TheGI4 HA1

David Konopek(349333) , Paul Walger(349968) , Lukas Klammt(332263)

19. Mai 2014

Aufgabe 1 a)

```
Sei f_1 die Umbennung
 [betritt/betreten, zuh\"{o}rt/aktiv, guteHA/erstellen, verl\"{a}sst/verlassen]
und f_2 die Umbennung
[betritt/betreten, redet/aktiv, schlechteHA/erstellen, verl\"{a}sst/verlassen]
SG \stackrel{\text{def}}{=} \overline{betreten}.aktiv.SG1
SG1 \stackrel{\text{def}}{=} \overline{erstellen}.SG2
SG2 \stackrel{\text{def}}{=} \overline{verlassen}.SG
TG \stackrel{\text{def}}{=} SG[f_1]
HG \stackrel{\text{def}}{=} SG[f_2]
T \stackrel{\text{def}}{=} \overline{betreten}.T1
T1 \stackrel{\text{def}}{=} \overline{verlassen}.T
R \stackrel{\text{def}}{=} TR + HR
TR \stackrel{\text{def}}{=} betreten.betritt.\overline{zuh\"{o}rt}.TR1
TR1 \stackrel{\text{def}}{=} verl \ddot{a}sst. verlassen. R
HR \stackrel{\text{def}}{=} betritt.\overline{redet}.HR1
HR1 \stackrel{\text{def}}{=} verl \ddot{a}sst.R
U \stackrel{\mathrm{def}}{=} (R \mid T \mid TG \mid HG) \backslash \{ \ betritt, \ zuh \ddot{o}rt, \ verl \ddot{a}sst, \ redet, \ betreten, \ verlassen \ \}
```

Anmerkung:

SG steht für Studentengruppe, TG für Tutoriumsgruppe, HG für Hausaufgabengruppe, T für Tutor, R für Raum, TR für Tutoriumsraum, HR für Hausaufgabenraum und U für Universität.

Aufgabe 1 b)

Sei $\mathcal{X} = \{betritt, zuh\"{o}rt, verl\"{a}sst, redet, betreten, verlassen\}$

- $P_1 = (R|T|TG|HG) \setminus \mathcal{X}$
- $P_2 = (TR1|T1|SG1[f_1]|HG) \setminus \mathcal{X}$

- $P_3 = (TR1|T1|SG2[f_1]|HG) \setminus \mathcal{X}$
- $P_4 = (HR1|T|TG|HG[f_2]) \setminus \mathcal{X}$ $P_5 = (HR1|T|TG|HG[f_2]) \setminus \mathcal{X}$

Nun ist

$$\begin{split} LTS_U &= (Proc, Act, \{ \overset{a}{\rightarrow} | a \in Act \}) \\ \text{Proc} &= \{ P_1, P_2, P_3, P_4, P_5 \} \\ \mathcal{A} &= \{ schlechteHA, guteHA \} \\ \text{Act} &= \{ \tau \} \cup \mathcal{A} \cup \overline{\mathcal{A}} \\ \overset{\tau}{\rightarrow} &= \{ (P_1, P_2), (P_1, P_4), (P_3, P_1), (P_5, P_1) \} \\ \overset{schlechteHA}{\rightarrow} &= \emptyset \\ \hline \overset{schlechteHA}{\rightarrow} &= \{ (P_4, P_5) \} \\ \overset{guteHA}{\rightarrow} &= \emptyset \\ \hline \overset{guteHA}{\rightarrow} &= \{ (P_2, P_3) \} \end{split}$$

