

Compression

F. Dufaux

Généralités

Quantif.

Méthodes orédictives Compression d'images

Frédéric Dufaux

Département Traitement du Signal et des Images TELECOM ParisTech

26 janvier 2011

Plan

Compression

F. Dufau

Généralité

_ ..

Méthodes

IDEC

- Généralités sur la compression d'images
- Quantification
- Méthodes prédictives
- 4 Codage par Transformée
- JPEG

Plan

Compression

F. Dufau

Généralités

Quantif.

Méthodes prédictives

י וחבכ

- Généralités sur la compression d'images
 - Quantification
 - Méthodes prédictives
- 4 Codage par Transformé
- JPEG

Représentation des images numériques

Compression

F. Dufaux

Généralités

Quantif

Méthodes

- Grille discrete, image $N \times M$ pixels
- A chaque pixel (m, n), on associe un ordre de traitement k
- Généralement, balayage ligne par ligne unilatéral : k = (n-1)M + m
- On notera indifféremment $f_{n,m}$ ou f_k

Représentation des images numériques Images couleurs : Format RVB

Compression

F. Dufaux

Généralités

Quant

Méthodes prédictives Images en couleurs : trois composantes, chacune représentée comme une image en niveaux de gris.

Représentation des images numériques Espaces de couleurs

Compression

Généralités

Représentation des images numériques Images couleurs : Format YUV

Compression

F. Dufau

Généralités

Quant

Méthodes prédictives JPEG Images en couleurs : une composante de luminance et deux de chrominance (sous-échantillonnées).

Pourquoi comprimer ? Exemple 1 : Libraire de photos numériques

Compression

F. Dufaux

Généralités

Quantif

Méthodes prédictive

IPEG

- Images à 10 Megapixel
- Trois composantes couleur
- Un octet par composant
- Occupation mémoire : 30 Mo par photo
- Publication sur le Web ?

Pourquoi comprimer ?

Exemple 2 : Télévision

Compression

F. Dufaux

Généralités

Quanti[,]

Méthodes prédictives

JPE(

système analogique

⇒ bande de fréquence : 6 MHz

système numérique

1 composante de luminance 576×720

2 composantes de chrominance 288×360 quantification sur 8 bits

25 images par seconde

 $R \approx 125 \; \mathrm{Mbps}$

⇒ bande de fréquence ?

• 2 heures de film > 100 Go

Fondements de la compression

Compression

F. Dufaux

Généralités

Quantif

Méthodes prédictives

JPEG

POURQUOI EST-IL POSSIBLE DE COMPRIMER?

- Redondance statistique des données
 - homogénéité des images
 - similitude entre images successives
- Redondance psychovisuelle
 - sensibilité aux baisses fréquences
 - effets de masquage
 - autres limites du système visuel humain
- Un algorithme de compression (ou codage) doit exploiter au maximum la redondance des données

Algorithmes de compression Types d'algorithme

Compression

F. Dufaux

Généralités

Quanti

Méthodes prédictives

IPEG

- Algorithmes sans perte (lossless)
 - Reconstruction parfaite
 - Basés sur la redondance statistique
 - Faible rapport de compression
- Algorithmes avec perte (lossy)
 - Image reconstruite \neq image originale
 - Basés sur la quantification
 - Redondance psychovisuelle : "visually lossless"
 - Rapport de compression élevé

Critères de performance Débit

Compression

Généralités

Rapport (taux) de compression

•
$$T = \frac{B_{\rm in}}{B_{\rm out}} = \frac{R_{\rm in}}{R_{\rm out}}$$

Débit de codage

• Image :
$$R = \frac{B_{\text{out}}}{NM}$$
 [bpp]

• Video, son :
$$R = \frac{B_{\text{out}}}{T}$$
 [bps]

Codage d'image sans perte : T < 3

Codage d'image avec perte : $T \approx 5 \rightarrow$?

Codage vidéo avec perte : $T \approx 20 \rightarrow$?

