Fakultät für Physik und Astronomie Ruprecht-Karls-Universität Heidelberg

Bachelorarbeit in Physik eingereicht von

Patrick Fahner

geboren in Mannheim (Deutschland)

August 2013

About ...

This Bachelor Thesis has been carried out by XYZ at the ABC Institute in Heidelberg under the supervision of Prof. Max Mustermann

Inhaltsverzeichnis

1	Einl	eitung		7
2	2.1	Aufga	Experiment ben und Ziele des Experimentes	9
	2.2		HCb-Detektor	9
		2.2.1	VeLo	9
		2.2.2	Spurrekonstruktion	9
		2.2.3	RICH-Detektoren	9
		2.2.4 $2.2.5$	Kalorimeter Myonkammern	9
3	CP-		ung in B-Meson-Systemen	11
	3.1	B-Mes	sonen und der Zerfallskanal $B_d^0 o J/\Psi K_s^0$	11
		3.1.1	Das Standardmodell der Teilchenphysik	11
		3.1.2	B-Mesonen und ihre Mischung	12
		3.1.3	Der Zerfallskanal $B_d^0 \to J/\Psi K_s^0$	12
	3.2		ete Symmetrietransformationen	13
		3.2.1	Scheinbare \mathcal{CP} -Invarianz	14
	3.3	$\mathcal{CP}\text{-}\mathrm{V}\epsilon$	erletzung in der Mischung	14
	3.4		te \mathcal{CP} -Verletzung	16
	3.5		erletzung in der Interferenz	16
	3.6	CKM-	Formalismus	17
4		enselek		19
	4.1		gestellter Datensatz	19
	4.2		te	19
		4.2.1	Trigger	19
		4.2.2	Downstream Spuren	20
		4.2.3	Stripping	20
		4.2.4	Zusätzliche Schnitte	21
		4.2.5	Geister-Wahrscheinlichkeit	21
		4.2.6	Bester Kandidat	21
		4.2.7	Fitbereiche	22
	4.3	Verwe	ndeter Datensatz	22
5		lyse /		23
	5.1	Maxin	num Likelihood Funktion	23

In halts verzeichn is

	5.2	Fitmethode sFit	
	5.3	Fit der Massenverteilung und Bestimmung der sWeigths	
	5.4	Fit der Eigenzeitverteilung	25
		5.4.1 Produktionsasymmetrie	25
		5.4.2 Bestimmung des Anfangszustandes der B_d^0 -Mesonen(Flavour Tag-	
		$\operatorname{ging})$	27
		5.4.3 Eigenzeitauflösung und -akzeptanz	29
		5.4.4 Fitfunktion	31
	5.5	Ergebnisse	31
6	Abs	schätzung systematischer Unsicherheiten	35
	6.1	Fitmethode	35
	6.2	Kalibration des Taggings	38
	6.3	Einfluss einer zeitabhängigen Akzeptanz	39
		6.3.1 Bestimmung der Akzeptanzfunktion	39
		6.3.2 Bestimmung des Einflusses	41
	6.4	Korrelation zwischen Masse und Eigenzeit	41
	6.5	Eigenzeitauflösung	43
	6.6	Gesamtsystematik	44

1 Einleitung

2 Das LHCb-Experiment

- 2.1 Aufgaben und Ziele des Experimentes
- 2.2 Der LHCb-Detektor
- 2.2.1 VeLo
- 2.2.2 Spurrekonstruktion
- 2.2.3 RICH-Detektoren
- 2.2.4 Kalorimeter
- 2.2.5 Myonkammern

3 CP-Verletzung in B-Meson-Systemen

3.1 B-Mesonen und der Zerfallskanal $B^0_d o J/\Psi K^0_s$

3.1.1 Das Standardmodell der Teilchenphysik

Im Standardmodell der Teilchenphysik gibt es 17 elementare Bausteine der Materie (siehe Abb. 3.1): 12 Fermionen, davon 6 Quarks (u, d, c, s, t, b), die sich im engeren Sinne zur Materie hadronisieren oder Mesonen bilden, und 6 Leptonen (e, μ , τ sowie die jweiligen Neutrinos $\nu_{\rm e}$, ν_{μ} , ν_{τ}). Von diesen 12 Fermionen existieren jeweils noch Antiteilchen (gleiche Eigenschaften, aber entgegengesetzte Masse). Das Standardmodell enthält weiterhin 4 Eichbosonen (Photon, Gluon, Z- und W[±]-Boson), die die 3 der 4 elementaren Kräfte übertragen: die elektromagnetische, starke und schwache Wechselwirkung. Das für die Gravitation postulierte Graviton konnte bislang nicht nachgewiesen werden. Ergänzt wird das Standardmodell, durch das Higgs-Boson, welches als Teil des Higgs-Mechanismus den Elementarteilchen seine Masse verleiht und Gegenstand aktueller Forschung ist. Mit hoher Wahrscheinlichkeit gelang jüngst der Nachweis des Higgs am CERN [3].

Abbildung 3.1: Das Standardmodell der Teilchenphysik [2]

3.1.2 B-Mesonen und ihre Mischung

Mesonen sind Paare aus Quarks und Antiquarks beliebigen Flavours. B-Mesonen insbesondere bestehen aus einem Anti-b-Quark (\overline{b}) mit einem u-, d-, c- oder s-Quark beziehungsweise aus der Kombination der jeweiligen Antiteilchen (Anti-B-Mesonen).

Die in dieser Arbeit betrachteten B_d^0 -Mesonen haben demnach die Quarkzusammensetzung $\left|B_d^0\right> = \left|\bar{b}d\right>$ und sind elektrisch neutral. Solch neutrale Mesonen besitzen die Eigenschaft, dass sie sich in ihre Antiteilchen wandeln können und umgekehrt. Es findet folglich eine Oszillation zwischen B_d^0 und $\overline{B_d^0}$ statt, die man auch Mischung nennt. Abbildung 3.2 zeigt zwei mögliche Feynmangraphen für diesen Prozess. Innerhalb der Schleifen kann die Energieerhaltung kurzzeitig verletzt werden, sodass auch kurzerhand die deutlich schweren top-Quarks enstehen können. Zu diesem Mischungsprozess leisten sie sogar einen dominanten Beitrag. Präzise Messungen der B_d^0 -Mischung erlauben Aussagen bspw. über die top-Masse und grenzen damit das Standardmodell ein, gleichzeitig erhofft man sich, durch noch präzisere Messungen Hinweise auf "neue Physik"zu finden, die sich dann in kleinsten Korrekturen innerhalb der Schleife bemerkbar machen würden.

Abbildung 3.2: Feynmangraphen zur Mischung von B_d^0 - und $\overline{B_d^0}$ -Mesonen

3.1.3 Der Zerfallskanal $B^0_d o J/\Psi K^0_s$

In dieser Arbeit wird der Zerfallskanal $B_d^0 \to J/\Psi K_s^0$ betrachtet. Abbildung 3.3 zeigt entsprechende Feynmangraphen. Jener Kanal ist auch als "goldener"Zerfallskanal für die Messung der \mathcal{CP} -Verletzung bekannt. Hintergrund ist, dass der Endzustand $|J/\Psi K_s^0\rangle$ ein \mathcal{CP} -Eigenzustand ist $(\mathcal{CP} |J/\Psi K_s^0\rangle = -|J/\Psi K_s^0\rangle$). Die Teilchen J/Ψ und K_s^0 haben die Flavoureigenzustände $|J/\Psi\rangle = |c\overline{c}\rangle$ sowie $|K_s^0\rangle = \frac{1}{\sqrt{2}}(|d\overline{s}\rangle - |s\overline{d}\rangle)$. Diese Teilchen sind ebenfalls nicht stabil und zerfallen unter anderem weiter gemäß $J/\Psi \to \mu^+\mu^-$ und

 $K_s^0 \to \pi^+\pi^-$, was zur Rekonstruktion der B_d^0 -Mesonen im Detektor genutzt wird.

Abbildung 3.3: Feynmangraph zum Zerfall $B_d^0 \to J/\Psi K_s^0$. Links: Baumdiagramm, rechts: Pinguindiagramm

3.2 Diskrete Symmetrietransformationen

Symmetrien sind in der Physik von zentraler Bedeutung. Gemäß dem Noether-Theorem existiert in der klassischen Physik zu jeder kontinuierlichen Symmetrie eine Erhaltungsgröße. In quantenmechanischen Systemen können wir drei diskrete Symmetrietransformationen betrachten:

1. Parität \mathcal{P} :

Bei der Paritätsoperation wird das Vorzeichen der kartesischen Ortskoordinaten umgekehrt. Dies entspricht einer Punktspigelung.

2. Ladungskonjugation C:

Jedes Teilchen wird durch sein Antiteilchen ersetzt.

3. Zeitumkehr \mathcal{T} :

Das Vorzeichen auf der Zeitachse wird umgekehrt. Da in der vorligenden Arbeit allerdings nur die CP-Verletzung gemessen werden soll, wird die Zeitumkehr im folgenden vernachlässigt.

Entgegen der klassischen Intuition konnte Wu 1956 nachweisen, dass die Parität im β -Zerfall und damit in der schwachen Wechselwirkung nicht erhalten ist. Weitere Experimente zeigen, dass die schwache Wechselwirkung die Parität maximal verletzt: Neutrinos, die nur schwach wechselwirken können, sind stets "linkshändig" (Spin und Impuls antiparallel), Antineutrinos dagegen immer "rechtshändig" (Spin und Impuls parallel).

Da der Spin im Gegensatz zum Impuls invariant unter \mathcal{P} -Transformation ist, würde diese Operation aus einem linkshändigen Neutrino ein rechtshändiges machen, was in der Nautr nicht realisiert ist.

Damit ist offensichtlich, dass die schwache Wechselwirkung auch die Ladungskonjugation verletzt: Wendet man die C-Transformation auf ein linkshändiges Neutrino an, so erhält man ein linkshändiges Antineutrino. Dieses existiert aber wie bereits erwähnt nicht. Analog gilt die Überlegung auch für Antineutrinos.

3.2.1 Scheinbare \mathcal{CP} -Invarianz

Wendet man nun aber die Transformationen \mathcal{P} und \mathcal{C} direkt hintereinander an, so ergibt sich zunächst kein Widerspruch zur Natur (siehe Abb. 3.4). Aus einen linkshändigen Neutrino wird ein rechtshändiges Antineutrino. Im Jahre 1964 wurde dann allerdings im Zerfall neutraler K-Mesonen erstmals \mathcal{CP} -Verletzung nachgewiesen. [4]

Abbildung 3.4: Scheinbare \mathcal{CP} -Invarianz: Während eine reine \mathcal{P} - oder \mathcal{C} -Transformation zu in der Natur nicht realisierten Zuständen führt, scheint es bei der kombinierten \mathcal{CP} -Transformation keinen Widerspruch zu geben (dünne Pfeile: Impulsausrichtung, dicke Pfeile: Spinausrichtung).

