### 计算机组成原理





# 第二章 数据表示与运算 习题与解答



- □ 6.1 将十进制数127.125和25/32转换成二进制数,然后再 转换成八进制和十六进制数。
- □解: 此题可采用简便方法转换如下:

$$=(001, 111, 111.001)_2 = (177.1)_8$$

以小数点为起点,向左、向右三位一组分组,然后 用八进制缩写。

$$=(0111, 1111.0010)_2 = (7F.2)_{16}$$

以小数点为起点,向左、向右四位一组分组,小数 末位补零凑足四位,然后用十六进制缩写。





□ 评注:数制转换的基本方法已在前导课程《数字逻辑》中进行过充分讨论,在《组成》中要求熟练应用,因此,方法上就应更灵活、简便、快速,技巧性更高,更具变通性。这类方法基本建立在数的按权展开多项式的基础上。



- □ 6.2 把下列各数转换为十进制数。
  - (1)  $(101.100\ 11)_2$ ; (2)  $(1\ 101\ 000\ 110.101\ 01)_2$
  - (3)  $(1702.32)_8$ ; (4)  $(247.63)_8$
  - (5)  $(F5B.48)_{16}$ ; (6)  $(AD.4)_{16}$

#### □解:

- (1) 5.59375; (2) 838.65625
- (3) 962.40625; (4) 167.796875
- (5) **3931.28125**; (6) **173.25**



 $\square$  6.3 设某十进制数S, 在八进制中写成  $\sum_{i=0}^{m} = L_i \times 8^i$  ,

在二进制中写成  $S = \sum_{j=0}^{n} K_{j} \times 2^{j}$ 。 若令: n = 3m + 2,

**试证:** 
$$(L_0)_8 = (K_2 K_1 K_0)_2$$
  
 $(L_1)_8 = (K_5 K_4 K_3)_2$   
 $(L_m)_8 = (K_n K_{n-1} K_{n-2})_2$ 

□ 评注:此题从理论上推导了二、八进制间的转换关系,用同样方法可推导二、十六进制间的转换关系。



□ 证: 思路: 先将(S)₂按权展开, 然后整理成位权为8的形式, 既得(S)8。

$$(S)_2 = K_n \times 2^n + K_{n-1} \times 2^{n-1} + ... + K_j \times 2^j + ... + K_2 \times 2^2 + K_1 \times 2^1 + K_0 \times 2^0$$
  
将 $n = 3m + 2$ 代入2的幂得:



- □ 6.4 用八位二进制数 (含1位符号) 表示下列各数的原码、反码、补码、移码。如果是小数, 小数点在符号位之后: 如果是整数, 小数点在LSB之后。
  - (1) -35/64;

**(2)** 23/128;

- (3) -127;
- (4) 用小数表示-1; (5) 用整数表示-1
- □解:根据各种机器码与真值关系的远近程度,可按下述顺序及简易规则进行转换:

 工数不变
 正数不变
 补码

 负数按位
 负数反码
 符号位

 数制转换
 符号代码化
 变反

十进制真值  $\rightarrow$  二进制真值  $\rightarrow$  原码  $\rightarrow$  反码  $\rightarrow$  补码  $\rightarrow$  移码

□ 各数的机器码表示列表如下:

# 第二章 6.4 各数机器码表



|     | 十进制真值  | 二进制真值       | 原码         | 反 码        | 补 码        | 移码         |
|-----|--------|-------------|------------|------------|------------|------------|
| (1) | -35/64 | -0.100 0110 | 1.100 0110 | 1.011 1001 | 1.011 1010 | 0.011 1010 |
| (2) | 23/128 | 0.001 0111  | 0.001 0111 | 0.001 0111 | 0.001 0111 | 1.001 0111 |
| (3) | -127   | -0111 1111  | 1 111 1111 | 1 000 0000 | 1 000 0001 | 0 000 0001 |
| (4) | 小数表示-1 | -1.000 0000 | 无          | 无          | 1.000 0000 | 0.000 0000 |
| (5) | 整数表示-1 | -0000 0001  | 1 000 0001 | 1 111 1110 | 1 111 1111 | 0 111 1111 |



□ 6.5 对于模4补码,设 [X]<sub>补</sub>= X<sub>s</sub>X<sub>0</sub>.X<sub>1</sub>X<sub>2</sub>.....X<sub>n</sub>

求证: 
$$X = -2X_s + X_0 + \sum_{i=1}^{n} X_i \times 2^{-i}$$
 。

多项式表示法 → 配项



#### 配项

综上所述可知:无论X为正还是为负,均有:

$$\mathbf{X} = -2\mathbf{X}_{s} + \mathbf{X}_{0} + \sum_{i=1}^{n} \mathbf{X}_{i} \times 2^{-i}$$

- □ 证毕。
- □ 评注:本题证明了真值与模4补码之间的转换公式,此类 题基本上都是利用补码定义进行求证。



□ 6.6 设X为整数, [X]<sub>补</sub>=1, X<sub>1</sub>X<sub>2</sub>X<sub>3</sub>X<sub>4</sub>X<sub>5</sub>, 若要求 X < -16, 试问 X<sub>1</sub>~X<sub>5</sub> 应取何值?

□解: 若要X < -16,需  $X_1 = 0$ , $X_2 \sim X_5$  任意。

口注:负数绝对值大的反而小。



```
□ 6.7 用除2取余法求: (2019)<sub>10</sub> = ( )<sub>2</sub> ?

用乘2取整法求: (0.543)<sub>10</sub> = ( )<sub>2</sub> ?

用减权定位法求: (4091.629)<sub>10</sub> = ( )<sub>2</sub> ?

用按权相加法求: (10101101001.110100 1)<sub>2</sub> = ( )<sub>10</sub>?

(注: 十→二按0舍1入法取五位小数。)
```

```
解: (2019)_{10} = (11 \ 111 \ 100 \ 011)_2; (0.543)_{10} = (0.100 \ 01)_2; (4091.629)_{10} = (111 \ 111 \ 111 \ 011.101)_2; (1 \ 010 \ 110 \ 101 \ 001.110 \ 100 \ 1)_2 = (5535.8203125)_{10}
```



□ 6.8 已知数的补码表示,求数的原码与真值。

$$[X_1]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}{$$

#### □解:已知数的补码表示,数的原码与真值见下表:

| 补码 [X] <sub>补</sub> | 原 码 [X] <sub>原</sub> | 真 值       |  |
|---------------------|----------------------|-----------|--|
| 0 001 1010          | 同补码                  | 同补码       |  |
| 1 001 1010          | 1 110 0110           | -110 0110 |  |
| 1 111 0001          | 1 000 1111           | -000 1111 |  |



- □ 6.9 讨论若[X]<sub>补</sub>>[Y]<sub>补</sub>,是否有X>Y?
- □解:
- □ 若[X]<sub>补</sub>>[Y]<sub>补</sub>,不一定有X>Y。
- □  $[X]_{\stackrel{}{N}} > [Y]_{\stackrel{}{N}}$ 时 X > Y的结论只在 X > 0、 Y > 0,及 X < 0、 Y < 0时成立。
- □ 当X>0、 Y<0时, 有X>Y, 但由于负数补码的符号位为1, 则[X]<sub>补</sub><[Y]<sub>补</sub>。
- □ 同样, 当X<0、Y>0时, 有X<Y, 但[X]<sub>补</sub>>[Y]<sub>补</sub>。



- 口 6.10 设[X]<sub>补</sub> =  $a_0.a_1a_2a_3a_4a_5a_6$ , 其中 $a_i$ 取0或1, 若要X>-0.5, 求  $a_0$ ,  $a_1$ ,  $a_2$ , .....,  $a_6$ 的取值。
- □解:根据补码结构特点知:
  - (1) a<sub>0</sub>为符号位,因此可任取0或1;
  - (2)  $\mathbf{a}_0 = 0$ 时,为正数,必有X > -0.5,因此 $\mathbf{a}_1 \sim \mathbf{a}_6$ 可任取0或1;
  - (3) 当 $a_0$ =1时,为负数,必须有: $a_1$ =1, $a_2$ + $a_3$ + $a_4$ +  $a_5$ +  $a_6$ =1 (即  $a_2 \sim a_6$ 不全为0) ,才满足X > -0.5的条件。
- □ 评注: 当X为负数,且X > -0.5时,其绝对值小于0.5,则据定义 必有[X]<sub>\*</sub> > (1.5)<sub>10</sub>。作此题需注意:
  - ① 负数的绝对值越小,补码值越大;
  - ② 临界值0.5不在题意要求的范围内,条件a<sub>2</sub>~a<sub>6</sub>不全为0就是为此而设。



- □ 6.11 已知X=0.a<sub>1</sub>a<sub>2</sub>a<sub>3</sub>a<sub>4</sub>a<sub>5</sub>a<sub>6</sub> (a<sub>i</sub>为0或1) , 讨论下列几种情况时a<sub>i</sub>各取何值。
  - (1) X > 1/2; (2)  $X \ge 1/8$ ; (3)  $1/4 \ge X > 1/16$

#### □ 解:

- (1) 若要X > 1/2,只要 $a_1=1$ , $a_2 \sim a_6$ 不全为0即可 ( $a_2$  or  $a_3$  or  $a_4$  or  $a_5$  or  $a_6=1$ );
- (2) 若要 $X \ge 1/8$ , 只要 $a_1 \sim a_3$ 不全为0即可 ( $a_1$  or  $a_2$  or  $a_3 = 1$ ) ,  $a_4 \sim a_6$ 可任取0或1;
- (3) 若要 $1/4 \ge X > 1/16$ ,只要 $a_1=0$ , $a_2$ 可任取0或1; 当 $a_2=0$ 时,若 $a_3=0$ ,则必须 $a_4=1$ ,且 $a_5$ 、 $a_6$ 不全为 $a_6=1$ ); 若 $a_3=1$ ,则 $a_4\sim a_6$ 可任取 $a_6$ 可任



- □ 6.12 当十六进制数9AH, 80H和FFH分别表示原码、补码、反码、移码和无符号数时,对应的十进制真值各为多少(设机器数采用一位符号位)?
- □解: 真值和机器数的对应关系如下:

| 十六进制 | 真值         | 无符号数             | 原码                | 补码                 | 反码                | 移码       |
|------|------------|------------------|-------------------|--------------------|-------------------|----------|
| 9AH  | 二进制        | 1001 1010        | -001 1010         | -110 0110          | -110 0101         | 001 1010 |
|      | 十进制        | 154              | -26               | -102               | -101              | 26       |
| 80H  | 二进制<br>十进制 | 1000 0000<br>128 | - 000 0000<br>- 0 | -1000 0000<br>-128 | -111 1111<br>-127 | 000 0000 |
| FFH  | 二进制        | 1111 1111        | -111 1111         | -000 0001          | -000 0000         | 111 1111 |
|      | 十进制        | 255              | -127              | -1                 | -0                | 127      |

口注意: 9AH、80H、FFH为机器数,本身含符号位。



- □6.13 设机器数字长为16位,写出下列各种情况下 它能表示的数的范围。机器数采用一位符号位, 答案均用十进制2的幂形式表示。
  - (1) 无符号整数;
  - (2) 原码表示的定点小数;
  - (3)补码表示的定点小数;
  - (4) 原码表示的定点整数;
  - (5) 补码表示的定点整数。



#### □解: 各种表示方法的数据范围如下:

- (1) 无符号整数:  $0 \sim 2^{16} 1$ , 即:  $0 \sim 65535$ ;
- (2) 原码定点小数: (1 2-15) ~ 1 2-15
- (3) 补码定点小数: -1~1 2-15
- (4) 原码定点整数: (2<sup>15</sup>-1) ~2<sup>15</sup>-1

即: -32767~32767;

(5) 补码定点整数: -2<sup>15</sup>~2<sup>15</sup>-1

即: -32768~32767;

#### 注意:

- 1) 应写出可表示范围的上下限精确值(用≥或≤,不要用>或<);
  - 2) 不要用十进制小数表示,不直观不精确且无意义;
  - 3) 原码正、负域对称,补码正、负域不对称。

# 第二章 6.14



- □ 6.14 设机器字长为8位(含一位符号位),分整数和 小数两种情况讨论真值X为何值时,[X]<sub>补</sub>= [X]<sub>原</sub>成立
  - 0
- 解: 当X为小数时,若X≥0,则据定义有 [X]<sub>补</sub>=[X]<sub>原</sub>成立;若X<0,则当X=-1/2时, [X]<sub>补</sub>=[X]<sub>原</sub>成立。 当X为整数时,若X≥0,则 [X]<sub>补</sub>=[X]<sub>原</sub>成立;若X<0,则当X=-64时, [X]<sub>补</sub>=[X]<sub>原</sub>成立。



- □ 6.15 用以下形式表示十进制数5862。
  - (1) 二进制数; (2) 8421码; (3) 余3码; (4) 2421码。

#### □ 解:

- (1)  $(5862)_{10}$ = $(1\ 0110\ 1110\ 0110)_2$ =16E6H
- (2)  $(5862)_{10}$ = $(0101\ 1000\ 0110\ 0010)_{8421}$ =5862H
- (3)  $(5862)_{10}$ = $(1000\ 1011\ 1001\ 0101)_{E3}$ =8B95H
- (4)  $(5862)_{10}$ = $(1011\ 1110\ 1100\ 0010)_{2421}$ =BEC2H



□ 6.16 用前分隔数字串表示法、后嵌入数字串表示法和压缩的 十进制数串表示法表示下列十进制数,设存储器按字节编址

0

#### □解:

(1) 前分隔数字串表示: (ASCII码用十六进制表示,下同)

+1980:

2Bh 31h 39h 38h 30h

-76543:

2Dh 37h 36h 35h 34h 33h

+254:

2Bh | 32h | 35h | 34h

-1992:

2Dh 31h 39h 39h 32h



#### (2) 后嵌入数字串表示:

+1980: 31h 39h 38h 30h

-76543: 37h 36h 35h 34h 73h

+254: 32h 35h 34h

-1992: 31h 39h 39h 72h

#### (3) 压缩十进制数串表示:

+1980: 0 1 9 8 0 Ch

-76543: 7 6 5 4 3 Dh

+254: 2 5 4 Ch

-1992: 0 1 9 9 2 Dh



□6.17 用十六进制写出大写字母 "F"、小写字母 "a"和星号 "\*"的ASCII码。当最高位用作偶校验位时,写出它们的ASCII机内码字节。

解:通过查ASCII编码表(表2B-1),可得

- □大写字母"F"的ASCII码为46H,当最高位用作偶校验位时,其ASCII机内码字节最高位为"1",46H+80H=C6H
- □同样,小写字母"a"的ASCII码为61H,机内码E1H
- □符号"\*"的ASCII码为2AH,机内码为AAH



- □ 6.18 汉字"大"和"小"的国标区位码分别为2083和4801,要求
- □(1)分别写出这两个字对应的国标码;
- □ (2) 若采用汉字两个字节的最高位均设为"1"的机内表示方案,分别写出这两个字的机内码形式。
- □ 解:
- □ (1) 在已知区位码的情况下,只要将区码和位码分别转换成十六进制表示,然后再分别加上20H即可得到国标码。
- $\square$  2083 $\rightarrow$  (1453H +2020H) =3473H
- $\square$  4801 $\rightarrow$  (3001H+2020H) = 5021H
- □ 则"大"字的国标码为3473H, "小"字的国标码为5021H。
- □ (2) 当采用汉字两个字节的最高位均设为"1"的机内表示方案时,只要将国标码的两个字节分别加上80H即可得其机内码。
- $\square$  3473H+8080H = B4F3H; 5021H+8080H = D0A1H
- □则"大"字的机内码为B4F3H,"小"字的机内码为D0A1H。

# 第二章 6.19



- □ 6.19 用向量表示法,在32位字长的存储器中,用ASCII码 分别按左→右(大端方式)和右→左(小端方式)的顺序 表示下列字符串:
  - (1) WHAT IS THIS?
  - (2) THIS IS A DISK.
- □ 解: (1) 左→右:

31 0 W H A T I S T H I S ? 右→左:

31 0
T A H W
S I
S I H T
?

