Interpretable Machine Learning

Shapley Values for Local Explanations

Learning goals

- See model predictions as a cooperative game
- Transfer the Shapley value concept from game theory to machine learning

FROM GAME THEORY TO MACHINE LEARNING

- Model prediction depends on feature interactions for a specific observation
- Goal: Decompose prediction into individual feature contributions
- Idea: Treat features as players jointly producing a prediction
- How to fairly assign credit to features?
 ⇒ Shapley values

FROM GAME THEORY TO MACHINE LEARNING

- Game: Predict $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation **x**
- **Players:** Features $x_j, j \in \{1, ..., p\}$, cooperate to produce a prediction
- Value function: Defines payout of coalition $S \subseteq P$ for observation **x** by

$$v(S) = \hat{f}_S(\mathbf{x}_S) - \hat{f}_{\emptyset}$$
, where

- $\hat{f}_S: \mathcal{X}_S \mapsto \mathcal{Y}$ is the PD function $\hat{f}_S(\mathbf{x}_S) := \int \hat{f}(\mathbf{x}_S, X_{-S}) \, d\mathbb{P}_{X_{-S}}$ \rightarrow "Removes" features in -S by marginalizing, keeping \hat{f} fixed
- ullet Mean prediction $\hat{f}_\emptyset:=\mathbb{E}_{f x}(\hat{f}({f x}))$ is subtracted to ensure $u(\emptyset)=0$
- **Goal:** Distribute total payout $v(P) = \hat{f}(\mathbf{x}) \hat{f}_{\emptyset}$ fairly among features

FROM GAME THEORY TO MACHINE LEARNING

- Game: Predict $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation **x**
- **Players:** Features $x_j, j \in \{1, \dots, p\}$, cooperate to produce a prediction
- Value function: Defines payout of coalition $S \subseteq P$ for observation **x** by

$$v(\mathcal{S}) = \hat{\mathit{f}}_{\mathcal{S}}(\mathbf{x}_{\mathcal{S}}) - \hat{\mathit{f}}_{\emptyset}, \text{ where }$$

- $\hat{f}_S: \mathcal{X}_S \mapsto \mathcal{Y}$ is the PD function $\hat{f}_S(\mathbf{x}_S) := \int \hat{f}(\mathbf{x}_S, X_{-S}) \, d\mathbb{P}_{X_{-S}}$ \leadsto "Removes" features in -S by marginalizing, keeping \hat{f} fixed
- ullet Mean prediction $\hat{f}_\emptyset:=\mathbb{E}_{f x}(\hat{f}(f x))$ is subtracted to ensure $u(\emptyset)=0$
- Goal: Distribute total payout $v(P) = \hat{f}(\mathbf{x}) \hat{f}_{\emptyset}$ fairly among features
- Marginal contribution of feature j joining coalition S (\hat{f}_{\emptyset} cancels):

$$\Delta(j,S) = v(S \cup \{j\}) - v(S) = \hat{f}_{S \cup \{j\}}(\mathbf{x}_{S \cup \{j\}}) - \hat{f}_{S}(\mathbf{x}_{S})$$

• Example (3 features): Feature contributions for joining order $x_1 \to x_2 \to x_3$ toward total payout $v(P) = \hat{f}(\mathbf{x}) - \hat{f}_{\emptyset}$, each step reflects a marginal contribution

Order definition: Shapley value $\phi_i(\mathbf{x})$ quantifies contribution of x_i via

$$\phi_j(\mathbf{x}) = \frac{1}{|P|!} \sum_{\tau \in \Pi} \underbrace{\hat{f}_{\mathcal{S}_j^{\tau} \cup \{j\}}(\mathbf{x}_{\mathcal{S}_j^{\tau} \cup \{j\}}) - \hat{f}_{\mathcal{S}_j^{\tau}}(\mathbf{x}_{\mathcal{S}_j^{\tau}})}_{\Delta(j,\mathcal{S}_j^{\tau}) \text{ marginal contribution of feature } j}$$

- Interpretation: $\phi_i(\mathbf{x})$ quantifies how much feature x_i contributes to the difference between $\hat{f}(\mathbf{x})$ and the mean prediction \hat{f}_{th} → Marginal contributions and Shapley values can be negative.
- Exact computation of ϕ_i : Using PD function $\hat{f}_S(\mathbf{x}_S) = \frac{1}{2} \sum_{i=1}^n \hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}^{(i)})$ yields

$$\phi_j(\mathbf{x}) = \frac{1}{|P|!} \sum_{\tau \in \Pi} \frac{1}{n} \sum_{i=1}^n \hat{f}(\mathbf{x}_{S_j^{\tau} \cup \{j\}}, \mathbf{x}_{-\{S_j^{\tau} \cup \{j\}\}}^{(i)}) - \hat{f}(\mathbf{x}_{S_j^{\tau}}, \mathbf{x}_{-S_j^{\tau}}^{(i)})$$