Aufgabe 2 a)

$$\begin{split} LTS &= (Proc, Act, \{ \stackrel{a}{\to} | a \in Act \}) \\ Proc &= \{T, T_i | 1 \le i \le 8 \} \\ Act &= A \cup \overline{A} \cup \{\tau \} \\ A &= \{a, b\} \\ \stackrel{a}{\to} &= \{(T, T_1), (T, T_5), (T_4, T_6) \} \\ \stackrel{\overline{a}}{\to} &= \{(T, T_4), (T_5, T_6), (T_7, T_8) \} \\ \stackrel{b}{\to} &= \{(T, T_4), (T_1, T_2), (T_3, T_8), (T_5, T_6), (T_7, T_8) \} \\ \stackrel{\overline{b}}{\to} &= \{(T, T_3), (T_2, T_8), (T_5, T_7), (T_6, T_8) \} \\ \stackrel{\tau}{\to} &= \{(T, T_6), (T_1, T_8), (T_5, T_8) \} \end{split}$$

Aufgabe 2 b)

$$T\stackrel{\mathrm{def}}{=}a.b.\overline{b}.T_8+a.\tau.T_8+a.\overline{b}.b.T_8+\overline{a}.a.\overline{b}.T_8+b.a.\overline{b}.T_8+\tau.\overline{b}.T_8+a.\overline{a}.\overline{b}.T_8+a.b.\overline{b}.T_8+a.\overline{b}.\overline{a}.T_8+a.\overline{b}.b.T_8$$

Aufgabe 2 c)

$$T_{min} \stackrel{\mathrm{def}}{=} \left((\overline{a}.T_8 + b.T_8) \mid a.\overline{b}.T_8 \right) + a.(b.T_8|\overline{b}.T_8)$$

Aufgabe 3 a)

 $M\ddot{o}glicheAktionen := \{\overline{a}\}\$ Beweis:

$$\operatorname{RES} \frac{(B \mid \overline{b}.A) \xrightarrow{\overline{b}} A}{(B \mid \overline{b}.A) \xrightarrow{\overline{b}} (B \mid A)} \overline{b} \not\in \{a\}$$

$$\operatorname{REL} \frac{(B \mid \overline{b}.A) \setminus \{a\} \xrightarrow{\overline{b}} (B \mid A) \setminus \{a\}}{((B \mid \overline{b}.A) \setminus \{a\}) [a/b] \xrightarrow{\overline{a}} ((B \mid A) \setminus \{a\}) [a/b]}$$

Aufgabe 3 b)

Es sind keine Aktionen möglich.

Aufgabe 3 c)

Mögliche Aktionen sind $\{\tau\}$

Beweis:
$$\begin{array}{c} & ACT \xrightarrow{ACT \xrightarrow{a.A \xrightarrow{a} A}} & B \stackrel{\text{def}}{=} a.A & \overline{(\overline{b}.A) \xrightarrow{\overline{b}} A} \\ & & \overline{(\overline{b}.A)[a/b] \xrightarrow{\overline{a}} A[a/b]} \\ & & \overline{(B|(\overline{b}.A)[a/b])} \xrightarrow{\tau} (A|A[a/b]) \\ \hline (B|(\overline{b}.A)[a/b]) \setminus \{a\} \xrightarrow{\tau} (A|A[a/b]) \setminus \{a\} \end{array}$$
 where $\tau \notin \{a\}$

Aufgabe 4 a)

Zu zeigen ist $P \mid Q \sim Q \mid P$ Sei $\mathcal{B} = Id_{\mathsf{Proc}} \cup \{(A \mid B, B \mid A) | A, B \in \mathsf{Proc}\}$

Betrachte $Id_{\mathsf{Proc}} \subseteq B.$ Dann ist Id_{Proc} nach Definition eine Bisimulation

Sei
$$(P \mid Q, Q \mid P) \in B$$

Transitionen in $P \mid Q$

1. Fall
 COM1

$$COM1 \xrightarrow{P \xrightarrow{a} P'} P \mid Q \xrightarrow{a} P' \mid Q$$

In $Q \mid P$ gibt es den Übergang.

$$COM2 \xrightarrow{P \xrightarrow{a} P'} Q \mid P \xrightarrow{a} Q \mid P'$$

und $(P' \mid Q, Q \mid P') \in \mathcal{B}$.