3.3 \mathcal{CP} -Verletzung in der Mischung

Die Flavoureigenzustände $|B^0\rangle = |\overline{b}d\rangle$ und $|\overline{B^0}\rangle = |b\overline{d}\rangle$ entsprechen nicht den Masseneigenzuständen. Wir definieren daher die normierten Zustände

$$|B_h\rangle = p \left| B^0 \right\rangle - q \left| \overline{B^0} \right\rangle \tag{3.1}$$

$$|B_l\rangle = p \left| B^0 \right\rangle + q \left| \overline{B^0} \right\rangle \tag{3.2}$$

mit
$$|p|^2 + |q|^2 = 1$$
 (3.3)

welche eine definierte Masse und Zerfallsbreite besitzen. Sie sind auch Eigenzustände eines nicht-hermiteschen Hamiltonoperators (Nichthermitizität wegen des möglichen Zerfalls der Teilchens). Dieser setzt sich zusammen aus den hermiteschen Massenoperatoren M und Γ . Notieren wir die lineare Superposition der Zustände 3.1 und 3.2 als $\binom{p}{q}$, so nimmt die zeitabhängige Schrödingergleichung die Form

$$i\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} p \\ q \end{pmatrix} = \left(M - \frac{\mathrm{i}}{2}\Gamma \right) \begin{pmatrix} p \\ q \end{pmatrix} \tag{3.4}$$

an und führt zur folgenden zeitlichen Entwicklung der Zustände:

$$|B_{h/l}(t)\rangle = e^{-im_{h/l}t - \frac{1}{2}\Gamma_{h/l}t} |B_{h/l}(0)\rangle$$

$$= e^{-\gamma_{h/l}t} (p|B^{0}\rangle \mp q|\overline{B^{0}}\rangle)$$
(3.5)

$$mit \quad \gamma_{h/l} = im_{h/l} + \frac{\Gamma_{h/l}}{2}$$
 (3.6)

Hierbei ist $\gamma_{h/l}$ so definiert, dass $-i\gamma_{h/l} = m_{h/l} - \frac{i}{2}\Gamma_{h/l}$ die Eigenwerte des Hamiltonoperators $\mathcal{H} := \left(M - \frac{i}{2}\Gamma\right)$ sind. Umgeschrieben auf die Flavoureigenzustände erhält man:

$$|B^{0}(t)\rangle = \frac{1}{2p} (|B_{h}\rangle + |B_{l}\rangle)$$

$$= \frac{1}{2} \left[(e^{-\gamma_{h}t} + e^{-\gamma_{l}t}) |B^{0}\rangle - \frac{q}{p} (e^{-\gamma_{h}t} - e^{-\gamma_{l}t}) |\overline{B^{0}}\rangle \right]$$
(3.7)

Die Wahrscheinlichkeit für den Übergang eines $|B^0\rangle$ (zum Zeitpunkt t=0) in ein $|\overline{B^0}\rangle$ beträgt:

$$P(B^{0} \to \overline{B^{0}})(t) = |\langle \overline{B^{0}} | B^{0}(t) \rangle|^{2}$$

$$= \frac{1}{4} \left| \frac{q}{p} \right|^{2} \left[e^{-\Gamma_{h}t} + e^{-\Gamma_{l}t} - 2e^{-\frac{1}{2}(\Gamma_{h} + \Gamma_{l})t} \cos(\Delta m_{d}t) \right]$$

$$\text{mit } \Delta m_{d} = m_{h} - m_{l}$$
(3.8)

Analog gilt für die Übergangswahrscheinlichkeit eines $\left|\overline{B^0}\right\rangle$ in ein $\left|B^0\right\rangle$:

$$P(\overline{B^0} \to B^0)(t) = \frac{1}{4} \left| \frac{p}{q} \right|^2 \left[e^{-\Gamma_h t} + e^{-\Gamma_l t} - 2e^{-\frac{1}{2}(\Gamma_h + \Gamma_l)t} \cos(\Delta m_d t) \right]$$
(3.10)

Es kommt daher in der Mischung zur \mathcal{CP} -Verletzung, wenn die Oszillation ungleichmäßig verläuft, anders ausgedrückt:

$$\mathcal{CP}$$
-Verletzung in der Mischung $\iff \left|\frac{p}{q}\right| \neq 1$ (3.11)

3.4 Direkte \mathcal{CP} -Verletzung

Die Zerfallsamplituden der neutralen B^0 -Mesonen in einen Endzustand $|f\rangle$ bzw. seinen \mathcal{CP} -konjugierten Zustand $|\overline{f}\rangle$ sind definiert als

$$A_{f} = \langle f \mid \mathcal{H} \mid B^{0} \rangle, \qquad A_{\overline{f}} = \langle \overline{f} \mid \mathcal{H} \mid B^{0} \rangle,$$

$$\overline{A_{f}} = \langle f \mid \mathcal{H} \mid \overline{B^{0}} \rangle, \qquad \overline{A_{\overline{f}}} = \langle \overline{f} \mid \mathcal{H} \mid \overline{B^{0}} \rangle. \tag{3.12}$$

Dabei bezeichnet \mathcal{H} einen Hamiltonoperator der schwachen Wechselwirkung. Ist \mathcal{CP} erhalten, dann sollten die Zerfallsraten, ergo auch die Zerfallsamplituden eines B^0 nach f sowie eines $\overline{B^0}$ nach \overline{f} gleich sein. Dies bedeutet:

Direkte
$$\mathcal{CP}$$
-Verletzung \iff $\frac{|A_f|}{|\overline{A_{\overline{f}}}|} \neq 1$ bzw. $\frac{|\overline{A_f}|}{|A_{\overline{f}}|} \neq 1$ (3.13)

3.5 \mathcal{CP} -Verletzung in der Interferenz

Die Zustände 3.1 und 3.2 haben eine nahezu gleiche Anzahl an Zerfällskanäle. Dies hat zur Folge, dass die Lebensdauern des schweren und leichten Zustands innerhalb weniger Prozent gleich sind:

$$\Gamma := \Gamma_h = \Gamma_l \tag{3.14}$$

Weiterhin sagt das Standard Modell nur eine kleine \mathcal{CP} -Verletzung in der B_d^0 Mischung voraus, sodass

$$\left| \frac{p}{q} \right| = 1 \quad \text{in} \mathcal{O}(10^{-3}). \tag{3.15}$$

Für das B-Meson-System bleibt daher nur die Möglichkeit der \mathcal{CP} -Verletzung in der Interferenz von Mischung und direktem Zerfall. Der in dieser Arbeit betrachtete Zerfallskanal $B_d^0 \to J/\Psi K_s^0$ hat einen \mathcal{CP} -Eigenzustand als Endzustand $(\mathcal{CP}|J/\Psi K_s^0) = -|J/\Psi K_s^0\rangle$. In Anlehnung an 3.12 sind die Zerfallsamplituden hier definiert als

$$A_f := \left\langle f \left| B^0(t) \right\rangle, \qquad \overline{A_f} := \left\langle f \left| \mathcal{H} \left| \overline{B^0} \right\rangle \right. \right\rangle$$

Mit Blick auf die Zerfallsamplituden der Masseneigenzustände wird die komplexe Größe

$$\lambda_f := \frac{q\overline{A_f}}{pA_f} \tag{3.16}$$

definiert. Ausgehend von Gleichung 3.7 sowie mit Hilfe fer Gleichungen (3.14), (3.15) und (3.16) gilt für die Zerfallsrate eines anfänglich reinen B_d^0 -Zustands:

$$\Gamma(B^{0} \to J/\Psi K_{s}^{0}) = \frac{1}{4} \left| (e^{-\gamma_{h}t} + e^{-\gamma_{l}t}) A_{f} - \frac{q}{p} (e^{-\gamma_{h}t} - e^{-\gamma_{l}t}) \overline{A_{f}} \right|^{2}$$

$$= \frac{1}{2} |A_{f}|^{2} e^{-\Gamma t} \left[1 + |\lambda_{f}|^{2} + (1 - |\lambda_{f}|^{2}) \cos(\Delta m_{d}t) - 2 \text{Im}(\lambda_{f}) \sin(\Delta m_{d}t) \right]$$
(3.17)

Analog:

$$\Gamma(\overline{B^0} \to J/\Psi K_s^0) = \frac{1}{2} |A_f|^2 e^{-\Gamma t} \left[1 + |\lambda_f|^2 - (1 - |\lambda_f|^2) \cos(\Delta m_d t) + 2 \text{Im}(\lambda_f) \sin(\Delta m_d t) \right]$$
(3.18)

Damit kann die vom Standard Modell prognostizierte \mathcal{CP} -verletzende Asymmetrie

$$\mathcal{A}_{\mathcal{CP}} = \frac{\Gamma(\overline{B^0} \to J/\Psi K_s^0) - \Gamma(B^0 \to J/\Psi K_s^0)}{\Gamma(\overline{B^0} \to J/\Psi K_s^0) + \Gamma(B^0 \to J/\Psi K_s^0)}$$
(3.19)

$$= -\frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \cos(\Delta m_d t) + \frac{2 \text{Im}(\lambda_f)}{1 + |\lambda_f|^2} \sin(\Delta m_d t)$$
 (3.20)

$$=: C_{J/\Psi K_s^0} \cos(\Delta m_d t) + S_{J/\Psi K_s^0} \sin(\Delta m_d t)$$
(3.21)

berechnet werden und vereinfacht sich - da $|J/\Psi K_s^0\rangle$ ein \mathcal{CP} -Eigenzustand ist, gilt $|\lambda_f|=1$ - hier zu

$$\mathcal{A}_{\mathcal{CP}} = \operatorname{Im}(\lambda_f) \sin(\Delta m_d t). \tag{3.22}$$

Damit kann im B-Meson-System, insbesondere im Zerfall $B_d^0 \to J/\Psi K_s^0$ durch Messung der Asymmetrie-Amplitude $S_{J/\Psi K_s^0}$ \mathcal{CP} -Verletzung in der Interferenz gemessen werden.

$$\mathcal{CP}$$
-Verletzung in der Interferenz \iff $S_{J/\Psi K_s^0} = \operatorname{Im}(\lambda) \neq 0$ (3.23)

