ДИСЦИПЛИНА	Программирование промышленного оборудования
, , ,	(полное наименование дисциплины без сокращений)
ИНСТИТУТ	перспективных технологий и индустриального программирования (ИПТИП)
КАФЕДРА	цифровых и аддитивных технологий
	полное наименование кафедры)
ВИД УЧЕБНОГО МАТЕРИАЛА	Лабораторная работа 03 (в соответствии с пп.1-11)
	Краско Александр Сергеевич,
ПРЕПОДАВАТЕЛЬ	Скрипник Сергей Васильевич
	(фамилия, имя, отчество)
CEMECTP	2 семестр (указать семестр обучения, учебный год)

ЛАБОРАТОРНАЯ РАБОТА. ПРОГРАММИРОВАНИЕ 2-Х КООРДИНАТНЫХ ПРОМЫШЛЕННЫХ ТОКАРНЫХ СТАНКОВ С ЧПУ

1. Цель лабораторной работы

Цель работы: приобретение навыков разработки управляющих программ и выполнения наладки токарных станков с ЧПУ с применением CAD/CAM-систем.

2. Материально-техническое обеспечение лабораторной работы

- 1. Станок токарный с ЧПУ мод. КЕ36/750.
- 2. Станок токарный с ЧПУ мод. УТС-4.
- 3. Комплект режущего инструмента для токарных станков с ЧПУ.

3. Методические указания к выполнению лабораторной работы

3.1. Разработка управляющих программ в среде КОМПАС 3D

3.1.1. Создание копии детали

Для начала работы необходимо создать копию обрабатываемой детали. Данное действие позволит менять какие-либо элементы модели, не меняя её оригинал, при этом сохраняя все связи с оригинальной деталью.

Создание копии детали: «Файл» - «Создать» - «Деталь». В открывшемся окне нажать «Копировать объекты» - «Выбранный файл» - Выбрать файл обрабатываемой детали. В открывшемся дереве построения выбрать «Твердое тело». Сохранить деталь.

3.1.2. Создание нулевой точки детали

Необходимо скрыть глобальную систему координат в дереве построения.

Создадим нулевую точку на торце нашей детали для её привязки в рабочей зоне станка. Данная точка имеет свои оси координат и начало отсчета, от которого будут заданы все размеры и координаты перемещения инструмента во время обработки на станке.

Нажать кнопку Локальная система координат (ЛСК) - Способ построения: по объекту - Указать торец детали.

3.1.3. Выбор системы ЧПУ

Необходимо указать нулевую точку детали, выбрав ранее созданную ЛСК, а также выбрать модель стойки УЧПУ для создания УП.

ЧПУ. Токарная — Система ЧПУ — Указать созданную ранее ЛСК — Выбрать систему ЧПУ

3.1.4. Задание заготовки

Заготовка обрабатываемой детали задается одним из четырех способов:

- 1. Указание эскиза, содержащего контур заготовки. Эскиз должен быть предварительно создан в плоскости токарной обработки (плоскость ZX системы координат ЧПУ). При этом эскиз должен полностью располагаться в положительной зоне X токарной плоскости и не пересекать ось вращения детали. Эскиз указывается мышкой в дереве построения модели.
- 2. Указание поверхностей детали, относительно которых задается контур заготовки. При данном способе заготовка будет ассоциативно связана с поверхностями детали.
- 3. Выбор трехмерной модели заготовки. Данный способ рекомендуется использовать для второго и следующих установов (операций). В этих случаях модель заготовки может быть создана как результат выполнения последней обработки на предыдущем установе (или операции).
- 4. Прокат. При данном способе задаются длина и диаметр проката. Также можно задать внутренний диаметр (для случая использования трубы в качестве заготовки) и смещение торца заготовки относительно нуля детали.

В рамках лабораторной работы, в качестве заготовки, принять прокат. Заготовка, инструменты — Прокат — Указать припуск на торец 3 мм.

