RTI FPGA Programming Blockset

FPGA Handcode Interface Reference

For RTI FPGA Programming Blockset 3.11

Release 2021-A - May 2021

How to Contact dSPACE

Mail: dSPACE GmbH

Rathenaustraße 26 33102 Paderborn

Germany

Tel.: +49 5251 1638-0
Fax: +49 5251 16198-0
E-mail: info@dspace.de
Web: http://www.dspace.com

How to Contact dSPACE Support

If you encounter a problem when using dSPACE products, contact your local dSPACE representative:

- Local dSPACE companies and distributors: http://www.dspace.com/go/locations
- For countries not listed, contact dSPACE GmbH in Paderborn, Germany.
 Tel.: +49 5251 1638-941 or e-mail: support@dspace.de

You can also use the support request form: http://www.dspace.com/go/supportrequest. If you are logged on to mydSPACE, you are automatically identified and do not need to add your contact details manually.

If possible, always provide the relevant dSPACE License ID or the serial number of the CmContainer in your support request.

Software Updates and Patches

dSPACE strongly recommends that you download and install the most recent patches for your current dSPACE installation. Visit http://www.dspace.com/go/patches for software updates and patches.

Important Notice

This publication contains proprietary information that is protected by copyright. All rights are reserved. The publication may be printed for personal or internal use provided all the proprietary markings are retained on all printed copies. In all other cases, the publication must not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of dSPACE GmbH.

© 2010 - 2021 by: dSPACE GmbH Rathenaustraße 26 33102 Paderborn Germany

This publication and the contents hereof are subject to change without notice.

AUTERA, ConfigurationDesk, ControlDesk, MicroAutoBox, MicroLabBox, SCALEXIO, SIMPHERA, SYNECT, SystemDesk, TargetLink and VEOS are registered trademarks of dSPACE GmbH in the United States or other countries, or both. Other brand names or product names are trademarks or registered trademarks of their respective companies or organizations.

Contents

About This Reference	11
General Information on the I/O Functions Available with FPGA Frameworks	13
FFUA FIdilleWOIKS	13
Overview of the Frameworks Available for MicroLabBox	14
Overview of the DS2655 FPGA Base Board Frameworks	17
Overview of the DS6601 FPGA Base Board Frameworks	19
Overview of the DS6602 FPGA Base Board Frameworks	
Overview of the DS2655M1 I/O Module Framework	
Overview of the DS2655M2 I/O Module Framework	
Overview of the DS6651 Multi-I/O Module Framework	
Overview of the DS660X_MGT Framework	
Overview of the Inter-FPGA Interface Framework	
Overview of the DS5203 Onboard I/O Frameworks	32
Overview of the DS5203M1 Multi-I/O Module Frameworks of	
DS5203	34
Overview of the Frameworks Available for MicroAutoBox II	27
(FPGA1401Tp1)	37
(FPGA1403Tp1)	40
(1.6/1.1031)	
I/O Functions of the DS1202 FPGA I/O Type 1	
Framework	
ADC (Class 1)	46
ADC (Class 2)	48
Buffer In	49
Buffer64 In	51
Buffer Out	53
Buffer64 Out	55
Buzzer	57
DAC (Class 1)	58
Digital InOut (Class 1)	60
Digital InOut (Class 2)	62
Interrupt	65
LED Out	65
Droc Ann Status	cc

	Register In	67
	Register64 In	69
	Register Out	71
	Register64 Out	72
	Resolver	74
	Status In	77
	UART (RS232)	78
	UART (RS422/485)	82
I/O	Functions of the DS2655 FPGA Base Board	
	mework	87
	APU Master	89
	APU Slave	
	Buffer In	
	Buffer64 In	
	Buffer Out	
	Buffer64 Out	
	CN App Status	
	I-FPGA In (IOCNET)	
	I-FPGA64 In (IOCNET)	
	I-FPGA Out (IOCNET)	
	I-FPGA64 Out (IOCNET)	
	Interrupt	
	IOCNET Global Time	
	LED Out	
	Register In	
	Register64 In	
	Register Out	
	Register64 Out	118
	Status In	
I/O	Functions of the DS6601 FPGA Base Board	
Fra	mework	123
	APU Master	125
	APU Slave	127
	Buffer In	129
	Buffer64 In	131
	Buffer Out	133
	Buffer64 Out	136
	CN App Status	138

	I-FPGA In (IOCNET)	139
	I-FPGA64 In (IOCNET)	141
	I-FPGA Out (IOCNET)	143
	I-FPGA64 Out (IOCNET)	145
	Interrupt	147
	IOCNET Global Time	148
	LED Out	149
	Register In	150
	Register64 In	151
	Register Out	153
	Register64 Out	154
	Status In	156
/0	Functions of the DS6602 FPGA Base Board	
rar	mework	159
	APU Master	161
	APU Slave	
	Buffer In	
	Buffer64 In	
	Buffer Out	
	Buffer64 Out	
	CN App Status	
	DDR4 32 Mode 1	
	DDR4 32 Mode 2	
	DDR4 64 Mode 1	
	DDR4 64 Mode 2	
	I-FPGA In (IOCNET)	
	I-FPGA64 In (IOCNET)	
	I-FPGA Out (IOCNET)	
	I-FPGA64 Out (IOCNET)	
	Interrupt	
	IOCNET Global Time	
	LED Out	
	Register In	
	Register64 In	
	Register Out	
	Register 64 Out	
	Status In	202

I/O Functions of the DS2655M1 I/O Module Framework	205
Analog In	206
Analog Out	
Digital In	
Digital InOut	211
Digital Out	214
I/O Functions of the DS2655M2 I/O Module Framework	217
Digital In	218
Digital Out	
Digital Out-Z	224
RS232 Rx	227
RS232 Tx	228
RS485 Rx	230
RS485 RxTx	232
RS485 Tx	235
I/O Functions of the DS6651 Multi-I/O Module	220
Framework	239
Analog In	240
Analog In-L	244
Analog Out	247
Analog Out-T	
Digital In	
Digital In/Out-Z	
Digital Out	
Digital Out-Z	
RS485 Rx	
RS485 Rx/Tx	
RS485 TxTrigger	
mgger	207
I/O Functions of the DS660X_MGT Framework	269
Aurora 64b66b In	270
Aurora 64b66b Out	271
Aurora 64b66b 128 Bit In	273
Aurora 64h66h 128 Bit Out	275

MGT In	277
MGT Out	278
I/O Functions of the Inter-FPGA Interface Framew	ork 281
I-FPGA In	282
I-FPGA Out	287
I/O Functions of the DS5203 with Onboard I/O	
	201
Frameworks	291
ADC	293
APU Master	294
APU Slave	295
Buffer In	297
Buffer64 In	298
Buffer Out	300
Buffer64 Out	302
DAC	304
Digital In	305
Digital Out	307
I-FPGA Master	309
I-FPGA Slave	312
Interrupt	315
LED Out	315
Register In	316
Register64 In	318
Register Out	320
Register64 Out	321
Status In	323
I/O Functions of the DS5203M1 Multi-I/O Module	9
Frameworks	325
Tranicworks	323
ADC (M1)	
DAC (M1)	
Digital In (M1)	
Digital Out (M1)	
Sonsor Supply	222

O Functions of the FPGA1401Tp1 with Multi	i-I/O
Module Frameworks	335
ADC (Type A)	337
ADC (Type B)	
Buffer In	340
Buffer64 In	341
Buffer Out	343
Buffer64 Out	345
DAC	347
Digital Crank/Cam Sensor	348
Digital In (Type A)	350
Digital In (Type B)	352
Digital Out (Type A)	354
Digital Out (Type B)	356
Inductive Zero Voltage Detector	358
Interrupt	359
LED Out	360
Register In	361
Register64 In	362
Register Out	364
Register64 Out	366
Sensor Supply	368
Status In	368
UART (RS232)	370
UART (RS422/485)	375
/O Functions of the FPGA1401Tp1 with Engir	
Control I/O Module Framework	381
ADC (Type A)	382
Buffer In	385
Buffer64 In	386
Buffer Out	388
Buffer64 Out	390
Digital Crank/Cam Sensor	392
Digital In (Type B)	394
Digital Out (Type A)	396
Digital Out (Type B)	399
Inductive Zero Voltage Detector	401
Interrupt	402

Knock Sensor	403
LED Out	404
Register In	405
Register64 In	407
Register Out	409
Register64 Out	410
Status In	412
Temperature	413
I/O Functions of the FPGA1403Tp1 wit	h Multi-I/O
Module Frameworks	415
ADC (Type A)	417
ADC (Type B)	418
Buffer In	
Buffer64 In	
Buffer Out	423
Buffer64 Out	
DAC	
Digital Crank/Cam Sensor	
Digital In (Type A)	
Digital In (Type B)	
Digital Out (Type A)	
Digital Out (Type B)	
Inductive Zero Voltage Detector	
Interrupt	
LED Out	
Register In	
Register64 In	
Register Out	
Register64 Out	
Sensor Supply	
Status In	
UART (RS232)	450
UART (RS422/485)	
I/O Functions of the EDGA 1/102To 1 wit	h Engino
I/O Functions of the FPGA1403Tp1 wit	
Control I/O Module Framework	461
ADC (Type A)	462
Buffer In	
D ((CA)	166

Buffer Out	468
Buffer64 Out	470
Digital Crank/Cam Sensor	472
Digital In (Type B)	473
Digital Out (Type A)	475
Digital Out (Type B)	478
Inductive Zero Voltage Detector	480
Interrupt	481
Knock Sensor	482
LED Out	483
Register In	484
Register64 In	486
Register Out	487
Register64 Out	489
Status In	490
Temperature	491
Index	493

About This Reference

Content

This reference provides detailed information about the I/O functions provided by the FPGA handcode frameworks of your dSPACE installation. For example, it contains descriptions of the parameters and ports of the available functions.

Audience profile

It is assumed that you have good knowledge in:

- Applying generally accepted FPGA design rules to ensure a stable and reliable FPGA application.
- The architectural structure of FPGAs (CLB architecture, slice flip-flops, memory resources, DSP resources, clocking resources) with a verifiable experience on digital designs (structural mapping, tool-flow knowledge, synthesis options, timing analysis).
- Modeling with Simulink[®].
- Modeling with the Xilinx® System Generator Blockset.
- Using the Xilinx® design tools for simulation and debugging.

Symbols

dSPACE user documentation uses the following symbols:

Symbol	Description
▲ DANGER	Indicates a hazardous situation that, if not avoided, will result in death or serious injury.
▲ WARNING	Indicates a hazardous situation that, if not avoided, could result in death or serious injury.
▲ CAUTION	Indicates a hazardous situation that, if not avoided, could result in minor or moderate injury.
NOTICE	Indicates a hazard that, if not avoided, could result in property damage.
Note	Indicates important information that you should take into account to avoid malfunctions.
Tip	Indicates tips that can make your work easier.

Symbol	Description
?	Indicates a link that refers to a definition in the glossary, which you can find at the end of the document unless stated otherwise.
	Precedes the document title in a link that refers to another document.

Naming conventions

dSPACE user documentation uses the following naming conventions:

%name% Names enclosed in percent signs refer to environment variables for file and path names.

Angle brackets contain wildcard characters or placeholders for variable file and path names, etc.

Special folders

Some software products use the following special folders:

Common Program Data folder A standard folder for application-specific configuration data that is used by all users.

%PROGRAMDATA%\dSPACE\<InstallationGUID>\<ProductName>

%PROGRAMDATA%\dSPACE\<ProductName>\<VersionNumber>

A standard folder for user-specific documents. Documents folder

%USERPROFILE%\Documents\dSPACE\<ProductName>\ <VersionNumber>

Local Program Data folder A standard folder for application-specific configuration data that is used by the current, non-roaming user.

%USERPROFILE%\AppData\Local\dSPACE\<InstallationGUID>\ <ProductName>

Accessing dSPACE Help and **PDF Files**

After you install and decrypt dSPACE software, the documentation for the installed products is available in dSPACE Help and as PDF files.

dSPACE Help (local) You can open your local installation of dSPACE Help:

- On its home page via Windows Start Menu
- On specific content using context-sensitive help via F1

dSPACE Help (Web) You can access the Web version of dSPACE Help at www.dspace.com/go/help.

To access the Web version, you must have a mydSPACE account.

You can access PDF files via the 🔼 icon in dSPACE Help. The PDF opens on the first page.

General Information on the I/O Functions Available with FPGA Frameworks

Introduction

Overview of the FPGA handcode frameworks provided by the RTI FPGA Programming Blockset.

Where to go from here

Information in this section

Overview of the Frameworks Available for MicroLabBox
Overview of the DS2655 FPGA Base Board Frameworks
Overview of the DS6601 FPGA Base Board Frameworks
Overview of the DS6602 FPGA Base Board Frameworks
Overview of the DS2655M1 I/O Module Framework
Overview of the DS2655M2 I/O Module Framework
Overview of the DS6651 Multi-I/O Module Framework

Overview of the DS660X_MGT Framework	
Overview of the Inter-FPGA Interface Framework	
Overview of the DS5203 Onboard I/O Frameworks	
Overview of the DS5203M1 Multi-I/O Module Frameworks of DS5203	
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)	

Overview of the Frameworks Available for MicroLabBox

Introduction

The DS1202 FPGA I/O Type 1 frameworks are the standard frameworks supporting MicroLabBox. They provide access to analog and digital signals, and to the internal bus buffers and registers.

Framework location

Depending on the use case, there are two frameworks:

• Framework to handcode a custom FPGA application without using the standard I/O features:

<RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\ DS1302_XC7K325T

 Framework to handcode a custom FPGA application that additionally supports the standard I/O features to use remaining I/O channels with the RTI blocksets/Real-Time Libraries (RTLib) for MicroLabBox:

<RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
DS1302_XC7K325T_FLEXIBLEIO

The entire framework folder must be copied to your working folder (see also Preparing Your Environment (RTI FPGA Programming Blockset Handcode Interface Guide (2)). The included handcode FPGA framework INI file hc_fpga_framework_ini_DS1302.m must be adapted to your specific framework configuration. You find the configuration options in this reference.

For each I/O function category a specific range of channels is reserved. With the I/O function number, you can specify a specific I/O function and its corresponding channel.

Functions for exchanging data with the processor application

The following I/O functions can be used to exchange data with the processor application.

I/O Function	Available Channels	I/O Function Numbering
Register In	256	1 256
Buffer In	32	257 288
Register64 In ¹⁾	256	289 544
Buffer64 In ¹⁾	32	545 576
Register Out	256	1 256
Buffer Out	32	257 288
Register64 Out ¹⁾	256	289 544
Buffer64 Out ¹⁾	32	545 576

¹⁾ All 64-bit fixed-point data types are converted to double in the processor model. Therefore, the fixed-point resolution of double is restricted to 53 bits.

Functions for exchanging data with the I/O module

The following I/O functions can be used to exchange data with the I/O of MicroLabBox's DS1302 board.

I/O Function	Available Channels	I/O Function Numbering
ADC (Class 1)	24	2 25
ADC (Class 2)	8	26 33
Digital InOut (Class 1)	48	5 52
DAC (Class 1)	16	53 68
Digital InOut (Class 2)	12	73 84

Additional I/O functions for special purposes

The following I/O functions can be used for special purposes.

I/O Function	Purpose	Available Channels	I/O Function Numbering
Interrupt	To implement interrupt handling.	32	1 32
Status In	To get information on the state of the FPGA programming sequence.	1	1
Proc App Status	To get information on the state of the processor application.	1	34
LED Out	To set the FPGA status LEDs near the I/O connectors.	4	1 4
Buzzer	To generate an acoustic signal.	1	85
UART (RS232)	To implement communication	2	69 70
UART (RS422/485)	via the serial interface.	2	71 72
Resolver	To get the rotor's position via a resolver sensor.	2	35 36

Parameters and ports

For detailed information on the I/O functions and their parameters and ports, refer to the function descriptions in I/O Functions of the DS1202 FPGA I/O Type 1 Framework on page 45. The parameter and port descriptions additionally contain more descriptive names for a simple identification of the parameters and ports. For example, Fct(<IOFunction_Number>).Parameter(1).Init / Binary point position describes the Binary point position parameter of the I/O function.

The port definitions are required to specify the FPGA functionality in VHDL or Verilog code. In your Vivado project, you must adapt the related cm file to the required FPGA functionality. For further information, refer to Specifying the FPGA Functionality (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

For each accessed port in the VHDL or Verilog code, you must configure the corresponding I/O function in the handcode FPGA framework INI file. Most of the I/O function parameters configure the function behavior. For further information, refer to Specifying the FPGA I/O Interface (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Related topics

Basics

Overview of the DS2655 FPGA Base Board Frameworks

Introduction

The frameworks comes with the DS2655 FPGA Base Board, providing access to APU signals, and to the IOCNET buffers and registers.

Each variant of the DS2655 FPGA Base Board is supported by its own framework:

- DS2655 (7K160) FPGA Base Board framework
- DS2655 (7K410) FPGA Base Board framework

Framework location

The location of the frameworks depends on the used variant of the DS2655 FPGA Base Boards:

- DS2655 (7K160) FPGA Base Board:
 <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS2655 XC7K160T
- DS2655 (7K410) FPGA Base Board:
 <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS2655_XC7K410T

The entire framework folder must be copied to your working folder (see also Preparing Your Environment (RTI FPGA Programming Blockset Handcode Interface Guide (2)). The included handcode FPGA framework INI file hc_fpga_framework_ini_DS2655.m must be adapted to your specific framework configuration. You find the configuration options in this reference.

Functions for exchanging data with the processor application

The following I/O functions can be used to exchange data with the processor application, either with 32 bit or with 64 bit data width.

I/O Function	Available Channels	I/O Function Numbering
Register In	256	1 256
Register64 In ¹⁾	256	289 544
Register Out	256	1 256
Register64 Out ¹⁾	256	289 544
Buffer In	32	257 288
Buffer64 In ¹⁾	32	545 576
Buffer Out	32	257 288
Buffer64 Out ¹⁾	32	545 576

¹⁾ All 64-bit fixed-point data types are converted to double in the processor model. Therefore, the fixed-point resolution of double is restricted to 53 bits.

For detailed information, refer to I/O Functions of the DS2655 FPGA Base Board Framework on page 87.

Additional I/O functions for special purposes

The following I/O functions can be used for special purposes.

I/O Function	Purpose	Available Channels	I/O Function Numbering
Interrupt	To implement interrupt handling.	8	1 8
Status In	To get information on the state of the FPGA programming sequence.	1	1
CN App Status	To get information on the state of the controller application.	1	2
LED Out	To set the LED on the board's bracket.	1	1
IOCNET Global Timer	To implement angle-based applications.	1	3
APU Master		6	2 7
APU Slave		6	4 9
I-FPGA In (IOCNET)	To implement inter-FPGA communication between FPGA	32	10 41
I-FPGA64 In (IOCNET)	base boards via IOCNET.	32	42 73
I-FPGA Out (IOCNET)		32	8 39
I-FPGA64 Out (IOCNET)		32	40 71

Parameters and ports

For detailed information on the I/O functions and their parameters and ports, refer to the function descriptions in I/O Functions of the DS2655 FPGA Base Board Framework on page 87. The parameter and port descriptions additionally contain more descriptive names for a simple identification of the parameters and ports. For example, Fct(<IOFunction_Number>).Parameter(1).Init / Binary point position describes the Binary point position parameter of the I/O function.

The port definitions are required to specify the FPGA functionality in VHDL code. In your Vivado project, you must adapt the related cm file to the required FPGA functionality. For further information, refer to Specifying the FPGA Functionality (RTI FPGA Programming Blockset Handcode Interface Guide \square).

For each accessed port in the VHDL code, you must configure the corresponding I/O function in the handcode FPGA framework INI file. Most of the I/O function parameters configure the function behavior. For further information, refer to Specifying the FPGA I/O Interface (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Related topics

Basics

Detailed Instructions on the Handcode Workflow (RTI FPGA Programming Blockset Handcode Interface Guide (III)

Overview of the DS6601 FPGA Base Board Frameworks

Introduction

The *DS6601 (KU035) FPGA Base Board* framework comes with the DS6601 FPGA Base Board, providing access to APU signals, and to the IOCNET buffers and registers.

Framework location

The framework is located in the follwing folder:

<RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\ DS6601 XCKU035

The entire framework folder must be copied to your working folder (see also Preparing Your Environment (RTI FPGA Programming Blockset Handcode Interface Guide (1)). The included handcode FPGA framework INI file hc_fpga_framework_ini_DS6601_XCKU035.m must be adapted to your specific framework configuration. You find the configuration options in this reference.

Functions for exchanging data with the processor application

The following I/O functions can be used to exchange data with the processor application, either with 32 bit or with 64 bit data width.

I/O Function	Available Channels	I/O Function Numbering
Register In	256	1 256
Register64 In ¹⁾	256	289 544
Register Out	256	1 256
Register64 Out ¹⁾	256	289 544
Buffer In	32	257 288
Buffer64 In ¹⁾	32	545 576
Buffer Out	32	257 288
Buffer64 Out ¹⁾	32	545 576

¹⁾ All 64-bit fixed-point data types are converted to double in the processor model. Therefore, the fixed-point resolution of double is restricted to 53 bits.

For detailed information, refer to I/O Functions of the DS6601 FPGA Base Board Framework on page 123.

Additional I/O functions for special purposes

The following I/O functions can be used for special purposes.

I/O Function	Purpose	Available Channels	I/O Function Numbering
Interrupt	To implement interrupt handling.	16	1 16
Status In	To get information on the state of the FPGA programming sequence.	1	1
CN App Status	To get information on the state of the controller application.	1	2
LED Out	To set the LED on the board's bracket.	1	1
IOCNET Global Timer	To implement angle-based applications.	1	3
APU Master		6	2 7
APU Slave		6	4 9
I-FPGA In (IOCNET)	To implement inter-FPGA communication between FPGA	32	11 42
I-FPGA64 In (IOCNET)	base boards via IOCNET.	32	43 74
I-FPGA Out (IOCNET)		32	8 39
I-FPGA64 Out (IOCNET)		32	40 71

Parameters and ports

For detailed information on the I/O functions and their parameters and ports, refer to the function descriptions in I/O Functions of the DS6601 FPGA Base Board Framework on page 123. The parameter and port descriptions additionally contain more descriptive names for a simple identification of the parameters and ports. For example, Fct(<IOFunction_Number>).Parameter(1).Init / Binary point position describes the Binary point position parameter of the I/O function.

The port definitions are required to specify the FPGA functionality in VHDL code. In your Vivado project, you must adapt the related cm file to the required FPGA functionality. For further information, refer to Specifying the FPGA Functionality (RTI FPGA Programming Blockset Handcode Interface Guide \square).

For each accessed port in the VHDL code, you must configure the corresponding I/O function in the handcode FPGA framework INI file. Most of the I/O function parameters configure the function behavior. For further information, refer to Specifying the FPGA I/O Interface (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Related topics

Basics

Detailed Instructions on the Handcode Workflow (RTI FPGA Programming Blockset Handcode Interface Guide (III)

Overview of the DS6602 FPGA Base Board Frameworks

Introduction

The DS6602 (KU15P) FPGA Base Board framework comes with the DS6602 FPGA Base Board, providing access to APU signals, and to the IOCNET buffers and registers.

Framework location

The framework is located in the follwing folder:

<RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\ DS6602 XCKU15P

The entire framework folder must be copied to your working folder (see also Preparing Your Environment (RTI FPGA Programming Blockset Handcode Interface Guide (1)). The included handcode FPGA framework INI file hc_fpga_framework_ini_DS6602_XCKU15P.m must be adapted to your specific framework configuration. You find the configuration options in this reference.

Functions for exchanging data with the processor application

The following I/O functions can be used to exchange data with the processor application, either with 32 bit or with 64 bit data width.

I/O Function	Available Channels	I/O Function Numbering
Register In	256	1 256
Register64 In ¹⁾	256	289 544
Register Out	256	1 256
Register64 Out ¹⁾	256	289 544
Buffer In	32	257 288
Buffer64 In ¹⁾	32	545 576
Buffer Out	32	257 288
Buffer64 Out ¹⁾	32	545 576

¹⁾ All 64-bit fixed-point data types are converted to double in the processor model. Therefore, the fixed-point resolution of double is restricted to 53 bits.

For detailed information, refer to I/O Functions of the DS6602 FPGA Base Board Framework on page 159.

Additional I/O functions for special purposes

The following I/O functions can be used for special purposes.

I/O Function	Purpose	Available Channels	I/O Function Numbering
Interrupt	To implement interrupt handling.	16	1 16
Status In	To get information on the state of the FPGA programming sequence.	1	1
CN App Status	To get information on the state of the controller application.	1	2
LED Out	To set the LED on the board's bracket.	1	1
IOCNET Global Timer	To implement angle-based applications.	1	3
APU Master		6	2 7
APU Slave		6	4 9
DDR4 32 Mode 1	To provide read/write access to the DDR4 RAM.	1	8
DDR4 32 Mode 2		1	9
DDR4 64 Mode 1		1	10
DDR4 64 Mode 2		1	11
I-FPGA In (IOCNET)	To implement inter-FPGA communication between FPGA	32	11 42
I-FPGA64 In (IOCNET)	base boards via IOCNET.	32	43 74
I-FPGA Out (IOCNET)		32	12 43
I-FPGA64 Out (IOCNET)		32	44 75

Parameters and ports

For detailed information on the I/O functions and their parameters and ports, refer to the function descriptions in I/O Functions of the DS6602 FPGA Base Board Framework on page 159. The parameter and port descriptions additionally contain more descriptive names for a simple identification of the parameters and ports. For example, Fct(<IOFunction_Number>).Parameter(1).Init / Binary point position describes the Binary point position parameter of the I/O function.

The port definitions are required to specify the FPGA functionality in VHDL code. In your Vivado project, you must adapt the related cm file to the required FPGA

functionality. For further information, refer to Specifying the FPGA Functionality (RTI FPGA Programming Blockset Handcode Interface Guide (12)).

For each accessed port in the VHDL code, you must configure the corresponding I/O function in the handcode FPGA framework INI file. Most of the I/O function parameters configure the function behavior. For further information, refer to Specifying the FPGA I/O Interface (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Related topics

Basics

Detailed Instructions on the Handcode Workflow (RTI FPGA Programming Blockset Handcode Interface Guide (III)

Overview of the DS2655M1 I/O Module Framework

Introduction

The *DS2655M1 I/O Module* framework comes with the DS2655M1 Multi-I/O Module, providing access to analog and digital signals.

Framework location

The location of the frameworks depends on the used variant of the SCALEXIO FPGA base board:

- DS2655 (7K160) FPGA Base Board:
 - <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS2655_XC7K160T
- DS2655 (7K410) FPGA Base Board:
 - <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS2655 XC7K410T
- DS6601 FPGA Base Board:
 - <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS6601_XCKU035
- DS6602 FPGA Base Board:
 - <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS6602 XCKU15P

The entire framework folder must be copied to your working folder (see also Preparing Your Environment (RTI FPGA Programming Blockset Handcode Interface Guide (2)). The included handcode FPGA framework INI file hc_fpga_framework_ini_<FPGA base board>.m must be adapted to your specific framework configuration. You find the configuration options in this reference.

Functions for exchanging data with the I/O module

The DS2655M1 Multi-I/O Module is an I/O module for the SCALEXIO FPGA base boards. A SCALEXIO FPGA Base Board and one or more I/O modules mounted together and connected via ribbon cables form an FPGA board in a SCALEXIO system.

The following I/O functions can be used to exchange data with the I/O of the DS2655M1 Multi-I/O Module. Because you can use up to five I/O modules, you have to specify not only the I/O function number and the channel number to configure a specific I/O function, but also the module number. The module number is the number of the slot the I/O module is connected to.

I/O Function	Available Channels	I/O Function Numbering	Channel Numbering	Module Numbering
Analog In	5	11 15	1 5	1 5
Analog Out	5	21 25	6 10	
Digital In	10	1 10	1 10	
Digital InOut	10	11 20	1 10	
Digital Out	10	1 10	1 10	

For detailed information, refer to I/O Functions of the DS2655M1 I/O Module Framework on page 205.

Parameters and ports

For detailed information on the I/O functions and their parameters and ports, refer to the function descriptions in I/O Functions of the DS2655M1 I/O Module Framework on page 205. The parameter and port descriptions additionally contain more descriptive names for a simple identification of the parameters and ports. For example, IOProperties.In.Fct(<IOFunction_Number> + ioInOffset<Module_number>).Parameter(3).Init / Input range describes the Input Range parameter of the I/O function.

The port definitions are required to specify the FPGA functionality in VHDL code. In your Vivado project, you must adapt the related cm file to the required FPGA functionality. For further information, refer to Specifying the FPGA Functionality (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

For each accessed port in the VHDL code, you must configure the corresponding I/O function in the handcode FPGA framework INI file. Most of the I/O function parameters configure the function behavior. For further information, refer to Specifying the FPGA I/O Interface (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Related topics

Basics

Detailed Instructions on the Handcode Workflow (RTI FPGA Programming Blockset Handcode Interface Guide Ω)

Overview of the DS2655M2 I/O Module Framework

Introduction

The *DS2655M2 I/O Module* framework comes with the DS2655M2 Digital I/O Module, providing access to digital signals.

Framework location

The location of the frameworks depends on the used variant of the SCALEXIO FPGA base board:

- DS2655 (7K160) FPGA Base Board:
 <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS2655 XC7K160T
- DS2655 (7K410) FPGA Base Board:
 <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS2655 XC7K410T
- DS6601 FPGA Base Board:
 <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS6601_XCKU035
- DS6602 FPGA Base Board:
 <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS6602 XCKU15P

The entire framework folder must be copied to your working folder (see also Preparing Your Environment (RTI FPGA Programming Blockset Handcode Interface Guide (Q)). The included handcode FPGA framework INI file hc_fpga_framework_ini_<FPGA base board>.m must be adapted to your specific framework configuration. You find the configuration options in this reference.

Note

To use DS2655M2 Digital I/O Modules, you must additionally copy files from the RTL folder of the DS2655M2 I/O Module framework folder into your project once and customize them. Refer to Configuring the FPGA Code With the Specified I/O Interface (RTI FPGA Programming Blockset Handcode Interface Guide (11)).

Functions for exchanging data with the I/O module

The DS2655M2 Digital I/O Module is an I/O module for the SCALEXIO FPGA base boards. A SCALEXIO FPGA base board and one or more I/O modules mounted together and connected via ribbon cables form an FPGA board in a SCALEXIO system.

The following I/O functions can be used to exchange data with the I/O of the DS2655M2 Digital I/O Module. Because you can use up to five I/O modules, you have to specify not only the I/O function number and the channel number to configure a specific I/O function, but also the module number. The module number is the number of the slot the I/O module is connected to.

I/O Function	Available Number of I/O Functions	I/O Function Numbering	Channel Numbering	Module Numbering
Digital In	32	1 32	1 32	1 5
Digital Out	32	1 32	1 32	
Digital Out-Z	16	33 48	1-2, 3-4, , 31-32	
RS232 Rx	8	33 40	2, 6, , 30	
RS232 Tx	8	49 56	1, 5, , 29	
RS485 Rx	8	41 48	1-2, 5-6, , 29-30	
RS485 RxTx	8	65 72	1-3, 5-7, , 29-31	
RS485 Tx	8	57 64	1-2, 5-6, , 29-30	

The I/O functions of the DS2655M2 I/O Module framework share the 32 I/O channels of the DS2655M2 Digital I/O Module. For details on the signal mapping to optimize channel usage, refer to Signal Mapping of the DS2655M2 Digital I/O Module (SCALEXIO Hardware Installation and Configuration).

For detailed information, refer to I/O Functions of the DS2655M2 I/O Module Framework on page 217.

Parameters and ports

For detailed information on the I/O functions and their parameters and ports, refer to the function descriptions in I/O Functions of the DS2655M2 I/O Module Framework on page 217. The parameter and port descriptions additionally contain more descriptive names for a simple identification of the parameters and ports. For example, IOProperties.In.Fct(<IOFunctionNumber> + ioInOffset<ModuleNumber>).Parameter(8).Init / Threshold init voltage describes the Threshold init voltage parameter of the I/O function.

The port definitions are required to specify the FPGA functionality in VHDL code. In your Vivado project, you must adapt the related cm file to the required FPGA functionality. For further information, refer to Specifying the FPGA Functionality (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

For each accessed port in the VHDL code, you must configure the corresponding I/O function in the handcode FPGA framework INI file. Most of the I/O function parameters configure the function behavior. For further information, refer to Specifying the FPGA I/O Interface (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Related topics

Basics

Detailed Instructions on the Handcode Workflow (RTI FPGA Programming Blockset Handcode Interface Guide Ω)

Overview of the DS6651 Multi-I/O Module Framework

Introduction

The *DS6651 Multi-I/O Module* framework comes with the DS6651 Multi-I/O Module, providing access to digital signals.

Framework location

The location of the frameworks depends on the used variant of the SCALEXIO FPGA base board:

- DS2655 (7K160) FPGA Base Board:
 <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS2655 XC7K160T
- DS2655 (7K410) FPGA Base Board:
 <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS2655 XC7K410T
- DS6601 FPGA Base Board: <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\ DS6601_XCKU035
- DS6602 FPGA Base Board:
 <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS6602 XCKU15P

The entire framework folder must be copied to your working folder (see also Preparing Your Environment (RTI FPGA Programming Blockset Handcode Interface Guide (2)). The included handcode FPGA framework INI file hc_fpga_framework_ini_<FPGA base board>.m must be adapted to your specific framework configuration. You find the configuration options in this reference.

Note

To use DS6651 Multi-I/O Modules, you must additionally copy files from the RTL folder of the DS6651 Multi-I/O Module framework folder into your project once and customize them. Refer to Configuring the FPGA Code With the Specified I/O Interface (RTI FPGA Programming Blockset Handcode Interface Guide (11)).

Functions for exchanging data with the I/O module

The DS6651 Multi-I/O Module is an I/O module for the SCALEXIO FPGA base boards. A SCALEXIO FPGA base board and one or more I/O modules mounted together and connected via ribbon cables form an FPGA board in a SCALEXIO system.

The following I/O functions can be used to exchange data with the I/O of the DS6651 Multi-I/O Module. Because you can use up to five I/O modules, you have to specify not only the I/O function number and the channel number to configure a specific I/O function, but also the module number. The module number is the number of the slot the I/O module is connected to.

I/O Function	Available Number of I/O Functions	I/O Function Numbering	Channel Numbering	Module Numbering
Analog In	4	25 28	23 26	1 5
Analog In-L	2	29, 30	27, 28	
Analog Out	4	41 44	17 20	
Analog Out-T	2	45, 46	21, 22	
Digital In	Up to 16	1 16	1 16	
Digital In/Out-Z	Up to 4	25 28	1, 5, 9, 13	
Digital Out	Up to 16	1 16	1 16	
Digital Out-Z	Up to 8	17 24	1, 3, 5, , 15	
RS485 Rx	Up to 8	17 24	1, 3, 5, , 15	
RS485 Rx/Tx	Up to 4	37 40	1, 5, 9, 13	
RS485 Tx	Up to 8	29 36	1, 3, 5, , 15	
Trigger	2	47, 48	17, 18	

The I/O functions of the DS6651 Multi-I/O Module framework share the digital I/O channels that provide the digital I/O functionality. The DS6651 Multi-I/O Module provides 16 digital I/O channels. Some I/O channels provide only specific I/O functionalities, and some I/O functions use more than one I/O channel. These channel dependencies and I/O channel sharing limit the number of I/O functions that can be implemented.

For the data sheet of the DS6651 Multi-I/O Module, refer to DS6651 Multi-I/O Module (SCALEXIO Hardware Installation and Configuration (14)).

For details on the signal mapping to optimize channel usage, refer to Supported Digital Functions and Related I/O Channels (SCALEXIO Hardware Installation and Configuration (1)).

For detailed information, refer to I/O Functions of the DS6651 Multi-I/O Module Framework on page 239.

Parameters and ports

For detailed information on the I/O functions and their parameters and ports, refer to the function descriptions in I/O Functions of the DS6651 Multi-I/O Module Framework on page 239. The parameter and port descriptions additionally contain more descriptive names for a simple identification of the parameters and ports. For example, IOProperties.In.Fct(<IOFunctionNumber> + ioInOffset<ModuleNumber>).Parameter(8).Init / Threshold init voltage describes the Threshold init voltage parameter of the I/O function.

The port definitions are required to specify the FPGA functionality in VHDL code. In your Vivado project, you must adapt the related cm file to the required FPGA functionality. For further information, refer to Specifying the FPGA Functionality (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

For each accessed port in the VHDL code, you must configure the corresponding I/O function in the handcode FPGA framework INI file. Most of the I/O function

parameters configure the function behavior. For further information, refer to Specifying the FPGA I/O Interface (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Related topics

Basics

Detailed Instructions on the Handcode Workflow (RTI FPGA Programming Blockset Handcode Interface Guide Ω)

Overview of the DS660X_MGT Framework

Framework location

The location of the frameworks depends on the used variant of the SCALEXIO FPGA base board:

- DS6601 FPGA Base Board:
 - $$$ \ensuremath$$ \ATLAB\RTIFPGA\Frameworks\DS6601_XCKU035$
- DS6602 FPGA Base Board:
 - <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS6602_XCKU15P

The entire framework folder must be copied to your working folder (see also Preparing Your Environment (RTI FPGA Programming Blockset Handcode Interface Guide (1)). The included handcode FPGA framework INI file hc_fpga_framework_ini_<FPGA base board>.m must be adapted to your specific framework configuration. You find the configuration options in this reference.

Functions for MGT communication

The following I/O functions can be used to exchange data via the MGT communication bus.

I/O Function	Available Number of Lanes	I/O Function Numbering
Aurora 64b66b In	4	1 4
Aurora 64b66b Out	4	1 4
Aurora 64b66b 128 Bit In	4	5 8
Aurora 64b66b 128 Bit Out	4	5 8
MGT In	1	9
MGT Out	1	9

For more information on inter-FPGA communication, refer to Handcoding Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Parameters and ports

For detailed information on the I/O functions and their parameters and ports, refer to the function descriptions in I/O Functions of the DS660X_MGT Framework on page 269. Additionally, the parameter and port descriptions contain more descriptive names for a simple identification of the parameters and ports. For example, hcfw.IOProperties.In.Fct(<ChannelNumber+8> + ioInOffset(ioModuleNr)).HcCustomName / Channel name describes the Channel name parameter of the I/O function.

The port definitions are required to specify the FPGA functionality in VHDL code. In your Vivado project, you must adapt the related cm file to the required FPGA functionality. For more information, refer to Specifying the FPGA Functionality (RTI FPGA Programming Blockset Handcode Interface Guide \square).

For each accessed port in the VHDL code, you must configure the corresponding I/O function in the handcode FPGA framework INI file. Most of the I/O function parameters configure the function behavior. For more information, refer to Specifying the FPGA I/O Interface (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Related topics

Basics

Handcoding Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide \square)

Overview of the Inter-FPGA Interface Framework

Framework location

The location of the frameworks depends on the used variant of the SCALEXIO FPGA base board:

- DS2655 (7K160) FPGA Base Board:
 - <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS2655 XC7K160T
- DS2655 (7K410) FPGA Base Board:
 - <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS2655_XC7K410T
- DS6601 FPGA Base Board:
 - <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS6601_XCKU035
- DS6602 FPGA Base Board:
 - $$$ \ensuremath$$ MATLAB\RTIFPGA\Frameworks\DS6602_XCKU15P$

The entire framework folder must be copied to your working folder (see also Preparing Your Environment (RTI FPGA Programming Blockset Handcode Interface Guide (LLI)). The included handcode FPGA framework INI file

hc_fpga_framework_ini_<FPGA base board>.m must be adapted to your specific framework configuration. You find the configuration options in this reference.

Functions for inter-FPGA communication

Inter-FPGA communication is a point-to-point connection between the I/O module slots of the SCALEXIO FPGA base boards.

NOTICE

The improper assembly of inter-FPGA communication buses will damage the FPGA boards

For inter-FPGA communication buses, special inter-FPGA communication cables must be used. Other cables, such as the cables used for connecting the I/O modules, will damage the FPGA boards. Furthermore, special rules for attaching the FPGA boards must be observed to ensure proper bus communication.

- Use the SCLX_INT_FPGA_CAB1 inter-FPGA cables and observe the enclosed documentation for assembling.
- Do not connect FPGA boards via inter-FPGA cables if the FPGA boards are connected to different processors via IOCNET.

The following I/O functions can be used. Because you can use up to five I/O module slots, you have to specify the channel number to configure a specific I/O function and the used I/O module slot. The module number represents the number of the slot the I/O module is connected to.

I/O Function	Available Number of I/O Functions	Channel Numbering	Module Numbering
I-FPGA In	8	1 8	1 5
I-FPGA Out	8	1 8	

For more information on inter-FPGA communication, refer to Handcoding Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Parameters and ports

For detailed information on the I/O functions and their parameters and ports, refer to the function descriptions in I/O Functions of the Inter-FPGA Interface Framework on page 281. Additionally, the parameter and port descriptions contain more descriptive names for a simple identification of the parameters and ports. For example, hcfw.IOProperties.In.Fct(<ChannelNumber+8> + ioInOffset(ioModuleNr)).HcCustomName / Channel name describes the Channel name parameter of the I/O function.

The port definitions are required to specify the FPGA functionality in VHDL code. In your Vivado project, you must adapt the related cm file to the required FPGA functionality. For more information, refer to Specifying the FPGA Functionality (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

For each accessed port in the VHDL code, you must configure the corresponding I/O function in the handcode FPGA framework INI file. Most of the I/O function parameters configure the function behavior. For more information, refer to Specifying the FPGA I/O Interface (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Related topics

Basics

Handcoding Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide \square)

Overview of the DS5203 Onboard I/O Frameworks

Introduction

The DS5203 onboard I/O frameworks are the standard frameworks available for DS5203 FPGA boards. The frameworks provide access to analog and digital signals, and to the PHS-bus buffers and registers.

Framework location

Depending on the FPGA type of the DS5203 FPGA board there are two frameworks.

The frameworks are stored in the following folders:

- Using DS5203 FPGA Board (7K325): <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\ DS5203 XC7K325T
- Using DS5203 FPGA Board (7K410):<RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\DS5203 XC7K410T

The entire framework folder must be copied to your working folder (see also Preparing Your Environment (RTI FPGA Programming Blockset Handcode Interface Guide (L.)). The included handcode FPGA framework INI file hc_fpga_framework_ini_DS5203.m must be adapted to your specific framework configuration. You find the configuration options in this reference.

Functions for exchanging data with the processor application

The following I/O functions can be used to exchange data with the processor application.

I/O Function	Available Channels	I/O Function Numbering
Register In	128	1 128
Register64 In ¹⁾	128	289 416
Register Out	128	1 128
Register64 Out ¹⁾	128	289 416

I/O Function	Available Channels	I/O Function Numbering
Buffer In	32	129 160
Buffer64 In ¹⁾	32	545 576
Buffer Out	32	129 160
Buffer64 Out ¹⁾	32	545 576

All 64-bit fixed-point data types are converted to double in the processor model. Therefore, the fixed-point resolution of double is restricted to 53 bits.

For detailed information, refer to I/O Functions of the DS5203 with Onboard I/O Frameworks on page 291.

Functions for exchanging data with the I/O of the FPGA board

The following I/O functions can be used to exchange data with the I/O of the DS5203 FPGA board.

I/O Function	Available Channels	I/O Function Numbering
Digital In	16	1 16
Digital Out	16	1 16
ADC	6	17 22
DAC	6	17 22

For detailed information, refer to I/O Functions of the DS5203 with Onboard I/O Frameworks on page 291.

Additional I/O functions for special purposes

The following I/O functions can be used for special purposes.

I/O Function	Purpose	Available Channels	I/O Function Numbering
Interrupt	To implement interrupt handling.	8	1 8
Status In	To get information on the state of the FPGA programming sequence.	1	23
LED Out	To set the LED on the board's bracket.	1	23
APU Master	To implement angle-based applications by using the time-base connector.	1	24
APU Slave		1	24
I-FPGA Master	To communicate with a second FPGA board.	8	25 32
I-FPGA Slave		8	25 32

Parameters and ports

For detailed information on the I/O functions and their parameters and ports, refer to the function descriptions in I/O Functions of the DS5203 with Onboard I/O Frameworks on page 291. The parameter and port descriptions additionally

contain more descriptive names for a simple identification of the parameters and ports. For example, *Fct*(*<IOFunction_Number>*).*Parameter*(1).*Init I Binary point position* describes the Binary point position parameter of the I/O function.

The port definitions are required to specify the FPGA functionality in VHDL or Verilog code. In your Vivado project, you must adapt the related cm file to the required FPGA functionality. For further information, refer to Specifying the FPGA Functionality (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

For each accessed port in the VHDL or Verilog code, you must configure the corresponding I/O function in the handcode FPGA framework INI file. Most of the I/O function parameters configure the function behavior. For further information, refer to Specifying the FPGA I/O Interface (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Related topics

Basics

Detailed Instructions on the Handcode Workflow (RTI FPGA Programming Blockset Handcode Interface Guide (12))

Overview of the DS5203M1 Multi-I/O Module Frameworks of DS5203

Introduction

The DS5203M1 Multi-I/O module frameworks are the standard frameworks available for the DS5203 FPGA Boards with a DS5203M1 Multi-I/O module. The frameworks provide the module-specific I/O functions and the functions provided by the DS5203 FPGA Boards. They include access to the PHS-bus buffers and registers.

Framework location

Based on the FPGA types of the DS5203 FPGA Boards there are two frameworks.

The frameworks are stored in the following folders:

- Using DS5203M1 Multi-I/O Module with DS5203 FPGA Board (7K325):
 <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS5203_DS5203M1_XC7K325T
- Using DS5203M1 Multi-I/O Module with DS5203 FPGA Board (7K410):
 <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 DS5203_DS5203M1_XC7K410T

The entire framework folder must be copied to your working folder (see also Preparing Your Environment (RTI FPGA Programming Blockset Handcode Interface Guide (1)). The included handcode FPGA framework INI file hc_fpga_framework_ini_DS5203_DS5203M1.m must be adapted to your specific framework configuration. You find the configuration options in this reference.

Functions for exchanging data with the processor application

The following I/O functions of the DS5203 FPGA Board can be used to exchange data with the processor application.

I/O Function	Available Channels	I/O Function Numbering
Register In	128	1 128
Register64 In ¹⁾	128	289 416
Register Out	128	1 128
Register64 Out ¹⁾	128	289 416
Buffer In	32	129 160
Buffer64 In ¹⁾	32	545 576
Buffer Out	32	129 160
Buffer64 Out ¹⁾	32	545 576

¹⁾ All 64-bit fixed-point data types are converted to double in the processor model. Therefore, the fixed-point resolution of double is restricted to 53 bits.

For detailed information, refer to I/O Functions of the DS5203 with Onboard I/O Frameworks on page 291.

Functions for exchanging data with the I/O of the FPGA board and its module

The following I/O functions can be used to exchange data with the I/O of the DS5203 FPGA Board and the DS5203M1 Multi-I/O Module.

I/O Function	Available Channels	I/O Function Numbering		
DS5203 FPGA Board	DS5203 FPGA Board			
Digital In	16	1 16		
Digital Out	16	1 16		
ADC	6	17 22		
DAC	6	17 22		
DS5203M1 Multi-I/O Module				
Digital In (M1)	16	24 39		
Digital Out (M1)	16	24 39		
ADC (M1)	6	40 45		
DAC (M1)	6	40 45		

For detailed information, refer to I/O Functions of the DS5203 with Onboard I/O Frameworks on page 291 and I/O Functions of the DS5203M1 Multi-I/O Module Frameworks on page 325.

Additional I/O functions for special purposes

The following I/O functions can be used for special purposes.

I/O Function	Purpose	Available Channels	I/O Function Numbering
Interrupt	To implement interrupt handling.	8	1 8
Status In	To get information on the state of the FPGA programming sequence.	1	23
LED Out	To set the LED on the board's bracket.	1	23
Sensor Supply (provided by the DS5203M1 Multi- I/O Module)	To provide a supply voltage at a connected sensor.	1	46

Parameters and ports

For detailed information on the I/O functions and their parameters and ports, refer to the function descriptions in I/O Functions of the DS5203 with Onboard I/O Frameworks on page 291 for the I/O functions of the base board and I/O Functions of the DS5203M1 Multi-I/O Module Frameworks on page 325 for the I/O functions of the DS5203M1 Multi-I/O Module. The parameter and port descriptions additionally contain more descriptive names for a simple identification of the parameters and ports. For example, Fct(<IOFunction_Number>).Parameter(1).Init I Binary point position describes the Binary point position parameter of the I/O function.

The port definitions are required to specify the FPGA functionality in VHDL or Verilog code. In your Vivado project, you must adapt the related cm file to the required FPGA functionality. For further information, refer to Specifying the FPGA Functionality (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

For each accessed port in the VHDL or Verilog code, you must configure the corresponding I/O function in the handcode FPGA framework INI file. Most of the I/O function parameters configure the function behavior. For further information, refer to Specifying the FPGA I/O Interface (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Related topics

Basics

Detailed Instructions on the Handcode Workflow (RTI FPGA Programming Blockset Handcode Interface Guide (III)

Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)

Introduction

The *FPGA1401Tp1* frameworks are the standard frameworks for MicroAutoBox II 1401/1511/1514 and MicroAutoBox II 1401/1513/1514 with one of the following I/O modules:

- DS1552 Multi-I/O Module
- DS1552B1 Multi-I/O Module
- DS1554 Engine Control I/O Module

The frameworks provide access to analog and digital signals, and to the intermodule-bus buffers and registers.

Framework location

Depending on the I/O module, there are three frameworks.

The frameworks are stored in the following folders:

- MicroAutoBox II with DS1514 and DS1552 Multi-I/O Module
 <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 FPGA1401Tp1_DS1552_XC7K325T
- MicroAutoBox II with DS1514 and DS1552B1 Multi-I/O Module
 <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 FPGA1401Tp1 DS1552B1 XC7K325T
- MicroAutoBox II with DS1514 and DS1554 Engine Control I/O Module <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\ FPGA1401Tp1_DS1554_XC7K325T

The entire framework folder must be copied to your working folder (see also Preparing Your Environment (RTI FPGA Programming Blockset Handcode Interface Guide (Q)). The included handcode FPGA framework INI file hc_fpga_framework_ini_FPGA1401Tp1_DS1552.m, hc_fpga_framework_ini_FPGA1401Tp1_DS1552B1.m, or hc_fpga_framework_ini_FPGA1401Tp1_DS1554_XC7K325T.m must be adapted to your specific framework configuration. You find the configuration options in this reference.

Functions for exchanging data with the processor application

The following I/O functions can be used to exchange data with the processor application.

I/O Function	Available Channels	I/O Function Numbering
Register In	128	1 128
Register Out	128	1 128
Register64 In ¹⁾	128	161 288
Register64 Out ¹⁾	128	161 288
Buffer In	32	129 160
Buffer Out	32	129 160

I/O Function	Available Channels	I/O Function Numbering
Buffer64 In ¹⁾	32	289 320
Buffer64 Out ¹⁾	32	289 320

¹⁾ All 64-bit fixed-point data types are converted to double in the processor model. Therefore, the fixed-point resolution of double is restricted to 53 bits.

Refer to I/O Functions of the FPGA1401Tp1 with Multi-I/O Module Frameworks on page 335 or I/O Functions of the FPGA1401Tp1 with Engine Control I/O Module Framework on page 381.

Functions for exchanging data with the I/O module

The following I/O functions can be used to exchange data with the I/O modules.

DS1552 and DS1552B1 Multi-I/O Modules

I/O Function	Available Channels	I/O Function Numbering
Digital In (Type A)	16	2 17
Digital In (Type B)	8	18 25
Digital Out (Type A)	16	2 17
Digital Out (Type B)	8	18 25
ADC (Type A)	8	26 33
ADC (Type B)	16	34 49
DAC	4	26 29

Refer to I/O Functions of the FPGA1401Tp1 with Multi-I/O Module Frameworks on page 335.

DS1554 Engine Control I/O Module

I/O Function	Available Channels	I/O Function Numbering
Digital In (Type B)	8	2 9
Digital Out (Type A)	40	2 41
Digital Out (Type B)	8	42 49
ADC (Type A)	14	10 23

Refer to I/O Functions of the FPGA1401Tp1 with Engine Control I/O Module Framework on page 381.

Additional I/O functions for special purposes

The following I/O functions can be used for special purposes.

DS1552 and DS1552B1 Multi-I/O Modules

I/O Function	Purpose	Available Channels	I/O Function Numbering
Interrupt	To implement interrupt handling.	8	1 8

I/O Function	Purpose	Available Channels	I/O Function Numbering
Status In	To get information on the state of the FPGA programming sequence.	1	1
LED Out	To set the FPGA status LED near the DS1514 ZIF I/O connector.	1	1
Sensor Supply	To provide a supply voltage.	1	30
UART (RS232)	To implement communication via the serial interface.	21)	31 32
UART (RS422/485)		21)	33 34
Digital Crank/Cam Sensor	To access digital camshaft and crankshaft sensors.	3	50 52
Inductive Zero Voltage Detector	To access inductive zero voltage detectors.	1	53

 $^{^{1)}}$ To use UART 2, your DS1552 has to be modified by dSPACE.

Refer to I/O Functions of the FPGA1401Tp1 with Multi-I/O Module Frameworks on page 335.

DS1554 Engine Control I/O Module

I/O Function	Purpose	Available Channels	I/O Function Numbering
Interrupt	To implement interrupt handling.	8	1 8
Status In	To get information on the state of the FPGA programming sequence.	1	1
LED Out	To set the FPGA status LED near the DS1514 ZIF I/O connector.	1	1
Knock Sensor	To access knock sensors.	4	24 27
Digital Crank/Cam Sensor	To access digital camshaft and crankshaft sensors.	5	28 32
Inductive Zero Voltage Detector	To access inductive zero voltage detectors.	1	33
Temperature	To access the FPGA die temperature.	1	34

Refer to I/O Functions of the FPGA1401Tp1 with Engine Control I/O Module Framework on page 381.

Parameters and ports

For detailed information on the I/O functions and their parameters and ports, refer to the function descriptions in I/O Functions of the FPGA1401Tp1 with Multi-I/O Module Frameworks on page 335 and I/O Functions of the FPGA1401Tp1 with Engine Control I/O Module Framework on page 381. The parameter and port descriptions additionally contain more descriptive names for a simple identification of the parameters and ports. For example, Fct(<IOFunction_Number>).Parameter(1).Init I Binary point position describes the Binary point position parameter of the I/O function.

The port definitions are required to specify the FPGA functionality in VHDL or Verilog code. In your Vivado project, you must adapt the related cm file to the required FPGA functionality. For further information, refer to Specifying the FPGA Functionality (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

For each accessed port in the VHDL or Verilog code, you must configure the corresponding I/O function in the handcode FPGA framework INI file. Most of the I/O function parameters configure the function behavior. For further information, refer to Specifying the FPGA I/O Interface (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Related topics

Basics

Detailed Instructions on the Handcode Workflow (RTI FPGA Programming Blockset Handcode Interface Guide (III)

Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)

Introduction

The FPGA1403Tp1 frameworks are the standard frameworks for MicroAutoBox III with DS1514 and one of the following I/O modules:

- DS1552 Multi-I/O Module
- DS1552B1 Multi-I/O Module
- DS1554 Engine Control I/O Module

The frameworks provide access to analog and digital signals, and to the intermodule-bus buffers and registers.

Framework location

Depending on the I/O module, there are three frameworks.

The frameworks are stored in the following folders:

MicroAutoBox III with DS1552 Multi-I/O Module
 <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 FPGA1403Tp1_DS1552_XC7K325T

- MicroAutoBox III with DS1552B1 Multi-I/O Module
 <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 FPGA1403Tp1_DS1552B1_XC7K325T
- MicroAutoBox III with DS1554 Engine Control I/O Module
 <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\
 FPGA1403Tp1_DS1554_XC7K325T

The entire framework folder must be copied to your working folder (see also Preparing Your Environment (RTI FPGA Programming Blockset Handcode Interface Guide (1)). The included handcode FPGA framework INI file hc_fpga_framework_ini_FPGA1403Tp1_DS1552.m, hc_fpga_framework_ini_FPGA1403Tp1_DS1552B1.m, or hc_fpga_framework_ini_FPGA1403Tp1_DS1554_XC7K325T.m must be adapted to your specific framework configuration. You find the configuration options in this reference.

Functions for exchanging data with the processor application

The following I/O functions can be used to exchange data with the processor application.

I/O Function	Available Channels	I/O Function Numbering
Register In	128	1 128
Register Out	128	1 128
Register64 In ¹⁾	128	161 288
Register64 Out ¹⁾	128	161 288
Buffer In	32	129 160
Buffer Out	32	129 160
Buffer64 In ¹⁾	32	289 320
Buffer64 Out1)	32	289 320

¹⁾ All 64-bit fixed-point data types are converted to double in the processor model. Therefore, the fixed-point resolution of double is restricted to 53 bits.

Refer to I/O Functions of the FPGA1403Tp1 with Multi-I/O Module Frameworks on page 415 or I/O Functions of the FPGA1403Tp1 with Engine Control I/O Module Framework on page 461.

Functions for exchanging data with the I/O module

The following I/O functions can be used to exchange data with the I/O modules.

DS1552 and DS1552B1 Multi-I/O Modules

I/O Function	Available Channels	I/O Function Numbering
Digital In (Type A)	16	2 17
Digital In (Type B)	8	18 25
Digital Out (Type A)	16	2 17
Digital Out (Type B)	8	18 25

I/O Function	Available Channels	I/O Function Numbering
ADC (Type A)	8	26 33
ADC (Type B)	16	34 49
DAC	4	26 29

Refer to I/O Functions of the FPGA1403Tp1 with Multi-I/O Module Frameworks on page 415.

DS1554 Engine Control I/O Module

I/O Function	Available Channels	I/O Function Numbering
Digital In (Type B)	8	2 9
Digital Out (Type A)	40	2 41
Digital Out (Type B)	8	42 49
ADC (Type A)	14	10 23

Refer to I/O Functions of the FPGA1403Tp1 with Engine Control I/O Module Framework on page 461.

Additional I/O functions for special purposes

The following I/O functions can be used for special purposes.

DS1552 and DS1552B1 Multi-I/O Modules

I/O Function	Purpose	Available Channels	I/O Function Numbering
Interrupt	To implement interrupt handling.	8	1 8
Status In	To get information on the state of the FPGA programming sequence.	1	1
LED Out	To set the FPGA status LED near the DS1514 ZIF I/O connector.	1	1
Sensor Supply	To provide a supply voltage.	1	30
UART (RS232)	To implement	21)	31 32
UART (RS422/485)	communication via the serial interface.	21)	33 34
Digital Crank/Cam Sensor	To access digital camshaft and crankshaft sensors.	3	50 52
Inductive Zero Voltage Detector	To access inductive zero voltage detectors.	1	53

¹⁾ To use UART 2, your DS1552 has to be modified by dSPACE.

Refer to I/O Functions of the FPGA1403Tp1 with Multi-I/O Module Frameworks on page 415.

DS1554 Engine Control I/O Module

I/O Function	Purpose	Available Channels	I/O Function Numbering
Interrupt	To implement interrupt handling.	8	1 8
Status In	To get information on the state of the FPGA programming sequence.	1	1
LED Out	To set the FPGA status LED near the DS1514 ZIF I/O connector.	1	1
Knock Sensor	To access knock sensors.	4	24 27
Digital Crank/Cam Sensor	To access digital camshaft and crankshaft sensors.	5	28 32
Inductive Zero Voltage Detector	To access inductive zero voltage detectors.	1	33
Temperature	To access the FPGA die temperature.	1	34

Refer to I/O Functions of the FPGA1403Tp1 with Engine Control I/O Module Framework on page 461.

Parameters and ports

For detailed information on the I/O functions and their parameters and ports, refer to the function descriptions in I/O Functions of the FPGA1403Tp1 with Multi-I/O Module Frameworks on page 415 and I/O Functions of the FPGA1403Tp1 with Engine Control I/O Module Framework on page 461. The parameter and port descriptions additionally contain more descriptive names for a simple identification of the parameters and ports. For example, Fct(<IOFunction_Number>).Parameter(1).Init / Binary point position describes the Binary point position parameter of the I/O function.

The port definitions are required to specify the FPGA functionality in VHDL or Verilog code. In your Vivado project, you must adapt the related cm file to the required FPGA functionality. For further information, refer to Specifying the FPGA Functionality (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

For each accessed port in the VHDL or Verilog code, you must configure the corresponding I/O function in the handcode FPGA framework INI file. Most of the I/O function parameters configure the function behavior. For further information, refer to Specifying the FPGA I/O Interface (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Related topics

Basics

Detailed Instructions on the Handcode Workflow (RTI FPGA Programming Blockset Handcode Interface Guide (11)

I/O Functions of the DS1202 FPGA I/O Type 1 Framework

Introduction

The DS1202 FPGA I/O Type 1 frameworks DS1302_XC7K325T and DS1302_XC7K325T_FLEXIBLEIO provide the custom I/O functionality of MicroLabBox.

Where to go from here

Information in this section

ADC (Class 1) To read data from an analog input signal in the FPGA application using the class 1 A/D conversion function.	46
ADC (Class 2) To read data from an analog input signal in the FPGA application using the class 2 A/D conversion function.	48
Buffer In To read data from an internal bus buffer with a data width of 32 bits.	49
Buffer64 In	51
Buffer Out	53
Buffer64 Out	55
Buzzer	57
DAC (Class 1) To write data to an analog output signal in the FPGA application using the class 1 D/A conversion function.	58

Digital InOut (Class 1)
Digital InOut (Class 2)
Interrupt
LED Out
Proc App Status
Register In
Register64 In
Register Out
Register64 Out
Resolver
Status In
UART (RS232)
UART (RS422/485)

ADC (Class 1)

Purpose

To read data from an analog input signal in the FPGA application using the class 1 A/D conversion function.

Description

According to the number of physical connections available on MicroLabBox's DS1302 board, you can select the ADC (Class 1) I/O functions. There are 24 differential analog input channels.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 2 ... 25.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 0 ... 23.

adctp1_<ChannelNumber>_value / Data Outputs the current results of an analog input channel.

Data type: Fix_16_0

Range: -32767 ... +32767 (-10 V ... +10 V)

Update rate: 1 Msps

adctp1_<ChannelNumber>_convert / Convert Triggers the sampling of the A/D converter. When the value is set to 1 for at least one clock cycle, the ADC starts the conversion. The port allows a precise definition of the starting point of ADC sampling. The Busy outport signals the end of the conversion process.

Setting this value permanently to 1 results in continuous sampling.

Data type: UFix_1_0 Range: 0 or 1

adctp1_<ChannelNumber>_busy / Busy Outputs an end of conversion signal if the conversion result is available. If the flag changes from 0 to 1, the ADC data contains a new value. The flag is set to 1 for only one clock cycle.

Data type: UFix_1_0 Range: 0 or 1

I/O mapping

The signals are available at the Analog In connector.

The channel numbers 00 ... 23 corresponds to the channels 1 ... 24.

MicroLabBox has static mapping between I/O signals and I/O pins. The signal name is also printed on the housing of MicroLabBox. You have to consider only the connector panel type.

For a detailed connector pinout, refer to:

- Analog I/O A Connector (Sub-D) (MicroLabBox Hardware Installation and Configuration 🚇)
- Analog In and Analog Out Connectors (BNC) (MicroLabBox Hardware Installation and Configuration (□))
- Analog In Class 1 Connectors (Spring-Cage) (MicroLabBox Hardware Installation and Configuration (4))

For detailed information on the channel characteristics, refer to Analog Class 1 Inputs (MicroLabBox Hardware Installation and Configuration (12)).

Related topics

References

ADC (Class 2)	
Overview of the Frameworks Available for MicroLabBox	

ADC (Class 2)

Purpose	To read data from an analog input signal in the FPGA application using the class 2 A/D conversion function.
Description	According to the number of physical connections available on MicroLabBox's DS1302 board, you can select the ADC (Class 2) I/O functions. There are 8 differential analog input channels.
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 26 33.
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	The channel number can be specified in the range 0 7.

adctp2_<ChannelNumber>_value / Data

Outputs the current results of

analog input channel.

Data type: Fix_16_0

Range: -32767 ... +32767 (-10 V ... +10 V)

Update rate: 10 Msps

I/O mapping

The signals are available at the Analog In connector.

The channel numbers 0 \dots 7 corresponds to the channels 1 \dots 8.

MicroLabBox has static mapping between I/O signals and I/O pins. The signal name is also printed on the housing of MicroLabBox. You have to consider only the connector panel type.

For a detailed connector pinout, refer to:

- Analog I/O A Connector (Sub-D) (MicroLabBox Hardware Installation and Configuration □)
- Analog In and Analog Out Connectors (BNC) (MicroLabBox Hardware Installation and Configuration □
- Analog In Class 2 Connectors (Spring-Cage) (MicroLabBox Hardware Installation and Configuration (1))

For detailed information on the channel characteristics, refer to Analog Class 2 Inputs (MicroLabBox Hardware Installation and Configuration (11)).

Related topics

References

ADC (Class 1)
Overview of the Frameworks Available for MicroLabBox

Buffer In

Purpose To read data from an internal bus buffer with a data width of 32 bits. Description If you select Buffer as the access type, the data is read from an internal bus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits. Parameters You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 257 ... 288.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 32-bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768. The maximum range of the Address inport depends on the buffer size.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemf_<ChannelNumber>_count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmemf_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from an internal bus buffer. The data format depends on the related parameter settings.

xmemf_<ChannelNumber>_new_data / Data NewOutputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

xmemf_<ChannelNumber>_addr / Address Specifies an element in the buffer you want to read. The block requires 1 clock cycle to update the value of the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer (see Data Count outport). If you request data from an address that is greater than the Data Count value, the output of the Data outport is undefined. The first element of a buffer is addressed by 0.

Related topics

References

Buffer Out	53
Buffer64 In	51
Overview of the Frameworks Available for MicroLabBox	4

Buffer64 In

Purpose	To read data from an internal bus buffer with a data width of 64 bits. If you select Buffer64 as the access type, the data is read from an internal bus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits.	
Description		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.	
	The I/O function number can be specified in the range 545 576.	

PHSProperties In Fct(<IOFunctionNumber>).HcCustomName / Cha

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

O represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixedpoint resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunction Number>).Parameter(3).Init / Buffer Lets you specify the size of the buffer in the range 1 ... 32768. The maximum range of the Address inport depends on the buffer size.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmem64f <ChannelNumber> count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmem64f_<ChannelNumber>_dout / Data Outputs a 64-bit data value to be read from an internal bus buffer. The data format depends on the related parameter settings.

xmem64f_<ChannelNumber>_new_data / Data New Outputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

buffer you want to read. The block requires 1 clock cycle to update the value of the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer (see Data Count outport). If you request data from an address that is greater than the Data Count value, the output of the Data outport is undefined. The first element of a buffer is addressed by 0.

Related topics

References

Buffer In	49
Buffer64 Out	
Overview of the Frameworks Available for MicroLabBox	14

Buffer Out

To write data to an internal bus buffer with a data width of 32 bits. **Purpose** If you select Buffer as the access type, the data is written to an internal bus Description buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits. **Parameters** You can find templates for the functions and the following parameters in the

handcode FPGA framework INI file.

The I/O function number can be specified in the range 257 ... 288.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary **point position (or fraction width)** Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 32 bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Lets you select the data format of the **Data** inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

• floating-point

The values of the Data inport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single). The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemp_<ChannelNumber>_din / Data Specifies a 32-bit data value to be written to an internal bus buffer. The data format depends on the related parameter settings.

xmemp_<ChannelNumber>_write / Enable Specifies the current valid Data port value.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

xmemp_<ChannelNumber>_finished / Ready Explicitly specifies the buffer state as ready to send the buffer immediately, even if it is not completely filled. The data values will be written to a new buffer in the next clock cycle. While the port value is 1, transmission switches buffer in every clock cycle. The value should therefore be set for one clock cycle only. If the buffer is completely filled, it is automatically switched, and the data values are stored in a new buffer.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled.
 The buffer is switched and the data values are accessible via the internal bus in the next clock cycle.

The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmemp_<ChannelNumber>_overflow / Overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

Related topics

References

Buffer In	49
Buffer64 Out	55
Overview of the Frameworks Available for MicroLabBox	14

Buffer64 Out

Purpose To write data to an internal bus buffer with a data width of 64 bits. Description If you select Buffer64 as the access type, the data is written to an internal bus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 545 ... 576.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmem64p_<ChannelNumber>_din / Data Specifies a 64-bit data value to be written to an internal bus buffer. The data format depends on the related parameter settings.

xmem64p_<ChannelNumber>_write / Enable Specifies the current valid Data port value.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled.
 The buffer is switched and the data values are accessible via the internal bus in the next clock cycle.

The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmem64p_<ChannelNumber>_overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

Related topics

References

Buffer Out	53
Buffer64 In	51
Overview of the Frameworks Available for MicroLabBox	14

Buzzer

Purpose	To generate an acoustic signal.	
Description	You can add the Buzzer I/O function to your application to access the board's buzzer.	
	This I/O function is not considered when you generate the processor interface model.	
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.	
	The I/O function number is 85.	
	IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>	
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.	
	buzzer_frequency / Frequency Specifies the period of the acoustic signal ir steps of 40 µs. You calculate the frequency with the following equation:	
	frequency [Hz] = 1 / period [s]	
	Data type: UFix8_0	
	Value range: 0 255	
	• 0 : No acoustic signal	
	• 1: 40 μs (25 kHz)	
	• • 255: 10200 us (09 Hz)	
	■ 255: 10200 µs (98 Hz)	
	buzzer_beep_duration / Beep Duration Specifies the duration of one bee of the acoustic signal in steps of 10 ms.	
	Data type: UFix8_0	
	Value range: 0 255	
	0: No acoustic signal	
	■ 1 254: 10 ms 2540 ms	
	 255: The beep is generated permanently 	
	buzzer_pause_duration / Pause Duration Specifies the duration of a paus between two beeps of the buzzer in steps of 10 ms.	

Data type: UFix8_0

Value range: 0 ... 255 (0 ms ... 2550 ms)

buzzer_beep_count / Beep Count Specifies the number of beeps to be

generated.

Data type: UFix8_0
Value range: 0 ... 255

• 0: No acoustic signal

255: The number of beeps is infinite

buzzer_start / Start Starts the buzzer if the value is 1 for one clock cycle. The started buzzer outputs the specified acoustic signal. New values of the Frequency, Beep Duration, Pause Duration, and Beep Count ports take effect immediately. For example: If you change the value of the Frequency port to 0, the buzzer stops the generation of an acoustic signal immediately.

Data type: UFix1_0 Range: 0 or 1

Related topics

References

Overview of the Frameworks Available for MicroLabBox.....

1/1

DAC (Class 1)

Purpose

To write data to an analog output signal in the FPGA application using the class 1 D/A conversion function.

Description

According to the number of physical connections available on MicroLabBox's DS1302 board, you can select the DAC (Class 1) I/O functions. There are 16 single-ended analog output channels.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 53 ... 68.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 15.

dactp1_<ChannelNumber>_value / Data Outputs the current results of an analog output channel.

Data type: Fix_16_0

Value range: -32767 ... +32767 (-10 V ... +10 V)

Update rate: 2.78 Msps

dactp1_<ChannelNumber>_convert / Convert

Triggers the sampling of the D/A converter. When the value is set to 1 for at least one clock cycle, the DAC starts the conversion. The port allows a precise definition of the starting point of DAC sampling. The Busy outport signals the end of the conversion process.

Setting this value permanently to 1 results in continuous sampling.

Data type: UFix_1_0 Range: 0 or 1

dactp1_<ChannelNumber>_busy / Busy Outputs an end of conversion signal if the conversion result is available. If the flag changes from 0 to 1, the DAC data contains a new value. The flag is set to 1 for only one clock cycle.

Data type: UFix_1_0 Range: 0 or 1

I/O mapping

The signals are available at the Analog Out connector.

The channel numbers 00 ... 15 corresponds to the channels 1 ... 16.

MicroLabBox has static mapping between I/O signals and I/O pins. The signal name is also printed on the housing of MicroLabBox. You have to consider only the connector panel type.

For a detailed connector pinout, refer to:

- Analog I/O B Connector (Sub-D) (MicroLabBox Hardware Installation and Configuration □)
- Analog In and Analog Out Connectors (BNC) (MicroLabBox Hardware Installation and Configuration (III))
- Analog Out Class 1 Connectors (Spring-Cage) (MicroLabBox Hardware Installation and Configuration (III))

For detailed information on the channel characteristics, refer to Analog Class 1 Outputs (MicroLabBox Hardware Installation and Configuration \square).

Related topics

References

Digital InOut (Class 1)

Purpose To read or write data to a digital I/O signal in the FPGA application using the class 1 digital I/O function. According to the number of physical connections available on MicroLabBox's Description DS1302 board, you can select the Digital InOut (Class 1) I/O functions. There are 48 single-ended digital I/O channels, which you can separately configure for input or output. This I/O function is not considered when you generate the processor interface model. **Parameters** You can find templates for the functions and the following parameters in the handcode FPGA framework INI file. The I/O function number can be specified in the range 5 ... 52. IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel Lets you specify a custom name for the specified channel. IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Invert Lets you specify whether to invert the input and output values of the digital channel. • 0: The values are not inverted. • 1: The values are inverted. IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Input Lets you specify the minimum pulse length for detecting a valid input in the range 0 ... 10,000,000 ns. IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(5).Init / High supply Lets you specify the high level voltage for the digital outputs. • 0:5 V ■ 1: 3.3 V ■ 2: 2.5 V IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(6).Init / Rising **edge delay** Lets you specify the delay for the rising edge detection in the range 0 ... 65500 ns. **Port** The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 47.

diotp1_<ChannelNumber>_ena / Enable Controls the hardware output.

Data values if the channel is used as digital input:

- 0: The Data In outport is disabled.
- 1: The Data In outport outputs the current results of the digital input channel.

Data values if the channel is used as digital output:

- 0: The hardware is set to High-Z.
- 1: The hardware output reacts to the Data Out inport.

Data type: UFix_1_0

diotp1_<ChannelNumber>_dir / Direction Controls the direction of the digital channel.

Data type: UFix_1_0

- 0: The channel is used as digital input channel.
- 1: The channel is used as digital output channel.

diotp1_<ChannelNumber>_in / Data In Outputs the current results of the digital input channel.

Data type: UFix_1_0

- 0: Input voltage falled below the threshold low voltage of 0.8 V.
- 1: Input voltage exceeded the threshold high voltage of 2 V.

Update rate: 100 MHz

Note

The frequency that can be generated is much smaller than the update rate. For information on the electrical characteristics of the DS1302 board, refer to Digital Class 1 I/O (Bidirectional) (MicroLabBox Hardware Installation and Configuration (1)).

diotp1_<ChannelNumber>_out / Data Out Outputs a signal in the specified range.

If driven with 0, the hardware output is 0 V. If driven with 1, the hardware output is set to the specified high supply voltage. The hardware output is only driven if the Enable port is set to 1, otherwise the output is set to high impedance (High-Z).

Data Type: UFix_1_0 Update rate: 100 MHz

Note

The frequency that can be generated is much smaller than the update rate. For information on the electrical characteristics of the DS1302 board, refer to Digital Class 1 I/O (Bidirectional) (MicroLabBox Hardware Installation and Configuration (1)).

I/O mapping

The signals are available at the Digital I/O connector.

The channel numbers 00 ... 47 corresponds to the channels 1 ... 48.

MicroLabBox has static mapping between I/O signals and I/O pins. The signal name is also printed on the housing of MicroLabBox. You have to consider only the connector panel type.

