Data Mining (Minería de Datos) The k-NN technique

Rodrigo Manzanas

ECSIC

Grupo de Meteorología
Univ. de Cantabria – CSIC
MACC / IFCA

Types of Machine Learning

NOTA: Las líneas de código de R en esta presentación se muestran sobre un fondo gris

Oct	30	Aplazada (sesión de refuezo)
Nov	6	Presentación, introducción y perspectiva histórica
	8	Paradigmas, problemas canónicos y data challenges
	13	Reglas de asociación
	15	Práctica: Reglas de asociación
	20	Evaluación, sobreajuste y cross-validación
	22	Práctica: Cross-validación
	27	Árboles de clasificación
	29	Práctica: Árboles de clasificación
		T01. Datos discretos
Dic	4	Técnicas de vecinos cercano (k-NN)
	11	Práctica: Vecinos cercanos
	13	Reducción de dimensión lineal
	18	Práctica: LDA y PCA
	20	Reducción no lineal
		T02. Clasificación
Ene	8	Árboles de clasificación y regresión (CART)
	10	Práctica: CART
	15	Ensembles: Bagging and Boosting
	17	Práctica: Random forests
		T03. Predicción
	22	Práctica: Gradient boosting
	24a	Técnicas de agrupamiento
	24b	Práctica: Técnicas de agrupamiento
	29a	Práctica: El paquete CARET
	29b	Examen

"... dime con quién vas y te diré quién eres ..."

Non-parametric:

No assumption is made on the underlying data distribution

Lazy (or instance-based) learning:

There is no explicit training phase. All the training data is needed during the testing phase

Master Universitario Oficial Data Science

UC UNIVERSIDAD DE CANTABRIA

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
55	6.5	2.8	4.6	1.5	versicolor
56	5.7	2.8	4.5	1.3	versicolor
57	6.3	3.3	4.7	1.6	versicolor
					· · · · · ·
148	6.5	3.0	5.2	2.0	virginica
149	6.2	3.4	5.4	2.3	virginica
150	5.9	3.0	5.1	1.8	virginica
					•
151	5.4	2.7	4.6	1 4	7

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
55	6.5	2.8	4.6	1.5	versicolor
56	5.7	2.8	4.5	1.3	versicolor
57	6.3	3.3	4.7	1.6	versicolor
148	6.5	3.0	5.2	2.0	virginica
149	6.2	3.4	5.4	2.3	virginica
150	5.9	3.0	5.1	1.8	virginica

151 5.4 2.7 4.6 1.4

1) Computing distances

$$d_{151.1} = \sqrt{(5.4 - 5.1)^2 + (2.7 - 3.5)^2 + (4.6 - 1.4)^2 + (1.4 - 0.2)^2} = 3.52$$

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
55	6.5	2.8	4.6	1.5
56	5.7	2.8	4.5	1.3
57	6.3	3.3	4.7	1.6
148	6.5	3.0	5.2	2.0
149	6.2	3.4	5.4	2.3
150	5.9	3.0	5.1	1.8

Species
setosa
setosa
setosa

versicolor
versicolor
versicolor

virginica	
virginica	
virginica	

151 5.4 2.7 4.6 1.4	151	5.4	2.7	4.6	1.4
---	-----	-----	-----	-----	-----

1) Computing distances

$$d_{151,1} = \sqrt{(5.4 - 5.1)^2 + (2.7 - 3.5)^2 + (4.6 - 1.4)^2 + (1.4 - 0.2)^2} = 3.52$$

$$d_{151,2} = 3.47$$

$$d_{151,3} = 3.62$$

$$d_{151.55} = 1.11$$

$$d_{151,56} = 0.35$$

$$d_{151,57} = 1.10$$

$$d_{151,148} = 1.42$$

$$d_{151,149} = 1.61$$

$$d_{151,150} = 0.87$$

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
55	6.5	2.8	4.6	1.5
56	5.7	2.8	4.5	1.3
57	6.3	3.3	4.7	1.6
148	6.5	3.0	5.2	2.0
149	6.2	3.4	5.4	2.3
150	5.9	3.0	5 1	1.8

