Sistemas de Gestión

Pronósticos de Series Temporales

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2011

4

Pronósticos

Ejemplo tomado y adaptado de "Investigación de Operaciones – Algoritmos y Aplicaciones" de Wayne Winston. Pag. 1276

Mes	Ventas de Lowland Appliance Co.									
Mes	TV	Repro CD	Aire Acond							
1	30	40	13							
2	32	47	7							
3	30	50	23							
4	39	49	32							
5	33	56	58							
6	34	53	60							
7	34	55	90							
8	38	63	93							
9	36	68	63							
10	39	65	39							
11	30	72	37							
12	36	69	29							

Mes	Ventas de Lowland Appliance Co.								
ivies	TV	Repro CD	Aire Acond.						
13	38	79	36						
14	30	82	21						
15	35	80	47						
16	30	85	81						
17	34	94	112						
18	40	89	139						
19	36	96	230						
20	32	100	201						
21	40	100	122						
22	36	105	84						
23	40	108	74						
24	34	110	62						

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2011

Pronósticos

Método de Medias Móviles

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2011

3

VENTAS DE TV - PRONÓSTICOS MEDIA MÓVIL N=3 N=4 N=5										
t	Xt		N=3		N=4		N=5			
		f _{t,1}	p para t	e t	p para t	E,	p para t	e t		
1	30									
2	32									
3	30	30,67								
4	39	33,67	30,67	8,33						
5	33	34,00	33,67	0,67	32,75	0,25				
6	34	35,33	34,00	0,00	33,50	0,50	32,80	1,		
7	34	33,67	35,33	1,33	34,00	0,00	33,60	0,		
8	38	35,33	33,67	4,33	35,00	3,00	34,00	4,		
9	36	36,00	35,33	0,67	34,75	1,25	35,60	0,		
10	39	37,67	36,00	3,00	35,50	3,50	35,00	4,		
11	30	35,00	37,67	7,67	36,75	6,75	36,20	6,		
12	36	35,00	35,00	1,00	35,75	0,25	35,40	0,0		
13	38	34,67	35,00	3,00	35,25	2,75	35,80	2,		
14	30	34,67	34,67	4,67	35,75	5,75	35,80	5,8		
15	35	34,33	34,67	0,33	33,50	1,50	34,60	0,		
16	30	31,67	34,33	4,33	34,75	4,75	33,80	3,		
17	34	33,00	31,67	2,33	33,25	0,75	33,80	0,		
18	40	34,67	33,00	7,00	32,25	7,75	33,40	6,0		
19	36	36,67	34,67	1,33	34,75	1,25	33,80	2,		
20	32	36,00	36,67	4,67	35,00	3,00	35,00	3,0		
21	40	36,00	36,00	4,00	35,50	4,50	34,40	5,0		
22	36	36,00	36,00	0,00	37,00	1,00	36,40	0,		
23	40	38,67	36,00	4,00	36,00	4,00	36,80	3,		
24	34	36,67	38,67	4,67	37,00	3,00	36,80	2,4		

			N=3		N=4		N=5		
t	Xt	f _{t,1}	p para t	e,	p para t	е,	p para t	e t	
1	13								
2	7								
3	23	14,33							
4	32	20,67	14,33	17,67					
5	58	37,67	20,67	37,33	18,75	39,25			
6	60	50,00	37,67	22,33	30,00	30,00	26,60	33,4	
7	90	69,33	50,00	40,00	43,25	46,75	36,00	54,0	
8	93	81,00	69,33	23,67	60,00	33,00	52,60	40,4	
9	63	82,00	81,00	18,00	75,25	12,25	66,60	3,6	
10	39	65,00	82,00	43,00	76,50	37,50	72,80	33,8	
11	37	46,33	65,00	28,00	71,25	34,25	69,00	32,0	
12	29	35,00	46,33	17,33	58,00	29,00	64,40	35,4	
13	36	34,00	35,00	1,00	42,00	6,00	52,20	16,2	
14	21	28,67	34,00	13,00	35,25	14,25	40,80	19,8	
15	47	34,67	28,67	18,33	30,75	16,25	32,40	14,6	
16	81	49,67	34,67	46,33	33,25	47,75	34,00	47,0	
17	112	80,00	49,67	62,33	46,25	65,75	42,80	69,2	
18	139	110,67	80,00	59,00	65,25	73,75	59,40	79,6	
19	230	160,33	110,67	119,33	94,75	135,25	80,00	150,0	
20	201	190,00	160,33	40,67	140,50	60,50	121,80	79,2	
21	122	184,33	190,00	68,00	170,50	48,50	152,60	30,6	
22	84	135,67	184,33	100,33	173,00	89,00	160,80	76,8	
23	-	93,33	135,67	61,67	159,25	85,25	155,20	81,2	
24	74 62	73,33	93,33	31,33	120,25	58,25	142,20	80,2	
		Desviaci	ón Absoluta Media:	41,37		48,13		51,4	

