Desenvolvimento de software

Duarte T. Patrício

(Relatório de Actividade)

Resumo— Os sistemas geográficos são de extrema importância nos dias de hoje, onde as tecnologias de informação estão ao alcance do mundo. O desenvolvimento de ferramentas que suportem Sistema de Informação Georgráfica (SIG) é imperativo. O AutoCAD Map 3D e as tecnologias subjacentes abrem portas a este mundo. Assim, pensou-se desenvolver um plugin que ajude a fazer o planeamento de infraestruturas.

Palavras Chave—Oracle, SQL Server, AutoCAD, .NET.

(15to o'un Marifeto de sú tuck e (100) un Mesemo de conterido de documento.

1 Introdução

AutoCAD é uma das mais usadas ferramentas na engenharia. Esta ferramenta dá suporte a diversas áreas como a Engenharia Civil, Engenharia Mecânica, Engenharia Electrotécnica, etc. O suporte dado a estas áreas pode variar de várias formas, mas há áreas que não são de engenharia que também podem beneficiar com esta ferramenta. As formas de como o AutoCAD pode ser usado variam entre desenho técnico, desenho arquitectural (por exemplo, uma fachada de um edifício) e planeamento geográfico.

O planeamento geográfico no AutoCAD assenta na variante AutoCAD Map 3D. Este artigo fala sobre um projecto desenvolvido sobre esse software. Primeiro, vai-se descrever o conceito base do projecto. Segundo, a implementação usada. Na terceira secção vai-se falar do trabalho que ainda há para fazer, e por fim conclui-se o trabalho efectuado. É importante notar que não se pode falar em muitos detalhes na implementação nem quem é a empresa cliente.

 Duarte T. Patrício, nº. 62564,
 E-mail: duarte.carvalho@tecnico.ulisboa.pt, é aluno do curso de Engenharia Informática e de Computadores,
 Instituto Superior Técnico, Universidade de Lisboa.

Manuscrito entregue em 30 de Maio de 2014.

2 CONCEITO DO PROJECTO

Para qualquer infraestrutura pública, ou até mesmo privada, é necessário que esteja inserida dentro de uns certos padrões de planeamento geográfico. Dito isto, na era da tecnologia é imperativo que existam ferramentas que facilitem este trabalho, cada vez mais eficientes e cada vez mais poderosas. A ferramenta base usada foi o AutoCAD Map 3D [1], mas no entanto não é suficient<u>e. I</u>sto porque o AutoCAD Map 3D é um software dinâmico que permite que sejam programadas bibliotecas do sistema operativo [2], que no caso deste projecto foi o Microsoft Windows [3] na forma de ficheiro .dll. Mas, utilizar uma biblioteca não é suficiente. É necessário mapear os dados obtidos através da aplicação, que neste caso são dados geoespaciais, numa base de dados específica, de forma a que seja possível referenciar determinados mapas a estes dados.

Por fim, o AutoCAD Map 3D tem de ter mecanismos de interface de utilizador para que seja possível seleccionar uma determinada área do mapa geoespacial e obter, ou atribuir, mapas específicos e detalhados da região.

O projecto consiste em pegar num sistema de conversão de dados geoespaciais, que usa uma base de dados Oracle [5], já desenvolvido pela mesma empresa, alterar para passar a usar uma base de dados SQL Server [4] e refactorizar algum código que possa ser melhorado. Portanto, o processo todo de

(1.0) Excelent	ACTIVITY					DOCUMENT						
(0.8) Very Good	Objectives	Options	Execution	S+C	SCORE	Structure	Ortogr.	Gramm.	Format	Title	Filename	SCORE
(0.6) Good	x2	x1	x4	x1	OOONE	x0.25	x0.25	x0,.25	x0.25	x0.5	x0.5	OCOME
(0.4) Fair	10	16	24	126	58	0.2	025	025	112	05	115	192
(0.2) Weak	7.2	0.0	٤.٦	0.6	J . U	0	0,20)	0.2)	<i>U. J</i>	<i>U.</i> –	1.12

migração envolve a programação de novos métodos na biblioteca que comunica com o AutoCAD Map 3D, na criação de *schemas* próprios e na programação de uma interface para a biblioteca que se desenvolveu.

