Chap 18: Espaces vectoriels (II)

E sera un \mathbb{K} – espace vectoriel

I. Quelques compléments

 $f \in \mathcal{Z}(E)$ G supp de $\ker f$ $\Rightarrow f_{\setminus G}$ isomorphisme de G sur $\operatorname{Im} f$

 $(x_i)_{i \in J} \in E^J$ est génératrice de E si $Vect(x_i)_{i \in J} = E$ (Idem avec parties)

 $(x_{_{j}})_{_{j\in J}}\in E^{^{J}} \text{ est libre dans } E \text{ si } \forall n\in\mathbb{N}^{*}, \forall (j_{_{k}})_{_{k\in\llbracket1,n\rrbracket}}\in J^{^{n}}, \forall (\lambda_{_{k}})_{_{k\in\llbracket1,n\rrbracket}}\in\mathbb{K}^{^{n}}$

$$\sum_{k=0}^{n} \lambda_k x_{j_k} = 0_E \Longrightarrow \forall k \in [[1, n]], \lambda_k = 0$$

Une famille non libre est liée

 $K \subset \mathbb{K}$ A génératrice dans un $K - ev \Rightarrow A$ génératrice dans le $\mathbb{K} - ev$

 $K \subset \mathbb{K}$ A libre dans un $\mathbb{K} - ev \Rightarrow A$ libre dans le K - ev

F famille libre \Rightarrow toute sous-famille de F est libre

F famille génératrice \Rightarrow toute sur-famille de F est génératrice

(u, v) libre $ssi\ u$ et v ne sont pas colinéaires

Si $0_E \in F$ ou s'il y a un doublon dans une famille F , F est liée

A partie libre de $E. x_0 \in E$ $A \cup \{x_0\}$ libre $ssi x_0 \notin Vect(A)$

Une famille F est une base de E si elle est libre et génératrice dans E

⇔ Tout vecteur de E s'écrit de manière unique comme CL de vecteurs de F

II. Dimensions

E est de dimension finie s'il admet une famille génératrice finie

Lemme de la dimension : A partie génératrice de E

 \Rightarrow Toute partie libre L de E est finie, de cardinal $card(L) \le card(A)$

Preuve du lemme : Récurrence sur card(A) → 3 cas : - L dans A (OK),

 $-\exists a \in A, a \notin Vect(L) \Rightarrow L \cup \{a\} \text{ libre } \forall v \in L, v = \tilde{v} + \alpha_v a \qquad \tilde{v} \in Vect(A \setminus \{a\})$

 \Rightarrow $(\tilde{v})_{v \in L}$ libre dans $vect(A \setminus \{a\})$ $card(A \setminus \{a\}) = n \Rightarrow$ hypothèse de récurrence...

 $-\forall a \in A, a \in Vect(L) \quad v_0 \in L, v_0 = \sum_{j=1}^{n+1} \lambda_j a_j \qquad \text{Supp } \lambda_{n+1} \neq 0 \Longrightarrow a_{n+1} \in Vect((a_j)_{j \in \llbracket 1, n \rrbracket} \cup \{v_0\})$

 $\forall v \in L \setminus \{v_0\} \quad v = \tilde{v} + \alpha_v v_0 \qquad \tilde{v} \in Vect(a_j)_{j \in \llbracket 1, n \rrbracket} \qquad \Rightarrow (\tilde{v})_{v \in L} \text{ libre dans } Vect(a_j)_{j \in \llbracket 1, n \rrbracket}$

 \Rightarrow Hypothèse de récurrence : $Card(L \setminus \{v_0\}) \le n$

Théorème de la base incomplète : $E \mathbb{K} - ev$ de dimension finie

L partie libre de E, S partie génératrice de E

$$\exists S_0 \subset S \ \mathsf{tq} \ \begin{cases} S_0 \cap L = \varnothing \\ S_0 \cup L \ \mathsf{est} \ \mathsf{une} \ \mathsf{base} \ \mathsf{de} \ \mathsf{E} \end{cases}$$

Preuve:
$$S = \{S_0 \subset S \quad S_0 \cap L = \emptyset \quad S_0 \cap L \text{ libre}\}$$

 $\mathfrak{N} = \{Card(S_0) \\ S_0 \in \mathbb{S} \} \text{ partie de } \mathbb{N} \text{ non vide et maj d'après le lemme} \Rightarrow \text{plus grand \'el\'ement } S_1 \\ v \in S \quad \text{Si } v \in S_1 \Rightarrow v \in Vect(S_1 \cup L) \quad \text{Si } v \notin S_1 \Rightarrow \text{Si } v \notin Vect(S_1 \cup L) : par l'absurde \Rightarrow S_1 \cup L \text{ base}$

