Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт перспективной инженерии Департамент цифровых, робототехнических систем и электроники

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №6 дисциплины «Искусственный интеллект и машинное обучение» Вариант 3

	Выполнил:
	Борцов Богдан Михайлович
	2 курс, группа ИТС-б-о-23-1,
	11.03.02 «Инфокоммуникационные
	технологии и системы связи»,
	направленность (профиль)
	«Инфокоммуникационные системы и
	сети», очная форма обучения
	(подпись)
	Проверил:
	Доцент департамента цифровых,
	робототехнических систем и
	электроники Воронкин Р.А.
	(подпись)
	· · ·
Отчет защищен с оценкой	Дата защиты

Тема: Основные этапы исследовательского анализа данных

Цель: научиться применять методы обработки данных в pandas. Data Frame, необходимые для разведочного анализа данных (EDA), включая работу с пропусками, выбросами, масштабирование и кодирование категориальных признаков.

Ссылка на репозиторий: https://github.com/REPONCFU/ai-jlab6

Порядок выполнения работы:

1. Задание 1:

```
import seaborn as sns
import pandas as pd
import missingno as msno
import matplotlib.pyplot as plt
# Загрузка датасета
df = sns.load_dataset("titanic")
# Определение количества пропущенных значений
print("Количество пропущенных значений до обработки:")
print(df.isna().sum())
# Визуализация пропусков
msno.matrix(df)
plt.show()
# Заполнение пропусков
df['age'] = df['age'].fillna(df['age'].mean()) # Среднее значение
df['embarked'] = df['embarked'].fillna(df['embarked'].mode()[0]) # Наиболее частое значение
df = df.drop(columns=['deck']) # Удаление столбца
# Проверка после обработки
print("\nКоличество пропущенных значений после обработки:")
print(df.isna().sum())
# Общая информация
print("\nИнформация о таблице после обработки:")
print(df.info())
```

Рисунок 1. Листинг программы задание 1

2. Задание 2:

```
# Загрузка датасета
df = sns.load_dataset("penguins")
# Построение boxplot для указанных признаков
numeric_cols = ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 'body_mass_g']
for col in numeric cols:
   plt.figure(figsize=(6, 4))
    sns.boxplot(x=df[col])
    plt.title(f"Boxplot для {col}")
    plt.show()
# Удаление выбросов с использованием IQR
def remove_outliers(df, column):
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IQR = Q3 - Q1
   lower = Q1 - 1.5 * IQR
upper = Q3 + 1.5 * IQR
    return df[(df[column] >= lower) & (df[column] <= upper)]</pre>
original size = df.shape[0]
for col in numeric_cols:
   df = remove_outliers(df, col)
new size = df.shape[0]
# Сравнение размеров датасета
print(f"Размер датасета до удаления выбросов: {original_size}")
print(f"Размер датасета после удаления выбросов: {new_size}")
# Boxplot после удаления выбросов
plt.figure(figsize=(6, 4))
sns.boxplot(x=df['bill_length_mm'])
plt.title("Boxplot для bill_length_mm после удаления выбросов")
plt.show()
```

Рисунок 2. Листинг программы задание 2

3. Задание 3:

```
# Загрузка данных
data = fetch_california_housing(as_frame=True)
df = data.frame
# Стандартизация
scaler_standard = StandardScaler()
df_standardized = df.copy()
df_standardized[df.columns] = scaler_standard.fit_transform(df)
# Нормализация
scaler_minmax = MinMaxScaler()
df_normalized = df.copy()
df_normalized[df.columns] = scaler_minmax.fit_transform(df)
# Гистограммы до и после масштабирования
plt.figure(figsize=(12, 5))
plt.subplot(1, 3, 1)
plt.hist(df['MedInc'], bins=20, color='blue', alpha=0.7)
plt.title("До масштабирования")
plt.subplot(1, 3, 2)
plt.hist(df_standardized['MedInc'], bins=20, color='green', alpha=0.7)
plt.title("После StandardScaler")
plt.subplot(1, 3, 3)
plt.hist(df_normalized['MedInc'], bins=20, color='red', alpha=0.7)
plt.title("После MinMaxScaler")
plt.tight_layout()
```