For a detailed connector pinout, refer to:

 Digital I/O A Connector (Sub-D) (MicroLabBox Hardware Installation and Configuration (Laboration)

DIO1 ch 1 ... DIO1 ch 32

 Digital I/O B Connector (Sub-D) (MicroLabBox Hardware Installation and Configuration (Labbour Labbour Lab

DIO1 ch 33 ... DIO1 ch 48

■ Digital I/O Class 1 Connectors (Spring-Cage) (MicroLabBox Hardware Installation and Configuration (□)

DIO1 ch 1 ... DIO1 ch 48

For detailed information on the channel characteristics, refer to:

 Digital Class 1 I/O (Bidirectional) (MicroLabBox Hardware Installation and Configuration (1))

Related topics

References

Digital InOut (Class 2)6.	2
Overview of the Frameworks Available for MicroLabBox	4

Digital InOut (Class 2)

Purpose To read or write data to a digital I/O signal in the FPGA application using the class 2 digital I/O functions. According to the number of physical connections available on MicroLabBox's DS1302 board, you can select the Digital InOut (Class 2) I/O functions. There are 12 differential digital I/O channels, which you can separately configure for input or output. This I/O function is not considered when you generate the processor interface model. Parameters You can find templates for the functions and the following parameters in the

handcode FPGA framework INI file.

The I/O function number can be specified in the range 73 ... 84.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Invert values Lets you specify whether to invert the input and output values of the digital channel.

- 0: The values are not inverted.
- 1: The values are inverted.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Input filter Lets you specify the minimum pulse length for detecting a valid input in the range 0 ... 10,000,000 ns.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(6).Init / Rising edge delay Lets you specify the delay for the rising edge detection in the range 0 ... 65,500 ns.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 11.

diotp1_<ChannelNumber>_ena / Enable Controls the hardware output. If set to 1, the hardware output reacts to the Data Out outport, otherwise it is set to High-Z.

Data type: UFix_1_0

diotp1_<ChannelNumber>_dir / Direction Controls the direction of the digital channel.

Data type: UFix_1_0

- 0: The channel is used as digital input channel.
- 1: The channel is used as digital output channel.

diotp1_<ChannelNumber>_in / Data In Outputs the current results of the digital input channel.

Data type: UFix_1_0

- 0: Input voltage falled below the threshold low voltage of 0.8 V.
- 1: Input voltage exceeded the threshold high voltage of 2 V.

Update rate: 100 MHz

Note

The frequency that can be generated is much smaller than the update rate. For information on the electrical characteristics of the DS1302 board, refer to Digital Class 2 I/O (Bidirectional) (MicroLabBox Hardware Installation and Configuration (1)).

diotp1_<ChannelNumber>_out / Data Out Outputs a signal in the specified range.

If driven with 0, the hardware output is 0 V. If driven with 1, the hardware output is set to the specified high supply voltage. The hardware output is only driven if the Enable port is set to 1, otherwise the output is set to high impedance (High-Z).

Data Type: UFix_1_0 Update rate: 100 MHz

Note

The frequency that can be generated is much smaller than the update rate. For information on the electrical characteristics of the DS1302 board, refer to Digital Class 2 I/O (Bidirectional) (MicroLabBox Hardware Installation and Configuration (1)).

I/O mapping

The signals are available at the Digital I/O connector.

The channel numbers 00 ... 11 corresponds to the channels 1 ... 12.

MicroLabBox has static mapping between I/O signals and I/O pins. The signal name is also printed on the housing of MicroLabBox. You have to consider only the connector panel type.

For a detailed connector pinout, refer to:

- Digital I/O B Connector (Sub-D) (MicroLabBox Hardware Installation and Configuration (Lab)
- Digital I/O Class 2 Connectors (Spring-Cage) (MicroLabBox Hardware Installation and Configuration ()

For detailed information on the channel characteristics, refer to:

 Digital Class 2 I/O (Bidirectional) (MicroLabBox Hardware Installation and Configuration (III))

Related topics

References

Digital InOut (Class 1)6	50
Overview of the Frameworks Available for MicroLabBox	14

Interrupt

Purpose	To request a processor interrupt outside of the FPGA application.
Description	MicroLabBox provides 32 interrupt lines. An interrupt is requested if the Int port is set to 1 for at least one clock cycle. If you set the Int port to 0, the last interrupt is not released but saved. An interrupt is edge-triggered.
Parameters	The Interrupt I/O function can be used for up to 32 channels / interrupt lines. You will find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 1 32.
	IRQProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	The channel number can be specified in the range 00 31.
	usr_interrupt_ <channelnumber> / Int Provides the interrupt request line.</channelnumber>
	0 to 1: Interrupt is requested (edge-triggered).
	 0: No interrupt is requested. Last requested interrupt is saved.
Related topics	References
	Overview of the Frameworks Available for MicroLabBox

LED Out

Purpose	To write a digital signal that controls the color of one FPGA status LED on the board.
Description	According to the number of physical connections available on MicroLabBox's DS1302 board, you can select the LED Out I/O functions. There are 4 digital output channels. For each FPGA status LED you can separately configure the RGB color value.

	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 1 4.
	IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	led_ <channelnumber>_red / Red Specifies the red portion of the LED's color value. Data type: UFix8_0 Value range: 0 255</channelnumber>
	led_ <channelnumber>_green / Green Specifies the green portion of the LED's color value. Data type: UFix8_0 Value range: 0 255</channelnumber>
	led_ <channelnumber>_blue / Blue Specifies the blue portion of the LED's color value. Data type: UFix8_0 Value range: 0 255</channelnumber>
Related topics	References
	Overview of the Frameworks Available for MicroLabBox

Proc App Status

Purpose	To read the status of application that is running on the computation node.
Description	There is one digital input channel that is used for the Proc App Status I/O function.

Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number must be specified as 34.
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	There is no channel number to be specified.
	<pre>appl_run/ Processor Application Status</pre>
	 0: The application on the computation node is stopped.
	1: The application on the computation node is running.
Related topics	References
	Overview of the Frameworks Available for MicroLabBox

Register In

Purpose	To read data from an internal bus register with a data width of 32 bits.
Description	If you select Register as the access type, the data is read from an internal bus register. 256 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 256.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 32-bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are sampled simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the internal bus.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ..
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 255.

xreg_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from an internal bus register. The data format depends on the related parameter settings.

xreg_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Overview of the Frameworks Available for MicroLabBox	14
Register64 In	69

Register64 In

Purpose

To read data from an internal bus register with a data width of 64 bits.

Description

If you select Register64 as the access type, the data is read from an internal bus register. 256 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 289 ... 544.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

• floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunction_Number>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are sampled simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the internal bus.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ...
- 63: Register group 63

Port

The following signals of the $I\!/O$ function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 255.

xreg64_<ChannelNumber>_dout / Data Outputs a 64-bit data value to be read from an internal bus register. The data format depends on the related parameter settings.

xreg64_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Overview of the Frameworks Available for MicroLabBox	4
Register In	57

Register Out

Purpose

To write data to an internal bus register with a data width of 32 bits.

Description

If you select Register as the access type, the data is written to an internal bus register. 256 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 256.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 32 bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

• floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you select the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register **group ID** Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the internal bus sequentially and then provided to the FPGA application simultaneously.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 255.

written to an internal bus register. The data format depends on the related parameter settings.

Related topics

References

Overview of the Frameworks Available for MicroLabBox	
Register In67	
Register64 Out	

Register64 Out

Purpose	To write data to an internal bus register with a data width of 64 bits.
Description	If you select Register64 as the access type, the data is written to an internal bus register. 256 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 289 ... 544.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register64 group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the internal bus sequentially and then provided to the FPGA application simultaneously.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ..
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 255.

written to an internal bus register. The data format depends on the related parameter settings.

Related topics

References

Overview of the Frameworks Available for MicroLabBox14	4
Register Out	1
Register64 In69	9
Register64 In	

Resolver

Purpose	To get the rotor's position via a resolver sensor in the FPGA application.
Description	According to the number of physical connections available on MicroLabBox's DS1302 board, you can select the Resolver I/O functions. There are two resolver input channels.
	This I/O function is not taken into account if you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 35 ... 36.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel Lets you specify a custom name for the specified channel.

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Desired **excitation frequency** Lets you specify the frequency of the sine signal to be used for the excitation of the resolver rotor in the range 2,000 Hz ... 20,000 Hz in steps of 250 Hz.

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Excitation RMS voltage Lets you specify the voltage level of the excitation output signal:

- 0: 3.0 V_{RMS}
- 1: 7.0 V_{RMS}
- 2: 10.0 V_{RMS}

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(4).Init / Input RMS voltage Lets you specify the voltage level of the sine and cosine input signals:

- 0: 1.5 V_{RMS}
- 1: 3.5 V_{RMS}
- 2: 5.0 V_{RMS}

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(5).Init / Maximum speedLets you specify the maximum speed to be measured in revolutions per minute. By specifying the speed range, you set the related resolution.

- 0: Specifies a maximum speed of 150,000 rpm and a resolution of 10 bits.
- 1: Specifies a maximum speed of 60,000 rpm and a resolution of 12 bits.
- 2: Specifies a maximum speed of 30,000 rpm and a resolution of 14 bits.
- 3: Specifies a maximum speed of 7500 rpm and a resolution of 16 bits.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 0 ... 1.

resolver_<ChannelNumber>_enable / Enable Enables the excitation voltage:

- 0: The resolver interface provides no excitation voltage.
- 1: The resolver interface provides the excitation voltage that you set with the Excitation RMS voltage parameter.

Data type: UFix_1_0

Data width: 1

resolver_<ChannelNumber>_mech_pos / Mechanical Position Outputs the position of the resolver sensor as a 16-bit angle value. The 16-bit range of $0 \dots +65535$ corresponds to $0^{\circ} \dots (360 - 2^{-16})^{\circ}$.

Formula for angle calculation:

alpha[°] = Mechanical Position * 360°/2¹⁶.

Data type: UFix_16_0 Range: 0 ... +65535

Data width: 1

resolver_<ChannelNumber>_valid / Valid Outputs whether the angle position and fault status that are provided by the resolver sensor are valid.

This port is used to evaluate whether the resolver interface is ready to receive data from the input signals:

- 0: The hardware cannot get data from the input signals. The current values are not valid.
- 1: Data values for the position and the fault status has been received. The current values are valid.

Data type: UFix_1_0 Data width: 1

resolver_<ChannelNumber>_update / Update Outputs a flag that indicates that a new position value or fault status is available.

A high level acknowledges the update. The flag is set high only within one clock cycle.

Data type: UFix_1_0 Data width: 1

resolver_<ChannelNumber>_fault / Fault Outputs the fault status of the resolver interface. The measured position might be valid only if no error is found. Each bit in the 8-bit value represents a specific fault if its value is 1:

- Bit 0 (LSB): Configuration parity error
- Bit 1: Phase lock
- Bit 2: Velocity too high
- Bit 3: Loss of tracking
- Bit 4: Degradation of signal mismatch
- Bit 5: Degradation of signal overrange
- Bit 6: Inputs loss of signal
- Bit 7: Inputs clipped Data type: UFix_1_0 Data width: 8

For more information on the status information, refer to Resolver Interface (MicroLabBox Features
).

resolver_<ChannelNumber>_err_rst / Reset Resets the fault status of the resolver interface that is provided at the fault port to 0:

- 0: No reset.
- 1: Resets the fault status.

Data type: UFix_1_0 Data width: 1

I/O mapping

The signals are available at the Resolver connector.

The channel numbers 0 ... 1 correspond to the channels 1 ... 2.

MicroLabBox has static mapping between I/O signals and I/O pins. The signal name is also printed on the housing of MicroLabBox. You have to consider only the connector panel type.

Each interface provides six signals:

- 2 differential analog output signals for EXC and EXC
- 4 differential analog input signals for SIN, SIN, COS and COS

For a detailed connector pinout, refer to:

 Resolver Connectors (Sub-D) (MicroLabBox Hardware Installation and Configuration (LLL)

 Resolver Connectors (Spring-Cage) (MicroLabBox Hardware Installation and Configuration (1))

For a detailed information on the channel characteristics, refer to Resolver Interfaces (MicroLabBox Hardware Installation and Configuration (12)).

Related topics

Basics

Resolver Interface (MicroLabBox Features 🚇)

References

Overview of the Frameworks Available for MicroLabBox.....

Status In

Purpose	To read a digital signal that outputs the state of the FPGA initialization sequence.	
Description	The DS1302 framework provides one digital input channel for the Status In I/O function.	
	This I/O function is not considered when you generate the processor interface model.	
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.	
	The I/O function number is to be specified with 1.	
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>	
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.	
	There is no channel number to be specified.	
	init_done/ Init Done Outputs the state of the initialization sequence that is started after programming the FPGA.	
	Data type: UFix_1_0	
	0: Initialization sequence is in progress.	
	 1: Initialization sequence has finished. 	

Related topics	References	
	Overview of the Frameworks Available for MicroLabBox	

UART (RS232)

To implement communication via serial interface for RS232 UART type.		
According to the number of physical connections available on MicroLabBox's DS1302 board, you can select the UART (RS232) I/O function. There are two channels for this function.		
This I/O function is not considered when you generate the processor interface model.		
You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
The I/O function number can be specified in the range 69 70.		
Most of the parameters are used for the UART (RS232) and UART (RS422/485) I/O functions.		
IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>		
IOProperties.Out.Fct(<iofunctionnumber>).Parameter(1).Init / Baud rate Lets you specify the baud rate of the UART in the range 50 1,000,000 baud (bits per second).</iofunctionnumber>		
The baud rate depends on the parameters 2, 3 and 4, and can be calculated by the following formula:		
BaudRate = $(10^8 \cdot uart_x_dcm_m) / (4 \cdot uart_x_dcm_d)$		

Variable	Parameter	Description
uart_x_dcm_m ¹⁾	Parameter(2).Init	Multiplier for the digital clock manager (DCM) module in the range 2 255.
uart_x_dcm_d ¹⁾	Parameter(3).Init	Divisor for the digital clock manager (DCM) module in the range 1 255.
uart_x_dcm_clk_divider ¹⁾	Parameter(4).Init	UART clock divider in the range 0 262,143.

 $^{^{1)}}$ x=1 for UART 1; x=2 for UART 2

Note

Limitations:

■ The maximum baud rate of 1,000,000 baud must not be exceeded.

Tip

You find the DS1302_uart_parameters.mat file in <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\DS1302 _XC7K325T that you can open in MATLAB. It contains some calculated baud rates and the percentage deviations to the supported baud rates according to the parameters m, d and the clock divider.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(5).Init / Word length Lets you specify the word length in the range 5 ... 9 bit. The word length includes the number of data bits and the optional parity bit. Exceeding bits in a message are ignored at the transmitter or cleared at the receiver.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(6).Init / Stop bits Lets you specify the length of the stop bits in half of bits.

Stop Bits	Parameter Value
1	2
1.5	3
2	4

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(7).Init / UART type Lets you specify the UART type.

Value	UART Type
0	RS232
1	RS422/485

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(8).Init / Termination Lets you specify the termination state.

Note

For the RS232 UART type, the termination must be set to 0 (disconnected).

Value	Termination State	Description
0	Disconnected	 The RXD/CTS and TXD/RTS signals are not terminated.
1	Connected	Not allowed

Port

The following signals of the $I\!\!/\!O$ function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 0 ... 1.

There is only one section in the file that is valid for both UART types.

After three clock cycles, the value is available and can be read from the RX FIFO buffer. The value remains valid until the next Read_Enable signal.

Before you read data from the RX FIFO buffer, you should check the Read_Fifo_Empty signal not to be set. The Read_Fifo_Empty signal switches one clock cycle after the RX FIFO value has been read.

Do not use the Read_Data_Count signal (Read_Data_Count < 0) to check the RX FIFO buffer, because it requires one additional clock cycle to get the count value.

You can read one value per FPGA clock cycle from the UART.

Two clock cycles are required to return the number of entries.

If you only want to check whether a value is available in the RX FIFO buffer, use the Read_Fifo_Empty signal instead of this.

Value range: 0 ... 2047

If the status of the buffer is *not empty*, then you can start reading the data using the Read_Enable signal.

The Read_Fifo_Empty signal switches one clock cycle after the FIFO value has been read.

Do not use the Read_Data_Count signal to check the status of the buffer (Read_Data_Count>0), because this requires one additional clock cycle before its value is valid.

Range:

- 0: The RX FIFO buffer is not empty.
- 1: The RX FIFO buffer is empty.

The read_data is available after three clock cycles after the Read_Enable signal. The return value is 0, if the data is read before anything has been received by the RX hardware input.

Range: 0 ... 511

The hardware input receives serial data for the UART RX FIFO buffer using inverted voltage levels of -6 V (logical high) and +6 V (logical low).

The Write_Data value is written to the TX FIFO buffer, from which it is automatically send to the TX output pin of the I/O connector using the specified UART communication settings.

Write_Enable must be set to 1 for only one clock cycle.

Before you write data to the TX FIFO buffer, you should check the Write_Fifo_Full signal not to be set. The Write_Fifo_Full signal switches one clock cycle after the Write_Enable signal has been set.

Do not use the Write_Data_Count signal (Write_Data_Count < 2047) to check the TX FIFO buffer, because it requires one additional clock cycle to get the count value.

The hardware output port is driven with the values from the TX FIFO buffer. It is synchronously running to the UART clock defined by the UART baud rate. The hardware port has inverted voltage levels of -6 V (logical high) and +6 V (logical low).

The values in the TX FIFO buffer has not been sent already.

Do not use the Write_Data_Count signal to check the status of the buffer (Write_Data_Count<2047), because this requires two clock cycles before its value is valid, instead of one clock cycle when using the Write_Fifo_Full signal.

Range: 0 ... 2047

You can use the signal to check the TX FIFO buffer before you start writing data to the buffer. The Write_Fifo_Full signal switches one clock cycle after the Write_Enable signal has been set.

Range:

- 0: The TX FIFO buffer is not full.
- 1: The TX FIFO buffer is full.

The Write_Data signal is transferred at each clock cycle with Write_Enable set to 1.

Range: 0 ... 511

The RTS/CTS handshake is handled by the user, the RTS signal is just passed through and adapted to the physical layer.

The hardware port is synchronously running to the UART clock defined by the UART baud rate. The hardware port has voltage levels of +6 V (active, logical high) and -6 V (inactive).

RTS/CTS handshake is handled by the user. CTS is just passed through with conversion to logical 1 and 0.

Range:

- 0: CTS inactive
- 1: CTS active

The CTS hardware port is synchronously running to the UART clock defined by the UART baud rate. The hardware port has voltage levels of +6 V (active, logical high) and -6 V (inactive).

I/O mapping

The signals are available at the RS232 (422/485) connector.

MicroLabBox has static mapping between I/O signals and I/O pins. The signal name is also printed on the housing of MicroLabBox. You have to consider only the connector panel type.

For a detailed connector pinout, refer to:

RS232 (422/485) Connector (Sub-D) (MicroLabBox Hardware Installation and Configuration (LL)

For detailed information on the channel characteristics, refer to:

 Communication Interfaces (MicroLabBox Hardware Installation and Configuration (11)

Related topics

References

Overview of the Frameworks Available for MicroLabBox	14
UART (RS422/485)	82

UART (RS422/485)

Purpose	To implement communication via serial interface for RS422/485 UART type.	
Description	According to the number of physical connections available on MicroLabBox's DS1302 board, you can select the I/O function UART (RS422/485). There are two channels for this function.	
	This I/O function is not considered when you generate the processor interface model.	
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.	
	The I/O function number can be specified in the range 71 72.	

Most of the parameters are used for the UART (RS232) and UART (RS422/485) I/O functions.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Baud rate Lets you specify the baud rate of the UART in the range 50 ... 10,000,000 baud (bits per second).

The baud rate depends on the parameters 2, 3 and 4, and can be calculated by the following formula:

BaudRate = (10^8 · uart_x_dcm_m) / (4 · uart_x_dcm_d · (uart_dcm_clk_divider+1))
With:

Variable	Parameter	Description
uart_x_dcm_m ¹⁾	Parameter(2).Init	Multiplier for the digital clock manager (DCM) module in the range 2 255.
uart_x_dcm_d ¹⁾	Parameter(3).Init	Divisor for the digital clock manager (DCM) module in the range 1 255.
uart_x_dcm_clk_divider ¹⁾	Parameter(4).Init	UART clock divider in the range 0 262,143.

 $^{^{1)}}$ x=1 for UART 1; x=2 for UART 2

Tip

You find the DS1302_uart_parameters.mat file in <RCP_HIL_InstallationPath>\MATLAB\RTIFPGA\Frameworks\DS1302 _XC7K325T that you can open in MATLAB. It contains some calculated baud rates and the percentaged deviations to the supported baud rates according to the parameters m, d and the clock divider.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(5).Init / Word length Lets you specify the word length in the range 5 ... 9 bit. The word length includes the number of data bits and the optional parity bit. Exceeding bits in a message are ignored at the transmitter or cleared at the receiver.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(6).Init / Stop bits Lets you specify the length of the stop bits in half of bits.

Stop Bits	Parameter Value
1	2
1.5	3
2	4

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(7).Init / UART mode Lets you specify the mode when using the RS422/485 UART type.

Value	UART Mode	
0	Full-duplex mode	
1	Half-duplex mode	

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(8).Init / UART type Lets you specify the UART type.

Value	UART Type
0	RS232
1	RS422/485

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(9).Init / Termination Lets you specify the termination state.

Value	Termination State	Description
0	Disconnected	 Full-duplex mode: RX-/RX+ and TX-/TX+ signals are not terminated. Half-duplex mode: BM/BP signals are not terminated.
1	Connected	 Full-duplex mode: RX-/RX+ and TX-/TX+ signals are terminated via 120 Ω resistors. Half-duplex mode: BM/BP signal are terminated via a 120 Ω resistor.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 0 ... 1.

There is only one section in the file that is valid for both UART types.

After three clock cycles, the value is available and can be read from the RX FIFO buffer. The value remains valid until the next Read_Enable signal.

Before you read data from the RX FIFO buffer, you should check the Read_Fifo_Empty signal not to be set. The Read_Fifo_Empty signal switches one clock cycle after the RX FIFO value has been read.

Do not use the Read_Data_Count signal (Read_Data_Count < 0) to check the RX FIFO buffer, because it requires one additional clock cycle to get the count value.

You can read one value per FPGA clock cycle from the UART.

uart_<ChannelNumber>_rd_data_count / Read Data Count Outputs the number of new entries in the RX FIFO buffer.

Two clock cycles are required to return the number of entries.

If you only want to check whether a value is available in the RX FIFO buffer, use the Read_Fifo_Empty signal instead of this.

Value range: 0 ... 2047

If the status of the buffer is *not empty*, then you can start reading the data using the Read_Enable signal.

The Read_Fifo_Empty signal switches one clock cycle after the FIFO value has been read.

Do not use the Read_Data_Count signal to check the status of the buffer (Read_Data_Count>0), because this requires one additional clock cycle before its value is valid.

Range:

- 0: The RX FIFO buffer is not empty.
- 1: The RX FIFO buffer is empty.

The read_data is available after three clock cycles after the Read_Enable signal. The return value is 0, if the data is read before anything has been received by the RX hardware input.

Range: 0 ... 511

The hardware input receives serial data for the UART RX FIFO buffer using inverted voltage levels of -6 V (logical high) and +6 V (logical low).

The Write_Data value is written to the TX FIFO buffer, from which it is automatically send to the TX output pin of the I/O connector using the specified UART communication settings.

Write_Enable must be set to 1 for only one clock cycle.

Before you write data to the TX FIFO buffer, you should check the Write_Fifo_Full signal not to be set. The Write_Fifo_Full signal switches one clock cycle after the Write_Enable signal has been set.

Do not use the Write_Data_Count signal (Write_Data_Count < 2047) to check the TX FIFO buffer, because it requires one additional clock cycle to get the count value.

The hardware output port is driven with the values from the TX FIFO buffer. It is synchronously running to the UART clock defined by the UART baud rate. The hardware port has inverted voltage levels of -6 V (logical high) and +6 V (logical low).

The values in the TX FIFO buffer has not been sent already.

Do not use the Write_Data_Count signal to check the status of the buffer (Write_Data_Count<2047), because this requires two clock cycles before its value is valid, instead of one clock cycle when using the Write_Fifo_Full signal.

Range: 0 ... 2047

You can use the signal to check the TX FIFO buffer before you start writing data to the buffer. The Write_Fifo_Full signal switches one clock cycle after the Write_Enable signal has been set.

Range:

- 0: The TX FIFO buffer is not full.
- 1: The TX FIFO buffer is full.

The Write_Data signal is transferred at each clock cycle with Write_Enable set to 1.

Range: 0 ... 511

uart_<Channel_Number>_driver_en / Driver Enable Specifies to enable the output driver in the transceiver for data transmission.

If you use the UART (RS485/422) function in half-duplex mode, the output driver must be disabled while receiving data.

I/O mapping

The signals are available at the RS232 (422/485) connector.

MicroLabBox has static mapping between I/O signals and I/O pins. The signal name is also printed on the housing of MicroLabBox. You have to consider only the connector panel type.

For a detailed connector pinout, refer to:

 RS232 (422/485) Connector (Sub-D) (MicroLabBox Hardware Installation and Configuration (III))

For detailed information on the channel characteristics, refer to:

 Communication Interfaces (MicroLabBox Hardware Installation and Configuration (1))

Related topics

References

Overview of the Frameworks Available for MicroLabBox	14
UART (RS232)	78

I/O Functions of the DS2655 FPGA Base Board Framework

Introduction

The following frameworks of the DS2655 FPGA Base Boards provide the standard I/O functionality of the boards:

- DS2655 (7K160) FPGA Base Board framework
- DS2655 (7K410) FPGA Base Board framework

Where to go from here

Information in this section

APU Master	39
APU Slave)1
Buffer In	93
Buffer64 In) 5
Buffer Out	98
Buffer64 Out	00
CN App Status)3
I-FPGA In (IOCNET))4

I-FPGA64 In (IOCNET)	105
I-FPGA Out (IOCNET)	107
I-FPGA64 Out (IOCNET)	109
Interrupt	111
IOCNET Global Time	112
LED Out	113
Register In	114
Register64 In	115
Register Out	117
Register64 Out	118
Status In	120

Information in other sections

Other frameworks that provide access to the FPGA functionality of a SCALEXIO system: The DS2655M1 I/O Module framework provides analog and digital I/O functionality of SCALEXIO FPGA base board with at least one DS2655M1 Multi-I/O Module. I/O Functions of the DS2655M2 I/O Module Framework......217 The DS2655M2 I/O Module framework provides digital I/O functionality of a SCALEXIO FPGA base board with at least one DS2655M2 Digital I/O Module. I/O Functions of the DS6651 Multi-I/O Module Framework......239 The DS6651 Multi-I/O Module framework provides analog and digital I/O functionality of a SCALEXIO FPGA base board with at least one DS6651 Multi-I/O Module.

I/O Functions of the Inter-FPGA Interface Framework......281

The Inter-FPGA Interface framework provides access to the I/O module slots of a SCALEXIO FPGA base board to implement an inter-FPGA communication bus.

APU Master

Purpose	To distribute angle values over IOCNET for synchronizing angle-based applications.
Description	According to the number of physical connections available on the DS2655 FPGA Base Board, you can select the APU Master I/O functions. There are six digital output channels.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 2 \dots 7.
	IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
	IOProperties.Out.Fct(<iofunctionnumber>).Parameter(1).Init / Angle range Lets you specify the angle value range of the Phi Read port.</iofunctionnumber>
	0: The angle range is 720° and cannot be changed in ConfigurationDesk.
	 1: The angle range is 360° and cannot be changed in ConfigurationDesk. 2: The Angle range property of the FPGA custom function block in ConfigurationDesk lets you set the angle range of the APU. The default value is 720°.
	IOProperties.Out.Fct(<iofunctionnumber>).Parameter(2).Init / Initial position Lets you set the initial APU master position in degree. • Value range: -1440° +1440°</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 01 ... 06.

iocnet_glob_master_angle<ChannelNumber>_ctr / Phi Read HD For internal use only.

iocnet_glob_master_angle<ChannelNumber>_pos / Phi Read Outputs the angle counter value of the APU that the APU Master writes to the APU bus. The step size of the angle counter is approximately 0.011°. The step size is independent from the angle range.

Formula for angle calculation: alpha[°] = Phi Read * $720^{\circ}/2^{16}$

The value range depends on the settings of the Angle Range:

■ 360° angle range: 0 ... 32767 (2¹⁵-1)

■ 720° angle range: 0 ... 65535 (2¹⁶-1)

Data type: UFix_16_0

Data width: 1

APU bus clock cycle: 8 ns

Range exceeding is not possible.

iocnet_glob_master_angle<ChannelNumber>_rev / Rev Read Specifies the 37 bit total revolution (rev) value for the APU bus.

The APU bus clock cycle is 8 ns. The 37 Bit range is $-2^{36} \dots 2^{36} - 1$.

Data type: Double Data width: 1

Range exceeding is not possible.

iocnet_glob_master_angle<ChannelNumber>_vel / Delta Phi For internal use only.

iocnet_glob_master_angle<ChannelNumber>_en / Delta Phi Enable For internal use only.

iocnet_glob_master_angle<ChannelNumber>_busy / Busy Specifies
whether APU master is busy to set the last velocity value. If Busy is 1 (high), new velocity values cannot be set.

Busy stays active for at least 10 µs depending on the IOCNET structure..

iocnet_glob_master_angle<ChannelNumber>_res / Angle Range Specifies the angle value range of Phi Read.

- 0: 720° angle range
- 1: 360° angle range

The value will be applied if Set Velocity is 1 (high) and Busy is 0 (low).

Data type: Fix_32_10

Data width: 1

Value range: -1,200,000 °/s ... +1,200,000 °/s

Range exceeding is not possible. The port is saturated at the higher or lower limit.

iocnet_glob_master_angle<ChannelNumber>_upd_trig / Set

Velocity Specifies the actual value of Velocity as new velocity value. The new value is set only if Set Velocity is 1 (high) and Busy is 0 (low).

Notes on updating velocity values:

- Setting the velocity values at very short intervals (e.g. every 80 ns) leads to high data traffic on IOCNET.
 - High data traffic might freeze your SCALEXIO system.
- Setting a new velocity value before the last setting is executed overwrites the last setting.

To distribute and execute a new velocity value takes about 10 μ s. If the APU master always sets new velocity values before the last value is executed, the velocity value will never change.

I/O mapping	No external connection to the I/O connector of the board.	
Related topics	References	
	Overview of the DS2655 FPGA Base Board Frameworks	

APU Slave

Design	To read angle values distributed by an APU Master over IOCNET for synchronizing
Purpose	angle-based applications.
Description	According to the number of physical connections available on the DS2655 FPGA Base Board, you can select the APU Slave I/O functions. There are six digital input channels.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 4 ... 9.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(11).Init Lets you inherit the angle range of the APU bus or specify a local angle range independent from the APU bus:

- 0: 720° angle range.
- 1: 360° angle range.
- 2: The angle range is inherited from the APU bus.

The following table shows you the possible combinations of angle range settings.

APU Bus Setting	Slave APU Setting	Resulting Angle Range of the Slave APU
360°	2 (Inherit)	360°
720°		720°
360°	1 (360°)	360°
	0 (720°)	720° ¹⁾
720°	1 (360°)	360° ²⁾
	0 (720°)	720°

¹⁾ Two engine cycles are required to run through the 720° angle range. If you simulate a four-stroke piston engine, for example, the angle-values of the function block are not clearly related to the camshaft position.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 01 ... 06.

iocnet_glob_angle<ChannelNumber>_pos / Phi Read Outputs the angle value that APU Slave reads from the APU bus. The angle value is independent from the angle range of the APU bus.

Formula for angle calculation: alpha[°] = Phi Read * 720°/2¹⁶

The value range depends on the angle range of the APU bus:

■ 360° angle range: 0 ... 32767 (2¹⁵-1)

■ 720° angle range: 0 ... 65535 (2¹⁶-1)

Data type: UFix_16_0

Data width: 1

APU bus clock cycle: 8 ns

Range exceeding is not possible.

iocnet_glob_angle<ChannelNumber>_rev / Rev Read Outputs the 37 bit total revolution (rev) value for the APU bus.

The APU bus clock cycle is 8 ns. The 37 Bit range is $-2^{36} \dots 2^{36} - 1$.

²⁾ One engine cycle runs twice through the 360° angle range.

Data type: Double Data width: 1

Range exceeding is not possible.

iocnet_glob_angle<ChannelNumber>_ctr / Phi Read HD For internal use

iocnet_glob_angle<ChannelNumber>_en / Delta Phi Enable For internal use only.

iocnet_glob_angle<ChannelNumber>_res / Angle Range Outputs a flag whether the angle range of the APU bus is 360° or 720°. The angle range has been sent by an I/O board in the hardware system specified as APU master.

Data type: Double Data width: 1

- 0: The angle range is 720°.
- 1: The angle range is 360°.

I/O mapping	No external connection to the I/O connector of the board.	
Related topics	References	
	Overview of the DS2655 FPGA Base Board Frameworks	

Buffer In

Purpose	To read data from an IOCNET buffer with a data width of 32 bits.
Description	If you select Buffer as the access type, the data is read from an IOCNET buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 257 ... 288.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 32-bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768. The maximum range of the Address inport depends on the buffer size.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemf_<ChannelNumber>_count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmemf_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from an IOCNET buffer. The data format depends on the related parameter settings.

xmemf_<ChannelNumber>_addr / Address Specifies an element in the buffer you want to read. The block requires 1 clock cycle to update the value of

the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer (see Data Count outport). If you request data from an address that is greater than the Data Count value, the output of the Data outport is undefined. The first element of a buffer is addressed by 0.

xmemf_<ChannelNumber>_new_data / Data NewOutputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

xmemf_<ChannelNumber>_read_req / Read Request
Outputs a flag that indicates that a data transmission is requested via IOCNET. With Buffer In port Read Request and the Buffer Out port Send Acknowledge you can trigger a processor synchronous data exchange.

A data transmission is always requested at the beginning of a task, before the processor model is computed. Each time a new data transmission is requested by the Buffer Out port Send Acknowledge, the Buffer In port Read Request must explicitly acknowledge the Data values for transmission within one task period. To send current data you can delay the transmission. After a new data transmission is requested, you write the current data values to the buffer. Then you must acknowledge the new data for transmission.

Usable only if Enable Read_Req and Send_Ack ports for explicit data transmit value is enabled in the FPGA framework INI file.

- 0: No data transmission is requested.
- 1: A data transmission is requested. This value is set for one clock cycle.

A data transmission request that is not acknowledged by the Buffer Out port Send Acknowledge leads to task overrun in the processor application. A task overrun will be logged as an I/O error in the Message Viewer of the SCALEXIO web interface. The FPGA buffer that caused the task overrun will also be logged.

For details on acknowledging a data transmission with Send Acknowledge, refer to Buffer Out on page 98.

Related topics

References

Overview of the DS2655 FPGA Base Board Frameworks.....

Buffer64 In

Purpose

To read data from an IOCNET buffer with a data width of 64 bits.

Description

If you select Buffer64 as the access type, the data is read from an IOCNET buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 545 ... 576.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768. The maximum range of the Address inport depends on the buffer size.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmem64f_<ChannelNumber>_count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmem64f_<ChannelNumber>_dout / DataOutputs a 64-bit data value to be read from an IOCNET buffer. The data format depends on the related parameter settings.

xmem64f_<ChannelNumber>_addr / Address Specifies an element in the buffer you want to read. The block requires 1 clock cycle to update the value of the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer (see Data Count outport). If you request data from an address that is greater than the Data Count value, the output of the Data outport is undefined. The first element of a buffer is addressed by 0.

xmem64f_<ChannelNumber>_new_data / Data New Outputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

xmem64f_<ChannelNumber>_read_req / Read RequestOutputs a flag that indicates that a data transmission is requested via IOCNET. With Buffer In port Read Request and the Buffer Out port Send Acknowledge you can trigger a processor synchronous data exchange.

A data transmission is always requested at the beginning of a task, before the processor model is computed. Each time a new data transmission is requested by the Buffer Out port Send Acknowledge, the Buffer In port Read Request must explicitly acknowledge the Data values for transmission within one task period. To send current data you can delay the transmission. After a new data transmission is requested, you write the current data values to the buffer. Then you must acknowledge the new data for transmission.

Usable only if Enable Read_Req and Send_Ack ports for explicit data transmit value is enabled in the FPGA framework INI file.

- 0: No data transmission is requested.
- 1: A data transmission is requested. This value is set for one clock cycle.

A data transmission request that is not acknowledged by the Buffer Out port Send Acknowledge leads to task overrun in the processor application. A task overrun will be logged as an I/O error in the Message Viewer of the SCALEXIO web interface. The FPGA buffer that caused the task overrun will also be logged.

For details on acknowledging a data transmission with Send Acknowledge, refer to Buffer64 Out on page 100.

Related topics

References

Overview of the DS2655 FPGA Base Board Frameworks.....

Buffer Out

Purpose To write data to an IOCNET buffer with a data width of 32 bits. Description If you select Buffer as the access type, the data is written to an IOCNET buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits. Parameters You can find templates for the functions and the following parameters in the handcode FPGA framework INI file. The I/O function number can be specified in the range 129 ... 160.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 32 bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you select the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(9).Init / Enable Read_Req and Send_Ack ports for explicit data transmit value Lets you enable the Buffer In port Read Request and the Buffer Out port Send Acknowledge. With Read Request and Send Acknowledge you can trigger a processor synchronous data exchange.

- 0: The ports are disabled. Each data request will instantly be acknowledged.
- 1: The ports are enabled. Each data request must be acknowledged by your handcode.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemp_<ChannelNumber>_din / Data Specifies a 32-bit data value to be written to an IOCNET buffer. The data format depends on the related parameter settings.

xmemp_<ChannelNumber>_write / Enable Specifies the current valid Data port value.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

xmemp_<ChannelNumber>_finished / Ready Explicitly specifies the buffer state as ready to send the buffer immediately, even if it is not completely filled. The data values will be written to a new buffer in the next clock cycle. While the port value is 1, transmission switches buffer in every clock cycle. The value should therefore be set for one clock cycle only. If the buffer is completely filled, it is automatically switched, and the data values are stored in a new buffer.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled.
 The buffer is switched and the data values are accessible via PHS bus in the next clock cycle.

The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmemp_<ChannelNumber>_overflow / Overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

xmemp_<ChannelNumber>_send_ack / Send Acknowledge Triggers a data transmission to IOCNET. With the Buffer Out port Send Acknowledge and the Buffer In port Read Request you can trigger a processor synchronous data exchange.

A data transmission is always requested at the beginning of a task, before the processor model is computed. Each time a new data transmission is requested by the Buffer Out port Send Acknowledge, the Buffer In port Read Request must explicitly acknowledge the Data values for transmission within one task period. To send current data you can delay the transmission. After a new data transmission is requested, you write the current data values to the buffer. Then you must acknowledge the new data for transmission.

Usable only if Enable Read_Req and Send_Ack ports for explicit data transmit value is enabled in the FPGA framework INI file.

- 0: No data transmission is acknowledged..
- 1: A data transmission is acknowledged and the current data values will be transmitted via IOCNET.

A data transmission request that is not acknowledged by the Buffer Out port Send Acknowledge leads to task overrun in the processor application. A task overrun will be logged as an I/O error in the Message Viewer of the SCALEXIO web interface. The FPGA buffer that caused the task overrun will also be logged. For details on the port Read Request, refer to Buffer In on page 93.

Related topics

References

Overview of the DS2655 FPGA Base Board Frameworks......

17

Buffer64 Out

Purpose	To write data to an IOCNET buffer with a data width of 64 bits.
Description	If you select Buffer64 as the access type, the data is written to an IOCNET buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 545 576.
	PHSProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
	PHSProperties.Out.Fct(<iofunctionnumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).</iofunctionnumber>

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(9).Init / Enable Read_Req and Send_Ack ports for explicit data transmit value Lets you enable the Buffer In port Read Request and the Buffer Out port Send Acknowledge. With Read Request and Send Acknowledge you can trigger a processor synchronous data exchange.

- 0: The ports are disabled. Each data request will instantly be acknowledged.
- 1: The ports are enabled. Each data request must be acknowledged by your handcode.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmem64p_<ChannelNumber>_din / Data Specifies a 64-bit data value to be written to an IOCNET buffer. The data format depends on the related parameter settings.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled.
 The buffer is switched and the data values are accessible via IOCNET bus in the next clock cycle.

The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmem64p_<ChannelNumber>_overflow / Overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

xmem64p_<ChannelNumber>_send_ack / Send Acknowledge Triggers a data transmission to IOCNET. With the Buffer Out port Send Acknowledge and the Buffer In port Read Request you can trigger a processor synchronous data exchange.

A data transmission is always requested at the beginning of a task, before the processor model is computed. Each time a new data transmission is requested by the Buffer Out port Send Acknowledge, the Buffer In port Read Request must explicitly acknowledge the Data values for transmission within one task period. To send current data you can delay the transmission. After a new data transmission is requested, you write the current data values to the buffer. Then you must acknowledge the new data for transmission.

Usable only if Enable Read_Req and Send_Ack ports for explicit data transmit value is enabled in the FPGA framework INI file.

- 0: No data transmission is acknowledged..
- 1: A data transmission is acknowledged and the current data values will be transmitted via IOCNET.

A data transmission request that is not acknowledged by the Buffer Out port Send Acknowledge leads to task overrun in the processor application. A task overrun will be logged as an I/O error in the Message Viewer of the SCALEXIO web interface. The FPGA buffer that caused the task overrun will also be logged. For details on the port Read Request, refer to Buffer64 In on page 95.

CN App Status

Purpose	To read the status of application that is running on the computation node.
Description	There is one digital input channel that is used for the CN App Status I/O function.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number must be specified as 2.
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	There is no channel number to be specified.
	<pre>iocnet_appl_status/ CN Application Status</pre>
	0: The application on the computation node is stopped.
	1: The application on the computation node is running.
Related topics	References
	Overview of the DS2655 FPGA Base Board Frameworks

I-FPGA In (IOCNET)

Purpose To read a 32-bit raw data value from an IOCNET buffer. You can select I-FPGA In (IOCNET) I/O functions to implement an inter-FPGA communication between FPGA base boards. There are 32 channels. Parameters You can find templates for the functions and the following parameters in the handcode FPGA framework INI file. The I/O function number can be specified in the range 10 ... 41. IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel. hcfw.PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Buffer size Lets you specify the size of the IOCNET buffer in the range 1 ... 1024. The maximum range of the Address inport depends on the buffer size.

Note

The FPGA memory blocks reserved for buffers have a granularity of 1024 words. For example, a buffer with a specified buffer size of 1 allocates a memory block of 1024 words with a data width of 32-bit in the FPGA memory. This applies to any specified buffer and its related swinging buffer.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

Note

You can transfer any data type with a bit width of up to 32 Bit via inter-FPGA over IOCNET. To do this, you can reinterpret the data type to UFix_32_0 and vice versa. Reinterpreting data types does not cost any hardware or latency.

The range can be exceeded for the Data outport. The outport's value is then cast to UFix_32_0.

xmemf_inter_<ChannelNumber>_addr / Address Specifies a data value in the IOCNET buffer to be read. The block requires one clock cycle to update the value of the Data outport with the data value of the specified address.

Data type: UFix_16_0

Data width: 1

The maximum address range depends on the Buffer size parameter. The address range with valid data values can be derived from the value of the Data Count port.

xmemf_inter_<ChannelNumber>_count / Data Count Outputs the number of elements in the current IOCNET buffer. You can use the value to define the valid range for the Address port from 0 to (Data Count -1).

Data type: UFix_16_0

Data width: 1

The maximum value range depends on the Buffer size parameter.

xmemf_inter_<ChannelNumber>_dout / Data Outputs a 32-bit raw data value from the specified address of the IOCNET buffer.

Data type: UFix_32_0

Data width: 1

xmemf_inter_<ChannelNumber>_new_data / Data New Outputs a flag

that indicates the update of the Data port.

Data type: UFix_1_0

Data width: 1

If the flag changes from 0 to 1 and then to 0 again, the requested buffer contains new values and is ready to be read. The flag is set to 1 within only one clock cycle.

I/O mapping

No external connection to the I/O connector of the board.

Related topics

References

Overview of the DS2655 FPGA Base Board Frameworks.....

..... 17

I-FPGA64 In (IOCNET)

Purpose	To read a 64-bit raw data value from an IOCNET buffer.
Description	According to the number of physical connections available on the DS2655 FPGA Base Board, you can select the I-FPGA64 In (IOCNET) I/O functions. There are 32 channels.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 42 ... 73.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

hcfw.PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Buffer size Lets you specify the size of the IOCNET buffer in the range 1 ... 512. The maximum range of the Address inport depends on the buffer size.

Note

The FPGA memory blocks reserved for buffers have a granularity of 1024 words. For example, a buffer with a specified buffer size of 1 allocates a memory block of 1024 words with a data width of 64 bits in the FPGA memory. This applies to any specified buffer and its related swinging buffer.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

Note

You can transfer any data type with a bit width of up to 64 Bit via inter-FPGA over IOCNET. To do this, you can reinterpret the data type to UFix_64_0 and vice versa. Reinterpreting data types does not cost any hardware or latency.

The range can be exceeded for the Data outport. The outport's value is then cast to UFix_64_0.

xmem64f_inter_<ChannelNumber>_addr / Address Specifies a data value in the IOCNET buffer to be read. The block requires one clock cycle to update the value of the Data outport with the data value of the specified address.

Data type: UFix_16_0

Data width: 1

The maximum address range depends on the Buffer size parameter. The address range with valid data values can be derived from the value of the Data Count port.

xmem64f_inter_<ChannelNumber>_count / Data Count Outputs the number of elements in the current IOCNET buffer. You can use the value to define the valid range for the Address port from 0 to (Data Count -1).

Data type: UFix_16_0

Data width: 1

The maximum value range depends on the Buffer size parameter.

xmem64f_inter_<ChannelNumber>_dout / Data Outputs a 64-bit raw data value from the specified address of the IOCNET buffer.

Data type: UFix_64_0

Data width: 1

xmem64f_inter_<ChannelNumber>_new_data / Data New Outputs a

flag that indicates the update of the Data port.

Data type: UFix_1_0

Data width: 1

If the flag changes from 0 to 1 and then to 0 again, the requested buffer contains new values and is ready to be read. The flag is set to 1 within only one

clock cycle.

I/O mapping

No external connection to the I/O connector of the board.

Related topics

References

Overview of the DS2655 FPGA Base Board Frameworks......

17

I-FPGA Out (IOCNET)

Purpose	To write a 32-bit raw data value to an IOCNET buffer.
Description	You can select I-FPGA Out (IOCNET) I/O functions to implement an inter-FPGA communication between FPGA base boards. There are 32 channels.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 8 ... 39.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

hcfw.PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Buffer size Lets you specify the size of the IOCNET buffer in the range 1 ... 1024.

Note

The FPGA memory blocks reserved for buffers have a granularity of 1024 words. For example, a buffer with a specified buffer size of 1 allocates a memory block of 1024 words with a data width of 32-bit in the FPGA memory. This applies to any specified buffer and its related swinging buffer.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

Note

You can transfer any data type with a bit width of up to 32 Bit via inter-FPGA over IOCNET. To do this, you can reinterpret the data type to UFix_32_0 and vice versa. Reinterpreting data types does not cost any hardware or latency.

The range of the Data inport can be exceeded. The value of the inport is then cast to the raw data format UFix_32_0.

xmemp_inter_<ChannelNumber>_din / Data Specifies a 32-bit raw data value to be written to an IOCNET buffer.

Data type: UFix_32_0

Data width: 1

xmemp_inter_<ChannelNumber>_strobe / Enable Specifies the current valid Data port value.

Data type: UFix_1_0
Data width: 1

Values:

- 0: The Data value to be written is not stored in the IOCNET buffer.
- 1: The Data value to be written is stored in the IOCNET buffer. The value of the current clock cycle is used.

xmemp_inter_<ChannelNumber>_finished / Ready
Explicitly specifies the buffer state as ready to send immediately, even if the buffer is not completely filled. The data values are written to a new buffer in the following clock cycle.
While the port value is 1, the buffer switches every clock cycle. You are therefore recommended to set the value for only one clock cycle. If the buffer is completely filled, it is automatically switched, and the data values are stored in a new buffer.

Data type: UFix_1_0
Data width: 1

Values:

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready to send, even if it is not completely filled.
 The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmemp_inter_<ChannelNumber>_write / Send Triggers a data transmission via IOCNET.

Data type: UFix_1_0

Data width: 1

Values:

- 0: Data values are not acknowledged for transmission.
- 1: Current Data values are acknowledged and will be transmitted via IOCNET.

xmemp_inter_<ChannelNumber>_overflow / Overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs when the new buffer is triggered for transmission and the old buffer was not sent completely.

Data type: UFix_1_0
Data width: 1

Values:

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

I/O mapping	No external connection to the I/O connector of the board.	
Related topics	References	
	Overview of the DS2655 FPGA Base Board Frameworks	

I-FPGA64 Out (IOCNET)

Purpose	To write a 64-bit raw data value to an IOCNET buffer.
Description	You can select I-FPGA64 Out (IOCNET) I/O functions to implement an inter-FPGA communication between FPGA base boards. There are 32 channels.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 40 ... 71.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

hcfw.PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Buffer size Lets you specify the size of the IOCNET buffer in the range 1 ... 512.

Note

The FPGA memory blocks reserved for buffers have a granularity of 1024 words. For example, a buffer with a specified buffer size of 1 allocates a memory block of 1024 words with a data width of 64 bits in the FPGA memory. This applies to any specified buffer and its related swinging buffer.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

Note

You can transfer any data type with a bit width of up to 64 Bit via inter-FPGA over IOCNET. To do this, you can reinterpret the data type to UFix_64_0 and vice versa. Reinterpreting data types does not cost any hardware or latency.

The range of the Data inport can be exceeded. The value of the inport is then cast to the raw data format UFix_64_0.

xmem64p_inter_<ChannelNumber>_din / Data Specifies a 64-bit raw data value to be written to an IOCNET buffer.

Data type: UFix_64_0

Data width: 1

xmem64p_inter_<ChannelNumber>_strobe / Enable Specifies the current valid Data port value.

Data type: UFix_1_0

Data width: 1

Values:

- 0: The Data value to be written is not stored in the IOCNET buffer.
- 1: The Data value to be written is stored in the IOCNET buffer. The value of the current clock cycle is used.

 is completely filled, it is automatically switched, and the data values are stored in a new buffer.

Data type: UFix_1_0

Data width: 1 Values:

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready to send, even if it is not completely filled.
 The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmem64p_inter_<ChannelNumber>_write / Send Triggers a data transmission via IOCNET.

Data type: UFix_1_0
Data width: 1

Values:

- 0: Data values are not acknowledged for transmission.
- 1: Current Data values are acknowledged and will be transmitted via IOCNET.

xmem64p_inter_<ChannelNumber>_overflow / Overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs when the new buffer is triggered for transmission and the old buffer was not sent completely.

Data type: UFix_1_0
Data width: 1

Values:

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

I/O mapping

No external connection to the I/O connector of the board.

Related topics

References

Overview of the DS2655 FPGA Base Board Frameworks......

Interrupt

Purpose

To request a processor interrupt outside of the FPGA application.

Description

The DS2655 FPGA Base Board provides 8 interrupt lines. An interrupt is requested if the Int port is set to 1 for at least one clock cycle. If you set the Int

	port to 0, the last interrupt is not released but saved. An interrupt is edgetriggered.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 1 \dots 8.
	IRQProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	The channel number can be specified in the range 0 7.
	 usr_<channelnumber>_interrupt / Int Provides the interrupt request line.</channelnumber> 0 to 1: Interrupt is requested (edge-triggered). 0: No interrupt is requested. Last requested interrupt is saved.
Related topics	References
	Overview of the DS2655 FPGA Base Board Frameworks

IOCNET Global Time

Purpose	To read the number of hardware ticks.
Description	There is one digital input channel that is used for the IOCNET Global Time I/O function.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number must be specified as 3.
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.

There is no channel number to be specified.

iocnet_glob_time/ IOCNET Global Time Outputs the number of hardware ticks that occurred since the SCALEXIO system power was switched to on. If you use a multiprocessor system, the value is set to zero each time an application is reloaded and restarted.

Data type: UFix_56_0 Tick step-width: 8.5 ns

Related topics

References

Overview of the DS2655 FPGA Base Board Frameworks.....

17

LED Out

Purpose	To write a digital signal that controls the LED on the board.
Description	There is one digital output channel that is used for the LED Out I/O function.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file. The I/O function number must be specified as 1.
	IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	There is no channel number to be specified.
	led_out / LED Out Controls the LED on the board.
	Data type: UFix_1_0
	0: LED lights green.
	1: LED lights orange.
Related topics	References
	Overview of the DS2655 FPGA Base Board Frameworks

Register In

register in

Purpose

To read data from an IOCNET register with a data width of 32 bits.

Description

If you select Register as the access type, the data is read from an IOCNET register. 256 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 256.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 32-bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

• floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

width) setting.

The values of the Data outport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single). The fraction width is provided by the Binary point position (or fraction

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are sampled

simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the IOCNET bus.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- -
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 255.

xreg_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from an IOCNET register. The data format depends on the related parameter settings.

xreg_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Overview of the DS2655 FPGA Base Board Frameworks.....

17

Register64 In

Purpose	To read data from an IOCNET register with a data width of 64 bits.
Description	If you select Register as the access type, the data is read from an IOCNET register. 256 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 289 ... 544.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are sampled simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the IOCNET bus.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ..
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 255.

xreg64_<ChannelNumber>_dout / Data Outputs a 64-bit data value to be read from an IOCNET register. The data format depends on the related parameter settings.

xreg64_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Overview of the DS2655 FPGA Base Board Frameworks.....

17

Register Out

Purpose

To write data to an IOCNET register with a data width of 32 bits.

Description

If you select Register as the access type, the data is written to an IOCNET register. 256 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 256.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 32 bit value in the range 0 \dots 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init /

Format Lets you select the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the IOCNET bus sequentially and then provided to the FPGA application simultaneously.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 255.

xreg_<ChannelNumber>_din / Data Specifies a 32-bit data value to be written to an IOCNET register. The data format depends on the related parameter settings.

Related topics

References

Overview of the DS2655 FPGA Base Board Frameworks.....

.... 17

Register64 Out

Purpose

To write data to an IOCNET register with a data width of 64 bits.

Description

If you select Register64 as the access type, the data is written to an IOCNET register. 256 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 289 ... 544.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary **point position (or fraction width)** Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double). The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register64 group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the IOCNET bus sequentially and then provided to the FPGA application simultaneously.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ..
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 255.

xreg64_<ChannelNumber>_din / Data Specifies a 64-bit data value to be written to an IOCNET register. The data format depends on the related parameter settings.

Related topics

References

Overview of the DS2655 FPGA Base Board Frameworks.....

..... 17

Status In

Purpose	To read a digital signal that outputs the state of the FPGA initialization sequence.
Description	There is one digital input channel that is used for the Status In I/O function.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number must be specified as 1.
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	There is no channel number to be specified.
	init_done/ Init Done Outputs the state of the initialization sequence that is started after programming the FPGA.Data type: UFix_1_0

- 0: Initialization sequence is in progress.
- 1: Initialization sequence has finished.

Related topics

References

I/O Functions of the DS6601 FPGA Base Board Framework

Introduction

The DS6601 (KU035) FPGA Base Board framework of the DS6601 FPGA Base Board provide the standard I/O functionality of the board.

Where to go from here

Information in this section

APU Master
APU Slave
Buffer In
Buffer64 In
Buffer Out
Buffer64 Out
CN App Status
I-FPGA In (IOCNET)
I-FPGA64 In (IOCNET)

I-FPGA Out (IOCNET)	143
I-FPGA64 Out (IOCNET)	145
Interrupt To request a processor interrupt outside of the FPGA application.	147
IOCNET Global Time	148
LED Out	149
Register In	150
Register64 In	151
Register Out To write data to an IOCNET register with a data width of 32 bits.	153
Register64 Out To write data to an IOCNET register with a data width of 64 bits.	154
Status In To read a digital signal that outputs the state of the FPGA initialization sequence.	156

Information in other sections

Other frameworks that provide access to the FPGA functionality of a SCALEXIO system: I/O Functions of the DS2655M1 I/O Module Framework......205 The DS2655M1 I/O Module framework provides analog and digital I/O functionality of SCALEXIO FPGA base board with at least one DS2655M1 Multi-I/O Module. I/O Functions of the DS2655M2 I/O Module Framework......217 The DS2655M2 I/O Module framework provides digital I/O functionality of a SCALEXIO FPGA base board with at least one DS2655M2 Digital I/O Module. I/O Functions of the DS6651 Multi-I/O Module Framework......239 The DS6651 Multi-I/O Module framework provides analog and digital I/O functionality of a SCALEXIO FPGA base board with at least one DS6651 Multi-I/O Module. The Inter-FPGA Interface framework provides access to the I/O module slots of a SCALEXIO FPGA base board to implement an inter-FPGA communication bus.

APU Master

Purpose	To distribute angle values over IOCNET for synchronizing angle-based applications.
Description	According to the number of physical connections available on the DS6601 FPGA Base Board, you can select the APU Master I/O functions. There are six digital output channels.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 2 7.
	IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
	 IOProperties.Out.Fct(<iofunctionnumber>).Parameter(1).Init / Angle range Lets you specify the angle value range of the Phi Read port.</iofunctionnumber> 0: The angle range is 720° and cannot be changed in ConfigurationDesk. 1: The angle range is 360° and cannot be changed in ConfigurationDesk. 2: The Angle range property of the FPGA custom function block in ConfigurationDesk lets you set the angle range of the APU. The default value is 720°.
	IOProperties.Out.Fct(<iofunctionnumber>).Parameter(2).Init / Initial position</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	The channel number can be specified in the range 01 06.
	<pre>iocnet_glob_master_angle<channelnumber>_ctr / Phi Read HD For internal use only.</channelnumber></pre>
	 iocnet_glob_master_angle<channelnumber>_pos / Phi Read Outputs the angle counter value of the APU that the APU Master writes to the APU bus. The step size of the angle counter is approximately 0.011°. The step size is independent from the angle range.</channelnumber> Formula for angle calculation: alpha[°] = Phi Read * 720°/2¹⁶ The value range depends on the settings of the Angle Range: 360° angle range: 0 32767 (2¹⁵-1) 720° angle range: 0 65535 (2¹⁶-1)
	Data type: UFix_16_0

Data width: 1

APU bus clock cycle: 8 ns

Range exceeding is not possible.

iocnet_glob_master_angle<ChannelNumber>_rev / Rev Read Specifies the 37 bit total revolution (rev) value for the APU bus.

The APU bus clock cycle is 8 ns. The 37 Bit range is $-2^{36} \dots 2^{36} - 1$.

Data type: Double Data width: 1

Range exceeding is not possible.

iocnet_glob_master_angle<ChannelNumber>_vel / Delta Phi For internal use only.

iocnet_glob_master_angle<ChannelNumber>_en / Delta Phi Enable For internal use only.

iocnet_glob_master_angle<ChannelNumber>_busy / Busy Specifies whether APU master is busy to set the last velocity value. If Busy is 1 (high), new velocity values cannot be set.

Busy stays active for at least 10 µs depending on the IOCNET structure..

iocnet_glob_master_angle<ChannelNumber>_res / Angle

Range Specifies the angle value range of Phi Read.

- 0: 720° angle range
- 1: 360° angle range

iocnet_glob_master_angle<ChannelNumber>_upd_vel_deg_sec /Velocity Specifies a velocity value in degree/second to be applied as APU Master speed.

The value will be applied if Set Velocity is 1 (high) and Busy is 0 (low).

Data type: Fix_32_10

Data width: 1

Value range: -1,200,000 °/s ... +1,200,000 °/s

Range exceeding is not possible. The port is saturated at the higher or lower limit.

iocnet_glob_master_angle<ChannelNumber>_upd_trig / Set

Velocity Specifies the actual value of Velocity as new velocity value. The new value is set only if Set Velocity is 1 (high) and Busy is 0 (low).

Notes on updating velocity values:

- Setting the velocity values at very short intervals (e.g. every 80 ns) leads to high data traffic on IOCNET.
 - High data traffic might freeze your SCALEXIO system.
- Setting a new velocity value before the last setting is executed overwrites the last setting.

To distribute and execute a new velocity value takes about 10 μ s. If the APU master always sets new velocity values before the last value is executed, the velocity value will never change.

I/O mapping	No external connection to the I/O connector of the board.	
Related topics	References	
	Overview of the DS6601 FPGA Base Board Frameworks	

APU Slave

Purpose	To read angle values distributed by an APU Master over IOCNET for synchronizing angle-based applications.
Description	According to the number of physical connections available on the DS6601 FPGA Base Board, you can select the APU Slave I/O functions. There are six digital input channels.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range $4 \dots 9$.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(11).Init Lets you inherit the angle range of the APU bus or specify a local angle range independent from the APU bus:

- 0: 720° angle range.
- 1: 360° angle range.
- 2: The angle range is inherited from the APU bus.

The following table shows you the possible combinations of angle range settings.

APU Bus Setting	Slave APU Setting	Resulting Angle Range of the Slave APU
360°	2 (Inherit)	360°
720°		720°
360°	1 (360°)	360°
	0 (720°)	720° ¹⁾

APU Bus Setting	Slave APU Setting	Resulting Angle Range of the Slave APU
720°	1 (360°)	360° ²⁾
	0 (720°)	720°

Two engine cycles are required to run through the 720° angle range. If you simulate a four-stroke piston engine, for example, the angle-values of the function block are not clearly related to the camshaft position.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 01 ... 06.

iocnet_glob_angle<ChannelNumber>_pos / Phi Read Outputs the angle value that APU Slave reads from the APU bus. The angle value is independent from the angle range of the APU bus.

Formula for angle calculation: alpha[°] = Phi Read * 720°/2¹⁶

The value range depends on the angle range of the APU bus:

360° angle range: 0 ... 32767 (2¹⁵-1)
 720° angle range: 0 ... 65535 (2¹⁶-1)

Data type: UFix_16_0

Data width: 1

APU bus clock cycle: 8 ns

Range exceeding is not possible.

iocnet_glob_angle<ChannelNumber>_rev / Rev Read Outputs the 37 bit total revolution (rev) value for the APU bus.

The APU bus clock cycle is 8 ns. The 37 Bit range is $-2^{36} \dots 2^{36} - 1$.

Data type: Double Data width: 1

Range exceeding is not possible.

iocnet_glob_angle<ChannelNumber>_ctr / Phi Read HD For internal use only.

iocnet_glob_angle<ChannelNumber>_vel / Delta Phi For internal use only.

iocnet_glob_angle<ChannelNumber>_en / Delta Phi Enable For internal use only.

iocnet_glob_angle<ChannelNumber>_res / Angle Range Outputs a flag whether the angle range of the APU bus is 360° or 720°. The angle range has been sent by an I/O board in the hardware system specified as APU master.

Data type: Double Data width: 1

²⁾ One engine cycle runs twice through the 360° angle range.

- 0: The angle range is 720°.
- 1: The angle range is 360°.

I/O mapping

No external connection to the I/O connector of the board.

Related topics

References

Overview of the DS6601 FPGA Base Board Frameworks......

10

Buffer In

Purpose

To read data from an IOCNET buffer with a data width of 32 bits.

Description

If you select Buffer as the access type, the data is read from an IOCNET buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 257 ... 288.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 32-bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

width) setting.

The values of the Data outport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single). The fraction width is provided by the Binary point position (or fraction

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768. The maximum range of the Address inport depends on the buffer size.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemf_<ChannelNumber>_count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmemf_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from an IOCNET buffer. The data format depends on the related parameter settings.

xmemf_<ChannelNumber>_addr / Address Specifies an element in the buffer you want to read. The block requires 1 clock cycle to update the value of the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer (see Data Count outport). If you request data from an address that is greater than the Data Count value, the output of the Data outport is undefined. The first element of a buffer is addressed by 0.

xmemf_<ChannelNumber>_new_data / Data New Outputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

A data transmission is always requested at the beginning of a task, before the processor model is computed. Each time a new data transmission is requested by the Buffer Out port Send Acknowledge, the Buffer In port Read Request must explicitly acknowledge the Data values for transmission within one task period. To send current data you can delay the transmission. After a new data transmission is requested, you write the current data values to the buffer. Then you must acknowledge the new data for transmission.

Usable only if Enable Read_Req and Send_Ack ports for explicit data transmit value is enabled in the FPGA framework INI file.

- 0: No data transmission is requested.
- 1: A data transmission is requested. This value is set for one clock cycle.

A data transmission request that is not acknowledged by the Buffer Out port Send Acknowledge leads to task overrun in the processor application. A task overrun will be logged as an I/O error in the Message Viewer of the SCALEXIO web interface. The FPGA buffer that caused the task overrun will also be logged. For details on acknowledging a data transmission with Send Acknowledge, refer to Buffer Out on page 133.

Related topics

References

Overview of the DS6601 FPGA Base Board Frameworks.....

19

Buffer64 In

Purpose	To read data from an IOCNET buffer with a data width of 64 bits.
Description	If you select Buffer64 as the access type, the data is read from an IOCNET buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 545 576.
	PHSProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
	PHSProperties.In.Fct(<iofunctionnumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).</iofunctionnumber>

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768. The maximum range of the Address inport depends on the buffer size.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmem64f_<ChannelNumber>_count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmem64f_<ChannelNumber>_dout / DataOutputs a 64-bit data value to be read from an IOCNET buffer. The data format depends on the related parameter settings.

xmem64f_<ChannelNumber>_addr / Address Specifies an element in the buffer you want to read. The block requires 1 clock cycle to update the value of the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer (see Data Count outport). If you request data from an address that is greater than the Data Count value, the

output of the Data outport is undefined. The first element of a buffer is addressed by 0.

xmem64f_<ChannelNumber>_new_data / Data New Outputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

xmem64f_<ChannelNumber>_read_req / Read RequestOutputs a flag that indicates that a data transmission is requested via IOCNET. With Buffer In port Read Request and the Buffer Out port Send Acknowledge you can trigger a processor synchronous data exchange.

A data transmission is always requested at the beginning of a task, before the processor model is computed. Each time a new data transmission is requested by the Buffer Out port Send Acknowledge, the Buffer In port Read Request must explicitly acknowledge the Data values for transmission within one task period. To send current data you can delay the transmission. After a new data transmission is requested, you write the current data values to the buffer. Then you must acknowledge the new data for transmission.

Usable only if Enable Read_Req and Send_Ack ports for explicit data transmit value is enabled in the FPGA framework INI file.

- 0: No data transmission is requested.
- 1: A data transmission is requested. This value is set for one clock cycle.

A data transmission request that is not acknowledged by the Buffer Out port Send Acknowledge leads to task overrun in the processor application. A task overrun will be logged as an I/O error in the Message Viewer of the SCALEXIO web interface. The FPGA buffer that caused the task overrun will also be logged.

For details on acknowledging a data transmission with Send Acknowledge, refer to Buffer64 Out on page 136.

Related topics

References

Overview of the DS6601 FPGA Base Board Frameworks.......

10

Buffer Out

Purpose

To write data to an IOCNET buffer with a data width of 32 bits.

Description

If you select Buffer as the access type, the data is written to an IOCNET buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 129 ... 160.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 32 bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you select the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(9).Init / Enable Read_Req and Send_Ack ports for explicit data transmit value Lets you enable the Buffer In port Read Request and the Buffer Out port Send Acknowledge. With Read Request and Send Acknowledge you can trigger a processor synchronous data exchange.

- 0: The ports are disabled. Each data request will instantly be acknowledged.
- 1: The ports are enabled. Each data request must be acknowledged by your handcode.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemp_<ChannelNumber>_din / Data Specifies a 32-bit data value to be written to an IOCNET buffer. The data format depends on the related parameter settings.

xmemp_<ChannelNumber>_write / Enable Specifies the current valid Data port value.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

xmemp_<ChannelNumber>_finished / Ready
Explicitly specifies the buffer state as ready to send the buffer immediately, even if it is not completely filled.
The data values will be written to a new buffer in the next clock cycle. While the port value is 1, transmission switches buffer in every clock cycle. The value should therefore be set for one clock cycle only. If the buffer is completely filled, it is automatically switched, and the data values are stored in a new buffer.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled. The buffer is switched and the data values are accessible via PHS bus in the next clock cycle.

The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmemp_<ChannelNumber>_overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

xmemp_<ChannelNumber>_send_ack / Send Acknowledge Triggers a data transmission to IOCNET. With the Buffer Out port Send Acknowledge and the Buffer In port Read Request you can trigger a processor synchronous data exchange.

A data transmission is always requested at the beginning of a task, before the processor model is computed. Each time a new data transmission is requested by the Buffer Out port Send Acknowledge, the Buffer In port Read Request must explicitly acknowledge the Data values for transmission within one task period. To send current data you can delay the transmission. After a new data transmission is requested, you write the current data values to the buffer. Then you must acknowledge the new data for transmission.

Usable only if Enable Read_Req and Send_Ack ports for explicit data transmit value is enabled in the FPGA framework INI file.

- 0: No data transmission is acknowledged..
- 1: A data transmission is acknowledged and the current data values will be transmitted via IOCNET.

A data transmission request that is not acknowledged by the Buffer Out port Send Acknowledge leads to task overrun in the processor application. A task overrun will be logged as an I/O error in the Message Viewer of the SCALEXIO web interface. The FPGA buffer that caused the task overrun will also be logged.

For details on the port Read Request, refer to Buffer In on page 129.

Related topics	References
	Overview of the DS6601 FPGA Base Board Frameworks

Buffer64 Out

Purpose	To write data to an IOCNET buffer with a data width of 64 bits.			
Description	If you select Buffer64 as the access type, the data is written to an IOCNET buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits.			
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.			
	The I/O function number can be specified in the range 545 576.			
	PHSProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>			
	PHSProperties.Out.Fct(<iofunctionnumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).</iofunctionnumber>			
	signed/unsigned			
	The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 64.			
	0 represents the lowest bit position, 64 the highest bit position.			
	All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.			
	floating-point			
	The values of the Data inport are in floating-point format. The parameter then provides the fraction width.			
	PHSProperties.Out.Fct(<iofunctionnumber>).Parameter(2).Init / Format Lets you specify the data format of the Data inport.</iofunctionnumber>			

The values of the Data inport are in fixed-point format with or without one bit

reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double). The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(9).Init / Enable Read_Req and Send_Ack ports for explicit data transmit value Lets you enable the Buffer In port Read Request and the Buffer Out port Send Acknowledge. With Read Request and Send Acknowledge you can trigger a processor synchronous data exchange.

- 0: The ports are disabled. Each data request will instantly be acknowledged.
- 1: The ports are enabled. Each data request must be acknowledged by your handcode.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmem64p_<ChannelNumber>_din / Data Specifies a 64-bit data value to be written to an IOCNET buffer. The data format depends on the related parameter settings.

xmem64p_<ChannelNumber>_write / Enable Specifies the current valid Data port value.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled. The buffer is switched and the data values are accessible via IOCNET bus in the next clock cycle.

The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmem64p_<ChannelNumber>_overflow / Overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

xmem64p_<ChannelNumber>_send_ack / Send Acknowledge Triggers a data transmission to IOCNET. With the Buffer Out port Send Acknowledge and the Buffer In port Read Request you can trigger a processor synchronous data exchange.

A data transmission is always requested at the beginning of a task, before the processor model is computed. Each time a new data transmission is requested by the Buffer Out port Send Acknowledge, the Buffer In port Read Request must explicitly acknowledge the Data values for transmission within one task period. To send current data you can delay the transmission. After a new data transmission is requested, you write the current data values to the buffer. Then you must acknowledge the new data for transmission.

Usable only if Enable Read_Req and Send_Ack ports for explicit data transmit value is enabled in the FPGA framework INI file.

- 0: No data transmission is acknowledged..
- 1: A data transmission is acknowledged and the current data values will be transmitted via IOCNET.

A data transmission request that is not acknowledged by the Buffer Out port Send Acknowledge leads to task overrun in the processor application. A task overrun will be logged as an I/O error in the Message Viewer of the SCALEXIO web interface. The FPGA buffer that caused the task overrun will also be logged. For details on the port Read Request, refer to Buffer64 In on page 131.

Related topics

References

Overview of the DS6601 FPGA Base Board Frameworks.......

.. 19

CN App Status

Purpose

To read the status of application that is running on the computation node.

Description

There is one digital input channel that is used for the CN App Status I/O function.

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file. The I/O function number must be specified as 2. IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel. The following signals of the I/O function can be found in the port definition of the custom module entity cm.</iofunctionnumber>
IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel. The following signals of the I/O function can be found in the port definition of</iofunctionnumber>
name Lets you specify a custom name for the specified channel. The following signals of the I/O function can be found in the port definition of
3 3
There is no channel number to be specified.
iocnet_appl_status/ CN Application Status Outputs the state of the application that is running on the computation node. Data type: UFix_1_0
 0: The application on the computation node is stopped.
1: The application on the computation node is running.
References

I-FPGA In (IOCNET)

Purpose	To read a 32-bit raw data value from an IOCNET buffer.		
Description	You can select I-FPGA In (IOCNET) I/O functions to implement an inter-FPGA communication between FPGA base boards. There are 32 channels.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		

The I/O function number can be specified in the range 11 ... 42.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Note

The FPGA memory blocks reserved for buffers have a granularity of 1024 words. For example, a buffer with a specified buffer size of 1 allocates a memory block of 1024 words with a data width of 32-bit in the FPGA memory. This applies to any specified buffer and its related swinging buffer.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

Note

You can transfer any data type with a bit width of up to 32 Bit via inter-FPGA over IOCNET. To do this, you can reinterpret the data type to UFix_32_0 and vice versa. Reinterpreting data types does not cost any hardware or latency.

The range can be exceeded for the Data outport. The outport's value is then cast to UFix_32_0.

xmemf_inter_<ChannelNumber>_addr / Address Specifies a data value in the IOCNET buffer to be read. The block requires one clock cycle to update the value of the Data outport with the data value of the specified address.

Data type: UFix_16_0

Data width: 1

The maximum address range depends on the Buffer size parameter. The address range with valid data values can be derived from the value of the Data Count port.

xmemf_inter_<ChannelNumber>_count / Data Count Outputs the number of elements in the current IOCNET buffer. You can use the value to define the valid range for the Address port from 0 to (Data Count -1).

Data type: UFix_16_0

Data width: 1

The maximum value range depends on the Buffer size parameter.

xmemf_inter_<ChannelNumber>_dout / Data Outputs a 32-bit raw data value from the specified address of the IOCNET buffer.

Data type: UFix_32_0

Data width: 1

xmemf_inter_<ChannelNumber>_new_data / Data New Outputs a flag

that indicates the update of the Data port.

Data type: UFix_1_0

Data width: 1

If the flag changes from 0 to 1 and then to 0 again, the requested buffer contains new values and is ready to be read. The flag is set to 1 within only one

clock cycle.

I/O mapping No external connection to the I/O connector of the board.

Related topics References

I-FPGA64 In (IOCNET)

Purpose	To read a 64-bit raw data value from an IOCNET buffer.		
Description	According to the number of physical connections available on the DS6601 FPGA Base Board, you can select the I-FPGA64 In (IOCNET) I/O functions. There are 32 channels.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		

The I/O function number can be specified in the range 43 ... 74.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

hcfw.PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Buffer size Lets you specify the size of the IOCNET buffer in the range 1 ... 512. The maximum range of the Address inport depends on the buffer size.

Note

The FPGA memory blocks reserved for buffers have a granularity of 1024 words. For example, a buffer with a specified buffer size of 1 allocates a memory block of 1024 words with a data width of 64 bits in the FPGA memory. This applies to any specified buffer and its related swinging buffer.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

Note

You can transfer any data type with a bit width of up to 64 Bit via inter-FPGA over IOCNET. To do this, you can reinterpret the data type to UFix_64_0 and vice versa. Reinterpreting data types does not cost any hardware or latency.

