

Datasheet | Rev. 1.0 | 2018

IMM2G64D3LSOD8AG (Die Revision C) 16GByte (2048M x 64 Bit)

16GB DDR3 Unbuffered SO-DIMM RoHS Compliant Product

Remark:

Please refer to the last page of the i) Contents ii) List of Table iii) List of Figures.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: sales@intelligentmemory.com

Features

- 204-Pin Unbuffered Small Outline Dual-In-Line Memory Module
- Capacity: 16GB
- JEDEC-Standard
- Bi-directional Differential Data-Strobe
- 64 Bit Data Bus Width without ECC
- Programmable CAS Latency (CL):
 - o PC3-12800: 5, 6, 7, 8, 9, 10, 11
 - o PC3-10600: 5, 6, 7, 8, 9
- Programmable CAS Write Latency (CWL):
 - o PC3-12800: 5, 6, 7, 8
 - o PC3-10600: 5, 6, 7
- Programmable Additive Latency (Posted /CAS): 0, CL-2 or CL-1(Clock)
- On-Die Termination (ODT)
- ZQ Calibration Supported
- Burst Type (Sequential & Interleave)
- Burst Length: 4, 8
- Refresh Mode: Auto and Self
- 8192 Refresh Cycles / 64ms
- Asynchronous Reset
- Serial Presence Detect (SPD) EEPROM
- Gold Edge Contacts
- 100% RoHS-Compliant
- Standard Module Height: 30.00mm (1.181 inch)

Table 1 - Ordering Information for RoHS Compliant Product

Part Number	Module Density	Configuration	# of Ranks	Module Type
IMM2G64D3xSOD8AG-Czzzy	16GB	2Gx64	2	16GB DDR3 Unbuffed SO-DIMM

Notes:

x: Operating Voltage

y: Operating Temperature

zzz: Speed Grade

Table 2 - Operating Voltage

Part Number	Operating Voltage
L	V_{DD} , $V_{DDQ} = 1.35V$ (1.283V-1.45V) Backward compatible to V_{DD} , $V_{DDQ} = 1.5V$ (1.425V-1.575V)

Table 3 - Temperature Grade

Part Number	Temperature Grade	T_{case}
Blank	Commercial temperature	0°C to 95°C
I	Industrial temperature	-40°C to 95°C

Remark: Tcase is the case surface temperature on the center/top side of the DRAM. The refresh rate is required to double when $85 \,^{\circ}\text{C} < T_{case} <= 95 \,^{\circ}\text{C}$.

Table 4 - Speed Grade

Part Number	Speed Grade	Max Clock Frequency (min. Clock Cycle time @ min. CAS Latency)
125	PC3-12800 (DDR3-1600)	800MHz (1.25ns@CL=11)
15E	PC3-10600 (DDR3-1333)	667MHz (1.5ns@CL=9)

Table 5 - Memory Chip Information

Part Number	Base Device Brand	Base device	Voltage	Туре	Chip Packing
IMM2G64D3LSOD8AG-Czzzy	ľM	IM8G08D3FCBG	1.35V	1024Mx8	Lead Free

Part Number Decoder

DRAM Bit width

8 = using x8 components

Table 6 - Addressing					
Parameter	16GB				
Refresh count	8K				
Row address	64K A[15:0]				
Device bank address	8 BA[2:0]				
Device configuration	8Gb (1024Mx8)				
Column address	2K A[9:0], A11				
Module rank address	2 /S[1:0]				
Number of devices	16				

Table 7 - Pin Assignment

Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	V_{REFDQ}	2	V _{SS}	103	/CKO	104	/CK1
3	Vss	4	D4	105	V_{DD}	106	V_{DD}
5	D0	6	D5	107	A10, AP	108	BA1
7	D1	8	Vss	109	BA0	110	/RAS
9	Vss	10	/DQS0	111	V_{DD}	112	V_{DD}
11	DM0	12	DQS0	113	/WE	114	/S0
13	V _{SS}	14	V _{SS}	115	/CAS	116	ODT0
15	D2	16	D6	117	V_{DD}	118	V_{DD}
17	D3	18	D7	119	A13	120	ODT1
19	Vss	20	V _{SS}	121	/S1	122	NC
21	D8	22	D12	123	V _{DD}	124	V_{DD}
23	D9	24	D13	125	NC	126	V _{REFCA}
25	V _{SS}	26	V _{SS}	127	V _{SS}	128	V _{SS}
27	/DQS1	28	DM1	129	D32	130	D36
29	DQS1	30	/RESET	131	D33	132	D37
31	Vss	32	Vss	133	V _{SS}	134	Vss
33	D10	34	D14	135	/DQS4	136	DM4
35	D11	36	D15	137	DQS4	138	V _{SS}
37	V _{SS}	38	V _{SS}	139	V _{SS}	140	D38
39	D16	40	D20	141	D34	140	D39
41	D17	42	D20	143	D35	144	Vss
	V _{SS}	44	V _{SS}	1		144	D44
43		46	DM2	145 147	V _{SS} D40	148	D44 D45
45 47	/DQS2			-			
	DQS2	48	Vss	149	D41	150	Vss
49	Vss	50	D22	151	Vss	152	/DQS5
51	D18	52	D23	153	DM5	154	DQS5
53	D19	54	V _{SS}	155	V _{SS}	156	V _{SS}
55 57	Vss	56	D28	157	D42	158	D46
	D24	58	D29	159	D43	160	D47
59	D25	60	Vss	161	V _{SS}	162	Vss
61	Vss	62	/DQS3	163	D48	164	D52
63	DM3	64	DQS3	165	D49	166	D53
65	V _{SS}	66	Vss	167	Vss	168	Vss
67	D26	68	D30	169	/DQS6	170	DM6
69	D27	70	D31	171	DQS6	172	Vss
71	Vss	72	V _{SS}	173	Vss	174	D54
73	CKE0	74	CKE1	175	D50	176	D55
75	V_{DD}	76	V _{DD}	177	D51	178	Vss
77	NC	78	A15	179	Vss	180	D60
79	BA2	80	A14	181	D56	182	D61
81	V _{DD}	82	V _{DD}	183	D57	184	V _{SS}
83	A12,/BC	84	A11	185	Vss	186	/DQS7
85	A9	86	A7	187	DM7	188	DQS7
87	V_{DD}	88	V_{DD}	189	V _{SS}	190	V_{SS}
89	A8	90	A6	191	D58	192	D62
91	A5	92	A4	193	D59	194	D63
93	V_{DD}	94	V_{DD}	195	V _{SS}	196	V_{SS}
95	A3	96	A2	197	SA0	198	NC
97	A1	98	A0	199	V _{DDSPD}	200	SDA
99	V_{DD}	100	V_{DD}	201	SA1	202	SCL
101	СКО	102	CK1	203	Vπ	204	Vπ

