

Exact Solutions > Basic Handbooks > A. D. Polyanin, *Handbook of Linear Partial Differential Equations for Engineers and Scientists*, Chapman & Hall/CRC Press, Boca Raton, 2002

CONTENTS

Fore	word .		iii
Basic	c Notati	ion and Remarks	v
Auth	or		vii
Intro	duction	n Some Definitions, Formulas, Methods, and Solutions	1
0.1.	0.1.1.	fication of Second Order Partial Differential Equations Equations with Two Independent Variables Equations with Many Independent Variables	1 1 3
0.2.	0.2.1.	Problems of Mathematical Physics	4 4 6
0.3.	0.3.1.	ties and Particular Solutions of Linear Equations	7 7 10
0.4.	0.4.1.	d of Separation of Variables	11 11 15
0.5.	0.5.1. 0.5.2.	d of Integral Transforms Main Integral Transforms Laplace Transform and Its Application in Mathematical Physics Fourier Transform and Its Application in Mathematical Physics	17 17 18 21
0.6.	0.6.1.	Sentation of the Solution of the Cauchy Problem via the Fundamental Solution Cauchy Problem for Equations of Parabolic Type	23 23 24
0.7.	of Solu 0.7.1.	omogeneous Boundary Value Problems with One Space Variable. Representation utions via the Green's Function	25 25 27
0.8.	tion of 0.8.1. 0.8.2.	Problems for Equations of Hyperbolic Type Problems for Equations of Elliptic Type Comparison of the Solution Structure for Boundary Value Problems for Equations of Various Types	28 28 29 30
0.9.	0.9.1.	in Bounded Domains	32
		Green's Functions Admitting Incomplete Separation of Variables	33 35

x CONTENTS

0.10.	Duhamel's Principles in Nonstationary Problems	38
	0.10.1. Problems for Homogeneous Linear Equations	38
	0.10.2. Problems for Nonhomogeneous Linear Equations	39
0.11.	Transformations Simplifying Initial and Boundary Conditions	40
	0.11.1. Transformations That Lead to Homogeneous Boundary Conditions	40
	0.11.2. Transformations That Lead to Homogeneous Initial and Boundary Conditions .	41
1. Ec	uations of Parabolic Type with One Space Variable	43
1.1.	Constant Coefficient Equations	43
	1.1.1. Heat Equation $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2}$	43
	1.1.2. Equation of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + \Phi(x, t)$	51
	1.1.3. Equation of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + bw + \Phi(x, t)$	54
	1.1.4. Equation of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + b \frac{\partial w}{\partial x} + \Phi(x, t)$	58
	1.1.5. Equation of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + b \frac{\partial w}{\partial x} + cw + \Phi(x, t)$	62
1.2.	Heat Equation with Axial or Central Symmetry and Related Equations	65
	1.2.1. Equation of the Form $\frac{\partial w}{\partial t} = a\left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r}\frac{\partial w}{\partial r}\right)$	65
	1.2.2. Equation of the Form $\frac{\partial w}{\partial t} = a\left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r}\frac{\partial w}{\partial r}\right) + \Phi(r,t)$	70
	1.2.3. Equation of the Form $\frac{\partial w}{\partial t} = a\left(\frac{\partial^2 w}{\partial r^2} + \frac{2}{r}\frac{\partial w}{\partial r}\right)$	73
	1.2.4. Equation of the Form $\frac{\partial w}{\partial t} = a\left(\frac{\partial^2 w}{\partial r^2} + \frac{2}{r}\frac{\partial w}{\partial r}\right) + \Phi(r,t)$	79
	1.2.5. Equations of the Form $\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial x^2} + \frac{1-2\beta}{x} \frac{\partial w}{\partial x}$	81
	1.2.6. Equations of the Form $\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial x^2} + \frac{1-2\beta}{x} \frac{\partial w}{\partial x} + \Phi(x,t)$	84
1.3.	Equations Containing Power Functions and Arbitrary Parameters	85
	1.3.1. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t)w$	85
	1.3.2. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x}$	90
	1.3.3. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x} + g(x,t)w + h(x,t)$	93
	1.3.4. Equations of the Form $\frac{\partial w}{\partial t} = (ax+b)\frac{\partial^2 w}{\partial x^2} + f(x,t)\frac{\partial w}{\partial x} + g(x,t)w$	95
	1.3.5. Equations of the Form $\frac{\partial w}{\partial t} = (ax^2 + bx + c)\frac{\partial^2 w}{\partial x^2} + f(x, t)\frac{\partial w}{\partial x} + g(x, t)w$	98
	2	100
	2	104
		105
		107
1.4.	Equations Containing Exponential Functions and Arbitrary Parameters	108
	2	108
	1.4.2. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t) \frac{\partial w}{\partial x}$	110
		113
		114
	2	114
		117
1.5.	Equations Containing Hyperbolic Functions and Arbitrary Parameters	117
		117
	* **	118
	1 0 11 0	119
	1.5.4. Equations Containing Hyperbolic Cotangent	120

CONTENTS xi

1.6.	Equations Containing Logarithmic Functions and Arbitrary Parameters	121
	1.6.1. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x} + g(x,t)w$	121
	1.6.2. Equations of the Form $\frac{\partial w}{\partial t} = ax^k \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x} + g(x,t)w$	122
1.7.	Equations Containing Trigonometric Functions and Arbitrary Parameters	123
	1.7.1. Equations Containing Cosine	123
	1.7.2. Equations Containing Sine	124
	1.7.3. Equations Containing Tangent	125
	1.7.4. Equations Containing Cotangent	126
1.8.	Equations Containing Arbitrary Functions	127
	1.8.1. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t)w$	127
	1.8.2. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x}$	130
	1.8.3. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x} + g(x,t)w$	133
	1.8.4. Equations of the Form $\frac{\partial w}{\partial t} = ax^n \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x} + g(x,t)w$	136
	1.8.5. Equations of the Form $\frac{\partial w}{\partial t} = ae^{\beta x} \frac{\partial^2 w}{\partial x^2} + f(x,t) \frac{\partial w}{\partial x} + g(x,t)w$	137
	1.8.6. Equations of the Form $\frac{\partial w}{\partial t} = f(x) \frac{\partial^2 w}{\partial x^2} + g(x,t) \frac{\partial w}{\partial x} + h(x,t)w$	138
	1.8.7. Equations of the Form $\frac{\partial w}{\partial t} = f(t) \frac{\partial^2 w}{\partial x^2} + g(x,t) \frac{\partial w}{\partial x} + h(x,t)w$	146
	1.8.8. Equations of the Form $\frac{\partial w}{\partial t} = f(x,t) \frac{\partial^2 w}{\partial x^2} + g(x,t) \frac{\partial w}{\partial x} + h(x,t)w$	148
	1.8.9. Equations of the Form $s(x)\frac{\partial w}{\partial t} = \frac{\partial}{\partial x}\left[p(x)\frac{\partial w}{\partial x}\right] - q(x)w + \Phi(x,t)$	151
1.9.	Equations of Special Form	155
	1.9.1. Equations of the Diffusion (Thermal) Boundary Layer	155
	1.9.2. One-Dimensional Schrödinger Equation $i\hbar \frac{\partial w}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 w}{\partial x^2} + U(x)w$	157
2. E	quations of Parabolic Type with Two Space Variables	161
2.1.	Heat Equation $\frac{\partial w}{\partial t} = a\Delta_2 w$	161
	2.1.1. Boundary Value Problems in Cartesian Coordinates	161
	2.1.2. Problems in Polar Coordinates	173
	2.1.3. Axisymmetric Problems	179
2.2.	Heat Equation with a Source $\frac{\partial w}{\partial t} = a\Delta_2 w + \Phi(x, y, t)$	187
	2.2.1. Problems in Cartesian Coordinates	187
	2.2.2. Problems in Polar Coordinates	194
	2.2.3. Axisymmetric Problems	195
2.3.	Other Equations	198
	2.3.1. Equations Containing Arbitrary Parameters	198
	2.3.2. Equations Containing Arbitrary Functions	199
3. Pa	arabolic Equations with Three or More Space Variables	205
3.1.	Heat Equation $\frac{\partial w}{\partial t} = a\Delta_3 w$	205
	3.1.1. Problems in Cartesian Coordinates	205
	3.1.2. Problems in Cylindrical Coordinates	225
	3.1.3. Problems in Spherical Coordinates	250
3.2.	Heat Equation with Source $\frac{\partial w}{\partial t} = a\Delta_3 w + \Phi(x, y, z, t)$	254
	3.2.1. Problems in Cartesian Coordinates	254
	3.2.2. Problems in Cylindrical Coordinates	257 260
2.2	3.2.3. Problems in Spherical Coordinates Other Equations with Three Space Veriables	
3.3.	Other Equations with Three Space Variables	261 261
	3.3.2. Equations Containing Arbitrary Functions	263
	3.3.3. Equations of the Form $\rho(x, y, z) \frac{\partial w}{\partial t} = \text{div}[a(x, y, z)\nabla w] - q(x, y, z)w + \Phi(x, y, z, t)$	

xii Contents

3.4.	Equati	ons with n Space Variables	268
	3.4.1.	Equations of the Form $\frac{\partial w}{\partial t} = a\Delta_n w + \Phi(x_1, \dots, x_n, t)$	268
		Other Equations Containing Arbitrary Parameters	270
	3.4.3.	Equations Containing Arbitrary Functions	271
4. H	yperbo	lic Equations with One Space Variable	279
4.1.		ant Coefficient Equations	279
	4.1.1.	Wave Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2}$	279
		Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2} + \Phi(x, t)$	284
		Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2} - bw + \Phi(x, t)$	287
		Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2} - b \frac{\partial w}{\partial x} + \Phi(x, t)$	291
		Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2} + b \frac{\partial w}{\partial x} + cw + \Phi(x, t)$	293
4.2.		Equation with Axial or Central Symmetry	295
		Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} \right) \dots$	295
		Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} \right) + \Phi(r, t)$	298
		Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \left(\frac{\partial^2 w}{\partial r^2} + \frac{2}{r} \frac{\partial w}{\partial r} \right)$	298
		Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \left(\frac{\partial w}{\partial r^2} + \frac{\partial r}{\partial r} \right) + \Phi(r, t)$	301
		Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \left(\frac{\partial^2 w}{\partial r^2} + \frac{\partial^2 w}{\partial r} \right) - bw + \Phi(r, t)$	302
		Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a\left(\frac{\partial r^2}{\partial r^2} + \frac{r}{r}\frac{\partial r}{\partial r}\right) - bw + \Phi(r,t)$ Equation of the Form $\frac{\partial^2 w}{\partial t^2} = a^2\left(\frac{\partial^2 w}{\partial r^2} + \frac{r}{2}\frac{\partial w}{\partial r}\right) - bw + \Phi(r,t)$	305
1.2			308
4.3.	-	ons Containing Power Functions and Arbitrary Parameters	308
		Equations of the Form $\frac{\partial^2 w}{\partial t^2} = (ax^2 + b)\frac{\partial^2 w}{\partial x^2} + cx\frac{\partial w}{\partial x} + kw + \Phi(x, t)$ Other Equations	312 314
4.4.		ons Containing the First Time Derivative	320
4.4.		Equations of the Form $\frac{\partial^2 w}{\partial t^2} + k \frac{\partial w}{\partial t} = a^2 \frac{\partial^2 w}{\partial x^2} + b \frac{\partial w}{\partial x} + cw + \Phi(x, t)$	320
		Equations of the Form $\frac{\partial^2 w}{\partial t^2} + k \frac{\partial w}{\partial t} = f(x) \frac{\partial^2 w}{\partial x^2} + g(x) \frac{\partial w}{\partial x} + h(x)w + \Phi(x,t) \dots$	326
		Equations of the Form $\frac{\partial}{\partial t^2} + k \frac{\partial}{\partial t} - \int (x) \frac{\partial}{\partial x^2} + g(x) \frac{\partial}{\partial x} + h(x)w + \Psi(x, t) \dots$ Other Equations	331
4.5.		ons Containing Arbitrary Functions	333
1.5.		Equations of the Form $s(x)\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x}\left[p(x)\frac{\partial w}{\partial x}\right] - q(x)w + \Phi(x,t)$	333
		Equations of the Form $\frac{\partial^2 w}{\partial t^2} + a(t) \frac{\partial w}{\partial t} = b(t) \left\{ \frac{\partial}{\partial x} \left[p(x) \frac{\partial w}{\partial x} \right] - q(x)w \right\} + \Phi(x,t)$.	335
		Other Equations	337
5 H		lic Equations with Two Space Variables	341
5.1.		Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_2 w$	341 341
		Problems in Polar Coordinates	346
		Axisymmetric Problems	351
5.2.		progeneous Wave Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_2 w + \Phi(x, y, t)$	355
o. <u>-</u> .		Problems in Cartesian Coordinates	355
		Problems in Polar Coordinates	357
		Axisymmetric Problems	360
5.3.	Equati	ons of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_2 w - bw + \Phi(x, y, t)$	362
	5.3.1.	Problems in Cartesian Coordinates	362
		Problems in Polar Coordinates	366
	5.3.3.	Axisymmetric Problems	371

CONTENTS xiii

5.4.	Telegraph Equation $\frac{\partial^2 w}{\partial t^2} + k \frac{\partial w}{\partial t} = a^2 \Delta_2 w - bw + \Phi(x, y, t)$ 5.4.1. Problems in Cartesian Coordinates 5.4.2. Problems in Polar Coordinates 5.4.3. Axisymmetric Problems	376 381
5.5.	Other Equations with Two Space Variables	
6. H	yperbolic Equations with Three or More Space Variables	
6.1.	Wave Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_3 w$	
	6.1.1. Problems in Cartesian Coordinates	
	6.1.2. Problems in Cylindrical Coordinates	399
	6.1.3. Problems in Spherical Coordinates	
6.2.	Nonhomogeneous Wave Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_3 w + \Phi(x, y, z, t)$	412
	6.2.1. Problems in Cartesian Coordinates	
	6.2.2. Problems in Cylindrical Coordinates	
	6.2.3. Problems in Spherical Coordinates	
6.3.	Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_3 w - bw + \Phi(x, y, z, t)$	
	6.3.1. Problems in Cartesian Coordinates6.3.2. Problems in Cylindrical Coordinates	414
	6.3.3. Problems in Spherical Coordinates	
6.4.	Telegraph Equation $\frac{\partial^2 w}{\partial t^2} + k \frac{\partial w}{\partial t} = a^2 \Delta_3 w - bw + \Phi(x, y, z, t)$	
0.4.	6.4.1. Problems in Cartesian Coordinates	434
	6.4.2. Problems in Cylindrical Coordinates	
	6.4.3. Problems in Spherical Coordinates	
6.5.	Other Equations with Three Space Variables	453
	6.5.1. Equations Containing Arbitrary Parameters	453
	6.5.2. Equation of the Form $\rho(x,y,z) \frac{\partial^2 w}{\partial t^2} = \text{div} \left[a(x,y,z) \nabla w \right] - q(x,y,z) w + \Phi(x,y,z,t)$	453
6.6.	Equations with n Space Variables	455
	6.6.1. Wave Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_n w$	
	6.6.2. Nonhomogeneous Wave Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_n w + \Phi(x_1, \dots, x_n, t)$	
	6.6.3. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = a^2 \Delta_n w - bw + \Phi(x_1, \dots, x_n, t)$	
	6.6.4. Equations Containing the First Time Derivative	463
7. E	lliptic Equations with Two Space Variables	467
7.1.	Laplace Equation $\Delta_2 w = 0$	
	7.1.1. Problems in Cartesian Coordinate System	
	7.1.2. Problems in Polar Coordinate System	
7.0	7.1.3. Other Coordinate Systems. Method of Conformal Mappings	476
7.2.	Poisson Equation $\Delta_2 w = -\Phi(x)$	478 478
	7.2.2. Problems in Cartesian Coordinate System	480
	7.2.3. Problems in Polar Coordinate System	485
	7.2.4. Domain of Arbitrary Shape. Method of Conformal Mappings	489
7.3.	Helmholtz Equation $\Delta_2 w + \lambda w = -\Phi(\mathbf{x})$	490
	7.3.1. General Remarks, Results, and Formulas	490
	7.3.2. Problems in Cartesian Coordinate System	494
	7.3.3. Problems in Polar Coordinate System	
	7.3.4. Other Orthogonal Coordinate Systems. Elliptic Domain	508

xiv Contents

7.4.	Other E	Equations	510
		Stationary Schrödinger Equation $\Delta_2 w = f(x, y)w$	
	7.4.2.	Equation of Convective Heat and Mass Transfer	512
		Equations of Heat and Mass Transfer in Anisotropic Media	518
		Other Equations Arising in Applications	526
	7.4.5.	Equations of the Form $a(x)\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + b(x)\frac{\partial w}{\partial x} + c(x)w = -\Phi(x,y)$	529
8. E		quations with Three or More Space Variables	533
8.1.		Equation $\Delta_3 w = 0$	533
	-	Problems in Cartesian Coordinates	533
	8.1.2.	Problems in Cylindrical Coordinates	535
	8.1.3.	Problems in Spherical Coordinates	537
	8.1.4.	Other Orthogonal Curvilinear Systems of Coordinates	539
8.2.	Poissor	Equation $\Delta_3 w + \Phi(\mathbf{x}) = 0$	539
	8.2.1.	Preliminary Remarks. Solution Structure	539
		Problems in Cartesian Coordinates	544
		Problems in Cylindrical Coordinates	554
		Problems in Spherical Coordinates	558
8.3.		oltz Equation $\Delta_3 w + \lambda w = -\Phi(x)$	
		General Remarks, Results, and Formulas	561
		Problems in Cartesian Coordinates	567
		Problems in Cylindrical Coordinates	580
		Problems in Spherical Coordinates	588
0.4		Other Orthogonal Curvilinear Coordinates	591
8.4.		Equations with Three Space Variables	593 593
		Equations Containing Arbitrary Functions	595
0 5		ons with n Space Variables	597
8.5.	-	Laplace Equation $\Delta_n w = 0$	597
		Other Equations	598
0 TT			
		rder Partial Differential Equations	601
9.1.		Order Partial Differential Equations	
9.2.		Order One-Dimensional Nonstationary Equations	
		Equations of the Form $\frac{\partial w}{\partial t} + a^2 \frac{\partial^4 w}{\partial x^4} = \Phi(x, t)$	
	9.2.2.	Equations of the Form $\frac{\partial^2 w}{\partial t^2} + a^2 \frac{\partial^4 w}{\partial x^4} = 0$	605
	9.2.3.	Equations of the Form $\frac{\partial^2 w}{\partial t^2} + a^2 \frac{\partial^4 w}{\partial x^4} = \Phi(x, t)$	606
	9.2.4.	Equations of the Form $\frac{\partial^2 w}{\partial t^2} + a^2 \frac{\partial^4 w}{\partial x^4} + kw = \Phi(x, t)$	608
		Other Equations	611
9.3.	Two-D	imensional Nonstationary Fourth Order Equations	613
	9.3.1.	Equations of the Form $\frac{\partial w}{\partial t} + a^2 \left(\frac{\partial^4 w}{\partial x^4} + \frac{\partial^4 w}{\partial y^4} \right) = \Phi(x, y, t)$	613
		Two-Dimensional Equations of the Form $\frac{\partial^2 w}{\partial t^2} + a^2 \Delta \Delta w = 0$	615
		Three- and <i>n</i> -Dimensional Equations of the Form $\frac{\partial^2 w}{\partial t^2} + a^2 \Delta \Delta w = 0$	617
		Equations of the Form $\frac{\partial^2 w}{\partial t^2} + a^2 \Delta \Delta w + kw = \Phi(x, y, t)$	619
		Equations of the Form $\frac{\partial^2 w}{\partial t^2} + a^2 \left(\frac{\partial^4 w}{\partial x^4} + \frac{\partial^4 w}{\partial y^4} \right) + kw = \Phi(x, y, t)$	620
0.4			
9.4.		Order Stationary Equations	621 621
		Equations of the Form $\Delta \Delta w = \Phi(x,y)$	
		1	

CONTENTS xv

	9.4.3. Equations of the Form $\Delta \Delta w - \lambda w = \Phi(x, y)$	
	9.4.4. Equations of the Form $\frac{\partial^4 w}{\partial x^4} + \frac{\partial^4 w}{\partial y^4} = \Phi(x, y)$	
	9.4.5. Equations of the Form $\frac{\partial^4 w}{\partial x^4} + \frac{\partial^4 w}{\partial y^4} + kw = \Phi(x, y)$	629
	9.4.6. Stokes Equation (Axisymmetric Flows of Viscous Fluids)	
9.5.	Higher Order Linear Equations with Constant Coefficients	
	9.5.1. Fundamental Solutions. Cauchy Problem	
	9.5.2. Differential Equations of Elliptic Type	
	9.5.3. Differential Equations of Hyperbolic Type	
	9.5.5. Some Equations of Special Type	
9.6.	Higher Order Linear Equations with Variable Coefficients	
,	9.6.1. Equations Containing the First Time Derivative	
	9.6.2. Equations Containing the Second Time Derivative	
	9.6.3. Nonstationary Problems with Many Space Variables	
	9.6.4. Some Equations of Special Type	651
Supp	lement A. Special Functions and Their Properties	655
	Some Symbols and Coefficients	
	A.1.1. Factorials	655
	A.1.2. Binomial Coefficients	655
	A.1.3. Pochhammer Symbol	
	A.1.4. Bernoulli Numbers	
A.2.	Error Functions and Exponential Integral	
	A.2.1. Error Function and Complementary Error Function	
	A.2.2. Exponential Integral	
	A.2.3. Logarithmic Integral	
A.3.	Sine Integral and Cosine Integral. Fresnel Integrals	
	A.3.1. Sine Integral	
	A.3.2. Cosine Integral	
A 1		
A.4.	A.4.1. Gamma Function	
	A.4.2. Beta Function	
۸.5	Incomplete Gamma and Beta Functions	
A.J.	A.5.1. Incomplete Gamma Function	
	A.5.2. Incomplete Beta function	
A.6.	Bessel Functions	661
Α.υ.	A.6.1. Definitions and Basic Formulas	661
	A.6.2. Integral Representations and Asymptotic Expansions	663
	A.6.3. Zeros and Orthogonality Properties of Bessel Functions	
	A.6.4. Hankel Functions (Bessel Functions of the Third Kind)	665
A.7.	Modified Bessel Functions	666
	A.7.1. Definitions. Basic Formulas	666
	A.7.2. Integral Representations and Asymptotic Expansions	667
A.8.	Airy Functions	668
	A.8.1. Definition and Basic Formulas	668
	A.8.2. Power Series and Asymptotic Expansions	668

xvi Contents

A.9.	Degenerate Hypergeometric Functions A.9.1. Definitions and Basic Formulas	
	A.9.2. Integral Representations and Asymptotic Expansions	
A.10.	Hypergeometric Functions	
	A.10.1. Definition and Some Formulas	672
	A.10.2. Basic Properties and Integral Representations	672
A.11.	Whittaker Functions	672
A.12.	Legendre Polynomials and Legendre Functions	
		674
		674
	A.12.3. Associated Legendre Functions	
A.13.	Parabolic Cylinder Functions	
	A.13.1. Definitions. Basic Formulas	
A 1.4	A.13.2. Integral Representations and Asymptotic Expansions	
A.14.	Mathieu Functions	
۸ 15	Modified Mathieu Functions	
A.16.	Orthogonal Polynomials	
	A.16.2. Chebyshev Polynomials and Functions	
	A.16.3. Hermite Polynomial	
	A.16.4. Jacobi Polynomials	
Sunn	element B. Methods of Generalized and Functional Separation of Variables in	
	inear Equations of Mathematical Physics	681
		681
		681
	B.1.2. Simple Cases of Variable Separation in Nonlinear Equations	682
	B.1.3. Examples of Nontrivial Variable Separation in Nonlinear Equations	683
B.2.	Methods of Generalized Separation of Variables	
	±	
	1 2	
	B.2.3. Solution of Functional Differential Equations by Splitting	688
	B.2.4. Simplified Scheme for Constructing Exact Solutions of Equations with Quadratic	c 00
D 2	Nonlinearities	
В.3.	Methods of Functional Separation of Variables	691
	B.3.2. Special Functional Separable Solutions	692
	B.3.3. Method of Differentiation	694
	B.3.4. Splitting Method. Reduction to a Functional Equation with Two Variables	698
	B.3.5. Some Functional Equations and Their Solutions. Exact Solutions of Heat and	
	Wave Equations	699
B.4.	First Order Nonlinear Equations	704
	B.4.1. Preliminary Remarks	704
	B.4.2. Individual Equations	705
B.5.	Second Order Nonlinear Equations	707
	B.5.1. Parabolic Equations	707
	B.5.2. Hyperbolic Equations	719
	B.5.3. Elliptic Equations	726
	B.5.4. Equations Containing Mixed Derivatives	733

	Contents	xvii
	B.5.5. Equations of General Form	736
B.6.	Third Order Nonlinear Equations	739
	B.6.1. Equations of Stationary Hydrodynamic Boundary Layer	739
	B.6.2. Equations of Nonstationary Hydrodynamic Boundary Layer	741
B.7.	Fourth Order Nonlinear Equations	749
	B.7.1. Stationary Hydrodynamic Equations (Navier–Stokes Equations)	
	B.7.2. Nonstationary Hydrodynamic Equations	752
B.8.	Higher Order Nonlinear Equations	757
	B.8.1. Equations of the Form $\frac{\partial w}{\partial t} = F\left(x, t, w, \frac{\partial w}{\partial x}, \dots, \frac{\partial^n w}{\partial x^n}\right)$	757
	B.8.2. Equations of the Form $\frac{\partial^2 w}{\partial t^2} = F\left(x, t, w, \frac{\partial w}{\partial x}, \dots, \frac{\partial^n w}{\partial x^n}\right)$	761
	B.8.3. Other Equations	
Refe	rences	769