Lecture 8: Functions of Random Variables

MATH 697

Omidali Jazi

September 27, 2018

McGill University

Goals for this Chapter

- Finding the Probability Distribution of Functions of Random Variables
- The Method of Distribution Functions
- Univariate Methods
 - The Transformation Method
- Multivariate Methods
 - The Method of Moment-Generating Function
- Data Generation Methods

Introduction

- To determine the probability distribution for a function of n random variables $Y_1, Y_2, ..., Y_n$, we must find the joint probability distribution for the random variables themselves. We generally assume that observations are obtained through random sampling.
- All quantities used to estimate population parameters or to make decisions about a population are functions of the n random observations that appear in a sample.
- Example: We draw a random sample of n samples $Y_1,Y_2,...,Y_n$ (n copies of Y) from the population and employ the sample mean $\bar{Y} = \frac{\sum\limits_{i=1}^n Y_i}{n}$.

The Method of Distribution Functions

If Y has probability density function f(y) and if U is some function of Y, then we can find $F_U(u) = P(U \le u)$ directly by integrating f(y) over the region for which $U \le u$. The probability density function for U is found by differentiating $F_U(u)$.

The Method of Distribution Functions

Let U be a function of the random variables $Y_1,Y_2,...,Y_n$.

- 1. Find the region U = u in the $(y_1, y_2, ..., y_n)$ space.
- 2. Find the region $U \leq u$.
- 3. Find $F_U(u)=P(U\leq u)$ by integrating $f(y_1,y_2,...,y_n)$ over the region $U\leq u.$
- 4. Find the density function $f_U(u)$ by differentiating $F_U(u)$. Thus, $f_U(u)=\frac{dF_U(u)}{du}$.

Example

A process for refining sugar yields up to 1 ton of pure sugar per day, but the actual amount produced, Y, is a random variable because of machine breakdowns and other slowdowns. Suppose that Y has density function given by f(y)=2y for $0 \le y \le 1$. The company is paid at the rate of 300\$ per ton for the refined sugar, but it also has a fixed overhead cost of 100\$ per day. Thus the daily profit, in hundreds of dollars, is U=3Y-1.

Solution

- Find the probability density function for *U*.
- Solution: Using the method of the distribution function:

$$F_U(u) = P(U \le u) = P(3Y - 1 \le u) = P(Y \le \frac{u+1}{3})$$
$$= \int_0^{(u+1)/3} 2y dy = \left(\frac{u+1}{3}\right)^2, \qquad -1 \le u \le 2$$

Therefore,
$$f_U(y) = \frac{dF_U(u)}{du} = \frac{2(y+1)}{9}$$
 for $-1 \le u \le 2$.

Transformation Method

If we are given the density function of a random variable Y, the method of transformations results in a general expression for the density of U=h(Y) for an increasing or decreasing function h(y). Then if Y_1 and Y_2 have a bivariate distribution, we can use the univariate result explained earlier to find the joint density of Y_1 and $U=h(Y_1,Y_2)$. By integrating over y_1 , we find the marginal probability density function of U which is our objective.

Univariate Transformation Method

• We previously discussed the problem of starting with a single random variable X, forming some function of X, such as X^2 or e^X , to obtain a new random variable Y=h(X)

Univerariate Transformation Method

Theorem 1

Let Y have probability density function $f_Y(y)$. If h(y) is either increasing or decreasing for all y such that $f_Y(y) > 0$, then U = h(Y) has density function

$$f_U(u) = f_Y[h^{-1}(u)] \left| \frac{dh^{-1}}{du} \right|$$

where
$$\frac{dh^{-1}}{du} = \frac{d[h^{-1}(u)]}{du}$$

Increasing Case

We see from the graph that the set of points y such that $h(y) \leq u_1$ is precisely the same as the set of points y such that $y \leq h^{-1}(u_1)$.

Decreasing Case

If h(y) is a decreasing function of y, then $h^{-1}(u)$ is a decreasing function of u. That is, if $u_1 < u_2$, then $h^{-1}(u_1) = y_1 > y_2 = h^{-1}(u_2)$. Also, as in the graph, the set of points y such that $h(y) \le u_1$ is the same as the set of points such that $y \ge h^{-1}(u_1)$.

Example

Let Y have the Beta distribution with parameters $(\alpha, 1)$.

