.1 Functions between sets

Problem .1.1. How many different bijections are there between a set S with n elements and itself?

Solution. A function $f: S \to S$ is a subset $\Gamma_f \subseteq S \times S$. Since f is bijective, then for all $y \in S$, there exists a unique $x \in S$ such that $(x,y) \in \Gamma_f$. Certainly $|\Gamma_f| = n$. Since each x is unique, every element $x \in S$ must be present in the first component of exactly one element in Γ_f . Similarly, each element $y \in S$ must be present in the second component of exactly one element in Γ_f . Then each bijection is merely a permutation of S, and there are n! permutations. Thus, there are n! bijections from S to itself.

Problem .1.2. Prove statement (2) in Proposition 2.1. You may assume that given a family of disjoint subsets of a set, there is a way to choose one element in each member of the family.

Proposition 2.1. Assume $A \neq \emptyset$, and let $f: A \rightarrow B$ be a function. Then (1) f has a left-inverse if and only if f is injective; and (2) f has a right-inverse if and only if f is surjective.

Solution. Assume $A \neq \emptyset$ and let $f: A \rightarrow B$ be a function.

 (\Longrightarrow) Suppose there exists a function g that is a right-inverse of f. Then $f \circ g = \mathrm{id}_B$. Let $b \in B$. Then $g(b) \in A$ and f(g(b)) = b. Thus for all $b \in B$, there exists a = g(b) such that f(a) = b. Hence, f is surjective.

(\iff) Suppose that f is surjective. We want a function $g: B \to A$ such that f(g(b)) = b for all $b \in B$. Since f is surjective, for all $b \in B$, there exists an $a \in A$ such that f(a) = b. Construct a set $\Gamma = \{(b, a) \mid f(a) = b\} \subseteq B \times A$. Note that Γ is not necessarily unique since there may be several a such that f(a) = b. However, its existence is guaranteed since f is surjective. Then this set may be used to define g where g(b) = a if and only if $(a, b) \in \Gamma$. Now let $b \in B$. Then there exists an $a \in A$ such that f(a) = b. Therefore, $(a, b) \in \Gamma$ so g(b) = a. We get that f(g(b)) = f(a) = b so g is a right-inverse of f.

Problem .1.3. Prove that the inverse of a bijection is a bijection and that the composition of two bijections is bijection.

Solution. Let $f: A \to B$ be a bijection. Consider $f^{-1}: B \to A$. We have that $f^{-1} \circ f = \mathrm{id}_A$ and $f \circ f^{-1} = \mathrm{id}_B$. Then f is the left- and right-inverse of f^{-1} , so f^{-1} is also a bijection.

Let $f:A\to B$ and $g:B\to C$ be bijections and consider $g\circ f$. Suppose $a,a'\in A$ such that $(g\circ f)(a)=(g\circ f)(a')$. Since g is bijective, and in particular it is injective, we have $(g\circ f)(a)=(g\circ f)(a')\Longrightarrow f(a)=f(a')$. Similarly, f is injective so $f(a)=f(a')\Longrightarrow a=a'$. Thus, $g\circ f$ is injective. Now let $c\in C$.

Since g is surjective, there exists a $b \in B$ such that g(b) = c. Similarly, since f is surjective, there exists an $a \in A$ such that f(a) = b. Then $(g \circ f)(a) = g(b) = c$ so $g \circ f$ is surjective. Hence, $g \circ f$ is bijective.

Problem .1.4. Prove that 'isomorphism' is an equivalence relation (on any set of sets).

Solution. Let A be a set. Then id_A is a bijection so $A \cong A$. Let B be another set such that $A \cong B$. That is, there exists a bijection $f: A \to B$. Since f is bijective, it has an inverse $f^{-1}: B \to A$, so $B \cong A$. If C is another set such that $B \cong C$, then there exists a bijection $g: B \to C$. The composition of bijections is a bijection so $g \circ f: A \to C$ is bijective. Hence $A \cong C$ and \cong is an equivalence relation.