2.Fall COM2

$$COM2 \xrightarrow{Q \xrightarrow{a} Q'} P \mid Q \xrightarrow{a} P \mid Q'$$

In $Q \mid P$ gibt es den Übergang.

$$COM1 \xrightarrow{Q \xrightarrow{a} Q'} Q \mid P \xrightarrow{a} Q \mid P'$$

und $(P \mid Q', Q' \mid P) \in \mathcal{B}$.

3. Fall
 COM3

$$COM2 \xrightarrow{Q \xrightarrow{a} Q' P \xrightarrow{a} P'} P \mid Q \xrightarrow{\tau} P' \mid Q'$$

In $Q \mid P$ gibt es den Übergang.

$$COM1 \xrightarrow{Q \xrightarrow{a} Q' P \xrightarrow{a} P'} Q \mid P \xrightarrow{a} Q' \mid P'$$

und $(P' \mid Q', Q' \mid P') \in \mathcal{B}$.

Transitionen in $Q \mid P$

1.Fall COM1

$$COM1 - \frac{Q \xrightarrow{a} Q'}{Q \mid P \xrightarrow{a} Q' \mid P}$$

In $P \mid Q$ gibt es den Übergang.

$$COM2 \xrightarrow{Q \xrightarrow{a} Q'} P \mid Q \xrightarrow{a} P \mid Q'$$

und $(Q' \mid P, P \mid Q') \in \mathcal{B}$.

2.Fall COM2

$$COM2 \xrightarrow{P \xrightarrow{a} P'} Q \mid P \xrightarrow{a} Q \mid P'$$

In $P \mid Q$ gibt es den Übergang.

$$COM1 \xrightarrow{P \xrightarrow{a} P'} P \mid Q \xrightarrow{a} P' \mid Q$$

Nach Definition von $\mathcal B$ gilt, dass $(Q\mid P',P'\mid Q)\in\mathcal B.$ 3.Fall COM3

$$COM3 \frac{Q \xrightarrow{a} Q' P \xrightarrow{a} P'}{Q \mid P \xrightarrow{a} Q' \mid P'}$$

In $P \mid Q$ gibt es den Übergang.

$$COM3 \xrightarrow{Q \xrightarrow{a} Q' P \xrightarrow{a} P'} P \mid Q \xrightarrow{\tau} P' \mid Q'$$

und $(P' \mid Q', Q' \mid P') \in \mathcal{B}$.

Daraus folgt dass \mathcal{B} eine Bisimulation ist und somit $P|Q \sim Q|P$.

Aufgabe 4 b)

 $(a.\mathbf{0} \mid \overline{a}.P) \setminus \{ a \} \sim \tau.P \text{ gilt nicht.}$

Angenommen $(a.0 \mid \overline{a}.P) \setminus \{a\} \sim \tau.P$

Dann gibt es eine starke Bisimulation \mathcal{R} Dann muss $((a.\mathbf{0} \mid \overline{a}.P) \setminus \{a\}, \tau.P) \in \mathcal{R}$ Dann aber auch $((\mathbf{0} \mid P) \setminus \{a\}, P) \in \mathcal{R}$.

Sei nun $P \stackrel{\text{def}}{=} a.\mathbf{0}$

Nun aber ist $((\mathbf{0} \mid a.\mathbf{0}) \setminus \{a\}, a.\mathbf{0}) \notin \mathcal{R}$ da da a von der sichtbaren Ausführung ausgeschlossen ist.

Unter der der Bedingung, dass weder die Aktion a, noch ihre co-Aktion \overline{a} in P enthalten ist, gilt diese Bisimulation.

