REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 nour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed and, completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information including suggestions for reducing this burden to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302 and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC. 20503 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave blank) Technical Report August 14, 1999 5. FUNDING NUMBERS 4.TITLE AND SUBTITLE New Tetraazacrown Ethers Containing Two Pyridine, Ouinoline, 8-Hydroxyquinoline, or 8-Aminoquinoline N00014-98-1-0485 Sidearms 98PR05020-00 S. AUTHOR(S) Z. Yang, J.S. Bradshaw, X.X. Zhang, P.B. Savage K.E. Krakowiak, N.K. Dalley, N. Su, R.T. Bronson, and PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) PERFORMING ORGANIZATION REPORT NUMBER Department of Chemistry and Biochemistry Technical Report No.10 Brigham Young University Provo, UT 84602 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) . SPONSORING/MONITORING REPORT NUMBER Dr. Kelvin Higa (Program Director) Office of Naval Research 800 No. Ouincy Street 19990816 143 Arlington, VA 22217-5000 1. SUPPLEMENTARY NOTES 12b. DISTRIBUTION CODE 12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13 ABSTRACT (Maximum 200 words) A series of macrocyclic tetraazacrown ethers containing two pyridine, quinoline, 8-hydroxyquinoline, or 8-aminoquinoline sidearms has been prepared. Crab-like cyclization of $bis(\alpha$ -chloroacetamide)s and diamines followed by reduction of the cyclic diamides was used to synthesize the selected crown ethers containing two unsubstituted macroring nitrogen atoms. The preparation of the macrocycles with sidearms was accomplished by reductive amination of the proper aldehydes with the crown ethers using sodium triacetoxyborohydride (NaBH(OAc)3) as the reducing agent. The 8-hydroxyquinoline- and 8-aminoquinoline-containing macrocycles were synthesized by reductive amination of 8-acetoxyquinoline-2-carboxaldehyde or 8-nitroquinoline-2-carboxaldehyde followed by removing the acetate groups or reducing the nitro groups to amino groups, respectively. Complexation of ligand 22 with Cu²⁺, Co²⁺, Ni²⁺, Zn²⁺, Cd²⁺, and Pb²⁺ was evaluated potentiometrically in aqueous solution (0.10 M Me₄NCl) at 25 °C. Ligand 22 formed very stable complexes with these metal ions. The UV-vis spectra of 22 and its complexes were examined in an aqueous acetic acid buffer solution (pH 5). The 22-Cu²⁺ complex provided a new absorption band at 258 nm. 15. NUMBER OF PAGES 14. SUBJECT TERMS 16. PRICE CODE NA 20 LIMITATION OF ABSTRACT 17. SECURITY CLASSIFICATION OF REPORT OF ABSTRACT OF THIS PAGE Unlimited Unclassified Unclassified

Unclassified

OFFICE OF NAVAL RESERACH

Grant N00014-98-1-0485

Technical Report No. 10

New Tetraazacrown Ethers Containing Two Pyridine, Quinoline, 8-

Hydroxyquinoline, or 8-Aminoquinoline Sidearms

bу

Zhaoxia Yang, Jerald S. Bradshaw, Xian X. Zhang, Paul B. Savage, Krzysztof E. Krakowiak, N. Kent Dalley, Ning Su, R. Todd Bronson, and Reed M. Izatt

Department of Chemistry and Biochemistry Brigham Young University, Provo, UT 84602

August 12, 1999

Reproduction in whole or in part is permitted for any purpose of the University Government

This document has been approved for public release and sale; its distribution is unlimited

New Tetraazacrown Ethers Containing Two Pyridine, Quinoline, 8-Hydroxyguinoline, or 8-Aminoquinoline Sidearms

Zhaoxia Yang, Jerald S. Bradshaw,* Xian X. Zhang, Paul B. Savage, Krzysztof E. Krakowiak, N. Kent Dalley, Ning Su, R. Todd Bronson, and Reed M. Izatt

Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602

Received November 19, 1998

A series of macrocyclic tetraazacrown ethers containing two pyridine, quinoline, 8-hydroxyquinoline, or 8-aminoquinoline sidearms has been prepared. Crab-like cyclization of bis(α -chloroacetamide)s and diamines followed by reduction of the cyclic diamides was used to synthesize the selected crown ethers containing two unsubstituted macroring nitrogen atoms. The preparation of the macrocycles with sidearms was accomplished by reductive amination of the proper aldehydes with the crown ethers using sodium triacetoxyborohydride (NaBH(OAc)3) as the reducing agent. The 8-hydroxyquinoline- and 8-aminoquinoline-containing macrocycles were synthesized by reductive amination of 8-acetoxyquinoline-2-carboxaldehyde or 8-nitroquinoline-2-carboxaldehyde followed by removing the acetate groups or reducing the nitro groups to amino groups, respectively. Complexation of ligand 22 with Cu²⁺, Co²⁺, Ni²⁺, Zn²⁺, Cd²⁺, and Pb²⁺ was evaluated potentiometrically in aqueous solution (0.10 M Me₄NCI) at 25 °C. Ligand 22 formed very stable complexes with these metal ions. The UV-vis spectra of 22 and its complexes were examined in an aqueous acetic acid buffer solution (pH 5). The 22-Cu²⁺ complex provided a new absorption band at 258 nm.

Introduction

The high toxicity of many transition and post-transition metals is well-recognized, and, consequently, there is a great need for monitoring the levels of these metal ions in the environment. Currently, metal ion concentrations in waste streams are usually measured by spectroscopic or wet chemical methods on samples removed from waste streams.2 An attractive alternative would be to monitor the concentration of specific metal ions in a complex matrix continuously and remotely by using ionselective sensory devices.

Chemical sensors employing fiber optic technology could prove useful for the in-situ detection and quantification of metal ions provided synthetic fluoroionophores (FIPs) and chromoionophores (CIPs) capable of signaling the complexation of metal ions with useful selectivity are developed. Optical sensors for metal ions have been reported;3-7 however, they have generally lacked ion selectivity. A number of optical sensors have been based on ion-chelating dyes, which have been used in the spectrophotometric determination of various metal ions. A number of CIP and FIP dyes, including zincon,4 8-hydroxyquinoline-5-sulfonic acid,5 calcichrome,6 and

Figure 1. Compounds mentioned in the Introduction.

lipophilized PAR (1, see Figure 1),7 have been immobilized on solid supports yielding metal ion sensors. These systems responded well with many metal ions but did not display significant ion selectivity.

The critical requirement for the design of an ionspecific fluorescent chemosensor is the selective binding of the target ion by the chemosensor. Many macrocyclic ligands are known to interact selectively with many metal ions,8 and some of these have been used to develop

O(CH₂)₁₇CH₃ 5

^{378-5474.} Corresponding 801 e-mail: jerald_bradshaw@.byu.edu.

^{&#}x27;Current address for K.E.K., IBC Advanced Technologies, Inc., P.O. Box 98, American Fork, Utah 84003.

⁽¹⁾ Foulkes, E. Biological Effects of Heavy Metals, CRC Press: Boca Raton, FL, 1990; Vols. I and II.

⁽²⁾ Lestef, J. Heavy Metals in Wastewater and Sludge Treatment Processes, CRC Press: Boca Raton, FL, 1987; Vol. I, pp 105-124.
(3) (a) Bühlmann, P.; Pretsch, E.; Bakker, E. Chem. Rev. 1947, 47.

 ^{595. (}b) Seitz, W. R. CRC Crit. Rev. Anal. Chem. 1988, 19, 135.
 (4) Oehme, I.; Prattes, S.; Wolfveis, O. S.; Mohr, G. J. Talanta 1998. 47, 595.

⁽⁵⁾ Zhujun, Z.; Seltz, W. R. Anal. Chim. Acta 1985, 171, 251.

⁽⁶⁾ Chau, L. K.; Porter, M. D. Anal. Chem. 1990, 62, 1964. (7) Wang, K.; Seiler, K.; Rusterholz, P.; Simon, W. Analyst 1992, 117, 57.

metal ion sensors. $^{9-15}$ The first such application was reported by Sousa and Larson in the preparation of some naphthalenocrown ether ligands (see 2, for example). The observed fluorescence changes for these naphthalenecontaining ligands upon binding alkali metal ions in ethanol were attributed to a heavy atom effect (for Cs $^+$ and Rb $^+$) and a complexation-induced change in triplet energy relative to ground and excited singlet state energies.

A number of crown ether-containing FIPs have been prepared with various fluorophore sidearms including anthracene, coumarin, merocyanine, and benzoxazinone groups. 10-15 Crown ethers containing oximic and Schiffbase sidearms have also been prepared.11 Improvements in metal ion complexing ability and selectivity have been observed when proton-ionizable chromophoric or fluorophoric units are attached to the crown ring as sidearms. 12 For example, diprotonic and fluorogenic crown ether 3, developed by Takagi and co-workers,13 has proven particularly effective toward Ca2+, Ba2+, and other divalent cations. New 5-chloro-8-hydroxyquinoline (CHO)-substituted azacrown ethers where CHQ was attached through its 7-position (4) or its 2-position (5) have been synthesized in our laboratory. 14.15 The ion selectivities demonstrated by 4 and 5 were much greater than those of the parent diaza-18-crown-6 macrocycle. 15 Particularly striking is the selectivity of compound 4 for Ni(II) over Cu(II) (log K = 11.4 and 10.1, respectively, in methanol) and its strong complexing ability with Mg2+ and Ca2+. Indeed, ligand 4 is a very effective sensor for Mg2+ ions.16

(8) (a) Izatt, R. M.; Bradshaw, J. S.; Nielsen, S. A.; Lamb, J. D.; Christensen, J. J.; Sen, D. Chem. Rev. 1985, 85, 271. (b) Izatt, R. M.; Pawlak, K.; Bradshaw, J. S.; Bruening, R. L. Chem. Rev. 1991, 91, 1721. (c) Izatt, R. M.; Pawlak, K.; Bradshaw, J. S.; Bruening, R. L. Chem. Rev. 1995, 95, 1231.