3.1.5. Задание набора режущих инструментов

В качестве режущих инструментов используются параметризованные 3D-модели, в которых параметры инструментов представлены параметрическими переменными модели. Инструменты могут быть выбраны из каталога, который поставляется вместе с приложением, или быть созданы самим пользователем.

Введите число позиций револьверной головки – 6.

Выберите инструменты и их параметры в соответствии с принятыми технологическими переходами.

3.1.6. Задание координат исходной точки

Исходная точка — это точка смены инструментальной позиции, ее координаты задаются в ЛСК ЧПУ.

Задание набора станочных приспособлений

В качестве приспособлений используются параметризованные 3D-модели, в которых параметры приспособлений представлены параметрическими переменными модели. Приспособления могут быть выбраны из каталога, который поставляется вместе с приложением, или быть созданы самим пользователем.

3.1.7. Задание положения зоны безопасности

Зона безопасности представляет собой прямоугольную область в плоскости токарной обработки. В границах зоны безопасности запрещается перемещение одного инструмента напрямую между зонами обработки.

3.1.8. Создание плана обработок

План обработки - последовательность (маршрут) обработок в пределах одной токарной операции с ЧПУ. Структурной единицей Плана обработки является обработка. Содержание обработки аналогично технологическому переходу. План обработки отображается в виде древовидной структуры в отдельной вкладке «ЧПУ. Токарная» в дереве построения модели.

В Плане обработок следует последовательность узлов, соответствующих заданным обработкам. Обработки фиксируются в дереве Плана по мере их создания пользователем. Для создания обработок используются команды библиотеки в меню или на панели инструментов:

Многопроходная – наружное точение, растачивание, подрезание, канавка; **Контур** – контурное точение (как правило, чистовое);

Канавка – простая канавка, параллельная координатным осям;

Сверление – одно- и многопроходное сверление, центрование, обработка отверстий осевым инструментом;

Нарезание резьбы резцом – многопроходное нарезание резьбы резцом (цилиндрических, конических, торцевых);

Нарезание резьбы плашкой/метчиком – нарезание резьбы плашкой или метчиком;

Отрезка — отрезка, в том числе с периодическим выводом резца.

3.2. Подготовка токарного станка с ЧПУ к выполнению заданной технологической операции

3.2.1. Основные элементы и узлы токарных станков с ЧПУ

На рисунке 3.1 показаны основные элементы и узлы токарных станков с ЧПУ моделей КЕ36/750 (рисунок 3.1, a) и УТС-4 (рисунок 3.1, δ).

1 — станина станка; 2 — направляющие; 3 — передняя бабка; 4 — суппорт; 5 — револьверная головка; 6 — патрон; 7 — стойка ЧПУ Рисунок 3.1

3.2.2. Панель управление станком и УЧПУ

На рисунке 3.2 показана панель управления УЧПУ станка мод. KE36/750 SINUMERIK ADVANCED PPU (PPU), а на рисунке 3.3 — панель управления станком (MCP) и группы клавиш по функциональному назначению.

- 1 Вертикальные и горизонтальные программные клавиши;
- 2 Кнопка возврата (для возврата в меню более высокого уровня);
- 3 Кнопка расширения меню (открывает следующее меню более низкого уровня и переход между меню одного уровня);
 - 4 Буквенно-цифровые кнопки;
 - 5 Кнопки управления;
 - 6 Кнопка отмены аварийного сигнала;
- 7 Кнопка встроенного мастера (Предлагает пошаговое руководство по основным операциям ввода в эксплуатацию и самой эксплуатации);
 - 8 Кнопка вызова справки;
 - 9 Кнопки курсора;
 - 10 кнопки рабочей области;
 - 11 USB-интерфейс;
 - 12 Светодиоды состояния

