\blacksquare How to obtain A_R ?

Definition 2.2.2 Elementary row operations

- 1. Interchange of two rows
- 2. Multiplication of a row by a nonzero scalar oolofu अधि प्रिमी किया
- 3. Addition of a scalar multiple of one row to another row

(the one row remains the same, i.e., unchanged.)

Note: Recall **Example 1.5.7**

• We solved: $\alpha_1 \langle 1, 0 \rangle + \alpha_2 \langle 0, 2 \rangle + \alpha_3 \langle 1, 2 \rangle = \langle 0, 0 \rangle$

AX = $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \alpha_3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Note: Recall Example 1.5.7

$$\alpha_1 \langle 1, 0 \rangle + \alpha_2 \langle 0, 2 \rangle + \alpha_3 \langle 1, 2 \rangle = \langle 0, 0 \rangle$$

$$\langle \alpha_1 + \alpha_3, 2\alpha_2 + 2\alpha_3 \rangle = \langle 0, 0 \rangle$$

• We solved:

$$\begin{cases} \alpha_1 + \alpha_3 = 0 \\ 2\alpha_2 + 2\alpha_3 = 0 \end{cases}$$

→ In a matrix form:

$$AX = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \alpha_3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \alpha_1 + \alpha_3 \\ 2\alpha_2 + 2\alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Note: 1. Interchange of two rows in <u>Definition 2.2.2 Elementary row operations</u>

$$\alpha_1 \langle 1, 0 \rangle + \alpha_2 \langle 0, 2 \rangle + \alpha_3 \langle 1, 2 \rangle = \langle 0, 0 \rangle$$

$$\langle \alpha_1 + \alpha_3, 2\alpha_2 + 2\alpha_3 \rangle = \langle 0, 0 \rangle$$

• We solved:

$$\begin{cases} \alpha_1 + \alpha_3 = 0 \\ 2\alpha_2 + 2\alpha_3 = 0 \end{cases} \rightarrow \begin{cases} \frac{2\alpha_2 + 2\alpha_3 = 0}{\alpha_1 + \alpha_3 = 0} \end{cases}$$

⇒ In a matrix form: $AX = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \alpha_3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$\begin{bmatrix} \alpha_1 + \alpha_3 \\ 2\alpha_2 + 2\alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2\alpha_2 + 2\alpha_3 \\ \alpha_1 + \alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

००१०मी स्ट्रेस्ट ख्रमा छिता

Note: 2. Multiplication of a row by a nonzero scalar in Definition 2.2.2 Elementary row operations

$$\alpha_1 \langle 1, 0 \rangle + \alpha_2 \langle 0, 2 \rangle + \alpha_3 \langle 1, 2 \rangle = \langle 0, 0 \rangle$$

$$\langle \alpha_1 + \alpha_3, 2\alpha_2 + 2\alpha_3 \rangle = \langle 0, 0 \rangle$$

• We solved:

$$\begin{cases} \alpha_1 + \alpha_3 = 0 \\ 2\alpha_2 + 2\alpha_3 = 0 \end{cases} \rightarrow \begin{cases} \frac{2 \times \alpha_1 + 2 \times \alpha_3 = 2 \times 0}{2\alpha_2 + 2\alpha_3 = 0} \end{cases}$$

→ In a matrix form:

$$AX = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \alpha_3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \alpha_1 + \alpha_3 \\ 2\alpha_2 + 2\alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 \times \alpha_1 + 2 \times \alpha_3 \\ 2\alpha_2 + 2\alpha_3 \end{bmatrix} = \begin{bmatrix} 2 \times 0 \\ 0 \end{bmatrix}$$

Note: 3. Addition of a scalar multiple of one row to another row

하는 하당의 생수배를 (분 당시 건하기 (the one row remains the same, i.e., unchanged.)

in **Definition 2.2.2 Elementary row operations**

• We solved:

Solved:
$$\begin{cases} \alpha_1 + \alpha_3 = 0 \\ 2\alpha_2 + 2\alpha_3 = 0 \end{cases} \Rightarrow \begin{cases} 2\alpha_1 + 2\alpha_3 = 0 \\ 2\alpha_2 + 2\alpha_3 = 0 \end{cases} \Rightarrow \begin{cases} 2\alpha_1 + 2\alpha_3 = 0 \\ (-1) \times 2\alpha_2 + (-1) \times 2\alpha_3 = (-1) \times 0 \end{cases}$$

$$\Rightarrow \begin{cases} 2\alpha_1 - 2\alpha_2 = 0 \\ 2\alpha_2 + 2\alpha_3 = 0 \end{cases} \Rightarrow \begin{cases} 2\alpha_1 + 2\alpha_3 = 0 \\ (-1) \times 2\alpha_2 + (-1) \times 2\alpha_3 = (-1) \times 0 \end{cases}$$

→ In a matrix form:

$$\begin{bmatrix} \alpha_{1} + \alpha_{3} \\ 2\alpha_{2} + 2\alpha_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2\alpha_{1} + 2\alpha_{3} \\ 2\alpha_{2} + 2\alpha_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2\alpha_{1} + 2\alpha_{3} \\ (-1) \times 2\alpha_{2} + (-1) \times 2\alpha_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ (-1) \times 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 2\alpha_{1} - 2\alpha_{2} \\ 2\alpha_{2} + 2\alpha_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

2.3 Solution of Homogeneous Systems of Linear Equations

Definition 2.3.1 r = rank(A)

Note: $rank(A) = rank(A_R)$

Theorem 2.3.1

rank(
$$A_R$$
) = $\underline{\dim}(R(A_R))$

Theorem 2.3.2

 \rightarrow rank(A) = dim(R(A))

Note: Recall Example 1.5.3 (colum Space 27时是 晚午 完!!

- 2×3 matrix: $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix}$
 - → 3-dimensional row vectors (1 x 3 matrices): [1 0 1] and [0 2 2]

 $R(A) = \{ \alpha_1 \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 2 & 2 \end{bmatrix} | \alpha_1 \text{ and } \alpha_2 \text{ are scalars.} \}$

Chapter 2: Marices and Systems of Linear Equations

Find
$$A_R$$
 for a given $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix}$. A basis (Q134 Mills) : High white a_R which a_R and a_R for a given a_R is the second a_R for a given a_R and a_R for a given a_R for a g

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix} \xrightarrow{\frac{1}{2} \times (2 \operatorname{nd row})} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = A_{R}$$

Note: $rank(A) = rank(A_R) = 2$

Note: $dim(R(A_R)) = 2$

⇒
$$B(R(A_R)) = \{[1 \ 0 \ 1], [0 \ 1 \ 1]\}$$

$$R(A_R) \text{ Alga,}$$

$$E \text{ Trained Total Trained Tr$$

$$R(A) = \{ \alpha_1 [1 \quad 0 \quad 1] + \alpha_2 [0 \quad 2 \quad 2] \mid \alpha_1 \text{ and } \alpha_2 \text{ are scalars.} \}$$

$$= \{ \alpha_1 [1 \quad 0 \quad 1] + 2\alpha_2 [0 \quad 1 \quad 1] \mid \alpha_1 \text{ and } 2\alpha_2 \text{ are scalars.} \} = R(A_R)$$

$$= \{ \alpha_1 [1 \quad 0 \quad 1] + \alpha_3 [0 \quad 1 \quad 1] \mid \alpha_1 \text{ and } \alpha_3 \text{ are scalars.} \}$$

ind[[0]]+82[0]] =[000]

[d, od,] + [od2d2] = [000]

Note: Elementary row operations do not change R(A), i.e., $R(A) = R(A_R)$.

Therefore, $\dim(R(A)) = \dim(R(A_R))$.