Segmentation and Detection

CSCI 5299, 4/13/2020

Guest Lecture, Michelina Pallone (Google)

Classification

- AlexNet
- GoogLeNet
- VGG
- ResNet

Scores

- Hummingbird 0.8
- Robin 0.1
- Apple 0.05

Semantic Segmentation

hummingbird, post, branch, leaves

Localization

Hummingbird

Object Detection

gull, pelican

Pixelwise labels, no objects

Single object

Multi-object

Building Damage Assessment

Cityscapes data set

Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning

Segmentation

Logits
[C, W, H]
C=number of classes

Segmentation

- Deep CNN includes downsampling to reduce computational costs.
 Then upsample back to the original size.
- Sum (or average) cross entropy loss on each pixel in the output

(2015) <u>U-Net</u>

- Influential in medical imaging
- Skip connections all low level features to propagate up to higher level features

(2016) DeepLab

(a) Sparse feature extraction

(b) Dense feature extraction

- DeepLab, DeepLab V3
- Atrous (Dilated)
 Convolutions
- Conditional Random Field (CRF)

Localization

Humminging Bird 0.7

Localization

Humminging Bird 0.7

 Two losses: same softmax loss for classes and scores that you would use in image classification, some kind of regression loss for box coordinates.

Detection

Detection

Detection

2 Stage Detection: Regions with CNN (R-CNN)

- Train and inference times are slow
 - o <u>R-CNN</u> (2014)
 - <u>Fast R-CNN</u> (2015)
 - <u>Faster R-CNN</u> (2015)

One Stage Detection

- YOLO (You only look once 2016)
- SSD (Single Shot Detection 2016)
- Only one pass through the network
 - o Simple
 - Fast
- Accuracy is ok

One Stage Detection

- YOLO (You only look once)
- SSD (Single Shot Detection)
- Only one pass through the network
 - o Simple
 - Fast
- Accuracy is ok

One Stage Detection

- YOLO (You only look once)
- SSD (Single Shot Detection)
- Only one pass through the network
 - o Simple
 - Fast
- Accuracy is ok

RetinaNet Return of 1 stage

 Traditional problem with one-stage detectors: An extreme class imbalance causes "easy" background samples to overwhelm the loss function

 Focal Loss: Keep the loss from easy background samples from overwhelming the loss from sparse hard samples

Instance segmentation

Instance segmentation

Detection-based approaches ("Top Down")

- Mask R-CNN
- ShapeMask: Learning to Segment Novel Objects by Refining Shape Priors

Grouping-based approaches ("Bottom up")

- <u>Pixelwise Instance Segmentation with a Dynamically Instantiated Network</u> (above)
- Semantic Instance Segmentation with a Discriminative Loss Function
- InstanceCut: from Edges to Instances with MultiCut

Panoptic segmentation

Water?

Rocks?

- Things: Objects that come in discrete, countable instances
 - Well suited to instance segmentation
 - Examples: Cars, people, animals

- Stuff: Amorphous background regions
 - Better suited to semantic segmentation
 - Examples: Sky, grass, water

(a) image

(b) semantic segmentation

(c) instance segmentation

(d) panoptic segmentation

Top Down

Panoptic Feature Pyramid Networks

Bottom Up

Intersection over Union

 For stuff IoU is a standard evaluation metric

 For things, you decide what IoU is a true positive (IoU = 0.5 is common)

Actual Values

Predicted Values

Positive

Positive

Negative

True Positive (TP)

False Positive (FP, Type I Error)

Negative

False Negative (FN, Type II Error)

True Negative (TN)

Precision =
$$\frac{\text{# TP}}{\text{# TP + # FP}}$$

With confidence threshold of 0:

$$PR = 3 / (3 + 1) = 0.75$$

Model predictions with confidences

Precision =
$$\frac{\text{# TP}}{\text{# TP + # FP}}$$

With confidence threshold of 0.5:

$$PR = 3 / (3 + 0) = 1$$

Model predictions with confidences

Recall =
$$\frac{\text{# TP}}{\text{# TP + # FN}}$$

With confidence threshold of 0:

$$PR = 3 / (3 + 1) = 0.75$$

Model predictions with confidences

Recall =
$$\frac{\text{# TP}}{\text{# TP + # FN}}$$

With confidence threshold of 0.7:

$$PR = 2 / (2 + 2) = 0.5$$

Model predictions with confidences

Precision Recall Curves

- Plot precision vs recall at all the confidence thresholds
- Average Precision (AP) is the area under the curve
- Mean Average Precision (mAP) is the mean of all the APs for each class
- Similarly, you will see mean IOU (mIOU) for semantic segmentation metrics

Precision

Detection Leaderboard

BBOX: Dev Standard15 Chal15 Chal16 Chal1

SEGM: Dev Standard15 Chal15 Chal16 Chal17 Chal18

Co	ppy to Clipboard	Export to CSV			Search:										
		\$	AP 🔻	AP ⁵⁰ 	AP ⁷⁵ 	AP ^S ∜	AP ^M ⊕	AP ^L ∳	AR¹ ≑	AR ¹⁰ ∳	AR ¹⁰⁰	ARS∳	AR ^M ∳	AR ^L ⊕	date 🖣
0	Megvii (Face++)		0.526	0.730	0.585	0.343	0.556	0.660	0.391	0.645	0.689	0.513	0.727	0.827	2017-10-05
0	CM-CV AR		0.525	0.717	0.578	0.352	0.550	0.642	0.392	0.647	0.689	0.528	0.720	0.821	2019-07-26
0	Night owl		0.519	0.704	0.570	0.342	0.548	0.647	0.391	0.640	0.680	0.498	0.713	0.824	2019-08-05
0	Alibaba Turing Lab		0.514	0.694	0.563	0.336	0.540	0.639	0.388	0.638	0.679	0.499	0.711	0.818	2019-08-05
0	UCenter		0.510	0.705	0.558	0.326	0.539	0.648	0.392	0.640	0.678	0.497	0.720	0.829	2017-10-05
0	MSRA		0.507	0.717	0.566	0.343	0.529	0.627	0.379	0.638	0.690	0.524	0.720	0.824	2017-10-05
0	DL-61		0.507	0.708	0.569	0.337	0.534	0.626	0.383	0.639	0.686	0.516	0.718	0.821	2018-08-15
0	FAIR Mask R-CNN		0.503	0.720	0.558	0.328	0.537	0.627	0.380	0.622	0.659	0.485	0.704	0.800	2017-10-05

Public Benchmarks

- COCO
- Cityscapes
- Mapillary Vistas

Evaluating models for real world applications

Mapping:

- False positive: Add a non-existent building to the map
- False negative: Missing a building on the map

Autonomous Vehicles:

- False positive: Vehicle detects a non-existent stop sign, stops, and gets rear ended
- False negative: Vehicle drives through a stop sign and causes an accident

Medicine:

- False positive: Unnecessary procedures -> higher healthcare costs, strain health care system
- False negative: A serious disease goes untreated

Resource Constraints: Data and Labeling

- Large-scale interactive object segmentation with human annotators
- Interactive Full Image Segmentation by Considering All Regions Jointly

Resource Constraints: Computation

- Autonomous vehicles need to do inference on device
 - MobileNet
- Very deep backbones (e.g. ResNet) are expensive at train and inference time
 - Start with a pre-trained backbone
- High training cost to search for your architecture
- Bigger data sets yield better results but require disk space

