Глава 1

Асимптотические свойства оценок. Состоятельность и асимптотическая нормальность

1.1 Базовая часть

1.1.1 Состоятельность оценок. Определение

Сперва сделаем терминологическое замечание. Под статистикой мы понимаем измеримую функцию от выборки. Под оценкой некоторой функции $g(\theta)$ мы понимаем статистику, оценивающую (то есть приближающую) $g(\theta)$. Формально любую статистику можно считать оценкой любой функции от параметра, но идейно разница должна быть понятна.

Еще одно свойство, которое мы ожидаем увидеть от оценок — улучшение качества оценки при увеличении числа наблюдений.

Определение 1. Назовем оценку $\widehat{\theta}$ (а вернее последовательность оценок $\widehat{\theta}_n(X_1,...,X_n)$ при $n\geq 1$) состоятельной оценкой $g(\theta)$, если $\widehat{\theta}(X_1,...,X_n)\stackrel{P}{\to} g(\theta),\, n\to\infty \ \forall \theta\in\Theta.$

Определение 2. Оценка называется *сильно состоятельной*, если $\widehat{\theta}(X_1,...,X_n) \to g(\theta)$ п.н., $n \to \infty$, $\forall \theta \in \Theta$.

Напомню, сходимость по вероятности случайных величин X_n к сл.в. X означает, что $\mathbf{P}(|X_n-X|>\varepsilon)\to 0$ при любом ε , сходимость п.н. — что $\mathbf{P}(\omega:X_n(\omega)\to X(\omega))=1$.

Пример 1. Если $X_i \sim Bernoulli(\theta),$ то $\overline{X} \to \theta$ п.н. в силу УЗБЧ. Значит, \overline{X} — сильно состоятельная оценка.

Аналогичным образом в произвольной модели, где X_i имеют конечное м.о., \overline{X} будет сильно состоятельной его оценкой (иначе говоря, в непараметрической модели \overline{X} — сильно состоятельная оценка для $\mathbf{E}_P X$).

Содержательно, состоятельность означает, что при больших n вероятность того, что мы будем отличаться от настоящего значения более чем на ε , мала, чего вполне естественно ожидать. Сильная состоятельность означает, что увеличивая выборку, мы гарантировано сойдемся к настоящему значению. Для того, чтобы лучше прочувствовать, в чем различие, стоит взглянуть на пример со ступеньками Риисе из теории вероятностей:

Последовательность случайных величин $X_n = I_{\omega \in [i/2^k, (i+1)/2^k]}$, где $n = 2^k + i$, $i < 2^k$, заданная на пространстве $\Omega = [0, 1]$ с мерой Лебега, сходится к 0 по вероятности, но не п.н. В целом, на практике обычно важна состоятельность, но не так существенно, сильная ли она, поскольку мы не имеем возможности генерировать бесконечные выборки. Сильная состоятельность, скорее, имеет теоретическое значение.

1.1.2 Проверка состоятельности

Как же проверять состоятельность оценок? В этом нам помогают три факта:

- 1. Сходимость по вероятности к константе равносильна сходимости по распределению $\stackrel{d}{\to}$ (напомним, что $Y_n \stackrel{d}{\to} Y$, если $\mathbf{P}(Y_n \leq y) \to \mathbf{P}(Y \leq y)$ для всех $y : \mathbf{P}(Y = y) = 0$). Таким образом, состоятельность равносильна сходимости ф.р. $\widehat{\theta}$ к ф.р. $g(\theta)$. Вопрос на засыпку. А как выглядит ф.р. константы?
- 2. Непрерывные функции сохраняют сходимость по вероятности: если $X_n \stackrel{P}{\to} X$, то $h(X_n) \stackrel{P}{\to} h(X)$, где h непрерывная функция. То же самое верно для функций нескольких переменных, скажем, если $X_n \stackrel{P}{\to} X$, $Y_n \stackrel{P}{\to} Y$, то $X_n + Y_n \stackrel{P}{\to} X + Y$.
- 3. Если оценка асимптотически несмещенная, а ее дисперсия при любом θ стремится к нулю, то она состоятельна. Это утверждение вытекает из следующей Леммы 1:

Лемма 1. Пусть Y_n имеют конечный второй момент, причем $\mathbf{E}(Y_n) \to c$, $\mathbf{D}(Y_n) \to 0$, $n \to \infty$. Тогда $Y_n \stackrel{P}{\to} c$, $n \to \infty$.

