

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Специальное маг	шиностроение»	
КАФЕДРА	СМ1 «Космические	аппараты и ракеты-носит	ели»
D	ACUETHO	-пояснит	трпьная
1		ЗАПИСКА	
	к кун	РСОВОЙ РАВ	SOTE
		НА ТЕМУ:	
FNV		ет и проектирова юго комплекса	ние подвижного
<u>1104</u>	HIOBOTO PARCITI	ioro Rominicaca	
Студент	<u>СМ1-</u> 8 <u>1</u> (Группа)	(Подпись, дата)	<u>Н. А. Гусева</u> (И.О.Фамилия)
		,,,	
Руководитель	курсовой работы		К. В. Навагин
		(Подпись, дата)	(И.О.Фамилия)
Консультант		(Подпись, дата)	<u>К. В. Навагин</u> (И.О.Фамилия)
		(подпись, дага)	(И.О.Фамилия)
		Москва	
		2023 z.	

	Исходные данные для курсового проектирования:
Дано:	
Основные хара	актеристики УБР
$L_{max} \coloneqq 6000 \ km$	а - дальность полета
$n_{\mathit{Б}\mathit{Б}} \coloneqq 4$ - чис.	ло боевых блоков (ББ)
Параметры пор	ражаемых целей
Точечная цель	
$\Delta P_{\phi} \coloneqq 8 \; MPa$	- давление во фронте ударной волны, требуемое для поражения точечной цели
$P_{1mp}' \coloneqq 0.9$	- требуемая вероятность поражения точечной цели
$\sigma_r = 0.15 \ \textit{km}$	- среднеквадратичное отклонение точки падения боевого блока от точки прицеливания
Площадная цел	
$\Delta p_{\phi} = 0.03 MP$	
$M_{1mp}' \coloneqq 0.9$	- требуемое математическое ожидание поражения части площадной цели
$R_{u} \coloneqq 3 \; \mathbf{km}$	- требуемый радиус поражения площадной цели
$\Delta L \coloneqq 200 \ \textit{km}$	- параметры разведения боевых блоков
$\Delta B \coloneqq 100 \ \textit{km}$	
T. 6 3	
Требования к У	
$ au_{\Sigma}\coloneqq 125~ extbf{\emph{s}}$	- суммарное время работы ДУ маршевых ступеней, не более
$h_{\kappa} \coloneqq 100 \ \boldsymbol{km}$	- высота окончания АУТ, не более
$n_{x.max} = 20$	- допустимая осевая перегрузка, не более
$T_{\mathfrak{I}_{\mathcal{K}CD\mathcal{I}}} \coloneqq 0$ °C	T_{min} := -40 °C — - температурный режим эксплуатации
$\Delta T \coloneqq 40$	
V	
Xарактеристик m	
$J_{1T.0} \coloneqq 2520 - 8$	- удельный импульс при стандартных условиях.
g_{n-1} g_{n-1}	- плотность топлива
$\rho_T \coloneqq 1.81 \frac{gm}{cm^3}$	
	- IDIOTROCTS TOTALINE
$u_{min} \coloneqq 3 \frac{}{}$	$u_{max} \coloneqq 13 rac{mm}{s} $ - диапазон скоростей горения топлива при стандартных условиях
	$u_{max} \coloneqq 13 \ \dfrac{mm}{s} \ $ - диапазон скоростей горения топлива при стандартных условиях
$\nu \coloneqq 0.25$	$u_{max} \coloneqq 13 \; rac{mm}{s} \;$ - диапазон скоростей горения топлива при стандартных условиях - показатель степени в законе горения
$\nu \coloneqq 0.25$ $K_T \coloneqq 0.0015$	$u_{max} \coloneqq 13 \ \dfrac{mm}{s} \ $ - диапазон скоростей горения топлива при стандартных условиях
$\nu \coloneqq 0.25$ $K_T \coloneqq 0.0015$	$u_{max} \coloneqq 13 \ \frac{mm}{s} \ $ - диапазон скоростей горения топлива при стандартных условиях - показатель степени в законе горения - коэффициент теплопроводности топлива
$\nu \coloneqq 0.25$	$u_{max} \coloneqq 13 \; rac{mm}{s} \;$ - диапазон скоростей горения топлива при стандартных условиях - показатель степени в законе горения
$\nu \coloneqq 0.25$ $K_T \coloneqq 0.0015$ $\Delta u'_1 = \frac{\Delta u_1}{u_1}$	$u_{max} \coloneqq 13 \ \frac{mm}{s} \ $ - диапазон скоростей горения топлива при стандартных условиях - показатель степени в законе горения - коэффициент теплопроводности топлива $\Delta u'_1 \coloneqq 0.02 \ $ - разброс скоростей горения топлива
$\nu := 0.25$ $K_T := 0.0015$ $\Delta u'_1 = \frac{\Delta u_1}{u_1}$ $\Delta_{CI} := 0.035$	$u_{max} \coloneqq 13 \ \frac{mm}{s} \ $ - диапазон скоростей горения топлива при стандартных условиях - показатель степени в законе горения - коэффициент теплопроводности топлива $\Delta u'_1 \coloneqq 0.02 \ $ - разброс скоростей горения топлива - случайная составляющая отклонения давления от номинального значения
$\nu := 0.25$ $K_T := 0.0015$ $\Delta u'_1 = \frac{\Delta u_1}{u_1}$ $\Delta_{co} := 0.035$ $k := 1.15$	u_{max} := $13 \frac{mm}{s}$ - диапазон скоростей горения топлива при стандартных условиях - показатель степени в законе горения - коэффициент теплопроводности топлива $\Delta u'_1$:= 0.02 - разброс скоростей горения топлива - случайная составляющая отклонения давления от номинального значения - показатель адиабаты продуктов сгорания
$\nu := 0.25$ $K_T := 0.0015$ $\Delta u'_1 = \frac{\Delta u_1}{u_1}$ $\Delta_{co} := 0.035$ $k := 1.15$ $z := 0.33$	u_{max} := 13 $\frac{mm}{s}$ - диапазон скоростей горения топлива при стандартных условиях - показатель степени в законе горения - коэффициент теплопроводности топлива $\Delta u'_1$:= 0.02 - разброс скоростей горения топлива - случайная составляющая отклонения давления от номинального значения - показатель адиабаты продуктов сгорания - массовая доля конденсированной фазы в продуктах сгорания
$\nu := 0.25$ $K_T := 0.0015$ $\Delta u'_1 = \frac{\Delta u_1}{u_1}$ $\Delta_{co} := 0.035$ $k := 1.15$	$u_{max} \coloneqq 13 \ \frac{mm}{s} \ $ - диапазон скоростей горения топлива при стандартных условиях - показатель степени в законе горения - коэффициент теплопроводности топлива - коэффициент теплопроводности топлива - случайная составляющая отклонения давления от номинального значения - показатель адиабаты продуктов сгорания - массовая доля конденсированной фазы в продуктах сгорания
$ \nu := 0.25 $ $ K_T := 0.0015 $ $ \Delta u'_1 = \frac{\Delta u_1}{u_1} $ $ \Delta_{cs} := 0.035 $ $ k := 1.15 $ $ z := 0.33 $ $ J_{1,J,Y} := 2100 \frac{m}{s} $	$u_{max} \coloneqq 13 \ \frac{mm}{s} \ $ - диапазон скоростей горения топлива при стандартных условиях - показатель степени в законе горения - коэффициент теплопроводности топлива $\Delta u'_1 \coloneqq 0.02 \ $ - разброс скоростей горения топлива - случайная составляющая отклонения давления от номинального значения - показатель адиабаты продуктов сгорания - массовая доля конденсированной фазы в продуктах сгорания - удельный импульс топлива доводочной ДУ
$ u := 0.25 $ $ K_T := 0.0015 $ $ \Delta u'_1 = \frac{\Delta u_1}{u_1} $ $ \Delta_{co} := 0.035 $ $ k := 1.15 $ $ z := 0.33 $ $ J_{1Дy} := 2100 \frac{m}{s} $ Базирование:	$u_{max} \coloneqq 13 \ \frac{mm}{s} \ $ - диапазон скоростей горения топлива при стандартных условиях - показатель степени в законе горения - коэффициент теплопроводности топлива - коэффициент теплопроводности топлива - случайная составляющая отклонения давления от номинального значения - показатель адиабаты продуктов сгорания - массовая доля конденсированной фазы в продуктах сгорания
$ u := 0.25 $ $ K_T := 0.0015 $ $ \Delta u'_1 = \frac{\Delta u_1}{u_1} $ $ \Delta_{c\sigma} := 0.035 $ $ k := 1.15 $ $ z := 0.33 $ $ J_{1Дy} := 2100 \frac{m}{s} $ Базирование: Материалы:	$u_{max}\coloneqq 13rac{mm}{s}$ - диапазон скоростей горения топлива при стандартных условиях - показатель степени в законе горения - коэффициент теплопроводности топлива $\Delta u'_1\coloneqq 0.02$ - разброс скоростей горения топлива - случайная составляющая отклонения давления от номинального значения - показатель адиабаты продуктов сгорания - массовая доля конденсированной фазы в продуктах сгорания - удельный импульс топлива доводочной ДУ - мобильное (ПГРК)
$ u := 0.25 $ $ K_T := 0.0015 $ $ \Delta u'_1 = \frac{\Delta u_1}{u_1} $ $ \Delta_{cr} := 0.035 $ $ k := 1.15 $ $ z := 0.33 $ $ J_{1ДY} := 2100 \frac{m}{s} $ Базирование: Материалы: - органопласти	$u_{max} \coloneqq 13 \ \frac{mm}{s}$ - диапазон скоростей горения топлива при стандартных условиях - показатель степени в законе горения - коэффициент теплопроводности топлива $\Delta u'_1 \coloneqq 0.02$ - разброс скоростей горения топлива - случайная составляющая отклонения давления от номинального значения - показатель адиабаты продуктов сгорания - массовая доля конденсированной фазы в продуктах сгорания - удельный импульс топлива доводочной ДУ - мобильное (ПГРК)
$ u := 0.25 $ $ K_T := 0.0015 $ $ \Delta u'_1 = \frac{\Delta u_1}{u_1} $ $ \Delta_{c\sigma} := 0.035 $ $ k := 1.15 $ $ z := 0.33 $ $ J_{1Дy} := 2100 \frac{m}{s} $ Базирование: Материалы:	$u_{max}\coloneqq 13rac{mm}{s}$ - диапазон скоростей горения топлива при стандартных условиях - показатель степени в законе горения - коэффициент теплопроводности топлива $\Delta u'_1\coloneqq 0.02$ - разброс скоростей горения топлива - случайная составляющая отклонения давления от номинального значения - показатель адиабаты продуктов сгорания - массовая доля конденсированной фазы в продуктах сгорания - удельный импульс топлива доводочной ДУ - мобильное (ПГРК)

1. ФОРМИРОВАНИЕ ПОЛЕЗНОЙ НАГРУЗКИ

1.1 Определение требуемых значений параметров боевого оснащения

Стрельба по точечной цели:

$$K_{\mathit{u}} \coloneqq 0.97 \cdot \left(\frac{\Delta P_{\mathit{\phi}}}{\mathit{MPa}}\right)^{-0.37} = 0.449 - \text{коэффициент защищенности точечной цели}$$

$$q_{\mathit{1nomp.my}} \coloneqq \left(\frac{2}{n_{\mathit{bb}}}\right)^{\frac{3}{2}} \cdot \left(\frac{\sigma_{r}}{K_{\mathit{u}}}\right)^{3} \cdot \left(\ln\left(\frac{1}{1-P_{\mathit{1mp}}}\right)\right) \frac{1}{\mathit{km}^{3}} = 0.046$$

$$q_{1nomp.m4} \coloneqq \left(\frac{2}{n_{\mathit{DS}}}\right)^{\frac{3}{2}} \cdot \left(\frac{\sigma_r}{K_{\mathit{4}}}\right)^{3} \cdot \left(\ln\left(\frac{1}{1 - P_{1mp'}}\right)\right)^{\frac{3}{2}} \frac{1}{\mathbf{km}^{3}} = 0.046$$

