1 Maximum Likelihood Estimator

- Consitent, asymptotic unbiased. $\hat{\theta}_n^{\text{MLE}} \xrightarrow{\mathbb{P}} \theta_0$.
- Asymptotic normal. $\sqrt{n}(\hat{\theta}_n^{\text{MLE}} \theta_0) \stackrel{\mathcal{D}}{\rightarrow}$ $\mathcal{N}(0, I_n), I_n(\theta_0) = \mathbb{E}[-\dot{s}_{\theta}] = \mathbb{E}[s_{\theta}s_{\theta}^{\top}]$ fisher info, $s_{\theta}(x) = \partial_{\theta} \ln p_{\theta}(x)$ score func, $\mathbb{E}_{\theta} s_{\theta} = 0$.
- Asymptotic efficient. $\hat{\theta}_n^{\text{MLE}}$ reaches CRLB when $n \to \infty$. $\hat{\theta}^{\text{MLE}}$ not efficient if n finite. Stein estimator always better.
- Equivariance, if $\hat{\theta}_n$ is MLE, $\hat{\gamma} = g(\hat{\theta}^{\text{MLE}})$ is MLE of $\mathcal{L}(g^{-1}(\gamma))$. Proof by optimally of MLE. Cramer-Rao lower bound (CRLB): for any unbiased $\hat{\theta}$ of θ_0 , $\mathbb{E}(\hat{\theta} - \theta_0)^2 \ge 1/I_n(\theta_0)$ Proof: $Cov[s_{\theta}, \hat{\theta}] = \mathbb{E}[s_{\theta} \cdot \hat{\theta}] = \partial_{\theta} \mathbb{E}[\hat{\theta}] =$ $\partial_{\theta}\theta = 1$. Cauchy-Schwarz $Cov^{2}[s_{\theta}, \hat{\theta}] \leq$ $Var[s_{\theta}]Var[\hat{\theta}] = I_n(\theta)\mathbb{E}(\hat{\theta} - \theta_0)^2 \text{ QED.}$ However, when dimension of problem goes to

infinity while data-dim ratio is fixed, MLE is

biased and the *p*-values are unreliable.

2 Regression

Bias-Variance trade-off

 \mathcal{D} training dataset, \tilde{f} predictive function. $\mathbb{E}_D \mathbb{E}_{Y|X}(\hat{f}(X) - Y)^2 = \mathbb{E}_D(\hat{f}(x) - \mathbb{E}_D \hat{f}(x))^2 +$ $\left(\mathbb{E}_{D}\hat{f}(x) - \mathbb{E}(Y \mid X)\right)^{2} + \mathbb{E}_{D}(\mathbb{E}(Y \mid X) - Y)^{2} =$ Model Variance + Bias² + Intrinsic Noise. The optimal trade-off is achieved by avoiding under-fitting (large bias) and over-fitting (large variance). Note that here the variance of output is computed by refitting the regressor

on a new dataset. Regularization

Ridge and Lasso can be viewed as MAP estimation with a prior on β . Ridge = Gaussian Prior and LASSO = Laplacian prior. Using SVD, we get Ridge has built-in model selection: $X\beta^{\text{Ridge}} = \sum_{i=1}^{d} [d_i^2/(d_i^2 + \lambda)] u_i u_i^T Y$ (each 1. Probabilistic Generative, modeling p(x,y): $u_i u_i^T Y$ can be viewed as a model). Lasso has more sparse estimations because the gradient of regularization does not shrink as Ridge.

3 BLR and GP

Bayesian Linear Regression

 $Y = X\beta + \epsilon \sim \mathcal{N}(0, \sigma^2)$. Prior $\beta \sim \mathcal{N}(0, \Lambda^{-1})$. 3. Discriminative, modeling y = f(x): (1) no Posterior $\beta | X, Y \sim \mathcal{N}(\mu_{\beta}, \Sigma_{\beta}), \Sigma_{\beta} = (\sigma^{-2} X^T X +$ Λ)⁻¹, $\mu_{\beta} = \sigma^2 \Sigma_{\beta} X^T Y$.

