# Week 3: Risk and Evaluation of Alternatives

- Making Decisions in Low-Uncertainty vs. High-Uncertainty Settings
- Example: Evaluating a Wireless Data Plan
- Reward and Risk
- Connecting Random Inputs and Random Outputs
- Simulating Uncertain Outcomes in Exce
- Interpreting Simulation Results: "Short" vs. "Long" Simulations
- Using Histograms to Visualize Simulation Results

| Simulation Run  | Data Usage, U (GB) Payment, P (\$) | Payment, P (\$) |
|-----------------|------------------------------------|-----------------|
| 1               | 11.9319952                         | 160             |
| 2               | 24.0282690                         | 220.4240354     |
| S               | 25.6828047                         | 245.242071      |
| 4               | 21.7321587                         | 185.9823805     |
| 5               | 34.2335329                         | 373.5029929     |
| 6               | 16.5820597                         | 160             |
| 7               | 30.7079676                         | 320.619514      |
| 8               | 36.9010808                         | 413.5162123     |
| 9               | 20.3471859                         | 165.2077878     |
| 10              | 28.3229996                         | 284.8449946     |
| Sample Mean     | 25.0470054                         | 252.9339988     |
| Sample St. Dev. | 7.787935101                        | 92.19007977     |

See DataPlan10.xlsx

| Simulation Run  | Data Usage, U (GB) Payment, | Payment, P (\$) |
|-----------------|-----------------------------|-----------------|
|                 | 11.9319952                  | 160             |
| 2               | 24.0282690                  | 220.4240354     |
| 3               | 25.6828047                  | 245.242071      |
| 4               | 21.7321587                  | 185.9823805     |
| 5               | 34.2335329                  | 373.5029929     |
| 6               | 16.5820597                  | 160             |
| 7               | 30.7079676                  | 320.619514      |
| 8               | 36.9010808                  | 413.5162123     |
| 9               | 20.3471859                  | 165.2077878     |
| 10              | 28.3229996                  | 284.8449946     |
| Sample Mean     | 25 0470054                  | 252 9229988     |
| Sample St. Dev. | 7.787935101                 | 92.19007977     |

We are interested in analyzing the distribution of the monthly payment

| Simulation Run  | Data Usage, U (GB) Payment, | Payment, P (\$) |
|-----------------|-----------------------------|-----------------|
| 1               | 11.9319952                  | 160             |
| 2               | 24.0282690                  | 220.4240354     |
| ω               | 25.6828047                  | 245.242071      |
| 4               | 21.7321587                  | 185.9823805     |
| 5               | 34.2335329                  | 373.5029929     |
| 6               | 16.5820597                  | 160             |
| 7               | 30.7079676                  | 320.619514      |
| 8               | 36.9010808                  | 413.5162123     |
| 9               | 20.3471859                  | 165.2077878     |
| 10              | 28.3229996                  | 284.8449946     |
| Sample Mean     | 25.0470054                  | 252.9339988     |
| Sample St. Dev. | 7.787935101                 | 92.19007977     |

But first, let us look at the simulated values of monthly data usage

| 92.19007977     | 7.787935101                 | Sample St. Dev. |
|-----------------|-----------------------------|-----------------|
| 252.9339988     | 25.0470054                  | Sample Mean     |
|                 |                             |                 |
| 284.8449946     | 28.3229996                  | 10              |
| 165.2077878     | 20.3471859                  | 9               |
| 413.5162123     | 36.9010808                  | <b>∞</b>        |
| 320.619514      | 30.7079676                  | 7               |
| 160             | 16.5820597                  | 6               |
| 373.5029929     | 34.2335329                  | U               |
| 185.9823805     | 21.7321587                  | 4               |
| 245.242071      | 25.6828047                  | ω               |
| 220.4240354     | 24.0282690                  | 2               |
| 160             | 11.9319952                  | 1               |
| Payment, P (\$) | Data Usage, U (GB) Payment, | Simulation Run  |

Why? Because we know its true probability distribution...