Стрельба по площадной цели:

$$K_{
m q}\coloneqq 0.78 \cdot \left(rac{\Delta p_{\phi}}{{\it MPa}}
ight)^{-0.5} = 4.503$$
 - коэффициент защищенности площадной цели

$$q_{1nomp.ns} \coloneqq \left(\frac{{M_{1mp}}'}{n_{\mathit{EE}}} \right)^{\frac{3}{2}} \cdot \left(\frac{R_{\mathit{u}}}{K_{\mathit{u}}} \right)^{3} \quad \frac{1}{\mathit{km}^{3}} = 0.032$$

Выберем большее значение потребной мощности:

 $q_{1nomp} \coloneqq 0.046$

Q. Мт	0,1	0,3	0,5	0,8	1,0	1,5
$m_{ m BB}$, кг	100	135	185	270	320	450

Из таблицы выберем ближайшее большее значение массы ББ:

$$m_{\mathit{ББ}} \coloneqq 100 \; \mathit{kg} \qquad \qquad (при \; \mathrm{q} = 0.1)$$

Теперь определим геометрические характеристики ББ:

$$d_{\mathit{Б}\mathit{Б}}\coloneqq 0.037 \boldsymbol{\cdot} \sqrt{\frac{m_{\mathit{Б}\mathit{Б}}}{kg}} \; m{m} = 0.37 \; m{m}$$
 - диаметр ББ

$$l_{\mathit{ББ}} \coloneqq 3.5 \boldsymbol{\cdot} d_{\mathit{ББ}} = 1.3 \ \boldsymbol{m}$$
 - длина ББ

$$R\coloneqq 0.1 \cdot d_{\mathit{ББ}} = 0.037 \; \pmb{m}$$
 - радиус закругления носка ББ

$$m_{\text{БО}} \coloneqq n_{\text{ББ}} \cdot m_{\text{ББ}} = 400 \; \textit{kg}$$
 - масса боевого оснащения

1.2 Боевая ступень

$$m_{\Pi\!\Pi} \coloneqq 10 \; \pmb{kg} \cdot n_{\it{bb}} + 0.1 \cdot m_{\it{bO}} = 80 \; \pmb{kg}$$
 - масса платформы разведения

$$m_{CY} = 95 \ kg + \sqrt[2]{n_{55}} \cdot 5 \ kg = 105 \ kg$$

 $m_{CV} = 95 \ kg + \sqrt[2]{n_{55}} \cdot 5 \ kg = 105 \ kg$ - масса системы управления и приборного отсека

$$m_{KBC} := 45 \ kg + 0.06 \cdot m_{BO} = 69 \ kg$$

- масса конструкции боевой ступени (приборный и агрегатный отсеки)

Параметры доводочной ДУ

В качестве начального значения массы полезной нагрузки примем ее следующее приближенное значение, полученное по алгоритму из пособия [2].

$K_3 \coloneqq 1.10$ - коэффициент учета затрат массы на защиту УБР от ПФЯВ и ОНФП
$K_S \coloneqq 1.00$ - коэффициент учета влияния размера зоны разведения УБР с РГЧ
$K_L \coloneqq \left(rac{10000 \cdot m}{L_{max}} ight)^{0.15} = 0.383$ - коэффициент учета значения максимальной дальности стрельбы
Приближенное значение массы полезной нагрузки:
$m'_{\mathit{\Pi H}} \coloneqq K_{3} \cdot \left(155 \cdot \mathbf{kg} \cdot n_{\mathit{BB}}^{0.156} + 1.16 \ m_{\mathit{BO}}\right) \left(1 + 0.132 \cdot \left(2 \cdot n_{\mathit{BB}} - 1\right) \cdot \frac{K_{S} \cdot K_{L}}{n_{\mathit{BB}}}\right) = 785.958 \ \mathbf{kg}$
$m_{arDelta H}\!\coloneqq\! m'_{arDelta H}$
Полный запас топлива двухрежимной доводочной ДУ с РГЧ
$\omega = \Delta \omega_{\text{zap}} + \sum_{q=1}^{q} \Delta \omega_{\text{HaB}1} + \sum_{p=1}^{p} \Delta \omega_{\text{pase}1}$
q=1 $p=1$ $p=1$
q p
где $\sum_{q=1}^{q} \Delta \omega_{\text{нав1}}$ и $\sum_{p=1}^{p} \Delta \omega_{\text{разв1}}$ - затраты топлива на участках наведения и разведения (переприцеливания);
q и р - число участков наведения и операций разведения
km
$L'_{Vk}\coloneqq 2.78 \cdot \cfrac{km}{m}$ - производная дальность по конечной скорости
$B'_{VB}\coloneqq 0.97 \cdot \cfrac{km}{\cfrac{m}{s}}$ - производная бокового отклонения по боковой скорости
8
$\Delta L_{zap} \coloneqq 0.04 \cdot L_{max} = 240 \ extbf{km}$
$\Delta D_{cap} = 0.04 \cdot D_{max} - 240 \cdot km$
ΔL_{2ap} of 201 m
$\Delta V_{\it cap} \coloneqq \frac{\Delta L_{\it cap}}{L'_{\it Vk}} = 86.331 \frac{\it m}{\it s}$ - потребная величина приращения скорости для компенсации максимального недолета на участке работы маршевых ступеней
Makerimanibiloro negoriera na j naerke pacorisi mapinebish erijitenen
$\Delta V_{\Delta L1} := \frac{\Delta L}{L'_{Vk}} = 71.942 \frac{m}{s}$ - необходимая величина приращения скорости для единичной операции развеления ББ по дальности на величину ΔL
onepadini passedenisi sis no danishootii na semi mii a
$\Delta V_{\Delta B1} \coloneqq \frac{\Delta B}{B'_{VB}} = 103.093 \ \frac{\textbf{m}}{\textbf{s}}$ - необходимая величина приращения скорости для единичной операции разведения ББ в боковом направлении на величину ΔB
B'_{VB} в операции разведения ББ в боковом направлении на величину ΔB
$\alpha \coloneqq 15$ ° - угол наклона прямых сопел доводочной ДУ к оси БС
Тогда потребные затраты топлива доводочной ДУ на компенсацию погрешностей работы
маршевых ступеней:
$\Delta \omega_{\mathit{zap}} \left(m_{\mathit{\Pi} H} ight) \coloneqq \Delta V_{\mathit{zap}} \! \cdot \! rac{m_{\mathit{\Pi} H}}{J_{1 \mathit{\mathcal{A}} \mathcal{Y}} \! \cdot \! \cos \left(lpha ight)}$
$J_{1,\mathcal{U}} \cdot \cos{(lpha)}$
$\Delta\omega_{ au ap}\left(m_{\Pi H} ight)=33.451~{m kg}$
Единичные операции разведения элементов БО по дальности и в боковом направлении:
$m_{\Pi H \lambda}$
$\Delta \omega_{L1} = \Delta V_{\Delta L1} \cdot \frac{1}{J_{1RV} \cdot \cos{(\alpha)}}$, где $m_{\Pi H \lambda}$ и $m_{\Pi H \rho}$ - текущее значение массы полезной нагрузки в
$m_{\Pi H \alpha}$ (пои учеству) у на разращения разведения ББ по λ - направлению
$\Delta \omega_{B1} = \Delta V_{\Delta B1} \cdot \frac{r^{n \cdot p}}{I_{\text{ext}} \cdot \cos(\alpha)}$ (дальности) и по ρ - направлению (по ооку)
$\Delta \omega_{L1} = \Delta V_{\Delta L1} \cdot \frac{m_{\Pi H \lambda}}{J_{1 Д y} \cdot \cos{(\alpha)}} , \text{ г.де } m_{\Pi H \lambda} \text{ и } m_{\Pi H \rho} \text{ - текущее значение массы полезной нагрузки в } $ начале единичной операции разведения ББ по λ - направлению (дальности) и по ρ - направлению (по боку) $\Delta \omega_{B1} = \Delta V_{\Delta B1} \cdot \frac{m_{\Pi H \rho}}{J_{1 Д y} \cdot \cos{(\alpha)}} \text{ (дальности) и по } \rho \text{ - направлению (по боку)}$ Расчет $\sum_{q=1}^{q} \Delta \omega_{H q B1}$ выполняем с учетом четырех участков наведения одного ББ на одну цель
(по числу ББ)

 $P_{min}\left(m_{\Pi H}\right)\coloneqq 0.5 \cdot rac{m{m}}{m{s}^2} \cdot m_{\Pi H}$ — уровень тяги доводочных ДУ с РГЧ на пониженном режиме $P_{max}\left(m_{\Pi H}\right)\coloneqq 2.5 \cdot rac{m{m}}{m{s}^2} \cdot m_{\Pi H}$ — уровень тяги доводочных ДУ с РГЧ на повышенном режиме $t_{Ha81}\coloneqq 20 \cdot m{s}$ — продолжительность каждого участка — угол наклона обратных сопел к оси БС $\Delta \omega_{Ha81}\left(m_{\Pi H}\right)\coloneqq P_{min}\left(m_{\Pi H}\right) \cdot rac{t_{Ha81}}{J_{1 Д \! J^{\prime}} \cdot \cos\left(eta\right)}$ — $\sum_{q=1}^4 \Delta \omega_{Ha81}\left(m_{\Pi H}\right) = 16.518 \ \ m{kg}$

Расчет $\sum_{p=1}^{p} \Delta \omega_{pase1}$ проводим для единичных операций разведения по дальности и в боковом направлении по следующей схеме:

Рис. 7.6. Схема функционирова-

	p_L и p_B - число реализусьности и в боковом направ	емых операций перенацеливания по влении
Так как $m_{\Pi H \lambda} \left(m_{\Pi H} \right) \coloneqq m_{\Pi H} - \Delta \omega_{\it rap} \left(m_{\Pi H} \right)$ -	$-m_{\it Б\it Б}$	
$\Delta \omega_{L1}\left(m_{ec{\sqcap}H} ight)\coloneqq \Delta V_{\Delta L1} \cdot rac{m_{ec{\sqcap}H\lambda}\left(m_{ec{\sqcap}H} ight)}{J_{1ec{\sqcap}V} \cdot \cos\left(lpha ight)}$		$m_{ extit{ iny H}\lambda}\left(m_{ extit{ iny H}} ight) = 652.508 \; m{kg}$ $\Delta\omega_{L1}\left(m_{ extit{ iny H}} ight) = 23.142 \; m{kg}$
Соответственно $m_{\Pi H \rho} \left(m_{\Pi H} \right) \coloneqq m_{\Pi H \lambda} \left(m_{\Pi H} \right)$	$_{ extsf{H}} ight)-\Delta\omega_{L1}\left(m_{ extsf{ iny H}} ight)-m_{ extsf{ iny B}}$	
$\Delta \omega_{B1} \left(m_{ec{ extit{H}} H} ight) \coloneqq \Delta V_{\Delta B1} \cdot rac{m_{ec{ extit{H}} H ho} \left(m_{ec{ extit{H}} H} ight)}{J_{1, \mathcal{U}^{oldsymbol{\prime}}} \cdot \cos \left(lpha ight)}$		$m_{\Pi H_{ ho}}\left(m_{\Pi H} ight)=529.365~{m kg}$
		$\Delta\omega_{B1}\left(m_{\Pi H} ight)=26.904~{m kg}$
Тогда $\sum\limits_{p=1}^{3} \mathbb{I} \ \Delta \omega_{ extit{pase1}} \left(m_{ extit{TH}} ight) \coloneqq \sum\limits_{p=1}^{2} \Delta \omega_{L1} \left(m_{ extit{TH}} ight)$	$\left(a ight) + \sum_{n=1}^{1} \Delta \omega_{B1} \left(m_{ec{\sqcap}H} ight)$	$\Delta\omega_{\it pase1}\left(m_{\it \Pi H}\right) = 73.189~{\it kg}$
Общий запас топлива доводочной ДУ:	p=1	
$\omega\left(m_{ec{ec{ec{H}}}H} ight)\coloneqq \Delta\omega_{arepsilon ap}\left(m_{ec{ec{H}}H} ight) + \sum_{q=1}^{4}\Delta\omega_{{\scriptscriptstyle HAB}1}\left(m_{ec{ec{H}}H} ight) +$	$+\sum_{p=1}^{1}\Delta\omega_{ extit{pase}1}\left(m_{ extit{\Pi} extit{H}} ight)$	
$\omega_{ extit{ iny JVEC}}\left(m_{\Pi extit{ iny H}} ight)\coloneqq\omega\left(m_{\Pi extit{ iny H}} ight)$ - масса топлива до	оводочной ДУ БС	
$m_{ extsf{K}}ig(m_{ extsf{ extsf{I}}H}ig)\coloneqq 13.8~oldsymbol{kg}^{rac{2}{3}}\cdot \sqrt[3]{\omega_{ extsf{ extsf{Z}} extsf{Y} extsf{EC}}ig(m_{ extsf{ extsf{I}}H}ig)}$	- масса ко	нструкции доводочной ДУ
$m_{ extit{ extit{JYFC}}}\left(m_{ extit{IIH}} ight)\coloneqq13.8~oldsymbol{kg}^{rac{2}{3}}\cdot\sqrt[3]{\omega_{ extit{ extit{JYFC}}}\left(m_{ extit{IIH}} ight)}+c$	$\omega_{\mathit{ЛУБC}}(m_{\mathit{ПH}})$ - масса до	оводочной ДУ БС
, p. 10 (1.11)	7 (),	$m_{ extit{JYBC}} \left(m_{\Pi extit{H}} ight) = 191.817 \; m{kg}$
где $\omega_{ extit{ ilde{J}\!$	ива доводочной ДУ БС	$m_{K}(m_{\Pi H}) = 68.659 \ kg$
		$ω_{ extit{ДУБС}}\left(m_{ extit{ΠH}} ight)=123.158$ kg
$m_{\Pi H n} \left(m_{\Pi H} \right) := K_3 \cdot \left(m_{EO} + m_{\Pi \Pi} + m_{CY} + m_{KEO} \right)$ $m_{\Pi H 1} := m_{\Pi H n} \left(m_{\Pi H} \right) = 930.399 \; m{kg}$	$_{\rm C} + m_{ m ДУБC} \left(m_{ m \Pi H} ight) angle$	- масса полезной нагрузки
Полученное значение массы полезной на $m'_{\Pi H} = 785.958 \; {\it kg} \;$ на $m_{\Pi H} - m_{\Pi H} = 144.44 \;$	+ *	
Второе приближение:		
$m_{\Pi H} = 935 \ \mathbf{kg}$		
$egin{split} m_{\Pi H n} \left(m_{\Pi H} ight) &= 964.737 \; m{kg} \ m_{\Pi H n} \left(m_{\Pi H} ight) - m_{\Pi H} &= 29.737 \; m{kg} , ext{поэтому T} \end{split}$	ребуется третье приближ	ение.
Третье приближение:		
$m_{\Pi H} \coloneqq 970 \; \boldsymbol{kg}$		
$m_{\Pi H n} \left(m_{\Pi H} ight) = 972.712 \; m{kg}$		
Окончательно примем $m_{\Pi H} = 975 \ kg$		
$R_{minoldsymbol{\mathcal{I}}\!$	- тяга двигателя доводк	ки в пониженном режиме
$R_{max, extit{ ilde{I}}, extit{I}} \coloneqq 2.5 \cdot rac{ extit{ extit{N}}}{ extit{ extit{kg}}} \cdot m_{ extit{ ilde{I}} extit{H}} = \left(2.438 \cdot 10^3 ight) extit{ extit{N}}$	- тяга двигателя доводк	ки в повышенном режиме
$m'_{min\mathcal{A}\mathcal{A}}\coloneqqrac{R_{min\mathcal{A}\mathcal{A}}}{J_{1\mathcal{A}\mathcal{Y}}}=0.232rac{oldsymbol{kg}}{oldsymbol{s}}$ $m'_{max\mathcal{A}\mathcal{A}}\coloneqqrac{R_{max\mathcal{A}\mathcal{A}}}{J_{1\mathcal{A}\mathcal{Y}}}=1.161rac{oldsymbol{kg}}{oldsymbol{s}}$	- секундные массовый	расход в пониженном режиме

2. ПРИБЛИЖЕННОЕ БАЛЛИСТИЧЕСКОЕ ПРОКТИРОВАНИЕ

2.1 Определение требуемого	значения	скорости	В	конце	АУТ	И	характеристической	скорости	по
заданной дальности									

Для дальности 6000 км из таблицы 2 следует:

Баллистические параметри ракет для различных дальностей полета

L,	ħ _κ ,	Ę _K ,	θ [*] _K , град	Ϋ́κ. ₩/ο	∂L/∂V _K , 104/14/0	∂L/∂h _K , xxe/xxe	Δ <i>V</i> _c , m/o															
500	50	46	43,9	1986	0,42	0,96	1150															
1000	70	60	42,7	2817	0,66	1,08	1150	I.'_		[0 66	1	23	2.0	5 '	78	2 1	04	5.6	0.8	1 ^T	km m
2500	100	130	38,4	4318	I,234	1,52	1150	L	/kM	- L	0.00	,1.	20	2.0	0	2.10	, 1 .	04	0.0	<i>J</i> 0	J	m
4600	135	200	34,9	5476	2,05	2,17	1100															8
6000	150	250	31,5	6049	2,78	2,83	1100													, 7	Г.	
8000	I50	300	27.0	6605	4,04	3,88	1100	θ'_{K}	:- M	= [4	2.7	38	.4	34.9	3	1.5	27	22	.5	18	$d\epsilon$	≥ g
10000	I50	350	22,5	70I2	5,69	5,33	1000															
12000	150	370	18,0	7303	8,0	7,43	1000												000	т.		

 $L_M \coloneqq \begin{bmatrix} 1000 & 2500 & 4500 & 6000 & 8000 & 10000 & 12000 \end{bmatrix}$ **km**

 $h_k = 150 \text{ km}$ $\Delta V_C = 1100 \frac{\text{m}}{\text{s}}$ $R \coloneqq 6371 \text{ km}$

$$r_k = R + h_k = (6.521 \cdot 10^3) \$$
 km $\mu_0 = 3.986 \cdot 10^5 \ \frac{$ **km** 3

$$r_{k} \coloneqq R + h_{k} = \left(6.521 \cdot 10^{3}\right) \, \text{km} \qquad \qquad \mu_{0} \coloneqq 3.986 \cdot 10^{5} \, \frac{\text{km}^{3}}{s^{2}}$$

$$V_{1} \coloneqq \sqrt[2]{\frac{\mu_{0}}{r_{k}}} \cdot \frac{1}{1 + \frac{h_{k}}{L_{max}}} = \left(7.628 \cdot 10^{3}\right) \, \frac{\text{m}}{s}$$

$$V_k \coloneqq V_1 \cdot \left(1 - \tan\left(\frac{\pi}{4} \cdot \left(1 - \frac{L_{max}}{\pi \cdot R}\right)\right)^2\right)^{0.5} = \left(6.026 \cdot 10^3\right) \frac{m}{s}$$

$$K_V V_K := V_k + \Delta V_C = (7.126 \cdot 10^3) \frac{m}{s}$$

2.2 Распределение относительных масс топлива по ступеням ракеты:

Необходимо нулевое приближение:

$$\mu_{cp} = \mu_1 = \mu_2$$

Из опыта ракетостроения можно принять в рамках приближенного проектирования следующие значения:

$$\mu_1 = 0.9 \cdot \mu_{cp} \qquad \qquad \mu_2 = 1 - \frac{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)}{\left(1 - \mu_1\right)}$$

$$J_{1/1} := 1.095 \cdot J_{1T.0} = (2.759 \cdot 10^3) \frac{m}{s}$$

$$J_{1772} := 1.135 \cdot J_{1T.0} = (2.86 \cdot 10^3) \frac{m}{s}$$

$$J_{1cp} := \frac{J_{1\Pi 1} + J_{1\Pi 2}}{2} = (2.81 \cdot 10^3) \frac{m}{s}$$

$$\mu := 1 - \sqrt[2]{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)} = 0.719$$

 $\mu_1 := 0.9 \cdot \mu = 0.647$

$$\mu_2 := 1 - \frac{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)}{(1 - \mu_1)} = 0.776$$

2.3 Время работы ДУ ступеней, уточнение коэффициентов μ_i

Из рекомендаций:

$$\tau_{N1} = 55 ... 60 \ s$$

 $\tau_{N2} = 50..55$ 8

Необходимо соблюдение условия в связи с отклонением среднего давления от номинального значения:

$$\varSigma \tau_{Ni} \leq \tau_{\varSigma} \cdot \left(1 - \frac{\Delta p}{p_N}\right) \qquad \qquad \frac{\Delta p}{p_N} = \Delta p p_N$$

$$\frac{\Delta p}{p_N} = \Delta p p_N$$

$$\Delta T \coloneqq 40$$

$$\Delta pp_N \coloneqq \frac{1}{1-\nu} \cdot \sqrt[2]{\left(\Delta u'_1\right)^2 + \Delta_{cn}^2 + \left(K_T \cdot \Delta T\right)^2} = 0.096$$

$$\Sigma \tau_{Ni} \coloneqq \tau_{\Sigma} \cdot \left(1 - \Delta p p_N\right) = 112.953 \ \boldsymbol{s}$$

Примем, что
$$\tau_{N_1} = 57 \, s$$
 $\tau_{N_2} = 55 \, s$

$$\tau_{N_1} = 57$$

$$\tau_{N2} = 55$$

Теперь при принятом времени работы каждой ступени необходимо проверить соответствие коэффициентов μ_i на ограничение осевой перегрузки для 2 ступени:

$$\mu_{i} \! \leq \! \frac{\tau_{Ni} \! \cdot \! g \! \cdot \! n_{x.max} \! \left(1 - \! \frac{\Delta p}{p_{N}} \right)}{J_{1 \! T \! i} \! + \! \tau_{Ni} \! \cdot \! g \! \cdot \! n_{x.max} \! \left(1 - \! \frac{\Delta p}{p_{N}} \right)}$$

