LMA0001 - Lógica Matemática Exercícios Lógica de Predicados Professora Karina G. Roggia Monitor: Miguel A. Nunes Joinville, outubro de 2019

	Johnville, outubro de 2019		
* Fm f & manti	la a existencia de um	SÍMBOLO	SIGNIFICADO
elemento com	da a existência de mais de um tais coracterísticas, enquanto em g	H(x)	x é humano
pode hoyer s	malize as seguintes sentenças utilizando lógica de predicados.	M(x)	x é mortal
		C(x)	x é uma cobra
` '	Sócrates é um homem. $H(s)$	V(x)	x é venenoso
` '	Todo homem é mortal. $\forall x. (H(x) \rightarrow M(x))$	B(x)	x é bêbado
, ,	Jonas é um homem e todo homem é mortal. $H(j) \wedge \forall x. (H(x) \rightarrow M(x))$	F(x)	x é feliz
\ /	Toda cobra é venenosa. $\forall x. (C(x) \rightarrow V(x))$		
()	Não existe bêbado feliz. $\neg \exists x. (B(x) \land F(x))$	P(x)	x é político
()	Alguns políticos não são honestos. $\exists x. \exists y. (P(x) \land P(y) \land \neg l(x) \land \neg l(y) \land \neg x$	-y/I(x)	x é honesto
	Há aves que não voam. $\exists x. (A(x) \land \neg W(x))$	A(x)	x é uma ave
· /	Todos mentem. $\forall x. (H(x) \rightarrow L(x))$	W(x)	x voa
` '	Existem pôneis alienígenas. $\exists x. (E(x) \land S(x))$ Todo peixe nada. $\forall x. (X(x) \rightarrow N(x))$	L(x)	x mente
W /	Algumas aves voam. $\exists x. (A(x) \land W(x))$	E(x)	x é um pônei
, ,	Nenhuma ave voa. $\neg \exists x. (A(x) \land W(x))$	S(x)	x é um alienígena
()	Nem tudo que reluz é ouro. $\neg \forall x. (R(x) \rightarrow x = 0)$	X(x)	x é um peixe
(111)	Trem tudo que feraz e ouro. Transfera e	N(x)	x nada
		R(x)	x reluz
2. Prove os seguintes sequentes no sistema de dedução natural.		S	Sócrates
(a)	$\forall x. P(x) \to Q(a) \vdash \exists x. (P(x) \to Q(a))$:	
(b)	$\forall x. (P(x) \lor Q(x)) \vdash \forall x. P(x) \lor \exists x. Q(x)$	J	Jonas
(c)	$\forall x. \exists y. (P(x) \lor Q(y)) \vdash \exists y. \forall x. (P(x) \lor Q(y))$	0	ouro
(d)	$\forall x. (\neg P(x) \land Q(x)) \vdash \forall x. (P(x) \to Q(x))$		
(e)	$\forall x. (P(x) \land Q(x)) \vdash \forall x. (P(x) \to Q(x))$		
(f)	$\exists x. (\neg P(x) \land \neg Q(x)) \vdash \exists x. \neg (P(x) \land Q(x))$		
(g)	$\exists x. (\neg P(x) \lor Q(x)) \vdash \exists x. \neg (P(x) \land \neg Q(x))$		
(h)	$\forall x. (P(x) \land Q(x)) \vdash \forall x. P(x) \land \forall x. Q(x)$		
(i)	$\forall x. P(x) \lor \forall x. Q(x) \vdash \forall x. (P(x) \lor Q(x))$		
(j)	$\exists x. (P(x) \land Q(x)) \vdash \exists x. P(x) \land \exists x. Q(x)$		
(k)	$\exists x. F(x) \lor \exists x. G(x) \vdash \exists x. (F(x) \lor G(x))$		
(1)	$\forall x. \forall y. (S(y) \to F(x)) \vdash \exists y. S(y) \to \forall x. F(x)$		
` '	$P(b) \vdash \forall x. (x = b \to P(x))$		
(n) $P(b), \forall x. \forall y. (P(x) \land P(y) \rightarrow x = y) \vdash \forall x. ((P(x) \rightarrow x = b) \land (x = b \rightarrow P(x)))$			
(o) $\exists x. \exists y. (H(x,y) \lor H(y,x)), \neg \exists x. H(x,x) \vdash \exists x. \exists y. \neg (x=y)$			
(p) $\forall x.((P(x) \rightarrow x = b) \land (P(x) \rightarrow x = b)) \vdash P(b) \land \forall x. \forall y.(P(x) \land P(y) \rightarrow x = y)$			
(q) $P(a) \to \forall x. Q(x) \vdash \forall x. (P(a) \to Q(x))$			
$(\mathbf{r}) \ \forall x. \forall y. \forall z. (S(x,y) \land S(y,z) \rightarrow S(x,z)), \forall x. \neg S(x,x) \vdash \forall x. \forall y. (S(x,y) \rightarrow \neg S(y,x))$			

