Matching models I: Theory¹

Alexander Wintzéus²

Department of Economics University of Leuven

June 2, 2025

¹Slides provided by Thimo De Schouwer – Based on Chiappori (2017) and Chade et al. (2017)

²Email: alexander.wintzeus@kuleuven.be

Table of contents

Introduction

Classes of models

Transferable Utility matching models

Towards equilibrium Sorting

Examples

Table of contents

Introduction

Classes of models

Transferable Utility matching models
Towards equilibrium
Sorting

Examples

Introduction – Matching models

- Previous classes studied (discrete) choice models:
 - consumers choose which yogurts to buy
 - commuters choose their mode of transportation
- In many markets agents on both sides of the market have preferences:
 - labor market: firms have preferences over workers and vice versa
 - marriage market: potential partners have preferences over one another
 - credit market: banks have preferences over customers and vice versa
- The following two lectures discuss a tractable class of models to study these markets

Introduction – Matching models (cont.)

- In this lecture we get familiar with main theoretical insights of matching models:
 - properties of the optimal assignment and the competitive equilibrium
 - studied since Koopmans and Beckmann (1957) and Shapley and Shubik (1971)
 - and sorting patterns and how these relate to the match surplus
 - studied in this setting since Becker (1973)
- Next lecture we'll look into an empirical application of the model:
 - starting with Becker (1973) the toolbox of economics has been applied to marriage
 - recent advances in the econometrics of matching models following Choo and Siow (2006)
 - e.g. to study changes in matching patterns between men and women

Introduction – Matching models (cont.)

- Example: assortative matching and inequality
 - see Burtless (1999) and Ciscato and Weber (2020)
- Changing correlation of husband's and wife's earnings has reinforced inequality:
 - over last fifty years inequality has increased drastically in the United States (and elsewhere)
 - up to 1/3 of \uparrow household level inequality related to rise of single adult households
 - up to 1/6 is due to an increase in assortative matching (i.e. likes marrying likes)
- We can address the question of why this correlation changed using matching models

Introduction – Matching models (cont.)

Fig. 6 Assortativeness in education. Sample used: baseline A. The figure displays the estimated trend of the diagonal element of the marital preference parameter matrix *A* capturing the interaction between husband's and wife's schooling levels. We observe an increase in education complementarity

Figure: Changes in Assortative Matching in the United States - taken from Ciscato and Weber (2020)

Table of contents

Introduction
Classes of models

Transferable Utility matching models
Towards equilibrium
Sorting

Examples

Transferable Utility models

- ullet We'll study one particular class of models o one-to-one models with transferable utility
- 1. One individual from a population matches with one from another (one-to-one)
 - as opposed to several individuals matching to one firm
 - or people matching within a population (e.g. college room mates or same-sex marriage)
- 2. We assume no search frictions or market power (perfect competition)
 - as opposed to many models in labor economics that assume search frictions
 - or models of risk sharing and information frictions
- 3. We assume existence of a frictionless transfer technology (transferable utility)
 - as opposed to situations where transfers are taxed (wages in the labor market)
 - or situations where favors are exchanged that may not be valued equally

Other models

- These models are suited to some but certainly not all applications:
 - some markets lack transfers or competition (e.g. organ donation, public housing)
 - many markets better modeled with search frictions or as many-to-one (e.g. labor market)
- We study a simple model today but this has been extended in numerous ways:
 - allowing for frictions on transfers or in the matching process
 - generalizing agents' preferences to allow for risk-aversion
 - modeling markets with uni-partite or many-to-one matching
- Recent reviews on matching models can be found in:
 - see Chiappori (2017) for models without frictions
 - see Chade et al. (2017) for models with frictions

Table of contents

Introduction
Classes of models

Transferable Utility matching models

Towards equilibrium

Sorting

Examples

Intuition

- The main intuition behind the model is as follows:
 - we have two heterogeneous populations
 - individuals from each population can match one to one or remain single
 - the gain generated by matching is match-specific
- To make things concrete we'll use the terminology of marriage markets:
 - i.e. we study how men and women match to form heterosexual couples
 - note that we can always replace women with 'workers' and men with 'firms' etc.

Populations

- There is a collection of men of type $x = \{1, ..., X\}$ and women of type $y = \{1, ..., Y\}$
 - assume that these types are discrete not necessary but simpler continuous types
 - types usually contain variables such as age and education
 - or more exotic traits like political preference or personality traits
 - \rightarrow suppose we have young/old and low/high educated people then |X|=4
- Let f(x) be the total number of type x men and g(y) the total number of type y women

Surplus

- When a type x man and a type y woman match this generates a surplus S(x,y)
 - interpret this as how much the man and woman mutually like each-other
 - e.g. a man may like a woman but she may not like him all that much
 - the surplus could be low or high depending on relative strength of preferences
- Pairs of men and women can freely transfer utility between them to divide this surplus
 - this is why we call these transferable utility models (= TU models)
 - ullet there is no friction or loss on these transfers (= ITU models)

Surplus (cont.)

