IVII I	
Systèmes temps réel	
critique	
Jérôme De Miras	
Ml11 Poste : 59 02 e-Mail : demiras@hds.utc.fr 1	
Relations	
temporelles	
·	
MI11	
utc 2	
Objectifs	
 Définir les relations temporelles entre les différentes parties d'un système cybernétique Entité RT 	
□ Image RT	
 □ Validité temporelle □ Permanence d'une observation 	
□ Déterminisme	

Entités, images et objets RT

Entités Temps Réel

- □ Variable d'état d'intérêt pour un objectif donné
 - □ Ex : débit d'un liquide, consigne de fonctionnement, position d'une vanne, ...
 - □ Attributs statiques (nom, type, domaine de valeur,...)
 - □ Attributs dynamiques qui changent avec le temps
- Chaque entité appartient à une sphère de contrôle

Observations

- □ Entités RT a un ensemble de valeurs
 - □ continu
 - ou
 - discret

Entités discrètes

- Constante sur un intervalle entre un left event et un right event
- □ Entre un *R_event* et un *L_event* la valeur de l'entité est indéfinie

 L'information sur une entité RT à un instant donnée est une observation 	
□ Structure de donnée atomique observation = < Nom, t _{obs} , Valeur >	
 Pour une entité discrète, l'observation doit se faire quand elle a du sens 	
 Un nœud intelligent est relié au capteur pour fournir la date et le format numérique correct 	
 Une observation = un seul message Le concept de message fournit l'atomicité de l'information 	
MI11 duc Printemps 2017	
Observations non datées	
 Sans temps global une date n'est interprétable que dans la sphère de validité de l'horloge qui a datée 	
□ Si on utilise une date d'arrivée hors de cette sphère comme t_{obs} , la datation est imprécise due à la latence et à la gigue du réseau	
□ Réduction de la qualité de l'observation	
MI11 UIC Printemps 2017	
Observations indirectes	
 Il n'est parfois pas possible d'observer directement une entité RT 	
 Possibilité d'avoir des observations indirectes de l'entité 	
□ Nécessité d'utiliser un modèle mathématique	
pour reconstruire la valeur de l'entité visée	
MI11	

Observations

Observations d'état et d'événements	
 Observation d'état : L'observation contient l'état de l'entité RT échantillonné à un instant donné 	
□ Control : échantillonnage équidistant de l'état	
☐ Bonne correspondante observation d'état et	
sémantique de message d'état	
	-
MI11	
utc Printemps 2017	
Observations d'événement	
 Un événement est localisé sur un instant Correspond à un changement d'état 	
Observation = événement => impossible d'observer un événement dans l'objet	
contrôlé mais seulement son effet Une observation d'événement contient l'évolution de	
valeur entre l'ancien et le nouvel état Meilleur estimée de l'instant d'arrivé de l'événement	
 Comment obtenir l'instant précis d'occurrence ? ET ou TT ? La perte ou la duplication d'une EO provoque une perte de 	
synchronisation entre émetteur et récepteur (fiabilité ?) □ EO envoyée uniquement sur un changement ; la latence de détection d'une faute ne peut pas être bornée, un récepteur	
suppose une non évolution si aucun message n'arrive Point d'observation	
Occurrence de l'événement	
utc Printerips 2017 Temps	
Images Temps Réel	
□ Image courante d'une entité RT	
 Une image est valide à un instant donné si c'est une représentation exacte de l'entité 	
correspondante une observation décrit un fait qui reste valide à	
jamais (une valeur à un temps donné)	
≠ la validité d'une image RT est dépendante du	
temps Construction à partir :	
D'une observation d'étatD'une observation d'événement	
□ D'une estimation d'état	
MI11	