Gaussian Process

 $Y = \begin{pmatrix} Y_0 \\ Y_1 \end{pmatrix}$ is the combination of observed and prediction value. Assume a Gaussian prior of $\mathcal{N}(0, K + \sigma^2 I)$, where $K_{ij} = k(x_i, x_j)$ is kertion family and (2) infer param by MLE.

nel. GP regression is the conditional/Posterior distribution on Y_0 , $\mathbb{E}[Y_1|Y_0] = K_{10}(\sigma^2 I_0 +$ $(K_{00})^{-1}Y_0$, $Cov[Y_1] = \sigma^2I_1 + K_{11} - K_{10}(\sigma^2I_0 + I_0)$ $(K_{00})^{-1}K_{01}$. Bayesian LR is a special case of GP with linear kernel $k(x, y) = x^{\top} \Lambda^{-1} y$.

Kernel Function

A function is a kernel iff (1) symmetry k(x,x') = k(x',x) and (2) semi-positive definite $\int_{\Omega} k(x,x')f(x)f(x')dxdx' \ge 0$ for any $f \in L_2$ and $\Omega \in \mathbb{R}^d$ (continuous) or $K(X) \geq 0$ (discrete). The latter is equivalent to (1) $a^{\top}Ka \ge$ $0, \forall a \text{ or } (2) k(x, x') = \phi(x)^T \phi(x') \text{ for some } \phi.$

Kernel Construction

If $k_{1,2}$ are valid kernels, then followings are valid: (1) $k(x, x') = k_1(x, x') + k_2(x, x')$. (2) k(x, x') = $k_1(x,x') \cdot k_2(x,x')$. Proof: expand by Mercer's thm. (3) $k(x, x') = ck_1(x, x')$ for constant c > 0. (4) $k(x,x') = f(k_1(x,x'))$ if f is a polynomial with positive coefficients or the exp. Proof: polynomial can be proved by applying the product, positive scaling and addition. Exp can be proved by taking limit on the polynomial. (5) $k(x,x') = f(x)k_1(x,x')f(x')$. (6) $k(x, x') = k_1(\phi(x), \phi(x'))$ for any function ϕ .

Example: RBF kernel $k(x,y) = e^{-||x-y||^2/2\sigma^2} =$ $e^{-\|x\|^2/2\sigma^2} \times e^{x^T y/2\sigma^2} \times e^{-\|y\|^2/2\sigma^2}$ is valid. (1) $x^T y$ linear kernel is valid (2) then $\exp(\frac{1}{\sigma^2}x^Ty)$ is valid, (3) let $f(x) = \exp(-\frac{1}{2\sigma^2}||x||^2)$, by rules f(x)k(x, y)f(y) RBF is valid.

Mercer's Theorem: Assume k(x, x') is a valid kernel. Then there exists an orthogonal basis e_i and $\lambda_i \geq 0$, s.t. $k(x, x') = \sum_i \lambda_i e_i(x) e_i(x')$.

4 Linear Methods for Classification **Concept Comparison**

- (1) can create new samples, (2) outlier detection, (3) probability for prediction, (4) high computational cost and (5) high bias.
- 2. Probabilistic Discriminative, modeling $p(y \mid$ x): (1) probability for prediction, (2) medium computational cost and (3) medium bias.
- probability for prediction, (2) low computational cost and (3) low bias.

Infer p(x, y) for classification problems

Use $p(x,y) = p(y)p(x \mid y)$. Since y has finite states, model p(y) and p(x | y) for different y. The modeling requires to (1) guess a distribu-

Compute $p(y \mid x)$ by discriminant analysis (DA)

Linear DA Assumption: classify a sample into two Gaussian distribution with Σ_0 = Σ_1 . After calculation, $p(y = 1 \mid x) = 1/(1 + x)$ $\exp(-\log \frac{p(x|y=1)p(y=1)}{p(x|y=0)p(y=0)})) = 1/(1 + \exp(w_1^T x + w_0))$ since the quadratic term is eliminated due to $\Sigma_0 = \Sigma_1$.

Quadratic DA Assumption: classify a sample into two Gaussian distribution with $\Sigma_0 \neq$ Σ_1 . After calculation, $p(y = 1 \mid x) = 1/(1 + x)$ $\exp(x^T W x + w_1^T x + w_0)$.

Optimization Methods

Optimal Learning Rate for Gradient Descent Goal: find $\eta^* = \operatorname{argmin}_{\eta} L(w^k - \eta \cdot \nabla L(w^k))$.