Рисунок 3.2

- 1 Кнопка аварийного останова;
- 2 Клавиша маховика;
- 3 Дисплей для отображения номера текущего инструмента;
- 4 Кнопки рабочего режима;
- 5 Кнопки управления программой;
- 6 Заданные пользователем кнопки;
- 7 Кнопки управления осями;
- 8 Переключатель изменения частоты вращения шпинделя;
- 9 Клавиши состояния шпинделя;
- 10 Переключатель изменения скорости подачи;
- 11 Кнопки запуска, останова и сброса программы

Рисунок 3.3

Панель управления токарным станком мод. УТС-4 представлена на рисунке 3.4. Для симуляции управления с различными стойками ЧПУ возможно выбрать панель управления из списка (рисунок 3.5).

Рисунок 3.4

Рисунок 3.5

3.2.3. Перемещение рабочих органов станка в опорные точки

После включения питания станка необходимо произвести перемещение суппорта с револьверной головкой в опорные (референтные) точки. По умолчанию, система управления открывается в окне **REF. POINT** (рисунок 3.6).

Рисунок 3.6

Символ О, отображаемый рядом с обозначением оси, означает, что ось не находится в опорной точке. Если ось не находится в опорной точке, символ всегда виден в текущей области управления (обработки).

Для возможности перемещения рабочих органов станка необходимо увеличить коррекцию скорости подачи с 0 до 6% на панели управления станком (см. рисунок 3.3).

Перемещение рабочих органов станка в опорные точки происходит автоматически после нажатия кнопок перемещения соответствующих осей на панели управления станка. Если ось находится в опорной точке, символ отображается после обозначения оси и виден только в окне **REF. POINT** (рисунок 3.7).

Рисунок 3.7

3.2.4. Установка обрабатываемой заготовки

Обрабатываемая заготовка устанавливается в трехкулачковый самоцентрирующий патрон с ручным приводом. Первым действием необходимо раскрыть кулачки патрона поворотом ключа против часовой стрелки (рисунок 3.8, a). Затем, заготовка вставляется между раскрытыми кулачками и проводится её закрепление поворотом ключа по часовой стрелке (рисунок $3.8, \delta$).

Рисунок 3.8

3.2.5. Установка инструментов в револьверную головку

Перед установкой инструментов в гнезда револьверной головки необходимо выбрать необходимые режущие и вспомогательные инструменты в соответствии с выполняемой технологической операцией. В случае применения резцов для наружной обработки подбирается державка, размеры которой соответствуют размерам гнезда револьверной головки $(H \times B)$. В случае применения резцов для обработки внутренних поверхностей и осевого инструмента, а также при установке резцов с прямоугольной державкой вдоль оси Z необходимо применение вспомогательного инструмента (рисунок 3.9).

Рисунок 3.9

Установка резца для наружной обработки происходит в следующей последовательности: 1) ослабление винтов прижима (рисунок 3.10, a); 2) установка резца до упора и завинчивание винтов прижима (рисунок 3.10, δ).

Рисунок 3.10

Установка инструментального блока (ИБ), состоящего из режущего и вспомогательного инструмента происходит в следующей последовательности: 1) установка ИБ по шпонке в гнездо револьверной головки; 2) завинчивание винтов (рисунок 3.11).

Рисунок 3.11

3.2.6. Привязка инструментов

При исполнении управляющей программы необходимо учитывать геометрию режущего инструмента. Она хранится в памяти УЧПУ в виде данных коррекции инструмента. Данные коррекции инструмента (длина, радиус и диаметр) определяются путем измерения инструмента или ввода значений в список инструментов.

Учитывая фактическое положение точки F (нулевая точка державки инструмента) и нулевой точки W (нулевая точка заготовки), система управления может рассчитать значение коррекции в длинах по осям X и Z.

На рисунках ниже показаны параметры привязки токарного (рисунок 3.12) и осевого (рисунок 3.13) инструментов.