(9) Sousa, L. R.; Larson, J. M. J. Am. Chem. Soc. 1977, 99, 307. (10) (a) Ueno, A.; Ikeda, A.; Ikeda H.; Ikeda, T.; Toda F. J. Org. Chem. 1999, 64, 382. (b) Unob, F.; Asfari, Z.; Vicens J. Tetrahedron Lett. 1998, 39, 2951. (c) Cosnard, F.; Wintgens, V. Tetrahedron Lett. 1998, 39, 2951. (d) Oguz, U.; Akkaya, E. U. Tetrahedron Lett. 1998, 39, 5857. (e) Narita, M.; Higuchi, Y.; Hamada, F.; Kumagal, H. Tetrahedron Lett. 1998, 39, 8687. (f) Oguz, U.; Akkaya E. U. Tetrahedron Lett. 1997, 38, 4509. (g) Sclafani, J. A.; Maranto, M. T.; Sisk, T. M.; Van Arman, S. A. Tetrahedron Lett. 1996, 37, 2193. (h) Desvergne, J.-P.; Rau, J.; Cherkaoul, O.; Zniber, R.; Bouas-Laurent, H.; Lahrahar, N.; Meyer, U.; Marsau, P. New J. Chem. 1996, 20, 881. (i) Marquis, D.; Desvergne, J.-P.; Bouas-Laurent, H. J. Org. Chem. 1995, 60, 7984. (j) Fabbrizzi, L.; Licchelli, M.; Pallavicini, P.; Perotti, A.; Sacchi, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 1975. (k) Chae, M.-Y.; Cherian X.; Czarnik, A. W. J. Org. Chem. 1993, 58, 5797. (j) Bourson, J.; Poget, J.; Valeur, B. J. Phys. Chem. 1993, 97, 4552. (m) Desvergne, J.-P.; Fages, F.; Bouas-Laurent, H.; Marsau, P. Pure Appl. Chem. 1992, 52, 1231. (n) Bourson, J.; Borrel, M. N.; Valeur, B. Anal. Chim. Acta 1992, 257, 189. (o) Akkaya, E. U.; Huston, M. E.; Czarnik, A. W. J. Am. Chem. Soc. 1990, 112, 3590. (p) Fery-Forgues, S.; Bourson, J.; Dallery, L.; Valeur, B. New J. Chem. 1990, 14, 617. (q) Fages, F.; Desvergne, J.-P.; Bouas-Laurent, H.; Marsau, P.; Lehn, J.-M.; Kotzyba-Hibert, F.; Albrecht-Gary, A.-M.; Al-Joubbeh, M. J. Am. Chem. Soc. 1989, 111, 8672. (r) Bourson, J.; Valeur, B. J. Phys. Chem. 1989, 93, 3871. (s) Fery-Forgues, S.; Le Bris, M. T.; Guette, J. P.; Valeur, B. J. Chem. Soc. Chem. Commun, 1988, 384. (t) Konopelski, J.-P.; Kotzyba-Hibert, F.; Lehn, J.-M.; Desvergne, J.-P.; Fages, F.; Castellan, A.; Bouas-Laurent, H. J. Chem. Soc., Chem. Commun, 1985, 433.

(11) Bordunov, A. V.; Bradshaw, J. S.; Pastushok, V. N.; Zhang, X. X.; Kou, X.; Dalley, N. K.; Yang, Z.; Savage, P. B.; Izatt, R. M. Tetrahedron 1997, 53, 17595.

(12) McDaniel, C. W.; Bradshaw, J. S.; Izatt, R. M. Heterocycles 1990, 30, 665.

(13) (a) Nishlda, H.; Katayama, Y.; Katsuki, H.; Nakamura, H.; Takagi, M.; Ueno, K. *Chem. Lett.* 1982, 1853. (b) Takagi, M.; Ueno, K. *Top. Curr. Chem.* 1984, 121, 39.

(14) Bordunov, A. V.; Bradshaw, J. S.; Zhang, X. X.; Dalley, N. K.; Kou, X.; Izatt, R. M. *Inorg. Chem.* 1996, 35, 7229.

(15) Zhang, X. X.; Bordunov, A. V.; Bradshaw, J. S.; Dalley, N. K.; Kou, X.; Izatt, R. M. J. Am. Chem. Soc. 1995, 117, 11507.

(16) Prodi, L.; Boletta, F.; Montalti, M.; Zaccheroni, N.; Savage, P. B.; Bradshaw, J. S.; Izatt, R. M. Tetrahedron Lett. 1998, 39, 5451.

Scheme 1. Syntheses of Tetraazacrown Ethers with Two Unsubstituted Nitrogens

Compound 5, with attachment of CHQ through its 2-position, displays strong complexation in methanol with K^+ and Ba^{2+} (log K=6.61 and 12.2, respectively) but not with Mg^{2+} or Cu^{2+} . The crystal structure of the complex of Ba^{2+} with 5 shows that both 8-CHQ groups are bidentate chelators of Ba^{2+} , and both are juxtaposed on the same side of the complex forming a cryptate-like structure. ¹⁵

This report describes the preparation of new 8-hydroxy-quinoline-(8-HQ) and 8-aminoquinoline-substituted tetra-azacrown ethers designed to selectively bind transition and post-transition metal ions with a concomitant modulation in the absorption and fluorescence spectra of the compounds. Tetraazacrown ethers have been shown to selectively complex the target group of metal ions.⁸ Preliminary complexation studies of one of these new ligands (22) with various metal ions in aqueous solution showed that 22 forms very stable complexes and the 22—Cu²⁺ complex gave a new band at 258 nm in its UV absorption spectrum.

Results and Discussion

Synthesis of Tetraazacrown Ethers with Two Unsubstituted Macroring Nitrogen Atoms. A convenient way to functionalize the polyazacrown ethers with FIP or CIP groups is via attachment to ring NH groups. To allow attachment of two FIP or CIP groups, it was necessary to prepare macrocycles containing two secondary amine groups. Application of crab-like bis(achloroacetamide)s for the synthesis of azacrown ethers with one or two secondary macroring nitrogen atoms has been reported.17.18 In these syntheses, bis(a-chloroacetamide)s were prepared by acylating the appropriate diamines with chloroacetyl chloride or chloroacetic anhydride. The bis(α -chloroamide)s were then treated with bis-secondary amines in MeCN using a carbonate base to form macrocyclic diamides 8-11 (Scheme 1). These diamides were reduced to form the four tetraazacrown ethers containing two secondary ring nitrogen atoms (12-15) as shown in Scheme 1. The crab-like bis(α -

⁽¹⁷⁾ Bradshaw, J. S.; Krakowiak, K. E.; Izatt, R. M. J. Heterocycl. Chem. 1989, 26, 1431.

⁽¹⁸⁾ Krakowiak, K. E.; Bradshaw, J. S.; Izatt, R. M. J. Org. Chem. 1990, 55, 3364.

chloroacetamide)s 6 and 7 were prepared in almost quantitative yields. The amide portions of the bis(α -chloroamide)s work as protecting groups for the nitrogen atoms, and they increase the reactivity of the chlorosubstituted carbon toward nucleophilic substitution. ¹⁸ Compounds 6 and 7 were reacted with two different bissecondary amines by a cyclization reaction to form the four macrocyclic diamides 8-11 in 57-73% yields.

The crab-like cyclization reactions were carried out without using high dilution techniques and at room temperature. The relativley high yields may be attributable to hydrogen bonding between the amide oxygen atoms of the bis-chloroamide) and the amine hydrogen atoms of the bis-secondary amines which would keep the two chloride units in the positions needed for the cyclization reaction. 17

Reduction of 8–11 with LiAlH₄ gave the four tetraazacrown ethers (12–15) in 71–83% yields. Reduction can also be achieved by using diborane in THF. Diborane reduction results in the formation of a borane complex which requires a complex workup procedure. To avoid the relatively more complicated workup, reduction was done by LiAlH₄ and gave the products in good yields. A satisfactory elemental analysis was obtained for at least one 8-hydroxy- or 8-amine-substituted quinoline derivative of each of 12–15.

Synthesis of Quinoline Derivative-Containing Tetraazacrown Ethers. We have reported two methods of attaching 5-chloro-8-hydroxyquinoline to diaza-18-crown-6 (to form 4 and 5). ¹⁴ Ligand 5 was prepared by a nucleophilic substitution of the secondary nitrogens on the macrocycle ring on halomethyl-substituted 8-methoxyquinoline followed by removal of the methyl groups. ¹⁴ Ligand 4 was prepared by conversion of the secondary amines of the macrocycle to (methoxymethyl)amines which are active electrophilic reagents in the Mannich reaction and react readily with the electron rich phenolic side of 5-chloro-8-hydroxyquinoline. ¹⁴ We attempted to prepare the quinoline derivative-containing tetraaza macrocycles by these two methods. Unfortunately, no desired products were obtained.