| Simulation Run  | Data Usage, U (GB) Payment, | Payment, P (\$) |
|-----------------|-----------------------------|-----------------|
| 1               | 11.9319952                  | 160             |
| 2               | 24.0282690                  | 220.4240354     |
| 3               | 25.6828047                  | 245.242071      |
| 4               | 21.7321587                  | 185.9823805     |
| 5               | 34.2335329                  | 373.5029929     |
| 6               | 16.5820597                  | 160             |
| 7               | 30.7079676                  | 320.619514      |
| 8               | 36.9010808                  | 413.5162123     |
| 9               | 20.3471859                  | 165.2077878     |
| 10              | 28.3229996                  | 284.8449946     |
|                 |                             |                 |
| Sample Mean     | 25.0470054                  | 252.9339988     |
| Sample St. Dev. | 7.787935101                 | 92.19007977     |

... So we can compare the sample mean and standard deviation with the true values

| Simulation RunData Usage, U (GB)111.9319952224.0282690325.6828047421.7321587534.2335329616.5820597730.7079676820.34718591028.3229996Sample Mean25.0470054 | 7.787935101        | Sample St. Dev. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|
| nulation Run                                                                                                                                              | 25.0470054         | Sample Mean     |
| nulation Run                                                                                                                                              |                    |                 |
| imulation Run                                                                                                                                             | 28.3229996         | 10              |
| imulation Run                                                                                                                                             | 20.3471859         | 9               |
| imulation Run                                                                                                                                             | 36.9010808         | 8               |
| imulation Run                                                                                                                                             | 30.7079676         | 7               |
| imulation Run                                                                                                                                             | 16.5820597         | 6               |
| imulation Run                                                                                                                                             | 33532              | 5               |
|                                                                                                                                                           | 21.7321587         | 4               |
|                                                                                                                                                           | 25.6828047         | ω               |
|                                                                                                                                                           | 24.0282690         | 2               |
|                                                                                                                                                           | 11.9319952         | <b>—</b>        |
|                                                                                                                                                           | Data Usage, U (GB) | Simulation Run  |

... So we can compare the sample mean and standard deviation with the true values

| 7.787935101        | Sample St. Dev. |
|--------------------|-----------------|
| 25.0470054         | Sample Mean     |
|                    |                 |
| 28.3229996         | 10              |
| 20.3471859         | 9               |
| 36.9010808         | 8               |
| 30.7079676         | 7               |
| 16.5820597         | 6               |
| 34.2335329         | Л               |
| 21.7321587         | 4               |
| 25.6828047         | ω               |
| 24.0282690         | 2               |
| 11.9319952         | <u> </u>        |
| Data Usage, U (GB) | Simulation Run  |
|                    |                 |

25.047

averaged to about

with mean of 23 and

the normal distribution

standard deviation of 5

usage "drawn" from

values for monthly data

In this simulation, 10

Sample mean is an approximation to the true value of the expected data usage

| 7.787935101        | Sample St. Dev. |
|--------------------|-----------------|
| 25.0470054         | Sample Mean     |
| 28.3229996         | 10              |
| 20.3471859         | 9               |
| 36.9010808         | 8               |
| 30.7079676         | 7               |
| 16.5820597         | 6               |
| 34.2335329         | J               |
| 21.7321587         | 4               |
| 25.6828047         | ω               |
| 24.0282690         | 2               |
| 11.9319952         |                 |
| Data Usage, U (GB) | Simulation Run  |
|                    |                 |

In this simulation, 10 values for monthly data usage "drawn" from the normal distribution with mean of 23 and standard deviation of 5 produced a sample standard deviation of about 7.788.

| Simulation Run  | Data Usage, U (GB) Payment, | Payment, P (\$) |
|-----------------|-----------------------------|-----------------|
| 1               | 11.9319952                  | 160             |
| 2               | 24.0282690                  | 220.4240354     |
| 3               | 25.6828047                  | 245.242071      |
| 4               | 21.7321587                  | 185.9823805     |
| 5               | 34.2335329                  | 373.5029929     |
| 6               | 16.5820597                  | 160             |
| 7               | 30.7079676                  | 320.619514      |
| 8               | 36.9010808                  | 413.5162123     |
| 9               | 20.3471859                  | 165.2077878     |
| 10              | 28.3229996                  | 284.8449946     |
| Sample Mean     | 25.0470054                  | 252.9339988     |
| Sample St. Dev. | 7.787935101                 | 92.19007977     |

and the sample standard deviation is about \$92 The sample mean of the simulated values for monthly payment is about \$253,

|                |                                    | •              |
|----------------|------------------------------------|----------------|
| 252.9339988    | 25.0470054                         | Sample Mean    |
|                |                                    |                |
| 284.8449946    | 28.3229996                         | 10             |
| 165.2077878    | 20.3471859                         | 9              |
| 413.5162123    | 36.9010808                         | 8              |
| 320.619514     | 30.7079676                         | 7              |
| 160            | 16.5820597                         | 6              |
| 373.5029929    | 34.2335329                         | U              |
| 185.9823805    | 21.7321587                         | 4              |
| 245.242071     | 25.6828047                         | ω              |
| 220.4240354    | 24.0282690                         | 2              |
| 160            | 11.9319952                         | Н              |
| ayment, P (\$) | Data Usage, U (GB) Payment, P (\$) | Simulation Run |
|                |                                    |                |