Species
setosa
setosa
setosa

versicolor versicolor versicolor

virginica virginica virginica

151	5.4	2.7	4.6	1.4

1) Computing distances

$$d_{151,1} = \sqrt{(5.4 - 5.1)^2 + (2.7 - 3.5)^2 + (4.6 - 1.4)^2 + (1.4 - 0.2)^2} = 3.52$$

$$d_{151,2} = 3.47$$

$$d_{151,3} = 3.62$$

$$d_{151,56} = 0.35$$

$$a_{151,3} = 3.62$$

$$d_{151.150} = 0.87$$

$$d_{151,55} = 1.11$$

$$d_{151,57} = 1.10$$

$$d_{151,56} = 0.35$$

$$u_{151,57} - 1.10$$

$$d_{151.57} = 1.10$$

$$d_{151,55} = 1.11$$

$$d_{151.148} = 1.42$$

$$d_{151,148} = 1.42$$
$$d_{151,149} = 1.61$$

$$d_{151.149} = 1.61$$

$$d_{151.2} = 3.47$$

$$d_{151.150} = 0.87$$

$$d_{151,1} = 3.52$$

$$d_{151,3} = 3.62$$

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
55	6.5	2.8	4.6	1.5
56	5.7	2.8	4.5	1.3
57	6.3	3.3	4.7	1.6
148	6.5	3.0	5.2	2.0
149	6.2	3.4	5.4	2.3
150	5.9	3.0	5.1	1.8

151	5.4	2.7	4.6	1.4

1) Computing distances

$$d_{151,1} = \sqrt{(5.4 - 5.1)^2 + (2.7 - 3.5)^2 + (4.6 - 1.4)^2 + (1.4 - 0.2)^2} = 3.52$$

$$d_{151,2} = 3.47$$

2) Ordering distances 3) Classification based on NN

Species setosa setosa setosa

versicolor versicolor versicolor

virginica virginica virginica

$$d_{151.3} = 3.62$$

$$d_{151,56} = 0.35$$

k=1 151 = Versicolor

$$u_{151,3} - 5.02$$

$$d_{151.150} = 0.87$$

$$d_{151.55} = 1.11$$

$$a_{151,150} - 0.07$$

$$d_{151.56} = 0.35$$

$$d_{151,57} = 1.10$$

$$d_{151,55} = 1.11$$

$$d_{151,57} = 1.10$$

$$d_{151,148} = 1.42$$

$$d_{151,148} = 1.42$$

$$d_{151,149} = 1.61$$

$$d_{151,149} = 1.61$$

$$d_{151,2} = 3.47$$

$$d_{151.150} = 0.87$$

$$d_{151,1} = 3.52$$

$$d_{151,3} = 3.62$$

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	
1	5.1	3.5	1.4	0.2	
2	4.9	3.0	1.4	0.2	
3	4.7	3.2	1.3	0.2	
55	6.5	2.8	4.6	1.5	
56	5.7	2.8	4.5	1.3	
57	6.3	3.3	4.7	1.6	
148	6.5	3.0	5.2	2.0	
149	6.2	3.4	5.4	2.3	
150	5.9	3.0	5.1	1.8	

151	5.4	2.7	4.6	1.4

Species setosa setosa setosa

versicolor versicolor versicolor

virginica virginica virginica

1) Computing distances

$$d_{151,1} = \sqrt{(5.4 - 5.1)^2 + (2.7 - 3.5)^2 + (4.6 - 1.4)^2 + (1.4 - 0.2)^2} = 3.52$$

$$d_{151,2} = 3.47$$

2) Ordering distances 3) Classification based on NN

$$d_{151.3} = 3.62$$

$$d_{151,56} = 0.35$$
$$d_{151,150} = 0.87$$

$$k = 1$$
 151 = Versicolor
 $k = 2$ 151 = ?

$$d_{151,55} = 1.11$$

$$d_{151,57} = 1.10$$

$$d_{151,56} = 0.35$$
$$d_{151,56} = 0.35$$

$$d_{151,57} = 1.10$$

$$d_{15157} = 1.10$$

$$d_{151,55} = 1.11$$

$$d_{151,148} = 1.42$$

$$d_{151,148} = 1.42$$

$$d_{151,149} = 1.61$$

$$d_{151.149} = 1.61$$

$$d_{151,2} = 3.47$$

$$d_{151,150} = 0.87$$

$$d_{151,1} = 3.52$$

$$d_{151,3} = 3.62$$

Master Universitario Oficial Data Science

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
55	6.5	2.8	4.6	1.5
56	5.7	2.8	4.5	1.3
57	6.3	3.3	4.7	1.6
148	6.5	3.0	5.2	2.0
149	6.2	3.4	5.4	2.3
150	5.9	3.0	5.1	1.8

