

Forensics mémoire sous Windows

Nicolas RUFF EADS-IW SE/CS nicolas.ruff (à) eads.net

Plan

- Introduction
- Le côté offensif
- Principes
- Collecte
- Analyse
- Exemples
- Contre-mesures
- Conclusion
- Bibliographie
- Remerciements

- Qui suis-je?
 - Un "ingénieur / chercheur / consultant / expert" en sécurité
 - Occasionnellement un analyste forensics
 - Mais il y a tellement peu d'attaques ©
- Pourquoi cette présentation ?
 - Un état de l'art sur une discipline en pleine évolution
 - Des idées de recherche
 - La création d'une communauté de gens intéressés par :
 - Le partage d'information
 - Des outils "gratuits"

- L'intrusion est le thème majeur de toutes les conférences de "sécurité"
 - L'intrusion "tout en mémoire" est un sousdomaine déjà traité également
 - Quelques exemples
 - François Gaspard, Samuel Dralet : "corruption de la mémoire lors de l'exploitation" [SSTIC'06]
 - Metasploit Anti Forensics Project

Le côté offensif

- Les outils d'intrusion sont disponibles "sur étagère"
 - Metasploit (Framework, Meterpreter, IRB)
 - Immunity (CANVAS, Hydrogen)
 - Core SDI (Core Impact)
 - Cain (Abel)
 - Etc.
 - + outils privés

Le côté offensif

- exec("/bin/sh") n'a plus de sens
 - N'en a jamais eu sous Windows
 - Avec en plus les firewalls personnels, les HIPS, ...
 - N'en a pas non plus sous *nix
 - chroot, SELinux, ...
- Objectifs d'un shell moderne
 - Communications chiffrées (avec PFS)
 - Binaire chiffré (avec PFS)
 - Ex. BurnEye avec mot de passe
 - Ou mieux : aucun binaire laissé sur la machine !

- Plusieurs écoles
 - "Dead forensics": on débranche la prise
 - La méthode historique
 - Souvent la seule méthode "officielle"
 - "Live forensics": on lance des outils dans le système cible
 - Préconisée par Microsoft depuis le rachat de Sysinternals
 - La voie du milieu (nouveau !)
 - On collecte la mémoire physique, puis on débranche la prise
 - Avantage sur le dead forensics :
 - On récupère les informations dynamiques (ex. clés)
 - Avantage sur le live forensics :
 - La contre-expertise est possible

Collecte

- Il n'existe qu'une seule méthode "parfaite"
 - La pause dans la machine virtuelle
 - Seule méthode permettant d'obtenir un état cohérent
- Les autres méthodes affectent la cible
 - Carte d'acquisition dédiée
 - Prérequis important
 - Technologie jeune et peu répandue
 - Contournable (!) cf. travaux de Joanna Rutkowska
 - Bus FireWire
 - Passe par des hacks peu fiable
 - Ne permet pas d'accéder à toute la mémoire (ex. UMA)

Collecte

- Accès à "\Device\PhysicalMemory"
 - Nécessite un driver à partir de Windows XP SP2 / Windows 2003
 - Contournable également (technique des Split TLB)
 - "nc | dd" peut s'avérer (très) long ...

CrashDump

- Accessible par plusieurs méthodes : clavier, EMS, driver ...
- Sauvegarde en plus l'état du processeur
- Mais ne fonctionne pas dans certains cas particuliers (ex. RAM > 4 Go)
- Le CrashDump remplace le fichier d'échange
 - Mais il est possible de copier le fichier d'échange auparavant

Collecte

- L'hibernation
 - Une piste à creuser ...
 - Mais la mémoire non allouée ne s'y trouve probablement pas
- Le Hard Reset (!)
 - De nombreuses études tendent à démontrer que la mémoire physique est relativement "stable" avec le temps
 - Ex. 85% de la mémoire est conservée après 10h d'activité
 - La mémoire serait même conservée à froid!

- Configuration des méthodes de collecte
 - La plupart des paramètres peuvent être changés "à chaud"
 - En particulier grâce à WMI
 - Se reporter au papier pour plus de détails ©
- Dans tous les cas on se retrouve avec :
 - La mémoire physique
 - Jusqu'à 16 fichiers d'échange
 - Parfois aucune information sur l'état du processeur
 - Et le tout dans un état potentiellement incohérent ...

