O kterých inkluzích mezi následujícími dvojicemi tříd jste schopni dokázat, že platí a o kterých, že neplatí. Za každý dokázaný vztah je jeden bod (do požadovaného počtu bodů započítáno za 3).

- 1. $TIME(2^n)$ $NSPACE(\sqrt{n})$
- 2. $NSPACE((\log n)^3)$ SPACE(n)
- 3. $NTIME(n^3)$ $SPACE(n^6)$

Příklad 1

Uvažujme problém rozhodnutelný $M = (\Sigma, Q, q_0, \delta, F)$, nedeterministickým TS, v prostoru $NSPACE(\sqrt{n})$. Takový má $|\Sigma|^{\sqrt{n}} \cdot |Q| \cdot \sqrt{n}$ možných displayů, tuto množinu nazvěme D a definujme přestupy mezi displayi T podle δ . Definujeme graf G = (D, T).

Potom úpravou $|\Sigma|^{\sqrt{n}} \cdot |Q| \cdot \sqrt{n} \in 2^{O(\sqrt{n})} \subseteq O(2^n)$ a tedy graf G má $O(2^n)$ vrcholů. Hledáme tedy za pomoci deterministického turingova stroje existenci sledu mezi iniciálním displayem a nějakým koncovým (BÚNO právě jediným koncovým), což jistě v čase $TIME(2^n)$ stihneme.

Nemožnost rozhodnout libovolný problém $Time(2^n)$ v prostoru $NSPACE(\sqrt{n})$ je zřejmá. Platí tedy:

$$TIME(2^n) \supset NSPACE(\sqrt{n})$$

Příklad 2

Příklad 3

Uvažujme problém rozhodnutelný $M = (\Sigma, Q, q_0, \delta, F)$, nedeterministickým TS, v čase $NTIME(n^3)$ (tedy i v prostoru $NSPACE(n^3)$). Tedy v hloubce n^3 alespoň jedna z větví výpočtu M přijme, každá dobře definovaná nějakým indexem z $(|\Sigma| \cdot |Q| \cdot 3)^{n^3}$ (na základě jednotlivých rozhodnutí), což lze zapsat na vhodné abecedě Σ' za pomoci $O(n^3)$ symbolů. Výpočet M lze odsimulovat deterministickým turingovým strojem v prostoru $SPACE(n^3)$ za používání návodu na rozhodnutí použité větve iterovaném taktéž ve $SPACE(n^3)$.

Mějme pak problém výpočtu k^{n^6} , což je problém řešitelný ve $SPACE(n^6)$, ale jistě ne v $NTIME(n^3)$, neboť $NSPACE(n^3)$ není dostačující a využití pásky je dolním odhadem časové složitosti.

Platí tedy:

$$NTIME(n^3) \subset SPACE(n^6)$$