Доказать Лемму 1 можно с помощью неравенства Чебышева:

$$\mathbf{P}(|Y_n - c| > \varepsilon) \le \frac{\mathbf{E}(Y_n - c)^2}{\varepsilon^2} = \frac{\mathbf{D}(Y_n - c) + (\mathbf{E}(Y_n - c))^2}{\varepsilon^2} = \frac{\mathbf{D}Y_n + (\mathbf{E}Y_n - c)^2}{\varepsilon^2} \to 0,$$

где во втором переходе мы воспользовались тем, что математическое ожидание квадрата случайной величины $Y_n - c$ есть сумма ее дисперсии и квадрата ее математического ожидания.

Из пункта 2 вытекает важное свойство состоятельной оценки: функциональная инвариантность в классе непрерывных функций. Это означает, что если $\widehat{\theta}_n$ — состоятельная оценка $f(\theta)$, то $g(\widehat{\theta}_n)$ — состоятельная оценка $g(f(\theta))$ для любой $g \in C(\mathbb{R})$. Это очень удобно, ведь фактически достаточно научиться состоятельно оценивать хоть что-нибудь, а дальше подобрать функцию, которая сделает из этого то, что нам нужно оценить. Если вы вспомните прошлый семинар, то увидите как отсутствие такого свойство осложняет жизнь при исследовании несмещенности — каждую функцию θ нужно оценивать заново.

Кроме того в силу свойства 2 состоятельные оценки можно складывать или умножать, получая, соответственно, состоятельную оценку суммы или произведения оцениваемых параметров.

Отметим также, что $\overline{a(X)} = (a(X_1) + ... + a(X_n))/n$ является состоятельной оценкой для $\mathbf{E}_{\theta}a(X)$ в силу закона больших чисел.

Пример 2. Пусть $X_i \sim R[0, \theta]$. Тогда:

- Оценка $2\overline{X}$ состоятельна, т.к. $\overline{X} \stackrel{P}{\to} \theta/2$ из ЗБЧ (более того, она сильно состоятельна из УЗБЧ).
- Оценка $X_{(n)} = \max X_i$ состоятельна. Действительно,

$$F_{X_{(n)}}(x) = \begin{cases} 0, & x < 0, \\ \left(\frac{x}{\theta}\right)^n, & x \in [0, \theta], \\ 1, & x > \theta. \end{cases}$$

, поскольку событие $\{X_{(n)} \leq x\}$ равносильно $\{X_1 \leq x, \dots, X_n \leq x\}$. При $n \to \infty$ эта функция сходится к функции $I_{x \geq \theta}$ при каждом $x \in \mathbb{R}$. При этом $I_{x \geq \theta}$ — это ф.р. константы θ , откуда и вытекает требуемая сходимость. Полезно помнить, что нам достаточно было сходимости при всех $x \neq \theta$, поскольку θ — точка разрыва $I_{x > \theta}$.

• В состоятельности $X_{(n)}$ также можно было убедиться, найдя математическое ожидание и дисперсию этой величины:

$$\mathbf{E}X_{(n)} = \frac{\theta n}{n+1} \to \theta, \ \mathbf{D}X_{(n)} = \frac{n\theta^2}{(n+1)^2(n+2)} \to 0, \ n \to \infty.$$

_

Следовательно, по свойству 3. оценка $X_{(n)}$ состоятельна.

Пример 3. Оценка $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \overline{X^2} - \overline{X}^2$ будет состоятельной оценкой $\mathbf{D}_{\theta} X_1$ (если, конечно, упомянутая дисперсия конечна). Действительно, \overline{X} — состоятельная оценка $\mathbf{E}_{\theta} X$ по ЗБЧ, следовательно, \overline{X}^2 состоятельная оценка $\mathbf{E}_{\theta} X^2$ по ЗБЧ, значит их разность

$$\overline{X^2} - \overline{X}^2$$

будет состоятельной оценкой $\mathbf{D}_{\theta}X$.

Несмещенная дисперсия $S_0^2 = \frac{n}{n-1} S^2$ является несмещенной и сильно состоятельной оценкой дисперсии.

