

Title

# IST3020 Specification 224X65 STN-LCD Driver

文件編號 DOC# IST-RD-0049

版次 Rev **007** 

生效日期 Effective Date: 10/16/2007



## Controlled by DCC

## Copy List

| Code Name | 100 | 200 | 300 | 400 | 500 | 600 | 700 |
|-----------|-----|-----|-----|-----|-----|-----|-----|
| Dept.     | HR  | S/M | MFG | R&D | СН  | QRA | MIS |
|           |     |     |     | ✓   | ✓   | ✓   |     |



Title

# IST3020 Specification 224X65 STN-LCD Driver

文件編號 DOC# 版次 Rev IST-RD-0049 **007** 

生效日期 Effective Date: 10/16/2007

## 文件變更履歷頁

**Document Change History** 

| 版次   | 變更項次             | 變更內容簡述                                        | 變更依據文件號碼  | 生效日期       |  |
|------|------------------|-----------------------------------------------|-----------|------------|--|
| Rev. | Change Items#    | Change Description                            | ECN#      | Eff. Date  |  |
| 001  |                  | New Release                                   | E07060011 | 07/25/2006 |  |
|      | Page18           | Figure error                                  |           |            |  |
| 002  | Page41           | Command "Power Save" decode error             | F120C0017 | 12/12/2006 |  |
| 002  | Page46           | Add "Built-in Oscillator ON"                  | E12060017 | 12/13/2006 |  |
|      | Page47           | Figure23 change                               |           |            |  |
|      | Page11           | PS="L"DB0 to DB5 must be fixed to either      |           |            |  |
| 003  | Page12           | "H" or "L"  I/O PIN ITO Resister Limitation   | E01070012 | 01/17/2007 |  |
| 004  |                  | Modify oscillator frequency range (17.6 ~     | E04070025 | 04/30/2007 |  |
|      | D 50125051       | 26.4 KHz)                                     |           |            |  |
|      | Page5,9,12,50,51 | Change pin "VDD" to "VDD1" and "VDD2"         |           |            |  |
| 207  | Page5,9,12       | Change pin "VSS" to "VSS1" and "VSS2"         |           | 00/27/2007 |  |
| 005  | Page 47          | SGS Select→ADC Select                         | E09070008 | 09/27/2007 |  |
|      |                  | CMS Select→SHL Select                         |           |            |  |
|      | Page 62          | Add example of IST3020 ITO connection         |           |            |  |
|      | Page 45          | Change Standby current 10uA to 30uA           |           |            |  |
| 006  | Page 52          | Modify OTP write flow, add programming        | E10070008 | 10/09/2007 |  |
| 007  | Page 9           | wait tome 1ms  Power VPP voltage 6.5 +/- 0.25 | E10070012 | 10/16/2007 |  |
|      | Page 11          | DB5~0 must be fix Vdd or Vss in serial        |           |            |  |
|      |                  | mode                                          |           |            |  |
|      | Page 18          | Modify Figure.6 when SHL=1,COM                |           |            |  |
|      |                  | direction reverse                             |           |            |  |
|      | Page 41,42       | The data is written must be waiting for       |           |            |  |
|      |                  | 100ms after power save completed              |           |            |  |
|      | Page 43          | Add new command "extern capacitor             |           |            |  |

This document is the exclusive property of *IST* (Integrated Solutions Technology, Inc.) and shall not be reproduced or copied or transformed to any other format without prior permission of *IST* 本資料爲 聯合聚晶 專有之財產,非經許可,不得複製,翻印或轉變成其他形式使用.

Page 0- 2



Title

# IST3020 Specification 224X65 STN-LCD Driver

文件編號 DOC# IST-RD-0049

版次 Rev **007** 

生效日期 Effective Date: 10/16/2007

|            | Τ                                            |  |
|------------|----------------------------------------------|--|
|            | discharge"                                   |  |
| Page 47    | Modify the flow-chart of power save mode,    |  |
|            | insert wait time 100ms and discharge         |  |
|            | function                                     |  |
| Page 34,42 | Add note of re-write display ram data before |  |
|            | display on or power save                     |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |
|            |                                              |  |

#### INTRODUCTION

The IST3020 is a single chip driver & controller LSI for graphic dot-matrix liquid crystal display systems. This chip can be connected directly to a microprocessor, accepts serial or 8-bit parallel display data from the microprocessor, stores the display data in an on-chip display data RAM of 65 x 256 bits and generates a liquid crystal display drive signal independent of the microprocessor. It provides a high-flexible display section due to 1-to-1 correspondence between on-chip display data RAM bits and LCD panel pixels. It contains 65 common driver circuits and 224 segment driver circuits, so that a single chip can drive a 65 x 224 dot display. And the capacity of the display can be increased through the use of master/slave multi-chip structures.

The chip is able to minimize power consumption because it performs display data RAM read / write operation with no external operation clock. In addition, because it contains power supply circuits necessary to drive liquid crystal, which is a display clock oscillator circuit, high performance voltage converter circuit, high-accuracy voltage regulator circuit, low power consumption voltage divider resistors and OP-Amp for liquid crystal driver power voltage, it is possible to make the lowest power consumption display system with the fewest components for high performance portable systems.

#### **FEATURES**

#### **Display Driver Output Circuits**

- 65 common outputs / 224 segment outputs

#### **On-chip Display Data RAM**

- Capacity:  $65 \times 256 = 16,640$  bits
- RAM bit data "1": a dot of display is illuminated.
- RAM bit data "0": a dot of display is not illuminated.

#### **Microprocessor Interface**

- High-speed 8-bit parallel bi-directional interface with 6800-series or 8080-series
- Serial interface (only write operation) available

#### **Various Function Set**

Display ON / OFF, set initial display line, set page address, set column address, read status, write / read display data, select segment driver output, reverse display ON / OFF, entire display ON / OFF, select LCD bias, set/reset modify-read, select common driver output, control display power circuit, select internal regulator resistor ratio for V0 voltage regulation, electronic volume, set static indicator state, power save, n-line reversal driver, built-in oscillator circuit ON / OFF.

1

- H/W and S/W reset available
- Static drive circuit equipped internally for indicators with 4 flashing modes

#### **Built-in Analog Circuit**

- On-chip oscillator circuit for display clock (external clock can also be used)
- High performance voltage converter (with booster ratios of x2, x3, and x4, where the step-up reference voltage can be used externally)
- High accuracy voltage regulator (temperature coefficient: -0.05% / °C or external input)
- Electronic contrast control function (64 steps)
- High performance voltage follower (V1 to V4 voltage divider resistors and OP-Amp for increasing drive capacity)

#### **On-chip Display Data RAM**

- Supply voltage (VDD): 2.4 to 3.6 V
- LCD driving voltage (VLCD = V0 Vss): 4.5 to 15.0 V

#### **Low Power Consumption**

- Operating power: 40μA typical. (condition: VDD = 3V, x4 boosting (VCI is VDD), V0 = 11V, internal power supply ON, display OFF and normal mode is selected)
- Standby power: 10µA maximum. (during power save[standby] mode)

#### **Operating Temperatures**

- Wide range of operating temperatures : -40 to 85°C

#### **CMOS Process**

#### Package Type

- Gold bumped chip



## **BLOCK DIAGRAM**



3

## **PAD CONFIGURATION**



Chip Size

| Item      | Х    | Y    | Unit |
|-----------|------|------|------|
| Chip size | 7970 | 1098 | um   |

## Pad Dimensions

| Item                                   | Pad No.             | A(Min.) | В   | С   | D(Min.) | Unit |
|----------------------------------------|---------------------|---------|-----|-----|---------|------|
|                                        | 1 ~ 75              | 100     | 80  | 40  | 20      | um   |
| Bumped Pad size                        | 76 ~ 108, 335 ~ 367 | 33      | 105 | 18  | 15      | um   |
|                                        | 109 ~ 334           | 33      | 18  | 105 | 15      | um   |
| Bumped pad height All pad 15 (Typical) |                     |         |     |     |         | um   |

## Align Key Coordinate



## **PAD CERTER COORDINATES**

|           |          |           |          |      |           |          |          |          | Unit: um |
|-----------|----------|-----------|----------|------|-----------|----------|----------|----------|----------|
| Pad<br>No | Pad Name | X         | Y        | Note | Pad<br>No | Pad Name | X        | Y        | Note     |
| 1         | DUMMY    | -3699.500 | -472.425 |      | 51        | FRS      | 1300.500 | -472.425 |          |
| 2         | DUMMY    | -3599.500 | -472.425 |      | 52        | FR       | 1400.500 | -472.425 |          |
| 3         | DUMMY    | -3499.500 | -472.425 |      | 53        | DOFB     | 1500.500 | -472.425 |          |
| 4         | DUMMY    | -3399.500 | -472.425 |      | 54        | V0       | 1600.500 | -472.425 |          |
| 5         | VSS1     | -3299.500 | -472.425 |      | 55        | V0       | 1700.500 | -472.425 |          |
| 6         | VSS1     | -3199.500 | -472.425 |      | 56        | V1       | 1800.500 | -472.425 |          |
| 7         | VSS1     | -3099.500 | -472.425 |      | 57        | V1       | 1900.500 | -472.425 |          |
| 8         | VSS1     | -2999.500 | -472.425 |      | 58        | V2       | 2000.500 | -472.425 |          |
| 9         | VDD1     | -2899.500 | -472.425 |      | 59        | V2       | 2100.500 | -472.425 |          |
| 10        | VDD1     | -2799.500 | -472.425 |      | 60        | V3       | 2200.500 | -472.425 |          |
| 11        | VDD1     | -2699.500 | -472.425 |      | 61        | V3       | 2300.500 | -472.425 |          |
| 12        | VDD1     | -2599.500 | -472.425 |      | 62        | V4       | 2400.500 | -472.425 |          |
| 13        | CS2      | -2499.500 | -472.425 |      | 63        | V4       | 2500.500 | -472.425 |          |
| 14        | CL       | -2399.500 | -472.425 |      | 64        | IRS      | 2600.500 | -472.425 |          |
| 15        | CS1B     | -2299.500 | -472.425 |      | 65        | VSUM     | 2700.500 | -472.425 | open     |
| 16        | RESB     | -2199.500 | -472.425 |      | 66        | VR       | 2800.500 | -472.425 | r        |
| 17        | A0       | -2099.500 | -472.425 |      | 67        | DMYVDD   | 2900.500 | -472.425 |          |
| 18        | WRB      | -1999.500 | -472.425 |      | 68        | DMYVSS   | 3000.500 | -472.425 |          |
| 19        | RDB      | -1899.500 | -472.425 |      | 69        | CLS      | 3100.500 | -472.425 |          |
| 20        | DB0      | -1799.500 | -472.425 |      | 70        | C86      | 3200.500 | -472.425 |          |
| 21        | DB1      | -1699.500 | -472.425 |      | 71        | HPMB     | 3300.500 | -472.425 |          |
| 22        | DB2      | -1599.500 | -472.425 |      | 72        | DUMMY    | 3400.500 | -472.425 |          |
| 23        | DB3      | -1499.500 | -472.425 |      | 73        | DUMMY    | 3500.500 | -472.425 |          |
| 24        | DB4      | -1399.500 | -472.425 |      | 74        | DUMMY    | 3600.500 | -472.425 |          |
| 25        | DB5      | -1299.500 | -472.425 |      | 75        | DUMMY    | 3700.500 | -472.425 |          |
| 26        | DB6      | -1199.500 | -472,425 |      | 76        | COM31    | 3928.750 | -528.450 |          |
| 27        | DB7      | -1099.500 | -472.425 |      | 77        | COM30    | 3928.750 | -495.450 |          |
| 28        | MS       | -999.500  | -472.425 |      | 78        | COM29    | 3928.750 | -462.450 |          |
| 29        | PS       | -899.500  | -472.425 |      | 79        | COM28    | 3928.750 | -429.450 |          |
| 30        | VDD2     | -799.500  | -472.425 |      | 80        | COM27    | 3928.750 | -396.450 |          |
| 31        | VDD2     | -699.500  | -472.425 |      | 81        | COM26    | 3928.750 | -363.450 |          |
| 32        | VDD2     | -599.500  | -472.425 |      | 82        | COM25    | 3928.750 | -330.450 |          |
| 33        | VDD2     | -499.500  | -472.425 |      | 83        | COM24    | 3928.750 | -297.450 |          |
| 34        | VCI      | -399.500  | -472.425 |      | 84        | COM23    | 3928.750 | -264.450 |          |
| 35        | VCI      | -299.500  | -472.425 |      | 85        | COM22    | 3928.750 | -231.450 |          |
| 36        | VSS2     | -199.500  | -472.425 |      | 86        | COM21    | 3928.750 | -198.450 |          |
| 37        | VSS2     | -99.500   | -472.425 |      | 87        | COM20    | 3928.750 | -165.450 |          |
| 38        | VSS2     | 0.500     | -472.425 |      | 88        | COM19    | 3928.750 | -132.450 |          |
| 39        | VSS2     | 100.500   | -472.425 |      | 89        | COM18    | 3928.750 | -99.450  |          |
| 40        | VOUT     | 200.500   | -472.425 |      | 90        | COM17    | 3928.750 | -66.450  |          |
| 41        | VOUT     | 300.500   | -472.425 |      | 91        | COM16    | 3928.750 | -33.450  |          |
| 42        | VPP      | 400.500   | -472.425 |      | 92        | COM15    | 3928.750 | -0.450   |          |
| 43        | C3+      | 500.500   | -472.425 |      | 93        | COM14    | 3928.750 | 32.550   |          |
| 44        | C1-      | 600.500   | -472.425 |      | 94        | COM13    | 3928.750 | 65.550   |          |
| 45        | C1+      | 700.500   | -472.425 |      | 95        | COM12    | 3928.750 | 98.550   |          |
| 46        | C2+      | 800.500   | -472.425 |      | 96        | COM11    | 3928.750 | 131.550  |          |
| 47        | C2-      | 900.500   | -472.425 |      | 97        | COM10    | 3928.750 | 164.550  |          |
| 48        | TEST1    | 1000.500  | -472.425 | open | 98        | COM9     | 3928.750 | 197.550  |          |
| 49        | DMYVSS   | 1100.500  | -472.425 |      | 99        | COM8     | 3928.750 | 230.550  |          |
| 50        | SYNC     | 1200.500  | -472.425 |      | 100       | COM7     | 3928.750 | 263.550  |          |

