Арифметика с плавающей точкой

16

Обзор главы

В разделе	Вы найдете	на стр.
16.1	Основные арифметические операции	16–2
16.2	Образование абсолютной величины числа с плавающей точкой	16–6
16.3	Расширенные арифметические операции	16–7
16.4	Образование квадрата или квадратного корня числа с плавающей точкой	16–9
16.5	Образование натурального логарифма числа с плавающей точкой	16–11
16.6	Образование экспоненциального значения числа с плавающей точкой	16–12
16.7	Образование тригонометрических функций углов как чисел с плавающей точкой	16–13

16.1. Основные арифметические операции

Описание

В таблице 16—1 перечислены операции AWL, с помощью которых Вы можете складывать, вычитать, умножать и делить числа с плавающей точкой (32 бита, IEEE-FP). Так как числа с плавающей точкой (32 бита, IEEE-FP) принадлежат типу данных REAL (вещественные), то в качестве мнемонического сокращения для этой операции используется "R".

Таблица 16–1. Арифметические операции: основные арифметические операции для чисел с плавающей точкой (32 бита, IEEE–FP)			
Операция	Функция		
+R	Складывает числа с плавающей точкой (32 бита, IEEE–FP) в АККИ 1 и 2 и сохраняет 32-битный результат в АККИ 1.		
-R	Вычитает число с плавающей точкой (32 бита, IEEE–FP) в АККU 1 из числа с плавающей точкой (32 бита, IEEE–FP) в АККU 2 и сохраняет 32-битный результат в АККU 1.		
*R	Умножает число с плавающей точкой (32 бита, IEEE–FP) в АККU 1 на число с плавающей точкой (32 бита, IEEE–FP) в АККU 2 и сохраняет 32-битный результат АККU 1.		
/R	Делит число с плавающей точкой (32 бита, IEEE–FP) в АККИ 2 на число с плавающей точкой (32 бита, IEEE–FP) в АККИ 1. 32-битный результат сохраняется в АККИ 1.		

Связь между арифметическими операциями и аккумуляторами Описание функций в таблице 16–1 показывает, что арифметические операции соединяют между собой содержимое AKKU 1 и 2. Результат сохраняется в AKKU 1. Старое содержимое AKKU 1 сдвигается в AKKU 2.

В СРU с четырьмя АККU затем содержимое АККU 3 копируется в АККU 2, а содержимое АККU 4 в АККU 3. Старое содержимое АККU 4 не меняется.

Представление результатов при соединении двух чисел с плавающей CPU

Операция сложения АККИ 1 и 2 как чисел с плавающей точкой (32 бита, IEEE-FP) (+R) указывает СРU сложить содержимое АККИ 1 и АККИ 2 и сохранить результат в АККИ 1. Эта операция заменяет старое содержимое АККИ 1. Старое содержимое АККИ 2 не меняется (см. рис. точкой в 16–1). Пример программы следует за рис. 16–2. с 2 АККИ

Рис. 16-1. Сложение двух чисел с плавающей точкой (IEEE-FP)

Такая же схема действует и для остальных операций арифметики с плавающей точкой.

Таблица 16–2. Результат операций для ненормализованных чисел в CPU с 2 АККU				
Операция	Операция Входные значения Результат			іьтат
	AKKU 1	AKKU 2	AKKU 1	AKKU 2
+R	a	b	a	b
-R	a	b	-a	b
*R	a	b	0	ь
+R	a	b	FFFF	b

Представление результатов при соединении двух плавающей АККU

Операция сложения АККU 1 и АККU 2 как чисел с плавающей точкой (32 бита, IEEE-FP) (+R) указывает СРU сложить содержимое АККU 1 и 2 и

сохранить результат в АККИ 1. Эта операция заменяет старое содержимое чисел с

плавающей АККИ 1. Затем содержимое АККИ 3 копируется в АККИ 2, а содержимое

ТОЧКОЙ В СРU AKKU 4 в AKKU 3 (см. рис. 16–2). **c 4 AKKU**

Рис. 16-2. Сложение двух чисел с плавающей точкой (IEEE-FP) в CPU с 4 АККU

Такая же схема действует для остальных операций арифметики с плавающей точкой.