3.6 CKM-Formalismus

Durch Austausch eines W[±]-Bosons können Quarks ihren Flavour ändern. Dabei sind sie aber nicht an ihre jeweilige Generation gebunden, sondern können - wenn auch zum Teil stark unterdrückt - prinzipiell den Flavour einer jeden Generation annehmen. Ein kleines Beispiel: Der Eigenzustand $|u\rangle$ der starken Wechselwirkung geht über den schwachen Prozess (Austausch eines W[±]-Bosons) nicht in ein $|d\rangle$ über, sondern vielmehr in eine Linearkombination aus $|d\rangle$, $|s\rangle$ und $|b\rangle$, die im folgenden mit $|d'\rangle$ bezeichnet wird. Allgemein werden die möglichen Linearkombinationen durch die Cabibbo-Kobayashi-Maskawa-Matrix (kurz: CKM-Matrix) beschrieben.

$$\begin{pmatrix}
|d'\rangle \\
|s'\rangle \\
|b'\rangle
\end{pmatrix} = \begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix} \cdot \begin{pmatrix}
|d\rangle \\
|s\rangle \\
|b\rangle
\end{pmatrix}$$
(3.24)

Das Betragsquadrat eines jeden Matrixelementes $|V_{ij}|^2$ gibt dabei die Wahrscheinlichkeit für den Übergang eines Quarks $|i\rangle$ in ein $|j\rangle$ an. Da die V_{ij} prinzipiell komplex sein können, gibt es zunächst 18 freie Parameter, die zu bestimmen sind. Diese Zahl reduziert sich zum einen um 5 relative Quarkphasen, die physikalisch nicht beobachtbar sind.

Zum anderen reduziert die Forderung nach Unitarität der CKM-Matrix die Zahl der unabhängigen Parameter um 9, sodass am Ende 4 Parameter, 3 Euler Winkel sowie eine Phase, welche für die \mathcal{CP} -Verletzung verantwortlich ist, zu bestimmen sind. Die CKM-Matrix lässt sich näherungsweise durch die Wolfenstein-Parametrisierung darstellen:

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$
(3.25)

Für den Zerfall von B_d^0 -Mesonen ist die Unitaritätsbedingung

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 (3.26)$$

von besonderer Bedeutung. Man kann die einzelnen Summanden nun in der (ρ, η) -Ebene auftragen und erhält dabei ein sogenanntes Unitaritätsdreieck. Es wird so normiert, dass die Unterseite bei (0,0) beginnt und bei (1,0) endet (siehe Abb. 3.5). Die obere Ecke liegt dann bei $(\overline{\rho}, \overline{\eta})$, wobei $\overline{\rho} = \rho(1 - \lambda^2/2)$ und $\overline{\eta} = \eta(1 - \lambda^2/2)$ gemäß der Wolfenstein-Parametrisierung sind. Die Winkel des Dreiecks erhält man über

$$\alpha = \arg\left[-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right], \qquad \beta = \arg\left[-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right], \qquad \gamma = \arg\left[-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right]. \tag{3.27}$$

Abbildung 3.5: Unitaritätsdreieck

Das Standardmodell stellt für den hier untersuchten Zerfallskanal eine Beziehung zwischen dem Winkel β und der komplexen Größe $lambda_f$ aus Gleichung 3.16 her ([7], [8]):

$$\lambda_f = \underbrace{\frac{V_{td}V_{tb}^*}{V_{td}^*V_{tb}}}_{\frac{q}{p}} \underbrace{\frac{V_{cd}^*V_{cb}}{V_{cd}V_{cb}^*}}_{\frac{\overline{A}_f}{\overline{A}_f}} = e^{2i\beta}$$
(3.28)

$$\Longrightarrow S_{J/\Psi K_s^0} = \operatorname{Im}(\lambda_f) = \sin(2\beta). \tag{3.29}$$

Durch Messung der Amplitude der \mathcal{CP} -Asymmetrie kann man direkte Rückschlüsse auf den CKM-Winkel β ziehen.

4 Datenselektion

4.1 Bereitgestellter Datensatz

4.2 Schnitte

Um Signal besser vom Untergrund zu trennen, werden in mehreren Schritten diverse Schnitte angewandt.

4.2.1 Trigger

Den erste Schritt bildet das Trigger-System, das schon während der Datennahme die Ereignisse sondiert. Der LHCb-Detektor verwendet dabei ein dreistufiges System: Der hardwarebasierte "L0 Trigger "reduziert die Ereignisrate von 40MHz auf 1MHz. Im Anschluss folgt der zweiteilige, softwarebasierte "High Level Trigger "(HLT), der die Ereignisrate schlussendlich auf 2kHz reduziert.[9]

Die in dieser Analyse verwendeten Trigger-Entscheidungen entsprechen denen der 2011 Analyse [1] und wurden wie folgt gewählt:

L0 Trigger

Hier wird keine spezielle Entscheidung benötigt.

High Level Trigger 1 (HLT1)

Hier wird die HltDiMuonHighMassDecision gewählt. Diese greift - wie der Name schon suggeriert - lediglich auf die Spuren der Myonen zurück, sodass nur das vom B_d^0 ausgesandte $J/\Psi \to \mu^+\mu^-$ für den Trigger verantwortlich ist. Es werden hierbei Schnitte auf die Qualität des $J\Psi$ -Vertex, die Myonen-Spuren, sowie die Masse und den (Transversal)Impuls des $J\Psi$ angewandt. Die HltDiMuonHighMassDecision erzeugt kein Bias auf die Lebensdauer des B_d^0 -Mesons.

High Level Trigger 2 (HLT2)

In dieser Analyse werden zwei unterschiedliche Entscheidungen verwendet. Zur Bestimmung der Detektorauflösung wird die Hlt2DiMuonJPsiDecision verwendet, die ähnliche Variablen wie beim HLT1 verwendet und somit auch kein Bias erzeugt. Für die reguläre Analyse wird jedoch die Hlt2DiMuonDetachedJPsiDecision verwendet, die zusätzlich die Signifikanz der Zerfallszeit eines J/Ψ berücksichtigt. Dadurch kommt es jedoch zu

einem Bias der Lebensdauer. Der Vorteil dieser Triggerwahl liegt jedoch darin, dass mehr Statistik zur Verfügung steht.

4.2.2 Downstream Spuren

Für die Rekonstruktion der J/Ψ werden ausschließlich sog. "Long"-Spuren verwendet. Diese passieren das gesamte Rekonstruktionssystem. Durch die relativ lange Lebensdauer des K_s^0 kommt es in etwa 2/3 der Fälle vor, dass der VeLo dieses nicht mehr registriert. Hinterlassen Teilchen nur in den TT und T Stationen Spuren, so spricht man von "Downstream"-Spuren. Diese Analyse beschränkt sich auf ebenjene. Damit hat man im Vergleich zu K_s^0 aus Long-Spuren mehr Statistik zur Verfügung, muss aber bei Qualität der Rekonstruktion Einbußen hinnehmen, da die Informationen des VeLo fehlen. Insbesondere leidet die Präzision der Impuls- und Positionsmessungen. Folglich dürfen die Schnitte bei Downstream-Spuren teilweise nicht so hart sein wie bei Long-Spuren. [?]

4.2.3 Stripping

!!! Achtung !!! Anpassen !!! Welches Stripping wurde verwendet???

Die Schnitte, die hierbei angewandt wurden, sind in Tabelle 4.1 aufgeführt.

Tabelle 4.1: Im Stripping verwendete Schnitte zur Selektion von B_d^0 , J/Ψ und K_s^0

Zerfall	Variable	Wert
$B_d^0 \to J/\Psi K_s^0$	$M(B_d^0)$	$\in [5150, 5550] \text{MeV}/c^2$
	$\frac{\chi^2_{vtx}}{\text{nDof}}(B_d^0)$	< 10
$J/\Psi o \mu^+\mu^-$	$\frac{\chi^2_{track}}{\text{nDof}}(\mu^{\pm})$	< 3
	$\Delta \ln \mathcal{L}_{\mu\pi}$	> 0
	$p_T(\mu^{\pm})$	$> 500 \mathrm{MeV}/c$
	$\left(\frac{\chi_{vtx}^2}{\text{nDof}}(J/\Psi)\right)$	< 16
	$ M(\mu^+\mu^-) - M(J/\Psi) $	$< 80 \mathrm{MeV}/c^2$
$K_s^0 \to \pi^+\pi^-$	$p(\pi^{\pm})$	$> 2000 \mathrm{MeV}/c$
	$\frac{\chi_{vtx}^2}{\underset{s}{\text{nDof}}}(K_s^0)$	< 20
	$\frac{\chi_{track}}{n \operatorname{Dof}}(\pi^{\pm})$	< 3
	$ M(\pi^{+}\pi^{-}) - M(K_{s}^{0}) $	$< 64 \mathrm{MeV}/c^2$
	$\frac{\chi_{IP}^2}{\text{nDof}}(\pi^{\pm})$	> 4

Hierbei bezeichnen M die rekonstruierte Masse, p den Impuls sowie p_T den Transversalimpuls eines Teilchens. Zur Rekonstruktion werden Spuren an die Detektortreffer gefittet. Um eine Aussage über die Güte des Fits zu erhalten, betrachtet man hier das entsprechende auf die Zahl der Freiheitsgrade (nDoF) normierte χ^2_{track} . Analog gilt dies für die Rekonstruktion der Vertices (χ^2_{track}). Je näher das reduzierte χ^2 der 1 kommt,

desto besser ist der Fit. !!! Impact Parameter !!! $Delta \ln \mathcal{L}_{\mu\pi}$ ist ein Maß für die Wahrscheinlichkeit, ein Myon als Pion zu interpretieren.

4.2.4 Zusätzliche Schnitte

Um den Datensatz noch besser vom Untergrund zu bereinigen, werden einige Schnitte aus den Stripping verschärft und weitere eingeführt (siehe Tab. 4.2). Diese wurden aus [1] übernommen.

