LECTURE 28 - EXPECTATION MAXIMIZATION FOR GAUSSIAN MIXTURE MODEL CLUSTERING CONTINUED

- Last class we introduced the Gaussian Mixture Model:

 - $-p(x) = \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k) \text{ where } 0 \leq \pi_k \leq 1 \text{ and } \sum_k \pi_k = 1$ Suppose we are given $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ where each \mathbf{x}_i is a sample from one of the K Gaussians in our mixture model. We want to estimate π_k, μ_k, Σ_k given X.
 - So, we want to maximize the following data likelihood:

(1)
$$\hat{\Theta} = argmax_{\Theta} \prod_{i=1}^{N} \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k)$$

where
$$\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$$

- where $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ It is difficult to maximize! We should try to simpler version in which we add latent variables to simplify the problem (and apply EM).
- The hidden/latent/missing variable we added was the label of the Gaussian from which \mathbf{x}_i was drawn

(2)
$$\mathbf{x}, z \sim f(\mathbf{x}, z | \theta)$$

• The complete data likelihood is then:

(3)
$$L^{c} = \prod_{i=1}^{N} p(\mathbf{x}_{i}|z_{i}, \theta)p(z_{i})$$

$$= \prod_{i=1}^{N} N(\mathbf{x}_{i}|\mu_{z_{i}}, \theta_{z_{i}})\pi_{z_{i}}$$

$$= \prod_{i=1}^{N} N(\mathbf{x}_i | \mu_{z_i}, \theta_{z_i}) \pi_{z_i}$$

• Since we do not know the z_i values, we do not just guess one value - we average over all possible values for z_i . In other words, we take the expectation of the complete likelihood with respect to z

(5)
$$Q(\Theta, \Theta^t) = \mathbb{E}\left[\ln p(\mathbf{X}, \mathbf{z}|\Theta)|\mathbf{X}, \Theta^t\right]$$

(6)
$$= \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{X}, \Theta^t) \ln p(\mathbf{X}, \mathbf{z}|\Theta)$$

(7)
$$= \sum_{i=1}^{N} \sum_{z_i=1}^{K} p(z_i | \mathbf{x}_i, \Theta^t) \ln p(\mathbf{x}_i, z_i | \Theta)$$

(8)
$$= \sum_{i=1}^{N} \sum_{z_i=1}^{K} p(z_i|\mathbf{x}_i, \Theta^t) \ln p(\mathbf{x}_i|z_i, \Theta) p(z_i)$$

• Thus, to take the expectation, we need $p(z_i|\mathbf{x}_i, \Theta^t)$

(9)
$$p(z_i|\mathbf{x}_i, \Theta^t) = \frac{\pi_{z_i}^t p_{z_i}(\mathbf{x}_i|\theta_{z_i}^t, z_i)}{p(\mathbf{x}_i|\Theta^t)}$$

(10)
$$= \frac{\pi_{z_i}^t p_{z_i}(\mathbf{x}_i | \theta_{z_i}^t, z_i)}{\sum_{k=1}^K \pi_k^t p_k(\mathbf{x}_i | \theta_k^t, k)}$$

• This completes the Expectation step in EM. Now, we must derive the update equations for the Maximization step. So, we need to maximize for π_k, Σ_k, μ_k .

1. Update Equation for mu_k

• For simplicity, let us assume that $\Sigma_k = \sigma_k^2 \mathbf{I}$

(11)
$$Q(\Theta, \Theta^t) = \sum_{i=1}^{N} \sum_{z_i=1}^{K} p(z_i | \mathbf{x}_i, \Theta^t) \ln p(\mathbf{x}_i | z_i, \Theta) p(z_i)$$

(12)
$$= \sum_{i=1}^{N} \sum_{k=1}^{K} p(z_i = k | \mathbf{x}_i, \Theta^t) \ln N(\mathbf{x}_i | \mu_k, \sigma_k^2) \pi_k$$

(13)
$$= \sum_{i=1}^{N} \sum_{k=1}^{K} p(z_i = k | \mathbf{x}_i, \Theta^t) \ln N(\mathbf{x}_i | \mu_k, \sigma_k^2) + \ln \pi_k$$

(14)
$$= \sum_{i=1}^{N} \sum_{k=1}^{K} p(z_i = k | \mathbf{x}_i, \Theta^t) \left(-\frac{d}{2} \ln \sigma_k^2 - \frac{1}{2\sigma_k^2} \| \mathbf{x}_i - \mu_k \|_2^2 + \ln \pi_k \right)$$

$$\left(\frac{\partial Q(\Theta, \Theta^t)}{\partial \mu_k}\right) = \frac{\partial}{\partial \mu_k} \left[\sum_{i=1}^N \sum_{k=1}^K p(z_i = k | \mathbf{x}_i, \Theta^t) \left(-\frac{d}{2} \ln \sigma_k^2 - \frac{1}{2\sigma_k^2} \|\mathbf{x}_i - \mu_k\|_2^2 + \ln \pi_k \right) \right] = 0$$

