Quantum Field Theory

Lectured by Prof. Si Li and Noted by Xinyu Xiang
Jun. 2025

Warning: Lots of possible typos!!!!!!!!!! Notations:

- *X*: a smooth manifold, usually a compact manifold.
- \mathcal{E} : the space of fields, usually infinite dimensional.
- Conn(*P*, *X*): the space of connections on a principal bundle *P* over *X*.
- Maps(Σ , X): the space of maps from Σ to X.
- $\Omega^{\bullet}(X)$: the space of differential forms on X.
- $\Omega_c^{\bullet}(X)$: the space of differential forms with compact support on X.
- Vect(M): the space of smooth vector fields on a manifold M, which is Lie algebra of Diff(M).

1 Day I: Overall Discussion and Mathematical Preliminaries

1.1 Actions and Path Integrals

Action $S : \mathcal{E} \to \mathbf{k}$ where \mathcal{E} always has infinite dimension, and is a field (usually \mathbb{R} or \mathbb{C}).

QM in Imaginary Time Brownian Motion Wiener Measure on Phase Space

Asymptotic Analysis — Perturbative Renormalisation Theory

Example 1.1. Some Examples of Classical Field Theories

- (a) Scalar Field Theory $\mathcal{E} = C^{\infty}(X)$
- (b) Gauge Theory $\mathcal{E} = \text{Conn}(P, X)$
- (c) σ Model $\mathcal{E} = Maps(\Sigma, X)$
- (d) Gravity $\mathcal{E} = Metrics(X)$ (More better descriptions does not depends on the background)

1.2 Observables

Observables are functions on the space of fields, i.e. $\mathcal{O} \in C^{\infty}(\mathcal{E})$.

Example 1.2 (field theory). (a) Consider X = pt, thus $\mathcal{E} = \mathbb{R}^n$ for example.

(b) dim X > 0, the new algebraic structure arise form topological structures of X.

The Key Point is: Capture the data of open sets of $X \longrightarrow$ Consider the observables supported on open set U of X denoted by Obs(U) where U is an open set of X.

Local data captures the open sets of X. The relations between open sets captures the global data of $X \longrightarrow$ The algebraic structure of the observables is a sheaf of X.

$$\bigsqcup_{i} U_{i} \longrightarrow \bigotimes_{i} \mathrm{Obs}(U_{i})$$

Which implies OPE in physics and factorization algebra in mathematics.

Higher product in QFT: The generalization of products of algebra ('products in any direction instead of left and right') e.g. QM gives only left and right module of an algebra; OPE has products in various directions.

Consider the dim X = 2 case in detailed

Example 1.3 (Holomorphic/Chiral Field Theory). *Various angle of product* A(w)B(z) *could be denoted by the time of* A(w) *rotations around* B(z), *which could be captured by the Fourier mode of* A(w), *thus one can have*

$$A(w)B(z) = \sum_{m \in \mathbb{Z}} \frac{(A_{(m)B(z)})}{(z-w)^{m+1}}$$

which is the Chiral algebra due to Beilinson and Drinfeld and associated with the Doubult cohomology $H^0_{\bar{\partial}}(\Sigma^2 - \Delta) \cong \mathbb{C}((z^m))$, where Σ^2 is the complex surface and Δ is the diagonal of Σ^2 . The higher structure could be captured by the higher cohomology $H^p_{\bar{\partial}}(\Sigma^2 - \Delta)$, which is the higher chiral algebra associated to the derived holomorphic section.

1.3 de Rham Cohomology

Chain of differential forms $\Omega^{\bullet}(X)$

$$\Omega^{\bullet}(X) = \left(\cdots \xrightarrow{d} \Omega^{n-1}(X) \xrightarrow{d} \Omega^{n}(X) \xrightarrow{d} \Omega^{n+1}(X) \xrightarrow{d} \cdots \right)$$
(1.1)

where d is the exterior derivative, and $\Omega^n(X)$ is the space of *n*-forms on X. The general construction of differential forms could be constructed over open set U by

$$\Omega^n(U) = \bigoplus_{1 \le i_1 \le \dots \le i_n \le n} C^{\infty}(U) dx^{i_1} \wedge \dots \wedge dx^{i_n}$$

where one can prove that $d^2 = 0$ and thus $(\Omega^{\bullet}(U), d)$ is a cochain complex. The cohomology of it is called the de Rham cohomology $H^{\bullet}(X)$.

Proposition 1.1. The definition of de Rham cohomology does not depend on the choice of the open set U and the choice of the coordinate system i.e. it is intrinsic \longrightarrow we can define the de Rham cochain complex on smooth manifold X.

