Scilab Textbook Companion for Electronic Devices and Circuits by D. C. Kulshreshtha¹

Created by Harpreet Singh B. TECH Others

VYAS INSTITUTE OF ENGINEERING & TECHNOLOGY

College Teacher
None
Cross-Checked by
Bhavani

July 28, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electronic Devices and Circuits

Author: D. C. Kulshreshtha

Publisher: New Age International, New Delhi

Edition: 2

Year: 2006

ISBN: 978-81-224-1857-6

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Introduction to Electronics	8
2	Semiconductor Physics	13
3	Semiconductor Diode	15
4	Bipolar Junction Transistors	26
5	Field Effect Transistors	33
6	Transistor Biasing and Stabilization	39
7	Small Signal Single Stage Amplifier	52
8	Multistage Amplifiers	63
9	Power Amplifiers	70
10	Feedback in Amplifiers	7 5
11	Tuned Voltage Amplifiers	81
12	Sinusoidal Oscillators	85
14	Operational Amplifiers	89
15	Electronic Instruments	92

List of Scilab Codes

Exa 1.1	Find the range of tolerance	8
Exa 1.2	Find the range of tolerance	9
Exa 1.3	Find the equivalent current source	9
Exa 1.4	Find percentage variation in load current and load volt-	
	age	10
Exa 2.1	Calculate the conductivity and resistivity of germanium	13
Exa 2.2	Determine the conductivity of extrinsic semiconductor	13
Exa 3.1	find the value of threshold voltage	15
Exa 3.2	detrenmine dc resistance of silicon diode	15
Exa 3.3	determine dc and ac resistance of silicon diode	16
Exa 3.4	determine ac resistance of silicon diode	17
Exa 3.5	Find current through diode	17
Exa 3.6	Find current through resistance in given figure	18
Exa 3.7	Find current drawn by the battery	19
Exa 3.8	determine dc current through load and rectification ef-	
	ficiency and peak inverse voltage	20
Exa 3.9	determine de voltage across load and peak inverse volt-	
	age across each diode	20
Exa 3.10	find dc power supplied to load and efficiency and PIV	
	rating of the diode	21
Exa 3.11	Calculate output voltage and current through load and	
	voltage across series resistor and current and power dis-	
	sipated in zener diode	22
Exa 3.12	Calculate max and min values of zener diode current .	23
Exa 3.13	determine value of the series resistor and wattage rating	24
Exa 3.14	Find the capacitance of a varactor diode	25
Exa 4.1	determine the collector and base current	26

Exa 4.2	determine the base and collector current and exact and	
	approax dc alpha	26
Exa 4.3	Determine the base current	27
Exa 4.4	determine dynamic input resistance	27
Exa 4.5	find dc current gain in common emitter configuration.	28
Exa 4.6	calculate ac alpha and beta	28
Exa 4.7	Calculate beta and Iceo and exact and approax collector	
	current	29
Exa 4.8	determine dynamic input resistance	30
Exa 4.9	determine dynamic input resistance and dc and ac cur-	
	rent gain	30
Exa 4.10	calculate ac current gain in CE and CC configuration .	31
Exa 5.1	Calculate saturation voltage and saturation current	33
Exa 5.2	Find the value of drain current	33
Exa 5.3	Calculate Vgs and Vds saturation	34
Exa 5.4	Calculate drain current Id for N channel	35
Exa 5.5	Calculate drain current Id for P channel	36
Exa 5.6	Find the value of drain current	36
Exa 5.7	Find the value of Id	37
Exa 5.8	Calculate the dynamic drain resistance	38
Exa 6.1	Determine the Q point	39
Exa 6.2	Determine the Q point	40
Exa 6.3	Determine Rb and percentage change in collector cur-	
	rent due to temperature rise	40
Exa 6.4	Determine the Q point at two different B	42
Exa 6.5	determine Q point in collector to base bias circuit	43
Exa 6.6	Calculate the collector current and change in it if B is	
	changed by three times of previous B	43
Exa 6.7	Calculate the value of all three current Ie and Ic and Ib	44
Exa 6.8	Calculate max and min value of emitter current	45
Exa 6.9	Determine the value of base resistance	46
Exa 6.10	Determine the collector current at two different B	47
Exa 6.11	Calculate Q point in voltage divider	48
Exa 6.12	Solve the voltage divider accurately by applying thevenins	
	theorem	49
Exa 6.13	determine the Q point for the emitter bias circuit	50
Exa 6.14	Calculate Vgs and Rs	51

Exa 7.1	Calculate max current and check will the capacitor act
.	as short for given frequency
Exa 7.2	Check whether the capacitor is an effective bypass for
	the signal currents of lowest frequency 20 Hz
Exa 7.3	Calculate the value of capacitor required
Exa 7.4	Calculate voltage and current gain and input and output resistance
Exa 7.5	Solve previous example using hybrid pie model
Exa 7.6	Determine the value of output voltage
Exa 7.7	Calculate voltage gain and input resistance
Exa 7.8	Calculate the value of gm at different values of Vgs
Exa 7.9	Find the output signal voltage of the amplifier
Exa 7.10	Determine the small signal voltage gain and input and output resistance
Exa 7.11	Determine the small signal voltage gain and input and
	output resistance
Exa 7.12	Calculate the voltage gain of the FET
Exa 8.1	Express the gain in decibel
Exa 8.2	Determine power and voltage gain
Exa 8.3	Calculate the overall voltage gain
Exa 8.4	Calculate quiescent output voltage and small signal volt-
	age gain
Exa 8.5	Calculate the maximum voltage gain and bandwidth of
2110 0.0	multistage amplifier
Exa 8.6	Calculate the midband voltage gain and bandwidth of
2120 010	cascade amplifier
Exa 8.7	Calculate the input and output impedance and voltage
2120 011	gain
Exa 9.1	Determine the turns ratio of the transformer
Exa 9.2	Determine the output impedance of the transistor
Exa 9.3	Determine the efficiency of a single ended transformer
Exa 9.4	Determine input and output power and efficiency
Exa 9.5	Calculate the percentage increase in output power
Exa 9.6	Calculate harmonic distortion and percentage increase
11 Au 0.0	in output voltage due to this
Exa 10.1	Determine the gain of feedback amplifier
Exa 10.1 Exa 10.2	Determine the gain of feedback amplifier in dB
Exa 10.2 Exa 10.3	Calculate the percentage of output fed back to input
LAG 10.0	Carculate the percentage of output fed back to hiput.

Exa 10.4	Calculate the internal gain and percentage of output fed
	back to input
Exa 10.5	Calculate the gain with and without feedback and feed-
	back factor
Exa 10.6	Calculate the gain of feedback amplifier and feedback
	factor
Exa 10.7	Calculate percentage change in the overall gain
Exa 10.8	Calculate percentage change in the overall gain
Exa 10.9	Determine the input resistance of feedback amplifier .
Exa 10.10	Calculate the percentage of negative feedback to input
Exa 11.1	Calculate frequency and impedance and current and
	voltage across each element at resonance
Exa 11.2	Calculate frequency and impedance and current at res-
	onance and current in coil and capacitor
Exa 11.3	Calculate impedance and quality factor and bandwidth
Exa 12.1	Calculate frequency of oscillations
Exa 12.2	Calculate frequency of oscillations and feedback factor
	and voltage gain
Exa 12.3	Calculate frequency of oscillations
Exa 12.4	Calculate frequency of oscillations
Exa 12.5	Determine the series and parallel resonant frequencies
Exa 14.1	Calculate voltage gain and input and output resistance
Exa 14.2	Find the output voltage
Exa 14.4	Design an adder circuit using an op amp
Exa 14.5	Calculate CMRR in dB
Exa 14.6	Calculate the output voltage
Exa 15.1	Calculate shunt resistance and multiplying factor
Exa 15.2	Calculate shunt resistance
Exa 15.3	Caluclate the series resistance to convert it into voltmeter
Exa 15.4	Calculate multiplier resistance and voltage multiplying
	factor
Exa 15.5	Calculate reading and error of each voltmeter
Exa 15.6	Determine rms value of the ac voltage
Exa 15.7	Determine rms value and frequency of the sine voltage

Chapter 1

Introduction to Electronics

Scilab code Exa 1.1 Find the range of tolerance

```
1 //Find the range of tolerance
2 clear;
3 clc;
4 //soltion
5 //given
7 //color coding
8 orange=3;
9 gold=5;
10 yellow=4;
11 violet=7;
12 //band pattern
13 band1=yellow;
14 band2=violet;
15 band3=orange;
16 band4=gold;
17 //resistor color coding
18 r=(band1*10+band2)*10^(band3);
19 tol=r*(band4/100)//tolerance
20 ulr=r+tol;//upper limit of resistance
21 llr=r-tol;//lower limit of resistance
```

```
22 printf('The Range of resistance is \%.2\,\mathrm{f} k to \%.2\,\mathrm{f} k ', llr/1000, ulr/1000);
```

Scilab code Exa 1.2 Find the range of tolerance

```
1 //Find the range of tolerance
2 clear;
3 clc;
4 //soltion
5 //given
7 //color coding
8 \text{ blue=6};
9 gold=-1;
10 gray=8;
11 silver=10;
12 //band pattern
13 band1=gray;
14 band2=blue;
15 band3=gold;
16 band4=silver;
17 //resistor color coding
18 r=(band1*10+band2)*10^(band3);
19 tol=r*(band4/100)//tolerance
20 ulr=r+tol;//upper limit of resistance
21 llr=r-tol;//lower limit of resistance
22 printf('The Range of resistance is %.2f
                                             to %.2 f
        ', llr, ulr);
```

Scilab code Exa 1.3 Find the equivalent current source

```
1
2 //Find the equivalent current source
```

```
3 clear;
4 clc;
5 // soltion
6 //given
7 Vs=2; // Volts
                              //dc voltage source
8 Rs=1; //ohm
                              //internal resistance
9 Rl=1; //ohm
                             //load resistance
10 Ise=Vs/Rs;//ampere
                             //equivalent current source
11
12 // In accordance to figure 1.23a
13 Il1=Ise*(Rs/(Rs+Rl));//using current divider concept
14 Vl1=Il1*Rl;
15 printf("\nIn accordance to figure 1.23a \n");
16 printf ("The Load current (current source) Il = %dA\n"
      ,Il1);
17 printf("The Load voltage (current source) Vl = %dV \setminus n \setminus N
     n", Vl1);
18
19 // In accordance to figure 1.23b
20 V12=Vs*(Rs/(Rs+R1)); //using voltage divider concept
21 I12=V12/R1;
22 printf("\nIn accordance to figure 1.23b \n");
23 printf ("The Load voltage (voltage source) VI= %dV\n"
      ,V12);
24 printf ("The Load current (voltage source) Il = \%dA \n
     n", I12);
25 printf ("Therefore they both provide same voltage and
       current to load");
```