| Pad | Pad Name | Х        | Y       | Note  | Pad | Pad Name | Х        | Y       | Note  |
|-----|----------|----------|---------|-------|-----|----------|----------|---------|-------|
| No  |          |          |         | 11000 | No  |          |          |         | 11000 |
| 101 | COM6     | 3928.750 | 296.550 |       | 151 | SEG41    | 2397.900 | 492.500 |       |
| 102 | COM5     | 3928.750 | 329.550 |       | 152 | SEG42    | 2341.100 | 492.500 |       |
| 103 | COM4     | 3928.750 | 362.550 |       | 153 | SEG43    | 2308.100 | 492.500 |       |
| 104 | COM3     | 3928.750 | 395.550 |       | 154 | SEG44    | 2275.100 | 492.500 |       |
| 105 | COM2     | 3928.750 | 428.550 |       | 155 | SEG45    | 2242.100 | 492.500 |       |
| 106 | COM1     | 3928.750 | 461.550 |       | 156 | SEG46    | 2209.100 | 492.500 |       |
| 107 | COM0     | 3928.750 | 494.550 |       | 157 | SEG47    | 2176.100 | 492.500 |       |
| 108 | COMS     | 3928.750 | 527.550 |       | 158 | SEG48    | 2143.100 | 492.500 |       |
| 109 | DUMMY    | 3807.700 | 492.500 |       | 159 | SEG49    | 2110.100 | 492.500 |       |
| 110 | SEG0     | 3774.700 | 492.500 |       | 160 | SEG50    | 2077.100 | 492.500 |       |
| 111 | SEG1     | 3741.700 | 492.500 |       | 161 | SEG51    | 2044.100 | 492.500 |       |
| 112 | SEG2     | 3708.700 | 492.500 |       | 162 | SEG52    | 2011.100 | 492.500 |       |
| 113 | SEG3     | 3675.700 | 492.500 |       | 163 | SEG53    | 1978.100 | 492.500 |       |
| 114 | SEG4     | 3642.700 | 492.500 |       | 164 | SEG54    | 1945.100 | 492.500 |       |
| 115 | SEG5     | 3609.700 | 492.500 |       | 165 | SEG55    | 1912.100 | 492.500 |       |
| 116 | SEG6     | 3576.700 | 492.500 |       | 166 | SEG56    | 1879.100 | 492.500 |       |
| 117 | SEG7     | 3543.700 | 492.500 |       | 167 | SEG57    | 1846.100 | 492.500 |       |
| 118 | SEG8     | 3510.700 | 492.500 |       | 168 | SEG58    | 1813.100 | 492.500 |       |
| 119 | SEG9     | 3477.700 | 492.500 |       | 169 | SEG59    | 1780.100 | 492.500 |       |
| 120 | SEG10    | 3444.700 | 492.500 |       | 170 | SEG60    | 1747.100 | 492.500 |       |
| 121 | SEG11    | 3411.700 | 492.500 |       | 171 | SEG61    | 1714.100 | 492.500 |       |
| 122 | SEG12    | 3378.700 | 492.500 |       | 172 | SEG62    | 1681.100 | 492.500 |       |
| 123 | SEG13    | 3345.700 | 492.500 |       | 173 | SEG63    | 1648.100 | 492.500 |       |
| 124 | SEG14    | 3288.900 | 492.500 |       | 174 | SEG64    | 1615.100 | 492.500 |       |
| 125 | SEG15    | 3255.900 | 492.500 |       | 175 | SEG65    | 1582.100 | 492.500 |       |
| 126 | SEG16    | 3222.900 | 492.500 |       | 176 | SEG66    | 1549.100 | 492.500 |       |
| 127 | SEG17    | 3189.900 | 492.500 |       | 177 | SEG67    | 1516.100 | 492.500 |       |
| 128 | SEG18    | 3156.900 | 492.500 |       | 178 | SEG68    | 1483.100 | 492.500 |       |
| 129 | SEG19    | 3123.900 | 492.500 |       | 179 | SEG69    | 1450.100 | 492.500 |       |
| 130 | SEG20    | 3090.900 | 492.500 |       | 180 | SEG70    | 1393.300 | 492.500 |       |
| 131 | SEG21    | 3057.900 | 492.500 |       | 181 | SEG71    | 1360.300 | 492.500 |       |
| 132 | SEG22    | 3024.900 | 492.500 |       | 182 | SEG72    | 1327.300 | 492.500 |       |
| 133 | SEG23    | 2991.900 | 492.500 |       | 183 | SEG73    | 1294.300 | 492.500 |       |
| 134 | SEG24    | 2958.900 | 492.500 |       | 184 | SEG74    | 1261.300 | 492.500 |       |
| 135 | SEG25    | 2925.900 | 492.500 |       | 185 | SEG75    | 1228.300 | 492.500 |       |
| 136 | SEG26    | 2892.900 | 492.500 |       | 186 | SEG76    | 1195.300 | 492.500 |       |
| 137 | SEG27    | 2859.900 | 492.500 |       | 187 | SEG77    | 1162.300 | 492.500 |       |
| 138 | SEG28    | 2826.900 | 492.500 |       | 188 | SEG78    | 1129.300 | 492.500 |       |
| 139 | SEG29    | 2793.900 | 492.500 |       | 189 | SEG79    | 1096.300 | 492.500 |       |
| 140 | SEG30    | 2760.900 | 492.500 |       | 190 | SEG80    | 1063.300 | 492.500 |       |
| 141 | SEG31    | 2727.900 | 492.500 |       | 191 | SEG81    | 1030.300 | 492.500 |       |
| 142 | SEG32    | 2694.900 | 492.500 |       | 192 | SEG82    | 997.300  | 492.500 |       |
| 143 | SEG33    | 2661.900 | 492.500 |       | 193 | SEG83    | 964.300  | 492.500 |       |
| 144 | SEG34    | 2628.900 | 492.500 |       | 194 | SEG84    | 931.300  | 492.500 |       |
| 145 | SEG35    | 2595.900 | 492.500 |       | 195 | SEG85    | 898.300  | 492.500 |       |
| 146 | SEG36    | 2562.900 | 492.500 |       | 196 | SEG86    | 865.300  | 492.500 |       |
| 147 | SEG37    | 2529.900 | 492.500 |       | 197 | SEG87    | 832.300  | 492.500 |       |
| 148 | SEG38    | 2496.900 | 492.500 |       | 198 | SEG88    | 799.300  | 492.500 |       |
| 149 | SEG39    | 2463.900 | 492.500 |       | 199 | SEG89    | 766.300  | 492.500 |       |
| 150 | SEG40    | 2430.900 | 492.500 |       | 200 | SEG90    | 733.300  | 492.500 |       |

| 201 SEG91 700.300 492.500 251        |        | X         | Y       | Note |
|--------------------------------------|--------|-----------|---------|------|
|                                      | SEG141 | -997.300  | 492.500 |      |
| 202 SEG92 667.300 492.500 252        | SEG142 | -1030.300 | 492.500 |      |
| 203 SEG93 634.300 492.500 253        | SEG143 | -1063.300 | 492.500 |      |
| 204 SEG94 601.300 492.500 254        | SEG144 | -1096.300 | 492.500 |      |
| 205 SEG95 568.300 492.500 255        | SEG145 | -1129.300 | 492.500 |      |
| 206 SEG96 535.300 492.500 256        | SEG146 | -1162.300 | 492.500 |      |
| 207 SEG97 502.300 492.500 257        | SEG147 | -1195.300 | 492.500 |      |
| 208 SEG98 445.500 492.500 258        | SEG148 | -1228.300 | 492.500 |      |
| 209 SEG99 412.500 492.500 259        | SEG149 | -1261.300 | 492.500 |      |
| 210 SEG100 379.500 492.500 260       | SEG150 | -1294.300 | 492.500 |      |
| 211 SEG101 346.500 492.500 261       | SEG151 | -1327.300 | 492.500 |      |
| 212 SEG102 313.500 492.500 262       | SEG152 | -1360.300 | 492.500 |      |
| 213 SEG103 280.500 492.500 263       | SEG153 | -1393.300 | 492.500 |      |
| 214 SEG104 247.500 492.500 264       | SEG154 | -1450.100 | 492.500 |      |
| 215 SEG105 214.500 492.500 265       | SEG155 | -1483.100 | 492.500 |      |
| 216 SEG106 181.500 492.500 266       | SEG156 | -1516.100 | 492.500 |      |
| 217 SEG107 148.500 492.500 267       | SEG157 | -1549.100 | 492.500 |      |
| 218 SEG108 115.500 492.500 268       | SEG158 | -1582.100 | 492.500 |      |
| 219 SEG109 82.500 492.500 <b>269</b> | SEG159 | -1615.100 | 492.500 |      |
| 220 SEG110 49.500 492.500 270        | SEG160 | -1648.100 | 492.500 |      |
| 221 SEG111 16.500 492.500 271        | SEG161 | -1681.100 | 492.500 |      |
| 222 SEG112 -16.500 492.500 272       | SEG162 | -1714.100 | 492.500 |      |
| 223 SEG113 -49.500 492.500 273       | SEG163 | -1747.100 | 492.500 |      |
| 224 SEG114 -82.500 492.500 274       | SEG164 | -1780.100 | 492.500 |      |
| 225 SEG115 -115.500 492.500 275      | SEG165 | -1813.100 | 492.500 |      |
| 226 SEG116 -148.500 492.500 276      | SEG166 | -1846.100 | 492.500 |      |
| 227 SEG117 -181.500 492.500 277      | SEG167 | -1879.100 | 492.500 |      |
| 228 SEG118 -214.500 492.500 278      | SEG168 | -1912.100 | 492.500 |      |
| 229 SEG119 -247.500 492.500 279      | SEG169 | -1945.100 | 492.500 |      |
| 230 SEG120 -280.500 492.500 280      | SEG170 | -1978.100 | 492.500 |      |
| 231 SEG121 -313.500 492.500 281      | SEG171 | -2011.100 | 492.500 |      |
| 232 SEG122 -346.500 492.500 282      | SEG172 | -2044.100 | 492.500 |      |
| 233 SEG123 -379.500 492.500 283      | SEG173 | -2077.100 | 492.500 |      |
| 234 SEG124 -412.500 492.500 284      | SEG174 | -2110.100 | 492.500 |      |
| 235 SEG125 -445.500 492.500 285      | SEG175 | -2143.100 | 492.500 |      |
| 236 SEG126 -502.300 492.500 286      | SEG176 | -2176.100 | 492.500 |      |
| 237 SEG127 -535.300 492.500 287      | SEG177 | -2209.100 | 492.500 |      |
| 238 SEG128 -568.300 492.500 288      | SEG178 | -2242.100 | 492.500 |      |
| 239 SEG129 -601.300 492.500 289      | SEG179 | -2275.100 | 492.500 |      |
| 240 SEG130 -634.300 492.500 290      | SEG180 | -2308.100 | 492.500 |      |
| 241 SEG131 -667.300 492.500 291      | SEG181 | -2341.100 | 492.500 |      |
| 242 SEG132 -700.300 492.500 292      | SEG182 | -2397.900 | 492.500 |      |
| 243 SEG133 -733.300 492.500 293      | SEG183 | -2430.900 | 492.500 |      |
| 244 SEG134 -766.300 492.500 294      | SEG184 | -2463.900 | 492.500 |      |
| 245 SEG135 -799.300 492.500 295      | SEG185 | -2496.900 | 492.500 |      |
| 246 SEG136 -832.300 492.500 296      | SEG186 | -2529.900 | 492.500 |      |
| 247 SEG137 -865.300 492.500 297      | SEG187 | -2562.900 | 492.500 |      |
| 248 SEG138 -898.300 492.500 298      | SEG188 | -2595.900 | 492.500 |      |
| 249 SEG139 -931.300 492.500 299      | SEG189 | -2628.900 | 492.500 |      |
| 250 SEG140 -964.300 492.500 300      | SEG190 | -2661.900 | 492.500 |      |