151	5.4	2.7	4.6	1.4

Species setosa setosa setosa

versicolor versicolor versicolor

virginica virginica virginica

1) Computing distances

$$d_{151,1} = \sqrt{(5.4 - 5.1)^2 + (2.7 - 3.5)^2 + (4.6 - 1.4)^2 + (1.4 - 0.2)^2} = 3.52$$

$$d_{151,2} = 3.47$$

$$d_{151,3} = 3.62$$

$$d_{151,56} = 0.35$$
$$d_{151,150} = 0.87$$

$$k=1$$
 151 = Versicolor

$$l_{151,150} = 0.87$$

$$k=2 \longrightarrow 151 = ?$$

$$d_{151,55} = 1.11$$
$$d_{151,55} = 0.35$$

$$d_{151,57} = 1.10$$

$$k = 3$$
 151 = Versicolor

$$d_{151,56} = 0.35$$

$$d_{151,55} = 1.11$$

$$d_{151,57} = 1.10$$

$$d_{151.148} = 1.42$$

$$d_{151,148} = 1.42$$

$$d_{151,148} = 1.42$$
$$d_{151,149} = 1.61$$

$$d_{151,149} = 1.61$$

$$d_{151.2} = 3.47$$

$$d_{151,150} = 0.87$$

$$d_{151,1} = 3.52$$

$$d_{151,3} = 3.62$$

The k-NN technique

Introduction

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
55	6.5	2.8	4.6	1.5
56	5.7	2.8	4.5	1.3
57	6.3	3.3	4.7	1.6
148	6.5	3.0	5.2	2.0
149	6.2	3.4	5.4	2.3
150	5.9	3.0	5.1	1.8

Species	
setosa	
setosa	
setosa	

versicolor
versicolor
versicolor

virginica
virginica
virginica

151 5.4 2.7 4.6 1.4

1) Computing distances

$$d_{151,1} = \sqrt{(5.4 - 5.1)^2 + (2.7 - 3.5)^2 + (4.6 - 1.4)^2 + (1.4 - 0.2)^2} = 3.52$$

$$d_{151,2} = 3.47$$

2) Ordering distances 3) Classification based on NN

$$d_{151,3} = 3.62$$

$$d_{151,56} = 0.35$$
$$d_{151,150} = 0.87$$

$$k = 1$$

$$151 = Versicolor$$

$$k = 2$$

$$151 = ?$$

k = 3 151 = Versicolor

$$d_{151,55} = 1.11$$

$$d_{151,57} = 1.10$$

$$d_{151,57} = 1.10$$

$$d_{151,56} = 0.35 d_{151,55} = 1.11$$

$$d_{151,57} = 1.10$$

$$d_{151,148} = 1.42$$

$$d_{151,148} = 1.42$$

$$d_{151\,149} = 1.61$$

$$d_{151.149} = 1.61$$

$$d_{151,2} = 3.47$$

$$d_{151,150} = 0.87$$

$$d_{151,1} = 3.52$$

$$d_{151,3} = 3.62$$

Applications:

- Economic sciences: concession of loans
- Political sciences: classifying potential voters
- Handwriting detection (e.g. OCR)
- Image/video recognition
- Genetics

Pros:

Cons:

Easy to understand

regression problems

method)

problems

Versatile: Classification and

High accuracy (benchmark

High memory requirements,

computationally expensive Sensitive to scale of the data

skewed distributions

Can suffer from biases towards

Performance can be severely

degraded in high-dimensional

Master Universitario Oficial Data Science

Fitting the method

Distance metric

Different distances are used, depending on the application. *Euclidean* is the most common

Number of neighbors (k)

This is the unique model parameter. Must be properly chosen

Classifying criterion

- Majority vote
- Weighted vote
- Random
- etc.

