Integration

Xie Zejian

Contents

Expectation and integration	1
Integration	-
Properties of Lebesgue integrals	
Riemann Integration	f

Expectation and integration

Integration

Let f be Borel measurable on $(\Omega, \mathcal{A}, \mu)$. The **integral** of f w.r.t μ is denoted by

$$\int f(\omega)\mu(d\omega) = \int fd\mu = \int f$$

1. If $f = \sum_{1}^{n} a_i I_{A_i}$ with $a_i \ge 0$,

$$\int f d\mu = \sum_{1}^{n} a_{i} \mu \left(A_{i} \right)$$

2. If $f \geq 0$, define

$$\int f d\mu = \lim_{n} \int f_n d\mu$$

where f_n are simple functions and $f_n \nearrow f$.

3. For any f, we have $f = f^+ - f^-$, define

$$\int f d\mu := \int f^+ d\mu - \int f^- d\mu$$

4. f is said to be integrable w.r.t. μ if $\int |f| d\mu < \infty$. We denote all integrable functions by L^1 .

Proposition

1. If f is positive and $a \leq f(x) \leq b$ and $\mu(\Omega) > \infty$, then

$$a\mu(\Omega) \le \int f d\mu \le b\mu(\Omega)$$

2. The integral of f w.r.t μ over A is defined by

$$\int_{A} f d\mu = \int f I_{A} d\mu = \int f(\omega) I_{A}(\omega) \mu(d\omega)$$

If $\mu(A) = 0$ and f > 0, then

$$\int_{A} f d\mu = 0$$

MCT

Suppose nonnegative $f_n \nearrow f$, then $\int f_n d\mu \nearrow \int f d\mu$.

Proof Note $\int f_n d\mu \leq \int f d\mu$, $\int f_n d\mu$ must converges to some $L \leq \int f$. Then we show $L \geq \int f$.

Let $s = \sum a_i \chi_{E_i}$ be simple function and $s \leq f$. Let $A_n = \{x : f_n(x) \geq cs(x)\}$ where $c \in (0,1)$, then $A_n \nearrow X$. For each n

$$\int f_n \ge \int_{A_n} f_n \ge c \int_{A_n} s$$

$$= c \int_{A_n} \sum a_i \chi_{E_i}$$

$$= c \sum a_i \mu(E_i \cap A_n)$$

$$\nearrow c \int s$$

hence $L \ge c \int s \implies L \ge \int s \implies L = \lim L \ge \lim \int s_n = \int f$.

If f and g are intergrable or $f, g \ge 0$, then

note where f_n is integrable not enough since MCT not hold.

$$\int f + g = \int f + \int g$$

Moreover, if $f_n > 0$ then

$$\int \sum_{1}^{\infty} f_n = \sum_{1}^{\infty} \int f$$

Fatou's lemma

If $f_n \geq 0$ then

$$\int \left(\liminf_{n} f_{n} \right) \le \liminf_{n} \int f_{n}$$

Proof Suppose $g_n = \inf_{i \geq n} f_i$ and recall that $\lim g_n = \liminf f_n$. Clearly $g_n \leq f_i \forall i \geq n$ hence

$$\int g_n \le \inf_{i \ge n} \int f_i$$

Take limit both side and note g_n is increasing:

$$\lim \int g_n = \int \lim g_n = \int \lim \inf f_n \le \lim \inf \int f_n$$

Dominated convergence theorem

Suppose $f_n(x) \to f(x) \forall x$, and there exists a nonnegative integrable g s.t. $|f_n(x)| \leq g(x)$ (then we get $f_n \in L^1$ immediately), then

$$\lim \int f_n d\mu = \int f d\mu$$

Proof Since $f_n + g \ge 0$

$$\int f + \int g = \int f + g \le \liminf \int f_n + g = \liminf \int f_n + \int g$$

thus $\int f \le \lim \inf_{n \to \infty} \int f_n$. Similarly, we can get $\int f \le \lim \inf_{n \to \infty} \int f_n$ from $g - f_n \ge 0$.

Properties of Lebesgue integrals

Criteria for zero a.e.

Suppose f is measurable and non-negative and $\int f d\mu = 0$. Then f = 0 a.e.

Suppose f is integrable and $\int_A f = 0$ for all measurable A. Then f = 0 a.e.

Suppose $f: \mathbb{R} \to \mathbb{R}$ is integrable and $\int_a^x f = 0$ for all x, then f = 0 a.e.

