Heaps

Motivation for Heaps

Binary trees

- BST imposing search property on binary trees
- AVL trees imposing search and height balance properties on binary trees
- better suited for searching any key (k-th order statistic and rank)

K-ary trees

 B(k)-trees – imposing search and height balance properties on k-ary trees

Binary heaps

- imposing heap property and structure properties (a severe kind of height balance – leading to array representation) on binary trees
- better suited for searching the keys on the boundary (1st order or n-th order statistic, minimum or maximum [thereby for priority queues]

(Binary) (min-)Heap Property

· The key at a node is smaller than the keys at its subtrees (i.e., at its descendants)

- A tree of height O is a heap; a tree of height h > O is a heap if
 - · the key at the root is smaller than the keys at its children
 - its subtrees are heaps

a < c & a < b & b ? c

Heap Property - Features

- If the LST and RST at a node is exchanged, the tree continues to retain the heap property.
- The 1st order statistic; i.e., the minimum key is at the root.
- The 2nd order statistic will be a child of the root.

Heap Property - Search

- · Searching for minimum and second minimum is trivial.
- · Searching for k requires traversing the tree.

0(1)

)(n)

Heap Property - Insert

- · Create a new leaf node with key k.
- · Adjust the nodes on the leaf-root path by pushing the inserted key towards the root (to the extent required).

O(h) = O(n)

Insert 77, 107

Heap Property - Delete (at a leaf)

- Locate the node
- · Remove the node

Delete 57

O(n)

Heap Property - Delete (at root)

- · The smallest child becomes the replacement key
- · (Recursively) delete the smallest child

Eventually, number of leaves go down by one.

O(n)

Heap Property - Delete (at an internal node)

- · Locate the node
- · Delete the node from the root of the subtree

O(n)

Delete 27

Eventually, the number of leaves go down by one.

Binary (min-)Heap

- · A tree with the following properties
 - · Binary (min-) heap property
 - · Shape property: Complete binary tree
- · In a binary (min) heap on n nodes with height h,

 $2^{h}-1+1 \le n \le 2^{h+1}-1$; i.e., $h = O(\log_2 n)$

 Can be implemented using an array such that for a key at position i

- · the left child is at 2i
- the right child is at 2i+1
- the parent is at floor(i/2)

3-ary min heap,
3-ary max heap,
m-ary min heap,
m-ary max heap,
can be similarly defined.

Binary max heap,

1	2	3	4	5	6	7	8	9
7	17	27	47	67	37	87	97	57

Binary (min) Heap - Search

Traverse the array

1	2	3	4	5	6	7	8	9
7	17	27	47	67	37	87	97	57

Binary (min) Heap - Insert

- Insert at the top/root and sift downwards
 OR
- · Insert at the last (leaf) and sift upwards
 - · Create a hole at the end
 - If k can be placed in the hole (w/o violating heap property), then do so, else move the hole towards the root by sifting/sliding the key in the hole's parent downwards until k can be placed in the hole.

Insert(13) 7 27 47 67 37 87 97 57

1						
7		67 17	87	97	57	2 67

 $O(h) = O(\log n)$

Binary (min) Heap - Insert INSERT_MINHEAP(A, n, k)

```
n \leftarrow n+1
A[n] \leftarrow k
i \leftarrow n
While i > 1
       parent \leftarrow floor(i/2)
       if A[parent] > A[i]
              SWAP(A[parent], A[i])
              i \leftarrow parent
       else
              Return
```

Binary (min) Heap - Delete/Extract

 Since deletion is at the root, can we delete as we did deletion of root in a binary tree with heap property? i.e., can we replace the root with the smallest child and (recursively) delete the smallest child?

1	2	3	4	5	6	7	8	9
4	10	5	15	11	12	7	19	18
5		7				???		

Binary (min) Heap - Delete/Extract

- · Replace the root with the last (leaf) key and sift downwards
 - · Create a hole at the root
 - If the last key k can be placed in the hole (w/o violating heap property), then do so, else move the hole downwards by sifting/sliding the key in the hole's children upwards until k can be placed in the hole.
- · Sift replacement key(s) upwards until the root is replaced

 $O(h) = O(\log n)$

Delete	7	_
97 57	57 37	27 87

1	2	3	4	5	6	7	8	9
7 57 17	17 57 47	27	4 7 57	67	37	87	97	57 ???

Heap - Exercise

- · Write the pseudocode for deletion/extraction in a binary minheap.
- · What is the procedure to delete and arbitrary key from a binary min-heap?
- · What is the procedure to increase or decrease a key in a binary min-heap?
- · How to use a binary (min-) heap to sort a set?
- Write the pseudocode for search, insert, and extract operations in a binary max-heap.
- Write the pseudocode for search, insert, and extract operations in an m-ary min-heap. [m > 2]
- What is the run-time for search, insert, and extract operations in an m-ary min-heap? [m > 2]

Sorting using a Heap

- To sort a set of n keys
 - Build a binary min-heap
 - Delete from the binary min-heap until it become empty as above, $O(n \log n)$ $O(n \log n)$

Sort {15, 20, 7, 9, 30} Build a binary min-heap

1	2	3	4	5
15				
15	20			
15 7	20	7 15		
7	20 9	15	9 20	
7	9	15	20	30

Empty the heap (into a new array) 7, 9, 15, 20, 30 Build a binary max-heap

1	2	3	4	5
15				
15 20	20 15			
20	15	7		
20	15	7	9	
20 30	15 30 20	7	9	30 15

 $O(\log n)$ per key, so $O(n \log n)$

Empty the heap

30, 20, 15, 9, 7

Heapify

- · Building by a sequence of insertions takes O(n log n) time.
- Run-time can be reduced to O(n) using heapify converting non-heap CBT into a heap.
- · (min)Heapify
 - Represent the set through the array representation of a complete binary tree by placing the keys arbitrarily. [Heap property may not be satisfied now.]
 - Heapify (sift the key downwards) non-leaf nodes (by starting at the last non-leaf node)
 - In the array representation of a complete binary tree, the leaf nodes are from floor(n/2)+1 to n; i.e., nodes 1 through floor(n/2) are non-leaf nodes. So, heapify the nodes at floor(n/2), floor(n/2)-1, ..., 1.

To min-Heapify {15, 5, 20, 17, 1, 10}

1	2	3	4	5	6
15	5	20	17	1	10
	Неар	ify at _I	positio	on 3	
15	5	20	17	1	10
		10			20

2	3	4	5	6
Heap	ify at p	oositio	on 2	
5 1	10	17	1 5	20
	2 Heap 5 1			2 3 4 5 Heapify at position 2 5 10 17 1 1 5

1	2	3	4	5	6
	Неар	ify at _l	positio	on 1	
15 1	1 15 5	10	17	5 15	20

(max)Heapify

```
MAX_HEAPIFY(A, n, i)
```

```
largest \leftarrow i
lc \leftarrow 2i
rc \leftarrow 2i+1
While (lc \le n) and (A[lc] > A[largest])
    MAX_HEAPIFY(A, n, largest)
```

Nodas Height of the height of Cost of heapifying all the subtrees is the sum of cost of opnoon) Ving all the Subtrees at height I to the in the root

Sorting using a Heap (w/o deleting into new array)

HEAP_SORT(A, n)

for i=floor(n/2) downto 1

MAX_HEAPIFY(A, n, i)

for i=n downto 1

SWAP(A[1], A[i])

MAX_HEAPIFY(A, n, 1)

Building a binary (max)-heap

Moving the current max to its appropriate position (in the sorted order) and re-building the heap