Scilab code Exa 1.4 Find percentage variation in load current and load voltage

```
1
2 //Find percentage variation in load current and load
    voltage
```

```
3 clear;
4 clc;
5 // soltion
6 //given
7 Vs=10; //volt//Supply voltage
8 Rs=100;//ohm//internal resistance
10 // In accordance to figure 1.24a
             - 10
11 / For 1
12 Rl11=1; //ohm//min extreme value of Rl
13 Rl12=10; //ohm//max extreme value of Rl
14 Il11=Vs/(Rs+Rl11);
15 Il12=Vs/(Rs+Rl12);
16 Pi1=(Il11-Il12)*100/Il11;//Percentage variation in
      current
17 Vl11=Il11*Rl11;
18 V112=I112*R112;
19 Pv1=(V112-V111)*100/V112; // Percentage variation in
20 printf("\nIn accordance to figure 1.24a \n");
21 printf ("Percentage variation in Current (1-10)
                                                      ) %.2
      f percent\n", Pi1);
                                                      ) %.1
22 printf ("Percentage variation in Voltage (1-10)
      f percent\n', Pv1);
23
24 // In accordance to figure 1.24b
25 / \text{For } 1 \text{ k} - 10 \text{ k}
26 R121=1000; //ohm//min extreme value of Rl
27 R122=10000; //ohm//max extreme value of Rl
28 \text{ Il21=Vs/(Rs+Rl21)};
29 I122=Vs/(Rs+R122);
30 Pi2=(I121-I122)*100/I121;//Percentage variation in
      current
31 V121=I121*R121;
32 V122=I122*R122;
33 Pv2=(V122-V121)*100/V122; // Percentage variation in
      voltage
34 printf("\nIn accordance to figure 1.24b \n");
```

Chapter 2

Semiconductor Physics

Scilab code Exa 2.1 Calculate the conductivity and resistivity of germanium

```
1 // Calculate the conductivity and resistivity of
      germanium
2 clear;
3 clc;
4 //soltion
5 //given
6 q=1.6*10^-19; //Coulomb
                               //charge of an
      electron
7 ni=2.5*10^19; //per m^3 //concentration
8 un=0.36; //m^2/Vs //mobility of e
8 un=0.36; //\text{m}^2/\text{Vs}
                                       //mobility of electron
                        //mobility of holes
//conductivity
9 up=0.17; //\text{m}^2/\text{Vs}
10 con=q*ni*(un+up);
                                   // resistivity
11 res=(1/con);
12 printf("The conductivty is \%.2 \, f \, S/m \, n", con);
13 printf("The resistivity is %.2f m", res);
```

Scilab code Exa 2.2 Determine the conductivity of extrinsic semiconductor

```
1 // Determine the conductivity of extrinsic
      semiconductor
2 clear;
3 clc;
4 //soltion
5 //given
6 e=1.6*10^-19; //Coulomb
                                     //charge of an
      electron
7 ni=1.5*10^16; //per m^3
                                     //concentration
8 un=0.13; //\text{m}^2/\text{Vs}
                                    //mobility of electron
9 up=0.05; //\text{m}^2/\text{Vs}
                                   //mobility of holes
10 Si=5*10^28; //per m<sup>3</sup>
                                   //atomic density in
      silicon
11 dop=(1/(2*10^8));
                                  //concentration of an
      antimony per silicon atoms
12 Nd=dop*Si;//per m^3
                                //donor concentraion
13 n=Nd; //per m^3
                               //free electron
      concentration
14 p=(ni^2/Nd); //per m ^3
                               // hole concentration
15 con=e*(n*un+p*up);
16 printf("The conductivty is \%.1 \text{ f S/m } \text{n}", con);
```

Chapter 3

Semiconductor Diode

Scilab code Exa 3.1 find the value of threshold voltage

```
//find the value of threshold voltage
clear;
clc;
//soltion
//given
t1=25;// C//initial temperature
t2=100;// C//final temperature
V=2*10^-3;//V per celsius degree//decrease in barrier potential per degree
V0=0.7//V//Potential at normal temperature
Vd=(t2-t1)*V;//decrease in barrier potential
Vt=V0-Vd;//threshold volatge at 100 C
printf("Threshold volatge at 100 C = %.2f V",Vt);
```

Scilab code Exa 3.2 detrenmine de resistance of silicon diode

```
1 //detrenmine dc resistance of silicon diode
2 clear;
```

```
3 \text{ clc};
4 //soltion
5 //given
7 //At Id = 2 mA
8 Id=2*10^-3; //Ampere//diode current
9 Vd=0.5; //V//voltage (from given curve)
10 Rf = (Vd/Id);
11 printf("The dc resistance is %d
                                       \n", Rf);
13 //At Id = 20 mA
14 Id=20*10^-3; //Ampere//diode current
15 Vd=0.75; //V//voltage (from given curve)
16 Rf = (Vd/Id);
17 printf ("The dc resistance is %.1 f
                                         n, Rf);
18
19 / At Vd = - 10 V
20 Id=-2*10^-6; //Ampere//diode current (from given curve
21 Vd = -10; //V// voltage
22 Rf = (Vd/Id);
23 printf("The dc resistance is %d M \n", Rf/10^6);
```

Scilab code Exa 3.3 determine dc and ac resistance of silicon diode

```
//determine dc & ac resistance of silicon diode
clear;
clc;
//soltion
//given
Id=20*10^-3;//A//diode current
Vd=0.75;//V// as given in the V-I graph
Rf=Vd/Id;
printf("The dc resistance of diode is %.1f \n",Rf)
;
```

Scilab code Exa 3.4 determine ac resistance of silicon diode

```
1 //determine ac resistance of silicon diode
2 clear;
3 clc;
4 //soltion
5 //given
7 //At Id = 10mA
8 Id=10; //mA
9 rf=25/Id;
10 printf ("The ac resistance of the diode is (At Id= 10
     mA) %.1 f
               n, rf)
11
12 / At Id = 20mA
13 Id=20; //mA
14 rf=25/Id;
15 printf ("The ac resistance of the diode is (At Id= 20
     mA) %.2 f
               ",rf)
```

Scilab code Exa 3.5 Find current through diode

```
1 //Find current through diode
2 clear;
```

```
3 \text{ clc};
4 //soltion
5 //given
6 Vt=0.3; //V//Threshold voltage
7 rf=25;//ohm// average resistance
9 //assuming it to be ideal
10 //from fig 3.19
11 Vaa=10; //V//\sup ply
12 R1=45; //ohm
13 R2=5; //ohm
14 Vab=Vaa*R2/(R1+R2);
15 //Vab>Vt therefore diode is forward bias and no
      current flow through R2
16 Idi=Vaa/R1;
                 //for ideal
17 printf("The diode current (for ideal) is %.0 f mA\n",
      Idi*1000);
18
19 //assuming it to be real
20 //Thevenin's equivalent circuit parameters of fig
      3.19
21 Vth=Vaa*R2/(R1+R2);
22 \text{ Rth} = \text{R1} * \text{R2} / (\text{R1} + \text{R2});
23 Idr=(Vth-Vt)/(Rth+rf);
                                     //for real
24 printf("The diode current (for real) is %.1f mA", Idr
      *1000);
```

Scilab code Exa 3.6 Find current through resistance in given figure

```
1 //Find current through resistance in given figure
2 clear;
3 clc;
4 //soltion
5
6 //From fig
```

```
7 Vaa=20; //V//supply
8 Vt=0.7; //V//threshold voltage of diode
9 rf=5; //ohm //forward resistance
10 R=90; //ohm//given resistor
11
12 //Diode D1 and D4 are forward bias and D2 and D3 are reverse biased
13
14 Vnet=Vaa-Vt-Vt;
15 Rt=R+rf+rf;
16 I=Vnet/Rt;
17 printf("Current through 90 ohm resistor is %.0 f mA", I*1000);
```

Scilab code Exa 3.7 Find current drawn by the battery

```
1 //Find current drawn by the battery
2 clear;
3 clc;
4 //soltion
6 //From fig
7 Vaa=10; //V//supply
8 R1 = 100; //ohm
9 R2=100; //ohm
10
11 //Forward Bias
12 Id=Vaa/R1;
13 printf ("Current drawn from battery (forward bias) %
      .1 f A \setminus n", Id);
14
15 //Reverse Bias
16 \quad \text{Rnet} = \text{R1} + \text{R2};
17 Id=Vaa/Rnet;
18 printf ("Current drawn from battery (reverse bias) %
```

Scilab code Exa 3.8 determine dc current through load and rectification efficiency and peak inverse voltage

```
1 //determine dc current through load and
      rectification efficiency and peak inverse voltage
2 clear;
3 clc;
4 //soltion
5 //given
6 TR=31/2; //Turn ratio of the transformer
7 rf=20;// //Dynamic forward resistance
8 Rl=1000; // //Load resistance
9 Vt=0.66;//V//Threshold voltage of diode
10 V=220; //V//input voltage of transformer
11 Vp=sqrt(2)*220//V//peak value of primary voltage
12 Vm = (1/TR) * Vp;
13 Im = (Vm - Vt) / (rf + R1);
14 Idc=Im/%pi;
15 n=40.6/(1+rf/R1);
16 printf ("The dc current through load is %d mA\n", Idc
      *1000);
17 printf ("The rectification efficiency is %.1f percent
     n, n);
18 printf ("Peak inverse voltage =Vm = \%.2 f V n", Vm)
```

Scilab code Exa 3.9 determine de voltage across load and peak inverse voltage across each diode

```
1 //determine dc voltage across load and peak inverse
    voltage across each diode
2 clear;
```

Scilab code Exa 3.10 find dc power supplied to load and efficiency and PIV rating of the diode

```
1 //find dc power supplied to load and efficiency and
     PIV rating of the diode
2 clear;
3 clc;
4 //soltion
5 //given
6 rf=2;// //Dynamic forward resistance
            //resistaque of secondary
7 \text{ Rs} = 5; //
8 R1=25; // //Load resistance
9 Idc=0.1;//A//dc current to a load
10 Pdc = Idc^2 * R1;
                       //dc power
11 n=(81.2*R1)/(R1+rf+Rs);
                                     //efficiency
12 Im = (\%pi * Idc)/2;
                                  //peak value current
13 Vm=Im*(Rl+rf+Rs);
                                    //peak voltage
                                     //peak voltage
14 Vlm = Vm - Im * (rf + Rs);
      across load
15 PIV = Vm + Vlm;
16 printf ("The dc power supplied to the load is %.2 f W\
```

```
n",Pdc);
17 printf("Efficiency = %.2f percent\n",n);
18 printf("The peak inverse voltage is %.2f V",PIV);
```

Scilab code Exa 3.11 Calculate output voltage and current through load and voltage across series resistor and current and power dissipated in zener diode

```
1 //Calculate output voltage and current through load
      and voltage across series resistor and current
      and power dissipated in zener diode
2 clear;
3 clc;
4 //soltion
5 //given
6 Vi = 110; //V
                     //input voltage
7 Rl=6*10^3; // ohm
                         //load resistance
8 \text{ Rs} = 2*10^3; //\text{ohm}
                           //series resistance
9 Vz = 60; /V
                      //Zener voltage
10 V=Vi*R1/(Rs+R1);
11
12 //This V>Vz therefore Zener diode is ON
13
                     //output voltage
14 Vo = Vz;
                     //Current through load resistance
15 Il=Vo/Rl;
                     //Voltage drop across the series
16 Vs = Vi - Vo;
      resistor
17 Is=Vs/Rs
                     //current through the series
      resistor
18 Iz=Is-Il
                     ///By applying kirchhoff's law
                     //Power dissipated accross zener
19 Pz=Vz*Iz
      diode
20
21 printf("The output voltage is \%.0 \text{ f V} \text{ n}", Vo);
22 printf ("The current through load resistance is \%.0\,\mathrm{f}
```

