FORMELN FORMULAS

Z = Zähnezahl

Number of teeth

d = Schneidkreis-Ø

Cutting edge Ø

n = Drehzahl

Revolutions

$$n = \frac{v_c \cdot 1000}{d \cdot \pi}$$
 (1/min)

 v_c = Schnittgeschwindigkeit

Cutting speed

$$v_c = \frac{d \cdot \pi \cdot n}{1000}$$
 (m/min)

 $f_z = Vorschub/Zahn$

Feed/tooth

$$f_z = \frac{V_f}{Z \cdot n} \text{ (mm/U)}$$

 v_f = Vorschubgeschwindigkeit

Feed rate

$$v_f = f_2 \cdot Z \cdot n \pmod{min}$$

Q = Materialabtragungsrate

Material removal rate

$$Q = \frac{a_e \cdot a_p \cdot v_f}{1000} \quad (cm^3/min)$$

f_z = effektiv beim Umfangsfräsen mit kleinem a_e (bis 0,25 • d): effective for side milling with small a_e (up to 0,25 • d):

*
$$f_z = f_z \sqrt{\frac{d}{a_e}}$$
 (mm/U)

HORN Schnittdatenschieber zur Ermittlung der richtigen Schnittdaten.

To easily determine the correct cutting data, please use the HORN speed and feed calculation.

FORMELN FORMULAS

Schnittgeschwindigkeiten und Drehzahlen beim Kopierfräsen

Cutting speed and number of revolutions for copy milling

$$v_{c} = \frac{d_{eff} \cdot \pi \cdot n}{1000} \quad (m/min)$$

$$n = \frac{v_c \cdot 1000}{d_{eff} \cdot \pi} \quad (1/min)$$

Wirkdurchmesser d_{eff} bei $\beta = 0^{\circ}$ Effective cutting diameter $\beta = 0^{\circ}$

$$d_{eff} = 2\sqrt{d \cdot a_p - a_p^2} \quad (mm)$$

Beispiel: / Example::

d = Ø12 mm;
$$a_p$$
 = 1,2 mm; β = 0°

Wirkdurchmesser d_{eff} bei $\beta = +20^{\circ}$ Effective cutting diameter $\beta = +20^{\circ}$

$$d_{eff} = d \cdot \sin \left[\beta + \arccos \left(\frac{d - 2a_p}{d} \right) \right]$$

d_{eff} = 10,05 mm

Beispiel: / Example::

$$d = \emptyset 12 \text{ mm}; a_p = 1,2 \text{ mm}; \& = +20^{\circ}$$

$$d_{eff} = 12 \cdot \sin \left[20^{\circ} + \arccos \left(\frac{12 - 2 \cdot 1,2}{12}\right)\right]$$

$$d_{eff} = d \cdot sin \left[arccos \left(\frac{d - 2a_p}{d}\right) - B\right]$$

Beispiel: / Example::

d =
$$\varnothing$$
12 mm; a_p = 1,2 mm; β = -20°

$$d_{eff} = 12 \cdot \sin \left[\arccos \left(\frac{12 - 2 \cdot 1, 2}{12} \right) - 20^{\circ} \right]$$

SCHNITTDATEN Weichbearbeitung

Werkstoff- gruppen Material groups	Material Material	DIN	Bezeichnung Specification	v _c DSR/DSF m/min	v _c DSRF m/min	v _c DSRR m/min
	Kohlenstoff- stahl Carbon steel	1.0161 1.0050 1.0503 1.0601 1.0715	St37-2 St50-2 C45 C60 9SMn28K	160-200	250-300	
_	Werkzeugstahl	1.2312 1.2343 1.2379 1.2767	40CrMnMoS8-6 X38CrMoV5-1 X155CrVMo12-1 X40NiCrMo4	70-90	110-150	
•	lool steel	1.2080 1.2083 1.2510	X210Cr12 X42Cr13 100MnCrW4	90-110	150-180	
=	Rostfreier Stahl	1.4301 1.4401 1.4404 1.4436 1.4541	X5CrNi18-10 X5CrNiMo17-12-2 X2CrNiMo17-12-2 X3CrNiMo17-13-3 X6CrNiTi18-10	50-70		70-100
	Stalmess steel	1.4104	X14CrMoS17 X8CrNiS18-9	100-130		120-150
\	Legierter Stahl Alloyed steel	1.7131 1.7227 1.8507	16MnCr5 42CrMoS4 34CrAIMo5	90-120	150-200	
	Aluminium Aluminium	3.2315 3.4365	AIMgSi1 AIZnMgCu1,5			
>	Kunststoffe Synthetics					

DSKK Schaftfräser Vollradius / Endmill Ballnose

Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	Outling speed (VC III/IIIII)
Legierter Stahl / Alloyed steel	> 1000	< 300	
Works our got obl / Tool ot ol	> 850	> 250	
Werkzeugstahl / Tool steel	> 1000	> 300	
Rostfreier Stahl / Stainless steel	< 600	< 200	
ROStifeler Staffi / Staffiess steel	< 850	< 250	
Warmfeste Werkstoffe /	< 900	< 300	
High temp. alloys	\ 300	\ 300	
Titanlegierung / Titanium alloys	< 900	< 300	
		45-52 HRc	
Gehärteter Stahl / Hardened steel		50-60 HRc	
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	
Aluminium / Aluminium	< 350	< 100	< 350
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			
Kunststoffe / Synthetics			< 350

Kunststoffe / Synthetics

Für weitere Materialangaben siehe Werkstofftabelle

CrCn-beschichtet

empfohlene Kühlung: 1. Emulsion 2. Mindermengenschmierung

CrCn coated

recommended cooling: 1. Emulsion 2. Minimum lubrification

HPM

Vollradius / Ballnose

Beim Kopierfräsen kann die Schnittgeschwindigkeit $\rm v_c$ bis zu 30% erhöht werden.

For profile milling cutting speed v_c may be increased up to 30%.

 a_p bis/up to 1,50 x d a_p bis/up to to 0,20 x d

 a_p bis/up to 0,10 x d a_p bis/up to 0,10 x d

 $\beta = 0: \qquad d_{\text{eff}} = 2 \cdot \sqrt{d \cdot a_{p^{-}} a_{p^{2}}}$

 $\beta \neq 0$: $d_{eff} = d \cdot \sin \left[\beta \pm \arccos \left(\frac{d - 2a_p}{d} \right) \right]$

			Eckfra	äsen / Shoulder	milling	Kopie	rfräsen / Copy	milling
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a max. (mm)	a max. (mm)	f _z (mm/tooth)
DSKK	4	3,0	< 3,0	< 0,3	0,015 - 0,020	< 0,30	< 0,15	0,015 - 0,020
DSKK	4	4,0	< 6,0	< 0,4	0,020 - 0,030	< 0,40	< 0,30	0,020 - 0,030
DSKK	4	5,0	< 7,5	< 0,5	0,025 - 0,035	< 0,50	< 0,35	0,025 - 0,035
DSKK	4	6,0	< 9,0	< 0,8	0,030 - 0,040	< 0,60	< 0,50	0,030 - 0,040
DSKK	4	8,0	< 12,0	< 1,0	0,040 - 0,060	< 0,80	< 0,70	0,040 - 0,060
DSKK	4	10,0	< 15,0	< 1,3	0,055 - 0,075	< 1,00	< 0,90	0,055 - 0,075
DSKK	4	12,0	< 18,0	< 2,4	0,100 - 0,130	< 1,20	< 1,20	0,100 - 0,130
DSKK	4	14,0	< 21,0	< 2,8	0,120 - 0,180	< 1,40	< 1,40	0,120 - 0,180
DSKK	4	16,0	< 24,0	< 3,2	0,150 - 0,250	< 1,60	< 1,60	0,150 - 0,250

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter ontimiert werden.

CrCn-beschichtet

empfohlene Kühlung: 1. Emulsion 2. Mindermengenschmierung

CrCn coated

recommended cooling: 1. Emulsion 2. Minimum lubrification

> HSM HPM

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

Vorschub $\mathbf{f}_{\mathbf{z}}^{\,\star}$ beim Eckfräsen für kleinere Zustellung $\mathbf{a}_{\mathbf{e}}$ muss wie folgt berechnet werden.

At shoulder milling, feed per tooth f_z^* for lower a_e values should be converted according formula

 a_p bis/up to 0,10 x d a_e bis/up to 0,10 x d

			Eckfr	äsen / Shoulder	milling	Kopie	erfräsen / Copy	milling
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)
DSTK	4	3,0	< 3,0	< 0,3	0,015 - 0,020	< 0,30	< 0,15	0,015 - 0,020
DSTK	4	4,0	< 6,0	< 0,4	0,020 - 0,030	< 0,40	< 0,30	0,020 - 0,030
DSTK	4	5,0	< 7,5	< 0,5	0,025 - 0,035	< 0,50	< 0,35	0,025 - 0,035
DSTK	4	6,0	< 9,0	< 0,8	0,030 - 0,040	< 0,60	< 0,50	0,030 - 0,040
DSTK	4	8,0	< 12,0	< 1,0	0,040 - 0,060	< 0,80	< 0,70	0,040 - 0,060
DSTK	4	10,0	< 15,0	< 1,3	0,055 - 0,075	< 1,00	< 0,90	0,055 - 0,075
DSTK	4	12,0	< 18,0	< 2,4	0,100 - 0,130	< 1,20	< 1,20	0,100 - 0,130
 DSTK	4	14,0	< 21,0	< 2,8	0,120 - 0,180	< 1,40	< 1,40	0,120 - 0,180
DSTK	4	16,0	< 24,0	< 3,2	0,150 - 0,250	< 1,60	< 1,60	0,150 - 0,250

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

DSMK TSR Schnittgeschwindigkeit / Härte / Hardness Material / Material (N/mm) НВ Cutting speed (Vc m/min) Kohlenstoffstahl / Carbon steel < 750 < 250 Legierter Stahl / Alloyed steel > 1000 < 300 > 850 > 250 Werkzeugstahl / Tool steel > 1000 > 300 < 600 < 200 Rostfreier Stahl / Stainless steel < 850 < 250 Warmfeste Werkstoffe / < 900 < 300 High temp. alloys < 900 < 300 Titanlegierung / Titanium alloys 45-52 HRc Gehärteter Stahl / Hardened steel 50-60 HRc 58-70 HRc Temperguss / Malleable cast iron < 260 Aluminium / Aluminium < 350 < 100 < 350 < 150 Aluminium / Aluminium < 5%Si < 500 Aluminium / Aluminium > 5%Si < 400 < 120 Kupfer / Copper < 350 < 100 < 700 Messing / Brass < 200 Graphit / Graphite Kunststoffe / Synthetics < 350

Für weitere Materialangaben siehe Werkstofftabelle

CrCn-beschichtet

empfohlene Kühlung: 1. Emulsion 2. Mindermengenschmierung

CrCn coated

recommended cooling: 1. Emulsion 2. Minimum lubrification

HPM

Scharfkantig / Sharp

Vorschub f,* beim Eckfräsen für kleinere Zustellung a muss wie folgt berechnet werden.

Beim Eckfräsen kann die Schnittgeschwindigkeit v bis zu 30% erhöht werden.

At shoulder milling, feed per tooth f_z^\star for lower a_e values should be converted according formula.

For shoulder milling cutting speed $\rm v_{\rm c}$ can be increased up

Schaftfräser / Endmill

			Eckfra	ä sen / Shoulder	milling	Schli	t zfräsen / Slot i	milling
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)
DSMK	3	2,0	< 2,0	< 0,2	0,010 - 0,015	< 0,2	< 2,0	0,010 - 0,015
DSMK	3	3,0	< 3,0	< 0,3	0,015 - 0,020	< 0,3	< 3,0	0,015 - 0,020
DSMK	3	4,0	< 6,0	< 0,5	0,020 - 0,030	< 0,4	< 4,0	0,020 - 0,025
DSMK	3	5,0	< 7,5	< 0,7	0,025 - 0,035	< 0,5	< 5,0	0,020 - 0,030
DSMK	3	6,0	< 12,0	< 1,2	0,030 - 0,040	< 0,6	< 6,0	0,025 - 0,035
DSMK	3	8,0	< 16,0	< 1,6	0,040 - 0,060	< 0,8	< 8,0	0,035 - 0,050
DSMK	3	10,0	< 20,0	< 2,0	0,055 - 0,075	< 1,0	< 10,0	0,055 - 0,065
DSMK	3	12,0	< 24,0	< 3,0	0,100 - 0,130	< 1,2	< 12,0	0,060 - 0,100
DSMK	3	14,0	< 28,0	< 3,5	0,120 - 0,180	< 1,4	< 14,0	0,080 - 0,150
DSMK	3	16,0	< 32,0	< 4,0	0,150 - 0,250	< 1,6	< 16,0	0,090 - 0,180

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

DSMRK Schaftfräser / Endmill

CrCn-beschichtet

empfohlene Kühlung: 1. Emulsion 2. Mindermengenschmierung

CrCn coated

recommended cooling: 1. Emulsion 2. Minimum lubrification

HPM

Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	- coming operation (commitment)
Legierter Stahl / Alloyed steel	> 1000	< 300	
Workson gotobl / Taral at all	> 850	> 250	
Werkzeugstahl / Tool steel	> 1000	> 300	
Rostfreier Stahl / Stainless steel	< 600	< 200	
NOStitelet Starii / Stariiess steel	< 850	< 250	
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300	
Titanlegierung / Titanium alloys	< 900	< 300	
		45-52 HRc	
Gehärteter Stahl / Hardened steel		50-60 HRc	
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	
Aluminium / Aluminium	< 350	< 100	< 350
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			
Kunststoffe / Synthetics			< 350

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

Eckenradius / Corner radius

 $= f_z \sqrt{\frac{d}{a_e}}$

Vorschub f_z^* beim Eckfräsen für kleinere Zustellung a_e muss wie folgt berechnet werden.

Beim Eckfräsen kann die Schnittgeschwindigkeit v_c bis zu 30% erhöht werden.

At shoulder milling, feed per tooth $f_z^{\,\star}$ for lower $a_{_{\! e}}$ values should be converted according formula.

