Improved Plantard Arithmetic for Lattice-based Cryptography In TCHES2022, Issue 4

Junhao Huang¹, Jipeng Zhang², Haosong Zhao¹, Zhe Liu^{2,3}, Ray C. C. Cheung⁴, Çetin Kaya Koç^{5,2}, Donglong Chen^{1*}

¹Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College ²Nanjing University of Aeronautics and Astronautics ³Zhejiang Lab ⁴City University of Hong Kong ⁵University of California Santa Barbara

August 17, 2022

Results

- Introduction
- 2 Improved Plantard Arithmetic
- 3 Optimized Implementation on Cortex-M4
- 4 Results and Comparisons
- **6** Conclusions and Future Work

- 1 Introduction

 Kyber and NTTRU

 NTT and Modular Arithmetic
- 2 Improved Plantard Arithmetic
- 3 Optimized Implementation on Cortex-M4
- 4 Results and Comparisons
- **5** Conclusions and Future Work

Kyber and NTTRU

Kyber

- One of the third-round KEM finalists (The final KEM scheme to be standardized).
- Module-LWE problem $(\mathbf{A}, \mathbf{b} = \mathbf{A}^T \mathbf{s} + \mathbf{e})$.
- The IND-CCA secure KEM protocols are obtained from the IND-CPA secure PKE protocols using the Fujisaki-Okamoto transform.
- Parameters: n = 256, q = 3329, k = 2, 3, 4.

NTTRU

- An NTT-friendly variant of NTRU KEM scheme proposed in TCHES2019 [LS19].
- The KeyGen, Encaps and Decaps are $30\times, 5\times$, and $8\times$ faster than the respective procedures in the NTRU schemes.
- Parameters: n = 768, q = 7681.

Number Theoretic Transform (NTT)

- Kyber and NTTRU use 16-bit NTT for polynomial multiplication. Kyber: $\mathbb{Z}_{3329}[X]/(X^{256}+1)$, NTTRU: $\mathbb{Z}_{7681}[X]/(X^{768}-X^{384}+1)$.
- The polynomial ring $Z_q[X]/f(X)$ implemented with NTT factors the polynomial f(X) as

$$f(X) = \prod_{i=0}^{n-1} f_i(X) \pmod{q},$$

where $f_i(X)$ are small degree polynomials like $(X^2 - r)$ and $(X^3 \pm r)$ in Kyber and NTTRU, respectively.

Figure 1: CT and GS butterflies

Montgomery and Barrett Arithmetic

State-of-the-art: Montgomery and Barrett arithmetic.

Algorithm 1 Signed Montgomery multiplication

Input: Constant $\beta = 2^I$ where I is the machine word size, odd q such that $0 < q < \frac{\beta}{2}$, and operand a, b such that $-\frac{\beta}{2}q \le ab < \frac{\beta}{2}q$

Output:
$$r \equiv ab\beta^{-1} \mod q, r \in (-q, q)$$

1:
$$c = c_1\beta + c_0 = a \cdot b$$

2:
$$m = c_0 \cdot q^{-1} \mod^{\pm} \beta$$

3:
$$r = c_1 - \lfloor m \cdot q/\beta \rfloor$$

4: return r

Algorithm 2 Barrett multiplication

Input: Operand a, b such that $0 < a \cdot b < 2^{2l' + \gamma}$. the modulus q satisfying $2^{l'-1} < q < 2^{l'}$, and the precomputed constant $\lambda = \left| \left| 2^{2l' + \gamma} / q \right| \right|$

Output:
$$r \equiv a \cdot b \mod q, r \in [0, q]$$

1:
$$c = a \cdot b$$

2:
$$t = \lfloor (c \cdot \lambda)/2^{2l'+\gamma} \rfloor$$

3: $r = c - t \cdot a$

Both Montgomery and Barrett multiplication:

- need 3 multiplications;
- use the product $c = a \cdot b$ twice;
- support signed inputs in a large domain: "lazy reduction strategy".

Plantard's Word Size Modular Multiplication

Plantard [Pla21] proposed a novel word size modular multiplication (Plantard multiplication). For simplicity, we denote $X \mod 2^{l'}$ as $[X]_{l'}$, X >> l' as $[X]^{l'}$ below.