The range can be exceeded for the Data outport. The outport's value is then cast to UFix_64_0.

xmem64f_inter_<ChannelNumber>_addr / Address Specifies a data value in the IOCNET buffer to be read. The block requires one clock cycle to update the value of the Data outport with the data value of the specified address.

Data type: UFix_16_0

Data width: 1

The maximum address range depends on the Buffer size parameter. The address range with valid data values can be derived from the value of the Data Count port.

xmem64f_inter_<ChannelNumber>_count / Data Count Outputs the number of elements in the current IOCNET buffer. You can use the value to define the valid range for the Address port from 0 to (Data Count -1).

Data type: UFix_16_0

Data width: 1

The maximum value range depends on the Buffer size parameter.

xmem64f_inter_<ChannelNumber>_dout / Data Outputs a 64-bit raw data value from the specified address of the IOCNET buffer.

Data type: UFix_64_0

Data width: 1

xmem64f_inter_<ChannelNumber>_new_data / Data New Outputs a

flag that indicates the update of the Data port.

Data type: UFix_1_0

Data width: 1

If the flag changes from 0 to 1 and then to 0 again, the requested buffer contains new values and is ready to be read. The flag is set to 1 within only one

clock cycle.

I/O mapping

No external connection to the I/O connector of the board.

Related topics

References

Overview of the DS6601 FPGA Base Board Frameworks.....

19

I-FPGA Out (IOCNET)

To write a 32-bit raw data value to an IOCNET buffer.

Description

Purpose

You can select I-FPGA Out (IOCNET) I/O functions to implement an inter-FPGA communication between FPGA base boards. There are 32 channels.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 8 ... 39.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

hcfw.PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Buffer size Lets you specify the size of the IOCNET buffer in the range 1 ... 1024.

Note

The FPGA memory blocks reserved for buffers have a granularity of 1024 words. For example, a buffer with a specified buffer size of 1 allocates a memory block of 1024 words with a data width of 32-bit in the FPGA memory. This applies to any specified buffer and its related swinging buffer.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

Note

You can transfer any data type with a bit width of up to 32 Bit via inter-FPGA over IOCNET. To do this, you can reinterpret the data type to UFix_32_0 and vice versa. Reinterpreting data types does not cost any hardware or latency.

The range of the Data inport can be exceeded. The value of the inport is then cast to the raw data format UFix_32_0.

xmemp_inter_<ChannelNumber>_din / Data Specifies a 32-bit raw data value to be written to an IOCNET buffer.

Data type: UFix_32_0

Data width: 1

valid Data port value.
Data type: UFix_1_0
Data width: 1

Values:

- 0: The Data value to be written is not stored in the IOCNET buffer.
- 1: The Data value to be written is stored in the IOCNET buffer. The value of the current clock cycle is used.

Data type: UFix_1_0
Data width: 1

Values:

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready to send, even if it is not completely filled.
 The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmemp_inter_<ChannelNumber>_write / Send Triggers a data transmission via IOCNET.

Data type: UFix_1_0

Data width: 1

Values:

- 0: Data values are not acknowledged for transmission.
- 1: Current Data values are acknowledged and will be transmitted via IOCNET.

xmemp_inter_<ChannelNumber>_overflow / Overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs when the new buffer is triggered for transmission and the old buffer was not sent completely.

Data type: UFix_1_0
Data width: 1

Values:

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

I/O mapping	No external connection to the I/O connector of the board.	
Related topics	References	
	Overview of the DS6601 FPGA Base Board Frameworks	

I-FPGA64 Out (IOCNET)

Purpose	To write a 64-bit raw data value to an IOCNET buffer.		
Description	You can select I-FPGA64 Out (IOCNET) I/O functions to implement an inter- FPGA communication between FPGA base boards. There are 32 channels.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		

The I/O function number can be specified in the range 40 ... 71.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

hcfw.PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Buffer size Lets you specify the size of the IOCNET buffer in the range 1 ... 512.

Note

The FPGA memory blocks reserved for buffers have a granularity of 1024 words. For example, a buffer with a specified buffer size of 1 allocates a memory block of 1024 words with a data width of 64 bits in the FPGA memory. This applies to any specified buffer and its related swinging buffer.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

Note

You can transfer any data type with a bit width of up to 64 Bit via inter-FPGA over IOCNET. To do this, you can reinterpret the data type to UFix_64_0 and vice versa. Reinterpreting data types does not cost any hardware or latency.

The range of the Data inport can be exceeded. The value of the inport is then cast to the raw data format UFix_64_0.

xmem64p_inter_<ChannelNumber>_din / Data Specifies a 64-bit raw data value to be written to an IOCNET buffer.

Data type: UFix_64_0

Data width: 1

xmem64p_inter_<ChannelNumber>_strobe / Enable Specifies the current valid Data port value.

Data type: UFix_1_0

Values:

Data width: 1

- 0: The Data value to be written is not stored in the IOCNET buffer.
- 1: The Data value to be written is stored in the IOCNET buffer. The value of the current clock cycle is used.

 is completely filled, it is automatically switched, and the data values are stored in a new buffer.

Data type: UFix_1_0

Data width: 1 Values:

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready to send, even if it is not completely filled.
 The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmem64p_inter_<ChannelNumber>_write / Send Triggers a data transmission via IOCNET.

Data type: UFix_1_0
Data width: 1

Values:

- 0: Data values are not acknowledged for transmission.
- 1: Current Data values are acknowledged and will be transmitted via IOCNET.

xmem64p_inter_<ChannelNumber>_overflow / Overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs when the new buffer is triggered for transmission and the old buffer was not sent completely.

Data type: UFix_1_0
Data width: 1

Values:

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

I/O mapping

No external connection to the I/O connector of the board.

Related topics

References

Overview of the DS6601 FPGA Base Board Frameworks......

..... 19

Interrupt

Purpose

To request a processor interrupt outside of the FPGA application.

Description

The DS6601 FPGA Base Board provides 16 interrupt lines. An interrupt is requested if the Int port is set to 1 for at least one clock cycle. If you set the Int

	port to 0, the last interrupt is not released but saved. An interrupt is edgetriggered.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
	The I/O function number can be specified in the range 1 16.		
	IRQProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>		
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.		
	The channel number can be specified in the range 0 15.		
	 usr_<channelnumber>_interrupt / Int Provides the interrupt request line.</channelnumber> 0 to 1: Interrupt is requested (edge-triggered). 0: No interrupt is requested. Last requested interrupt is saved. 		
Related topics	References		
	Overview of the DS6601 FPGA Base Board Frameworks		

IOCNET Global Time

Purpose	To read the number of hardware ticks.		
Description	There is one digital input channel that is used for the IOCNET Global Tim function.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
	The I/O function number must be specified as 3.		
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>		
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.		

There is no channel number to be specified.

iocnet_glob_time/ IOCNET Global Time Outputs the number of hardware ticks that occurred since the SCALEXIO system power was switched to on. If you use a multiprocessor system, the value is set to zero each time an application is reloaded and restarted.

Data type: UFix_56_0 Tick step-width: 8.5 ns

Related topics

References

Overview of the DS6601 FPGA Base Board Frameworks.....

19

LED Out

Purpose Description	To write a digital signal that controls the LED on the board.		
Description			
Joseph John John John John John John John Joh	There is one digital output channel that is used for the LED Out I/O function.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
	The I/O function number must be specified as 1.		
	IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>		
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.		
	There is no channel number to be specified.		
	 led_out / LED Out Controls the LED on the board. Data type: UFix_1_0 0: LED lights green. 1: LED lights orange. 		
Related topics	References		
	Overview of the DS6601 FPGA Base Board Frameworks		

Register In

ricgister iii

To read data from an IOCNET register with a data width of 32 bits.

Description

Purpose

If you select Register as the access type, the data is read from an IOCNET register. 256 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 256.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 32-bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single). The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are sampled

simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the .

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- •
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 255.

xreg_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from an IOCNET register. The data format depends on the related parameter settings.

xreg_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Overview of the DS6601 FPGA Base Board Frameworks.....

10

Register64 In

Purpose	To read data from an IOCNET register with a data width of 64 bits.		
Description	If you select Register as the access type, the data is read from an IOCNET register. 256 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		

The I/O function number can be specified in the range 289 ... 544.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are sampled simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the .

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ..
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 255.

xreg64_<ChannelNumber>_dout / Data Outputs a 64-bit data value to be read from an IOCNET register. The data format depends on the related parameter settings.

xreg64_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Overview of the DS6601 FPGA Base Board Frameworks.....

10

Register Out

Purpose

To write data to an IOCNET register with a data width of 32 bits.

Description

If you select Register as the access type, the data is written to an IOCNET register. 256 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 256.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 32 bit value in the range 0 \dots 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init /

Format Lets you select the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the sequentially and then provided to the FPGA application simultaneously.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ..
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 255.

xreg_<ChannelNumber>_din / Data Specifies a 32-bit data value to be written to an IOCNET register. The data format depends on the related parameter settings.

Related topics

References

Overview of the DS6601 FPGA Base Board Frameworks.....

19

Register64 Out

Purpose

To write data to an IOCNET register with a data width of 64 bits.

Description

If you select Register64 as the access type, the data is written to an IOCNET register. 256 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 289 ... 544.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double). The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register64 group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the sequentially and then provided to the FPGA application simultaneously.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ..
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 255.

xreg64_<ChannelNumber>_din / Data Specifies a 64-bit data value to be written to an IOCNET register. The data format depends on the related parameter settings.

Related topics

References

Overview of the DS6601 FPGA Base Board Frameworks.....

..... 13

Status In

Purpose	To read a digital signal that outputs the state of the FPGA initialization sequence.		
Description	There is one digital input channel that is used for the Status In I/O function.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
	The I/O function number must be specified as 1.		
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>		
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.		
	There is no channel number to be specified.		
	init_done/ Init Done Outputs the state of the initialization sequence that is started after programming the FPGA.Data type: UFix_1_0		

- 0: Initialization sequence is in progress.
- 1: Initialization sequence has finished.

Related topics

References

I/O Functions of the DS6602 FPGA Base Board Framework

Introduction

The DS6602 (KU15P) FPGA Base Board framework of the DS6602 FPGA Base Board provide the standard I/O functionality of the board.

Note

If you use a DS6602 FPGA Base Board, the build process issues a critical warning about a specific timing requirement.

For more information, refer to Problems and Their Solutions (RTI FPGA Programming Blockset Handcode Interface Guide (11)).

Where to go from here

Information in this section

APU Master To distribute angle values over IOCNET for synchronizing angle-based applications.	161
APU Slave To read angle values distributed by an APU Master over IOCNET for synchronizing angle-based applications.	163
Buffer In	165
Buffer64 In	167
Buffer Out	170
Buffer64 Out To write data to an IOCNET buffer with a data width of 64 bits.	172

CN App Status
DDR4 32 Mode 1
DDR4 32 Mode 2
DDR4 64 Mode 1
DDR4 64 Mode 2
I-FPGA In (IOCNET)
I-FPGA64 In (IOCNET)
I-FPGA Out (IOCNET)
I-FPGA64 Out (IOCNET)
Interrupt
IOCNET Global Time
LED Out
Register In
Register 64 In
Register Out
Register64 Out
Status In

Information in other sections

Other frameworks that provide access to the FPGA functionality of a SCALEXIO system: I/O Functions of the DS2655M1 I/O Module Framework......205 The DS2655M1 I/O Module framework provides analog and digital I/O functionality of SCALEXIO FPGA base board with at least one DS2655M1 Multi-I/O Module. I/O Functions of the DS2655M2 I/O Module Framework......217 The DS2655M2 I/O Module framework provides digital I/O functionality of a SCALEXIO FPGA base board with at least one DS2655M2 Digital I/O Module. I/O Functions of the DS6651 Multi-I/O Module Framework......239 The DS6651 Multi-I/O Module framework provides analog and digital I/O functionality of a SCALEXIO FPGA base board with at least one DS6651 Multi-I/O Module. I/O Functions of the Inter-FPGA Interface Framework.......281 The Inter-FPGA Interface framework provides access to the I/O module slots of a SCALEXIO FPGA base board to implement an inter-FPGA communication bus.

APU Master

Purpose	To distribute angle values over IOCNET for synchronizing angle-based applications.	
Description	According to the number of physical connections available on the DS6602 FPGA Base Board, you can select the APU Master I/O functions. There are six digital output channels.	
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.	
	The I/O function number can be specified in the range 2 7.	
	IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>	
	 IOProperties.Out.Fct(<iofunctionnumber>).Parameter(1).Init / Angle range Lets you specify the angle value range of the Phi Read port.</iofunctionnumber> 0: The angle range is 720° and cannot be changed in ConfigurationDesk. 1: The angle range is 360° and cannot be changed in ConfigurationDesk. 	

 2: The Angle range property of the FPGA custom function block in ConfigurationDesk lets you set the angle range of the APU. The default value is 720°.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Initial position Lets you set the initial APU master position in degree.

■ Value range: -1440° ... +1440°

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 01 ... 06.

iocnet_glob_master_angle<ChannelNumber>_ctr / Phi Read HD For internal use only.

iocnet_glob_master_angle<ChannelNumber>_pos / Phi Read Outputs the angle counter value of the APU that the APU Master writes to the APU bus. The step size of the angle counter is approximately 0.011°. The step size is independent from the angle range.

Formula for angle calculation: alpha[$^{\circ}$] = Phi Read * 720 $^{\circ}$ /2 16

The value range depends on the settings of the Angle Range:

360° angle range: 0 ... 32767 (2¹⁵-1)
 720° angle range: 0 ... 65535 (2¹⁶-1)

Data type: UFix_16_0

Data width: 1

APU bus clock cycle: 8 ns

Range exceeding is not possible.

iocnet_glob_master_angle<ChannelNumber>_rev / Rev Read Specifies the 37 bit total revolution (rev) value for the APU bus.

The APU bus clock cycle is 8 ns. The 37 Bit range is -2^{36} ... 2^{36} - 1.

Data type: Double Data width: 1

Range exceeding is not possible.

iocnet_glob_master_angle<ChannelNumber>_vel / Delta Phi For internal use only.

iocnet_glob_master_angle<ChannelNumber>_en / Delta Phi Enable For internal use only.

iocnet_glob_master_angle<ChannelNumber>_busy / Busy Specifies whether APU master is busy to set the last velocity value. If Busy is 1 (high), new velocity values cannot be set.

Busy stays active for at least 10 µs depending on the IOCNET structure..

iocnet_glob_master_angle<ChannelNumber>_res / Angle Range Specifies the angle value range of Phi Read.

• 0: 720° angle range

■ 1: 360° angle range

iocnet_glob_master_angle<ChannelNumber>_upd_vel_deg_sec /

Velocity Specifies a velocity value in degree/second to be applied as APU

Master speed.

The value will be applied if Set Velocity is 1 (high) and Busy is 0 (low).

Data type: Fix_32_10

Data width: 1

Value range: -1,200,000 °/s ... +1,200,000 °/s

Range exceeding is not possible. The port is saturated at the higher or lower

limit.

iocnet_glob_master_angle<ChannelNumber>_upd_trig / Set

Velocity Specifies the actual value of Velocity as new velocity value. The new value is set only if Set Velocity is 1 (high) and Busy is 0 (low).

Notes on updating velocity values:

 Setting the velocity values at very short intervals (e.g. every 80 ns) leads to high data traffic on IOCNET.

High data traffic might freeze your SCALEXIO system.

• Setting a new velocity value before the last setting is executed overwrites the last setting.

To distribute and execute a new velocity value takes about 10 μ s. If the APU master always sets new velocity values before the last value is executed, the velocity value will never change.

I/O mapping

No external connection to the I/O connector of the board.

Related topics

References

Overview of the DS6602 FPGA Base Board Frameworks.....

.....21

APU Slave

Purpose	To read angle values distributed by an APU Master over IOCNET for synchronizing angle-based applications.	
Description	According to the number of physical connections available on the DS6601 FPGA Base Board, you can select the APU Slave I/O functions. There are six digital input channels.	
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.	

The I/O function number can be specified in the range $4 \dots 9$.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(11).Init Lets you inherit the angle range of the APU bus or specify a local angle range independent from the APU bus:

- 0: 720° angle range.
- 1: 360° angle range.
- 2: The angle range is inherited from the APU bus.

The following table shows you the possible combinations of angle range settings.

APU Bus Setting	Slave APU Setting	Resulting Angle Range of the Slave APU
360°	2 (Inherit)	360°
720°		720°
360°	1 (360°)	360°
	0 (720°)	720° ¹⁾
720°	1 (360°)	360° ²⁾
	0 (720°)	720°

¹⁾ Two engine cycles are required to run through the 720° angle range. If you simulate a four-stroke piston engine, for example, the angle-values of the function block are not clearly related to the camshaft position.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 01 ... 06.

iocnet_glob_angle<ChannelNumber>_pos / Phi Read Outputs the angle value that APU Slave reads from the APU bus. The angle value is independent from the angle range of the APU bus.

Formula for angle calculation: alpha[°] = Phi Read * 720°/2¹⁶

The value range depends on the angle range of the APU bus:

■ 360° angle range: 0 ... 32767 (2¹⁵-1)

■ 720° angle range: 0 ... 65535 (2¹⁶-1)

Data type: UFix_16_0

Data width: 1

APU bus clock cycle: 8 ns

Range exceeding is not possible.

iocnet_glob_angle<ChannelNumber>_rev / Rev Read Outputs the 37 bit total revolution (rev) value for the APU bus.

The APU bus clock cycle is 8 ns. The 37 Bit range is $-2^{36} \dots 2^{36} - 1$.

²⁾ One engine cycle runs twice through the 360° angle range.

Data type: Double Data width: 1

Range exceeding is not possible.

iocnet_glob_angle<ChannelNumber>_ctr / Phi Read HD For internal use

iocnet_glob_angle<ChannelNumber>_vel / Delta Phi For internal use only.

iocnet_glob_angle<ChannelNumber>_en / Delta Phi Enable For internal use only.

iocnet_glob_angle<ChannelNumber>_res / Angle Range Outputs a flag whether the angle range of the APU bus is 360° or 720°. The angle range has been sent by an I/O board in the hardware system specified as APU master.

Data type: Double Data width: 1

- 0: The angle range is 720°.
- 1: The angle range is 360°.

I/O mapping	No external connection to the I/O connector of the board.
Related topics	References
	Overview of the DS6602 FPGA Base Board Frameworks

Buffer In

Purpose	To read data from an IOCNET buffer with a data width of 32 bits.
Description	If you select Buffer as the access type, the data is read from an IOCNET buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 257 ... 288.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 32-bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768. The maximum range of the Address inport depends on the buffer size.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemf_<ChannelNumber>_count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmemf_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from an IOCNET buffer. The data format depends on the related parameter settings.

xmemf_<ChannelNumber>_addr / Address Specifies an element in the buffer you want to read. The block requires 1 clock cycle to update the value of

the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer (see Data Count outport). If you request data from an address that is greater than the Data Count value, the output of the Data outport is undefined. The first element of a buffer is addressed by 0.

xmemf_<ChannelNumber>_new_data / Data New Outputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

xmemf_<ChannelNumber>_read_req / Read Request
Outputs a flag that indicates that a data transmission is requested via IOCNET. With Buffer In port Read Request and the Buffer Out port Send Acknowledge you can trigger a processor synchronous data exchange.

A data transmission is always requested at the beginning of a task, before the processor model is computed. Each time a new data transmission is requested by the Buffer Out port Send Acknowledge, the Buffer In port Read Request must explicitly acknowledge the Data values for transmission within one task period. To send current data you can delay the transmission. After a new data transmission is requested, you write the current data values to the buffer. Then you must acknowledge the new data for transmission.

Usable only if Enable Read_Req and Send_Ack ports for explicit data transmit value is enabled in the FPGA framework INI file.

- 0: No data transmission is requested.
- 1: A data transmission is requested. This value is set for one clock cycle.

A data transmission request that is not acknowledged by the Buffer Out port Send Acknowledge leads to task overrun in the processor application. A task overrun will be logged as an I/O error in the Message Viewer of the SCALEXIO web interface. The FPGA buffer that caused the task overrun will also be logged.

For details on acknowledging a data transmission with Send Acknowledge, refer to Buffer Out on page 170.

Related topics

References

Overview of the DS6602 FPGA Base Board Frameworks.....

....21

Buffer64 In

Purpose

To read data from an IOCNET buffer with a data width of 64 bits.

Description

If you select Buffer64 as the access type, the data is read from an IOCNET buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 545 ... 576.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768. The maximum range of the Address inport depends on the buffer size.

Port

The following signals of the $I\!\!/\!O$ function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmem64f_<ChannelNumber>_count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmem64f_<ChannelNumber>_dout / DataOutputs a 64-bit data value to be read from an IOCNET buffer. The data format depends on the related parameter settings.

xmem64f_<ChannelNumber>_addr / Address Specifies an element in the buffer you want to read. The block requires 1 clock cycle to update the value of the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer (see Data Count outport). If you request data from an address that is greater than the Data Count value, the output of the Data outport is undefined. The first element of a buffer is addressed by 0.

xmem64f_<ChannelNumber>_new_data / Data New Outputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

xmem64f_<ChannelNumber>_read_req / Read RequestOutputs a flag that indicates that a data transmission is requested via IOCNET. With Buffer In port Read Request and the Buffer Out port Send Acknowledge you can trigger a processor synchronous data exchange.

A data transmission is always requested at the beginning of a task, before the processor model is computed. Each time a new data transmission is requested by the Buffer Out port Send Acknowledge, the Buffer In port Read Request must explicitly acknowledge the Data values for transmission within one task period. To send current data you can delay the transmission. After a new data transmission is requested, you write the current data values to the buffer. Then you must acknowledge the new data for transmission.

Usable only if Enable Read_Req and Send_Ack ports for explicit data transmit value is enabled in the FPGA framework INI file.

- 0: No data transmission is requested.
- 1: A data transmission is requested. This value is set for one clock cycle.

A data transmission request that is not acknowledged by the Buffer Out port Send Acknowledge leads to task overrun in the processor application. A task overrun will be logged as an I/O error in the Message Viewer of the SCALEXIO web interface. The FPGA buffer that caused the task overrun will also be logged.

For details on acknowledging a data transmission with Send Acknowledge, refer to Buffer64 Out on page 172.

Related topics

References

Overview of the DS6602 FPGA Base Board Frameworks.......

...21

Buffer Out

Purpose	To write data to an IOCNET buffer with a data width of 32 bits.
Description	If you select Buffer as the access type, the data is written to an IOCNET buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 129 160.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 32 bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you select the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(9).Init / Enable Read_Req and Send_Ack ports for explicit data transmit value Lets you enable the Buffer In port Read Request and the Buffer Out port Send Acknowledge. With Read Request and Send Acknowledge you can trigger a processor synchronous data exchange.

- 0: The ports are disabled. Each data request will instantly be acknowledged.
- 1: The ports are enabled. Each data request must be acknowledged by your handcode.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemp_<ChannelNumber>_din / Data Specifies a 32-bit data value to be written to an IOCNET buffer. The data format depends on the related parameter settings.

xmemp_<ChannelNumber>_write / Enable Specifies the current valid Data port value.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

xmemp_<ChannelNumber>_finished / Ready Explicitly specifies the buffer state as ready to send the buffer immediately, even if it is not completely filled. The data values will be written to a new buffer in the next clock cycle. While the port value is 1, transmission switches buffer in every clock cycle. The value should therefore be set for one clock cycle only. If the buffer is completely filled, it is automatically switched, and the data values are stored in a new buffer.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled.
 The buffer is switched and the data values are accessible via PHS bus in the next clock cycle.

The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmemp_<ChannelNumber>_overflow / Overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

xmemp_<ChannelNumber>_send_ack / Send Acknowledge Triggers a data transmission to IOCNET. With the Buffer Out port Send Acknowledge and the Buffer In port Read Request you can trigger a processor synchronous data exchange.

A data transmission is always requested at the beginning of a task, before the processor model is computed. Each time a new data transmission is requested by the Buffer Out port Send Acknowledge, the Buffer In port Read Request must explicitly acknowledge the Data values for transmission within one task period. To send current data you can delay the transmission. After a new data transmission is requested, you write the current data values to the buffer. Then you must acknowledge the new data for transmission.

Usable only if Enable Read_Req and Send_Ack ports for explicit data transmit value is enabled in the FPGA framework INI file.

- 0: No data transmission is acknowledged..
- 1: A data transmission is acknowledged and the current data values will be transmitted via IOCNET.

A data transmission request that is not acknowledged by the Buffer Out port Send Acknowledge leads to task overrun in the processor application. A task overrun will be logged as an I/O error in the Message Viewer of the SCALEXIO web interface. The FPGA buffer that caused the task overrun will also be logged. For details on the port Read Request, refer to Buffer In on page 165.

Related topics

References

Overview of the DS6602 FPGA Base Board Frameworks.....

21

Buffer64 Out

Purpose	To write data to an IOCNET buffer with a data width of 64 bits.
Description	If you select Buffer64 as the access type, the data is written to an IOCNET buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 545 576.
	PHSProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
	PHSProperties.Out.Fct(<iofunctionnumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).</iofunctionnumber>

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(9).Init / Enable Read_Req and Send_Ack ports for explicit data transmit value Lets you enable the Buffer In port Read Request and the Buffer Out port Send Acknowledge. With Read Request and Send Acknowledge you can trigger a processor synchronous data exchange.

- 0: The ports are disabled. Each data request will instantly be acknowledged.
- 1: The ports are enabled. Each data request must be acknowledged by your handcode.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmem64p_<ChannelNumber>_din / Data Specifies a 64-bit data value to be written to an IOCNET buffer. The data format depends on the related parameter settings.

xmem64p_<ChannelNumber>_write / Enable Specifies the current valid Data port value.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled.
 The buffer is switched and the data values are accessible via IOCNET bus in the next clock cycle.

The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmem64p_<ChannelNumber>_overflow / Overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

xmem64p_<ChannelNumber>_send_ack / Send Acknowledge Triggers a data transmission to IOCNET. With the Buffer Out port Send Acknowledge and the Buffer In port Read Request you can trigger a processor synchronous data exchange.

A data transmission is always requested at the beginning of a task, before the processor model is computed. Each time a new data transmission is requested by the Buffer Out port Send Acknowledge, the Buffer In port Read Request must explicitly acknowledge the Data values for transmission within one task period. To send current data you can delay the transmission. After a new data transmission is requested, you write the current data values to the buffer. Then you must acknowledge the new data for transmission.

Usable only if Enable Read_Req and Send_Ack ports for explicit data transmit value is enabled in the FPGA framework INI file.

- 0: No data transmission is acknowledged..
- 1: A data transmission is acknowledged and the current data values will be transmitted via IOCNET.

A data transmission request that is not acknowledged by the Buffer Out port Send Acknowledge leads to task overrun in the processor application. A task overrun will be logged as an I/O error in the Message Viewer of the SCALEXIO web interface. The FPGA buffer that caused the task overrun will also be logged. For details on the port Read Request, refer to Buffer64 In on page 167.

CN App Status

To read the status of application that is running on the computation node. There is one digital input channel that is used for the CN App Status I/O function.
· · · · · · · · · · · · · · · · · · ·
You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
The I/O function number must be specified as 2.
IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
The following signals of the I/O function can be found in the port definition of the custom module entity cm.
There is no channel number to be specified.
<pre>iocnet_appl_status/ CN Application Status</pre>
 0: The application on the computation node is stopped.
1: The application on the computation node is running.
References
Overview of the DS6602 FPGA Base Board Frameworks

DDR4 32 Mode 1

PurposeTo provide 32-bit read/write access to the DDR4 RAM using the memory access mode 1.

Description

The DS6602 FPGA Base Board provides a 4 GB DDR4 RAM that can be used by the FPGA application.

The RAM interface always handles 512 bits at once. Therefore, the FPGA application can read/write 16 x 32 bits data or 8 x 64 bits data within one memory access.

You can select different I/O functions to access the DDR4 RAM:

- DDR4 32 Mode 1 and DDR4 64 Mode 1 to read/write 32/64-bit values with one memory address. These I/O types use the memory access mode 1.
- DDR4 32 Mode 2 and DDR4 64 Mode 2 to read/write 32/64-bit values with two memory addresses. These I/O types use the memory access mode 2.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number is 8.

hcfw.IOProperties.Out.Fct(8).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity ${\bf cm}$.

ddr4_init_done / Init Done Outputs a flag that indicates that the RAM is initialized with specified data values. For more information, refer to Initializing the DDR4 RAM of the DS6602 (RTI FPGA Programming Blockset Handcode Interface Guide (21)).

Data type: UFix_1_0 Data width: 1

Values:

- 0: The RAM is not initialized.
- 1: The RAM is initialized.

ddr4_init_fail / Init Failed Outputs a flag that the initializing of the RAM with initial values failed.

Data type: UFix_1_0
Data width: 1

Values:

- 0: The RAM is not initialized or no failure occurs.
- 1: A failure occurs during the initialization of the RAM.

ddr4_busy_flag / Busy Inport to read a flag that indicates the state of the DDR4 RAM:

- 0: The DDR4 module is ready for new read/write operations.
- 1: The DDR4 module is busy.

Data type: UFix_1_0

ddr4_data_en / Enable Outport to enable the RAM access:

- 1: Data values are written to the RAM or read from the RAM.
- 0: No read/write access.

Data type: UFix_1_0

ddr4_direction / Direction Outport to control the direction of data access:

- 0: Write access
- 1: Read access

Data type: UFix_1_0

ddr4_address_block_1 / Address Outport to specify the first element in the RAM for the read/write access. The memory is addressed 512 bit-wise to read/write 16 x 32-bit data values with the same address.

Data type: UFix_26_0

Value range: 0 ... 67,108,863 (2²⁶-1)

Data width: 1

ddr4_rd_data_valid_block_1 / Data valid Inport to read a flag that indicates that the data values of the Data Read ports are valid:

- 0: The values are not valid.
- 1: The values are valid. This value is set for one clock cycle. The data values must be read by the FPAG application within the same clock cycle.

Data type: UFix_1_0

ddr4_data_<PortNumber>_wr_32_block_1 / Data Write Outport to specify a 32-bit data value to be written to the RAM. 16 ports specify 16 data values. The Address port specifies the memory address to write the data values.

Data type: UFix_32_0
Data width: 1 per port

ddr4_data_<PortNumber>_rd_32_block_1 / Data Read Inport to read a 32-bit data value from the RAM. 16 ports output 16 data values. The Address port specifies the memory address to read the data values.

Data type: UFix_32_0
Data width: 1 per port

I/O mapping

No external connection to the I/O connector of the board.

Related topics

Basics

Overview of Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide (11))

DDR4 32 Mode 2

Purpose

To provide 32-bit read/write access to the DDR4 RAM using the memory access mode 2.

Description

The DS6602 FPGA Base Board provides a 4 GB DDR4 RAM that can be used by the FPGA application.

The RAM interface always handles 512 bits at once. Therefore, the FPGA application can read/write 16 x 32 bits data or 8 x 64 bits data within one memory access.

You can select different I/O functions to access the DDR4 RAM:

- DDR4 32 Mode 1 and DDR4 64 Mode 1 to read/write 32/64-bit values with one memory address. These I/O types use the memory access mode 1.
- DDR4 32 Mode 2 and DDR4 64 Mode 2 to read/write 32/64-bit values with two memory addresses. These I/O types use the memory access mode 2.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number is 9.

hcfw.IOProperties.Out.Fct(8).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

ddr4_init_done / Init Done Outputs a flag that indicates that the RAM is initialized with specified data values. For more information, refer to Initializing the DDR4 RAM of the DS6602 (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Data type: UFix_1_0
Data width: 1

Values:

- 0: The RAM is not initialized.
- 1: The RAM is initialized.

ddr4_init_fail / Init Failed Outputs a flag that the initializing of the RAM with initial values failed.

Data type: UFix_1_0

Data width: 1

Values:

- 0: The RAM is not initialized or no failure occurs.
- 1: A failure occurs during the initialization of the RAM.

ddr4_busy_flag / Busy Inport to read a flag that indicates the state of the DDR4 RAM:

- 0: The DDR4 module is ready for new read/write operations.
- 1: The DDR4 module is busy.

Data type: UFix_1_0

ddr4_data_en / Enable Outport to enable the RAM access:

- 1: Data values are written to the RAM or read from the RAM.
- 0: No read/write access.

Data type: UFix_1_0

ddr4_direction / Direction Outport to control the direction of data access:

0: Write access1: Read accessData type: UFix_1_0

ddr4_address_1_block_3 / Address A Outport to specify the first element in the RAM for the read/write access of the Data Write A/Data Read A ports. The memory is addressed 256 bit-wise to read/write 8 x 32-bit data values with the same address.

Data type: UFix_27_0

Value range: 0 ... 134,217,727 (2²⁷-1)

Data width: 1

ddr4_address_2_block_3 / Address B Outport to specify the first element in the RAM for the read/write access of the Data Write B/Data Read B ports. The memory is addressed 256 bit-wise to read/write 8 x 32-bit data values with the same address.

Data type: UFix_27_0

Value range: 0 ... 134,217,727 (2²⁷-1)

Data width: 1

ddr4_rd_data_valid_1_block_3 / Data valid A Inport to read a flag that indicates that the data values of the Data Read A ports are valid:

- 0: The values are not valid.
- 1: The values are valid. This value is set for one clock cycle. The data values must be written within the same clock cycle.

Data type: UFix_1_0

- 0: The values are not valid.
- 1: The values are valid. This value is set for one clock cycle. The data values must be written within the same clock cycle.

Data type: UFix_1_0

ddr4_data_1_<PortNumber>_wr_32_block_3 / Data Write A Outport to specify a 32-bit data value to be written to the RAM. 8 ports specify 8 data values at the same time.

The Address A port specifies the memory address to write the data values.

Data type: UFix_32_0
Data width: 1 per port

ddr4_data_2_<PortNumber>_wr_32_block_3 / Data Write B Outport to specify a 32-bit data value to be written to the RAM. 8 ports specify 8 data values at the same time.

The Address B port specifies the memory address to write the data values.

Data type: UFix_32_0
Data width: 1 per port

ddr4_data_1_<PortNumber>_rd_32_block_3 / Data Read A Inport to read a 32-bit data value from the RAM. 8 ports output 8 data values at the same time. The Address A port specifies the memory address to read the data values.

Data type: UFix_32_0
Data width: 1 per port

ddr4_data_2_<PortNumber>_rd_32_block_3 / Data Read B Inport to read a 32-bit data value from the RAM. 8 ports output 8 data values at the same time. The Address B port specifies the memory address to read the data values.

Data type: UFix_32_0
Data width: 1 per port

I/O mapping

No external connection to the I/O connector of the board.

Related topics

Basics

Overview of Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide (11))

DDR4 64 Mode 1

Purpose

To provide 64-bit read/write access to the DDR4 RAM using the memory access mode 1.

Description

The DS6602 FPGA Base Board provides a 4 GB DDR4 RAM that can be used by the FPGA application.

The RAM interface always handles 512 bits at once. Therefore, the FPGA application can read/write 16×32 bits data or 8×64 bits data within one memory access.

You can select different I/O functions to access the DDR4 RAM:

- DDR4 32 Mode 1 and DDR4 64 Mode 1 to read/write 32/64-bit values with one memory address. These I/O types use the memory access mode 1.
- DDR4 32 Mode 2 and DDR4 64 Mode 2 to read/write 32/64-bit values with two memory addresses. These I/O types use the memory access mode 2.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number is 10.

hcfw.IOProperties.Out.Fct(8).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

ddr4_init_done / Init Done Outputs a flag that indicates that the RAM is initialized with specified data values. For more information, refer to Initializing the DDR4 RAM of the DS6602 (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Data type: UFix_1_0
Data width: 1

Values:

- 0: The RAM is not initialized.
- 1: The RAM is initialized.

ddr4_init_fail / Init Failed Outputs a flag that the initializing of the RAM with initial values failed.

Data type: UFix_1_0

Data width: 1

Values:

- 0: The RAM is not initialized or no failure occurs.
- 1: A failure occurs during the initialization of the RAM.

ddr4_busy_flag / Busy Inport to read a flag that indicates the state of the DDR4 RAM:

- 0: The DDR4 module is ready for new read/write operations.
- 1: The DDR4 module is busy.

Data type: UFix_1_0

ddr4_data_en / Enable Outport to enable the RAM access:

- 1: Data values are written to the RAM or read from the RAM.
- 0: No read/write access.

Data type: UFix_1_0

ddr4_direction / Direction Outport to control the direction of data access:

0: Write access1: Read access

Data type: UFix_1_0

ddr4_address_block_2 / Address Outport to specify the first element in the RAM for the read/write access. The memory is addressed 512 bit-wise to read/write 8 x 64-bit data values with the same address.

Data type: UFix_26_0

Value range: 0 ... 67,108,863 (2²⁶-1)

Data width: 1

ddr4_rd_data_valid_block_2 / Data valid Inport to read a flag that indicates that the data values of the Data Read ports are valid:

- 0: The values are not valid.
- 1: The values are valid. This value is set for one clock cycle. The data values must be read by the FPAG application within the same clock cycle.

Data type: UFix_1_0

ddr4_data_<PortNumber>_wr_64_block_2 / Data Write Outport to specify a 64-bit data value to be written to the RAM. 8 ports specify 8 data values. The Address port specifies the memory address to write the data values.

Data type: UFix_64_0
Data width: 1 per port

ddr4_data_<PortNumber>_rd_64_block_2 / Data Read Inport to read a 64-bit data value from the RAM. 8 ports output 8 data values. The Address port specifies the memory address to read the data values.

Data type: UFix_64_0
Data width: 1 per port

I/O mapping

No external connection to the I/O connector of the board.

Related topics

Basics

Overview of Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide \square)

DDR4 64 Mode 2

Purpose

To provide 64-bit read/write access to the DDR4 RAM using the memory access mode 2.

Description

The DS6602 FPGA Base Board provides a 4 GB DDR4 RAM that can be used by the FPGA application.

The RAM interface always handles 512 bits at once. Therefore, the FPGA application can read/write 16×32 bits data or 8×64 bits data within one memory access.

You can select different I/O functions to access the DDR4 RAM:

- DDR4 32 Mode 1 and DDR4 64 Mode 1 to read/write 32/64-bit values with one memory address. These I/O types use the memory access mode 1.
- DDR4 32 Mode 2 and DDR4 64 Mode 2 to read/write 32/64-bit values with two memory addresses. These I/O types use the memory access mode 2.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number is 11.

hcfw.IOProperties.Out.Fct(8).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

ddr4_init_done / Init Done Outputs a flag that indicates that the RAM is initialized with specified data values. For more information, refer to Initializing the DDR4 RAM of the DS6602 (RTI FPGA Programming Blockset Handcode Interface Guide (11)).

Data type: UFix_1_0
Data width: 1

Values:

- 0: The RAM is not initialized.
- 1: The RAM is initialized.

ddr4_init_fail / Init Failed Outputs a flag that the initializing of the RAM with initial values failed.

Data type: UFix_1_0
Data width: 1

Values:

- 0: The RAM is not initialized or no failure occurs.
- 1: A failure occurs during the initialization of the RAM.

ddr4_busy_flag / Busy Inport to read a flag that indicates the state of the DDR4 RAM:

- 0: The DDR4 module is ready for new read/write operations.
- 1: The DDR4 module is busy.

Data type: UFix_1_0

ddr4_data_en / Enable Outport to enable the RAM access:

- 1: Data values are written to the RAM or read from the RAM.
- 0: No read/write access.

Data type: UFix_1_0

ddr4_direction / Direction Outport to control the direction of data access:

- 0: Write access
- 1: Read access

Data type: UFix_1_0

ddr4_address_1_block_4 / Address A Outport to specify the first element in the RAM for the read/write access of the Data Write A/Data Read A ports. The memory is addressed 256 bit-wise to read/write 4 x 64-bit data values with the same address.

Data type: UFix_27_0

Value range: 0 ... 134,217,727 (2²⁷-1)

Data width: 1

ddr4_address_2_block_4 / Address B Outport to specify the first element in the RAM for the read/write access of the Data Write B/Data Read B ports. The memory is addressed 256 bit-wise to read/write 4 x 64-bit data values with the same address.

Data type: UFix_27_0

Value range: 0 ... 134,217,727 (2²⁷-1)

Data width: 1

ddr4_rd_data_valid_1_block_4 / Data valid A Inport to read a flag that indicates that the data values of the Data Read A ports are valid:

- 0: The values are not valid.
- 1: The values are valid. This value is set for one clock cycle. The data values must be written within the same clock cycle.

Data type: UFix_1_0

ddr4_rd_data_valid_2_block_4 / Data valid B Inport to read a flag that indicates that the data values of the Data Read B ports are valid:

- 0: The values are not valid.
- 1: The values are valid. This value is set for one clock cycle. The data values must be written within the same clock cycle.

Data type: UFix_1_0

ddr4_data_1_<PortNumber>_wr_64_block_4 / Data Write A Outport to specify a 64-bit data value to be written to the RAM. 4 ports specify 4 data values at the same time.

The Address A port specifies the memory address to write the data values.

Data type: UFix_64_0
Data width: 1 per port

ddr4_data_2_<PortNumber>_wr_64_block_4 / Data Write B Outport to specify a 64-bit data value to be written to the RAM. 4 ports specify 4 data values at the same time.

The Address B port specifies the memory address to write the data values.

Data type: UFix_64_0
Data width: 1 per port

ddr4_data_1_<PortNumber>_rd_64_block_4 / Data Read A Inport to read a 64-bit data value from the RAM. 4 ports output 4 data values at the same time. The Address A port specifies the memory address to read the data values.

Data type: UFix_64_0
Data width: 1 per port

ddr4_data_2_<PortNumber>_rd_64_block_4 / Data Read B Inport to read a 64-bit data value from the RAM. 4 ports output 4 data values at the same time. The Address B port specifies the memory address to read the data values.

Data type: UFix_64_0
Data width: 1 per port

I/O mapping

No external connection to the I/O connector of the board.

Related topics

Basics

Overview of Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide Ω)

I-FPGA In (IOCNET)

Purpose	To read a 32-bit raw data value from an IOCNET buffer.
Description	You can select I-FPGA In (IOCNET) I/O functions to implement an inter-FPGA communication between FPGA base boards. There are 32 channels.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 11 42.
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
	hcfw.PHSProperties.In.Fct(<iofunctionnumber>).Parameter(1).Init / Buffer size Lets you specify the size of the IOCNET buffer in the range 1 1024. The maximum range of the Address inport depends on the buffer</iofunctionnumber>

Note

size.

The FPGA memory blocks reserved for buffers have a granularity of 1024 words. For example, a buffer with a specified buffer size of 1 allocates a memory block of 1024 words with a data width of 32-bit in the FPGA memory. This applies to any specified buffer and its related swinging buffer.

Port

The following signals of the $\emph{I/O}$ function can be found in the port definition of the custom module entity ${\it cm}$.

The channel number can be specified in the range 00 ... 31.

Note

You can transfer any data type with a bit width of up to 32 Bit via inter-FPGA over IOCNET. To do this, you can reinterpret the data type to UFix_32_0 and vice versa. Reinterpreting data types does not cost any hardware or latency.

The range can be exceeded for the Data outport. The outport's value is then cast to UFix_32_0.

xmemf_inter_<ChannelNumber>_addr / Address Specifies a data value in the IOCNET buffer to be read. The block requires one clock cycle to update the value of the Data outport with the data value of the specified address.

Data type: UFix_16_0

Data width: 1

The maximum address range depends on the Buffer size parameter. The address range with valid data values can be derived from the value of the Data Count port.

xmemf_inter_<ChannelNumber>_count / Data Count Outputs the number of elements in the current IOCNET buffer. You can use the value to define the valid range for the Address port from 0 to (Data Count -1).

Data type: UFix_16_0

Data width: 1

The maximum value range depends on the Buffer size parameter.

xmemf_inter_<ChannelNumber>_dout / Data Outputs a 32-bit raw data value from the specified address of the IOCNET buffer.

Data type: UFix_32_0

Data width: 1

xmemf_inter_<ChannelNumber>_new_data / Data New Outputs a flag

that indicates the update of the Data port.

Data type: UFix_1_0

Data width: 1

If the flag changes from 0 to 1 and then to 0 again, the requested buffer contains new values and is ready to be read. The flag is set to 1 within only one clock cycle.

I/O mapping

No external connection to the I/O connector of the board.

Related topics

References

Overview of the DS6602 FPGA Base Board Frameworks.....

...21

I-FPGA64 In (IOCNET)

Purpose	To read a 64-bit raw data value from an IOCNET buffer.
Description	According to the number of physical connections available on the DS6602 FPGA Base Board, you can select the I-FPGA64 In (IOCNET) I/O functions. There are 32 channels.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 43 74.
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
	hcfw.PHSProperties.In.Fct(<iofunctionnumber>).Parameter(1).Init / Buffer size Lets you specify the size of the IOCNET buffer in the range 1 512. The maximum range of the Address inport depends on the buffer size.</iofunctionnumber>

Note

The FPGA memory blocks reserved for buffers have a granularity of 1024 words. For example, a buffer with a specified buffer size of 1 allocates a memory block of 1024 words with a data width of 64 bits in the FPGA memory. This applies to any specified buffer and its related swinging buffer.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

Note

You can transfer any data type with a bit width of up to 64 Bit via inter-FPGA over IOCNET. To do this, you can reinterpret the data type to UFix_64_0 and vice versa. Reinterpreting data types does not cost any hardware or latency.

The range can be exceeded for the Data outport. The outport's value is then cast to UFix_64_0.

xmem64f_inter_<ChannelNumber>_addr / Address Specifies a data value in the IOCNET buffer to be read. The block requires one clock cycle to update the value of the Data outport with the data value of the specified address.

Data type: UFix_16_0

Data width: 1

The maximum address range depends on the Buffer size parameter. The address range with valid data values can be derived from the value of the Data Count port.

xmem64f_inter_<ChannelNumber>_count / Data Count Outputs the number of elements in the current IOCNET buffer. You can use the value to define the valid range for the Address port from 0 to (Data Count -1).

Data type: UFix_16_0

Data width: 1

The maximum value range depends on the Buffer size parameter.

xmem64f_inter_<ChannelNumber>_dout / Data Outputs a 64-bit raw data value from the specified address of the IOCNET buffer.

Data type: UFix_64_0

Data width: 1

xmem64f_inter_<ChannelNumber>_new_data / Data NewOutputs a flag that indicates the update of the Data port.

Data type: UFix_1_0

Data width: 1

If the flag changes from 0 to 1 and then to 0 again, the requested buffer contains new values and is ready to be read. The flag is set to 1 within only one clock cycle.

I/O mapping No external connection to the I/O connector of the board.

Related topics References

I-FPGA Out (IOCNET)

Purpose	To write a 32-bit raw data value to an IOCNET buffer.
Description	You can select I-FPGA Out (IOCNET) I/O functions to implement an inter-FPGA communication between FPGA base boards. There are 32 channels.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 12 ... 43.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

hcfw.PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Buffer size Lets you specify the size of the IOCNET buffer in the range 1 ... 1024.

Note

The FPGA memory blocks reserved for buffers have a granularity of 1024 words. For example, a buffer with a specified buffer size of 1 allocates a memory block of 1024 words with a data width of 32-bit in the FPGA memory. This applies to any specified buffer and its related swinging buffer.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

Note

You can transfer any data type with a bit width of up to 32 Bit via inter-FPGA over IOCNET. To do this, you can reinterpret the data type to UFix_32_0 and vice versa. Reinterpreting data types does not cost any hardware or latency.

The range of the Data inport can be exceeded. The value of the inport is then cast to the raw data format UFix_32_0.

xmemp_inter_<ChannelNumber>_din / Data Specifies a 32-bit raw data value to be written to an IOCNET buffer.

Data type: UFix_32_0

Data width: 1

xmemp_inter_<ChannelNumber>_strobe / Enable Specifies the current valid Data port value.

Data type: UFix_1_0
Data width: 1

Values:

- 0: The Data value to be written is not stored in the IOCNET buffer.
- 1: The Data value to be written is stored in the IOCNET buffer. The value of the current clock cycle is used.

xmemp_inter_<ChannelNumber>_finished / Ready Explicitly specifies the buffer state as ready to send immediately, even if the buffer is not completely filled. The data values are written to a new buffer in the following clock cycle. While the port value is 1, the buffer switches every clock cycle. You are therefore

recommended to set the value for only one clock cycle. If the buffer is completely filled, it is automatically switched, and the data values are stored in a new buffer.

Data type: UFix_1_0

Data width: 1 Values:

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready to send, even if it is not completely filled.
 The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmemp_inter_<ChannelNumber>_write / Send Triggers a data transmission via IOCNET.

Data type: UFix_1_0
Data width: 1

Values:

- 0: Data values are not acknowledged for transmission.
- 1: Current Data values are acknowledged and will be transmitted via IOCNET.

xmemp_inter_<ChannelNumber>_overflow / Overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs when the new buffer is triggered for transmission and the old buffer was not sent completely.

Data type: UFix_1_0
Data width: 1

Values:

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

I/O mapping

No external connection to the I/O connector of the board.

Related topics

References

Overview of the DS6602 FPGA Base Board Frameworks......

....... 2 1

I-FPGA64 Out (IOCNET)

Purpose	To write a 64-bit raw data value to an IOCNET buffer.
Description	You can select I-FPGA64 Out (IOCNET) I/O functions to implement an inter- FPGA communication between FPGA base boards. There are 32 channels.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 44 ... 75.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

hcfw.PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Buffer size Lets you specify the size of the IOCNET buffer in the range 1 ... 512.

Note

The FPGA memory blocks reserved for buffers have a granularity of 1024 words. For example, a buffer with a specified buffer size of 1 allocates a memory block of 1024 words with a data width of 64 bits in the FPGA memory. This applies to any specified buffer and its related swinging buffer.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

Note

You can transfer any data type with a bit width of up to 64 Bit via inter-FPGA over IOCNET. To do this, you can reinterpret the data type to UFix_64_0 and vice versa. Reinterpreting data types does not cost any hardware or latency.

The range of the Data inport can be exceeded. The value of the inport is then cast to the raw data format UFix_64_0.

xmem64p_inter_<ChannelNumber>_din / Data Specifies a 64-bit raw data value to be written to an IOCNET buffer.

Data type: UFix_64_0

Data width: 1

xmem64p_inter_<ChannelNumber>_strobe / Enable Specifies the current valid Data port value.

Data type: UFix_1_0
Data width: 1

\/al...oc.

- 0: The Data value to be written is not stored in the IOCNET buffer.
- 1: The Data value to be written is stored in the IOCNET buffer. The value of the current clock cycle is used.

completely filled. The data values are written to a new buffer in the following clock cycle. While the port value is 1, the buffer switches every clock cycle. You are therefore recommended to set the value for only one clock cycle. If the buffer is completely filled, it is automatically switched, and the data values are stored in a new buffer.

Data type: UFix_1_0

Data width: 1

Values:

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready to send, even if it is not completely filled.
 The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmem64p_inter_<ChannelNumber>_write / Send Triggers a data transmission via IOCNET.

Data type: UFix_1_0

Data width: 1

Values:

- 0: Data values are not acknowledged for transmission.
- 1: Current Data values are acknowledged and will be transmitted via IOCNET.

xmem64p_inter_<ChannelNumber>_overflow / Overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs when the new buffer is triggered for transmission and the old buffer was not sent completely.

Data type: UFix_1_0
Data width: 1

Values:

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

I/O mapping

No external connection to the I/O connector of the board.

Related topics

References

Overview of the DS6602 FPGA Base Board Frameworks......

....21

Interrupt

Purpose

To request a processor interrupt outside of the FPGA application.

Description	The DS6602 FPGA Base Board provides 16 interrupt lines. An interrupt is requested if the Int port is set to 1 for at least one clock cycle. If you set the Int port to 0, the last interrupt is not released but saved. An interrupt is edgetriggered.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 1 16.
	IRQProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	The channel number can be specified in the range 0 15.
	usr_ <channelnumber>_interrupt / Int</channelnumber>
	0 to 1: Interrupt is requested (edge-triggered).
	 0: No interrupt is requested. Last requested interrupt is saved.
Related topics	References
	Overview of the DS6602 FPGA Base Board Frameworks

IOCNET Global Time

Purpose	To read the number of hardware ticks.
Description	There is one digital input channel that is used for the IOCNET Global Time I/O function.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number must be specified as 3.
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

There is no channel number to be specified.

iocnet_glob_time/ IOCNET Global Time Outputs the number of hardware ticks that occurred since the SCALEXIO system power was switched to on. If you use a multiprocessor system, the value is set to zero each time an application is reloaded and restarted.

Data type: UFix_56_0 Tick step-width: 8.5 ns

Related topics

References

Overview of the DS6602 FPGA Base Board Frameworks.....

..21

LED Out

Purpose	To write a digital signal that controls the LED on the board.
Description	There is one digital output channel that is used for the LED Out I/O function.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number must be specified as 1.
	IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	There is no channel number to be specified.
	 led_out / LED Out Controls the LED on the board. Data type: UFix_1_0 0: LED lights green. 1: LED lights orange.

Related topics	References
	Overview of the DS6602 FPGA Base Board Frameworks

Dogistar In

Register In	
Purpose	To read data from an IOCNET register with a data width of 32 bits.
Description	If you select Register as the access type, the data is read from an IOCNET register. 256 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 1 256.
	PHSProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
	PHSProperties.In.Fct(<iofunctionnumber>).Parameter(1).Init / Binary point position</iofunctionnumber>
	 signed/unsigned The values of the Data outport are in fixed-point format. You can specify the binary point position of the 32-bit value in the range 0 32. 0 represents the lowest bit position, 32 the highest bit position. floating-point The values of the Data outport are in floating-point format. The parameter then provides the fraction width.
	PHSProperties.In.Fct(<iofunctionnumber>).Parameter(2).Init /</iofunctionnumber>

Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

• floating-point

The values of the Data outport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction)

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are sampled simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the .

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- .
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 255.

xreg_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from an IOCNET register. The data format depends on the related parameter settings.

xreg_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Overview of the DS6602 FPGA Base Board Frameworks.....

. 21

Register64 In

Purpose

To read data from an IOCNET register with a data width of 64 bits.

Description

If you select Register as the access type, the data is read from an IOCNET register. 256 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several

registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 289 ... 544.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are sampled simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the .

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1

• ..

• 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 255.

xreg64_<ChannelNumber>_dout / Data Outputs a 64-bit data value to be read from an IOCNET register. The data format depends on the related parameter settings.

xreg64_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Overview of the DS6602 FPGA Base Board Frameworks.....

21

Register Out

To write data to an IOCNET register with a data width of 32 bits.

Description

Purpose

If you select Register as the access type, the data is written to an IOCNET register. 256 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 256.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 32 bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init /

Format Lets you select the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the sequentially and then provided to the FPGA application simultaneously.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ...
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 255.

xreg_<ChannelNumber>_din / Data Specifies a 32-bit data value to be written to an IOCNET register. The data format depends on the related parameter settings.

Related topics

References

Overview of the DS6602 FPGA Base Board Frameworks......21

Register64 Out

5

Purpose

To write data to an IOCNET register with a data width of 64 bits.

Description

If you select Register64 as the access type, the data is written to an IOCNET register. 256 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 289 ... 544.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register64 group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the sequentially and then provided to the FPGA application simultaneously.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ..
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 255.

xreg64_<ChannelNumber>_din / Data Specifies a 64-bit data value to be written to an IOCNET register. The data format depends on the related parameter settings.

Related topics

References

Overview of the DS6602 FPGA Base Board Frameworks.....

....21

Status In

Purpose	To read a digital signal that outputs the state of the FPGA initialization sequence.
Description	There is one digital input channel that is used for the Status In I/O function.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number must be specified as 1.
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.

There is no channel number to be specified.

init_done/ Init Done Outputs the state of the initialization sequence that is started after programming the FPGA.

Data type: UFix_1_0

- 0: Initialization sequence is in progress.
- 1: Initialization sequence has finished.

Related topics

References

Overview of the DS6602 FPGA Base Board Frameworks.....

21

I/O Functions of the DS2655M1 I/O Module Framework

Introduction

The *DS2655M1 I/O Module* framework provides analog and digital I/O functionality of SCALEXIO FPGA base board with at least one DS2655M1 Multi-I/O Module.

Where to go from here

Information in this section

Analog In
Analog Out
Digital In
Digital InOut
Digital Out

Information in other sections

I/O Functions of the DS6602 FPGA Base Board Framework
I/O Functions of the DS2655M2 I/O Module Framework
I/O Functions of the DS6651 Multi-I/O Module Framework
I/O Functions of the Inter-FPGA Interface Framework

Analog In

Purpose	To read data from an analog input signal in the FPGA application.		
Description	According to the number of physical connections available on the DS2655M1 Multi-I/O Module, you can select the Analog In I/O functions. There are five analog input channels.		
	The module number can be specified in the range 1 5.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
	The I/O function number can be specified in the range 11 15.		
	IOProperties.In.Fct(<iofunctionnumber> + ioInOffset<modulenumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</modulenumber></iofunctionnumber>		
	IOProperties.In.Fct(<iofunctionnumber> + ioInOffset<modulenumber>).Parameter(3).Init / Input range Lets you select the input range for all analog input channels. • 0: -30 V +30 V</modulenumber></iofunctionnumber>		
	■ 1: -5 V +5 V		

This electrical interface setting can be changed in ConfigurationDesk.

IOProperties.In.Fct(<IOFunctionNumber> +

iolnOffset<ModuleNumber>).Parameter(5).Init / Scaling Lets you select the scaling of the output data. If you select mV, the valid output port range corresponds to the specified input range in mV (-5000 ... +5000 mV or -30000 ... +30000 mV). If you select the unscaled Bit value, the valid output port range is -8192 ... +8191, independently from the specified input range.

0: mV1: Bit

Port

You must add the following signals of the I/O function to the port definition of the custom module entity **cm**.

The channel number can be specified in the range 6 ... 10.

m<ModuleNumber>_rx<ChannelNumber>_data00 / Data Outputs the current results of analog input channel.

Data type: UFix_16_0 Update rate: 4 Msps

$m{<}ModuleNumber{>_rx{<}ChannelNumber{>_ready_pulse}} \ / \ Data$

New Outputs a flag that indicates the current status of the Data port. The port is set to 1 for one clock cycle if the Data port provides new values.

New measured values from analog input channels of the same I/O module are always provided synchronously. If analog inputs are read from different I/O modules, the measured values are provided either synchronously or offset by two clock cycles (16 ns). However, the sample time of the analog measurements is synchronous on different I/O modules except for 8 ns.

If synchronous measured values from analog inputs of different I/O modules are required, you can implement a logic to wait with the further processing of analog values until the Data New ports flag new data within two clock cycles.

Data type: UFix_1_0

- 0: No new values are available at the Data port.
- 1: New values are available at the Data port.

m<Module_number>_tx<Channel_number>_data00 / Enable Controls the data port. If set to 1 the ADC is in freerun mode.

Data type: UFix_1_0

I/O mapping

The following I/O mapping is relevant if you use the DS2655M1 I/O Module framework for analog input channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS2655M1 Multi-I/O Module (x = 1 ... 5).

Outport	I/O Function Number	Channel Number	Connector Pin	Signal
Data	11	6	10	Analog In - Ch: 11 [Mod: x]
	12	7	27	Analog In - Ch: 12 [Mod: x]
	13	8	44	Analog In - Ch: 13 [Mod: x]
	14	9	12	Analog In - Ch: 14 [Mod: x]
	15	10	29	Analog In - Ch: 15 [Mod: x]

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide Ω

References

Overview of the DS2655M1 I/O Module Framework....

Analog Out

Purpose	To write data to a analog output signal in the FPGA application.
Description	According to the number of physical connections available on the DS2655M1 Multi-I/O Module, you can select the Analog Out I/O functions. There are five analog output channels.
	The module number can be specified in the range 1 5.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 21 25.
	IOProperties.Out.Fct(<iofunctionnumber> + ioOutOffset<modulenumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</modulenumber></iofunctionnumber>
	IOProperties.Out.Fct(<iofunctionnumber> + ioOutOffset<modulenumber>).Parameter(5).Init / Scaling</modulenumber></iofunctionnumber>

■ 0: mV

■ 1: Bit

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 1 ... 5.

Note

The TX channels 1 ... 5 are also used by the Digital InOut functions.

• If you want to use the analog out channels with an optimal timing behavior, do not use the related Digital InOut functions at a time.

m<ModuleNumber>_tx<ChannelNumber>_data00_14_0_14_0i /

Data Outputs the current results of analog input channel.

Data type: UFix_15_0 Update rate: 7.8125 Msps

m<ModuleNumber>_tx<ChannelNumber>_data00_16_0_16_0i /
Enable Controls the data port. If set to 1 the DAC is in freerun mode.

Data type: UFix_1_0

I/O mapping

The following I/O mapping is relevant if you use the DS2655M1 I/O Module framework for analog output channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS2655M1 Multi-I/O Module (x = 1 ... 5).

Outport	I/O Function Number	Channel Number	Connector Pin	Signal
Data	21	1	14	Analog Out - Ch: 16 [Mod: x]
	22	2	31	Analog Out - Ch: 17 [Mod: x]
	23	3	48	Analog Out - Ch: 18 [Mod: x]
	24	4	16	Analog Out - Ch: 19 [Mod: x]
	25	5	33	Analog Out - Ch: 20 [Mod: x]

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide ${}^{\hbox{\@box{$\square$}}}$

References

Digital In

Purpose	To read data from a digital input signal in the FPGA application.				
Description	According to the number of physical connections available on the DS2655M1 Multi-I/O Module, you can select the Digital In I/O functions. There are 10 digital input channels.				
	The module number can be specified in the range 1 5.				
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.				
	The I/O function number can be specified in the range 1 10.				
	IOProperties.In.Fct(<iofunctionnumber> + ioInOffset<modulenumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</modulenumber></iofunctionnumber>				
	IOProperties.In.Fct(<iofunctionnumber> + ioInOffset<modulenumber>).Parameter(4).Init / Threshold init voltage</modulenumber></iofunctionnumber>				
	This electrical interface setting can be changed in ConfigurationDesk.				
Port	You must add the following signals of the I/O function to the port definition of the custom module entity cm.				
	The channel number can be specified in the range 1 10.				
	 m<modulenumber>_rx<channelnumber>_trigger00 / Data</channelnumber></modulenumber>				
	transition.				
	 1: Input voltage of the channel is higher than or equal to the threshold voltage of a low-high transition. 				
	Data type: UFix_1_0				
	Update rate: 125 MHz				
I/O mapping	The following I/O mapping is relevant if you use the <i>DS2655M1 I/O Module</i> framework for digital input channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS2655M1 Multi-I/O Module ($x = 1 \dots 5$).				

Outport	I/O Function Number	Channel Number	Connector Pin	Signal
Data	1	1	2	Digital In - Ch: 1 [Mod: x]
	2	2	19	Digital In - Ch: 2 [Mod: x]
	3	3	36	Digital In - Ch: 3 [Mod: x]
	4	4	4	Digital In - Ch: 4 [Mod: x]
	5	5	21	Digital In - Ch: 5 [Mod: x]
	6	6	6	Digital In - Ch: 6 [Mod: x]
	7	7	23	Digital In - Ch: 7 [Mod: x]
	8	8	40	Digital In - Ch: 8 [Mod: x]
	9	9	8	Digital In - Ch: 9 [Mod: x]
	10	10	25	Digital In - Ch: 10 [Mod: x]

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide $\mathbf{\Omega}$)

References

Digital InOut

Purpose	To read/write data to a digital output signal in the FPGA application. The Data direction port lets you specify the data direction during run time.
Description	According to the number of physical connections available on the DS2655M1 Multi-I/O Module, you can select the Digital InOut I/O functions. There are 10 bidirectional digital channels.
	The module number can be specified in the range 1 5.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 11 ... 20.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

1: LowSide switch

To drive loads which are connected to VCC.

• 2: HighSide switch

To drive loads which are connected to GND.

■ 3: Push/Pull

To switch the signal between two different potentials (for example, VCC and GND).

This electrical interface setting can be changed in ConfigurationDesk.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).Parameter(6).Init / Drive configLets you enable/disable the termination of the signal line by a serial resistor.

• 0: 68 Ohm terminated The signal line is terminated with 68 Ω .

• 1: The termination is disabled.

This electrical interface setting can be changed in ConfigurationDesk.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).Parameter(8).Init / High supply Lets you select the voltage for the high side switch.

- 0:5 V
- 1: 3.3 V

This electrical interface setting can be changed in ConfigurationDesk.

Note

If you use a Digital InOut channel, the applicable threshold voltage for the digital input channel is less than or equal to the specified high supply. To apply the maximum input voltage range, you have to use a Digital In channel.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).Parameter(10).Init / Digital In threshold init voltage Lets you set the initial threshold voltage for a digital input signal in the range of 0 mV ... 10500 mV in steps of 100 mV. This electrical interface setting can be changed in ConfigurationDesk.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 1 ... 10.

m<ModuleNumber>_tx<ChannelNumber>_data01_0_0_1_1i / Data direction
Specifies the direction of the digital signal.

0: Digital in1: Digital outData type: UFix_1_0Update rate: 125 MHz

m<ModuleNumber>_rx<ChannelNumber>_trigger00 / Inport:

Data Outputs the current results of digital input channel.

- 0: Input voltage of the channel is below the threshold voltage of a high-low transition.
- 1: Input voltage of the channel is higher than or equal to the threshold voltage of a low-high transition.

Data type: UFix_1_0 Update rate: 125 MHz

m<ModuleNumber>_tx<ChannelNumber>_data01_0_0_0_0i / Outport:

Data Outputs a signal in the specified range. If driven with 0, the hardware output is 0 V. If driven with 1, the hardware output is 3.3 V or 5 V according to the specified high supply voltage.

Data type: UFix_1_0 Update rate: 15.625 MHz

I/O mapping

The following I/O mapping is relevant if you use the DS2655M1 I/O Module framework for the bidirectional digital I/O channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS2655M1 Multi-I/O Module (x = 1 ... 5)..

Outport	I/O Function Number	Channel Number	Connector Pin	Signal
Data	11	1	2	Digital InOut - Ch: 1 [Mod: x]
	12	2	19	Digital InOut - Ch: 2 [Mod: x]
	13	3	36	Digital InOut - Ch: 3 [Mod: x]
	14	4	4	Digital InOut - Ch: 4 [Mod: x]
	15	5	21	Digital InOut - Ch: 5 [Mod: x]
	16	6	6	Digital InOut - Ch: 6 [Mod: x]
	17	7	23	Digital InOut - Ch: 7 [Mod: x]
	18	8	40	Digital InOut - Ch: 8 [Mod: x]
	19	9	8	Digital InOut - Ch: 9 [Mod: x]
	20	10	25	Digital InOut - Ch: 10 [Mod: x]

Related topics	Basics		
	Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide (1))		
	References		
	Overview of the DS2655M1 I/O Module Framework		

Digital Out

Purpose	To write data to a digital output signal in the FPGA application.		
Description	According to the number of physical connections available on the DS2655M1 Multi-I/O Module, you can select the Digital Out I/O functions. There are 10 digital output channels.		
	The module number can be specified in the range 1 5.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
	The I/O function number can be specified in the range 1 10.		
	IOProperties.Out.Fct(<iofunctionnumber> + ioOutOffset<modulenumber>).HcCustomName / Channel name you specify a custom name for the specified channel.</modulenumber></iofunctionnumber>		
	IOProperties.Out.Fct(<iofunctionnumber> + ioOutOffset<modulenumber>).Parameter(3).Init / Output mode Specifies the output mode.</modulenumber></iofunctionnumber>		
	■ 17: LowSide switch		
	To drive loads that are connected to VCC.		
	18: HighSide switch		
	To drive loads that are connected to GND.		
	■ 19: Push/Pull		
	To switch the signal between two different potentials (for example, VCC and GND).		

This electrical interface setting can be changed in ConfigurationDesk.

IOProperties.Out.Fct(<IOFunctionNumber> + ioOutOffset<ModuleNumber>).Parameter(5).Init / Drive config enable/disable the termination of the signal line by a serial resistor.

- 0: The signal line is terminated with 68 Ω .
- 1: The termination is disabled.

This electrical interface setting can be changed in ConfigurationDesk.

IOProperties.Out.Fct(<IOFunctionNumber> + ioOutOffset<ModuleNumber>).Parameter(7).Init / High supply select the voltage for the high side switch.

- 0:5 V
- 1: 3.3 V

This electrical interface setting can be changed in ConfigurationDesk.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 1 ... 10.

m<ModuleNumber>_tx<ChannelNumber>_trigger00 / Data Outputs a signal in the specified range. If driven with 0, the hardware output is 0 V. If driven with 1, the hardware output is 3.3 V or 5 V according to the specified high supply voltage.

Data type: UFix_1_0 Update rate: 125 MHz

I/O mapping

The following I/O mapping is relevant if you use the DS2655M1 I/O Module framework for digital output channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS2655M1 Multi-I/O Module (x = 1 ... 5).

Outport	I/O Function Number	Channel Number	Connector Pin	Signal
Data	1	1	2	Digital Out - Ch: 1 [Mod: x]
	2	2	19	Digital Out - Ch: 2 [Mod: x]
	3	3	36	Digital Out - Ch: 3 [Mod: x]
	4	4	4	Digital Out - Ch: 4 [Mod: x]
	5	5	21	Digital Out - Ch: 5 [Mod: x]
	6	6	6	Digital Out - Ch: 6 [Mod: x]
	7	7	23	Digital Out - Ch: 7 [Mod: x]
	8	8	40	Digital Out - Ch: 8 [Mod: x]
	9	9	8	Digital Out - Ch: 9 [Mod: x]
	10	10	25	Digital Out - Ch: 10 [Mod: x]

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide (11)

References

Overview of the DS2655M1 I/O Module Framework...

I/O Functions of the DS2655M2 I/O Module Framework

Introduction

The DS2655M2 I/O Module framework provides digital I/O functionality of a SCALEXIO FPGA base board with at least one DS2655M2 Digital I/O Module.

Where to go from here

Information in this section

Digital In To read data from a digital input signal in the FPGA application.	218
Digital Out To write data to a digital output signal in the FPGA application.	221
Digital Out-Z To write data to a digital output signal in the FPGA application or to switch the output to a high-impedance state (tri-state).	224
RS232 Rx	227
RS232 Tx To transmit data values to a RS232 network.	228
RS485 Rx To receive data values from a RS485 network in simplex mode.	230
RS485 RxTx To implement communication via a RS485 network in half-duplex mode.	232
RS485 Tx To transmit data values to a RS485 network in simplex mode.	235

Information in other sections

Other frameworks that provide access to the FPGA functionality of a SCALEXIO system: The frameworks of the DS2655 FPGA Base Boards provide the standard I/O functionality of the boards. The DS6601 (KU035) FPGA Base Board framework of the DS6601 FPGA Base Board provide the standard I/O functionality of the board. The DS6602 (KU15P) FPGA Base Board framework of the DS6602 FPGA Base Board provide the standard I/O functionality of the board. I/O Functions of the DS2655M1 I/O Module Framework......205 The DS2655M1 I/O Module framework provides analog and digital I/O functionality of SCALEXIO FPGA base board with at least one DS2655M1 Multi-I/O Module. The DS6651 Multi-I/O Module framework provides analog and digital I/O functionality of a SCALEXIO FPGA base board with at least one DS6651 Multi-I/O Module. I/O Functions of the Inter-FPGA Interface Framework.......281 The Inter-FPGA Interface framework provides access to the I/O module slots of a SCALEXIO FPGA base board to implement an inter-FPGA communication bus.

Digital In

Purpose	To read data from a digital input signal in the FPGA application.
Description	According to the number of physical connections available on the DS2655M2 Digital I/O Module, you can select the Digital In I/O functions. There are up to 32 digital input channels.
	The module number can be specified in the range 1 5.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 32.

IOProperties.In.Fct(<IOFunctionNumber> +

ioInOffset<ModuleNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.In.Fct(<IOFunctionNumber> +

ioInOffset<ModuleNumber>).Parameter(9).Init / Threshold init

voltage Specifies the initial voltage value that is used for the threshold in mV.

Data type: UFix_14_0

Range: 0 mV ... 10500 mV in 100 mV steps

Update rate: 125 MHz

This electrical interface setting can be changed in ConfigurationDesk.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 1 ... 32.

m<ModuleNumber>_io2raw_<ChannelNumber>_

<ChannelNumber>_<ChannelNumber>i /

Data Outputs the current results of digital input channel.

Data type: UFix_1_0

Data width: 1

Values:

- 0: Input voltage of the channel is below the threshold voltage of a high-low transition.
- 1: Input voltage of the channel is higher than or equal to the threshold voltage of a low-high transition.

Update rate: 125 MHz

For information on the electrical characteristics of the DS2655M2 Digital I/O Module, refer to Data Sheet of the DS2655M2 Digital I/O Module (SCALEXIO Hardware Installation and Configuration (1)).

I/O mapping

The following I/O mapping is relevant if you use the *DS2655M2 I/O Module* framework for Digital In channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS2655M2 Digital I/O Module.

Outport	Channel	Connector Pin	Signal
Data	1	18	Dig In (Ch. 1)
	2	2	Dig In (Ch. 2)
	3	35	Dig In (Ch. 3)
	4	19	Dig In (Ch. 4)
	5	20	Dig In (Ch. 5)
	6	4	Dig In (Ch. 6)
	7	37	Dig In (Ch. 7)
	8	21	Dig In (Ch. 8)
	9	22	Dig In (Ch. 9)
	10	6	Dig In (Ch. 10)
	11	39	Dig In (Ch. 11)
	12	23	Dig In (Ch. 12)
	13	24	Dig In (Ch. 13)
	14	8	Dig In (Ch. 14)
	15	41	Dig In (Ch. 15)
	16	25	Dig In (Ch. 16)
	17	26	Dig In (Ch. 17)
	18	10	Dig In (Ch. 18)
	19	43	Dig In (Ch. 19)
	20	27	Dig In (Ch. 20)
	21	28	Dig In (Ch. 21)
	22	12	Dig In (Ch. 22)
	23	45	Dig In (Ch. 23)
	24	29	Dig In (Ch. 24)
	25	30	Dig In (Ch. 25)
	26	14	Dig In (Ch. 26)
	27	47	Dig In (Ch. 27)
	28	31	Dig In (Ch. 28)
	29	32	Dig In (Ch. 29)
	30	16	Dig In (Ch. 30)
	31	49	Dig In (Ch. 31)
	32	33	Dig In (Ch. 32)

The I/O functions of the DS2655M2 I/O Module framework share the 32 I/O channels of the DS2655M2 Digital I/O Module. For details on the signal mapping to optimize channel usage, refer to Signal Mapping of the DS2655M2 Digital I/O Module (SCALEXIO Hardware Installation and Configuration

).

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide $\mathbf{\Omega}$)

References

Overview of the DS2655M2 I/O Module Framework.....

Digital Out

Purpose

To write data to a digital output signal in the FPGA application.

Description

According to the number of physical connections available on the DS2655M2 Digital I/O Module, you can select the Digital Out I/O functions. There are up to 32 digital output channels.

The module number can be specified in the range $1 \dots 5$.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 32.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(<IOFunctionNumber> + ioOutOffset<ModuleNumber>).Parameter(7).Init / Output mode Specifies the output mode.

■ 5: LowSide switch

To drive loads which are connected to VCC.

• 6: HighSide switch

To drive loads which are connected to GND.

■ 7: Push/Pull

To switch the signal between two different potentials (for example, VCC and GND).

This electrical interface setting can be changed in ConfigurationDesk.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).Parameter(9).Init / Drive configLets you enable/disable the termination of the signal line by a serial resistor.

- 0: The signal line is terminated with 68 Ω .
- 1: The termination is disabled.

This electrical interface setting can be changed in ConfigurationDesk.

IOProperties.Out.Fct(<IOFunctionNumber> +
ioOutOffset<ModuleNumber>).Parameter(11).Init / High supply
Lets
you select the voltage for the high side switch.