For shoulder milling cutting speed $\rm v_{\rm c}$ can be increased up to 30%.

 a_p bis/up to 0,10 x d

			Eckfra	äsen / Shoulder	milling	Schlif	zfräsen / Slot	milling
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)
DSMRK	3	2,0	< 2,0	< 0,2	0,010 - 0,015	< 0,2	< 2,0	0,010 - 0,015
DSMRK	3	3,0	< 3,0	< 0,3	0,015 - 0,020	< 0,3	< 3,0	0,015 - 0,020
DSMRK	3	4,0	< 6,0	< 0,5	0,020 - 0,030	< 0,4	< 4,0	0,020 - 0,025
DSMRK	3	5,0	< 7,5	< 0,7	0,025 - 0,035	< 0,5	< 5,0	0,020 - 0,030
DSMRK	3	6,0	< 12,0	< 1,2	0,030 - 0,040	< 0,6	< 6,0	0,025 - 0,035
DSMRK	3	8,0	< 16,0	< 1,6	0,040 - 0,060	< 0,8	< 8,0	0,035 - 0,050
DSMRK	3	10,0	< 20,0	< 2,0	0,055 - 0,075	< 1,0	< 10,0	0,055 - 0,065
DSMRK	3	12,0	< 24,0	< 3,0	0,100 - 0,130	< 1,2	< 12,0	0,060 - 0,100
DSMRK	3	14,0	< 28,0	< 3,5	0,120 - 0,180	< 1,4	< 14,0	0,080 - 0,150
DSMRK	3	16,0	< 32,0	< 4,0	0,150 - 0,250	< 1,6	< 16,0	0,090 - 0,180

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

DSKMK			Microfräser / Micro Endmill
Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	
Legierter Stahl / Alloyed steel	> 1000	< 300	
Werkzeugstahl / Tool steel	> 850 > 1000	> 250 > 300	
Rostfreier Stahl / Stainless steel	< 600 < 850	< 200 < 250	
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300	
Titanlegierung / Titanium alloys	< 900	< 300	
Gehärteter Stahl / Hardened steel		45-52 HRc 50-60 HRc 58-70 HRc	
Temperguss / Malleable cast iron		< 260	
Aluminium / Aluminium	< 350	< 100	< 350
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			
Kunststoffe / Synthetics			< 350

Für weitere Materialangaben siehe Werkstofftabelle

For further material specifications see material cross reference list.

empfohlene Kühlung: 1. Emulsion 2. Mindermengenschmierung

CrCn coated

recommended cooling: 1. Emulsion 2. Minimum lubrification

HSM

Vollradius / Ballnose

Schnittgeschwindigkeit v_c basiert auf max. 40.000 1/min.

Cutting Speed $\rm v_{\rm c}$ is based on max. 40.000 rpm.

 a_n bis/up to 1,00 x d ae bis/up to 0,10 x d

ţ	Z.	
12		
la _p	_	$a_e = \emptyset d$

 a_n bis/up to 0,10 x d a bis/up to 0,05 x d

			Eckfr	äsen / Shoulder	milling	Kopie	rfräsen / Copy	milling
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a max. (mm)	a _e max. (mm)	f _z (mm/tooth)
DSKMK	2	0,3	< 0,15	< 0,02	0,005 - 0,009	< 0,02	< 0,01	0,005 - 0,010
DSKMK	2	0,4	< 0,20	< 0,03	0,007 - 0,010	< 0,02	< 0,02	0,007 - 0,015
DSKMK	2	0,5	< 0,25	< 0,03	0,009 - 0,015	< 0,03	< 0,02	0,010 - 0,017
DSKMK	2	0,6	< 0,45	< 0,04	0,010 - 0,017	< 0,06	< 0,02	0,015 - 0,020
DSKMK	2	0,8	< 0,60	< 0,05	0,013 - 0,020	< 0,08	< 0,03	0,017 - 0,025
DSKMK	2	1,0	< 1,00	< 0,09	0,016 - 0,025	< 0,10	< 0,05	0,020 - 0,030
DSKMK	2	1,2	< 1,20	< 0,10	0,020 - 0,030	< 0,12	< 0,06	0,025 - 0,035
DSKMK	2	1,5	< 1,50	< 0,13	0,030 - 0,035	< 0,15	< 0,07	0,030 - 0,045
DSKMK	2	2,0	< 2,00	< 0,17	0,035 - 0,050	< 0,20	< 0,10	0,035 - 0,060
DSKMK	2	2,5	< 2,50	< 0,21	0,040 - 0,060	< 0,25	< 0,12	0,045 - 0,070
DSKMK	2	3,0	< 3,00	< 0,26	0,050 - 0,075	< 0,30	< 0,15	0,055 - 0,080

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

All above mentioned cutting conditions should be regarded as guidelines. The conditions can be further optimised, depending on the stability and power of the machine and toolholder.

CrCn-beschichtet

empfohlene Kühlung: 1. Emulsion 2. Mindermengenschmierung

CrCn coated

recommended cooling: 1. Emulsion 2. Minimum lubrification

HSM

Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	
Legierter Stahl / Alloyed steel	> 1000	< 300	
Workzougotobl / Tool steel	> 850	> 250	
Werkzeugstahl / Tool steel	> 1000	> 300	
Rostfreier Stahl / Stainless steel	< 600	< 200	
Nostrieler Starii / Stariiess steer	< 850	< 250	
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300	
Titanlegierung / Titanium alloys	< 900	< 300	
Gehärteter Stahl / Hardened steel		45-52 HRc 50-60 HRc 58-70 HRc	
Temperguss / Malleable cast iron		< 260	
Aluminium / Aluminium	< 350	< 100	< 350
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			
Kunststoffe / Synthetics			< 350

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

DSMMK

Schnittgeschwindigkeit v_c basiert auf max. 40.000 1/min.

Cutting Speed $\rm v_{\rm c}$ is based on max. 40.000 rpm.

Reduktion Reduction
0%
30%
50%

 a_p bis/up to 1,00 x d a_p bis/up to 0,10 x d a_p bis/up to 0,10 x d

			Eckfr	Eckfräsen / Shoulder milling			tzfräsen / Slot	milling
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)
DSMMK	2	0,3	< 0,15	< 0,03	0,005 - 0,009	< 0,03	< 0,3	0,005 - 0,009
DSMMK	2	0,4	< 0,20	< 0,03	0,007 - 0,010	< 0,04	< 0,4	0,007 - 0,010
DSMMK	2	0,5	< 0,25	< 0,04	0,009 - 0,015	< 0,05	< 0,5	0,009 - 0,012
DSMMK	2	0,6	< 0,45	< 0,05	0,010 - 0,017	< 0,06	< 0,6	0,010 - 0,015
DSMMK	2	0,8	< 0,60	< 0,07	0,013 - 0,020	< 0,08	< 0,8	0,012 - 0,017
DSMMK	2	1,0	< 1,00	< 0,10	0,016 - 0,025	< 0,10	< 1,0	0,013 - 0,020
DSMMK	2	1,2	< 1,20	< 0,12	0,020 - 0,030	< 0,12	< 1,2	0,015 - 0,025
DSMMK	2	1,5	< 1,50	< 0,15	0,030 - 0,035	< 0,15	< 1,5	0,017 - 0,030
DSMMK	2	2,0	< 2,00	< 0,20	0,035 - 0,050	< 0,20	< 2,0	0,020 - 0,040
DSMMK	2	2,5	< 2,50	< 0,25	0,040 - 0,060	< 0,25	< 2,5	0,022 - 0,045
DSMMK	2	3,0	< 3,00	< 0,30	0,050 - 0,075	< 0,30	< 3,0	0,025 - 0,055

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzaughalter ontimiert werden.

Werkzeughalter optimiert werden.

All above mentioned cutting conditions should be regarded as guidelines. The conditions can be further optimised, depending on the stability and power of the machine and toolholder.

Microfräser / Micro Endmill

DSKG Schaftfräser Vollradius / Endmill Ballnose

Matazaltina	TSR	Härte / Hardness	Schnittgeschwindigkeit /
Material / Material	(N/mm)	HB	Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	,
Legierter Stahl / Alloyed steel	> 1000	< 300	
Marken and his to the last	> 850	> 250	
Werkzeugstahl / Tool steel	> 1000	> 300	
Rostfreier Stahl / Stainless steel	< 600	< 200	
Rostifelei Stafii / Stainless steel	< 850	< 250	
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300	
Titanlegierung / Titanium alloys	< 900	< 300	
		45-52 HRc	
Gehärteter Stahl / Hardened steel		50-60 HRc	
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	
Aluminium / Aluminium	< 350	< 100	
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	< 400
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			< 500
Kunststoffe / Synthetics			

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

Diamantbeschichtet

Trockenfräsen, mit Pressluft zum Entfernen des Graphitpulvers

Diamond coated

Dry milling, with air pressure to remove the Graphit / Graphite powder

HSM

Vollradius / Ballnose

Schnittgeschwindigkeit v_c basiert auf max. 40.000 1/min.

Cutting Speed $\rm v_{\rm c}$ is based on max. 40.000 rpm.

 a_p bis/up to 2,00 x d a_p bis/up to 0,20 x d

			Eckfr	Eckfräsen / Shoulder milling			Kopierfräsen / Copy milling		
Typ / Type	Z	Ød (mm)	a max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a max. (mm)	a max. (mm)	f _z (mm/tooth)	
DSKG	3	2,0	< 2,0	< 0,2	0,010 - 0,030	< 0,4	< 0,1	0,010 - 0,030	
DSKG	3	3,0	< 3,0	< 0,3	0,015 - 0,040	< 0,6	< 0,2	0,015 - 0,040	
DSKG	3	4,0	< 6,0	< 0,4	0,025 - 0,050	< 0,8	< 0,3	0,025 - 0,050	
DSKG	3	5,0	< 7,5	< 0,5	0,035 - 0,060	< 1,0	< 0,4	0,035 - 0,060	
DSKG	3	6,0	< 9,0	< 0,8	0,045 - 0,080	< 1,2	< 0,5	0,045 - 0,080	
DSKG	3	8,0	< 12,0	< 1,0	0,055 - 0,100	< 1,6	< 0,7	0,055 - 0,100	
DSKG	3	10,0	< 15,0	< 1,3	0,075 - 0,120	< 2,0	< 0,9	0,075 - 0,120	
DSKG	3	12,0	< 24,0	< 2,4	0,075 - 0,140	< 2,4	< 1,2	0,075 - 0,140	

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter ontimiert werden.

Diamantbeschichtet

Trockenfräsen, mit Pressluft zum Entfernen des Graphitpulvers

Diamond coated

Dry milling, with air pressure to remove the Graphit / Graphite powder

HSM

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

Schnittgeschwindigkeit v basiert auf max. 40.000 1/min.

Cutting Speed v_c is based on max. 40.000 rpm.

 a_p bis/up to 2,00 x d a_p bis/up to 0,20 x d

			Eckfra	Eckfräsen / Shoulder milling			Kopierfräsen / Copy milling		
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a max. (mm)	a max. (mm)	f _z (mm/tooth)	
DSKGL	2	2,0	< 2,0	< 0,2	0,010 - 0,030	< 0,4	< 0,1	0,010 - 0,030	
DSKGL	2	3,0	< 3,0	< 0,3	0,015 - 0,040	< 0,6	< 0,2	0,015 - 0,040	
DSKGL	2	4,0	< 6,0	< 0,4	0,025 - 0,050	< 0,8	< 0,3	0,025 - 0,050	
DSKGL	2	5,0	< 7,5	< 0,5	0,035 - 0,060	< 1,0	< 0,4	0,035 - 0,060	
DSKGL	2	6,0	< 9,0	< 0,8	0,045 - 0,080	< 1,2	< 0,5	0,045 - 0,080	
DSKGL	2	8,0	< 12,0	< 1,0	0,055 - 0,100	< 1,6	< 0,7	0,055 - 0,100	
DSKGL	2	10,0	< 15,0	< 1,3	0,075 - 0,120	< 2,0	< 0,9	0,075 - 0,120	
DSKGL	2	12,0	< 24,0	< 2,4	0,075 - 0,140	< 2,4	< 1,2	0,075 - 0,140	

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

DSTG / DSTLG		Torusfräser / Torus Endmill			
Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)		
Kohlenstoffstahl / Carbon steel	< 750	< 250			
Legierter Stahl / Alloyed steel	> 1000	< 300			
Werkzeugstahl / Tool steel	> 850	> 250			
vvernzeugstarii / 1001 steel	> 1000	> 300			
Rostfreier Stahl / Stainless steel	< 600	< 200			
- Statil / Statil / Statilless steel	< 850	< 250			
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300			
Titanlegierung / Titanium alloys	< 900	< 300			
Gehärteter Stahl / Hardened steel		45-52 HRc 50-60 HRc 58-70 HRc			
Temperguss / Malleable cast iron		< 260			
Aluminium / Aluminium	< 350	< 100			
Aluminium / Aluminium < 5%Si	< 500	< 150			
Aluminium / Aluminium > 5%Si	< 400	< 120	< 400		
Kupfer / Copper	< 350	< 100			
Messing / Brass	< 700	< 200			
Graphit / Graphite			< 500		
Kunststoffe / Synthetics					

Für weitere Materialangaben siehe Werkstofftabelle

Diamantbeschichtet

Trockenfräsen, mit Pressluft zum Entfernen des Graphitpulvers

Diamond coated

Dry milling, with air pressure to remove the Graphit / Graphite powder

HSM

Eckenradius / Corner radius

Schnittgeschwindigkeit v_c basiert auf max. 40.000 1/min.

Vorschub f,* beim Eckfräsen für kleinere Zustellung a, muss wie folgt berechnet werden.

Die Angaben beziehen sich auf DSTG Standardfräser mit

Cutting Speed v_c is based on max. 40.000 rpm.

At shoulder milling, feed per tooth $\mathbf{f_z^*}$ for lower $\mathbf{a_e}$ values should be converted according formula.

Given conditions are based on DSTG standard endmills with z=3.

0,50 x d

a bis/up to 1,00 x d

			Eckfräsen / Shoulder milling		Schli	tzfräsen / Slot i	milling	
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)
DSTG / DSTLG	2 - 3 - 4	2,0	< 2,0	< 0,2	0,010 - 0,030	< 0,5	< 2,0	0,010 - 0,030
DSTG / DSTLG	2 - 3 - 4	3,0	< 3,0	< 0,3	0,015 - 0,040	< 0,8	< 3,0	0,015 - 0,040
DSTG / DSTLG	2 - 3 - 4	4,0	< 6,0	< 0,4	0,025 - 0,050	< 2,0	< 4,0	0,025 - 0,050
DSTG / DSTLG	2 - 3 - 4	5,0	< 7,5	< 0,5	0,035 - 0,060	< 2,5	< 5,0	0,035 - 0,060
DSTG / DSTLG	2 - 3 - 4	6,0	< 9,0	< 0,8	0,045 - 0,080	< 4,5	< 6,0	0,045 - 0,080
DSTG / DSTLG	2 - 3 - 4	8,0	< 12,0	< 1,0	0,055 - 0,100	< 6,0	< 8,0	0,055 - 0,100
DSTG / DSTLG	2 - 3 - 4	10,0	< 15,0	< 1,3	0,075 - 0,120	< 7,5	< 10,0	0,075 - 0,120
DSTG / DSTLG	2 - 3 - 4	12.0	< 24.0	< 2.4	0.075 - 0.140	< 12.0	< 12.0	0.075 - 0.140

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

All above mentioned cutting conditions should be regarded as guidelines. The conditions can be further optimised, depending on the stability and power of the machine and toolholder.

