TD 1: Integers and Bit Representation

Exercise 1 - Binary Operations

The C language has bit manipulation mechanisms. For example, consider two variables x and y of type integer and the operator \oplus (xor). We denote the ith bit of x and y by x_i and y_i respectively. The result of $x \oplus y$ is the word z such that $z_i = x_i \oplus y_i$. The C operators are & (and), | (or), ^ (xor) et ^ (not).

Do not confuse logical operators such as &&, ||, etc. with operators for handling binary words. Note that 4&2 is 0, 4&&2 is 1.

Binary operations can be condensed. So x=x|2 can be written x|=2, and $x=x^y$ can be written $x^=y$. The language also provides the right shift operators \gg or the left shift \ll .

1. What does the following code do:

```
n & (n-1)
```

2. In the following snippet c and n are integers.

```
for (c = 0; n != 0; n &= (n-1)) c++;
```

What value does c take according to the values of n?

We will study a method which efficiently counts the number of 1s in a word of length 2^k (for a $k \ge 0$), that is, in $\mathcal{O}(k)$ number of operations, assuming 2^k is the size of a register. Let $l \le k$ and n be a word of length 2^k . An l-block is one of the blocks of 2^l consecutive bits in n such that these blocks do not overlap. (For example, there are eight 2-blocks of length 4 in a 32-bit word.) The l-count of n is the word of length 2^k such that each of its l-blocks contains the number of 1's of the corresponding l-block in n. Trivially, any word equals its own 0-count. We try to produce the k-count of n. In what follows, we will assume that k = 5, and suddenly we are working with 32-bit registers. The method is, however, easy to generalize.

- 3. Find an operation that produces the 1-count of n (in constant time).
- 4. Generalize and iterate this operation to calculate the 5-count of n.

We work with 64-bit registers. Let $n = (stuvwxyz)_2$ be a byte, with s the most significant bit and z the least significant.

5. What does the following C expression give?

```
(n * 0x0202020202 & 0x010884422010) % 1023
```

Exercise 2 - De Bruijn sequences

In this part of the TD, we will develop an efficient method to count the number of trailing zero bits in a given (unsigned) integer value x such that x>0. Equivalently, we can compute the position of the least significant bit whose value is 1. For example, if the binary representation of x is 10110100, then the bit we are looking for is the 1 which is followed by the two final 0s.

An index in a bit string is identified from right to left starting at zero. E.g., for $x = (10110100)_2$, the bits of x at index 0 and 1 are 0, and the bit with index 2 is 1. We present this method for $2^3 = 8$ bit words, but it can be generalized to 2^n bits for any n > 0.

Given $x \in \mathbb{N}$ such that $0 < x < 2^8$, we will be interested in implementing a function $\ell : \{1, \dots, 2^8 - 1\} \to \{0, \dots, 7\}$ such that $\ell(x)$ is equal to smallest index that is set to 1 in the binary representation of x. In the example above, we have $\ell(x) = 2$.

1. Write a C function to solve this problem (skeleton below). Hint: Consider using shift operators.

```
unsigned int 1 (unsigned int x) { // we assume 0 < x < 256 ... //to be filled }
```

However, the running time of this function depends on the number of bits in x. We will develop another algorithm has *constant* running time, i.e. independent of the actual number of zeros. To this end, we study *de Bruijn* sequences.

A de Bruijn sequence s(n) of order n is a cyclic bit string such that every binary string of length n occurs exactly once in s. Cyclic means that once you reach the end of s(n) you may continue at the beginning of s(n). For example, for n=2 we can set s(n)=0011 since 00,01,10 and 11 can all be found in s(n); in particular 10 starts at index 0 of s(n) and then continues at index 3 of s(n).

2. Give a lower bound for the minimal length of a de Bruijn sequence s(n).

De Bruijn sequences can be obtained from paths in *de Bruijn graphs*. The vertices of a de Bruijn graph of order n are all bit strings of length n. There is a directed edge between two vertices $b_1b_2\cdots b_n$ and $c_1c_2\cdots c_n$ if and only if $b_2=c_1,\,b_3=c_2,\ldots,b_n=c_{n-1}$.

The figure 1 depicts the de Bruijn graph of order 2.

FIGURE 1 – De Bruijn graph of order 2.

3. Draw the de Bruijn graph of order 3.

A de Bruijn sequence can be obtained from a de Bruijn graph by following a *Hamiltonian cycle* that starts and ends in the vertex $0\cdots 0$. A Hamiltonian cycle is a cycle that visits each vertex exactly once before returning to the starting vertex. For instance, the only Hamiltonian cycle in the graph in the figure above is $00 \rightarrow 01 \rightarrow 11 \rightarrow 10 \rightarrow 00$. This cycle corresponds to the aforementioned de Bruijn sequence 0011. One can in fact prove that such a Hamiltonian cycle exists in every de Bruijn graph.

- 4. Find two different de Bruijn sequences of order 3 by following two different Hamiltonian paths in your de Bruijn graph of order 3 starting in vertex 000.
- 5. Choose a de Bruijn sequence s(3) of order 3 from the previous question and complete the following table :

bit-string	7- index in $s(3)$
000	0
001	
010	
011	
100	
101	
110	
111	

6. Let s(3) be the de Bruijn sequence from the previous question and $0 \le j < 8$. What is the value assigned by the table of the bit string :

$$((s(3) \ll j) \gg 5) \& 0x7$$

Here, \ll and \gg mean shift-left and shift-right, respectively, and & is binary AND.

- 7. Given an unsigned integer k > 0, what is the value of k & (-k), where -k is the two's complement of k?
- 8. Propose an implementation of $\ell(x)$.

Exercise 3 - Some logical components

Recall the NAND gate: It is a logic gate which produces an output which is false only if all its inputs are true. We have its truth table below:

p	q	$p \uparrow q$
0	0	1
0	1	1
1	0	1
1	1	0

The goal of this exercise is to implement other components, in an incremental fashion. This is the only component you can use at the start. Once you have implemented a component correctly, it will be usable for the implementation of future components. Try to optimize both, the least number of pre-defined components used, as well as the number of NAND-gates used.

- 1. NOT
- 2. AND
- 3. OR
- 4. XOR
- 5. Equal to Zero (input is a 4-bit word)
- 6. Bonus: You can assume you have the 16 bit components for the above functions, along with a 16-bit adder. Construct a SUBTRACTOR that subtracts B from A (A-B), where A and B are 16-bit numbers.