Critères de performance Qualité et distorsion

Compression

Généralités

Le seul débit n'est pas suffisant pour évaluer un algorithme avec pertes

Il faut déterminer la qualité ou la distorsion de l'image reconstruite

- Les Critères objectifs sont fonctions mathématiques de
 - $f_{n,m}$: image d'origine; et
 - $\tilde{f}_{n,m}$: image reconstruite après compression
- Critères objectifs non perceptuels
 - Erreur quadratique moyenne (MSE) :

$$D = \frac{1}{NM} \sum_{n=1}^{N} \sum_{m=1}^{M} (f_{n,m} - \widetilde{f}_{n,m})^2$$

- Rapport signal sur bruit crête : $PSNR = 10 \log_{10} \left(\frac{255^2}{D} \right)$
- Critères objectifs perceptuels
 - On utilise des modèles du SVH pour prendre en compte la sensibilité aux fréquences, les masquages, ...

Compression

Généralités

Generante

Quanti Métho

viethodes prédictives JPEG

Exemple

Compression

Généralités

Bruit blanc $\sigma = 4$

Erreur dispersée, MSE = 16.00

Compression

F. Dufaux

Généralités

Quanti

Méthodes prédictives Bruit concentré sur 100×100 pixels

Compression

F. Dufau:

Généralités

Quanti

Méthodes prédictives JPEG

Bruit concentré sur les contours (estimation par filtre de Sobel)

Compression

F. Dufaux

Généralités

Quanti

Méthodes prédictives

Bruit sur les hautes fréquences spatiales

Compression

F. Dufaux

Généralités

Quanti

Méthodes prédictives

Sous-échantillonnement dans l'espace des couleurs

Critères de performance Qualité et distorsion

Compression

F. Dufaux

Généralités

Quantif

Méthodes orédictives

IDEC

- Les **Critères subjectifs** sont basés sur l'évaluation de la qualité des image faite par des humaines
 - Difficulté de créer un bon modèle du SVH
 - Analyse statistique des résultats
 - Évaluations longues, difficiles et coûteuses
- En conclusion, souvent on se limite à utiliser les critères objectifs non perceptuels :
 - Simplicité
 - Interprétation géométrique (norme euclidienne)
 - Optimisation analytique
 - Relation avec la qualité perçue ?

Critères de performance Complexité, retard et robustesse

Compression

F. Dufaux

Généralités

Quanti

Méthodes prédictives

- La complexité d'un algorithme de codage peut être limitée par :
 - contraintes liées à l'application (temps réel)
 - limités du matériel (hardware)
 - coût économique
- Le retard est normalement mesuré au codeur
 - Lié à la complexité
 - Influencé par l'ordre de codage
- Robustesse: sensibilité de l'algorithme de compression/reconstruction à des petites altérations du code comprimé (erreurs de transmission)

Critères de performance

Compression

F. Dufau

Généralités

Quantif.

Q uu.....

prédictives

Besoins contradictoire:

↑ Qualité ↑ Robustesse **↓** Débit

 $\Downarrow \mathsf{Complexit\acute{e}}$

 $\Downarrow \mathsf{Retard}$

Outils fondamentaux pour la compression

Compression

F. Dufau

Généralités

Quantif

Méthodes orédictives

IDEC

- Codage entropique
- Quantification
- Transformée
- Prédiction

Plan

Compression

F. Dufau

Généralité

Quantif.

Méthode

IDEC

- 1 Généralités sur la compression d'image
- Quantification
- Méthodes prédictives
- 4 Codage par Transformé
- 5 JPEG

Quantification Definition

Compression

F. Dufau:

Généralité

Quantif.

Méthodes prédictives

Quantification Definition

Compression

F. Dufau

Généralité

Ouantif.

Méthodes prédictives

$$Q: x \in \mathbb{R} \to y \in \mathcal{C} = \{\hat{x}_1, \hat{x}_2, \dots \hat{x}_L\}$$

C: Dictionnaire $R = \log_2 L$: Débit

E = X - Q(X): Bruit de quantification

 $D = \mathrm{E}\left[(X - Q(X))^2\right] = \mathrm{E}\left[E^2\right]$: Distortion

 $\Theta_i = \{x : Q(x) = \hat{x}_i\}$: Régions.

Evaluation d'un quantificateur : courbe D(R)

Quantification

Compression

F. Dufaux

Généralités

 ${\bf Quantif.}$

prédictives

JPEG

Typiquement,

- 1) $\Theta_i = (d_{i-1}, d_i)$
- 2) $\hat{x}_i \in \Theta_i$

Quantification uniforme

Compression

F. Dufaux

Généralité:

Quantif.