Algorithm 3 Original Plantard Multiplication [Pla21]

Input: Unsigned integers $a,b\in[0,q],\ q<\frac{2^l}{\phi},\phi=\frac{1+\sqrt{5}}{2},q'\equiv q^{-1}\ \mathrm{mod}\ 2^{2^l},$ where l is the machine word size

Output: $r \equiv ab(-2^{-2l}) \mod q$ where $r \in [0, q]$

1:
$$r = \left[\left(\left[\left[abq' \right]_{2l} \right]^l + 1 \right) q \right]^l$$

2: **return** *r*

Plantard multiplication:

- also needs 3 multiplications;
- uses the product a · b once; saves one multiplication when one
 of the operands (b) is constant by precomputing bq' mod 2²¹;
- only supports **unsigned integers** in a small domain [0, q];

NTT and Modular Arithmetic

Motivations

Introduction

In sum, Plantard multiplication has the following properties:

- 1 Pros: Efficient Plantard multiplication by a constant.
- **2 Cons:** Only supports **unsigned integers** in a small domain [0, q]. In LBC schemes, this requires
 - an extra addition by a multiple of q during each butterfly unit;
 - expensive modular reduction after each layer of butterflies.

Motivations. We aim to support signed integers for Plantard multiplication, enlarge its input range, and utilize its efficient modular multiplication by a constant in LBC.

- Introduction
- 2 Improved Plantard Arithmetic
- 3 Optimized Implementation on Cortex-M4
- 4 Results and Comparisons
- **5** Conclusions and Future Work

Improved Plantard multiplication

Observations:

- The original modulus restriction: $q<rac{2^l}{\phi}, \phi=rac{1+\sqrt{5}}{2}.$
- The moduli in LBC are much smaller, e.g., 12-bit modulus 3329 in Kyber, 13-bit modulus 7681 in NTTRU.

Trick 1. Stricter modulus restriction $q < 2^{l-\alpha-1} < \frac{2^{l-\alpha}}{\phi}$ by introducing a small integer $\alpha \geq 0$.

Algorithm 4 Improved Plantard multiplication

Input: Operands $a, b \in [-q2^{\alpha}, q2^{\alpha}], q < 2^{l-\alpha-1}, q' = q^{-1} \mod^{\pm} 2^{2l}$ **Output:** $r = ab(-2^{-2l}) \mod^{\pm} q$ where $r \in (-\frac{q}{2}, \frac{q}{2})$

1:
$$r = \left[\left(\left[\left[abq' \right]_{2l} \right]^l + 2^{\alpha} \right) q \right]^l$$

2: **return** *r*

Correctness Proof

Theorem (Correctness of Algorithm 4)

Let q be an odd modulus, I be the minimum word size (power of 2 number, e.g., 16, 32, and 64) such that $q < 2^{l-\alpha-1}$, where $\alpha \ge 0$, then Algorithm 4 is correct for $-q2^{\alpha} \le a, b \le q2^{\alpha}$.

Proof of the above Theorem. The main step of Algorithm 4 is $r = \left[\left(\left[\left[abq' \right]_{2l} \right]^l + 2^{\alpha} \right) q \right]^l$, namely:

$$r = \left | rac{\left(\left \lfloor rac{abq' \operatorname{mod}^{\pm} 2^{2l}}{2^{l}}
ight \rfloor + 2^{lpha}
ight) q}{2^{l}}
ight | \ .$$

We first check that $r \in \left(-\frac{q}{2}, \frac{q}{2}\right)$. Since $\left\lfloor \frac{abq' \mod^{\pm} 2^{2l}}{2^l} \right\rfloor \in [-2^{l-1}, 2^{l-1} - 1]$, we have

$$\left\lceil \frac{(-2^{l-1} + 2^{\alpha})q}{2^{l}} \right\rceil \le r \le \left\lfloor \frac{(2^{l-1} - 1 + 2^{\alpha})q}{2^{l}} \right\rfloor$$
$$\left\lceil -\frac{q}{2} + \frac{q}{2^{l-\alpha}} \right\rceil \le r \le \left\lfloor \frac{q}{2} + \frac{(2^{\alpha} - 1)q}{2^{l}} \right\rfloor.$$

Since $\frac{q}{2^{l-\alpha}}<\frac{1}{2}$, we can get $r>-\frac{q}{2}$ from the left-hand side of the inequation.