- (s) $\forall x.(P(x) \lor Q(x)), \exists x. \neg Q(x), \forall x.(R(x) \to \neg P(x)) \vdash \exists x. \neg R(x)$
- (t) $\forall x.(P(x) \rightarrow (Q(x) \lor R(x))), \neg \exists x.(P(x) \land R(x)) \vdash \forall x.(P(x) \rightarrow Q(x))$
- (u) $\exists x. \exists y. (S(x,y) \lor S(y,x)) \vdash \exists x. \exists y. S(x,y)$
- (v) $\exists x.(P(x) \land Q(x)), \forall y.(P(x) \rightarrow R(x)) \vdash \exists x.(R(x) \land Q(x))$
- 3. Considere a seguinte argumentação: Resolução na (a) O mais forte hebreu é Sansão.
 - (b) Hércules é mais forte que Sansão.
 - (c) Se a é mais forte que b, então b não é mais forte que a.
 - (d) Logo, Hércules não é hebreu.

Formalize as sentenças acima, e prove a validade da argumentação utilizando dedução natural.

- 4. Considere o seguinte raciocínio:
 - (a) Cloud gosta de Aeris e de Tifa. $G(c,\alpha) \wedge G(c,t)$ (b) Não há quem goste de quem feriu alguém que gostamos. $\forall x \forall y \forall z (G(x,y) \wedge F(z,y)) \rightarrow \neg G(x,z)$

 - (c) Sephiroth feriu Aeris. $\Gamma(\lambda, \alpha)$
 - (d) Logo, Cloud não gosta de Sephiroth. っしている

Formalize a argumentação acima e apresente uma prova de sua validade no sistema de dedução natural.

1. G(c,a), G(c,t)	premissa
2. Y >e Yy Yz (G(z,y) n F(;	314) 6(213) premissa
3. F(s,a)	premissa
+. Y443(G(C,4) 1 F(3,4	J→-G(CB) YEZ
5. 72(B(c,a) 1, F(3, a	1-3-1G(C13)) YE4
6. G(4R) AF(S,a) Cs.	76(c,s) VE5
7. G(c/a)	1E1
8. G(c,a) AF(s,a)	NI7.3
9.7G(C15)	>618

(a)
$$\forall x (H(x) \land \neg x = s \rightarrow F(s, x))$$

(b) $F(h, s)$
(c) $\forall x \forall y (F(x, y) \land \neg x = y \rightarrow \neg F(y, x))$
(d) $\neg H(h)$
(*Temos ainda que $\neg h = s$)

Dedução 1. $\forall z (H(z) \land \neg z = \land \rightarrow F(s, z))$ premissa 2. F(h, 8) premissa 3. $\forall x \forall y (F(x,y) \land \neg x = y \rightarrow \neg F(y,x))$ 4. $\neg h = \lambda$ 5. $\forall y (F(h,y) \land \neg h = y \rightarrow \neg F(y,h))$ 6. $F(h,\lambda) \land \neg h = \lambda \rightarrow \neg F(\lambda,h)$ bremissa premissoc YES YES 7. F(h, s) 1-h=s 12,4 -> E6,7 8. 7 F(s, h) H(h) $a \neg h = b \rightarrow F(s,k) \forall E1$ 10. H(h) 17 h= 8 11. F(s,h)>E10,11 12. 7 E 812 13. 14. 7H(h 7I 9-13