independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

The dotted line indicates the presence of either a single or double bond;

E is NR7;

G is OR^7 .

5

10

15

20

25

In another sub-embodiment, a structure of the formula (IX) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

The dotted line indicates the presence of either a single or double bond;

E is NR^7 ;

G is NR^7R^8 .

In another sub-embodiment, a structure of the formula (IX) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^{1} is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^{7} (X = O, NR^{8} or S);

5

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

10

R¹ and R², R⁷ and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁵, CR⁷=CR⁵, CR⁷R⁸O and CR⁷R⁸NR⁷;

15

20

The dotted line indicates the presence of either a single or double bond;

E is NR7;

G is SR^7 .

In a particular embodiment of the present invention, the compounds of the formula

(IX) are the following species:

	R	E.T			(IX)	
G	E	Ri	R ^z	R	R*	\mathbb{R}^{5}	\mathbb{R}^{n}
OH	0	Me	H	H	H	Me	Me
OH	0	î-Pr	H	H	H	Me	Me

$ \begin{array}{c} R^1 \\ R^5 \\ R^2 \end{array} $ $ \begin{array}{c} R^6 \\ R^5 \\ R^4 \end{array} $									
	R^3 (IX)								
G	E	R	R ²	₽,	R³	R	R		
OH	O	Ph	H	H	H	Me	Me		
OH	Ō	Me	Me	H	H	Me	Me		
OH	Ö	i-Pr	Me	H	H	Me	Me		
OH	0	Ph	Me	H	H	Me	Me		
OH	0	Me	H	Me	H	Me	Me		
OH	0	į-Pr	H	Me	H	Me	Me		
OH	0	Ph	H	Me	H	Me	Me		
OH	0	Me	Ħ	H	Me	Me	Me		
OH	0	i-Pr	H	H	Me	Me	Me		
OH	O	Ph	Ħ	H	Me	Me	Me		
OH	0	Me	H	CH ₂ Ph	H	Me	Me		
OH	0	i-Pr	H	CH ₂ Ph	H	Me	Me		
OH	0	Ph	Н	CH ₂ Ph	H	Me	Me		
OH	CH ₂	Me	H	H	H	Me	Ме		
OH	CH ₂	<i>i-</i> Pr	Ħ	H	H	Me	Me		
OH	CH ₂	Ph	H	H	Ħ	Me	Me		
OH	CH ₂	Me	Me	H	H	Me	Me		
OH	CH ₂	i-Pr	Me	H	H	Me	Me		
OH	CH ₂	Ph	Me	H	H	Me	Me		

	$ \begin{array}{c c} R^1 & & & \\ R^2 & & & \\ R^3 & & & \\ \end{array} $ (IX)										
G	E	\mathbf{R}_1	R ²	183	R*	\mathbb{R}^{5}	R				
OH	CH ₂	Me	H	Me	Ħ	Me	Me				
OH	CH ₂	i-Pr	H	Me	Ħ	Me	Me				
OH	CH ₂	Ph	H	Me	H	Me	Me				
OH	CH ₂	Me	H	H	Me	Me	Me				
OH	CH ₂	i-Pr	H	H	Me	Me	Me				
OH	CH ₂	Ph	H	H	Me	Me	Me				
OH	CH ₂	Me	H	CH ₂ Ph	H	Me	Me				
OH	CH ₂	i-Pr	H	CH ₂ Ph	H	Me	Me				
OH	CH ₂	Ph	H	CH ₂ Ph	H	Me	Me				

In a sub-embodiment, a structure of the formula (X) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

5 A is 0;

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR¹³ (X = O, NR¹⁴ or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹, R²² and R²³ independently are selected from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic,

sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^{11} (X = O, NR^{12} or S);

5

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR¹³R¹⁴ groups, connected by a tether, independently selected from CR¹⁵R¹⁶, CR¹⁵R¹⁶CR¹⁷R¹⁸, CR¹³=CR¹⁶, CR¹⁵R¹⁶O or CR¹⁵R¹⁶NR¹⁷;

the dotted line indicates the presence of either a single or double bond, wherein in the presence of a single bond, the valences are completed with hydrogens.

