Chapitre 2 : Matrices et déterminants

Université Ibn Tofail, Faculté des Sciences, Section MIP, Kenitra, 2023-2024

Matrices et opérations

Définitions et généralités

Définition 1.

Soient $m, n \in \mathbb{N}$, une matrice A à coefficients dans un corps \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) est un tableau qui se présente sous la forme suivante.

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}.$$

Il s'agit d'une matrice à m lignes et n colonnes. i désigne la ligne, j désigne la colonne.

Définitions et notations

Définitions et notations

- La matrice A se note $A = (a_{ij})_{1 \le i \le m, 1 \le i \le n}$.
- L'ensemble des matrices à m lignes, n colonnes et à coefficients dans \mathbb{K} se note $\mathcal{M}_{m,n}(K)$.
- Soit $A = (a_{ij}) \in \mathcal{M}_{m,n}(K)$, la matrice transposée de A qu'on note ${}^t(A)$ est définie par ${}^t(A) = (a_{ji}) \in \mathcal{M}_{n,m}(K)$.
- Si m = n et que $a_{ii} = 1$, pour tout i, $a_{ij} = 0$, pour tout $i \neq j$, la matrice A est dite la matrice identité de $\mathcal{M}(n)$. On la note I_n .
- Si m = n et que $a_{ii} = \lambda_i$, pour tout i, $a_{ij} = 0$, pour tout $i \neq j$, la matrice A est dite diagonale.
- Si $A \in \mathcal{M}_n(K)$ et que $a_{ij} = 0$, pour tout i < j, on dit que A est une matrice triangulaire inférieure.

Structure de l'ensemble $\mathcal{M}_{m,n}$

Proposition

- I L'ensemble $(\mathcal{M}_{m,n}(\mathbb{K}), +, .)$ muni de l'addition et de la multiplication externe est un \mathbb{K} -espace vectoriel de dimension $m \times n$.
- 2 L'ensemble $(\mathcal{M}_{m,n}, +, \times)$ est un anneau non commutatif et unitaire

Exemple

Une base de l'espace vectoriel $\mathcal{M}_{2,3}(\mathbb{R})$ est

$$B = (m_1, m_2, m_3, m_4, m_5, m_6), \text{ où } m_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$m_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \dots, m_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Formule de binôme de Newton

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$, tel que AB = BA. Alors, on a

$$(A+B)^p = \sum_{k=0}^p C_p^k A^k B^{p-k},$$

où
$$C_p^k = \frac{n!}{k!(p-k)!}$$
.

Soient E et E' deux espaces vectoriels sur \mathbb{K} de dimensions finies n et m, de bases $(e_1,...,e_n)$, $(e'_1,...,e'_m)$ respectivement et f une application linéaire de E dans E'. f est définie par la donnée de $f(e_1), f(e_2),..., f(e_n)$.

$$\begin{cases} f(e_1) = a_{11}e'_1 + a_{21}e'_2.. + a_{m1}e'_m \\ f(e_2) = a_{12}e'_1 + a_{22}e'_2.. + a_{m2}e'_m \\ & \cdot \\ f(e_n) = a_{1n}e'_1 + a_{2n}e'_2.. + a_{mn}e'_m \end{cases}$$

Définition.

On appelle matrice de f dans les bases $\mathcal{B} = (e_1, ..., e_n)$ et $\mathcal{B}' = (e'_1, ..., e'_m)$ la matrice notée $M(f)_{\mathcal{B},\mathcal{B}'}$ appartenant à $\mathcal{M}_{m,n}(\mathbb{K})$ dont les colonnes sont les composantes des vecteurs $f(e_1), f(e_2), ..., f(e_n)$ dans la base $(e'_1, ..., e'_m)$. On a

$$A = M(f)_{\mathcal{B},\mathcal{B}'} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

Notons que cette matrice dépend de choix des bases de E et de E'. Elle change si on change (une ou) les bases de E et de E'.

Exemple

On considère l'application linéaire $f: \mathbb{R}_4[X] \to \mathbb{R}_3[X]$, définie par, pour $P \in \mathbb{R}_4[X], \ f(P) = P'.$ On a

$$A = M(f)_{\mathcal{B},\mathcal{B}'} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 3 & 0 \\ 0 & 1 & 0 & 0 & 4 \end{pmatrix}.$$

$$\mathcal{B} = (1, X, X^2, X^3, X^4)$$
 et $\mathcal{B}' = (1, X, X^2, X^3)$.