We first check that $r \in \left(-\frac{q}{2}, \frac{q}{2}\right)$. Since $\left\lfloor \frac{abq' \mod^{\pm} 2^{2l}}{2^l} \right\rfloor \in [-2^{l-1}, 2^{l-1} - 1]$, we have

$$\left\lceil \frac{(-2^{l-1} + 2^{\alpha})q}{2^{l}} \right\rceil \le r \le \left\lfloor \frac{(2^{l-1} - 1 + 2^{\alpha})q}{2^{l}} \right\rfloor$$
$$\left\lceil -\frac{q}{2} + \frac{q}{2^{l-\alpha}} \right\rceil \le r \le \left\lfloor \frac{q}{2} + \frac{(2^{\alpha} - 1)q}{2^{l}} \right\rfloor.$$

Since $\frac{q}{2^{l-\alpha}}<\frac{1}{2}$, we can get $r>-\frac{q}{2}$ from the left-hand side of the inequation. Let's consider $\frac{q}{2}+\frac{(2^{\alpha}-1)q}{2^l}$ on the right-hand side; since $q<2^{l-\alpha-1}$, we obtain that

$$\frac{(2^{\alpha}-1)q}{2^{l}}<\frac{q2^{\alpha}}{2^{l}}<\frac{2^{\alpha}2^{l-\alpha-1}}{2^{l}}=\frac{1}{2}.$$

Because q is an odd number, then

$$\left\lfloor \frac{q}{2} + \frac{(2^{\alpha} - 1)q}{2^{l}} \right\rfloor = \left\lfloor \frac{q}{2} \right\rfloor < \left\lfloor \frac{q+1}{2} \right\rfloor.$$

Therefore, the result *r* lies in $\left(-\frac{q}{2}, \frac{q}{2}\right)$.

Then, we check that $r = ab(-2^{-2l}) \mod^{\pm} q$. Since $q < 2^{l-\alpha-1}$ is an odd

number, there exists a 2*I*-bit number $p = abq^{-1} \mod^{\pm} 2^{2I}$ so that

$$pq - ab \equiv \left(abq^{-1}\right)q - ab \operatorname{mod} 2^{2l} \equiv ab - ab \operatorname{mod} 2^{2l} \equiv 0 \operatorname{mod} 2^{2l}.$$

Then, pq - ab is divisible by 2^{2l} , so

$$ab\left(-2^{-2l}\right) \bmod q \equiv rac{pq-ab}{2^{2l}}.$$

Then, we check that $r = ab(-2^{-2l}) \mod^{\pm} q$. Since $q < 2^{l-\alpha-1}$ is an odd number, there exists a 2l-bit number $p = abq^{-1} \mod^{\pm} 2^{2l}$ so that

$$pq - ab \equiv \left(abq^{-1}\right)q - ab \mod 2^{2l} \equiv ab - ab \mod 2^{2l} \equiv 0 \mod 2^{2l}.$$

Then, pq - ab is divisible by 2^{2l} , so

$$ab\left(-2^{-2l}\right) \bmod q \equiv \frac{pq-ab}{2^{2l}}.$$

Let $p_1 = \left\lfloor \frac{p}{2^l} \right\rfloor$, $p_0 = p - p_1 2^l$. When $p \ge 0$, we have $p_0 \in [0, 2^l)$. When p < 0, we have $p_0 \in (-2^l, 0]$.

Trick 2. The correctness of the original Plantard multiplication is based on the inequality: $0 < q2^l - p_0q + ab < 2^{2l}$. Instead of analyzing $q2^l - p_0q + ab$ for $a,b \in [0,q]$ in the original work, we slightly modify the equation to $q2^{l+\alpha} - p_0q + ab$ for $a,b \in [-q2^{\alpha},q2^{\alpha}]$.

Correctness Proof: Step 2

We now check that our modified equation $q2^{l+\alpha} - p_0q + ab$ also satisfies this inequality:

$$0 < q2^{l+\alpha} - p_0 q + ab < 2^{2l} \tag{1}$$

under the restrictions $q < 2^{l-\alpha-1}$, $\alpha \ge 0$, and $-q2^{\alpha} < a, b < q2^{\alpha}$.