Objets Temps Reel	
 Conteneur à l'intérieur d'un nœud d'un système distribué pour une image RT ou une entité RT 	
□ Une horloge est associée à chaque objet RT	
☐ Tick d'horloge => déclenchement d'une procédure	
associée à l'objet	
Un objet RT peut être distribué	
 Réplication dans plusieurs nœud afin de fournir un service spécifique localement 	
□ Contraintes de consistance pour la qualité de service	
Ex : temps global est un objet RT distribué qui assure	
une précision ∏ □ Ex : service d'appartenance ; le temps de prise en	
compte d'une évolution de l'état d'un membre par les	
autres est un critère important	
utc Printemps 2017	
Précision	
temporelle	
·	
MI11	
utc 14	
Définition	
 Définie en utilisant l'historique récent des observations de l'entité RT 	
□ Historique récent	
$RH_i = \{t_i, t_{i-1}, t_{i-2},, t_{i-k}\}$	
□ Intervalle de précision temporelle	
$d_{acc} = z(t_i) - z(t_{i-k})$	
□ Une image RT est précise temporellement si $\exists t_i \in RH_i$: Valeur (image RT à t_i)	
$= Valeur(entité RT à t_i)$	
La transmission d'une image RT se fait avec une	
latence qui doit être inférieure à $d_{\it acc}$	
Intervalle de précision temporelle	
MIII	

Intervalle de précision temporelle (1)

- $\ \square$ La taille de d_{acc} est déterminée par la dynamique de l'entité RT
 - ☐ Le délai de transmission provoque une erreur

erreur
$$(t) = \frac{dv(t)}{dt} (z(t_{use}) - z(t_{obs}))$$

Le pire cas est donné par

$$erreur = \left(\max_{\forall t} \frac{dv(t)}{dt} d_{acc}\right)$$

- □ Doit être du même ordre que l'erreur de mesure faite sur l'entité RT
- Plus une entité RT change rapidement de valeur, plus d_{acc} doit être petit

16

Intervalle de précision temporelle (2)

 $lue{}$ Soit t_{use} l'instant d'utilisation du résultat d'un calcul faisant intervenir une image RT :

$$z(t_{obs}) \le z(t_{use}) \le (z(t_{obs}) + d_{acc})$$

ou encore

$$z(t_{use}) - z(t_{obs}) \le d_{acc}$$

17

Transaction alignée en phase

- Acquisition, transfert, utilisation, chacune avec un pire cas de réalisation
 - ☐ Pire cas de la chaine (tâches synchronisées)

$$(t_{use} - t_{obs}) = WCET_{send} + WCCOM + WCET_{rec}$$

 \square Si d_{acc} requis par la dynamique est plus petit que cela, nécessité de faire de **l'estimation d'état**

Point d'observation			
Tâche d'envoi WCET _{send}			
Communication	WCCOM	Point d'utili	sation
Tâche de réception	<u></u>	WCET _{rec}	
MI11		Temps	18

Classification des images RT

- □ Image paramétrique ou insensible à la phase
 - □ Image RT mise à jour périodiquement (d_{update})
 □ Transaction alignée avec l'émetteur

 - Un récepteur peut accéder à cette image sans considération de la relation de phase
 En cas de réplication, les récepteurs doivent accéder à la même version de l'image RT pour assurer le déterminisme. déterminisme

Classification des images RT

- □ Image sensible à la phase (PSI)
 - □ Transaction alignée sur l'émetteur
 - Condition :

$$\text{et} \ \, \frac{d_{acc} \leq \left(d_{update} + WCET_{send} + WCCOM + WCET_{rec}\right)}{d_{acc} > \left(WCET_{send} + WCCOM + WCET_{rec}\right)}$$

- Impose des contraintes supplémentaires sur l'ordonnancement des tâches qui utilisent ce type d'image RT
- □ Bonne pratique : limiter l'utilisation des PSI
 - □ Réduire d_{update}
 - (augmentation de la charge communication)
 - ☐ Modèle d'estimation d'état
 - (augmentation de la charge processeur)

20

Estimation d'état

- □ Construction d'un modèle de l'entité RT à l'intérieur d'un objet RT
 - □ Prédiction de l'état futur probable et mise à jour de l'image RT
 - □ Exécution périodique pilotée par l'horloge associée à l'objet RT

 - □ Pour la prédiction on se base sur t_{use}
 □ Nécessité de posséder un modèle de comportement (pas de modèle piloté par le hasard)
 - \Box Un paramètre d'implémentation est l'intervalle [t_{obs}, t_{use}] perçu par des nœuds différents
 - > nécessité d'un système de communication avec une gigue minimum et un temps global précis
 - □ Une approximation d'ordre 1 peut être suffisante mais ce n'est pas toujours le cas

Composabilité

L'intervalle [t _{obs} , t _{use}	.] se	compose	comme	suit
---	-------	---------	-------	------

Poir	t d'observation <i>t_{obs}</i>	Po	oint d'arrivée t _{arr}	
	Latence de l'émetteur d _{send}		Point d'ut Latence du récepteur d _{rec}	ilisation t _{use}
			Tem	ips