Scilab code Exa 3.12 Calculate max and min values of zener diode current

```
2 // Calculate max and min values of zener diode
      current
3 clear;
4 clc;
5 // soltion
6 //given
                      //minimum input voltage
7 Vimin=80; //V
                       //maximum input voltage
8 \text{ Vimax=120;} //V
                       //load resistance
9 Rl=10*10^3; // ohm
10 Rs=5*10^3; //ohm
                          //series resistance
                    //Zener voltage
11 Vz = 50; /V
12 V = Vimin*R1/(Rs+R1);
13
14 //This V>Vz therefore Zener diode is ON
15
16 //For minimum value of zener diode
17
18 Vo = Vz;
                   //output voltage
                       //Voltage drop across the series
19 Vs = Vimin - Vo;
      resistor
20 Is=Vs/Rs
                    //current through the series
      resistor
21 Il=Vo/Rl;
                   //Current through load resistance
22 Izmin=Is-Il;
```

```
23 {\tt printf} ("\nMinimum values of zener diode current is \%
      .0 \text{ f mA} \text{ n}, Izmin*1000);
24
25 //For maximum value of zener diode
26
27 \text{ Vo=Vz};
                      //output voltage
                         //Voltage drop across the series
28 \text{ Vs=Vimax-Vo};
      resistor
                      //current through the series
29 Is=Vs/Rs
      resistor
30 \quad I1=Vo/R1;
                     //Current through load resistance
31 Izmax=Is-Il;
32 printf("Maximum values of zener diode current is %.0
      f mA", Izmax*1000);
```

Scilab code Exa 3.13 determine value of the series resistor and wattage rating

```
1 //determine value of the series resistor and wattage
       rating
2 clear;
3 clc;
4 //soltion
5 //given
6 Vi=12; //V
7 Vz=7.2; //V
                   //input voltage
                     //Zener voltage
8 Izmin=10*10^-3;/A
                                    //min current through
       zener diode
  llmax = 100 * 10^{-3}; //A
                                   //max current through
      load
10 Ilmin=12*10^-3;//A
                                   //min current through
      load
11
12 Vs = Vi - Vz;
                  //Voltage drop across the series
      resistor
```

Scilab code Exa 3.14 Find the capacitance of a varactor diode

```
//Find the capacitance of a varactor diode
clear;
clc;
//soltion
//given
C=5;//pf//capcitance of varactor diode at V=4V
V=4;//V
K=C*sqrt(4);
//When bias voltage is increased upto 6 V
Vn=6;//V/new bias voltage
Cn=K/(sqrt(Vn));
printf("Capacitance (At 6 V ) = %.3 f pf",Cn);
```

Chapter 4

Bipolar Junction Transistors

Scilab code Exa 4.1 determine the collector and base current

```
//determine the collector and base current
clear;
clc;
//soltion
//given
a=0.98;//dc alpha
le=5*10^-3;//A//emitter current
lco=2*10^-6;//A//collector reverse leakage current
lc=a*Ie+Ico;
lb=Ie-Ic;
printf("The collector current is %.3f mA\n",Ic*1000);
printf("The base current is %.0f uA",Ib*10^6);
```

Scilab code Exa 4.2 determine the base and collector current and exact and approax dc alpha

```
1 //determine the base and collector current and exact and approax dc alpha
```

```
clear;
clc;
//soltion
//given
le=8.4*10^-3//A//emitter current
leb=0.1*10^-6;//A//reverse leakage current
leb=0.008*Ie;//A//base current
le=Ie-Ib;
leinj=Ic-Icbo;
leinj=Ic-Icbo;
leinj=Ic-Icbo;
printf("Base current is %.1f uA\n",Ib*10^6);
printf("Collector current %.4f mA\n",Ic*1000);
printf("Exact value of alphha = %.7f\n",a0);
printf("Approax value of alpha = %.3f",a);
```

Scilab code Exa 4.3 Determine the base current

```
1 //Determine the base current
2 clear;
3 clc;
4 //soltion
5 //given
6 a=0.96; //dc alpha 7 Rc=2*10^3;//ohm //resistor across collector
                       //Voltage drop across the
8 \ Vc = 4; /V
     collector resistor
9 Ic=Vc/Rc;
                    //Colletor current
10 Ie=Ic/a;
                     //Emmiter current
11 Ib=Ie-Ic;
                     //Base current
12 printf("The base current is %.0f uA", Ib*10^6)
```

Scilab code Exa 4.4 determine dynamic input resistance

```
//determine dynamic input resistance
clear;
clc;
//soltion
//given
Ie=2;//mA
Vcb=10;//V

//Taking points around Ie & Vcb from graph
del_Ie=(2.5-1.5)*10^-3;//A
//corresponding change in Veb
del_Veb=(0.9-0.8);//V
rib=del_Veb/del_Ie;
printf("The dynamic input resistance of transistor is %.0f ",rib);
```

Scilab code Exa 4.5 find dc current gain in common emitter configuration

```
//find dc current gain in common emitter
        configuration

clear;

clc;

//soltion
//given
a=0.98;//dc current gain in common base
        configuration
B=a/(1-a);
printf("The dc current gain in common emitter
        configuration is %.0 f",B);
```

Scilab code Exa 4.6 calculate ac alpha and beta

```
//calculate ac alpha and beta
clear;
clc;
//soltion
//given
cic=0.995//mA//Emitter current change
ie=1//mA//collector current change
a=ic/ie;
B=a/(1-a);
printf("The ac alpha is %.3 f\n",a)
printf("The common emitter ac current gain is %.0 f",
B);
```

Scilab code Exa 4.7 Calculate beta and Iceo and exact and approax collector current

```
1 // Calculate beta and Iceo and exact and approax
      collector current
2 clear;
3 clc;
4 //soltion
5 //given
6 a0=0.992; //dc current gain in common base
      configuration
7 Icbo=48*10^-9; //A
8 Ib=30*10^-6; //A//base current
9 B=a0/(1-a0);
10 Iceo=Icbo/(1-a0);
11 printf ("Beta= \%.0 \text{ f} \setminus \text{n}", B);
12 printf("Iceo= \%0. f uA n, Iceo*10^6);
13 Ic=B*Ib+Iceo;
14 Ica=B*Ib; //approax
15 printf("Exact collector current %.3 f mA\n", Ic*1000);
16 printf("Approax collector current %.2 f mA", Ica*1000)
```

Scilab code Exa 4.8 determine dynamic input resistance

```
1 //determine dynamic input resistance
2 clear;
3 clc;
4 //soltion
5 //given
6 Vbe=0.75; //V
7 Vce=2;/V
8
  //Taking points around Vbe=0.75V from graph
10 del_Vbe=(0.98-0.9); //V
11
12 //corresponding change in ib
13 del_ib = (68-48)*10^-6; //A
14
15 rie=del_Vbe/del_ib;
16 printf("The dynamic input resistance of transistor
     is \%.0 \, f k ",rie/1000);
```

Scilab code Exa 4.9 determine dynamic input resistance and dc and ac current gain

```
8 Ic=3.6*10^-3; //A //from graph
10 //Taking points around Vce = 10V from graph
11 del_Vce=(12.5-7.5); //V
12
13 //corresponding change in ic
14 del_ic=(3.7-3.5)*10^-3; //A
15
16 roe=del_Vce/del_ic;
17 printf ("The dynamic output resistance of transistor
      is \%.0 \, f \, k \, \backslash n", roe/1000);
18
19 //dc current gain
20 Bo=Ic/Ib;
21 printf("The dc current gain is \%.0 \, f \, n", Bo);
22
23 //ac current gain
24
25 del_ic=(4.7-2.5)*10^-3; //the collector current
      change is from 3.5mA to 4.7mA as we can see from
      graph when we change ib from 40mA to 20mA
26 \text{ del_ib} = (40-20)*10^-6;
27 B=del_ic/del_ib;
28 printf("The ac current gain is \%.0 \, f \, n",B);
```

Scilab code Exa 4.10 calculate ac current gain in CE and CC configuration

```
1 //calculate ac current gain in CE and CC
        configuration
2 clear;
3 clc;
4 //soltion
5 //given
6 a=0.99;
```

Chapter 5

Field Effect Transistors

Scilab code Exa 5.1 Calculate saturation voltage and saturation current

```
1 // Calculate saturation voltage and saturation
      current
2 clear;
3 clc;
4 //soltion
5 // given
                      //pinch off voltage
6 \text{ Vp} = -4 / \text{V}
7 Idss=12*10^-3; //A
                          //drain to source current
      with gate shorted
                             //gate to source voltage
8 Vgs = -2; //V
9 Vds = Vgs - Vp;
10 Id=Idss*(Vds/Vp)^2;
11 printf("Saturation Voltage is \%.0 \text{ f V} \text{ N}", Vds);
12 printf ("Saturation current is %.0 f mA", Id*10^3);
```

Scilab code Exa 5.2 Find the value of drain current

```
1 //Find the value of drain current
```

```
2 clear;
3 clc;
4 // soltion
5 //given
6 Vgso=-5;/V
                 //gate to source cut off
     voltage
7 Idss=20*10^-3; //A //drain to source current with
      gate shorted
9 / At vgs = -2 V
10 vgs=-2;/V
                    input voltage
11 id=Idss*(1-(vgs/Vgso))^2;
                                    //Schockley's
     equation
12 printf ("Drain current is (At vgs = -2 V) %.1 f mA\n",
     id*10^3);
13
14 / At vgs = -4 V
15 vgs = -4; /V
                   input voltage
16 id=Idss*(1-(vgs/Vgso))^2; //Schockley's
     equation
17 printf ("Drain current is (At vgs = -4 V) %.1 f mA\n",
     id*10^3);
18
19 / At vgs = -8 V
20 printf ("Drain current is 0 A (At vgs = -8 V) because
      gate is biased beyond cut off ");
```

Scilab code Exa 5.3 Calculate Vgs and Vds saturation

```
1 // Calculate Vgs and Vds saturation
2 clear;
3 clc;
4 // soltion
5 // given
6 Vp=5//V // pinch off voltage
```

Scilab code Exa 5.4 Calculate drain current Id for N channel

```
1 // Calculate drain current Id for N channel
2 clear;
3 clc;
4 //soltion
5 //given
6 \text{ Vp=5//V}
                    //pinch off voltage
7 Idss=18*10^-3; //A //drain to source current with
       gate shorted
9 / For Vgs = - 3 V
10 Vgs = -3; //V
11 Id=Idss*(1-(Vgs/(-Vp)))^2;
12 printf ("The drain current Id (For Vgs= -3V) = \%.2 f mA
      n, Id*10^3);
13
14 / For Vgs = 2.5 V
15 Vgs=2.5; //V
16 Id=Idss*(1-(Vgs/(-Vp)))^2;
17 printf ("The drain current Id (For Vgs= 2.5V) = \%.1 f
     mA", Id*10^3);
```

Scilab code Exa 5.5 Calculate drain current Id for P channel

```
1 // Calculate drain current Id for P channel
2 clear;
3 clc;
4 //soltion
5 //given
                      //pinch off voltage
6 \text{ Vp}=-5/V
7 Idss=18*10^-3; //A
                        //drain to source current with
       gate shorted
9 / For Vgs = -3V
10 Vgs = -3; //V
11 Id=Idss*(1-(Vgs/(-Vp)))^2;
12 printf ("The drain current Id (For Vgs=-3V) = \%.2 f
     mA \ n", Id*10^3);
13
14 // For Vgs = 2.5V
15 Vgs=2.5; //V
16 Id=Idss*(1-(Vgs/(-Vp)))^2;
17 printf ("The drain current Id (For Vgs= 2.5V) = \%.1 f
     mA", Id*10^3);
```

Scilab code Exa 5.6 Find the value of drain current

```
1 //Find the value of drain current
2 clear;
3 clc;
4 //soltion
5 //given
6 Vt=2;//V //threshold voltage
```

Scilab code Exa 5.7 Find the value of Id

```
1 //Find the value of Id
2 clear;
3 clc;
4 //soltion
5 //given
6 Vt=1.5;//V //threshold voltage
7 Id=2*10^-3;/A
\begin{array}{lll} 8 & \texttt{Vgs=3;} \ //V & \ // \ \text{gate supply} \\ 9 & \texttt{Vds=5;} \ //V & \ // \ \text{saturation voltage} \end{array}
10 Vdsm=Vgs-Vt;
                        //minimum voltage required to
       pinch off
11
12 // Vds > Vdsm therefore the device is in saturation
       region
13
14 // Calculating K
15 K=Id/((Vgs-Vt)^2);
                                                     //
       conductivity parameter
16
17 // Calculating Id for Vgs= 5 V and Vds= 6 V
18 Vgs=5; //V //gate supply
```

