1 Проверка гипотез

1.1 Общие сведения

1.1.1 Примеры гипотез

Пусть H_0 — это гипотеза (hypothesis), т.е. некоторое предположение о случайной величине ξ , которое мы хотим проверить (модель — это предположение, которое считается верным без проверки). Она называется нулевой (null hypothesis), потому что позднее появится альтернативная к ней.

Важно, что гипотеза — предположение о неизвестном законе распределения ξ , а не о выборке.

Например, гипотеза о том, что мат.ож. давления до и после приема лекарств одинаково. Или гипотеза о том, что распределение ошибки прибора нормальное, или о том, что распределение генератора псевдослучайных чисел равномерное на [0,1], или что. Или о том, что зависимости между временем на смотрением анимэ и успехами в учебе нет. Тут прослеживается такая особенность: в гипотезе обычно предполагается, что эффекта нет, так как решение принимается, если гипотеза отвергается.

Задание 1: Напишите, какую гипотезу вам было бы интересно проверить и какие данные для этого нужно было бы собрать?

1.1.2 Критерий

Для проверки гипотезы применяется критерий. Критерий — это правило, по которому гипотеза либо отвергается, либо не отвергается. Про построение такого правила — позже.

Правило строится на основе выборки. Разумное решение: нам нужно построить правило, которое, как уже говорилось, показывает, насколько выборка отличается от тех предположений, которые постулируются в гипотезе. Если отличается сильно, то гипотеза отвергается.

Измерять отличие удобно в числах. Поэтому вводится статистика критерия (функция от выборки, на основе которой строится критерий) $t = t(x_1, \ldots, x_n)$, которая выборке сопоставляет число.

Например, гипотеза про то, что H_0 : $\mathsf{E}\xi=0$ (например, условия тренировки не влияют на результат (средняя разница в результатах нулевая)). В этом

случае, 0 — ожидаемое значение (expected), выборочное среднее \bar{x} — наблюдаемое значение (observed). Их разница как раз измеряет отличие. Однако, просто по разнице не сказать, отличие большое или нет. И вообще, числа могут получиться случайно, на их основе теорию не построить. Поэтому нужен статистический подход, который мы опишем ниже.

На основе результатов критерия принимают решения. Например, если лекарство показало эффективность (гипотезу о том, что оно неэффективно, отвергли), то его запускают в производство.

1.1.3 Нет безошибочных решений

Проблема: случайно может произойти что угодно, т.е. безошибочных решений практически не бывает. Приходится задавать максимальный уровень вероятности ошибки, на который можно согласиться при принятии решения.

Задаем маленький уровень значимости (significance level) $0 < \alpha < 1$ и соглашаемся, что с вероятностью α будем принимать неправильное решение.

Что такое маленький? Это зависит от критичности ошибки при принятии решения. Например, принять решение о полете и полететь на неисправном самолете или принять решение взять зонт и зря носить зонт в сумке весь день.

Задание 2: Придумайте ситуацию (гипотезу), когда она верна, а вы ошибочно считаете, что на не верна и поэтому принимаете неверное решение. В одном случае на вероятность ошибочного решение больше 0.001 вы бы точно не согласились. Вторая ситуация — когда согласились бы и на 0.2, но, пожалуй, не больше.

1.1.4 Статистический критерий

Чтобы построить теорию и отвечать на вопрос, маленькое или большое значение статистики критерия, отвергать гипотезу или нет, нужно перейти на теоретический язык. Т.е., нужно рассматривать абстрактную выборку, 'до эксперимента', где x_i — одинаково распределенные независимые случайные величины с тем же распределением, что и у ξ .

Таким образом, и статистика критерия $t = t(x_1, \dots, x_n)$ — тоже случайная величина. Если верна H_0 , то t имеет некоторое распределение и принимает некоторый диапазон значений.

Например, для модели $\xi \sim N(a,\sigma^2)$ и гипотезы H_0 : $\mathsf{E}\xi=0$, статистика критерия $t=\sqrt{n}\bar{x}/\sigma$ имеет распределение N(0,1). Видим, что возможны любые значения. Однако, если мы допускаем некоторую вероятность ошибочно отвергнуть верную нулевую гипотезу, то критерий можем построить. Обычно главное — контролировать эту вероятность.