Méthodes prédictives

JPEG

- $d_i = d_{i-1} + \Delta$
- $\hat{\mathbf{x}}_i = \frac{d_i + d_{i-1}}{2}$
- Simple
- Minimize l'erreur maximale
- Optimale pour v.a. uniforme

Courbe D(R) pour une v.a. uniforme :

$$D = \sigma_X^2 2^{-2R}$$

Courbe D(R) pour une v.a. non uniforme en haute résolution :

$$D = K_X \sigma_X^2 2^{-2R}$$

Quantification optimale

Compression

F. Dufau

Généralités

Quantif.

Méthodes prédictives

IDEC

Pour une densité de probabilité $f_X(x)$ donnée, determiner le quantificateur qui minimize la distorsion pour un débit donné. Problème equivalent à determiner les seuils d_i et les niveaux \hat{x}_i . Solutions :

- Solution analytique en haute résolution: $D = h_X \sigma_x^2 2^{-2R}$
- Si l'hypothese de haute résolution est fausse, on peut atteindre un minimum local de la distorsion avec l'algorithme de Max-Lloyd

Quantification optimale Algorithme de Max-Lloyd

Compression

Quantif.

Algorithme de Max-Lloyd

- initialiser les régions (p.e. uniforme)
- trouver les meilleures régions pour le dictionnaire donné

$$d_i = \frac{\hat{x}_i + \hat{x}_{i+1}}{2}, \quad i \in \{1, \dots, L-1\}$$

trouver le meilleur dictionnaire pour les régions données

$$\hat{x}_i = \mathrm{E}\left[X|X \in \Theta_i\right] = \frac{\int_{\Theta_i} x f_X(x) dx}{\int_{\Theta_i} f_X(x) dx}$$

boucler en 2 jusqu'à la convergence

Débit de codage

Compression

F. Dufaux

Généralité

Quantif.

Méthodes prédictives

JPEG

2 possibilités pour coder les niveaux de quantification

- codes de longueur fixe
 b bits par niveau avec log₂(L) ≤ b < log₂(L) + 1
- ocodes de longueur variable b_i bits pour coder \hat{x}_i entropie : $H(x) = -\sum_{i=1}^L p_i \log_2(p_i)$ avec $p_i = P(x = \hat{x}_i)$ longueur moyenne : $b = \sum_{i=1}^L b_i p_i \ge H(x)$ code d'Huffman : b < H(x) + 1

Quantification uniforme Exemple de quantification

Compression

F. Dufau

Généralité:

Quantif.

Méthodes

Compression

F. Dufau

Généralité

Quantif.

Méthodes

Compression

F. Dufau

Généralité

Quantif.

Méthodes

Compression

F. Dufau

Généralité:

Quantif.

Méthodes

Compression

F. Dufau

Généralité

Quantif.

Méthodes

Quantification uniforme Exemple de codage

Compression

F. Dutau

Généralité

Quantif.

Méthodes

Quantification uniforme Exemple de codage

Compression

F. Dufau

Généralité

Quantif.

Méthodes prédictives

Quantification uniforme Exemple de codage

Compression

F. Dufau

Généralité

Quantif.

Méthodes

JPE6

Conclusion

Compression

F. Dufau

Généralités

Quantif.
Méthodes

IDEC

- Quantification : au centre de la compression avec perte
- Operation non reversible
- Centrale dans le compromis débit-distorsion
- Approximations à haute résolution:
 - $D \sim 2^{-2R}$
 - $D \sim \sigma^2$
- La seule quantification est insuffisante à assurer des bonnes performances de compression

Plan

Compression

F. Dufau

Généralité

Ouantif

Méthodes prédictives

- 1 Généralités sur la compression d'image
- Quantification
- Méthodes prédictives
- 4 Codage par Transformé
- 5 JPEG

Codage prédictive Principes

Compression

F. Dufau:

Généralité

Méthodes prédictives

- La seule quantification est peu efficace pour la compression
- Modèle soujacent trop simple : pixels indépendants et d'égales importances
- Idée : exploiter la correlation entre pixel par une prédiction
- Réduction de la variance

Schéma de codage Schéma simplifié

Compression

F. Dufaux

Généralité:

Méthodes

prédictives

• Le pixel f_k depend de ses voisins

- Si on connaît les voisins de f_k , on les utilise pour le prédire
- ullet Si on fait un bonne prédiction, $\widehat{f}_k pprox f_k$

- Comment on fait la prédiction ?
- Qu'est-ce qu'on gagne ?