Reactions of aldehydes with primary or secondary amines in the presence of reducing agents to give secondary or tertiary amines, respectively, known as reductive amination, are useful methods to alkylate amine groups. Direct reductive amination of aldehydes with amines using sodium triacetoxyborohydride (NaBH-(OAc)₃) as a reducing agent has been developed for a wide variety of substrates. ¹⁹ Compared to other hydride reducing agents such as sodium cyanoborohydride (NaBH₃CN), NaBH(OAc)₃ is mild, less toxic, and exhibits remarkable selectivity as a reducing agent. ¹⁹

To investigate the feasibility of synthesizing the quinoline derivative-containing tetraazamacrocycles by reductive amination, macrocycle 12 was treated with 2-pyridine-carbaldehyde and 2-quinolinecarboxaldehyde in the presence of NaBH(OAc)₃ to form pyridine- and quinoline-substituted tetraaza-15-crown-5 ligands 16 and 17 in 87% and 82% yields, respectively (Scheme 2). Although NaBH-(OAc)₃ is a very mild reducing agent, a small amount of alcohol reduction product from the aldehyde was observed. Reductive amination of 8-hydroxyquinoline-2-carboxaldehyde with a tetraazacrown ether did not occur,

Scheme 2. Syntheses of Pyridine- and Quinoline-Substituted Crown Ethers via Reductive Amination

possibly because of the presence of the phenolic OH group. However, when macrocycles 12–15 were treated with 8-acetoxyquinoline-2-carboxaldehyde in the presence of NaBH(OAc)₃, 8-acetoxyquinoline-substituted macrocycles 18–21 were formed in good yields (Scheme 3). Products 18–21 could not be purified by chromatography because they were hydrolyzed by the solvent system used, and, thus, were treated without purification with KOH to form 22–25 in 71–78% yields. When working up 8-HQ-substituted macrocycles 22–25 following hydrolysis of the acetates, the solution was adjusted to pH \sim 10. In this pH range, the tetraazacrown ethers contain one or more molecules of HCl as demonstrated by the elemental analyses for 22, 23, and 25.

Another approach to prepare 8-HQ-substituted 22 is shown in Scheme 4. The 8-HQ pendant arms were attached to the aliphatic nitrogen by stepwise reductive amination before cyclization to form 26. Compound 26 was cyclized with crab-like bis(α-chloroamide) 27 to give the intermediate macrocyclic diamide 28. To avoid deprotonation of the phenolic OH group, triethylamine was used instead of Na₂CO₃ in the cyclization reaction. The resulting bisamide was reduced by the borane-THF complex to give 22 in a 27% overall yield. Aqueous HCl needed to be added to the reaction mixture to destroy the complex with borane. Treatment of the diamide with LiAlH4 gave a lower yield. Compared to the approach in Scheme 3, both the cyclization and reduction steps (Scheme 4) gave lower yields. Thus, the direct attachment of the quinolinecarbaldehyde to the secondary amines of the macrocycle ring is a more convenient way to prepare macrocycles with quinoline derivatives as sidearms.

In the complex of CHQ-containing 5 with Ba2+, the cation is coordinated by all nitrogen and oxygen atoms of the ligand.15 To compare the effect of the hydroxy oxygen atom of 8-hydroxyquinoline in metal ion complexation with that of an amine nitrogen atom, a series of macrocycles containing 8-aminoquinoline sidearms was also prepared (see Scheme 5). 8-Nitroquinoline-2-carbaldehyde was reacted with the NH groups on the macrocycles by reductive amination to form compounds 29-32. Even though an excess amount of 8-nitroquinolinecarbaldehyde was used, some monosubstituted products were obtained. Decomposition of the 8-nitroquinolinesubstituted compounds was observed within a couple of days so the nitro macrocycles were reduced immediately after purification. The nitro groups of compounds 29 and 30 were reduced by catalytic hydrogenation using plati-

Scheme 3. Syntheses of 8-Hydroxyquinoline-Substituted Tetraazacrown Ethers via Reductive Amination

Scheme 4. Alternate Synthesis of 22

num oxide as the catalyst to form 33 and 34 in 52% and 63% yield, respectively. Reduction of 31 and 32 was achieved using iron and HCl to form 35 and 36 in low yields. Decomposition of starting 31 and 32 was observed under this condition.

The NMR spectra for the substituted macrocycles were consistent with the proposed structures. The OH proton signals of compounds 22–25 were not observed in CDCl₃. In DMSO- d_6 , the OH protons could be observed as a very broad peak at $\delta \geq 10$ ppm. All new isolated macrocyclic compounds had satisfactory molecular weights as determined by HRMS. All of the 8-hydroxy- and 8-amino-quinoline-substituted ligands except 24 also had satisfactory elemental analyses.

Protonation and Complexation Studies of Ligand 22. Protonation constants of 8-hydroxyquinoline-containing tetraazacrown ether 22 and stability constants for the interactions of 22 with Cu²+, Co²+, Ni²+, Zn²+, Cd²+, and Pb²+ were determined by a potentiometric titration technique²0 at 25 °C in aqueous solution. The ionic strength was kept constant with 0.10 M tetramethylammonium chloride. The overall reactions are expressed by the general equation:

$$pM^{2+} + qH^{+} + rL^{2-} - M_{p}H_{q}L_{r}^{(2p+q-2r)}$$
 (1)

where M is the metal ion and L is the ligand. The overall

Scheme 5. Syntheses of 8-Aminoquinoline-Substituted Tetraazacrown Ethers

Table 1. Logarithms of Protonation Constants of Macrocyclic Ligand 22 in Aqueous Solution (0.10 M Me₄NCl) at 25.0 °C

reaction	$\log eta$		
H+ + L2- → HL-	9.55 ± 0.05		
$2H^+ + L^2 H_2L$	16.85 ± 0.08		
$3H^{+} + L^{2-} - H_{3}L^{+}$	19.87 ± 0.09		
$4H^+ + L^{2-} - H_4L^{2+}$	21.31 ± 0.14		

equilibrium constant can be defined as

$$\beta_{pqr} = [M_p H_q L_r^{(2p+q-2r)}]/[M^{2+}]^p [H^+]^q [L^{2-}]^r$$
 (2)

The values of the protonation constants of the ligands and stability constants of the metal ion complexes (log β_{pqr}) are listed in Tables 1 and 2, respectively.

Four protonation constants can be calculated for compound 22. The first two protonation constants (log $K_1 = 9.55$ and log $K_2 = 7.30$ (16.85 - 9.55), Table 1) and the last two constants (log $K_3 = 3.02$ and log $K_4 = 1.44$) are close to each other. A large decrease in protonation constants is seen between the second and the third protonation steps. Since the first protonation constant of 22 (log $K_1 = 9.55$) is close to the log K_1 value of free

⁽²⁰⁾ Braibanti, A.; Ostacoli, G.; Paoletti, P.; Pettit, L. D.; Sammartano, S. Pure Appl. Chem. 1987, 59, 1721.

Table 2. Overall Stability Constants* of Metal Ion Complexes with Macrocyclic Ligand 22 in Aqueous Solution (0.10 M Me₄NCl) at 25.0 °C

			\logeta_{pqr}					
p	q	r	Cu ²⁺	Co ²⁺	Ni ²⁺	Zn ²⁺	Cd ²⁺	Pb ²⁺
1	0	1	15.52 ± 0.08	12.34 ± 0.04	13.46 ± 0.03	12.41 ± 0.03	15.33 ± 0.02	13.65 ± 0.03
ī	ĭ	ī	18.55 ± 0.12		16.15 ± 0.18	15.55 ± 0.09	17.50 ± 0.05	16.93 ± 0.03
1	-1	1	8.53 ± 0.19	6.44 ± 0.06	7.49 ± 0.12	6.49 ± 0.05	9.62 ± 0.07	8.22 ± 0.08
2	0	1	18.92 ± 0.22					
1	0	2		20.19 ± 0.06				
1	-2	1			-3.59 ± 0.25			

^a The equilibria of the reactions are defined by the general equation: $pM^{2+} + qH^+ + rL^{2-} - M_pH_qL_r^{(2p+q-2r)}$. M = metal; L = ligand. A minus q value refers to OH^- group.

Figure 2. UV-visible spectra of free 22 and its Cu^{2+} complexes in an aqueous buffered solution. [22] = 0.977 × 10⁻⁵ M, [buffer] = 5.0×10^{-2} M acetic acid (pH = 4.7). The labels a-e indicate 1-5 equiv of Cu^{2+} added to the ligand successively.

8-hydroxyquinoline (9.65 at 25 °C, $\mu=0.1$),²¹ the first two protonation constants of 22 are due to protonation of OH groups of the 8-hydroxyquinoline portion, and the last two are attributed to protonation of the nitrogen atoms of the ligand. Therefore, the fully deprotonated ligand (L²⁻) is capable of forming a neutral complex with a divalent cation which may be coordinated by both the 8-hydroxyquinolines and the macroring.

Data in Table 2 show that each metal ion studied forms several types of complexes with the ligand. The 1:1 complexes ML (p = 1, q = 0, r = 1 in eq 1) and M(OH)L⁻ (p = 1, q = -1, r = 1) are observed in each case. The complexes of ligand 22 with Cu2+, Co2+, Ni2+, Zn2+, Cd2+, and Pb2+ are very stable in aqueous solution. The large stability constants (log β_{ML} > 12 and log β_{MHL} > 15) are shown in Table 2. The most stable complexes were observed for Cu^{2+} . The values of log β_{Cull} and log β_{Cull} are 15.5 and 18.6, respectively. Cd2+ also forms very stable complexes with ligand 22 (log $\beta_{CdL} = 15.3$ and log $\beta_{\text{CdHL}} = 17.5$). Therefore, not only the fully deprotonated form of 22 (L2-) but also the monoprotonated ligand (HL-) forms very stable complexes with the metal ions studied (except for Co2+). In the case of Co2+, the complex CoHL+ was not detected. However, Co2+ forms a 1:2 (M:L) complex with 22 ($\log \beta_{\text{CoL}_2} = 20.2$). A dinuclear complex with Cu^{2+} , Cu_2L^{2+} , was also observed. The equilibrium constants of the complexes containing hydrolysis products of the metal ions, M(OH)L⁻, range from 6.44 ($\log \beta_{\text{Co(OH)L}}$) to 9.62 ($\log \beta_{\text{Cd(OH)L}}$). The Ni²⁺ forms a second type of hydrolysis complex, Ni(OH)₂L²⁻, which has a very low equilibrium constant (Table 2).