10

In another sub-embodiment, a structure of the formula (X) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

A is NR^7 ;

15

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^{13} (X = O, NR^{14} or S);

20

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹, R²² and R²³ independently are selected from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR¹¹ (X = O, NR¹² or S);

25

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR¹³R¹⁴ groups, connected by a tether, independently selected from CR¹⁵R¹⁶, CR¹⁵R¹⁶CR¹⁵R¹⁸, CR¹⁵=CR¹⁶, CR¹⁵R¹⁶O or CR¹⁵R¹⁶NR¹⁷;

the dotted line indicates the presence of either a single or double bond, wherein in the presence of a single bond, the valences are completed with hydrogens.

30

In another sub-embodiment, a structure of the formula (X) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

A is S;

S

10

15

20

25

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR¹³ (X = O, NR¹⁴ or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹, R²² and R²³ independently are selected from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR¹¹ (X = O, NR¹² or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR¹³R¹⁴ groups, connected by a tether, independently selected from CR¹⁵R¹⁶, CR¹⁵R¹⁶CR¹⁷R¹⁸, CR¹⁵=CR¹⁶, CR¹⁵R¹⁶O or CR¹⁵R¹⁶NR¹⁷;

the dotted line indicates the presence of either a single or double bond, wherein in the presence of a single bond, the valences are completed with hydrogens.

In a sub-embodiment, a structure of the formula (XI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester,

alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₈CR₇R₈, CR₇=CR₅, CR₇R₈O and CR₇R₈NR₇.

The dotted line indicates the presence of either a single or double bond;

E is selected from the groups that include CR^7R^8 , O, S or NR^7 ;

A is selected from the groups that include O, NR7 or S.

10

5

In another sub-embodiment, a structure of the formula (XI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S).

15

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

20

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₈CR₇R₆, CR₇=CR₈, CR₇R₈O and CR₇R₈NR₇; and

25

The dotted line indicates the presence of either a single or double bond;

E is O:

A is O.

In another sub-embodiment, a structure of the formula (XI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

S

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

10

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfanonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S).

15

 R_1 and R_2 , R_2 and R_3 , R_3 and R_4 , R_4 and R_5 and R_5 and R_6 can also each be comprised of one or two CR_7R_8 groups, connected by a tether, selected independently from groups that include CR_7R_8 , $CR_7R_8CR_7R_8$, $CR_7=CR_8$, CR_7R_8O and $CR_7R_8NR_7$.

The dotted line indicates the presence of either a single or double bond;

E is O;

20 A is NR^7 .

In another sub-embodiment, a structure of the formula (XI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

25

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl,

heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = 0, NR⁸ or S);

5

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷; and

The dotted line indicates the presence of either a single or double bond;

10

E is O;

A is S.

In another sub-embodiment, a structure of the formula (XI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

15

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

20

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 and R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfanonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

25

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷.

The dotted line indicates the presence of either a single or double bond;

E is CR⁷R⁸;

A is O.

In another sub-embodiment, a structure of the formula (XI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

5

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

10

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

15

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR₇R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷; and

The dotted line indicates the presence of either a single or double bond;

20

E is CR⁷R⁸;

A is NR^7 .

In another sub-embodiment, a structure of the formula (XI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

25

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

The dotted line indicates the presence of either a single or double bond;

E is CR⁷R⁸;

A is S.

In another sub-embodiment, a structure of the formula (XI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = 0, NR^8 or S);

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₈CR₇R₈, CR₇=CR₈, CR₇R₈O and CR₇R₈NR₇;

5

10

15

20

The dotted line indicates the presence of either a single or double bond;

B is S:

A is O.

S

In another sub-embodiment, a structure of the formula (XI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

10

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

15

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

20

The dotted line indicates the presence of either a single or double bond;

E is S;

A is NR^7 .

25

In another sub-embodiment, a structure of the formula (XI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide,

a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

The dotted line indicates the presence of either a single or double bond;

E is S;

A is S.

5

10

15

20

25

In another sub-embodiment, a structure of the formula (XI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected

independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷:

The dotted line indicates the presence of either a single or double bond;

E is NR^7 ;

A is O.