Scilab code Exa 5.8 Calculate the dynamic drain resistance

Chapter 6

Transistor Biasing and Stabilization

Scilab code Exa 6.1 Determine the Q point

```
1 //Determine the Q point
2 clear;
3 clc;
4 //soltion
5 //given
                  //dc beta
6 B=50;
7 Rc=2.2*10^3;//ohm //resistor connected to
     collector
8 Rb=270*10^3; //ohm
                        //resistor connected to base
9 Vcc=9;/V
                       //Voltage supply across the
     collector resistor
                       //base to emitter voltage
10 Vbe=0.7; //V
11 Ib=(Vcc-Vbe)/Rb;
                           //Base current
12 Ic=B*Ib; // Colletor current
13 Ics=Vcc/Rc; // Colletor saturation current
14
15 // Actual Ic is the smaller of the above two values
16
17 Vce=Vcc-Ic*Rc;
```

```
18 printf("The Q point is (%.2 f V, %.1 f mA)", Vce, Ic
     *1000);
19 //In book Vce = 5.7 V because of approaximation
```

Scilab code Exa 6.2 Determine the Q point

```
1 //Determine the Q point
2 clear;
3 clc;
4 //soltion
5 //given
6 B=150; //dc beta
7 Rc=1*10^3;//ohm //resistor connected to
     collector
8 Rb=100*10^3;//ohm //resistor connected to base
9 Vcc=10; /V
                         //Voltage supply across the
     collector resistor
10 Vbe=0.7; //V
                        //base to emitter voltage
11 Ib=(Vcc-Vbe)/Rb;
                            //Base current
12 \text{ Ic=B*Ib};
                    //Colletor current
13 Ics=Vcc/Rc;
                    // Colletor saturation current
14
15 //Actual Ic is the smaller of the above two values i
     .e. Ic(sat) and since the transistor is in
     saturation mode therefore Vce will become 0
16
17 Vce=0;
18 printf ("The Q point is (%d V, %.0 f mA)", Vce, Ics
     *1000);
```

Scilab code Exa 6.3 Determine Rb and percentage change in collector current due to temperature rise

```
1 //Determine Rb and percentage change in collector
      current due to temperature rise
2 clear;
3 clc;
4 //soltion
5 //given
6
7 // Calculating the base resistance
                     //dc beta
8 B=20;
9 Rc=1*10^3; //ohm
                         //resistor connected to
      collector
10 Ic=1*10^-3; //A
                         //collector current
                         //Voltage supply across the
11 Vcc=6; //V
      collector resistor
12 Vbe=0.3; //V // for germanium
13 Icbo=2*10^-6; //A //collector to base leakage
      current
14
15 Ib = (Ic - (1+B) * Icbo) / B;
16 Rb = (Vcc - Vbe) / Ib;
17
18 printf ("The value of resistor Ib is \%.4 \, \text{f} \, \text{k} = 120
      k \setminus n", Rb/1000);
19
20 Rb=120*10^3; //ohm
                              approax
21
22 //Now when temperature rise
23 Icbo=10*10^-6; //A
                       //collector to base leakage
       current
24 B = 25;
                     //dc beta
                                   //changed collector
25 \text{ Ic1=B*Ib+(B+1)*Icbo};
      current
26 perc=(Ic1-Ic)*100/Ic;
                                  //percentage increase
27 printf("The percentage change in collector current
      is %.0f percent", perc);
```

Scilab code Exa 6.4 Determine the Q point at two different B

```
1 //Determine the Q point at two different B
2 clear;
3 clc;
4 //soltion
5 //given
7 / At B=50
                    //dc beta
9 B=50;
10 Rc = 2*10^3; //ohm
                       //resistor connected to
      collector
11 Rb=300*10^3; //ohm
                         //resistor connected to base
12 Vcc=9; /V
                         //Voltage supply across the
      collector resistor
                       //Base current
13 Ib=Vcc/Rb;
14 Ic=B*Ib;
                   //Colletor current
15 Ics=Vcc/Rc;
                     //Colletor saturation current
16
17 // Actual Ic is the smaller of the above two values
18
19 Vce=Vcc-Ic*Rc;
20 printf ("The Q point (At B=50) is (%.0 f V, %.1 f mA)\n
     ", Vce, Ic*1000);
21
22
  //At B=150
23
24 B1 = 150;
                       //dc beta
                      //Colletor current
25 \text{ Ic1=B*Ib};
                       //Colletor saturation current
26 Ics1=Vcc/Rc;
27
28 //Actual Ic is the smaller of the above two values i
      .e. Ic(sat) and since the transistor is in
```

Scilab code Exa 6.5 determine Q point in collector to base bias circuit

```
1 //determine Q point in collector to base bias
      circuit
2 clear;
3 clc;
4 //soltion
5 //given
6 B = 100;
                       //dc beta
7 \text{ Rc} = 500; //\text{ohm}
                       //resistor connected to collector
8 Rb=500*10^3; //ohm
                       //resistor connected to base
9 Vcc=10; /V
                            //Voltage supply across the
      collector resistor
                                //Base current
10 Ib=Vcc/(Rb+B*Rc);
                      // Colletor current
11 Ic=B*Ib;
                       // Colletor saturation current
12 Ics=Vcc/Rc;
13
14 // Actual Ic is the smaller of the above two values
15
16 Vce=Vcc-(Ic+Ib)*Rc;
17 printf ("The Q point is (\%.1 \text{ f V}, \%.1 \text{ f mA})", Vce, Ic
      *1000);
```

Scilab code Exa 6.6 Calculate the collector current and change in it if B is changed by three times of previous B

```
1 //Calculate the collector current and change in it
      if B is changed by three times of previous B
2 clear;
3 clc;
4 //soltion
5 //given
6 B = 50;
                    //dc beta
7 Rc=2*10^3; //ohm //resistor connected to
      collector
  Rb=300*10^3; //ohm //resistor connected to base
                         //Voltage supply across the
9 Vcc=9;/V
      collector as it is PNP so taking positive
                              //Base current
10 Ib=Vcc/(Rb+B*Rc);
                     //Colletor current
11 Ic=B*Ib;
12 printf ("Collector current (B=50)= \%. 3 f mA\n", Ic
      *1000);
13 / \text{Now B} = 150
14 B=3*B;
               //three times of previous B
15 Ib1=Vcc/(Rb+B*Rc);
                               //Base current
                       //Colletor current
16 \text{ Ic1=B*Ib1};
17 printf ("Collector current (B=150)= \%.2 \text{ f mA}", Ic1
      *1000);
18 printf ("The factor at which collector current
      increases %.0 f", Ic1/Ic);
```

Scilab code Exa 6.7 Calculate the value of all three current Ie and Ic and Ib

```
4 // soltion
5 //given
6 B = 90;
                     //dc beta
7 \text{ Rc} = 1 * 10^3; //\text{ohm}
                        //resistor connected to
      collector
8 Rb=500*10^3; //ohm
                             //resistor connected to base
9 Re=500; //ohm //resistor connected to emitter
                           //Voltage supply across the
10 Vcc=9; //V
      collector resistor
11 Ib=Vcc/(Rb+B*Re);
                                 //Base current
                      //Colletor current
12 Ic=B*Ib;
                      //Emitter current
13 Ie=Ic+Ib;
14 printf ("Base current = \%.1 f uA \nCollector current =
       \%.3 f mA \setminus nEmitter current = \%.4 f mA", Ib*10^6, Ic
      *10<sup>3</sup>, Ie*10<sup>3</sup>;
```

Scilab code Exa 6.8 Calculate max and min value of emitter current

```
1 // Calculate max and min value of emitter current
2 clear;
3 clc;
4 //soltion
5 //given
7 / At B=50
9 B=50;
                       //dc beta
                     //resistor connected to collector
10 Rc=75; //ohm
10 Rc=75;//ohm //resistor connected to collecto
11 Re=100;//ohm //resistor connected to emitter
12 Rb=10*10^3; //ohm
                           //resistor connected to base
                            //Voltage supply across the
13 Vcc=6; //V
      collector resistor
14 Vbe=0.3; //V
                        //for germanium
15 Ib = (Vcc - Vbe) / (Rb + (1+B) * Re);
                                             //Base current
16 Ie = (1+B) * Ib;
```

```
17 Vce=Vcc-(Rc+Re)*Ie
18 printf("Minimum emitter current %.2 f mA\n", Ie*10^3);
19 printf ("The collector to emitter volatge is \%.2 \text{ f V} \setminus \text{n}
      ", Vce);
20
21 / At B = 300
22
                          //dc beta
23 B1=300;
24 Ib1 = (Vcc - Vbe) / (Rb + (1+B1) * Re);
                                            //Base current
25 \text{ Ie1} = (1+B1)*Ib1;
26 \text{ Vce1=Vcc-(Rc+Re)}*Ie1
\frac{27}{\text{Here Vce1}} = -1.4874 \text{ V} but can never have negative
      voltage because Ie1 is wrong as it can't be more
      than saturation value therefore
28 Ie1=Vcc/(Rc+Re);
29
30 /And Vce=0 V
31
32 \text{ Vce1=0}; //V
33 printf("Maximum emitter current %.2 f mA\n", Ie1*10^3)
34 printf("The collector to emitter volatge (saturation)
       is \%.0 f V n, Vce1);
```

Scilab code Exa 6.9 Determine the value of base resistance

```
// Determine the value of base resistance
clear;
clc;
//soltion
//given

B=100;
Rc=200;//ohm
//resistor connected to collector
Re=500;//ohm
//resistor connected to emitter
```

Scilab code Exa 6.10 Determine the collector current at two different B

```
1 //Determine the collector current at two different B
2 clear;
3 clc;
4 //soltion
5 //given
7 / At B=50
9 B=50; //dc beta
10 Rc=2;//ohm //resistor connected to collector
11 Re=1000;//ohm //resistor connected to emitter
12 Rb=300*10^3;//ohm //resistor connected to base
                         //Voltage supply across the
13 Vcc=9; /V
      collector resistor
14 Ib=Vcc/(Rb+B*Re);
                              //Base current
15 Ic=B*Ib; // Colletor current
16 printf ("the collector current at (B=50)=\%.3 \text{ f mA/n}",
      Ic*1000);
17
18 / At B = 150
19
20 B1 = 150;
                       //dc beta
21 Ib1=Vcc/(Rb+B1*Re);
                                //Base current
22 \text{ Ic1=B1*Ib1};
                        //Colletor current
```

```
23 printf("the collector current at (B=150)= %.0 f mA\n"
    ,Ic1*1000);
24 printf("The factor at which collector current
    increases %.2 f",Ic1/Ic);
25
26 //IN BOOK Ic (AT B=50)= 1.25 mA and Ic1/Ic=2.4 DUE TO
    APPROAXIMATION
```

