Multiple regression

$$\begin{aligned} y_i &= \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \varepsilon_i, i = 1, \dots, n \\ \varepsilon_i \sim iidN(0, \sigma^2) \end{aligned}$$

$y = X\beta + \varepsilon$

$$y = \underbrace{\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}}_{n \times 1}, X = \underbrace{\begin{bmatrix} X_{11} & \cdots & X_{1k} \\ \vdots & & \vdots \\ X_{n1} & \cdots & X_{nk} \end{bmatrix}}_{n \times k}, \beta = \underbrace{\begin{bmatrix} \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}}_{k \times 1}, \varepsilon = \underbrace{\begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix}}_{n \times 1}$$

What's Next

Convright Dick Startz

 $X\beta$ is the mean

$$y = X\beta + \varepsilon$$

$$\varepsilon_i \sim iidN(0, \sigma^2)$$

$$y \sim N(X\beta, \sigma^2 I)$$

$$\mathcal{L}(\beta, \sigma^2) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}(y - X\beta)'(y - X\beta)$$

Sum of squared errors

$$\sum \varepsilon_i^2 = \varepsilon' \varepsilon = \sum (y_i - X_i \beta)^2$$
$$= (y - X\beta)' (y - X\beta)$$

yright Dick Startz 3 Copyright Dick Startz

Derivative of inner product

$$f(b) = a'b = a_1b_1 + a_2b_2 + \dots + a_kb_k$$

$$\frac{\partial f(b)}{\partial b_1} = a_1$$

$$\frac{\partial f(b)}{\partial b_2} = a_2$$

$$\frac{\partial f(b)}{\partial b} = \frac{\partial a'b}{\partial b} = \frac{\partial b'a}{\partial b} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_k \end{bmatrix} = a$$

Copyright Dick Startz

Derivative of quadratic form

$$\begin{split} f(b) &= b'Ab \text{, where } A \text{ is symmetric, example} \\ & [b_1 \quad b_2] \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \\ & a_{11}b_1^2 + 2a_{12}b_1b_2 + a_{22}b_2^2 \\ & \frac{\partial b'Ab}{\partial b_1} = 2a_{11}b_1 + 2a_{12}b_2 \\ & \frac{\partial b'Ab}{\partial b_2} = 2a_{12}b_1 + 2a_{22}b_2 \\ & \frac{\partial b'Ab}{\partial b} = 2Ab \end{split}$$

Copyright Dick Start

MLE

$$\mathcal{L}(\beta, \sigma^{2})$$

$$= -\frac{n}{2}\log(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}}(y - X\beta)'(y - X\beta)$$

$$\frac{\partial(y - X\beta)'I(y - X\beta)}{\partial\beta} = \frac{\partial(y - X\beta)}{\partial\beta}2I(y - X\beta)$$

$$\frac{\partial\mathcal{L}}{\partial\beta} = 0 = \frac{1}{\sigma^{2}}(-X')(y - X\beta)$$

$$\hat{\beta}_{mle} = (X'X)^{-1}X'y$$

Copyright Dick Startz

MLE

$$\begin{split} &\mathcal{L}(\beta,\sigma^2) \\ &= -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (y - X\beta)'(y - X\beta) \end{split}$$

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \sigma^2} &= 0 = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^{2^2}} (y - X\beta)'(y - X\beta) \\ \hat{\sigma}_{mle}^2 &= \frac{\left(y - X\hat{\beta}_{mle}\right)'\left(y - X\hat{\beta}_{mle}\right)}{n} \end{split}$$

Copyright Dick Starts

2

Information matrix

$$\frac{\partial \mathcal{L}}{\partial \beta} = -\frac{1}{\sigma^2} (-X')(y - X\beta)$$

$$\frac{\partial^2 \mathcal{L}}{\partial \beta^2} = -\frac{1}{\sigma^2} (-X')(-X) = -\frac{1}{\sigma^2} X'X$$

$$\frac{\partial^2 \mathcal{L}}{\partial \beta \partial \sigma^2} = -\frac{1}{\sigma^{2^2}} (X')(y - X\beta)$$

$$-\mathbb{E}\left(\frac{\partial^2 \mathcal{L}}{\partial \beta \partial \sigma^2}\right) = 0$$

Nb

Information matrix

$$\frac{\partial \mathcal{L}}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^{2^2}} (y - X\beta)'(y - X\beta)$$
$$\frac{\partial^2 \mathcal{L}}{(\partial \sigma^2)^2} = \frac{n}{2\sigma^{2^2}} - \frac{1}{\sigma^{2^3}} (y - X\beta)'(y - X\beta)$$
$$E\left(\frac{\partial^2 \mathcal{L}}{(\partial \sigma^2)^2}\right) = \frac{n}{2\sigma^{2^2}} - \frac{n\sigma^2}{\sigma^{2^3}} = -\frac{n}{2\sigma^{2^2}}$$