5

10

15

20

25

In another sub-embodiment, a structure of the formula (XI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R², R³, R⁶, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfanonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

The dotted line indicates the presence of either a single or double bond;

E is NR7;

A is NR⁸.

In another sub-embodiment, a structure of the formula (XI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

5

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

10

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

15

20

The dotted line indicates the presence of either a single or double bond;

E is NR?;

A is S.

In a particular embodiment of the present invention, the compounds of the formula (XI) are the following species:

		R ¹ E	R° F	,5 ,4			
A	E		k ³	R,	(X	I) R ²	R
0	O	Me	H	H	H	Me	Me
0	0	í-Pr	Ħ	Ħ	H	Me	Me

R^1 R^5 R^5 R^2									
	0								
A	E	R	R ²	183	R*	R ^s	R		
O	Ō	Ph	H	H	Ħ	Me	Me		
O	0	Me	Me	H	H	Me	Me		
O	0	i-Pr	Me	H	Ħ	Me	Me		
O	0	Ph	Me	H	H	Me	Me		
0	O	Me	H	Me	H	Me	Me		
Ö	0	i-Pr	H	Me	H	Me	Me		
O	O	Ph	H	Me	H	Me	Me		
O	Ō	Me	H	H	Me	Me	Me		
O	Ö	í-Pr	H	H	Me	Me	Me		
Ō	O	Ph	H	H	Me	Me	Me		
Ö	0	Me	H	CH ₂ Ph	H	Me	Me		
O	0	í-Pr	H	CH ₂ Ph	H	Me	Me		
Ō	0	Ph	H	CH ₂ Ph	H	Me	Me		
0	CH ₂	Me	H	H	H	Me	Me		
O	CH ₂	i-Pr	H	H	H	Me	Me		
0	CH ₂	Ph	H	H	H	Me	Me		
Ō	CH ₂	Me	Me	H	H	Me	Me		
Ō	CH ₂	i-Pr	Me	H	H	Me	Me		
o	CH ₂	Ph	Me	H	H	Me	Me		

	$ \begin{array}{c c} R^1 & R^6 \\ E & R^5 \\ R^2 & R^4 \\ \end{array} $ (XI)										
A	E	R'	R²	R ³	R*	R ⁵	R				
0	CH ₂	Me	H	Me	H	Me	Me				
0	CH ₂	i-Pr	H	Me	H	Me	Me				
0	CH ₂	Ph	H	Me	H	Me	Me				
O	CH ₂	Me	H	H	Me	Me	Me				
Ō	CH ₂	i-Pr	H	H	Me	Me	Me				
O	CH ₂	Ph	H	H	Me	Me	Me				
O	CH ₂	Me	H	CH ₂ Ph	H	Me	Me				
Ö	CH ₂	i-Pr	H	CH ₂ Ph	H	Me	Me				
Ö	CH ₂	Ph	H	CH ₂ Ph	Ħ	Me	Me				

In a sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

5

10

 R^{1} is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^{7} (X = O, NR^{8} or S).

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester,

alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

 R_1 and R_2 , R_2 and R_3 , R_3 and R_4 , R_4 and R_5 and R_5 and R_6 can also each be comprised of one or two CR_7R_8 groups, connected by a tether, selected independently from groups that include CR_7R_8 , $CR_7R_8CR_7R_8$, $CR_7=CR_8$, CR_7R_8O and $CR_7R_8NR_7$.

E and D are selected from the groups that include CR^7R^8 , O, S or NR^7 ;

A is selected from the groups that include O, NR7 or S.

5

10

15

20

25

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = 0, NR^8 or S).

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₈CR₇R₈, CR₇=CR₈, CR₇R₈O and CR₇R₈NR₇; and

D = 0, E = 0 and A = 0.

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

5

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = 0, NR^8 or S).

10

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₈CR₇R₈, CR₇=CR₅, CR₇R₈O and CR₇R₈NR₇.

15

D = 0, $E = NR^8$ and A = 0.

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

20

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

25

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected

independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷; and

$$D = O$$
, $E = CR^7R^8$, and $A = O$.

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 and R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = 0, NR^8 or S).

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷.

$$D = O$$
, $E = S$ and $A = O$.

