

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO ALGORITMO E ESTRUTURA DE DADOS III

TRABALHO PRATICO 2

Gustavo Henriques Matheus N Silva

São João del-Rei 2023

Lista de Figuras

1	Árvore de recursão de um grid de dimensões $3x4$	2							
2	Gráfico da solução utilizando força bruta	3							
3	Gráfico da solução utilizando programação dinâmica	5							
Lista de Tabelas									
1	Tabela resultados força bruta	6							
2	Tabela resultados programação dinâmica	7							

Sumário

1	INT	TRODUÇÃO	1
	1.1	Proposta	1
	1.2	Objetivo	1
2	IMI	PLEMENTAÇÃO	2
	2.1	Força bruta	2
		2.1.1 Complexidade da solução por força bruta	3
	2.2	Programação dinâmica	4
		2.2.1 Complexidade da solução por programação dinâmica	5
3	\mathbf{AV}	ALIAÇÃO DE RESULTADOS	6
4	CO	NCLUSÃO	9
R	erei	RÊNCIAS	10

1 INTRODUÇÃO

1.1 Proposta

Este trabalho propõe um problema que consiste em ajudar Harry Potter a percorrer um grid com poções e monstros, de forma a chegar ao seu destino gastando a menor quantidade de energia possível.

1.2 Objetivo

Nosso objetivo é analisar os possíveis caminhos que ele pode seguir e determinar a quantidade de energia com a qual ele deve começar para manter um nível positivo de energia durante todo o percurso. A fim de auxiliar na resolução do problema, podemos reformulá-lo de maneira mais formal da seguinte forma: Dada uma matriz de dimensão RxC, com pesos positivos ou negativos em cada uma de suas células, encontrar um caminho da posição (1,1) até a posição (R,C) de modo que a soma mínima de energia ao longo do caminho seja a maior possível.

Podemos abordar esse problema de maneira recursiva, em que a soma de uma célula (i,j) em um caminho é igual ao seu peso mais o peso da célula anterior no caminho. Podemos utilizar isso para construir uma solução de força bruta para o problema, no entanto, como veremos adiante, essa solução não é eficiente e não será útil para Harry, dependendo do tamanho do grid. Para melhorar isso, ao observarmos a árvore de recursão do problema, percebemos que alguns problemas se repetem, o que sugere a possibilidade de uma solução utilizando programação dinâmica. Conforme veremos mais adiante, isso de fato é possível, permitindo-nos desenvolver uma solução eficiente que será útil para Harry, mesmo em um grid de grande tamanho.

2 IMPLEMENTAÇÃO

2.1 Força bruta

Ao analisar o problema, a solução mais simples que podemos considerar é examinar cada caminho e determinar qual deles requer o menor consumo inicial de energia. Assim, a solução 2 do nosso trabalho utiliza essa abordagem de força bruta.

Para implementar esse método, podemos aproveitar a natureza recursiva do problema e construir uma função recursiva. Além disso, utilizaremos um TAD no formato de uma matriz com dimensões RxC, que armazenará cada elemento do grid, bem como o valor necessário para retornar a energia mínima que Harry precisa para atravessar o grid.

A função inicia na posição inicial do grid e chama a si mesma recursivamente para as posições adjacentes à célula atual. Ela soma o peso da célula atual com o peso da célula anterior e armazena o menor valor encontrado ao longo do caminho. No caso base, quando chegamos à última célula do grid, verificamos se o valor mínimo do caminho atual é maior do que os valores dos caminhos anteriores, pois procuramos o caminho com o valor mínimo máximo.

Essa função segue a árvore de recursão abaixo, onde cada ramo representa um caminho diferente.

Figura 1: Árvore de recursão de um grid de dimensões 3x4

2.1.1 Complexidade da solução por força bruta

Conforme esperado de uma solução de força bruta, essa estratégia é extremamente ineficiente em termos de tempo de execução. Ao analisar a complexidade da função, percebemos que ela percorre todas as posições do grid, e em cada posição pode fazer até duas chamadas recursivas. Portanto, a complexidade é exponencial. Ao testar a função várias vezes com as diretivas "rusage" e "gettimeofday" em C, e usando o R para analisar os dados gerados, podemos observar que o tempo de execução cresce de forma exponencial à medida que aumentamos o tamanho da entrada.

