

Data Sheet

GoForce 4000

Media Processor

CONFIDENTIAL PROVIDED UNDER NDA

This page left intentionally blank

Contents

Chapter	r 1 Overview	1-1
1.1	Introduction	1- 1
1.2	Features	1- 3
1.2	1 Catal C3	
Chapter	r 2 Signals	2-1
2.1	Introduction	2- 1
2.2	Pin Types and Conventions Used	2- 1
2.3	Power and Ground Pins	2- 1
2.4	Host Bus Interface Pins	2- 2
2.5	Video Input Pins	2- 6
2.6	Flat Panel Interface Pins	2- 7
2.7	Clock Pins	2- 9
2.8	JTAG Interface Pins	2- 10
2.9	Secure Digital (SD) Interface Pins	2- 11
2.10	Miscellaneous Pins	2- 12
Chapter	r 3 Specifications	2.1
Chapter	5 Specifications	3-1
3.1	Absolute Maximum Ratings	3- 1
3.2	Normal Operating Conditions	3- 1
3.3	DC Characteristics	3- 2
3.3	3.3.1 I/O Pin DC Specifications	
	3.3.2 I/O Pin Load Capacitance	3-2
3.4	AC Characteristics	3- 3
	3.4.1 Clock	
	3.4.2 Reset	
	3.4.3 Power Sequencing	
	3.4.3.1 GoForce 4000 Rev A Power Sequencing	
	3.4.3.2 GoForce 4000 Rev B Power Sequencing	
	3.4.4 Host Interface	
	3.4.4.1 Type A Host Interface	2-27
	3.4.4.3 Type B Host Interface	
	3.4.4.4 Type B Host Interface Timing Parameters	
	3.4.4.5 Type C Host Interface	
	3.4.4.6 Type C Host Interface Timing Parameters	
	3.4.5 Flat Panel Interface	3-73
	3.4.6 Video Input Interface	3-74

3.5	Packag	e Specifica	tions	3- 75
			cal Drawings	
	3.5.2	Ball Map		3-77
		3.5.2.1	Alphabetic Signal to Ball Mapping	3-78
		3.5.2.2	Alphabetic Ball to Signal Mapping	3-79
3.6	Solder	Reflow		3- 80

List of Tables

Table 2.1	Pin Types	2-1
Table 2.2	Power and Ground Pins	
Table 2.3	Host Bus Interface Pins Overview	2-2
Table 2.4	Type A Style Bus Interface Pins	2-3
Table 2.5	Type B Style Bus Interface Pins	
Table 2.6	Type-C Style Bus Interface Pins	
Table 2.7	Video Input Pins	2-6
Table 2.8	FPI Pins	
Table 2.9	Clock Pins	2-9
Table 2.10	Description of the JTAG Interface Pins	. 2-10
Table 2.11	Description of the Secure Digital (SD) / GPIO[65:60] Pins	. 2-11
Table 2.12	Miscellaneous Pins	. 2-12
Table 3.1	Absolute Maximum Ratings	
Table 3.2	Normal Operating Conditions	
Table 3.3	DC Characteristics	
Table 3.4	Pin Load Capacitance	3-2
Table 3.5	AC Test Conditions	3-3
Table 3.6	AC Timing Characteristics - Crystal Input Clock (OSCFI)	3-4
Table 3.7	AC Timing Characteristics - External Oscillator Clock Input (OSCFO)	
Table 3.8	AC Timing Characteristics - Reset	
Table 3.9	GoForce 4000 Rev A Power Sequencing	
Table 3.10	GoForce 4000 Rev B Power Sequencing Timing	
Table 3.11	PORn Timing Parameters	3-7
Table 3.12	Type A, B, and C Host Interface Timing Diagrams List	
Table 3.13	Type A Byte-enable Signals for Different Size Host Busses	
Table 3.14	Register Write D[15:0] Bit Mapping for Addr* in Figure 3.18	. 3-20
Table 3.15	Register Read D[15:0] Bit Mapping for Addr* in Figure 3.19	
Table 3.16	Memory Write D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.20	
Table 3.17	Memory Read D[15:0] Bit Mapping for Addr1*and Addr2* in Figure 3.21	
Table 3.18	Register Read D[15:0] Bit Mapping for Addr* in Figure 3.22	. 3-24
Table 3.19	Memory Read D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.23	
Table 3.20	Register Burst Write D[15:0] Bit Mapping for Addr* in Figure 3.24	. 3-26
Table 3.21	Memory Write D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.25	. 3-27
Table 3.22	Type A Host Interface Timing Parameters	. 3-32
Table 3.23	Type B Data Strobe (Byte Enable) Signals for Different Size Host Busses	. 3-35
Table 3.24	Register Write D[15:0] Bit Mapping for Addr* in Figure 3.34	. 3-40
Table 3.25	Register Read D[15:0] Bit Mapping for Addr* in Figure 3.35	. 3-41
Table 3.26	Memory Write D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.36	
Table 3.27	Memory Read D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.37	. 3-43
Table 3.28	Type B Host Interface Timing Parameters	. 3-46
Table 3.29	Type C Byte-enable Signals for Different Size Host Busses	
Table 3.30	Register Write D[15:0] Bit Mapping for Addr* in Figure 3.50	. 3-59
Table 3.31	Register Read D[15:0] Bit Mapping for Addr* in Figure 3.54	
Table 3.32	Memory Write D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.52	
Table 3.33	Memory Read D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.53	
Table 3.34	Register Read D[15:0] Bit Mapping for Addr* in Figure 3.54	
Table 3.35	Memory Read D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.55	. 3-64
Table 3.36	Register Write D[15:0] Bit Mapping for Addr* in Figure 3.56	. 3-65
Table 3.37	Memory Write D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.57	
Table 3.38	Type C Host Interface Timing Parameters	. 3-71
Table 3.39	AC Timing Characteristics - Panel Output Timing	
Table 3.40	Video Parallel Input Clock Timing	
Table 3.41	Symbol and Dimension Call Outs	
Table 3.42	Alphabetic Signal to Ball Mapping	. 3-78
Table 3.43	Alphabetic Ball to Signal Mapping	
Table 3.44	Reflow Profile Parameters	. 3-80

List of Figures

Figure 3.1	AC Test Timing	3-3
Figure 3.2	Reference Clock Timing	
Figure 3.3	Reset Timing	3-4
Figure 3.4	GoForce 4000 Rev A Power Sequencing	
Figure 3.5	GoForce 4000 Rev B Power Supply Sequence	
Figure 3.6	GoForce 4000 Rev B Power-off Sequence	3-6
Figure 3.7	GoForce 4000 Rev B PORn Power On and Off Sequence with BVDD	3-7
Figure 3.8	WRn-controlled Write, Type A Host Interface, 8bit and 16bit Direct Addressing.	3-10
Figure 3.9	WRn-controlled Write, Type A Host Interface, 32bit Direct Addressing	3-11
Figure 3.10	CSn-controlled Write, Type A Host Interface, 8bit and 16bit Direct Addressing	3-12
Figure 3.11	CSn-controlled Write, Type A Host Interface, 32bit Direct Addressing	3-13
Figure 3.12	RDn-controlled Read, Type A Host Interface, 8bit and 16bit Direct Addressing.	
Figure 3.13	RDn-controlled Read, Type A Host Interface, 32bit Direct Addressing	3-15
Figure 3.14	CSn-controlled Read, Type A Host Interface, 8bit and 16bit Direct Addressing	3-16
Figure 3.15	CSn-controlled Read, Type A Host Interface, 32bit Direct Addressing	3-17
Figure 3.16	Page Mode Read, Type A Host Interface, 8bit and 16bit Direct Addressing	
Figure 3.17	Page Mode Read, Type A Host Interface, 32bit Direct Addressing	3-19
Figure 3.18	Register Write, Type A Host Interface, Indirect Addressing	
Figure 3.19	Register Read, Type A Host Interface, Indirect Addressing	
Figure 3.20	Memory Write, Type A Host Interface, Indirect Addressing	
Figure 3.21	Memory Read, Type A Host Interface, Indirect Addressing	
Figure 3.22	Register Burst Read, Type A Host Interface, Indirect Addressing	
Figure 3.23	Memory Burst Read, Type A Host Interface, Indirect Addressing	
Figure 3.24	Register Burst Write, Type A Host Interface, Indirect Addressing	
Figure 3.25	Memory Burst Write, Type A Host Interface, Indirect Addressing	3-27
Figure 3.26	Register/Memory Burst Write, Type A Host Interface, 8bit and 16bit Direct Addressing	3-28
Figure 3.27	Register/Memory Burst Write, Type A Host Interface, 32bit Direct Addressing	
Figure 3.28	Register/Memory Burst Read, Type A Host Interface, 16bit and 8bit,	
F: 2.20	Direct Addressing	
Figure 3.29	Register/Memory Burst Read, Type A Host Interface, 32bit, Direct Addressing	
Figure 3.30	CS-controlled Write, Type B 8bit and 16bit Host Interface, Direct Addressing	
Figure 3.31	CS-controlled Write Operation, Type B 32bit Host Interface, Direct Addressing.	
Figure 3.32	CS-controlled Read, Type B 8bit and 16bit Host Interface, Direct Addressing	
Figure 3.33	CS-controlled Read, Type B 32bit Host Interface, Direct Addressing	
Figure 3.34	Register Write, Type B Host Interface, Indirect Addressing	
Figure 3.35	Register Read, Type B Host Interface, Indirect Addressing	
Figure 3.36 Figure 3.37	Memory Write, Type B Host Interface, Indirect Addressing	
Figure 3.38	Memory Read, Type B Host Interface, Indirect Addressing	3-43
rigule 3.36	Direct Addressing	2.11
Figure 3.39	Register/Memory Page Read, Type B 32bit Host Interface, Direct Addressing	
Figure 3.40	WEn-controlled Write, Type C 8bit and 16bit Host Interface, Direct Addressing	
Figure 3.41	WEn-controlled Write, Type C 32bit Host Interface, Direct Addressing	
Figure 3.42	CSn-controlled Write, Type C 8bit and 16bit Host Interface, Direct Addressing	
Figure 3.43	CSn-controlled Write, Type C 32bit Host Interface, Direct Addressing	
Figure 3.44	OEn-controlled Read, Type C 8bit and 16bit Host Interface, Direct Addressing	
Figure 3.45	OEn-controlled Read, Type C 32bit Host Interface, Direct Addressing	
Figure 3.46	CSn-controlled Read, Type C 8bit and 16bit Host Interface, Direct Addressing	
Figure 3.47	CSn-controlled Read, Type C 32bit Host Interface, Direct Addressing	
Figure 3.48	Page-Mode Read, Type C 8bit and 16bit Host Interface, Direct Addressing	
Figure 3.49	Page-Mode Read, Type C 32bit Host Interface, Direct Addressing	
Figure 3.50	Register Write, Type C Host Interface, Indirect Addressing	
Figure 3.51	Register Read Operation, Type C Host Interface, Indirect Addressing	
Figure 3.52	Memory Write, Type C Host Interface, Indirect Addressing	
Figure 3.53	Memory Read, Type C Host Interface, Indirect Addressing	
	, , , , , , , , , , , , , , , , , , , ,	