- What is the distribution of $U = -\log(Y)$
- Solution: Because U is a decreasing function. By the transormation method, since $f_Y(y) = \alpha y^{\alpha-1}$ and $h^{-1}(u) = e^{-u}$ where $0 < u < \infty$, we have

$$f_U(u) = f_Y(h^{-1}(u)) \left| \frac{dh^{-1}}{du} \right| = \alpha e^{-u(\alpha - 1)} \times e^{-u}$$

= $\alpha e^{-\alpha u}$

That is, U is $Exp(\alpha^{-1})$

Example

- What is the distribution of $W = -2\alpha \log(Y)$
- Solution: Likewise, $h^{-1}(w) = e^{-w/2\alpha}$ and $0 < w < \infty$. Then

$$f_W(w) = f_Y(h^{-1}(w)) \left| \frac{dh^{-1}}{dw} \right| = \frac{1}{2}e^{-w/2}$$

That is, $W \sim Exp(2) = Gamma(1,2)$ or $W \sim \mathcal{X}^2_{(2)}$.

Multivariate Transformations

- Note that the transformation method can also be used in multivariate situations.
 - Consider a system having a component that can be replaced just once before the system itself expires.
 - X: lifetime of the original component
 - Y: lifetime of the replacement component
- Any of the following functions of X and Y may be of interest to an investigator:
 - The total lifetime X + Y
 - The ratio of lifetimes X/Y; e.g. if the ratio is 2 the original component lasted twice as long as its replacement
 - The ratio X/(X+Y); the proportion of system lifetime during which the original component operated $$^{15/33}$$

The Method of Moment-Generating Functions

The moment-generating function method for finding the probability distribution of a function of random variables $Y_1,Y_2,...,Y_n$ is based on the following uniqueness theorem.

Theorem 2

Let $m_X(t)$ and $m_Y(t)$ denote the moment-generating functions of random variables X and Y respectively. If both moment-generating functions exist and $m_X(t) = m_Y(t)$ for all values of t, then X and Y have the same probability distribution.

Example

- Suppose that Y is a normally distributed random variable with mean μ and variance σ^2 . Show that $Z = \frac{Y \mu}{\sigma}$ has a standard normal distribution, a normal distribution with mean 0 and variance 1.
- Solution: Note that $m_Y(t) = e^{\mu t + \sigma^2 t^2/2}$. Hence

$$m_Z(t) = E(e^{tZ}) = E\left[e^{t\left(\frac{Y-\mu}{\sigma}\right)}\right] = e^{t^2/2}$$

That is, $Z \sim N(0,1)$

Useful Application

The method of moment-generating functions is often very useful for finding the distributions of sums of independent random variables.

Theorem 3

Let $Y_1,Y_2,...,Y_n$ be independent random variables with moment-generating functions $m_{Y_1}(t),m_{Y_2}(t),...,m_{Y_n}(t)$ respectively. If $U=Y_1+...+Y_n$, then

$$m_U(t) = m_{Y_1}(t) \times \times m_{Y_n}(t)$$

Example

- The number of customer arrivals at a checkout counter in a given interval of time possesses approximately a Poisson probability distribution. If Y_1 denotes the time until the first arrival, and Y_i denotes the time between the (i-1)th and ith arrival for i=2,..,n. Then it can be shown that $Y_1,Y_2,...,Y_n$ are independent Exponential random variables with the pdf $f_Y(y)=\frac{e^{-y/\theta}}{\theta}$ for y>0.
- Find the probability density function for the waiting time from the opening of the counter until the nth customer arrives. (If $Y_1, Y_2, ... Y_n$ denote successive interarrival times, we want the density function of $U = Y_1 + Y_2 + \cdots + Y_n$.)

Remark

The method of moment-generating functions can be used to establish some useful results about the distributions of functions of normally distributed random variables.

Theorem 4

Let $Y_1,Y_2,...,Y_n$ be independent normally distributed random variables with $E(Y_i)=\mu_i$ and $V(Y_i)=\sigma_i^2$, for i=1,2,...,n, and let $a_1,a_2,...,a_n$ be constants. If

$$U = \sum_{i=1}^{n} a_i Y_i = a_1 Y_1 + \dots + a_n Y_n$$

Then U is a normally distrinuted random variable with

$$E(U) = \sum\limits_{i=1}^n a_i \mu_i \text{ and } V(U) = \sum\limits_{i=1}^n a_i^2 \sigma_i^2$$

Example

- Let $Y_1,...,Y_n$ be normal random variables with mean μ_i and variance σ_i^2 respectively.
- Find the distribution of $\sum\limits_{i=1}^n Z_i^2$ where $Z_i=\frac{Y_i-\mu_i}{\sigma_i}$, that is standard normal random variables.

