

Sensors and Data

Luigi Borzì

Overview

Sensors and Data Explore different devices

Explore different sensors in each device

Record video and signals

Visualize signals

Process data

Digital
microphone
SWF RF port
nRF21540 FEM
Buttons
nRF5340 SoC
External
Memory

Gyroscope Humidity, temperature, pressure, gas sensor **Low-power** accelerometer Magnetometer **Buzzer** nPM1100 PMIC NFC Battery connector Debug and current anntena measurement connector connector Programmin and **USB-C** connector debugging connector Extrenal boards

Accelerometer and

connector

Smartphone

Tiny sensor

Smartphone

Auto-correlation

Cross-correlation is a mathematical operation used to measure the similarity between two signals as a function of the relative displacement of one signal compared to the other. You can use auto-correlation to analyse a one-dimensional signal.

$$\sum_{n=-\infty}^{\infty} x[n] * x[n+\tau]$$

Auto-correlation

Cross-correlation/auto-correlation can be a fast, easy, and effective method for providing a first evaluation of signal patterns.

In gait analysis, gait regularity, symmetry, and pace can be assessed.

