

Faculty of Engineering and Technology School of Computer Science and Mathematics

6110COMP User eXperience Design

Andy Symons

a.symons@ljmu.ac.uk

Room 717, Byrom Street

Thomas Hughes-Roberts

t.hughesroberts@ljmu.ac.uk

Room 607b, Byrom Street

Lecture 2c – Normalised or Not?

Learning outcomes

- At the end of this session you should:
 - Understand what a normal distribution looks like.

- Be able to determine if your dataset is normally distributed.

In this session...

Data distribution

Frequency graphs

Kolmogorov-Smirnov tests for normality.

Process Overview

Normal Distribution – when?

 In order to further identify what test we can run, we need to ascertain if our data is normally distributed – assuming it is a continuous variable.

 For example, task completion is not a continuous variable but categorical and therefore we do not run a test for normality – which automatically rules out certain statistical tests.

A Normal Distribution

 Continuous data that has a symmetric distribution – a bell shape.

 Get an idea from a graphical view of the data....

Frequency Distribution

17

18

20

21

 From some sample data (worksheet provided in this weeks session), we can plot a range of interaction times.

Α	В	C	D
		DATA	
		5432	
		8438	
		4827	
		4934	
		5905	
		6345	
		6396	
		7003	
		5354	
	MAX	8438	
	MEAN	6070.44	
	MIN	4827	

However...

 Just viewing the data in this format does not lend itself well to accuracy...

 We have formal tests we can run against the data to determine its distribution.

Kolmogorov-Smirnov Test

 A test that can determine if a single sample of data is normally distributed.

Using a Hypothesis/null hypothesis testing:

H1: The data is not normally distributed.

H0: The data is normally distributed.

Using Excel

 We have provided a spreadsheet sourced online for you to run a KS test on your data.

KS Tests continued

Significant Value:

Conclusion: Data are not normally distributed

Note...

This test tends to be used on larger sample sizes.

 However, for the purposes of this module it provides a good starting point for evaluating normality.

Shapiro Wilk is a similar test that could be utilised.

Be aware...

- We will cover the statistical tests the module will deliver next week.
- For now, note that all tests have a set of assumptions that we must meet in order to utilise that particular test.
- These assumptions include (but are not limited to) the data type (nominal, ordinal etc.) and the distribution of the data.
- E.g. https://statistics.laerd.com/statistical-guides/independent-t-test-statistical-guide.php

Summary

- In this lecture, we have learned:
 - To identify normalised data.

- From the lectures this week, we should know:
 - What kind of data we have.
 - How to "treat" the data.
 - What our data distribution is.