(1) When $ab \ge 0$ and $p_0 \in [0, 2^l)$, we have

$$q2^{l+lpha}-p_0q+ab\geq q2^{l+lpha}-p_0q>q(2^{l+lpha}-2^l)\geq 0$$
 when $lpha\geq 0$, and $q2^{l+lpha}-p_0q+ab\leq q2^{l+lpha}+ab\leq q(2^{l+lpha}+q2^{2lpha}) \ < 2^{l-lpha-1}(2^{l+lpha}+2^{l+lpha-1}) \ < 2^{2l-1}+2^{2l-2}< 2^{2l}.$

Therefore, we have $0 < q2^{l+\alpha} - p_0q + ab < 2^{2l}$ when ab > 0 and $\alpha > 0$.

Correctness Proof: Step 2

00000000

(2) When ab < 0 and $p_0 \in (-2^l, 0]$, we have

Improved Plantard Arithmetic

$$\begin{split} q2^{l+\alpha} - p_0q + ab &\geq q2^{l+\alpha} + ab \geq q(2^{l+\alpha} - q2^{2\alpha}) > q(2^{l+\alpha} - 2^{l+\alpha-1}) > 0, \text{ and} \\ q2^{l+\alpha} - p_0q + ab &\leq q2^{l+\alpha} - p_0q < q(2^{l+\alpha} + 2^l) < 2^{l-\alpha-1}(2^{l+\alpha} + 2^l) \\ &< 2^{2l-1} + 2^{2l-\alpha-1} \leq 2^{2l} \text{ when } \alpha \geq 0. \end{split}$$

Therefore, we also have $0 < q2^{l+\alpha} - p_0q + ab < 2^{2l}$ when ab < 0 and $\alpha \ge 0$. Overall, we obtain

$$0<\frac{q2^{l+\alpha}-p_0q+ab}{2^{2l}}<1.$$

Combining with the fact that pq - ab is divisible by 2^{2l} , we have

$$\begin{aligned} ab\left(-2^{-2l}\right) \operatorname{mod} q &\equiv \frac{pq - ab}{2^{2l}} \equiv \left\lfloor \frac{pq - ab}{2^{2l}} + \frac{q2^{l+\alpha} - p_0q + ab}{2^{2l}} \right\rfloor \equiv \left\lfloor \frac{qp_12^l + q2^{l+\alpha}}{2^{2l}} \right\rfloor \\ &\equiv \left\lfloor \frac{q(p_1 + 2^{\alpha})}{2^l} \right\rfloor \equiv \left\lfloor \frac{q\left(\left\lfloor \frac{abq^{-1} \operatorname{mod}^{\pm} 2^{2l}}{2^l} \right\rfloor + 2^{\alpha}\right)}{2^l} \right\rfloor. \end{aligned}$$

For signed inputs, we have $ab(-2^{-2l}) \operatorname{mod}^{\pm} q = \left[\left(\left[\left[abq' \right]_{2l} \right]^l + 2^{\alpha} \right) q \right]^l = r.$

Comparisons

- (1) versus Original Plantard multiplication.
 - Signed support. Supports signed inputs and produces signed output in $\left(-\frac{q}{2},\frac{q}{2}\right)$.
 - **Input range.** Extends the input range from [0, q] up to $[-q2^{\alpha}, q2^{\alpha}]$. Eliminate the final correction step in the original version.
- (2) versus Montgomery and Barrett arithmetic.
 - **Efficiency.** The Plantard arithmetic saves one multiplication when multiplying a constant. Moreover, the Barrett arithmetic may require an explicit shift operation for a non-word-size offset.
 - Input range. The Plantard reduction accepts input in $[-q^22^{2\alpha}, q^22^{2\alpha}]$, which is about 2^{α} times bigger than Montgomery reduction $[-q2^{l-1}, q2^{l-1}]$. Besides, the improved Plantard reduction can replace the Barrett reduction inside the NTT/INTT of Kyber and NTTRU.

• Output range. The output range of the improved algorithm $\left(-\frac{q}{2},\frac{q}{2}\right)$ is half of the Montgomery's $\left(-q,q\right)$. Therefore, it halves or slows down the growing rate of the coefficient size in the NTT with CT butterflies or the INTT with GS butterflies, respectively.

