

BÁO CÁO THỰC HÀNH SUMMER COURSE 2025 CUSTOM IC DESIGN

LAB 1:

INVERTER (FRONT-END)

Nhóm 7 (ca 2)

Họ và tên thành viên:

Phạm Vũ Tuấn Hưng 22200067

Phạm Vĩnh Khang 22200079

Giảng viên:

Nguyễn Mai Minh Kha Nguyễn Vũ Minh Thành Phạm Thế Hùng

Thành phố Hồ Chí Minh, August 25, 2025

1. Schematic

Hình: Schematic của mạch inv.

Mạch inverter gồm 1 NMOS và 1 PMOS

- Khi $V_{IN} = 1 \rightarrow NMOS$ 'dẫn', PMOS 'ngưng' $\rightarrow V_{OUT} = 0$.
- Khi $V_{IN} = 0 \rightarrow PMOS$ 'dẫn', NMOS 'ngưng' $\rightarrow V_{OUT} = 1$.

2. Symbol

Hình: Symbol của mạch inv

3. Kiểm tra function của mạch INVERTER

Tỷ lệ kích thước của PMOS/NMOS:

PMOS: W = 3u ; L = 250nm.
NMOS: W = 1.5u ; L = 250nm.

Bảng trạng thái:

IN	OUT
0	1

Bång: Logic của mạch inverter.

Hình: Testbench của mạch INVERTER.

❖ Kiểm tra Transient:

Thông số setup mô phỏng:

Stop Time: 10000n

Maximum Time Step: 10n

Tiến hành mô phỏng ở ngõ ra và ngõ vào của inverter

Hình: Kết quả khi chạy Transient của mạch.

❖ Nhận xét:

- Nhìn chung mạch đã hoạt động đúng theo logic cơ bản của inverter.
- Tín hiệu ra (đường màu xanh) có xung vuông ngược pha hoàn toàn với tín hiệu ngõ vào (đường màu đỏ) tại mỗi thời điểm.
- Tín hiệu ngõ ra đáp ứng đảm bảo mức logic: mức 1 (ngõ ra đạt 2.5V = VDD) và mức 0 (ngõ ra đạt 0V = VSS)

❖ Do Raise Time và Fall Time Output của mạch:

Hình: đo rise time và fall time của mạch inv

Kết quả đo:

Rise time: $t_r = 53.9530ps$ Fall time: $t_f = 49.7251ps$

Sự chênh lệch giữa rise time và fall time là không đáng kể

53.9530 - 49.7251 = 4.2279ps cho thấy rằng mạch hoạt động cân bằng và ổn

định

❖ Kiểm tra DC:

Hình: Kết quả chạy DC của mạch inverter.

❖ Nhận xét:

- Điểm giao nhau của 2 đường thẳng xanh và vàng được gọi là trippoint (Điểm chuyển mạch). Tạm gọi là $V_{\rm M.}$
- Ở khoảng [1,1.2] tại đó PMOS và NMOS hoạt động ở trạng thái saturation và tại đó giá trị xấp xỉ $\frac{V_{DD}}{2}$. Tùy theo mong muốn của người yêu cầu mà điểm chuyển mạch có thể sớm hơn hoặc trễ hơn chứ không nhất thiết ở $\frac{V_{DD}}{2}$.