Schéma de codage Schéma MICD (DPCM) complet

Compression

F. Dufau

Généralité

Méthodes prédictives

IPEG

Encodeur :

Décodeur :

Gain de prédiction

Compression

F. Dufaux

Généralités

Quantif.
Méthodes

prédictives

Erreur sur la prédiction = erreur sur le signal :

$$\epsilon_k = \widetilde{e}_k - e_k = \widetilde{e}_k + \widehat{f}_k - (e_k + \widehat{f}_k) = \widetilde{f}_k - f_k$$

Gain de codage :

$$SNR_p = 10 \log_{10} \frac{\sigma_f^2}{\overline{\epsilon}^2} = 10 \log_{10} \frac{\sigma_f^2}{\sigma_e^2} + 10 \log_{10} \frac{\sigma_e^2}{\overline{\epsilon}^2} = G_P + G_Q$$

La prédiction doit produire un signal d'erreur dont la variance est inférieure à la variance du signal d'origine

Prédicteurs

Compression

Méthodes prédictives

 \hat{f}_k est obtenu à partir des pixels "précédents" et doit pouvoir être synthétisé au décodeur

$$\Rightarrow \widehat{f}_k = \mathcal{P}(\{\widetilde{f}_\ell\}_{\ell \leq k-1})$$

On s'intéressera aux prédicteurs linéaires : simples et optimaux dans le cas Gaussien Souvent $\mathcal{P}(\{\widetilde{f}_{\ell}\}_{\ell < k-1}) = \widetilde{f}_{k-1}$

Schéma de codage Choix du prédicteur

Compression

F. Dufau:

Généralité

Quantif. Méthodes

prédictives

JPE(

Généralement, \mathcal{P} : filtre RIF 2D

$$\widehat{f}_{n,m} = \sum_{(i,j)\in\mathcal{S}} h_{i,j} \, \widetilde{f}_{n-i,m-j}$$

 \mathcal{S} : support causal demi-plan asymétrique typiquement, $\mathcal{S} = \{(0,1), (1,0), (1,1)\}$

Représentation équivalente :

$$\widehat{f}_k = \mathbf{h}^T \mathbf{f}^{(k)}$$
 $\mathbf{f}^{(k)} = \{\widetilde{f}_{n-i,m-i} : (i,j) \in \mathcal{S}\}$

Schéma de codage Choix du prédicteur

Compression

F. Dufau

Généralité

Quantif.

Méthodes prédictives JPEG Problème:

Trouver le vecteur (filtre linéaire) ${f h}$ qui minimize :

$$\sigma_{\rm e}^2 = {
m E}\left[(f_k - \mathbf{h}^T \mathbf{f}^{(k)})^2
ight]$$

en faisant l'hypothèse que $\widetilde{f}_{n,m} \simeq f_{n,m}$

Conclusions

Compression

F. Dufau

Généralité

Méthodes prédictives Méthode simple de mise en œuvre mais performances limitées en codage d'images

- introduit une causalité non naturelle en 2D
- code les pixels séparemment

Très efficace pour exploiter la redondance spatiale de la vidéo

Plan

Compression

F. Durau

Généralité

Quantif

Méthodes prédictives

IDEC

- 1 Généralités sur la compression d'image
- Quantification
- Méthodes prédictives
- 4 Codage par Transformée
- 5 JPEG

Principes

Compression

F. Dufau

Généralité

0 ...

Méthodes prédictive

IDEC

- Transformation linéaire : changement de base
- Représentation alternative de l'image
 - Mise en évidence des caractéristiques
 - Séparation des données entre importants et pas importants
 - Déterminer les informations importantes pour le SVH
- Réduire la corrélation
- Allocation des ressources

Transformée 1d

Compression

Paradigme du codage par transformée

On passe du vecteur f à g = Tf: on veut un vecteur plus "facile" à quantifier : peu de coefficients "importants", beaucoup de coefficients "insignifiants"

Transformations unitaires

Compression

T unitaire \Rightarrow **T**⁻¹ = **T**^H

avantages:

- inversion immédiate
- ② conservation de la norme : $\|\mathbf{g}\| = \|\mathbf{f}\|$
- \Rightarrow Distorsion sur g = distorsion sur f :

$$\begin{split} \mathrm{E}\left[\|\mathbf{g} - \mathbf{g}\|^2\right] &= \mathrm{E}\left[\left(\mathbf{g} - \mathbf{g}\right)^H (\mathbf{g} - \mathbf{g})\right] = \mathrm{E}\left[\left(\mathbf{f} - \mathbf{f}\right)^H T^H T (\mathbf{f} - \mathbf{f})\right] \\ &= \mathrm{E}\left[\|\mathbf{f} - \mathbf{f}\|^2\right] \end{split}$$

Propriété fondamentale pour décider l'allocation des ressource dans le domaine transformée

Transformations linéaires en 2D Forme vectorielle

Compression

F. Dufau:

Généralité

Quantif.