Tabelle 4.2: Zusätzlich eingeführte Schnitte zur Untergrundbereinigung bzw. Selektion von B_d^0 , J/Ψ und K_s^0

Zerfall	Variable	Wert
$B_d^0 \to J/\Psi K_s^0$	$M(B_d^0)$	$\in [5170, 5420] \text{MeV}/c^2$
	$\mid au(B_d^0) \mid$	>0,3ps
	$\sigma_{\tau}(B_d^0)$	<0,2ps
	$\frac{\chi^2_{DTF(B+PV)}}{\text{nDof}}(B_d^0)$	< 5
	$\frac{\chi_{IP}^2}{\text{nDof}}(B_d^0)$	< 20
	$\frac{\chi_{IP}^2}{\text{nDof}}(B_d^0)$ des nächstbesten PV	> 50
$J/\Psi \to \mu^+ \mu^-$	$\left rac{\chi^2_{vtx}}{{ m nDof}}(J/\Psi) ight $	< 11
	$ M(\mu^+\mu^-) - M(J/\Psi) $	$\in [3030, 3165] \text{MeV}/c^2$
$K_s^0 o \pi^+\pi^-$	$\frac{\tau}{\sigma_{ au}}(K_s^0)$	> 5
	$egin{array}{c} rac{x}{\sigma_{ar{x}}}(K_s^0) \ rac{\chi_{track}}{ ext{nDof}}(\pi^\pm) \end{array}$	> 5
	$\frac{\chi^2_{track}}{n \operatorname{Dof}}(\pi^{\pm})$	< 3
	$ M(\pi^{+}\pi^{-}) - M(K_{s}^{0}) $	$\in [475, 520] \text{MeV}/c^2$

Die neu eingeführten Größen sind hier die Zerfallszeit τ und die Flugstrecke x sowie deren Unsicherheit σ_{τ} und σ_{x} . Weiterhin gibt es noch einen kinematischen Fit des Zerfallsbaums ("DecayTreeFit"- DTF). Um die Wirkung der einzelnen Schnitte zu untersuchen, werden alle Schnitte bis auf den zu untersuchenden angewandt und in der Massenverteilung das Signal-zu-Untergrund-Verhältnis bestimmt. Dieses wird dann mit den entsprechenden Werten bei Anwendung aller Schnitte verglichen.

!!! Muss fortgesetzt werden !!!

4.2.5 Geister-Wahrscheinlichkeit

!!! Hier auch !!!

4.2.6 Bester Kandidat

Es ist äußerst unwahrscheinlich, dass es mehrere $B_d^0 \to J/\Psi K_s^0$ -Zerfälle in einem Ereignis gibt. Jedoch kann es vorkommen, dass es mehr als ein rekonstruiertes B_d^0 im Ereignis gibt.

4 Datenselektion

Da aber nur ein B_d^0 am Zerfall beteiligt ist, wird der beste Kandidat anhand des kleinsten χ^2_{DTF}/nDoF des DecayTreeFit identifiziert. [1]

4.2.7 Fitbereiche

In den Analysen werden beim Fit die Massenbereiche zusätzlich eingeschränkt. Bei der Bestimmung der Detektorauflösung werden J/Ψ im Bereich [3035, 3160]MeV/ c^2 betrachtet, im regulären Fit wird nur B_d^0 -Kandidaten im Bereich [5230, 5330]MeV/ c^2 berücksichtigt.

4.3 Verwendeter Datensatz

5 Analyse / Fit

Um aus einem Datensatz den "wahren"Wert diverser Parameter abzuschätzen, gibt es verschiedene Möglichkeiten. In dieser Analyse wird die Methode sFit verwendet. Diese stellt eine modifizierte Variante des "Unbinned Maximum Likelihood"Fits dar. Unbinned meint, dass das Fitergebnis nicht von der Wahl der Säulen (engl. bins) eines Histogramms abhängt. Die Modifikation des Fits besteht in der Verwendung der aus der $_s\mathcal{P}lot$ -Technik bekannten sWeights. Dadurch ist es nicht nötig, den Untergrund zu modellieren, da dieser aus statistischen Gründen annihiliert wird.

5.1 Maximum Likelihood Funktion

Die Maximum Likelihood Methode ist eine weit verbreite Methode, um Parameter abzuschätzen. Für eine gegebene Wahrscheinlichkeitsdichtefunktion (WDF) $\mathcal{P}(\vec{x_e}; \vec{\lambda})$ mit einem unbekannten Satz Parametern $\vec{\lambda}$ und N unabhängigen Messungen $\vec{x_e}$ ist die Likelihood-Funktion als

$$\mathcal{L}(\vec{\lambda}) = \prod_{i=1}^{N} \mathcal{P}(\vec{x_e}; \vec{\lambda})$$
 (5.1)

definiert. Der Satz an Parametern, der \mathcal{L} maximiert, gilt als beste Abschätzung von $\vec{\lambda}$. In der Praxis jedoch minimiert man äquivalent — $\ln \mathcal{L}$. Gewöhnlicherweise berücksichtigt man möglichen Untergrund, indem man die WDF in einen Signal- und Untergrundanteil aufteilt:

$$\mathcal{P}(\vec{x_e}; \vec{\lambda}) = f_{sig} \mathcal{P}_{sig}(\vec{x_e}; \vec{\lambda}) + (1 - f_{sig}) \mathcal{P}_{bkg}(\vec{x_e}). \tag{5.2}$$

 f_{sig} bezeichnet hierbei den Signalanteil, \mathcal{P}_{sig} , \mathcal{P}_{bkg} die WDF des Signals bzw. Untergunds. Die Schwierigkeit besteht nun darin, den Untergrund geeignet zu modellieren. Dazu bedarf es MonteCarlo-Studien oder der Verwendung separater Seitenbänder. [10]

5.2 Fitmethode sFit

Der s
Fit bietet nun eine Möglichkeit, ohne genaue Kenntnis des Hintergrunds die wahre Verteilung des Signalanteils von \vec{x} zu rekonstruieren. Dazu bedarf es einer weiteren Variable \vec{y} , die vollkommen unkorreliert ist, also sowohl für Signal als auch Untergrund. In dieser Analyse wird später $\vec{y} = y = M(B_d^0)$ die rekonstruierte Masse der B_d^0 sein, $\vec{x}^T = (t, d, \eta)^T$, die Variablen, die zur Bestimmung von $S_{J/\Psi K_s^0}$ notwendig sind. Was diese im Einzelnen bedeuten wird später behandelt.

Sei N_s die Zahl an Signal- und N_b die Zahl an Untergrund-Ereignissen eines Datensatzes. Die Verteilungen von Signal und Untergund seien mit $F_s(y)$ bzw. $F_b(y)$ bezeichnet und all diese vier Größen seien bekannt. Dann stellt die $_s\mathcal{P}lot$ -Technik ([11]) mit den sogenannten "sWeights"

$$W_s(y) = \frac{V_{ss}F_s(y) + V_{sb}F_b(y)}{N_sF_s(y) + N_bF_b(y)}$$
(5.3)

einen Formalismus zur Verfügung, um durch Gewichtung der Ereignisse Signal vom Untergrund zu bereinigen. Die Matrix V_{ij} bezeichnet dabei das Inverse der Kovarianzmatrix

$$V_{ij}^{-1} = \sum_{e=1}^{N} \frac{F_i(y_e)F_j(y_e)}{(N_sF_s(y_e) + N_bF_b(y_e))^2}.$$
 (5.4)

In der $_s\mathcal{P}lot$ -Technik werden die Gewichte $W_s(y_e)$ berechnet und anschließend ein Histogramm mit den Messungen x_e mit der entsprechenden Gewichtung gefüllt, um die wahre Verteilung von x zu erhalten. Beim sFit wird nun die Likelihood Funktion gemäß

$$\mathcal{L}_W(\vec{\lambda}) = \prod_{i=1}^N \mathcal{P}(\vec{x_e}; \vec{\lambda})^{W_s(y_e)}$$
(5.5)

gewichtet. Die Erwartung ist, dass der Untergrundanteil auf statistischer Grundlage eliminiert wird und der wahren Wert von $\vec{\lambda}$ durch Maximierung von $\mathcal{L}_W(\vec{\lambda})$ abgeschätzt werden kann.

5.3 Fit der Massenverteilung und Bestimmung der sWeigths

Wie bereits in Kapitel 5.2 erwähnt, wird die rekonstruierte Masse zur Berechnung der sWeights herangezogen. Dazu wird ein klassischer Maximum Likelihood durchgeführt, d.h. Signal und Untergrund werden gemäß Gleichung 5.2 gesondert beschrieben.

Für den Signalteil der Massenverteilung wird ein doppelter Gauß der Form

$$\mathcal{P}_{m,S}(m; \vec{\lambda_{m,S}}) = f_{S,m} \mathcal{G}(m; m_{B_d^0}, \sigma_{m,1}) + (1 - f_{S,m}) \mathcal{G}(m; m_{B_d^0}, \sigma_{m,2})$$
 (5.6)

mit gemeinsamen Mittelwert $m_{B_d^0}$, unterschiedlichen Breiten $\sigma_{m,1}$ und $\sigma_{m,2}$ sowie dem relativen Beitrag $f_{S,m}$ der beiden Gauß-Kurven angenommen. Die Normierung ist dabei bereits in \mathcal{G} enthalten.

Der Untergrund wird durch die Exponentialfunktion

$$\mathcal{P}_{m;B}(m; \vec{\lambda_{m;B}}) = \frac{1}{\mathcal{N}_{m:B}} e^{-\alpha_m m}$$
(5.7)

modelliert. $\mathcal{N}_{m;B}$ bezeichnet dabei die Normierung auf den im Fit verwendeten Massenbereich $m \in [5230, 5330] \text{MeV}/c^2$. Damit lautet die gesamte Wahrscheinlichkeitsdichtefunktion der Massenverteilung

$$\mathcal{P}_m(m; \vec{\lambda_m}) = f_{sig} \mathcal{P}_{m;S}(m; \vec{\lambda_{m;S}}) + (1 - f_{sig}) \mathcal{P}_{m;B}(m; \vec{\lambda_{m;B}}), \tag{5.8}$$

wobei f_{sig} den Anteil des Signals angibt.

Der Fit liefert für den Parametersatz $\lambda_m^T = (f_{sig}, f_{S,m}, m_{B_d^0}, \sigma_{m,1}, \sigma_{m,2}, \alpha_m)^T$ die in Tabelle 5.1 aufgeführten Resultate. Alle Parameter wurden dabei im Fit laufen gelassen.