Тогда для второй ступени

$$\frac{\tau_{N2} \cdot \boldsymbol{g} \cdot \boldsymbol{n}_{x.max} \cdot \left(1 - \Delta p p_N\right)}{J_{1 \sqcap 2} + \tau_{N2} \cdot \boldsymbol{g} \cdot \boldsymbol{n}_{x.max} \cdot \left(1 - \Delta p p_N\right)} = 0.773$$

$$\mu_2 \! = \! 0.776$$
 - условие не выполняется

Переопределим μ_2 из полученных условий. Запишем в блок решения необходимые ограничения для μ_2 в виде:

$$\begin{array}{l} \left[\begin{array}{c} \mu_1 \coloneqq 0.647 \\ \hline J_{N2} \cdot g \cdot n_{x.max} \cdot \left(1 - \Delta p p_N\right) \\ \hline J_{1\Pi 2} + \tau_{N2} \cdot g \cdot n_{x.max} \cdot \left(1 - \Delta p p_N\right) \\ \hline \end{array}\right] \geq \mu_2 \\ \left[\begin{array}{c} \left(1 - \mu_1\right) \left(1 - \mu_2\right) = \exp\left(-\frac{K_V V_K}{J_{1cp}}\right) \\ \hline \end{array}\right] \\ \left[\begin{array}{c} \text{Find } \left(\mu_1, \mu_2\right) = \begin{bmatrix} 0.651 \\ 0.773 \end{bmatrix} \\ \end{array}\right] \end{array}$$

$$(1-\mu_1) (1-\mu_2) = \exp\left(-\frac{K_V V_K}{J_{1co}}\right)$$

Find
$$(\mu_1, \mu_2) = \begin{bmatrix} 0.651 \\ 0.773 \end{bmatrix}$$

Окончательно примем

$$\mu_1 = 0.651$$

$$\mu_2 := 0.773$$

Для справки приведем значения осевых перегрузок

$$n_{xmax1} \coloneqq \frac{J_{1 \sqcap 1} \boldsymbol{\cdot} \mu_1}{\tau_{N1} \boldsymbol{\cdot} \left(1 - \Delta p p_N\right) \boldsymbol{\cdot} \boldsymbol{g} \boldsymbol{\cdot} \left(1 - \mu_1\right)} = 10.19$$

$$n_{xmax2} \coloneqq \frac{J_{1 \sqcap 2} \boldsymbol{\cdot} \mu_2}{\tau_{N2} \boldsymbol{\cdot} \left(1 - \Delta p p_N\right) \boldsymbol{\cdot} \boldsymbol{g} \boldsymbol{\cdot} \left(1 - \mu_2\right)} = 19.984$$

2.3 Величина стартовой массы ракеты и величины ее относительной грузоподъемности

$$\Lambda_0 := 1.65$$

$$m_0 \coloneqq A_0 \cdot m_{\Pi H} \cdot \exp\left(\frac{K_V V_K}{J_{1cp}}\right) + 0.01 \cdot \left(\frac{L_{max}}{\textit{km}}\right)^{\frac{2}{3}} \cdot \textit{tonne} = 23.623 \; \textit{tonne}$$

$$m'_{PW} := \frac{m_{PW}}{m_0} = 0.041$$
2.4 Относительные массы конструкций ступеней ракеты Обобщенняя относительная масса конструкций от $\frac{1-\mu_1-\sqrt{m'_{PW}}}{\mu} = 0.109$
 $\frac{1-\mu_2-\sqrt{m'_{PW}}}{\mu} = 0.109$
 $\frac{1-\mu_2-\sqrt{m'_{PW}}}{\mu} = 0.109$
 $\frac{1-\mu_2-\sqrt{m'_{PW}}}{\mu} = \frac{m'_{PW}}{\mu} = \frac{m'_{PW}}{\mu_2\cdot(1-\mu_1\cdot(1+\alpha_1))} = 0.106$
2.5 Опредлегиие других параметров Среднее давление в камерах сторация двигателей ступеней $p_{N_1} = 12$ MPa $p_{N_2} = 0.10$
 $p_{N_2} = 10$ MPa $p_{N_2} = 0.10$
 $p_{N_2} = 10$ MPa $p_{N_2} = 0.10$
 $p_{N_2} = 10$ p_{N_2}

- площадь критического сечения сопла двигателя данной ступени $d_{\kappa p1} := \sqrt[2]{\frac{4 \cdot F_{\kappa p1}}{\pi}} = 21.671 \text{ cm}$ $F_{\kappa p1} := \frac{m'_1 \cdot \beta}{p_{N1}} = 0.037 \ m^2$ $d_{\kappa p2} := \sqrt[2]{rac{4 \cdot F_{\kappa p2}}{\pi}} = 14.064 \; extbf{cm}$ $d_{\kappa p2} = 0.141 \; extbf{m}$ $F_{\kappa p2} := \frac{m'_2 \cdot \beta}{n_{\text{typ}}} = 0.016 \ m^2$ Рассчитаем диаметр выходного сечения сопла первой ступени, а также степени расширения сопла второй ступени $d_{a1} := d'_{a1} \cdot d_{\kappa p1} = 0.861 \ m$ $d'_{a2} \coloneqq \frac{d_{a2}}{d_{\kappa p2}} = 9.017$ Зная значения степеней расширения сопел ДУ каждой ступени, можем рассчитать значение практического удельного импульса в пустоте каждого РДТТ J_{1Ti} = J_{1Ti} · $\left(1-\zeta_i\right)$, где ζ_i - суммарные потери удельного импульса $\zeta_i = 0.025 \cdot \frac{d'_{ai}^{1.25} - 1}{d'_{ai}} \cdot \left(1 + \frac{11.6 \cdot z}{\sqrt[3]{d_{\kappa ni}}}\right)$ J_{1Ti} = $J_{1T.0} \cdot \left(\frac{1.57}{\sqrt[2]{k}} - \frac{0.66}{\sqrt[3]{d'_{ai}}^2}\right)$ - теоретичесоке значение удельного импульса в пустоте в зависимости от степени расширения сопла $J_{1T1} \coloneqq J_{1T.0} \cdot \left(\frac{1.57}{\sqrt[2]{k}} - \frac{0.66}{\sqrt[3]{d'_{a1}}^2} \right) = 3026.547 \frac{\mathbf{m}}{\mathbf{s}}$

$$J_{1T1} \coloneqq J_{1T.0} \cdot \left(\frac{1.57}{\sqrt[2]{k}} - \frac{0.66}{\sqrt[3]{d'_{a1}}^2}\right) = 3026.547 \frac{m}{s}$$

$$J_{1T2} \coloneqq J_{1T.0} \cdot \left(\frac{1.57}{\sqrt[2]{k}} - \frac{0.66}{\sqrt[3]{d'_{a2}}^2} \right) = 3305.455 \frac{\mathbf{m}}{\mathbf{s}}$$

$$\zeta_1 = 0.025 \cdot \frac{d'_{a1}^{1.25} - 1}{d'_{a1}} \cdot \left(1 + \frac{11.6 \cdot z}{\sqrt[3]{\frac{d_{\kappa \rho 1}}{cm}}}\right) = 0.069$$

$$\zeta_2 := 0.025 \cdot \frac{d'_{a2}^{1.25} - 1}{d'_{a2}} \cdot \left(1 + \frac{11.6 \cdot z}{\sqrt[3]{\frac{d_{\kappa p2}}{cm}}}\right) = 0.105$$

$$J_{1\Pi1} \coloneqq J_{1T1} \cdot \left(1 - \zeta_1\right) = \left(2.818 \cdot 10^3\right) \frac{\boldsymbol{m}}{\boldsymbol{s}}$$

$$J_{1\Pi 2} := J_{1T2} \cdot (1 - \zeta_2) = (2.959 \cdot 10^3) \frac{m}{s}$$

2.6 Уточнение времени работы ДУ всех ступеней или их калибров.

Максимальное и минимальное время работы ДУ:

$$\tau_{Nmaxi} = \frac{e^{\prime}_{\partial oni} \cdot D_{i}}{u^{\prime}_{min} \cdot p_{Ni}^{\nu}} \qquad \tau_{Nmaxi} = \frac{e^{\prime}_{\partial oni} \cdot D_{i}}{u^{\prime}_{max} \cdot p_{Ni}^{\nu}}$$

$$e'_{\partial oni} = \frac{e_i}{D_i}$$
 - относительный свод горения

 u'_{min} и u'_{max} вычиляются по заданным минимальному и максимальному значению скорости горения при р=4 МПа: $u_{min} = 0.005 \frac{m}{s}$ $p_0 = 4 MPa$ $u_{max} = 0.013 \frac{m}{s}$ $u'_{min} \coloneqq \frac{u_{min} \cdot s}{\begin{pmatrix} p_0 \\ MPa \end{pmatrix}^{\nu}} = 3.536$ $u'_{max} \coloneqq \frac{u_{max} \cdot s}{\begin{pmatrix} mm \\ MPa \end{pmatrix}^{\nu}} = 9.192$ Определим относительный свод горения для каждой ступени из следдующей системы уравнений: $(\varepsilon_T + \varepsilon_n) \cdot f \leq \varepsilon_{\partial on}$ $\varepsilon_{T} = \frac{\Delta T \cdot \left(\alpha_{K} - \alpha_{T}\right) \cdot \left(2 \cdot M^{2} - \mu_{T}\right) \cdot \left(M^{2} + 1\right)}{\left(M^{2} \cdot \left(1 - 2 \mu_{T}\right) + 1\right)}$ $\varepsilon_p = \frac{p_{maxi} \cdot (1 + \mu_T) \cdot (1 - 2 \cdot \mu_T) \cdot (M^2 - 1)}{E_T \cdot (M^2 \cdot (1 - 2 \cdot \mu_T) + 1)}$ $e'_{\partial oni} = \frac{1}{2} \left(1 - \frac{1}{M} \right)$ $M = \frac{\frac{p_{maxi}}{E_T} \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \mu_T + \frac{\varepsilon_{\partial on}}{f}}{\frac{p_{maxi}}{E_T} \cdot \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \left(2 - \mu_T\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \left(2 - \mu_T\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)} = \frac{1}{E_T} \cdot \frac{1}{E_T}$ $\alpha_K \coloneqq 1 \cdot \frac{10^{-5}}{K}$ - коэффициент температурного расширения конструкции двигателя $\alpha_T \coloneqq 1 \cdot \frac{10^{-4}}{\kappa}$ - коэффициент температурного расширения топлива $\mu_T \coloneqq 0.495$ - коэф. Пуассона топлива $\Delta T := (T_n - T_{min}) = 90 \text{ K}$ $T_n = 50 \, {}^{\circ}C$ $E_T \coloneqq 7.5 \, \textbf{MPa}$ - модуль Юнга топлива $\varepsilon_{\partial on} \coloneqq 0.4$ - допускаемая деформация топлива f := 1.35 - коэф. запаса по деформации Вычислим М для ДУ первой ступени: $p_{max1} := 1.31 \cdot p_{N1} = 15.72 \ MPa$ $M_{1} \coloneqq \sqrt{\frac{\frac{p_{max1}}{E_{T}}\left(1 + \mu_{T}\right) \cdot \left(1 - 2 \cdot \mu_{T}\right) + \Delta T \cdot \left(\alpha_{K} - \alpha_{T}\right) \cdot \mu_{T} + \frac{\varepsilon_{\partial on}}{f}}{\frac{p_{max1}}{E_{T}} \cdot \left(1 + \mu_{T}\right) \cdot \left(1 - 2 \cdot \mu_{T}\right) + \Delta T \cdot \left(\alpha_{K} - \alpha_{T}\right) \cdot \left(2 - \mu_{T}\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_{T}\right)}} = 4.472$

Вторая ступень:

 $p_{max2} := 1.31 \cdot p_{N2} = 13.1 \ MPa$

$$M_2 \coloneqq \sqrt{\frac{\frac{p_{max2}}{E_T} \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \mu_T + \frac{\varepsilon_{\partial on}}{f}}{\frac{p_{max2}}{E_T} \cdot \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \left(2 - \mu_T\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right)}} = 5.39$$

