Introduction to R

Part 2 – the Tidyverse

Extending R through packages: There's a package for everything

R packages are available on CRAN (Comprehensive R Archive Network)

Contributed Packages

Available Packages

(+)

Currently, the CRAN package repository features 15364 available packages.

a cran.r-project.org

Table of available packages, sorted by date of publication

Table of available packages, sorted by name

Installation of Packages

Please type help("INSTALL") or help("install.packages") in R for information on how to install packages from this repository. The manual R Installation and Administration (also contained in the R base sources) explains the process in detail.

<u>CRAN Task Views</u> allow you to browse packages by topic and provide tools to automatically install all packages for special areas of interest. Currently, 41 views are available.

Package Check Results

All packages are tested regularly on machines running <u>Debian GNU/Linux</u>, <u>Fedora</u>, OS X, Solaris and Windows.

CRAN

Mirrors

What's new?

Task Views

Search

About R

R Homepage
The R Journal

Software

R Sources

R Binaries

Packages

<u>Other</u>

Documentation

You can install packages using install.packages() in RStudio

```
Console ~/ 📣
 Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> install.packages("ggplot2")
 % Total % Received % Xferd Average Speed Time Time Current
                             Dload Upload Total Spent Left Speed
                                0 0 --:--:- 0 38 1932k
38 751k 0 0 1529k 0 0:00:01 --:-- 0:00:01 1527k100 1932k 100 1932k
     0 2918k 0 --:--:- --:-- 2918k
The downloaded binary packages are in
       /var/folders/q8/wptgtbdn1pz0cfgrz39gq00m0000gn/T//RtmpvQgw1u/downloaded_packages
>
```

Tidy data

"Tidy datasets are all alike but every messy dataset is messy in its own way" — Hadley Wickham

Tidy data

Three rules:

- 1. Each variable forms a column
- Each observation forms a row
- 3. Each type of observational unit forms a table

Example: Contingency table

	survived	died	
drug	15	3	not ti
placebo	4	12	_

Example: Contingency table

	survived	died	
drug	15	3	not tidy
placebo	4	12	_

tidy

treatment	outcome	count
drug	survived	15
drug	died	3
placebo	survived	4
placebo	died	12

Example: Contingency table

	survived	died	_
drug	15	3	not tidy
placebo	4	12	_

	patient	treatment	outcome
tidy	1	drug	survived
	2	drug	died
	3	drug	survived
	4	placebo	died
		•	
		•	
		•	

tidyr library provides functions for transforming tables

	survived	died
drug	15	3
placebo	4	12

patient	treatment	outcome
1	drug	survived
2	drug	died
3	drug	survived
4	placebo	died
	•	

dplyr: a package for data manipulation

Working with tidy data in R: tidyverse

Fundamental actions on data tables:

- make new columns mutate()
- combine tables, adding columns left join()
- combine tables, adding rows bind rows ()
- choose rows filter()
- choose columns select()
- arrange rows arrange ()
- calculate summary statistics summarize()
- work on groups of data group by ()

Working with tidy data in R: tidyverse

Fundamental actions on data tables:

- make new columns mutate ()
- combine tables, adding columns left join()
- <u>combine tables, adding rows</u> bind rows()
- choose rows filter()
- choose columns select()
- arrange rows arrange()
- calculate summary statistics summarize()
- work on groups of data group by ()

select(): pick columns

select(): pick columns

Choose the two columns Species and Sepal.Width

> select(iris, Species, Sepal.Width)

Choose the two columns Species and Sepal.Width

```
> select(iris, Species, Sepal.Width)
       Species Sepal.Width
1
         setosa
                          3.5
                          3.0
         setosa
3
                         3.2
         setosa
                         3.1
4
         setosa
                         3.6
5
         setosa
6
                          3.9
         setosa
                          3.4
         setosa
8
                          3.4
         setosa
                         2.9
9
         setosa
10
                          3.1
         setosa
11
         setosa
                          3.7
12
                          3.4
         setosa
13
                          3.0
         setosa
14
                          3.0
         setosa
```

filter():pickrows

filter():pickrows

Choose rows with Sepal.Width > 4

```
> filter(iris, Sepal.Width > 4)
```

Choose rows with Sepal.Width > 4

```
> filter(iris, Sepal.Width > 4)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
         5.7
                                          0.4
1
                    4.4
                               1.5
                                              setosa
         5.2
                  4.1
                               1.5
                                          0.1 setosa
3
                  4.2
         5.5
                               1.4
                                      0.2 setosa
```

select(): pick columns

summarize(): collapse multiple rows

summarize(): collapse multiple rows

Calculate mean and standard deviation of Sepal.Length

Calculate mean and standard deviation of Sepal.Length

group_by():set up groupings

group_by(): set up groupings

Calculate mean and standard deviation of Sepal.Length, grouped by Species

Calculate mean and standard deviation of Sepal.Length, grouped by Species

Piping multiple functions togehter

Call the target data set in first position

```
The data is <a href="implicitly">implicitly</a> passed and processed through each subsequent function

> group_by(..., Species) %>%

> summarize(..., mean_length = mean(Sepal.Length), sd_length = sd(Sepal.Length))
```

Piping multiple functions togehter

ggplot2: a package for data manipulation

ggplot2: A grammar of graphics

Traditional plotting: You are a painter

- Manually place individual graphical elements

ggplot2: You employ a painter

Describe conceptually how data should be visualized

Most confusing key concept: aesthetic mapping

Maps data values to visual elements of the plot

A few examples of aesthetics

Let's go over a simple example: mean height and weight of boys/girls ages 10-20

age (yrs)	height (cm)	weight (kg)	sex
10	138	32	M
15	170	56	M
20	177	71	M
10	138	33	F
15	162	52	F
20	163	53	F

Data from: http://www.cdc.gov/growthcharts/

Map age to x, height to y, visualize using points

Let's color the points by sex

ggplot(data, aes(x=age, y=height, →color=sex)) + geom point() ★ <u>NOTE:</u> "color" aesthetic is for coloring points & lines; 170 -"fill" aesthetic is for coloring bars sex height & distributions 160 -F M 150 -140 -15.0 17.5 10.0 12.5 20.0 age

And change point size by weight

And connect the points with lines

The weight-to-size mapping should only be applied to points

We can also make side-by-side plots (called facets)

All the geoms with all their options are described on the ggplot2 web page

https://ggplot2.tidyverse.org/reference/

Example 1: Change scaling of x axis

Example 1: Change scaling of x axis

Example 2: Change color scaling

Example 2: Change color scaling

Some color scaling options in ggplot2

```
scale_color_gradient(),
scale_fill_gradient()
```

- scale_color_discrete(), scale fill discrete()
- scale_color_brewer(), scale fill brewer()
- scale_color_distiller(), scale fill distiller()
- scale_color_colorblind(), scale fill colorblind()
- scale_color_manual(), scale fill manual()