Figure 3.54	Register Burst Read, Type C Host Interface, Indirect Addressing	3-63
Figure 3.55	Memory Burst Read, Type C Host Interface, Indirect Addressing	3-64
Figure 3.56	Register Burst Write, Type C Host Interface, Indirect Addressing	3-65
Figure 3.57	Memory Burst Write, Type C Host Interface, Indirect Addressing	3-66
Figure 3.58	Register/Memory Burst Write, Type C Host 8bit and 16bit Interface,	
	Direct Addressing	3-67
Figure 3.59	Register/Memory Burst Write, Type C Host 32bit Interface, Direct Addressing	
Figure 3.60	Register/Memory Burst Read, Type C 8bit and 16bit Host Interface,	
	Direct Addressing	3-69
Figure 3.61	Register Memory Burst Read, Type C 32bit Host Interface, Direct Addressing .	
Figure 3.62	Flat Panel Output Timing	3-73
Figure 3.63	Video Parallel Input Clock Timing	3-74
Figure 3.64	GoForce 4000 10 x 10 mm Package Mechanical Drawing	3-75
Figure 3.65	GoForce 4000 Ball Map	3-77
Figure 3.66	Solder Reflow Profile	3-80

This page left intentionally blank

Revision History

Date	Revision	Description	
11/14/03	Advance Release, v01	First version of Data Sheet for SC4.	
12/12/03	Advance Release, v02	Chapter 3: Added mechanical drawing. Chapter 2: Removed voltage level from pin description/power and ground planes. Put note with each section telling which power plane was used with the pins in that section. Added new VI pins. Added detailed descriptions to pin names (in tables) - descriptions were formerly part of Technical Manual. This consolidated the pin/signal description information.	
1/30/04	Advance Release, v03	Chapter 2: Added Byte Enable (Write Enable) [3:2] signal information for Type A, Type B, and Type C interfaces: was missing from v02. Chapter 3: Added: Type A, Type B, and Type C Host Interface Tlming Dlagrams, timing parameter tables.	
2/9/04	Advance Release, v04	Chapter 3: New mechanical drawing: changes to several dimensions, shown in Table 3.43. Added Table 3.10: lists timing diagrams and pages for customer reference. Chapter 2: BGP0 description: Added AUDIOCLK: for synchronization of audio and video when MPEG-4 encoding. Added: BGP0 can be used to test clock signals.	
3/9/04	Advance Release, v05	Chapter 2: Video Input Pins: Was: VGP[4:3] used as ICSK and ICSDA. This was incorrect (change to registers as well.) Is: VGP1 = ICSK when SSP enabled, otherwise general purpose video pin. VGP2 = ICSDA when SSP enabled, otherwise general purpose video pin. Ch 3: TImings: spec change for Trdl and Tracc to: 4*mclk + 35 ns (memory read) 45 ns (register read) Tds = 20 ns. Indirect Timing Diagrams: Register Mapping: D[2], D[1], and D0 changed (corrected) for ADDR2 and ADDR3. Memory Mapping: Added A19 to tables, was missing. OSCI/OSCO: oscillation frequency range changed was: 2 to 6 MHz ls: 2 to 13 MHz	

Date	Revision	Description
4/19/04	Advance Release, v06	Chapter 3: Figure 3.23, 3.25, and 3.41: each of these is a direct addressing timing diagram. The note below each diagram states, "To perform Burst Read operations as shown in Figure 3.41 set DC01[8] = 1." This is not correct. Direct addressing does not need auto-incrementing, which is enabled by DC01[8]. The note was removed. Changes to timing diagrams: All references to Burst/Page mode (above diagrams) were removed and replaced with Burst. These are burst timings, not Burst/Page timings. Timing definitions type A: Removed: Twrlaind, Twrasidn, Twrldind, Twrdsind, Twrhaind, Twrlaind, and Twrasind. Not used. Changed: Twras to be defined with reference to the falling edge, not rising edge. Timing definitions type B: Removed: Tasash, Twrasind, Twrlaind, and Twrldind. Changed: Twras to be defined with reference to the falling edge, not rising edge. Timing definitions type C: Removed: Twrlaind, Twrasind, and Twrldidn Changed: Twras to be defined with reference to the falling edge, not rising edge. Removed: Tj, junction temperature, information: is not useful data. Timing Diagrams: Corrections to diagrams. Many showed ASn transitioning after CSn, which was wrong. Changed to show ASn transitions first. Setup time parameters corrected to match. Corrections to timing diagrams caused some timing labels to be deleted, some to be moved. Please refer to all timing diagrams of this version, v06, to ensure use of correct timing diagrams. Removed all Type B Burst Timings: not supported. Corrected waveforms where Address was valid after CSn/WRn, etc. Should go valid before. Removed Tdn from all Read diagrams.
6/04/04	Preliminary Release, v07	Flat Panel GPIOs: FGP13 and FGP14 were missing (chapter 2), Table 2.8. Chapter 3: Type A, Type B, and Type C Host Interface Timing parameters were updated, format of tables changed for legibility.
6/24/04	Preliminary Release, v08	Chapter 2: Corrected typo in Table 2.12, Miscellaneous Pins. BGP3 information was missing. An extra line in the table between the MD[2:0] and corresponding BGP pin information made it look like MD[2:0] and BGP[3:1] were on different pins (balls); they are not. Added note to Table 2.9, Clock Interface Pins: The external clock source (NOT the external crystal - this is when the crystal is bypassed) can be in the 2 MHz to 50 MHz range.
8/17/04	Preliminary Release, v09	Changed all references to VCLK max frequency from 72 MHz to 54 MHz. Changed all references to VCLK min cycle time from 13.9 ns to 18.5 ns. (See Page 1-3 under VI features, Table 2.7, and Table 3.38.) Removed fps references.
9/24/04	Preliminary Release, v10	Section 3.4.4, Table 3.38: VCLK pulse width specified for low and high pulse width separately. Previously min pulse width was only true for low pulse. VCLK rise/fall transition time was on same level in table as VCLK pulse width and made it look like the max value was 2 ns. VCLK rise/fall transition time was removed, low pulse width is 6 ns min, and high pulse width is 10.5 ns min.
10/22/04	Preliminary Release, v11	Table 3.3: Changed VDD to VDDcore for clarity. (Not a change, just better explanation.) Removed all references to Twraswaitn in chapter 3: It is an undefined and uneeded timing parameter. Removed Idd value: it is TBD (Table 3.3) Added GoForce 4000 Rev B Silicon information
11/17/04	Preliminary Release, v12	Table 3.38: Rev A/Rev B parameters were not clearly spec'd. Clarified.

Date	Revision	Description	
11/29/04	Preliminary Release, v13	Chapter 3: Value for Tracc has a value added, the same in all 3 host interface types: Tracc: Added timing value for FIFO Status Registers	
03/23/05	Preliminary Release, v14	Chapter 3: Added information for RevB power sequencing: Power supply, power off, and PORn sequencing.	
04/06/05	Preliminary Release, v15	Chapter 3: Figure 3.63: Changed parameters for Tpvcw to show Tpvcwl and Tpvcwh (low and high, respectively.) Table 3.40: Added rev B information to timing parameters for Tpvcwl and Tpvcwh. Previously showed only rev A values. Added Tpvct: VCLK rise/fall transition times. (They are equal.)	
08/16/05	v16	Chapter 3: Added note (below Table 3.40) defining requirements for Tpvct period.	
12/08/05	v17	Chapter 3: Section 3.4.3.2 Table 3.10: Changed Tmin for power on sequencing (delay between CVDD power on and the remaining power supplies) to 1 ms. Removed Typical and Maximum columns from the table: these do not apply.	

This page left intentionally blank.

Chapter 1 Overview

1.1 Introduction

NVIDIA's® GoForce™ products set the standard for high performance, low power media processors for advanced multi-media handheld devices. The GoForce 4000 is the latest entry in the product line and enables the user to capture, view and share high quality images and video anytime, anywhere with the device they always carry with them.

