MODELAGEM E INFERÊNCIA ESTATÍSTICA

Adequações do modelo e modelos não lineares

O QUE VOU APRENDER HOJE?

Verificar a adequabilidade do modelo

• Resíduos e resíduos padronizados

Gráficos de diagnóstico

Modelos não lineares

Regressão com variáveis transformadas

VERIFICAR A ADEQUABILIDADE DO MODELO

$$Y = \beta_o + \beta_1 x + \varepsilon$$

- ✓ Linearidade: a relação entre x e y é linear.
- ✔ Homoscedasticidade: assume que os resíduos têm variância constante.
- ✓ Independência: assume que os termos de erro são independentes.
- ✓ Normalidade: assume que os resíduos são normalmente distribuídos.

VERIFICAR A ADEQUABILIDADE DO MODELO

$$Y = \beta_o + \beta_1 x + \varepsilon$$

O modelo probabilístico linear se aplica a todo tipo de dados?

VERIFICAR A ADEQUABILIDADE DO MODELO

RESÍDUOS E RESÍDUOS PADRONIZADOS

1.
$$E(Y_i - \hat{Y}_i) = E(Y_i) - E(\hat{\beta}_0 + \hat{\beta}_1 x_i)$$
$$E(Y_i - \hat{Y}_i) = \beta_0 + \beta_1 x_i - (\beta_0 + \beta_1 x_i) = 0$$

2.
$$V(Y_i - \hat{Y}_i) = \sigma^2 \cdot \left[1 - \frac{1}{n} - \frac{(x_i - \overline{x})^2}{S_{xx}} \right]$$

3.
$$e_i^* = \frac{y_i - y_i}{s\sqrt{1 - \frac{1}{n} - \frac{(x_i - \bar{x})^2}{S_{xx}}}}$$

$$i = 1, ..., n$$

GRÁFICOS DE DIAGNÓSTICO

Variáveis que devem ser observadas para verificar a validade e utilidade do modelo:

	Abcissas Eixo horizontal	Ordenadas Eixo vertival	Representação
1	x (variável preditora)	e* ou e	(x, e*)
2	ŷ (dados previstos)	e* ou e	(ŷ, e*)
3	y (dados observados)	ŷ (dados previstos)	(y, ŷ)
4	Gráfico de probabilidade normal de e*		

1. Os dados nem sempre têm um comportamento linear

1. Os dados nem sempre têm um comportamento linear

Dados não lineares Fonte: (DEVORE, 2018, p. 510)

2. Variância de Y depende de x

Variância não constante Fonte: (DEVORE, 2018, p. 510)

- Método de mínimos quadrados ordinário considera σ² constante.
- β_0 e β_1 são estimados atribuindo os mesmos pesos a cada (x_i,y_i).

- ✓ Atribuir pesos: Se V(Y₁) aumenta com x:
 - Peso menor para Yi resultante de x grande.
 - Peso maior para Yi resultante de x pequeno.
- ✓ Mínimos quadrados ponderados V(Y_i) =kx_i² □ w_i=1/x_i²

3. Outliers podem afetar a reta ajustada

Retas diferentes, com e sem outliers. Fonte: (DEVORE, 2018, p. 510)

4. ε não tem distribuição normal

$$Y = \beta_o + \beta_1 x + \varepsilon$$

5. Se i denota dependência do tempo ϵ_i depende do tempo

Dados dependentes do tempo. Fonte: (DEVORE, 2018, p. 510)

6. Uma ou mais variáveis podem ter sido omitidas

Variáveis preditoras omitidas Fonte: (DEVORE, 2018, p. 510)

O QUE É UM MODELO NÃO-LINEAR

Vídeo do prof Andre definindo um modelo não-linear

Funções intrinsecamente lineares

Função	Transformação para linearizar	Forma linear

Fonte: (DEVORE, 2018, p. 515)

Funções intrinsecamente lineares

Função	Transformação para linearizar	Forma linear

Fonte: (DEVORE, 2018, p. 515)

Funções intrinsecamente lineares

Função	Transformação para linearizar	Forma linear

Fonte: (DEVORE, 2018, p. 515)

$$\hat{\beta}_{1} = \frac{\sum x_{i}' y_{i}' - \sum x_{i}' \sum y_{i}'/n}{\sum (x_{i}')^{2} - (\sum x_{i}')^{2}/n}$$

$$\hat{\beta}_0 = \frac{\sum y_i' - \hat{\beta}_1 \sum x_i'}{n} = \overline{y}' - \hat{\beta}_1 \overline{x}'$$

MODELAGEM E INFERÊNCIA ESTATÍSTICA

Adequações do modelo e modelos não lineares