抽象代数

主讲教师: 邱德荣

记录人: 许晓宇(1.1-1.4),赵玲钰(1.5-2.2),李雪芳(2.3-2.7), 张钰(2.8-3.3), 马明扬(3.4-3.7),李航(3.8-4.3),吴传传(4.4-5.2)

<u>目录</u> 2

目录

1	群		3
	1.1	集合上的等价关系	3
	1.2	群	4
	1.3	群同态基本定理	7
	1.4	群作用	11
	1.5	Sylow定理 (有限群 "结构" 定理)	13
	1.6	自由Abel群	16
	1.7	有限生成Abel群	17
	- -	1#	
2	环与		18
		一些简单定义	
	2.2	子结构	
	2.3	理想、模、分式环	
	2.4		
		2.4.1 几类重要的特殊环	
		2.4.2 UFD唯一分解环或唯一析因环	
		2.4.3 分式环(环的局部化方法)	
	2.5	分式环	
	2.6	反向极限与正向极限(在集合上)	
		2.6.1 正向集(directed portialy ordered set)	
	2.7	模	
	2.8		37
	2.9	A-模复型	
		范畴和函子的简介	
			43
	2.12	分式模	48
3	域论		50
			50
	3.2	代数扩张与单代数扩张结构	
	3.3	代数闭包(1)	
	3.4	代数闭包(2)	
	3.5	分裂域 正规扩张	
	3.6	正规扩张 可分扩张	
	3.7	有限域	
		不可分扩张	

目录

		ois理论	77
	4.1	有限Galois理论	77
	4.2	Galois理论的若干应用	80
		4.2.1 关于多项式根式解的Galois定理	80
		4.2.2 古希腊四大数学难题	83
		域的无限Galois扩张	
	4.4	例题	86
5	环与	模的链条件	88
	5.1	环与模的链条件	88
	5.2	域的Galois扩张例子选讲	93

1 群

1.1 集合上的等价关系

集合的分类:如果非空集合S的一组非空子集 $\{S_{\lambda}|\lambda\in I\}$,I为指标集,满足下列条件:

- $(1)S = \bigcup_{\lambda \in I} S_{\lambda} ;$
- $(2)S_{\lambda} \cap S_{\mu} = \emptyset, \lambda \neq \mu, \lambda, \mu \in I;$

则 $\{S_{\lambda}\}$ 叫做S的一个分类.

Definition 1.1. 关系:非空集合S上的一个关系指的是任意一个子集 $R \subset S \times S$. $(a,b) \in S \times S$. $a \in b$ 有关系R,p(a,b) $\in R$.b记为aRb.

特别地, 当R为 $S \times S$ 或 \emptyset 时,为平凡关系.

 $R_1, R_2 \subset S \times S, R_1 \circ R_2 \stackrel{\triangle}{=} \{(a,b) \in R : 存在c \in S, 使得(a,c) \in R_1, (c,b) \in R_2\}$

$$a \stackrel{R_1}{\frown} c \stackrel{R_2}{\frown} b$$

Definition 1.2. 等价关系:设R是非空集合S上的一个关系.如果满足如下条件:

- (1)(自反性) $(a,a) \in R(\forall a \in S)$
- (2)(对称性) 若 $(a,b) \in R, 则 (b,a) \in R$
- (3)(传递性) 若 $(a,b) \in R$ 且 $(b,c) \in R$,则 $(a,c) \in R$,

则称 $R \to S$ 上的等价关系.记为aRb或 $(a,b) \in R$ 或 $a \equiv_R b$.

Example 1.1. $\mathfrak{R}S = \mathbb{Z}$

- $(1)\mathbb{Z} = \mathbb{Z}_{>0} \cup \mathbb{Z} \cup \mathbb{Z}_{<0}, a \sim b$:要么a, b都为0,要么a, b同号.
- $(2)\mathbb{Z} = 2\mathbb{Z} \cup (2\mathbb{Z} + 1), a \sim b:a, b$ 同奇偶性.

$$(3)n > 1, \mathbb{Z} = n\mathbb{Z} \cup (n\mathbb{Z} + 1) \cup \cdots \cup (n\mathbb{Z} + n - 1) = \overline{0} \cup \overline{1} \cup \cdots \cup \overline{(n - 1)}$$

$$a \sim_n b \Leftrightarrow n | (a - b) \Leftrightarrow a \equiv b \pmod{n}$$

$$\mathbb{Z}/\sim_n=\{\overline{0},\overline{1},\cdots,\overline{(n-1)}\}$$

设R是S上一个等价关系,对应的分类: $S = \bigcup_{a \in S} [a]$,其中 $[a] = \{b \in S : b \sim_R a\}$

Proposition 1.1. 给定非空集合S,则S上的分类与等价关系可以互相导出.

证明. $(1)S = \bigcup_{i \in \wedge} S_i \mathbb{E}S$ 上一个分类,即 $S_i \subset S$ 且对 $\forall i, j \in \wedge$ 如果 $S_i \cap S_j \neq \emptyset$,则 $S_i = S_j$,于是定义S上的一个关系R如下:

$$(a,b) \in R \iff$$
存在 $i \in \land$,使得 $a,b \in S_i$.

- ① $\forall a, (a, a) \in R$.事实上, $a \in S = \bigcup_{i \in \Lambda} S_i, 则a \in S_i, 对某个i, 即(a, a) \in R$.
- $\mathfrak{D}(a,b) \in R \to (b,a) \in R.$
- ③设 $(a,b) \in R$, $(b,c) \in R$.由 $(a,b) \in R$ 知,存在 $i \in \land$,使得 $a,b \in S_i$.由 $(b,c) \in R$ 知,存在 $j \in \land$,使得 $b,c \in S_i$.于是 $b \in S_i \cap S_i$,即 $S_i \cap S_j \neq \emptyset$.故 $S_i = S_i$, $a,c \in S_i$,即 $(a,c) \in R$.

1.2 群 5

因此R是S上的一个等价关系.

- (2)设R是S上的一个等价关系.则 $S = \bigcup_{a \in S} [a]$.其中 $[a] \stackrel{\triangle}{=} \overline{a} = \{b \in S : (b,a) \in R\}$
- ① $a \in [a]$.覆盖成立.
- ②对 $\forall a, b \in S$.如果 $[a] \cap [b] \neq \emptyset$.下证[a] = [b].

由所设,有 $c \in [a] \cap [b]$.即 $c \sim a$ 且 $c \sim b$,则 $a \sim b$.即 $a \in [b]$.且 $b \in [a]$.因此[a] = [b].

 $(3)S = \bigcup_{i \in \wedge} S_i \Rightarrow R \Rightarrow$ 分类 $S = \bigcup_{a \in S} [a]_R,$ 则对任取 $a \in S,$ 有 $a \in S_i,$ 对某个i,即 $S_i = [a].$

Definition 1.3. 偏序关系:设R是非空集合S上的一个关系.如果满足如下条件:

- (1)(自反性) $(a,a) \in R(\forall a \in S)$,
- (2)(反对称性) 若 $(a,b) \in R$ 且 $(b,a) \in R$,则a = b,
- (3)(传递性) 若 $(a,b) \in R$ 且 $(b,c) \in R$,则 $(a,c) \in R$,

则称R为S上的一个偏序关系 $(partial\ order),(S,R)$ 称为一个偏序集.

Example 1.2. $(\mathbb{R}, \leq), (S, \subset)$

Lemma 1.1. Zorn**引理** 设 (S, \leq) 是一个偏序集,如果S中的每个全序子集在S中都有上界,则S中存在极大元.

1.2 群

Definition 1.4. 设G是带有一个运算"*"的一个非空集合.如果下述条件成立:

- (1)(结合律) $(a*b)*c = a*(b*c), \forall a,b,c \in G$;
- (2)(单位元) 存在 $e \in G$,使得 $a * e = e * a = a(\forall a \in G)$;
- (3)(逆元) $\forall a \in G$,存在 $b \in G$,使得a * b = b * a = e,并记 $b = a^{-1}$;

则称(G,*)是一个群.

如果还满足交换律: $a*b=b*a(\forall a,b\in G)$,则称(G,*)是一个**交换群**(abelian).

Example 1.3.

- $(1)(\mathbb{Z},+);$
- $(2)(\mathbb{Z},\times)$ 不是群,除1,-1外,其他元素无逆元;
- $(3)M_n(\mathbb{R},+)$ \mathbb{R} 上的全体n级矩阵对普通加法构成的群;

 $M_{m\times n}(\mathbb{R},+);$

- $(4)GL_n(\mathbb{R},\cdot)$ R上的全体n级可逆矩阵对矩阵乘法构成的群, 称为**一般线性群**;
- $(5)SL_n(\mathbb{R},\cdot)$ R上的全体行列式为1的n级矩阵对矩阵乘法构成的群, 称为特殊线性群;
- (6) $\mathcal{U}_n=\{a\in\mathbb{C}:a^n=1\}$ x^n-1 在 \mathbb{C} 中的全部根对普通乘法构成群,称为n次单位根群, $(\mathcal{U},\cdot);$

(7)

$$X \stackrel{f}{\to} Y \stackrel{g}{\to} Z$$

1.2 群

6

令 $S=X\neq\emptyset, Perm(S)=I(S)=\{f:f$ 是S到自身的一一到上的变换 $\}$,则P(S)关于变换的合成构成一个#,称为S上的变换群.

 (S_n, \circ) n次对称群,元素个数为n!.

 $V \stackrel{f}{\to} W$ 为线性映射.证明其为单射的方法: $\mathfrak{O}f(\alpha) = f(\beta) \Rightarrow \alpha = \beta, 2 \ker f = f^{-1}(0) = \{0\};$

$$(8)(\mathbb{Z}/n\mathbb{Z},+) \quad \mathbb{Z}/n\mathbb{Z} = \{\overline{0},\overline{1},\cdots,\overline{(n-1)}\} \quad \overline{a} + \overline{b} \stackrel{\triangle}{=} \overline{a+b}$$

 $(\mathbb{Z}/n\mathbb{Z})^* = \{ \overline{a} : a \in \mathbb{Z}, (a, n) = 1 \}$

 $((\mathbb{Z}/n\mathbb{Z})^*,\cdot)$ 此群元素个数为 $\varphi(n)$.

内部:子结构

外部:群同态

Definition 1.5. 子群:对于群 $G \neq \emptyset$,非空子集 $H \subset G$ 称为G的一个子群,如果H在G中的运算下也是一个群,此时记为 $H \leq G$.

下列条件等价:

- (1)①单位元 $e \in H$,
 - ②封闭性 $\forall a, b \in H, a \cdot b \in H$,
 - ③逆元 $a^{-1} \in H$.
- $(2)H \neq \emptyset. \forall a, b \in H, ab^{-1} \in H$. (验证子群的方法)

G的平凡子群: $\{e\},G$.

子群的交与并 H, K < G.

 $H \cup K \nleq G$

反例: $H = \{[0], [3]\}, K = \{[0], [2], [4]\}, 易知<math>H \cup K$ 不满足封闭性.

 $H \cap K \leq G$

一般地,设 $H_i \leq G(i \in \land), 则H = \bigcap_{i \in \land} H_i \leq G$

证明. $①e \in H_i (i \in \land) \Rightarrow e \in H$.

- $\textcircled{2} \forall a, b \in H, \ f(a, b) \in H_i(\forall i \in \land) \Rightarrow a \cdot b \in H_i(\forall i \in \land) \Rightarrow a \cdot b \in H.$
- $\exists \forall a \in H \Rightarrow a \in H_i (\forall i \in \land) \Rightarrow a^{-1} \in H_i \Rightarrow a^{-1} \in \bigcap_{i \in \land} H_i = H.$

$$\Longrightarrow H < G.$$

子集生成的子群:

问题:群G, $\emptyset \neq S \subset G$,G中是否有子群包含S,若有,最小者是?

令 $\mathscr{F}=\{H\leq G: H\supset S\}.$ 显然, $G\in\mathscr{F}$,即 $\mathscr{F}\neq\emptyset.$ 记 $\langle S\rangle=\bigcap_{H\in\mathscr{F}}$,则 $\langle S\rangle$ 是G中包含S的最小子群.

 $\mathbb{P}(1)\langle S\rangle \leq G(子群对取交封闭)$

(2)设 $H \leq G, \exists S \subset H, 则 H \supset \langle S \rangle.$

称 $\langle S \rangle$ 为S在G中生成的子群.

定义 特别地,对群G,如果有 $a \in G$,使得 $G = \langle a \rangle$,则称G为一个循环群.

易知 \forall 群 $G,a \in G, \langle a \rangle < G.$

群的阶:|G|.

1.2 群

Definition 1.6. 元素的阶: $a \in G$, $|\langle a \rangle|$ 称为元素a的阶.

 $\dots \in G, \square a^{\mathbb{Z}} \stackrel{\triangle}{=} \{a^m : m \in \mathbb{Z}\}.$

事实: $\langle a \rangle = a^{\mathbb{Z}}$.

证明. $(1)\langle a\rangle\supset a^{\mathbb{Z}}$,

(2)只需说明 $a^{\mathbb{Z}}$ 是子群.(显然)

结论:若有群 $(G,\cdot), \forall a \in G, 则有\langle a \rangle = a^{\mathbb{Z}}.$

另一方面,有满同态 $f: \mathbb{Z} \to \langle a \rangle, m \mapsto a^m$.

Example 1.4. $(\mathbb{Z}, +) = \langle 1 \rangle$

 $\sharp (G,\cdot),H,K\subset G,$ 定义 $H\cdot K=\{hk:h\in H,k\in K\},$ 易知 $H\cdot K\subset G;$ 另一方面,有 $G=HG=\bigcup_{a\in G}H\cdot a.$ 其中 $H\cdot a\subset G$

事实: $\{Ha: a \in G\}$ 给出了G上的一个分类.

证明. (1) $\bigcup_{a \in G} H \cdot a = G;$

(2)任取 $a,b \in G$,如果 $Ha \cap Hb \neq \emptyset$,则有Ha = Hb.事实上,由所设,有 $c \in Ha \cap Hb$,即 $c = h_1a = h_2b$.其中 $h_1,h_2 \in H$.下证Ha = Hc.

対 $\forall h \in H, ha = h(h_1^{-1}c) = (hh_1^{-1})c \in Hc$ 即 $Ha \subset Hc$.同理 $hc = hh_1a = (hh_1)a \in Ha$,即 $Hc \subset Ha$.因此,Ha = Hc.同理可证Hb = Hc,所以Ha = Hb.

于是从上述讨论,得到了G关于H的一个(右)陪集分类. $G = \bigcup_{a \in G} Ha = \bigcup_{a \in G} [a]$.其中Ha称为a所在的右陪集.(显然 $a = ea \in H$)由前述,上述分类必对应于G上的一个等价关系 \sim . 即 $\forall a,b \in G, a \sim b \Leftrightarrow Ha = Hb \Leftrightarrow ab^{-1} \in H$.

记所得的商集为 $G/H = \{Ha : a \in G\} = \{[a] : a \in G\} = \{\overline{a} : a \in G\}, [a] = \overline{a} \stackrel{\triangle}{=} Ha.$

注意: $a,b \in G, Ha = Hb \Leftrightarrow ab^{-1} \in H.$

同样地, $G = GH = \bigcup_{a \in G} aH$ 是G上的一个分类.称为G关于H的左陪集分类.

注意: $a,b \in G, aH = bH \Leftrightarrow a^{-1}b \in H.$

商集 $H \setminus G(\stackrel{\triangle}{=} G/H) = \{aH: a \in G\} = \{\overline{a}: a \in G\}$ 且有 $|G/H| = |\sum_{a_i \in G} a_i H = |\frac{|G|}{|H|}$,为此只需证 $f: H \Rightarrow aH, h \mapsto ah$ 既单又满,易证.

称 $|G/H| = \frac{|G|}{|H|}$ 为G关于H的index(指数),记之为(G:H).且有 $|G| = |H| \cdot (G:H)$. $|G| = (G:\{e\})$ 设 $H \leq G(\mathbb{H})$, $G/H = \{aH: a \in G\}$ (左商集),问:是否可在G/H中引进某个运算,使得 $(G/H, \cdot)$ 是一个群.

取 $aH, bH \in G/H$,要使 $aH * bH = abH \in G/H$ 成立,必须满足对 $\forall a \in G$,都有aH = Ha.

Definition 1.7. 设 $H \leq G(\sharp)$,如果对 $\forall a \in G$,都有aH = Ha,则称H是G的一个正规子群.记之为 $H \triangleleft G$.

显然 $\{e\}$ 与G是G的两个平凡的正规子群.特别地,交换群中的任一子群均是正规的.

Proposition 1.2. 设H < G,则下列陈述等价.

- $(1)H \triangleleft G$;
- (2)∀ $h \in H, a \in G, \bar{\eta}aha^{-1} \in H;$
- (3)对 $\forall a \in G, aHa^{-1} \subset H;$
- $(4)aHa^{-1} = H, (\forall a \in G).$

证明. (2)⇒(4)

事实:设 $H \triangleleft G$,则按下述方式引进G/H上的运算·构成一个群,称之为G关于H的商群.

$$G/H=\{aH:a\in G\}=\{\overline{a}:a\in G\}, \overline{a}=aH(=Ha)$$

任取 $a, b \in G, \overline{a}, \overline{b} \in G/H$.规定 $\overline{a} \cdot \overline{b} = \overline{a \cdot b}(\mathbb{D} a H \cdot b H \stackrel{\triangle}{=} (a \cdot b) H)$ $aH \cdot bH = Ha \cdot bH = H(a \cdot b)H = (a \cdot b)HH \Rightarrow H^2 = H(H \leq G), H^2 = \{h_1 h_2 : h_1, h_2 \in H\}$

1.3 群同态基本定理

Definition 1.8. 设 G_1, G_2 是两个群, $f: G_1 \to G_2$ 是一个映射.如果f满足如下条件:

- $(1)f(e_1) = e_2;$
- $(2)f(a \cdot b) = f(a) \cdot f(b), \forall a, b \in G_1.$

则称f为从 G_1 到 G_2 的一个(群)同态.

Example 1.5. $\sharp(\mathbb{R},+)$ 和 (S^1,\cdot) ,其中 $S^1=\{z\in\mathbb{C}:|z|=1\}$,令 $f:\mathbb{R}\Rightarrow S^1,a\mapsto e^{2\pi i a}$,则f是一个群同态.

- $(1)f(0) = e^{2\pi i 0} = 1.$
- $(2)f(a+b) = e^{2\pi i(a+b)} = e^{2\pi ia} \cdot e^{2\pi ib} = f(a)f(b).$

特别地, 当f是满射,单射或一一到上的映射时,分别称f为满同态, 单同态或同构.

设 $f:G\Rightarrow H$ 是群同态,则f(e)=e,记 $kerf=f^{-1}(e)=\{a\in G:f(a)=e\}$,称之为f的核(kernel).

 $(1)kerf \leq G$

证明. 任取 $a, b \in kerf$,则f(a) = f(b) = e. 于是

$$f(ab^{-1}) = f(a)f(b^{-1}) = f(a)f(b)^{-1} = e \Rightarrow ab^{-1} \in kerf$$

进一步, $\forall a \in G, b \in kerf$.则f(b) = e.于是 $f(aba^{-1}) = f(a)f(b)f(a)^{-1} = f(a)ef(a)^{-1} = e \Rightarrow aba^{-1} \in kerf$. 故 $kerf \triangleleft G$,于是有商群G/kerf.

于是
$$f: G \to G/H$$
(单位元为 $\overline{e} = H$), $a \mapsto \overline{a} (= aH)$,
$$f(ab) = abH = aH \cdot bH = f(a) \cdot f(b), f(e) = eH = H$$

$$kerf = f^{-1}(\overline{e}) = \{a \in G: f(a) = \overline{e}\} = \{a \in G: aH = H\} = H$$

$$\overline{f}: G/kerf \to H, \overline{a} \mapsto f(a).$$

下证映射 \overline{f} 为良定义的,即与代表元选取无关.

$$a_1, a_2 \in G, \overline{a_1} = \overline{a_2} \Rightarrow a_1 kerf = a_2 kerf f \Rightarrow a_1^{-1} a_2 \in kerf$$

即

$$f(a_1^{-1}a_2) = e, f(a_1^{-1})f(a_2) = e \Rightarrow f(a_1) = f(a_2).$$

$$\overline{f}: G/kerf \to H, \overline{a} \mapsto f(a), \overline{f}(\overline{a}) \stackrel{\triangle}{=} f(a). (\forall a \in G)$$

事实:证明于为群同态.

证明.
$$\overline{f}(\overline{e}) = \overline{f(e)} = f(e) = e$$

$$\overline{f}(\overline{a}\overline{b}) = \overline{f}(\overline{a}\overline{b}) = f(ab) = f(a)f(b) = \overline{f}(\overline{a})\overline{f}(\overline{b})$$

Lemma 1.2. 引理:群同态 $f: G \to H$ 是单的, $\Leftrightarrow kerf = \{e\}$.

$$\begin{aligned} &\ker \overline{f} = \{\overline{e}\} \\ &\overline{a} \in \ker \overline{f} \Leftrightarrow \overline{f}(\overline{a}) = e, \mathbb{P}f(a) = e \Rightarrow a \in \ker f \Rightarrow \overline{a} = \overline{e} \Rightarrow \ker \overline{f} = \{\overline{e}\} \\ &\mathbf{问题}: G = \langle a \rangle = a^{\mathbb{Z}}, \diamondsuit f : \mathbb{Z} \to a^{\mathbb{Z}}, m \mapsto a^m, \\ &(1) \ker f = \{1\}, \\ &(2) H < (\mathbb{Z}, +), H = \{n\mathbb{Z}, n \in \mathbb{N}\}. \end{aligned}$$

Theorem 1.1. 群同态基本定理

设
$$f:G\to H$$
是一个群同态,则

$$(1)kerf=f^{-1}(e) \triangleleft G, imf=f(G) \leq H.$$

(2)f诱导出群同态 $\overline{f}:\overline{G}=G/kerf\simeq imf\to H$,使得下图交换,

 $\mathbb{P} f = \overline{f} \circ \eta, \not \exists \, \exists \, \eta : G \to \overline{G}, a \mapsto \overline{a} = akerf, \overline{f} : \overline{G} \to H, \overline{a} \mapsto f(a), ker\overline{f} = \{\overline{0}\}.$

Corollary 1.1. 推论:设G是一个群,H, $K \triangleleft G$.如果 $H \subset K$,则 $K/H \triangleleft G/H$,且有群同构 $(G/H)/(K/H) \simeq G/K$.

证明. $\Diamond f: G/H \to G/K, aH \mapsto aK$,

则f是一个映射:设 $aH=bH(a,b\in G)$,则 $a^{-1}b\in H$.由于 $H\subset K$.故 $a^{-1}b\in K$.即aK=bK,也即f(aH)=f(bH).

又显然,

$$f(aH \cdot bH) = f(abH) = abK = aK \cdot bK = f(aH) \cdot f(bH)$$

即f是一个群同态,且显然是满的.

于是有群同态基本定理,得

$$ker f = \{aH \in G/H : f(aH) = eK\}$$
$$= \{aH \in G/H : aK = eK\}$$
$$= \{aH \in G/H : a \in K\}$$
$$= K/H \triangleleft G/H$$

 $\mathbb{E}(G/H)/(K/H) \simeq f(G/H), \mathbb{P}(G/H)/(K/H) \simeq G/K.$

Definition 1.9. (子群的正规化):设H < G(群),定义

 $(1)N_G(H) = \{ g \in G : gHg^{-1} = H \}$

事实: $\mathbb{O}N_G(H) \leq G$,

 $\mathfrak{D}H \triangleleft N_G(H)$.

 $N_G(H)$ 为H在G中的正规化子(normilirer).

任取 $H, K \leq G,$ 若HK = KH,即hK = Kh,所以 $h \in N_G(K)$ 即 $H \subset N_G(K)$.

(2a)G的中心. $C(G) = \{a \in G : ab = ba(\forall b \in G)\}$, 易证 $C(G) \triangleleft G$.

(2b)中心化子:设 $S \subset G$,定义S在G中的中心化子为 $C_G(S) = \{a \in G : ab = ba(\forall b \in S\}.$

(3)非交换群的交换化(即Abel化):设G是一个群(非交换),由交换群性质ab=ba,即(ab)(ba) $^{-1}=e=aba^{-1}b^{-1}$ 得到换位子定义:

G的换位子群:对于 $a,b\in G$.记 $[a,b]=aba^{-1}b^{-1}$,称为一个换位子.且记 $S=\{[a,b]:a,b\in G\}$.令 $[G:G]=\langle S\rangle$ 为S生成的子群,称[G,G]为G的换位子群.

事实:[G:G] ⊲ G.

称商群G/[G:G]为G的交换化,记之为 $G^{ab} \stackrel{\triangle}{=} G/[G:G]$.

事实:(1)Gab是一个交换群.

(2)满足如下所谓"泛性质":对任意交换群H及群同态 $g: G \to H$,则存在唯一的群同态 $\rho: G^{ab} \to H$,使得 $g = \rho \circ f$ (试比较kerf = kerg的关系)

Corollary 1.2. 设 $H, K \leq G, \mathbb{L}H \subset N_G(K),$ 则

- (1)HK ≤ G, 𝔻K ▷ HK
- (2)有群同构 $HK/K \simeq H/H \cap K$.

证明. $\Diamond f: H \to HK/K, h \mapsto hK(\forall h \in H), 易知f是一个群满同态.又$

$$ker f = \{h \in H : f(h) = eK\}$$
$$= \{h \in H : hK = K\}$$
$$= \{h \in H : h \in K\}$$
$$= H \cap K$$

由群同态基本定理,知 $H \cap K = kerf \triangleleft H$,且 $H/H \cap K \simeq f(H) = HK/K$ 即 $H/H \cap K \simeq HK/K$.

(循环群的结构)

设 $G=\langle a \rangle$ 是一个循环群,则 $G=a^{\mathbb{Z}}=\{a^m: m\in \mathbb{Z}\}$ 令 $f:(\mathbb{Z},+)\to G=a^{\mathbb{Z}}, m\mapsto a^m,$ 显然f是一个群满同态,于是由群同态基本定理,得 $\mathbb{Z}/kerf\simeq G$

事实: $(\mathbb{Z}, +) = \langle 1 \rangle = \langle -1 \rangle$ 是一个无限循环群.

$$H \leq \mathbb{Z}, H = n\mathbb{Z} = \langle n \rangle (n \in \mathbb{Z})$$

- $(1)H = \{0\}$
- $(2)H \neq \{0\}$,此时 $H \cap \mathbb{Z}_{>1} \neq \emptyset$.取H中的最小正整数n,则断言 $H = n\mathbb{Z} = \langle n \rangle (= \langle -n \rangle)$.

对 $\forall m \in H$,有带余数除法知,m = qn + r,其中 $q, r \in \mathbb{Z} \ \, \exists 0 \le r < n.r = m - qn \in H$.由n的最小性知r = 0,即 $m = qn \in n\mathbb{Z} \Rightarrow H \subset n\mathbb{Z} \subset H \Rightarrow H = n\mathbb{Z}$,因此 $kerf = n\mathbb{Z}$.

$$G = \langle n \rangle \simeq \mathbb{Z}/kerf = \mathbb{Z}/n\mathbb{Z}$$

- (1)无限循环群: $G \simeq \mathbb{Z}$,
- (2)有限循环群: $G \simeq \mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \cdots, \overline{(n-1)}\} (n \neq 0).$

事实: $G = \langle a \rangle$ 是一个循环群.|G| = n

元素阶的性质: $a \in G$,a的阶o(a)为n.

$$o(a) = n \Leftrightarrow n = |\langle a \rangle| \Leftrightarrow n$$
是使得 $a^n = e$ 的最小正整数.

$$\Leftrightarrow \left\{ \begin{array}{l} (1)a^n = e \\ (2)a^m = e \Leftrightarrow n|m \end{array} \right.$$

Example 1.6. (1)群 $(\mathbb{R},+)$ 和 (S^1,\cdot) ,其中 $S^1=\{z\in\mathbb{C}:|z|=1\}$,令 $f:\mathbb{R}\Rightarrow S^1,a\mapsto e^{2\pi ia}$,则f是一个群满同态. $kerf=(\mathbb{Z},+)$,且有 $(\mathbb{R}/\mathbb{Z},+)\simeq (S^1,\cdot)$,以及 $\mathbb{R}^n/\mathbb{Z}^n\simeq S^n=S^1\times S^1\times\cdots S^1$.

 $(2)G = GL_n(\mathbb{R})$,則 $det: G \to \mathbb{R}^* = \mathbb{R} \setminus \{0\}$, $S \mapsto detA = |A|$,則 $kerdet = \{A \in GL_n\mathbb{R}: detA = 1\} = SL_n(\mathbb{R})$, $SL_n(\mathbb{R}) \triangleleft GL_n(\mathbb{R})$,且 $GL_n(\mathbb{R})/SL_n(\mathbb{R}) \simeq GL_1(\mathbb{R}) = \mathbb{R}^*$

 $(3)f:(\mathbb{Z},+) \to (2\mathbb{Z},+), a\mapsto 2a.$ 则 $f(3\mathbb{Z})=6\mathbb{Z}$,且有 $\mathbb{Z}/3\mathbb{Z}\simeq f(\mathbb{Z})/f(3\mathbb{Z})=2\mathbb{Z}/6\mathbb{Z}\simeq \mathbb{Z}/3\mathbb{Z}$,但 $\mathbb{Z}/2\mathbb{Z}\ncong\mathbb{Z}/4\mathbb{Z}$

所以,对于一般的群同态 $f:G_1\to G_2$,当 H_1 是 G_1 的正规子群,则有 $G_1/H_1\simeq f(G_1)/f(H_1)$.

1.4 群作用 12

1.4 群作用

|G| = n,由算术基本定理 $n = p_1^{e_1} \cdots p_r^{e_r}, p_i$ 为素数.

重要工具:群作用(actions of groups)

Definition 1.10. 设G是一个群,S是一个非空集合,G对S的一个作用,指的是满足下述条件的映射 $*:G\times S\to S:$

(条件 $):(1)e\cdot s=s(e\in G$ 是单位元 $,s\in S)$

$$(2)(a*b)*c = a*(b*c)(\forall a, b \in G, s \in S)$$

Example 1.7. $\forall a \in G, f_a : S \to S, s \mapsto as$,且易证 f_a 为置换(即 $f_a \in Perm(S)$), $f : G \to Perm(S), a \mapsto f_a$ 为群同态.此时 $G \times S \to S, (a, s) \mapsto as = f(a)(s) = f_a(s)$.

设 $G \times S \to S$ 是个群作用,则该作用给出了S上的如下一个等价关系: \sim_G :

对于 $s_1, s_2 \in S$,定义: $s_1 \sim_G s_2 \iff$ 存在 $a \in G$,使得 $s_2 = as_1$.

事实: $\sim_C \mathcal{L}S$ 上的一个等价关系.于是有对应的分类,

商集:

$$S/G = \{[s] : s \in G\} = \{\overline{s} : s \in G\}$$
$$t \in [s] \Leftrightarrow t = as(\exists a \in G),$$

即

$$[s] = G \cdot s = \{as : a \in G\}$$

称[s]为s所在的G-轨道.

$$S = \bigcup_{s \in S} G \cdot s$$

特别地,如果 $\sharp S<+\infty$,则可选取 $s_1,s_2,\cdots,s_r\in S$ 使得 $S=[s_1]\cup\cdots\cup[s_r]=G\cdot s_1\cup\cdots\cup G\cdot s_r$. 于是得计数公式:

$$|S| = \sum_{i=1}^{r} |G \cdot s_i|$$

每个轨道元素个数:

 $\diamondsuit G_s = \{a \in G : as = s\}$

事实: $G_s \leq G$.

称G。为S在G中的稳定子群(stablizer).

$$\phi: G/G_s \to G \cdot s, \overline{a} \mapsto as(\forall a \in G)$$

 $(1)\phi$ 是well-defined:

谈 $\overline{a_1} = \overline{a_2}(a_1, a_2 \in G)$,则 $a_1^{-1}a_2 \in G_s$,即 $a_1^{-1}a_2s = s \Rightarrow a_1(a_1^{-1}a_2)s = a_1s$,即 $a_2s = a_1s(\phi(\overline{a_1}) = \phi(\overline{a_2}))$

(2)显然o是满射.下证o是单射:

设
$$a_1, a_2 \in G$$
且 $\phi(\overline{a_1}) = \phi(\overline{a_2})$,则

$$a_1s = a_2s \Rightarrow a_2^{-1}a_1s = s \Rightarrow a_2^{-1}a_1 \in G_s \Rightarrow \overline{a_2} = \overline{a_1}$$

1.4 群作用 13

结论: $\phi: G/G_s \to G \cdot s$, ϕ 是双射,于是 $|G \cdot s| = |G/G_s| = (G:G_s)$. 计数公式(稍精细些):群G作用在有限集S上,有G—轨道分类: $S = G \cdot s_1 \cup \cdots \cup G \cdot s_r$. (计数公式): $|S| = \sum_{i=1}^r |G \cdot s_i| = \sum_{i=1}^r (G:G(s_i))$

Example 1.8. (1)G为 \sharp , $\Re S = G, G \times S \to S, (a, s) \mapsto as,$

 $(2) \\ \exists H \leq G. \\ \\ \exists G \\ S = G/H = \{aH: a \in G\} \\ \\ \exists G \\ \times S \\ \rightarrow S, (a,bH) \\ \mapsto abH.$

Definition 1.11. 共轭关系:设G是一个群 $,a,b\in G$.如果存在 $c\in G$,使得 $cac^{-1}=b$,则称a与b共轭. 事实:共轭关系是一个等价关系.

 $G/\sim=\{[a]:a\in G\}$,其中 $[a]=\{bab^{-1}:b\in G\}$ 是G中a所在的共轭类.则 $G=\bigcup_{a\in G}[a]$.而 $[a]=\{a\}\Leftrightarrow a\in C(G)$,所以有 $[G]=|C(G)|+\sum_{i=1}^r\sharp[a_i],a_i\notin C(G)$

用群作用的观点:取 $S=G,G\times S\Rightarrow S,(a,s)\mapsto asa^{-1},$ 易证 $e\cdot s=s,(a*b)*s=a*(b*s),$ 任取 $s\in S=G,$ 则有

$$G\cdot s=\{asa^{-1}:a\in G\}=[s]$$

则由 $G = C(G) + \bigcup_{a \in G}^{r} [s_i]$ 得

$$|S| = \sharp C(G) + \sum_{i=1}^{r} |[s_i]|$$

$$= \sharp C(G) + \sum_{i=1}^{r} |G \cdot s_i|$$

$$= \sharp C(G) + \sum_{i=1}^{r} (G : G_{s_i})$$

$$G_{s_i} = \{ a \in G : as_i a^{-1} = C_G(s_i) \} \Rightarrow |S| = |C(G)| + \sum_{i=1}^r (G : C_G(s_i)) \}$$

当 $H \le K$,有 $S = \{gHg^{-1} : g \in G\}$,即 $G \times S \Rightarrow S$, $(a, bHb^{-1}) \mapsto a * (bHb^{-1}) \stackrel{\triangle}{=} a(bHb^{-1})a^{-1}$ 则 $G_H = \{g \in G : gHg^{-1} = H\} = N_G(H)$.

复习:(群作用)

群G作用于S($\neq \emptyset$)上,即

$$G imes S \Rightarrow S$$

$$S/G = S/\sim_G = \{[s]: s \in S\}$$
 $s_1, s_2 \in S, s_1 \sim_G s_2 \Leftrightarrow$ 存在 $a \in G,$ 使得 $as_1 = s_2$

 $[s]=G\cdot s=\{as:a\in G\}:s$ 所在的G轨道,且有 $S=\bigcup_{s\in S}G\cdot s,$ 当 $\sharp S<+\infty$ 时,选择 $s_1,s_2,\cdots,s_r\in S$ 使得 $S=[s_1]\cup\cdots\cup[s_r]=G\cdot s_1\cup\cdots\cup G\cdot s_r.$ 轨道计数公式: $|S|=\sum i=1^r|G\cdot s_i|=\sum i=1^r(G:G(s_i)$ 特别地,对于

$$s \in G, [s] = G \cdot s = \{s\} \Leftrightarrow a \cdot s = s(\forall a \in G) \Leftrightarrow G_s = G$$

此时称s为G的一个不动点.

1.5 Sylow定理(有限群"结构"定理)

Definition 1.12. 设p是素数,G是一个有限群,如果|G|是p的幂,则称G为一个p群.

Definition 1.13. 设G是一个n阶群,p是一个给定的素数,且p|n.于是有唯一的 $r \in Z_{\geq 0}$ 使得 $p^r||n$,称G的任意一个阶为 p^r 的子群为G的Sulow-子群.

Theorem 1.2. (有限子群Sylow定理)

设G是一个n阶群,p是一个素数,且p|n,记 $n=p^rm$, $r\in Z_{>1}$,且 $p\nmid m$.则

- (1)G的任一个p子群必包含于G的某个Sylow p子群中.
- (2)G的Sylow-p子群互相共轭.
- (3)记S为G的全部Sylow p子群组成的集合,则 $|S| \equiv 1 \pmod{p}$.
- (4)|S| | m.

设H是一个p群,p是素数,H作用在集合 $S(\neq\emptyset)$ 上.

s是一个H-固定点 $\Longleftrightarrow hs = s(\forall h \in H) \Longleftrightarrow H_s = H.$

 $1 = |[s]| = |H: H_s|$

s不是H-固定点 \iff $(H:H_s) > 1 <math>\iff$ $p|(H:H_s)$

记 S_f ={ s ∈ S:s是H固定点}

则 $S=S_f \bigcup H_{s1} \bigcup \cdots \bigcup H_{sr}$

 $|S| = |S_f| + \prod_{i=1}^r |H_{si}| = |S_f| + \prod_{i=1}^r (H:H_{si}) \Rightarrow |S| \equiv |S_f| \pmod{p}$ (因为 $p|(H:H_{si}), i = 1, \dots, r$)

综上,得

Proposition 1.3. 设p是一个素数,H是一个p群,S是一个H—集.记 S_f ={ $s \in S:s$ 是H固定点}. 则 $|S_f| \equiv |S| (mod p)$.

证明. (有限子群Sylow定理)

(1)设H是G的一个p子群,P是G的一个Sylow - p子群.令 $S = \{aPa^{-1} : a \in G\}$.于是S是一个自然的G—集(在共轭作用下),且是可迁的.

$$G\times S\to S$$

$$(a,bPb^{-1})\to a(bPb^{-1})b^{-1}$$

于是 $|S| = |[P]| = (G:G_p)$,其中 $G_P = \{a \in G: aPa^{-1} = P\} = N_G(P)$ (即P是G中的正规化子).

$$\Rightarrow |S| = (G:G_P) = (G:N_G(P))$$

 $\Rightarrow (G:N_G(P))|(G:P)=m$

 $\Rightarrow p \nmid (G:N_G(P)), \mathbb{I} p \nmid |S|$

又显然S也是一个H-集合,记 $S_f(H) = \{s \in S : h*s = s(\forall h \in H)\}$,则由前述命题,得 $|S_f(H)| \equiv |S| (mod p)$.

由上述结论, $p \nmid |S|$, $\Rightarrow p \nmid |S_f(H)|$.

特别地, $S_f(H) \neq \emptyset$,也即

S中必有H-固定点,不妨设其中一个为P'.于是,对 $\forall h \in H$,有 $hP'h^{-1} = P'$,即 $h \in N_G(P')$.因此 $H \subset N_G(P')$.

由群同态基本定理,得 $H/H \cap P' \simeq HP'/P', \Rightarrow (H:H \cap P') = (HP':P').$

由于 $P' \subset HP' \subset G$ 且(HP' : P')|(G : P') = m

 $\Rightarrow (H:H\cap P')|m$

 $\Rightarrow (H: H \cap P')||H| = p^t \quad (1 \le t \le r)$

 $\Rightarrow (H:H\bigcap P')|(m,p^t)=1$

 $\Rightarrow (H:H\cap P')=1$

 $\Rightarrow H \cap P' = H$

 $\Rightarrow H \subset P'$

(2)任取G的一个Sylow - p子群H.下证 $H \in S$.

