High-Throughput Sequencing Course Unsupervised Learning

Biostatistics and Bioinformatics

Summer 2018

SCOPE

- \blacktriangleright Let X denote the genetic/genomic profile of a sample
- ► Often we would like to discover groups, clusters or outliers based on the genetic profiles of the samples
- ► These are *unsupervised* methods in the sense that the algorithm knows nothing about the grouping/clustering
- ▶ The method is only aware of the genetic profile (X) and not the outcome Y

FISHER'S IRIS DATA

ON PETALS AND SEPALS

https://en.wikipedia.org/wiki/Sepal

FISHER'S IRIS DATA

2015 Data: Agglomerative Hierarchical Clustering

A Self-fulfilling Prophecy

- ► Statistical methods for unsupervised learning guarantee one thing
- ► They will return a clustering of your data
- ► What they do not guarantee and are invariably unable to verify, is the biological relevance or reproducibility of the clustering
- ► In light of this Self-fulfilling Prophecy, these methods should be used with utmost care

METHODS TO BE DISCUSSED

- ► There are many methods for unsupervised class discovery.
- ► We will consider three types of methods:
 - ► Hierarchical Clustering
 - \blacktriangleright k-means Clustering
 - ► Ordination Methods (e.g., Multi-Dimensional Scaling (MDS) and Principal Components (PC))
- ▶ Note that there are many variations of these methods
- ► Most mathematical details will be left out
- ► We focus on discovering classes among samples (not genes)

DISTANCE BETWEEN TWO POINTS

- ► Many class discover methods aim to quantify the similarity (or dissimilarity) among patients
- ► For each patient, the vector of gene expression can be thought of a "point" in an *m*-dimensional space
- ► For many class discovery methods, one has to be able to quantify the "distance" between two points (the expression profiles between two individuals)
- ▶ A common distance measure is the Euclidean distance

DISTANCE (COORDINATES)

(x2,y2)

DISTANCE

DISTANCE (HORIZONTAL/VERTICAL SHIFTS)

PYTHAGOREAN THEOREM (ON THE PLANE)

► According to the Pythagorean theorem

$$h^2 = dx^2 + dy^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

- \blacktriangleright h is called the hypotenuse
- ▶ The distance between (x_1, y_1) and (x_2, y_2) is given by

$$h = \sqrt{dx^2 + dy^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

PYTHAGOREAN THEOREM (ON THE PLANE)

- ► Can be extended to higher dimensions
- ▶ In a three-dimensional space the distance between (x_1, y_1, z_1) and (x_2, y_2, z_2) is given by

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}$$

► For any given dimension, the distance is obtained as the square root of the sum of the square of the coordinate-wise differences

Golub et al Leukemia Data

- ▶ 47 patients with acute lymphoblastic leukemia (ALL)
- ▶ 25 patients with acute myeloid leukemia (AML)
- ► Platform: Affymetrix Hgu6800
- ▶ 7129 probe sets
- ▶ Golub *et al.* (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science, Vol. 286:531-537.

Golub et al Leukemia Data

Expression data from first three features and 5 patients

Golub et al Leukemia Data: Distance

Expression vector for patients 39 and 40

```
x <- exprs(Golub_Merge)[, "39"]
y <- exprs(Golub_Merge)[, "40"]
```

Lengths of these vectors

```
length(x)
## [1] 7129
length(y)
## [1] 7129
```

Distance between these two vectors

```
sqrt(sum((x - y)^2))
## [1] 101530.8
```

RELATIVE DISTANCE (FROM CST 2011 PAPER)

Expression (Gene 1)

DISSIMILARITY MATRIX

- Use pairwise distances to quantify similarity (or dissimilarity) among patients
- ► Construct a matrix containing all pairwise distances
- ► Take the first three patients in the Golub data set

- ▶ Patient 42 is more similar (closer) to patient 39 than patient 40 (distance of 94405.04 vs 101530.75)
- ➤ Patient 39 is more similar (closer) to 42 than patient 40 (distance of 94405.04 vs 101530.75)

2015 Data: Agglomerative Hierarchical Clustering

CLUSTERS

- ▶ Let c_1, c_2, \ldots, c_n denote the *n* samples
- ▶ Define a cluster to be a set of patients
 - (c_1) is a cluster with one member: c_1
 - (c_1, c_3) is a cluster of two members: c_1 and c_3
 - (c_1, c_2, c_3) is a cluster of three members of c_1, c_2 and c_3
- ▶ Note that c_1 and (c_1) are different entities

NOTION OF A LINKAGE

- ► The distance measure quantified the distance between two points
- ► In clustering, you need to think about the criterion to link (merge) the clusters
- ► maximum distance (aka complete linkage)
- ► average distance (aka average linkage)
- ► minimum distance (aka single linkage)

AGGLOMERATIVE HIERARCHICAL CLUSTERING

- ► Agglomerate: To form clusters
- \blacktriangleright Let each of the *n* points be its own cluster (*n* clusters each with one single member)
- ► Find the pair of clusters that is most similar
- ► Merge these two
- Now you have n-1 clusters (1 cluster with two members and n-2 clusters each with a single member)
- ▶ Compute the similarities between the n-2 "old" clusters with the new cluster
- ► Repeat the last two steps until all members have been merged into a single cluster.