■ 0:5 V

■ 1: 3.3 V

This electrical interface setting can be changed in ConfigurationDesk.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 1 ... 32.

m<ModuleNumber>_raw2io_<ChannelNumber>_ <ChannelNumber>_<ChannelNumber>i /

Data Outputs a signal in the specified range.

To set the voltage level, use the High supply.

Data Type: UFix_1_0

Data width: 1

If driven with 0, the hardware outputs a low-level signal. If driven with 1, the hardware outputs a high-level signal.

Update rate: 125 MHz

Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit by using only the lowest bit.

Note

The frequency that can be generated is smaller than the update rate. For information on the electrical characteristics of the DS2655M2 Digital I/O Module, refer to Data Sheet of the DS2655M2 Digital I/O Module (SCALEXIO Hardware Installation and Configuration (1)).

I/O mapping

The following I/O mapping is relevant if you use the *DS2655M2 I/O Module* framework for digital output channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS2655M2 Digital I/O Module.

Dig Outport	Channel	Connector Pin	Signal
Data	1	18	Dig Out (Ch. 1)
	2	2	Dig Out (Ch. 2)
	3	35	Dig Out (Ch. 3)
	4	19	Dig Out (Ch. 4)
	5	20	Dig Out (Ch. 5)
	6	4	Dig Out (Ch. 6)
	7	37	Dig Out (Ch. 7)
	8	21	Dig Out (Ch. 8)
	9	22	Dig Out (Ch. 9)
	10	6	Dig Out (Ch. 10)
	11	39	Dig Out (Ch. 11)
	12	23	Dig Out (Ch. 12)
	13	24	Dig Out (Ch. 13)
	14	8	Dig Out (Ch. 14)
	15	41	Dig Out (Ch. 15)
	16	25	Dig Out (Ch. 16)
	17	26	Dig Out (Ch. 17)
	18	10	Dig Out (Ch. 18)
	19	43	Dig Out (Ch. 19)
	20	27	Dig Out (Ch. 20)
	21	28	Dig Out (Ch. 21)
	22	12	Dig Out (Ch. 22)
	23	45	Dig Out (Ch. 23)
	24	29	Dig Out (Ch. 24)
	25	30	Dig Out (Ch. 25)
	26	14	Dig Out (Ch. 26)
	27	47	Dig Out (Ch. 27)
	28	31	Dig Out (Ch. 28)
	29	32	Dig Out (Ch. 29)
	30	16	Dig Out (Ch. 30)
	31	49	Dig Out (Ch. 31)
	32	33	Dig Out (Ch. 32)

The I/O functions of the DS2655M2 I/O Module framework share the 32 I/O channels of the DS2655M2 Digital I/O Module. For details on the signal mapping to optimize channel usage, refer to Signal Mapping of the DS2655M2 Digital I/O Module (SCALEXIO Hardware Installation and Configuration (11)).

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide (III)

References

Overview of the DS2655M2 I/O Module Framework.......

25

Digital Out-Z

Purpose

To write data to a digital output signal in the FPGA application or to switch the output to a high-impedance state (tri-state).

Description

According to the number of physical connections available on the DS2655M2 Digital I/O Module, you can select the Digital Out-Z I/O functions. There are up to 16 digital output channels.

The module number can be specified in the range $1 \dots 5$.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 33 ... 48.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).Parameter(14).Init / Drive config Lets you enable/disable the termination of the signal line by a serial resistor.

- 0: The signal line is terminated with 68 Ω .
- 1: The termination is disabled.

This electrical interface setting can be changed in ConfigurationDesk.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).Parameter(16).Init / High supply Lets you select the voltage for the high side switch.

- 0:5 V
- 1: 3.3 V

This electrical interface setting can be changed in ConfigurationDesk.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity **cm**.

The channel number can be specified in the range 1, 3, 5, ..., 31.

m<ModuleNumber>_raw2io_<ChannelNumber>_

<ChannelNumber>_<ChannelNumber>i /

Data Outputs a signal in the specified range if the Enable port is set to 1.

To set the voltage level, use the High supply parameter .

Data Type: UFix_1_0

Data width: 1

If driven with 0, the hardware outputs a low-level signal. If driven with 1, the hardware outputs a high-level signal.

Update rate: 125 MHz

Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit by using only the lowest bit.

Note

The frequency that can be generated is smaller than the update rate. For information on the electrical characteristics of the DS2655M2 Digital I/O Module, refer to Data Sheet of the DS2655M2 Digital I/O Module (SCALEXIO Hardware Installation and Configuration \square).

m<ModuleNumber>_raw2io_<ChannelNumber+1>_ <ChannelNumber+1>_<ChannelNumber+1>i /

Enable Enables the output of data values and disables the high-impedance state.

Data type: UFix_1_0
Data width: 1

Values:

- 0: The output is set to the high-impedance state.
- 1: The output is enabled and outputs the data values of the Data inport.

Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit by using only the lowest bit.

I/O mapping

The following I/O mapping is relevant if you use the *DS2655M2 I/O Module* framework for digital output channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS2655M2 Digital I/O Module.

Inport	Channel	Connector Pin	Signal
Data	1	18	Dig Out-Z (Ch. 1-2)
	2	2	No signal
	3	35	Dig Out-Z (Ch. 3-4)
	4	19	No signal
	5	20	Dig Out-Z (Ch. 5-6)
	6	4	No signal
	7	37	Dig Out-Z (Ch. 7-8)
	8	21	No signal
	9	22	Dig Out-Z (Ch. 9-10)
	10	6	No signal
	11	39	Dig Out-Z (Ch. 11-12)
	12	23	No signal
	13	24	Dig Out-Z (Ch. 13-14)
	14	8	No signal
	15	41	Dig Out-Z (Ch. 15-16)
	16	25	No signal
	17	26	Dig Out-Z (Ch. 17-18)
	18	10	No signal
	19	43	Dig Out-Z (Ch. 19-20)
	20	27	No signal
	21	28	Dig Out-Z (Ch. 21-22)
	22	12	No signal
	23	45	Dig Out-Z (Ch. 23-24)
	24	29	No signal
	25	30	Dig Out-Z (Ch. 25-26)
	26	14	No signal
	27	47	Dig Out-Z (Ch. 27-28)
	28	31	No signal
	29	32	Dig Out-Z (Ch. 29-30)
	30	16	No signal
	31	49	Dig Out-Z (Ch. 31-32)
	32	33	No signal

The I/O functions of the DS2655M2 I/O Module framework share the 32 I/O channels of the DS2655M2 Digital I/O Module. For details on the signal mapping to optimize channel usage, refer to Signal Mapping of the DS2655M2 Digital I/O Module (SCALEXIO Hardware Installation and Configuration

).

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide $\underline{\mathbf{m}})$

References

Overview of the DS2655M2 I/O Module Framework.....

RS232 Rx

Purpose	To receive data values from a RS232 network.	
Description	According to the number of physical connections available on the DS2655M2 Digital I/O Module, you can select the RS232 Rx I/O functions. There are up to 8 channels.	
	The module number can be specified in the range 1 5.	
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.	
	The I/O function number can be specified in the range 33 40.	
	IOProperties.In.Fct(<iofunctionnumber> + ioInOffset<modulenumber>).HcCustomName / Channel name specify a custom name for the specified channel.</modulenumber></iofunctionnumber>	
Port	You must add the following signals of the I/O function to the port definition of the custom module entity cm.	
	The channel number can be specified in the range 2, 6, 10, \dots , 30.	
	m <modulenumber>_io2raw_<channelnumber>_ <channelnumber>_<channelnumber>i / Data Outputs the data received from the RS232 network. Data type: UFix_1_0 Data width: 1 Range: ■ 0: The input voltage level is positive (≥ 0 V).</channelnumber></channelnumber></channelnumber></modulenumber>	
	1: The input voltage level is negative (< 0 V).	

For information on the electrical characteristics of the DS2655M2 Digital I/O Module, refer to Data Sheet of the DS2655M2 Digital I/O Module (SCALEXIO Hardware Installation and Configuration (12)).

I/O mapping

The following I/O mapping is relevant if you use the *DS2655M2 I/O Module* framework for RS232 Rx channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS2655M2 Digital I/O Module.

Outport	Channel	Connector Pin	Signal
Data	2	2	RX (Ch. 2)
	6	4	RX (Ch. 6)
	10	6	RX (Ch. 10)
	14	8	RX (Ch. 14)
	18	10	RX (Ch. 18)
	22	12	RX (Ch. 22)
	26	14	RX (Ch. 26)
	30	16	RX (Ch. 30)

The I/O functions of the DS2655M2 I/O Module framework share the 32 I/O channels of the DS2655M2 Digital I/O Module. For details on the signal mapping to optimize channel usage, refer to Signal Mapping of the DS2655M2 Digital I/O Module (SCALEXIO Hardware Installation and Configuration (1)).

Related topics

References

Overview of the DS2655M2 I/O Module Framework.....

RS232 Tx

Purpose To transmit data values to a RS232 network. According to the number of physical connections available on the DS2655M2 Digital I/O Module, you can select the RS232 Tx I/O functions. There are up to 8 channels. The module number can be specified in the range 1 ... 5. Parameters You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 49 ... 56.

IOProperties.Out.Fct(<IOFunctionNumber> + ioInOffset<ModuleNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 1 ... 32.

m<ModuleNumber>_raw2io_<ChannelNumber>_ <ChannelNumber>_<ChannelNumber>i / Data Outputs the data to be send to the RS232 Tx channel.

Data type: UFix_1_0
Data width: 1

Values:

- 0: The output voltage level is +5.5 V.
- 1: The output voltage level is -5.5 V.

Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit by using only the lowest bit.

For information on the electrical characteristics of the DS2655M2 Digital I/O Module, refer to Data Sheet of the DS2655M2 Digital I/O Module (SCALEXIO Hardware Installation and Configuration (12)).

I/O mapping

The following I/O mapping is relevant if you use the *DS2655M2 I/O Module* framework for RS232 Rx channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS2655M2 Digital I/O Module.

Outport	Channel	Connector Pin	Signal
Data	1	18	TX (Ch. 1)
	5	20	TX (Ch. 5)
	9	22	TX (Ch. 9)
	13	24	TX (Ch. 13)
	17	26	TX (Ch. 17)
	21	28	TX (Ch. 21)
	25	30	TX (Ch. 25)
	29	32	TX (Ch. 29)

The I/O functions of the DS2655M2 I/O Module framework share the 32 I/O channels of the DS2655M2 Digital I/O Module. For details on the signal mapping to optimize channel usage, refer to Signal Mapping of the DS2655M2 Digital I/O Module (SCALEXIO Hardware Installation and Configuration \square).

Related topics	References
	Overview of the DS2655M2 I/O Module Framework25

RS485 Rx

Purpose	To receive data values from a RS485 network in simplex mode.		
Description	According to the number of physical connections available on the DS2655M2 Digital I/O Module, you can select the RS485 Rx I/O functions. There are up to 8 channels.		
	The module number can be specified in the range 1 5.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
	The I/O function number can be specified in the range 41 48.		
	IOProperties.In.Fct(<iofunctionnumber> + ioInOffset<modulenumber>).HcCustomName / Channel name specify a custom name for the specified channel.</modulenumber></iofunctionnumber>		
	IOProperties.In.Fct(<iofunctionnumber> + ioOutOffset<modulenumber>).Parameter(7).Init / RS485 Termination Lets you enable/disable the termination of the signal line by a serial resistor.</modulenumber></iofunctionnumber>		
	• 0: The termination is disabled.		
	• 1: The signal line is terminated by an internal 120 Ω resistor. This electrical interface setting can be changed in ConfigurationDesk.		
Port	You must add the following signals of the I/O function to the port definition of the custom module entity cm.		
	The channel number can be specified in the range 1, 5, 9,, 29.		
	m <modulenumber>_io2raw_<channelnumber>_ <channelnumber>_<channelnumber>i / Data Outputs the data received from the RS485 network. Data type: UFix_1_0 Data width: 1</channelnumber></channelnumber></channelnumber></modulenumber>		

Values:

- 0: The input voltage level is negative (< 0 V).
- 1: The input voltage level is positive (≥ 0 V).

I/O mapping

The following I/O mapping is relevant if you use the *DS2655M2 I/O Module* framework for RS485 Rx channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS2655M2 Digital I/O Module.

Outport	Channel	Connector Pin	Signal
Data	1	18	Rx- (Ch. 1-2)
	2	2	Rx+ (Ch. 1-2)
	5	20	Rx- (Ch. 5-6)
	6	4	Rx+ (Ch. 5-6)
	9	22	Rx- (Ch. 9-10)
	10	6	Rx+ (Ch. 9-10)
	13	24	Rx- (Ch. 13-14)
	14	8	Rx+ (Ch. 13-14)
	17	26	Rx- (Ch. 17-18)
	18	10	Rx+ (Ch. 17-18)
	21	28	Rx- (Ch. 21-22)
	22	12	Rx+ (Ch. 21-22)
	25	30	Rx- (Ch. 25-26)
	26	14	Rx+ (Ch. 25-26)
	29	32	Rx- (Ch. 29-30)
	30	16	Rx+ (Ch. 29-30)

The I/O functions of the DS2655M2 I/O Module framework share the 32 I/O channels of the DS2655M2 Digital I/O Module. For details on the signal mapping to optimize channel usage, refer to Signal Mapping of the DS2655M2 Digital I/O Module (SCALEXIO Hardware Installation and Configuration (1)).

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide (11))

References

Overview of the DS2655M2 I/O Module Framework.....

. 25

RS485 RxTx

Purpose	To implement communication via a RS485 network in half-duplex mode.
Description	According to the number of physical connections available on the DS2655M2 Digital I/O Module, you can select the RS485 RxTx I/O functions. There are up to 8 channels.
	The module number can be specified in the range 1 5.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 41 48.
	IOProperties.In.Fct(<iofunctionnumber> + ioInOffset<modulenumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</modulenumber></iofunctionnumber>
	IOProperties.Out.Fct(<iofunctionnumber> + ioOutOffset<modulenumber>).Parameter(17).Init / RS485 Termination Lets you enable/disable the termination of the signal line by a serial resistor.</modulenumber></iofunctionnumber>
	• 0: The termination is disabled.
	• 1: The signal line is terminated by an internal 120 Ω resistor.
	This electrical interface setting can be changed in ConfigurationDesk.
Port	You must add the following signals of the I/O function to the port definition of the custom module entity cm.
	The channel number can be specified in the range 1, 5, 9, \dots , 29.
	m <modulenumber+1>_raw2io_<channelnumber+1>_ <channelnumber+1>_<channelnumber+1>_ <channelnumber+1>i / Tx Data</channelnumber+1></channelnumber+1></channelnumber+1></channelnumber+1></modulenumber+1>

Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit by using only the lowest bit.

m<ModuleNumber>_raw2io_<ChannelNumber+2>_

<ChannelNumber+2>_ <ChannelNumber+2>_ <ChannelNumber+2>i / Tx Enable Enables the output of data values to the RS485 network and disables the high-impedance state.

Data type: UFix_1_0
Data width: 1
Values:

- 0: The output is set to the high-impedance state (tri-state). The Rx Data outport can output received data from the RS485 network.
- 1: The output is enabled and transmits the data values of the Tx Data inport. Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit by using only the lowest bit.

m<ModuleNumber>_io2raw_<ChannelNumber>_ <ChannelNumber>_<ChannelNumber>i /

Rx Data Outputs the data that is received from the RS485 network if the Tx Enable inport is set to 0.

Data type: UFix_1_0
Data width: 1
Values:

- 0: The input voltage level is negative (< 0 V).
- 1: The input voltage level is positive (≥ 0 V).

I/O mapping

The following I/O mapping is relevant if you use the *DS2655M2 I/O Module* framework for RS485 Rx channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS2655M2 Digital I/O Module.

Port	Channel	Connector Pin	Signal
Tx Data inport and Rx Data	1	18	RxTx- (Ch. 1-3)
outport 1)	2	2	RxTx+ (Ch. 1-3)
	3	35	No signal
	5	20	RxTx- (Ch. 5-7)
	6	4	RxTx+ (Ch. 5-7)
	7	37	No signal
	9	22	RxTx- (Ch. 9-11)
	10	6	RxTx+ (Ch. 9-11)
	11	39	No signal
	13	24	RxTx- (Ch. 13-15)
	14	8	RxTx+ (Ch. 13-15)
	15	41	No signal
	17	26	RxTx- (Ch. 17-19)
	18	10	RxTx+ (Ch. 17-19)
	19	43	No signal
	21	28	RxTx- (Ch. 21-23)
	22	12	RxTx+ (Ch. 21-23)
	23	45	No signal
	25	30	RxTx- (Ch. 25-27)
	26	14	RxTx+ (Ch. 25-27)
	27	47	No signal
	29	32	RxTx- (Ch. 29-31)
	30	16	RxTx+ (Ch. 29-31)
	31	49	No signal

¹⁾ The RS485 RxTx network is a half-duplex network.

The I/O functions of the DS2655M2 I/O Module framework share the 32 I/O channels of the DS2655M2 Digital I/O Module. For details on the signal mapping to optimize channel usage, refer to Signal Mapping of the DS2655M2 Digital I/O Module (SCALEXIO Hardware Installation and Configuration (1)).

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide $\mbox{\em }\mbox{\em }\$

References

RS485 Tx

Purpose	To transmit data values to a RS485 network in simplex mode.				
Description	According to the number of physical connections available on the DS2655M2 Digital I/O Module, you can select the RS485 Tx I/O functions. There are up to 8 channels.				
	The module number can be specified in the range $1 \dots 5$.				
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.				
	The I/O function number can be specified in the range 57 64.				
	IOProperties.Out.Fct(<iofunctionnumber> + ioInOffset<modulenumber>).HcCustomName / Channel name specify a custom name for the specified channel.</modulenumber></iofunctionnumber>				
	IOProperties.Out.Fct(<iofunctionnumber> + ioOutOffset<modulenumber>).Parameter(14).Init / RS485 Termination Lets you enable/disable the termination of the signal line by a serial resistor.</modulenumber></iofunctionnumber>				
	• 0: The termination is disabled.				
	• 1: The signal line is terminated by an internal 120 Ω resistor.				
	This electrical interface setting can be changed in ConfigurationDesk.				
Port	You must add the following signals of the I/O function to the port definition of the custom module entity cm.				
	The channel number can be specified in the range 1, 5, 9, \dots , 29.				
	m <modulenumber>_raw2io_<channelnumber>_ <channelnumber>_<channelnumber>_i / Data Outputs the data to the RS485 network if the Enable port is set to 1.</channelnumber></channelnumber></channelnumber></modulenumber>				
	Data type: UFix_1_0				
	Data width: 1				
	Values:				
	 0: The output voltage level is -5.5 V. 1: The output voltage level is +5.5 V. 				
	Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit				
	by using only the lowest bit.				
	m <modulenumber>_raw2io_<channelnumber+1>_ <channelnumber+1>_<channelnumber+1>_ <channelnumber+1>i / Data</channelnumber+1></channelnumber+1></channelnumber+1></channelnumber+1></modulenumber>				

Data type: UFix_1_0

Data width: 1

Values:

- 0: The output is disabled.
 The output voltage level is 0 V. The output does not support an high-impedance state (tri-state).
- 1: The output is enabled and transmits the data values of the Data inport. Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit by using only the lowest bit.

I/O mapping

The following I/O mapping is relevant if you use the *DS2655M2 I/O Module* framework for RS485 Rx channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS2655M2 Digital I/O Module.

Outport	Channel	Connector Pin	Signal
Data	1	18	Tx- (1-2)
	2	2	Tx+ (1-2)
	5	20	Tx- (5-6)
	6	4	Tx+ (5-6)
	9	22	Tx- (9-10)
	10	6	Tx+ (9-10)
	13	24	Tx- (13-14)
	14	8	Tx+ (13-14)
	17	26	Tx- (17-18)
	18	10	Tx+ (17-18)
	21	28	Tx- (21-22)
	22	12	Tx+ (21-22)
	25	30	Tx- (25-26)
	26	14	Tx+ (25-26)
	29	32	Tx- (29-30)
	30	16	Tx+ (29-30)

The I/O functions of the DS2655M2 I/O Module framework share the 32 I/O channels of the DS2655M2 Digital I/O Module. For details on the signal mapping to optimize channel usage, refer to Signal Mapping of the DS2655M2 Digital I/O Module (SCALEXIO Hardware Installation and Configuration (1)).

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide $\underline{\mathbf{m}})$

References

I/O Functions of the DS6651 Multi-I/O Module Framework

Introduction

The DS6651 Multi-I/O Module framework provides analog and digital I/O functionality of a SCALEXIO FPGA base board with at least one DS6651 Multi-I/O Module.

Where to go from here

Information in this section

Analog In To read data from an analog input signal in the FPGA application.	. 240	
Analog In-L To measure data of the 16-bit A/D converter.	. 244	
Analog Out To write data to an analog output signal in the FPGA application.	. 247	
Analog Out-T To write data to an analog output signal in the FPGA application.	. 248	
Digital In To read data from a digital input signal in the FPGA application.	. 250	
Digital In/Out-Z To read or write data to or from a digital signal in the FPGA application, or to switch the output to a high-impedance state (tristate).	. 251	
Digital Out To write data to a digital output signal in the FPGA application.	. 255	
Digital Out-Z To write data to a digital output signal in the FPGA application or to switch the output to a high-impedance state (tristate).	. 257	
RS485 Rx To implement communication via a RS485 network in simplex mode.	. 260	

RS485 Rx/Tx To implement communication via a RS485 network in half-duplex mode.	262
RS485 Tx To implement communication via a RS485 network in simplex mode.	265
Trigger To trigger the analog measurement.	267

Information in other sections

Other frameworks that provide access to the FPGA functionality of a SCALEXIO system: I/O Functions of the DS2655 FPGA Base Board Framework......87 The frameworks of the DS2655 FPGA Base Boards provide the standard I/O functionality of the boards. The DS6601 (KU035) FPGA Base Board framework of the DS6601 FPGA Base Board provide the standard I/O functionality of the board. The DS6602 (KU15P) FPGA Base Board framework of the DS6602 FPGA Base Board provide the standard I/O functionality of the board. I/O Functions of the DS2655M1 I/O Module Framework......205 The DS2655M1 I/O Module framework provides analog and digital I/O functionality of SCALEXIO FPGA base board with at least one DS2655M1 Multi-I/O Module. I/O Functions of the DS2655M2 I/O Module Framework......217 The DS2655M2 I/O Module framework provides digital I/O functionality of a SCALEXIO FPGA base board with at least one DS2655M2 Digital I/O Module. The Inter-FPGA Interface framework provides access to the I/O module slots of a SCALEXIO FPGA base board to implement an inter-FPGA communication bus.

Analog In

Purpose

To read data from an analog input signal in the FPGA application.

Description

According to the number of physical connections available on the DS6651 Multi-I/O Module, you can select the Analog In I/O functions. There are four channels.

The module number can be specified in the range 1 ... 5.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 25 ... 28.

IOProperties.In.Fct(<IOFunctionNumber> +

ioInOffset<ModuleNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.In.Fct(<IOFunctionNumber> +

ioInOffset<ModuleNumber>).Parameter(2).Init / Input range Lets you select the input voltage range that can be converted from analog to digital for the chosen ADC channel.

- 0: -60 V ... +60 V
- 1: -10 V ... +10 V
- 2: -5 V ... +5 V
- 3: -1 V ... +1 V

This electrical interface setting can be changed in ConfigurationDesk.

IOProperties.In.Fct(<IOFunctionNumber> +

ioInOffset<ModuleNumber>).Parameter(4).Init / Scaling Lets you select whether the I/O function scales the measuring results of the A/D converter to mV.

■ 0: mV

To output the measuring results in mV.

The valid value range corresponds to the settings of the Input range parameter in mV.

The default data type is Fix_22_5 to provide the precision of the A/D converter when using the ± 1 V input voltage range.

■ 1: Bi

To output the raw measuring results as a signed Bit value.

Value range: -32,768 ... +32,767.

Data type: Fix_22_5

Tip

If you select Bit, you can reduce the complexity of the logic by using only 16 bits of the raw measurement result due to the 16-bit resolution of the A/D converter.

IOProperties.In.Fct(<IOFunctionNumber> +

ioInOffset<ModuleNumber>).Parameter(6).Init / Trigger mode Lets you select the trigger mode and source for sampling the analog input voltage.

■ 15: Free running

The ADC samples the input voltage with a fixed sample period that is set by the Sample period parameter.

258: Trigger 1

The ADC samples the input voltage with each trigger impulse provided by a Trigger I/O function. Refer to Trigger on page 267.

• 274: Trigger 2

The ADC samples the input voltage with each trigger impulse provided by a Trigger I/O function. Refer to Trigger on page 267.

- Digital In:
 - 16 · (x-1) + 2: Digital In, $\langle x \rangle$, rising edge, 8 ns filter
 - 16 · (x-1) + 1026: Digital In, <x>, rising edge, no filter
 - 16 · (x-1) + 1538: Digital In, <x>, falling edge, 8 ns filter
 - 16 · (x-1) + 514: Digital In, <x>, falling edge, no filter

The selected digital input channel triggers the sampling of the analog input signal:

- <x>: Indicates the channel number of the digital input channel.
- Rising edge: A 0 to 1 transition of a digital input signal triggers the ADC.
- Falling edge: A 1 to 0 transition of a digital input signal triggers the ADC.
- 8 ns filter: The digital signal is filtered by a digital low-pass filter with a time constant of 8 ns.

IOProperties.In.Fct(<IOFunctionNumber> +

iolnOffset<ModuleNumber>).Parameter(8).Init / Sample period Lets you specify the sample period of the ADC in the free running mode.

Sample period = $n_{selected} \cdot 8 \text{ ns}$

With the value range 25 \leq n_{selected} \leq 3,750,000,000.

The resulting sample period is in the range 200 ns ... 30 s.

Ports

You must add the following signals of the I/O function to the port definition of the custom module entity ${\bf cm}$.

The channel number can be specified in the range 23 ... 26.

m<ModuleNumber>_rx<ChannelNumber>_data00 / Data Outputs the measured values of the 16-bit A/D converter.

Data type: Fix_22_5

Data width: 1

Value range: Depends on the setting of the Scaling parameter.

m<ModuleNumber>_rx<ChannelNumber>_ready_pulse / Data

New Outputs a flag that indicates the current status of the Data port.

New measured values from analog input channels of the same I/O module are always provided synchronously. If analog inputs are read from different I/O

modules, the measured values are provided either synchronously or offset by two clock cycles (16 ns). However, the sample time of the analog measurements is synchronous on different I/O modules except for 8 ns.

If synchronous measured values from analog inputs of different I/O modules are required, you can implement a logic to wait with the further processing of analog values until the Data New ports flag new data within two clock cycles.

Data type: UFix_1_0
Data width: 1

Values:

- 0: No new value is available at the Data port.
- 1: A new valid value is available at the Data port.
 The port is set to 1 only for one clock cycle.

I/O mapping

The following I/O mapping is relevant if you use the *DS6651 Multi-I/O Module* framework for analog input channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS6651 Multi-I/O Module ($x = 1 \dots 5$).

Outport	I/O Function Number	Channel Number	Connector Pin	Signal
Data	25	23	29	Analog In - Ch: 23 [Mod: x]
	26	24	14	Analog In - Ch: 24 [Mod: x]
	27	25	31	Analog In - Ch: 25 [Mod: x]
	28	26	48	Analog In - Ch: 26 [Mod: x]

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide $\underline{\mathbf{m}})$

References

Analog In-L

Purpose	To measure data of the 16-bit A/D converter.				
Description	According to the number of physical connections available on the DS6651 Multi-I/O Module, you can select the Analog In-L I/O functions. There are two channels.				
	The module number can be specified in the range 1 5.				
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.				
	The I/O function number can be specified in the range 29 30.				
	IOProperties.In.Fct(<iofunctionnumber> + ioInOffset<modulenumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</modulenumber></iofunctionnumber>				
	IOProperties.In.Fct(<iofunctionnumber> + ioInOffset<modulenumber>).Parameter(2).Init / Input range</modulenumber></iofunctionnumber>				
	■ 0: -60 V +60 V				
	■ 1: -10 V +10 V				
	■ 2: -5 V +5 V				
	 3: -1 V +1 V This electrical interface setting can be changed in ConfigurationDesk. 				
	IOProperties.In.Fct(<iofunctionnumber> + ioInOffset<modulenumber>).Parameter(4).Init / Scaling Lets you select</modulenumber></iofunctionnumber>				
	iomoniaetamondienamberzi, rarameter (4), init / ataling Lets you select				

ioInOffset<ModuleNumber>).Parameter(4).Init / Scaling Lets you select whether the I/O function scales the measuring results of the A/D converter to mV.

■ 0: mV

To output the measuring results in mV.

The valid value range corresponds to the settings of the Input range parameter in mV.

The default data type is Fix_22_5 to provide the precision of the A/D converter when using the ± 1 V input voltage range.

■ 1: Bit

To output the raw measuring results as a signed Bit value.

Value range: -32,768 ... +32,767.

Data type: Fix_22_5

Tip

If you select Bit, you can reduce the complexity of the logic by using only 16 bits of the raw measurement result due to the 16-bit resolution of the A/D converter.

IOProperties.In.Fct(<IOFunctionNumber> +

iolnOffset<ModuleNumber>).Parameter(6).Init / **Load Config** Lets you enable a 220 Ω resistor between the analog signal and the signal reference.

- 0: Disabled
- 1: 220 Ohm

IOProperties.In.Fct(<IOFunctionNumber> +

ioInOffset<ModuleNumber>).Parameter(8).Init / Trigger mode Lets you select the trigger mode and source for sampling the analog input voltage.

■ 15: Free running

The ADC samples the input voltage with a fixed sample period that is set by the Sample period parameter.

■ 258: Trigger 1

The ADC samples the input voltage with each trigger impulse provided by a Trigger I/O function. Refer to Trigger on page 267.

• 274: Trigger 2

The ADC samples the input voltage with each trigger impulse provided by a Trigger I/O function. Refer to Trigger on page 267.

- Digital In:
 - 16 (x-1) + 2: Digital In, $\langle x \rangle$, rising edge, 8 ns filter
 - 16 · (x-1) + 1026: Digital In, <x>, rising edge, no filter
 - 16 · (x-1) + 1538: Digital In, <x>, falling edge, 8 ns filter
 - 16 · (x-1) + 514: Digital In, <x>, falling edge, no filter

The selected digital input channel triggers the sampling of the analog input signal:

- <x>: Indicates the channel number of the digital input channel.
- Rising edge: A 0 to 1 transition of a digital input signal triggers the ADC.
- Falling edge: A 1 to 0 transition of a digital input signal triggers the ADC.
- 8 ns filter: The digital signal is filtered by a digital low-pass filter with a time constant of 8 ns.

IOProperties.In.Fct(<IOFunctionNumber> +

ioInOffset<ModuleNumber>).Parameter(10).Init / Sample period Lets you specify the sample period of the ADC in the free running mode.

Sample period = $n_{selected} \cdot 8 \text{ ns}$

With the value range 25 \leq n_{selected} \leq 3,750,000,000.

The resulting sample period is in the range 200 ns ... 30 s.

Ports

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 27 ... 28.

m<ModuleNumber>_rx<ChannelNumber>_data00 / Data Outputs the measured values of the 16-bit A/D converter.

Data type: Fix_22_5
Data width: 1

Value range: Depends on the setting of the Scaling parameter.

m<ModuleNumber>_rx<ChannelNumber>_ready_pulse / Data

New Outputs a flag that indicates the current status of the Data port. New measured values from analog input channels of the same I/O module are

always provided synchronously. If analog inputs are read from different I/O modules, the measured values are provided either synchronously or offset by two clock cycles (16 ns). However, the sample time of the analog measurements is synchronous on different I/O modules except for 8 ns.

If synchronous measured values from analog inputs of different I/O modules are required, you can implement a logic to wait with the further processing of analog values until the Data New ports flag new data within two clock cycles.

Data type: UFix_1_0
Data width: 1
Values:

- 0: No new value is available at the Data port.
- 1: A new valid value is available at the Data port.
 The port is set to 1 only for one clock cycle.

I/O mapping

The following I/O mapping is relevant if you use the *DS6651 Multi-I/O Module* framework for analog input channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS6651 Multi-I/O Module ($x = 1 \dots 5$).

Outport	I/O Function Number	Channel Number	Connector Pin	Signal
Data	29	27	16	Analog In-L - Ch: 27 [Mod: x]
	30	28	33	Analog In-L - Ch: 28 [Mod: x]

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide Ω

References

Overview of the DS6651 Multi-I/O Module Framework......27

Analog Out

Purpose	To write data to an analog output signal in the FPGA application.
Description	According to the number of physical connections available on the DS6651 Multi I/O Module, you can select the Analog Out I/O functions. There are four channels.
	The module number can be specified in the range 1 5.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 41 44.
	IOProperties.Out.Fct(<iofunctionnumber> + ioOutOffset<modulenumber>).HcCustomName / Channel name you specify a custom name for the specified channel.</modulenumber></iofunctionnumber>
	IOProperties.Out.Fct(<iofunctionnumber> + ioOutOffset<modulenumber>).Parameter(5).Init / Scaling Lets you select the scaling of the input data.</modulenumber></iofunctionnumber>
	■ 0: mV The valid input part range is 10,000
	The valid input port range is -10,000 +10,000 mV. 1: Bit
	The valid input port range is -32,768 +32,776 (16-bit converter).
Port	You must add the following signals of the I/O function to the port definition of the custom module entity cm.
	The channel number can be specified in the range 17 20.
	m <modulenumber>_tx<channelnumber>_data00_17_0_17_0i /</channelnumber></modulenumber>
	Data Outputs a voltage signal in the specified range.
	Data type: Fix_18_2 Data width: 1
	Update rate: 10.417 MS/s
I/O mapping	The following I/O mapping is relevant if you use the <i>DS6651 Multi-I/O Module</i> framework for analog output channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS6651 Multi-I/O Module (x = 1 5).

Outport	I/O Function Number	Channel Number	Connector Pin	Signal
Data	41	17	8	Analog Out - Ch: 17 [Mod: x]
	42	18	25	Analog Out - Ch: 18 [Mod: x]
	43	19	10	Analog Out - Ch: 19 [Mod: x]
	44	20	27	Analog Out - Ch: 20 [Mod: x]

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk \emph{VO} Function Implementation Guide $\mathbf{\Omega}$)

References

Analog Out-T

Purpose	To write data to an analog output signal in the FPGA application.			
Description	According to the number of physical connections available on the DS6651 Multi-I/O Module, you can select the Analog Out-T I/O functions. There are two channels.			
	The module number can be specified in the range 1 5.			
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.			
	The I/O function number can be specified in the range 45 46.			
	IOProperties.Out.Fct(<iofunctionnumber> + ioOutOffset<modulenumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</modulenumber></iofunctionnumber>			
	IOProperties.Out.Fct(<iofunctionnumber> + ioOutOffset<modulenumber>).Parameter(5).Init / Scaling Lets you select the scaling of the input data.</modulenumber></iofunctionnumber>			
	■ 0: mV			
	The valid input port range corresponds to the settings of the Mode parameter.			
	■ 1: Bit			

The valid input port range is -32,768 \dots +32,776 (16-bit converter).

IOProperties.Out.Fct(<IOFunctionNumber> +
ioOutOffset<ModuleNumber>).Parameter(7).Init / Mode Lets you select
the converter mode of the analog output channel.

■ 0: ±10 VDC

The DA converter directly outputs the voltage signal without using a transformer. The output voltage range is $-10 \text{ VDC} \dots +10 \text{ VDC}$.

■ 1: ±20 V transformer coupled AC

The DA converter outputs the voltage signal via a transformer. The output voltage range is -20 VAC ... +20 VAC.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity **cm**.

The channel number can be specified in the range 21 ... 22.

m<ModuleNumber>_tx<ChannelNumber>_data00_17_0_17_0i /

Data Outputs a voltage signal in the specified range.

Data type: Fix_18_2
Data width: 1

Update rate: 10.417 MS/s

I/O mapping

The following I/O mapping is relevant if you use the *DS6651 Multi-I/O Module* framework for analog output channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS6651 Multi-I/O Module ($x = 1 \dots 5$).

Outport	I/O Function Number	Channel Number	Connector Pin	Signal
Data	45	21	44	Analog Out-T - Ch: 21 [Mod: x]
	46	22	12	Analog Out-T - Ch: 22 [Mod: x]

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide (III)

References

Digital In

Purpose	To read data from a digital input signal in the FPGA application.			
Description	According to the number of physical connections available on the DS6651 Multi-I/O Module, you can select the Digital In I/O functions. There are up to 16 channels.			
	The module number can be specified in the range 1 5.			
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.			
	The I/O function number can be specified in the range 1 16.			
	IOProperties.Out.Fct(<iofunctionnumber> + ioOutOffset<modulenumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</modulenumber></iofunctionnumber>			
	IOProperties.In.Fct(<iofunctionnumber> + ioInOffset<modulenumber>).Parameter(8).Init / Threshold init voltage Lets you specify the voltage value that is used for the threshold in mV.</modulenumber></iofunctionnumber>			
	Range: 0 mV 12,000 mV in 100 mV steps.			
	This electrical interface setting can be changed in ConfigurationDesk.			
Port	You must add the following signals of the I/O function to the port definition of the custom module entity cm.			
	The channel number can be specified in the range 1 16.			
	m <modulenumber>_rx<channelnumber>_trigger00 / Data Outputs the current results of the digital input channel.</channelnumber></modulenumber>			
	Data type: UFix_1_0			
	Data width: 1			
	Values:			
	 0: Input voltage of the channel is below the threshold voltage of a high-low transition. 			
	 1: Input voltage of the channel is higher than or equal to the threshold voltage of a low-high transition. 			
	Update rate: FPGA clock frequency			
I/O mapping	The following I/O mapping is relevant if you use the DS6651 Multi-I/O Module framework for digital I/O channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS6651 Multi-I/O Module ($x = 1 5$).			

Outport	I/O Function Number	Channel number	Connector Pin	Signal
Data	1	1	18	Digital In - Ch: 1 [Mod: x]
	2	2	2	Digital In - Ch: 2 [Mod: x]
	3	3	35	Digital In - Ch: 3 [Mod: x]
	4	4	19	Digital In - Ch: 4 [Mod: x]
	5	5	3	Digital In - Ch: 5 [Mod: x]
	6	6	36	Digital In - Ch: 6 [Mod: x]
	7	7	20	Digital In - Ch: 7 [Mod: x]
	8	8	4	Digital In - Ch: 8 [Mod: x]
	9	9	37	Digital In - Ch: 9 [Mod: x]
	10	10	21	Digital In - Ch: 10 [Mod: x]
	11	11	22	Digital In - Ch: 11 [Mod: x]
	12	12	6	Digital In - Ch: 12 [Mod: x]
	13	13	39	Digital In - Ch: 13 [Mod: x]
	14	14	23	Digital In - Ch: 14 [Mod: x]
	15	15	7	Digital In - Ch: 15 [Mod: x]
	16	16	40	Digital In - Ch: 16 [Mod: x]

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide ${\bf \Omega}$)

References

Digital In/Out-Z

Purpose To read or write data to or from a digital signal in the FPGA application, or to switch the output to a high-impedance state (tristate). Description According to the number of physical connections available on the DS6651 Multi-I/O Module, you can select the Digital In/Out-Z I/O functions. There are up to four channels. The module number can be specified in the range 1 ... 5.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 4.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).Parameter(6).Init / Output Mode Lets you select the output mode.

• 49: Low-side switch

Lets you actively drive the output to GND to output a low-level signal.

An external load to VCC is required to output a high-level signal.

■ 50: High-side switch

Lets you actively drive the output to VCC to output a high-level signal.

An external load to GND is necessary to output a low-level signal.

■ 51: Push-pull

Lets you drive the output between VCC and GND.

An external load is not required.

This electrical interface setting can be changed in ConfigurationDesk.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).Parameter(8).Init / Drive ConfigLets you enable/disable the termination of the signal line by an internal resistor.

■ 1: Direct Drive

Lets you directly drive the I/O signal. The internal termination resistor is disabled.

• 0: 68 Ohm Terminated

Lets you terminate the I/O signal with an internal 68 Ω resistor.

This electrical interface setting can be changed in ConfigurationDesk.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).Parameter(10).Init / High Supply Lets you select the VCC voltage that determines the high-level voltage for the high-side switch.

- 0:5 V
- 1: 3.3 V

This electrical interface setting can be changed in ConfigurationDesk.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).Parameter(14).Init / Threshold init voltage
Lets you specify the voltage value that is used for the threshold in mV.

Range: 0 mV ... 12,000 mV in 100 mV steps.

This electrical interface setting can be changed in ConfigurationDesk.

Ports

You must add the following signals of the I/O function to the port definition of the custom module entity **cm**.

The channel number can be specified in the range 1, 5, 9, 13.

m<ModuleNumber>_rx<ChannelNumber>_trigger00 / Data In Outputs the current results of the digital input channel.

Data type: UFix_1_0
Data width: 1

Values:

- 0: Input voltage of the channel is below the threshold voltage of a high-low transition.
- 1: Input voltage of the channel is higher than or equal to the threshold voltage of a low-high transition.

Update rate: FPGA clock frequency

Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit by using only the lowest bit.

Note

Asynchronous input data might lead to metastable register states because input data is synchronized only by a single register stage. Further synchronization techniques might be necessary.

m<ModuleNumber>_tx<ChannelNumber>_trigger00 / Data

Out Outputs a signal in the specified range if the Enable port is set to 1.

To set the voltage level, use the High supply parameter.

Data Type: UFix_1_0

Data width: 1

If driven with 0, the hardware outputs a low-level signal. If driven with 1, the hardware outputs a high-level signal.

Update rate:

Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit by using only the lowest bit.

Note

The frequency that can be generated is smaller than the update rate. For information on the electrical characteristics of the DS6651 Multi-I/O Module, refer to Data Sheet of the DS6651 Multi-I/O Module (SCALEXIO Hardware Installation and Configuration (12)).

m<ModuleNumber>_tx<ChannelNumber>_trigger00 / Enable Enables the output of data values and disables the high-impedance state.

Data type: UFix_1_0

Data width: 1

Values:

- 0: The output is set to the high-impedance state.
- 1: The output is enabled and outputs the data values of the Data inport. Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit by using only the lowest bit.

I/O mapping

The following I/O mapping is relevant if you use the *DS6651 Multi-I/O Module* framework for digital I/O channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS6651 Multi-I/O Module (x = 1 ... 5).

Ports	I/O Function Number	Channel Number	Connector Pin	Signal
Data In	1	1	18	Digital In/Out-Z - Ch: 1-3 [Mod: x]
and			2	No signal
Data Out			35	No signal
			19	Usable by other I/O functions
	2	5	3	Digital In/Out-Z - Ch: 5-7 [Mod: x]
			36	No signal
			20	No signal
			4	Usable by other I/O functions
	3	9	37	Digital In/Out-Z - Ch: 9-11 [Mod: x]
			21	No signal
			22	No signal
			6	Usable by other I/O functions
	4	13	39	Digital In/Out-Z - Ch: 13-15 [Mod: x]
			23	No signal
			7	No signal
			40	Usable by other I/O functions

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide $\mathbf{\Omega}$)

References

Digital Out

Purpose	To write data to a digital output signal in the FPGA application.	
Description	According to the number of physical connections available on the DS6651 I/O Module, you can select the Digital Out I/O functions. There are up to channels.	
	The module number can be specified in the range 1 5.	
Parameters	You can find templates for the functions and the following parameters in handcode FPGA framework INI file.	the
	The I/O function number can be specified in the range 1 16.	
	IOProperties.Out.Fct(<iofunctionnumber> + ioOutOffset<modulenumber>).HcCustomName / Channel name you specify a custom name for the specified channel.</modulenumber></iofunctionnumber>	Lets
	 IOProperties.Out.Fct(<iofunctionnumber> + ioOutOffset<modulenumber>).Parameter(4).Init / Output Mode you select the output mode.</modulenumber></iofunctionnumber> 17: Low-side switch Lets you actively drive the output to GND to output a low-level signal. An external load to VCC is required to output a high-level signal. 18: High-side switch Lets you actively drive the output to VCC to output a high-level signal. 	Lets

■ 19: Push-pull

Lets you drive the output between VCC and GND.

An external load is not required.

This electrical interface setting can be changed in ConfigurationDesk.

An external load to GND is necessary to output a low-level signal.

IOProperties.Out.Fct(<IOFunctionNumber> + ioOutOffset<ModuleNumber>).Parameter(6).Init / Drive Config enable/disable the termination of the signal line by an internal resistor.

■ 1: Direct Drive

Lets you directly drive the I/O signal. The internal termination resistor is disabled.

• 0: 68 Ohm Terminated

Lets you terminate the I/O signal with an internal 68 Ω resistor.

This electrical interface setting can be changed in ConfigurationDesk.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).Parameter(8).Init / High Supply Lets you select the VCC voltage that determines the high-level voltage for the high-side switch.

■ 0:5 V

■ 1: 3.3 V

This electrical interface setting can be changed in ConfigurationDesk.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 1 ... 16.

m<ModuleNumber>_tx<ChannelNumber>_trigger00 / Data Outputs a signal in the specified range.

To set the voltage level, use the High supply parameter.

Data Type: UFix_1_0

Data width: 1

If driven with 0, the hardware outputs a low-level signal. If driven with 1, the hardware outputs a high-level signal.

Update rate: FPGA clock frequency

Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit by using only the lowest bit.

Note

The frequency that can be generated is smaller than the update rate. For information on the electrical characteristics of the DS6651 Multi-I/O Module, refer to Data Sheet of the DS6651 Multi-I/O Module (SCALEXIO Hardware Installation and Configuration \square).

I/O mapping

The following I/O mapping is relevant if you use the *DS6651 Multi-I/O Module* framework for digital I/O channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS6651 Multi-I/O Module (x = 1 ... 5).

Outport	I/O Function Number	Channel Number	Connector Pin	Signal
Data	1	1	18	Digital Out - Ch: 1 [Mod: x]
	2	2	2	Digital Out - Ch: 2 [Mod: x]
	3	3	35	Digital Out - Ch: 3 [Mod: x]
	4	4	19	Digital Out - Ch: 4 [Mod: x]
	5	5	3	Digital Out - Ch: 5 [Mod: x]
	6	6	36	Digital Out - Ch: 6 [Mod: x]
	7	7	20	Digital Out - Ch: 7 [Mod: x]
	8	8	4	Digital Out - Ch: 8 [Mod: x]
	9	9	37	Digital Out - Ch: 9 [Mod: x]
	10	10	21	Digital Out - Ch: 10 [Mod: x]
	11	11	22	Digital Out - Ch: 11 [Mod: x]
	12	12	6	Digital Out - Ch: 12 [Mod: x]
	13	13	39	Digital Out - Ch: 13 [Mod: x]
	14	14	23	Digital Out - Ch: 14 [Mod: x]
	15	15	7	Digital Out - Ch: 15 [Mod: x]
	16	16	40	Digital Out - Ch: 16 [Mod: x]

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide ${\bf \Omega}$)

References

Digital Out-Z

Purpose To write data to a digital output signal in the FPGA application or to switch the output to a high-impedance state (tristate). Description According to the number of physical connections available on the DS6651 Multi-I/O Module, you can select the Digital Out-Z I/O functions. There are up to 8 channels. The module number can be specified in the range 1 ... 5.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 17 ... 24.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).Parameter(5).Init / Output Mode Lets you select the output mode.

• 33: Low-side switch

Lets you actively drive the output to GND to output a low-level signal.

An external load to VCC is required to output a high-level signal.

■ 34: High-side switch

Lets you actively drive the output to VCC to output a high-level signal.

An external load to GND is necessary to output a low-level signal.

■ 35: Push-pull

Lets you drive the output between VCC and GND.

An external load is not required.

This electrical interface setting can be changed in ConfigurationDesk.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).Parameter(7).Init / Drive ConfigLets you enable/disable the termination of the signal line by an internal resistor.

■ 1: Direct Drive

Lets you directly drive the I/O signal. The internal termination resistor is disabled.

• 0: 68 Ohm Terminated

Lets you terminate the I/O signal with an internal 68 Ω resistor.

This electrical interface setting can be changed in ConfigurationDesk.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).Parameter(9).Init / High Supply Lets you select the VCC voltage that determines the high-level voltage for the high-side switch.

- 0:5 V
- 1: 3.3 V

This electrical interface setting can be changed in ConfigurationDesk.

Ports

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 1, 3, 5, ... 15.

m<ModuleNumber>_tx<ChannelNumber>_trigger00 / **Data** Outputs a signal in the specified range.

To set the voltage level, use the High supply parameter.

Data Type: UFix_1_0

Data width: 1

If driven with 0, the hardware outputs a low-level signal. If driven with 1, the hardware outputs a high-level signal.

Update rate:

Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit by using only the lowest bit.

Note

The frequency that can be generated is smaller than the update rate. For information on the electrical characteristics of the DS6651 Multi-I/O Module, refer to Data Sheet of the DS6651 Multi-I/O Module (SCALEXIO Hardware Installation and Configuration (12)).

m<ModuleNumber>_tx<ChannelNumber>_trigger00 / Enable Enables the output of data values and disables the high-impedance state.

Data Type: UFix_1_0
Data width: 1

Values:

- 0: The output is set to the high-impedance state.
- 1: The output is enabled and outputs the data values of the Data inport.

Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit by using only the lowest bit.

I/O mapping

The following I/O mapping is relevant if you use the *DS6651 Multi-I/O Module* framework for digital I/O channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS6651 Multi-I/O Module (x = 1 ... 5).

Outport	I/O Function Number	Channel Number	Connector Pin	Signal
Data	17	1	18	Digital Out-Z - Ch: 1-2 [Mod: x]
			2	No signal
	18	3	35	Digital Out-Z - Ch: 3-4 [Mod: x]
			19	No signal
	19	5	3	Digital Out-Z - Ch: 5-6 [Mod: x]
			36	No signal
	20	7	20	Digital Out-Z - Ch: 7-8 [Mod: x]
			4	No signal
	21	9	37	Digital Out-Z - Ch: 9-10 [Mod: x]
			21	No signal
	22	11	22	Digital Out-Z - Ch: 11-12 [Mod: x]
			6	No signal
	23	13	39	Digital Out-Z - Ch: 13-14 [Mod: x]
			23	No signal
	24	15	7	Digital Out-Z - Ch: 15-16 [Mod: x]
			40	No signal

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide $\mathbf{\Omega}$)

References

RS485 Rx

Purpose To implement communication via a RS485 network in simplex mode. Description According to the number of physical connections available on the DS6651 Multi-I/O Module, you can select the RS485 Rx I/O functions. There are up to 8 channels. The module number can be specified in the range 1 ... 5.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 17 ... 24.

IOProperties.In.Fct(<IOFunctionNumber> +

ioInOffset<ModuleNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(<IOFunctionNumber> + ioOutOffset<ModuleNumber>).Parameter(8).Init / RS485

Termination Lets you enable an internal termination between the signal lines. The setting can be overwritten by the RS485 termination ports.

■ 0: Open

The signal lines are not terminated.

■ 1: Terminated

An internal 120 $\Omega/5$ nF RC termination terminates the signal lines.

This electrical interface setting can be changed in ConfigurationDesk.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity ${\bf cm}$.

The channel number can be specified in the range 1, 3, 5, ... 15.

m<ModuleNumber>_rx<ChannelNumber>_trigger00 / RX Data Outputs the data received from the RS485 network.

Data type: UFix_1_0
Data width: 1

Values:

- 0: The input voltage level is negative (< 0 V).
- 1: The input voltage level is positive (≥ 0 V).

I/O mapping

The following I/O mapping is relevant if you use the *DS6651 Multi-I/O Module* framework for digital I/O channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS6651 Multi-I/O Module (x = 1 ... 5).

Outport	I/O Function Number	Channel Number	Connector Pin	Signal
Data	17	1	18	RS485 Rx Ch: 1-2 [Mod: x]
			2	RS485 Rx+ - Ch: 1-2 [Mod: x]
	18	3	35	RS485 Rx Ch: 3-4 [Mod: x]
			19	RS485 Rx+ - Ch: 3-4 [Mod: x]
	19	5	3	RS485 Rx Ch: 5-6 [Mod: x]
			36	RS485 Rx+ - Ch: 5-6 [Mod: x]
	20	7	20	RS485 Rx Ch: 7-8 [Mod: x]
			4	RS485 Rx+ - Ch: 7-8 [Mod: x]
	21	9	37	RS485 Rx Ch: 9-10 [Mod: x]
			21	RS485 Rx+ - Ch: 9-10 [Mod: x]
	22	11	22	RS485 Rx Ch: 11-12 [Mod: x]
			6	RS485 Rx+ - Ch: 11-12 [Mod: x]
	23	13	39	RS485 Rx Ch: 13-14 [Mod: x]
			23	RS485 Rx+ - Ch: 13-14 [Mod: x]
	24	15	7	RS485 Rx Ch: 15-16 [Mod: x]
			40	RS485 Rx+ - Ch: 15-16 [Mod: x]

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide (III)

References

Overview of the DS6651 Multi-I/O Module Framework.....

RS485 Rx/Tx

Purpose	To implement communication via a RS485 network in half-duplex mode.
Description	According to the number of physical connections available on the DS6651 Multi-I/O Module, you can select the RS485 Rx/Tx I/O functions. There are up to four channels.
	The module number can be specified in the range 1 5.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 37 ... 40.

IOProperties.In.Fct(<IOFunctionNumber> +

iolnOffset<ModuleNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(<IOFunctionNumber> +

ioOutOffset<ModuleNumber>).Parameter(10).Init / High supply Lets you select the differential output voltage.

- 0:5 V
- 1: 3.3 V

IOProperties.Out.Fct(<IOFunctionNumber> + ioOutOffset<ModuleNumber>).Parameter(16).Init / RS485

Termination Lets you enable an internal termination between the signal lines. The setting can be overwritten by the RS485 termination ports.

- 0: Open
 - The signal lines are not terminated.
- 1: Terminated

An internal 120 $\Omega/5$ nF RC termination terminates the signal lines.

This electrical interface setting can be changed in ConfigurationDesk.

Ports

You must add the following signals of the I/O function to the port definition of the custom module entity ${\bf cm}$.

The channel number can be specified in the range 1, 5, 9, 13.

m<ModuleNumber>_rx<ChannelNumber>_trigger00 / RX Data Outputs the data that is received from the RS485 network if the Tx Enable inport is set to 0.

Data type: UFix_1_0

Data width: 1

Values:

- 0: The input voltage level is negative (< 0 V).
- 1: The input voltage level is positive (≥ 0 V).

m<ModuleNumber>_tx<ChannelNumber>_trigger00 / Tx Data Outputs the data to be send to the RS485 network if the Tx Enable port is set to 1.

The differential output voltage level depends on the setting of the High Supply parameter.

Data Type: UFix_1_0

Data width: 1

Values:

- 0: The output voltage level is low.
- 1: The output voltage level is high.

263

Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit by using only the lowest bit.

m<ModuleNumber>_tx<ChannelNumber>_trigger00 / Tx

Enable Enables the output of data values to the RS485 network and disables the high-impedance state.

Data type: UFix_1_0
Data width: 1
Values:

- 0: The output is set to the high-impedance state (tristate). The Rx Data outport can output received data from the RS485 network.
- 1: The output is enabled and transmits the data values of the Tx Data inport. Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit by using only the lowest bit.

I/O mapping

The following I/O mapping is relevant if you use the *DS6651 Multi-I/O Module* framework for digital I/O channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS6651 Multi-I/O Module (x = 1 ... 5).

Ports	I/O Function Number	Channel Number	Connector Pin	Signal
Rx Data	37	1	18	RS485 RxTx Ch: 1-3 [Mod: x]
and			2	RS485 RxTx+ - Ch: 1-3 [Mod: x]
Tx Data			35	No signal
			19	Usable by other I/O functions
	38	5	3	RS485 RxTx Ch: 5-7 [Mod: x]
			36	RS485 RxTx+ - Ch: 5-7 [Mod: x]
			20	No signal
			4	Usable by other I/O functions
	39	9	37	RS485 RxTx Ch: 9-11 [Mod: x]
			21	RS485 RxTx+ - Ch: 9-11 [Mod: x]
			22	No signal
			6	Usable by other I/O functions
	40	13	39	RS485 RxTx Ch: 13-15 [Mod: x]
			23	RS485 RxTx+ - Ch: 13-15 [Mod: x]
			7	No signal
			40	Usable by other I/O functions

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide $\mathbf{\Omega}$)

References

Overview of the DS6651 Multi-I/O Module Framework....

RS485 Tx

Purpose	To implement communication via a RS485 network in simplex mode.			
Description	According to the number of physical connections available on the DS6651 Multi-I/O Module, you can select the RS485 Tx I/O functions. There are up to 8 channels.			
	The module number can be specified in the range 1 5.			
Parameters	You can find templates for the functions and the following parameters in handcode FPGA framework INI file.	the		
	The I/O function number can be specified in the range 29 36.			
	IOProperties.In.Fct(<iofunctionnumber> + ioInOffset<modulenumber>).HcCustomName / Channel name specify a custom name for the specified channel.</modulenumber></iofunctionnumber>	ets you		
	IOProperties.Out.Fct(<iofunctionnumber> + ioOutOffset<modulenumber>).Parameter(9).Init / High supply select the differential output voltage. • 0: 5 V • 1: 3.3 V</modulenumber></iofunctionnumber>	ets you		
	IOProperties.Out.Fct(<iofunctionnumber> + ioOutOffset<modulenumber>).Parameter(15).Init / RS485</modulenumber></iofunctionnumber>			

ioOutOffset<ModuleNumber>).Parameter(15).Init / RS485

Termination Lets you enable an internal termination between the signal lines. The setting can be overwritten by the RS485 termination ports.

■ 0: Open

The signal lines are not terminated.

■ 1: Terminated

An internal 120 Ω /5 nF RC termination terminates the signal lines.

This electrical interface setting can be changed in ConfigurationDesk.

Ports

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 1, 3, 5, ... 15.

m<ModuleNumber>_tx<ChannelNumber>_trigger00 / Data Outputs the data to the RS485 network if the Enable port is set to 1.

The differential output voltage level depends on the setting of the High Supply

Data Type: UFix_1_0
Data width: 1
Values:

- 0: The output voltage level is low.
- 1: The output voltage level is high.

Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit by using only the lowest bit.

m<ModuleNumber>_tx<ChannelNumber>_trigger00 / Enable Enables the output of data values to the RS485 network.

Data type: UFix_1_0
Data width: 1
Values:

- 0: The output is disabled.
 The output voltage level is 0 V. The output does not support an high-impedance state (tri-state).
- 1: The output is enabled and transmits the data values of the Data inport. Range exceeding is possible (using input bit widths > 1) and will be cast to 1 bit by using only the lowest bit.

I/O mapping

The following I/O mapping is relevant if you use the DS6651 Multi-I/O Module framework for digital I/O channels. The signals are available at the female 50-pin Sub-D I/O connector of the respective DS6651 Multi-I/O Module (x=1...5).

Outport	I/O Function Number	Channel Number	Connector Pin	Signal
Data	29	1	18	RS485 Tx Ch: 1-2 [Mod: x]
			2	RS485 Tx+ - Ch: 1-2 [Mod: x]
	30	3	35	RS485 Tx Ch: 3-4 [Mod: x]
			19	RS485 Tx+ - Ch: 3-4 [Mod: x]
	31	5	3	RS485 Tx Ch: 5-6 [Mod: x]
			36	RS485 Tx+ - Ch: 5-6 [Mod: x]
	32	7	20	RS485 Tx Ch: 7-8 [Mod: x]
			4	RS485 Tx+ - Ch: 7-8 [Mod: x]
	33	9	37	RS485 Tx Ch: 9-10 [Mod: x]
			21	RS485 Tx+ - Ch: 9-10 [Mod: x]
	34	11	22	RS485 Tx Ch: 11-12 [Mod: x]
			6	RS485 Tx+ - Ch: 11-12 [Mod: x]
	35	13	39	RS485 Tx Ch: 13-14 [Mod: x]
			23	RS485 Tx+ - Ch: 13-14 [Mod: x]
	36	15	7	RS485 Tx Ch: 15-16 [Mod: x]
			40	RS485 Tx+ - Ch: 15-16 [Mod: x]

Related topics

Basics

Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide $\underline{\mathbf{m}})$

References

Trigger

Purpose	To trigger the analog measurement.
Description	According to the number of physical connections available on the DS6651 Multi-I/O Module, you can select the Trigger I/O functions. There are two channels.
	The module number can be specified in the range 1 5.

Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.				
	The I/O function number can be specified in the range 47 48.				
	IOProperties.In.Fct(<iofunctionnumber> + ioInOffset<modulenumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</modulenumber></iofunctionnumber>				
Port	You must add the following signals of the I/O function to the port definition of the custom module entity cm.				
	The channel number can be specified in the range 17 18.				
	m <modulenumber>_tx<channelnumber>_trigger00 / Enable Lets you trigger the analog measurement of the DS6651 Multi-I/O Module. Data type: UFix_1_0 Data width: 1</channelnumber></modulenumber>				
	A transition from 0 to 1 provides a trigger impulse that can be used by the Analog In/Analog In-L I/O functions. Refer to Analog In on page 240 and Analog In-L on page 244.				
I/O mapping	No external connection.				
Related topics	Basics				
	Configuring the Basic Functionality (FPGA) (ConfigurationDesk I/O Function Implementation Guide (14))				
	References				
	Overview of the DS6651 Multi-I/O Module Framework				

I/O Functions of the DS660X_MGT Framework

Introduction

The DS660X_MGT framework provides access to an MGT module. An MGT module can be installed to the following SCALEXIO FPGA base boards:

- DS6601 FPGA Base Board
- DS6602 FPGA Base Board

Where to go from here

Information in this section

Aurora 64b66b In To provide read access to the installed MGT module.	270
Aurora 64b66b Out To provide write access to the installed MGT module.	271
Aurora 64b66b 128 Bit In	273
Aurora 64b66b 128 Bit Out	275
MGT In To provide the information about the connection between the GTH transceivers and the MGT module and to specify the reference clock frequency.	277
MGT Out To provide the information about the connection between the GTH transceivers and the MGT module.	278

Aurora 64b66b In

Purpose	To provide read access to the installed MGT module.
Description	The DS6601 and DS6602 FPGA Base Boards provide an MGT module slot to install an MGT Module. The Aurora 64b66b In I/O function lets you configure read access to the MGT communication.
	This I/O function is not considered when you generate the processor interface model.
	Used communication protocol setting The I/O function uses the Aurora 64B/66B protocol with the following settings: Transceiver: GTH Line Rate: 10.3125 Gbps Dataflow Mode: Duplex Interface: Framing Flow Control: NFC USER K: off Little Endian Support: off CRC: off For more information on the protocol, refer to https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b/v12_0/pg074-aurora-64b66b.pdf.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file of the FPGA base board.
	The I/O function number can be specified in the range 1 4.
	The used module slot is 1 ($mgtModuleNr = 1$).
	hcfw.IOProperties.In.Fct(<iofunctionnumber> + mgtInOffset (1)).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	You must add the following signals of the I/O function to the port definition of the custom module entity cm.
	The lane number can be specified in the range 1 4.
	mgt_lane <lanenumber>_rx_data / Data Inport to read a 64-bit data value from the MGT communication bus.</lanenumber>
	and the second of the second o

User data transfer rate: Max. 8 Gbit/s (125 MHz FPGA clock, 64 bits)

MGT latency (latency between sender and receiver via an optical loopback):

• With maximum data rate: 456 ns

• Single words: Max. 472 ns, typ. 384 ns

If you implement inter-FPGA communication via MGT modules, clock drifts can result in additional latencies. Refer to Implementing Inter-FPGA Communication via MGT Modules (RTI FPGA Programming Blockset Handcode Interface Guide (12)).

Data type: U_Fix64_0

Data width: 1

mgt_lane<LaneNumber>_rx_valid / Data New Inport to indicate whether a new data value was received by the MGT module.

If the MGT module contains a new value, the flag changes from 0 to 1 for one clock cycle:

• 0: No new data available.

1: New data available.Data type: U_Fix1_0

Data width: 1

I/O mapping

The MGT communication bus uses the MPO connector of the FPGA Base Board.

Related topics

Basics

Overview of Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide \square)

Aurora 64b66b Out

Purpose

To provide write access to the installed MGT module.

Description

The DS6601 and DS6602 FPGA Base Boards provide an MGT module slot to install an MGT Module. The Aurora 64b66b Out I/O function lets you configure write access to the MGT communication.

This I/O function is not considered when you generate the processor interface model.

Used communication protocol setting The I/O function uses the Aurora 64B/66B protocol with the following settings:

■ Transceiver: GTH

• Line Rate: 10.3125 Gbps

Dataflow Mode: Duplex

Interface: FramingFlow Control: NFC

USER K: off

• Little Endian Support: off

CRC: off

For more information on the protocol, refer to

https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b/v12_0/pg074-aurora-64b66b.pdf.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file of the FPGA base board.

The I/O function number can be specified in the range 1 ... 4.

The used module slot is 1 (mqtModuleNr = 1).

hcfw.IOProperties.Out.Fct(<IOFunctionNumber> + mgtOutOffset
(1)).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The lane number can be specified in the range 1 ... 4.

mgt_lane<LaneNumber>_tx_valid / EnableOutport to enable the write access to the MGT communication bus:

- 0: No write access.
- 1: The Data port value of the current clock cycle is written on the MGT communication bus.

Data type: UFix_1_0
Data width: 1

mgt_lane<LaneNumber>_tx_data / Data Outport to write a 64-bit data value to the MGT communication bus.

User data transfer rate: Max. 8 Gbit/s (125 MHz FPGA clock, 64 bits)
MGT latency (latency between sender and receiver via an optical loopback):

- With maximum data rate: 456 ns
- Single words: Max. 472 ns, typ. 384 ns

If you implement inter-FPGA communication via MGT modules, clock drifts can result in additional latencies. Refer to Implementing Inter-FPGA Communication via MGT Modules (RTI FPGA Programming Blockset Handcode Interface Guide (12)).

Data type: U_Fix64_0

Data width: 1

mgt_lane<LaneNumber>_tx_ready / Ready Inport to read a flag that indicates that the MGT module is ready to write new data on the MGT communication bus:

• 0: The MGT module is busy.

• 1: New data values can be written to the MGT communication bus.

Data type: UFix_1_0
Data width: 1

I/O mapping

The MGT communication bus uses the MPO connector of the FPGA Base Board.

Related topics

Basics

Overview of Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide \square)

Aurora 64b66b 128 Bit In

Purpose

To provide 128-bit-based read access to the installed MGT module.

Description

The DS6601 and DS6602 FPGA Base Boards provide an MGT module slot to install an MGT Module. The Aurora 64b66b 128 Bit In I/O function lets you configure read access to the MGT communication.

This I/O function is not considered when you generate the processor interface model.

Used communication protocol setting The I/O function uses the Aurora 64B/66B protocol with the following settings:

Transceiver: GTH

Line Rate: 10.3125 Gbps
Dataflow Mode: Duplex
Interface: Framing
Flow Control: NFC

USER K: off

■ Little Endian Support: off

CRC: off

For more information on the protocol, refer to

https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b/v12_0/pg074-aurora-64b66b.pdf.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file of the FPGA base board.

The I/O function number can be specified in the range 5 ... 8.

The used module slot is 1 (mgtModuleNr = 1).

hcfw.IOProperties.In.Fct(<IOFunctionNumber> + mgtlnOffset
(1)).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity ${\bf cm}$.

The lane number can be specified in the range 1 ... 4.

mgt_lane<LaneNumber>_rx_data / Data Inport to read a 128-bit data value from the MGT communication bus.

User data transfer rate: Max. 10.3125 Gbit/s, limited by the MGT module.

MGT latency (Latency between sender and receiver via an optical loopback):

- With maximum data rate: Max. 6.272 μs, typ. 6.192 μs
 The latency increases, because the TX-FIFO buffer becomes full when the data stream fills the buffer with 16 Gbit/s (128 bits at 125 MHz).
- Single words: Max. 472 ns, typ. 384 ns

If you implement inter-FPGA communication via MGT modules, clock drifts can result in additional latencies. Refer to Implementing Inter-FPGA Communication via MGT Modules (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

Data type: UFix_128_0

Data width: 1

mgt_lane<LaneNumber>_rx_valid / Data New Inport to indicate whether a new data value was received by the MGT module.

If the MGT module contains a new value, the flag changes from 0 to 1 for one clock cycle:

- 0: No new data available.
- 1: New data available.

Data type: U_Fix1_0
Data width: 1

I/O mapping

The MGT communication bus uses the MPO connector of the FPGA Base Board.

Related topics

Basics

Overview of Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide \square)

Aurora 64b66b 128 Bit Out

Purpose

To provide 128-bit-based write access to the installed MGT module.

Description

The DS6601 and DS6602 FPGA Base Boards provide an MGT module slot to install an MGT Module. The Aurora 64b66b 128 Bit Out I/O function lets you configure write access to the MGT communication.

This I/O function is not considered when you generate the processor interface model.

Used communication protocol setting The I/O function uses the Aurora 64B/66B protocol with the following settings:

■ Transceiver: GTH

Line Rate: 10.3125 GbpsDataflow Mode: Duplex

Interface: FramingFlow Control: NFCUSER K: off

• Little Endian Support: off

CRC: off

For more information on the protocol, refer to

https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b/v12_0/pg074-aurora-64b66b.pdf.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file of the FPGA base board.

The I/O function number can be specified in the range $5 \dots 8$.

The used module slot is 1 (mgtModuleNr = 1).

hcfw.IOProperties.Out.Fct(<IOFunctionNumber> + mgtOutOffset
(1)).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The lane number can be specified in the range 1 ... 4.

mgt_lane<LaneNumber>_tx_valid / Enable Outport to enable the write access to the MGT communication bus:

- 0: No write access.
- 1: The Data port value of the current clock cycle is written on the MGT communication bus.

Data type: UFix_1_0
Data width: 1

mgt_lane<LaneNumber>_tx_data / Data Outport to write a 128-bit data value to the MGT communication bus.

User data transfer rate: Max. 10.3125 Gbit/s, limited by the MGT module. MGT latency (latency between sender and receiver via an optical loopback):

- With maximum data rate: Max. 6.272 μs, typ. 6.192 μs
 The latency increases, because the TX-FIFO buffer becomes full when the data stream fills the buffer with 16 Gbit/s (128 bits at 125 MHz).
- Single words: Max. 472 ns, typ. 384 ns

If you implement inter-FPGA communication via MGT modules, clock drifts can result in additional latencies. Refer to Implementing Inter-FPGA Communication via MGT Modules (RTI FPGA Programming Blockset Handcode Interface Guide (12)).

Data type: UFix_128_0

Data width: 1

mgt_lane<LaneNumber>_tx_ready / Ready Inport to read a flag that indicates that the MGT module is ready to write new data on the MGT communication bus:

- 0: The MGT module is busy.
- 1: New data values can be written to the MGT communication bus.

Data type: UFix_1_0
Data width: 1

I/O mapping

The MGT communication bus uses the MPO connector of the FPGA Base Board.

Related topics

Basics

Overview of Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide \square)

MGT In

Purpose

To provide the information about the connection between the GTH transceivers and the MGT module and to specify the reference clock frequency.

Description

The DS6601 and DS6602 FPGA Base Boards provide an MGT module slot to install an MGT Module. The MGT In I/O function provides the information about the connection between the GTH transceivers and the MGT module and lets you specify the reference clock frequency.

The information is required for customer-specific protocol blocks that configure the GTH transceivers. A GTH transceiver is a configurable transceiver of the XILINX UltraScale FPGA architecture.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file of the FPGA base board.

The I/O function number is 9.

The used module slot is 1 (mgtModuleNr = 1).

hcfw.IOProperties.In.Fct(<IOFunctionNumber> + mgtlnOffset
(1)).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

The reference clock frequency depends on the protocol type, transfer rate, and internal scaling factors. In many cases, the reference clock frequency for the MGT module of the FPGA base board is 156.25 MHz.

For more information, refer to DS6601, DS6602: Coding a Customized MGT Protocol (RTI FPGA Programming Blockset Handcode Interface Guide (14)).

Port

You must add the following signals of the I/O function to the port definition of the custom module entity **cm**.

MGT_CLK_P / CLK_P Provides the MGT reference clock frequency.

The port represents the differential signal of an internal clock. The port must be connected to a function that provides the configuration for the GTH transceivers. The reference frequency is specified by the MGT reference clock frequency parameter.

Data type: UFix_1_0
Data width: 1

MGT_CLK_N / CLK_N Provides the MGT reference clock frequency.

The port represents the differential signal of an internal clock. The port must be connected to a function that provides the configuration for the GTH transceivers.

The reference frequency is specified by the MGT reference clock frequency

parameter.

Data type: UFix_1_0
Data width: 1

MGT_RX_P / RX_P Reads the raw data from the MGT module.

The port represents the differential output signals of the MGT module. The port must be connected to a function that provides the configurations for the GTH

transceiver.

Data type: UFix_4_0

Each bit represents the output of one MGT channel.

Data width: 1

Update rate: Clock frequency of the GTH transceivers.

MGT_RX_N / RX_N Reads the raw data from the MGT module.

The port represents the differential output signals of the MGT module. The port must be connected to a function that provides the configurations for the GTH

transceiver.

Data type: UFix_4_0

Each bit represents the output of one MGT channel.

Data width: 1

Update rate: Clock frequency of the GTH transceivers.

I/O mapping

The MGT communication bus uses the MPO connector of the FPGA Base Board.

Related topics

Basics

Overview of Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide \square)

MGT Out

Purpose

To provide the information about the connection between the GTH transceivers and the MGT module.

Description

The DS6601 and DS6602 FPGA Base Boards provide an MGT module slot to install an MGT Module. The MGT Out I/O function provides the information about the connection between the GTH transceivers and the MGT module.

The information is required for customer-specific protocol blocks that configure the GTH transceivers. A GTH transceiver is a configurable transceiver of the XILINX UltraScale FPGA architecture.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file of the FPGA base board.

The I/O function number is 9.

The used module slot is 1 (mgtModuleNr = 1).

hcfw.IOProperties.In.Fct(<IOFunctionNumber> + mgtInOffset
(1)).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

MGT_TX_P / TX_P Writes data to the MGT module.

The port represents the differential signals of the GTH transceivers that are connected to the MGT module. The port must be connected to a function that provides the configuration for the GTH transceivers.

Data type: UFix_4_0
Data width: 1

Each bit represents the input for one MGT channel.

Update rate: MGT reference clock frequency

The MGT reference clock frequency parameter of the MGT In I/O function lets you specify the reference frequency that is used to generate the MGT clock frequency. Refer to MGT In on page 277.

MGT_TX_N / TX_N Writes data to the MGT module.

The port represents the differential signals of the GTH transceivers that are connected to the MGT module. The port must be connected to a function that provides the configuration for the GTH transceivers.

Data type: UFix_4_0
Data width: 1

Each bit represents the input for one MGT channel.

Update rate: MGT reference clock frequency

The MGT reference clock frequency parameter of the MGT In I/O function lets you specify the reference frequency that is used to generate the MGT clock frequency. Refer to MGT In on page 277.

I/O mapping	The MGT communication bus uses the MPO connector of the FPGA Base Board.
Related topics	Basics
	Overview of Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide (12))

I/O Functions of the Inter-FPGA Interface Framework

Introduction

The *Inter-FPGA Interface* framework provides access to the I/O module slots of a SCALEXIO FPGA base board to implement an inter-FPGA communication bus.

Where to go from here

Information in this section

Information in other sections

Details on implementing an inter-FPGA communication bus:

Handcoding Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide (A))

The DS5203 FPGA Board and the SCALEXIO FPGA base boards support inter-FPGA communication.

Other frameworks that provide access to the FPGA functionality of a SCALEXIO system:

The frameworks of the DS2655 FPGA Base Boards provide the standard I/O functionality of the boards.