Pronósticos: S. Exponencial

SUAVIZAMIENTO EXPONENCIAL SIMPLE

$$A_t = \alpha x_t + (1 - \alpha) A_{t-1}$$
 $0 < \alpha < 1$
 $A_t = f_{t,k}$
 $e_t = x_t - f_{t-1,1} = x_t - A_{t-1}$

11

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2011

31,80 32,00 2,00 32,00 32,00 2,00 31,60 31,82 31,80 0,20 0,40 31,40 0,60 1,58 31,64 31,82 1,82 31,68 1,68 31,58 32,37 31,64 7,36 31,34 7,66 31,11 7,89 32,44 32,37 32,88 0,12 33,47 0,47 0,63 32,59 32,44 0,67 1,56 32,90 1,10 33,33 32,73 1,41 33,12 0,88 33,53 33,26 32,73 5,27 33,30 4,70 33,67 4,33 33,53 2,74 34,24 1,76 1,03 33,26 34,97 5,47 33,53 34,59 3,72 35,28 4,08 4,09 33,88 34,32 4,32 35,36 5,36 35,85 5,85 1,12 34,29 0,71 0,90 UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2011

t	Xt	α=	0,1		α=	0,2	α= 0,3		
,	AL	fut	p para t	e t	p para t	e t	p para t	е ,	
		32							
1	40	32,80	32,00	8,00	32,00	8,00	32,00	8,	
2	47	34,22	32,80	14,20	33,60	13,40	34,40	12,	
3	50	35,80	34,22	15,78	36,28	13,72	38,18	11,	
4	49	37,12	35,80	13,20	39,02	9,98	41,73	7,	
5	56	39,01	37,12	18,88	41,02	14,98	43,91	12	
6	53	40,41	39,01	13,99	44,02	8,98	47,54	5,	
7	55	41,87	40,41	14,59	45,81	9,19	49,18	5	
8	63	43,98	41,87	21,13	47,65	15,35	50,92	12	
9	68	46,38	43,98	24,02	50,72	17,28	54,55	13	
10	65	48,24	46,38	18,62	54,18	10,82	58,58	6	
11	72	50,62	48,24	23,76	56,34	15,66	60,51	11	
12	69	52,46	50,62	18,38	59,47	9,53	63,96	5,	
13	79	55,11	52,46	26,54	61,38	17,62	65,47	13	
14	82	57,80	55,11	26,89	64,90	17,10	69,53	12	
15	80	60,02	57,80	22,20	68,32	11,68	73,27	6	
16	85	62,52	60,02	24,98	70,66	14,34	75,29	9	
17	94	65,67	62,52	31,48	73,53	20,47	78,20	15	
18	89	68,00	65,67	23,33	77,62	11,38	82,94	6	
19	96	70,80	68,00	28,00	79,90	16,10	84,76	11.	
20	100	73,72	70,80	29,20	83,12	16,88	88,13	11	
21	100	76,35	73,72	26,28	86,49	13,51	91,69	8	
22	105	79,21	76,35	28,65	89,20	15,80	94,18	10	
23	108	82,09	79,21	28,79	92,36	15,64	97,43	10	
24	110	84,88	82,09	27,91	95,48	14,52	100,60	9	
•	•	Desviacio	on Absoluta Media:	22,03		13,83		1.	