By Taylor expansion of $L(w^{k+1})$ at w^k and

solve for the optimal η , we get $\eta^* =$ $\|\nabla L(w^k)\|^2/(\nabla L(w^k)^T H_L(w^k)\nabla L(w^k)).$

Cons of naive gradient descent: (1) zig-zag behavior, especially in a very narrow, long and slightly downward valley; (2) gradient update is small near the stationary point. Mitigated by adding momentum into upda te, $w^{k+1} = w^k - \eta \nabla L(w^k) + \mu^k (w^k - w^{k-1})$, this speeds update towards "common" direction. Newton's Method

Taylor-expand L(w) at w_k to derive the optimal w^{k+1} : $L(w) \approx L(w^k) + (w - w^k)^T \nabla L(w^{\bar{k}}) +$ $\frac{1}{2}(w-w^k)^T H_I(w^k)(w-w^k) \implies w^{k+1} = w^k H_I^{-1}(w^k)\nabla L(w^k)$.

Pros: (1) better updates compared to GD since it uses the second Taylor term and (2) does not require learning rate.

Cons: requires H_I^{-1} which is expensive.

Bayesian Method

In most cases, the posterior is intractable. Use approximation of posterior instead.

Laplacian Method

Idea: approximate posterior near the MAP estimation with a Gaussian distribution. $p(w \mid$ $(X,Y) \propto p(w,X,Y) \propto \exp(-R(w))$, where R(w) = $-\log p(w, X, Y)$. Let $w^* = \operatorname{argmin} R(w)$ be the MAP estimation and Taylor-expand R(w) at w^* : $R(w) \approx R(w^*) + \frac{1}{2}(w - w^*)^T H_R(w^*)(w - w^*)^T H_R(w^*)$ w^*). Therefore, $p(w \mid X, Y) \propto \exp(-R(w^*) - R(w^*))$ $\frac{1}{2}(w-w^*)^T H_R(w^*)(w-w^*)$ and thus (w $(X,Y) \sim \mathcal{N}(w^*, H_p^{-1}(w^*)).$ AIC & BIC

• Define BIC = $k \log N - 2 \log \hat{L}$, where k is #parameters and \hat{L} is the likelihood $p(x \mid w^*)$. A lower BIC means a better model.

• Define AIC = $2k - 2\log \hat{L}$. A lower AIC means a better model.

LDA by loss minimization

Perceptron for $y_i \in \{0, 1\}$, find w, s.t. $y_i w^T x_i > 1$ 0 for any i. Prediction is $c(x) = \operatorname{sgn}(w^T x)$. $LossL(y,c(x)) = min\{0,-yw^Tx\}.$ By GD $w^{(k+1)} \leftarrow w^{(k)} + \eta(k) \sum_{i \text{ wrong }} y_i x_i$, Perceptron will converge if (1) data linearly separable, (2) learning rate $\eta(k) > 0$, (3) $\sum_{k} \eta(k) \to +\infty$ and (4) $(\sum_k \eta(k)^2)/(\sum_k \eta(k))^2 \to 0$. However, multiple solutions permitted if data linearly separable, solution unstable. Fisher's LDA

Idea: project the two distribution into one dimension and maximize the ratio of the variance between the classes and the variance within the classes, i.e., $\max(w^T u_1 - w^T u_0)^2 / (w^T S w)$, where $S = \Sigma_0 + \Sigma_1$. Let gradient be zero and solve for w^* , we get $w^* \propto S^{-1}(u_1 - u_0)$.

We first compute w^* and fit distributions of the two-class projection. Then apply Bayesian decision theory to make classification.

5 Optimization with Constraint

Problem $\min_{x} f(x)$ s.t. $g_{i \in [I]}(x) \leq 0$ and $h_{i \in [I]}(x) = 0$. Solve it with **KKT Cond**: (1) Stationary $\nabla f + \sum_{i} \lambda_{i} \nabla g_{i} + \sum_{i} \mu_{i} \nabla h_{i} = 0$, (2) $h_i(x) = 0$, (3) primal feasibility $g_i(x) \le 0$, (4) dual feasibility $\lambda_i \geq 0$, (5) complementary slackness $\lambda_i g_i(x) = 0$.