I/O Functions of the DS6601 FPGA Base Board Framework	
I/O Functions of the DS6602 FPGA Base Board Framework	
I/O Functions of the DS2655M1 I/O Module Framework	
I/O Functions of the DS2655M2 I/O Module Framework	
I/O Functions of the DS6651 Multi-I/O Module Framework	

I-FPGA In

Purpose	To provide read access to the inter-FPGA communication bus with bus synchronization.
Description	With the <i>Inter-FPGA Interface</i> framework, you can use I/O module slots of a SCALEXIO FPGA base board as inter-FPGA interfaces. The module number represents the used I/O module slot of the FPGA board.
	The I-FPGA In I/O functions let you configure up to eight subbuses with bus synchronization.
	A previously configured communication channel is no more available for other I-FPGA I/O functions, such as I-FPGA Out. In total, you can use up to eight input and output channels.
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	${\it ioModuleNr}$ Lets you set the used I/O module slot to configure the following I/O functions. Value range: 1 5

hcfw.IOProperties.In.Fct(<ChannelNumber> +

ioInOffset(ioModuleNr)).HcCustomName / Channel name Lets you specify a custom name for the specified channel. The channel number reflects one of eight configurable subbuses.

hcfw.IOProperties.In.Fct(<ChannelNumber> +

iolnOffset(ioModuleNr)).Parameter(startparam).Init / Mode You have to specify only the channel number. The channel number reflects one of eight configurable subbuses. To use the I-FPGA In function, the mode must be set to 2 or 4. Mode 4 is the recommended mode. Mode 2 is an expert mode that you schould use only if you have enough experience of configuring buses and knowledge of checking the correctness of the configured transmission with regard to the observed signal integrity at the applicable temperature range.

Possible modes for the inter-FPGA interface:

- 0: Unused
- 1: Write access to the inter-FPGA interface with a lower latency (2 clock cycles), but the bits are not synchronous (expert mode).
- 2: Read access to the inter-FPGA interface with a lower latency (2 clock cycles), but the bits are not synchronous (expert mode).
- 3: Write access to the inter-FPGA interface *with* bus synchronization.
- 4: Read access to the inter-FPGA interface with bus synchronization.

hcfw.IOProperties.In.Fct(<ChannelNumber> +

ioInOffset(ioModuleNr)).Parameter(startparam+2).Init / Startbit Lets you specify the bit with which the transmission data starts in the range 0 ... 27. The channel number reflects one of eight configurable subbuses.

Note

If you send and receive data with the same inter-FPGA interface, you have to consider limitations on the bit ranges for the subbuses. Refer to How to Determine the Bit Ranges for Inter-FPGA Subbuses Between SCALEXIO FPGA Base Boards (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

hcfw.IOProperties.In.Fct(<ChannelNumber> +

ioInOffset(ioModuleNr)).Parameter(startparam+4).Init / Endbit Lets you specify the bit with which the transmission data ends in the range 0 ... 27. The channel number reflects one of eight configurable subbuses.

The range of the end bit is to be adapted to the specified start bit. It is not allowed to specify an end bit less than the corresponding start bit.

For each subbus with bus synchronization, one bit is to be reserved for synchronization. The maximum data width of a subbus is therefore Endbit - Startbit.

Note

If you send and receive data with the same inter-FPGA interface, you have to consider limitations on the bit ranges for the subbuses. Refer to How to Determine the Bit Ranges for Inter-FPGA Subbuses Between SCALEXIO FPGA Base Boards (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

hcfw.IOProperties.In.Fct(<ChannelNumber> +

iolnOffset(ioModuleNr)).Parameter(startparam+7).Init / Bit length Lets you specify the bit length used for the transmission in the range 3 ... 128 cycles. The parameter effects only synchronized buses. The channel number reflects one of eight configurable subbuses.

The default value is 6 cycles.

Usable only for inter-FPGA communication buses with bus synchronization.

Note

You should change these values only if you have enough experience of configuring buses and knowledge of checking the correctness of the configured transmission with regard to the observed signal integrity at the applicable temperature range.

The default values for the bit length, clock, and filter depth have been tested by dSPACE.

A reference value for the bit length depends on the specified filter depth and can be calculated by $2 + 2 \cdot FilterDepth_{In}$.

hcfw.IOProperties.In.Fct(<ChannelNumber> +

ioInOffset(ioModuleNr)).Parameter(startparam+9).Init / Clock Lets you specify the clock frequency used for the inter-FPGA communication. The parameter effects only synchronized buses. The channel number reflects one of eight configurable subbuses.

Usable only for inter-FPGA communication buses with bus synchronization.

Possible values:

- 1: 125 MHz
- 2: 250 MHz

The default value is 1 (125 MHz).

Note

You should change these values only if you have enough experience of configuring buses and knowledge of checking the correctness of the configured transmission with regard to the observed signal integrity at the applicable temperature range.

The default values for the bit length, clock, and filter depth have been tested by dSPACE.

hcfw.IOProperties.In.Fct(<ChannelNumber> +

ioInOffset(ioModuleNr)).Parameter(startparam+11).Init / Filter

depth Lets you specify a spike filter with the specified length to reduce transmission errors in the range 0 ... 32 cycles. The parameter effects only synchronized buses. The channel number reflects one of eight configurable subbuses.

Usable only for inter-FPGA communication buses with bus synchronization. The default value is 2 cycles.

Note

You should change these values only if you have enough experience of configuring buses and knowledge of checking the correctness of the configured transmission with regard to the observed signal integrity at the applicable temperature range.

The default values for the bit length, clock, and filter depth have been tested by dSPACE.

hcfw.IOProperties.In.Fct(<ChannelNumber> +

Usable only for inter-FPGA communication buses with bus synchronization.

- 0: Off (default)
- 1: On

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

m<ModuleNumber>_intercom_<ChannelNumber>_data_in /

Data Reads data from the inter-FPGA communication bus. The module number reflects the used I/O module slot. The channel number reflects one of eight configurable subbuses.. Bits which exceed the configured bus width are discarded. For each configured subbus one bit is automatically reserved for synchronization.

Data width: 1

Value range: 0 ... 2²⁷-1

m<ModuleNumber>_intercom_<ChannelNumber>_data_new / Data

New Indicates whether new data was written to the Data register. The module number reflects the used I/O module slot. The channel number reflects one of eight configurable subbuses.

If the Data register contains new values, the flag changes from 0 to 1 for one clock cycle. If the transmission failed, the error counter increases.

Usable only for inter-FPGA communication buses with bus synchronization.

Data width: 1

- 0: No new data available in the Data register. Either the transmission is not yet finished, or the transmission failed (see Errors outport).
- 1: New data available in the Data register.

m<ModuleNumber>_intercom_<ChannelNumber>_errors /

Errors Outputs the number of transmission errors. The counter is reset only at FPGA application start. If the range exceeds, the counter restarts with 0.

The module number reflects the used I/O module slot. The channel number reflects one of eight configurable subbuses.

Usable only for inter-FPGA communication buses with bus synchronization.

Data width: 1

Value range: 0 ... 2³²-1

m<ModuleNumber>_intercom_<ChannelNumber>_reset_error / Errors

Reset Resets the Errors output. The module number reflects the used I/O module slot. The channel number reflects one of eight configurable subbuses.

Usable only for inter-FPGA communication buses with bus synchronization.

The I-FPGA In Errors counter potentially increases until the FPGA Base Board with the corresponding I-FPGA Out interface starts working.

- 0: Not used
- 1: Error output is reset

Data type: UFix1_0 Value range: 0 ... 1

I/O mapping

No external connection to the I/O connector of the board. The SCALEXIO FPGA base board uses its I/O module slots inside the SCALEXIO system for inter-FPGA communication.

Related topics

Basics

Overview of Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide Ω)

I-FPGA Out

Purpose

To provide write access to the inter-FPGA communication bus with bus synchronization.

Description

With the *Inter-FPGA Interface* framework, you can use I/O module slots of a SCALEXIO FPGA base board as inter-FPGA interfaces. The module number represents the used I/O module slot of the FPGA board.

The I-FPGA Out I/O functions let you configure up to eight subbuses with bus synchronization.

A previously configured communication channel is no more available for other I-FPGA I/O functions, such as I-FPGA In. In total, you can use up to eight input and output channels.

This I/O function is not considered when you generate the processor interface model.

Avoiding hardware damage

NOTICE

An incorrect configuration might damage the electrical interface.

If you configure both ends of an inter-FPGA connection bus to write on the bus, the connection results in a short circuit. This short circuit might damage the electrical interface of the used I/O module slots. In multiprocessor applications, an incorrect configuration cannot be detected automatically to beware hardware damage.

■ Make sure that the counterpart interface on the other FPGA board uses the same Startbit and Endbit to read the data. Refer to Overview of Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide 🚇).

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

ioModuleNr Lets you set the used I/O module slot to configure the following I/O functions. Value range: 1 ... 5

hcfw.IOProperties.Out.Fct(<ChannelNumber> +

ioOutOffset(ioModuleNr)).HcCustomName / Channel name Lets you specify a custom name for the specified channel. The channel number reflects one of eight configurable subbuses.

hcfw.IOProperties.Out.Fct(<ChannelNumber> +

ioOutOffset(ioModuleNr)).Parameter(startparam).Init / Mode You have to specify only the channel number. The channel number reflects one of eight configurable subbuses. To use the I-FPGA Out function, the mode must be set to

1 or 3. Mode 3 is the recommended mode. Mode 1 is an expert mode that you schould use only if you have enough experience of configuring buses and knowledge of checking the correctness of the configured transmission with regard to the observed signal integrity at the applicable temperature range. Possible modes for the inter-FPGA interface:

- 0: Unused
- 1: Write access to the inter-FPGA interface with a lower latency (2 clock cycles), but the bits are not synchronous (expert mode).
- 2: Read access to the inter-FPGA interface with a lower latency (2 clock cycles), but the bits are not synchronous (expert mode).
- 3: Write access to the inter-FPGA interface with bus synchronization.
- 4: Read access to the inter-FPGA interface with bus synchronization.

Note

If you send and receive data with the same inter-FPGA interface, you have to consider limitations on the bit ranges for the subbuses. Refer to How to Determine the Bit Ranges for Inter-FPGA Subbuses Between SCALEXIO FPGA Base Boards (RTI FPGA Programming Blockset Handcode Interface Guide (11)).

hcfw.IOProperties.Out.Fct(<ChannelNumber> + ioOutOffset(ioModuleNr)).Parameter(startparam+4).Init / Endbit Lets you specify the bit with which the transmission data ends in the range 0 ... 27. The channel number reflects one of eight configurable subbuses.

The range of the end bit is to be adapted to the specified start bit. It is not allowed to specify an end bit less than the corresponding start bit. For each subbus with bus synchronization, one bit is to be reserved for synchronization. The maximum data width of a subbus is therefore Endbit - Startbit.

Note

If you send and receive data with the same inter-FPGA interface, you have to consider limitations on the bit ranges for the subbuses. Refer to How to Determine the Bit Ranges for Inter-FPGA Subbuses Between SCALEXIO FPGA Base Boards (RTI FPGA Programming Blockset Handcode Interface Guide (1)).

hcfw.IOProperties.Out.Fct(<ChannelNumber> + ioOutOffset(ioModuleNr)).Parameter(startparam+7).Init / Bit

length Lets you specify the bit length used for the transmission in the range 3 ... 128 cycles. The parameter effects only synchronized buses. The channel number reflects one of eight configurable subbuses.

The default value is 6 cycles.

Usable only for inter-FPGA communication buses with bus synchronization.

Note

You should change these values only if you have enough experience of configuring buses and knowledge of checking the correctness of the configured transmission with regard to the observed signal integrity at the applicable temperature range.

The default values for the bit length, clock, and filter depth have been tested by dSPACE.

A reference value for the bit length depends on the specified filter depth of the related I-FPGA In, and can be calculated by $2 + 2 \cdot FilterDepth_{In}$.

hcfw.IOProperties.Out.Fct(<ChannelNumber> + ioOutOffset(ioModuleNr)).Parameter(startparam+9).Init / Clock Lets you specify the clock frequency used for the inter-FPGA communication. The parameter effects only synchronized buses. The channel number reflects one of eight configurable subbuses.

Usable only for inter-FPGA communication buses with bus synchronization. \\

Possible values:

- 1: 125 MHz
- 2: 250 MHz

The default value is 1 (125 MHz).

Note

You should change these values only if you have enough experience of configuring buses and knowledge of checking the correctness of the configured transmission with regard to the observed signal integrity at the applicable temperature range.

The default values for the bit length, clock, and filter depth have been tested by dSPACE.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

m<ModuleNumber>_intercom_<ChannelNumber>_data_out / Data
Out Outputs the data to be written to the inter-FPGA communication bus.
The channel number reflects one of eight configurable bus segments. The module number reflects the used I/O module slot. The channel number reflects one of eight configurable subbuses. Bits which exceed the configured bus width are discarded. For each configured subbus one bit is automatically reserved for synchronization.

Data width: 1

Value range: 0 ... 2²⁷-1

m<ModuleNumber>_intercom_<ChannelNumber>_data_sent_v / Data

Sent Outputs the data already transmitted to the inter-FPGA communication bus. The module number reflects the used I/O module slot. The channel number reflects one of eight configurable subbuses.

Usable only for inter-FPGA communication buses with bus synchronization.

Data width: 1

Value range: 0 ... 2²⁷-1

m<ModuleNumber>_intercom_<ChannelNumber>_ready /

Ready Signals the clock cycle in which the data to be transmitted is sampled. The port is available only for synchronized buses.

The port is high for one clock cycle with the periodicity of the bit length.

Usable only for inter-FPGA communication buses with bus synchronization.

Data width: 1

I/O mapping

No external connection to the I/O connector of the board. The SCALEXIO FPGA base board uses its I/O module slots inside the SCALEXIO system for inter-FPGA communication.

Related topics

Basics

Overview of Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide \square)

I/O Functions of the DS5203 with Onboard I/O Frameworks

Introduction

The onboard I/O frameworks of DS5203 (7K325 and 7K410) provide the standard I/O functionality of the DS5203 FPGA board.

Where to go from here

Information in this section

ADC To read data from an analog input signal in the FPGA application.	293
APU Master To write a value to the time-base connector for synchronizing anglebased applications.	294
APU Slave To read a value from the time-base connector for synchronizing angle-based applications.	295
Buffer In	297
Buffer64 In To read data from an internal bus buffer with a data width of 64 bits.	298
Buffer Out	300
Buffer64 Out	302
DAC To write data to an analog output signal in the FPGA application.	304
Digital In To read data from a digital input signal in the FPGA application.	305

Digital Out To write data to a digital output signal in the FPGA application.	307
I-FPGA Master To write data to the inter-FPGA communication bus.	309
I-FPGA Slave	312
Interrupt To request a processor interrupt outside of the FPGA application.	315
LED Out To write a digital signal that controls the LED on the board's bracket.	315
Register In To read data from a PHS-bus register.	316
Register64 In To read data from a PHS-bus register with a data width of 64 bits.	318
Register Out To write data to a PHS-bus register.	320
Register64 Out To write data to a PHS-bus register with a data width of 64 bits.	321
Status In	323

Information in other sections

Details on implementing an inter-FPGA communication bus:

Handcoding Inter-FPGA Communication (RTI FPGA Programming Blockset Handcode Interface Guide (11)

The DS5203 FPGA Board and the SCALEXIO FPGA base boards support inter-FPGA communication.

Other frameworks that provide access to the FPGA functionality of a PHS-bus-based system:

I/O Functions of the DS5203M1 Multi-I/O Module Frameworks.................325

The frameworks of DS5203 with Multi-I/O Module (DS5203M1) provide the standard I/O functionality of the DS5203M1 Multi-I/O Module.The frameworks include access functions to digital and analog input and output signals, and to PHS-bus buffers and registers of the DS5203 FPGA Board.

ADC

Purpose	To read data from an analog input signal in the FPGA application.
Description	According to the number of physical connections available on the DS5203 FPGA Board, you can select the ADC I/O functions. There are six analog input channels
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 17 22.
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
	IOProperties.In.Fct(<iofunctionnumber>).Parameter(1).Init / Input range Lets you select the input voltage range for the analog input channel. ■ 0: -5 V +5 V ■ 1: -30 V +30 V</iofunctionnumber>
	IOProperties.In.Fct(<iofunctionnumber>).Parameter(2).Init / Scaling Lets you select the scaling of the output data. If you select mV, the valid output port range corresponds to the specified input range in mV (-5000 +5000 mV or -30000 + 30000 mV). If you select the unscaled Bit value, the valid output port range is -8192 +8191, independently of the specified input range.</iofunctionnumber>
	• O: Bit
	■ 1: mV
Port	You must add the following signals of the I/O function to the port definition of the custom module entity cm.
	The channel number can be specified in the range 0 5.
	adc<channelnumber>_data / Data</channelnumber> Outputs the current results of the A/D conversions on the current channel.

Range:

■ -5000 mV ... +5000 mV

■ -30000 mV ... +30000 mV

or

■ -8192 ... +8191 Update rate: 10 Msps

adc<ChannelNumber>_valid / Valid Represents the current status of the data output.

- 0: Converted value is out of range.
- 1: Converted value is within the specified input range.

I/O mapping

The following I/O mapping is relevant if you use one of the DS5203 with onboard I/O frameworks for analog input channels.

Outport	Channel	Connector Pin	Signal
Data	Ch 1	P1 1	ADC1
		P1 34	ADC1
	Ch 2	P1 18	ADC2
		P1 2	ADC2
	Ch 3	P1 35	ADC3
		P1 19	ADC3
	Ch 4	P1 3	ADC4
		P1 36	ADC4
	Ch 5	P1 20	ADC5
		P1 4	ADC5
	Ch 6	P1 37	ADC6
		P1 21	ADC6

Related topics

References

Overview of the DS5203 Onboard I/O Frameworks

32

APU Master

Purpose

To write a value to the time-base connector for synchronizing angle-based applications.

Description	The DS5203 frameworks provide one digital output channel for the APU Maste I/O function.
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number is to be specified with 24.
	IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	You must add the following signals of the I/O function to the port definition of the custom module entity cm.
	There is no channel number to be specified.
	apu_phi_wr / Phi Write Specifies the value to be written to the time-base connector. Other I/O boards in the hardware system configured as APU slave receive the value and synchronize their timebases with the given angle value. Value range: 0 65535 (0 720°) Time-base clock cycle: 250 ns
I/O mapping	No external connection to the I/O connector of the board.
-	For further information on the time-base connector, refer to Board Overview (PHS Bus System Hardware Reference \square).
Related topics	References
	APU Slave

APU Slave

Purpose

To read a value from the time-base connector for synchronizing angle-based applications.

The DS5203 frameworks provide one digital input channel for the APU Slave I/C function. This I/O function is not considered when you generate the processor interface
This I/O function is not considered when you generate the processor interface
model.
You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
The I/O function number is to be specified with 24.
IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
You must add the following signals of the I/O function to the port definition of the custom module entity cm.
There is no channel number to be specified.
apu_phi_rd / Phi Read Outputs the value that has been sent by an I/O board in the hardware system specified as APU master.
Value range: 0 65535 (0 720°)
Time-base clock cycle: 250 ns
apu_phi_nd / Phi New Indicates that new data was written to the Phi_Read register.
Value range: 0, 1
If the flag changes from 0 to 1, the requested register contains new values. The flag is set to 1 for only one clock cycle.
No external connection to the I/O connector of the board.
For further information on the time-base connector, refer to Board Overview (PHS Bus System Hardware Reference (12)).
References
APU Master

Buffer In

Purpose To read data from a PHS-bus buffer. If you select Buffer as the access type, the data is read from a PHS-bus buffer. 32 Description buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits. If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_WRITE_BL block is added to the processor model with the configured data formats. **Parameters** You can find templates for the functions and the following parameters in the handcode FPGA framework INI file. The I/O function number can be specified in the range 129 ... 160. PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel Lets you specify a custom name for the specified channel. PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary **point position (or fraction width)** Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below). signed/unsigned The values of the Data outport are in fixed-point format. You can specify the binary point position of the 32-bit value in the range 0 ... 32. 0 represents the lowest bit position, 32 the highest bit position. floating-point The values of the Data outport are in floating-point format. The fraction width is displayed. PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you select the data format of the Data outport. Fixed-point format UFix_32_<Binary point position> or Fix_32_<Binary point position> Floating-point format XFloat_8_24 PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer Lets you specify the size of the buffer in the range 1 ... 32768. The maximum range of the Address inport depends on the buffer size. Port You must add the following signals of the I/O function to the port definition of the custom module entity cm. The channel number can be specified in the range 00 ... 31.

xmemf_<ChannelNumber>_count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmemf_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from a PHS-bus buffer. The data format depends on the related parameter settings.

xmemf_<ChannelNumber>_new_data / Data New Outputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

xmemf_<ChannelNumber>_addr / Address Specifies an element in the buffer you want to read. The block requires 1 clock cycle to update the value of the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer (see Data Count outport). If you request data from an address that is greater than the Data Count value, the output of the Data outport is undefined. The first element of a buffer is addressed by 0.

Related topics

References

Buffer Out	300
Buffer64 In	298
Overview of the DS5203 Onboard I/O Frameworks	32
Register In	316

Buffer64 In

Purpose	To read data from a PHS-bus buffer with a data width of 64 bits.
Description	If you select Buffer64 as the access type, the data is read from a PHS-bus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 289 ... 320.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunction_Number>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768. The maximum range of the Address inport depends on the buffer size.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity ${\it cm}$.

The channel number can be specified in the range 00 ... 63.

xmem64f_<ChannelNumber>_count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmem64f_<ChannelNumber>_dout / Data Outputs a 64-bit data value to be read from a PHS-bus buffer. The data format depends on the related parameter settings.

xmem64f_<ChannelNumber>_new_data / Data New Outputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

xmem64f_<ChannelNumber>_addr / Address Specifies an element in the buffer you want to read. The block requires 1 clock cycle to update the value of the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer (see Data Count outport). If you request data from an address that is greater than the Data Count value, the output of the Data outport is undefined. The first element of a buffer is addressed by 0.

Related topics

References

Buffer In	7
Buffer64 Out	2
Overview of the DS5203 Onboard I/O Frameworks	2
Register64 In318	3

Buffer Out

Purpose	To write data to a PHS-bus buffer.
Description	If you select Buffer as the access type, the data is written to a PHS-bus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits.
	If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_READ_BL block is added to the processor model with the configured data formats.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 129 160.
	PHSProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
	PHSProperties.Out.Fct(<iofunctionnumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).</iofunctionnumber>

signed/unsigned

The values of the **Data** outport are in fixed-point format.

You can specify the binary point position of the 32-bit value in the range 0 ... 32. 0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data outport are in floating-point format.

The fraction width is displayed.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you select the data format of the Data inport.

Fixed-point format

UFix_32_<Binary point position> or Fix_32_<Binary point position>

Floating-point format
 XFloat 8 24

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemp_<ChannelNumber>_din / Data Specifies a 32-bit data value to be written to a PHS-bus buffer. The data format depends on the related parameter settings.

xmemp_<ChannelNumber>_write / Enable Specifies the current valid Data port value.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled.
 The buffer is switched and the data values are accessible via PHS bus in the next clock cycle.

The ready flag must be set no later than the last data value. Otherwise the buffer switches twice.

xmemp_<ChannelNumber>_overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

Related topics

References

Buffer In	297
Buffer64 Out	302
Overview of the DS5203 Onboard I/O Frameworks	32
Register Out	320

Buffer64 Out

Purpose To write data to a PHS-bus buffer with a data width of 64 bits. Description If you select Buffer64 as the access type, the data is written to a PHS-bus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 289 ... 320.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init /

Format Lets you specify the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmem64p_<ChannelNumber>_din / Data Specifies a 64-bit data value to be written to an internal bus buffer. The data format depends on the related parameter settings.

xmem64p_<ChannelNumber>_write / Enable Specifies the current valid Data port value.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled.
 The buffer is switched and the data values are accessible via the internal bus in the next clock cycle.

The ready flag must be set no later than the last data value. Otherwise the buffer switches twice.

xmem64p_<ChannelNumber>_overflow / Overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

DAC

Purpose	To write data to an analog output signal in the FPGA application.
Description	According to the number of physical connections available on the DS5203 FPGA Board, you can select the DAC I/O functions. There are six analog output channels.
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 17 22.
	IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
	IOProperties.Out.Fct(<iofunctionnumber>).Parameter(1).Init / Scaling Lets you select the scaling of the input data. If you select mV, the valid input port range is -10000 +10000 mV. If you select the unscaled Bit value, the valid input port range is -8192 +8191 (14-bit D/A converter). • 0: Bit • 1: mV</iofunctionnumber>
Port	You must add the following signals of the I/O function to the port definition of the custom module entity cm.
	The channel number can be specified in the range 0 5.

dac<Channel_Number>_data / Data Outputs a signal in the specified range.

Output voltage range:

■ -10000 mV ... +10000 mV

or

-8192 ... +8191

Range exceeding is possible and will be saturated to the minimum or maximum value.

Hardware update rate: 10 Msps (if the values are updated at a higher FPGA model rate, intermediate values are not updated by the DAC).

I/O mapping

The following I/O mapping is relevant if you use one of the DS5203 with onboard I/O frameworks for analog output channels.

Inport	Channel	Connector Pin	Signal
Data	Ch 1	P1 30	DAC1
		P1 14	DAC1
	Ch 2	P1 47	DAC2
		P1 31	DAC2
	Ch 3	P1 15	DAC3
		P1 48	DAC3
	Ch 4	P1 32	DAC4
		P1 16	DAC4
	Ch 5	P1 49	DAC5
		P1 33	DAC5
	Ch 6	P1 17	DAC6
		P1 50	DAC6

Related topics

References

Digital In

Purpose

To read data from a digital input signal in the FPGA application.

Description

According to the number of physical connections available on the DS5203 FPGA Board, you can select the Digital In I/O functions. There are 16 digital input channels.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 16.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Threshold voltage Lets you specify the threshold level for the current digital channel in the range 1000 mV ... 7500 mV in steps of 100 mV. If the input signal is below this level, a logical 0 is detected, otherwise a logical 1.

- 1000: 1000 mV threshold level
- •
- 7500: 7500 mV threshold level

Note

If you use the same digital channel for the input and the output, the I/O driver is internally set to InOut mode. As a consequence, the maximum input voltage for the digital input channel is equal to the specified high supply, and the applicable threshold voltage is lower than the specified high supply.

To use the maximum input voltage range, you have to use a digital channel only as the input.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 15.

digio_<ChannelNumber>_in / Data Outputs the current results of digital input channel.

- 0: Input voltage of the channel is below the specified threshold voltage.
- 1: Input voltage of the channel is higher than or equal to the specified threshold voltage.

Update rate: 100 MHz

Note

Asynchronous input data might lead to metastable register states. Further synchronization techniques might be necessary.

I/O mapping

The following I/O mapping is relevant if you use one of the DS5203 with onboard I/O frameworks for digital input channels.

Outport	Channel	Connector Pin	Signal
Data	Ch 1	P1 22	DIG_IO1
	Ch 2	P1 6	DIG_IO2
	Ch 3	P1 23	DIG_IO3
	Ch 4	P1 7	DIG_IO4
	Ch 5	P1 24	DIG_IO5
	Ch 6	P1 8	DIG_IO6
	Ch 7	P1 25	DIG_IO7
	Ch 8	P1 9	DIG_IO8
	Ch 9	P1 26	DIG_IO9
	Ch 10	P1 10	DIG_IO10
	Ch 11	P1 27	DIG_IO11
	Ch 12	P1 11	DIG_IO12
	Ch 13	P1 28	DIG_IO13
	Ch 14	P1 12	DIG_IO14
	Ch 15	P1 29	DIG_IO15
	Ch 16	P1 13	DIG_IO16

You can use the same digital channel for input and output signals.

Related topics

References

Digital Out	307
Overview of the DS5203 Onboard I/O Frameworks	

Digital Out

Purpose

To write data to a digital output signal in the FPGA application.

Description

According to the number of physical connections available on the DS5203 FPGA Board, you can select the Digital Out I/O functions. There are 16 digital output channels.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 16.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(1).Parameter(1).Init / **High supply** Lets you select the voltage for the high side switch for all digital output channels.

- 0:5 V
- 1: 3.3 V

Note

You can specify the high supply voltage value only globally for all digital output channels.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity **cm**.

The channel number can be specified in the range 00 ... 15.

digio_<ChannelNumber>_out / Data Outputs a signal in the specified range. If driven with 0, the hardware output is 0 V. If driven with 1, the hardware output is 3.3 V or 5 V according to the specified high supply voltage. The hardware output is only driven if the Enable port is set to 1, otherwise the output is set to high impedance (High-Z).

Update rate: 100 MHz

digio_<Channel_Number>_oe / Enable Controls the hardware output. If set to 1, the hardware output reacts to the Data outport, otherwise it is set to High-Z.

I/O mapping

The following I/O mapping is relevant if you use one of the DS5203 with onboard I/O frameworks for digital output channels.

Inport	Channel	Connector Pin	Signal
Data	Ch 1	P1 22	DIG_IO1
	Ch 2	P1 6	DIG_IO2
	Ch 3	P1 23	DIG_IO3
	Ch 4	P1 7	DIG_IO4
	Ch 5	P1 24	DIG_IO5
	Ch 6	P1 8	DIG_IO6
	Ch 7	P1 25	DIG_IO7
	Ch 8	P1 9	DIG_IO8
	Ch 9	P1 26	DIG_IO9
	Ch 10	P1 10	DIG_IO10
	Ch 11	P1 27	DIG_IO11
	Ch 12	P1 11	DIG_IO12
	Ch 13	P1 28	DIG_IO13
	Ch 14	P1 12	DIG_IO14
	Ch 15	P1 29	DIG_IO15
	Ch 16	P1 13	DIG_IO16

You can use the same digital channel for input and output signals.

Related topics

References

Digital In
Overview of the DS5203 Onboard I/O Frameworks

I-FPGA Master

Purpose

To write data to the inter-FPGA communication bus.

Description

If you have connected two DS5203 FPGA boards via their inter-FPGA communication connectors, you can use the I-FPGA Master I/O functions to configure up to eight subbuses.

A previously configured communication channel is no more available for the I-FPGA Slave function. In total, you can use up to eight channels for masters and slaves.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 25 ... 32.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init /

Mode Lets you select whether to use the function as I-FPGA Master to transmit data to the inter-FPGA communication bus or I-FPGA Slave to receive data from it.

- 0: Unused
- 3: I-FPGA Master
- 4: I-FPGA Slave

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init /

Startbit Lets you specify the bit with which the transmission data starts in the range 0 ... 31.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(5).Init /

Endbit Lets you specify the bit with which the transmission data ends in the range 0 ... 31.

The range of the end bit is to be adapted to the specified start bit. It is not allowed to specify an end bit less than the corresponding start bit.

For each configured subbus, one bit is to be reserved for synchronization. The maximum data width of a subbus is therefore Endhit - Starthit

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(8).Init / Bit

length Lets you specify the bit length used for the transmission in the range 3 ... 128 cycles.

The default value is 6 cycles.

Note

You should change these values only if you have enough experience of configuring buses and knowledge of checking the correctness of the configured transmission with regard to the observed signal integrity at the applicable temperature range.

The default values for the bit length, clock, and filter depth have been tested by dSPACE.

A reference value for the bit length depends on the specified filter depth of the related I-FPGA Slave, and can be calculated by 2 + 2 • FilterDepth_{Slave}.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(10).Init /

Clock Lets you specify the clock frequency used for the inter-FPGA communication.

- 1: 100 MHz
- 2: 200 MHz
- **3**: 300 MHz

The default value is 1 (100 MHz).

Note

You should change these values only if you have enough experience of configuring buses and knowledge of checking the correctness of the configured transmission with regard to the observed signal integrity at the applicable temperature range.

The default values for the bit length, clock, and filter depth have been tested by dSPACE.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 01 ... 08.

intercom_<ChannelNumber>_data_out / Data Write Outputs the data to be written to the inter-FPGA communication bus. The channel number reflects one of eight configurable bus segments.

Data width: 0 ... 31 bit

intercom_<ChannelNumber>_data_sent_v / Data Sent Outputs the data already transmitted to the inter-FPGA communication bus. The channel number reflects one of eight configurable bus segments.

Data width: 0 ... 31 bit

I/O mapping

No external connection to the I/O connector of the board.

For further information on the inter-FPGA communication connector, refer to Board Overview (PHS Bus System Hardware Reference).

Related topics

References

I-FPGA Slave	312
Overview of the DS5203 Onboard I/O Frameworks	32

I-FPGA Slave

Purpose	To receive data from the inter-FPGA communication bus.		
Description	If you have connected two DS5203 FPGA boards via their inter-FPGA communication connectors, you can use the I-FPGA Slave I/O functions to configure up to eight subbuses.		
	A previously configured communication channel is no more available for the I-FPGA Master function. In total, you can use up to eight channels for masters and slaves.		
	This I/O function is not considered when you generate the processor interface model.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
	The I/O function number can be specified in the range 25 32.		
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>		
	IOProperties.In.Fct(<iofunctionnumber>).Parameter(1).Init / Mode Lets you select whether to use the function as I-FPGA Master to transmit data to the inter-FPGA communication bus or I-FPGA Slave to receive data from it. • 0: Unused</iofunctionnumber>		
	3: I-FPGA Master4: I-FPGA Slave		
	IOProperties.In.Fct(<iofunctionnumber>).Parameter(3).Init / Startbit Lets you specify the bit with which the transmission data starts in the range 0 31.</iofunctionnumber>		
	IOProperties.In.Fct(<iofunctionnumber>).Parameter(5).Init / Endbit Lets you specify the bit with which the transmission data ends in the range 0 31.</iofunctionnumber>		
	The range of the end bit is to be adapted to the specified start bit. It is not allowed to specify an end bit less than the corresponding start bit.		
	For each configured subbus, one bit is to be reserved for synchronization. The maximum data width of a subbus is therefore Endbit - Startbit.		

3 ... 128 cycles.

The default value is 6 cycles.

Note

You should change these values only if you have enough experience of configuring buses and knowledge of checking the correctness of the configured transmission with regard to the observed signal integrity at the applicable temperature range.

The default values for the bit length, clock, and filter depth have been tested by dSPACE.

A reference value for the bit length depends on the specified filter depth of the related I-FPGA Slave, and can be calculated by $2 + 2 \cdot FilterDepth_{Slave}$.

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(10).Init / Clock Lets you specify the clock frequency used for the inter-FPGA communication.

- 1: 100 MHz
- 2: 200 MHz
- 3: 300 MHz

The default value is 1 (100 MHz).

Note

You should change these values only if you have enough experience of configuring buses and knowledge of checking the correctness of the configured transmission with regard to the observed signal integrity at the applicable temperature range.

The default values for the bit length, clock, and filter depth have been tested by dSPACE.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(12).Init / Filter depth Lets you specify a spike filter with the specified length to reduce transmission errors in the range 0 ... 32 cycles.

The default value is 2 cycles.

Note

You should change these values only if you have enough experience of configuring buses and knowledge of checking the correctness of the configured transmission with regard to the observed signal integrity at the applicable temperature range.

The default values for the bit length, clock, and filter depth have been tested by dSPACE.

• 0: Off (default)

■ 1: On

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 01 ... 08.

intercom_<ChannelNumber>_data_in / Data Read Reads data from the inter-FPGA communication bus. The channel number reflects one of eight configurable bus segments. Bits which exceed the configured bus width are discarded. For each configured subbus one bit is automatically reserved for synchronization.

Data width: 0 ... 31 bit

intercom_<ChannelNumber>_data_new / Data New Indicates whether new data was written to the Data Read register.

If the Data Read register contains new values, the flag changes from 0 to 1 for one clock cycle. If the transmission failed, the error counter increases.

Data width: 1 bit

- 0: No new data available in the Data Read register. Either the transmission is not yet finished, or the transmission failed (see Errors outport).
- 1: New data available in the Data Read register.

intercom_<ChannelNumber>_errors / Errors Outputs the number of transmission errors. The counter is reset only at FPGA application start. If the range is exceeded, the counter restarts with 0.

Data width: 0 ... 31 bit

intercom_<ChannelNumber>_reset_error / Errors Reset Resets the Errors output.

The I-FPGA Slaves Errors counter potentially increases until the FPGA Board with the corresponding I-FPGA Master starts working.

- 0: Not used
- 1: Error output is reset

Data type: UFix1_0

I/O mapping

No external connection to the I/O connector of the board.

For further information on the inter-FPGA communication connector, refer to Board Overview (PHS Bus System Hardware Reference (1)).

Related topics

References

I-FPGA Master	309
Overview of the DS5203 Onboard I/O Frameworks	32

Interrupt

Purpose	To request a processor interrupt outside of the FPGA application.		
Description	The DS5203 with onboard I/O frameworks provide 8 interrupt lines. An interrupt is requested if the Int port is set to 1 for at least one clock cycle. If you set the Int port to 0, the last interrupt is not released but saved. An interrupt is edgetriggered.		
	If you generate the processor interface model for this FPGA I/O function, a PROC_INT_BL block is added to the processor model with the configured data formats.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
	The I/O function number can be specified in the range 1 8.		
	IRQProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>		
Port	You must add the following signals of the I/O function to the port definition of the custom module entity cm.		
	The channel number can be specified in the range 0 \dots 7.		
	usr_ <channelnumber>_interrupt / Int</channelnumber>		
	0 to 1: Interrupt is requested (edge-triggered).		
	 0: No interrupt is requested. Last requested interrupt is saved. 		
Related topics	References		
	Overview of the DS5203 Onboard I/O Frameworks		

LED Out

Purpose	To write a digital signal that controls the LED on the board's bracket.
Description	The DS5203 frameworks provide one digital output channel for the LED Out I/O function.

	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number is to be specified with 23.
	IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	You must add the following signals of the I/O function to the port definition of the custom module entity cm.
	There is no channel number to be specified.
	led_out / Data Controls the LED on the board's bracket.0: LED lights green.
	■ 1: LED lights orange.
Related topics	References
	Overview of the DS5203 Onboard I/O Frameworks

Register In

Purpose	To read data from a PHS-bus register.	
Description	If you select Register as the access type, the data is read from a PHS-bus register. 128 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.	
	If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_WRITE_BL block is added to the processor model with the configured data formats.	
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.	

The I/O function number can be specified in the range 1 ... 128.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format.

You can specify the binary point position of the 32-bit value in the range 0 ... 32. 0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data outport are in floating-point format.

The fraction width is displayed.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you select the data format of the Data outport.

Fixed-point format
 UFix_32_<Binary point position> or Fix_32_<Binary point position>

Floating-point format XFloat_8_24

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are sampled simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the PHS bus.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ...
- 63: Register group 63

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 127.

xreg_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from a PHS-bus register. The data format depends on the related parameter settings.

xreg_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Buffer In	207
Overview of the DS5203 Onboard I/O Frameworks	
Register Out	
Register64 Out	
negitero i ouc	

Register64 In

Purpose

To read data from a PHS-bus register with a data width of 64 bits.

Description

If you select Register64 as the access type, the data is read from a PHS-bus register. 128 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_WRITE_BL block is added to the processor model with the configured data formats.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 161 ... 288.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunction_Number>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are sampled simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the PHS bus.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- 63: Register group 63

Port

You must add the following signals of the I/O function to the port definition of the custom module entity ${\bf cm}$.

The channel number can be specified in the range 000 ... 127.

xreg64_<ChannelNumber>_dout / Data Outputs a 64-bit data value to be read from a PHS-bus register. The data format depends on the related parameter settings.

xreg64_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Buffer Out	300
Overview of the DS5203 Onboard I/O Frameworks	32
Register In	316
Register64 Out	321

Register Out

Purpose To write data to a PHS-bus register. Description If you select Register as the access type, the data is written to a PHS-bus register. 128 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same

group identifier for them.

If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_READ_BL block is added to the processor model with the configured data formats.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 128.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format.

You can specify the binary point position of the 32-bit value in the range 0 ... 32. 0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data outport are in floating-point format.

The fraction width is displayed.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you select the data format of the Data inport.

Fixed-point format

UFix_32_<Binary point position> or Fix_32_<Binary point position>

Floating-point format

XFloat_8_24

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the PHS bus sequentially and then provided to the FPGA application simultaneously. Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- •
- 63: Register group 63

Port

You must add the following signals of the I/O function to the port definition of the custom module entity **cm**.

The channel number can be specified in the range 000 ... 127.

xreg_<ChannelNumber>_din / Data Specifies a 32-bit data value to be written to a PHS-bus register. The data format depends on the related parameter settings.

Related topics

References

Buffer Out.	300
Overview of the DS5203 Onboard I/O Frameworks	32
Register In	316
Register64 Out	321

Register64 Out

Purpose

To write data to a PHS-bus register with a data width of 64 bits.

Description

If you select Register64 as the access type, the data is written to a PHS-bus register. 128 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_READ_BL block is added to the processor model with the configured data formats.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 161 ... 288.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register64 group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the PHS bus sequentially and then provided to the FPGA application simultaneously.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ..
- 63: Register group 63

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 128.

xreg64_<ChannelNumber>_din / Data Specifies a 64-bit data value to be written to an internal bus register. The data format depends on the related parameter settings.

Related topics

References

Buffer64 Out	302
Overview of the DS5203 Onboard I/O Frameworks	32
Register Out	320
Register64 In	318

Status In

Purpose	To read a digital signal that outputs the state of the FPGA initialization sequence.
Description	The DS5203 frameworks provide one digital input channel for the Status In I/O function.
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number is to be specified as 23.
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	You must add the following signals of the I/O function to the port definition of the custom module entity cm.
	There is no channel number to be specified.
	init_done/ Init Done Outputs the state of the initialization sequence that is started after programming the FPGA.
	0: Initialization sequence is in progress.1: Initialization sequence has finished.

Related topics References Overview of the DS5203 Onboard I/O Frameworks

I/O Functions of the DS5203M1 Multi-I/O Module Frameworks

Introduction

The frameworks of DS5203 (7K325 and 7K410) with Multi-I/O Module (DS5203M1) provide the standard I/O functionality of the DS5203M1 Multi-I/O Module.

Where to go from here

Information in this section

ADC (M1)	26
DAC (M1)	27
Digital In (M1)	29
Digital Out (M1)	31
Sensor Supply	33

Information in other sections

Other frameworks that provide access to the FPGA functionality of a PHS-bus-based system:

The onboard I/O frameworks of DS5203 provide the standard I/O functionality of the DS5203 FPGA board. The frameworks include access functions to digital and analog input and output signals, and to PHS-bus buffers and registers.

ADC (M1)

Purpose	To read data from an analog input signal in the FPGA application.		
Description	According to the number of physical connections available on the DS5203M1 Multi-I/O Module, you can select the ADC (M1) I/O functions. There are six analog input channels.		
	This I/O function is not considered when you generate the processor interface model.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
	The I/O function number can be specified in the range 40 45.		
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>		
	IOProperties.In.Fct(<iofunctionnumber>).Parameter(1).Init / Input range Lets you select the input voltage range for the analog input channel. ■ 0: -5 ∨ +5 ∨ ■ 1: -30 ∨ +30 ∨</iofunctionnumber>		
	IOProperties.In.Fct(<iofunctionnumber>).Parameter(2).Init / Scaling Lets you select the scaling of the output data. If you select mV, the valid output port range corresponds to the specified input range in mV (-5000 +5000 mV or -30000 + 30000 mV). If you select the unscaled Bit value, the valid output port range is -8192 +8191, independently of the specified input range.</iofunctionnumber>		
	O: Bit		
	■ 1: mV		
Port	You must add the following signals of the I/O function to the port definition of the custom module entity cm.		
	The channel number can be specified in the range 0 5.		
	m1_adc <channelnumber>_data / Data Outputs the current results of the A/D conversions on the current channel.</channelnumber>		

Range:

- -5000 mV ... +5000 mV
- -30000 mV ... +30000 mV

or

■ -8192 ... +8191 Update rate: 10 Msps

m1_adc<ChannelNumber>_valid / **Valid** Represents the current status of the data output.

- 0: Converted value is out of range.
- 1: Converted value is within the specified input range.

I/O mapping

The following I/O mapping is relevant if you use one of the DS5203 with DS5203M1 Multi-I/O Module frameworks for analog input channels.

Outport	Channel	Connector Pin	Signal
Data	Ch 1	P2 1	ADC1
		P2 34	ADC1
	Ch 2	P2 18	ADC2
		P2 2	ADC2
	Ch 3	P2 35	ADC3
		P2 19	ADC3
	Ch 4	P2 3	ADC4
		P2 36	ADC4
	Ch 5	P2 20	ADC5
		P2 4	ADC5
	Ch 6	P2 37	ADC6
		P2 21	ADC6

Related topics

References

DAC (M1)

Purpose

To write data to an analog output signal in the FPGA application.

Description

According to the number of physical connections available on the DS5203M1 Multi-I/O Module, you can select the DAC (M1) I/O functions. There are six analog output channels.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 40 ... 45.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Scaling Lets you select the scaling of the input data. If you select mV, the valid input port range is -10000 ... +10000 mV. If you select the unscaled Bit value, the valid input port range is -8192 ... +8191 (14-bit D/A converter).

- 0: Bit
- 1: mV

Port

You must add the following signals of the I/O function to the port definition of the custom module entity ${\bf cm}$.

The channel number can be specified in the range 0 ... 5.

m1_dac<ChannelNumber>_data / Data Outputs a signal in the specified range.

Output voltage range:

- -10000 mV ... +10000 mV
- **-**8192 ... +8191

Range exceeding is possible and will be saturated to the minimum or maximum

Hardware update rate: 10 Msps (if the values are updated at a higher FPGA model rate, intermediate values are not updated by the DAC).

I/O mapping

The following I/O mapping is relevant if you use one of the DS5203M1 Multi-I/O Module frameworks for analog output channels.

Inport	Channel	Connector Pin	Signal
Data	Ch 1	P2 30	DAC1
		P2 14	DAC1
	Ch 2	P2 47	DAC2
		P2 31	DAC2
	Ch 3	P2 15	DAC3
		P2 48	DAC3
	Ch 4	P2 32	DAC4
		P2 16	DAC4
	Ch 5	P2 49	DAC5
		P2 33	DAC5
	Ch 6	P2 17	DAC6
		P2 50	DAC6

Related topics

References

ADC (M1)	326
DAC	304
Overview of the DS5203M1 Multi-I/O Module Frameworks of DS5203	34

Digital In (M1)

Purpose To read data from a digital input signal in the FPGA application. According to the number of physical connections available on the DS5203M1 Multi-I/O Module, you can select the Digital In (M1) I/O functions. There are 16 digital input channels. This I/O function is not considered when you generate the processor interface model. Parameters You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range $24 \dots 39$.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Threshold voltage Lets you specify the threshold level for the current digital channel in the range 1000 mV ... 7500 mV in steps of 100 mV. If the input signal is below this level, a logical 0 is detected, otherwise a logical 1.

- 1000: 1000 mV threshold level
- ..
- 7500: 7500 mV threshold level

Note

If you use the same digital channel for the input and the output, the I/O driver is internally set to InOut mode. As a consequence, the maximum input voltage for the digital input channel is equal to the specified high supply, and the applicable threshold voltage is lower than the specified high supply.

To use the maximum input voltage range, you have to use a digital channel only as the input.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 15.

m1_digio_<ChannelNumber>_in / Data Outputs the current results of digital input channel.

- 0: Input voltage of the channel is below the specified threshold voltage.
- 1: Input voltage of the channel is higher than or equal to the specified threshold voltage.

Update rate: 100 MHz

Note

Asynchronous input data might lead to metastable register states. Further synchronization techniques might be necessary.

I/O mapping

The following I/O mapping is relevant if you use one of the DS5203M1 Multi-I/O Module frameworks for digital input channels.

Outport	Channel	Connector Pin	Signal
Data	Ch 1	P2 22	DIG_IO1
	Ch 2	P2 6	DIG_IO2
	Ch 3	P2 23	DIG_IO3
	Ch 4	P2 7	DIG_IO4
	Ch 5	P2 24	DIG_IO5
	Ch 6	P2 8	DIG_IO6
	Ch 7	P2 25	DIG_IO7
	Ch 8	P2 9	DIG_IO8
	Ch 9	P2 26	DIG_IO9
	Ch 10	P2 10	DIG_IO10
	Ch 11	P2 27	DIG_IO11
	Ch 12	P2 11	DIG_IO12
	Ch 13	P2 28	DIG_IO13
	Ch 14	P2 12	DIG_IO14
	Ch 15	P2 29	DIG_IO15
	Ch 16	P2 13	DIG_IO16

You can use the same digital channel for input and output signals.

Related topics

References

Digital In	305
Digital Out (M1)	
Overview of the DS5203M1 Multi-I/O Module Frameworks of DS5203	
Overview of the D35205WT Multi-I/O Module Frameworks of D35205	34

Digital Out (M1)

Purpose	To write data to a digital output signal in the FPGA application.
Description	According to the number of physical connections available on the DS5203M1 Multi-I/O Module, you can select the Digital Out (M1) I/O functions. There are 16 digital output channels.
	This I/O function is not considered when you generate the processor interface model.

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 24 ... 39.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(24).Parameter(1).Init / **High supply** Lets you select the voltage for the high side switch for all digital output channels.

- 0:5 V
- 1: 3.3 V

Note

You can specify the high supply voltage value only globally for all digital output channels.

The I/O function number is 24.

Port

You must add the following signals of the I/O function to the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 15.

m1_digio_<ChannelNumber>_out / Data Outputs a signal in the specified range. If driven with 0, the hardware output is 0 V. If driven with 1, the hardware output is 3.3 V or 5 V according to the specified high supply voltage. The hardware output is only driven if the Enable port is set to 1, otherwise the output is set to high impedance (High-Z).

Update rate: 100 MHz

m1_digio_<ChannelNumber>_oe / Enable Controls the hardware output. If set to 1, the hardware output reacts to the Data outport, otherwise it is set to High-Z.

I/O mapping

The following I/O mapping is relevant if you use one of the DS5203M1 Multi-I/O Module frameworks for digital output channels.

Inport	Channel	Connector Pin	Signal
Data	Ch 1	P2 22	DIG_IO1
	Ch 2	P2 6	DIG_IO2
	Ch 3	P2 23	DIG_IO3
	Ch 4	P2 7	DIG_IO4
	Ch 5	P2 24	DIG_IO5
	Ch 6	P2 8	DIG_IO6
	Ch 7	P2 25	DIG_IO7
	Ch 8	P2 9	DIG_IO8
	Ch 9	P2 26	DIG_IO9
	Ch 10	P2 10	DIG_IO10
	Ch 11	P2 27	DIG_IO11
	Ch 12	P2 11	DIG_IO12
	Ch 13	P2 28	DIG_IO13
	Ch 14	P2 12	DIG_IO14
	Ch 15	P2 29	DIG_IO15
	Ch 16	P2 13	DIG_IO16

You can use the same digital channel for input and output signals.

Related topics

References

Digital In (M1)	329
Digital Out	307
Overview of the DS5203M1 Multi-I/O Module Frameworks of DS5203	

Sensor Supply

PurposeTo provide a supply voltage, for example, for a connected sensor, in the range 2000 mV ... 20000 mV in steps of 100 mV.

DescriptionThe DS5203M1 frameworks provide one output channel for the Sensor Supply (M1) I/O function.

This I/O function is not considered when you generate the processor interface model.

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number must be specified as 46.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Supply voltage Lets you specify the supply voltage a connected sensor is to be driven with in the range 2000 mV ... 20000 mV in steps of 100 mV.

Port

There is no port to be specified.

I/O mapping

The following I/O mapping is relevant if you use one of the DS5203M1 Multi-I/O Module frameworks for sensor supply channels.

Outport	Channel	Connector Pin	Signal
_	1	P2 5	VSENS-
		P2 38	VSENS+

Related topics

References

I/O Functions of the FPGA1401Tp1 with Multi-I/O Module Frameworks

Introduction

The FPGA1401Tp1 frameworks provide the standard I/O functionality of MicroAutoBox II with DS1552 (FPGA1401Tp1_DS1552_XC7K325T) or with DS1552B1 Multi-I/O Module (FPGA1401Tp1_DS1552B1_XC7K325T).

Where to go from here

Information in this section

ADC (Type A) To read data from an analog input signal in the FPGA application using the Type A conversion function.	337
ADC (Type B) To read data from an analog input signal in the FPGA application using the Type B conversion function.	338
Buffer In To read data from an intermodule-bus buffer with a data width of 32 bits.	340
Buffer64 In	341
Buffer Out To write data to an intermodule-bus buffer with a data width of 32 bits.	343
Buffer64 Out To write data to an intermodule-bus buffer with a data width of 64 bits.	345
DAC To write data to an analog output signal in the FPGA application.	347
Digital Crank/Cam Sensor To provide bit-wise read access to digital camshaft and crankshaft sensors.	348

Digital In (Type A)
Digital In (Type B)
Digital Out (Type A)
Digital Out (Type B)
Inductive Zero Voltage Detector
Interrupt
LED Out
Register In
Register64 In
Register Out
Register64 Out
Sensor Supply
Status In
UART (RS232)
UART (RS422/485)

ADC (Type A)

Purpose	To read data from an analog input signal in the FPGA application using the Type A conversion function.
Description	According to the number of physical connections available on the DS1552 Multi- I/O Module, you can select the ADC (Type A) I/O functions. There are eight analog input channels.
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 26 33.
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	The channel number can be specified in the range 0 7.
	hq_adc_ <channelnumber>_data / Data Outputs the current results of the A/D conversions on the current channel. Range: 0 +65535 Update rate: 1 Msps</channelnumber>
	hq_adc_ <channelnumber>_soc / Start of conversion Lets you trigger the start of an A/D conversion on the specified channel. When the value is set to 1 for at least one clock cycle, the ADC starts the conversion. The port allows a precise definition of the starting point of ADC sampling. The Data_eoc outport signals the end of the conversion process.</channelnumber>
	Setting this value permanently to 1 results in continuous sampling. hq_adc_ <channelnumber>_eoc / End of conversion Outputs an end of conversion signal if the conversion result is available on the specified channel. If the flag changes from 0 to 1, the ADC data contains a new value. The flag is set to 1 for only one clock cycle.</channelnumber>
I/O mapping	The following I/O mapping is relevant if you use a FPGA1401Tp1 framework for analog input channels using the Type A conversion function. The signals are available at the DS1514 ZIF I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	X3 X4	Analogin+ ch 1 Analogin- ch 1 ¹⁾
	2	W3 W4	AnalogIn+ ch 2 AnalogIn- ch 2 ¹⁾
	3	V3 V4	AnalogIn+ ch 3 AnalogIn- ch 3 ¹⁾
	4	U3 U4	Analogin+ ch 4 Analogin- ch 4 ¹⁾
	5	H3 H4	AnalogIn+ ch 5 AnalogIn- ch 5 ¹⁾
	6	G3 G4	AnalogIn+ ch 6 AnalogIn- ch 6 ¹⁾
	7	F3 F4	Analogin+ ch 7 Analogin- ch 7 ¹⁾
	8	E3 E4	AnalogIn+ ch 8 AnalogIn- ch 8 ¹⁾

¹⁾ The negative input line of the ADC channel is connected to GND. To get optimum analog performance, follow the instructions in Connecting Sensor Ground Lines to MicroAutoBox II (MicroAutoBox II Hardware Installation and Configuration Guide (1) for connecting the analog channels to GND.

Related topics

References

ADC (Type B)	
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37

ADC (Type B)

Purpose

To read data from an analog input signal in the FPGA application using the Type B conversion function.

Description

According to the number of physical connections available on the DS1552 Multi-I/O Module, you can select the ADC (Type B) I/O functions. There are 16 analog output channels.

This I/O function is not considered when you generate the processor interface model.

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 34 ... 49.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 15.

Iq_adc_<ChannelNumber>_data / **Data** Outputs the current results of the A/D conversions on the current channel in the range -32768 ... +32767.

Update rate: 0.2 Msps

I/O mapping

The following I/O mapping is relevant if you use a FPGA1401Tp1 framework for analog input channels using the Type B conversion function. The signals are available at the DS1514 ZIF I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	b2	AnalogIn ch 1
	2	a2	AnalogIn ch 2
	3	Z2	AnalogIn ch 3
	4	Y2	Analogin ch 4
	5	X2	Analogin ch 5
	6	W2	Analogin ch 6
	7	V2	AnalogIn ch 7
	8	U2	Analogin ch 8
	9	M2	AnalogIn ch 9
	10	L2	Analogin ch 10
	11	K2	Analogin ch 11
	12	J2	Analogin ch 12
	13	H2	Analogin ch 13
	14	G2	Analogin ch 14
	15	F2	AnalogIn ch 15
	16	E2	Analogin ch 16

Related topics

References

ADC (Type A)	. 337
DAC	. 347

Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)......37

Buffer In

Purpose

To read data from an intermodule-bus buffer with a data width of 32 bits.

Description

If you select Buffer as the access type, the data is read from an intermodule-bus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits.

If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_WRITE_BL block is added to the processor model with the configured data formats.

Parameters

The I/O function number can be specified in the range 129 ... 160.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 32-bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768. The maximum range of the Address inport depends on the buffer size.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemf_<ChannelNumber>_count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmemf_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from an intermodule-bus buffer. The data format depends on the related parameter settings.

xmemf_<ChannelNumber>_new_data / Data New Outputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

xmemf_<ChannelNumber>_addr / Address Specifies an element in the buffer you want to read. The block requires 1 clock cycle to update the value of the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer (see Data Count outport). If you request data from an address that is greater than the Data Count value, the output of the Data outport is undefined. The first element of a buffer is addressed by 0.

Related topics

References

Buffer Out	343
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	. 37
Register In	361

Buffer64 In

Purpose

To read data from an intermodule-bus buffer with a data width of 64 bits.

Description

If you select Buffer64 as the access type, the data is read from an intermodulebus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits.

If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_WRITE_BL block is added to the processor model with the configured data formats.

Parameters

The I/O function number can be specified in the range 289 \dots 320.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double). The fraction width is provided by the Binary point position (or fraction

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768. The maximum range of the Address inport depends on the buffer size.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemf64_<ChannelNumber>_count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmemf64_<ChannelNumber>_dout / Data Outputs a 64-bit data value to be read from an intermodule-bus buffer. The data format depends on the related parameter settings.

xmemf64_<ChannelNumber>_new_data / Data New Outputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

xmemf64_<ChannelNumber>_addr / Address Specifies an element in the buffer you want to read. The block requires 1 clock cycle to update the value of the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer (see Data Count outport). If you request data from an address that is greater than the Data Count value, the output of the Data outport is undefined. The first element of a buffer is addressed by 0.

Related topics

References

Buffer64 Out	345
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37
Register64 In	362

Buffer Out

Purpose

To write data to an intermodule-bus buffer with a data width of 32 bits.

Description

If you select Buffer as the access type, the data is written to an intermodule-bus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits.

If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_READ_BL block is added to the processor model with the configured data formats.

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 129 ... 160.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 32 bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you select the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity ${\it cm}$.

The channel number can be specified in the range 00 ... 31.

xmemp_<ChannelNumber>_din / Data Specifies a 32-bit data value to be written to an intermodule-bus buffer. The data format depends on the related parameter settings.

xmemp_<ChannelNumber>_write / Enable Specifies the current valid Data port value.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

xmemp_<ChannelNumber>_finished / Ready Explicitly specifies the buffer state as ready to send the buffer immediately, even if it is not completely filled. The data values will be written to a new buffer in the next clock cycle. While the port value is 1, transmission switches buffer in every clock cycle. The value should therefore be set for one clock cycle only. If the buffer is completely filled, it is automatically switched, and the data values are stored in a new buffer.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled. The buffer is switched and the data values are accessible via intermodule bus in the next clock cycle.

The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmemp_<ChannelNumber>_overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

Related topics

References

Buffer In	340
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37
Register Out	364

Buffer64 Out

Purpose

To write data to an intermodule-bus buffer with a data width of 64 bits.

Description

If you select Buffer64 as the access type, the data is written to an intermodulebus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits.

If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_READ_BL block is added to the processor model with the configured data formats.

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 289 ... 320.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemp64_<ChannelNumber>_din / Data Specifies a 64-bit data value to be written to an intermodule-bus buffer. The data format depends on the related parameter settings.

xmemp64_<ChannelNumber>_write / Enable Specifies the current valid Data port value.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled. The buffer is switched and the data values are accessible via intermodule bus in the next clock cycle.

The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmemp64_<ChannelNumber>_overflow / Overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

Related topics

References

Buffer64 In	. 341
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37
Register64 Out	366

DAC

Purpose

To write data to an analog output signal in the FPGA application.

Description

According to the number of physical connections available on the DS1552 Multi-I/O Module, you can select the DAC I/O functions. There are four analog output channels.

This I/O function is not considered when you generate the processor interface model.

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 26 ... 29.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 0 ... 3.

dac<ChannelNumber>_data / Data Outputs a signal in the range 0 ... +65535.

Range exceeding is possible and will be saturated to the minimum or maximum value

Hardware update rate: 2.1 Msps (if the values are updated at a higher FPGA model rate, intermediate values are not updated by the DAC).

I/O mapping

The following I/O mapping is relevant if you use a FPGA1401Tp1 framework for analog output channels. The signals are available at the DS1514 ZIF I/O connector.

Inport	Channel	Connector Pin	Signal
Data	1	c2	AnalogOut ch 1
	2	c3	AnalogOut ch 2
	3	c4	AnalogOut ch 3
	4	c5	AnalogOut ch 4

Related topics

References

ADC (Type A)	337
ADC (Type B)	338
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37

Digital Crank/Cam Sensor

Purpose

To provide bit-wise read access to digital camshaft and crankshaft sensors. Each channel is 1 bit wide.

Description

According to the number of physical connections available on the DS1552 Multi-I/O Module, you can select the Digital Crank/Cam Sensor I/O functions. There are three input channels.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 50 ... 52.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Low threshold voltage To set the low threshold level for the selected digital input channel. Below this level a logical 0 is detected, above this level a logical 1 is detected, if the high threshold voltage was crossed before.

- Range:
 - -40000 mV ... +40000 mV
- Resolution:
 - 20 mV
- Default:
 - 1000 mV

- Range:
 - -40000 mV ... +40000 mV
- Resolution:
 - 100 mV
- Default:
 - 1000 mV

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 0 ... 2.

cam_<ChannelNumber> / Data Data type: UFix_1_0

- 0: The input signal is lower than the Low threshold voltage parameter.
- 1: The input signal is higher than the High threshold voltage parameter. Update rate: 80 MHz

I/O mapping

The following I/O mapping is relevant if you use a FPGA1401Tp1 framework for analog input channels. Depending on the MicroAutoBox variant the signals are available at the DS1514 ZIF I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	R3	CrankCam+ ch 1
		R4	CrankCam- ch 1
	2	В3	CrankCam+ ch 2
		B4	CrankCam- ch 2
	3	A3	CrankCam+ ch 3
		A4	CrankCam- ch 3

Related topics

References

Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)......37

Digital In (Type A)

Purpose

To read data from a digital input signal in the FPGA application using a digital input channel.

Description

According to the number of physical connections available on the DS1552 Multi-I/O Module, you can select the Digital In (Type A) I/O functions. There are 16 digital input channels.

The threshold level is fix:

- 3.6 V for low-high transition
- 1.2 V for high-low transition

Note

If you use the same digital channel for the input and the output, the I/O driver is internally set to InOut mode. As a consequence, the maximum input voltage for the digital input channel is equal to the specified high supply, and the applicable threshold voltage is lower than the specified high supply.

To use the maximum input voltage range, you have to use a digital channel only as the input.

This I/O function is not considered when you generate the processor interface model.

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 2 ... 17.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 15.

dig_<ChannelNumber>_in / Data Outputs the current results of digital input channel.

- 0: Input voltage of the channel is below the threshold voltage of a high-low transition.
- 1: Input voltage of the channel is higher than or equal to the threshold voltage of a low-high transition.

Update rate: 80 MHz

Note

- The frequency that can be detected is much smaller than the update rate. For information on the electrical characteristics of the DS1552 Multi-I/O Module, refer to Digital Inputs (MicroAutoBox II Hardware Reference 🕮).
- Asynchronous input data might lead to metastable register states. Further synchronization techniques might be necessary.

I/O mapping

The following I/O mapping is relevant if you use a FPGA1401Tp1 framework for digital input channels. The signals are available at the DS1514 ZIF I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	V5	Digln ch 1
	2	U5	Digln ch 2
	3	U6	Digln ch 3
	4	T2	Digln ch 4
	5	T3	Digln ch 5
	6	T4	Digln ch 6
	7	T5	Digln ch 7
	8	T6	Digln ch 8
	9	S2	Digln ch 9
	10	S3	Digln ch 10
	11	S5	Digln ch 11
	12	R2	Digln ch 12
	13	R5	Digln ch 13
	14	R6	Digln ch 14
	15	P5	Digln ch 15
	16	P6	Digln ch 16

Related topics

References

Digital In (Type B)	352
Digital Out (Type A)	354
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	

Digital In (Type B)

Purpose	To read data from a digital input signal in the FPGA application by using a digital bidirectional channel.
Description	According to the number of physical connections available on the DS1552 Multi-I/O Module, you can select the Digital In (Type B) I/O functions. There are eight digital input channels.
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 18 ... 25.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Threshold voltage Lets you specify the threshold level for the current digital channel in the range 1000 mV ... 7500 mV in steps of 100 mV. If the input signal is below this level, a logical 0 is detected, otherwise a logical 1.

- 1000: 1000 mV threshold level
- ..
- 7500: 7500 mV threshold level

Note

If you use the same digital channel for the input and the output, the I/O driver is internally set to InOut mode. As a consequence, the maximum input voltage for the digital input channel is equal to the specified high supply, and the applicable threshold voltage is lower than the specified high supply.

To use the maximum input voltage range, you have to use a digital channel only as the input.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 07.

bidir_<ChannelNumber>_in / Data Outputs the current results of digital input channel.

- 0: Input voltage of the channel is below the specified threshold voltage.
- 1: Input voltage of the channel is higher than or equal to the specified threshold voltage.

Update rate: 80 MHz

Note

- The frequency that can be detected is much smaller than the update rate. For information on the electrical characteristics of the DS1552 Multi-I/O Module, refer to Digital I/O (Bidirectional) (MicroAutoBox II Hardware Reference 🚇).
- Asynchronous input data might lead to metastable register states. Further synchronization techniques might be necessary.

I/O mapping

The following I/O mapping is relevant if you use a FPGA1401Tp1 framework for digital bidirectional channels. The signals are available at the DS1514 ZIF I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	N2	DigIO ch1
	2	N3	DigIO ch2
	3	N4	DigIO ch3
	4	N5	DigIO ch4
	5	N6	DigIO ch5
	6	M5	DigIO ch6
	7	M6	DigIO ch7
	8	L4	DigIO ch8

You can use the same digital channel for input and output signals.

Related topics

References

Digital In (Type A)	350
Digital Out (Type B)	
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37

Digital Out (Type A)

Purpose	To write data to a digital output signal in the FPGA application using a digital output channel.
Description	According to the number of physical connections available on the DS1552 Multi-I/O Module, you can select the Digital Out (Type A) I/O functions. There are 16 digital output channels.
	The voltage range for the high side switch for all digital output channels is in the range 0 V \dots 45 V.
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 2 ... 17.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 15.

dig_<ChannelNumber>_out / Data Outputs a signal in the specified range. If driven with 0, the hardware output is 0 V. If driven with 1, the hardware output is set to the specified high supply voltage (VDRIVE). The hardware output is only driven if the Enable port is set to 1, otherwise the output is set to high impedance (High-Z).

Update rate: 80 MHz

Note

The frequency that can be generated is much smaller than the update rate. For information on the electrical characteristics of the DS1552 Multi-I/O Module, refer to Digital Outputs (MicroAutoBox II Hardware Reference).

dig_<ChannelNumber>_oe / Enable Controls the hardware output. If set to 1, the hardware output reacts to the Data outport, otherwise it is set to High-Z.

I/O mapping

The following I/O mapping is relevant if you use a FPGA1401Tp1 framework for digital output channels. The signals are available at the DS1514 ZIF I/O connector.

Inport	Channel	Connector Pin	Signal
Data	1	F5	DigOut ch 1
	2	E5	DigOut ch 2
	3	E6	DigOut ch 3
	4	D2	DigOut ch 4
	5	D3	DigOut ch 5
	6	D4	DigOut ch 6
	7	D5	DigOut ch 7
	8	D6	DigOut ch 8
	9	C2	DigOut ch 9
	10	C3	DigOut ch 10
	11	C5	DigOut ch 11
	12	B2	DigOut ch 12
	13	B5	DigOut ch 13
	14	B6	DigOut ch 14
	15	A5	DigOut ch 15
	16	A6	DigOut ch 16

Related topics

References

Digital In (Type A)	350
Digital Out (Type B)	356
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37

Digital Out (Type B)

Purpose	To write data to a digital output signal in the FPGA application by using a digital bidirectional channel.
Description	According to the number of physical connections available on the DS1514 Multi-I/O Module, you can select the Digital Out (Type B) I/O functions. There are eight digital output channels.
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 18 ... 25.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(18).Parameter(1).Init / **High supply** Lets you select the voltage for the high side switch for all digital output channels.

- 0: 3.3 V
- 1:5 V

Note

You can specify the high supply voltage value only globally for all digital output channels.

The I/O function number must be specified as 18.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 07.

bidir_<ChannelNumber>_out / Data Outputs a signal in the specified range. If driven with 0, the hardware output is 0 V. If driven with 1, the hardware output is 3.3 V or 5 V according to the specified high supply voltage. The hardware output is only driven if the Enable port is set to 1, otherwise the output is set to high impedance (High-Z).

Update rate: 80 MHz

Note

The frequency that can be generated is smaller than the update rate. For information on the electrical characteristics of the DS1552 Multi-I/O Module, refer to Digital I/O (Bidirectional) (MicroAutoBox II Hardware Reference (12)).

bidir_<ChannelNumber>_oe / Enable Controls the hardware output. If set to 1, the hardware output reacts to the Data outport, otherwise it is set to High-Z.

I/O mapping

The following I/O mapping is relevant if you use a FPGA1401Tp1 framework for digital bidirectional channels. The signals are available at the DS1514 ZIF I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	N2	DigIO ch1
	2	N3	DigIO ch2
	3	N4	DigIO ch3
	4	N5	DigIO ch4
	5	N6	DigIO ch5
	6	M5	DigIO ch6
	7	M6	DigIO ch7
	8	L4	DigIO ch8

You can use the same digital channel for input and output signals.

Related topics

References

Digital In (Type B))
Digital Out (Type A)354	1
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)37	7

Inductive Zero Voltage Detector

Purpose	To provide read access to an inductive zero voltage detector.	
Description	The FPGA1401Tp1 frameworks provide one channel for the Inductive Zero Voltage Detector I/O function.	
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.	
	The I/O function number must be specified as 53.	
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>	
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.	
	There is no channel number to be specified.	
	crank / Data To detect the zero crossing points of the analog signals. If a zero crossing from positive to negative is detected, the output signal is 1 for 1 clock cycle.	

Data type: UFix_1_0

• 0: No zero crossing.

• 1: Zero crossing is detected.

Update rate: 80 MHz

I/O mapping

The following I/O mapping is relevant if you use a FPGA1401Tp1 framework for analog input channels. The signals are available at the DS1514 ZIF I/O connector.

Outport	Connector Pin	Signal
Data	Р3	ZeroDetection+
	P4	ZeroDetection-

Related topics

References

Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)......37

Interrupt

Purpose	To request a processor interrupt outside of the FPGA application.	
Description	The FPGA1401Tp1 frameworks provide 8 interrupt lines. An interrupt is requested if the Int port is set to 1 for at least one clock cycle. If you set the Int port to 0, the last interrupt is not released but saved. An interrupt is edgetriggered.	
	If you generate the processor interface model for this FPGA I/O function, a PROC_INT_BL block is added to the processor model with the configured data formats.	
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.	
	The I/O function number can be specified in the range 1 8.	
	IRQProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>	
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.	

The channel number can be specified in the range 0 \dots 7.

usr_<ChannelNumber>_interrupt / Int
Provides the interrupt request line.

- 0 to 1: Interrupt is requested (edge-triggered).
- 0: No interrupt is requested. Last requested interrupt is saved.

Related topics

References

Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)......37

LED Out

Purpose	To write a digital signal that controls the FPGA status LED.	
	You can find the FPGA status LED near the DS1514 ZIF I/O connector.	
Description	The FPGA1401Tp1 frameworks provide one channel for the LED Out I/O function.	
	This I/O function is not considered when you generate the processor interface model.	
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.	
	The I/O function number must be specified as 1.	
	IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>	
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.	
	There is no channel number to be specified.	
	 led_out / Data Controls the Status LED on the board's bracket. 0: LED lights green. 1: LED lights orange. 	
	5 5	

Related topics

References

Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1).......

Register In

Purpose

To read data from an intermodule-bus register with a data width of 32 bits.

Description

If you select Register as the access type, the data is read from an intermodule-bus register. 128 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_WRITE_BL block is added to the processor model with the configured data formats.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 128.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 32-bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction)

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are sampled simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the intermodule bus.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- .
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 127.

xreg_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from an intermodule-bus register. The data format depends on the related parameter settings.

xreg_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Buffer In	340
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	.37
Register Out	364

Register64 In

Purpose

To read data from an intermodule-bus register with a data width of 64 bits.

Description

If you select Register64 as the access type, the data is read from an intermodule-bus register. 128 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_WRITE_BL block is added to the processor model with the configured data formats.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 161 ... 288.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

width) setting.

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double). The fraction width is provided by the Binary point position (or fraction

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register

groups. Registers that you specified with the same group ID are sampled simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the intermodule bus.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- •
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 127.

xreg64_<ChannelNumber>_dout / Data Outputs a 64-bit data value to be read from an intermodule-bus register. The data format depends on the related parameter settings.

xreg64_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Buffer64 In	341
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37
Register64 Out	366

Register Out

Purpose

To write data to an intermodule-bus register with a data width of 32 bits.

Description

If you select Register as the access type, the data is written to an intermodule-bus register. 128 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_READ_BL block is added to the processor model with the configured data formats.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 128.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 32 bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you select the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the intermodule bus sequentially and then provided to the FPGA application simultaneously.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ..
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 127.

xreg_<ChannelNumber>_din / Data Specifies a 32-bit data value to be written to an intermodule-bus register. The data format depends on the related parameter settings.

Related topics

References

Buffer Out	343
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37
Register In	361

Register64 Out

Purpose

To write data to an intermodule-bus register with a data width of 64 bits.

Description

If you select Register64 as the access type, the data is written to an intermodule-bus register. 128 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_READ_BL block is added to the processor model with the configured data formats.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 161 \dots 288.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the intermodule bus sequentially and then provided to the FPGA application simultaneously.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ...
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 127.

xreg64_<ChannelNumber>_din / Data Specifies a 64-bit data value to be written to an intermodule-bus register. The data format depends on the related parameter settings.

Related topics

References

Buffer64 Out	15
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37
Register64 In	2

Sensor Supply

Purpose	To provide a supply voltage, for example, for a connected sensor, in the range 2000 mV 20000 mV in steps of 100 mV.				
Description	The FPGA1401Tp1 frameworks provide one channel for the Sensor Supply I/O function.				
	This I/O function is not considered when you generate the processor interface model.				
Parameters		templates for t GA framework	he functions and the	following par	rameters in the
	The I/O function number must be specified as 30.				
	IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>				
	voltage L	ets you specify	the supply voltage a 20000 mV in step	connected se	
Port	There is no port to be specified.				
I/O mapping			s relevant if you use a		
	Outport	Channel	Connector Pin	Signal	
	Sim_Data	1	b6	VS- VS+	

Related topics

References

Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)......37

Status In

Purpose

To read digital signals that outputs state information, e.g.: state of the FPGA initialization sequence or the FPGA die temperature.

Description

The FPGA1401Tp1 framework provides one channel for the Status In I/O

function.

