FUNDAMENTOS DE ELECTRICIDAD Y ELECTRÓNICA Ejercicios del Tema III

Curso 2018-2019

- 1. Se tiene una fuente de alimentación de tensión de 5 V nominales y con una resistencia interna de 5 Ω . Se conecta a una resistencia de carga R_L y se mide la diferencia de potencial entre sus terminales. Calcula el valor que se mediría en los siguientes casos: $R_L = 5 \Omega$, $R_L = 50 \Omega$, $R_L = 5 k\Omega$ y con la fuente en circuito abierto. Discute en qué casos se comporta como una fuente ideal.
- **2.** Calcula la resistencia equivalente de la combinación de resistencias de cada figura. Datos: $R_1 = 10 \Omega$, $R_2 = 20 \Omega$, $R_3 = 30 \Omega$, $R_4 = 40 \Omega$, $R_5 = 50 \Omega$, $R_6 = 60 \Omega$.

3. En el circuito de las figura calcula las corrientes de cada rama y las tensiones V_A , V_B y V_C . (Se toma como referencia el punto D, tierra: $V_A = V_{AD}$, etc...).

4. Sean los circuitos de las figuras. Calcula en cada caso las corrientes en cada rama y las tensiones asociadas a los puntos A, B y C.

5. En los circuitos de las figuras 5a y 5b, calcula el circuito equivalente Thévenin entre los puntos A y B.

6. En los circuitos de las figuras calcula el circuito equivalente Thévenin conectado a R_L (circuito a) y al diodo (circuito b). Comprueba que el resultado es correcto dando un valor a R_L y sustituyendo el diodo por una resistencia de cualquier valor. Repite el circuito b) invirtiendo la polaridad de la fuente de corriente.

7. En el circuito de la figura, calcula la potencia absorbida o generada por cada elemento. Realiza el balance energético del circuito correspondiente a una hora.

- **8.** Indica el valor de la intensidad en la resistencia R_3 del circuito de la figura 8. Calcula la diferencia de potencial en los terminales del condensador C_2 .
- **9.** Calcula la corriente eficaz, la potencia media y el valor de pico de la potencia de un foco luminoso de 300 W.
- **10.** Un condensador de 20 μF se conecta a un generador de alterna sinusoidal que proporciona una caída de potencial de valor máximo 10 V. Halla la impedancia y la corriente máxima cuando la frecuencia es 60 Hz y cuando es 6 kHz.

- 11. Se tiene una fuente de alimentación de intensidad de 100 mA nominales y con una resistencia interna de 50 k Ω . Se conecta a una resistencia de carga R_L y se mide la intensidad que la atraviesa. Calcula el valor que se mediría en los siguientes casos: $R_L = 50 \Omega$, $R_L = 5 k\Omega$, $R_L = 50 k\Omega$ y con la fuente en cortocircuito. Discute en qué casos se comporta como una fuente ideal.
- 12. ¿Cómo calcularías la resistencia equivalente entre los terminales A y B del circuito la figura?

CIRCUITOS CON DIODOS. MODELO DE GRAN SEÑAL:

- **13.** En los circuitos de las figuras 13a y 13b determina I_1 , V_0 y V_{AB} en función de V_1 .
- **14.** En los circuitos de las figuras 14a y 14b determina I_1 , V_0 y V_{AB} en función de V_1 .