Tout espace vectoriel de dimension finie admet une base de dimension finie

Toute famille libre de E peut être complétée en une base

On peut extraire de S famille génératrice quelconque une base S_0

Toutes les bases de E espace vectoriel de dimension finie sont finies et ont même cardinal

Preuve: 2 bases B (finie) et C. C libre, B gén finie => card C ≤ card B. idem dans l'autre sens

La dimension de E est le cardinal commun à toutes les bases de E

S base ssi S génératrice minimale ssi S famille libre maximale

Preuves: contraposées

$$(v_k)_{k \in [\![1,n]\!]} \in E^n \qquad \qquad \psi \begin{cases} \mathbb{K}^n \to E \\ (a_j)_{j \in \mathbb{N}} \mapsto \sum_{j=1}^n \alpha_j v_j \end{cases} \in \mathfrak{L}(\mathbb{K}^n, E)$$

 ψ injective $ssi(v_k)_{k \in \llbracket 1,n \rrbracket}$ libre

 ψ surjective $ssi(v_k)_{k \in \llbracket 1,n \rrbracket}$ génératrice

 $\varphi \in \mathcal{Z}(E,F)$ φ injective de E dans F ssi $\forall L$ famille libre de E, $\varphi(L)$ libre dans F $(id\acute{e}:(v)$ fam libre) φ surjective de E dans F ssi $\forall S$ famille génératrice de E, $\varphi(S)$ génératrice de F ssi $\exists S$ famille génératrice de E, $\varphi(S)$ génératrice de F

III. Calculs de dimensions

Tout $sev\ F$ de E (de dimension finie) est de dimension finie et $\dim_{\mathbb{K}} F \leq \dim_{\mathbb{K}} E$ avec égalité $ssi\ E = F$ F sev de E admet au moins un supplémentaire dans E

$$\begin{split} &\text{Si } F \oplus G = E, (e_1...e_n) \text{ base de } F \text{ , } (w_1...w_q) \text{ base de } G \Longrightarrow (e_1...e_n, w_1...w_q) \text{ base de } E \\ &F \oplus G = E \Longrightarrow \dim_{\mathbb{K}} E = \dim_{\mathbb{K}} F + \dim_{\mathbb{K}} G \end{split}$$

$$\dim_{\mathbb{K}}(F+G) = \dim_{\mathbb{K}}F + \dim_{\mathbb{K}}G - \dim_{\mathbb{K}}(F \cap G)$$

$$F \oplus G = E \Leftrightarrow \begin{cases} F \cap G = \{0_E\} \\ \dim_{\mathbb{K}}E = \dim_{\mathbb{K}}F + \dim_{\mathbb{K}}G \end{cases} \Leftrightarrow \begin{cases} F+G = E \\ \dim_{\mathbb{K}}E = \dim_{\mathbb{K}}F + \dim_{\mathbb{K}}G \end{cases}$$

$$\dim_{\mathbb{K}}(E \times F) = \dim_{\mathbb{K}} E + \dim_{\mathbb{K}} F \qquad \dim(E^n) = n \dim(E)$$

$$\dim_{\mathbb{K}}(\mathcal{L}(E, F)) = \dim_{\mathbb{K}} E \times \dim_{\mathbb{K}} F$$

$$\begin{aligned} \mathbf{Preuve}: (e_1...e_n) \text{ base de } E \qquad \psi \begin{cases} \mathcal{Z}(E,F) \to F^n \\ f & \mapsto (f(e_1)...f(e_n)) \end{aligned} \text{ isomorphisme...}$$

$$E$$
 (fini) et $F \times -ev$, $(e_1...e_n)$ base de E , $(v_1...v_n)$ famille quelconque de F $\exists ! f \in \mathcal{L}(E,F)$ tq $\forall j \in \llbracket 1,n \rrbracket$, $f(e_j) = v_j$

Base de $\mathcal{L}(E,F)$: $(e_1...e_n)$ base de $E,(v_1...v_a)$ base de F

$$\forall (i,j) \in \llbracket 1,n \rrbracket \times \llbracket 1,q \rrbracket, f_{i,j} = \begin{cases} E \to F \\ e_i \mapsto w_j & (f_{i,j})_{i,j} \text{ base de } \mathfrak{L}(E,F) \\ e_k(k \neq i) \mapsto 0_F \end{cases}$$