(3) Weak Spots.

- **Special Multiplication.** The Plantard arithmetic introduces an $l \times 2l$ -bit multiplication. We show that it is perfectly suitable on Cortex-M4/7 and some 32-bit microcontrollers when l = 16.
- Load/Store Issue. The precomputed twiddle-factors are double-size compared to the implementation with Montgomery arithmetic. It requires extra cycles to load/store the twiddle factors.

- 1 Introduction
- 2 Improved Plantard Arithmetic
- 3 Optimized Implementation on Cortex-M4 Efficient Plantard Arithmetic for 16-bit Modulus on Cortex-M4 Efficient 16-bit NTT/INTT Implementation on Cortex-M4 Extensibility on Other Platforms and Schemes
- 4 Results and Comparisons
- **5** Conclusions and Future Work

Target Platform: Cortex-M4

Cortex-M4:

- NIST's reference platform (the popular pqm4 repository: https://github.com/mupq/pqm4);
- 1MB flash, 192kB RAM.
- 14 32-bit usable general-purpose registers; 32 32-bit FP registers;
- SIMD extension: **uadd16**, **usub16** perform addition and subtraction for two packed 16-bit vectors; **smulw{b,t}** can efficiently compute the 16×32 -bit multiplication in Plantard arithmetic.
- 1-cycle multiplication instruction: smulw{b,t}, smul{b,t}{b,t}
- Relative expensive load instructions, e.g., Idr, Idrd, vldm.

Efficient Plantard multiplication by a constant

- (1) We set l=16, $\alpha=3$ in Kyber, $\alpha=2$ in NTTRU s.t. $q<2^{l-\alpha-1}$.
- (2) Efficient 2-cycle improved Plantard multiplication by a constant:
 - reduce b down [0, q); the input range of a is extended to $[-q2^{2\alpha}, q2^{2\alpha}]$.

•
$$\left[\left(\left[\left[abq'\right]_{2l}\right]'+2^{\alpha}\right)q\right]'$$
 vs $\left[q\left[\left[abq'\right]_{2l}\right]'+q2^{\alpha}\right]'$.

Algorithm 5 The 2-cycle improved Plantard multiplication by a constant on Cortex-M4

Input: An *I*-bit signed integer $a \in [-2^{l-1}, 2^{l-1})$, a precomputed 21-bit integer bq' where b is a constant and $q' = q^{-1} \mod^{\pm} 2^{2l}$

Output: $r_{top} = ab(-2^{-2l}) \mod^{\pm} q$, $r_{top} \in (-\frac{q}{2}, \frac{q}{2})$ 1: $bq' \leftarrow bq^{-1} \mod^{\pm} 2^{2l}$ \triangleright precomputed

2: smulwb r, bq', a $\Rightarrow r \leftarrow [[abq']_{2l}]^l$ 3: smlabb $r, r, q, q2^{\alpha}$ $\Rightarrow r_{top} \leftarrow [q[r]_l + q2^{\alpha}]^l$

4: return rton

Algorithm 6 The 3-cycle Montgomery multiplication on Cortex-M4 [ABCG20]

Input: Two *I*-bit signed integers $\overline{a, b}$ such that $ab \in$ $[-a2^{l-1}, a2^{l-1})$

Output: $r_{top} = ab2^{-l} \mod^{\pm} q$, $r_{top} \in (-q, q)$

1: mul c, a, b

2: smulbb $r, c, -q^{-1}$ $\Rightarrow r \leftarrow [c]_l \cdot (-q^{-1})$

3: smlabb r, r, q, c $\triangleright r_{top} \leftarrow [[r]_l \cdot q]^l + [c]^l$

4: return rton

Efficient Plantard reduction

Plantard reduction for the modular multiplication of two variables.

- As efficient as the state-of-the-art Montgomery reduction;
- The input range is $c \in [-q^2 2^{2\alpha}, q^2 2^{2\alpha}]$, which is about 2^{α} times bigger than Montgomery's $(-q2^{l-1}, q2^{l-1})$.