Пример

AWL	Объяснение
L MD100 L DBD4	Загрузить значение двойного меркерного слова MD100 в AKKU 1. Загрузить значение двойного слова данных DBD4 в AKKU 1. Старое содержимое AKKU 1 сдвигается в AKKU 2. (Значения в этих двойных словах должны быть в формате чисел с плавающей точкой).
+R	CPU расценивает содержимое АККU 1 и 2 как числа с плавающей точкой (32 бита, IEEE–FP), складывает их и сохраняет результат в АККU 1.
T DBD16	Передать содержимое AKKU 1 (результат) в двойное слово данных DBD16 ($<$ DBD16> = $<$ MD100> + $<$ DBD4>).

Анализ битов в слове состояния

Арифметические операции влияют на следующие биты слова состояния:

- A1 и A0
- OV
- OS

С помощью операций из таблицы 16–5 Вы можете анализировать эти биты слова состояния. Таблица 16–3 показывает сигнальное состояние битов слова состояния для результатов арифметики с плавающей точкой внутри области допустимых значений. Прочерк (–) у одного из приведенных в таблице битов означает, что результат арифметической операции на этот бит не влияет.

Таблица 16–3. Сигнальное состояние битов в слове состояния: результат арифметической операции с числами с плавающей точкой внутри области допустимых значений

Область допустимых значений для результата операций с числами с		Биты слова состояния			
плавающей точкой (32 бита)		A0	ov	os	
+0, -0 (нуль)	0	0	0	_	
-3,402823E+38 < результат< -1,175494E-38 (отрицательное число)	0	1	0	_	
+1,175494E-38 < результат< 3,402823E+38 (положительное число)	1	0	0	-	

Таблица 16–4. Сигнальное состояние битов слова состояния: результат арифметической операции с числами с плавающей точкой вне области допустимых значений

Недопустимая область для результата операций с числами с плавающей	Биты слова состояния			
точкой (32 бита)		A0	ov	os
-1,175494E-38 < результат< - 1,401298E-45 (отрицательное число) потеря значимости	0	0	1	1
+1,401298E-45 < результат < +1,175494E-38 (положительное число) потеря значимости	0	0	1	1
результат < -3,402823E+38 (отрицательное число) переполнение	0	1	1	1
результат > 3,402823E+38 (положительное число) переполнение	1	0	1	1

Таблица 16–5. Операции, анализирующие биты A1, A0, OV и OS слова состояния

Операция	Ссылка на бит слова состояния или метка перехода	Анализируемые биты в слове состояния (помечены X)	Глава в этом руковод- стве
U,O,X,UN,ON,XN	>0, <0, <>0, >=0, <=0, ==0, UO, OV, OS	A1, A0, OV, OS	11.3
SPO	<метка перехода>	OV	22.4
SPS	< метка перехода >	OS	22.4
SPU	< метка перехода >	А1 и А0	22.4
SPZ	< метка перехода >	А1 и А0	22.5
SPN	< метка перехода >	А1 и А0	22.5
SPP	< метка перехода >	А1 и А0	22.5
SPM	< метка перехода >	А1 и А0	22.5
SPMZ	< метка перехода >	А1 и А0	22.5
SPPZ	< метка перехода >	А1 и А0	22.5

16.2. Образование абсолютной величины числа с плавающей точкой

Описание

С помощью операции ABS (Образовать абсолютное значение числа с плавающей точкой (32 бита, IEEE-FP)) Вы можете получить абсолютную величину числа с плавающей точкой (32 бита, IEEE-FP) в АККU 1. Абсолютная величина - это неотрицательное число, числовое значение которого равно данному числу с плавающей точкой. Для абсолютной величины знак числа (+ или -) не имеет значения, так, например, 5 - абсолютная величина +5 и -5

Пример

Следующая программа дает пример операции ABS:

AWL	Объяснение
L DBD0	Загрузить значение из двойного слова данных DBD0 в АККU 1.
L +12.3E+00	Загрузить значение +12.3Е+00 в АККИ 1.
	Старое содержимое АККИ 1 сдвигается в АККИ 2.
/R	СРU делит содержимое АККU 2 на содержимое АККU 1 и сохраняет результат в АККU 1.
	передать содержимое АККU 1 (результат) в двойное меркерное слово MD20 (<md20> =</md20>
T MD20	<dbd0> / 12.3).</dbd0>
	Инвертировать IEEE-число с плавающей точкой в АККU 1 (см. гл. 18.4).
NEGR	
	Передать результат из АККU 1 в двойное меркерное слово MD24
T MD24	(<md24> = [-1] * < MD20>).</md24>
	CPU образует абсолютную величину IEEE-числа с плавающей точкой в АККИ 1.
ABS	
T MD28	Передать абсолютную величину из AKKU 1 в двойное меркерное слово MD28 (<md28> = ABS[<md20>]).</md20></md28>

16.3. Расширенные арифметические операции

Описание

Таблица 16–6 перечисляет операции AWL, с помощью которых Вы можете применить расширенные арифметические операции к числам с плавающей точкой (32 бита, IEEE-FP).

