MA 101 - Calculus I Problem Sheet: Series

August 24, 2009

1. Discuss the convergence / divergence of the following series:

(i)
$$u_n = \left(\frac{1}{\sqrt{2}}\right)^r$$

(i)
$$u_n = \left(\frac{1}{\sqrt{2}}\right)^n$$
 (ii) $u_n = (-1)^{n+1} \frac{3}{2^n}$ (iii) $u_n = \sqrt{n+1} - \sqrt{n}$

(iii)
$$u_n = \sqrt{n+1} - \sqrt{n}$$

(iv)
$$u_n = e^{-2r}$$

(v)
$$u_n = \frac{2}{10^n}$$

(iv)
$$u_n = e^{-2n}$$
 (v) $u_n = \frac{2}{10^n}$ (vi) $u_n = \frac{2^n - 1}{3^n}$

(vii)
$$u_n = \frac{\cos n\pi}{5^n}$$

(vii)
$$u_n = \frac{\cos n\pi}{5^n}$$
 (viii) $u_n = \frac{n!}{1000^n}$ (ix) $u_n = \ln \frac{n}{n+1}$

(ix)
$$u_n = \ln \frac{n}{n+1}$$

(x)
$$u_n = \left(\frac{e}{\pi}\right)$$

(x)
$$u_n = \left(\frac{e}{\pi}\right)^n$$
 (xi) $u_n = \frac{n!}{(2^n)^3}$ (xii) $u_n = \frac{n^3}{2^n}$

(xii)
$$u_n = \frac{n^3}{2^n}$$

(xiii)
$$u_n = \frac{1}{n\sqrt{n+1}}$$
 (xiv) $u_n = \frac{\sin^2 n}{n^2}$ (xv) $u_n = \frac{e^{n\pi}}{\pi^{ne}}$

(xiv)
$$u_n = \frac{\sin^2 n}{n^2}$$

(xv)
$$u_n = \frac{e^{n\pi}}{\pi^{ne}}$$

2. Show that the following series diverge:

(i)
$$(-1)^n$$

(i)
$$(-1)^n$$
 (ii) $\frac{n}{n+1}$ (iii) $\frac{n}{\sqrt{n^2+1}}$ (iv) $\cos\frac{n\pi}{2}$

(iv)
$$\cos \frac{n\pi}{2}$$

3. Determine the conditional / absolute convergence of the following series:

$$(i) u_n = \frac{(-1)^n}{\ln n^2}$$

(ii)
$$u_n = \frac{(-2)^n}{n!}$$

(i)
$$u_n = \frac{(-1)^n}{\ln n^2}$$
 (ii) $u_n = \frac{(-2)^n}{n!}$ (iii) $u_n = \frac{(-1)^n}{n \ln n^2}$

(iv)
$$u_n = \frac{1}{\sqrt{n}} - \frac{1}{n}$$
 (v) $u_n = \frac{(-3)^n}{n!}$ (iv) $u_n = \frac{\cos n\pi}{\sqrt{n}}$

$$(\mathbf{v}) \ u_n = \frac{(-3)^n}{n!}$$

(iv)
$$u_n = \frac{\cos n\pi}{\sqrt{n}}$$

4. Let $p \ge 0$ and consider the series $\sum \frac{(-1)^{n-1}}{n^p}$. Determine for what values of p is the series conditionally / absolutely convergent.

1