Figura 2: Gráfico da solução utilizando força bruta Obs.: Esse gráfico foi construido com base na função gettimeofday

Podemos observar que, com entradas acima de 100, ou seja, um grid com dimensões superiores a 10x10, o tempo necessário para calcular a energia aumenta rapidamente. Durante nossos testes, com um grid de dimensões 20x20, não obtivemos a resposta mesmo após esperar por 5 minutos.

2.2 Programação dinâmica

Ao observarmos a imagem da árvore de recursão da solução de força bruta, podemos notar que alguns ramos se repetem, o que nos indica a possibilidade de uma solução utilizando programação dinâmica. No entanto, essa solução não é tão evidente. Se tentarmos apenas começar na posição inicial e escolher a próxima célula do caminho buscando maximizar a soma, como em um problema de encontrar a maior distância, perceberemos que essa abordagem não satisfaz o princípio da otimalidade, que é um dos requisitos para construir uma solução com programação dinâmica.

Para alcançar uma solução ótima utilizando esse método, devemos pensar no problema de baixo para cima. Basicamente, precisamos determinar a energia mínima necessária em cada célula, de forma a chegar nela com uma energia mínima de 1. Assim, começando da última célula do grid, podemos verificar qual deveria ser a energia necessária para alcançá-la. Se essa energia for negativa, por exemplo, -5, devemos chegar na célula com uma energia de 6. Para chegar nessa célula, temos duas opções: vindo de cima ou vindo da esquerda. Ao analisarmos essas posições, devemos verificar se seus pesos são suficientes para atingir a célula atual. No exemplo dado, como precisamos chegar com energia 6, as células adjacentes devem ter uma energia de pelo menos 6, e nesse caso podemos chegar nelas com a energia mínima de 1. Por outro lado, se o peso da célula adjacente não for suficiente, isso significa que devemos chegar nela com um peso que permita atingir a célula atual com o peso necessário. No exemplo mencionado, se uma célula adjacente tiver peso 4, significa que precisamos chegar nela com peso 2, para que possamos alcançar a célula atual com o peso necessário.

Para implementar isso, utilizaremos uma estrutura de dados no formato de uma tabela, com as mesmas dimensões do grid. Cada posição (i, j) da tabela nos fornecerá o peso mínimo necessário para chegar à posição (i, j) do grid, de modo que a energia de Harry permaneça positiva durante todo o caminho.

Iniciaremos na posição (R, C) e percorreremos o grid de baixo para cima, analisando cada coluna de cada vez, o que nos permitirá preencher a tabela com segurança. O resultado para determinar a energia inicial será armazenado na posição inicial da tabela. Essa é a solução 1 do nosso trabalho.

2.2.1 Complexidade da solução por programação dinâmica

A solução apresentada com programação dinâmica é consideravelmente melhor do que a solução de força bruta, com uma complexidade de O(R*C), pois percorre cada elemento do grid realizando operações constantes.

Assim como na solução de força bruta, realizamos testes e utilizamos o R para analisar os resultados, embora o gráfico dos testes não ilustre tão claramente a ordem de complexidade como na solução anterior.

Figura 3: Gráfico da solução utilizando programação dinâmica Obs.: Esse gráfico foi construido com base na função gettimeofday

Isso pode não ter ficado claro, pois o algoritmo é muito rápido, sendo necessários testes grandes, com condições de teste mais rigorosas, considerando a máquina, a memória e outros fatores externos que possam influenciar o tempo de execução. É justamente por causa dessas variáveis que confiamos no cálculo de complexidade para determinar a eficiência da solução.

3 AVALIAÇÃO DE RESULTADOS

Além da ordem de complexidade, realizamos alguns testes comparando as duas soluções e seu desempenho em casos de teste idênticos, gerados aleatoriamente, com um grid de dimensões máximas de 20x10.