Разбиваем значения статистики критерия на две части, доверительную и критическую область так, что вероятность для статистика критерия попасть в критическую область равна α .

Задание 3. Нарисуйте плотность распределения статистики критерия $t = \sqrt{n}\bar{x}/\sigma$ при условии, что верна нулевая гипотезы, и разбейте область значений на две части, доверительную и критическую. Сделайте это разумным образом, чтобы было разумно значения из критической области считать не соответствующими справедливости нулевой гипотезы.

Формальное определение Назовем критерием разбиение области значений статистики критерия на две части, $A_{\alpha}^{(\text{крит})}$ и $A_{\alpha}^{(\text{дов})}$, такие что вероятность ошибки первого рода $\alpha_I = \mathsf{P}_{H_0}(t \in A_{\alpha}^{(\text{крит})}) = \alpha$.

После того как критерий построен, пользуемся им уже в режиме 'после эксперимента', когда выборка и значение статистики критерия — числа. Если число t попадает в критическую область, то гипотеза отвергается. Иначе — не отвергается (но нельзя говорить, что принимается, это обсудим позднее).

Итак, важно (!): разбиение на доверительную и критическую область строится на теор. языке, для абстрактной выборки. А используется это разбиение уже для конкретной выборки, чисел.

Допустимо строить разбиение так, чтобы выполнялось $\alpha_I \leq \alpha$ (тогда критерий называется консервативным).

Часто удается построить только асимптотический критерий, когда $\alpha_I \to \alpha$ при $n \to \infty$. В этом случае критерий можно применять при достаточно (для критерия) большом объеме выборки, где допустимый объем выборки зависит от скорости сходимости.

Ниже более подробно.

1.2 Схема построение критерия на основе статистики критерия

- 1. Строим статистику критерия t так, что:
 - Статистика критерия t должна измерять то, насколько выборка соответствует гипотезе. В этом случае мы получаем значение статистики критерия для «идеального соответствия».

Например, если гипотеза про математическое ожидание H_0 : $\mathsf{E}\xi=a_0$, то $t=\bar{x}-a_0$ подходит под это требование. Если гипотеза про дисперсию H_0 : $\mathsf{D}\xi=\sigma_0^2$, то соответствие правильнее измерять отношением и поэтому подошло бы $t=s^2/\sigma_0^2$.

Пример. Пусть H_0 : $\mathsf{E}\xi = a_0$; тогда $t = \bar{x} - a_0$ и «идеальное значение» t = 0.

1 Проверка гипотез

• Распределение t при верной H_0 должно быть известно хотя бы асимптотически. Из-за этого часто преобразовывают меры несоответствия, приведенные выше. Для H_0 : $\mathsf{E}\xi=a_0$ в модели $\xi\sim N(a,\sigma^2)$ с известной дисперсией σ^2 удобно использовать статистику критерия $t=\sqrt{n}(\bar{\mathbf{x}}-a_0)/\sigma\sim N(0,1)$.

Для H_0 : $\mathsf{D}\xi = a_0$ в модели $\xi \sim N(a,\sigma^2)$ известно распределение статистики критерия $t = ns^2/\sigma_0^2 \sim \chi_{n-1}^2$.

- 2. Строим разбиение области значений статистики критерия t так, что:
 - $P(t \in A_{\alpha}^{\text{крит}}) = \alpha$.
 - Если альтернативная гипотеза H_1 (см. про нее в след.разделе) не конкретизирована, то $A_{\alpha}^{(\text{крит})}$ следует выбрать так, чтобы она располагалась как можно дальше от идеального значения.

Пример. Обозначения: pdf (probability distribution function) — это плотность, a cdf (cumulative distribution function) — это функция распределения.