Scilab code Exa 6.11 Calculate Q point in voltage divider

```
1 // Calculate Q point in voltage divider
2 clear;
3 clc;
4 //soltion
5 //given
                        //dc beta
6 B = 100;
7 \text{ Rc} = 2*10^3; //\text{ohm}
                           //resistor connected to
      collector
8 R1=10*10^3; //ohm
                           //voltage divider resistor 1
9 R2=1*10^3; //ohm
                           //voltage divider resistor 2
10 Re=200; //ohm //resistor connected to emitter
11 Vcc=10; //V
                            //Voltage supply across the
      collector resistor
                           //base to emitter voltage
12 Vbe=0.3; //V
13
                           //current through voltage
14 I = Vcc/(R1+R2);
      divider
15 Vb = I * R2;
                     //voltage at base
16 \text{ Ve=Vb-Vbe};
17 Ie=Ve/Re;
                  //approaximating Ib is nearly equal to
18 \text{ Ic=Ie}
      0
19 Vc = Vcc - Ic * Rc;
20 Vce=ceil(Vc)-Ve;
21 printf ("The Q point is (\%.1 \, \mathrm{f \ V}, \, \%.0 \, \mathrm{f \ mA})", Vce, Ic
```

```
*1000);

22

23 Ibc=I/20; //critical value of base current
24 Ib=Ic/B; //actual base current
25

26 //Since Ib < Ibc, hence assumption is alright
```

Scilab code Exa 6.12 Solve the voltage divider accurately by applying thevening theorem

```
2 //Solve the voltage divider accurately by applying
      thevenin's theorem
3 clear;
4 clc;
5 // soltion
6 //given
                        //dc beta
7 B = 100;
8 Rc=2*10^3; //ohm
                          //resistor connected to
      collector
9 R1=10*10^3;//ohm //voltage divider resistor 1
10 R2=1*10^3;//ohm //voltage divider resistor 2
                        //resistor connected to emitter
11 Re=200; //ohm
12 Vcc=10; /V
                             //Voltage supply across the
      collector resistor
13 Vbe=0.3; //V
                           //base to emitter voltage
14
15 Vth=Vcc*R2/(R1+R2);
16 Rth=R1*R2/(R1+R2);
17
18 printf("\nThevenin equivalent voltage Vth = \%.5 \, \mathrm{f} \, \mathrm{V}",
19 printf ("\nThevenin equivalent resistance Rth = \%.2 f
      ohm", Rth);
20
```

```
21 Ib = (Vth - Vbe) / (Rth + (1+B) * Re);
22 \text{ Ic=B*Ib};
23 Ie=Ic+Ib;
24 \text{ Vce=Vcc-Ic*Rc-Ie*Re};
25 printf("\nThe accurate value of {
m Ic}=\%.5\,{
m f} mA",{
m Ic}
26 printf("\nThe accurate value of Vce = \%.6 f V", Vce);
27 Icp=3*10^-3; // Current calculated by voltage
      divider in previous example
  Vcep=3.4; // Voltage calculated by voltage divider
      in previous example
29 Err_Ic=(Ic-Icp)*100/Ic;
30 Err_Vce=(Vce-Vcep)*100/Vce;
31 printf("\nError in Ic= \%.1f percent\n", Err_Ic);
32 printf ("Error in Vce= %.0f percent", Err_Vce);
33
34 // The errors and The accurate values are different
35 // because of the approaximation in Vth and Rth in
      book
36
37 \ // \ In \ Book \ Ic = 2.8436 \ mA \ and \ Vce = 3.73839 \ V
38 // Error in Ic = -5.5\%
39 // Error in Vce = +9\%
```

Scilab code Exa 6.13 determine the Q point for the emitter bias circuit

```
//determine the Q point for the emitter bias circuit
clear;
clc;
//soltion
//given
B=100; //dc beta
Rc=5*10^3;//ohm //resistor connected to
collector
Rb=10*10^3;//ohm //resistor connected to base
```

```
9 Re=10*10^3;//ohm //resistor connected to
        emitter
10 Vcc=12;//V //Voltage supply across the
        collector resistor
11 Vee=15;//V //supply at emitter
12 Ie=Vee/Re;
13 Ic=Ie;
14 Vce=Vcc-Ic*Rc;
15 printf("The Q point is (%.1f V, %.1f mA)", Vce, Ic
        *1000);
```

Scilab code Exa 6.14 Calculate Vgs and Rs

```
1 //Calculate Vgs and Rs
2 clear;
3 clc;
4 //soltion
5 //given
6
7 Vp=2;//V
8 Idss=1.75*10^-3;//A //drain current at Vgs=0
9 Vdd=24;//V //drain to supply source
10 Id=1*10^-3;//A //drain current
11 Vgs=(-Vp)*(1-sqrt(Id/Idss));
12 Rs=abs(Vgs)/Id;
13 printf("Vgs = %.3 f V\n", Vgs);
14 printf("Rs = %.0 f ",Rs);
```

Chapter 7

Small Signal Single Stage Amplifier

Scilab code Exa 7.1 Calculate max current and check will the capacitor act as short for given frequency

```
1 // Calculate max current and check will the capacitor
       act as short for given frequency
2 clear;
3 clc;
4 //soltion
5 //given
7 C=100*10^-6; // Farad
8 Rs=1*10^3; //ohm
9 R1=4*10^3; //ohm
10 Vs=1; //V
11 Imax=Vs/(Rs+R1);
12 fc=1/(2*%pi*(Rs+R1)*C) // critical frequency
13 fh=10*fc;
                                //Border frequency
14 printf("Maximum current is \%.0 \, f \, uA \n", Imax*10^6);
15 printf("fh = \%.2 \text{ f Hz/n}",fh);
16 printf ("As long as source frequency is greater than
     %.2f Hz, the coupling capacitor acts like an ac
```

```
short for 20Hz to 20kHz.",fh)

17

18 //In book Imax is 200mA but there is misprinting of 'm' in mA it should be uA
```

Scilab code Exa 7.2 Check whether the capacitor is an effective bypass for the signal currents of lowest frequency 20 Hz

```
1 //Check whether the capacitor is an effective bypass
      for the signal currents of lowest frequency 20
     Hz
2 clear;
3 clc;
4 //soltion
5 //given
6
7 C=100*10^-6; // Farad
8 Rs=1*10^3; //ohm
9 R1=4*10^3; //ohm
10 f = 20; //Hz
                      //lowest frequency
11 Xc = 1/(2*\%pi*f*C)
                            //reactance of capacitor at
      20 Hz
                          //Thevenin's equivalent
12 Rth=Rs*R1/(Rs+R1);
     resistance
13 printf("Xc < Rth/10 = \%.1f < \%.1f is satisfied
     n, Xc, Rth/10);
14 printf("The capacitor of 100uF will work as a good
     bypass for frequencies greater than 20 Hz")
```

Scilab code Exa 7.3 Calculate the value of capacitor required

```
1 // Calculate the value of capacitor required
2 clear;
```

```
3 \text{ clc};
4 //soltion
5 //given
7 Rs1=20*10^3; //ohm
8 \text{ Rs2} = 30 * 10^3; //\text{ohm}
9 Rl1=40*10^3; //ohm
10 R12=80*10^3; //ohm
11 R13=80*10^3; //ohm
12 Rth=Rs1*Rs2/(Rs1+Rs2);
                                      //Thevenin's
      equivalent resistance
13 Rl_=Rl2*Rl3/(Rl2+Rl3);
                           //Equivalent load
14 Rl=Rl1*Rl_/(Rl1+Rl_);
                 //lowest frequency
15 f = 50; //Hz
16 R=Rth+R1;
17 C=10/(2*\%pi*f*R)
18 printf ("The required value of coupling capacitor is
     \%.0 f uF", C*10^6);
```

Scilab code Exa 7.4 Calculate voltage and current gain and input and output resistance

```
//Calculate voltage and current gain and input and
    output resistance
clear;
clc;
//soltion
function [z]=prll(r1,r2)//Function for the parallel
    combination of resistor
    z=r1*r2/(r1+r2);
endfunction
//given
//given
```

```
12 //DC analysis
13 Vcc=12; //V
14 Rb=200*10^3; //ohm
15 Rc=1*10^3; //ohm
16 B=100; // beta
17 Ib=Vcc/Rb;
18 Ic=B*Ib;
19 Icsat=Vcc/Rc;
20 Vce=Vcc-Ic*Rc;
21 printf ("The Q point of DC analysis = (%.0 f V, %.0 f mA
      ) \ n", Vce, Ic*1000);
22
23 //AC analysis
24 Rl = 1 * 10^3; //ohm
25 \text{ hfe=B};
26 hie=2*10^3;//ohm
27 \text{ hoe}_1 = 40 * 10^3; //ohm
                                 // 1/hoe
28 Rac=prll(Rc,Rl);
29 Av=-hfe*Rac/hie;
30 printf("The voltage gain = \%.0 \, \text{f} \, \text{n}", Av);
31
32 //Siince (1/hoe) > Rac therefore entire current will
       flows through Rac
33 Io = -100 * Ib;
34 \text{ Ac=Io/Ib};
35 printf("The current gain = \%.0 \, f \, n", Ac);
36
37 Ri=prll(Rb, hie);
38 Ro=prll(Rl,prll(Rc,hoe_1));
39 printf("The input resistance= \%.0 \, \text{f} \, \text{k} \, \text{n}", Ri/1000);
40 printf("The output resistance= \%.1 \, \text{f} k", Ro/1000);
41
42 //In book the voltage gain is 25 due to skipping of
    '-' in printing
```

Scilab code Exa 7.5 Solve previous example using hybrid pie model

```
1 //Solve previous example using hybrid pie model
2 clear;
3 clc;
4 //soltion
5 function [z]=prll(r1,r2)//Function for the parallel
      combination of resistor
       z=r1*r2/(r1+r2);
  endfunction
8
9 //given
10
11 Vcc=12; //V
12 Rb=200*10^3; //ohm
13 Rc=1*10^3; //ohm
14 Rl=1*10^3; //ohm
15 B=100; // beta
16 hie=2*10^3;//ohm
                              // 1/hoe
17 hoe_1=40*10^3; //ohm
18
19 Ib=Vcc/Rb;
20 \text{ Ic=B*Ib};
21 Rac=prll(Rc,Rl);
22 \text{ gm}=\text{Ic}/(25*10^-3);
23 \text{ rpi=B/gm};
24 ri=hie;
25 rb=ri-rpi;
26 \text{ ro=hoe\_1};
27 Vi=poly(0,"Vi");
                           //let the input be Vi
28 Vpi=Vi*rpi/(rpi+rb);
29 Vo=-gm*Vpi*Rac; //output voltage
30 \text{ Av=Vo/Vi};
31 printf("The voltage gain");
32 disp(Av);
33 //In book voltage gain is -24.96 due to
      appraoximation
```

Scilab code Exa 7.6 Determine the value of output voltage

```
1 //Determine the value of output voltage
2 clear;
3 clc;
4 //soltion
5 //given
6
7 Vcc=12; //V
8 Rb=150*10^3; //ohm
9 Rc=5*10^3; //ohm
10 B=200; // beta
11 hie=2*10^3; //ohm
                         // 1/hoe
12 ro=60*10^3; //ohm
13 Vi = 1 * 10^{-3}; //V
14 Ib=Vcc/Rb;
15 Ic=B*Ib;
16 Icsat=Vcc/Rc;
17 // Icsat < Ic therefore transistor is in saturation
     mode and outpuut voltage wil be zero
18 Vo = 0;
19 printf("The output voltage= %.0 f V", Vo);
```