Creating a high resolution, fluid-motion video used to require a camcorder. The GoForce 4000 makes it possible to capture high quality video with a cell phone. A hardware-based MPEG-4 encoder captures video, using a proprietary diamond search algorithm and hardware rate control which produce high quality video with a minimum of artifacts, even at low bit rates. Software-based solutions running on a CPU dissipate up to 10 times as much power; and may still not equal the frame rate, resolution, or visual quality provided by the GoForce 4000.

A hardware-based video decoder allows you to watch the video you just recorded, or any other MPEG-4 clip or streaming video. As with the encoder, handling the computationally intensive operations in hardware dramatically extends the battery life of the handheld device. This could mean the difference between being able to watch just a single music video on a CPU-based solution, and an entire movie on GoForce 4000. Not only will the video play back longer, it can be scaled and rotated to fit your screen with the video scaler, and contain fewer visible artifacts after passing through post processing filters, which incorporate deblocking and deringing.

In addition to recording and watching video, the full hardware codec in the GoForce 4000 makes video conferencing possible anytime, anywhere.

Removable storage is especially important in handheld devices for archiving and transferring megapixel images and high quality video clips. To meet this need, the GoForce 4000 features an integrated SD/SDIO host controller that supports both 1-bit and 4-bit interfaces. In addition to storing photographic quality images, SD cards can also be used to play back video clips, movie trailers, TV shows, or even full length movies which were recorded on another device. The SDIO slot may be used to enable wireless connections, such as Bluetooth, via card.

To show as much information as possible on the screen, the GoForce 4000 is designed to support an industry-leading VGA (640x480) resolution LCD, at 16-bpp using only an embedded frame buffer. Double buffering is supported at resolutions up to HVGA. Over 75 different models of LCD displays are supported by a programmable display interface which is capable of handling new displays as they become available.

The GoForce 4000 supports 3MP cameras with resolutions up to 2048x1536, for true photographic-quality image capture with preview. No external crystal or oscillator is required to drive the camera when it is connected to the GoForce 4000, saving both board space and cost.

Provided under NDA Introduction

The enhanced 8-bit ITU-R 656-compliant Video Input (VI) supports both CCD and CMOS camera modules. A video hardware processing engine handles both color space conversion and image scaling. During decimation, horizontal averaging and low-pass filtering are performed, in addition to vertical averaging, to provide a smooth preview image, free of artifacts. Camera programming and control is supported by a synchronous serial bus (SSB) interface. This provides such advantages as allowing the resolution of the camera to be changed quickly, enabling the user to preview at a lower resolution (for increased frame rates and reduced camera power consumption), while capturing the final image at the highest possible quality.

To create a high quality camera phone, the GoForce 4000 controller offers advanced filtering features to give a crisp preview image. The fine-grained 8X digital zoom functionality of GoForce 4000 is comparable to that of digital still camera. Picture compositing, album, and other camera applications are possible at amazing speed.

The video processing engine is coupled with a JPEG encoder capable of encoding still images with 3MP resolution. The computationally intensive JPEG decoding task is handled by a dedicated hardware engine which can decode images with amazing speed. To capture motion video, the GoForce 4000 JPEG codec can record and playback motion JPEG.

The GoForce 4000 contains an industry leading 640 KB of embedded SRAM. The size of this internal memory was carefully selected to support all of the advanced functions, from driving a VGA display to video conferencing at CIF resolution video or capturing a 3MP image. Embedded memory uses dramatically less power than external memory, provides significantly higher bandwidth and performance, and saves both board space and system cost.

The host bus interface of GoForce 4000 is both flexible and fast. It provides an 8, 16, or 32-bit asynchronous interface that supports both direct and indirect addressing modes. ARM® and Dragonball™ type processor interfaces are supported.

The GoForce 4000 flexible clocking features allow each module in the chip to operate at a different frequency. This means that each hardware engine needs to run only as fast as required, at any given time, to accomplish its tasks. This, along with a feature that automatically turns off unused stages of pipelines, dramatically reduces power consumption. Additionally, a digital bypass mode means the GoForce 4000 can use a clock generated by a baseband or CPU which can eliminate the need for an external crystal or oscillator.

The GoForce 4000 brings true photographic-quality 3MP imaging and camcorder-quality CIF movie capture and playback to handheld devices such as cell phones and PDAs. Video conferencing at QCIF resolution can now be done anywhere, anytime. Proprietary algorithms and filtering techniques result in superb image quality, both during image preview and video playback. VGA resolution LCDs are supported from an internal frame buffer. A built-in interface for SD cards let you share and store multi-media content. Embedded memory, 0.15µ low-leakage process, flexible clocking, and dedicated hardware engines provide all these high performance features while actually reducing the overall power consumption of the system.

1.2 Features

♦ MPEG-4 / H.263 Hardware Codec

- Full duplex
- MPEG4 Simple Profile, Level 1, 2, 3
- H.263 support
- Back-end MPEG4 video processing including hardware color space conversion and image scaling
- De-blocking and de-ringing filters to
- reduce the visibility of compression
- artifacts during playback

♦ JPEG Hardware Codec

- Motion JPEG capture/playback for VGA resolution
- Low shutter lag (two frame maximum)
- Composite, framing, and overlay
- Thumbnail support (store both image and thumbnail in same file)
- Hardware Huffman decode for JPEG
- Programmable Q-table
- Hardware DCT, RLE, and Huffman encoding
- Output from JPEG Decode to host CPU interface in YUV format (Rev B only)

♦ High Resolution Color Display

- Support for VGA (640 x 480) LCD
- Double-buffering support on HVGA
- Fast switching between main/sub-LCD
- Hardware support for sub-LCD display
- 18-bpp panel support

♦ SD/SDIO Host Controller

- 1 bit and 4 bit SD/SDIO
- Support for storage or Bluetooth cards
- Store directly to SD card in continuous JPEG encode mode

Video Input

- 3MP camera module support
- ITU-R 656-compliant 8-bit interface
- Horizontal scaling with horizontal averaging and low-pass filtering
- Vertical averaging
- Synchronous serial bus (SSB) for camera control & programming
- 54 MHz output to drive the camera master clock
- YUV422 to RGB565 color space conversion
- Single and double buffering support
- Double buffering synchronization with graphics controller
- Fine-grained digital zoom, up to 8X

♦ 64-Bit 2d Graphics Acceleration

- BitBLT with 256 3-operand raster operations
- Video scaling with range of 8x expansion to 1/60th contraction
- Mono and solid pattern
- Mono-to-color expansion
- Mono source/pattern transparency
- Destination read/write color transparency
- All angle (Bresenham) line draw
- Rectangle fill
- Alpha blending (Rev B only)

♦ Flat Panel (LCD) Interface

- Direct interface to LCD drivers with embedded memory
- Built-in timing generator
- Color FRC S-STN at 4, 8, and 16 bits/ clock
- Color PWM S-STN at 9 and 12 bits/ clock
- Color TFT at 9, 12, 16 and 18 bit/clock
- Partial pixel per clock mode
- Up to 16-level FRC and up to 4-bit spatial dithering
- CPU, RGB, Serial, NEC M-CMADS, AMLCD, LTPS, and Sharp ULC display support

Provided under NDA Features

♦ Graphics Controller

- Hardware rotation (90°, 180°, and 270°)
- Flip and mirror
- Partial display support (any size/position)
- Triple 6-bit look-up-table
- Overlay support
- Encode predefined region of display

♦ Integrated 640kB 64-bit SRAM

 640KB of 64-bit wide on-board frame, video, and transactional buffers minimize external bus traffic and significantly reduce system power

♦ 32-Bit Flexible Host Bus Interface

- Indirect and direct addressing support
- 8/16/32-bit asynchronous interface for baseband processors (ARM based)
- MDB-style (Dragonball) 8-bit and 16-bit mode
- Burst mode support
- Fixed and variable latency host bus

Clock Options

- On-chip oscillator for 2 MHz to 13 MHz crystals
- Digital bypass mode for external clock sources (e.g. baseband or CPU)
- Low-power relaxation oscillator
- On-chip PLL with VCO range of 50 MHz to 100 MHz (Rev A) and 20 MHz to 200 MHz (Rev B)

♦ Advanced Power Management

- Fully-static CMOS technology
- Low-Leakage process
- Individual module enables
- Automatic shut-off of unused pipeline stages

♦ Packaging & Power

- 168-pin BGA, 10 x 10mm, 0.65mm ball spacing, 1.2mm height (GoForce 3000 compatible with one extra row)
- JTAG boundary scan
- 1.425 V to 1.57 V core, 1.71 V to 3.60 V I/O

♦ Serial Peripheral Bus

- Convenient communication among system components using a two-wire interface
- Operation in Standard and Fast modes
- Combined 7 bit and 10 bit addressing
- Programmable transfer count for transmit and receive
- Clock synchronization for multi-master environments

Chapter 2 Signals

2.1 Introduction

This chapter provides a description of the GoForce 4000 pins. The first section provides an overview of the pin types and the conventions used in the descriptions. In the subsequent section, the signals are grouped by module or functionality and described in alphabetic order.

2.2 Pin Types and Conventions Used

Table 2.1 provides notations that indicate valid pin types.