В случае $t \sim N(0,1)$ при идеальном значении 0, разумно определить $A_{\alpha}^{(\text{крит})}$ «на хвостах» графика плотности $\mathrm{pdf}_{N(0,1)}$ симметрично по обе стороны от 0 так, что для $A_{\alpha}^{(\text{крит})} = (-\infty, -t_{\alpha}) \cup (t_{\alpha}, \infty)$

$$\alpha/2 = \int_{-\infty}^{-t_{\alpha}} \mathrm{pdf}_{N(0,1)}(y) \, \mathrm{d}y = \int_{t_{\alpha}}^{+\infty} \mathrm{pdf}_{N(0,1)}(y) \, \mathrm{d}y.$$

Иными словами,

$$\alpha/2 = 1 - \operatorname{cdf}_{N(0,1)}(t_1) \implies t_1 = \operatorname{cdf}_{N(0,1)}^{-1}(1 - \alpha/2)$$

и аналогично для t_0 . Границы доверительной области часто называют критическими значениями.

• На будущее: если H_1 известна, то $A_{\alpha}^{(\text{крит})}$ выбирается так, чтобы максимизировать мощность критерия против альтернативы H_1 , определения будут позже.

1.2.1 Пример с числами

Общая схема всех примеров будет как написано ниже.

- Модель/предположения: (необязательно, но если есть, то это нужно проверять/обсуждать до использования критерия)
- Гипотеза: H_0 : ...
- Статистика критерия t = ...:
- Ее распределение при условии, что верная H_0 : ... выписано распределение. Если распределение асимптотическое, то при применении критерия нужно обращать внимание на объем выборки.
- Разбиение значений статистики критерия на доверительную и критическую области.
- Дана выборка, дан уровень значимости.
- Задание: проверить гипотезу, сказать, отвергается она или нет.

Как решать:

- 1. Теор.часть, выборка абстрактная, уровень значимости α тоже произвольный. По виду статистики критерия вы понимаете, какое значение соответствует 'идеальному' соответствию данных гипотезе. Рисуете график плотности статистики критерия и разбиваете значения на доверит. и крит. части, чтобы вероятность попасть в крит. область была равна α . В крит.область включаете значения, наиболее далекие от 'идеального'.
- 2. Практическая часть, выборка состоит из чисел, уровень значимости конкретное число. Подставляете в формулу статистики критерия числа, получаете число, обозначим t_0 . Затем считаем, чему равны критические значения (граница(ы) между критической и доверительной областями). Эти числа выражаются через обратную функцию распределения (это квантили). Значения можно вычислить в R или Python, см. ниже приложение. Рисуем снова график плотности статистики критерия, отмечаем там найденные числа, показываем, где критическая область, где доверительная. На основе того, куда попало t_0 , делаем вывод, отвергается или нет нулевая гипотеза.

Ниже я буду давать три варианта, в зависимости от остатка деления дня рождения на 3.

Задание 4: Провести эту схему (записать то, что выше, с самого начала, со слова Модель) для уже разобранного выше критерия со статистикой

критерия $t = \sqrt{n}(\bar{\mathbf{x}} - a_0)/\sigma$. Там дисперсия σ^2 предполагается известной. Пусть она равна 1.44. Гипотеза: $H_0: \mathsf{E}\xi = a_0$, где (0) $a_0 = -1$, (1) 0.5, (2) 1. Примените критерий для выборки (0,2,1,-1,-2) и уровня значимости (0) $\alpha = 0.05$, (1) 0.1, (2) 0.2.

Задание 5: Провести эту схему для следующей постановки задачи.

Модель: ξ имеет распределение Бернулли с неизвестным параметром, вероятностью успеха p. Напомню, что это означает, что она принимает значения 0 и 1, 1 (успех) с вероятностью p.

Гипотеза: $H_0: p = p_0$ Статистика критерия:

$$t = \sqrt{n} \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)}},$$

где $\hat{p} = \bar{x}$, что логично, так как сумма значений выборки — это в точности число успехов.

Ее распределение при условии, что H_0 верна: $t \stackrel{\mathrm{d}}{\to} \mathrm{N}(0,1)$ (т.е. это асимптотический критерий).

Дана выборка в виде: число успешных собеседований 45, неуспешных — 55. Проверить гипотезу (0) $H_0: p=0.45,$ (1) 0.5, (2) 0.4, уровень значимости (0) $\alpha=0.2,$ (1) 0.05, (2) 0.1.