与上述(1)的证明中的讨论一样,即S作为一个H-集,必有固定点,取其中一个为Q,于是有 $H\subset N_G(Q)$,⇒ $H\subset Q$.

但 $|H| = |Q| = p^r$.故 $H = Q \in S$.

(3)同理,S也是一个p-集,且S有且仅有一个P-固定点,即P自身:

$$Q \in S_f \iff aQa^{-1} = Q(\forall a \in P), \\ \\ \mathbb{P}a \in N_G(Q) \Rightarrow P \subset N_G(Q) \Rightarrow P \subset Q \Rightarrow Q = P$$

因此,由前面关于p群作用的固定点结果, $|S| \equiv \#S_f(mod p)$,即 $|S| \equiv 1(mod p)$.

(4)S作为一个G-集,有 $|S| = |\{aPa^{-1} : a \in G\}| = (G : N_G(P))|(G : P) = m$

循环群: $(1)G \simeq (Z,+)$ 可作其生成元的元素为1,-1,< 1 >=< -1 >.(2)G =< a >, $\circ(a)$ = $n,G \simeq (Z/nZ,+)$.< a >=< a^r > \Longleftrightarrow $(r,n)=1,则r有<math>\phi(n)$ 个.

Example 1.9. $(1)Z/6Z = <\overline{1}> = <\overline{5}>$

$$(2)(Z/nZ)^*=\{\overline{a}:(a,n)=1\}$$

置换群:

$$S = \{a_1, \cdots, a_n\} \longrightarrow \{1, 2, \cdots, n\}$$

$$P(S) = Perm(S), \sigma \in P(s)$$

$$\begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$$

 $\sigma \circ \tau$: 先用 τ 作用,再用 σ 作用. $(i_1 ... i_r)$ 是r循环.

可解群:

$$G \supset G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_n = \{e\}$$
,且 $G_{i+1} \triangleleft G_i \ (i=0,\ldots,n-1)$, G_i/G_{i+1} 是交换的. 幂零群一定是可解群.

有限生成Abel群结构

(1)有限Abel群

设A是一个n阶Abel群,(A, +),p是素数,p|n.A的Sylow - p子群有且只有一个,记之为A(p).

 $A(p) = \{a \in A : \exists r \in \mathbb{Z}_{\geq 0}, \rightarrow p^r a = 0\},$ 称之为A的p - primary(p准素)子群.

 $n = p_1^{e_1} \dots p_s^{e_s} . p_1, \dots, p_s$ 是两两互异的素数, $e_1, \dots, e_s \in Z_{>0}$.

对应地,有A的 p_i -准素子群 $A(p_i)$.

注记:一般地,对于Abel群A及 $n \in Z_{\geq 1}$,记 $A[n] = \{a \in A : na = 0\}, A[n] \leq A$,

于是
$$A(p) = \bigcup_{m \in \mathbb{Z}_{\geq 0}} A[p^m] = \bigcup_{m=0}^{\infty} A[p^m]. \quad A[1] = \{0\}.$$

(2)Abel群的直和

 $A=A_1\oplus A_2$:(1) $A=A_1+A_2$ (2)表示法唯一: $a=a_1+a_2=a_1'+a_2'\Rightarrow a_1=a_1',a_2=a_2'.A_1\bigcap A_2=\{0\}.$

Theorem 1.3. 设A是一个n阶Abel群,且 $n=p_1^{e_1}\dots p_r^{e_r},p_1,\dots,p_r$ 是两两互异的素数, $e_1,\dots,e_r\in Z_{\geq 1}$.则 $A=A(p_1)\oplus\dots\oplus A(p_r)=\mathop{\oplus}\limits_{i=1}^r A(p_i)$.

证明. 先证 $A(p_1) \cap \sum_{i=2}^r A(p_i) = \{0\}$

任取其中一个元素 α ,则 $\alpha \in A(p_1)$ 且 $\alpha = \sum_{i=2}^{r} a_i, a_i \in A(p_i)$.

 $p_1^{t_1}\alpha = 0 \Rightarrow \circ(\alpha)|(p_1^{t_1}, (p_2, \dots, p_r)^t) = 1 \Rightarrow \circ(\alpha) = 1 \Rightarrow \alpha = 0.$

不妨设 $n = p^{e_1}q^{e_2}$,下证A = A(p) + A(q).

 $(p^{e_1}, q^{e_2}) = 1 \iff \exists u, v \in Z \to up^{e_1} + vq^{e_2} = 1.$

则对A中任意元素a有 $a=1\cdot a=(up^{e_1}+vq^{e_2})\cdot a=up^{e_1}a+vq^{e_2}a\in A(p)+A(q).$

设(A, +)是Abel群 $, a \in A, n \in Z_{>0}, 则 na = a + \cdots + a(n \uparrow a).$

若 $n \in Z_{\geq 1}$,记 $A[n] = \{a \in A : na = 0\}$,p是素数, $A[p^n] = \{a \in A : p^n a = 0\}$, $A(p) = \bigcup_{n \in Z_{\geq 0}} A[p^n]$ 是A的p-准素子群(p - primary), $A[1] = \{0\}$.

事实:A交换 $\Rightarrow A = \bigoplus_{p} A(p)$,其中p取遍所有素数.

特别地,当 $|A|<+\infty$,即A是一个有限Abel群,记 $|A|=n=p_1^{e_1}\dots p_r^{e_r}.p_1,\dots,p_r$ 是两两互异的素数, $e_1,\dots,e_r\in Z_{>1}$.

此时, $A = A(p_1) \oplus \cdots \oplus A(p_r)$

事实:p是素数,有限p群必是循环p子群的直和,即

 $A=A(p)\simeq Z/p^{r_1}Z\oplus\cdots\oplus Z/p^{r_s}Z.$ (不妨设 $r_1\leq\cdots\leq r_s$),其中s在同构意义下不变,称之为A的p—秩(rank). p-rank(A)=s.

若 $A = Z/p^rZ$ p - rank(A) = 1.

 $A[p] = \{a \in A : pa = 0\} = \{\overline{m} : p\overline{m} = \overline{0}\} = \{\overline{a} : a \in p^{r-1}Z\} = p^{r-1}Z/p^rZ.$

1.6 自由Abel群 17

即 $A[p] = p^{r-1}Z/p^rZ \simeq Z/pZ = F_p$,即 $dim_{F_p}A[p] = 1 = dim_{F_p}A/pA$, $p - rank(A) = dim_{F_p}A[p]$.

由 $A = Z/p^r Z$,有 $pA = pZ/p^r Z \le A$,商群 $A/pA = (Z/p^r Z)/(pZ/p^r Z) \simeq Z/pZ = F_p$.

事实:设p是素数,A是一个有限Abel群,则

$$p - rankA = p - rankA(p) = dim_{F_p}A[p] = dim_{F_p}A/pA.$$

1.6 自由*Abel*群

Definition 1.14. 设A是一个Abel群, $\emptyset \neq S \subset A$,如果下述条件成立:

- (1)对 $\forall \alpha \in A$,都有 $\alpha = \sum_{s} a_s \cdot S$,其中 $a_s \in Z$,且对几乎所有(即除有限个外)的 $s \in S$, $a_s = 0$.
- (2)上述(1)中的表示法唯一.

则称S为A的一组基,此时也称A为一个自由Abel群.

Example 1.10. $1.A = (Z, +), S = \{1\}$

2.设 x_1,\ldots,x_n 是一组未定元,令 $A=Z_{x_1}\oplus\cdots\oplus Z_{x_n}$

Lemma 1.3. 7.2(P40) 设 $f: A \rightarrow A'$ 是一个群满同态,其中A, A'都是Abel群,且A'是自由的,则存在A的一个子群C,使得 $f|_{C}: C \simeq A'$,且 $A = C \oplus kerf$.

证明. 取A'的一组基 $S' = \{x_i'\}_{i \in I}$,且对每个 $i \in I$,取定一个 $x_i \in A$,使得 $f(x_i) = x_i'$ (因f是满射),并记 $S = \{x_i : i \in I\}$.

- (1)下证S中的元素是Z-线性无关的.为此,令 $\sum_{i\in I}a_ix_i=0$,其中 $a_i\in Z,i\in I$,且对几乎所有的 $i\in I,a_i=0.$ $\Rightarrow 0=f(\sum_{i\in I}a_ix_i)=\sum_{i\in I}a_if(x_i)=\sum_{i\in I}a_ix_i'\Rightarrow a_i=0, (\forall i\in I).$ 于是,令C=< S>为A中由S生成的子群,则C是以S为一组基的自由Abel群.
- (2)下证 $C \cap kerf = \{0\}$.任取 $\alpha \in C \cap kerf$,有 $\alpha = \sum_{i \in I} a_i x_i (a_i \in Z, \mathbb{L})$ 限有限个外均取0), $\mathbb{L}0 = f(\alpha) = f(\sum_{i \in I} a_i x_i) = \sum_{i \in I} a_i f(x_i) = \sum_{i \in I} a_i x_i' \Rightarrow a_i = 0, (\forall i \in I), 即\alpha = 0.$
- $(3) 下证A = C \oplus kerf. 任取\alpha \in A, f(\alpha) \in A', f(\alpha) = \sum_{i \in I} a_i x_i' (有限和), 即 f(\alpha) = \sum_{i \in I} a_i f(x_i) = f(\sum_{i \in I} a_i x_i) \Rightarrow f(\alpha \sum_{i \in I} a_i x_i) = 0 \Rightarrow \alpha \sum_{i \in I} a_i x_i \in kerf \Rightarrow \alpha \in C + kerf.$

Theorem 1.4. 7.3(P41) 自由Abel群A的非平凡子群是自由的,且其基的基数 $\leq A$ 的基的基数.由此即知,A中任两组基的基数均相等,称该基数为A的秩(rank).

证明. (为简单证,只考虑基的基数 $<+\infty$ 的情形),即只考虑有限生成的自由Abel群.

(对基的基数用归纳法)

r=1时显然, $Z \simeq nZ (n \neq 0)$.

现设 $A = Z_{\alpha_1} \oplus \cdots \oplus Z_{\alpha_n}$ (即 $\{\alpha_1, \ldots, \alpha_n\}$ 是A的一组自由基). 令

$$f: A \to Z_{\alpha_1}$$
(即投影到第一个分量)
$$\sum_{i \in I} a_i \alpha_i \to a_1 \alpha_1$$

1.7 有限生成*Abel*群 18

显然,f是一个群满同态.由群同态基本定理, $A/kerf \simeq Z_{\alpha_1} \Rightarrow kerf = Z_{\alpha_1} \oplus \cdots \oplus Z_{\alpha_n}$.

设 $B \leq A.$ 将f限制在B上,得 $f|_B: B \rightarrow Z_{\alpha_1}$.

注意到 $Z_{\alpha_1} \simeq Z$,故 $im(f|_B)$ 作为 Z_{α_1} 的子群有以下两种情形:

- $(1)im(f|_B) = 0$.由群同态基本定理得 $B/ker(f_B) \simeq im(f|_B) = 0 \Rightarrow B = ker(f|_B) \subset kerf$ 由归纳假设,B是自由的,且B的基的基数 $\leq n-1 < n$.
- $(2)im(f|_B) \neq 0$,此时 $im(f|_B) \simeq Z$,即 $f|_B$ 是满的.于是由前述引理7.2知B中有一个子群C,使得 $C \simeq Z_{\alpha_1}$,且 $B = ker(f|_B) \oplus C$.

由归纳假设, $ker(f|_B) \subset kerf = Z_{\alpha_2} \oplus \cdots \oplus Z_{\alpha_n}$ 知 *B*是自由的(因为 $ker(f|_B)$ 是自由的,C也是自由的),且 *B*的基的基数= $ker(f|_B)$ 的基的基数+C的基的基数≤ n-1+1=n.

1.7 有限生成Abel群

Definition 1.15. 设A是一个Abel群,令 $A_{tors} = \{a \in A : \exists m \in Z_{\geq 1} \rightarrow ma = 0\}.$

事实: $A_{tors} \leq A$,称 A_{tors} 为A的挠子群($torsion \ subgroup$).特别地,当 $A_{tors} = \{0\}$ 时,我们称A为一个torsion - free群.

事实: A/A_{tors} 是一个torsion - free群.

证明. 任取 $\alpha = \overline{a} \in A/A_{tors}$,其中 $a \in A$.假设有 $m \in Z_{\geq 1}$,使得 $m\alpha = \overline{0}$ 即 $m\overline{a} = \overline{0}$, $\overline{ma} = \overline{0}$ $\iff ma \in A_{tors} \Rightarrow \exists n \in Z_{\geq 1}, s.t., nma = 0 \Rightarrow a \in A_{tors} \Rightarrow \alpha = \overline{a} = 0.$

Theorem 1.5. 8.4(P45):对于有限生成 Abel \sharp A.torsion – free \iff free.

证明. 不妨设 $A \neq 0$.

设S是A的一个生成元集, $(S \neq \emptyset)$ 即 $A = \bigoplus_{s \in S} Z_s, |S| < +\infty$.

则可取A在S中的如下一个极大Z-线性无关组 x_1, \ldots, x_n ,即

- $(1)a_1x_1 + \dots + a_nx_n = 0 (a_i \in Z, i = 1, \dots, n) \Rightarrow a_i = 0 (i = 1, \dots, n)$
- (2)对 $\forall x \in A$,有不全为0的整数 $a_0, a_1, \dots, a_n \in Z, s.t., a_0x + a_1x_1 + \dots + a_nx_n = 0$

令 $B = Z_{x_1} \oplus \cdots \oplus Z_{x_n}$,则B是A的一个秩n的自由Abel子群. 特别地, $\forall s \in S$,都有不全为0的整数 $a_0, a_1, \ldots, a_n \in Z$, $s.t., a_0s + a_1x_1 + \cdots + a_nx_n = 0$.

此时, $a_0 \neq 0 \Rightarrow a_0 s = -a_1 x_1 - \dots - a_n x_n \in B$.由于 $|S| < +\infty$,故有 $m \in Z_{\geq 1}, s.t., ms \in B(\forall s \in S)$.

対 $\forall \alpha \in A$,有 $\alpha = \sum_{s \in S} a_s \cdot s$, $a_s \in Z$,于是 $m\alpha = \sum_{s \in S} a_s \cdot (ms) \in B$, 即 $mA \leq B$. 由前述结论,可知mA是自由Abel群.又显然

$$A \simeq mA$$

 $a \rightarrow ma$

(因为 $ma = 0 \iff a = 0, A$ 是torsion - free.)

Theorem 1.6. 8.5(P46):设A是一个有限生成Abel群,则 $A \simeq A_{tors} \oplus A_f$,其中 A_{tors} 是A的torsion子群,是一个有限群; A_f 是一个自由Abel群,且 $A_f \simeq Z^r = Z \oplus \cdots \oplus Z(r \wedge r), r = rank(A_f), A \simeq A_{tors} \oplus Z^r$.

证明. $A = \sum_{s \in S} Z_s.S$ 是A的一个生成元集, $|S| < +\infty$.

$$f: F = \underset{s \in S}{\oplus} Z_s \to \sum_{s \in S} Z_s$$
$$\underset{s \in S}{\oplus} a_s \cdot s \to \sum_{s \in S} a_s \cdot s$$

 $f^{-1}(A_{tors})$ 作为F的子群,是一个有限生成的自由Abel群 $\Rightarrow A_{tors} = f(f^{-1}(A_{tors}))$ 是A的有限生成子群 $\Rightarrow A_{tors}$ 是有限群.

前面已证 A/A_{tors} 是一个有限生成torsion-free Abel群, 故 A/A_{tors} 是一个有限生成自由Abel群, 即 $A/A_{tors} \simeq Z^r.r \in Z_{>1}$.

再用引理7.2及群满同态, $g: A \to A/A_{tors} \simeq Z^r. \Rightarrow A = A_{tors} \oplus C, C \simeq Z^r.$

2 环与模

2.1 一些简单定义

Example 2.1. $(Z,+,\times)$ (两个运算)

- (1)(Z,+)是一个交换群
- $(2)(Z, \times)$ 是一个半群,×满足结合律
- (3)分配律: $(a+b) \cdot c = a \cdot c + b \cdot c$

Definition 2.1. $\mathfrak{F}(Ring)$: $(R, +, \times)$ $R \neq \emptyset$

- (1)(R,+)是一个Abel群
- (2)R对乘法"×"封闭且满足结合律
- (3)分配律: $(a+b) \cdot c = a \cdot c + b \cdot c$

特殊元素: $1 \in R, 1 \cdot a = a \cdot 1 = a(\forall a \in R)$

Definition 2.2. 模:设R是一个环(含1),(M,+)是一个交换群,且有R对M的如下作用:

$$R \times M \to M$$

 $(a, \alpha) \to a \cdot \alpha$

满足如下条件(公理):

- $(1)(a_1a_2)\alpha = a_1(a_2\alpha) \quad (\forall a_1, a_2 \in R, \alpha \in M)$
- $\textit{(2)} 1 \cdot \alpha = \alpha (\forall \alpha \in M); 0 \cdot \alpha = 0 (\forall \alpha \in M); \ a \cdot 0 = 0 (\forall a \in A)$
- $(3)(a_1+a_2)\alpha = a_1\alpha + a_2\alpha; a(\alpha_1+\alpha_2) = a\alpha_1 + a\alpha_2(a_1,a_2,a \in R,\alpha,\alpha_1,\alpha_2 \in M)$ 则称M为一个R模(R-module).

2.2 子结构 20

Definition 2.3. 一些特殊环:

 $1.(1)(R,+,\cdot)$ 是一个交换环; $(2)(R\setminus\{0\},\cdot)$ 是一个乘法群,则称R是一个域 $2.(1)(R,+,\cdot)$ 是一个非交换环; $(2)(R\setminus\{0\},\cdot)$ 是一个群,则称R是一个除环($skew\ ring$)($division\ ring$)

Example 2.2. 1.域: $Q, R, C.Q(x) = \{\frac{f}{g}: f, g \in Q[x], \mathbb{1} g \neq 0\}$ (有理分式域). $(Q, +, \cdot), (Q \setminus \{0\}, \cdot)$ 2.域F上的多项式环F[x].

3.Gauss整数环 $Z[i] = \{a + bi : a, b \in Z\}$

 $4.Z[\sqrt{-3}] = \{a + b\sqrt{-3} : a, b \in Z\}$

 $5.(Mn(R), +, \cdot)(n > 1)$

 $Mn(R) = Hom_R(R^n, R^n) = End_R(R^n)$

 $GLn(R) = Mn(R)^*$

Definition 2.5. 一个不含非零幂零元的交换环称为一个既约环(reduced ring).

2.2 子结构

Definition 2.6. 子环:R是一个含1的环, $R_0 \le R$ 是R的子环, $1 \in R_0$. $(R_0, +, \cdot)$ 是一个含1的环.

Definition 2.7. 理想: 设 $(R,+,\cdot)$ 是一个含I的环,I是R的一个加法子群,如果I还满足如下条件: (对乘法的吸收性):对 $\forall a \in R, b \in I$,都有 $ab, ba \in I$,则称I是R的一个理想(ideal),记之为 $I \triangleleft R$. **环的**商:设R是一个含I的环, $I \triangleleft R$.

- (1)有加法商群R/I:(R,+)/(I,+) $\overline{a}+\overline{b}=\overline{a+b}(\forall a,b\in R).$
- (2)在R/I中引进乘法"."如下:

$$\overline{a} \cdot \overline{b} = \overline{a \cdot b} (\forall a, b \in R)$$

$$\overline{a_1} = \overline{a_2} \iff a_1 - a_2 \in I \Rightarrow (a_1 - a_2)b \in I (\forall b \in R)$$
 即 $a_1b - a_2b \in I \Rightarrow \overline{a_1b} = \overline{a_2b}$. 结论: $(R/I, +, \cdot)$ 是一个环.

Definition 2.8. 环同态设 R_1, R_2 是含I的环, $f: R_1 \to R_2$ 是一个映射,如果f保运算,即

- $(1)f(a+b) = f(a) + f(b)(\forall a, b \in R_1)$
- $(2)f(ab) = f(a)f(b)(\forall a, b \in R_1)$
- (3)f(1) = 1

Theorem 2.1. 环同态基本定理设 R_1, R_2 是含I的环, $f: R_1 \rightarrow R_2$ 是一个环同态,则

- (1) f的核 $kerf = f^{-1}(0) = \{a \in R_1 : f(a) = 0\}$ 是 R_1 的理想,即 $kerf \triangleleft R_1, imf = f(R_1) \le R_2$.
- (2)有环同构 $R_1/kerf \simeq imf$,故有交换图

2.2 子结构 21

$$f = \overline{f} \circ \eta$$

$$\overline{f}: R/kerf \to R_2$$
 $\overline{a} \to f(a)$

 $\overline{f}(\overline{a}) = \overline{f}(\overline{b}), a, b \in R_1 \Rightarrow f(a) = f(b) \Rightarrow f(a - b) = 0 \Rightarrow a - b \in kerf \Rightarrow \overline{a} = \overline{b}.$

事实:环同态 $f: R_1 \to R_2$ 是单一同态 $\iff kerf = \{0\}.$

 $(R,+,\cdot)$ 是含1交换环

平凡理想:0与R

理想的交:I,J

$$(I \cap J, +)$$

$$b \in I \cap J, \forall a \in R$$

$$ab \in I, ab \in J \Rightarrow ab \in I \cap J$$

结论:理想对取"交"封闭.

Definition 2.9. 子集生成的理想: $\emptyset \neq S \subset R(\mathfrak{F})$,记 $\mathscr{F}(S) = \{I: I \lhd R, I \supset S\}$, 令 $< S >= \bigcap \{I: I \lhd R, I \supset S\} = \bigcap_{I \in \mathscr{F}(S)} I$

特别地,可由一个元素生成的理想称为一个主理想. $I = \langle a \rangle (a \in R)$.

 $(R, +, \cdot)$ 环(含1), $a \in R \Rightarrow Ra, aR, RaR \subset \{a >, Ra = \{ra : r \in R\}\}$

 $RaR \subset \langle a \rangle, \alpha \in RaR \iff \alpha = r_1 a r_1' + r_2 a r_2' + \dots + r_n a r_n'$

又 $RaR \triangleleft R, RaR \supset < a >$,故< a > = RaR.

特别地,当R是含1交换环时,<a>=Ra(=aR),< $a_1,\ldots,a_n>=Ra_1+\cdots+Ra_n$.

 $<\emptyset>=\{0\}$

R是含1交换环.I,J. $I \cap J \triangleleft R, I \cup J$ 不一定是理想. $< I \cup J > \subset I + J \subset K, K \triangleleft R \coprod K \supset I \cup J, a \in I, b \in J, a + b \in K.$

Proposition 2.1. 设 $(R,+,\cdot)$ 是一个含1的交换环.

- (1) 첫 $\forall a \in R, \langle a \rangle = Ra.$
- $(2)I_1, \ldots, I_n \triangleleft R, \mathbb{N} \triangleleft I_1 \bigcup \cdots \bigcup I_n >= I_1 + \cdots + I_n.$

更一般地,对R的任一簇理想 $\{I_{\alpha}\}_{\alpha\in\Lambda}$,有 $<\bigcup_{\alpha\in\Lambda}I_{\alpha}>=\sum_{\alpha\in\Lambda}I_{\alpha}$.

Definition 2.10. 设R是含I交换环, $I \triangleleft R$,称I是R的一个极大理想,如果下述条件成立:

- (1)1 $\notin I$ (即 $I \neq R$),也即I是R的真理想(proper).
- (2)(极大性)如果 $J \triangleleft R$,且 $I \subset J \subset R$ 则J = I或J = R.

Theorem 2.2. 含1交换环必有极大理想,由此可知,该环中的任一个真理想必包含于某个极大理想中.

证明. (Zorn引理的引用)

令 $S = \{I \triangleleft R : 1 \notin I\}, 0 \in S, b S \neq \emptyset, LS$ 在集合的"包含⊂"关系下是一个偏序集.

任取S中的一个全序子集 $(Chain)\{I_{\alpha}\}_{\alpha\in\Lambda}$,即对 $\forall \alpha,\beta\in\Lambda,I_{\alpha}\subset I_{\beta}$ 或 $I_{\beta}\subset I_{\alpha}$.

 $\phi J = \bigcup_{\alpha \in \Lambda} I_{\alpha}$.断言: $J \neq R$ 的一个真理想.

事实上, $\forall a, b \in J$,则 $a \in I_{\alpha}$, $b \in I_{\beta}$ (对某个 $\alpha, \beta \in \Lambda$).

由所设,不妨设 $I_{\alpha} \subset I_{\beta}$,则 $a,b \in I_{\beta} \Rightarrow a+b \in I_{\beta}$ 且对 $\forall c \in R, ca \in I_{\beta} \Rightarrow a+b \in J$ 且 $ca \in J \Rightarrow J$ 是理想.

又1 \notin J,假如不然,由1 \in J \Rightarrow 1 \in I_{α} (对某个 α \in Λ),矛盾!

综上,J是 $\{I_{\alpha}\}_{\alpha\in\Lambda}$ 在S中的一个上界,故由Zorn引理,命题得证.

练习:

- 1.Z中的所有理想,极大理想.
- 2.Z/24Z中的所有理想,极大理想.

2.3 理想、模、分式环

A是一个含1交换环

Definition 2.11. (**素理想**): $I \triangleright A$ 真理想,满足条件: $a,b \in A$ 若 $ab \in I$,则 $a \in I$ 或 $b \in I$,称I是A的一个素理想

Example 2.3. $A=Z,I\rhd A$ 是素理想 $\Longleftrightarrow I=\langle n\rangle$ 其中n=p(p是素数)或n=0

Example 2.4. B = F[x], F 是域, $\mathcal{P} \supset B$ 是素理想 $\iff \mathcal{P} = \langle p(x) \rangle$ 其中p(x) 是F[x] 的不可约多项式 Z[x] 不是PID(主理想整环)(因为 $I = \langle 2, x \rangle$ 不是由一个元素生成的主理想)

商环

设A是含1交换环, $\mathcal{M} \rhd A$ 是极大理想, $\overline{A} = A/\mathcal{M}$ 。 $\forall \overline{a} \in \overline{A}(a \in A)$, $\overline{a} = \overline{0} \iff a \in \mathcal{M}$,故有 $\forall \overline{a} \neq \overline{0} \iff a \notin \mathcal{M}$,从而 $\mathcal{M} \subsetneq \{a + \mathcal{M}\} \subseteq A$ 。由 \mathcal{M} 是极大理想,所以 $A = \langle a + \mathcal{M} \rangle = \langle a \rangle + \mathcal{M}$ 。因为 $1 \in A$, $\exists x \in \langle a \rangle$, $y \in \mathcal{M}$,即 $x = ax_1, x_1 \in A$ 有 $1 = x + y = ax_1 + y$,从而有 $\overline{1} = \overline{ax_1 + y} = \overline{ax_1} + \overline{y}$ 。因为 $y \in \mathcal{M}$,所以有 $\overline{y} = \overline{0}$,从而 $\overline{1} = \overline{ax_1}$,即 \overline{a} 在 \overline{A} 中可逆。 \overline{A} 在任一个非零元 \overline{a} 都有逆,故 $\overline{A} = A/\mathcal{M}$ 是域。

Proposition 2.2. (极大理想的判别) 设A是交换环(含1), I A真理想,则I是A的极大理想 $\Longrightarrow A/I$ 是一个域

证明. "⇒" (必要性)记 $\bar{A} = A/I, \forall \bar{a} \in \bar{A} \setminus \{0\} (a \in A)$,则 $a \in I$ 。令 $J = \langle \{a\} \cup I \rangle = \langle a \rangle + I$,则 $J \rhd A \perp I \subsetneq J \subseteq A$ 。由 $I \perp L \to A$,所以∃ $X = ax_1 \in A$,所以∃ $X = ax_1 \in A$

 $\langle a \rangle$,其中 $x_1 \in A, y \in I$,于是有 $1 = x + y = ax_1 + y$,从而在A中有 $\bar{1} = \overline{ax + y} = \bar{a}\bar{x} + \bar{y} = \bar{a}\bar{x}$,(因为 $y \in I$,所以 $\bar{y} = \bar{0}$)即 $\bar{1} = \bar{a}\bar{x}$,所以 \bar{a} 在 \bar{A} 中可逆,故 \bar{A} 是一个域。

" \leftarrow " (充分性)任取 $J \triangleright A$,使得 $I \subseteq J \subseteq A$ 。若 $J \neq I$ (下证J = A),则有 $x \in J \setminus I$,于是在 \bar{A} 中, $\bar{a} \neq \bar{0}$,由于 \bar{A} 是域,故 $\exists y \in A$,使得 $\bar{x}\bar{y} = \bar{1}$,即 $\bar{x}\bar{y} = \bar{1}$,从而 $1 - xy \in I$,即 $1 \in xy + I \subseteq J$ 。故J = A

记号: $I \triangleright A, \bar{A} = A/I, a, b \in A, \bar{a} = \bar{b} \iff a - b \in A,$ 也记为 $a \equiv b \pmod{I}$

Proposition 2.3. (**素理想的判别**) 设A是交换环(含1), $I \triangleright A$ 真理想,则I是A的素理想 \iff A/I是一个整环(证明作为课后练习)

记号:常记(1) $\operatorname{spec} A = \{ \mathcal{P} - \mathcal{P} \in A \text{的素理想} \}$ (2) $\operatorname{Max} A = \{ \mathcal{M} \mid \mathcal{M} \in A \text{的极大理想} \}$

Corollary 2.1. 在含1交换环A中,极大理想也是素理想

Definition 2.12. 设A是交换环(含1),定义 $J(A) = \bigcap_{m \in Max(A)} m$,称它为A的Jacobson根

Definition 2.13. (幂0元) 设A是交换环(含1), $a \in A$,如果有 $\exists n \in Z_{\geq 1}$,使得 $a^n = 0$,则称a为A一个幂0元。记 $N(A) = \{a \in A - a \not\in A$ 的幂0元}

Proposition 2.4. $N(A) \triangleright A$, $\Re N(A) \rightarrow A$ 的幂 O根。 (nipotant radical), 有时也 $\Re N(A) = rad(A)$

(证明用于课后练习)

 ${\rm SN}(A)=0$ 时,称A是既约环

Proposition 2.5. $N(A/N(A)) = {\bar{0}}, \text{即}A/N(A)$ 是既约的(rediced)

证明. 任取 $\bar{a} \in N(A/N(A))(a \in A)$,则 $\exists n \in Z_{\geq 1}$,使得 $\bar{a}^n = \bar{0}$,即有 $\bar{a}^n = \bar{0}$,故 $a^n \in N(A)$ 。从而 $\exists m \in Z_{\geq 1}$,使得 $(a^n)^m = 0$,即 $a^{nm} = 0$,故有 $a \in N(A)$,从而 $\bar{a} = \bar{0}$ 。所以N $(A/N(A)) = \{\bar{0}\}$ 。

Proposition 2.6. 设A是交换环(含1),则N(A)= $\bigcap_{P \in spec(A)} P$

证明. 首先证N(A) $\subseteq \bigcap_{\mathcal{P} \in spec(A)} \mathcal{P}$ 。 $\forall a \in N(A) \exists n \in Z_{\geq 1}$,使得 $a^n = 0 \in \mathcal{P}(\forall \mathcal{P} \in spec(A))$ 。由于 \mathcal{P} 是素理想,所以 $a \in \mathcal{P}$ 。故有N(A) $\subseteq \bigcap_{\mathcal{P} \in spec(A)} \mathcal{P}$ 。

下证 $\bigcap_{\mathcal{P}\in spec(A)}\mathcal{P}\subseteq N(A)$ 。 任取 $a\in A/N(A)$,则 $\forall n\in Z_{\geq 1}$,有 $a^n\neq 0$ 。 令

$$\varepsilon = \{ I \rhd A | n \cap a^{Z_{\geq 1}} = \varnothing \} = \{ I \rhd A | a^n \notin I, \forall n \in Z_{\geq 1} \},$$

显然 $\langle 0 \rangle \in \varepsilon$,则 $\varepsilon \neq \emptyset$ 。因为在通常的包含关系下, (ε, \subseteq) 构成一个偏序集。故任取 ε 中的一个全序子集 $\{I_{\alpha}\}_{\alpha \in \Lambda}$,令 $J = \bigcup_{\alpha \in \Lambda} I_{\alpha}$ 。由于 $\{I_{\alpha}\}_{\alpha \in \Lambda}$ 有包含关系,从而 $J \triangleright A$ 。

下证 $J \in \varepsilon$,即证 $J \cap a^{Z \geq 1} = \varnothing$ 。若不然,则有 $a^m \in J(\exists m \in Z_{\geq 1})$ 。由于 $J = \cup_{\alpha \in \Lambda} I_\alpha$,则 $\exists \alpha \in \Lambda$,使得 $a^m \in I_\alpha$ 与 $I_\alpha \in \varepsilon$ 矛盾。从而 $J \cap a^{Z \geq 1} = \varnothing$,故 $J \in \varepsilon$,即J是全序子集 $\{I_\alpha\}_{\alpha \in \Lambda}$ 在 ε 中的上界。由Zorn引理, ε 必有极大元。设J为是一个 ε 的极大元,且 $J \in specA$,即J是素理想。从而 $\forall x, y \in A, xy \in J$,有 $x \in J$ 或 $y \in J$ 。若不然 $x \notin J$ 且 $y \notin J$,有 $\langle x \rangle + J \supseteq J$ 、 $\langle y \rangle + J \supseteq J$ 。由J的极大

性得 $\langle x \rangle + J \notin \varepsilon, \langle y \rangle + J \notin \varepsilon$ 。又由 ε 的定义, $\exists m, n \in Z_{\geq 1}$ 使得 $a^m \in \langle x \rangle + J, a^n \in \langle y \rangle + J$ 。从而 $a^{mn} = a^m a^n \in (\langle x \rangle + J)(\langle y \rangle + J) \subseteq \langle xy \rangle + J(因为xy \in J)$ 与 $J \in \varepsilon$ 矛盾。所以 $J \in specA$,故 $\forall a \in A/N(A)$,有 $a \notin J, J \triangleright A$ 是素理想,所以 $a \notin \bigcap_{\mathcal{P} \in spec(A)} \mathcal{P}$ 。故 $a \in \bigcap_{\mathcal{P} \in spec(A)} \mathcal{P}$,从而 $b \in N(A)$,即 $\bigcap_{\mathcal{P} \in spec(A)} \mathcal{P} \subseteq N(A)$ 。

综上N(A)=
$$\bigcap_{P \in spec(A)} \mathcal{P}$$

 $I \rhd A$,

$$A \twoheadrightarrow \bar{A} = A/I$$
$$I \longmapsto J/I$$

 $N(A/I) = \bigcap_{P \in spec(A/I)} P = \bigcap_{P \in spec(A), P \supset I} P$

Definition 2.14. 设A是交换环(含1),I > A,定义 $\sqrt{I} = rad(I)$,称之为的I根 $rad(I) = \sqrt{I} \triangleq \{a \in A | \exists n \in Z_{\geq 1},$ 使得 $a^n \in I\}$

显然 $I \subset \sqrt{I}, rad(I) \triangleright A$ (课后练习) 特别的,当rad(I)=I时,称I是A的一个根理想,rad(rad(I))=rad(I) \sqrt{I} ,即rad(I)是一个根理想

证明. 显然 $\sqrt{I} \subset \sqrt{\sqrt{I}}$,下证 $\sqrt{\sqrt{I}} \subset \sqrt{I}$ 。 $\forall a \in \sqrt{\sqrt{I}}$, $\exists m \in Z_{\geq 1}$,使得 $a^m \in \sqrt{I}$ 。也 $\exists n \in Z_{\geq 1}$,使得 $a^{mn} = a^{nm} \in I$ 。故有 $a \in \sqrt{I}$,即 $\sqrt{I} = \sqrt{\sqrt{I}}$

特别的, $\sqrt{0} = N(A)$ 。

Proposition 2.7. 设*A*是交换环*(*含1*)*, $I \triangleright A$,则 $\sqrt{I} = rad(I) = \bigcap_{\mathcal{P} \in spec(A), \mathcal{P} \supset I} \mathcal{P}$ 。记A的Jaobson $radical为<math>J(A) = \bigcap_{m \in MaxA} m$ 。

Proposition 2.8. 设 $A \cap J(A)$ 如上,则 $x \in J(A) \iff 1 - xy \in A^* = u(A)(\forall y \in A)$,其中u(A)是指A的乘法单位群。 $u(A) = \{a \in A | \exists b \in A, \ \$ 使得 $ab = 1\}$ 。

证明. " \Leftarrow ": 若 $x \notin J(A) = \bigcap_{m \in MaxA} m$,则存在 $\mathcal{M} \in MaxA$,使得 $x \notin \mathcal{M}$ 。则 $\mathcal{M} \subsetneq \langle x \rangle + \mathcal{M}$,从而 $\langle x \rangle + \mathcal{M} = A$,即存在 $y \in A, m \in \mathcal{M}$,使得1 = m + xy。故 $1 - xy = m \in \mathcal{M}$ 与 $1 - xy \in u(A)$ 矛盾。所以 $x \in J(A)$ 。

"⇒": 若 $1 - xy \notin u(A)$,则 $\langle 1 - xy \rangle \neq A$ 。即存在 \mathcal{M}' 是极大理想,使得 $\langle 1 - xy \rangle \subsetneq \mathcal{M}'$ 。从 而 $1 - xy \in \mathcal{M}'$,故 $1 \in xy + \mathcal{M}'$ 。由于 $x \in J(A) = \bigcap_{m \in MaxA} m$,从而有 $x \in \mathcal{M}'$,即 $xy \in \mathcal{M}'$,故 $1 \in xy + m' \subset \mathcal{M}'$,这与 \mathcal{M}' 是极大理想矛盾。所以 $1 - xy \in u(A)$ 。

Theorem 2.3. 中国剩余定理(Chinese Remainder thm) 设A是一个含I交换环, $I_1, I_2, \dots I_n \triangleright A$,且这些理想两两互素,即 $I_j + I_k = \langle 1 \rangle = A(\forall j, k \in \{1, 2, \dots n\}, j \neq k)$,则 $(1)I_1I_2 \dots I_n = I_1 \cap I_2 \cap \dots \cap I_n$

 $(2)A/I_1 \cap I_2 \cap \cdots \cap I_n \simeq A/I_1 \times A/I_2 \times \cdots \times A/I_n$ 换言之,

$$\phi: A \to A/I_1 \times A/I_2 \times \cdots \times A/I_n$$
$$a \longmapsto (a + I_1, a + I_2, \dots, a + I_n)$$

是一个环满同态,且 $ker(\phi)=I_1\cap I_2\cap\cdots\cap I_n$ 。

2.4

Definition 2.15. 设A是一个含1交换环, $I \triangleright A, J \triangleright A$ 。若有I + J = A,则称 $I \ni J$ 互素。

Example 2.5. $A = Z[x], p = \langle 2 \rangle, q = \langle x \rangle$ 。由于 $Z[x]/\langle x \rangle \simeq \mathbb{Z}$ 是整环,得 $q \triangleright A$ 是素理想。 $p = \langle 2 \rangle$ 显然也是素理想, $p + q = \langle 2 \rangle + \langle x \rangle = \langle 2, x \rangle$ 。考虑

25

则 $\eta = \psi \circ \phi$: $\mathbb{Z}[x] \to \mathbb{Z}/2\mathbb{Z} = \{\bar{0},\bar{1}\}$ 环满同态,且 $kem = \{f(x) \in \mathbb{Z}[x] \mid \overline{f(0)} = \bar{0}\} = \{f(x) \in \mathbb{Z}[x] \mid 2|f(0)\} = \langle 2,x \rangle$,则 $\mathbb{Z}[x]/\langle 2,x \rangle \simeq \mathbb{Z}/2\mathbb{Z}$ 是域,因此 $m = \langle 2,x \rangle = q + p$ 是极大理想。但显然 $1 \notin \langle 2,x \rangle$,从而q = p并不是互素的。

Definition 2.16. A, B是两个含1交换环,令 $A \times B = \{(a, b) \mid a \in A, b \in B\}$,则 $A \times B$ 是一个环(按 照分量相加,相乘),称之为两个环的乘积。

$$\phi: A \to A/I_1 \times A/I_2 \times \cdots \times A/I_n$$
$$a \longmapsto (a + I_1, a + I_2, \dots, a + I_n)$$

显然是一个同态,下面说明是满的,即任意的 $(a_1+I_1,a_2+I_2,\ldots,a_n+I_n)\in A/I_1\times A/I_2\times\cdots\times A/I_n$,存在 $a\in A$,使得 $\phi(a)=(a_1+I_1,a_2+I_2,\ldots,a_n+I_n)$,即 $(a_1+I_1,a_2+I_2,\ldots,a_n+I_n)=(a+I_1,a+I_2,\ldots,a+I_n)$,从而有,即是方程组的解。

Example 2.6. $A = \mathbb{Z}$, $I_1 = \langle 2 \rangle, I_2 = \langle 3 \rangle, I_3 = \langle 5 \rangle$

$$\begin{cases} x \equiv a_1 \pmod{\langle 2 \rangle} \\ x \equiv a_2 \pmod{\langle 3 \rangle} \\ x \equiv a_3 \pmod{\langle 5 \rangle} \end{cases}$$

有解x = a.