CLUSTERING CITIES BY DISTANCES

	ATL	BOS	ORD	DCA
ATL	0	934	585	542
BOS	934	0	853	392
ORD	585	853	0	598
DCA	542	392	598	0

Clustering Cities by Distances (Single Linkage)

	ATL	BOS	ORD	DCA
ATL	0	934	585	542
BOS	934	0	853	392
ORD	585	853	0	598
DCA	542	392	598	0

	DCA-BOS	ATL	ORD
DCA-BOS	0	542	598
ATL	542	0	585
ORD	598	585	0

Clustering Cities by Distances (Single Linkage)

	DCA-BOS	ATL	ORD
DCA-BOS	0	542	598
ATL	542	0	585
ORD	598	585	0

	DCA-BOS-ATL	ORD
DCA-BOS-ATL	0	585
ORD	585	0

FOUR AIRPORTS (SINGLE LINKAGE)

Clustering Cities by Distances (complete linkage)

	ATL	BOS	ORD	DCA
ATL	0	934	585	542
BOS	934	0	853	392
ORD	585	853	0	598
DCA	542	392	598	0
	DCA-BOS	ATL	ORD	
DCA-BOS	0	934	853	
ATL	934	0	585	
ORD	853	585	0	
	DCA-BOS	ATL-ORD		
DCA-BOS	0	934		
ATL-ORD	934	0		

FOUR AIRPORTS (COMPLETE LINKAGE)

as.dist(cities[1:4, 1:4]) hclust (*, "complete")

Four Airports (side by side)

	ATL	BOS	ORD	DCA
ATL	0	934	585	542
BOS	934	0	853	392
ORD	585	853	0	598
DCA	542	392	598	0
	DCA-BOS	ATL	ORD	
DCA-BOS	0	934	853	
ATL	934	0	585	
ORD	853	585	0	
	DCA-BOS	ATL-ORD		
DCA-BOS	0	934		
ATL-ORD	934	0		

Table: Complete Linkage

	ATL	BOS	ORD	DCA
ATL	0	934	585	542
BOS	934	0	853	392
ORD	585	853	0	598
DCA	542	392	598	0
	DCA-BOS	ATL	ORD	
DCA-BOS	0	542	598	
ATL	542	0	585	
ORD	598	585	0	
	DCA-BOS-ATL	ORD		
DCA-BOS-ATL	0	585		
ORD	585	0		

Table: Single Linkage

ALL AIRPORTS (COMPARISON)

WESTERN AIRPORTS: EXERCISE

Carry out hierarchical clustering with complete linkage

```
## DEN LAX SEA SFO
## DEN 0 836 1023 951
## LAX 836 0 957 341
## SEA 1023 957 0 681
## SF0 951 341 681 0
```

Western Airports: Solution

Four western airports hclust (*, "complete")

2015 Data: Agglomerative Hierarchical Clustering Complete Linkage

2015 Data: Agglomerative Hierarchical Clustering Complete Linkage

2015 Data: Agglomerative Hierarchical Clustering Complete Linkage

2015 Data: Agglomerative Hierarchical Clustering Single Linkage

k-means Clustering

- ightharpoonup Specify a number of potential clusters (k)
- ► Split of the data (either randomly or based on some previous results) into *k* partitions
- ► Compute the mean (aka centroid) for each partition
- ► For the first point (sample) determine the *nearest* centroid
- ► The closeness is typically quantified using the Euclidean distance
- ► Assign that point to that center
- ightharpoonup Repeat for points 2 through n
- ► Assess the fit using the intra-cluster variance
- ► Repeat as needed.

k-means clustering: Data

k-means clustering: Initial Clusters

k-means clustering: Initial Centers

k-means clustering: Label points according to centers

k-means clustering: Update Centers

k-means clustering: Update Centers

k-means clustering: Update Points

Why not 4 clusters?

Why not 5 clusters?

k-means

- ► This is an example of *non-hierarchical* clustering
- ► Need to specify the number of clusters up front
- ▶ Need to specify (deterministically or randomly) the centers of the clusters up front
- \blacktriangleright Results are sensitive to the choice of k and initial partitions
- ► Note: All the data points were simulated from a single cluster!

DIMENSION REDUCTION

- ► Genome-wide profiling platforms are high-dimensional (*m* is large)
- ▶ Visualization beyond m = 3 not possible (for mortals)
- ► Representing the data by a lower dimensional format without losing too much information is desired.
- ► Two guiding principles:
 - ► Keep variables with highest variability
 - ► Reduce redundancy

MULTI-DIMENSIONAL SCALING (MDS)

- ► Compute the dissimilarity matrix based on a distance measure
- ▶ Project the points into a lower dimensional space (say 2D or 3D) while preserving the similarity matrix
- ► PCA is a related (and in a sense equivalent method to MDS)
- Project the points into a lower dimensional space where the new variables are linear combinations of the original variables
- ► The new variables are chosen so as to have maximum variance and to be uncorrelated.

