Proiectarea Algoritmilor

Curs 12 – Euristici de explorare (continuare)
Algoritmi aleatorii

Bibliografie

- [1] C. Giumale Introducere in Analiza Algoritmilor cap. 6.1
- [2] Cormen Introducere in algoritmi cap. 8.3
- [3] http://classes.soe.ucsc.edu/cmps102/ Spring04/TantaloAsymp.pdf
- [4] http://www.mersenne.org/

Proiectarea Algoritmilor

Euristici de explorare (continuare)

Reminder Algoritmul A* - completitudine și optimalitate

• Definiție 7.2: Funcția euristică h este admisibilă dacă pentru orice nod n din spațiul stărilor h(n) \leq h*(n). Cu alte cuvinte, o euristică admisibilă h este optimistă și h(γ) = 0 pentru orice nod γ ∈ Γ.

 Teorema 7.2: Algoritmul A* ghidat printr-o euristică admisibilă descoperă soluția
 optimă dacă există soluții.

Euristici – consistență și monotonie

- Definiție 7.4: O euristică h este consistentă dacă pentru oricare două noduri n şi n' ale grafului explorat, astfel încât n' este accesibil din n, există inegalitatea: h(n) ≤ h(n') + k(n,n'), unde k(n,n') este costul unui drum optim de la n la n'.
- Definiție 7.5: O euristică h este monotonă dacă pentru oricare două noduri n şi n' ale grafului explorat, astfel încât n' este succesorul lui n, există inegalitatea h(n) ≤ h(n') + c(n,n'), unde c(n,n') este costul arcului (n,n').

 $h(n) \le h(n') + k(n,n')$

Regula triunghiului pentru euristici:

- ← Consistență
- → Monotone

$$h(n) \le h(n') + c(n,n')$$

Consistență = monotonie

- Teorema 7.5: O euristică este consistentă
 ⇔ este monotonă.
 - Demonstrație:
 - h consistentă \rightarrow h monotonă. Alegem n' \in succs(n) \rightarrow k(n,n') = c(n,n') \rightarrow h(n) \leq h(n') + c(n,n') \rightarrow h monotonă.
 - h monotonă → h consistentă. Fie n = $n_1, n_2, ..., n_q = n'$, un drum optim n..n' cu cost k(n,n'). → h(n) = h(n₁) ≤ h(n₂) + c(n₁,n₂) ≤ h(n₃) + c(n₁,n₂) + c(n₂,n₃)... ≤ h(n_q) + c(n₁,n₂) + c(n₂,n₃) + ...c(n_{q-1},n_q) = h(n_q) + k(n₁,n_q) → h(n) ≤ h(n') + k(n,n') → h consistentă.

Consistență -> admisibilitate

- Teorema 7.6: O euristică consistentă este admisibilă.
 - Demonstraţie:
 - Fie h o euristică consistentă \rightarrow h(n) \leq h(n') + k(n,n'), \forall n' accesibil din n. Fie n' = $\gamma \in \Gamma \rightarrow$ k(n, γ) = min { k(n, γ ') | γ ' $\in \Gamma$ } = h*(n) \rightarrow h(n) \leq h(γ) + h*(n), dar h(γ) = 0 \rightarrow h(n) \leq h*(n) \rightarrow euristică admisibilă.
- Corolar 7.2: O euristică monotonă este admisibilă.

Dominanță - Definiții și teoremă

- Definiție 7.6: Fie h₁ și h₂ două euristici admisibile. Spunem că h₁ este mai informată decât h₂ dacă h₂(n) < h₁(n) pentru orice nod n ∉ Γ din graful spațiului de stare explorat.
- Definiție 7.7: Un algoritm A₁* domină un algoritm A₂* dacă orice nod expandat de A₁* este expandat și de A₂*. (eventual, A₂* expandează noduri suplimentare față de A₁*, deci A₁* poate fi mai rapid ca A₂*.)
- Teorema 7.11: Dacă o euristică monotonă h₁ este mai informată decât o euristică monotonă h₂, atunci un algoritm A₁* condus de h₁ domină un algoritm A₂* condus de h₂.

