

Università degli Studi di Roma "La Sapienza"

FISICA

Ingegneria Informatica e Automatica1

10.07.2023-A.A. 2022-2023 (12 CFU) C.Sibilia/L.Sciscione

SOLUZIONI

1. ESERCIZIO

Per risolvere il problema, è necessario applicare la II legge di Newton, facendo attenzione a quali forze sono presenti nelle diverse situazioni descritte nel testo.

a) Finché il blocco sia fermo, su di esso debbono agire agiscono le seguenti forze: la forza \mathbf{F} , la reazione vincolare normale \mathbf{N} , la forza di attrito radente statico \mathbf{f}_s e la forza peso $m\mathbf{g}$. La II legge di Newton si scrive quindi:

$$\mathbf{F} + \mathbf{N} + \mathbf{f}_s + m\mathbf{g} = 0.$$

Scegliendo un sistema di assi cartesiani con l'asse x orizzontale e l'asse y verticale, come in Figura, e scomponendo le forze lungo tali assi, si ottiene il seguente sistema di due equazioni:

$$+F - f_s = 0$$
 (componenti x)
 $+N - mg = 0$ (componenti y),

risulta in particolare $f_s=F$. Quando F cresce nel tempo, anche f_s cresce fino a che non diventa uguale alla massima intensità possibile per la forza di attrito statico, $f_s \leq f_s^{max} = \mu_s N$. Quando il corpo inizia a muoversi si ha $F^* = f_s^{max} = \mu_s N$ da cui, siccome N=mg, si trova:

$$\mu_s = \frac{F^*}{mg} = \frac{20 N}{5 kg 9.81 ms^{-2}} = 0.408.$$

Dal momento in cui il blocco comincia a muoversi, su di esso agisce la forza di attrito dinamico: la Il legge diventa quindi

$$F + N + f_d + mg = ma$$

che, scomposta lungo gli assi, dà

$$+F - f_d = m\alpha_x$$
 (componenti x)
 $+N - mg = 0$ (componenti y).

Si sa inoltre che $f_d=\mu_d N$ (attenzione, è una relazione tra moduli!) per cui $f_d=\mu_d mg$ che, sostituita porta a $+F-\mu_d mg=m\alpha_x$ da cui, infine (ricordando che dopo il distacco è sempre $F=F^*$)

$$\mu_d = \frac{F^* - m\alpha_x}{mg} = \frac{20 N - 5 kg \times 3ms^{-2}}{5 kg \times 9.81 ms^{-2}} = 0.102.$$

b) Quando il corpo è fermo, la risultante delle forze applicate su di esso dal piano è $\mathbf{R}_s = \mathbf{N} + \mathbf{f}_s$ (si veda la Figura); essa forma un angolo θ_s con la verticale. E' chiaro che $R_s \sin \theta_s = f_s$ e che $R_s \cos \theta_s = N$. Pertanto, dividendo membro a membro, si ha

$$tan(\theta_s) = \frac{f_s}{N} = \frac{F}{mg}.$$

Poiché F cresce linearmente nel tempo, anche l'angolo cresce (finché non avviene il distacco). Tuttavia, non sapendo il valore di F in ogni istante, non è possibile calcolare la dipendenza di θ_s dal tempo. Nel momento del distacco, però, $F=F^*$ e $f_s=f_s^{max}=\mu_sN$. In tale istante, quindi, θ_s assume il suo valore massimo:

$$tan(\theta_s^{max}) = \frac{f_s^{max}}{N} = \mu_s$$

da cui $\theta_s^{max} \cong 22^{\circ} 12'$.

Quando il corpo è in moto la situazione è simile a quella mostrata in Figura ma al posto di \mathbf{f}_s , \mathbf{R}_s e θ_s occorre considerare \mathbf{f}_d , \mathbf{R}_d e θ_d . L'angolo θ_d sarà dato da

$$tan(\theta_d) = \frac{f_d}{N} = \mu_d$$

visto che $f_d = \mu_d N$. Pertanto in questo caso $\theta_d \cong 5^{\circ} 50'$.

2. ESERCIZIO

Si indichino con α ed R, rispettivamente, i raggi (incogniti) di lo e Giove, e con M la massa di quest'ultimo.

a) Indichiamo con α il raggio dell'orbita di Io, con T il periodo orbitale, con M,R e p la massa, il raggio e la densità media di Giove. Possiamo quindi scrivere la terza legge di Keplero nella forma

$$\frac{\alpha^3}{T^2} = \frac{GM}{4\pi^2}$$

D'altra parte, tenendo conto che $M=\frac{4}{3}\pi pR^3$, si ottiene

$$T=\sqrt{\frac{3\pi\varepsilon^3}{G_p}},$$

dove abbiamo posto $\varepsilon = \alpha/R$. Usando i dati numerici si ottiene T=151714~s ossia circa 1.75 giorni terrestri.

b) Il moto orbitale è circolare uniforme, pertanto il modulo della velocità è dato da

$$v = \frac{2\pi\alpha}{T}$$

da cui si ottiene

$$\alpha = \frac{vT}{2\pi} = 418547 \ km.$$

Conseguentemente $R = \alpha/6 = 69758 \ km$.