Рисунок 3. Листинг программы задание 3

4. Задание 4:

```
import pandas as pd
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
df = pd.read csv(file path, header-None, names-columns, na values-' ?', skipinitialspace-True)
# Выбор нужных признаков
categorical_features = ['education', 'marital-status', 'occupation']
target_feature = 'income'
# Просмотр информации о данных перед обработкой
print("Информация о данных перед обработкой:")
print(df[categorical_features + [target_feature]].info())
print("\nПервые 5 строк данных:")
print(df[categorical_features + [target_feature]].head())
# 1. Label Encoding для признака education (предполагаем порядок)
# Создаем порядок уровней образования (от низшего к высшему)
education order = |
    'Preschool', '1st-4th', '5th-6th', '7th-8th', '9th', '18th', '11th', '12th', 'HS-grad', 'Some-college', 'Assoc-voc', 'Assoc-acdm', 'Bachelors', 'Masters', 'Prof-school', 'Doctorate'
# Создаем словарь для соответствия
education_mapping = {v: i for i, v in enumerate(education_order)}
# Применяем Label Encoding
df['education_encoded'] = df['education'].map(education_mapping)
# Проверяем результат
print("\nPesynьтat Label Encoding для education:")
print(df[['education', 'education_encoded']].head(18))
# 2. One-Hot Encoding ann marital-status u occupation
# Сначала проверим наличие пропущенных значений
print("\nКоличество пропущенных значений:")
print(df[['marital-status', 'occupation']].isna().sum())
# Заполним пропуски в occupation модой
df['occupation'].fillna(df['occupation'].mode()[0], inplace=True)
# Применяем One-Hot Encoding с исключением одного столбца (избегаем дамми-ловушку)
df_encoded = pd.get_dummies(df, columns=['marital-status', 'occupation'], drop_first=True)
# Проберяем результат
print("\nСтолбцы после One-Hot Encoding:")
print(df_encoded.filter(regex='marital-status|occupation').columns)
# Проверяем итоговую размерность таблицы
print("\пРазмерность таблицы до кодирования:", df.shape)
print("Размерность таблицы после кодирования:", df_encoded.shape)
# Проверяем, что нет дамми-ловушки (один столбец удален для каждой категории)
print("\nПроверка на дамми-ловушку:")
print("Уникальные значения marital-status:", df['marital-status'].nunique())
print("Количество столбцов после кодирования:",
      len(df_encoded.filter(regex='marital-status').columns))
print("Уникальные значения occupation:", df['occupation'].nunique())
print("Количество столбцов после кодирования:
      len(df_encoded.filter(regex='occupation').columns))
# Сохраняем обрабованные данные
df_encoded.to_csv(output_path, index=False)
print(f"\nOбработанные данные сохранены в: {output path}")
```

```
Информация о данных перед обработкой:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 4 columns):
                           Non-Null Count Dtype
 # Column
 0 education
                           32561 non-null object
 1 marital-status 32561 non-null object
2 occupation 32561 non-null object
                            32561 non-null object
dtypes: object(4)
memory usage: 1017.7+ KB
Первые 5 строк данных:
education marital-status occupation income

8 Bachelors Never-married Adm-clerical <-50K

1 Bachelors Married-civ-spouse Exec-managerial <-50K
2 HS-grad Divorced Handlers-cleaners <-50K
3 11th Married-civ-spouse Handlers-cleaners <-50K
                              Divorced Handlers-cleaners <=50K
4 Bachelors Married-civ-spouse
                                                Prof-specialty <=50K
Результат Label Encoding для education:
    education education_encoded
0 Bachelors
1 Bachelors
                                     12
2 HS-grad
3 11th
4 Bachelors
5 Masters
                                     13
         9th
7 HS-grad
8 Masters
9 Bachelors
Количество пропущенных значений:
marital-status 0
occupation
dtype: int64
Столбцы после One-Hot Encoding:
Index(['marital-status_Married-AF-spouse', 'marital-status_Married-civ-spouse',
           'marital-status_Married-spouse-absent', 'marital-status_Never-married',
         'marital-status_Separated', 'marital-status_Widowed',
'occupation_Adm-clerical', 'occupation_Armed-Forces',
'occupation_Craft-repair', 'occupation_Exec-managerial',
         'occupation_Farming-fishing', 'occupation_Handlers-cleaners',
'occupation_Machine-op-inspct', 'occupation_Other-service',
'occupation_Priv-house-serv', 'occupation_Prof-specialty',
'occupation_Protective-serv', 'occupation_Sales',
'occupation_Tech-support', 'occupation_Transport-moving'],
        dtype='object')
Размерность таблицы до кодирования: (32561, 16)
Размерность таблицы после кодирования: (32561, 34)
Проверка на дамми-ловушку:
Уникальные значения marital-status: 7
Количество столбцов после кодирования: 6
Уникальные значения occupation: 15
Количество столбцов после кодирования: 14
```