Diamantbeschichtet

Trockenfräsen, mit Pressluft zum Entfernen des Graphitpulvers

Diamond coated

Dry milling, with air pressure to remove the Graphit / Graphite powder

HSM

Material / Material	TSR	Härte / Hardness	Schnittgeschwindigkeit /
Material / Material	(N/mm)	HB	Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	-
Legierter Stahl / Alloyed steel	> 1000	< 300	
Work=ougatabl / Tool stool	> 850	> 250	
Werkzeugstahl / Tool steel	> 1000	> 300	
Rostfreier Stahl / Stainless steel	< 600	< 200	
Rostifeler Starii / Stainless steel	< 850	< 250	
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300	
Titanlegierung / Titanium alloys	< 900	< 300	
		45-52 HRc	
Gehärteter Stahl / Hardened steel		50-60 HRc	
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	
Aluminium / Aluminium	< 350	< 100	
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			350 - 500
Kunststoffe / Synthetics			
Für weitere Materialangaben siehe Werksto	fftabelle		

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

DSVG

Scharfkantig / Sharp

Vorschub f_z* beim Eckfräsen für kleinere Zustellung a_e muss wie folgt berechnet werden.

At shoulder milling, feed per tooth $f_{_2}^{\,\star}$ for lower $a_{_e}$ values should be converted according formula.

a_	f,*=
0,10 x d	f _z x 3
0,25 x d	f, x 2
0,50 x d	f x 1

Schruppfräser / Roughing Endmill

			Eckfra	Eckfräsen / Shoulder milling			Schlitzfräsen / Slot milling		
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	Vf (mm/min)	a _p max. (mm)	a _e max. (mm)	Vf (mm/min)	
DSVG	х	4,0	< 10,0	< 2,0	< 3600	< 4,0	< 4,0	< 3600	
DSVG	Х	6,0	< 15,0	< 3,0	< 4100	< 6,0	< 6,0	< 4100	
DSVG	Х	8,0	< 20,0	< 4,0	< 4500	< 8,0	< 8,0	< 4500	
DSVG	Х	10,0	< 25,0	< 5,0	< 5100	< 10,0	< 10,0	< 5100	
DSVG	Х	12,0	< 30,0	< 6,0	< 6000	< 12,0	< 12,0	< 6000	

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzaughalter ontimiert werden.

DSKMG	Microf	Microfräser Vollradius / Micro Endmill Ballnose					
Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)				
Kohlenstoffstahl / Carbon steel	< 750	< 250					
Legierter Stahl / Alloyed steel	> 1000	< 300					
Werkzeugstahl / Tool steel	> 850 > 1000	> 250 > 300					
Rostfreier Stahl / Stainless steel	< 600 < 850	< 200 < 250					
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300					
Titanlegierung / Titanium alloys	< 900	< 300					
Gehärteter Stahl / Hardened steel		45-52 HRc 50-60 HRc 58-70 HRc					
Temperguss / Malleable cast iron		< 260					
Aluminium / Aluminium	< 350	< 100					
Aluminium / Aluminium < 5%Si	< 500	< 150					
Aluminium / Aluminium > 5%Si	< 400	< 120	< 200				
Kupfer / Copper	< 350	< 100					
Messing / Brass	< 700	< 200					
Graphit / Graphite			< 200				

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

Kunststoffe / Synthetics

Diamantbeschichtet

Trockenfräsen, mit Pressluft zum Entfernen des Graphitpulvers

Diamond coated

Dry milling, with air pressure to remove the Graphit / Graphite powder

HSM

Vollradius / Ballnose

Schnittgeschwindigkeit v_c basiert auf max. 40.000 1/min.

Cutting Speed $\rm v_{\rm c}$ is based on max. 40.000 rpm.

<u> </u>		a _p bis/up to a _e bis/up to	0,20 x d 0,10 x d
la _p	$a_e = \emptyset d$		

				Eckfr	Eckfräsen / Shoulder milling			rfräsen / Copy	milling
	Typ / Type	Z	Ød (mm)	a₀ max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)
_	DSKMG	2	0,3	< 0,15	< 0,03	0,006 - 0,012	< 0,03	< 0,02	0,006 - 0,012
	DSKMG	2	0,4	< 0,20	< 0,04	0,008 - 0,015	< 0,04	< 0,03	0,008 - 0,015
	DSKMG	2	0,5	< 0,25	< 0,04	0,010 - 0,020	< 0,05	< 0,03	0,010 - 0,020
	DSKMG	2	0,6	< 0,45	< 0,05	0,012 - 0,022	< 0,12	< 0,04	0,012 - 0,022
	DSKMG	2	0,8	< 0,60	< 0,07	0,015 - 0,025	< 0,16	< 0,05	0,015 - 0,025
_	DSKMG	2	1,0	< 1,00	< 0,10	0,018 - 0,030	< 0,20	< 0,09	0,018 - 0,030
_	DSKMG	2	1,2	< 1,20	< 0,12	0,020 - 0,035	< 0,24	< 0,10	0,020 - 0,035
	DSKMG	2	1,5	< 1,50	< 0,15	0,025 - 0,040	< 0,30	< 0,13	0,025 - 0,040

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

All above mentioned cutting conditions should be regarded as guidelines. The conditions can be further optimised, depending on the stability and power of the machine and toolholder.

Diamantbeschichtet

Trockenfräsen, mit Pressluft zum Entfernen des Graphitpulvers

Diamond coated

Dry milling, with air pressure to remove the Graphit / Graphite powder

HSM

Material / Material	TSR	Härte / Hardness	Schnittgeschwindigkeit /
Material / Material	(N/mm)	HB	Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	
Legierter Stahl / Alloyed steel	> 1000	< 300	
Werkzeugstahl / Tool steel	> 850	> 250	
vverkzeugstarii / 100i steel	> 1000	> 300	
Rostfreier Stahl / Stainless steel	< 600	< 200	
ROStifelet Starii / Stainless steel	< 850	< 250	
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300	
Titanlegierung / Titanium alloys	< 900	< 300	
		45-52 HRc	
Gehärteter Stahl / Hardened steel		50-60 HRc	
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	
Aluminium / Aluminium	< 350	< 100	
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	< 200
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			< 200
Kunststoffe / Synthetics			
Eür weitere Meterialangahan siehe Werket	offtobollo		

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

DSMMG

Schnittgeschwindigkeit v_c basiert auf max. 40.000 1/min.

Cutting Speed v_c is based on max. 40.000 rpm.

Reduktion		
Reduction		
0%		
30%		
50%		

Schruppfräser / Roughing Endmill

			Eckfr	äsen / Shoulder	milling	Schli	tzfräsen / Slot i	milling
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)
DSMMG	2	0,3	< 0,15	< 0,03	0,006 - 0,012	< 0,08	< 0,3	0,006 - 0,012
DSMMG	2	0,4	< 0,20	< 0,04	0,008 - 0,015	< 0,10	< 0,4	0,008 - 0,015
DSMMG	2	0,5	< 0,25	< 0,04	0,010 - 0,020	< 0,13	< 0,5	0,010 - 0,020
DSMMG	2	0,6	< 0,45	< 0,05	0,012 - 0,022	< 0,15	< 0,6	0,012 - 0,022
DSMMG	2	0,8	< 0,60	< 0,07	0,015 - 0,025	< 0,20	< 0,8	0,015 - 0,025
DSMMG	2	1,0	< 1,00	< 0,10	0,018 - 0,030	< 0,25	< 1,0	0,018 - 0,030
DSMMG	2	1,2	< 1,20	< 0,12	0,020 - 0,035	< 0,30	< 1,2	0,020 - 0,035
DSMMG	2	1,5	< 1,50	< 0,15	0,025 - 0,040	< 0,38	< 1,5	0,025 - 0,040

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzaughalter ontimiert werden.

Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	outing opood (10 mmm)
Legierter Stahl / Alloyed steel	> 1000	< 300	
Werkzeugstahl / Tool steel	> 850 > 1000	> 250 > 300	
Rostfreier Stahl / Stainless steel	< 600 < 850	< 200 < 250	
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300	
Titanlegierung / Titanium alloys	< 900	< 300	
Gehärteter Stahl / Hardened steel		45-52 HRc 50-60 HRc 58-70 HRc	300 - 500 200 - 400
Temperguss / Malleable cast iron		< 260	
Aluminium / Aluminium	< 350	< 100	
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite Kunststoffe / Synthetics			

empfohlene Kühlung: 1. Mindermengenschmierung 2. Luft

TiAIN coated

recommended cooling:
1. Minimum lubrification
2. Air

HSM

Für weitere Materialangaben siehe Werkstofftabelle

For further material specifications see material cross reference list.

Vollradius / Ballnose

Die aufgeführten Schnittgeschwindigkeiten müssen mit dem effektiven Schneidkreis-Ø $\mathbf{d}_{\mathrm{eff}}$ verrechnet werden. Siehe Formel.

For the cutting speed v $_{\rm c}$ calculation the effective cutting diameter d $_{\rm eff}$ has to be taken into account. See formula.

gehärtetes Material
hardened material
a_p bis/up to 0,5 x d
a_e bis/up to 0,5 mm

 $\frac{\text{gehärtetes Material}}{\frac{\text{hardened material}}{\text{a}_{\text{p}} \text{ bis/up to 0,025 x d}}}$ $\frac{\text{a}_{\text{p}} \text{ bis/up to 0,025 mm}}{\text{a}_{\text{p}} \text{ bis/up to 0,28 mm}}$

 $\beta = 0$: $d_{eff} = 2 \cdot \sqrt{d \cdot a_{p} - a_{p}^{2}}$

 $\beta \neq 0$: $d_{eff} = d \cdot sin \left[\beta \pm arc cos \left(\frac{d - 2a_p}{d} \right) \right]$

			Eckfr	Eckfräsen / Shoulder milling			Kopierfräsen / Copy milling		
Typ / Type	Z	Ød (mm)	a max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a max. (mm)	a max. (mm)	f _z (mm/tooth)	
DSK	2	1,0	< 0,5	< 0,02	0,020 - 0,030	< 0,04	< 0,01	0,030 - 0,040	
DSK	2	1,5	< 0,8	< 0,03	0,020 - 0,030	< 0,06	< 0,02	0,030 - 0,040	
DSK	2	2,0	< 1,0	< 0,04	0,030 - 0,050	< 0,08	< 0,02	0,050 - 0,075	
DSK	2	3,0	< 1,5	< 0,06	0,040 - 0,060	< 0,11	< 0,03	0,055 - 0,090	
DSK	2	4,0	< 2,0	< 0,10	0,050 - 0,080	< 0,14	< 0,05	0,065 - 0,100	
DSK	2	5,0	< 2,5	< 0,13	0,060 - 0,120	< 0,18	< 0,07	0,075 - 0,120	
DSK	2	6,0	< 3,0	< 0,18	0,065 - 0,125	< 0,20	< 0,09	0,080 - 0,125	
DSK	2	8,0	< 4,0	< 0,24	0,080 - 0,130	< 0,25	< 0,12	0,090 - 0,130	
DSK	2	10,0	< 5,0	< 0,30	0,085 - 0,135	< 0,30	< 0,15	0,100 - 0,135	
DSK	2	12,0	< 6,0	< 0,36	0,100 - 0,140	< 0,36	< 0,20	0,110 - 0,140	
DSK	2	16,0	< 8.0	< 0.50	0.100 - 0.150	< 0.40	< 0.28	0,120 - 0,150	

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter ontimiert werden.

AlTiN-beschichtet

empfohlene Kühlung: 1. Mindermengenschmierung 2. Luft

AITiN coated

recommended cooling:
1. Minimum lubrification
2. Air

HSM

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

Die aufgeführten Schnittgeschwindigkeiten müssen mit dem effektiven Schneidkreis-Ø d_{eff} verrechnet werden. Siehe Formel.

For the cutting speed $\rm v_c$ calculation the effective cutting diameter $\rm d_{\rm eff}$ has to be taken into account. See formula.

 $\frac{\text{gehärtetes Material}}{\frac{\text{hardened material}}{\text{a}_{\text{p}}} \text{bis/up to 0,025 x d}}$ $\frac{\text{a}_{\text{e}} \text{bis/up to 0,28 mm}}{\text{bis/up to 0,28 mm}}$

 $\beta = 0: \qquad d_{\text{eff}} = 2 \cdot \sqrt{d \cdot a_{p^{-}} a_{p^{2}}}$

 $\beta \neq 0$: $d_{eff} = d \cdot \sin \left[\beta \pm \arccos \left(\frac{d - 2a_p}{d} \right) \right]$

			Eckfräsen / Shoulder milling			Kopie	erfräsen / Copy	milling
Typ / Type	Z	Ød (mm)	a max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a max. (mm)	a max. (mm)	f _z (mm/tooth)
DSKH	2	1,0	< 0,5	< 0,02	0,020 - 0,030	< 0,04	< 0,01	0,030 - 0,06
DSKH	2	1,5	< 0,8	< 0,03	0,020 - 0,030	< 0,06	< 0,02	0,030 - 0,06
DSKH	2	2,0	< 1,0	< 0,04	0,030 - 0,050	< 0,08	< 0,02	0,050 - 0,07
DSKH	2	3,0	< 1,5	< 0,06	0,040 - 0,060	< 0,11	< 0,03	0,055 - 0,08
DSKH	2	4,0	< 2,0	< 0,10	0,050 - 0,080	< 0,14	< 0,05	0,065 - 0,10
DSKH	2	5,0	< 2,5	< 0,13	0,060 - 0,120	< 0,18	< 0,07	0,075 - 0,15
DSKH	2	6,0	< 3,0	< 0,18	0,065 - 0,125	< 0,20	< 0,09	0,080 - 0,20
DSKH	2	8,0	< 4,0	< 0,24	0,080 - 0,130	< 0,25	< 0,12	0,090 - 0,25
DSKH	2	10,0	< 5,0	< 0,30	0,085 - 0,135	< 0,30	< 0,15	0,100 - 0,25
DSKH	2	12,0	< 6,0	< 0,36	0,100 - 0,140	< 0,36	< 0,20	0,110 - 0,25
DSKH	2	16,0	< 8,0	< 0,50	0,100 - 0,150	< 0,40	< 0,28	0,120 - 0,25

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

DSKL

Schaftfräser Vollradius / Endmill Ballnose

Material / Material	TSR	Härte / Hardness	Schnittgeschwindigkeit /
ivialeriai / ivialeriai	(N/mm)	HB	Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	
Legierter Stahl / Alloyed steel	> 1000	< 300	
Work-zougetabl / Teel steel	> 850	> 250	
Werkzeugstahl / Tool steel	> 1000	> 300	
Rostfreier Stahl / Stainless steel	< 600	< 200	
Nostrieler Starii / Stariiless steer	< 850	< 250	
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300	
Titanlegierung / Titanium alloys	< 900	< 300	
		45-52 HRc	300 - 500
Gehärteter Stahl / Hardened steel		50-60 HRc	200 - 400
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	
Aluminium / Aluminium	< 350	< 100	
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			
Kunststoffe / Synthetics			

TiAIN-beschichtet

empfohlene Kühlung: Mindermengenschmierung
 2. Luft

TiAIN coated

recommended cooling: 1. Minimum lubrification 2. Air

HSM

Für weitere Materialangaben siehe Werkstofftabelle

For further material specifications see material cross reference list.

