Background

ACENT DESIGN

Raffaele Galliera Alessandro Morelli Roberto Fronteddu Niranjan Suri

The University of West Florida Institute for Human and Machine Cognition (IHMC)

Presenter: Raffaele Galliera - rg101@students.uwf.edu

- ► A "savage" environment
- ► Highly heterogeneous
- **▶** Stochastic

► Data flows at high-speed rates

- ► The channel can saturate causing delays and re-transmissions
- ▶ Different heuristics are used (eg. **TCP Cubic**)
- Congestion Window (CWND): control over bytes allowed to be in-flight
- ► Heavy congestion can induce a link to an impracticable state

Some Questions to answer...

BACKGROUND

Sim-based RL solutions presented limitations.

- ► How can we face delays?
- ► How can we formulate a RL setting for the problem?
- ► How to deal with real, competitive traffic?
- ► *Is it going to transfer to the real networks?*

Dumbbell network.

THE AGENT EXPERIENCE

An Infinite-horizon task with PEB

EVALUATION

Background

What we want the agent to do.

RL Keypoints

- ▶ **Action space:**[-1,1] tweaking the CWND
- ► Non-blocking communication
- ► Learning algorithm: Soft Actor-Critic (SAC)
- ► PEB during training, file transfer for testing
- ► Episodic training

AGENT-PROTOCOL COMMUNICATION

Background

 $Statistics \rightarrow State \rightarrow Action \rightarrow Reward$

STATE

Background

	Feature	Description		Statistic
1	Current cwnd	Current cwnd	1	Last
2	KBs Sent	Amount of KB sent *	2	Mean
3	New KBs sent	Amount of KB acked *	3	STD
4	Acked KBs	Amount of KB acked *	4	Min
5	Packets sent	Packets sent *	5	Max
6	Retransmissions	Number of packets retransmitted *	6	EMA
7	Instantaneous Throughput	Throughput *	7	Difference from Previous
8	Instantaneous Goodput	Goodput*		
9	Unacked KBs	Amount of KBs in flight		
10	Last RTT	Last rtt detected *		
12	Min RTT	Min rtt *		
12	Max RTT	Max rtt *		
13	SRTT	Smoothed rtt *		
14	VAR RTT	rtt variance *		
		* During the last rtt timeframe		

Every feature has 7 nested statistics with a 10 observations history.

$$r_t = -\frac{target_t}{target_t + acked_kilobytes_t^{cumulative}}$$
 (1)

00000

REWARD (2/2)

BACKGROUND

$$r_{t} = -\frac{target_{t}}{target_{t} + acked_kilobytes_{t}^{cumulative} * (1 - penalties)}$$
 (2)

AGENT DESIGN

00000

$$penalties = \begin{cases} \alpha \frac{rtt_{diff}}{rtt_{min}^{ema}}, & \text{if } \frac{rtt_{diff}}{rtt_{min}^{ema}} < 1\\ 0.99, & \text{otherwise} \end{cases}$$
(3)

AGENT IN ACTION

Background

00000

Results (1/3) - Single Traffic Pattern

Results (2/3) - Traffic Pattern Permutations

Agent Design

Results (3/3) - Alternative Reward

Agent Design

Can we benefit from:

- ▶ going from sim to real?
- using episode truncation to speed up training?
- ► Formulate a hetter state?
- ► integrating other ML models into the pipeline?
- ► letting the agent decide **when** to take an action?

GitHub Repository

EXPERIMENTAL RESULTS

BACKUP - HYPERPARAMETERS

BACKGROUND

Hyperparameter	Value		
Training steps	1×10^6		
History length	10		
Training episode length	200		
Learning rate	3×10^{-4}		
Buffer size	5×10^{5}		
Warm-up (learning starts)	$1 \times 10^4 \text{ steps}$		
Batch size	512		
Tau	5×10^{-3}		
Gamma	0.99		
Training Frequency	1/episode		
Gradient Steps	−1 (same as episode length)		
Entropy regularization coefficient	"auto" (Learned)		
MLP policy hidden layers	[400, 300]		

Table: Hyperparameters used in our experiment.

Background

Figure: Rolling mean during training

BACKUP - ALPHA

$$\alpha = \begin{cases} 1, & \text{if } \left| \frac{rtt_{diff}}{rtt_{min}^{ema}} \right| > 0.6\\ 0.5, & \text{if } 0.1 < \left| \frac{rtt_{diff}}{rtt_{min}^{ema}} \right| \le 0.6\\ 0.3, & \text{if } 0.05 < \left| \frac{rtt_{diff}}{rtt_{min}^{ema}} \right| \le 0.1\\ 0.1, & \text{otherwise} \end{cases}$$
(4)

BACKUP - TRAFFIC PATTERNS

Figure: Generated Traffic Patterns

BACKUP - TRAFFIC PATTERNS 2

Figure: Generated Traffic Patterns