Dominanţa - Exemplu

 Considerăm jocul 8-pătrățele care trebuie aranjat pornind de la forma inițială prin mutarea locului 'liber' astfel încât să ajungem la forma finală:

7	4	1	1	2	3
5	6	3	4		5
2	8		6	7	8

- Două euristici posibile:
 - h₁ = numărul pătrățelelor a căror poziție curentă diferă de poziția finală;
 - $h_1 = \Sigma_{p \in piese}(\delta_p)$, unde $\delta_p = 0$ dacă poziția curentă coincide cu cea finală și $\delta_p = 1$, altfel
 - h₂ = distanța Manhattan = suma distanțelor pe verticală și orizontală între pozițiile curente ale pătrățelelor și pozițiile lor finale
 - $h_2 = \Sigma_{p \in piese}(dist_h_p + dist_v_p)$

Admisibilitate? Monotonie? Dominanță? Care euristică va fi aleasă pentru A*?

Complexitate A*

- Liniară dacă |h*(n) h(n)| ≤ δ, unde δ ≥ 0 este o constantă.
- Subexponenţială, dacă |h*(n) h(n)| ≤ O(log(h*(n))).
- Exponențială, altfel, (dar mult mai bună decât a căutărilor neinformate).
- Mai multe explicații găsiți în Giumale 7.4.4!

Proiectarea Algoritmilor

Algoritmi aleatorii

Objective

Definirea conceptului de algoritm aleator

Algoritmi Las Vegas

Algoritmi Monte Carlo

Analiza algoritmilor aleatori

Algoritmi aleatori

 Micșorăm timpul de rezolvare a problemei relaxând restricțiile impuse soluțiilor.

- Determinarea soluției optime:
 - Renunțăm la optimalitate (soluția suboptimală are o marjă de eroare garantată prin calcul probabilistic).
- Găsirea unei singure soluții:
 - Găsim o soluție ce se apropie cu o probabilitate măsurabilă de soluția exactă.

Algoritmi Las Vegas

- Găsesc soluția corectă a problemei, însă timpul de rezolvare nu poate fi determinat cu exactitate.
- Timp = ∞ → algoritmul se termină sigur (soluția e optimă).
- Probabilitatea de găsire a soluției crește extrem de repede astfel încât să se determine soluția corectă într-un timp suficient de scurt.

Algoritmi Monte Carlo

 Găsesc o soluție a problemei care nu e garantat corectă (soluție aproximativă).

Timp = ∞ → soluția corectă a problemei.

 Probabilitatea ca soluția să fie corectă creşte o dată cu timpul de rezolvare.

 Soluția găsită într-un timp acceptabil este aproape sigur corectă.

Reminder – complexitatea algoritmilor

$$O(g(n)) = \{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \}$$

f(n) = O(g(n)) says:

 g(n) - limita asimptotică superioară pentru f(n)

http://classes.soe.ucsc.edu/cmps102/Spring04/TantaloAsymp.pdf

Complexitatea algoritmilor Las Vegas

 Definiția 6.1: Algoritmii Las Vegas au complexitatea f(n) = O(g(n))dacă \exists c > 0 și n_0 > 0 a.î. \forall n \geq n_0 avem $0 < f(n) < c \alpha g(n)$ cu o probabilitate de cel puţin 1 - n-α pentru $\alpha > 0$ fixat și suficient de mare.

Complexitate algoritmi Monte Carlo

- Definiția 6.1': Algoritmii Monte Carlo au complexitatea f(n) = O(g(n)) dacă ∃ c > 0 și n₀ > 0 astfel încât:
 - \forall n \geq n₀, 0 < f(n) \leq c α g(n) cu o probabilitate de cel puţin 1 n^{- α} pentru α > 0 fixat si suficient de mare;
 - Probabilitatea ca soluţia determinată de algoritm să fie corectă este cel puţin 1 - n-α.

