- 1. Consider the veracity or falsehood of each of the following statements. For bonus, argue for those that you believe are true while providing a counterexample for those that you believe are false.
 - (1) Every non-constant complex polynomial has a complex root.
 - (2) Conjugation of complex numbers is a field automorphism of the complex numbers.
 - (3) Let $x, y \in R$, a finite ring. If x * y = 1, then y * x = 1 also.
 - (4) There are exactly four quadratics in $\mathbb{Z}_2[x]$.
 - (5) If p(x) is a real polynomial, then it either has a real root or there is a quadratic polynomial with real coefficients that divides it.

Solution.

(1) True.

This follows from the Fundamental Theorem of Algebra.

Proof. Let \overline{a} denote the conjugate of the complex number a. We now want to show that

$$f: \mathbb{C} \to \mathbb{C}, \ c \mapsto \overline{c}$$

is a ring isomorphism. Let a_1 and a_2 be complex numbers. Since $\overline{a_1a_2} = \overline{a_1} \cdot \overline{a_2}$, and $\overline{a_1 + a_2} = \overline{a_1} + \overline{a_2}$, it follows that

$$f(a_1a_2) = f(a_1)f(a_2)$$
 and $f(a_1 + a_2) = f(a_1) + f(a_2)$,

so that f is a ring homomorphim. It now remains to show that f is a bijection. The map f must be surjective because $f(\overline{a_1}) = a_1$. Also if $f(a_1) = f(a_2)$, then the real parts of a_1 and a_2 must be equal. Similarly, their imaginary parts must be equal, so that $a_1 = a_2$. That is f is injective and we can conclude that it is a bijection. Thus f is a field automorphism.

(3) True.

Proof. Let R be a finite ring, and consider $x, y \in R$ such that x * y = 1. The map $f: R \to R, r \mapsto r * x$ is bijective because for $r_1, r_2 \in R$ with $f(r_1) = f(r_2)$, we have that $r_1 * x = r_2 * x$. We then cancel x on both sides by multiplying each side on the right by y to get $r_1 = r_2$; thus f is injective, and since R is finite, we can conclude that f is also bijective. Thus there exists $r_3 \in R$ such that $r_3 * x = 1$. Mutltiply the preceding equality on the right by y to get $r_3 = y$.

True.

There are exactly 8 polynomials in $\mathbb{Z}_2[x]$, and they are

$$0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1.$$

It is clear that only four of then are quadratics.

(5) If p(x) is 0, then it is trivially true. However, if p(x) is a constant non-zero polynomial then it is not true. We shall now show that the statement is true if p(x) is a non-constant real polynomial.

Proof. Consider the polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0,$$

where each $a_i \in \mathbb{R}$, $a_n \neq 0$, and $n \geq 1$. By the Fundamental Theorem of Algebra, p(x) has a root λ . If λ is real, then we are done. So assume that λ is a non-real complex number. Observe that the conjugate of λ , $\overline{\lambda}$, is also a root of p(x) since

$$p(\overline{\lambda}) = a_n \overline{\lambda}^n + a_{n-1} \overline{\lambda}^{n-1} + \dots + a_0$$

$$= a_n \overline{\lambda}^n + a_{n-1} \overline{\lambda}^{n-1} + \dots + a_0$$

$$= \overline{a_n} \overline{\lambda}^n + \overline{a_{n-1}} \overline{\lambda}^{n-1} + \dots + \overline{a_0}$$

$$= \overline{a_n} \overline{\lambda}^n + \overline{a_{n-1}} \overline{\lambda}^{n-1} + \dots + \overline{a_0}$$

$$= \overline{a_n} \overline{\lambda}^n + \overline{a_{n-1}} \overline{\lambda}^{n-1} + \dots + \overline{a_0}$$

$$= \overline{a_n} \overline{\lambda}^n + a_{n-1} \overline{\lambda}^{n-1} + \dots + a_0$$

$$= \overline{0} = 0.$$

$$[p(\lambda) = 0]$$

Since λ is not real, we must have that $\lambda \neq \overline{\lambda}$. Thus the quadratic polynomial $(x-\lambda)(x-\overline{\lambda})$ divides p(x). To complete the proof, we must show that this quadratic polynomial has real coefficients. Now we have that

$$(x - \lambda)(x - \overline{\lambda}) = x^2 - (\lambda + \overline{\lambda})x + \lambda \overline{\lambda} = x^2 - 2 \cdot \text{Re}(\lambda)x + |\lambda|^2,$$

where $\operatorname{Re}(c)$ and |c| denote the real part and magnitude of a complex number c. Thus the quadratic polynomial $(x - \lambda)(x - \overline{\lambda})$ has real coefficients.