Distance metric

Minkowsky:

$$D(x,y) = \left(\sum_{i=1}^{m} |x_i - y_i|^r\right)^{\frac{1}{r}} \qquad D(x,y) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2} \qquad D(x,y) = \sum_{i=1}^{m} |x_i - y_i|$$

 $D(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{m} \frac{|x_i - y_i|}{|x_i + y_i|}$ Camberra:

Euclidean:

$$D(\boldsymbol{x}, \boldsymbol{y}) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2}$$

Manhattan / city-block:

$$D(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{m} |x_i - y_i|$$

Chebychev:
$$D(x,y) = \max_{i=1}^{m} |x_i - y_i|$$

Number of neighbors (k)

Which one classifies better?

Number of neighbors (k)

The k-NN technique

Number of neighbors (k)

Cross-validation is needed to find the optimal *k*

Based on the iris dataset, classify the following new instance: (sepal I., sepal w., petal I., petal w.) = (5.4, 2.7, 4.6, 1.4)

new instance d.new = c(5.4, 2.7, 4.6, 1.4)

```
# new instance
d.new = c(5.4, 2.7, 4.6, 1.4)
# euclidean distance between the new instance and all the others
eucli = c()
for (i in 1:nrow(iris)) {
 eucli[i] = sqrt(sum((d.new - iris[i,-5])^2))
```



```
# new instance
d.new = c(5.4, 2.7, 4.6, 1.4)
# euclidean distance between the new instance and all the others
eucli = c()
for (i in 1:nrow(iris)) {
 eucli[i] = sqrt(sum((d.new - iris[i, -5])^2))
## ordering distances
ind.sort = sort(eucli, index.return = T)
```



```
# new instance
d.new = c(5.4, 2.7, 4.6, 1.4)
# euclidean distance between the new instance and all the others
eucli = c()
for (i in 1:nrow(iris)) {
 eucli[i] = sqrt(sum((d.new - iris[i, -5])^2))
## ordering distances
ind.sort = sort(eucli, index.return = T)
# classifying based on the nearest neighbor
pred.k1 = iris$Species[ind.sort$ix[1]]
```



```
# new instance
d.new = c(5.4, 2.7, 4.6, 1.4)
# euclidean distance between the new instance and all the others
eucli = c()
for (i in 1:nrow(iris)) {
 eucli[i] = sqrt(sum((d.new - iris[i,-5])^2))
## ordering distances
ind.sort = sort(eucli, index.return = T)
# classifying based on the nearest neighbor
pred.k1 = iris$Species[ind.sort$ix[1]]
# classifying based on the 10 nearest neighbors
pred.k10 = iris$Species[ind.sort$ix[1:10]]
summary(pred.k10)
```


Divide iris into train y test (75% and 25% of the total dataset, respectively) and find the test error for the nearest neighbor method. Use the function "knn" from package "class"

con el apoyo del

CSIC

<u>Divide iris into train y test (75% and 25% of the total dataset, respectively) and find the test error for the nearest neighbor method. Use the function "knn" from package "class"</u>

```
# train/test division
n = nrow(iris)
indtrain = sample(1:n, round(0.75*n))
indtest = setdiff(1:n, indtrain)
iris.train = iris[indtrain,]
iris.test = iris[indtest,]
```

Divide iris into train y test (75% and 25% of the total dataset, respectively) and find the test error for the nearest neighbor method. Use the function "knn" from package "class"

```
# train/test division
n = nrow(iris)
indtrain = sample(1:n, round(0.75*n))
indtest = setdiff(1:n, indtrain)
iris.train = iris[indtrain,]
iris.test = iris[indtest,]
```

```
# classifying using the nearest neighbor method
library(class)
pred = knn(train = iris.train[,-5], test = iris.test[,-5], cl = iris.train$Species, k = 1)
```

Divide iris into train y test (75% and 25% of the total dataset, respectively) and find the test error for the nearest neighbor method. Use the function "knn" from package "class"

```
# train/test division
n = nrow(iris)
indtrain = sample(1:n, round(0.75*n))
indtest = setdiff(1:n, indtrain)
iris.train = iris[indtrain,]
iris.test = iris[indtest,]
```

```
# classifying using the nearest neighbor method
library(class)
pred = knn(train = iris.train[,-5], test = iris.test[,-5], cl = iris.train$Species, k = 1)
```

```
# validating method
table(pred, iris.test$Species)
        setosa versicolor virginica
pred
           11
 setosa
 versicolor 0
                       11
 virginica
acc.class(pred, iris.test$Species)
```

```
# evaluation function
acc.class = function(x, y) {
 stopifnot(length(x) == length(y))
 return(sum(diag(table(x, y))) / length(x))
```


