Homework 7

21-236 Mathematical Studies Analysis II

Name: Shashank Singh Email: sss1@andrew.cmu.edu

Problem 1

(a) Let Γ be the range of γ_1 , and let $\varphi : [a,b] \to \mathbb{R}^N$ be a parametrization of γ_1 . Since U is open, $\forall \mathbf{x} \in U$, $\exists r > 0$ such that $B(\mathbf{x},r) \subseteq U$, so that there is a family $\{U_{\alpha}\}_{\alpha}$ of open balls around every point in Γ with

$$\bigcup \{U_{\alpha}\}_{\alpha} \subseteq U.$$

Clearly, $\{U_{\alpha}\}_{\alpha}$ covers Γ . Since γ_1 is continuous and [a,b] is compact, Γ is compact. Thus, there exists some $\delta > 0$ (Lebesgue's number) such that, $\forall E \subseteq \Gamma$ with diam $E \leq \delta$, $E \subseteq U_{\alpha}$ for some α . Note that, since γ_1 is continuous and [a,b] is compact, φ is uniformly continuous, so that, $\exists \delta_2 > 0$ such that, $\forall x, y \in [a,b], |x-y| < \delta_2$ implies $\|\varphi(x) - \varphi(y)\| < \delta$. Define $k = \lceil \frac{b-a}{\delta_2/2} \rceil$, and, $\forall i \in \{0,1,\ldots,k\}$, let $t_i = a + i\frac{b-a}{k}$. Then, $\forall i \in \{0,1,\ldots,k\}$, $t_i - t_{i-1} < \delta_2$, so that, by choice of δ_2 , diam $\varphi([t_{i-1},t_i]) < \delta$, and therefore, by choice of δ , $\varphi([t_{i-1},t_i]) \subseteq U_{\alpha}$ for some α . Define $\mathbf{h} : [a,b] \times [0,1]$ such that, $\forall (s,t) \in [a,b] \times [0,1]$, if $s \in [t_{i-1},t_i]$,

$$\mathbf{h}(s,t) = \boldsymbol{\varphi}(s) + t(L_i(s) - \boldsymbol{\varphi}(s)),$$

where

$$L_i(s) := \varphi(t_{i-1}) + \frac{s - t_{i-1}}{t_i - t_{i-1}} (\varphi(t_i) - \varphi(t_{i-1}))$$

is the point that is the same fraction along the line segment from $\varphi(t_{i-1})$ to $\varphi(t_i)$ as is s on the line segment from t_{i-1} to t_i .

Since each $\varphi([t_{i-1}, t_i])$ is contained in some ball U_{α} , which must be convex, $\mathbf{h}([a, b] \times [0, 1]) \subseteq U$. $\forall s \in [a, b], \ \mathbf{h}(s, 0) = \varphi(s), \ \text{and}, \ \forall t \in [0, 1], \ \mathbf{h}(a, t) = \varphi(a) = \varphi(b) = h(b, t)$. Finally, each $\mathbf{h}([t_i, t_{i-1}], 1)$ is linear, so that h([a, b], 1) is a closed polygonal path. Therefore, h is a homotopy from γ_1 to a closed polygonal path.

(b) Let $bfh_1 = \mathbf{h}$ as defined in part (a), and let $\boldsymbol{\psi} : [a, b] \to U$ such that, $\forall s \in [a, b]$, $\boldsymbol{\psi}(s) = \mathbf{h}_1(s, 1)$, so that $\boldsymbol{\psi}$ parametrizes a polygonal path to which γ_1 is homotopic. Since U is open, $\forall i \in \{1, 2, \ldots, k\}, \exists r_i > 0$ such that $B_i := B(\boldsymbol{\psi}(t_i), r_i) \subseteq U$. Note that, since $\boldsymbol{\psi}$ is continuous, $\boldsymbol{\psi}^{-1}(B_i)$ is an open interval (a_i, b_i) , and consider $\mathbf{h}_2 : [a, b] \times [0, 1]$ such that, $\forall t \in [0, 1]$, $\forall s \in (a_i, b_i)$,

$$\mathbf{h}_2(s,t) = L_i(s) + t \frac{s - a_i}{b_i - a_i} (L_{i+1}(s) - L_i(s)),$$

where L_i is as defined in part (a), and, for all other $s \in [a, b]$, $\mathbf{h}_2(s, t) = L_i(s)$.

