

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Департамент математического и компьютерного моделирования

ОТЧЕТ по лабораторной работе № 4

«Численное интегрирование»

Вариант № 10

Выполнил(а): студент гр. Б9122-02.03.01сцт <u>Кузнецов Е. Д.</u>

Проверил: преподаватель

Павленко Е. Р.

Владивосток

2024

Цель работы:

- 1. Вычислить интеграл: $\int_a^b f(x) \, dx$ по составной формуле центральных прямоугольников;
- 2. Получить формулу для численого интегрирования методом центральных прямоугольников в виде $I = \sum_{i=0}^n c_i \ *f(x_i);$
- 3. Исследовать порядок аппроксимации метода. Получить теоретическую оценку для R_n ;
- 4. Провести вычислительный эксперимент для $n = \{2, 4, 8, 16, \dots, 2^1 5\};$
- 5. Сделать ввод о поведении ошибки;
- 6. Сделать сравнительную характеристику известных методов, таких как методов прямоугольников, трапеций, формулы Симпсона для n = 10000;
- 7. На основе полученных данных сделать вывод о эффективности метода центральных прямоугольников;
- 8. Заключение.

Входные данные:

- 1. Функция $y = x^2 cos(\pi x)$
- 2. Отрезок [0.1; 0.6]

Вычисление интеграла:

$$\int_{0.1}^{0.6} x^2 - \cos(\pi x) = -\frac{\sin(\frac{3\pi}{5})}{\pi} + \frac{\sin(\frac{\pi}{10})}{\pi} + \frac{43}{600} \approx -0.13270086$$

Получение формулы $I = \sum_{i=0}^{n} c_i * f(x_i)$:

$$\sum_{i=0}^{n-1} f(x_{i+\frac{1}{2}}) \int_{x_i}^{x_i+1} \frac{x-x_i}{x_{i+\frac{1}{2}}-x_i} dx = \sum_{i=0}^{n-1} f(x_{i+\frac{1}{2}}) \int_{x_i}^{x_i+1} \frac{2(x-x_i)}{h} dx = \sum_{i=0}^{n-1} f(x_{i+\frac{1}{2}}) \cdot \frac{1}{h} (x_{i+1}-x_i)^2 = \sum_{i=0}^{n-1} f(x_{i+\frac{1}{2}}) \cdot h$$

Определение порядка аппроксимации:

$$R_{n}(x) = \int_{a}^{b} f(x) dx - \sum_{i=0}^{n} f(x_{i+\frac{1}{2}}) \cdot h = \int_{a}^{b} f(x) dx - \sum_{i=0}^{n} f(x_{i+\frac{1}{2}})(x_{i} - x_{i-1}) =$$

$$= \int_{a}^{b} f(x) dx - \sum_{i=0}^{n} \int_{x_{i-1}}^{x_{i}} f(x_{i-\frac{1}{2}}) dx = \sum_{i=0}^{n} \int_{x_{i-1}}^{x_{i}} f(x_{i-\frac{1}{2}}) dx$$

$$\sum_{i=0}^{n} \int_{x_{i-1}}^{x_{i}} \left(f(x_{i-\frac{1}{2}}) + f'(x_{i-\frac{1}{2}}) \cdot (x - x_{i-\frac{1}{2}}) + \frac{f''(x_{i-\frac{1}{2}})}{2} \cdot (x - x_{i-\frac{1}{2}})^{2} \right) =$$

$$= \sum_{i=0}^{n} \left(\frac{f'(x_{i-\frac{1}{2}})}{2} \left((x_{i+1} - x_{i-\frac{1}{2}})^{2} - (x_{i} - x_{i-\frac{1}{2}})^{2} \right) + \frac{f''(x_{i-\frac{1}{2}})}{6} \cdot \left((x_{i+1} - x_{i-\frac{1}{2}})^{3} - (x_{i} - x_{i-\frac{1}{2}})^{3} \right) \right) =$$

$$\sum_{i=0}^{n} \frac{f''(x_{i-\frac{1}{2}})}{2} \cdot \left(\left(\frac{h}{2} \right)^{3} - \left(-\frac{h}{2} \right)^{3} \right) = \sum_{i=0}^{n} \frac{f''(x_{i-\frac{1}{2}})}{6} \cdot \left(\frac{h^{3}}{8} + \frac{h^{3}}{8} \right) \leq \frac{M}{24} \cdot (b - a) \cdot h^{2}$$

$$\sup_{a \leq x \leq b} |f''(x)| = M$$

Из этого можно сделать вывод о том, что порядок аппроксимации второй.