Рисунок 3.12

- F Нулевая точка держателя резца
- М Машинная нулевая точка
- W- Нулевая точка заготовки

Рисунок 3.13

Привязка инструмента проводится в следующей последовательности: 1) создание нового инструмента на стойке ЧПУ; 2) определение точки привязки режущего инструмента по всем управляемым осям (X и Z).

Необходимо выбрать рабочую область **OFFSET**, после чего открыть окно со списком инструментов *Tool list (Список*

инструментов). Далее необходимо открыть меню выбора типа инструмента *New tool (Новый инструмент)*.

В УЧПУ токарных станков существуют следующие типы режущих инструментов: Токарный резец, Канавочный резец, Сверло, Метчик и Фреза.

Каждому режущему инструменту необходимо определить номер и выбрать соответствующий код положения кромки инструмента.

Доступные положения кромок для токарных и канавочных резцов: 1, 2, 3 и 4 (рисунок 3.14).

Рисунок 3.14

Доступные положения кромок для сверл, резьбонарезного инструмента и фрез: 5, 6, 7 и 8 (рисунок 3.15).

Рисунок 3.15

Для каждого инструмента необходимо ввести радиус вершины, а для отрезных резцов – ширину главной режущей кромки.

1 – Тип инструмента (Туре); 2 – Номер инструмента (Т); 3 – Номер режущей кромки (D); 4 – Длина инструмента по осям X и Z; 5 – Радиус инструмента (Radius); 6 – Ширина режущей кромки (Tip width), параметр активен только для канавочных резцов; 7 – Направление режущей кромки.

Рисунок 3.16

Определение привязки инструмента точки режущего выполняется в рабочей области **MASHINE** и режиме **JOG**.

В окне **Измерения инструмента** в ручном режиме (Meas. tool) необходимо выбрать ось для осуществления привязки. В начале выбирается ось X (Measure X).

(HAND WHEEL) режиме управления маховиком необходимо выполнить точение небольшого участка наружной поверхности заготовки (см. рисунок 3.17). После этого необходимо измерить диаметр обрезанной поверхности (рисунок 3.15) и занести его значение в поле « \emptyset » (рисунок 3.19).

Рисунок 3.18

Рисунок 3.19

Привязка режущего инструмента по координате Z проводится посредством касания инструментом торца заготовки до момента снятия стружки и нажатием клавиши **Уст.** длину **Z** (рисунок 3.20).

Рисунок 3.20

3.2.6.1 Определение нулевой точки рабочей системы координат заготовки (WCS)

Нулевая точка заготовки определяется смещением нулевой точки станка по оси Z (рисунок 3.21).

Рисунок 3.21

Определение нулевой точки заготовки проводят в рабочей области **OFFSET** в режиме **JOG**.

В списке значений локальных систем координат (ЛСК) Смещ. нуля (Work offset) необходимо выбрать Измерение детали (Measure workpiece) и координату измерения — Z. В режиме маховика (HAND WHEEL) необходимо подвести инструмент до касания с торцем заготовки (см. рисунок 3.20) и нажать клавишу Work offset:

Смещ.

HAND WHEEL

3.2.7. Отработка и запуск управляющей программы

Запуск ранее созданной в САМ-системе управляющей программы. Заранее сохраните файл программы (с расширением .MPF) в паке Документы.

1.

1	Выберите рабочую область	PROGRAM MANAGER
	Нажмите функциональную клавишу и выберите файл программы с расширением .MPF	User files
3	Нажмите функциональную клавишу отработки программы	Ext. exe- cution
4	Откройте окно симуляции управляющей программы	d Real. ■ simu.
5	Нажмите кнопку CYCLE START на панели управления станка	CYCLE START
6	Проверьте правильность отработки управляющей программы	

4. Вопросы для проведения контрольного опроса

- 1. Для каких целей применяются трехмерные модели деталей при подготовке УП в САМ-системах?
- 2. Каким образом в САМ-системах указывается область снятия материала при токарной обработке?