Use the package "caret" (method "knn") to find the optimal k. To do so, check how the test error varies with increasing k (for values from 1 to 50) under a hold-out cross-validation scheme.

```
library(caret)
# defining hold-out cross-validation
trctrl = trainControl(method = "cv", number = 2)
# searching the optimal k
knn.fit = train(Species ~ ., iris.train,
          method = "knn",
          trControl = trctrl,
          tuneGrid = expand.grid(k = 1:50)
plot(knn.fit)
```

<u>Use the package "caret" (method "knn") to find the optimal k. To do so, check how the test error varies with increasing k (for values from 1 to 50) under a hold-out cross-validation scheme.</u>

<u>Use the package "caret" (method "knn") to find the optimal k. To do so, check how the test error varies with increasing k (for values from 1 to 50) under a hold-out cross-validation scheme.</u>

predicting in test with the optimal k
pred = predict(knn.fit, iris.test)
acc = acc.class(pred, iris.test\$Species)

k-NN for regression

Aim:

Predicting a continuous target variable

What do we need?

An inference criterion: It can be a simple mean, a particular percentile, etc.

To take into account:

Predictor variables covering larger ranges may have more weight in the search of neighbours. Rescaling the predictor data is recommended to make the distance metric more meaningful

$$Z = \frac{X - \mu}{\sigma}$$

	Ozone	Solar.R	Wind	Temp
1	41	190	7.4	67
2	36	118	8.0	72
3	12	149	12.6	74
4	18	313	11.5	62
5	25	297	14.3	56
500	23	234	9.3	65
501	1 45	321	16.7	?

Х

For regression, we will work with the dataset "carseats" (included in the package "ISLR"). Our target variable will be "Sales". First, we will remove the all the categorical variables from the dataset, retaining only the continuous ones. We will use the function "knn.reg" from the package "FNN". As you did for the case of classification, divide the total dataset in 75% for train and 25% for test and see how the test error varies with k

For regression, we will work with the dataset "carseats" (included in the package "ISLR"). Our target variable will be "Sales". First, we will remove the all the categorical variables from the dataset, retaining only the continuous ones. We will use the function "knn.reg" from the package "FNN". As you did for the case of classification, divide the total dataset in 75% for train and 25% for test and see how the test error varies with k

```
library(ISLR)
attach(Carseats)
dataset = Carseats[, -c(7,10,11)]
# evaluation function
rmse <- function(x, y) {
 sqrt(mean((x - y)^2))
# train/test division
n = nrow(dataset)
indtrain = sample(1:n, round(0.75*n));
dataset.train = dataset[indtrain, ]
indtest = setdiff(1:n, indtrain);
dataset.test = dataset[indtest, ]
```


For regression, we will work with the dataset "carseats" (included in the package "ISLR"). Our target variable will be "Sales". First, we will remove the all the categorical variables from the dataset, retaining only the continuous ones. We will use the function "knn.reg" from the package "FNN". As you did for the case of classification, divide the total dataset in 75% for train and 25% for test and see how the test error varies with k

```
library(ISLR)
attach(Carseats)
dataset = Carseats[, -c(7,10,11)]
# evaluation function
rmse <- function(x, y) {
 sqrt(mean((x - y)^2))
# train/test division
n = nrow(dataset)
indtrain = sample(1:n, round(0.75*n));
dataset.train = dataset[indtrain, ]
indtest = setdiff(1:n, indtrain);
dataset.test = dataset[indtest, ]
```

```
# test error as a function of k
library(FNN)
kmax = 50
test.err = c()
for (k in 1:kmax) {
 pred = knn.reg(dataset.train[,-1], dataset.test[,-1],
dataset.trainSales, k = k
 test.err[k] = rmse(pred$pred, as.numeric(dataset.test$Sales))
plot(1:kmax, test.err, type = "o", pch = 19,
xlab = "k", ylab = "RMSE"); grid()
```