Таблица 16–6. Расширенные арифметические операции для чисел с плавающей точкой (32 бита, IEEE–FP)

Операция	Функция
SQRT	Вычисляет квадратный корень числа с плавающей точкой (32 бита, IEEE–FP) в АККИ 1 и сохраняет 32-битный результат в АККИ 1.
SQR	Вычисляет квадрат числа с плавающей точкой (32 бита, IEEE–FP) в АККU 1 и сохраняет 32-битный результат в АККU 1.
LN	Вычисляет натуральный логарифм числа с плавающей точкой (32 бита, IEEE–FP) в АККИ 1 и сохраняет 32-битный результат в АККИ 1.
EXP	Вычисляет экспоненциальное значение числа с плавающей точкой (32 бита, IEEE–FP) для основание е и сохраняет 32-битный результат в АККU 1.
SIN	Вычисляет синус числа с плавающей точкой (32 бита, IEEE–FP) в AKKU 1 и сохраняет 32-битный результат в AKKU 1.
COS	Вычисляет косинус числа с плавающей точкой (32 бита, IEEE–FP) в АККU 1 и сохраняет 32-битный результат в АККU 1.
TAN	Вычисляет тангенс числа с плавающей точкой (32 бита, IEEE–FP) в АККИ 1 и сохраняет 32-битный результат в АККИ 1.
ASIN	Вычисляет арксинус числа с плавающей точкой (32 бита, IEEE–FP) в АККИ 1 и сохраняет 32-битный результат в АККИ 1.
ACOS	Вычисляет арккосинус числа с плавающей точкой (32 бита, IEEE–FP) в АККИ 1 и сохраняет 32-битный результат в АККИ 1.
ATAN	Вычисляет арктангенс числа с плавающей точкой (32 бита, IEEE–FP) в АККИ 1 и сохраняет 32-битный результат в АККИ 1.

Связь между расширенными арифметическими операциями и аккумуляторами

Расширенные арифметические операции работают только с АККИ 1. Значение, к которому обращается операция, ожидает в АККИ 1. Результат сохраняется в АККИ 1; предыдущее содержимое АККИ 1 заменяется. Содержимое АККИ 2, АККИ 3 и АККИ 4 не меняется.

Влияние **расширенных**

на биты слова состояния

СРU выполняет расширенные математические операции, приведенные в таблице 16–1, не принимая во внимание и не изменяя результат **арифметических** логической операции. Расширенные арифметические операции влияют на **операций** следующие биты:

- A1 и A0
- OV
- OS

В таблице 16–7 перечислены операции AWL, с помощью которых Вы можете анализировать эти биты (см. гл. 11.3 и "Анализ битов состояния" в данной главе).

Таблица 16–7. Расширенные арифметические операции для чисел с плавающей точкой (32 бита, IEEE–FP)

Операция	Ссылка на биты в слове состояния или метка перехода	Анализируемые биты слова состояния	Глава в этом руко- водстве
U, O, X, UN, ON, XN	>0, <0, <>0, >=0, <=0, ==0, UO, OV, OS	A1, A0, OV, OS	11.3
SPO	<метка перехода>	OV	22.4
SPS	< метка перехода >	OS	22.4
SPU	< метка перехода >	А1 и А0	22.4
SPZ	< метка перехода >	А1 и А0	22.5
SPN	< метка перехода >	А1 и А0	22.5
SPP	< метка перехода >	А1 и А0	22.5
SPM	< метка перехода >	А1 и А0	22.5
SPMZ	< метка перехода >	А1 и А0	22.5
SPPZ	< метка перехода >	А1 и А0	22.5

16.4. Образование квадрата или квадратного корня числа с плавающей точкой

Описание

Операция SQR (квадрат) вычисляет квадрат числа с плавающей точкой (32 бита, IEEE-FP) в АККИ 1 и сохраняет 32-битный результат в АККИ 1.

