Diffeological Fisher metric

Hông Vân Lê Institute of Mathematics, CAS, Praha

Les Houches July 28, 2020

OUTLINE

- 1) Intrinsic Riemannian metric on statistical models.
- 2) Diffeological statistical models.
- 3) Diffeological Fisher metric.
- 4) Diffeological Crámer-Rao inequality.

1. Intrinsic Riemannian metric on statistical models

- A statistical model is a subset P_{χ} of the set $\mathcal{P}(\chi)$ of all probability measures on χ .
- Geometry of $P_{\mathcal{X}}$ is induced from $(\mathcal{S}(\mathcal{X}), ||, ||_{TV})$.
- $(V, \|\cdot\|)$ a Banach space, $\mathcal{X} \stackrel{\imath}{\hookrightarrow} V$ and $x_0 \in \mathcal{X}$. Then $v \in V$ is called a tangent vector of \mathcal{X} at x_0 , if there is a C^1 -map $c : \mathbb{R} \to \mathcal{X}$.
- The tangent (double) cone

$$C_x \mathcal{X} := \{ v \in V | v \text{ is tangent to } \mathcal{X} \text{ at } x \}.$$

- The tangent space $T_x \mathcal{X} := \text{Lin}(C_x \mathcal{X})$.
- The tangent cone fibration

$$C\mathcal{X} := \cup_x \in \mathcal{X}T_x\mathcal{X}$$

- The tangent fibration $T\mathcal{X} := \bigcup_{x \in \mathcal{X}} T_x \mathcal{X} \subset V \times V$ is endowed with the induced topology.

Example.
$$P_{\mathcal{X}} := \{p_{\eta}\mu_0 \in \mathcal{P}(\mathcal{X})\}, \ \mu_0 \in \mathcal{P}(\mathcal{X}),$$

$$p_{\eta} := g^{1}\eta_{1} + g^{2}\eta_{1} + g^{3}(1 - \eta_{1} - \eta_{2})$$

and $g^i \geq 0$ such that $\mathbb{E}_{\mu_0}(g^i) = 1$ and $\eta = (\eta_1, \eta_2) \in D_b \subset \mathbf{R}^2$ is a parameter, which will be specified as follows.

Let us divide the square D in smaller squares and color them in black and white like a chessboard. Let D_b be the closure of the subset of D colored in black.

• Any $v \in C_{\xi}P_{\chi}$ is dominated by ξ . Hence the logarithmic representation of v

$$\log v := dv/d\xi \in L^1(\mathcal{X}, \xi).$$

- The logarithmic representation of $C_{\xi}P_{\mathcal{X}}$ $\log(C_{\xi}P_{\mathcal{X}}) := \{\log v | v \in C_{\xi}P_{\mathcal{X}}\} \subset L^{1}(\mathcal{X}, \xi).$
- ullet $P_{\mathcal{X}}$ will be called almost 2-integrable, if

$$\log(C_{\xi}P_{\mathcal{X}}) \subset L^{2}(\mathcal{X}, \xi) \ \forall \xi \in P_{\mathcal{X}}.$$

In this case the Fisher metric \mathfrak{g} on $\mathcal{P}_{\mathcal{X}}$ ais defined as follows.

For $v, w \in C_{\xi}P_{\mathcal{X}}$

$$\mathfrak{g}_{\xi}(v,w) := \int_{\mathcal{X}} \log v \cdot \log w \, d\xi.$$

Since $T_{\xi}P_{\mathcal{X}}$ is the linear hull of $C_{\xi}P_{\mathcal{X}}$, this formula extends uniquely to a positive quadratic form on $T_{\xi}P_{\mathcal{X}}$, which is called the Fisher metric.

2. Diffeological statistical models

- A parameterized statistical model is a parameter set Θ together with a mapping $\mathbf{p}:\Theta\to \mathcal{P}(\mathcal{X}).$
- In "Information Geometry" (AJLS2017) a parameterized statistical model $(M, \mathcal{X}, \mathbf{p})$, M a Banach manifold, $i \circ \mathbf{p} : M \xrightarrow{\mathbf{p}} \mathcal{P}(\mathcal{X}) \xrightarrow{i} \mathcal{S}(\mathcal{X})_{TV}$ is a C^1 -map.

