Introduction to Relational Databases

- Licence 3 Informatique, Université Lille 1
- Cours 3/12
- Topic: Introduction to SQL
 - Data Definition Language
 - Data types
 - Table creation
 - Constraints

Paraboschi est l'auteur des transparents de ce cours avec fond bleu, comme celui-ci. Traductions de l'italien et anglais, par C. Kuttler.

Atzeni, Ceri e Paraboschi

© S. Paraboschi (original), C. Kuttler (translation)

Introduction to SQL: Data Definition Language

2

SQL

· Structured Query Language

- · Consists of:
 - DDL (Data Description Language): definition of domains, relations, indexes, authorizations, views, constraints, procedures, triggers
 - DML (Data Manipulation Language): query language, update language, transactional commands
- History:
 - First proposal: SEQUEL (IBM Research, 1974)
 - First commercial implementation in SQL/DS (IBM, 1981)
 - Standardization (1986-2003)

3

Standardization of SQL

- The standardization has been of utmost importance for the success of SQL (mainly within ANSI and ISO)
 - From 1983, it is a standard de facto
 - SQL-1: SQL-86 (basic constructs), SQL-89 (referential integrity constraints)
 - SQL-2: SQL-92 most adopted version so far
 - SQL-3: SQL:1999 and SQL:2003 most complete version, with triggers, recursive queries, objects, external functions, extensions for Java and XML
 - 2006,2008,2011,2016: check Wikipedia
- In SQL-2 there are three levels:
 - Entry SQL (more or less equivalent to SQL-89)
 - Intermediate SQL
 - Full SQL
- Most systems are compliant to the Intermediate level and offer proprietary extensions for advanced functions

Expressiveness of commercial systems versus SQL standard

Conventions

- terms use this font
- Variables use this font
- [square brackets]: optional term, at most once
- {curly brackets }: optional term, may be repeated
- vertical bars | | one of several terms separated by the bars must appear
- (parenthesis) : SQL keywords

Data types

- Data types specify the possible values, for each attribute
 - Similar to type definitions in programming languages
- Two categories
 - Built-in (predefined by the SQL standard)
 - SQL-2 distinguishes 6 families
 - user-defined

7

Built-in data types, 1

- · Characters:
 - Single characters or strings
 - Strings can have variable lengths
 - Can use character sets that differ from the defaults (e.g., Latin, Greek, Cyrillic, etc.)
 - character[varying][(Length)]
 [character set CharacterFamily]
 - Can use more compact alternatives as char and varchar, respectively for character and character varying
 - Examples:
 - char(6)
 - varchar(50)

8

Built-in data types, 2

- Bit
 - Boolean values (true/false), single or in a sequence, (the sequence may be of variable length)
 - Syntax:
 - bit[varying][(Length)]
 Examples: bit(100), varbit(680)
- · Precise numeric types
 - Numeric values: integers or reals
 - 4 alternatives:

```
numeric[(Precision[,Scale])]
decimal[(Precision[,Scale])]
integer
smallint
```

Built-in data types, 3

- Approximate numeric types
 - Approximate real values
 - Based on a floating point representation: integer part + exponent

```
float[(Precision)]
real
double precision
```

10

Built-in data types, 4

- · Time points
 - Allow for fields:

```
date(fields month, day, year)
time[(Precision)][with time zone]:(fields hour, minute,
second)
timestamp[(Precision)][with time zone]
with timezone, one has two additional fields timezone_hour and
timezone minute
• Example: timestamp(4) with time zone
2-30-2004 3-13-42.0564 5-30
```

Time intervals

interval FirstTimeUnit [to LastTimeUnit]

- We distinguish 2 groups of time units groups:
 - · year, month
 - · day, hour, minute, second
- Examples:
 - interval year to month
 - · interval second

Built-in data types, 5

- New built-in types in SQL-3
 - Boolean
 - Bigint
 - BLOB Binary Large OBject
 - CLOB Character Large Object
- SQL:1999 also introduces constructors (REF, ARRAY, ROW; they go beyond the relational model and we won't talk about them)

User defined data types

- Similar to type definitions in programming languages: for an object, define the values it may take
- · A data type is specified by
 - name
 - elementary type
 - default value
 - constraints
- Syntax:
 - create domain DomainName as ElementaryDomain
 [DefaultValue][Constraints]
- · Example:

create domain Grade as smallint default null

- · Comparison to programming languages
- + constraints, default values, richer basic types
 - approved constructors (only renaming of types) 13

Default values for types

- Fix the value of an attribute, when no value is specified as a tuple is inserted
- Syntax:

default < GenericValue | user | null >

- GenericValue represents a value compatible with the type, given by a constant or expression
- user is the login of the user that executes the command