Proof. Consider
$$\Box$$

Definition 1.1 (de Rham Cohomology on Compact Support). *Let X be a smooth manifold, then the de Rham cohomology on compact support is defined as*

$$H_c^{\bullet}(X) = H^{\bullet}(\Omega_c^{\bullet}(X), \mathbf{d}) \tag{1.2}$$

where $\Omega_c^{\bullet}(X)$ is the space of differential forms with compact support.

Theorem 1.2 (Stokes' Theorem). Let X be a smooth manifold with boundary, then for any $\omega \in \Omega^n(X)$, we have

$$\int_X d\omega = \int_{\partial X} \omega$$

which connects the local data $d\Omega^{\bullet}(X)$ and the global data ∂X .

Theorem 1.3 (Poincaré Lemma).

$$H^p(\mathbb{R}^n) = \begin{cases} \mathbb{R} & p = 0 \\ 0 & p > 0 \end{cases}, \quad H^p_c(\mathbb{R}^n) = \begin{cases} 0 & p < 0 \\ \mathbb{R} & p = n \end{cases}$$

Generator: $H^p(\mathbb{R}^n) \to constant$ function, $H^p_c(\mathbb{R}^n) \to a$ compact support function $\alpha = f(x) \operatorname{vol}_n$, and $\int_{\mathbb{R}^n} \alpha = 1$.

Proof. \Box

Important: An Integration arises from the de Rham cohomology!

Observation. (1) if $\alpha = d\beta$ where $\beta \in \Omega_c^{n-1}(X)$, then $\int_X \alpha = 0$, thus the generator is α whose integral is non-zero.

(2) Dual Site: Integration could be captured by the cohomology

$$\int_{\mathbb{R}^n} \leftrightarrow H_c^n(\mathbb{R}^n) \cong \mathbb{R}$$

Path integral could be interpreted as the integration over \mathcal{E} , which leads to consider the cohomology of it.

1.4 Cartan Formula

Vector fields could acts on smooth functions via

$$V(f) = V^{i} \frac{\partial f}{\partial x^{i}} = \frac{\mathrm{d}}{\mathrm{d}t} f(\varphi_{t}(x)) \bigg|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t} \varphi_{t}^{*} f(x) \bigg|_{t=0}$$

Such an action could be extended to differential forms by

$$\operatorname{Vect}(M) \ni V : \alpha \mapsto \mathcal{L}_V \alpha = \frac{\operatorname{d}}{\operatorname{d}t} \varphi_t^* \alpha \bigg|_{t=0}$$

which has the property $\mathcal{L}_V(\alpha \wedge \beta) = \mathcal{L}_V \alpha \wedge \beta + \alpha \wedge \mathcal{L}_V \beta$, which implies that the Lie derivative is a derivation on the algebra of differential forms with degree 0. And we have contraction ι_V which is a derivation of degree -1 on the algebra of differential forms.

$$\mathcal{L}_V = \mathrm{d}\iota_V + \iota_V \mathrm{d}$$

Lie derivative is homotopy trivial i.e. chain homotopic.

1.4.1 Proof of Poincaré Lemma

Use Cartan Formula, one can proof Poincaré Lemma.

Proof. Rescaling invariance of \mathbb{R}^n leads to the Euler vector field $E = x^i \frac{\partial}{\partial x^i}$. One can consider the associated diffeomorphism φ_t , where we assume $\varphi_0 = 1$ and thus $\varphi_{-\infty}^* \alpha = 0$, thus the closed form α could be rewritten as

$$\alpha = \varphi_0^* \alpha - \varphi_{-\infty}^* \alpha$$

$$= \int_{-\infty}^0 \frac{\mathrm{d}}{\mathrm{d}t} \varphi_t^* \alpha \mathrm{d}t$$

$$= \int_{-\infty}^0 \mathcal{L}_E(\varphi_t^* \alpha) \mathrm{d}t$$

using the Cartan formula and $\mathrm{d} \varphi^* = \varphi^* \mathrm{d}$, we have

$$\alpha = \mathrm{d} \int_{-\infty}^{0} \varphi_{t}^{*} \iota_{E} \alpha \, \mathrm{d}t = \mathrm{d}\beta,$$

thus, the closed form α is exact, which implies that the de Rham cohomology $H^p(\mathbb{R}^n)$ is trivial for p > 0. The same idea could be applied to the de Rham cohomology on compact support $H^p_c(\mathbb{R}^n)$. \square

2 Day II: Classical Field Theory

Assume $\mathcal{E} = \Gamma(E,X)$ i.e. a section of a bundle $E \to X$, where X is oriented manifold. And the action would be written as $S[\phi] = \int_X \mathcal{L}[\phi(x)]$ where $\phi \in \mathcal{E}$. Lagrangian \mathcal{L} satisfies:

- (a) built up by jets of ϕ (locality);
- (b) valued in *n* form on *X* (oriented).