Тогда относительные своды горения будут равны:

Диаметры каналов зарядов ДУ:

$$e'_{\partial on1} \coloneqq \frac{1}{2} \left(1 - \frac{1}{M_1} \right) = 0.388$$

$$d_{\textit{KAH1}} \coloneqq \frac{D_1}{M_1} = 0.334 \; \boldsymbol{m}$$

$$e'_{\partial on2} \coloneqq \frac{1}{2} \left(1 - \frac{1}{M_2} \right) = 0.407$$

$$d_{\textit{KAH2}} = \frac{D_2}{M_2} = 0.235 \; \pmb{m}$$

Скорости горения топлива ДУ:

$$u_{1min} \coloneqq u'_{min} \cdot \left(\frac{p_{N1}}{MPa}\right)^{\nu} \cdot \frac{mm}{s} = 6.58 \frac{mm}{s}$$

$$u_{2min} \coloneqq u'_{min} \cdot \left(\frac{p_{N2}}{MPa}\right)^{\nu} \cdot \frac{mm}{s} = 6.287 \frac{mm}{s}$$

$$u_{1max} := u'_{max} \cdot \left(\frac{p_{N1}}{MPa}\right)^{\nu} \cdot \frac{mm}{s} = 17.109 \frac{mm}{s}$$

$$u_{2max} := u'_{max} \cdot \left(\frac{p_{N2}}{MPa}\right)^{\nu} \cdot \frac{mm}{s} = 16.347 \frac{mm}{s}$$

Тогда максимальное и минимальное время работы ДУ каждой ступени будет равно:

$$au_{Nmax1} \coloneqq \frac{e'_{\partial on1} \cdot D_1}{u_{1min}} = 88.019 \ \boldsymbol{s}$$

$$\tau_{Nmin1} \coloneqq \frac{e'_{\partial on1} \cdot D_1}{u_{1max}} = 33.854 \text{ s}$$

$$\tau_{Nmax1} \coloneqq \frac{e'_{\partial on1} \cdot D_1}{u_{1min}} = 88.019 \ \boldsymbol{s} \qquad \qquad \tau_{Nmin1} \coloneqq \frac{e'_{\partial on1} \cdot D_1}{u_{1max}} = 33.854 \ \boldsymbol{s}$$

$$\tau_{Nmax2} \coloneqq \frac{e'_{\partial on2} \cdot D_2}{u_{2min}} = 82.147 \ \boldsymbol{s} \qquad \qquad \tau_{Nmin2} \coloneqq \frac{e'_{\partial on2} \cdot D_2}{u_{2max}} = 31.595 \ \boldsymbol{s}$$

$$\tau_{Nmin2} \coloneqq \frac{e'_{\partial on2} \cdot D_2}{u_{2max}} = 31.595 \, \boldsymbol{s}$$

3. РАСЧЕТНАЯ ОЦЕНКА МАССОВО-ГЕОМЕТРИЧЕСКИХ ПОКАЗАТЕЛЕЙ ЭЛЕМЕНТОВ КОНСТРУКЦИИ УБР

3.1 Расчет массы и размеров элементов корпусов РДТТ маршевых ступеней Масса корпусов РДТТ

Корпус рассчитывается на максимальное давление. Его предел прочности приведен в начале записки.

$$S_{max}S_{cp}\coloneqq 1.15 \hspace{1cm} f\coloneqq 1.15 \hspace{1cm} K_{\sigma}\coloneqq 1.05$$

$$\begin{split} S_{max}S_{cp} \coloneqq 1.15 & f \coloneqq 1.15 & K_{\sigma} \coloneqq 1.05 \\ \\ P_{MAX1} \coloneqq f \cdot p_{N1} \cdot \left(1 + \Delta p p_{N}\right) \cdot S_{max}S_{cp} & \cdot K_{\sigma} = 19.141 \ \textit{MPa} \end{split}$$

$$P_{MAX2} := f \cdot p_{N2} \cdot (1 + \Delta pp_N) \cdot S_{max} S_{cp} \stackrel{\cdot}{\stackrel{1}{}} \stackrel{\cdot}{\stackrel{}} V K_{\sigma} = 15.951 \text{ MPa}$$

Массу кокона для каждой ступени можно рассчитать по следующей зависимости:

$$m_{\text{CK}i} = 3 \cdot K_{\text{CK}i} \cdot P_{MAXi} \cdot \frac{\omega_i}{\sigma'_K \cdot \rho_T}$$

$$\sigma'_{K} \coloneqq \sigma_{K} \cdot g = \left(1.275 \cdot 10^{6}\right) \frac{m^{2}}{s^{2}}$$

$$K_{\textit{CK}i} = \frac{K_{\textit{U}i}}{\eta_{\textit{U}i}} + \frac{K_{\textit{V}i} \cdot \boldsymbol{\pi} \cdot {R_i}^3}{\omega_i} \cdot \rho_T$$

$$\sigma'_K \cdot 1350 \frac{\mathbf{kg}}{\mathbf{m}^3} = (1.721 \cdot 10^3) \mathbf{MPa}$$

$$\eta_{\perp i} = 0.985 \cdot \eta'_{\perp i}$$

$$\eta_{\iota \downarrow i} = 0.985 \cdot \eta'_{\iota \downarrow i}$$
 $\eta'_{\iota \downarrow i} = 4 \cdot e'_{\partial oni} \cdot (1 - e'_{\partial oni})$

- коэффициент объемного заполнения топливом ДУ i-ой ступени

 R_i - радиус i-ой ступени

Значения $K_{\rm q},\ K_{\rm l},\ K_{\rm V}$ определяются из таблицы для принятого относительного диаметра заднего полюсного отверстия корпуса ДУ.

Значения коэффициентов

₫ ₀₂	Кц	Κυ	K _l
0,2	1,148	0,505	0,89
0,3	I,I7	0,514	0,902
0.4	1,20	0,533	0,922
0,5	1,26	0,546	0,954
0,6	1,335	0,564	1,012
0,7	I,466	0,601	1,109

$$d'_{02i} = \frac{d_{02i}}{D_i}$$

- относительный диаметр заднего полюсного отверстия ДУ ступени

Диаметр заднего полюсного отверстия можно определить приближенно из схемы, показанной выше. d_{02i} = $2 \cdot d_{\kappa \rho i} + 2 \cdot (l_{yi} + d_{\kappa \rho i}) \cdot \tan(30^\circ)$, где l_{yi} - длина утопленной части сопла (его сверхзвуковой части) $l_{ui} = l'_{ui} \cdot l_{ai}$, где l_{ai} - длина сверхзвуковой части сопла

Принимаем

$$l_{ai} = d_{ai}$$

$$l_{a1} \coloneqq d_{a1} = 86.139$$
 cm

$$l_{a2} := d_{a2} = 126.823$$
 cm

$$l_{y1} \coloneqq l'_{y1} \cdot l_{a1} = 12.921 \ \textit{cm}$$

$$l_{v2} := l'_{v2} \cdot l_{a2} = 12.682 \ cm$$

Тогла

$$d_{021} := 2 \cdot d_{\kappa p1} + 2 \cdot (l_{y1} + d_{\kappa p1}) \cdot \tan(30^{\circ}) = 83.284 \ cm$$

$$d_{022} := 2 \cdot d_{\kappa p2} + 2 \cdot (l_{y2} + d_{\kappa p2}) \cdot \tan(30^{\circ}) = 59.013 \text{ cm}$$

$$d'_{021} \coloneqq \frac{d_{021}}{D_1} = 0.558$$

$${d'}_{022}\!\coloneqq\!\frac{d_{022}}{D_2}\!=\!0.465$$

Для определение необходимых коэффициентов проведем линейную интерполяцию их значений

$$K_{uM} := \begin{bmatrix} 1.148 & 1.17 & 1.2 & 1.26 & 1.335 & 1.466 \end{bmatrix}^{\mathrm{T}}$$

$$K_{VM} \coloneqq \begin{bmatrix} 0.505 & 0.514 & 0.533 & 0.546 & 0.564 & 0.601 \end{bmatrix}^{\mathrm{T}}$$

$K_{\mathit{lM}}\!\coloneqq\!\big[0.89$	0.902 0.922 0.954 1	$[.012 \ \ 1.109]^{\mathrm{T}}$
$d_{02\mathit{M}}\!\coloneqq\!\big[0.2$	$0.3 \ 0.4 \ 0.5 \ 0.6 \ 0.7$	Т
d' = 0.2, 0.20	010.7	
$K_{\mathcal{U}}(d') \coloneqq \operatorname{linterp} \left(d_{02\mathcal{M}}, K_{\mathcal{U}\mathcal{M}}, d \right)$ $K_{V}(d') \coloneqq \operatorname{linterp} \left(d_{02\mathcal{M}}, K_{V\mathcal{M}}, d \right)$ $K_{l}(d') \coloneqq \operatorname{linterp} \left(d_{02\mathcal{M}}, K_{l\mathcal{M}}, d \right)$	<i>i'</i>)	
Тогда коэффициенты будут п	приближенно равны	
ДУ 1 ступени $K_{u1} \coloneqq K_u \left(d'_{021} \right) = 1.304$	$K_{V1} := K_V \left(d'_{021} \right) = 0.5$	$K_{l1} \coloneqq K_l \left(d'_{021} \right) = 0.988$
ДУ 2 ступени $K_{u2} \coloneqq K_u \left({d'}_{022} \right) = 1.239$	$K_{V2} := K_V \left(d'_{022} \right) = 0.5$	$K_{l2} \coloneqq K_l \left(d'_{022} \right) = 0.943$
Вычислим объемные коэфф.	ициенты заполнения г	цилиндрической части корпуса двигателей
Первая ступень $\eta'_{ \!$.95 $\eta'_{ ext{ idel}_{ ext{ idel}_{2}}}$	Вторая ступень $\coloneqq 4 \cdot e'_{\partial on2} \cdot \left(1 - e'_{\partial on2}\right) = 0.966$
$\eta_{\mathcal{U}_1} \coloneqq 0.985 \cdot \eta'_{\mathcal{U}_1} = 0.936$	$\eta_{ ext{ iny L}2}$	$= 0.985 \cdot \eta'_{L\!\!/2} = 0.951$
Теперь можем рассчитать ма	ассы коконов:	
ДУ первой ступени		
$R_1 \coloneqq \frac{D_1}{2} = 0.746 \; \boldsymbol{m}$ $K_{V1} \cdot \boldsymbol{K}_{V1} \cdot \boldsymbol{\pi} \cdot \boldsymbol{R}_1^{-3}$		
$K_{\textit{CK1}} \coloneqq \frac{K_{\textit{41}}}{\eta_{\textit{41}}} + \frac{K_{\textit{V1}} \cdot \boldsymbol{\pi} \cdot R_{1}^{\ 3}}{\omega_{1}} \cdot \rho$ $m_{\textit{CK1}} \coloneqq 3 \cdot K_{\textit{CK1}} \cdot P_{\textit{MAX1}} \cdot \frac{\omega_{1}}{\sigma'_{\textit{K}} \cdot \mu}$	$_{T} = 1.479$ $_{T} = 565.841 \ kg$	
ДУ второй ступени		
$R_2 = \frac{D_2}{2} = 0.634 \ \mathbf{m}$		
$K_{\mathit{CK2}} \coloneqq \frac{K_{\mathit{U2}}}{\eta_{\mathit{U2}}} + \frac{K_{\mathit{V2}} \cdot \pi \cdot R_2^{-3}}{\omega_2} \cdot \rho$	$_{T}$ = 1.454	
$m_{\text{CK2}} \coloneqq 3 \cdot K_{\text{CK2}} \cdot P_{\text{MAX2}} \cdot \frac{\omega_2}{\sigma_{\text{K}}' \cdot \mu}$	$\frac{1}{p_T} = 157.01 \ kg$	
Размеры силовой оболочки		
Коэффициенты объемного з	аполненияя днищ кор	луса РДТТ

