ÁLGEBRA Y ESTRUCTURAS FINITAS/DISCRETAS

Convocatoria Febrero 2011

Alumno:		DNI:	
	(01/02/2011)		
I. Informática	I.T.I. Gestión	I.T.I. Sistemas	

Ejercicio 1. Sea $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ y $P = \{2, 3, 5, 7\}$. En P(X) definimos la relación de equivalencia

ARB si, y sólo si,
$$A \setminus P = B \setminus P$$

Entonces el conjunto cociente $\mathcal{P}(X)/R$ tiene cardinal

- (a) **64**.
- (b) 4.
- (c) 16.
- (d) 10.

Solución:

Puesto que $A \setminus P = A \cap P'$ y $P' = \{1, 4, 6, 8, 9, 10\}$ la respuesta es $2^6 = 64$. Veamos porqué. Para esto vamos a calcular algunas clases de equivalencia:

$$[\emptyset] = \{B \subseteq X : BR\emptyset\} = \{B \subseteq X : B \cap P' = \emptyset\} = \{\emptyset, \{2\}, \{3\}, \{5\}, \{7\}, \{2, 3\}, \{2, 5\}, \{2, 7\}, \{3, 5\}, \{3, 7\}, \cdots\}$$

Es decir, en la clase del conjunto vacío están todos los subconjuntos de P. Al hacer la intersección de cualquiera de estos con P' nos da el conjunto vacío.

 $[\{1\}] = \{B \subseteq X : B \cap P' = \{1\}\} = \{\{1\}, \{1,2\}, \{1,3\}, \{1,5\}, \{1,7\}, \{1,2,3\}, \{1,2,5\}, \{1,2,7\}, \{1,3,5\}, \{1,3,7\}, \cdots\} \\ \text{En } [\{1\}] \text{ están todos los subconjuntos de } X \text{ que se obtienen uniéndole el elemento 1 a los subconjuntos de } P. \text{ En total, la clase } [\{1\}] \text{ tiene } 16 \text{ elementos.}$

Podemos ver como cada clase de equivalencia tiene 16 elementos. Como $\mathcal{P}(X)$ tiene 1024, el número de clases de equivalencia es $\frac{1024}{16} = 64$.

O si queremos, la clase de equivalencia de A está determinada por $A \cap P'$, que es un subconjunto de P'. Como P' tiene 64 subconjuntos, el conjunto cociente $\mathcal{P}(X)/R$ tiene cardinal 64.

Ejercicio 2. Dada la aplicación $f: \mathbb{Z}_{100} \to \mathbb{Z}_{100}$ definida como f(x) = 12x + 35 entonces:

- a) f es inyectiva pero no sobreyectiva.
- b) f no es ni inyectiva ni sobreyectiva.
- c) f es biyectiva.
- d) f no es inyectiva, pero sí es sobreyectiva.

Solución:

La aplicación no es inyectiva, pues f(0) = 35 y $f(25) = 12 \cdot 25 + 35 = 335 = 35$.

Es decir, dos elementos distintos tienen la misma imagen.

La aplicación no es sobreyectiva. Por ejemplo, vamos a ver que no existe $x \in \mathbb{Z}_{100}$ tal que f(x) = 0.

Si f(x) = 0 entonces 12x + 35 = 0, 12x = 65. Y ahora tendríamos que resolver $12x \equiv 65 \pmod{100}$, que no tiene solución, pues mcd(12, 100) = 4, que no divide a 65.

También podría razonarse que si la aplicación fuera sobreyectiva, y va de un conjunto finito (de cardinal 100) en sí mismo, entonces sería también inyectiva, y ya hemos visto que no lo es.

1 de Febrero de 2011

Ejercicio 3. Sea $\sigma = (1\ 2\ 3\ 7\ 5)[(2\ 1\ 3\ 4)(3\ 9\ 2\ 5)]^{-1} \in S_{10}$. Entonces σ^{10001} vale:

- (a) (7532419).
- (b) (4371259).
- (c) (173)(9524).
- (d) (97124)(53).

Solución:

Tenemos que $\sigma = (1\ 2\ 3\ 7\ 5)[(2\ 1\ 3\ 4)(3\ 9\ 2\ 5)]^{-1} = (1\ 2\ 3\ 7\ 5)(3\ 9\ 2\ 5)^{-1}(2\ 1\ 3\ 4)^{-1} = (1\ 2\ 3\ 7\ 5)(5\ 2\ 9\ 3)(4\ 3\ 1\ 2)$

Ahora escribimos σ como producto de ciclos disjuntos. Calculamos la imagen de cada uno de los elementos. La imagen de 1 por $(4\ 3\ 1\ 2)$ es 2; la imagen de 2 por $(5\ 2\ 9\ 3)$ es 9; y la imagen de 9 por $(1\ 2\ 3\ 7\ 5)$ es 9. Por tanto, la imagen de 1 por σ vale 9.

