

PROBABILITIES FROM DATA DISPLAYS

SOLUTIONS

TASK 1

Use a Venn diagram to find probabilities

There are 80 members in the travel club.

- **a** P(did not visit any of the 3 countries) = $\frac{16}{80} = \frac{1}{5}$
- **b** P(visited all 3 countries) = $\frac{5}{80} = \frac{1}{16}$
- **c** P(visited China) = $\frac{30}{80} = \frac{3}{8}$
- **d** P(only visited China) = $\frac{4}{80} = \frac{1}{20}$
- **e** P(visited at least 2 of the countries) = $\frac{11+5+7+10}{80} = \frac{33}{80}$
- **f** P(visited only one country) = $\frac{4+18+9}{80} = \frac{31}{80}$
- **g** P(visited Vietnam and Thailand but not China) = $\frac{7}{80}$

TASK 2

Create a diagram or table to find probabilities

	•		
	Cycling	Not cycling	Totals
Snorkelling	12	3	15
Not snorkelling	20	15	35
Totals	32	18	50

Sport

- **a** P(cycling but not snorkelling) = $\frac{20}{50}$ = $\frac{2}{5}$
- **b** P(only one of these sports) = $\frac{20+3}{50}$ = $\frac{23}{50}$
- **c** P(at least one of the sports) = $\frac{20+3+12}{50}$ $= \frac{35}{50}$ $= \frac{7}{100}$
- **d** P(neither of the sports) = $\frac{15}{50}$ = $\frac{3}{10}$

TASK 3

Use a two-way table to find probabilities

Janine's books

	Fiction	Non-fiction	Totals
Hardcover	13	44	57
Softcover	89	7	96
Totals	102	51	153

а	$P(fiction) = \frac{102}{153}$ $= \frac{2}{3}$	b	$P(\text{hardcover}) = \frac{57}{153}$ $= \frac{19}{51}$
С	$P(\text{non-fiction}) = \frac{51}{153}$ $= \frac{1}{3}$	d	$P(\text{softcover}) = \frac{96}{153}$ $= \frac{32}{51}$
	3		51
е	P(fiction and hardcover) = $\frac{13}{153}$	f	P(non-fiction and softcover) = $\frac{7}{153}$
g	P(fiction and softcover) = $\frac{89}{153}$	h	P(neither fiction nor hardcover) = $\frac{7}{153}$
i	P(either fiction or softcover) = $\frac{13+7+89}{153}$	j	P(either non-fiction or softcover) = $\frac{44+7+89}{153}$
	$=\frac{109}{153}$		$=\frac{140}{153}$
	Also, this is the complement of:		Also, this is the complement of:
	P(non-fiction and hardcover) = $\frac{44}{153}$		P(fiction and hardcover) = $\frac{13}{153}$
	So you can use: $1 - \frac{44}{153} = \frac{109}{153}$		So you can use: $1 - \frac{13}{153} = \frac{140}{153}$
k	There are 96 softcover books.	ı	There are 102 fiction books.
		_	
	$P(fiction) = \frac{89}{96}$		$P(\text{softcover}) = \frac{89}{102}$