SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

ZAVRŠNI RAD br. 000

Klasifikacija prometnih znakova

Matija Pavlović

Zagreb, travanj 2023.

Umjesto ove stranice umetnite izvornik Vašeg rada.

Da bi ste uklonili ovu stranicu obrišite naredbu \izvornik.

SADRŽAJ

1.	Uvod	1
2.	Pregled postojeće literature	2
3.	Metodologija rada	3
	3.1. Prikupljanje podataka za treniranje	4
	3.2. Pretprocesiranje	5
	3.3. Augmentacija skupa podataka	6
	3.4. Treniranje modela	7
	3.5. Testna aplikacija	7
4.	Rezultati	8
5.	Budući rad	9
6.	Zaključak	10

1. Uvod

Razvoj tehnologije u automobilskoj industriji u stopu prate i sve veći zahtjevi tržišta za novim sigurnosnim značajkama te značajkama koje doprinose udobnosti korištenja vozila. Novi modeli vozila tako postaju opremljeni značajnim brojem senzora na vanjskoj strani vozila i značajnim brojem ekrana i signalnih lampica u unutrašnjosti vozila. Kada sjednemo za upravljač novijih vozila sve češće možemo primijetiti da nas vozilo upozorava na prometne znakove, primjerice ograničenja brzine, zabrane pretjecanja, znakove obaveznog zaustavljanja itd. Razmotrimo li i činjenicu da ubrzano raste i broj vozila s određenim stupnjem autonomije pri vožnji postaje jasno da su sustavi koji u stvarnom vremenu detektiraju i klasificiraju prometne znakove postali izrazito važni u razvoju novih modela vozila. Cilj ovog završnog rada je demonstracija rada jednog takvog sustava uz detaljni opis primjene, problema s kojima se sustav može suočavati u stvarnim okolnostima, te opis implementacije sustava. U sklopu rada ću razviti model strojnog učenja temeljen na dubokoj konvolucijskoj mreži, obraditi skup podataka za treniranje i testiranje modela, te programski kod koji će koristiti kameru prijenosnog računala kako bi klasificirao prometne znakove.

2. Pregled postojeće literature

3. Metodologija rada

U poglavlju metodologija rada opisati ću metode pri izradi projekta od razine prikupljanja i prilagodbe podataka za treniranje modela strojnog učenja, kreiranje samog modela, treniranje modela te naposlijetku i izradu testne aplikacije kojom se demonstrira rad sustava.

3.1. Prikupljanje podataka za treniranje

Skup podataka za treniranje odnosno *Dataset* korišten u ovom radu je je preuzet iz elektronske arhive istraživačkih radova Sveučilišta u Kopenhagenu(Electronic Research Data Archive). *Dataset* je dio *German Traffic Sign Recognition Benchmark*-a (GTSRB), a kreirali su ga Johannes Stallkamp, Marc Schlipsing, Jan Salmen, Christian Igel. Navedeni skup podataka se sastoji od 34799 slika, raspodijeljenih u 43 razreda koji predstavljaju 43 različita prometna znaka.

Slika 3.1: Raspodijela dataseta po razredima.

3.2. Pretprocesiranje

Pretprocesiranje ulaznog skupa podataka

3.3. Augmentacija skupa podataka

Kako bi iskoristivost skupa podataka za treniranje bila maksimizirana korištena je augmentacija nad ulaznim skupom. Augmentacija se provodi u sljedećem bloku programskog koda:

Gore prikazana funkcija koristi ImageDataGenerator funkciju iz keras.preprocessing.image modula. Uz navedene argumente ova metoda proširuje dataset tako što svaku sliku

- Nasumično pomiče horizontalno uz maksimalni faktor od 10% širine slike
- Nasumično pomiče vertikalno uz maksimalni faktor od 10% visine slike
- Uvečava sliku u rasponu od 0% do 20%
- Posmiče slike uz maksimalni kut posmaka od 10°
- Rotira sliku uz maksimalni kut rotacije od 10°

Slika 3.2: Prikaz augmentiranih slika.

- 3.4. Treniranje modela
- 3.5. Testna aplikacija

4. Rezultati

5. Budući rad

6. Zaključak

Zaključak.

Klasifikacija prometnih znakova

Sažetak

Sažetak na hrvatskom jeziku.

Ključne riječi: Klasifikacija, računalni vid, strojno učenje, duboko učenje, duboke neuronske mreže, konvolucijske neuronske mreže, prometni znakovi, promet, DNN, CNN, CV, ML

Traffic sign classification

Abstract

Abstract.

Keywords: Classification, Computer Vision, Machine Learning, Deep Learning, Deep Neural Networks, Convolutional Neural Networks, Traffic Signs, Traffic, DNN, CNN, CV, ML