(2) 方法同上。

### 第二章 6.20



- □ 6.20 如果采用偶校验,并将校验位安排在最高位,下列数据的校验码是什么?采用奇校验呢?
  - **(1)** 010 1010
    - **(2)** 001 1011
  - **(3)** 111 0001
- **(4)** 100 1110
- □解:对应的校验位设置见下表:

|     | 奇校验位 | 偶校验位 | 数据        |
|-----|------|------|-----------|
| (1) | 0    | 1    | 0 101 010 |
| (2) | 1    | 0    | 0 011 011 |
| (3) | 1    | 0    | 1 110 001 |
| (4) | 1    | 0    | 1 001 110 |



- □ 6.21 设有16个信息位,如果采用海明校验,要求能分别指示无错、一位错和二位错,并纠正一位错,至少需要设置多少个校验位?应放在哪些位置上?
- □解:设信息位数为n,校验位数为k,则据式: 2<sup>k-1</sup>≥n+k+1 可知,纠一检二码至少需要设置6个校验位,应放在位序为1,2,4,8,16,22的位置上。设海明码用H表示,信息位用B表示,校验位用P表示,则校验位安排情况如下:

 $\begin{aligned} &H_{22}H_{21}H_{20}H_{19}H_{18}H_{17}H_{16}H_{15}H_{14}H_{13}H_{12}H_{11}H_{10}H_{9}H_{8}H_{7}H_{6}H_{5}H_{4}H_{3}H_{2}H_{1}\\ &=P_{6}\;B_{16}\,B_{15}\,B_{14}\,B_{13}\,B_{12}\,P_{5}\;B_{11}\,B_{10}\,B_{9}\;B_{8}\;B_{7}\;B_{6}\;B_{5}\;P_{4}\;B_{4}B_{3}\,B_{2}\,P_{3}\,B_{1}\,P_{2}\,P_{1} \end{aligned}$ 



□ 6.22 设 (7, 4) 码的生成多项式为G (X) = X<sup>3</sup>+X+1, 写出代码1011 和0101的循环冗余校验码。

#### 解:编码过程如下:

$$M(X)_1 = 1011, M(X)_2 = 0101, n = 4$$

$$G(X) = X^3 + X + 1 = 1011$$
,  $k+1 = 4$ ,  $k = 3$ 

$$M(X)_1 \cdot X^3 = 1011 \ 000, \quad M(X)_2 \cdot X^3 = 0101 \ 000$$

$$M(X)_1 \cdot X^3/G(X) = 1011 \ 000/1011 = 1000 + \frac{000}{1011}$$

$$R(X)_1 = 000$$

$$M(X)_1 \cdot X^3 + R(X) = 1011 \ 000 + 000 = 1011 \ 000 = CRC 闷$$

$$M(X)_2 \cdot X^3/G(X) = 0101 \ 000/1011 = 0100 + \frac{100}{1011}$$

$$R(X)_2 = 100$$

$$M(X)_2 \cdot X^3 + R(X) = 0101 \ 000 + 100 = 0101 \ 100 = CRC$$
码

由于码制和生成多项式均与教材上的例题相同,故此 (7, 4) 码的出错模式同教材 $P_{257}$ 表6-8。

### 第二章 6.23



- □ 6.23 已知接收到的8421海明码(按偶校验配置)为110 1100,1000100,0101101,0011010,检查上述代码是 否出错?第几位出错?若出错请写出正确代码(不考虑双 错及多错情况)。
- □ 解: 设8421码为B<sub>4</sub>B<sub>3</sub>B<sub>2</sub>B<sub>1</sub>, 校验位为P<sub>3</sub>P<sub>2</sub>P<sub>1</sub>, 海明码排列为B<sub>4</sub>B<sub>3</sub>B<sub>2</sub>P<sub>3</sub>B<sub>1</sub>P<sub>2</sub>P<sub>1</sub>, 则检查结果及纠正情况如下表:

| 接收代码     | 出错情况 | 出错位序           | 正确代码     |
|----------|------|----------------|----------|
| 110 1100 | 有    | $\mathbf{B}_3$ | 100 1100 |
| 100 0100 | 有    | $P_3$          | 100 1100 |
| 010 1101 | 无    |                |          |
| 001 1010 | 有    | B <sub>1</sub> | 001 1110 |



- □ 6.24 有两位8421BCD码编码的十进制整数置于寄存器A中,可以通过一个加法器网络将其直接转换成二进制整数。试用半加器、全加器电路画出该加法器网络。
- □解: 算法分析:

**设两位**8421码
$$A = A_1A_2 = a_8 \ a_7 \ a_6 \ a_5 \ a_4 \ a_3 \ a_2 \ a_1$$
二进制数  $B = b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ b_2 \ b_1$ 
则 
$$B = A_1 \times 1010 + A_2 = A_1 \times 1000 + A_1 \times 10 + A_2$$

$$= a_8 a_7 a_6 a_5 000 + a_8 a_7 a_6 a_5 0 + a_4 a_3 a_2 a_1$$

□ 为了更加清楚起见,进一步用竖式表示相加关系如下:

□ 该竖式对应的加法网络电路图如下页。

### 第二章 6.24



#### □ 两位8421码—二进制整数转换加法网络电路图



### 第八章 6.25



□ 6.25 设机器数字长为8位(含1位符号位),对下列各机器数算术左移一位、两位,算术右移一位、两位,并讨论结果是否正确。

```
[x_1]_{\mathbb{R}} = 0.001 \ 1010; \quad [x_2]_{\mathbb{R}} = 1.110 \ 1000; \quad [x_3]_{\mathbb{R}} = 1.001 \ 1001 
[y_1]_{\mathbb{A}} = 0.101 \ 0100; \quad [y_2]_{\mathbb{A}} = 1.110 \ 1000; \quad [y_3]_{\mathbb{A}} = 1.001 \ 1001 
[z_1]_{\mathbb{R}} = 1.010 \ 1111; \quad [z_2]_{\mathbb{R}} = 1.110 \ 1000; \quad [z_3]_{\mathbb{R}} = 1.001 \ 1001
```

# 第八章 6.25



#### □ 解: 算术左移一位:

```
[x<sub>1</sub>]<sub>原</sub>=0.0110100; 正确
     [y<sub>1</sub>]<sub>补</sub>=0.0101000; 溢出 (丢1) 出错
     [z<sub>1</sub>]<sub>反</sub>=1.1011111; 溢出 (丢0) 出错
算术左移两位:
     [x<sub>1</sub>]<sub>原</sub>=0.1101000; 正确
     [y<sub>1</sub>]<sub>补</sub>=0.1010000; 溢出 (丢10) 出错
     [z<sub>1</sub>]<sub>反</sub>=1.01111111; 溢出 (丢01) 出错
算术右移一位:
     [x<sub>1</sub>]<sub>原</sub>=0.0001101; 正确
     [y_1]_{**}=0.0101010; 正确
     [z<sub>1</sub>]<sub>反</sub>=1.1010111; 正确
算术右移两位:
     [x<sub>1</sub>]<sub>原</sub>=0.000 0110 (10); 产生误差
     [y_1]_{ih} = 0.001\ 0101; 正确
     [z_1]_{rec}=1.110\ 1011; 正确
```

# 第八章 6.25



#### □ 解: 算术左移一位:

```
[x<sub>2</sub>]<sub>原</sub>=1.1010000; 溢出(丢1)出错
     [y_2]_{*h}=1.1010000; 正确
     [z<sub>2</sub>]<sub>反</sub>=1.1010001;正确
算术左移两位:
     [x<sub>2</sub>]<sub>原</sub>=1.0100000; 溢出 (丢11) 出错
     [y_2]_{*h}=1.0100000; 正确
     [\mathbf{z}_2]_{\mathbf{p}}=1.0100011; 正确
算术右移一位:
     [x<sub>2</sub>]<sub>原</sub>=1.011 0100; 正确
     [y<sub>2</sub>]<sub>补</sub>=1.111 0100; 正确
     [z<sub>2</sub>]辰=1.111 0100(0); 产生误差
算术右移两位:
     [x<sub>2</sub>]<sub>原</sub>=1.001 1010; 正确
     [y<sub>2</sub>]<sub>补</sub>=1.111 1010; 正确
     [z<sub>2</sub>]辰=1.111 1010(00); 产生误差
```



#### □ 解: 算术左移一位:

```
[x<sub>3</sub>]<sub>原</sub>=1.0110010; 正确
     [y<sub>3</sub>]<sub>补</sub>=1.0110010; 溢出 (丢0) 出错
     [z<sub>3</sub>]<sub>反</sub>=1.0110011; 溢出 (丢0) 出错
算术左移两位:
     [x<sub>3</sub>]<sub>原</sub>=1.110 0100; 正确
     [y<sub>3</sub>]<sub>补</sub>=1.110 0100; 溢出 (丢00) 出错
     [z<sub>3</sub>]<sub>反</sub>=1.110 0111; 溢出 (丢00) 出错
算术右移一位:
     [x<sub>3</sub>]<sub>原</sub>=1.0001100(1);产生误差
     [y<sub>3</sub>]<sub>补</sub>=1.1001100 (1); 产生误差
     [z<sub>3</sub>]<sub>反</sub>=1.1001100; 正确
算术右移两位:
     [x<sub>3</sub>]<sub>原</sub>=1.0000110 (01); 产生误差
     [y<sub>3</sub>]<sub>补</sub>=1.1100110 (01) ; 产生误差
     [z<sub>3</sub>]辰=1.1100110(01);产生误差
```



□ 6.26 设带符号数[Y]<sub>原</sub>=[Y]<sub>反</sub>=[Y]<sub>补</sub>=1,011 0010,分别对这个8位字长的机器数进行算术左移一位、二位,算术右移一位、二位,逻辑左移一位、二位,逻辑右移一位、二位的操作,比较两种移位运算的区别,并分析结果的真值变化、误差及溢出情况。

□解: 机器数移位结果如下:

注:表中"误差\*"表示误差的绝对值。



#### [Y]<sub>原</sub>=1,0110010移位结果及分析

| 移位操作   | 溢出值 | 符号位 | $\llbracket Y  rbracket_{ar{\mathbb{R}}}$ | 丢掉值 | 十进制 真值 | 结果分析                    |
|--------|-----|-----|-------------------------------------------|-----|--------|-------------------------|
| 移位前    |     | 1   | 011 0010                                  |     | -50    |                         |
| 逻辑右移1位 |     | 0   | 101 1001                                  | 0   | +89    | 符号位移入MSB位引起<br>错误,符号位破坏 |
| 算术右移1位 |     | 1   | 001 1001                                  | 0   | -25    | 无误差,正确                  |
| 逻辑右移2位 |     | 0   | 010 1100                                  | 10  | +44    | 符号位移入数值位出错<br>符号位破坏     |
| 算术右移2位 |     | 1   | 000 1100                                  | 10  | -12    | 误差*=1/2,基本正确            |
| 逻辑左移1位 | 0   | 0   | 110 0100                                  |     | +100   | 溢出出错,符号位破坏              |
| 算术左移1位 | 0   | 1   | 110 0100                                  |     | -100   | 无溢出,正确                  |
| 逻辑左移2位 | 1   | 1   | 100 1000                                  |     | -72    | 溢出出错,正确值=-200           |
| 算术左移2位 | 1   | 1   | 100 1000                                  |     | -72    | 溢出出错,正确值=-200           |



#### [Y]反=1,0110010移位结果及分析

| 移位操作   | 溢出值 | 符号位 | $[Y]_{oldsymbol{oldsymbol{eta}}}$ | 丢掉值 | 十进制<br>真值 | 结果分析                    |
|--------|-----|-----|-----------------------------------|-----|-----------|-------------------------|
| 移位前    |     | 1   | 011 0010                          |     | -77       |                         |
| 逻辑右移1位 |     | 0   | 101 1001                          | 0   | +89       | 符号位移入MSB位引起<br>错误,符号位破坏 |
| 算术右移1位 |     | 1   | 101 1001                          | 0   | -38       | 误差*=1/2,基本正确            |
| 逻辑右移2位 |     | 0   | 010 1100                          | 10  | +44       | 符号位移入数值位出错<br>符号位破坏     |
| 算术右移2位 |     | 1   | 110 1100                          | 10  | -19       | 无误差,正确                  |
| 逻辑左移1位 | 0   | 0   | 110 0100                          |     | +100      | <br>  溢出出错,符号位破坏<br>    |
| 算术左移1位 | 0   | 1   | 110 0100                          |     | -27       | <br>  溢出出错,正确值=-155<br> |
| 逻辑左移2位 | 01  | 1   | 100 1000                          |     | -55       | 溢出出错,正确值=-311           |
| 算术左移2位 | 01  | 1   | 100 1000                          |     | -55       | 溢出出错,正确值=-311           |



#### [Y]<sub>补</sub>=1,0110010移位结果及分析

| 移位操作   | 溢出值 | 符号位 | $\llbracket Y  rbrack_{ eq h}$ | 丢掉值 | 十进制 真值 | 结果分析                    |
|--------|-----|-----|--------------------------------|-----|--------|-------------------------|
| 移位前    |     | 1   | 011 0010                       |     | -78    |                         |
| 逻辑右移1位 |     | 0   | 101 1001                       | 0   | +89    | 符号位移入MSB位引起<br>错误,符号位破坏 |
| 算术右移1位 |     | 1   | 101 1001                       | 0   | -39    | 无误差,正确                  |
| 逻辑右移2位 |     | 0   | 010 1100                       | 10  | +44    | 符号位移入数值位出错<br>符号位破坏     |
| 算术右移2位 |     | 1   | 110 1100                       | 10  | -20    | 误差*=1/2,基本正确            |
| 逻辑左移1位 | 0   | 0   | 110 0100                       |     | +100   | 溢出出错,符号位破坏              |
| 算术左移1位 | 0   | 1   | 110 0100                       |     | -28    | 溢出出错,正确值=-156           |
| 逻辑左移2位 | 01  | 1   | 100 1000                       |     | -56    | 溢出出错,正确值=-312           |
| 算术左移2位 | 01  | 1   | 100 1000                       |     | -56    | 溢出出错,正确值=-312           |