TheGI4 Hausaufgabenblatt 3

Aufgabe 5

Aufgabe 5 a)

```
R = \{(q_1, p_3), (q_2, p_4), (q_3, p_5), (q_4, p_1), (q_7, p_2), (q_6, p_{11}), (q_5, p_{10}), (q_{12}, p_6), (q_{13}, p_7), (q_{11}, p_9), (q_{10}, p_8), (q_9, p_9), (q_8, p_8)\} R ist eine starke Simulation und (q_1, p_3) \in R. Also wird q_1 von p_3 stark simulaiert.
```

Aufgabe 5 b)

```
S = \{(p_3,q_1),(p_4,q_2),(p_5,q_3),(p_1,q_4),(p_2,q_7),(p_{11},q_6),(p_{10},q_5),\\ (p_6,q_{12}),(p_7,q_{13}),(p_9,q_{11}),(p_8,q_{10}),(p_8,q_8),(p_9,q_9)\} S ist eine starke Simulation und (p_3,q_1) \in S. Also wird p_3 von q_1 stark simuliert.
```

Aufgabe 5 c)

Aus a) folgt, dass q_1 von p_3 stark simuliert wird und aus b) folgt, dass p_3 von q_1 stark simuliert wird. Also simulieren sich q_1 und p_3 gegenseitig stark.

Aufgabe 5 d)

R aus a) ist eine starke Bisimulation und $(q_1, p_3) \in R$. Also sind q_1 und p_3 stark bisimilar.

Aufgabe 5 e)

Transitionen in p_7 :

 q_{12} und p_6 sind stark bisimilar. Sei $B = \{ (p_6, q_{12}), (p_7, q_{13}), (p_9, q_{11}), (p_8, q_{10}), (p_9, q_9), (p_8, q_8) \}$ Es bleibt zu zeigen, dass B eine starke Bisimulation ist.

```
Betrachte (p_6,q_{12})\in B
Transitionen in p_6:
-Wenn p_6\stackrel{a}{\to}p_7, dann q_{12}\stackrel{a}{\to}q_{13} und (p_7,q_{13})\in B.
-Wenn p_6\stackrel{c}{\to}p_9, dann q_{12}\stackrel{c}{\to}q_{11} und (p_9,q_{11})\in B.
Transitionen in q_{12}:
-Wenn q_{12}\stackrel{a}{\to}q_{13}, dann p_6\stackrel{a}{\to}p_7 und (p_7,q_{13})\in B.
-Wenn q_{12}\stackrel{c}{\to}q_{11}, dann p_6\stackrel{c}{\to}p_9 und (p_9,q_{11})\in B.
Betrachte (p_7,q_{13})\in B
```

```
-Wenn p_7 \stackrel{c}{\rightarrow} p_6, dann q_{13} \stackrel{c}{\rightarrow} q_{12} und (p_6, q_{12}) \in B.
Transitionen in q_{13}:
```

-Wenn $q_{13} \stackrel{c}{\rightarrow} q_{12}$, dann $p_7 \stackrel{c}{\rightarrow} p_6$ und $(p_6, q_{12}) \in B$.

Betrachte $(p_9, q_{11}) \in B$

Transitionen in p_9 :

-Wenn $p_9 \xrightarrow{b} p_8$, dann $q_{11} \xrightarrow{b} q_{10}$ und $(p_8, q_{10}) \in B$. Transitionen in q_{13} :

-Wenn $q_{11} \xrightarrow{b} q_{10}$, dann $p_9 \xrightarrow{b} p_8$ und $(p_8, q_{10}) \in B$.

Betrachte $(p_8, q_{10}) \in B$

Transitionen in p_8 :

-Wenn $p_8 \stackrel{b}{\to} p_9$, dann $q_{10} \stackrel{b}{\to} q_{11}$ und $(p_9, q_9) \in B$. Transitionen in q_{10} :

-Wenn $q_{10} \stackrel{b}{\rightarrow} q_9$, dann $p_8 \stackrel{b}{\rightarrow} p_9$ und $(p_9, q_9) \in B$.

Betrachte $(p_9, q_9) \in B$

Transitionen in p_9 :

-Wenn $p_9 \stackrel{b}{\to} p_8$, dann $q_9 \stackrel{b}{\to} q_8$ und $(p_8, q_8) \in B$. Transitionen in q_9 :

-Wenn $q_9 \stackrel{b}{\rightarrow} q_8$, dann $p_9 \stackrel{b}{\rightarrow} p_8$ und $(p_8, q_8) \in B$.