Abaixo, apresentamos uma tabela comparando os resultados dos algoritmos em vários testes iguais:

Obs.: As configurações de hardware utilizados para os testes são as seguintes: CPU: Intel i5-10210U, RAM: 8gb - 2333mhz, SO: Ubuntu 22.04.2 lts

Resultado	Entrada	Rusage	Gettimeofday	Usuario	Sistema
1	30	$1.846.00 \mathrm{ms}$	207.00ms	$0.00 \mathrm{ms}$	1846.00ms
83	80	2901.00ms	1498.00ms	$0.00 \mathrm{ms}$	2901.00ms
1	66	515.00 ms	138.00 ms	515.00ms	$0.00 \mathrm{ms}$
145	12	1928.00ms	183.00ms	$0.00 \mathrm{ms}$	1928.00ms
1	48	455.00 ms	$63.00 \mathrm{ms}$	455.00 ms	$0.00 \mathrm{ms}$
1	40	1892.00ms	252.00 ms	$0.00 \mathrm{ms}$	1892.00ms
80	3	2076.00 ms	$180.00 { m ms}$	$0.00 \mathrm{ms}$	2076.00ms
70	60	2236.00ms	521.00ms	2236.00ms	$0.00 \mathrm{ms}$
1	182	167165.00 ms	165448.00ms	167165.00 ms	$0.00 \mathrm{ms}$
1	15	1591.00ms	163.00 ms	1591.00ms	$0.00 \mathrm{ms}$
17	70	2774.00ms	901.00ms	2774.00ms	$0.00 \mathrm{ms}$
1	3	1617.00ms	159.00 ms	1617.00ms	$0.00 \mathrm{ms}$
1	18	1885.00 ms	197.00 ms	1885.00 ms	$0.00 \mathrm{ms}$
1	10	1581.00 ms	163.00 ms	1581.00ms	$0.00 \mathrm{ms}$
1	24	1844.00ms	211.00ms	1844.00ms	$0.00 \mathrm{ms}$
122	72	2493.00ms	890.00ms	2493.00ms	$0.00 \mathrm{ms}$
76	35	1552.00 ms	192.00ms	1552.00 ms	$0.00 \mathrm{ms}$
15	42	1787.00 ms	207.00ms	1787.00 ms	$0.00 \mathrm{ms}$
1	45	1048.00ms	147.00ms	1048.00ms	$0.00 \mathrm{ms}$
1	169	103638.00 ms	102211.00ms	103638.00 ms	$0.00 \mathrm{ms}$
97	40	2120.00ms	320.00 ms	$0.00 \mathrm{ms}$	2120.00ms
1	4	1639.00 ms	155.00 ms	1639.00 ms	$0.00 \mathrm{ms}$
1	13	1715.00ms	173.00 ms	$0.00 \mathrm{ms}$	1715.00ms
1	84	3066.00 ms	1620.00 ms	$0.00 \mathrm{ms}$	3066.00 ms
14	75	2387.00ms	772.00ms	2387.00ms	$0.00 \mathrm{ms}$
272	30	1638.00 ms	225.00 ms	1638.00 ms	$0.00 \mathrm{ms}$
88	110	12956.00 ms	11351.00ms	12956.00 ms	$0.00 \mathrm{ms}$
100	6	1850.00 ms	218.00ms	1850.00 ms	$0.00 \mathrm{ms}$
1	1	1906.00ms	177.00ms	$0.00 \mathrm{ms}$	1906.00ms
1	40	1775.00 ms	272.00ms	1775.00 ms	$0.00 \mathrm{ms}$
38	12	$570.00 \mathrm{ms}$	$57.00 \mathrm{ms}$	570.00ms	$0.00 \mathrm{ms}$

