

Prof. Anton Ovchinnikov

Prof. Spyros Zoumpoulis

DSB Classes 11-12, February 13, 2018

The Data Science Process

Structure of the course

- SESSIONS 1-2 (AO): Data analytics process; from Excel to R
 - Tutorial 1: Getting comfortable with R
- SESSIONS 3-4 (AO): Time Series Models
- SESSIONS 5-6 (AO): Intro to classification, logistic regression and machine learning
 - Tutorial 2: Midterm R help / classification
- SESSIONS 7-8 (SZ): Advanced Classification; From .R to Notebooks; Dimensionality reduction
- SESSIONS 9-10 (SZ): Dimensionality Reduction; Clustering and Segmentation
 - Tutorial 3: Q&A on R for three main modules
- SESSIONS 11-12 (SZ): The Data Science Process; Guest speaker
 - Tutorials 4, 5: Hands-on help on projects
- SESSIONS 13-14 (AO+SZ): Project presentations

Plan for the day Learning objectives

- The process of a data science project
 - Guest speaker: Elias Baltassis, Director Europe, Data & Analytics, The Boston Consulting Group
 - In-class assignment: reflect on the analytics process
 - Share, get feedback, extract learnings about the data science process

Elias Baltassis

- Director Europe, Data & Analytics, The Boston Consulting Group
- Industry expertise: financial services and insurance
- Before: Partner with Opera Solutions, partner with Bain
- INSEAD alum

In-class assignment

- Assignment: You are leading a team of data scientists and consultants in an organization.
 - What three data analytics projects do you kick-start? With what criteria would you hierarchize them?
 - 2. Pick one idea of the three. How would you implement it? Discuss the process.

Break-out Rooms: 315-325

(A) Process for Data Science Projects

- Business understanding
- 2. Data understanding
- 3. Data preparation
- 4. Modeling
- 5. Evaluation
- 6. Deployment

This is an ITERATIVE process!

Step 1. Business understanding

- Describe in detail the problem you want to solve
 - Define the issue with metrics
- Specify expected benefits in business terms
 - Is there a current practice in place? What is a benchmark performance?
- Identify key individuals in the organization
 - Who manages the issue now and how?
 - Who needs to be involved to activate the solution?

Step 2. Data understanding

- What data is available?
 - Are there any relevant external sources?
 - Which variables should be used?
- How much history is required?
 - Have there been some major changes in the business/industry recently?
- What is the right level of aggregation/granularity?
 - Individual, household, or zip code level? Daily or weekly?
- What data quality issues do we have?
 - Do missing values indicate something?
 - How do we handle non-numeric data?
- Simple hypotheses generation
 - How do we expect specific variables to affect the solution?

Step 3. Data preparation

- Merge all data relevant sources
 - Ensure time or any other alignment
- Deal with data quality issues
 - Handle non-numeric issues
 - Handle missing values
 - Handle data errors
 - Understand outliers
- Feature engineering
 - Derive new (simple) features
- · Split data in training, validation, and testing
 - How will the solution be used in practice? Can we simulate it?

Step 4. Modeling

- Start with simple analyses
 - Descriptive statistics and visualization
- Identify sub-problems fitting with analytic tools
 - Can we group variables that are highly correlated? (Factor analysis)
 - Do we need to develop different solutions for different segments?
 (Clustering)
 - Do we predict binary outcomes? (Classification)
- Estimate and assess model parameters
 - Are they statistically valid?
 - Do they make sense?

Step 5. Evaluation

- Measure various performance metrics
 - Classification: do false positives or false negatives matter most? ROC curve, lift curve, profit curve
- Rank the candidate models
- Is there overfitting?
- Are the results easy to explain?
 - Highlight particularly novel or unique findings
- Do the analyses, our judgment, and our business criteria all agree?

Step 6. Deployment

- Who needs to be involved in deployment?
 - Change management
- What is the data pipeline?
 - How are data sources and IT integrated?
 - How are data failures handled?
- How to test the solution before full deployment?
 - A/B testing setup
- How do we know our solution/model expired?
 - What metrics do we monitor?

Next...

- Proposal for final project (due Feb 14)
- Tutorials 4 & 5 [Wed & Thu Feb 14 & 15, 7.15 pm]
 - Hands-on help with final projects ideas and implementation
 - Tutorial 4: dplyr, ggplot packages
- Sessions 13-14 [Tue Feb 20, Amphi 105].
 - Final project (due Feb 20)
 - Prepare to present