Exemplu algoritm Las Vegas

Problemă:

- Capitolele unei cărți sunt stocate într-un fișier text sub forma unei secvențe nevide de linii;
- Fiecare secvență este precedată de o linie contor ce indică numărul de linii din secvență;
- Fiecare linie din fișier este terminată prin CR, LF;
- Toate liniile din secvență au aceeași lungime;
- Fiecare secvență de linii conține o linie (titlul capitolului) ce se repetă și care apare în cel puțin 10% din numărul de linii al secvenței.
- Secvențele sunt lungi.©

Cerință:

 Pentru fiecare secvență de linii să se tipărească titlul capitolului (linia care se repetă).

Rezolvare "clasică"

```
Detectează_linii(fișier)
```

- Pentru fiecare Secv ∈ fișier
 - Pentru i de la 0 la dim(Secv)
 - Pentru j de la i + 1 la dim(Secv)
 - Dacă linie(i,Secv) = linie(j,Secv) atunci
 - Întoarce (linie(i,Secv));

prelucrare secvență

Complexitate – O(dim(Secv)²)

Algoritm Las Vegas pentru rezolvarea problemei

 Secțiunea "prelucrare secvență" se înlocuiește cu următoarea funcție:

- Selecție_linii(n,secv) // n = dim secv
 - Cât timp(1) // mereu
 - i = random(0,n-1) // selectez o linie
 - j = random(0,n-1) // și încă una
 - Dacă i != j și linie(i,Secv) = linie(j,Secv) atunci// le compar
 - Întoarce linie(i,Secv) // am găsit linia

Analiza algoritmului Las Vegas (I)

- Notaţii:
 - n = numărul de linii din secvența curentă;
 - q = ponderea liniei repetate în secvență;
 - r = numărul de apariții al liniei repetate: r = n * q / 100; I
 - m = numărul de pași necesari terminării algoritmului;
 - P_k = probabilitatea ca la pasul k să fie satisfăcută condiția de terminare a algoritmului;
 - P(m) = probabilitatea ca algoritmul să se termine după m paşi.

Analiza algoritmului Las Vegas (II)

 Probabilitatea ca la pasul k linia i să fie una din liniile repetate este r / n.

 Probabilitatea ca la pasul k linia j să fie una din liniile repetate (diferită de i) este (r - 1) / n.

 Condiția de terminare: cele 2 evenimente trebuie să se producă simultan:

$$P_k = r / n *(r-1) / n = q / 100 * (q / 100 - 1 / n)$$

Analiza algoritmului Las Vegas (III)

- Probabilitatea ca algoritmul să NU se termine după m paşi:
 - $\Pi_{k=1\rightarrow m}(1 P_k) = \Pi_{k=1\rightarrow m}[1 q / 100 * (q / 100 I / n)] = [1 q / 100 * (q / 100 I / n)]^m$
- \rightarrow P(m) = 1 [1 q / 100 * (q / 100 1 / n)]^m I
- Pp: n > 100; q > 10%
- \rightarrow P(m) $\geq 1 [1 q * (q 1) / 10.000]^m$

Comparație timp de rulare

- q = 10%:
 - 3500 paşi P = 1;
 - 1000 paşi P = 0,9988.
- q = 20%:
 - 1000 paşi P = 1.
- q = 30%:
 - 500 paşi P = 1.
- Varianta clasică: cazul cel mai defavorabil 10000 pași.

Complexitate algoritm Las Vegas

- Algoritmii Las Vegas au complexitatea f(n) = O(g(n)) dacă ∃
 c > 0 si n₀ > 0 a.i. ∀ n ≥ n₀ avem 0 < f(n) < c α g(n) cu o
 probabilitate de cel puţin 1 n⁻α pentru α > 0 fixat si suficient de mare.
- Arătăm că f(n) = O(lg(n)):
 - Notăm: a = 1 q * (q 1) / 10.000;
 - 1 P(c α lg(n)) = probabilitatea ca algoritmul să nu se termine în c α lg(n) pași;
 - P(c α lg(n)) ≥ 1- $a^{c α lg(n)}$ → 1 P(c α lg(n)) ≤ $a^{c α lg(n)} = n^{c α lg(a)} = n^{-c α lg(1/a)}$ pentru că 0 < a < 1;
 - Dacă alegem c ≥ lg⁻¹(1/a) → 1 P(c α lg(n)) ≤ n⁻α → P(c α lg(n))
 ≥ 1 n⁻α → algoritmul se termină în lg⁻¹(1/a) α lg(n) pași cu o probabilitate ≥ 1 n⁻α → (definiție) f(n) = O(lg(n)).