Repitiendo el proceso con 9, nos queda que su imagen es 7. Y así podemos ver que $\sigma = (1 \ 9 \ 7 \ 5 \ 3 \ 2 \ 4)$. σ es un ciclo de longitud 7, luego σ tiene orden 7. Puesto que $10001 = 1428 \cdot 7 + 5$, se tiene que $\sigma^{10001} = \sigma^5$. Por tanto,

 $\sigma^{10001} = (1\ 2\ 5\ 9\ 4\ 3\ 7)$, que vemos que coincide con la respuesta b) (notemos que al ser σ un ciclo, es lo mismo $(1\ 2\ 5\ 9\ 4\ 3\ 7)$ que $(4\ 3\ 7\ 1\ 2\ 5\ 9)$).

1 de Febrero de 2011 (3)

Ejercicio 4. Di qué vale $a \in \mathbb{Z}_{11}$ para que los sistemas de ecuaciones

sean equivalentes:

- (a) 4.
- (b) 10.
- (c) 2.
- (d) 1.

Solución:

Tomamos el segundo sistema, escribimos la matriz ampliada y calculamos su forma normal de Hermite.

$$\begin{pmatrix} 1 & 4 & 8 & 3 & 3 \\ 2 & 1 & 0 & 1 & 5 \\ 0 & 1 & 7 & 2 & 2 \end{pmatrix} \xrightarrow{E_{21}(9)} \begin{pmatrix} 1 & 4 & 8 & 3 & 3 \\ 0 & 4 & 6 & 6 & 10 \\ 0 & 1 & 7 & 2 & 2 \end{pmatrix} \xrightarrow{E_{23}} \begin{pmatrix} 1 & 4 & 8 & 3 & 3 \\ 0 & 1 & 7 & 2 & 2 \\ 0 & 4 & 6 & 6 & 10 \end{pmatrix} \xrightarrow{E_{12}(7)}$$

$$\xrightarrow{E_{12}(7)} \begin{pmatrix} 1 & 0 & 2 & 6 & 6 \\ 0 & 1 & 7 & 2 & 2 \\ 0 & 0 & 0 & 9 & 2 \end{pmatrix} \xrightarrow{E_{3}(5)} \begin{pmatrix} 1 & 0 & 2 & 6 & 6 \\ 0 & 1 & 7 & 2 & 2 \\ 0 & 0 & 0 & 1 & 10 \end{pmatrix} \xrightarrow{E_{23}(9)} \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 7 & 0 & 4 \\ 0 & 0 & 0 & 1 & 10 \end{pmatrix}$$

Hacemos lo mismo con el primer sistema

Si $\alpha + 5 = 7$ tenemos que ambas matrices son iguales, luego ambos sistemas son equivalentes. Vemos que entonces que para $\alpha = 2$ los dos sistemas son equivalentes.

(4) 1 de Febrero de 2011

Ejercicio 5. Sea $X \in M_2(\mathbb{R})$ tal que

$$X \cdot \left(\begin{array}{cc} 3 & 2 \\ 7 & 1 \end{array} \right) = \left(\begin{array}{cc} -5 & 4 \\ -4 & 1 \end{array} \right)$$

Entonces

a)
$$X^{-1} = \begin{pmatrix} 3 & -2 \\ 1 & -1 \end{pmatrix}$$
.

b)
$$X^{-1} = \begin{pmatrix} \frac{-25}{11} & \frac{-2}{11} \\ \frac{-23}{11} & \frac{-3}{11} \end{pmatrix}$$
.

c)
$$X^{-1} = \begin{pmatrix} 1 & -2 \\ 1 & -3 \end{pmatrix}$$
.

d) La matriz X no es regular.