- $\rightarrow \hat{f}_S$ marginalizes over all features not in S using all observations $i = 1, \dots, n$
- \rightarrow Exact computation requires $|P|! \cdot n$ marginal contribution terms

• Exact computation is infeasible for many features:

For |P|= 10, the number of permutations is 10! \approx 3.6 million \sim Complexity grows factorially with feature count

• Exact computation is infeasible for many features:

For $|\emph{P}|=$ 10, the number of permutations is 10! \approx 3.6 million

- → Complexity grows factorially with feature count
- Additional challenge: Estimating marginal predictions (PD functions) Each permutation τ defines a coalition S_j^τ needing its own estimate of $\hat{f}_{S_j^\tau}(\mathbf{x}_{S_j^\tau})$ \leadsto With |P|! permutations and n data points, the number of such estimates grows rapidly, making marginalization costly

Exact computation is infeasible for many features:

For |P|= 10, the number of permutations is 10! \approx 3.6 million

- \rightsquigarrow Complexity grows factorially with feature count
- Additional challenge: Estimating marginal predictions (PD functions) Each permutation τ defines a coalition S_j^{τ} needing its own estimate of $\hat{f}_{S_j^{\tau}}(\mathbf{x}_{S_j^{\tau}})$ \rightsquigarrow With |P|! permutations and n data points, the number of such estimates grows rapidly, making marginalization costly
- Solution: Sampling-based approximation Instead of computing $|P|! \cdot n$ terms, we approximate using M random samples of permutations τ and data points

Exact computation is infeasible for many features:

For |P|= 10, the number of permutations is 10! \approx 3.6 million

- \rightsquigarrow Complexity grows factorially with feature count
- Additional challenge: Estimating marginal predictions (PD functions) Each permutation τ defines a coalition S_j^{τ} needing its own estimate of $\hat{f}_{S_j^{\tau}}(\mathbf{x}_{S_j^{\tau}})$ \rightsquigarrow With |P|! permutations and n data points, the number of such estimates grows rapidly, making marginalization costly
- Solution: Sampling-based approximation Instead of computing $|P|! \cdot n$ terms, we approximate using M random samples of permutations τ and data points
- Tradeoff: Accuracy vs. Efficiency
 Larger M improves Shapley approximation
 → Higher cost, but better fidelity to the exact value

Estimate Shapley value ϕ_i of observation **x** for feature *j*:

• Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- **1** For m = 1, ..., M **do**:

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- **1** For m = 1, ..., M do:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- **1** For m = 1, ..., M do:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ

- Input: x obs. of interest, *i* feat. of interest, \hat{f} model, \mathcal{D} data, *M* iterations
- **1** For m = 1, ..., M do:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - **3** Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)

- Input: x obs. of interest, *i* feat. of interest, \hat{f} model, \mathcal{D} data, *M* iterations
- **1** For m = 1, ..., M do:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - Construct two hybrid observations by combining values from \mathbf{x} and $\mathbf{z}^{(m)}$:

- Input: x obs. of interest, *i* feat. of interest, \hat{f} model, \mathcal{D} data, *M* iterations
- **1** For m = 1, ..., M do:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - Construct two hybrid observations by combining values from \mathbf{x} and $\mathbf{z}^{(m)}$:

•
$$\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, x_j, z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)})$$

 \leadsto includes $\mathbf{x}_{S_m \cup \{j\}}$ (features in $S_m \cup \{j\}$ from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

- Input: x obs. of interest, i feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- **1** For m = 1, ..., M **do**:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - Construct two hybrid observations by combining values from \mathbf{x} and $\mathbf{z}^{(m)}$:

•
$$\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, x_j, \mathbf{z}_{\tau^{(|S_m|+2)}}^{(m)}, \dots, \mathbf{z}_{\tau^{(p)}}^{(m)})$$

 \leadsto includes $\mathbf{x}_{S_m \cup \{j\}}$ (features in $S_m \cup \{j\}$ from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

•
$$\mathbf{x}_{-j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, \mathbf{z}_j^{(m)}, \mathbf{z}_{\tau^{(|S_m|+2)}}^{(m)}, \dots, \mathbf{z}_{\tau^{(n)}}^{(m)})$$