Exemplu algoritm Monte Carlo

 Problemă: testarea dacă un număr n dat este prim.

- Rezolvare "clasică":
- Complexitate: O(sqrt(n))

- Prim-clasic(n)
 - Pentru i de la 2 la sqrt(n)
 - Dacă (n mod i == 0) întoarce fals;
 - Întoarce adevărat

Determinarea numerelor prime - complexitate

 Observaţie: pentru numere mari – operaţiile nu mai durează O(1)!

 Estimăm numărul de operații în funcție de numărul de biți pe care este exprimat numărul.

 Prim_clasic – O(2^{k/2}) unde k = nr. de biţi ocupat de n.

Complexitate nesatisfăcătoare!

- "On September 4, 2006, in the same room just a few feet away from their last find, Dr. Curtis Cooper and Dr. Steven Boone's <u>CMSU</u> team broke their own <u>world</u> record, discovering the 44th known Mersenne prime, 2^{32,582,657}-1. The new prime at <u>9,808,358 digits</u> is 650,000 digits larger than their previous record prime found last December."
- "On April 12th (2009), the 46th known Mersenne prime, 2^{42,643,801}-1, a <u>12,837,064</u> digit number was found by Odd Magnar Strindmo from <u>Melhus, Norway</u>! This prime is the second largest known prime number, a "mere" 141,125 digits smaller than the Mersenne prime found last August."
- As of October 2009, 47 Mersenne primes are known. The <u>largest known prime</u>
 number (2^{43,112,609} 1) is a Mersenne prime. [Wikipedia]

http://www.mersenne.org

Algoritm aleator (I)

- Teorema 6.1 (mica teoremă a lui Fermat): Dacă n este prim → ∀ 0 < x < n, xⁿ⁻¹ mod n = 1.
- Prim1(n,α) // detectează dacă n e număr prim
 - Dacă (n ≤ 1 sau n mod 2 = 0) Întoarce fals
 - Limit = limită_calcul(n,α) // numărul minim de paşi pentru
 // soluția corectă cu P = 1 n-α
 - Pentru i de la 0 la limit
 - x = random(1, n-1) // aleg un număr oarecare
 - Dacă (pow_mod(x,n) ! = 1) Întoarce fals // testez teorema
 // Fermat
 - Întoarce adevărat

Complexitate?

Algoritm aleator (II)

- Pow_mod(x,n) // calculează xⁿ⁻¹ mod n
 - r = 1 // restul
 - Pentru m de la n-1 la 0
 - Dacă (m mod 2 ≠ 0) // testez dacă puterea e pară
 // sau nu
 - r = x * r mod n

Complexitate:

- $x = (x * x) \mod n // \text{calculez } x^2 \mod n$ O(lg(n))
- m = m div 2 // înjumătățesc puterea
- Întoarce r

Algoritm aleator (III)

- Problemă: nu putem stabili cu exactitate care este limita de calcul:
 - Nu se poate estima pentru un număr compus n numărul de numere x, 2 < x < n pentru care nu se verifică ecuația;
 - Există numere compuse pentru care orice număr x < n şi prim în raport cu n satisface ecuația lui Fermat (ex: nr. Carmichael → 561).
- Nu ştim cu exactitate câte numere sunt!
 - , → Nu putem calcula probabilitatea!

Altă variantă de algoritm aleator

 Teorema 6.2: Pentru orice număr prim n ecuația x² mod n = 1 are exact 2 soluții:

$$x_1 = 1$$
 SI $x_2 = n - 1$.