• In TU models, the gain generated by the matching satisfies an important property:

$$u(x) + v(y) = S(x, y)$$
 (1)

where the payoff functions u(x), v(y) represent post-transfer t(x,y) utilities:

$$u(x) = \max\{\max_{y} \{u(x, y) - t(x, y)\}, 0\}$$
$$v(y) = \max\{\max_{x} \{v(x, y) + t(x, y)\}, 0\}$$

- Transfers t(x, y) are an endogenous object (or outcome) of the model
 - therefore part of the solution to the matching problem
 - not necessary to think in terms of money also e.g. in-kind favors

Matching

- A matching $\mu(x,y)$ defines the number of type x men that are matched to type y women
 - the element (x, y) of this matrix contains the number of (x, y) matches
 - we allow for agents to be single by matching them with an outside option {0}
 - i.e. we denote unmatched men of type x by $\mu(x,0)$ and women of type y by $\mu(0,y)$
- This matrix and the number of singles have to satisfy the following marginals restrictions:

$$\sum_{y} \mu(x,y) + \mu(x,0) = f(x) \text{ for all } x \in X$$
 (2)

$$\sum_{x} \mu(x,y) + \mu(0,y) = g(y) \text{ for all } y \in Y$$
 (3)

Equilibrium matching

- We solve the matching problem by looking for a stable equilibrium matching:
 - a matching is stable iff it is robust w.r.t. uni- and bilateral deviations
 - the matching is *individually* rational no one that is matched would prefer to be single
 - the matching features no blocking pairs no two unmatched agents prefer being matched to each-other over their current partners
- We can characterize stability through:

$$u(x) + v(y) \ge S(x, y)$$
 for all $(x, y) \in X \times Y$ (4)

Summary

- To summarize, a bipartite TU matching problem is defined by
 - two sets X and Y, together with their measures f and g
 - a surplus function $\mathcal{S}: X \times Y \to \mathbb{R}$, characterizing the gains from the matching
- The solution to the matching problem is given by
 - a matching μ on $X \times Y$ satisfying the marginals restrictions (2) and (3)
 - two payoff functions $u:X \to \mathbb{R}$ and $v:Y \to \mathbb{R}$ satisfying the TU property (1)
- A stable matching further satisfies (4)

Stable equilibrium – Example

- Consider a set of men x = 1, 2, 3 and women y = 1, 2, 3
 - suppose these represent three levels of height: 170cm 180cm 190cm
 - note that this imposes a natural ordering
- Let the match surplus function be S(x, y) = xy
 - we can write this in a matrix as:

Table: Example based on Eeckhout (2018)

	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3
<i>y</i> ₁	1	2	3
<i>y</i> ₂	2	4	6
<i>y</i> 3	3	6	9

Stable equilibrium – Example (cont.)

- The optimality condition $u(x) + v(y) \ge S(x, y)$ implies a system of nine inequalities
- These hold with equality along the equilibrium allocation: $\tilde{\mu}(1,2,3)=(1,2,3)$
- Note that this allocation satisfies the two properties we imposed:
 - individually rational and no blocking pairs
- The equilibrium transfers t_{xy} are characterized by the following set of inequalities:

$$1 \le t_{22} - t_{11} \le 2$$

$$2 \le t_{33} - t_{11} \le 6$$

$$2 \le t_{33} - t_{22} \le 3$$

Equilibrium – Properties

- The previous example showed that finding an equilibrium allocation was not trivial
- It turns out that TU models have a unique equilibrium
 - often referred to as assignment games
 - stable outcome coincides with the core (Shapley and Shubik 1971)
 - in fact stability is equivalent to maximization of the total surplus
 - uniqueness thus also generically established
- Numerical optimization of the surplus provides a practical way of computing the equilibrium outcome
 - Class of linear optimization problems referred to as optimal transportation problems
 - Particularly apparent with continuous types optimal transportation
- What else can we say about the equilibrium allocations?

Table of contents

Introduction
Classes of models

Transferable Utility matching models

Towards equilibrium Sorting

Examples

Assortativeness

- The previous example where $\tilde{\mu}(1,2,3)=(1,2,3)$ is one specific case of sorting:
 - the tallest men x is matched to the tallest women y and so on
 - we call this positive assortative matching (PAM)
 - the opposite is called *negative assortative matching* (NAM)
- What determines whether the equilibrium will exhibit PAM or NAM?
 - in these models only the surplus function S(x,y)

Supermodularity

Matchings are positive assortative if the surplus function supermodular:

$$S(x,y) + S(x',y') > S(x,y') + S(x',y)$$
(5)

for all $x, x' \in X$ and $y, y' \in Y$

- this is the crucial insight of Becker (1973)
- flipping the sign naturally yields the condition for NAM (submodularity)
- When S(x, y) is differentiable, PAM is equivalent to positive cross-partial derivatives
 - ullet Going back to our example we can check the cross partial derivative \mathcal{S}_{xy}
- Note that the opposite direction is not necessarily true
 - possible to construct examples where matching exhibits PAM but surplus is submodular

Supermodularity – Intuition

Figure 1 Supermodularity. A function f(x, y) is supermodular if the sum of its value at the extremes (*red circles*) exceeds that at the intermediates (*blue squares*).

