## **BRAC** University

## Department of Computer Science and Engineering



**Final Exam** Full Marks:  $15 \times 3 = 45$ 

Time: 1 hour 30 minutes Date: 7th May, 2024

Semester: Spring 2024 Course Code: CSE460 Course Title: VLSI Design

## Set A

| Student ID: | Name: | Section: |
|-------------|-------|----------|
|             |       | i        |

[Answer all questions. Each question carries equal marks.]

[After the exam, the question paper should be turned in along with the answer script.]



| Node | Switching probability |
|------|-----------------------|
| А    | 0.4                   |
| В    | 0.7                   |
| С    | 0.8                   |
| D    | 0.5                   |

| Gate | Switching<br>probability |
|------|--------------------------|
| AND  | $P_1P_2$                 |
| OR   | $1-(1-P_1)(1-P_2)$       |
| NOT  | 1-P                      |

| Node | Capacitance<br>(nF) |
|------|---------------------|
| Е    | 4                   |
| F    | 6                   |
| G    | 5                   |

6

3

6

Explanation of the second table: Say, an AND gate has two input nodes with switching probabilities of  $P_1$  and  $P_2$ . The switching probability of the output node will be  $P_1*P_2$ .

Now, if  $P_i$  is the switching probability of any node i, the activity factor of that node can be calculated using the following equation:

$$\alpha_i = P_i(1 - P_i)$$

For the nodes **E**, **F** and **G**:

- (a) Calculate the switching probabilities.
- (b) **Determine** the activity factors.
- (c) Calculate the switching power losses.

  3. (CO4) In the following figure, you can see the grids for Lee's Maze Algorithm.



metal © obstacle

- (a) Using the algorithm, find the shortest path from S to T1 and T2 allowing minimum bends. Answer this question on the next page of the question paper.
- (b) Show the graph representation of the connected gates ignoring the grids. (Convert gates to nodes).
- (c) **Compare** the initial cut cost with that of after the first iteration of the KL algorithm for partitioning. Assume initial Cut Sets: A (g1,g2) and B (g3,g4).

6