Задание: проверить гипотезу, сказать, отвергается она или нет.

Задание 6: Провести эту схему для следующей постановки задачи.

Модель: нет (но предполагается, что ξ принимает конечное число значений).

Гипотеза:

$$H_0: \mathcal{P}_{\xi} = \mathcal{P}_0, \;$$
где $\mathcal{P}_0: \begin{pmatrix} x_1^* & \dots & x_k^* \\ p_1 & \dots & p_k \end{pmatrix}.$

Статистика критерия:

$$T = \sum_{i=1}^{k} \frac{(n_i - np_i)^2}{np_i}.$$

Здесь такие обозначения: выборка \mathbf{x} сгруппирована, т.е. каждому x_i^* сопоставляем наблюдаемую абсолютную частоту n_i (сколько раз оно встретилось в выборке); np_i — ожидаемая абсолютная частота.

Ее распределение при условии, что H_0 верна: $T \stackrel{\mathrm{d}}{\to} \chi^2(k-1)$. (т.е. это асимптотический критерий). По поводу свойств и вида плотности распределения хи-квадрат отсылаем к википедии https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D1%85%D0%B8-%D0%BA%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82.

Дана выборка в виде: число успешных собеседований 45, неуспешных — 55. Проверить гипотезу, что это распределение Бернулли с p=0.5. Проверить для значений α от 0.01 до 0.99 с шагом 0.01.

Задание: проверить гипотезу, сказать, отвергается она или нет. Когда надоест перебирать уровни значимости, найдите такое пороговое значение, называемое p-значение, что при меньших уровнях значимости гипотеза не отвергается, а при бOльших — отвергается.

1.3 Понятие вероятностного уровня p-value.

Определение. $p ext{-}value$ — это такой значение, что при значениях уровня значимости α , больших $p ext{-}value$, H_0 отвергается (по причине попадания t в $A_{\alpha}^{\text{крит}}$), а при меньших — не отвергается.

p-value — не вероятность, это пороговое значение. Неформально его можно интерпретировать как меру согласованности H_0 и выборки. Например, при больших значениях p-value практически при всех разумных уровнях значимости гипотеза не отвергается. При близких к нулю значениях p-value, наоборот, гипотеза будет отвергаться.

p-value — максимальное значение уровня значимости, при котором гипотеза не отвергается (значение статистики критерия попадает в доверит. область). Или, что эквивалентно, минимальное значение уровня значимости, при котором гипотеза отвергается.

Если критическая область определяется через превышение статистики критерия некоторого значения t_0 , то есть еще определение p-value как вероятности того, что при повторных экспериментах статистика критерия будет больше, чем значение в текущем эксперименте. Это определение написано и в wikipedia, но оно не универсальное. Тем не менее, лучше его знать.

Задание 7 В заданиях 4, 5 и 6 найти p-value и сформулировать ответ в виде: при таких-то уровнях значимости гипотеза отвергается, при таких-то — не отвергается.

1.4 Приложение. Вычисление функции распределения и обратной к ней

```
https://rdrr.io/snippets/
```

###normal distribution N(a, sd^2)

По этому адресу можно делать вычисления он-лайн, вставив туда нужную часть кода

```
a < - 0
sd <- 1
x < -2
#cumulative distribution function (cdf)
cdf <- pnorm(x, mean = a, sd = sd) print(cdf)</pre>
#inverse to this cdf
x \leftarrow qnorm(cdf, mean = a, sd = sd)
print(x)
###chi-square distribution chi2(m), where m is degree of freedom
x < -240
m < -200
#cumulative distribution function (cdf) of chi2(m)
cdf <- pchisq(x, df = m) print(cdf)</pre>
#inverse to this cdf
x \leftarrow qchisq(cdf, df = m)
print(x)
  Просто онлайн калькуляторы:
https://planetcalc.ru/4986/, https://www.statdistributions.com/normal/
(для ф.р. нужен left tail) — нормальное распределение,
https://www.statdistributions.com/chisquare/ (для ф.р. нужен left tail)
— распределение хи-квадрат.
```