14

"null" values

Null

is a polymorphic value (that is included in all types), and means that a value is unknown

- the value exists in reality, but is unknown to the database (ex.: birthday)
- the value doesn't apply
- (ex.: driver's license number for children)
- it is unknown if the value is unknown, or used (ex.: driver's license number for adults)

15

Definition of application domains

create domain DailyPrice as decimal(3) default 1,00 not null

16

Definition of schemas in SQL

Definition of schemas

- A schema is a collection of objects:
 - domain, tables, indexes, assertions, views, privileges
- · Each schema has a name and an owner
- Part of the standard SQL-2. Took long to be implemented! In Postgres since version 7.
- Syntax:

create schema[SchemaName]
[[authorization]Authorization]
{SchemaElementDefinition}

17

Table creation

- Each SQL table consists of:
 - an ordered set of attributes
 - a set of constraints (may be empty)
 - create table command
 - Defines the schema of a relation, by creating an empty instance
- Syntax:

```
create table TableName

(
AttributeName Domain [ DefaultValue ] [ Constraints ]
{, AttributeName Domain [ DefaultValue ] [ Constraints ] }
[ OtherConstraints ]
)
```

19

create table example (1)

```
create table Student
( Sid char(6) primary key,
  Name varchar(30) not null,
  City varchar(20),
  Major char(3))
```

20

create table examples (2)

```
create table Exam
( Sid char(6),
  Cid char(6),
  Date date not null,
  Grade smallint not null,
  primary key(Sid,Cid) )

create table Class
( Cid char(6) primary key,
  Title varchar(30) not null,
  Teacher varchar(20) )
```

-

Integrity constraints

- Integrity constraints: conditions that must be satisfied by all instances of the data base
- · Constraints on a single relation
 - not null (for one attribute)
 - primary key(implies not null);
 - For a single attribute:
 - primary key, after the type
 For several attributes:
 - primary key(Attribute{, Attribute })
 - unique: key candidates, syntax as for unique
 - check: will be explained later (can represent generic predicates in SQL)

22

Examples of integrity constraints

Each pair of Name and FirstName uniquely identifies a tuple

Name character(20) not null,
FirstName character(20) not null,
unique(Name,FirstName)

• Note the difference to the following definition (more restrictive):

Name character(20) not null unique, FirstName character(20) not null unique, Referential integrity

Example: Student - Exam

The orphan problems

How to deal with orphans?

- After modification of the parent table, some operations are performed on the child table
- Violation can be introduced by:
 - (1) updates of the referred attribute
 - (2) deletion of tuples
- · Possible reactions:
 - $^{-}$ cascade: propagates the modification
 - set null: cancels the referring attribute
 - set default: assigns the default value to the tuple
 - no action: makes the modification impossible
- The reaction can depend on the kind of event ; Syntax:

on < delete|update>
 <cascade|set null|set default|no²⁷action>

Dealing with orphans: deletion

If a tuple is deleted within **Student**, what happens to his/her exams?

- cascade the Student's exams are also deleted
- set null the Sid within Exam is set to null
- set default
- the Sid within Exam is set to the default value
- no action
 The deletion of tuples within Student is forbidden

28

Dealing with orphans: update

If an Sid is modified within **Student**, what happens to his/her exams?

- cascade
 - the Sid of the students within Exam is also modified
- set null
 - the Sid of the students within Exam is set to null
- set default
 - the Sid of the students within Exam is set to the default value
- no action the modification of the Sid within Student is forbidden

Syntax for integrity constraints

- Attributes that are foreign keys inside the child relation must have values present as key values inside the father relation
- references and foreign key for referential integrity constraints;
- Syntax:
 - for one attribute
 references after Domain
 - for one or more attributes
 foreign key(Attribute {, Attribute })
 references ...

Definition: inside the child relation

```
create table Exam
( ....
foreign key Sid
references Student
on delete cascade
on update cascade )
```

Definition: inside the child relation

```
create table Exam
( Sid char(6) references Student
on delete cascade
on update cascade,
.....)
```

31

32

It is allowed to have multiple fathers!

```
create table Exam
( ....
  primary key(Sid,Cid)
  foreign key Sid
  references Student
    on delete cascade
    on update cascade
  foreign key Cid
  references Class
    on delete no action
    on update no action )
```

An incorrect instance

Sid	Name	City	Majo	r			
123							
415				$\neg \setminus$			
702					X		Exam
					Cid		
				Sid		Date	Grade
			1	123	1	7-9-15	30
				123	2	8-1-16	28
violates the key constraint —				100	_	1-8-15	
				123	2	1	28
				702	2	7-9-16	20
violates the NULL constraint				702	1	NULL	NULL
Violates the NOLL constraint							
violates the ref. integrity_				714	1	7-9-15	28
		•	- '		+	34	