}$

Coordonnées des variables

$$0,946$$
 $0,324$ \longrightarrow Var1 $0,946$ $-0,324$ \longrightarrow Var2

Représentation des individus

Cercle de corrélation

Tableaux Aides à l'interprétation

Tableau de la qualité de représentation

Pour l'Individus 4

Axe 1:
$$\frac{(-0.131)^2}{(0.072)^2 + (-0.257)^2} = 0.24$$

Axe 2:
$$\frac{(0,233)^2}{(0,072)^2 + (-0,257)^2} = 0,76$$

Tableau de la qualité de représentation

Ind	Axe1	Axe2
Ind1	0,96	0,04
Ind2	0,01	0,99
Ind3	0,99	0,01
Ind4	0,24	076
Ind5	0,98	0,02

Tableau de la contribution à la variance

Pour l'Individus 4

Axe 1:
$$\frac{(-0.131)^2}{5*1.788} = 0.002$$

Axe 2:
$$\frac{(0,233)^2}{5*0,212} = 0,76$$

Tableau de la contribution à la variance

Ind	Axe1	Axe2
Ind1	0,363	0,137
Ind2	0,0001	0,737
Ind3	0,016	0,0004
Ind4	0,002	0,051
Ind5	0,619	0,079

Ind	Axe1	Axe2
Ind1	0,96	0,04
Ind2	0,01	0,99
Ind3	0,99	0,01
Ind4	0,24	076
Ind5	0,98	0,02

Ind	Axe1	Axe2
Ind1	0,363	0,137
Ind2	0,000	0,737
Ind3	0,016	0,000 4
Ind4	0,002	0,051
Ind5	0,619	0,079

	X1	X2
Ind 1	1	5
Ind 2	2	10
Ind 3	3	8
Ind 4	4	8
Ind 5	9	12

Contribution a la variance