Betrachte $(p_8, q_8) \in B$

Transitionen in p_8 :

-Wenn $p_8 \stackrel{b}{\rightarrow} p_9$, dann $q_8 \stackrel{b}{\rightarrow} q_{11}$ und $(p_9,q_{11}) \in B$.

Transitionen in q_{18} :

-Wenn $q_8 \stackrel{b}{\rightarrow} q_{11}$, dann $p_8 \stackrel{b}{\rightarrow} p_9$ und $(p_9, q_{11}) \in B$.

Da B eine Starke Bisimulation ist und $(p_6, q_{12}) \in B$, sind p_6 und q_{12} stark bisimilar.

Aufgabe 6 a)

Ja.

$$R = \{ (q_1, p_1), (q_2, p_3), (q_3, p_4), (q_4, p_5) \}$$

Betrachte $(q_1, p_1) \in R$

Transitionen in q_1 :
-Wenn $q_1 \stackrel{a}{\to} q_2$, dann $p_1 \stackrel{a}{\to} p_3$ und $(q_2, p_3) \in R$.

Betrachte $(q_2, p_3) \in R$

Transitionen in q_2 :

-Wenn $q_2 \stackrel{b}{\rightarrow} q_4$, dann $p_3 \stackrel{b}{\rightarrow} p_5$ und $(q_4, p_5) \in R$. -Wenn $q_2 \stackrel{c}{\rightarrow} q_3$, dann $p_3 \stackrel{c}{\rightarrow} p_4$ und $(q_3, p_4) \in R$.

Betrachte $(q_3, p_4) \in R$

Transitionen in q_3 :

-Wenn $q_3 \stackrel{a}{\rightarrow} q_1$, dann $p_4 \stackrel{a}{\rightarrow} p_1$ und $(q_1, p_1) \in R$.

Betrachte $(q_4, p_5) \in R$

Keine Transitionen in q_4 möglich.

Da R eine starke Simulation ist und $(q_1,p_1) \in R$, wird q_1 von p_1 stark simuliert.

Aufgabe 6 b)

Ja.

$$S = \{ (p_1, q_1), (p_2, q_2), (p_3, q_2), (p_5, q_3), (p_5, q_4), (p_4, q_3) \}$$

Betrachte $(p_1, q_1) \in S$

Transitionen in p_1 :

-Wenn $p_1 \stackrel{a}{\to} p_2$, dann $q_1 \stackrel{a}{\to} q_2$ und $(p_2, q_2) \in S$.

-Wenn $p_1 \stackrel{a}{\to} p_3$, dann $q_1 \stackrel{a}{\to} q_2$ und $(p_3, q_2) \in S$.

Betrachte $(p_2, q_2) \in S$

Transitionen in p_2 :

-Wenn $p_2 \stackrel{c}{\rightarrow} p_5$, dann $q_2 \stackrel{c}{\rightarrow} q_3$ und $(p_5, q_3) \in S$.

Betrachte $(p_3, q_2) \in S$

Transitionen in p_3 :

-Wenn $p_3 \stackrel{b}{\to} p_5$, dann $q_2 \stackrel{b}{\to} q_4$ und $(p_5, q_4) \in S$.

-Wenn $p_3 \stackrel{c}{\to} p_4$, dann $q_2 \stackrel{c}{\to} q_3$ und $(p_4, q_3) \in S$.

Betrachte $(p_5, q_3) \in S$ Keine Transitionen in p_5 möglich.

Betrachte $(p_5, q_4) \in S$ Keine Transitionen in p_5 möglich.

Betrachte $(p_4,q_3)\in S$ Transitionen in p_4 : -Wenn $p_2\stackrel{c}{\to} p_5$, dann $q_2\stackrel{c}{\to} q_3$ und $(p_5,q_3)\in S$.