Рисунок 4. Листинг программы задание 4

5. Задание 5:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OrdinalEncoder, OneHotEncoder
# Загрузка дання
df = pd.read_csv(file_path)
# Первые 5 строк датасета
print("Первые 5 строк датасета:")
display(df.head())
# Общая информация о данных
print("\nИнформация о датасете:")
display(df.info())
# Описательная статистика
print("\nOписательная статистика:")
display(df.describe().T)
# Проверка на пропущенные значения
print("Количество пропущенных значений в каждом столбце:")
display(df.isna().sum())
# Визуализация пропусков
msno.matrix(df)
plt.title('Матрица пропущенных значений')
plt.show()
# Выбор числовых признаков для анализа выбросов
numeric_cols = ['Age', 'RestingBP', 'Cholesterol', 'MaxHR', 'Oldpeak']
# Функция для удаления выбросов по методу IQR
def remove_outliers_iqr(data, column):
    Q1 = data[column].quantile(0.25)
    Q3 = data[column].quantile(0.75)
    IQR = Q3 - Q1
    lower = Q1 - 1.5 * IQR
    upper = Q3 + 1.5 * IQR
    return data[(data[column] >= lower) & (data[column] <= upper)]
# Построение boxplot до удаления выбросов
plt.figure(figsize=(15, 8))
for i, col in enumerate(numeric_cols, 1):
   plt.subplot(2, 3, i)
    sns.boxplot(y=df[col])
    plt.title(f'Boxplot для {col} (до обработки)')
plt.tight_layout()
plt.show()
# Удаление выбросов
original_size = len(df)
for col in numeric_cols:
    df = remove_outliers_iqr(df, col)
new_size = len(df)
# Построение boxplat после удаления выбросов
plt.figure(figsize=(15, 8))
for i, col in enumerate(numeric_cols, 1):
   plt.subplot(2, 3, i)
    sns.boxplot(y-df[col])
plt.title(f'Boxplot для {col} (nocne обработки)')
plt.tight_layout()
plt.show()
print(f"Pasmep датасета до удаления выбросов: {original_size}")
print(f"Pasmep датасета после удаления выбросов: {new_size}")
print(f"Удалено записей: {original_size - new_size}) ({((original_size - new_size)/original_size)*100:.2f}%)*)
# Создаем копию датасета для маситабирования
df_scaled = df.copy()
# Стандартизация (Z-преобразование)
scaler = StandardScaler()
df_scaled[numeric_cols] = scaler.fit_transform(df_scaled[numeric_cols])
```