Weak Duality: Lagrangian $L(x, \lambda, \mu) = f(x) +$ $\lambda^{\top} g(x) + \mu^{\top} h(x), \lambda > 0$. Dual function $F(\lambda, \mu) :=$ $\min_{x} L(x, \lambda, \mu)$. Denote \tilde{x} optima of original problem, then $\lambda^{\top} g(\tilde{x}) + \mu^{\top} h(\tilde{x}) \leq 0, \forall \lambda, \mu$, $F(\lambda, \mu) = \min_{x} L(x, \lambda, \mu) \le L(\tilde{x}, \lambda, \mu) \le f(\tilde{x}) =$ $\min_{x,h(x)=0,g(x)\leq 0} f(x)$

Strong Duality in Convex Optimization

If **Slater's cond** (1) f convex (2) g convex (3) h linear (4) $\exists \overline{x}$ s.t. $g_i(\overline{x}) < 0$ and $h_i(\overline{\mathbf{x}}) = 0$, then Strong Duality $\max_{\lambda,\mu} F(\lambda,\mu) =$ $\min_{x,h(x)=0,g(x)\leq 0} f(x)$ holds.

6 Support Vector Machine Linear Separable Case

s.t. $(\alpha_i \ge 0) \land (\sum_i \alpha_i y_i = 0)$

Primal: $\max_{w,b} \left\{ \frac{1}{\|w\|} \min_i y_i(w^\top x_i + b) \right\} \Leftrightarrow$ $\max_{w,b,t} t \text{ s.t. } \forall i,t \leq y_i(w^\top x_i + b) \text{ and } ||w|| = 1$ $\Leftrightarrow \min_{w,b} \frac{1}{2} w^2 \text{ s.t. } \forall i, 1 \leq y_i (w^\top x_i + b)$ (1) KKT cond: $\forall i, \alpha_i \geq 0, (1 - y_i(w^{\top}x_i + b)) \leq$ $0, \alpha_i(1 - y_i(w^{\top}x_i + b)) = 0$ (2) **Dual**: $\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i}, x_{j})$

Non-separable Case

Introduce slack variables $\xi_i := \max\{1 - 1\}$ $y_i(w^{\top}x_i + b), 0\} = [1 - y_i(w^{\top}x_i + b)]_+ \text{ into loss.}$ **Primal**: $\min_{w,h} \frac{1}{2} w^2 + C \sum_i \xi_i = \min_{w,h} \frac{1}{2} w^2 +$ $C[1-y_i(w^{\top}x_i+b)]_+$. Hinge loss $[1-x]_+$.

Equivalent form: $\min_{w,b} \frac{1}{2}w^2 + C\sum_i \xi_i$ s.t. $y_i(w^{\top}x_i + b) \ge 1 - \xi_i \text{ and } \xi_i \ge 0.$

Dual: $\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i}, x_{j})$ s.t. $\sum_i \alpha_i y_i = 0$ and $0 \le \alpha_i \le C$.

Multi-class SVM

 $\begin{aligned} & \min_{w = [w_{0:K-1}], b = [b_{0:K-1}]} \frac{1}{2} ||w||^2 + \sum_i C\xi_i \text{ s.t. } \xi_i \geq 0 \\ & \text{and } (w_{v_i}^{\top} x + b_{v_i}) - (w_v^{\top} x + b_v) \geq 1 - \xi_i, \forall y \neq y_i \end{aligned}$

Structural SVM

y is structured, e.g. trees, maximum margin between y_i, y_j depends on their similarity, so the condition changes to $w^{\top}\Psi(x_i,y_i)$) – $w^{\top}\Psi(x_i,y) \geq \Delta(y_i,y) - \xi_i, \forall y \neq y_i.$

7 Ensemble

Bagging Each bagged estimator have bias $\beta = \mathbb{E}(y - b(x))^2$, variance $\sigma^2 = \text{Var}b(x)$ covariance $\rho^2 = \text{Cov}(b(x), b'(x))/\sigma^2$. Then $\mathbb{E}(y - y)$ $\sum_{m} b^{(m)}(x)/M)^2 = \beta^2 + \sum_{m} \mathbb{E}(\beta - b^{(m)}(x))^2/M^2 =$ $\beta^2 + \sigma^2/M + \sigma^2 \rho^2 (1 - 1/M)$. In class we assume $\rho = 0$. Anyway Bagging reduces variance. Random Forest is a case of Bagging. Bagging induces implicit regularization.

