

ATIVIDADE 01

Acadêmico: André Luis de Souza Lima		R.A. : 21150930-5
Curso: Engenharia de Software		
Disciplina: ATIVIDADE 1 - ESOFT - LÓGICA I	PARA COMP	UTAÇÃO - 51/2023
Valor da atividade: 0,50	Prazo: 06/0 23:59	3/2023 08:00 a 24/03/2023

a) Considerando o seguinte argumento dado, e suas proposições I, II e III, descreva-as em forma de simbolizações lógicas:

I)
$$c \rightarrow (n \rightarrow i);$$

II) ~ (~n
$$\vee$$
 ~j);

III) i.

Método Dedutivo

- A junção das proposições apresentadas resulta no seguinte argumento: I) \wedge II) \Rightarrow III).

- A expressão resultante será:

$$(c \to (n \to i)) \ \land \ \ {}^{\textstyle \sim} ({}^{\textstyle \sim} n \ \lor \ \ {}^{\textstyle \sim} j) \Rightarrow i.$$

- Utilizando a Lei de *De Morgan* na expressão ~ (~n v ~j), ela fica simplificada em (n \land j). Portanto, a expressão resultante para o argumento dado é:

$$(c \rightarrow (n \rightarrow i)) \land (n \land j) \Rightarrow i.$$

b) Para provar a argumentação lógica, é necessário compor as variações lógicas e verificar o resultado da expressão composta. Fica demonstrado e provado que, por meio da tabela verdade, o argumento é uma tautologia, pois sempre é verdadeiro o resultado das combinações dos valores lógicos das proposições, implicando em **i**.

$$(c \to (n \to i)) \, \wedge \, (n \, \wedge j) \to i$$

	ATIVIDADE 01 - LÓGICA COMPUTAÇÃO
	7/1/10/10/01 2001/1 201/10/10/10
400	$c \mid n \mid \lambda \mid \chi(c \rightarrow (n \rightarrow i) \mid \Lambda(n \mid \Lambda \mid \dot{\chi}) \rightarrow i$
	V V V V V V V V V V V V V O ARGUMENTO É UN
	VVVFVVVFVFFVV
	V V F V V F V F F F V V V V F TAUTOLOGÍA, CONFOR
	LEGOCIAN ELCIPIO
	V F V V V F V V V F V V V V SEQUÊNCIA 6.
	VEEVVVEVEFFFFVVF
	VEEFVVFVFFFFFVF
	VIVEXIVIVIVIVI
	FUVFFVVUVFFVFFVV
	EVFVFVUFFVUVV
	FVFFFVVFFFVF
	FFVVFVFVVFFFVVV
	FFVFFVFFVVV
	FFFVFVFFFFFVF FFFFVFVFFFFFVF
	FFFFVFVFFFFFVF
	1 1 1 1 1 3 1 2 2 5 1 4 1 6 1 ANDRÉ NOIS DE SOURA SIM