```
# Визуализация распределения до и после маситабирования
plt.figure(figsize=(15, 6))
# До масштабировани
plt.subplot(1, 2, 1)
sns.histplot(df['Age'], kde=True)
plt.title('Распределение Age до масштабирования')
# После масштабирования
plt.subplot(1, 2, 2)
sns.histplot(df_scaled['Age'], kde=True)
plt.title('Распределение Age после StandardScaler')
plt.tight_layout()
plt.show()
# Проверка среднего и стандартного отклонения после масштабирования
print("\nСредние значения после StandardScaler:")
display(df_scaled[numeric_cols].mean())
print("\nСтандартные отклонения после StandardScaler:")
display(df_scaled[numeric_cols].std())
# Определим порядковые и номинальные признаки
ordinal_features = ['ST_Slope'] # Упорядоченный признак: Down, Flat, Up
nominal_features = ['Sex', 'ChestPainType', 'RestingECG', 'ExerciseAngina'] # Номинальные признаки
# Label Encoding для порядкового признака
ordinal_mapping = {
    'Down': 0,
    'Flat': 1,
    'Up': 2
df_scaled['ST_Slope'] = df_scaled['ST_Slope'].map(ordinal_mapping)
# One-Hot Encoding для номинальных признаков
# Используем drop='first' для избежания дамми-ловушки
encoder = OneHotEncoder(drop='first', sparse_output=False)
encoded_nominal = encoder.fit_transform(df_scaled[nominal_features])
encoded_df = pd.DataFrame(encoded_nominal, columns=encoder.get_feature_names_out(nominal_features))
# Объединяем закодированные признаки с основным датасетом
df_final = pd.concat([df_scaled.drop(nominal_features, axis=1), encoded_df], axis=1)
# Проверка размерности до и после кодирования
print(f*Paaмeрность до кодиропания: {df_scaled.shape}")
print(f"Размерность после кодирования: {df_final.shape}")
# Просмотр итогового датасета
print("\nПервые 5 строк итогового датасета:")
display(df_final.head())
# Проверка итогового датасета
print("Информация об итоговом датасете:")
display(df_final.info())
# Сохранение обработанного датасета
df_final.to_csv(output_path, index=False)
print(f"\nOбработанный датасет сохранен по пути: {output_path}")
```

Первые 5 строк датасета:

	Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	ExerciseAngina	Oldpeak	ST_Slope	HeartDisease
0	40	М	ATA	140	289	0	Normal	172	N	0.0	Up	0
1	49	F	NAP	160	180	0	Normal	156	N	1.0	Flat	1
2	37	М	ATA	130	283	0	ST	98	N	0.0	Up	0
3	48	F	ASY	138	214	0	Normal	108	Υ	1.5	Flat	1
4	54	М	NAP	150	195	0	Normal	122	N	0.0	Up	0

Информация о датасете: <class 'ранdas.core.frame.DataFrame'> RangeIndex: 918 entries, 0 to 917 Data columns (total 12 columns):

Duca	corming (corns	aa coadmiaj.	
#	Column	Non-Null Count	Dtype
8	Age	918 non-null	int64
1	Sex	918 non-null	object
2	ChestPainType	918 non-null	object
3	RestingBP	918 non-null	int64
4	Cholesterol	918 non-null	int64
5	FastingBS	918 non-null	int64
6	RestingECG	918 non-null	object
7	MaxHR	918 non-null	int64
8	ExerciseAngina	918 non-null	object
9	Oldpeak	918 non-null	float64
10	ST_Slope	918 non-null	object
11	HeartDisease	918 non-null	int64

dtypes: float64(1), int64(6), object(5)
memory usage: 86.2+ KB

Описательная статистика:

	count	mean	std	min	25%	50%	75%	max
Age	918.0	53.510893	9.432617	28.0	47.00	54.0	60.0	77.0
RestingBP	918.0	132.396514	18.514154	0.0	120.00	130.0	140.0	200.0
Cholesterol	918.0	198.799564	109.384145	0.0	173.25	223.0	267.0	603.0
FastingBS	918.0	0.233115	0.423046	0.0	0.00	0.0	0.0	1.0
MaxHR	918.0	136.809368	25.460334	60.0	120.00	138.0	156.0	202.0
Oldpeak	918.0	0.887364	1.066570	-2.6	0.00	0.6	1.5	6.2
HeartDisease	918.0	0.553377	0.497414	0.0	0.00	1.0	1.0	1.0

Количество пропущенных значений в каждом столбце:

Age Sex 8 ChestPainType RestingBP Cholesterol FastingBS RestingECG MaxHR ExerciseAngina Oldpeak ST_Slope HeartDisease dtype: int64 8

Рисунок 5. Листинг программы задание 5

6. Для выполнения индивидуального задания был выбран Adult Income Dataset:

1. Обзор структуры данных

max