т	ν.	α=	0,1		α=	0,3	α= 0,5		
	Xt	f _{t,1}	p para t	e t	p para t	e t	p para t	e t	
		32							
1	13	30,10	32,00	19,00	32,00	19,00	32,00	19,0	
2	7	27,79	30,10	23,10	26,30	19,30	22,50	15,	
3	23	27,31	27,79	4,79	20,51	2,49	14,75	8,2	
4	32	27,78	27,31	4,69	21,26	10,74	18,88	13,	
5	58	30,80	27,78	30,22	24,48	33,52	25,44	32,	
6	60	33,72	30,80	29,20	34,54	25,46	41,72	18,	
7	90	39,35	33,72	56,28	42,18	47,82	50,86	39,	
8	93	44,71	39,35	53,65	56,52	36,48	70,43	22,	
9	63	46,54	44,71	18,29	67,47	4,47	81,71	18,	
10	39	45,79	46,54	7,54	66,13	27,13	72,36	33,	
11	37	44,91	45,79	8,79	57,99	20,99	55,68	18,6	
12	29	43,32	44,91	15,91	51,69	22,69	46,34	17,	
13	36	42,59	43,32	7,32	44,88	8,88	37,67	1,6	
14	21	40,43	42,59	21,59	42,22	21,22	36,83	15,	
15	47	41,09	40,43	6,57	35,85	11,15	28,92	18,	
16	81	45,08	41,09	39,91	39,20	41,80	37,96	43,0	
17	112	51,77	45,08	66,92	51,74	60,26	59,48	52,5	
18	139	60,49	51,77	87,23	69,82	69,18	85,74	53,	
19	230	77,44	60,49	169,51	90,57	139,43	112,37	117,6	
20	201	89,80	77,44	123,56	132,40	68,60	171,18	29,	
21	122	93,02	89,80	32,20	152,98	30,98	186,09	64,0	
22	84	92,12	93,02	9,02	143,69	59,69	154,05	70,0	
23	74	90,31	92,12	18,12	125,78	51,78	119,02	45,0	
24	62	87,47	90,31	28,31	110,25	48,25	96,51	34,	
		Desviación	Absoluta Media:	36,74		36,72		33,4 1	

	VENTAS D	FCD PR	ONOSTIC	OS CONT	METODO	DE HOLT	
		α=	0,3	03 0011	#E 10 D 0	0,1	
t	Xt	Dif	L,	Т, Т	f _{t,1}	f _{t-1,1}	e,
	1 4 2 6 3 8 4 10	2 2 2 4					
	5 14 6 18 7 20 8 22 9 24 0 28	4 4 2 2 2 4 3					
1		4 3 3	34 37,71	2,73 2,83	36,73 40,53	⊷Valores 36,73	iniciales 3,27
	2 47 3 50 4 49		42,47 46,85 49,70 53,78	3,02 3,15 3,12 3,22	45,49 50,00 52,82 57,00	40,53 45,49 50,00 52,82	6,47 4,51 1,00 3,18
	6 53 7 55 8 63		55,80 57,73 61,40	3,10 2,98 3,05	58,90 60,71 64,45	57,00 58,90 60,71	4,00 3,90 2,29
1 1 1	1 72 2 69		65,51 67,57 71,03 72,59	3,16 3,05 3,09 2,94	68,67 70,62 74,12 75,52	64,45 68,67 70,62 74,12	3,55 3,67 1,38 5,12
1 1 1 1	3 79 4 82 5 80		76,57 80,32 82,40 85,29	3,04 3,11 3,01 3,00	79,61 83,44 85,41 88,29	75,52 79,61 83,44 85,41	3,48 2,39 3,44 0,41
1 1 1	7 94 8 89 9 96		90,00 91,92 95,27	3,17 3,04 3,07	93,17 94,96 98,35	88 29 93 17 94 96	5,71 4,17 1,04
2 2 2 2 2	1 100 2 105		98,84 101,38 104,61 107,78	3,12 3,06 3,08 3,09	101,97 104,44 107,69 110,87	98,35 101,97 104,44 107,69	1,65 1,97 0,56 0,31
2	4 110	Desviación	110,61	3,06	113,68	110,87	0,87 2,85
nas de Gestión							_,50

