- 24. The diagram at the right shows a regular polygon with 7 sides.
 - a. Explain why the numbered angles are all congruent. (*Hint*: You may assume that a circle can be circumscribed about any regular polygon.)
 - **b.** Will your reasoning apply to a regular polygon with any number of sides?

C 25. Given: Vertices A, B, and C of quadrilateral ABCD lie on $\odot O$; $m \angle A + m \angle C = 180$; $m \angle B + m \angle D = 180$.

Prove: D lies on $\bigcirc O$.

(*Hint*: Use an indirect proof. Assume temporarily that D is not on $\odot O$. You must then treat two cases: (1) D is inside $\odot O$, and (2) D is outside $\odot O$. In each case let X be the point where \overrightarrow{AD} intersects $\odot O$ and draw \overrightarrow{CX} . Show that what you can conclude about $\angle AXC$ contradicts the given information.)

26. Given: $\overline{PQ} \parallel \overline{SR}$ Prove: $\overline{PS} \parallel \overline{QR}$

27. Ptolemy's Theorem states that in an inscribed quadrilateral, the sum of the products of its opposite sides is equal to the product of its diagonals. This means that for ABCD shown,

$$AB \cdot CD + BC \cdot AD = AC \cdot BD$$
.

Prove the theorem by choosing point Q on \overline{AC} so that $\angle ADQ \cong \angle BDC$. Then show $\triangle ADQ \sim \triangle BDC$ and $\triangle ADB \sim \triangle QDC$. Use these similar triangles to show that

$$AQ = \frac{BC \cdot AD}{BD}$$
 and $QC = \frac{AB \cdot CD}{BD}$.

Add these two equations and complete the proof.

- **28.** Equilateral $\triangle ABC$ is inscribed in a circle. P is any point on \widehat{BC} . Prove PA = PB + PC. (*Hint*: Use Ptolemy's Theorem.)
- ★ 29. Angle C of $\triangle ABC$ is a right angle. The sides of the triangle have the lengths shown. The smallest circle (not shown) through C that is tangent to \overline{AB} intersects \overline{AC} at J and \overline{BC} at K. Express the distance JK in terms of a, b, and c.