Tabelle 5.1:	Ergebnisse	des	Massenfits	zur	Bestimmung	der	sWeights

Parameter	Wert	
f_{sig}	$0,676\pm0,047$	
$f_{S,m}$	$0,804\pm0,050$	
$m_{B_d^0}$	$(5281, 53\pm0, 14)$	MeV/c^2
$\sigma_{m,1}$	$(8,86\pm0,37)$	MeV/c^2
$\sigma_{m,2}$	$(21,0\pm 9,2)$	MeV/c^2
α_m	$(0,00158\pm0,00071)$	$({\rm MeV}/c^2)^{-1}$

Des Weiteren zeigt Abbildung 5.1 die Massenverteilung mit Fit, die dazugehörigen Pulls sowie die berechneten sWeights. Pulls sind die auf den Fehler des Messwerts normierten Residuen. Für eine beliebige Messgröße y werden sie berechnet über

$$pull(x) = \frac{y_{gemessen} - y_{gefittet}}{\sigma_y}.$$
 (5.9)

5.4 Fit der Eigenzeitverteilung

In diesem Abschnitt soll nun die Wahrscheinlichkeitsdichte
funktion entwickelt werden, die letztendlich zur Bestimmung der Asymmetrie-Amplitude $S_{J/\Psi K_s^0}$ verwendet wird. Aus den Gleichungen 3.17 und 3.18 geht für $|\lambda_f|=1$ die theoretische Zerfallszeitverteilung für ein B_d^0 bzw. $\overline{B_d^0}$ hervor:

$$\mathcal{P}_{\text{wahr}}(t, d_{\text{wahr}}) = \frac{1}{\mathcal{N}_t} e^{-t/\tau} \left[1 - d_{\text{wahr}} S_{J/\Psi K_s^0} \sin(\Delta m_d t) \right].$$
 (5.10)

Durch die Einführung des wahren Tags d_{wahr} wurden beide Verteilungen zu einer zusammengefasst. Ein anfängliches B_d^0 wird dabei durch $d_{\text{wahr}} = 1$ beschrieben, ein $\overline{B_d^0}$ durch $d_{\text{wahr}} = -1$. Die Normierung ist so gewählt, dass die Bedingung

$$\sum_{d_{\text{wahr}}} \int_{t_{min}}^{t_{max}} dt \mathcal{P}_{\text{wahr}}(t, d_{\text{wahr}}) = 1$$
 (5.11)

erfüllt wird. Aufgrund zahlreicher detektorbedingten Effekte muss $\mathcal{P}_{\text{wahr}}(t, d_{\text{wahr}})$ modifiziert werden.

5.4.1 Produktionsasymmetrie

Der Detektor produziert B_d^0 - und $\overline{B_d^0}$ -Mesonen nicht in exakt gleicher Zahl. Über die Produktionsraten $R_{\overline{B_d^0}}$ für ein $\overline{B_d^0}$ bzw. $R_{B_d^0}$ für ein B_d^0 ist die Produktionsasymmetrie

Abbildung 5.1: Ergebnis des Massenfits

definiert durch:

$$\mu = A_P = \frac{R_{\overline{B_d^0}} - R_{B_d^0}}{R_{\overline{B_d^0}} + R_{B_d^0}}.$$
 (5.12)

Anhand dieser Definition muss der Anteil an B_d^0 bzw. $\overline{B_d^0}$ an der gesamten WDF gewichtet werden. Unter Verwendung des Kronecker-Deltas δ_{ij} lässt sich die WDF daher schreiben als:

$$\widetilde{\mathcal{P}}_{\text{wahr}}(t, d_{\text{wahr}}) = \delta_{d_{\text{wahr}}, 1}(1 - \mu)\mathcal{P}_{\text{wahr}}(t, 1) + \delta_{d_{\text{wahr}}, -1}(1 + \mu)\mathcal{P}_{\text{wahr}}(t, -1)
= (1 - d_{\text{wahr}}\mu)\mathcal{P}_{\text{wahr}}(t, d_{\text{wahr}})
= \frac{1}{\mathcal{N}_t} e^{-t/\tau} \left[1 - d_{\text{wahr}}\mu - (d_{\text{wahr}} - \mu)S_{J/\Psi K_s^0} \sin(\Delta m_d t) \right].$$
(5.13)

Der Wert der Produktionsasymmetrie μ wurde in einigen Studien gemessen und wird der LHCb Analyse aus 2011 [1] entnommen:

$$\mu = -0.015 \pm 0.013. \tag{5.14}$$

5.4.2 Bestimmung des Anfangszustandes der B_d^0 -Mesonen(Flavour Tagging)

Die Messung der indirekten \mathcal{CP} -Verletzung setzt voraus, dass der anfängliche Flavour des B_d^0 -Mesons bekannt ist. Den Vorgang zu entscheiden, ob ein rekonstruierter Signalkandidat ein b oder \bar{b} Quark enthält, nennt man "Flavour Tagging". Hierzu werden sogenannte Tagging Algorithmen angewandt, die allerdings keine perfekten Ergebnisse lieferen. Von N Kandidaten kann bei N_U Kanidaten kein Anfangsflavour zugeordnet werden, bei N_W ist er falsch und bei N_R ist er richtig. Ein Maß für die Güte des Algorithmus ist die Tagging Effizienz

$$\epsilon_{\text{tag}} = \frac{N_R + N_W}{N_R + N_W + N_U} \tag{5.15}$$

und die Fehlerwahrscheinlichkeit

$$\omega = \frac{N_W}{N_R + N_W},\tag{5.16}$$

die die Wahrscheinlichkeit angibt, den Signalkandidaten den falschen Flavour zuzuordnen. Die Größe die es bei solchen Algorithmen zu maximieren gilt, ist die effektive Tagging Effizienz

$$\epsilon_{eff} = \epsilon_{tag} (1 - 2\omega)^2. \tag{5.17}$$

Bei dem in dieser Arbeit verwendeten Algorithmus handelt es sich um einen sog. Opposite Side Tagger (OST). Dieser nutzt aus, dass die meisten b Quarks in Quark-Antiquark Paaren erzeugt werden. Dabei rekonstruiert der OST die Ladung der Zerfallsreste des

entsprechenden Quark-Partners des B_d^0 -Mesons. Der Algorithmus berechnet aus kinematischen und geometrischen Daten eine Fehlerwahrscheinlichkeit $\eta^{OS} \in [0;0,5]$ für seine Flavour-Zuweisung (oder auch Tagging Entscheidung genannt), die im folgenden mit d^{OS} bezeichnet wird. [1]

Die vorhergesagte Fehlerwahrscheinlichkeit η^{OS} muss allerdings noch auf diversen Zerfallskanälen kalibriert nehmen. Dies ist allerdings nicht Bestandteil dieser Arbeit, sondern wurde auch [12] entnommen. Die Kalibrationsfunktion lautet:

$$\omega(\eta^{OS}) = p_1 \left(\eta^{OS} - \langle \eta^{OS} \rangle \right) + p_0. \tag{5.18}$$

 $\langle \eta^{OS} \rangle$ steht dabei für das arithmetische Mittel der η^{OS} -Verteilung. Aus [12] erhält man

$$p_0 = 0,382 \pm 0,003 \tag{5.19}$$

$$p_1 = 0,981 \pm 0,024 \tag{5.20}$$

$$\left\langle \eta^{OS} \right\rangle = 0,382 \tag{5.21}$$

Die im Algorithmus verwendeten geladenen Teilchen wie zum Beispiel ein K^{\pm} können je nach Ladung zum Teil sehr unterschiedlich mit dem Detektormaterial reagieren. Daher kommt es auch zu unterschiedlichen Rekonstruktionseffizienzen für B_d^0 und $\overline{B_d^0}$. Entsprechend müssen zwei Kalibrationsfunktionen

$$\omega^{B_d^0}(\eta^{OS}) = p_1(B_d^0) \left(\eta^{OS} - \langle \eta^{OS} \rangle \right) + p_0(B_d^0), \tag{5.22}$$

$$\omega^{\overline{B_d^0}}(\eta^{OS}) = p_1(\overline{B_d^0}) \left(\eta^{OS} - \langle \eta^{OS} \rangle \right) + p_0(\overline{B_d^0}) \tag{5.23}$$

berücksichtigt werden. Für die Differenzen der Kalibrationsparameter liefert [12]

$$\Delta p_0 = p_0(B_d^0) - p_0(\overline{B_d^0}) = 0,0045 \pm 0,0053 \tag{5.24}$$

$$\Delta p_1 = p_1(B_d^0) - p_1(\overline{B_d^0}) = 0,001 \pm 0,05. \tag{5.25}$$

Während p_1 für B_d^0 und $\overline{B_d^0}$ sehr gut übereinstimmen, muss man das bei p_0 differenzierter betrachten. Auch hier ist man zwar im 1σ -Bereich kompatibel, anderen Studien der LHCb-Gruppe zeigen jedoch, dass die Tagging Asymmetrie Δp_0 berücksichtigt werden sollte, was auch hier geschieht. Dazu werden *omega* und Δp_0 so umdefiniert, dass

$$\Delta p_0 = \omega^{B_d^0} - \omega^{\overline{B_d^0}},\tag{5.26}$$

$$\omega^{B_d^0} = \omega + \frac{\Delta p_0}{2},\tag{5.27}$$

$$\omega^{\overline{B_d^0}} = \omega - \frac{\Delta p_0}{2} \tag{5.28}$$

gilt. Aufgrund der Fehlerwahrscheinlichkeit beim Tagging weicht die gemessene Zerfallszeitverteilung von der tatsächlichen deutlich ab. Bei einem gemessenen $B_d^0(d^{OS}=1)$ handelt es sich in $(1-\omega^{B_d^0})\%$ der Fälle auch tatsächlich um ein $B_d^0(d_{wahr}=1)$, in $\omega^{\overline{B_d^0}}$

der Fälle jedoch um ein wahres $\overline{B_d^0}(d_{wahr}=-1)$. Damit nimmt die Wahrscheinlichkeitsdichtefunktion der gemessenen Verteilung die Form

$$\widetilde{\mathcal{P}}_{\text{gem.}}(t, d^{OS}, \omega) = \delta_{d^{OS}, 1} \left[(1 - \omega^{B_d^0}) \widetilde{\mathcal{P}}_{\text{wahr}}(t, d_{\text{wahr}} = 1) + \omega^{\overline{B_d^0}} \widetilde{\mathcal{P}}_{\text{wahr}}(t, d_{\text{wahr}} = -1) \right]
+ \delta_{d^{OS}, -1} \left[(1 - \omega^{\overline{B_d^0}}) \widetilde{\mathcal{P}}_{\text{wahr}}(t, d_{\text{wahr}} = -1) + \omega^{B_d^0} \widetilde{\mathcal{P}}_{\text{wahr}}(t, d_{\text{wahr}} = 1) \right]
= \frac{1}{\mathcal{N}_t} e^{-t/\tau} \left\{ 1 - d\mu (1 - 2\omega) - d\Delta p_0 \right.
\left. - \left[d(1 - 2\omega) - \mu (1 - d\Delta p_0) \right] S_{J/\Psi K_v^0} \sin(\Delta m_d t) \right\}$$
(5.29)

In der letzten Zeile wurde für eine übersichtlichere Schreibweise $d:=d^{OS}$ verwendet.

