${\mathcal T}_{1^-}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	0	0	0
$\Delta_{1^-}^{\#6}{}_{\alpha}$	0	0	0	0	0	$-\frac{1}{6a_0}$	$-\frac{\sqrt{5}}{6a_0}$	$-\frac{7}{3\sqrt{2}a_0}$	340	0
$\Delta_{1}^{\#5}$	0	0	0	0	0	$-\frac{1}{6\sqrt{2}}a_0$	$-\frac{\sqrt{\frac{5}{2}}}{6a_0}$	$\frac{17}{6a_0}$	$-\frac{7}{3\sqrt{2}a_0}$	0
$\Delta_{1^{\text{-}}}^{\#4}\alpha$	0	0	0	0	0	$\frac{5\sqrt{5}}{12a_0}$	$\frac{1}{12a_0}$	$-\frac{\sqrt{\frac{5}{2}}}{6a_0}$	$-\frac{\sqrt{5}}{6a_0}$	0
$\Delta_{1}^{\#3}$	0	0	0	0	0	$-\frac{19}{12 a_0}$	$\frac{5\sqrt{5}}{12a_0}$	$-\frac{1}{6\sqrt{2}a_0}$	$-\frac{1}{6a_0}$	0
$\Delta_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2\sqrt{2}}{a_0}$	$\frac{2}{a_0}$	0	0	0	0	0
$\Delta_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0
$\Delta_{1}^{\#3}{}_{\alpha\beta}$	0	0	$\frac{4}{a_0}$	0	0	0	0	0	0	0
$\Delta_{1}^{\#2}$	$-\frac{2\sqrt{2}}{a_0}$	$\frac{2}{a_0}$	0	0	0	0	0	0	0	0
$\Delta_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0
	$\Delta_1^{#1} + \alpha \beta$	$\Delta_1^{#2} + \alpha \beta$	$\Delta_1^{\#3} \dagger^{\alpha\beta}$	$\Delta_{1}^{\#1} +^{\alpha}$	$\Delta_{1}^{#2} + ^{\alpha}$	$\Delta_{1}^{\#3} +^{\alpha}$	$\Delta_{1}^{\#4} +^{\alpha}$	$\Delta_{1}^{\#5} +^{\alpha}$	$\Delta_{1}^{\#6} +^{\alpha}$	$\mathcal{T}_{1}^{\#1} +^{\alpha}$

α		_								
$h_{1}^{#1}$	0	0	0	0	0	0	0	0	0	0
$\Gamma_{1^-}^{\#6}$	0	0	0	0	0	9 - <u>00</u>	$-\frac{\sqrt{5} \ a_0}{6}$	$\frac{a_0}{6\sqrt{2}}$	$\frac{5a_0}{12}$	0
$\Gamma_{1^-}^{\#5} lpha$	0	0	0	0	0	$-\frac{a_0}{6\sqrt{2}}$			$\frac{a_0}{6\sqrt{2}}$	0
$\Gamma_{1^{-}}^{\#4}$	0	0	0	0	0	$\frac{\sqrt{5} a_0}{6}$	$\frac{a_0}{3}$	$-\frac{1}{6}\sqrt{\frac{5}{2}}a_0$	$-\frac{\sqrt{5} a_0}{6}$	0
$\Gamma_{1^{-}\alpha}^{\#3}$	0	0	0	0	0	- <u>a0</u>	$\frac{\sqrt{5} \ a_0}{6}$	$-\frac{a_0}{6\sqrt{2}}$	9 - <u>80</u>	0
$\Gamma_{1^-}^{\#2}$	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0
$\Gamma_{1}^{\#1}{}_{\alpha}$	0	0	0	- <u>a_0</u> 4	$\frac{a_0}{2\sqrt{2}}$	0	0	0 0 0	0	0
$\Gamma_{1}^{\#3}$	0	0	<u>a0</u> 4	0	0	0	0		0	0
$\Gamma_{1}^{\#1}$ $\Gamma_{1}^{\#2}$ $\Gamma_{1}^{\#3}$ $\Gamma_{1}^{\#3}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0
$\Gamma_1^{\#1}{}_+\alpha\beta$	$-\frac{a_0}{4}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0
	$\frac{1}{1} + \alpha \beta$	$\frac{1}{2} + \alpha \beta$	$\frac{1}{2} + \alpha \beta$	$\Gamma_{1}^{\#1} \dagger^{lpha}$	$\Gamma_{1}^{#2} + \alpha$	$\Gamma_{1}^{\#3} +^{\alpha}$	$\Gamma_{1}^{\#4} +^{lpha}$	$\Gamma_1^{\#5} +^{\alpha}$	$\Gamma_1^{\#6} + ^{\alpha}$	$h_1^{\#1} +^{\alpha}$
		Γ#2 †	Γ#3 †		Γ_1^{\sharp}	7	± 1	<u>+</u>	1	h_1^{\sharp}