2. On Complex & Real.

- 1 Find a ring isomorphism (it has to be both additive and multiplicative) between \mathbb{C} and the subring $\mathcal{C} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\} \subseteq \mathcal{M}_2(\mathbb{R}).$
- (2) In the notes we gave two descriptions of the quaternions:

$$Q = \left\{ \begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix} : a, b, c, d \in \mathbb{R} \right\} \text{ and } \mathcal{H} = \left\{ \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} : \alpha, \beta \in \mathbb{C} \right\}.$$

Find an isomorphism between these two rings (it has to be both additive and multiplicative).

Solution.

(1) We claim that the map

$$f: \mathcal{C} \to \mathbb{C}, \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mapsto a + bi$$

is a ring isomorphism.

Proof. Let $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, $\begin{pmatrix} c & d \\ -d & c \end{pmatrix} \in \mathcal{C}$, so that

$$f\left(\begin{pmatrix} a & b \\ -b & a \end{pmatrix}\begin{pmatrix} c & d \\ -d & c \end{pmatrix}\right) = f\left(\begin{pmatrix} ac - bd & ad + bc \\ -(ac + bd) & ac - bd \end{pmatrix}\right)$$
$$= (ac - bd) + (ad + bc)i$$
$$= (a + bi)(c + di)$$
$$= f\left(\begin{pmatrix} a & b \\ -b & a \end{pmatrix}\right) f\left(\begin{pmatrix} c & d \\ -d & c \end{pmatrix}\right)$$

and

$$\begin{split} f\left(\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix}\right) &= f\left(\begin{pmatrix} a+c & b+d \\ -(b+d) & a+c \end{pmatrix}\right) \\ &= (a+c) + (b+d)i \\ &= (a+bi) + (c+di) \\ &= f\left(\begin{pmatrix} a & b \\ -b & a \end{pmatrix}\right) + f\left(\begin{pmatrix} c & d \\ -d & c \end{pmatrix}\right). \end{split}$$

Hence f is a ring homomorphism. It is clear that f is surjective since if $a_1 + b_1 i \in \mathbb{C}$, then we must have that $f\left(\begin{pmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{pmatrix}\right) = a_1 + b_1 i$. Now suppose that

$$f\left(\begin{pmatrix} a & b \\ -b & a \end{pmatrix}\right) = f\left(\begin{pmatrix} c & d \\ -d & c \end{pmatrix}\right).$$

Then we must have that a + bi = c + di so that a = b and c = d. That is, f is injective. We can now conclude that f is a ring isomorphism.

(2) The map

$$g: \mathcal{Q} \to \mathcal{H}, \begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix} \mapsto \begin{pmatrix} a+bi & c+di \\ -c+di & a-bi \end{pmatrix}$$

is clearly bijective. For

$$A = \begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix} \text{ and } B = \begin{pmatrix} k & l & m & n \\ -l & k & -n & m \\ -m & n & k & -l \\ -n & -m & l & k \end{pmatrix} \in \mathcal{Q},$$

we have that

$$g(A+B) = \begin{pmatrix} a+k & b+l & c+m & d+n \\ -(b+l) & a+k & -(d+n) & c+m \\ -(c+m) & d+n & a+k & -(b+l) \\ -(d+n) & -(c+m) & b+l & a+k \end{pmatrix}$$

$$= \begin{pmatrix} (a+k)+(b+l)i & (c+m)+(d+n)i \\ -(c+m)+(d+n)i & (a+k)-(b+l)i \end{pmatrix}$$

$$= \begin{pmatrix} a+bi & c+di \\ -c+di & a-bi \end{pmatrix} + \begin{pmatrix} k+li & m+ni \\ -m+ni & k-li \end{pmatrix}$$

$$= g(A)+g(B), \text{ and}$$

$$g(AB) = g\begin{pmatrix} y_1 & y_2 & y_3 & y_4 \\ -y_2 & y_1 & -y_4 & y_3 \\ -y_3 & y_4 & y_1 & -y_2 \\ -y_4 & -y_3 & y_2 & y_1 \end{pmatrix}$$

$$= \begin{pmatrix} y_1+y_2i & y_3+y_4i \\ -y_3+y_4i & y_1-y_2i \end{pmatrix}$$

$$= \begin{pmatrix} a+bi & c+di \\ -c+di & a-bi \end{pmatrix} \begin{pmatrix} k+li & m+ni \\ -m+ni & k-li \end{pmatrix}$$

$$= g(A)g(B), \text{ where}$$

$$y_1 = ak-bl-mc-nd$$

$$y_2 = al+bk-md+nc$$

$$y_3 = kc+dl+am-bn$$

$$y_4 = dk-lc+bm+an,$$

so that g is a ring isomorphism.