Generate Discrete Random Variables

- R can be used for generateing random variables from the Uniform distribution.
- Bernoulli: Simulate tossing a coin with probability of heads p.
- Let U be a Uniform(0,1) random variable. We can write Bernoulli random variable X as: X=1 if $U \leq p$ and X=0 if U>p.

R code

• Generate 5 samples from Bernoulli distribution with p=0.5 (Toss a balanced coin 5 times).

```
p = 0.5;
U = runif(5,min = 0,max = 1);
X = ifelse(U <= p,1,0);
X
## [1] 1 1 0 0 1
```

Generate a Binomial(50, 0.25) random variable.

```
N=1000;p = 0.25;n = 10;X<-c(); for(i in 1:N){U = runif(n,min = 0,max = 1);
X = c(X,sum(U < p))}; # print(mean(X));
hist(X,freq=FALSE, xlab = "x",ylab = "Relative Frequency",main="",col="red")</pre>
```


Exercise

Write R programs to generate Geometric(p) and Negative Binomial (r,p) random variables. Produce the histograms of the generated data.

- Hint 1: If Y has $Exp(\beta)$ distribution, then [Y] (the greatest integer value smaller than Y) has geometric distribution.
- Hint 2: If $Y_1,...,Y_r$ independent random variables from the Ge(p), then $\sum\limits_{i=1}^r Y_i$ has the NB(r,p).

Distribution-Inverse Transformation Method

Theorem 5

Let U have the Uniform distribution in (0, 1) and F be a CDF which is strictly increasing. Also, consider a random variable X defined as $X = F^{-1}(U)$. Then X has distribution of F.

Example: Generate $Exp(\beta = 3)$

```
N=1000;beta =3;n = 10;X<-c();
U = runif(N,min = 0,max = 1); X = -beta*log(1-U)
hist(X, xlab = "x",ylab ="density",main="",col="red")</pre>
```


Exercise

Generate random data from $Gamma(\alpha=5,\beta=3)$ and $\mathcal{X}^2_{r=6}$. Produce the histograms of the generated data.

- Hint: Generate samples from the $Exp(\beta)$ using an appropriate tranformation on U(0,1). Now, if $Y_1,...,Y_k$ are independent random variables from $Exp(\beta)$, then $\sum_{i=1}^k Y_i \text{ has } Gamma(k,\beta). \text{ Further, given } \beta=2, \sum_{i=1}^k Y_i \text{ has } \mathcal{X}^2_{2k} \text{ (only when the degrees of freedom is an even number)}.$
- Note: For Chi-square distribution with any arbitrary degrees of freedom, use $\sum\limits_{i=1}^n Z_i^2 \sim \mathcal{X}_n^2$ where $Z_i \sim N(0,1)$

Poisson Distribution

- Use the algorithm for generating discrete random variables to obtain a Poisson random variable with parameter $\lambda=2$.
- Assume N represents the number of events (arrivals) in [0,t]. If the interarrival times are distributed exponentially (with parameter λ) and independently, then the number of arrivals occurred in [0,t], N, has Poisson distribution with parameter λt . Therefore, to solve this problem, we can repeat generating $Exp(\lambda)$ random variables while their sum is not larger than 1 (t=1).

R code

```
Lambda = 2;
i = 0;
U = runif(1,min = 0,max = 1); Y =-(1/Lambda)*log(U);
sum = Y;
while(sum < 1)
{U = runif(1,min = 0,max = 1); Y =-(1/Lambda)*log(U);
sum = sum + Y;
i = i + 1; }
X=i
X</pre>
## [1] 3
```

Generate Normal Samples from Uniform Distribution (Box-Muller transformation)

Theorem 6

We can generate a pair of independent normal variables (Z_1,Z_2) by transforming a pair of independent U(0,1) random variables (U_1,U_2) , as $Z_1=\sqrt{-2\log U_1}\cos(2\pi U_2)$ and $Z_2=\sqrt{-2\log U_1}\sin(2\pi U_2)$.

R code: Generate 5000 pairs of normal RVs

```
n = 5000;U1 = runif(n,min = 0,max = 1);U2=runif(n,min = 0,max = 1);
Z1 = sqrt(-2 * log(U1)) * cos(2 * pi * U2);
Z2=sqrt(-2 * log(U1))*sin(2 * pi * U2);hist(Z1,col = "wheat", label = T)
```

Histogram of Z1

What We Have Just Learned

- Finding the Probability Distribution of Functions of Random Variables
- The Method of Distribution Functions
- Univariate Methods
 - The Transformation Method
- Multivariate Methods
 - The Method of Moment-Generating Function
- Data Generation Methods