YAWK

You Are Welcome Krakow

Introduction

Predicting future PM10 values for the Krakow by using Deep Neural Network to help Krakow to be better place to breathe...

Hourly Predictions

Aim

predict next hour based on set of previous time series

Data Visualization

Data Pre-processing

- handling missing values -> impute values from other years
- moving average -> 12 hours for each frame
- preparation data as input for LSTM:
 - -> framing 24 hours as base for prediction of next hour
 - -> Input shape: (43795, 24, 1)
 - -> Output shape: (43795,)

Model

```
model = Sequential()
model.add(LSTM(20,activation='relu',return_sequences=True, input_shape=(frame_size, n_features)))
model.add(LSTM(20,activation='relu',return_sequences=False))
model.add(Dense(1))
adam = optimizers.Adam(lr=0.01, beta_1=0.9, beta_2=0.999, epsilon=le-8, decay=0.0, amsgrad=False)
model.compile(optimizer=adam, loss="mse", metrics=None)|
```


Score & Conclusion

Final R2 Score = 0.99

Daily Predictions

Aim
predict next day's PM10 value
based on last 20 days

The Data

Data PreProcessing

- Handling the null values
- Framing the data for training

Simple LSTM model with only 4 hidden layers

Layer 1: tanh LSTM with 24 neurons

Layer 2: 10% Dropout

Layer 3: tanh LSTM with 16 neurons

Layer 4: 10% Dropout

Score & Conclusion

Thank you for your attention

- Efe Ergün- Bartosz Tynski