On the entropy of partitions in product MV algebras

J. Petrovičová

Abstract Generalizing the entropy of fuzzy partitions, the where entropy of a partition in recently introduced product MV algebra has been studied. The least common refinement of $m(f) = \int f dP$. two partitions is defined and the algebraic properties of the entropies and conditional entropies are examined.

Key words Product MV algebra, entropy of a partition

1 Introduction

If (Ω, S, P) is a probability space, then a finite measurable partition ξ is a finite family of non-empty disjoint measurable sets covering Ω :

$$\xi = \{A_1, \ldots, A_n\}, \quad \mathop{\cup}\limits_{i=1}^n A_i = \Omega, \ A_i \cap A_j = \varnothing$$
 $(i, j = 1, \ldots, n; \ i \neq j)$.

The entropy $H(\xi)$ of ξ is defined by the formula

$$H(\xi) = -\sum_{i=1}^n \varphi(P(A_i)) ,$$

$$\varphi(x) = \begin{cases} x \log(x), & \text{if } x > 0, \\ 0, & \text{if } x = 0 \end{cases}.$$

If $\xi = \{A_1, \dots, A_n\}$ and $\eta = \{B_1, \dots, B_k\}$ are two partitions, then the common refinement is defined by the formula

$$\xi \vee \eta = \{A_i \cap B_j : i = 1, \dots, n; \ j = 1, \dots, k\}$$
.

In [8] the fuzzy partition has been used instead of a partition, i.e. a family

$$\xi = \{f_1, \dots, f_n\}$$
 of functions $f_i : \Omega \to \langle 0, 1 \rangle$

such that

$$\sum_{i=1}^n f_i = 1_{\Omega} ,$$

(see also [2, 7, 9]. The entropy of the partition ξ is the

$$H(\xi) = -\sum_{i=1}^n \varphi(m(f_i)) ,$$

J. Petrovičová

Department of Medical Informatics, Faculty of Medicine, P.J. Safárik University; Trieda SNP 1, 040 66 Košice, Slovakia E-mail: jpetrov@central.medic.upjs.sk

This research has been supported by grant VEGA 2/6087/99.

$$m(f) = \int_{\Omega} f \, \mathrm{d}P$$

If $\xi = \{f_1, \dots, f_n\}$ and $\eta = \{g_1, \dots, g_k\}$ are two fuzzy partitions, then the common refinement is defined by the formula

$$\xi \vee \eta = \{f_i \cdot g_j : i = 1, \dots, n; j = 1, \dots, k\}$$
.

In this paper we shall consider the entropy of a partition in an arbitrary product MV algebra. The product is necessary for the definition of the common refinement of two

A prototype of an MV algebra is a set F of fuzzy sets

$$f_i:\Omega\to\langle 0,1\rangle$$

closed under the two binary operations \oplus and \odot and a binary operation * defined by

$$f \oplus g = \min(f + g, 1_{\Omega}),$$

 $f \odot g = \max(f + g - 1_{\Omega}, 0_{\Omega}),$
 $f^* = 1_{\Omega} - f$

A motivating example for \oplus is the composition $f \oplus g$ of two grey pictures

$$f: \Omega \to \langle 0, 1 \rangle$$
 and $g: \Omega \to \langle 0, 1 \rangle$.

Evidently

$$1_{\Omega} = f \oplus f^* \in F$$
 and $0_{\Omega} = 1_{\Omega}^* \in F$.

Generally, an MV algebra is an algebraic system

$$(M, \oplus, \odot, *, 1, 0)$$
,

where M is a set, \oplus and \odot are binary operations, * is a unary operation, 1 and 0 are fixed elements, satisfying some properties:

- (i) $a \oplus b = b \oplus a$,
- (ii) $a \oplus (b \oplus c) = (a \oplus b) \oplus c$,
- (iii) $a \oplus 0 = a$,
- (iv) $a \oplus 1 = 1$,
- (v) $(a^*)^* = a,$
- (vi) $0^* = 1$,
- (vii) $a \oplus a^* = 1$,
- (viii) $(a^* \oplus b)^* \oplus b = (a \oplus b^*)^* \oplus a$,
- (ix) $a \odot b = (a^* \oplus b^*)^*$.