Первая стуг	тень	Вторая ступень
$\eta'_{\partial H1} \coloneqq 1 - 1.5 \cdot (1 - \eta')$		$\eta'_{\partial H^2} := 1 - 1.5 \cdot (1 - \eta'_{U^2}) = 0.948$
$\eta_{\partial H1} \coloneqq 0.85 \cdot \eta'_{\partial H1} = 0.7$. 1	$\eta_{\partial H2} \coloneqq 0.85 \cdot \eta'_{\partial H2} = 0.806$
Тогда длины цилинд	рических участков ДУ каж	кдой ступени
, $4\cdot\omega_1$	$\eta_{\partial ext{ heta}1}$	
$l_{u1} \coloneqq \frac{1}{\boldsymbol{\pi} \cdot D_1^2 \cdot \rho_T \cdot \eta_{u1}}$	$-K_{l1} \cdot R_1 \cdot \frac{\eta_{\partial H1}}{\eta_{L\!/1}} = 4.574 \; \boldsymbol{m}$	
$l_{u2} := \frac{4 \cdot \omega_2}{}$	$-K_{l2} \cdot R_2 \cdot \frac{\eta_{\partial H2}}{\eta_{U2}} = 1.888 \ \boldsymbol{m}$	
$m{\pi} \cdot D_2^{\ 2} \cdot ho_T \cdot \eta_{oxdot{2}}$	$\eta_{ extsf{L}2}$ $\eta_{ extsf{L}2}$	
Посчитаем длину пе	реднего и заднего днища д	для каждой ДУ
Первая ступень		Вторая ступень
$l_{\partial \textit{Hnep1}} \coloneqq 0.61 \boldsymbol{\cdot} R_1 = 0.4$	155 m	$l_{\partial \text{Hnep2}} \coloneqq 0.61 \cdot R_2 = 0.387 \; m{m}$
l_{∂ нза ∂ 1 := $\left(0.305+0.1 \cdot \right)$	$(0.2) \cdot 2 R_1 = 0.485 \ m$	$l_{\partial {\it H3}a\partial 2}\! :=\! \big(0.305 + 0.1 \cdot 0.2\big) \cdot 2 \; R_2 \! =\! 0.412 \; {\it m}$
Диаметры передних	полюсных отверстий:	
$d'_{011} = 0.2$	$d_{011} \coloneqq d'_{011} \cdot D_1 = 0.298$ n	\imath
${d'}_{012} \coloneqq 0.2$	$d_{012}\!\coloneqq\!d'_{012}\!\cdot\!D_2\!=\!0.254\;\mathbf{n}$	$d_{021} = 0.833 \; m$
Масса фланцев		
	n_{N}	
$m_{\phi ni} = K_{\phi n} \cdot \rho_{\phi n} \cdot r'_{cpi}^{3}$	$\cdot D_i^{\ 3} \cdot \sqrt{rac{\sigma_{\phi I}}{\sigma_{\phi I}}}$	
Материал фланцев:	гитановый сплав ВТ-23	
$\sigma_{\phi_{\mathcal{I}}} = 1400 \; \mathbf{MPa}$	- предел прочности мат	ериала фланцев
$\rho_{Ti} \coloneqq 4540 \; \frac{\boldsymbol{kg}}{\boldsymbol{m}^3}$	- плотность материала	 рланцев
$K_{\phi\sigma} \coloneqq 0.894$	- коэффициент согласов ступеней	вания для фланцев корпусов ДУ
Найдем средние отн ДУ ступеней:	осительные диаметры и р	адиусы полюсных отверстий силовых оболочек корпусов
$d'_{cp1} \coloneqq \frac{d'_{011} + d'_{021}}{2} = 0$	0.379	$r'_{cp1} \coloneqq \frac{d'_{cp1}}{2} = 0.19$
$d'_{cp2} \coloneqq \frac{d'_{012} + d'_{022}}{2} = 0$	0.333	$r'_{cp2} \coloneqq \frac{d'_{cp2}}{2} = 0.166$
Посчитаем массы фл	панцев корпусов ДУ ступе	ней:
$m_{\phi ec{\jmath} 1} \coloneqq K_{\phi ec{\jmath} n} \cdot ho_{Ti} \cdot r'_{cp1}$	$^{3} \cdot D_{1}^{3} \cdot \sqrt{\frac{p_{N1}}{\sigma_{\phi n}}} = 8.5 \ \textit{kg}$	
$m_{\phi ec{\prime} 12} \!\coloneqq\! K_{\phi ec{\prime} 1} \! m{\cdot} ho_{Ti} \! m{\cdot} r'_{cp2}$	$^3 \cdot D_2^{3} \cdot \sqrt{rac{p_{N2}}{\sigma_{\phi n}}} = 3.22 \; m{kg}$	

Масса юбок корпуса

$$m_{\omega i} = \frac{K_{\omega} \cdot p_{Ni} \cdot D_i^3}{\sigma'_{K}}$$

$$\sigma'_{K} = (1.275 \cdot 10^{6}) \frac{m^{2}}{8^{2}}$$

 $\sigma_{K}^{\prime} = (1.275 \cdot 10^{6}) \frac{m^{2}}{s^{2}}$ - удельная прочность органопластика

$$\rho_K \coloneqq 1350 \frac{\mathbf{kg}}{\mathbf{m}^3}$$

$$m_{\wp 1} \coloneqq rac{K_\wp \cdot p_{N1} \cdot D_1^{-3}}{\sigma_K'} = 50.336 \; m{kg} \qquad \qquad l_{\wp 1} \coloneqq 0.15 \cdot D_1 = 0.2238 \; m{m}$$

$$L_{\wp 1} \coloneqq 0.15 \cdot D_1 = 0.2238 \ \textit{m}$$

$$m_{\kappa 2} \coloneqq rac{K_{\kappa 0} \cdot p_{N2} \cdot D_2^{-3}}{\sigma_K'} = 25.761 \; m{kg} \qquad \qquad l_{\kappa 2} \coloneqq 0.15 \cdot D_2 = 0.19 \; m{m}$$

$$l_{\wp 2}\!\coloneqq\!0.15\boldsymbol{\cdot} D_2\!=\!0.19\;\mathbf{m}$$

Зная плотность материала юбок, оценим их толщину, считая что вся их масса заключена в объеме

$$V_{\kappa 1} := \frac{m_{\kappa 1}}{2 \cdot \kappa} = 0.019 \ m^3$$

$$V_{102} := \frac{m_{102}}{2 \cdot \rho_V} = 0.01 \ m$$

$$\delta_{\kappa 1} \coloneqq 1 \, \, \boldsymbol{mm} \qquad \qquad \delta_{\kappa 2} \coloneqq 1 \, \, \boldsymbol{mm}$$

$$V_{io1} = \pi \cdot \left(\left(D_1 + \delta_{io1} \right)^2 - D_1^2 \right) \cdot l_{io}$$

$$V_{\kappa 02} = \boldsymbol{\pi} \cdot \left(\left(D_2 + \delta_{\kappa 02} \right)^2 - D_2^2 \right) \cdot l_{\kappa 02}$$

Масса заряда и крышки воспламенительного устройства

$$m_{\mathit{3BYi}}$$
 = $K_{\mathit{3BY}} \cdot \left(\frac{\omega_i}{
ho_T}\right)^{\frac{2}{3}}$ $K_{\mathit{3BY}} = \frac{2 \cdot 2}{m^2} \cdot kg$ - коэф. согласования размерностей

$$K_{3BY} := \frac{2.2}{m^2} \cdot kg$$

$$m_{3BY1} \coloneqq K_{3BY} \cdot \left(\frac{\omega_1}{\rho_T}\right)^{\frac{2}{3}} = 9.16 \; kg$$

$$m_{3BY2} \coloneqq K_{3BY} \cdot \left(\frac{\omega_2}{\rho_T}\right)^{\frac{2}{3}} = 4.451 \text{ kg}$$

Масса крышки восплменительного устройства (ВУ)

$$m_{By_i} = \frac{K_{By} \cdot p_{Ni} \cdot d'_{01i}^3 \cdot D_i^3}{\sigma'_2}$$

$$m_{\mathit{BYi}} = rac{K_{\mathit{BY}} \cdot p_{Ni} \cdot d'_{01i}{}^3 \cdot D_i{}^3}{\sigma'_{\mathit{B}}}$$
 $K_{\mathit{BY}} := 5.46$ - коэф. согласования размерностей $\sigma'_{\mathit{B}} := rac{\sigma_{\mathit{B}}}{\rho_{ti}} = \left(3.084 \cdot 10^5
ight) rac{m{m}^2}{m{s}^2}$ $\rho_{ti} := 4540 \cdot rac{m{kg}}{m{m}^3}$ $\sigma_{\mathit{B}} := 1400 \; m{MPa}$

$$\sigma'_B := \frac{\sigma_B}{\rho_{ti}} = \left(3.084 \cdot 10^5\right) \frac{\boldsymbol{m}^2}{\boldsymbol{s}^2}$$

$$\rho_{ti} \coloneqq 4540 \cdot \frac{\mathbf{kg}}{\mathbf{m}^3} \qquad \sigma_{\mathbf{B}} \coloneqq 1400 \; \mathbf{MF}$$

$$m_{\mathit{BY1}} \coloneqq \frac{K_{\mathit{BY}} \cdot p_{N1} \cdot {d'_{011}}^3 \cdot {D_1}^3}{\sigma'_{\mathit{R}}} = 5.646 \; \textit{kg}$$
 $m_{\mathit{FIJ}} = 80 \; \textit{kg}$ $d_{\mathit{FIJ}} \coloneqq D_2$

$$m_{\Pi\Pi} = 80 \text{ kg}$$

$$\begin{aligned} & \mathbf{M}_{\text{BPG}} := \frac{K_{\text{BP}} \cdot p_{\text{PO}} \cdot d_{\text{GB}^{2}}^{2} \cdot D_{\text{S}}^{3}}{\sigma_{\text{S}}^{\prime}} = 2.889 \ \text{kg} \end{aligned} \qquad \begin{aligned} & I_{\text{DB}} := \frac{4 \cdot \frac{m_{\text{DB}}^{\prime}}{\rho_{\text{R}}}}{\pi \cdot d_{\text{CB}}^{\prime}} = 0.014 \ \text{m} \end{aligned}$$

$$& \mathbf{Macca samntho-kpenimeto cho} \\ & \mathbf{M}_{\text{BCG}} := \pi \cdot D_{\text{c}}^{2} \cdot \left(\frac{l_{\text{GL}}}{D_{\text{L}}} + 0.015\right) \cdot q_{\text{BCC}} = 01.778 \ \text{kg} \end{aligned} \qquad \qquad \cdot \text{поверхноствая вногность материала ЗКС}$$

$$& m_{\text{SCG}} := \pi \cdot D_{\text{L}}^{2} \cdot \left(\frac{l_{\text{GL}}}{D_{\text{L}}} + 0.615\right) \cdot q_{\text{BC}} = 25.515 \ \text{kg}$$

$$& \mathbf{Macca tenjosiamittion dispatitis} \end{aligned}$$

$$& \mathbf{Macca tenjosiamittion dispatitis} \end{aligned} \qquad K_{\text{T3O}} := 2.87 \cdot \left(\frac{1}{D_{\text{L}}}\right) \cdot \left(\frac{l_{\text{GB}}}{D_{\text{L}}}\right) \cdot \left(\frac{l_{\text{BB}}}{D_{\text{L}}}\right) \cdot \left(\frac{l_{\text{AB}}}{D_{\text{L}}}\right) \cdot \left(\frac{l_{\text{BB}}}{D_{\text{L}}}\right) \cdot \left(\frac{l_{\text{BB}}}{D_{\text{BB}}}\right) \cdot \left(\frac{l_{\text{BB}}}{D_{\text{L}}}\right) \cdot \left(\frac{l_{\text{BB}}}{D_{\text{L}}}\right) \cdot \left(\frac{l_{\text{BB}}}{D_{\text{L}}}\right) \cdot \left(\frac{l_{\text{BB}}}{D_{\text{L}}}\right) \cdot \left(\frac{l_{\text{BB}}}{D_{\text{BB}}}\right) \cdot \left(\frac{l_{\text{BB}}}{D_{\text{BB}}}\right) \cdot \left(\frac{l_{\text{BB}}}{D_{\text{BB}}}\right) \cdot \left(\frac{l_{\text{BB}}}{D_{\text{BB}}}\right) \cdot \left(\frac{l_{\text{BB}}}{D_$$