Vollradius / Ballnose

Die aufgeführten Schnittgeschwindigkeiten müssen mit dem effektiven Schneidkreis- $\mathcal O$ d $_{\mathrm{eff}}$ verrechnet werden. Siehe Formel.

For the cutting speed $\rm v_c$ calculation the effective cutting diameter $\rm d_{\rm eff}$ has to be taken into account. See formula.

gehärtetes Material hardened material a bis/up to 0,50 x d a bis/up to 0,36 mm

gehärtetes Material hardened material $\overline{a_p}$ bis/up to 0,03 x d a bis/up to 0,20 mm

B = 0: $d_{eff} = 2 \cdot \sqrt{d \cdot a_{p} - a_{p}^{2}}$

 $\beta \neq 0$: $d_{eff} = d \cdot \sin \left[\beta \pm \arccos \left(\frac{d - 2a_p}{d} \right) \right]$

Typ / Type	Z	Ød (mm)
DSKL	2	6,0
DSKL	2	8,0
DSKL	2	10,0
DSKL	2	12,0

Kopierfräsen / Copy milling						
a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)				
< 0,20	< 0,09	0,080 - 0,125				
< 0,25	< 0,12	0,090 - 0,130				
< 0,30	< 0,15	0,100 - 0,135				
< 0,36	< 0,20	0,110 - 0,140				

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und

AlTiN-beschichtet

empfohlene Kühlung: 1. Mindermengenschmierung 2. Luft

AITiN coated

recommended cooling:
1. Minimum lubrification
2. Air

HSM

TSR Härte / Hardness Schnittgeschwindigkeit / Material / Material (N/mm) HB Cutting speed (Vc m/min) Kohlenstoffstahl / Carbon steel < 750 < 250 Legierter Stahl / Alloyed steel > 1000 < 300 > 850 > 250 Werkzeugstahl / Tool steel > 1000 > 300 < 600 < 200 Rostfreier Stahl / Stainless steel < 850 < 250 Warmfeste Werkstoffe / < 900 < 300 High temp. alloys < 900 < 300 Titanlegierung / Titanium alloys Gehärteter Stahl / Hardened steel 50-60 HRc 140 - 280 58-70 HRc 120 - 220 Temperguss / Malleable cast iron < 260 Aluminium / Aluminium < 350 < 100 < 500 < 150 Aluminium / Aluminium < 5%Si Aluminium / Aluminium > 5%Si < 400 < 120 Kupfer / Copper < 350 < 100 Messing / Brass < 700 < 200 Graphit / Graphite

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

DSKLH

Kunststoffe / Synthetics

Vollradius / Ballnose

Die aufgeführten Schnittgeschwindigkeiten müssen mit dem effektiven Schneidkreis-Ø d_{eff} verrechnet werden. Siehe Formel.

For the cutting speed $\rm v_c$ calculation the effective cutting diameter $\rm d_{\rm eff}$ has to be taken into account. See formula.

gehärtetes Material
hardened material
a_p bis/up to 0,50 x d
a_e bis/up to 0,36 mm

gehärtetes Material hardened material a_p bis/up to 0,03 x d a_e bis/up to 0,20 mm

Schaftfräser Vollradius / Endmill Ballnose

 $\beta = 0: \qquad d_{\text{eff}} = 2 \, \bullet \, \sqrt{d \, \bullet \, a_{p^-} \, a_{p^-}^2}$

 $\beta \neq 0$: $d_{eff} = d \cdot \sin \left[\beta \pm \arccos \left(\frac{d - 2a_p}{d} \right) \right]$

Typ / Type	Z	Ød (mm)
DSKLH	2	6,0
DSKLH	2	8,0
DSKLH	2	10,0
DSKLH	2	12,0

Eckfräsen / Shoulder milling							
a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)					
< 3,0	< 0,18	0,065 - 0,125					
< 4,0	< 0,24	0,080 - 0,130					
< 5,0	< 0,30	0,085 - 0,135					
< 6,0	< 0,36	0,100 - 0,140					

Kopierfräsen / Copy milling								
a _p max. (mm)	a max. (mm) a max. (mm) f (mm/tooth)							
< 0,20	< 0,09	0,080 - 0,20						
< 0,25	< 0,12	0,090 - 0,25						
< 0,30	< 0,15	0,100 - 0,25						
< 0,36	< 0,20	0,110 - 0,25						

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	
Legierter Stahl / Alloyed steel	> 1000	< 300	
Workzougotohl / Tool stool	> 850	> 250	
Werkzeugstahl / Tool steel	> 1000	> 300	
Rostfreier Stahl / Stainless steel	< 600	< 200	
	< 850	< 250	
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300	
Titanlegierung / Titanium alloys	< 900	< 300	
		45-52 HRc	300 - 500
Gehärteter Stahl / Hardened steel		50-60 HRc	200 - 400
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	
Aluminium / Aluminium	< 350	< 100	
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			
Kunststoffe / Synthetics			

empfohlene Kühlung: 1. Mindermengenschmierung 2. Luft

TiAIN coated

recommended cooling:
1. Minimum lubrification
2. Air

HSM

Für weitere Materialangaben siehe Werkstofftabelle

For further material specifications see material cross reference list.

220° Vollradius / Ballnose

Die aufgeführten Schnittgeschwindigkeiten müssen mit dem effektiven Schneidkreis-Ø $\mathbf{d}_{\mathrm{eff}}$ verrechnet werden. Siehe Formel.

For the cutting speed $\rm v_c$ calculation the effective cutting diameter $\rm d_{\rm eff}$ has to be taken into account. See formula.

gehärtetes Material hardened material a_p bis/up to 0,025 x d a_e bis/up to 0,28 mm

 $\beta = 0$: $d_{eff} = 2 \cdot \sqrt{d \cdot a_{p} - a_{p}^{2}}$

 $\beta \neq 0$: $d_{eff} = d \cdot \sin \left[\beta \pm \arccos \left(\frac{d - 2a_p}{d} \right) \right]$

			Kopie	rfräsen / Copy	milling
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)
DSK 220°	2	3,0	< 0,11	< 0,03	0,020 - 0,035
DSK 220°	2	4,0	< 0,14	< 0,05	0,025 - 0,040
DSK 220°	2	5,0	< 0,18	< 0,07	0,030 - 0,045
DSK 220°	2	6,0	< 0,20	< 0,09	0,030 - 0,050
DSK 220°	2	8,0	< 0,25	< 0,12	0,040 - 0,050
DSK 220°	2	10,0	< 0,30	< 0,15	0,040 - 0,060
DSK 220°	2	12,0	< 0,36	< 0,20	0,050 - 0,060
DSK 220°	2	16,0	< 0,40	< 0,28	0,050 - 0,080

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter ontimiert werden.

AlTiN-beschichtet

empfohlene Kühlung:
1. Mindermengenschmierung
2. Luft

AITiN coated

recommended cooling:
1. Minimum lubrification
2. Air

HSM

TSR Härte / Hardness Schnittgeschwindigkeit / Material / Material (N/mm) НВ Cutting speed (Vc m/min) Kohlenstoffstahl / Carbon steel < 750 < 250 Legierter Stahl / Alloyed steel > 1000 < 300 > 850 > 250 Werkzeugstahl / Tool steel > 1000 > 300 < 600 < 200 Rostfreier Stahl / Stainless steel < 850 < 250 Warmfeste Werkstoffe / < 900 < 300 High temp. alloys < 900 < 300 Titanlegierung / Titanium alloys Gehärteter Stahl / Hardened steel 50-60 HRc 140 - 280 58-70 HRc 120 - 220 Temperguss / Malleable cast iron < 260 Aluminium / Aluminium < 350 < 100 < 500 < 150 Aluminium / Aluminium < 5%Si Aluminium / Aluminium > 5%Si < 400 < 120 Kupfer / Copper < 350 < 100 Messing / Brass < 700 < 200 Graphit / Graphite Kunststoffe / Synthetics

220° Schaftfräser Vollradius / 220° Endmill Ballnose

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

DSKH 220°

220° Vollradius / Ballnose

Die aufgeführten Schnittgeschwindigkeiten müssen mit dem effektiven Schneidkreis-Ø $\mathbf{d}_{\mathrm{eff}}$ verrechnet werden. Siehe Formel.

For the cutting speed $\rm v_c$ calculation the effective cutting diameter $\rm d_{\rm eff}$ has to be taken into account. See formula.

gehärtetes Material hardened material a_p bis/up to 0,025 x d a_e bis/up to 0,28 mm

 $\beta = 0$: $d_{eff} = 2 \cdot \sqrt{d \cdot a_{p} - a_{p}^{2}}$

 $\beta \neq 0$: $d_{eff} = d \cdot sin \left[\beta \pm arc cos \left(\frac{d - 2a_p}{d} \right) \right]$

Typ / Type	Z	Ød (mm)	
DSKH 220°	2	3,0	
DSKH 220°	2	4,0	
DSKH 220°	2	5,0	
DSKH 220°	2	6,0	
DSKH 220°	2	8,0	
DSKH 220°	2	10,0	
DSKH 220°	2	12,0	
DSKH 220°	2	16,0	

Kopierfräsen / Copy milling								
a _p max. (mm)	a max. (mm) a max. (mm) f (mm/tooth)							
< 0,11	< 0,03	0,020 - 0,08						
< 0,14	< 0,05	0,025 - 0,10						
< 0,18	< 0,07	0,030 - 0,15						
< 0,20	< 0,09	0,030 - 0,20						
< 0,25	25 < 0,12 0,04							
< 0,30	< 0,15	0,040 - 0,25						
< 0,36	< 0,20	0,050 - 0,25						
< 0,40	< 0,28	0,050 - 0,25						

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

TSR	Härte / Hardness	Schnittgeschwindigkeit /
(N/mm)	HB	Cutting speed (Vc m/min)
< 750	< 250	
> 1000	< 300	
> 850	> 250	
> 1000	> 300	
< 600	< 200	
< 850	< 250	
< 900	< 300	
\ 300	\ 300	
< 900	< 300	
	45-52 HRc	300 - 500
	50-60 HRc	200 - 400
	58-70 HRc	
	< 260	
< 350	< 100	
< 500	< 150	
< 400	< 120	
< 350	< 100	
< 700	< 200	
	(N/mm) < 750 > 1000 > 850 > 1000 < 600 < 850 < 900 < 900 < 350 < 500 < 400 < 350	(N/mm) HB < 750 < 250 > 1000 < 300 > 850 > 250 > 1000 > 300 < 600 < 200 < 850 < 250 < 900 < 300 < 900 < 300 < 900 < 300 < 50-60 HRc 58-70 HRc < 260 < 350 < 100 < 400 < 120 < 350 < 100 < 350 < 100 < 350 < 100 < 350 < 100 < 350 < 100 < 350 < 100

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

empfohlene Kühlung: 1. Mindermengenschmierung 2. Luft

TiAIN coated

recommended cooling:
1. Minimum lubrification
2. Air

HSM

Achtung: Im Zentrum z = 2!Attention: In the centre z = 2!

Vollradius / Ballnose

Die aufgeführten Schnittgeschwindigkeiten müssen mit dem effektiven Schneidkreis-Ø d_{eff} verrechnet werden. Siehe Formel.

For the cutting speed $\rm v_c$ calculation the effective cutting diameter $\rm d_{\rm eff}$ has to be taken into account. See formula.

gehärtetes Material
hardened material
a_p bis/up to 0,50 x d
a_e bis/up to 0,50 mm

 $\frac{\text{gehärtetes Material}}{\text{hardened material}}$ $\frac{\text{hardened material}}{\text{a}_{\text{p}} \text{ bis/up to 0,025 x d}}$ $\text{a}_{\text{a}} \text{ bis/up to 0,28 mm}$

 $\beta = 0$: $d_{eff} = 2 \cdot \sqrt{d \cdot a_{p} \cdot a_{p}^{2}}$

 $\beta \neq 0$: $d_{eff} = d \cdot \sin \left[\beta \pm \arccos \left(\frac{d - 2a_p}{d} \right) \right]$

Typ / Type	Z	Ød (mm)
DSK	4	6,0
DSK	4	8,0
DSK	4	10,0
DSK	4	12,0
DSK	4	16,0

Ecktrasen / Shoulder milling							
a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)					
< 3,0	< 0,18	0,065 - 0,125					
< 4,0	< 0,24	0,080 - 0,130					
< 5,0	< 0,30	0,085 - 0,135					
< 6,0	< 0,36	0,100 - 0,140					
< 8,0	< 0,50	0,110 - 0,150					

Kopierfräsen / Copy milling								
a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)						
< 0,20	< 0,09	0,080 - 0,125						
< 0,25	< 0,12	0,090 - 0,130						
< 0,30	< 0,15	0,100 - 0,135						
< 0,36	< 0,20	0,110 - 0,140						
< 0,40	< 0,28	0,120 - 0,150						

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter ontimiert werden.

Empfehlung: Pressluft zum Entfernen der Späne

TiAIN coated

Recommendation: Air pressure to remove chips

HSM

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

Schnittgeschwindigkeit v. basiert auf max. 40.000 1/min.

Bei Verwendung von Fräsern mit verlängertem L2 verringert sich f_z wie in Tabelle.

Cutting Speed v_c is based on max. 40.000 rpm.
When using endmills with longer L2, reduce f, according table.