$ \begin{array}{c} x \\ \beta x \\ r^{X} + \frac{1}{4} a_{0} \Gamma^{\alpha \beta} \alpha^{\beta \beta r} \\ r^{\alpha x} + \frac{1}{4} a_{0} \Gamma^{\alpha \beta} \alpha^{\beta \beta r} \\ r^{\alpha \beta} - \frac{1}{2} a_{0} h_{\alpha x} \partial_{\beta} \Gamma^{\alpha} \\ r^{\beta h} \alpha^{\alpha} + \frac{1}{2} a_{0} \Gamma^{\alpha} \beta^{\beta} \partial_{\beta} \Gamma^{\alpha} \\ r^{\lambda h} \beta^{\chi} - a_{0} h^{\alpha \beta} \partial_{\chi} \partial_{\beta} \Gamma^{\alpha} \\ r^{\lambda h} \beta^{\chi} - a_{0} h^{\alpha \beta} \partial_{\chi} \partial_{\beta} \Gamma^{\alpha} \\ r^{\lambda h} \beta^{\chi} + \frac{1}{2} a_{0} h^{\alpha} \partial_{\gamma} \partial_{\beta} \Gamma^{\alpha} \\ r^{\lambda h} \beta^{\chi} + \Gamma^{\alpha \beta \chi} \Delta_{\alpha \beta \chi} \end{array} $ $ \begin{array}{c} x \\ r \\ r$	
Lagrangian density $\begin{array}{l} -\frac{1}{2} a_0 \ \Gamma^{\alpha\beta} X \ \Gamma_{\beta\chi\alpha} + \frac{1}{2} a_0 \ \Gamma^{\alpha} {}^{\beta} \ \Gamma^{\chi} {}_{\chi} - \\ \frac{1}{2} a_0 \ \Gamma^{\alpha\beta\chi} \partial_{\beta} h_{\alpha\chi} - \frac{1}{4} a_0 \ \Gamma^{\alpha} {}^{\beta} \partial_{\beta} h^{\chi} + \frac{1}{4} a_0 \ \Gamma^{\alpha\beta} \partial_{\beta} h^{\chi} - \\ \frac{1}{4} a_0 \ h^{\chi} \partial_{\beta} \Gamma^{\alpha} {}^{\beta} + \frac{1}{4} a_0 \ h^{\chi} \partial_{\beta} \Gamma^{\alpha\beta} - \frac{1}{2} a_0 \ h^{\alpha\chi} \partial_{\beta} \Gamma^{\alpha\beta\chi} + \\ \frac{1}{4} a_0 \ h^{\chi} \partial_{\beta} \Gamma^{\alpha} {}^{\beta} + \frac{1}{4} a_0 \ h^{\chi} \partial_{\beta} \mu^{\alpha} - \frac{1}{2} a_0 \ h^{\alpha\chi} \partial_{\beta} \Gamma^{\alpha\beta\chi} + \\ \frac{1}{2} a_0 \ h^{\alpha\beta} \partial_{\beta} \partial_{\alpha} h^{\chi} - \frac{1}{2} a_0 \partial_{\beta} h^{\chi} \partial^{\beta} h^{\alpha} + \frac{1}{2} a_0 \ h^{\alpha\beta} \partial_{\chi} h^{\beta} - \\ \frac{1}{2} a_0 \partial_{\alpha} h^{\alpha\beta} \partial_{\chi} h^{\beta} + \frac{1}{2} a_0 \partial^{\beta} h^{\alpha} \partial_{\chi} h^{\beta} - \frac{1}{2} a_0 h^{\alpha} \partial_{\chi} \partial_{\beta} h^{\chi} + \\ \frac{1}{4} a_0 \partial_{\beta} h_{\alpha\chi} \partial^{\chi} h^{\alpha\beta} + \frac{1}{2} a_0 \partial_{\chi} h_{\alpha\beta} \partial^{\chi} h^{\alpha\beta} - \frac{1}{2} a_0 h^{\alpha} \partial_{\chi} \partial_{\gamma} h^{\beta} - \\ \frac{1}{4} a_0 \partial_{\beta} h_{\alpha\chi} \partial^{\chi} h^{\alpha\beta} + \frac{1}{2} a_0 \partial_{\chi} h_{\alpha\beta} \partial^{\chi} h^{\alpha\beta} + \frac{1}{2} a_0 h^{\alpha} \partial_{\chi} \partial^{\chi} h^{\beta} - \\ \frac{1}{4} a_0 \partial_{\beta} h_{\alpha\chi} \partial^{\chi} h^{\alpha\beta} + \frac{3}{8} a_0 \partial_{\chi} h_{\alpha\beta} \partial^{\chi} h^{\alpha\beta} + \frac{1}{2} a_0 h^{\alpha} \partial_{\chi} \partial^{\chi} h^{\beta} - \\ Added source term: \left h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta} \right _{\alpha\beta} \partial_{\chi} h^{\alpha\beta} + \\ \frac{1}{2} a_0 \partial_{\beta} h^{\alpha\lambda} \partial^{\chi} h^{\alpha\beta} + \frac{3}{8} a_0 \partial_{\chi} h^{\alpha\beta} + \frac{1}{2} a_0 h^{\alpha\beta} \partial_{\chi} h^{\alpha\beta} + \\ \frac{1}{2} a_0 \partial_{\beta} h^{\alpha\lambda} \partial^{\chi} h^{\alpha\beta} + \frac{3}{8} a_0 \partial_{\chi} h^{\alpha\beta} + \frac{1}{2} a_0 h^{\alpha\beta} \partial_{\chi} h^{\alpha\beta} + \\ \frac{1}{2} a_0 \partial_{\beta} h^{\alpha\lambda} \partial^{\chi} h^{\alpha\beta} + \frac{3}{8} a_0 \partial_{\chi} h^{\alpha\beta} + \frac{1}{2} a_0 h^{\alpha\beta} \partial_{\chi} h^{\alpha\beta} + \\ \frac{1}{2} a_0 \partial_{\beta} h^{\alpha\lambda} \partial^{\chi} h^{\alpha\beta} + \frac{3}{8} a_0 \partial_{\chi} h^{\alpha\beta} \partial^{\chi} h^{\alpha\beta} + \\ \frac{1}{2} a_0 \partial_{\beta} h^{\alpha\lambda} \partial^{\chi} h^{\alpha\beta} \partial^{\chi} h^{\alpha\beta} + \\ \frac{1}{2} a_0 \partial_{\beta} h^{\alpha\lambda} \partial^{\chi} h^{\alpha\beta} \partial^{\chi} h^{\alpha\beta} \partial^{\lambda} h^{\alpha\beta} \partial^$	

