CLOUD DATA STORAGE

DATA STORAGE EVOLUTION

CLOUD DATA STORAGE

Google Drive

CLOUD STORAGE MODELS OVERVIEW

- Attached File Stores
 - A traditional model of organizing data into folders and directories
 - Usually accessed by attaching a virtual disk to a virtual machine
- Object Stores
 - Store unstructured binary objects, referred to as blob (Binary Large Object)
- Databases
 - Structured data collections
 - Three well-known types
 - Relational databases
 - NoSQL databases
 - Graph databases
- Data warehouses
 - Designed to support search over massive amounts of data

ATTACHED FILE STORE

- Good
 - Easy to understand files are organized around a tree of directories or folders
 - Use standard POSIX (Portable Operating System Interface) API
 - Allow direct use of many existing programs without modification
- Bad
 - Not scalable
 - Limit in file size, number of files, number of folders
 - Slow search when the number of file is large
 - No support for data model

AMAZON FILE STORES

- Amazon Elastic Block Store (EBS)
 - Designed to be attached to a single Amazon EC2
- Amazon Elastic File System (EFS)
 - General purpose file storage service service
 - A file system interface for one or more Amazon EC2 instances

	File-Stores	Block-Stores
Visibility to OS	OS gets a network share, i.e. sees a directory with files.	OS gets a block device, i.e. sees the volume as a disk
Protocols	NFS (Linux) and CIFS (Windows)	iSCSI/iSER/VendorSpecific
Cons	Relatively slow	No built-in file system

GOOGLE ATTACHED FILE STORES

- Persistent Disks
 - Cheapest, up to 64 TB
 - Can be accessed anywhere in a zone.
- Local SSD (solid state disk)
 - More Expensive, and better performance
 - Up to 3 TB
- RAM disk in memory
 - Most expensive, and fastest
 - Up to 208 GB

AZURE ATTACHED FILE STORES

- Managed Disks
 - Ultra SSD Managed Disks
 - Highest performance
 - Up to 64TB
 - Premium SSD Managed Disks
 - I/O intensive workloads with significantly high throughput and low latency
 - Up to 8TB
 - Standard SSD Managed Disks
 - Entry-level production workloads requiring consistent latency
 - Up to 32TB
 - Standard HDD Managed Disks
 - Cheapest
 - Up to 32TB
- File Share
 - Can be mounted by multiple instances via Server Message Block (SMB) protocol

OBJECT STORES

- General term that refers to the way in which we organize and work with units of storage, called objects
- Use information dispersal (erasure coding) algorithms to place object
- Every object contains three things:
 - The data itself
 - An expandable amount of metadata.
 - A globally unique identifier
- Access via API at application-level, rather than via OS at filesystem-level
 - Each object gets a HTTP URL that can be publicly accessible via REST
- Flat object model which support a two-level folder-file hierarchy that allows for the creating of object containers
 - Each can hold zero or more objects
- Objects cannot be modified once created/uploaded
 - They can only be deleted or replaced

FILE SYSTEM VS DATA BASE VS OBJECT STORAGE

File System

C:\folder\music.m4a

sysadmin required for integrity and scale

Database / Structured Data

SELECT * FROM table;
INSERT INTO table;

sysadmin and DBA required for scale, integrity and performance

Object Storage

GET /object/KbglBn7qepo
PUT /object/KbglBn7qepo

sysadmin not required

OBJECT STORES EXAMPLE

PutObject(myobj, Container='A', metdata = 'NetCDF')

Object storage with versioning

- Each NetCDF file is stored in a separate container
- All versions of the same NetCDF file are stared in the same container

OBJECT STORES

Good

- Scalable can grow as large as needed
- Simplify provisioning flat namespace with metadata
- Ease of Use Each object gets a unique ID and a HTTP URL that can be publicly accessible
- Agility sysadmin is not required to maintain it

Bad

- No support for search need to know the object identifier to access, or create a complex metadata index
- Eventual Consistency there is no guarantee that a read request returns the most recent version of the data

OBJECT STORES

- Amazon
 - Simple Storage Service (S3)
 - First to come out
 - 2016, reportedly holds trillions of objects in billions of containers (buckets)
 - Glacier
 - Designed for long-term, secure, durable, and low cost data archiving
- Google three storage tiers
 - Standard multi-regional
 - Regional
 - Nearline
- Azure
 - Blob as a part of storage account

RELATIONAL DATABASES

- A structured collection of data about entities and their relationships
- Models real-world objects
- Normally managed through a database management system (DBMS), such as Oracle, MySQL and PostgreSQL
 - Query via SQL (Structured Query Language)

```
select experiment-id from Experiments, People
where Experiments.person-id = People.person-id
and People.name = "Smith";
```

- Support **ACID** semantics
 - Atomicity, Consistency, Isolation, and Durability

RELATIONAL DATABASES

- Good
 - Best for structured data
 - Moderate size of database
- Bad
 - No support for unstructured data
 - Not scalable in the cloud
 - Require a single server to host the whole database

RELATION DATABASE SERVICES IN THE CLOUD

- Running a DBMS, ie. MySQL, on one of the virtual machines
 - Limit in scale
- Relational database services
 - Amazon's Aurora
 - Google's Cloud SQL and Spanner
 - Azure's SQL Database

NOSQL DATABASES

- "Not only SQL or Non SQL" (invented by Johan Oskarsson #nosql for a meet)
 - Most of SQL is supported, but other properties are available
- Opensource software designed to address scalability issues
 - Grow as needed on commodity hardware
- Scheme-less
 - Support unstructured data that are not easily represented in tabular form
 - Key-value store where key and value can be arbitrary value
 - New column can be introduced over time
- Aggregate-oriented related items stored together for efficiency
- In the cloud, normally the database are distributed over multiple servers
- Not satisfy ACID
 - Eventual consistency

NOSQL DATABASES

- Amazon's DynamoDB
 - Based on key-value model
 - For each row, the primary key column is the only required attribute
 - Any number of additional columns can be defined, indexed and made searchable
- Google's
 - BigTable
 - The same database behind Google search, analytics, maps, and Gmail
 - Maps two arbitrary strings, row and column key, and a timestamp to arbitrary byte array
 - Designed for sparse and large datasets, and to support large workloads
 - Datastore
 - Similar to BigTable + ACID
- Azure Table
 - Similar to DynamoDB, but quite limited

RELATIONAL VS NOSQL DATABASES

Relational table

Name	Job	Salary	age
Bill	Sales	\$20000	18
Beth	Research	\$1m	35
Carl	CEO	0	93
Jill	Prof	\$100000	24

NoSQL Key-value system

DATA WAREHOUSES

- Data management systems optimized to support analytic queries from reading large data sets
- Designed to support many concurrent requests to read and update
- Example
 - A data warehouse for a medical center that stores clinical data of patients
 - Demographic data
 - Daily detailed information of the visits
 - Medications and treatments
 - Query "What factors are correlated with the length of a stay?"

DATA WAREHOUSE SERVICES

- Amazon Redshift
- Google BigQuery
- Azure Data Lake

Note that all provide REST (\mathbf{RE} presentation State Transfer) API interface