Table of contents

Introduction
Classes of models

Transferable Utility matching models
Towards equilibrium
Sorting

Examples

Positive Assortative Matching – Age

Fig. 5 Assortativeness in age. Sample used: baseline A. The figure displays the estimated trend of the diagonal element of the marital preference parameter matrix A capturing the interaction between husband's and wife's ages. We observe a decrease in age complementarity

Figure: Changes in Assortative Matching in the United States – taken from Ciscato and Weber (2020)

Negative/Positive Assortative Matching – Hours worked

Fig. 8 Assortativeness in hours of work. Sample used: baseline A. The estimated trend of the diagonal element of the marital preference parameter matrix A capturing the interaction between husband's and wife's hours worked. We observe a possible rising of a relatively weak complementarity in hours worked which was not observed in the early waves

Figure: Changes in Assortative Matching in the United States - taken from Ciscato and Weber (2020)

Negative/Positive Assortative Matching – Productivity

Figure 5: Evolution of Assortative Matching over Time, by Buyer Characteristics

Figure: Changes in Assortative Matching - taken from Adhvaryu et al. (forthcoming)

Table of contents

Introduction
Classes of models

Transferable Utility matching models
Towards equilibrium
Sorting

Examples

- Properties such as PAM or NAM are useful frameworks to think about problems
- But of course they will never hold exactly in any real data
 - however, this is what the theoretical model would predict . . .
- Next lecture we'll see how to extend the model for empirical applications
 - discrete types model of Choo and Siow (2006)
 - continuous types model of Dupuy and Galichon (2014)

Bibliography I

- ADHVARYU, A., BASSI, V., NYSHADHAM, A. and TAMAYO, J. (forthcoming). No line left behind: Assortative matching inside the firm. *Review of Economics and Statistics*.
- BECKER, G. S. (1973). A theory of marriage: Part i. *Journal of Political Economy*, **81** (4), 813–846.
- Burtless, G. (1999). Effects of growing wage disparities and changing family composition on the US income distribution. *European Economic Review*, **43** (4), 853–865.
- CHADE, H., EECKHOUT, J. and SMITH, L. (2017). Sorting through search and matching models in economics. *Journal of Economic Literature*, **55** (2), 493–544.
- CHIAPPORI, P.-A. (2017). *Matching with transfers: The economics of love and marriage*. Princeton University Press.
- CHOO, E. and SIOW, A. (2006). Who marries whom and why. *Journal of Political Economy*, **114** (1), 175–201.

Bibliography II

- CISCATO, E. and WEBER, S. (2020). The role of evolving marital preferences in growing income inequality. *Journal of Population Economics*, **33** (1), 307–347.
- DUPUY, A. and GALICHON, A. (2014). Personality traits and the marriage market. *Journal of Political Economy*, **122** (6), 1271–1319.
- EECKHOUT, J. (2018). Sorting in the labor market. Annual Review of Economics, 10, 1–29.
- KOOPMANS, T. C. and BECKMANN, M. (1957). Assignment problems and the location of economic activities. *Econometrica*, pp. 53–76.
- SHAPLEY, L. S. and SHUBIK, M. (1971). The assignment game i: The core. *International Journal of Game Theory*, **1** (1), 111–130.

Appendix I – Continuous types

- The main intuition remains the same, but we now assume that types are continuous
 - male characteristics x are drawn from $X \subset \mathbb{R}^n$ according to F(X)
 - female characteristics y are drawn from $Y \subset \mathbb{R}^m$ according to G(Y)
 - characteristics can be multidimensional $(n, m \ge 1)$, but finite-dimensional
 - F(x) and G(y) provide the continuous analogues to f(x) and g(y)
 - i.e., the 'number' of type x men and type y women, respectively

Appendix I – Continuous types (cont.)

- A matching $\mu(x,y)$ is now defined as a measure on $X\times Y$
 - can be interpreted as the probability that type x men are matched to type y women
 - still allow for agents to be single by matching them with dummy partners $\{0_x\}$ and $\{0_y\}$
 - i.e., $X := \bar{X} \cup \{0_x\}$ and $Y := \bar{Y} \cup \{0_y\}$
- The marginals restrictions now become:

$$\int_{y \in Y} d\mu(x, y) = F(x) \tag{2'}$$

$$\int_{y \in Y} d\mu(x, y) = F(x)$$

$$\int_{x \in X} d\mu(x, y) = G(y)$$
(2')

Appendix I – Continuous types (cont.)

• Characterization of a stable equilibrium matching still boils down to:

$$u(x) + v(y) \ge S(x, y)$$
 for all $(x, y) \in X \times Y$ (4')

• In fact, a stable equilibrium must satisfy that:

$$u(x) + v(y) = S(x, y)$$
 for all $(x, y) \in \text{supp}(\mu)$
 $u(x) + v(y) > S(x, y)$ otherwise

Appendix I – Continuous types (cont.)

• Stable matching can be obtained as the solution to optimal transportation or assignment problem:

$$\max_{\mu} \int_{X \times Y} \mathcal{S}(x, y) d\mu(x, y) \tag{OTP}$$

subject to the marginals conditions (2') and (3')