Операция SQR заменяет старое содержимое AKKU 1; содержимое AKKU 2, AKKU 3 и AKKU 4 не меняется.

Операция SQRT (квадратный корень) вычисляет квадратный корень числа с плавающей точкой (32 бита, IEEE-FP) в АККU 1 и сохраняет 32-битный результат в АККU 1. Входное значение должно быть больше или равно нулю. Операция SQRT заменяет старое содержимое АККU 1; содержимое АККU 2, АККU 3 и АККU 4 не меняется.

Эти операции выдают положительный результат, если все операнды больше "0". Единственное исключение: квадратный корень из -0 равен -0.

Влияние на биты A1, A0, OV и OS слова состояния

Таблица 16-8. Влияние операции SQR на биты A1, A0, OV и OS				
Результат в АКК И 1	A1	A0	ov	os
+ qNaN	1	1	1	1
+ бесконечность (переполнение)	1	0	1	1
+ нормализован	1	0	0	-
+ ненормализован (потеря значимости)	0	0	1	1
+ нуль	0	0	0	-
- qNaN	1	1	1	1

Пример

Следующий отрезок программы показывает на примере применение операции SQR.

AWL	Объяснение
AUF DB17	Открыть блок данных DB17. (Пусть он содержит входное значение и служит для сохранения результата)
L DBD0	Загрузить значение из двойного слова данных DBD0 в AKKU 1. (Это значение должно быть в формате числа с плавающей точкой.)
SQR	Вычислить квадрат числа с плавающей точкой (32 бита, IEEE–FP) в АККU 1. Сохранить результат в АККU 1.
UN OV	Опросить бит состояния OV на 0.
SPB OK	Если при выполнении операции SQR не произошло ошибки, перейти на метку OK.
	(Здесь реализуется реакция на возникновение ошибки.)
OK: T DBD4	Передать результат из АККU 1 в двойное слово данных DBD4.

Таблица 16–9. Влияние операции SQRT на биты A0, A1, OS и OV

Результат в АКК И 1	A1	A0	ov	os
+ qNaN	1	1	1	1
+ бесконечность (переполнение)	1	0	1	1
+ нормализован	1	0	0	-
+ ненормализован (потеря значимости)	0	0	1	1
+ нуль	0	0	0	-
- нуль	0	0	0	-
- qNaN	1	1	1	1

Пример

Следующий отрезок программы показывает на примере применение операции SQRT.

AWL	Объяснение
L MD10	Загрузить значение из двойного меркерного слова MD10 в AKKU 1.
	(Это значение должно иметь формат числа с плавающей точкой).
SQRT	Образовать квадратный корень из числа с плавающей точкой (32 бита, IEEE-FP) в АККU
	1. Сохранить результат в АККИ 1.
UN OV	Опросить бит состояния OV на 0.
SPB OK	Если при выполнении операции SQRT не произошло ошибки, то перейти на метку ОК.
	(Здесь реализуется реакция на возникновение ошибки.)
	Передать результат (АККU 1) в двойное меркерное слово MD20.
OK: T MD20	

16.5. Образовать натуральный логарифм числа с плавающей точкой

Описание

Операция LN (натуральный логарифм) вычисляет натуральный логарифм числа с плавающей точкой (32 бита, IEEE-FP) в АККИ 1 и сохраняет 32-битный результат в АККИ 1. Входное значение должно быть больше нуля. Операция LN заменяет старое содержимое АККИ 1; содержимое АККИ 2, АККИ 3 и АККИ 4 не меняется.

Влияние на биты и OS состояния

Таблица 16–10 описывает влияние, которое операция LN оказывает на **A1**, **A0**, **OV** сигнальное состояние битов A1, A0, OV и OS слова состояния. "-" в таблице **слова** указывает на то, что на соответствующий бит влияние не оказывается.

Таблица 16–10. Влияние операции LN на биты состояния A1, A0, OV и OS					
Результат в АКК U 1	A1	A0	ov	os	
+ qNaN	1	1	1	1	
+ бесконечность (переполнение)	1	0	1	1	
+ нормализован	1	0	0	-	
+ ненормализован (потеря значимости)	0	0	1	1	
+ нуль	0	0	0	-	
- нуль	0	0	0	-	
- ненормализован (потеря значимости)	0	0	1	1	
- нормализован	0	1	0	-	
- бесконечность (переполнение)	0	1	1	1	
- qNaN	1	1	1	1	

Пример Следующий отрезок программ показывает пример применения операции LN.