Table 8 - Pin Description

Pin Name	Description	Pin Name	Description
V_{DD}	SDRAM core power supply	V_{REFDQ}	SDRAM I/O reference supply
V _{REFCA}	V _{REFCA} SDRAM command/address reference supply		Power supply return (ground)
A0-A15	SDRAM address bus	BA0-BA2	SDRAM bank addresses
CKO-CK1 SDRAM clocks (positive line of differential pair)		/CK0-/CK1	SDRAM clocks (negative line of differential pair)
/RAS SDRAM row address strobe		/CAS	SDRAM column address strobe
/WE	SDRAM write enable	CKE0-CKE1	SDRAM clock enable lines
/S0-/S1	DIMM Rank Select Lines	ODT0-ODT1	On-die termination control lines
DQS0-DQS7 SDRAM data strobes (positive line of differential pair)		/DQS0-/DQS7	SDRAM data strobes (negative line of differential pair)
D0-D63	DIMM memory data bus	DM0-DM7	SDRAM data mask/high data strobes
SCL	EEPROM clock	SDA	EEPROM date line
SA0-SA1	EEPROM address input	V_{DDSPD}	EEPROM positive power supply
/RESET	Reset Pin	V _{TT}	Termination Voltage
NC	Spare Pins (no connect)	-	-

Module Dimension

Figure 1 – 204 Pin DDR3 SDRAM Unbuffered SO-DIMM

Table 9 - PCB Dime	Table 9 - PCB Dimension							
Symbol	MIN	MIN NOM						
А	29.85	29.85 30.00						
A1		6.00 Basic						
A4		20.00 Basic						
D	67.45	67.45 67.60						
D2		63.60 Basic						
D3		1.65 Basic						
D5		9.00 Basic						
e1		21.00 Basic						
e2		39.00 Basic						
Е			3.80					

- All dimensioning and tolerancing conform to ASME Y14.5M-1994.
- Tolerances for all dimensions ±0.15 unless otherwise specified.
- All dimensions are in millimeters.

Figure 2 – Functional Block Diagram (Page 1 of 3)

Figure 3 – Functional Block Diagram (Page 2 of 3)

Figure 4 – Functional Block Diagram (Page 3 of 3)

1.575

Electrical Parameter

Table 10 - Absolute Maximum DC Ratings							
Parameter	Symbol	Rating	Unit	Notes			
Voltage on V _{DD} , pin relative to V _{SS}	V _{DD}	-0.4V ~ 1.975	V	1,3			
Voltage on V _{DDQ} , pin relative to V _{SS}	V_{DDQ}	-0.4V ~ 1.975	٧	1,3			
Voltage on any pins relative to Vss	V _{IN} , V _{OUT}	-0.4V ~ 1.975	٧	1			
DRAM Storage temperature	T _{STG}	-55 ~ 100	°C	1,2			
DRAM Operation temperature for Commercial temperature product	T_{case}	0 ~ 95	°C	2,4,5			
DRAM Operation temperature for Industrial temperature product	T_{case}	-40 ~ 95	°C	2,4,5			

Notes:

- Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- Storage Temperature or DRAM operation temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
- ³ V_{DD} and V_{DDQ} must be within 300mV of each other at all times; and V_{REF} must not be greater than 0.6 x V_{DDQ}, when V_{DD} and V_{DDQ} are less than 500mV; V_{REF} may be equal to or less than 300mV.
- ⁴ The Normal Temperature Range specifies the temperatures when all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85 °C under all operating conditions.
- Some applications require operation of the Extended Temperature Range between 85 °C and 95 °C case temperature. Full Specifications are guaranteed in this range but the following additional conditions apply a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b).