2.4

2.4.1 几类重要的特殊环

A是一个含1交换环

Definition 2.17. (局部环):只有一个极大理想的含1交换环,就称为局部环。

Proposition 2.9. 设A是一个局部环, m是A的极大理想, 则 $A^{\times} = u(A) = A \setminus m$

证明. 因为 $a \in A$,存在 $b \in A$,使得ab = 1,所以 $aA = \langle a \rangle = A$,故 $a \notin m$,即 $a \in A \backslash m$,从而有 $u(A) \subset A \backslash m$ 。若 $aA \neq A$,由 $\langle a \rangle \triangleright m$,且A是局部环,只有唯一极大理想m,则 $\langle a \rangle \subset m$,从而 $a \in m$ 。即由 $a \notin A^{\times}$,有 $a \in m$ 。综上有 $A^{\times} = u(A) = A \backslash m$ 。

Fact: $I \triangleright A$,若 $A \setminus I = A^{\times}$,则A是一个局部环且I是它的唯一一个极大理想。

Example 2.7. 由 $\mathbb{Q}\setminus\{0\}=u(\mathbb{Q})$, 得 \mathbb{Q} 是一个局部环。

Fact: 任一个域都是局部环。下面举一个不是域但是是局部环的例子。 $A = \{\frac{b}{a} \mid (a,b) = 1, a,b \in \mathbb{Z}, 2 \nmid a\}$ 。由于 $A^{\times} = u(A) = \{\frac{b}{a} \mid a,b \in \mathbb{Z}, (a,b) = 1,2 \nmid ab\}$, $m = \{\frac{b}{a} \mid a,b \in \mathbb{Z}, (a,b) = 1,2 \mid b,2 \nmid a\} = 2A$,所以 $A \setminus m = u(A)$ 。又 $A/2A \cong \mathbb{Z}/2\mathbb{Z} \cong \mathbb{F}_2$,所以,2A是A的极大理想且是唯一的,故A是局部环。

Example 2.8. $A=\mathbb{Z}/4\mathbb{Z},\ m=2\mathbb{Z}/4\mathbb{Z}.A$ 是一个局部环,且 $A/m\cong\mathbb{Z}/2\mathbb{Z},$ 所以A是m的唯一极大理想。

2.4.2 UFD唯一分解环或唯一析因环

Definition 2.18. 不可约元:设A是一个含1交换环, $a \in A$ 且 $a \neq 0, a \notin A^{\times}$,如果下述条件成立: $a = bc, b, c \in A$,有 $b \in A^{\times}$,或者 $c \in A^{\times}$,则称a是A一个不可约元。

Definition 2.19. UFD:设A是一个整环,如果A中任一个非0非单位元都可分解为有限个不可约元之积,且在不计单位顺序下,上述分解是唯一的,则称A是一个UFD。

Example 2.9. ℤ是个UFD。

Example 2.10. F是域, $F[x], F[x_1, x_2, ..., x_n]$ 是UFD。

Proposition 2.10. 设 $A \neq UFD, \pi \in A, \pi$ 是一个不可约元,则 $\langle \pi \rangle \triangleright A$ 是素理想。

证明. 对任意 $ab \in \langle \pi \rangle$ 分,则存在 $c \in A$,有 $ab = c\pi$ 。由于 $ab \in A$,A是UFD,则由唯一分解性,a中必有分解元 π 或者b分解出因子 π ,即 $a \in \langle \pi \rangle$,或者 $b \in \langle \pi \rangle$,从而 $\langle \pi \rangle \triangleright A$ 是素理想。

记号:若a = bc,记 $b \mid a, c \mid a$ 。

Proposition 2.11. PID必是UFD。

Example 2.11. $PID:\mathbb{Z}, F[x]$, 其中F是域, $\mathbb{Z}[\sqrt{-1}] = \{a + b\sqrt{-1} \mid a, b \in \mathbb{Z}\}$ 不是 $PID:\mathbb{Z}$ 。(因为 $\langle 2, x \rangle$ 不是主理想)。

环的特征

A是一个含1交换环。

$$f: \mathbb{Z} \to A$$
$$1 \longmapsto 1_A$$

f是一个环同态,且 $\ker(f)=n\mathbb{Z}$ 。所以有

$$\mathbb{Z}/n\mathbb{Z} \hookrightarrow A$$

$$\bar{a} \longmapsto f(a)$$

2.4

因为 $n\bar{a}=0$,所以对任意的 $a\in A, na=0$ 。

情形1: $\operatorname{char} A = 0(A$ 的特征为0),此时 $\mathbb{Z} \subset A, n \in \mathbb{Z}, a \in A, \operatorname{d} na = 0$, 得n = 0或者a = 0。

情形2: $\operatorname{char} A = \operatorname{n}(n \in \mathbb{Z}_{>1})$, n是使得对任意的 $a \in A$, na = 0成立的最小正整数。此时A的素环 为 $\mathbb{Z}/n\mathbb{Z}$

27

Example 2.12. $A = \mathbb{Z}/6\mathbb{Z}, \mathbb{N} char A = 6$.

 $A = \mathbb{Z}/6\mathbb{Z}[x]$,则charA = 6。特别的,当A是一个整环时,chA = 0或者p(p是素数)。当 $chA \neq 0$ 时,

$$f: \mathbb{Z} \to A$$
$$1 \longmapsto 1_A$$

 $ker(f) = n\mathbb{Z}(n \in \mathbb{Z})$, 从而有 $\mathbb{Z}/n\mathbb{Z} \subset A$ 子环, 由于A是整环, 故A无零因子, 即 $\mathbb{Z}/n\mathbb{Z}$ 无零因子, 所以n为素数。

2.4.3分式环(环的局部化方法)

设A是含1交换环,S是A的一个非空子集,如果S满足:

- $(1)1 \in S$
- $(2)a,b \in S$,则 $ab \in S$

则称S为A的一个乘法闭子集。由此可构造如下集合,

$$A \times S = \{(a, s) \mid a \in A, s \in S\}$$

在其中引入如下关系""

$$(a_1, s_1)\hat{\ }(a_2, s_2) \in A \times S \Leftrightarrow \exists t \in S, t(s_2a_1 - s_1a_2) = 0$$

对于 $(a,s) \in A \times S$,将(a,s)的上述等价类 $(a,s) \triangleq \frac{a}{s}$ 。且记 $A \times S/^{\hat{}} = S^{-1}A$ 在中引入如下运算(一 般取 $0 \notin S$,若 $0 \in S$,则 $S^{-1}A = \{0\}$)

加法: $\frac{a_1}{s_1} + \frac{a_2}{s_2} \triangleq \frac{a_1s_2 + a_2s_1}{s_1s_2} (a_1, a_2 \in A, s_1, s_2 \in S)$ 乘法: $\frac{a_1}{s_1} \Delta \frac{a_2}{s_2} \triangleq \frac{a_1a_2}{s_1s_2} ($ 验证上述定义的有效性,课外练习)

结论: $(S^{-1}A, +, \Delta)$ 是一个含1交换环,称A为关于S的分式环

$$f: A \to S^{-1}A$$
$$a \longmapsto \frac{a}{1}$$

是环同态 $ker(f) = \{a \in A \mid \frac{a}{1} = 0 = \frac{0}{1}\} = \{a \in A \mid \overline{F} \neq a \in A \mid \overline{F} \neq$ ta = 0

Theorem 2.4. 分式环的泛性质 (univerasity) 设S是环A(一个含1交换环)的一个乘法封闭子集, 则典范同态

$$f: A \to S^{-1}A$$
$$a \longmapsto \frac{a}{1}$$

2.4

有如下泛性质:任意一个环同态 $g,g:A\to B$,如果 $g(S)\subset B^\times=u(B)$,则存在唯一的环同态 $h:S^A\to B$ 使得下图可交换:

证明. 存在性:令

$$h: S^{-1} \to B$$
$$\frac{a}{s} \longmapsto g(a) \Delta g(s)^{-1}$$

需要证明h是良好定义的,对任意 $\frac{a_1}{s_1} = \frac{a_2}{s_2} \in S^{-1}A$,则 $h(\frac{a_1}{s_1}) = g(a_1)\Delta g(s_1)^{-1}$, $h(\frac{a_2}{s_2}) = g(a_2)\Delta g(s_2)^{-1}$,由于 $\frac{a_1}{s_1} = \frac{a_2}{s_2}$,则存在 $t \in S$,使得 $t(s_2a_1 - s_1a_2) = 0$,所以

$$g(t(s_2a_1 - s_1a_2))g(t)g(g(s_2a_1) - g(a_2s_1)) = 0.$$

因为 $t \in S$,所以g(t)可逆,故有 $g(s_2)g(a_1)-g(s_1)g(a_2)=0$,从而 $g(s_2)g(a_1)=g(s_1)g(a_2)$,即 $g(s_2)^{-1}g(a_2)=g(s_1)^{-1}g(a_1)$,所以 $h(\frac{a_1}{s_1})=h(\frac{a_2}{s_2})$ 。从而h是良好定义的,即这样的环同态h是存在的。唯一性:显然。

Fact:特别的,S不含A中的零因子时,

$$f: A \to S^{-1}A$$
$$a \longmapsto \frac{a}{1}$$

是一个单一的环同态,实际上 $ker(f)=\{a\in A\mid \frac{a}{1}=0\}=\{a\in A\mid \exists t\in S, ta=0\}=\{0\}$

Example 2.13. A是整环,则 $S = A \setminus \{0\}$ 是一个A的乘法封闭子集,此时分式环 $S^{-1}A$ 是一个域,称为的分式商域。

证明. 显然 $S^{-1}A$ 已经是一个分式环了,任意的 $\alpha \neq 0 \in S^{-1}A$,即 $0 \neq \alpha = \frac{a}{s}, a \in A, s \in S$ 。由于 $\alpha = \frac{a}{s} = 0$ 当且仅当存在 $t \in S$ 使得ta = 0。又由于S无零因子,所以a = 0,所以 $\alpha = 0$ 当且仅当a = 0,故 $\alpha = \frac{a}{s} \neq 0$ 当且仅当 $a \neq 0$,即 $a \in S$,于是 $\frac{s}{a} \in S^{-1}A$ 。显然 $\alpha \Delta \frac{s}{a} = \frac{a}{s} \Delta \frac{s}{a} = 1$,所以 $\alpha \in S^{-1}A$ 中可逆。从而 $S^{-1}A$ 是一个域。

Example 2.14. $\mathbb{Z}, S = \mathbb{Z} \setminus \{0\}, \mathbb{Q} = S^{-1}\mathbb{Z}, A = \mathbb{Q}[x], S = \mathbb{Q}[x] \setminus \{0\}, S^{-1}A = \mathbb{Q}(x) = \{fracfg \mid f, g \in \mathbb{Q}[x], g \neq 0\}, A$ 是任一个含 1交换环,则它的乘法封闭子集S可取为:

$$(1)S = \{1\}, \ \mathbb{N}S^{-1}A = A.$$

 $(2)\forall a \in A \backslash N(A), S = \{a^m \mid m \in \mathbb{Z}_{\geq 0}\}\$

(3) $\forall p \in spec(A)$,由于 $ab \in p$ 当且仅当 $a \in p$ 或者 $b \in p$,则 $ab \notin p$ 当且仅当 $a \notin p$ 且 $b \notin p$,所以S = A $\setminus p = \{a \in A \mid a \notin p\}$ 是一个乘法封闭子集。记p对应的分式环为 $A_p = S^{-1}A$ 。 $I \triangleright A$, $\bar{A} = A/I$,

$$A \overset{\phi}{\twoheadrightarrow} A/I = \bar{A}$$

2.5 分式环 29

结论: \bar{A} 的理想均形如J/I, 其中 $J \triangleright A$, 且 $I \subset J$ 。

Example 2.15. $\mathbb{Z}/4\mathbb{Z}$, $\langle 24 \rangle \subset J \triangleright \mathbb{Z}$, 所以J可以取:

 \mathbb{Z} , $2\mathbb{Z}$, $3\mathbb{Z}$, $4\mathbb{Z}$, $6\mathbb{Z}$, $8\mathbb{Z}$, $12\mathbb{Z}$, $24\mathbb{Z}$.

从而Z/24Z的理想为:

 $\mathbb{Z}/24\mathbb{Z}, 2\mathbb{Z}/24\mathbb{Z}, 3\mathbb{Z}/24\mathbb{Z}, 4\mathbb{Z}/24\mathbb{Z}, 6\mathbb{Z}/24\mathbb{Z}, 8\mathbb{Z}/24\mathbb{Z}, 12\mathbb{Z}/24\mathbb{Z}, 24\mathbb{Z}/24\mathbb{Z}.$

素理想为:

 $2\mathbb{Z}/24\mathbb{Z}, 3\mathbb{Z}/24\mathbb{Z},$

极大理想为:

 $2\mathbb{Z}/24\mathbb{Z}, 3\mathbb{Z}/24\mathbb{Z}$

典范同态

$$f: A \to S^{-1}A$$
$$I \longmapsto S^{-1}I$$

其中 $I \triangleright A$,若 $S \cap I \neq \emptyset$,则存在 $a \in S$ 且 $a \in I$,即 $\frac{a}{a} = 1$ 在 $S^{-1}I$ 中可逆,所以 $S^{-1}I = S^{-1}A$ 。故若需要 $S^{-1}I$ 是真理想,则需要 $S \cap I = \emptyset$ 。

2.5 分式环

Theorem 2.5. 设S是含1交换环A的一个乘法封闭子集,则映射

$$\psi: \{P \in spec(A) \mid P \cap S = \varnothing\} \to spec(S^{-1}A)$$
$$P \longmapsto S^{-1}P$$

是一个双射。

证明. 先证明任意 $P \in spec(A)$,若 $P \cap S = \emptyset$,则

$$\psi(p)=S^{-1}P=\{\frac{a}{s}\mid a\in P, s\in S\}\in spec(S^{-1}A).$$

先证明 $S^{-1}P$ 是 $S^{-1}A$ 的理想,其中 $a_1, a_2 \in P, s_1, s_2 \in S$,

$$\frac{a_1}{s_1} + \frac{a_2}{s_2} = \frac{s_2 a_1 + s_1 a_2}{s_1 s_2},$$

由于 $s_2a_1+s_1a_2\in P, s_1,s_2\in S$,所以 $\frac{a_1}{s_1}+\frac{a_2}{s_2}\in S^{-1}P$ 对任意的 $c\in A,s\in S,\frac{c}{s}\in S^{-1}A,$

$$\frac{c}{s} \cdot \frac{a_1}{s_1} = \frac{ca_1}{ss_1}$$

,由于 $P \triangleright A$,得 $ca_1 \in P$,从而 $\frac{c}{s} \cdot \frac{a_1}{s_1}$,即 $S^{-1}P \triangleright S^{-1}A$ 。

下证是 $S^{-1}P$ 素理想。任意 $\frac{a_1}{s_1}, \frac{a_2}{s_2} \in S^{-1}A, a_1, a_2 \in A; s_1, s_2 \in S$ 且 $\frac{a_1}{s_1} \cdot \frac{a_2}{s_2} \in S^{-1}P,$ 即

$$\frac{a_1a_2}{s_1s_2}=\frac{a}{s}, a\in P, s\in S.$$

则存在 $s' \in S$ 使得 $s'(sa_1a_2 - s_1s_2a) = 0$,从而 $s'sa_1a_2 = s's_1s_2a \in P$ 。

由于 $S \cap P = \emptyset$,所以 $s's \notin P$ 。又由于P是素理想,所以 $a_1a_2 \in P$,得 $a_1 \in P$ 或者 $a_2 \in P$,从 $\prod_{s_1}^{a_1} \in S^{-1}P$ 或者 $\frac{a_2}{s_2} \in S^{-1}P$,故 $S^{-1}P$ 素理想。即 $P \in spec(A)$,所以, ψ 是有意义的。

再证明 ψ 是满的。任取 $\beta \in spec(S^{-1}A)$,令

$$P = \{ a \in A \mid \overline{P} \in S, \overline{P} \notin A = S, \overline{P$$

下证 $P \in spec(A)$,即P是A的一个素理想。首先证 $P \triangleright A$ 。任取 $a,b \in P$,则存在 $s_1,s_2 \in S$,使得 $\frac{a}{s_1},\frac{b}{s_2} \in \beta$,于是

$$\frac{a}{1} = \frac{s_1}{1} \cdot \frac{a}{s_1} \in \beta, \frac{b}{1} = \frac{s_2}{1} \cdot \frac{b}{s_2} \in \beta,$$

有 $\frac{a}{1} + \frac{b}{1} = \frac{a+b}{1} \in \beta$,所以 $a + b \in P$ 。又对任一个 $c \in A$, $\frac{c}{1}\Delta \frac{a}{s_1} \in \beta$,即 $\frac{ca}{s_1} \in \beta$,故 $ca \in P$,从而 $P \triangleright A$ 。

下证P满足素性条件。 设 $a,b\in A$ 且 $ab\in P$ 。 由定义存在 $s\in S$,使得 $\frac{ab}{s}\in \beta$,即 $\frac{a}{1}\Delta \frac{b}{s}\in \beta$ 。 由于 $\beta\in spec(S^{-1}A)$,则 $\frac{a}{1}\in \beta$ 或者 $\frac{b}{s}\in \beta$,从而 $a\in P$ 或者 $b\in P$,综上 $P\in spec(A)$ 且 $\psi(P)=\beta=S^{-1}P$,即 ψ 是满的。

下证 ψ 是单的。设 $P_1, P_2 \in spec(A)$ 且 $P_i \cap S = \emptyset(i = 1, 2)$ 。若 $\psi(P_1) = \psi(P_2)$,则 $S^{-1}P_1 = S^{-1}P_2$ 。下证 $P_1 = P_2$ 即可。

任意 $a_1 \in P_1$,有 $\frac{a_1}{1} \in S^{-1}P_1 = S^{-1}P_2$,即 $\frac{a_1}{1} = \frac{a_2}{s}$, $a_2 \in P_2$, $s \in S$ 。所以存在 $s' \in S$ 使得 $s'(sa_1 - a_2) = 0$,故有 $s'sa_1 = sa_2 \in P_2$ 。由于 $S \cap P_2 = \varnothing$,所以 $a_1 \in P_2$,即 $P_1 \subset P_2$;同理可得 $P_2 \subset P_1$ 。综上 $P_1 = P_2$,故 ψ 是单的。从而 ψ 是双射。

Example 2.16. 设A是含1交换环, $P \in spec(A)$ 是一个素理想, $S = A \setminus P$ 是一个乘法封闭子集,记关于S的分式环 $S^{-1}A = A_P$,(有时称 A_P 为A关于P的局部化或者局部环), $spec(A_P) = \{S^{-1}P \mid P_1 \in spec(A), P_1 \subset P\}$ 。特别的, $S^{-1}P$ 且是 A_P 中唯一的极大理想,故 A_P 是一个局部环。 $S^{-1}P = (S^{-1}A)P = PA_P$,从而 A_P/PA_P 是一个域,称之为模P的剩余类域。

Example 2.17. 设A是含1交换环, $f \in A \backslash N(A)$,令 $S_f = \{f^n \mid n \in \mathbb{Z}_{\geq 0}\} = \{1, f, f^2, f^3 \dots\}$, S_f 是A的一个乘法封闭子集。对应的分式环 $S_f^{-1}A$ 记为 A_f 。 $spec(A_f) = \{S_f^{-1}P \mid P \in spec(A), P \cap S_f = \varnothing\}$ 。记 $V(f) = \{P \mid P \in spec(A), f \in P\}$,所以 $spec(A_f) = \{S_f^{-1}P \mid P \in spec(A), f \notin P\} \triangleq D(f) = spec(A) \backslash V(f)$ 。

2.6 反向极限与正向极限(在集合上)

2.6.1 正向集(directed portialy ordered set)

Definition 2.20. 设 (S, \leq) 是一个非空偏序集,对任意 $i, j \in S$ 存在 $k \in S$,使得 $i \leq k, j \leq k$,则 称 (S, \leq) 是一个正向集。

Definition 2.21. 反向系 设 (Λ, \leq) 是一个正向集, $\{A_{\alpha}\}_{\alpha \in \Lambda}$ 是一个集合簇,若对任意的 $\alpha, \beta \in \Lambda$, 当 $\alpha \leq \beta$ 时,有映射 $\varphi_{\beta\alpha}: A_{\beta} \to A_{\alpha}$ 且满足下列条件

 $(1)\varphi_{\alpha\alpha}=id_{A_{\alpha}}$ (恒等映射), $\forall \alpha \in \Lambda$

(2)对任意的 $\alpha, \beta, \gamma \in \Lambda$, 若 $\alpha \leq \beta \leq \gamma$, 则有下图可交换

则称 $\{(A_{\alpha}, \varphi_{\alpha\beta})\}$ 为定义在正向 $\{(\Lambda, \leq)$ 上的反向系。

射影(反向)极限的构造 设 $\{(A_{\alpha}, \varphi_{\beta\alpha})\}_{\Lambda}$ 是正向集 (Λ, \leq) 上的一个反向系,如果A是一个集合 且对任意 $\alpha \in \Lambda$,都有映射 $\psi : A \to A_{\alpha}$ 满足对任意的 $\alpha, \beta \in \Lambda$,若 $\alpha \leq \beta$,则有下图可交换

如果还具备以下泛性质(universality)

设有集合B以及映射 $\rho_{\alpha}: B \to A_{\alpha}(\forall \alpha \in \Lambda)$, 如果 $(B, \rho_{\alpha})_{\alpha\Lambda}$ 满足

则存在唯一映射 $h: B \to A$ 使得下面图表可交换

则称A是反向系 $\{(A_{\alpha}, \varphi_{\beta\alpha})\}_{\alpha\in\Lambda}$ 的反向极限,记为 $A=\varprojlim_{\alpha}A_{\alpha}$ 对于上述反向系 $\{(A_{\alpha}, \varphi_{\beta\alpha})\}_{\alpha\in\Lambda}$,及其反向极限 $A=\varprojlim_{\alpha}A_{\alpha}$ 。由构造可知 $A=\varprojlim_{\alpha}A_{\alpha}=\{(x_{\alpha})_{\alpha\in\Lambda}\mid \forall \alpha,\beta\in\Lambda,\alpha\leq\beta,x_{\alpha}\in A_{\alpha},x_{\alpha}=\phi_{\beta\alpha}(x_{\beta})\}$,特别的 $\varprojlim_{\alpha}A_{\alpha}\subset\prod_{\alpha\in\Lambda}A_{\alpha}$ 。

Example 2.18. 取 $\Lambda = \mathbb{Z}_{\geq 1}$, 当 $m \mid n$ 时,定义为 $m \leq n$ 。对任意 $n \in \Lambda$,令 $A_n = \mathbb{Z}/n\mathbb{Z}$ (模n的剩余类加群)。对于任意的 $m, n \in \Lambda$,若 $m \leq n$,则令

$$\varphi_{nm}: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$$

$$a + n\mathbb{Z} \longmapsto a + m\mathbb{Z}$$

则 $(A_n = \mathbb{Z}/n\mathbb{Z}, \varphi_{nm})$ 是 (Λ, \leq) 上的一个反向系, 其射影极限 $\lim_n \mathbb{Z}/n\mathbb{Z} \triangleq \hat{\mathbb{Z}}$

 $\mathbb{Z}=\varprojlim_n \mathbb{Z}/P^n\mathbb{Z}, (P$ 进整数), $\mathbb{Z}_P\subset\prod_{n=1}^\infty \mathbb{Z}/P^n\mathbb{Z}$ 子集, $\Lambda=\mathbb{Z}_{\geq 1}, m\leq n$,则 (Λ,\leq) 是正向集。令 $A_n=\mathbb{Z}/P^n\mathbb{Z}$,

$$\varphi_{nm}: \mathbb{Z}/P^n\mathbb{Z} \to \mathbb{Z}/P^m\mathbb{Z}$$
$$a + P^n\mathbb{Z} \longmapsto a + P^m\mathbb{Z}$$

正向极限的定义和构造

Definition 2.22. 正向系 设 (Λ, \leq) 是一个正向集, $\{A_{\alpha}\}_{\alpha \in \Lambda}$ 是一个集合簇,若对任意的 $\alpha, \beta \in \Lambda$, 当 $\alpha \leq \beta$ 时,有映射 $\varphi_{\alpha\beta}: A_{\alpha} \to A_{\beta}$ 且满足下列条件

 $(1)\varphi_{\alpha\alpha}=id_{A_{\alpha}}$ (恒等映射), $\forall \alpha \in \Lambda$

(2)对任意的 $\alpha, \beta, \gamma \in \Lambda$, 若 $\alpha \leq \beta \leq \gamma$, 则有下图可交换

则称 $\{(A_{\alpha}, \varphi_{\alpha\beta})\}$ 为定义在正向集 (Λ, \leq) 上的正向系。

射影(正向)极限的构造 设 $\{(A_{\alpha}, \varphi_{\alpha\beta}$ 是正向集 (Λ, \leq) 上的一个正向系,如果A是一个集合且对任意 $\alpha \in \Lambda$,都有映射 $\eta_{\alpha}: A_{\alpha} \to A$ 满足对任意的 $\alpha, \beta \in \Lambda$,若 $\alpha \leq \beta$,则有下图可交换

如果A还具备以下泛性质(universality)

设有集合B以及映射 $\lambda_{\alpha}: A_{\alpha} \to B(\forall \alpha \in \Lambda)$, 如果 $(B, \lambda_{\alpha})_{\alpha\Lambda}$ 满足

则存在唯一映射 $\rho: A \to B$ 使得下面图表可交换

则称A是正向系 $\{A_{\alpha}\}_{{\alpha}\in\Lambda}$ 的正向极限,记为 $A=\varinjlim_{\alpha}A_{\alpha}$

Example 2.19. $\underset{n}{\underline{\lim}} \mathbb{Z}/n\mathbb{Z} = \mathbb{Q}/\mathbb{Z}$, $\sharp +$

$$\varphi_{nm}: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$$

$$a + n\mathbb{Z} \longmapsto \frac{m}{n}a + m\mathbb{Z}$$

则 $\{\mathbb{Z}/n\mathbb{Z}, \varphi_{nm}\}$ 构成正向系,其正向极限 $\underline{\lim}_n \mathbb{Z}/n\mathbb{Z} = \mathbb{Q}/\mathbb{Z}$ 。

Example 2.20. $p \in \mathbb{C}, \Lambda = \{ \text{ # formula} \ U \mid p \in \mathbb{C} \}, U \leq V \Leftrightarrow V \subset U \text{ or } \text{ # formula} \ \text{ fau} \perp \text{ of } \text{ fau} \perp \text{ or } \text{ fau} \perp \text{ fau} \perp \text{ or } \text{ fau} \perp \text{ fau} \perp$

$$\varphi_{UV}: F_U \to F_V$$
$$f \longmapsto f \mid_V$$

则 $\{(F_U, \varphi_{UV})\}$ 是 (Λ, \leq) 上的一个正向系,其正向极限记为 $O_p = \varinjlim_{U \in \Lambda} F_U$ 具体构造 $\varinjlim_{\alpha} A_{\alpha}$,令 $\widetilde{A} = \bigcup_{\alpha \in \Lambda} A_{\alpha}$,在 \widetilde{A} 中引入如下关系 $: x, y \in \widetilde{A} \Rightarrow x \in A_{\alpha}, y \in A_{\beta}$ 。设 $x \sim y$ 当且仅当存在 $\gamma \in \Lambda$,使得 $\varphi_{\alpha\gamma}(x) = \varphi_{\beta\gamma}(y)$ 。对于 $\overline{f}, \overline{g} \in O_p = \varinjlim_{U \in \Lambda} F_U, \overline{f} \in F_U, \overline{g} \in F_V$,则 $\overline{f} = \overline{g}$ 当且仅当存在 $W \subset U \cap V$ 使得 $f|_{W} = g|_{W}$

2.7 模

Definition 2.23. 设A是一个含1交换环, M是一个加法群, 称M是一个A-模, 如果有作用

$$A \times M \to M$$

 $(a, \alpha) \longmapsto a\Delta\alpha$

且满足"相关公理"(类似于向量空间中的公理)

子模

Definition 2.24. 设M是一个A-模, $N \subset M$,若N满足如下条件:

- (1)N是M的加法子群
- (2)对 $a \in A, x \in N$ 有 $ax \in N$

则称N是M的一个A-子模,记之为N<M。

如果模M的子模只有0和M,则称M是一个单模

子模的交

设M是一个A-模, $M_{\alpha} \leq M, \alpha \in \Lambda$,则 $\cap_{\alpha \in \Lambda} \leq M$

证明. 显然 $\bigcap_{\alpha \in \Lambda}$ 是M子群,对任意的 $x \in \bigcap_{\alpha \in \Lambda}, a \in A$,则有任意 $\alpha \in \Lambda, x \in \bigcap_{\alpha \in \Lambda}, \exists \forall \alpha \in \Lambda, ax \in M_{\alpha}$,即 $\forall \alpha \in \Lambda, ax \in \bigcap_{\alpha \in \Lambda} M_{\alpha}$,所以 $\bigcap_{\alpha \in \Lambda} \exists M$ 子群。

注:子模的交仍是子模,但子模的并不一定是子模。

Example 2.21. $V = \mathbb{R}^2$, $W_1 = \{x \neq y \neq y \}$, 所以 $W_1, W_2 \neq V$ 的线性子空间,且 $W_1 \cap W_2 = \{0\}$ 也是线性子空间,但 $W_1 \cup W_2 = \{x \neq y \neq y \}$ 不是线性子空间。

生成模

设M是一个A-模, $S \subset M$, $S \neq \emptyset$,令 $\langle S \rangle = \bigcap_{N \leq M, N \supset S}$,则 $\langle S \rangle$ 是M中包含S的最小子模,称之为由S生成的子模。特别的,由一个元素生成的模 $\langle x \rangle$ 为包含x的最小子模。

Fact: $N = \langle x \rangle = Ax$,显然 $\langle x \rangle$ 是Ax的子模,而对任意一个子模N',且 $x \in N'$,由任意 $a \in A$,有 $ax \in N'$,得到 $Ax \subset N'$,即Ax是包含x的最小子模。所以有 $A\langle x \rangle = \langle x \rangle$

推广到有限个: $x_1, x_2, \dots, x_n \in M, \langle x_1, x_2, \dots, x_n \rangle = Ax_1 + Ax_2 + \dots + Ax_n$

子模的和

 $N, L \leq M, N + L \triangleq \{x + y \mid x \in N, y \in L\}.$

则 $N + L = < N \cup L >$.

一般地, $N_1, N_2, \dots, N_r \leq M$,则 $N_1 + \dots + N_r = \{x_1 + \dots + x_r | x_i \in N_i, i = 1, \dots, r\}$.则

$$N_1 + \cdots + N_r = \langle N_1 \cup \cdots \cup N_r \rangle$$

$$\sum_{\alpha \in \Lambda} N_{\alpha} = \langle \cup_{\alpha \in \Lambda} N_{\alpha} \rangle (里面的元素 \sum x_{\alpha} 为有限和)$$

设A是环, $I \triangleleft A$.则

- $(1)(I,+) \leq (A,+)$,加法子群;
- $(2)A \times I \rightarrow I$
- $(a,\alpha) \mapsto a\alpha$,即I是一个A-模。

有限生成模

Definition 2.25. 设M是一个A-模,如果有 $x_1,\dots,x_n \in M$ 使得

$$M = \langle x_1, \dots, x_n \rangle = Ax_1 + Ax_2 + \dots + Ax_n.$$

则称M是一个有限生成A-模。

自由模

Definition 2.26. (基)设M是一个A-模,如果存在 $\{x_{\alpha}\}_{{\alpha}\in\Lambda}$ 使得如下条件成立:

(1)对 $\forall x \in M$,都有 $a_{\alpha} \in A(\forall \alpha \in \Lambda)$ 使得

$$x = \sum_{\alpha \in \Lambda} a_{\alpha} x_{\alpha} ($$
其中只有有限个 α 使得 $a_{\alpha} \neq 0$).

(2)上述表示法唯一(等价于0表示法唯一)。

则称 $\{x_{\alpha}\}$ 为M的一组A—基,此时称M是一个自由A—模(即有一组A—基的模,称为一个自由的A—模).

例1.A是环(含1交换环), $n \in \mathbb{Z}_{\geq 1}$ 。令 $M = A^n$ (卡氏积), $x \in M, x = (x_1, \dots, x_n), x_i \in A(\forall 1, \dots, n)$

$$A \times M \to M$$

$$(a,x)\mapsto a\cdot x:=(ax_1,\cdots,ax_n).$$

则显然 $M = A^n$ 是一个自由A-模(因为 $\epsilon_1 = (1, 0, \dots, 0), \dots, \epsilon_n = (0, \dots, 0, 1)$ 是M的一组A-基)。

Definition 2.27. 设M, N是A-- 模, $f: M \to N$ 是一个映射,称f是一个A-- 模同态。如果f是A-- 线性,即

$$f(a\alpha + b\beta) = af(\alpha) + bf(\beta)(\forall a, b \in A, \alpha, \beta \in M).$$

若f是模同态,

- f是单的,称f是单同态;
- f是满的,称f是满同;
- f即单又满,则称f为一个模同构,此时亦称M与N同构,记之为 $M \stackrel{f}{\cong} N$.

商模

Proposition 2.12. 设M是一个A-模, $N \le M$,则M/N是M关于N的商模。

证明. 规定 $a \cdot \bar{x} := \overline{ax}$.

下证这是良好定义的: 设 $x, x' \in M$,且 $\bar{x} = \overline{x'}$,则 $x - x' \in N$,由于 $N \leq M$,对任意 $a \in A$, $a(x - x') \in N \Rightarrow ax - ax' \in N \Rightarrow \overline{ax} = \overline{ax'}$.

显然M/N已是商群,再加上上面定义的模结构,成为一个模。

例 $M = \mathbb{R}^2, N = \mathbb{R}\alpha, \alpha = (1, 1), 则 M/N = L.$

 $N = \mathbb{R}\alpha, \alpha = (1,0), \text{则}M/N = y$ 轴。设P = (x,y)

$$\overline{(x,y)} = \overline{P} = P + N$$

$$= (x,y) + \{(x',0)|x' \in \mathbb{R}\}$$

$$= \{(x+x',y)|x' \in \mathbb{R}\}$$

$$= 距离x轴长度为y, 且与y轴平行$$

$$= \overline{(0,y)}$$

从而M/N是y轴。

Theorem 2.6. (模同态基本定理)设 $f: M \to N$ 是一个A-模同态,则 $(1)f(M) = im(f) \le N,(2)f$ 的核 $Kerf = f^{-1}(0) \le M.$ (3)f导出模同构

$$\bar{f}: M/Ker(f) \simeq im(f)$$

 $\bar{a} \longmapsto f(a), \forall a \in M.$

即有交换图

 $f = \eta \circ \phi$.

证明. (1)(2)显然成立。

 $(3)\bar{f}$ 呈满射也显然,下证 \bar{f} 是单的。若 $\forall \bar{x_1}, \bar{x_2} \in Im(f)$,且有 $\bar{f}(\bar{x_1}) = \bar{f}(\bar{x_2})$. 则

$$f(x_1) = f(x_2) \Rightarrow f(x_1 - x_2) = 0 \Rightarrow x_1 - x_2 \in Ker(f) \Rightarrow \bar{x_1} = \bar{x_2}.$$

于是 \bar{f} 是单的。显然 \bar{f} 是模同态,于是 \bar{f} 是模同构。

Corollary 2.2. 设M是一个A-模, $N, L \le M$,则有模同构

 $(N+L)/N \cong L/(N \cap L).$

设M, N是A-模,记 $Hom_A(M, N) = \{f : | f : M \to N$ 是一个模同态 $\}$ 。 $Hom_A(M, N)$ 上有加法以及同态的复合,构成一个非交换环。

 $End_A(M)=\{f|f:M\to M$ 是一个模同态}. $(End_A(M),+,\circ)$ 是一个环,其中"。"是映射的合成。

Lemma 2.1. 设M是有限生成A-模, $I \triangleleft A, \phi \in End_A(M)$,如果 $\phi(M) \in IM$,则存在 $a_0, a_1, \cdots, a_{n-1} \in I$ 使得

$$\phi^n + a_{n-1}\phi^{n-1} + \dots + a_1\phi + a_0 = 0.$$

证明. 由M是有限生成A-模,设 α_1,\cdots,α_n 是M的一组生成元,则 $\phi(\alpha_1),\cdots,\phi(\alpha_n)\in IM=I\alpha_1+\cdots+I\alpha_n,\Rightarrow \phi(\alpha_1,\cdots,\alpha_n)=(\alpha_1,\cdots,\alpha_n)B,B\in M_n(I).$ 令

$$f(x) = det(xE_n - B)$$

= $x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$.

其中 $a_0, a_1, \dots, a_{n-1} \in I$. 类似于"高代"中Hamilton-Kayley定理的证明可得 $f(\phi) = 0$. 即 $\phi^n + a_{n-1}\phi^{n-1} + \dots + a_1\phi + a_0 = 0$.

Corollary 2.4. 设M是一个有限生成A-模, $I \triangleleft A$,如果IM = M,则存在 $x \in A$ 使得 $x \equiv 1 \pmod{I}$ 且 $x \cdot M = 0.(x$ 零化M中的所有元素)

证明. 在上一引理中,取 $\phi = id$ (恒等映射)且有 $\phi(M) = M = IM$ 成立。则由上述引理, $\exists a_0, \dots, a_{n-1} \in I$ 使得

$$id + a_{n-1}id^{n-1} + \dots + a_1id + a_0 = 0 \in End_A(M),$$

 $\Rightarrow 1 + a_{n-1} + \dots + a_1 + a_1 = 0. \diamondsuit \ x = 1 + a_{n-1} + \dots + a_1 + a_0, \ \, \bigcup xM = 0M = 0, \ \, \exists x \in A, \ \, \bar{q}x - 1 = a_{n-1} + \dots + a_1 + a_0 \in I. \ \, \Box$

Lemma 2.2. (NaKayama引理1)设M是有限生成A-模,J是A的Jacobson根, $I \triangleleft A$ 且 $I \subseteq J$,若IM = M,则M = 0.

证明. 由上述推论, $\exists x \in A$ 使得

$$x \equiv 1 \pmod{I}$$
 $\exists x M = 0.$

即 $x-1 \in I$, $\Rightarrow x=1+y$, $\exists y \in I \subseteq J$,即 $y \in J \Rightarrow x=1+y \in u(A)$,x可逆。 从而 $M=x^{-1}(xM)=x^{-1}0=0$.

Lemma 2.3. (Nakayama引理2)设M是有限生成A-模, $N \le M$, $I \triangleleft A$ 且 $I \subseteq J(A)(J$ 是A的Jacobson根), $\overrightarrow{\pi}N + IM = M$, 则N = M.