Table 2.1: Pin Types

Pin Type	Pin Type Description		
1	CMOS Input Pin.		
IS	Schmitt-Trigger CMOS Input Pin.		
0	CMOS Output Pin.		
OD	Open-Drain Output		
1/0	Bi-Directional CMOS Input / Output Pin.		
IS / O	Bi-Directional CMOS Input / Output Pin with Schmitt-Trigger CMOS Input Pin.		
A	Analog Pin.		
Al	Analog Input Pin.		
AO	Analog Output Pin.		
Р	Power (VDD) Pin.		
G	Ground (GND) Pin.		

The following conventions are used:

- Inputs and outputs are all CMOS buffers.
- A lower case "n" at the end of a pin name indicates an active low signal.
- Output buffer drive strength is specified in mA for operation at 3.3V.

2.3 Power and Ground Pins

Table 2.2: Power and Ground Pins

Name	Type	Drive (mA)	Pin Description
CVDD	Р	-	Power for Core Logic and Embedded SRAM, Crystal
			Oscillator, Relaxation Oscillator, and Internal PLL
BVDD	Р	-	Power for Host Bus Interface
FVDD	Р	-	Power for Flat Panel Interface
VVDD	Р	-	Power for Video Interface
SDVDD	Р	-	Power for Secure Digital and JTAG pins
GND	G	-	Ground Pin

Host Bus Interface Pins 2.4

The Host Bus Interface Pins are referenced to BVDD. Three types of fixed latency and variable-latency bus interfaces are supported; Type A, Type B, and Type C; each in 8bit, 16bit, and 32bit widths.

The Type A host interface has separate signals for write and read cycle control (WRn and RDn respectively). If the BEns are active, they control enabling bytes for write cycles.

The Type B host interface utilizes one control signal (RD/WR_n) to indicate a write or a read cycle; the low state (0) indicates write, high (1) indicates read. Separate data strobe signals are used for each byte.

The Type C host interface also utilizes one control signal for write and read (OEn); the low state indicates read, the high state indicates write. Separate write enable signals are utilized for each byte. Note that GoForce 4000 ball labeled WRn does not map to a signal used when interfacing to Type C Hosts. Tie it low externally when using Type C interfaces.

Table 2.3:	Host Bus	Interface	Pins (Overview
-------------------	-----------------	-----------	--------	----------

Ball Name	Type A	Type B	Type C
CSn	CSn	ASn	CSn
D[31:0]	D[31:0]	D[31:0]	D[31:0]
A[19:1] ¹	A[19:1]	A[19:1]	A[19:1]
BEn0 ²	BEn0	DSn0	WEn0
BEnl ³	BEn1	DSn1	WEn1
A1	BEn2	DSn2	WEn2
BEn3 ⁴	BEn3	DSn3	WEn3
RDn	RDn	CS	OEn
WRn ⁵	WRN	RD / WRn	_ 5
INTRn ⁶	INTRn	INTRn	INTRn
RDYn	RDYn	RDYn	RDYn

- A1 is used as BEn2 during 32-bit mode;
 Tie BEn0 to ground for eight-bit type-A style host interfaces. If type-B or type-C 8-bit host interfaces already drive BEn0 (or DSn0 or WEn0, respectively), tie BEn0 (or DSn0 or WEn0). DSn0 or WEn0) to the related host pin.

 3. BEn1 serves as address bit 0 (A[0]) with all the supported eight-bit host interfaces.

- 4. Tie BEn3 low for 16bit mode. It is only used during 32-bit mode.
 5. Tie the WRn pin to low externally with type-C style host interfaces.
 6. The polarity of INTRn is controlled by Register DC0B[2].

Note: Tie all remaining unused pins high or low.

Table 2.4: Type A Style Bus Interface Pins

Pin Pin Drive Name Type (mA)			Pin Description				
A[19:1]	IS	-	Host Address Bus				
			This bus is driven constantly by the host.				
			direct addressing mode:				
			Host drives address bus with a valid word address during both read and write				
			accesses.				
			GoForce 4000 direct addressing mode, 32bit Host Address Bus:				
			A1 is used as BEn2.				
			GoForce 4000 indirect addressing mode:				
			Host drives A[1] only, all the time, to indicate whether the host cycle is for data trans-				
			fer or address transfer.				
BEn3	IS	-	Byte Write Enable 3 (Active Low)				
			Asserted by a 32bit host during write cycles to enable byte data writes [31:24]. Tie				
			BEn3 low externally for 8bit and 16bit host interfaces.				
BEn2	IS	-	Byte Write Enable 2 (Active Low)				
			Asserted by a 32bit host during write cycles to enable byte data writes [23:16]. A1				
			becomes BEn2 when the Host Address Bus is 32 bits wide.				
BEn[1:0]	IS	-	Byte Write-Enable [1:0] (Active Low)				
			Asserted by a 16-bit host during write cycles to enable byte data writes. For an 8-bit				
			host interface, tie BEn0 to low connect BEn1 to Address bit 0 (A[0]).				
CSn	IS	-	Chip Select (Active Low)				
			Asserted by the host to activate the host cycles for the GoForce 4000. The				
			GoForce 4000 decodes the other host inputs only when this signal is asserted.				
D[31:16]	IS / O	8	Host Data Bus Bits [31:16]				
			For a 32bit host bus interface:				
			Data bus driven by the host during write accesses and by the GoForce 4000 during				
			read accesses. These pins are tri-stated during reset, and when an 8bit or a 16bit				
D[15.0]	16. / 0	0	host interface is used.				
D[15:8]	IS / O	8	Host Data Bus Bits [15:8]				
			For a 16bit host bus interface, this data bus is driven by the host during write				
			accesses and driven by the GoForce 4000 during read accesses. These pins are tri-				
D[7:0]	10.70	0	stated during reset, and when an 8-bit host interface is used.				
D[7:0]	IS/O	8	Host Data Bus Bits [7:0] This data bus is driven by the host during write access and driven by the				
			GoForce 4000 during read access. These pins are tri-stated during reset.				
INTRn	OD	8	Interrupt Request Line (Programmable Polarity)				
INTRI	OD	0	This is the interrupt request from the GoForce 4000 to the host interface.				
BGP5	IS / O		General Purpose Bus Input Output Bit 5				
BGF3	13 / 0		After reset, this pin can be configured as a general-purpose input/output pin. This				
			pin is powered by BVDD.				
RDn	IS	_	Read (Active Low)				
KDII	13		This signal is asserted by the host for a read cycle and is valid throughout the read				
			cycle. This signal must be de-asserted for a host write cycle.				
RDYn	OD	8	Ready (Active Low)				
KDIII	OD	O	If the GoForce 4000 is configured for active low ready handshake mode: The				
			GoForce 4000 de-asserts RDYn at the appropriate time during CPU read/write access				
			to request additional wait states. The GoForce 4000 then asserts RDYn until the on-				
			going host cycle is completed.				
WAITn	OD		Wait (Active Low)				
			If the GoForce 4000 is configured for active low wait handshake mode:				
			GoForce 4000 asserts WAITn at the appropriate time during CPU read/write access to				
			request additional wait states. The GoForce 4000 then asserts WAITn until the on-				
			going host cycle is completed.				
BGP4	IS / O		General Purpose Bus Input Output Bit 4				
- : ·	.5 , 5		After reset, this pin can be configured as a general-purpose input/output pin. This				
			pin is powered by BVDD.				
WRn	IS	-	Write (Active Low)				
			Asserted by the host for a write cycle, WRn stays valid throughout the write cycle.				
		1	,				

Provided under NDA Signals

Table 2.5: Type B Style Bus Interface Pins

Pin Name	Pin Type	Drive (mA)	Pin Description
A[19:1]	IS	-	Host Address Bus
			This bus is driven constantly by the host.
			GoForce 4000 direct addressing mode:
			Host drives address bus with a valid word address during both read and write accesses.
			GoForce 4000 direct addressing mode, 32bit Host Address Bus:
			A1 is used as DSn2.
			GoForce 4000 indirect addressing mode:
			Host drives A[1] only, all the time, to indicate whether the host cycle is for data transfer or
			address transfer.
DSn3	IS	-	Data Strobe 3 (Active Low)
			Asserted by a 32bit host during write cycles to enable byte data writes [31:24]. Tie DSn3
			low externally for 8bit and 16bit host interfaces.
DSn2	IS	-	Data Strobe 2 (Active Low)
			Asserted by a 32bit host during write cycles to enable byte data writes [23:16]. A1
			becomes DSn2 when the Host Address Bus is 32 bits wide.
DSn1	IS	-	Data Strobe 1 (Active Low)
			This signal is asserted by a 16-bit host during read/write cycles in order to indicate byte
D 2	10		[15:8] data read/write. This signal is used as Address bit 0 by 8-bit host interfaces.
DSn0	IS	-	Data Strobe 0 (Active Low)
			This signal is asserted by the host during read/write cycles in order to indicate byte [7:0]
			data read/write. The GoForce 4000 uses DSn0 as a byte enable signal for writes. If an 8-
			bit host is not driving this signal, tie this input of the GoForce 4000 to low externally, or
4.6	10		to the related host pin.
ASn	IS	-	Address Strobe (Active Low)
			Driven by the host to indicate a read or a write cycle. The GoForce 4000 decodes other
CS	IS		inputs only when this signal is asserted.
CS	15	-	Chip Select
D[21-16]	15.70	0	Asserted by the host to select the GoForce 4000.
D[31:16]	IS/O	8	Host Data Bus Bits [31:16]
			For a 32bit host bus interface:
			Data bus driven by the host during write accesses and by the GoForce 4000 during read accesses. These pins are tri-stated during reset, and when an 8bit or a 16bit host inter-
			face is used.
D[15:8]	IS / O	8	Host Data Bus Bits [15:8]
[٥.٥]	13 / 0	0	For a 16-bit host bus interface, this data bus is driven by the host during write access and
			driven by the GoForce 4000 during read access. These pins are tri-stated during reset,
			and when an 8-bit host interface is used.
D[7:0]	IS / O	8	Host Data Bus Bits [7:0]
D[7.0]	13 / 0	U	This data bus is driven by the host during write access and driven by the GoForce 4000
			during read access. These pins are tri-stated during reset.
INTRn	OD	8	Interrupt Request Line (Active Low)
	OB		This generates an interrupt request from the GoForce 4000 to the host interface.
BGP5	IS / O		General Purpose Bus Input Output Bit 5
	,		After reset, BGP5 can be configured as a general-purpose input/output pin, BGP5 is pow-
			ered by BVDD.
RD / WRn	IS	-	Read (Active High) / Write (Active Low)
,			This signal is driven high by the host for read accesses to the GoForce 4000 and driven
			low by the host for write accesses to the GoForce 4000.
RDYn	OD	8	Ready (Active Low)
			If the GoForce 4000 is configured for active low ready handshake mode: the
			GoForce 4000 de-asserts RDYn at the appropriate time during CPU read/write access to
			request additional wait states. The GoForce 4000 then asserts RDYn until the on-going
			host cycle is completed.
WAITn	OD		Wait (Active Low)
			If the GoForce 4000 is configured for active low wait handshake mode, the GoForce 4000
			asserts WAITn at the appropriate time during CPU read/write access to request additional
			wait states. After asserting WAITn, the GoForce 4000 de-asserts WAITn until the on-going
			host cycle is completed.
BGP4	IS / O		General Purpose Bus Input Output Bit 4
		1	
			After reset, this pin can be configured as a general-purpose input/output pin. This pin is powered by BVDD.

