METODI DI DECONVOLUZIONE DI IMMAGINI AFFETTE DA MOTION BLUR

Candidato: Guglielmo Menchetti

Relatore: Fabrizio Argenti

Corso di Laurea Triennale Ingegneria Informatica Università degli Studi di Firenze

Dipartimento di Ingegneria dell'Informazione

28 Aprile 2017

Indice

- 1. Introduzione
- 2. Deblurring Non-Blind
- 3. Deblurring Blind
- 4. Risultati
- 5. Conclusioni

<u>Int</u>roduzione

Modello Matematico

Il blur è modellato come

$$f = g * p + n = Hg + n$$

dove:

- *g* immagine non degradata
- *p* funzione di blur (PSF)
- n rumore additivo
- *H* matrice di convoluzione

PSF - Motion Blur

Degradazione di un'immagine:

- O Uniform Motion Blur Movimento della fotocamera
- Non-Uniform Motion Blur Spostamento degli elementi della scena

Uniform Motion Blur Lineare

$$p(x,y) = \begin{cases} \frac{1}{L} & \text{se } y = x \tan \theta \\ 0 & \text{altrimenti} \end{cases}$$

dove L è la **lunghezza** del blur e θ il suo **angolo**

Obiettivo

Sviluppo di un metodo di deblurring

- Non-Blind con PSF conosciuta
- Blind con PSF incognita

DEBLURRING NON-BLIND

Metodo utilizzato

O Deconvoluzione come problema Linear Least Square

$$\hat{g} = \arg\min_{g} \|g * p - f\|_{2}^{2} = \arg\min_{g} \|Hg - f\|_{2}^{2}$$

- Image Restoration è un problema
 - ill-conditioned
 - ill-posed
- Sparsità dell'immagine come conoscenza a priori

Rappresentazione sparsa

Si rappresenta l'immagine come

$$g = Dz$$

dove

- g immagine vettorizzata (ordine lessicografico)
- *D* Dizionario di Basi (**Wavelet**)
- \bigcirc z vettore dei coefficienti sparso

$$||z||_0 \ll dim(z)$$

Regolarizzazione- L_0

Problema di deconvoluzione Regularized Least Square

$$\hat{z} = \arg\min_{z} ||HDz - f||_2^2 + \lambda ||z||_0$$

Problema: Non-Convesso

Si considera il Rilassamento Convesso

$$\hat{z} = \arg\min_{z} \|HDz - f\|_{2}^{2} + \lambda \|z\|_{1}$$

Si ottiene

$$\hat{g} = D\hat{z}$$

Trasformata Wavelet

Banco di filtri di Decomposizione e di Ricostruzione

Solver

Forma standard di un problema Regularized Least Square

$$\hat{z} = \arg\min_{z} ||Az - f||_2^2 + \lambda ||z||_1$$

- _ L1_Ls
 - Interior Point
- GPSR
 - Gradient Projection

Convoluzione

Definizione classica

$$f(m,n) = g(m,n) * p(m,n) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} g(i,j)p(m-i,n-j)$$

Prodotto Matrice-Vettore

$$f = Hg$$
$$f = H_c H_r g$$

Matrice H_c

Matrice $M \times M$

$$B = \begin{vmatrix} p_0 & 0 & 0 & \cdots & 0 \\ p_1 & p_0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ p_{LK} & p_{LK-1} & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & p_2 & p_1 & p_0 \end{vmatrix}$$

Si ottiene la matrice di filtraggio per colonne $MN \times MN$

$$H_{c} = \begin{vmatrix} B & 0 & 0 & \cdots & 0 \\ 0 & B & 0 & \cdots & 0 \\ 0 & 0 & B & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & B \end{vmatrix} = kron(I, B)$$

Matrice H_r

La matrice B definita come prima, di dimensioni $N \times N$ La matrice di filtraggio per righe $MN \times MN$

Stima della PSF

Si determina la PSF stimando i parametri θ (angolo) e L (lunghezza) dell'immagine degradata f(x,y)

Si studia lo **Spettro di Potenza** - $\log |F(u, v)|$

Trasformata Radon - $R(\phi(x, y), \theta, \rho)$ $\int \int \phi(x, y) \delta(\rho - x \cos \theta - y \sin \theta) dx dy$

Si calcola $R(\log |F(u,v)|, \theta, \rho)$ e si stima l'angolo $\hat{\theta}$

Si calcola $R(\log |F(u,v)|, \hat{\theta}, \rho)$ e si stima la **lunghezza** L

Test

- \bigcirc Effettuati su immagini 256 \times 256 pixel
- PSF costruita con il metodo fspecial di MATLAB
- O Aggiunta del rumore additivo Gaussiano Bianco
- Confronto con i metodi di MATLAB
 - deconvwnr
 - deconvlucy
 - deconvblind

Non-Blind - "Text" con L=20 e $\theta=130$

dell'Avana, una pa Gutiérrez ha scritto tesso titolo. Ora p il pubblico italiano Oltre a Senza nien I presente volume I sanore di ma Il

Originale

tell'Avana, una pa futierrez ha scritti tesso titolo. Ora p d pubblico italiana altre a Senza nien I presente volume

Blurred

lell'Avana, una pa Jutierrez ha scritti tesso titolo. Ora p I pubblico italiano iltre a Senza nien I presente volume

PSF

tell'aviera, una per dutierrez ha scritt tesso titolo. Ora p l pubblico italiano lltre a Senza nien l presente volume

deconvwnr

deconvlucy

deconvblind

Iell'Avana, una pa Gutiérrez ha scritto tesso titolo. Ora p Il pubblico italiano Ditre a Senza nien. Il presente volume Iell'Avana, una pa Gutiérrez ha scritta tesso titolo. Ora p Il pubblico italiano Ditre a Senza nien. Il presente volume

GPSR

L1_Ls

Non-Blind - "Lena" con L=25 e $\theta=90$

Blind - "Lena" con L=25 e $\theta=60$

Blind - "Scimmia" con L=20 e $\theta=110$

Blind - "Thai"

CONCLUSIONI

Conclusioni e sviluppi futuri

Risultati ottenuti:

- Sviluppo di metodi Blind e Non-Blind di deblurring di immagini
- Risultati confrontati con le routine di MATLAB
- Tecniche efficaci in termini di qualità visiva

Sviluppi futuri:

- Miglioramento della stima della PSF
- Applicazione di un metodo di stima congiunta della PSF

Grazie per l'attenzione

METODI DI DECONVOLUZIONE DI IMMAGINI AFFETTE DA MOTION BLUR

Candidato: Guglielmo Menchetti

Relatore: Fabrizio Argenti

Corso di Laurea Triennale Ingegneria Informatica Università degli Studi di Firenze

Dipartimento di Ingegneria dell'Informazione

28 Aprile 2017