证明. 考虑商模M/N.首先有 $I \cdot (M/N) = (IM + N)/N$.

由于 $a\bar{x} \in I \cdot (M/N)$ $(a \in I, \bar{x} \in M/N), ax \in IM + N, \Rightarrow \overline{ax} \in (IM + N)/N.$ $\overline{ax + y} \in (IM + N)/N (a \in I, x \in M, y \in N), \overline{ax + y} = \overline{ax} + \overline{y} = \overline{ax} = a\overline{x} \in I \cdot (M/N).$

2.8 正合列 38

 $\Rightarrow I \cdot (M/N) = (IM + N)/N.$

由于M是有限生成, $\Rightarrow M/N$ 也是有限生成,又由

$$N + IM = M \Rightarrow I(M/N) = (IM + N)/N = M/N.$$

由M/N是有限生成,由NaKayama引理 $1 \Rightarrow M/N = 0 \Rightarrow M = N$.

例:设A是一个局部环,M是一个生成A-模,m是A的唯一理想, $mM \le M, A/m = F.$ M/mM是一个F-向量空间,若有限,取 $\bar{x}_1, \cdots, \bar{x}_n$ 是其一组基,则 x_1, \cdots, x_n 是M的生成元(是一组基)

M是A-模, $I \triangleleft A$, IM = 0,则M可看作一个A/I-模

$$A/I \otimes M \to M$$

 $(\bar{a}, x) \mapsto \bar{a} \cdot x = \overline{ax}$

Nakayama引理推论 A是一个局部环, m是它的极大理想, 如果有 $x_1, x_2, \dots, x_n \in M$,使 得 $\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n \in M/\mathfrak{m}M$,是 $M/\mathfrak{m}M$ 作为域 $A/\mathfrak{m}L$ 线性空间的一组基,则 $M = < x_1, \dots, x_n > .$

证明. $\Diamond N = \langle x_1, \cdots, x_n \rangle \in M$ 中由 x_1, \cdots, x_n 生成的A-子模,下证M = N.

为此,任取 $x \in M$,则 $\bar{x} \in M/\mathfrak{m}M$,由所设,有

$$\bar{x} = \bar{a}_1 \bar{x}_1 + \bar{a}_2 \bar{x}_2 + \dots + \bar{a}_n \bar{x}_n$$

其中 $a_1, \dots, a_n \in A, \bar{a}_i \in A/\mathfrak{m} (i = 1, \dots, n)$. 即

$$\bar{x} = \overline{a_1 x_1 + \dots + a_n x_n} \in M/\mathfrak{m}M$$

$$\Rightarrow x - (a_1 x_1 + \dots + a_n x_n) \in \mathfrak{m}M$$

注意到 $a_1x_1+\cdots+a_nx_n\in N=< x_1,\cdots,x_n>$,故 $x\in N+\mathfrak{m}M\Rightarrow M\subset N+\mathfrak{m}M\Rightarrow M=N+\mathfrak{m}M.$ 由于A是局部环, \mathfrak{m} 是它的唯一的极大理想,所以A的Janbous根 $J(A)=\mathfrak{m}$,故由Nakayama引理,得M=N.

2.8 正合列

设A是一个含1交换环,M,N,L是A-模, $M \xrightarrow{f} N \xrightarrow{g} L$.设f,g是A-模同态,则f与g的合成是从M到L的模同态.

设 $f: M \to N$ 是一个A-模同态, $K = kerf \leq M, K \xrightarrow{\eta} N \xrightarrow{f} L$, $f = \eta$ 的合成是0,K中元映到N中是0.

 $L \leq M, \bar{M} = M/L$,我们有 $L \xrightarrow{g} M \xrightarrow{f} M/L$,其中g是单射,且g(L) = L, kerf = L,则有img = kerf.即上面的列在M上正合.

 $0 \to L \xrightarrow{g} M \xrightarrow{f} M/L \xrightarrow{h} 0$ 是一个短正合列,因为kerh = M/L,且f是满射,有imf = M/L只要 $L \to M$ 是单射,则在前面加个 $0 \to L \to M$,其就为一个正合列.

事实:设有模同态 $L \xrightarrow{f} M, M \xrightarrow{g} N, \text{则} f$ 是单射 $\Leftrightarrow 0 \to L \xrightarrow{f} M$ 是正合列,g是满射 $\Leftrightarrow M \xrightarrow{g} N \to 0$ 是正合列.

 $2.9 \quad A -$ 模复型 39

Definition 2.28. (模的正合列): 设有一个模同态,则 $\cdots \to M_{n-1} \xrightarrow{f_{n-1}} M_n \xrightarrow{f_n} M_{n+1} \xrightarrow{f_{n+1}} \cdots$ 是一个正合列,如果它在任一个 M_n 处均正合,即 $\inf_{n-1} = \ker f_n$.

设 $f: M \to N$ 是一个A-模同态(任何一个模同态都能给出下面一个正合列)

 $0 \to K \xrightarrow{g} M \xrightarrow{f} N \xrightarrow{h} N/f(M) \to 0$ 是一个A-模正合列,因为 $K = kerf \leqslant M, f(M) \leqslant N, imf = kerh = f(M)$

2.9 A-模复型

设有一A-模同态列

$$\overline{M}: \cdots \to M_{n-1} \xrightarrow{f_{n-1}} M_n \xrightarrow{f_n} M_{n+1} \xrightarrow{f_{n+1}} \cdots$$

如果在任意的 M_n 处,都有 $f_n \circ f_{n-1} = 0$ (对任意的n),则称它是一个(上)复型.

Definition 2.29. 上述列是一个A-模上复型,即 $f_n o f_{n-1} = 0$ (对任意的n),等价的, $im f_{n-1} \subseteq ker f_n$

Definition 2.30. 定义: $H^n(\overline{M}) = \frac{kerf_n}{imf_{n-1}}$, 称之为上复型 \overline{M} 的第n个上同调群(此处,它也是个A—模)

对偶地,对于A-模下复型

$$\overline{M_0}: \cdots \to M_{n+1} \xrightarrow{f_{n+1}} M_n \xrightarrow{f_n} M_{n-1} \xrightarrow{f_{n-1}} \cdots,$$

即对任意的 $n \bar{q} f_n o f_{n+1} = 0$ 成立,我们定义 $H^n(\overline{M_0}) = \frac{ker f_n}{im f_{n+1}}$ 是第n个下同调群.

例: 设X拓扑空间。则一个n-单形形如< $v_1, v_2 \cdots, v_n >$,其中 $v_1 - v_0, v_2 - v_0 \cdots, v_n - v_0$ 是 线性无关的.

令 $C_n(K(x))$ 代表由X中所有n-单形生成的自由Abel群。则 $C_0(K(x))=ZX$.

$$v_0 \longrightarrow v_1$$
 $< v_0, v_1 >$ 边缘算子 $\alpha_1 (< v_0, v_1 >) = \alpha_1 (< v_1, v_2 >)$

$$v_0$$
 v_1 $\alpha_1(< v_0, v_1 >, v_2) = < v_1, v_2 > - < v_0, v_2 > + < v_0, v_1 >$ 一般地, $\alpha_n(< v_0, v_1 \cdots, v_n >) = \sum_{i=0}^n (-1)^i < v_0, v_1 \cdots, v_{i-1}, \widehat{v_i}, v_{i+1}, \cdots, v_n >$ 得到 Z -模复形(即 $Abel$ 群下复形):

$$\cdots \to C_n(K(x)) \xrightarrow{\alpha_n} C_{n-1}(K(x)) \xrightarrow{\alpha_{n-1}} \cdots$$

事实: $\alpha_n \circ \alpha_{n-1} = 0$. 例如

$$\alpha^{2}(v_{0}, v_{1}, v_{2}) = \alpha_{1} \circ \alpha_{2}(v_{0}, v_{1}, v_{2}) = \alpha_{1}(\alpha_{2}(v_{0}, v_{1}, v_{2}))$$

$$= \alpha_{1}(\langle v_{1}, v_{2} \rangle - \langle v_{0}, v_{2} \rangle + \langle v_{0}, v_{1} \rangle)$$

$$= \alpha_{1}(\langle v_{1}, v_{2} \rangle) - \alpha_{1}(\langle v_{0}, v_{2} \rangle) + \alpha_{1}(\langle v_{0}, v_{1} \rangle)$$

$$= \langle v_{2} \rangle - \langle v_{1} \rangle - (\langle v_{2} \rangle - \langle v_{0} \rangle) + (\langle v_{1} \rangle - \langle v_{0} \rangle)$$

$$= 0.$$

定义:
$$H_n(Z,X) = H_n(K(X)) = \frac{ker\alpha_{n-1}}{im\alpha_n}$$
. n -单形

2.10 范畴和函子的简介

Definition 2.31. 一个范畴 \mathscr{C} 指的是如下要素:

- C1 一类对象 (objects) $O(\mathscr{C}), A \in \mathscr{C}(A \in O(\mathscr{C}))$
- C2 对 \mathcal{C} 中任意两个对象的有序对A,B对应于一个集合Mor(A,B)称之为从A到B的态射集

满足如下公理

A1 对每个 $A \in \mathcal{C}$,有一个特别的元素 $1_A \in Mor(A,A)$

A2 对任意的 $A, B, C \in \mathscr{C}$

$$Mor_{\mathscr{C}}(A,B) \times Mor_{\mathscr{C}}(B,C) \longrightarrow Mor_{\mathscr{C}}(A,C)$$

 $(f,g) \longmapsto gof$

且满足结合律

A3 对任意的 $f \in Mor_{\mathscr{C}}(A, B)$

$$A \xrightarrow{1_A} A \xrightarrow{f} B, fo1_A = f,$$

$$A \xrightarrow{f} B \xrightarrow{1_B} B, 1_B of = f.$$

例1.集合范畴Set:

对象:集合,态射集:对任意的 $A,B \in Set;Mor(A,B) = Map(A,B) = \{f:A \longrightarrow B$ 是一个映射}

例2.群范畴 G_P :

对象: 群,态射集: $G, H \in G_P, Mor(G, H) = Hom(G, H)$.

例3.模范畴:

设A是一个含1交换环,A-模范畴A-Mod,对象:A-Mod,M,态射:A-同态,M, $N \in A$ -Mod, $Mor_{A-Mod}(M.N) = Hom_A(M,N)$.

子范畴

Definition 2.32. 设化是范畴, 若 $\mathcal{D} \in \mathcal{C}$,则 $ob(\mathcal{D}) \subset ob(\mathcal{C})$,且对任意 $A, B \in ob(\mathcal{D})$ 有 $Mor_{\mathcal{D}}(A, B) \subset Mor_{\mathcal{C}}$.

完全子范畴

Definition 2.33. $\mathcal{D} \in \mathcal{C}$ (子范畴)

如果对任意的 $A,B\in\mathcal{D}$,都有 $Mor_{\mathcal{D}}(A,B)=Mor_{\mathscr{C}}$ 则称 \mathcal{D} 是 \mathscr{C} 的完全子范畴.

例如: $G_P \leq Set$ 是子范畴, 但不是完全子范畴.

函子

Definition 2.34. 设 \mathcal{C} 和 \mathcal{D} 是两个范畴,对 $\mathcal{D}F:\mathcal{C}\longrightarrow\mathcal{D}$,则对任意的 $A\in\mathcal{C}$ 都有 $F(A)\in\mathcal{D}$ 对任意的 $A,B\in\mathcal{C}$ 有

$$Mor_{\mathscr{C}}(A,B) \longrightarrow Mor_{\mathscr{D}}(F(A),F(B))$$

 $f \longmapsto F(f)$

满足

A1:对任意的 $A \in \mathcal{C}$,有 $F(1_A) = 1_{F(A)}$.

对任意的 $A,B,C\in\mathscr{C},f\in Mor_{\mathscr{C}}(A,B),g\in Mor_{\mathscr{C}}(B,C),A\xrightarrow{f}B\xrightarrow{g}C$ 有

$$F(A) \xrightarrow{F(f)} F(B) \xrightarrow{F(g)} F(C).$$

即有

$$F(gof) = F(g)oF(f).$$

称上述F为 \mathcal{C} 到 \mathcal{D} 的共变函子.

对偶的,反变函子 $F:\mathscr{C}\longrightarrow\mathscr{D}$,

$$F:Mor_{\mathscr{C}}(A,B)\longrightarrow Mor_{\mathscr{D}}(F(B),F(A))$$

$$f \longmapsto F(f)$$

对任意的 $A,B,C\in\mathscr{C},f\in Mor_{\mathscr{C}}(A,B),g\in Mor_{\mathscr{C}}(B,C),A\xrightarrow{f}B\xrightarrow{g}C$ 有

$$F(A) \stackrel{F(f)}{\longleftarrow} F(B) \stackrel{F(g)}{\longleftarrow} F(C),$$

即有

$$F(gof) = F(f)oF(g).$$

函子的自然变换

Definition 2.35. 设F,G是范畴 \mathscr{C} 到 \mathscr{D} 的两个共变函子,如果对任意的 $A \in \mathscr{C}$ 有

$$l_A \in Mor_{\mathscr{D}}(F(A), G(A)), l_B \in Mor_{\mathscr{D}}(F(B), G(B)).$$

其中 $F(f) \in Mor_{\mathscr{D}}(F(A), F(B)), G(f) \in Mor_{\mathscr{D}}(G(A), G(B))$ 使得

$$l_B o F(f) = G(f) o l_A.$$

即下图交换

$$F(A) \xrightarrow{l_A} G(A)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(B) \xrightarrow{l_B} G(B).$$

特别的,如果 I_A 都是同构的(对任意的 $A \in \mathcal{C}$),则F,G也是同构的.

范畴的同构与等价

如果存在函子 $F:\mathscr{C}\longrightarrow\mathscr{D}$ 与 $G:\mathscr{D}\longrightarrow\mathscr{C}$ 使得 $GoF=1_{\mathscr{C}},FoG=1_{\mathscr{D}}$ 则称范畴 \mathscr{C} 与 \mathscr{D} 是**同构**的.

如果存在函子 $F:\mathscr{C}\longrightarrow\mathscr{D}$ 与 $G:\mathscr{D}\longrightarrow\mathscr{C}$ 使得 $GoF\simeq 1_{\mathscr{C}}, FoG\simeq 1_{\mathscr{D}}$ 则称范畴 \mathscr{C} 与 \mathscr{D} 是**等价**的.

A-模范畴(A是一个含1交换环)

对 $M, N \in A - mod, A$ -模同态是单的. $Mor_{A-mod}(M, N) \triangleq Hom_A(M, N)$. 对任意的 $f, g \in Hom_A(M, N)$,定义 $f + g \in Hom_A(M, N)$ 如下

$$(f+g)(x) \triangleq f(x) + g(x)(x \in M).$$

事实: $(Hom_A(M,N),+)$ 是一个Abel群.

现固定 $M \in A - mod$,

$$idF_M = Hom_A(M, -): \quad A - mod \longrightarrow \mathscr{A}b(Abel 群范畴)$$

$$N \longmapsto F_M(N)$$

其中 $F_M(N) = Hom_A(M, -)(N) \triangleq Hom_A(M, N)$.

根据上述的关系,对于 $N, L \in A - mod, F_M(N), F_M(L) \in \mathcal{A}b$ 我们有

$$N \xrightarrow{f} L$$
 $F_M(N) = Hom_A(M, N) \xrightarrow{F_M(f)} F_M(L) = Hom_A(M, L)$

对于 $g: M \longrightarrow N, fog: M \longrightarrow L$ 有

$$F_M(f)(g) = Hom_A(M, f)(g) = f \circ g.$$

对于 $h: M \longrightarrow N, N \xrightarrow{f} L \xrightarrow{g} K$ 有

$$F_M(g \circ f) = F_M(g) \circ F_M(f).$$

因为对任意的 $h \in Hom_A(M, N)$,

$$F_M(g \circ f)(h) = g \circ f \circ h = g \circ (F_M(f)(h)) = F_M(g)(F_M(f)(h)) = F_M(g) \circ F_M(f)(h),$$

 $\mathbb{H}F_M(g\circ f)=F_M(g)\circ F_M(f).$

共变函子

$$Hom_A(M, -) : A - mod \longrightarrow \mathscr{A}b$$

 $N \longmapsto Hom_A(M, N)$

反变函子

固定N,

$$G_N \triangleq Hom_A(-, N) : A - mod \longrightarrow \mathscr{A}b$$

$$M \longmapsto Hom_A(M, N),$$

对于 $L \xrightarrow{f} M$ 我们有

$$Hom_A(M, N) \xrightarrow{G_N(f)} Hom_A(L, N).$$

对于 $L \xrightarrow{f} M \xrightarrow{g} N$,

$$Hom_A(-,N)(f) = G_N(f): \quad Hom_A(M,N) \longrightarrow Hom_A(L,N),$$

 $g \longmapsto gof,$

即

$$G_N(f)(g) = gof, g \in Hom_A(M, N),$$

 $Hom_A(-, N)(f)(g) = gof,$

即 $Hom_A(-,N)$ 是一个反变函子.

A是一个合1交换环,A-模范畴,A- Mod.取M \in A- Mod. 共变函子 Hom,A(M, -) \triangleq h_M , 反变函子 Hom,A(-, N)

A-模的一个短正合列

$$0 \longrightarrow L \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} N \longrightarrow 0 \tag{*}$$

表示 (i)f单; (ii)g满; (iii)Imf = kerg.

任取 $K \in A - \text{mod} 用 h_K = \text{Hom}_A(K, -)$ 作用(*)。

我们有

$$0 \longrightarrow L \xrightarrow{f \land h} M \xrightarrow{g \circ h_1} N \longrightarrow 0$$

 $h_K(L) = \operatorname{Hom}_A(K, L)$

$$0 \to \operatorname{Hom}_{A}(K, L) \to \operatorname{Hom}_{A}(K, M) \to \operatorname{Hom}_{A}(K, N) \tag{**}$$

Proposition 2.13. (*)是一个正合列 $\Rightarrow (**)$ 是正合列.

即

$$0 \to h_k(L) \xrightarrow{h_k(f)} h_k(M) \xrightarrow{h_k(g)} h_k(N)$$

是Abel群正合列。

证明. 先证 $h_k(f)$ 是单射.

 $\forall h \in h_k(L)$,使得 $h_k(f)(h) = 0$,即 $h_k(f)(h) = f \circ h = 0$ 。 故对 $\forall \alpha \in M$,有 $f \circ h(\alpha) = 0 \Rightarrow f(h(\alpha)) = 0$ 。 由于

$$0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$$

是正合的,故f单射.于是 $h(\alpha) = 0$.由 α 的任意性得到h = 0.即 $h_k(f)$ 是单射。

下证在 $h_k(m)$ 处正合,即 $Im(h_k(f)) = \ker(h_k(g))$. 由于(\star)正合,故有

$$g \circ f = 0 \Rightarrow gofoh = 0 \Rightarrow g \circ (foh) = 0.$$

 $\therefore (h_k(g) \circ h_k(f))(h) = 0.$ 由h是任取的, $\Rightarrow h_k(y) \circ h_k(t) = 0$, $\therefore Im(h_k(f)) \subseteq (ker(h_k(g)))$.

下证 $\ker (h_k(g)) \subset I_m(h_k(f))$.为此取 $h' \in \ker (h_k(g))$,则 $h_k(g)(h') = goh' = 0$. 也即 $\forall x \in K$,均有

$$g \circ h'(x) = 0 \Rightarrow g \circ h'(x) = 0 \Rightarrow h'(x) \in kerg.$$

 $h'(x) \in M$, 由于 $\ker = Imf$,即有的 $y \in L$,使得h'(x) = f(y). 于是定义

$$h:k\to L$$

$$x \mapsto y$$

易验证 $h \in h_k(L)$ 。

即 $h' = f \circ h$, $h'(x) = f(y) = f \circ h(x) = f(h(x))$, 且 $h_k(f)(h) = f \circ h = h'$ 由此得到 $h' \in Im(h_k(f)) \Rightarrow \ker h_k(g) \subset Im(h_k(f))$ 。

综上, $Kerh_k(g) = Im(h_k(t))$.

因此可由短正合列 $(\star) \Rightarrow (\star\star)$ 是左正合的。

此时称 $h_k = \operatorname{Hom}_A(k,)$ 呈一个左正合函子(不能像证右边正合)

 $\operatorname{Hom}_{A}(M,J)$ 与 $\operatorname{Hom}_{A}(-,M)$ 均呈左正合。

 $\mathfrak{R}K \in A - Mod, \oplus$

得到左正合列

$$0 \to \operatorname{Hom}_A(N,K) \to \operatorname{Hom}_A(M,K) \to \operatorname{Hom}_A(L,K).$$

2.11 模的张量积 外积 对称积

 $M \stackrel{f}{\rightarrow} N$ A-线性(A-模同志)

向量空间 F/V (下域) V为节上的向量空间

 $V \subseteq \mathbb{R}^n$ R实数欧式空间

内积(,)

$$V \times V \longrightarrow R$$

$$(\alpha, \beta) \mapsto \langle \alpha, \beta \rangle$$

1.
$$\langle a_1 \alpha_1 + a_2 \alpha_2, \beta \rangle = a_1 \langle \alpha_1, \beta \rangle + a_2 \langle d_2, \beta \rangle$$
;

2.
$$\langle \alpha, b_1 \beta_1 + b_2 \beta_2 \rangle = b_1 \langle \alpha, \beta_1 \rangle + b_2 \langle \alpha, \beta_2 \rangle$$

ℝ-双线性

固定 α , $\langle \alpha, - \rangle$:

$$V \to \mathbb{R}$$

$$\beta \mapsto \langle \alpha, \beta \rangle$$

 $m \times N \to L$ $M \stackrel{f}{\to} N$ A线性

$$(\alpha, \beta) \longmapsto f(\alpha, \beta)$$

定义: 设 $M, N, L \in A - mod.$ A是含1交换环,称映射 $f: M \times N \to L$ 为一个双线性映射,如果下述条件成立。

- 1. $f(a_1x_1 + a_2x_2, y) = a_1f(x_1, y) + a_2f(x_2, y)$
- 2. $f(x, b_1y_1 + b_2y_2) = b_1f(x, y_1) + b_2f(x_1y_2)$ $\forall a_1, a_2, b, b_2 \in A, \quad x_1, x_2 \in M, y_1, y_2 \in N$ 即 f 对每个分量都是A—线性的。

此处固空 $x \in M$,则f(x,-): $N \to L, y \mapsto f(x,y)$ 是A-线性的。 $M \otimes N$ "双线性"作为一个属性,找一个最基本的.

Theorem 2.7. 设 $M, N \in A - Mod.(A$ 是一个合I交换环),则存在一个对(pairs)(T, f),其中 $T \in A - Mod.$ $f: M \times N \xrightarrow{f} T.$ 是一个A—双线性的。使得如下"泛性质"满足。

(泛性质)对 $\forall L\in A-Mod$ 及双线性映射 $g:M\times N\to L,$ 则存在唯一一个A-线性映射 $h:T\to L,$ 使 $g=h\circ f.$ 即下图交换

且上述满足泛性质的(T,f)在同构定义下唯一记 $T \triangleq M \otimes_A N$. 称为M和N的张量积。

证明. 以 $M \times N$ 中全体元素为基作一个自由A-模,记为 $F \triangleq A^{(M \times N)} = \oplus_{\alpha \in M \times N} A$. 故 $x \in F \Leftrightarrow x = \sum a_{m,n}(m,n)$,其中 $a_{m,n} \in A$ 除有限个均为0.(表示法唯一)

在F中令F0为有形式如下的元素生成的A-子模:

$$(m_1 + m_2, n) - (m_1, n) - (m_2, n),$$

 $(m, n_1 + n_2) - (m, n_1) - (m, n_2),$
 $(am, n) - a(m, n), (m, bn) - b(m, n).$

于是令 $T = F/F_0$.则T满足的双线性的"泛性质"

记号:将上述构造的 $T \triangleq M \otimes_A N$. $M \times N \xrightarrow{f} M \otimes_A N$ $(m.n) \mapsto (m,n)$

更一般的, 任给 $M_1, \dots, M_n \in A - Mod$ 有n-重维映射。

$$f = M_1 \times \dots \times M_n \to N$$

$$f(\alpha_1, \dots, \alpha_{i-1}, a_i \cdot \alpha_i + a'_i \alpha'_i, \alpha_{i+1}, \dots, \alpha_n)$$

= $a_i f(\alpha_1, \dots, \alpha_i, \dots, \alpha_n) + a'_i f(\alpha_1, \dots, \alpha'_i, \dots, \alpha_n)$

即 f 对每个分量均是线性的(多重线性映射).

张量积对 $M_1 \times \cdots \times M_n \xrightarrow{f \quad linear} T$,对 $M_1 \times \cdots \times M_n \xrightarrow{g} L$ 都存在唯一的线性映射 $h: T \longrightarrow L$,使得g = hof. 即有下面交换图

记 $T = M_1 \otimes_A M_2 \otimes_A \cdots \otimes_A M_n$ 性质:

- 1. $M \otimes_A N = N \otimes_A N$;
- 2. $M \otimes_A A \simeq M$:
- 3. $(M \otimes_A N) \otimes_A L \simeq M \otimes_A (N \otimes_A L);$
- 4. $M \otimes_A (N \oplus_A L) \simeq (M \otimes_A N) \oplus (M \otimes_A L)$.

例1. V, W分别是 \mathbb{R} 上的m, n维向量空间,则 $dim_{\mathbb{R}}(W \otimes V) = mn$.

$$v \stackrel{f}{\longrightarrow} \mathbb{R}$$

 $\int : \mathscr{C}[a,b] \longrightarrow \mathbb{R}(\mathscr{C}[a,b] \to \mathbb{R}[a,b]$ 上的连续函数的全体)

$$f \mapsto \int_{[a,b]} f = \int_a^b t dx$$

对称.设 $V, W \in A - Mod$,

$$V \times V \cdots \times V \xrightarrow{f} W$$
 $n \equiv$

若(1)f是n-重线性的. (2) $f(x_{\sigma(1)}, x_{\sigma(2)} \cdots x_{\sigma(n)}) = f(x_1 \cdots x_n) (\forall \sigma \in S_n)$. 则称f为n**重对称函数**. 外积.设 $V, W \in A - Mod$

$$V \times V \cdots \times V \xrightarrow{f} W$$
 n
 $\hat{\mathbb{I}}$

(1) f是n-重线性映射。

(2) f是交错的。 $f(x_{\sigma(1)}, x_{\sigma(2)} \cdots x_{\sigma(n)}) = \operatorname{sgn}(\sigma) \cdot f(x_1 \cdot x_n)$. 其中 $\sigma \in S_n(n$ 次对称群)

$$\operatorname{sgn}(\sigma) = \left\{ \begin{array}{ll} 1 & \text{当}\sigma \mathbb{E} \mathbb{H} \mathbb{E} \mathbb{H}, \\ -1 & \text{当}\sigma \mathbb{E} \mathbb{H} \mathbb{E} \mathbb{H}. \end{array} \right.$$

外积: $\phi: V \times V \times \cdots \times V \xrightarrow{\phi} \wedge^n V = V \wedge V \wedge \cdots \wedge V$ 是一n重交错线性映射,若对任意 $V \times V \times \cdots \wedge V$ 是一n $\cdots \times V \xrightarrow{f} W$ 存在唯一的 $g: \wedge^n V \longrightarrow W$ 使得 $f = g \circ \phi$ 则称 $\wedge^n V$ 为V的n次外积。 例1

$$\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right) \left(\begin{array}{c} u \\ v \end{array}\right)$$

$$\therefore \begin{cases} x = u + 2v & dx = du + 2dv \\ y = -u + 3v & dy = -du + 3dv \end{cases}$$

$$S(\Delta) = \iint_{\Delta} dx dy$$

$$= \iint_{\Delta} (du + 2dv) \wedge (-du + 3dv)$$

$$= \iint_{\Delta} (3 + 2) du \wedge dv$$

$$= 5 \iint_{\Delta} du dv = 5$$
另一种方法求面积

$$\begin{vmatrix} 1 & 2 \\ -1 & 3 \end{vmatrix} = |5| = 5$$

$$J = \begin{vmatrix} \frac{\partial(x,y)}{\partial(u,v)} \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -1 & 3 \end{vmatrix} = 5$$

$$J = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \left| \begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array} \right| = 5$$

$$-\iint_{\Delta} dx dy = \iint_{D} J du dv = 5 \iint_{D} du dv = 5.$$

例2.计算区域D, 0 < r < 1, $0 < \theta < 2\pi$ 的面积。

$$D: x^2 + y^2 \le 1 \qquad \qquad \Delta: 0 \le r \le 1, 0 \le \theta \le 2\pi$$
解:进行坐标变换
$$\begin{cases} x = r\cos\theta & 0 \le \theta \le 2\pi \\ y = r\sin\theta & 0 \le r \le 1 \end{cases}$$
,于是

$$S(\Delta) = \iint_{\Delta} dx dy = \iint_{D} d(r \cos \theta) \wedge d(r \sin \theta)$$

$$= \iint_{D} (\cos \theta dr - r \sin \theta d\theta) \wedge (\sin \theta dr + r \cos \theta d\theta)$$

$$= \iint_{D} r \cos \theta^{2} dr d\theta - r \sin^{2} \theta d\theta dr$$

$$= \iint_{D} r (\cos \theta^{2} + \sin^{2} \theta) dr d\theta$$

$$= \iint_{D} r dr d\theta$$

$$= \iint_{D} r dr d\theta$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{1} r dr = 2\pi \cdot \frac{1}{2} = \pi$$

一般地,设
$$D$$
是 \mathbb{R}^n 中区域, x_1, x_2, \cdots, x_n 是 D 上坐标,进行坐标变换 $\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

 $A \in M_n(\mathbb{R}), y_i = a_{i1}x_1 + \dots + a_{in}x_n, (1 \le i \le n)$,得到 \mathbb{R}^n 中区域D',则

$$vol(D') = \int \cdots \int_{D'} dy_1 \wedge \cdots \wedge dy_n$$

$$= \int \cdots \int_{D} d(a_{11}x_1 + \cdots + a_{1n}x_n) \wedge \cdots \wedge d(a_{n1}x_1 + \cdots + a_{nn}x_n)$$

$$= |A| \int \cdots \int_{D} dx_1 \wedge dx_2 \wedge \cdots \wedge dx_n$$

$$|A| = J = \left| \frac{\partial (y_1 \cdots y_n)}{\partial (x_1 \cdots x_n)} \right|.$$

2.12 分式模 49

2.12 分式模

A环(交换环)

S是A的乘法封闭子集 $S \subset A$,

$$S^{-1}A = \left\{ \frac{a}{s} | a \in A, s \in S \right\}.$$

设 $M \in A - Mod$, 分式模为

$$S^{-1}M = \left\{ \frac{x}{s} | x \in M, s \in S' \right\}.$$

 $\frac{x_1}{s_1} = \frac{x_2}{s_2} \Leftrightarrow \exists t \in S$ 使得 $t(s_2x_1 - s_1x_2) = 0$.

有自然映射

$$A \to S^{-1}A$$
$$a \mapsto \frac{a}{1}$$

这样 $S^{-1}A$ 可看成一个A - Mod.

由定义, $\frac{x_1}{s_1} \sim \frac{x_2}{s_2}(x_1, x_2 \in M, s_1, s_2 \in S^{-1} \Leftrightarrow \exists t \in S$ 使得 $t(s_2x_1 - s_1x_2) = 0$ 。 易知"~"是 $S \times M$ 中的一个等价关系. $\frac{x}{s}$ 即为 $(s, x) \in S \times M$ 关于"~"的等价类.

定义 $S^{-1}M$ 中加法为"+": $\frac{x_1}{s_1} + \frac{x_2}{s_2} \stackrel{\triangle}{=} \frac{s_2x_1 + s_1x_2}{s_1s_2}$.

数乘 $(S^{-1}A$ 对 $S^{-1}M$ 的作用):

$$\begin{split} S^{-1}A \times S^{-1}M &\to S^{-1}M \\ \left(\frac{a}{s}, \frac{x}{t}\right) &\mapsto \frac{a}{s} \frac{x}{t} \stackrel{\Delta}{=} \frac{ax}{st} \quad (\forall a \in A, s, t \in S, x \in M) \end{split}$$

 $\therefore S^{-1}M \in S^{-1}A - Mod.$

即上述构造所得 $S^{-1}M$ 是一个 $S^{-1}A$ -模,称为M关于S的**分式模**。

事实: 设A, B是交换环, $f: A \to B$ 是一个环同态

则: $A \times B \to B$ $(a,b) \mapsto a \star b$ (注: 若A,B是非交换环,则 $f(A) \subset C(B)$)

其中 $a \star b \stackrel{\triangle}{=} f(a) \cdot b$. 于是易验证 $(B, +, \star)$ 是一个A-模,此时也称B为一个A-代数. 若B与C为A-代数,则可定义

$$B \bigotimes_A C$$

 $(b_1 \bigotimes c_1)(b_2 \bigotimes c_2) = (b_1b_2) \bigotimes (c_1c_2)$
 $\Rightarrow B \bigotimes_A C$ 也是一个 A 一代数.

Theorem 2.8. 设A是含1交换环,S是A的一个乘法封闭子集, $M \in A - Mod$,则

$$S^{-1}A \otimes_A M \cong S^{-1}M.$$

证明. 首先, 令

$$f: S^{-1}A \times M \to S^{-1}M$$

 $\left(\frac{a}{s}, x\right) \mapsto \frac{ax}{s} \in M.$

2.12 分式模 50

 $:: M \in A - Mod, f(\frac{a}{s}, x_1) \stackrel{\triangle}{=} \frac{ax}{s} (\forall \frac{a}{s} \in S^{-1}A, x \in M).$ 易验证, $f \not \in A - X$ 线性映射,从而由张量积的泛性质: $\exists !$ 的A - 3 线性映射 $\phi = S^{-1}A \otimes_A M \to S^{-1}M$,使得 $f = \phi \circ \eta$,即下图交换

$$S^{-1}A \times M \xrightarrow{\eta} S^{-1}A \otimes_A M$$

$$S^{-1}M$$

$$\phi: S^{-1}A \otimes_A M \to S^{-1}M$$
$$\frac{a}{s} \otimes_A x \mapsto \frac{ax}{s}$$

由于 $\forall s \in S, x \in M, 有\frac{x}{s} = f(\frac{1}{s} \otimes x), 从而 \phi$ 是满射。

下证 ϕ 是一个单射。 为此, 任取 $\alpha \in S^{-1}M$ 有 $\alpha = \sum_{i=1}^n \frac{a_i}{s_i} \otimes x_i$,其中 $a_i \in A, s_i \in S, x_i \in M, (i-1,\cdots,n)$ 。 令 $s=s_1\cdots s_n, s'=\frac{s}{s_i}$,

$$\alpha = \sum_{i=1}^{n} \frac{a_i}{s_i} \otimes x_i = \sum_{i=1}^{n} \frac{a_i s'}{s} \otimes x_i = \sum_{i=1}^{n} \frac{1}{s} \times (a_i s' x_i)$$

$$= \frac{1}{s} \sum_{i=1}^{n} 1 \otimes (a_i s' x_i)$$

$$= \frac{1}{s} \left(1 \otimes \sum_{i=1}^{n} (a_i s' x_i) \right)$$

$$= \frac{1}{s} (1 \otimes x) \qquad \sharp \Phi x = \sum_{i=1}^{n} a_i s' x_i$$

$$= \frac{1}{s} \otimes x.$$

$$\therefore \alpha = \frac{1}{s} \otimes x \in Ker\theta \Leftrightarrow 0 = \phi(\alpha) = \phi(\frac{1}{s} \otimes x) = \frac{x}{s} = 0$$
$$\Leftrightarrow \exists t \in S, 使 \partial t(x \cdot 1 - s \cdot 0) = tx = 0$$

故

$$\alpha = \frac{1}{s} \otimes x = \frac{t}{st} \otimes x$$
$$= \frac{1}{st} \otimes tx = \frac{1}{st} \otimes 0 = 0$$

 $\Rightarrow ker\phi = 0$: ϕ 是单的。从而 ϕ 呈同构。

上述构造所得 $S^{-1}M$ 是一个 $S^{-1}A$ -模,称为M关于S的分式模.

Jordan-Holder定理

Definition 2.36. 设 $M \in A-mod$, 如果有序列

$$M = M_0 \subsetneq M_1 \subsetneq M_2 \cdots \subsetneq M_n = 0(\star)$$

其中 $M_i \leq M(i=0,1,2\cdots n)$,且 M_i/M_{i+1} 均是单-A模 $(i=0,1,\cdots,n-1)$,则称(*)为一个合成列 $(comprosition\ serise)$. M_i/M_{i+1} 称为M的合成因子,其中n标为M的长度(length)记为l(M)=n.

Theorem 2.9. (Jordan-Holder) 设 $M \in A - Mod$, 如果M有合成列,则M的所有h合成列都有相同的长度,且他们的合成因子在相差一个置换下的对应互相同构。

把合成因子 M_i/M_{i+1} 作直和 $M' = \bigoplus_{i=1}^n M_i/M_{i+1}$,当M不是半单时,可由M'去找合成列。

3 域论

3.1 域的代数扩张

域 $F,(F,+,\cdot),u(F)=F^*=F/0$,子域 $F_i\leqslant F$ 其中 $i\in I,\cap F_i\leqslant F$.

证明: 由于 $0, 1 \in F_i, \forall i \in I, \Rightarrow 0, 1 \in \bigcap F_i$.

$$\overrightarrow{\text{mid}} \forall a, b \in F_i, i \in I, \Rightarrow a + b \in F_i, \forall i \in I \Rightarrow a + b \in \bigcap_{i \in I} F_i$$

$$ab \in F_i, \forall i \in I \Rightarrow ab \in \bigcap_{i \in I} F_i$$

$$\bigcap_{i \in I} F_i \leq F \not\in F$$
的子域。

 $\alpha \in F, \mathbb{N} \alpha^{2}, \alpha^{3} \dots \alpha^{n} \in F \ (\forall n \in N), \ a_{0} \cdot 1 + a_{1} \cdot \alpha + 1 + a_{n} \alpha^{n} \in F. \ \diamondsuit f(\alpha) = a_{0} + a_{1} \alpha + \dots + a_{n} \alpha^{n} \in F, \ \mathbb{N} \alpha \in F, f(\alpha) \in F.$

若
$$g(x) \in F[x], g(\alpha) \neq 0$$
,则 $\frac{f(\alpha)}{g(\alpha)} \in F$

F是域,F上的关于x的多项式环F[x], F上的关于x的有理分式域F(x),如 $\mathbb{R}(x)$, $\mathbb{C}(x)$ 一般地,F上关于 $x_1\cdots x_n$ 的多项式环为 $F[x_1\cdots x_n]$;F上关于 $x_1\cdots x_n$ 的有理分式域 $F(x_1\cdots x_n)$.

固定一个域k,任取k的一个子域F,任取 $\alpha \in k$. 问题: k中包含F与 α 的最小子域是? 答案: $F(\alpha) = \{h(\alpha) \mid h \in F(x) \mid h(\alpha) \ \text{有意义} \} = \left\{ \frac{f(\alpha)}{g(\alpha)} \middle| f, g \in F[x] \ \text{且} \ g(\alpha) \neq 0 \right\}$ $F(\alpha) \triangleq \bigcap_{E \in k \atop E \supset FU(\alpha)} E, \ \Re F(\alpha) \rightarrow F$ 添加k中元 α 生成的子域。

同理,

$$F(\alpha_1, \alpha_2) = \{h(\alpha_1, \alpha_2) \mid h \in F(x_1, x_2), h(\alpha_1, \alpha_2) \text{ 有意义 } \}$$
$$= \left\{ \frac{f(\alpha_1, \alpha_2)}{g(\alpha_1, \alpha_2)} \mid f, g \in F[x_1, x_2] \text{ 且 } g(\alpha_1, \alpha_2) \neq 0 \right\}$$

对于 $\alpha_1 \cdots \alpha_n \in k$

$$F(\alpha_1 \cdots \alpha_n) = \left\{ \frac{f(\alpha_1 \cdots \alpha_n)}{g(\alpha_1 \cdots \alpha_n)} \middle| f, g \in F[x_1 \cdots x_n] \text{ } \exists . \text{ } g(\alpha_1 \cdots \alpha_n) \neq 0 \right\}$$

3.1 域的代数扩张 52

设 $F \leq k$ 子域, $S' \subset k$ 子集, $S \neq \emptyset$, F(S)为k中既包含F又包含S'的最小子域,

$$F(S) = \left\{ \frac{f(\alpha_1 \cdots \alpha_n)}{g(\alpha_1 \cdots \alpha_n)} \middle| n \in \mathbb{N}, \alpha_1 \cdots \alpha_n \in S, f, g \in F[\alpha_1 \cdots \alpha_n], g(\alpha_1 \cdots \alpha_n) \neq 0 \right\}$$

每个元素都可只加S中的有限个元即可得到。

固定k域, $F_1, F_2 \le k$ 是k的两个子域。问:k中既包含 F_1 又包含 F_2 的最小子域是?