For regression, we will work with the dataset "carseats" (included in the package "ISLR"). Our target variable will be "Sales". First, we will remove the all the categorical variables from the dataset, retaining only the continuous ones. We will use the function "knn.reg" from the package "FNN". As you did for the case of classification, divide the total dataset in 75% for train and 25% for test and see how the test error varies with k

```
library(ISLR)
attach(Carseats)
dataset = Carseats[, -c(7,10,11)]

# evaluation function
rmse <- function(x, y) {
    sqrt(mean((x - y)^2))
}

# train/test division
n = nrow(dataset)
indtrain = sample(1:n, round(0.75*n));
dataset.train = dataset[indtrain, ]
indtest = setdiff(1:n, indtrain);
dataset.test = dataset[indtest, ]</pre>
```

```
# test error as a function of k
library(FNN)
kmax = 50
test.err = c()
for (k in 1:kmax) {
    pred = knn.reg(dataset.train[,-1], dataset.test[,-1],
    dataset.train$Sales, k = k)
    test.err[k] = rmse(pred$pred, as.numeric(dataset.test$Sales))
}
plot(1:kmax, test.err, type = "o", pch = 19,
xlab = "k", ylab = "RMSE"); grid()
```


Let's continue by seeing the effect of properly rescaling the predictor data. Use the function "scale"

predictor ranges
boxplot(dataset[,-1])

Let's continue by seeing the effect of properly rescaling the predictor data. Use the function "scale"

```
# predictor ranges
boxplot(dataset[,-1])
# test error as a function of k (for standardized data)
test.err2 = c()
for (k in 1:kmax) {
 pred = knn.reg(scale(dataset.train[,-1]),
scale(dataset.test[,-1]), dataset.train$Sales, k = k)
 test.err2[k] = rmse(pred$pred,
as.numeric(dataset.test$Sales))
```


predictor ranges

Let's continue by seeing the effect of properly rescaling the predictor data. Use the function "scale"

```
boxplot(dataset[,-1])
# test error as a function of k (for standardized data)
test.err2 = c()
for (k in 1:kmax) {
   pred = knn.reg(scale(dataset.train[,-1]),
   scale(dataset.test[,-1]), dataset.train$Sales, k = k)
   test.err2[k] = rmse(pred$pred,
   as.numeric(dataset.test$Sales))
}
```


Do the same exercise, but this time using "caret". Recall to standardize your predictor data to obtain meaningful results.

Do the same exercise, but this time using "caret". Recall to standardize your predictor data to obtain meaningful results

predicting in test with the optimal k
pred = predict(knn.fit, dataset.test)
rmse(pred, dataset.test\$Sales)

k-NN in meteorology

The analog technique (Lorenz, 1969): Similar atmospheric patterns lead to similar meteorological conditions

Problem: Y' (prediction) for 26 Mar 2046?

1) Take X' for 26 Mar 2046: X₂₀₄₆

2) Search the nearest neighbor/s to X₂₀₄₆ within X

X (3-Jan-1981)

3) Infer a prediction based on the observed values in the days selected in 2)

In meteorology, two important factors must be taken into account for the application of k-NN technique:

- 1) Predictor scaling
- 2) High dimensionality (the curse of dimensionality)

(David Scott, *Multivariate Density Estimation*, Wiley, 1992)

Dimensio	n 2
Rel. vol.	0.79

(David Scott, *Multivariate Density Estimation*, Wiley, 1992)

Dimension	2	3	
Rel. vol.	0.79	0.53	

(David Scott, *Multivariate Density Estimation*, Wiley, 1992)

Dimension	2	3	4	
Rel. vol.	0.79	0.53	0.31	

(David Scott, Multivariate Density Estimation, Wiley, 1992)

Dimension	2	3	4	5	
Rel. vol.	0.79	0.53	0.31	0.16	

(David Scott, *Multivariate Density Estimation*, Wiley, 1992)

Dimension	2	3	4	5	6	
Rel. vol.	0.79	0.53	0.31	0.16	0.08	

(David Scott, Multivariate Density Estimation, Wiley, 1992)

Dimension 0.310.04 Rel. vol. 0.79 0.53 0.16 0.08

As the dimensionality increases, a larger percentage of the training data resides in the corners of the feature space. Therefore, k-NN is unhelpful in high dimensional problems because there is little difference between the nearest and the farthest neighbor

hypersphere

Master Universitario Oficial Data Science

10% Neighborhood

The amount of training data needed to cover 10% of the feature range grows exponentially with the number of dimensions

Dimensionality reduction techniques (e.g. PCA ~ effective degrees of freedom) should be applied prior to using k-NN in order to help make the distance metric more meaningful