Scilab code Exa 7.7 Calculate voltage gain and input resistance

```
1 // Calculate voltage gain and input resistance
2 clear;
3 clc;
4 // soltion
5
6 function [z]=prll(r1,r2)//Function for the parallel combination of resistor
```

```
z=r1*r2/(r1+r2);
8 endfunction
10 //given
11 R1=75*10^3; //ohm
12 R2=7.5*10^3; //ohm
13 Rc=4.7*10^3; //ohm
14 Re=1.2*10^3; //ohm
15 Rl=12*10^3; //ohm
16 B = 150;
17 ri=2*10^3;//ohm
18 Vcc=15; //V
19 Vb = Vcc * R2/(R1 + R2);
20 \text{ Ve=Vb};
                    // since Vbe=0
21 Ie=Ve/Re;
22 Ic=Ie;
23 Icsat=Vcc/(Rc+Re);
24 // Ic < Icsat therefore transistor is in active mode
25 \text{ Vce=Vcc-Ic*(Rc+Re)};
26 printf ("The Q point of DC analysis = (%.1 f V, %.3 f mA
      ) \ n", Vce, Ic*1000);
27
28 Rac=prll(Rc,Rl);
29 Av = -B * Rac/ri;
30 printf("The voltage gain = \%.1 \, f \, n", Av);
31 Ri_=prll(ri,R2);
32 printf("The input resistance= \%.2 \, \text{f} \, \text{k} \, \text{n}", Ri_/1000);
```

Scilab code Exa 7.8 Calculate the value of gm at different values of Vgs

```
1
2 //Calculate the value of gm at different values of
        Vgs
3 clear;
4 clc;
```

```
5 //soltion
6 //given
8 Idss=8*10^-3; //A
9 Vp=4; //V
10 //At Vgs = -0.5 V
11 Vgs= -0.5; //V
12 gmo=2*Idss/(abs(Vp));
13 gm = gmo * (1 - (Vgs/(-Vp)));
14 printf ("gmo = \%.0 \text{ f mS/n}", gmo * 1000);
15 printf("gm (At Vgs = -0.5V) = %.1 f mS\n", gm*1000);
16
17 //At Vgs = -1.5 V
18 Vgs= -1.5; //V
19 gmo=2*Idss/(abs(Vp));
20 gm = gmo * (1 - (Vgs/(-Vp)));
21 printf("gm (At Vgs = -1.5V) =%.1 f mS\n", gm*1000);
22
23 / \text{At Vgs} = -2.5 \text{ V}
24 Vgs= -2.5; //V
25 gmo=2*Idss/(abs(Vp));
26 gm=gmo*(1-(Vgs/(-Vp)));
27 printf("gm (At Vgs = -2.5V) =%.1 f mS\n", gm*1000);
```

Scilab code Exa 7.9 Find the output signal voltage of the amplifier

```
//Find the output signal voltage of the amplifier
clear;
clc;
//soltion
//given
Rd=12*10^3;//ohm
Rg=1*10^6;//ohm
Rs=1*10^3;//ohm
```

Scilab code Exa 7.10 Determine the small signal voltage gain and input and output resistance

```
1 //Determine the small signal voltage gain and input
      and output resistance
2 clear;
3 clc;
4 //soltion
5 //given
6
7 Rd=2*10^3; //ohm
8 rd=100*10^3; //ohm
9 Rg=1*10^6; //ohm
10 gm=2*10^-3; //S
11 Av = -gm*(rd*Rd/(rd+Rd));
12 Ri=Rg;
13 Ro=rd*Rd/(rd+Rd);
14 printf ("The small signal voltage gain = \%.0 \,\mathrm{f} \setminus \mathrm{ninput}
      resistance = %.0 f M \noutput resistance = %.0 f
       k ", Av, Ri/10<sup>6</sup>, Ro/1000);
```

Scilab code Exa 7.11 Determine the small signal voltage gain and input and output resistance

```
1 // Determine the small signal voltage gain and input
      and output resistance
2 clear;
3 clc;
4 //soltion
5 //given
7 R1=500*10^3; //ohm
8 R2=50*10^3; //ohm
9 Rd=5*10^3; //ohm
10 Rs = 100; //ohm
11 Rl=5*10^3; //ohm
12 gm=1.5*10^-3; //S
13 rd=200*10^3;//ohm
14 Rg=R1*R2/(R1+R2);
15 Rac=Rd*R1/(Rd+R1);
16 Av=-gm*Rac;
17 Ri=Rg;
18 Ro=(rd*Rac/(rd+Rac));
19 printf ("The small signal voltage gain = \%.2 \text{ f} \setminus \text{ninput}
      resistance = \%.2 f k \setminus noutput resistance = \%.1 f
      k ", Av, Ri/1000, Ro/1000);
```

Scilab code Exa 7.12 Calculate the voltage gain of the FET

```
1 // Calculate the voltage gain of the FET
2 clear;
3 clc;
4 // soltion
```

```
5 //given
6
7 Idss=8*10^-3; //A
8 Vp=4; //V
9 rd=25*10^3; //ohm
10 Rd=2.2*10^3; //ohm //by the help of figure
11 Vgs=-1.8; //V
12 gmo=2*Idss/(abs(Vp));
13 gm=gmo*(1-(Vgs/(-Vp)));
14 Av=-gm*(rd*Rd/(rd+Rd));
15 printf("The voltage gain of the FET %.2f",Av);
```

Chapter 8

Multistage Amplifiers

Scilab code Exa 8.1 Express the gain in decibel

```
1 //Express the gain in decibel
2 clear;
3 clc;
4 //soltion
5 //given
7 //Powere gain of 1000
8 \text{ Pg1} = 1000;
9 Pgd1=10*log10(Pg1);
10 printf("Power gain (in dB)= \%.0 \text{ f dB/n}", Pgd1);
11
12 //Voltage gain of 1000
13 \text{ Vg1} = 1000;
14 Vgd1=20*log10(Vg1);
15 printf("Voltage gain (in dB)= \%.0 \text{ f dB/n}", Vgd1);
16
17 //Powere gain of 1/100
18 Pg2=1/100;
19 Pgd2=10*log10(Pg2);
20 printf("Power gain (in dB)= %.0 f dB \setminus n", Pgd2);
21
```

```
22  // Voltage gain of 1/100
23  Vg2=1/100;
24  Vgd2=20*log10(Vg2);
25  printf("Voltage gain (in dB)= %.0 f dB\n", Vgd2);
```

Scilab code Exa 8.2 Determine power and voltage gain

```
2 //Determine power and voltage gain
3 clear;
4 clc;
5 //soltion
6 //given
8 / \text{For Gain} = 10 \text{ dB}
9 G=10; //dB
10 Pg1=10^(G/10); //taking antilog
11 Vg1=10^{\circ}(G/20); //taking antilog
12 printf("\nFor Gain = \%.0 \, f \, dB",G)
13 printf("\nPower gain ratio = \%.0 \, \text{f} \, \text{n}", Pg1);
14 printf("Voltage gain ratio = %.2 f \n", Vg1);
15
16 //For Gain 3 dB
17 G=3; //dB
20 printf("\nFor Gain = \%.0 \, f \, dB \n",G)
21 printf("Power gain ratio = \%.0 \, \text{f} \, \text{n}", Pg2);
22 printf("Voltage gain ratio = \%.3 \, \text{f} \, \text{n}", Vg2);
```

Scilab code Exa 8.3 Calculate the overall voltage gain

```
1 // Calculate the overall voltage gain
```

```
2 clear;
3 clc;
4 //soltion
5 //given
6
7 A1=80
8 A2=50
9 A3=30
10 Ad=20*log10(A1)+20*log10(A2)+20*log10(A3);;
11
12 // Alternatively
13 A=A1*A2*A3;
14 Ad=20*log10(A);
15 printf("The Voltage gain is %.2f dB",Ad);
```

Scilab code Exa 8.4 Calculate quiescent output voltage and small signal voltage gain

```
1 // Calculate quiescent output voltage and small
      signal voltage gain
2 clear;
3 clc;
4 //soltion
5 //given
7 //At input Voltage =3V
8 Vi1=3;/V
                 //input voltage
9 Vbe=0.7; //V
10 B = 250;
11 Vcc=10; //V
                  //Supply
12 Re1=1*10^3; //ohm
13 Rc1=3*10^3; //ohm
14 Re2=2*10^3; //ohm
15 Rc2=4*10^3; //ohm
                   //Voltage at the base of transistor
16 Vb1=Vi1;
```

```
T1
17 \text{ Ve1=Vb1-Vbe};
                         //Voltage at the emitter of
       transistor T1
18 Ie1=Ve1/Re1;
19 Ic1=Ie1;
20 Vc1=Vcc-Ic1*Rc1;
21 \text{ Vb2=Vc1};
22 \text{ Ve2=Vb2-Vbe};
23 Ie2=Ve2/Re2;
24 Ic2=Ie2;
25 \text{ Vol=Vcc-Ic2*Rc2};
26 printf("The quiescent output voltage(At input
       Voltage =3 V ) is \%.1 f V n, Vol);
27
28 //At input Voltage =3.2 V
29 Vi2=3.2; //V
                        //input voltage
30 \text{ Vb1=Vi2};
                       //Voltage at the base of transistor
      T1
31 \text{ Ve1=Vb1-Vbe};
                         //Voltage at the emitter of
       transistor T1
32 \text{ Ie1=Ve1/Re1};
33 Ic1=Ie1;
34 \text{ Vc1=Vcc-Ic1*Rc1};
35 \text{ Vb2=Vc1};
36 \text{ Ve2=Vb2-Vbe};
37 Ie2=Ve2/Re2;
38 \text{ Ic2=Ie2};
39 \text{ Vo2=Vcc-Ic2*Rc2};
40 printf("The quiescent output voltage (At input
       Voltage =3.2 V) is \%.1 \text{ f V} \text{n}, Vo2);
41
42 //Small Signal input and output voltage
43 vi=Vi2-Vi1;
44 \text{ vo=Vo2-Vo1};
45 \text{ Av=vo/vi};
46 printf ("The small signal voltage gain is %.0f", Av)
```

Scilab code Exa 8.5 Calculate the maximum voltage gain and bandwidth of multistage amplifier

```
1 // Calculate the maximum voltage gain and bandwidth
      of multistage amplifier
2 clear;
3 clc;
4 //soltion
5 //FUNCTIONS
7 function [z]=prll(r1,r2)//Function for the parallel
      combination of resistor
        z=r1*r2/(r1+r2);
9 endfunction
10
11 //given
12 rin=10*10^6;//ohm
                                   //input resistance of JFET
13 Rd=10*10^3; //ohm
14 Rs=500; //ohm
15 Rg=470*10^3; //ohm
16 R1=470*10^3; //ohm
17 Cc=0.01*10^-6; //Farad
18 Csh=100*10^-12; //Farad
19 Cs = 50 * 10^{-6}; // Farad
20 rd=100*10^3; //ohm
21 \text{ gm} = 2*10^-3; //S
22 Rac2=prll(Rd,Rl);
23 Rac1=prll(Rd,Rg);
24 Req=prll(rd,prll(Rd,Rl));
25 \text{ Am} = \text{ceil} (\text{gm} * \text{Req});
26 \operatorname{Am} 2 = \operatorname{Am} * \operatorname{Am};
                        //Voltage gain of two stage
       amplifier
27 printf ("Voltage gain of two stage amplifier= \%.0 f\n"
       , Am2);
```

```
28 R_=prll(rd,Rd)+prll(Rg,rin);
29 f1=1/(2*%pi*Cc*R_); //lower cutoff frequency
30 f1_=f1/(sqrt(sqrt(2)-1));
31 f2=1/(2*%pi*Csh*Req); //upper cutoff frequency
32 f2_=f2*(sqrt(sqrt(2)-1));
33 BW=f2_-f1_;
34 printf("Bandwidth= %.1 f kHz",BW/1000);
35
36 //There is a slight error in f1 due to use of R'(
    here R_)=479 k and in f2 due to approaximation
    of Req there is a slight variation
```

