- I. For ECU 1
 - 1. Draw a state machine diagram for each ECU component
 - A. OS Component
 - a. BCM

B. Software component

a. Switch button state

b. Car state

c. Door state

d. State send

2. Draw a state machine diagram for the ECU operation

sequence diagram for ECU1

4. Calculate CPU load for the ECU 1

Note: no code was written and it is all just theoretical calculations

Hyper period will be 20 ms in my design

It will consist of 3 tasks of periods 5,10,20

Assuming each task is similar as they do basically the same thing and saying the entire process takes around 350 μ s to execute and another 150 μ s for debounce and any other safety related features.

So Execution time will be 500 μs for each task

So at 20 ms

The 5 ms periodicity task would have run four times for a total time of 2 ms

The 10 ms periodicity task would have run two times for a total time of 1 ms

The 20 ms periodicity task would have run once for a total time of 0.5 ms

Then the total execution time is 1.75 ms

$$ECU~1~load = \frac{Excecution~time~per~hyper~period}{hyper~period} = \frac{3.5}{20} = 17.5\%$$

II. For ECU 2

- 1. Draw a state machine diagram for each ECU component
 - A. OS Component
 - a. BCM

B. Software Components

a. State send

b. Lights Ctrl

2. Draw a state machine diagram for the ECU operation

3. Draw the sequence diagram for the ECU

sequence diagram for ECU2

4. Calculate CPU load for the ECU 2

Note: no code was written and it is all just theoretical calculations Here it is only one task with 5 ms periodicity this task checks everything then controls Assuming this task takes 400 μ s to receive and Ctrl using the data from ECU 2 Then execution time will be 400 μ s

$$\textit{ECU 1 load} = \frac{\textit{Excecution time per hyper period}}{\textit{hyper period}} = \frac{.4}{5} = 8\%$$

III. Calculate bus load in your system Assuming single wire CAN interface As single wire CAN wire has a rate of 33.3 kbit/s and we are sending a single byte at once So, it takes around 300 μs for each operation we do exactly 7 CAN transmissions in 20ms So, the average CAN bus load= $\frac{300\times7}{20000}=10.5\%$