答: $F_1(F_2) = F_2(F_1) \triangleq F_1 F_2$ 称之为 $F_1 = F_2$ 的合成(域)。

类似地,对于k的子域 F_i ($i=1,\dots,n$), F_i 的合成记为 $F_1\dots F_n$ 代数扩张。

域扩张:设F,k是域,如果 $F \subset k$,则知F为k的子域,k是F的一个扩域,则k可作为F模 $\Rightarrow k$ 可作为F向量空间。

此时, k是F上一个向量空间, $F \times k \longrightarrow k$, $(a,b) \longmapsto ab$

Definition 3.1. 设k/F是一个域扩张($F \subset k$),称 \dim_F^k 为其扩张次数,记之为[k: F] $\triangleq \dim_F^k$

当 $[k:F] = n < +\infty$ 时,称k/F为一个n次扩张。

当 $[k:F]=+\infty$ 时,称k/F为一个无限扩张。

Definition 3.2. 设k/F是一个域扩张, $\alpha \in k$,如果有 $f(x) \in F[x] \mid \{0\}$,使得 $f(\alpha) = 0$,则称 α 在F上代数,也称 α 是一个F代数元。

若这样的非零多项式不存在,则称 α 是F上的数据元。

此时, $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0\in F[x]\mid\{0\}$, $a_0,\cdots,a_n\in F$, $n=\deg f,a_n\neq 0$,且显然n>0。

Definition 3.3. 设k/F是一个域扩张,如果k中任一元素均是下一代数元,则称k/F是一个代数扩张。

Theorem 3.1. 域的有限扩张均是代数扩张,即对于域扩张k/F,如果 $[k:F]<+\infty$,则k/F是一个代数扩张。

证明. 设 $[k:F] = n < +\infty, \forall \alpha \in k$ (只需证 α 是F一代数元即可)

则 $1, \alpha_1, \cdots, \alpha_n$ 是F一线性相关的 ($\because \dim_F^k = n$)

:.存在不全为0的 $a_0 \cdots a_n \in F$,使得

$$a_0 + a_1 \alpha + \dots + a_n \alpha^n = 0$$

 $\diamondsuit f(x) = 1 + a_1 x + \dots + a_n x^n \in F[x] \mid \{0\}, \ \exists f(\alpha) = 0$

 $: \alpha \mathbb{E} F$ 一代微元,

:. k/F是代数扩张。

Theorem 3.2. 设域 $F \subset E \subset k$,如果E/F,k/E都是有限扩张,则k/F是有限扩张,且[k:F] = [k:E][E:F]

证明. 设[E:F]=m,[k:E]=n,则 $\dim_F^F=m$, $\dim_E^k=n$. 取 $\{x_1,\cdots,x_m\}$ 是E上的一组F-基; $\{y_1,\cdots,y_n\}$ 是k上的一组E-基.

下证 $\{x_iy_j\}_{1 \le i \le m \atop 1 \le j \le n}$ 是k的一组F-基.

 $\forall \alpha \in k$,有 $\alpha = \sum_{j=1}^{n} x_j y_j$,其中 $b_j \in E$,而 $\forall b_j \in E$,有 $b_j = \sum_{i=1}^{m} a_{ij} x_i$,其中 $a_{ij} \in F$

$$\Rightarrow \alpha = \sum_{j=1}^{n} b_j y_j = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} x_i \right) y_j$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij} x_i y_j.$$

 $\therefore k$ 中任一元素都可用 $\{x_iy_j\}_{1\leqslant i\leqslant n\atop 1\leqslant j\leqslant n}$ F-线性表出设

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_i y_j = 0, a_{ij} \in F,$$

则

$$\sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} x_i \right) y_j = 0.$$

由于 $\sum_{i=1}^{m} a_{ij}^{\in F} x_i^{\in E} \in E$,由 $\{y_1, \dots, y_n\}$ 线性无关 $\Rightarrow \sum_{i=1}^{m} a_{ij} x_i = 0 (\forall j)$,由于 $a_{ij} \in F$, $\{y = x_1, \dots, x_m\}$ 是E上关于F的一组基 $\Rightarrow a_{ij=0}$,于是 $a_{ij=0}(i=1, \dots, m, 1 \leqslant j \leqslant n)$.

从而
$$\{x_iy_j\}_{1 \le i \le m \atop 1 \le i \le n}$$
是一组 k 的 F -基. 且有 $[k:F] = [k:E][E:F] = mn$.

同理设域扩张 $F = F_0 \subset F_1 \subset \cdots \subset F_n$,则

$$[F_n:F] = [F_n:F_{n-1}][F_{n-1}:F_{n-2}]\cdots [F_1:F]$$

Theorem 3.3. (单代数扩张结构定理) 设k/F是一个域扩张, $\alpha \in k$ 且 α 是F-代数元, 则 $F(\alpha) = F[\alpha]$

且 $[F(\alpha):F]=n<+\infty$ 。特别地, $F(\alpha)/F$ 是代数扩张,其中n为 α 在F上极小多项式的次数。

3.2 代数扩张与单代数扩张结构

域的特征: F域,有整数环到F的自然嵌入

$$\phi: \mathbb{Z} \to F$$
$$1 \mapsto 1_F$$

则 $\ker \phi = \langle n \rangle$, $n \in \mathbb{Z} \geqslant 0$.于是 $Z/\ker \phi \hookrightarrow F$ 子域 $\Rightarrow \ker \phi$ 是 \mathbb{Z} 中极大理想,或0。

域F的特征,若 $\mathrm{ch}(F)=0$,则 $\mathbb{Z}\subset F$,又域有逆元, $\mathbb{Q}\subset F$,即 \mathbb{Q} 是F的最小子域(或称素子域)

若 $\mathrm{ch}(F) = p$ (素数),此时 $F_p = \mathbb{Z}/p\mathbb{Z} \subset F$,即 F_p 为F的素子域。

Theorem 3.4. (域的单代数扩张结构):设k/F是一个域扩张, $\alpha \in k$, 记 $E = F(\alpha)$

- (1) 存在F上唯一一个首 1 不可约多项式 $P_{\alpha}(x) \in F[x]$,使得 $P_{\alpha}(x) = 0$,记 $n = \deg P_{\alpha}(x)$
- (2) $E = F(\alpha) = F[x]$ 且 $\{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$ 是E的一组F-基,特别地, $[F(\alpha): F] = \deg P_{\alpha}(x)$,称上述 $P_{\alpha}(x)$ 为 α 在F上的极小多项式(书上记之为 $P_{\alpha}(x) = I_{rr}(\alpha, F, x)$)

先给出一个引理及证明,利用引理去证明定理 1。

Lemma 3.1. 设 α , k/F如上述定理,记 $I = \{f(x) \in F[x] \mid f(\alpha) = 0\}$,则 $I = \langle P_{\alpha}(x) \rangle$ 是一个素理想,其中 $P_{\alpha}(x) \in F[x]$ 是F上一个首 1 的不可约多项式。

证明. 令

$$\phi: F[x] \longmapsto k$$

$$f(x) \longmapsto f(\alpha)$$

则 ϕ 是环同态,且 $\ker \phi = \{ f \in F[x] \mid f(\alpha) = 0 \} = I$ 于是由环同态基本定理,有

$$F[x]/I \simeq Im(\phi) \leqslant k$$
 子环

因为k是域,故F[x]/I是整环 $\rightarrow I$ 是素理想。

又F[x]是一个PID,由于 α 是F-代数元,故 $\exists f \in F[x] - \{0\}$,使得 $f(\alpha) = 0$,即 $I \neq 0 \Rightarrow I$ 是极大理想。

从而I是由一个不可约多项式生成(把首项系数化为 1,得到的理想也相同)记为 $P_{\alpha}(x)$,即 $I = \langle P_{\alpha}(x) \rangle$

定理的证明

证明. (1) 由上述引理即得

(2) 设 $P_{\alpha}(x)$ 为(1)中所给的 α 在F上的极小多项式, $n=\deg P_{\alpha}(x)$,于是可设 $P_{\alpha}(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0\in F[x]$

下证 $F(x) = F[\alpha]$.

为此,任取 $\beta \in F(\alpha)$,则 $\beta = \frac{f(\alpha)}{g(\alpha)}, f, g \in F[x]$,且 $g(\alpha) \neq 0$. 由极小多项式的性质, $P_{\alpha}(x) \nmid g(x)$. 又 $P_{\alpha}(x)$ 不可约,则 $(P_{\alpha}(x), g(x)) = 1$,又F[x]是PID, ∴ $f(x), v(x) \in F[x]$,使得

$$u(x)P_{\alpha}(x) + v(x)g(x) = 1$$

$$\Rightarrow u(\alpha)P_{\alpha}(\alpha) + v(\alpha)g(\alpha) = 1$$

$$\Rightarrow v(\alpha)g(\alpha) = 1$$

$$\Rightarrow \frac{1}{g(\alpha)} = u(\alpha)$$

$$\Rightarrow \beta = \frac{f(\alpha)}{g(\alpha)} = f(\alpha) \cdot v(\alpha) \in F[\alpha]$$

$$\Rightarrow F(\alpha) \subset F[\alpha]$$

显然 $\Rightarrow F(\alpha) \supset F[\alpha] \Rightarrow F(\alpha) = F[\alpha].$

下证 $\{1, \alpha, \dots, \alpha^{n-1}\}$ 是E的一组F-基.

由带余除法有 $f(x)=g(x)P_{\alpha}(x)+r(x)$,其中 $g(x)\cdot r(x)\in F[x]$,且r(x)=0或deg r(x)<deg $P_{\alpha}(x)=n$

于是

$$\beta = f(\alpha) = gf(\alpha)P_{\alpha}(\alpha) + r(\alpha) = r(\alpha) \in F + F\alpha + \dots + F\alpha^{n-1}$$

即 β 可由 $\{1, \alpha, \dots, \alpha^{n-1}\}$ 的F-线性表述。

下证 $\{1,\alpha,\cdots,\alpha^{n-1}\}$ 线性无关。

设 $b_0 + b_1 \alpha + \dots + b_{n-1} \alpha^{n-1} = 0$,其中 $b_0, \dots, b_{n-1} \in F$. 令 $g(x) = b_0 + b_1 x + \dots + b_{n-1} x^{n-1} \in F[x]$,则 $g(\alpha) = 0$,从而 $P_{\alpha}(x) \mid g(x)$. 由于 $\deg g(x) = n - 1 < \deg P_{\alpha}(x)$

$$\Rightarrow g(x) = 0 \Rightarrow b_0 = b_1 = \dots = b_{n-1} = 0,$$

从而 $\{1, \alpha, \dots, \alpha^{n-1}\}$ 是线性无关的。

综上,
$$\{1,\alpha,\cdots,\alpha^{n-1}\}$$
是 E 的一组 F -基。

Definition 3.4. 设k/F是一个域扩张,如果有 $\alpha_1, \dots, \alpha_n \in k$,使得 $k = F(\alpha_1, \dots, \alpha_n)$,则 称k是F的一个有限生成扩域,或称k/F是一个有限生成扩张。

证明. " \longleftarrow " $k = F(\alpha_1, \dots, \alpha_n) = F[\alpha_1, \dots, \alpha_n]$, 其中 $\alpha_1, \dots, \alpha_n \in k$ 都是F-代数元

$$k = F[\alpha_1, \cdots, \alpha_{n-1}][\alpha_n], F[\alpha_1, \cdots, \alpha_{n-1}] = F[\alpha_1, \cdots, \alpha_{n-2}][\alpha_{n-1}]$$

. . .

$$\Rightarrow [k:F] = [k:F [\alpha_1, \cdots, \alpha_{n-1}]]$$

$$= [F [\alpha_1, \cdots, \alpha_{n-1}] : F [\alpha_1, \cdots, \alpha_{n-2}]] \cdots [F [\alpha_2, \alpha_1] : F [\alpha_1]]$$

$$< +\infty.$$

" \Longrightarrow " 由于 $[k:F]=n<+\infty$,故k作为F的向量空间有一组基. 设 α_1,\cdots,α_n 为k的一组F-基

于是

$$k = F\alpha_1 + F\alpha_2 + \dots + F\alpha_n \subset F\left[\alpha_1, \dots, \alpha_n\right] \subset k(\Leftarrow : \alpha_1, \dots, \alpha_n \in k, F \subset k)$$

即 $k = F[\alpha_1, \dots, \alpha_n]$. 从而k是F上一个有限生成的代数扩张。

Example 3.1. $F = Q(\sqrt[3]{2}) = Q(\sqrt[3]{2}), \quad \alpha = \frac{1}{2 - \sqrt[3]{2} + \sqrt[3]{4}} \in F$,找 $f(x) \in Q[x]$,使得 $\alpha = f(\sqrt[3]{2})$

解:
$$\sqrt[3]{2}$$
在 Q 中的极小多项式为 $P(x)=x^3-2$,不可约的 而令 $g(x)=x^2-x+2$,则 $g\left(\sqrt[3]{2}\right)=\sqrt[3]{4}-\sqrt[3]{2}+2$,即 $\alpha=\frac{1}{g\left(\sqrt[3]{2}\right)}$ 对 $P(x)$ 与 $g(x)$ 作辗转粗除法

$$P(x) = x^{3} - 2 = (x+1) (x^{2} - x + 2) - x - 4$$

$$g(x) = (-x-4)(-x+5) + 22$$

$$\Rightarrow 22 = g(x) + (x+4)(-x+5)$$

$$= g(x) + [(x+1)g(x) - P(x)](-x+5)$$

$$= g(x) + (-x^{2} + 4x + 5) g(x) - P(x)(-x+5)$$

$$= (-x^{2} + 4x + 6) g(x) - P(x)(-x+5)$$

$$\Rightarrow 22 = (-\sqrt[3]{4} + 4\sqrt[3]{2} + 6) g(\sqrt[3]{2}) - P(\sqrt[3]{2})(-\sqrt[3]{2} + 5)$$

$$= (-\sqrt[3]{4} + 4\sqrt[3]{2} + 6) g(\sqrt[3]{2})$$

$$\Rightarrow \alpha = \frac{1}{g(\sqrt[3]{2})} = \frac{1}{22} (-\sqrt[3]{4} + 4\sqrt[3]{2} + 6)$$

$$\therefore 取 f(x) = \frac{1}{22} \left(-x^2 + 4x + 6 \right)$$
即可得到 $\alpha = f \left(\sqrt[3]{2} \right)$

Proposition 3.1. 设有域扩张 $F \subset E \subset k$,则k/F是代数扩张 $\iff E/F, k/E$ 都是代数扩张。

证明. " \Longrightarrow " $\overline{A}k/F$ 是代数扩张,则 $\forall \alpha \in k$, $\alpha \in F$ 上代数,则自然在E上也代数, $\therefore k/E$ 是代数扩张。由于 $\forall \alpha \in E$,自然 $\alpha \in k$,由于k/F是代数扩张,则 $\alpha \in F$ 上的代数元,则E/F是代数扩张。

 \longleftarrow " 任取 $\alpha \in k$,下证 α 是F-代数元。

由于k/E是代数扩张,则 α 是E-代数元,则有

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in E[x] \mid \{0\}$$

使得 $f(\alpha) = 0$ 。

$$E_1 = F[a_0, \cdots, a_n] = F(a_0, \cdots, a_n),$$

则 $f(x) \in E_1[x]$ 且 α 在 E_1 代数。由于 $a_0, \dots, a_n \in E$,又E/F是代数扩张,则 a_0, \dots, a_n 在F上代数。则 $E_1 = F[a_0, \dots, a_n]/F$ 是一个有限扩张.

综上, $[E_1(\alpha):F] = [E_1(\alpha):E_1][E_1:F] < +\infty$. 从而 $E_1(\alpha)/F$ 是代数扩张. ∴ α在F上代数,由α的任一性,⇒ k/F是代数扩张. 3.3 代数闭包(1) 57

3.3 代数闭包(1)

$$\alpha \in k$$
 域扩张
$$| f(x) \in F[x], \ \mbox{ 使得} f(\alpha) = 0, \ \tau | F = \sigma$$
 F

 τ 为 σ 延拓

 σ 为 τ 在F上的限制

$$\overset{\text{id}}{\nabla} f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 \in F[x], \quad 0 = f(\alpha) = \alpha^n + a_{n-1}\alpha^{n-1} + \dots + a_1\alpha + a_0$$

$$0 = \tau(0) = \tau(f(\alpha)) = \tau(\alpha^n + a_{n-1}\alpha^{n-1} + \dots + a_1\alpha + a_0)$$

$$= \tau(\alpha)^n + \tau(a_{n-1})\tau(\alpha)^{n-1} + \dots + \tau(a_1)\tau(\alpha) + \tau(a_0)$$

$$= \tau(\alpha)^n + \sigma(a_{n-1})\tau(\alpha)^{n-1} + \dots + \sigma(a_1)\tau(\alpha) + \sigma(a_0)$$

即

$$\tau(\alpha)^{n} + \sigma(a_{n-1})\tau(\alpha)^{n-1} + \dots + \sigma(a_{1})\tau(\alpha) + \sigma(a_{0}) = 0.$$

令

$$g(x) = x^{n} + \sigma(a_{n-1}) x^{n-1} + \dots + \sigma(a_{1}) x + \sigma(a_{0}),$$

即 $g(\tau(\alpha)) = 0$,即 $\tau(\alpha)$ 是g(x)的一个根. 常记 $g(x) \triangleq f^{\sigma}(x) f^{0}(\tau(\sigma)) = 0, f^{\tau}(\tau(\sigma)) = 0.$

Definition 3.5. 设k/F是一个域扩张,L是一域, $\sigma: F \longrightarrow L$ 与 $\tau: k \longrightarrow L$ 均是域同态,如果 $\tau|F = \sigma$,则称 τ 是 σ 在k上的拓展或 σ 是 τ 在F上的限制。

特别地,当 $F \subset L$,且 σ 是恒等嵌入(即 $\sigma(\alpha) = \alpha \ \forall \ \alpha \in F$)时,如果 $\tau | F = \sigma$,则称 $\tau \in K$ 到L的一个F-嵌入。

设 $K \xrightarrow{\tau} L, K \longrightarrow F, F \xrightarrow{id} L$

 τ 是k到L的一个F-嵌入, $\alpha \in k$ 且是一个F-代数元,则 $\tau(\alpha)$ 也是F-代数元($:: f^{\tau}(x) = f^{\sigma}(x) = f(x)$),从而 α 与 $\tau(\alpha)$ 的极小多项式是相同的,故都是F-代数元)。

Lemma 3.2. 设k/F是一个代数扩张, $\sigma: k \longrightarrow k$ 是一个F-嵌入,则 σ 是k上的一个自同构。

证明.: 由于域嵌入必是单的,故只须让σ是一个满射即可.

为此,任取 $\alpha \in k$ (找到 α 的原像),由k/F是代数扩张,则设 α 在F上的极小多项式 $P_{\alpha}(x) \in F[x]$. 令

$$S = \{ \beta \in k \mid P_{\alpha}(\beta) = 0 \},$$

则 $\alpha \in S$. 又令E = F(S) = F[S], 则k/F是一个有限扩张. 任取 $\beta \in S$, 有 $P_{\alpha}(\beta) = 0$. 于是 $\sigma(P_{\alpha}(\beta)) = 0$, 即 $P_{\alpha}(\sigma(\beta)) = 0$.

$$\Rightarrow \sigma(\beta) \in S \Rightarrow \sigma(S) \subset S$$

 $\sigma(E) \subset E$ (下证事实上 $\sigma(E) = E$,只需证维数相等).

 $\forall r_1, r_2, \dots, r_n \in E$ 的一组F-基,则 $\sigma(r_1), \dots, \sigma(r_n) \in \sigma(E)$.下证它是 $\sigma(E)$ 的一组F-基.

设

$$a_1\sigma(r_1) + \dots + a_n\sigma(r_n) = 0,$$

其中 $a_1, \cdots, a_n \in F$, 则

$$\sigma\left(a_1r_1+\cdots+a_nr_n\right)=0.$$

由于 σ 是单的,从而 $a_1r_1 + \cdots + a_nr_n = 0$.

又: r_1, \dots, r_n 是E的一组F-基 $\Rightarrow a_1 = a_2 = \dots = a_n = 0$ 即 $\sigma(r_1), \dots, \sigma(r_n)$ 线性无关. : $\dim_F \sigma(E) \geqslant n$,又: $\dim_F \sigma(E) \leqslant \dim_F E = n$. 则 $\dim_F \sigma(E) = n$,即 $\sigma(E) = E$. 由 $\alpha \in S \subset E$,所以存在 $\alpha_1 \in E \subset K$ 使得 $\sigma(\alpha_1) = \alpha$,即 α 为 α_1 在 σ 下的原像. 从而 $\sigma: K \longrightarrow K$ 是满的. 故 σ 是同构.

3.4 代数闭包(2)

K/F是一个数域扩张, $F \stackrel{\sigma}{\hookrightarrow} K$ 嵌入,对于多项式F[x]中多项式

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in F[x]$$

定义 $\sigma f(x)$ 为

$$\sigma f(x) \stackrel{\triangle}{=} f^{\sigma}(x) = \sigma(a_n)x^n + \sigma(a_{n-1})x^{n-1} + \dots + \sigma(a_1)x + \sigma(a_0) \in \sigma(F)[x] \subset K[x].$$

设有 $\alpha \in F$ 使得 $f(\alpha) = 0$, 则

$$f^{\sigma}(\sigma(\alpha)) = \sigma(a_n)\sigma(\alpha)^n + \sigma(a_{n-1})\sigma(\alpha)^{n-1} + \dots + \sigma(a_1)\sigma(\alpha) + \sigma(a_0)$$
$$= \sigma(a_n\alpha^n + a_{n-1}\alpha^{n-1} + \dots + a_1\alpha + a_0)$$
$$= a_n\alpha^n + a_{n-1}\alpha^{n-1} + \dots + a_1\alpha + a_0$$
$$= 0.$$

即 $\sigma(\alpha)$ 是 f^{σ} 上的一个根.

如下图

 $F \subset K, \sigma: K \longrightarrow K$ 是一个F*嵌入,且 $\sigma|_F = id.$ 设 $f(x) \in F[x], \alpha \in K$ 。 若 $f(\alpha) = 0$,则由于 $\sigma(f(x)) = f^{\sigma}(x) = f(x)$ (因为 $\sigma|_F = id_F$),故

$$0 = \sigma(0) = \sigma(f(\alpha)) = f^{\sigma}(\alpha) = f(\sigma(\alpha)),$$

即 $f(\sigma(\alpha)) = 0$. 从而 $\sigma(\alpha)$ 也是f(x)的一个根。

$$\sigma(f(\alpha)) = f(\sigma(\alpha))$$
, 考虑

$$\sigma(\frac{f(\alpha)}{g(\alpha)}) = \frac{f^{\sigma}(\sigma(\alpha))}{g^{\sigma}(\sigma(\alpha))},$$

从而得到

$$\sigma(\frac{f(\alpha)}{g(\alpha)}) = \frac{f(\sigma(\alpha))}{g(\sigma(\alpha))}.$$

问: F是一个域, $f(x) \in F[x]$, degf > 0是否有F的扩域E,使得f在E中有根?由于F[x]是PID,则任意一个多项式

$$f(x) = P_1(x)^{e_1} \cdots P_r(x)^{e_r}$$

其中 $P_i(x)$ 在F上不可约. 不妨设f在F上不可约, $f(x) \in F[x]$.令m = < f > < F[x],则m是极大理想

显然 σ 为满射,此时E为域,F直接看作E的子域,从而可把E看作F的扩域,由于 $f(x) \in m$,故在E = F[x]/m中 $\overline{f(x)} = \overline{0}$. 将f(x)展开如下:

$$f(x) = a_n x^n + \dots + a_1 x + a_0 \in F[X],$$

于是我们有:

$$\overline{0} = \overline{f(x)} = \overline{a_n x^n + \dots + a_1 x + a_0}$$
$$= \overline{a_n x^n} + \dots + \overline{a_1 x} + \overline{a_0}$$

即在E中(注意到 $\overline{a_i} = a_i, i = 1 \cdots n, F \hookrightarrow E$)继而得到:

$$\overline{0} = a_n \overline{x}^n + \dots + a_1 \overline{x} + \overline{a_0}$$

此时 $\overline{x} \in E$,即 $f(\overline{x}) = \overline{0}$,也即f在E中有根.

Theorem 3.5. 设F是一个域, $f(x) \in F[X]$,且degf > 0,则存在一个F扩域E,使得f在E中有根.G证明上面已给出G

Corollary 3.1. 设F是一个域, $f_1(x)\cdots f_n(x)\in F[X]$,且 $degf_i>0, i=1\cdots n$,则存在一个F扩域E,使得 $f_1(x)\cdots f_n(x)$ 在E中均有根.

证明. 由上述定理,存在一个F扩域 E_1 ,使得 $f_1(x)$ 在 E_1 中有根,此时

$$f_2(x) \in F[X] \subset E_1[X],$$

又由上述定理,存在 E_1 扩域 E_2 ,使得 $f_2(x)$ 在 E_2 中有根.依次下去,得到 E_{n-1} 扩域 E_n ,使得 $f_n(x)$ 在 E_n 中有根.

即
$$f_1(x)\cdots f_n(x)$$
在 E_n 中有根.

Definition 3.6. 代数封闭域 (algebraically field)

设K是一个域,如果K上任意一个次数大于0的多项式,均在K中有根,则称K是一个代数封闭域.

事实 设K是一个代数封闭域, $f(x) \in K[X]$,且n = degf > 0,则f(x)在K中有且只有n个根.(重根按重数计算)

证明. 由所设, f(x)在K中有根, 取其一为 α_1 , 即 $\alpha_1 \in K$, 满足 $f(\alpha) = 0$, 此时由带余除法可知,

$$(x-\alpha_1)|f(x),$$

即:

$$f(x) = (x - \alpha_1) \cdot g(x),$$

其中 $g(x) \in K[X]$,且次数为n-1.

- (1)若n-1=0,则f(x)在K中有一个根,结论显然成立.
- (2)若n-1>0,此时g(x)在K中有一个根 α_2 ,此时有:

$$g(x) = (x - \alpha_2) \cdot h(x),$$

其中 $h(x) \in K[X]$,且次数为n-2,即:

$$f(x) = (x - \alpha_1)(x - \alpha_2) \cdot h(x)$$

依次做下去,得到:

$$f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n),$$

故f(x)在K中有且只有n个根.(重根按重数计算)

Theorem 3.6. 任一个域均包含于一个代数封闭域.

证明. (Artin)

设k是一个域,令:

$$S_0 = \{ f(x) \in k[X], degf > 0 \},$$

对每个 $f \in S_0$,都给f对应于一个未定元,记之为 X_f ,记

$$S = \{X_f : f \in S_0\}.$$

令A = K[S]是k上关于未定元集S的多项式环.注意到,对每个 $f \in S_0$,都有 $f(X_f) \in A$,令:

$$I = \langle f(X_f) : f \in S_0 \rangle,$$

为A中由所有 $f(X_f)(f \in S_0)$ 生成的理想.

下证: I是A的真理想,即证 $1 \notin I$,

反证, 若 $1 \in I$,就有

$$1 = g_1 f_1(X_{f_1}) + \dots + g_n f_n(X_{f_n}) \tag{1}$$

其中 $g_1 \cdots g_n \in A$, $f_1 \cdots f_n \in S_0$, $g_1 \cdots g_n \in A$ 是 $\{X_f\}_{f \in S_0}$ 中有限个变量的多项式.(虽然A中的变量个数是无限的,但每个多项式 g_i 的变量个数是有限的)

对于 $f_i(X_{f_i}) \in k[X_f], i = 1 \cdots n$,由上述定理可知,存在k的扩域 E_1 ,使得 $f_i(X_{f_i})$ 在 E_1 中均有根,不妨取其根为 $\alpha_i \in E$,(即 $f_i(\alpha_i) = 0$),将 α_i 代入(1)中,得到:

$$1 = g_1(\alpha_1)f_1(\alpha_1) + \dots + g_n(\alpha_n)f_n(\alpha_n) = 0,$$

矛盾!

因此I是A的真理想,故有A的一个极大理想m,使得 $I \subset m$.令 $K_1 = A/m$,则 K_1 是一个域,从而如下图所示:

其中 σ 显然为满射, K_1 可看作是k的一个扩域.任取 $f \in S_0, f(X_f) \in I \subset m$. 从而有 $\overline{f(X_f)} = \overline{0} \in A/m = K_1,$ 即 $f(\overline{X_f}) = \overline{0},$ 也即 $\overline{X_f}$ 是f在 K_1 中的一个根.

对于 K_1 按上述步骤,可构造 K_1 的一个扩域 K_2 ,使得 K_1 中的任一次数 ≥ 0 的多项式,在 K_2 中均有根.依此类推,可得到域的扩张链如下:

$$k \subset K_1 \subset \cdots \subset K_n \subset \cdots$$

其中 K_n 中次数大于0的多项式均在 $K_n - 1$ 中有根.令 $K = \bigcup \sum_{i=1}^{\infty} K_i$,则显然K是一个域,且 $k \subset K$.

下证: K是代数封闭域.

为此任取 $f(x) \in K[X]$,且degf > 0,则由上述构造可知,存在 $n \in Z_{\geq 0}$,使得 $f(x) \in K_n[X]$,于是f(x)在 $K_{n+1}[X]$ ($\subset K$)中与根,故K是代数封闭域.

Theorem 3.7. 设k是一个域,则存在域K,使得K是代数封闭域,且K/k是代数扩张,称K是k的一个代数闭包。

证明. 由前面的定理可知,k包含于一个代数封闭域E中,令 $K = \{\alpha \in E, \alpha$ 是一个k一代数元 $\}$,则K是一个域,且K/k是一个代数扩张.

下证: K是代数封闭域.

为此任取 $f(x) \in K[X]$,且degf > 0,则 $f(x) \in E[X]$,由于E是代数封闭域,故f在E中有根,取其一为 α ,即 $\alpha \in E$, $f(\alpha) = 0$

显然 α 是一个K一代数元,即 $K[\alpha]/K$ 是一个代数扩张,又由于K/k是一个代数扩张,进而可知 $K[\alpha]/k$ 是一个代数扩张.即 α 是一个k一代数元,从而可知 $\alpha \in K$,因此K是代数封闭域,K是k的一个代数闭包(同构意义下)

E是代数封闭域,K/k是一个代数扩张, $\sigma: k \to E$,问是否存在 $\tau; K \to E$,使得 $\tau|_k = \sigma$.正如下图

所示:

简化模型 $K = k(\alpha)$ 是k上的单代数扩张,设 α 在k上的极小多项式为 $P_{\alpha}(x) \in k[X]$,从而有 $P_{\alpha}^{\sigma}(x) \in \sigma(k)[X] \subset E[X]$,且有 $P_{\alpha}^{\tau}(x) \in E[X]$.

由 $P_{\alpha}(\alpha) = 0$ 推出 $0 = \tau(P_{\alpha}(\alpha)) = P_{\alpha}^{\tau}(\tau(\alpha)) = P_{\alpha}^{\sigma}(\tau(\alpha)), \mathbb{P}_{\alpha}(\alpha) \neq P_{\alpha}^{\sigma}$ 在E中的一个根. 反之, $\beta \in E, \exists P_{\alpha}^{\sigma}(\beta) = 0, \diamondsuit$

$$\tau; k(\alpha) \to E, \quad \alpha \longmapsto \beta$$

从而有对应

$$g(\alpha) \longmapsto g^{\sigma}(\tau(\alpha)) = g^{\sigma}(\beta)$$

继而下图成立:

Proposition 3.2. 设*E*是代数封闭域, $k \subset E, \alpha$ 是一个k—代数元, $P_{\alpha}(x) \in k[X]$ 是k上的极小多项式,则 $k(\alpha)$ 到E中的k-嵌入的个数= $P_{\alpha}(x)$ 中全部互异根的个数≤ $degP_{\alpha}(x)$.

Proposition 3.3. 设K/k是一个代数扩张,E是一个代数封闭域, $\sigma; k \to E$ 是一个域嵌入,则 σ 可延拓到K上,即有域嵌入

$$\tau: K \to E$$

使得 $\tau|_k = \sigma$.

3.5 分裂域 正规扩张

回顾: 设k是代数封闭域, $f(x) \in k[X]$,且n = degf > 0,,则f(x)在k中有根, 从而就有n个根.(重根按重数计算)

设F是一个域, $f(x) \in F[X]$,且n = degf > 0,则f(x)在F中至多有n个根.

代数闭包: K/k是一个域扩张 (1) K/k是代数扩张; (2) K是代数封闭的,则称K是k的一个代数闭包.

取E为代数封闭域,且 $k \subset E$,令: $k^{\alpha} = \{\alpha \in E, \alpha \mathbb{Z} - \uparrow k$ 一代数的 $\}$,则 $k^{\alpha} \mathbb{Z} k$ 的一个代数闭包.

Proposition 3.4. 设k是代数封闭域,且K/k是一个代数扩张,则K = k.(代数闭域只有平凡的代数扩张)

证明. 任取 $\alpha \in K$, α 是一个k—代数元, α 在k上的极小多项式为, $P_{\alpha}(x) \in k[X]$,则 $degP_{\alpha}(x) > 0$,于是 $P_{\alpha}(x)$ 在k中完全分解.特别地, $\alpha \in k$

3.5 分裂域 正规扩张

Proposition 3.5. 设*E*为代数封闭域, k是一个域, 则k到E的任何一个嵌入, σ ; $k \to E$ 均可延拓 到k的任何一个代数扩域K上, 即对于任意代数扩张K/k,存在嵌入:

$$\tau; K \to E,$$

使得 $\tau|_k = \sigma$.

证明. 取 $S = \{(F, \tau) : F \neq K/k$ 的中间域 $,\tau; F \rightarrow E, \exists \tau|_k = \sigma \exists x (k, \sigma) \in S, S \neq \phi.$

在S中引入如下关系: 对于 $(F_1, \tau_1), (F_2, \tau_2) \in S$,定义 $(F_1, \tau_1) \leq (F_2, \tau_2)$,如果 $F_1 \subset F_2$,且满足 $\tau_2|_{F_1} = \tau_1$.

易验证," \leq "是S上的一个偏序关系,即 (S,\leq) 是一个非空偏序集. 如下图:

任取S上的一个全序子集 $\{(F_i, \tau_i)\}_{i \in I}$,令 $L = \bigcup_{i \in I} F_i$,则L是K/k的一个中间域,此时我们令:

$$\tau; L \to E \quad \alpha \longmapsto \tau_i(\alpha)$$

其中 $\alpha \in F_i$,对任意的 $\alpha \in L$,则 τ 是一个嵌入.

证明思路如下图:

该嵌入是良好定义的.如果 $\alpha \in F_i$,且 $\alpha \in F_j$,则不妨设 $F_i \subset F_j$,此时 $\tau_i = \tau_j|_{F_i}$,从而有 $\tau(\alpha) = \tau_i(\alpha) = \tau_j|_{F_i}(\alpha) = \tau_j(\alpha)$.且对任意的 $\alpha \in K$,有 $\alpha \in F_i$ (对于任意的 $i \in I$)进而有

$$\tau(\alpha) = \tau_i(\alpha) = \sigma(\alpha),$$

即 $\tau|_k = \sigma$.可以推出 $(L, \tau) \in S$,且显然有 $\tau|_{F_i} = \tau_i$,即 $(F_i, \tau_i) \le (L, \tau)(i \in I)$ 成立.也即 (L, τ) 是 $\{(F_i, \tau_i)\}_{i \in I}$ 在S中的一个上界.

因此由Zorn引理可知,S中有极大元,设其中的一个极大元为 (K_0, τ_0) .

下证: $K = K_0$.

假若不然,则有 $\alpha \in K$, $\alpha \notin K_0$,由所设 α 是一个k—代数元,从而 α 也是一个 K_0 —代数元,故 $K_0(\alpha)/K_0$ 是一个单代数扩张.

由前面的定理得 τ_0 可延拓到 $K_0(\alpha)$ 上,即有嵌入

$$\tau': K_0(\alpha) \to E$$
,

使得 $\tau'|_{K_0=\tau_0}$.显然有 $\tau'|_k=\tau_0|_k=\sigma$,故 $(K_0(\alpha),\tau')\in S$.但 $(K_0,\tau_0)\leq (K_0(\alpha),\tau')$,但 $K_0\neq K_0(\alpha)$ 与 K_0 的极大性矛盾.

因此
$$K = K_0$$
.

取E为代数封闭域,且 $k \subset E$,令 $k^a = \{\alpha \in E, \alpha \in E,$

则 σ 可延拓到 k^a 上,即有域嵌入 $\tau: k^a \to k'^a$,使得 $\tau|_k = \sigma$.即有:

Corollary 3.2. 任一个域k的代数闭包在k—同构下是唯一的,即对于k的两个的代数闭包 K_1 与 K_2 ,都有域同构:

$$\sigma: K_1 \to K_2$$
,

使得 $\sigma|_k = id.$ (即 K_1 与 K_2 是k—同构的)

Proposition 3.6. 域F的任一个有限乘法子群都是循环的.

证明. 设 $G \subset F^*$ 是一个有限群,且|G| > 1,由有限Able群结构定理可知,只需证G是一个P群的情形. (P是素数) 此时记 $|G| = p^n (n \in Z_{\geq 1})$,令 $S = \{m \in Z_{\geq 0} :$ 存在 $a \in G$,使得 $\sigma(a) = p^m\}$,则 $S \neq \phi$,且对于任意 $m \in S$,有 $m \leq n$.由S是一个有限集合,故S中有最大整数,记之为r,且有 $b \in G$,使得 $\sigma(b) = p^r$,显然 $r \leq n$.

于是对任意的 $\alpha \in G$,记 $\circ(\alpha) = p^s, s \in Z_{\geq 0}$,则 $s \leq r$.于是就有 $\alpha^{p^r} = (\alpha^{p^s})^{p^{r-s}} = 1^{p^{r-s}} = 1$.因此,G中元素均是 $X^{p^r} - 1$ 的根.

因为 $G \subset F^*$,而 $X^{p^r} - 1$ 在F中至多有 p^r 个根,可以推出 $|G| \leq p^r$,即 $p^n \leq p^r \leq p^n$,从而得到r = n.进而得到 $\circ(b) = p^n$.

故
$$G$$
 =< b >. □

分裂域 正规扩张

设k是一个域, $f(x) \in k[X]$,且n = degf > 0,取 k^a 为k的一个代数闭包,则f(x)在 k^a 中可完全分解为:

$$f(x) = a(x - \alpha_1) + \dots + (x - \alpha_n)$$

 $\diamondsuit K = k(\alpha_1 \cdots \alpha_n) \subset k^a.$

事实:上述K是 k^a/k 中使得f(x)在其中可完全分解的最小中间域.若 $\alpha_1 \cdots \alpha_n \in K'$,则可以得到 $K = k(\alpha_1 \cdots \alpha_n) \subset K'$,称K为f在k上的一个分裂域.我们有:

$$K = k(\alpha_1 \cdots \alpha_n) \to K^{\sigma} = k\{\sigma(\alpha_1) \cdots \sigma(\alpha_n)\}$$

从而我们有对应:

$$\{\alpha_1 \cdots \alpha_n\} \longmapsto \{\sigma(\alpha_1) \cdots \sigma(\alpha_n)\}$$

从而我们有下图:

$$K = k(\alpha_1 \cdots \alpha_n) \xrightarrow{\sigma} K^{\sigma} = k\{\sigma(\alpha_1) \cdots \sigma(\alpha_n)\}$$

分裂域是在k--同构意义下是唯一的.