5.4.3 Eigenzeitauflösung und -akzeptanz

Der letzte Effekt, der noch berücksichtigt werden muss, ist die endliche, Eigenzeitauflösung des Detektors. Dies wird dadurch deutlich, dass es auch Ereignisse mit negativer Eigenzeit gibt. Da diese unphysikalisch sind und nur auf Auflösungseffekte zurückzuführen sind, werden genau diese Ereignisse zur Bestimmung einer Auflösungsfunktion verwendet. Wie in den Kapiteln 4.2.1 und 4.2.3 bereits erwähnt wurde, werden hierzu auf den Datensatz die High Level Trigger 2 Linie Hlt2DiMuonJPsiDecision sowie die Stripping Linie BetaSBd2JPsiKsPrescaledLine angewandt. Um die negativen Ereignisse zu sehen, darf natürlich kein Schnitt auf die Lebensdauer angewandt werden.

In dieser Arbeit wird das Modell der mittleren Zerfallszeitauflösung verwendet. Als Akzeptanzfunktion wird ein dreifacher Gauß der Form

$$\mathcal{R}(t) = \sum_{i=1}^{3} \frac{f_i}{\sqrt{2\pi}\sigma_i} e^{-\frac{t^2}{2\sigma_i^2}}$$
 (5.30)

mit dem gemeinsamen Mittelwert 0, den unterschiedlichen Breiten σ_i , sowie den relativen Anteilen f_i der einzelnen Gauß-Funktionen gewählt. Dabei ist $\sum f_i = 1$ zu beachten. Somit erübrigt sich f_3 als eigenständigen Parameter zu betrachten, es wird $f_3 = 1 - f_1 - f_2$ verwendet. Um Signal von Untergrund zu trennen wird ein sFit angewandt. Da der Zerfallsvertex der hier behandelten B_d^0 -Mesonen hauptsächlich durch den J/Ψ -Vertex festgelegt wird, wird zur Bestimmung der sWeights die rekonstruierte J/Ψ -Masse herangezogen (siehe [?]). Entgegen dem Massenfit der B_d^0 -Mesonen aus Gleichung 5.8 wird hier als Wahrscheinlichkeitsdichtefunktion die Summe aus einer Gauß- und einer CrystalBall-Funktion verwendet. Die Crystallball-Funktion hat eine gaußförmige Basis, aber einen zu kleineren Werten als dem Mittelwert hin asymmetrischen, abgeflachten Teil, der den Energieverlust durch Photonabstrahlung berücksichtigt [13]. Abbildung 5.2 zeigt sowohl das Ergebnis des Massenfits als auch den Fit der Auflösungsfunktion. Die erhaltenen Parameter der Eigenzeitauflösung sind in Tabelle 5.2 aufgeführt.

Im Fit wird die Auflösung dadurch berücksichtigt, dass die Wahrscheinlichkeitsdichtefunktion der Eigenzeitverteilung $\widetilde{\mathcal{P}}_{\text{gem.}}(t,\omega)$ (siehe Gleichung 5.29) mit der Auflösungsfunktion $\mathcal{R}(t)$ gefaltet werden muss.

Abbildung 5.2: Bestimmung der Auflösung: Die linke Hälfte zeigt den für die Bestimmung der sweights durchgeführten Fit an die rekonstruierte J/Ψ -Masse (oben) und die dazugehörigen Pulls (unten), die rechte Hälfte den Fit der Auflösungsfunktion (oben) und die entsprechenden Pulls (unten)

Tabelle 5.2: Ergebnisse des Fits der Eigenzeitauflösung

Parameter	Wert	
σ_1	$0,480{\pm}0,070$	ps
σ_2	$0,04396\pm,.00094$	ps
σ_3	$0,0932\pm0,0034$	ps
f_1	$0,00329\pm0,00099$	
f_2	$0,739\pm0,027$	

Ein weiterer Punkt, der berücksichtigt werden muss, ist die Eigenzeitakzeptanz des Detektors. Es werden hier keine großen Einflüsse erwartet, daher wird die Akzeptanzfunktion

$$\epsilon(t) = 1 \tag{5.31}$$

gesetzt. Eine systematische Analyse und eine Abschätzung des Einflusses dieser Vernachlässigung findet sich in Kapitel 6.3.

5.4.4 Fitfunktion

Kombiniert man nun alle Effekte, die im vorigen Kapitel 5.4, aufgeführt und beschrieben haben, so nimmt die Wahrscheinlichkeitsdichtefunktion für die Eigenzeitverteilung der B_d^0 -Mesonen die Form

$$\mathcal{P}_{\text{gem.}}(t,d,\eta) = \epsilon(t) \left[\widetilde{\mathcal{P}}_{\text{gem.}}(t',d,\eta) \otimes \mathcal{R}(t-t') \right]$$

$$= \frac{1}{\mathcal{N}_t} \left[e^{-t'/\tau} \left\{ 1 - d\mu(1-2\omega) - d\Delta p_0 - \left[d(1-2\omega) - \mu(1-d\Delta p_0) \right] S_{J/\Psi K_s^0} \sin(\Delta m_d t') \right\} \right] \otimes \mathcal{R}(t-t') \quad (5.32)$$

an. Durch diesen Fit erhält man eine Abschätzung für den \mathcal{CP} -Parameter $S_{J/\Psi K_s^0}$. In Gleichung 5.32 bezeichnen τ die gemessene B_d^0 -Lebensdauer, Δm_d die Oszillationsfrequenz des B_d^0 -Mesons, μ die Produktionsasymmetrie sowie d den durch die Flavour-Tagging Algorithmen bestimmten Anfangszustand des B_d^0 . Dabei gilt für B_d^0 -Mesonen d=1, für $\overline{B_d^0}$ d=-1. Die Fehlerwahrscheinlichkeit des Flavour Taggings ω ist wiederum abhängig von der von den Algorithmen vorhergesagten Fehlerwahrscheinlichkeit η gemäß

$$\omega(\eta) = p_1 \left(\eta - \langle \eta \rangle \right) + p_0. \tag{5.33}$$

5.5 Ergebnisse

Im Fit der Eigenzeitverteilung werden nicht alle Parameter laufen gelassen. Fixiert werden zum einen die Parameter der Eigenzeitauflösung (siehe Tab. 5.2) und der Flavour-Tagging Kalibrationsparameter $\langle \eta \rangle = 0,382$. Des Weiteren werden einige Parameter eingeschränkt. Dies sind die Produktionasymmetrie μ sowie die Kalibrationsparameter p_0 , p_1 und Δp_0 . Die verwendeten Werte sind aus [1] für μ beziehungsweise [12] für p_0 , p_1 und Δp_0 entnommen und in Tabelle 5.3 aufgeführt.

Als Parameter, die frei laufen, bleiben dementsprechend die \mathcal{CP} -Asymmetrie Amplitude $S_{J/\Psi K_s^0}$, die Lebensdauer τ sowie die Oszillationsfrequenz Δm_d übrig. Während der gesamten Analyse wurde der Parameter $S_{J/\Psi K_s^0}$ verdeckt (Fachjargon: "geblindet"). Dabei wird das eigentliche Ergebnis um einen dem Experimentator unbekannten Wert verschoben. Diese Verschiebung wird mittels einer Zeichenkette berechnet. Dies soll verhindern, dass sich der Experimentator an älteren Messungen oder dem Weltmittelwert

Tabelle 5.3: Parameter, die im Fit eingeschränkt werden.

Parameter	Wert
$\overline{p_0}$	$0,382\pm0,003$
p_1	$0,981\pm0,024$
Δp_0	$0,0045\pm0,0053$
μ	$-0,015\pm0,013$

etc. orientiert und dahingehend seine Analyse beeinflusst. Erst nach Beendigung aller systematischen Studien (siehe Kapitel 6) und beim Verfassen dieser Arbeit wurde die wahre Abschätzung von $S_{J/\Psi K_s^0}$ aufgedeckt. Diese sei hier schon einmal vorweggenommen:

$$S_{J/\Psi K_s^0} = xxx \pm 0,069 \tag{5.34}$$

Alle Resultate des Fits sind in Tabelle 5.4 aufgeführt. Die gemessene Eigenzeitverteilung sowie die dazugehörigen Fitkurven sind in Abbildung 5.3 in Schwarz (für B_d^0) und in Rot $(\overline{B_d^0})$ dargestellt.

Tabelle 5.4: Ergebnisse des Fits der Eigenzeitverteilung.

Parameter	Wert	
$S_{J/\Psi K_s^0}$	$xxx\pm0,069$	
au	$(1,516\pm0,039)$	ps
Δm_d	$(0,521\pm0,039)$	$\hbar \mathrm{ps}^{-1}$
p_0	$0,32814\pm0,0030$	
p_1	$0,977\pm0,024$	
Δp_0	$0,0046\pm0,0051$	
μ	$-0,019\pm0,013$	

Abbildung 5.3: Ergebnis des Fits der Eigenzeitverteilung: Gemessene Eigenzeitverteilung der B_d^0 - (schwarz) bzw. $\overline{B_d^0}$ -Mesonen (rot) mit entsprechendem Fitergebnis gemäß Gleichung 5.32 und den Parametern aus Tabelle 5.4 (oben) sowie dazugehörige Pull-Verteilung (unten).

6 Abschätzung systematischer Unsicherheiten

Der Fitter liefert zwar eine statistische Unsicherheit auf $S_{J/\Psi K_s^0}$, allerdings ist eine Betrachtung der Systematik unerlässlich. Im Folgenden wird daher der Einfluss einiger Effekte auf das Fitergebnis untersucht und anschließend der systematische Fehler abgeschätzt.

6.1 Fitmethode

Die hier verwendete Maximum-Likelihood-Methode hat zwar den schönen Vorteil, dass das Fitergebnis nicht von der Einteilung des Histogramms abhängt, es ist jedoch nicht von vornherein ausgeschlossen, dass sie das Ergebnis verfälscht (einen sog. Bias produziert). Daher wird eine Toy Monte Carlo - Studie (kurz: Toy MC) durchgeführt. Dabei werden Daten zufällig nach einer Verteilung mit den gewünschten Parametern generiert und im Anschluss gefittet. Zur Generation der Massen- und Eigenzeitverteilung werden die aus den Fits erhaltenen Parameter verwendet (siehe Tabellen 5.1 und 5.4). Die einzige Ausnahme bildet $S_{J/\Psi K_s^0}$, da diese zum Zeitpunkt dieser Studie noch verdeckt war. Hier wurde mit $S_{J/\Psi K_s^0} = 0.75$ generiert. Entsprechend der Statistik im verwendeten Datensatz werden hier jeweils 13000 Ereignisse generiert. Durch mehrmaliges Wiederholen von Generation und Fit sollten die gefitteten Parameter am Ende gaußverteilt um die in der Generation verwendeten Parameter sein. Kommt es zu Abweichungen davon, so ist dies auf die Fitmethode oder eine fehlerhafte Implementation des Eperimentators zurückzuführen. Um statistisch zuverlässige Aussagen treffen zu können, wurden in dieser Toy MC - Studie insgesamt 20000 Wiederholungen durchgeführt.