For Type B bus interfaces, the first access to the GoForce 4000 is a register write cycle to program DC01[1:0] = 1. This selects the Type-B style bus interface.

Table 2.6: Type-C Style Bus Interface Pins

Pin Name	Pin Type	Drive (mA)	Pin Description
A[19:1]	IS	-	Host Address Bus This bus is driven constantly by the host; it must be driven with a valid word address during read and write accesses if the GoForce 4000 is configured in direct addressing mode. If the GoForce 4000 is configured in indirect addressing mode only A[1] is driven by the host all the time to indicate if the host cycle is for data transfer or address transfer.
WEn3	IS	-	Write Enable 3 (Active Low) Asserted by a 32bit host during write cycles to enable byte data writes [31:24]. Tie WEn3 low externally for 8bit and 16bit host interfaces.
WEn2	IS	-	Write Enable 2 (Active Low) Asserted by a 32bit host during write cycles to enable byte data writes [23:16]. A1 becomes WEn2 when the Host Address Bus is 32 bits wide.
WEn1	IS	-	Write Enable 1 (Active Low) Asserted by a 16-bit host during write cycles to indicate upper byte data write enable. This signal is used as Address bit 0 by 8-bit host interfaces.
WEn0	IS	-	Write Enable 0 (Active Low) Asserted by the host during write cycles to indicate lower byte write enable. Tie this input of the GoForce 4000 to the related host pin.
CSn	IS	-	Chip Select (Active Low) This signal is driven by the host to select the GoForce 4000. The GoForce 4000 decodes the other host control inputs only when this signal is asserted.
D[31:16]	IS/O	8	Host Data Bus Bits [31:16] For a 32bit host bus interface: Data bus driven by the host during write accesses and by the GoForce 4000 during read accesses. These pins are tri-stated during reset, and when an 8bit or a 16bit host interface is used.
D[15:8]	IS / O	8	Host Data Bus Bits [15:8] For 16-bit host bus interface, this data bus is driven by the host during write access and by the GoForce 4000 during read access. These pins are tri-stated during reset, and when an 8-bit host interface is used.
D[7:0]	IS / O	8	Host Data Bus Bits [7:0] This data bus is driven by the host during write access and by the GoForce 4000 during read access. These pins are tri-stated during reset.
INTRn	OD	8	Interrupt Request Line (Active Low) This generates an interrupt request from the GoForce 4000 to the host interface.
BGP4	IS / O		General Purpose Bus Input Output Bit 4 After reset, this pin can be configured as a general-purpose input/output pin. This pin is powered by BVDD.
OEn	IS	-	Output Enable (Active Low) This signal is driven low by the host for read access to this chip and driven high by the host for write access to this chip.
RDYn	OD	8	Ready (Active Low) If the GoForce 4000 is configured for active low ready handshake mode: the GoForce 4000 de-asserts RDYn at the appropriate time during CPU read/write access to request additional wait states. The GoForce 4000 then asserts RDYn until the on-going host cycle is completed.
WAITn	OD		Wait (Active Low) If the GoForce 4000 is configured for active low wait handshake mode: the GoForce 4000 asserts WAITn at the appropriate time during CPU read/write access to request additional wait states. After driving low, the GoForce 4000 then asserts WAITn until the on-going host cycle is com-
BGP3	IS / O		pleted. General Purpose Bus Input Output Bit 3 After reset, this pin can be configured as a general-purpose input/output pin. This pin is powered by BVDD.

Provided under NDA Signals

2.5 Video Input Pins

Table 2.7 lists and provides a brief description of the VI Interface signals. The VI pins are referenced to VVDD.

Table 2.7: Video Input Pins

Pin Name	Туре	Drive (mA)	Description
VCLK VGP13	IS / O	8	Video Input Clock This clock is used to latch video input data. This signal can be programmed as either input or output. On reset, this pin is tri-stated with its input disabled. When using this pin as an clock signal input, the clock frequency must not exceed 54 MHz for Rev A, or 72 MHz for Rev B.
			Video General Purpose Input/Output 13 This pin can be used as general-purpose input/output.
VSNCLK VGP0	O IS / O	12	Video Sensor Master Clock Video General-Purpose Input/Output 0
VGP[2:1]	IS / O	12	Video General Purpose Input/Output These pins are used as general-purpose input/output. Upon reset, these pins are tri-stated and their input buffers are disabled. ICSCK
ICSDA			When SSP is enabled VGP1 is the SSP Clock pin. ICSDA When SSP is enabled VGP2 is the SSP Data pin.
VID[7:0]	IS	8	Video Input Data This is interleaved Y/U/V input data from an external video source. On reset, these pins are tri-stated, and the input buffers of these pins are all disabled.
VGP[12:5]	IS / O		Video General Purpose Input Output [12:5] These pins can be used as general-purpose input/output.
VHSYNC	IS / O	8	Video Input Horizontal Sync This signal indicates horizontal sync for incoming video data that can optionally be used as a reference to indicate start of active pixel in video input line. This signal can be programmed as either input or out- put.
VGP14			On reset, this pin is tri-stated, and its input buffer is disabled. Video General Purpose Input Output 14 This pin can be used as general-purpose input/output.
VVSYNC VGP15	IS / O	8	Video Input Vertical Sync This signal indicates vertical sync for incoming video data that can optionally be used as a reference to indicate start of active line in video input frame. This signal can be programmed as either input or output. On reset, this pin is tri-stated, and its input buffer is disabled. Video General Purpose Input Output 15
			This pin can be used as general-purpose input/output.
VGP[4:3]	IS/O	4	Video General Purpose Input/Output [4:3] These pins are used as general-purpose input/output. Upon reset, these pins are tri-stated and their inputs are disabled.

2.6 Flat Panel Interface Pins

Table 2.8 lists and provides a brief description of the FPI signals. The FPI pins are referenced to FVDD. In addition to the FGPx pins, each of these pins can be optionally programmed as GPOs.

Table 2.8: FPI Pins

Pin Name	Туре	Drive (mA)	Description				
ENCTL	0	8	Enable Data/Control In panel power-up sequence, this signal is asserted after ENVDD while in panel power-down sequence, this signal is de-asserted after ENVEE. After reset, this pin is de-asserted.				
ENVDD	0	8	Enable VDD In panel power-up sequence, this signal is asserted first, while in panel power-down sequence, this signal is de-asserted last. After reset, this pin is de-asserted.				
ENVEE	0	8	Enable VEE In panel power-up sequence, this signal is asserted last, while in panel power-down sequence, this signal is de-asserted first. After reset, this pin is de-asserted.				
FD[17:0]	0	8	Flat Panel Data (Programmable Polarity) These signals provide data to the flat panel. These signals are de-asserted during reset and when the flat panel is disabled, regardless of its polarity.				
FDE FSCLK2	0	8	Flat Panel Display Enable This signal qualifies the display data area (active area). The polarity is register programmable. Flat Panel Shift Clock 2 For some panels, this pin is used to output either inverted shift clock or delayed shift clock. This signal is de-asserted during reset and when the flat panel is disabled, regardless of its polarity.				
FFCLK	0	8	Flat Panel Frame Clock This signal is a programmable clock pulse that continuously runs at the frame frequency. This signal is de-asserted during reset and when the flat panel is disabled, regardless of its polarity				
FHSYNC	0	8	Flat Panel Horizontal Sync (Programmable Polarity) Horizontal sync or Line Pulse (LP) signal for some panels. This signal is de-asserted during reset and when the flat panel is disabled, regardless of its polarity.				
FLCLK[1:0]	0	8	Flat Panel Line Clock [1:0] These clock pulses occur once per line with a programmable duty cycle and can be used as a clock for the gate (row) driver. This signal is deasserted during reset and when the flat panel is disabled, regardless of its polarity.				
FMOD[1:0]	0	8	Flat Panel Modulation Clock [1:0] (Programmable Polarity) This signal can be driven to toggle every frame or every programmable number of lines. This signal is de-asserted during reset and when the flat panel is disabled, regardless of its polarity.				
FSCLK	0	12	Flat Panel Shift Clock For active high FSCLK, the rising edge of this clock is used to output flat panel data and control signals; thus, the falling edge of this clock is normally used to externally latch flat panel data and control signals. For active low FSCLK, the falling edge of this clock is used to output flat panel data and control signals; thus, the rising edge of this clock is normally used to externally latch flat panel data and control signals. This signal is de-asserted during reset and when the flat panel is disabled, regardless of its polarity.				