AWL	Объяснение
L MD10	Загрузить значение из двойного меркерного слова MD10 в АККИ 1. (Это значение должно иметь формат числа с плавающей точкой).
LN	Образовать натуральный логарифм числа с плавающей точкой (32 бита, IEEE–FP) в АККU 1. Сохранить результат в АККU 1.
UN OV	Опросить бит состояния OV на 0.
SPB OK	Если при выполнении операции LN не произошла ошибка, то перейти на метку OK.
	(Здесь реализуется реакция на возникновение ошибки.)
OK: T MD20	Передать результат из АККU 1 в двойное меркерное слово MD20.

16.6. Образование экспоненциального значения числа с плавающей точкой

Описание Операция ЕХР (экспоненциальное значение для основание е) вычисляет

экспоненциальное значение числа с плавающей точкой (32 бита, IEEE-FP) в АККИ 1 для основания е (= 2,71828...) и сохраняет 32-битный результат в АККИ 1. Операция EXP заменяет старое содержимое АККИ 1; содержимое АККИ 2, АККИ 3 и АККИ 4 не меняется.

Влияние на биты и OS состояния

Таблица 16–11 описывает влияние, которое операция EXP оказывает на **A1**, **A0**, **OV** сигнальное состояние битов A1, A0, OV и OS слова состояния. "-" в таблице **слова** указывает на то, что на соответствующий бит влияние не оказывается.

Таблица 16–11. Влияние операции EXP на биты A1, A0, OV и OS слова состояния

Результат в АКК U 1	A1	A0	ov	os
+ qNaN	1	1	1	1
+ бесконечность (переполнение)	1	0	1	1
+ нормализован	1	0	0	-
+ ненормализован (потеря значимости)	0	0	1	1
+ нуль	0	0	0	-
- qNaN	1	1	1	1

Пример Следующий отрезок программы показывает пример применения операции ЕХР.

AWL		Объяснение
L MD1	10	Загрузить значение из двойного меркерного слова MD10 в AKKU 1. (Это значение должно иметь формат числа с плавающей точкой.)
EXP		Образовать экспоненциальное значение для основания е числа с плавающей точкой (32 бита, IEEE–FP) в АККИ 1. Сохранить результат в АККИ 1.
UN OV	V	Опросить бит состояния OV на 0.
SPB O	K	Если при выполнении операции ЕХР не произошла ошибка, то перейти на метку ОК.
		(Здесь реализуется реакция на возникновение ошибки.)
OK: T	MD20	Передать результат из АККU 1 в двойное меркерное слово MD20.

16.7. Образование тригонометрических функций углов как чисел с плавающей точкой

Описание

С помощью следующих операций Вы можете образовать тригонометрические функции углов, представленных в виде чисел с плавающей точкой (32 бита, IEEE-FP). 32-битный результат сохраняется в АККИ 1, содержимое АККИ 2, АККИ 3 и АККИ 4 не меняется.

Операция	Значение
SIN	Образование синуса угла, заданного в дуговых единицах. Угол хранится в АККU 1 как число с плавающей точкой.
ASIN	Образование арксинуса числа с плавающей точкой в АККИ 1.
	Результатом является угол, заданный в дуговых единицах.
	Значение лежит в следующей области:
	$-\pi$ / 2 ≤ арксинус (АККU 1) ≤ + π / 2, где π = 3.14
COS	Образование косинуса угла, заданного в дуговых единицах.
	Угол хранится в АККИ 1 как число с плавающей точкой.
ACOS	Образование арккосинуса числа с плавающей точкой в АККИ
	1. Результатом является угол, заданный в дуговых единицах.
	Значение лежит в следующей области:
	$0 \le$ арккосинус (AKKU 1) $\le + \pi$, где $\pi = 3.14$
TAN	Образование тангенса угла, заданного в дуговых единицах.
	Угол хранится в АККИ 1 как число с плавающей точкой.
ATAN	Образование арктангенса числа с плавающей точкой в АККИ
	1. Результатом является угол, заданный в дуговых единицах.
	Значение лежит в следующей области:
	$-\pi / 2 \le$ арктангенс (AKKU 1) ≤ + $\pi / 2$, где $\pi = 3.14$

Влияние на биты OS

В таблице 16-12 показано влияние операций SIN, ASIN, COS, ACOS и A1, A0, OV и

слова состояния

ATAN на сигнальное состояние битов A1, A0, OV и OS в слове состояния.