```
[29]: import pandas as pd
         column names = [
              "age", "workclass", "fnlwgt", "education", "education-num",
"marital-status", "occupation", "relationship", "race", "sex",
"capital-gain", "capital-loss", "hours-per-week", "native-country", "income"
         df = pd.read_csv("adult.data.csv", header=None, names=column_names, na_values=" ?", skipinitialspace=True)
[30]: print(df.info())
                                                                                                                                                               □↑↓古♀■
         print(df.describe(include="all"))
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 32561 entries, 0 to 32560
         Data columns (total 15 columns):
                                Non-Null Count Dtype
          # Column
               age 32561 non-null int64
workclass 32561 non-null object
          0 age
          1
               | fnlwgt | 32561 non-null | int64 | education | 32561 non-null | object | education-num | 32561 non-null | int64 |
               fnlwgt
               marital-status 32561 non-null object
              occupation 32561 non-null object
relationship 32561 non-null object
race 32561 non-null object
sex 32561 non-null object
          9 Sex 32561 non-null object
10 capital-gain 32561 non-null int64
11 capital-loss 32561 non-null int64
12 hours-per-week 32561 non-null int64
          13 native-country 32561 non-null object
14 income 32561 non-null object
         dtypes: int64(6), object(9)
         memory usage: 3.7+ MB
         None
                                                             fnlwgt education education-num \
100e+04 32561 32561.000000
                                age workclass
         count 32561.000000 32561 3.256100e+04
         unique
                                                               NaN
         top
                                NaN Private
                                                                          HS-grad
                                                                         10501
         freq
                               NaN 22696
                                                                NaN
                                                                                                   NaN
                     38.581647
13.640433
17.000000
                                           NaN 1.897784e+05
                                                                           NaN
                                                                                        10.080679
         mean
                                                                                          2.572720
1.000000
9.000000
         std
                                            NaN 1.055500e+05
                                                                              NaN
                                                                            NaN
NaN
NaN
NaN
NaN
                                        NaN 1.228500e+05
NaN 1.178270e+05
NaN 1.783560e+05
NaN 2.370510e+05
NaN 1.484705e+06
         min
         25%
                        28.000000
         50%
                       37,000000
                                                                                           10.000000
                       48.000000
                                                                                          12,000000
         75%
                       90.000000
                                                                                          16,000000
```

	marital-s	tatus	oco	upation	relation	nship	race	Se	x /
count		32561		32561	3	32561	32561	3256	51
unique		7		15		6	5		2
top	Married-civ-s	pouse	Prof-sp	ecialty	Hus	sband	White	Ma]	le
freq		14976		4140	1	13193	27816	2179	90
mean		NaN		NaN		NaN	NaN	Na	ıΝ
std		NaN		NaN		NaN	NaN	Na	ıΝ
min		NaN		NaN		NaN	NaN	Na	ıΝ
25%		NaN		NaN		NaN	NaN	Na	ıΝ
50%		NaN		NaN		NaN	NaN	Na	ıΝ
75%		NaN		NaN		NaN	NaN	Na	ıΝ
max		NaN		NaN		NaN	NaN	Na	ıΝ
	capital-gain	capit	al-loss	hours-p	er-week	nativ	e-count	ry ir	rcome
count	32561.000000	32561	.000000	32561	.0000000		325	61	32561
unique	NaN		NaN		NaN			42	2
top	NaN		NaN		NaN	Unit	ed-Stat	es <	=50K
freq	NaN		NaN		NaN		291	70 2	4720
mean	1077.648844	87	.303830	46	.437456		N	aN	NaN
std	7385.292085	402	.960219	12	.347429		N	aN	NaN
min	0.000000	0	.000000	1	.000000		N	aN	NaN
25%	0.000000	0	.000000	46	.000000		N	aN	NaN
50%	0.000000	0	.000000	46	.000000		N	aN	NaN
75%	0.000000	0	.000000	45	.000000		N	aN	NaN
max	99999.000000	4356	.000000	99	.000000		N	aN	NaN

2. Обработка пропущенных значений