E (fini) et $F \mathbb{K} - ev$. S'il existe un isomorphisme de E dans F, alors dim $F = \dim E$

E et $F \mathbb{K} - ev$ finis. Ils sont isomorphes ssi ils ont la même dimension

Preuve: \rightarrow ok, \leftarrow passer par la bij avec \mathbb{K}^n

IV. Rang

$$(v_j)_{j \in J} \in E^J$$
 $rg((v_j)_{j \in J}) = \dim(Vect((v_j)_{j \in J}))$

 $(v_i)_{i \in I}$ famille d'éléments de $E \mathbb{K} - ev$ de dim finie :

 $rg((v_i)_{i \in J})$ est le cardinal de la plus grande famille libre que l'on peut en extraire

 $(v_1,...,v_n) \in E^n \ rg(v_1,...,v_n) = n \ ssi(v_1,...,v_n)$ est libre

 $\dim(E) = n$ $(v_i)_{i \in J}$ génératrice de E ssi $rg((v_i)_{i \in J}) = n$

 $rg(v_1,...,v_n) \le \min(\dim E, n)$

E de dim finie, $\varphi \in \mathcal{L}(E,F)$ $rg(\varphi) = \dim(\operatorname{Im}(\varphi)) = \dim(\varphi(E))$

 $\mathfrak{G} = (e_1, ..., e_n)$ base de E $\varphi \in \mathfrak{L}(E, F)$ $rg(\varphi) = rg(\varphi(e_1), ..., \varphi(e_n))$

 $\varphi(F)$ sev de $F \Rightarrow rg(\varphi) \le \dim F$

 $\varphi \in \mathcal{Z}(E,F)$ $rg(\varphi) \leq \dim E$ $rg(\varphi) = \dim E \ ssi \ \varphi \ injective \ de E \ dans F$

Théorème du rang : $\dim(E) = \dim(\ker \varphi) + rg(\varphi)$

Si $\dim_{\mathbb{K}} E = \dim_{\mathbb{K}} F$ φ injective $\Leftrightarrow \varphi$ surjective $\Leftrightarrow \varphi$ isomorphisme

 $rg(g \circ f) \le \min(rg(f), rg(g))$

 $h \text{ surjective} \Rightarrow rg(f \circ h) = rg(f)$ $h \text{ injective} \Rightarrow rg(h \circ f) = rg(f)$

V. Hyperplans et formes linéaires

Une forme linéaire sur E est une app. lin. $\varphi \in \mathcal{L}(E, \mathbb{K})$

L'espace dual $E^* = \mathcal{L}(E, \mathbb{K})$

Si E de dim finie, $\mathfrak{B} = (e_1, ..., e_n)$ base de E, $\forall j \in [1, n], a_j = \varphi(e_j)$

$$\varphi = \begin{cases} E & \to \mathbb{K} \\ v = \sum_{j=1}^{n} x_{j} e_{j} \mapsto \sum_{j=1}^{n} a_{j} x_{j} \end{cases} \quad \text{Im } \varphi = \{0_{\mathbb{K}}\} \text{ ou } \mathbb{K}$$

 $E \mathbb{K} - ev$ un hyperplan H est un sev de E qui admet comme supplémentaire un sev de dimension 1

Si $\dim E = n$, alors les hyperplans sont de dimension (n-1)

$$E \; \mathbb{K} - ev \qquad \quad H \; \text{hyperplan} \; ssi \; \exists \, \varphi \in \mathcal{Z}(E,\mathbb{K}), \varphi \neq 0_{\mathcal{Z}(E,\mathbb{K})} \; \mathsf{tq} \; H = \ker \varphi$$

Preuve: \rightarrow on définit une app. Sur H et sur Vect(x_0), tq $\phi_{\backslash H} = 0_{L(E)}$ et $\phi_{\backslash Vect(x_0)}(ax_0) = a$, on vérifie H=ker ϕ \leftarrow on prend x_0 tq $\phi(x_0) = 1$, on montre H \oplus Vect(x_0)=E $(v = \phi(v)x_0 + (v - \phi(v)x_0))$

 E^* est un espace vectoriel de même dimension que E (de dim finie)

$$\mathfrak{B} = (e_1, ..., e_n) \text{ base de } E \Rightarrow \exists ! (\varphi_1, ..., \varphi_n) \in (E^*)^n \text{ tq } \forall (k, j) \in \llbracket 1, n \rrbracket^2, \varphi_k(e_j) = \delta_{k, j} = \begin{cases} 1 \text{ si } k = j \\ 0 \text{ si } k \neq j \end{cases}$$