Solución:

Solución:

$$X \begin{pmatrix} 3 & 2 \\ 7 & 1 \end{pmatrix} = \begin{pmatrix} -5 & 4 \\ -4 & 1 \end{pmatrix} \implies \begin{pmatrix} 3 & 2 \\ 7 & 1 \end{pmatrix} = X^{-1} \begin{pmatrix} -5 & 4 \\ -4 & 1 \end{pmatrix} \implies \begin{pmatrix} 3 & 2 \\ 7 & 1 \end{pmatrix} \begin{pmatrix} -5 & 4 \\ -4 & 1 \end{pmatrix}^{-1} = X^{-1}$$
Entonces:

Entonces:
$$X^{-1} = \begin{pmatrix} 3 & 2 \\ 7 & 1 \end{pmatrix} \begin{pmatrix} -5 & 4 \\ -4 & 1 \end{pmatrix}^{-1} = \frac{1}{11} \begin{pmatrix} 3 & 2 \\ 7 & 1 \end{pmatrix} \begin{pmatrix} 1 & -4 \\ 4 & -5 \end{pmatrix} = \frac{1}{11} \begin{pmatrix} 11 & -22 \\ 11 & -33 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 1 & -3 \end{pmatrix}$$
 Y vemos como la opción correcta es la c).

1 de Febrero de 2011 (5) **Ejercicio 6.** Sean U = L[(3,5,2,3), (1,6,3,4), (6,4,4,4)] y $W = \begin{cases} 2x + y + 5z + 3t = 0 \\ x + 4y + 6z + 5t = 0 \end{cases}$ dos subespacios de $(\mathbb{Z}_7)^4$.

Entonces una base de $U \cap W$ es:

- a) {(5, 2, 1, 6)}.
- b) {(6, 1, 1, 1)}.
- c) $\{(5,2,1,6),(6,1,1,1)\}.$
- d) $\{(1,2,1,4),(1,1,1,2)\}.$

Solución:

Calculamos una base de U. Para eso, escribimos una matriz cuyas columnas son un sistema de generadores de U, y hallamos su forma de Hermite por columnas.

$$\begin{pmatrix} 3 & 1 & 6 \\ 5 & 6 & 4 \\ 2 & 3 & 4 \\ 3 & 4 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 6 \\ 6 & 5 & 4 \\ 3 & 2 & 4 \\ 4 & 3 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 6 & 1 & 3 \\ 3 & 0 & 0 \\ 4 & 5 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 0 \\ 2 & 5 & 0 \end{pmatrix}$$

Luego las ecuaciones paramétricas de U son

$$\begin{cases} x = a \\ y = b \\ z = 3a \\ t = 2a + 5b \end{cases}$$
 lo que nos da
$$\begin{cases} z = 3x \\ t = 2x + 5y \end{cases}$$

Si nos fijamos, el vector (6, 1, 1, 1) no cumple la ecuación z = 3x, luego eso nos descarta las opciones b) y c). Como el vector (1, 1, 1, 2) tampoco cumple esa ecuación, descartamos la opción d). Nos queda entonces la opción a).

Vamos a comprobar que $(5, 2, 1, 6) \in U \cap W$.

Pertenece a U, ya que $5 = 3 \cdot 1$ y $6 = 2 \cdot 5 + 5 \cdot 2$.

Pertenece a W, ya que $2 \cdot 5 + 2 + 5 \cdot 1 + 3 \cdot 6 = 10 + 2 + 5 + 18 = 35 = 0$ y $5 + 4 \cdot 2 + 6 \cdot 1 + 5 \cdot 6 = 5 + 8 + 6 + 30 = 49 = 0$.

También puede hacerse calculando las ecuaciones cartesianas de $U \cap W$. Para eso, tomamos el sistema formado por las ecuaciones de U y las de W, y calculamos la forma normal de Hermite de su matriz de coeficientes.

$$\begin{pmatrix} 4 & 0 & 1 & 0 \\ 5 & 2 & 0 & 1 \\ 2 & 1 & 5 & 3 \\ 1 & 4 & 6 & 5 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Lo que nos dice que las ecuaciones de $U\cap W$ son $\left\{ \begin{array}{cccc} x & & + & 5t & = & 0 \\ & y & & + & 2t & = & 0 \\ & & z & + & t & = & 0 \end{array} \right.$

Entonces $\dim(U \cap W) = 4 - 3 = 1$ y una base podemos obtenerla dándole a t el valor 6, y nos queda el vector (5, 2, 1, 6).

(6) 1 de Febrero de 2011

Ejercicio 7. Sean $B_1 = \{(1,0,1,0); (0,1,0,0); (1,0,0,1); (1,1,1,1)\}$ y $B_2 = \{(0,1,1,1); (1,0,1,0); (1,0,1,1); (0,0,1,1)\}$ dos bases de $(\mathbb{Z}_2)^4$. Sea u el vector cuyas coordenadas en la base B_1 son (1,0,1,1). Entonces, las coordenadas de u en la base B_2 son:

- (a) (0,0,0,1).
- (b) (1, 1, 0, 0).
- (c) (1,0,1,0).
- (d) (1, 1, 1, 1).