Example. Let $\mathcal{X} = [0,1]$, μ_0 - Lebesgue, $\mathcal{P}_{\mathcal{X}} = \{f \cdot \mu_0 | f \in C^{\infty}_{>0}(\mathcal{X}), \& \int_{\mathcal{X}} f d\mu_0 = 1\}$. Then there does not exist $(M, \mathcal{X}, \mathbf{p})$ s.t. $\mathcal{P}_{\mathcal{X}} = \mathbf{p}(M)$, M -a Banach manifold.

Assume the opposite. $\Longrightarrow \forall m \in M$: $d\mathbf{p}(T_m M) = \{ f \in C^{\infty}(\mathcal{X}) | \int_{\mathcal{X}} d\mu_0 = 0 \}.$

But this is not the case, since the space $C^{\infty}([0,1])$ cannot be the image of a linear bounded map from a Banach space M to $L_1([0,1])$.

• A C^k -diffeology \mathcal{D} of $\mathcal{X} \neq \emptyset$ is a subset of \mathcal{X}^U , $U \subset \mathbf{R}^n$ is open, $n \in \mathbf{N}$, that satisfies the following.

D1. Covering. \mathcal{D} contains all the constant mappings $\mathbf{x}: r \mapsto x, \ \forall \ n, \ r \in \mathbf{R}^n \& x \in \mathcal{X}$.

D2. Locality. Let $P \in \mathcal{X}^U$. If $\forall r \in U$ there exists an open neighborhood V of r s.t. $P_{|V} \in \mathcal{D}$ then $P \in \mathcal{D}$.

D3. Smooth compatibility. For every $P \in \mathcal{D}$, for every real domain V, for every $F \in C^k(V,U)$, we have $P \circ F \in \mathcal{D}$.

- A C^k -diffeological space is a nonempty set equipped with a C^k -diffeology \mathcal{D} . Elements $P \in \mathcal{D}$ are called C^k -maps from U to \mathcal{X} .
- $(\mathcal{P}_{\mathcal{X}}, \mathcal{D}_{\mathcal{X}})$ is called a C^k -diffeological statistical model, if for any $P \in \mathcal{D}_{\mathcal{X}}$, $i \circ P : U \to \mathcal{S}(\mathcal{X})$ is a C^k -map.
- The tangent cone $C_{\xi}(\mathcal{P}_{\mathcal{X}}, \mathcal{D}_{\mathcal{X}}) \subset C_{\xi}\mathcal{P}_{\mathcal{X}}$ consists of tangent vectors of C^k -curves in $\mathcal{D}_{\mathcal{X}}$.
- The tangent space $T_{\xi}(\mathcal{P}_{\chi}, \mathcal{D}_{\chi})$ is the linear hull of $C_{\xi}(\mathcal{P}_{\chi}, \mathcal{D}_{\chi})$.

• Let V be a locally convex vector space. A map $\varphi: \mathcal{P}_{\mathcal{X}} \to V$ is called Gateaux-differentiable on $(\mathcal{P}_{\mathcal{X}}, \mathcal{D}_{\mathcal{X}})$ if for any C^k -curve c in $\mathcal{D}_{\mathcal{X}}$ the composition $\varphi \circ c: \mathbf{R} \to V$ is differentiable.

Example. Let $(M, \mathcal{X}, \mathbf{p})$ be a parameterized statistical model. Then $(\mathbf{p}(M), \mathcal{D}_{\mathcal{X}})$ is a C^1 -diffeological statistical model where $\mathcal{D}_{\mathcal{X}}$ consists of all C^1 -maps $q: \mathbf{R}^n \supset U \to \mathbf{p}(M)$ such that there exists a C^1 -map $q^M: U \to M$ and $q = \mathbf{p} \circ q^M$.

Example. Any statistical model $\mathcal{P}_{\mathcal{X}}$ can be endowed with a structure of a C^k -diffeological statistical model for any $k \in \mathbb{N}^+ \cup \infty$, where its diffeology $\mathcal{D}_{\mathcal{X}}^{(k)}$ consists of all mappings $P: U \to \mathcal{P}_{\mathcal{X}}$ such that the composition $i \circ P: U \to \mathcal{S}(\mathcal{X})$ is of the class C^k , where U is any open domain in \mathbb{R}^n for $n \in \mathbb{N}$.