Тепловая защита утопленной оболочки сопла

$$m_{\text{T3yoi}} = K_{\text{T3yo}} \cdot \frac{\beta \cdot \omega_i}{\sqrt[2]{p_{Ni} \cdot \tau_{Ni}}} \cdot d'_{yi}^{1.75} \cdot \rho_{\text{T3}}$$

$$K_{73yo} \coloneqq 3.7 \cdot 10^{-9} \cdot \frac{ \frac{3}{2} \cdot s^{\frac{1}{2}}}{kg^{\frac{3}{2}}} \cdot kg$$
 — коэф. согласования размерностей

$$\rho_{T3} \coloneqq 1400 \cdot \frac{\mathbf{kg}}{\mathbf{m}^3}$$

 $ho_{73} \coloneqq 1400 \cdot \frac{\pmb{kg}}{\pmb{m}^3}$ - плотность углепластика

$$m_{73yo1} \coloneqq K_{73yo} \cdot \frac{\beta \cdot \omega_1}{\sqrt[2]{rac{p_{N1}}{10^6} \cdot au_{N1}}} \cdot d'_{y1}^{1.75} \cdot
ho_{73} = 15.671 \; m{kg}$$

$$m_{73yo2} := K_{73yo} \cdot \frac{\beta \cdot \omega_2}{\sqrt[2]{\frac{p_{N2}}{10^6} \cdot \tau_{N2}}} \cdot d'_{y2}^{1.75} \cdot \rho_{73} = 6.902 \text{ kg}$$

Силовая оболочка раструба сверхзвуковой части

$$m_{\textit{kp}i} = K_{\textit{kp}} \cdot \left(\frac{\beta \cdot \omega_i}{\tau_{Ni}}\right)^{1.5} \cdot \left(d'_{\textit{p}i}\right)^{1.75} \cdot \frac{d'_{\textit{a}i}^{0.2}}{\frac{p_{Ni}}{10^6}} \cdot \frac{\rho_{Ti}}{\left(\frac{E_{Ti}}{10^6}\right)^{0.5}} \qquad k_{\textit{kp}} \coloneqq 11.2 \cdot 10^{-9}$$

$$k_{\kappa p} \coloneqq 11.2 \cdot 10^{-9}$$

- коэф. согласования размерностей

$$d'_{p1} \coloneqq d'_{a1} = 3.975$$
 — - относительные диаметры раструбов

$$d'_{p2} := 4.5$$

$$E_{Ti} = 1300 \, MPa$$

$$E_{Ti} = 1300 \, MPa$$

$$\rho_{Ti} = \left(4.5 \cdot 10^3\right) \, \frac{kg}{m^3}$$

$$m_{\kappa\rho1} \coloneqq k_{\kappa\rho} \cdot \left(\frac{\beta \cdot \omega_1}{\tau_{N1}}\right)^{1.5} \cdot \left(d'_{\rho1}\right)^{1.75} \cdot \frac{1}{\frac{p_{N1}}{10^6}} \cdot \frac{\rho_{Ti}}{\left(\frac{E_{Ti}}{10^6}\right)^{0.5}} = 383.82 \ \textit{kg}$$

$$m_{\kappa
ho 2} \coloneqq k_{\kappa
ho} \cdot \left(rac{eta \cdot \omega_2}{ au_{N2}}
ight)^{1.5} \cdot \left({d'}_{
ho 2}
ight)^{1.75} \cdot rac{{d'}_{a2}^{0.2}}{10^6} \cdot rac{
ho_{Ti}}{\left(rac{E_{Ti}}{10^6}
ight)^{0.5}} = 184.754 \; m{kg}$$

Горловина сопла с эластичным шарниром

$$m_{\Gamma_i} = K_{\Pi} \cdot \frac{\beta \cdot \omega_i}{\sqrt[2]{\frac{p_{Ni}}{10^6} \cdot \tau_{Ni}}}$$

$$m_{\Gamma 1} \coloneqq K_{\Pi} \cdot \frac{\beta \cdot \omega_1}{\sqrt[2]{rac{p_{N1}}{10^6} \cdot au_{N1}}} = 62.122 \; extbf{kg}$$

$$m_{\Gamma 2} \coloneqq K_{\Gamma 1} \cdot \frac{eta \cdot \omega_2}{\sqrt[2]{rac{p_{N2}}{10^6} \cdot au_{N2}}} = 23.464 \; m{kg}$$

Масса тепловой защиты сверхзвукой части

$$m_{o6i} = K_{o6} \cdot \rho_{73} \cdot \frac{\beta \cdot \omega_{i}}{\sqrt[2]{\frac{p_{Ni}}{10^{6}} \cdot \tau_{Ni}}} \cdot d'_{ai}^{1.75} \qquad K_{o6} \coloneqq 2.81 \cdot 10^{-9} \cdot \frac{m^{\frac{3}{2}} \cdot s^{\frac{1}{2}}}{kg^{\frac{3}{2}}} \cdot kg$$

$$K_{o6} \coloneqq 2.81 \cdot 10^{-9} \cdot \frac{\boldsymbol{m}^{2} \cdot \boldsymbol{s}^{2}}{\frac{3}{2}}$$

- коэф. согласования размерностей

$$m_{o61} \coloneqq K_{o6} \cdot \rho_{73} \cdot \frac{\beta \cdot \omega_1}{\sqrt[2]{\frac{p_{N1}}{10^6} \cdot \tau_{N1}}} \cdot d'_{a1}^{1.75} = 42.464 \ \textit{kg}$$

$$m_{o62} \coloneqq K_{o6} \cdot \rho_{73} \cdot \frac{\beta \cdot \omega_2}{\sqrt[2]{\frac{p_{N2}}{10^6} \cdot \tau_{N2}}} \cdot d'_{a2}^{1.75} = 67.256 \ \textit{kg}$$

3.3 Масса органов управления

$$K_{\mathsf{PM1}}\coloneqq 0.65 \cdot oldsymbol{m}^{2} \cdot oldsymbol{s}$$

$$M_{ extit{PM1}} = K_{ extit{PM1}} \cdot \frac{\omega_i}{ au_{Ni} \cdot \sqrt[2]{D_i}}$$
 $K_{ extit{PM2}} := 0.65 \cdot m{m}^{\frac{1}{2}} \cdot m{s}$ $K_{ extit{PM2}} := 0.57 \cdot m{m}^{\frac{1}{2}} \cdot m{s}$

- коэф. согласования размерностей

$$m_{\text{PM1}} := K_{\text{PM1}} \cdot \frac{\omega_1}{\tau_{N1} \cdot \sqrt[2]{D_1}} = 143.568 \text{ kg}$$

$$m_{\text{PM2}} := K_{\text{PM2}} \cdot \frac{\omega_2}{\tau_{N2} \cdot \sqrt[2]{D_2}} = 47.932 \text{ kg}$$

Масса конструкции ДУ

3.4 Соотношения для расчета масс элементов ракеты

Необходимо построить предварительный чертеж ракеты, из которого определяются точные значения длин переходных и хвостовых отсеков, длина обтекателя и протяженность БКС ракеты.

Определим длину приборного отсека по его усредненной плотности:

$$m_{\rm CY} = 105 \; kg$$

$$\rho_{\text{CY}} = 300 \frac{kg}{m^3}$$

Объем будет равен:

$$V_{\text{CY}} = \frac{m_{\text{CY}}}{\rho_{\text{CY}}} = 0.35 \ \mathbf{m}^3$$

Примем диаметр приборного отсека равным диаметру второй ступени:

$$D_{\text{Cy}} = D_2 = 1.268 \ m$$

$$l_{CY} \coloneqq \frac{4 \cdot V_{CY}}{\pi \cdot D_{CY}^2} = 0.277 \ \boldsymbol{m}$$

Для расчета масс отсеков, головного обтекателя, а также бортовой кабельной сети приведем предварительную компоновку ракеты

Масса отсеков:

$$m_{OTCi} = \pi \cdot D_i \cdot (K_{\Pi XO} \cdot l_{\Pi XOi} + K_{XO} \cdot l_{XOi})$$

$$K_{XO} \coloneqq 20 \ \frac{\textbf{kg}}{\textbf{m}^2}$$
 - коэффициент согласования для хвостовых отсеков

$$K_{\Pi XO1} \coloneqq 20 \; \frac{kg}{m^2} \;$$
 - коэффициент согласования для переходных отсеков в случае поперечного деления

$$K_{ extit{TIXO2}} \coloneqq 24 \; rac{m{kg}}{m{m}^2} \;$$
 - коэффициент согласования для переходных отсеков в случае продольно-поперечного деления

Разделение первой и второй ступеней происходит по горячей схеме.

Переходный отсек между первой и второй ступенями делится поперечной рубкой, боевая ступень отделяется от второй ступени продольно-поперечной рубкой. Из чертежа получим следующие длины хвостовых и переходных отсеков.