В таблице 16-13 показано, как на эти биты влияет операция ТАХ. "-" что на соответствующие биты влияние не оказывается.

Таблица 16-12. Влияние операций SIN, ASIN, COS, ACOS и ATAN

Результат в АКК И 1	A1	A0	OV	os
+ qNaN	1	1	1	1
+ нормализован	1	0	0	-
+ ненормализован (переполнение)	0	0	1	1
+ нуль	0	0	0	-
- нуль	0	0	0	-
- ненормализован (потеря значимости)	0	0	1	1
- нормализован	0	1	0	-
- qNaN	1	1	1	1

Таблица 16-13. Влияние операции TAN на биты A1, A0, OV и OS слова состояния

указывает,

Результат в АККИ 1	A1	A0	ov	os
+ qNaN	1	1	1	1
+ бесконечность (переполнение)	1	0	1	1
+ нормализован	1	0	0	-
+ ненормализован (потеря значимости)	0	0	1	1
+ нуль	0	0	0	-
- нуль	0	0	0	-
- ненормализован (потеря значимости)	0	0	1	1
- нормализован	0	1	0	-
- бесконечность (переполнение)	0	1	1	1
- qNaN	1	1	1	1

Пример Следующий отрезок программы показывает пример применения операции SIN.

AWL	Объяснение
L MD10	Загрузить значение из двойного меркерного слова MD10 в АККU 1. (Это значение должно иметь формат числа с плавающей точкой.)
SIN	Образовать синус числа с плавающей точкой (32 бита, IEEE–FP) в АККИ 1. Сохранить результат в АККИ 1.
T MD20	Передать результат из АККU 1 в двойное меркерное слово MD20.

Пример Следующий отрезок программы показывает пример применения операции ASIN.

AWL	Объяснение
L MD10	Загрузить значение из двойного меркерного слова MD10 в АККU 1. (Это значение должно иметь формат числа с плавающей точкой.)
ASIN	Образовать арксинус числа с плавающей точкой (32 бита, IEEE–FP) в АККИ 1. Сохранить результат в АККИ 1.
UN OV	Опросить бит состояния OV на 0.
SPB OK	Если при выполнении операции ASIN не произошла ошибка, то перейти на метку ОК.
	(Здесь реализуется реакция на возникновение ошибки.)
OK: T MD20	Передать результат из АККU 1 в двойное меркерное слово MD20.

Анализ битов в слове состояния

Расширенные арифметические операции влияют на следующие биты в слове состояния:

- A1 и A0
- OV
- OS

Результат **действителен**

Прочерк (-) у одного из битов, представленных в таблице, означает, что на этот бит арифметические операции не оказывают влияния.

Таблица 16–14. Аркфункции для чисел с плавающей точкой (32 бита, IEEE–FP) и допустимые области значений для входной величины

опустимая область результата для операций Бит в слове состоян ад числами с плавающей		ния		
точкой (32 бита)	A1	A0	ov	os
+0, -0 (нуль)	0	0	0	-
-3,402823E+38 < результат< -1,175494E-38 (отрицательное число)	0	1	0	-
+1,175494E-38 < результат< 3,402823E+38 (положительное число)	1	0	0	1

Результат недействителен

Таблица 16–15. Сигнальные состояния битов в слове состояния: результат арифметической операции над числами с плавающей точкой вне области допустимых значений

Недопустимая область для результата операций над числами с плавающей точкой (32 бита)	A1	A0	ov	os
-1,175494E-38 < результат< -1,401298E-45 (отрицательное число) потеря значимости	0	0	1	1
+1,401298E-45 < результат < +1,175494E-38 (положительное число) потеря значимости	0	0	1	1
результат < -3,402823E+38 (отрицательное число) переполнение	0	1	1	1
результат > 3,402823E+38 (положительное число) переполнение	1	0	1	1

Входное значение недопустимо

Таблица 16–16. Сигнальные состояния битов в слове состояний: входное значение не число с плавающей точкой или вне допустимой области значений

Недопустимая область входного значения для чисел с плавающей точкой (32 бита)	A1	A0	ov	os
В АККU 1 не 32-битное число с плавающей точкой (формат IEEE–FP)	1	1	1	1
Недопустимая операция: входная величина в АККU 1 вне области допустимых значений	1	1	1	1