3. Diffeological Fisher metric.

- $(\mathcal{P}_{\mathcal{X}}, \mathcal{D}_{\mathcal{X}})$ is called almost 2-integrable, if $\log(C_{\xi}(\mathcal{P}_{\mathcal{X}}, \mathcal{D}_{\mathcal{X}})) \subset L^{2}(\mathcal{X}, \xi)$ for all $\xi \in P_{\mathcal{X}}$.
- An almost 2-integrable $(\mathcal{P}_{\mathcal{X}}, \mathcal{D}_{\mathcal{X}})$ will be called 2-integrable, if for any $\mathbf{p} \in \mathcal{D}_{\mathcal{X}}$, the function $v \mapsto |d\mathbf{p}(v)|_{\mathfrak{g}}$ is continuous on TU. The Fisher metric on an 2-integrable $(\mathcal{P}_{\mathcal{X}}, \mathcal{D}_{\mathcal{X}})$ is called the diffeological Fisher metric.

Example. $(M, \mathcal{X}, \mathbf{p})$ is 2-integrable, iff $(\mathbf{p}(M), \mathbf{p}_*(\mathcal{D}_M))$ is a 2-integrable C^1 -diffeological statistical model.

Example. λ - a σ -finite measure on \mathcal{X} . Friedrich (1991) set $\mathcal{P}(\lambda) := \{\mu \in \mathcal{P}(\mathcal{X}) | \mu \ll \lambda\}$ with the following diffeology $\mathcal{D}(\lambda)$. A curve c: $\mathbf{R} \to \mathcal{P}(\lambda)$ is a C^1 -curve, iff

$$\log \dot{c}(t) \in L^2(\mathcal{X}, c(t)).$$

Then $(\mathcal{P}(\lambda), \mathcal{D}(\lambda))$ is an almost 2-integrable C^1 -diffeological statistical model.

The diffeological Fisher metric serves as a information quantity wrt Markov kernels, regarded as probabilistic morphisms.

- (1962) Lawvere proposed a category $\{\mathcal{X}, T: \mathcal{X} \sim \mathcal{Y} | T \text{ is a Markov kernel}, \\ \iff \overline{T}: \mathcal{X} \to (\mathcal{P}(\mathcal{Y}), \Sigma_w) \text{ is measurable} \}. \text{ Here } \Sigma_w \text{ the smallest } \sigma\text{-algebra on } \mathcal{P}(\mathcal{Y}) \text{ such that } I_f: \mu \mapsto \int_{\mathcal{X}} f d\mu \text{ for } f \in \mathcal{F}_s(\mathcal{X}) \text{ and } \mu \in \mathcal{P}(\mathcal{X}) \text{ is measurable for all } f \in \mathcal{F}_s(\mathcal{X}), \text{ i.e. } f \text{ is simple.}$
- T is called a probabilistic morphism.

• $T: \mathcal{X} \leadsto \mathcal{Y}$, induces a linear map

$$T_* = S_*(T) : \mathcal{S}(\mathcal{X}) \to \mathcal{S}(\mathcal{Y})$$

$$T_*(\mu)(B) := \int_{\mathcal{X}} \overline{T}(x)(B) d\mu(x) \tag{1}$$

for any $\mu \in \mathcal{S}(\mathcal{X})$ and $B \in \Sigma_{\mathcal{Y}}$.

• $T_*(\mathcal{P}(\mathcal{X})) \subset \mathcal{P}(\mathcal{Y}).$

- Given $T: \mathcal{X} \leadsto \mathcal{Y}$ and a C^k -diffeological statistical model $(P_{\mathcal{X}}, \mathcal{D}_{\mathcal{X}})$, then $(T_*(P_{\mathcal{X}}), T_*(\mathcal{D}_{\mathcal{X}}))$ is a C^k -statistical model.
- A mapping $\mathbf{p}: U \to T_*(P_{\mathcal{X}})$ belongs to $T_*(\mathcal{D}_{\mathcal{X}})$ iff $\forall \ r \in U \ \exists$ an open neighborhood $V \subset U$ of r s.t. either $\mathbf{p}_{|V} = const$, or there exists a mapping $\mathbf{q} \in \mathcal{D}_{\mathcal{X}}$ such that $\mathbf{p}_{|V} = T_* \circ \mathbf{q}$.