- $\square$  6.27 设X<sub>1</sub>=0.01 1100 0010, Y<sub>1</sub>=-0.01 1100 0010; X<sub>2</sub>=0.01 1100 1100, Y<sub>2</sub>=-0.01 1100 1100; X<sub>3</sub>=0.01 1100 0101; Y<sub>3</sub>=-0.01 1100 0101
- □ 分别用原码和补码表示,如果只要求8位字长,请采用 截断法、恒置1法和0舍1入法对每一个操作数进行舍入 ,并对舍入结果进行比较。
- □解: 先将真值X<sub>1</sub>~X<sub>3</sub>、Y<sub>1</sub>~Y<sub>3</sub>表示成机器码形式,再进行舍入。为方便比较,舍入结果用表格列出。注意相同下标的X<sub>i</sub>、Y<sub>i</sub>互为相反数,LSB\*则表示误差方向是相对于最低有效位LSB的绝对值而言,正误差使绝对值增大,负误差使绝对值缩小。



#### 不同舍入方法的比较

| 舍入前(11位)                                                         | 舍入后(8位)                                          | 丢掉位 | 结果真值                      | 误差分析                 |
|------------------------------------------------------------------|--------------------------------------------------|-----|---------------------------|----------------------|
| $[X_1]_{\text{ff}} = [X_1]_{\text{i}} = X_1$<br>=0.011 1000 010  | 截断=0舍1入<br>=0.011 1000 (舍)<br>恒置1=0.011 1001 (入) | 010 | 0.011 1<br>0.011 1001     | -1/4LSB*<br>+3/4LSB* |
| [Y <sub>1</sub> ] <sub>原</sub> =1.011 1000 010                   | 截断=0舍1入<br>=1.011 1000 (舍)<br>恒置1=1.011 1001 (入) | 010 | -0.011 1<br>-0.011 1001   | -1/4LSB*<br>+3/4LSB* |
| $[Y_1]_{\nmid k} = 1.100\ 0111\ 110$                             | 截断=恒置1<br>=1.100 0111 (入)<br>0舍1入=1.1001000 (舍)  | 110 | -0.011 1001<br>-0.011 1   | +3/4LSB*<br>-1/4LSB* |
| $[X_2]_{\text{ff}} = [X_2]_{\text{in}} = X_2$<br>=0.011 1001 100 | 截断=恒置1<br>=0.011 1001 (舍)<br>0舍1入=0.011 1010 (入) | 100 | 0.011 1001<br>0.011 101   | -1/2LSB*<br>+1/2LSB* |
| [Y <sub>2</sub> ] <sub>原</sub> =1.011 1001 100                   | 截断=恒置1<br>=1.011 1001 (舍)<br>0舍1入=1.011 1010 (入) | 100 | -0.011 1001<br>-0.011 101 | -1/2LSB*<br>+1/2LSB* |
| [Y <sub>2</sub> ] <sub>* </sub> =1.100 0110 100                  | 截断=0舍1入<br>=1.100 0110 (入)<br>恒置1=1.100 0111 (舍) | 100 | -0.011 101<br>-0.011 1001 | +1/2LSB*<br>-1/2LSB* |
| $[X_3]_{\text{ff}} = [X_3]_{\text{in}} = X_3$<br>=0.011 1000 101 | 截断=0.011 1000 (舍)<br>恒置1=0舍1入<br>=0.011 1001 (入) | 101 | 0.011 1<br>0.011 1001     | -5/8LSB*<br>+3/8LSB* |
| [Y <sub>3</sub> ] <sub>原</sub> =1.011 1000 101                   | 截断=1.011 1000 (舍)<br>恒置1=0舍1入<br>=1.011 1001 (入) | 101 | -0.011 1<br>-0.011 1001   | -5/8LSB*<br>+3/8LSB* |
| [Y <sub>3</sub> ] <sub>* </sub> =1.100 0111 011                  | 截断=恒置1=0舍1入<br>=1.1000111(入)                     | 011 | -0.011 1001               | +3/8LSB*             |



- □ 6.28 设机器数字长为8位(含1位符号位),用补码加减运算规则计算下列各题,并指出是否溢出。
  - (1) X = -17/32, Y = 19/64,  $Rac{1}{2}X-Y$ ;
  - (2) X = -21/32, Y = -67/128, RX+Y;
  - (3) X = 97, Y = -54,  $Rac{1}{3}X-Y$ ;
  - (4) X = 118, Y = -36,  $\Re X + Y$ .

#### 第二章 6.28 (1)



(1) 
$$X = -17/32 = (-0.100 \ 0100)_2$$
  
 $Y = 19/64 = (0.010 \ 0110)_2$   
 $[X]_{\frac{1}{2}h} = 1.011 \ 1100$   
 $[Y]_{\frac{1}{2}h} = 0.010 \ 0110$ ,  $[-Y]_{\frac{1}{2}h} = 1.101 \ 1010$ 

$$X-Y = (-0.110\ 1010)_2 = -53/64$$

#### 第六章 6.28 (2)



$$[X+Y]_{*+} = 1.010 1100$$
  
+ 1.011 1101  
0.110 1001 ——溢出

$$X+Y = (-1.001\ 0111)_2 = -151/128$$

## 第六章 6.28 (3)



(3) 
$$X = 97 = (110\ 0001)_2$$
  
 $Y = -54 = (-11\ 0110)_2$   
 $[X]_{\frac{1}{2}} = 0,110\ 0001$   
 $[Y]_{\frac{1}{2}} = 1,100\ 1010$ ,  $[-Y]_{\frac{1}{2}} = 0,011\ 0110$ 

$$[X-Y]_{\stackrel{?}{\not=}} = 0, 110 0001 + 0, 011 0110 1, 001 0111 — 溢出$$

$$X-Y = (+1001\ 0111)_2 = 151$$

#### 第六章 6.28 (4)



(4) 
$$X = 118 = (111 \ 0110)_2$$
  
 $Y = -36 = (-10 \ 0100)_2$   
 $[X]_{\frac{1}{2}} = 0,111 \ 0110$   
 $[Y]_{\frac{1}{2}} = 1,101 \ 1100$ 

$$X+Y = (+101\ 0010)_2 = 82$$

- □ 注意: ① 单符号位运算要用单符号位的判溢出方法;
  - ② 结果的真值形式上要和原始数据一致。



□ 6.29 分别用8421码加法和余3码加法求57+48=? 316+258=? 要求 列出竖式计算过程。

解:  $(57)_{BCD} = 0101$ , 0111;  $(48)_{BCD} = 0100$ , 1000 $(57)_{E3} = 1000$ , 1010;  $(48)_{E3} = 0111$ , 1011 $(316)_{BCD} = 0011$ , 0001, 0110;  $(258)_{BCD} = 0010$ , 0101, 1000 $(316)_{E3} = 0110$ , 0100, 1001;  $(258)_{E3} = 0101$ , 1000, 1011

- □ 为清楚起见,这里将各位BCD码之间用逗号隔开。
- □ 加法过程如下:



#### □ 57+48的8421码加法过程:

#### □ 57+48的余3码加法过程:



#### □ 316+258的8421码加法过程:

#### □ 316+258的余3码加法过程:



- □ 6.30 假定在一个 8 位字长的计算机中,定点整数用单字长表示,其中带符号整数用补码表示(符号占1位);浮点数用双字长表示,阶码为8位移码(包括1位符号位),尾数用8位原码(包括1位符号位)
  - )。运行如下类 C 程序段:

```
int x1 = -124;
int x2 = 116;
unsigned int y1 = x1;
float f1 = x1;
int z1 = x1 + x2;
int z2 = x1 - x2;
```

- □ 请问:
- □ (1)执行上述程序段后,所有变量的值在该计算机内的数据表示形式各是多少?所有变量的值对应的十进制形式各是多少?
- □ (2)在该计算机中,无符号整数、带符号整数和规格化浮点数的表示范围各是什么? (要求用十进制2的幂形式表示)
- □ (3)执行上述程序段后,哪些运算语句的执行结果发生了溢出?



| 解:  |                                    |
|-----|------------------------------------|
| (1) | 执行上述程序段后,变量                        |
|     | x1值的十进制表示形式:-124                   |
|     | x1值的机内表示形式: 1,000 0100             |
|     | x2值的十进制表示形式: 116                   |
|     | x2值的机内表示形式: 0,111 0100             |
|     | y1 值的十进制表示形式:132                   |
|     | y1 值的机内表示形式: 1000 0100             |
|     | f1 值的十进制表示形式: -124.0               |
|     | f1 值的机内表示形式: 1,000 0111;1.111 1100 |
|     | z1值的十进制表示形式: -8                    |
|     | z1值的机内表示形式: 1,111 1000             |
|     | z2值的十进制表示形式: 16                    |
|     | z2值的机内表示形式: 0,001 0000             |



- □ (2) 无符号整数表示范围: 0~28-1
- □ 带符号整数表示范围: -2<sup>7</sup>~2<sup>7</sup>-1
- □ 规格化浮点数表示范围:

$$-(1-2^{-7})\times 2^{127}\sim -2^{-1}\times 2^{-128}, 0, 2^{-1}\times 2^{-128}\sim (1-2^{-7})\times 2^{127}$$

□ (3) 执行上述程序段后,语句int z2 = x1-x2 的执行结果发生了溢出。



- □ 6.31 已知X和Y, 用变形补码计算X±Y, 同时指出结果是否溢出。
  - (1) X=0.11011; Y=-0.10101
  - (2) X=0.101111; Y=0.11011
  - (3) X = -0.10110; Y = -0.00011
  - (4) X=0.11011; Y=-0.11111

#### □ 解:

□ 首先将X、Y转换为变形补码(模4补码),然后计算,最后判溢出。

(1) 
$$[X]_{*h} = 00.11011$$
;  $[Y]_{*h} = 11.01011$ ;  $[-Y]_{*h} = 00.10101$   
 $[X+Y]_{*h} = 00.11011+11.01011=00.00110$   
 $0 \oplus 0 = 0$  — 无溢出, $X+Y = 0.00110$ 

$$[X-Y]_{*h} = [X]_{*h} + [-Y]_{*h} = 00.11011 + 00.10101 = 01.10000$$
  
 $0 \oplus 1 = 1$  —— 溢出,  $X-Y = +1.10000$ 



- (2)  $[X]_{*+} = 00.10111; \quad [Y]_{*+} = 00.11011; \quad [-Y]_{*+} = 11.00101$   $[X+Y]_{*+} = 00.10111+00.11011=01.10010$   $0 \oplus 1 = 1$  溢出,X+Y=+1.10010  $[X-Y]_{*+} = [X]_{*+} + [-Y]_{*+} = 00.10111+11.00101 = 11.11100$   $1 \oplus 1 = 0$  无溢出,X-Y=-0.00100
- (3)  $[X]_{*+} = 11.01010$ ;  $[Y]_{*+} = 11.11101$ ;  $[-Y]_{*+} = 00.00011$   $[X+Y]_{*+} = 11.01010 + 11.11101 = 11.00111$   $1 \oplus 1 = 0$  无溢出,X+Y = -0.11001  $[X-Y]_{*+} = [X]_{*+} + [-Y]_{*+} = 11.01010 + 00.00011 = 11.01101$   $1 \oplus 1 = 0$  无溢出,X-Y = -0.10011
- (4)  $[X]_{*+} = 00.11011; \quad [Y]_{*+} = 11.00001; \quad [-Y]_{*+} = 00.111111$   $[X+Y]_{*+} = 00.11011+11.00001=11.11100$   $1 \oplus 1 = 0$  无溢出,X+Y = -0.00100  $[X-Y]_{*+} = [X]_{*+} + [-Y]_{*+} = 00.11011+00.11111=01.11010$   $0 \oplus 1 = 1$  溢出,X-Y = +1.11010
- 注意: ① 补码运算有可能产生模溢出,这是补码运算的正常情况;
  - ② 结果要求真值表示时,应将补码结果转换为真值。



- □ 6.32 已知真值X, Y, 用移码运算求X±Y=? 并判断溢出。
  - (1) X=101101; Y=-110110
  - (2) X=-101101; Y=-110110
  - (3) X=-10001; Y=101011
- □ 解: 为了判溢出,运算采用双符号位移码,最高符号位初始为零。
  - (1)  $[X]_{8}=01,101\ 101; \ [Y]_{8}=00,001\ 010;$

$$[Y]_{k}=11,001\ 010;\ [-Y]_{k}=00,110\ 110;$$

$$[X+Y]_{8}=[X]_{8}+[Y]_{1}=01,101101+11,001010=00,110111$$

无溢出

$$[X-Y]_{3}=[X]_{3}+[-Y]_{3}=01,101\ 101+00,110\ 110=10,100\ 011$$

溢出

 $X+Y=-001\ 001$ ;  $X-Y=+1\ 100\ 011$ 



- 口 (2)  $[X]_{8}=00,010\ 011$ ;  $[Y]_{8}=00,001\ 010$   $[Y]_{4}=11,001\ 010$ ;  $[-Y]_{4}=00,110\ 110$   $[X+Y]_{8}=[X]_{8}+[Y]_{4}=00,010\ 011+11,001\ 010=11,011\ 101$ ——溢出  $[X-Y]_{8}=[X]_{8}+[-Y]_{4}=00,010\ 011+00,110\ 110=01,\ 001\ 001$ —无溢出  $X+Y=-1\ 100\ 011$ ;  $X-Y=+001\ 001$
- □ (3)  $[X]_{8}=00,101\ 111; \ [Y]_{8}=01,101\ 011$   $[Y]_{4}=00,101\ 011; \ [-Y]_{4}=11,010\ 101$   $[X+Y]_{8}=[X]_{8}+[Y]_{4}=00,101\ 111+00,101\ 011=01,011\ 010$ —无溢出  $[X-Y]_{8}=[X]_{8}+[-Y]_{4}=00,101\ 111+11,010\ 101=00,000\ 100$ —无溢出  $X+Y=+011\ 010; \ X-Y=-111\ 100$

## 第凸章 6.33



- □ 6.33 用原码一位乘法和补码一位乘比较法、两位乘比较法 计算X×Y。
  - (1) X = 0.1101111, Y = -0.101110;
  - (2)  $X = -0.010 \ 111$ ,  $Y = -0.010 \ 101$ ;

#### □ 解:

- □ 先将数据转换成所需的机器数,然后计算,最后结果转换成真值。
  - (1)  $[X]_{\mathbb{R}} = X = 0.1101111, [Y]_{\mathbb{R}} = 1.1011110$   $X^* = 0.1101111, Y^* = 0.1011110$   $X_0 = 0, Y_0 = 1, Z_0 = X_0 \oplus Y_0 = 0 \oplus 1 = 1$   $X^* \times Y^* = 0.100 111 100 010$   $[X \times Y]_{\mathbb{R}} = 1.100 111 100 010$   $X \times Y = -0.100 111 100 010$

