Übungsblatt 2

Aufgabe 1 (Schichten der Referenzmodelle)

1. Tragen Sie die Namen der Schichten der Referenzmodell in die Abbildung ein.

- 2. Weisen Sie Fachbegriffe "Rahmen", "Pakete", "Segmente" und "Signale" den Schichten der Referenzmodelle in der Abbildung zu.
- 3. Warum werden die Darstellungsschicht und die Sitzungsschicht nicht intensiv verwendet?
- 4. Warum ist das hybride Referenzmodell verglichen mit dem TCP/IP-Referenzmodell näher an der Realität?

Aufgabe 2 (Übertragungsmedien)

- 1. Warum ist der Außenleiter (der Schirm) von **Koaxialkabeln** mit der Masse (Grundpotential) verbunden und umhüllt den Innenleiter vollständig?
- 2. Was ist ein **Transceiver**?
- 3. Was ist der Einsatzzweck von AUI-Kabeln?
- 4. Warum verwenden moderne Ethernet-Standards **Twisted-Pair-Kabel** mit verdrillten Signalleitungen und nicht Kabel mit parallelen Signalleitungen?
- 5. Zeigen Sie <u>rechnerisch</u>, das unabhängig von der Höhe des Störsignals die **Differenz zwischen Nutzsignal und Komplementärsignal gleich bleibt** wenn Twisted-Pair-Kabel verwendet werden. Nehmen Sie dafür an, dass ein Signal als elektrische Spannung von 0,5 V übertragen werden soll. Diese Über-

- tragung wird von einer Leitungsstörung beeinflusst, deren elektrische Spannung 0,25 V ist.
- 6. Können **Patchkabel** mit einer Pinbelegung gemäß dem Standard **T568A** in einer Computernetzwerkinfrastruktur verwendet werden, die auf dem Standard **T568B** basiert?
- 7. Warum ist es nicht möglich, **Kabel mit Schirmung** zwischen **unterschied- lichen Gebäuden** zu verlegen?
- 8. Nennen Sie einen Vorteil und einen Nachteil von Monomodefasern (Singlemodefasern) gegenüber Multimodefasern.
- 9. Nennen Sie einen Vorteil und einen Nachteil von **Multimodefasern** gegenüber Monomodefasern (Singlemodefasern).

Aufgabe 3 (Schirmung bei Twisted-Pair-Kabeln)

Die folgenden Informationen stammen von existierenden Twisted-Pair-Netzwerkkabeln. Welche Aussagen können Sie zur **Gesamtschirmung** und **Paarabschirmung** dieser Kabel machen?

- 1. E138922 RU AWM 2835 24 AWG 60°C CSA LL81295 FT2 ETL VERIFIED EIA/TIA-568A CAT.5 UTP EVERNEW G3C511
- 2. E188601 (UL) TYPE CM 75°C LL84201 CSA TYPE CMG FT4 CAT.5E PATCH CABLE TO TIA/EIA 568A STP 26AWG STRANDED
- 3. E324441 RU AWM 2835 24AWG 60°C 30V CHANGJIANG TIA/EIA 568B.2 UTP CAT.5e
- 4. SSTP ENHANCED CAT.5 350MHZ 26AWG X 4P PATCH TYPE CM (UL) C(UL) E200579 CMG CSA LL81924 3P VERIFIED
- 5. EC-net 7.5 m 11184406 13/03 PremiumNet 4 PAIR 26AWG S-FTP HF IEC 332-1 ENHANCED CATEGORY 5 PATCH CORD EN0173+ISO/IEC
- 6. (UL) E228252 TYPE CM 75°C 24AWG 4PR UTP C(UL) E228252 CMR 73°C ETL VERIFIED TIA/EIA 568B.2 CAT.5e

Aufgabe 4 (Netzwerkkabel)

Auf Netzwerkkabeln befinden sich Zeichenfolgen mit Buchstaben, Zahlen und Sonderzeichen. Deren Inhalt ist auf den ersten Blick schwer zu verstehen.

Inhalt: Themen aus Foliensatz 2+3 Seite 2 von 7

Beispiel:

E188601 (UL) TYPE CM 75° C LL84201 CSA TYPE CMG FT4 CAT.5E PATCH CABLE TO TIA/EIA 568A STP 26AWG STRANDED

- 1. Was bedeutet STRANDED?
- 2. Existieren auch Kabel, die nicht STRANDED sind?
- 3. Was bedeutet PATCH?
- 4. Existieren auch Kabel, die nicht PATCH sind?
- 5. Was ist der Unterschied zwischen PATCH-Kabeln und anderen Kabeln?
- 6. Was bedeutet die Information 24AWG oder 26AWG?
- 7. Was bedeutet die Information UL CM FT1/FT4 zusammen mit einer Gradangabe (z.B. 60°C oder 75°C)?

Aufgabe 5 (Repeater und Hubs)

- 1. Was ist der Zweck von **Repeatern** in Computernetzen?
- 2. Was ist der Hauptunterschied zwischen Repeatern und Hubs?
- 3. Warum benötigen Repeater und Hubs keine **physischen oder logischen** Adressen?
- 4. Welche **Netzwerktopologie(n)** realisieren Hubs?
- 5. Nennen Sie zwei **Vorteile**, die die Verwendung eines **Hubs** mit sich bringt, im Vergleich zur physischen Bus-Topologie.
- 6. Was ist eine Kollisionsdomäne?
- 7. Was sagt die 5-4-3-Repeater-Regel?
- 8. Warum existiert die 5-4-3-Repeater-Regel?