L2	Reduktion				
	Reduction				
1-5 x d	0%				
5-10 x d	30%				
10 ~	50%				

< 45HRc

 $\overline{a_p}$ bis/up to 0,75 x d a bis/up to 0,05 x d

gehärtetes Material hardened material a bis/up to 0,50 x d

a bis/up to 0,02 x d

< 45HRc

 a_p bis/up to 1,00 x d a_p bis/up to 0,50 x d

gehärtetes Material hardened material a_p bis/up to 0,50 x d a_o bis/up to 0,30 x d

	Eckfräsen / Shoulder milling						rfräsen / Cop					
Typ / Type	Z	Ød (mm)	a _p max. (mm) < 45 HRc	a_max. (mm) e< 45 HRc	a max. (mm) > 45 HRc	a max. (mm) e> 45 HRc	fz (mm/tooth)	a _p max. (mm) < 45 HRc	a max. (mm) "< 45 HRc	a _p max. (mm) > 45 HRc	a max. (mm) e> 45 HRc	fz (mm/tooth)
DSKM	2	0,2	< 0,08	< 0,007	< 0,05	< 0,004	0,002 - 0,004	< 0,02	< 0,004	< 0,008	< 0,002	0,002 - 0,004
DSKM	2	0,3	< 0,11	< 0,011	< 0,10	< 0,006	0,003 - 0,006	< 0,03	< 0,006	< 0,012	< 0,003	0,003 - 0,006
DSKM	2	0,4	< 0,15	< 0,015	< 0,14	< 0,008	0,004 - 0,008	< 0,04	< 0,008	< 0,016	< 0,004	0,004 - 0,008
DSKM	2	0,5	< 0,20	< 0,019	< 0,18	< 0,010	0,005 - 0,009	< 0,05	< 0,010	< 0,020	< 0,005	0,005 - 0,009
DSKM	2	0,6	< 0,30	< 0,022	< 0,25	< 0,012	0,006 - 0,010	< 0,06	< 0,012	< 0,024	< 0,006	0,006 - 0,010
DSKM	2	0,8	< 0,40	< 0,030	< 0,35	< 0,016	0,006 - 0,012	< 0,08	< 0,016	< 0,032	< 0,008	0,006 - 0,012
DSKM	2	1,0	< 0,75	< 0,045	< 0,50	< 0,020	0,008 - 0,015	< 0,10	< 0,025	< 0,040	< 0,010	0,008 - 0,015
DSKM	2	1,2	< 0,90	< 0,054	< 0,60	< 0,024	0,010 - 0,016	< 0,12	< 0,030	< 0,048	< 0,012	0,010 - 0,016
DSKM	2	1,5	< 1,13	< 0,067	< 0,75	< 0,030	0,012 - 0,018	< 0,15	< 0,040	< 0,060	< 0,015	0,012 - 0,018
DSKM	2	2,0	< 1,50	< 0,090	< 1,00	< 0,040	0,016 - 0,022	< 0,20	< 0,050	< 0,080	< 0,020	0,016 - 0,022
DSKM	2	2,5	< 1,90	< 0,110	< 1,25	< 0,050	0,016 - 0,025	< 0,25	< 0,060	< 0,100	< 0,025	0,016 - 0,025
DSKM	2	3,0	< 2,25	< 0,130	< 1,50	< 0,060	0,019 - 0,028	< 0,30	< 0,075	< 0,120	< 0,030	0,019 - 0,028

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

DSDS

Schaftfräser Doppelradius / Endmill Double radius

Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	200 - 250
Legierter Stahl / Alloyed steel	> 1000	< 300	150 - 200
Workzougotobl / Tool steel	> 850	> 250	170-250
Werkzeugstahl / Tool steel	> 1000	> 300	150 - 200
Rostfreier Stahl / Stainless steel	< 600	< 200	
	< 850	< 250	
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300	
Titanlegierung / Titanium alloys	< 900	< 300	
		45-52 HRc	
Gehärteter Stahl / Hardened steel		50-60 HRc	
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	180 - 250
Aluminium / Aluminium	< 350	< 100	<u>.</u>
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			
Kunststoffe / Synthetics			

TiAIN-beschichtet

empfohlene Kühlung: 1. Mindermengenschmierung 2. Luft

TiAIN coated

recommended cooling: 1. Minimum lubrification 2. Air

HSM

Für weitere Materialangaben siehe Werkstofftabelle

For further material specifications see material cross reference list.

Doppelradius / Double radius

Dieser Fräser ist geeignet zum Taschenfräsen (Frässtrategie siehe Zeichnungen). Fräsen Sie immer von innen nach außen. Wenn möglich zirkular oder in Rampe eintauchen.

This endmill can be used for pocket milling; for strategy see drawings. Always mill from inside to outside. If possible use helicoidal down-milling, otherwise rampingdown.

			Eckfr	äsen / Shoulder r	milling	Tasche	nfräsen / Pocke	t milling
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)
DSDS	4	6,0	< 0,4	< 3,0	0,6 - 1,0	< 0,4	< 6,0	0,5 - 1,0
DSDS	4	8,0	< 0,5	< 4,0	0,6 - 1,0	< 0,5	< 8,0	0,5 - 1,0
DSDS	4	10,0	< 0,7	< 5,0	0,6 - 1,0	< 0,7	< 10,0	0,5 - 1,0
DSDS	4	12,0	< 0,8	< 6,0	0,6 - 1,0	< 0,8	< 12,0	0,5 - 1,0
DSDS	4	16,0	< 1,0	< 8,0	0,6 - 1,0	< 1,0	< 16,0	0,5 - 1,0

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und

Schaftfräser Doppelradius / Endmill Double radius

DSDH

TiAIN-beschichtet

empfohlene Kühlung:
1. Mindermengenschmierung
2. Luft

TiAIN coated

recommended cooling:
1. Minimum lubrification
2. Air

HSM

Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit /
Kohlenstoffstahl / Carbon steel	< 750	 < 250	Cutting speed (Vc m/min)
Legierter Stahl / Alloyed steel	> 1000	< 300	
Legierter Starii / Alloyed steel	> 850	> 250	
Werkzeugstahl / Tool steel	> 1000	> 300	
	< 600	< 200	
Rostfreier Stahl / Stainless steel	< 850	< 250	
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300	
Titanlegierung / Titanium alloys	< 900	< 300	
		45-52 HRc	120 - 170
Gehärteter Stahl / Hardened steel		50-60 HRc	
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	
Aluminium / Aluminium	< 350	< 100	
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			
Kunststoffe / Synthetics			

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

Doppelradius / Double radius

Dieser Fräser ist geeignet zum Taschenfräsen (Frässtrategie siehe Zeichnungen). Fräsen Sie immer von innen nach außen. Wenn möglich zirkular oder in Rampe eintauchen.

This endmill can be used for pocket milling; for strategy see drawings. Always mill from inside to outside. If possible use helicoidal down-milling, otherwise rampingdown.

Typ / Type

DSDH

DSDH

DSDH

DSDH

DSDH

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)	
Kohlenstoffstahl / Carbon steel	< 750	< 250	Cutting speed (vc m/min)	
Legierter Stahl / Alloyed steel	> 1000	< 300		
Werkzeugstahl / Tool steel	> 850	> 250		
vverkzeugstarii / 100i steel	> 1000	> 300		
Rostfreier Stahl / Stainless steel	< 600	< 200		
	< 850	< 250		
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300		
Titanlegierung / Titanium alloys	< 900	< 300		
		45-52 HRc	300 - 500	
Gehärteter Stahl / Hardened steel		50-60 HRc	200 - 400	
		58-70 HRc		
Temperguss / Malleable cast iron		< 260		
Aluminium / Aluminium	< 350	< 100		
Aluminium / Aluminium < 5%Si	< 500	< 150		
Aluminium / Aluminium > 5%Si	< 400	< 120		
Kupfer / Copper	< 350	< 100		
Messing / Brass	< 700	< 200		
Graphit / Graphite				
Kunststoffe / Synthetics				

empfohlene Kühlung: 1. Mindermengenschmierung 2. Luft

TiAIN coated

recommended cooling: 1. Minimum lubrification 2. Air

HSM

Für weitere Materialangaben siehe Werkstofftabelle

For further material specifications see material cross reference list.

Torus / Torus

Vorschub f,* beim Eckfräsen für kleinere Zustellung a muss wie folgt berechnet werden.

At shoulder milling, feed per tooth f_z^{\star} for lower a_e values should be converted according formula.

aຼ	f,*=
0,10 x d	f _z x 3
0,25 x d	f, x 2
0,50 x d	f, x 1

gehärtetes Material hardened material a bis/up to 0,50 x d a bis/up to 0,50 mm

gehärtetes Material hardened material a bis/up to 0,025 x d a bis/up to 0,28 mm

			Eckfr	äsen / Shoulder	milling	Kopie	erfräsen / Copy	milling
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a max. (mm)	a max. (mm)	f _z (mm/tooth)
DST	2	1,5	< 0,7	< 0,03	0,025 - 0,040	< 0,06	< 0,01	0,045 - 0,060
DST	2	2,0	< 1,0	< 0,04	0,030 - 0,050	< 0,08	< 0,02	0,050 - 0,075
DST	2	3,0	< 1,5	< 0,06	0,040 - 0,060	< 0,11	< 0,03	0,055 - 0,090
DST	2	4,0	< 2,0	< 0,10	0,050 - 0,080	< 0,14	< 0,05	0,065 - 0,100
DST	2	5,0	< 2,5	< 0,13	0,060 - 0,120	< 0,18	< 0,07	0,075 - 0,120
DST	2	6,0	< 3,0	< 0,18	0,065 - 0,125	< 0,20	< 0,09	0,080 - 0,125
DST	2	8,0	< 4,0	< 0,24	0,080 - 0,130	< 0,25	< 0,12	0,090 - 0,130
DST	2	10,0	< 5,0	< 0,30	0,085 - 0,135	< 0,30	< 0,15	0,100 - 0,135
DST	2	12,0	< 6,0	< 0,36	0,100 - 0,140	< 0,36	< 0,20	0,110 - 0,140
DST	2	16.0	< 8.0	< 0.50	0 110 - 0 150	< 0.40	< 0.28	0 120 - 0 150

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

All above mentioned cutting conditions should be regarded as guidelines. The conditions can be further optimised, depending on the stability and power of the machine and toolholder.

AlTiN-beschichtet

empfohlene Kühlung: 1. Mindermengenschmierung 2. Luft

AITiN coated

recommended cooling: 1. Minimum lubrification 2. Air

HSM

Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	Outling speed (VC III/IIIIII)
Legierter Stahl / Alloyed steel	> 1000	< 300	·
Werkzeugstahl / Tool steel	> 850 > 1000	> 250 > 300	
Rostfreier Stahl / Stainless steel	< 600 < 850	< 200 < 250	
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300	
Titanlegierung / Titanium alloys	< 900	< 300	
Gehärteter Stahl / Hardened steel		50-60 HRc 58-70 HRc	140 - 280 120 - 220
Temperguss / Malleable cast iron		< 260	
Aluminium / Aluminium	< 350	< 100	
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			
Kunststoffe / Synthetics			

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

DSTH

Vorschub f,* beim Eckfräsen für kleinere Zustellung a muss wie folgt berechnet werden.

At shoulder milling, feed per tooth f_z^{\star} for lower a_e values should be converted according formula.

a	f,*=
0,10 x d	f, x 3
0,25 x d	f, x 2
0,50 x d	f, x 1

gehärtetes Material hardened material $\overline{a_p}$ bis/up to 0,50 x d a bis/up to 0,50 mm

gehärtetes Material hardened material $\overline{a_p}$ bis/up to 0,025 x d a bis/up to 0,28 mm

Torusfräser / Torus Endmill

			Eckfr	Eckfräsen / Shoulder milling		Kopie	Kopierfräsen / Copy milling		
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	
DSTH	2	1,5	< 0,7	< 0,03	0,025 - 0,040	< 0,06	< 0,02	0,030 - 0,06	
DSTH	2	2,0	< 1,0	< 0,04	0,030 - 0,050	< 0,08	< 0,02	0,050 - 0,07	
DSTH	2	3,0	< 1,5	< 0,06	0,040 - 0,060	< 0,11	< 0,03	0,055 - 0,08	
DSTH	2	4,0	< 2,0	< 0,10	0,050 - 0,080	< 0,14	< 0,05	0,065 - 0,10	
DSTH	2	5,0	< 2,5	< 0,13	0,060 - 0,120	< 0,18	< 0,07	0,075 - 0,15	
DSTH	2	6,0	< 3,0	< 0,18	0,065 - 0,125	< 0,20	< 0,09	0,080 - 0,20	
DSTH	2	8,0	< 4,0	< 0,24	0,080 - 0,130	< 0,25	< 0,12	0,090 - 0,25	
DSTH	2	10,0	< 5,0	< 0,30	0,085 - 0,135	< 0,30	< 0,15	0,100 - 0,25	
DSTH	2	12,0	< 6,0	< 0,36	0,100 - 0,140	< 0,36	< 0,20	0,110 - 0,25	
DSTH	2	16,0	< 8,0	< 0,50	0,110 - 0,150	< 0,40	< 0,28	0,120 - 0,25	

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

All above mentioned cutting conditions should be regarded as guidelines. The conditions can be further optimised, depending on the stability and power of the machine and toolholder.

Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	Odding speed (VO III/IIIII)
Legierter Stahl / Alloyed steel	> 1000	< 300	
Workzougotobl / Tool steel	> 850	> 250	
Werkzeugstahl / Tool steel	> 1000	> 300	
Rostfreier Stahl / Stainless steel	< 600	< 200	
Nostrieler Starii / Stariiess steer	< 850	< 250	
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300	
Titanlegierung / Titanium alloys	< 900	< 300	
Gehärteter Stahl / Hardened steel		45-52 HRc 50-60 HRc 58-70 HRc	300 - 500 200 - 400
Temperguss / Malleable cast iron		< 260	
Aluminium / Aluminium	< 350	< 100	
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			
Kunststoffe / Synthetics			

empfohlene Kühlung: Mindermengenschmierung
 2. Luft

TiAIN coated

recommended cooling: 1. Minimum lubrification 2. Air

HSM

Für weitere Materialangaben siehe Werkstofftabelle

For further material specifications see material cross reference list.

Vorschub f,* beim Eckfräsen für kleinere Zustellung a muss wie folgt berechnet werden.

At shoulder milling, feed per tooth f_z^* for lower a_e values should be converted according formula.

gehärtetes Material hardened material a bis/up to 0,5 x d a bis/up to 0,5 mm

gehärtetes Material $\overline{a_p}$ bis/up to 0,025 x d

				Eckfr	Eckfräsen / Shoulder milling			Kopierfräsen / Copy milling		
	Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	
	DST	4	6,0	< 3,0	< 0,18	0,065 - 0,125	< 0,20	< 0,09	0,080 - 0,125	
	DST	4	8,0	< 4,0	< 0,24	0,080 - 0,130	< 0,25	< 0,12	0,090 - 0,130	
-	DST	4	10,0	< 5,0	< 0,30	0,085 - 0,135	< 0,30	< 0,15	0,100 - 0,135	
	DST	4	12,0	< 6,0	< 0,36	0,100 - 0,140	< 0,36	< 0,20	0,110 - 0,140	
	DST	4	16,0	< 8,0	< 0,50	0,110 - 0,150	< 0,40	< 0,28	0,120 - 0,150	

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und

empfohlene Kühlung: 1. Mindermengenschmierung 2. Luft

TiAIN coated

recommended cooling:
1. Minimum lubrification
2. Air

HPM HSM

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

Vorschub f_z^* beim Eckfräsen für kleinere Zustellung a_e muss wie folgt berechnet werden.