1.1.3 Асимптотическая нормальность. Определение

Некоторое неудобство состоятельной оценки в том, что она не описывает, с какой же именно скоростью имеет место сходимость к исследуемому параметру. Между тем, на практике мы всегда имеем конечную выборку и хотели для нее представлять близость к оцениваемому параметру. Увеличение размера выборки может быть сопряжено с финансовыми затратами, что придает особенную важность определению порядка малости отличия оценки от оцениваемого параметра.

Пример 4. Сам факт сходимости с практическом точки зрения практически бесполезен. Представим себе, что $\widehat{\theta}(X_1,...,X_n)-g(\theta)$ имеет типичный порядок малости $\frac{1}{\ln \ln n}$. Формально это означает сходимость, а практически нет — $\ln \ln 10^{50} < 5$.

Пример 5. Если рассмотреть оценку $\overline{X} = n^{-1} \sum_{i=1}^{n} X_i$ для параметра θ — вероятности успеха в схеме Бернулли, то она будет не просто состоятельна, но в силу центральной предельной теоремы будет удовлетворять соотношению

$$\frac{\sqrt{n}(\overline{X} - \theta)}{\sqrt{\theta(1 - \theta)}} \stackrel{d}{\to} Z \sim \mathcal{N}(0, 1).$$

Иначе говоря, оценка \overline{X} оценивает θ с погрешностью порядка $n^{-1/2}$.

Если существуют такое $\sigma_n(\theta) \to 0$, что

$$\frac{\widehat{\theta}(X_1, ..., X_n) - g(\theta)}{\sigma_n(\theta)} \stackrel{d}{\to} Z \sim \mathcal{N}(0, 1),$$

то оценка $\widehat{\theta}$ (а вернее последовательность оценок, поскольку при каждом n статистика своя) называется acumnmomuчecku нормальной оценкой $g(\theta)$. Мы будем рассматривать оценки вида

$$\sqrt{n} \frac{\widehat{\theta}(X_1, ..., X_n) - g(\theta)}{\sigma(\theta)} \stackrel{d}{\to} Z \sim \mathcal{N}(0, 1).$$

Величину $\sigma^2(\theta)$ называют асимптотической дисперсией оценки $\widehat{\theta}(X_1,...,X_n)$.

Из асимптотической нормальности следует состоятельность, это более тонкое свойство.

Почему именно "нормальные" оценки? К этому ведут два явления.

- Во-первых, класс асимптотически нормальных оценок для многих моделей достаточно богат. Ниже мы опишем как строить такие оценки, но как минимум центральная предельная теорема показывает, что выборочные средние $\overline{h(X)}$ будут не только состоятельными, но и асимптотически нормальными оценками $\mathbf{E}_{\theta}h(X)$ при небольших условиях.
- Во-вторых, стандартное нормальное распределение имеет очень "легкие хвосты", то есть достаточно мало отклоняется от своего среднего. Так для $Z \sim \mathcal{N}(0,1)$ нетрудно убедиться, что $\mathbf{P}(|Z| > 1.96) \approx 0.05$,

_

 $\mathbf{P}(|Z|>3)\approx 0.005$ (последнее утверждение называют *правилом трех сигм* — нормальная величина крайне редко отличается от среднего более чем на 3 корня из дисперсии). За счет этого, скажем, в модели примера 5, с большой вероятностью можно сказать, что \overline{X} промахнется не более чем на $3\sqrt{\theta(1-\theta)}/\sqrt{n}\leq 3/(2\sqrt{n})$. Остается, правда, оговорка, что все это при достаточно больших n, чтобы сходимость имела место.

1.1.4 Доказательство асимптотической нормальности

Для доказательства асимптотической нормальности оценок отметим несколько свойств сходимости по распределению:

- 1. Если $X_n \stackrel{d}{\to} X$, то $g(X_n) \stackrel{d}{\to} g(X)$ для любой непрерывной g.
- 2. Для пары величин, увы, этого утверждать нельзя, если $X_n \stackrel{d}{\to} X$, $Y_n \stackrel{d}{\to} Y$, то, скажем, $X_n + Y_n$ может не сходиться к X + Y. Однако, определенные выводы сделать можно, используя следующую лемму Слуцкого:

Лемма 2. Пусть $X_n \stackrel{d}{\to} X$, $Y_n \stackrel{d}{\to} c$, где c- константа, $a \stackrel{d}{\to} -$ сходимость по распределению. Тогда:

- 1) $X_n + Y_n \stackrel{d}{\to} X + c$,
- 2) $X_n Y_n \stackrel{d}{\to} cX$,
- 3) $X_n/Y_n \stackrel{d}{\to} X/c \ npu \ c \neq 0.$

В действительности это утверждение вытекает из более общего утверждения: если векторы \vec{X}_n слабо сходятся к \vec{X} , то $g(\vec{X}_n)$ слабо сходится к $g(\vec{X})$ для любой непрерывной функции $g: \mathbb{R}^n \to \mathbb{R}^m$.

3. Справедлива следующая Лемма 3

Лемма 3. Пусть X_n — последовательность случайных величин, такая что при некотором a u $g(n) \to \infty$

$$g(n)(X_n - a) \stackrel{d}{\to} Z \sim \mathcal{N}(0, \sigma^2).$$

Тогда для любой дифференцируемой функции h

$$g(n)(h(X_n) - h(a)) \stackrel{d}{\to} Z \sim \mathcal{N}(0, \sigma^2(h'(a))^2). \tag{1.1}$$

Можно переформулировать соотношение (1.1) в виде

$$g(n)\frac{h(X_n) - h(a)}{\sigma |h'(a)|} \xrightarrow{d} Z \sim \mathcal{N}(0, 1).$$

Лемма 3 дает нам функциональную инвариантность асимптотической нормальности относительно дифференцируемых функций: если $\widehat{\theta}$ — асимптотически нормальная оценка $f(\theta)$, а g — дифференцируемая функция, то $g(\widehat{\theta})$ — асимптотически нормальная оценка $g(f(\theta))$. Более того, асимптотическая дисперсия $g(\widehat{\theta})$ отличается от асимптотической дисперсии $\widehat{\theta}$ в $(g'(f(\theta)))^2$ раз. В русскоязычной литературе этот факт называют "леммой об асимптотической нормальности", а в иноязычной Delta method.

Отметим также, что $\overline{a(X)} = (a(X_1) + ... + a(X_n))/n$ является асимптотически нормальной оценкой $\mathbf{E}_{\theta}a(X)$ в силу ЦПТ. Из этих фактов можно удобно конструировать асимптотически нормальные оценки.

Пример 6. Оценка $1/\overline{X}$ в примере 1 будет асимптотически нормальной оценкой функции $1/\theta$, при этом

$$\sqrt{n} \frac{\frac{1}{\overline{X}} - \frac{1}{\theta}}{\sqrt{\theta(1-\theta)} \cdot \frac{1}{\theta^2}} \xrightarrow{d} Z \sim \mathcal{N}(0,1).$$

А вот складывать асимптотически нормальные оценки затруднительно, поскольку слабая сходимость не выдерживает сложения. Как же все-таки можно работать с несколькими асимптотически нормальными оценками, вы можете прочитать в факультативе.

1.1.5 Относительная асимптотическая эффективность

Для сравнения различных асимптотически нормальных оценок мы будем использовать относительную асимптотическую эффективность:

$$e_{\widehat{\theta}_1,\widehat{\theta}_2} = \frac{\sigma_2^2(\theta)}{\sigma_1^2(\theta)}.$$

Чем меньше асимптотическая дисперсия, тем оценка точнее. Поэтому большая эффективность соответствует меньшей дисперсии.

Что символизирует относительная эффективность? Давайте представим, что мы платим за каждый элемент выборки цену p_1 , а нам необходимо оценить наш параметр с погрешностью ε . Тогда погрешность измерения на n элементах с помощью первой статистики будет иметь вид $|Z|n^{-1/2}\sigma_1(\theta)$, с помощью второй — $|Z|n^{-1/2}\sigma_2(\theta)$. Таким образом, для оценки с нужной точностью с помощью первой статистики в среднем нам понадобится $(\sigma_1(\theta)/\varepsilon)^2$ измерений, а с помощью второй — $(\sigma_2(\theta)/\varepsilon)^2$. Таким образом, относительная эффективность — это отношение затрат на оценивание с одинаковой точностью первым и вторым методом.