Реализация алгоритма:

1. Определение основных функций:

```
# Заданная функция

def func(x):
    return x ** 2 - cos(pi * x)

# Вычисление k-ой производной

def f_derivative(x, k):
    if k == 1:
        return 2*x - pi*sin(pi*x)
    elif k == 2:
        return 2 - pi*cos(pi*x)
    else:
        return (-1)**((k % 2) + 1) * factorial(k - 1) * x**(2 - k) * (2**(k % 2) * pi**(k % 2) * sin(pi*x) + (2 - k) * x * cos(pi*x))

# Вычисление аппроксимации интеграла, используя метод центральных прямоурольников

def middle_rectangular(func, a, b, n):
    h = (b - a) / n
    return sum(func(a + h * (i + 0.5)) * h for i in range(n))

# Вычисление теоретической оценки погрешности для метода центральных прямоурольников

def mr_error(func, a, b, n):
    m = max(abs(f_derivative(a + (b - a) * i / 1000, 2)) for i in range(1001))
    return m / 24 * (b - a) ** 3 / n ** 2
```

```
def trapezoidal(func, a, b, n):
                            return ((func(a) + func(b)) / 2 + sum(func(a + h * i)
                                                                                                                                                                                                                                                                                                 for i in range(1, n))) * h
                          return sum(func(a + h * (i - 1)) + 4 * func(a + h * (i - 0.5)) + fun
h * (i))
                          m = max(abs(f derivative(a + (b - a) * i / 1000, 1))) for i in range(1001))
                          m = max(abs(f_derivative(a + (b - a) * i / 1000, 4))) for i in range(1001)) return m / 2880 * (b - a) ** 5 / n ** 4
```

2. Таблица значений для метода центральных прямоугольников

	Iteration	n	I_n	 Relative Error (%)	R_n	Growth
0	1	2	-0.140654	5.993108e+00	3.868236e-03	0.000000
1	2	4	-0.134671	1.484648e+00	9.670591e-04	0.247726
2	3	8	-0.133192	3.703235e-01	2.417648e-04	0.249435
3	4	16	-0.132824	9.252893e-02	6.044119e-05	0.249860
4	5	32	-0.132732	2.312924e-02	1.511030e-05	0.249968
5	6	64	-0.132709	5.782379e-03	3.777575e-06	0.250003
6	7	128	-0.132703	1.445854e-03	9.443936e-07	0.250045
7	8	256	-0.132701	3.617347e-04	2.360984e-07	0.250188
8	9	512	-0.132701	9.070562e-05	5.902460e-08	0.250752
9	10	1024	-0.132701	2.294840e-05	1.475615e-08	0.252999
10	11	2048	-0.132701	6.009092e-06	3.689038e-09	0.261852
11	12	4096	-0.132701	1.774266e-06	9.222594e-10	0.295264
12	13	8192	-0.132701	7.155596e-07	2.305649e-10	0.403299
13	14	16384	-0.132701	4.508830e-07	5.764121e-11	0.630112
14	15	32768	-0.132701	3.847138e-07	1.441030e-11	0.853245

Рис. 1: Таблица значений для метода центральных прямоугольников

Исходя из табличных значений абсолютная ошибка близка по значению с теоретической, но по значению, все же незначительно меньше последней. Изменение абсолютной ошибки примерно соответствует увеличению п в степени порядка аппроксимации. Таким образом, с j = 1 до j = 7, а также с j = 10 до j = 14 изменение ошибки разительно увеличивается, то есть абсолютная ошибка незначительно уменьшается. На j = 7, j = 8 достигает максимального

значения 0.25, затем слегка увеличивается, а после j=10 начинает сильно расти, достигая максимума в j=14.

3. Сравнительной таблица различных методов численного интегрирования.

+	+	+	+	++
Method	I_n	delta_I_n	relative_I_n	R_n
+======================================	+=======	+=======	+========	+=====+
Левых прямоугольников	-0.132741	4.02517e-05	0.0303327	0.55158
+	+	+	+	+
Правих прямоугольников	-0.132661	4.0252e-05	0.0303329	0.55158
+	+	+	+	+
Центральных прямоугольников	-0.132701	7.95523e-10	5.99486e-07	1.54729e-10
+	+	+	+	++
Трапеций	-0.132701	1.47298e-10	1.11e-07	3.09459e-10
+	+	+	+	++
Симпсона	-0.132701	4.8125e-10	3.62657e-07	7.73475e-20
+	+	+	+	+
+	+	+	+	++

Рис. 2: Сравнительная таблица различных методов численного интегрирования

В данном случае метод Симпсона продемонстрировал наибольшую точность среди всех рассмотренных методов, его погрешность на два порядка меньше, чем у метода центральных прямоугольников. Метод центральных прямоугольников занял второе место по эффективности, его погрешность в 1.5 раза меньше, чем у метода левых прямоугольников, и в 1.3 раза меньше, чем у метода правых. Методы левых и правых прямоугольников показали схожую точность, однако метод левых оказался чуть более точным. Метод трапеций продемонстрировал среднюю точность, его погрешность немного меньше, чем у метода центральных прямоугольников.

Заключение

В ходе выполнения данной работы был проведен комплексный анализ эффективности различных методов численного интегрирования: метода левых прямоугольников, метода правых прямоугольников, метода центральных прямоугольников, метода трапеций и метода Симпсона.

Результаты исследования показали, что:

- Метод центральных прямоугольников является оптимальным выбором для приближенного интегрирования, так как он обеспечивает высокую точность при незначительных вычислительных затратах.
- Метод Симпсона рекомендуется использовать, когда необходима высокая точность результатов, несмотря на увеличенные вычислительные затраты.

Выбор метода интегрирования зависит от желаемой точности и требуемой вычислительной мошности.