10

15

20

25

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylafkyl,

heterocyclic, sulfonyl, sulfanyl, sulfinyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

S

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR₇R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷; and

D = 0, E = 0 and $A = NR^7$.

10

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

15

 R^1 is selected independently from the groups that include hydrogen, alkyl, eycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

20

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

25

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

D = 0, $E = NR^8$ and $A = NR^7$.

30

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

S

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

10

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₈CR₇R₈, CR₇=CR₈, CR₇R₈O and CR₇R₈NR₇;

15

D = O, $E = CR^7R^8$ and $A = NR^7$.

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

20

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

25

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = 0, NR⁸ or S);

 R_1 and R_2 , R_2 and R_3 , R_3 and R_4 , R_4 and R_5 and R_5 and R_6 can also each be comprised of one or two CR_7R_8 groups, connected by a tether, selected

independently from groups that include CR7R8, CR7R8CR7R8, CR7=CR8, CR7R8O and CR7R8NR7;

$$D = O$$
, $E = S$ and $A = NR^7$.

5

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

10

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

15

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

20

$$D = CR^7R^8$$
, $E = 0$ and $A = 0$.

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

25

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylaikyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = 0, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷:

 $D = CR^7R^8$, $E = NR^8$ and A = O.

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁶, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

 $D = CR^7R^8$, $E = CR^7R^8$ and A = O.

30

5

10

15

20

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylaikyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

 $D = CR^7R^8$, E = S, and A = O.

5

10

15

20

25

30

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁶CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

 $D = CR^7R^8$, E = O and $A = NR^7$.

5

10

15

20

25

30

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

 $D = CR^7R^8$, $E = NR^8$ and $A = NR^7$.

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^{1} is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^{7} (X = O, NR^{8} or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁹, CR⁷R⁸O and CR⁷R⁸NR⁷;

 $D = CR^7R^8$, $E = CR^7R^8$ and $A = NR^7$.

ŝ

10

15

20

25

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

 $D = CR^7R^8$, E = S and $A = NR^7$.

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^6 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylaikyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

D = S, E = O and A = O.

5

10

15

20

25

30

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR³, CR⁷R⁸O and CR⁷R⁸NR⁷;

 $D = S, E = NR^8$ and A = O.

5

10

15

20

25

30

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

 $D = S_s E = CR^7R^8$ and A = O.

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

D = S, E = S, and A = O.

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^{1} is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^{7} (X = O, NR^{8} or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfanonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R⁷ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁶O and CR⁷R⁸NR⁷;

D = S, E = O and $A = NR^7$.

30

S

10

15

20

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cyclosikyl, cyclosikenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷:

D = S, $E = NR^8$ and $A = NR^7$.

5

10

15

20

25

30

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

5 D = S, $E = CR^7R^8$ and $A = NR^7$.

10

15

20

25

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

D = S, E = S and $A = NR^7$.

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

 $D = NR^7$, E = O and A = O.

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷≈CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

 $D = NR^7$, $E = NR^8$ and A = 0.

30

5

10

15

20

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

 $D = NR^7$, $E = CR^7R^8$ and A = O.

Š

10

15

20

25

30

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

 $D = NR^7, E = S, \text{ and } A = O.$

10

15

20

25

30

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

 $D = NR^7$, E = O and $A = NR^7$.

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or produce are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylaikyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

 $D = NR^7$, $E = NR^8$ and $A = NR^7$.

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

 $D = NR^7$, $E = CR^7R^8$ and $A = NR^7$.

30

5

10

15

20

In another sub-embodiment, a structure of the formula (XII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkeryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁵CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

 $D = NR^7$, E = S and $A = NR^7$.