1.2 Факультатив

1.2.1 Состоятельные, но не асимптотически нормальные оценки

А как доказать "асимптотическую уtнормальность"? В этом поможет такой факт:

$$\frac{Y_n - a_n}{b_n} \stackrel{d}{\to} Z, \quad \frac{Y_n - c_n}{d_n} \stackrel{d}{\to} W,$$

где Z, W невырождены (то есть не константы), то $Z \stackrel{d}{=} uW + v$ для некоторых u, v, где $b_n/d_n \to u$, $a_n/b_n - c_n/d_n \to v$.

Поэтому, если оценка асимптотически нормальная при одной нормировке, то и при других тоже.

Пример 7. Как мы показали, оценка $X_{(n)}$ для распределения $R[0,\theta]$ является состоятельной. А является ли она асимптотически нормальной? Заметим, что

$$n(\theta - X_{(n)}) \stackrel{d}{\to} Y \sim \exp(\theta),$$

поскольку

$$\mathbf{P}(n(\theta - X_{(n)}) \le x) = \mathbf{P}\left(X_{(n)} \ge \theta - \frac{x}{n}\right) = 1 - \mathbf{P}\left(X_1 \le \theta - \frac{x}{n}\right)^n = 1 - \left(1 - \frac{x}{n}\right)^n$$

при $x \in [0, \theta n]$. Отсюда мы видим, что

$$F_{n(\theta-X_{(n)})}(x) \to \exp(-x), \quad x > 0.$$

При отрицательных x очевидно обе ф.р. равны нулю.

Итак, $X_{(n)}$ — асимптотически экспоненциальная оценка. Значит, она не асимптотически нормальная? Скажем, $2\overline{X}$ была бы асимптотически нормальной, но скорость сходимости (то есть тот множитель, при домножении на который разность $\widehat{\theta} - \theta$ имеет невырожденное предельное распределение) у нее была бы порядка \sqrt{n} , а $X_{(n)}$ хоть и не асимптотически нормальная, но имеет скорость сходимости n. Такие оценки (со скоростью сходимости большего порядка чем \sqrt{n}) называют сверхэффективными. Как мы увидим позже, это возможно далеко не в каждой модели.

.

1.2.2 Многомерные асимптотически нормальные оценки

Если все-таки мы хотим доказать, что $\hat{\theta}_1(X_1,...,X_n) + \hat{\theta}_2(X_1,....,X_n)$ асимптотически нормальная оценка $f_1(\theta) + f_2(\theta)$, то придется доказать двумерную сходимость

$$\sqrt{n}\left((\widehat{\theta}_1(X_1,...,X_n),\widehat{\theta}_2(X_1,...,X_n))-(f_1(\theta),f_2(\theta))\right) \stackrel{d}{\to} \vec{Z} \sim \mathcal{N}(0,\Sigma),$$

где Σ — некоторая матрица ковариаций, вообще говоря, зависящая от θ .

Более общий результат такого вида — многомерная лемма об асимптотической нормальности (многомерный дельта-метод):

Лемма 4. Пусть $\widehat{\theta}(X_1,...,X_n) = (\widehat{\theta}_1(X_1,...,X_n),...,\widehat{\theta}_m(X_1,...,X_n)) - асимптотически нормальная векторная оценка вектора <math>\vec{g}(\theta) = (g_1(\theta),...,g_m(\theta))$:

$$\sqrt{n}(\widehat{\theta}(X_1,...,X_n) - \vec{g}(\theta)) \stackrel{d}{\to} \vec{Z} \sim \mathcal{N}(0,\Sigma).$$

Tогда для любой дифференцируемой $h: \mathbb{R}^m \to \mathbb{R}^k$

$$\sqrt{n}(h(\widehat{\theta}(X_1,...,X_n)) - h(\vec{g}(\theta))) \stackrel{d}{\to} \vec{Z}_1 \sim \mathcal{N}(0, \operatorname{grad} h(\vec{g}(\theta))\Sigma \left(\operatorname{grad} h(\vec{g}(\theta))^t\right),$$

zде вектор градиента рассматривается как вектор строка, а t — транспонированный вектор.