This I/O function is not considered when you generate the processor interface

model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number must be specified as 1.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel

name Lets you specify a custom name for the specified channel.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

init_done/ Init Done Outputs the state of the initialization sequence that is started after programming the FPGA.

- 0: Initialization sequence is in progress.
- 1: Initialization sequence has finished.

temperature / Temperature Outputs the raw value of the FPGA's die temperature measurement. Use the 12 MSB bits to calculate the die temperature.

Equation to calculate the die temperature:

Temperature [°C] = (float)(Temperature[hex] & 0xFFF0) · 503.975 / 65536 - 273.15

Data type: UFix_16_0

Data width: 1

Value range: 0 ... 65536

high_temp / High Outputs a flag if the FPGA's die temperature exceeds

105 °C.

To reset the flag, the die temperature must fall below 85 °C.

Data type: UFix_1_0

- 0: Die temperature does not exceed 105 °C.
- 1: Die temperature exceeds 105 °C.

Note

A high ambient temperature and an FPGA application with a very high FPGA utilization and/or toggle rate increase the FPGA die temperature (internal chip temperature). If the die temperature exceeds 105 °C, the FPGA might work incorrectly.

You can decrease the temperature by reducing the FPGA's toggle rate (e.g., by using clock enable) or by reducing the utilization of the FPGA resources. If the die temperature exceeds 125 °C, the FPGA resets itself. The reset stays active until the die temperature falls below 85 °C and you restart MicroAutoBox II or reload the user application.

Related topics

References

Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)......37

UART (RS232)

Purpose

To implement communication via serial interface for RS232 UART type.

Description

According to the number of physical connections available on the DS1552 Multi-I/O Module, you can select the UART (RS232) I/O functions. There are two interfaces.

Note

UART 1 can be used without modification. To use UART 2, your DS1552 has to be modified by dSPACE.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 31 \dots 32.

Most of the parameters are used for the UART (RS232) and UART (RS422/485) I/O functions.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Baud rate Lets you specify the baud rate of the UART in the range 50 ... 1,000,000 baud (bits per second).

The baud rate depends on the parameters 2, 3, 4 and the FPGA board, and can be calculated by the following formula:

Variable	Parameter	Description
uart_x_dcm_m ¹⁾	Parameter(2).Init	Multiplier for the digital clock manager (DCM) module in the range 2 255.
uart_x_dcm_d ¹⁾	Parameter(3).Init	Divisor for the digital clock manager (DCM) module in the range 1 255.
uart_x_dcm_clk_divider ¹⁾	Parameter(4).Init	UART clock divider in the range 0 262,143.

 $^{^{1)}}$ x=1 for UART 1; x=2 for UART 2

Note

Limitations:

- The maximum baud rate of 1,000,000 baud must not be exceeded.
- The output frequency of the digital clock manager (DCM) module should be between 40 MHz and 160 MHz:

 $f_{DCM} = 200 \text{ MHz} \cdot \text{uart}_x_\text{dcm} / \text{uart}_x_\text{dcm} d$

Tip

In the framework folder you find a MATLAB file that provides some calculated baud rates and the percentage deviations to the supported baud rates according to the parameters m, d and the clock divider.

- MATLAB file name: FPGA1401Tp1_XC7K325T_uart_parameters.mat

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(5).Init / Word length Lets you specify the word length in the range 5 ... 9 bit. The word length includes the number of data bits and the optional parity bit. Exceeding bits in a message are ignored at the transmitter or cleared at the receiver.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(6).Init / Stop bits Lets you specify the length of the stop bits in half of bits.

Stop Bits	Parameter Value
1	2
1.5	3
2	4

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(7).Init / UART type Lets you specify the UART type.

Value	UART Type
0	RS232
1	RS422/485

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(8).Init / Termination Lets you specify the termination state.

Note

For the RS232 UART type, the termination must be set to 0 (disconnected).

Value	Termination State	Description
0	Disconnected	■ The RX/CTS and TX/RTS signals are not terminated.
1	Connected	■ Not allowed

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 0 ... 1.

After three clock cycles, the value is available and can be read from the RX FIFO buffer. The value remains valid until the next Read_Enable signal.

Before you read data from the RX FIFO buffer, you should check the Read_Fifo_Empty signal not to be set. The Read_Fifo_Empty signal switches one clock cycle after the RX FIFO value has been read.

Do not use the Read_Data_Count signal (Read_Data_Count < 0) to check the RX FIFO buffer, because it requires one additional clock cycle to get the count value.

You can read one value per FPGA clock cycle from the UART.

uart_<ChannelNumber>_rd_data_count / Read Data Count Outputs the number of new entries in the RX FIFO buffer.

Two clock cycles are required to return the number of entries.

If you only want to check whether a value is available in the RX FIFO buffer, use the Read_Fifo_Empty signal instead of this.

Value range: 0 ... 2047

If the status of the buffer is *not empty*, then you can start reading the data using the Read_Enable signal.

The Read_Fifo_Empty signal switches one clock cycle after the FIFO value has been read.

Do not use the Read_Data_Count signal to check the status of the buffer (Read_Data_Count>0), because this requires one additional clock cycle before its value is valid.

Range:

- 0: The RX FIFO buffer is not empty.
- 1: The RX FIFO buffer is empty.

The read_data is available after three clock cycles after the Read_Enable signal. The return value is 0, if the data is read before anything has been received by the RX hardware input.

Range: 0 ... 511

The hardware input receives serial data for the UART RX FIFO buffer using inverted voltage levels of -6 V (logical high) and +6 V (logical low).

The Write_Data value is written to the TX FIFO buffer, from which it is automatically send to the TX output pin of the I/O connector using the specified UART communication settings.

Write_Enable must be set to 1 for only one clock cycle.

Before you write data to the TX FIFO buffer, you should check the Write_Fifo_Full signal not to be set. The Write_Fifo_Full signal switches one clock cycle after the Write_Enable signal has been set.

Do not use the Write_Data_Count signal (Write_Data_Count < 2047) to check the TX FIFO buffer, because it requires one additional clock cycle to get the count value.

The hardware output port is driven with the values from the TX FIFO buffer. It is synchronously running to the UART clock defined by the UART baudrate. The hardware port has inverted voltage levels of -6 V (logical high) and +6 V (logical low).

The values in the TX FIFO buffer has not been sent already.

Do not use the Write_Data_Count signal to check the status of the buffer (Write_Data_Count<2047), because this requires two clock cycles before its value is valid, instead of one clock cycle when using the Write_Fifo_Full signal.

Range: 0 ... 2047

You can use the signal to check the TX FIFO buffer before you start writing data to the buffer. The Write_Fifo_Full signal switches one clock cycle after the Write_Enable signal has been set.

Range:

- 0: The TX FIFO buffer is not full.
- 1: The TX FIFO buffer is full.

uart_<ChannelNumber>_wr_data / Write Data Specifies the value to be send.

The Write_Data signal is transferred at each clock cycle with Write_Enable set to 1.

Range: 0 ... 511

through and adapted to the physical layer.

The hardware port is synchronously running to the UART clock defined by the UART baudrate. The hardware port has voltage levels of +6 V (active, logical high) and -6 V (inactive).

RTS/CTS handshake is handled by the user. CTS is just passed through with conversion to logical 1 and 0.

Range:

- 0: CTS inactive
- 1: CTS active

The CTS hardware port is synchronously running to the UART clock defined by the UART baudrate. The hardware port has voltage levels of +6 V (active, logical high) and -6 V (inactive).

I/O mapping

The following I/O mapping is relevant if you use a FPGA1401Tp1 framework for serial communication using the UART (RS232) function. The signals are available at the DS1514 ZIF I/O connector.

Inpo	rt	Connector Pin	Signal		
UAR1	UART 1 (RS232)				
	Write_Data	a5	TX1		
	RTS	a6	RTS1		
	Read_Data	b5	RX1		
	CTS	a4	CTS1		
UAR1	2 (RS232) ¹⁾				
	Write_Data	Z5	TX2		
	RTS	Z6	RTS2		
	Read_Data	Z3	RX2		
	CTS	Z4	CTS2		

¹⁾ To use UART 2, your DS1552 has to be modified by dSPACE.

Related topics

References

 Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)
 37

 UART (RS422/485)
 375

UART (RS422/485)

Purpose

To implement communication via serial interface for RS422/485 UART type.

Description

According to the number of physical connections available on the DS1552 Multi-I/O Module, you can select the UART (RS422/485) I/O functions. There are two interfaces.

Note

UART 1 can be used without modification. To use UART 2, your DS1552 has to be modified by dSPACE.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 33 ... 34.

Most of the parameters are used for the UART (RS232) and UART (RS422/485) I/O functions.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Baud rate Lets you specify the baud rate of the UART in the range 50 ... 10,000,000 baud (bits per second).

The baud rate depends on the parameters 2, 3 and 4, and can be calculated by the following formula:

BaudRate = (10^8 · uart_x_dcm_m) / (4 · uart_x_dcm_d · (uart_dcm_clk_divider+1))
With:

Variable	Parameter	Description
uart_x_dcm_m ¹⁾	Parameter(2).Init	Multiplier for the digital clock manager (DCM) module in the range 2 255.
uart_x_dcm_d ¹⁾	Parameter(3).Init	Divisor for the digital clock manager (DCM) module in the range 1 255.
uart_x_dcm_clk_divider ¹⁾	Parameter(4).Init	UART clock divider in the range 0 262,143.

 $^{^{1)}}$ x=1 for UART 1; x=2 for UART 2

Tip

In the framework folder you find a MATLAB file providing some calculated baud rates and the percentage deviations to the supported baud rates according to the parameters m, d and the clock divider.

- MATLAB file name: FPGA1401Tp1_XC7K325T_uart_parameters.mat

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(5).Init / Word length Lets you specify the word length in the range 5 ... 9 bit. The word length includes the number of data bits and the optional parity bit. Exceeding bits in a message are ignored at the transmitter or cleared at the receiver.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(6).Init / Stop bits Lets you specify the length of the stop bits in half of bits.

Stop Bits	Parameter Value
1	2
1.5	3
2	4

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(7).Init / UART mode Lets you specify the mode when using the RS422/485 UART type.

Value	UART Mode	
0	Full-duplex mode	
1	Half-duplex mode	

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(8).Init / UART type Lets you specify the UART type.

Value	UART Type
0	RS232
1	RS422/485

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(9).Init / Termination Lets you specify the termination state.

Value	Termination State	Description
0	Disconnected	 Full-duplex mode: RX-/RX+ and TX-/TX+ signals are not terminated. Half-duplex mode: BM/BP signals are not terminated.
1	Connected	 Full-duplex mode: RX-/RX+ and TX-/TX+ signals are terminated via 120 Ω resistors.

Value Termination State Description		Description
		Half-duplex mode:
		BM/BP signal are terminated via a 120 Ω resistor.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 0 ... 1.

After three clock cycles, the value is available and can be read from the RX FIFO buffer. The value remains valid until the next Read_Enable signal.

Before you read data from the RX FIFO buffer, you should check the Read_Fifo_Empty signal not to be set. The Read_Fifo_Empty signal switches one clock cycle after the RX FIFO value has been read.

Do not use the Read_Data_Count signal (Read_Data_Count < 0) to check the RX FIFO buffer, because it requires one additional clock cycle to get the count value.

You can read one value per FPGA clock cycle from the UART.

Two clock cycles are required to return the number of entries.

If you only want to check whether a value is available in the RX FIFO buffer, use the Read_Fifo_Empty signal instead of this.

Value range: 0 ... 2047

The channel number can be specified in the range 0 ... 1.

If the status of the buffer is *not empty*, then you can start reading the data using the Read_Enable signal.

The Read_Fifo_Empty signal switches one clock cycle after the FIFO value has been read.

Do not use the Read_Data_Count signal to check the status of the buffer (Read_Data_Count>0), because this requires one additional clock cycle before its value is valid.

Range:

- 0: The RX FIFO buffer is not empty.
- 1: The RX FIFO buffer is empty.

The read_data is available after three clock cycles after the Read_Enable signal. The return value is 0, if the data is read before anything has been received by the RX hardware input.

Range: 0 ... 511

The hardware input receives serial data for the UART RX FIFO buffer using inverted voltage levels of -6 V (logical high) and +6 V (logical low).

The Write_Data value is written to the TX FIFO buffer, from which it is automatically send to the TX output pin of the I/O connector using the specified UART communication settings.

Write_Enable must be set to 1 for only one clock cycle.

Before you write data to the TX FIFO buffer, you should check the Write_Fifo_Full signal not to be set. The Write_Fifo_Full signal switches one clock cycle after the Write_Enable signal has been set.

Do not use the Write_Data_Count signal (Write_Data_Count < 2047) to check the TX FIFO buffer, because it requires one additional clock cycle to get the count value.

The hardware output port is driven with the values from the TX FIFO buffer. It is synchronously running to the UART clock defined by the UART baud rate. The hardware port has inverted voltage levels of -6 V (logical high) and +6 V (logical low).

uart_<ChannelNumber>_wr_data_count / Write Data Count
Outputs
the number of values in the TX FIFO buffer.

The values in the TX FIFO buffer has not been sent already.

Do not use the Write_Data_Count signal to check the status of the buffer (Write_Data_Count<2047), because this requires two clock cycles before its value is valid, instead of one clock cycle when using the Write_Fifo_Full signal.

Range: 0 ... 2047

You can use the signal to check the TX FIFO buffer before you start writing data to the buffer. The Write_Fifo_Full signal switches one clock cycle after the Write_Enable signal has been set.

Range:

- 0: The TX FIFO buffer is not full.
- 1: The TX FIFO buffer is full.

The Write_Data signal is transferred at each clock cycle with Write_Enable set to 1.

Range: 0 ... 511

uart_<ChannelNumber>_driver_en / Driver Enable Specifies to enable the output driver in the transceiver for data transmission.

If you use the UART (RS485/422) function in half-duplex mode, the output driver must be disabled while receiving data.

I/O mapping

The following I/O mapping is relevant if you use a FPGA1401Tp1 framework for serial communication using the UART (RS422/485) function. The signals are available at the DS1514 ZIF I/O connector. The mapping differs when using the UART (RS422/485) in full-duplex or half-duplex mode.

Full-duplex mode:

Inpo	rt	Connector Pin	Signal
UART	1 (RS422/485)		
	Write_Data	a5	TX-1
		a6	TX+1
	Read_Data	b5	RX-1
		a4	RX+1
UART 2 (RS422/485) ¹⁾			'
	Write_Data	Z5	TX-2
		Z6	TX+2
	Read_Data	Z3	RX-2
		Z4	RX+2

¹⁾ To use UART 2, your DS1552 has to be modified by dSPACE.

Half-duplex mode:

Inport		Connector Pin	Signal
UART	1 (RS422/485)		
Write_Data		a5	BM1 (RX-1/TX-1)
		a6	BP1 (RX+1/TX+1)
	Read_Data	b5	_1)
		a4	_1)
UART 2 (RS422/485) ²⁾			
	Write_Data	Z5	BM2 (RX-2/TX-2)
		Z6	BP2 (RX+2/TX+2)
	Read_Data	Z3	_1)
		Z4	_1)

¹⁾ Do not connect, TX signals are available via BM and BP signals.

Related topics

References

Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37
UART (RS232)	0

 $^{^{2)}}$ To use UART 2, your DS1552 has to be modified by dSPACE.

I/O Functions of the FPGA1401Tp1 with Engine Control I/O Module Framework

Introduction

The FPGA1401Tp1 (7K325) with Engine Control I/O Module (DS1554) provides the I/O functionality of MicroAutoBox II with a DS1554 Engine Control I/O Module.

Where to go from here

Information in this section

ADC (Type A) To read data from an analog input signal in the FPGA application using the Type A conversion function.	382
Buffer In	385
Buffer64 In To read data from an intermodule-bus buffer with a data width of 64 bits.	386
Buffer Out To write data to an intermodule-bus buffer with a data width of 32 bits.	388
Buffer64 Out To write data to an intermodule-bus buffer with a data width of 64 bits.	390
Digital Crank/Cam Sensor To provide bit-wise read access to digital camshaft and crankshaft sensors.	392
Digital In (Type B) To read data from a digital input signal in the FPGA application using a digital bidirectional channel.	394

Digital Out (Type A)	96
Digital Out (Type B)	99
Inductive Zero Voltage Detector	.01
Interrupt	.02
Knock Sensor	.03
LED Out	.04
Register In	.05
Register64 In	.07
Register Out	.09
Register64 Out	.10
Status In	.12
Temperature	13

ADC (Type A)

Purpose

To read data from an analog input signal in the FPGA application by using the Type A conversion function.

Description

According to the number of physical connections available on the DS1554 Engine Control I/O Module, you can select the ADC (Type A) I/O functions. There are 14 analog input channels.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 10 ... 23.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 0 ... 13.

hq_adc_<ChannelNumber>_data / Data Outputs the current results of the A/D conversions on the current channel.

Data type: UFix_16_0 Range: 0 ... +65535 Update rate: 1 Msps

Setting this value permanently to 1 results in continuous sampling.

hq_adc_<ChannelNumber>_eoc / End of conversion Outputs an end of conversion signal if the conversion result is available on the specified channel. If the flag changes from 0 to 1, the ADC data contains a new value. The flag is set to 1 for only one clock cycle.

Data type: UFix_1_0 Range: 0 or 1

I/O mapping

The following I/O mapping is relevant if you use the FPGA1401Tp1 (7K325) with Engine Control I/O Module (DS1554) framework. The signals are available at the DS1514 ZIF I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	W2	AnalogIn+ ch 1
		V2	Analogin- ch 1 ¹⁾
	2	Y2	AnalogIn+ ch 2
		X2	AnalogIn- ch 2 ¹⁾
	3	S2	AnalogIn+ ch 3
		R2	AnalogIn- ch 3 ¹⁾
	4	T2	AnalogIn+ ch 4
		U2	Analogin- ch 4 ¹⁾
	5	V5	AnalogIn+ ch 5
		W6	Analogin- ch 5 ¹⁾
	6	W3	AnalogIn+ ch 6
		V3	Analogin- ch 6 ¹⁾
	7	T3	AnalogIn+ ch 7
		U3	Analogin- ch 7 ¹⁾
	8	U5	AnalogIn+ ch 8
		V6	Analogin- ch 8 ¹⁾
	9	S5	AnalogIn+ ch 9
		T6	Analogin- ch 9 ¹⁾
	10	T5	AnalogIn+ ch 10
		U6	Analogin- ch 10 ¹⁾
	11	R5	AnalogIn+ ch 11
		R6	Analogin- ch 11 ¹⁾
	12	S3	AnalogIn+ ch 12
		R3	Analogin- ch 12 ¹⁾
	13	P5	AnalogIn+ ch 13
		P6	Analogin- ch 13 ¹⁾
	14	P3	AnalogIn+ ch 14
		P2	Analogin- ch 14 ¹⁾

¹⁾ The negative input line of the ADC channel is connected to GND. For achieving optimum analog performance, refer to Connecting Sensor Ground Lines to MicroAutoBox II (MicroAutoBox II Hardware Installation and Configuration Guide 1).

Related topics References

Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)......37

Buffer In

Purpose

To read data from an intermodule-bus buffer with a data width of 32 bits.

Description

If you select Buffer as the access type, the data is read from an intermodule-bus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits.

If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_WRITE_BL block is added to the processor model with the configured data formats.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 129 ... 160.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 32-bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768. The maximum range of the Address inport depends on the buffer size.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemf_<ChannelNumber>_count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmemf_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from an intermodule-bus buffer. The data format depends on the related parameter settings.

xmemf_<ChannelNumber>_new_data / Data New Outputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

xmemf_<ChannelNumber>_addr / Address Specifies an element in the buffer you want to read. The block requires 1 clock cycle to update the value of the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer. Refer to Data Count outport. If you request data from an address that is greater than the Data Count value, the output of the Data outport is undefined. The first element of a buffer is addressed by 0.

Related topics

References

Buffer Out	388
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	.37
Register In	105

Buffer64 In

Purpose

To read data from an intermodule-bus buffer with a data width of 64 bits.

Description

If you select Buffer64 as the access type, the data is read from an intermodulebus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits. If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_WRITE_BL block is added to the processor model with the configured data formats.

Parameters

The I/O function number can be specified in the range 289 ... 320.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double). The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768. The maximum range of the Address inport depends on the buffer size.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity ${\it cm}$.

The channel number can be specified in the range 00 ... 31.

xmemf64_<ChannelNumber>_count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmemf64_<ChannelNumber>_dout / Data Outputs a 64-bit data value to be read from an intermodule-bus buffer. The data format depends on the related parameter settings.

xmemf64_<ChannelNumber>_new_data / Data New Outputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

xmemf64_<ChannelNumber>_addr / Address Specifies an element in the buffer you want to read. The block requires 1 clock cycle to update the value of the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer (see Data Count outport). If you request data from an address that is greater than the Data Count value, the output of the Data outport is undefined. The first element of a buffer is addressed by 0.

Related topics

References

Buffer64 Out	390
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37
Register64 In	407

Buffer Out

Purpose To write data to an intermodule-bus buffer with a data width of 32 bits. Description If you select Buffer as the access type, the data is written to an intermodule-bus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits. If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_READ_BL block is added to the processor model with the configured data formats. Parameters You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 129 ... 160.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 32 bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you select the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemp_<ChannelNumber>_din / Data Specifies a 32-bit data value to be written to an intermodule-bus buffer. The data format depends on the related parameter settings.

xmemp_<ChannelNumber>_write / Enable Specifies the current valid Data port value.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled. The buffer is switched and the data values are accessible via intermodule bus in the next clock cycle.

The ready flag must be set no later than the last data value. Otherwise the buffer switches twice.

xmemp_<ChannelNumber>_overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

Related topics

References

Buffer In	5
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	7
Register Out	9

Buffer64 Out

Purpose

Description If you select Buffer64 as the access type, the data is written to an intermodule-bus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits. If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_READ_BL block is added to the processor model with the configured data formats.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

To write data to an intermodule-bus buffer with a data width of 64 bits.

The I/O function number can be specified in the range 289 ... 320.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 \dots 31.

xmemp64_<ChannelNumber>_din / Data Specifies a 64-bit data value to be written to an intermodule-bus buffer. The data format depends on the related parameter settings.

xmemp64_<ChannelNumber>_write / Enable Specifies the current valid Data port value.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled. The buffer is switched and the data values are accessible via intermodule bus in the next clock cycle.

The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmemp64_<ChannelNumber>_overflow / Overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

Related topics

References

Buffer64 In	386
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37
Register64 Out	410

Digital Crank/Cam Sensor

Purpose	To provide bit-wise read access to digital camshaft and crankshaft sensors. Each channel is 1 bit wide.		
Description	According to the number of physical connections available on the DS1554 Engine Control I/O Module, you can select the Digital Crank/Cam Sensor I/O functions. There are five input channels.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		

The I/O function number can be specified in the range 28 ... 32.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Low threshold voltage Lets you set the low threshold level for the selected digital input channel. Below this level, a logical 0 is detected, above this level, a logical 1 is detected if the high threshold voltage was crossed before.

■ Range: -40000 mV ... +40000 mV

Resolution: 20 mVDefault: 1000 mV

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / High threshold voltage Lets you set the high threshold level for the selected digital input channel. The logical 1 is output if this level is crossed and stays 1 until the signal falls below the low threshold level.

■ Range: -40000 mV ... +40000 mV

Resolution: 20 mVDefault: 1000 mV

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 0 ... 4.

cam_<ChannelNumber> / Data Outputs the status of the crank/cam sensor. Data type: UFix_1_0

- 0: The input signal is lower than the Low threshold voltage parameter.
- 1: The input signal is higher than the High threshold voltage parameter.

Update rate: 80 MHz

I/O mapping

The following I/O mapping is relevant if you use the FPGA1401Tp1 (7K325) with Engine Control I/O Module (DS1554) framework. The signals are available at the DS1554 Sub-D I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	13	CrankCam Ch 1
	2	32	CrankCam Ch 2
	3	14	CrankCam Ch 3
	4	33	CrankCam Ch 4
	5	12	CrankCam Ch 5

Related topics References Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)......

Digital In (Type B)

Purpose	To read data from a digital input signal in the FPGA application by using a digital bidirectional channel.		
Description	According to the number of physical connections available on the DS1554 Engine Control I/O Module, you can select the Digital In (Type B) I/O functions. There are eight digital input channels.		
	This I/O function is not considered when you generate the processor interface model.		
Parameters	You can find templates for the functions and the following parameters in the		

handcode FPGA framework INI file.

The I/O function number can be specified in the range $2 \dots 9$.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel Lets you specify a custom name for the specified channel.

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Threshold Lets you specify the threshold level for the current digital channel in steps of 100 mV. If the input signal is below this level, a logical 0 is detected. Otherwise, a logical 1 is detected.

■ Range: 1000 mV ... 7500 mV

Resolution: 100 mV ■ Default: 1500 mV

Note

If you use the same digital channel for the input and the output, the I/O driver is internally set to *InOut* mode. As a consequence, the maximum input voltage for the digital input channel is equal to the specified high supply, and the applicable threshold voltage is lower than the specified high

To use the maximum input voltage range, you have to use a digital channel only as the input.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 07.

bidir_<ChannelNumber>_in / Data Outputs the current results of digital input channel.

- 0: Input voltage of the channel is below the specified threshold voltage.
- 1: Input voltage of the channel is higher than or equal to the specified threshold voltage.

Update rate: 80 MHz

Note

- The frequency that can be detected is much smaller than the update rate. For information on the electrical characteristics of the DS1554 Engine Control I/O Module, refer to Digital I/O (Bidirectional) (MicroAutoBox II Hardware Reference 🎱).
- Asynchronous input data might lead to metastable register states. Further synchronization techniques might be necessary.

I/O mapping

The following I/O mapping is relevant if you use the FPGA1401Tp1 (7K325) with Engine Control I/O Module (DS1554) framework. The signals are available at the DS1514 ZIF I/O connector. You can use the same digital channel for input and output signals.

Outport	Channel	Connector Pin	Signal
Data	1	с3	DigIO ch1
	2	b5	DigIO ch2
	3	b2	DigIO ch3
	4	c5	DigIO ch4
	5	c4	DigIO ch5
	6	c2	DigIO ch6
	7	a2	DigIO ch7
	8	Z2	DigIO ch8

Related topics

References

Digital Out (Type A)	396
Digital Out (Type B)	399
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37

Digital Out (Type A)

3 . , , , ,

Purpose

To write data to a digital output signal in the FPGA application using a digital output channel.

Description

According to the number of physical connections available on the DS1554 Engine Control I/O Module, you can select the Digital Out (Type A) I/O functions. There are 40 digital output channels.

The voltage range for the high-side switch for all digital output channels is in the range 0 \vee ... 45 \vee .

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 2 ... 41.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 39.

dig_<ChannelNumber>_out / Data Outputs a signal in the specified range. If driven with 0, the hardware output is 0 V. If driven with 1, the hardware output is set to the specified high-supply voltage (VDRIVE). The hardware output is only driven if the Enable port is set to 1. Otherwise, the output is set to high impedance (High-Z).

Data Type: UFix_1_0 Update rate: 80 MHz

Note

The frequency that can be generated is much smaller than the update rate. For information on the electrical characteristics of the DS1554 Engine Control I/O Module, refer to Digital Outputs (MicroAutoBox II Hardware Reference (12)).

dig_<ChannelNumber>_oe / Enable Controls the hardware output. If set to 1, the hardware output reacts to the Data outport. Otherwise, it is set to High-Z.

I/O mapping

The following I/O mapping is relevant if you use the FPGA1401Tp1 (7K325) with Engine Control I/O Module (DS1554) framework. The signals are available at the DS1514 ZIF I/O connector.

Inport	Channel	Connector Pin	Signal
Data	1	L5	DigOut ch 1
	2	N2	DigOut ch 2
	3	D3	DigOut ch 3
	4	N5	DigOut ch 4
	5	M6	DigOut ch 5
	6	N3	DigOut ch 6
	7	D5	DigOut ch 7
	8	M2	DigOut ch 8
	9	L6	DigOut ch 9
	10	K2	DigOut ch 10
	11	C3	DigOut ch 11
	12	L2	DigOut ch 12
	13	G6	DigOut ch 13
	14	H2	DigOut ch 14
	15	C5	DigOut ch 15
	16	J2	DigOut ch 16
	17	F6	DigOut ch 17
	18	E2	DigOut ch 18
	19	В3	DigOut ch 19
	20	G2	DigOut ch 20
	21	E6	DigOut ch 21
	22	C2	DigOut ch 22
	23	B5	DigOut ch 23
	24	F2	DigOut ch 24
	25	D6	DigOut ch 25
	26	A6	DigOut ch 26
	27	A3	DigOut ch 27
	28	D2	DigOut ch 28
	29	B6	DigOut ch 29
	30	A2	DigOut ch 30
	31	A5	DigOut ch 31
	32	B2	DigOut ch 32
	33	F5	DigOut ch 33
	34	N6	DigOut ch 34
	35	E3	DigOut ch 35
	36	E5	DigOut ch 36
	37	H3	DigOut ch 37
	38	M5	DigOut ch 38

Inport	Channel	Connector Pin	Signal
	39	G3	DigOut ch 39
	40	F3	DigOut ch 40

Related topics

References

Digital In (Type B)	394
Digital Out (Type B)	399
3	
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37
, in the second of the second	

Digital Out (Type B)

Purpose

To write data to a digital output signal in the FPGA application by using a digital bidirectional channel.

Description

According to the number of physical connections available on the DS1554 Engine Control I/O Module, you can select the Digital Out (Type B) I/O functions. There are eight digital output channels.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 42 ... 49.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(42).Parameter(1).Init / **High supply** Lets you select the voltage for the high-side switch for all digital output channels.

- 0: 3.3 V
- 1:5 V

Note

You can specify the high supply voltage value only globally for all digital output channels.

The I/O function number must be specified as 42.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 07.

bidir_<ChannelNumber>_out / Data Outputs a signal in the specified range. If driven with 0, the hardware output is 0 V. If driven with 1, the hardware output is 3.3 V or 5 V according to the specified high supply voltage. The hardware output is driven only if the Enable port is set to 1. Otherwise, the output is set to high impedance (High-Z).

Data Type: UFix_1_0 Update rate: 80 MHz

Note

The frequency that can be generated is much smaller than the update rate. For information on the electrical characteristics of the DS1554 Engine Control I/O Module, refer to Digital I/O (Bidirectional) (MicroAutoBox II Hardware Reference).

bidir_<ChannelNumber>_oe / Enable Controls the hardware output. If set to 1, the hardware output reacts to the Data outport, otherwise it is set to High-Z.

Data Type: UFix_1_0

I/O mapping

The following I/O mapping is relevant if you use the FPGA1401Tp1 (7K325) with Engine Control I/O Module (DS1554) framework. The signals are available at the DS1514 ZIF I/O connector. You can use the same digital channel for input and output signals.

Outport	Channel	Connector Pin	Signal
Data	1	с3	DigIO ch1
	2	b5	DigIO ch2
	3	b2	DigIO ch3
	4	c5	DigIO ch4
	5	c4	DigIO ch5
	6	c2	DigIO ch6
	7	a2	DigIO ch7
	8	Z2	DigIO ch8

Related topics

References

Digital In (Type B)	94
Digital Out (Type A)	96

Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)......37

Inductive Zero Voltage Detector

Purpose	To provide read access to an inductive zero voltage detector. The FPGA1401Tp1 (7K325) with Engine Control I/O Module (DS1554) framework provides one channel for the Inductive Zero Voltage Detector I/O function.		
Description			
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
	The I/O function number must be specified as 33.		
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>		
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.		
	There is no channel number to be specified.		
	crank_0 / Data Detects the zero crossing points of the analog signals. If a zero crossing from positive to negative is detected, the output signal is 1 for one clock cycle.		
	Data type: UFix_1_0		
	0: No zero crossing.		
	1: Zero crossing is detected.		
	Update rate: 80 MHz		
I/O manning	The following I/O manning is relevant if you use the EPGA1401Tn1 (7K325) with		

I/O mapping

The following I/O mapping is relevant if you use the FPGA1401Tp1 (7K325) with Engine Control I/O Module (DS1554) framework. The signals are available at the DS1554 Sub-D I/O connector.

Outport	Connector Pin	Signal
Data	10	ZeroDetection+
	29	ZeroDetection-

Related topics	References	
	Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)37	

Interrupt

Purpose	To request a processor interrupt outside of the FPGA application.
Description	The FPGA1401Tp1 frameworks provide 8 interrupt lines. An interrupt is requested if the Int port is set to 1 for at least one clock cycle. If you set the Int port to 0, the last interrupt is not released but saved. An interrupt is edgetriggered.
	If you generate the processor interface model for this FPGA I/O function, a PROC_INT_BL block is added to the processor model with the configured data formats.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 1 8.
	IRQProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	The channel number can be specified in the range 0 7.
	usr_ <channelnumber>_interrupt / Int</channelnumber>
	0 to 1: Interrupt is requested (edge-triggered).
	0: No interrupt is requested. Last requested interrupt is saved.
Related topics	References
	Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)37
	Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)

Knock Sensor

Purpose	To read data from a knock sensor in the FPGA application.		
Description	According to the number of physical connections available on the DS1554 Engine Control I/O Module, you can select the Knock Sensor I/O functions. There are 4 knock sensor input channels.		
	This I/O function is not considered when you generate the processor interface model.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
	The I/O function number can be specified in the range 24 27.		
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>		
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.		
	The channel number can be specified in the range 00 03.		
	knock_ <channelnumber>_data / Data Outputs the current results of the A/D conversions on the current channel. Data type: UFix_16_0 Range: 0 +65535 Input voltage range: -5 V +5 V Update rate: 1 Msps</channelnumber>		
	knock_ <channelnumber>_soc / Start of conversion Triggers the start of an A/D conversion on the specified channel. When the value is set to 1 for at least one clock cycle, the ADC starts the conversion. The port allows a precise definition of the starting point of ADC sampling. The End of conversion outport signals the end of the conversion process. Setting this value permanently to 1 results in continuous sampling. Data type: UFix_1_0</channelnumber>		
	knock_ <channelnumber>_eoc / End of conversion Outputs an end of conversion signal if the conversion result is available on the specified channel. If the flag changes from 0 to 1, the ADC data contains a new value. The flag is so to 1 for only one clock cycle.</channelnumber>		

Data type: UFix_1_0

I/O mapping

The following I/O mapping is relevant if you use the FPGA1401Tp1 (7K325) with Engine Control I/O Module (DS1554) framework. The signals are available at the DS1554 Sub-D I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	16 34	Knockln+ ch 1 Knockln– ch 1 ¹⁾
	2	17 35	Knockln+ ch 2 Knockln– ch 2 ¹⁾
	3	18 36	Knockln+ ch 3 Knockln– ch 3 ¹⁾
	4	19 37	Knockln+ ch 4 Knockln– ch 4 ¹⁾

¹⁾ The negative input line of the knock sensor input channel is connected to GND. For achieving optimum analog performance, refer to Connecting Sensor Ground Lines to MicroAutoBox II (MicroAutoBox II Hardware Installation and Configuration Guide (12)).

Related topics

References

Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)......37

LED Out

Purpose	To write a digital signal that controls the FPGA status LED. You can find the FPGA status LED near the DS1514 ZIF I/O connector.		
Description	The FPGA1401Tp1 (7K325) with Engine Control I/O Module (DS1554) framework provides one channel for the LED Out I/O function.		
	This I/O function is not considered when you generate the processor interface model.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
	The I/O function number must be specified as 1.		
	IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>		

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

There is no channel number to be specified.

led_out / Data Controls the FPGA status LED.

Data type: UFix_1_0

- 0: LED lights up green.
- 1: LED lights up orange.

Related topics

References

Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1).....

Register In

Purpose

To read data from an intermodule-bus register with a data width of 32 bits.

Description

If you select Register as the access type, the data is read from an intermodule-bus register. 128 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_WRITE_BL block is added to the processor model with the configured data formats.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 128.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 32-bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are sampled simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the intermodule bus.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 127.

xreg_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from an intermodule-bus register. The data format depends on the related parameter settings.

xreg_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Buffer In	385
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37
Register Out	409

Register64 In

Purpose

To read data from an intermodule-bus register with a data width of 64 bits.

Description

If you select Register64 as the access type, the data is read from an intermodule-bus register. 128 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_WRITE_BL block is added to the processor model with the configured data formats.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 161 ... 288.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are sampled simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the intermodule bus.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ..
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 127.

xreg64_<ChannelNumber>_dout / Data Outputs a 64-bit data value to be read from an intermodule-bus register. The data format depends on the related parameter settings.

xreg64_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Buffer64 In	
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	
Register64 Out	

Register Out

Purpose

To write data to an intermodule-bus register with a data width of 32 bits.

Description

If you select Register as the access type, the data is written to an intermodule-bus register. 128 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_READ_BL block is added to the processor model with the configured data formats.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 128.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 32 bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you select the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single). The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the intermodule bus sequentially and then provided to the FPGA application simultaneously.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ...
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 127.

xreg_<ChannelNumber>_din / Data Specifies a 32-bit data value to be written to an intermodule-bus register. The data format depends on the related parameter settings.

Related topics

References

Buffer Out	888
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37
Register In	05

Register64 Out

Purpose

To write data to an intermodule-bus register with a data width of 64 bits.

Description

If you select Register64 as the access type, the data is written to an intermodule-bus register. 128 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

If you generate the processor interface model for this FPGA I/O function, a PROC_XDATA_READ_BL block is added to the processor model with the configured data formats.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 161 ... 288.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the intermodule bus sequentially and then provided to the FPGA application simultaneously.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ..
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity ${\it cm}$.

The channel number can be specified in the range 000 ... 127.

written to an intermodule-bus register. The data format depends on the related parameter settings.

Related topics

References

Buffer64 Out	390
Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)	37
Register64 In	407

Status In

Purpose	To read digital signals that output state information, e.g., the state of the FPGA initialization sequence.
Description	The FPGA1401Tp1 (7K325) with Engine Control I/O Module (DS1554) framework provides one channel for the Status In I/O function.
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number must be specified as 1.
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	init_done/ Init Done Outputs the state of the initialization sequence that is
	started after programming the FPGA. • 0: Initialization sequence is in progress.
	 1: Initialization sequence has finished.
Related topics	References
	Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)37

Temperature

Purpose	To read the FPGA die temperature.		
Description	The FPGA1401Tp1 (7K325) with Engine Control I/O Module (DS1554) framework provides one channel for the Temperature I/O function.		
	This I/O function is not considered when you generate the processor interface model.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
	The I/O function number must be specified as 34.		
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>		
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.		
	temperature / Temperature Outputs the raw value of the FPGA's die temperature measurement. Use the 12 MSB bits to calculate the die temperature.		
	Equation for calculating the die temperature:		
	Temperature [°C] = (float)(Temperature[hex] & 0xFFF0) · 503.975 / 65536 - 273.15		
	Data type: UFix_16_0 Data width: 1 Value range: 0 65536		
	high_temp / High Outputs a flag if the FPGA's die temperature exceeds 105 °C.		
	To reset the flag, the die temperature must fall below 85 °C.		
	Data type: UFix_1_0		
	 0: Die temperature does not exceed 105 °C. 		
	1: Die temperature exceeds 105 °C.		

Note

A high ambient temperature and an FPGA application with a very high FPGA utilization and/or toggle rate increase the FPGA die temperature (internal chip temperature). If the die temperature exceeds 105 °C, the FPGA might work incorrectly.

You can decrease the temperature by reducing the FPGA's toggle rate (e.g., by using clock enable) or by reducing the utilization of the FPGA resources. If the die temperature exceeds 125 °C, the FPGA resets itself. The reset stays active until the die temperature falls below 85 °C and you restart MicroAutoBox II or reload the user application.

Related topics

References

Overview of the Frameworks Available for MicroAutoBox II (FPGA1401Tp1)......37

I/O Functions of the FPGA1403Tp1 with Multi-I/O Module Frameworks

Introduction

The FPGA1403Tp1 frameworks provide the standard I/O functionality of MicroAutoBox II with DS1552 (FPGA1403Tp1_DS1552_XC7K325T) or with DS1552B1 Multi-I/O Module (FPGA1403Tp1_DS1552B1_XC7K325T).

Where to go from here

Information in this section

ADC (Type A)
ADC (Type B)
Buffer In
Buffer64 In
Buffer Out
Buffer64 Out
DAC
Digital Crank/Cam Sensor

Digital In (Type B)	Digital In (Type A)
To write data to a digital output signal in the FPGA application using a Digital Out 5 channel. Digital Out (Type B)	To read data from a digital input signal in the FPGA application by using
To write data to a digital output signal in the FPGA application using a digital bidirectional channel. Inductive Zero Voltage Detector	To write data to a digital output signal in the FPGA application using a
To provide read access to an inductive zero voltage detector. Interrupt	To write data to a digital output signal in the FPGA application using a
To request a processor interrupt outside of the FPGA application. LED Out	
To write a digital signal that controls the FPGA status LED near the DS1514 ZIF I/O connector. Register In	
To read data from an intermodule-bus register with a data width of 32 bits. Register64 In	To write a digital signal that controls the FPGA status LED near the
To read data from an intermodule-bus register with a data width of 64 bits. Register Out	To read data from an intermodule-bus register with a data width of
To write data to an intermodule-bus register with a data width of 32 bits. Register64 Out	To read data from an intermodule-bus register with a data width of
To write data to an intermodule-bus register with a data width of 64 bits. Sensor Supply	
To provide a supply voltage at a connected sensor. Status In	
To read digital signals that outputs state information, e.g.: state of the FPGA initialization sequence or the FPGA die temperature. UART (RS232)	
To implement RS232 communication via a UART 3 channel.	To read digital signals that outputs state information, e.g.: state of the
UART (RS422/485)455	
To implement RS422/485 communication via a UART 3 channel.	UART (RS422/485)

ADC (Type A)

Purpose	To read data from an analog input signal in the FPGA application using the ADC
	(Type A) conversion function for the Analog In 10/Analog In 11 channel.
Description	According to the number of physical connections available on the DS1552/DS1552B1 I/O module, you can select the ADC (Type A) I/O functions. There are eight analog input channels.
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 26 33.
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm .
	The channel number can be specified in the range 0 7.
	hq_adc_ <channelnumber>_data / Data Outputs the current results of the A/D conversions on the current channel. Range: 0 +65535</channelnumber>
	Update rate: 1 Msps
	hq_adc_ <channelnumber>_soc / Start of conversion Lets you trigger the start of an A/D conversion on the specified channel. When the value is set to 1 for at least one clock cycle, the ADC starts the conversion. The port allows a precise definition of the starting point of ADC sampling. The Data_eoc outport signals the end of the conversion process.</channelnumber>
	Setting this value permanently to 1 results in continuous sampling.
	hq_adc_ <channelnumber>_eoc / End of conversion Outputs an end of conversion signal if the conversion result is available on the specified channel. If the flag changes from 0 to 1, the ADC data contains a new value. The flag is set to 1 for only one clock cycle.</channelnumber>
I/O mapping	The following I/O mapping is relevant if you use a FPGA1403Tp1 framework for analog input channels using the Type A conversion function. The signals are available at the DS1514 ZIF I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	X3	Analog In Channel 1 Signal
		X4	Analog In Channel 1 Reference
	2	W3	Analog In Channel 2 Signal
		W4	Analog In Channel 2 Reference
	3	V3	Analog In Channel 3 Signal
		V4	Analog In Channel 3 Reference
	4	U3	Analog In Channel 4 Signal
		U4	Analog In Channel 4 Reference
	5	H3	Analog In Channel 5 Signal
		H4	Analog In Channel 5 Reference
	6	G3	Analog In Channel 6 Signal
		G4	Analog In Channel 6 Reference
	7	F3	Analog In Channel 7 Signal
		F4	Analog In Channel 7 Reference
	8	E3	Analog In Channel 8 Signal
		E4	Analog In Channel 8 Reference

Related topics

References

ADC (Type B)	418
DAC	427
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)	40

ADC (Type B)

Purpose To read data from an analog input signal in the FPGA application using the ADC (Type B) conversion function for the Analog In 12 channel. According to the number of physical connections available on the DS1552 Multi-I/O Module, you can select the ADC (Type B) I/O functions. There are 16 analog output channels. This I/O function is not considered when you generate the processor interface model. Parameters You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 34 ... 49.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 15.

Iq_adc_<ChannelNumber>_data / **Data** Outputs the current results of the A/D conversions on the current channel in the range -32768 ... +32767. Update rate: 0.2 Msps

I/O mapping

The following I/O mapping is relevant if you use a FPGA1403Tp1 framework for analog input channels using the ADC (Type B) conversion function. The signals are available at the DS1514 ZIF I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	b2	Analog In 12 Channel 1 Signal
	2	a2	Analog In 12 Channel 2 Signal
	3	Z2	Analog In 12 Channel 3 Signal
	4	Y2	Analog In 12 Channel 4 Signal
	5	X2	Analog In 12 Channel 5 Signal
	6	W2	Analog In 12 Channel 6 Signal
	7	V2	Analog In 12 Channel 7 Signal
	8	U2	Analog In 12 Channel 8 Signal
	9	M2	Analog In 12 Channel 9 Signal
	10	L2	Analog In 12 Channel 10 Signal
	11	K2	Analog In 12 Channel 11 Signal
	12	J2	Analog In 12 Channel 12 Signal
	13	H2	Analog In 12 Channel 13 Signal
	14	G2	Analog In 12 Channel 14 Signal
	15	F2	Analog In 12 Channel 15 Signal
	16	E2	Analog In 12 Channel 16 Signal

Related topics

References

ADC (Type A)	417
DAC	427
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)	40

Buffer In

Purpose To read data from an intermodule-bus buffer with a data width of 32 bits. If you select Buffer as the access type, the data is read from an intermodule-bus Description buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits. The I/O function number can be specified in the range 129 ... 160. **Parameters** PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel Lets you specify a custom name for the specified channel. PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary **point position (or fraction width)** Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below). signed/unsigned The values of the Data outport are in fixed-point format. You can specify the binary point position of the 32-bit value in the range 0 ... 32. 0 represents the lowest bit position, 32 the highest bit position. floating-point The values of the Data outport are in floating-point format. The parameter then provides the fraction width. PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Lets you specify the data format of the Data outport. signed/unsigned The values of the Data outport are in fixed-point format with or without one bit reserved for the sign. You can specify the binary point position in the Binary point position (or fraction width) setting. floating-point The values of the Data outport are in floating-point format. The 32-bit data value supports the single-precision floating-point format with

width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size

Lets you specify the size of the buffer in the range 1 ... 32768. The

maximum range of the Address inport depends on the buffer size.

a fraction width of 24, which complies with the IEEE 754 standard (single). The fraction width is provided by the Binary point position (or fraction

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemf_<ChannelNumber>_count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmemf_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from an intermodule-bus buffer. The data format depends on the related parameter settings.

xmemf_<ChannelNumber>_new_data / Data New Outputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

xmemf_<ChannelNumber>_addr / Address
Specifies an element in the buffer you want to read. The block requires 1 clock cycle to update the value of the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer (see Data Count outport). If you request data from an address that is greater than the Data Count value, the output of the Data outport is undefined. The first element of a buffer is addressed by 0.

Related topics

References

Buffer Out	423
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)	40
Register In	441

Buffer64 In

Purpose

To read data from an intermodule-bus buffer with a data width of 64 bits.

Description

If you select Buffer64 as the access type, the data is read from an intermodulebus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits.

Parameters

The I/O function number can be specified in the range 289 ... 320.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768. The maximum range of the Address inport depends on the buffer size.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemf64_<ChannelNumber>_count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmemf64_<ChannelNumber>_dout / Data Outputs a 64-bit data value to be read from an intermodule-bus buffer. The data format depends on the related parameter settings.

xmemf64_<ChannelNumber>_new_data / Data New Outputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

xmemf64_<ChannelNumber>_addr / Address Specifies an element in the buffer you want to read. The block requires 1 clock cycle to update the value of the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer (see Data Count outport). If you request data from an address that is greater than the Data Count value, the output of the Data outport is undefined. The first element of a buffer is addressed by 0.

Related topics

References

Buffer64 Out
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)40
Register64 In

Buffer Out

Purpose	To write data to an intermodule-bus buffer with a data width of 32 bits.
Description	If you select Buffer as the access type, the data is written to an intermodule-bus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 129 160.
	PHSProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
	PHSProperties.Out.Fct(<iofunctionnumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).</iofunctionnumber>

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 32 bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init /

Format Lets you select the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer Lets you specify the size of the buffer in the range 1 ... 32768.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemp <ChannelNumber> din / Data Specifies a 32-bit data value to be written to an intermodule-bus buffer. The data format depends on the related parameter settings.

xmemp_<ChannelNumber>_write / Enable Specifies the current valid Data port value.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

state as ready to send the buffer immediately, even if it is not completely filled. The data values will be written to a new buffer in the next clock cycle. While the port value is 1, transmission switches buffer in every clock cycle. The value should therefore be set for one clock cycle only. If the buffer is completely filled, it is automatically switched, and the data values are stored in a new buffer.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled.
 The buffer is switched and the data values are accessible via intermodule bus in the next clock cycle.

The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmemp_<ChannelNumber>_overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

Related topics

References

Buffer In	
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)40	
Register Out	

Buffer64 Out

Purpose	To write data to an intermodule-bus buffer with a data width of 64 bits.
Description	If you select Buffer64 as the access type, the data is written to an intermodule- bus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 289 ... 320.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range $0\dots 64$.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemp64_<ChannelNumber>_din / Data Specifies a 64-bit data value to be written to an intermodule-bus buffer. The data format depends on the related parameter settings.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled. The buffer is switched and the data values are accessible via intermodule bus in the next clock cycle.

The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmemp64_<ChannelNumber>_overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

Related topics

References

Buffer64 In	
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)40	
Register64 Out	

DAC

Purpose	To write data to an Analog Out 13 channel in the FPGA application.	
Description	According to the number of physical connections available on the DS1552 Multi-I/O Module, you can select the DAC I/O functions. There are four analog output channels.	
	This I/O function is not considered when you generate the processor interface model.	
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.	
	The I/O function number can be specified in the range 26 29.	
	IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>	
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.	
	The channel number can be specified in the range 0 3.	
	dac <channelnumber>_data / Data Outputs a signal in the range 0 +65535.</channelnumber>	
	Range exceeding is possible and will be saturated to the minimum or maximum value.	

Hardware update rate: 2.1 Msps (if the values are updated at a higher FPGA model rate, intermediate values are not updated by the DAC).

I/O mapping

The following I/O mapping is relevant if you use a FPGA1403Tp1 framework for analog output channels. The signals are available at the DS1514 ZIF I/O connector.

Inport	Channel	Connector Pin	Signal
Data	1	c2	Analog Out 13 Channel 1 Signal
	2	c3	Analog Out 13 Channel 2 Signal
	3	c4	Analog Out 13 Channel 3 Signal
	4	c5	Analog Out 13 Channel 4 Signal

Related topics

References

ADC (Type A)	417
ADC (Type B)	
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)	40

Digital Crank/Cam Sensor

Purpose	To provide bit-wise read access to digital camshaft and crankshaft sensors. Each channel is 1 bit wide.
Description	According to the number of physical connections available on the DS1552 Multi-I/O Module, you can select the Digital Crank/Cam Sensor I/O functions. There are three input channels.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 50 ... 52.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

- Range:
 - -40000 mV ... +40000 mV
- Resolution:
 - 20 mV
- Default:
 - 1000 mV

- Range:
 - -40000 mV ... +40000 mV
- Resolution:
 - 20 mV
- Default:

1000 mV

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range $0 \dots 2$.

- 0: The input signal is lower than the Low threshold voltage parameter.
- 1: The input signal is higher than the High threshold voltage parameter.

Update rate: 80 MHz

I/O mapping

The following I/O mapping is relevant if you use a FPGA1403Tp1 framework for analog input channels. The signals are available at the DS1514 ZIF I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	R3	Digital In 6 Channel 1 +
		R4	Digital In 6 Channel 1 -
	2	B3	Digital In 6 Channel 2 +
		B4	Digital In 6 Channel 2 -
	3	A3	Digital In 6 Channel 3 +
		A4	Digital In 6 Channel 3 -

Related topics

References

Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1).....

Digital In (Type A)

Purpose

To read data from a digital input signal in the FPGA application using a Digital In 5 channel.

Description

According to the number of physical connections available on the DS1552 Multi-I/O Module, you can select the Digital In (Type A) I/O functions. There are 16 digital input channels.

The threshold level is fix:

- 3.6 V for low-high transition
- 1.2 V for high-low transition

Note

If you use the same digital channel for the input and the output, the I/O driver is internally set to InOut mode. As a consequence, the maximum input voltage for the digital input channel is equal to the specified high supply, and the applicable threshold voltage is lower than the specified high supply.

To use the maximum input voltage range, you have to use a digital channel only as the input.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 2 ... 17.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 15.

dig_<ChannelNumber>_in / Data Outputs the current results of digital input channel.

- 0: Input voltage of the channel is below the threshold voltage of a high-low transition.
- 1: Input voltage of the channel is higher than or equal to the threshold voltage of a low-high transition.

Update rate: 80 MHz

Note

- The frequency that can be detected is much smaller than the update rate. For information on the electrical characteristics of the DS1552 Multi-I/O Module, refer to Digital In 5 Characteristics (MicroAutoBox III Hardware Installation and Configuration 🚇).
- Asynchronous input data might lead to metastable register states. Further synchronization techniques might be necessary.

I/O mapping

The following I/O mapping is relevant if you use a FPGA1403Tp1 framework for digital input channels. The signals are available at the DS1514 ZIF I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	V5	Digital In 5 Channel 1 Signal
	2	U5	Digital In 5 Channel 2 Signal
	3	U6	Digital In 5 Channel 3 Signal
	4	T2	Digital In 5 Channel 4 Signal
	5	T3	Digital In 5 Channel 5 Signal
	6	T4	Digital In 5 Channel 6 Signal
	7	T5	Digital In 5 Channel 7 Signal
	8	T6	Digital In 5 Channel 8 Signal
	9	S2	Digital In 5 Channel 9 Signal
	10	S3	Digital In 5 Channel 10 Signal
	11	S5	Digital In 5 Channel 11 Signal
	12	R2	Digital In 5 Channel 12 Signal
	13	R5	Digital In 5 Channel 13 Signal
	14	R6	Digital In 5 Channel 14 Signal
	15	P5	Digital In 5 Channel 15 Signal
	16	P6	Digital In 5 Channel 16 Signal

Related topics

References

Digital In (Type A)	430
Digital In (Type B)	432
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1).	40

Digital In (Type B)

Purpose	To read data from a digital input signal in the FPGA application by using a Digital InOut 6 channel.
Description	According to the number of physical connections available on the DS1552 Multi-I/O Module, you can select the Digital In (Type B) I/O functions. There are eight digital input channels.
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 18 ... 25.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Threshold voltage Lets you specify the threshold level for the current digital channel in the range 1000 mV ... 7500 mV in steps of 100 mV. If the input signal is below this level, a logical 0 is detected, otherwise a logical 1.

- 1000: 1000 mV threshold level
- ..
- 7500: 7500 mV threshold level

Note

If you use the same digital channel for the input and the output, the I/O driver is internally set to InOut mode. As a consequence, the maximum input voltage for the digital input channel is equal to the specified high supply, and the applicable threshold voltage is lower than the specified high supply.

To use the maximum input voltage range, you have to use a digital channel only as the input.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 07.

bidir_<ChannelNumber>_in / Data Outputs the current results of digital input channel.

- 0: Input voltage of the channel is below the specified threshold voltage.
- 1: Input voltage of the channel is higher than or equal to the specified threshold voltage.

Update rate: 80 MHz

Note

- The frequency that can be detected is much smaller than the update rate. For information on the electrical characteristics of the DS1552 Multi-I/O Module, refer to Digital In/Out 6 Characteristics (MicroAutoBox III Hardware Installation and Configuration 🚇).
- Asynchronous input data might lead to metastable register states. Further synchronization techniques might be necessary.

I/O mapping

The following I/O mapping is relevant if you use a FPGA1403Tp1 framework for digital bidirectional channels. The signals are available at the DS1514 ZIF I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	N2	Digital InOut 6 Channel 1 Signal
	2	N3	Digital InOut 6 Channel 2 Signal
	3	N4	Digital InOut 6 Channel 3 Signal
	4	N5	Digital InOut 6 Channel 4 Signal
	5	N6	Digital InOut 6 Channel 5 Signal
	6	M5	Digital InOut 6 Channel 6 Signal
	7	M6	Digital InOut 6 Channel 7 Signal
	8	L4	Digital InOut 6 Channel 8 Signal

You can use the same digital channel for input and output signals.

Related topics

References

Digital In (Type A)	430
Digital Out (Type B)	436
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)	40

Digital Out (Type A)

Purpose

To write data to a digital output signal in the FPGA application using a Digital Out 5 channel.

Description

According to the number of physical connections available on the DS1552 Multi-I/O Module, you can select the Digital Out (Type A) I/O functions. There are 16 digital output channels.

The voltage range for the high side switch for all digital output channels is in the range 0 V \dots 45 V.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 2 ... 17.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 15.

dig_<ChannelNumber>_out / Data Outputs a signal in the specified range. If driven with 0, the hardware output is 0 V. If driven with 1, the hardware output is set to the specified high supply voltage (VDRIVE). The hardware output is only driven if the Enable port is set to 1, otherwise the output is set to high impedance (High-Z).

Update rate: 80 MHz

Note

The frequency that can be generated is much smaller than the update rate. For information on the electrical characteristics of the DS1552 Multi-I/O Module, refer to Digital Interface Characteristics (MicroAutoBox III Hardware Installation and Configuration (1)).

dig_<ChannelNumber>_oe / Enable Controls the hardware output. If set to 1, the hardware output reacts to the Data outport, otherwise it is set to High-Z.

I/O mapping

The following I/O mapping is relevant if you use a FPGA1403Tp1 framework for digital output channels. The signals are available at the DS1514 ZIF I/O connector.

Inport	Channel	Connector Pin	Signal
Data	1	F5	Digital Out 5 Channel 1 Signal
	2	E5	Digital Out 5 Channel 2 Signal
	3	E6	Digital Out 5 Channel 3 Signal
	4	D2	Digital Out 5 Channel 4 Signal
	5	D3	Digital Out 5 Channel 5 Signal
	6	D4	Digital Out 5 Channel 6 Signal
	7	D5	Digital Out 5 Channel 7 Signal
	8	D6	Digital Out 5 Channel 8 Signal
	9	C2	Digital Out 5 Channel 9 Signal
	10	C3	Digital Out 5 Channel 10 Signal
	11	C5	Digital Out 5 Channel 11 Signal
	12	B2	Digital Out 5 Channel 12 Signal
	13	B5	Digital Out 5 Channel 13 Signal
	14	B6	Digital Out 5 Channel 14 Signal
	15	A5	Digital Out 5 Channel 15 Signal
	16	A6	Digital Out 5 Channel 16 Signal

Related topics

References

Digital In (Type A)	430
Digital Out (Type B)	
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)	40

Digital Out (Type B)

Purpose	To write data to a digital output signal in the FPGA application by using a Digital InOut 6 channel.
Description	According to the number of physical connections available on the DS1514 Multi-I/O Module, you can select the Digital Out (Type B) I/O functions. There are eight digital output channels.
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 18 ... 25.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(18).Parameter(1).Init / **High supply** Lets you select the voltage for the high side switch for all digital output channels.

- 0: 3.3 V
- 1:5 V

Note

You can specify the high supply voltage value only globally for all digital output channels.

The I/O function number must be specified as 18.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 07.

bidir_<ChannelNumber>_out / Data Outputs a signal in the specified range. If driven with 0, the hardware output is 0 V. If driven with 1, the hardware output is 3.3 V or 5 V according to the specified high supply voltage. The hardware output is only driven if the Enable port is set to 1, otherwise the output is set to high impedance (High-Z).

Update rate: 80 MHz

Note

The frequency that can be generated is smaller than the update rate. For information on the electrical characteristics of the DS1552 Multi-I/O Module, refer to Digital In/Out 6 Characteristics (MicroAutoBox III Hardware Installation and Configuration \square).

bidir_<ChannelNumber>_oe / Enable Controls the hardware output. If set to 1, the hardware output reacts to the Data outport, otherwise it is set to High-Z.

I/O mapping

The following I/O mapping is relevant if you use a FPGA1403Tp1 framework for digital bidirectional channels. The signals are available at the DS1514 ZIF I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	N2	Digital InOut 6 Channel 1 Signal
	2	N3	Digital InOut 6 Channel 2 Signal
	3	N4	Digital InOut 6 Channel 3 Signal
	4	N5	Digital InOut 6 Channel 4 Signal
	5	N6	Digital InOut 6 Channel 5 Signal
	6	M5	Digital InOut 6 Channel 6 Signal
	7	M6	Digital InOut 6 Channel 7 Signal
	8	L4	Digital InOut 6 Channel 8 Signal

You can use the same digital channel for input and output signals.

Related topics

References

Digital In (Type B)	2
Digital Out (Type A)	4
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)4	0

Inductive Zero Voltage Detector

Purpose	To provide read access to an inductive zero voltage detector.		
Description	The FPGA1403Tp1 frameworks provide one channel for the Inductive Zero Voltage Detector I/O function.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
	The I/O function number must be specified as 53.		
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>		
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.		
	There is no channel number to be specified.		
	crank / Data To detect the zero crossing points of the analog signals. If a zero crossing from positive to negative is detected, the output signal is 1 for 1 clock cycle.		

Data type: UFix_1_0 • 0: No zero crossing.

• 1: Zero crossing is detected.

Update rate: 80 MHz

I/O mapping

The following I/O mapping is relevant if you use a FPGA1403Tp1 framework for analog input channels. The signals are available at the DS1514 ZIF I/O connector.

Outport	Connector Pin	Signal
Data	P3	Digital In 7 Channel 1 +
	P4	Digital In 7 Channel 1 -

Related topics

References

Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)......40

Interrupt

Purpose

To request a processor interrupt outside of the FPGA application.

Description

The FPGA1403Tp1 frameworks provide 8 interrupt lines. An interrupt is requested if the Int port is set to 1 for at least one clock cycle. If you set the Int port to 0, the last interrupt is not released but saved. An interrupt is edgetriggered.

If you generate the processor interface model for this FPGA I/O function, a PROC_INT_BL block is added to the processor model with the configured data formats.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range $1 \dots 8$.

IRQProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel Lets you specify a custom name for the specified channel.

Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.		
	The channel number can be specified in the range 0 7.		
	 usr_<channelnumber>_interrupt / Int Provides the interrupt request line.</channelnumber> 0 to 1: Interrupt is requested (edge-triggered). 0: No interrupt is requested. Last requested interrupt is saved. 		
Related topics	References		
	Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)40		

LED Out

Purpose	To write a digital signal that controls the FPGA status LED. You can find the FPGA status LED near the DS1514 ZIF I/O connector.		
Description	The FPGA1403Tp1 frameworks provide one channel for the LED Out I/O function.		
	This I/O function is not considered when you generate the processor interface model.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
	The I/O function number must be specified as 1.		
	IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>		
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.		
	There is no channel number to be specified.		
	 led_out / Data Controls the Status LED on the board's bracket. 0: LED lights green. 1: LED lights orange. 		

Related topics

References

Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)......

Register In

Purpose

To read data from an intermodule-bus register with a data width of 32 bits.

Description

If you select Register as the access type, the data is read from an intermodule-bus register. 128 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 128.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 32-bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

• floating-point

The values of the Data outport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction)

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are sampled simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the .

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ...
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 127.

xreg_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from an intermodule-bus register. The data format depends on the related parameter settings.

xreg_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Buffer In	
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)40	
Register Out	

Register64 In

Purpose

To read data from an intermodule-bus register with a data width of 64 bits.

Description

If you select Register64 as the access type, the data is read from an intermodule-bus register. 128 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 161 ... 288.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double). The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are sampled simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the .

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ..
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 127.

xreg64_<ChannelNumber>_dout / Data Outputs a 64-bit data value to be read from an intermodule-bus register. The data format depends on the related parameter settings.

xreg64_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Buffer64 In	21
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)	40
Register64 Out	46

Register Out

Purpose	To write data to an intermodule-bus register with a data width of 32 bits.
Description	If you select Register as the access type, the data is written to an intermodule-bus register. 128 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 128.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 32 bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you select the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the sequentially and then provided to the FPGA application simultaneously.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ...
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 127.

xreg_<ChannelNumber>_din / Data Specifies a 32-bit data value to be written to an intermodule-bus register. The data format depends on the related parameter settings.

Related topics

References

Buffer Out
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)40
Register In

Register64 Out

Purpose

To write data to an intermodule-bus register with a data width of 64 bits.

Description

If you select Register64 as the access type, the data is written to an intermodule-bus register. 128 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 161 ... 288.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the sequentially and then provided to the FPGA application simultaneously.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ...
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 127.

xreg64_<ChannelNumber>_din / Data Specifies a 64-bit data value to be written to an intermodule-bus register. The data format depends on the related parameter settings.

Related topics

References

Buffer64 Out
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)40
Register64 In

Sensor Supply

Purpose	To provide a supply voltage, for example, for a connected sensor, in the range 2000 mV 20000 mV in steps of 100 mV.
Description	The FPGA1403Tp1 frameworks provide one channel for the Sensor Supply I/O function.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number must be specified as 30.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Supply voltage Lets you specify the supply voltage a connected sensor is to be driven with in the range 2000 mV ... 20000 mV in steps of 100 mV.

Port

There is no port to be specified.

I/O mapping

The following I/O mapping is relevant if you use a FPGA1403Tp1 framework for for sensor supply. Depending on the MicroAutoBox variant the signals are available at the DS1514 ZIF I/O connector.

Outport	Channel	Connector Pin	Signal
Sim_Data	1	b6	VSENS-
		с6	VSENS+

Related topics

References

Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1).....

Status In

Purpose

To read digital signals that outputs state information, e.g.: state of the FPGA initialization sequence or the FPGA die temperature.

Description

The FPGA1403Tp1 framework provides one channel for the Status In I/O function.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number must be specified as 1.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

init_done/ Init Done Outputs the state of the initialization sequence that is started after programming the FPGA.

- 0: Initialization sequence is in progress.
- 1: Initialization sequence has finished.

temperature / Temperature Outputs the raw value of the FPGA's die temperature measurement. Use the 12 MSB bits to calculate the die temperature.

Equation to calculate the die temperature:

Temperature [°C] = (float)(Temperature[hex] & 0xFFF0) · 503.975 / 65536 - 273.15

Data type: UFix_16_0

Data width: 1

Value range: 0 ... 65536

high_temp / High Outputs a flag if the FPGA's die temperature exceeds 105 °C.

To reset the flag, the die temperature must fall below 85 °C.

Data type: UFix_1_0

- 0: Die temperature does not exceed 105 °C.
- 1: Die temperature exceeds 105 °C.

Note

A high ambient temperature and an FPGA application with a very high FPGA utilization and/or toggle rate increase the FPGA die temperature (internal chip temperature). If the die temperature exceeds 105 °C, the FPGA might work incorrectly.

You can decrease the temperature by reducing the FPGA's toggle rate (e.g., by using clock enable) or by reducing the utilization of the FPGA resources. If the die temperature exceeds 125 °C, the FPGA resets itself. The reset stays active until the die temperature falls below 85 °C and you restart MicroAutoBox III or reload the user application.

Related topics

References

Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)........

UART (RS232)

Purpose

To implement RS232 communication via a UART 3 channel.

Description

According to the number of physical connections available on the DS1552 Multi-I/O Module, you can select the UART (RS232) I/O functions. There are two interfaces.

Note

UART 1 can be used without modification. To use UART 2, your DS1552 has to be modified by dSPACE.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 31 ... 32.

Most of the parameters are used for the UART (RS232) and UART 3 (RS422/485) I/O functions.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Baud rate Lets you specify the baud rate of the UART in the range 50 ... 1,000,000 baud (bits per second).

With:

Variable	Parameter	Description
uart_x_dcm_m ¹⁾	Parameter(2).Init	Multiplier for the digital clock manager (DCM) module in the range 2 255.
uart_x_dcm_d ¹⁾	Parameter(3).Init	Divisor for the digital clock manager (DCM) module in the range 1 255.
uart_x_dcm_clk_divider ¹⁾	Parameter(4).Init	UART clock divider in the range 0 262,143.

 $^{^{1)}}$ x=1 for UART 1; x=2 for UART 2

Note

Limitations:

- The maximum baud rate of 1,000,000 baud must not be exceeded.
- The output frequency of the digital clock manager (DCM) module should be between 40 MHz and 160 MHz:

 $f_{DCM} = 200 \text{ MHz} \cdot \text{uart}_x_\text{dcm_m} / \text{uart}_x_\text{dcm_d}$

Tip

In the framework folder you find a MATLAB file that provides some calculated baud rates and the percentage deviations to the supported baud rates according to the parameters m, d and the clock divider.

- MATLAB file name: FPGA1403Tp1_XC7K325T_uart_parameters.mat

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(5).Init / Word length Lets you specify the word length in the range 5 ... 9 bit. The word length includes the number of data bits and the optional parity bit. Exceeding bits in a message are ignored at the transmitter or cleared at the receiver.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(6).Init / Stop bits Lets you specify the length of the stop bits in half of bits.

Stop Bits	Parameter Value
1	2
1.5	3
2	4

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(7).Init / UART type Lets you specify the UART type.

Value	UART Type
0	RS232
1	RS422/485

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(8).Init / Termination Lets you specify the termination state.

Note

For the RS232 UART type, the termination must be set to 0 (disconnected).

Value	Termination State	Description
0	Disconnected	• The RX/CTS and TX/RTS signals are not terminated.
1	Connected	Not allowed

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 0 ... 1.

uart_<ChannelNumber>_rd / Read Enable Specifies to start receiving a value.

After three clock cycles, the value is available and can be read from the RX FIFO buffer. The value remains valid until the next Read_Enable signal.

Before you read data from the RX FIFO buffer, you should check the Read_Fifo_Empty signal not to be set. The Read_Fifo_Empty signal switches one clock cycle after the RX FIFO value has been read.

Do not use the Read_Data_Count signal (Read_Data_Count < 0) to check the RX FIFO buffer, because it requires one additional clock cycle to get the count value.

You can read one value per FPGA clock cycle from the UART.

Two clock cycles are required to return the number of entries.

If you only want to check whether a value is available in the RX FIFO buffer, use the Read_Fifo_Empty signal instead of this.

Value range: 0 ... 2047

If the status of the buffer is *not empty*, then you can start reading the data using the Read_Enable signal.

The Read_Fifo_Empty signal switches one clock cycle after the FIFO value has been read.

Do not use the Read_Data_Count signal to check the status of the buffer (Read_Data_Count>0), because this requires one additional clock cycle before its value is valid.

Range:

- 0: The RX FIFO buffer is not empty.
- 1: The RX FIFO buffer is empty.

The read_data is available after three clock cycles after the Read_Enable signal. The return value is 0, if the data is read before anything has been received by the RX hardware input.

Range: 0 ... 511

The hardware input receives serial data for the UART RX FIFO buffer using inverted voltage levels of -6 V (logical high) and +6 V (logical low).

The Write_Data value is written to the TX FIFO buffer, from which it is automatically send to the TX output pin of the I/O connector using the specified UART communication settings.

Write_Enable must be set to 1 for only one clock cycle.

Before you write data to the TX FIFO buffer, you should check the Write_Fifo_Full signal not to be set. The Write_Fifo_Full signal switches one clock cycle after the Write_Enable signal has been set.

Do not use the Write_Data_Count signal (Write_Data_Count < 2047) to check the TX FIFO buffer, because it requires one additional clock cycle to get the count value.

The hardware output port is driven with the values from the TX FIFO buffer. It is synchronously running to the UART clock defined by the UART baudrate. The hardware port has inverted voltage levels of -6 V (logical high) and +6 V (logical low).

uart_<ChannelNumber>_wr_data_count / Write Data CountOutputs the number of values in the TX FIFO buffer.

The values in the TX FIFO buffer has not been sent already.

Do not use the Write_Data_Count signal to check the status of the buffer (Write_Data_Count<2047), because this requires two clock cycles before its value is valid, instead of one clock cycle when using the Write_Fifo_Full signal.

Range: 0 ... 2047

You can use the signal to check the TX FIFO buffer before you start writing data to the buffer. The Write_Fifo_Full signal switches one clock cycle after the Write_Enable signal has been set.

Range:

- 0: The TX FIFO buffer is not full.
- 1: The TX FIFO buffer is full.

The Write_Data signal is transferred at each clock cycle with Write_Enable set to 1.

Range: 0 ... 511

The hardware port is synchronously running to the UART clock defined by the UART baudrate. The hardware port has voltage levels of +6 V (active, logical high) and -6 V (inactive).

RTS/CTS handshake is handled by the user. CTS is just passed through with conversion to logical 1 and 0.

Range:

- 0: CTS inactive
- 1: CTS active

The CTS hardware port is synchronously running to the UART clock defined by the UART baudrate. The hardware port has voltage levels of +6 V (active, logical high) and -6 V (inactive).

I/O mapping

The following I/O mapping is relevant if you use a FPGA1403Tp1 framework for serial communication using the UART (RS232) function. The signals are available at the DS1514 ZIF I/O connector.

Inport		Connector Pin	Signal
UART	1 (RS232)		
	Write_Data	a5	TX1
	RTS	a6	RTS1
	Read_Data	b5	RX1
	CTS	a4	CTS1
UART	2 (RS232) ¹⁾		
	Write_Data	Z5	TX2
	RTS	Z6	RTS2
	Read_Data	Z3	RX2
	CTS	Z4	CTS2

¹⁾ To use UART 2, your DS1552 has to be modified by dSPACE.

Related topics

References

UART (RS422/485)

Purpose

To implement RS422/485 communication via a UART 3 channel.

Description

According to the number of physical connections available on the DS1552 Multi-I/O Module, you can select the UART 3 (RS422/485) I/O functions. There are two interfaces.

Note

UART 1 can be used without modification. To use UART 2, your DS1552 has to be modified by dSPACE.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 33 ... 34.

Most of the parameters are used for the UART 3 (RS232) and UART (RS422/485) I/O functions.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Baud rate Lets you specify the baud rate of the UART in the range 50 ... 10,000,000 baud (bits per second).

The baud rate depends on the parameters 2, 3 and 4, and can be calculated by the following formula:

BaudRate = (10^8 · uart_x_dcm_m) / (4 · uart_x_dcm_d · (uart_dcm_clk_divider+1))
With:

Variable	Parameter	Description
uart_x_dcm_m ¹⁾	Parameter(2).Init	Multiplier for the digital clock manager (DCM) module in the range 2 255.
uart_x_dcm_d ¹⁾	Parameter(3).Init	Divisor for the digital clock manager (DCM) module in the range 1 255.
uart_x_dcm_clk_divider ¹⁾	Parameter(4).Init	UART clock divider in the range 0 262,143.

 $^{^{1)}}$ x=1 for UART 1; x=2 for UART 2

Tip

In the framework folder you find a MATLAB file providing some calculated baud rates and the percentage deviations to the supported baud rates according to the parameters m, d and the clock divider.

- MATLAB file name: FPGA1403Tp1_XC7K325T_uart_parameters.mat

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(5).Init / Word length Lets you specify the word length in the range 5 ... 9 bit. The word length includes the number of data bits and the optional parity bit. Exceeding bits in a message are ignored at the transmitter or cleared at the receiver.

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(6).Init / Stop bits Lets you specify the length of the stop bits in half of bits.

Stop Bits Parameter Value	
1	2
1.5	3
2	4

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(7).Init / UART mode Lets you specify the mode when using the RS422/485 UART type.

Value	UART Mode	
0	Full-duplex mode	
1	Half-duplex mode	

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(8).Init / UART type Lets you specify the UART type.

Value	UART Type	
0	RS232	
1	RS422/485	

IOProperties.Out.Fct(<IOFunctionNumber>).Parameter(9).Init / Termination Lets you specify the termination state.