Table 11 - DC Electrical Characteristics and Operating Conditions								
Parameter / Condition	Symbol	Rating				Notos		
Parameter / Condition	Syllibol	Min	Тур	Max	Units	Notes		
Supply voltage	V_{DD}	1 202	1 25	1.45	V	1,2		
I/O supply voltage	V_{DDQ}	1.283	1.283 1.35 1.45		V	1,2		
Supply voltage	V_{DD}	1 425	1 [1 575	V	1,2,3		

Notes:

I/O supply voltage

- 1. V_{DD} and V_{DDQ} must track one another. V_{DDQ} must be less than or equal to V_{DD} . $V_{SS} = V_{SSQ}$.
- ^{2.} V_{DD} and V_{DDQ} may include AC noise of +/-50mV (250 kHz to 20 MHz) in addition to the DC (0 Hz to 250 kHz) specifications. V_{DD} and V_{DDQ} must be at same level for valid AC timing parameters.

1.425

3. Module is backward-compatible with 1.5V operation.

Table 12 - DC Electrical Characteristics and Input Conditions

Darameter / Condition	Cumbal		Unito	Notos		
Parameter / Condition	Symbol	Min	Тур	Max	Units	Notes
V _{IN} low; DC/commands/address buses (1.35V)	VIL	Vss	-	-0.090	V	
V _{IN} low; DC/commands/address buses (1.5V)	VIL	Vss	-	-0.100	V	
V _{IN} high; DC/commands/address buses (1.35V)	ViH	0.090	-	V_{DD}	V	
V _{IN} high; DC/commands/address buses (1.5V)	ViH	0.100	-	V_{DD}	V	
Input reference voltage; command/address bus	V _{REFCA(DC)}	0.49* V _{DD}	0.50* V _{DD}	0.51* V _{DD}	V	1,2
I/O reference voltage DQ bus	V _{REFDQ(DC)}	0.49* V _{DD}	0.50* V _{DD}	0.51* V _{DD}	V	2,3
Command/address termination voltage (system level, not direct DRAM input)	V _{TT}	-	0.50* V _{DDq}	-	V	4

- $^{1.}$ V_{REFCA(DC)} is expected to be approximately 0.5 × V_{DD} and to track variations in the DC level. Externally generated peak noise (noncommon mode) on V_{REFCA} may not exceed $\pm 1\%$ × V_{DD} around the V_{REFCA(DC)} value. Peak-to-peak AC noise on V_{REFCA} should not exceed $\pm 2\%$ of V_{REFCA(DC)}.
- DC values are determined to be less than 20 MHz in frequency. DRAM must meet specifications if the DRAM induces additional AC noise greater than 20 MHz in frequency.
- $^{3.}$ V_{REFDQ(DC)} is expected to be approximately $0.5 \times V_{DD}$ and to track variations in the DC level. Externally generated peak noise (noncommon mode) on V_{REFDQ} may not exceed $\pm 1\% \times V_{DD}$ around the V_{REFDQ(DC)} value. Peak-to-peak AC noise on V_{REFDQ} should not exceed $\pm 2\%$ of V_{REFDQ(DC)}.
- 4 . V_{TT} is not applied directly to the device. V_{TT} is a system supply for signal termination resistors. MIN and MAX values are system-dependent.

Table 13 - Input Switching Conditions					
	,	Val	ue		
Parameter / Condition	Symbol	1.35V	1.5V	Units	
Comma	nd and Address				
Input high AC voltage: Logic 1 @ 175mV	V _{IH} (AC175)min	-	175	mV	
Input high AC voltage: Logic 1 @ 160mV	V _{IH(AC160)min}	160	-	mV	
Input high AC voltage: Logic 1 @ 150mV	V _{IH(AC150)min}	-	150	mV	
Input high AC voltage: Logic 1 @ 135mV	V _{IH(AC135)min}	135	-	mV	
Input high DC voltage: Logic 1 @ 100mV	V _{IH(DC100)min}	-	100	mV	
Input high DC voltage: Logic 1 @ 90mV	V _{IH} (DC90)min	90	-	mV	
Input low DC voltage: Logic 0 @ -90mV	V _{IL(DC90)max}	-90	-	mV	
Input low DC voltage: Logic 0 @ -100mV	V _{IL(DC100)max}	1	-100	mV	
Input low AC voltage: Logic 0 @ -135mV	V _{IL(AC135)max}	-135	-	mV	
Input low AC voltage: Logic 0 @ -150mV	V _{IL(AC150)max}	-	-150	mV	
Input low AC voltage: Logic 0 @ -160mV	V _{IL(AC160)max}	-160	-	mV	
Input low AC voltage: Logic 0 @ -175mV	V _{IL(AC175)max}	-	-175	mV	

		Valu	ie	
Parameter / Condition	Symbol	1.35V	1.5V	Units
DC	and DM			
Input high AC voltage: Logic 1	V _{IH(AC160)min}	160	-	mV
Input high AC voltage: Logic 1	V _{IH} (AC150)min	-	150	mV
Input high AC voltage: Logic 1	V _{IH} (AC135)min	135	135	mV
Input high DC voltage: Logic 1	V _{IH} (DC100)min	-	100	mV
Input high DC voltage: Logic 1	V _{IH(DC90)min}	90	-	mV
Input low DC voltage: Logic 0	V _{IL(DC90)max}	-90	-	mV
Input low DC voltage: Logic 0	V _{IL(DC100)max}	-	-100	mV
Input low AC voltage: Logic 0	V _{IL(AC135)max}	-135	-135	mV
Input low AC voltage: Logic 0	V _{IL(AC150)max}	-	-150	mV
Input low AC voltage: Logic 0	V _{IL(AC160)max}	-160	-	mV

- 1. All voltages are referenced to V_{REF}. V_{REF} is V_{REFCA} for control, command, and address. All slew rates and setup/hold times are specified at the DRAM ball. V_{REF} is V_{REFDQ} for DQ and DM inputs.
- 2. Input setup timing parameters (tIS and tDS) are referenced at V_{IL(AC)}/V_{IH(AC)}, not V_{REF(DC)}.
- 3. Input hold timing parameters (tIH and tDH) are referenced at V_{IL(DC)}/V_{IH(DC)}, not V_{REF(DC)}.
- 4. Single-ended input slew rate = 1 V/ns; maximum input voltage swing under test is 900mV (peak-to-peak).

