

FCC PART 15B

TEST REPORT

For

SWIT Electronics Co., Ltd.

10 Heng Tong Road, Xin 'gang Economic and Technological Development Zone, Nanjing 210038 China

FCC ID: 2AFFCS-FLOW2000RX

Report Type: **Product Type:** 2000ft Wireless HD Original Report Jest Zhao **Test Engineer:** Jett Zhao **Report Number:** RSHA191012008-00B 2020-01-09 **Report Date:** Oscar. Ye Oscar Ye **Reviewed By: EMC Manager** Prepared By: Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road, Kunshan, Jiangsu province, China Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) OBJECTIVE RELATED SUBMITTAL(S)/GRANT(S) TEST METHODOLOGY TEST FACILITY	
SYSTEM TEST CONFIGURATION	4
JUSTIFICATION EUT EXERCISE SOFTWARE SPECIAL ACCESSORIES EQUIPMENT MODIFICATIONS SUPPORT EQUIPMENT LIST AND DETAILS EXTERNAL I/O CABLE BLOCK DIAGRAM OF RADIATED TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §15.107 –CONDUCTED EMISSIONS	9
APPLICABLE STANDARD MEASUREMENT UNCERTAINTY EUT SETUP EMI TEST RECEIVER SETUP TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS FACTOR & OVER LIMIT CALCULATION TEST DATA	9 9 10 10 10 10 10
FCC §15.109 - RADIATED EMISSIONS	15
APPLICABLE STANDARD MEASUREMENT UNCERTAINTY EUT SETUP EMI TEST RECEIVER SETUP TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS FACTOR & OVER LIMIT CALCULATION (FOR BELOW 1GHZ)	
CORRECTED AMPLITUDE & MARGIN CALCULATION (FOR ABOVE 1GHz)	18
Test Data	19

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	SWIT Electronics Co., Ltd.
Test Model	FLOW2000 Rx
Series Model	FLOW500 Rx,S-6160 Rx,S-6115 Rx
Model Difference	Model names
Product	2000ft Wireless HD
Rate Voltage	DC 7V-34V
Highest Operation Frequency	5822.5MHz

Report No.: RSHA191012008-00B

Adapter Information: Model: SW-120100

Input: AC100-240V 50/60Hz 0.5A

Output:12V, 1000mA

Objective

This report is prepared on behalf of *SWIT Electronics Co., Ltd.* in accordance with Part 2-Subpart J, and Part 15-Subparts A and B of the Federal Communication Commission's rules.

The objective of the manufacturer is to determine the compliance of EUT with FCC Part 15, Class B devices.

Related Submittal(s)/Grant(s)

FCC Part 15.407 NII and FCC Part 15B JAB submissions with FCC ID: 2AFFCS-FLOW2000TX. FCC Part 15.407 NII submissions with FCC ID: 2AFFCS-FLOW2000RX.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC Part 15B Page 3 of 32

^{*} All measurement and test data in this report was gathered from production sample serial number: 20191012008 (Assigned by BACL, Kunshan). The EUT supplied by the applicant was received on 2019-10-12.

SYSTEM TEST CONFIGURATION

Justification

The system was configured for testing in a typical fashion (as normally used by a typical user).

Report No.: RSHA191012008-00B

Test mode 1: Adapter+SDI out+RX

Test mode 2: Adapter+HDMI out + RX

Test mode 3: Battery+ SDI out + RX

Test mode 4: Battery+ HDMI out + RX

EUT Exercise Software

No software was used.

Special Accessories

No special accessory was used.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	
SWIT	Monitor1 /		/	
SWIT	Battery	S-8975	/	
SWIT	Adapter	GP304U-120-200	/	
SWIT	RX	FLOW2000 Tx	/	
ANMTE	Monitor 2	SFD-EPC/APC170	_	

External I/O Cable

Mode 1:

Cable Description	Length (m)	From/Port	То
SDI Cable 1	0.4	0.4 EUT	
SDI Cable 2	1.5	EUT	Monitor 2
Power Cable 1	1.0	EUT	Adapter 1
Power Cable 2	1.0	Adapter 1	AC Source
Power Cable 3	1.5	Adapter 2	Monitor 1
Power Cable 4	1.0	Adapter 2	AC Source
Power Cable 5	1.0	AC Source	Monitor 2