Proposition

Avec les mêmes notations que ci-dessus. L'application suivante

$$(i)\phi: (\mathcal{L}(E, E'), +, .) \to (\mathcal{M}_{m,n}(\mathbb{K}, +, .))$$

 $f \mapsto M(f)_{\mathcal{B},\mathcal{B}'}$

est un isomorphisme d'spaces vectoriels. Deplus, $\dim \mathcal{L}(E, E') = mn$.

(ii) Soient E, F et G trois \mathbb{K} espaces vectoriels de bases respectives B, C et D. Si $f: E \to F$ et $g: \to G$ sont deux applications linéaires, alors la matrice de gof est

$$M(g \circ f, B, D) = M(g, C, D) \times M(f, B, C).$$

Remarque

Soit $f \in \mathcal{L}(E, E')$, si dim $E = \dim E'$, alors on a

- f est bijective \Leftrightarrow la matrice associée M(f, B, C) est inversible.
- Dans ce cas, on a

$$(M(f, B, C))^{-1} = M(f^{-1}, B, C).$$

Ecriture matricielle, matrice colonne

Soit E un e.v de dim $n, B = (e_1, ..., e_n)$ une base de E. Chaque vecteur x de E s'écrit $x = \sum_{i=1}^{n} x_i e_i$. On associe à x une matrice colonne de type (n, 1)

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Soient $f \in \mathcal{L}(E, E')$, $C = (u_1, ..., u_m)$ une base de E' et $A = M(f)_{B,C}$ alors l'image y = f(x) de x s'écrit $y = f(x) = \sum_{i=1}^{m} y_i u_i$. On traduit ceci matriciellement par

$$Y = AX$$

Changement de bases

Matrice de passage

Soient $\mathcal{B}, \mathcal{B}'$ deux bases de l'espace vectoriel E.

<u>Définition</u>

On appelle matrice de passage de la base \mathcal{B} à la base \mathcal{B}' , la matrice carrée $P \in \mathcal{M}_n(\mathbb{K})$ dont la jième colonne est formée des coordonnées du vecteur e'_j dans la base \mathcal{B} . $e'_j = \sum_{i=1}^n p_{ij}e_i$. Donc, on a

$$P = (p_{ij}) = \begin{pmatrix} p_{11} & \dots & p_{1n} \\ p_{21} & \dots & p_{2n} \\ \vdots & \vdots & \vdots \\ p_{n1} & \dots & p_{nn} \end{pmatrix}.$$

Matrice de passage

Proposition

- Si P est la matrice de passage de \mathcal{B} à \mathcal{B}' , alors P est inversible. La matrice de passage de \mathcal{B}' à \mathcal{B} est $P' = P^{-1}$.
- Soient X la matrice colonne d'un vecteur x de E dans \mathcal{B} et X' celle de x dans \mathcal{B}' , alors on a

$$X = PX'$$
.

Action d'un changement de bases sur la matrice d'une application linéaire

Soient E et E' deux e.v. de dimensions finies, $f \in \mathcal{L}(E, E')$. On va munir chacun des deux e.v. de deux bases, donc on aura quatres matrices à traiter.

Proposition.

(i) Soient \mathcal{B} , \mathcal{B}' deux bases de E et \mathcal{C} , \mathcal{C}' deux bases de E'. Notons $A=M(f)_{\mathcal{B},\mathcal{B}'}$, $A'=M(f)_{\mathcal{C},\mathcal{C}'}$. Soient P la matrice de passage de \mathcal{B} à \mathcal{B}' et Q la matrice de passage de \mathcal{C} à \mathcal{C}' , alors, on a

$$A' = Q^{-1}AP.$$

(ii) Si E'=E, alors, $\mathcal{B}'=$ B,C'= \mathcal{C} et Q=P, par conséquent on obtient:

$$A' = P^{-1}AP.$$

Soit $A = (a_{ij}) \in \mathcal{M}_n(K)$. On considère la matrice

 $A_1 \in \mathcal{M}_{n,2n}(K)$ définie par : $A_1 = A \mid I_n$.

On effectue des opérations élémentaires uniquement sur les lignes (ou uniquement sur les colonnes) de A , de telle sorte que la matrice obtenue soit de la forme :

 $A_m = I_n \mid C$, alors la matrice C obtenue, correspond inverse de A.

