Labwork 3 – Report

Member: Phan Manh Tung – USTHBI8-160 Vu Tuan Phong – USTHBI8-139

T2 – Classification I

Data: For this labwork, we choose 2 dataset from UCI Machine Learning Repository namely Iris dataset and Breast Cancer Wisconsin dataset.

Tool: Python is our chosen programming language and we opt for google colab (a free python interactive environment offered by Google) for strong computing power and convenient coding.

I) Perceptron

1.1 Iris dataset:

In this problem, we attempt to implement the model from scratch. First, we prepare the demanding input for the model. Iris dataset has 3 classes, which is not suitable for our binary model. Therefore, we eliminate class Irissetosa, leaving the dataset with 100 sample divided into 2 classes namely, Irisvirginica, Iris-versicolor.

```
[181] import numpy as np
  import matplotlib.pyplot as plt
  import pandas as pd

column = ["sepal length", "sepal width", "petal length", "petal width", "class"]
  df = pd.read_csv("/content/gdrive/My Drive/iris.data", sep=',', header=None)
  df.columns = column
  myclass = df["class"]
  df.head(5)
```

₿		sepal length	sepal width	petal length	petal width	class
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa

```
[183] # Get rid of class "Iris-setosa":
    mydf = df[df['class'] != "Iris-setosa"]
    twoclass = mydf["class"]
    print(len(twoclass))
```


A linear classifier has the form:

$$f(\mathbf{x}) = \mathbf{w}\mathbf{x}^T + b$$

Because our activation function of Perceptron algorithm is the sign of f(x) – the hyperplane, so that we also have to change the labels of the dataset into values 1 and -1 (-1 is Iris-versicolor and 1 is Iris-virginica).

Then we divide the dataset into train/test set with the ratio of 70:30.

```
[184] X = mydf.drop(["class"], axis=1).values
    y = twoclass.values

# Turn the class into -1; 1 for training purpose
# Iris-versicolor = -1; Iris-virginica = 1
    y = np.where(y == "Iris-versicolor", -1, 1)

# splitting the data into training and test sets (70:30)
    from sklearn.model_selection import train_test_split
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=4)
```

Below part is our main implementation of the Perceptron algorithm. We follow the rule given on the slide.

Perceptron Algorithm

- intialize $\mathbf{w}_0 = \mathbf{0}$ (or close to $\mathbf{0}$)
- for all $\mathbf{x}_i \in \mathcal{X}$, if \mathbf{x}_i is misclassified

$$\mathbf{w}_t = \mathbf{w}_{t-1} + \alpha sign(f(\mathbf{x}_i))\mathbf{x}_i$$

• until all the data is correctly classified

```
[185] # Perceptron in action:
     def h(sl, sw, pl, pw, w1, w2, w3, w4, b):
         return np.sign(sl*w1 + sw*w2 + pl*w3 + pw*w4 + b)
     w1 = 0
     w2 = 0
     w3 = 0
     w4 = 0
     b = 0
     alpha = 0.1
     for j in range(100):
       for i in range(0, len(X train)):
         if h(X_train[i][0], X_train[i][1], X_train[i][2], X_train[i][3], w1, w2, w3, w4, b) != y_train[i]:
           w1 = w1 + alpha*y train[i]*X train[i][0]
           w2 = w2 + alpha*y_train[i]*X_train[i][1]
           w3 = w3 + alpha*y_train[i]*X_train[i][2]
           w4 = w4 + alpha*y train[i]*X train[i][3]
           b = b + alpha*y train[i]
     print(w1)
     print(w2)
     print(w3)
     print(w4)
     print(b)
```

C -5.67999999999973 -3.310000000000018 6.39999999999997 10.929999999999943 -6.299999999999994

The h() function is our activation function, which returns the sign of the hyperplane (value 1 or -1).

Because Iris dataset has 4 attributes: sepal length, sepal width, petal length, petal width. The hyperplane f(x) will contain 4 weights w1, w2, w3, w4 and bias value b. We initialize all 5 values at 0.

The learning rate (alpha) is set at 0.1

In the main for-loop, we have 100 iterations which is not a large value. Looping through the training set, for each misclassified point, we use that point to update our weights.

