Lecture#0

Course Introduction

CENG 632- Computational Intelligence, 2024-2025, Spring Assist. Prof. Dr. Osman GÖKALP

Course Instructor

Assist. Prof. Dr. Osman GÖKALP
Department of Computer Engineering, IZTECH
Room 127

E-mail: osmangokalp@iyte.edu.tr

> Class: Thursday, 13:30-16:15

> Office Hours*: Tuesday, 10:00-11:00

Wednesday, 14:00-15:00

^{*} If you would like to meet at a time other than the office hours, please send me an e-mail.

Course Website

TEAMS: Lecture notes, Assignments, Announcements

Enrollment code: zcq5ca0

Teams enrollment codes have been announced at https://ceng.iyte.edu.tr/2024-2025-spring-term-microsoft-teams-course-codes/

The students are expected to **regularly check** the course's Teams class for announcements.

Textbooks

There is no single textbook for the course. Interested students may consider using the following books.

- "Computational Intelligence: A Methodological Introduction", R. Kruse, S. Mostaghim, C. Borgelt, C. Braune, M. Steinbrecher, 3rd edition, Springer.
- "Computational Intelligence: An Introduction", A.P. Engelbrecht, 2nd edition, Wiley.
- "Introduction to Evolutionary Computing", A.E. Eiben and J.E. Smith, 2nd edition, Springer.
- "Essentials of Metaheuristics", S. Luke, 2nd edition, Lulu.

Course Outline (tentative)

Lecture#o: Introduction to Computational Intelligence

Lecture#1: Intro. to Artificial Neural Networks, Threshold Logic Units (Perceptrons)

Lecture#2: General Neural Networks

Lecture#3: Multi-layer Perceptrons-I

Lecture#4: Multi-layer Perceptrons-II

Lecture#5: Some variants of ANNs

Lecture#6: Introduction to Metaheuristics, Evolutionary Computation, and Swarm

Intelligence

Lecture#7: Genetic Algorithms

Midterm Exam

Lecture#8: Differential Evolution

Lecture#9: Particle Swarm Optimization

Lecture#10: Ant Colony Optimization

Lecture#11: Student presentations

Lecture#12: Student presentations

Final Exam

Grading Criteria (tentative)

 Midterm Exam 	50%
 Term Project * 	50%
 Project proposal 	10%
 Project report in given for 	mat 20%
 Project presentation 	20%

^{*} You can work on a project in a group of **up to 3** people or individually. Each group will **choose** its **own topic** based on their interests.

Introduction to Computational Intelligence

The Word 'Intelligence'

Etymology

- The word "intelligence" comes from the Latin "intelligentia", which
 derives from "intelligere", meaning "to understand" or "to discern".
- Breaking it down:
 - "inter-" → "between"
 - "legere" → "to choose" or "to read"
- Implies the ability to choose between options wisely.
- In AI, "intelligence" retains this core idea—machines making decisions by "choosing between" different possibilities based on data and algorithms.

Artificial Intelligence

- Artificial intelligence (AI), in its broadest sense, is
 intelligence exhibited by machines, particularly computer
 systems.
- Field of computer science
- Methods and software that enable machines to perceive their environment and use learning and intelligence to take actions that maximize their chances of achieving defined goals.

What is Computational Intelligence?

- IEEE Computational Intelligence Society:
 - Computational Intelligence (CI) is the theory, design, application and development of biologically and linguistically motivated computational paradigms.
 - Traditionally the three main pillars of CI have been Neural Networks, Fuzzy Systems and Evolutionary Computation.

• Wikipedia:

- Computational intelligence (CI) refers to concepts, paradigms, algorithms and implementations of systems that are designed to **show** "intelligent" behavior in complex and changing environments.
- Nature-analog or at least nature-inspired methods play a key role in this.

AI Methods and CI

CI Subjects We Will Focus on During Class

Introduction to Artificial Neural Networks

Artificial Neural Networks (ANNs)

- Computational models inspired by the human brain:
 - Algorithms that try to mimic the brain.
 - Massively parallel, distributed system, made up of simple processing units (neurons)
 - Synaptic connection strengths among neurons are used to store the acquired knowledge.
 - Knowledge is acquired by the network from its environment through a learning process

History

- late-1800's Neural Networks appear as an analogy to biological systems
- 1960's and 70's Simple neural networks appear
 - Fall out of favor because the perceptron is not effective by itself,
 and there were no good algorithms for multilayer nets
- 1986 Backpropagation algorithm appears
 - Neural Networks have a resurgence in popularity
 - More computationally expensive

Applications of ANNs

- ANNs have been widely used in various domains for:
 - Pattern recognition
 - Function approximation
 - Associative memory

Properties

- Inputs are flexible
 - any real values
 - Highly correlated or independent
- Target function may be discrete-valued, real-valued, or vectors of discrete or real values
 - Outputs are real numbers between 0 and 1
- Resistant to errors in the training data
- Long training time
- Fast evaluation
- The function produced can be difficult for humans to interpret