3 IMPLEMENTAÇÃO

Nesta secção falar-se-á dos métodos de implementação do projecto para cada componente, em que consiste e o que já foi feito ou que ainda falta completar.

3.1 Biblioteca

O AutoCAD permite extender a funcionalidade existente, assim como automatizar tarefas, através da programação de *plugins*. Estes *plugins* são programados como bibliotecas do sistema operativo que para o caso deste projecto, em Microsoft Windows, foi usar como API [6] o AutoCAD .NET API. Esta API está disponível dentro de outro pacote, que também é necessário ao desenvolvimento do plugin, o ObjectARX SDK [7]. Este SDK oferece APIs para um certo número de linguagens orientadas a objectos (C++, C# e .NET).

Para programar o .dll usando a API na sua versão em .NET foi usado o Visual Studio, porque oferece um bom, e consistente, ambiente de desenvolvimento para a linguagem. Os tutorials oficiais da Autodesk [8] também usam o Visual Studio como ambiente de desenvolvimento primário.

A biblioteca tinha já algumas funções implementadas, que puderam ficar na mesma. No entanto, algumas chamadas tiveram de ser completamente mudadas i.e. as que comunicam com a base de dados. Antes de se proceder a essa alteração foi preciso estudar as classes do *System.Data.SqlClient namespace* [9]. Por fim, alguns métodos que implementam a funcionalidade da interface estão a ser refactorizados, tanto para melhor performance como para melhor leitura.

3.2 Base de Dados

Para se poder referenciar mapas às regiões da grelha seleccionadas no AutoCAD Map 3D é necessário um sistema armazenamento persistente. Neste sistema, vai-se projectar uma estrutura que ligue estes dois elementos, região → mapa. Com tabelas de base de dados consegue-se criar esta estrutura e, ainda, escrever políticas de acesso para cada utilizador.

O grande foco do projecto é mudar a base de dados que dá suporte ao sistema de um baseada em Oracle DB para um em SQL Server. No âmbito disto as *queries* à base de dados e os *schemas* tiveram de ser completamente alterados. Mas, primeiro teve-se de estudar as diferenças entre as bases de dados Oracle e SQL Server.

Primeiro, estudou-se as *queries* em SQL Server, comparando com as de Oracle. As *queries* mais importantes a estudar foram a criação de tabelas e os *triggers*. Tanto para criar tabelas como para *triggers*, concluiu-se que as bases de dados SQL Server não permitem tanto controlo sobre os atributos físicos i.e. atributos específicos ao armazenamento, como o Oracle. Por exemplo, em SQL Server não existem parâmetros como o PCTFREE, PCTUSED e INITRANS. Então, foi necessário apagar alguns parâmetros na criação de tabelas e nos *triggers* não suportados pelo SQL Server. Por fim, muitos dos tipos de dados das colunas das tabelas são um pouco diferentes como exemplificado na tabela 1.

Antes das *queries* serem processadas os *schemas* também tiveram de ser mudados. Para facilitar a instalação e a configuração no cliente construíram-se *queries* próprias que criam os *schemas*, pois antes os *schemas* eram criados à mão. A criação dos *schemas* sofreu algumas alterações visto que a sintaxe é diferente.

Este Modelo está preparado para usar abreviaturas ou Acrónimos de forma correcta. Para os alunos do Instituto Superior Técnico (IST) torna-se fácil ao longo do texto efectuar referências à Faculdade bastando indicar a respectiva abreviatura. Como podem verificar, a primeira utilização descreveu por extenso o significado de IST, mas agora apenas aparece o acrónimo.

3.3 Interface

O AutoCAD oferece mecanismos para o programador escrever código que permite ao

Tabela 1
Tipos de dados Oracle vs SQL Server

SQL Server	Oracle
BIGINT	NUMBER(19)
BINARY	RAW
BIT	NUMBER(3)
CHAR	CHAR
FLOAT	FLOAT(49)
INTEGER	NUMBER(10)
SMALLINT	NUMBER(5)
TEXT	LONG
VARCHAR	VARCHAR2

utilizador usar o editor gráfico do AutoCAD. Este mecanismo manifesta-se na forma de um dialecto LISP próprio do AutoCAD chamado AutoLISP [10]. As interfaces dos plugins podem, portanto, ser programadas nesta linguagem e invocar métodos das bibliotecas que constituem o plugin.