## 第六章 6.33 (1) 原码一位乘



| 部分积                       | 乘数Y*                                                  |
|---------------------------|-------------------------------------------------------|
| 0.000 000                 | .1 0 1 1 1 <u>0</u> — +0                              |
| $\rightarrow 1$ 0.000 000 | 0 .1 0 1 1 <u>1</u> ——+X*                             |
| + 0.110 111               |                                                       |
| 0.110 111                 |                                                       |
| $\rightarrow 1$ 0.011 011 | 1 0 .1 0 1 <u>1</u> +X*                               |
| + 0.110 111               |                                                       |
| 1.010 010                 |                                                       |
| $\rightarrow 1$ 0.101 001 | $0 \ 1 \ 0 \ .1 \ 0 \ \underline{1} - + X^*$          |
| + 0.110 111               |                                                       |
| 1.100 000                 |                                                       |
| $\rightarrow 1$ 0.110 000 | 0 0 1 0 .1 0+0                                        |
| $\rightarrow 1$ 0.011 000 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| + 0.110 111               |                                                       |
| 1.001 111                 |                                                       |
| $\rightarrow 1$ 0.100 111 | 1 0 0 0 1 0                                           |

## 第凸章 6.33 (1) 补码乘



$$[X \times Y]_{\uparrow \uparrow} = 1.011 \ 000 \ 011 \ 110 \ 0$$
  
 $X \times Y = -0.100 \ 111 \ 100 \ 010 \ 0$ 

补码一位乘、两位乘运算过程如下:

# 第六章 6.33 (1) 补码一位乘



|                 | 部分积       |      | Ī  | 乘数 | 数[Y | ]<br>冰 |    | Y <sub>n</sub> | $\mathbf{Y}_{n+1}$       |                     |
|-----------------|-----------|------|----|----|-----|--------|----|----------------|--------------------------|---------------------|
|                 | 00.000 00 | 0 1. | 0  | 1  | 0   | 0      | 1  | 0              | <u> </u>                 | _ +0                |
| $\rightarrow 1$ | 00.000 00 | 0 0  | 1. | 0  | 1   | 0      | 0  | 1              | 0                        |                     |
| +               | 11.001 00 | 1    |    |    |     |        |    | +[-]           | $X]_{\dot{k}\dot{k}}$    |                     |
|                 | 11.001 00 | 1    |    |    |     |        |    |                | .,                       |                     |
| $\rightarrow 1$ | 11.100 10 | 0 1  | 0  | 1. | 0   | 1      | 0  | 0              | <u>1</u>                 |                     |
| +               | 00.110 11 | 1    |    |    |     |        |    | +[X            | ] <sub>À</sub> ,         |                     |
|                 | 00.011 01 | 1    |    |    |     |        |    |                | ••                       |                     |
| $\rightarrow 1$ | 00.001 10 | 1 1  | 1  | 0  | 1   | . 0    | 1  | 0              | <u> </u>                 | <b>-</b> + <b>0</b> |
| $\rightarrow 1$ | 00.000 11 | 0 1  | 1  | 1  | 0   | 1.     | 0  | 1              | 0                        |                     |
| +               | 11.001 00 | 1    |    |    |     |        |    | +[-]           | <b>X</b> ] <sub>≱ŀ</sub> |                     |
|                 | 11.001 11 | 1    |    |    |     |        |    |                | .,                       |                     |
| $\rightarrow 1$ | 11.100 11 | 1 1  | 1  | 1  | 1   | 0      | 1. | . 0            | <u>1</u>                 |                     |
| +               | 00.110 11 | 1    |    |    |     |        |    | +[X            | ]*                       |                     |
|                 | 00.011 11 | 0    |    |    |     |        |    |                |                          |                     |
| $\rightarrow 1$ | 00.001 11 | 1 0  | 1  | 1  | 1   | 1      | 0  | 1              | <u>. 0</u>               |                     |
| +               | 11.001 00 | 1    |    |    |     |        |    | +[-]           | <b>X</b> ] <sub>≱⊦</sub> |                     |
|                 | 11.011 00 | 0 0  | 1  | 1  | 1   | 1      | 0  | <u>0</u> —     | — 清0                     |                     |

# 第二章 6.33 (1) 补码两位乘



| 部分积                         | 乘数[Y] <sub>补</sub> Y <sub>n-1</sub> Y <sub>n</sub> Y <sub>n+1</sub> |
|-----------------------------|---------------------------------------------------------------------|
| $0\ 0\ 0\ .\ 0\ 0\ 0\ 0$    | $\begin{array}{ c cccccccccccccccccccccccccccccccccc$               |
| + 110.010 010               | +[-2X] <sub>ネト</sub>                                                |
| 110.010 010                 |                                                                     |
| $\rightarrow 2$ 111.100 100 | 10 1 1.0 1 0 0 1                                                    |
| + 000.110 111               | +[X] <sub>*\</sub>                                                  |
| 000.011 011                 |                                                                     |
| $\rightarrow 2$ 000.000 110 | 1 1 1 0 1 1. <u>0 1 0</u>                                           |
| + 000.110 111               | +[X] <sub>*\</sub>                                                  |
| 000.111 101                 |                                                                     |
| $\rightarrow 2$ 000.001 111 | $0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ .0$                                |
| + 111.001 001               | +[-X]补                                                              |
| 111.011 000                 | 0111100011                                                          |
| 结果同补码一位乘,X·                 | Y = -0.100 111 100 010 00                                           |

## 第六章 6.33 (2)



(2) X=-0.010111, Y=-0.010101 
$$[X]_{\overline{\mathbb{R}}} = 1.010111, \quad [Y]_{\overline{\mathbb{R}}} = 1.010101 \\ X^*=0.010111, \quad Y^*=0.010101 \\ [-X^*]_{\overline{\mathbb{A}}} = 1.101001 \\ X_0=1, \quad Y_0=1, \quad Z_0=X_0 \oplus Y_0=1 \oplus 1=0 \\ [X]_{\overline{\mathbb{A}}} = 1.101001, \quad [Y]_{\overline{\mathbb{A}}} = 1.101011 \\ [-X]_{\overline{\mathbb{A}}} = 0.010111, \quad [2X]_{\overline{\mathbb{A}}} = 1.010010 \\ [-2X]_{\overline{\mathbb{A}}} = 0.101110 \\ X^* \times Y^*=0.000 \quad 111 \quad 100 \quad 011 \\ [X \times Y]_{\overline{\mathbb{R}}} = 0.000 \quad 111 \quad 100 \quad 011 \\ [X \times Y]_{\overline{\mathbb{A}}} = 0.000 \quad 111 \quad 100 \quad 011 \\ X^* \times Y=0.000 \quad 111 \quad 100 \quad 011 \\ \Xi \not \Xi \not \Xi H \not \Pi \tau :$$

# 第六章 6.33 (2) 原码一位乘



| 部分积                       | 乘数Y*                                                                    |
|---------------------------|-------------------------------------------------------------------------|
| 0.000000                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                    |
| + 0.010 111               |                                                                         |
| 0.010 111                 |                                                                         |
| $\rightarrow 1$ 0.001 011 | $1 \ .0 \ 1 \ 0 \ 1 \ \underline{0}+0$                                  |
| $\rightarrow 1$ 0.000 101 | 1 1 $0 1 0 1 - X^*$                                                     |
| + 0.010 111               |                                                                         |
| $0.011\ 100$              |                                                                         |
| $\rightarrow 1$ 0.001 110 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                   |
| $\rightarrow 1$ 0.000 111 | $\begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix} . 0 & \underline{1} + X^*$ |
| + 0.010 111               |                                                                         |
| 0.011 110                 |                                                                         |
| $\rightarrow 1$ 0.001 111 | 0 0 0 1 1 .0 +0                                                         |
| $\rightarrow 1$ 0.000 111 | 1 0 0 0 1 1                                                             |

# 第六章 6.33 (2) 补码一位乘



|                 | 部分积        | 乘数 $[Y]_{lpha}$ $Y_n$ $Y_{n+1}$                          |
|-----------------|------------|----------------------------------------------------------|
|                 | 00.000000  | $1.1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0$                            |
| +               | 00.010 111 | +[-X] <sub>ネト</sub>                                      |
|                 | 00.010 111 |                                                          |
| $\rightarrow 1$ | 00.001 011 | 1 1.1 0 1 0 <u>1 1 +0</u>                                |
| <b>→1</b>       | 00.000 101 | $1 \ 1 \ 1.1 \ 0 \ 1 \ 0 \ 1$                            |
| +               | 11.101 001 | +[X] <sub>ネト</sub>                                       |
|                 | 11.101 110 |                                                          |
| $\rightarrow 1$ | 11.110 111 | $0 \ 1 \ 1 \ 1 \ .1 \ 0 \ \underline{1} \ \underline{0}$ |
| +               | 00.010 111 | +[-X] <sub>ネト</sub>                                      |
|                 | 00.001 110 |                                                          |
| $\rightarrow 1$ | 00.000 111 | $0 \ 0 \ 1 \ 1 \ 1.1 \ \underline{0 \ 1}$                |
| +               | 11.101 001 | +[X] <sub>ネト</sub>                                       |
|                 | 11.110 000 |                                                          |
| $\rightarrow 1$ | 11.111 000 | $0 \ 0 \ 0 \ 1 \ 1 \ 1 . 1 \ 0$                          |
| +               | 00.010 111 | +[-X] <sub>* </sub>                                      |
|                 | 00.001 111 |                                                          |
| $\rightarrow 1$ | 00.000 111 | $1 \ 0 \ 0 \ 0 \ 1 \ 1 \ \underline{1 \ .1}+0$           |
|                 |            | l                                                        |

# 第六章 6.33 (2) 补码两位乘



|                 | 部分积                         | 乘数 $Y_{n-1}Y_nY_{n+1}$                                |
|-----------------|-----------------------------|-------------------------------------------------------|
|                 | $0\ 0\ 0\ .\ 0\ 0\ 0\ 0\ 0$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  |
| +               | 000.010 111                 | +[-X] <sub>*\</sub>                                   |
|                 | 000.010 111                 |                                                       |
| $\rightarrow$ 2 | 000.000 101                 | 11 1 1 .1 0 <u>1 0 1</u>                              |
| +               | 000.010 111                 | +[-X] <sub>ネト</sub>                                   |
|                 | 000.011 100                 |                                                       |
| $\rightarrow$ 2 | 000.000 111                 | $0\ 0\ 1\ 1\ 1\ 1.\underline{1\ 0\ 1}$                |
|                 | 000.010 111                 | +[-X] <sub>*\</sub>                                   |
|                 | 000.011 110                 |                                                       |
| $\rightarrow$ 2 | 000.000 111                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
|                 |                             | +0,清0                                                 |
|                 | 结果同补码一位乘,                   | $X \times Y = 0.000 111 100 011 00$                   |



- □ 6.34 用原码加减交替除法和补码加减交替除法计算X÷Y。
  - (1) X=-0.10101, Y=0.11011;
  - (2) X=13/32, Y=-27/32.
- □ 解:
  - (1)  $[X]_{\text{$\mathbb{R}$}} = 1.101 \ 01$ ,  $X^* = 0.101 \ 01$   $Y^* = [Y]_{\text{$\mathbb{R}$}} = Y = 0.110 \ 11$   $[-Y^*]_{\text{$\mathbb{A}$}} = 1.001 \ 01$  $Q_0 = X_0 \oplus Y_0 = 1 \oplus 0 = 1$

 $X^* \div Y^* = 0.110 \ 00$ ,  $[X \div Y]_{\mathbb{R}} = 1.110 \ 00$  $X \div Y = -0.110 \ 00$ ,

R\*=0.110 00×2<sup>-5</sup>=0.000 001 100 0 计算过程如下:

### 第六章 6.34 (1) 原码加减交替除法 Science



| <del>→</del> ++++++++++++++++++++++++++++++++++++ | 274                                               |
|---------------------------------------------------|---------------------------------------------------|
| 被除数/余数                                            | 尚                                                 |
| 0.101 01                                          | 0.00000                                           |
| + 1.001 01                                        | 试减,+[-Y*] <sub>补</sub>                            |
| 1.110 10                                          |                                                   |
| $1 \leftarrow 1.10100$                            | 0.                                                |
| + 0.110 11                                        | R<0, +Y*                                          |
| 0.011 11                                          |                                                   |
| <b>1</b> ← <b>0.111 10</b>                        | 0.1                                               |
| + 1.001 01                                        | $R>0$ , $+[-Y^*]_{\stackrel{*}{\not=}\downarrow}$ |
| 0.00011                                           |                                                   |
| $1 \leftarrow 0.00110$                            | 0. 1 1                                            |
| + 1.001 01                                        | $R>0, +[-Y^*]_{*b}$                               |
| 1.010 11                                          | ,,                                                |
| $1 \leftarrow 0.10110$                            | 0.1 10                                            |
| + 0.110 11                                        | R<0, $+Y*$                                        |
| 1.100 01                                          |                                                   |
| $1 \leftarrow 1.00010$                            | 0.1 1 0 0                                         |
| + 0.110 11                                        | R<0, +Y*                                          |
| 1.111 01                                          | 1← 0.1 1 0 0 0                                    |
| + 0.110 11                                        | R<0, +Y*(恢复余数)                                    |
| 0.110 00                                          |                                                   |
|                                                   |                                                   |

## 第六章 6.34 (1) 补码加减交替除法



$$X=-0.101 \ 01, \ Y=0.110 \ 11$$
 $[X]_{\begin{subarray}{l} \begin{subarray}{l} \begin{$ 

$$[X \div Y]_{\dot{\uparrow}\dot{\uparrow}} = 1.001 \ 11$$
  
 $X \div Y = -0.110 \ 01$   
 $[R]_{\dot{\uparrow}\dot{\uparrow}} = 1.010 \ 00$   
 $R = -0.000 \ 001 \ 100 \ 0$ 

运算过程如下:



|          | Technology |
|----------|------------|
| Science  |            |
| Computer |            |

| 被除数/余数                   | 商                              |
|--------------------------|--------------------------------|
| 11.010 11                | 0.00000                        |
| + 00.110 11              | 试减,X、Y异号,+[Y] <sub>*</sub>     |
| 00.001 10                | .,                             |
| $1 \leftarrow 00.01100$  | 1.                             |
| + 11.001 01              | R、Y同号,+[-Y] <sub>补</sub>       |
| 11.100 01                | .,                             |
| 1← 11.000 10             | 1.0                            |
| + 00.110 11              | R、Y异号, +[Y] <sub>补</sub>       |
| 11.111 01                |                                |
| $1 \leftarrow 11.110 10$ | 1.0 0                          |
| + 00.110 11              | R、Y异号, +[Y] <sub>补</sub>       |
| $0\ 0\ .\ 1\ 0\ 1$       |                                |
| $1 \leftarrow 01.01010$  | 1.001                          |
| + 11.001 01              | R、Y同号, +[-y] <sub>补</sub>      |
| 00.011 11                |                                |
| $1 \leftarrow 00.11110$  | 1.0 011                        |
| + 11.001 01              | R、Y同号,+[-Y] <sub>补</sub>       |
| 00.000 11                | 1←1.0 011 <mark>1</mark> — 恒置1 |
| + 11.001 01              | R、X异号,恢复余数                     |
| 11.010 00                | 且R、Y同号,+[-Y] <sub>补</sub>      |
| 注。                       | , ''                           |