Algorithm 7 The 2-cycle improved Plantard reduction on Cortex-M4

Input: A 2*I*-bit signed integer $c \in [-q^2 2^{2\alpha}, q^2 2^{2\alpha}]$ **Output:** $r_{top} = c(-2^{-2I}) \mod^{\pm} q$, $r_{top} \in (-\frac{q}{2}, \frac{q}{2})$

- **Jutput:** $r_{top} = c(-2^{-2t}) \mod^{\perp} q, r_{top} \in (-\frac{1}{2}, \frac{1}{2})$ 1: $a' \leftarrow a^{-1} \mod^{\pm} 2^{2l}$
- ▷ precomputed

- 2: **mul** r, c, q'
- 3: **smlatb** $r, r, q, q2^{\alpha}$
- 4: return r_{top}

Results

Butterfly unit

- Precompute twiddle factors as $\zeta = (\zeta \cdot (-2^{2l}) \mod q) \cdot q^{-1} \mod^{\pm} 2^{2l}$;
- **smulwb** and **smulwt** for $I \times 2I$ -bit multiplication; reduce 2 cycles.

Algorithm 8 Double CT butterfly on Cortex-M4

Input: Two 32-bit packed signed integers a, b (each containing a pair of 16-bit signed coefficients), the 32-bit twiddle factor ζ

Output:
$$a = (a_{top} + b_{top}\zeta)||(a_{bottom} + b_{bottom}\zeta), b = (a_{top} - b_{top}\zeta)||(a_{bottom} - b_{bottom}\zeta)||$$

- 1: smulwb t, ζ, b
- 2: **smulwt** *b*, *ζ*, *b*
- 3: smlabb $t, t, q, q2^{\alpha}$
- 4: smlabb $b, b, q, q2^{\alpha}$
- 5: **pkhtb** t, b, t, asr #16
- 6: usub16 b, a, t
- 7: uadd16 a, a, t
- 8: return a, b

Layer merging: 3-layer merging strategy

Using the improved Plantard arithmetic introduces the 32-bit twiddle factors, thus requiring extra loading cycles.

- Each iteration of each layer computes 8 butterflies over 16 coefficients at the cost of loading 1, 2, or 4 twiddle factors.
- Reduce 8 cycles at the cost of 0, 1, or 2 extra cycles for loading twiddle factors (ldr,ldrd) in each iteration of each layer.

Figure 2: 3-layer merging CT butterfly

Results

Better lazy reduction strategies

(1) Montgomery reduction:

input range: $[-q2^{l-1}, q2^{l-1}]$, output range: (-q, q).

(2) Improved Plantard reduction:

input range: $[-q^22^{2\alpha}, q^22^{2\alpha}]$, output range: $(-\frac{q}{2}, \frac{q}{2})$.

Figure 3: CT and GS butterflies

- CT butterfly: Coefficients grow by $\frac{q}{q}$ or $\frac{q}{2}$ after each layer.
- GS butterfly: The first half of the coefficients double while the second half are reduced down to $\frac{q}{2}$ or $\frac{q}{2}$ after each layer.

Better lazy reduction strategies: CT butterflies

Kyber: $q = 3329(9q < 2^{l-1} < 10q)$. The input of NTT is smaller than q.

- Montgomery: 7 layers of butterflies generates 256 coefficients by 7q. Require 1 modular reduction for 256 coefficients since 8q is bigger than the input range of Montgomery multiplication, i.e., $[-\sqrt{q2^{l-1}}, \sqrt{q2^{l-1}}]$.
- **Plantard:** 7 layers of butterflies generates 256 coefficients by 3.5q. 4.5q lies in the input range of Plantard multiplication, i.e., $[-q2^{\alpha}, q2^{\alpha}]$.

NTTRU: $q = 7681(4q < 2^{l-1} < 5q)$. The input of NTT is smaller than 0.5q.

- **Montgomery:** We need two modular reductions after the 3rd and 6-th layer. The final two layers of butterflies generate coefficients smaller than 3q, which is bigger than the input range of Montgomery multiplication; thus one more modular reduction for 768 coefficients is required.
- Plantard: Only needs one modular reduction after the 7-th layer. The final layer of butterflies generates coefficients smaller than 1q, which lies in the input range of Plantard multiplication.