The solution of Euler-Lagrange equation forms Crit(S), which denotes the critical of the action S.

2.1 Examples

Example 2.1 (Phase Space Quantum Mechanics). *Consider* $X = \mathbb{R}$, then $\mathcal{E} = \mathbb{R}^{2n}$, and the action is

$$S[\phi] = \int_{\mathbb{R}^{2n}} p dq - H(q, p) dt = \int [p\dot{q} - H] dt$$

where H is the Hamiltonian. The Euler-Lagrange equation would become $dH = -\iota_{x_*}\partial\omega$, where $x: \mathbb{R} \to \mathcal{E}$.

Example 2.2 (Scalar Field Theory). Consider (X,g) a Riemann Manifold, then $\mathcal{E} = C^{\infty}(X)$, and the action is

$$S[\phi] = \int_{X} \left[\frac{1}{2} |\nabla \phi|^{2} + V(\phi) \right] dvol_{g}$$

where $V(\phi)$ is a potential function, and $dvol_g = \sqrt{|g|} d^d x$. Assume $\partial X =$, then the Euler-Lagrange equation is

$$\Delta \phi = \frac{\partial V}{\partial \phi}$$

where
$$\Delta f = \frac{1}{\sqrt{|g|}} \partial_i \left(\sqrt{|g|} g^{ij} \partial_j f \right)$$
.

Example 2.3 (Chern-Simons Theory). Consider X a 3-manifold and $\mathfrak g$ a semi-simple Lie algebra. Denote P is a principal $\mathfrak g$ -bundle over X, then the space of fields is $\mathcal E = \operatorname{Conn}(P,X)$. Assume $\mathfrak g$ is equipped with a non-degenerate invariant bilinear form $\langle \cdot, \cdot \rangle$ (Killing form), then the action is

$$CS[A] = \int_{X} \frac{1}{2} \langle A, F_A \rangle + \frac{1}{6} \langle A, [A, A] \rangle,$$

and the Euler-Lagrange equation encoded by the flat connection $F_A = 0$.

2.2 Symmetry (1)

2.2.1 Global Symmetry and Noether's Theorem

Consider a classical action $S : \mathcal{E} \to \mathbb{R}$ with a group action $G \curvearrowright \mathcal{E}$ s.t. $S[g(\phi)] = S[\phi]$. Then G would become a global symmetry of the action S.

Consider the continuous symmetry i.e. G is a Lie group, then the infinitesimal action of G on \mathcal{E} is given by a vector field $V \in \text{Vect}(\mathcal{E})$, which satisfies

$$\delta_{V^{\alpha}}\phi = V^{\alpha}(\phi)$$
,

thus the variation of the Lagrangian is

$$\delta_{V^{\alpha}}\mathcal{L}=\mathrm{d}K_{\alpha}$$
,

where K_{α} is a n-1 form. Furthermore, one can use the Euler-Lagrange equation and it's boundary contribution to obtain

$$\delta_{V^{\alpha}} \mathcal{L} \xrightarrow{\text{EL}=0} d\iota_{V^{\alpha}} \Theta = dK_{\alpha},$$

thus one have the Noether's current

$$J_{\alpha} = \iota_{V^{\alpha}}\Theta - K_{\alpha}, \quad \mathrm{d}J_{\alpha} + EL[\phi]V_{\alpha} = 0,$$
 (2.1)

which is a n-1 form on X and satisfies $\mathrm{d}J_{\alpha}\big|_{\mathrm{Crit}(S)}=0$ while the Euler-Lagrangian equation is satisfied. If we consider $Y_1,Y_2\subset X$ is codimension 1 (hyper)surface, which are homologous by Σ , then we have

$$\int_{Y_1} J_{\alpha} - \int_{Y_2} J_{\alpha} = \int_{\Sigma} dJ_{\alpha} = 0, \quad \phi \in \operatorname{Crit}(S),$$

and the integration over J_{α} is independent of the choice of the hyper surface, thus we can define the Noether charge as the integration over J_{α} on a hyper surface Y^{1} .

Their is a alernative way to define the Noether current, which is more suitable for practical use. In brief, on can consider the 'gauged' symmetry which would promote ϵ to become a field $\epsilon(x)$, and the variation of the action could be compute by integrating by parts, finally one can obtain

$$\delta_{V^{\alpha}}S=\int_{X}-\epsilon(x)\mathrm{d}\hat{J}_{\alpha}$$
,

and \hat{J} would become the Noether current which satisfies (2.1) so that \hat{J}_{α} is identical to J_{α} up to an exact form.