BATCH EFFECT DISCOVERY

- ► The MDS method is very useful for detecting batch effects
- ▶ Batch effects tend to be stronger that biological effects
- ► They also affect most probe sets (the biological effect may only be captured by a few)
- ► This can be an effective weapon in your QC arsenal (this is how I start any new analysis)

FROM CCR 2008 PAPER

ALL/AML DATA

Semi-supervised Learning

- ► Heatmap illustration:
 - ightharpoonup Select a panel of probe-sets based on the two-sample t-test
 - ► Carry out hierarchical clustering with respect to the patients (the columns)
 - ► Carry out hierarchical clustering with respect to the probe sets in the panel (the rows)
 - ▶ Present the results using a heatmap
- ► Some consider this an *unsupervised* analysis as the hierarchical clustering algorithm is unaware of the classes
- ► This is not an accurate assessment: It is semi-supervised in the sense that we are picking genes based on the phenotype
- ► A procedure is *unsupervised* if the class info is only used for annotation

R CODE TO SIMULATE HEATMAP

```
simulate.noise.heatmap = function(n, m, alpha) {
    # Simulate Expression Matrix
    EXPRS = matrix(rnorm(2 * n * m), m, 2 * n)
    grp = factor(rep(0:1, c(n, n)))
    rownames(EXPRS) = paste("Gene", 1:m, sep = "")
    colnames(EXPRS) = paste("patient id", 1:(2 * n), sep = "")
    # Get the two sample t-statistics
    pvals = rowttests(EXPRS, grp)$p.value
    topgenes = which(pvals < alpha)
    EXPRS = EXPRS[topgenes, ]
    annodat = data.frame(Condition = ifelse(grp == 0, "N", "Y"), row.names = colnames(EXPRS))
    pheatmap(EXPRS, border_color = NA, show_rownames = FALSE, show_colnames = FALSE.
        annotation_col = annodat, color = colorRampPalette(c("red3", "black",
            "green3"))(50), annotation_colors = list(Condition = c(Y = "blue",
            N = "yellow")))
    return(length(topgenes))
```

Heatmap Example: $m = 20,000, n = 20, \alpha = 0.005$

Heatmap Example: $m = 40,000, n = 20, \alpha = 0.0025$

Heatmap Example: $m = 20,000, n = 3, \alpha = 0.005$

R CODE TO SIMULATE PC

Heatmap Example: $K = 20000, n = 20, \alpha = 0.005$

Heatmap Example: $K = 40000, n = 20, \alpha = 0.0025$

Heatmap Example: $K = 20000, n = 3, \alpha = 0.005$

MDS FOR GOLUB DATA

PCA FOR GOLUB DATA

Preserving The Distances

► Extract and standardize expression matrix for Golub data set

```
scexpdat = scale(t(exprs(Golub_Merge)))
dim(scexpdat)
## [1] 72 7129
```

► Check means for the first 4 genes

```
apply(scexpdat[, 1:4], 2, mean)

## AFFX-BioB-5_at AFFX-BioB-M_at AFFX-BioB-3_at AFFX-BioC-5_at
## -7.841417e-17 -4.460287e-18 1.491832e-17 -5.051177e-17
```

► Check standard deviations for the first 4 genes

```
apply(scexpdat[, 1:4], 2, sd)
## AFFX-BioB-5_at AFFX-BioB-M_at AFFX-BioB-3_at AFFX-BioC-5_at
## 1 1 1 1
```

Preserving The Distances

► Check distance among the first three patients

```
dist(scexpdat[1:3, ])
## 39 40
## 40 125.3402
## 42 118.1911 125.0390
```

► Calculate MDS d = 2

```
MDS = cmdscale(dist(scexpdat), 2)
dist(MDS[1:3, ])
## 39 40
## 40 4.644939
## 42 29.665656 34.287630
```

► Calculate MDS d = 3

```
MDS = cmdscale(dist(scexpdat), 3)
dist(MDS[1:3, ])
## 39 40
## 40 9.293559
## 42 45.719192 54.869668
```

Preserving The Distances

► Check distance among the first three patients

```
dist(scexpdat[1:3, ])
## 39 40
## 40 125.3402
## 42 118.1911 125.0390
```

► Calculate MDS d = 20

```
MDS = cmdscale(dist(scexpdat), 3)
dist(MDS[1:3, ])

## 39 40
## 40 9.293559
## 42 45.719192 54.869668
```

▶ Calculate MDS d = 45

```
MDS = cmdscale(dist(scexpdat), 45)
dist(MDS[1:3, ])
## 39 40
## 40 124.9860
## 42 113.3668 121.7808
```

REMINDER: A SELF-FULFILLING PROPHECY

- ► Statistical method for unsupervised learning guarantee one thing
- ► They will return a clustering of your data
- ► What they do not guarantee and are invariably unable to verify, is the biological relevance or reproducibility of the clustering
- ► In light of this Self-fulfilling Prophecy, these methods should be used with utmost care