- 3. Какие основные параметры токарной обработки задаются при снятии припуска проходными резцами?
- 4. Как величина припусков на черновых и получистовых проходах влияет на траекторию движения токарного инструмента?
- 5. Для каких целей проводится симуляция обработки при токарной обработке?
 - 6. Для каких целей САМ-системах применяется постпроцессор?
- 7. Каким образом формируется управляющая программа для заданной УЧПУ?
- 8. Приведите последовательность действий при выполнении наладки токарного станка с ЧПУ.
- 9. Назовите последовательность действий при загрузке и запуске УП в УЧПУ токарного станка с ЧПУ?
- 10. Назовите виды и причины отклонений полученных размеров детали после отработки УП на токарных станках и трехмерной моделью.

5. Допуск студентов к выполнению лабораторной работы

Перед выполнением лабораторной работы (после изучения теоретического материала, приведенного в данном учебно-методическом пособии) преподавателем проводится контрольный опрос студентов, по результатам которого студент допускается либо не допускается к лабораторной работе.

Для подготовки к опросу необходимо прослушать курс лекций по соответствующей теме, а также самостоятельно изучить теоретический материал, приведенный в п. 3 настоящего учебно-методического пособия.

Для дополнительной подготовки к лабораторной работе можно использовать литературу, указанную в конце учебно-методического пособия.

6. Инструктаж по технике безопасности

Проведение лабораторной работы связано с нахождением студентов в помещении лаборатории кафедры цифровых и аддитивных технологий, где находится оборудование, представляющее собой источник повышенной опасности, поэтому при проведении лабораторной работы необходимо

соблюдать меры предосторожности, изложенные в инструкции по технике безопасности, которую преподаватель доводит до сведения студентов перед началом лабораторной работы, при этом преподаватель проводит разъяснительную работу о последствиях, которые могут наступить при несоблюдении правил техники безопасности.

Далее студенты проставляют подписи о получении инструктажа в журнале, и только после этого непосредственно приступают к выполнению лабораторной работы.

Нахождение в лаборатории допускается только при соблюдении правил техники безопасности. При нахождении вблизи работающего металлообрабатывающего оборудования запрещается подходить к станам ближе, чем на один метр и прикасаться к ним.

В случае любых ситуаций, связанных с получением травмы, необходимо:

- немедленно сообщить о случившемся преподавателю, проводящему занятия, даже в случае незначительных травм (ушибы, ранения и т. п.);
- при поражении электрическим током немедленно выключить рубильники, вызвать скорую медицинскую помощь, а до прибытия врача пострадавшему делать искусственное дыхание;
- при необходимости пострадавшего направить к врачу или вызвать скорую медицинскую помощь.

7. Порядок выполнения лабораторной работы

7.1. Перемещение рабочих органов станка в опорные точки

После включения питания станка необходимо произвести перемещение суппорта с револьверной головкой в опорные (референтные) точки.

1) Включите питание системы управления и станка. Разблокируйте все кнопки аварийного останова станка. По умолчанию, система управления после загрузки открывается в окне **REF. POINT**

Символ О, отображаемый рядом с обозначением оси, означает, что ось не находится в опорной точке. Если ось не находится в опорной точке, символ всегда виден в текущей области управления (обработки).

- 2) Увеличьте коррекцию скорости подачи с 0 до 6% на панели управления станком.
- 3) Нажмите соответствующие кнопки перемещения осей на панели управления станка, чтобы вывести каждую ось в опорную точку.

Если ось находится в опорной точке, символ • отображается после обозначения оси и виден только в окне **REF. POINT.**

7.2. Установка заготовки и режущих инструментов

4) Установите заготовку в патрон токарного станка.

Рисунок 7.1.

5) Установите все необходимые режущие инструменты в гнезда револьверной головки.