3. ESERCIZIO

Ricaviamo innanzitutto le variabili termodinamiche incognite negli stati $A, B \in \mathcal{C}$.

Nello stato A la temperatura si ottiene mediante l'equazione di stato: $T_A = p_A V_A / (nR)$.

Nello stato B, si ha $p_B=p_A/2$ e $V_B=2V_A$, da cui $T_B=T_A$. Pertanto, A e B hanno la stessa temperatura e giacciono sulla stessa isoterma reversibile.

Nello stato
$$C$$
, si ha $p_C=p_A/2$ e $V_C=V_A$, da cui $T_C=T_A/2$.

a) Per calcolare il rendimento, troviamo innanzitutto il lavoro compiuto nel ciclo, che corrisponde all'area del triangolo ABC:

$$L = \frac{(p_A - p_C)(V_B - V_C)}{2} = \frac{p_A V_A}{4} = \frac{nRT_A}{4}.$$

Per determinare il calore assorbito, si noti che il gas assorbe calore nelle trasformazioni AB e CA. Per calcolare il calore Q_{AB} , osserviamo che $Q_{AB} = \Delta \mu_{AB} + L_{AB} = L_{AB}$, visto che non c'è variazione di temperatura tra A e B. D'altra parte L_{AB} è l'area sottesa dalla retta AB. Quindi

$$Q_{AB} = L_{AB} = L + p_C(V_B - V_C) = \frac{p_A V_A}{4} + \frac{p_A V_A}{2} = \frac{3}{4} p_A V_A = \frac{3}{4} nRT_A.$$

Il calore scambiato lungo la trasformazione isocora CA coincide con la variazione di energia interna del gas tra C e A perché $L_{CA}=0$. Quindi

$$Q_{CA} = nc_V(T_A - T_C) = nc_V \frac{T_A}{2} = \frac{3}{4}nRT_A.$$

Il rendimento risulta pertanto

$$\eta = \frac{L}{Q_{AB} + Q_{CA}} \frac{\frac{1}{4} n_R T_A}{\frac{3}{4} n_R T_A + \frac{3}{4} n_R T_A} = \frac{1}{6}.$$

Per il calcolo della variazione di entropia, dalla relazione generale otteniamo

$$\Delta S_{AB} = nc_v \ln \frac{T_B}{T_A} + nR \ln \frac{V_B}{V_A} = nR \ln 2.$$

4. ESERCIZIO

Con riferimento alla figura il potenziale infinitesimo in P di una carica dq che occupa un pezzo di linea infinitesimo dx della sbarretta è: $dV = \frac{1}{4\pi\varepsilon_0} \frac{dq}{2L-x} = \frac{1}{4\pi\varepsilon_0} \frac{\lambda dx}{2L-x}$, da cui il potenziale totale in P sarà:

$$V(P) = \int_0^{L/2} -\frac{1}{4\pi\varepsilon_0} \frac{\lambda dx}{(2L-x)} + \int_{L/2}^L \frac{1}{4\pi\varepsilon_0} \frac{\lambda dx}{(2L-x)} = \frac{\lambda}{4\pi\varepsilon_0} \left[ln\left(\frac{3}{4}\right) - ln\left(\frac{2}{3}\right) \right] = \frac{\lambda}{4\pi\varepsilon_0} ln\frac{9}{8}V$$

5 .ESERCIZIO

Per 0 < x < a $f_i = -\frac{d\Phi(\vec{B})}{dt} = -Bb\frac{dx}{dt} = -Bbv$, tale forza elettromotrice indotta genera nella spira una corrente indotta che circola in senso antiorario avente intensità: $i_i = \frac{Bbv}{R}$. Affinché la spira continui a muoversi di moto rettilineo uniforme la forza esterna deve essere pari alla forza di origine magnetica che agisce sul lato lungo b, ovvero:

$$F_e = F_m = ibB = \frac{vb^2B^2}{R} = 4 \cdot 10^{-4}N$$

Il tempo che la spira impiega per entrare completamente nella regione ove è presente il vettore induzione magnetica è:

$$\tau = \frac{a}{v} = 0.1s$$

L'energia dissipata per effetto Joule è:

$$U_D = \int_0^\tau \frac{f_i^2}{R} dt = \int_0^\tau R i_i^2 dt = \frac{B^2 b^2 v^2}{R} \tau = \frac{B^2 b^2 v a}{R} = 8 \cdot 10^{-5} J$$