DM Final Exam

Part A

1. Let \mathcal{R} be a relation on the set of positive integers with $x\mathcal{R}y \Longleftrightarrow xy = 1$.

Which of the following statements are **Not** True about the relation \mathcal{R} ?

Select one or more:

- \mathcal{R} is transitive $x\mathcal{R}y, y\mathcal{R}z \to x\mathcal{R}z \times (3, 1/3), (1/3, 3) \to (3, 3)$
- \mathcal{R} is reflexive $x\mathcal{R}x \times$ other than (1, 1), all others are not
- ullet is anti-symmetric not transitive, all symmetric
- \mathcal{R} is symmetric $x\mathcal{R}y \to y\mathcal{R}x$
- 2. Let f_1, f_2, f_3, f_4 be four functions defiend as follows:

 $f_1:\mathbb{Z}^+ o\mathbb{Z}^+$ with $f_1(x)=x.$ only in the first quadrant, both injective and surjective igodot

 $f_2: \mathbb{Z} \to \mathbb{Z}$ with $f_2(x) = 2x + 3$. can't produce all integer outputs, ex. no preimage for 4, $2x+3=4 \to 2x=1 \to x=...$ (not an integer) \times not surjective

 $f_3:\mathbb{Z} \to \mathbb{Z}$ with $f_3(x)=|x|$. since it's restricted to integers only, it becomes a linear function like f(x)=x.

 $f_4:\mathbb{R} o\mathbb{R}^+$ with $f_4(x)=2^{x+1}$. no matter how small the inputs are, like negative, the outputs are all positive. \bigcirc

Which one of these functions is **not** invertible?

- f_1
- f₂
- f_3
- \bullet f_4

- 3. Which one of the following degree sequence **cannot** represent a simple graph?
 - 2, 2, 2
 - 3, 3, 3, 3
 - 1, 1, 0, 0
 - 3, 2, 1 a simple graph can't have loops or parallel edges, hence not possible to have a degree 3 with only 3 vertices
- 4. Given the followign Venn diagram representing three sets A, B, C, subsets of the universal set U:

Which one of the following sets represents $\overline{(A \cup B) - C}$?

- none of the other options is correct
- $\{d, g, h, i, j, k\}$
- $\{a, b, c, e, f\}$
- $\{d,j,h,i\}$
- 5. How many strings of length 4 starting with the letter B can be formed using the letters ABCDE if repetitions are **not** allowed?

Process: B _ _ _ \rightarrow 1 x 4 x 3 x 2 = 24

- 24
- 96
- 120
- 625
- 6. Let p and q be two propositions. Which one of the following logical expressions is equivalent to $\neg(p \to q)$?

Process: $\neg(p o q) = \neg(\neg p \lor q) = p \land \neg q$

- ullet $p \wedge
 eg q$
- ullet eg p ee q
- ullet $p ee \lnot q$
- ullet $eg p \wedge q$
- 7. What is the number of edges in complete graph K_{10} ?

Process: 10×9 (each vertex has 9 connections) = 90 (sum of degree sequence), 90/2 = 45 (# of edges)

- 100
- 200
- 450 probably wrong options but the closest
- 900
- 8. Which of the following represent the set:

 $\{1, -\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \frac{1}{16}, -\frac{1}{32}, \frac{1}{64}, -\frac{1}{128}, \frac{1}{256}, \frac{1}{512}, \frac{1}{1024}\}$ probably missing a minus in 1/512

Select one or more:

- $\{(-1)^n2^{-n}:n\in\mathbb{Z} ext{ and } 0\leq n\leq 10\}$
- $\{(-\frac{1}{2})^n:n\in\mathbb{Z} \text{ and } 0\leq n\leq 10\}$
- $\{(-rac{1}{2})^n:n\in\mathbb{Z} ext{ and }0< n\leq 10\}$
- $ullet \ \{rac{(-1)^n}{2n}:n\in\mathbb{Z} ext{ and }0\leq n\leq 10\}$
- 9. Let x be a real number and P(x) be the statement x > 0. Select the right statement from the following.

Select one:

- P is not a proposition, as its truth value depends on the value of x.
- The truth value of P(2) is False.

- ullet P can be expressed using propositional logic
- The truth value of P(-2) is True.
- 10. Which one of the following correctly defines an Eulerian path?

Select one:

- ullet An Eulerian path in graph G is a path that visits each vertex exactly once.
- An Eulerian path in walk in which no edge is repeated.
- ullet An Eulerian path in graph G is a path that uses each edge in G precisely once.
- An Eulerian path in a trial in which neither vertices nor edges are repeated.

DM Final Exam 3