Loan Prediction

Binary Classification using Logistic Regression

Importing Libraries

```
In [161]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

Importing & Loading the dataset

```
In [ ]:
```

```
In [123]:
```

```
df = pd.read_csv('train.csv')
df.head()
```

Out[123]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coa
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
4 (•

Dataset Info:

In [124]:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):
    Column
                       Non-Null Count Dtype
    ____
                        -----
_ _ _
                                        ____
    Loan ID
 0
                        614 non-null
                                       object
 1
    Gender
                       601 non-null
                                       object
 2
    Married
                       611 non-null
                                       object
 3
    Dependents
                       599 non-null
                                       object
 4
    Education
                       614 non-null
                                       object
 5
    Self Employed
                       582 non-null
                                       object
 6
    ApplicantIncome
                       614 non-null
                                       int64
 7
    CoapplicantIncome 614 non-null
                                       float64
 8
    LoanAmount
                       592 non-null
                                       float64
    Loan_Amount_Term
                       600 non-null
                                       float64
                                       float64
 10 Credit_History
                       564 non-null
 11 Property_Area
                        614 non-null
                                       object
    Loan_Status
                                       object
 12
                        614 non-null
```

dtypes: float64(4), int64(1), object(8)

memory usage: 62.5+ KB

Dataset Shape:

In [125]:

```
df.shape
```

Out[125]:

(614, 13)

Data Cleaning

Checking the Missing Values

```
In [126]:
```

```
df.isnull().sum()
Out[126]:
Loan_ID
                       0
Gender
                      13
Married
                       3
Dependents
                      15
Education
                       0
Self_Employed
                      32
ApplicantIncome
                       0
CoapplicantIncome
                       0
LoanAmount
                      22
Loan_Amount_Term
                      14
Credit_History
                      50
Property_Area
                       0
Loan_Status
                       0
dtype: int64
```

First we will fill the Missing Values in "LoanAmount" & "Credit_History" by the 'Mean' & 'Median' of the respective variables.

```
In [127]:
```

```
df['LoanAmount'] = df['LoanAmount'].fillna(df['LoanAmount'].mean())
In [128]:
```

```
df['Credit_History'] = df['Credit_History'].fillna(df['Credit_History'].median())
```

Let's confirm if there are any missing values in 'LoanAmount' & 'Credit_History'

In [129]:

```
df.isnull().sum()
Out[129]:
Loan_ID
                       0
Gender
                      13
Married
                       3
Dependents
                      15
Education
                       0
Self_Employed
                      32
ApplicantIncome
                       0
CoapplicantIncome
                       0
LoanAmount
                       0
Loan_Amount_Term
                      14
Credit_History
                       0
                       0
Property_Area
Loan_Status
                       0
dtype: int64
```

Now, Let's drop all the missing values remaining.

```
In [130]:
```

```
df.dropna(inplace=True)
```

Let's check the Missing values for the final time!

In [131]:

```
df.isnull().sum()
Out[131]:
Loan_ID
                      0
Gender
                      0
Married
                      0
Dependents
                      0
Education
                      0
Self_Employed
                      0
ApplicantIncome
CoapplicantIncome
                      0
LoanAmount
                      0
Loan_Amount_Term
                      0
Credit_History
                      0
Property_Area
                      0
Loan_Status
                      0
dtype: int64
```

Here, we have dropped all the missing values to avoid disturbances in the model. The Loan Prediction requires all the details to work efficiently and thus the missing values are dropped.

Now, Let's check the final Dataset Shape

```
In [132]:

df.shape

Out[132]:
  (542, 13)
```

Exploratory Data Analyis

Comparison between Parameters in getting the Loan:

In [133]:

```
plt.figure(figsize=(100,50))
sns.set(font_scale=5)

plt.subplot(331)
sns.countplot(x = 'Gender', hue = 'Loan_Status', data = df)

plt.subplot(332)
sns.countplot(x = 'Married', hue = 'Loan_Status', data = df)

plt.subplot(333)
sns.countplot(x = 'Education', hue = 'Loan_Status', data = df)

plt.subplot(334)
sns.countplot(x = 'Self_Employed', hue = 'Loan_Status', data = df)

plt.subplot(335)
sns.countplot(x = 'Property_Area', hue = 'Loan_Status', data = df)

plt.show()
```


