Relational Algebra: Derived Operators

Computing on Data

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Kevin C.C. Chang, Professor Computer Science @ Illinois

Learning Objectives

By the end of this video, you will be able to:

- Identify the derived operators of relational algebra.
- Perform computation on relations using basic/derived operators.

Derived Operations

- Some operations are very often used.
- But they can be expressed in terms of the basic operations.
- We thus define "shorthand" for these operations.
- We will introduce:
 - Set Intersection $R_1 \cap R_2$
 - Theta Join $R_1 \bowtie_{\theta} R_2$
 - Natural Join $R_1 \bowtie R_2$

Set Intersection

Intersection of two relations

- Notation: $R_1 \cap R_2$
- Input: R_1 and R_2 , which have the same schema.
- Output:
 - A relation with all tuples common in R_1 and R_2
 - Schema: same as R_1 and R_2

id	number	term	grade
1	411	Fall 2017	A+
4	411	Fall 2017	В
1	426	Fall 2017	Α
2	426	Spring 2017	A-
2	225	Spring 2017	В

Which students take both 411 and 426?

Example Enrolls relation

•
$$\pi_{id}(\sigma_{number="411"}Enrolls) \cap \pi_{id}(\sigma_{number="426"}Enrolls)$$

= $\{(1), (4)\} \cap \{(1), (2)\} = \{(1)\}.$

Intersection: Derivable from the Basics

• Intersection can be derived from Difference.

•
$$R_1 \cap R_2 = R_1 - (R_1 - R_2)$$

Intersection of two relations

Intersection Examples

Q1: Find beers that are drunk and favorited by some drinkers.

• Q2: Find "really-happy drinkers" who have bars on the same streets they live and the bars sell beers that they drink.

Theta Join

- Notation: $R_1 \bowtie_{\theta} R_2$, where θ is a condition.
- Input: $R_1(A_1, ..., A_n)$, $R_2(B_1, ..., B_m)$
- Parameters: θ is a condition over R_1 and/or R_2 's attributes.
- Output:
 - A relation of the *product* of R_1 and R_2 *filtered* by condition θ .
 - I.e., can be expressed by $\sigma_{\theta}(R_1 \times R_2)$.
 - Schema: $(A_1, ..., A_n, B_1, ..., B_m)$
 - Assume no attribute name clash. Or, use R_1 . A vs. R_2 . A to distinguish.
- What courses did Bugs Bunny take?
 - $\pi_{\text{number}} \sigma_{\text{S.id}=\text{E.id AND name}=\text{"Bugs Bunny"}}(\text{Students} \times \text{Enrolls})$
 - π_{number} (Students $\bowtie_{\text{S.id}=\text{E.id}}$ AND name="Bugs Bunny" Enrolls)

Theta-Join Examples

• Q1: Find "really-happy drinkers" who have bars on the same streets they live and the bars sell beer that they drink. Now use theta-joins instead of Cartesian products.

Natural Join

• Notation: $R_1 \bowtie R_2$

• Input: $R_1(A_1, ..., A_n)$, $R_2(B_1, ..., B_m)$

• Output:

id	na	ame	major	birthday	1		id	nur	nber	te	erm	grade
1	Bu	gs Bunny	CS	2004-11-06			1	411	411		II 2017	A+
2	Donald Duck ECE Peter Pan SS		< ECE	1997-02-01	_ X		4	411	F		II 2017	В
3			SS	1998-10-01			1	426		Fall 2017		Α
4	Mi	ckey Mou	se Music	1995-04-01				1		2017	,,	
		S.id	name	major	birthday	E.id	num	ber	term	1	grade	
		1	Bugs Bunny	CS	2014-11-06	1	411		Fall 201	L7	A+	
		1	Bugs Bunny	CS	2014-11-06	4	411		Fall 201	L7	В	
		1	Bugs Bunny	CS	2014-11-06	1	426		Fall 201	L7	Α	
		2	Donald Duck	ECE	1997-02-01	1	411		Fall 201	١7	A+	
		2	Donald Duck	ECE	1997-02-01	4	411		Fall 201	١7	В	
		2	Donald Duck	ECE	1997-02-01	1	426		Fall 201	L7	Α	

Cartesian product of two tables

- A relation combining all pairs of tuples in R_1 and R_2 that agree on their "common" attributes $\{A_1, ..., A_n\} \cap \{B_1, ..., B_m\}$, the *join attributes*.
- I.e., can be expressed by $\sigma_{\theta}(R_1 \times R_2)$.
- Schema: $\{A_1, \dots, A_n\} \cup \{B_1, \dots, B_m\}$, i.e., merging the two schemas and removing duplicates.
- What courses did Bugs Bunny take?
 - π_{number} (Students $\bowtie_{\text{S.id}=\text{E.id}}$ AND $_{\text{name}=\text{"Bugs}}$ Bunny" Enrolls)
 - π_{number} ($\sigma_{\text{names}=\text{"Bugs Bunny"}}$ Students \bowtie Enrolls)

Natural-Join Examples

• Q1: Find "really-happy drinkers" who have bars on the same streets they live and the bars sell beer that they drink. Now use natural joins if possible.

Joins are expensive. One major advantage that document-model databases claim is -- they do not need joins. Can you explain why?


```
"_id": "<0bjectId1>",
    "name": "Samuel Adams",
    "brewer": {
        "name": "Boston Beer Company",
        "location": "Boston, Massachusetts"
    },
    "alcohol": 4.9,
    "type": "larger",
    "year introduced": 1984,
    "variants": [
        "<0bjectId2>",
        "<0bjectId3>"
]
```

Document model data