Of course, by the Mundici theorem [11] any MV algebra can be represented by a commutative *l*-group. Recall that a commutative *l*-group is an algebraic system $(G, +, \leq)$,

where (G, +) is a commutative group, (G, \leq) is a partially ordered set being a lattice and $a \le b$ implies $a + c \le b + c$. Let $(G, +, \leq)$ be a commutative *l*-group, 0 be a neutral element of (G, +) and $u \in G$, u > 0. On the interval (0, u)we define the following operations:

$$a \oplus b = (a+b) \wedge u,$$

 $a \odot b = (a+b-u) \vee 0,$
 $a^* = u - a.$

Then

$$MG = (\langle 0, u \rangle, \oplus, \odot, *, u, 0)$$

becomes an MV algebra. The Mundici theorem states that to any MV algebra there exists a commutative l-group G with a strong unit u (i.e., to any $a \in G$ there exists $n \in \mathbb{N}$ such that $a \leq nu$) such that

 $M \simeq MG$.

Definition 1 A product MV algebra is an algebraic system $(M, \oplus, \odot, \cdot, *, u, 0)$, where $(M, \oplus, \odot, *, u, 0)$ is an MV algebra and · is a binary operation satisfying the following conditions:

- (i) $u \cdot u = u$,
- (ii) operation · is commutative and associative,
- (iii) if $a + b \le u$, then $c \cdot (a \oplus b) = c \cdot a \oplus c \cdot b$ for any
- (iv) if $a_n \setminus 0$, $b_n \setminus 0$, then $a_n \cdot b_n \setminus 0$.

We will use only (i), (ii), (iii). (See [1, 13])

Entropy of partitions

We shall consider a product MV algebra $(M, \oplus, \odot, \cdot, *, u, 0)$. Moreover, we shall consider a finitely additive state

$$m: M \rightarrow \langle 0, 1 \rangle$$

satisfying the following conditions:

- 1. m(u) = 1,
- 2. $m(a \cdot u) = m(a)$ for any $a \in M$, 3. if $a = \sum_{i=1}^{n} a_i$ then $m(a) = \sum_{i=1}^{n} m(a_i)$.

Definition 2 A partition in a product MV algebra is a set $A = \{a_1, \ldots, a_n\}$, where $\sum_{i=1}^n a_i = u$. If $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_k\}$ are partitions, then the common refinement is defined by the formula:

$$A \vee B = \{a_i \cdot b_i : i = 1, \dots, n; j = 1, \dots, k\}$$
.

Proposition 1 If $A = \{a_1, ..., a_n\}$ and $B = \{b_1, ..., b_k\}$ are partitions, then $A \vee B$ is a partition too.

Proof. Evidently

$$\sum_{i=1}^{n} \sum_{j=1}^{k} a_i \cdot b_j = \sum_{i=1}^{n} a_i \cdot \sum_{j=1}^{k} b_j = \sum_{i=1}^{n} a_i \cdot u = u.$$

Definition 3 If $A = \{a_1, \dots, a_n\}$ is a partition, then its entropy H(A) is defined by

$$H(A) = -\sum_{i=1}^n \varphi(m(a_i)) .$$

Proposition 2 If $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_k\}$ are fuzzy partitions, then

$$H(A \vee B) \leq H(A) + H(B)$$
.

Proof. Put

$$\alpha_i = m(b_i), \quad x_i = \frac{m(a_j \cdot b_i)}{m(b_i)}, \quad (m(b_i) > 0, \ j \text{ is fixed}).$$

$$\sum_{i=1}^{k} \alpha_i = \sum_{i=1}^{k} m(b_i) = m\left(\sum_{i=1}^{k} b_i\right) = m(u) = 1$$

and φ is convex we have

$$\varphi(m(a_j)) = \varphi\left(m\left(\sum_{i=1}^k b_i\right)\right) \\
= \varphi\left(m\left(\sum_{i=1}^k a_j \cdot b_i\right)\right) \\
= \varphi\left(\sum_{i=1}^k m(a_j \cdot b_i)\right) \\
= \varphi\left(\sum_{i=1}^k m(b_i) \cdot \frac{m(a_j \cdot b_i)}{m(b_i)}\right) = \varphi\left(\sum_{i=1}^k \alpha_i \cdot x_i\right) \\
\leq \sum_{i=1}^k \alpha_i \cdot \varphi(x_i) = \sum_{i=1}^k m(b_i) \cdot \varphi(x_i) .$$

