Exercícios - Lista V – Circuitos com FET - polarização e amplificadores

- Para a configuração com autopolarização da Figura abaixo:
- a) Esboce a curva de transferência para o dispositivo.
- b) Sobreponha a equação do circuito no mesmo gráfico.
- c) Determine *IDQ* e *VGSQ*.
- d) Determine VDS, VD, VG e VS.:

2) Dada a leitura VS = 1,7 V para o circuito da Figura seguinte:

- a) I_{DQ} .
- **b)** *V*_{GSQ}.
- c) IDSS.
- **d)** V_D.
- e) V_{DS}.

3) Para o circuito da figura seguinte, determine:

- **a)** *I*D.
- **b)** *V*_{DS}.

- c) V_D.
- **d)** Vs.
- 4) Determine VS para o circuito da figura seguinte.

5) Para o circuito abaixo, determine:

- a) VG.
- b) Ina e Vasa.
- **c)** V_D e Vs.
- d) Vosa.
- e) Repita os itens anteriores para com $Rs = 0,51 \text{ k}\Omega$ Qual é o efeito de um Rs menor sobre Ioo e Vasa?
- f) Qual é o valor mínimo possível de Rs?
- 6) Para o circuito abaixo, VD = 12 V. Determine:
- a) ID.
- **b)** *Vs* e *Vos*.
- c) V_G e V_{GS}.
- d) VP.

7) Determine o valor de RS para o circuito seguinte de modo a estabelecer VD = 10 V.

- 8) Para o circuito seguinte, determine:
- a) Ina e Vasa.
- b) Vos e Vs.

- 9) Dado VDS = 4 V para o circuito abaixo, determine:
- a) ID.
- **b)** V_D e Vs.
- c) V_{GS}.

- 10) Para o circuito seguinte:
- a) Determine IDa.
- b) Determine Voq e Vosa.
- c) Calcule a potência fornecida pela fonte e dissipada pelo dispositivo.

11) Para o circuito da Figura seguinte, determine:

- a) Ing e Vasq.
- b) Vos e Vs.
- 12) Para o circuito abaixo, determine:
- a) IDQ.
- b) Vasa e Vosa.
- c) Voe Vs.
- d) Vos.

- 13) Para a configuração com polarização por divisor de tensão do circuito seguinte, determine:
- a) Ina e Vasa.
- **b)** Vo e Vs.

- 14) Para o circuito seguinte, determine:
- a) Z_i , Z_o e A_v se $I_{DSS}=$ 10 mA, $V_P=$ 6 V e $r_d=$ 40 k Ω .
- b) Se I_{DSS} e V_P forem a metade dos valores anteriores, Isto é, se I_{DSS} = 5 mA e V_P = -3 V, determine Z_i , Z_o e A_V

15) Determine Zi, Zo e Av para o circuito abaixo se I_{DSS} = 10 mA, V_P = -4 V e r_d = 20 k Ω . Repita o para r_d = 40 k Ω . Qual foi o impactoda mudança nos resultados?

16) Determine Zi, Zo e Av para o circuito abaixo se gfs = 3000 μ S e gos = 50 μ S.

17) Determine o valor de RS para obter um ganho de tensão de 2 para o circuito seguinte usando rd = $\infty \Omega$. Repita o item (a) com rd = $30 \text{ k}\Omega$. Qual foi o impacto da alteração em rd sobre o ganho e sobre a análise?

18) Determine Zi, Zo e Vo para o seguinte se Vi = 20 mV. Repita com o capacitor C_3 removido e compare os resultados.

19) Determine Zi, Zo e Av para o circuito abaixo. Repita o problema com $rd = 20 \text{ k}\Omega$ e compare os resultados.

20) Determine Vo para o circuito seguinte se Vi = 1.8 mV.

21) Determine Zi, Zo e Av para o amplificador da Figura abaixo se $k = 0.3 \times 10^{-3}$. Repita o problema se k cair para 0.2×10^{-3} . Compare os resultados.

22) Determine a tensão de saída para o circuito abaixo se Vi = 0.8 mV e $rd = 40 \text{ k}\Omega$.

- 23) Para o circuito JFET de autopolarização da abaixo:
 - a) Determine A_{NNL} , Z_i e Z_o .
 - **b)** Determine A_{VL} e A_{VS} .
 - c) Altere \textit{R}_{sig} para 10 k Ω e calcule os novos valores de

 A_{VL} e A_{VS} . Como o ganho de tensão é afetado por um aumento em R_S ?

d) Para a alteração do item (c), determine Z_i e Z_o . Qual foi o efeito sobre ambas as impedâncias?