Méthodes prédictives

IPEG

• Forme vectorielle vecteurs lignes : $\mathbf{f}_n = [f_{n,1}, \dots, f_{n,M}]^T \in \mathbb{R}^M$ vecteur image : $\mathbf{f} = [\mathbf{f}_1^T, \dots, \mathbf{f}_N^T]^T \in \mathbb{R}^{N \times M}$

$$g = Tf$$

 $T \in \mathbb{C}(NM, NM)$: matrice de transformation

Transformations linéaires en 2D Définition – Forme scalaire

Compression

F. Dufau:

Généralités

Méthodes prédictives Forme scalaire

$$(f_{n,m})_{1\leq n\leq N, 1\leq m\leq M}$$
 : image d'origine $(g_{k,\ell})_{1\leq k\leq N, 1\leq \ell\leq M}$: image transformée

$$g = Tf$$
 \Rightarrow $g_{k,\ell} = \sum_{n=1}^{N} \sum_{m=1}^{M} t(k,\ell,n,m) f_{n,m}$

 $t(k, \ell, n, m)$: tenseur de transformation

Transformations linéaires en 2D

Forme scalaire de la transformée inverse

Compression

F. Dufau

Généralité

Méthode

predictive

• Dans l'hypothese de transformée unitaire,

$$f = T^H g$$
 \Rightarrow $f_{n,m} = \sum_{n=1}^N \sum_{m=1}^M t'(k,\ell,n,m) g_{k,\ell}$

 $t'(k, \ell, n, m)$: tenseur de transformation inverse

Transformations linéaires en 2D Forme matricielle

Compression

• Forme matricielle (si **T** inversible)

$$[\mathbf{f}] = \begin{bmatrix} f_{1,1} & \dots & f_{1,M} \\ \vdots & & \vdots \\ f_{N,1} & \dots & f_{N,M} \end{bmatrix}$$

$$[\mathbf{t}']_{k,l} = \begin{bmatrix} t'(1,1,k,\ell) & \dots & t'(1,M,k,\ell) \\ \vdots & & \vdots \\ t'(N,1,k,\ell) & \dots & t'(N,M,k,\ell) \end{bmatrix}$$

$$[\mathbf{f}] = \sum_{k=1}^{N} \sum_{\ell=1}^{M} g_{k,\ell} [\mathbf{t}']_{k,\ell}$$

$$[\mathsf{f}] = \sum_{k=1}^{n} \sum_{\ell=1}^{n} g_{k,\ell}[\mathsf{t}']_{k,\ell}$$

 $(g_{k,\ell})_{1 \le k \le N, 1 \le \ell \le M}$: coefficients de la décomposition de [f] sur la base $\{[\mathbf{t}']_{k,\ell}, 1 \leq k \leq N, 1 \leq \ell \leq M\}$

Transformations linéaires en 2D Forme matricielle

Compression

F. Dufau

Généralité

Méthodes

IPF

Transformée de Hadamard 8 × 8

Transformations linéaires en 2D Forme matricielle

Compression

r. Dulau

Généralité

Quanti

Méthodes prédictives

JPEG

Transformée DCT 8×8

Transformations linéaires en 2D Transformation de Karhunen-Loève (TKL)

Compression

F. Dufau

Généralités

Quantif.

Méthodes prédictives Définition : transformation permettant de décorréler les données $R_g = \mathbb{E}\{gg^H\}$: matrice diagonale

On utilise la diagonalisation de la matrice de correlation \mathbf{R}_f : si les composantes de \mathbf{f} sont linéairement indépendantes, \mathbf{R}_f est définie positive et admet la représentation :

$$R_f = U \Lambda U^T$$

où : $\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_N \end{bmatrix}$ matrice des vecteurs propres orthonormaux et $\mathbf{\Lambda} = \mathrm{Diag}(\lambda_1, \dots, \lambda_N)$ est la matrice diagonale des valeurs propres.