Theorem 1. Given $T: \mathcal{X} \to \mathcal{Y}$ and an almost 2-integrable C^k -d.s.m. $(P_{\mathcal{X}}, \mathcal{D}_{\mathcal{X}})$, then

(1) $(T_*(P_{\mathcal{X}}), T_*(\mathcal{D}_{\mathcal{X}}))$ is an almost 2-integrable C^k -d.s.m.

(2) For any $\mu \in P_{\mathcal{X}}$, $v \in T_{\mu}(P_{\mathcal{X}}, \mathcal{D}_{\mathcal{X}})$

$$\mathfrak{g}_{\mu}(v,v) \geq \mathfrak{g}_{T_*\mu}(T_*v,T_*v)$$

with the equality if T is sufficient w.r.t. P_{χ} .

• $T: \mathcal{X} \leadsto \mathcal{Y}$ is called sufficient for $P_{\mathcal{X}}$ if there exists $\underline{\mathbf{p}}: \mathcal{Y} \leadsto \mathcal{X}$ s.t. $\forall \ \mu \in P_{\mathcal{X}}$ and $h \in L(\mathcal{X})$ (bounded measurable functions on \mathcal{X})

$$T_*(h\mu) = \mathbf{p}^*(h)T_*(\mu)$$

$$\iff \underline{\mathbf{p}}^*(h) = \frac{dT_*(h\mu)}{dT_*(\mu)} \in L^1(\mathcal{Y}, T_*(\mu)).$$

In this case we call $\mathbf{p}: \mathcal{Y} \to \mathcal{P}(\mathcal{X})$ defining $\mathbf{p}: \mathcal{Y} \leadsto \mathcal{X}$ the conditional mapping for T.

Example. Let λ be a σ -finite measure on \mathcal{X} . In (Friedrich1991) Friedrich considered the group $\mathcal{G}(\mathcal{X}, \Sigma_{\mathcal{X}}, \lambda)$ of all measurable 1-1 mappings $\Phi: \mathcal{X} \to \mathcal{X}$ such that $\Phi_*(\lambda) \ll \lambda$. Clearly $\Phi_*(P(\lambda)) \subset P(\lambda)$. It is not hard to see that Φ is a sufficient statistic and hence sufficient probabilistic morphism w.r.t. $P(\lambda)$. Hence Theorem 1 implies the following

Corollary 1. (Friedrich1991) The group $\mathcal{G}(\mathcal{X}, \Sigma_{\mathcal{X}}, \lambda)$ acts isometrically on $P(\lambda)$.

4. Diffeological Crámer-Rao inequality

- An estimator is a map $\hat{\sigma}: \mathcal{X} \to P_{\mathcal{X}}$.
- It is simpler to estimate only a "coordinate" $\varphi(\xi)$, where $\xi \in \mathcal{P}_{\mathcal{X}}$ and $\varphi \in Map(\mathcal{P}_{\mathcal{X}}, V)$.
- A φ -estimator $\hat{\sigma}_{\varphi}$ is a composition $\varphi \circ \hat{\sigma} : \mathcal{X} \xrightarrow{\hat{\sigma}} P_{\mathcal{X}} \xrightarrow{\varphi} V$.

Example. Assume that $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a symmetric and positive definite kernel function and V be the associated RKHS. For any $x \in \mathcal{X}$ we denote by k_x the function on \mathcal{X} defined by $k_x(y) := k(x,y)$ for any $y \in \mathcal{X}$. Then k_x is an element of V. Let $P_{\mathcal{X}} = \mathcal{P}(\mathcal{X})$. Then we define the kernel mean embedding $\varphi: \mathcal{P}(\mathcal{X}) \to V$ as follows (MFSS2017)

$$\varphi(\xi) := \int_{\mathcal{X}} k_x d\xi(x),$$

where the integral should be understood as a Bochner integral.

Remark In classical statistics one considers only parameter estimations for parameterized statistical models. In this case, an estimators a map from $\mathcal X$ to the parameter set Θ of a statistical model $p(\Theta) \subset \mathcal P(\mathcal X)$. Usually one assumes that the parametrization $p:\Theta \to p(\Theta)$ is 1-1, hence in this case, a parameter estimation is equivalent to a nonparametric estimation in the sense of our Definition.

The notion of a φ -estimation occurs in classical statistics under different name e.g. substitution estimator, estimand, etc.

