

Machine Learning

Session 7 - Reinforcement Learning

hadrien.salem@centralelille.fr

<u>introduction-to-data-science</u>

Introduction

What did we do last time?

Course outline

Machine learning course

Session 1: Regression

Session 2: Supervised classification

Session 3: Clustering

Session 4: Decision trees and ensemble methods

Session 5: Introduction to neural networks

Session 6: Advanced neural networks

Session 7: Introduction to reinforcement learning

Session 8: Reading science papers

Project

What is reinforcement learning?

Through trial and error, an agent keeps learning in an interactive environment (source)

Agents take actions in an environment aimed at maximizing their cumulative reward

Desired behaviors are rewards, undesired behaviors are punished. Through trial and error, the agent learns the best behavior.

Vocabulary

Agent - The decision maker and learner

Environment - A physical world where an agent learns and decides the actions to be performed

Action – Interaction of the agent with its environment

State – The current situation of the agent in the environment

Reward – Feedback (scalar value) given to the agent by the environment as a result of taking an action

Policy – A map of situations to actions, the strategy of the agent

Value Function – Function evaluating how good it is to be in a particular state or state-action pair

Applications of RL

Applications of reinforcement learning

Game playing

Robotics - Robots learn independently how to perform certain tasks (walking, picking, placing)

Recommendation systems – Youtube videos, Spotify playlists, etc.

NLP – Chatbots learn from their past experiences

Education – Personalizing the students' learning experiences

Dynamic parameter optimization – Improve the performance of an algorithm as it is being used

How reinforcement learning works The example of Q learning

- TD Target (Temporal-Difference Target): estimate of the expected cumulative reward
- **TD Error (Temporal-Difference Error)**: quantifies how far off the current value estimate is from what is expected

Variants

Practical work

The notebook contains all the necessary instructions

Debrief

Debrief - G3

https://forms.gle/TiR9uaYTFF3iTX9e6

Debrief

What did we learn today?

What could we have done better?

What are we doing next time?