7.3. Привязка режущих инструментов

7.3.1. Создание нового инструмента

6) Введите параметры нового инструмента выполнив следующую последовательность действий:

пос	следовательность действий:	
1	Выберите рабочую область OFFSET	A [O]

5. Введите номер инструмента и выберите соответствующий код положения кромки инструмента в соответствии с текущим направлением вершины резца. Доступные положения кромок для токарных и канавочных резцов: 1, 2, 3 и 4:

Доступные положения кромок для сверл, резьбонарезного инструмента и фрез: 5, 6, 7 и 8:

7.3.2. Определение точки привязки инструментов

7) Установите привязку режущего инструмента по оси X выполнив следующие действия:

При работе на стойке станка

1.	Выберите рабочую область MASHINE	MACHINE
2.	Переключитесь в режим JOG	₩ Jog
3.	Откройте окно измерения инструмента в ручном режиме (Meas. tool)	Изм. ин-та
1	Нажмите функциональную клавишу ($Measure\ X$), чтобы измерить инструмент по оси X	Измер. Х
5.	Переключитесь в режим управления маховиком (HAND WHEEL)	HAND WHEEL

8) Установите привязку режущего инструмента по оси Z выполнив следующие действия:

1.	Выберите рабочую область MASHINE	MACHINE
----	---	---------

При работе в симуляторе стойки

Выполните действия 1-4 шага 7). Затем с помощью клавиш управления осями подведите суппорт станка в координаты, указанные на рисунке 7.2. Далее выполните пункты 8-10 шага 7).

Рисунок 7.2.

Аналогично, выполните привязку инструмента по координате Z. Координаты подвода инструмента указаны на рисунке

7.4. Проверка результатов привязки инструментов

9) Чтобы убедиться в безопасности и правильности настроек станка, необходимо соответствующим образом проверить результаты коррекции инструмента выполните следующие действия:

2.	Переключитесь в режим MDA	MDA												
3.	Нажмите соответствующую функциональную клавишу на панели управления	Удалить файл												
4.	Введите тестовую программу: G500 T1 D1 G00 X0 Z5													
5.	Нажмите эту клавишу, чтобы активировать функцию ROV													
6.	Нажмите кнопку CYCLE START на панели управления станка													
	Плавно увеличивайте коррекцию скорости подачи, чтобы избежать несчас	гных случаев,												
	обусловленных слишком быстрым перемещением, и контролировать перем	мещение осей												
	в заданное положение.													

7.5. Запуск управляющей программы

7.5.1. Определение нулевой точки рабочей системы координат заготовки (WCS)

10) Перед запуском управляющей программы необходимо определить положение нулевой точки рабочей системы координат заготовки (WCS). Выполните следующие действия:

1	Выберите рабочую область OFFSET	OFFSET
2	Переключитесь в ручной режим	JOG JOG
3	Откройте список значений локальных систем координат (ЛСК) Клавиша: Мещ. нуля / Work offset	ф Смещ. нуля
4	Откройте окно измерения заготовки Клавиша: Измерение детали / Measure workpice	Измерение детали
5	Нажмите функциональную клавишу для выбора необходимого направления измерения: ${f X}$	×
6	Переместите предварительно измеренный инструмент к заготовке по оси ${f X}$ не касаясь её	
7	Переключитесь в режим маховика	HAND WHEEL
8	Выберите подходящую коррекцию скорости подачи, после чего, передвигая	
	инструмент маховиком, отметьте нужную кромку заготовки ———————————————————————————————————	SELECT
9	Выберите плоскость коррекции для сохранения G54	
10	Введите расстояние: 0 мм	

7.5.2. Запуск управляющей программы

11) Запустите ранее созданную в САМ-системе управляющую программу. Заранее сохраните файл программы (с расширением .**MPF**) в паке **Документы.**

1	Выберите рабочую область	PROGRAM MANAGER
2	Нажмите функциональную клавишу и выберите файл программы с расширением . MPF	User files
3	Нажмите функциональную клавишу отработки программы	Ext. exe- cution
4	Откройте окно симуляции управляющей программы	∦ Real.
5	Нажмите кнопку CYCLE START на панели управления станка	CYCLE START
6	Проверьте правильность отработки управляющей программы	

8. Комплект индивидуальных заданий

Индивидуальным заданием для выполнения лабораторной работы является эскиз комплексной детали, из которой необходимо изобразить эскиз детали по заданному варианту.