7

| Pad<br>No | Pad Name | Х       | Y     | Note | Pad<br>No | Pad Name | X        | Y       | Note |
|-----------|----------|---------|-------|------|-----------|----------|----------|---------|------|
| 301       | SEG191   | -2694.9 | 492.5 |      | 335       | COM32    | -3928.75 | 527.55  |      |
| 302       | SEG192   | -2727.9 | 492.5 |      | 336       | COM33    | -3928.75 | 494.55  |      |
| 303       | SEG193   | -2760.9 | 492.5 |      | 337       | COM34    | -3928.75 | 461.55  |      |
| 304       | SEG194   | -2793.9 | 492.5 |      | 338       | COM35    | -3928.75 | 428.55  |      |
| 305       | SEG195   | -2826.9 | 492.5 |      | 339       | COM36    | -3928.75 | 395.55  |      |
| 306       | SEG196   | -2859.9 | 492.5 |      | 340       | COM37    | -3928.75 | 362.55  |      |
| 307       | SEG197   | -2892.9 | 492.5 |      | 341       | COM38    | -3928.75 | 329.55  |      |
| 308       | SEG198   | -2925.9 | 492.5 |      | 342       | COM39    | -3928.75 | 296.55  |      |
| 309       | SEG199   | -2958.9 | 492.5 |      | 343       | COM40    | -3928.75 | 263.55  |      |
| 310       | SEG200   | -2991.9 | 492.5 |      | 344       | COM41    | -3928.75 | 230.55  |      |
| 311       | SEG201   | -3024.9 | 492.5 |      | 345       | COM42    | -3928.75 | 197.55  |      |
| 312       | SEG202   | -3057.9 | 492.5 |      | 346       | COM43    | -3928.75 | 164.55  |      |
| 313       | SEG203   | -3090.9 | 492.5 |      | 347       | COM44    | -3928.75 | 131.55  |      |
| 314       | SEG204   | -3123.9 | 492.5 |      | 348       | COM45    | -3928.75 | 98.55   |      |
| 315       | SEG205   | -3156.9 | 492.5 |      | 349       | COM46    | -3928.75 | 65.55   |      |
| 316       | SEG206   | -3189.9 | 492.5 |      | 350       | COM47    | -3928.75 | 32.55   |      |
| 317       | SEG207   | -3222.9 | 492.5 |      | 351       | COM48    | -3928.75 | -0.45   |      |
| 318       | SEG208   | -3255.9 | 492.5 |      | 352       | COM49    | -3928.75 | -33.45  |      |
| 319       | SEG209   | -3288.9 | 492.5 |      | 353       | COM50    | -3928.75 | -66.45  |      |
| 320       | SEG210   | -3345.7 | 492.5 |      | 354       | COM51    | -3928.75 | -99.45  |      |
| 321       | SEG211   | -3378.7 | 492.5 |      | 355       | COM52    | -3928.75 | -132.45 |      |
| 322       | SEG212   | -3411.7 | 492.5 |      | 356       | COM53    | -3928.75 | -165.45 |      |
| 323       | SEG213   | -3444.7 | 492.5 |      | 357       | COM54    | -3928.75 | -198.45 |      |
| 324       | SEG214   | -3477.7 | 492.5 |      | 358       | COM55    | -3928.75 | -231.45 |      |
| 325       | SEG215   | -3510.7 | 492.5 |      | 359       | COM56    | -3928.75 | -264.45 |      |
| 326       | SEG216   | -3543.7 | 492.5 |      | 360       | COM57    | -3928.75 | -297.45 |      |
| 327       | SEG217   | -3576.7 | 492.5 |      | 361       | COM58    | -3928.75 | -330.45 |      |
| 328       | SEG218   | -3609.7 | 492.5 |      | 362       | COM59    | -3928.75 | -363.45 |      |
| 329       | SEG219   | -3642.7 | 492.5 |      | 363       | COM60    | -3928.75 | -396.45 |      |
| 330       | SEG220   | -3675.7 | 492.5 | •    | 364       | COM61    | -3928.75 | -429.45 |      |
| 331       | SEG221   | -3708.7 | 492.5 |      | 365       | COM62    | -3928.75 | -462.45 |      |
| 332       | SEG222   | -3741.7 | 492.5 |      | 366       | COM63    | -3928.75 | -495.45 |      |
| 333       | SEG223   | -3774.7 | 492.5 |      | 367       | COMS     | -3928.75 | -528.45 |      |
| 334       | DUMMY    | -3807.7 | 492.5 |      |           |          |          |         |      |

## PIN DESCRIPTION POWER SUPPLY

**Table 1. Power Supply Pins Description** 

| Name                       | I/O    |                                                     | Description                                                                                                                                                                                                                               |                            |            |            |  |  |  |  |
|----------------------------|--------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|------------|--|--|--|--|
| VDD1<br>VDD2               | Supply | Power supply                                        | Power supply                                                                                                                                                                                                                              |                            |            |            |  |  |  |  |
| VSS1<br>VSS2               | Supply | Ground                                              | Ground                                                                                                                                                                                                                                    |                            |            |            |  |  |  |  |
| DMYVDD<br>DMYVSS           | Supply | Dummy power pi                                      | rummy power pin                                                                                                                                                                                                                           |                            |            |            |  |  |  |  |
| VPP                        | Supply | circuit. Only during OTP                            | PP is the power pin of embedded OTP (One-Time Programming) non-volatile memory reuit.  Only during OTP programming cycle VPP should connect to an external power source about 6.5V ± 0.25V). On the other cases, just keep this pin open. |                            |            |            |  |  |  |  |
| V0<br>V1<br>V2<br>V3<br>V4 | I/O    | amplifier for appli<br>Voltages should h<br>V0 ≥ V1 | mined by LCD pi<br>cation.<br>nave the following<br>≥ V2 ≥ V3 ≥ V4 ≥<br>I power circuit is a                                                                                                                                              | VSS<br>active, these volta |            |            |  |  |  |  |
|                            |        |                                                     |                                                                                                                                                                                                                                           |                            |            |            |  |  |  |  |
|                            |        | 1/9 bias                                            | (8/9) x V0<br>(6/7) x V0                                                                                                                                                                                                                  | (7/9) x V0<br>(5/7) x V0   | (2/9) x V0 | (1/9) x V0 |  |  |  |  |
|                            |        | 1/7 bias                                            | (2/7) x V0                                                                                                                                                                                                                                | (1/7) x V0                 |            |            |  |  |  |  |

## **LCD DRIVER SUPPLY**

Table 2. LCD Driver Supply Pins Description

| Name | I/O | Description                                                                                                                                                                                                                     |
|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C1-  | 0   | Capacitor 1 negative connection pin for voltage converter                                                                                                                                                                       |
| C1+  | 0   | Capacitor 1 positive connection pin for voltage converter                                                                                                                                                                       |
| C2-  | 0   | Capacitor 2 negative connection pin for voltage converter                                                                                                                                                                       |
| C2+  | 0   | Capacitor 2 positive connection pin for voltage converter                                                                                                                                                                       |
| C3+  | 0   | Capacitor 3 positive connection pin for voltage converter                                                                                                                                                                       |
| VOUT | I/O | Voltage converter input / output pin Connect this pin to Vss through capacitor.                                                                                                                                                 |
| VR   |     | V0 voltage adjustment pin It is valid only when internal voltage regulator resistors are not used (IRS = "L").                                                                                                                  |
| VCI  | 7   | This is the reference voltage for the voltage converter circuit for the LCD drive. Whether internal voltage converter use or not use, this pin should be fixed. The voltage should have the following range : 2.4V ≤ VCI ≤ 3.6V |
| VSUM | I/O | Temperature coefficient adjustment pin Keep open.                                                                                                                                                                               |

## **SYSTEM CONTROL**

**Table 3. System Control Pins Description** 

| Name | I/O |                                                                  |                                                                                                                                                                                                                                                                                    | <u>-</u>                                  | D                          | escriptio   | n           |              |              |           |
|------|-----|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------|-------------|-------------|--------------|--------------|-----------|
|      |     | Master m<br>synchron<br>- MS = "<br>- MS = "                     | Master / slave mode select input Master makes some signals for display, and slave gets them. This is for display synchronization MS = "H" : master mode - MS = "L" : slave mode The following table depends on the MS status.                                                      |                                           |                            |             |             |              |              |           |
| MS   | I   | MS                                                               | CLS                                                                                                                                                                                                                                                                                | OSC<br>circuit                            | Power supply circuit       | CL          | FR          | SYNC         | FRS          | DOF       |
|      |     | Н                                                                | Н                                                                                                                                                                                                                                                                                  | Enabled                                   | Enabled                    | Output      | Output      | Output       | Output       | Output    |
|      |     |                                                                  | L                                                                                                                                                                                                                                                                                  |                                           | Enabled                    | Input       | Output      | Output       | Output       | Output    |
|      |     | L                                                                | -                                                                                                                                                                                                                                                                                  | Disabled                                  | Disabled                   | Input       | Input       | Input        | Output       | Input     |
| CLS  | I   | - CLS =                                                          | "H" : enab                                                                                                                                                                                                                                                                         | ole                                       | le / disable<br>al display |             |             | n)           |              |           |
| CL   | I/O | When the                                                         | lock input<br>IST3020<br>d each oth                                                                                                                                                                                                                                                | is used in                                | in<br>master /             | slave mod   | de (multi-c | hip), the (  | CL pins mu   | ust be    |
| FR   | I/O | When the connected - MS = "                                      | LCD AC Signal input / output pin When the IST3020 is used in master / slave mode (multi-chip), the FR pins must be connected each other.  - MS = "H": output - MS = "L": input                                                                                                     |                                           |                            |             |             |              |              |           |
| SYNC | I/O | When the                                                         |                                                                                                                                                                                                                                                                                    | is used in                                | gnal input<br>master /     |             |             | chip), the   | SYNC pins    | s must be |
| FRS  | 0   |                                                                  | ver segme<br>s used tog                                                                                                                                                                                                                                                            |                                           | pin<br>n the SYN           | C pin.      |             |              |              |           |
| DOFB | I/O | When the connecte - DOFB                                         |                                                                                                                                                                                                                                                                                    | is used in<br>ner.<br>tput                | input / ou<br>naster / s   |             | de (multi-c | thip), the [ | OOFB pins    | must be   |
| IRS  |     | Internal re<br>This pin s<br>operation<br>- IRS = "<br>- IRS = " | nternal resistor select pin  This pin selects the resistors for adjusting V0 voltage level and is valid only in master operation.  IRS = "H": use the internal resistors IRS = "L": use the external resistors  V0 voltage is controlled by VR pin and external resistive divider. |                                           |                            |             |             |              |              |           |
| НРМВ | I   | Power su<br>- HPMB<br>- HPMB                                     | pply contr<br>= "H" : No<br>= "L" : Hiç                                                                                                                                                                                                                                            | rol pin of the<br>ormal mod<br>gh power s | he power s                 | supply circ | cuit for LC | D driver     | ve operation | on.       |

## **MICROPROCESSOR INTERFACE**

**Table 4. Microprocessor Interface Pins Description** 

|                  | Table 4. Microprocessor Interface Pins Description |                                          |                                                                                                                                                                                                                                                                                                                      |                |                  |      |                                                                     |                                                          |                  |  |
|------------------|----------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|------|---------------------------------------------------------------------|----------------------------------------------------------|------------------|--|
| Name             | I/O                                                |                                          |                                                                                                                                                                                                                                                                                                                      |                | D                | esci | ription                                                             |                                                          |                  |  |
| RESB             | I                                                  | Reset in<br>When R                       |                                                                                                                                                                                                                                                                                                                      | initialization | n is exec        | uted | ı.                                                                  |                                                          |                  |  |
|                  |                                                    | Parallel                                 | / serial data                                                                                                                                                                                                                                                                                                        | a input seled  | ct input         |      |                                                                     |                                                          |                  |  |
|                  |                                                    | PS                                       | Interface<br>mode                                                                                                                                                                                                                                                                                                    | Chip<br>select | Data<br>instruct |      | Data                                                                | Read / Write                                             | Serial clock     |  |
| PS               | I                                                  | Н                                        | Parallel                                                                                                                                                                                                                                                                                                             | CS1B,<br>CS2   |                  |      | DB0 to DB7                                                          | RDB<br>WRB                                               | -                |  |
|                  |                                                    | L                                        | Serial                                                                                                                                                                                                                                                                                                               | CS1B,<br>CS2   | A0               |      | SID (DB7)                                                           | Write only                                               | SCLK (DB6)       |  |
|                  |                                                    | DB5, RI                                  | NOTE: In serial mode, it is impossible to read data from the on-chip RAM. And DB 0B5, RDB and WRB must be fixed to either "H" or "L".                                                                                                                                                                                |                |                  |      |                                                                     | M. And DB0 to                                            |                  |  |
| C86              | I                                                  | - C86 =                                  | licroprocessor Interface Select input pin in parallel mode  C86 = "H": 6800-series MPU interface  C86 = "L": 8080-series MPU interface                                                                                                                                                                               |                |                  |      |                                                                     |                                                          |                  |  |
| CS1B<br>CS2      | I                                                  | Data / ir<br>select is                   | hip select input pins ata / instruction I/O is enabled only when CS1B is "L" and CS2 is "H". when chip elect is non-active, DB0 to DB7 may be high impedance.                                                                                                                                                        |                |                  |      |                                                                     |                                                          |                  |  |
| A0               | I                                                  | - Ã0 =                                   | Register select input pin A0 = "H": DB0 to DB7 are display data A0 = "L": DB0 to DB7 are control data                                                                                                                                                                                                                |                |                  |      |                                                                     |                                                          |                  |  |
|                  |                                                    |                                          | Read / Write execution control pin                                                                                                                                                                                                                                                                                   |                |                  |      |                                                                     |                                                          |                  |  |
|                  |                                                    | C86                                      | MPU Typ                                                                                                                                                                                                                                                                                                              |                | WRB              |      |                                                                     | Description                                              |                  |  |
| WRB<br>(RW)      | I                                                  |                                          |                                                                                                                                                                                                                                                                                                                      | 6800-seri      | es R             | aw . | - R                                                                 | ad / Write contro<br>RW = "H" : read<br>RW = "L" : write | ol input pin     |  |
| (KVV)            |                                                    | L                                        | 8080-seri                                                                                                                                                                                                                                                                                                            | es W           | RB               | The  | te enable clock<br>data on DB0 to<br>e of the WRB s                 | DB7 are latch                                            | ed at the rising |  |
|                  |                                                    |                                          |                                                                                                                                                                                                                                                                                                                      |                |                  |      |                                                                     |                                                          |                  |  |
|                  |                                                    | Read / \                                 | Write execu                                                                                                                                                                                                                                                                                                          | tion control   | pin              |      |                                                                     |                                                          |                  |  |
|                  |                                                    | C86                                      | MPU Typ                                                                                                                                                                                                                                                                                                              | e E_RI         | OB               |      | D                                                                   | escription                                               |                  |  |
| RDB<br>(E)       | ì                                                  | Н                                        | 6800-serie                                                                                                                                                                                                                                                                                                           | es E           | -                | RW   | Write control ii = "H" : When E output s = "L" : The data at the fa | is "H", DB0 to<br>status.                                | 37 are latched   |  |
|                  |                                                    | L                                        | 8080-seri                                                                                                                                                                                                                                                                                                            | es RD          | в W              |      | enable clock in <sub>l</sub><br>/ RDB is "L", D                     |                                                          | in an output     |  |
| DB0<br>to<br>DB7 | I/O                                                | bus. Wh<br>- DB0 t<br>- DB6 :<br>- DB7 : | 8-bit bi-directional data bus that is connected to the standard 8-bit microprocessor data bus. When the serial interface selected (PS = "L");  - DB0 to DB5 : Keep VDD or Vss  - DB6 : serial input clock (SCLK)  - DB7 : serial input data (SID)  When chip select is not active, DB0 to DB7 may be high impedance. |                |                  |      |                                                                     |                                                          |                  |  |
| TEST1            | I/O                                                | These a                                  |                                                                                                                                                                                                                                                                                                                      | IC chip testi  |                  |      |                                                                     |                                                          |                  |  |