At shoulder milling, feed per tooth f_z^{\star} for lower a_e values should be converted according formula.

aຼ	f,*=
0,10 x d	f, x 3
0,25 x d	f, x 2
0.50×4	f v 1

6 6	Ød (mm) 3,0	a _p max. (mm)	äsen / Shoulder a max. (mm)	f_ (mm/tooth)
	3.0			·z (/100til)
c	0,0	< 3,0	< 0,03	0,020 - 0,035
O	4,0	< 6,0	< 0,05	0,030 - 0,045
6	5,0	< 7,5	< 0,07	0,035 - 0,055
6	6,0	< 12,0	< 0,10	0,045 - 0,065
6	8,0	< 16,0	< 0,13	0,060 - 0,080
6	10,0	< 20,0	< 0,17	0,070 - 0,095
6	12,0	< 24,0	< 0,21	0,085 - 0,110
6	16,0	< 32,0	< 0,28	0,095 - 0,125
8	20,0	< 40,0	< 0,35	0,105 - 0,140
8	8,0	< 16,0	< 0,13	0,060 - 0,080
10	10,0	< 20,0	< 0,17	0,070 - 0,095
12	12,0	< 24,0	< 0,21	0,085 - 0,110
16	16,0	< 32,0	< 0,28	0,095 - 0,125
6	8	< 16,0	< 0,13	0,060 - 0,080
6	10,0	< 20,0	< 0,17	0,070 - 0,095
6	12,0	< 24,0	< 0,21	0,085 - 0,110
8	16,0	< 32,0	< 0,28	0,095 - 0,125
	6 6 6 6 8 8 10 12 16	6 5,0 6 6,0 6 8,0 6 10,0 6 12,0 6 16,0 8 20,0 8 8,0 10 10,0 12 12,0 16 16,0 6 8 6 10,0 6 12,0	6 5,0 < 7,5	6 5,0 < 7,5

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

DSMH/DSMRH			Schattfraser / Endmill
Material / No. 1 . 1	TSR	Härte / Hardness	Schnittgeschwindigkeit /
Material / Material	(N/mm)	HB	Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	
Legierter Stahl / Alloyed steel	> 1000	< 300	
Workzougotohl / Tool steel	> 850	> 250	
Werkzeugstahl / Tool steel	> 1000	> 300	
Rostfreier Stahl / Stainless steel	< 600	< 200	
Nostrieler Starii / Starriess steer	< 850	< 250	
Warmfeste Werkstoffe /	< 900	< 300	
High temp. alloys	\ 300	\ 300	
Titanlegierung / Titanium alloys	< 900	< 300	
Gehärteter Stahl / Hardened steel		50-60 HRc	140 - 280
Soliditors Stally Halashed Stock		58-70 HRc	120 - 220
Temperguss / Malleable cast iron		< 260	
Aluminium / Aluminium	< 350	< 100	
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			
Kunststoffe / Synthetics			<u> </u>

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

AITiN-beschichtet

empfohlene Kühlung: 1. Mindermengenschmierung 2. Luft

AITiN coated

recommended cooling: 1. Minimum lubrification 2. Air

> **HPM HSM**

Eckenradius / Corner radius

Vorschub f,* beim Eckfräsen für kleinere Zustellung a muss wie folgt berechnet

At shoulder milling, feed per tooth f_z^{\star} for lower a_e values should be converted according formula.

aຼ	f,*=
0,10 x d	f, x 3
0,25 x d	f, x 2
$0.50 \times d$	f v 1

gehärtetes Material hardened material a_p bis/up to 2,00 x d a_e bis/up to 0,35 mm

			Eckfr	äsen / Shoulder	milling
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)
DSMH / DSMRH	6	3,0	< 3,0	< 0,03	0,020 - 0,035
DSMH / DSMRH	6	4,0	< 6,0	< 0,05	0,030 - 0,045
DSMH / DSMRH	6	5,0	< 7,5	< 0,07	0,035 - 0,055
DSMH / DSMRH	6	6,0	< 12,0	< 0,10	0,045 - 0,065
DSMH / DSMRH	6	8,0	< 16,0	< 0,13	0,060 - 0,080
DSMH / DSMRH	6	10,0	< 20,0	< 0,17	0,070 - 0,095
DSMH / DSMRH	6	12,0	< 24,0	< 0,21	0,085 - 0,110
DSMH / DSMRH	6	16,0	< 32,0	< 0,28	0,095 - 0,125
DSMH / DSMRH	8	20,0	< 40,0	< 0,35	0,105 - 0,140
DSMH / DSMRH	8	8,0	< 16,0	< 0,13	0,060 - 0,080
DSMH / DSMRH	10	10,0	< 20,0	< 0,17	0,070 - 0,095
DSMH / DSMRH	12	12,0	< 24,0	< 0,21	0,085 - 0,110
DSMH / DSMRH	16	16,0	< 32,0	< 0,28	0,095 - 0,125

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

All above mentioned cutting conditions should be regarded as guidelines. The conditions can be further optimised, depending on the stability and power of the machine and toolholder.

DSR

Material / Material	TSR	Härte / Hardness	Schnittgeschwindigkeit /
Material / Material	(N/mm)	HB	Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	160 - 120
Legierter Stahl / Alloyed steel	> 1000	< 300	90 - 120
Workzougotobl / Tool stool	> 850	> 250	90 -140
Werkzeugstahl / Tool steel	> 1000	> 300	70 - 110
Rostfreier Stahl / Stainless steel	< 600	< 200	100- 130
Rostifeler Staffi / Staffiess steel	< 850	< 250	50 - 70
Warmfeste Werkstoffe /	< 900	< 300	30 - 50
High temp. alloys			33 33
Titanlegierung / Titanium alloys	< 900	< 300	50 -80
		45-52 HRc	100 - 180
Gehärteter Stahl / Hardened steel		52-60 HRc	
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	100 - 190
Aluminium / Aluminium	< 350	< 100	
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	130 - 260
Graphit / Graphite			

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

Material / M. C. C.	TSR	Härte / Hardness	Schnittgeschwindigkeit /
Material / Material	(N/mm)	HB	Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	160 - 120
Legierter Stahl / Alloyed steel	> 1000	< 300	90 - 120
Work-zougetahl / Tool stool	> 850	> 250	90 -140
Werkzeugstahl / Tool steel	> 1000	> 300	70 - 110
Rostfreier Stahl / Stainless steel	< 600	< 200	100- 130
ROStifeler Starii / Stainless steel	< 850	< 250	50 - 70
Warmfeste Werkstoffe /	< 900	< 300	30 - 50
High temp. alloys	\ 300	\ 300	30 - 30
Titanlegierung / Titanium alloys	< 900	< 300	50 -80
		45-52 HRc	100 - 180
Gehärteter Stahl / Hardened steel		52-60 HRc	
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	100 - 190
Aluminium / Aluminium	< 350	< 100	
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	130 - 260
Graphit / Graphite			
Kunststoffe / Synthetics			
F M	· · · · ·		

HVM / HPM

TiAIN-beschichtet

empfohlene Kühlung: 1. Emulsion 2. Luft 3. Mindermengenschmierung TiAIN coated recommended cooling: 1. Emulsion 2. Air 3. Minimum lubrification

Vorschub f,* beim Eckfräsen für kleinere Zustellung a muss wie folgt berechnet werden.

At shoulder milling, feed per tooth $\mathbf{f_z}^{\star}$ for lower $\mathbf{a_e}$ values should be converted according formula.

For finishing application $\rm v_{\rm c}$ can be increased up to 30%.

a	f _, *=
0,10 x d	f, x 3
0,25 x d	f, x 2
0.50 x d	f x 1

		-	Eckfr	Eckfräsen / Shoulder milling			tzfräsen / Slot i	milling
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)
DSR	3	2,0	< 2,0	< 0,25	0,010 - 0,020	< 2,0	< 2,0	0,010 - 0,020
DSR	3	3,0	< 3,0	< 0,40	0,015 - 0,025	< 3,0	< 3,0	0,015 - 0,025
DSR	3	4,0	< 4,0	< 0,80	0,020 - 0,030	< 4,0	< 4,0	0,020 - 0,030
DSR	3	5,0	< 5,0	< 1,00	0,020 - 0,030	< 5,0	< 5,0	0,020 - 0,030
DSR	3	6,0	< 6,0	< 2,25	0,025 - 0,040	< 6,0	< 6,0	0,025 - 0,040
DSR	3	8,0	< 8,0	< 3,00	0,030 - 0,050	< 8,0	< 8,0	0,030 - 0,050
DSR	3	10,0	< 10,0	< 3,75	0,035 - 0,065	< 10,0	< 10,0	0,035 - 0,065
DSR	3	12,0	< 12,0	< 6,00	0,045 - 0,070	< 12,0	< 12,0	0,045 - 0,070
DSR	3	16,0	< 16,0	< 8,00	0,060 - 0,100	< 16,0	< 16,0	0,060 - 0,100

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und

Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	160 - 200
Legierter Stahl / Alloyed steel	> 1000	< 300	90 - 120
Workzougotohl / Tool stool	> 850	> 250	90 - 140
Werkzeugstahl / Tool steel	> 1000	> 300	70 - 110
Rostfreier Stahl / Stainless steel	< 600	< 200	100 - 130
Nostrieler Starii / Stariiess steer	< 850	< 250	50 - 70
Warmfeste Werkstoffe /	< 900	< 300	30 - 50
High temp. alloys	\ 300	\ 300	30 - 30
Titanlegierung / Titanium alloys	< 900	< 300	50 - 80
		45-52 HRc	100 - 180
Gehärteter Stahl / Hardened steel		50-60 HRc	
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	100 - 190
Aluminium / Aluminium	< 350	< 100	
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	130- 260
Graphit / Graphite			
Kunststoffe / Synthetics			

empfohlene Kühlung: 1. Emulsion

2. Luft 3. Mindermengenschmierung

TiAIN coated

recommended cooling: 1. Emulsion 2. Air 3. Minimum lubrification

HVM / HPM

Für weitere Materialangaben siehe Werkstofftabelle

For further material specifications see material cross reference list.

Fase / Chamfer

Vorschub f,* beim Eckfräsen für kleinere Zustellung a muss wie folgt berechnet werden.

At shoulder milling, feed per tooth f_z^{\star} for lower a_e values should

a	f_*=
0,10 x d	f, x 3
0,25 x d	f, x 2
0,50 x d	f x 1

			Eckfr	Eckfräsen / Shoulder milling			tzfräsen / Slot i	milling
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a _p max. (mm)	a _e max. (mm)	\bar{f}_z (mm/tooth)
DSF	3	2,0	< 3,0	< 0,25	0,010 - 0,020	< 2,0	< 2,0	0,010 - 0,020
DSF	3	3,0	< 4,0	< 0,40	0,015 - 0,025	< 3,0	< 3,0	0,015 - 0,025
DSF	3	4,0	< 5,0	< 0,80	0,020 - 0,030	< 4,0	< 4,0	0,020 - 0,030
DSF	3	5,0	< 7,5	< 1,00	0,020 - 0,030	< 5,0	< 5,0	0,020 - 0,030
DSF	3	6,0	< 9,0	< 2,25	0,025 - 0,040	< 6,0	< 6,0	0,025 - 0,040
DSF	3	8,0	< 16,0	< 3,00	0,030 - 0,050	< 10,0	< 8,0	0,030 - 0,050
DSF	3	10,0	< 20,0	< 3,75	0,035 - 0,065	< 12,0	< 10,0	0,035 - 0,065
DSF	3	12,0	< 24,0	< 6,00	0,045 - 0,070	< 18,0	< 12,0	0,045 - 0,070
DSF	3	16,0	< 32,0	< 8,00	0,060 - 0,100	< 24,0	< 16,0	0,060 - 0,100

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

All above mentioned cutting conditions should be regarded as guidelines. The conditions can be further optimised, depending on the stability and power of the machine and toolholder.

empfohlene Kühlung: 1. Emulsion

2. Luft 3. Mindermengenschmierung

TiAIN coated

recommended cooling:
1. Emulsion
2. Air
3. Minimum lubrification

HVM / HPM

Motorial / Matarial	TSR	Härte / Hardness	Schnittgeschwindigkeit /
Material / Material	(N/mm)	HB	Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	150 - 200
Legierter Stahl / Alloyed steel	> 1000	< 300	90 - 130
Workzougotohl / Tool otool	> 850	> 250	100 - 150
Werkzeugstahl / Tool steel	> 1000	> 300	90 - 130
Rostfreier Stahl / Stainless steel	< 600	< 200	80 - 110
ROStifeler Staffi / Staffiess steel	< 850	< 250	50 - 70
Warmfeste Werkstoffe /	< 900	< 300	30 - 50
High temp. alloys	\ 900	\ 300	30 - 30
Titanlegierung / Titanium alloys	< 900	< 300	50 - 80
		45-52 HRc	100 - 180
Gehärteter Stahl / Hardened steel		50-60 HRc	
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	150 - 200
Aluminium / Aluminium	< 350	< 100	
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			
Kunststoffe / Synthetics			

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

Vorschub f_z* beim Eckfräsen für kleinere Zustellung a_z muss wie folgt berechnet werden.

DSF

At shoulder milling, feed per tooth f_z^* for lower a_e values should be converted according formula.

a	f_*=
0,10 x d	f, x 3
0,25 x d	f, x 2
0,50 x d	f̄, x 1

Schruppfräser / Roughing Endmill

Typ / Type	Z	Ød (mm)
DSF	4	4,0
DSF	4	6,0
DSF	4	8,0
DSF	4	10,0
DSF	4	12,0
DSF	4	16,0

Eckfräsen / Shoulder milling		
a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)
< 5,0	< 0,80	0,015 - 0,025
< 9,0	< 2,25	0,020 - 0,030
< 16,0	< 3,00	0,025 - 0,035
< 20,0	< 3,75	0,030 - 0,045
< 24,0	< 6,00	0,035 - 0,050
< 32,0	< 8,00	0,045 - 0,060

Schlitzfräsen / Slot milling			
a _e max. (mm)	\bar{f}_z (mm/tooth)		
< 4,0	0,015 - 0,025		
< 6,0	0,020 - 0,030		
< 8,0	0,025 - 0,035		
< 10,0	0,030 - 0,045		
< 12,0	0,035 - 0,050		
< 16,0	0,045 - 0,060		
	a _e max. (mm) < 4,0 < 6,0 < 8,0 < 10,0 < 12,0		

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	250 - 300
Legierter Stahl / Alloyed steel	> 1000	< 300	150 - 200
Werkzeugstahl / Tool steel	> 850	> 250	150 -180
werkzeugstani / 100i steel	> 1000	> 300	110 - 150
Rostfreier Stahl / Stainless steel	< 600	< 200	
Nostifeler Starii / Stalliless steel	< 850	< 250	
Warmfeste Werkstoffe /	< 900	< 300	
High temp. alloys	\ 300	> 300	
Titanlegierung / Titanium alloys	< 900	< 300	
		45-52 HRc	
Gehärteter Stahl / Hardened steel		50-60 HRc	
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	130 - 200
Aluminium / Aluminium	< 350	< 100	
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	130 - 260
Graphit / Graphite			
Kunststoffe / Synthetics			

empfohlene Kühlung: 1. Emulsion 2. Luft

3. Mindermengenschmierung

TiAIN coated

recommended cooling:
1. Emulsion
2. Air
3. Minimum lubrification

HVM / HPM

Für weitere Materialangaben siehe Werkstofftabelle

For further material specifications see material cross reference list.

