[c1]

- 1. A system, comprising:
- a photoreceptor circuit;

an optical system, including an element that changes a position of image information relative to said photoreceptor circuit; and a processing circuit, operating to produce pulsed outputs at rimings that are dependent on changes of said image information.

2. A system as in claim 1, wherein said photoreceptor circuit is formed on a semiconductor substrate, and said processing circuitis formed on the same semiconductor substrate as said photoreceptor circuit.

[c3]

3. A system as in claim 1, wherein said processing circuit includes a circuit that changes spatial variations in light intensity into temporal fluctuations formed by digital pulses.

[c4]

4. A system as in claim 3, wherein said processing circuit encodes changes in said output signal which are either in positive directions or negative directions into said digital pulses.

[c5]

5. A system as in claim 4, wherein said photoreceptor circuit includes a photoreceptor element, and aflogarithmic amplifier associated with said photoreceptor element.

[c6]

6. A system as in claim 4/wherein said processing circuit includes a differentiation element/and a half wave rectification element which converts both positive and negative signals into a common level.

[c7]

7. A system as in claim 1, wherein said mechanical scanning device includes a moving reflective/device.

[c8]

8. A system as/in claim 7, wherein said moving reflective device includes a moving mirror.

[c9]

9. A system as in claim 1, further comprising a movement detecting device, which detects a position of movement of said photoreceptor.

	•
[c10]	10. A system as in claim 1, wherein said mechanical scanning device includes a
	moving reflective device, and a movement detecting device which detects a
	position of said moving reflective device.
[c1.1]	11. A system as in claim 1, wherein the mechanical scanning device includes a
	moving optical element.
[c12]	12. A system as in claim 11, wherein said moving optical element includes a
	moving lens.
[c13]	13. A system as in claim 12, wherein said moving lens is moved by external
	vibration, and forms a resonant system that moves at a speed proportional to
	resonance in the system.
[c14]	14. A system as in claim 1, wherein there are an array of said photoreceptor
	circuits.
[c15]	15. A method, comprising:
4	acquiring image information using a first element;
	using a second element to move a position of image information that is
	acquired by said first element;
	processing said image information acquired by said first element, to obtain
	temporal information about sald-image information.
[c16]	16. A method as in claim 15, wherein said temporal information includes
	pulses.
[c17]	17. A method as in claim 16, further comprising using said pulses, and timing
	of said pulses, to determine information about said image.
[c18]	
[C18]	18. A system, comprising:
	a photoreceptor circuit, formed on a semiconductor substrate, and including a
	plurality of photoreceptor elements, and a plurality of amplifiers, with an

amplifier associated with each of said photoreceptor elements;

incoming image scene contacts said photoreceptor circuit; and

an optical position moving element, operating to change a position where an

[c24]

a processing circuit, formed on said semiconductor substrate, and having a processing part associated with each said photoreceptor element, said processing circuit producing an output indicative of information received by said photoreceptor element.

- [c19] 19. A system as in claim 18, wherein said processing circuit produces information indicative of a temporal information in said photoreceptor element.
- [c20] 20. A system as in claim 18, wherein said optical position moving element operates to move the position of said image scene relative to said photoreceptor circuit cyclically.
- [c21] 21. A system as in claim 18, wherein said optical moving position element operates to move the position of said image scene relative to said photoreceptor circuit randomly.
- [c22] 22. A system as in claim 19, wherein said amplifiers that are associated with each of said photoreceptor/elements produce a logarithmically scaled output.
- [c23] 23. A system as in claim 19, wherein said processing circuit half wave rectifies information indicative of the image scene, and obtains a derivative of the half wave rectified signal.
 - 24. A method as in claim 17, further comprising using information about phase locking of said pulses to determine information about a spatial pattern in the image.
- [c25] 25. A method as in claim 1/7, further comprising obtaining a histogram indicating a number of spikes occurring as a function of position of a given integration time, and using said histogram to determine information about said image.
- [c26] 26. A system as in claim 18, further comprising a sensor, determining a position of said optical position moving element, and wherein said processing circuit operates using information from said sensor.

[c27]	27. A system as in claim 18, wherein said optical position moving element
·	comprises a moving reflective device.
[c28]	28. A system as in claim 27, wherein said moving reflective device includes a
	moving mirror.
[c29]	29. A system as in claim 28, wherein said moving mirror is rotated around a
·	tilted axis.
[c30]	30. A system as in claim 27, further comprising a sensor element, operating to
	determine a position of the mirror, and wherein said processing circuit operates
	based on information from said sensing element.
[c31]	31. A system as in claim 27, wherein said moving reflective device includes a
	prism.
[c32]	32. A system as in claim 18, wherein said optical position moving element
[65-2]	comprises an optical passing/element, and at least one moving holder for said
	optical passing element.
[c33]	33. A system as in claim 32, wherein said optical passing element includes a
	lens.
[c34]	34. A system as in claim 33, wherein said moving holder includes at least one
	spring.
[c35]	35. A system as in claim 34, wherein the lens and spring form a resonant
	system, which vibrates mostly at a specified resonant rate.
[c36]	36. A system as in claim 34, wherein the springs and lens are mounted such
	that the lens remains at a substantially fixed distance from the photoreceptor
	circuit.
[c37]	37. A system as in claim 32, further comprising a measurement element,
	measuring a parameter relating to a distance between said optical passing
	element and said moving holder, to produce a signal indicative of position
	therebery and wherein said processing circuit uses said signal.

- [c38] 38. A system as in claim 37, wherein said measurement element measures capacitance between said optical passing element and said at least one moving holder.
- [c39] 39. A method, comprising:
 moving some aspect of electromagnetic energy relative to an array of
 photoreceptors; and
 sensing the information about said electromagnetic energy that is independent
 of any fixed pattern noise in said array of photoreceptors.