Exemple

Sachant que la matrice A est inversible (det $A \neq 0$,), chercher l'inverse de la matrice A suivante:

$$A = \left(\begin{array}{rrr} 1 & 2 & -1 \\ 1 & 1 & 0 \\ -1 & 1 & 2 \end{array}\right).$$

On pose

$$A_1 = \left(\begin{array}{rrrrr} 1 & 2 & -1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ -1 & 1 & 2 & 0 & 0 & 1 \end{array}\right).$$

On effectue les transformations suivantes: La ligne L_1 est la ligne pivot. Ainsi $L_2 \to L_2 - 3L_1$ et $L_3 \to L_3 + L_1$. On obtient

$$A_2 = \left(\begin{array}{ccccc} 1 & 2 & -1 & 1 & 0 & 0 \\ 0 & -3 & 2 & -2 & 1 & 0 \\ 0 & 3 & 1 & 1 & 0 & 1 \end{array}\right).$$

Puis, $L_3 \rightarrow L_3 + L_2$.. Pour trouver

$$A_3 = \left(\begin{array}{cccccc} 1 & 2 & -1 & 1 & 0 & 0 \\ 0 & -3 & 2 & -2 & 1 & 0 \\ 0 & 0 & 3 & -1 & 1 & 1 \end{array}\right).$$

Ensuite, on effectue $L_3 \to \frac{1}{3}L_3$.

$$A_4 = \left(\begin{array}{ccccc} 1 & 2 & -1 & 1 & 0 & 0 \\ 0 & -3 & 2 & -2 & 1 & 0 \\ 0 & 0 & 1 & -1/3 & 1/3 & 1/3 \end{array}\right).$$

$$L_2 \rightarrow L_2 - 2L_3, L_1 \rightarrow L_1 + L_3$$
. On aura

$$A_5 = \begin{pmatrix} 1 & 2 & 0 & 2/3 & 1/3 & 1/3 \\ 0 & -3 & 0 & -4/3 & 1/3 & -2/3 \\ 0 & 0 & 1 & -1/3 & 1/3 & 1/3 \end{pmatrix}.$$

$$L_2 \to (\frac{-1}{3})L_2$$
.

$$A_6 = \begin{pmatrix} 1 & 2 & 0 & 2/3 & 1/3 & 1/3 \\ 0 & 1 & 0 & 4/9 & -1/9 & 2/9 \\ 0 & 0 & 1 & -1/3 & 1/3 & 1/3 \end{pmatrix}.$$

Finalement, on pose $L_1 \rightarrow L_1 - 2L_2$, pour obtenir

$$A_7 = \begin{pmatrix} 1 & 0 & 0 & -2/9 & 5/9 & -1/9 \\ 0 & 1 & 0 & 4/9 & -1/9 & 2/9 \\ 0 & 0 & 1 & -1/3 & 1/3 & 1/3 \end{pmatrix}.$$

Par conséquent,

$$A^{-1} = \begin{pmatrix} -2/9 & 5/9 & -1/9 \\ 4/9 & -1/9 & 2/9 \\ -1/3 & 1/3 & 1/3 \end{pmatrix}.$$

Déterminants et applications

Définition.

Soit $A = (a_{ij}) \in \mathcal{M}_n(k), n \ge 1$, on définit le déterminant de A qu'on note det A (det $A \in K$) par

- n = 1, $\det A = \det(a) = a$, avec $A = (a) \in K$.
- Si $n \ge 2$, en supprimant la première ligne et la $j^{\grave{e}me}$ colonne de A, on obtient une matrice carrée $\in \mathcal{M}_{n-1}(k)$ qu'on note A_{1j} .
- On pose

$$\det A = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(A_{1j}).$$

Déterminants et applications

Exemple

$$n = 2, A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}, \det A = ad - bc.$$

$$n = 3,$$

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

$$+a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Déterminants et applications

Exemple

Calculons le déterminant suivant.

$$\det \begin{vmatrix} 3 & -1 & -1 \\ 1 & 2 & 0 \\ 2 & 5 & 7 \end{vmatrix} = 3 \begin{vmatrix} 2 & 0 \\ 5 & 7 \end{vmatrix} - (-1) \begin{vmatrix} 1 & 0 \\ 2 & 7 \end{vmatrix} + (-1) \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = 48.$$

On peut développer ce déterminant suivant la colonne 3, car elle contient un zéro.