- 3. Let F be a field and consider the set R of all matrices of the form $\begin{pmatrix} a & b \\ -b & a-b \end{pmatrix}$ where $a,b\in F$. Do the following:
 - (1) Show R is closed under addition, subtraction and multiplication so it is a subring of $\mathcal{M}_2(F)$, the 2×2 matrices with entries in F.
 - (2) Find a positive integer n so that if we let the field $F = \mathbb{Z}_n$, then R will be an integral domain.
 - (3) Find a positive integer n so that if we let the field $F = \mathbb{Z}_n$, then R will **NOT** be an integral domain.
 - (4) Find a positive integer n so that if we let the field $F = \mathbb{Z}_n$, then R will be a field.
 - (5) In any one of the situations (2), (3), or (4), find a unit of order bigger than 2. Just do one.
 - (6) Suppose now that instead of F, we take $a, b \in \mathbb{Z}$, the integers. Prove it is an integral domain.

Bonus. Find G(R), the group of units, in the case when the entries are integers (last situation), and find all elements of finite order in that group.

Solution.

① **Proof.** Let $A = \begin{pmatrix} a & b \\ -b & a-b \end{pmatrix}$, $B = \begin{pmatrix} c & d \\ -d & c-d \end{pmatrix} \in R$. Then we have that $A + B = \begin{pmatrix} a+c & b+d \\ -(b+d) & (a+c)-(b+d) \end{pmatrix}$ $AB = \begin{pmatrix} ac-bd & ad+bc-bd \\ -(ad+bc-bd) & ac-ad-bc \end{pmatrix}, \text{ and }$ $-A = \begin{pmatrix} -a & -b \\ b & b-a \end{pmatrix},$

so that R is closed under addition, multiplication, and negation. The set R clearly contains the identity (by letting a=1 and b=0). Thus R is a subring of $\mathcal{M}_2(F)$. Note that R is also closed under subtraction since it is closed under addition and negation.

(2) Claim that R is an integral domain if $F = \mathbb{Z}_2$.

Proof. By (4) below, R is commutative. Suppose that AB = 0 where

$$A = \begin{pmatrix} a & b \\ -b & a-b \end{pmatrix}$$
 and $B = \begin{pmatrix} c & d \\ -d & c-d \end{pmatrix} \in R$.

Then we must have that det(A) det(B) = 0. Since F is an integral domain, we can assume without loss that det(A) = 0. That is, $a^2 + b^2 - ab = 0$. Since $F = \mathbb{Z}_2$, we observe that of the four choices for a and b, det(A) = 0 if and only if a = b = 0 if and only if A = 0. Thus B is an integral domain if A = 0.

(3) Now let $F = \mathbb{Z}_3$. Notice that although

$$\begin{pmatrix} 1 & 2 \\ -2 & -1 \end{pmatrix} \neq 0$$
, we have that $\begin{pmatrix} 1 & 2 \\ -2 & -1 \end{pmatrix}^2 = 0$,

so that R is not an integral domain if $F = \mathbb{Z}_3$.

(4) Let $F = \mathbb{Z}_2$. Then the elements of R are

$$A=0, B=1, C=\begin{pmatrix}1&1\\1&0\end{pmatrix}, \text{ and } D=\begin{pmatrix}0&1\\1&1\end{pmatrix}.$$

By inspection we can see that R is commutative under multiplication. Also we have that $B^{-1} = B$, $C^{-1} = D$, so that R is a field if $F = \mathbb{Z}_2$.

(5) From (4), we have that |C| = 3.

 \bigcirc We shall follow the same line of thought as we did in \bigcirc . So to show that R is an integral domain, it suffices to show that the equation $a^2 + b^2 - ab = 0$ has only the trivial solution in \mathbb{Z} . Since

$$a^{2} + b^{2} - ab = \left(a - \frac{b}{2}\right)^{2} + \frac{3b^{2}}{4},$$

it is clear that $a^2 + b^2 - ab$ is positive if a or b is nonzero; hence we must have that a = b = 0, so that R is an integral domain.