## **LCD DRIVER OUTPUTS**

**Table 5. LCD Driver Outputs Pins Description** 

| Name       | I/O |                                                                                                            | Des                                                                                                                                                                                                                      | scription      |                               |  |  |  |  |
|------------|-----|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------|--|--|--|--|
|            |     | LCD segment driver outputs The display data and the M signal control the output voltage of segment driver. |                                                                                                                                                                                                                          |                |                               |  |  |  |  |
|            |     |                                                                                                            |                                                                                                                                                                                                                          |                | Segment driver output voltage |  |  |  |  |
| 0500       |     | Display data                                                                                               | М                                                                                                                                                                                                                        | Normal display | Reverse display               |  |  |  |  |
| SEG0<br>to | 0   | Н                                                                                                          | Н                                                                                                                                                                                                                        | V0             | V2                            |  |  |  |  |
| SEG223     | O   | Н                                                                                                          | L                                                                                                                                                                                                                        | Vss            | V3                            |  |  |  |  |
| OLOZZO     |     | L                                                                                                          | Н                                                                                                                                                                                                                        | V2             | V0                            |  |  |  |  |
|            |     | L                                                                                                          | L                                                                                                                                                                                                                        | V3             | Vss                           |  |  |  |  |
|            |     | Power save                                                                                                 | e mode                                                                                                                                                                                                                   | Vss            | Vss                           |  |  |  |  |
|            |     |                                                                                                            |                                                                                                                                                                                                                          |                |                               |  |  |  |  |
|            |     | LCD common driver outputs  The internal scanning data and the M signal control the output voltage of segme |                                                                                                                                                                                                                          |                |                               |  |  |  |  |
|            |     | Scan data                                                                                                  | М                                                                                                                                                                                                                        | Common drive   | r output voltage              |  |  |  |  |
| COM0       |     | Н                                                                                                          | Н                                                                                                                                                                                                                        | V              | SS                            |  |  |  |  |
| to         | 0   | Н                                                                                                          | L                                                                                                                                                                                                                        | V              | /0                            |  |  |  |  |
| COM63      |     | L                                                                                                          | Н                                                                                                                                                                                                                        | V              | /1                            |  |  |  |  |
|            |     | L                                                                                                          | L                                                                                                                                                                                                                        | \              | /4                            |  |  |  |  |
|            |     | Power save                                                                                                 | e mode                                                                                                                                                                                                                   | V              | SS                            |  |  |  |  |
|            |     |                                                                                                            |                                                                                                                                                                                                                          |                |                               |  |  |  |  |
| COMS       | 0   | The output signals of tw                                                                                   | Common output for the icons The output signals of two pins are same. When not used, these pins should be left Open. n multi-chip (master / slave) mode, all COMS pin on both master and slave units are the same signal. |                |                               |  |  |  |  |

## IST3020 I/O PIN ITO Resister Limitation

| PIN Name                         | ITO Resister |
|----------------------------------|--------------|
| VSS1,VSS2                        | < 30Ω        |
| VDD1,VDD2,VCI                    | < 50Ω        |
| VOUT,V0 ~ V4,C1+/- ~ C3+         | < 100Ω       |
| CS1B,WRB,RDB,A0,DB0 ~ DB7,PS,C86 | < 1ΚΩ        |
| RESB                             | < 10ΚΩ       |

NOTE: DUMMY - These pins should be opened (floated).

## FUNCTIONAL DESCRIPTION MICROPROCESSOR INTERFACE

#### **Chip Select Input**

There are CS1B and CS2 pins for chip selection. The IST3020 can inter face with an MPU only when CS1B is "L" and CS2 is "H". When these pins are set to any other combination, A0, RDB, and WRB inputs are disabled and DB0 to DB7 are to be high impedance. And, in case of serial interface, the internal shift register and the counter are reset.

#### Parallel / Serial Interface

IST3020 has three types of interface with an MPU, which are one serial and two parallel interfaces. This parallel or serial interface is determined by PS pin as shown in table 6.

Table 6. Parallel / Serial Interface Mode

| PS | Type     | CS1B | CS2 | C86 | Interface mode       |
|----|----------|------|-----|-----|----------------------|
| ш  | Parallel | CS1B | CS2 | Н   | 6800-series MPU mode |
| П  | Parallel | COID | U32 | L   | 8080-series MPU mode |
| L  | Serial   | CS1B | CS2 | *x  | Serial-mode          |

\*x: Don't care

#### Parallel Interface (PS = "H")

Document No.:IST-RD-0049 Version: 007

The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by C86 as shown in table 7. The type of data transfer is determined by signals at A0, RDB(E) and WRB(RW) as shown in Table 8.

Table 7. Microprocessor Selection for Parallel Interface

| C86 | CS1B | CS2 | A0 | RDB | WRB | DB0 to DB7 | MPU bus     |
|-----|------|-----|----|-----|-----|------------|-------------|
| Н   | CS1B | CS2 | A0 | Е   | RW  | DB0 to DB7 | 6800-series |
| L   | CS1B | CS2 | A0 | RDB | WRB | DB0 to DB7 | 8080-series |

**Table 8. Parallel Data Transfer** 

| Common | 6800- | series | 8080-series |   | Description                               |
|--------|-------|--------|-------------|---|-------------------------------------------|
| Α0     | E     | RW     | RW RDB WRB  |   | Description                               |
| Н      | Н     | H      | L           | Н | Display data read out                     |
| Н      | H     | L      | Н           | L | Display data write                        |
| L      | Н     | Н      | L           | Н | Register status read                      |
| L      | H     | Ĺ      | Н           | Ĺ | Writes to internal register (instruction) |

#### Serial Interface (PS = "L")

When the IST3020 is active, serial data (DB7) and serial clock (DB6) inputs are enabled. And not active, the internal 8-bit shift register and the 3-bit counter are reset. Serial data can be read on the rising edge of serial clock going into DB6 and processed as 8-bit parallel data on the eighth serial clock. Serial data input is display data when A0 is high and control data when A0 is low. Since the clock signal (DB6) is easy to be affected by the external noise caused by the line length, the operation check on the actual machine is recommended.



Figure 1. Serial Interface Timing

#### **Busy Flag**

The Busy Flag indicates whether the IST3020 is operating or not. When DB7 is "H" in read status operation, this device is in busy status and will accept only read status instruction. If the cycle time is correct, the microprocessor needs not to check this flag before each instruction, which improves the MPU performance.

#### **Data Transfer**

The IST3020 uses bus holder and internal data bus for data transfer with the MPU. When writing data from the MPU to on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in figure 2. And when reading data from on-chip RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored data from bus holder for the next data read cycle as shown in figure 3. This means that a dummy read cycle must be inserted between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified address cannot be output with the read display data instruction right after the address sets, but can be output at the second read of data.



Figure 2. Write Timing



Figure 3. Read Timing

## **DISPLAY DATA RAM (DDRAM)**

The Display Data RAM stores pixel data for the LCD. It is 65-row by 224-column addressable array. Each pixel can be selected when the page and column addresses are specified. The 65 rows are divided into 8 pages of 8 lines and the 9th page with a single line (DB0 only). Data is read from or written to the 8 lines of each page directly through DB0 to DB7. The display data of DB0 to DB7 from the microprocessor correspond to the LCD common lines as shown in figure 4. The microprocessor can read from and write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed without causing the LCD flicker.



Figure 4. RAM-to-LCD Data Transfer

#### **Page Address Circuit**

This circuit is for providing a Page Address to DISPLAY-DATA-RAM shown in figure 6. It incorporates 4-bit Page Address register changed by only the "Set Page" instruction. Page Address 8(DB3 is "H", but DB2, DB1 and DB0 are "L") is a special RAM area for the icons and display data DB0 is only valid. When Page Address is above 8, it is impossible to access to on-chip RAM.

## **Line Address Circuit**

This circuit assigns DDRAM a Line Address corresponding to the first line (COM0) of the display. Therefore, by setting line address repeatedly, it is possible to realize the screen scrolling and page switching without changing the contents of on-chip RAM as shown in figure 6. It incorporates 6-bit line address register changed by only the initial display line instruction and 6-bit counter circuit. At the beginning of each LCD frame, the contents of register are copied to the line counter which is increased by CL signal and generates the Line Address for transferring the 224-bit RAM data to the display data latch circuit. However, display data of icons are not scrolled because the MPU can not access Line Address of icons.

#### **Column Address Circuit**

Column Address circuit has 8-bit preset counter that provides column address to the Display Data RAM as shown in figure 6. When set Column Address MSB / LSB instruction is issued, 8-bit [Y7:Y0] is updated. And, since this address is increased by 1 each a read or write data instruction, microprocessor can access the display data continuously. Increment of the column address is stopped by FFH. When display data is accessed continuously, the column address continues to specify the FFH after access of the FFH. It should be noted that the column address FFH display data is accessed repeatedly. The column address and page address are independent of each other. Therefore, when shifting from the column of page 0 to column of page 1, for example, it is necessary to specify each of the page address and column address again.

ADC select instruction makes it possible to invert the relationship between the Column Address and the segment outputs. It is necessary to rewrite the display data on built-in RAM after issuing ADC Select instruction. Refer to the following figure 5.

| SEG output        |         | SEG<br>0 | SEG<br>1 | SEG<br>2 | SEG<br>3 | <br>SEG<br>220 | SEG<br>221 | SEG<br>222 | SEG<br>223 |
|-------------------|---------|----------|----------|----------|----------|----------------|------------|------------|------------|
| Column<br>Address | ADC = 0 | 00H      | 01H      | 02H      | 03H      | <br>DCH        | DDH        | DEH        | DFH        |
| [Y7:Y0]           | ADC = 1 | FFH      | FEH      | FDH      | FCH      | <br>23H        | 22H        | 21H        | 20H        |

Figure 5. The Relationship between the Column Address and the Segment Outputs

## **Segment Control Circuit**

This circuit controls the display data by the display ON / OFF, reverse display ON / OFF and entire display ON / OFF instructions without changing the data in the display data RAM.





Figure 6. Display Data RAM Map

#### LCD DISPLAY CIRCUITS

#### Oscillator

This is completely on-chip oscillator and its frequency is nearly independent of VDD. This oscillator signal is used in the voltage converter and display timing generation circuit. The oscillator circuit is only enabled when MS = "H" and CLS = "H". When on-chip oscillator is not used, CLS pin must be "L" condition. In this time, external clock must be input from CL pin.

## **Display Timing Generator Circuit**

This circuit generates some signals to be used for displaying LCD. The display clock, CL generated by oscillation clock, generates a clock to the line counter and a latch signal to the display data latch. The line address of on-chip RAM is generated in synchronization with the display clock (CL) and the 224-bit display data is latched by the display data latch circuit in synchronization with the display clock. The display data which is read to the LCD driver is completely independent of the access to the display data RAM from the microprocessor. The LCD AC signal, FR is generated from the display clock. 2-frame AC driver waveforms with internal timing signal are shown in figure 7. It can generate n-line reversal alternating drive waveforms by setting data (n-1) to the n-line reversal drive register, the timing signal are shown in figure 8.

In a multiple chip configuration, the slave chip requires the M, CL and DISP signals from the master. Table 9 shows the FR, SYNC, CL, and DOFB status.

Table 9. Master and Slave Timing Signal Status

| Operation mode | Oscillator                | SYNC                             | FR     | CL     | DOFB   |
|----------------|---------------------------|----------------------------------|--------|--------|--------|
| Master         | ON (internal clock used)  | Output                           | Output | Output | Output |
| iviastei       | OFF (external clock used) | clock used) Output Output Output | Output |        |        |
| Slave          | -                         | Input                            | Input  | Input  | Input  |



Figure 7. 2-frame Alternating Driving Waveform



Figure 8. n-line Reversal Alternating Driving Waveform (Example of n = 5, when the line reversal register is set to 4)

#### **LCD DRIVER CIRCUIT**

This driver circuit is configured by 66-channel (including 2 COMS channels) common driver and 224-channel segment driver. This LCD panel driver voltage Depends on the combination of display data and FR signal.