Abbildung 6.1: Verteilung der aus der Toy MC Studie erhaltenen Amplituden $S_{J/\Psi K_s^0}$ (links) sowie die dazugehörigen Pulls (rechts)

Abbildung 6.1 zeigt sowohl die Verteilung der gefitteten Amplitude $S_{J/\Psi K_2^0}$ als auch

die Pulls, die sich mittels $\frac{S_{J/\Psi K_s^0}^{gefittet} - S_{J/\Psi K_s^0}^{generiert}}{\sigma^{gefittet}}$ berechnen lassen. Der Mittelwert der Amplitudenverteilung (links) $S_{J/\Psi K_s^0}^{\text{ToyMC}} = 0,7548 \pm 0,0005$ weicht signifikant vom generierten Wert $S_{J/\Psi K_s^0} = 0,75$ ab, es gibt also einen Bias. An der Pull-Verteilung lassen sich prinzipiell zwei Dinge beobachten:

1. An der Verschiebung des Pull-Mittelwertes $\mu=0,0679\pm0,0067$ von der Null sieht man deutlich, dass es - wie bereits erwähnt - einen kleinen, aber signifikanten Bias gibt. Indem dieser Bias mit der statistischen Unsicherheit aus dem Fitergebnis (siehe Gl. 5.34) multipliziert wird, erhält man eine Abschätzung der aus der Fitmethode resultierenden Unsicherheit:

$$\delta S_{J/\Psi K_s^0}^{Fit} = 0,0679 \cdot 0,069 = 0,0047 \tag{6.1}$$

2. Mit einem $\sigma=0,9462\pm0,0047$ ist die Pull-Verteilung signifikant zu schmal. Dies bedeutet, dass der Fit den statistischen Fehler überschätzt. Weitere Untersuchungen zeigen, dass Problem auftritt, sobald man in den Toys Untergrund miteinbezieht (siehe Abb. 6.2). Es ist bekannt, dass die verwendete sFit-Methode die Fehlerpropagation (gerade bei Untergrund) nicht korrekt ausführt. Es wurde vom Betreuer eine Fehlerkorrektur implementiert, dabei handelt es sich jedoch um eine Näherung. Für eine tiefergehende Studie müsste die Fehlerkorrektur entsprechend analysiert werden.

Ursachen des Bias

!!! nochmal bearbeiten !!!

Es bleibt zu klären, welche Ursachen zu dem Bias führen. Dazu wird zunächst eine Toy MC-Studie ohne Untergrund ($f_{sig} = 1$) durchgeführt Weitere Toy MC Studien zeigen, dass die Behandlung des Untergrundes zu einem Bias führt. Generiert man nämlich nur Signal, ist der Mittelwert kompatibel zur Null (siehe Abb. 6.2).

Abbildung 6.2: Toy MC Studie mit reinem Signal ohne Untergrund. Es kommt zu keinem signifikanten Bias. Links: Verteilung der erhaltenen Amplitude, Rechts: Pull-Verteilung.

Die Vermutung ist, dass zu wenig Statistik im Fit die eigentliche Ursache für den Bias ist. Daher wurden weitere Toy MC Studien mit unterschiedlicher Anzahl an Teilchen pro Toy durchgeführt. Die Ergebnisse sind in Tabelle 6.1 aufgeführt und in Abbildung 6.3 nochmals visualisiert. Man sieht, dass sich der Fit Bias mit erhöhter Statistik deutlich reduzieren lässt. Allerdings lässt das Ergebnis Zweifel aufkommen, ob er sich mit noch mehr Statistik gänzlich verschwindet.

Tabelle 6.1: Toy MC Studien mit unterschiedlicher Anzahl an generierten Events pro Toy. Genannt wird der Mittelwert μ der $S_{J/\Psi K_s^0}$ -Pull-Verteilung

	. 0/1118
Teilchen pro Toy	μ
20000	$0,059\pm0,007$
50000	$0,036\pm0,007$
100000	$0,020\pm0,007$
200000	$0,022 \pm 0,007$

Fit Bias depending on number of generated events

Abbildung 6.3: Toy MC Studien mit unterschiedlicher Anzahl an generierten Events pro Toy. Als Maß für den Fit Bias dient der Mittelwert μ der $S_{J/\Psi K_s^0}$ -Pull-Verteilung

6.2 Kalibration des Taggings

Im Fit wird bei den Parametern der Tagging Kalibration nur der statistischen Fehler berücksichtigt. Es soll nun an dieser Stelle der Einfluss der statistischen Unsicherheiten abgeschätzt werden.

Die Korrekturparameter p_0 und p_1 für die Fehlerwahrscheinlichkeit des OST sind gegeben durch

$$p_0 = 0,392 \pm 0,0017 \text{ (stat.)} \pm 0,0076 \text{ (syst.)}$$
 (6.2)

$$p_1 = 1,035 \pm 0,021 \text{ (stat.)} \pm 0,0076 \text{ (syst.)}.$$
 (6.3)

Variation der Parameter in den Daten !!! Wichtig !!! - Dieser Abschnitt muss nochmal überarbeitet werden. (Werte anpassen)

Zunächst werden die Startwerte der Parameter p_0 und p_1 variiert, indem man jeweils den systematischen Fehler der Parameter addiert bzw. subtrahiert und dann den Fit auf die Daten durchührt. Für alle vier Kombinationen wird dann die Abweichung vom regulären Fitergebnis für $S_{J/\Psi K_s^0}$ berechnet. Der Referenzwert aus dem Fit beträgt

$$S_{J/\Psi K_{\circ}^{0}} = 0,625 \pm 0,069$$
 (6.4)

Tabelle 6.2: Variation des Fitergebnisses für $S_{J/\Psi K_s^0}$ bei Veränderung der Startwerte für p_0 und $p_1 \pm$ ihrer statistischen Unsicherheiten

p_0	p_1	$S_{J/\Psi K_s^0}$	$\Delta S_{J/\Psi K_s^0}$
0,3783 - 0,0028	0,950 - 0,028	$0,7623\pm0,0005$	$0,0093\pm0,0007$
0.3783 + 0.0028	0,950 - 0,028	$0,7368\pm0,0005$	-0.0171 ± 0.0007
0,3783 - 0,0028	0,950 + 0,028	$0,7729\pm0,0005$	$0,0190\pm0,0007$
0,3783 + 0,0028	0,950 + 0,028	$0,747\pm0,001$	$-0,007\pm0,001$

Die Ergebnisse sind Tabelle 6.2 zu entnehmen. Die größte Abweichung beträgt hier $\Delta S_{J/\Psi K_s^0}=0,0190.$

Variation der Parameter in Toy MC Eine weitere Möglichkeit der Abschätzung besteht darin, sich entsprechende Toys zu generieren und diese dann zu fitten. Im Folgenden werden bei der Toy Generierung die Parameter p_0 und p_1 um ihre statistischen Unsicherheiten variiert (systematische Fehler auf die Kalibration liegen leider noch nicht vor), der Fit dann allerdings mit den ursprünglichen Parameterwerten durchgeführt. Als Referenzwert dient die aus dem Fit Bias (siehe Kapitel 6.1) erhaltene Amplitude, da hier mit den regulären Parametern p_0 und p_1 generiert und gefittet wurde:

$$S_{J/\Psi K_s^0} = 0,7539 \pm 0,0005$$
 (6.5)

Tabelle 6.3: Variation des Fitergebnisses für $S_{J/\Psi K_s^0}$ bei Veränderung der Parameterwerte p_0 und p_1 \pm ihrer statistischen Unsicherheiten bei der Generierung von Toys

$\overline{p_0}$	p_1	$S_{J/\Psi K_s^0}$	$\Delta S_{J/\Psi K_s^0}$
0,3783 - 0,0028	0,950 - 0,028	$0,7623\pm0,0005$	$0,0093\pm0,0007$
0,3783 + 0,0028	0,950 - 0,028	$0,7368\pm0,0005$	-0.0171 ± 0.0007
0,3783 - 0,0028	0,950 + 0,028	$0,7729\pm0,0005$	$0,0190\pm0,0007$
0,3783 + 0,0028	0,950 + 0,028	$0,747\pm0,001$	$-0,007\pm0,001$

Die Ergebnisse sind Tabelle 6.3 zu entnehmen, diese wurde aus den Plots in Abbildung 6.4. Die größte Abweichung beträgt hier $\Delta S_{J/\Psi K_s^0} = 0,0190$. Daher wird der systematische Fehler durch die Tagging Kalibrierung wie folgt abgeschätzt:

$$\delta S_{J/\Psi K_s^0}^{Tagging Kalibration} = 0,0190 \ . \tag{6.6}$$

6.3 Einfluss einer zeitabhängigen Akzeptanz

In der Analyse wurde der Einfluss einer zeitabhängigen Detektorakzeptanz vernachlässigt. Nimmt man an, dass sich die Akzeptanz von B_d^0 - und $\overline{B_d^0}$ -Mesonen nicht unterscheiden, so hat die Akzeptanz keinen Einfluss auf die Asymmetrie, da sie sich hier herauskürzt. Beim Fit der Amplitude nach Gleichung 5.32 ist dies aber nicht zwangsläufig so. Um hiesiges Vorgehen zu rechtfertigen, wird zunächst eine Bestimmung der Akzeptanz durchgeführt und anschließend mit einer Toy MC Studie ihr Einfluss überprüft.

6.3.1 Bestimmung der Akzeptanzfunktion

 B_d^0 -Mesonen haben eine relativ lange Lebensdauer. Um sie von kurzlebigem Untergrund zu unterscheiden, befinden sich auf den Triggern und dem Stripping entsprechende Cuts auf die Flugzeiten. Dies hat zur Folge, dass für kleine Flugzeiten ($ct \lesssim 0,3$ ps) kaum B_d^0 -Mesonen im Detektor registriert werden und es zu einem sog. "Turn-On-Effekt"kommt. Es hat sich herausgestellt ([1]), dass dieser gut durch die Funktion

$$\epsilon_1(t) = \frac{2}{\pi} \arctan[t \cdot \exp(at + b)]$$
(6.7)

parametrisiert wird.

