美習

Webページの「午後の実習」

シングルセルRNA-seq解析

細胞集団の多様性~細胞の多様性

細胞型

Cell type

細胞状態

Cell state

分化ポテンシャル

Differentiation potential

細胞の性質は遺伝子発現に反映される

ゲノムは同じ (はず)

RNA-seq: 網羅的に遺伝子発現を計測

"バルク" RNA-seq

個々の細胞を区別しない

細胞集団の平均の 遺伝子発現量 細胞集団の平均の遺伝子発現量を 計測できる

どの細胞由来のRNA(cDNA)なのかわからない

問題点: シンプソンのパラドックス

細胞集団には性質の異なる細胞型(亜集団)が 混在する場合、現象を反映しない

DOI: 10.1101/gr.190595.115

scRNA-seq: 細胞ごとに遺伝子発現を計測

scRNA-seq single-cell RNA sequencing

細胞ごとの遺伝子発現量を計測 できる

どの細胞由来のRNA(cDNA)なのかわかる

→細胞集団の構造(細胞の種

類・組成)を明らかにできる

不均一な細胞集団構成の理解

事前知識・マーカーがなくても細胞集団の組成(細胞型・サブタイプ)を明らかにできる

e.g., 不均一な細胞が混合した組織、オルガノイド

マウス網膜の細胞群

新規サブタイプの発見・マーカーの同定

DOI: 10.1016/j.cell.2015.05.002

主観的時間・系譜を推定する

細胞の主観的時間(擬時間)や系譜を、時間の情報なしに再構築する

不均一な細胞が混在する 系で細胞状態の時間発展 を再現できる

e.g. 細胞分化、刺激応答

細胞を分化進行度に応じて並べ替える

(線維芽細胞から筋芽細胞への分化誘導)

scRNA-seqの仕組み (Cell barcode)

細胞単位での超マルチプレックス化

実験: マルチプレックスの前に細胞ごとに異なる目印(Cell barcode配列)が付与

データ解析: Cell barcode配列に基づいてNGSのリードを細胞に振り分ける

シングルセル解析の流れ

不要な細胞の除去

低品質・empty (検出遺伝子数が低い)

ダブレット (検出遺伝子数が高い)

正規化

細胞間でのリード数・ UMI数の差を補正する (細胞ごとに合計値で割 る、log変換するなど)

スケーリング

遺伝子間での発現量の値 の範囲を揃える (次元圧縮、クラスタリ ング、ヒートマップなど で高発現遺伝子の影響を 抑える)

遺伝子の選択

後の解析に都合の良い遺 伝子を選びたい (高変動遺伝子、高Gini 係数遺伝子など)

シングルセル解析の流れ

次元圧縮

クラスタリング

マーカー遺伝子選択

細胞間コミュニケーション

行列としてのscRNA-seq

サンプル (細胞) 数: N

遺伝子数: M

遺伝子発現量

*普通のRNA-seqはレプリケイト(繰り返し実験)

メタデータ

細胞側のメタデータ

(例:検出遺伝子数、ミトコンドリアのリードの割合、

細胞のラベル、FACSの計測値)

遺伝子側のメタデータ

(例:遺伝子オントロジー、パスウェイ)

メタデータを前処理や解析に利用することが可能

課題

いずれのうち少なくとも一方を行い、manabaで提出せよ。 提出期限は2/3 17:00とする。両方提出することも可能であるが、評価はより良い方でつける。

- (1) 発展課題を提出せよ。
- (2) 一般課題を提出せよ。

一般課題

次元圧縮やクラスタリングの際のパラメータ(オプション)の値を変えた時、結果がどう変わるかを述べよ。

また、Jupyterの結果も提出せよ

上のメニューから "File" > "Download as" > "HTML (.html)" を選び、 HTMLファイルを提出せよ

発展課題

各クラスターに特徴的な遺伝子から、各クラスターの細胞の機能を類推せよ joinを使うとよい

また、Jupyterの結果も提出せよ

上のメニューから "File" > "Download as" > "HTML (.html)" を選び、 HTMLファイルを提出せよ