- 1. Prove the following identities. Note how formulae (a)-(c) "tensorize" vector operations
 - (a) $\mathbf{a} \cdot \mathbf{b} = \operatorname{tr} (\mathbf{a} \otimes \mathbf{b})$
 - (b) $\mathbf{a} \times \mathbf{b} = -2 \operatorname{ax}\{\operatorname{sk}(\mathbf{a} \otimes \mathbf{b})\}$; the operation 'ax' was defined in lectures. The operation 'sk' computes the skew-symmetric tensor associated with a tensor A by the formula $\operatorname{sk}(A) = (A A^T)/2$; easy to check that $\operatorname{sk}(A)$ is skew-symmetric.
 - (c) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \text{tr } (\mathbf{a} \otimes \mathbf{c}) \mathbf{b} \text{tr } (\mathbf{a} \otimes \mathbf{b}) \mathbf{c}$
 - (d) $\mathbf{a} \cdot (\mathbf{A} \cdot \mathbf{b}) = (\mathbf{A}^T \cdot \mathbf{a}) \cdot \mathbf{b}$; this equality is often used as a definition of \mathbf{A}^T .
 - (e) $\mathbf{a} \otimes (\mathbf{A} \cdot \mathbf{b}) = (\mathbf{a} \otimes \mathbf{b}) \cdot \mathbf{A}^T$;

$$= \frac{1}{2} \left(a_{i} b_{j} - a_{j} b_{i} \right) \stackrel{?}{e}_{i} \otimes \stackrel{?}{e}_{j}$$

$$J_{S} S_{k} \left(\underline{a} \otimes \underline{b} \right) \quad g_{kms} \quad g_{mometric} ? \quad \chi_{D}.$$

$$\left\{ \underline{sk} \left(\underline{a} \otimes \underline{b} \right) \right\} = \frac{1}{2} \left(\underline{a}_{j} b_{i} - \underline{a}_{i} b_{j} \right) \stackrel{?}{e}_{i} \otimes \stackrel{?}{e}_{j}$$

$$= - \underline{sk} \left(\underline{a} \otimes \underline{b} \right)$$

$$All \quad \underline{N} = \frac{1}{2} \left(\underline{a}_{i} b_{j} - \underline{a}_{j} b_{i} \right) \stackrel{?}{e}_{i} \otimes \stackrel{?}{e}_{j}$$

$$a_{x} \left(\underline{N} \right) = -\frac{1}{2} \underbrace{6ij_{k}}_{k} \stackrel{N_{ij}}{e}_{k} \stackrel{?}{e}_{k} \left(\underbrace{f_{mm}}_{k} b_{k} b_{k} b_{k} b_{k} \right) \stackrel{?}{e}_{k}$$

$$g_{n} \quad W_{ij} = \frac{1}{2} \left(\underline{a}_{i} b_{j} - \underline{a}_{j} b_{i} \right) \stackrel{?}{e}_{k}$$

$$a_{x} \left(\underline{N} \right) = -\frac{1}{2} \underbrace{6ij_{k}}_{k} \cdot \underbrace{1}_{2} \left(\underline{a}_{i} b_{j} - \underline{a}_{j} b_{i} \right) \stackrel{?}{e}_{k}$$

$$= -\frac{1}{2} \underbrace{6ij_{k}}_{k} \cdot \underbrace{1}_{2} \left(\underline{a}_{i} b_{j} + \underline{a}_{i} b_{j} \right) \stackrel{?}{e}_{k}$$

$$= -\frac{1}{2} \underbrace{6ij_{k}}_{k} a_{i} b_{j} \stackrel{?}{e}_{k}$$

$$= -\frac{1}{2} \underbrace{6ij_{k}}_{k} a_{i} b$$

(c)
$$a \times (b \times s) = b \cdot (a \otimes s) \cdot b - b \cdot (a \otimes b) \cdot c$$

II

$$(a \cdot c) \cdot b - (a \cdot b) \cdot c \qquad \text{from parthern (a)}$$

(d) $a \cdot (A \cdot b) = (A^{T} \cdot a) \cdot b \qquad \text{(to show)}$

LMS

$$A \cdot b = Aij \cdot bj \cdot \hat{e}i \qquad \text{in } \{E_i, O_i, \hat{e}i\}$$

$$a \cdot (A \cdot b) = a_k \cdot \hat{e}_k \cdot (Aij \cdot bj \cdot \hat{e}i)$$

$$= a_k Aij \cdot bj \cdot 8ki = a_i \cdot Aij \cdot bj$$

RMS

$$A^{T} \cdot a = Aji \cdot \hat{e}_i \cdot \hat{e}_i \qquad a_k \cdot \hat{e}_k = Aji \cdot \hat{e}_i \cdot a_k \cdot Sjik$$

$$= Aji \cdot aj \cdot \hat{e}_i \qquad Aij \cdot aj \cdot b_k \cdot \hat{e}_k = Aji \cdot aj \cdot \hat{e}_i \qquad Aij \cdot ai \cdot bj$$