Better lazy reduction strategies: GS butterflies

Kyber: $q = 3329(9q < 2^{l-1} < 10q)$. The advantages of applying the Plantard arithmetic are twofold in Kyber:

- Halve the matrix-vector product from kq to $\frac{kq}{2}$, k=2,3,4 and have one-layer delay of the modular reduction. One modular reduction is required after the 2nd and 3rd layer when k=3,4 and k=2.
- After one modular reduction, 4 layers of butterflies can be carried out instead of 3 with Montgomery arithmetic.

For Kyber768/Kyber1024, one modular reduction is needed after the 2nd layer. Then, after the 6th layer, 16 coefficients ($a_0 \sim a_7, a_{128} \sim a_{135}$) will grow to 8q and need to be reduced instead of 128 coefficients with Montgomery arithmetic.

NTTRU:
$$q = 7681(4q < 2^{l-1} < 5q)$$
.

- After one modular reduction, 3 layers of butterflies can be carried out instead of 2 with Montgomery arithmetic.
- Only need two modular reductions for 384 coefficients instead of four with Montgomery arithmetic.

5-cycle double Plantard reduction inside NTT/INTT

- The Plantard reduction over a 16-bit signed integer can be viewed as a Plantard multiplication by the "Plantard" constant -2^{2l} mod q;
- 1-cycle/3-cycle faster than the 6-cycle/8-cycle double Barrett reduction with/without explicit shift operations in [AHKS22], and 2-cycle faster than the 7-cycle double Montgomery reduction in [ABCG20].

Algorithm 9 Double Plantard reduction for packed coefficients

Input: A 32-bit packed integers $a = a_{top} || a_{bottom}$ where a_{top} , a_{bottom} are two 16-bit signed coefficients

Output: $r = (a_{top} \mod^{\pm} q) || (a_{bottom} \mod^{\pm} q), -q/2 < r_{top}, r_{bottom} < q/2$

- 1: const $\leftarrow (-2^{2l} \bmod q) \cdot (q^{-1} \bmod^{\pm} 2^{2l}) \bmod^{\pm} 2^{2l}$ \triangleright precomputed
- 2: **smulwb** t, const, a
- 3: **smulwt** a, const, a
- 4: smlabt $t, t, q, q2^{\alpha}$
- 5: smlabt $a, a, q, q2^{\alpha}$
- 6: **pkhtb** *r*, *a*, *t*, asr#16
- 7: return r

Extensibility on other 32-bit microcontrollers

- The improved Plantard arithmetic for 16-bit modulus on Cortex-M4 relies on the efficiency of the 16×32 -bit multiplication instruction **smulwb**.
- The Plantard multiplication by a constant on other 32-bit microcontrollers, like RISC-V, is shown below. It reduces 1 multiplication and introduces 1 shift instruction compared to Montgomery's.

Algorithm 10 The improved Plantard multiplication by a constant on RISC-V

Input: A 32-bit signed integer $a \in [-q2^{2\alpha}, q2^{2\alpha}]$, a precomputed 2/-bit integer bq' where b is a constant, $q' = q^{-1} \mod^{\pm} 2^{2l}$

Output: $r = ab(-2^{-2l}) \mod^{\pm} q, r \in (-\frac{q}{2}, \frac{q}{2})$

- 1: $ba' \leftarrow ba^{-1} \operatorname{mod}^{\pm} 2^{2l}$
- 2: $\mathbf{mul}\ r, a, bq'$
- 3: **srai** *r*, *r*, #16
- 4: mul r, r, q
- 5: **add** $r, r, q2^{\alpha}$
- 6: **srai** *r*, *r*, #16
- 7: return r

$$\triangleright r \leftarrow [aba']_{2l}$$

$$\triangleright r \leftarrow [abq']_{2i}$$

$$\triangleright r \leftarrow [[abq']_{2l}]^l$$

$$\triangleright r \leftarrow q[[abq']_{2l}]^l + q2^{\alpha}$$

$$> r \leftarrow [q[[abq']_{2l}]^l + q2^{\alpha}]^l$$

000

- Introduction
- 2 Improved Plantard Arithmetic
- 3 Optimized Implementation on Cortex-M4
- 4 Results and Comparisons
- **6** Conclusions and Future Work

Results

Performance of the Polynomial Arithmetic

Table 1: Cycle counts for the core polynomial arithmetic in Kyber and NTTRU on Cortex-M4, i.e., NTT, INTT, base multiplication, and base inversion.