Adaboost Initial $w_i^{(0)} = 1/n$. For $t \in [M]$, (1) train $f_t(x) = \operatorname{argmin}_{b(x)} \sum w_i^{(t)} \mathbb{I}_{\{v_i \neq b(\mathbf{x}_i)\}}$ (2) error $\epsilon_t =$ $(\sum w_i^{(t)} \mathbb{I}_{\{y_i \neq f_t(x_i)\}}) / \sum w_i^{(t)}$ (3) estimator weight $\alpha_t =$ $\log(\frac{1-\epsilon_t}{\epsilon_t})$ (4) data weight $w_i^{(t+1)} = w_i^{(t)} e^{\alpha_t \mathbb{I}_{\{y_i \neq f_t(\mathbf{x}_i)\}}}$

Prediction $\hat{c} = \operatorname{sgn}(\sum_{t=1}^{M} \alpha_t f_t(\mathbf{x}))$

Gradient Boosting Initial $f_0(x) = 0$. For $t \in [M]$, (1) train $(\alpha_t, b^{(t)}) \leftarrow \operatorname{arg\,min}_{\alpha > 0, b \in \mathcal{H}}$ $\sum_{i=1}^{n} L(y_i, \alpha b(x_i) + f_{t-1}(x_i))$ (2) update function $f_t(x) \leftarrow \alpha_t b^{(t)}(x) + f_{t-1}(x)$. Prediction $\hat{c}(x) =$ $\operatorname{sgn}(f_M(x))$. Adaboost is GB with $L(y, \hat{y}) = e^{-yy}$.

8 Generative Models

$$\begin{array}{lll} \mathbf{ELBO} & \ln p(y) &= & \ln \int p(y \mid \theta) p(\theta) d\theta \\ \ln \mathbb{E}_{\theta \sim q} \left[p(y \mid \theta) \frac{p(\theta)}{q(\theta)} \right] &\geq & \mathbb{E}_{\theta \sim q} \left[\ln \left(p(y \mid \theta) \frac{p(\theta)}{q(\theta)} \right) \right] \\ \mathbb{E}_{\theta \sim q} [\ln p(y \mid \theta)] - KL(q || p(\cdot)) \end{array}$$

VAE Goal: Find a latent representation z of x with simple prior $p_{\theta}(z)$. Problem: $p_{\theta}(x) =$ $\mathbb{E}_{\theta} p(x|z)$ intractable. Solution: use encoder net $q_e(x|z)$ and $q_d(z|x)$ to model conditional and posterior prob.

ELBO for VAE training loss $l = \sum \ln (p_{\theta}(x_i))$

$$\ln\left(p_{\theta}\left(x_{i}\right)\right) = \underset{Z \sim q_{\phi}\left(z|x_{i}\right)}{\mathbb{E}}\left[\ln p_{\theta}\left(x_{i}\right)\right] = \mathbb{E}_{Z}\left[\ln$$

$$\begin{aligned} & \frac{p_{\theta}(x_{i} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x_{i})} \end{bmatrix} = \mathbb{E}_{Z} \left[\ln \frac{p_{\theta}(x_{i} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x_{i})} \frac{q_{\phi}(z \mid x_{i})}{q_{\phi}(z \mid x_{i})} \right] \\ &= \mathbb{E}_{Z} \left[\ln p_{\theta}(x_{i} \mid z) \right] - \mathbb{E}_{Z} \left[\ln \frac{q_{\phi}(z \mid x_{i})}{p_{\theta}(z)} \right] + \mathbb{E}_{Z} \left[\ln \frac{q_{\phi}(z \mid x_{i})}{p_{\theta}(z)} \right] \end{aligned}$$

$$\frac{q_{\phi}(z \mid x_i)}{p_{\theta}(z \mid x_i)} = \underbrace{\mathbb{E}_Z \left[\ln p_{\theta}(x_i \mid z) \right] - \text{KL} \left(q_{\phi}(z \mid x_i) || p_{\theta}(z) \right)}_{\text{E}_{\theta \mid X} f(x \mid \theta)} \text{Finally, replace posterior with MC sampling:} \underbrace{\mathbb{E}_{\theta \mid X} f(x \mid \theta) \approx \sum_{i \in \mathcal{E}_{\theta}} f(x \mid \theta_i) / N}_{\text{E}_{\theta \mid X} f(x \mid \theta)}$$

+ KL $(q_{\phi}(z|x_i)||p_{\theta}(z|x_i)) \ge$ ELBO. Generative Adversarial Network: Generator G and Discriminator D. Optimize $\min_{G} \max_{D} V(D,G)$ where V(D,G) = $\mathbb{E}_{x \sim p_{\text{data}}(x)}[\ln D(x)] + \mathbb{E}_{z \sim p_z(z)}[\ln(1 - D(G(z)))]$