UV-Visible Spectra. The UV spectra of free and complexed ligand 22 are shown in Figures 2 and 3. The free 22 has an absorption maximum at 244 nm. Upon addition of Cu²+, a new peak develops at 258 nm (Figure 2). Other metal ions (Zn²+, Pb²+, Cd²+, Ag+, Hg²+, Co²+, and Ni²+) were also titrated with 22, but none produced a new peak or significantly interfered with the new 22-Cu²+ complex peak at 258 nm (Figure 3). Thus, the 258 nm peak for the 22-Cu²+ complex could be used for sensing purposes.

Experimental Section

The ¹H and ¹³C NMR spectra were recorded at 200 or 300 MHz and 50 or 75 MHz in CDCl₃ unless otherwise noted. MS spectra were determined using chemical ionization (CI) and fast atom bombardment (FAB) methods. All starting materials were either purchased from commercial sources or synthesized by known methods: 8-acetoxyquinoline-2-carbaldehyde²² and 8-nitroquinoline-2-carbaldehyde.²³

Figure 3. UV-visible spectra of free and complexed 22 in acetic acid buffer solution (pH = 4.7). (a and b) Cu^{2+} (1 and 2 equiv, respectively). (c) Zn^{2+} , (d) Pb^{2+} , and (e) Cd^{2+} (2 equiv each). [22] = 0.977 × 10⁻⁵ M and [buffer] = 5.0×10^{-2} M acetic acid.

Bis[2-(α-chloroacetamido)ethyl] Ether (6) (Scheme 1). Chloroacetic anhydride (4.1 g, 24 mmol) in 10 mL of CH2Cl2 was added dropwise through a dropping funnel to a stirred solution of 2,2'-oxybis(ethylamine) (0.94 g, 10 mmol) at 0-5 °C over a 1-h period. The mixture was stirred for additional 1 h at room temperature. Saturated aqueous NaHCO3 was added to neutralize the reaction mixture. The organic layer was separated and washed twice with 20 mL portions of saturated aqueous NaHCO3 and then twice with portions of water. The organic layer was dried (Na2SO4), and the solvent was evaporated under vacuum to give a crude product (2.52 g. 98%). The crude bis-a-chloroamide product was used to prepare the appropriate macrocycles without further purification; mp = 81-2 °C; ¹H NMR & 6.94 (br s. 2H), 4.07 (s. 4H), 3.61-3.50 (m, 8H); ¹³C NMR & 166.3, 69.5, 42.9, 39.7; MS (CI) m/z 257 (M+); HRMS (CI) calcd for C₈H₁₅³⁵Cl₂N₂O₃ (MH+): 257.0460, found: 257.0472.

Bis[2-(α -chloroacetamido)ethyl] Sulfide (7) (Scheme 1). Compound 7 was synthesized from 2,2'-thiobis(ethylamine) (1.2 g. 10 mmol) and chloroacetic anhydride (4.1 g. 24 mmol) as above for 6. A white precipitate formed gradually during the reaction. When the reaction was completed, the solution was cooled to 0 °C to complete the precipitation. The solid was filtered and washed with CH₂Cl₂. The organic layer was washed with saturated aqueous NaHCO₃ and water. The organic layer was dried (Na₂SO₄), and the solvent was evaporated to produce another portion of the product. Crude product 7 (2.71 g. 99%) was used without further purification; mp = 108–9 °C; ¹H NMR δ 6.99 (br s. 2H), 4.08 (s. 4H), 3.58–3.51 (m. 4H), 2.75 (t, J = 6.6 Hz, 4H); ¹³C NMR δ 168.6, 42.9, 39.9, 31.4; MS (CI) m/z 273 (M+); HRMS (CI) calcd for C₈H₁₅-3⁵Cl₂N₂O₂S (MH+): 273.0231, found: 273.0235.

General Procedure A: Cyclization of Bis(α-chloro-amide)s 6 or 7 with Diamines (Scheme 1). A mixture of 3.89 mmol of 6 or 7, 3.89 mmol of the appropriate diamine, and 1.5 g of Na₂CO₃ was stirred at reflux in 150 mL of MeCN for 24 h. The mixture was filtered, the solvent evaporated, and 50 mL of CHCl₃ added. The mixture was again filtered and evaporated. The crude cyclic diamide product was purified by flash chromatography on silica gel (40:5:1/CH₂Cl₂:MeOH:NH₄-OH).

1,4-Dimethyl-1,4,7,13-tetraaza-10-oxacyclopentadecane-6,14-dione (8) (Scheme 1). Macrocyclic diamide 8 was obtained according to general procedure A from 1.00 g (3.9 mmol) of 6 and 0.34 g (3.8 mmol) of N.N-dimethylethylenediamine. Compound 8 (0.86 g, 81%) was isolated after column chromatography and recrystallization in EtOAc as white crystals; mp = 151 °C; ¹H NMR δ 7.72 (br s. 2H), 3.58–3.47 (m, 8H), 3.03 (s. 4H), 2.57 (s. 4H), 2.27 (s. 6H); ¹³C NMR δ 170.8, 69.3, 61.9, 55.6, 42.8, 38.5; MS (FAB) m/z 295 (MNa†); HRMS (FAB) calcd for $C_{12}H_{25}N_4O_3$ (MH†): 273.1926, found: 273.1927. Anal. Calcd for $C_{12}H_{24}N_4O_3$: C. 52.92; H, 8.88; Found: C, 52.70; H, 8.68.

1,5-Dimethyl-1,5,8,14-tetraaza-11-oxacyclohexadecane-7,15-dione (9) (Scheme 1). Macrocyclic diamide 9 was obtained according to general procedure A from 2.57 g (0.01 mol) of 6 and 1.02 g (0.01 mol) of N.N-dimethyl-1,3-propanediamine. Compound 9 (1.86 g. 65%) was isolated after column chromatography and recrystallization in EtOAc as white crystals; mp = 84-5 °C; 1 H NMR δ 7.46 (br s. 2H), 3.55-3.44 (m, 8H), 3.02 (s. 4H), 2.44 (t. J = 7.1 Hz, 4H), 2.31 (s. 6H), 1.63 (p. J = 7.1 Hz, 2H); 13 C NMR δ 171.1, 69.9, 62.1, 55.1, 43.4, 39.1, 26.2; MS (FAB) m/z 287 (MH+), 309 (MNa+); HRMS (FAB) calcd for $C_{13}H_{27}N_4O_3$ (MH+): 287.2083, found: 287.2066. Anal. Calcd for $C_{13}H_{26}N_4O_3$: C. 54.52; H, 9.15; Found: C. 54.74; H, 8.93.

1,4-Dimethyl-1,4,7,13-tetraaza-10-thiacyclopentadecan-6,14-dione (10) (Scheme 1). Macrocyclic diamide 10 was obtained according to general procedure A from 2.72 g (0.01 mol) of 7 and 0.88 g (0.01 mol) of N.N-dimethylethylenediamine. Compound 10 (1.64 g, 57%) was isolated after column chromatography and recrystallization in EtOAc as white crystals; mp = 151-152 °C; ¹H NMR δ 7.99 (br s, 2H), 3.49-3.44 (m, 4H), 3.05 (s, 4H), 2.75-2.71 (m, 4H), 2.56 (s, 4H), 2.34 (s, 6H); ¹³C NMR δ 170.9, 61.9, 61.9, 55.9, 43.5, 36.5, 32.1; MS (FAB) m/z 289 (MH+), 311 (MNa+); HRMS (FAB) calcd for $C_{12}H_{25}N_4O_2S$ (MH+): 289.1698, found: 289.1693. Anal. Calcd for $C_{12}H_{25}N_4O_2S$: C, 49.97; H, 8.39; Found: C, 50.17; H, 8.16.

1,5-Dimethyl-1,5,8,14-tetraaza-11-thiacyclohexadecane-6,14-dione (11) (Scheme 1). Macrocyclic diamide 11 was obtained according to general procedure A from 2.72 g (0.01 mol) of 7 and 1.02 g (0.01 mol) of N,N-dimethyl-1,3-propanediamine. Compound 11 (1.84 g, 61%) was isolated after column chromatography and recrystallization in EtOAc as white crystals; mp = 128 °C; ¹H NMR δ 7.59 (br s, 2H), 3.52–3.46

⁽²³⁾ Tadros, W. M.; Shoeb, H. A.; Kira, M. A.; Yousif, F.; Ekladios, E. M.; Ibrahim, S. A. Ind. J. Chem. 1975, 13, 1366.

(m, 4H), 3.00 (s, 4H), 2.79–2.75 (m, 4H), 2.45 (t, J = 7.1 Hz, 4H), 2.31 (s, 6H), 1.70 (p, J = 7.1 Hz, 2H); 13 C NMR δ 171.0, 62.2, 55.7, 43.2, 37.2, 32.8, 26.2; MS (FAB) m/z 203 (MH+), 325 (MNa+); HRMS (FAB) calcd for $C_{13}H_{27}N_4O_2S$ (MH+): 303.1855, found: 303.1872. Anal. Calcd for $C_{13}H_{26}N_4O_2S$: C, 51.63; H, 8.66; Found: C, 51.74; H, 8.44.