Je länger ein B_d^0 -Meson lebt, desto schwieriger wird es, die Zerfallsprodukte im Detektor auf Grund seiner begrenzten Länge nachzuweisen. Daher nimmt die Akzeptanz zu großen Zeiten hin wieder ab. Zur Parametrisierung fällt die Wahl auf eine lineare Funktion

$$\epsilon_2(t) = 1 + \beta t \qquad (\beta < 0). \tag{6.8}$$

Abbildung 6.4: Toy MC Studie zur Abschätzung der Systematik durch die Tagging Kalibration. Bei der Generation wurden die Taggingparameter $p_0=0,3783$ und $p_1=0,950$ um ihre statischen Unsicherheiten $\Delta p_0=0,0028$ bzw. $\Delta p_1=0,028$ variiert, der Fit wurde dann mit den ursprünglichen Werten p_0 und p_1 durchgeführt.

Die entsprechende gesamte Akzeptanzfunktion lautet demnach:

$$\epsilon(t) = \epsilon_1(t) \cdot \epsilon_2(t) = \frac{2}{\pi} \arctan[t \cdot \exp(at + b)](1 + \beta t)$$
(6.9)

Zur Bestimmung der Paramater wird die Trennung von B_d^0 - und $\overline{B_d^0}$ -Mesonen aufgehoben, sodass lediglich ein exponentieller Zerfall zu beobachten ist. Des weiteren wird der Cut auf die Lebensdauer bei 0,3ps nicht angewandt, sodass der Turn-On-Effekt auch richtig sichtbar wird. Die Wahrscheinlichkeitsdichtefunktion für den Fit lautet somit:

$$\mathcal{P}_{acc}(t) \propto \epsilon(t) \cdot e^{-t/\tau} = e^{-t/\tau} \cdot \frac{2}{\pi} \arctan[t \cdot \exp(at+b)](1+\beta t)$$
 (6.10)

Die beiden Parameter τ und β sind stark miteinander korreliert. Für eine geeignete Bestimmung der Parameter der Akzeptanz-Funktion wird daher die Lebensdauer auf den PDG-Wert $\tau=1,519\pm0,007$ ps [5] constraint, die anderen Parameter fließen. Die Ergebnisse sind in Tabelle 6.4 aufgeführt, die entsprechenden Plots in Abbildung 6.5.

Tabelle 6.4: Ergebnis des Fits zur Bestimmung der zeitlichen Akzeptanz

Parameter	Ergebnis
au	$1,519\pm0,007$
a	$44,1 \pm 5,7$
b	$-7,4\pm 1,1$
β	$-0,0056\pm0,0085$

6.3.2 Bestimmung des Einflusses

Durch den Cut auf die Lebensdauer bei t=0,3ps in der Datenselektion spielt der Turn-On-Effekt im hier verwendeten Datensatz eigentlich keine Rolle. Dies wird dadurch deutlich, dass die Akzeptanzfunktion $\epsilon(0,3ps)=0,992$ und damit fast Eins ist. Auch am Ende des Analysebereichs beträgt die Akzeptanz noch $\epsilon(14ps)=0,905$. Daher liegt die Vermutung nahe, dass sich die Akzeptanz nicht gravierend auf das Fitergebnis auswirkt. Mit den in Kapitel 6.3.1 bestimmten Parametern wird die zeitliche Akzeptanz bei der Erzeugung der Toys berücksichtigt, der anschließende Fit aber ohne Akzeptanzfunktion durchgeführt. Die zur Erzeugung verwendeten Parameter entsprechen ansonsten denen in Kapitel 6.1.

Der Mittelwert der Pulls $\mu = 0,063 \pm 0,007$ (siehe Abb. 6.6) ist kompatibel mit dem aus dem Fit Bias erhaltenen $\mu = 0,059 \pm 0,007$ und erzeugt dementsprechend keinen signifikanten zusätzlichen Bias. Damit ist die Vernachlässigung der zeitlichen Akzeptanz im Fit gerechtfertigt.

6.4 Korrelation zwischen Masse und Eigenzeit

Die sFit-Methode funktioniert dann gut, wenn der Untergrund der Massenverteilung eben ist und die Massenverteilung des Signals unabhängig von der gemessenen Eigenzeit

Abbildung 6.5: Fit an die Flugzeit-Verteilung aller B_d^0 -Mesonen mit eingeschlossener Akzeptanzfunktion (oben) sowie die entsprechende Pull-Verteilung (unten). Links: kurzlebiger Zeitbereich $(t < 1,5 \mathrm{ps})$, Rechts: gesamtes Flugzeitspektrum $(0 \mathrm{ps} < t < 14 \mathrm{ps})$

Abbildung 6.6: Untersuchung des Einflusses einer zeitlichen Akzeptanz: Verteilung der aus der Toy MC Studie erhaltenen Amplituden $S_{J/\Psi K_s^0}$ (links) sowie die dazugehörigen Pulls (rechts)

ist. Es soll nun eine etwaige Korrelation zwischen Masse und Eigenzeit untersucht und der Einfluss auf $S_{J/\Psi K_s^0}$ festgestellt werden. Dazu wird die Massenverteilung in vier verschiedenen Zeitbereichen gefittet, die Tabelle 6.5 zu entnehmen sind. Anschließend wird die gesamte Eigenzeitverteilung gefittet, dabei werden aber die Massenparameter des Signals auf die in den 4 Massenfits erhaltenen Werte fixiert. Die Ergebnisse des jeweiligen Fits sind ebenfalls in Tabelle 6.5 aufgeführt.

Tabelle 6.5: Einteilung der Eigenzeitbereiche sowie Fitresultate für $S_{J/\Psi K_s^0}$ bei Fixierung der Masse auf die in den Zeitbereichen enthaltene Massenform. Weiterhin werden die Abweichung $\Delta S_{J/\Psi K_s^0}$ vom regulären Datenfit und der Signalanzahl N_{sig} eines jeden Eigenzeitbereichs genannt.

Nr.	Eigenzeitfenster des Massenfits	$S_{J/\Psi K_s^0}$	$\Delta S_{J/\Psi K_s^0}$	N_{sig}
1	$t \in [0.3, 0.7] \text{ps}$	$0,559\pm0,069$	-0,066	1898
2	$t \in [0.7, 1.5] \text{ps}$	$0,567\pm0,068$	0,002	2773
3	$t \in [1.5, 3] \mathrm{ps}$	$0,566\pm0,069$	0,001	2710
4	$t \in [3, 14]$ ps	$0,566\pm0,069$	0,001	1490

Zur Abschätzung des Fehlers werden zunächst die Abweichungen $\Delta S_{J/\Psi K_s^0}$ vom (noch verdeckten) Referenzwert aus dem regulären Eigenzeitfit $S_{J/\Psi K_s^0} = 0,565 \pm 0,069$ berechnet und diese dann - gewichtet nach der Signalzahl N_{sig} - quadratisch gemittelt:

$$\delta S_{J/\Psi K_s^0}^{m/t} = \sqrt{\frac{\sum N_i (\Delta S_{J/\Psi K_s^0})_i}{\sum N_i}} = 0,0031$$
 (6.11)

6.5 Eigenzeitauflösung

Bei einer effektiven Eigenzeitauflösung von $\sigma_{eff} = (0,0665 \pm 0,0047)$ ps im Vergleich zur B_d^0 -Oszillationsfrequenz $\delta m_d = (0,521 \pm 0.039)\hbar$ ps erwartet man keine nennenswerten Effekte auf die Amplitude $S_{J/\Psi K_s^0}$. Um überhaupt einen Effekt zu sehen, werden die Auflösungsparameter σ_i um 20% ihres Werte erhöht bzw. gesenkt und damit dann der Datensatz gefittet. Die größte Abweichung vom Referenzwert des regulären Eigenzeitfits wird als systematischer Fehler angenommen. Die Ergenisse finden sich in Tabelle 6.6.

Tabelle 6.6: Ergebnisse des Eigenzeitfits bei Variaton der Auflösungsparameter σ_i um $\pm 20\%$.

Variation	$sigma_1$	$sigma_2$	$sigma_3$	$S_{J/\Psi K_s^0}$	$\Delta S_{J/\Psi K_s^0}$
+20%	$0,\!576$	0,05275	0,1118	$xxx\pm xxx$	XXX
-20%	0,384	0,03517	0,0746	$xxx\pm xxx$	XXX

Es zeigt sich, dass eine exakte Bestimmung der Auflösung nicht von Nöten ist, da sie im Vergleich zu anderen Systematiken vor allem gegenüber der Flavour-Tagging Kalibration

6 Abschätzung systematischer Unsicherheiten

vernachlässigt werden kann. Dennoch wird ein sytematischer Fehler durch die Auflösung mit

$$\delta S_{J/\Psi K_s^0}^{res} = xxx \tag{6.12}$$

assoziiert.

6.6 Gesamtsystematik

Tabelle 6.7 fasst nochmals alle systematischen Unsicherheiten zusammen. Der Gesamtfehler wird durch quadratische Addition berechnet.

Tabelle 6.7: Zusammenfassung der systematischen Unsicherheiten

Effekt	$\delta S_{J/\Psi K_s^0}$
Fitmethode	XXX
Flavour-Tagging Kalibration	XXX
Eigenzeitakzeptanz	XXX
Korrelation Masse \leftrightarrow Eigenzeit	XXX
Eigenzeitauflösung	XXX
Gesamt	XXX

7 Zusammenfassung

Literaturverzeichnis

- [1] LHCb-Analyse, ...
- [2] http://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_ Particles-de.svg (Stand: 07.07.2013)
- [3] http://press.web.cern.ch/press-releases/2013/03/ new-results-indicate-particle-discovered-cern-higgs-boson
- [4] K. Kleinknecht, Uncovering ...
- [5] PDG-Wert für Tau http://pdglive.lbl.gov/popupblockdata.brl?nodein=S042T&inscript=Y&fsizein=1&clumpin0=(Stand: 02.07.2013)
- [6] http://www-zeus.physik.uni-bonn.de/~brock/feynman/vtp_ss06/
- [7] Nir, Heavy Flavour Physics
- [8] Noguchi, ...
- [9] http://lhcb-trig.web.cern.ch/lhcb-trig/
- [10] http://arxiv.org/pdf/0905.0724v1.pdf
- [11] http://arxiv.org/pdf/physics/0402083v3.pdf
- [12] Stefania Vecchi, OS combination for Reco14
- [13] http://arxiv.org/pdf/1201.5069.pdf

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den ...,