9 Convergence of SGD, Robbins-Monro

Loss gradient $\ell(\cdot)$, SGD update $z^{(t)} \leftarrow \ell\theta^{(t)} +$ $\gamma^{(t)} \cdot \theta^{(t+1)} \leftarrow \theta^{(t)} - \eta(t) z^{(t)}, \gamma^{(t)}$ noise. Problem: Whether $\theta^{\infty} \to \arg_{\theta^*} \mathbb{E}[\ell(\theta^*)] \triangleq 0$? Assume: (1) $\mathbb{E}[\gamma] = 0$, (2) $\mathbb{E}[\gamma^2] = \sigma$ (3) $(\theta - \theta^*)\ell(\theta) > 0, \forall \theta \neq \theta^*$ (4) $\exists b, \ell(\theta) < b, \forall \theta$. If $(1) \eta^{(t)} \to 0 (2) \sum \eta(t) = \infty (3) \sum \eta^2(t) < \infty,$

then $\mathbb{P}\left(\theta^* = \theta^{(t)}\right) \xrightarrow[t \to \infty]{} 1$.

Proof: $\mathbb{E}[(\theta^{(t+1)} - \theta^*)^2] = \mathbb{E}[((\theta^{(t)} - \theta^*) - \eta(t)l(\theta^{(t)}) - \theta^*)]$ $\eta(t)\gamma^{(t)}$]. $\gamma^{(t)}$ independent with $\theta^{(t)}$, $\ell(\theta^{(t)})$, so LHS = $\mathbb{E}[(\theta^* - \theta^{(t)})^2] - 2\eta(t)\mathbb{E}[\ell(\theta^{(t)})(\theta^* - \theta^{(t)})] +$ $\eta^2(t)(\mathbb{E}[\ell^2(\theta^{(t)})] + \mathbb{E}[\gamma^2(t)]) \leq \mathbb{E}[(\theta^* - \theta^{(0)})^2] 2\sum_{i < t} \eta(i) \mathbb{E}[\ell(\theta^{(i)})(\theta^* - \theta^{(i)})] + \sum_{i < t} \eta^2(i) (b^2 + \sigma^2)$ Since $0 \le \mathbb{E}[(\theta^* - \theta^{(t+1)})^2] < -\infty, 0 =$ $\lim_{i \to \infty} \mathbb{E}[\ell(\theta^{(i)})(\theta^* - \theta^{(i)})] = \lim_{i \to \infty} \mathbb{P}(\theta^* = \theta^{(i)}) \mathbb{E}[\ell(\theta^{(i)})$ $(\theta^* - \theta^{(i)})|\theta^* = \theta^{(i)}| + \mathbb{P}(\theta^* \neq \theta^{(i)})\mathbb{E}[\ell(\theta^{(i)})(\theta^* - \theta^{(i)})]$ $\theta^{(i)}|\theta^* \neq \theta^{(i)}|$, $\lim_{i \to \infty} \mathbb{P}\left(\theta^* \neq \theta^{(i)}\right) = 0$

10 Non-parametric Bayesian Inference (BI) **Exact Conjugate Prior of Multivariate Gaussian**

Data: $x_i \sim \mathcal{N}(\mu, \Sigma)$ i.i.d.. Inverse Wishart: $\Sigma \sim$ $W^{-1}(S, v) \propto |\Sigma|^{(v+p+1)/2} \exp(-\text{Tr}(\Sigma^{-1}S)/2).$

Normal Inverse Wishart jugate prior: $p(\mu, \Sigma | m_0, k_0, v_0, S_0)$ $\mathcal{N}(\mu|m,\Sigma/k_0)\mathcal{W}^{-1}(\Sigma|S_0,v_0).$

Update rule: $m_p = (k_0 m_0 + N \bar{x})/(k_0 + N), k_p =$ $k_0 + N$, $v_p = v_0 + N$, $S_p = S_0 + k_0 m_0 m_0^{\top} - k_p m_p m_p^{\top} +$ $\sum (x_i - \overline{x})(x_i - \overline{x})^{\top}$.