Information matrix

$$I = \frac{1}{\sigma^2} \begin{bmatrix} X'X & 0\\ 0 & \frac{n}{2\sigma^2} \end{bmatrix}$$
$$V(\beta, \sigma^2) = \begin{bmatrix} \sigma^2(X'X)^{-1} & 0\\ 0 & \frac{2\sigma^2}{n} \end{bmatrix}$$

General error structure

$$y = X\beta + \varepsilon$$
$$\varepsilon \sim N(0, \Sigma)$$
$$E(\varepsilon \varepsilon') = \Sigma$$
$$y \sim N(X\beta, \Sigma)$$

Copyright Dick Startz 11 Copyright Dick Startz

Method of moments estimator

$$\frac{1}{n}X'\varepsilon = 0, \frac{1}{n}X'(y - X\beta) = 0$$

$$\beta_{mm} = (X'X)^{-1}X'y$$

$$= (X'X)^{-1}X'(X\beta + \varepsilon) = \beta + (X'X)^{-1}X'\varepsilon$$

$$E[(\beta_{mm})$$

Maximum-likelihood

$$\begin{split} f_n(y;\mu,\Sigma) &= \frac{1}{\sqrt{2\pi|\Sigma|}} \exp\left(-\frac{1}{2}(y-\mu)'\Sigma^{-1}(y-\mu)\right) \\ \mathcal{L} &= -\frac{1}{2} \log(2\pi) - \frac{1}{2} \log|\Sigma| - \frac{1}{2}(y-X\beta)'\Sigma^{-1}(y-X\beta) \\ &\frac{\partial \mathcal{L}}{\partial \beta} = -X'\Sigma^{-1}(y-X\beta) = 0 \\ \beta_{mle} &= (X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1}y \end{split}$$

Copyright Dick Startz 13 Copyright Dick Startz 1

Σ not known

$$\hat{\beta} = (X'X)^{-1}X'y$$

$$= (X'X)^{-1}X'X\beta + (X'X)^{-1}X'\varepsilon$$

$$\hat{\beta} = \beta + (X'X)^{-1}X'\varepsilon$$

$$\hat{\beta} \sim (\beta, \mathbb{E}[(X'X)^{-1}X'\varepsilon\varepsilon'X(X'X)^{-1}])$$

$$\hat{\beta} \sim (\beta, \mathbb{E}[(X'X)^{-1}X'\Sigma X(X'X)^{-1}])$$

Sandwich estimator

 $\hat{\beta} \sim (\beta, \mathbb{E}[(X'X)^{-1}X'\Sigma X(X'X)^{-1}])$ If Σ is diagonal (heteroskedasticity), then use $\operatorname{var}(\hat{\beta})$

$$\approx \frac{1}{n} \left(\frac{1}{n} \sum X_i X_i' \right)^{-1} \left(\frac{1}{n} \sum e_i^2 X_i X_i' \right) \left(\frac{1}{n} \sum X_i X_i' \right)$$

If Σ is block diagonal, then the middle part gets replaced by clusters rather than individual squared errors to get clustered standard errors.

Copyright Dick Startz 15 Copyright Dick Startz

Projection matrix

$$P_X \equiv X(X'X)^{-1}X'$$

 $X''[(X'X)'^{-1}X']$ $X''[(X'X'')^{-1}X']$ $X(X'X)^{-1}X'$

Copyright Dick Startz

Projection matrix

$$P_X \equiv X(X'X)^{-1}X'$$

Note that P_X is symmetric and idempotent $P_X P_X = X(X'X)^{-1}X'X(X'X)^{-1}X'$ $= X(X'X)^{-1}X^{L}X(X^{L}X)^{-1}X'$

Copyright Dick Startz

Projection matrix

$$P_X y = X(X'X)^{-1}X'y = X\hat{\beta} = \hat{y}$$

Annihilation matrix

$$\begin{split} M_X &\equiv I - X(X'X)^{-1}X' = I - P_X \\ P_X M_X &= P_X - P_X P_X = 0 \\ X' M_X &= X' [I - X(X'X)^{-1}X'] \\ X' - X'X(X'X)^{-1}X' &= 0 \end{split}$$

$$rank(P_X) = k$$
$$rank(M_X) = n - k$$

Copyright Dick Startz 19 Copyright Dick Startz

residuals

$$e = y - \hat{y} = y - P_X y = [I - P_X]y$$

 $X'e = X'[I - P_X]y = 0$

residuals

$$e = M_X y = M_X (X\beta + \varepsilon) = M_X \varepsilon$$
$$e' e = \varepsilon' M_X M_X \varepsilon = \varepsilon' M_X \varepsilon$$
$$e \sim N(0, M_X \sigma^2 I M_X) = N(0, \sigma^2 M_X)$$

opyright Dick Startz 21 Copyright Dick Startz

Sum squared residuals

Theorem: If $x \sim N(0, V)$ then $x'Ax \sim \chi^2_{rank(A)}$ iff AV is idempotent.

