Pour signifier qu'un processus attend d'acquérir une ressource, on dessine ceci :

Pour signifier qu'un processus détient d'une ressource, on dessine ceci :

À chaque instant d'un scénario donné comportant des processus et des ressources, on peut donc dessiner le **graphe d'allocation des ressources**. Une situation d'**interblocage** survient si, à un instant donné, le graphe comporte un **circuit** (suite d'arcs consécutifs dont les deux sommets extrémités sont identiques), tel l'exemple suivant :

Le circuit R1-P3-R3-P4-R2-P2-R1 montre le phénomène d'attente circulaire.

Exercice 1

Y a-t-il interblocage? Si oui préciser le circuit.

Exercice 2

Y a-t-il interblocage? Si oui préciser le circuit.

Exercice 3

Tracer le graphe d'allocation des ressources correspondant :

Processus	Ressources demandées	Ressources détenues
А	2	1
В	3	
С	2	
D	2 et 3	4
E	5	3
F	2	6
G	4	5

Y a-t-il interblocage? Si oui, préciser le cycle.

Exercice 4

On considère 3 processus P1, P2, P3 et 3 ressources R1, R2 et R3. En traçant étape par étape le graphe d'allocation des ressources, expliquer pourquoi il y a interblocage.

- 1. P2 demande R1
- 2. P3 demande R2
- 3. P1 demande R1
- 4. P3 demande R3
- 5. P2 libère R1
- 6. P1 demande R2
- 7. P3 demande R1