<u>Lista de Exercícios – Análise de Dados Aplicados a Psicobiologia</u>

A tabela lista de exercícios apresenta os dados de 36 trabalhadores de uma empresa.

- 1. Descreva cada uma das variáveis presentes no banco de dados. Qual o nível de mensuração de cada uma delas?
 - ESTADO_C (Estado Civil) Qualitativa Nominal
 - GRAU_DE (Grau de Escolaridade) Qualitativa Ordinal
 - N_MERO_D (Número de Filhos) Quantitativa Discreta
 - SAL RIO (Salário 2006) Quantitativa Contínua
 - IDADE Quantitativa Discreta
 - **ORIGEM** Qualitativa Nominal
 - SAL_RIO1 (Sálario 2007) Quantitativa Contínua
 - SAL_RIO2 (Sálario 2008) Quantitativa Contínua

2. Construa tabelas de frequência para os dados referentes ao grau de instrução, estado civil e região de origem.

JASP

Tabelas de Frequências

Frequências para ESTADO_C

ESTADO_C	Frequência	Percentagem	Porcentagem válida	Porcentagem cumulativa
Casado	20	55.556	55.556	55.556
Solteiro	16	44.444	44.444	100.000
Ausentes	0	0.000		
Total	36	100.000		

Frequências para GRAU_DE

GRAU_DE	Frequência	Percentagem	Porcentagem válida	Porcentagem cumulativa
1° Grau	12	33.333	33.333	33.333
2° Grau	18	50.000	50.000	83.333
Superior	6	16.667	16.667	100.000
Ausentes	0	0.000		
Total	36	100.000		

Frequências para ORIGEM

ORIGEM	Frequência	Percentagem	Porcentagem válida	Porcentagem cumulativa
Capital	11	30.556	30.556	30.556
Interior	12	33.333	33.333	63.889
Outro	13	36.111	36.111	100.000
Ausentes	0	0.000		
Total	36	100.000		

Jamovi

Frequencies

Ereculer	ciar	of.	CRAIL	DE

Levels	Counts	% of Total	Cumulative %
1o. Grau	12	33.3 %	33.3 %
2o. Grau	18	50.0 %	83.3 %
superior	6	16.7 %	100.0 %

Frequencies of ORIGEM

Levels	Counts	% of Total	Cumulative %
interior	12	33.3 %	33.3 %
capital	11	30.6 %	63.9 %
outro	13	36.1 %	100.0 %

Frequencies of ESTADO_C

Counts	% of Total	Cumulative %
16	44.4 %	44.4 %
20	55.6 %	100.0 %
	16	16 44.4 %

3. Represente graficamente estas tabelas (utilizando pelo menos 2 tipos diferentes de gráficos).

JASP

Jamovi

4. Compare, estatisticamente (α=5%), se há diferenças na distribuição de número de filhos e na idade média em função das regiões de origem dos trabalhadores.

Para comparar a região de origem (Capital, Interior e Outro) como Variável Independente e verificar se há efeito desta variável no número de filhos e na idade média dos trabalhadores foi feito um teste Anova Independente.

One-Way ANOVA

One-Way ANOVA

		F	df1	df2	р
IDADE	Welch's Fisher's	0.577	2	21.8	0.570 0.633
N_MERO_D	Welch's	0.714	2	21.1	0.501
	Fisher's	0.576	2	33	0.568

Assumption Checks

Homogeneity of Variances Test (Levene's)

	F	df1	df2	р
IDADE	1.01	2	33	0.374
N_MERO_D	1.52	2	33	0.234

Descriptives

	ORIGEM	N_MERO_D	IDADE
Mean	interior	1.08	33.3
	capital	1.09	36.0
	outro	0.615	34.6
Standard deviation	interior	1.62	5.89
	capital	1.04	6.18
	outro	1.04	8.07
Variance	interior	2.63	34.8
	capital	1.09	38.2
	outro	1.09	65.1
Minimum	interior	0	25
	capital	0	27
	outro	0	20
Maximum	interior	5	42
	capital	3	48
	outro	3	46

Baseado nos resultados do teste Anova mostrou-se que não há efeito significativo da região de origem com no número de filhos (P=0.56) e na idade média dos trabalhadores (0.63).

5. Calcule o salário médio e a idade média dos solteiros e dos casados.

Tabelas das Médias:

JASP

Estatísticas descritivas ▼

	IDA	DE	SAL	_RIO	SAL_	RIO1	SAL_	RIO2
	Casado	Solteiro	Casado	Solteiro	Casado	Solteiro	Casado	Solteiro
Média	35.150	33.875	12.123	9.871	9.482	10.741	13.682	8.443

Jamovi

Descriptives

Descriptives

	ESTADO_C	IDADE	SAL_RIO	SAL_RIO1	SAL_RIO2
Mean	Solteiro	33.9	9.87	10.7	8.44
	Casado	35.1	12.1	9.48	13.7

6. Verifique a associação entre estado civil e grau de instrução. É possível dizer que existe associação significante entre estado civil e grau de instrução (α=5%).