Then we use our model to make a very first prediction:

Afterwards, we use obtained weights to make predictions on the test set, then use the metric accuracy_score to compare with the y_test labels. Our model is 93.33% accurate on the testing set, which is a great result.

1.2 Using PCA for 2D visualization:

For easier visualization, we apply the PCA technique to reduce our 4-dimensional Iris dataset into a 2-dimensional dataset.

Then, we re-build the Perceptron algorithm with the new 2-dimensional dataset. This time, we have only 2 weights w1,w2 and 1 bias b to update.

```
def h(pc1, pc2, w1, w2, b):
        return np.sign(pc1*w1 + pc2*w2 + b)
    w1 = 0
    w2 = 0
    b = 0
    alpha = 1
    for j in range(1000):
      for i in range(0, len(X_pca)):
        if h(X_pca[i][0], X_pca[i][1], w1, w2, b) != y[i]:
          w1 = w1 + alpha*y[i]*X_pca[i][0]
          w2 = w2 + alpha*y[i]*X_pca[i][1]
          b = b + alpha*y[i]
    print(w1)
    print(w2)
    print(b)
   2.873257795532451
    3.899221277224042
    2
[ ] def which_flower(pc1, pc2):
        return np.sign(pc1*w1 + pc2*w2 + b)
    which flower(2,3)
[→ 1.0
```

```
from matplotlib.colors import ListedColormap
cmap_light = ListedColormap(['#AAAAFF','#AAFFAA','#FFAAAA'])
#generate all the points in the plane using np.meshgrid(np.arange(x min, x min, super small))
xx, yy = np.meshgrid(np.linspace(X_pca[:,0].min(), X_pca[:,0].max(), num=100), np.linspace(X_pca[:,1].min(), X_pca[:,1].max(), num=100))
Z = which_flower(xx.ravel(),yy.ravel())
Z = Z.reshape(xx.shape)
plt.figure()
# xx, yy are ALL the points in the plane, Z is the color of each area
# then plot the points using plt.scatter as usual
plt.pcolormesh(xx,yy,Z,cmap=cmap_light)
# Graph points
for i in range(0, len(X_pca)):
    if y[i] == 1:
        plt.scatter(X pca[i][0], X pca[i][1], c = 'r')
    elif y[i] == -1:
        plt.scatter(X_pca[i][0], X_pca[i][1], c = 'b')
plt.grid()
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.xlim(xx.min(),xx.max())
plt.ylim(yy.min(),yy.max())
     --x_min x_max y_min y_max
```


[] #MESH

We illustrate the final result with mesh color plot using matplotlib.pyplot. It is obvious that the hyperplane do a great job in dividing 2 distinct classes.

Comment on the convergence rate of Perceptron on Iris:

- The convergence rate of the dataset relies on our initialized weights' values, number of iterations and most importantly, the learning rate alpha.
- For this particular dataset, we would say that it converges relatively fast. Given alpha=1, all the weights and bias is initially set at 0, the algorithm gives 93% accurate predictions after just 100 iterations. And as we continue to experiment, our algorithm reaches 97% accurate predictions at 1000 iterations.

For further study, we implement Perceptron with Breast Cancer dataset. But this time, we use the built-in sklearn's perceptron for convenience.

This dataset has 2 classes (benign or malignant) given 9 different attributes ranging from 1 to 10.

We again prepare our X (data) and y (label), divide them into train/test set with the ratio of 90:10.

Then, we import the Perceptron from sklearn.linear_model. The perceptron.coef_ gives all the updated weights.

We use to model to make our predictions on the test set and calculate the accuracy score. 98.57% is a really good score for prediction.

```
[ ] X = df.replace("?", 1).values
   y = myclass.values
   from sklearn.model selection import train test split
   X train,X test,y train,y test = train test split(X,y,test size=0.1,random state=4)
[ ] from sklearn.linear model import Perceptron
   perceptron = Perceptron(tol=1e-3, random state=0)
   perceptron.fit(X train, y train)
   # The obtained weights after running the algorithm
   print(perceptron.coef )
[[-4. 19. 6. 4. -2. 15. 5. 6. 11.]]
[ ] y pred = perceptron.predict(X test)
   print(y pred)
[ ] sm.accuracy score(y pred, y test)
C→ 0.9857142857142858
```

II) K Nearest Neighbors.