FCC Part 15B

Mode 2:

Cable Description	Length (m)	From/Port	То
HDMI Cable	1.0	EUT	Monitor1
Power Cable 1	1.0	EUT	Adapter 1
Power Cable 2	1.0	Adapter 1	AC Source
Power Cable 3	1.5	Adapter 2	Monitor 1
Power Cable 4	1.2	AC Source	Adapter 2

Mode 3:

Cable Description	Length (m)	From/Port	То	
SDI Cable 1	0.4	EUT	Monitor1	
SDI Cable 2	1.5	EUT	Monitor 2	
Power Cable 1	1.0	AC Source	Adapter	
Power Cable 2	1.5	Adapter	Monitor 1	
Power Cable 5	1.0	AC Source	Monitor 2	

Mode 4:

Cable Description	Length (m)	From/Port	То
HDMI Cable	1.0	EUT	Monitor
Power Cable 1	1.0	Adapter	AC Source
Power Cable 3	1.5	Adapter	Monitor

FCC Part 15B Page 5 of 32

Block Diagram of Radiated Test Setup

Test mode 1

Test mode 2

FCC Part 15B Page 6 of 32

Test mode 3

Test mode 4

FCC Part 15B Page 7 of 32

FCC Rules	Description of Test	Results
§15.107	Conducted Emissions	Compliant
§15.109	Radiated Emissions	Compliant

Report No.: RSHA191012008-00B

FCC Part 15B Page 8 of 32

FCC §15.107 - CONDUCTED EMISSIONS

Applicable Standard

According to FCC§15.107

Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between LISN and receiver, LISN voltage division factor, LISN VDF frequency interpolation and receiver related input quantities, etc.

Report No.: RSHA191012008-00B

Ite	em	Measurement Uncertainty	$U_{ m cispr}$
AMN	150kHz~30MHz	3.19 dB	3.4 dB

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.4-2014. The related limit was specified in FCC Part 15.107 Class B limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

FCC Part 15B

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Report No.: RSHA191012008-00B

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03-101746-zn	2019-08-05	2020-08-04
Rohde & Schwarz	LISN	ENV216	3560655016	2018-11-30	2019-11-29
Rohde & Schwarz	LISN	ESH3-Z5	862770/011	2018-11-30	2019-11-29
Audix	Test Software	e3	V9		
MICRO-COAX	Coaxial Cable	Cable-15	015	2019-09-08	2020-09-07

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Factor & Over Limit Calculation

The Factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of 7 dB means the emission is 7 dB above the limit. The equation for over limit calculation is as follows:

Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

FCC Part 15B Page 10 of 32

Test Data

Environmental Conditions

Temperature:	20.0~21.5℃
Relative Humidity:	50~52 %
ATM Pressure:	101.0~102.1 kPa

The testing was performed by Jett Zhao from 2019-11-09 to 2019-11-24

Test mode1:

AC 120V/60 Hz, Line:

		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
		dBuV	dB	——— dBuV	——— dBu∀	 dB	
1	0.150	8.30	19.82	28.12	56.00	-27.88	Average
2	0.150	22.80	19.82	42.62	66.00	-23.38	QP
3	0.192	16.90	19.82	36.72	53.93	-17.21	Average
4	0.192	27.70	19.82	47.52	63.93	-16.41	QP
5	0.233	10.90	19.82	30.72	52.35	-21.63	Average
6	0.233	23.10	19.82	42.92	62.35	-19.43	QP
7	0.510	20.50	19.76	40.26	46.00	-5.74	Average
8	0.510	21.90	19.76	41.66	56.00	-14.34	QP
9	0.701	11.70	19.75	31.45	46.00	-14.55	Average
10	0.701	14.20	19.75	33.95	56.00	-22.05	QP
11	11.807	7.10	19.58	26.68	50.00	-23.32	Average
12	11.807	15.10	19.58	34.68	60.00	-25.32	QP

FCC Part 15B Page 11 of 32

AC 120V/60 Hz, Neutral:

		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB	dBu∀	dBu∀	dB	
1	0.150	14.50	19.82	34.32	56.00	-21.68	Average
2	0.150	30.10	19.82	49.92	66.00	-16.08	QP
3	0.186	15.41	19.82	35.23	54.20	-18.97	Average
4	0.186	27.31	19.82	47.13	64.20	-17.07	QP
5	0.232	8.90	19.82	28.72	52.39	-23.67	Average
6	0.232	21.90	19.82	41.72	62.39	-20.67	QP
7	0.507	21.30	19.76	41.06	46.00	-4.94	Average
8	0.507	22.50	19.76	42.26	56.00	-13.74	QP
9	1.868	13.30	19.83	33.13	46.00	-12.87	Average
10	1.868	16.80	19.83	36.63	56.00	-19.37	QP
11	11.021	7.70	19.57	27.27	50.00	-22.73	Äverage
12	11.021	15.30	19.57	34.87	60.00	-25.13	QP _

FCC Part 15B Page 12 of 32

Test mode2:

AC 120V/60 Hz, Line:

		Read			Limit	Over	
	Freq	Level	Fact <i>o</i> r	Level	Line	Limit	Remark
	MHz	dBu∀	dB	dBu∀	dBu∀	dB	
1	0.161	13.35	19.83	33.18	55.43	-22.25	Average
2	0.161	26.35	19.83	46.18	65.43	-19.25	QP
3	0.183	9.34	19.83	29.17	54.33	-25.16	Average
4	0.183	18.34	19.83	38.17	64.33	-26.16	QP
5	0.193	9.20	19.82	29.02	53.89	-24.87	Average
6	0.193	17.20	19.82	37.02	63.89	-26.87	QP
7	0.215	10.88	19.82	30.70	53.01	-22.31	Average
8	0.215	21.88	19.82	41.70	63.01	-21.31	QP
9	0.312	7.20	19.83	27.03	49.93	-22.90	Average
10	0.312	13.20	19.83	33.03	59.93	-26.90	QP
11	0.479	11.04	19.76	30.80	46.36	-15.56	Ävenage
12	0.479	20.04	19.76	39.80	56.36	-16.56	QP

FCC Part 15B Page 13 of 32

AC 120V/60 Hz, Neutral:

		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB	dBu∀	dBu∀	dB	
1	0.157	11.03	19.82	30.85	55.60	-24.75	Average
2	0.157	22.03	19.82	41.85	65.60	-23.75	QP
3	0.183	12.93	19.83	32.76	54.33	-21.57	Average
4	0.183	20.93	19.83	40.76	64.33	-23.57	QP
5	0.203	13.01	19.82	32.83	53.49	-20.66	Average
6	0.203	20.01	19.82	39.83	63.49	-23.66	QP
7	0.259	13.10	19.82	32.92	51.47	-18.55	Average
8	0.259	21.10	19.82	40.92	61.47	-20.55	QP
9	0.305	6.32	19.83	26.15	50.10	-23.95	Average
10	0.305	14.32	19.83	34.15	60.10	-25.95	QP
11	0.494	13.83	19.76	33.59	46.10	-12.51	Average
12	0.494	20.83	19.76	40.59	56.10	-15.51	QP

Note:

FCC Part 15B Page 14 of 32

¹⁾ Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

²⁾ Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

FCC §15.109 - RADIATED EMISSIONS

Applicable Standard

FCC §15.109

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average) and system repeatability.

	Item	Measurement Uncertainty	$U_{ m cispr}$
	30MHz~1GHz	6.11dB	6.3 dB
Radiated Emission	1GHz~6GHz	4.45dB	5.2 dB
	6 GHz ~30 GHz	5.23dB	5.5 dB

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

EUT Setup

Below 1GHz:

FCC Part 15B Page 15 of 32

Above 1GHz:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.4-2014. The specification used was the FCC Part 15.109 Class B limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The system was investigated from 30 MHz to 30GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30MHz – 1000 MHz	120 kHz	300 kHz	120kHz	QP
Above 1 GHz	1MHz	3 MHz	/	Peak
ADDIVE I GHZ	1MHz	3 MHz	1MHz	AVG

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detector mode from 30MHz to 1GHz, Peak and average detection mode above 1GHz.