#### 第二章 6.34(2)



$$\begin{array}{|c|c|c|c|c|c|} \hline & X=13/32=(0.011 & 01)_2 \\ & Y=-27/32=(-0.110 & 11)_2 \\ & X^*=[X]_{\bar{\mathbb{R}}}=X=0. & 011 & 01 \\ & [Y]_{\bar{\mathbb{R}}}=1.110 & 11 \\ & Y^*=0.110 & 11 \\ & [-Y^*]_{\bar{\mathbb{A}}}=1.001 & 01 \\ & Q_0=X_0 \oplus Y_0=0 \oplus 1=1 \\ & X^*\div Y^*=0.011 & 11 \\ & [X\div Y]_{\bar{\mathbb{R}}}=1.011 & 11 \\ & X\div Y=(-0.011 & 11)_2=-15/32 \\ & R^*=0.010 & 11\times 2^{-5}=0.000 & 000 & 101 & 1 \\ \hline \end{array}$$

运算过程如下:

### 第六章 6.34 (2) 原码加减交替除法

|          | <b>.</b>   |
|----------|------------|
|          | Technology |
| Science  |            |
| Computer |            |

| 被除数/余数                     | 商                                                  |
|----------------------------|----------------------------------------------------|
| 0.011 01                   | 0.000 00                                           |
| + 1.00101                  | 试减,+[-Y*] <sub>补</sub>                             |
| 1.100 10                   |                                                    |
| 1.100 10<br>1← 1.001 00    | 0.                                                 |
|                            |                                                    |
| + 0.110 11                 | R<0, +Y*                                           |
| 1.111 11                   |                                                    |
| $1 \leftarrow 1.11110$     | 0.0                                                |
| + 0.110 11                 | R<0, +Y*                                           |
| 0.110 01                   |                                                    |
| $1 \leftarrow 1.10010$     | 0.0 1                                              |
| + 1.001 01                 | R>0,+[-Y*] <sub>补</sub>                            |
| 0.101 11                   |                                                    |
| <b>1</b> ← <b>1.011 10</b> | 0.011                                              |
| + 1.001 01                 | $R>0$ , $+[-Y^*]_{\stackrel{>}{\not\sim}}$         |
| 0.100 11                   |                                                    |
| $1 \leftarrow 1.00110$     | 0.0 111                                            |
| + 1.001 01                 | $R>0$ , $+[-Y^*]_{\stackrel{?}{\not=} \downarrow}$ |
| 0.010 11                   | 1← 0.0 1 1 1 1                                     |
|                            | R>0, 结束                                            |

### 第六章 6.34 (2) 补码加减交替除法。



$$X=13/32=(0.011 \ 01)_2$$
  
 $Y=-27/32=(-0.110 \ 11)_2$   
 $[X]_{\frac{1}{7}}=x=0.011 \ 01$   
 $[Y]_{\frac{1}{7}}=1.001 \ 01$   
 $[-Y]_{\frac{1}{7}}=0.110 \ 11$ 

$$[X \div Y]_{\nmid \mid} = 1.100 \ 01$$
  
 $X \div Y = (-0.011 \ 11)_2 = -15/32$   
 $[R]_{\nmid \mid} = 0.010 \ 11$   
 $R = R^* = 0.000 \ 000 \ 101 \ 1$ 

运算过程如下:

## 第六章6.34 (2) 补码加减交替除法 Science



| 被除数(余数)                  | <br>                        |
|--------------------------|-----------------------------|
| 00.011 01                | 0.000 00                    |
| + 11.00101               | 试减,X、Y异号,+[Y] <sub>**</sub> |
| 11.100 10                |                             |
| 1← 11.001 0 <b>0</b>     | 1.                          |
| + 00.110 11              | R、Y同号,+[-Y] <sub>补</sub>    |
| 11.111 11                |                             |
| 1← 11.111 10             | 1.1                         |
| + 00.110 11              | R、Y同号,+[-Y] <sub>补</sub>    |
| 00.110 01                | ,,                          |
| $1 \leftarrow 01.10010$  | 1.1 0                       |
| + 11.001 01              | R、Y异号,+[Y] <sub>补</sub>     |
| 00.101 11                |                             |
| $1 \leftarrow 01.01110$  | 1.100                       |
| + 11.001 01              | R、Y异号, +[Y] <sub>补</sub>    |
| 00.100 11                |                             |
| $1 \leftarrow 01.001 10$ | 1.1 000                     |
| + 11.001 01              | R、Y异号,+[Y] <sub>补</sub>     |
| 00.010 11                | 1←1.1 0001 —— 恒置1           |
|                          | R、X同号,结束                    |



□ 6.35 设机器字长为16位(含1位符号位),若一次移位 需1μs,一次加法需1 μs,试问原码一位乘法、补码一位 乘法、原码加减交替除法和补码加减交替除法最多各需 多少时间?

#### □解:

原码一位乘最多需时= $1\mu s \times 15$ (加)+ $1\mu s \times 15$ (移位)= $30\mu s$  补码一位乘最多需时= $1\mu s \times 16 + 1\mu s \times 15 = 31\mu s$  原码加减交替除最多需时= $1\mu s \times (16+1) + 1\mu s \times 15 = 32\mu s$  补码加减交替除最多需时= $1\mu s \times (16+1) + 1\mu s \times 15 = 32\mu s$ 



#### □ 有下列16位字长的逻辑数 (八进制表示):

A = 000 377; B = 123 456; C = 054 321.

试计算:  $X_1 = (B \oplus C) \cdot A$ ;  $X_2 = /(/B \cdot /C) + A$ ;  $X_3 = (A \oplus B) + /(A \cdot C)$ ;  $X_4 = (A \oplus B) \oplus C$ ;

#### □解:

 $X_1=000$  377;  $X_2=177$  777;  $X_3=177$  777;  $X_4=177$  400

### 第二章 6.37



- □ 6.37 设4位二进制加法器进位信号为C<sub>4</sub>C<sub>3</sub>C<sub>2</sub>C<sub>1</sub>,最低位进位输入为C<sub>0</sub>;输入数据为A<sub>3</sub>A<sub>2</sub>A<sub>1</sub>A<sub>0</sub>和B<sub>3</sub>B<sub>2</sub>B<sub>1</sub>B<sub>0</sub>;进位生成函数为g<sub>3</sub>g<sub>2</sub>g<sub>1</sub>g<sub>0</sub>,进位传递函数为p<sub>3</sub>p<sub>2</sub>p<sub>1</sub>p<sub>0</sub>;请分别按下述两种方式写出C<sub>4</sub>C<sub>3</sub>C<sub>2</sub>C<sub>1</sub>的逻辑表达式:
  - (1) 串行进位方式; (2) 并行进位方式。

#### □ 解:

**今** 
$$g_i = A_i B_i$$
;  $p_i = A_i \oplus B_i$ ; (i=0, 1, 2, 3)

(1) 串行进位方式: (2) 并行进位方式:

$$\begin{array}{ll} C_1 = g_0 + p_0 C_0; & C_1 = g_0 + p_0 C_0 \\ C_2 = g_1 + p_1 C_1; & C_2 = g_1 + p_1 g_0 + p_1 p_0 C_0 \\ C_3 = g_2 + p_2 C_2; & C_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 C_0 \\ C_4 = g_3 + p_3 C_3; & C_4 = g_3 + p_3 g_2 + p_3 g_2 + p_3 g_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 C_0 \end{array}$$



□ 6.38 设机器字长为32位,用与非门和与或非门设计一个并行加法器(假设与非门的延迟时间为10ns,与或非门的延迟时间为15ns),要求完成32位加法时间不得超过0.2μs。画出进位线路逻辑框图及加法器逻辑框图。

#### 口解: 首先根据题意要求选择进位方案:

1) 若采用串行进位链(行波进位),则在g<sub>i</sub>、p<sub>i</sub>函数的基础上,实现32位进位需要的时间为:

T=2ty×32=64ty=64×10=640ns=0.64μs 不满足0.2μs的加法时间限制,不能用。 (设1ty=10ns)



2) 若采用成组先行-级联进位方式,则在g<sub>i</sub>、p<sub>i</sub>的基础上,4位一组分组,小组内部先行进位,小组间串行进位,则32位进位需:

T=2.5ty×8<mark>组=20</mark>ty=20×10=200ns=0.2  $\mu$ s

刚好满足0.2µs加法时间的限制。

考虑到一次加法除进位时间外,还需g<sub>i</sub>、p<sub>i</sub>函数的产生时间、和的产生时间(最高位和)等因素,故此进位方案仍不适用。

结论: 若采用成组先行-级联进位, 小组规模需在6位 以上较为合适。即:

T=2.5ty×6**坦**=15ty=15×10=150ns= **0.15**µs

除进位外还有<mark>50ns</mark>(约5ty)左右的时间供加法开销 ,较充裕。



3) 若采用二级先行-级联进位方式,4位一小组,4小组为一大组分组。小组内部先行进位,小组间即大组内也先行进位,大组间串行进位,则32位进位需:

T=2.5ty×4级=10ty=10×10=100ns

完全满足0.2μs的加法时间限制,可以使用。 进位线路及加法器逻辑框图如下页。



#### 32位二级先行-级联进位线路



### 第凸章 6.38



#### 6位一组成组先行-级联进位链



注:为讨论方便,上述电路忽略门电路扇入系数的影响。另外,一个完整的加法器还应考虑g<sub>i</sub>、p<sub>i</sub>产生电路、求和电路等。

### 第二章 6.38



32位加法器逻辑框图: 图中进位电路可选上述两种方案之一





- □ 6.39 设机器字长为16位,分别按4、4、4、4和3、5、3、5分组后,
- (1) 画出两种分组方案的成组先行-级联进位线路框图,并比较哪种方案运算速度快。
- (2) 画出两种分组方案的二级先行进位线路框图,并对 这两种方案的速度进行比较。
- (3) 用74181和74182画出成组先行-级联进位和二级先行进位的并行进位线路框图。

#### 解:

(1) 4-4-4-4分组的16位成组先行-级联进位线路框图见下页。

# 第六章 6.39 (1) 4-4-4-4分别 Science Computer

#### 4-4-4-4分组16位成组先行-级联进位线路框图



口 4-4-4-4分组16位成组先行-级联进位线路最长进位延迟

时间为:  $2.5t_y \times 4 = 10t_y$ 

# 第六章 6.39 (1) 3-5-3-5分组 Science Computer

#### 3-5-3-5分组16位成组先行-级联进位线路框图



□ 运算速度比较: 4-4-4-4分组的进位时间=2.5ty×4=10ty; 3-5-3-5分组的进位时间=2.5ty×4=10ty;

两种分组方案最长加法时间相同。

□ 结论: 成组先行-级联进位的最长进位时间只与组数有关,与组内位数无关。

口注:为便于比较,3-5-3-5分组忽略扇入影响。

# 第六章 6.39 (2) 4-4-4-4分组 Science Computer

#### 4-4-4-4分组16位二级先行进位线路框图



□ 4-4-4-4**分**组16**位**二级先行进位线路最长进位延迟时间为: 2.5t<sub>v</sub>×3=7.5t<sub>v</sub>

# 第六章 6.39 (2) 3-5-3-5分组 Science Computer

#### 3-5-3-5分组16位二级先行进位线路框图



□ 3-5-3-5**分组**16**位二级先行进位线路最长进位延迟时间为:** 2.5t<sub>v</sub>×3=7.5t<sub>v</sub>

#### 第六章 6.39 (2)



□ 运算速度比较:

```
4-4-4-4分组的进位时间=2.5ty×3=7.5ty;
3-5-3-5分组的进位时间=2.5ty×3=7.5ty;
两种分组方案最长加法时间相同。
```

□ 结论: 二级先行进位的最长进位时间只与组数和级数有关,与组内位数无关。

#### 第六章 6.39 (3)



□ 16位成组先行-级联进位加法器逻辑图(正逻辑)



□ 16位二级先行进位加法器逻辑图(正逻辑)



□ 图中,设与进位无关或不用的引脚省略不画。

### 第六章 6.39 注意



- □ 181芯片正、负逻辑引脚的表示方法;
- □ 为强调可比性,3-5-3-5分组时不考虑扇入影响;
- □ 181芯片只有最高、最低两个进位输入/输出端,组内进位无引脚;
- □ 181为4位片,无法3-5-3-5分组,只能4-4-4-4分组;
- □ 成组先行-级联进位只用到181,使用182的一般是二级以上先行进位;
- □ 成组先行-级联进位是并行进位和串行进位技术的结合; 注意在位数较少时, 二级以上进位可以采用全先行进位技术实现; 位数较多时, 可采用二级并行进位和串行进位技术结合实现(二级先行-级联进位)。

#### 第二章 6.40



- □ 6.40 用预加6方案设计一位8421码加法单元,并以设计好的加法单元为模块,进一步设计一个4位的8421码加法器。
- □ 解: 预加6方案—位8421码加法器算法分析:
  - ① 相加前,对其中一个加数预加6;
  - ② 做二进制加法;
  - ③ 十进制进位自动产生;
  - ④ 有进位时,不修正;
  - ⑤ 无进位时,减6修正(+1010)。
- □ 一位8421码加法单元线路见下页: (采用MSI芯片74LS283设计)

### 第二章 6.40



#### 一位预加6方案8421码加法单元线路图



#### 第凸章 6.40



## □ 用一位8421码加法器作基本加法单元,4位8421码加法器线路如下:





- □ 6.41 (1) 设计一个一位的余3码加法器,并分析其修正规律;
  - (2) 用8位并行二进制加法器实现2位余3码加法, 试提出你的方案。
- □ 解:
- □ (1) 由一位余3码加法和的修正关系表可得:
  - 一位余3码加法修正规律:无进位,-3 (+1101) 修正;
    - 有进位,+3 (+0011) 修正。

#### 一位余3码加法器结构:

由两级4位二进制加法器组成,第一级常规的二进制加法器实现二进制加法,第二级简化的二进制加法器实现+3、-3修正,加减3的控制由第一级加法器的进位信号完成。线路实现既可采用SSI加法器件,也可采用MSI芯片。设计方案如下:

方案一: 采用SSI全加器构成, 线路见下页。

### 第二章 6.41 (1) SSI设计



#### 采用SSI全加器设计方案的线路图



#### 第二章 6.41 (1) MSI设计



□ 方案二: 采用4位先行进位二进制加法器MSI芯片构成 (74LS283, 也可选其他MSI加法器), 线路如下:



## 第二章 6.41 (2)



- □ (2) 2位余3码加法实现方案:用两个一位余3码加法器作为加法单元,采用较简单的串行进位方式,构成2位余3码加法线路(也可采用其他进位方式,进位原理与n位二进制加法器基本一样)。此方法也适用于n位余3码加法器的构成。线路结构如下:
  - $S_{(i^+1)3\sim 0}$  $S_{i3\sim0}$ 283 283  $S'_{i3\sim0}$  $S'_{(i+1)3\sim 0}$ +5V283 283  $-C_i$  $C_{i+2}$  $C_{i+1}$  $B_{(i^+1)3\sim 0}$  $B_{i3\sim0}$  $A_{(i+1)3\sim 0}$  $A_{i3\sim0}$

#### 第二章 6.42



- □ 6.42 试用74LS181、74LS182等中规模集成电路芯片组成 一个分级先行进位的60位ALU。
- □解: 分级先行进位的60位ALU线路如下(正逻辑):



#### 第凸章 6.43



- □ 6.43 用4位位片式运算器芯片AM2901和AM2902组成一个32位定点加、减、乘、除四则运算器,采用二级先行-级联进位结构,请画出其逻辑电路图。
- □解: 32位定点四则运算器逻辑电路图如下:





- □ 6.44 浮点数的格式为: 阶码6位(含1位阶符), 尾数10位(含1位数符)。按下列要求分别写出正数和负数的表示范围,答案均用2的幂形式的十进制真值表示。
  - (1) 阶原尾原非规格化数;
  - (2) 阶移尾补规格化数;
  - (3) 按照(2)的格式,写出-27/1024和7.375的浮点机器数。
- □解: (1) 据题意画出该浮点数格式:



### 第二章 6.44 (1)



- □ 当采用阶原尾原非规格化数时,
  - ○最小负数=0,11111;1.11111111
  - ○最大正数=0,11111; 0.11111111
  - ○则表示范围为:

$$-2^{31} \times (1-2^{-9}) \sim 2^{31} \times (1-2^{-9})$$

## 第二章 6.44 (2)



- (2) 当采用阶移尾补规格化数时,
  - ○最小正数=0,00000;0.100000000
  - ○最大正数=1,11111;0.11111111
  - ○其对应的正数真值范围为:

$$2^{-32} \times 2^{-1} \sim 2^{31} \times (1-2^{-9})$$

- ○最小负数=1,11111;1.0000000
- ○最大负数=0,00000;1.011111111
- ○其对应的负数真值范围为 2<sup>31</sup> × (-1) ~ -2<sup>-32</sup> × (2<sup>-1</sup>+2<sup>-9</sup>)
- □注意:原码正、负域对称,补码正、负域不对称。浮点补码规格化尾数范围满足条件:数符⊕MSB位=1

### 第二章 6.44 (3)



- (3) 首先将十进制数-27/1024和7.375转换为二进制:
  - $\bigcirc$  -27/1024 = (-0.000 001 101 1)<sub>2</sub> = 2<sup>-5</sup> × (-0.110 11)<sub>2</sub>
  - $\bigcirc$  7.375=(111.011)<sub>2</sub> =2<sup>3</sup> ×(0.111 011)<sub>2</sub>
  - 再写成浮点机器数形式:
  - ○-27/1024的阶移尾补规格化数=0,11011;1.001 010 000
  - 7.375的阶移尾补规格化数=1,00011;0.111011000
- 注: 以上浮点数也可采用如下格式:

| 1  | 1  | 5   | 9  |
|----|----|-----|----|
| 数符 | 阶符 | 阶 码 | 尾数 |

- □此时只要将上述答案中的数符位移到最前面即可。
- 口注意: 机器数末位的0不能省。



- □ 6.45(1)将十进制数138.75 转换成32位的IEEE754短浮点数格式,并用十六进制缩写表示。
  - (2) 将IEEE754短浮点数C1B7 0000H转换成对应的十进制真值。

#### □ 解:

□ (1) 首先把十进制真值转换成符合IEEE754标准要求的二进制规格化真值形式: (138.75)<sub>10</sub> = (10001010.11)<sub>2</sub>=1.0001 0101 1×2<sup>111</sup>

然后计算阶码的移码(=偏置常数+阶码真值)

E=+127+7=11111111+111=10000110

写成短浮点数格式

S=0, E=1000 0110, 隐藏位=1.

M=.0001 0101 1000 0000 0000 000 (23位)

则 (138.75)10的短浮点数机器码为:

□ 对应的十六进制缩写为: 430A C000H



□ (2) 首先把十六进制缩写展开成二进制机器码形式,并分离出符号 位、阶码和尾数部分

- □ 则 S=1, E=1000 0011, 隐藏位=1. M=. 011 0111 0000 0000 0000 0000 (23位)
- □ 计算出阶码的真值(即移码一偏置常数) 1000 0011 -111 1111=100
- □ 写出此数的规格化二进制真值形式: -1. 011 0111×2100
- □ 进一步去掉指数项: -1.0110111×2100=-10110.111
- □ 转换成十进制真值: (-1011 0.111)2=(-22.875)10

#### 第凸章 6.46



- □ 6.46 设浮点数字长为32位, 欲表示±60000间的十进制数, 在保证数的最大精度条件下,除阶符、数符各取一位外,阶码和尾数各取几位?按这样分配,该浮点数溢出的条件是什么?
- □解: 若要保证数的最大精度,应取阶的基=2。 若要表示±6万间的十进制数,由于32768 (2<sup>15</sup>) < 6 万 <65536 (2<sup>16</sup>),则:阶码除阶符外还应取5位(向上 取2的幂)。

故: 尾数位数=32-1-1-5=25位

按此格式,该浮点数上溢的条件为:阶码≥32

该浮点数格式如下:

 1
 5
 1
 25

 阶符
 阶值
 数符
 尾 数



□ 6.47 对于尾数为40位的浮点数(不包括符号位在内) ,若采用不同的机器数表示,试问当尾数左规或右规 时,最多移位次数各为多少?

#### □解:

□对于尾数为40位的浮点数,若采用原码表示,当尾数左规时,最多移位39次;反码表示时情况同原码;若采用补码表示,当尾数左规时,正数最多移位39次,同原码;负数最多移位40次。当尾数右规时,不论采用何种码制,均只需右移1次。

### 第六章 6.48



- □ 6.48 按机器补码浮点运算步骤计算[X±Y]\*
  - (1)  $X=2^{-0.11}\times 0.101 \ 100$ ,  $Y=2^{-0.10}\times (-0.011 \ 100)$
  - (2)  $X = 2^{101} \times (-0.100 \ 101)$ ,  $Y = 2^{100} \times (-0.001 \ 111)$

解:设检测0步骤省略。

(1) 先将X、Y转换成浮点机器数形式:

 $[X]_{\uparrow \uparrow} = 1$ , 101; 0.101 100  $[Y]_{\uparrow \uparrow} = 1$ , 110; 1.100 100 = 1, 101; 1.001 000

### 第六章 6.48 (1)



#### 1) 对阶:

$$[\Delta E]_{\dot{\uparrow}} = [Ex]_{\dot{\uparrow}} + [-Ey]_{\dot{\uparrow}} = 11$$
,  $101 + 00$ ,  $011 = 00$ ,  $000$   $[\Delta E]_{\dot{\uparrow}} = 0$ ,  $Ex = Ey$  无需对阶

#### 2) 尾数相加减:

$$[Mx]_{\nmid h} + [My]_{\nmid h} = 0 \ 0 \ . \ 1 \ 0 \ 1 \ 1 \ 0 \ 0$$

$$\frac{+ \ 1 \ 1 \ . \ 0 \ 0 \ 1}{1 \ 1 \ 1 \ 1 \ 0 \ 0}$$

$$[Mx]_{\nmid h} + [-My]_{\nmid h} = 0 \ 0 \ . \ 1 \ 0 \ 1 \ 1 \ 0 \ 0$$

$$\frac{+ \ 0 \ 0 \ . \ 1 \ 1 \ 1 \ 0 \ 0}{0 \ 1 \ . \ 1 \ 0 \ 0}$$

### 第六章 6.48 (1)



#### 3) 结果规格化:

- 4) 舍入: 无
- 5) 溢出: 无

则: 
$$X+Y=2^{-101}\times$$
 (-0.110 000)  
 $X-Y=2^{-010}\times 0.110$  010

### 第六章 6.48 (2)



- (2)  $X=2^{101}\times$  (-0.100 101),  $Y=2^{100}\times$  (-0.001 111)  $[X]_{\frac{1}{7}}=0$ , 101; 1.011 011,  $[Y]_{\frac{1}{7}}=0$ , 100; 1.110 001 = 0, 010; 1.000 100
  - 1) 对阶:

[
$$\Delta E$$
]<sub>补</sub>=[ $Ex$ ]<sub>补</sub>+[- $Ey$ ]<sub>补</sub>=00,101+11,110=00,011  
[ $\Delta E$ ]<sub>补</sub>>0,应 $Ey$ 向 $Ex$ 对齐,则:  
[ $Ey$ ]<sub>补</sub>+011=00,010+00,011=00,101  
[ $\Delta E$ ]<sub>补</sub>+[-011]<sub>补</sub>=00,011+11,101=00,000=0  
至此, $Ey$ = $Ex$ ,对阶毕。  
[ $Y$ ]<sub>补</sub>=0,101;1.111 000(100)

2) 尾数运算:

$$[Mx]_{\not\nmid h} + [My]_{\not\nmid h} = 11.011 \quad 011$$

$$+ 11.111 \quad 000 \quad (100)$$

$$11.010 \quad 011 \quad (100)$$

$$[\mathbf{Mx}]_{\nmid h} + [-\mathbf{My}]_{\nmid h} = 1 \ 1 \ . \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ (100)$$
$$+ 0 \ 0 \ . \ 0 \ 0 \ 1 \ 1 \ (100)$$
$$1 \ 1 \ . \ 1 \ 0 \ 0 \ 1 \ 0 \ (100)$$

### 第六章 6.48 (2)



#### 3) 结果规格化:

#### 4) 舍入:

$$[X+Y]_{\uparrow}$$
=00,101; 11.010 011 (含)  
 $[X-Y]_{\uparrow}$ =00,100; 11.000 101 (含)

5) 溢出: 无

则: 
$$X+Y=2^{101}\times$$
 (-0.101 101)  
 $X-Y=2^{100}\times$  (-0.111 011)

### 第二章 6.48---- 非规格化解法



- □ 6.48 按机器补码浮点运算步骤计算[X±Y]<sub>补</sub>
  - (1)  $X=2^{-0.11}\times 0.101 \ 100$ ,  $Y=2^{-0.10}\times (-0.011 \ 100)$
  - (2)  $X = 2^{101} \times (-0.100 \ 101)$ ,  $Y = 2^{100} \times (-0.001 \ 111)$

解:设检测0步骤省略。

(1) 先将X、Y转换成浮点机器数形式:

$$[X]_{3}=1$$
, 101; 0.101 100

$$[Y]_{3}=1$$
, 110; 1.100 100

### 第二章 6.48 (1) ---- 非规格化



#### 1) 对阶:

[
$$\Delta E$$
]<sub>补</sub>=[ $Ex$ ]<sub>补</sub>+[- $Ey$ ]<sub>补</sub>=11, 101+00, 010=11, 111  
[ $\Delta E$ ]<sub>补</sub><0, 应 $Ex$ 向 $Ey$ 对齐,则:  
[ $Ex$ ]<sub>补</sub>+1=11, 101+00, 001=11, 110  
[ $\Delta E$ ]<sub>补</sub>+1=11, 111+00, 001=00, 000=0  
至此, $Ex$ = $Ey$ , 对阶毕。  
[ $X$ ]<sub>补</sub>=1, 110; 0.010 110(0)

#### 2) 尾数相加减:

$$[Mx]_{\nmid \mid} + [My]_{\nmid \mid} = 0 \ 0 \ . \ 0 \ 1 \ 0 \ 1 \ 10(0)$$

$$+ 1 \ 1 \ . \ 1 \ 0 \ 1 \ 0 \ 0$$

$$1 \ 1 \ . \ 1 \ 1 \ 1 \ 0 \ 1 \ 0(0)$$

$$[Mx]_{\nmid \mid} + [-My]_{\nmid \mid} = 0 \ 0 \ . \ 0 \ 1 \ 0 \ 1 \ 1 \ 0(0)$$

$$+ 0 \ 0 \ . \ 0 \ 1 \ 1 \ 0 \ 0$$

$$0 \ 0 \ . \ 1 \ 1 \ 0 \ 0 \ 0$$

### 第六章 6.48 (1) ---- 非规格化



#### 3) 结果规格化:

- 4) 舍入: 舍
- 5) 溢出: 无

则: 
$$X+Y=2^{-101}\times (-0.110\ 000)$$
  
 $X-Y=2^{-010}\times 0.110\ 010$ 

### 第六章 6.48 (2) ---- 非规格化



(2)  $X=2^{101}\times$  (-0.100 101),  $Y=2^{100}\times$  (-0.001 111)  $[X]_{\frac{1}{2}h}=0$ , 101; 1.011 011,  $[Y]_{\frac{1}{2}h}=0$ , 100; 1.110 001

#### 1) 对阶:

[
$$\Delta E$$
]<sub>补</sub>=[ $Ex$ ]<sub>补</sub>+[- $Ey$ ]<sub>补</sub>=00,101+11,100=00,001  
[ $\Delta E$ ]<sub>补</sub>>0,应 $Ey$ 向 $Ex$ 对齐,则:  
[ $Ey$ ]<sub>补</sub>+1=00,100+00,001=00,101  
[ $\Delta E$ ]<sub>补</sub>+[-1]<sub>补</sub>=00,001+11,111=00,000=0  
至此, $Ey$ = $Ex$ ,对阶毕。  
[ $Y$ ]<sub>补</sub>=0,101;1.111 000(1)

#### 2) 尾数运算:

$$[Mx]_{\frac{1}{2}h} + [My]_{\frac{1}{2}h} = 11.011 \quad 011$$

$$\frac{+ 11.111 \quad 000 \quad (1)}{11.010 \quad 011 \quad (1)}$$

$$[Mx]_{\nmid h} + [-My]_{\nmid h} = 11.011 011 + 00.000 111 (1) 11.100 010 (1)$$

### 第六章 6.48 (2) ---- 非规格化 Science



#### 3) 结果规格化:

#### 4) 舍入:

#### 5) 溢出: 无

则: 
$$X+Y=2^{101}\times$$
 (-0.101 101)  
 $X-Y=2^{100}\times$  (-0.111 011)

### 第六章 6.49



口6.49 设浮点数阶码取3位,尾数取6位(均不包括符号位),要求阶码用移码运算,尾数用原码运算,计算X×Y和X÷Y,且结果保留1倍字长。

- (1)  $X=2^{100} \times 0.100 \ 111$ ,  $Y=2^{011} \times (-0.101 \ 011)$
- (2)  $X=2^{101}\times(-0.101\ 101)$ ,  $Y=2^{001}\times(-0.111\ 100)$

解:设检测0步骤省略。

(1) 先将X、Y转换成机器数形式:

[X]<sub>阶移尾原</sub>=1,100; 0.100 111

[Y]<sub>阶移尾原</sub>=1,011; 1.101 011

1) 阶码相加减:

 $[Ex]_{8}+[Ey]_{4}=01,100+00,011=01,111$  (无溢出)  $[Ex]_{8}+[-Ey]_{4}=01,100+11,101=01,001$  (无溢出)

### 第六章 6.49 (1)



#### 2) 尾数相乘除:

○尾数相乘:

$$\begin{split} [Mx]_{\bar{\mathbb{R}}} = &0.100\ 111, \quad [My]_{\bar{\mathbb{R}}} = &1.101\ 011 \\ Mx^* = &0.100\ 111, \quad My^* = &0.101\ 011 \\ Mx_0 = &0, \quad My_0 = &1, \quad Mp_0 = &Mx_0 \oplus My_0 = &0 \oplus 1 = 1 \\ Mx^* \times &My^* = &0.011\ 010\ 001\ 101 \\ [Mx \times &My]_{\bar{\mathbb{R}}} = &1.011\ 010\ 001\ 101 \\ [P]_{\bar{\mathbb{P}}} = &[X \times Y]_{\bar{\mathbb{M}}} \\ \&R(x) = &01,111; \quad 1.011\ 010\ 001\ 101 \end{split}$$

○ 尾数相除:

$$\begin{split} & [-My^*]_{\grave{\dag}} = 1.010\ 101 \\ & Mx^* \div My^* = 0.111\ 010,\ [Mx \div My]_{\bar{\mathbb{R}}} = 1.111\ 010 \\ & r^* = 0\ .000\ 010 \times 2^{-6} = 0.000\ 000\ 000\ 010 \\ & [Q]_{\digamma} = [X \div Y]_{\lessapprox{R}} = 01,001;\ 1.\ 111\ 010 \end{split}$$

运算过程如下:

## 第六章6. 49 (1) 原码一位乘法



| 部分积   |                                                                                                          | 乘数Y*                                                                                                                                                                                                                                                                                                                                                            |                                                    |                                                    |                                                      |                                                      |                                                      |
|-------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 0.000 | $0\ 0\ 0$                                                                                                | . 1                                                                                                                                                                                                                                                                                                                                                             | 0                                                  | 1                                                  | 0                                                    | 1                                                    | <u>1</u> —— + <b>X</b> *                             |
| 0.100 | 111                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |                                                    |                                                    |                                                      |                                                      |                                                      |
| 0.100 | 111                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 | _                                                  |                                                    |                                                      |                                                      |                                                      |
| 0.010 | 011                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                               | .1                                                 | 0                                                  | 1                                                    | 0                                                    | <u>1</u> ——+X*                                       |
| 0.100 | 111                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |                                                    |                                                    |                                                      |                                                      |                                                      |
| 0.111 | 010                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |                                                    | T                                                  |                                                      |                                                      |                                                      |
| 0.011 | 101                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                               | 1                                                  | .1                                                 | 0                                                    | 1                                                    | <u>0</u> —— +0                                       |
| 0.001 | 110                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                               | 0                                                  | 1                                                  | .1                                                   | 0                                                    | <u>1</u> —— +X*                                      |
| 0.100 | 111                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |                                                    |                                                    |                                                      |                                                      |                                                      |
| 0.110 | 101                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |                                                    |                                                    |                                                      |                                                      |                                                      |
| 0.011 | 010                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                               | 1                                                  | 0                                                  | 1.                                                   | . 1                                                  | <u>0</u> —— +0                                       |
| 0.001 | 101                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                               | 1                                                  | 1                                                  | 0                                                    | 1                                                    | $\cdot \underline{1} \longrightarrow +X^*$           |
| 0.100 | 111                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |                                                    |                                                    |                                                      |                                                      |                                                      |
| 0.110 | $1\ 0\ 0$                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |                                                    |                                                    |                                                      |                                                      |                                                      |
| 0.011 | 010                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                               | 0                                                  | 1                                                  | 1                                                    | 0                                                    | 1                                                    |
|       | 0.000<br>0.100<br>0.100<br>0.010<br>0.100<br>0.111<br>0.001<br>0.100<br>0.110<br>0.110<br>0.011<br>0.011 | 0.000       000         0.100       111         0.100       111         0.010       011         0.100       111         0.111       010         0.011       101         0.100       111         0.011       010         0.001       101         0.100       111         0.110       101         0.100       111         0.110       101         0.100       111 | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

# 第六章6.49 (1)原码加减支替除法 Science Computer

| LL PANEL ANELS            | - <del></del>                                                 |
|---------------------------|---------------------------------------------------------------|
| 被除数(余数)                   | 商                                                             |
| 00.100111                 | 0.000000                                                      |
| + 11.010 101              | 试减, +[-My*] <sub>补</sub>                                      |
| 11.111 100                |                                                               |
| $1 \leftarrow 11.111 000$ | 0.                                                            |
| + 00.101 011              | + <b>M</b> y*                                                 |
| 00.100 011                | r>0,商1                                                        |
| $1 \leftarrow 01.0001110$ | 0.1                                                           |
| + 11.010 101              | +[-My*] <sub>ネト</sub>                                         |
| 00.011 011                | +[-My*] <sub>补</sub><br>r>0,商1                                |
| $1 \leftarrow 00.1101110$ | <b>0.1 1</b>                                                  |
| + 11.010 101              | +[-My*] <sub>ネト</sub>                                         |
| 00.001 011                | +[-My*] <sub>补</sub><br>r>0,商1                                |
| $1 \leftarrow 00.0101110$ | 0.111                                                         |
| + 11.010 101              | +[-My*] <sub>补</sub><br>r<0,商0                                |
| 11.101 011                | r<0,商0                                                        |
| $1 \leftarrow 11.0101110$ | 0.1 110                                                       |
| + 00.101 011              | + <b>M</b> y*                                                 |
| 00.000 001                | r>0,商1                                                        |
| $1 \leftarrow 00.000010$  | 0.1 1 1 0 <mark>1</mark>                                      |
| + 11.010 101              | +[-My*] <sub>ネト</sub>                                         |
| 11.010 111                | +[-My*] <sub>补</sub> 1← 0.1 1 1 0 1 <mark>0</mark> , r< 0, 商0 |
| + 00.101 011              | (恢复余数),+My*_                                                  |
| 00.000 010                |                                                               |

### 第六章6.49 (1)



#### 3) 结果规格化:

#### 4) 舍入:

$$[P]_{\mathscr{F}}=[X\times Y]_{\text{阶移尾原}}=01,110; 1.110\ 100\ 011\ 010 =01,110; 1.110\ 100\ (舍)$$
  $[Q]_{\mathscr{F}}=[X\div Y]_{\text{阶移尾原}}=01,001; 1.111\ 010\ (不变)$ 

5) 溢出: 无

则

$$X \times Y = 2^{110} \times (-0.110 \ 100)$$
  
 $X \div Y = 2^{001} \times (-0.111 \ 010)$ 

### 第六章 6.49 (2)



(2)  $X=2^{101}\times(-0.101\ 101)$ ,  $Y=2^{001}\times(-0.111\ 100)$ 

[X]<sub>阶移尾原</sub>=1, 101; 1.101 101

[Y]<sub>阶移尾原</sub>=1, 001; 1.111 100

1) 阶码相加减:

$$[Ex]_{8}+[Ey]_{4}=01$$
,  $101+00$ ,  $001=01$ ,  $110$  (无溢出)  $[Ex]_{8}+[-Ey]_{4}=01$ ,  $101+11$ ,  $111=01$ ,  $100$  (无溢出)

- 2) 尾数相乘除:
  - ○尾数相乘:

$$[Mx]_{\text{$\mathbb{R}$}}=1.101\ 101,\ [My]_{\text{$\mathbb{R}$}}=1.111\ 100$$
 
$$Mx^*=0.101\ 101,\ My^*=0.111\ 100$$
 
$$Mx_0=1,\ My_0=1,\ Mp_0=Mx_0\oplus My_0=1\oplus 1=0$$

### 第六章 6.49 (2) ——尾数相乘除



○ 尾数相乘:

$$Mx* \times My* = 0.101 \ 010 \ 001 \ 100$$
 $[Mx \times My]_{\bar{\mathbb{R}}} = 0.101 \ 010 \ 001 \ 100$ 
 $[P]_{\underline{\varphi}} = [X \times Y]_{\underline{h}8\underline{k}\underline{k}\underline{n}} = 01,110; \ 0.101 \ 010 \ 001 \ 100$ 

○ 尾数相除:

$$[-My^*]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray$$

○ 运算过程如下:

# 第六章 6.49 (2) 原码一位乘法 Science



| 部分积                       | 乘数Y*                                     |  |  |
|---------------------------|------------------------------------------|--|--|
| 0.000000                  | $1 \ 1 \ 1 \ 0 \ \underline{0} - +0$     |  |  |
| $\rightarrow 1$ 0.000 000 | $0 \ .1 \ 1 \ 1 \ 0 \longrightarrow +0$  |  |  |
| $\rightarrow 1$ 0.000 000 | $0 \ 0 \ .1 \ 1 \ 1 \ 1 \ +X*$           |  |  |
| + 0.101101                |                                          |  |  |
| 0.101 101                 |                                          |  |  |
| $\rightarrow 1$ 0.010110  | 1 0 0 .1 1 $\underline{1}$ + $X^*$       |  |  |
| + 0.101101                |                                          |  |  |
| 1.000 011                 |                                          |  |  |
| $\rightarrow 1$ 0.100001  | 1 1 0 0 .1 $\underline{1}$ + $X^*$       |  |  |
| + 0.101101                |                                          |  |  |
| 1.001110                  |                                          |  |  |
| $\rightarrow 1$ 0.100111  | $0 \ 1 \ 1 \ 0 \ 0 \ .\underline{1} +X*$ |  |  |
| + 0.101101                |                                          |  |  |
| 1.010100                  |                                          |  |  |
| $\rightarrow 1$ 0.101010  | $0 \ 0 \ 1 \ 1 \ 0 \ 0$                  |  |  |

# 第六章6.49 (2)原码知减变替除法 Science Computer

| 被除数(余数)                     | )<br>商                     |
|-----------------------------|----------------------------|
| 00.101 101                  | 0.00000                    |
| + 11.000100                 | 试减,+[-Mv*] <sub>¾</sub>    |
| 11.110 001                  | r<0,商0                     |
| 11.110 001<br>1← 11.100 010 | 1~0,向0<br><mark>0</mark> . |
| + 00.111 100                |                            |
|                             | +My*                       |
| 00.011 110                  | r>0,商1                     |
| 1← 00.111 100               | 0.1                        |
| + 11.000 100                | +[-My*]*h                  |
| 00.000000                   | r>0,商1                     |
| $1 \leftarrow 00.00000$     | 0.1 1                      |
| + 11.000 100                | +[-My*] <sub>ネト</sub>      |
| 11.000100                   | r<0,商0                     |
| $1 \leftarrow 10.001 000$   | 0.110                      |
| + 00.111 100                | + <b>M</b> y*              |
| 11.000100                   | r<0,商0                     |
| $1 \leftarrow 10.001000$    | 0.1 10 <mark>0</mark>      |
| + 00.111 100                | +My*                       |
| 11.000 100                  | r<0,商0                     |
| $1 \leftarrow 10.001 000$   | 0.1 1 0 0 0                |
| + 00.111 100                | + <b>M</b> y*              |
| 11.000 100                  | 1←0.110 000, r<0, 商0       |
| + 00.111 100                | 恢复余数,+My*                  |
| 00.000 000                  |                            |

### 第六章 6.49(2)



- 3) 结果规格化: 已是规格化数。
- 4) 舍入:

$$[P]_{\mathscr{P}}=[X\times Y]_{\text{阶移尾原}}=01,110; 0.101 010 001 100 = 01,110; 0.101 010 (含) [Q]_{\mathscr{P}}=[X\div Y]_{\text{阶移尾原}}=01,100; 0.110 000 (不变)$$

5) 溢出: 无

则

$$X \times Y = 2^{110} \times 0.101 \quad 010$$
  
 $X \div Y = 2^{100} \times 0.110 \quad 000$ 

注:由于加减交替除法算法中缺少对部分余数判 "0" 的步骤,因此算法运行中的某一步已除尽时,算法不会自动停止,而是继续按既定步数运行完。

### 第六章 6.50



□ 6.50 设数的阶码3位,尾数6位,均不含符号位; 阶码用移码表示, 尾数用补码表示; 阶的基为2。用浮点算法计算 X+Y、X-Y、X×Y、X÷Y, 结果要求为规格化数。

**已知**:  $X=2^{-2}\times11/16$ ;  $Y=2^{3}\times$  (-15/16)

□解:为判溢出方便,阶符和尾符均采用双符号位,先将X、Y转换成浮点规格化格式(如果仅作为练习,原始数据也可直接转换,不要求一定为规格化形式,运算完后再规格化):

 $[X]_{\text{MRE}} = 00, 110; 00.101100$ 

 $[Y]_{\text{MRE}} = 01, 011; 11.000 100$ 

□ 为便于讨论,设阶码用E表示,尾数用M表示。

#### 第六章 6.50 浮点加减法



#### 1. 浮点加减法:

(1) 对阶:

求阶差:  $[\Delta E]_{8}=[E_{x}]_{8}+[-E_{y}]_{**}=00\ 110+11\ 101=00\ 011$   $[\Delta E]_{8}<0$ ,  $E_{x}<E_{y}$ ,  $\Delta E=-5$ ,  $E_{x}$ 向 $E_{y}$ 对齐。  $M_{x}$ 右移5位。每右移一次, $E_{x}+1$ ,直到 $E_{x}=E_{y}$ 为止。

对阶后: [X]<sub>阶移屋补</sub>=01, 011; 00.000 001 (01100)

(2) 尾数运算:

$$\begin{split} [\mathbf{M}_{+}]_{\lambda h} &= [\mathbf{M}_{x}]_{\lambda h} + [\mathbf{M}_{y}]_{\lambda h} \\ &= 00.000\ 001\ (011)\ + 11.000\ 100 \\ &= 11.000\ 101\ (011) \\ [\mathbf{M}_{-}]_{\lambda h} &= [\mathbf{M}_{x}]_{\lambda h} + [-\mathbf{M}_{y}]_{\lambda h} \\ &= 00.000\ 001\ (011)\ + 00.111\ 100 \\ &= 00.111\ 101\ (011) \end{split}$$

### 第六章6.50 浮点加减法



#### (3) 结果规格化:

设尾数的高三位为 $M_sM_0.M_{MSB}.....$ 

加法时:  $M_0 \oplus M_{MSR} = 1 \oplus 0 = 1$ ;

减法时: M<sub>0</sub>⊕M<sub>MSR</sub>=0⊕1=1;

则: [M+], [M-], 已是规格化数,不需再规格化。

#### (4) 舍入:

#### 采用0舍1入法

[X+Y]<sub>阶移屋补</sub>=01, 011; 11.000 101 (舍)

[X-Y]<sub>阶移属补</sub>=01, 011; 00.111 101 (舍)