 $(\varphi_{\scriptscriptstyle 1},...,\varphi_{\scriptscriptstyle n})$ est une base de E^* , la base duale de ${\mathfrak B}$

$$\forall v \in E,$$
 $v = \sum_{j=1}^{n} \varphi_{j}(v)e_{j}$ $\forall \psi \in E^{*}, \ \psi = \sum_{j=1}^{n} \psi(e_{j})\varphi_{j}$

 $\mathcal{C} = (\varphi_1, ..., \varphi_n)$ base de $E^* \Rightarrow \exists ! (e_1, ..., e_n)$ de E dont \mathfrak{B} soit la base duale associée

Preuve : θ : $v \mapsto (\varphi_1(v)...\varphi_n(v))$ isomorphisme : mm dim, surj ($si\ pas\ surj \Rightarrow \operatorname{Im} \theta \subset H_0 \Rightarrow \mathfrak{B}$ pas libre)

VI. Compléments et applications

$$\mathfrak{B}_0 = (e_1, ..., e_n) \text{ base de } E \qquad \forall k \in \llbracket 0, n \rrbracket, F_k = Vect(e_1, ..., e_k) \qquad F_0 = \{0_E\}$$

$$p \leq n \quad (v_1, ..., v_p) \in E^p \text{ tq } \forall k \in \llbracket 1, p \rrbracket \ v_k \in F_k \setminus F_{k-1} \qquad (v_k)_{k \in \llbracket 1, p \rrbracket} \text{ est \'echelonn\'ee} : \text{elle est libre}$$

Une telle famille $(v_1,...,v_n)$ est une base $(\dim E = rg(v_n)_n = n)$

$$\begin{split} (F_j)_{j\in \llbracket 1,n\rrbracket} \text{ famille de } \textit{sev} \text{ tels que } \{0_E\} \subsetneq F_1 \subsetneq \ldots \subsetneq F_n \\ (v_k)_{k\in \llbracket 1,n\rrbracket} \text{ est échelonnée p/r aux } (F_k)_{k\in \llbracket 1,n\rrbracket} \text{ si pour tout } k\in \llbracket 1,n\rrbracket \quad v_k\in F_k\setminus F_{k-1} \quad \Rightarrow (v_k)_{k\in \llbracket 1,n\rrbracket} \text{ est libre } \\ E \ \mathbb{K} - \textit{ev} \text{ de } \dim n \qquad (\varphi_1,\ldots,\varphi_s)\in (E^*)^s \qquad \forall j\in \llbracket 1,s\rrbracket, H_j = \ker \varphi_j \\ rg(\varphi_1,\ldots,\varphi_s) = \dim E - \dim(H_1\cap\ldots\cap H_s) \qquad \qquad \psi\in \textit{Vect}(\varphi_1,\ldots,\varphi_s) \textit{ ssi } (H_1\cap\ldots\cap H_s) \subset \ker \psi \end{split}$$

Suites récurrentes linéaires d'ordre 2 :
$$\begin{cases} u_0 \in \mathbb{K}, u_1 \in \mathbb{K} \\ \forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n \end{cases} \quad (a,b) \in \mathbb{K}^2 \text{ fixés}$$

$$\mathbb{S} = \{(u_n)_{n \in \mathbb{N}}, \forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n\} \text{ sev de } \mathbb{K}^{\mathbb{N}}$$

$$\theta \begin{cases} \mathbb{S} \to \mathbb{K}^2 \\ u \mapsto (u_0, u_1) \end{cases} \text{ est un isomorphisme} \Rightarrow \dim_{\mathbb{K}} \mathbb{S} = 2$$

$$(E_r): r^2 - ar - b = 0 \qquad \qquad 2 \text{ racines } r_1 \neq r_2: \mathbb{S} = \left\{ (\alpha r_1^n + \beta r_2^n)_{n \in \mathbb{N}}, (\alpha, \beta) \in \mathbb{K}^2 \right\}$$

$$1 \text{ racine double } r_0: \mathbb{S} = \left\{ ((\alpha + \beta n) r_0^n)_{n \in \mathbb{N}}, (\alpha, \beta) \in \mathbb{K}^2 \right\} \qquad \left(r_0 = \frac{a}{2} \right)$$