# Vision Navigation System to Manoeuvre Unmanned Aerial vehicle (UAV)

## The Research (The Problem)

#### Can an UAV robot be an explorer?

The aim of this research is to investigate the development of an on-board multidirectional stereo vision system enabled to autonomously navigate a miniature UAV – Quadrotor, to explore unknown, unmapped and cluttered environments.

#### The on-board Multidirectional stereo vision system will enable the UAV-Quadrotor to flv:

- Fully Autonomously.
- Beyond the line of sight.
- Without GPS signal no GPS localization.
- In environments with high electrical and magnetic interference. No IMU (inertial measurement unit) - too much interference.
- In environments with low lighting conditions.
- Randomly detect and avoid obstacles and explore an unknown environment.

## Methodology

The Vision System (Software Algorithm)

At every instant (at 20 Image/second) acquiring the images from the five stereo cameras the algorithm performed under the assumption that:

- The stereo vision system has 360 degree stereo vision coverage. During flying it is able to detect edges, corner, curved surfaces and flat surfaces features of the surrounding environment landmarks.
- Depth information and optical flow will be calculated on the sub-pixel level.
- The UAV-Quadrotor at the hovering position is stable and at a safe altitude stabilized by the onboard flight controller.
- The UAV-Quadrotor receives its flight commands from the onboard vision system computer and not from remote pilot.
- The vision system will navigate the UAV-Quadrotor goalless. Navigation is based on visually detect and visually avoid obstacles (landmarks), then proceed to explore the surrounding environment.





### P.T. Saleh, J.Penders and L.Alboul FID ROBOTICS

Materials and Engineering **University** Research Institute



## The Multidirectional Vision System

#### Stereo Cameras orientation:



**UAV-Quadrotor TOP VIEW** 



Length: 600mm Wide:600mm Maximum weight: 4000g

## Simultaneous Localization and Exploration Oriented Visual Navigation (SLAEOVN).



Visual Navigation – environment landmarks feature detection