对于两个多项式的分裂域, $f_1, f_2 \in k(x)$, f_1 的根为 $\alpha_1 \cdots \alpha_m$; f_2 的根为 $\beta_1 \cdots \beta_n$; 我们得到 $E_1 = k(\alpha_1 \cdots \alpha_m)$, $E_2 = k(\beta_1 \cdots \beta_n)$,则有:

$$E = E_1 E_2 = E_1(E_2) = E_2(E_1)$$
$$= k(\alpha_1 \cdots \alpha_m) k(\beta_1 \cdots \beta_n)$$
$$= k(\alpha_1 \cdots \alpha_m \beta_1 \cdots \beta_n)$$

Definition 3.7. (分裂域) 设K是一个域, $\{f_i\}_{i\in I}$ 是k上的一簇多项式,取定 k^a 为k的一个代数闭包, $\{f_i\}_{i\in I}$

在 k^a/k 中的分裂域是指 $K:k \subset K \subset k^a$,且满足:

- (1) 每个 f_1 , $(i = 1 \cdots n)$ 在K中完全分解;
- (2) 对 k^a/k 的任一个中间域E,如果 k^a/k 在E中完全分解,有 $K \subset E$;

具体地,令 $S = \{\alpha \in k^a :$ 存在 $i \in I$,使得 $f_i(\alpha) = 0$,则有K = k(S).注意到:分裂域是在k—同构意义下是唯一的.

考虑不可约多项式,设k是一个域, $f(x) \in k[X]$,且f在k上不可约,从而有:

$$f(x) = a(x - \alpha_1) + \dots + (x - \alpha_n)$$

 $\alpha_1 \cdots \alpha_n \in k^a$,令 $S = \{\alpha_1 \cdots \alpha_n\}$,我们有映射:

$$\sigma: k(\alpha) \to k^a \quad \alpha \longmapsto \sigma(\alpha),$$

由 $f(\sigma(\alpha)) = 0$,可知: $\sigma(\alpha) \in \{\alpha_1 \cdots \alpha_n\}$ 我们有下图:

进而我们考虑下图:

取 $K = k(\alpha_1 \cdots \alpha_n)$ 为f在 k^a/k 中的分裂域,对于映射

$$\tau: K \to \tau(K) \quad \tau|_k = id,$$

我们有: $f^{\tau}(x) = f(x)$,推出 $0 = \tau(0) = \tau(f(\alpha_i)) = f(\tau(\alpha_i))$,从而推出 $\tau(\alpha_i) \in S$,进而有 $\tau(K) \subset k(S) = K$,即 $\tau(K) = K$.

又由于K/k是代数扩张,故 τ 是满的,从而 $\tau \in Aut_k(K)$ 为K到自身的一个k-嵌入. 即有下图:

$$\tau: K \to K \quad \tau|_k = id.$$

Definition 3.8. (正规扩张)设K/k是一个域的代数扩张, k^a 为k的一个代数闭包,如果K到自身的k-自同构,则称K/k是一个正规扩张.

Definition 3.9. 设 k是一个域, $\alpha\beta \in k^a$.如果在k上的不可约多项式, $P(x) \in k[X]$,使得 $P(\alpha) = P(\beta) = 0$.则称 α 与 β 是k-共轭的.(极小多项式相同,即多项式的根之间为k-共轭元.)

Definition 3.10. $\alpha \sim \beta \in k^a \iff$ 极小多项式相同, (固定一个代数闭包的情形下,给一个 $\alpha \in k$,则就对应于一个极小多项式.)则"~"是一个等价关系.

$$k^a/\sim=\{k-共轭类\}$$

3.6 正规扩张 可分扩张

Theorem 3.8. 设K/k是一个域的代数扩张, k^a 是k的包含K一个代数闭包,则下列陈述等价:

- (1) K到 k^a 的任一个k-嵌入均是K的一个k-自同构, 即 $\sigma(K) = K$.
- (2) k[X]中的任一不可约多项式f如果在K中有一个根,则f在K中完全分解. (即K包含 $\alpha \in k^{\alpha}$ 的同时也包含 α 的在 k^{α} 中的全部共轭元.)
 - (3) K是k上一簇多项式在k上的分裂域.

证明. $(1) \Longrightarrow (2)$ 证明思路如下图:

设 $f(x) \in k[X]$ 为k上的一个不可约多项式,且有 $\alpha \in K$.使得 $f(\alpha) = 0$

下证: f(x)在 k^a 中的任一个根 β 都必在K中.

事实上,对于上述的 $\beta \in k^a$,令

$$\sigma: k(\alpha) \to k^a \quad \alpha \longmapsto \beta,$$

则 $\sigma: k(\alpha) \to k^a$ 是一个k-嵌入.

由于 $K/k(\alpha)$ 是代数的,故 σ 可延拓为

$$\tau: K \to k^a$$

 $\mathbb{P}\tau|_{k(\alpha)} = \sigma.$

显然 τ 也是一个k-嵌入,由所设, $\tau(K)=K$.特别地, $\beta=\sigma(\alpha)=\tau(\alpha)\in K$,故K包含 α 的全部共轭元.

- $(2) \Longrightarrow (3)$ 取 $S = \{P(x) \in k[X], P(x)$ 是某个 $\alpha \in K$ 在k上的不可约多项式 $\}$,则K是S在k上的分裂域.
 - $(3) \Longrightarrow (1)$ 设K是多项式簇 $\{f_i\}_{i \in I} \subset k[X]$ 在k上的分裂域.(其中 $degf_i > 0$) 任取K到 k^a 的任一个k-嵌入如下:

下证 $\sigma(K) = K$.

下面只需证: $\sigma(K) \subset K$.

为此任取 $\alpha \in K$,由所设,有 $f_i \subset k[X]$,使得 $f_i(\alpha) = 0$,从而有 $\sigma(f_i(\alpha)) = 0$,即 $f_i(\sigma(\alpha)) = 0 \Rightarrow \sigma(\alpha) \in K \Rightarrow \sigma(\alpha) \subset K$.故 $\sigma(K) = K$, $\sigma \not\in K \to K$ 的自同构.

Theorem 3.9. (1) 设K/k是一个域的正规扩张, 对k的任一个扩域F, 则FK/K也是正规的;

(2) 设 $k \subset E \subset K$,如果K/k是正规的,则K/E也是正规的;

(3) 设 K_1, K_2 均是k的代数扩张,且 $K_1, K_2 \subset L$,如果 $K_1/k, K_2/k$ 均是正规的,则 $K_1K_2/k, K_1 \cap K_2/k$ 均是正规的.

可分扩张 E/F是一个代数扩张,L,L'是F的两个代数封闭域,则有下图:

设 $\sigma: F \to L$ 是一个嵌入, $\tau: F \to L'$,令: $S(\sigma) = \{\sigma^*: E \to L$ 嵌入,且 $\sigma^*|_F = \sigma\}$, $S(\tau) = \{\tau^*: E \to L'$ 嵌入,且 $\tau^*|_F = \tau\}$.

事实:

$$S(\sigma) \longleftrightarrow S(\tau) \quad \sigma^* \longmapsto \tau^*$$

不妨令 $\tau^* = \lambda \circ \sigma^*$,则有下图:

其中 λ 是 τ ο σ ⁻¹ : σ (F) \rightarrow L'到L'上的延拓.

任取 $\alpha \in F, \tau^*(\alpha) = \lambda \sigma^*(\alpha) = \lambda \sigma(\alpha) = \tau \circ \sigma^{-1} \sigma(\alpha) = \tau(\alpha),$ 故 $\tau^*|_F = \tau$.

Definition 3.11. 设E/F是一个代数扩张, F^a 是F的一个代数闭包,任取一个F-嵌入 $\sigma: F \to F^a$,令 $S(\sigma) = {\sigma^*: E \to F^a$ 嵌入,且 $\sigma^*|_F = \sigma}$.定义E/F的可分次数为 $[E:F]_s \triangleq \# S(\sigma)$.特别地 $\sigma = id$

$$[E:F]_s = \#S(id)$$

= $\#\{\sigma^*: E \to F^*, \sigma^*|_F = id\}$

即为# ${E到F*的全部F-嵌入}.$

例如: $E = F(\alpha)$ 为一个单代数扩张, $\alpha \in F^a$,则 $[E:F]_s = \alpha$ 在F上的极小多项式全部互异根(根在 F^a 中)的个数.即有:

Theorem 3.10. 设有域扩张 $k \subset F \subset E$,则有 $[E:k]_s = [E:F]_s[F:k]_s$.

证明. 令 $S_E = \{\tau : E \to k^a$ 嵌入,且 $\tau|_k = id\}, S_F = \{\sigma : F \to k^a$ 嵌入,且 $\sigma|_k = id\},$ 即有:

设 $S_F = \{\sigma_1 \cdots \sigma_m\}$,对每一个 $\sigma_i \in S_F$,记 $S_{E/F}(\sigma_i) = \{\tau : E \to k^a$ 嵌入,且 $\tau|_F = \sigma_i\}$,则 $\#S_{E/F}(\sigma_i) = [E : F]_s$,且有 $S_E \subset \{\tau : E \to k^a$ 嵌入,且 $\tau|_F = \sigma_i$,对每个 $i \in \{1 \cdots n\}\} \stackrel{\triangle}{=} T$

任取 $\tau \in S_E$,则 $\tau|_F$ 是F 到 k^a 的一个k-嵌入, $\tau|_F = \sigma_i$,对某个 $i \in \{1 \cdots n\}$,从而得到 $S_E \subset T$,因此 $S_E = T$.

故我们得到:
$$[E:k]_s = \#S_E = \#T = m\#S_{E/F}(\sigma_i) = [E:F]_s[F:k]_s$$
.

Theorem 3.11. 设K/k是一个域的有限扩张,则 $[E:k]_s \leq [E:k]$.(即可分次数 \leq 扩张次数)

证明. 由所设, $K = k(\alpha_1 \cdots \alpha_n)$,其中 $\alpha_1 \cdots \alpha_n \in K$.于是有:

$$k \subset k(\alpha_1) \subset k(\alpha_1, \alpha_2) \subset \cdots \subset k(\alpha_1 \cdots \alpha_n) = K$$
,

其中 $k(\alpha_1 \cdots \alpha_i) = k(\alpha_1 \cdots \alpha_{i-1})(\alpha_i)$.

由前面的结果有:

$$[k(\alpha_1 \cdots \alpha_i) : k(\alpha_1 \cdots \alpha_{i-1})]_s = [k(\alpha_1 \cdots \alpha_{i-1})(\alpha_i) : k(\alpha_1 \cdots \alpha_{i-1})]_s$$

$$\leq [k(\alpha_1 \cdots \alpha_i) : k(\alpha_1 \cdots \alpha_{i-1})].$$

于是我们得到:

$$[K:k]_s = [K:k(\alpha_1 \cdots \alpha_{n-1})]_s \cdots [k(\alpha_1):k]_s$$

$$\leq [K:k(\alpha_1 \cdots \alpha_{n-1})] \cdots [k(\alpha_1):k]$$

$$= [K:k].$$

Proposition 3.7. 设 $K = k(\alpha)$ 是k的单代数扩张,则K/k是可分的 $\iff \alpha$ 是可分代数元.

证明. $[K:k]_s = [k(\alpha):k]_s = P_{\alpha}(x)$ 在 k^a 中互异根的个数.

故: K/k可分 \iff $[K:k]_s = [K:k] = deg P_{\alpha}(x) = P_{\alpha}(x)$ 在 k^a 中互异根的个数 \iff $P_{\alpha}(x)$ 在 k^a 中 无重根 \iff $P_{\alpha}(x)$ 为可分的 \iff α 为k上的可分代数元.

Definition 3.12. 设k是一个域, k_a 是k的一个代数闭包, $\alpha \in k^a$,称 $\alpha \to k$ 上的可分代数元.如果 $\alpha \to k$ 上的极小多项式是可分的.

注: 多项式可分⇔它无重根;

Proposition 3.8. 域的代数扩张K/k是可分的 \iff K中的每个元素均是k上的可分代数元.特别地,对于有限扩张K/k有: K/k可分 \iff $K=k(\alpha_1\cdots\alpha_n),\alpha_1\cdots\alpha_n\in K$ 为k上的可分代数元.

正规闭包

回忆一下正规扩张, K/k, $K = k(\alpha)$, $\alpha \in K$ 单代数扩张, α 在k上的极小多项式为:

$$P_{\alpha}(x) = (x - \alpha_1) \cdots (x - \alpha_n), \quad \alpha_1 = \alpha \in K$$

记E为 $P_{\alpha}(x)$ 在k上的分裂域($\subset k^a$),则E是 k^a 中包含 $k(\alpha)$ 的最小正规扩域,称E是 $k(\alpha)/k$ 的一个正规闭包.

由于K/k是正规扩张,从而在K上完全分裂, $\tau(\alpha) \in E, E/k$ 正规, $\tau|_K = \sigma \Rightarrow \tau(\alpha) = \sigma(\alpha) = \alpha_i$,对某个 $i \in \{1 \cdots n\}$,即有下图:

一般地,任一个代数扩张K/k在 k^a 中均有一个正规闭包k',即:(1)k'/k是正规的($k' \subset k^a$);(2)设 $E \subset k^a$, E/k是正规的,且 $E \supset K$,则 $E \supset K'$.

Theorem 3.12. 本原元 (primtive element)

设K/k是域的有限扩张,则:K是k的单代数扩张 $\iff K/k$ 只有有限个中间域.特别地,域的有限可分扩张必是单代数扩张,此时 $K=k(\alpha),\alpha$ 称为K/k的一个本原元.

证明. (1)" \Leftarrow "(充分性)若k是有限域,则由K/k是有限扩张 \Rightarrow K是有限域,则K*是循环群,记K* =< α >, $\alpha \in K$, $\alpha \neq \{0\}$,从而推出 $K = k(\alpha)$.则K为单扩张.

若k是无限域,设K/k只有有限多个中间域,由于K/k是有限扩张,不妨 $K=k(\alpha,\beta)$.对任意的 $c\in k^*$,有中间域:

$$E_c = k(\alpha + c\beta),$$

由所设K/k只有有限个中间域,但 $c \in k^*$ 是无限的,从而有 $c_1, c_2 \in k^*, c_1 \neq c_2$,使得 $k(\alpha + c_1\beta) = k(\alpha + c_2\beta) \stackrel{\triangle}{=} E$.于是 $\alpha + c_1\beta$, $\alpha + c_2\beta \in E$,从而推出 $(c_1 - c_2)\beta \in E$.又由于 $c_1 \neq c_2 \Rightarrow c_1 - c_2 \neq 0 \Rightarrow \frac{1}{(c_1 - c_2)}(c_1 - c_2)\beta \in E$.即 $\beta \in E$,进而我们有 $\alpha = (\alpha + c_1\beta) - c_1\beta \in E$.即

$$K = k(\alpha, \beta) \subset E \subset K$$
,

故 $K = E = k(\alpha + c\beta)$.

" ⇒ "(必要性)设 $K = k(\alpha)$ 是k的一个单代数扩张,设 $P_{\alpha}(x)$ 为 α 在k上的极小多项式,记 $S = \{$ 中间域 $E : k \subset E \subset K \}$,对每个 $E \in S$, α 也是E上的代数元,记 α 在E上的极小多项式为 $P_{\alpha,E}(x)$,则显然有 $P_{\alpha,E}(x)$ | $P_{\alpha}(x)$,(因为 $P_{\alpha}(x)$)也是E上的多项式,且 $P_{\alpha}(\alpha) = 0$.)

记 $T = \{P_{\alpha,E}(x) : E \in S\}, 则\#T < +\infty.$ 令:

$$\phi: S \to T \quad E \mapsto P_{\alpha,E}(x).$$

下证: ϕ 是一个单射.

对于 $P_{\alpha,E}(x) \in T$, $(E \in S)$,令F为k上添加 $P_{\alpha,E}(x)$ 的全部系数所得的扩域,则 $k \subset F \subset E$.此时 $P_{\alpha,E}(x) \in F(X)$,且为F上不可约多项式.

又显然 $K = k(\alpha) = E(\alpha) = F(\alpha) \Rightarrow [K:E] = degP_{\alpha,E}(x); [K:F] = degP_{\alpha,E}(x),$ 从而推出[K:E] = [K:F],又由于 $F \subset E$,即可得到E = F.由此可知 ϕ 是一个单射.

故有 $\#S \le \#T < +\infty$,即S是一个有限集,从而K/k中的中间域只有有限个.

(2) 下证: 域的有限可分扩张必是单代数扩张, $\#k = +\infty$.

证明. 证法一(书上),设[K:k]=n,不妨设 $K=k(\alpha,\beta),(\alpha,\beta\in K)$,由所设 $[K:k]_s=n$,取k的代数闭包 k^a ,使得 $k^a\subset K$.此时K到 k^a 共有n个不同的k-嵌入 $\sigma_1\cdots\sigma_n$.即:

令 $f(x) = \prod_{1 \le i \ne j \le n} \{(\sigma_i \alpha + x \sigma_i \beta) - (\sigma_j \alpha + x \sigma_j \beta)\}, 则 f(x) \ne 0.$ (不是零多项式)

假若不然,则有上述 $i, j, i \neq j$,使得 $\sigma_i \alpha + x \sigma_i \beta = \sigma_j \alpha + x \sigma_j \beta$,即满足 $\sigma_i \alpha = \sigma_j \alpha, \sigma_i \beta = \sigma_j \beta$,从而对于 $\sigma_i, \sigma_i : K \to k^a$,我们得到: $\sigma_i = \sigma_j$,与所设矛盾,故 $f(x) \neq 0$.

设f(x)在 k^a 中至多有有限个根(零点),故在k中也只有有限个零点.但 $\#k = +\infty$.,从而存在 $c \in k^*$,使得 $f(c) \neq 0$.于是 $(\sigma_i \alpha + c \sigma_i \beta) - (\sigma_j \alpha + c \sigma_j \beta) \neq 0$,也即 $\sigma_i \alpha + c \sigma_i \beta \neq \sigma_j \alpha + c \sigma_j \beta$,($i \neq j$).注意到 $\sigma_i \alpha + c \sigma_i \beta = \sigma_i (\alpha + c \beta)$,($i = 1 \cdots n$),而 $\sigma_i \ge K$ 到 k^a 的k-嵌入,故 $\sigma_i (\alpha + c \beta)$ 均是 $\alpha + c \beta$ 的k-共轭元,从而推出 $[k(\alpha + c \beta) : k]_s \ge n$.

另一方面, $k(\alpha + c\beta) \subset K$,即有:

$$n = [K : k] = [K; k]_s \ge [k(\alpha + c\beta) : k] = [k(\alpha + c\beta) : k]_s \ge n,$$

故有,
$$K = k(\alpha + c\beta)$$
.

证明, 证法二(构造法)把满足上面条件的c找出

不妨设 $K = k(\alpha, \beta)$,取定k的一个代数闭包 k^a ,使得 $k^a \subset K$,分别设 α, β 在 k^a 中的全部共轭元为 $\alpha = \alpha_1 \cdots \alpha_m, \beta = \beta_1 \cdots \beta_n$,令

$$S = \{\frac{\alpha_i - \alpha_j}{\beta_l - \beta_k} | 1 \leq i \neq j \leq m, 1 \leq l \neq k \leq n \},$$

显然S是一个有限集.

由所设,k是一个无限域,故有 $c \in k^*$,使得 $c \notin S$,又设 $f(x), g(x) \in k[X]$ 是 α, β 在k上的极小多项式,记 $r = \alpha + c\beta = \alpha_1 + c\beta_1 \in K$,令h(x) = f(r - cx),则 $h(x) \in k[r][X] \subset K[X]$,则 $h(\beta_1) = f(r - c\beta_1) = f(\alpha_1) = 0$,可以推出 β_1 是h(x)的一个根,又 β_1 也是g(x)的一个根,而 $h(\beta_i) \neq 0$, $(j = k^*)$

3.7 有限域 72

 $2\cdots n$),若不然, $h(\beta_j)=0 \Rightarrow f(r-c\beta_j)=0$,而f(x)的根为 $\alpha_1\cdots\alpha_m$,进而有 $r-c\beta_j=\alpha_i$,对某个 $i=1\cdots m$,即

$$\alpha_1 + c\beta_1 - c\beta_j = \alpha_i \Rightarrow \alpha_1 - \alpha_i = c(\beta_j - \beta_1) \Rightarrow c = \frac{\alpha_1 - \alpha_i}{\beta_j - \beta_1} \Rightarrow c \in S,$$

矛盾!

由于 $g(x),h(x)\in k[r][X]$,且由上述讨论可知,g(x),h(x)的最大公因式为 $(x-\beta_1)$,即 $(g(x),h(x))=x-\beta_1$,由辗转相除法可知: $x-\beta_1\in k[r][X]\Rightarrow \beta=\beta_1\in k[r]$,又由于 $r=\alpha+c\beta\Rightarrow \alpha=r-c\beta\in k[r]\Rightarrow k(\alpha,\beta)=K\subset k[r]\subset K$,故

$$K = k(r) = k(\alpha, \beta).$$

Example 3.2. $K = Q(\sqrt{-1}, \sqrt{-2}) = Q(r), \text{ x}.$

解:由于 $K=Q(\sqrt{-1})(\sqrt{-2})$,而 $\sqrt{-1}$ 的Q-共轭元为 $\pm\sqrt{-1}$, $\sqrt{2}$ 的Q-共轭元为 $\pm\sqrt{2}$, $[Q(\sqrt{-1}):Q]=2$, $[Q(\sqrt{-1})(\sqrt{-2}):Q(\sqrt{-1})]=2$.(这是由于 $\sqrt{-2}\notin Q(\sqrt{-1})$,如若不然 $\sqrt{-2}=a+b\sqrt{-1}$, $a,b\in Q\Rightarrow 2=a^2-b^2+2ab\sqrt{-1}$.左边属于Q,右边属于Q,右边属于Q,从而矛盾,故 $\sqrt{-2}\notin Q(\sqrt{-1})$, \Rightarrow $[Q(\sqrt{-1})(\sqrt{-2}):Q(\sqrt{-1})]=2$.)故有[K:Q]=4.

K/Q是有限可分,故有本原元,从而有:

$$S = \{ \pm \frac{\sqrt{-1} - (-\sqrt{-1})}{\sqrt{2} - (-\sqrt{2})} \} = \{ \pm \frac{\sqrt{-1}}{\sqrt{2}} \}.$$

取c = 1即满足条件.即有:

$$Q(\sqrt{-1})(\sqrt{-2}) = Q(\sqrt{-1} + \sqrt{2}).$$

3.7 有限域

设k是一个有限域,此时k的特征char(k) = p,(p为素数)即为p元域, $F_p \subset k$.换言之 F_p 是k的素子域,显然, k/F_p 是有限扩张(即有限域的有限扩张).

不妨设 $[k; F_p] = n, \Rightarrow k = |F_p|^n = p^n,$ 记 $k = F_q, F_q = p^n.$ 取k的一个代数闭包 $k^a,$ 则 $G = F_q^*$ 是一个q-1阶循环群,可以推出存在 $\alpha \in F_q^*$,有 $\alpha^{q-1} = 1 \Rightarrow \alpha^q = \alpha$ (任意 $\alpha \in F_q$).即 α 是多项式 $\alpha^{q-1} = 1$ 在 $\alpha^q = \alpha$ 0.

 $k = F_q \subset \{x^q - x \in k^a + n \in k\}$. $\Rightarrow q = \#k \leq \#\{x^q - x \in k^a + n \in k\}$ $\leq q$,从而有 $k = \{x^q - x \in k^a + n \in k\}$,且 $x^q - x \in k$ 中是可分的,由于 $f(x) = x^q - x \Rightarrow f'(x) = qx^{q-1} - 1 = -1$, (f(x), f'(x)) = 1.

设K,k均为有限域,且 $k \subset K$,记char(k) = p,(p为素数),由前述讨论可知: $\#k = p^m$, $\#K = p^n$, $(m,n \in Z_{\geq 1})$.记 $[K;k] = r \in Z_{\geq 1}$,则 $p^n = |K| = |k|^r = (p^m)^r \Rightarrow n = mr \Rightarrow m|n$.即若有限域有包含关系,其指数定有整除关系.

3.7 有限域 73

事实上,设K, k均为有限域,且 $k \subset K$,则K/k是一个可分的单代数扩张.由于 $|k| = p^m$, $|K| = p^n$. $\Rightarrow k = \{x^{p^m} - x \in k^a \text{ prodefine}\} = x^{p^m} - x \in F_q \text{ Lind Delta Mathematical Mathematica$

设char(k) = p,(p为素数).令:

$$\phi: k \to k \quad \alpha \mapsto \alpha^p$$

则 $\phi \in Aut_{F_p}(k)$ 是k到自身的一个自同构.

由于任意 $\alpha, \beta \in k, 有$:

$$\phi(\alpha + \beta) = (\alpha + \beta)^p = \alpha^p + \beta^p = \phi(\alpha) + \phi(\beta),$$

且满足:

$$\phi(\alpha\beta) = (\alpha\beta)^p = \alpha^p \beta^p = \phi(\alpha)\phi(\beta),$$

 ϕ 是一个域同态,又由于其是 $x^{p^m} - x$ 在 F_p 上的分裂域, ϕ 是自同构,即 $\phi \in Aut(k)$.

事实: ϕ 是k到自身的 F_p -自同构,任意的 $\alpha \in F_p \Rightarrow \phi(\alpha) = \alpha^p = \alpha$.易知 $Aut_{F_p}(k)$ 关于映射的合成是一个群.

首先有 $\#Aut_{F_p}(k)=[k:F_p]=m, \phi\in Aut_{F_p}(k)=\{\sigma:\sigma \in Aut_{F_p}(k)\}$ 的 $\alpha\in k$,

$$\phi(\alpha) = \alpha^p,$$

$$\phi^2(\alpha) = \phi(\phi(\alpha)) = \phi(\alpha^p) = \phi(\alpha)^p = \alpha^{p^2},$$

即有:

$$\phi^r(\alpha) = \alpha^{p^r},$$

特别地,

$$\phi^m(\alpha) = \alpha^{p^m} = \alpha, (\alpha \in k)$$

又记 $\circ(\phi) = r$,则 $\phi^r = id$.于是任意的 $\alpha \in k$,有 $\phi^r = \alpha = id(\alpha) \Rightarrow \alpha^{p^r} = \alpha \Rightarrow k \subset \{x^{p^r} - x \in k^a \text{ proper parts}\}$.

进而有 $p^m \le p^r \Rightarrow m \le r | m \Rightarrow r = \circ(\phi) = m \Rightarrow Aut_{F_n}(k) = <\phi> = <Frob_{F_n}>.$

故 $Aut_{F_n}(k)$ 是由Frobenious元生成的m阶循环群.

一般地,对于有限域扩张K/k,char(k) = p,(p为素数), $Aut_k(K) = \langle Frob_K \rangle = \langle \phi_K \rangle$.

$$Frob_K: K \to K \quad \alpha \mapsto \alpha^{p^m} = \alpha^{|k|},$$

且有 $\circ(\phi_K) = \#Aut_k(K) = [K:k] = \frac{n}{m}$. 故 $Aut_k(K)$ 是一个[K:k]阶循环群.

3.8 不可分扩张

设 K|k 是单代数扩张, $K=k(\alpha)$, α 在k上极小多项式为 $f(x)\in k[x]$. 设deg(f)=n,则 $\{1,\alpha,\cdots,\alpha^{n-1}\}$ 是K的一组k-基 $,K=k(\alpha)=k[\alpha]$.

取定k的代数闭包 k^a ,设 $\alpha_1, \dots, \alpha_m$ 是f(x)在 k^a 中的全部互异根, α_i 的重数记为 r_i ,则在 k^a 中,有

$$f(x) = (x - \alpha_1)^{r_1} \cdots (x - \alpha_m)^{r_m},$$

其中 $m=[K:k]_s($ 可分次数)。K到 k^a 的k-嵌入共有m个,分别记为 $\sigma_1,\cdots,\sigma_m,$ 取定 $\alpha=\alpha_1,$ 不妨设 $\sigma_i(\alpha)=\alpha_i,$ 将 σ_i 延拓为 k^a 上的一个k-自同构,记之为 $\tau_i,$ 于是有 $\tau_i|_K=\sigma_i,$

$$\tau_i(f(x)) = (x - \tau_i(\alpha_1))^{r_1} \cdots (x - \tau_i(\alpha_m))^{r_m},$$

即

$$(x - \alpha_1)^{r_1} \cdots (x - \alpha_i)^{r_i} \cdots (x - \alpha_m)^{r_m}$$
$$= (x - \alpha_i)^{r_1} \cdots (x - \tau_i(\alpha_m))^{r_m}$$

由此可得 $r_i = r_1(i=1,\cdots,m)$.即极小多项式的所有根在代数闭包 k^a 中有相同的重数。特征为零的域上不可约多项式无重根.因此若f有重根,则char(k) = p,其中p为某一素数。同时注意到由于f有重根,故 $(f,f') \neq 1$,但由于f不可约且 deg(f') < deg(f),f'只能为零,这就说明f是形如 $f(x) = g(x^p)$ 的多项式(其中 $g(x) \in k[x]$,且由于f(x)为k[x]中不可约多项式,g(x)也是k[x]中不可约多项式.).于是 α^p 是g(x)的一个根。重复上述过程,最终,我们可以找到最小的整数 $r \geq 0$,使得 α^{p^r} 是k[x]中一个可分不可约多项式h(x)的根,且

$$f(x) = h(x^{p^r}).$$

设h(x)在 k^a 中的分解为 $h(x) = (x - \beta_1) \cdots (x - \beta_s)$, 令 $\gamma_i \in k^a (i = 1, \dots, s)$ 使得 $\gamma_i^{p^r} = \beta_i$, 设 $t = r_1 = \dots = r_m$ 则

$$f(x) = (x - \alpha_1)^t \cdots (x - \alpha_m)^t$$
$$= (x^{p^r} - \gamma_1^{p^r}) \cdots (x^{p^r} - \gamma_s^{p^r})$$
$$= (x - \gamma_1)^{p^r} \cdots (x - \gamma_s)^{p^r}$$

由一元多项式分解的唯一性知 $m = s, t = p^r$. 于是

$$f(x) = (x - \alpha_1)^{p^r} \cdots (x - \alpha_s)^{p^r}.$$

由

$$[k(\alpha):k] = deg(f) = s \cdot p^r = [k(\alpha):k]_s \cdot p^r$$

知 $[k(\alpha):k]_s|[k(\alpha):k]$,它们的商 $\frac{[k(\alpha):k]}{[k(\alpha):k]_s}=p^r$ 称为 $k(\alpha)|k$ 的**不可分次数**,记之为 $[k(\alpha):k]_i$. 令 $\beta=\alpha^{p^r}$,则 $h(\beta)=h(\alpha^{p^r})=f(\alpha)=0$,由于h(x)是首一不可约多项式,于是h(x)是 β 在k[x]上的极小多项式.因h(x)无重根, $[k(\alpha^{p^r}):k]=[k(\alpha^{p^r}):k]_s=deg(h(x))=s$. 由域扩张的次数传递公式知 $[k(\alpha):k(\alpha^{p^r})]=\frac{n}{[k(\alpha^{p^r}):k]}=\frac{n}{s}=p^r$.同样可得到

$$[k(\alpha):k(\alpha^{p^r})]_s = \frac{[k(\alpha):k]_s}{[k(\alpha^{p^r}):k]_s} = \frac{s}{s} = 1.$$

于是 $[k(\alpha):k(\alpha^{p^r})]_i=p^r$. 注意到 $k(\alpha)=k(\alpha^{p^r})(\alpha)$,令 $a=\alpha^{p^r}\in k(\alpha^{p^r})$,则 $x^{p^r}-a$ 是 α 在 $k(\alpha^{p^r})$ 上的极小多项式,该极小多项式只有一个根 α 且重数为 p^r .

Definition 3.14. 设k是域,char(k) = p > 0, k^a 是k的一个代数闭包,设 $\alpha \in k^a$,如果有 $r \in \mathbb{Z}_{\geq 0}$ 使得 $\alpha^{p^r} \in k$.则称 α 为k上的一个**纯不可分元**。

Proposition 3.9. 设K/k是一个代数扩张, char(k) = p > 0,则下列陈述等价:

- $(i)[K:k]_s = 1.$
- (ii)K中任一元素均是k上纯不可分元。
- (iii)对 $\forall \alpha \in K$, α 在k上的极小多项式均形如 $x^{p^r} a, a \in k, r \in \mathbb{Z}_{>0}$.
- (iv)K是在k上添加若干个纯不可分元生成。

称满足上述命题中等价条件的域扩张K/k为一个**纯不可分扩张**。

证明. $(i) \Rightarrow (ii)$ 任取 $\alpha \in K$,由 $[k(\alpha):k]_s[K:k]_s = 1$ 知 $[k(\alpha):k]_s = 1$,由此知 α 在k上极小多项式 必形如 $x^{p^r} - a \in k[x]$,由此 $\alpha^{p^r} \in k$,即 α 是k上纯不可分元。

(ii) \Rightarrow (iii) 设 $\alpha \in K$ 是k上的纯不可分元,即有 $\exists r \in \mathbb{Z}_{\geq 0}, x^{p^r} - a \in k[x]$,使得 $\alpha^{p^r} = a \in k$,不妨设r是满足该条件的最小的非负整数,令 $f(x) = Irr(\alpha, k, x)$ 为 α 在k上的不可约多项式(极小多项式),则 $f(x)|x^{p^r} - a$.由于

$$x^{p^r} - a = x^{p^r} - \alpha^{p^r} = (x - \alpha)^{p^r},$$

 $f(x) = (x - \alpha)^m$,其中 $m = p^s t \le p^r, s \le r, p \nmid t$.对f(x)进行二项式展开,

$$f(x) = (x - \alpha)^{p^s t}$$

$$= (x^{p^s} - \alpha^{p^s})^t$$

$$= x^{p^s t} - t \cdot \alpha^{p^s} x^{p^s (t-1)} + \dots + (-1)^t \alpha^{p^s t} \in k[x],$$

因此 $t \cdot \alpha^{p^s} \in k$,由 $p \nmid t$,而char(k) = p得到t在k中可逆,于是 $\alpha^{p^s} = b \in k$.由r的极小性得到 $r \leq s$.又由上面知 $s \leq r$,因此r = s, t = 1.即 $f(x) = x^{p^r} - a$.即 $x^{p^r} - a$ 是 α 在k上的不可约多项式。

- $(iii) \Rightarrow (iv)$ 显然地.
- $(iv) \Rightarrow (i)$ 任取K到k的某一代数闭包 \bar{F} 的 k-嵌入,设K由在k上纯不可分元 $\{\alpha_i\}_{i\in I}$ 生成,则

$$f_i(X) = Irr(\alpha_i, k, X)$$

是 α_i 在k上的极小多项式,由于 α_i 是纯不可分元,存在 $r \in \mathbb{Z}_{\geq 0}$, $a \in k$ 使得 $\alpha_i^{p^r} = a_i \in k$,因此 $f_i(X)|(X^{p^r} - a_i)$,即f(X)只有唯一根 α_i ,任意K到 \bar{F} 的k嵌入 τ 把元素映到其共轭元,但任意 α_i 的共轭元只有自身,于是 τ 是恒等映射,即 $[K:k]_s=1$.

Proposition 3.10. 设K|k是一个代数扩张, K_0 为K中所有在k上可分的代数扩张的合,则 $K_0|k$ 是可分扩张, $K|K_0$ 是纯不可分的。也称 K_0 为k在K中的可分闭包。

证明. K|k的可分子扩张的复合仍是可分扩张,于是 $K_0|k$ 是可分扩张;若char(k) = 0,则显然 $K_0 = K$,若char(k) = p,则任给 $\alpha \in K$,存在非负整数n使得 α^{p^n} 在k上可分的,于是 $\alpha^{p^n} \in K_0$,即 $K|K_0$ 是 纯不可分扩张。

Corollary 3.3. 对于上述命题中K|k为有限扩张的情形,有

$$[K:k]_s = [K_0:k],$$

 $[K:k]_i = [K:K_0].$

证明.

$$[K : k]_s = [K : K_0]_s \cdot [K_0 : k]_s$$
$$= 1 \cdot [K_0 : k]_s$$
$$= [K_0 : k].$$

$$[K:k]_i = [K:K_0]_i \cdot [K_0:k]_i$$
$$= [K:K_0]_i \cdot 1$$
$$= [K:K_0].$$

Corollary 3.4. 设K|k是域的正规扩张, K_0 是k在K中的可分闭包,则 $K_0|k$ 也是正规扩张。

证明. 设 k^a 是k的一个代数闭包,任取 K_0 到 k^a 的一个k—嵌入 σ ,下面证明 $\sigma(K_0) = K_0$,从而 $K^0|k$ 是正规扩张.

 σ 可延拓到K上,记为 $\tau: K \to k^a$.由于K|k是正规扩张, $\tau(K) = K$.任取 $\alpha \in K_0$, α 在k上极小多项式 $P_{\alpha}(X) \in k[X]$ 无重根,而 $\tau(\alpha) = \sigma(\alpha)$ 在k上极小多项式也是 $P_{\alpha}(X)$,于是 $\tau(\alpha)$ 在k上也可分,从而 $\tau(\alpha) \in K_0$,即 $\tau(K_0) \subseteq K_0 \Rightarrow \sigma(K_0) = K_0$.

Corollary 3.5. 设E|k是域的一个有限扩张,p = char(k) > 0,若 $E^p \cdot k = E$,则E|k是可分的。反之,如果E|k是可分,则 $E^{p^r}k = E(\forall r \in \mathbb{Z}_{>1})$.

证明. \Rightarrow :设 E_0 是k在E中的极大可分扩张,E|k是有限扩张,因此对 $\forall \alpha \in E$,存在固定的 $m \in \mathbb{Z}_{\geq 1}$ 使 得 $\alpha^{p^m} \in E_0$,于是 $E^{p^m} \subseteq E_0$.

另一方面,

$$E^{p}k = E$$

$$\Rightarrow E^{p} = (E^{p}k)^{p} = E^{p^{2}}k^{p}$$

$$\Rightarrow E^{p^{2}}k^{p+1} = E^{p}k = E$$

$$\Rightarrow E^{p^{2}}k \supseteq E^{p^{2}}k^{p+1} = E \supseteq E^{p^{2}}k$$

$$\Rightarrow E = E^{p^{2}}k$$

如此归纳下去便得到 $E = E^{p^n} k (n \in \mathbb{Z}_{\geq 1}), \ \mathbb{Z}_{\geq 1}$,但 $E^{p^m} k \subseteq E_0 k = E_0$,于是 $E \subseteq E_0 \subseteq E$,即 $E_0 = E$, $E \mid k$ 是可分的。

 \leftarrow :设E|k可分,则 $E|E^pk$ 是可分.又对任意 $\alpha \in E, \bar{q}\alpha^p \in E^p \subseteq E^pk$,于是 $E|E^pk$ 是纯不可分的.故 $E = E^pk$.由上面证明可得对任意 $r \in \mathbb{Z}_{>1}, E^{p^r} \cdot k = E$.

Proposition 3.11. 设K|k是域的一个正规扩张,令 $G = Aut_k(K)$ 是K到自身的k—自同构,又记

$$K^G = \{ \alpha \in K | \sigma(\alpha) = \alpha, \forall \sigma \in G \}.$$

则 K^G 是K|k的中间域,且 $K^G|k$ 是纯不可分的, $K|K^G$ 是可分的。又设 K_0 是k在K中的可分闭包,则 $K_0K^G=K,K_0\cap K^G=k$.