	VENTAS D	E CD - PF	ONOSTIC	OS CON	METODO B=	DE HOLT 0,4	
t	Xt	Dif	0,4	т, Т			ο.
1 2 3 3 4 4 5 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9 24 0 28 1 31 2 34 1 40 2 47 3 50	2 2 2 4 4 2 2 2 4 3	34 38,04 43,57 48,64	2,73 3,25 4,16 4,53	41,29 47,74 53,17	←Valores 36,73 41,29 47,74	3,27 5,71 2,28
4 6 7 8 9	7 55 3 63 9 68		51,50 55,62 56,95 57,91 61,23 65,50 67,26	3,86 3,96 2,91 2,13 2,60 3,27 2,67	55,36 59,58 59,86 60,05 63,83 68,77 69,93	53,17 55,36 59,58 59,86 60,05 63,83 68,77	4,17 0,64 6,58 4,86 2,95 4,17 3,77
11 12 13 14 15 16	2 69 3 79 4 82 5 80		70,76 71,85 76,06 80,25 82,24 85,08	3,00 2,24 3,02 3,49 2,89 2,87	73,76 74,09 79,08 83,74 85,14 87,95	69,93 73,76 74,09 79,08 83,74 85,14	2,0 4,7 4,9 2,9 3,7 0,1
1 1	94 89 96 00		90,37 92,13 95,48 99,17 101,52	3,84 3,00 3,14 3,36 2,96	94,21 95,13 98,62 102,54 104,48	87,95 94,21 95,13 98,62 102,54	6) 5) 0) 1) 2)
3	105 108 110	Desviació	104,69 107,84 110,55 n Absoluta	3 ,04 3 ,08 2 ,94 • Media:	107,73 110,92 113,49	104,48 107,73 110,92	0; 0; 0; 3;

Precisión UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2011 27

Pronósticos: Winter

SUAVIZAMIENTO EXPONENCIAL CON TENDENCIA Y ESTACIONALIDAD

$$L_{t} = \alpha \frac{X_{t}}{S_{t-c}} + (1-\alpha)(L_{t-1} + T_{t-1})$$

$$T_{t} = \beta (L_{t} + L_{t-1}) + (1 - \beta) T_{t-1}$$

$$s_t = \gamma \frac{x_t}{L_t} + (1 - \gamma) s_{t-c}$$

$$\boldsymbol{f}_{t,k} = \; (\; \boldsymbol{L}_t + \boldsymbol{k} \; \boldsymbol{T}_t \;) \; \boldsymbol{s}_{t+k-c}$$

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2011

33

Pronósticos: Winter

1er Paso:

Definir los valores para los coeficientes de suavizamiento $\alpha,\,\beta$ y $\gamma.$

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2011

Pronósticos: Regresión Lineal

- Se busca predecir el valor de una variable a partir del valor de otra.
- Variable dependiente vs. Variable independiente.
- Ejemplos:

V. Dependiente
Producción científica

Ventas automóviles Matrícula estudiantil Casos de enfermedad

Costo de producción total

V. Independiente

Presupuesto invertido Tasas de interés

Inversión social en planes de ayuda

Tiempo de exposición / Distancia a / Grms. sustancia

Cantidad de unidades de producir

- No siempre existe correlación entre las variables.
- Regresión Simple vs. Regresión Múltiple
- Regresión Lineal vs. No lineales

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2011

41

Pronósticos: Regresión Lineal

• Dada una serie X-Y, se busca una función lineal:

• Recta de Regresión de Mínimos Cuadrados.

$$y_i = \beta_0 + \beta_1 \; x_i + \epsilon_i$$

 ${\boldsymbol{\hat{y}}_i} = \boldsymbol{\hat{\beta}_0} + \boldsymbol{\hat{\beta}_1} \ \boldsymbol{x_i}$