2.1 Iris dataset

```
[ ] import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    column = ["sepal length", "sepal width", "petal length", "petal width", "class"]
    df = pd.read csv("/content/gdrive/My Drive/iris.data", sep=',', header=None)
    df.columns = column
    myclass = df["class"]
    df.head(5)
₽
        sepal length sepal width petal length petal width
                                                                  class
     0
                  5.1
                               3.5
                                              1.4
                                                           0.2 Iris-setosa
     1
                  4.9
                               3.0
                                              1.4
                                                           0.2 Iris-setosa
     2
                  4.7
                               3.2
                                              1.3
                                                           0.2 Iris-setosa
     3
                  4.6
                               3.1
                                              1.5
                                                           0.2 Iris-setosa
                  5.0
                                                           0.2 Iris-setosa
[ ] X = df.drop(["class"], axis=1).values
    y = myclass.values
[ ] # splitting the data into training and test sets (80:20)
    from sklearn.model_selection import train_test_split
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=4)
[ ] print(len(X train))
    print(len(y_train))
[→ 120
    120
```

KNN algorithm can work on multiple classes, not binary like Perceptron. Therefore, we quickly prepare our data: read it into dataframe with pandas, divide train/test (ratio 80:20).

We first implement to KNN with k=5, then report all the score of the dataset by comparing the prediction with the test labels.

It is clear that our model with k=5 works well in predicting all 3 classes. The overall accuracy is up to 97%, leaving only 3% classification error.

Then we vary k value from 2 to 19, then calculate the accuracy of each KNN.

The accuracy score remains constant when varying k.

```
[ ] for i in range(2,20):
      my knn = KNeighborsClassifier(n neighbors=i)
      my_knn.fit(X_train, y_train)
      y predict = my knn.predict(X test)
      print("Accuracy score with k =", i,"is",sm.accuracy score(y predict, y test))
Accuracy score with k = 3 is 0.966666666666667
    Accuracy score with k = 4 is 0.966666666666667
    Accuracy score with k = 5 is 0.966666666666667
    Accuracy score with k = 6 is 0.966666666666667
    Accuracy score with k = 7 is 0.966666666666667
    Accuracy score with k = 8 is 0.966666666666667
    Accuracy score with k = 9 is 0.966666666666667
    Accuracy score with k = 10 is 0.966666666666667
    Accuracy score with k = 11 is 0.966666666666667
    Accuracy score with k = 12 is 0.966666666666667
    Accuracy score with k = 13 is 0.966666666666667
    Accuracy score with k = 14 is 0.966666666666667
    Accuracy score with k = 15 is 0.966666666666667
    Accuracy score with k = 16 is 0.966666666666667
    Accuracy score with k = 17 is 0.966666666666667
    Accuracy score with k = 18 is 0.966666666666667
    Accuracy score with k = 19 is 0.966666666666667
```

Then, we normalize the dataset and repeat the same process. The result comes out nearly the same as applying KNN directly.

```
[ ] from sklearn.preprocessing import normalize
    X normalized = normalize(X)
    # Split train-test set
    X train,X test,y train,y test = train test split(X normalized,y,test size=0.2,random state=4)
    for i in range(2,20):
     my knn = KNeighborsClassifier(n neighbors=i)
     my knn.fit(X train, y train)
     y predict = my knn.predict(X test)
      print("Accuracy score with k =", i,"is",sm.accuracy_score(y_predict, y_test))
Accuracy score with k = 2 is 0.9666666666666666667
   Accuracy score with k = 3 is 0.966666666666667
    Accuracy score with k = 4 is 0.9666666666666667
   Accuracy score with k = 5 is 0.966666666666667
   Accuracy score with k = 6 is 0.966666666666667
   Accuracy score with k = 7 is 0.96666666666667
   Accuracy score with k = 9 is 0.966666666666667
   Accuracy score with k = 11 is 0.966666666666667
   Accuracy score with k = 12 is 0.966666666666667
    Accuracy score with k = 13 is 0.966666666666667
   Accuracy score with k = 14 is 0.966666666666667
    Accuracy score with k = 15 is 0.966666666666667
   Accuracy score with k = 16 is 0.966666666666667
    Accuracy score with k = 17 is 0.966666666666667
   Accuracy score with k = 18 is 0.966666666666667
   Accuracy score with k = 19 is 0.966666666666667
```