- Principe des outils connus
 - "Objectif CR3"
 - La mémoire virtuelle de chaque processus est un gruyère de pages physiques
 - 1 Go de RAM = 262 144 pièces de 4 Ko
 - La clé : la table de pages du processus (PDE)
 - Pointée par le registre CR3
 - Le mode protégé x86 en une ligne
 - O PDE -> PTE
 - -> page physique (si Valid = 1)
 - -> fichier d'échange (si Valid =0)

Analyse

- Principe général = la recherche de motifs
 - Quelques structures importantes
 - Surtout EPROCESS (contient CR3)
 - Mais également les structures réseau, etc.
 - Semi-documentées
 - Grâce aux symboles du noyau utilisables dans WinDbg
 - Potentiellement modifiées à chaque Service Pack!
 - D'où un effort initial important

- L'outil "PTFinder"
 - Auteur : Andreas Schuster
 - Historiquement l'un des premiers outils publics
 - Challenge DFRWS 2005
 - Permet de reconstruire la liste des processus
 - Et leur espace d'adressage virtuel
 - Y compris les processus terminés!
- D'autres outils sont venus par la suite
 - MemParser (Chris Betz)
 - VolaTools
 - KnTTools (payant)
 - Etc.

- Challenge Securitech 2005
 - Auteur : Kostya Kortchinsky
 - "Cas d'école" pour PTFinder
 - Un snapshot VMWare est fourni
 - Le fichier d'échange est désactivé
 - Objectifs
 - Analyser l'attaque
 - Récupérer et relancer un processus terminé

16

- Détection du Meterpreter
 - Principe : injection de DLL "tout en mémoire"
 - LoadLibrary() est une API userland
 - Les fonctions de NTDLL.DLL utilisées sont :
 - NtOpenSection()
 - NtQueryAttributesFile()
 - NtOpenFile()
 - NtCreateSection()
 - NtMapViewOfSection()
 - => émulation de ces fonctions en userland

Détection

- Parcourir la liste des DLLs chargées (dans le PEB)
 - En fait 3 listes (!)
- Détecter par nom / signature
- Ou corréler mémoire / disque

Attention

- Les hooks NTDLL.DLL sont retirés après usage
- Il serait possible de se retirer des listes de DLLs
- Il serait possible d'effacer l'entête PE en mémoire
- ... mais toute thread doit avoir un quota d'exécution!
 - (Ou pas : utilisation des exceptions)

- Les contre-mesures sont infinies ...
 - ... dès que l'attaquant connaît les points de contrôle du défenseur
 - Cf. Rootkits vs. Anti-rootkits
- Attaques "matérielles"
 - Rootkits de boot (ex. BootKit de eEye)
 - Rootkits matériels (ex. firmware Tigon2)
 - Fonctions des chipsets
 - Reprogrammation NorthBridge, code SMM, code ACPI, virtualisation, ...

Contre-mesures

- Attaques "logicielles"
 - Hook des points d'accès à la mémoire
 - Ex. "\Device\PhysicalMemory", IoAllocateMdl(), ...
 - Split TLBs
 - Threads injectées de manière non évidente
 - Ex. à la fin de la section de code d'un processus
 - Virtualisation logicielle (ex. segmentation)
 - ... et d'autres qui restent à inventer!

- L'analyse mémoire ...
 - ... n'est pas fiable à 100%
 - Problème de la collecte
 - Problème des heuristiques de reconstruction
 - o ... n'est qu'un complément des techniques antérieures
 - Corréler les informations mémoire avec le disque
- Les outils disponibles sont :
 - Chers (bienvenue dans le monde du forensics)
 - Et/ou limités (ex. WinDbg)
 - Et/ou difficiles à configurer (ex. adresses dépendantes du Service Pack)

- Mais l'analyse mémoire ...
 - ... est totalement indispensable aujourd'hui!
 - Détection des intrusions "tout en mémoire"
 - Ex. Meterpreter
 - Détection des modifications runtime
 - Ex. NtAccessCheck()
 - Récupération de clés volatiles
 - Ex. clés Diffie-Hellmann, mot de passe TrueCrypt, ...

Auteurs

- Andreas Schuster
- Mariusz Burdach
- George M. Garner
- Aaron Walters
- Harlan Carvey
- ... et tant d'autres ...
 - Cf. papier

Remerciements

- Les experts forensics
 - Alexandre Garaud
 - Samuel Dralet (Lexfo)
 - Laurent Dupuy (FreeSecurity)

- Les autres
 - L'équipe EADS-IW SE/CS
 - Agnès Ruff