Bonus. We notice that an element $\begin{pmatrix} a & b \\ -b & a-b \end{pmatrix}$ is a unit in R if and only if its determinant is a unit in \mathbb{Z} . The determinant of this matrix is $a^2 + b^2 - ab$. As per our discussion in 6, we know that it cannot be negative, so we want integers a and b such that $a^2 + b^2 - ab = 1$. By completing the square we get that

$$a^{2} + b^{2} - ab = 1$$
 iff $a = \frac{b}{2} \pm \sqrt{\frac{4 - 3b^{2}}{4}}$.

For the discrimant to be positive, we must have that b=0 or |b|=1. It follows that (a,b) is an integral solution of $a^2+b^2-ab=1$ iff

$$(a,b) \in \{(-1,0), (1,0), (0,1), (1,1), (0,-1), (-1,-1)\}.$$

Thus the group of units is

$$\left\{I, -I, \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}\right\}.$$

This group is cyclic because $\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$ generates it. Thus all the elements in this group is of finite order.

- 4. Consider the set R of matrices of the form $\frac{1}{2}\begin{pmatrix} a & b \\ 5b & a \end{pmatrix}$, $a,b\in\mathbb{Z},a\equiv b \mod 2$.
 - 1 Show $I_2 \in R$.
 - (2) Show R is closed under addition, negation and multiplication so it is a subring of $\mathcal{M}_2(\mathbb{O})$.
 - (3) Compute the characteristic polynomial of any such matrix, and observe it is monic with integer coefficients.
 - $\overbrace{4}$ Show there are infinitely many units in R.

Bonus. Find $\mathbb{I}(R)$, the group of units of R.

Solution.

 \bigcirc Setting a=2 and b=0 will show us that R has the identity.

By membership in R, we must have that $a \equiv b \mod 2$ and $c \equiv d \mod 2$. Thus $a + c \equiv b + d \mod 2$ and $-a \equiv -b \mod 2$, so that R is closed under addition and negation. To show that R is closed under multiplication, we must now show that

$$\frac{ac + 5bd}{2} \equiv \frac{ad + bc}{2} \mod 2. \tag{1}$$

Notice that since $a \equiv b \mod 2$ and $c \equiv d \mod 2$, it follows that a - b and c - d are both even, so that 4 divides (a - b)(c - d). Now

$$ac + 5bd - (ac + bd) \equiv (a - b)(c - d)$$
$$= ac + bd - (ad + bc)$$
$$\equiv 0 \mod 4.$$

That is, ac+5bd-(ac+bd) is divisible by 4, so that $\frac{ac+5bd-(ac+bd)}{2}$ is divisible by 2. In other words (1) holds; hence R is a subring of $M_2(\mathbb{Q})$.

(3) Let $A = \frac{1}{2} \begin{pmatrix} a & b \\ 5b & a \end{pmatrix} \in R$. It follows that the characteristic polynomial of A is

$$x^{2} - \left(\frac{a}{2} + \frac{a}{2}\right)x + \frac{a^{2} - 5b^{2}}{4} = x^{2} - ax + \frac{a^{2} - 5b^{2}}{4}.$$

Let $[y]_n$ denote y reduced modulo n. To complete the proof, we must now show that $\frac{a^2-5b^2}{4}\in\mathbb{Z}$; that is, we want to show that $[a^2-5b^2]_4=0$. Note that a and b have the same parity since $[a]_2=[b]_2$. Thus for odd a and b, we have that

$$1 = [a^2]_4 = [b^2]_4 = [1]_4[b^2]_4 = [5]_4[b^2]_4 = [5b^2]_4;$$

for even a and b, we have that $[a^2]_4=[5b^2]_4=0$. Thus, in either case, it follows that $[a^2-5b^2]_4=0$, so that 4 divides a^2-5b^2 . That is, $\frac{a^2-5b^2}{4}\in\mathbb{Z}$. So the characteristic polynomial of the matrices in R are monic with integer coefficients.

4 Let $A = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 5 & 1 \end{pmatrix} \in R$. Observe that A is a unit in R because $A^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 1 \\ 5 & -1 \end{pmatrix}$, an element in R; since $|A| = \infty$, it follows that the set of all integral powers of A is a set of infinitely many units.

Bonus. Let $A = \frac{1}{2} \begin{pmatrix} a & b \\ 5b & a \end{pmatrix}$ be a unit in R. Then we must have that

$$A^{-1} = \frac{2}{a^2 - 5b^2} \begin{pmatrix} a & -b \\ -5b & a \end{pmatrix}.$$

We now observe that problem is reduced to solving the diophantine equations $a^2 - 5b^2 = \pm 4$. These are called Pell Equations.

NB: I am still researching this problem. I have skimmed through a paper by H.W. Lenstra Jr: *Solving the Pell Equation*. I think this will be a good problem for the class project.