Let $\mathbf{h} : [a, b] \times [0, 1]$ so that, $\forall (s, t) \in [a, b] \times [0, 1]$,

$$\mathbf{h}(s,t) = \begin{cases} \mathbf{h}_1(s,2t) & t \in [0,\frac{1}{2}] \\ \mathbf{h}_2(s,2t-1) & t \in [\frac{1}{2},1] \end{cases}$$

Then, $\forall s \in [a, b]$, $\mathbf{h}(s, 0) = \varphi(s)$ (where φ is the parametrization of γ_1 from part (a)) and $\mathbf{h}(s, 1)$ parametrizes a closed C^1 curve, and $\forall t \in [0, 1]$, $\mathbf{h}(a, t) = \mathbf{h}(b, t)$. Since each $B_i \subseteq U$ is convex and $\mathbf{h}_1([a, b] \times [0, 1]) \subseteq U$, $\mathbf{h}([a, b] \times [0, 1]) \subseteq U$. Therefore, \mathbf{h} is a homotopy in U from γ_1 to a closed C^1 curve.

Problem 2

(a) **Lemma:** If $F = \bigcup_{i=1}^{\infty} F_i$ is a union of disjoint Peano-Jordan measurable sets and F is Peano-Jordan measurable, then

$$\operatorname{meas} F \le \sum_{i=1}^{\infty} \operatorname{meas} F_i.$$

Proof: Suppose, for sake of contradiction, that $\sum_{i=1}^{\infty} \text{meas } F_n < \text{meas } F$. Note that, since $\bigcup_{i=2}^{n} F_i \subseteq F \setminus F_1$, $\sum_{i=1}^{n} \text{meas } F_i \leq \text{meas}(F \setminus F_1)$, so that

$$\sum_{i=1}^{\infty} \max F_i \le \max(F \backslash F_1).$$

Thus,

$$\max F_1 = \sum_{i=1}^{\infty} \max F_i - \sum_{i=2}^{\infty} \max F_i$$

$$< \max F - \sum_{i=2}^{\infty} \max F_i$$

$$\leq \max F - \max(F \setminus F_1)$$

$$= \max(F \setminus (F \setminus F_1)) = \max F_1,$$

which is a contradiction, proving the Lemma.

Note that, since $\{\text{meas } E_n\}$ is increasing (as $E_i \subseteq E_{i+1}$) and bounded above by meas E (as $E_i \subseteq E$), $\lim_{n\to\infty} \text{meas } E_n$ exists and $\lim_{n\to\infty} E_n \le \text{meas } E$.

 $\forall i \in \mathbb{N}^*$, let $F_i := E_i \setminus E_{i-1}$. For each $i \in \mathbb{N}^*$, since $\{E_n\}$ is exhausting, $E_i = \bigcup_{j=1}^i F_i$, so that meas $E_i = \sum_{j=1}^i \text{meas } F_i$. Since $E = \bigcup_{i=1}^{\infty} F_i$, by the Lemma, since the F_i 's are Peano-Jordan measurable and disjoint,

$$\operatorname{meas} E \leq \sum_{i=1}^{\infty} \operatorname{meas} F_i = \lim_{n \to \infty} \sum_{i=1}^{n} \operatorname{meas} F_i = \lim_{n \to \infty} \operatorname{meas} E_i,$$

and, therefore, $\lim_{n\to\infty} \max E_n = \max E$.