Задание для вариантов с 1 по 6 представлены на рис. 8.1 и табл. 8.1.

Рисунок 8.1. Эскиз комплексной детали для вариантов с 1 по 5

Таблица 8.1. Параметры комплексной детали для вариантов с 1 по 5

N										Разг	меры	, мм										
вар.	D	D1	D2	D3	D4	L	L1	L2	L3	L4	1	d	d1	d2	b	b1	b2	b3	R	R1	R2	α
1	100	-	75	-	-	100	50	-	-	30	-	-	-	-	-	-	45	-	-	-	-	-
2	95	-	60	-	26	85	-	40	-	22	-	-	-	-	-	-	-	12	-	-	-	-
3	105	-	62	54	25	68	-	-	15	15	-	-	-	-	-	-	-	15	15	-	-	25
4	95	-	70	-	-	70	-	-	-	25	30	46	68	25	-	-	-	-	-	-	-	-
5	90	-	60	-	-	75	-	-	-	25	35	-	-	-	-	30	-	-	-	-	8	-
6	100	80	65	-	-	80	-	-	-	20	-	-	-	-	12	-	-	-	-	6	-	-

Задание для вариантов с 7 по 12 представлены на рис. 8.2 и табл. 8.2.

Рисунок 8.2. Эскиз комплексной детали для вариантов с 7 по 12

Таблица 8.2. Параметры комплексной детали для вариантов с 7 по 12

N										Разг	мерь	л, М	М									
вар.	D	D1	D2	D3	D4	D5	L	L1	L2	L3	1	11	12	13	d	d1	d2	d3	d4	b	R	R1
7	96	60	52	-	-	-	50	38	12	5	-	-	-	-	-	-	-		-	-	15	-
8	95	70	70	-	-	-	40	25	-	-	-	-	-	-	-	-	30	40	55	-	-	-
9	70	70	70	-	-	-	45	-	-	-	-	-	-	25	30	50	-	-	-	-	-	-
10	90	75	75	84	-	-	35	25	-	-	-	-	-	-	50	-	-	-	-	-	-	-
11	75	65	65	-	-	32	50	-	-	-	16	18	-	20	20	45	-	-	-	ı	-	-
12	75	65	65	-	60	-	50	-	-	-	-	-	6	20	20	45	-	-	-	12	-	6

Задание для вариантов с 13 по 17 представлены на рис. 8.3 и табл. 8.3.

Рисунок 8.3. Эскиз комплексной детали для вариантов с 13 по 17

Таблица 8.3. Параметры комплексной детали для вариантов с 13 по 17

N										Раз	мер	ы, м	1M										
вар.	D	D1	D2	D3	D4	D5	L	L1	L2	L3	1	11	12	13	14	15	d	d1	d2	d3	d4	d5	d6
13	80	-	-	72	65	60	80	60	35	15	-	-	-	-	-	-	-	-	-	-	-	-	-
14	75	-	-	75	75	75	60	-	-	-	44	18	-	-	-	-	20	28	38	48	-	-	-
15	80	-	-	80	80	80	50	-	-	-	-	-	20	9	-	-	22	-	-	-	50	32	26
16	125	100	-	-	-	-	40	-	-	-	-	-	-	-	10	-	-	-	-	-	-	-	-
17	90	-	70	-	70	55	20	-	-	-	-	-	-	-	-	10	-	-	-	-	-	-	-
18	150	-	-	100	90	-	60	40	-	-	20	-	10	-	-	-	10	20	-	-	-	40	-
19	200	ı	-	160	-	140	80	50	-	5	35	-	20	12	-	-	40	ı	-	ı	84	60	-