The more simulation runs we conduct..

| Simulation Run  | Data Usage, U (GB) Payment, | Payment, P (\$) |
|-----------------|-----------------------------|-----------------|
| 1               | 11.9319952                  | 160             |
| 2               | 24.0282690                  | 220.4240354     |
| 3               | 25.6828047                  | 245.242071      |
| 4               | 21.7321587                  | 185.9823805     |
| 5               | 34.2335329                  | 373.5029929     |
| 6               | 16.5820597                  | 160             |
| 7               | 30.7079676                  | 320.619514      |
| 8               | 36.9010808                  | 413.5162123     |
| 9               | 20.3471859                  | 165.2077878     |
| 10              | 28.3229996                  | 284.8449946     |
| Sample Mean     | 25.0470054                  | 252.9339988     |
| Sample St. Dev. | 7.787935101                 | 92.19007977     |

... the closer the sample mean and standard deviation will be to the true values

|          | A                                | В                             | С               | D                                  | Е               | П |
|----------|----------------------------------|-------------------------------|-----------------|------------------------------------|-----------------|---|
| $\vdash$ | DataPlan_0.xlsx                  | Wireless Data Plan Simulation | Run             | Data Usage, U (GB) Payment, P (\$) | Payment, P (\$) |   |
| 2        | <b>Operations Analytics MOOC</b> |                               | 1               | 11.93199518                        | 160             |   |
| ω        |                                  |                               | 2               | 24.02826903                        | 220.4240354     |   |
| 4        | Data Allowance (GB)              | 20                            | ω               | 25.68280473                        | 245.242071      |   |
| 5        | Fixed Payment (\$)               | 160                           | 4               | 21.7321587                         | 185.9823805     |   |
| 6        | Rate Above Allowance (\$/GB) 15  | 15                            | 5               | 34.23353286                        | 373.5029929     |   |
| 7        |                                  |                               | 6               | 16.58205969                        | 160             |   |
| <b>∞</b> | Expected Data Usage (GB)         | 23                            | 7               | 30.7079676                         | 320.619514      |   |
| 9        | St. Dev. of Data Usage (GB)      | ъ                             | <b>∞</b>        | 36.90108082                        | 413.5162123     |   |
| 10       |                                  |                               | 9               | 20.34718585                        | 165.2077878     |   |
| 1001     |                                  |                               | 1000            | 23.1895728                         | 207.843592      |   |
| 1002     |                                  |                               |                 |                                    |                 |   |
| 1003     |                                  |                               | Sample Mean     | 23.28418394                        | 220.1594691     |   |
| 1004     |                                  |                               | Sample St. Dev. | 4.877547328                        | 58.23620041     |   |

◆ DataPlan1000.xlsx

#### simulation runs (seed = 123) Comparing Results for n=10 and n=1000

| 92.19007977     | 7.787935101                        | Sample St. Dev.  |
|-----------------|------------------------------------|------------------|
| 252.9339988     | 25.0470054                         | Sample Mean      |
| 284.8449946     | 28.3229996                         | 10               |
| 165.2077878     | 20.3471859                         | 9                |
| 413.5162123     | 36.9010808                         | 000              |
| 320.619514      | 30.7079676                         | 7                |
| 160             | 16.5820597                         | 0 = 10           |
| 373.5029929     | 34.2335329                         | 5                |
| 185.9823805     | 21.7321587                         | 4                |
| 245.242071      | 25.6828047                         | 3                |
| 220.4240354     | 24.0282690                         | 2                |
| 160             | 11.9319952                         | 1                |
| Payment, P (\$) | Data Usage, U (GB) Payment, P (\$) | Simulation Run D |