Table 14 - Differential Input Operating Conditions (CK, /CK and DQS, /DQS)

Parameter / Condition	Symbol	Ratir	Units	Notes	
rarameter / Condition	Symbol	Min	Max	Ullits	Notes
Differential input voltage logic high - slew (1.35V)	V _{IH,diff}	+180	-	mV	1
Differential input voltage logic high - slew (1.5V)	V _{IH,diff}	+200	-	mV	1
Differential input voltage logic low - slew (1.35V)	$V_{IL,diff}$	-	-180	mV	1
Differential input voltage logic low - slew (1.5V)	$V_{IL,diff}$	-	-200	mV	1
Differential input voltage logic high	V _{IH} ,diff(AC)	2* (VIH(AC) - VREF)	-	mV	2
Differential input voltage logic low	V _{IL,diff(AC)}	-	2* (V _{IL(AC)} - V _{REF})	mV	3
Single-ended high level for strobes (1.35V)	V _{SEH}	$V_{DDQ}/2 + 175$	-	mV	2
Single-ended high level for CK, /CK (1.35V)	V SEH	$V_{DD}/2 + 175$	-	mV	2
Single-ended high level for strobes (1.5V)		$V_{DDQ}/2 + 175$	-	mV	2
Single-ended high level for CK, /CK (1.5V)	V_{SEH}	V _{DD} /2 + 175	-	mV	2
Single-ended low level for strobes (1.35V)	V	-	V _{DDQ} /2 - 175	mV	3
Single-ended low level for CK, /CK (1.35V)	V SEL	-	V _{DD} /2 – 175	mV	3
Single-ended low level for strobes (1.5)	V	-	V _{DDQ} /2 - 175	mV	3
Single-ended low level for CK, /CK (1.5V)	V _{SEL}	-	V _{DD} /2 - 175	mV	3

Notes:

- Defines slew rate reference points, relative to input crossing voltages.
- ^{2.} Minimum DC limit is relative to single-ended signals; overshoot specifications are applicable.
- 3. Maximum DC limit is relative to single-ended signals; undershoot specifications are applicable.

Table 15 - Single-Ended Output Driver Characteristics

Parameter / Condition		Rating		l lucito	Notos
		Min	Max	Units	Notes
Output slew rate: Single-ended; For rising and falling edges, measure between $V_{OL(AC)} = V_{TT} - 0.1 * V_{DDQ}$ and $V_{OH(AC)} = V_{TT} + 0.1 * V_{DDQ}$ (1.35V)	SRQ _{se}	1.75	5	V/ns	1,2,3
Output slew rate: Single-ended; For rising and falling edges, measure between $V_{OL(AC)} = V_{TT} - 0.1 * V_{DDQ}$ and $V_{OH(AC)} = V_{TT} + 0.1 * V_{DDQ}$ (1.5V)	SRQ _{se}	2.5	5	V/ns	1,2,3
Single-ended DC high-level output voltage	V _{OH(DC)}	0.8 *	V_{DDQ}	V	1,2
Single-ended DC mid-level output voltage	V _{OM(DC)}	0.5 *	V_{DDQ}	V	1,2
Single-ended DC low-level output voltage	V _{OL(DC)}	0.2 *	V_{DDQ}	V	1,2
Single-ended AC high-level output voltage	V _{OH(AC)}	V _{TT} + 0.	1 * V _{DDQ}	V	1,2
Single-ended AC low-level output voltage	V _{OL(AC)}	V _{TT} - 0.3	1 * V _{DDQ}	V	1,2
Test load for AC timing and output slew rates	Output t	o V _{TT} (V _{DDQ} /2	2) via 25Ω re	sistor	

- RZQ of 240 Ω (±1%) with RZQ/7 enabled (default 34 Ω driver) and is applicable after proper ZQ calibration has been performed at a stable temperature and voltage ($V_{DDQ} = V_{DD}$, $V_{SSQ} = V_{SS}$).
- $V_{TT} = V_{DDQ}/2$.
- The 6 V/ns maximum is applicable for a single DQ signal when it is switching either from HIGH to LOW or LOW to HIGH while the remaining DQ signals in the same byte lane are either all static or all switching the opposite direction. For all other DQ signal switching combinations, the maximum limit of 6 V/ns is reduced to 5 V/ns.