Therefore

$$\begin{split} H(A) &= -\sum_{j} \varphi(m(a_{j})) \\ &\geq -\sum_{i} \sum_{j} m(b_{i}) \cdot \varphi(x_{i}) \\ &= -\sum_{i} \sum_{j} \varphi(m(a_{j} \cdot b_{i})) - \left(-\sum_{i} \varphi(m(b_{i}))\right) \\ &= H(A \vee B) - H(B) . \end{split}$$

Conditional entropy

Definition 4 If $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_k\}$ are two partitions, then we define

 $B \geq A$ (B is a refinement of A),

if there exists a partition $\{I(1), \ldots, I(n)\}$ of the set $\{1,\ldots,k\}$ such that

$$m(a_i) = m \left(\sum_{j \in I(i)} b_j \right)$$
 for every $i = 1, \ldots, n$.

Definition 5 If $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_k\}$ are two partitions, then we define the conditional entropy by the formula

$$H(A|B) = -\sum_{i=1}^n \sum_{j=1}^k m(b_j) \cdot \varphi\left(\frac{m(a_i \cdot b_j)}{m(b_j)}\right) .$$

Proposition 3 Let A, B, C be partitions, C is a refinement of *B*. Then it holds:

$$H(A|C) \leq H(A|B)$$

Proof. Let
$$A = \{a_1, \ldots, a_n\}$$
, $B = \{b_1, \ldots, b_r\}$ and $C = \{c_1, \ldots, c_p\}$, $b_j = \sum_{k \in I(i)} c_k$ where $\{I(1), \ldots, I(k)\}$ is the partition

$$\alpha_k = \frac{m(c_k)}{m(b_j)}, \quad j \text{ is fixed }.$$

Then

$$\sum_{k\in I(j)} lpha_k = rac{1}{m(b_j)} \cdot m\left(\sum_{k\in I(j)} c_k
ight) = 1 \;\;,$$

hence by the convexity of φ

$$\sum_k \alpha_k \cdot \varphi(x_k) \ge \varphi\left(\sum_k \alpha_k \cdot x_k\right)$$
 for every x_k .

Therefore

$$\begin{split} H(A|C) &= -\sum_{i} \sum_{j} m(b_{j}) \sum_{k \in I(j)} \frac{m(c_{k})}{m(b_{j})} \varphi\left(\frac{m(a_{i} \cdot c_{k})}{m(c_{k})}\right) \\ &\leq -\sum_{i} \sum_{j} m(b_{j}) \cdot \varphi\left(\sum_{k \in I(j)} \frac{m(a_{i} \cdot c_{k})}{m(b_{j})}\right) \\ &= -\sum_{i} \sum_{j} m(b_{j}) \\ &\times \varphi\left(\frac{1}{m(b_{j})} \cdot m\left(a_{i} \cdot \sum_{k \in I(j)} c_{k}\right)\right) \\ &= H(A|B) . \end{split}$$

Proposition 4 For all fuzzy partitions A, B, C it holds: $H(B \vee C|A) = H(C|A \vee B) + H(B|A)$.