Provided under NDA Signals

Table 2.8: FPI Pins (Cont.)

Pin Name	Tyne		Description			
FVSYNC	0	8	Flat Panel Vertical Sync (Programmable Polarity) or First Line Marker (FLM) signal.			
			This signal is de-asserted during reset and when the flat panel is disabled, regardless of its polarity.			
FGP0	0	8	Flat Panel General Purpose Output 0. This is a general purpose output pin. On reset, this pin is de-asserted.			
PWM0			PWM 0 Output.			
FGP1 PWM1	0	8	Flat Panel General Purpose Output 1. This is a general purpose output pin. On reset, this pin is de-asserted. PWM 1 Output.			
GS1			GS1 signal for ULC TFT.			
FGP2	0	8	Flat Panel General Purpose Output 2.			
GS2			This is a general purpose output pin. On reset, this pin is de-asserted. GS2 signal for ULC TFT.			
FGP3	0	8	Flat Panel General Purpose Output 3.			
CCDO			This is a general purpose output pin. On reset, this pin is de-asserted.			
CSBO			Serial Output Chip Select.			
FGP4	0	8	Flat Panel General Purpose Output 4. This is a general purpose output pin. On reset, this pin is de-asserted.			
SDAO			Serial Data Output.			
FGP5	0	8	Flat Panel General Purpose Output 5.			
			This is a general purpose output pin. On reset, this pin is de-asserted.			
SCLO			Serial Clock Output.			
FGP6	0	8	Flat Panel General Purpose Output 6.			
			This is a general purpose output pin. On reset, this pin is de-asserted.			
FDI			Flat Panel Data Inversion			
FLCLK2 GCS1			Flat Panel Line Clock 2 GCS1 signal for ULC TFT			
FGP7	0	8	Flat Panel General Purpose Output 7.			
1017			This is a general purpose output pin. On reset, this pin is de-asserted.			
FPWMCLK			Flat Panel PWM clock.			
GCS2			GCS2 signal for ULC TFT			
FGP8	0	8	Flat Panel General Purpose Output 8.			
			This is a general purpose output pin. On reset, this pin is de-asserted.			
FDI			Flat Panel Data Inversion.			
ALW FGP9	0	8	ALW signal for ULC TFT General Purpose Output 9.			
FPWMCLK	0	0	This is a general purpose output pin. On reset, this pin is de-asserted. Flat Panel PWM clock.			
ECK			ECK signal for ULC TFT			
FGP10	0	8	General Purpose Output 10.			
CV4			This is a general purpose output pin. On reset, this pin is de-asserted. CV4 signal for ULC TFT			
FGP11	0	8	General Purpose Output 11.			
PSK			This is a general purpose output pin. On reset, this pin is de-asserted. PSK signal for ULC TFT.			
FGP12	IS/O	8	General Purpose Input/Output 12.			
			This is a general purpose input/output pin. On reset, this pin is floated.			
FGP13	0	8	General Purpose Input/Output 13.			
FGP14	I/O		This is a general purpose output pin. On reset, this pin is de-asserted. General Purpose Input/Output 14.			
			This is a general purpose input/output pin. On reset, this pin is de-asserted.			

2.7 Clock Pins

Table 2.9: Clock Pins

Pin Name	Pin Type	Drive (mA)	Pin Description		
OSCFI	Al	-	Crystal Oscillator Input This pin is connected to an external crystal in the range of 2 to 13 MHz.		
OSCFO	AI / O	-	Crystal Oscillator Output This pin is connected to an external crystal in the range of 2 to 13 MHz. When the oscillator is bypassed, this input can be driven by an external source; it is used as input for crystal oscillator by-pass mode. When this is the case, the external clock source can be in range of 2 MHz to 50 MHz.		
OSCR	Α	-	Relaxation Oscillator Resistor		
			This pin is connected to an external 200 $k\Omega$ connected to AVDDO. This resistor is needed by all internal clocks; relaxation oscillator, crystal oscillator, clock multiplier.		

Note: When using an external crystal (at pin OSCFI), use pin OSCFO as the output for the internal crystal oscillator. When using an external oscillator, use pin OSCFO as input and leave pin OSCFI floating (not connected.)

Note: When using an external clock input through OSCFO, the amplitude of the signal should be between the amplitude of CVDD and BVDD.

Provided under NDA Signals

2.8 JTAG Interface Pins

JTAG pins are used for interfacing with the GoForce 4000 for diagnostic and testing purposes. Table 2.10 lists the five GoForce 4000 JTAG interface pins. The JTAG interface pins are referenced to SDVDD.

Refer to Design Guide *DG-01098-001* for information on utilizing the JTAG interface pins for boundary testing.

Table 2.10: Description of the JTAG Interface Pins

Pin Name	Type	Drive (mA)	Description		
TCK	1	4	JTAG Clock		
TDI	1	4	JTAG Data Input		
TDO	0	4	JTAG Data Output		
TMS	I	4	JTAG Mode Select		
TRST	ı	4	JTAG Reset		

2.9 Secure Digital (SD) Interface Pins

Table 2.11 lists and briefly describes the GoForce 4000 SD/GPIO[65:60] pins. The SD Interface pins are referenced to SDVDD.

Table 2.11: Description of the Secure Digital (SD) / GPIO[65:60] Pins

Pin Name	Туре	Drive (mA)	Description					
SDD3	IS/O	4	Card Detect/Data Line 3 (DAT3/CD)					
			On power up, the host uses this pin for card detection. Later this					
			pin will be used as DATA line 3 in wide-bus mode.					
GPIO[63]			General Purpose Input/Output					
SDCMD	IS/O	4	Secure Digital Command					
			This pin is used to send commands to the SD card and responses to					
			the SD Host.					
GPIO[65]			General Purpose Input/Output					
SDCLK	IS/O	4	Secure Digital Clock					
			The host provides the clock to the SD card through this pin. The					
			maximum frequency on this pin is 25MHz					
GPIO[64]			General Purpose Input/Output					
SDD0	IS/O	4	Data Line 0 (DAT0)					
			This pin is used as the data line in both single pin and wide-bus					
			data transfer modes.					
GPIO[60]			General Purpose Input/Output					
SDD1	IS/O	4	Data Line 1(DAT1)					
			This pin is used as the data line 1 in wide-bus data transfer mode.					
GPIO[61]			General Purpose Input/Output					
SDD2	IS/O	4	Data Line 2 (DAT2)					
			This pin is used as the data line 2 in wide-bus data transfer mode.					
GPIO[62]			General Purpose Input/Output					
SDGP0	IS/O	4	SD GPIO0					
			General Purpose Input/Output. It is typically used for SD card detec-					
			tion.					
SDGP1	IS/O	4	SD GPIO1					
			General Purpose Input/Output. It is typically used for SD write pro-					
			tection.					

Provided under NDA Signals

2.10 Miscellaneous Pins

Table 2.12: Miscellaneous Pins

Pin Name	Pin Type	Drive (mA)	Pin Description MPEG-4 Encoder Time stamp generation clock input Input for a clock signal source to synchronize audio and video timing to minimize the drifting of audio time versus video time in MPEG encoding. General-Purpose Bus Input / Output Bit [0] After reset, this pin may be configured as a general-purpose out- put to allow the internal clocks to be routed to the outside of the GoForce 4000 for testing purposes.				
AUDIOCLK BGP0	IS / O	8					
MD[2:0] BGP[3:1]	IS/O	8	Mode Select Bits [2:0] These pins are configured as input pins during/following poweron reset. The state of these pins is latched with a transparent latch at the trailing edge of the power-on reset pulse, in order to decide the mode of operation. Normally, high impedance pull-down or pull-up resistors are attached to these pins for mode setting. MD2 MD1 MD0				
PORn	IS	-	Power-On Reset (Active Low) This signal resets the GoForce 4000. It also puts the GoForce 4000 in low power state, where all modules are disabled except for some registers.				

Chapter 3 Specifications

3.1 Absolute Maximum Ratings

Table 3.1 specifies the absolute maximum ratings allowed for the GoForce 4000.

Table 3.1 Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit
VDD _{CORE}	Supply voltage for the internal core and memory (CVDD)	-0.3	2.0	V
VDD _{IO}	Supply voltage for all other I/O pins (BVDD, FVDD, VVDD, SDVDD)	-0.3	4.0	V
V _{IN}	DC voltage on input or 3-state pins	-0.5	$VDD_{1O}^{1} + 0.5$	V
T _{STG}	Storage temperature	-55	125	°C
T _{SOL}	Peak packaged device soldering temperature: SnPb Eutectic Solder Pb-free solder	-	240 (+0/-5) 250 (+0/-5)	°C °C

^{1.} Voltage level at the respective I/O supply pins.

Note: Permanent device damage may occur if the specifications for the Absolute Maximum Ratings are exceeded. All voltages are defined with respect to ground.