(e)
$$\underline{A} \otimes (\underline{A} \cdot \underline{b}) \stackrel{?}{=} (\underline{A} \otimes \underline{b}) \cdot \underline{A}^{T}$$
 $LHS: \underline{A} \otimes (\underline{A} \cdot \underline{b}) = \underline{A}_{k} \hat{e}_{k} \otimes (A_{ij} b_{j} \hat{e}_{i})$
 $= \underline{A}_{k} \hat{h}_{ij} b_{j} \hat{e}_{k} \otimes \hat{e}_{i} \qquad \text{in} \{ \xi_{i} O_{i} \hat{e}_{i} \}$
 $RHS: (\underline{A} \otimes \underline{b}) \cdot \underline{A}^{T}$
 $= (\underline{A}_{i} b_{j} \hat{e}_{i} \otimes \hat{e}_{j}) \cdot (A_{mn} \hat{e}_{n} \otimes \hat{e}_{m})$

[Mu identity: $(\underline{A} \otimes \underline{b}) \cdot (\underline{c} \otimes \underline{d}) = (\underline{b} \cdot \underline{c}) \underline{a} \otimes \underline{d}$
 $= \underline{A}_{i} b_{j} A_{mn} S_{jn} \hat{e}_{i} \otimes \hat{e}_{m}$
 $= \underline{A}_{i} b_{j} A_{mj} \hat{e}_{i} \otimes \hat{e}_{m}$
 $i \rightarrow k \quad m \rightarrow i : \underline{A}_{k} b_{j} A_{ij} \hat{e}_{k} \otimes \hat{e}_{i}$
 $\therefore LHS = RHS$

2. Find the principal values λ_i and principal vectors $\hat{\mathbf{v}}_i$ of the second order tensor $D = 6(\hat{\mathbf{e}}_1 \otimes \hat{\mathbf{e}}_1) + \hat{\mathbf{e}}_1 \otimes \hat{\mathbf{e}}_2 + 9(\hat{\mathbf{e}}_1 \otimes \hat{\mathbf{e}}_3) + 2(\hat{\mathbf{e}}_2 \otimes \hat{\mathbf{e}}_2) + 2(\hat{\mathbf{e}}_2 \otimes \hat{\mathbf{e}}_3) + \hat{\mathbf{e}}_3 \otimes \hat{\mathbf{e}}_3$. Confirm that $\hat{\mathbf{v}}_i$ are independent, so that we can define the principal CS \mathscr{P} of D. Is \mathscr{P} Cartesian? Express D in terms of the unit tensorial basis by $\hat{\mathbf{v}}_i \otimes \hat{\mathbf{v}}_i$ in \mathscr{P} and also find $[D]_{\mathscr{P}}$.

$$= |D_{21} - \hat{e}_2 \cdot D \cdot \hat{e}_1 = 0$$

or
$$D_{33} = \hat{e}_3 \cdot \hat{D} \cdot \hat{e}_3 = 1$$

$$= 1 (1-\lambda)(2-\lambda)(6-\lambda) = 0$$

$$\therefore \lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 6$$

He have 3 dyfirent sed fisnigat values.

Eighredons/ prinapal vectors

$$f_{n} \lambda_{1} = 1 : \left(D - \lambda_{1} \frac{1}{2} \right) \cdot \hat{\nu}_{1} = 0 \quad |\hat{\nu}_{1}| = 1$$

we will get
$$\begin{bmatrix} v_i \end{bmatrix} = \frac{1}{\sqrt{174}} \begin{bmatrix} -7 \\ -10 \\ 5 \end{bmatrix}$$

or
$$\hat{v}_1 = \frac{1}{\sqrt{174}} \left(-7\hat{q} - \omega \hat{e}_2 + 5\hat{e}_3 \right)$$

Similarly for
$$n_2 = 2$$
: $\hat{v}_2 = \frac{\hat{q} - 4\hat{e}_2}{\sqrt{17}}$

and for
$$\partial_3 = 6$$
: $\hat{v}_3 = \hat{e}_i$

Clearly, vi are briearly independent.

Alfine the firming
$$CS$$

$$\{P, O, \hat{v}_i\}$$

$$mi P: \underline{P} = \sum_{i=1}^{3} \lambda_i \hat{v}_i \otimes \hat{v}_i$$

$$= \hat{v}_1 \otimes \hat{v}_1 + 2\hat{v}_2 \otimes \hat{v}_2 + 6\hat{v}_3 \otimes \hat{v}_3$$

$$[\underline{P}]_P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{bmatrix} \qquad \begin{array}{c} \text{cannot get} \\ \text{lsy } \hat{v}_i \cdot \underline{P} \cdot \hat{v}_j \\ \text{You check} \end{array}$$

$$\text{Finally } P \text{ is } \text{NOT Carterian}$$

$$=) Connot find components of $[\underline{P}]_P$

$$\text{lsy ming } \hat{v}_i \cdot \underline{P} \cdot \hat{v}_j \mid \underline{P}$$$$