Я

Переходные отсеки

$$l_{\Pi XO1} \coloneqq 538 \ \boldsymbol{mm}$$
 $l_{\Pi XO2} \coloneqq 166 \ \boldsymbol{mm}$

Хвостовые отсеки:

$$l_{XO1} = 824.81 \ mm$$
 $l_{XO2} = 1190 \ mm$

Тогда масса отсеков первой ступени будет равна (переходный отсек между первой и второй ступенями относим к первой):

$$m_{\mathsf{OTC1}} \coloneqq \boldsymbol{\pi} \cdot D_1 \cdot \left(K_{\mathsf{\Pi XO1}} \cdot l_{\mathsf{\Pi XO1}} + K_{\mathsf{XO}} \cdot l_{\mathsf{XO1}} \right) = 127.76 \ \boldsymbol{kg}$$

Второй ступени:

$$m_{\mathrm{OTC2}} \coloneqq \boldsymbol{\pi} \boldsymbol{\cdot} D_2 \boldsymbol{\cdot} \left(K_{\mathrm{\Pi XO2}} \boldsymbol{\cdot} l_{\mathrm{\Pi XO2}} + K_{\mathrm{XO}} \boldsymbol{\cdot} l_{\mathrm{XO2}} \right) = 110.699 \ \boldsymbol{kg}$$

Бортовая кабельная сеть

$$m_{\text{БКС}i} = (0.8 \cdot l_{cmi} + 2) + (0.8 \cdot l_{mpi} + 2) (i - 1)$$

 l_{cmi} - длина ступени

 l_{mpi} - длина транзитных кабелей

$$l_{mpi} = l_{\Pi XOi} + 2 \cdot l_{\wp i} + l_{ui} + l_{XOi}$$

 l_{cmi} измеряется от среза сопла до плоскости разделения

 $l_{cm1} \coloneqq 6.534 \ \boldsymbol{m}$

 $l_{cm2} = 3.638 \ m$

 $l_{mp2} := l_{\Pi XO2} + 2 \cdot l_{\kappa O2} + l_{u2} + l_{XO2} = 3.625 \ m$

$$m_{\mathsf{BKC1}} \coloneqq \left(0.8 \cdot l_{cm1} \cdot \frac{\mathbf{kg}}{\mathbf{m}} + 2 \ \mathbf{kg}\right) = 7.227 \ \mathbf{kg}$$

$$m_{\mathrm{5KC2}} \coloneqq \left(0.8 \cdot l_{\mathrm{cm2}} \cdot \frac{\mathbf{kg}}{\mathbf{m}} + 2 \cdot \mathbf{kg}\right) + \left(0.8 \cdot l_{\mathrm{mp2}} \cdot \frac{\mathbf{kg}}{\mathbf{m}} + 2 \cdot \mathbf{kg}\right) = 9.81 \ \mathbf{kg}$$

Масса обтекателя:

$$m_{\text{FO}} = S_{\text{FO}} \cdot K_{\text{FO}} + 10 \text{ kg}$$

 $K_{\Gamma O} \coloneqq 20 \cdot \frac{kg}{m^2}$ коэффициент согласования при поперечном отделении ΓO

 $S_{\it \GammaO}$ определим из чертежа для двух конусов

$$S_{\text{FO}} := \pi \cdot \left(\frac{1268}{2} \ \text{mm} + \frac{600}{2} \ \text{mm} \right) \cdot 1369 \ \text{mm} + \pi \cdot \frac{600}{2} \ \text{mm} \cdot 860 \ \text{mm}$$

$$S_{IO} = 4.828 \ m^2$$

$$L_{\Gamma O} \coloneqq 1600 \ \boldsymbol{mm}$$

$$L_{\Pi H} \coloneqq 1650 \ \boldsymbol{mm}$$

$$m_{\rm \GammaO}\!\coloneqq\!S_{\rm \GammaO}\!\cdot\!K_{\rm \GammaO}\!+\!10~\pmb{kg}\!=\!106.55~\pmb{kg}$$

Приведем значения уточненных стартовых масс ступеней

Масса конструкции по ступеням:

Вторая ступень

$$m_{K\Sigma 2} \coloneqq m_{ extit{DY2}} + m_{ extit{OTC2}} + m_{ extit{BKC2}} = 744.282 \; {\it kg}$$

$$m_{M2} \coloneqq 0.03 \cdot m_{K\Sigma 2} = 22.328 \ \textit{kg}$$

$$m_{K2} := m_{K\Sigma 2} + m_{M2} = 766.61 \ kg$$

Первая ступень

$$m_{K\Sigma 1} \coloneqq m_{\mathcal{J} \mathcal{Y} 1} + m_{OTC1} + m_{\mathit{FKC} 1} = \left(1.665 \cdot 10^{3}\right) \, \textit{kg}$$

$m_{K1} \coloneqq m_{K\Sigma1} + m_{M1} = \left(1.715 \cdot 10^3\right) m{kg}$		$n_0 = (2.362 \cdot 10^4)$	ka
$m_{K1} - m_{K\Sigma 1} + m_{M1} - (1.715 \cdot 10) \kappa g$		160 - (2.302 • 10)	n y
Стартовые массы ступеней:			
$m_{02}\!\coloneqq\!m_{arDelta\!H}\!+\!m_{\!K2}\!+\!\omega_2\!=\!6.95$ tonne	$\mu_2 \coloneqq \frac{\omega_2}{m_{02}} = 0.7$	49 $\qquad \qquad \alpha_{{\it Д}{\it Y}{\it 2}}$	$=\frac{m_{\text{Д}/2}}{\omega_2}=0.12$
$m_0\!:=m_{02}\!+\!m_{K1}\!+\!\omega_1\!=\!24.044$ tonne	$\mu_1 \coloneqq \frac{\omega_1}{m_0} = 0.64$	$lpha_{ extcolor{dy}_1}$	$=\frac{m_{\mathcal{A}^{\gamma_1}}}{\omega_1}=0.099$
4. ОПРЕДЕЛЕНИЕ ПА ДА	АРАМЕТРОВ АУТ И ЛЬНОСТИ ПОЛЕТ		ной
Приращение скорости после работы ДУ	$ec{v}$ i -ой ступени		
$V_{\kappa i} = K_{ai} \cdot J_{1i} \cdot \ln\left(\frac{1}{1 - \mu_i}\right) - \Delta V_{gi}$			
K_{ai} - коэффициент учета потерь скор	оости $\it i$ -ой ступени от	наличия атмосф	еры
$K_{a1} = 1 + K_{\Pi 1} - \frac{4.8 \cdot \mu_1}{\tau_{N1} \cdot \sqrt[3]{\sin(\theta_1)}}$ $\ln\left(\frac{1}{1 - \mu_1}\right)$	$\frac{12000}{2} \cdot \left(\frac{12000}{p_M}\right)$		
$R_{a1} = 1 + K_{f11} - \frac{1}{\ln\left(\frac{1}{1 - \mu_1}\right)}$ $p_M := \frac{m_0}{\frac{\boldsymbol{\pi} \cdot \left(1.025 \cdot D_1\right)^2}{4}} = 13088.848 \frac{\boldsymbol{kg}}{\boldsymbol{m}^2}$ $K_{f11} := \frac{J_{1f11}}{J_{101}} - 1 = 0.083$	$J_{101}\!\coloneqq\!J_{1arDelta1}$	$-rac{{d'_{a1}}^2 \boldsymbol{\cdot} 0.1 extbf{\textit{MPa}}}{p_{N1}}$	$\frac{\beta}{s} = 2602.19 \frac{m}{s}$
$K_{\Pi 1} := \frac{J_{1\Pi 1}}{J_{101}} - 1 = 0.083$			
$ heta_{K}^{\prime}(L)\!\coloneqq\!\operatorname{linterp}\left(L_{M}, heta_{K\!M}^{\prime},L ight)$			
$\theta_K' \coloneqq \theta_K' (11000 \cdot \mathbf{km}) = 0.353$			
$\theta'_{1} := \operatorname{asin} \left(1 - \mu_{1} \cdot \left(1 - \sin \left(\theta'_{K} \right)^{0.8} \right) \right) = 0.68'$	$\theta'_2 = 0.25 \cdot 0$	$\theta'_1 + 0.75 \cdot \theta'_K = 0.$	437
$\theta_{K1} \coloneqq 0.5 \cdot \left(\theta'_1 + \theta'_2\right) = 0.562$		$\theta_{K3} \coloneqq \theta'_K \qquad \theta$	$_{3}^{\prime}:= heta_{K}^{\prime}$
$0.3 \cdot K_{\varPi 1} + \cfrac{4.8 \cdot \mu_1}{\cfrac{ au_{N1}}{s}} \cdot \sqrt[3]{\sin{(heta_{H})}}$	$\frac{12000 \cdot \frac{Ng}{m^2}}{p_M}$		
$K_{a1} \coloneqq 1 + K_{\Pi 1} - rac{s}{\ln \left(rac{1}{1 - \mu} ight)}$	= = 11	= 0.985	

$$\begin{split} J_{12} &:= J_{102} \\ \Delta V_{g_1} &:= g \cdot \tau_{N_1} \cdot \sin \left(\theta'_1 \right) = 354.452 \, \frac{m}{s} \\ \Delta V_{g_2} &:= g \cdot \tau_{N_2} \cdot \sin \left(\theta'_2 \right) = 228.167 \, \frac{m}{s} \\ & \cdot \text{ нотери скорости от воздействия гравитации} \end{split}$$

$$V_{\kappa_1} &:= K_{\kappa_2} \cdot J_{11} \cdot \ln \left(\frac{1}{1 - \mu_1} \right) - \Delta V_{g_1} = 2261.325 \, \frac{m}{s} \\ V_{\kappa_2} &:= K_{\kappa_2} \cdot J_{12} \cdot \ln \left(\frac{1}{1 - \mu_2} \right) - \Delta V_{g_2} = 3866.743 \, \frac{m}{s} \\ V_{\kappa_2} &:= K_{\kappa_2} \cdot J_{12} \cdot \ln \left(\frac{1}{1 - \mu_2} \right) - \Delta V_{g_2} = 3866.743 \, \frac{m}{s} \\ V_{R_1} &:= V_{\kappa_1} + V_{\kappa_2} = 6128.068 \, \frac{m}{s} \\ Onderlarsen reacony kohila akturatoro yyactika \\ S(\mu_1) &:= \mu + (1 - \mu) \cdot \ln (1 - \mu) \\ \Delta h_{K_1} &:= \left(\frac{K_{\kappa_1} \cdot J_{11} \cdot \tau_{N_1}}{\mu_1} \cdot S(\mu_1) - \frac{g \cdot \tau_{N_1}^2}{2} \cdot \sin \left(\theta'_1 \right) \right) \cdot \sin \left(\theta'_1 \right) = 32.962 \, \text{km} \\ \Delta h_{K_2} &:= \left(V_{\kappa_1} \cdot \tau_{N_1} + \frac{K_{\kappa_2} \cdot J_{12} \cdot \tau_{N_2}}{\mu_2} \cdot S(\mu_2) - \frac{g \cdot \tau_{N_2}^2}{2} \cdot \sin \left(\theta'_2 \right) \right) \cdot \sin \left(\theta'_2 \right) = 88.857 \, \text{km} \\ h_{K} &:= \Delta h_{K_1} + \Delta h_{K_2} = 121.819 \, \text{km} \\ \text{Протеженность активного участка:} \\ \Delta h_{\Lambda_1} &:= \Delta h_{K_2} \cdot \cot \left(\theta_{K_1} \right) = 52.364 \, \text{km} \\ \Delta h_{\Lambda_2} &:= \Delta h_{K_2} \cdot \cot \left(\theta_{K_1} \right) = 52.364 \, \text{km} \\ \lambda h_{K} &:= \Delta h_{K_1} + \Delta h_2 = 293.221 \, \text{km} \\ \text{Определим эллинтическую дальность полета раксты:} \\ R &:= 6371 \, \text{km} \qquad \mu_0 := 3.988 \cdot 10^5 \cdot \frac{km^3}{s^2} \qquad r_K := R + h_K = 6492.819 \, \text{km} \\ v_K &:= \frac{V_K^2 \cdot \tau_K}{\mu_0} = 0.611 \\ L_{K_2A} := 2 \cdot R \cdot \text{atan} \left(\frac{v_K \cdot \tan \left(\theta'_K \right)}{1 \cdot v_K \cdot \tan \left(\theta'_K \right)} \right) = 5173.179 \, \text{km} \\ \text{Тотда дальность полета будет равла:} \\ L_{max} := L_{Bot} + 2 \cdot l_K = 5759.621 \, \text{km} \\ \end{cases}$$

Перелет составляет $\varepsilon \coloneqq \frac{\Delta L}{L_{max}} \cdot 100 = -4.006$ $\Delta L \coloneqq L'_{max} - L_{max} = -240.379~\textbf{km}$ Погрешность составляет $\varepsilon = -4.006$ процента, поэтому дальнейшая корректировка не требуется. Рассчитанные ранее параметры ракеты принимаем за конечные.