Da S eine starke Simulation ist und $(p_1, q_1) \in S$, wird p_1 von q_1 stark simuliert.

Aufgabe 6 c)

Aus a) folgt, dass q_1 von p_1 stark simuliert wird und aus b) folgt, dass p_1 von q_1 stark simuliert wird. Also simulieren sich q_1 und p_1 gegenseitig stark.

Aufgabe 6 d)

Nein.

Angenommen p_1 und q_1 sind stark bisimilar, dann existiert eine Bisimulation B mit $(p_1,q_1) \in B$. Mit $p_1 \stackrel{a}{\to} p_2$ muss dann auch gelten, dass $(p_2,q_2) \in B$, da $q_1 \stackrel{a}{\to} q_2$ die einzige mögliche Transition in q_1 ist. Da nun aber gilt, dass $q_2 \stackrel{b}{\to}$, aber $p_2 \stackrel{b}{\to}$, kann diese Bisimulation nicht existieren. Somit sind p_1 und q_1 nicht stark bisimilar.

Aufgabe 7 a)

Ja. Sei $B = \{ (p, q), (p_1, q_1), (p_2, q_2), (p_4, q_4), (p_5, q_5), (p_2, q_3), (p_3, q_5), (p_1, q_5) \}$

- Betrachte $(p,q) \in B$
 - Transitionen in p:
 Wenn $p \xrightarrow{b} p_1$, dann $q \xrightarrow{b} q_1$ und $(p_1, q_1) \in B$.
 Wenn $p \xrightarrow{c} p_2$, dann $q \xrightarrow{c} q_2$ und $(p_2, q_2) \in B$.
 - Transitionen in q:
 Wenn $q \xrightarrow{b} q_1$, dann $p \xrightarrow{b} p_1$ und $(p_1, q_1) \in B$.
 Wenn $q \xrightarrow{c} q_2$, dann $p \xrightarrow{c} p_2$ und $(p_2, q_2) \in B$.
- Betrachte $(p_1, q_1) \in B$
 - Transitionen in p_1 : Wenn $p_1 \stackrel{a}{\to} p_4$, dann $q_1 \stackrel{a}{\to} q_4$ und $(p_4, q_4) \in B$.
 - Transitionen in q_1 : Wenn $q_1 \stackrel{a}{\rightarrow} q_2$, dann $p_1 \stackrel{a}{\Rightarrow} p_2$ und $(p_2, q_2) \in B$. Wenn $q_1 \stackrel{a}{\rightarrow} q_4$, dann $p_1 \stackrel{a}{\rightarrow} p_4$ und $(p_4, q_4) \in B$.
- Betrachte $(p_2, q_2) \in B$
 - Transitionen in p_2 : Wenn $p_2 \xrightarrow{c} p_1$, dann $q_2 \xrightarrow{c} q_1$ und $(p_1, q_1) \in B$. Wenn $p_2 \xrightarrow{b} p_5$, dann $q_2 \xrightarrow{b} q_5$ und $(p_5, q_5) \in B$.
 - Transitionen in q_2 : Wenn $q_1 \xrightarrow{\tau} q_3$, dann $p_2 \xrightarrow{\tau} p_2$ und $(p_2, q_3) \in B$.
- Betrachte $(p_4, q_4) \in B$
 - Transitionen in p_4 : Wenn $p_4 \xrightarrow{\tau} p_2$, dann $q_4 \xrightarrow{\tau} q_3$ und $(p_2, q_3) \in B$. Wenn $p_4 \xrightarrow{d} p_3$, dann $q_4 \xrightarrow{d} q_5$ und $(p_3, q_5) \in B$.
 - Transitionen in q_4 : Wenn $q_4 \stackrel{\tau}{\to} q_3$, dann $p_4 \stackrel{\tau}{\to} p_2$ und $(p_2, q_3) \in B$. Wenn $q_4 \stackrel{d}{\to} q_5$, dann $p_4 \stackrel{d}{\to} p_3$ und $(p_3, q_5) \in B$.
- Betrachte $(p_5, q_5) \in B$
 - Transitionen in p_5 : Wenn $p_5 \stackrel{a}{\to} p_4$, dann $q_5 \stackrel{a}{\to} q_4$ und $(p_4, q_4) \in B$.