8

10

15

20

In a particular embodiment of the present invention, the compounds of the formula (XII) are the following species:

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
A	D	E	R	R ²	R		R_{z}	R				
0	Ö	0	Me	H	H	H	Me	Me				
ō	O	0	<i>i</i> -Pr	H	H	H	Me	Me				
0	0	0	Ph	H	H	H	Me	Me				

		R ₁		} ⁶ `R ⁵				
		$\mathbb{R}^{2^{-2}}$	N ₃ D	(XXI)				
A	D	E	R'	R ²	R ³	R*	\mathbb{R}^3	R
0	O	O	Me	Me	H	H	Me	Me
ō	0	0	i-Pr	Me	H	H	Me	Me
0	O	0	Ph	Me	H	H	Me	Me
0	Ō	0	Me	H	Me	H	Me	Me
O	0	0	i-Pr	H	Me	H	Me	Me
0	0	Ō	Ph	H	Me	H	Me	Me
0	0	0	Me	H	Ħ	Me	Ме	Me
0	0	O	i-Pr	H	H	Me	Me	Me
0	0	0	Ph	H	H	Me	Me	Me
0	O	0	Me	H	CH₂Ph	H	Me	Me
0	0	0	/-Pr	H	CH ₂ Ph	H	Ме	Me
0	Ō	Ö	Ph	Ħ	CH ₂ Ph	Ħ	Me	Me
0	0	CH ₂	Me	H	Н	H	Me	Me
O	Ō	CH ₂	7-Pr	Ħ	H	H	Me	Me
O	Ö	CH ₂	Ph	Ħ	H	H	Me	Me
O	Ō	CH ₂	Me	Me	H	H	Me	Me
ō	0	CH ₂	i-Pr	Me	II	H	Me	Me
O	0	CH ₂	Ph	Me	H	H	Me	Me
Ō	0	CH ₂	Me	H	Me	H	Me	Me

	R ¹ R ⁶											
		$\frac{E}{R^2}$		`R ⁵ `R ⁴								
		2.%	R ³ D		(XII)							
A	D	10.	R'	R ²	R	R	Ka	R				
0	O	CH ₂	i-Pr	H	Me	Ħ.	Me	Me				
0	Ö	CH ₂	Ph	H	Me	H	Me	Me				
ō	0	CH ₂	Me	H	Ħ	Me	Me	Me				
O	Ö	CH ₂	i-Pr	Н	Ħ	Me	Me	Me				
ō	0	CH ₂	Ph	H	H	Me	Me	Me				
ō	Ö	CH ₂	Me	H	CH ₂ Ph	H	Me	Mc				
O	Ō	CH ₂	i-Pr	H	CH ₂ Ph	Ħ	Me	Me				
O	CH ₂	CH ₂	Ph	H	CH ₂ Ph	H	Me	Me				
O	CH ₂	CH ₂	Me	H	II	H	Me	Me				
Ō	CH ₂	CH ₂	7-Pr	H	H	H	Me	Me				
O	CH ₂	CH ₂	Ph	H	H	H	Me	Me				
0	CH ₂	CH ₂	Me	Me	H	H	Me	Me				
O	CH ₂	CH ₂	i-Pr	Me	H	H	Me	Me				
Ö	CH ₂	CH ₂	Ph	Me	H	H	Me	Me				
0	CH ₂	CH ₂	Me	H	Me	H	Me	Me				
Ö	CH ₂	CH ₂	i-Pr	H	Me	H	Me	Me				
O	CH ₂	CH ₂	Ph	H	Me	H	Me	Me				
O	CH ₂	CH ₂	Me	H	H	Me	Me	Me				
0	CH ₂	CH ₂	i-Pr	H	H	Me	Me	Me				

***************************************		$R^{1} > E$ $E^{2} > R^{2}$	A A A A A A A A A A A A A A A A A A A	R ⁶ R ⁵ R ⁴		(XII)		
A	D	X	R,	R ²	R ³	R	R ⁵	R
Ō	CH ₂	CH ₂	Ph	H	H	Me	Me	Me
ō	CH ₂	CH ₂	Me	H	CH ₂ Ph	H	Me	Me
O	CH ₂	CH ₂	i-Pr	H	CH ₂ Ph	H	Me	Me
0	CH ₂	CH ₂	Ph	H	CH ₂ Ph	H	Me	Me

In a sub-embodiment, a structure of the formula (XIII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

S

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

10

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

15

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₆CR₇R₈, CR₇=CR₈, CR₇R₈O and CR₇R₈NR₇.

The dotted line indicates the presence of either a single or double bond;

D is selected from the groups that include CR^7R^8 , O, S or NR^7 ;

A is selected from the groups that include O, NR7 or S.