Table 16 - Differential Output Driver Characteristics

Darameter / Condition	Cumbal	Rating		Unito	Notes
Parameter / Condition	Symbol	Min	Max	Units	Notes
Output slew rate: Differential; For rising and falling edges, measure between $V_{OL,diff(AC)}$, = - 0.2 * V_{DDQ} and $V_{OH,diff(AC)}$ = + 0.2 * V_{DDQ} (1.35V)	SRQ _{diff}	3.5	12	V/ns	1
Output slew rate: Differential; For rising and falling edges, measure between $V_{OL,diff(AC)}$, = - 0.2 * V_{DDQ} and $V_{OH,diff(AC)}$ = + 0.2 * V_{DDQ} (1.5V)	SRQ _{diff}	5	10	V/ns	1
Differential high-level output voltage	VoH,diff(AC)	+0.2 * V _{DDQ}		V	1
Differential low-level output voltage	V _{OL,diff(AC)}	-0.2 *	· V _{DDQ}	V	1
Test load for AC timing and output slew rates	Output to V _{TT} (V _{DDQ} /2) via 25Ω resistor				

RZQ of 240 Ω (±1%) with RZQ/7 enabled (default 34 Ω driver) and is applicable after proper ZQ calibration has been performed at a stable temperature and voltage ($V_{DDQ} = V_{DD}$, $V_{SSQ} = V_{SS}$).

 $V_{REF} = V_{DDQ}/2$; slew rate @ 5V/ns, interpolate for faster slew rate.

For part number IMM2G64D3LSOD8AG-C125(I)

Table 17 - IDD Specifications with Conditions and Operation Current

Parameter / Condition	Symbol	Current	Units	Notes
Operating current 0; One bank ACTIVATE-to-PRECHARGE	I _{DD0}	1112	mA	1, 2
Operating current 1; One bank ACTIVATE-to-READ-to-PRECHARGE	I _{DD1}	1320	mA	1, 2
Precharge power-down current; Slow exit	I _{DD2P0}	416	mA	1, 3
Precharge power-down current; Fast exit	I _{DD2P1}	800	mA	1, 3
Precharge quiet standby current	I _{DD2Q}	1088	mA	1, 3
Precharge standby current	I _{DD2N}	704	mA	1, 3
Precharge standby ODT current	I _{DD2NT}	1088	mA	1, 3
Active power-down current	I _{DD3P}	896	mA	1, 3
Active standby current	I _{DD3N}	1152	mA	1, 3
Burst read operating current	I _{DD4R}	1912	mA	1, 2
Burst write operating current	I _{DD4W}	2040	mA	1, 2
Refresh current	I _{DD5B}	3848	mA	1, 2
Self refresh temperature current: MAX $T_c = 85$ °C	I _{DD6}	480	mA	1, 3
Self refresh temperature current (SRT-enabled): MAX T _c = 95°C	I _{DD6ET}	640	mA	1, 3
All banks interleaved read current	I _{DD7}	3152	mA	1, 2
Reset current	I _{DD8}	368	mA	1, 3

¹ Value shown for DDR3 SDRAM only and are computed from values specified in the 8Gbit component data sheet.

² One module rank in the active IDD, the other rank in IDD2N.

³ All ranks in this IDD conditions.

Table 18 - AC Timing Para	.,	ing Conditic	ins		
Parameter / Co		Symbol	Min	Max	Units
		ck Timing			
Clock period average: $T_C = 0^{\circ}C$ to 85		Timing	8		
DLL disable mode $T_c = 85^{\circ}C$ to		tCK (DLL_DIS)	8		ns
Clock periods average: DLL enable mode		tCK (AVG)	1.25	<1.5	ns
Clock periods average: DLL enable mode		tCK (AVG)	1.5	<1.875	ns
High pulse width average		tCH (AVG)	0.47	0.53	tCK
Low pulse width average		tCL (AVG)	0.47	0.53	tCK
zow paise width average	DLL locked	tJITper	-70	70	ps
Clock period jitter	DLL locking	tJITper,Ick	-60	60	ps
Clock absolute period	DEL TOCKING	tCK (ABS)	^t CK (AVG) MIN + ^t JITper MIN	tCK (AVG) MAX +	ps
Clock absolute high pulse width		tCH (ABS)	0.43	-	tCK (AVG)
Clock absolute low pulse width		tCL (ABS)	0.43	-	^t CK (AVG)
Cools to social little	DLL locked	^t JITcc	14	0	ps
Cycle-to-cycle jitter	DLL locking	tJITcc,Ick	12	0	ps
	2 cycles	tERR2per	-103	103	ps
	3 cycles	tERR3per	-122	122	ps
	4 cycles	tERR4per	-136	136	ps
	5 cycles	tERR5per	-147	147	ps
	6 cycles	tERR6per	-155	155	ps
	7 cycles	tERR7per	-163	163	ps
Cumulative error across	8 cycles	tERR8per	-169	169	ps
	9 cycles	tERR9per	-175	175	ps
	10 cycles	tERR10per	-180	180	ps
	11 cycles	tERR11per	-184	184	ps
	12 cycles	tERR12per	-188	188	ps
	n = 14,49, 50 cycles	tERRnper	(1+0.68ln[n]) * ^t JITper MIN	(1+0.68ln[n]) * ^t JITper Max	ps
	DQ Ir	nput Timing			
Data setup time to DQS, /DQS (1.35V)	Base (specification)	^t DS (AC135)	25	-	ps ps
Data setup time to DQS, /DQS (1.5V)	Base (specification)	^t DS (AC150)	10	-	ps ps
Data hold time from DQS, /DQS (1.35V)	Base (specification)	^t DH (DC90)	55	-	ps ps
Data hold time from DQS, /DQS (1.5V)	Base (specification)	^t DH (DC100)	45	-	ps ps
Minimum data pulse width	l	^t DIPW	360	-	ps
•	DQ Oı	utput Timing	•		
DQS, /DQS to DQ skew, per access	·	tDQSQ	-	100	ps
DQ output hold time from DQS, /DQS		^t QH	0.38	-	tCK (AVG)
DQ Low-Z time from CK, /CK		tLZDQ	-450	225	ps
DQ High-Z time from CK, /CK		tHZDQ	-	225	ps
<u>-</u>	DQ Strok	e Input Timing	•		
DQS, /DQS rising to CK, /CK rising		^t DQSS	-0.27	0.27	^t CK
DQS, /DQS differential input low pulse w	ridth	^t DQSL	0.45	0.55	^t CK