Value	Termination State	Description	
0	Disconnected	 Full-duplex mode: RX-/RX+ and TX-/TX+ signals are not terminated. Half-duplex mode: BM/BP signals are not terminated. 	
1	Connected	 Full-duplex mode: RX-/RX+ and TX-/TX+ signals are terminated via 120 Ω resistors. 	

Value	Termination State	Description	
		Half-duplex mode:	
		BM/BP signal are terminated via a 120 Ω resistor.	

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 0 ... 1.

After three clock cycles, the value is available and can be read from the RX FIFO buffer. The value remains valid until the next Read_Enable signal.

Before you read data from the RX FIFO buffer, you should check the Read_Fifo_Empty signal not to be set. The Read_Fifo_Empty signal switches one clock cycle after the RX FIFO value has been read.

Do not use the Read_Data_Count signal (Read_Data_Count < 0) to check the RX FIFO buffer, because it requires one additional clock cycle to get the count value.

You can read one value per FPGA clock cycle from the UART.

Two clock cycles are required to return the number of entries.

If you only want to check whether a value is available in the RX FIFO buffer, use the Read_Fifo_Empty signal instead of this.

Value range: 0 ... 2047

The channel number can be specified in the range 0 ... 1.

If the status of the buffer is *not empty*, then you can start reading the data using the Read_Enable signal.

The Read_Fifo_Empty signal switches one clock cycle after the FIFO value has been read.

Do not use the Read_Data_Count signal to check the status of the buffer (Read_Data_Count>0), because this requires one additional clock cycle before its value is valid.

Range:

- 0: The RX FIFO buffer is not empty.
- 1: The RX FIFO buffer is empty.

The read_data is available after three clock cycles after the Read_Enable signal. The return value is 0, if the data is read before anything has been received by the RX hardware input.

Range: 0 ... 511

The hardware input receives serial data for the UART RX FIFO buffer using inverted voltage levels of -6 V (logical high) and +6 V (logical low).

The Write_Data value is written to the TX FIFO buffer, from which it is automatically send to the TX output pin of the I/O connector using the specified UART communication settings.

Write_Enable must be set to 1 for only one clock cycle.

Before you write data to the TX FIFO buffer, you should check the Write_Fifo_Full signal not to be set. The Write_Fifo_Full signal switches one clock cycle after the Write_Enable signal has been set.

Do not use the Write_Data_Count signal (Write_Data_Count < 2047) to check the TX FIFO buffer, because it requires one additional clock cycle to get the count value.

The hardware output port is driven with the values from the TX FIFO buffer. It is synchronously running to the UART clock defined by the UART baud rate. The hardware port has inverted voltage levels of -6 V (logical high) and +6 V (logical low).

uart_<ChannelNumber>_wr_data_count / Write Data Count
Outputs
the number of values in the TX FIFO buffer.

The values in the TX FIFO buffer has not been sent already.

Do not use the Write_Data_Count signal to check the status of the buffer (Write_Data_Count<2047), because this requires two clock cycles before its value is valid, instead of one clock cycle when using the Write_Fifo_Full signal.

Range: 0 ... 2047

You can use the signal to check the TX FIFO buffer before you start writing data to the buffer. The Write_Fifo_Full signal switches one clock cycle after the Write_Enable signal has been set.

Range:

- 0: The TX FIFO buffer is not full.
- 1: The TX FIFO buffer is full.

The Write_Data signal is transferred at each clock cycle with Write_Enable set to 1.

Range: 0 ... 511

uart_<ChannelNumber>_driver_en / Driver Enable Specifies to enable the output driver in the transceiver for data transmission.

If you use the UART (RS485/422) function in half-duplex mode, the output driver must be disabled while receiving data.

I/O mapping

The following I/O mapping is relevant if you use a FPGA1403Tp1 framework for serial communication using the UART (RS422/485) function. The signals are available at the DS1514 ZIF I/O connector. The mapping differs when using the UART (RS422/485) in full-duplex or half-duplex mode.

Full-duplex mode:

Inport		Connector Pin	Signal
UART	UART 1 (RS422/485)		
	Write_Data	a5	TX-1
		a6	TX+1
	Read_Data	b5	RX-1
		a4	RX+1
UART 2 (RS422/485) ¹⁾			
	Write_Data	Z5	TX-2
		Z6	TX+2
	Read_Data	Z3	RX-2
		Z4	RX+2

 $^{^{\}rm 1)}$ To use UART 2, your DS1552 has to be modified by dSPACE.

Half-duplex mode:

Inport	Connector Pir	n Signal
UART 1 (RS422/4	85)	<u>'</u>
Write_Data	a5	BM1 (RX-1/TX-1)
	a6	BP1 (RX+1/TX+1)
Read_Data	b5	_1)
	a4	_1)
UART 2 (RS422/4	85) ²⁾	ı
Write_Data	Z5	BM2 (RX-2/TX-2)
	Z6	BP2 (RX+2/TX+2)
Read_Data	Z3	_1)
	Z4	_1)

 $^{^{\}rm 1)}\,$ Do not connect, TX signals are available via BM and BP signals.

Related topics

References

 $^{^{2)}}$ To use UART 2, your DS1552 has to be modified by dSPACE.

I/O Functions of the FPGA1403Tp1 with Engine Control I/O Module Framework

Introduction

The FPGA1403Tp1 (7K325) with Engine Control I/O Module (DS1554) provides the I/O functionality of MicroAutoBox with a DS1554 Engine Control I/O Module.

Where to go from here

Information in this section

ADC (Type A) To read data from an Analog In 14 channel in the FPGA application by using the ADC (Type A) conversion function.	462
Buffer In To read data from an intermodule-bus buffer with a data width of 32 bits.	465
Buffer64 In	466
Buffer Out To write data to an intermodule-bus buffer with a data width of 32 bits.	468
Buffer64 Out To write data to an intermodule-bus buffer with a data width of 64 bits.	470
Digital Crank/Cam Sensor	472
sensors.	
,	473

Digital Out (Type B) To write data to a digital output signal in the FPGA application by using a Digital In/Out 8 channel.	.478
Inductive Zero Voltage Detector To provide read access to an inductive zero voltage detector.	.480
Interrupt To request a processor interrupt outside of the FPGA application.	.481
Knock Sensor To read data from a knock sensor in the FPGA application.	.482
LED Out To write a digital signal that controls the FPGA status LED near the DS1514 ZIF I/O connector.	.483
Register In	.484
Register64 In	.486
Register Out To write data to an intermodule-bus register with a data width of 32 bits.	.487
Register64 Out To write data to an intermodule-bus register with a data width of 64 bits.	.489
Status In To read digital signals that outputs state information, e.g.: state of the FPGA initialization sequence.	.490
Temperature	.491

ADC (Type A)

Purpose	To read data from an Analog In 14 channel in the FPGA application by using the ADC (Type A) conversion function.
Description	According to the number of physical connections available on the DS1554 Engine Control I/O Module, you can select the Analog In 14 I/O functions. There are 14 analog input channels.
	This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 10 ... 23.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 0 ... 13.

hq_adc_<ChannelNumber>_data / Data Outputs the current results of the A/D conversions on the current channel.

Data type: UFix_16_0 Range: 0 ... +65535 Update rate: 1 Msps

Setting this value permanently to 1 results in continuous sampling.

hq_adc_<ChannelNumber>_eoc / End of conversion Outputs an end of conversion signal if the conversion result is available on the specified channel. If the flag changes from 0 to 1, the ADC data contains a new value. The flag is set to 1 for only one clock cycle.

Data type: UFix_1_0 Range: 0 or 1

I/O mapping

The following I/O mapping is relevant if you use the FPGA1403Tp1 (7K325) with Engine Control I/O Module (DS1554) framework. The signals are available at the DS1514 ZIF I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	W2	Analog In 14 Channel 1 +
		V2	Analog In 14 Channel 1 -
	2	Y2	Analog In 14 Channel 2 +
		X2	Analog In 14 Channel 2 -
	3	S2	Analog In 14 Channel 3 +
		R2	Analog In 14 Channel 3 -
	4	T2	Analog In 14 Channel 4 +
		U2	Analog In 14 Channel 4 -
	5	V5	Analog In 14 Channel 5 +
		W6	Analog In 14 Channel 5 -
	6	W3	Analog In 14 Channel 6 +
		V3	Analog In 14 Channel 6 -
	7	T3	Analog In 14 Channel 7 +
		U3	Analog In 14 Channel 7 -
	8	U5	Analog In 14 Channel 8 +
		V6	Analog In 14 Channel 8 -
	9	S5	Analog In 14 Channel 9 +
		T6	Analog In 14 Channel 9 -
	10	T5	Analog In 14 Channel 10 +
		U6	Analog In 14 Channel 10 -
	11	R5	Analog In 14 Channel 11 +
		R6	Analog In 14 Channel 11 -
	12	S3	Analog In 14 Channel 12 +
		R3	Analog In 14 Channel 12 -
	13	P5	Analog In 14 Channel 13 +
		P6	Analog In 14 Channel 13 -
	14	P3	Analog In 14 Channel 14 +
		P2	Analog In 14 Channel 14 -

Related topics

References

Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)......40

Buffer In

Purpose

To read data from an intermodule-bus buffer with a data width of 32 bits.

Description

If you select Buffer as the access type, the data is read from an intermodule-bus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 129 ... 160.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 32-bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768. The maximum range of the Address inport depends on the buffer size.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemf_<ChannelNumber>_count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmemf_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from an intermodule-bus buffer. The data format depends on the related parameter settings.

xmemf_<ChannelNumber>_new_data / Data New Outputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

xmemf_<ChannelNumber>_addr / Address Specifies an element in the buffer you want to read. The block requires 1 clock cycle to update the value of the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer. Refer to Data Count outport. If you request data from an address that is greater than the Data Count value, the output of the Data outport is undefined. The first element of a buffer is addressed by 0.

Related topics

References

Buffer Out
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)40
Register In

Buffer64 In

Purpose

To read data from an intermodule-bus buffer with a data width of 64 bits.

Description

If you select Buffer64 as the access type, the data is read from an intermodulebus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits.

Parameters

The I/O function number can be specified in the range 289 ... 320.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768. The maximum range of the Address inport depends on the buffer size.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemf64_<ChannelNumber>_count / Data Count Outputs the number of elements in the current buffer. The maximum range depends on the specified buffer size. You can use the value to define the valid range for the Address inport of 0 ... (Data Count -1).

xmemf64_<ChannelNumber>_dout / Data Outputs a 64-bit data value to be read from an intermodule-bus buffer. The data format depends on the related parameter settings.

xmemf64_<ChannelNumber>_new_data / Data New Outputs a flag that indicates the changes of the buffer status. If the flag changes from 0 to 1 and then back to 0, the requested buffer contains new values and is ready to be read. The flag is set to 1 only within one clock cycle.

xmemf64_<ChannelNumber>_addr / Address Specifies an element in the buffer you want to read. The block requires 1 clock cycle to update the value of the Data outport according to the specified address. The maximum port range depends on the specified buffer size. The valid port range depends on the number of elements currently in the buffer (see Data Count outport). If you request data from an address that is greater than the Data Count value, the output of the Data outport is undefined. The first element of a buffer is addressed by 0.

Related topics

References

Buffer64 Out	425
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)	40
Register64 In	442

Buffer Out

Purpose	To write data to an intermodule-bus buffer with a data width of 32 bits.
Description	If you select Buffer as the access type, the data is written to an intermodule-bus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 32 bits.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 129 160.
	PHSProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
	PHSProperties.Out.Fct(<iofunctionnumber>).Parameter(1).Init / Binary point position (or fraction width)</iofunctionnumber> Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 32 bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init /

Format Lets you select the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer Lets you specify the size of the buffer in the range 1 ... 32768.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemp <ChannelNumber> din / Data Specifies a 32-bit data value to be written to an intermodule-bus buffer. The data format depends on the related parameter settings.

xmemp_<ChannelNumber>_write / Enable Specifies the current valid Data port value.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

state as ready to send immediately, even if the buffer is not completely filled. The data values are written to a new buffer in the following clock cycle. While the port value is 1, the buffer switches every clock cycle. You are therefore recommended to set the value for only one clock cycle. If the buffer is completely filled, it is automatically switched, and the data values are stored in a new buffer.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled. The buffer is switched and the data values are accessible via intermodule bus in the next clock cycle.

The ready flag must be set no later than the last data value. Otherwise the buffer switches twice.

xmemp_<ChannelNumber>_overflow / Overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

Related topics

References

Buffer In4	20
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)	40
Register Out	44

Buffer64 Out

Purpose	To write data to an intermodule-bus buffer with a data width of 64 bits.		
Description	If you select Buffer64 as the access type, the data is written to an intermodule- bus buffer. 32 buffers are available. Each buffer has a variable buffer size of 1 up to 32768 elements. Each buffer element has a data width of 64 bits.		
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.		
	The I/O function number can be specified in the range 289 320.		
	PHSProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>		
	PHSProportios Out Est/ (IOEunstionNumbers) Parameter(1) Init / Pinary		

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range $0\dots64$.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you specify the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Buffer size Lets you specify the size of the buffer in the range 1 ... 32768.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 31.

xmemp64_<ChannelNumber>_din / Data Specifies a 64-bit data value to be written to an intermodule-bus buffer. The data format depends on the related parameter settings.

xmemp64_<ChannelNumber>_write / Enable Specifies the current valid Data port value.

- 0: The Data value to be written is not stored in the buffer.
- 1: The Data value to be written is stored in the buffer. The value of the current clock cycle is used.

- 0: The buffer is not ready to send.
- 1: The buffer is marked as ready for sending, even if it is not completely filled. The buffer is switched and the data values are accessible via intermodule bus in the next clock cycle.

The ready flag must be set no later than the last data value, otherwise the buffer switches twice.

xmemp64_<ChannelNumber>_overflow / Overflow Outputs a flag that indicates that a buffer overflow occurred. An overflow occurs if the old buffer is not read completely before a new buffer is ready to be read.

- 0: No overflow occurred.
- 1: An overflow occurred. This value is set for one clock cycle.

Related topics

References

Buffer64 In
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)40
Register64 Out

Digital Crank/Cam Sensor

Purpose	To provide bit-wise read access to digital camshaft and crankshaft sensors. Each channel is 1 bit wide.
Description	According to the number of physical connections available on the DS1554 Engine Control I/O Module, you can select the Digital Crank/Cam Sensor I/O functions. There are five input channels.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 28 \dots 32.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Low threshold voltage Lets you set the low threshold level for the selected digital input channel. Below this level, a logical 0 is detected, above this level, a logical 1 is detected if the high threshold voltage was crossed before.

■ Range: -40000 mV ... +40000 mV

Resolution: 20 mVDefault: 1000 mV

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / High threshold voltage Lets you set the high threshold level for the selected digital input channel. The logical 1 is output if this level is crossed and stays 1 until the signal falls below the low threshold level.

■ Range: -40000 mV ... +40000 mV

Resolution: 20 mVDefault: 1000 mV

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 0 ... 4.

cam_<ChannelNumber> / Data Outputs the status of the crank/cam sensor. Data type: UFix_1_0

- 0: The input signal is lower than the Low threshold voltage parameter.
- 1: The input signal is higher than the High threshold voltage parameter.

Update rate: 80 MHz

I/O mapping

The following I/O mapping is relevant if you use the FPGA1403Tp1 (7K325) with Engine Control I/O Module (DS1554) framework. The signals are available at the DS1554 Sub-D I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	13	Digital In 9 Channel 1 Signal
	2	32	Digital In 9 Channel 2 Signal
	3	14	Digital In 9 Channel 3 Signal
	4	33	Digital In 9 Channel 4 Signal
	5	12	Digital In 9 Channel 5 Signal

Related topics

References

Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)......40

Digital In (Type B)

Purpose

To read data from a digital input signal in the FPGA application by using a Digital InOut 8 channel.

Description

According to the number of physical connections available on the DS1554 Engine Control I/O Module, you can select the Digital In (Type B) I/O functions. There are eight digital input channels.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 2 ... 9.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Threshold voltage Lets you specify the threshold level for the current digital channel in steps of 100 mV. If the input signal is below this level, a logical 0 is detected. Otherwise, a logical 1 is detected.

■ Range: 1000 mV ... 7500 mV

Resolution: 100 mVDefault: 1500 mV

Note

If you use the same digital channel for the input and the output, the I/O driver is internally set to InOut mode. As a consequence, the maximum input voltage for the digital input channel is equal to the specified high supply, and the applicable threshold voltage is lower than the specified high supply.

To use the maximum input voltage range, you have to use a digital channel only as the input.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 07.

bidir_<ChannelNumber>_in / Data Outputs the current results of digital input channel.

- 0: Input voltage of the channel is below the specified threshold voltage.
- 1: Input voltage of the channel is higher than or equal to the specified threshold voltage.

Update rate: 80 MHz

Note

- The frequency that can be detected is much smaller than the update rate. For information on the electrical characteristics of the DS1554 Engine Control I/O Module, refer to Digital In/Out 8 Characteristics (MicroAutoBox III Hardware Installation and Configuration (***).
- Asynchronous input data might lead to metastable register states. Further synchronization techniques might be necessary.

I/O mapping

The following I/O mapping is relevant if you use the FPGA1403Tp1 (7K325) with Engine Control I/O Module (DS1554) framework. The signals are available at the DS1514 ZIF I/O connector. You can use the same digital channel for input and output signals.

Outport	Channel	Connector Pin	Signal
Data	1	c3	Digital InOut 8 Channel 1 Signal
	2	b5	Digital InOut 8 Channel 2 Signal
	3	b2	Digital InOut 8 Channel 3 Signal
	4	c5	Digital InOut 8 Channel 4 Signal
	5	c4	Digital InOut 8 Channel 5 Signal
	6	c2	Digital InOut 8 Channel 6 Signal
	7	a2	Digital InOut 8 Channel 7 Signal
	8	Z2	Digital InOut 8 Channel 8 Signal

Related topics

References

Digital Out (Type A)	475
Digital Out (Type B)	478
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)	40

Digital Out (Type A)

Purpose

To write data to a digital output signal in the FPGA application using a Digital Out 7 channel.

Description

According to the number of physical connections available on the DS1554 Engine Control I/O Module, you can select the Digital Out (Type A) I/O functions. There are 40 digital output channels.

The voltage range for the high-side switch for all digital output channels is in the range $0\ V\ \dots\ 45\ V$.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 2 ... 41.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 39.

dig_<ChannelNumber>_out / Data Outputs a signal in the specified range. If driven with 0, the hardware output is 0 V. If driven with 1, the hardware output is set to the specified high-supply voltage (VDRIVE). The hardware output is only driven if the Enable port is set to 1. Otherwise, the output is set to high impedance (High-Z).

Data Type: UFix_1_0 Update rate: 80 MHz

Note

The frequency that can be generated is much smaller than the update rate. For information on the electrical characteristics of the DS1554 Engine Control I/O Module, refer to Digital Out 7 Characteristics (MicroAutoBox III Hardware Installation and Configuration \square).

dig_<ChannelNumber>_oe / Enable Controls the hardware output. If set to 1, the hardware output reacts to the Data outport. Otherwise, it is set to High-Z.

I/O mapping

The following I/O mapping is relevant if you use the FPGA1403Tp1 (7K325) with Engine Control I/O Module (DS1554) framework. The signals are available at the DS1514 ZIF I/O connector.

Inport	Channel	Connector Pin	Signal
Data	1	L5	Digital Out 7-1 Channel 1 Signal
	2	N2	Digital Out 7-1 Channel 2 Signal
	3	D3	Digital Out 7-1 Channel 3 Signal
	4	N5	Digital Out 7-1 Channel 4 Signal
	5	M6	Digital Out 7-1 Channel 5 Signal
	6	N3	Digital Out 7-1 Channel 6 Signal
	7	D5	Digital Out 7-1 Channel 7 Signal
	8	M2	Digital Out 7-1 Channel 8 Signal
	9	L6	Digital Out 7-1 Channel 9 Signal
	10	K2	Digital Out 7-1 Channel 10 Signal
	11	C3	Digital Out 7-1 Channel 11 Signal
	12	L2	Digital Out 7-1 Channel 12 Signal
	13	G6	Digital Out 7-1 Channel 13 Signal
	14	H2	Digital Out 7-1 Channel 14 Signal
	15	C5	Digital Out 7-1 Channel 15 Signal
	16	J2	Digital Out 7-1 Channel 16 Signal
	17	F6	Digital Out 7-2 Channel 17 Signal
	18	E2	Digital Out 7-2 Channel 18 Signal
	19	В3	Digital Out 7-2 Channel 19 Signal
	20	G2	Digital Out 7-2 Channel 20 Signal
	21	E6	Digital Out 7-2 Channel 21 Signal
	22	C2	Digital Out 7-2 Channel 22 Signal
	23	B5	Digital Out 7-2 Channel 23 Signal
	24	F2	Digital Out 7-2 Channel 24 Signal
	25	D6	Digital Out 7-2 Channel 25 Signal
	26	A6	Digital Out 7-2 Channel 26 Signal
	27	A3	Digital Out 7-2 Channel 27 Signal
	28	D2	Digital Out 7-2 Channel 28 Signal
	29	B6	Digital Out 7-2 Channel 29 Signal
	30	A2	Digital Out 7-2 Channel 30 Signal
	31	A5	Digital Out 7-2 Channel 31 Signal
	32	B2	Digital Out 7-2 Channel 32 Signal
	33	F5	Digital Out 7-3 Channel 33 Signal
	34	N6	Digital Out 7-3 Channel 34 Signal
	35	E3	Digital Out 7-3 Channel 35 Signal
	36	E5	Digital Out 7-3 Channel 36 Signal
	37	H3	Digital Out 7-3 Channel 37 Signal
	38	M5	Digital Out 7-3 Channel 38 Signal

Inport	Channel	Connector Pin	Signal
	39	G3	Digital Out 7-3 Channel 39 Signal
	40	F3	Digital Out 7-3 Channel 40 Signal

Related topics

References

Digital In (Type B)4	73
Digital Out (Type B)4	
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)	40

Digital Out (Type B)

Purpose

To write data to a digital output signal in the FPGA application by using a Digital In/Out 8 channel.

Description

According to the number of physical connections available on the DS1554 Engine Control I/O Module, you can select the Digital Out (Type B) I/O functions. There are eight digital output channels.

This I/O function is not considered when you generate the processor interface model.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 42 ... 49.

IOProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

IOProperties.Out.Fct(42).Parameter(1).Init / **High supply** Lets you select the voltage for the high-side switch for all digital output channels.

- 0: 3.3 V
- 1:5 V

Note

You can specify the high supply voltage value only globally for all digital output channels.

The I/O function number must be specified as 42.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 00 ... 07.

bidir_<ChannelNumber>_out / Data Outputs a signal in the specified range. If driven with 0, the hardware output is 0 V. If driven with 1, the hardware output is 3.3 V or 5 V according to the specified high supply voltage. The hardware output is driven only if the Enable port is set to 1. Otherwise, the output is set to high impedance (High-Z).

Data Type: UFix_1_0 Update rate: 80 MHz

Note

The frequency that can be generated is much smaller than the update rate. For information on the electrical characteristics of the DS1554 Engine Control I/O Module, refer to Digital In/Out 8 Characteristics (MicroAutoBox III Hardware Installation and Configuration (12)).

bidir_<ChannelNumber>_oe / Enable Controls the hardware output. If set to 1, the hardware output reacts to the Data outport, otherwise it is set to High-Z.

Data Type: UFix_1_0

I/O mapping

The following I/O mapping is relevant if you use the FPGA1403Tp1 (7K325) with Engine Control I/O Module (DS1554) framework. The signals are available at the DS1514 ZIF I/O connector. You can use the same digital channel for input and output signals.

Outport	Channel	Connector Pin	Signal
Data	1	c3	Digital InOut 8 Channel 1 Signal
	2	b5	Digital InOut 8 Channel 2 Signal
	3	b2	Digital InOut 8 Channel 3 Signal
	4	c5	Digital InOut 8 Channel 4 Signal
	5	c4	Digital InOut 8 Channel 5 Signal
	6	c2	Digital InOut 8 Channel 6 Signal
	7	a2	Digital InOut 8 Channel 7 Signal
	8	Z2	Digital InOut 8 Channel 8 Signal

Related topics

References

Digital In (Type B)	473
Digital Out (Type A)	475

Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)......40

Inductive Zero Voltage Detector

Purpose	To provide read access to an inductive zero voltage detector.
Description	The FPGA1403Tp1 (7K325) with Engine Control I/O Module (DS1554) framework provides one channel for the Inductive Zero Voltage Detector I/O function.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number must be specified as 33.
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	There is no channel number to be specified.
	crank_0 / Data Detects the zero crossing points of the analog signals. If a zero crossing from positive to negative is detected, the output signal is 1 for one clock cycle.
	Data type: UFix_1_0
	• 0: No zero crossing.
	1: Zero crossing is detected.
	Update rate: 80 MHz

I/O mapping

The following I/O mapping is relevant if you use the FPGA1403Tp1 (7K325) with Engine Control I/O Module (DS1554) framework. The signals are available at the DS1554 Sub-D I/O connector.

Outport	Connector Pin	Signal
Data	10	Digital In 10 +
	29	Digital In 10 -

References Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)......40

Interrupt

Purpose	To request a processor interrupt outside of the FPGA application.
Description	The FPGA1403Tp1 frameworks provide 8 interrupt lines. An interrupt is requested if the Int port is set to 1 for at least one clock cycle. If you set the Int port to 0, the last interrupt is not released but saved. An interrupt is edgetriggered.
	If you generate the processor interface model for this FPGA I/O function, a PROC_INT_BL block is added to the processor model with the configured data formats.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 1 8.
	IRQProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	The channel number can be specified in the range 0 7.
	 usr_<channelnumber>_interrupt / Int Provides the interrupt request line.</channelnumber> 0 to 1: Interrupt is requested (edge-triggered).
	• 0: No interrupt is requested. Last requested interrupt is saved.
Related topics	References
	Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)40

Knock Sensor

Purpose	To read data from a knock sensor in the FPGA application.
Description	According to the number of physical connections available on the DS1554 Engine Control I/O Module, you can select the Knock Sensor I/O functions. There are 4 knock sensor input channels.
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number can be specified in the range 24 27.
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	The channel number can be specified in the range 00 03.
	knock_ <channelnumber>_data / Data Outputs the current results of the A/D conversions on the current channel. Data type: UFix_16_0 Range: 0 +65535 Input voltage range: -5 V +5 V Update rate: 1 Msps</channelnumber>
	knock_ <channelnumber>_soc / Start of conversion Triggers the start of an A/D conversion on the specified channel. When the value is set to 1 for at least one clock cycle, the ADC starts the conversion. The port allows a precise definition of the starting point of ADC sampling. The End of conversion outport signals the end of the conversion process. Setting this value permanently to 1 results in continuous sampling. Data type: UFix_1_0</channelnumber>
	knock_ <channelnumber>_eoc / End of conversion Outputs an end of conversion signal if the conversion result is available on the specified channel. If the flag changes from 0 to 1, the ADC data contains a new value. The flag is se to 1 for only one clock cycle. Data type: UFix_1_0</channelnumber>

I/O mapping

The following I/O mapping is relevant if you use the FPGA1403Tp1 (7K325) with Engine Control I/O Module (DS1554) framework. The signals are available at the DS1554 Sub-D I/O connector.

Outport	Channel	Connector Pin	Signal
Data	1	16	Analog In 15 Channel 1 +
		34	Analog In 15 Channel 1 -
	2	17	Analog In 15 Channel 2 +
		35	Analog In 15 Channel 2 -
	3	18	Analog In 15 Channel 3 +
		36	Analog In 15 Channel 3 -
	4	19	Analog In 15 Channel 4 +
		37	Analog In 15 Channel 4 -

Related topics

References

Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)......40

LED Out

Purpose	To write a digital signal that controls the FPGA status LED. You can find the FPGA status LED near the DS1514 ZIF I/O connector.
Description	The FPGA1403Tp1 (7K325) with Engine Control I/O Module (DS1554) framework provides one channel for the LED Out I/O function.
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number must be specified as 1.
	IOProperties.Out.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.

There is no channel number to be specified.

led out / Data Controls the FPGA status LED.

Data type: UFix_1_0

- 0: LED lights up green.
- 1: LED lights up orange.

Related topics

References

Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)......40

Register In

Purpose

To read data from an intermodule-bus register with a data width of 32 bits.

Description

If you select Register as the access type, the data is read from an intermodulebus register. 128 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 128.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 32-bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init /

Format Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are sampled simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the .

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ..
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 127.

xreg_<ChannelNumber>_dout / Data Outputs a 32-bit data value to be read from an intermodule-bus register. The data format depends on the related parameter settings.

xreg_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Buffer In	465
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)	
Register Out	487

Register64 In

Purpose

To read data from an intermodule-bus register with a data width of 64 bits.

Description

If you select Register64 as the access type, the data is read from an intermodule-bus register. 128 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 161 ... 288.

PHSProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel Lets you specify a custom name for the specified channel.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary **point position (or fraction width)** Lets you specify the binary point position or returns the fraction width of the Data outport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data outport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

0 represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixedpoint resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data outport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(2).Init / **Format** Lets you specify the data format of the Data outport.

signed/unsigned

The values of the Data outport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data outport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.In.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are sampled simultaneously within the FPGA application. The values therefore form a consistent data group that is written to the .

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- •
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 127.

xreg64_<ChannelNumber>_dout / Data Outputs a 64-bit data value to be read from an intermodule-bus register. The data format depends on the related parameter settings.

xreg64_<ChannelNumber>_dout_wr / Data New Outputs a flag that indicates the changes of the register status. If the flag changes from 0 to 1 and then back to 0, the requested register contains a new value. The flag is set to 1 only within one clock cycle.

Related topics

References

Buffer64 In	466
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)	40
Register64 Out	489

Register Out

Purpose

To write data to an intermodule-bus register with a data width of 32 bits.

Description

If you select Register as the access type, the data is written to an intermodule-bus register. 128 registers are available with a data width of 32 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 1 ... 128.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 32 bit value in the range 0 ... 32.

0 represents the lowest bit position, 32 the highest bit position.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init / Format Lets you select the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 32-bit data value supports the single-precision floating-point format with a fraction width of 24, which complies with the IEEE 754 standard (single).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the sequentially and then provided to the FPGA application simultaneously.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ..
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 127.

xreg_<ChannelNumber>_din / Data Specifies a 32-bit data value to be written to an intermodule-bus register. The data format depends on the related parameter settings.

Related topics

References

Buffer Out
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)40
Register In

Register64 Out

Purpose

To write data to an intermodule-bus register with a data width of 64 bits.

Description

If you select Register64 as the access type, the data is written to an intermodule-bus register. 128 registers are available with a data width of 64 bits each. The values are transmitted element by element. If you want to access data from several registers simultaneously, you can group these registers by specifying the same group identifier for them.

Parameters

You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number can be specified in the range 161 ... 288.

PHSProperties.Out.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(1).Init / Binary point position (or fraction width) Lets you specify the binary point position or returns the fraction width of the Data inport depending on the format selected in the Format setting (see below).

signed/unsigned

The values of the Data inport are in fixed-point format. You can specify the binary point position of the 64-bit value in the range 0 ... 64.

O represents the lowest bit position, 64 the highest bit position.

All 64-bit fixed-point data types are converted to double. Therefore, the fixed-point resolution of fixed-point data types is restricted to 53 bits.

floating-point

The values of the Data inport are in floating-point format. The parameter then provides the fraction width.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(2).Init /

Format Lets you specify the data format of the Data inport.

signed/unsigned

The values of the Data inport are in fixed-point format with or without one bit reserved for the sign.

You can specify the binary point position in the Binary point position (or fraction width) setting.

floating-point

The values of the Data inport are in floating-point format.

The 64-bit data value supports the double-precision floating-point format with a fraction width of 53, which complies with the IEEE 754 standard (double).

The fraction width is provided by the Binary point position (or fraction width) setting.

PHSProperties.Out.Fct(<IOFunctionNumber>).Parameter(3).Init / Register group ID Lets you specify a number in the range 1 ... 63 to create register groups. Registers that you specified with the same group ID are read from the sequentially and then provided to the FPGA application simultaneously.

Specify 0 for ungrouped read access.

- 0: Ungrouped access (default)
- 1: Register group 1
- ..
- 63: Register group 63

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

The channel number can be specified in the range 000 ... 127.

xreg64_<ChannelNumber>_din / Data Specifies a 64-bit data value to be written to an intermodule-bus register. The data format depends on the related parameter settings.

Related topics

References

Buffer64 Out	
Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)40	
Register64 In	

Status In

Purpose

To read digital signals that output state information, e.g., the state of the FPGA initialization sequence.

Description	The FPGA1403Tp1 (7K325) with Engine Control I/O Module (DS1554) framework provides one channel for the Status In I/O function.
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.
	The I/O function number must be specified as 1.
	IOProperties.In.Fct(<iofunctionnumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.</iofunctionnumber>
Port	The following signals of the I/O function can be found in the port definition of the custom module entity cm.
	init_done/ Init Done Outputs the state of the initialization sequence that is started after programming the FPGA.
	0: Initialization sequence is in progress.
	1: Initialization sequence has finished.
Related topics	References
	Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1)40

Temperature

Purpose	To read the FPGA die temperature.
Description	The FPGA1403Tp1 (7K325) with Engine Control I/O Module (DS1554) framework provides one channel for the Temperature I/O function.
	This I/O function is not considered when you generate the processor interface model.
Parameters	You can find templates for the functions and the following parameters in the handcode FPGA framework INI file.

The I/O function number must be specified as 34.

IOProperties.In.Fct(<IOFunctionNumber>).HcCustomName / Channel name Lets you specify a custom name for the specified channel.

Port

The following signals of the I/O function can be found in the port definition of the custom module entity cm.

temperature / Temperature Outputs the raw value of the FPGA's die temperature measurement. Use the 12 MSB bits to calculate the die temperature.

Equation for calculating the die temperature:

Data type: UFix_16_0

Data width: 1

Value range: 0 ... 65536

high_temp / High Outputs a flag if the FPGA's die temperature exceeds

To reset the flag, the die temperature must fall below 85 °C.

Data type: UFix_1_0

- 0: Die temperature does not exceed 105 °C.
- 1: Die temperature exceeds 105 °C.

Note

A high ambient temperature and an FPGA application with a very high FPGA utilization and/or toggle rate increase the FPGA die temperature (internal chip temperature). If the die temperature exceeds 105 $^{\circ}$ C, the FPGA might work incorrectly.

You can decrease the temperature by reducing the FPGA's toggle rate (e.g., by using clock enable) or by reducing the utilization of the FPGA resources. If the die temperature exceeds 125 °C, the FPGA resets itself. The reset stays active until the die temperature falls below 85 °C and you restart MicroAutoBox III or reload the user application.

Related topics

References

Overview of the Frameworks Available for MicroAutoBox III (FPGA1403Tp1).....

. 40

	adctp1_ <channelnumber>_value</channelnumber>	DS1554 482
A	ADC Class 1 (DS1302) 47	Analog In-L (DS6651) 244
ADC (DCE202) 202	adctp2_ <channelnumber>_value</channelnumber>	I/O mapping 246
ADC (DS5203) 293	ADC Class 2 (DS1302) 49	parameters 244
I/O mapping 294	Add internal pipeline register to relax timing	ports 246
parameters 293 port 293	I-FPGA In (SCALEXIO) 285	Analog Out (DS2655M1) 208
ADC (Type A) (FPGA1403TP1)	I-FPGA Slave (DS5203) 313	I/O mapping 209
DS1554 462	Address	parameters 208
I/O mapping	Buffer In (DS1302) 51	port 209
DS1552 417	Buffer In (DS2655) 94	Analog Out (DS6651) 247
DS1554 463	Buffer In (DS5203) 298	I/O mapping 247
parameters	Buffer In (DS6601) 130	parameters 247
DS1552 417	Buffer In (DS6602) 166	port 247
DS1554 463	Buffer In (FPGA1401TP1)	Analog Out 13 (FPGA1403TP1)
port	DS1552 341	DS1552 427
DS1552 417	DS1554 386	Analog Out-T (DS6651) 248
DS1554 463	Buffer In (FPGA1403TP1)	I/O mapping 249
ADC (Type B) (FPGA1403TP1)	DS1552 421 DS1554 466	parameters 248
I/O mapping 419		port 249
parameters 418	Buffer64 In (DS1302) 52 Buffer64 In (DS2655) 97	Angle range
port 419	Buffer64 In (DS2655) 97 Buffer64 In (DS5203) 300	APU Slave (DS2655) 92 APU Slave (DS6601) 127, 164
ADC (Type B) (FPGA1403TP3)	Buffer64 In (DS6601) 132	Angle Range
DS1552 418	Buffer64 In (DS6602) 169	APU Slave (DS2655) 93
ADC Class 1 (DS1302) 46	Buffer64 In (D30002) 109 Buffer64 In (FPGA1401TP1)	APU Slave (DS6601) 128, 165
I/O mapping 47	DS1552 343	appl_run
parameters 47	DS1552 343	Proc App Status (DS1302) 67
port 47	Buffer64 In (FPGA1403TP1)	APU Master (DS2655) 89
ADC Class 2 (DS1302) 48	DS1552 423	I/O mapping 91
I/O mapping 49	DS1552 425	parameters 89
parameters 48	DDR4 32 Mode 1 177	port 89
port 48	DDR4 64 Mode 1 182	APU Master (DS5203) 294
ADC M1 (DS5203M1) 326	I-FPGA In (IOCNET) (DS2655) 104	I/O mapping 295
I/O mapping 327	I-FPGA In (IOCNET) (DS6601) 140	parameters 295
parameters 326	I-FPGA In (IOCNET) (DS6602) 187	port 295
port 326	I-FPGA64 In (IOCNET) (DS2655) 106	APU Master (DS6601) 125
ADC Type A (FPGA1401TP1)	I-FPGA64 In (IOCNET) (DS6601) 142	I/O mapping 127
DS1552 337	I-FPGA64 In (IOCNET) (DS6602) 188	parameters 125
DS1554 382	Address A	port 125
I/O mapping	DDR4 32 Mode 2 179	APU Master (DS6602) 161
DS1552 337	DDR4 64 Mode 2 184	I/O mapping 163
DS1554 383	Address B	parameters 161
parameters	DDR4 32 Mode 2 179	port 162
DS1552 337	DDR4 64 Mode 2 184	APU Slave (DS2655) 91
DS1554 383	Analog In (DS2655M1) 206	Angle range 92
port	I/O mapping 207	I/O mapping 93
DS1552 337	parameters 206	parameters 91
DS1554 383	port 207	port 92
ADC Type A (FPGA1403TP1)	Analog In (DS6651) 240	APU Slave (DS5203) 295
DS1552 417	I/O mapping 243	I/O mapping 296
ADC Type B (FPGA1401TP1) 338	parameters 241	parameters 296
I/O mapping 339 parameters 339	ports 242	port 296
port 339	Analog In 10 (FPGA1403TP1)	APU Slave (DS6601) 127, 163
adc <channelnumber>_data</channelnumber>	DS1552 417	Angle range 127, 164
ADC (DS5203) 293	Analog In 11 (FPGA1403TP1)	I/O mapping 129, 165
adc <channelnumber>_valid</channelnumber>	DS1552B1 417	parameters 127, 163
ADC (DS5203) 294	Analog In 12 (FPGA1403TP1)	port 128, 164
adctp1_ <channelnumber>_busy</channelnumber>	DS1552 418	apu_phi_nd
ADC Class 1 (DS1302) 47	Analog In 14 (FPGA1403TP1)	APU Slave (DS5203) 296
adctp1_ <channelnumber>_convert</channelnumber>	DS1554 462	apu_phi_rd
ADC Class 1 (DS1302) 47	Analog In 15 (FPGA1403TP1)	APU Slave (DS5203) 296

apu_phi_wr	Buffer In (DS2655) 94	DS1554 409
APU Master (DS5203) 295	Buffer In (DS5203) 297	Register Out (FPGA1403TP1)
Aurora 64b66b 128 Bit In	Buffer In (DS6601) 129	DS1552 445
DS6601 273	Buffer In (DS6602) 166	DS1554 488
DS6602 273	Buffer In (FPGA1401TP1)	Register64 In (DS1302) 69
I/O mapping 274	DS1552 340	Register64 In (DS2655) 116
parameters 274	DS1554 385	Register64 In (DS5203) 318
port 274	Buffer In (FPGA1403TP1)	Register64 In (DS6601) 152
Aurora 64b66b 128 Bit Out	DS1552 420	Register64 In (DS6602) 198
DS6601 275	DS1554 465	Register64 In (FPGA1401TP1)
DS6602 275	Buffer Out (DS1302) 53	DS1552 363
I/O mapping 276	Buffer Out (DS2655) 98	DS1554 407
parameters 275	Buffer Out (DS5203) 300	Register64 In (FPGA1403TP1)
port 276	Buffer Out (DS6601) 134	DS1552 443
Aurora 64b66b In	Buffer Out (DS6602) 170	DS1554 486
DS6601 270	Buffer Out (FPGA1401TP1)	Register64 Out (DS1302) 73
DS6602 270	DS1552 344	Register64 Out (DS2655) 11
I/O mapping 271	DS1554 389	Register64 Out (DS5203) 32
parameters 270	Buffer Out (FPGA1403TP1)	Register64 Out (DS6601) 15
port 270	DS1552 423	Register64 Out (DS6602) 20
Aurora 64b66b Out	DS1554 468	Register64 Out (FPGA1401TP
DS6601 271	Buffer64 In (DS1302) 51	DS1552 366
DS6602 271	Buffer64 In (DS2655) 96	DS1554 411
I/O mapping 273	Buffer64 In (DS5203) 299	Register64 Out (FPGA1403TP
parameters 272	Buffer64 In (DS6601) 131	DS1552 446
port 272	Buffer64 In (DS6602) 168	DS1554 489
P =	Buffer64 In (FPGA1401TP1)	Bit length
В	DS1552 342	I-FPGA In (SCALEXIO) 284
В	DS1554 387	I-FPGA Master (DS5203) 310
Baud rate	Buffer64 In (FPGA1403TP1)	I-FPGA Out (SCALEXIO) 288
UART RS232 (DS1302) 78	DS1552 422	I-FPGA Slave (DS5203) 312
UART RS232 (FPGA1401TP1) 371	DS1554 467	Blue
UART RS422/485 (DS1302) 83	Buffer64 Out (DS1302) 55	LED Out (DS1302) 66
UART RS422/485 (FPGA1401TP1) 376	Buffer64 Out (DS2655) 100	Buffer In (DS1302) 49
UART RS422/485 (FPGA1403TP1) 455	Buffer64 Out (DS5203) 302	parameters 49
Beep Count	Buffer64 Out (DS6601) 136	port 50
Buzzer (DS1302) 58	Buffer64 Out (DS6602) 172	Buffer In (DS2655) 93
Beep Duration	Buffer64 Out (FPGA1401TP1)	parameters 93
Buzzer (DS1302) 57	DS1552 346	port 94
bidir_ <channelnumber>_in</channelnumber>	DS1554 391	Buffer In (DS5203) 297
Digital In (Type B) (FPGA1403TP1)	Buffer64 Out (FPGA1403TP1)	parameters 297
DS1552 433	DS1552 425	port 297
DS1554 474	DS1554 470	Buffer In (DS6601) 129
Digital In Type B (FPGA1401TP1)	Register In (DS1302) 68	parameters 129
DS1552 353	Register In (DS2655) 114	port 130
DS1554 395	Register In (DS5203) 317	Buffer In (DS6602) 165
bidir_ <channelnumber>_oe</channelnumber>	Register In (DS6601) 150	parameters 165
Digital Out (Type B) (FPGA1403TP1)	Register In (DS6602) 196	port 166
DS1552 437	Register In (FPGA1401TP1)	Buffer In (FPGA1401TP1)
DS1554 479	DS1552 361	DS1552 340
Digital Out Type B (FPGA1401TP1)	DS1554 405	DS1554 385
DS1552 357	Register In (FPGA1403TP1)	parameters
DS1554 400	DS1552 441	DS1552 340
bidir_ <channelnumber>_out</channelnumber>	DS1554 484	DS1554 385
Digital Out (Type B) (FPGA1403TP1)	Register Out (DS1302) 71	port
DS1552 437	Register Out (DS2655) 117	DS1552 341, 343
DS1554 479	Register Out (DS5203) 320	DS1552 341, 343
Digital Out Type B (FPGA1401TP1)	Register Out (DS6601) 153	Buffer In (FPGA1403TP1)
DS1552 357	Register Out (DS6602) 199	DS1552 420
DS1554 400	Register Out (FPGA1401TP1)	DS1554 465
Binary point position	DS1552 365	parameters
Buffer In (DS1302) 50	551552 505	parameters

DS1552 420	Buffer64 In (DS1302) 52	Buffer64 Out (DS5203) 302
DS1554 465	Buffer64 In (DS2655) 96	parameters 302
port	Buffer64 In (DS5203) 299	port 303
DS1552 420, 422	Buffer64 In (DS6601) 132	Buffer64 Out (DS6601) 136
DS1554 466, 467	Buffer64 In (DS6602) 168	parameters 136
Buffer Out (DS1302) 53	Buffer64 Out (DS1302) 55	port 137
parameters 53	Buffer64 Out (DS2655) 101	Buffer64 Out (DS6602) 172
port 54	Buffer64 Out (DS5203) 303	parameters 172
Buffer Out (DS2655) 98	Buffer64 Out (DS6601) 137	port 173
parameters 98	Buffer64 Out (DS6602) 173	Buffer64 Out (FPGA1401TP1)
port 99	Buffer64 Out (FPGA1401TP1)	DS1552 345
Buffer Out (DS5203) 300	DS1552 346	DS1554 390
parameters 300	DS1554 391	parameters
port 301	Buffer64 Out (FPGA1403TP1)	DS1552 346
Buffer Out (DS6601) 133	DS1552 426	DS1554 390
parameters 134	DS1554 471	port
port 134	I-FPGA In (IOCNET) (DS2655) 104	DS1552 346
Buffer Out (DS6602) 170	I-FPGA In (IOCNET) (DS6601) 140	DS1554 391
parameters 170	I-FPGA In (IOCNET) (DS6602) 186	Buffer64 Out (FPGA1403TP1)
port 171	I-FPGA Out (IOCNET) (DS2655) 107	DS1552 425
Buffer Out (FPGA1401TP1)	I-FPGA Out (IOCNET) (DS6601) 143	DS1554 470
DS1552 343	I-FPGA Out (IOCNET) (DS6602) 190	parameters
DS1554 388	I-FPGA64 In (IOCNET) (DS2655) 106	DS1552 425
parameters	I-FPGA64 In (IOCNET) (DS6601) 142	DS1554 470
DS1552 344	I-FPGA64 In (IOCNET) (DS6602) 188	port
DS1554 388	I-FPGA64 Out (IOCNET) (DS2655) 110	DS1552 426
port	I-FPGA64 Out (IOCNET) (DS6601) 146	DS1554 471
DS1552 344	I-FPGA64 Out (IOCNET) (DS6602) 192	Buffer64 size
DS1554 389	Buffer64 In (DS1302) 51	Buffer64 In (FPGA1401TP1)
Buffer Out (FPGA1403TP1)	parameters 51	DS1552 342
DS1552 423	port 52	DS1554 387
DS1554 468	Buffer64 In (DS2655) 95	Buffer64 In (FPGA1403TP1)
parameters	parameters 96	DS1552 422
DS1552 423	port 96	DS1554 467
DS1554 468	Buffer64 In (DS5203) 298	Busy
port	parameters 298	ADC Class 1 (DS1302) 47
DS1552 424 DS1554 469	port 299 Buffer64 In (DS6601) 131	DAC Class 1 (DS1302) 59 DDR4 32 Mode 1 177
Buffer size		DDR4 32 Mode 1 177 DDR4 32 Mode 2 179
Buffer In (DS1302) 50	parameters 131	DDR4 52 Mode 2 179 DDR4 64 Mode 1 182
Buffer In (DS2655) 94	port 132 Buffer64 In (DS6602) 167	DDR4 64 Mode 2 184
Buffer In (DS5203) 94 Buffer In (DS5203) 297	parameters 168	Buzzer (DS1302) 57
Buffer In (DS6601) 130	port 168	parameters 57
Buffer In (DS6602) 166	Buffer64 In (FPGA1401TP1)	port 57
Buffer In (FPGA1401TP1)	DS1552 341	buzzer start
DS1552 341	DS1552 347 DS1554 386	Buzzer (DS1302) 58
DS1554 386	parameters	buzzer beep count
Buffer In (FPGA1403TP1)	DS1552 342	Buzzer (DS1302) 58
DS1552 420	DS1554 387	buzzer_beep_duration
DS1554 465	Buffer64 In (FPGA1403TP1)	Buzzer (DS1302) 57
Buffer Out (DS1302) 54	DS1552 421	buzzer_frequency
Buffer Out (DS2655) 99	DS1554 466	Buzzer (DS1302) 57
Buffer Out (DS5203) 301	parameters	buzzer_pause_duration
Buffer Out (DS6601) 134	DS1552 422	Buzzer (DS1302) 57
Buffer Out (DS6602) 171	DS1554 467	
Buffer Out (FPGA1401TP1)	Buffer64 Out (DS1302) 55	C
DS1552 344	parameters 55	
DS1554 389	port 56	cam_ <channelnumber></channelnumber>
Buffer Out (FPGA1403TP1)	Buffer64 Out (DS2655) 100	Digital Crank/Cam Sensor (FPGA1401TP1)
DS1552 424	parameters 100	DS1552 349
DS1554 469	port 101	DS1554 393
	:	Digital Crank/Cam Sensor (FPGA1403TP1)

DS1552 429	Buffer64 Out (DS1302) 55	Digital Out-Z (DS6651) 258
DS1554 473	Buffer64 Out (DS2655) 100	I-FPGA In (IOCNET) (DS2655) 104
Channel name	Buffer64 Out (DS5203) 302	I-FPGA In (IOCNET) (DS6601) 139
ADC (DS5203) 293	Buffer64 Out (DS6601) 136	I-FPGA In (IOCNET) (DS6602) 186
ADC (Type A) (FPGA1403TP1)	Buffer64 Out (DS6602) 172	I-FPGA In (SCALEXIO) 283
DS1552 417	Buffer64 Out (FPGA1401TP1)	I-FPGA Master (DS5203) 310
DS1554 463	DS1552 346	I-FPGA Out (IOCNET) (DS2655) 107
ADC (Type B) (FPGA1403TP1) 418	DS1554 390	I-FPGA Out (IOCNET) (DS6601) 143
ADC (lype b) (11 dA 140511 1) 410 ADC Class 1 (DS1302) 47	Buffer64 Out (FPGA1403TP1)	I-FPGA Out (IOCNET) (DS6602) 189
ADC Class 2 (DS1302) 48	DS1552 425	I-FPGA Out (SCALEXIO) 287
ADC M1 (DS5203M1) 326	DS1554 470	I-FPGA Slave (DS5203) 312
ADC Type A (FPGA1401TP1)	Buzzer (DS1302) 57	I-FPGA64 In (IOCNET) (DS2655) 105
DS1552 337	CN App Status (DS2655) 103	I-FPGA64 In (IOCNET) (DS6601) 141
DS1554 383	CN App Status (DS6601) 139	I-FPGA64 In (IOCNET) (DS6602) 188
ADC Type B (FPGA1401TP1) 339	CN App Status (DS6602) 175	I-FPGA64 Out (IOCNET) (DS2655) 109
Analog In (DS2655M1) 206	DAC (DS5203) 304	I-FPGA64 Out (IOCNET) (DS6601) 145
Analog In (DS6651) 241	DAC (FPGA1401TP1) 348	I-FPGA64 Out (IOCNET) (DS6602) 192
Analog In-L (DS6651) 244	DAC (FPGA1403TP1) 427	Inductive Zero Voltage Detector
Analog Out (DS2655M1) 208	DAC Class 1 (DS1302) 58	(FPGA1401TP1)
Analog Out (DS6651) 247	DAC M1 (DS5203M1) 328	DS1552 358
Analog Out-T (DS6651) 248	Digital Crank/Cam Sensor (FPGA1401TP1)	DS1554 401
APU Master (DS2655) 89	DS1552 349	Inductive Zero Voltage Detector
APU Master (DS5203) 295	DS1554 392	(FPGA1403TP1)
APU Master (DS6601) 125	Digital Crank/Cam Sensor (FPGA1403TP1)	DS1552 438
APU Master (DS6602) 161	DS1552 428	DS1554 480
APU Slave (DS2655) 91	DS1554 472	Interrupt (DS1302) 65
APU Slave (DS5203) 296	Digital In (DS2655M1) 210	Interrupt (DS2655) 112
APU Slave (DS6601) 127, 163	Digital In (DS2655M2) 219	Interrupt (DS5203) 315
Buffer In (DS1302) 49	Digital In (DS5203) 306	Interrupt (DS6601) 148
Buffer In (DS2655) 93	Digital In (DS6651) 250	Interrupt (DS6602) 194
Buffer In (DS5203) 297	Digital In (Type A) (FPGA1403TP1) 430	Interrupt (FPGA1401TP1)
Buffer In (DS6601) 129	Digital In (Type B) (FPGA1403TP1)	DS1552 359
Buffer In (DS6602) 165		
	DS1552 432	DS1554 402
Buffer In (FPGA1401TP1)	DS1554 474	Interrupt (FPGA1403TP1)
DS1552 340	Digital In M1 (DS5203M1) 329	DS1552 439
DS1554 385	Digital In Type A (FPGA1401TP1) 351	DS1554 481
Buffer In (FPGA1403TP1)	Digital In Type B (FPGA1401TP1)	IOCNET Global Time (DS2655) 112
DS1552 420	DS1552 352	IOCNET Global Time (DS6601) 148
DS1554 465	DS1554 394	IOCNET Global Time (DS6602) 194
Buffer Out (DS1302) 53	Digital In/Out-Z (DS6651) 252	Knock Sensor (FPGA1401TP1) 403
Buffer Out (DS2655) 98	Digital InOut (DS2655M1) 212	Knock Sensor (FPGA1403TP1) 482
Buffer Out (DS5203) 300	Digital InOut Class 1 (DS1302) 60	LED Out (DS1302) 66
Buffer Out (DS6601) 134	Digital InOut Class 2 (DS1302) 62	LED Out (DS2655) 113
Buffer Out (DS6602) 170	Digital Out (DS2655M1) 214	LED Out (DS5203) 316
Buffer Out (FPGA1401TP1)	Digital Out (DS2655M2) 221	LED Out (DS6601) 149
DS1552 344	Digital Out (DS5203) 308	LED Out (DS6602) 195
DS1554 388	Digital Out (DS6651) 255	LED Out (FPGA1401TP1)
Buffer Out (FPGA1403TP1)	Digital Out (Type A) (FPGA1403TP1)	DS1552 360
DS1552 423	DS1552 434	DS1554 404
DS1554 468	DS1554 476	LED Out (FPGA1403TP1)
Buffer64 In (DS1302) 51	Digital Out (Type B) (FPGA1403TP1)	DS1552 440
Buffer64 In (DS2655) 96	DS1552 436	DS1554 483
Buffer64 In (DS5203) 298	DS1554 478	Proc App Status (DS1302) 67
Buffer64 In (DS6601) 131	Digital Out M1 (DS5203M1) 332	Register In (DS1302) 67
Buffer64 In (DS6602) 168		
	Digital Out Type A (FPGA1401TP1)	Register In (DS2655) 114
Buffer64 In (FPGA1401TP1)	DS1552 354	Register In (DSS203) 316
DS1552 342	DS1554 396	Register In (DS6601) 150
DS1554 387	Digital Out Type B (FPGA1401TP1)	Register In (DS6602) 196
Buffer64 In (FPGA1403TP1)	DS1552 356	Register In (FPGA1401TP1)
DS1552 422	DS1554 399	DS1552 361
DS1554 467	Digital Out-Z (DS2655M2) 224	DS1554 405

Register In (FPGA1403TP1)	Temperature (FPGA1401TP1) 413	parameters 427
DS1552 441	Temperature (FPGA1403TP1) 491	port 427
DS1554 484	Trigger (DS6651) 268	DAC Class 1 (DS1302) 58
Register Out (DS1302) 71	UART 3 RS232 (FPGA1403TP1) 450	I/O mapping 59
Register Out (DS2655) 117	UART 3 RS422/485 (FPGA1403TP1) 455	parameters 58
Register Out (DS5203) 320	UART RS232 (DS1302) 78	port 59
Register Out (DS6601) 153	UART RS232 (FPGA1401TP1) 370	DAC M1 (DS5203M1) 327
Register Out (DS6602) 199	UART RS422/485 (DS1302) 82	I/O mapping 329
Register Out (FPGA1401TP1)	UART RS422/485 (FPGA1401TP1) 376	parameters 328
DS1552 365	CLK_N	port 328
DS1554 409	MGT In 278	dac <channelnumber>_data</channelnumber>
Register Out (FPGA1403TP1)	CLK_P	DAC (FPGA1401TP1) 348
DS1552 444	MGT In 277	DAC (FPGA1403TP1) 427
DS1554 488	Clock	dactp1_ <channelnumber>_busy</channelnumber>
Register64 In (DS1302) 69	I-FPGA In (SCALEXIO) 284	DAC Class 1 (DS1302) 59
Register64 In (DS2655) 115	I-FPGA Master (DS5203) 310	dactp1_ <channelnumber>_convert</channelnumber>
Register64 In (DS5203) 318	I-FPGA Out (SCALEXIO) 289	DAC Class 1 (DS1302) 59
Register64 In (DS6601) 151	I-FPGA Slave (DS5203) 313	dactp1_ <channelnumber>_value</channelnumber>
		. –
Register64 In (DS6602) 198	CN App Status (DS2655) 103	DAC Class 1 (DS1302) 59
Register64 In (FPGA1401TP1)	parameters 103	dacxx_data
DS1552 363	port 103	DAC (DS5203) 305
DS1554 407	CN App Status (DS6601) 138	Data
Register64 In (FPGA1403TP1)	parameters 139	ADC (DS5203) 293
DS1552 443	port 139	ADC (Type A) (FPGA1403TP1)
DS1554 486	CN App Status (DS6602) 175	DS1552 417
Register64 Out (DS1302) 72	parameters 175	DS1554 463
Register64 Out (DS2655) 119	port 175	ADC (Type B) (FPGA1403TP1) 419
Register64 Out (DS5203) 321	CN Application Status	ADC Class 1 (DS1302) 47
Register64 Out (DS6601) 155	CN App Status (DS2655) 103, 113	ADC Class 2 (DS1302) 49
Register64 Out (DS6602) 201	CN App Status (DS6601) 139, 149	ADC M1 (DS5203M1) 326
Register64 Out (FPGA1401TP1)	CN App Status (DS6602) 175, 195	ADC Type A (FPGA1401TP1)
DS1552 366	Common Program Data folder 12	DS1552 337
DS1554 410	Convert	DS1554 383
Register64 Out (FPGA1403TP1)	ADC Class 1 (DS1302) 47	ADC Type B (FPGA1401TP1) 339
DS1552 446	DAC Class 1 (DS1302) 59	Analog In (DS2655M1) 207
DS1554 489	crank	Analog In (DS6651) 242
Resolver (DS1302) 74	Inductive Zero Voltage Detector	Analog In-L (DS6651) 246
RS232 Rx (DS2655M2) 227	(FPGA1401TP1)	Analog Out (DS2655M1) 209
RS232 Tx (DS2655M2) 229	DS1552 358	Analog Out (DS6651) 247
RS485 Rx (DS2655M2) 230	DS1554 401	Analog Out-T (DS6651) 249
RS485 Rx (DS6651) 261	Inductive Zero Voltage Detector	Aurora 64b66b 128 Bit In 274
RS485 Rx/Tx (DS6651) 263	(FPGA1403TP1)	Aurora 64b66b 128 Bit Out 276
RS485 RxTx (DS2655M2) 232	DS1552 438	Aurora 64b66b In 270
RS485 Tx (DS2655M2) 235	DS1554 480	Aurora 64b66b Out 272
RS485 Tx (DS6651) 265	CTS	Buffer In (DS1302) 50
Sensor Supply (FPGA1401TP1)	UART 3 RS232 (FPGA1403TP1) 454	Buffer In (DS2655) 94
DS1552 368	UART RS232 (DS1302) 81	Buffer In (DS5203) 298
Sensor Supply (FPGA1403TP1)	UART RS232 (FPGA1401TP1) 374	Buffer In (DS6601) 130
DS1552 448	OART 10232 (11 GAT40111 1) 374	Buffer In (DS6602) 166
Sensor Supply M1 (DS5203M1) 334		Buffer In (FPGA1401TP1)
Status In (DS1302) 77	D	DS1552 341
	DAC (DS5203) 304	
Status In (DS2655) 120	I/O mapping 305	DS1554 386
Status In (DS5203) 323	parameters 304	Buffer In (FPGA1403TP1)
Status In (DS6601) 156	port 304	DS1552 421
Status In (DS6602) 202	DAC (FPGA1401TP1) 347	DS1554 466
Status In (FPGA1401TP1)	I/O mapping 348	Buffer Out (DS1302) 54
DS1552 369	parameters 348	Buffer Out (DS2655) 99
DS1554 412	port 348	Buffer Out (DS5203) 301
Status In (FPGA1403TP1)	DAC (FPGA1403TP1)	Buffer Out (DS6601) 135
DS1552 449	DS1552 427	Buffer Out (DS6602) 171
DS1554 491		Buffer Out (FPGA1401TP1)
	I/O mapping 428	

DS1552 344	Digital Out M1 (DS5203M1) 332	Register64 In (DS2655) 117
DS1554 389	Digital Out Type A (FPGA1401TP1)	Register64 In (DS5203) 319
Buffer Out (FPGA1403TP1)	DS1552 355	Register64 In (DS6601) 153
DS1552 424	DS1554 396	Register64 In (DS6602) 199
DS1554 469	Digital Out Type B (FPGA1401TP1)	Register64 In (FPGA1401TP1)
Buffer64 In (DS1302) 52	DS1552 357	DS1552 364
Buffer64 In (DS2655) 97	DS1554 400	DS1554 408
Buffer64 In (DS5203) 299	Digital Out-Z (DS2655M2) 225	Register64 In (FPGA1403TP1)
Buffer64 In (DS6601) 132	Digital Out-Z (DS6651) 259	DS1552 444
Buffer64 In (DS6602) 169	I-FPGA In (IOCNET) (DS2655) 105	DS1554 487
Buffer64 In (FPGA1401TP1)	I-FPGA In (IOCNET) (DS6601) 140	Register64 Out (DS1302) 74
DS1552 343	I-FPGA In (IOCNET) (DS6602) 187	Register64 Out (DS2655) 120
DS1554 388	I-FPGA Out (IOCNET) (DS2655) 108	Register64 Out (DS5203) 323
Buffer64 In (FPGA1403TP1)	I-FPGA Out (IOCNET) (DS6601) 144	Register64 Out (DS6601) 156
DS1552 423	I-FPGA Out (IOCNET) (DS6602) 190	Register64 Out (DS6602) 202
DS1554 468	I-FPGA64 In (IOCNET) (DS2655) 106	Register64 Out (FPGA1401TP1)
Buffer64 Out (DS1302) 56	I-FPGA64 In (IOCNET) (DS6601) 142	DS1552 367
Buffer64 Out (DS2655) 101	I-FPGA64 In (IOCNET) (DS6602) 189	DS1554 412
Buffer64 Out (DS5203) 303	I-FPGA64 Out (IOCNET) (DS2655) 110	Register64 Out (FPGA1403TP1)
Buffer64 Out (DS6601) 137	I-FPGA64 Out (IOCNET) (DS6601) 146	DS1552 447
Buffer64 Out (DS6602) 173	I-FPGA64 Out (IOCNET) (DS6602) 192	DS1554 490
Buffer64 Out (FPGA1401TP1)	Inductive Zero Voltage Detector	RS232 Rx (DS2655M2) 227
DS1552 346	(FPGA1401TP1)	RS232 Tx (DS2655M2) 229
DS1554 391	DS1552 358	RS485 Rx (DS2655M2) 230
Buffer64 Out (FPGA1403TP1)	DS1554 401	RS485 Rx (DS6651) 261
DS1552 426	Inductive Zero Voltage Detector	RS485 Tx (DS2655M2) 235
DS1554 471	(FPGA1403TP1)	RS485 Tx (DS6651) 266
DAC (DS5203) 305	DS1552 438	Data (In)
DAC (FPGA1401TP1) 348	DS1554 480	Digital InOut (DS2655M1) 213
DAC (FPGA1403TP1) 427	Knock Sensor (FPGA1401TP1) 403	Data (Out)
DAC Class 1 (DS1302) 59	Knock Sensor (FPGA1403TP1) 482	Digital InOut (DS2655M1) 213
DAC M1 (DS5203M1) 328	LED Out (DS5203) 316	Data Count
Digital Crank/Cam Sensor (FPGA1401TP1)	LED Out (FPGA1401TP1)	Buffer In (DS1302) 50
DS1552 349	DS1552 360	Buffer In (DS2655) 94
DS1554 393	DS1554 405	Buffer In (DS5203) 298
Digital Crank/Cam Sensor (FPGA1403TP1)	LED Out (FPGA1403TP1)	Buffer In (DS6601) 130
DS1552 429	DS1552 440	Buffer In (DS6602) 166
DS1554 473	DS1554 484	Buffer In (FPGA1401TP1)
Digital In (DS2655M1) 210	Register In (DS1302) 69	DS1552 341
Digital In (DS2655M2) 219	Register In (DS2655) 115	DS1554 386
Digital In (DS5203) 306	Register In (DS5203) 317	Buffer In (FPGA1403TP1)
Digital In (DS6651) 250	Register In (DS6601) 151	DS1552 421
Digital In (Type A) (FPGA1403TP1) 431	Register In (DS6602) 197	DS1554 466
Digital In (Type B) (FPGA1403TP1)	Register In (FPGA1401TP1)	Buffer64 In (DS1302) 52
DS1552 433	DS1552 362	Buffer64 In (DS2655) 97
DS1554 474	DS1554 406	Buffer64 In (DS5203) 299
Digital In M1 (DS5203M1) 330	Register In (FPGA1403TP1)	Buffer64 In (DS6601) 132
Digital In Type A (FPGA1401TP1) 351	DS1552 442	Buffer64 In (DS6602) 169
Digital In Type B (FPGA1401TP1)	DS1554 485	Buffer64 In (FPGA1401TP1)
DS1552 353	Register Out (DS1302) 72	DS1552 343
DS1554 395	Register Out (DS2655) 118	DS1554 388
Digital Out (DS2655M1) 215	Register Out (DS5203) 321	Buffer64 In (FPGA1403TP1)
Digital Out (DS2655M2) 222	Register Out (DS6601) 154	DS1552 422
Digital Out (DS5203) 308	Register Out (DS6602) 200	DS1554 467
Digital Out (DS6651) 256	Register Out (FPGA1401TP1)	I-FPGA In (IOCNET) (DS2655) 105
Digital Out (Type A) (FPGA1403TP1)	DS1552 366	I-FPGA In (IOCNET) (DS6601) 140
DS1552 435	DS1554 410	I-FPGA In (IOCNET) (DS6602) 187
DS1554 476	Register Out (FPGA1403TP1)	I-FPGA64 In (IOCNET) (DS2655) 10
Digital Out (Type B) (FPGA1403TP1)	DS1552 445	I-FPGA64 In (IOCNET) (DS6601) 14
DS1552 437	DS1554 489	I-FPGA64 In (IOCNET) (DS6602) 18
DS1554 479	Register64 In (DS1302) 70	Data direction

Digital InOut (DS2655M1) 213	DS1554 487	ddr4_address_1_block_4
Data In	Data Out	DDR4 64 Mode 2 184
Digital In/Out-Z (DS6651) 253	Digital In/Out-Z (DS6651) 253	ddr4_address_2_block_3
Digital InOut Class 1 (DS1302) 61	Digital InOut Class 1 (DS1302) 61	DDR4 32 Mode 2 179
Digital InOut Class 2 (DS1302) 63	Digital InOut Class 2 (DS1302) 64	ddr4_address_2_block_4
Data New	Data Read	DDR4 64 Mode 2 184
Analog In (DS2655M1) 207	DDR4 32 Mode 1 177	ddr4_address_block_1
Analog In (DS6651) 242	DDR4 64 Mode 1 182	DDR4 32 Mode 1 177
Analog In-L (DS6651) 246	I-FPGA In (SCALEXIO) 285	ddr4_address_block_2
Aurora 64b66b 128 Bit In 274	I-FPGA Slave (DS5203) 314	DDR4 64 Mode 1 182
Aurora 64b66b In 271	Data Read A	ddr4_busy_flag
Buffer In (DS1302) 51	DDR4 32 Mode 2 180	DDR4 32 Mode 1 177
Buffer In (DS2655) 95	DDR4 64 Mode 2 185	DDR4 32 Mode 2 179
Buffer In (DS5203) 298	Data Read B	DDR4 64 Mode 1 182
Buffer In (DS6601) 130	DDR4 32 Mode 2 180	DDR4 64 Mode 2 184
Buffer In (DS6602) 167	DDR4 64 Mode 2 185	ddr4_data_ <portnumber>_rd_32_block_1</portnumber>
Buffer In (FPGA1401TP1)	Data Sent	DDR4 32 Mode 1 177
DS1552 341	I-FPGA Master (DS5203) 311	ddr4_data_ <portnumber>_rd_64_block_2</portnumber>
DS1554 386	I-FPGA Master (SCALEXIO) 290	DDR4 64 Mode 1 182
Buffer In (FPGA1403TP1)	Data valid	ddr4_data_ <portnumber>_wr_32_block_1</portnumber>
DS1552 421	DDR4 32 Mode 1 177	Data Write 177
DS1554 466	DDR4 64 Mode 1 182	ddr4_data_ <portnumber>_wr_64_block_2</portnumber>
Buffer64 In (DS1302) 52	Data valid A	Data Write 182
Buffer64 In (DS2655) 97	DDR4 32 Mode 2 180	ddr4_data_1_ <portnumber>_rd_32_block_3</portnumber>
Buffer64 In (DS5203) 300	DDR4 64 Mode 2 185	DDR4 32 Mode 2 180
Buffer64 In (DS6601) 133	Data valid B	ddr4_data_1_ <portnumber>_rd_64_block_4</portnumber>
Buffer64 In (DS6602) 169	DDR4 32 Mode 2 180	DDR4 64 Mode 2 185
Buffer64 In (FPGA1401TP1)	DDR4 64 Mode 2 185	ddr4_data_1_ <portnumber>_wr_32_block_3</portnumber>
DS1552 343	Data Write	DDR4 32 Mode 2 180
DS1554 388	DDR4 32 Mode 1 177	ddr4_data_1_ <portnumber>_wr_64_block_4</portnumber>
Buffer64 In (FPGA1403TP1)	DDR4 64 Mode 1 182	DDR4 64 Mode 2 185
DS1552 423	I-FPGA Master (DS5203) 311	ddr4_data_2_ <portnumber>_rd_32_block_3</portnumber>
DS1554 468	I-FPGA Master (SCALEXIO) 289	DDR4 32 Mode 2 180
I-FPGA In (IOCNET) (DS2655) 105	Data Write A	ddr4_data_2_ <portnumber>_rd_64_block_4</portnumber>
I-FPGA In (IOCNET) (DS6601) 141	DDR4 32 Mode 2 180	DDR4 64 Mode 2 185
I-FPGA In (IOCNET) (DS6602) 187	DDR4 64 Mode 2 185	ddr4_data_en
I-FPGA In (SCALEXIO) 286	Data Write B	DDR4 32 Mode 1 177
I-FPGA Slave (DS5203) 314	DDR4 32 Mode 2 180	DDR4 32 Mode 2 179
I-FPGA64 In (IOCNET) (DS2655) 107	DDR4 64 Mode 2 185	DDR4 64 Mode 1 182
I-FPGA64 In (IOCNET) (DS6601) 143	DDR4 32 Mode 1	DDR4 64 Mode 2 184
I-FPGA64 In (IOCNET) (DS6602) 189	DS6602 176	ddr4_direction
Register In (DS1302) 69	I/O mapping 177	DDR4 32 Mode 1 177
Register In (DS2655) 115	parameters 176	DDR4 32 Mode 2 179
Register In (DS5203) 317	port 176	DDR4 64 Mode 1 182
Register In (DS6601) 151	DDR4 32 Mode 2	DDR4 64 Mode 2 184
Register In (DS6602) 197	DS6602 178	ddr4_init_done
Register In (FPGA1401TP1)	I/O mapping 180	DDR4 32 Mode 1 176
DS1552 362	parameters 178	DDR4 32 Mode 2 178
DS1554 406	port 178	DDR4 64 Mode 1 181
Register In (FPGA1403TP1)	DDR4 64 Mode 1	DDR4 64 Mode 2 183
DS1552 442	DS6602 181	ddr4_init_fail
DS1554 485	I/O mapping 183	DDR4 32 Mode 1 176
Register64 In (DS1302) 70, 319	parameters 181	DDR4 32 Mode 2 179
Register64 In (DS2655) 117	port 181	DDR4 64 Mode 1 182
Register64 In (DS6601) 153	DDR4 64 Mode 2	DDR4 64 Mode 2 184
Register64 In (DS6602) 199	DS6602 183	ddr4_rd_data_valid_1_block_3
Register64 In (FPGA1401TP1)	I/O mapping 185	DDR4 32 Mode 2 180
DS1552 364	parameters 183	ddr4_rd_data_valid_1_block_4
DS1554 408	port 183	DDR4 64 Mode 2 185
Register64 In (FPGA1403TP1)	ddr4_address_1_block_3	ddr4_rd_data_valid_2_block_3
DC1552 AAA	DDR/ 32 Mode 2 179	DDR4 32 Mode 2 180

ddr4_rd_data_valid_2_block_4	narameters	DS1552 352
	parameters	
DDR4 64 Mode 2 185	DS1552 428	DS1554 394
ddr4_rd_data_valid_block_1	DS1554 472	I/O mapping
DDR4 32 Mode 1 177	port	DS1552 354
ddr4_rd_data_valid_block_2	DS1552 429	DS1554 395
DDR4 64 Mode 1 182	DS1554 473	parameters
Delta Phi		•
	Digital In (DS2655M1) 210	DS1552 352
APU Master (DS2655) 90	I/O mapping 210	DS1554 394
APU Master (DS6601) 126	parameters 210	port
APU Master (DS6602) 162	port 210	DS1552 353
APU Slave (DS2655) 93	Digital In (DS2655M2) 218	DS1554 395
APU Slave (DS6601) 128, 165	I/O mapping 219	Digital In/Out 8 (FPGA1403TP1)
Delta Phi Enable	5	DS1554 478
	parameters 218	
APU Master (DS2655) 90	port 219	Digital In/Out-Z (DS6651) 251
APU Master (DS6601) 126	Digital In (DS5203) 305	I/O mapping 254
APU Master (DS6602) 162	I/O mapping 307	parameters 252
APU Slave (DS2655) 93	parameters 306	ports 253
APU Slave (DS6601) 128, 165	port 306	Digital InOut (DS2655M1) 211
Desired excitation frequency	Digital In (DS6651) 250	I/O mapping 213
	_	parameters 211
Resolver (DS1302) 74	I/O mapping 250	
dig_ <channelnumber>_in</channelnumber>	parameters 250	port 212
Digital In (Type A) (FPGA1403TP1) 431	port 250	Digital InOut 6 (FPGA1403TP1)
Digital In Type A (FPGA1401TP1) 351	Digital In (Type A) (FPGA1403TP1)	DS1552 432
dig_ <channelnumber>_oe</channelnumber>	I/O mapping 431	Digital InOut 6 (Out) (FPGA1403TP1
Digital Out (Type A) (FPGA1403TP1)	parameters 430	DS1552 436
DS1552 435	port 431	Digital InOut 8 (FPGA1403TP1)
	•	_
DS1554 476	Digital In (Type B) (FPGA1403TP1)	DS1554 473
Digital Out Type A (FPGA1401TP1)	DS1552 432	Digital InOut Class 1 (DS1302) 60
DS1552 355	DS1554 473	I/O mapping 62
DS1554 396	I/O mapping	parameters 60
dig_ <channelnumber>_out</channelnumber>	DS1552 434	port 60
Digital Out (Type A) (FPGA1403TP1)	DS1554 475	Digital InOut Class 2 (DS1302) 62
DS1552 435	parameters	I/O mapping 64
DS1554 476	DS1552 432	parameters 62
		·
Digital Out Type A (FPGA1401TP1)	DS1554 474	port 63
DS1552 355	port	Digital Out (DS2655M1) 214
DS1554 396	DS1552 433	I/O mapping 215
digio_ <channelnumber>_in</channelnumber>	DS1554 474	parameters 214
Digital In (DS5203) 306	Digital In 10 (FPGA1403TP1)	port 215
digio_ <channelnumber>_oe</channelnumber>	DS1554 480	Digital Out (DS2655M2) 221
Digital Out (DS5203) 308	Digital In 5 (FPGA1403TP1)	I/O mapping 222
-	_	· · · -
digio_ <channelnumber>_out</channelnumber>	DS1552 430	parameters 221
Digital Out (DS5203) 308	Digital In 6 (FPGA1403TP1)	port 222
Digital Crank/Cam Sensor (FPGA1401TP1)	DS1552 428	Digital Out (DS5203) 307
DS1552 348	Digital In 7 (FPGA1403TP1)	I/O mapping 309
DS1554 392	DS1552 438	parameters 308
I/O mapping	Digital In 9 (FPGA1403TP1)	port 308
DS1552 350	DS1554 472	Digital Out (DS6651) 255
DS1554 393		I/O mapping 256
	Digital In M1 (DS5203M1) 329	5
parameters	I/O mapping 331	parameters 255
DS1552 349	parameters 329	port 256
DS1554 392	port 330	Digital Out (Type A) (FPGA1403TP1)
port	Digital in threshold init voltage	DS1552 434
DS1552 349	Digital InOut (DS2655M1) 212	DS1554 475
DS1554 393	Digital In Type A (FPGA1401TP1) 350	I/O mapping
Digital Crank/Cam Sensor (FPGA1403TP1)	I/O mapping 351	DS1552 435
DS1552 428	parameters 351	DS1554 476
DS1554 472	port 351	parameters
I/O mapping	Digital In Type A (FPGA1403TP1)	DS1552 434
DS1552 429	DS1552 430	DS1554 476
DS1554 473	Digital In Type B (FPGA1401TP1)	port