**Figure 9. Segment and Common Timing** 

21

#### **POWRE SUPPLY CIRCUITS**

The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. They are valid only in master operation and controlled by power control instruction. For details, refers to "Instruction Description". Table 10 shows the referenced combinations in using Power Supply circuits.

**Table 10. Recommended Power Supply Combinations** 

| User setup                                                                 | Power<br>Control<br>(VC VR VF) | V/C<br>circuits | V/R<br>circuits | V/F<br>circuits | VOUT           | V0             | V1 to V4       |
|----------------------------------------------------------------------------|--------------------------------|-----------------|-----------------|-----------------|----------------|----------------|----------------|
| Only the internal power supply circuits are used                           | 111                            | ON              | ON              | ON              | Open           | Open           | Open           |
| Only the voltage regulator circuits and voltage follower circuits are used | 011                            | OFF             | ON              | ON              | External input | Open           | Open           |
| Only the voltage follower circuits are used                                | 001                            | OFF             | OFF             | ON              | Open           | External input | Open           |
| Only the external power supply circuits are used                           | 000                            | OFF             | OFF             | OFF             | Open           | External input | External input |



#### **Voltage Converter Circuits**

These circuits boost up the electric potential between VCI and Vss to 2, 3 or 4 times toward positive side and boosted voltage is outputted from VOUT pin.



Figure 10. Two Times Boosting Circuit

Figure 11. Three Timing Boosting Circuit



Figure 12. Four Times Boosting Circuit

<sup>\*</sup>The VCI voltage range must be set so that the VOUT voltage does not exceed the absolute maximum rated value

### **Voltage Regulator Circuits**

The function of the internal Voltage Regulator circuits is to determine liquid crystal operating voltage, V0, by adjusting resistors, Ra and Rb, within the range of |V0| < |VOUT|. Because VOUT is the operating Voltage of operational-amplifier circuits shown in figure 13, it is necessary to be applied internally or externally.

For the Eq. 1, we determine V0 by Ra, Rb and Vev. The Ra and Rb are connected internally or externally ty IRS pin. And Vev called the voltage of electronic volume is determined by Eq. 2, where the parameter  $\alpha$  is the value selected by instruction, "Set Reference Voltage Register", within the range 0 to 63. VREF voltage at Ta=25°C is shown in table 11-1.

$$V0 = (1 + \frac{Rb}{Ra}) \times Vev [V] ---- (Eq. 1)$$

Vev = 
$$(1 - \frac{(63-\alpha)}{162}) \times \text{VREF [V]} ---- (Eq. 2)$$

Table 11-1. Vref Voltage at Ta = 25°C

| Device                | Temp. coefficient | VREF [V] |
|-----------------------|-------------------|----------|
| Internal power supply | -0.05%/°C         | 2.1      |

Table 11-2. Electronic Contrast Control Register (64 Steps)

| SV5 | SV4 | SV3 | SV2 | SV1 | SV0 | Reference voltage<br>Parameter (α) | V0      | Contrast |
|-----|-----|-----|-----|-----|-----|------------------------------------|---------|----------|
| 0   | 0   | 0   | 0   | 0   | 0   | 0                                  | Minimum | Low      |
| 0   | 0   | 0   | 0   | 0   | 1   | 1                                  | ]       |          |
| :   | :   | : ( |     | :   | :   | :                                  | :<br>:  | :        |
| 1   | 0   | 0   | 0   | 0   | 0   | 32 (default)                       | ] :     | :        |
| :   | :   |     | :   | :   | :   | :                                  | :       | :        |
| 1   | 1   | 1   | 1   | 1   | 0   | 62                                 |         |          |
| 1   | 1   | 1   | 1   | 1   | 1   | 63                                 | Maximum | High     |



Figure 13. Internal Voltage Regulator Circuit



### In Case of Using Internal Resistors, Ra and Rb. (IRS = "H")

When IRS pin is "H", resistor Ra is connected internally between VR pin and Vss, and Rb is connected between V0 and VR. We determine V0 by two instructions, "Regulator Resistor Select" and "Set Reference Voltage".

Table 12. Internal Rb / Ra Ratio depending on 3-bit Data (R2 R1 R0)

|             |     | 3-bit data settings (R2 R1 R0) |     |     |     |     |     |     |  |  |
|-------------|-----|--------------------------------|-----|-----|-----|-----|-----|-----|--|--|
|             | 000 | 0 0 1                          | 010 | 011 | 100 | 101 | 110 | 111 |  |  |
| 1+(Rb / Ra) | 4.5 | 5                              | 5.5 | 6   | 6.5 | 7   | 7.5 | 8   |  |  |

The following figure shows V0 voltage measured by adjusting internal regulator resistor ratio (Rb / Ra) and 6-bit electronic volume registers for each temperature coefficient at  $Ta = 25^{\circ}$ C.



Figure 14. Electronic Volume Level

## In Case of Using External Resistors, Ra and Rb. (IRS = "L")

When IRS pin is "L", it is necessary to connect external regulator resistor Ra between VR and Vss, and Rb between V0 and VR.

Example: For the following requirements

- 1. LCD driver voltage, V0 = 10V
- 2. 6-bit reference voltage register = (1, 0, 0, 0, 0, 0)
- 3. Maximum current flowing Ra, Rb = 1 µA

From Eq. 1  

$$Rb$$
  
 $10 = (1 + \frac{Rb}{Ra}) \times Vev [V] ---- (Eq. 3)$ 

From Eq. 2  $VEV = (1 - \frac{(63-32)}{162}) \times 2.1 \cong 1.7 \quad [V] ---- (Eq. 4)$ 

From requirement 3.

$$\frac{10}{\text{Ra} + \text{Rb}} = 1 \, [\mu \text{A}] ---- (\text{Eq. 5})$$

From equations Eq. 3, 4 and 5

Ra 1.7 [M $\Omega$ ]

Rb 8.3 [MΩ]

The following table shows the range of V0 depending on the above requirements.

Table 13. V0 Depending on Electronic Volume Level

|    | Electronic volume level |  |       |  |       |  |  |  |  |  |
|----|-------------------------|--|-------|--|-------|--|--|--|--|--|
|    | 0                       |  | 32    |  | 63    |  |  |  |  |  |
| V0 | 7.55                    |  | 10.00 |  | 12.35 |  |  |  |  |  |

## **Voltage Follower Circuits**

VLCD voltage (V0) is resistively divided into four voltage levels (V1, V2, V3 and V4) and those output impedance are converted by the Voltage Follower for increasing are capability. The following table shows the relationship between V1 to V4 level and each duty ratio.

Table 14. The Relationship between V1 to V4 Level and Duty Ratio

| LCD bias | V1         | V2         | V3         | V4         |
|----------|------------|------------|------------|------------|
| 1/7      | (6/7) x V0 | (5/7) x V0 | (2/7) x V0 | (1/7) x V0 |
| 1/9      | (8/9) x V0 | (7/9) x V0 | (2/9) x V0 | (1/9) x V0 |



#### REFERENCE CIRCUIT EXAMPLES



Figure 15. When Using all Internal LCD Power Circuits (VCI = VDD, 4-time V/C : ON, V/R : ON, V/F : ON)



Figure 16. When Using some Internal LCD Power Circuits (VCI = VDD, V/C : OFF, V/R : ON, V/F : ON)



Figure 17. When Not Using any Internal LCD Power Circuits (VCI = VDD, V/C : OFF, V/R : OFF, V/F : OFF)

\*C1 and C2 are determined by the size of the LCD being driven. Select a value that will stabilize the liquid crystal drive voltage.

#### **RESET CIRCUIT**

Setting RESETB to "L" or Reset instruction can initialize internal function. When RESETB becomes "L", following procedure is occurred.

Display ON / OFF: OFF

Entire display ON / OFF: OFF (normal)

ADC select : OFF (normal)

Reverse display ON / OFF : OFF (normal) Power control register (VC, VR, VF) = (0, 0, 0) Serial interface internal register data clear

On-chip oscillator OFF Power save release Read-modify-write : OFF SHL select : OFF (normal) Static indicator mode : OFF

Static indicator register: (S1, S0) = (0, 0)

Display start line: 0 (first) Column address: 0 Page address: 0

Regulator resistor select register: (R2, R1, R0) = (0, 0, 0)

LCD power supply bias ratio: 1/9 bias

Reference voltage control register: (SV5, SV4, SV3, SV2, SV1, SV0) = (1, 0, 0, 0, 0, 0)

Test mode release

n-Line alternating current reversal drive reset

n-Line alternating current reversal register : (NL3, NL2, NL1, NL0) = (0, 0, 0, 0)

OTP program control : (OTPADJ,OTPPON) = (1, 0) External capacitor discharge function enable

When RESET instruction is issued, following procedure is occurred.

Read-modify-write : OFF Static indicator mode : OFF

Static indicator register: (S1, S0) = (0, 0)

SHL select : OFF (normal)
Display start line : 0 (first)
Column address : 0
Rage address : 0

Regulator resistor select register: (R2, R1, R0) = (0, 0, 0)

Reference voltage control register: (SV5, SV4, SV3, SV2, SV1, SV0) = (1, 0, 0, 0, 0, 0)

Test mode release

While RESETB is "L" or Reset instruction is executed, no instruction except read status could be accepted. Reset status appears at DB4 becomes "L", any instruction can be accepted. RESETB must be connected to the reset pin of the MPU, and initialize the MPU and this LSI at the same time. The initialization by RESETB is essential before used.

## **INSTRUCTION DESCRIPTION**

## **Table 15. Instruction Table**

x : Don't care

|                                              | x : Don't care |    |            |     |        |        |        |     |     | × : Don't care |                                                                                                                              |
|----------------------------------------------|----------------|----|------------|-----|--------|--------|--------|-----|-----|----------------|------------------------------------------------------------------------------------------------------------------------------|
| INSTRUCTION                                  | A0             | RW | DB7        | DB6 | DB5    | DB4    | DB3    | DB2 | DB1 | DB0            | Description                                                                                                                  |
| Display ON / OFF                             | 0              | 0  | 1          | 0   | 1      | 0      | 1      | 1   | 1   | DON            | Turn on/off LCD panel<br>When DON = 0 : display OFF<br>When DON = 1 : display ON                                             |
| Initial display line                         | 0              | 0  | 0          | 1   | ST5    | ST4    | ST3    | ST2 | ST1 | ST0            | Specify DDRAM line for COM0                                                                                                  |
| Set page address                             | 0              | 0  | 1          | 0   | 1      | 1      | P3     | P2  | P1  | P0             | Set page address                                                                                                             |
| Set column address MSB                       | 0              | 0  | 0          | 0   | 0      | 1      | Y7     | Y6  | Y5  | Y4             | Set column address MSB                                                                                                       |
| Set column address LSB                       | 0              | 0  | 0          | 0   | 0      | 0      | Y3     | Y2  | Y1  | Y0             | Set column address LSB                                                                                                       |
| Read status                                  | 0              | 1  | BUSY       | ADC | ON/OFF | RESETB | 0      | 0   | 0   | 0              | Read the internal status                                                                                                     |
| Write display data 1                         |                | 0  | Write data |     |        |        |        |     |     |                | Write data into DDRAM                                                                                                        |
| Read display data                            | 1              | 1  |            |     |        | Read   | l data |     |     |                | Read data from DDRAM                                                                                                         |
| ADC select                                   | 0              | 0  | 1          | 0   | 1      | 0      | 0      | 0   | 0   | ADC            | Select SEG output direction When ADC = 0 : normal direction (SEG0 → SEG223) when ADC = 1 : reverse direction (SEG223 → SEG0) |
| Reverse display ON / OFF                     | 0              | 0  | 1          | 0   | 1      | 0      | 0      | 1   | 1   | REV            | Select normal / reverse display<br>When REV = 0 : normal display<br>When REV = 1 : reverse display                           |
| Entire display ON / OFF                      | 0              | 0  | 1          | 0   | 1      | 0      | 0      | 1   | 0   | EON            | Select normal / entire display ON<br>When EON = 0 : normal display<br>When EON = 1 : entire display<br>ON                    |
| LCD bias select                              | 0              | 0  | 1          | 0   | 1      | 0      | 0      | 0   | 1   | BIAS           | Select LCD bias                                                                                                              |
| Set modify-read                              | 0              | 0  | 1          | 1   | 1      | 0      | 0      | 0   | 0   | 0              | Set modify-read mode                                                                                                         |
| Reset modify-read                            | 0              | 0  | 1          | 1   | 1      | 0      | 1      | 1   | 1   | 0              | Release modify-read mode                                                                                                     |
| Reset                                        | 0              | 0  | 1          | 1   | 1      | 0      | 0      | 0   | 1   | 0              | Initialize the internal functions                                                                                            |
| SHL select                                   | 0              | 0  | 1          | 1   | 0      | 0      | SHL    | ×   | ×   | ×              | Select COM output direction When SHL = 0 : normal direction (COM0 → COM63) When SHL = 1 : reverse direction (COM63 → COM0)   |
| Power control                                | 0              | 0  | 0          | 0   | 1      | 0      | 1      | VC  | VR  | VF             | Control power circuit operation                                                                                              |
| Regulator resistor select                    | 0              | 0  | 0          | 0   | 1      | 0      | 0      | R2  | R1  | R0             | Select internal resistance ratio of the regulator resistor                                                                   |
| Set refer <mark>enc</mark> e voltage<br>mode | 0              | 0  | 1          | 0   | 0      | 0      | 0      | 0   | 0   | 1              | Set reference voltage mode                                                                                                   |
| Set reference voltage register               | 0              | 0  | ×          | ×   | SV5    | SV4    | SV3    | SV2 | SV1 | SV0            | Set reference voltage register                                                                                               |
| Set static indicator mode                    | 0              | 0  | 1          | 0   | 1      | 0      | 1      | 1   | 0   | SM             | Set static indicator mode                                                                                                    |
| Set static indicator register                | 0              | 0  | ×          | ×   | ×      | ×      | ×      | ×   | S1  | S0             | Set static indicator register                                                                                                |
| Power save                                   | 0              | 0  | 1          | 0   | 1      | 0      | 1      | 0   | 0   | SAV            | Select power save mode<br>When SAV = 0 : Stand-by<br>When SAV = 1 : Sleep                                                    |
| Power save reset                             | 0              | 0  | 1          | 1   | 1      | 0      | 0      | 0   | 0   | 1              | Reset power save                                                                                                             |
| Set n-Line reversal drive register           | 0              | 0  | 0          | 0   | 1      | 1      | NL3    | NL2 | NL1 | NL0            | Set the number of line reversal drive line                                                                                   |