 \bullet V' - the topological dual of V.

•
$$\varphi^l := l \circ \varphi, \ l \in V', \ \varphi \in Map(P_{\mathcal{X}}, V) = \mathcal{P}_{\mathcal{X}}^V.$$

$$L_{\varphi}^{2}(\mathcal{X}, P_{\mathcal{X}}) := \{ \widehat{\sigma} \in P_{\mathcal{X}}^{\mathcal{X}} | \varphi^{l} \circ \widehat{\sigma} \in L_{\xi}^{2}(\mathcal{X}), \xi \in P_{\mathcal{X}}, l \in V' \}.$$

• The φ -mean value $\varphi_{\widehat{\sigma}} \in P_{\mathcal{X}}^{V''}$ of $\widehat{\sigma}$ is

$$\varphi_{\widehat{\sigma}}(\xi)(l) := \mathbb{E}_{\xi}(\varphi^l \circ \widehat{\sigma}) \text{ for } \xi \in P_{\mathcal{X}} \text{ and } l \in V'.$$

- $\bullet \ V \subset V''$.
- $b_{\widehat{\sigma}}^{\varphi} := \varphi_{\widehat{\sigma}} \varphi \in Map(\mathcal{P}_{\mathcal{X}}, V'')$ is the bias of the φ -estimator $\widehat{\sigma}_{\varphi}$.

ullet Mean square error quadratic function on V'

$$MSE_{\xi}^{\varphi}[\widehat{\sigma}](l,h) = \mathbb{E}_{\xi}[(\varphi^{l} \circ \widehat{\sigma}(x) - \varphi^{l}(\xi)) \cdot (\varphi^{h} \circ \widehat{\sigma}(x) - \varphi^{h}(\xi))].$$

ullet Variance quadratic function $V_{\xi}^{arphi}[\widehat{\sigma}](l,h)$

$$= \mathbb{E}_{\xi} [\varphi^{l} \circ \widehat{\sigma}(x) - E_{\xi}(\varphi^{l} \circ \widehat{\sigma}(x)) \cdot \varphi^{h} \circ \widehat{\sigma}(x) - E_{\xi}(\varphi^{h} \circ \widehat{\sigma}(x))].$$

 $\bullet MSE_{\xi}^{\varphi}[\widehat{\sigma}](l,h) = V_{\xi}^{\varphi}[\widehat{\sigma}](l,h) + \langle b_{\widehat{\sigma}}^{\varphi}(\xi), l \rangle \cdot \langle b_{\widehat{\sigma}}^{\varphi}(\xi), h \rangle.$

Remark Assume that V is a real Hilbert space with a scalar product $\langle \cdot, \cdot \rangle$ and the associated norm $\|\cdot\|$. Then the scalar product defines a canonical isomorphism $V=V', \ v(w):=\langle v,w\rangle$ for all $v,w\in V$. For $\widehat{\sigma}\in L^2_{\varphi}(\mathcal{X},P_{\mathcal{X}})$ the mean square error $MSE^{\varphi}_{\xi}(\widehat{\sigma})$ of the φ -estimator $\varphi\circ\widehat{\sigma}$ is defined by

$$MSE_{\xi}^{\varphi}(\widehat{\sigma}) := \mathbb{E}_{\xi}(\|\varphi \circ \widehat{\sigma} - \varphi(\xi)\|^2).$$
 (2)

The RHS of (2) is well-defined, since $\hat{\sigma} \in L^2_{\varphi}(\mathcal{X}, P_{\mathcal{X}})$ and therefore

$$\langle \varphi \circ \widehat{\sigma}(x), \varphi \circ \widehat{\sigma}(x) \rangle \in L^1(\mathcal{X}, \xi),$$

$$\langle \varphi \circ \widehat{\sigma}(x), \varphi(\xi) \rangle \in L^2(\mathcal{X}, \xi).$$

Similarly, we define the variance of a φ -estimator $\varphi \circ \hat{\sigma}$ at ξ as follows

$$V_{\xi}^{\varphi}(\widehat{\sigma}) := \mathbb{E}_{\xi}(\|\varphi \circ \widehat{\sigma} - \mathbb{E}_{\xi}(\varphi \circ \widehat{\sigma})\|^{2}).$$