(b) Since f is Riemann integrable, it is bounded above by some constant M and below by some constant m. Since E is Peano-Jordan measurable, E is bounded, so that it is contained in some rectangle R. Therefore, by the result of part (a) above,

$$0 = M \lim_{n \to \infty} \operatorname{meas}(E \setminus E_n)$$

$$= M \lim_{n \to \infty} \int_R \chi_{E \setminus E_n}(\mathbf{x}) d\mathbf{x}$$

$$= M \lim_{n \to \infty} \int_R (\chi_E - \chi_{E_n})(\mathbf{x}) d\mathbf{x}$$

$$\geq \lim_{n \to \infty} \int_R f(\mathbf{x})(\chi_E - \chi_{E_n})(\mathbf{x}) d\mathbf{x}$$

$$= \lim_{n \to \infty} \left(\int_R f(\mathbf{x}) \chi_E(\mathbf{x}) d\mathbf{x} - \int_R f(\mathbf{x}) \chi_{E_n}(\mathbf{x}) d\mathbf{x} \right).$$

Subtracting $\int_R f(\mathbf{x})\chi_E(\mathbf{x}) d\mathbf{x}$ shows that

$$\int_{R} f(\mathbf{x}) \chi_{E}(\mathbf{x}) \ d\mathbf{x} \le \int_{R} f(\mathbf{x}) \chi_{E_{n}}(\mathbf{x}) \ d\mathbf{x}.$$

A similar proof with m shows that

$$\int_{R} f(\mathbf{x}) \chi_{E}(\mathbf{x}) \ d\mathbf{x} \ge \lim_{n \to \infty} \int_{R} f(\mathbf{x}) \chi_{E_{n}}(\mathbf{x}) \ d\mathbf{x}.$$

Thus, $\lim_{n\to\infty} \int_R f(\mathbf{x}) \chi_{E_n}(\mathbf{x}) d\mathbf{x}$ exists and

$$\int_{R} f(\mathbf{x}) \chi_{E}(\mathbf{x}) d\mathbf{x} = \lim_{n \to \infty} \int_{R} f(\mathbf{x}) \chi_{E_{n}}(\mathbf{x}) d\mathbf{x},$$

as desired.

Problem 3

For $k \in \{1, 2, ..., N\}$, let i_k be the smallest number such that $(\nabla \mathbf{g}_k)_{i_k} \neq 0$ and $i_k \neq i_1, i_2, ..., i_{k-1}$ (such i_k must exist, since det $J_{\mathbf{g}}(\mathbf{x}) \neq 0$).

Let $\mathbf{h} = \mathbf{f}_1 \circ \mathbf{f}_2 \circ \cdots \circ \mathbf{f}_N$, where each \mathbf{f}_j is a flip switching j with i_j .

Then, $\forall k \in \{1, 2, \dots, N\}$, let

$$\mathbf{h}_{i}(\mathbf{x}) = (x_{1}, x_{2}, \dots, x_{i-1}, \mathbf{g}_{i}((\mathbf{h}_{k-1} \circ \mathbf{h}_{k-2} \circ \dots \circ \mathbf{h}_{1})^{-1}(\mathbf{x})), x_{i+1}, \dots, x_{N})$$

(noting that, by the inverse function theorem and the fact that the composition of invertible functions is invertible, $\mathbf{h}_{k-1} \circ \mathbf{h}_{k-2} \circ \ldots \circ \mathbf{h}_1$ is invertible in some ball U_k). Then,

$$\mathbf{g} = \mathbf{h}_N \circ \mathbf{h}_{N-1} \circ \ldots \circ \mathbf{h}_1 \circ \mathbf{h},$$

Problem 4

(a) E appears as follows:

We show that E is Peano-Jordan measurable by computing the integral of its characteristic function (using a Change of Variables into polar coordinates):

$$\int_{E} 1 \, d\mathbf{x} = \int_{\pi/4}^{\pi/2} \int_{\frac{\alpha}{\sin \theta}}^{1} r \, dr \, d\theta$$

$$= \int_{\pi/4}^{\pi/2} \frac{1}{2} - \frac{\alpha^{2}}{2 \sin^{2} \theta} \, d\theta$$

$$= \frac{1}{2} (\pi/2) + \frac{\alpha^{2} \cot(\pi/2)}{2}$$

$$-\frac{1}{2} (\pi/4) + \frac{\alpha^{2} \cot(\pi/4)}{2} = \boxed{\frac{\pi + 4\alpha^{2}}{8}}.$$

(b) We show f is integrable over E by computing its integral (using a Change of Variables into polar coordinates):

- (c)
- (d)