- □ Dans une architecture TT tous ces intervalles sont connus à priori
- □ Estimation d'état dans le récepteur
 - Une modification du délai de l'émetteur modifie le traitement d'estimation et donc nécessite aussi une modification logicielle du récepteur
 - □ Pour réduire le couplage, découper l'estimation en 2 :
 - \square Prédire t_{arr} dans l'émetteur
 - Faire passer t_{arr} dans le récepteur pour t_{obs} pour le récepteur

22

Permanence et idempotence

Permanence (1)

 Un message est permanent sur un nœud donné si tous les messages antérieur qui s'y rapportent sont arrivés ou n'arriveront jamais

24

Permanence (2)	
Protocole avec un temps minimum d'exécution d_{min} et maximum d_{max} , une gigue	
maximum d_{max} , une gigue $d_{jit} = d_{max} - d_{max}$ Le temps de réaction du canal caché inférieur à d_{min}	
d _{max} de M _{BA}	
Moniteur A 4 5 6 (permanence de M _{DA}	
Opérateur B MBA Intervalle d'alarme	
Contrôle valve C M _{BC 2} incorrecte	
Capteur pression D 3	
Temps Pour éviter toute fausse alarme, le nœud A doit retarder toute action jusqu'à ce que MBA devienne permanent	
MI11 25	
utc Printemps 2017	
Permanence (3)	
□ Délai d'action	
 Pour un message donné, le temps entre le début de 	
transmission et le point où ce message devient permanent sur le récepteur est appelé délai d'action	
 Un récepteur doit retarder toute action sur ce message avant qu'il ne devienne permanent 	
message availt qu'il ne devienne permanent	
 Action irrévocable Il s'agit d'une action dont l'effet ne peut être défait 	
☐ Son action est durable sur l'environnement	
 Important de ne déclencher une action irrévocable qu'une fois que tous les délais associés à son 	
déclenchement sont passés	
MI11 utc Printemps 2017 26	
Durée du délai d'action	
□ Dépendant	
 De la gigue du système de communication De l'attention temporelle du récepteur 	
a be rattention temporene du recepteur	
Avec temps globalTransmission de la date dans le message	
Le récepteur peut inférer que le message sera	
permanent à $t_{permanent} = t_{send} + d_{max} + 2g_{GT}$ Sans temps global	
\square Attente de $d_{\max} - d_{\min}$ après l'arrivée du message	
□ Permanence à $t_{permanent} = t_{send} + 2d_{max} - d_{min} + 2g_t$	

Précision contre Délai d'action	
 Une image RT ne peut être utilisée que si le message qui la transporte est permanent et si elle est temporellement précise 	
□ Possible sans estimateur uniquement sur la fenêtre $[t_{permanen}, t_{obs} + d_{acc}]$	
\Box d_{acc} dépend de la dynamique de l'application de contrôle	
\Box $t_{\it permanent}$ $-t_{\it obs}$ dépend de l'implémentation	
 Si toutes les exigences ne peuvent être atteintes simultanément, l'estimateur reste la seule alternative 	
MI11 utc Printemps 2017 28	
Idempotence	
 Un ensemble de messages répliqués est idempotent pour un récepteur donné si la 	
réception de plusieurs de ces messages	
provoque le même effet que la réception d'un seul.	
□ Dans un système où des messages non datés sont	
envoyés un message d'état est idempotent	
 Un message d'événement relatant une variation d'un l'état ne l'est pas 	
(description de l'incrément de la variable, si prise en compte plusieurs fois, erreur permanente sur la valeur)	
MI11 29	
utc Printemps 2017	
Déterminisme	
MI11	

Définition	
 Si dans un système qui suit le principe de causalité on a des implications à la fois logiques et temporelles, on parle de déterminisme 	
Un système physique est déterministe si en donnant son état initial à un instant tet un ensemble d'entrées futures, on peut prédire les états et sorties futurs	
ctats et sorties ratars	
 Définition supposant un temps dense (lois de la physique) 	
MI11 ulc Printemps 2017 31	
Base de temps clairsemée	
Dans un système numérique, la base de temps	-
est clairsemée	
 Hypothèse que les événements sont clairsemés Spécification des propriétés temporelles comme la simultanéité 	
 Nécessité de protocoles d'accord pour passer du temps dense au temps clairsemé aux interfaces avec le monde 	
 Réduction de la fidélité du modèle numérique 	
Ml11	
utc Printemps 2017	
L-déterminisme	
Un système est L-déterministe si en donnant un	
état initial et un ensemble ordonné d'entrées, on peut calculer les états et sorties suivantes	
□ Pas de notion de futur	
 Concept insuffisant dans un contexte temps réel En plus d'assurer que les actions seront bien celles prévues, il faut assurer une borne temporelle de 	
l'action	
□ Ex : système de freinage	
MI11 33	

