In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: df = pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\
df

	df .	_	•					_				
Out[2]:		date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PM10
	0	2002- 04-01 01:00:00	NaN	1.39	NaN	NaN	NaN	145.100006	352.100006	NaN	6.54	41.990002
	1	2002- 04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.85	20.980000
	2	2002- 04-01 01:00:00	NaN	0.80	NaN	NaN	NaN	103.699997	134.000000	NaN	13.01	28.440001
	3	2002- 04-01 01:00:00	NaN	1.61	NaN	NaN	NaN	97.599998	268.000000	NaN	5.12	42.180000
	4	2002- 04-01 01:00:00	NaN	1.90	NaN	NaN	NaN	92.089996	237.199997	NaN	7.28	76.330002
	217291	2002- 11-01 00:00:00	4.16	1.14	NaN	NaN	NaN	81.080002	265.700012	NaN	7.21	36.750000
	217292	2002- 11-01 00:00:00	3.67	1.73	2.89	NaN	0.38	113.900002	373.100006	NaN	5.66	63.389999
	217293	2002- 11-01 00:00:00	1.37	0.58	1.17	2.37	0.15	65.389999	107.699997	1.30	9.11	9.640000
	217294	2002- 11-01 00:00:00	4.51	0.91	4.83	10.99	NaN	149.800003	202.199997	1.00	5.75	NaN
	217295	2002-	3.11	1.17	3.00	7.77	0.26	80.110001	180.300003	2.25	7.38	29.240000

217296 rows × 16 columns

00:00:00

In [3]: df1 = df.fillna(0)
df1

Out[3]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PM10
0	2002- 04-01 01:00:00	0.00	1.39	0.00	0.00	0.00	145.100006	352.100006	0.00	6.54	41.990002
1	2002- 04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.85	20.980000
2	2002- 04-01 01:00:00	0.00	0.80	0.00	0.00	0.00	103.699997	134.000000	0.00	13.01	28.440001
3	2002- 04-01 01:00:00	0.00	1.61	0.00	0.00	0.00	97.599998	268.000000	0.00	5.12	42.180000
4	2002- 04-01 01:00:00	0.00	1.90	0.00	0.00	0.00	92.089996	237.199997	0.00	7.28	76.330002
217291	2002- 11-01 00:00:00	4.16	1.14	0.00	0.00	0.00	81.080002	265.700012	0.00	7.21	36.750000
217292	2002- 11-01 00:00:00	3.67	1.73	2.89	0.00	0.38	113.900002	373.100006	0.00	5.66	63.389999
217293	2002- 11-01 00:00:00	1.37	0.58	1.17	2.37	0.15	65.389999	107.699997	1.30	9.11	9.640000
217294	2002- 11-01 00:00:00	4.51	0.91	4.83	10.99	0.00	149.800003	202.199997	1.00	5.75	0.000000
217295	2002- 11-01 00:00:00	3.11	1.17	3.00	7.77	0.26	80.110001	180.300003	2.25	7.38	29.240000

217296 rows × 16 columns

```
In [4]: df1.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 217296 entries, 0 to 217295
        Data columns (total 16 columns):
             Column
                      Non-Null Count
                                       Dtype
         0
             date
                      217296 non-null
                                       object
             BEN
         1
                      217296 non-null float64
         2
             CO
                      217296 non-null float64
         3
             EBE
                      217296 non-null
                                      float64
         4
                      217296 non-null float64
             MXY
         5
             NMHC
                      217296 non-null float64
         6
                      217296 non-null float64
             NO 2
         7
             NOx
                      217296 non-null float64
         8
                      217296 non-null float64
             OXY
         9
             0_3
                      217296 non-null float64
         10 PM10
                      217296 non-null float64
         11 PXY
                      217296 non-null float64
         12 SO 2
                      217296 non-null float64
                      217296 non-null float64
         13 TCH
                      217296 non-null float64
         14 TOL
         15 station 217296 non-null int64
        dtypes: float64(14), int64(1), object(1)
        memory usage: 26.5+ MB
In [5]: df1.columns
Out[5]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO 2', 'NOx', 'OXY', 'O
        3',
               'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station'],
              dtype='object')
In [6]: | df2 = df1[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
               'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

In [7]: sns.pairplot(df2)

Out[7]: <seaborn.axisgrid.PairGrid at 0x1a2e6aecbb0>

In [8]: sns.distplot(df2['0_3'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='0_3', ylabel='Density'>

In [9]: sns.heatmap(df2.corr())

Out[9]: <AxesSubplot:>

Linear Regression

