ARM Cortex-A72

The **ARM Cortex-A72** is a microarchitecture implementing the <u>ARMv8-A</u> 64-bit instruction set designed by <u>ARM Holdings' Austin</u> design centre. The Cortex-A72 is a 3-way decode <u>out-of-order superscalar</u> pipeline. It is available as <u>SIP core</u> to licensees, and its design makes it suitable for integration with other SIP cores (e.g. <u>GPU</u>, <u>display controller</u>, <u>DSP</u>, <u>image processor</u>, etc.) into one <u>die constituting a system on a chip (SoC)</u>. The Cortex-A72 was announced in 2015 to serve as the successor of the Cortex-A57, and was designed to use 20% less power or offer 90% greater performance. [2][3]

Contents

Overview

Chips

See also

References

External links

Overview

- Pipelined processor with deeply <u>out-of-order</u>, <u>speculative issue</u> 3-way <u>superscalar</u> execution pipeline
- DSP and <u>NEON SIMD</u> extensions are mandatory per core
- VFPv4 Floating Point Unit onboard (per core)

ARM Cortex-A72

General Info			
Launched	2016		
Designed by	ARM Holdings		
Cache			
L1 cache	80 KiB (48 KiB I-cache with parity, 32 KiB D-cache with ECC) per core		
L2 cache	512 KiB to 4 MiB		
L3 cache	None		
Architecture and classification			
Min. feature size	16 nm		
Microarchitecture	ARMv8-A		
Physical specifications			
Cores	1–4 per cluster, multiple clusters ^[1]		

- Hardware virtualization support
- Thumb-2 instruction set encoding reduces the size of 32-bit programs with little impact on performance.
- TrustZone security extensions
- Program Trace Macrocell and CoreSight Design Kit for unobtrusive tracing of instruction execution
- 32 KiB data (2-way set-associative) + 48 KiB instruction (3-way set-associative) L1 cache per core
- Integrated low-latency level-2 (16-way set-associative) cache controller, 512 KB to 4 MB configurable size per cluster

-	48-entry fully associative L1 instruction translation lookaside buffer (TLB) with native support for 4 KiB,	64 KiB,	and
	1 MB page sizes		

- 32-entry fully associative L1 data TLB with native support for 4 KiB, 64 KiB, and 1 MB page sizes
 - 4-way set-associative of 1024-entry unified L2 TLB per core, supports hit-under-miss
- Sophisticated branch prediction algorithm that significantly increases performance and reduces energy from misprediction and speculation
- Early IC tag –3-way L1 cache at direct-mapped power*
- Regionalized TLB and μBTB tagging
- Small-offset branch-target optimizations
- Suppression of superfluous branch predictor accesses

Chips

- Broadcom BCM2711 (used in Raspberry Pi 4^[4])
- Snapdragon 650, 652, and 653

See	also
\sim	

Products, models, variants			
Product code name(s)	Мауа		
History			
Predecessor	ARM Cortex- A57		
Successor	ARM Cortex- A73		

Comparison of ARMv8-A cores

References

- 1. "Cortex-A72 Processor" (http://www.arm.com/products/processors/cortex-a/cortex-a72-processor.php). ARM Holdings. Retrieved 2014-02-02.
- 2. Frumusanu, Andrei (3 February 2015). "ARM Announces Cortex-A72, CCI-500, and Mali-T880" (http://www.anandtech.com/show/8957/arm-announces-cortex-a72). Anandtech. Retrieved 29 March 2017.
- 3. Frumusanu, Andrei (23 April 2015). "ARM Reveals Cortex-A72 Architecture Details" (http://www.anandtech.com/show/9 184/arm-reveals-cortex-a72-architecture-details). Anandtech. Retrieved 29 March 2017.
- 4. "Raspberry Pi 4 on sale now from \$35" (https://www.raspberrypi.org/blog/raspberry-pi-4-on-sale-now-from-35/). Raspberry Pi. 2019-06-24. Retrieved 2019-06-24.

External links

- Official website (http://www.arm.com/products/processors/cortex-a/cortex-a72-processor.php)
- ARM Cortex-A72 Technical Reference Manuals (http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100095_ 0001_02_en/index.html)

Retrieved from "https://en.wikipedia.org/w/index.php?title=ARM_Cortex-A72&oldid=934400031"

This page was last edited on 6 January 2020, at 09:28 (UTC).

Text is available under the <u>Creative Commons Attribution-ShareAlike License</u>; additional terms may apply. By using this site, you agree to the <u>Terms</u> of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

https://en.wikipedia.org/wiki/ARM_Cortex-A72