| 0 | 0                          | 1                                     | 1                                                                                               | 1                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reset the line reversal drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|----------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 0                          | 1                                     | 0                                                                                               | 1                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Start the built-in oscillator circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 | 0                          | 0                                     | 1                                                                                               | 1                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DISC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DISC = 000 (enable)<br>DISC = 111 (disable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0 | 0                          | 1                                     | 1                                                                                               | 1                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Non-Operation command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 | 0                          | 1                                     | 1                                                                                               | 1                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Don't use this instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0 | 0                          | 1                                     | 0                                                                                               | 0                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Set OTP program mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0 | 0                          | OTPA<br>DJ                            | OTPP<br>ON                                                                                      | х                                                                                                   | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OTP control option OTPADJ = 1:OTP use OTPADJ = 0:OTP ignore OTPPON =1:OTP program enable OTPPON = 0:OTP program disable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0 | 0                          | 1                                     | 0                                                                                               | 0                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Set contrast offset mode (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0 | 0                          | ×                                     | ×                                                                                               | CTA5                                                                                                | CTA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CTA3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CTA2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CTA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CTA0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Set contrast offset register (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0 | 0                          | 1                                     | 0                                                                                               | 0                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Set contrast offset mode (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0 | 0                          | ×                                     | ×                                                                                               | ×                                                                                                   | СТВ4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | СТВ3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CTB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | СТВ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | СТВ0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Set contrast offset register (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0 | 0                          | 1                                     | 0                                                                                               | 0                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Set contrast offset mode (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0 | 0                          | ×                                     | ×                                                                                               | ×                                                                                                   | CTC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | стсз                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CTC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CTC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CTC0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Set contrast offset register (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 0<br>0<br>0<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 | 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 x x 0 0 1 0 0 0 x x | 0       0       1       0       1         0       0       0       1       1         0       0       1       1       1         0       0       1       1       1         0       0       1       0       0         0       0       1       0       0         0       0       1       0       0         0       0       1       0       0         0       0       1       0       0         0       0       1       0       0         0       0       1       0       0         0       0       1       0       0 | 0       0       1       0       1       0         0       0       0       1       1       1         0       0       1       1       1       0         0       0       1       1       1       1         0       0       1       0       0       1         0       0       1       0       0       1         0       0       1       0       0       1         0       0       1       0       0       1         0       0       1       0       0       1         0       0       1       0       0       1         0       0       1       0       0       1         0       0       1       0       0       1         0       0       1       0       0       1 | 0       0       1       0       1       0       1         0       0       0       1       1       1       0         0       0       1       1       1       0       0         0       0       1       1       1       1       1       1       1         0       0       1       0       0       1       0       0         0       0       1       0       0       1       0         0       0       1       0       0       1       0         0       0       1       0       0       1       0         0       0       1       0       0       1       0         0       0       1       0       0       1       0         0       0       1       0       0       1       0         0       0       1       0       0       1       0 | 0       0       1       0       1       0       1       0         0       0       0       1       1       1       0       0         0       0       1       1       1       0       0       0         0       0       1       1       1       1       1       0       0         0       0       1       0       0       1       0       0         0       0       1       0       0       1       0       0         0       0       1       0       0       1       0       0         0       0       1       0       0       1       0       0         0       0       1       0       0       1       0       0         0       0       1       0       0       1       0       0         0       0       1       0       0       1       0       0         0       0       1       0       0       1       0       0         0       0       1       0       0       1       0       0 | 0         0         1         0         1         0         1         0         1           0         0         0         1         1         1         0         0         0         1           0         0         1         1         1         0         0         0         1           0         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 | 0       0       1       0       1       0       1       0       1       1         0       0       0       1       1       1       0       0       0       1       1         0       0       1       1       1       0       0       0       1       1         0       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </td |

# Display ON / OFF

Tums the Display ON or OFF

| A0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 0   | 1   | 0   | 1   | 1   | 1   | DON |

DON = 1: display ON DON = 0: display OFF

### **Initial Display Line**

Sets the line address of display RAM to determine the Initial Display Line. The RAM display data is displayed at the top row (COM0 when SHL = L, COM63 when SHL = H) of LCD panel.

|   | Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|---|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ī | 0  | 0  | 0   | 1   | ST5 | ST4 | ST3 | ST2 | ST1 | ST0 |

| ST5 | ST4 | ST3 | ST2 | ST1 | ST0 | Line address |
|-----|-----|-----|-----|-----|-----|--------------|
| 0   | 0   | 0   | 0   | 0   | 0   | 0            |
| 0   | 0   | 0   | 0   | 0   | 1   | 1            |
| :   | :   | :   | :   | :   |     | :            |
| 1   | 1   | 1   | 1   | 1   | 0   | 62           |
| 1   | 1   | 1   | 1   | 1   | 1   | 63           |

# **Set Page Address**

Sets the Page Address of display data RAM from the microprocessor into the Page Address register. Any RAM data bit can be accessed when its Page Address and column address are specified. Along with the column address, the Page Address defines the address of the display RAM to write or read display data. Changing the Page Address doesn't effect to the display status.

| A0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 0   | 1   | 1   | P3  | P2  | P1  | P0  |

| Р3 | P2 | P1 | P0 | Page |
|----|----|----|----|------|
| 0  | 0  | 0  | 0  | 0    |
| 0  | 0  | 0  | 1  | 1    |
| :  | :  | :  | :  | :    |
| 0  | 1  | 1  | 1  | 7    |
| 1  | 0  | 0  | 0  | 8    |

To avoid display data loss in display off, please re-write display ram data before display on execute.

#### **Set Column Address**

Sets the Column Address of display RAM from the microprocessor into the Column Address register. Along with the Column Address, the Column Address defines the address of the display RAM to write or read display data. When the microprocessor reads or writes display data to or from display RAM, Column Addresses are automatically increased.

#### **Set Column Address MSB**

| Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 0   | 0   | 0   | 1   | Y7  | Y6  | Y5  | Y4  |

#### **Set Column Address LSB**

| Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 0   | 0   | 0   | 0   | Y3  | Y2  | Y1  | Y0  |

| Y7 | Y6 | Y5 | Y4 | Y3 | Y2 | Y1 | YO | Column address |
|----|----|----|----|----|----|----|----|----------------|
| 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0              |
| 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1              |
| :  | :  | :  | :  | :  |    |    | :  | :              |
| 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 254            |
| 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 255            |

#### **Read Status**

Indicates the internal status of the IST3020

| Α0 | RW | DB7  | DB6 | DB5    | DB4    | DB3 | DB2 | DB1 | DB0 |
|----|----|------|-----|--------|--------|-----|-----|-----|-----|
| 0  | 1  | BUSY | ADC | ON/OFF | RESETB | 0   | 0   | 0   | 0   |

| Flag   | Description                                                                                                                                            |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| BUSY   | The device is busy when internal operation or reset. Any instruction is rejected until BUSY goes Low.  0 : chip is active, 1 : chip is being busy.     |
| ADC    | Indicates the relationship between RAM column address and segment driver 0 : reverse direction (SEG223 to SEG0), 1 : normal direction (SEG0 to SEG223) |
| ON/OFF | Indicates display ON/OFF status 0 : display ON, 1 : display OFF                                                                                        |
| RESETB | Indicates the initialization is in progress by RESETB signal 0 : chip is active, 1 : chip is being reset                                               |

# **Write Display Data**

8-bit data of display data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page.

| A | F | RW | DB7 | DB6 | DB5 | DB4   | DB3  | DB2 | DB1 | DB0 |
|---|---|----|-----|-----|-----|-------|------|-----|-----|-----|
| 1 |   | 0  |     |     |     | Write | data |     |     |     |



Figure 18. Sequence for Writing Display Data

Figure 19. Sequence for Reading Display Data

### **Data Read Display Data**

8-bit data from display data RAM specified by the column address and page address can be read by this instruction. As the column address is increased by 1 automatically after each this instruction, the microprocessor can continuously can continuously read data from the addressed page. A dummy read is required after loading an address into the column address register. Display data cannot be read through the serial interface.

| Α0 | RW | DB7 | DB6 | DB5 | DB4  | DB3  | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|------|------|-----|-----|-----|
| 1  | 1  |     |     |     | Read | data |     |     |     |

### **ADC Select (Segment Driver Direction Select)**

Changes the relationship between RAM column address and segment driver. The direction of segment driver output pins can be reversed by software. This makes IC layout flexible in LCD module assembly.

| Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 0   | 1   | 0   | 0   | 0   | 0   | ADC |

ADC = 0 : normal direction (SEG0 to SEG223) ADC = 1 : reverse direction (SEG223 to SEG0)

# **Reverse Display ON / OFF**

Reverses the display status on LCD panel without rewriting the contents of the display data RAM.

| Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 0   | 1   | 0   | 0   | 1   | 1   | REV |

| REV         | RAM bit data = "1"           | RAM bit data = "0"           |
|-------------|------------------------------|------------------------------|
| 0 (normal)  | LCD pixel is illuminated     | LCD pixel is not illuminated |
| 1 (reverse) | LCD pixel is not illuminated | LCD pixel is illuminated     |

#### **Entire Display ON / OFF**

Forces the whole LCD points to be turned on regardless of the contents of the display data RAM. At this time, the contents of the display data RAM are held. This instruction has priority over the reverse display ON / OFF instruction.

| Α | ) | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|---|---|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0 |   | 0  | 1   | 0   | 1   | 0   | 0   | 1   | 0   | EON |

EON = 0 : normal display EON = 1 : entire display ON

#### **Select LCD Bias**

Selects LCD bias ratio of the voltage required for driving the LCD.

| A0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0  |
|----|----|-----|-----|-----|-----|-----|-----|-----|------|
| 0  | 0  | 1   | 0   | 1   | 0   | 0   | 0   | 1   | BIAS |

BIAS = 0 : 1/9 BIAS = 1 : 1/7

#### **Set Modify-Read**

This instruction stops the automatic increment of the column address by the read display data instruction, but the column address is still increased by the write display data instruction. And it reduces the load of microprocessor when the data of a specific area is repeatedly changed during cursor blinking or others. This mode is canceled by the reset Modify-read instruction.

| Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 1   | 1   | 0   | 0   | 0   | 0   | 0   |

# **Reset Modify-Read**

This instruction cancels the Modify-read mode, and makes the column address return to its initial value just before the set Modify-read instruction is started.

| Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 1   | 1   | 0   | 1   | 1   | 1   | 0   |



Figure 20. Sequence for Cursor Display

#### Reset

This instruction resets initial display line, column address, page address, and common output status select to their initial status, but dose not affect the contents of display data RAM. This instruction cannot initialize the LCD power supply, which is initialized by the RESETB pin.

| Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 1   | 1   | 0   | 0   | 0   | 1   | 0   |

### **SHL Select (Common Output Mode Select)**

COM output scanning direction is selected by this instruction which determines the LCD driver output status.

| Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 1   | 0   | 0   | SHL | ×   | ×   | ×   |

x: Don't care

SHL = 0 : normal direction (COM0 to COM63) SHL = 1 : reverse direction (COM63 to COM0)

#### **Power Control**

Selects on of eight power circuit functions by using 3-bit register. An external power supply and part of internal power supply functions can be used simultaneously.

| Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 0   | 0   | 1   | 0   | 1   | VC  | VR  | VF  |

| VC     | VR     | VF     | Status of internal power supply circuits                                           |
|--------|--------|--------|------------------------------------------------------------------------------------|
| 0<br>1 |        |        | Internal voltage converter circuit is OFF Internal voltage converter circuit is ON |
|        | 0<br>1 |        | Internal voltage converter circuit is OFF Internal voltage converter circuit is ON |
|        |        | 0<br>1 | Internal voltage converter circuit is OFF Internal voltage converter circuit is ON |

### **Regulator Resistor Select**

Selects resistance ratio of the internal resistor used in the internal voltage regulator. See voltage regulator section in power supply circuit. Refer to the table 12.

| A0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 0   | 0   | 1   | 0   | 0   | R2  | R1  | R0  |

| R2 | R1 | R0 | (1 + Rb / Ra) ratio |
|----|----|----|---------------------|
| 0  | 0  | 0  | 4.5 (default)       |
| 0  | 0  | 1  | 5.0                 |
| 0  | 1  | 0  | 5.5                 |
| 0  | 1  | 1  | 6.0                 |
| 1  | 0  | 0  | 6.5                 |
| 1  | 0  | 1  | 7.0                 |
| 1  | 1  | 0  | 7.5                 |
| 1  | 1  | 1  | 8.0                 |

# **Reference Voltage Select**

Consists of 2-byte instruction. The 1<sup>st</sup> instruction sets reference voltage mode, the 2<sup>nd</sup> one updates the contents of reference voltage register. After second instruction, reference voltage mode is released.

