Część 1: Zbierz informacje PDU dla lokalnej komunikacji sieciowej

Część 2: Zbierz informacje PDU dla zdalnej komunikacji sieciowej

Wprowadzenie

To ćwiczenie dotyczy przeglądania i analizy datagramów PDU. Wszystkie urządzenia zostały już skonfigurowane. Twoim zadaniem będzie zebranie informacji zawartych w datagramach PDU w trybie symulacji, ich analiza oraz udzielenie odpowiedzi na kilka pytań.

Instrukcje

Część 1: Zbierz informacje PDU dla komunikacji lokalnej

Uwaga: Przejrzyj pytania do przemyślenia w części 3, zanim przejdziesz do części 1. Zapoznanie się z tymi pytaniami pozwoli Ci na zorientowanie się jaki rodzaj informacji musisz zwrócić uwagę podczas zbierania danych.

Krok 1: Zbierz informacje PDU, gdy pakiet przemieszcza się od 172.16.31.5 do 172.16.31.2.

- a. Kliknij 172.16.31.5 i otwórz Command Prompt.
- b. Wpisz komendę ping 172.16.31.2.
- c. Przełącz Packet Tracer w tryb symulacji i powtórnie zastosuj komendę **ping 172.16.31.2**. Jednostka PDU pojawi się obok **172.16.31.5**.
- d. Kliknij na PDU i zwrócić uwagę na następujące informacje z OSI Model i zakładki Outbound PDU Layer:

Adres MAC odbiorcy:000C:85CC:1DA7

Źródłowy adres MAC: 00D0:D311:C788

Źródłowy adres IP: 172.16.31.5Docelowy adres IP: 172.16.31.2

o W urządzeniu: 172.16.31.5

e. Kliknij **Capture/Forward (prawa strzałka, a następnie pionowy pasek)**, aby przenieść PDU do następnego urządzenia. Zbierz te same informacje co z etapu 1d. Powtarzaj ten proces, dopóki datagram PDU dotrze do miejsca przeznaczenia. Rejestruj informacje z poszczególnych datagramów PDU zapisując je w arkuszu kalkulacyjnym, tak jak pokazano w tabeli poniżej:

Przykład arkusza kalkulacyjnego

Na urządzeniu	Docelowy MAC	Źródłowy MAC	Źródłowy IPv4	Docelowy IPv4
172.16.31.5	000C:85CC:1DA7	00D0:D311:C788	172.16.31.5	172.16.31.2
Switch1	000C:85CC:1DA7	00D0:D311:C788	nd.	nd.
Hub	nd.	nd.	nd.	nd.
172.16.31.2	00D0:D311:C788	000C:85CC:1DA7	172.16.31.2	172.16.31.5

Krok 2: Zbieranie dodatkowych informacji zawartych w datagramach PDU z innych testów ping.

Zgodnie z opisem zawartym w kroku 1 zbierz dane dla następujących testów:

- Ping na adres 172.16.31.2 z 172.16.31.3.
- Ping na adres 172.16.31.4 z 172.16.31.5.

Powróć do trybu Realtime.

Część 2: Zbierz informacje PDU dla zdalnej komunikacji sieciowej

Aby komunikować się ze zdalnymi sieciami, konieczne jest urządzenie bramy. Przestudiuj proces, który odbywa się w celu komunikowania się z urządzeniami w sieci zdalnej. Zwróć szczególną uwagę na używane adresy MAC.

Krok 1: Zbierz informacje zawarte w datagramie PDU widoczne podczas przesyłania pakietu od adresu IP 172.16.31.5 do 10.10.10.2.

- a. Kliknij 172.16.31.5 i otwórz Command Prompt.
- b. Wpisz komendę ping 10.10.10.2.
- c. Przełącz Packet Tracer w tryb symulacji i powtórnie zastosuj komendę **ping 10.10.10.2**. Jednostka PDU pojawi się obok **172.16.31.5**.
- d. Kliknij na PDU i zwrócić uwagę na następujące informacje znajdujące się w zakładce Outbound PDU Layer:

Docelowy adres MAC: 00D0:BA8E:741A

• Źródłowy adres MAC: 00D0:D311:C788

Žródłowy adres IP: 172.16.31.5Docelowy adres IP: 10.10.10.2

• W urządzeniu: 172.16.31.5

Jakie urządzenie ma docelowy MAC, który jest wyświetlany?