Let's replace the Variable values to Numerical form & display the Value Counts

The data in Numerical form avoids disturbances in building the model.

```
In [134]:
df['Loan_Status'].replace('Y',1,inplace=True)
df['Loan_Status'].replace('N',0,inplace=True)
In [135]:
df['Loan_Status'].value_counts()
Out[135]:
     376
1
     166
Name: Loan_Status, dtype: int64
In [136]:
df.Gender=df.Gender.map({'Male':1, 'Female':0})
df['Gender'].value_counts()
Out[136]:
     444
1
      98
Name: Gender, dtype: int64
In [137]:
df.Married = df.Married.map({'Yes':1, 'No': 0})
df['Married'].value_counts()
Out[137]:
     355
1
     187
Name: Married, dtype: int64
In [138]:
df.Dependents=df.Dependents.map({'0':0, '1':1, '2':2, '3+':3})
df['Dependents'].value_counts()
Out[138]:
     309
0
1
      94
      94
2
      45
Name: Dependents, dtype: int64
In [139]:
df.Education = df.Education.map({'Graduate':1, 'Not Graduate':0})
df['Education'].value_counts()
Out[139]:
     425
1
     117
Name: Education, dtype: int64
```

```
In [140]:
df.Self_Employed = df.Self_Employed.map({'Yes':1, 'No':0})
df['Self_Employed'].value_counts()
Out[140]:
0
     467
1
      75
Name: Self_Employed, dtype: int64
In [141]:
df.Property_Area = df.Property_Area.map({'Urban':2, 'Rural':0, 'Semiurban':1})
df['Property_Area'].value_counts()
Out[141]:
1
     209
     174
2
     159
Name: Property_Area, dtype: int64
In [142]:
df['LoanAmount'].value_counts()
Out[142]:
146.412162
              19
120.000000
              15
100.000000
              14
110.000000
              13
187.000000
              12
280.000000
               1
240.000000
               1
214.000000
                1
59.000000
               1
253.000000
Name: LoanAmount, Length: 195, dtype: int64
In [143]:
df['Loan_Amount_Term'].value_counts()
Out[143]:
360.0
         464
180.0
          38
480.0
          13
300.0
          12
84.0
           4
           3
120.0
240.0
           3
           2
60.0
           2
36.0
12.0
Name: Loan_Amount_Term, dtype: int64
```

```
In [144]:
```

```
df['Credit_History'].value_counts()
```

Out[144]:

1.0 468 0.0 74

Name: Credit_History, dtype: int64

From the above figure, we can see that **Credit_History** (Independent Variable) has the maximum correlation with **Loan_Status** (Dependent Variable). Which denotes that the Loan_Status is heavily dependent on the Credit_History.

Final DataFrame

In [145]:

```
df.head()
```

Out[145]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coal
0	LP001002	1	0	0	1	0	5849	
1	LP001003	1	1	1	1	0	4583	
2	LP001005	1	1	0	1	1	3000	
3	LP001006	1	1	0	0	0	2583	
4	LP001008	1	0	0	1	0	6000	
4 (•

Importing Packages for Classification algorithms

In [148]:

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
```

Splitting the data into Train and Test set

In [149]:

```
X = df.iloc[1:542,1:12].values
y = df.iloc[1:542,12].values
```

In [152]:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,random_state=0)
```

Logistic Regression (LR)

Logistic regression is a supervised learning classification algorithm used to predict the probability of a target variable.

Mathematically, a logistic regression model predicts P(Y=1) as a function of X. It is one of the simplest ML algorithms that can be used for various classification problems such as spam detection, Diabetes prediction, cancer detection etc.

Sigmoid Function

In [156]:

```
model = LogisticRegression()
model.fit(X_train,y_train)

lr_prediction = model.predict(X_test)
print('Logistic Regression accuracy = ', metrics.accuracy_score(lr_prediction,y_test))
```

Logistic Regression accuracy = 0.7914110429447853

In [165]:

```
print("y_predicted", lr_prediction)
print("y_test", y_test)
```

CONCLUSION:

- 1. The Loan Status is heavily dependent on the Credit History for Predictions.
- 2. The Logistic Regression algorithm gives us the maximum Accuracy (79% approx) compared to the other 3 Machine Learning Classification Algorithms.

In []: