Színezett Petri-háló példa: Elosztott adatbáziskezelő

dr. Bartha Tamás

dr. Majzik István

BME Méréstechnika és Információs Rendszerek Tanszék

Az elosztott adatbáziskezelő specifikációja (1/2)

 n szerver, minden szerveren egy helyi adatbázis másolat, amit egy lokális adatbázis menedzser kezel

DBM = {
$$d_1, d_2, ..., d_n$$
}, $n \ge 3$

- Adatbázis művelet végrehajtása a rendszerben:
 - Lokális adat megváltoztatása
 - Többi adatbázis menedzser értesítése a változtatásról
 - Többi adatbázis menedzser frissít.
 - Frissítés után mindegyik visszajelez
- Adatbázis menedzserek állapota:
 - Inactive: inaktív, nincs folyamatban változtatás kezelése
 - Performing: lokálisan frissít üzenet hatására
 - Waiting: változtatás után a kiküldött értesítések nyugtázására vár

Az elosztott adatbáziskezelő specifikációja (2/2)

- Teljes rendszer állapota:
 - Active: Változtatás kezelése folyamatban
 - Passive: Változtatás kezelése befejeződött
- Értesítés a frissítésről: Üzenetekkel
 - Üzenet fejléc: küldő és fogadó (címzett) adatbázis menedzser
 - Üzenet fejlécek halmazai:

```
MES = \{(s,r) \mid s,r \in DBM \land s \neq r\} a lehetséges üzenetek halmaza Mes(s) = \sum_{r \in DBM - \{s\}} 1`(s,r) az s által küldhető üzenetek halmaza
```

Lehetséges üzenetek státusza:

Unused, Sent, Received, Acknowledged

Elosztott adatbáziskezelő modell: Deklarációk

Deklarációs mező

```
val n = 4;
color DBM = index d with 1..n;
color PR = product DBM * DBM;
fun diff(x,y) = (x<>y);
color MES = subset PR by diff;
color E = with e;
fun Mes(s) = mult'PR(1`s, DBM--1`s)
var s, r : DBM;
```

Jelentése:

$$DBM = \left\{d_1, d_2, \dots, d_n\right\}$$

$$MES = \{(s, r) \mid s, r \in DBM \land s \neq r\}$$

$$Mes(s) = \sum_{r \in DBM-\{s\}} 1'(s, r)$$

- DBM: adatbázis menedzserek
- PR: DBM párok
- MES: lehetséges üzenetek (kitől kinek fejlécek, saját magának nem küld)
- E: egyszerű token (állapotjelző)
- Mes(s): az s DBM által küldhető üzenetek (s-től kinek, saját magának nem küld)

Elosztott adatbáziskezelő modell: Rendszer komponens

Rendszerállapotok (egy e tokennel jelölhetők), kezdetben Passive hely van jelölve

Elosztott adatbáziskezelő: Adatbázis menedzserek

- Adott állapotú DBM-ek egy-egy helyen gyűjtve
- Kezdeti állapotban minden DBM inaktív; majd változtat vagy frissít

Elosztott adatbáziskezelő: Üzenetek

- Helyek: üzenet tárolók; kezdetben minden üzenet az Unused helyen
- Egy DBM a többieknek értesítőket küldi ki, összes nyugta bevárása szükséges

Elosztott adatbáziskezelő: A teljes CPN modell

- Kezdeti jelölés: Passive, Inactive és Unused helyek
- Active és Passive helyek biztosítják: Egyszerre egy DBM változtat majd várakozik

A modell animációja (CPN Tools)

Modell jellegzetességek

- Oksági viszonyok
 - Update and Send → Receive → Send Ack → Receive Ack
- Engedélyezettségek
 - Update and Send minden s lekötési elemre engedélyezett,

de csak egy tüzelhet küldőként

 Receive a Message több lehetséges (s,r) lekötési elem a fogadókra

Elérhetőségi gráf n=3 esetén

- Occurrence Graph
- Tranzíció nevek rövidítve
 - SM: Update and Send Messages
 - RM: Receive a Message
 - SA: Send an Acknowledgment
 - RA: Receive all Acknowledgments

Dinamikus tulajdonságok: Korlátosság

	Hely	Multihalmaz	Integer korlát
•	Inactive	DBM	n
•	Waiting	DBM	1
•	Performing	DBM	n - 1
•	Unused	MES	n*(n - 1)
•	Sent, Received, Acknowledged	MES	n - 1
•	Passive, Active	E	1

Dinamikus tulajdonságok: Élőség, fairség

- LivenessProperties
 - Dead markings:
 - None
 - Dead transition instances:
 - None
 - Live transition instances:
 - All

- Fairness Properties
 - Impartial transition instances:
 - Update and Send Messages
 - Receive a Message
 - Send an Acknowledgment
 - Receive all Acknowledgments
 - Fair transition instances:
 - None
 - Just transition instances:
 - None

Korábbi definíciók:

- Impartial: Elfogulatlan tranzíció: végtelen sokszor tüzel (legerősebb tulajdonság)
- Fair: Fair tranzíció: végtelen sok engedélyezés -> végtelen sok tüzelés
- Just: Igazságos tranzíció: Perzisztens engedélyezés -> tüzelés

Strukturális tulajdonságok: P-invariánsok

- M(Active) + M(Passive) = 1`e
- M(Inactive) + M(Waiting) + M(Performing) = DBM
- M(Unused) + M(Sent) + M(Received) + M(Acknowledged) = MES

- M(Performing) Rec(M(Received)) = ∅
 - Rec() függvény token leképzéshez: Rec(s,r) = r
- M(Sent) + M(Received) + M(Acknowledged) Mes(M(Waiting)) = ∅
 - Mes() függvény a token leképzéshez: Mes(s): az s DBM által küldhető üzenetek
- M(Active) Ign(M(Waiting)) = ∅
 - Ign() függvény tetszőleges színű tokent e ∈ E színű tokenre vált

P-invariáns: a rendszer állapota

M(Active) + M(Passive) = 1'e

P-invariáns: adatbázis menedzserek

M(Inactive) + M(Waiting) + M(Performing) = DBM

P-invariáns: üzenettovábbítás

M(Unused) + M(Sent) + M(Received) + M(Acknowledged) = MES

P-invariánsok "lefedik" a modellt

A modell egyik összefüggése

 $M(Sent) + M(Received) + M(Acknowledged) - Mes(M(Waiting)) = \emptyset$

A teljes CPN modell (emlékeztető)

Az üzenetkezelés "széthajtogatása" n=3 esetén

