Theory of Computation

Section (1)

Theory'21

The Basic Concepts

• Language: a collection of sentences (word) of finite length all constructed from alphabet or symbols Example: An alphabet is a set of character {a, b}

```
L1= {ab, ba, abab, aabb}
L2= {aaab, bbaa, abb, bbba}
L3= {λ, abbbaa, ababab}
```

• Grammar: set of the rules that describe all possible string in the given language G= (V, T, S, P)

```
V: variable or Non terminal alphabets: S, A, B
```

T: terminal alphabets: {a, b}

S: start symbol: $S \longrightarrow$

P: production rule

Example : L= $\{(a \ b)^n \ n > 0\}$

L= {ab, abab, ababab, abababab,}

 $S \longrightarrow abS$ $S \longrightarrow \lambda$

- Automaton: It is defined as self-operating machine that considered as an abstract model for digital computers with limited memory, we can say it simulate the parts of computer, to theory can be solve a model of computation by algorithm, is applied one of three fields:
 - 1-Automata theory
 - 2-Computability theory
 - 3-Computational complex theory

Chomsky Hierarchy

Simple Example

Context Free Grammar (CFG)

The Regular Grammar ⊆ CFG

Example: L= $\{a^nb^{n+1} : n \ge 0\}$, Find the context free grammar?

L= {b, abb, aabbb, aaabbbb,}

 $S \longrightarrow Ab$

A → aAb

 $A \longrightarrow \lambda$

Example: L= $\{w = n_a(w) = n_b(w)\}\$, Find the context free grammar?

L= {ab, ba, abab, baba, aabb, bbbaaa,}

 $S \rightarrow aSb$

S → bSa

 $S \longrightarrow \lambda$

Deterministic Finite Automata (DFA) & non- Deterministic Finite Automata (NFA)

 $M=(Q, \Sigma, \delta, q_0, F)$

Q:States, Σ : Alphabets, δ :Transitions, q_0 :Initaial state, Γ : Final state

DFA	NFA
Each state has transition for all input (Alphabet)	Each state can has 2 transition that has same input (Alphabet)
Can't have λ transition	Can have λ transition
Each transition is uniquely determined	
a λ λ X X	a a a

DFA & NFA Examples

What's the grammar, DFA & NFA of the following languages?

- 1. $L = \{a^n b^m, n, m \ge 0\}$
 - a. S→AB
 - $A \rightarrow aA \mid \lambda$
 - $B \rightarrow bB \mid \lambda$

b.

c.

- 2. $L = \{a b^n c, n \ge 0\}$
 - a. S→aBc B→bB | λ

b.

c.

- 3. $L = \{a^n b^n, n \ge 0\}$
 - a. $S \rightarrow aSb \mid \lambda$

Using any memory space like stack may be helpful to save information. The above language is a non-regular language since this can't be described by neither DFA nor NFA.