Proof For any interval I = [c, d],

$$\int_{i} f = \int_{a}^{d} f - \int_{a}^{c} f = 0$$

Then the integral is 0 for finite disjoint union of intervals from additivity. Note open sets G can be written as countable union of disjoint open intervals $G = \sum_{1}^{\infty} I_{i} = \lim \sum_{n} I_{n} \Longrightarrow$

$$\int_{G} f = \int f \chi_{G} = \int f \sum_{i=1}^{\infty} \chi_{I_{i}} = \int \lim_{i \to \infty} f \sum_{i=1}^{\infty} \chi_{I_{i}} = \lim_{i \to \infty} \int f \sum_{i=1}^{\infty} \chi_{I_{i}} = 0$$

If $G_n \searrow H$, then

$$\int_{H} f = \int f \chi_{H} = \int \lim f \chi_{G_{n}} = \lim \int f \chi_{G_{n}} = \lim \int_{G_{n}} f = 0$$

where we apply DMT twice and take domiated function g = |f|.

Finally, for any borel measurable set E, there is $G_{\delta} \supset E$ and $m(G_{\delta} - E) = 0$, then

$$\int_{E} f = \int f \chi_{E} = \int f \chi_{G_{\delta}} = \int_{G_{\delta}} f = 0$$

Recall proposition $\mathbf{2}$, we are done.

(**Absolute integrability**). $\int f$ is finite iff $\int |f|$ is finite.

(Linearity) If $f, g, a, b \ge 0$ or $f, g \in L^1$

$$\int (af + bg) = a \int f + b \int g$$

(σ additivity over sets) If $A = \sum_{i=1}^{\infty} A_i$, then

$$\int_{A} f = \sum_{i=1}^{\infty} \int_{A_i} f$$

(Positivity) If $f \ge 0$ a.s., then $\int f \ge 0$

(Monotonicity) If $f_1 \leq f \leq f_2$ a.s., then $\int f_1 \leq \int f \leq \int f_2$

(Mean value theorem) If $a \le f \le b$ a.s., then

$$a\mu(A) \le \int_A f \le b\mu(A)$$

(Modulus inequality): $|\int f| \le \int |f|$

(Fatou's) inequality If $f_n \geq 0$ a.s., then

$$\int \left(\liminf_{n} f_{n} \right) \le \liminf_{n} \int f_{n}$$

(Dominated Convergence Theorem) If $f_n \to f$ a.s., $|f_n| \le g$ a.s. for all n and $\int g < \infty$, then

$$\lim_{n} \int f_n = \int f = \int \lim_{n} f_n$$

(Monotone Convergence Theorem) If $0 \le f_n \nearrow f$, then

$$\lim_{n} \int f_n = \int f = \int \lim_{n} f_n$$

(Integration term by term) If $\sum_{i=1}^{\infty} \int |f_n| < \infty$, then

$$\sum_{i=1}^{\infty} |f_n| < \infty, \ a.s.$$

and

$$\int \left(\sum_{i=1}^{\infty} f_n\right) = \sum_{i=1}^{\infty} \int f_n$$

An approximation result

Suppose $f: \mathbb{R} \to \mathbb{R}$ is integrable, then $\forall \epsilon > 0$, there exists a continuous g with compact support and

$$\int |f - g| < \epsilon$$

Proof Note $\int f\chi_{[-n,n]} \nearrow \int f$, hence we may assume f is bounded.

If $f = \chi_A$, there exist $F \subset A \subset G$ and $m(G - F) < \epsilon$, take $\delta = d(K, G^c)$, let

$$g(x) = \left(1 - \frac{d(x, F)}{\delta}\right)$$

Then g has compact support \overline{G} and $\int |g - \chi_A| \le \int \chi_G - \chi_F = m(G - F) < \epsilon$.

If $f = \sum a_i \chi_{A_i}$ is simple with bounded A_i . Then we may take $g = \sum a_i g_i$ with compact support is $\overline{\cup G_i}$.

If f is non-negaive, there exist $\int s_n \nearrow \int f$, then we can pick s s.t.

$$\int |f-s| < \epsilon/2$$

and we can pick

$$\int |s-g| < \epsilon/2$$

hence we find $\int |f - g| < \epsilon$.

Riemann Integration

Suppose an interval I and $f:I\to\mathbb{R}$ is riemann integrable