General Procedure B: Lithium Aluminum Hydride Reduction. The macrocyclic diamide was dissolved in dry THF, and the solution was cooled in an ice bath. LiAlH₄ was carefully added to the solution. The mixture was refluxed in an oil bath. The reaction was monitored by TLC (40:4:1/ CH₂Cl₂:MeOH:NH₄OH). When the reaction was completed, the mixture was cooled in an ice bath, and then water, 15% NaOH solution, and more water were added. The white precipitate was filtered, and the solid was washed with CH₂Cl₂. The combined organic solutions were evaporated to give the crude reduced product which was purified by flash chromatography on silica gel (50–100:5:1/CH₂Cl₂:MeOH:NH₄OH) to give the products as oils.

1,4-Dimethyl-1,4,7,13-tetraaza-10-oxacyclopentadecane (12) (Scheme 1). LiAlH₄ (170 mg, 4.4 mmol) was added slowly to a solution of 8 (300 mg, 1.1 mmol) in 6 mL of dry THF at 0 °C. The resulting mixture was refluxing for 10 h and worked up as general procedure B. Macrocyclic diamine 12 (193 mg, 72%) was obtained as an oil; ¹H NMR δ 3.46 (dd, J = 4.8, 4.5 Hz, 4H), 2.83 (br s, 2H), 2.63 (dd, J = 4.8, 4.5 Hz, 4H), 2.52–2.49 (m, 4H), 2.39–2.35 (m, 4H), 2.27 (s, 4H), 2.05 (s, 6H); ¹³C NMR δ 69.5, 57.4, 55.6, 49.4, 46.8, 41.9; MS (FAB) m/z 245 (MH⁺), 267 (MNa⁺); HRMS (FAB) calcd for $C_{12}H_{29}N_4O$ (MH⁺): 245.2341, found: 245.2328.

1,5-Dimethyl-1,5,8,14-tetraaza-11-oxacyclohexadecane (13) (Scheme 1). LiAlH₄ (260 mg, 6.8 mmol) was added slowly to a solution of 9 (500 mg, 1.7 mmol) in 6 mL of dry THF at 0 °C. The resulting mixture was refluxing for 48 h and worked up as general procedure B. Macrocyclic diamine 7 (333 mg, 76%) was obtained as an oil; ¹H NMR δ 3.48 (dd, J = 4.8, 4.5 Hz, 4H), 3.10 (br s, 2H), 2.68 (dd, J = 4.8, 4.5 Hz, 4H), 2.61-2.58 (m, 4H), 2.42-2.39 (m, 4H), 2.28 (t. J = 6.6 Hz, 2H); ¹³C NMR δ 70.0, 57.5, 54.5, 49.2, 46.6, 42.4, 25.8; MS (FAB) m/z 259 (MH+); HRMS (FAB) calcd for $C_{13}H_{31}N_4O$ (MH+): 259.2498, found: 259.2489.

1,4-Dimethyl-1,4,7,13-tetraaza-10-thiacyclopentadecane (14) (Scheme 1). LiAlH₄ (1.6 g, 4 mol) was added slowly to a solution of 10 (3.0 g, 10 mol) in 90 mL of dry THF at 0 °C. The resulting mixture was refluxing for 24 h and worked up as general procedure B. Macrocyclic diamine 14 (2.24 g, 83%) was obtained as an oil; 1 H NMR δ 2.88 (br s, 2H), 2.68–2.67 (m, 8H), 2.64–2.56 (m, 4H), 2.45–2.42 (m, 4H), 2.35 (s, 4H), 2.14 (s, 6H); 1 C NMR δ 57.2, 55.7, 48.0, 46.7, 42.7, 33.3; MS (FAB) m/z 261 (MH⁺), 283 (MNa⁺); HRMS (FAB) calcd for $C_{12}H_{29}N_4S$ (MH⁺): 261.2113, found: 261.2100.

1,5-Dimethyl-1,5,8,14-tetraaza-11-thiacyclohexade cane (15) (Scheme 1). LiAlH₄ (1.31 g, 34 mmol) was added slowly to a solution of **11** (2.6 g, 8.6 mmol) in 100 mL of dry THF at 0 °C. The resulting mixture was refluxing for 18 h and worked up as general procedure B. Macrocyclic diamine **15** (1.67 g, 71%) was obtained as an oil; ¹H NMR δ 2.78–2.74 (m, 4H), 2.70–2.66 (m, 4H), 2.67 (br s, 2H), 2.62–2.59 (m, 4H), 2.42 (m, 4H), 2.34 (t. J = 12.6 Hz, 4H), 2.12 (s, 6H), 1.52 (p, J = 6.9 Hz, 2H); ¹³C NMR δ 57.1, 54.3, 48.1, 46.3, 42.5, 32.6, 25.1; MS (FAB) m/z 275 (MH⁺), 297 (MNa⁺); HRMS (FAB) calcd for C₁₃H₃₁N₄S (MH⁺): 275.2269, found: 275.2286.

General Procedure C: Reductive Amination of Pyridine- or Quinolinecarboxaldehyde with Tetraazacrown Ethers (Schemes 2 and 3). A mixture of the pyridine- or quinolinecarboxaldehyde and the macrocyclic diamine in $ClCH_2CH_2Cl$ was stirred with 1.3-1.6 equiv of $NaBH(OAc)_3$ under a N_2 atmosphere at room temperature. The reaction was monitored by TLC. When the reaction was completed, 1 N HCl was added to terminate the reaction. Then 1 N NaOH was added to adjust the pH value of the solution to pH 10-12. The solution was then extracted several times by portions of CH_2Cl_2 . The combined CH_2Cl_2 extracts were dried (Na_2SO_4), filtered, and evaporated to give the crude product. The crude

product was purified by flash chromatography on silica gel $(CH_2Cl_2/MeOH/NH_4OH)$ to give the product.

7,13-Bis(2-pyridinylmethyl)-1,4-dimethyl-1,4,7,13-tetraaza-10-oxacyclopentadecane (16) (Scheme 2). Compound 16 (185 mg. 87%) was obtained as an oil according to general procedure C from 2-pyridinecarboxaldehyde (110 mg. 1 mmol) and 12 (122 mg. 0.5 mmol); 1 H NMR δ 8.49 (d. J=7.1 Hz. 2H), 7.63 (t, J=6.8 Hz. 2H), 7.54 (d. J=7.1 Hz. 2H), 7.13 (t. J=6.8 Hz. 2H), 3.79 (s. 4H), 3.52 (t. J=6.1 Hz. 4H), 2.83–2.77 (m. 8H), 2.62–2.56 (m. 8H), 2.22 (s. 6H); 13 C NMR δ 160.3. 149.1, 136.5, 123.3, 122.0, 70.5, 61.6, 55.4, 55.2, 54.2, 53.0, 44.5; MS (FAB) m/z 449 (MNa⁺); HRMS (FAB) Calcd for C_{24} H₃₉N₆O (MH⁺): 427.3185, found: 427.3181.

7,13-Bis(2-quinolinylmethyl)-1,4-dimethyl-1,4,7,13-tetraaza-10-oxacyclopentadecane (17) (Scheme 2). Compound 17 (216 mg, 82%) was obtained as an oil according to general procedure C from 2-quinolinecarboxaldehyde (157 mg, 1 mmol) and 12 (122 mg, 0.5 mmol): 1 H NMR δ 8.03 (d. J = 8.3 Hz, 2H), 7.93 (d. J = 8.3 Hz, 2H), 7.70 (d. J = 7.8 Hz, 2H), 7.54–7.51 (m, 4H), 7.41–7.36 (m, 2H), 3.84 (s, 4H), 3.40–3.35 (m, 4H), 2.86–2.71 (m, 16H), 2.38 (s, 6H); 13 C NMR δ 160.3, 147.5, 136.6, 129.5, 128.8, 127.6, 127.3, 126.2, 121.2, 69.7, 61.7, 54.7, 54.4, 53.2, 51.8, 43.0; MS (FAB) m/z 549 (MNa*); HRMS (FAB) calcd for C_{32} H₄₃N₆O (MH*): 527.3498, found: 527.3506. Anal. Calcd for C_{32} H₄₂N₆O: C, 72.97; H, 8.04. Found: C, 72.74, H, 8.18.

7,13-Bis((8-acetoxy-2-quinolinyl)methyl)-1,4-dimethyl-1,4,7,13-tetraaza-10-oxacyclopentadecane (18) (Scheme 3). Compound 18 (210 mg, 82%) was obtained as an oil according to general procedure C from 8-acetoxyquinoline-2-carboxaldehyde (172 mg, 0.8 mmol) and 12 (98 mg, 0.4 mmol): 1 H NMR δ 8.06 (d, J = 8.4 Hz, 2H), 7.63 (dd, J = 8.1, 1.5 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 7.43 (dd, J = 7.4, 8.1 Hz, 2H), 7.35 (dd, J = 7.4, 1.5 Hz, 2H), 3.93 (s, 4H), 3.47 (t, J = 4.2 Hz, 4H), 2.89 (t, J = 6.3 Hz, 4H), 2.78-2.75 (m, 12H), 2.42 (s, 6H), 2.32 (s, 6H); 13 C NMR δ 169.8, 160.3, 147.4, 140.3, 136.3, 128.6, 125.7, 122.2, 121.3, 70.1, 61.5, 55.0, 54.0, 53.9, 52.1, 43.5, 21.1; MS (FAB) m/z 665 (MNa $^+$); HRMS (FAB) calcd for $C_{36}H_{47}N_6O_5$ (MH $^+$): 643.3608, found: 643.3582.

8,14-Bis((8-acetoxy-2-quinolinyl)methyl)-1,5-dimethyl-1,5,8,14-tetraaza-11-oxacyclohexadecane (19) (Scheme 3). Compound 19 (279 mg. 85%) was obtained as an oil according to general procedure C from 8-acetoxyquinolin-2-carboxaldehyde (215 mg. 1 mmol) and 13 (129 mg. 0.5 mmol); ¹H NMR δ 8.09 (d. J = 8.5 Hz, 2H), 7.67 (d. J = 8.5 Hz, 2H), 7.66 (dd. J = 8.3, 1.5 Hz, 2H), 7.46 (dd. J = 7.6, 8.3 Hz, 2H), 7.38 (dd. J = 7.6, 1.5 Hz, 2H), 3.95 (s. 4H), 3.53 (t. J = 4.6 Hz, 4H), 2.89 (t. J = 6.4 Hz, 4H), 2.81 (t. J = 5.1 Hz, 4H), 2.64 (m. 8H), 2.46 (s. 6H), 2.29 (s. 6H), 1.76 (p. J = 6.6 Hz, 2H); ¹³C NMR δ 169.9, 160.9, 147.4, 140.3, 136.3, 128.7, 125.8, 125.8, 122.1, 121.3, 70.0, 61.5, 55.4, 55.0, 54.1, 52.0, 42.8, 21.1; MS (FAB) m/z657 (MH+), 679 (MNa+); HRMS (FAB) Calcd for $C_{37}H_{49}N_6O_5$ (MH+): 657.3764, found: 657.3745.

7,13-Bis((8-acetoxy-2-quinolinylmethyl)-1,4-dimethyl-1,4,7,13-tetraaza-10-thiacyclopentadecane (20) (Scheme 3). Compound 20 (336 mg. 88%) was obtained as an oil according to general procedure C from 8-acetoxyquinoline-2-carboxaldehyde (250 mg. 1.2 mmol) and 14 (150 mg. 0.6 mmol): 1 H NMR δ 8.10 (d. J = 8.4 Hz. 2H), 7.69 (d. J = 8.4 Hz. 2H), 7.67 (dd. J = 8.1, 1.5 Hz. 2H), 7.46 (dd. J = 7.5, 8.1 Hz. 2H), 7.40 (dd. J = 7.5, 1.5 Hz. 2H), 3.95 (s. 4H), 2.92–2.87 (m. 4H), 2.77–2.70 (m. 8H), 2.63–2.58 (m. 8H), 2.48 (s. 6H), 2.21 (s. 6H); 13 C NMR δ 169.9, 160.7, 147.4, 140.4, 136.3, 128.7, 125.8, 125.7, 122.0, 121.3, 61.8, 55.9, 55.7, 54.9, 51.9, 43.5, 29.6, 21.1; MS (FAB) m/z 681 (MNa+); HRMS (FAB) calcd for C_{36} H₄₇N₆O₄S (MH+): 659.3379, found: 659.3382.

8,14-Bis((8-acetoxy-2-quinolinyl)methyl)-1,5-dimethyl-1,5,8,14-tetraaza-11-thiacyclopentadecane (21) (Scheme 3). Compound 21 (269 mg. 80%) was obtained as an oil according to general procedure C from 8-acetoxyquinoline-2-carboxaldehyde (215 mg. 1 mmol) and 15 (137 mg. 0.5 mmol): 1 H NMR δ 8.10 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.67 (dd, J = 8.1, 1.5 Hz, 2H), 7.47 (dd, J = 7.5, 8.1 Hz, 2H), 7.39 (dd, J = 7.5, 1.5 Hz, 2H), 3.95 (s, 4H), 2.90–2.85 (m, 4H), 2.74–2.71 (m, 8H), 2.57–2.46 (m, 14H), 2.18 (s, 6H), 1.68 (p.

J = 6.6 Hz, 2H); ¹³C NMR δ 169.9, 160.9, 147.4, 140.4, 136.3, 128.7, 125.7, 121.9, 121.3, 61.7, 55.6, 55.4, 54.8, 52.0, 43.3, 29.9, 25.3, 21.1; MS (FAB) m/z 673 (MH+), 695 (MNa+); HRMS (FAB) calcd for $C_{37}H_{49}N_6O_4S$ (MH+): 673.3536, found: 673.3542.

General Procedure D: Removal of Acetate Groups on Macrocyclic Compounds 18–21. A solution of the 8-acetoxy-2-quinolinylmethyl-substituted macrocyclic compound in MeOH was cooled to 0 °C and stirred vigorously while 10% aqueous KOH was slowly added. The mixture was stirred at room temperature for 30 min and neutralized with 3 N HCl to pH 8. The solution was then extracted several times by portions of CH₂Cl₂. The combined CH₂Cl₂ extracts were dried (Na₂SO₄). filtered, and evaporated to give the crude product. The crude product was purified by flash chromatography on silical gel (70–100:5:1/CH₂Cl₂:MeOH:NH₄OH) to give the product.

7,13-Bis((8-hydroxy-2-quinolinyl)methyl)-1,4-dimethyl-1,4,7,13-tetraaza-10-oxacyclopentadecane (22) (Scheme 3). Compound 22 (154 mg, 92%) was obtained as an oil according to general procedure D from 18 (193 mg, 0.3 mmol); 1 H NMR (CD₃OD) δ 8.20 (d, J = 12.0 Hz, 2H), 7.41-7.35 (m, 6H), 7.24-7.19 (m, 2H), 4.08 (s, 4H), 3.73 (s, 4H), 3.91 (t, J = 8.6 Hz, 4H), 3.08 (t, J = 8.6 Hz, 4H), 2.88 (s, 6H), 2.67 (s, 8H); 13 C NMR (CD₃OD) δ 159.3, 153.2, 139.4, 139.2, 130.5, 128.5, 122.2, 120.3, 113.8, 68.0, 59.4, 58.3, 56.8, 52.6, 51.0, 42.9; MS (FAB) m/z 582 (MNa⁺), 604 (M + Na⁺ - H⁺), 626 (M + 2Na⁺ - 2H⁺); HRMS (FAB) calcd for C₃₂H₄₃N₆O₃ (MH⁺): 559.3396, found: 559.3377. Anal. Calcd for C₃₂H₄₂N₆O₃-6HCl-2.5H₂O: C, 46.73; H, 6.49. Found: C, 46.82; H, 6.45.

8,14-Bis((8-hydroxy-2-quinolinyl)methyl)-1,5-dimethyl-1,5,8,14-tetraaza-11-oxacyclohexadecane (23) (Scheme 3). Compound 23 (376 mg, 94%) was obtained as an oil according to general procedure D from 19 (460 mg, 0.7 mmol): 1 H NMR δ 8.06 (d, J = 8.5 Hz, 2H), 7.66 (d, J = 8.5 Hz, 2H), 7.36 (dd, J = 7.8, 7.3 Hz, 2H), 7.19 (d, J = 7.8 Hz, 2H), 7.12 (d, J = 7.3 Hz, 2H), 3.92 (s, 4H), 3.55 (t, J = 5.1 Hz, 4H), 2.87-2.81 (m, 8H), 2.60 (t, J = 6.9 Hz, 4H), 2.49 (t, J = 6.9 Hz, 4H), 2.20 (s, 6H), 1.65 (p, J = 6.9 Hz, 2H); 13 C NMR δ 158.7, 152.4, 137.7, 136.4, 127.7, 127.2, 122.1, 117.6, 110.2, 69.9, 61.7, 55.9, 55.3, 54.4, 53.0, 43.5, 25.0; MS (FAB) m/z 595 (MNa $^+$), 617 (M + Na $^+$ - H $^+$) 639 (M + 2Na $^+$ - 2H $^+$); HRMS (FAB) calcd for C₃₃H₄₄N₆O₃ (MH $^+$): 573.3553, found: 573.3568. Anal. Calcd for C₃₃H₄₄N₆O-6HCl-2.5H₂O: C, 47.38; H, 6.63. Found: C, 47.12; H, 6.55.

7,13-Bis((8-hydroxy-2-quinolinyl)methyl)-1,4-dimethyl-1,4,7,13-tetraaza-10-thiacyclopentadecane (24) (Scheme 3). Compound 24 (258 mg, 90%) was obtained as an oil according to general procedure D from 20 (320 mg, 0.5 mmol); ^1H NMR δ 8.08 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 7.41 (dd, J = 7.6, 8.1 Hz, 2H), 7.29 (dd, J = 1.2, 8.3 Hz, 2H), 7.15 (dd, J = 1.2, 7.6 Hz, 2H), 3.93 (s, 4H), 2.91–2.86 (m, 4H), 2.75–2.70 (m, 8H), 2.60–2.55 (m, 8H), 2.18 (s, 6H); ^{13}C NMR δ 158.4, 152.4, 137.6, 136.5, 127.7, 127.4, 122.0, 117.7, 110.3, 61.8, 56.1, 55.9, 55.2, 52.5, 43.3, 29.5; MS (FAB) m/z 597 (MNa*), 619 (M + 2Na* – H*), 641 (M + 3Na* – H*); HRMS (FAB) calcd for $C_{32}\text{H}_{43}\text{N}_{6}\text{O}_{2}\text{S}$ (MH*): 575.3168, found: 575.3151.

8,14-Bis((8-hydroxy-2-quinolinyl)methyl)-1,5-dimethyl-1,5,8,14-tetraaza-11-thiacyclohexadecane (25) (Scheme 3). Compound 25 (327 mg, 89%) was obtained as an oil according to general procedure D from 21 (420 mg, 0.6 mmol); ¹H NMR δ 8.08 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.29 (d, J = 7.5 Hz, 2H), 7.15 (d, J = 7.5 Hz, 2H), 3.94 (s, 4H), 2.87 – 2.84 (m, 4H), 2.74 – 2.67 (m, 8H), 2.54 (t, J = 6.6 Hz, 4H), 2.47 (t, J = 6.9 Hz, 4H), 2.17 (s, 6H), 1.68 (p, J = 6.9 Hz, 2H); ¹³C NMR δ 158.5, 152.3, 137.6, 136.5, 127.7, 127.3, 122.1, 117.8, 110.2, 61.6, 55.7, 55.4, 54.9, 52.3, 43.4, 29.8, 25.4; MS (FAB) m/z 589 (MH+), 611 (M + Na⁺ – H⁺), 633 (M + 2Na⁺ – 2H⁺); HRMS (FAB) calcd for C₃₃H₄₅-N₆O₂S (MH+); 589.3324, found: 589.3340. Anal. Calcd for C₃₃H₄₄N₆O₂S·2HCl·H₂O: C, 58.31; H, 7.12, N, 12.36. Found: C, 58.39; H, 7.08, N, 12.53.

N,N-Bis ((8-hydroxy-2-quinolinyl)methyl)-3-oxa-1,5pentanediamine (26) (Scheme 4). To a solution of 8-hydroxyquinoline-2-carbaldehyde (173 mg, 1 mmol) in MeOH (10 mL) was added a solution of oxybis (ethyldiamine) (52 mg, 0.5 mmol) in MeOH. The reaction mixture was warmed in a water bath for 1 h. The solution was then concentrated to 5 mL and cooled in an ice bath. A solution of NaBH4 in MeOH was added to the reaction mixture at room temperature. The reaction mixture was stirred for 1 h, filtered, and MeOH was removed under reduced pressure. The yellow powder obtained was dissolved in 30% aqueous HOAc and neutralized with aqueous Na₂CO₃. The solution was extracted with CH₂Cl₂, dried (Na2SO4) and evaporated to give the crude product. The crude product was purified by flash chromatography to give the product (167 mg, 80%) as a yellow oil; ¹H NMR δ 7.93 (d. J =8.5 Hz, 2H), 7.34 (dd, J = 8.0, 7.8 Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H), 7.20 (dd, J = 8.0, 1.2 Hz, 2H), 7.10 (dd, J = 7.8, 1.2 Hz, 2H), 6.10 (br s, 4H), 4.11, (s, 4H), 3.67 (t, J = 5.0 Hz, 4H), 2.93 (t. J = 5.0 Hz, 4H); ¹³C NMR δ 157.6, 152.7, 137.8, 136.4, 127.6, 127.2, 121.0, 117.6, 110.7, 70.2, 54.6, 48.6; MS (FAB) m/z 419 (MH+); HRMS (FAB) calcd for C24H27N4O3 (MH+): 419.2083, found: 419.2077.

7,13-Bis((8-hydroxy-2-quinolinyl)methyl)-1,4-dimethyl-1,4,7,13-tetraaza-10-oxacyclopentadecane (22) (Scheme 4). Compound 28 was prepared according to procedure A from 0.65 (1.55 mmol) of 26, 0.37 g (1.55 mmol) of 27 (prepared as above for 6 from N_iN -dimethylethylenediamine), 1.25 g of Et₃N (instead of Na₂CO₃), and 50 mL of MeCN. Macrocyclic diamide 28 was not purified. Crude 28 was reduced according to procedure B with LiAlH₄ to give 230 mg (27% overall) of 22 which exhibited the same physical and spectral properties as 22 prepared above (Scheme 3).

7,13-Bis((8-nitro-2-quinolinyl)methyl)-1,4-dimethyl-1,4,7,13-tetraaza-10-oxacyclopentadecane (29) (Scheme 5). Compound 29 (169 mg. 55%) was obtained as an oil according to general procedure C from 12 (122 mg. 0.5 mmol) and 8-nitroquinoline-2-carboxaldehyde (274 mg. 1.4 mmol); 1 H NMR δ 8.20 (d, J = 8.7 Hz, 2H), 7.99 (dd, J = 8.3, 1.2 Hz, 2H), 7.96 (dd, J = 7.6, 1.2 Hz, 2H), 7.89 (d, J = 8.7 Hz, 2H), 7.95 (dd, J = 7.6, 8.3 Hz, 2H), 4.00 (s, 4H), 3.51 (t, J = 4.8 Hz, 4H), 2.91 (t, J = 6.6 Hz, 4H), 2.82 (t, J = 4.8 Hz, 4H), 2.71–2.66 (m, 8H), 2.28 (s, 6H); 13 C NMR δ 164.1, 148.3, 138.9, 136.2, 131.7, 128.3, 124.8, 123.3, 123.2, 70.2, 61.7, 55.3, 54.9, 54.5, 52.9, 44.2; MS (FAB) m/z 639 (MNa+); HRMS (FAB) calcd for C_{32} H₄₁N₈O₅ (MH+): 617.3199, found: 617.3211.

8,14-Bis((8-nitro-2-quinolinylmethyl)-1,5-dimethyl-1,5,8,14-tetraaza-11-oxacyclohexadecane (30) (Scheme 5). Compound 30 (164 mg, 52%) was obtained as an oil according to general procedure C from 13 (129 mg, 0.5 mmol) and 8-nitroquinoline-2-carboxaldehyde (274 mg, 1.4 mmol); 1 H NMR δ 8.19 (d, J = 8.6 Hz, 2H), 7.99 (dd, J = 8.3, 1.2 Hz, 2H), 7.96 (dd, J = 7.6, 1.2 Hz, 2H), 7.89 (d, J = 8.6 Hz, 2H), 7.55 (dd, J = 7.6, 8.3 Hz, 2H), 3.99 (s, 4H), 3.53 (t, J = 4.9 Hz, 4H), 2.90–2.78 (m, 8H), 2.60 (t, J = 6.6 Hz, 2H); 13 C NMR δ 164.3, 148.3, 138.9, 136.2, 131.7, 128.3, 124.7, 123.3, 123.2, 69.9, 61.6, 55.9, 55.1, 54.4, 52.7, 43.3, 24.9; MS (FAB) miz 631 (MH+), 653 (MNa+); HRMS (FAB) calcd for $C_{33}H_{43}N_8O_5$ (MH+): 631.3356, found: 631.3353.

7,13-Bis((8-nitro-2-quinolinyl)methyl)-1,4-dimethyl-1,4,7,13-tetraaza-10-thiacyclopentadecane (31) (Scheme 5). Compound 31 (200 mg, 63%) was obtained as an oil according to general procedure C from 14 (130 mg, 0.5 mmol) and 8-nitroquinoline-2-carboxaldehyde (274 mg, 1.4 mmol): 1 H NMR δ 8.18 (d, J = 8.7 Hz, 2H), 7.97 (dd, J = 8.1, 1.5 Hz, 2H), 7.94 (dd, J = 7.8, 1.5 Hz, 2H), 7.84 (d, J = 8.7 Hz, 2H), 2.75 (dd, J = 7.8, 8.1 Hz, 2H), 3.97 (s, 4H), 2.89–2.79 (m, 4H), 2.76–2.68 (m, 8H), 2.64–2.58 (m, 8H), 2.22 (s, 6H); 13 C NMR δ 163.8, 148.3, 138.9, 136.2, 131.6, 128.3, 124.8, 123.3, 123.0, 61.6, 55.8, 55.6, 54.9, 51.9, 43.5, 29.7; MS (FAB) m/z 633 (MH+), 655 (MNa+); HRMS (FAB) calcd for $C_{32}H_{40}N_8O_4Na$ (MNa+): 655.2791, found 655.2797.

8,14-Bis((8-nitro-2-quinolinyl)methyl)-1,5-dimethyl-1,5,8,14-tetraaza-11-thiacyclohexadecane (32) (Scheme 5). Compound **32** (165 mg, 51%) was obtained as an oil according to general procedure C from **15** (137 mg, 0.5 mmol) and **8-nitroquinoline-2-carboxaldehyde (274 mg, 1.4 mmol); ^1H NMR \delta 8.19** (d, J = **8.6** Hz, 2H), 7.99 (dd, J = **8.3**, 1.2 Hz, 2H), 7.96 (dd, J = **8.3**, 1.2 Hz, 2H), 7.96 (dd, J = **8.3**, 1.2 Hz, 2H), 7.95 (dd, J = **7.8**, 8.2 Hz, 2H), 3.99 (s, 4H), 2.90–2.85 (m, 4H).

2.78–2.68 (m, 8H), 2.56 (t, J = 6.6 Hz, 4H), 2.49 (t, J = 7.0 Hz, 4H), 2.19 (s, 6H), 1.69 (p, J = 7.0 Hz, 2H); 13 C NMR δ 164.0, 148.3, 138.9, 136.2, 131.7, 128.3, 124.8, 123.4, 123.0, 61.5, 55.6, 55.4, 54.9, 52.1, 43.4, 30.0, 25.3; MS (FAB) m/z 647 (MH+), 669 (MNa+); HRMS (FAB) calcd for $C_{33}H_{43}N_8O_4S$ (MH+): 647.3128, found: 647.3122.