Temos que estado civil (nominal) e grau de instrução (ordinal) são variáveis categóricas, para verificar a associação entre elas foi realizado um teste Qui-quadrado

Tabelas de Contingência

		GRAU_DE		
ESTADO_C	1o. Grau	2o. Grau	superior	Total
Casado	5	12	3	20
Solteiro	7	6	3	16
Total	12	18	6	36

Testes qui-quadrado

	Valor	gl	р
Χ²	1.913	2	0.384
X² de correção de continuidade	1.913	2	0.384
Razão de verossimilhança	1.928	2	0.381
N	36		

Contingency Tables

		GRAU_DE				
ESTADO_C	1o. Grau	2o. Grau	superior	Total		
Solteiro	7	6	3	16		
Casado	5	12	3	20		
Total	12	18	6	36		

χ^2 Tests						
	Value	df	р			
χ^2	1.91	2	0.384			
χ² continuity correction	1.91	2	0.384			

 χ^2 1.91 2 0.384 χ^2 continuity correction 1.91 2 0.384 Likelihood ratio 1.93 2 0.381 N 36

Baseado nos resultados do teste Qui-Quadrado mostrou-se que não há efeito significativo entre estado civil e grau de instrução (P=0.38)

7. Segundo dados do IBGE, a média de idade da população de SP é de 31 anos. A amostra apresentada possui diferença significativa na média da idade em relação à estimativa média populacional?

Para comparar uma média amostral (Idade) com uma média populacional esperada (31 Anos) foi utilizado um Teste T para uma variável.

Teste T de uma amostra ▼

			T1
(Ina	Samp	10 1-	ιдст

	t	df	р	Mean Difference
IDADE	3.191	35	0.003	3.583

Nota. For the Student t-test, location difference estimate is given by the sample mean difference d.

Nota. For the Student t-test, the alternative hypothesis specifies that the mean is different from 31.

Nota. Student's t-test.

One Sample T-Test

		Statistic	df	р	Mean difference
IDADE	Student's t	3.19	35.0	0.003	3.58
Note. Ha	µ≠31				
Descrip	tives				
	N	Mean	Median	SD	SE
IDADE	36	34.6	34.5	6.74	1.12

O Teste T para uma amostra mostrou que há diferença significativa entre a média amostral (34.6) e a média da população de São Paulo (31), (T35=3.191, P=0.003.)

8. O salário desta amostra foi medido em três anos seguidos (06,07 e 08). Houve diferença entre o salário ao longo do tempo? (α=5%).

Foi utilizado o Teste T pareado com correção de Bonferroni para as 3 variáveis (Salário) pareadas (0.05/3 Testes T= 0,0167)

Teste T de amostras pareadas ▼

Paired Samples T-Test

Measure 1		Measure 2	t	df	р
SAL_RIO	-	SAL_RIO1	0.936	35	0.356
SAL_RIO	-	SAL_RIO2	-0.226	35	0.822
SAL_RIO1	-	SAL_RIO2	-0.893	35	0.378

Nota. Student's t-test.

Descriptives

Descriptives				
	N	Mean	SD	SE
SAL_RIO	36	11.122	4.587	0.765
SAL_RIO1	36	10.042	5.010	0.835
SAL_RIO2	36	11.353	7.308	1.218

Paired Samples T-Test

			statistic	df	р
SAL_RIO	SAL_RIO1	Student's t	0.936	35.0	0.356
	SAL_RIO2	Student's t	-0.226	35.0	0.822
SAL_RIO1		Student's t	-0.893	35.0	0.378

Segundo Teste T pareado com correção de Bonferroni para as 3 variáveis, não temos diferença significativa nas médias de salário ao longo dos 3 anos observados.

9. Observe a variável "Número de filhos". Calcule o escore z para cada um dos participantes da amostra. Quais participantes podem ser considerados outliers para a amostra número de filhos?

Descriptives					
	Z				
N	36				
Standard deviation	1.000				
Variance	1.000				
Minimum	-0.733				
Maximum	3.26				

Com base no escore Z do número de filhos, foi encontrado uma observação que pode ser considerada um outlier (Z=3.26)

Observações:

- 1- Verifique a normalidade das variáveis antes de escolher o teste. Justifique a escolha de cada um dos testes que você for utilizar.
- 2- Não se esqueça de dizer quais são as variáveis dependentes e independentes para cada teste.