Problem .1.5. Formulate a notion of *epimorphism*, in the style of the notion of *monomorphism* seen in §2.6, and prove a result analogous to Proposition 2.3, for epimorphisms and surjections.

Proposition 2.3. A function is injective if and only if it is a monomorphism.

Solution. A function $f:A\to B$ is an epimorphism if for all sets Z and all functions $\beta,\beta':B\to Z$ we have $\beta\circ f=\beta'\circ f\Longrightarrow \beta=\beta'$. Now we show that a function is surjective if and only if it is an epimorphism.

 (\Longrightarrow) Suppose that $f: A \to B$ is surjective. Then f has a right-inverse $g: B \to A$. Let β, β' be functions from B to another set Z such that $\beta \circ f = \beta' \circ f$. Compose on the right by g and use associativity of composition:

$$\beta \circ (f \circ g) = (\beta \circ f) \circ g = (\beta' \circ f) \circ g = \beta' \circ (f \circ g)$$

Since g is a right-inverse of f, we have

$$\beta \circ \mathrm{id}_B = \beta' \circ \mathrm{id}_B$$

and thus $\beta = \beta'$ and f is an epimorphism.

(\iff) Now suppose that $f: A \to B$ is an epimorphism. Let $Z = \{0, 1\}$ and consider the morphisms $\beta, \beta': B \to Z$ where $\beta(b) = 0$ for all $b \in B$ and $\beta'(b) = 0$ if $b \in \text{im}(f)$ or $\beta'(b) = 1$ otherwise. By construction, $\beta \circ f = \beta' \circ f$. This implies that $\beta = \beta'$, which is only the case if every element $b \in B$ is sent to the same element of Z. β sends every element of B to B0, and B1 sends every element of B2 is surjective.

Problem .1.6. With notation as in Example 2.4, explain how any function $f: A \to B$ determines a section of π_A .

Solution. We know f corresponds to a subset $\Gamma_f = \{(a,b) \mid f(a) = b\} \subseteq A \times B$. The projection $\pi_A : A \times B \to A$ is defined such that $\pi_A(a,b) = a$. Let $g : A \to A \times B$ be a function such that $g(a) = (a,f(a)) \in \Gamma_f$. Since $(\pi_A \circ g)(a) = \pi_A(a,f(a)) = a$ for all $a \in A$, g is a section of π_A which is determined by f.

Problem .1.7. Let $f: A \to B$ be any function. Prove that the graph Γ_f of f is isomorphic to A.

Solution. Recall that $\Gamma_f = \{(a,b) \mid b = f(a)\} \subseteq A \times B$. Let $g: A \to \Gamma_f$ be defined as g(a) = (a, f(a)). For all $(a,b) \in \Gamma_f$, we have g(a) = (a, f(a)) = (a,b) so g is surjective. If g(a) = g(a'), then (a, f(a)) = (a', f(a')). That is, a = a' so g is injective, hence it is a bijection. Therefore, $\Gamma_f \cong A$.

Problem .1.8. Describe as explicitly as you can all terms in the canonical decomposition of the function $\mathbb{R} \to \mathbb{C}$ defined by $r \mapsto e^{2\pi i r}$. (This exercise matches one assigned previously. Which one?)

Solution. Let $f: \mathbb{R} \to \mathbb{C}$ be the function defined above. The first part of the decomposition is defined by letting \sim be an equivalence relation on \mathbb{R} such that $a \sim b \iff f(a) = f(b)$. That is, $[a]_{\sim}$ is the set of elements in \mathbb{R} that are mapped to the same element as a in \mathbb{C} . Then we have a projection $\mathbb{R} \to \mathbb{R}/\sim$ which sends each element $a \in \mathbb{R}$ to its equivalence class $[a]_{\sim}$. Note that f(x) = f(x+1). That is, the function is periodic about the integers so real numbers which differ by an integer amount belong to the same equivalence class. Then $\mathbb{R}/\sim = \{\{r+k \mid k \in \mathbb{Z}\} \mid r \in [0,1) \text{ which is identical to the quotient set in Exercise 1.1.6.}$