```
for column in ["workclass", "occupation", "native-country"]:
   mode_value = df[column].mode()[0]
   df[column] = df[column].fillna(mode_value)
```

3. Обнаружение и удаление выбросов

```
for column in ["age", "hours-per-week"]:
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    df = df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]</pre>
```

4. Масштабирование числовых признаков

```
for column in ["age", "education-num", "hours-per-week"]:
    mean = df[column].mean()
    std = df[column].std()
    df[column] = (df[column] - mean) / std
```

5. Кодирование категориальных признаков

```
education_order = {
   "Preschool": 0,
   "1st-4th": 1,
   "5th-6th": 2,
   "7th-8th": 3,
   "9th": 4,
   "10th": 5,
   "11th": 6,
   "12th": 7,
   "HS-grad": 8,
   "Some-college": 9,
   "Assoc-voc": 10,
   "Assoc-acdm": 11,
   "Bachelors": 12,
   "Masters": 13,
   "Prof-school": 14,
   "Doctorate": 15
df["education"] = df["education"].map(education_order)
```

```
df = pd.get_dummies(df, columns=["workclass"], drop_first=True)
```

6. Финальный обзор данных

```
print(df.info())
print(df.head())
<class 'pandas.core.frame.DataFrame'>
Index: 23499 entries, 0 to 32560
Data columns (total 22 columns):
 # Column
                                         Non-Null Count Dtype
                                         23499 non-null float64
      age
      fnlwgt
                                        23499 non-null int64
 1
      education
                                        0 non-null
                                                             float64
 2
                                        23499 non-null float64
      education-num
                                      23499 non-null object
      marital-status
                                    23499 non-null object
23499 non-null object
      occupation
     relationship
                                       23499 non-null object
23499 non-null object
      race
 8
      sex
                             23499 non-null int64
23499 non-null int64
23499 non-null float64
23499 non-null object
 q
      capital-gain
 10
     capital-loss
 11 hours-per-week
 11 nours-per-week 23499 non-null float64
12 native-country 23499 non-null object
13 income 23499 non-null object
14 workclass_Federal-gov 23499 non-null bool
15 workclass_Local-gov 23499 non-null bool
16 workclass_Never-worked 23499 non-null bool
17 workclass_Private 23499 non-null bool
18 workclass_Self-emp-inc 23499 non-null bool
 19 workclass_Seit-emp ...
20 workclass_State-gov 23499 non-null bool
 19 workclass_Self-emp-not-inc 23499 non-null bool
dtypes: bool(8), float64(4), int64(3), object(7)
memory usage: 2.9+ MB
          age fnlwgt education education-num marital-status \
0 0.021298 77516 NaN 1.139338 Never-married
2 -0.060734 215646 NaN -0.436072 Divorced
2 -0.000734 215040 NaN -0.450072 Divorces