Parameter / Cond	ition	Symbol	Min	Max	Units
DQS, /DQS falling setup to CK, /CK rising		^t DSS	0.18	-	^t CK
DQS, /DQS falling hold from CK, /CK rising		^t DSH	0.18	-	^t CK
DQS, /DQS differential input high pulse wid	th	^t DQSH	0.45	0.55	^t CK
DQS, /DQS differential WRITE preamble		tWPRE	0.9	-	^t CK
DQS, /DQS differential WRITE postamble		tWPST	0.3	-	^t CK
·	DQ Strobe	Output Timing	-		
DQS, /DQS rising to/from CK, /CK		†DQSCK	-225	225	ps
DQS, /DQS differential output high time		^t QSH	0.40	-	^t CK
DQS, /DQS differential output low time		^t QSL	0.40	-	^t CK
DQS, /DQS Low-Z time (RL-1)		tLZDQS	-450	225	ps
DQS, /DQS High-Z time (RL+BL/2)		tHZDQS	=	225	ps
DQS, /DQS differential READ preamble		^t RPRE	0.9	greater of tLZ(DQS)(MIN)or tDQSK(DQS)(MAX)	^t CK
DQS, /DQS differential READ postamble		^t RPST	0.3	greater of tDQSCK(MIN) + tQSH(MIN) or tHZ(DQS)(MAX)	^t CK
<u> </u>	Command ar	nd Address Timin			
DLL locking time	T	^t DLLK	512	-	^t CK
CTRL, CMD, ADDR setup to CK, /CK (1.35V)	Base (specification)	^t IS (AC160)	60	-	ps ps
CTRL, CMD, ADDR setup to CK, /CK (1.35V)	Base (specification)	^t IS (AC135)	185	-	ps ps
CTRL, CMD, ADDR setup to CK, /CK (1.5V)	Base (specification)	^t IS (AC175)	45	-	ps ps
CTRL, CMD, ADDR setup to CK, /CK (1.5V)	Base (specification)	^t IS (AC150)	170	-	ps ps
CTRL, CMD, ADDR hold from CK, /CK (1.35V)	Base (specification)	^t IH (DC90)	130	-	ps ps
CTRL, CMD, ADDR hold from CK, /CK (1.5V)	Base (specification)	^t IH (DC100)	120	-	ps ps
Minimum CTRL, CMD, ADDR pulse width		^t IPW	560	_	ps
ACTIVATE to internal READ or WRITE delay		tRCD	13.125	_	ns
PRECHARGE command period		tRP	13.125	_	ns
ACTIVATE-to-PRECHARGE command period		tRAS	35	9 * ^t REFI	ns
ACTIVATE-to-ACTIVATE command period		tRC	48.125		ns
ACTIVATE-to-ACTIVATE minimum period		tRRD	greater of 4 ^t CK or 6ns	-	tCK
Four ACTIVATE windows (1KB page size)		tFAW	40	_	ns
Write recovery time		tWR	15	-	ns
Delay from start of internal WRITE transaccommand	action to internal READ	tWTR	greater of 4 ^t CK or 7.5ns	-	^t CK
READ-to-PRECHARGE time		^t RTP	greater of 4 ^t CK or 7.5ns	-	^t CK
/CAS-to-/CAS command delay		^t CCD	4 ^t CK	-	^t CK
Auto precharge write recovery + precharge time		†DAL	WR + ^t RP/ ^t CK (AVG)	-	tCK
MODE REGISTER SET command cycle time		tMRD	4	-	tCK
MODE REGISTER SET command update dela	ау	tMOD	greater of 12 ^t CK or 15ns	-	tCK
MULTIPURPOSE REGISTER READ burst end multipurpose register exit	to mode register set for	^t MPRR	13113	-	^t CK