The function $f: \mathbb{R} \to \operatorname{im}(f)$ maps each equivalence class to the complex number that f maps the representative to. Certainly if $\tilde{f}([a]_{\sim}) = \tilde{f}([a']_{\sim})$ then f(a) = f(a') and $a \sim a'$ by definition. Thus $[a]_{\sim} = [a']_{\sim}$ so \tilde{f} is injective. Similarly, let $b \in \operatorname{im}(f)$. Then there is an element $a \in \mathbb{R}$ such that f(a) = b. Then $\tilde{f}([a]_{\sim}) = f(a) = b$ so \tilde{f} is surjective and hence a bijection. Finally, we have the inclusion $\operatorname{im}(f) \hookrightarrow \mathbb{C}$ which embeds the image of f into its codomain.

Problem .1.9. Show that if $A' \cong A''$ and $B' \cong B''$, and further $A' \cap B' = \emptyset$ and $A'' \cap B'' = \emptyset$, then $A' \cup B' \cong A'' \cup B''$. Conclude that the operation $A \coprod B$ is well-defined *up to isomorphism*.

Solution. There exist bijections $f:A'\to A''$ and $g:B'\to B''$. Then we can define $h:A'\cup B'\to A''\cup B''$ where

$$h(x) = \begin{cases} f(x) \text{ if } x \in A' \\ g(x) \text{ if } x \in B' \end{cases}$$

Let $y \in A'' \cup B''$. Since $A'' \cap B'' = \emptyset$, we have either $y \in A''$ or $y \in B''$. WLOG, suppose that $y \in A''$. Note that since f is surjective, there exists $x \in A'$ such that f(x) = y. Then h(x) = f(x) = y so h is surjective. Suppose $x \neq x'$ for $x, x' \in A' \cup B'$. If $x, x' \in A'$ then since f is injective and h(x) = f(x) for all $x \in A'$, we have $h(x) \neq h(x')$. A similar reasoning shows that if $x, x' \in B'$, then $h(x) \neq h(x')$. WLOG, suppose that $x \in A'$ and $x' \in B'$. Then $h(x) = f(x) \neq g(x') = h(x')$ since $A'' \cap B'' = \emptyset$. Thus h is surjective and hence a bijection, showing that $A' \cup B' \cong A'' \cup B''$.

The constructions of A', A'', B', B'' are equivalent to creating "copies" of sets A and B to use in the disjoint union. Thus, the disjoint union $A \coprod B$ is well-defined up to isomorphism.

Problem .1.10. Show that if A and B are finite sets, then $|B^A| = |B|^{|A|}$.

Solution. Recall that $|B^A|$ is the number of functions from A to B. Each functions assigns a single element of A to a single element of B. There are |B| choices for each of the |A| elements. This is equivalent to $|B|^{|A|}$ total choices. Thus, $|B^A| = |B|^{|A|}$.

Problem .1.11. In view of Exercise 2.10, it is not unreasonable to use 2^A to denote the set of functions from an arbitrary set A to a set with 2 elements (say $\{0,1\}$). Prove that there is a bijection between 2^A and the *power set* of A.

Solution. Consider $f: \mathcal{P}(A) \to 2^A$ defined as

$$f(X) = \{(a, 1) \text{ if } a \in X, \text{ and } (a, 0) \text{ otherwise}\}\$$

Let $g \in 2^A$. Then g is a function from A to $\{0,1\}$. Let $A_1 = \{a \in A \mid g(a) = 1$. Then $A_1 \in \mathcal{P}(A)$ and $f(A_1) = g$, so f is surjective. Now suppose that $X, Y \subseteq A$ such that f(X) = f(Y). That is, for all $a \in A$, $a \in X \iff (a,1) \in f(X) \iff (a,1) \in f(Y) \iff a \in Y$. Thus, X = Y so f is injective and a bijection. Therefore, $2^A \cong \mathcal{P}(A)$.