3 1.169747 234721 NaN -1.223777 Married-civ-spouse

4 -0.881055 338409 NaN 1.139338 Married-civ-spouse

5 -0.142766 284582 NaN 1.533190 Married-civ-spouse
            occupation relationship race
                                                         sex capital-gain ...
         Adm-clerical Not-in-family White Male 2174 ...
2 Handlers-cleaners Not-in-family White Male
3 Handlers-cleaners Husband Black Male
                                    Wife Black Female
      Prof-specialty
                                     Wife White Female
    Exec-managerial
    native-country income workclass_Federal-gov workclass_Local-gov \
   United-States <=50K
                                                  False
     United-States
                        <=50K
                                                    False
    United-States <=50K
                                                    False
                                                                             False
4 Cuba <=50K
5 United-States <=50K
                                                   False
                                                                             False
                                                    False
                                                                             False
    workclass_Never-worked workclass_Private workclass_Self-emp-inc
                                   False
                       False
2
                         False
                                                  True
                                                                               False
3
                         False
                                                 True
                                                                               False
4
                         False
                                                 True
                                                                               False
5
                         False
                                                 True
                                                                               False
   workclass_Self-emp-not-inc workclass_State-gov workclass_Without-pay
                             False
                                                       True
2
                              False
                                                       False
                                                                                    False
3
                              False
                                                       False
                                                                                     False
4
                              False
                                                       False
                                                                                    False
                                                        False
                                                                                     False
                              False
[5 rows x 22 columns]
```

Рисунок 6. Листинг программы индивидуального задания

Ответы на контрольные вопросы:

1. Какие типы проблем могут возникнуть из-за пропущенных значений в данных?

Пропущенные значения могут искажать статистические показатели, приводить к ошибкам в моделях машинного обучения и снижать мощность выборки.

2. Как с помощью методов pandas определить наличие пропущенных значений?

В pandas можно использовать методы `df.isna().sum()` для подсчета пропусков по столбцам и `df.isna().any()` для проверки их наличия.

3. Что делает метод .dropna() и какие параметры он принимает?

Метод `.dropna()` удаляет строки или столбцы с пропущенными значениями. Основные параметры:

- `axis=0` (строки) или `axis=1` (столбцы)
- `how='any'` (удалить, если есть хотя бы один пропуск) или `'all'` (если все значения пропущены)
 - `subset` для указания столбцов
- 4. Чем различаются подходы заполнения пропусков средним, медианой и модой?
- Среднее подходит для нормального распределения, но чувствительно к выбросам
 - Медиана устойчива к выбросам, хороша для асимметричных данных
 - Мода используется для категориальных данных
- 5. Как работает метод fillna(method='ffill') и в каких случаях он применим?

`fillna(method='ffill')` заполняет пропуски предыдущим известным значением. Применяется в временных рядах и данных с естественным порядком.

6. Какую задачу решает метод interpolate() и чем он отличается от fillna()?

`interpolate()` вычисляет промежуточные значения между известными точками (линейная, полиномиальная интерполяция), тогда как `fillna()` просто заменяет пропуски фиксированными значениями.

- 7. Что такое выбросы и почему они могут искажать результаты анализа? Выбросы аномальные значения, значительно отличающиеся от основной массы данных. Они искажают статистические показатели и работу моделей.