 $\Delta_{3}^{\#1}$

·	$\Delta_{2^{-}}^{\#1} \alpha \beta \chi \ \Delta_{2^{-}}^{\#2}$	0	0	0	0	$\frac{4}{a_0}$	0	
,	$\Delta_{2}^{\#1}_{+\alpha\beta} \ \Delta_{2}^{\#2}_{+\alpha\beta} \ \Delta_{2}^{\#3}_{+\alpha\beta} \ \mathcal{T}_{2}^{\#1}_{+\alpha\beta} \ \Delta_{2}^{\#1}$	0	0	0	$-\frac{8}{a_0 k^2}$	0	0	
,	$\Delta_{2}^{\#3}$	0	0	4 40	0	0	0	
	$\Delta_2^{\#2}$	0	$-\frac{2}{a_0}$	0	0	0	0	
	$\Delta_{2}^{\#1}{}_{\alpha\beta}$	$\frac{4}{a_0}$	0	0	0	0	0	
		$\Delta_2^{\#1} +^{\alpha\beta}$	$\Delta_2^{#2} + \alpha^{\beta}$	$\Delta_2^{#3} + ^{\alpha\beta}$	$\dagger^{\alpha \beta}$	$\Delta_{2^{\text{-}}}^{\#1} \dagger^{\alpha\beta\chi}$	$+^{\alpha eta \chi}$	

