نظریه الگوریتمی بازیها

نيمسال دوم ۱۴۰۲ -۱۴۰۳

دانشکدهی مهندس*ی* کامپیوتر

دكتر فضلى

تمرين اول

١ تعاريف اوليه

1.1

تعریف ریاضی یک تعادل نش مخلوط (احتمالاتی) را با توجه به نوتیشن گفته شده بنویسید.

7.1

دربارهی Pareto Efficiency تحقیق کنید و آنرا با توجه به نوتیشن بالا بیان کنید.

٣.١

دو ماتریس پاداش باید در چه شرطی صدق کنند تا بازی متقارن باشد؟

۲ بازیهای معروف

1. 7

در ادامه ۳ ماتریس پاداش برای ۳ بازی مختلف که اسامی آنها Prisoner's Dilemma و Battle of the Sexes و Chicken هستند (نه لزوما به همین ترتیب) میباشند.

7.7

دربارهی این بازی ها تحقیق کنید و بیان کنید کدام ماتریس برای کدام بازی است.

4. 1

تعادل نش هر بازی را محاسبه کنید (هر راه درستی قابل قبول است).

-10,-10	3,-2
-2 3,	0,0

-1,-1	-5,0
0,-5	-3,-3

10,2	-5,-5
-5,-5	2,10

۳ تکنیکهای محاسبه تعادل نش

1.4

دربارهی تکنیک Indifference Principle تحقیق کنید و از نوتیشن مطرح شده در سوال ۱ استفاده کنید و آنرا به شکل ریاضی بیان کنید (میتوانید نوتیشن جدید معرفی کنید).

7.4

دربارهی تکنیک Iterative Elimination of Dominated Strategies تحقیق کنید و با استفاده از این روش تعادل نش ماتریس زیر را پیدا کنید:

4,4	3,1	4,2
2,2	1,1	2,3
3,3	4,1	3,4

۴

n نفر در یک بازی شرکت کرده اند و هرکدام بدون اطلاع از دیگری به بازی میپردازند. هرکس میتواند تصمیم بگیرد که داوطلب بشود یا خیر. در صورتی که تعدادی داوطلب بشوند به افرادی که نشدند ۱۵۰۰ تومان و به افرادی که شدند ۱۰۰۰ تومان پاداش تعلق میگیرد و در صورتی که کسی داوطلب نشود به هیچکس پاداشی داده نمیشود. تعادل نش این بازی را پیدا کرده و نشان دهید که یکتاست.

۵ یارادوکس بریس: بازبینی

١.۵

پارادوکس بریس را در شبکه زیر توضیح دهید (یال خط چین بناست که اضافه شود). به یالی که f واحد ترافیک از خود عبور میدهد مقداری که روی هر یال نوشته شده هزینه تعلق میگیرد. در کل ۶ واحد صحیح ترافیک داریم که از نقطه a به d میروند.

۲.۵

پارادوکس بریس رخ داده در این مثال را به زبان Pareto Efficiency و تعادل نش بیان کنید.

۶ هزینه آشوب در شبکههای ترافیکی

شبکهی ترافیکی زیر با f واحد پیوسته ترافیک در نظر بگیرید که از a به b میرود. فرض کنید هزینه کل جامعه (مجموع هزینه های f واحد ترافیک) در حالتی که یال خط چین وجود ندارد و شبکه به تعادل رسیده برابر C_1 و در حالتی که آنرا اضافه کنیم و شبکه در تعادل جدید باشد برابر c_1 باشد. تمامی توابع هزینه یال ها خطی هستند. برای درک بهتر، اگر میزان ترافیک یالها را در حالت اولیه با c_2 و در حالت ثانویه را با c_2 نشان دهیم، در آنصورت

$$\begin{split} C_{1} &= C_{ab}(x_{ab})x_{ab} + C_{ac}(x_{ac})x_{ac} + C_{bd}(x_{bd})x_{bd} + C_{cd}(x_{cd})x_{cd} \\ C_{7} &= C_{ab}(x'_{ab})x'_{ab} + C_{ac}(x'_{ac})x'_{ac} + C_{bd}(x'_{bd})x'_{bd} + C_{cd}(x'_{cd})x'_{cd} + C_{bd}(x'_{bd})x'_{bd}. \end{split}$$

حال نشان دهید

$$C_{\mathsf{Y}} \leqslant \mathsf{Y}C_{\mathsf{Y}}.$$

با توجه به نتیجه بالا، دربارهی هزینه آشوب چه میتوان گفت؟ (راهنمایی: این قضیه پتانسیل تعمیم به تمامی شبکههای ترافیک خطی را دارد).

۷ مثالهای دیگر پارادوکس

یک راه تبیین پارادوکس بریس این است که بگوییم اضافه شدن امکانات همیشه به نفع جامعه نیست و لزوما اوضاع آنرا بهتر نمیکند. مثال دیگری از این پدیده بیان کنید و وجود این پارادوکس را در آن شرح دهید.

۸ سختی محاسبه تعادل نش

١.٨

در حالت کلی پیدا کردن تعادل نش میتواند کار سختی باشد. کلاس پیچیدگی این مسئله را (در حالت کلی) پیدا کنید و آنرا تعریف کنید.

۲.۸

در بعضی حالات اما این محاسبه امکان پذیر است. یکی از این موارد شبکههای ترافیکی است. دربارهی بازیهای پتانسیلی تحقیق کنید و سپس الگوریتم چندجملهای برای پیدا کردن تعادل نش در شبکههای ترافیکی بیان کنید (راهنمایی: از یک پروفایل استراتژی شروع کنید و آنرا بهبود دهید).