La TKL est définie par :

$$T = U^T$$

Transformations linéaires en 2D Propriété de la TKL

Compression

F. Dufau

Généralité

. ...

Méthodes prédictive

JPE(

Transformation unitaire

$$T^HT = I$$

Transformation décorrélante

$$\mathrm{E}[g_ig_j] = \lambda_i\delta_{ij}$$

Meilleure concentration des énergies :

∀**T** transformée unitaire, si

$$\mathbf{g} = \mathbf{U}^{\mathsf{T}} \mathbf{f}$$
 et $\mathbf{h} = \mathbf{T} \mathbf{f}$ alors

$$\sum_{i=1}^N \bar{g_i^2} \geq \sum_{i=1}^N \bar{h_i^2}$$

• Transformée optimale pour variables Gaussiennes

Transformations linéaires en 2D Bilan de la TKL

Compression

F. Dufau:

Généralité:

Quantif

Méthodes prédictives

JPE(

Avantages	Inconvénients
Décorrélation	Dépendante des données
Concentration des énergies	Complexité élevée
Optimale dans le cas gaussien	Difficulté de l'estimation

Images naturelles : non stationnaires La TKL est rarement utilisée dans la compression d'image, excepté des cas particuliers

Transformations linéaires en 2D

Transformées basées sur la décomposition fréquentielle

Compression

F. Dufau

Généralité:

Quantif.

prédictive

Transformations plus simples

• Asymptotiquement équivalentes $(N, M \to \infty)$

TFD

$$t(k,\ell,n,m) = \frac{1}{\sqrt{NM}} \exp\left[-i2\pi\left(\frac{(n-1)(k-1)}{N} + \frac{(m-1)(\ell-1)}{M}\right)\right]$$

TCD

$$t(k,\ell,n,m) = \frac{c_k c_\ell}{\sqrt{N M}} \cos\left(\pi \frac{(2n-1)(k-1)}{2N}\right) \cos\left(\pi \frac{(2m-1)(\ell-1)}{2M}\right)$$
$$c_k = \begin{cases} 1 & \text{si } k = 1\\ \sqrt{2} & \text{sinon} \end{cases}$$

Transformations linéaires en 2D

Transformées basées sur la décomposition fréquentielle

Compression

F. Dufau

Généralité

Quanti

Méthodes prédictives

JPE(

TCD et TFD

- caractéristiques communes
 - séparables : $t(k, \ell, n, m) = t_1(k, n) t_2(\ell, m)$
 - algorithmes de calcul rapides
 - interprétations fréquentielles

k: indice de fréquence verticale

 ℓ : indice de fréquence horizontale

- spécificités de la TCD
 - réelle
 - meilleure concentration de l'information que la TFD
- existence d'autres transformations plus simples mais moins efficaces

Compression

F. Dufaux

Généralités

Méthodes prédictives

IPEG

DCT		
Coeff	% Energy	
1	74.61	
2	24.98	
3	0.05	
4	0.30	
5	0.00	
6	0.04	
7	0.00	
8	0.01	
9	0.00	
10	0.00	
11	0.00	
12	0.00	
13	0.00	
14	0.00	
15	0.00	
16	0.00	

DFT	
Coeff	% Energy
1	74.61
2	7.86
3	2.04
4	0.97
5	0.60
6	0.43
7	0.35
8	0.31
9	0.30
10	0.31
11	0.35
12	0.43
13	0.60
14	0.97
15	2.04
16	7.86

Exemples de TCD Fréquences spatiales

Compression

F. Dufau

Généralité

Quantif.