When to consider neural networks

- Input is high-dimensional discrete or raw-valued
- Output is discrete or real-valued
- Output is a vector of values
- Possibly noisy data
- Form of target function is unknown
- Human readability of the result is not important

Examples:

- Speech recognition
- Image classification
- Financial prediction

A Neuron (= a perceptron)

• The n-dimensional input vector \mathbf{x} is mapped into variable \mathbf{y} by means of the scalar product and a nonlinear function mapping

Perceptron

- **Basic unit** in a neural network
- Linear separator
- Parts
 - N inputs, $x_1 \dots x_n$
 - Weights for each input, $w_1 \dots w_n$
 - A bias input x_0 (constant) and associated weight w_0
 - Weighted sum of inputs, $y = w_0x_0 + w_1x_1 + ... + w_nx_n$
 - A threshold function or activation function,
 - i.e 1 if y > t, -1 if y <= t

Artificial Neural Networks (ANN)

 Model is an assembly of interconnected nodes and weighted links

- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold t

Perceptron Model

$$Y = I(\sum_{i} w_{i}x_{i} - t)$$
 or $Y = sign(\sum_{i} w_{i}x_{i} - t)$

Types of connectivity

Feedforward networks

- These compute a series of transformations
- Typically, the first layer is the input and the last layer is the output.

Recurrent networks

- These have directed cycles in their connection graph. They can have complicated dynamics.
- More biologically realistic.

- Single layer feed-forward networks
 - Input layer projecting into the output layer

- Multi-layer feed-forward networks
 - One or more hidden layers. Input projects only from previous layers onto a layer.

Multi-layer feed-forward networks

Recurrent networks

 A network with feedback, where some of its inputs are connected to some of its outputs (discrete time).

Algorithm for learning ANN

Initialize the weights (w₀, w₁, ..., w_k)

- Adjust the weights in such a way that the output of ANN is consistent with class labels of training examples
 - Error function: $E = \sum_{i} [Y_i f(w_i, X_i)]^2$
 - Find the weights w_i's that minimize the above error function
 - e.g., gradient descent, backpropagation algorithm

Optimizing concave/convex function

 Maximum of a concave function = minimum of a convex function

Gradient ascent (concave) / Gradient descent (convex)

Gradient ascent rule

How a Multi-Layer Neural Network Learn? Backpropagation

- Iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- For each training tuple, the weights are modified to minimize the mean
 squared error between the network's prediction and the actual target value
- Modifications are made in the "backwards" direction: from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"
- Steps
 - Initialize weights (to small random #s) and biases in the network
 - Propagate the inputs forward (by applying activation function)
 - Backpropagate the error (by updating weights and biases)
 - Terminating condition (when error is very small, etc.)

How A Multi-Layer Neural Network Predict? Feed Forward

- The **inputs** to the network correspond to the attributes measured for each training tuple
- Inputs are fed simultaneously into the units making up the input layer
- They are then weighted and fed simultaneously to a hidden layer
- The number of hidden layers is arbitrary, although usually only one
- The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction
- The network is feed-forward in that none of the weights cycles back to an input unit or to an output unit of a previous layer
- From a statistical point of view, networks perform **nonlinear regression**: Given enough hidden units and enough training samples, they can closely approximate any function

Defining a Network Topology

- First decide the **network topology:** # of units in the *input layer*, # of *hidden layers* (if > 1), # of units in *each hidden layer*, and # of units in the *output layer*
- Normalizing the input values for each attribute measured in the training tuples to [0.0—1.0]
- One input unit per domain value
- Output, if for classification and more than two classes, one output unit per class is used
- Once a network has been trained and its accuracy is unacceptable, repeat the training process with a different network topology or a different set of initial weights

Neural Network as a Classifier

Weakness

- Long training time
- Require a number of parameters typically best determined empirically, e.g., the network topology or "structure."
- Poor interpretability: Difficult to interpret the symbolic meaning behind the learned weights and of "hidden units" in the network

Strength

- High tolerance to noisy data
- Ability to classify untrained patterns
- Well-suited for continuous-valued inputs and outputs
- Successful on a wide array of real-world data
- Algorithms are inherently parallel

Introduction to Evolutionary Computation

Evolutionary Computation

 Evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms.

"Black box" model: Optimisation

Model and desired output is known, task is to find inputs

- Examples:
 - Time tables for university, call center, or hospital
 - Design specifications
 - Traveling salesman problem (TSP)
 - Eight-queens problem, etc.

Historical perspective

- 1948, Turing: proposes "genetical or evolutionary search"
- 1962, Bremermann: optimization through evolution and recombination
- 1964, Rechenberg: introduces evolution strategies
- 1965, L. Fogel, Owens and Walsh: introduce evolutionary programming
- 1975, Holland: introduces genetic algorithms
- 1992, Koza: introduces genetic programming

... and many modern variants.