routera

e. Kliknij **Capture/Forward (prawa strzałka, a następnie pionowy pasek)**, aby przenieść PDU do następnego urządzenia. Zbierz te same informacje co z etapu 1d. Powtarzaj ten proces, dopóki datagram PDU dotrze do miejsca przeznaczenia. Zapisz zebrane informacje PDU testów ping z 172.16.31.5 do 10.10.2 w arkuszu kalkulacyjnym, używając formatu podobnego do poniższej tabeli przykładowej:

Na urządzeniu	Docelowy MAC	Źródłowy MAC	Źródłowy IPv4	Docelowy IPv4
172.16.31.5	00D0:BA8E:741A	00D0:D311:C788	172.16.31.5	10.10.10.2
Switch1	00D0:BA8E:741A	00D0:D311:C788	nd.	nd.
Router	0060:2F84:4AB6	00D0:588C:2401	172.16.31.5	10.10.10.2
Switch0	0060:2F84:4AB6	00D0:588C:2401	nd.	nd.
Access Point	nd.	nd.	nd.	nd.
10.10.10.2	00D0:588C:2401	0060:2F84:4AB6	10.10.10.2	172.16.31.5

Pytania do przemyślenia

Analizując przechwycone dane odpowiedz na poniższe pytania:

1. Czy do podłączania urządzeń stosowano różne rodzaje kabli/mediów?

Tak: miedź, światłowód i medium bezprzewodowe

2. Czy typ okablowania wpływał na obsługę datagramu PDU?

Nie

3. Czy **Hub** traci jakąkolwiek informację z otrzymanych i przesyłanych danych?

Nie

4. Co robi Hub z adresami MAC i adresami IP?

Nic

5. Czy Access Point zmienia w jakikolwiek sposób przesyłane informacje?

Tak. Przepakowuje informacje zgodnie ze standardem sieci bezprzewodowej IEEE 802.11

6. Czy informacje o adresie MAC lub adresie IP są tracone podczas bezprzewodowej transmisji danych?

Nie

 Jaka najwyższa warstwa modelu OSI jest wykorzystywana podczas obsługi danych poprzez Hub i Access Point ?

Warstwa 1

8. Czy **Hub** lub **Access Point** kiedykolwiek replikuje datagramy PDU, które mogą zostać odrzucone przez hosta, co w Packet Tracer oznaczane jest czerwonym znakiem "X"?

Tak

9. Przeanalizuj datagramy używając zakładki **PDU Details** i odpowiedz na pytanie, który adres MAC widoczny jest jako pierwszy, źródłowy czy docelowy?

Docelowy

10. Dlaczego adresy MAC miałyby pojawić się w tej kolejności?

Przełącznik może zacząć szybciej przesyłanie ramki do znanego adresu MAC, jeśli odbiorca jest wymieniony jako pierwszy

11. Czy w analizowanej symulacji istnieje wzorzec określający strukturę wykorzystywanych adresów MAC?

Nie

12. Czy przełączniki kiedykolwiek replikują datagramy PDU, które zostały odrzucone przez hosta, co w Packet Tracer zostało oznaczone czerwonym znakiem "X"?

Nie

13. Zauważ, że przy każdym przesłaniu datagramu PDU pomiędzy siecią 10 a siecią 172, istnieje punkt (urządzenie sieciowe), w którym następuje zmiana adresów MAC. Gdzie to się stało?

Dzieje się to na routerze

14. Które urządzenie używa adresów MAC zaczynających się od 00D0:BA?

router

15. Do jakich urządzeń należały pozostałe adresy MAC znajdujące się w datagramie PDU?

Do nadawcy i odbiorcy

16. Czy nadawca i odbiorca adresu IPv4 zmienił pola w którejkolwiek z PDU?

Nie

17. Kiedy podążasz za odpowiedzią na ping, czasami nazywany *pong*, czy widzisz zmianę adresu IPv4 nadawcy i odbiorcy?

Tak

18. Jaki jest wzorzec adresowania IPv4 stosowany w tej symulacji

Każdy port routera wymaga zestawu nienakładających się adresów

19. Dlaczego różne sieci IP muszą być przypisane do różnych portów routera?

Funkcja routera polega na łączeniu różnych sieci IP.

20. Jeśli ta symulacja została skonfigurowana z IPv6 zamiast IPv4, co byłoby inaczej?

Adresy IPv4 zostaną zastąpione adresami IPv6, ale wszystko inne byłoby takie same.