Parameter / Cond	ition	Symbol	Min	Max	Units
	Calibra	tion Timing			
ZQCL command: Long calibration time	POWER-UP and RESET operation	^t ZQinit	512	-	^t CK
	Normal operation	^t ZQoper	256	-	^t CK
ZQCS command: Short calibration time		tZQcs	64		^t CK
	Initialization	and Reset Timinยู			
Exit reset from CKE HIGH to valid command		^t XPR	greater of 5 ^t CK or ^t RFC(min)+10ns	-	^t CK
	Refre	sh Timing			
REFRESH-to-ACTIVATE or REFRESH commai	nd period	^t RFC	300	=	ns
Maximum refresh period	T _c <=85°C	_	64 (:	•	ms
	T _c >85°C		32 (2		
Maximum average periodic refresh	T _c <=85°C	^t REFI	7.8 (64m	•	us
	T _c >85°C		3.9 (32m	s/8192)	
	Self Ref	resh Timing			1
Exit self refresh to commands not requiring	a locked DLL	tXS	greater of 5 ^t CK or ^t RFC+10ns	-	^t CK
Exit self refresh to commands requiring a lo		tXSDLL	tDLLK (MIN)	-	^t CK
Minimum CKE low pulse width for self refresh entry to self refresh exit timing		^t CKESR	^t CKE (MIN) + ^t CK	-	^t CK
Valid clocks after self refresh entry or power down entry		^t CKSRE	greater of 5 ^t CK or 10ns	-	^t CK
Valid clocks before self refresh exit, power-down exit, or reset exit		^t CKSRX	greater of 5 ^t CK or 10ns	-	^t CK
	Power-E	Down Timing			
CKE MIN pulse width		tCKE (MIN)	greater of 3	^t CK or 5ns	^t CK
Command pass disable delay		^t CPDED	1	-	^t CK
Power-down entry to power exit timing		^t PD	tCKE (MIN)	9 * ^t REFI	^t CK
	Power-Down En	try Minimum Tin	ning		
ACTIVATE command to power-down entry		^t ACTPDEN	MIN	= 1	^t CK
PRECHARGE/PRECHARGE ALL command to	power-down entry	^t PRPDEN	MIN	= 1	^t CK
REFRESH command to power-down entry		^t REFPDEN	MIN	= 1	^t CK
MRS command to power-down entry		^t MRSPDEN	MIN = tMC	DD (MIN)	^t CK
READ/READ with auto precharge command	to power-down entry	^t RDPDEN	MIN = RL	. + 4 + 1	^t CK
WRITE command to power-down entry	BL8 (OTF, MRS) BC4OTF	tWRPDEN	MIN = WL + 4 +	tWR/tCK (AVG)	^t CK
•	BC4MRS	tWRPDEN	MIN = WL + 2 +	tWR/tCK (AVG)	^t CK
WRITE with auto precharge command to	BL8 (OTF, MRS) BC4OTF	tWRAPDEN	MIN = WL +	4 + ^t WR + 1	^t CK
power-down entry	BC4MRS	tWRAPDEN	MIN = WL +	2 + ^t WR + 1	^t CK
	Power-Do	wn Exit Timing			
DLL on, any valid command, or DLL off to o		tXP	greater of 3 ^t CK or 6ns	-	^t CK
Precharge power-down with DLL off to locked DLL	commands requiring a	tXPDLL	greater of 10 ^t CK or 24ns		^t CK

TOT PART HAMINET HVIIVIZGO4D3L3ODOAG-C123(I)				
Parameter / Condition	Symbol	Min	Max	Units
OD	T Timing			
R_{TT} turn-on from ODTL on reference	^t AON	-225	225	ps
R_{TT} turn-off from ODTL off reference	^t AOF	0.3	0.7	CK
Asynchronous R _™ turn-on delay (power-down with DLL off)	^t AONPD	2	8.5	ns
Asynchronous R_{TT} turn-off delay (power-down with DLL off)	^t AOFPD	2	8.5	ns
ODT HIGH time with WRITE command and BL8	ODTH8	6	-	^t CK
ODT HIGH time without WRITE command or WRITE command and BC4	ODTH4	4	-	^t CK
Dynamic	ODT Timing			
R_{TT} dynamic change skew	^t ADC	0.3	0.7	^t CK
Write Le	veling Timing			
First DQS, /DQS rising edge	tWLMRD	40	-	^t CK
DQS, /DQS delay	tWLDQSEN	25	-	^t CK
Write leveling setup from rising CK, /CK crossing to rising DQS, /DQS crossing	^t WLS	165	-	ps
Write leveling hold from rising DQS, /DQS crossing to rising CK, /CK crossing	tWLH	165	-	ps
Write leveling output delay	tWLO	0	7.5	ns
Write leveling output error	tWLOE	0	2	ns

For part number IMM2G64D3LSOD8AG-C125(I)