Biological Origins: Darwinian Evolution: Survival of the fittest

- All environments have finite resources
 (i.e., can only support a limited number of individuals)
- Life forms have basic instinct/ lifecycles geared towards reproduction
- Therefore some kind of **selection** is inevitable
- Those individuals that **compete** for the resources most effectively have increased chance of reproduction

Darwinian Evolution: Diversity drives change

- Phenotypic traits:
 - Behaviour / physical differences that affect response to environment
 - Partly determined by inheritance, partly by factors during development
 - Unique to each individual, partly as a result of random changes
- If phenotypic traits:
 - Lead to higher chances of reproduction
 - Can be inherited

then they will tend to increase in subsequent generations, leading to new combinations of traits ...

Darwinian Evolution: Summary

- Population consists of diverse set of individuals
- Combinations of traits that are better adapted tend to increase representation in population

Individuals are "units of selection"

• Variations occur through random changes yielding constant source of diversity, coupled with selection means that:

Population is the "unit of evolution"

Note the absence of "guiding force"

Adaptive landscape metaphor (Wright, 1932)

- Can envisage population with *n* traits as existing in a *n+1*-dimensional space (landscape) with height corresponding to fitness
- Each different individual (phenotype) represents a single point on the landscape
- Population is therefore a "cloud" of points, moving on the landscape over time as it evolves – adaptation

Adaptive landscape metaphor (Wright, 1932)

An example optimization problem: Travelling Salesman Problem (TSP)

- Problem:
 - Given n cities
 - Find a complete tour with minimal length
- Encoding:
 - Label the cities 1, 2, ..., *n*
 - One complete tour is one permutation (e.g. for n =4 [1,2,3,4], [3,4,2,1] are OK)
- Search space is BIG: for 30 cities there are $30! \approx 10^{32}$ possible tours

Methapors and Problem Solving Components

- Individual is a solution candidate (e.g., A TSP tour)
 - May be initialized randomly or by a heuristic rule
- Population is a set of solutions (e.g., array of TSP tours)
- Fitness is the quality of a given solution (e.g., tour length of a TSP tour)
- Parent is a solution that is used for producing new solutions.
- Recombination (crossover) is a **method** that combines parents' features into new solution(s).
- Offspring (Child) is a **solution** that is produced after recombination.
- Selection is a method that selects 'good' solutions according to their fitness.
- Mutation is a random change on solutions.

General scheme of Evolutionary Agorithms (EAs)

Swarm Intelligence

Swarm Intelligence

Swarms, flocks, etc... often exhibit the following rather interesting properties:

- Individuals of the swarm are incapable of X*, or could do X with only low probability.
- However, the swarm as a unit is able to do X, with high probability.

The ability to do X is an *emergent property* of the swarm.

*X: an intelligent behaviour (e.g., find the shortest path)

Swarm Intelligence II

- Each element of the swarm has its own simple behaviour, and a set of rules for interacting with its fellows, and with the environment.
- Every element is the same there is no central controller.
- However, X emerges as a result of these local interactions.
- E.g. ants finding food, termites building mounds, jellyfish.

Swarm Algorithms

Inspiration from swarm intelligence has led to some highly successful optimisation algorithms. We will look at:

- Ant Colony (-based) Optimisation a way to solve optimisation problems based on behavior of ants.
- Particle Swarm Optimisation a different way to solve optimisation problems, based on the swarming behaviour of several kinds of organisms.

Emergent Problem Solving in *Lasius Niger* ants,

For Lasius Niger ants, [Franks, 89] observed:

- regulation of nest temperature within 1 degree celsius range;
- forming bridges;
- raiding specific areas for food;
- building and protecting nest;
- sorting brood and food items;
- cooperating in carrying large items;
- emigration of a colony;
- finding shortest route from nest to food source;
- preferentially exploiting the richest food source available.

These are swarm behaviours – beyond what any individual can do.

Real Ant Experiments

- Experiments conducted on real ants and found very interesting results.
- Deneubourg et al (1989) Double Bridge Experiment

- Ants observed over time
- To begin with random choices of path
- Later, one path taken by most ants (Why?)

Real Ant Experiments

 Deneubourg et al (1989) Double Bridge Experiment – 2nd Experiment

- To begin with random choices of path
- Soon, shortest path selected by most ants
- How?

A key player: Stigmergy

- **Stigmergy** is a mechanism of **indirect coordination**, through the **environment**, **between agents** or actions.
- The principle is that the **trace left** in the environment by an individual action **stimulates** the performance of a **succeeding action** by the same or different agent.
- Agents that respond to traces in the environment receive positive fitness benefits, reinforcing the likelihood of these behaviors becoming fixed within a population over time.
- Stigmergy is a form of self-organization.

Source: https://en.wikipedia.org/wiki/Stigmergy

Summary

- Computational intelligence (CI) refers to concepts, paradigms, algorithms and implementations of systems that are designed to show "intelligent" behavior in complex and changing environments.
- Nature-analog or at least nature-inspired methods play a key role in this.
- Main CI research areas: Artificial Neural Networks,
 Evolutionary Computation, Swarm Intelligence, Fuzzy Logic
 - Machine learning problems: Artificial Neural Networks
 - Optimization problems: Evolutionary Computation, Swarm Intelligence