- 8. В чём суть метода межквартильного размаха (IQR) и как он используется для обнаружения выбросов?

Метод IQR (межквартильный размах):

- IQR = Q3 (75-й перцентиль) Q1 (25-й перцентиль)
- Границы выбросов: Q1 1.5*IQR (нижняя), Q3 + 1.5*IQR (верхняя)
- 9. Как вычислить границы IQR и применить их в фильтрации?

Q1 = df['column'].quantile(0.25)

Q3 = df['column'].quantile(0.75)

$$IQR = Q3 - Q1$$

 $df = df[(df['column'] >= Q1-1.5*IQR) \ \& \ (df['column'] <= Q3+1.5*IQR)]$

10. Что делает метод .clip() и как его можно использовать для обработки выбросов?

Метод `.clip()` ограничивает значения заданными границами, заменяя выбросы на пороговые значения.

11. Зачем может потребоваться логарифмическое преобразование числовых признаков?

Логарифмическое преобразование (`np.log1p()`) уменьшает асимметрию распределения и сжимает диапазон больших значений.

12. Какие графические методы позволяют обнаружить выбросы (указать не менее двух)?

Для обнаружения выбросов используют:

- Boxplot (ящик с усами)
- Точечные диаграммы (scatter plot)
- 13. Почему важно быть осторожным при удалении выбросов из обучающих данных?

Удаление выбросов требует осторожности, так как они могут содержать важную информацию о редких, но значимых событиях.

14. Зачем необходимо масштабирование признаков перед обучением моделей?

Масштабирование признаков необходимо для:

- Алгоритмов, чувствительных к масштабу данных (KNN, SVM, нейросети)
 - Ускорения сходимости градиентного спуска
 - 15. Чем отличается стандартизация от нормализации?

Отличия:

- Стандартизация: (х mean)/std, диапазон ≈[-3,3], сохраняет выбросы
- Нормализация: (x min)/(max min), диапазон [0,1], чувствительна к выбросам
- 16. Что делает StandardScaler и как рассчитываются преобразованные значения?

`StandardScaler` преобразует данные к среднему=0 и std=1. Формула: (x - μ)/ σ

17. Как работает MinMaxScaler и когда его использование предпочтительно?

'MinMaxScaler' сжимает данные в диапазон [0,1]. Подходит, когда важны границы значений.

18. В чём преимущества RobustScaler при наличии выбросов?

'RobustScaler' использует медиану и IQR, устойчив к выбросам.

19. Как реализовать стандартизацию с помощью .mean() и .std() вручную в pandas?

df['column'] = (df['column'] - df['column'].mean())/df['column'].std()

20. Какие типы моделей наиболее чувствительны к масштабу признаков?

Наиболее чувствительны к масштабу: KNN, SVM, линейные модели, нейросети.

21. Почему необходимо преобразовывать категориальные признаки перед обучением модели?

Категориальные признаки преобразуют в числовые, так как большинство алгоритмов работают только с числами.

22. Что такое порядковый признак? Приведите пример.

Порядковый признак - категории с естественным порядком (например, "низкий", "средний", "высокий").

23. Что такое номинальный признак? Приведите пример.

Номинальный признак - категории без порядка (например, цвета, названия городов).

24. Как работает метод .factorize() и для каких случаев он подходит?

Метод `.factorize()` присваивает категориям числовые коды (0,1,2...). Подходит для порядковых данных.

25. Как применить метод .map() для кодирования категориальных признаков с известным порядком?

mapping = {'низкий':0, 'средний':1, 'высокий':2} df['column'] = df['column'].map(mapping)

26. Что делает класс OrdinalEncoder из scikit-learn?

`OrdinalEncoder` из sklearn аналогичен `.factorize()`, но работает с несколькими столбцами.

27. В чём суть one-hot кодирования и когда оно применяется?

One-hot кодирование создает отдельный бинарный столбец для каждой категории. Применяется для номинальных признаков.

28. Как избежать дамми-ловушки при one-hot кодировании?

Чтобы избежать дамми-ловушки, один из столбцов удаляют ('drop first=True' в 'pd.get dummies()').

29. Как работает OneHotEncoder из scikit-learn и чем он отличается от pd.get_dummies()?

'OneHotEncoder' из sklearn интегрируется в pipeline, a 'pd.get_dummies()' проще в использовании.

30. В чём суть метода target encoding и какие риски он в себе несёт?

Target encoding заменяет категории средним значением целевой переменной. Риски: утечка данных и переобучение на редких категориях.

Вывод: В ходе лабораторной работы были изучены и применены основные этапы исследовательского анализа данных (EDA), включая обнаружение и обработку пропущенных значений, выявление и устранение выбросов, масштабирование числовых признаков и кодирование категориальных переменных. Практические задания позволили закрепить навыки работы с библиотекой pandas, для подготовки данных к дальнейшему анализу и моделированию. Результатом работы стало освоение универсальных методов EDA, которые могут быть применены к любым структурированным данным для повышения качества анализа и прогнозирования.