Déterminant d'une famille de vecteurs

Soint E un espace vectoriel de dimension n sur le corps K, $B=(e_1,...,e_n)$ une base de E et $v_1,...,v_n$ des vecteurs de E tels que pour $1\leq j\leq n, v_j=\sum_{i=1}^n a_{ij}e_i$. Alors,

$$\det(v_1, ..., v_n) = \det(a_{ij}),$$

où (a_{ij}) est la matrice carrée d'ordre n. Signalons que le déterminant de $(v_1, ..., v_n)$ ne dépend pas de la base choisie de E.

Déterminant d'une famille de vecteurs

Propriétés

Soient $v_1,...,v_n$ des vecteurs de E avec $n=\dim E, \lambda \in K^*$. Alors, on a:

- $\det(v_1, ..., \lambda v_k, ..., v_n) = \lambda \det(v_1, ..., v_k, ..., v_n).$
- $\det(v_1,..,v_k+v_k',..,v_n) = \det(v_1,..,v_k,..,v_n) + \det(v_1,..,v_k',..,v_n).$ L'application: $v_k \to \det(v_1,..,v_k,..,v_n)$ est linéaire pour tout $k, 1 \le k \le n$.
- Si deux colonnes ou deux lignes d'une matrice sont égales ou colinéaires alors le déterminant de cette matrice est nul.
- $A, B \in \mathcal{M}_n(K), \det(A \times B) = (\det A).(\det B)$
- $\bullet \det(^t(A)) = \det A.$

Calcul de déterminant par les cofacteurs

Calcul de déterminant par les cofacteurs

Définition Soit $A = (a_{ij}) \in \mathcal{M}_n(K)$, on appelle cofacteur de l'élément a_{ij} le scalaire défini par

$$cof(a_{ij}) = (-1)^{i+j} \det(A_{ij}),$$

où A_{ij} est la matrice carrée de $\mathcal{M}_{n-1}(K)$ obtenue en supprimant la $i^{\grave{e}me}$ ligne et la $j^{\grave{e}me}$ colonne de la matrice A.

Théorème

Soit $A = (a_{ij}) \in \mathcal{M}_n(K)$, alors on a

$$\det A = \sum_{k=1}^{n} a_{kj} \operatorname{cof}(a_{kj})$$

ou

$$\det A = \sum_{i=1}^{n} a_{ik} \operatorname{cof}(a_{ik}).$$

Calcul de l'inverse d'une matrice par les cofacteurs

Proposition

Soit $A = (a_{ij}) \in \mathcal{M}_n(K)$, on cherche A^{-1} . On suit la démarche suivante.

- vérifier que det $A \neq 0$, c'est équivalent à ce que A est inversible.
- déterminer la comatrice de A, notée Com A, qui est la matrice d'ordre n obtenue en replaant chaque terme de A par son cofacteur.
- Ecrire la transposée de Com $A:^t$ (Com A).
- Utiliser la formule $A^{-1} = \frac{1}{\det A}^t(\text{Com }A)$.

Calcul de l'inverse d'une matrice par les cofacteurs

Exemple

Calculons l'inverse de la matrice suivante s'il existe

$$\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 3 & 1 \\
1 & 0 & 2
\end{array}\right)$$

On a det $A = 3 \neq 0$ donc A est inversible.

$$\operatorname{Com} A = \left(\begin{array}{ccc} \operatorname{cof} \ (1) & \operatorname{cof} \ (2) & \operatorname{cof} \ (-1) \\ \operatorname{cof} \ (2) & \operatorname{cof} \ (3) & \operatorname{cof} \ (1) \\ \operatorname{cof} \ (1) & \operatorname{cof} \ (0) & \operatorname{cof} \ (2) \end{array} \right) = \left(\begin{array}{cccc} 6 & -3 & -3 \\ -4 & 3 & 2 \\ 5 & -3 & -1 \end{array} \right)$$

Calcul de l'inverse d'une matrice par les cofacteurs

Exemple

$${}^{t}(\text{Com}A) = \begin{pmatrix} 6 & -4 & 5 \\ -3 & 3 & -3 \\ -3 & 2 & -1 \end{pmatrix}$$

d'où

$$A^{-1} = \frac{1}{3} \begin{pmatrix} 6 & -4 & 5 \\ -3 & 3 & -3 \\ -3 & 2 & -1 \end{pmatrix}$$