The 1st instruction: Set Reference Voltage Select Mode

| A0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 1   |

The 2<sup>nd</sup> instruction : Set Reference Voltage Register

| A0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | ×   | ×   | SV5 | SV4 | SV3 | SV2 | SV1 | SV0 |

| SV5 | SV4 | SV3 | SV2 | SV1 | SV0 | Reference voltage<br>Parameter (α) | Vo      | Contrast |
|-----|-----|-----|-----|-----|-----|------------------------------------|---------|----------|
| 0   | 0   | 0   | 0   | 0   | 0   | 0                                  | Minimum | Low      |
| 0   | 0   | 0   | 0   | 0   | 1   | 1                                  |         |          |
| :   | :   | :   | :   | :   |     |                                    | :       | :        |
| 1   | 0   | 0   | 0   | 0   | 0   | 32 (default)                       | :       | :        |
| :   | :   | :   | :   |     |     |                                    | :       | :        |
| 1   | 1   | 1   | 1   | 1   | 0   | 62                                 |         |          |
| 1   | 1   | 1   | 1   | 1   | 1   | 63                                 | Maximum | High     |



Figure 21. Sequence for Setting the Reference Voltage

#### **Set Static Indicator State**

Consists of two bytes instruction. The first byte instruction (set Static Indicator mode) enables the second byte instruction (set Static Indicator register) to be valid. The first byte sets the Static Indicator ON / OFF. When it is ON, the second byte updates the contents of Static Indicator register without issuing any other instruction and this Static Indicator state is released after setting the data of indicator register.

The 1<sup>st</sup> instruction: Set Static Indicator Mode (NO / OFF)

| Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 0   | 1   | 0   | 1   | 1   | 0   | SM  |

SM = 0 : static indicator OFF SM = 1 : static indicator ON

The 2<sup>nd</sup> instruction: Set Static Indicator Register

| 1110 2 111 | oti aotioii i | . Oot otatie | <del>o illialoato</del> i | riogicioi |     |     |     |     |     |
|------------|---------------|--------------|---------------------------|-----------|-----|-----|-----|-----|-----|
| A0         | RW            | DB7          | DB6                       | DB5       | DB4 | DB3 | DB2 | DB1 | DB0 |
| 0          | 0             | ×            | ×                         | ×         | ×   | ×   | ×   | S1  | S0  |

| S1 | S0 | Status of static indicator output |
|----|----|-----------------------------------|
| 0  | 0  | OFF                               |
| 0  | 1  | ON (about 0.5 second blinking)    |
| 1  | 0  | ON (about 1.0 second blinking)    |
| 1  | 1  | ON (always ON)                    |

#### **Power Save**

This command makes the static indicator enter the power save mode and can greatly reduce the power consumption. The power save mode consists of the sleep and stand-by mode. The operating mode before the display data and power save activation is held in the sleep and stand-by modes, and the display data RAM can also be accessed from the MPU.

| A0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 0   | 1   | 0   | 1   | 0   | 0   | SAV |

SAV = 0 : stand-by mode SAV = 1 : sleep mode

### Stand-by mode

This command stops the operation of the duty LCD display system and operations only the static drive system for indicators. Consequently the minimum current consumption required for the static drive is obtained. The internal state in the stand-by mode is as follows:

- (1) The LCD power supply circuit is stopped. The oscillator circuit is operated.
- (2) The duty drive system liquid crystal drive circuit is stopped and the segment and common drivers output the Vss level. The static drive system is operated.

#### Sleep mode

This command stops all the operations of LCD display systems, and can reduce the power consumption approximate to the static current when they are not accessed from MPU. The internal state in the sleep mode is as follows:

- (3) The oscillator circuit and the LCD power supply circuit are stopped.
- (4) All liquid crystal drive circuit is stopped and the segment and common drivers output the VSS level.

41

The instruction or data is written must be waiting for 100ms after power save completed.

#### **Power Save Reset**

This command resets the power save mode and returns the state before power save activation.

| Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 1   | 1   | 0   | 0   | 0   | 0   | 1   |

- The instruction or data is written must be waiting for 100ms after power save reset completed.
- To avoid display data loss in power save mode, please re-write display ram data before power save reset execute.

#### n-Line Reversal Drive Register Set

This command sets the number of reversal lines of the liquid crystal drive in the register. 2 to 16 lines can be set.

| Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 0   | 0   | 1   | 1   | PL3 | PL2 | PL1 | PL0 |

| PL3 | PL2 | PL1 | PL0 | Line of reversal lines |
|-----|-----|-----|-----|------------------------|
| 0   | 0   | 0   | 0   |                        |
| 0   | 0   | 0   | 1   | 2                      |
| 0   | 0   | 1   | 0   | 3                      |
| -   |     | -   | -   |                        |
| 0   | 1   | 1   | 1   | 15                     |
| 1   | 1   | 1   | 1   | 16                     |

### n-Line Reversal Drive Reset

This command resets the n-line reversal alternating current drive and returns to the normal 2-frame reversal alternating current drive system. The value of the n-line reversal alternating current drive register is not changed.

| A0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 1   | 1   | 0   | 0   | 1   | 0   | 0   |

#### **Built-in Oscillator Circuit ON / OFF**

This command starts the operation of the built-in oscillator circuit. This command is valid only for the master operation (MS=HIGH) and built-in oscillator circuit valid (CLS=HIGH)

| Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 0   | 1   | 0   | 1   | 0   | 1   | 1   |

### **External Capacitor discharge**

This command turn on/off the discharge function for external capacitor (V0 ~ V5) of power follower, the function can prevent the residual display line after power off or sleep/stand-by mode. (The procedure for discharge function, please refer Figure 23 on page 47)

| Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1  | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|------|-----|
| 0  | 0  | 1   | 0   | 1   | 0   | 0   |     | DISC |     |

DISC = 000 : discharge function enable DISC = 111 : discharge function disable

#### NOP

Non Operation Instruction

|   | Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|---|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| ĺ | 0  | 0  | 1   | 1   | 1   | 0   | 0   | 0   | 1   | 1   |

#### **Test Instruction**

These are the instruction for IC chip testing. Please do not use it. If the Test Instruction is used by accident, it can be cleared by applying "0" signal to the RESB input pin or the reset instruction.

| A0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 1   | 1   | 1   | ×   | ×   | ×   | ×   |

### One Time Programming (OTP) control

The IST3020 provides OTP functions for contrast (3 times) offset adjustment. When these OTP bits have been programmed after the next reset, the previous programmed values will be restored. The programmed values will be kept at the embedded NVM (Non-Volatile Memory) and the values will be restored even the power be turned off.

The OTP program mode setting is consists of 2-bytes instruction, the 1<sup>st</sup> instruction enter OTP program mode, the 2<sup>nd</sup> one set the contents of OTP control register. When OTPADJ is set to "0" (default = "1"), the contrast offset adjustment function will be disable and only the original command (Set reference voltage instruction, page 39) setting will be effected. Before OTP program beginning, OTPPON must set to "1" (default = "0"), then program section start, after program has been finished, and set OTPON ="0".

The 1st instruction: Set OTP Program Mode

| A0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 0   | 0   | 1   | 0   | 0   | 0   | 0   |

The 2<sup>nd</sup> instruction : Set OTP Program Mode Register

| A0 | RW | DB7    | DB6    | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|--------|--------|-----|-----|-----|-----|-----|-----|
| 0  | 0  | OTPADJ | OTPPON | Х   | х   | х   | х   | х   | х   |

OTPADJ = 0 : Contrast offset value is invalid OTPADJ = 1 : Contrast offset value is valid OTPPON = 0 : OTP programming disable OTPPON = 1 : OTP programming enable

The contrast offset setting is consists of 2-bytes instruction, the 1<sup>st</sup> instruction sets contrast offset mode, the 2<sup>nd</sup> one updates the contents of contrast offset register. When OTPADJ set to "1", the final contrast adjustment is calculation by this equation "Contrast = SV + CTA + CTB + CTC", before OTP programming,

the default value of CTA, CTB and CTC are "0", the contrast within the range 0 to 63, please don't let the calculated output be overflow and cause some expected results.

The 1<sup>st</sup> instruction: Set OTP Contrast offset Mode (1)

| Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 0   | 0   | 1   | 0   | 0   | 0   | 1   |

The 2<sup>nd</sup> instruction: Set OTP Contrast offset Register (1)

| · · · · · · · · · · · · · · · · · · · | <del></del> |     | <u> </u> | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | .0.0. (.) |      |      |      |      |
|---------------------------------------|-------------|-----|----------|----------------------------------------|-----------|------|------|------|------|
| A0                                    | RW          | DB7 | DB6      | DB5                                    | DB4       | DB3  | DB2  | DB1  | DB0  |
| 0                                     | 0           | Х   | Х        | CTA5                                   | CTA4      | CTA3 | CTA2 | CTA1 | CTA0 |

The 1<sup>st</sup> instruction: Set OTP Contrast offset Mode (2)

| Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 0   | 0   | 1   | 0   | 0   | 1   | 0   |

The 2<sup>nd</sup> instruction: Set OTP Contrast offset Register (2)

| A0 | RW | DB7 | DB6 | DB5 | DB4  | DB3  | DB2  | DB1  | DB0  |
|----|----|-----|-----|-----|------|------|------|------|------|
| 0  | 0  | Х   | Х   | х   | CTB4 | СТВ3 | CTB2 | CTB1 | CTB0 |

The 1<sup>st</sup> instruction : Set OTP Contrast offset Mode (3)

| Α0 | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  | 0  | 1   | 0   | 0   | 1   | 0   | 0   | 1   | 1   |

The 2<sup>nd</sup> instruction: Set OTP Contrast offset Register (3)

| A0 | RW | DB7 | DB6 | DB5 | DB4  | DB3  | DB2  | DB1  | DB0  |
|----|----|-----|-----|-----|------|------|------|------|------|
| 0  | 0  | Х   | Х   | х   | CTC4 | CTC3 | CTC2 | CTC1 | CTC0 |

44

| CTA5 | CTA4 | СТАЗ | CTA2 | CTA1 | CTA0 | Offset Value |
|------|------|------|------|------|------|--------------|
| 0    | 1    | 1    | 1    | 1    | 1    | +31          |
| 0    | 1    | 7    | 1    | 1    | 0    | +30          |
| -    | -    | -    | -    | -    | -    | <b>↓</b>     |
| 0    | 0    | 0    | 0    | 0    | 0    | 0            |
| -    | ŀ    | -    | -    | -    | -    | <b>↓</b>     |
| 1    | 0    | 0    | 0    | 0    | 1    | -31          |
| 1    | 0    | 0    | 0    | 0    | 0    | -32          |

| CTB4<br>CTC4 | CTB3<br>CTC3 | CTB2<br>CTC2 | CTB1<br>CTC1 | CTB0<br>CTC0 | Offset Value |
|--------------|--------------|--------------|--------------|--------------|--------------|
| 0            | 1            | 1            | 1            | 1            | +15          |
| -            | -            | -            | -            | 1            | <b>↓</b>     |
| 0            | 0            | 0            | 0            | 0            | 0            |
| -            | -            | -            | -            | -            | <b>↓</b>     |
| 1            | 0            | 0            | 0            | 0            | -16          |

### **OTP Programming Flow**



#### **NOTICE**

- The 1<sup>st</sup> CT adjustment MUST program 91h, the 2<sup>nd</sup> CT adjustment MUST program 92h, and the 3<sup>rd</sup> CT adjustment MUST program 93h.
- If the 1<sup>st</sup> time CT adjustment is not satisfied, user can try the 2<sup>nd</sup> or 3<sup>rd</sup> time CT adjustment by programming 92h/93h, and then the CT offset value will be accumulated automatically.
- The 2<sup>nd</sup> or 3<sup>rd</sup> time CT adjustment MUST after 1<sup>st</sup> time CT adjustment, otherwise the 2<sup>nd</sup> or 3<sup>rd</sup> time CT adjustment will be ignore.

### Referential Instruction Setup Flow (1)



Figure 22. Initializing with the Built-in Power Supply Circuits (Normal mode)

### Referential Instruction Setup Flow (2)



Figure 23. Initializing with the Built-in Power Supply Circuits (Power save mode)

# **Referential Instruction Setup Flow (3)**



Figure 24. Data Displaying

48

### Referential Instruction Setup Flow (4)



Figure 25. Power OFF

# **SPECIFICATIONS**

# **ABSOLUTE MAXIMUM RATINGS**

**Table 16. Absolute Maximum Ratings** 

| Parameter                   | Symbol       | Rating            | Unit |
|-----------------------------|--------------|-------------------|------|
| Supply voltage range        | Vdd1<br>Vdd2 | - 0.3 to +7.0     | V    |
| Cupp.y vollago rango        | VLCD         | -0.3 to +17.0     | V    |
| Input voltage range         | VIN          | -0.3 to VDD + 0.3 | V    |
| Operating temperature range | Topr         | -40 to +85        | °C   |
| Storage temperature range   | Tstr         | -55 to +125       | °C   |

### NOTES:

- 1. VDD and VLCD are based on VSS = 0V
- 2. Voltages  $V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge VSS$  must always be satisfied. (VLCD = V0 VSS)
- Voltages V0 2 V1 2 V2 2 V3 2 V4 2 V3 3 Must always be satisfied. (VLCD = V0 V33)
   If supply voltage exceeds its absolute maximum range, this LSI may be damaged permanently. It is desirable to use this LSI under electrical characteristic conditions during general operation. Otherwise, this LSI may malfunction or reduced LSI reliability may result.