Definiție 6.2: Fie n > 1 şi 0 < x < n două numere astfel încât xⁿ⁻¹ mod n ≠ 1 sau x² mod n = 1, x ≠ 1 şi x ≠ n – 1. X se numește martor al divizibilității lui n.

Algoritmul Miller-Rabin

- Prim2(n,α)
 - Dacă (n ≤ 1 sau n mod 2 = 0) Întoarce fals
 - limit = limita_calcul(n, α)
 - Pentru i de la 0 la limit
 - x = random(1,n-1)
 - Dacă (martor_div(x,n)) Întoarce fals
 - Întoarce adevărat

Complexitate?

Algoritmul Miller-Rabin (II)

- martor_div(x,n) // determină dacă x e
 // martor al divizibilității lui n
 - r = 1; y = x;
 - Pentru m de la n-1 la 0 // puterea
 - Dacă (m mod 2 ≠ 0) // putere impară
 - r = y * r mod n

Complexitate:

- z = y // salvez valoarea lui x
- y = y * y mod n // calculez y² mod n

- O(lg(n))
- Dacă (y = 1 și z ≠ 1 și z ≠ n-1) // verific teorema 6.2
 - Întoarce 1
- m = m div 2 // înjumătățesc puterea
- Întoarce r ≠ 1 // mica teoremă Fermat (xⁿ⁻¹ mod n ≠ 1),

Calcularea numărului de pași

- Teorema 6.3: Pentru orice număr n, impar şi compus există cel puţin (n-1) / 2 martori ai divizibilităţii lui n.
- Caz neinteresant: număr prim pentru că oricum algoritmul întoarce adevărat (P_{corect}(n) = 1)!
- Caz interesant: număr compus (impar) (P_{corect}(n) = ?):
- x = element generat la un pas al algoritmului (0 < x < n);
- P(x) = probabilitatea ca numărul x generat din cele n-1 posibilități să fie martor al divizibilității;
- $P(x) \ge (n-1) / 2 * 1 / (n-1) = 0.5;$
- $P_{incorect}(n) = \Pi_{1-slimit}(1 P(x)) \le 1/2^{limit};$
- $\rightarrow P_{corect}(n) \ge 1-2^{-limit} = 1 n^{-\alpha} \rightarrow limit = \alpha \ lg(n); \rightarrow după \ \alpha \ lg(n) \ pași \ P_{corect}(n) \ge 1 n^{-\alpha};$
- → Complexitate: O(lg²(n)) → în funcție de numărul de biți k → Complexitate: O(k²)

Exemplu de utilizare practică

- Quicksort(A, st, dr)
 - Dacă st < dr</p>
 - q ← Partiție(A, st, dr)
 - Quicksort(A, st, q 1)
 - Quicksort(A, q + 1, dr)

Cazul defavorabil?

- Partiţie(A, st, dr)
 - x ← A[dr]
 - i ← st 1

Complexitate

- Pentru j de la st la dr 1
 - Dacă A[j] ≤ x
 - i ← i + 1
 - Interschimbă A[i] ↔ A[j]
- Interschimbă A[i + 1] ↔ A[dr]
- Întoarce i + 1

Exemplu de utilizare practică (II)

 Problema Quicksort – cazul defavorabil – datele de intrare sunt sortate în ordine inversă.

Complexitate Quicksort: O(n²).

 Folosind algoritmi aleatori eliminăm acest caz.

Quicksort-aleator

- Quicksort-Randomizat(A, st, dr)
 - Dacă st < dr</p>
 - q ← Partiție-Randomizată(A, st, dr)
 - Quicksort-Randomizat(A, st, q 1)
 - Quicksort-Randomizat(A, q + 1, dr)

- Partiţie-Randomizată(A, st, dr)
 - i ← Random(st, dr)
 - Interschimbă A[dr] ↔ A[i]
 - Întoarce Partiție(A, st, dr)

INTREBĂRI?