À interface da versão do sistema anterior já estava implementada, e chamava os métodos correspondentes da biblioteca. No entanto, algumas novas funcionalidades do sistema deverão ser implementadas no futuro. Quando isso acontecer, a interface poderá sofrer algumas alterações. Por agora, foi apenas necessário mudar os nomes de alguns botões.

4 TRABALHO FUTURO

Como dito acima, ainda existe algum trabalho para fazer. Isso inclui, refactorizar algumas classes e métodos na biblioteca, implementar possíveis novas funcionalidades, pois sente-se que o sistema deve ficar mais consolidado, e corrigir todos os possíveis bugs. Também, a partir do princípio dos testes unitários será também necessário programar e incluí-los no pacote base de desenvolvimento.

5 CONCLUSÃO

Espera-se que o projecto, que ainda está em desenvolvimento, permita uma melhor gestão de determinados serviços. Com o acesso a diversas ferramentas de planeamento, uma empresa pode fazer juízos sobre diversos temas como locais de construção, estratégia de

telecomunicações, mapeamento de zonas de risco para incêndios, etc. Espera-se também que as futuras melhorias tornem este pacote de *software* mais rápido, tolerante a erros e modular.

AGRADECIMENTOS

Agradeço à Idomiz por me ter pedido o trabalho.

REFERÊNCIAS

- [1] AutoCAD Map 3D: http://www.autodesk.pt/products/autodesk-autocad-map-3d/overview
- [2] Library (computing): http://en.wikipedia.org/wiki/Library_(computing)
- [3] Microsoft Windows: http://windows.microsoft.com/pt-pt/windows/home
- [4] Microsoft SQL Server: www.microsoft.com/pt-br/server-cloud/products/sql-server/
- [5] Oracle Database: https://www.oracle.com/database
- 6] API: http://en.wikipedia.org/wiki/Application_programming_inter
- [7] Object ARX API: http://usa.autodesk.com/adsk/servlet/index?siteI
- [8] Autodesk, AutoCAD plugin tutorials: http://usa.autodesk.com/adsk/servlet/index?id=18162650&siteID=
- [9] System.Data.SqlClient namespace for .NET: http://msdn.microsoft.com/enus/library/system.data.sqlclient.aspx
- [10] AutoLISP Dev Guide: http://docs.autodesk.com/ACDMAC/2013/

O Fow or to downwho esté na devices da aplicaces em vez de estar na ACTIVIDADÉ to desembrant, eta par, Jaser, reparação, renum usen em, itc.

Nest tips de documents (Techico) a Conclusar cere cornecar com run Pesermo do assunto abardado e depois dere pealcar or resultados

APÊNDICE COMPROVATIVOS DE EXECUÇÃO

Certificado de execução assinado pelo sócio gerente.

DECLARAÇÃO

A Idomiz, informática, Lda, com sede em Rua da Saudade, 23, 3º Dto, 1100-582 Lisboa, com o número Identificação Fiscal 503243337, com o capital social de 5000,00 € (Cinco mil Euros), representada por Vasco Monteiro Pinto Patrício, na qualidade de sócio gerente, portador do CC 10989463, que tem plenos poderes para o acto, certifica que Duarte Tovar de Carvalho Patrício, com Bl nº 13569482, participou no desenvolvimento do projecto "Desenvolvimento de aplicação Cartografia.PT", como o objecto de efectuar a conversão de dados geoespaciais de cartografia de um sistema baseado em bases de dados Oracle para um sistema de dados baseado em SQL.

O projecto acima referido insere-se no âmbito da disciplina de Portfólio Pessoal IV.

Certifico ainda que a pessoa acima referida cumpriu o mínimo de horas requerido para a actividade (40 horas).

28 Maio 2014

Idomiz