BI with Semi-Conjugate Prior

New prior: $\mu \sim \mathcal{N}(m_0, V_0)$, $\Sigma \sim \mathcal{W}^{-1}(S_0, v_0)$, then posterior $p(\mu, \Sigma | X)$ is intractable, but condition posterior is exact, $p(\mu|\Sigma,X) = \mathcal{N}(m_p,V_p)$, Expect # of Class $\sum_{i=1}^n \frac{\alpha}{\alpha+i-1} \sim eq\alpha \log\left(1+\frac{n}{\alpha}\right)$

 $V_p^{-1} = V_0^{-1} + N\Sigma^{-1}$, $V_p^{-1}m_p = V_0^{-1}m_0 + N\Sigma^{-1}\bar{x}$; (2) Stick-breaking Construction samples π : $p(\Sigma|\mu,X) = \mathcal{W}^{-1}(S_p,v_p), \ v_p = v_0 + N, \ S_p = S_0 + \beta_k \sim \text{Beta}(1,\alpha), \ \theta_k^* \sim H, \ \pi_k = \beta_k \prod_{l=1}^{k-1} (1-\beta_l)$ $\sum x_i x_i^{\top} + N \mu \mu^{\top} - 2N \overline{x} \mu^{\top}$.

Gibbs sampling: random variable $p(z_1, \dots, z_n)$ intractable, cyclically resample z_i according to tractable conditional distribution $p(z_i|z_{/i})$ *n* times, when $n \to \infty$, $(z_1, \dots, z_p) \sim p(z_1, \dots, z_p)$ $\mathbb{E}_{\theta|X} f(x|\theta) \approx \sum f(x|\theta_i)/N$

BI for Gaussian Mixture Model

Data model: latent K class variable $z_i \sim \operatorname{Cat}(\pi)$, • Algorithm $\mathcal A$ can learn $c \in C$ if there is a observed $x_i \sim \mathcal{N}(\mu_{z_i}, \Sigma_{z_i})$. Prior: $\mu_k \sim \mathcal{N}(m_0, V_0)$, $\Sigma_k \sim \mathcal{W}^{-1}(S_0, v_0), \ \pi \sim \text{Dir}(\alpha) \propto \prod_{k}^K p_{k}^{\alpha_k - 1}.$ Prior also intractable.

Goal Gibbs sampling for BI, but to simplify conditional distribution.

d-seperation: for verifying conditional independence. Given with observed variable set C. if every path from variable A to B is blocked on probability graph, then A and B are independent condition on C. By this thm: (1) z_i , z_i (2) μ , π (3) Σ , π all independent condition on other parameter. Sampling procedure: (1) $z^{(t)} \leftarrow p(\cdot|x, \mu^{(t-1)}, \Sigma^{(t-1)}),$ (2) $\mu^{(t)} \leftarrow$ $p(\cdot|x, \Sigma^{(t-1)}, z^{(t)}), (3) \Sigma^{(t)} \leftarrow p(\cdot|x, \mu^{(t)}, z^{(t)}), (4)$ $\pi^{(t)} \leftarrow p\left(\cdot|x,z^{(t)}\right)$

BI for Non-Parametric GMM

Goal: sample from infinite categorical distri. Dirichlet Process (DP): Θ parameter space, H prior distri on Θ , A_1, \dots, A_r arbitrary partition of Θ . G a categorical distribution over $\{A_i\}$ is $G \sim DP(\alpha, H)$ if $(G(A_1),\ldots,G(A_r))\sim \operatorname{Dir}(\alpha H(A_1),\ldots,\alpha H(A_r)).$

Posterior: $G|\{\theta_i\}_{i=1}^n \sim DP\left(\alpha + n, \frac{\alpha H + \sum_{i=1}^n \delta_{\theta_i}}{\alpha + n}\right)$

Condition on θ , Margin over $G: \theta_{n+1}$ $\theta_1, \dots, \theta_n \sim \frac{1}{\alpha + n} \left(\alpha H + \sum_{i=1}^n \delta_{\theta_i} \right)$, Leads to CRP

Three Methods of Sampling from DP

In $K \to \infty$ GMM, θ in DP is z, G is π . (1) Chinese Restaurant Process (CRP), sample z, marginalize over π :

 $p(z_n = k | \theta_{i < n}) = \begin{cases} n_k / (\alpha + n - 1), \text{ existing } k \\ \alpha / (\alpha + n - 1), \text{ new } k \end{cases}$

(3) Marginalize over μ , Σ when sampling z (if intractable), less variance (Rao-Blackwall).

Exchangeability: $p(\{\theta_i\}) = \prod_{n=1}^{N} p(\theta_n | \{\theta_{i < n}\})$ unchanged after permuting sampling order.