 \leadsto includes \mathbf{x}_{S_m} (features in S_m excl. x_j from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- **1** For m = 1, ..., M do:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - Construct two hybrid observations by combining values from \mathbf{x} and $\mathbf{z}^{(m)}$:

•
$$\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, x_j, \mathbf{z}_{\tau^{(|S_m|+2)}}^{(m)}, \dots, \mathbf{z}_{\tau^{(p)}}^{(m)})$$

 \leadsto includes $\mathbf{x}_{S_m \cup \{j\}}$ (features in $S_m \cup \{j\}$ from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

•
$$\mathbf{x}_{-j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, \mathbf{z}_j^{(m)}, \mathbf{z}_{\tau^{(|S_m|+2)}}^{(m)}, \dots, \mathbf{z}_{\tau^{(n)}}^{(m)})$$
 \leadsto includes \mathbf{x}_{S_m} (features in S_m excl. x_j from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

• Compute marginal contribution
$$\Delta(j, S_m) = \hat{f}(\mathbf{x}_{+i}^{(m)}) - \hat{f}(\mathbf{x}_{-i}^{(m)})$$

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- **1** For m = 1, ..., M do:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - Construct two hybrid observations by combining values from \mathbf{x} and $\mathbf{z}^{(m)}$:

•
$$\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, x_j, z_{\tau^{(|S_m|+2)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)})$$

 \leadsto includes $\mathbf{x}_{S_m \cup \{j\}}$ (features in $S_m \cup \{j\}$ from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

•
$$\mathbf{x}_{-j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, \mathbf{z}_j^{(m)}, \mathbf{z}_{\tau^{(|S_m|+2)}}^{(m)}, \dots, \mathbf{z}_{\tau^{(n)}}^{(m)})$$

 \leadsto includes \mathbf{x}_{S_m} (features in S_m excl. x_j from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

- **6** Compute marginal contribution $\Delta(j, S_m) = \hat{f}(\mathbf{x}_{+i}^{(m)}) \hat{f}(\mathbf{x}_{-i}^{(m)})$
- 2 Compute Shapley value $\phi_i = \frac{1}{M} \sum_{m=1}^{M} \Delta(i, S_m)$

- Input: x obs. of interest, j feat. of interest, \hat{f} model, \mathcal{D} data, M iterations
- **1** For m = 1, ..., M do:
 - Sample random permutation $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$ of feature indices
 - **2** Let coalition $S_m := S_i^{\tau}$ be the set of features preceding j in τ
 - Sample random data point $\mathbf{z}^{(m)} \in \mathcal{D}$ (so-called background data)
 - Construct two hybrid observations by combining values from \mathbf{x} and $\mathbf{z}^{(m)}$:

•
$$\mathbf{x}_{+j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, x_j, \mathbf{z}_{\tau^{(|S_m|+2)}}^{(m)}, \dots, \mathbf{z}_{\tau^{(p)}}^{(m)})$$

 \leadsto includes $\mathbf{x}_{S_m \cup \{j\}}$ (features in $S_m \cup \{j\}$ from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

•
$$\mathbf{x}_{-j}^{(m)} = (x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|)}}, \mathbf{z}_j^{(m)}, \mathbf{z}_{\tau^{(|S_m|+2)}}^{(m)}, \dots, \mathbf{z}_{\tau^{(n)}}^{(m)})$$

 \leadsto includes \mathbf{x}_{S_m} (features in S_m excl. x_j from \mathbf{x}), rest from $\mathbf{z}^{(m)}$

- **6** Compute marginal contribution $\Delta(j, S_m) = \hat{f}(\mathbf{x}_{+i}^{(m)}) \hat{f}(\mathbf{x}_{-i}^{(m)})$
- 2 Compute Shapley value $\phi_i = \frac{1}{M} \sum_{m=1}^{M} \Delta(i, S_m)$
- Over *M* iterations, the PD functions $\hat{f}_{S_m}(\mathbf{x}_{S_m})$ and $\hat{f}_{S_m \cup \{i\}}(\mathbf{x}_{S_m \cup \{i\}})$ are approximated by $\hat{f}(\mathbf{x}_{-i}^{(m)})$ and $\hat{f}(\mathbf{x}_{+i}^{(m)})$, where features not in the coalition (to be marginalized) are imputed with values from the random data points $\mathbf{z}^{(m)}$

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

$$\mathbf{x}$$
: obs. of interest \mathbf{x} with feature values in \mathbf{x}_{S_m} (other are replaced)

