

CS 372 Lecture #26

The Internet Protocol

- IP datagram format
- IP addressing

Note: Many of the lecture slides are based on presentations that accompany *Computer Networking: A Top Down Approach*, 6th edition, by Jim Kurose & Keith Ross, Addison-Wesley, 2013.

The Internet Protocol (IP)

- IP is the internet's network layer protocol
 - alternatives: few, obscure
- IP accepts TCP / UDP segments, destination address
 - Encapsulates segment, source address, destination address, other info ... into datagram
 - Provides "best-effort", host-to-host delivery

IP datagram header

- VER version of IP (currently 4)
- HEAD. LEN header length (number of 32-bit "lines")
- SERVICE TYPE sender's preference for low latency, high reliability
- LENGTH total bytes in datagram (including header)
- IDENT, FLAGS, FRAG OFFSET used with fragmentation (later)
- TTL time to live
 - decremented in each router
 - datagram discarded when TTL = 0
- UPPER LAYER type of protocol carried in datagram
 - e.g., TCP, UDP
- HEADER CHECKSUM 1s-complement of sum
- SOURCE IP ADDRESS IP address of original source
- DESTINATION IP ADDRESS IP address of ultimate destination
- OPTIONS added in multiples of 32 bits (padded if necessary)
 - e.g., record route, timestamp
 - If no options, HEAD LEN = 5
- DATA TCP or UDP segment (includes segment header)

Datagram overhead

At least:

20 bytes of TCP/UDP

20 bytes of IP

= 40 bytes for every packet

/er	head. Ien	service type		length
•			flgs	fragment offset
time to		upper	header	
live		layer	checksum	
32 bit source IP address				
32 bit destination IP address				
Options (if any)				
data (variable length, typically a TCP or UDP segment)				

Datagram forwarding

- IP header contains all information needed to deliver datagram to destination computer
 - Destination address
 - Source address
 - Identifier (session, sequence)
 - Other delivery information
- Each router examines header of each datagram and forwards datagram along path to destination

Internet addresses

- A key aspect of a virtual network is a single, uniform address format
 - Address format must be independent of any particular hardware address format
 - Can't use hardware addresses because different technologies have different address formats
 - Can't use addresses that are local to a network because multiple networks might use the same addresses internally

IP addressing (version 4)

- In IPv4, each host is assigned a 32-bit number, called the IP address or Internet address
 - Unique across entire Internet
 - Number of unique IP addresses possible:
 - $2^{32} = 4,294,967,296$
 - some are reserved
- IP version 6 (later)

IP address notation

- Common form is "dotted decimal"
- e.g.: 128.253.40.28
- range is [0.0.0.0 ... 255.255.255.255]
 - each "component" range is [0 ... 255]
- IP address is just a 32-bit number
- It's the same internally, regardless of its external representation
- Dotted-decimal is only for convenience
- In hexadecimal form, the range is [00000000 ... FFFFFFFF]
 - divides naturally into 4 bytes (1 byte = 2 hex digits)
 - e.g.: 128.253.40.28 (D-D) = 80 FD 28 1C (hex)
 - each group represents one byte [00 ... FF]
- - e.g.: 128.253.40.28 (D-D) = 10000000 111111101 00101000 00011100 (binary)
- In ordinary decimal form, the range is [0 ... 4294967295]
 - e.g.: 128.253.40.28 (D-D) = 2164074524 (decimal)

IP address hierarchy

- Every ISP <u>network</u> in the internet is assigned <u>network address</u> that is unique <u>within the internet</u>
 - includes indicator for number of bits used for network identification
 - may be divided into sub-nets
 - e.g., 128.193.35.0 / 24
- Every <u>host</u> in a specific network is assigned a <u>host number</u> that is unique <u>within that network</u>
 - e.g., 0.0.0.123
- Host's *IP address* is the combination of the network address and host address
 - e.g., 128.193.35.123 / 24
- Address format enables efficient routing
 - longest prefix matching

IP address assignment

- ISP network addresses are unique
 - assigned by ICANN:
 - Internet Corporation for Assigned Names and Numbers
- Host addresses may be duplicated on different networks
 - assigned by network (admin or DHCP)
- The combination of network address and host number is unique in the entire internet
 - assignment of ISP <u>network addresses</u> must be coordinated globally
 - assignment of sub-nets and <u>host numbers</u> can be managed locally

Summary

Lecture #26

- IP datagram
 - format
 - contents
- IP addresses
 - formats, conversions
 - e.g., dotted-decimal to binary
 - network address, host number