3.2 Normal Operating Conditions

Operation of the GoForce 4000 device must be restricted to normal operating conditions specified in Table 3.2.

Table 3.2 Normal Operating Conditions

Symbol	Parameter	Minimum	Typical	Maximum	Unit
VDD _{CORE}	Supply voltage for the internal core (CVDD)	1.425	1.5	1.65	V
VDD _{IO}	Supply voltage for all other I/O pins (BVDD, FVDD, VVDD, SDVDD)	1.71	3.0	3.6	V
T _A	Free-air operating ambient temperature	-30	-	85	°C

Provided under NDA Specifications

3.3 DC Characteristics

The following subsections provide information on the DC characteristics of the GoForce 4000.

3.3.1 I/O Pin DC Specifications

Table 3.3 provides the I/O pin DC specifications of the GoForce 4000.

Table 3.3 DC Characteristics

Symbol	Parameter	Notes	Minimum	Maximum	Unit
I _{DD}	Quiescent supply current	_	-	TBD	μА
I _{IH}	Input high leakage	Input-only pins	_	1.0	μΑ
	current at typical conditions	Bidirectional pins	-	1.0	μА
I _{IL}	Input low leakage	Input-only pins	_	1.0	μΑ
	current at typical conditions	Bidirectional pins	-	1.0	μА
lozh	Output high impedance leakage current at typical conditions	All I/O pins	-	-5.0	μА
I _{OZL}	Output low impedance leakage current at typical conditions	All I/O pins	_	5.0	μА
V _{IH}	Input high voltage	All inputs	0.8 x VDD _{CORE}	VDD _{IO}	V
V _{IL}	Input low voltage	All inputs	GND	0.2 x VDD _{IO}	V
V _{OL} (@ 4 mA load)	Output low voltage	All outputs	GND	0.15 x VDD _{IO}	V
V _{OH}	Output high voltage	All outputs	0.8 x VDD _{IO} (See Note)	VDD _{IO}	V

Note: Note: VDD_{IO} is the respective power supply voltage.

 $2.35 \text{ V} < \text{VDD}_{1O} < 3.60 \text{ V} @ 4 \text{ mA load OR}$

 $1.7 \text{ V} < \text{VDD}_{10} < 2.35 \text{ V} @ 3 \text{ mA load}.$

3.3.2 I/O Pin Load Capacitance

Table 3.4 provides the I/O pin load capacitance of the GoForce 4000.

Table 3.4 Pin Load Capacitance

Symbol	Parameter	Maximum	Unit
C _{BID}	Bidirectional buffer capacitance	4	pF
C _{IN}	Input capacitance	4	pF
C _{OUT}	Output capacitance	4	pF

3.4 AC Characteristics

This section describes the GoForce 4000 AC characteristics, which consist of output delays, input setup and hold times, and signal skew times. All signals are specified relative to an appropriate edge of other signals. Table 3.5 lists the conditions used for testing the GoForce 4000 AC timing. Tests are performed under the conditions specified in Table 3.5.

Value Unit Symbol **Parameter** 2 T_F Input fall time ns Input rise time 3 T_R ns V_{IH} Input high voltage 0.8 x VDD ٧ V_{IL} Input low voltage 0.2 x VDD ٧ ٧ Output trip point 0.5 x VDD V_{TEST}

Table 3.5 AC Test Conditions

Figure 3.1 illustrates the AC test timing.

Figure 3.1 AC Test Timing

3.4.1 Clock

Figure 3.2 shows the reference clock timing.

Figure 3.2 Reference Clock Timing

Table 3.6 and Table 3.7 provide the AC timing characteristic values of the crystal oscillator input clock (OSCFI) and the external oscillator input clock (OSCFO). The values are created by altering the crystal's oscillation signal. The test circuit consists of a 1 M Ω resistor in parallel with the 2 - 6 MHz crystal and two capacitors (C1 = C2) to ground, which are connected to each side of the crystal/resistor configuration. (C1 = C2 = 2 x C_{load} Crystal)

Provided under NDA Specifications

Table 3.6 AC Timing Characteristics - Crystal Input Clock (OSCFI)

Symbol	Parameter	Min	Max	Unit s
T _{REF}	Crystal input frequency	2	13	MHz
T _{HI} /T _{REF}	Clock duty cycle	40	60	%

Table 3.7 AC Timing Characteristics - External Oscillator Clock Input (OSCFO)

Symbol	Parameter	Min	Max	Unit s
T _{REF}	External oscillator clock frequency	2	50	MHz
T _{HI} /T _{REF}	Clock duty cycle (BVDD)	40	60	%
	Clock duty cycle (3.3 V)	30	70	%

Note: When using an external oscillator, the input voltage should be 1.5 V. If the input voltage is 3.3 V, the oscillator will function correctly but the duty cycle will vary between 30% and 70%, rather than 40% to 60%.

3.4.2 Reset

Figure 3.3 Reset Timing

Table 3.8 AC Timing Characteristics - Reset

Symbol	Parameter	Min	Max	Units
T _{IPR}	Reset inactive from power stable ¹	1	-	ms
T _{RES}	Minimum reset pulse width	100	-	μS
T _{RSO}	Reset active to output float delay	_	40	ns
T _{CSU}	Configuration setup time ²	20	-	ns
T _{CHD}	Configuration hold time	5	-	ns

^{1.} This parameter includes time for internal voltage stabilization of all sections of the chip, start-up and stabilization of the internal clock, and setting of all internal logic to a known state.

This parameter specifies the absolute minimum setup time to reliably latch the state of the mode select bits. The recommended configuration bit setup time is T_{RES} to ensure that the chip is in a completely stable state when Reset goes inactive.

3.4.3 Power Sequencing

Note that the power sequencing for GoForce 4000 Rev A and GoForce 4000 Rev B are different. Each is detailed separately below.

3.4.3.1 GoForce 4000 Rev A Power Sequencing

Figure 3.4 GoForce 4000 Rev A Power Sequencing

Table 3.9 GoForce 4000 Rev A Power Sequencing

Symbol	Parameter	Min	Max	Units
T ₁	I/O supply voltage applied to core supply volt-	1	-	ms
	age applied delay			

These specifications are recommendations and damage should not occur even if core supply is applied first for a brief period of time (< 1 ms). These conditions have not been tested since they are not expected to cause damage.

Provided under NDA Specifications

3.4.3.2 GoForce 4000 Rev B Power Sequencing

The power on and power-down sequences for the GoForce 4000 are given in Figure 3.5 and Figure 3.6, and reference the following voltage levels:

CVDD maximum: 1.5 V

• VVDD, BVDD, FVDD, and SDVDD maximum: ranging from 1.71 to 3.6 V

Minimum: 0 V

Figure 3.5: GoForce 4000 Rev B Power Supply Sequence

Figure 3.6: GoForce 4000 Rev B Power-off Sequence

Table 3.10 GoForce 4000 Rev B Power Sequencing Timing

Symbol	Parameter	Min
$ \begin{array}{c} T \\ (T = T_{VVDD}, T_{BVDD}, T_{FVDD}, \\ \mathit{or} \; T_{SDVDD}) \end{array} $	T = Delay between application of Core Supply Voltage (CVDD) and I/O Supply Voltage (BVDD/VVDD/SDVDD/FVDD). T is the time between reaching 90% of the CVDD and power rail and 10% of the IO power rail.	1 ms

Note: T_{SDVDD} , T_{FVDD} , T_{VVDD} , and T_{BVDD} do not have to be equal to each other as long as they fall within the specification for T.

Figure 3.7: GoForce 4000 Rev B PORn Power On and Off Sequence with BVDD

Note: As shown in Figure 3.7, PORn (Power on Reset) must stay low until a time equal to T_{IPR} after all the power supplies have reached their normal operating voltage. Figure 3.7 implies no sequence requirements for VVDD, FVDD, SDVDD, or BVDD with respect to CVDD or each other.

If the regulators supplying the core and I/O power rails are sequenced when powering down, VVDD, FVDD, SDVDD, and BVDD must be turned off before the CVDD power is turned off.

The parameter T is already defined in Table 3.10.

 Symbol
 Parameter
 Min
 Max

 T_{IPR} Reset inactive from power stable
 1 ms
 --

 T_{RES} Reset to power off
 100 μ s
 --

Table 3.11 PORn Timing Parameters

Note: T_{IPR} includes time for the internal voltage stabilization of all sections of the chip, start-up and stabilization of the internal clock, and setting of all internal logic to a known state.

Provided under NDA Specifications

3.4.4 Host Interface

Type A, Type B, and Type C Host interfaces each have a set of timing parameters and diagrams, detailed in the following three sections. In Table 3.10 all of the timing diagrams are listed and grouped according to Host Interface type. To go to a specific timing diagram, find the title under the appropriate host Interface type, go to the page number listed in the adjacent column (under Page), and click on the page number. It should take you directly to the chosen timing diagram.