If V has a countable basis of orthonormal vectors v_1, \dots, v_{∞} , then we have

$$MSE_{\xi}^{\varphi}(\widehat{\sigma}) = \sum_{i=1}^{\infty} MSE_{\xi}^{\varphi}[\widehat{\sigma}](v_i, v_i), \qquad (3)$$

$$V_{\xi}^{\varphi}(\hat{\sigma}) = \sum_{i=1}^{\infty} V_{\xi}^{\varphi}[\hat{\sigma}](v_i, v_i). \tag{4}$$

- \bullet $(P_{\chi}, \mathcal{D}_{\chi})$ an almost 2-integrable C^k -d.s.m.
- $T_{\xi}^{\mathfrak{g}}(P_{\mathcal{X}}, \mathcal{D}_{\mathcal{X}})$ the completion of $T_{\xi}(P_{\mathcal{X}}, \mathcal{D}_{\mathcal{X}})$ w.r.t. the diffeological Fisher metric \mathfrak{g} .

$$L_{\mathfrak{g}}: T_{\xi}^{\mathfrak{g}}(P_{\mathcal{X}}, \mathcal{D}_{\mathcal{X}}) \to (T_{\xi}^{\mathfrak{g}}(P_{\mathcal{X}}, \mathcal{D}_{\mathcal{X}}))'$$
$$L_{\mathfrak{g}}(v)(w) := \langle v, w \rangle_{\mathfrak{g}},$$

is an isomorphism.

Then we define the inverse \mathfrak{g}^{-1} of the Fisher metric \mathfrak{g} on $(T_{\xi}^{\mathfrak{g}}(P_{\mathcal{X}}, \mathcal{D}_{\mathcal{X}}))'$ as follows

$$\langle L_g v, L_g w \rangle_{\mathfrak{q}^{-1}} := \langle v, w \rangle_{\mathfrak{g}}$$

• $\hat{\sigma} \in L^2_{\varphi}(\mathcal{X}, P_{\mathcal{X}})$ is called a φ -regular estimator, if for all $l \in V'$ the function $\xi \mapsto \|\varphi^l \circ \hat{\sigma}\|_{L^2(\mathcal{X}, \xi)}$ is locally bounded, i.e., for all $\xi_0 \in P_{\mathcal{X}}$

$$\lim_{\xi \to \xi_0} \sup \|\varphi^l \circ \widehat{\sigma}\|_{L^2(\mathcal{X},\xi)} < \infty.$$

• For $\xi \in \mathcal{P}_{\mathcal{X}}$ we denote by $(\mathfrak{g}_{\widehat{\sigma}}^{\varphi})^{-1}(\xi)$ to be the following quadratic form on V':

$$(\mathfrak{g}_{\widehat{\sigma}}^{\varphi})^{-1}(\xi)(l,k) := \langle d\varphi_{\widehat{\sigma}}^{l}, d\varphi_{\widehat{\sigma}}^{k} \rangle_{\mathfrak{g}^{-1}}(\xi)$$
$$= \langle \operatorname{grad}_{\mathfrak{g}}(\varphi_{\widehat{\sigma}}^{l}), \operatorname{grad}_{\mathfrak{g}}(\varphi_{\widehat{\sigma}}^{k}) \rangle.$$

Theorem [Diffeological Cramér-Rao inequality]

Let $(P_{\mathcal{X}}, \mathcal{D}_{\mathcal{X}})$ be a 2-integrable C^k -diffeological statistical model, φ a V-valued function on $P_{\mathcal{X}}$ and $\widehat{\sigma} \in L^2_{\varphi}(\mathcal{X}, P_{\mathcal{X}})$ a φ -regular estimator. Then the difference $V^{\varphi}_{\xi}[\widehat{\sigma}] - (\widehat{\mathfrak{g}}^{\varphi}_{\widehat{\sigma}})^{-1}(\xi)$ is a positive semi-definite quadratic form on V' for any $\xi \in P_{\mathcal{X}}$.

- J. Jost, H. V. Lê, , D. H. Luu and T. D. Tran, Probabilistic mappings and Bayesian nonparametrics, arXiv:1905.11448.
- H. V. Lê, Diffeological statistical models, the Fisher metric and probabilistic mappings, arXiv:1912.02090, Mathematics 2020, 8(2), 167.

Thank you for your attention!