Scilab code Exa 8.6 Calculate the midband voltage gain and bandwidth of cascade amplifier

```
1 // Calculate the midband voltage gain and bandwidth
      of cascade amplifier
2 clear;
3 clc;
4 //soltion
5 //given
6 \quad Am = 8;
                   //midband voltage gain of individual
      MOSFET
7 \text{ BW} = 500 * 10^3 / \text{Hz}
8 	ext{ f2=BW};
9 n = 4;
10 A2m=Am^n;
11 f2_=f2*(sqrt((2^(1/n))-1));
12 printf("Midband voltage gain = \%.0 \, f \, n", A2m);
13 printf("Overall Bandwidth= %.1 f kHz", f2_/1000);
```

Scilab code Exa 8.7 Calculate the input and output impedance and voltage gain

```
1 // Calculate the input and output impedance and
      voltage gain
2 clear;
3 clc;
4 //soltion
5 //FUNCTIONS
7 function [z]=prll(r1,r2)//Function for the parallel
      combination of resistor
        z=r1*r2/(r1+r2);
8
9 endfunction
11 hie=1.1*10^3;//ohm
                           = rin
12 hfe=120;//
13
14 //the values of Rac2, Zi, Zo are as per diagram
15 Rac2=prll(3.3*10^3,2.2*10^3);
16 Rac1=prll(6.8*10^3,prll(56*10^3,prll
      (5.6*10^3,1.1*10^3));
17 Zi=prll(5.6*10^3,prll(56*10^3,1.1*10^3));
18 Zo=prll(3.3*10<sup>3</sup>,2.2*10<sup>3</sup>);
19
20 printf("Input Resistance = \%.3 f k \nOutput
      Resistance = \%.2 \, \text{f} \, \text{k} \, \text{n}", Zi/1000, Zo/1000);
21
22 Am2=-hfe*Rac2/(hie);
23 Am1 = -hfe*Rac1/(hie);
24 Am = Am1 * Am2;
25 \text{ Am} = 20 * \frac{10}{10} (\text{Am});
26 printf("The Overall Voltage gain is %.2 f dB", Am);
```

Chapter 9

Power Amplifiers

Scilab code Exa 9.1 Determine the turns ratio of the transformer

```
// Determine the turns ratio of the transformer
clear;
clc;
//soltion
//given
Rl=8; //ohm
Rl_=5*10^3; //ohm
TR=sqrt(Rl_/Rl); //Turns ratio
printf("Turns Ratio= %.0f : 1",TR);
```

Scilab code Exa 9.2 Determine the output impedance of the transistor

```
1 // Determine the output impedance of the transistor
2 clear;
3 clc;
4 // soltion
5 // given
```

```
7 TR=16/1;  //turn ratio
8 Rl=4; //ohm  //loudspeaker impedance
9 ro=(TR^2)*Rl;
10 printf("The output impedance of the transistor %.0f",ro);
```

Scilab code Exa 9.3 Determine the efficiency of a single ended transformer

```
1
2 //Determine the efficiency of a single ended
      transformer
3 clear;
4 clc;
5 // soltion
6 //given
8 Vceq=10; //V //supply voltage
10 //At Vp=10V
11 Vp=10; //V
12 Vce_max1=Vceq+Vp;
13 Vce_min1=Vceq-Vp;
14 n1=50*((Vce_max1-Vce_min1)/(Vce_max1+Vce_min1))^2;
15 printf ("Efficiency (At Vp = 10V) = %.0 f percent \n", n1
     );
16
17 / At Vp=5V
18 Vp=5; //V
19 Vce_max2=Vceq+Vp;
20 Vce_min2=Vceq-Vp;
21 n2=50*((Vce_max2-Vce_min2)/(Vce_max2+Vce_min2))^2;
22 printf ("Efficiency (At Vp = 5V)= %.1f percent \n", n2)
23
```

```
24  //At Vp=1V
25  Vp=1; //V
26  Vce_max3=Vceq+Vp;
27  Vce_min3=Vceq-Vp;
28  n3=50*((Vce_max3-Vce_min3)/(Vce_max3+Vce_min3))^2;
29  printf("Efficiency (At Vp = 1V)= %.1 f percent\n",n3);
;
```

Scilab code Exa 9.4 Determine input and output power and efficiency

```
1 // Determine input and output power and efficiency
2 clear;
3 clc;
4 //soltion
5 //given
6
7 Vcc=20; //V
               //supply voltage
8 R1=4; //
9 Vp = 15; //V
10 Ip=Vp/R1;
11 Idc=Ip/%pi;
12 Pi=Vcc*Idc;
13 Po = ((Vp/2)^2)/R1;
14 n = 100 * Po/Pi;
15 printf ("Input power \%.2 \text{ f W} \text{ n}", Pi);
16 printf("Output power %.2 f W\n", Po);
17 printf("Efficiency = \%.0 f percent\n",n);
```

Scilab code Exa 9.5 Calculate the percentage increase in output power

```
1 // Calculate the percentage increase in output power
2 clear;
3 clc;
```

```
4 //soltion
5 //given
6
7 D=0.2; //harmonic distortion
8 P=(1+D^2); // Total power increase
9
10 //percent increase= (Pi*(1+D^2)-Pi)*100/Pi;
11 //taking out and cancelling Pi
12 PI=(P-1)*100;
13 printf("The percentage increase in output power= %.0 f percent", PI);
```

Scilab code Exa 9.6 Calculate harmonic distortion and percentage increase in output voltage due to this

```
1 // Calculate harmonic distortion and percentage
      increase in output voltage due to this
2 clear;
3 clc;
4 //soltion
5 //given
6
7 I1=60; //A
8 I2=6; //A
9 I3=1.2; //A
10 I4=0.6; //A
11 D2=I2/I1;
12 D3 = I3/I1;
13 D4 = I4/I1;
14 printf("The Harmonic distortion of each component\
      nD2=\%.0 f percent nD3=\%.0 f percent nD4=\%.0 f
      percent \n", D2*100, D3*100, D4*100);
15
16 D=sqrt((D2)^2+(D3)^2+(D4)^2);
17 printf ("The Total Harmonic distortion = \%.0 f percent
```

```
\n",D*100);
18 P=(1+D^2);//Total power increase
19
20 //percent increase= (Pi*(1+D^2)-Pi)*100/Pi;
21 //taking out and cancelling Pi
22 PI=(P-1)*100;
23 printf("The percentage increase in output power= %.0 f percent",PI);
```

Feedback in Amplifiers

Scilab code Exa 10.1 Determine the gain of feedback amplifier

```
// Determine the gain of feedback amplifier
clear;
clc;
//soltion
//given

A=100; //internal gain
B=0.1; //feedback factor
Af=A/(1+A*B);
printf("The gain of feedback amplifier %.2f", Af);
```

Scilab code Exa 10.2 Determine the gain of feedback amplifier in dB

```
1 // Determine the gain of feedback amplifier in dB
2 clear;
3 clc;
4 // soltion
5 // given
```

```
6
7 Ad=60;//dB     //internal gain in dB
8 A=10^(Ad/20);     //internal gain
9 B=1/20;//feedback factor
10 Af=A/(1+A*B);
11 Afd=20*log10(Af);
12 printf("The gain of feedback amplifier %.2 f dB", Afd);
;
```

Scilab code Exa 10.3 Calculate the percentage of output fed back to input

```
//Calculate the percentage of output fed back to
input
clear;
clc;
//soltion
//given
//given
//internal gain
Af=50; //gain of feedback amplifier
B=(A/Af-1)/A;
printf("The percentage of output fed back to input=
%.3f percent", B*100);
```

Scilab code Exa 10.4 Calculate the internal gain and percentage of output fed back to input

```
1 // Calculate the internal gain and percentage of
    output fed back to input
2 clear;
3 clc;
4 // soltion
5 // given
```

```
6
7 Af=80;  //gain of feedback amplifier
8 Vi=0.05; //V  //input with feedback
9 Vi_=4*10^-3; //V  //input without feedback
10 Vo_=Af*Vi;
11 A=Vo_/Vi_;
12 printf("The internal gain is %.0 f\n",A);
13 B=(A/Af-1)/A;
14 printf("The percentage of output fed back to input= %.2 f percent",B*100);
```

Scilab code Exa 10.5 Calculate the gain with and without feedback and feedback factor

```
//Calculate the gain with and without feedback and
feedback factor

clear;
clc;
//soltion
//given

Vo_=5;//V //output voltage
Vi=0.2;//V //input with feedback
Vi_=0.05;//V //input without feedback
A=Vo_/Vi_;
Af=Vo_/Vi;
printf("The gain without feedback is %.0 f\n",A);
printf("The gain with feedback is %.0 f\n",Af);
B=(A/Af-1)/A;
printf("The feedback factor= %.0 f percent", B*100);
```

Scilab code Exa 10.6 Calculate the gain of feedback amplifier and feedback factor

```
1 // Calculate the gain of feedback amplifier and
      feedback factor
2 clear;
3 clc;
4 //soltion
5 //given
6
                 //internal gain
7 \quad A = 100;
8 N=20; //dB //negative feedback
9 B=(10^{(-N/(-20))-1)/A};
                                    //taking antilog
10 Af = A / (1 + A * B);
11 printf("The feedback factor= \%.0 \, \text{f} percent\n", B*100);
12 printf ("The gain of the feedback amplifier is \%.0 \,\mathrm{f} \,\mathrm{n}
      ",Af);
```

Scilab code Exa 10.7 Calculate percentage change in the overall gain

```
1 // Calculate percentage change in the overall gain
2 clear;
3 clc;
4 //soltion
5 //given
6
                //internal gain
7 \quad A = 1000;
8 N=40; //dB //negative feedback
9 D=10^{(-N)}-20;
                       //D = (1 + AB)
                                     desensitivity
10 dA_A = 10; // percent
                         //dA/A
                        //dAf/Af
11 dAf_Af = dA_A/D;
12 printf ("The percentage change in the overall gain = \%
      .1f percent", dAf_Af);
```

Scilab code Exa 10.8 Calculate percentage change in the overall gain

```
1 // Calculate percentage change in the overall gain
2 clear;
3 clc;
4 //soltion
5 //given
7 Adb=60; //dB
                   //internal gain in dB
                   //feedback factor
8 B=0.005;
9 A=10^(Adb/(20));
                       //taking antilog
10 dA_A = -12; // percent
                          //dA/A
               //D = (1 + AB)
11 D = (1 + A * B);
                                desensitivity
12 dAf_Af = dA_A/D;
                        //dAf/Af
13 printf("The percentage change in the overall gain
     reduces by %.1f percent",-dAf_Af);
```

Scilab code Exa 10.9 Determine the input resistance of feedback amplifier

```
1 //Determine the input resistance of feedback
     amplifier
2 clear;
3 clc;
4 //soltion
5 //given
6
7 \quad A = 250;
            //internal gain
8 B=0.1; //feedback factor
9 Ri=1.1*10^3; //ohm
                      //input resistance
10 Rif=Ri*(1+A*B);
11 printf ("The input resistance of feedback amplifier \%
     .1 f k ", Rif/1000);
12 //The ans in book is incorrect due to use of (2+A*B)
      instead of (1+A*B) the ans in book is 29.7 k
```

Scilab code Exa 10.10 Calculate the percentage of negative feedback to input

```
1 // Calculate the percentage of negative feedback to
     input
2 clear;
3 clc;
4 //soltion
5 //given
6
7 Adb=60; //dB
                    //internal gain in dB
8 A=10^(Adb/(20));
                      //taking antilog
                         //output resistance
9 Ro=12*10^3; //ohm
10 Rof = 600; / ohm
11 B=(Ro/Rof-1)/A;
12 printf("The percentage of negative feedback to input
     = \%.1 f percent", B*100);
```