FCC Part 15B Page 16 of 32

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sonoma Instrument	Amplifier	310N	185700	2019-08-14	2020-08-13
Rohde & Schwarz	EMI Test receiver	ESR	1316.3003K03-102454-Qd	2019-06-25	2020-06-24
Sunol Sciences	Broadband Antenna	JB3	A060217	2016-12-26	2019-12-25
Champrotek	Chamber	Chamber A	T-KSEMC049	-	-
Champrotek	Chamber	Chamber B	T-KSEMC080	-	-
Rohde & Schwarz	Auto test Software	EMC32	100361	-	-
EM Electronics	Amplifier	EM18G40G	060726	2019-08-14	2020-08-13
ETS-LINDGREN	Horn Antenna	3116	00084159	2016-12-12	2020-12-11
Audix	Test Software	e3	V9	-	-
ETS	Horn Antenna	3115	6229	2016-12-12	2019-12-11
Rohde & Schwarz	EMI Receiver	ESU40	100207	2019-05-30	2020-05-29
A.H.Systems, inc	Amplifier	2641-1	491	2019-02-20	2020-02-19
MICRO-COAX	Coaxial Cable	Cable-8	008	2019-08-15	2020-08-14
MICRO-COAX	Coaxial Cable	Cable-9	009	2019-08-15	2020-08-14
MICRO-COAX	Coaxial Cable	Cable-10	010	2019-08-15	2020-08-14
MICRO-COAX	Coaxial Cable	Cable-4	004	2018-12-12	2019-12-11
MICRO-COAX	Coaxial Cable	Cable-4	004	2019-12-12	2020-12-11
MICRO-COAX	Coaxial Cable	Cable-5	005	2018-12-12	2019-12-11
MICRO-COAX	Coaxial Cable	Cable-5	005	2019-12-12	2020-12-11

Report No.: RSHA191012008-00B

FCC Part 15B Page 17 of 32

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Factor & Over Limit Calculation (For Below 1GHz)

The factor is calculated by adding Antenna Factor, Cable Loss and Amplifier Gain. The basic equation is as follows:

Report No.: RSHA191012008-00B

Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) + Amplifier Gain (dB)

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over Limit of 7dB means the emission is 7 dB above the limit. The equation for over Limit calculation is as follows:

Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

Corrected Amplitude & Margin Calculation (For Above 1GHz)

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

FCC Part 15B Page 18 of 32

Test Data

Environmental Conditions

Temperature:	21.6℃~21.8 ℃
Relative Humidity:	50%~52%
ATM Pressure:	101.0 kPa ~101.2 kPa

The testing was performed by Jett Zhao on 2019-11-06 and 2020-01-09

Test mode 1

1) Below 1GHz:

Horizontal:

		Read		Limit	Over	APos	TPos		
	Freq	Level	Level	Line	Limit			Remark	Factor
	MHz	dBu∀	dBu∀/m	dBuV/m	dB		deg		dB/m
1	38.35	44.30	34.23	40.00	-5.77	100	355	QP	-10.07
2	39.58	46.30	35.21	40.00	-4.79	100	355	QP	-11.09
3	164.91	43.31	31.02	43.50	-12.48	200	333	QP	-12.29
4	183.84	48.00	35.26	43.50	-8.24	100	304	QP	-12.74
5	242.53	46.39	33.81	46.00	-12.19	100	262	QP	-12.58
6	706.70	42.29	40.32	46.00	-5.68	100	209	QP	-1.97

FCC Part 15B Page 19 of 32

Vertical:

		Read		Limit	Over	APos	TPos		
	Freq	Level	Level	Line	Limit			Remark	Factor
		dBu∀	dBu∀/m	dBuV/m	——— dB		deg		dB/m
1	32.86	41.10	35.59	40.00	-4.41	100	17	QP	-5.51
2	39.58	42.80	31.71	40.00	-8.29	200	35.7	QР	-11.09
3	41.13	48.90	36.83	40.00	-3.17	100	35.7	QР	-12.07
4	185.79	49.99	37.40	43.50	-6.10	100	323	QР	-12.59
5	262.90	47.90	36.44	46.00	-9.56	100	5	QР	-11.46
6	925.76	35.11	36.67	46.00	-9.33	100	35.7	ÕР	1.56

Note:

1) Factor (dB) = Antenna Factor (dB/m) + Cable Loss (dB) + Amplifier Gain (dB)

2) Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

FCC Part 15B Page 20 of 32

2)1GHz-18 GHz:

Frequency (MHz)	Max Peak (dBμV/m)	Average (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1549.100000		24.65	54.00	29.35	100.0	V	19.0	-9.8
1549.100000	33.92		74.00	40.08	100.0	V	19.0	-9.8
2939.700000		30.06	54.00	23.94	100.0	Н	80.0	-4.7
2939.700000	39.40		74.00	34.60	100.0	Н	80.0	-4.7
4342.200000		31.96	54.00	22.04	100.0	Н	188.0	-1.3
4342.200000	42.31		74.00	31.69	100.0	Н	188.0	-1.3
6484.200000		37.76	54.00	16.24	200.0	V	359.0	4.3
6484.200000	48.76		74.00	25.24	200.0	V	359.0	4.3
9409.900000		40.14	54.00	13.86	100.0	V	201.0	7.7
9409.900000	50.08		74.00	23.92	100.0	V	201.0	7.7
17464.500000		45.88	54.00	8.12	200.0	V	355.0	14.1
17464.500000	56.68		74.00	17.32	200.0	V	355.0	14.1

¹⁾ Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

FCC Part 15B Page 21 of 32

²⁾ Margin = Limit – Corrected Amplitude

Test mode 2

1) Below 1GHz:

Horizontal:

		Read		Limit	Over	APos	TPos		
	Freq	Level	Level	Line	Limit			Remark	Factor
-		dBu∀	dBuV/m	dBuV/m	dB		deg		dB/m
1	39.44	47.89	36.92	40.00	-3.08	100	308	QP	-10.97
2	74.14	53.70	36.69	40.00	-3.31	200	329	QP	-17.01
3	148.96	52.08	40.20	43.50	-3.30	200	359	QP	-11.88
4	222.17	56.32	42.93	46.00	-3.07	100	246	QP	-13.39
5	296.18	52.99	42.65	46.00	-3.35	100	221	QP	-10.34
6	965.54	41.03	43.38	54.00	-10.62	100	303	QP	2.35

FCC Part 15B Page 22 of 32

Vertical:

		Read		Limit	Over	APos	TPos		
	Freq	Level	Level	Line	Limit			Remark	Factor
	MHz	dBu∀	dBuV/m	dBuV/m	——— dB		 deg		dB/m
1	40.56	48.71	36.95	40.00	-3.05	100	171	QP	-11.76
2	74.14	53.20	36.19	40.00	-3.81	100	10	QP	-17.01
3	222.95	56.30	42.93	46.00	-3.07	200	218	QP	-13.37
4	593.05	46.70	42.61	46.00	-3.39	100	354	QP	-4.09
5	890.73	41.90	42.75	46.00	-3.25	100	347	QP	0.85
6	965.54	48.31	50.66	54.00	-3.34	200	356	ÓР	2.35

Note:

1) Factor (dB) = Antenna Factor (dB/m) + Cable Loss (dB) + Amplifier Gain (dB) 2) Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

FCC Part 15B Page 23 of 32

2) 1GHz-18 GHz:

Frequency (MHz)	Max Peak (dBμV/m)	Average (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1853.400000		27.44	54.00	26.56	100.0	V	176.0	-8.7
1853.400000	34.56		74.00	39.44	100.0	V	176.0	-8.7
3420.800000		32.14	54.00	21.86	200.0	Н	101.0	-3.7
3420.800000	40.49		74.00	33.51	200.0	Н	101.0	-3.7
4848.800000		33.15	54.00	20.85	100.0	V	161.0	-0.5
4848.800000	42.18		74.00	31.82	100.0	V	161.0	-0.5
6946.600000		38.68	54.00	15.32	100.0	Н	29.0	5.2
6946.600000	48.04		74.00	25.96	100.0	Н	29.0	5.2
11171.100000		42.39	54.00	11.61	200.0	V	191.0	9.8
11171.100000	52.45		74.00	21.55	200.0	V	191.0	9.8
17661.700000		47.72	54.00	6.28	100.0	Н	86.0	14.0
17661.700000	56.75		74.00	17.25	100.0	Н	86.0	14.0

¹⁾ Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

FCC Part 15B Page 24 of 32

²⁾ Margin = Limit – Corrected Amplitude

Test mode 3

1) Below 1GHz:

Horizontal:

		Read		Limit	Over	APos	TPos		
	Freq	Level	Level	Line	Limit			Remark	Factor
	MHz	dBu∀	dBuV/m	dBuV/m	dB		———— deg		dB/m
1	39.44	47.69	36.72	40.00	-3.28	100	197	QP	-10.97
2	187.10	43.50	31.00	43.50	-12.50	200	322	QP	-12.50
3	257.42	46.50	34.76	46.00	-11.24	100	266	QP	-11.74
4	556.77	43.91	39.24	46.00	-6.76	200	354	QP	-4.67
5	721.73	39.40	37.63	46.00	-8.37	200	303	QP	-1.77
6	965.54	33.61	35.96	54.00	-18.04	100	12	QP	2.35

FCC Part 15B Page 25 of 32

Vertical:

	F	Read	11	Limit	Over	APos	TPos	D l-	C
	Freq	rever	Level	Line	Limit			Remark	Factor
	MHz	dBu∀	dBuV/m	dBuV/m	dB		deg		dB/m
1	41.13	48.90	36.83	40.00	-3.17	100	4	QP	-12.07
2	81.78	48.70	31.52	40.00	-8.48	200	358	QP	-17.18
3	199.99	50.80	39.18	43.50	-4.32	100	176	QP	-11.62
4	482.22	42.51	36.61	46.00	-9.39	100	281	QP	-5.90
5	714.17	40.30	38.42	46.00	-7.58	100	268	QΡ	-1.88
6	925.76	34.71	36.27	46.00	-9.73	200	266	OP	1.56

Note:

1) Factor (dB) = Antenna Factor (dB/m) + Cable Loss (dB) + Amplifier Gain (dB)

2) Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

FCC Part 15B Page 26 of 32

2) Above 1 GHz:

Frequency (MHz)	Max Peak (dBμV/m)	Average (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1391.000000		23.08	54.00	30.92	200.0	Н	296.0	-10.5
1391.000000	33.72		74.00	40.28	200.0	Н	296.0	-10.5
3040.000000		30.54	54.00	23.46	100.0	V	201.0	-4.3
3040.000000	40.30		74.00	33.70	100.0	V	201.0	-4.3
4763.800000		33.23	54.00	20.77	100.0	V	80.0	-0.6
4763.800000	42.67		74.00	31.33	100.0	V	80.0	-0.6
7393.700000		39.60	54.00	14.40	200.0	V	275.0	6.0
7393.700000	48.47		74.00	25.53	200.0	V	275.0	6.0
12051.700000		42.38	54.00	11.62	200.0	V	332.0	10.1
12051.700000	52.18		74.00	21.82	200.0	V	332.0	10.1
17416.900000		47.49	54.00	6.51	100.0	Н	100.0	13.9
17416.900000	57.16		74.00	16.84	100.0	Н	100.0	13.9

¹⁾ Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

FCC Part 15B Page 27 of 32

²⁾ Margin = Limit – Corrected Amplitude

Test mode 4

1) Below 1GHz:

Horizontal:

	Read		Limit	Over	APos	TPos		
Freq	Level	Level	Line	Limit			Remark	Factor
	dBu∀	dBu∀/m	dBuV/m	dB		———— deg		dB/m
39.72	48.19	36.99	40.00	-3.01	100	144	QP	-11.20
148.44	51.97	40.10	43.50	-3.40	200	0	QP	-11.87
246.82	54.74	42.41	46.00	-3.59	100	311	QP	-12.33
296.18	52.32	41.98	46.00	-4.02	100	236	QP	-10.34
593.05	45.25	41.16	46.00	-4.84	200	206	QP	-4.09
965.54	39.82	42.17	54.00	-11.83	100	0	QP	2.35
	MHz 39.72 148.44 246.82 296.18 593.05	MHz dBuV 39.72 48.19 148.44 51.97 246.82 54.74 296.18 52.32 593.05 45.25	MHz dBuV dBuV/m 39.72 48.19 36.99 148.44 51.97 40.10 246.82 54.74 42.41 296.18 52.32 41.98 593.05 45.25 41.16	Freq Level Level Line MHz dBuV dBuV/m dBuV/m 39.72 48.19 36.99 40.00 148.44 51.97 40.10 43.50 246.82 54.74 42.41 46.00 296.18 52.32 41.98 46.00 593.05 45.25 41.16 46.00	MHz dBuV dBuV/m dBuV/m dB 39.72 48.19 36.99 40.00 -3.01 148.44 51.97 40.10 43.50 -3.40 246.82 54.74 42.41 46.00 -3.59 296.18 52.32 41.98 46.00 -4.02 593.05 45.25 41.16 46.00 -4.84	Freq Level Level Line Limit MHz dBuV dBuV/m dBuV/m dBuV/m dB cm 39.72 48.19 36.99 40.00 -3.01 100 148.44 51.97 40.10 43.50 -3.40 200 246.82 54.74 42.41 46.00 -3.59 100 296.18 52.32 41.98 46.00 -4.02 100 593.05 45.25 41.16 46.00 -4.84 200	Freq Level Level Line Limit MHz dBuV dBuV/m dBuV/m dB cm deg 39.72 48.19 36.99 40.00 -3.01 100 144 148.44 51.97 40.10 43.50 -3.40 200 0 246.82 54.74 42.41 46.00 -3.59 100 311 296.18 52.32 41.98 46.00 -4.02 100 236 593.05 45.25 41.16 46.00 -4.84 200 206	Freq Level Line Limit Remark MHz dBuV dBuV/m dBuV/m dB cm deg 39.72 48.19 36.99 40.00 -3.01 100 144 QP 148.44 51.97 40.10 43.50 -3.40 200 0 QP 246.82 54.74 42.41 46.00 -3.59 100 311 QP 296.18 52.32 41.98 46.00 -4.02 100 236 QP 593.05 45.25 41.16 46.00 -4.84 200 206 QP

FCC Part 15B Page 28 of 32

Vertical:

		Read		Limit	Over	APos	TPos		
	Freq	Level	Level	Line	Limit			Remark	Factor
_	MHz	dBu∀	dBuV/m	dBuV/m			deg		dB/m
1	41.57	46.89	34.59	40.00	-5.41	100	2	QP	-12.30
2	74.14	52.12	35.11	40.00	-4.89	200	290	QP	-17.01
3	148.44	51.22	39.35	43.50	-4.15	200	48	QP	-11.87
4	222.17	55.70	42.31	46.00	-3.69	100	2	QΡ	-13.39
5	446.41	49.10	42.41	46.00	-3.59	100	271	QΡ	-6.69
6	742.26	44.39	42.91	46.00	-3.09	100	193	QP	-1.48

Note:

1) Factor (dB) = Antenna Factor (dB/m) + Cable Loss (dB) + Amplifier Gain (dB) 2) Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

FCC Part 15B Page 29 of 32

2) Above 1 GHz:

Frequency (MHz)	Max Peak (dBμV/m)	Average (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1739.500000		24.20	54.00	29.80	100.0	Н	52.0	-9.1
1739.500000	35.32		74.00	38.68	100.0	Н	52.0	-9.1
3012.800000		30.90	54.00	23.10	100.0	V	243.0	-4.4
3012.800000	39.90		74.00	34.10	100.0	V	243.0	-4.4
5664.800000		35.47	54.00	18.53	200.0	V	257.0	1.7
5664.800000	45.12		74.00	28.88	200.0	V	257.0	1.7
8886.300000		42.50	54.00	11.50	100.0	V	184.0	7.4
8886.300000	49.39		74.00	24.61	100.0	V	184.0	7.4
12182.600000		43.73	54.00	10.27	100.0	Н	0.0	10.2
12182.600000	53.28		74.00	20.72	100.0	Н	0.0	10.2
17592.000000		46.52	54.00	7.48	100.0	Н	250.0	14.1
17592.000000	56.87		74.00	17.13	100.0	Н	250.0	14.1

¹⁾ Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

FCC Part 15B Page 30 of 32

²⁾ Margin = Limit – Corrected Amplitude

3) **18GHz-30 GHz:**(*Pre-scan four test modes, only the mode 1 which the worst case was recorded in report). Horizontal:*

Date: 9.JAN.2020 10:20:22

FCC Part 15B Page 31 of 32

Vertical:

Date: 9.JAN.2020 11:24:34

*****END OF REPORT****

FCC Part 15B Page 32 of 32