| <b>Simulation Run</b> | Simulation Run Data Usage, U (GB) Payment, P (\$) | Payment, P (\$) |
|-----------------------|---------------------------------------------------|-----------------|
| 1                     | 11.93199518                                       | 160             |
| 2                     | 24.02826903                                       | 220.4240354     |
| ω                     | 25.68280473                                       | 245.242071      |
| 4                     | 21.7321587                                        | 185.9823805     |
| 5 n=1000              | 00 34.23353286                                    | 373.5029929     |
| 6                     | 16.58205969                                       | 160             |
| 7                     | 30.7079676                                        | 320.619514      |
| 8                     | 36.90108082                                       | 413.5162123     |
| 9                     | 20.34718585                                       | 165.2077878     |
| 1000                  | 23.1895728                                        | 207.843592      |
|                       |                                                   |                 |
| Sample Mean           | 23.28418394                                       | 220.1594691     |
| Sample St. Dev.       | 4.877547328                                       | 58.23620041     |

See DataPlan10.xlsx and DataPlan1000.xlsx

#### simulation runs (seed = 123) Comparing Results for n=10 and n=1000

|                | 4                                  |                |
|----------------|------------------------------------|----------------|
| 252.9339988    | 25.0470054                         | Sample Mean    |
|                |                                    |                |
| 284.8449946    | 28.3229996                         | 10             |
| 165.2077878    | 20.3471859                         | 9              |
| 413.5162123    | 36.9010808                         | 8              |
| 320.619514     | 30.7079676                         | 7              |
| 160            | 16.5820597                         | $_{6}$ $n=10$  |
| 373.5029929    | 34.2335329                         | 5              |
| 185.9823805    | 21.7321587                         | 4              |
| 245.242071     | 25.6828047                         | ω              |
| 220.4240354    | 24.0282690                         | 2              |
| 160            | 11.9319952                         | <b>P</b>       |
| Payment, P (২) | Data Usage, U (GB) Payment, P (\$) | Simulation Run |

| 58.23620041     | 4.877547328                        | Sample St. Dev. |
|-----------------|------------------------------------|-----------------|
| 220.1594691     | 23.28418394                        | Sample Mean     |
|                 |                                    |                 |
| 207.843592      | 23.1895728                         | 1000            |
| 165.2077878     | 20.34718585                        | 9               |
| 413.5162123     | 36.90108082                        | 8               |
| 320.619514      | 30.7079676                         | 7               |
| 160             | 16.58205969                        | 6               |
| 373.5029929     | 00 34.23353286                     | 5 n=1000        |
| 185.9823805     | 21.7321587                         | 4               |
| 245.242071      | 25.68280473                        | ω               |
| 220.4240354     | 24.02826903                        | 2               |
| 160             | 11.93199518                        | 1               |
| Payment, P (\$) | Data Usage, U (GB) Payment, P (\$) | Simulation Run  |

deviation for n=10 simulation runs 23.2842 and 4.8775) are much closer to simulated for *n*=1000 runs (approximately, The sample mean and sample standard corresponding sample mean and standard deviation for monthly data usage the true values of 23 and 5 than the

#### simulation runs (seed = 123) Comparing Results for *n*=10 and *n*=1000

| 92.19007977     | 7.787935101                        | Sample St. Dev.   |
|-----------------|------------------------------------|-------------------|
| 252.9339988     | 25.0470054                         | Sample Mean       |
| 284.8449946     | 28.3229996                         | 10                |
| 165.2077878     | 20.3471859                         |                   |
| 413.5162123     | 36.9010808                         |                   |
| 320.619514      | 30.7079676                         |                   |
| 160             | 16.5820597                         | <i>n</i> =10      |
| 373.5029929     | 34.2335329                         |                   |
| 185.9823805     | 21.7321587                         |                   |
| 245.242071      | 25.6828047                         |                   |
| 220.4240354     | 24.0282690                         |                   |
| 160             | 11.9319952                         |                   |
| Payment, P (\$) | Data Usage, U (GB) Payment, P (\$) | Simulation Run Da |

| Cimulation Dun  |                                                       | Daymont D (¢)  |
|-----------------|-------------------------------------------------------|----------------|
|                 | Silidiation van Data Osage, O (OD) i ayılıcılı, i (7) | rayment, r (2) |
| 1               | 11.93199518                                           | 160            |
| 2               | 24.02826903                                           | 220.4240354    |
| 3               | 25.68280473                                           | 245.242071     |
| 4               | 21.7321587                                            | 185.9823805    |
| 5 n=1000        | 00 34.23353286                                        | 373.5029929    |
| 6               | 16.58205969                                           | 160            |
| 7               | 30.7079676                                            | 320.619514     |
| 8               | 36.90108082                                           | 413.5162123    |
| 9               | 20.34718585                                           | 165.2077878    |
| 1000            | 23.1895728                                            | 207.843592     |
|                 |                                                       |                |
| Sample Mean     | 23.28418394                                           | 220.1594691    |
| Sample St. Dev. | 4.877547328                                           | 58.23620041    |