- Transitionen in q_5 : Wenn $q_5 \stackrel{a}{\rightarrow} q_4$, dann $p_5 \stackrel{a}{\rightarrow} p_4$ und $(p_4, q_4) \in B$. Wenn $q_5 \stackrel{a}{\rightarrow} q_2$, dann $p_5 \stackrel{a}{\Rightarrow} p_2$ und $(p_2, q_2) \in B$.
- Betrachte $(p_2, q_3) \in B$
 - Transitionen in p_2 : Wenn $p_2 \xrightarrow{c} p_1$, dann $q_3 \xrightarrow{c} q_1$ und $(p_1, q_1) \in B$. Wenn $p_2 \xrightarrow{b} p_5$, dann $q_3 \xrightarrow{b} q_5$ und $(p_5, q_5) \in B$.
 - Transitionen in q_3 : Wenn $q_3 \xrightarrow{c} q_1$, dann $p_2 \xrightarrow{c} p_1$ und $(p_1, q_1) \in B$. Wenn $q_3 \xrightarrow{b} q_5$, dann $p_2 \xrightarrow{b} p_5$ und $(p_5, q_5) \in B$.
- Betrachte $(p_3, q_5) \in B$
 - Transitionen in p_3 : Wenn $p_3 \stackrel{\tau}{\to} p_1$, dann $q_5 \stackrel{\tau}{\Rightarrow} q_5$ und $(p_1, q_5) \in B$.
 - Transitionen in q_5 : Wenn $q_5 \stackrel{a}{\rightarrow} q_2$, dann $p_2 \stackrel{a}{\Rightarrow} p_2$ und $(p_2, q_2) \in B$. Wenn $q_5 \stackrel{a}{\rightarrow} q_4$, dann $p_2 \stackrel{a}{\Rightarrow} p_4$ und $(p_4, q_4) \in B$.
- Betrachte $(p_1, q_5) \in B$
 - Transitionen in p_1 : Wenn $p_1 \stackrel{a}{\to} p_4$, dann $q_5 \stackrel{a}{\Rightarrow} q_4$ und $(p_4, q_4) \in B$.
 - Transitionen in q_5 : Wenn $q_5 \stackrel{a}{\rightarrow} q_2$, dann $p_1 \stackrel{a}{\Rightarrow} p_2$ und $(p_2, q_2) \in B$. Wenn $q_5 \stackrel{a}{\rightarrow} q_4$, dann $p_1 \stackrel{a}{\rightarrow} p_4$ und $(p_4, q_4) \in B$.

Da Beine schwache Bisimulation ist und $(p,q) \in B,$ sind p
 und q schwach bisimilar.

Aufgabe 7 b)

Nein

Angenommen q und r sind schwach bisimilar. Dann gibt es eine schwache Bisimulation R und $(q,r) \in R$. Wegen $q \stackrel{b}{\to} q_1$ und $r \stackrel{b}{\Rightarrow} r_3$ muss $(q_1,r_3) \in R$. Wegen $q_1 \stackrel{a}{\to} q_4$ und $r_3 \stackrel{a}{\to} r_4$ muss $(q_4,r_4) \in R$. Aus $q_4 \stackrel{d}{\to}$ und $r_4 \not\stackrel{d}{\Rightarrow}$ folgt, dass $(q_4,r_4) \notin R$. Also können q und r nicht schwach bisimilar sein.

Aufgabe 7 c)

Nein.

Wegen $p \approx q$ aus a) und $q \not\approx r$ aus b) muss $p \not\approx r$, da die schwache Bisimulation eine Äquivalenzrelation ist und somit auch transitiv ist.