Pourquoi du déterminism	ne
 Une relation par implication entre état initial et état et sortie futures simplifie la compréhension du comportement d'un composant 	1
 Deux composants répliqué qui démarre avec le même état initial et recevant les mêmes informations produiront les mêmes résultats aux mêmes moments Essentiel pour masquer les fautes par un vote 	x
 La testabilité d'un composant est simplifiée, tous les cas de test sont reproductibles pas d'apparition d'erreur Heisenbugs 	us ————————————————————————————————————
MI11 utc Printemps 2017	4
Propriété désiré	áe
☐ Le déterminisme est une propriété désirée de	
comportement L'implémentation peut atteindre cette propriété	
avec une probabilité estimée	
 Raison d'échecs L'état initial n'est pas précisément connu Le matériel tombe en panne sur un défaut physique imprévu La notion de temps est obscure 	e
 Le logiciel contient des erreurs de design ou des constructions non déterministes (NDDC) 	
MI11 utc Printemps 2017	5
Déterminisme sur réplicatio	on
☐ L'état initial doit être consistent pour toute les répliques ☐ Nécessité d'une base de temps clairsemée commune ☐ datation consistante des événements	
 Définition de la simultanéité pour éviter un ordre temporel inconsistant (perte du déterminisme) 	
 Datation sur la base de temps clairsemée par le système par génération d'événements par un protocole d'accord pour assigner un événement à une date particulière de la base de temps 	à
 Le système de communication est prévisible Instants de livraison bornés Conservation de l'ordre d'envoi sur tous les canaux 	
 Existence d'une notion précise du « temps réel » Les résultats de calculs sont certains pas de NDDCs 	
obtention avant la fin d'une fenêtre d'acceptation connu	
utc Printemps 2017	

Etat initial consistant	
 Existe si une séparation consistante entre événements passés et futurs peut être faites Une base de temps globale clairsemée permet cette séparation 	
 Separation Sans cela, l'établissement d'un état initial dans des composants répliqués est difficile Un capteur peut faillir => redondance Aucun capteur parfait : erreur finie de mesure 	
 Les valeurs sont numérisées : erreur de discrétisation ⇒ Déviation dans la redondance de l'observation Protocoles d'accord pour attribuer à une mesure (distribuée à plusieurs répliques) 	
 La même valeur consistante pour la mesure redondante La même date sur la base de temps du système 	
MI11 utc Printemps 2017 37	
Constructions non déterministes	
□ Partant d'un état initial correct,	
 Les effets d'un NDDC peut être dans le domaine des valeurs ou du temps Ne respecte pas l'hypothèse d'indépendance des fautes 	
MI11 July Printemps 2017 38	
Constructions ND domaine des valeurs	
☐ Générateur de nombres aléatoires	
 Éléments de langages non déterministes Choix laissé à l'implémentation 	
 Points de décision majeures mal définis (sur un timeout par exemple) 	
 Ordonnancement préemptif Prise en compte d'une interruption en des points différents du code de chaque réplique 	
 Ordre de messages inconsistant entre les différents canaux 	
MI11	

Constructions ND domaine temporel	
Les constructions précédentes	
 Préemption et blocage de tâches Peut retarder un résultat au-delà de la fenêtre d'acceptation 	
 Mécanismes de ré-essai Ajout d'un délai à la prise en compte d'un résultat correct 	
 Accès concurrents Mécanisme conduisant à l'octroi d'un sémaphore Accès à un média par priorité (CAN) 	
Ml11 ulc Printemps 2017 40	
Récupération du déterminisme	
 Dans un système L-déterministe, une perte de déterminisme peut être évitée en étendant la fenêtre d'acceptation Réduction du risque d'un délai non respecté Technique utilisée à un niveau macroscopique alors 	
que le déterminisme a été perdu à un niveau microscopique	
 Récupération du déterminisme au niveau externe Par rapport aux services fournis par le composant (voir le modèle des 4 univers d'un système informatique) 	
Milit	
utc Printemps 2017	
Sureté de	
fonctionnement	
Tonctionnement	
MI11	

