Análisis

Tabla de derivadas

У	y '
$[f]_{c}^{n}$	$n \cdot f^{n-1} \cdot f'$
e^{f}	$e^f \cdot f'$
a^f	$a^f \cdot \ln a \cdot f'$
$\ln f$	$\frac{f'}{f}$
$\sin f$	$\cos f \cdot f'$
$\cos f$	$-\sin f \cdot f'$
$\tan f$	$\frac{f'}{1-\cos^2 f}$
$\arcsin f$	$\frac{f'}{\sqrt{1-f^2}}$
$\arccos f$	$\frac{-f'}{\sqrt{1-f^2}}$
$\arctan f$	$\frac{f'}{1+f^2}$

Elementos básicos

- **Dominio**: conjunto de valores de entrada que puede tomar la función y para los que está definida.
- Rango: conjunto de valores que puede dar la función.
- Antiderivada: función $F(x)\Rightarrow \frac{\mathrm{d}F(x)}{\mathrm{d}x}=f(x)\equiv \int f(x)dx=F(x)$
- Definición de derivada $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(h)}{h}$

Continuidad

Una función f(x) es continua en un punto x = a si se cumplen las siguientes

 $\exists f(a)$

1.

2. $\exists \lim_{x \to a} f(x) \Rightarrow \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$

3. $f(a) = \lim_{x \to a} f(x)$

Derivabilidad

Una función f(x) es **derivable** en un punto x = a si se cumple:

$$\exists \lim_{x \to a} f'(x) \Rightarrow \lim_{x \to a^{-}} f'(x) = \lim_{x \to a^{+}} f'(x)$$

Recta tangente en un punto

La recta tangente a un punto x = a se define como:

$$y - f(a) = f'(a)(x - a)$$

Recta normal en un punto

La recta normal a un punto x = a se define como:

$$y - f(a) = -\frac{1}{f'(a)}(x - a)$$

Integrales

Integrales por partes

$$\int u \cdot dv = u \cdot v - \int v \cdot du$$

Teoremas

Teorema de Bolzano. Dada una función f(x), continua en un intervalo [a,b], $si\ f(a)\cdot f(b)<0$, podemos afirmar que $\exists c\in [a,b]/f(c)=0$. Esta fórmula se puede generalizar para afirmar que existe cualquier valor si este cumple que $f(a)\leq f(c)\leq f(b)$.

Teorema de Rolle. Dada una función f(x), continua en un intervalo [a,b], derivable en un intervalo (a,b), si f(a)=f(b), entonces podemos afirmar que $\exists c \in (a,b)/f'(c)=0$

Representación gráfica

Para representar gráficamente una función, se deben desarrollar los siguientes elementos:

- Dominio de la función
- Puntos de corte con los ejes
- Asíntotas
- Monotonía

Asíntotas

Verticales

Para indeterminaciones $\frac{k}{0}/k \in \mathbb{R}$

$$\lim_{x \to a} f(x) \stackrel{=}{=} \begin{cases} \lim_{x \to a^+} f(x) = \pm \infty \\ \lim_{x \to a^-} f(x) = \mp \infty \end{cases}$$

Horizontales

Afirmamos que hay una asíntota horizontal en $\pm \infty$ si:

$$\lim_{x\to\pm\infty}\in\mathbb{R}$$

Oblicuas

Para $\pm \infty$, una asíntota oblicua se expresa de la forma:

$$y = mx + n$$

siendo:

$$m = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$

$$n = \lim_{x \to \pm \infty} f(x) - mx$$

 $m \not \in \mathbb{R} \vee n \not \in \mathbb{R} \Rightarrow$ no hay asíntota oblicua.