

Discrete Mathematics MH1812

Topic 7 - Set Theory Summary

UNIVERSITY SINGAPORE

Set $A = \{1,2,3\}$ and $B = \{2\}$.

Find:

- *A* ∪ *B*
- $A \cap B$
- A B
- B-A
- A x B
- *BxA*

Prove the set identity $(A - B) \cap (C - B) = (A \cap C) - B$.

A	B	\subset	A-B	C-B	$(A-B) \wedge (c-B)$	Anc	(Anc)-B
l	1	Ì					
1	1	0					
1	0	1					
1	6	O					
0		-					
0)	0					
0	0	1					
0	6	0					

MH1812: Discrete Mathematics

Prove the set identity $(A - B) \cap (C - B) = (A \cap C) - B$.

Prove the set identity $(A - B) \cap (C - B) = (A \cap C) - B$.

Show that $(A \times B) \cup (B \times C) \subseteq (A \cup B) \times (B \cup C)$.