Méthodes

TCD par blocs

Compression

F. Dufaux

Généralités

Ouantif

Méthodes

IDEC

• image non stationnaire et de taille élevée \Rightarrow découpage en $I \times J$ blocs rectangulaires $(\mathcal{B}_{i,j})_{0 < i < I, 0 < j < J}$, de taille $K \times L$ (K = L = 8)

$$N = I K$$
 $M = J L$

Allocation des ressource pour les coefficients TCD

Compression

F. Dufaux

Généralités

Méthodes prédictives On applique à chaque élément (k,ℓ) du bloc $\mathcal{B}_{i,j}$ un quantificateur $\mathcal{Q}_{k,l}$ de Lloyd-Max ayant $b_{k,\ell}$ bits $((k,\ell)=(1,1) \to \text{loi uniforme}, (k,\ell) \neq (1,1) \to \text{loi de Laplace})$

problème : trouver $\mathbf{b} = (b_{k,\ell})_{1 \leq k \leq K, 1 \leq \ell \leq L}$ minimisant

$$\mathcal{D}(\mathbf{b}) = \frac{1}{KL} \sum_{k=1}^{K} \sum_{\ell=1}^{L} \mathrm{E}\{(g_{i,j}(k,\ell) - \widetilde{g}_{i,j}(k,\ell))^2\}$$

sous les contraintes $\frac{1}{\mathcal{K}\,L}\sum_{k=1}^{\mathcal{K}}\sum_{\ell=1}^{L}b_{k,\ell}=ar{b}$ et $b_{k,\ell}\in\mathbb{N}$

en supposant que $\mathbb{E}\{(g_{i,i}(k,\ell)-\widetilde{g}_{i,i}(k,\ell))^2\} \propto \operatorname{Var}\{g_{i,i}(k,\ell)\}/2^{2b_{k,\ell}}$

Algorithme d'allocation de bits

Compression

F. Dufaux

Généralité

Méthodes prédictives

JPE

Donnez les ressources à ceux qui en ont besoin !

- **1** $b_{k,\ell} = 0$, $(k,\ell) \in \{0,\ldots,K-1\} \times \{0,\ldots,L-1\}$
- ② calculer (k_0, ℓ_0) minimisant $\mathcal{D}((b_{k,\ell} + \delta_{k-k_0,\ell-\ell_0})_{0 \le k < K, 0 \le \ell < L})$
- $b_{k_0,\ell_0} = b_{k_0,\ell_0} + 1$
- $\text{3 si } \sum_{k=0}^{K-1} \sum_{\ell=0}^{L-1} b_{k,\ell} < K L \bar{b}$ alors retour 2

Formule analytique en hypothèse de haute résolution

Plan

Compression

Generalite

Quanti

Méthodes prédictives

- Généralités sur la compression d'images
- Quantification
- Méthodes prédictives
- 4 Codage par Transformé
- JPEG

Standard de codage JPEG

Compression

F. Dufaux

Généralité

Méthodes

predictive

- Norme de compression d'images basée sur la TCD
- Spécifiée en 1991, adoptée en 1992
- Normalise l'algorithme et le format de decodage
- On va parler d'un codeur à niveaux de gris, produisant un train binaire conforme

Standard JPEG

Compression

F. Dufaux

Généralité:

0 ...

Méthodes

- ullet L'image est préalablement découpée en blocs 8×8
- On soustrait 128 aux valeurs de luminance
- Les blocs sont codés indépendamment

JPEG Découpage par blocs

Compression

F. Dufaux

Généralité:

Quantif

Méthodes prédictives

JPEG

Exemple de bloc 8x8

173	171	171	143	109	100	91	96
171	169	150	137	112	101	94	96
184	158	139	120	110	107	94	100
170	156	134	119	117	104	98	99
157	147	125	127	103	109	90	98
149	146	132	120	113	107	101	93
147	141	119	119	111	101	100	92
160	122	117	116	115	116	102	95

JPEG TCD 2d

Compression

F. Dufaux

Généralité

Méthodes prédictive

- La taille de la TCD est 8 × 8
- ullet Petits blocs o signal stationnaire
- ullet Grands blocs o exploit de la corrélation
- Taille choisie après des experiences
- Coefficients TCD : impact SVH

JPEG TCD

Compression

F. Dufau

Généralités

Méthodes

prédictives JPEG

JPE

Coefficients TCD du bloc considerée

985.3	186.2	34.1	11.6	7.3	1.6	4.9	-8.2
40.3	47.8	5.7	-26.0	-5.3	-3.5	4.0	-1.0
6.3	4.0	-9.3	-6.7	-1.2	8.1	3.4	4.1
-0.0	4.9	-13.3	-20.8	-10.4	-1.0	-4.5	-5.1
2.1	-1.3	-1.6	0.6	3.6	3.3	8.1	-1.7
1.3	3.7	2.4	-2.7	-2.2	-3.0	-4.1	7.8
5.1	0.4	3.1	4.8	-1.4	2.5	9.8	5.3
-5.6	1.6	4.4	0.1	3.3	2.3	4.3	-8.4

JPEG TCD

Compression

F. Dufau

Généralités

Quantif.