证明. 任取 $\sigma \in Aut_k(K), \sigma|_k = id$,于是 $k \subseteq K^G$,即 K^G 是K|k的中间域。

(1)下证 $K^G|k$ 是纯不可分的。

为此,任取 $\alpha \in K^G$,取定k的一个代数闭包 k^a ,使得 $k^a \supseteq k$. 任取 $k(\alpha)$ 到 k^a 的k-嵌入 $\sigma: k(\alpha) \to k^a$,将 σ 延拓到K上,记之为 $\tau: K \to k^a$.由所设K|k是正规扩张,则 $\tau(K) = K$.即 τ 是一个K到自身的k-嵌入,于是 $\tau \in G$, $\sigma(\alpha) = \tau(\alpha) = \alpha(\forall \alpha \in K^G)$. 这就说明 $\sigma = id$,即 $k(\alpha)$ 到自身的k-嵌入只有唯一的恒等映射。从而 $[k(\alpha):k]_s = 1$, α 是k上的纯不可分元,令 α 跑遍 K^G 可得 $K^G|k$ 是纯不可分扩张。

- (2)证明 $K|K^G$ 是可分的,方法用 $Serge\ Lang: Algebra.P_{264}$ Artin定理的证明。
- (3)若 K_0 是k在K中的可分闭包,则 $K_0|k$ 是可分的,于是 $K_0 \cap K^G|k$ 是可分的,又由于 $K^G|k$ 是纯不可分的,于是 $K_0 \cap K^G|k$ 是纯不可分的.综上, $K_0 \cap K^G = k$.
- (4)由 $K|K^G$ 是可分的, $K|(K^G \cdot K_0)$ 也是可分的,又因 K_0 是k在K中的可分闭包,故 $K|(K^G K_0)$ 是 纯不可分的,于是 $K=K^G K_0$.

Example 3.3. (1)设p是素数,p元域 $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ 中,任意 $\alpha \in \mathbb{F}_p$, $\alpha^p = \alpha$,于是 $\mathbb{F}_p^p = \mathbb{F}_p$. (2) $F = \mathbb{F}_p[x]$ 中,因x不能表示出某个多项式的p次方,故 $F^p \neq F$.

Definition 3.15. 设k是一个域,

- (1)当char(k) = 0时,称k是一个perfect域。
- (2)当char(k) = p > 0时,如果 $k^p = k$,则称k是一个perfect域。

Corollary 3.6. 设k是一个perfect 域,则k的任意代数扩张都是可分扩张,k的任意代数扩张都是perfect.

证明. 设K|k是域的代数扩张,任取 $\alpha \in K$,设E是 $k(\alpha)|k$ 在K中的正规闭包,记 $G = Aut_k(E)$,则 $E^G|k$ 是纯不可分的.

对于任意 $\beta \in E^G$ 有 $\beta^{p^r} \in k$,即 $\beta^{p^r} = a \in k$. 由于k是perfect,有 $b \in k$ 使得 $a = b^p$,于是 $\beta^{p^{r-1}} = b \in k$,继续下去可得到 $\beta \in k$,于是 $E^G \subseteq k$,但又因 $E^G \supseteq k$,故 $E^G = k$ 。这就得到E|k是可分的, α 在k上是可分的,由于 α 是任意的,于是K|k是可分扩张.

4 Galois理论

4.1 有限Galois理论

设K|k是域的一个代数扩张,令 $G = Gal(K|k) = Aut_k(K)$,则G是一个群,称为K|k的Galois群。 任取 $H \leq G$ (子群),令

$$K^H = \{ \alpha \in K | \sigma(\alpha) = \alpha, \forall \sigma \in H \},$$

结论: $k \subseteq K^H \subseteq K, K^H$ 是一个域。

证:任取 $\alpha, \beta \in K^H$,对任意 $\sigma \in H, \sigma(\alpha) = \alpha, \sigma(\beta) = \beta$,于是

$$\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta) = \alpha + \beta \Longrightarrow \alpha + \beta \in K^{H}$$
$$\sigma(\alpha\beta) = \sigma(\alpha)\sigma(\beta) = \alpha\beta \Longrightarrow \alpha\beta \in K^{H}$$

Definition 4.1. 设K|k是一个域的代数扩张,如果K|k既是可分的,也同时是正规的,则称K|k是一个 Galois扩张。

设K|k是一个n次Galois扩张, $n = [K:k].则|Gal(K|k)| = [K:k]_s = [K:k].$

Theorem 4.1. (*Artin*) 设k是一个域, $G \subseteq Aut(K)$ 是一个有限子群,令 $k = K^G$,则K|k是一个Galois扩张,且其Galois群为Gal(K|k) = G.

证明. 任取 $\alpha \in K$,设 α 的G-轨道为

$$G \cdot \alpha = \{\sigma_1 \alpha, \sigma_2 \alpha, \cdots, \sigma_r \alpha\}.$$

不妨设 $\sigma_1 = id$,显然,对任意 $\tau \in G$, $\tau G \alpha = G \alpha$,即

$$\{\tau\sigma_1\alpha, \tau\sigma_2\alpha, \cdots, \tau\sigma_r\alpha\}.$$

4.1 有限Galois理论 79

 $\diamondsuit f(x) = (x - \sigma_1 \alpha) \cdots (x - \sigma_r \alpha)$, 则

$$f^{\tau}(x) = (x - \tau \sigma_1 \alpha) \cdots (x - \tau \sigma_r \alpha)$$
$$= f(x)$$

这就说明 $f(x) \in K^G[x] = k[x]$.显然,由于 $\sigma_1 = id$, $f(\alpha) = 0$. 而 $\sigma_1 \alpha$, \cdots , $\sigma_r \alpha$ 两两不同,故f(x)无重根,即可分。从而 α 是k上的可分元,由 α 的任意性,K|k是可分的。

又设 α 在k上的极小多项式为 $P_{\alpha}(x)$,则 $P_{\alpha}|f(x)$,于是 α 的k—共轭元必属于 $\{\sigma_{1}\alpha, \cdots, \sigma_{r}\alpha\} \subseteq K$,于是 $\sigma(K) \subseteq K$,即K|k是正规扩张.综上,K|k是Galois扩张.

下证Gal(K|k)=G.设|G|=n,首先由定义易知 $G\subseteq Gal(K|k)$. 又由上述证明可知,对任 意 $\alpha\in K$,有

$$[k(\alpha):k] = degP_{\alpha}(x) \le degf(x) \le |G| = n,$$

由此下述引理可证得 $[K:k] \le n$.于是 $[Gal(K|k)] \le n$.综上,Gal(K|k) = G.

Lemma 4.1. 设E|k是可分代数扩张,若存在固定地正整数n使得对任意 $\alpha \in E, [k(\alpha):k] \leq n.则<math>E|k$ 是有限扩张,且 $[E:k] \leq n.$

证明. 不妨设m是k的单代数扩张的最大次数,即有 $\alpha \in K$,使得 $[k(\alpha):k]=m$,且 $\forall \beta \in K$, $[k(\beta):k] \leq m$. 下面说明 $K=k(\alpha)$ 。

若不然,存在 $\beta \in K - k(\alpha)$,由本原元定理,存在 $\gamma \in K$ 使得 $k(\alpha,\beta) = k(\gamma)$.于是

$$k \subseteq k(\alpha) \subsetneq k(\alpha)(\beta) = k(\gamma).$$

由 $k(\gamma)|k$ 是单代数扩张, $[k(\gamma):k] \leq m$,这与 $k(\alpha) \subsetneq k(\gamma)$ 矛盾! 故 $K = k(\alpha)$,进而 $[K:k] = m \leq n$.

Lemma 4.2. 设K|k是Galois扩张, G = Gal(K|k),则 $K^G = k$.

证明. 显然, $k \subseteq K^G$.下证 $K^G \subseteq k$.

对任意 $\alpha \in K^G$,任取 $k(\alpha)$ 到K的一个k-嵌入,则 σ 可延拓为k-嵌入 $\tau: K \to K$,即 $\tau \in G$, $\tau|_{k(\alpha)} = \sigma$.由所设 $\sigma(\alpha) = \tau(\alpha) = \alpha(\forall \alpha) \in K^G$.于是 $\sigma = id$.由 $k(\alpha)|_k$ 是可分扩张, $[k(\alpha): k] = [k(\alpha): k]_s = 1$.即 $k(\alpha) = k$,由于 $\alpha \in K^G$ 是任意,故 $K^G \subseteq k$.综上, $K^G = k$.

Theorem 4.2. *Galois* 理论基本定理 (有限扩张情形).设K|k 是域的n次Galois扩张,其Galois群为 G = Gal(K|k),用S表示所有k和K的中间域组成的集合,J表示G的所有子群组成的集合。令

$$\phi: S \to J$$
$$E \mapsto Gal(K|E)$$

则 $(1)\phi$ 是一个双射,特别地, $K^{Gal(K|k)}=k$.

(2)设 $k \subseteq E_1 \subseteq E_2 \subseteq K$,则对应地,有 $\phi(E_1) \supseteq \phi(E_2)$.反之,如果 $1 \le H_1 \le H_2 \le G$,则 $\phi^{-1}(H_1) \supseteq \phi^{-1}(H_2)$,

(3)对于中间域 $E,k \subseteq E \subseteq K, E|k \neq Galois$ 扩张当且仅当 $\phi(E) \triangleleft G,$ 此时

$$Gal(E|k) \cong G/\phi(E) \cong G/Gal(K|E).$$

4.1 有限Galois理论 80

(4)设有中间域 $k \subset E_i \subset K(i=1,2)$,则

$$\phi(E_1 \cap E_2) = <\phi(E_1) \cup \phi(E_2) > \phi(E_1E_2) = \phi(E_1) \cap \phi(E_2)$$

(5)设中间域 $k \subseteq E_1 \subseteq E_2 \subseteq K$,则 $E_2|E_1 \neq Galois$ 的当且仅当 $\phi(E_2) \triangleleft \phi(E_1)$.此时有

$$Gal(E_2|E_1) \cong \phi(E_1)/\phi(E_2) = Gal(K|E_1)/Gal(K|E_1).$$

证明. (1)任取 $E \in S$,由于K|k是Galois扩张,K|E是Galois扩张,即 $Gal(K|E) \in J$,从而 ϕ 是良定义的。

下证 ϕ 是单射。设对于中间域 $k \subseteq E_i \subseteq bK(i=1,2)$,若有 $\phi(E_1) = \phi(E_2)$,即

$$Gal(K|E_1) = Gal(K|E_2).$$

由上一引理得, $E_1 = K^{Gal(K|E_1)}, E_2 = K^{Gal(K|E_2)}$.由此 $E_1 = E_2$,即 ϕ 是单射.

下证 ϕ 是满射。任取 $H \leq G$,令 $E = K^H$,此时由Artin定理,K|E是Galois扩张,且Gal(K|E) = H,显然E是中间域,且 $\phi(E) = H$.故 ϕ 是满射.

综上, ϕ 是双射。

(2)若 $k \subseteq E_1 \subseteq E_2 \subseteq K$, $\phi(E_1) = Gal(K|E_1)$, $\phi(E_2) = Gal(K|E_2)$. 任取 $\sigma \in Gal(K|E_2)$, 则 $\sigma|_{E_2} = id$,从而 $\sigma|_{E_1} = id$.于是 $\sigma \in Gal(K|E_1)$.这便是 $\phi(E_1) \supseteq \phi(E_2)$.

同样可得:若 $1 \le H_1 \le H_2 \le G$,则 $\phi^{-1}(H_1) \supseteq \phi^{-1}(H_2)$.

(3)若 $k \subseteq E \subseteq K$,且E|k是正规的,令

$$\psi: Gal(K|k) \to Gal(E|k)$$

 $\sigma \mapsto \sigma|_E,$

则显然 ψ 是群同态,下证 ψ 是满射.任取 $\sigma \in Gal(E|k)$,将 σ 延拓为K到k的代数闭包 k^a 的k-嵌入 τ ,由于K|k是正规扩张,故 $\tau(K)=K$,从而 $\tau \in Gal(K|k)$,于是 $\psi(\tau)=\sigma$,即 ψ 是满射。

另一方面,

$$ker(\psi) = \{\sigma \in Gal(K|k)| \psi(\sigma) = id\} \subseteq Gal(K|E).$$

又 $\forall \sigma \in Gal(K|E)$,则 $\psi(\sigma) = \sigma|_E = id$,于是 $Gal(K|E) \subseteq Ker\psi$.故 $Gal(K|E) = ker\psi$.此时,Gal(K|E)是Gal(K|k)的正规子群,且由群同态基本定理得

$$Gal(K|k)/Gal(K|E) \cong Gal(E|k).$$

反过来,若E|k不是正规扩张,则存在E到K的k-嵌入 λ 使得 $\lambda E \neq E$,将 λ 延拓成K的k-子同构,仍记为 λ (因K|k是正规扩张, $\lambda(K)=K$),于是

$$Gal(K|\lambda E) = \lambda Gal(K|E)\lambda^{-1}.$$

 $Gal(K|\lambda E)$ 与Gal(K|E)共轭但不相同(因对应的中间域不同),这就说明Gal(K|E)不是Gal(K|k)的正规子群。

(4)若中间域 $k \subseteq E_i \subseteq K(i=1,2)$,则

$$E_1 \supseteq E_1 \cap E_2, E_2 \supseteq E_1 \cap E_2$$

$$\Rightarrow \psi(E_1) \subseteq \psi(E_1 \cap E_2), \psi(E_2) \subseteq \psi(E_1 \cap E_2)$$

$$\Rightarrow \langle \psi(E_1) \cup \psi(E_2) \rangle \subseteq \psi(E_1 \cap E_2)$$

下证

$$\psi(E_1 \cap E_2) \subseteq \psi(E_1) \cup \psi(E_2) := H_0 = H_1 \cup H_2.$$

由于 $H_0 \supseteq H_1, H_0 \supseteq H_2$,

$$K^{H_0} \subseteq K^{H_1}, K^{H_0} \subseteq K^{H_1}$$

$$\Rightarrow H_0 \subseteq K^{H_1} \cap K^{H_2} = E_1 \cap E_2$$

$$\Rightarrow H_0 \supseteq Gal(K|E_1 \cap E_2) = \psi(E_1 \cap E_2)$$

$$\Rightarrow \langle \psi(E_1) \cup \psi(E_2) \rangle \supseteq \psi(E_1 \cap E_2)$$

$$\Rightarrow \psi(E_1 \cap E_2) = \langle \psi(E_1) \cup \psi(E_2) \rangle$$

(5)这是(3)的直接推论:运用(3)于域扩张 $E_1 \subseteq E_2 \subseteq K$.

4.2 Galois理论的若干应用

4.2.1 关于多项式根式解的Galois定理

Example 4.1. $f(x) = x^4 - 6x^2 + 7 \in \mathbb{Q}[x]$. 令 $t = x^2$, $f(x) = 0 \Rightarrow t = \frac{6 \pm \sqrt{8}}{2} = 3 \pm \sqrt{2} \Rightarrow x = \pm \sqrt{3 \pm \sqrt{2}}$.考虑下列域扩张

$$k := \mathbb{Q} \subseteq k_1 := \mathbb{Q}(\sqrt{2}) \subseteq k_2 := \mathbb{Q}(\sqrt{2})(\sqrt{3+\sqrt{2}}) \subseteq k_3 := \mathbb{Q}(\sqrt{2})(\sqrt{3+\sqrt{2}})(\sqrt{3-\sqrt{2}})$$

则

$$\begin{aligned} k_3 &= k_2(\sqrt{3-\sqrt{2}}), k_2 = k_2(\sqrt{3+\sqrt{2}}), k_1 = k(\sqrt{2}), \\ &(\sqrt{3-\sqrt{2}})^2 \in k_2, (\sqrt{3+\sqrt{2}})^2 \in k_1, (\sqrt{2})^2 \in k = \mathbb{Q}. \end{aligned}$$

Definition 4.2. 设k是一个域, $f(x) \in k[x]$,称f在k上**可根式解**: 如果存在k的扩域序列

$$k \subseteq k_1 \subseteq \cdots \subseteq k_r$$

使得 k_r 包含f的分裂域,且 k_r 是k的一个根式扩张,即有

$$k_r = k(\alpha_1, \cdots, \alpha_r), k_i = k_{i-1}(\alpha_i),$$

且 $\alpha_i^{n_i} \in k_{i-1}$ 对某一正整数 n_i 成立.

Definition 4.3. 设K|k是一个域扩张.如果有域扩张序列

$$k = k_0 \subseteq k_1 \subseteq \cdots \subseteq k_r = K$$

及 $n_1, \dots, n_r \in \mathbb{Z}_{>0}$ 使得 $K = k(\alpha_1, \dots, \alpha_r), k_i = k_{i-1}(\alpha_i)$ 且 $\alpha_i^{n_i} \in k_{i-1}(i=1, \dots, r)$,则称K是k的一个根式扩张。若记 $n = n_1 \dots n_r$,则 $\alpha_i^n \in k_{i-1}$,此时称K是k的n—根式扩张n—不是唯一的n.

性质:设K|E和E|k均是根式扩张,则K|k也是根式扩张。

证明. 由K|E和E|k是根式扩张,有

$$k = k_0 \subseteq k_1 \subseteq \cdots \subseteq k_r = E,$$

满足 $k_i = k_{i-1}(\alpha_i), \alpha_i^n \in k_{i-1}.$

$$E = E_0 \subseteq E_1 \subseteq \cdots \subseteq E_s = K$$
,

满足 $E_i = E_{i-1}(\beta_i), \beta_i^m \in E_{i-1}$.于是

$$k = k_0 \subseteq k_1 \subseteq \cdots \subseteq k_r = E = E_0 \subseteq E_1 \subseteq \cdots \subseteq E_s = K$$

就满足K|k的根式扩张的条件。即K|k是根式扩张。

Theorem 4.3. 设K|k是域的有限扩张,且L是K|k的一个正规闭包(选定k的一个代数闭包 k^a).如果K|k是根式扩张,则L|k也是根式扩张.

证明. 由K|k是有限扩张,则设 $K = k(\alpha_1, \dots, \alpha_r)$.对r用归纳法。

当r=1时,简记 $K=k(\alpha)$,因为L是K|k的正规闭包,故 $L=k(\alpha_1,\cdots,\alpha_s)$,其中 α_1,\cdots,α_s 是 α 的全部k—共轭元。由所设,K|k是一个n—根式扩张,于是 $\alpha^n=a\in k$ (对某个 $a\in k$),即 α 是k上多项式 x^n-a 的一个根,于是 $P_\alpha(x)|(x^n-a)$,故 α_1,\cdots,α_s 都是 x^n-a 的根,即 $\alpha_i^n=a\in k$. L|k是n—根式扩张。

现对于 $K = k(\alpha_1, \dots, \alpha_r)$,记 $E = k(\alpha_1, \dots, \alpha_{r-1})$,并设E|k的正规闭包为 L_1 ,则由E是k的根式扩张,及归纳假设 $L_1|k$ 也是根式扩张,又设L是K|k的正规闭包,则 $L = L_1(\beta_1, \dots, \beta_s)$,其中 $\beta_1 = \alpha_r, \beta_1, \dots, \beta_s$ 是 α_r 的全部k—共轭元。

任取 β_i ,令

$$\sigma_i: k(\alpha_r) \to k^a$$

$$\alpha_r \mapsto \beta_i$$

则 σ_i 是 $k(\alpha_r)$ 到 k^a 的一个k-嵌入, σ 可延拓成L到 k^a 的一个k-嵌入 τ_i ,由所设K|k是根式扩张,而 $K=E(\alpha_r)$,于是 $\alpha_r^n=\gamma\in E$ 对于某一 $n\in\mathbb{Z}_{>0}$ 成立。由于 $E\subseteq L_1$,而 L_1 是一正规闭包,故

$$(\tau_i(\alpha_r))^n = \tau_i(\alpha_r^n) = \tau(\gamma) = \tau_i|_{L_1}(\gamma) \in L_1.$$

于是 $\beta_i^n \in L_1(i=1,\cdots,s)$. 即 $L|L_1$ 是根式扩张,又 $L_1|k$ 是根式扩张,故L|k是根式扩张。

Definition 4.4. 设G是群, 若存在G的子群列

$$G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_r = \{1\},$$

使得 $G_{i+1} \subseteq G_i$,且 G_i/G_{i-1} 是Abel群,则称G是可解群.

Theorem 4.4. (Galois)设k是一个域, $char(k) = 0, f(x) \in k[x]$, K是f(x)在k上的分裂域。则f可根式解当且仅当Gal(K|k)是可解群.

证明. \Rightarrow)由f可根式解,K包含于某个k的根式扩域E中,又取E|k的正规闭包L|k,由前述定理可知L|k也是根式扩张。

不妨设L|k, E|k均是n-次根式扩张。即有域的扩张序列

$$k = k_0 \subseteq k_1 \subseteq \cdots \subseteq k_r = E \subseteq L$$
,

其中 $k_i = k_{i-1}(\alpha_i), \alpha_i^n \in k_{i-1}(i=1,\dots,r), L = E(\alpha), \alpha^n \in E.$ 记G = Gal(L|k)为L|k的Galois群,且记 $H_i = Gal(L|k_i)(i=1,\dots,r)$,即有子群序列

$$\{1\} \subseteq H_r \subseteq H_{r-1} \subseteq \cdots \subseteq H_1 \subseteq H_0 = G.$$

为简记,设k包含n次本原单位根 ξ_n 。

考虑扩张 k_i/k_{i-1} ,由于 $k_i = k_{i-1}(\alpha_i)$, $\alpha_i^n \in k_{i-1}$,又 $\xi_n \in k \in k_{i-1}$.则由Kummer扩张结果可知, k_i/k_{i-1} 是一个循环扩张(即 $Gal(k_i|k_{i-1})$ 是循环群)。由Galois理论知 $H_i \triangleleft H_{i-1}$ (正规子群),且

$$H_{i-1}/H_i \cong Gal(k_i|k_{i-1})$$

是循环群。即G = Gal(L|k)是一个可解群,G的商群Gal(K|k)也是可解群($Gal(K|k) \cong G/Gal(L|K)$). \Leftarrow)设Gal(K|k)是一个可解群,则有子群序列

$$G = Gal(K|k) = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_r = \{e\}.$$

其中 $G_{i+1} \triangleleft G_i$,且 G_i/G_{i+1} ($i=0,\cdots,r-1$)是Abel群.记n=[K:k],且设k包含一个n次本原单位根 ξ_n .记 $k_i=K^{G_i}$,则由Galois理论,可得K的子群序列

$$k = k_0 \subseteq k_1 \subseteq \cdots \subseteq k_r = k$$
,

且 $k_i|k_{i-1}$ 是Abel扩张(因为 $Gal(k_i|k_{i-1})\cong G_{i-1}/G_i$ 是Abel群). 又由所设 $\sigma^n=id(\forall\sigma\in G)$,故 每个 k_i/k_{i-1} 均为指数为n的Abel扩张,由Kummer理论可知 $k_i|k_{i-1}(i=1,2,\cdots,r)$ 是一个根式扩张,从而K|k是根式扩张,即f可根式解。

Kummer理论: 若有根式扩张 $k(\sqrt[n]{\alpha})(\alpha \in k)$ (Kummer扩张),且 $\xi_n \in k$,则Kummer扩张一定是循环扩张。

4.2.2 古希腊四大数学难题

1.化圆为方。 2.倍立方。 3.三等分角。 4.正多边形的作图问题。

方法: 作图工具只有直尺与圆规.

(1)直线相交: l_1 与 l_2 相交,

$$\begin{cases} a_1x + b_1y + c_1 = 0 \\ a_2x + b_2y + c_2 = 0 \end{cases}$$

其中 $a_i, b_i, c_i \in \mathbb{Q}, i = 1, 2.$ 若有交点 $P, \mathbb{M}P \in \mathbb{Q} \times \mathbb{Q}$.

(2)直线与圆相交:

$$\begin{cases} a_1x + b_1y + c_1 = 0\\ x^2 + y^2 + cx + dy + e = 0 \end{cases}$$

其中 $a_1, b_1, c_1, c, d, e \in \mathbb{Q}$. 若有交点P,则 $P = (x_0, y_0) \in \mathbb{Q}(\sqrt{\Delta}) \times \mathbb{Q}(\sqrt{\Delta}), 0 \le \Delta \in \mathbb{Q}$.

Proposition 4.1. 设 $\alpha \in R$,则 α 可尺规构作当且仅当有域扩张序列

$$\mathbb{Q} = k_0 \subseteq k_1 \subseteq \cdots \subseteq k_r,$$

使得 $[k_i:k_{i-1}] \leq 2(i=1,\cdots,r)$,且 $\alpha \in k_r$.特别地, $\alpha \in k_r$ 且 $[k_r:\mathbb{Q}] = 2^s(s \in \mathbb{Z}_{\geq 0})$,即 α 必为代数数。

问题1:化圆为方(π=正方形的面积?)

解:无解.原因: π 是超越数。如若不然,则有 \mathbb{Q} 的某个 2^s 次扩域k,使得 $\pi \in k$,由此得到 π 是代数数,矛盾!

问题2: 倍立方(2=正方形的体积?)

解:无解.问题等价于 $\sqrt[3]{2}$ 是否尺规构作.由于 $\sqrt[3]{2}$ 是3次代数数, $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$,而3不是2的幂,从而 $\sqrt[3]{2}$ 不可尺规构作。

问题3:三等分角。

首先, θ 可尺规构作当且仅当 $\cos\theta$, $\sin\theta$ 均可尺规构作.

解: 一般情况下无解。例 $\beta=60^{\circ}, \theta=\frac{\beta}{3}=20^{\circ}.$

$$\frac{1}{2} = \cos 60^{0} = \cos (3\theta) = \cos (2\theta + \theta)$$

$$= \cos 2\theta \cos \theta - \sin 2\theta \sin \theta$$

$$= (2\cos^{2}\theta - 1)\cos \theta - 2\sin^{2}\theta \cos \theta$$

$$= 2\cos^{3}\theta - \cos \theta - 2\cos \theta + 2\cos^{3}\theta$$

$$= 4\cos^{3}\theta - 3\cos(\theta)$$

即 $\cos\theta$ 是多项式 $f(x)=8x^3-3x-1$ 的根,而f(x)在Q上不可约,于是[Q($\cos\theta$): Q] = 3,但3不是2的方幂,故 $\cos\theta$ 不可尺规作出。

问题4:正多边形作图问题。

解:正n边形可尺规作出当且仅当 $\frac{2\pi}{n}$ 可尺规作出,又等价于 $\cos\frac{2\pi}{n}$, $\sin\frac{2\pi}{n}$ 可尺规作出。

令
$$\xi_n = e^{\frac{2\pi i}{n}} = \cos{\frac{2\pi}{n}} + i\sin{\frac{2\pi}{n}} (n > 2),$$
则 $\xi_n^{-1} = \cos{\frac{2\pi}{n}} - i\sin{\frac{2\pi}{n}}.$ 于是

$$\cos\frac{2\pi}{n} = \frac{\xi_n + \xi_n^{-1}}{2} \in \mathbb{Q}(\xi_n + \xi_n^{-1}) \subseteq R.$$

由 $\xi_n \notin \mathbb{Q}(\xi_n + \xi_n^{-1})$ 得 $\mathbb{Q}(\xi_n) \supseteq \mathbb{Q}(\xi_n + \xi_n^{-1})$,于是

$$[\mathbb{Q}(\xi_n):\mathbb{Q}(\xi_n+\xi_n^{-1})]\geq 2.$$

又因 ξ_n 是多项式 $f(x) = x^2 - (\xi_n + \xi_n^{-1})x + 1 \in \mathbb{Q}(\xi_n + \xi_n^{-1})[x]$ 的根,故

$$[\mathbb{Q}(\xi_n):\mathbb{Q}(\xi_n+\xi_n^{-1})] \le 2.$$

综上,

$$[\mathbb{Q}(\xi_n):\mathbb{Q}(\xi_n+\xi_n^{-1})]=2.$$

Theorem 4.5. 正n边形可尺规构作当且仅当 $\phi(n)$ (欧拉函数)是2的幂。

证明. 正n边形可尺规构作 $\Leftrightarrow \frac{2\pi}{n}$ 可尺规作出 $\Leftrightarrow cos \frac{2\pi}{n}, sin \frac{2\pi}{n}$ 可尺规作出 $\Leftrightarrow [\mathbb{Q}(cos \frac{2\pi}{n}): \mathbb{Q}]$ 是2的幂。

$$\phi(n) = [\mathbb{Q}(\xi_n) : \mathbb{Q}]$$

$$= [\mathbb{Q}(\xi_n) : \mathbb{Q}(\cos\frac{2\pi}{n})][\mathbb{Q}(\cos\frac{2\pi}{n}) : \mathbb{Q}]$$

$$= 2[\mathbb{Q}(\cos\frac{2\pi}{n}) : \mathbb{Q}].$$

由此即知命题成立。

4.3 域的无限Galois扩张

设K|k是无限Galois扩张,一般我们就取K是k的代数闭包。记G=Gal(K|k),对于中间域 $k \subset E \subset K$ 记 $H_E=Gal(K|E)$.定义集合 $\mathcal{I}=\{E:E \in E \mid E \in K \mid k$ 的中间域,且 $E \mid k$ 是有限Galois扩张}. $\mathcal{N}=\{H:H=Gal(K|E),E \in \mathcal{I}\}.$

Proposition 4.2. (1) $\cap_{H \in \mathcal{N}} H = \{e\}.(2) \cap_{H \in \mathcal{N}} \sigma H = \{\sigma\} (\forall \sigma \in G).$

证明. (1)任取 $\sigma \in \cap_{H \in \mathcal{N}} H$,对任意 $\alpha \in K$,设 $E = k(\alpha) | k \in K | k$ 中的正规闭包,则 $E \in \mathcal{I}, H_E = Gal(K|E) \in \mathcal{N}$,特别地 $\sigma \in H_E$,对 $\alpha \in E$, $\sigma(\alpha) = \alpha$,由 α 的任意性, $\sigma = id$,即 $\sigma \in K$ 是恒等映射. (2)

$$\forall \tau \in \cap_{H \in \mathcal{N}} \sigma H \Rightarrow \tau \in \sigma H (\forall H \in \mathcal{N})$$

$$\Rightarrow \sigma^{-1} \tau \in H (\forall H \in \mathcal{N})$$

$$\Rightarrow \sigma^{-1} \tau \in \cap_{H \in \mathcal{N}} = e$$

$$\Rightarrow \sigma = \tau$$

$$\Rightarrow \cap_{H \in \mathcal{N}} \sigma H = \{\sigma\} (\forall \sigma \in G).$$

证明. 由 \mathcal{N} 的定义,存在 $E_1, E_2 \in \mathcal{I}$ 使得 $H_1 = Gal(K|E_1), H_2 = Gal(K|E_2)$.由于 $E_1E_2|k$ 是有限Galois扩张 $E_1E_2 \in \mathcal{I}$.由Galois理论知 $H_1 \cap H_2 = Gal(K|E_1E_2)$ 于是 $H_1 \cap H_2 \in \mathcal{N}$.

定义G上的Krull拓扑: 规定 $\{\sigma H : \sigma \in G, H \in \mathcal{N}\}$ 为G上的一个拓扑基。即G中子集H'为开集当且仅当H'为上述拓扑基元素之并。

Theorem 4.6. G在上述拓扑基下为Hausdorff,紧致且完全不连通的拓扑群。

证明. (i)完全不连通(能写成两个非空开子集的不交并,连通子集只有单点集)。

设 $X \subset G,$ 且 $|X| \ge 2,$ 取 $\sigma, \tau \in X,$ 且 $\sigma \ne \tau$. 由 $\cap_{H \in \mathcal{N}} \sigma H = \{\sigma\}$ 知 $\tau \notin \cap_{H \in \mathcal{N}} \sigma H$,从而 $\exists H_0 \in \mathcal{N}$ 使得 $\tau \notin \sigma H_0$,即 $\tau \in G - \sigma H_0$ 注意到

$$X = X \cap G = X \cap (\sigma H_0 \cup (G - \sigma H_0)) = (X \cap \sigma H_0) \cup (X \cap (G - \sigma H_0))$$

G关于子群H有陪集分解 $G = \bigcup_{i \in I} \sigma_i H$,由此知若H是开集,由于G是拓扑群,对任意 $\sigma \in G$, σH 为开集,从而H为其所有非平凡陪集的补集,为闭集。注意到 $\sigma \in X \cap \sigma H_0$, $\tau \in X \cap (G - \sigma H_0)$,且 σH_0 , $G - \sigma H_0$ 均为开集,这就得到X是完全不连通的。特别地,G是完全不连通的,此处还可以看出,G是hausdorff空间。

另证:若 $\sigma, \tau \in G$ 且 $\sigma \neq \tau$,则存在有限Galois子扩张E|k使得 $\sigma|_E \neq \tau|_E$ (注意到任取 $x \in K$,必存在包含x的K|k的有限Galois子扩张E|k,例如E取k(x)|k在K|k中的代数闭包。若对任意有限Galois子扩张E|k有 $\sigma|_E = \tau|_E$,则对任意 $x \in K$, $\sigma(x) = \tau(x)$.矛盾!)因此 $\sigma Gal(K|E) \neq \tau Gal(K|E)$,因此 $\sigma Gal(K|E) \cap \tau Gal(K|E) = \emptyset$.

对于G的紧性,这里先省略证明。

注:设G关于闭子群H有陪集分解 $G = \cup_{i \in I} \sigma_i H$,则由G的紧致性,H是G的开子集当且仅当(G : H)有限。

Theorem 4.7. 设 $H \leq G$,记 $H' = Gal(K|K^H)$,则 $H' = \overline{H}(H$ 在G中的闭包.)

证明. 显然, $H \leq H'$.下证H'为G中的闭集,只需证G - H'为开集.

任取 $\sigma \in G - H'$,必有 $\alpha \in K^H$ 使得 $\sigma(\alpha) \neq \alpha$.对于 $\alpha \in K$,有 $E \in \mathcal{I}$ 使得 $\alpha \in E$,于是取 $H_0 = Gal(K|E) \in \mathcal{N}$.对于 $\forall \tau \in H_0$,有 $\tau \alpha = \alpha$,于是 $\sigma(\tau \alpha) = \sigma \alpha \neq \alpha$,即

$$\sigma \tau(\alpha) \neq \alpha \Rightarrow \sigma \tau \in G - H^{'} \Rightarrow \sigma H_0 \in G - H^{'} \Rightarrow G - H \quad is \quad open \Rightarrow H^{'}is \quad closed.$$

下证 $\bar{H} = H'$.需证 $\forall \sigma \in H', N \in \mathcal{N}$.都有 $\sigma N \cap H \neq \emptyset$.

由定义,取 $E \in \mathcal{I}$ 使得N = Gal(K|E),令 $H_0 = \{\rho|_E : \rho \in H\}$,于是 $K^{H_0} = K^H \cap E$,由有限Galois基本定理到 $H_0 = Gal(E|K^H \cap E)$,由 $\sigma \in H'$, $\sigma|_{K^H} = id$,因此 $\sigma|_E \in H_0$.存在 $\rho \in H$ 使得 $\rho|_E = \sigma|_E$.于是 $\sigma^{-1}\rho \in Gal(K|E) = N$,即 $\rho \in \sigma N \cap H$. $\sigma N \cap H \neq \emptyset$.

4.4 例题 87

Proposition 4.4. 设K|k是无限Galois扩张,任取K|k的一个中间域,则 $H_E = Gal(K|E)$ 是G的一个闭子群。

证明.
$$H_E \leq G, \text{则}K^{Gal(K|E)} = E \Rightarrow H_E = Gal(K|E) = Gal(K|K^{H_E}) = \bar{H}_E.$$

Theorem 4.8. 无限 *Galois*扩张基本定理:设K|k是无限 *Galois*扩张,令G = Gal(K|k), $\mathcal{I}_0 = \{E : E \neq K | k$ 的中间域 $\}$, $\mathcal{N}_0 = \{H | H \neq G$ 的子群 $\}$.定义映射

$$\varphi: \mathcal{I}_0 \to \mathcal{N}_0$$
$$E \mapsto Gal(K|E)$$

则 φ 是一个双射。

(1)E|k $\not\in Galois \Leftrightarrow H_E = Gal(K|E) \triangleleft G.$

(2)对于 $E \in \mathcal{I}_0$, $[E:k] \leq +\infty \Leftrightarrow H_E = Gal(K|E)$ 是G的开子群。(若H是开子群,则任意 $\sigma \in G$, σH 也是开子群,从而由陪集分解 $G = \bigcup_{i \in I} \sigma_i H$,知H也是闭子群.此时再由G的紧致性知 $[G:H] \leq +\infty$.反之,若已知H是闭集,则由 $[G:H] \leq +\infty$ 知H是开集)。

4.4 例题

例 $F_p(p是素数)$ 。

Example 4.2. 分圆域 $K = Q(\zeta_n)$,其中 $\zeta_n = e^{2i\pi/n} = \cos 2\pi/n + i \sin 2\pi/n \in C$. ζ_n 是n次本原单位根,也是代数元. 问: K/Q是否为Galois扩张?

答:由char(Q) = 0知,K/Q是可分的。 ζ_n 是 $x^n - 1$ 的根.事实上,K是 $x^n - 1$ 在Q上的分裂域,即K/Q是正规的,因此K/Q是Galois扩张。记其Galois群为G = Gal(K/Q)。

(1)设 ζ_n 在Q上的极小多项式为f(x),则 $f(x) \mid x^n - 1$ 。 任取 $\sigma \in G$, $\sigma(\zeta_n) \Rightarrow \mathbb{E}\zeta_n$ 的一个共轭元。且 $\sigma(\zeta_n) = (\zeta_n)^k$,对某个 $k \in \{0, 1, 2, \dots, n-1\}$.

$$\sigma(\zeta_n)$$
的阶 = $r \Rightarrow \sigma(\zeta_n) = 1 \Rightarrow \sigma(\zeta_n^r) = 1 \Rightarrow \zeta_n^r = \sigma(1) = 1 \Rightarrow r = n.$

注: ζ 是n次本原单位根 $\Leftrightarrow \zeta$ 的阶是n,即 $\zeta \in \mathbb{C}^*$ 且是 \mathbb{C}^* 中的一个阶为n的数,比如上述 ζ_n .

$$\circ(\sigma(\zeta_n)) = \circ(\zeta_n^k) = \frac{n}{(n,k)} = n \Leftrightarrow (n,k) = 1.$$

即对 $k \in \{0,1,2,\ldots,n-1\}$, ζ_n^k 是n次本原单位根 \Leftrightarrow (n,k) = 1. 于是, $f(x) = \prod_{k=1,(n,k)=1}^n (x-\zeta_n^k)$ 显然, $deg(f(x)) = \phi(n)$ (Euler函数)称上述f(x)为n次分圆多项式,常记之为 $f(x) \doteq \phi_n(x)$,特别地,当n = p是一个素数时,

$$\phi_p(x) = \prod_{k=1, (k,p)=1}^p (x - \zeta_p^k) = \prod_{k=1}^{p-1} (x - \zeta_p^k) = \frac{x^p - 1}{x - 1} = x^{p-1} + \dots + x + 1.$$

4.4 例题 88

$Gal(K/Q) = [K:Q] = deg(\phi_n(x)) = \phi_n(x).($ 比如n = p素数时, $[Q(\zeta_p):Q] = p-1).$

(2)计算Gal(K/Q).

 $\forall \sigma \in Gal(K/Q), \ \sigma : K = Q(\zeta_n) \longrightarrow Q(\zeta_n).$ 事实: $\sigma(\zeta_n)$ 必是n次本原单位根,故 $\sigma(\zeta_n) = \zeta_n^k, k \in (\mathbb{Z}/n\mathbb{Z})^*$. 而 $\sigma \longrightarrow \overline{k}$ 建立了Gal(K/Q)到($\mathbb{Z}/n\mathbb{Z}$)*的映射.