#### (5) 溢出判断:

由于 $[X+Y]_{M8 \in \mathbb{N}}$ 、 $[X-Y]_{M8 \in \mathbb{N}}$ 的阶码均未溢出,故结果无溢出。

则:  $X+Y=2^3\times$  (-59/64) ;  $X-Y=2^3\times61/64$ 

### 第六章6.50 浮点乘法



#### 2. 浮点乘法:

(1) 阶码相加:

$$[E_x]_{8}$$
= $[E_x]_{8}$ + $[E_y]_{4}$ =00 110+ 00 011=01 001—无溢出

(2) 尾数相乘:

采用补码两位乘比较法,有:

$$[\mathbf{M}_{x}]_{\begin{subarray}{l} \downarrow \downarrow \end{subarray}} = 00.101\ 100; \ [\mathbf{M}_{y}]_{\begin{subarray}{l} \downarrow \downarrow \end{subarray}} = 11.000\ 100 \ [\mathbf{M}_{x}]_{\begin{subarray}{l} \downarrow \downarrow \end{subarray}} = 111.010\ 110 \ (110\ 000\ 00)$$

#### 机器运算步骤如下:

### 第二章6.50 浮点乘法



| 部分积                               | 乘数 Y <sub>n-1</sub> Y <sub>n</sub> Y <sub>n+1</sub>     |
|-----------------------------------|---------------------------------------------------------|
| 0 0 0. 0 0 0 0 0                  | 1 1. 0 0 0 1 <u>0 0 0</u> —+0                           |
| $\rightarrow$ 2 0 0 0.0 0 0 0 0   | 0 0 1 1.0 0 0 1 0                                       |
| + 0 0 0 . 1 0 1 1 0 0             | $+[\mathbf{M}_{\mathbf{x}}]_{ eq h}$                    |
| 0 0 0 . 1 0 1 1 0 0               |                                                         |
| $\rightarrow 2$ 0 0 0.0 0 1 0 1 1 | $0 \ 0 \ 0 \ 1 \ 1. \ 0 \ 0 \ 0 -+0$                    |
| $\rightarrow 2$ 0 0 0.0 0 0 1 0   | $egin{array}{ c c c c c c c c c c c c c c c c c c c$    |
| + 1 1 1.0 1 0 1 0 0               | $+[-\mathbf{M}_{\mathbf{x}}]_{?}$                       |
| 1 1 1. 0 1 0 1 1 0                | $1 \ 1 \ 0 \ 0 \ 0 \ 0 \ \underline{0} \ \underline{0}$ |
|                                   | 清0                                                      |

### 第二章 6.50 浮点除法



#### (3) 结果规格化:

M<sub>0</sub> ⊕ M<sub>MSB</sub>=1 ⊕ 0= 1, [M<sub>×</sub>]<sub>补</sub>已是规格化数。

(4) 舍入: 采用0舍1入法

[X×Y]<sub>阶移屋补</sub>=01, 001; 11.010 111 (入)

(5) 判溢出:

由于[X×Y]<sub>阶移尾补</sub>的阶码未溢出,故结果无溢出。

**则:**  $X \times Y = 2^1 \times (-41/64)$ 

#### 3. 浮点除法:

(1) 阶码相减:

 $[E_{\div}]_{8}$ = $[E_{x}]_{8}$ + $[-E_{y}]_{N}$ = 00 110+ 11 101 = 00 011 ——无溢出

(2) 尾数相除:

采用补码加减交替除法,由于满足X\*<Y\*条件,除法过程无溢出。

 $[M_x]_{*\!\!\!/}=00.101\ 100$ ;  $[M_y]_{*\!\!\!/}=11.000\ 100$ ;  $[-M_y]_{*\!\!\!/}=00.111\ 100$   $[M_{\div}]_{*\!\!\!/}=1.010\ 001$ , 余数忽略。

若考虑余数还要进行一次恢复余数操作。机器运算步骤如下:

### 第二章6.50 浮点除法



| 被除数[M <sub>x]补</sub> /余数[M <sub>r]补</sub> | 一<br>商q                                         |
|-------------------------------------------|-------------------------------------------------|
| 00.101100                                 | 0.000000                                        |
| + 11 .000100                              | X、Y异号,+[M <sub>v</sub> ] <sub>补</sub>           |
| 11 .110000                                | A、Tot J,「[My]称                                  |
|                                           | 1 D V目具 帝1                                      |
| $\leftarrow 1  11  .100000$               | 1. —— R、Y同号,商1                                  |
| + 00 .111100                              | $+[-\mathbf{M}_{\mathbf{y}}]_{ eq h}$           |
| 00 .011100                                |                                                 |
| $\leftarrow 1  00  .111000$               | 1.0 —— R、Y异号,商0                                 |
| + 11 .000100                              | $+[\mathbf{M_v}]_{ eq h}$                       |
| 11 .111100                                |                                                 |
| $\leftarrow 1  11  .111000$               | 1.01 —— R、Y同号,商1                                |
| + 00 .111100                              | $+ [-\mathbf{M}_{\mathbf{v}}]_{ eq \mathbb{N}}$ |
| 00 .110100                                |                                                 |
| $\leftarrow 1  01  .101000$               | 1.0 1 0 R、Y异号,商0                                |
| +11 .000100                               | $+[\mathbf{M}_{\mathbf{v}}]_{ eq h}$            |
| 00 .101100                                | •                                               |
| $\leftarrow 1$ 0 1 1 0 0 0                | 1.0 1 0 0 R、Y异号,商0                              |
| +11 .000100                               | $+[\mathbf{M}_{\mathbf{y}}]_{ eq h}$            |
| 0 0 .0 1 1 1 0 0                          | ·                                               |
| $\leftarrow 1  0  0  .1  1  1  0  0  0$   | 1.0 1 0 0 0 R、Y异号,商0                            |
| + 11 .000100                              | $+[\mathbf{M}_{\mathbf{v}}]_{ eq h}$            |
| $11.111100 \leftarrow 1$                  | 1.010001—— 恒置1                                  |

### 第六章6.50 浮点除法



#### (3) 结果规格化:

M<sub>0</sub> ⊕ M<sub>MSB</sub>=1 ⊕ 0= 1, [M<sub>÷</sub>]<sub>补</sub>已是规格化数。

(4) 舍入:

由于尾数除法采用了恒置1法舍入,故不用再进行其他舍入操作。 (若采用0舍1入法舍入,可多求几位商作为保护位。)

 $[X \div Y]_{\text{M} \otimes \text{Re}} = 00, 011; 11.010 001$ 

(5) 判溢出:

由于[X÷Y]<sub>阶移尾补</sub>的阶码无溢出,故结果无溢出。

则:  $X \div Y = 2^{-5} \times (-47/64)$ 

□ 评注: 浮点运算与定点运算的主要区别在运算步骤上,每一步的具体操作方法基本以定点算法为基础; 阶码运算与尾数运算分别进行, 溢出判断以阶码溢出为标志, 尾数溢出可通过规格化操作进行调整。浮点运算时舍入问题比较突出, 为尽量减少精度损失, 一般设有若干保护位, 因此本题在运算过程中保留多余位, 直到舍入操作时才对保留位进行处理。注意最后结果按题意要求用浮点真值表示, 真值的形式要与原始数据一致。

#### 第凸章 6.51



□ 6.51 当采用最高位为奇校验位的ASCII码方案时,写出下列字符的机内码。

G, g, 7, !, &

#### □解:

□ G的ASCII码=47H; G的ASCII机内码=C7H

g的ASCII码=67H; g的ASCII机内码=67H

7的ASCII码=37H; 7的ASCII机内码=37H

!的ASCII码=21H; !的ASCII机内码=A1H

&的ASCII码=26H; &的ASCII机内码=26H

### 第二章 6.52



- □ 6.62 设有效信息为110, 试用生成多项式G(X) =11011将 其编成循环冗余校验码。
- □解:编码过程如下:

$$M(X) = 110$$
,  $n = 3$   
 $G(X) = 11011$ ,  $k+1=5$ ,  $k=4$   
 $M(X) \cdot X^4 = 110\ 00000$   
 $M(X) \cdot X^4/G(X) = 110\ 00000/11011$   
 $= 100+1100/11011$ ,  $R(X) = 1100$   
 $M(X) \cdot X^4 + R(X) = 110\ 00000+1100$   
 $= 110\ 1100 = CRC码 (7, 3)$  码

□注: 此题的G(X)选得不太好, 当最高位和最低位出错时, 余数相同, 均为0001。此时只能检错, 无法纠错。

### 第六章 6.53



- □ 6.53 试比较逻辑移位和算术移位。
- □ 解:逻辑移位和算术移位的区别:

逻辑移位是对逻辑数或无符号数进行的移位,其特点是不论左移还是右移,空出位均补0,移位时不考虑符号位。

算术移位是对带符号数进行的移位操作,其关键规则是移位时符号位保持不变,空出位的补入值与数的正负、移位方向、采用的码制等有关。补码或反码右移时具有符号延伸特性。左移时可能产生溢出错误,右移时可能丢失精度。

#### 第六章 6.54



□ 6.54 在整数定点机中,设机器数采用一位符号位,写出±0的原码、补码、反码和移码,得出什么结论?

□解:不同码制0的机器数形式如下:

| 真值 | 原码     | 补码     | 反码     | 移码     |
|----|--------|--------|--------|--------|
| +0 | 0, 000 | 0, 000 | 0, 000 | 1, 000 |
| -0 | 1, 000 | 0, 000 | 1, 111 | 1, 000 |

□ 结论: 补、移码0的表示唯一,原、反码不唯一。

□ 注意: 本题不用分析不同编码间的其他特性。

### 第八章 6.55



- □ 6.55 求证: 定点小数运算时, [X]<sub>补</sub>+[Y]<sub>补</sub>=[X + Y]<sub>补</sub> (mod 4)
- □证:根据模4补码定义:

$$[X]_{\nmid h} = \begin{cases} X & 2 > X \ge 0 \\ 4 + X & 0 > X \ge -2 \end{cases}$$
 (mod 4)

- □ 设X、Y为定点小数, X+Y亦为定点小数, 分四种情况证明:
- (1) 1 > X≥0, 1 > Y≥0, 则
  [X]<sub>补</sub>+[Y]<sub>补</sub>= X + Y = [X + Y]<sub>补</sub> (mod 4)
  当 2> X + Y≥1 时, X + Y溢出。

### 第八章 6.55



(2)  $1 > X \ge 0$ ,  $0 > Y \ge -1$ ,则

$$[X]_{\lambda h} + [Y]_{\lambda h} = X + 4 + Y$$

$$=4+(X+Y)= \begin{cases} X+Y=[X+Y]_{\frac{1}{2}h}, & 1>X+Y\geq 0\\ & (\text{mod }4)\\ [X+Y]_{\frac{1}{2}h} & 0>X+Y\geq -1 \end{cases}$$

- (3) 1 >Y≥0, 0 >X≥-1, 证明方法同(2), 略。
- (4)  $0 > X \ge -1$ ,  $0 > Y \ge -1$ , 则

$$[X]_{\frac{1}{4}}+[Y]_{\frac{1}{4}}=4+X+4+Y=4+(4+X+Y)=4+X+Y \pmod{4}$$
  
= $[X+Y]_{\frac{1}{4}}$  \(\text{mod 4}\)

当 -1>X+Y≥-2 时, X+Y 溢出。

□注:此题需用模4补码定义进行论证。

### 第六章 6.56



- $\Box$  6.56 求证:  $-[Y]_{2} = [-Y]_{2}$  (mod 4)
- □ 证: 利用模4补码加法公式进行证明。

因为 
$$[X]_{\lambda h} + [Y]_{\lambda h} = [X + Y]_{\lambda h}$$
 (mod 4)

$$[-Y]_{k} + [Y]_{k} = [-Y + Y]_{k} = [0]_{k} = 0$$
 (mod 4)

□ 评注: [-Y]<sub>补</sub>称为[Y]<sub>补</sub>的机器负数,利用此关系,可方便地将补码减法转换成加法来做。

### 第二章 6.57



**口** 6.57 **已知**: 
$$[Y]_{\stackrel{}{\nmid h}} = Y_0.Y_1Y_2.....Y_n$$
, 求证:  $[-Y]_{\stackrel{}{\nmid h}} = /Y_0./Y_1/Y_2...../Y_n + 2^{-n}$ 

口证: 当 
$$1>Y\geq 0$$
 时, $Y_0=0$ ,  $[Y]_{\stackrel{}{\Rightarrow}}=[Y]_{\stackrel{}{\otimes}}=0.Y_1Y_2......Y_n$   $[-Y]_{\stackrel{}{\otimes}}=1.Y_1Y_2......Y_n$  ; 则  $[-Y]_{\stackrel{}{\Rightarrow}}=1./Y_1/Y_2....../Y_n+2^{-n}=/Y_0./Y_1/Y_2....../Y_n+2^{-n}$  当  $0>Y\geq -1$  时, $Y_0=1$ ,  $[Y]_{\stackrel{}{\Rightarrow}}=1.Y_1Y_2......Y_n$   $[Y]_{\stackrel{}{\otimes}}=1./Y_1/Y_2....../Y_n+2^{-n}$   $[-Y]_{\stackrel{}{\otimes}}=0./Y_1/Y_2....../Y_n+2^{-n}$   $[-Y]_{\stackrel{}{\Rightarrow}}=[-Y]_{\stackrel{}{\otimes}}=0./Y_1/Y_2....../Y_n+2^{-n}$   $=/Y_0./Y_1/Y_2....../Y_n+2^{-n}$ 

□ 所以:不论Y是正还是负,在整个补码定义域均有 [-Y]<sub>\*h</sub>=/Y<sub>0</sub>./Y<sub>1</sub>/Y<sub>2</sub>....../Y<sub>n</sub>+2<sup>-n</sup>

### 第二章 6.58



- □ 6.58 某16位机的加法器,由低至高位输出序号为F<sub>0</sub>~F<sub>15</sub>, 4位一组分组,组内组间均采用先行进位结构,使用的器件为与-非、或-非、与或非、反相器等SSI门电路:
- (1) 按所用的逻辑结构写出第6位进位信号C<sub>6</sub>的逻辑表达式;
- (2) 画出与 $C_6$ 有关部分的逻辑图,令原始输入为 $A_i$ 、 $B_i$  (i=0 ~ 15) 、 $C_0$ ;
- (3) 估算产生 $C_6$ 所需的最长时间,设与-非、或-非、反相器等标准门电路的时延为T,与或非门的时延为1.5T。
- □解:该加法器逻辑框图如下所示:

### 第二章 6.58 (1)





### 第二章 6.58 (2)



#### (2) 与C<sub>6</sub>有关部分的逻辑图如下:



(3) 产生 $C_6$ 所需的最长路径为:  $A_i$ 、 $B_i \to g_i$ 、 $p_i \to G_0$ 、 $P_0 \to C_4 \to C_6$ ;

与非(或非) 与或非 与或非 与或非

则产生 $C_6$ 所需的最长时间为:  $T_{max} = T + 1.5T \times 3 = 5.5T$