Table 19 - SPD Information

Byte NO.	Description	Note	Hex
0	Number of Serial PD Bytes Written / SPD Device Size / CRC Coverage	176 / 256 / 0-116	92
1	SPD Revision	1.2	12
2	Key Byte / DRAM Device Type	DDR3 SDRAM	OB
3	Key Byte / Module Type	64b Unbuffered SO-DIMM	03
4	SDRAM Density and Banks	8Gb 8banks	05
5	SDRAM Addressing	Row 16 / Col 11	22
6	Module Nominal Voltage, V _{DD}	1.35V/1.5V	02
7	Module Organization	2Rank , x8	09
8	Module Memory Bus Width	Non-ECC, 64bit	03
9	Fine Timebase (FTB) Dividend and Divisor	2.5ps	52
10	Medium Timebase (MTB) Dividend	1/8 (0.125ns)	01
11	Medium Timebase (MTB) Divisor	1/8 (0.125ns)	08
12	SDRAM Minimum Cycle Time (tCKmin)	1.25ns	0A
13	Reserved	-	00
14	CAS Latencies Supported, Least Significant Byte	5, 6, 7, 8, 9, 10, 11	FE
15	CAS Latencies Supported, Most Significant Byte	-	00
16	Minimum CAS Latency Time (tAAmin)	13.125ns	69
17	Minimum Write Recovery Time (tWRmin)	15ns	78
18	Minimum /RAS to /CAS Delay Time (tRCDmin)	13.125ns	69
19	Minimum Row Active to Row Active Delay Time (tRRDmin)	7.5ns	3C
20	Minimum Row Precharge Time (tRPmin)	13.125ns	69
21	Upper Nibbles for tRAS and tRC	-	11
22	Minimum Active to Precharge Time (tRASmin), LSB	35ns	18
23	Minimum Active to Active/Refresh Time (tRCmin), LSB	48.125ns	81
24	Minimum Refresh Recovery Time (tRFCmin), LSB	300ns	60
25	Minimum Refresh Recovery Time (tRFCmin), MSB	300ns	09
26	Minimum Internal Write to Read Command Delay Time (tWTRmin)	7.5ns	3C
27	Minimum Internal Read to Precharge Command Delay Time (tRTPmin)	7.5ns	3C
28	Upper Nibble for tFAW	40ns	01
29	Minimum Four Activate Window Delay Time (tFAWmin), LSB	40ns	40
30	SDRAM Optional Features	DLL off Mode, RZQ/6, RZQ/7	83
31	SDRAM Thermal and Refresh Options	0-95oC Op. Temp. w/2x refresh	05
32	Module Thermal Sensor	Without TS	00
33	SDRAM Device Type	Non-Standard SDRAM	A1
34-59	Reserved, General Section	-	00
60	Module Nominal Height	29< Height <= 30	0F

Byte NO.	Description	Note	Hex
61	Module Maximum Thickness	1< Tf <=2 (mm); 1< Tb <=2 (mm)	11
62	Reference Raw Card Used	Raw Card F3	65
63	Address Mapping from Edge Connector to DRAM	Non-Mirrored	00
64-116	Module Type Specific Section, Indexed by Key Byte	-	00
117-118	Module ID: Module Manufacturer's JEDEC ID Code	Reserved	Reserved
119	Module ID: Module Manufacturing Location	Reserved	Reserved
120-121	Module ID: Module Manufacturing Date	Reserved	Reserved
122-125	Module ID: Module Serial Number	Reserved	Reserved
126-127	Cyclical Redundancy Code	-	2A 50
128-145	Module Part Number	Reserved	Reserved
146-147	Module Revision Code	Reserved	Reserved
148-149	DRAM Manufacturer's JEDEC ID Code	Reserved	Reserved
150-175	Manufacturer's Specific Data	Reserved	Reserved
176-255	Open For Customer Use	Reserved	Reserved

Revision History

Revision	Descriptions	Release Date
1.0	Initial release	Feb, 2018

Contents

Features	4	
Table 1 - Ordering Information for RoHS Compliant Product	3	
Table 2 - Operating Voltage	3	
Table 3 - Temperature Grade	3	
Table 4 - Speed Grade	3	
Table 5 - Memory Chip Information	3	
Part Number Decoder	4	
Table 6 - Addressing	4	
Table 7 - Pin Assignment	5	
Table 8 - Pin Description	ϵ	
Module Dimension	7	
Figure 1 – 204 Pin DDR3 SDRAM Unbuffered SO-DIMM	7	
Table 9 - PCB Dimension	7	
Figure 2 – Functional Block Diagram (Page 1 of 3)	8	
Figure 3 – Functional Block Diagram (Page 2 of 3)	9	
Figure 4 – Functional Block Diagram (Page 3 of 3)	10	
Table 10 - Absolute Maximum DC Ratings	11	
Table 11 - DC Electrical Characteristics and Operating Conditions	11	
Table 12 - DC Electrical Characteristics and Input Conditions	12	
Table 13 - Input Switching Conditions	13	
Table 14 - Differential Input Operating Conditions (CK, /CK and DQS, /DQS)	14	
Table 15 - Single-Ended Output Driver Characteristics	14	
Table 16 - Differential Output Driver Characteristics	15	
Table 17 - IDD Specifications with Conditions and Operation Current	16	
Table 18 - AC Timing Parameter and Operating Conditions	17	
Table 19 - SPD Information	21	
Revision History		
Contents		
List of Tables		
List of Figures		

List of Tables

Table 1 - Ordering Information for RoHS Compliant Product	3
Table 2 - Operating Voltage	3
Table 3 - Temperature Grade	3
Table 4 - Speed Grade	3
Table 5 - Memory Chip Information	3
Table 6 - Addressing	4
Table 7 - Pin Assignment	5
Table 8 - Pin Description	6
Table 9 - PCB Dimension	7
Table 10 - Absolute Maximum DC Ratings	11
Table 11 - DC Electrical Characteristics and Operating Conditions	11
Table 12 - DC Electrical Characteristics and Input Conditions	12
Table 13 - Input Switching Conditions	13
Table 14 - Differential Input Operating Conditions (CK, /CK and DQS, /DQS)	14
Table 15 - Single-Ended Output Driver Characteristics	14
Table 16 - Differential Output Driver Characteristics	15
Table 17 - IDD Specifications with Conditions and Operation Current	16
Table 18 - AC Timing Parameter and Operating Conditions	17
Table 19 - SPD Information	21
List of Figures	
Figure 1 – 204 Pin DDR3 SDRAM Unbuffered SO-DIMM	7
Figure 2 – Functional Block Diagram (Page 1 of 3)	
Figure 3 – Functional Block Diagram (Page 2 of 3)	
Figure 4 – Functional Block Diagram (Page 3 of 3)	