IN THE CLAIMS:

Please cancel Claims 2 and 10 without prejudice or disclaimer of the subject matter recited therein

Please amend Claims 1, 9, 11,13 and 18 as follows.

 (Currently Amended) An electrophotographic photosensitive member comprising a support, at least the surface of which is conductive, and a photoconductive layer formed thereon containing an amorphous material composed chiefly of silicon, wherein;

said photoconductive layer has two or more layer regions, and protuberances in a layer region (A) adjoining to a layer region (B) that is closest to a free surface of the electrophotographic photosensitive member have been stopped from growing at the surface of the layer region (A), and

said layer regions each have a layer thickness of from 3 µm to 15 µm, wherein, at the surface of a layer region of said photoconductive layer, protuberances of 15 µm or more each in major axis are in a number of 5 or less per 100 cm².

Claim 2. (Cancelled).

 (Original) An electrophotographic photosensitive member according to claim 1, wherein said photoconductive layer has a layer thickness of from 10 μm to 60 μm.

Claim 4. (Cancelled).

 (Previously Presented) An electrophotographic photosensitive member according to claim 1, wherein said layer regions are present in a number of from 2 to 6 in the layer thickness direction.

- (Previously Presented) An electrophotographic photosensitive member according to claim 1, wherein at least a blocking layer and the photoconductive layer are superposingly formed in this order on said support.
- (Original) An electrophotographic photosensitive member according to claim 1, wherein a surface protective layer is provided.
- (Previously Presented) An electrophotographic photosensitive member according to claim 1, wherein a blocking layer and a surface protective layer are superposingly formed on said photoconductive layer.
- 9. (Currently Amended) A process for producing an electrophotographic photosensitive member having a support, at least the surface of which is conductive, and a photoconductive layer formed thereon containing an amorphous material composed chiefly of silicon, which comprises forming the surface of the layer region (A) in the photoconductive

layer, carrying out an operation for stopping protuberances from growing at the surface of the layer region (A), and forming a layer region (B) on the layer region (A), wherein:

said photoconductive layer has two or more layer regions, and protuberances in the layer region (A) adjoining to the layer region (B) that is closest to a free surface of the electrophotographic photosensitive member have been stopped from growing at the surface of the layer region (A), and

said operation is carried out while the thickness of each photoconductive layer region comes to be 3 µm or more to 15 µm or less from the support side, wherein said operation is carried out by taking out of a reaction chamber the support on which a layer region of said photoconductive layer has been formed to move it to a different reactor.

Claim 10. (Cancelled).

11. (Currently Amended) A process for producing an electrophotographic photosensitive member according to claim ±0 2, wherein said support is taken out of the reaction chamber into a vacuum atmosphere.

Claim 12. (Cancelled).

13. (Currently Amended) A process for producing an electrophotographic photosensitive member according to claim 9, having a support, at least the surface of which is conductive, and a photoconductive layer formed thereon containing an amorphous material composed chiefly of silicon, which comprises forming the surface of the layer region (A) in the photoconductive layer, carrying out an operation for stopping protuberances from growing at the surface of the layer region (A), and forming a layer region (B) on the layer region (A), wherein; said photoconductive layer has two or more layer regions, and

protuberances in the layer region (A) adjoining to the layer region (B) that is closest to a free surface of the electrophotographic photosensitive member have been stopped from growing at the surface of the layer region (A), and

said operation is carried out while the thickness of each

photoconductive layer region comes to be 3 µm or more to 15 µm or less from the support side,

wherein the photoconductive layer is formed using a support-loading

vacuum chamber, a support-heating vacuum chamber, a reaction vacuum chamber, a support-cooling and -delivery vacuum chamber and a transporting vacuum chamber; the transporting vacuum chamber is moved between the support-loading vacuum chamber and each of the said other vacuum chambers, and connected with the support-loading vacuum chamber and each of the said vacuum chambers via their open-close gates, so that the support can be taken in and out of, and moved between, the transporting vacuum chamber and the support-loading vacuum chamber and the said other vacuum chambers, where; a photoconductive layer region containing an amorphous material composed chiefly of silicon is formed on the support set in the

reaction vacuum chamber, and thereafter the support on which the photoconductive layer region has been deposited is transported to, and set in, a different reaction chamber by means of the transporting vacuum chamber to repeat deposition of a photoconductive layer region containing an amorphous material composed chiefly of silicon.

- 14. (Original) A process for producing an electrophotographic photosensitive member according to claim 13, wherein said transporting vacuum chamber comprises a transporting vacuum chamber which transports the support from the support-loading chamber to the reaction chamber, a transporting vacuum chamber which transports the support with a photoconductive layer region from the reaction chamber to the same or different reaction chamber, and a transporting vacuum chamber which transports the support with photoconductive layer regions from the reaction chamber to the support-delivery chamber.
- 15. (Original) A process for producing an electrophotographic photosensitive member according to claim 13, wherein the support on which a photoconductive layer region has been deposited is transported to a reaction chamber whose inner surfaces have been cleaned, and another photoconductive layer region is superposingly formed thereon.
- 16. (Original) A process for producing an electrophotographic photosensitive member according to claim 13, wherein said photoconductive layer region deposited in one reaction chamber is in a layer thickness of from 3 µm to 15 µm.

- 17. (Original) A process for producing an electrophotographic photosensitive member according to claim 9, wherein the deposition of said photoconductive laver region is repeated a plurality of times to form the photoconductive laver.
- 18. (Currently Amended) A process for producing an electrophotographic photosensitive member according to claim 9; having a support, at least the surface of which is conductive, and a photoconductive layer formed thereon containing an amorphous material composed chiefly of silicon, which comprises forming the surface of the layer region (A) in the photoconductive layer, carrying out an operation for stopping protuberances from growing at the surface of the layer region (A), and forming a layer region (B) on the layer region (A), wherein; said photoconductive layer has two or more layer regions, and

said photoconductive layer has two or more layer regions, and protuberances in the layer region (A) adjoining to the layer region (B) that is closest to a free surface of the electrophotographic photosensitive member have been stopped from growing at the surface of the layer region (A), and

said operation is carried out while the thickness of each

photoconductive layer region comes to be 3 µm or more to 15 µm or less from the support side,

wherein a photoconductive layer region is superposingly formed after
the surface of a photoconductive layer region deposited previously has been treated with
hydrogen plasma.

Claims 19-21. (Cancelled).