 $\phi_j(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \left[\hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)}) \right]$

x with feature values in

$$\mathbf{x}_{S_m \cup \{j\}}$$

	Temperature	Humidity	Windspeed	Year
\boldsymbol{x}	10.66	56	11	2012
x_{+j}	10.66	56	$random: z_{windspeed}^{(m)}$	2012
x_{-j}	10.66	56	$random: z_{windspeed}^{(m)}$	$random: z_{year}^{(m)}$
			,	
				7

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Definition

Contribution of feature
$$j$$
 to coalition S_m
$$\phi_j(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \left[\hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)}) \right]$$
$$:= \Delta(j, S_m)$$

- $\Delta(j, S_m) = \hat{f}(\mathbf{x}_{+j}^{(m)}) \hat{f}(\mathbf{x}_{-j}^{(m)})$ is marginal contribution of feature j to coalition S_m
- Here: Feature *year* contributes +700 bike rentals if it joins coalition $S_m = \{temp, hum\}$

	Temperature	Humidity	Windspeed	Year	Count	
\boldsymbol{x}	10.66	56	11	2012		
x_{+j}	10.66	56	$random: z_{windspeed}^{(m)}$	2012	5600	700
x_{-j}	10.66	56	$random: z_{windspeed}^{(m)}$	$random: z_{year}^{(m)}$	4900	700
			,	į	Ŷ	$\Delta(j,S_m)$ marginal
				J	Ĵ	contribution

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Definition

$$\phi_j(\mathbf{x}) = \frac{1}{M} \sum_{j=1}^{M} \left[\hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)}) \right]$$

- Compute marginal contribution of feature j towards the prediction across all randomly drawn feature coalitions S_1, \ldots, S_m
- Average all M marginal contributions of feature j
- Shapley value ϕ_j is the payout of feature j, i.e., how much feature year contributed to the overall prediction in bicycle counts of a specific observation \mathbf{x}

$$m=1$$
 2 M 300 $\Delta(j,S_m)$

REVISITED: AXIOMS FOR FAIR ATTRIBUTIONS

We adapt the classic Shapley axioms to the setting of model predictions:

• **Efficiency**: Sum of Shapley values adds up to the centered prediction:

$$\sum_{j=1}^{p} \phi_j(\mathbf{x}) = \hat{f}(\mathbf{x}) - \mathbb{E}_{\mathbf{x}}[\hat{f}(\mathbf{x})]$$

 \rightsquigarrow All predictive contribution is fully distributed among features

• Symmetry: Identical contributors receive equal value:

$$\hat{\textit{f}}_{\mathcal{S} \cup \{j\}}(\mathbf{x}_{\mathcal{S} \cup \{j\}}) = \hat{\textit{f}}_{\mathcal{S} \cup \{k\}}(\mathbf{x}_{\mathcal{S} \cup \{k\}}) \, \forall \mathcal{S} \subseteq \textit{P} \setminus \{j,k\} \Rightarrow \phi_j = \phi_k$$

- → Interaction effects are shared equitably
- Dummy (Null Player): Irrelevant features receive zero attribution:

$$\hat{f}_{S \cup \{j\}}(\mathbf{x}_{S \cup \{j\}}) = \hat{f}_{S}(\mathbf{x}_{S}) \ \forall S \subseteq P \Rightarrow \phi_{j} = 0$$

- → Shapley value is zero for unused features (e.g., trees or LASSO)
- Additivity: Attributions are additive across models:

$$\phi_j(\mathbf{v}_1+\mathbf{v}_2)=\phi_j(\mathbf{v}_1)+\phi_j(\mathbf{v}_2)$$

BIKE SHARING DATASET

- Shapley decomposition for a single prediction in bike sharing dataset
- ullet Model prediction: $\hat{f}(\mathbf{x}^{(200)}) = \mathbf{4434.86}$ vs. dataset average: $\mathbb{E}_{\mathbf{x}}[\hat{f}(\mathbf{x})] = \mathbf{4507.67}$
- Total feature attribution: $\sum_j \phi_j =$ -72.81 \leadsto Explain downward shift from mean prediction
- Temperature (with value 28.5°C) is the strongest positive contributor: +400
- Features yr = 2011 and days_since_2011 = 199 strongly reduce prediction
 → Model captures lower bike demand in 2011 compared to 2012

ADVANTAGES AND DISADVANTAGES

Advantages:

- Strong theoretical foundation from cooperative game theory
- Contrastive explanations: Quantify each feature's role in deviating from the average prediction

- Computational cost: Exact computation scales factorially with feature count
 → Without sampling, all 2^p coalitions (or p! permutations) must be evaluated
- Issue with correlated features: Shapley values may evaluate the model on feature combinations that do not occur in the real data