Tabela 1: Tabela resultados força bruta

Resultado	Entrada	Rusage	Gettimeofday	Usuario	Sistema
1	30	2031.00ms	236.00 ms	2031.00ms	$0.00 \mathrm{ms}$
83	80	1755.00ms	222.00 ms	1755.00ms	$0.00 \mathrm{ms}$
1	66	456.00 ms	55.00 ms	456.00ms	$0.00 \mathrm{ms}$
145	12	2170.00ms	279.00ms	2170.00ms	$0.00 \mathrm{ms}$
1	48	526.00ms	$55.00 \mathrm{ms}$	526.00ms	$0.00 \mathrm{ms}$
1	40	1718.00ms	196.00ms	1718.00ms	$0.00 \mathrm{ms}$
80	3	1718.00ms	179.00ms	1718.00ms	$0.00 \mathrm{ms}$
70	60	2130.00ms	280.00 ms	2130.00ms	$0.00 \mathrm{ms}$
1	182	2180.00ms	477.00ms	$0.00 \mathrm{ms}$	2180.00ms
1	15	1808.00ms	185.00 ms	$0.00 \mathrm{ms}$	1808.00ms
17	70	2253.00ms	266.00ms	$0.00 \mathrm{ms}$	2253.00ms
1	3	1687.00 ms	165.00 ms	1687.00 ms	$0.00 \mathrm{ms}$
1	18	2287.00ms	265.00 ms	2287.00ms	$0.00 \mathrm{ms}$
1	10	1734.00ms	173.00 ms	$0.00 \mathrm{ms}$	1734.00ms
1	24	2135.00ms	222.00ms	2135.00ms	$0.00 \mathrm{ms}$
122	72	1864.00ms	299.00ms	1864.00ms	$0.00 \mathrm{ms}$
76	35	1733.00ms	195.00 ms	1733.00ms	$0.00 \mathrm{ms}$
15	42	1974.00ms	298.00ms	1974.00ms	$0.00 \mathrm{ms}$
1	45	1252.00ms	151.00ms	1252.00ms	$0.00 \mathrm{ms}$
1	169	1820.00ms	286.00 ms	$0.00 \mathrm{ms}$	1820.00ms
97	40	2004.00ms	222.00 ms	$0.00 \mathrm{ms}$	2004.00ms
1	4	1818.00ms	178.00ms	1818.00ms	$0.00 \mathrm{ms}$
1	13	1815.00ms	189.00ms	1815.00ms	$0.00 \mathrm{ms}$
1	84	1797.00ms	228.00ms	1797.00ms	$0.00 \mathrm{ms}$
14	75	2017.00ms	250.00 ms	2017.00ms	$0.00 \mathrm{ms}$
272	30	1758.00ms	196.00 ms	$0.00 \mathrm{ms}$	1758.00ms
88	110	2107.00ms	289.00ms	$0.00 \mathrm{ms}$	2107.00ms
100	6	1997.00ms	199.00ms	$0.00 \mathrm{ms}$	1997.00ms
1	1	2027.00ms	200.00ms	2027.00ms	$0.00 \mathrm{ms}$
1	40	1990.00ms	239.00ms	1990.00ms	$0.00 \mathrm{ms}$
38	12	692.00ms	67.00 ms	692.00ms	0.00ms

Tabela 2: Tabela resultados programação dinâmica

Nos testes realizados com essas entradas, utilizando a diretiva "gettimeofday", o algoritmo de força bruta teve uma média de tempo de 11.332,5 microssegundos, enquanto o algoritmo com programação dinâmica teve uma média de apenas 208,9 microssegundos, considerando entradas menores que 200, que não podem ser consideradas grandes.

Outra diferença significativa entre o desempenho das duas soluções foi observada durante os testes. Enquanto a solução de força bruta não conseguiu encontrar uma solução para uma entrada de 400, mesmo após 5 minutos, como mencionado anteriormente, o algoritmo com programação dinâmica conseguiu retornar o resultado para uma entrada

de 98.565.184 em cerca de 16,19 segundos. Isto é, com uma entrada 245.000 vezes maior, o algoritmo de programação dinâmica conseguiu calcular com facilidade uma resposta, enquanto que o algoritmo com força bruta demora vários minutos para calcular uma entrada extremamente menor.

Obs.: Os demais testes estão contidos na pasta "testes_tp2" dentro da pasta raiz da aplicação

4 CONCLUSÃO

O problema proposto, embora seja complicado e não seja fácil identificar uma solução eficiente imediatamente, possui de fato uma solução rápida que consegue calcular facilmente uma resposta, mesmo para entradas muito grandes. A parte do código neste trabalho foi extremamente simples, com ambas as soluções ocupando poucas linhas e sendo claras e objetivas, o que facilitou o entendimento. A maior dificuldade foi compreender o problema e pensar na solução com programação dinâmica para otimizar os subproblemas e calcular o problema geral com facilidade.

Ao analisarmos os resultados, pudemos comprovar o quanto um algoritmo polinomial supera um algoritmo exponencial, o que nos permite entender a dificuldade de outros problemas importantes da computação.

Referências

[CORMEN et al., 2012] CORMEN, T. H., Leiserson, C., Rivest, R., and Stein, C. (2012). Algoritmos: teoria e prática. LTC.