

Mathématiques

Classe: BAC

Chapitre: Primitive

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Soit la fonction f définie sur]-1,1[par : $f(x) = \frac{1}{\sqrt{1-x^2}}$.

- 1) Prouver l'existence et l'unicité d'une primitive notée F de f(x) telle que F(0) = 0.
- 2) Montrer que la fonction F est impaire.
- 3) Soit G la fonction définie sur $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ par : $G(x) = F(\sin x)$.
 - a) Montrer que G est dérivable sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et déterminer G'(x).
 - b) En déduire que pour tout $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$; G(x) = x
 - c) Calculer $F\left(\frac{1}{2}\right)$; $F\left(\frac{\sqrt{2}}{2}\right)$; $F\left(\frac{\sqrt{3}}{2}\right)$.
- 4) Soit la fonction $H(x) = F\left(\frac{2\sqrt{x}}{1+x}\right)$. Montrer que H est dérivable sur $\mathbb{R}_{+}^{*} \setminus \{1\}$, et calculer H'(x).

Exercice 2

5 pt

Soit
$$f:[-2;2] \to \mathbb{R} \ x \to (x-2)\sqrt{4-x^2}$$

- 1) Etudier les variations de f et tracer sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .
- 2) Prouver que f admet une primitive sur [-2;2]. Soit F la primitive de f sur [-2;2] telle que F(0) = 0.
- 3) Soit g la fonction définie sur $I = \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$ par $g(x) = F(2\sin x)$.
 - a) Montrer que g est dérivable sur I.
 - b) Calculer g'(x) et g(x).
- 4) Déterminer une primitive de chacune des fonctions g_1 et g_2 définie sur \mathbb{R} par $g_1(x) = \sin x \cdot \cos^2 x$ et $g_2(x) = \cos^2 x$.
- 5) En déduire g(x) et calculer F(-2)-F(2).

Exercice 3

(5) 36 min

6 pt

Soit f la fonction définie sur $]-\infty,1]$ par : $f(x) = \frac{-2}{x^2 - 2x + 2}$ et F la primitive de f sur $]-\infty,1]$ qui s'annule en 1.

- 1) On désigne par G la fonction définie sur $\left[0,\pi\right[$ par $G\left(x\right)=F\left(1-\tan\frac{x}{2}\right)$.
 - a) Montrer que G est dérivable sur $[0, \pi[$ et calculer G'(x).
 - b) Déterminer G(x) pour tout $x \in [0, \pi[$ puis calculer F(0).
- 2) Soit *H* la fonction définie sur $]-\infty,1[$ par $H(x)=F(x)+F(\frac{x}{x-1}).$
 - a) Montrer que H est dérivable sur $]-\infty,1[$ et calculer H'(x).
 - b) En déduire que pour tout $x \in]-\infty, 1[$ on a : $F\left(\frac{x}{x-1}\right) = \pi F(x)$.
- 3) Soit u la suite réelle définie sur \mathbb{N} par : $u_n = \frac{1}{n+1} \sum_{k=n}^{2n} F\left(\frac{1}{k}\right)$.
 - a) Montrer que pour tout $n \in \mathbb{N}^*$ et $k \in \{n, n+1, ..., 2n\}$ on a : $F\left(\frac{1}{n}\right) \le F\left(\frac{1}{k}\right) \le F\left(\frac{1}{2n}\right).$
 - b) En déduire la limite de u_n en $+\infty$.

Exercice 4

© 28 min

4 pt

Soit f la fonction définie sur $[0; \pi]$ par $f(x) = \sqrt{1 + \cos x}$.

- 1) Montrer que f est une bijection de $[0; \pi]$ sur $[0; \sqrt{2}]$. (On notera f^{-1} la fonction réciproque de f).
- 2) Montrer que f^{-1} est dérivable sur $\left[-\sqrt{2}; \sqrt{2}\right]$ et expliciter $(f^{-1})'(x)$.
- 3) Soit g la fonction définie sur $\left] -\sqrt{2}; \sqrt{2} \right[\text{par } g(x) = \frac{2}{\sqrt{2 x^2}} \text{ et } G \text{ la primitive de } g \text{ sur } \right] -\sqrt{2}; \sqrt{2} \left[\text{ qui s'annule en zéro.} \right]$
 - a) Calculer le dérivée de la fonction $H: x \to g(x) g(-x)$. En déduire que g est paire.
 - b) Montrer que pour tout $x \in [0, \sqrt{2}]$; $G(x) = \pi f^{-1}(x)$. En déduire G(1).

Déterminer une fonction polynôme P dont la fonction dérivée est : $P'(x) = x^2 - 5x + 6$ et dont le maximum relatif est le double du minimum relatif.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000