Пример 8. Пусть $X_i \sim \mathcal{N}(0,\theta)$. Рассмотрим оценку $\overline{X} + \overline{X^2}$. Покажем, что это асимптотически нормальная оценка θ . Можно сделать это просто представив величину в форме $\overline{X+X^2}$. Сделаем это по-другому. Действительно, в силу центральной предельной теоремы для векторов

$$\sqrt{n}((\overline{X}, \overline{X^2}) - (0, \theta^2)) \stackrel{d}{\to} Z \sim \mathcal{N}(0, \Sigma),$$

где

$$\Sigma = \left(\begin{array}{cc} DX & cov(X, X^2), \\ cov(X, X^2) & DX^2 \end{array} \right) = \left(\begin{array}{cc} \theta & 0 \\ 0 & 2\theta^2 \end{array} \right),$$

где мы использовали то, что $\mathbf{E}X^4 = 2\theta^2$, $\mathbf{E}X^3 = 0$. Следовательно,

$$\sqrt{n}(\overline{X} + \overline{X^2}) \stackrel{d}{\to} Z \sim \mathcal{N}(0, (1, 1)\Sigma(1, 1)^t) = \mathcal{N}(0, \theta + 2\theta^2),$$

где (1,1) — это градиент функции x+y, которую мы применили к нашему вектору. Конечно, мы могли бы и без всяких градиентов понять, что сумма компонент нормального вектора есть нормальная случайная величина с дисперсией, равной сумме дисперсий и удвоенной ковариации, но заодно увидели применение более общего метода.

1.2.3 Построение несмещенных состоятельных асимптотически нормальных оценок

Отметим также, что мы можем строить несмещенные, состоятельные, асимптотически нормальные оценки. Построим, например, несмещенную оценку $h(X_1)$ от одного наблюдения. Тогда если $\mathbf{D}_{\theta}h(X) < \infty$, то $\overline{h(X)}$ будет состоятельной асимптотически нормальной оценкой. Аналогично можно построить несмещенную оценку $h(X_1,...,X_k)$ при фиксированном k, и на ее основе получить несмещенную состоятельную асимптотически нормальную оценку

$$\frac{1}{n} \sum_{i=0}^{n-1} h(X_{ik+1}, ..., X_{(i+1)k})$$

на основе nk наблюдений.

1.3 Доказательство Леммы 3

Для общего развития расскажу о доказательстве Леммы 3, но в программу семинаров это не входит. Используем то, что если $Y_n \stackrel{d}{\to} Y$, то существует вероятностное пространство $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{P})$ и случайные величины \widetilde{Y}_n , \widetilde{Y} на нем, такие что $\widetilde{Y}_n \stackrel{d}{=} Y_n$, $\widetilde{Y} \stackrel{d}{=} Y$ и при этом $\widetilde{Y}_n \to \widetilde{Y}$ п.н. Иначе говоря, если последовательность Y_n слабо сходится к Y, то можно "посадить" величины на другое пространство так, что на нем сходимость будет почти наверное. Этот факт верен и в случае, если Y_n —произвольные случайные элементы, и называется теоремой Скорохода (Skorohod representation theorem).

Сходимость п.н. очень удобна для нас, поскольку позволяет оперировать со случайными величинами как с обычными числами, зафиксировав ω .

Итак, рассмотрим такие \widetilde{X}_n и \widetilde{Z} , что

$$g(n)(\widetilde{X}_n - a) \to \widetilde{Z}$$
 п.н.

Тогда при п.в. ω

$$h(\widetilde{X}_n(\omega)) - h(a) = h'(a)(\widetilde{X}_n(\omega) - a) + o((\widetilde{X}_n(\omega) - a)) = \frac{h'(a)}{g(n)}\widetilde{Z}(\omega) + o\left(\frac{1}{g(n)}\right), \ n \to \infty.$$

Следовательно,

$$g(n)\left(h(\widetilde{X}_n) - h(a)\right) \to h'(a)\widetilde{Z}$$
 п.н.

Из сходимости п.н. следует сходимость по распределению, откуда

$$\mathbf{P}(g(n)(h(X_n) - h(a)) \le x) = \widetilde{\mathbf{P}}(g(n)(h(\widetilde{X}_n) - h(a)) \le x) \to \widetilde{\mathbf{P}}(h'(a)\widetilde{Z} \le x) = \mathbf{P}(h'(a)Z \le x),$$

что и требовалось доказать.