1. (1 point) Library/Wiley/setAnton_Section_6.1/anton_6_1_Q13.pg

Sketch the region enclosed by the curves and find its area.

$$y = e^x$$
, $y = e^{3x}$, $x = 0$, $x = \ln 3$

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

Area

$$= \int_0^{\ln 3} \left[e^{3x} - e^x \right] dx = \left[\frac{e^{3x}}{3} - e^x \right]_0^{\ln 3} = \left(\frac{3^3}{3} - 3 \right) - \left(\frac{1^3}{3} - 1 \right) = \frac{20}{3}$$

The area between the curves is $\frac{20}{3}$.

1

Correct Answers:

2. (1 point) Library/Wiley/setAnton_Section_6.1/anton_6_1_Q18.pg

Sketch the region enclosed by the curves and find its area.

$$y = x$$
, $y = 4x$, $y = -x + 4$

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

Here we need to break the region into two parts, since the top curve changes from y = 4x to y = -x + 4 at the point where 4x = -x + 4 $\left(x = \frac{4}{5}\right)$.

Area

$$= \int_0^{\frac{4}{5}} \left[4x - x \right] dx + \int_{\frac{4}{5}}^2 \left[-x + 4 - x \right] dx = \left[\frac{3x^2}{2} \right]_0^{\frac{4}{5}} + \left[-x^2 + 4x \right]_{\frac{4}{5}}^2 = \left(\frac{24}{25} \right) - (0) + (4) - \left(\frac{64}{25} \right) = \frac{12}{5}$$

The area between the curves is $\frac{12}{5}$.

Correct Answers:

3. (1 point) Library/Wiley/setAnton_Section_6.1/anton_6_1_037a.pg

Find the area of the region enclosed by the parabola $y = 5x - x^2$ and the x-axis.

AREA =

Solution: (Instructor solution preview: show the student solution after due date.)

SOLUTION

 $y = 5x - x^2$ intersects the x-axis at x = 0, x = 5 and these will provide the limits of integration over the function $y = 5x - x^2$.

Area

$$= \int_0^5 \left[5x - x^2 \right] dx = \left[\frac{5x^2}{2} - \frac{x^3}{3} \right]_0^5 = \left(\frac{125}{6} \right) - (0) = \frac{125}{6}$$

The area between the curves is $\frac{125}{6}$.

Correct Answers:

• 20.8333

Find the area of the region enclosed between $f(x) = x^2 + 3x + 4$ and $g(x) = 2x^2 - x - 1$.

Area =

(Note: The graph above represents both functions f and g but is intentionally left unlabeled.)

Solution: (Instructor solution preview: show the student solution after due date.)

Solution:

The area between curves is found using the definite integral $\int_a^b (f(x) - g(x)) dx$. First determine the points of intersection by solving:

$$x^2 + 3x + 4 = 2x^2 - x - 1 \implies \cdots \implies x = -1, 5.$$

Area =
$$\int_{-1}^{5} ((x^2 + 3x + 4) - (2x^2 - x - 1)) dx$$

= $\int_{-1}^{5} (-x^2 + 4x + 5) dx$
= $\left(-\frac{x^3}{3} + \frac{4x^2}{2} + 5x\right)\Big|_{-1}^{5}$
= 36

Correct Answers:

• 36

5. (1 point) Library/UCSB/Stewart5_6_1/Stewart5_6_1_4/Stewart5_6_1_4.pg

Find the area of the shaded region below.

Area = _____

Correct Answers:

•

6. (1 point) Library/UCSB/Stewart5_6_1/Stewart5_6_1_3/Stewart5_6_1_3.pg

Find the area of the shaded region below.

Area = _____

Correct Answers:

• $\exp(1)-1/\exp(1)+10/3$

7. (1 point) Library/UCSB/Stewart5_6_1/Stewart5_6_1_18.pg

Find the area of the region between the curves $4x + y^2 = 12$ and x = y.

Area between curves = _____

Correct Answers:

• 64/3

8. (1 point) Library/UMN/calculusStewartCCC/s_6_1_9.pg

Sketch the region enclosed by the curves $x = 49 - y^2$ and $x = y^2 - 49$. Decide whether to integrate with respect to x or y. Then find the area of the region.

Area = _____

Correct Answers:

8*7³/3

 $Generated\ by\ @WeBWorK,\ http://webwork.maa.org,\ Mathematical\ Association\ of\ America$