In another sub-embodiment, a structure of the formula (XIII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S).

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R_1 and R_2 , R_2 and R_3 , R_3 and R_4 , R_4 and R_5 and R_5 and R_6 can also each be comprised of one or two CR_7R_8 groups, connected by a tether, selected independently from groups that include CR_7R_8 , $CR_7R_8CR_7R_8$, $CR_7=CR_8$, CR_7R_8 O and $CR_7R_8NR_7$; and

The dotted line indicates the presence of either a single or double bond;

D is O;

S

10

15

20

25

A is O.

In another sub-embodiment, a structure of the formula (XIII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S).

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₈CR₇R₈, CR₇=CR₈, CR₇R₈O and CR₇R₈NR₇.

The dotted line indicates the presence of either a single or double bond;

D is O;

A is NR^7 .

In another sub-embodiment, a structure of the formula (XIII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S).

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷; and

5

10

15

20

The dotted line indicates the presence of either a single or double bond;

D is O;

A is S.

5

In another sub-embodiment, a structure of the formula (XIII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

10

R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = 0, NR⁸ or S).

15

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R² and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷.

20

The dotted line indicates the presence of either a single or double bond;

D is CR⁷R⁸;

A 0.

25

In another sub-embodiment, a structure of the formula (XIII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR₇R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷; and

The dotted line indicates the presence of either a single or double bond;

D is CR⁷R⁸;

A is NR^7 .

In another sub-embodiment, a structure of the formula (XIII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

30

5

10

15

20

The dotted line indicates the presence of either a single or double bond;

D is CR7R8;

A is S.

S

10

15

20

In another sub-embodiment, a structure of the formula (XIII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = 0, NR^8 or S);

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₈CR₇R₈, CR₇=CR₈, CR₇R₈O and CR₇R₈NR₇;

The dotted line indicates the presence of either a single or double bond;

D is S;

A is O.

25

In another sub-embodiment, a structure of the formula (XIII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide,

a residue of a natural or synthetic amino acid, or carbobydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylaikyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁶ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

The dotted line indicates the presence of either a single or double bond;

D is S;

5

10

15

20

25

30

A is NR7.

In another sub-embodiment, a structure of the formula (XIII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfinyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected

independently from groups that include CR7R8, CR7R8CR7R8, CR7=CR8, CR7R8O and CR7R8NR7;

The dotted line indicates the presence of either a single or double bond;

D is S;

A is S.

5

10

15

20

25

In another sub-embodiment, a structure of the formula (XIII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkeryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = 0, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷:

The dotted line indicates the presence of either a single or double bond;

D is NR7;

A is O.

In another sub-embodiment, a structure of the formula (XIII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

5

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

10

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

15

The dotted line indicates the presence of either a single or double bond;

D is NR7;

A is NR8.

20

In another sub-embodiment, a structure of the formula (XIII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

25

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

5 The dotted line indicates the presence of either a single or double bond;

D is NR^7 ;

A is S.

In a particular embodiment of the present invention, the compounds of the formula

(XIII) are the following species:

$ \begin{array}{c c} R^1 & R^6 \\ R^2 & R^5 \\ R^2 & R^4 \end{array} $ (XIII)										
À	D	R	R ^z	R	R	R ⁵	R			
0	Ö	Me	H	H	H	Me	Me			
0	Ö	i-Pr	H	H	H	Me	Me			
0	0	Ph	H	H	H	Me	Me			
O	0	Me	Me	H	H	Me	Me			
O	Ö	<i>i</i> -Pr	Me	Ħ	H	Me	Me			
O	0	Ph	Me	H	H	Me	Me			
O	0	Me	H	Me	H	Me	Me			
O.	0	/-Pr	H	Me	H	Me	Me			
O	0	Ph	H	Me	H	Me	Me			
Ö	0	Me	Ħ	H	Me	Me	Me			

