Prova 2

Beatriz Lima Silveira

Questão 1

```
# bibliotecas
  library(readxl)
  library(forecast)
  library(rugarch)
  # Carregando os dados
  Petrobras <- read_excel("Petrobras.xls")</pre>
  # Calculando o log retorno
  log_retornos <- diff(log(Petrobras$PETROBRAS))</pre>
Ajustando um modelo ARMA.
  lista_modelos <- NULL
  for (d in 0:1){
    for (p in 0:5){
      for (q in 0:5){
        modelo <- forecast::Arima(log_retornos, order = c(p, d, q))</pre>
        lista_modelos <- rbind(lista_modelos, c(p, d, q, modelo$aic))</pre>
    }
  }
  lista_modelos <- as.data.frame(lista_modelos)</pre>
  colnames(lista_modelos) <- c("p", "d", "q", "aic")</pre>
  modelos <- lista_modelos |>
    dplyr::arrange(aic)
```

```
## Escolhendo o modelo com menor AIC
  melhor_ARMA <- forecast::Arima(log_retornos,</pre>
                                    order = c(modelos[1,]$p,
                                              modelos[1,]$d,
                                              modelos[1,]$q)
                                    )
  melhor_ARMA
Series: log_retornos
ARIMA(5,0,4) with non-zero mean
Coefficients:
                                    ar4
         ar1
                  ar2
                           ar3
                                             ar5
                                                      ma1
                                                              ma2
                                                                        ma3
                                                                               ma4
      0.6215 \quad -0.0799 \quad 0.4473 \quad -0.9721 \quad 0.0908 \quad -0.5199 \quad 0.0098 \quad -0.4765
                                                                             0.956
              0.0695 0.0527
                                 0.0334 0.0274
s.e. 0.0446
                                                   0.0360 0.0537
                                                                     0.0349 0.021
        mean
      0.0011
s.e. 0.0010
sigma^2 = 0.001161: log likelihood = 2941.14
AIC=-5860.28
               AICc=-5860.11
                                BIC=-5801.85
  ## Utilizando a função auto.arima para comparação
  melhor_arma <- forecast::auto.arima(log_retornos)</pre>
  melhor_arma
Series: log_retornos
ARIMA(2,0,1) with non-zero mean
Coefficients:
         ar1
                  ar2
                            ma1
                                   mean
      0.7943 -0.1287 -0.6811 0.0011
s.e. 0.1147 0.0261
                       0.1134 0.0008
sigma^2 = 0.001174: log likelihood = 2929.88
              AICc=-5849.72
AIC=-5849.76
                                BIC=-5823.2
```

O modelo aujstado usando a função forecast::arima indica a presença de 5 parametros autoregressivos (AR) e 4 médias móveis (MA). Além disso, o valor muito próximo de zero para a média do modelo sugere que não há um viés significativo na série. A próxima etapa para uma analise mais robusta é avaliar os residuos e aplicar testes para verificação de ruidos brancos.

Para fins de comparação, foi ajustado o modelo também utilizando forecast::auto.arima(). Nesse caso o modelo indicado foi o ARMA(2,1), um modelo menos robustoque performa melhor nas métricas de comparação como AIC.

Por esses motivos, seleciono o modelo ARMA(2,1)

Questão 02

```
residuos <- (melhor_arma$residuals)

## ACF e PACF

acf(residuos)
```

Series residuos

pacf(residuos)

Series residuos


```
## Teste de Ljung-Box
Box.test(residuos^2, type = "Ljung-Box", lag = 5)

Box-Ljung test
data: residuos^2
X-squared = 515.55, df = 5, p-value < 2.2e-16</pre>
```

Rejeita-se a hipótese nula, ou seja, há variância temporal ao longo da série.

```
r_values <- 0:6
s_values <- 0:0
best_aic_garch <- Inf
best_garch_model <- NULL

for (r in r_values) {
  for (s in s_values) {
    spec <- ugarchspec(</pre>
```

```
variance.model = list(garchOrder = c(r, s)),
       mean.model = list(armaOrder = c(0, 0)),
       distribution.model = "norm"
      possible_model <- tryCatch(</pre>
         fit <- ugarchfit(spec, residuos)</pre>
         list(model = fit, aic = infocriteria(fit)[1])
       },
       error = function(e) NULL
      )
      if (!is.null(possible_model) && possible_model$aic < best_aic_garch) {</pre>
       best_aic_garch <- possible_model$aic</pre>
       best_garch_model <- possible_model$model</pre>
      }
    }
  }
  best_garch_model
         GARCH Model Fit
Conditional Variance Dynamics
_____
GARCH Model : sGARCH(5,0)
Mean Model : ARFIMA(0,0,0)
Distribution
            : norm
Optimal Parameters
   -----
       Estimate Std. Error t value Pr(>|t|)
       mu
       0.000344 0.000034 10.04551 0.000000
omega
alpha1 0.193470 0.043143 4.48435 0.000007
alpha2 0.202787 0.038826 5.22290 0.000000
alpha3 0.195992 0.042589 4.60194 0.000004
alpha4 0.101606 0.051308 1.98032 0.047667
alpha5 0.038194 0.026228 1.45622 0.145331
```

Robust Standard Errors:

	Estimate	Std. Error	t value	Pr(> t)
mu	0.000298	0.000984	0.30255	0.762235
omega	0.000344	0.000059	5.86386	0.000000
alpha1	0.193470	0.061746	3.13332	0.001728
alpha2	0.202787	0.079380	2.55462	0.010630
alpha3	0.195992	0.059508	3.29357	0.000989
alpha4	0.101606	0.126740	0.80169	0.422734
alpha5	0.038194	0.031720	1.20410	0.228551

LogLikelihood : 3164.514

Information Criteria

Akaike -4.2156 Bayes -4.1908 Shibata -4.2157 Hannan-Quinn -4.2064

Weighted Ljung-Box Test on Standardized Residuals

statistic p-value

Lag[1] 3.742 0.05305 Lag[2*(p+q)+(p+q)-1][2] 5.953 0.02265 Lag[4*(p+q)+(p+q)-1][5] 7.690 0.03517

d.o.f=0

H0 : No serial correlation

${\tt Weighted\ Ljung-Box\ Test\ on\ Standardized\ Squared\ Residuals}$

d.o.f=5

Weighted ARCH LM Tests

ARCH Lag[6] 0.2904 0.500 2.000 0.5900 ARCH Lag[8] 0.4765 1.480 1.774 0.9069 ARCH Lag[10] 1.8978 2.424 1.650 0.7900

Nyblom stability test

Joint Statistic: 2.6482 Individual Statistics:

mu 1.1297 omega 0.3325 alpha1 0.2473 alpha2 0.1441 alpha3 0.1687

alpha4 0.3373

alpha5 0.2783

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.69 1.9 2.35
Individual Statistic: 0.35 0.47 0.75

Sign Bias Test

t-value prob sig
Sign Bias 0.9078 0.36411
Negative Sign Bias 1.2178 0.22349
Positive Sign Bias 1.0182 0.30873
Joint Effect 10.1004 0.01773 **

Adjusted Pearson Goodness-of-Fit Test:

	group	statistic	p-value(g-1)
1	20	44.30	8.591e-04
2	30	71.57	1.842e-05
3	40	81.97	6.883e-05
4	50	83.04	1.714e-03

Elapsed time : 0.190613

Este modelo é um GARCH(5,0), ou seja, ele modela a volatilidade em cinco passoe e não tem termos de média. Assume que os retornos seguem uma distribuição normal.