插值法

- 拉格朗日插值
- 牛顿插值

拉格朗日插值

拉格朗日基函数:

$$l_i(x) = \prod_{j \neq i}^{1 \leq j \leq n} \frac{(x - x_j)}{(x_i - x_j)}$$

拉格朗日插值函数:

$$f_i(x) = \sum_{i=1}^n y_i * l_i(x)$$

例题:

求经过A(0,1),B(1,2),C(2,3)三个插值点的插值多项式.

解析:

-、先求出 x_i 和 y_i

$$x_0 = 0, y_0 = 1$$

 $x_1 = 1, y_1 = 2$
 $x_2 = 2, y_2 = 3$

二、再求拉格朗日基函数,已知三个点,需要三个点的基函数:

$$l_0 = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

$$l_1 = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$

$$l_2 = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

三、最后带入拉格朗日基函数

$$f_3(x) = y_0 * l_0 + y_1 * l_1 + y_2 * l_2$$

计算得: $f_3(x) = x + 1$

牛顿插值

前置概念: 差商

一阶差商:

$$f[x_i, x_j] = \frac{f(x_i) - f(x_j)}{x_i - x_j}$$

二阶差商:

$$f[x_{i}, x_{j}, x_{k}] = \frac{f[x_{i}, x_{j}] - f[x_{j}, x_{k}]}{x_{i} - x_{k}}$$

n阶差商:

$$f[x_0,x_1,\ldots,x_n] = \frac{f[x_0,x_1,\ldots,x_{n-1}] - f[x_1,x_2,\ldots,x_n]}{x_0 - x_n}$$

	插 商 表							
x_k	$f(x_k)$	一阶差商	二阶差商	三个三阶差商		n 阶差商		
x_0	$f(x_0)$		e trapic to					
x_1	$f(x_1)$	$f[x_0,x_1]$						
x_2	$f(x_2)$	$f[x_1,x_2]$	$f[x_0,x_1,x_2]$	1 - 1 - 1				
x_3	f(x ₃)	$f[x_2,x_3]$	$f[x_1,x_2,x_3]$	$f\left[x_0, x_1, x_2, x_3\right]$				
:	:	:	:	:	٠.	1 - 11 - 11 - 1		
x_n	$f(x_n)$	$f[x_{n-1},x_n]$	$f\left[x_{n-2},x_{n-1},x_{n}\right]$	$f[x_{n-3}, x_{n-2}, x_{n-1}, x_n]$		$f[x_0,x_1,\cdots,x_n]$		

牛顿插值公式:

$$\begin{split} N_n(x) &= f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) \\ &+ \ldots + f[x_0, x_1, \ldots, x_n - 1, x_n] \prod_{i=0}^{n-1} (x - x_j) \end{split}$$

例题:

已知**x=1,4,9**的平方根为**1,2,3**,利用牛顿基本差商公式求 $\sqrt{7}$ 的近似值。

-、先确定 $x_i, y_i, f(x)$.

$$x_0 = 1, y_0 = 1$$

 $x_1 = 4, y_1 = 2$
 $x_2 = 9, y_2 = 3$
 $f(x) = \sqrt{x}$

二、再求差商表

X_i	$\sqrt{x_i}$	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$
1 4 9	1 2 3	$\frac{2-1}{4-1} = 0.333333$ $\frac{3-2}{9-4} = 0.2$	$\frac{0.2 - 0.33333}{9 - 1} = -0.01667$

三、最后得到牛顿插值多项式

$$N_2(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

= 1 + 0.33333 * (x - 1) - 0.01667(x - 1)(x - 4)

带入x = 7, 得:

$$N_2(7) = 2.69992$$