Proof. From the definitions we obtain:

$$H(B \lor C|A) = -\sum_{i} \sum_{j} \sum_{k} m(a_{i})$$
$$\cdot \varphi\left(\frac{m(b_{j} \cdot c_{k} \cdot a_{i}) \cdot m(b_{j} \cdot a_{i})}{m(a_{i}) \cdot m(b_{i} \cdot a_{i})}\right)$$

$$= -\sum_{i} \sum_{j} \sum_{k} m(a_{i}) \cdot \frac{m(b_{j} \cdot c_{k} \cdot a_{i})}{m(a_{i})}$$

$$\times \log \frac{m(b_{j} \cdot c_{k} \cdot a_{i})}{m(a_{i})} \cdot \frac{m(b_{j} \cdot a_{i})}{m(b_{j} \cdot a_{i})}$$

$$= -\sum_{i} \sum_{j} \sum_{k} m(b_{j} \cdot c_{k} \cdot a_{i})$$

$$\times \left(\log \frac{m(b_{j} \cdot c_{k} \cdot a_{i})}{m(b_{j} \cdot a_{i})} + \log \frac{m(a_{i} \cdot b_{j})}{m(a_{i})}\right)$$

$$= H(C|B \vee A) \oplus \sum_{i} \sum_{j} m\left(\sum_{k} b_{j} \cdot c_{k} \cdot a_{i}\right)$$

$$\times \log \frac{m(a_{i} \cdot b_{j})}{m(a_{i})}$$

$$= H(C|B \vee A) \oplus \sum_{i} \sum_{j} m(a_{i} \cdot b_{j}) \cdot \log \frac{m(a_{i} \cdot b_{j})}{m(a_{i})}$$

$$= H(C|B \vee A) + H(B|A) ,$$
because $\sum_{k} c_{k} = u$. Thus

$$H(B \vee C|A) = H(C|A \vee B) + H(B|A) .$$

Corollary 5 For arbitrary fuzzy partitions B, C it holds:

$$H(B \vee C) = H(B) + H(C|B) .$$

Proof. It is sufficient to put $A = \{u\}$ in Proposition 4 and by the relation

$$H(B \vee C|A) = H(C|A \vee B) + H(B|A) ,$$

we get

$$H(B \vee C) = H(C|B) + H(B) .$$

Proposition 6 For arbitrary fuzzy partitions B, C it holds: $H(B \vee C) \geq H(B)$.

Proof. By Corollary 5 $H(B \vee C) = H(B) + H(C|B) > H(B) .$

Proposition 7 For arbitrary fuzzy partitions A, B, C it holds:

$$H(B \vee C|A) \leq H(B|A) + H(C|A)$$
.

Proof. Since $A \vee B$ is a refinement of the partition A, according to the Proposition 3 it holds:

$$H(C|A \vee B) \leq H(C|A)$$
.

By the Proposition 4:

$$H(B \lor C|A) = H(C|A \lor B) + H(B|A)$$

$$\leq H(C|A) + H(B|A) .$$

References

- Chang CC (1958) Algebraic analysis of many-valued logics, Trans Amer Math Soc 88: 467–490
- 2. Dumitrescu D (1993) Entropy of a fuzzy process, Fuzzy Sets and Systems 55: 169–177
- 3. Dvurečenskij A, Di Nola A Product MV-algebras (to appear)
- 4. Dvurečenskij A, Riečan B (1999) Weakly divisible MV-algebras and product, J Math Anal Appl 234: 208-222
- 5. **Jakubík** J On the product MV-algebras, Soft Computing (to appear)
- Kacián A (1998) Construction of joint observable for l-ring valued measures, Busefal 75: 97–100
- Kuriyama K (1983) Entropy of a finite partition of fuzzy sets,
 J Math Anal Appl 94: 38–43

- 8. Maličký P, Riečan B (1987) On the entropy of dynamical systems, In: Proc Conf Ergodic Theory and Related Topics ll (Georgenthal, 1986) Teubner Leipzig, pp 135–138
- 9. Markechová D (1993) Entropy of complete fuzzy partitions, Math Slovaca 43: 1-10
- 10. Markechová D The Kolmogorov-Sinaj theorem on generators for fuzzy dynamical systems, Demonstr Math (to appear)
- 11. Mundici D (1986) Interpretation of AFC*-algebras in Lukasiewicz sentential calculus, J Funct Anal 65: 15-63
- 12. Riečan B On the product MV algebras, Tatra Mt Math Publ (to appear)
- 13. Riecan B, Neubrunn T (1997) Integral, Measure, and Ordering, Kluwer, Dordrecht, and Ister Science, Bratislava