DS1552 435	Digital InOut Class 1 (DS1302) 61	Digital InOut Class 2 (DS1302) 63
DS1554 476	Digital InOut Class 2 (DS1302) 63	Digital Out (DS5203) 308
Digital Out (Type B) (FPGA1403TP1)	diotp1_ <channelnumber>_out</channelnumber>	Digital Out (Type A) (FPGA1403TP1)
DS1552 436	Digital InOut Class 1 (DS1302) 61	DS1552 435
DS1554 478	Digital InOut Class 2 (DS1302) 64	DS1554 476
I/O mapping	Direction	Digital Out (Type B) (FPGA1403TP1)
DS1552 437	DDR4 32 Mode 1 177	DS1552 437
DS1554 479	DDR4 32 Mode 2 179	Digital Out (Type B)(FPGA1403TP1)
parameters	DDR4 64 Mode 1 182	DS1554 479
DS1552 436	DDR4 64 Mode 2 184	Digital Out M1 (DS5203M1) 332
DS1554 478	Digital InOut Class 1 (DS1302) 61	Digital Out Type A (FPGA1401TP1)
port	Digital InOut Class 2 (DS1302) 63	DS1552 355
DS1552 437	Documents folder 12	DS1554 396
DS1554 479	Drive config	Digital Out Type B (FPGA1401TP1)
Digital Out 5 (FPGA1403TP1)	Digital InOut (DS2655M1) 212	DS1552 357
DS1552 434	Digital Out (DS2655M1) 215	DS1554 400
Digital Out 7 (FPGA1403TP1)	Digital Out (DS2655M2) 221	Digital Out-Z (DS2655M2) 225
DS1554 475	Digital Out-Z (DS2655M2) 224	Digital Out-Z (DS6651) 259
Digital Out M1 (DS5203M1) 331	Drive Config	I-FPGA Out (IOCNET) (DS2655) 108
I/O mapping 333	Digital In/Out-Z (DS6651) 252	I-FPGA Out (IOCNET) (DS6601) 144
parameters 332	Digital Out (DS6651) 255	I-FPGA Out (IOCNET) (DS6602) 190
port 332	Digital Out-Z (DS6651) 258	I-FPGA64 Out (IOCNET) (DS2655) 110
Digital Out Type A (FPGA1401TP1) DS1552 354	Driver Enable UART 3 RS422/485 (FPGA1403TP1) 458	I-FPGA64 Out (IOCNET) (DS6601) 146
DS1552 354 DS1554 396	UART RS422/485 (PS1302) 86	I-FPGA64 Out (IOCNET) (DS6602) 192 Resolver (DS1302) 75
	UART RS422/485 (FPGA1401TP1) 379	RS485 Tx (DS2655M2) 235
I/O mapping DS1552 355	OANT N3422/483 (IFGAT4011F1) 379	RS485 Tx (DS6651) 266
DS1552 355 DS1554 397	-	Trigger (DS6651) 268
parameters	E	Enable explicit data transmission
DS1552 354	Enable	Buffer Out (DS2655) 99
DS1554 396	Analog In (DS2655M1) 207	Buffer Out (DS6601) 134
port	Analog Out (DS2655M1) 209	Buffer Out (DS6602) 171
DS1552 355	Aurora 64b66b 128 Bit Out 276	Buffer64 Out (DS2655) 101
DS1554 396	Aurora 64b66b Out 272	Buffer64 Out (DS6601) 137
Digital Out Type B (FPGA1401TP1)	Buffer Out (DS1302) 54	Buffer64 Out (DS6602) 173
DS1552 356	Buffer Out (DS2655) 99	End of conversion
DS1554 399	Buffer Out (DS5203) 301	ADC (Type A) (FPGA1403TP1)
I/O mapping	Buffer Out (DS6601) 135	DS1552 417
DS1552 357	Buffer Out (DS6602) 171	DS1554 463
DS1554 400	Buffer Out (FPGA1401TP1)	ADC Type A (FPGA1401TP1)
parameters	DS1552 345	DS1552 337
DS1552 356	DS1554 389	DS1554 383
DS1554 399	Buffer Out (FPGA1403TP1)	Knock Sensor (FPGA1401TP1) 403
port	DS1552 424 DS1554 469	Knock Sensor (FPGA1403TP1) 482
DS1552 357		Endbit
DS1554 400	Buffer64 Out (DS1302) 56 Buffer64 Out (DS2655) 102	I-FPGA In (SCALEXIO) 283
Digital Out-Z (DS2655M2) 224	Buffer64 Out (DS5203) 102 Buffer64 Out (DS5203) 303	I-FPGA Master (DS5203) 310
I/O mapping 225	Buffer64 Out (DS6601) 137	I-FPGA Out (SCALEXIO) 288
parameters 224	Buffer64 Out (DS6602) 174	I-FPGA Slave (DS5203) 312
port 225	Buffer64 Out (FPGA1401TP1)	Errors
Digital Out-Z (DS6651) 257	DS1552 347	I-FPGA In (SCALEXIO) 286
I/O mapping 259	DS1554 391	I-FPGA Slave (DS5203) 314
parameters 258	Buffer64 Out (FPGA1403TP1)	Errors reset
ports 258	DS1552 426	I-FPGA (Issue (DCF202)) 286
diotp1_ <channelnumber>_dir</channelnumber>	DS1554 471	I-FPGA Slave (DS5203) 314
Digital InOut Class 1 (DS1302) 61	DDR4 32 Mode 1 177	Excitation RMS voltage
Digital InOut Class 2 (DS1302) 63	DDR4 32 Mode 2 179	Resolver (DS1302) 74
diotp1_ <channelnumber>_ena</channelnumber>	DDR4 64 Mode 1 182	_
Digital InOut Class 1 (DS1302) 61	DDR4 64 Mode 2 184	F
Digital InOut Class 2 (DS1302) 63	Digital In/Out-Z (DS6651) 253	Fault
diotp1_ <channelnumber>_in</channelnumber>	Digital InOut Class 1 (DS1302) 61	Resolver (DS1302) 76

Filter depth	Register Out (DS5203) 320	APU Master (DS6601) 125
I-FPGA In (SCALEXIO) 285	Register Out (DS6601) 154	APU Master (DS6602) 161
I-FPGA Slave (DS5203) 313	Register Out (DS6602) 200	APU Slave (DS2655) 91
Format	Register Out (FPGA1401TP1)	APU Slave (DS5203) 296
Buffer In (DS1302) 50	DS1552 365	APU Slave (DS6601) 127, 163
Buffer In (DS2655) 94	DS1554 409	Aurora 64b66b 128 Bit In 274
Buffer In (DS5203) 297	Register Out (FPGA1403TP1)	Aurora 64b66b 128 Bit Out 275
Buffer In (DS6601) 130	DS1552 445	Aurora 64b66b In 270
Buffer In (DS6602) 166	DS1554 488	Aurora 64b66b Out 272
Buffer In (FPGA1401TP1)	Register64 In (DS1302) 70	Buffer In (DS1302) 49
DS1552 340	Register64 In (DS2655) 116	Buffer In (DS2655) 93
DS1554 385	Register64 In (DS5203) 319	Buffer In (DS5203) 297
Buffer In (FPGA1403TP1)	Register64 In (DS6601) 152	Buffer In (DS6601) 129
DS1552 420	Register64 In (DS6602) 198	Buffer In (DS6602) 165
DS1552 420 DS1554 465	Register64 In (FPGA1401TP1)	Buffer In (FPGA1401TP1)
Buffer Out (DS1302) 53	DS1552 363	DS1552 340
	DS1552 303 DS1554 408	
Buffer Out (DS2655) 98		DS1554 385
Buffer Out (DS5203) 301	Register64 In (FPGA1403TP1)	Buffer In (FPGA1403TP1)
Buffer Out (DS6601) 134	DS1552 443	DS1552 420
Buffer Out (DS6602) 170	DS1554 486	DS1554 465
Buffer Out (FPGA1401TP1)	Register64 Out (DS1302) 73	Buffer Out (DS1302) 53
DS1552 344	Register64 Out (DS2655) 119	Buffer Out (DS2655) 98
DS1554 389	Register64 Out (DS5203) 322	Buffer Out (DS5203) 300
Buffer Out (FPGA1403TP1)	Register64 Out (DS6601) 155	Buffer Out (DS6601) 134
DS1552 424	Register64 Out (DS6602) 201	Buffer Out (DS6602) 170
DS1554 469	Register64 Out (FPGA1401TP1)	Buffer Out (FPGA1401TP1)
Buffer64 In (DS1302) 52	DS1552 367	DS1552 344
Buffer64 In (DS2655) 96	DS1554 411	DS1554 388
Buffer64 In (DS5203) 299	Register64 Out (FPGA1403TP1)	Buffer Out (FPGA1403TP1)
Buffer64 In (DS6601) 132	DS1552 446	DS1552 423
Buffer64 In (DS6602) 168	DS1554 490	DS1554 468
Buffer64 In (FPGA1401TP1)	Frequency	Buffer64 In (DS1302) 51
DS1552 342	Buzzer (DS1302) 57	Buffer64 In (DS2655) 96
DS1554 387	, , , , ,	Buffer64 In (DS5203) 298
Buffer64 In (FPGA1403TP1)	G	Buffer64 In (DS6601) 131
DS1552 422	d	Buffer64 In (DS6602) 168
DS1554 467	Green	Buffer64 In (FPGA1401TP1)
Buffer64 Out (DS1302) 55	LED Out (DS1302) 66	DS1552 342
Buffer64 Out (DS2655) 101		DS1554 387
Buffer64 Out (DS52033) 101 Buffer64 Out (DS5203) 303	н	Buffer64 In (FPGA1403TP1)
Buffer64 Out (DS6601) 136		DS1552 422
	HcCustomName	DS1552 422 DS1554 467
Buffer64 Out (DS6602) 173	ADC (DS5203) 293	
Buffer64 Out (FPGA1401TP1)	ADC (Type A) (FPGA1403TP1)	Buffer64 Out (DS1302) 55
DS1552 346	DS1552 417	Buffer64 Out (DS2655) 100
DS1554 391	DS1554 463	Buffer64 Out (DS5203) 302
Buffer64 Out (FPGA1403TP1)	ADC (Type B) (FPGA1403TP1) 418	Buffer64 Out (DS6601) 136
DS1552 426	ADC Class 1 (DS1302) 47	Buffer64 Out (DS6602) 172
DS1554 471	ADC Class 2 (DS1302) 48	Buffer64 Out (FPGA1401TP1)
Register In (DS1302) 68	ADC M1 (DS5203M1) 326	DS1552 346
Register In (DS2655) 114	ADC Type A (FPGA1401TP1)	DS1554 390
Register In (DS5203) 317	DS1552 337	Buffer64 Out (FPGA1403TP1)
Register In (DS6601) 150	DS1554 383	DS1552 425
Register In (DS6602) 196	ADC Type B (FPGA1401TP1) 339	DS1554 470
Register In (FPGA1401TP1)	Analog In (DS2655M1) 206	Buzzer (DS1302) 57
DS1552 361	Analog In (DS6651) 241	CN App Status (DS2655) 103
DS1554 406	Analog In (D36651) 244	CN App Status (DS6601) 139
Register In (FPGA1403TP1)	Analog Out (DS2655M1) 208	CN App Status (DS6602) 175
DS1552 441	Analog Out (D32633WT) 208 Analog Out (D86651) 247	DAC (DS5203) 304
DS1554 485	3 , ,	DAC (FPGA1401TP1) 348
Register Out (DS1302) 71	Analog Out-T (DS6651) 248	DAC (FPGA1403TP1) 427
Register Out (DS2655) 118	APU Master (DS2655) 89	DAC (IT GAT403111) 427 DAC Class 1 (DS1302) 58
9.310. 341 (032033) 110	APU Master (DS5203) 295	2.12 2.033 1 (231302) 30

DAC M1 (DS5203M1) 328	I-FPGA64 Out (IOCNET) (DS6602) 192	Register64 In (DS1302) 69
DDR4 32 Mode 1 176	Inductive Zero Voltage Detector	Register64 In (DS2655) 115
DDR4 32 Mode 2 178	(FPGA1401TP1)	Register64 In (DS5203) 318
DDR4 64 Mode 1 181	DS1552 358	Register64 In (DS6601) 151
DDR4 64 Mode 2 183	DS1554 401	Register64 In (DS6602) 198
Digital Crank/Cam Sensor (FPGA1401TP1)	Inductive Zero Voltage Detector	Register64 In (FPGA1401TP1)
DS1552 349	(FPGA1403TP1)	DS1552 363
DS1554 392	DS1552 438	DS1554 407
Digital Crank/Cam Sensor (FPGA1403TP1)	DS1554 480	Register64 In (FPGA1403TP1)
DS1552 428	Interrupt (DS1302) 65	DS1552 443
DS1554 472	Interrupt (DS2655) 112	DS1554 486
Digital In (DS2655M1) 210	Interrupt (DS5203) 315	Register64 Out (DS1302) 72
Digital In (DS2655M2) 219	Interrupt (DS6601) 148	Register64 Out (DS2655) 119
Digital In (DS6651) 250	Interrupt (DS6602) 194	Register64 Out (DS5203) 321
Digital In (Type A) (FPGA1403TP1) 430	Interrupt (FPGA1401TP1)	Register64 Out (DS6601) 155
Digital In (Type B) (FPGA1403TP1)	DS1552 359	Register64 Out (DS6602) 201
DS1552 432	DS1554 402	Register64 Out (FPGA1401TP1)
DS1554 474	Interrupt (FPGA1403TP1)	DS1552 366
Digital In M1 (DS5203M1) 329	DS1552 439	DS1554 410
Digital In Type A (FPGA1401TP1) 351	DS1554 481	Register64 Out (FPGA1403TP1)
Digital In Type B (FPGA1401TP1)	IOCNET Global Time (DS2655) 112	DS1552 446
DS1552 352	IOCNET Global Time (DS6601) 148	DS1554 489
DS1554 394	IOCNET Global Time (DS6602) 194	Resolver (DS1302) 74
Digital In/Out-Z (DS6651) 252	Knock Sensor (FPGA1401TP1) 403	RS232 Rx (DS2655M2) 227
Digital InOut (DS2655M1) 212	Knock Sensor (FPGA1403TP1) 482	RS232 Tx (DS2655M2) 229
Digital InOut Class 1 (DS1302) 60	LED Out (DS1302) 66	RS485 Rx (DS2655M2) 230, 232
Digital InOut Class 2 (DS1302) 62	LED Out (DS2655) 113	RS485 Rx (DS6651) 261
Digital Out (DS2655M1) 214	LED Out (DS5203) 316	RS485 Rx/Tx (DS6651) 263
Digital Out (DS2655M2) 221	LED Out (DS6601) 149	RS485 Tx (DS2655M2) 235
Digital Out (DS5203) 308	LED Out (DS6602) 195	RS485 Tx (DS6651) 265
Digital Out (DS6651) 255	LED Out (FPGA1401TP1)	Sensor Supply (FPGA1401TP1)
Digital Out (Type A) (FPGA1403TP1)	DS1552 360	DS1552 368
DS1552 434	DS1554 404	Sensor Supply (FPGA1403TP1)
DS1554 476	LED Out (FPGA1403TP1)	DS1552 448
Digital Out (Type B) (FPGA1403TP1)	DS1552 440	Sensor Supply M1 (DS5203M1) 334
DS1552 436	DS1554 483	Status In (DS1302) 77
DS1554 478	MGT In 277	Status In (DS2655) 120
Digital Out M1 (DS5203M1) 332	MGT Out 279	Status In (DS5203) 323
Digital Out Type A (FPGA1401TP1)	Proc App Status (DS1302) 67	Status In (DS6601) 156
DS1552 354	Register In (DS1302) 67	Status In (DS6602) 202
DS1554 396	Register In (DS2655) 114	Status In (FPGA1401TP1)
Digital Out Type B (FPGA1401TP1)	Register In (DS5203) 316	DS1552 369
DS1552 356	Register In (DS6601) 150	DS1554 412
DS1554 399	Register In (DS6602) 196	Status In (FPGA1403TP1)
Digital Out-Z (DS2655M2) 224	Register In (FPGA1401TP1)	DS1552 449
Digital Out-Z (DS6651) 258	DS1552 361	DS1554 491
I-FPGA In (IOCNET) (DS2655) 104	DS1554 405	Temperature (FPGA1401TP1) 413
I-FPGA In (IOCNET) (DS6601) 139	Register In (FPGA1403TP1)	Temperature (FPGA1403TP1) 491
I-FPGA In (IOCNET) (DS6602) 186	DS1552 441	Trigger (DS6651) 268
I-FPGA In (SCALEXIO) 283	DS1554 484	UART 3 RS232 (FPGA1403TP1) 450
I-FPGA Master (DS5203) 310	Register Out (DS1302) 71	UART 3 RS422/485 (FPGA1403TP1) 45
I-FPGA Out (IOCNET) (DS2655) 107	Register Out (DS2655) 117	UART RS232 (DS1302) 78
I-FPGA Out (IOCNET) (DS6601) 143	Register Out (DS5203) 320	UART RS232 (FPGA1401TP1) 370
I-FPGA Out (IOCNET) (DS6602) 189	Register Out (DS6601) 153	UART RS422/485 (DS1302) 82
I-FPGA Out (SCALEXIO) 287	Register Out (DS6602) 199	UART RS422/485 (FPGA1401TP1) 376
I-FPGA Slave (DS5203) 312	Register Out (FPGA1401TP1)	HCCustomName
I-FPGA64 In (IOCNET) (DS2655) 105	DS1552 365	Digital In (DS5203) 306
I-FPGA64 In (IOCNET) (DS6601) 141	DS1554 409	High
I-FPGA64 In (IOCNET) (DS6602) 188	Register Out (FPGA1403TP1)	FPGA1401TP1 port 413
I-FPGA64 Out (IOCNET) (DS2655) 109	DS1552 444	DS1552 369 EPGA1403TP1 port 492

DS1552 449	1	I-FPGA64 Out (IOCNET) (DS2655) 109
High supply	I-FPGA In (IOCNET) (DS2655) 104	Buffer size 110
Digital InOut (DS2655M1) 212	Buffer size 104	I/O mapping 111
Digital InOut Class 1 (DS1302) 60	I/O mapping 105	parameters 109
Digital Out (DS2655M1) 215	parameters 104	port 110
Digital Out (DS2655M2) 222	port 104	I-FPGA64 Out (IOCNET) (DS6601) 145
Digital Out (DS5203) 308	I-FPGA In (IOCNET) (DS6601) 139	Buffer size 146
Digital Out (Type B) (FPGA1403TP1)	Buffer size 140	I/O mapping 147
DS1552 437	I/O mapping 141	parameters 145
DS1554 478 Digital Out M1 (DS5203M1) 332	parameters 139	port 146 I-FPGA64 Out (IOCNET) (DS6602) 191
Digital Out Type B (FPGA1401TP1)	port 140	Buffer size 192
DS1552 357	I-FPGA In (IOCNET) (DS6602) 186	I/O mapping 193
DS1554 399	Buffer size 186	parameters 192
Digital Out-Z (DS2655M2) 224	I/O mapping 187	port 192
RS485 Rx/Tx (DS6651) 263	parameters 186	Inductive Zero Voltage Detector (FPGA1401TP1)
RS485 Tx (DS6651) 265	port 186	DS1552 358
High Supply	I-FPGA In (SCALEXIO) 282	DS1554 401
Digital In/Out-Z (DS6651) 252	parameters 282	I/O mapping
Digital Out (DS6651) 256	port 285	DS1552 359
Digital Out-Z (DS6651) 258	I-FPGA Master (DS5203) 309 I/O mapping 311	DS1554 401
High threshold voltage	parameters 310	parameters
Digital Crank/Cam Sensor (FPGA1401TP1)	port 311	DS1552 358
DS1552 349	I-FPGA Out (IOCNET) (DS2655) 107	DS1554 401
DS1554 393	Buffer size 107	port
Digital Crank/Cam Sensor (FPGA1403TP1)	I/O mapping 109	DS1552 358
DS1552 429	parameters 107	DS1554 401
DS1554 472	port 108	Inductive Zero Voltage Detector (FPGA1403TP1)
high_temp	I-FPGA Out (IOCNET) (DS6601) 143	DS1552 438
FPGA1401TP1 port 413	Buffer size 143	DS1554 480
DS1552 369	I/O mapping 145	I/O mapping
FPGA1403TP1 port 492	parameters 143	DS1552 439
DS1552 449 hq_adc_ <channelnumber>_data</channelnumber>	port 144	DS1554 480
ADC (Type A) (FPGA1403TP1)	I-FPGA Out (IOCNET) (DS6602) 189	parameters DS1552 438
DS1552 417	Buffer size 190	DS1554 480
DS1554 463	I/O mapping 191	port
ADC Type A (FPGA1401TP1)	parameters 189	DS1552 438
DS1552 337	port 190	DS1554 480
DS1554 383	I-FPGA Out (SCALEXIO) 287	Init Done
Knock Sensor (FPGA1401TP1) 403	I/O mapping 286, 290	DDR4 32 Mode 1 176
Knock Sensor (FPGA1403TP1) 482	parameters 287	DDR4 32 Mode 2 178
hq_adc_ <channelnumber>_eoc</channelnumber>	port 289 I-FPGA Slave (DS5203) 312	DDR4 64 Mode 1 181
ADC (Type A) (FPGA1403TP1)	I/O mapping 314	DDR4 64 Mode 2 183
DS1552 417	parameters 312	FPGA1401TP1 port
DS1554 463	port 314	DS1552 369
ADC Type A (FPGA1401TP1)	I-FPGA64 In (IOCNET) (DS2655) 105	DS1554 412
DS1552 337	Buffer size 106	FPGA1403TP1 port
DS1554 383	I/O mapping 107	DS1552 449
Knock Sensor (FPGA1401TP1) 403	parameters 105	DS1554 491
Knock Sensor (FPGA1403TP1) 482	port 106	Status In (DS365E) 130
hq_adc_ <channelnumber>_soc</channelnumber>	I-FPGA64 In (IOCNET) (DS6601) 141	Status In (DS2655) 120 Status In (DS5203) 323
ADC (Type A) (FPGA1403TP1) DS1552 417	Buffer size 142	Status In (DS5203) 323 Status In (DS6601) 156
DS1552 417 DS1554 463	I/O mapping 143	Status In (DS6602) 203
ADC Type A (FPGA1401TP1)	parameters 141	Init Failed
DS1552 337	port 142	DDR4 32 Mode 1 176
DS1554 383	I-FPGA64 In (IOCNET) (DS6602) 188	DDR4 32 Mode 2 179
Knock Sensor (FPGA1401TP1) 403	Buffer size 188	DDR4 64 Mode 1 182
Knock Sensor (FPGA1403TP1) 482	I/O mapping 189	DDR4 64 Mode 2 184
•	parameters 188	init_done
	port 188	

FPGA1401TP1 port	register	register (32-bit) 196, 199
DS1552 369	DS1552 361, 362, 364, 366, 441, 442,	register (64-bit) 197, 201
DS1554 412	444, 446	IOCNET Global Time (DS2655) 112
FPGA1403TP1 port	DS1554 405, 407, 409, 410, 484, 486,	parameters 112
DS1552 449	487, 489	port 112
DS1554 491	Internal bus access (DS1302)	IOCNET Global Time (DS6601) 148
Status In (DS1302) 77	buffer (32-bit) 49, 53	parameters 148
Status In (DS2655) 120	buffer (64-bit) 51, 55	port 148
Status In (DS5203) 323	register (32-bit) 67, 71	IOCNET Global Time (DS6602) 194
Status In (DS6601) 156	register (64-bit) 69, 72	parameters 194
Status In (DS6602) 203	Internal bus access (DS5203)	port 195
Input filter	buffer (64-bit) 298, 302	iocnet_appl_status
Digital InOut Class 1 (DS1302) 60	Interrupt (DS1302) 65	CN App Status (DS2655) 103, 113
Digital InOut Class 2 (DS1302) 63	parameters 65	CN App Status (DS6601) 139, 149
Input range	port 65	CN App Status (DS6602) 175, 145
ADC (DS5203) 293	Interrupt (DS2655) 111	iocnet_glob_angle <channelnumber>_ctr</channelnumber>
ADC (D33203) 233 ADC M1 (DS5203M1) 326		APU Slave (DS2655) 93
	parameters 112	
Analog In (DS2655M1) 206	port 112	APU Slave (DS6601) 128, 165
Analog In (DS6651) 241	Interrupt (DS5203) 315	iocnet_glob_angle <channelnumber>_en</channelnumber>
Analog In-L (DS6651) 244	parameters 315	APU Slave (DS2655) 93
Input RMS voltage	port 315	APU Slave (DS6601) 128, 165
Resolver (DS1302) 75	Interrupt (DS6601) 147	iocnet_glob_angle <channelnumber>_pos</channelnumber>
Int	parameters 148	APU Slave (DS2655) 92
Interrupt (DS1302) 65	port 148	APU Slave (DS6601) 128, 164
Interrupt (DS2655) 112	Interrupt (DS6602) 193	iocnet_glob_angle <channelnumber>_res</channelnumber>
Interrupt (DS5203) 315	parameters 194	APU Slave (DS2655) 93
Interrupt (DS6601) 148	port 194	APU Slave (DS6601) 128, 165
Interrupt (DS6602) 194	Interrupt (FPGA1401TP1)	iocnet_glob_angle <channelnumber>_rev</channelnumber>
Interrupt (FPGA1401TP1)	DS1552 359	APU Slave (DS2655) 92
DS1552 360	DS1554 402	APU Slave (DS6601) 128, 164
DS1554 402	parameters	iocnet_glob_angle <channelnumber>_vel</channelnumber>
Interrupt (FPGA1403TP1)	DS1552 359	APU Slave (DS2655) 93
DS1552 440	DS1554 402	APU Slave (DS6601) 128, 165
DS1554 481	port	iocnet_glob_master_angle <channelnumber>_bu</channelnumber>
intercom_ <channelnumber>_data_in</channelnumber>	DS1552 359	sy
I-FPGA In (SCALEXIO) 285	DS1554 402	APU Master (DS2655) 90
I-FPGA Slave (DS5203) 314	Interrupt (FPGA1403TP1)	APU Master (DS6601) 126
intercom_ <channelnumber>_data_new</channelnumber>	DS1552 439	APU Master (DS6602) 162
I-FPGA In (SCALEXIO) 286	DS1554 481	iocnet_glob_master_angle <channelnumber>_cti</channelnumber>
I-FPGA Slave (DS5203) 314	parameters	APU Master (DS2655) 90
intercom_ <channelnumber>_data_out</channelnumber>	DS1552 439	APU Master (DS6601) 125
I-FPGA Master (DS5203) 311	DS1554 481	APU Master (DS6602) 162
I-FPGA Master (SCALEXIO) 289	port	iocnet_glob_master_angle <channelnumber>_en</channelnumber>
intercom_ <channelnumber>_data_sent_v</channelnumber>	DS1552 440	APU Master (DS2655) 90
I-FPGA Master (DS5203) 311	DS1554 481	APU Master (DS6601) 126
I-FPGA Master (SCALEXIO) 290	Invert values	APU Master (DS6602) 162
intercom_ <channelnumber>_errors</channelnumber>	Digital InOut Class 1 (DS1302) 60	iocnet_glob_master_angle <channelnumber>_pc</channelnumber>
I-FPGA In (SCALEXIO) 286	Digital InOut Class 2 (DS1302) 63	S
I-FPGA Slave (DS5203) 314	IOCNET access (DS2655)	APU Master (DS2655) 90
intercom_ <channelnumber>_ready</channelnumber>	buffer (32-bit) 93, 98	APU Master (DS6601) 125
I-FPGA Master (SCALEXIO) 290	buffer (64-bit) 95, 100	APU Master (DS6602) 162
intercom_ <channelnumber>_reset_error</channelnumber>	register (32-bit) 114, 117	iocnet_glob_master_angle <channelnumber>_re</channelnumber>
I-FPGA In (SCALEXIO) 286	register (64-bit) 115, 118	S
I-FPGA Slave (DS5203) 314	IOCNET access (DS6601)	APU Master (DS2655) 90
Intermodule bus access	buffer (32-bit) 129, 133	APU Master (DS6601) 126
buffer	buffer (64-bit) 131, 136	APU Master (DS6602) 162
DS1552 340, 343, 420, 423	register (32-bit) 150, 153	iocnet_glob_master_angle <channelnumber>_re</channelnumber>
DS1554 385, 388, 465, 468	register (64-bit) 151, 154	v
buffer64	IOCNET access (DS6602)	APU Master (DS2655) 90
DS1552 341, 345, 421, 425	buffer (32-bit) 165, 170	APU Master (DS6601) 126
DS1552 341, 343, 421, 423	buffer (64-bit) 167 172	APLI Master (DS6602) 162

$iocnet_glob_master_angle < Channel Number > _up$	DS1552 440	m <modulenumber>_rx<channelnumber>_ready</channelnumber></modulenumber>
d_trig	DS1554 483	_pulse
APU Master (DS2655) 91	port	Analog In (DS2655M1) 207
APU Master (DS6601) 126	DS1552 440	Analog In (DS6651) 242
APU Master (DS6602) 163	DS1554 483	Analog In-L (DS6651) 246
iocnet_glob_master_angle <channelnumber>_up</channelnumber>	led_ <channelnumber>_blue</channelnumber>	m <modulenumber>_rx<channelnumber>_trigg</channelnumber></modulenumber>
d_vel_deg_sec	LED Out (DS1302) 66	er00
APU Master (DS2655) 90	led_ <channelnumber>_green</channelnumber>	Digital In (DS2655M1) 210
APU Master (DS6601) 126	LED Out (DS1302) 66	Digital InOut (DS2655M1) 213
APU Master (DS6602) 163	led_ <channelnumber>_red</channelnumber>	m <modulenumber>_rx<channelnumber>_trigg</channelnumber></modulenumber>
iocnet_glob_master_angle <channelnumber>_ve</channelnumber>	LED Out (DS1302) 66	er00 / Data
I	led out	Digital In (DS6651) 250
APU Master (DS2655) 90	LED Out (DS2655) 113	RS485 Rx (DS6651) 261
APU Master (DS6601) 126	LED Out (DS5203) 316	m <modulenumber>_rx<channelnumber>_trigg</channelnumber></modulenumber>
APU Master (DS6602) 162	LED Out (DS6601) 149	er00 / Data In
Al 0 Master (230002) 102	LED Out (DS6602) 195	Digital In/Out-Z (DS6651) 253
	LED Out (FPGA1401TP1)	m <modulenumber>_rx<channelnumber>_trigg</channelnumber></modulenumber>
K	DS1552 360	er00 / Rx Data
Knock Sensor (FPGA1401TP1) 403	DS1552 300 DS1554 405	RS485 Rx/Tx (DS6651) 263
I/O mapping 404		
parameters 403	LED Out (FPGA1403TP1)	m <modulenumber>_tx<channelnumber>dat</channelnumber></modulenumber>
port 403	DS1552 440	a00
Knock Sensor (FPGA1403TP1)	DS1554 484	Analog In (DS2655M1) 207
DS1554 482	Load Config	m <modulenumber>_tx<channelnumber>_data</channelnumber></modulenumber>
I/O mapping 483	Analog In-L (DS6651) 245	00_14_0_14_0
parameters 482	Local Program Data folder 12	Analog Out (DS2655M1) 209
port 482	Low threshold voltage	m <modulenumber>_tx<channelnumber>_data</channelnumber></modulenumber>
port 102	Digital Crank/Cam Sensor (FPGA1401TP1)	00_16_0_16_0i
	DS1552 349	Analog Out (DS2655M1) 209
L	DS1554 393	m <modulenumber>_tx<channelnumber>_data</channelnumber></modulenumber>
LED Out	Digital Crank/Cam Sensor (FPGA1403TP1)	00_17_0_17_0i
LED Out (DS2655) 113	DS1552 429	Analog Out (DS6651) 247
LED Out (DS6601) 149	DS1554 472	Analog Out-T (DS6651) 249
LED Out (DS6602) 195	lq_adc_ <channelnumber>_data</channelnumber>	m <modulenumber>_tx<channelnumber>_data</channelnumber></modulenumber>
LED Out (DS1302) 65	ADC (Type B) (FPGA1403TP1) 419	01_0_0_0i
parameters 66	ADC Type B (FPGA1401TP1) 339	Digital InOut (DS2655M1) 213
port 66		m <modulenumber>_tx<channelnumber>_data</channelnumber></modulenumber>
LED Out (DS2655) 113	M	01_0_0_1_1i
parameters 113		Digital InOut (DS2655M1) 213
port 113	m <modulenumber>_io2raw_n_n_ni</modulenumber>	m <modulenumber>_tx<channelnumber>_trigg</channelnumber></modulenumber>
LED Out (DS5203) 315	Digital In (DS2655M2) 219	er00
parameters 316	RS232 Rx (DS2655M2) 227	Digital Out (DS2655M1) 215
port 316	RS485 Rx (DS2655M2) 230	m <modulenumber>_tx<channelnumber>_trigg</channelnumber></modulenumber>
•	RS485 RxTx (DS2655M2) 233	er00 / Data
LED Out (DS6601) 149 parameters 149	m <modulenumber>_raw2io_n_n_ni</modulenumber>	Digital Out (DS6651) 256
•	Digital Out (DS2655M2) 222	Digital Out-Z (DS6651) 259
port 149	Digital Out-Z (DS2655M2) 225	RS485 Tx (DS6651) 266
LED Out (DS6602) 195	RS232 Tx (DS2655M2) 229	m <modulenumber>_tx<channelnumber>_trigg</channelnumber></modulenumber>
parameters 195	RS485 Tx (DS2655M2) 235	er00 / Data Out
port 195	m <modulenumber>_raw2io_n+1_n+1_n+1_n+1</modulenumber>	Digital In/Out-Z (DS6651) 253
LED Out (FPGA1401TP1)	i	m <modulenumber>_tx<channelnumber>_trigg</channelnumber></modulenumber>
DS1552 360	Digital Out-Z (DS2655M2) 225	er00 / Enable
DS1554 404	RS485 RxTx (DS2655M2) 232	Digital In/Out-Z (DS6651) 253
parameters	RS485 Tx (DS2655M2) 235	Digital NVGut-2 (DS6651) 259
DS1552 360	m <modulenumber>_raw2io_n+2_n+2_n+2_n+2</modulenumber>	
DS1554 404	i	RS485 Tx (DS6651) 266
port	RS485 Tx (DS2655M2) 233	Trigger (DS6651) 268
DS1552 360	m <modulenumber>_rx<channelnumber>_data</channelnumber></modulenumber>	m <modulenumber>_tx<channelnumber>_trigg</channelnumber></modulenumber>
DS1554 405	00	er00 / Tx Data
LED Out (FPGA1403TP1)	Analog In (DS2655M1) 207	RS485 Rx/Tx (DS6651) 263
DS1552 440	Analog In (DS6651) 242	m <modulenumber>_tx<channelnumber>_trigg</channelnumber></modulenumber>
DS1554 483	Analog In-L (DS6651) 246	er00 / Tx Enable
narameters		RS485 Rx/Tx (DS6651) 264

m1_adc <channelnumber>_data</channelnumber>	I-FPGA Out (SCALEXIO) 287	APU Master (DS2655) 90
ADC M1 (DS5203M1) 326	I-FPGA Slave (DS5203) 312	APU Master (DS6601) 125
m1_adc <channelnumber>_valid</channelnumber>		APU Master (DS6602) 162
ADC M1 (DS5203M1) 327	0	APU Slave (DS2655) 93
m1_dac <channelnumber>_data</channelnumber>	Output mode	APU Slave (DS6601) 128, 165
DAC M1 (DS5203M1) 328	•	Phi Write
m1_digio_ <channelnumber>_in</channelnumber>	Digital InOut (DS2655M1) 212	APU Master (DS5203) 295
Digital In M1 (DS5203M1) 330	Digital Out (DS2655M1) 214	PHS bus access (DS5203)
m1_digio_ <channelnumber>_oe</channelnumber>	Digital Out (DS2655M2) 221	buffer 297, 300
Digital Out M1 (DS5203M1) 332	Output Mode	register 316, 320
m1_digio_ <channelnumber>_out</channelnumber>	Digital In/Out-Z (DS6651) 252	register (64-bit) 318, 321
Digital Out M1 (DS5203M1) 332	Digital Out (DS6651) 255	Proc App Status (DS1302) 66
Maximum speed	Digital Out-Z (DS6651) 258	parameters 67
Resolver (DS1302) 75	Overflow	port 67
Mechanical Position	Buffer Out (DS1302) 54	Processor Application Status
Resolver (DS1302) 75	Buffer Out (DS2655) 99	Proc App Status (DS1302) 67
MGT In	Buffer Out (DS5203) 301	
DS6601 277	Buffer Out (DS6601) 135	R
DS6602 277	Buffer Out (DS6602) 171	
I/O mapping 278	Buffer Out (FPGA1401TP1)	Read Data
parameters 277	DS1552 345	UART 3 RS232 (FPGA1403TP1) 452
port 277	DS1554 390	UART 3 RS422/485 (FPGA1403TP1) 457
MGT Out	Buffer Out (FPGA1403TP1)	UART RS232 (DS1302) 80
DS6601 278	DS1552 425	UART RS232 (FPGA1401TP1) 373
DS6602 278	DS1554 470	UART RS422/485 (DS1302) 85
I/O mapping 280	Buffer64 Out (DS1302) 56	UART RS422/485 (FPGA1401TP1) 378
parameters 279	Buffer64 Out (DS2655) 102	Read Data Count
port 279	Buffer64 Out (DS5203) 303	UART 3 RS232 (FPGA1403TP1) 452
MGT reference clock frequency	Buffer64 Out (DS6601) 138	UART 3 RS422/485 (FPGA1403TP1) 457
MGT In 277	Buffer64 Out (DS6602) 174	UART RS232 (DS1302) 80
MGT_CLK_N	Buffer64 Out (FPGA1401TP1)	UART RS232 (FPGA1401TP1) 373
MGT In 278	DS1552 347	UART RS422/485 (DS1302) 84
MGT_CLK_P	DS1554 392	UART RS422/485 (FPGA1401TP1) 378
MGT In 277	Buffer64 Out (FPGA1403TP1)	Read Enable
mgt_lane <lanenumber>_rx_data</lanenumber>	DS1552 427	UART 3 RS232 (FPGA1403TP1) 452
Aurora 64b66b 128 Bit In 274	DS1554 472	UART 3 RS422/485 (FPGA1403TP1) 457
Aurora 64b66b In 270	I-FPGA Out (IOCNET) (DS2655) 109	UART RS232 (DS1302) 80
mgt_lane <lanenumber>_rx_valid</lanenumber>	I-FPGA Out (IOCNET) (DS6601) 145	UART RS232 (FPGA1401TP1) 373
Aurora 64b66b 128 Bit In 274	I-FPGA Out (IOCNET) (DS6602) 191	UART RS422/485 (DS1302) 84
Aurora 64b66b In 271	I-FPGA64 Out (IOCNET) (DS2655) 111	UART RS422/485 (FPGA1401TP1) 378
mgt_lane <lanenumber>_tx_data</lanenumber>	I-FPGA64 Out (IOCNET) (DS6601) 147	Read Fifo Empty
Aurora 64b66b 128 Bit Out 276	I-FPGA64 Out (IOCNET) (DS6602) 193	UART 3 RS232 (FPGA1403TP1) 452
Aurora 64b66b Out 272		UART 3 RS422/485 (FPGA1403TP1) 457
mgt_lane <lanenumber>_tx_ready</lanenumber>	P	UART RS232 (DS1302) 80
Aurora 64b66b 128 Bit Out 276	Pause Duration	UART RS232 (FPGA1401TP1) 373
Aurora 64b66b Out 273	Buzzer (DS1302) 57	UART RS422/485 (DS1302) 85
mgt_lane <lanenumber>_tx_valid</lanenumber>	Phi New	UART RS422/485 (FPGA1401TP1) 378
Aurora 64b66b 128 Bit Out 276	APU Master (DS2655) 90	Read Request
Aurora 64b66b Out 272	APU Master (DS6601) 126	Buffer In (DS2655) 95
MGT_RX_N	APU Master (DS6602) 162	Buffer In (DS6601) 130
MGT In 278	APU Slave (DS2655) 92	Buffer In (DS6602) 167
MGT_RX_P	APU Slave (DS5203) 296	Buffer64 In (DS2655) 97
MGT In 278	APU Slave (DS6601) 128, 164	Buffer64 In (DS6601) 133
MGT_TX_N	Phi Read	Buffer64 In (DS6602) 169
MGT Out 279	APU Master (DS2655) 90	Ready
MGT_TX_P	APU Master (DS6601) 125	Aurora 64b66b 128 Bit Out 276
MGT Out 279	APU Master (DS6602) 162	Aurora 64b66b Out 273
Mode	APU Slave (DS2655) 92	Buffer Out (DS1302) 54
Analog Out-T (DS6651) 249	APU Slave (DS2033) 92 APU Slave (DS5203) 296	Buffer Out (DS2655) 99
I-FPGA In (SCALEXIO) 283	APU Slave (DS6601) 128, 164	Buffer Out (DS5203) 301
I-FPGA Master (DS5203) 310	Phi Read HD	Buffer Out (DS6601) 135
, , , , ,	THI NEad TID	Buffer Out (DS6602) 171

Buffer Out (FPGA1401TP1)	Register64 Out (DS2655) 119	parameters
DS1552 345	Register64 Out (DS5203) 322	DS1552 365
DS1554 390	Register64 Out (DS6601) 155	DS1554 409
Buffer Out (FPGA1403TP1)	Register64 Out (DS6602) 202	port
DS1552 424	Register64 Out (FPGA1401TP1)	DS1552 365
DS1554 469	DS1552 367	DS1554 410
Buffer64 Out (DS1302) 56	DS1552 307	Register Out (FPGA1403TP1)
, ,		=
Buffer64 Out (DS2655) 102	Register64 Out (FPGA1403TP1)	DS1552 444
Buffer64 Out (DS5203) 303	DS1552 447	DS1554 487
Buffer64 Out (DS6601) 137	DS1554 490	parameters
Buffer64 Out (DS6602) 174	Register In (DS1302) 67	DS1552 444
Buffer64 Out (FPGA1401TP1)	parameters 67	DS1554 488
DS1552 347	port 68	port
DS1554 392	Register In (DS2655) 114	DS1552 445
Buffer64 Out (FPGA1403TP1)	parameters 114	DS1554 488
DS1552 426	port 115	Register64 In (DS1302) 69
DS1554 471	Register In (DS5203) 316	parameters 69
I-FPGA Master (SCALEXIO) 290	parameters 316	port 70, 319
I-FPGA Out (IOCNET) (DS2655) 108	port 317	Register64 In (DS2655) 115
I-FPGA Out (IOCNET) (DS6601) 144	Register In (DS6601) 150	parameters 115
I-FPGA Out (IOCNET) (DS6602) 190	parameters 150	•
	'	port 116
I-FPGA64 Out (IOCNET) (DS2655) 110	port 151	Register64 In (DS5203) 318
I-FPGA64 Out (IOCNET) (DS6601) 146	Register In (DS6602) 196	parameters 318
I-FPGA64 Out (IOCNET) (DS6602) 192	parameters 196	Register64 In (DS6601) 151
Red	port 197	parameters 151
LED Out (DS1302) 66	Register In (FPGA1401TP1)	port 152
Register group ID	DS1552 361	Register64 In (DS6602) 197
Register In (DS1302) 68	DS1554 405	parameters 198
Register In (DS2655) 114	parameters	port 199
Register In (DS5203) 317	DS1552 361	Register64 In (FPGA1401TP1)
Register In (DS6601) 150	DS1554 405	DS1552 362
Register In (DS6602) 197	port	DS1554 407
Register In (FPGA1401TP1)	DS1552 362	parameters
DS1552 362	DS1554 406	DS1552 363
DS1554 406	Register In (FPGA1403TP1)	DS1554 407
Register In (FPGA1403TP1)	DS1552 441	port
DS1552 442	DS1552 441 DS1554 484	DS1552 364
DS1554 485	parameters	DS1554 408
Register Out (DS1302) 72	DS1552 441	Register64 In (FPGA1403TP1)
Register Out (DS2655) 118	DS1554 484	DS1552 442
Register Out (DS5203) 320	port	DS1554 486
Register Out (DS6601) 154	DS1552 442	parameters
Register Out (DS6602) 200	DS1554 485	DS1552 443
Register Out (FPGA1401TP1)	Register Out (DS1302) 71	DS1554 486
DS1552 365	parameters 71	port
DS1554 410	port 72	DS1552 444
Register Out (FPGA1403TP1)	Register Out (DS2655) 117	DS1554 487
DS1552 445	parameters 117	Register64 Out (DS1302) 72
DS1554 488	port 118	parameters 72
Register64 In (DS1302) 70	Register Out (DS5203) 320	port 73
Register64 In (DS2655) 116	parameters 320	Register64 Out (DS2655) 11
	port 321	
Register64 In (DS5203) 319	•	parameters 119
Register64 In (DS6601) 152	Register Out (DS6601) 153	port 120
Register64 In (DS6602) 198	parameters 153	Register64 Out (DS5203) 32
Register64 In (FPGA1401TP1)	port 154	parameters 321
DS1552 363	Register Out (DS6602) 199	port 322
DS1554 408	parameters 199	Register64 Out (DS6601) 15
Register64 In (FPGA1403TP1)	port 200	parameters 155
DS1552 443	Register Out (FPGA1401TP1)	port 156
DS1554 487	DS1552 364	Register64 Out (DS6602) 20
Register64 Out (DS1302) 73	DS1554 409	parameters 201

port 202	I/O mapping 233	DS1552 368
Register64 Out (FPGA1401TP1)	parameters 232	I/O mapping
DS1552 366	port 232	DS1552 368
DS1554 410	RS485 Termination	parameters
parameters	RS485 Rx (DS6651) 261	DS1552 368
DS1552 366	RS485 Rx/Tx (DS6651) 263	port
DS1554 410	RS485 Tx (DS6651) 265	DS1552 368
	RS485 Termination config	Sensor Supply (FPGA1403TP1)
port	2	DS1552 447
DS1552 367	RS485 Rx (DS2655M2) 230	
DS1554 411	RS485 RxTx (DS2655M2) 232	I/O mapping
Register64 Out (FPGA1403TP1)	RS485 Tx (DS2655M2) 235	DS1552 448
DS1552 446	RS485 Tx (DS2655M2) 235	parameters
DS1554 489	I/O mapping 236	DS1552 448
parameters	parameters 235	port
DS1552 446	port 235	DS1552 448
DS1554 489	RS485 Tx (DS6651) 265	Sensor Supply M1 (DS5203M1) 333
port	I/O mapping 266	I/O mapping 334
DS1552 447	parameters 265	parameters 334
DS1554 490	ports 266	port 334
Reset	RTS	Start
Resolver (DS1302) 76	UART 3 RS232 (FPGA1403TP1) 453	Buzzer (DS1302) 58
Resolver (DS1302) 74	UART RS232 (DS1302) 81	Start of conversion
I/O mapping 76	UART RS232 (FPGA1401TP1) 374	ADC (Type A) (FPGA1403TP1)
parameters 74	Rx Data	DS1552 417
port 75	RS485 Rx/Tx (DS6651) 263	DS1554 463
resolver_ <channelnumber>_enable</channelnumber>	RS485 RxTx (DS2655M2) 233	ADC Type A (FPGA1401TP1)
Resolver (DS1302) 75	RX_N	DS1552 337
resolver_ <channelnumber>_err_rst</channelnumber>	MGT In 278	DS1554 383
Resolver (DS1302) 76	RX_P	Knock Sensor (FPGA1401TP1) 403
resolver_ <channelnumber>_fault</channelnumber>	MGT In 278	Knock Sensor (FPGA1403TP1) 482
Resolver (DS1302) 76	270	Startbit
resolver_ <channelnumber>_mech_pos</channelnumber>	S	I-FPGA In (SCALEXIO) 283
Resolver (DS1302) 75	3	I-FPGA Master (DS5203) 310
resolver_ <channelnumber>_update</channelnumber>	Sample period	I-FPGA Out (SCALEXIO) 288
Resolver (DS1302) 76	Analog In (DS6651) 242	I-FPGA Slave (DS5203) 312
resolver_ <channelnumber>_valid</channelnumber>	Analog In-L (DS6651) 245	Status In (DS1302) 77
Resolver (DS1302) 75	Scaling	parameters 77
Rising edge delay	ADC (DS5203) 293	•
2 2 2	ADC M1 (DS5203M1) 326	port 77
Digital InOut Class 1 (DS1302) 60	Analog In (DS2655M1) 207	Status In (DS2655) 120
Digital InOut Class 2 (DS1302) 63	Analog In (DS6651) 241	parameters 120
RS232 Rx (DS2655M2) 227	Analog In-L (DS6651) 244	port 120
I/O mapping 228	Analog Out (DS2655M1) 208	Status In (DS5203) 323
parameters 227	Analog Out (DS6651) 247	parameters 323
port 227	Analog Out-T (DS6651) 248	port 323
RS232 Tx (DS2655M2) 228	DAC (DS5203) 304	Status In (DS6601) 156
I/O mapping 229	DAC (D33203) 304 DAC M1 (DS5203M1) 328	parameters 156
parameters 228	Send	port 156
port 229		Status In (DS6602) 202
RS485 Rx (DS2655M2) 230	I-FPGA Out (IOCNET) (DS2655) 108	parameters 202
I/O mapping 231	I-FPGA Out (IOCNET) (DS6601) 144	port 202
parameters 230	I-FPGA Out (IOCNET) (DS6602) 191	Status In (FPGA1401TP1)
port 230	I-FPGA64 Out (IOCNET) (DS2655) 111	DS1552 368
RS485 Rx (DS6651) 260	I-FPGA64 Out (IOCNET) (DS6601) 147	DS1554 412
I/O mapping 261	I-FPGA64 Out (IOCNET) (DS6602) 193	parameters
parameters 261	Send Acknowledge	DS1552 369
port 261	Buffer Out (DS2655) 99	DS1554 412
RS485 Rx/Tx (DS6651) 262	Buffer Out (DS6601) 135	port
I/O mapping 264	Buffer Out (DS6602) 171	DS1552 369
parameters 263	Buffer64 Out (DS2655) 102	DS1554 412
ports 263	Buffer64 Out (DS6601) 138	Status In (FPGA1403TP1)
RS485 RxTx (DS2655M2) 232	Buffer64 Out (DS6602) 174	DS1552 448
	Sensor Supply (FPGA1401TP1)	551552 110

DS1554 490	RS485 RxTx (DS2655M2) 232	UART RS422/485 (FPGA1401TP1) 378
parameters	Tx Enable	uart_ <channelnumber>_rd_data</channelnumber>
DS1552 449	RS485 Rx/Tx (DS6651) 264	UART 3 RS232 (FPGA1403TP1) 452
DS1554 491	RS485 Tx (DS2655M2) 233	UART 3 RS422/485 (FPGA1403TP1) 457
port	TX_N	UART RS232 (DS1302) 80
DS1552 449 DS1554 491	MGT Out 279 TX P	UART RS232 (FPGA1401TP1) 373 UART RS422/485 (DS1302) 85
Stop bits	MGT Out 279	UART RS422/485 (FPGA1401TP1) 378
UART RS232 (DS1302) 79	MGT Out 279	uart_ <channelnumber>_rd_data_count</channelnumber>
UART RS232 (FPGA1403TP1) 372, 451	U	UART 3 RS232 (FPGA1403TP1) 452
UART RS422/485 (DS1302) 83	U	UART 3 RS422/485 (FPGA1403TP1) 457
UART RS422/485 (FPGA1401TP1) 377, 456	UART (RS422/485) (DS1302)	UART RS232 (DS1302) 80
Supply voltage	I/O mapping 86	UART RS232 (FPGA1401TP1) 373
Sensor Supply (FPGA1401TP1)	UART 3 RS232 (FPGA1403TP1)	UART RS422/485 (DS1302) 84
DS1552 368	I/O mapping 454	UART RS422/485 (FPGA1401TP1) 378
Sensor Supply (FPGA1403TP1)	parameters 450	uart_ <channelnumber>_rd_fifo_empty</channelnumber>
DS1552 448	port 452	UART 3 RS232 (FPGA1403TP1) 452
Sensor Supply M1 (DS5203M1) 334	UART 3 RS422/485 (FPGA1403TP1)	UART 3 RS422/485 (FPGA1403TP1) 457
	I/O mapping 459 parameters 455	UART RS232 (DS1302) 80
T	port 457	UART RS232 (FPGA1401TP1) 373
temperature	UART mode	UART RS422/485 (DS1302) 85
FPGA1401TP1 port 413	UART RS422/485 (DS1302) 83	UART RS422/485 (FPGA1401TP1) 378
DS1552 369	UART RS422/485 (FPGA1401TP1) 377	uart_ <channelnumber>_rts</channelnumber>
FPGA1403TP1 port 492	UART RS422/485 (FPGA1403TP1) 456	UART 3 RS232 (FPGA1403TP1) 453
DS1552 449	UART RS232 (DS1302) 78	UART RS232 (DS1302) 81
Temperature (FPGA1401TP1) 413	I/O mapping 82	UART RS232 (FPGA1401TP1) 374 uart_ <channelnumber>_wr</channelnumber>
parameters 413	parameters 78	UART 3 RS232 (FPGA1403TP1) 453
port 413	port 79	UART 3 RS422/485 (FPGA1403TP1) 458
Temperature (FPGA1403TP1) 491	UART RS232 (FPGA1401TP1) 370	UART RS232 (DS1302) 80
parameters 491	I/O mapping 375	UART RS232 (FPGA1401TP1) 373
port 492	parameters 370	UART RS422/485 (DS1302) 85
Termination	port 372	UART RS422/485 (FPGA1401TP1) 379
UART RS232 (DS1302) 79	UART RS232 (FPGA1403TP1) 450	uart_ <channelnumber>_wr_data</channelnumber>
UART RS232 (FPGA1401TP1) 372	UART RS422/485 (DS1302) 82	UART 3 RS232 (FPGA1403TP1) 453
UART RS232 (FPGA1403TP1) 451	parameters 82	UART 3 RS422/485 (FPGA1403TP1) 458
UART RS422/485 (DS1302) 84	port 84	UART RS232 (DS1302) 81
UART RS422/485 (FPGA1401TP1) 377 UART RS422/485 (FPGA1403TP1) 456	UART RS422/485 (FPGA1401TP1) 375 I/O mapping 380	UART RS232 (FPGA1401TP1) 374
Threshold init voltage	parameters 376	UART RS422/485 (DS1302) 86
Digital In (DS2655M1) 210	port 378	UART RS422/485 (FPGA1401TP1) 379
Digital In (DS2655M2) 219	UART RS422/485 (FPGA1403TP1) 455	uart_ <channelnumber>_wr_data_count</channelnumber>
Digital In (DS6651) 250	UART type	UART 3 RS232 (FPGA1403TP1) 453
Digital In/Out-Z (DS6651) 252	UART RS232 (DS1302) 79	UART 3 RS422/485 (FPGA1403TP1) 458
Threshold voltage	UART RS232 (FPGA1401TP1) 372, 451	UART RS232 (DS1302) 81
Digital In (DS5203) 306	UART RS422/485 (DS1302) 84	UART RS232 (FPGA1401TP1) 374 UART RS422/485 (DS1302) 85
Digital In (Type B) (FPGA1403TP1)	UART RS422/485 (FPGA1401TP1) 377, 456	UART RS422/485 (FPGA1401TP1) 379
DS1552 433	uart_ <channel_number>_driver_en</channel_number>	uart_ <channelnumber>_wr_fifo_full</channelnumber>
DS1554 474	UART RS422/485 (DS1302) 86	UART 3 RS232 (FPGA1403TP1) 453
Digital In M1 (DS5203M1) 330	uart_ <channelnumber>_cts</channelnumber>	UART 3 RS422/485 (FPGA1403TP1) 458
Digital In Type B (FPGA1401TP1)	UART 3 RS232 (FPGA1403TP1) 454	UART RS232 (DS1302) 81
DS1552 353	UART RS232 (DS1302) 81	UART RS232 (FPGA1401TP1) 374
DS1554 394	UART RS232 (FPGA1401TP1) 374	UART RS422/485 (DS1302) 86
Trigger (DS6651) 267	uart_ <channelnumber>_driver_en</channelnumber>	UART RS422/485 (FPGA1401TP1) 379
I/O mapping 268	UART 3 RS422/485 (FPGA1403TP1) 458	Update
parameters 268	UART RS422/485 (FPGA1401TP1) 379	Resolver (DS1302) 76
port 268 Trigger mode	uart_ <channelnumber>_rd UART 3 RS232 (FPGA1403TP1) 452</channelnumber>	usr_ <channelnumber>_interrupt</channelnumber>
Analog In (DS6651) 242	UART 3 RS422/485 (FPGA1403TP1) 452	Interrupt (DS2655) 112
Analog In (DS6651) 242 Analog In-L (DS6651) 245	UART RS232 (DS1302) 80	Interrupt (DS5203) 315
Tx Data	UART RS232 (FPGA1401TP1) 373	Interrupt (DS6601) 148
RS485 Rx/Tx (DS6651) 263	UART RS422/485 (DS1302) 84	Interrupt (DS6602) 194

Interrupt (FPGA1401TP1)	Buffer64 In (DS1302) 52	Buffer64 Out (DS2655) 102
DS1552 360	Buffer64 In (DS2655) 97	Buffer64 Out (DS5203) 303
DS1554 402	Buffer64 In (DS5203) 299	Buffer64 Out (DS6601) 137
Interrupt (FPGA1403TP1)	Buffer64 In (DS6601) 132	Buffer64 Out (DS6602) 174
DS1552 440	Buffer64 In (DS6602) 169	xmem64p_inter_ <channelnumber>_din</channelnumber>
DS1554 481	xmem64f_ <channelnumber>_dout</channelnumber>	I-FPGA64 Out (IOCNET) (DS2655) 110
usr_interrupt_ <channelnumber></channelnumber>	Buffer64 In (DS1302) 52	I-FPGA64 Out (IOCNET) (DS6601) 146
Interrupt (DS1302) 65	Buffer64 In (DS2655) 97	I-FPGA64 Out (IOCNET) (DS6602) 192
	Buffer64 In (DS5203) 299	xmem64p_inter_ <channelnumber>_finished</channelnumber>
V	Buffer64 In (DS6601) 132	I-FPGA64 Out (IOCNET) (DS2655) 110
	Buffer64 In (DS6602) 169	I-FPGA64 Out (IOCNET) (DS6601) 146
Valid	xmem64f_ <channelnumber>_new_data</channelnumber>	I-FPGA64 Out (IOCNET) (DS6602) 192
ADC (DS5203) 294	Buffer64 In (DS1302) 52	xmem64p_inter_ <channelnumber>_overflow</channelnumber>
ADC M1 (DS5203M1) 327	Buffer64 In (DS2655) 97	I-FPGA64 Out (IOCNET) (DS2655) 111
Resolver (DS1302) 75	Buffer64 In (DS5203) 300	I-FPGA64 Out (IOCNET) (DS6601) 147
	Buffer64 In (DS6601) 133	I-FPGA64 Out (IOCNET) (DS6602) 193
W	Buffer64 In (DS6602) 169	xmem64p_inter_ <channelnumber>_strobe</channelnumber>
Word length	xmem64f_ <channelnumber>_read_req</channelnumber>	I-FPGA64 Out (IOCNET) (DS2655) 110
UART RS232 (DS1302) 79	Buffer64 In (DS2655) 97	I-FPGA64 Out (IOCNET) (DS6601) 146
UART RS232 (FPGA1401TP1) 372	Buffer64 In (DS6601) 133	I-FPGA64 Out (IOCNET) (DS6602) 192
UART RS232 (FPGA1403TP1) 451	Buffer64 In (DS6602) 169	xmem64p_inter_ <channelnumber>_write</channelnumber>
UART RS422/485 (DS1302) 83	xmem64f_inter_ <channelnumber>_addr</channelnumber>	I-FPGA64 Out (IOCNET) (DS2655) 111
UART RS422/485 (FPGA1401TP1) 377	I-FPGA64 In (IOCNET) (DS2655) 106	I-FPGA64 Out (IOCNET) (DS6601) 147
UART RS422/485 (FPGA1403TP1) 456	I-FPGA64 In (IOCNET) (DS6601) 142	I-FPGA64 Out (IOCNET) (DS6602) 193
Write Data	I-FPGA64 In (IOCNET) (DS6602) 188	xmemf_ <channelnumber>_addr</channelnumber>
UART 3 RS232 (FPGA1403TP1) 453	xmem64f_inter_ <channelnumber>_count</channelnumber>	Buffer In (DS1302) 51
UART 3 RS422/485 (FPGA1403TP1) 458	I-FPGA64 In (IOCNET) (DS2655) 106	Buffer In (DS2655) 94
UART RS232 (DS1302) 81	I-FPGA64 In (IOCNET) (DS6601) 142	Buffer In (DS5203) 298
UART RS232 (FPGA1401TP1) 374	I-FPGA64 In (IOCNET) (DS6602) 189	Buffer In (DS6601) 130
UART RS422/485 (DS1302) 86	xmem64f_inter_ <channelnumber>_dout</channelnumber>	Buffer In (DS6602) 166
UART RS422/485 (FPGA1401TP1) 379	I-FPGA64 In (IOCNET) (DS2655) 106	Buffer In (FPGA1401TP1)
Write Data Count	I-FPGA64 In (IOCNET) (DS6601) 142	DS1552 341
UART 3 RS232 (FPGA1403TP1) 453	I-FPGA64 In (IOCNET) (DS6602) 189	DS1554 386
UART 3 RS422/485 (FPGA1403TP1) 458	xmem64f_inter_ <channelnumber>_new_data</channelnumber>	Buffer In (FPGA1403TP1)
UART RS232 (DS1302) 81	I-FPGA64 In (IOCNET) (DS2655) 107	DS1552 421
UART RS232 (FPGA1401TP1) 374	I-FPGA64 In (IOCNET) (DS6601) 143	DS1554 466
UART RS422/485 (DS1302) 85	I-FPGA64 In (IOCNET) (DS6602) 189	xmemf_ <channelnumber>_count</channelnumber>
UART RS422/485 (FPGA1401TP1) 379	xmem64p_ <channelnumber>_din</channelnumber>	Buffer In (DS1302) 50
Write Enable	Buffer64 Out (DS1302) 56	Buffer In (DS2655) 94
UART 3 RS232 (FPGA1403TP1) 453	Buffer64 Out (DS2655) 101	Buffer In (DS5203) 298
UART 3 RS422/485 (FPGA1403TP1) 458	Buffer64 Out (DS5203) 303	Buffer In (DS6601) 130
UART RS232 (DS1302) 80	Buffer64 Out (DS6601) 137	Buffer In (DS6602) 166
UART RS232 (FPGA1401TP1) 373	Buffer64 Out (DS6602) 173	Buffer In (FPGA1401TP1)
UART RS422/485 (DS1302) 85	xmem64p_ <channelnumber>_finished</channelnumber>	DS1552 341
UART RS422/485 (FPGA1401TP1) 379	Buffer64 Out (DS1302) 56	DS1554 386
Write Fifo Full	Buffer64 Out (DS2655) 102	Buffer In (FPGA1403TP1)
UART 3 RS232 (FPGA1403TP1) 453	Buffer64 Out (DS5203) 303	DS1552 421
UART 3 RS422/485 (FPGA1403TP1) 458	Buffer64 Out (DS6601) 137	DS1554 466
UART RS232 (DS1302) 81	Buffer64 Out (DS6602) 174	xmemf_ <channelnumber>_dout</channelnumber>
UART RS232 (FPGA1401TP1) 374	xmem64p_ <channelnumber>_overflow</channelnumber>	Buffer In (DS1302) 50
UART RS422/485 (DS1302) 86	Buffer64 Out (DS1302) 56	Buffer In (DS2655) 94 Buffer In (DS5203) 298
UART RS422/485 (FPGA1401TP1) 379	Buffer64 Out (DS2655) 102	· · · · · · · · · · · · · · · · · · ·
	Buffer64 Out (DS5203) 303 Buffer64 Out (DS6601) 138	Buffer In (DS6601) 130 Buffer In (DS6602) 166
X	Buffer64 Out (DS6602) 174	Buffer In (D36602) 166 Buffer In (FPGA1401TP1)
xmem64f <channelnumber> addr</channelnumber>	xmem64p <channelnumber> send ack</channelnumber>	DS1552 341
Buffer64 In (DS1302) 52	Buffer64 Out (DS2655) 102	DS1552 341 DS1554 386
Buffer64 In (DS2655) 97	Buffer64 Out (DS6601) 138	Buffer In (FPGA1403TP1)
Buffer64 In (DS5203) 300	Buffer64 Out (DS6602) 174	DS1552 421
Buffer64 In (DS6601) 132	xmem64p_ <channelnumber>_write</channelnumber>	DS1552 421 DS1554 466
Buffer64 In (DS6602) 169	Buffer64 Out (DS1302) 56	xmemf_ <channelnumber>_new_data</channelnumber>
xmem64f_ <channelnumber>_count</channelnumber>		

Buffer In (DS1302) 51	Buffer Out (DS2655) 99	I-FPGA Out (IOCNET) (DS6602) 191
Buffer In (DS2655) 95	Buffer Out (DS5203) 301	xmemp_inter_ <channelnumber>_strobe</channelnumber>
Buffer In (DS5203) 298	Buffer Out (DS6601) 135	I-FPGA Out (IOCNET) (DS2655) 108
Buffer In (DS6601) 130	Buffer Out (DS6602) 171	I-FPGA Out (IOCNET) (DS6601) 144
Buffer In (DS6602) 167	Buffer Out (FPGA1401TP1)	I-FPGA Out (IOCNET) (DS6602) 190
Buffer In (FPGA1401TP1)	DS1552 344	xmemp inter <channelnumber> write</channelnumber>
DS1552 341	DS1554 389	I-FPGA Out (IOCNET) (DS2655) 108
DS1554 386	Buffer Out (FPGA1403TP1)	I-FPGA Out (IOCNET) (DS6601) 144
	DS1552 424	
Buffer In (FPGA1403TP1)		I-FPGA Out (IOCNET) (DS6602) 191
DS1552 421	DS1554 469	xmemp64_ <channelnumber>_din</channelnumber>
DS1554 466	xmemp_ <channelnumber>_finished</channelnumber>	Buffer64 Out (FPGA1401TP1)
xmemf_ <channelnumber>_read_req</channelnumber>	Buffer Out (DS1302) 54	DS1552 346
Buffer In (DS2655) 95	Buffer Out (DS2655) 99	DS1554 391
Buffer In (DS6601) 130	Buffer Out (DS5203) 301	Buffer64 Out (FPGA1403TP1)
Buffer In (DS6602) 167	Buffer Out (DS6601) 135	DS1552 426
xmemf_inter_ <channelnumber>_addr</channelnumber>	Buffer Out (DS6602) 171	DS1554 471
I-FPGA In (IOCNET) (DS2655) 104	Buffer Out (FPGA1401TP1)	xmemp64_ <channelnumber>_finished</channelnumber>
I-FPGA In (IOCNET) (DS6601) 140	DS1552 345	Buffer64 Out (FPGA1401TP1)
I-FPGA In (IOCNET) (DS6602) 187	DS1554 390	DS1552 347
xmemf_inter_ <channelnumber>_count</channelnumber>	Buffer Out (FPGA1403TP1)	DS1554 392
I-FPGA In (IOCNET) (DS2655) 105	DS1552 424	Buffer64 Out (FPGA1403TP1)
I-FPGA In (IOCNET) (DS6601) 140	DS1554 469	DS1552 426
I-FPGA In (IOCNET) (DS6602) 187	xmemp_ <channelnumber>_overflow</channelnumber>	DS1554 471
xmemf inter <channelnumber> dout</channelnumber>	Buffer Out (DS1302) 54	xmemp64_ <channelnumber>_overflow</channelnumber>
I-FPGA In (IOCNET) (DS2655) 105	Buffer Out (DS2655) 99	Buffer64 Out (FPGA1401TP1)
I-FPGA In (IOCNET) (DS6601) 140	Buffer Out (DS5203) 301	DS1552 347
I-FPGA In (IOCNET) (DS6602) 187	Buffer Out (DS6601) 135	DS1552 347 DS1554 392
xmemf_inter_ <channelnumber>_new_data</channelnumber>	Buffer Out (DS6602) 171	Buffer64 Out (FPGA1403TP1)
I-FPGA In (IOCNET) (DS2655) 105	Buffer Out (FPGA1401TP1)	DS1552 427
	DS1552 345	DS1554 472
I-FPGA In (IOCNET) (DS6601) 141	DS1552 345 DS1554 390	
I-FPGA In (IOCNET) (DS6602) 187		xmemp64_ <channelnumber>_write</channelnumber>
xmemf64_ <channelnumber>_addr</channelnumber>	Buffer Out (FPGA1403TP1)	Buffer64 Out (FPGA1401TP1)
Buffer64 In (FPGA1401TP1)	DS1552 425	DS1552 347
DS1552 343	DS1554 470	DS1554 391
DS1554 388	xmemp_ <channelnumber>_send_ack</channelnumber>	Buffer64 Out (FPGA1403TP1)
Buffer64 In (FPGA1403TP1)	Buffer Out (DS2655) 99	DS1552 426
DS1552 423	Buffer Out (DS6601) 135	DS1554 471
DS1554 468	Buffer Out (DS6602) 171	xreg_ <channelnumber>_din</channelnumber>
xmemf64_ <channelnumber>_count</channelnumber>	xmemp_ <channelnumber>_write</channelnumber>	Register Out (DS1302) 72
Buffer64 In (FPGA1401TP1)	Buffer Out (DS1302) 54	Register Out (DS2655) 118
DS1552 343	Buffer Out (DS2655) 99	Register Out (DS5203) 321
DS1554 388	Buffer Out (DS5203) 301	Register Out (DS6601) 154
Buffer64 In (FPGA1403TP1)	Buffer Out (DS6601) 135	Register Out (DS6602) 200
DS1552 422	Buffer Out (DS6602) 171	Register Out (FPGA1401TP1)
DS1554 467	Buffer Out (FPGA1401TP1)	DS1552 366
xmemf64_ <channelnumber>_dout</channelnumber>	DS1552 345	DS1554 410
Buffer64 In (FPGA1401TP1)	DS1554 389	Register Out (FPGA1403TP1)
DS1552 343	Buffer Out (FPGA1403TP1)	DS1552 445
DS1554 388	DS1552 424	DS1554 489
Buffer64 In (FPGA1403TP1)	DS1554 469	xreg_ <channelnumber>_dout</channelnumber>
DS1552 423	xmemp_inter_ <channelnumber>_din</channelnumber>	Register In (DS1302) 69
DS1554 468	I-FPGA Out (IOCNET) (DS2655) 108	Register In (DS2655) 115
xmemf64_ <channelnumber>_new_data</channelnumber>		Register In (DS5203) 317
	I-FPGA Out (IOCNET) (DS6601) 144	_
Buffer64 In (FPGA1401TP1)	I-FPGA Out (IOCNET) (DS6602) 190	Register In (DS6601) 151
DS1552 343	xmemp_inter_ <channelnumber>_finished</channelnumber>	Register In (DS6602) 197
DS1554 388	I-FPGA Out (IOCNET) (DS2655) 108	Register In (FPGA1401TP1)
Buffer64 In (FPGA1403TP1)	I-FPGA Out (IOCNET) (DS6601) 144	DS1552 362
DS1552 423	I-FPGA Out (IOCNET) (DS6602) 190	DS1554 406
DS1554 468	xmemp_inter_ <channelnumber>_overflow</channelnumber>	Register In (FPGA1403TP1)
xmemp_ <channelnumber>_din</channelnumber>	I-FPGA Out (IOCNET) (DS2655) 109	DS1552 442
Buffer Out (DS1302) 54	I-FPGA Out (IOCNET) (DS6601) 145	DS1554 485

```
xreg_<ChannelNumber>_dout_wr
  Register In (DS2655) 115
  Register In (DS5203) 317
  Register In (DS6601) 151
  Register In (DS6602) 197
  Register In (FPGA1401TP1)
    DS1552 362
    DS1554 406
  Register In (FPGA1403TP1)
    DS1552 442
    DS1554 485
xreg_<ChannelNumber>_wr
  Register In (DS1302) 69
xreg64 <ChannelNumber> din
  Register64 Out (DS1302) 74
  Register64 Out (DS2655) 120
  Register64 Out (DS5203) 323
  Register64 Out (DS6601) 156
  Register64 Out (DS6602) 202
  Register64 Out (FPGA1401TP1)
    DS1552 367
    DS1554 412
  Register64 Out (FPGA1403TP1)
    DS1552 447
    DS1554 490
xreg64_<ChannelNumber>_dout
  Register64 In (DS1302) 70
  Register64 In (DS2655) 117
  Register64 In (DS5203) 319
  Register64 In (DS6601) 153
  Register64 In (DS6602) 199
  Register64 In (FPGA1401TP1)
    DS1552 364
    DS1554 408
  Register64 In (FPGA1403TP1)
    DS1552 444
    DS1554 487
xreg64_<ChannelNumber>_dout_wr
  Register64 In (DS1302) 70, 319
  Register64 In (DS2655) 117
  Register64 In (DS6601) 153
  Register64 In (DS6602) 199
  Register64 In (FPGA1401TP1)
    DS1552 364
    DS1554 408
  Register64 In (FPGA1403TP1)
    DS1552 444
    DS1554 487
```