General Procedure E: Catalytic Hydrogenation of Nitroquinoline-Substituted Macrocycles. To a solution of 8-nitro-2-quinolinylmethyl-substituted macrocycle in 100 mL of MeOH in a 500 mL pressure vessel was added 0.3 g of PtO₂ (Adam's catalyst). The head and fittings were attached, and the vessel was connected to a H_2 cylinder. The system was alternately evacuated and pressurized with H_2 to 40-50 psi three times. After a final evacuation, H_2 was introduced into the vessel until the pressure reached 100 psi. The reaction was allowed to proceed overnight. The vessel was vented, the catalyst was removed by filtration, and the reaction mixture was washed with MeOH. The filtrates were combined, and the solvent was removed under reduced pressure to give a yellow oil. The product was purified by chromatography on silica gel $(40:5:1/CH_2Cl_2:MeOH:NH_4OH)$.

7,13-Bis((8-amino-2-quinolinyl)methyl)-1,4-dimethyl-1,4,7,13-tetraaza-10-oxacyclopentadecane (33) (Scheme 5). Compound 33 (130 mg. 88%) was obtained as an oil according to general procedure E from 29 (160 mg. 0.26 mmol); ^1H NMR δ 8.00 (d, J=8.6 Hz, 2H), 7.61 (d, J=8.6 Hz, 2H), 7.26 (dd, J=8.3, 7.6 Hz, 2H), 7.12 (dd, J=8.3, 1.2 Hz, 2H), 6.91 (dd, J=7.6, 1.2 Hz, 2H), 5.00 (br s, 4H), 3.95 (s, 4H), 3.53 (t, J=4.6 Hz, 4H), 2.93 (t, J=6.4 Hz, 4H), 2.70 (m, 12H), 2.31 (s, 6H); ^{13}C NMR δ 143.9, 137.7, 136.4, 127.9, 127.0, 121.8, 116.0, 110.3, 70.4, 62.0, 55.4, 54.7, 54.2, 52.7, 44.1; MS (FAB) mlz 579 (MNa+); HRMS (FAB) Calcd for $C_{32}H_{45}N_8O$ (MH+); 557.3716, found: 557.3715. Anal. calcd for $C_{32}H_{44}N_8O$ ·1HCl·1.5H₂O: C, 61.97; H, 7.80. Found: C, 62.09; H, 7.45.

8,14-Bis((8-amino-2-quinolinyl)methyl)-1,5-dimethyl-1,5,8,14-tetraaza-11-oxacyclohexadecane (34) (Scheme 5). Compound 34 (106 mg, 81%) was obtained as an oil according to general procedure E from 30 (145 mg, 0.23 mmol): 1 H NMR δ 7,99 (d, J = 8.5 Hz, 2H), 7.63 (d, J = 8.5 Hz, 2H), 7.28 (dd, J = 8.1, 7.6 Hz, 2H), 7.11 (d, J = 8.1, Hz, 2H), 6.90 (d, J = 7.6 Hz, 2H), 4.97 (s, 4H), 3.95 (s, 4H), 3.56 (t, J = 5.1 Hz, 4H), 2.89–2.82 (m, 8H), 2.60 (t, J = 6.8 Hz, 4H), 2.49 (t, J = 6.8 Hz, 4H), 2.21 (s, 6H), 1.65 (p, J = 6.6 H, 2H); 13 C NMR δ 158.1, 143.8, 137.6, 136.3, 127.9, 126.9, 121.7, 116.0, 110.2, 70.2, 62.0, 56.1, 55.4, 54.1, 52.9, 43.5, 25.3; MS (FAB) m/z 571 (MH+), 593 (MNa+); HRMS (FAB) Calcd for C_{33} H₄₇N₈O (MH+); 571.3873, found: 571.3857. Anal. calcd for C_{33} H₄₆N₈O: C, 69.44; H, 8.12. Found: C, 69.26; H, 7.94.

General Procedure F: Reduction of Nitroquinoline-substututed Macrocycles by Reduced Iron and Hydrochloric Acid. A mixture of 8-nitro-2-quinolinylmethyl-substituted macrocycle, reduced Fe (400 mg), 5 mL of 95% EtOH, 1 mL of water, and 0.1 mL of concentrated HCl was refluxed for 1 h. The Fe was removed by filtration and washed with portions of hot 95% EtOH. The filtrate and washings were evaporated. The residue was dissolved in CH_2CI_2 and washed with aqueous Na_2CO_3 . The organic layer was separated and dried (Na_2SO_4). The crude product was purified by chromatography on silica gel ($40:5:1/CH_2CI_2:MeOH:NH_4OH$).

7,13-Bis((8-amino-2-quinolinylmethyl)-1,4-dimethyl-1,4,7,13-tetraaza-10-thiacyclohexadecane (35) (Scheme 5). Compound 35 (43 mg, 36%) was obtained as an oil according to general procedure F from 31 (130 mg, 0.21 mmol); 1 H NMR δ 8.00 (d, J = 8.8 Hz, 2H), 7.61 (d, J = 8.8 Hz, 2H), 7.30 (dd, J = 8.3, 7.3 Hz, 2H), 7.13 (d, J = 8.3 Hz, 2H), 6.92 (d, 7.3 Hz, 2H)

2H), 4.97 (br s, 4H), 3.94 (s, 4H), 2.93–2.88 (m, 4H), 2.78–2.70 m, 8H), 2.63–2.56 (m, 8H), 2.21 (s, 6H); $^{13}\mathrm{C}$ NMR δ 157.7, 143.9, 137.7, 136.4, 128.0, 127.0, 121.6, 116.1, 110.3, 62.1, 56.0, 55.0, 52.3, 43.6, 29.4; MS (FAB) m/z 595 (MNa+); HRMS (FAB) calcd for $C_{32}H_{44}N_8SNa$ (MNa+): 595.3307, found: 595.3310. Anal. Calcd for $C_{32}H_{44}N_8S\cdot1.5$ HCl·0.5H2O: C, 60.38; H, 7.36. Found: C, 60.69; H, 7.10.

8,14-Bis((8-amino-2-quinolinyl)methyl)-1,5-dimethyl-1,5,8,14-tetraaza-11-thiacyclohexadecane (36) (Scheme 5). Compound 36 (41 mg, 33%) was obtained as an oil according to general procedure F from 32 (135 mg, 0.21 mmol): 1 H NMR δ 8.00 (d, J = 8.5 Hz, 2H), 7.61 (d, J = 8.5 Hz, 2H), 7.28 (dd, J = 8.3, 7.3 Hz, 2H), 7.12 (dd, J = 8.3, 1.0 Hz, 2H), 6.90 (dd, J = 7.3, 1.0 Hz, 2H), 4.96 (br s, 4H), 3.94 (s, 4H), 2.90–2.85 (m, 4H), 2.75–2.68 (m, 8H), 2.54 (t, J = 7.1 Hz, 4H), 2.46 (t, J = 7.1 Hz, 4H), 2.18 (s, 6H), 1.67 (p, J = 6.8 Hz, 2H): 13 C NMR δ 157.7, 143.9, 137.6, 136.4, 128.0,127.0, 121.6, 116.1, 110.3, 61.9, 55.7, 55.4, 54.9, 52.3, 43.5, 29.7, 25.5; MS (FAB) mZ587 (MH+), 609 (MNa+); HRMS (FAB) calcd for $C_{33}H_{47}N_8S$ (MH+): 587.3644, found: 587.3638. Anal. Calcd for $C_{33}H_{46}N_8S$ 2 HCl: C, 60.08; H, 7.23. Found: C, 60.09; H, 6.86.

Determination of Protonation and Stability Constants. The protonation and stability constants were determined by potentiometric titration in aqueous solution at 25 °C. The titrations were carried out at a constant ionic strength of 0.10 M Me₄NCl using an automatic microprocessorcontrolled potentiometric titrator.24 Temperature was controlled within ± 0.1 °C using a jacketed cell through which water from a constant-temperature bath was circulated. Potentials to within ± 0.1 mV were measured using an Orion Model 701A Digital Ion Analyzer in conjunction with a Cole-Parmer combination electrode (Ag/AgCl reference cell). The electrode was calibrated by two precision buffer solutions, pH 4.000 ± 0.002 and 7.000 ± 0.002 at 25.0 °C (Cole-Parmer). Calculations were performed with the SUPERQUAD program²⁵ using an IBM computer. Compound 22 was used as its adduct with HCl (22.6HCl) which had good solubility in aqueous solution (0.01 M).

UV-Visible Spectral Measurements. UV-visible spectra were recorded at 23 \pm 1 °C in a 1-cm quartz cell using a Hewlett-Packard 8452A Diode Array spectophotmeter. Both ligand and metal ions were prepared in aqueous acetic acid buffer (pH = 4.7). Concentrations of acetic acid and sodium acetate were 5.00 \times 10⁻² M and 5.00 \times 10⁻² M, respectively, and concentration of ligand 22 was 1.00 \times 10⁻⁵ M. The metal ion concentrations were 1-5 times the ligand concentration.

Acknowledgment. The authors thank the Office of Naval Research for their financial support.

Supporting Information Available: NMR spectra for 6, 7, 12–15, 16, 18–21, 24, 26, and 29–32, discussion and figures for the X-ray crystal structures of 9 and 10, and tables listing crystal data and structure determination information, positional and thermal parameters for all atoms, anisotropic thermal parameters for non-hydrogen atoms, and bond distances and angles for 9 and 10. This material is available free of charge via the Internet at http://pubs.acs.org.

JO982292G

⁽²⁴⁾ Gampp, H.; Maeder, M.; Zuberbühler, A. D.; Kaden, T. A. Talanta 1980, 27, 513.

⁽²⁵⁾ Gans, P.; Sabatini, A.; Vacca, A. J. Chem. Soc., Dalton Trans.