Software engineering (IT314)

Lab9 - Mutation Testing

Name: Saroliya Gunjan

ID: 202201225

Answer-1

Answer:2

⇒ Test Cases for Statement Coverage

We want to ensure every statement in the function is executed at least once.

- 1. **Test Case 1**: $p = [\{x: 1, y: 2\}, \{x: 2, y: 3\}]$
 - Explanation: This test case ensures the first for loop is executed since p has more than one point.
- 2. **Test Case 2**: $p = [\{x: 1, y: 2\}, \{x: 2, y: 2\}, \{x: 3, y: 2\}]$
 - Explanation: This test case ensures the second for loop is executed, as there
 are points with the same y-coordinate but different x-coordinates.

⇒ Test Cases for Branch Coverage

We need to create tests that cover both outcomes of each condition.

- 1. **Test Case 1**: $p = [\{x: 0, y: 0\}, \{x: 1, y: -1\}, \{x: 2, y: 1\}]$
 - Explanation: Ensures ((Point) p.get(i)).y < ((Point) p.get(min)).y is true.
- 2. **Test Case 2**: $p = [\{x: 0, y: 0\}, \{x: 1, y: 2\}, \{x: 2, y: 3\}]$
 - Explanation: Ensures ((Point) p.get(i)).y < ((Point) p.get(min)).y is false.
- 3. **Test Case 3**: $p = [\{x: 1, y: 2\}, \{x: 2, y: 2\}, \{x: 3, y: 2\}]$
 - Explanation: Ensures ((Point) p.get(i)).y == ((Point) p.get(min)).y is true, and ((Point) p.get(i)).x > ((Point) p.get(min)).x is also true.
- 4. **Test Case 4**: $p = [\{x: 1, y: 2\}, \{x: 2, y: 3\}, \{x: 3, y: 4\}]$
 - Explanation: Ensures ((Point) p.get(i)).y == ((Point) p.get(min)).y is false

⇒ Test Cases for Basic Condition Coverage

We must ensure that every condition is tested for both true and false outcomes.

- 1. **Test Case 1**: $p = [\{x: 0, y: 0\}, \{x: -1, y: -1\}, \{x: 1, y: 1\}]$
 - Condition ((Point) p.get(i)).y < ((Point) p.get(min)).y) is both true and false in different iterations.
- 2. **Test Case 2**: p = [{x: 0, y: 0}, {x: 1, y: 0}, {x: 2, y: 0}]
 - Condition ((Point) p.get(i)).y == ((Point) p.get(min)).y) is true, and ((Point) p.get(i)).x > ((Point) p.get(min)).x) is also tested as true and false.
- 3. **Test Case 3**: $p = [\{x: 0, y: 0\}, \{x: -1, y: 0\}, \{x: 1, y: 0\}]$

Condition ((Point) p.get(i)).x > ((Point) p.get(min)).x) is both true and false.

Answer:3 Mutation Testing:

```
+ Code + Text | Copyto Drive | Complete | Copyto Drive | Completed at 4:SSPPM | Code + Text | Copyto Drive | Completed at 4:SSPPM | Code + Text | Copyto Drive | Completed at 4:SSPPM | Code + Text | Copyto Drive | Completed at 4:SSPPM | Code + Text | Copyto Drive | Code | Cod
```

Changes-1:

```
# Search for the minimum y-coordinate point
for i in range(1, len(p)):
    if p[i].y > p[min_idx].y:
        min_idx = i
```

Result:

```
FAIL: test_mixed_coordinates (__main__.TestGrahamFunction.test_mixed_coordinates)
Traceback (most recent call last):
 File "c:\Users\Hardi Naik\Desktop\SELabs\test_graham.py", line 29, in test_mixed_coordinates
   self.assertEqual(result, 3)
AssertionError: 0 != 3
FAIL: test_multiple_points (__main__.TestGrahamFunction.test_multiple_points)
Traceback (most recent call last):
 File "c:\Users\Hardi Naik\Desktop\SELabs\test_graham.py", line 14, in test_multiple_points
   self.assertEqual(result, 2)
AssertionError: 0 != 2
FAIL: test_negative_coordinates (__main__.TestGrahamFunction.test_negative_coordinates)
Traceback (most recent call last):
 File "c:\Users\Hardi Naik\Desktop\SELabs\test_graham.py", line 24, in test_negative_coordinates
   self.assertEqual(result, 2)
AssertionError: 1 != 2
FAIL: test_same_y_coordinate (__main__.TestGrahamFunction.test_same_y_coordinate)
Traceback (most recent call last):
 File "c:\Users\Hardi Naik\Desktop\SELabs\test_graham.py", line 19, in test_same_y_coordinate
   self.assertEqual(result, 2)
AssertionError: 0 != 2
Ran 5 tests in 0.001s
```

Changes-2:

```
# Continue along the values with the same y component
for i in range(len(p)):
    if p[i].y == p[min_idx].y and p[i].x < p[min_idx].x:
        min_idx = i

return min_idx</pre>
```

Result:

Changes-3:

```
for i in range(1, len(p)):
    if p[i].y >= p[min_idx].y:
        min_idx = i
```

Result:

```
FFF..

FAIL: test_mixed_coordinates (_main__.TestGrahamFunction)

Traceback (most recent call last):
    File "(ipython-input-10-091827562baf)", line 56, in test_mixed_coordinates
    self.assertEqual(result, 3)
    AssertionError: 0 |= 3

FAIL: test_multiple_points (_main__.TestGrahamFunction)

Traceback (most recent call last):
    file "(ipython-input-10-091827562baf)", line 41, in test_multiple_points
    self.assertEqual(result, 2)
    AssertionError: 0 |= 2

FAIL: test_negative_coordinates (_main__.TestGrahamFunction)

Traceback (most recent call last):
    file "(ipython-input-10-091827562baf)", line 51, in test_multiple_points
    self.assertEqual(result, 2)
    AssertionError: 1 |= 2

Ran 5 tests in 0.011s

FAILED (failures=3)
    Index of the minimum point: (2, 3)

Os completed at 5.09PM

Os completed at 5.09PM

Os completed at 5.09PM

A ENG of the minimum point: (2, 3)
```

Answer 4:

TestCase	Input Points	Path Exploration	
Test Case 1	[] (empty list)	Path with zero iterations of both loops.	
Test Case 2	[(0, 1)]	Path with one iteration of the first loop, zero iterations of the second loop.	
Test Case 3	[(0, 0), (1, 0)]	Path with two iterations of the first loop, one iteration of the second loop(two points with the same y).	
Test Case 4	[(0, 0), (1, 1), (2, 0)]	Path with two iterations of the first loop and one iteration of the second loop. It checks the condition when y is equal and x is different.	
Test Case 5	[(1, 1), (2, 2), (0, 3)]	Path with three iterations of the first loop and zero iterations of the secondloop (no points share the same y).	

- Test Case 1: Confirms that the function can process an empty input without producing errors
- Test Case 2: Verifies that the function works correctly with a single point as input.
- Test Case 3: Checks the behaviour when multiple points share the same y-value,

- activating the second loop.
- **Test Case 4:** Assesses the function's handling of varied conditions with different y and x values.
- **Test Case 5:** Ensures the function accurately finds the minimum point when no points have matching y-values.

AFTER LAB EXECUTION

Answer-1

Control flow graph factory tool = Yes

Eclipse flow graph generator = Yes

Answer-2

Test Case	Input	Expected Outcome	Coverage Achieved
TC1	[] (empty list)	Should process empty input without errors.	Statement Coverage (initial setup)
TC2	[(0, 0)]	Single point; first loop runs once, second loop is skipped.	Statement Coverage, Branch Coverage (both ifs are false)
TC3	[(1, 1), (0, 0)]	Minimum is (0, 0); tests case with two points.	Statement Coverage, Branch Coverage (first if is true, second if is false)
TC4	[(0, 1), (1, 0)]	Minimum is (1, 0); tests handling of identical y-values.	Statement Coverage, Branch Coverage (both ifs are true)
TC5	[(1, 1), (2, 2), (0, 3)]	Minimum is (1, 1); tests with multiple distinct points.	Statement Coverage, Branch Coverage (first if is true, second if is false)
TC6	[(2, 1), (2, 1), (3, 1)]	Minimum is (2, 1); tests duplicates and matching y-values.	Statement Coverage, Branch Coverage (first if is false, second if is true)

Answer-3

Mutation Type	Description	Effect of Mutation
Deletion	Remove the initialization of the min variable.	Without min initialization, accessing its value can cause undefined behavior (e.g., accessing an invalid index) if the input is empty.
Insertion	Add a line to reset the min variable after the first loop.	 Resetting min to 0 after the first loop can make the program incorrectly identify the minimum point, causing errors. Test cases may pass, but they won't confirm if min points to the correct minimum after both loops.
Modification	Change the comparison operator in the first loop from < to <=.	 Altering the comparison operator could lead to incorrect results when multiple points share the same y value. Existing test cases may pass but don't verify the impact of this change, particularly in cases with equal y values.

Answer-4

Test Case ID	Input	Expected Output	Description
TC1	p = []	Undefined behavior or error	Tests with an empty list to see how the function handles this case.
TC2	p = [(0, 1), (1, 2), (2, 3)]	Minimum point at (0, 1)	Minimum is the first element; checks if the function correctly identifies the initial minimum.
TC3	p = [(1, 2), (0, 1), (2, 3)]	Minimum point at (0, 1)	Minimum appears later in the list; tests if the function correctly updates the minimum.
TC4	p = [(1, 1), (1, 1), (1, 1)]	Minimum point at (1, 1)	All elements have the same y value; checks if the function can handle ties.
TC5	p = [(2, 2), (3, 3), (1, 1)]	Minimum point at (1, 1)	Minimum is the last element; checks if the function correctly identifies the last minimum.
TC6	p = [(2, 3), (1, 3), (0, 3)]	Minimum point at (0, 3)	Minimum is the first element with a shared y value; tests handling of cases with identical y values.