are much closer to the true (unknown to sample standard deviation for monthly simulation runs us) values than the corresponding sample payment simulated for n=1000 runs In a similar way, the sample mean and mean and standard deviation for *n*=10 (approximately, \$220.1995 and \$58.2362)

Longer simulations produce more precise estimates for the reward and risk measures

### Random Seed Value?



So, what random seed value should one use when running a simulation?

#### simulation runs for different seed values Comparing Results for n=10 and n=1000

Simulated data usage values

| <i>n</i> =10        | seed = 123 | seed = 1826 | seed = 19104 |
|---------------------|------------|-------------|--------------|
| Sample Mean, GB     | 25.05      | 19.48       | 24.72        |
| Sample St. Dev., GB | 7.79       | 5.21        | 3.20         |

| <i>n</i> =1000      | seed = 123 | seed = 1826 | seed = 19104 |
|---------------------|------------|-------------|--------------|
| Sample Mean, GB     | 23.28      | 23.08       | 23.04        |
| Sample St. Dev., GB | 4.88       | 4.90        | 4.96         |
|                     |            |             |              |

Random seed value does not matter much when you run a simulation with large number of simulation runs

# Visualizing Simulation Results Using Histograms

- Histograms are often useful for gaining intuition about the random inputs and the random outputs involved in a simulation
- output is the monthly payment P In the data plan example, the random input is the data usage *U*, and the random

## (n=1000, seed = 123)Histogram of Simulated Values of Data Usage *U*



- ♦ See DátaPlan1000\_Histogram.xlsx
- 10 < *U* ≤ 11 This "bar" indicates the frequency (number of occurrences) for the values of

## Histogram of Simulated Values of Monthly Payment P(n=1000, seed = 123)



See DataPlan1000\_Histogram.xlsx

## Histogram of Simulated Values of Monthly Payment P(n=1000, seed = 123)



The input (values of U) was drawn from a normal distribution – but the output looks nothing like a normal distribution

## Histogram of Simulated Values of Monthly Payment P(n=1000, seed = 123)



and its parameters for an output random variable In general, one must use simulation to understand the shape of the distribution

#### Settings: A Roadmap Making Best Decisions in High-Uncertainty

Decide upon **reward** and **risk** measures



For each competing decision, use **simulation** to estimate reward and risk measures



Use **reward** as an **objective** and **risk measures** as **constraints** to find the best decision

#### Data Plan Example:

- Reward measure = expected monthly payment
- Risk measure = standard deviation of monthly payment

#### Data Plan Example:

- Estimate of expected monthly payment = \$220.1995
- Estimate of standard deviation of monthly payment = \$58.2362

### Simulation in Practice: Commercial Simulation Packages

- packages add-in, there exists a number of commercial simulation If you are interested in going beyond Excel's Analysis ToolPak
- A recent comparison of simulation software packages by the today.org/surveys/Simulation/Simulation.html OR/MS Today can be accessed here: <a href="http://www.orms-">http://www.orms-</a>
- Some commercial packages, in addition to simulating range of probability distributions uncertain outcomes, provide capabilities to fit data to a wide

#### Simulation in Practice

- analyzes one random output (monthly payment) Wireless Data Plan example uses one random input (monthly data usage), and
- In practice, simulation can be used in the models with many random inputs and many random outputs
- Examples of the use of simulation: articles published in Interfaces



Optimizing Capital Investment Decisions at Intel Corporation Karl G. Kempf, Feryal Erhun, Erik F. Hertzler, Timothy R. Rosenberg and Chen Peng Interfaces 2013, 43:1, 62-78.



Kroger Uses Simulation-Optimization to Improve Pharmacy Inventory Management Xinhui Zhang, Doug Meiser, Yan Liu, Brett Bonner, Lebin Lin Interfaces 2014, 44:1, 70-84.

As is the case with optimization, simulation in practice is often used hand-in-hand with other analytics techniques