3 Day III: Symmetry (2)

First, we will consider finite dimensional case. We consider G as a finite dimensional Lie group, \mathfrak{g} is the Lie algebra of G and W is finite dimensional representation of G.

3.1 Chevalley-Eilenberg Cohomology

Consider $\mathfrak{g}^* \equiv \operatorname{Hom}(\mathfrak{g}, \mathbb{K})$. Consider the exterior algebra

$$\bigwedge \mathfrak{g}^* = \bigoplus_{p=0}^{\infty} \bigwedge^p \mathfrak{g}^*.$$

Assume the basis of \mathfrak{g} is $\{e_1, \dots, e_n\}$ and of \mathfrak{g}^* is $\{c^1, \dots, c^n\}$, which satisfies $c_{\alpha}c_{\beta} = -c_{\beta}c_{\alpha}$. Thus one shell identify the algebra above as a free object in the category of differential graded algebra, which is a ring equipped with anti-commute generators

$$\bigwedge \mathfrak{g}^* = \mathbb{K}[c^1, \cdots, c^n].$$

Consider the Lie algebra over \mathfrak{g} , which equipped with commutator $[\cdot,\cdot]:\wedge^2\mathfrak{g}\to\mathfrak{g}$. One the dual side, one shell introduce a differential operator $d:\mathfrak{g}^*\to\mathfrak{g}^*$, and we can extend it to the exterior algebra $\wedge \mathfrak{g}^*$ by

¹In physics, one always consider the Noether current which is the Hodge dual of J_{α} .

- (1) Under the level of generators, we have $d_{CE}: \mathfrak{g}^* \to \wedge^2 \mathfrak{g}^*$;
- (2) Using the Leibniz rule, we can extend it to the exterior algebra $\bigwedge \mathfrak{g}^*$ by

$$d_{CE}: a \wedge b \mapsto d_{CE}a \wedge b + (-1)^{\deg a}a \wedge d_{CE}b$$
,

Under the choice of basis above, we have $[e_{\alpha}, e_{\beta}] = f_{\alpha\beta}^{\gamma} e_{\gamma}$, which would lead to the derivation on the dual side

$$d_{\rm CE}c^{\alpha} = \frac{1}{2}f^{\alpha}_{\beta\gamma}c^{\beta} \wedge c^{\gamma} \equiv \frac{1}{2}f^{\alpha}_{\beta\gamma}c^{\beta}c^{\gamma}.$$

Using the Leibniz rule, we can extend it to the exterior algebra $\bigwedge \mathfrak{g}^*$. Using the Jacobi identity, one can prove that $d_{CE}^2 = 0$, thus we have a cochain complex $(\bigwedge \mathfrak{g}^*, d_{CE})$ which is a differential graded algebra (dga), where the generator c^{α} is called the 'ghost field' in physics, the degree is 'ghost number' and d_{CE} is BRST operator.

Let *M* be a g representation where $\rho : \mathfrak{g} \to \operatorname{End}(W)$ satisfies

$$\rho(a)\rho(b)m - \rho(b)\rho(a)m = \rho([a,b])m, \quad a,b \in \mathfrak{g}, m \in M.$$

Consider the free $\bigwedge^{\bullet} \mathfrak{g}^*$ -module generated by M:

$$\bigwedge^{\bullet} \mathfrak{g}^* \otimes M$$
,

there is a natural extension of the Chevalley-Eilenberg differential d_{CE} on it, which is defined by

- (1) $d_{CE}: M \to g^* \otimes M$ is dual of $g \otimes M \xrightarrow{\rho} M$;
- (2) $d_{CE}(a \otimes m) : d_{CE}(a) \otimes m + (-1)^{|a|} a \wedge d_{CE} m$

where we can prove that $d_{CE}^2 = 0$ and thus we have a cochain complex $\bigwedge^{\bullet} \mathfrak{g}^* \otimes M$. We denote $\bigwedge^p \mathfrak{g}^* \otimes M$ be $C^p(\mathfrak{g}^*, M)$, then we shell find that it is $C^p(\mathfrak{g}^*)$ -module, i.e.

$$C^p(\mathfrak{q}^*) \otimes C^q(\mathfrak{q}^*, M) \ni a \otimes v \mapsto a \wedge v \in C^{p+q}(\mathfrak{q}^*, M)$$

which is compatible with derivation

$$d_{CE}(a \wedge v) = d_{CE}a \wedge v + (-1)^{|a|}a \wedge d_{CE}v,$$

where $m \in M$ and $a \in \wedge^{\bullet} \mathfrak{g}^*$.