	Préembule	
 Dans un paradis technologique, aucun acte divin ne peut se produire et tout se déroule selon les 		
plans Hannes Alfen, prix Nobel		
 Le monde réel n'est pas u technologique 	in paradis	
MI11 utc Printemps 2017	43	
	Page	
	Base	
FAUTE Cause de l'erreur et de la défaillance Etat non att	DEFAILLANCE Déviation du	
 Si on dispose d'un temps phénomène adverse au n dessus peut être identifié Configuration binaire spé Instant d'arrivée sur la ba 	veau logique et au cifique au niveau valeur	
MI11 utc Printemps 2017	44	
	Fautes	
 Un système est un assem Unité de confinement de une faute unique influenc Dans un ensemble de FCU être indépendantes 	faute (FCU) e un seul composant	
 Le confinement de faute de de conception pour assur conséquences immédiate seul FCU 	er que les	
 Les modèles de fiabilité c l'hypothèse d'indépendar 		
MI11 utc Printemps 2017	45	

Classification des Fautes

Espace temps d'erreurs

- Les fautes physiques sont transitoires ou permanentes, les fautes dues au design sont toujours permanentes
- □ Une faute transitoire (transient) apparait pour un court intervalle de temps
 - □ Aucune action explicite n'est nécessaire pour réparer
 - □ Peut provoquer une erreur mais laisse le matériel intact
 - ☐ Une faute externe est transitoire (transitory)
 - □ Ex : impact d'une particule cosmique
 - □ Taux d'arrivée généralement constant
 - ☐ Une faute interne est intermittente
 - □ Ex : défaut mécanique non encore permanent (oxydation)
 - □ Fréquence augmente avec le temps (indicateur pour maintenance préventive)
- □ Une faute permanente nécessite une action de réparation

47

46

Erreurs

- □ Conséquence d'une faute : état incorrect dans le composant
 - Donnée fausse : mémoire, registres, bascules
- □ Etat d'erreur
 - □ Activée : un calcul accède à l'erreur et la propage
 - ☐ Potentiellement loin dans le temps
 - □ Erreurs logicielles : Bohrbugs et Heisenbugs
 - Détectée : le calcul perçoit une variation par rapport à ce qui est attendu (ex : vérification de parité)
 - □ Latence de détection d'erreur (temps de détection)
 - □ Couverture de détection d'erreur (probabilité de détection)
 - ☐ Le test est essentiel pour détecter les erreurs de design
 - □ Anéantie : écrasée avant d'être détectée ou activée □ Sinon une erreur est latente

(corruption	silencieuse	de	donnée)
-------------	-------------	----	---------

Défaillances

- □ Evénement qui marque une déviation par rapport au comportement attendu (service)
- □ Dans un système réparti : génération d'un message inattendu
- Message perçu par un utilisateur du service du composant

Classification des Défaillances

Défaillances

Domaine temporel

- □ Défaillances précoces et tardives (LF)
 - Un composant qui ne présente que des LF ou défaillances par omission (OF) (suppression des autres) est appelé fail-silent component
 - Si arrêt sur la première OF : fail-stop component

Sévérité

- Possibilité de définir des classes en fonction de l'impact de la défaillance
 Une défaillance maligne dépasse la perte du simple service du composant (catastrophe)

- u Tous les utilisateurs constate le même comportement défaillant (consistance)
 □ Les utilisateurs perçoivent des comportement différents (comportement malicieux byzantin)
 □ difficulté de détection supérieure

Propagation	
Si une erreur est activée et propagée hors du composant on parle de <i>propagation d'erreur</i>	
□ Interaction = message => message incorrect □ Domaine de valeur □ Détection de la responsabilité des récepteurs □ Domaine temporel □ Détection par le système de communication	
□ gardien indépendant (safety bag) □ Système périodique : existence d'un g-state □ Erreur dans le g-State : pollution des calculs du	
cycle suivant (<i>érosion d[']état</i>) G-State vide : aucune possibilité de propagation Sinon surveillance de l'intégrité par une tâche de	
détection d'un composant indépendant	