Inverse Laplace Transforms:

Definition If $L\{f(t)\} = F(8)$, then we write $L'\{F(s)\} = f(t)$ and it is called as inverse Laplace transform of F(s).

3
$$\left[-\frac{1}{s^2+4}\right] = \frac{1}{2} \sin 2t$$

(6)
$$L^{-1}\{1\} = \delta(t)$$

Methods for finding inverse Laplace transforms:

D Partial fractions method:

(i) Find
$$L = \frac{s}{(s-1)(s+1)(s+3)}$$

Sol. Resolving
$$\frac{A}{(3-1)(S+1)(S+3)}$$
 into portial fractions

$$\frac{A}{(3-1)(S+1)(S+3)} = \frac{A}{S-1} + \frac{B}{S+1} + \frac{C}{S+3}$$

$$\Rightarrow A = A(S+1)(S+3) + B(S-1)(S+3) + C(S-1)(S+1)$$

Taking $S = 1$, we get $A = \frac{1}{8}$

Taking $S = 1$, we get $C = -\frac{3}{8}$

Taking $S = -\frac{1}{8}$, we get $S = \frac{1}{4}$

Therefore, $\frac{A}{(S-1)(S+1)(S+3)} = \frac{1}{8} \cdot \frac{1}{S-1} + \frac{1}{4} \cdot \frac{1}{S+1} - \frac{3}{8} \cdot \frac{1}{S+3}$

and hence $\frac{1}{S} \cdot \frac{A}{(S-1)(S+1)(S+3)} = \frac{1}{8} \cdot \frac{1}{S-1} + \frac{1}{4} \cdot \frac{1}{5} \cdot \frac$

Therefore,
$$\frac{s^2}{(s+1)(s+4)} = \frac{1}{2} \frac{1}{s+1} + \frac{1}{2} \frac{s}{s+4} - \frac{1}{2} \frac{1}{s^2+4}$$
and hence $\frac{1}{s} \left\{ \frac{s^2}{(s+1)(s+4)} \right\} = \frac{1}{2} \frac{1}{s+1} + \frac{1}{2} \frac{1}{s+4} + \frac{1}{2} \frac{1}{s^2+4} + \frac{1}{2} \frac{1}{s^2+$

Exercise :-

Find the following woing pertial fractions method.

(Hint:
$$\frac{a}{b} = 9 + \frac{2}{b}$$
)
 $0 \le 2 < b$

$$\begin{bmatrix} -1 \\ \frac{3}{(3^{2}+48)(3^{2}+1)} \end{bmatrix} = \begin{bmatrix} \frac{3^{2}+3-2}{3(3-2)(3+3)} \end{bmatrix}$$

Convolution theorem -

If
$$L = f(t)$$
 and $L = g(t)$,

then
$$\left[\int_{a}^{b} F(s).G(s)\right] = f(t) * g(t)$$

where
$$f(t) * g(t) = \begin{cases} t \\ f(u)g(t-u)du \end{cases}$$

Note:
$$f(t) \times g(t) = g(t) \times f(t)$$
.

Examples

D Evaluate
$$L$$
 $\{(s+1)(s+4)\}$

Sd. Let $F(s) = \frac{1}{(s+1)}$ and $G(s) = \frac{1}{s+4}$

Then L $\{F(s)\} = e^{t} = f(t)$ say and L $\{G(s)\} = \frac{1}{2}$ sinzt $= g(t)$ say

By the Convolution theorem, we have

$$L$$
 $\{F(s), G(s)\} = f(t) * g(t)$

$$= g(t) * f(t)$$

$$= \frac{1}{2}e^{t} \int_{0}^{t} e^{t} \sin_{2}u \, du$$

$$= \frac{e^{t}}{2} \left\{ \frac{e^{t}}{1+2} \left(\sin_{2}u - 2\cos_{2}u \right) \right\}_{0}^{t}$$

$$= \frac{e^{t}}{2} \left\{ \frac{e^{t}}{5} \left(\sin_{2}t - 2\cos_{2}t \right) - \frac{1}{5} \left(0 - 2 \right) \right\}$$

$$= \frac{1}{2} \left(\sin_{2}t - 2\cos_{2}t \right) + \frac{e^{t}}{5}$$

2)
$$L = \frac{s}{(s^2+1)(s^2+9)}$$

Set: Let $F(s) = \frac{1}{s^2+1}$ and $G(s) = \frac{s}{s^2+9}$

Then $L = \frac{1}{s^2+1}$ and $G(s) = \frac{s}{s^2+9}$

Then $L = \frac{1}{s^2+1}$ and $G(s) = \frac{s}{s^2+9}$

Then $L = \frac{1}{s^2+1}$ and $G(s) = \frac{s}{s^2+9}$

By Convolution Theorem, we have

 $L = \frac{1}{s^2+1}$ $L = \frac{1}{s^2+$

Exercise: Find-the-following woing

Convolution theorem.

$$\boxed{3} \boxed{1} \left\{ \frac{1}{(8+3)(8^2+16)} \right\}$$

$$\bigoplus \left[\left\{ \frac{3^{2}}{(s+1)(s+4)} \right\} \right]$$