Méthodes prédictives

JPEG

Ecart-type des coefficients TCD d'une image naturelle

396.64	100.99	49.26	31.15	19.74	14.57	8.76	7.33
100.23	55.78	37.40	24.77	16.44	11.70	8.44	6.25
49.42	36.39	28.01	20.40	14.64	10.46	7.64	5.88
30.82	24.05	19.73	15.47	11.99	8.88	6.83	5.45
21.09	16.79	14.79	11.54	9.19	7.30	5.90	4.68
15.32	11.91	10.31	8.71	7.15	5.78	4.61	3.91
11.22	8.58	7.66	6.78	5.69	4.64	3.82	3.24
8.21	6.65	5.93	5.52	4.45	3.75	3.15	2.80

JPEG Quantification et allocation de débit

Compression

F. Dufaux

Généralité

Quantif.

Méthodes prédictives

JPEG

Quantification uniforme à zone morte

$$\bullet \ \widetilde{c}_{i,j} = \left\lfloor \frac{c_{i,j}}{q_{i,j}} \right\rfloor$$

- Le compromis débit distorsion est complètement géré par le tableau de quantification *q*
- Le standard ne spécifie pas q, qui doit être transmis
- Facteur de qualité Q

JPEG Quantification et allocation de débit

Compression

F. Dufaux

Généralité:

0 ...

Méthodes

JPEG

Exemple de table de quantification

**	16	11	10	16	24	40	51	61
	12	12	14	19	26	58	60	55
	14	13	16	24	40	57	69	56
	14	17	22	29	51	87	81	61
$q^* =$	18	22	37	56	68	109	103	77
	24	35	55	64	81	104	111	90
	49	63	78	87	101	121	120	100
	72	92	95	98	112	100	103	99

JPEG Facteur de qualité

Compression

F. Dufau

Généralités

Quantif.

Méthodes prédictives

JPEG

Outil non normatif

- "Facteur de qualité" Q variable entre 1 et 100
- Definit un facteur d'echelle S_F pour la matrice de quantification

$$S_{F} = egin{cases} rac{5000}{Q} & 1 \leq Q \leq 50 & rac{5000}{600} \ 200 - 2Q & 50 < Q \leq 99 & rac{500}{500} \ 1 & Q = 100 & rac{5000}{500} \end{cases}$$

$$q \leftarrow \frac{S_F q^* - 50}{100}$$

JPEG Quantification et allocation de débit

Compression

F. Dufaux

Généralité

Quant

Méthodes prédictives

JPEG

Coefficients quantifiés avec la table précédente

-1			-	-	-	-	-	
	61	16	3	0	0	0	0	0
	3	3	0	-1	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

JPEG Quantification

Compression

F. Dufau

Généralité

Quantif.

Méthodes

JPEG Codage sans perte

Compression

F. Dufaux

Généralité

Quantif

Méthodes prédictives

JPEG

• Zig-zag scan : concentre les coefficients nuls à la fin du balayage

JPEG Codage sans perte

Compression

F. Dufaux

Généralité

Quantif

Méthodes

- Coefficent DC : codage predictif + Huffman
- Coefficients AC : codage "run-lenght" + Huffman

```
coeff \neq 0 n. de 0 coeff \neq 0 n. de 0 ... EOB ...
```


JPEG Codage de un bloc

Compression

F. Dufau:

Généralité

0 ...

Méthodes

JPEG

Coefficients quantifiés et codés

61	16	თ	0	0	0	0	0
3	3	0	-1	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

$$61-dc_{k-1}$$
 | 0,16 | 0,3 | 1,3 | 0,3 | 7,-1 | EOB

Compression

F. Dufau

Généralité

Méthodes

Compression

F. Dufau

Généralité

0 ...

Méthodes

Compression

F. Dufau

Généralité

Méthodes

Compression

F. Dufau

Généralité

Méthodes

Compression

F. Dufau

Généralité

Quantif

Méthodes

Compression

F. Dufau

Généralité

Méthodes

Conclusion

Compression

F. Dufaux

Généralité

Ouantif

Méthodes

JPEG

Méthode assez efficace et bien maîtrisée (JPEG) MAIS effets de bloc