DeFinetti's Thm any exchangeable distri is a mixture model $P(\{\theta_i\}) = \prod_{i=1}^n G(\theta_i) dP(G)$

11 PAC Learning

- poly(.,.), s.t. for (1) any distri \mathcal{D} on \mathcal{X} and (2) $\forall \epsilon \in [0, 1/2], \delta \in [0, 1/2], \mathcal{A} \text{ outputs } \hat{c} \in \mathcal{H} \text{ gi-}$ ven a sample of size at least poly $(\frac{1}{6}, \frac{1}{\delta}, \text{size}(c))$ s.t. $P(\mathcal{R}(\hat{c}) - \inf_{c \in C} \mathcal{R}(c) \le \epsilon) \ge 1 - \delta$.
- A is called an efficient PAC algorithm if it runs in polynomial of $\frac{1}{6}$ and $\frac{1}{8}$.
- C is (efficiently) PAC-learnable from H if there is an algorithm A that (efficiently) learns C from \mathcal{H} .
- VC inequality: $\mathcal{R}(\hat{c}_n^*) \mathcal{R}(c^*) \leq$ $2 \sup_{c \in \mathcal{C}} |\hat{\mathcal{R}}_n(c) - \mathcal{R}(c)|.$
- $|\mathcal{C}| < \infty$, feasible case $\min_{c \in \mathcal{C}} \mathcal{R}(c) =$ 0, $P\{\mathcal{R}(\hat{c}_n^{\star}) > \epsilon\} \leq |\mathcal{C}| \exp(-n\epsilon)$. Proof $\mathbf{P}\{\mathcal{R}(\hat{c}_n^{\star}) > \epsilon\} \leq \mathbf{P}\{\max_{c \in \mathcal{C}: \hat{\mathcal{R}}_{\cdot \cdot \cdot}(c) = 0} \mathcal{R}(c) > \epsilon\} =$ $\mathbb{E}\{\max_{c\in\mathcal{C}}\mathbb{I}_{\{\hat{\mathcal{R}}_{v}(c)=0\}}\mathbb{I}_{\{\mathcal{R}(c)>\epsilon\}}\} \leq \sum_{c\in\mathcal{C}:\mathcal{R}(c)>\epsilon}\mathbf{P}\{$ $\hat{\mathcal{R}}_n(c) = 0$ $\leq |\mathcal{C}| \exp(-n\epsilon)$
- VC dim: max n s.t. $s(A, n) = 2^n$. Growth function(shattering num) s(A, n) is the maximum number of concept class a hypothesis space can express. $s(A, n) \leq \sum_{i=0}^{V_A} {n \choose i}$
- $|\mathcal{C}| < \infty$, infeasible, $\mathbf{P}(\mathcal{R}(\hat{c}_n^*) \inf_{c \in \mathcal{C}} \mathcal{R}(c) >$ $|\epsilon| \le 2|\mathcal{C}| \exp(-2n\epsilon^2)$ is PAC-learnable. Proof $\mathcal{D}^m(\{S: \exists h \in \mathcal{H}, |L_S(h) - L_{\mathcal{D}}(h)| > \epsilon\}) \leq$ $\sum_{h\in\mathcal{H}}\mathcal{D}^m(\{S:|L_S(h)-L_{\mathcal{D}}(h)|>\epsilon\})$, Hoeffiding $\mathbb{P}[|L_S(h) - L_D(h)| > \epsilon] \le 2 \exp(-2m\epsilon^2).$

A Appendix

 $\frac{\partial}{\partial \Sigma} \log |\Sigma| = \Sigma^{-T}$. $\frac{\partial \overrightarrow{u}^T \overrightarrow{v}}{\partial x} = \frac{\partial \overrightarrow{u}}{\partial x} \overrightarrow{v} + \frac{\partial \overrightarrow{v}}{\partial x} \overrightarrow{u}.$

 $\frac{\partial A \overrightarrow{u}}{\partial x} = \frac{\partial \overrightarrow{u}}{\partial x} A^T$.

 $(2\pi)^{-d/2}|\Sigma|^{-1/2}\exp(-\frac{1}{2}(x-1))$ $\mathcal{N}(\mu, \Sigma) =$ $\mu^{T} \Sigma^{-1} (x - \mu)$.

Gaussian conditional: $\mathbb{E}[y_2|y_1] = \mu_2 +$ $\Sigma_{21}\Sigma_{11}^{-1}(y_1 - \mu_1)$, $Cov[y_2 \mid y_1] = \Sigma_{22} \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}$.