Solución:

El vector u, como tiene coordenadas (1,0,1,1) en la base B_1 es el vector $u=1\cdot (1,0,1,0)+0\cdot (0,1,0,0)+1\cdot (1,0,0,1)+1\cdot (1,1,1,1)=(1,1,0,0).$

Ahora escribimos ese vector como combinación lineal de los vectores de B₂.

 $(1,1,0,0) = a \cdot (0,1,1,1) + b \cdot (1,0,1,0) + c \cdot (1,0,1,1) + d \cdot (0,0,1,1)$, lo que nos da el sistema

De la segunda ecuación deducimos que a=1. Restando la tercera y la cuarta vemos que b=0. Por tanto, con la primera sacamos que c=1. Como la suma de los cuatro coeficientes vale cero, d tiene que valer 0.

Es decir, a = 1, b = 0, c = 1 y d = 0. La respuesta es entonces la c).

1 de Febrero de 2011 (7)

Ejercicio 8. Sea $f : \mathbb{R}^3 \to \mathbb{R}^3$ una aplicación lineal tal que $(1,2,-1) \in N(f)$, f(1,-1,0) = (3,1,2) e Im(f) es el subespacio de ecuación x-y-z=0. Entonces, la matriz de f en la base $B=\{(1,0,0),(1,1,0),(1,1,1)\}$ podría ser:

(a)
$$\begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix}.$$

(b)
$$\begin{pmatrix} 0 & 3 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$
.

(c)
$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 1 & 0 & -1 \end{pmatrix}.$$

(d)
$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 3 \\ 1 & 0 & -1 \end{pmatrix}$$
.

Solución:

Vamos a calcular las coordenadas del vector (1,2,-1) en la base B. $(1,2,-1)=\alpha\cdot(1,0,0)+b\cdot(1,1,0)+c\cdot(1,1,1)$.

Por tanto c = -1, b = 2 - c = 3 y a = 1 - b - c = -1.

Si $A = M_B(f)$ y $v = \begin{pmatrix} -1 \\ 3 \\ -1 \end{pmatrix}$, entonces, como v son las coordenadas del vector (1, 2, -1) en la base B, el

producto A $\cdot \nu$ nos da las coordenadas del vector f(1, 2, -1) en la base B.

Pero como el vector $(1,2,-1) \in N(f)$, f(1,2,-1) = (0,0,0). Por tanto, $A \cdot v$ debe valer cero.

$$\begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} -5 \\ -2 \\ -3 \end{pmatrix} \qquad \begin{pmatrix} 0 & 3 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ 3 \\ 4 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 1 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 3 \\ 1 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$$

Y vemos como sólo puede ser la opción c).

(8) 1 de Febrero de 2011

4z, 4x + 3y + 4z). Entonces:

- (a) $B_{N(f)} = \{(2,4,0), (1,1,1)\}$ es una base del núcleo de f y $B_{Im(f)} = \{(1,2,1,3), (2,3,3,3)\}$ es una base de la imagen de f.
- (b) $B_{N(f)} = \{(1,2,0)\}$ es una base del núcleo de f y $B_{Im(f)} = \{(1,2,1,3), (4,1,1,2)\}$ es una base de la imagen
- (c) $B_{N(f)} = \{(2,4,0)\}$ es una base del núcleo de f y $B_{Im(f)} = \{(1,2,1,3),(2,3,3,3),(4,1,1,2)\}$ es una base de la imagen de f.
- (d) $B_{N(f)} = \{(2,4,0)\}$ es una base del núcleo de f y $B_{Im(f)} = \{(1,2,1,3),(2,3,3,3)\}$ es una base de la imagen

Solución:

Puesto que $\dim(N(f)) + \dim(Im(f))$ debe valer 3, podemos descartar las opciones a) y c). Nos quedan entonces la b) y la d).

Lo que diferencia a ambas opciones es, que en la b) se afirma que el vector (4, 1, 1, 2) pertenece a la imagen de f, mientras que en la d) se afirma que el vector (2, 3, 3, 3) pertenece a la imagen de f.