Scheme	Implementation	NTT	INTT	Base Mult	Base Inv
Kyber	[ABCG20]	6822	6 951	2 291	-
	This work ^a	5441	5 775	2421	-
	Speed-up	20.24%	16.92%	-5.67%	-
	Stack[AHKS22]	5967	5 917	2293	-
	Speed[AHKS22]	5967	5 471	1 202	-
	This work ^b	4474	4 684/4 819/4 854	2 422	-
	Speed-up (stack)	25.02%	20.84%/18.56%/17.97%	-5.58%	-
	Speed-up (speed)	25.02%	14.38%/11.92%/11.28%	-101.41%	-
NTTRU	[LS19]	102 881	97 986	44 703	100 249
	This work	17274	20 931	10550	40763
	Speed-up	83.21%	78.64%	76.40%	59.34%

 $[^]a$ Implementation based on [ABCG20], b Implementation based on the stack-friendly code of [AHKS22].

Performance of Schemes

Table 2: Cycle counts (cc) and stack usage (Bytes) for KeyGen, Encaps, and Decaps on Cortex-M4. k is the dimension of the underlying Module-LWE problem for Kyber. The first row of each entry indicates the cycle count and the second row refers to stack usage.

Scheme	Implementation	KeyGen			Encaps			Decaps		
		k=2	k = 3	k=4	k=2	k=3	k=4	k=2	k=3	k=4
Kyber	[ABCG20]	454k	741k	1 177k	548k	893k	1 367k	506k	832k	1 287k
		2464	2696	3584	2168	2640	3 208	2184	2656	3224
	This work ^a	446k	729k	1 162k	542k	885k	1357k	497k	818k	1 270k
		2464	2696	3584	2168	2640	3208	2184	2656	3224
	Stack[AHKS22]	439k	717k	1 139k	534k	871k	1 329k	484k	797k	1 233k
		2608	3056	3576	2160	2660	3 236	2 176	2 676	3252
	Speed[AHKS22]	438k	711k	1 129k	531k	864k	1316k	479k	787k	1 217k
		4268	6732	7748	5252	6284	7292	5260	6 308	7300
	This work ^b	430k	702k	1 119k	526k	861k	1314k	472k	780k	1 211k
		2608	3056	3576	2160	2660	3236	2176	2676	3252
NTTRU	[LS19]	526k		431k			559k			
		9 384		8 748		10 324				
	This work	267k			237k			254k		
		9 372			7452			8816		

^a Implementation based on [ABCG20], ^b Implementation based on the stack-friendly code of [AHKS22].

- 1 Introduction
- 2 Improved Plantard Arithmetic
- 3 Optimized Implementation on Cortex-M4
- 4 Results and Comparisons
- **5** Conclusions and Future Work

Conclusions and Future Work

Conclusions:

- An improved Plantard arithmetic taliored for Lattice-based cryptography.
- Excellent merits over the original Plantard, Montgomery, and Barrett arithmetic.
- Speed-ups for Kyber and NTTRU with 16-bit NTT on Cortex-M4.

Furture work:

- Application on other platforms like AVX2, NEON or other 32-bit microcontrollers.
- Application on other schemes with 32-bit NTT like Saber, NTRU, Dilithium.

[AHKS22]

- [ABCG20] Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard. Cortex-M4 optimizations for {R, M} LWE schemes.
- IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):336-357, 2020.
- Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Daan Sprenkels. Faster Kyber and Dilithium on the Cortex-M4. In Giuseppe Ateniese and Daniele Venturi, editors, Applied Cryptography and Network Security - 20th International Conference, ACNS 2022, Rome, Italy, June 20-23, 2022, Proceedings, volume 13269 of Lecture Notes in Computer Science, pages 853-871. Springer, 2022.
- [LS19] Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast NTRU using NTT. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(3):180-201, 2019.
- [Pla21] Thomas Plantard. Efficient word size modular arithmetic IEEE Trans. Emerg. Top. Comput., 9(3):1506-1518, 2021.

Thanks!