R R R R										
	R	2 R	$\begin{cases} \uparrow \\ 3 \end{cases} D$ R	4	(XII	II)				
A	D	R'	\mathbb{R}^{r}	R.	R ³	R	R"			
Ō	Ō	i-Pr	Н	H	Me	Me	Me			
0	O	Ph	H	H	Me	Me	Me			
O	0	Me	Ħ	CH ₂ Ph	H	Mc	Me			
Ō	Ō	<i>i-</i> Pr	H	CH ₂ Ph	H	Me	Me			
Ö	Ō	Ph	H	CH ₂ Ph	H	Me	Ме			
Ō	CH ₂	Me	H	H	H	Me	Me			
0	CH ₂	i-Pr	H	H	H	Me	Me			
0	CH ₂	Ph	H	H	H	Me	Me			
0	CH ₂	Me	Me	H	H	Me	Me			
0	CH ₂	i-Pr	Me	H	H	Me	Ме			
O	CH ₂	Ph	Me	H	H	Me	Me			
0	CH ₂	Me	H	Me	H	Ме	Me			
0	CH ₂	i-Pr	H	Me	H	Me	Me			
ō	CH ₂	Ph	H	Me	H	Me	Me			
Ō	CH ₂	Me	H	H	Me	Me	Me			
0	CH ₂	i-Pr	H	H	Me	Me	Me			
ō	CH ₂	Ph	H	H	Me	Me	Me			
O	CH ₂	Me	H	CH ₂ Ph	H	Me	Me			
0	CH ₂	i-Pr	H	CH ₂ Ph	H	Me	Me			

***************************************	R	2. \	R ⁶	i d	(X)	II)	
A	D	R,	R ²	K3	18.4	\mathbb{R}^3	R
0	CH ₂	Ph	H	CH ₂ Ph	H	Me	Me

In a sub-embodiment, a structure of the formula (XIV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

5

 \mathbb{R}^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or $X\mathbb{R}^7$ (X=0, $N\mathbb{R}^8$ or S).

10

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfanonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

15

 R_1 and R_2 , R_2 and R_3 , R_3 and R_4 , R_4 and R_5 and R_5 and R_6 can also each be comprised of one or two CR_7R_8 groups, connected by a tether, selected independently from groups that include CR_7R_8 , $CR_7R_8CR_7R_8$, $CR_7=CR_8$, CR_7R_8O and $CR_7R_8NR_7$.

the dotted line indicates the presence of either a single or double bond;

20

B is selected from the groups that include CR⁷R⁸, O, S or NR⁷;

G is selected from the groups that include OR7, NR7R8 or SR7.

In another sub-embodiment, a structure of the formula (XIV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^{T} is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^{7} (X = O, NR^{8} or S).

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, axide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₆CR₇R₈, CR₇=CR₅, CR₇R₈O and CR₇R₈NR₇; and

the dotted line indicates the presence of either a single or double bond;

B is O;

G is OR7.

20

5

10

15

In another sub-embodiment, a structure of the formula (XIV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S).

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfinyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester,

30

alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₄CR₇R₈, CR₇=CR₈, CR₇R₈O and CR₇R₈NR₇.

the dotted line indicates the presence of either a single or double bond;

B is O:

G is NR⁷R⁸.

10

15

20

25

5

In another sub-embodiment, a structure of the formula (XIV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S).

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁵NR⁷; and

the dotted line indicates the presence of either a single or double bond;

B is O:

G is SR7.

In another sub-embodiment, a structure of the formula (XIV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

10

5

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 and R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

15

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷.

the dotted line indicates the presence of either a single or double bond;

B is CR⁷R⁸;

 GOR^7 .

20

In another sub-embodiment, a structure of the formula (XIV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

25

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro,

cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR₇R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷; and

the dotted line indicates the presence of either a single or double bond;

B is CR⁷R⁸;

5

10

15

20

25

G is NR⁷R⁸.

In another sub-embodiment, a structure of the formula (XIV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

the dotted line indicates the presence of either a single or double bond;

B is CR^7R^8 ;

G is SR^7 .

In another sub-embodiment, a structure of the formula (XIV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

5

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

10

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

15

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₈CR₇R₈, CR₇=CR₈, CR₇R₈O and CR₇R₈NR₇;

the dotted line indicates the presence of either a single or double bond;

20

B is 8;

G is OR^7 .

In another sub-embodiment, a structure of the formula (XIV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

25

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);