Fase / Chamfer

Vorschub $f_z^{\,\star}$ beim Eckfräsen für kleinere Zustellung $a_{\rm e}$ muss wie folgt berechnet werden.

Zum Schlichten kann v_c bis zu 30% erhöht werden.

At shoulder milling, feed per tooth $f_z^{\,\star}$ for lower $a_{_{\! B}}$ values should be converted according formula.

For finishing application $\rm v_{\rm c}$ can be increased up to 30%.

Typ / Type	Z	Ød (mm)
DSRF	3	6,0
DSRF	3	8,0
DSRF	3	10,0
DSRF	3	12,0
DSRF	3	14,0
DSRF	3	16,0
DSRF	3	20,0

Eckfräsen / Shoulder milling			
a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	
< 9,0	< 3,0	0,03 - 0,04	
< 16,0	< 4,0	0,04 - 0,06	
< 20,0	< 5,0	0,06 - 0,08	
< 24,0	< 6,0	0,08 - 0,10	
< 28,0	< 7,0	0,10 - 0,12	
< 32,0	< 8,0	0,12 - 0,15	
< 40,0	< 10,0	0,12 - 0,20	

Schlitzfräsen / Slot milling			
a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	
< 6,0	< 6,0	0,03 - 0,04	
< 10,0	< 8,0	0,04 - 0,06	
< 15,0	< 10,0	0,06 - 0,08	
< 24,0	< 12,0	0,08 - 0,10	
< 28,0	< 14,0	0,10 - 0,12	
< 32,0	< 16,0	0,12 - 0,15	
< 40,0	< 20,0	0,12 - 0,20	

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter ontimiert werden.

empfohlene Kühlung: 1. Emulsion

2. Luft 3. Mindermengenschmierung

TiAIN coated

recommended cooling:
1. Emulsion
2. Air
3. Minimum lubrification

HVM / HPM

Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	250 - 300
Legierter Stahl / Alloyed steel	> 1000	< 300	150 - 200
Workzougotohl / Tool stool	> 850	> 250	150 -180
Werkzeugstahl / Tool steel	> 1000	> 300	110 - 150
Rostfreier Stahl / Stainless steel	< 600	< 200	
	< 850	< 250	
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300	
Titanlegierung / Titanium alloys	< 900	< 300	
		45-52 HRc	
Gehärteter Stahl / Hardened steel		50-60 HRc	
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	130 - 200
Aluminium / Aluminium	< 350	< 100	
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	130 - 260
Graphit / Graphite			
Kunststoffe / Synthetics			

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

DSRR

Vorschub $f_z^{\,\star}$ beim Eckfräsen für kleinere Zustellung $a_{\rm e}$ muss wie folgt berechnet werden.

Zum Schlichten kann v_c bis zu 30% erhöht werden.

At shoulder milling, feed per tooth $f_z^{\,\star}$ for lower $a_{\rm e}$ values should be converted according formula.

For finishing application v_c can be increased up to 30%.

a့	f,*=
0,10 x d	f, x 3
0,25 x d	f, x 2
0,50 x d	f _z x 1

Schruppfräser / Roughing Endmill

Typ / Type	Z	Ød (mm)
DSRR	3	6,0
DSRR	3	8,0
DSRR	3	10,0
DSRR	3	12,0
DSRR	3	14,0
DSRR	3	16,0
DSRR	4	20,0

Eckfräsen / Shoulder milling			
a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	
< 9,0	< 3,0	0,03 - 0,04	
< 16,0	< 4,0	0,04 - 0,06	
< 20,0	< 5,0	0,06 - 0,08	
< 24,0	< 6,0	0,08 - 0,10	
< 28,0	< 7,0	0,10 - 0,12	
< 32,0	< 8,0	0,12 - 0,15	
< 40,0	< 10,0	0,12 - 0,20	

Schlitzfräsen / Slot milling			
a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	
< 6,0	< 6,0	0,03 - 0,04	
< 10,0	< 8,0	0,04 - 0,06	
< 15,0	< 10,0	0,06 - 0,08	
< 24,0	< 12,0	0,08 - 0,10	
< 28,0	< 14,0	0,10 - 0,12	
< 32,0	< 16,0	0,12 - 0,15	
< 40,0	< 20,0	0,12 - 0,20	

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter ontimiert werden.

٠.			
-1	С.	_	٧,

Schruppfräser / Roughing Endmill

Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)
	< 600	< 200	80 - 150
Rostfreier Stahl / Stainless steel	< 850	< 250	60 - 120
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300	30 - 50
Titanlegierung / Titanium alloys	< 900	< 300	70 - 100

TS3K-beschichtet

empfohlene Kühlung: Emulsion

TS3K coated

recommended cooling: Emulsion

Material / Material	Beispiel: / Example:			
Rostfreier Stahl / Stainless steel	1.4404			
	1.4435			
	1.4541			
	1.4571			
	1.4301			
Titanlegierung / Titanium alloys	3.7024			
	3.7165			

Eckenradius / Corner radius

Vorschub $f_{_{\rm Z}}^{\,\star}$ beim Eckfräsen für kleinere Zustellung $a_{_{\rm B}}$ muss wie folgt berechnet werden.

At shoulder milling, feed per tooth ${\rm f_z^*}$ for lower $\rm a_e$ values should be converted according formula.

Typ / Type	Z	Ød (mm)	
DSRV	4	3,0	
DSRV	4	4,0	
DSRV	4	5,0	
DSRV	4	6,0	
DSRV	4	8,0	
DSRV	4	10,0	
DSRV	4	12,0	
DSRV	5	16,0	

Eckfra	Eckfrasen / Shoulder milling							
a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)						
< 4,0	< 0,5	0,01 - 0,02						
< 7,0	< 0,8	0,02 - 0,03						
< 9,0	< 1,2	0,02 - 0,03						
< 12,0	< 2,0	0,02 - 0,04						
< 16,0	< 3,0	0,03 - 0,05						
< 20,0	< 4,0	0,04 - 0,07						
< 24,0	< 6,0	0,05 - 0,08						
< 32,0	< 8,0	0,06 - 0,10						

Schlit	Schlitzfräsen / Slot milling							
a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)						
< 2,0	< 3,0	0,01 - 0,02						
< 3,0	< 4,0	0,02 - 0,03						
< 4,0	< 5,0	0,02 - 0,03						
< 5,0	< 6,0	0,02 - 0,04						
< 6,0	< 8,0	0,03 - 0,05						
< 8,0	< 10,0	0,04 - 0,07						
< 10,0	< 12,0	0,05 - 0,08						
< 12,0	< 16,0	0,06 - 0,10						

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter ontimiert werden.

ichtot

TS3K-beschichtet

empfohlene Kühlung: 1. Emulsion 2. Luft

TS3K coated

recommended cooling: 1. Emulsion 2. Air

HVM / HPM

Material / Material	TSR	Härte / Hardness	Schnittgeschwindigkeit /
	(N/mm)	HB	Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	250 - 300
Legierter Stahl / Alloyed steel	> 1000	< 300	150 - 200
Werkzeugstahl / Tool steel	> 850	> 250	150 -180
vverkzeugstarii / 100i steel	> 1000	> 300	110 - 150
Rostfreier Stahl / Stainless steel	< 600	< 200	
ROStifelet Starii / Stainless steel	< 850	< 250	
Warmfeste Werkstoffe /	< 900	< 300	
High temp. alloys	> 300	\ 300	
Titanlegierung / Titanium alloys	< 900	< 300	
		45-52 HRc	
Gehärteter Stahl / Hardened steel		50-60 HRc	
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	130 - 200
Aluminium / Aluminium	< 350	< 100	
Aluminium / Aluminium < 5%Si	< 500	< 150	
Aluminium / Aluminium > 5%Si	< 400	< 120	
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	130 - 260
Graphit / Graphite			
Kunststoffe / Synthetics			
Für weitere Meteriale verber einbe Werlet	. (f) - l II -		

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

			Fasen
Тур	Z	Ød (mm)	f_z (mm/Z)
DSFF	4	4,0	0,040 - 0,060
DSFF	4	6,0	0,050 - 0,070
DSFF	4	8,0	0,060 - 0,080
DSFF	4	10,0	0,070 - 0,095
DSFF	4	12,0	0.085 - 0.115

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzaughalter ontimiert werden.

DSA Schaftfräser / Endmill **TSR** Schnittgeschwindigkeit / Härte / Hardness Material / Material (N/mm) НВ Cutting speed (Vc m/min) Kohlenstoffstahl / Carbon steel < 750 < 250 Legierter Stahl / Alloyed steel > 1000 < 300 > 850 > 250 Werkzeugstahl / Tool steel > 1000 > 300 < 600 < 200 Rostfreier Stahl / Stainless steel < 850 < 250 Warmfeste Werkstoffe / < 900 < 300 High temp. alloys < 300 < 900 Titanlegierung / Titanium alloys 45-52 HRc Gehärteter Stahl / Hardened steel 50-60 HRc 58-70 HRc Temperguss / Malleable cast iron < 260 Aluminium / Aluminium < 350 < 100 250 - 400 Aluminium / Aluminium < 5%Si < 500 200 - 300 < 150 Aluminium / Aluminium > 5%Si < 400 < 120 100 - 250

unbeschichtet Diamantbeschichtet

empfohlene Kühlung: Emulsion

uncoated Diamond coated

recommended cooling: Emulsion

HVM

Für weitere Materialangaben siehe Werkstofftabelle

Kupfer / Copper

Messing / Brass

Graphit / Graphite

Kunststoffe / Synthetics

For further material specifications see material cross reference list.

< 350

< 700

< 100

< 200

100 - 400

Ø 0,6 - Ø 2,5 mm Scharfkantig / Sharp

Ø 3,0 - Ø 12,0 mm Fase / Chamfer

Schnittgeschwindigkeit v_c basiert auf max. 20.000 1/min. Die Angaben gelten für reines Aluminium. Für Aluminium < 5% Si verrringert sich Vorschub f_z bis zu 10% und bei Aluminum > 5% Si bis zu 20%.

Cutting Speed $\rm v_{_{\rm C}}$ is based on max. 20.000 rpm.

Conditions based on pure aluminium. For aluminium < 5% Si reduce feed per tooth $\rm f_2$ up to 10% and for > 5% Si reduce fz up to 20%.

 a_p bis/up to 1,00 x d a_e bis/up to 0,50 x d

a_n bis/up to 1,00 x d

			Eckfra	Eckfräsen / Shoulder milling			tzfräsen / Slot i	milling
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a _p max. (mm)	a _e max. (mm)	\bar{f}_z (mm/tooth)
DSA	1	0,6	< 0,3	< 0,08	0,010 - 0,015	< 0,3	< 0,6	0,010 - 0,015
DSA	1	0,8	< 0,4	< 0,10	0,014 - 0,018	< 0,4	< 0,8	0,014 - 0,018
DSA	1	1,0	< 0,8	< 0,25	0,015 - 0,020	< 0,8	< 1,0	0,015 - 0,020
DSA	1	1,2	< 0,9	< 0,30	0,018 - 0,023	< 0,9	< 1,2	0,018 - 0,023
DSA	1	1,5	< 1,1	< 0,38	0,023 - 0,027	< 1,1	< 1,5	0,023 - 0,027
DSA	1	1,6	< 1,2	< 0,40	0,025 - 0,032	< 1,2	< 1,6	0,025 - 0,032
DSA	1	1,8	< 1,4	< 0,45	0,027 - 0,036	< 1,4	< 1,8	0,027 - 0,036
DSA	1	2,0	< 1,5	< 0,50	0,030 - 0,043	< 1,5	< 2,0	0,030 - 0,043
DSA	1	2,5	< 1,9	< 0,63	0,034 - 0,060	< 1,9	< 2,5	0,034 - 0,060
DSA	1	3,0	< 2,3	< 0,75	0,045 - 0,070	< 2,3	< 3,0	0,045 - 0,070
DSA	1	4,0	< 4,0	< 2,0	0,050 - 0,080	< 4,0	< 4,0	0,050 - 0,080
DSA	1	5,0	< 5,0	< 2,5	0,060 - 0,100	< 5,0	< 5,0	0,060 - 0,100
DSA	1	6,0	< 6,0	< 3,0	0,075 - 0,120	< 6,0	< 6,0	0,075 - 0,120
DSA	1	7,0	< 7,0	< 3,5	0,080 - 0,135	< 7,0	< 7,0	0,080 - 0,135
DSA	1	8,0	< 8,0	< 4,0	0,095 - 0,150	< 8,0	< 8,0	0,095 - 0,150
DSA	1	10,0	< 10,0	< 5,0	0,115 - 0,185	< 10,0	< 10,0	0,115 - 0,185
DSA	1	12,0	< 12,0	< 6,0	0,140 - 0,230	< 12,0	< 12,0	0,140 - 0,230

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

Schaftfräser / Endmill

unbeschichtet TiB₂-beschichtet

empfohlene Kühlung: Emulsion

> uncoated TiB₂ coated

recommended cooling: Emulsion

HSM

Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	
Legierter Stahl / Alloyed steel	> 1000	< 300	
Workzougotobl / Tool steel	> 850	> 250	
Werkzeugstahl / Tool steel	> 1000	> 300	
Rostfreier Stahl / Stainless steel	< 600	< 200	
ROStifeler Starii / Stainless steel	< 850	< 250	
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300	
Titanlegierung / Titanium alloys	< 900	< 300	
		45-52 HRc	
Gehärteter Stahl / Hardened steel		50-60 HRc	
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	
Aluminium / Aluminium	< 350	< 100	400 - 1000
Aluminium / Aluminium < 5%Si	< 500	< 150	250 - 800
Aluminium / Aluminium > 5%Si	< 400	< 120	100 - 400
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			
Kunststoffe / Synthetics			

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

Scharfkantig / Sharp

Schnittgeschwindigkeit v_c basiert auf max. 20.000 1/min.

Vorschub f,* beim Eckfräsen für kleinere Zustellung a muss wie folgt berechnet werden.

Die Angaben gelten für reines Aluminium. Für Aluminium < 5% Si verrringert sich Vorschub f_z bis zu 10% und bei Aluminum > 5% Si bis zu 20%.

Für DSA Kurzausführung gilt beim Eckfräsen a max = 1,5 x d.