# **DC CHARACTERISTICS**

**Table 17. DC Characteristics** 

 $(Vss = 0V, VDD = 2.4 \text{ to } 3.6V, Ta = -40 \text{ to } 85^{\circ}C)$ 

| Item                       |          | Symbol       | Cond             | dition                                    | Min.            | Тур. | Max.            | Unit   | Pin used        |
|----------------------------|----------|--------------|------------------|-------------------------------------------|-----------------|------|-----------------|--------|-----------------|
| Operating Volt             | tage(1)  | VDD1<br>VDD2 |                  |                                           | 2.4             | -    | 3.6             | V      | VDD *1          |
| Operating Volt             | tage(2)  | V0           |                  |                                           | 4.5             | -    | 15.0            | V      | V0 *2           |
| lancit valtara             | High VIH |              | 0.8 V <b>DD</b>  | -                                         | VDD             |      | *3              |        |                 |
| Input voltage              | Low      | VIL          |                  |                                           | Vss             | -    | 0.2 V <b>DD</b> | V      | "3              |
| Output valtage             | High     | Voн          | lон = -0.5mA     |                                           | 0.8 V <b>DD</b> | -    | VDD             | V      | * 4             |
| Output voltage             | Low      | VoL          | loL =            | <b>IoL</b> = 0.5mA                        |                 |      | 0.2 VDD         | V      | *4              |
| Input leakage              | current  | lıL          | VIN = VDD or VSS |                                           | -1.0            | -    | +1.0            | μΑ     | *5              |
| Output leakage current loz |          | loz          | VIN = VDD or VSS |                                           | -3.0            | -    | +3.0            | μΑ     | *6              |
| LCD driver<br>Resistand    |          | Ron          | Ta = 25°C        | c, V0 = 8V                                |                 | 2.0  | 3.0             | kΩ     | SEGn<br>COMn *7 |
| Oscillator                 | Fosc     | fosc         | Ta -             | 25℃                                       | 17.6            | 22.0 | 26.4            | kHz    | CL              |
| frequency                  | External | fCL          | ia =             | 25 0                                      | 17.6            | 22.0 | 26.4            | IXI IZ | CL              |
|                            |          |              | ×                | 2                                         | 2.4             | -    | 3.6             |        |                 |
| Voltage convingut volta    |          | VCI          | ×                | 3                                         | 2.4             | -    | 3.6             | V      | VCI             |
|                            |          |              | ×                | 4                                         | 2.4             | -    | 3.6             |        |                 |
| Voltage conv               |          | VOUT         |                  | x2 / x3 / x4 voltage conversion (no-load) |                 | 99   | -               | %      | VOUT            |
| Voltage regulation vo      |          | VOUT         |                  |                                           | 6.0             | -    | 15.0            | V      | VOUT            |
| Voltage follo              | ower     | Vo           |                  |                                           | 4.5             | -    | 14.0            | V      | V0 *8           |
| Reference vo               |          | VREF         | Ta = 25°C        | -0.05%/°C                                 | 2.03            | 2.1  | 2.17            | V      | *9              |

# Dynamic Current Consumption (1) when the Built-in Power Circuit is OFF (At Operate Mode)

 $(Ta = 25^{\circ}C)$ 

| Item                            | Symbol | Condition                                                             | Min. | Тур. | Max. | Unit | Pin used |
|---------------------------------|--------|-----------------------------------------------------------------------|------|------|------|------|----------|
| Dynamic current consumption (1) | lDD1   | V <b>DD</b> = 3.0V<br>V0 – V <b>ss</b> = 11.0V<br>Display pattern OFF | -    | 15   | 23   | μΑ   | *10      |

#### Dynamic Current Consumption (2) when the Built-in Power Circuit is ON (At Operate Mode)

 $(Ta = 25^{\circ}C)$ 

| Item                            | Symbol | Condition                                                                                                   | Min. | Тур. | Max. | Unit | Pin used |
|---------------------------------|--------|-------------------------------------------------------------------------------------------------------------|------|------|------|------|----------|
| Dynamic current consumption (2) | lDD2   | VDD = 3.0V<br>(VCI = Vdd, 4 times boosting)<br>V0 - Vss = 11.0V<br>Display pattern OFF<br>Normal power mode | -    | 40   | 60   | μА   | *11      |
| Dynamic current consumption (2) | lDD2   | VDD = 3.0V (VCI = Vdd, 4 times boosting) V0 - Vss = 11.0V Display pattern checker Normal power mode         |      | 150  | 200  | μΑ   | *12      |

### **Current Consumption during Power Save Mode**

 $(Ta = 25^{\circ}C)$ 

| Item                 | Symbol | Condition      | Min. | Тур. | Max. | Unit | Pin used |
|----------------------|--------|----------------|------|------|------|------|----------|
| Sleep mode current   | lDD1   | During sleep   | ı    | ı    | 2.0  | μΑ   |          |
| Standby mode current | lDD2   | During standby | 1    | 1    | 30.0 | μΑ   |          |

#### [\* Remark Solves]

<sup>\*1.</sup> Though the wide range of operating voltages is guaranteed, a spike voltage change may affect the voltage assurance during access from the MPU.

<sup>\*2.</sup> In case of external power supply is applied.

<sup>\*3.</sup> CS1B, CS2, A0, DB0 to DB7, RDB, WRB, RESETB, MS, C86, PS, IRS, CLS, CL, FR, SYNC, DOFB pins.

<sup>\*4.</sup> DB[7:0], FR, FRS, DOFB, CL pins.

<sup>\*5.</sup> CS1B, CS2, A0, DB [7:0], RDB, WRB, RESETB, MS, C86, PS, IRS, CLS, CL, FR, SYNC, DOFB pins.

<sup>\*6.</sup> Applies when the DB [7:0], FR, FRS, DOFB, and CL pins are in high impedance.

<sup>\*7.</sup> Resistance value when  $\pm$  0.1[mA] is applied during the ON status of the output pin SEGn or COMn. RON=  $\Delta V$  / 0.1 [K $\Omega$ ] ( $\Delta V$ : voltage change when  $\pm$  0.1[mA] is applied in the ON status.)

<sup>\*8.</sup> The voltage regulator circuit adjusts V0 within the voltage follower operating voltage range

<sup>\*9.</sup> On-chip reference voltage source of the voltage regulator circuit to adjust V0.

\*10,11. Applies to the case where the on-chip oscillation circuit is used and no access is made from the MPU.

The current consumption, when the built-in power supply circuit is ON or OFF.

The current flowing through voltage regulation resistors (Ra and Rb) is not included.

It does not include the current of the LCD panel capacity, wiring capacity, etc.



### **AC CHARACTERISTICS**

# Read / Write Characteristics (8080-series MPU)



Figure 26. Read / Write Characteristics (8080-series MPU)

 $(VDD = 2.4 \text{ to } 3.6V, Ta = -40 \text{ to } +85^{\circ}C)$ 

|                                                        |           |                 |          | •    |            | -    |            |
|--------------------------------------------------------|-----------|-----------------|----------|------|------------|------|------------|
| Item                                                   | Signal    | Symbol          | Min.     | Тур. | Max.       | Unit | Remark     |
| Address setup time<br>Address hold t <mark>im</mark> e | A0        | tAS80<br>tAH80  | 0        | -    | -          | ns   |            |
| System cycle time                                      | A0        | tCY80           | 300      | -    | ı          | ns   |            |
| Pulse width (WRB)                                      | WRB       | tPW80(W)        | 60       | -    | -          | ns   |            |
| Pulse width (RDB)                                      | RDB       | tPW80(R)        | 60       | -    | -          | ns   |            |
| Data setup time<br>Data hold time                      | DB7       | tDS80<br>tDH80  | 40<br>15 | -    | -          | ns   |            |
| Read access time Output disable time                   | to<br>DB0 | tACC80<br>tOD80 | -<br>10  | -    | 140<br>100 | ns   | CL = 100pF |

# Read / Write Characteristics (6800-series Microprocessor)



Figure 27. Read / Write Characteristics (6800-series Microprocessor)

 $(VDD = 2.4 \text{ to } 3.6V, Ta = -40 \text{ to } +85^{\circ}C)$ 

| Item                                                   | Signal    | Symbol               | Min.     | Тур. | Max.       | Unit | Remark     |
|--------------------------------------------------------|-----------|----------------------|----------|------|------------|------|------------|
| Address setup time<br>Address hold t <mark>im</mark> e | A0        | tAS68<br>tAH68       | 0        | -    | -          | ns   |            |
| System cycle time                                      | A0        | tCY68                | 300      | -    | -          | ns   |            |
| Data setup time<br>Data hold time                      | DB7       | tDS68<br>tDH68       | 40<br>15 | -    | -          | ns   |            |
| Access time Output disable time                        | to<br>DB0 | tACC86<br>tOD68      | -<br>10  | -    | 140<br>100 | ns   | CL = 100pF |
| Enable pulse Rea<br>width Wri                          | I RIJE    | tPW68(R)<br>tPW68(W) | 60       | -    | -          | 1    |            |

### **Serial Interface Characteristics**



Figure 28. Serial Interface Characteristics

 $(VDD = 2.4 \text{ to } 3.6V, Ta = -40 \text{ to } +85^{\circ}C)$ 

|                                             |        |              |            | •    |      |      |        |
|---------------------------------------------|--------|--------------|------------|------|------|------|--------|
| Item                                        | Signal | Symbol       | Min.       | Тур. | Max. | Unit | Remark |
| Serial clock cycle<br>SCLK high pulse width | DB6    | tCYS<br>tWHS | 250<br>100 | -    | -    | ns   |        |
| SCLK low pulse width                        | (SCLK) | tWLS         | 100        | -    | -    | 113  |        |
| Address setup time                          | A0     | tASS         | 150        | -    | -    | ns   |        |
| Address hold time                           | 710    | tAHS         | 150        | -    | -    | 110  |        |
| Data setup time                             | DB7    | tDSS         | 100        | -    | -    | ns   |        |
| Data hold time                              | (SID)  | tDHS         | 100        | -    | -    | 115  |        |
| CS1B setup time                             | CS1B   | tcss         | 150        | -    | -    | nc   |        |
| CS1B hold time                              | COID   | tCHS         | 150        | -    | -    | ns   |        |

# **Reset Input Timing**



Figure 29. Reset Input Timing

 $(VDD = 2.4 \text{ to } 3.6\text{V}, \text{ Ta} = -40 \text{ to } +85^{\circ}\text{C})$ 

| Item                  | Signal | Symbol | Min. | Тур. | Max. | Unit | Remark |
|-----------------------|--------|--------|------|------|------|------|--------|
| Reset low pulse width | RESETB | trw    | 1.0  |      |      | ns   |        |
| Reset time            | -      | tR     |      | 1    | 1.0  | ns   |        |

# **Display Control Output Timing**



Figure 30. Display Control Output Timing

 $(VDD = 2.4 \text{ to } 3.6V, Ta = -40 \text{ to } +85^{\circ}C)$ 

| Item          | Signal | Symbol | Min. | Тур. | Max. | Unit | Remark     |
|---------------|--------|--------|------|------|------|------|------------|
| FR delay time | FR     | tDFR   | -    | 20   | 80   | ns   | CL = 50 pF |

### REFERENCE APPLICATIONS

#### MICROPROCESSOR INTERFACE

In Case of Interfacing with 6800-series (PS = "H", C86 = "H")



Figure 31. Interfacing with 6800-series (PS = "H", C86 = "H")

# In Case of Interfacing with 8080-series (PS = "H", C86 = "L")



Figure 32. Interfacing with 8080-series (PS = "H", C86 = "H")

### In Case of Serial Interface (PS = "L", C86 = "L")



### Figure 33. Serial Interface (PS = "L", C86 = "L")

#### Connections between IST3020 and LCD Panel

#### **Single Chip Structure**



Figure 34. SHL = 1, ADC = 0

Figure 35. SHL = 1, ADC = 1



Figure 36. SHL = 0, ADC = 0

Figure 37. SHL = 0, ADC = 1

# **Multiple Chip Structure**

- 65COM (64COM + 1COMS) x 448SEG (224SEG x 2)



Figure 38. SHL = 1, ADC = 1

- ◆ Connect the following pins of two chips each other:
  - Display clock pins: CL, FR
  - Display control pin: DOFB
  - LCD power pins: V0, V1, V2, V3, V4



Figure 39. SHL = 0, ADC = 0

- ◆ Connect the following pins of two chips each other:
  - Display clock pins: CL, FR
  - Display control pin: DOFB
  - LCD power pins: V0, V1, V2, V3, V4

### - 130COM (128COM + 2COMS) x 224SEG



Figure 40. 130COM (128COM + 2COMS) x 224SEG

- Connect the following pins of two chips each other:
  - Display clock pins: CL, FR
  - Display control pin: DOFB
  - LCD power pins: V0, V1, V2, V3, V4
- ◆ Common / Segment output direction select
  - Master chip: SHL = 0, ADC = 0
  - Slave chip: SHL = 1, ADC = 1

# IST3020 ITO connection example



With collaboration of https://www.displayfuture.com