Tuned Voltage Amplifiers

Scilab code Exa 11.1 Calculate frequency and impedance and current and voltage across each element at resonance

```
1 // Calculate frequency and impedance and current and
     voltage across each element at resonance
2 clear;
3 clc;
4 //soltion
5 //given
7 R=12; //ohm
8 L=200*10^-6; //H
9 C=300*10^-12; //F
10 Vs = 9; //V
11 fo=1/(2*%pi*sqrt(L*C));
           //impedance
13 printf("The Resonant frequency= \%.1 \, \text{f kHz} \ \text{n}", fo/1000)
15
16 Io=Vs/R;
17 printf("The Source current= \%.2 \, f \, A \ n", Io);
18
```

Scilab code Exa 11.2 Calculate frequency and impedance and current at resonance and current in coil and capacitor

```
1 //Calculate frequency and impedance and current at
      resonance and current in coil and capacitor
2 clear;
3 clc;
4 //soltion
5 //given
6
7 R = 10; //ohm
8 L=100*10^-6; //H
9 C=100*10^-12; //F
10 Vs = 10; //V
11 fo=1/(2*%pi*sqrt(L*C));
12 Zp=L/(C*R);
                    //impedance
13 printf ("The Resonant frequency = \%.3 \text{ f MHz} ", fo/10^6)
14 printf ("The impedance Z=\%.0 f k \n", Zp/1000);
15
16 Io=Vs/Zp;
17 printf("The Source current= \%.0 \, f \, uA \n", Io*10^6);
18
```

```
19  Xl=(2*%pi*fo*L);
20  Xc=1/(2*%pi*fo*C);
21  Z1=sqrt(Xl^2+R^2);
22  Z2=Xc;
23  Ic=Vs/Z2;
24  Il=Ic;
25  printf("The current in the coil = %.0 f mA\n",Il
      *1000);
26  printf("The current in the capacitor = %.0 f mA\n",Ic
      *1000);
```

Scilab code Exa 11.3 Calculate impedance and quality factor and bandwidth

```
1 // Calculate impedance and quality factor and
      bandwidth
2 clear;
3 clc;
4 //soltion
5 //given
7 R=10; //ohm
8 L=150*10^-6; //H
9 C=100*10^-12; //F
10 fo=1/(2*%pi*sqrt(L*C));
11 Zp=L/(C*R);
                    //impedance
12 printf("The impedance Z=\%.0\,\mathrm{f} k \n", Zp/1000);
13
14 X1 = (2 * \%pi * fo * L);
15 Q=X1/R;
16 BW=fo/Q;
17 printf("The Quality factor of the circuit =%.1 f \n",
      Q);
18 printf ("The Band width of the circuit =\%.1 f kHz\n",
      BW/1000);
```

Sinusoidal Oscillators

Scilab code Exa 12.1 Calculate frequency of oscillations

```
1 //Calculate frequency of oscillations
2 clear;
3 clc;
4 //soltion
5 //given
6
7 L=55*10^-6;//H
8 C=300*10^-12;//F
9 fo=1/(2*%pi*sqrt(L*C));
10 printf("The frequency of oscillations= %.0 f kHz\n", fo/1000);
```

Scilab code Exa 12.2 Calculate frequency of oscillations and feedback factor and voltage gain

```
1 // Calculate frequency of oscillations and feedback
     factor and voltage gain
2 clear;
```

```
3 \text{ clc};
4 //soltion
6 function [z]=prll(r1,r2)//Function for the parallel
      combination of resistor
       z=r1*r2/(r1+r2);
8 endfunction
10 //given
11 C1=0.001*10^-6; //F
12 C2=0.01*10^-6; //F
13 L=15*10^-6; //H
14 C=prll(C1,C2);
15 fo=1/(2*%pi*sqrt(L*C));
16 printf ("The frequency of oscillations = \%.2 \text{ f MHz} \ \text{n}",
      fo/10<sup>6</sup>);
17 B=C1/C2;
18 Amin=1/B;
19 printf ("The feedback factor of the circuit =\%.1 f \n"
20 printf ("The circuit needs a minimum voltage gain of
      \%.0 f", Amin);
```

Scilab code Exa 12.3 Calculate frequency of oscillations

```
1 //Calculate frequency of oscillations
2 clear;
3 clc;
4 //soltion
5 //given
6
7 R=10*10^3; //ohm
8 C=0.01*10^-6; //F
9 fo=1/(2*%pi*R*C*sqrt(6));
10 printf("The frequency of oscillations= %.1 f Hz\n", fo
```

Scilab code Exa 12.4 Calculate frequency of oscillations

```
1 // Calculate frequency of oscillations
2 clear;
3 clc;
4 // soltion
5 // given
6
7 R=22*10^3; // ohm
8 C=100*10^-12; // F
9 fo=1/(2*%pi*R*C);
10 printf("The frequency of oscillations= %.2 f KHz\n", fo/1000);
```

Scilab code Exa 12.5 Determine the series and parallel resonant frequencies

```
//Determine the series and parallel resonant
frequencies

clear;
clc;
//soltion

function [z]=prll(r1,r2)//Function for the parallel
combination of resistor
z=r1*r2/(r1+r2);
endfunction
//given

L=3;//H
```

Operational Amplifiers

Scilab code Exa 14.1 Calculate voltage gain and input and output resistance

```
//Calculate voltage gain and input and output
    resistance

clear;
clc;
//soltion
//given

R1=20*10^3; //ohm
Rf=2000*10^3; //ohm
Acl=-Rf/R1;
Ricl=R1;
Ro=0;
printf("The voltage gain= %.0 f\n", Acl);
printf("The input resistance =%.0 f \n", R1/1000);
printf("The output resistance =%.0 f \n", Ro);
```

Scilab code Exa 14.2 Find the output voltage

```
1 //Find the output voltage
2 clear;
3 clc;
4 //soltion
5 //given
6
7 R1=20*10^3; //ohm
8 Rf=2000*10^3; //ohm
9 v1=4; //V
10 v2=3.8; //V
11 vo=v2*(1+Rf/R1)-(Rf/R1)*v1;
12 printf("The output voltage= %.1 f V",vo);
```

Scilab code Exa 14.4 Design an adder circuit using an op amp

```
1 // Design an adder circuit using an op amp
2 clear;
3 clc;
4 //soltion
5 //given
 7 /Vo = -(V1 + 10 * V2 + 100 * V3)
8 Rf=100*10^3; //ohm
9 C1=1; //coefficient of V1
                      //coefficient of V2
10 C2=10;
11 C3=100;
                      //coefficient of V3
12 R1=Rf/C1;
13 R2=Rf/C2;
14 R3=Rf/C3;
15 printf("R1 = \%.0 \, \text{f} \, \text{k} \, \text{n}", R1/1000);
16 printf("R2 = \%.0 \, f \, k \, \backslash n", R2/1000);
17 printf ("R3 = \%.0 \, \text{f} \, \text{k} \, \text{n}", R3/1000);
```

Scilab code Exa 14.5 Calculate CMRR in dB

```
// Calculate CMRR in dB
clear;
clc;
//soltion
//given

Ad=100; //differential mode gain
Ac=0.01; //common mode gain
CMRR=20*log10(Ad/Ac);
printf("The CMRR in dB %.0 f dB", CMRR);
```

Scilab code Exa 14.6 Calculate the output voltage

Electronic Instruments

Scilab code Exa 15.1 Calculate shunt resistance and multiplying factor

```
//Calculate shunt resistance and multiplying factor
clear;
clc;
//soltion
//given

Im=5*10^-3;//A
Rm=20;//ohm
I=5;//A
Rsh=Rm*Im/(I-Im);
r=I/Im;
printf("Shunt resistance= %.5 f \n",Rsh);
printf("Multiplying factor= %.0 f",n);
```

Scilab code Exa 15.2 Calculate shunt resistance

```
1 // Calculate shunt resistance
2 clear;
```

```
3 clc;
4 // soltion
5 //given
7 //At I = 1 mA
8 I1=1*10^-3; //A
9 Im=0.1*10^-3; //A
10 Rm = 500; //ohm
11 Rsh=Rm*Im/(I1-Im);
12 printf("Shunt resistance= \%.4 \,\mathrm{f} \n", Rsh);
13
14
15 //At I = 1 mA
16 I2=10*10^-3; //A
17 Rsh=Rm*Im/(I2-Im);
18 printf("Shunt resistance= \%.4 \,\mathrm{f} \n", Rsh);
19
20
21 //At I = 1 mA
22 \quad I3=100*10^{-3}; //A
23 Rsh=Rm*Im/(I3-Im);
24 printf("Shunt resistance= \%.4 \, f \n", Rsh);
```

Scilab code Exa 15.3 Caluclate the series resistance to convert it into voltmeter

```
// Caluclate the series resistance to convert it into
    voltmeter
clear;
clc;
//soltion
//given

Im=100*10^-6;//A
Rm=100;//ohm
```

Scilab code Exa 15.4 Calculate multiplier resistance and voltage multiplying factor

```
// Calculate multiplier resistance and voltage
    multiplying factor

clear;
clc;
//soltion
//given

fine=50*10^-6;//A
    Rm=1000;//ohm
    V=50;//V
    Rs=V/Im-Rm;
    printf("The value of multiplier resistance is %.0 f
        k \n",Rs/1000);

Vm=Im*Rm;
    n=V/Vm;
    printf("Voltage multiplying factor =%.0 f",n);
```

Scilab code Exa 15.5 Calculate reading and error of each voltmeter

```
1 // Calculate reading and error of each voltmeter
2 clear;
3 clc;
4 // soltion
```

```
6 function [z]=prll(r1,r2)//Function for the parallel
      combination of resistor
       z=r1*r2/(r1+r2);
8 endfunction
9
10 //given
11
                        //sensitivity
//sensitivity
12 S_A = 1000; //
13 S_B = 20000; //
                         //range of voltmeter
14 R=50; //V
                          //Supply
15 Vs = 150; //V
16 R1=100*10^3; //ohm
17 R2=50*10^3; //ohm
18 Vt = Vs * (R2/(R1+R2));
19
20 //Voltmeter A
21 Ri1=S_A*R;
22 Rxy_A=prll(Ri1,R2); //total resistance at X and
23 V1 = Vs * (Rxy_A/(Rxy_A+R1));
24 printf("The voltmeter indicates \%.0 \, \text{f V} \, \text{n}", V1);
25
26 // Voltmeter B
27 Ri2=S_B*R;
28 Rxy_B=prll(Ri2,R2);
                          //total resistance at X and
29 V2=Vs*(Rxy_B/(Rxy_B+R1));
30 printf("The voltmeter indicates \%.2 \text{ f V} \text{ n}", V2);
31
32 \text{ e1} = (Vt - V1) * 100 / Vt;
33 e2 = (Vt - V2) * 100 / Vt;
34 printf ("The error in the reading of voltmeter A = \%
      .0 f percent n, e1);
35 printf("The error in the reading of voltmeter A = \%
      .1f percent", e2);
```

Scilab code Exa 15.6 Determine rms value of the ac voltage

```
//Determine rms value of the ac voltage
clear;
clc;
//soltion
//given
//length of the trace
D=5;// V/cm //deflection sensitivity
Vpp=1*D;
Vrms=Vpp/(2*sqrt(2));
printf("The rms value of the ac voltage %.2 f V", Vrms);
```

Scilab code Exa 15.7 Determine rms value and frequency of the sine voltage

```
1 // Determine rms value and frequency of the sine
      voltage
2 clear;
3 clc;
4 //soltion
5 //given
                      //length of the trace
7 1=3.5; //cm
8 D=2; // V/cm
                       //deflection sensitivity
9 Vpp=1*D;
10 Vrms=Vpp/sqrt(2);
11 printf ("The rms value of the sine voltage = \%.2 \text{ f V}\n
     ", Vrms);
                      //one cycle length on x axis
12 x=4; // cm
```