Afterwards, we apply PCA before implementing the KNN algorithm.

```
from sklearn.decomposition import PCA
   from sklearn import preprocessing
   scaled_data = preprocessing.scale(X)
   pca = PCA(n_components=2) # create a PCA object
   pca.fit(scaled data) # do the math
   X pca = pca.transform(scaled data) # get PCA coordinates for scaled data
   # Split train-test set
   X_train,X_test,y_train,y_test = train_test_split(X_pca,y,test_size=0.2,random_state=4)
   for i in range(2,20):
     my knn = KNeighborsClassifier(n neighbors=i)
     my_knn.fit(X_train, y_train)
     y predict = my knn.predict(X test)
     print("Accuracy score with k =", i,"is",sm.accuracy_score(y_predict, y_test))
\rightarrow Accuracy score with k = 2 is 0.9
   Accuracy score with k = 3 is 0.86666666666667
   Accuracy score with k = 4 is 0.9
   Accuracy score with k = 5 is 0.96666666666667
   Accuracy score with k = 6 is 0.966666666666667
   Accuracy score with k = 7 is 0.966666666666667
   Accuracy score with k = 8 is 0.966666666666667
   Accuracy score with k = 10 is 0.966666666666667
   Accuracy score with k = 11 is 0.966666666666667
   Accuracy score with k = 12 is 0.966666666666667
   Accuracy score with k = 13 is 0.966666666666667
   Accuracy score with k = 14 is 0.966666666666667
   Accuracy score with k = 15 is 0.966666666666667
   Accuracy score with k = 16 is 0.966666666666667
   Accuracy score with k = 17 is 0.966666666666667
   Accuracy score with k = 18 is 1.0
   Accuracy score with k = 19 is 0.96666666666667
```

The results is worse compared to previous approaches, due to the fact that PCA creates information loss to the original dataset.

Our KNN algorithm is based mainly on the value k chosen. So to improve our model, we propose a method of using k-cross validation to find the average accuracy after multiple implementation on different folds.

```
[ ] from sklearn.model selection import KFold
    avg accuracy list = []
    kfold = KFold(10, True, 1)
    for i in range(2,20):
     accuracy list = []
     for train index, test index in kfold.split(X):
       my knn = KNeighborsClassifier(n neighbors=i)
       X train, X test = X[train index], X[test index]
       y train, y test = y[train index], y[test index]
       my knn.fit(X train, y train)
       y predict = my knn.predict(X test)
       accuracy list.append(sm.accuracy score(y predict, y test))
     avg_accuracy = sum(accuracy_list)/len(accuracy list)
     avg accuracy list.append(avg accuracy)
     print("Accuracy with k =",i,"is", avg accuracy)
    print("The maximum value of accuracy: ",np.array(avg_accuracy_list).max())
    \# -----> k = 8,9,14,15
Accuracy with k = 2 is 0.9466666666666666
   Accuracy with k = 3 is 0.96666666666668
   Accuracy with k = 4 is 0.953333333333333
   Accuracy with k = 5 is 0.96000000000000002
   Accuracy with k = 7 is 0.953333333333333
   Accuracy with k = 10 is 0.9600000000000002
   Accuracy with k = 11 is 0.96666666666668
   Accuracy with k = 12 is 0.9600000000000002
   Accuracy with k = 13 is 0.96666666666668
   Accuracy with k = 14 is 0.9733333333333334
   Accuracy with k = 16 is 0.9600000000000002
   Accuracy with k = 17 is 0.96666666666668
   Accuracy with k = 18 is 0.9600000000000002
   Accuracy with k = 19 is 0.9600000000000002
   The maximum value of accuracy: 0.97333333333333334
```

We divide the dataset into 10 folds, record the accuracy score for each fold then averaging them. After that, we compare all the obtained averaged accuracy score. It is evident that k = 8,9,14,15 are the best values for k in our KNN algorithm.

Finally, we apply the Leave One Out - a special case of k-cross validation where number of folds = number of data points, leaving only 1 point for validation.

Classification Error is 3.33% as calculated.