Cutting Speed $\rm v_{\rm c}$ is based on max. 20.000 rpm.

At shoulder milling, feed per tooth $f_z^{\,\star}$ for lower $a_{_{\rm e}}$ values should be converted according formula.

Conditions based on pure aluminium. For aluminium < 5% Si reduce feed per tooth $\rm f_z$ up to 10% and for > 5% Si reduce fz up to 20%.

For DSA short at shoulder milling a_p max = 1,5 x d.

a bis/up to 1,00 x d

			Eckfräsen / Shoulder milling			Schli	tzfräsen / Slot	milling
Typ / Type	Z	Ød (mm)	a max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)
DSA	2	3,0	< 3,0	< 0,6	0,030 - 0,075	< 2,3	< 3,0	0,020 - 0,070
DSA	2	4,0	< 6,0	< 1,0	0,035 - 0,085	< 4,0	< 4,0	0,025 - 0,080
DSA	2	5,0	< 7,5	< 1,3	0,040 - 0,100	< 5,0	< 5,0	0,030 - 0,100
DSA	2	6,0	< 12,0	< 2,3	0,045 - 0,115	< 6,0	< 6,0	0,035 - 0,120
DSA	2	8,0	< 16,0	< 3,0	0,050 - 0,120	< 8,0	< 8,0	0,040 - 0,150
DSA	2	10,0	< 20,0	< 3,8	0,055 - 0,130	< 10,0	< 10,0	0,045 - 0,160
DSA	2	12,0	< 24,0	< 6,0	0,065 - 0,150	< 12,0	< 12,0	0,055 - 0,170
DSA	2	14,0	< 28,0	< 7,0	0,085 - 0,170	< 14,0	< 14,0	0,065 - 0,180
DSA	2	16,0	< 32,0	< 8,0	0,100 - 0,180	< 16,0	< 16,0	0,075 - 0,190
DSA	2	18,0	< 36,0	< 9,0	0,110 - 0,200	< 18,0	< 18,0	0,085 - 0,200
DSA	2	20,0	< 40,0	< 10,0	0,125 - 0,210	< 20,0	< 20,0	0,100 - 0,210

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

DSAKH

Schaftfräser Vollradius / Endmill Ballnose

Material / Material	TSR (N/mm)	Härte / Hardness HB	Schnittgeschwindigkeit / Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	Culling speed (VC III/IIIII)
Legierter Stahl / Alloyed steel	> 1000	< 300	
Work-Touggetabl / Tool steel	> 850	> 250	
Werkzeugstahl / Tool steel	> 1000	> 300	
Rostfreier Stahl / Stainless steel	< 600	< 200	
Nostrieler Starii / Starriess steer	< 850	< 250	
Warmfeste Werkstoffe / High temp. alloys	< 900	< 300	
Titanlegierung / Titanium alloys	< 900	< 300	
		45-52 HRc	
Gehärteter Stahl / Hardened steel		50-60 HRc	
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	
Aluminium / Aluminium	< 350	< 100	500 - 2000
Aluminium / Aluminium < 5%Si	< 500	< 150	250 - 1500
Aluminium / Aluminium > 5%Si	< 400	< 120	100 - 1000
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			
Kunststoffe / Synthetics			

unbeschichtet TiB₂-beschichtet

empfohlene Kühlung: 1. Emulsion

2. Mindermengenschmierung 3. Luft

uncoated TiB₂ coated

recommended cooling: 1. Emulsion 2. Minimum lubrification 3. Air

HSM

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

Vollradius / Ballnose

Die Angaben gelten für reines Aluminium. Für Aluminium < 5% Si verrringert sich Vorschub $f_{\underline{z}}$ bis zu 10% und bei Aluminum > 5% Si bis zu 20%.

Conditions based on pure aluminium. For aluminium < 5% Si reduce feed per tooth $\rm f_z$ up to 10% and for > 5% Si reduce fz up to 20%.

 a_p bis/up to 1,00 x d a_p bis/up to 0,20 x d

 $a_{_p}$ bis/up to 0,05 x d $a_{_e}$ bis/up to 0,10 x d

			Eckfr	Eckfräsen / Shoulder milling			Kopierfräsen / Copy milling		
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	
DSAKH	2	6,0	< 6,0	< 0,75	0,025 - 0,050	< 0,6	< 0,50	0,035 - 0,050	
DSAKH	2	8,0	< 8,0	< 1,00	0,035 - 0,070	< 0,8	< 0,70	0,050 - 0,070	
DSAKH	2	10,0	< 10,0	< 1,25	0,045 - 0,090	< 1,0	< 0,90	0,055 - 0,090	
DSAKH	2	12,0	< 12,0	< 2,40	0,055 - 0,100	< 1,2	< 1,20	0,065 - 0,100	
DSAKH	2	14,0	< 14,0	< 2,80	0,065 - 0,120	< 1,4	< 1,40	0,075 - 0,120	
DSAKH	2	16,0	< 16,0	< 3,20	0,070 - 0,140	< 1,6	< 1,60	0,085 - 0,140	
DSAKH	2	18,0	< 18,0	< 3,60	0,070 - 0,145	< 1,8	< 1,80	0,100 - 0,145	
DSAKH	2	20,0	< 20,0	< 4,00	0,075 - 0,150	< 2,0	< 2,00	0,105 - 0,150	
DSAKH	2	25,0	< 25,0	< 5,00	0,085 - 0,200	< 2,5	< 2,50	0,110 - 0,200	

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter ontimiert werden.

unbeschichtet TiB₂-beschichtet

empfohlene Kühlung: 1. Emulsion 2. Mindermengenschmierung

3. Luft

uncoated TiB, coated

recommended cooling: 1. Emulsion 2. Minimum lubrification 3. Air

HSM

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

DSAK

Schnittgeschwindigkeit v basiert auf max. 20.000 1/min.

Die Angaben gelten für reines Aluminium. Für Aluminium < 5% Si verrringert sich Vorschub $\rm f_z$ bis zu 10% und bei Aluminum > 5% Si bis zu 20%.

Für DSAK Kurzausführung gilt beim Eckfräsen a_0 max = 1,5 x d.

Cutting Speed $\rm v_{\rm c}$ is based on max. 20.000 rpm.

Vollradius / Ballnose

Conditions based on pure aluminium. For aluminium < 5% Si reduce feed per tooth f $_{\rm z}$ up to 10% and for > 5% Si reduce fz up to 20%.

For DSAK short at shoulder milling a_p max = 1,5 x d.

 $\rm a_{\rm p}$ bis/up to 2,00 x d $\rm a_{\rm e}$ bis/up to 0,50 x d

 a_p bis/up to 0,20 x d a_e bis/up to 0,10 x d

			Eckfräsen / Shoulder milling			Kopierfräsen / Copy milling		
Typ / Type	Z	Ød (mm)	a max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a max. (mm)	a max. (mm)	f _z (mm/tooth)
DSAK	2	3,0	< 3,0	< 0,6	0,030 - 0,075	< 0,6	< 0,2	0,030 - 0,075
DSAK	2	4,0	< 6,0	< 1,0	0,035 - 0,085	< 0,8	< 0,3	0,035 - 0,085
DSAK	2	5,0	< 7,5	< 1,3	0,040 - 0,100	< 1,0	< 0,4	0,040 - 0,100
DSAK	2	6,0	< 12,0	< 2,3	0,045 - 0,115	< 1,2	< 0,5	0,045 - 0,115
DSAK	2	8,0	< 16,0	< 3,0	0,050 - 0,120	< 1,6	< 0,7	0,050 - 0,120
DSAK	2	10,0	< 20,0	< 3,8	0,055 - 0,130	< 2,0	< 0,9	0,055 - 0,130
DSAK	2	12,0	< 24,0	< 6,0	0,065 - 0,150	< 2,4	< 1,2	0,065 - 0,150
DSAK	2	14,0	< 28,0	< 7,0	0,085 - 0,170	< 2,8	< 1,4	0,085 - 0,170
DSAK	2	16,0	< 32,0	< 8,0	0,100 - 0,180	< 3,2	< 1,6	0,100 - 0,180
DSAK	2	18,0	< 36,0	< 9,0	0,110 - 0,200	< 3,6	< 1,8	0,110 - 0,200
DSAK	2	20,0	< 40,0	< 10,0	0,125 - 0,210	< 4,0	< 2,0	0,125 - 0,210

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

$\boldsymbol{-}$	Λ.	$\overline{}$

Schruppfräser / Roughing Endmill

Material / Material	TSR	Härte / Hardness	Schnittgeschwindigkeit /
	(N/mm)	HB	Cutting speed (Vc m/min)
Kohlenstoffstahl / Carbon steel	< 750	< 250	
Legierter Stahl / Alloyed steel	> 1000	< 300	
Werkzeugstahl / Tool steel	> 850	> 250	
Werkzeugstafii / 100i steel	> 1000	> 300	
Rostfreier Stahl / Stainless steel	< 600	< 200	
Rostifelet Staff / Staffless steel	< 850	< 250	
Warmfeste Werkstoffe /	< 900	< 300	
High temp. alloys	> 900	< 300	
Titanlegierung / Titanium alloys	< 900	< 300	
		45-52 HRc	
Gehärteter Stahl / Hardened steel		50-60 HRc	
		58-70 HRc	
Temperguss / Malleable cast iron		< 260	
Aluminium / Aluminium	< 350	< 100	400 - 1000
Aluminium / Aluminium < 5%Si	< 500	< 150	250 - 800
Aluminium / Aluminium > 5%Si	< 400	< 120	100 - 400
Kupfer / Copper	< 350	< 100	
Messing / Brass	< 700	< 200	
Graphit / Graphite			
Kunststoffe / Synthetics			< 500

unbeschichtet

empfohlene Kühlung: 1. Emulsion 2. Luft

uncoated

recommended cooling: 1. Emulsion 2. Air

HVM

Für weitere Materialangaben siehe Werkstofftabelle

For further material specifications see material cross reference list.

Fase / Chamfer

Vorschub $f_z^{\,\star}$ beim Eckfräsen für kleinere Zustellung $a_{_{\rm e}}$ muss wie folgt berechnet werden.

At shoulder milling, feed per tooth $f_z^{\,\star}$ for lower $a_{_{\rm e}}$ values should be converted according formula.

a	f,*=
0,10 x d	f, x 3
0,25 x d	f, x 2
0,50 x d	f, x 1

 a_p bis/up to 2,00 x d a_p bis/up to 0,50 x d

a bis/up to 1,50 x d

				Eckfräsen / Shoulder milling			
Ty	/p / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	
]	OSAR	3	6,0	< 12,0	< 3,0	0,03 - 0,05	
[DSAR	3	8,0	< 16,0	< 4,0	0,04 - 0,07	
[OSAR	3	10,0	< 20,0	< 5,0	0,05 - 0,10	
[DSAR	3	12,0	< 24,0	< 6,0	0,06 - 0,12	
]	OSAR	3	16,0	< 32,0	< 8,0	0,09 - 0,17	

Schlitzfräsen / Slot milling						
a _e max. (mm)	f _z (mm/tooth)					
< 6,0	0,03 - 0,04					
< 8,0	0,04 - 0,06					
< 10,0	0,05 - 0,08					
< 12,0	0,06 - 0,09					
< 16,0	0,09 - 0,13					
	a _e max. (mm) < 6,0 < 8,0 < 10,0 < 12,0					

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter ontimiert werden.

unbeschichtet TiB₂-beschichtet

empfohlene Kühlung: 1. Emulsion 2. Mindermengenschmierung 3. Luft

> uncoated TiB₂ coated

recommended cooling: 1. Emulsion 2. Minimum lubrification 3. Air

HSM

TSR

(N/mm)

< 750

Härte / Hardness

НВ

< 250

Für weitere Materialangaben siehe Werkstofftabelle For further material specifications see material cross reference list.

Material / Material

Kohlenstoffstahl / Carbon steel

Torus / Torus

Die Angaben gelten für reines Aluminium. Für Aluminium < 5% Si verrringert sich Vorschub $\rm f_z$ bis zu 10% und bei Aluminum > 5% Si bis zu 20%.

Conditions based on pure aluminium. For aluminium < 5% Si reduce feed per tooth f_z up to 10% and for > 5% Si reduce fz up to 20%.

 a_p bis/up to 0,05 x d a_e bis/up to 0,10 x d

Torusfräser / Torus Endmill

Schnittgeschwindigkeit /

Cutting speed (Vc m/min)

500 - 2000

250 - 1500

100 - 1000

			Ecktr	Ecktrasen / Shoulder milling			Kopiertrasen / Copy milling		
Typ / Type	Z	Ød (mm)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	a _p max. (mm)	a _e max. (mm)	f _z (mm/tooth)	
DSAT	2	6,0	< 6,0	< 0,75	0,025 - 0,050	< 0,6	< 0,50	0,035 - 0,050	
DSAT	2	8,0	< 8,0	< 1,00	0,035 - 0,070	< 0,8	< 0,70	0,050 - 0,070	
DSAT	2	10,0	< 10,0	< 1,25	0,045 - 0,090	< 1,0	< 0,90	0,055 - 0,090	
DSAT	2	12,0	< 12,0	< 2,40	0,055 - 0,100	< 1,2	< 1,20	0,065 - 0,100	
DSAT	2	14,0	< 14,0	< 2,80	0,065 - 0,120	< 1,4	< 1,40	0,075 - 0,120	
DSAT	2	16,0	< 16,0	< 3,20	0,070 - 0,140	< 1,6	< 1,60	0,085 - 0,140	
DSAT	2	18,0	< 18,0	< 3,60	0,070 - 0,145	< 1,8	< 1,80	0,100 - 0,145	
DSAT	2	20,0	< 20,0	< 4,00	0,075 - 0,150	< 2,0	< 2,00	0,105 - 0,150	
DSAT	2	25,0	< 25,0	< 5,00	0,085 - 0,200	< 2,5	< 2,50	0,110 - 0,200	

Alle oben angegebenen Schnittbedingungen sind als Richtwerte zu betrachten. Die Schnittdaten können weiter in Abhängigkeit der Stabilität und Leistung der Maschine und Werkzeughalter optimiert werden.

- Diamantbeschichtet
 Diamond coated
- TiAIN-beschichtet für Werkstoffe ≤ 60 HRC
 TiAIN coated for Materials ≤ 60 HRC
- TiAIN-beschichtet für Werkstoffe ≥ 56 HRC
 TiAIN coated for Materials ≥ 56 HRC
- AITiN-beschichtet für Hartfräsen ≥ 50-70 HRC
 AITiN coated for Hard milling ≥ 50-70 HRC
- CrCn-beschichtet
 CrCn coated
- TiB₂-beschichtet
 TiB₂ coated
- unbeschichtet uncoated

- √√ sehr gut geeignet best suitable
- √ gut geeignet suitable

M