$$f(x) = -Sinx = 0$$

$$f(x) = -Sinx = 0$$

$$-1 = -1$$

$$f(x) = Sinx = 0$$

$$Sinx = 0$$

Test Tomorrow

Chapter#3

- Derivatives by limits

 lim f (++1)-f(x), lim f(x)-f(x)

 h->0 h x>9 +-9
- No Derivatives Ly Limits Ly Graphs
 - Graphing
 f -> f'
 f' -> f
 - Derivative Rules
 - Applications
 - Vertical Tangent or Equations - Word problems
 - 4 U41, aff), jft)

 4 draining

 4 cronomic
 - Derivative of trig
 Ly Giving formulas for
 this
 - Don't forget f", f" etc.

Section 4.1 Part #1 The Chain Rule

Review

Composite Functions:

If
$$f(x) = \sqrt{x}$$
 and $g(x) = x^2 + 1$ find $f \circ g(x)$

$$f \circ g(x) = f(g(x)) = f(x^2+1)$$

= $\sqrt{x^2+1}$

Find the derivative of the following.

$$y = (5x-3)^{2}$$

$$y = (5x-3)^{2}$$

$$y = (5x-3)(5x-3)$$

$$y' = (5x-3)(5x-3)$$

$$y' = (5x-3)(5x-3)$$

$$y' = (5x-3)(5x-3)$$

$$= (5x-3)(5) + (5x-3)(5)$$

$$= 25x-15+25x-15$$

$$= 50x-36$$

Let's use a little substitution.

$$y = (5x-3)^{2}$$
Find $\frac{dy}{dx}$
Let $u = (5x-3)^{2}$
Let $\frac{dy}{dx} = (5x-3)^{2}$

$$\frac{dy}{dx} = \frac{dy}{dx}$$

$$\frac{dy}{dx} = (10x-6)$$

$$\frac{dy}{dx} = (10x-6)$$

$$(f \circ g)(x) = f(g(x))$$

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

$$OR$$

$$y = f(u), u = g(x)$$

$$y' = \frac{dy}{dx} = \frac{dy}{du} \left(\frac{du}{dx}\right)$$

$$y = (8x^{2} - 3x)^{10}$$
Let $u = 8x^{2} - 3x$

$$\frac{du}{dx} = 16x - 3$$

$$y = u$$

$$\frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{du}{dx} = ||u||^{2} (|6x - 3|)$$

$$= 10 (|6x - 3|) (|8x^{2} - 3x)^{2}$$

$$= 10 (|6x - 3|) (|8x^{2} - 3x)^{2}$$

$$y = \sin(x^3 + 1)$$
Let $u = x^3 + 1$

$$\frac{du}{dx} = 3x^2$$

$$\frac{dy}{dx} = \cos x$$

$$= (\cos x, 3x^2)$$

$$= 3x^2(\cos(x^3 + 1))$$

$$y = \sqrt{x^2 + 6x}$$

$$u = \eta^2 + 6x$$

$$\frac{dx}{dx} = 2x + 6$$

$$\frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{dx}{dx}$$

$$= \frac{1}{2}(x+3)(x^2+6x)^{-1/2}$$

$$= \frac{2}{3}(x+3)(x^2+6x)^{-1/2}$$

$$= \frac{2}{3}(x+3)(x^2+6x)^{-1/2}$$

$$= \frac{2}{3}(x+3)(x^2+6x)^{-1/2}$$

$$2. -5 (os(7-5x)$$

4.
$$(2-3x^2)$$
 sec $(2x-x^3)$

$$6. \quad \frac{x_3}{10} \operatorname{C2C}\left(\frac{x}{5}\right)$$