(16)
$$= \sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t) \left(\frac{1}{\sigma_k^2} \left(\mathbf{x}_i - \mu_k \right) \right) = 0$$

(17)
$$= \sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t) \frac{\mathbf{x}_i}{\sigma_k^2} - \sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t) \frac{\mu_k}{\sigma_k^2} = 0$$

(18)
$$= \sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t) \frac{\mathbf{x}_i}{\sigma_k^2} = \sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t) \frac{\mu_k}{\sigma_k^2}$$

(19)
$$= \sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t) \mathbf{x}_i = \sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t) \mu_k$$

(20)
$$\mu_k = \frac{\sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t) \mathbf{x}_i}{\sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t)}$$

2. Update Equation for σ_k^2

$$\left(\frac{\partial Q(\Theta, \Theta^t)}{\partial \sigma_k^2}\right) = \frac{\partial}{\partial \sigma_k^2} \left[\sum_{i=1}^N \sum_{k=1}^K p(z_i = k | \mathbf{x}_i, \Theta^t) \left(-\frac{d}{2} \ln \sigma_k^2 - \frac{1}{2\sigma_k^2} \|\mathbf{x}_i - \mu_k\|_2^2 + \ln \pi_k \right) \right] = 0$$

(22)
$$= \sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t) \left[\left(-\frac{d}{2\sigma_k^2} + \frac{2}{2(\sigma_k^2)^2} \| \mathbf{x}_i - \mu_k \|_2^2 \right) \right] = 0$$

(23)
$$= \sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t) \frac{2d}{2\sigma_k^2} = \sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t) \frac{1}{(\sigma_k^2)^2} \| \mathbf{x}_i - \mu_k \|_2^2$$

(24)
$$= \sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t) d = \sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t) \frac{1}{\sigma_k^2} \| \mathbf{x}_i - \mu_k \|_2^2$$

(25)
$$= \sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t) d = \frac{1}{\sigma_k^2} \sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t) \| \mathbf{x}_i - \mu_k \|_2^2$$

(26)
$$= \sigma_k^2 = \frac{\sum_{i=1}^N p(z_i = k | \mathbf{x}_i, \Theta^t) \|\mathbf{x}_i - \mu_k\|_2^2}{d\sum_{i=1}^N p(z_i = k | \mathbf{x}_i, \Theta^t)}$$

3. Update Equation for π_k

$$\frac{\partial Q(\Theta, \Theta^t)}{\partial \pi_k} = \frac{\partial}{\partial \pi_k} \left[\sum_{i=1}^N \sum_{k=1}^K p(z_i = k | \mathbf{x}_i, \Theta^t) \left(-\frac{d}{2} \ln \sigma_k^2 - \frac{1}{2\sigma_k^2} \| \mathbf{x}_i - \mu_k \|_2^2 + \ln \pi_k \right) - \lambda \left(\sum_{k=1}^K \pi_k - 1 \right) \right] = 0$$

$$= \sum_{i=1}^N p(z_i = k | \mathbf{x}_i, \Theta^t) \left(\frac{1}{\pi_k} \right) - \lambda = 0$$

$$= \left(\frac{1}{\pi_k} \right) \sum_{i=1}^N p(z_i = k | \mathbf{x}_i, \Theta^t) - \lambda = 0$$

$$= \sum_{i=1}^N p(z_i = k | \mathbf{x}_i, \Theta^t) = \lambda \pi_k$$
(27)

Since $\sum_k \pi_k = 1$, then:

$$\sum_{k=1}^{K} \frac{\sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t)}{\lambda} = \sum_{k=1}^{K} \pi_k = 1$$
$$\lambda = \sum_{k=1}^{K} \sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t)$$
(28)

So:

(29)
$$\pi_k = \frac{\sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t)}{\sum_{k=1}^{K} \sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t)}$$

(30)
$$= \frac{\sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t)}{\sum_{i=1}^{N} \sum_{k=1}^{K} p(z_i = k | \mathbf{x}_i, \Theta^t)}$$

(31)
$$= \frac{\sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t)}{\sum_{i=1}^{N} 1}$$

(32)
$$= \frac{\sum_{i=1}^{N} p(z_i = k | \mathbf{x}_i, \Theta^t)}{N}$$

- We now have everything we need to implement the EM algorithm.
- Pseudo-code for the algorithm is:
 - Initialize all parameters
 - t = 1
 - While convergence not yet reached:
 - * E-step: Compute $p(z_i = k | \mathbf{x}_i, \Theta^t)$ for every \mathbf{x}_i and k
 - * M-step:

 - · Update μ_k for all k· Update σ_k^2 for all k· Update π_k for all k
 - $*\ t=t{+}1$
 - * Check convergence criteria
- Does the EM algorithm find a global optima?
- Run EM Code