Aufgabe 6 (Leitungscodes)

- 1. Warum sind **Leitungscodes** in Computernetzen unverzichtbar?
- 2. Es existieren **unterschiedliche Leitungscodes**. Warum ist es nicht möglich, einen einzigen Leitungscode für alle Netzwerktechnologien zu verwenden?
- 3. Die einfachste Leitungscode ist **Non-Return-To-Zero** (NRZ). Wie ist seine Funktionsweise?
- 4. Welche beiden **Probleme** können auftreten, wenn NRZ verwendet wird, um Daten zu kodieren?

Inhalt: Themen aus Foliensatz 2+3 Seite 3 von 7

- 5. Erklären Sie die **Probleme** von Teilaufgabe 4.
- 6. Wie können die Probleme von Teilaufgabe 4 vermieden werden?
- 7. Nennen Sie mindestens 5 Leitungscodes, die 2 Signalpegel verwenden.
- 8. Nennen Sie mindestens 3 Leitungscodes, die 3 Signalpegel verwenden.
- 9. Welche Leitungscodes garantieren einen **Signalpegelwechsel** bei jedem Bit mit dem Datenwert 1?
- 10. Welche Leitungscodes garantieren einen **Signalpegelwechsel** bei jedem übertragenen Bit?
- 11. Warum garantieren nicht alle Leitungscodes einen **Signalpegelwechsel** bei jedem übertragenen Bit?
- 12. Welche Leitungscodes garantieren das die Belegung der Signalpegel **gleich-verteilt** sind?
- 13. Warum ist es für den Empfänger von Signalen, die nach der **Differentiellen Manchesterkodierung** kodiert wurden wichtig, den initialen Signalpegel zu kennen.
- 14. Was ist ein **Scrambler**?
- 15. Warum werden **Scrambler** verwendet?
- 16. Alle Leitungscodes haben Nachteile. Wie können die **Probleme vermieden** werden, die aus diesen Nachteilen resultieren?
- 17. Welcher Leitungscode bildet Gruppen von 4 Nutzdatenbits auf Gruppen von 5 Codebits ab?
- 18. Welcher Leitungscode bildet Gruppen von 5 Nutzdatenbits auf Gruppen von 6 Codebits ab?
- 19. Warum enthalten einige Leitungscodes, die Gruppen von Nutzdatenbits auf Gruppen von Codebits abbilden, Varianten mit neutrale Ungleichheit, positiver Ungleichheit und negativer Ungleichheit?

Seite 4 von 7

20. Wie wird die Effzienz von Leitungscodes berechnet?

Inhalt: Themen aus Foliensatz 2 + 3

Aufgabe 7 (Daten mit Leitungscodes kodieren)

1. Geben Sie die Kodierungen für die angegebene Bitfolge an.

Achtung: Nehmen Sie an, das der initiale Signalpegel bei NRZI und Differentieller Manchesterkodierung der Signalpegel 1 (Low Signal) ist.

Inhalt: Themen aus Foliensatz 2 + 3

- 2. Kodieren Sie die Bitfolgen mit 4B5B und NRZI und zeichnen Sie den Signalverlauf.
 - 0010 1111 0001 1010
 - 1101 0000 1001 1110

Achtung: Nehmen Sie an, das der initiale Signalpegel bei NRZI der Signalpegel 1 (Low Signal) ist.

Bezeichnung	4B	5B	Funktion	
0	0000	11110	0 hexadezimal	
1	0001	01001	1 hexadezimal	
2	0010	10100	2 hexadezimal	
3	0011	10101	3 hexadezimal	
4	0100	01010	4 hexadezimal	
5	0101	01011	5 hexadezimal	
6	0110	01110	6 hexadezimal	
7	0111	01111	7 hexadezimal	
8	1000	10010	8 hexadezimal	
9	1001	10011	9 hexadezimal	
A	1010	10110	A hexadezimal	
В	1011	10111	B hexadezimal	
C	1100	11010	C hexadezimal	
D	1101	11011	D hexadezimal	
E	1110	11100	E hexadezimal	
F	1111	11101	F hexadezimal	

- 3. Kodieren Sie die Bitfolgen mit 5B6B und NRZ und zeichnen Sie den Signalverlauf.
 - 00001 01011 11000 01110 10011
 - 11010 11110 01001 00010 01110

5B	6B	6B	6B	5B	6B	6B	6B
	neutral	positiv	negativ		neutral	positiv	negativ
00000		001100	110011	10000		000101	111010
00001	101100			10001	100101		
00010		100010	101110	10010		001001	110110
00011	001101			10011	010110		
00100		001010	110101	10100	111000		
00101	010101			10101		011000	100111
00110	001110			10110	011001		
00111	001011			10111		100001	011110
01000	000111			11000	110001		
01001	100011			11001	101010		
01010	100110			11010		010100	101011
01011		000110	111001	11011	110100		
01100		101000	010111	11100	011100		
01101	011010			11101	010011		
01110		100100	011011	11110		010010	101101
01111	101001			11111	110010		

4. Folgende Signalverläufe sind mit NRZI und 4B5B kodiert. Geben sie die Nutzdaten an.

Quelle: Jörg Roth. Prüfungstrainer Rechnernetze. Vieweg (2010)