- Propiedades:
 - Pasa por el punto (m(x), m(y)).
 - Σ $e_i = 0$

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2011

Pronósticos: Regresión Lineal: • Dada una serie X-Y, se busca una función lineal: • Dada una serie X-Y, se busca una función lineal: • Recta de Regresión de Mínimos Cuadrados. $y_i = \beta_0 + \beta_1 \ x_i + \epsilon_i$ • Propiedades: • Pasa por el punto (m(x), m(y)). • Σ e_i = 0

Pronósticos: Regresión Lineal Ejemplo tomado y adaptado de "Investigación de Operaciones - Algoritmos y Aplicaciones" de Wayne Winston. Pag. 1302 Costo de producción Semana fabricados total 601,60 30 782,00 765,40 895,50 1.133,00 1.152,80 1.132,70 1.459,20 44 UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2011

Pronósticos: Regresión Lineal

COMO LOGRAR UN BUEN AJUSTE

- SST: suma del total de cuadrados
 - Variación total de Yi respecto a la media
 - SST = $\Sigma (y_i m(y))^2$
- SSE: suma de errores cuadráticos
 - SSE = Σ (yi \hat{y} i)² = Σ ei ²
 - Si la recta pasa por todos los puntos dato, SSR = 0
 - Un SSE chico indica un buen ajuste
- SSR: suma de los cuadrados de la regresión
 - SSR = Σ ($\hat{y}i m(y)$)²
 - Se puede demostrar que SST = SSR + SSE
- R²: coeficiente de determinación
 - R² = SSR / SST % en que la variable X explica a la variable Y
 - 1 R² = SSE / SST % de variación en Y no explicado por X
- rxy: correlación lineal de la muestra
 - $\sqrt{R^2}$ + o según β_1
- Se: error estándar de la estimación
 - Se = $\sqrt{(SSE / n 2)}$

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2011

51

Pronósticos: Regresión Lineal

x_i	Уi	ŷ	$(y_i - m(y))^2$	$(y_i - \hat{y}_i)^2$	$(\hat{y}_i\text{-m}(y))^2$
10	257,40	343,5	432398,30	7408,26	326610,81
20	601,60	522,1	98200,76	6325,88	154374,64
30	782,00	7,00,7	17681,02	6616,53	45929,64
40	765,40	879,3	22371,18	12962,13	1275,82
45	895,50	968,5	379,08	5336,01	2870,60
50	1133,00	1057,8	47537,08	5648,32	20413,18
60	1152,80	1236,4	56563,11	6995,32	103341,70
55	1132,70	1,147	47406,35	208,55	53903,54
70	1459,20	1415,0	296186,29	1950,87	250061,40
40	970,10	879,3	3039,32	8253,48	1275,82
		SUMA	1021762,50	61705,34	960057,16

1021762,50

61705,34

960057,16

0,94

0,06

87,82

$$\mathsf{SST} = \Sigma \; (\mathsf{y}_{\mathsf{i}} - \mathsf{med}(\mathsf{y}))^2$$

SSE =
$$\Sigma (y_i - \hat{y}_i)^2 = \Sigma e_i^2$$

$$\mathsf{SSR} = \Sigma \ (\hat{y}i - m(y))^2$$

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2011

1 - R² = SSE / SST
Se =
$$\sqrt{(SSE / n - 2)}$$

52

Pronósticos: Regresión Lineal

SUPUESTOS

- Se deben cumplir ciertos supuestos
 - La varianza del término del error no debe depender del valor de la variable independiente.
 - · Homocedasticidad vs Heterocedasticidad.
 - Ver gráfico Error respecto a X
 - · Los errores tienen distribución normal.
 - Los errores deben ser independientes.
 - Ver gráfico Error respecto al Tiempo.

OTRAS MODELOS

- Diferentes curvas de regresión: lineal, exponencial, logarítmica, etc.
- Mas de una variable independiente: Regresión múltiple

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2011