$$\varepsilon/\sigma \sim N(0, I)$$

$$e'e = \varepsilon' M_X \varepsilon$$

$$\frac{e'e}{\sigma^2} = \frac{\varepsilon'}{\sigma} M_X \frac{\varepsilon}{\sigma}$$

 M_XI is idempotent

$$e'e \sim \chi_{n-k}^2$$

Copyright Dick Startz

Identification

Definition: A parameter θ for a family of distributions is *identifiable* if distinct values of θ correspond to distinct values of the likelihood, i.e.,

$$\theta \neq \theta' \Rightarrow L(x|\theta) \neq L(x|\theta')$$

23 Copyright Dick Startz 2

Identification example

$$\begin{aligned} y_i &= \beta x_i + \varepsilon_i, i = 1, \dots, n \\ \varepsilon_i &= \lambda x_i + v_i, v {\sim} iidN(0, \sigma_v^2) \end{aligned}$$

We can substitute in and write

$$y_i = (\beta + \lambda)x_i + v_i$$

The log likelihood is

$$\mathcal{L} = -\frac{n}{2} \log(2\pi\sigma_v^2) - \frac{1}{2\sigma_v^2} \sum (y_i - (\beta + \lambda)x_i)^2$$

Identification example

The log likelihood is

$$\mathcal{L} = -\frac{n}{2}\log(2\pi\sigma_v^2) - \frac{1}{2\sigma_v^2}\sum(y_i - (\beta + \lambda)x_i)^2$$

Identification example

The log likelihood is

$$\mathcal{L} = -\frac{n}{2}\log(2\pi\sigma_v^2) - \frac{1}{2\sigma_v^2} \sum_{i} (y_i - (\beta + \lambda)x_i)^2$$

The first-order conditions are
$$\begin{split} \frac{\partial \mathcal{L}}{\partial \beta} &= 0 = \frac{1}{\sigma_v^2} \sum (y_i - (\beta + \lambda) x_i) x_i \\ \frac{\partial \mathcal{L}}{\partial \lambda} &= 0 = \frac{1}{\sigma_v^2} \sum (y_i - (\beta + \lambda) x_i) x_i \\ \beta_{mle} &+ \lambda_{mle} = \frac{\sum y_i x_i}{\sum x_i^2} \end{split}$$

Copyright Dick Startz

OLS

$$y = \beta x + \varepsilon$$

$$\hat{\beta} = \frac{\sum yx}{\sum x^2} = \frac{\sum (\beta x + \varepsilon)x}{\sum x^2} = \beta + \frac{\sum \varepsilon x}{\sum x^2}$$

$$\operatorname{plim}(\hat{\beta}) = \beta + \frac{\operatorname{plim} \frac{1}{n} \sum \varepsilon x}{\operatorname{plim} \frac{1}{n} \sum x^2}$$

SALARYPCNTFEMALE

Agriculture	36,879	12.9
Architecture	30,337	31.6
Art	27,198	57.6
Business	30,753	27.1
Chemistry	33,069	16.2
Dentistry	44,214	15.7
Drama	24,865	58.5
Economics	32,179	14.8
Education	28,952	48.1

48,000 44,000 40,000 36,000 SALARY 32,000 28,000 24,000 20,000 100 20 80 **PCNTFEMALE**

Dependent Variable: SALARY Method: Least Squares
Date: 12/03/17 Time: 13:02 Sample: 1 28 Included observations: 28

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PCNTFEMALE	36701.86 -150.4170	1478.344 33.27774	24.82633 -4.520049	0.0000 0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Probl(F-statistic)	0.440027 0.418490 4043.758 4.25E+08 -271.2308 20.43084 0.000119	Mean deper S.D. depend Akaike info Schwarz cri Hannan-Qui Durbin-Wat	dent var criterion terion nn criter.	30981.71 5302.816 19.51649 19.61164 19.54558 2.717705

Copyright Dick Startz

 $y = X\beta + Z\Gamma + v$ $\hat{\beta} = (X'X)^{-1}X'y = (X'X)^{-1}X'[X\beta + Z\Gamma + v]$ $\hat{\beta} = \beta + (X'X)^{-1}X'Z\Gamma + [(X'X)^{-1}X'v]$ $\Lambda = (X'X)^{-1}X'Z$

Bias

$$\hat{\beta} = \beta + (X'X)^{-1}X'Z\Gamma$$

$$\lambda = \frac{\sum zx}{\sum x^2}$$

$$\hat{\beta} = \beta + \lambda\gamma$$

Copyright Dick Startz

8