结论: $K = Q(\zeta_n), G$ 同上,有 $(\mathbb{Z}/n\mathbb{Z})^* \subseteq G = Gal(K/Q).$

证明. 令

$$\psi: (Z/nZ)^* \longrightarrow Gal(K/Q)$$

$$\overline{k} \longmapsto \sigma_k: \zeta_n \longmapsto \zeta_n^k$$

群同态: 即证明 $\psi(\overline{kl}) = \psi(\overline{kl}) = \sigma_k \sigma_l$.

$$\sigma_{kl}(\zeta_n) = \zeta_n^{kl} = (\zeta_n^l)^k = \sigma_k(\sigma_l(\zeta_n)) = (\sigma_k \circ \sigma_l)(\zeta_n).$$

即 $\sigma_{kl} = \sigma_k \circ \sigma_l$. 也即 $\psi(\overline{kl}) = \psi(\overline{k}) \circ \psi(\overline{l})$

 ψ 是单的: 阶数一样, 故证明是双射只需证单。

设 $\overrightarrow{k} \in ker\psi, 则\psi(\overline{k}) = \sigma_k = id.$ 即

$$\sigma_k(\zeta_n) = \zeta_n^k = \zeta_n \Rightarrow \zeta_n^{k-1} = 1 \Rightarrow n | (k-1) \Rightarrow k \equiv 1 \pmod{n},$$

又#
$$Gal(K/Q) = \phi(n) = \#(Z/nZ)^*$$
,故 ϕ 也是满的,从而有 $G = Gal(K/Q) \simeq (\mathbb{Z}/n\mathbb{Z})^*$.

$$O_k = Z[\zeta_n] \to PID$$
?

Example 4.3. $K = Q(\sqrt{-1}, \sqrt{2})|Q \notin Galois$ 扩张?

(1)K/Q是否均Galois扩张?

 $charQ = 0 \Rightarrow K/Q$ 可分。

 $\alpha = \sqrt{-1}, \beta = \sqrt{2}$ 。它们在Q上的极小多项式分别是: $P_{\alpha}(x) = x^2 + 1$,根为: $\sqrt{-1}, -\sqrt{-1}; P_{\beta}(x) = x^2 - 2$,根为: $\sqrt{2}, -\sqrt{2}$. $K = Q(\pm \sqrt{-1}, \pm \sqrt{2})$ 是 $\{P_{\alpha}, P_{\beta}\}$ 在Q上的分裂域. $\Rightarrow K/Q$ 是正规的,从而 K/Q是Galois的,记G = Gal(K/Q). 于是 $\#G = [K:Q] = 4, Q \subset Q(\sqrt{-1}) \subset Q(\sqrt{-1}, \sqrt{2}) = K$ (2)计算Galois群

 $\forall \sigma \in G, K = Q(\alpha, \beta), \sigma(\alpha) \in \{\sqrt{-1}, -\sqrt{-1}\}, \sigma(\beta) \in \{\sqrt{2}, -\sqrt{2}\}.$

确定: $\sigma: (\alpha, \beta) \longmapsto (\sigma(\alpha), \sigma(\beta)), \sigma: (\sqrt{-1}, \sqrt{2}) \longmapsto (\sigma(\sqrt{-1}), \sigma(\sqrt{2})).$ 有下列四种情形:

$$a: \sqrt{-1} \longmapsto \sqrt{-1}, \sqrt{2} \longmapsto \sqrt{2},$$
 此时 $\sigma = id;$
 $b: \sqrt{-1} \longmapsto \sqrt{-1}, \sqrt{2} \longmapsto -\sqrt{2},$ 记为 $\sigma_1;$
 $c: \sqrt{-1} \longmapsto -\sqrt{-1}, \sqrt{2} \longmapsto \sqrt{2},$ 记为 $\sigma_2:$

$$d: \sqrt{-1} \longmapsto -\sqrt{-1}, \sqrt{2} \longmapsto -\sqrt{2}, \stackrel{.}{id} \not \supset \sigma_3;$$

于是 $G = \{1, \sigma_1, \sigma_2, \sigma_3\}, \sigma_1^2 = \sigma_2^2 = \sigma_3^2 = id, \sigma_3 = \sigma_1\sigma_2,$ 可知

$$G = <\sigma_1, \sigma_2> = <\sigma_1> \times <\sigma_2> \cong \mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}.$$

G的子群为: $\{1\}, <\sigma_1>, <\sigma_2>, <\sigma_1\sigma_2>=<\sigma_3>, G$ 对应的中间域为K.

$$K^{<\sigma_1>} = K^{\sigma_1} = Q(\sqrt{-1}), K^{\sigma_2} = Q(\sqrt{2}), K_3^{\sigma} = Q(\sqrt{-2}).$$

5 环与模的链条件

5.1 环与模的链条件

Theorem 5.1. 设A是一个含幺交换环,M是一个A-模,则下列陈述等价:

- (1)(ACC)(升链条件): 对M中的任意子模升链(可数链) $M_1 \subset M_2 \subset \ldots \subset M_n \subset \ldots$ 则 (*)式是稳定的,即存在 $n \in Z_{>1}$, " $M_n = M_{n+1} = \ldots$
- (2)(极大条件)任意一个由M的子模构成的非空集合均有极大元。(集合的包含关系)
- (3)(有限生成条件)M的任一子模均是有限生成A-模。

Definition 5.1. 对于 $M \in A$ -模,如果M满足上述定理的条件,则称M是一个Noether A-模。

证明. $(1)\Rightarrow(2)$ 设*M*是M的一个子模非空集簇,要证*M*中含极大元。(反证)假若不然,任取 $M_1\in \mathcal{M}$,则 M_1 不是*M*中极大元,故有 $M_2\in \mathcal{M}\Rightarrow M_1\subsetneq M_2$.同理, M_2 也不是*M*中极大元,故有 $M_3\in \mathcal{M}\Rightarrow M_2\subsetneq M_3$.以此类推即可得到M中一个无限长子模链。 $M_1\subsetneq M_2\subset M_3\subsetneq\ldots$ 与所设矛盾! $(2)\Rightarrow(3)$ 任取子模N \leq M,不妨设N \neq 0,下证N是有限生成的。为此,令 $\mathcal{M}=\{L:L\leq N, \exists L$ 是有限生成的}.显然, $0\in \mathcal{M}$,故, $\mathcal{M}\neq\Phi$,由所设, \mathcal{M} 中含极大元,设其一为 N_0 .只需证 $N_0=N$ 。假若 $N_0\neq N$,即 $N_0\subsetneq N$ 。于是有 $\alpha\in N\setminus N_0$,令 $L_0=< N_0$, $\alpha>=N_0+A\alpha$ 则, $L_0\leq N$,且 L_0 是有限生成的,故 $L_0\in \mathcal{M}$.但 $N_0\subsetneq L_0$,这与 N_0 的极大性矛盾!因此, $N=N_0$ 是有限生成的。

 $(3) \Rightarrow (1), 任取M的一个可数子模升链, <math>M_1 \subset M_2 \subset \ldots, \diamondsuit N = \bigcup_{i=0}^\infty M_i, \ M_i, \ M_i \in M$,有所设,N是有限生成A-模,即 $N = <\alpha_1, \alpha_2, \ldots \alpha_m > = A\alpha_1 + \ldots + A\alpha_m, (\alpha_1, \ldots \alpha_m \in N)$ 由 $\alpha_1, \ldots \alpha_m \in N = \bigcup_{i=0}^\infty M_i, \ \Delta f \in Z_{\geq 1} \Rightarrow \alpha_1, \ldots \alpha_m \in M_r \Rightarrow N = <\alpha_1, \alpha_2, \ldots \alpha_m > \subset M_R \subset N \Rightarrow N = M_r \Rightarrow M_r \subset M_{r+k} \subset N = M_r \Rightarrow M_{r+k} = M_r (\forall k \in Z_{\geq 0})$

对偶地,有Artin 模

Theorem 5.2. 设A是一个含1交换环,M是一个A-模,则下列条件等价:

- (1)(DCC)M的任一个可数子模降链均稳定的,即对任一个子模链, $M_1\subset M_2\subset\ldots$ 则有 $n\in Z_{\geq 1}$,使得 $M_n=M_{n+1}=\ldots$
- (2)(极大条件).有M的子模构成的任一非空集簇均有极小元。

Noether 模, Artin 模

Definition 5.2. 设A是一个含1交换环,如果A是一个Noether A-模,则称A是Noether 环。

等价地, $A \neq Noether$ A 的理想均是有限生成的。

对偶地, $A \in Artin$ 环 $\leftrightarrow A$ 作为A 模是一个Artin 模。

(2)不满足dcc. 例: $(2) \supset (2^2) \supset (2^3) \supset \dots$ 可无限下去(e) 结论: \mathbb{Z} 是Noether环,但不是Artin环。

Example 5.2. $G = (\mathbb{Q}/\mathbb{Z}, +), (i : \mathbb{Q}/\mathbb{Z} = (\mathbb{R}/\mathbb{Z})_{tor}).$

 $(\mathbb{Z},+) \subset (\mathbb{R},+), \mathbb{R}/\mathbb{Z} = [0,1)$ (作为集合) $\simeq (S^1,\cdot)$ 单位圆.

 $(\mathbb{R}/\mathbb{Z},+)_{tors}=\overline{a}:a\in\mathbb{R},\circ(a)<\infty.$

设p是一个素数,G的Sylow-p子群

$$G(p) = \{a \in G : o(a) \not\equiv p \text{ in } \mathbb{R}\} = p^{-1}Z/Z \cup p^{-2}Z/Z \cup \ldots = \bigcup_{n=0}^{\infty} p^{-n}Z/Z,$$

 $p^{-n}Z/Z \subset p^{-(n+1)}Z/Z, p^{-1}Z/Z \subsetneq p^{-2}Z/Z \subsetneq \dots$ (无限升链) $\Rightarrow Q/Z$ 不是NoetherZ-模。

Example 5.3. A = k[x](k域)A是PID \Rightarrow A是Noether的,但A不是Artin的, $(x) \supseteq (x^2) \supseteq \dots$

Example 5.4. $A = k[x_1, x_2, ...]$

 $A \land \exists Artin \land x, (x_1) \supseteq (x_1^2) \supseteq \dots; A \lor \land \exists Noether \land x, (x_1) \subseteq (x_1, x_2) \subseteq \dots$

注: A是整环,设F是它的分式域,即F = FracA,F是Noether的(域中的理想只有0和本身), $A \subset F$,A不是Noether 的.

(环)Noether性质对子结构不封闭

(模)但M是Noether A—模, $N \subseteq M$,则N也是Noether A—模.原因:子模的子模是子模,N的子模是M的子模 \Rightarrow 有限生成.

MNoether A-模, $N \leq M, NNoether!$

 $L \le N \Rightarrow L \le M$ 子模的子模是子模

 $M/N, A\times M/N \longrightarrow M/N, (a, \overline{m}) \longmapsto \overline{am}$

 $\overline{M} = M/N, \overline{M_1} \le \overline{M_2} \le \dots, N \le M_i \le M, \overline{M_i} = M_i/N$

 $\Rightarrow M_1 \leq M_2 \leq \dots$

验证: $\forall \alpha \in M_1, \overline{\alpha} \in \overline{M_1} \subset \overline{M_2} \Rightarrow \overline{\alpha} = \overline{\beta}$ 对某个 $\beta \in M_2$.即 $\alpha - \beta \in N, \alpha - \beta = \gamma \in N \subset M_2 \Rightarrow \alpha = \beta + \gamma \in M_2$

 $\exists n \in Z_{\geq} 1$ 使得 $M_n = M_{n+1} = \ldots \Rightarrow \overline{M_n} = \overline{M_n + 1} = \ldots \Rightarrow \overline{M} = M/N$ 是Noether的.

证明. \Rightarrow 任取 $L_1 \leq L_2$,则 $L_1 \leq M$,由所设,知 L_1 是有限生成的,故是Noether模。任取N的一个子模升链 $N_1 \leq N_2 \leq \ldots$ 则有M的子模升链 $f(L) \subset g^{-1}(N_1) \leq g^{-1}(N_2) \leq \ldots$ 由所设, $\exists m \in Z_{\geq 1}$,使得 $g^{-1}(N_m) = g^{-1}(N_m+1) = \ldots \Rightarrow N_m = g(g^{-1}(N_m)) = g(g^{-1}(N_m+1)) = N_{m+1} = \ldots \Rightarrow N$ 是个Noether A-模。

 \leftarrow 任取M的一个可数子模升链 $M_1 \leq M_2 \leq \ldots$ 于是有L中的子模升链 $f^{-1}(M_1) \leq f^{-1}(M_2) \leq \ldots$ 及N中的子模升链 $g(M_1) \leq g(M_2) \leq \ldots$ 由所设,存在k使得 $f^{-1}(M_k) = f^{-1}(M_k + 1) = \ldots$ 且 $g(M_k) = g(M_k + 1) = \ldots$

下证 $M_k = M_{k+1} = \dots, 只需证<math>M_{k+1} \subset M_k$.

为此,任取 $\alpha \in M_{k+1}$ 则 $g(\alpha) \in g(M_k+1) = g(M_k)$ 即 $g(\alpha) = g(\beta)$,对某个 $\beta \in M_k$. 也即 $g(\alpha-\beta) = 0 \Rightarrow \alpha-\beta \in ker(g) = im(f) = f(L)$ 即有 $\gamma \in L$,使得 $alpha-\beta = f(\gamma)$,又 $alpha-\beta \in M_{k+1}$,故 $\gamma \in f^{-1}(M_k+1) = f^{-1}(M_k) \Rightarrow f(\gamma) \in M_k \Rightarrow \alpha = \beta + f(\gamma) \in M_k \Rightarrow M_{k+1} \subset m_k$.从而有 $M_{k+1} = M_k$ 同理可证 $M_{k+1} = M_{k+2} = \ldots$ 因此,M是Noether A-模。

Corollary 5.1. M是Noether \not (\Rightarrow M \bigoplus M \gtrless Noether \mapsto \emptyset .

$$0 \longrightarrow M \longrightarrow M \bigoplus M \longrightarrow M \longrightarrow 0.$$

$$\alpha \longmapsto (\alpha, 0),$$

$$(\alpha, \beta) \longmapsto \beta.$$

证明. 归纳法:

$$0 \longrightarrow M_1 \longrightarrow M_1 \oplus M_2 \longrightarrow M_2 \longrightarrow 0$$

 $a_1 \longmapsto (a_1, 0),$
 $(a_1, a_2) \longmapsto a_2.$

 $\Rightarrow M_1 \oplus M_2$ ENoether \circ

 $0 \longrightarrow M_1 \oplus M_2 \longrightarrow M_1 \oplus M_2 \oplus M_3 \longrightarrow M_3 \longrightarrow 0$ 一般地.

$$0 \longrightarrow \bigoplus_{i=1}^{r-1} M_i \longrightarrow \bigoplus_{i=1}^r M_i \longrightarrow M_r \longrightarrow 0$$

特别地, 当M是一个Noether模时, $M^n = M^{\oplus n}$ 是Noether的。

$$M \oplus \ldots \oplus M = M \times \ldots \times M$$

例.X是紧的Hausdorff拓扑空间,且 $\#X = +\infty.C(X) = \{f: f$ 是X上的实值函数 $\}, f: X \longrightarrow R$ 连续,显然, $(C(X), +, \cdot)$ 是一个含幺交换环,令 $B_1 \supsetneq B_2 \supsetneq \dots$ 是X中一个严格闭子集降链,又令 $I_n \triangleleft C(X)$,且 $I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \dots$ (理想的无限升链) $\Rightarrow C(X)$ 不是Noether环。

Proposition 5.1. Noether环上的有限生成模必是Noether模。

证明. 设A是Noether环,M是一个有限生成A-模,即 $M = A\alpha_1 + A\alpha_2 + ... + A\alpha_r, \alpha_1, ...$ fi $\alpha_r \in M$. 显然有A-模满同态 $\Phi: A^r \longrightarrow M, (a_1, ..., a_r) \longmapsto a_1\alpha_1 + ... + a_r\alpha_r$.由所设,A是Noether环,故A也是一个Noether A-模,于是 A^r 也是Noether A-模,从而M是Noether的。

设M \in A-Mod,设有子模降链: $M=M_0\supset M_1\supset\ldots\supset M_r=\{0\}(*), \pm M_i/M_{i+1}$ 是单模, $(i=0,1,\ldots,r-1)$ 此时称(*)是M的一个合成列,称r为M的长度,记为r=L(M),这样的M就成为是一个有限长模.(Jordan-Holder 定理)

Theorem 5.4. 设A是一个交换环, M∈ A-Mod,则M是有限长模⇔ M既是Noether模, 也是Artin模。

证明. \Rightarrow 显然,M是有限长模则不可能有无限升链,也不可能有无限降链。 \Leftarrow $M \neq 0.$ 令 $\mathcal{N} = \{N: N \leq M \leq N \neq M\} \neq \emptyset$.则 $0 \in \mathcal{N}$,由于M 是Noether模,故 \mathcal{N} 中含极大元,取其中一个为 M_1 ,则 M/M_1 是单模,且 M_1 也是Noether的。当 $M_1 = 0$ 时,已证;当 $M_1 \neq 0$ 时,则对 M_1 用上述讨论可得 $M_2 \leq M_1$, $M_2 \neq M_1$,且 M_1/M_2 是单的,以此类推,可得M的子模的严格降链: $M = M_0 \supsetneq M_1 \supsetneq M_2 \supsetneq \dots (*)$

由所设,M是Artin的,故(*)必是稳定的,从而由上述讨论可知, $\exists r \in \mathbb{Z}_{\geq 1}$,使得 M_r =0.因此得M的合成列: $M = M_0 \supset M_1 \supset \ldots \supset M_r = \{0\}$

Theorem 5.5. (Hilbert基本定理) Noether环上的多项式环必是Noether环。具体言之,设A是一个Noether环, x_1, \ldots, x_n 是n个未定元,则A上的多项式环 $A[x_1, \ldots, x_n]$ 是Noether环。

证明. 只需证A[x]是Noether环,其中x是未定元。为此任取A[x]中一个非零理想 \mathscr{A} ,令 $I=\{a\in A:\exists f\in\mathscr{A}$,使得a是f的首项系数}则 $I\vartriangleleft A$.事实上,显然 $0\in I$,设 $a,b\in I$,则有 $f,g\in\mathscr{A}$.使得a,b分别是f,g的首项系数。不妨设

$$f(x) = ax^m + \dots,$$
$$g(x) = bx^n + \dots$$

且设 $m \geqslant n$,则 $f(x) + g(x)x^{m-n} \in \mathscr{A}$ 且其首项系数均为 $a + b.I \triangleleft A$. 由所设,A是Noether环,故I是有限生成的,即 $I = < a_1, \ldots, a_s >$,其中 $a_1, \ldots, a_s \in A$. 由所设,对每个 a_i , 司 $f_i \in \mathscr{A}$,使得 a_i 是 f_i 的首项系数。记 $m_i = deg(f_i), m = max\{m_i : i = 1, \ldots, s\}$ (规定 $deg0 = \infty$)记 $\mathscr{A}' = < f_1, \ldots, f_s >$ (在A[x]中生成),显然 $\mathscr{A} = \mathscr{A}'$. 又记 $\mathscr{B} = A + Ax + \ldots + Ax^{m-1}$ 是由 $\{1, x, \ldots, x^{m-1}\}$ 生成的A-模。任取 $f \in \mathscr{A}$,如果deg(f) < m,则 $f \in b$.如果 $deg(f) = n \geq m$.此时设f的首项系数为a.则 $a \in I$,于是有 $a = c_1a_1 + \ldots + c_sa_s$,其中 $c_1, \ldots, c_s \in A$.令 $g(x) = f(x) - \sum_{i=1}^s c_i x^{n-mi} f_i$.则 $g(x) \in \mathscr{A}$,但此时deg(g(x)) < n.以此类推,有限步后,可得f(x) = h(x) + l(x),其中 $h(x) \in \mathscr{A}'$, $l(x) \in \mathscr{A} \cap \mathscr{B}$,(因为 $f,h \in \mathscr{A} \Rightarrow l \in \mathscr{A}$)即 $f(x) \in \mathscr{A}' + (\mathscr{A} \cap \mathscr{B}) \Rightarrow \mathscr{A} \subset \mathscr{A}' + (\mathscr{A} \cap \mathscr{B})$ 注意到A是Noether环, \mathscr{B} 是有限生成A-模,故 \mathscr{B} 是Noether A-模 $\mathscr{A} \cap \mathscr{B}$ 也是Noether A-模,故有 $g_1, \ldots, g_t \in \mathscr{A} \cap \mathscr{B}$,使得 $\mathscr{A} \cap \mathscr{B} = Ag_1 + \ldots + Ag_t \Rightarrow \mathscr{A} = \mathscr{A}' + Ag_1 + \ldots + Ag_t \subset \mathscr{A}' + A[x]_{g_1} + \ldots + A[x]_{g_i} \subset \mathscr{A}$. $\Rightarrow \mathscr{A} = < f_1, \ldots, f_s, g_1, \ldots, g_t > \ldots$

Hilbert基定理

设A是Noether环,则A上的多项式环 $A[x_1, \ldots, x_n]$ 也是Noether环。

证明. 任取 $I \triangleleft B$ (理想),由所设,B是有限生成A-模,另一方面,显然I是B的一个A-子模, $(A \subset B)$.从而I 使有限生成A模,即有 $I = A\alpha_1 + \ldots + A\alpha_m$.其中 $\alpha_1, \ldots, \alpha_m \in I \subset B$.于是 $I = A\alpha_1 + \ldots + A\alpha_m \subset B\alpha_1 + \ldots + B\alpha_m \subset I \Rightarrow I = B\alpha_1 + \ldots + B\alpha_m$ 即I是B中有限生成理想,因此B是一个Noether环。

Proposition 5.3. 设A是一个交换环,S是A的一个乘法闭子集,如果A是一个Noether环,则分式环 $S^{-1}A$ 也是Noether环。

证明. 任取 $S^{-1}A$ 中理想J,则 $J=S^{-1}I$,其中 $I \triangleleft A$ 。由所设,I是有限生成的,即 $I=A\alpha_1+\ldots+A\alpha_m$,其中 $\alpha_1,\ldots,\alpha_m\in A$. $\Rightarrow J=S^{-1}I$, $=S^{-1}A\alpha_1+\ldots+S^{-1}A\alpha_m$.即J是 $S^{-1}A$ 的有限生成理想 $\Rightarrow S^{-1}A$ 是Noether环。特别地,任取 $P\in Spec(A)(A$ 的素理想集), $A_p=S^{-1}A$,其中 $A=A\setminus P$. \square

Corollary 5.3. A是Noether环,则 A_p 是Noether环。

多项式及多项式组的零点(system)

1.一个变量

対 $\forall a \triangleleft A, Z(a).$

 $f(x) \in R[x].f(x) = x^2 - 2x + 1, y = ax^2 + bx + c(a > 0).R$ 不是代数封闭域 $y = f(x), 2 \nmid deg(f)$,图像一定过x轴, $x \to +\infty, 2 \nmid n$. 2.两个变量的情形 $f(x,y) = ax + by + c.(a,b,c \in R,a,b$ 不同时为0) $f(x,y) = 0, f(p) = 0, f(x,y) = x^2 + y^2 - r^2,$ $f(x,y) = x^2 + y^2 + 1.$ 设k是一个代数封闭域,考虑k上的多项式环, $A = k[x_1, \dots, x_n].f \in A, k^n$ 为k上n维仿射空间。

记 $Z(f) = \{p = (a_1, ..., a_n) \in k^n : f(p) = 0\}$.同样地,任取 $I \subset A, Z(I) = \{p \in k^n : f(p) = 0, (\forall f \in I)\}$,称Z(f)为f在k上的零点集。显然, $Z(1) = Z(c) = \emptyset(c \in k^*), Z(0) = k^n$. $f \in A, \diamondsuit I = I(f) = \langle f \rangle = Af$,为f在A中生成的理想。 $Z(f) = Z(\langle f \rangle) = Z(Af), p \in Z(f) \Rightarrow f(p) = 0 \Rightarrow p \in Z(\langle f \rangle) = Z(Af), \forall g \in \langle f \rangle, \forall g$

Proposition 5.4. 对A中的任一真理想a, 有 $Z(a) \neq \emptyset$.

Theorem 5.6 (Hilbert零点定理(Hilbert's Nullstellensatz)). 设k是一个代数封闭域, $A = k[x_1, \ldots, x_n]$ 是k上的多项式环, $a \triangleleft A$ 是A的一个真理想。 $f \in A \setminus 0$,如果 $Z(f) \subset Z(a)$,即 $f(p) = 0 (\forall p \in Z(a))$.则存在 $r \in Z_{\geq}1$,使得 $f^r \in A$.(即 $f \in \sqrt{a} = rad(a) - a$ 的根理想)。

证明. 引入一个变量y,令 $B = k[x_1, \ldots, x_n, y]$,为方便记,简记 $X = [x_1, \ldots, x_n]$,在B中考虑由a与(1–fy)生成的理想a',即 $a' = \langle a \cup (1 - fy) \rangle$ (在B中)。断言: $a' = \langle 1 \rangle$.假若不然,则a'为B中的真

理想,于是 $Z[a'] \neq \varnothing$.特别地,有 $P = (a_1, \ldots, a_n, b) \in k^n \times k, \exists (1 - fy)(P_0) = 1 - f(p_0)b = 0(*)$ 但另一方面,有所设, $P_0 \in Z(a) \subset Z(f)$,故有 $f(P_0) = 0$,与(*)矛盾! 因此,a' = <1 > .于是

$$1 = g_1 h_1 + \ldots + g_s h_s + (1 - fg)h.(**)$$

其中 $g_i = g_i(x) = g_i(x_1, \dots, x_n) \in a, h_i = h_i[x, y] \in B, h = h(x, y) \in B, X = (x_1, \dots, x_n)$.在(**)中取 $y = \frac{1}{t}$ 得

$$1 = g_1(x)h_1(x, \frac{1}{f}) + \dots + g_s(x)h_s(x, \frac{1}{f}) = \frac{1}{f^r}(g_1(x)f_1(x) + \dots + g_s(x)f_s(x)),$$

$$\Rightarrow f^r = g_1(x)f_1(x) + \dots + g_s(x)f_s(x) \in a.$$

5.2 域的Galois扩张例子选讲

Example 5.5. (三次扩域)

设 $f(x)=x^3+ax+b\in\mathbb{Q}[x]$,是Q上不可约多项式,设 $\alpha_1=\alpha,\alpha_2,\alpha_3$ 为f(x)在C中的全部根,令 $k=\mathbb{Q}(\alpha)$,则 $[K:\mathbb{Q}]=deg(f)=3$.又记 $K=\mathbb{Q}(\alpha_1,\alpha_2,\alpha_3)$ 为f在Q上的分裂域。 K/\mathbb{Q} 是Galois的 $\Leftrightarrow k=K$.

 $(1)K/\mathbb{Q}$ 是Galois的记 $G = Gal(K/\mathbb{Q})$,任取 $\sigma \in G : \alpha_1 \longmapsto \sigma(\alpha_1), \alpha_2 \longmapsto \sigma(\alpha_2), \alpha_3 \longmapsto \sigma(\alpha_3)$.

$$f(x) = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3) = x^3 + ax + b$$

$$f(x) = \sigma(f(x)) = (x - \sigma(\alpha_1))(x - \sigma(\alpha_2))(x - \sigma(\alpha_3)).$$

 σ 只作用在系数上。

 $\Rightarrow (\sigma(\alpha_1), \sigma(\alpha_2), \sigma(\alpha_3))$ 是 $(\alpha_1, \alpha_2, \alpha_3)$ 的一个置换,于是有映射

$$G \longrightarrow S_3, \sigma \longmapsto (\sigma(1), \sigma(2), \sigma(3)).$$

且显然是单一群同态.像相同原像相同. \Rightarrow #G|| S_3 | = 6 \Rightarrow |G| = 3或6.

令 $S=(\alpha_1-\alpha_2), (\alpha_2-\alpha_3)(\alpha_3-\alpha_1), f$ 的判别式即是 $\Delta=S^2,$ (注: 一般地,对于多项式 $f(x)=a\prod\limits_{i=1}^n(x-\alpha_i),$ 则 $\sigma(f)=\prod\limits_{1\leqslant i\leqslant j}(\alpha_i-\alpha_j)^2$ 如: $f(x)=x-\alpha,$

$$f(x) = x^2 + ax + b = (x - \alpha_1)(x - \alpha_2) \cdot \Delta = a^2 - 4b,$$

$$\Delta = (\alpha_1 - \alpha_2)^2 = (\alpha_1 + \alpha_2)^2 - 4\alpha_1\alpha_2 = (-a)^2 - 4b = a^2 - 4b.$$

 $sigma(\Delta) = \sigma(\delta^2) = \Delta(\Delta \in \mathbb{Q})$ 多项式系数在哪里, Δ 就在哪里。

$$\sigma(\Delta) = \Delta(\forall \sigma \in G) \Rightarrow \Delta \in K^G = \mathbb{Q}$$

由上述讨论可知

$$\delta \in \mathbb{Q} \Leftrightarrow \delta \in K^G \Leftrightarrow \sigma(\delta) = \delta(\forall \sigma \in G) \Leftrightarrow G = A_3.$$

 $X\delta \in \mathbb{Q} \Leftrightarrow \Delta = \delta^2 \in \mathbb{Q}^2$

结论: 对于上述 $k = \mathbb{Q}(\alpha), K/\mathbb{Q}$ 是Galois扩张 $\Leftrightarrow k = K \Leftrightarrow G = Gal(K/\mathbb{Q}) = A_3 \Leftrightarrow \Delta \in \mathbb{Q}^2(\mathbb{P}\delta \in \mathbb{Q}).$

对于上述 $f(x) = x^3 + ax + b, \Delta(f) = -4a^3 - 27b^2.$

例如,(1)取 $f(x) = x^3 - x - 1$, $f(\alpha) = 0.\Delta(f) = -4(-1)^3 - 27 = 4 - 27 = -23$ 不属于 \mathbb{Q}^2 。故 $\mathbb{Q}(\alpha)/\mathbb{Q}$ 不是Galois 扩张。对于f在 \mathbb{Q} 上的分裂域K,有Gal(K/Q), $\simeq S_3$.

 $(2)f(x) = x^3 - 3x + 1$, $\Delta(f) = -4(-3)^3 - 27 = 81 = 9^2 \in \mathbb{Q}^2$. $\mathbb{Q}(\alpha)/\mathbb{Q}$ 是Galois的且 $Gal(\mathbb{Q}(\alpha)/\mathbb{Q}) = A_3$.

Example 5.6. $i \xi f(x) = x^4 - 2 \in \mathbb{Q}[x].$

则 f(x) 在 \mathbb{Q} 上不可约 (爱森斯坦判别法,p=2),记 $\alpha=\sqrt[4]{2}$,则 f 在 C 中的所有根为 $\alpha,i\alpha,i^2\alpha,i^3\alpha$ ($i=\sqrt{-1}$),于是 f 在 \mathbb{Q} 上的分裂 域为 $K=\mathbb{Q}(\alpha,i\alpha,i^2\alpha,i^3\alpha)=\mathbb{Q}(\alpha,i)=\mathbb{Q}(\beta)$.

 K/\mathbb{Q} 是 Galois扩张且 $[K:\mathbb{Q}]=[K:\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha):\mathbb{Q}]=2\times 4=8, K=\mathbb{Q}(\alpha,i)=\mathbb{Q}(\alpha)(i).$ 记 $G=Gal(K/\mathbb{Q})$,下面计算G,任取 $\sigma'\in G$

$$\begin{split} \sigma': K &\longrightarrow K, \sigma'(\alpha,i) \longmapsto (\sigma'(\alpha),\sigma'(i)), \\ \sigma'(\alpha) &= \{\alpha, i\alpha, i^2\alpha, i^3\alpha\}, \sigma'(i) = \{i, -i\}. \end{split}$$

令

$$\tau: i \longmapsto -i, \alpha \longmapsto \alpha,$$

 $\sigma: i \longmapsto i, \alpha \longmapsto i\alpha.$

于是 $\tau, \sigma \in G = Gal(K/Q)$ 且 $\tau^2 = id$

$$\sigma(i) = \sigma^{2}(i) = \sigma^{3}(i) = \dots = i;$$

$$\sigma^{2}(\alpha) = \sigma(i\alpha) = \sigma(i)\sigma(\alpha) = i(i\alpha) = -\alpha = i^{2}\alpha;$$

$$\sigma^{3}(\alpha) = \sigma(\sigma^{2}(\alpha)) = \sigma(-\alpha) = -\sigma(\alpha) = -i\alpha = i^{3}\alpha;$$

$$\sigma^{4}(\alpha) = \sigma(\sigma^{3}(\alpha)) = \sigma(-i\alpha) = -i\sigma(\alpha) = \alpha.$$

即 $\sigma^4=id$.故在G中, 阶 $\circ(\tau)=2,\circ(\sigma)=4$,事实: $G=<\sigma,\tau>$,且#G=8(由扩张次数即知) $G\supset<\sigma,\tau>,G\supset<\sigma>$,但 τ 不属于 $<\sigma>$,故 # $<\sigma,\tau>>4. <math>\Rightarrow$ # $<\sigma,\tau>>8$ G中的二阶元: $\circ(\tau)=2,\circ(\sigma^2)=2,\circ(\tau\sigma^2)=2,\circ(\sigma^2\tau)=2,\circ(\sigma\tau)=2$. 关系:

$$\tau \sigma \tau^{-1} = \tau \sigma \tau = \sigma^{-1} = \sigma^3.$$

G共有五个二阶子群, 分别为:

$$<\tau>, <\sigma^{2}\tau>, <\sigma^{2}>, <\sigma^{2}>, <\sigma^{3}\tau>$$

所对应的中间域分别为:

$$Q(\alpha), Q(i\alpha), Q(\alpha^2 + i), Q((i+1)\alpha), Q((i-1)\alpha).$$

G共有三个四阶子群, 分别为:

$$<\tau,\sigma^2>,<\sigma>,<\sigma^2,\tau\sigma>,$$

所对应的中间域分别为:

$$Q(\sqrt{2}), Q(i), Q(\sqrt{-2}).$$

Example 5.7. 设k是一个域, t_1, \ldots, t_n 是n个在k上代数无关的元,(未定元)考虑域 $K = k(t_1, \ldots, t_n)$,显然,n次对称群 S_n 可作用于集合 $\{t_1, \ldots, t_n\}$ 上,即对 $\forall \sigma \in S_n$,令 $\sigma(t_1, \ldots, t_n) = (t_{\sigma(1)}, \ldots, t_{\sigma(n)})$ 由此导出,K到自身的一个k—自同构,仍记为 σ .即 $\sigma \in Aut_k(K)$,事实上,得到单一群同态 $S_n \hookrightarrow Aut_k(K)$ 于是,可把 S_n 看作 $Aut_k(K)$ 的子群.令 $E = K^{S_n}$,则由Artin定理可知,K/E是Galois的.且Gal(K)

 $f \in E \Leftrightarrow \sigma(f) = f(\forall \sigma \in S_n)$ 其中 $\sigma(f(t_1, \ldots, t_n)) = f(t_{\sigma(1)}, \ldots, t_{\sigma(n)})$ 即f是关于 t_1, \ldots, t_n 的 对称多项式 $\Rightarrow f = g(s_1, \ldots, s_n)$,其中 $g \in K, s_1, \ldots, s_n$ 是关于 t_1, \ldots, t_n 的全部初等对称多项式 $\Rightarrow E = k(s_1, \ldots, s_n)$.

另一方面, 对 $\forall h \in k(s_1,\ldots,s_n)$,显然有 $\sigma(h)=h(\forall \sigma \in S_n) \Rightarrow k(s_1,\ldots,s_n) \subset E$,因此 $E=k(s_1,\ldots,s_n)$,即

$$K^{S_n} = k(t_1, \dots, t_n)^{S_n} = k(s_1, \dots, s_n),$$

又,令 $f(x)=(x-t_1)\dots(x-t_n)$,则 $K=k(t_1,\dots,t_n)$ 是f在k上的分裂域,f可分, $f(x)\in F[x]$,其中 $E=k(s_1,\dots,s_n)\Rightarrow K/E$ 是Galois扩张,且 $Gal(K/E)=S_n$.

(Galois逆问题).任给一个有限群H,是否有有理数域 \mathbb{Q} 的Galois扩张K,使得 $Gal(K/\mathbb{Q})=H$?

Example 5.8. 复数域C是一个代数封闭域.(代数基本定理)

证明. 3个事实:(0)任意非负实数均是某个实数的平方. $\alpha \in R_{\geq 0}, \alpha = \beta^2$

- (1)奇次数实系数多项式必有实数根.(用连续性)
- (2)R(i)中任意元素在R(i)中均有一个平方根.(假设不知是 \mathbb{C})即 $\forall \alpha = a + bi \in R(i)(a, b \in R)$ 都有 $\alpha = (c + di)^2$,其中 $c^2 = \frac{a + \sqrt{a^2 + b^2}}{2}$, $d^2 = \frac{-a + \sqrt{a^2 + b^2}}{2}$ 下证R(i)是代数封闭的.

为此,任取R(i)中一个有限扩域K,则K/R是有限扩张,设L是K/R的一个正规闭包,记G=Gal(L/R),显然,2=[R(i):R]|[L:R].即2|#G.令H为G的Sylow-2于群,记E为L对R的对应于H的中间域,则 $2 \nmid [E:R]$,即E为R 的奇数次扩张,又由本原元素定理, $E=R[\alpha]$,对某个 $\alpha \in E$,设 α 在R上的极小多项式为 $P_{\alpha}(x)$.则 $P_{\alpha}(x) \in R[x]$, $2 \nmid deg(P_{\alpha}(x))$,且 $P_{\alpha}(x)$ 在R上不可约,于是由前面的事实(1)可知, $deg(P_{\alpha}(x))=1$,即 $\alpha \in R \Rightarrow E=R \Rightarrow G=H$,即G是一个2—群,记 $\#G=2^r$,下证r=1.

为此,记 $G_0 = Gal(L/R(i))$,则# $G_0 = 2^{r-1}$.假若r-1 > 0,则 G_0 由一个 2^{r-2} 阶子群 H_0 ,且令 $E_0 = L^{H_0}$,则 $[E:R(i)] = [G_0:H_0] = 2$,即 E_0 是R(i)的二次扩域,与事实(2)矛盾. $\Rightarrow r=1 \Rightarrow L = R(i) \Rightarrow K = R(i)$,即R(i)是代数封闭的。

Example 5.9. 设p是一个素数, $f(x) \in \mathbb{Q}$ 是 \mathbb{Q} 上的p次不可约多项式, 如果f恰有两个非实的复根,则f在 \mathbb{Q} 上的分裂域的Galois群即是 $S_n(p$ 次对称群)。

证明. 用到如下事实: S_p 可由p-循环(12...p)与任一个对换生成. $(S_P = < 12...p, tau > \tau = (mn)$ 是个对换),记K为f在 \mathbb{Q} 上的分裂域,且设 α 为f在 \mathbb{Q} 中的一个根,并记 $F = \mathbb{Q}(\alpha)$,则 $[F : \mathbb{Q}] = degf = p \Rightarrow p|[K : \mathbb{Q}] = \#G$,其中 $G = Gal(K/\mathbb{Q})$,即G中含有p阶元,又 $G \leqslant S_p$,由置换群的性质可知, S_p 中的p阶元必与p轮换(12...p)共轭,又由所设,f(x)有p-2个实根 $\alpha_1, \ldots \alpha_{p-2}$,及一对共轭复根 $\beta, \overline{\beta}$.

令

$$\tau: K \longrightarrow K$$

$$\alpha_i \longmapsto \alpha_i$$

$$\beta \longmapsto \overline{\beta}$$

$$\overline{\beta} \longmapsto \beta$$

则 $\tau \in S_n$,是一个对换 $\Rightarrow G = S_p$.

如 $f(x) = x^5 - 4x + 2$,则f在Q上的分裂域K的Galois群即为 S_5 . $f'(x) = 5x^4 - 4, x = \pm \sqrt[4]{\frac{4}{5}}.$ $f''(x) = 20x^3, f''(-\sqrt[4]{\frac{4}{5}}) < 0$ 极大值点, $f''(\sqrt[4]{\frac{4}{5}}) > 0$ 极小值点。