Experiment No: 5 Date: 12/09/2024

Linear Convolution using Circular Convolution and vice versa

Aim

To find the linear convolution using circular convolution and vice versa of two input sequences

Theory

If we have two sequences $x_1(n)$ and $x_2(n)$ withy length L and M respectively, the resultant linear convolution has got L+M = 1, On the Other hand, if we're performing circular convolution, the resultant will have a length of max of L,M.

Program

→ Linear Convolution using Circular Convolution

%Linear convolution using circular convolution

```
clc;
clear;
close all;
x=[1,2,3,4];
y=[1,1,1];
xl=length(x);
yl=length(y);
zl=(xl+yl)-1;
xn=[x zeros(1,zl-xl)];
yn=[y zeros(1,zl-yl)];
xa=fft(xn);
ya=fft(yn);
con=xa.*ya;
anss=ifft(con);
disp(anss);
answ=conv(x,y);
disp(answ);
```

→ Circular Convolution using Linear Convolution

```
% Circular convolution using linear convolution
clc;
clear;
close all;
x = [1, 2, 3, 4];
h = [1, 1, 1];
y=conv(x,h);
z=max(length(x), length(h));
r = [y(1:z)];
new = [y(z+1:length(y)) zeros(1, length(y)-z)];
for k = 1:z-1
    r(k)=r(k)+new(k);
end
disp(r);
```

Result

Executed Linear Convolution using Circular Convolution and Vice Versa

Observation

→ Linear Convolution using Circular Convolution

1 3 6 9 7 4

1 3 6 9 7 4

→ Circular Convolution using Linear Convolution

8 7 6 9