HWZ ProbleM 1 Examples

We use the formula $\psi(t) = \int_{0}^{\infty} e^{-i\omega t} h(\omega) d\omega$ for $h(\omega) = density of h(\omega)$ Example 1 Wis uniform on [0,1] $Y(t) = \int_0^1 e^{-\frac{1}{2}\omega t} d\omega$ $= \frac{2}{+} \left(1 - e^{-t/2} \right)$ Example 2 Wis "half normal" $P_{\Lambda} (0 \leq W \leq w) = 2 \Re(w) - 1$ Then $h(u) = \frac{2}{\sqrt{2\pi}} e^{-w^2/2}$, and $\psi(t) = \int_0^\infty e^{-\frac{1}{2}\omega t} h(\omega) d\omega = \int_0^\infty \frac{2}{\sqrt{2\pi}} e^{-\frac{1}{2}\omega t} e^{-\frac{1}{2}\omega^2} d\omega$ $=\int_{2}^{\infty}\frac{2}{\sqrt{2\pi}}\exp\left(-\frac{1}{2}\left(\omega^{2}+\omega t\right)\right)d\omega$ $= \int_{0}^{\infty} \frac{2}{\sqrt{2\pi}} \exp(-\frac{1}{2}(w^{2} + \omega t + \frac{1}{4}t^{2} - \frac{1}{4}t^{2})) d\omega$ $= \int_{0}^{\infty} \frac{2}{\sqrt{2\pi}} e^{\frac{t^{2}}{8}} \exp(-\frac{1}{2}(\omega + \frac{t}{2})^{2}) d\omega$ $= 2e^{t^{2}/8} \left((-9(t/2)) = 2e^{t^{2}/8} M(-\frac{t}{2}).$