		Γ ₀ ^{#1}	Γ ₀ ^{#2}	Γ ₀ ^{#3}	Γ ₀ ^{#4}	$h_0^{\#1}$	$h_0^{\#2}$	Γ ₀ -
	$\Gamma_{0}^{\#1}$ †	_ <u>a_0</u> 2	0	0	0	0	0	0
	$\Gamma_{0}^{\#2}$ †	0	0	<u>a₀</u> 2	$-\frac{a_0}{2\sqrt{2}}$	0	0	0
	Γ ₀ ^{#3} †	0	<u>a₀</u> 2	0	$-\frac{a_0}{2\sqrt{2}}$	0	0	0
	$\Gamma_{0}^{\#4}$ †	0	$-\frac{a_0}{2\sqrt{2}}$	$-\frac{a_0}{2\sqrt{2}}$	<u>ao</u> 2	0	0	0
	$h_0^{#1}$ †	0	0	0	0	$\frac{a_0 k^2}{4}$	0	0
	$h_0^{\#2}$ †	0	0	0	0	0	0	0
	$\Gamma_{0}^{#1}$ †	0	0	0	0	0	0	$-\frac{a_0}{2}$

 $-\frac{a_0}{2}$

0

0

<u>a₀</u> 4

0

 $\Gamma_{2}^{\#1} \dagger^{\alpha\beta}$

 $\Gamma_{2}^{#2} + \alpha$

 $\Gamma_{2}^{#3} + \alpha$

 $h_{2}^{\#1} \dagger^{\alpha_{1}}$

-#	:1 =:	#2	- #3	- #1	, #1	, #2	щ			#	l г	l , ,	l m	lω	Ιω
Γ#		#2)+	Γ ₀ ⁺	Γ ₀ ^{#4}	$h_0^{\#1}$	$h_0^{\#2}$	Γ ₀ -						,	0	==
$-\frac{a}{2}$	0 ()	0	0	0	0	0							3 <i>α</i> ==	
0)	<u>a₀</u> 2	$-\frac{a_0}{2\sqrt{2}}$	0	0	0							$+ \Delta_{1}^{\#3\alpha}$	
0	<u>a</u>	<u>0</u> 2	0	$-\frac{a_0}{2\sqrt{2}}$	0	0	0					0 ==		$\Delta_{1}^{\#5\alpha}$.	
O		$\frac{a_0}{\sqrt{2}}$	$-\frac{a_0}{2\sqrt{2}}$	<u>a₀</u> 2	0	0	0		aints			$\Delta_0^{#2}$		+ 2	
О)	0	0	$\frac{a_0 k^2}{4}$	0	0		Source constraints	sde		$\Delta_{0}^{#4} + 3$	0	$\Delta_{1}^{\#4\alpha}$	
0) ()	0	0	0	0	0		Ce CC) irre	0 ==	+ 2 A	Ш	+	#:
0) ()	0	0	0	0	$-\frac{a_0}{2}$		Sour	SO(3) irreps	$\mathcal{T}_{0}^{\#2}$:	Δ#3 +	$\mathcal{T}_{1}^{\#1}{}^{a}$	$2 \Delta_{1}^{\#6\alpha}$.	Total #:
	Γ ₂ ^{#1}	αβ	Γ ^{#2} ₂ ⁺ αβ	Γ#3 2 ⁺ αβ	$h_{2}^{\#1}_{\alpha\beta}$	Γ ₂ -	αβχ	Γ# ² α	έβχ						
$\dagger^{\alpha\beta}$	<u>a₀</u> 4		0	0	0	0		0							

0

0

0

<u>a₀</u> 4

0

0

0

0

<u>a₀</u> 4

?		
?	Quadratic pole	<u>;</u>
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Pole residue:	$-\frac{1}{a_0} > 0$
?	Polarisations:	2
?		

Unitarity conditions $a_0 < 0$

(No massive particles)