Vamos a calcular una base de la imagen, y a partir de ella sus ecuaciones cartesianas. Los vectores f(1,0,0), f(0,1,0) y f(0,0,1) forman un sistema de generadores de Im(f). Formamos la matriz cuyas columnas son estos vectores y realizamos transformaciones elementales por columnas.

$$\begin{pmatrix} 3 & 1 & 1 \\ 1 & 2 & 4 \\ 3 & 1 & 4 \\ 4 & 3 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 3 \\ 4 & 2 & 1 \\ 4 & 1 & 3 \\ 4 & 3 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 4 & 3 & 4 \\ 4 & 2 & 1 \\ 4 & 4 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 4 \\ 4 & 4 & 1 \\ 4 & 3 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 4 & 0 \\ 2 & 3 & 0 \end{pmatrix}$$

Luego las ecuaciones paramétricas de Im(f) son $\begin{cases} x = a \\ y = b \\ z = 3a + 4b \\ t = 2a + 3b \end{cases}$ Las ecuaciones cartesianas son entonces: $\begin{cases} z = 3x + 4y \\ t = 2x + 3y \end{cases}$

Tomamos el vector (4, 1, 1, 2), y vemos que

 $3x + 4y = 3 \cdot 4 + 4 \cdot 1 = 12 + 4 = 16 = 1 = z$, pero

 $2x + 3y = 2 \cdot 4 + 3 \cdot 1 = 8 + 3 = 11 = 1 \neq t$.

Sin embargo, si tomamos el vector (2, 3, 3, 3) vemos que

 $3x + 4y = 3 \cdot 2 + 4 \cdot 3 = 6 + 12 = 18 = 3 = z, y$

 $2x + 3y = 2 \cdot 2 + 3 \cdot 3 = 4 + 9 = 13 = 3 = t.$

Por tanto, el vector $(2,3,3,3) \in \text{Im}(f)$, y la respuesta correcta es la d).

1 de Febrero de 2011 (9) **Ejercicio 10.** Sean U = L[(2,1,3),(4,3,5)] y $W = \begin{cases} 2x + 3y + z = 0 \\ x + 3y + 5z = 0 \end{cases}$ dos subespacios de $(\mathbb{Z}_7)^3$. Sea $A \in M_3(\mathbb{Z}_7)$ una matriz que tiene a U como subespacio propio propio de valor propio 5. Entonces A es la matriz:

(a)
$$\left(\begin{array}{ccc} 3 & 6 & 5 \\ 6 & 1 & 6 \\ 4 & 2 & 2 \end{array} \right).$$

(b)
$$\begin{pmatrix} 0 & 3 & 1 \\ 0 & 2 & 5 \\ 4 & 2 & 2 \end{pmatrix}$$
.

(c)
$$\begin{pmatrix} 6 & 2 & 2 \\ 3 & 5 & 2 \\ 6 & 4 & 0 \end{pmatrix} .$$

(d)
$$\begin{pmatrix} 0 & 4 & 3 \\ 3 & 6 & 4 \\ 5 & 5 & 5 \end{pmatrix}$$
.

Solución:

En primer lugar calculamos una base del subespacio W.

$$\begin{pmatrix} 2 & 3 & 1 \\ 1 & 3 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 5 \\ 2 & 3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 5 \\ 0 & 4 & 5 \end{pmatrix} \rightarrow$$
$$\rightarrow \begin{pmatrix} 1 & 3 & 5 \\ 0 & 1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 3 \end{pmatrix}$$

Luego nos queda $W \equiv \left\{ \begin{array}{cccc} x & + & 3z & = & 0 \\ y & + & 3z & = & 0 \end{array} \right.$ Una base de W la obtenemos dándole, por ejemplo, a z

el valor 1 y nos queda $B_W = \{(4,4,1)\}$.

Entonces, si $P = \begin{pmatrix} 2 & 4 & 4 \\ 1 & 3 & 4 \\ 3 & 5 & 1 \end{pmatrix}$, es decir, la matriz cuyas columnas forman una base de vectores propios de

A se tiene que $P^{-1} \cdot A \cdot P = D$, donde D es la matriz $\begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$. Por tanto, $A = P \cdot D \cdot P^{-1}$.

$$P^{-1} = \begin{pmatrix} 4 & 2 & 4 \\ 4 & 4 & 3 \\ 3 & 2 & 2 \end{pmatrix}.$$

$$P \cdot D = \begin{pmatrix} 2 & 4 & 4 \\ 1 & 3 & 4 \\ 3 & 5 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix} = \begin{pmatrix} 6 & 5 & 6 \\ 3 & 2 & 6 \\ 2 & 1 & 5 \end{pmatrix}.$$

$$P \cdot D \cdot P^{-1} = \begin{pmatrix} 6 & 5 & 6 \\ 3 & 2 & 6 \\ 2 & 1 & 5 \end{pmatrix} \cdot \begin{pmatrix} 4 & 2 & 4 \\ 4 & 4 & 3 \\ 3 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 6 & 2 & 2 \\ 3 & 5 & 2 \\ 6 & 4 & 0 \end{pmatrix}$$
Por tanto, la opción correcta es la c).

(10)1 de Febrero de 2011