```
y = df2['TOL']
In [41]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.30)
In [42]: from sklearn.linear_model import LinearRegression
         lr = LinearRegression()
         lr.fit(x_train,y_train)
Out[42]: LinearRegression()
In [43]: |print(lr.intercept_)
         0.15445106913505802
        coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [44]:
         coeff
Out[44]:
               Co-efficient
                 2.658109
           BEN
            CO
                 -0.429622
           EBE
                 1.189738
           MXY
                 0.601485
         NMHC
                 0.601419
          NO_2
                 0.000689
           NOx
                 0.002673
           OXY
                 -0.142393
           O_3
                 -0.002631
          PM10
                 0.004690
           PXY
                 -0.396247
          SO_2
                 -0.010880
           TCH
                 0.084608
```

```
In [45]: prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[45]: <matplotlib.collections.PathCollection at 0x1a293b3c520>


```
In [46]: print(lr.score(x_test,y_test))
```

0.9139589808706485

```
In [47]: lr.score(x_train,y_train)
```

Out[47]: 0.9132416711077419

Ridge and Lasso

```
In [48]: from sklearn.linear_model import Ridge,Lasso
```

```
In [49]: rr = Ridge(alpha=10)
    rr.fit(x_train,y_train)
    rr.score(x_train,y_train)
```

Out[49]: 0.9132416667241228

```
In [50]: rr.score(x_test,y_test)
```

Out[50]: 0.9139588309183644

Lasso

```
In [51]: ls = Lasso(alpha=10)
    ls.fit(x_train,y_train)
    ls.score(x_train,y_train)
```

Out[51]: 0.5649864405066657

```
In [52]: ls.score(x_test,y_test)
Out[52]: 0.5664973165235041
```

ElacticNET regression

```
In [53]: | from sklearn.linear_model import ElasticNet
         es = ElasticNet()
         es.fit(x_train,y_train)
Out[53]: ElasticNet()
In [54]: print(es.coef_)
                                           9.06914606e-01 6.45558025e-01
         [ 1.97785934e+00 -0.00000000e+00
           0.00000000e+00 -0.00000000e+00 4.66685232e-03 0.00000000e+00
          -7.89027482e-04 1.19724155e-03 0.00000000e+00 -8.81212202e-03
           0.00000000e+001
In [55]: |print(es.intercept )
         0.0891927372950092
In [56]: |print(es.score(x_test,y_test))
         0.8954605772559113
In [57]: print(es.score(x train,y train))
         0.8949096910833548
```

LogisticRegression

```
In [58]: from sklearn.linear_model import LogisticRegression
In [59]: feature_matrix = df2.iloc[:,0:15]
    target_vector = df2.iloc[:,-1]
In [60]: feature_matrix.shape
Out[60]: (217296, 15)
In [61]: from sklearn.preprocessing import StandardScaler
In [62]: fs = StandardScaler().fit_transform(feature_matrix)
```

```
In [63]: logs = LogisticRegression()
         logs.fit(fs,target vector)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:
         763: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
         t-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
         sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
           n iter i = check optimize result(
Out[63]: LogisticRegression()
In [64]: observation = [[1.4,1.5,1.6,2.7,2.3,3.3,2.3,4.1,2.3,4.2,1.2,2.1,4.3,6,2.2]]
         prediction = logs.predict(observation)
In [35]: |print(prediction)
         [28079099]
In [36]: logs.classes
Out[36]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                28079017, 28079018, 28079019, 28079021, 28079022, 28079023,
                28079024, 28079025, 28079035, 28079036, 28079038, 28079039,
                28079040, 28079099], dtype=int64)
In [37]: from sklearn.model selection import train test split
         x_train,x_test,y_train,y_test = train_test_split(feature_matrix,target_vector,t
In [38]: |print(logs.score(x_test,y_test))
         0.03959256929850128
In [39]: |print(logs.score(x_train,y_train))
         0.04062271953296035
```

Conclusion

Ridge regression is bestfit model

Ridge regression is best fit model for dataset madrid_2001. The score of x_train,y_train is 0.9139589808706485 and x_test and y_test score is 0.9132416711077419

In []:			