Table 3.12 Type A, B, and C Host Interface Timing Diagrams List

Direct Addressing			Indirect Addressing		
8/16bit Host Bus Interface	Page	32bit Host Bus Interface	Page	8/16bit Host Bus Interface	Page
		Type A Host Inter	face		
WRn-Controlled Write	3-10	WRn-Controlled Write	3-11	Register Write	3-20
CSn-controlled Write	3-12	CSn-controlled Write	3-13	Register Read	3-21
RDn-controlled Read	3-14	RDn-controlled Read	3-15	Memory Write	3-22
CSn-controlled Read	3-16	CSn-controlled Read	3-17	Memory Read	3-23
Page-Mode Read	3-18	Page-Mode Read	3-19	Register Burst Read	3-24
Register/Memory Burst Write	3-28	Register/Memory Burst Write	3-29	Memory Burst Read	3-25
Register/Memory Burst Read	3-30	Register/Memory Burst	3-31	Register Burst Write	3-26
		Read		Memory Burst Write	3-27
		Type B Host Inter	face		•
CS-controlled Write	3-36	CS-controlled Write	3-37	Register Write	3-40
CS-controlled Read	3-38	CS-controlled Read	3-39	Register Read	3-41
Register/Memory Page Read	3-44	Register/Memory Page	3-45	Memory Write	3-42
		Read		Memory Read	3-43
	L	Type C Host Inter	face		
WEn-controlled Write	3-49	WEn-controlled Write	3-50	Register Write	3-59
CSn-controlled Write	3-51	CSn-controlled Write	3-52	Register Read	3-60
OEn-controlled Read	3-53	OEn-controlled Read	3-54	Memory Write	3-61
CSn-controlled Read	3-55	CSn-controlled Read	3-56	Memory Read	3-62
Page Mode Read	3-57	Page Mode Read	3-58	Register Burst Read	3-63
Register/Memory Burst Write	3-67	Register/Memory Burst Write	3-68	Memory Burst Read	3-64
Register/Memory Burst Read	3-69	Register/Memory Burst	3-70	Register Burst Write	3-65
		Read		Memory Burst Write	3-66

3.4.4.1 Type A Host Interface

This section shows the timing characteristics for Type A Host Bus interface using both direct addressing and indirect addressing. The interface utilizes either an 8 bit, 16 bit, or 32-bit bus.

Direct Addressing Read/Write Timing Diagrams
 Figure 3.8 through Figure 3.17
 Figure 3.28 through Figure 3.31

Indirect Addressing Read/Write Timing Diagrams
 Figure 3.18 through Figure 3.27

All Type A Timing Diagrams refer to timing parameters in Table 3.22.

Note: The WAITn signal used in handshake mode, Burst, and Page writes and reads is tristated. Use either a pull-up or a pull-down resistor with this signal, according to the Host CPU specifications.

Note: For an 8bit Type A Host Interface tie BEn0 to ground. If it is already being driven in 8bit mode, tie it to the related host pin.

Table 3.13 Type A Byte-enable Signals for Different Size Host Busses

Type A Host	32bit Host Bus		16bit Host B	us	8bit Host Bus	
Interface Signal Name	Function	Signal	Function	Signal	Function	Signal
BEn0	Byte Enable 1 [7:0]	BEn0	Byte Enable 1 [7:0]	BEn0	Byte Enable 1 [7:0] (Tied low or to a related host pin.)	BEn0
BEn 1	Byte Enable 2 [15:8]	BEn 1	Byte Enable 2 [15:8]	BEn 1	A[0]	A[0]
A1	Byte Enable 3 [23:16]	BEn2	A1	A1	A1	A1
BEn3	Byte Enable 4 [31:24]	BEn3	Not used: Tie low externally	N/A	Not used: Tie low externally	N/A

Figure 3.8: WRn-controlled Write, Type A Host Interface, 8bit and 16bit Direct Addressing

CSn **→** Tw rah A[19:2] -Tw rcyc--Tw rl--Tw rh-WRn/BEn[3:0] **►**Tdh**∢** -Tds-D[31:0] **←**Tw rrds → Tw rrdh RDn Handshake Mode: WRn(Handshake) ► Tw aitn **→** Tw ttri WAITn

Figure 3.9: WRn-controlled Write, Type A Host Interface, 32bit Direct Addressing

Figure 3.10: CSn-controlled Write, Type A Host Interface, 8bit and 16bit Direct Addressing

Figure 3.11: CSn-controlled Write, Type A Host Interface, 32bit Direct Addressing

Figure 3.12: RDn-controlled Read, Type A Host Interface, 8bit and 16bit Direct Addressing

Figure 3.13: RDn-controlled Read, Type A Host Interface, 32bit Direct Addressing

Figure 3.14: CSn-controlled Read, Type A Host Interface, 8bit and 16bit Direct Addressing

Figure 3.15: CSn-controlled Read, Type A Host Interface, 32bit Direct Addressing

Figure 3.16: Page Mode Read, Type A Host Interface, 8bit and 16bit Direct Addressing

Note: There is no restriction on page length.

Figure 3.17: Page Mode Read, Type A Host Interface, 32bit Direct Addressing

Note: There is no restriction on page length.

-Tw rl--Tw rl-·Tw rh-CSn Tw ras Tw rah
Tw ras ► Tw rah Α1 Tw rh-WRn/BEn[1:0] dTdh Tds -Trdz-Tds-**▶** Tdh Addr* D[15:0] Data **←**Tw rrds ► Tw rrdh RDn

→ Tw ttri

Figure 3.18: Register Write, Type A Host Interface, Indirect Addressing

WAITn -

Handshake Mode:

→ Tw aitn |

Table 3.14 Register Write D[15:0] Bit Mapping for Addr* in Figure 3.18

► Tw aitn

Data Bus	Address Phase							
Data Bus	16bit Host Bus	81	us					
	Addr*	Addr*1	Addr*2	Addr*3				
D[15]	Х							
D[14]	Х							
D[13]	A[12]							
D[12]	A[11]							
D[11]	A[10]							
D[10]	A[9]							
D[9]	A[8]							
D[8]	A[7]							
D[7]	A[6]	A[4]	A[9]	x				
D[6]	A[5]	A[3]	A[8]	х				
D[5]	A[4]	A[2]	A[7]	A[12]				
D[4]	A[3]	A[1]	A[6]	A[11]				
D[3]	A[2]	A[0]	A[5]	A[10]				
D[2]	A[1]	0	1	0				
D[1]	Х	0	0	1				
D[0]	1	1	1	1				

→ Tw ttri

^{*} See the following table for bit mappings.

CSn

A1

RDn

D[15:0]

Handshake Mode:

Twaitn

WAITn

Figure 3.19: Register Read, Type A Host Interface, Indirect Addressing

Table 3.15 Register Read D[15:0] Bit Mapping for Addr* in Figure 3.19

Data Bus	Address Phase						
Data bus	16bit Host Bus	81	us				
	Addr*	Addr*1	Addr*2	Addr*3			
D[15]	X						
D[14]	Х						
D[13]	A[12]						
D[12]	A[11]						
D[11]	A[10]						
D[10]	A[9]						
D[9]	A[8]						
D[8]	A[7]						
D[7]	A[6]	A[4]	A[9]	х			
D[6]	A[5]	A[3]	A[8]	x			
D[5]	A[4]	A[2]	A[7]	A[12]			
D[4]	A[3]	A[1]	A[6]	A[11]			
D[3]	A[2]	A[0]	A[5]	A[10]			
D[2]	A[1]	0	1	0			
D[1]	Х	0	0	1			
D[0]	1	1	1	1			

 $^{^{\}star}$ See the following table for bit mappings.

Figure 3.20: Memory Write, Type A Host Interface, Indirect Addressing

^{*} See the following table for bit mappings.

Table 3.16 Memory Write D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.20

	Address Phase					
Data Bus	16bit Host Bus					
	Addr1	Addr2	Addr1	Addr2	Addr3	Addr4
D[15]	A[14]	х				
D[14]	A[13]	х				
D[13]	A[12]	х				
D[12]	A[11]	х				
D[11]	A[10]	х				
D[10]	A[9]	х				
D[9]	A[8]	х				
D[8]	A[7]	х				
D[7]	A[6]	х	A[4]	A[9]	A[14]	A[19]
D[6]	A[5]	A[19]	A[3]	A[8]	A[13]	A[18]
D[5]	A[4]	A[18]	A[2]	A[7]	A[12]	A[17]
D[4]	A[3]	A[17]	A[1]	A[6]	A[11]	A[16]
D[3]	A[2]	A[16]	A[0]	A[5]	A[10]	A[15]
D[2]	A[1]	A[15]	0	1	0	1
D[1]	0	1	0	0	1	1
D[0]	0	0	0	0	0	0

CSn Tw ras Trdas ◆Trdah Α1 RDn Tracc→ **←**Trdz**→** D[15:0] -Addr1* Addr2* Data → Tw rrds ◄ WRn/BEn[1:0] Handshake Mode: →Tw aitn → Tw ttri | ← Tw aitn → ➤ Tw ttri 🕨 Tw aitn→ **→** Tw ttri WAITn -

Figure 3.21: Memory Read, Type A Host Interface, Indirect Addressing

Table 3.17 Memory Read D[15:0] Bit Mapping for Addr1*and Addr2* in Figure 3.21

Data Bura	Address Phase							
Data Bus	16bit H	lost Bus		8bit H	ost Bus			
	Addr1	Addr2	Addr1	Addr2	Addr3	Addr4		
D[15]	A[14]	х						
D[14]	A[13]	х						
D[13]	A[12]	х						
D[12]	A[11]	х						
D[11]	A[10]	х						
D[10]	A[9]	х						
D[9]	A[8]	х						
D[8]	A[7]	х						
D[7]	A[6]	х	A[4]	A[9]	A[14]	A[19]		
D[6]	A[5]	A[19]	A[3]	A[8]	A[13]	A[18]		
D[5]	A[4]	A[18]	A[2]	A[7]	A[12]	A[17]		
D[4]	A[3]	A[17]	A[1]	A[6]	A[11]	A[16]		
D[3]	A[2]	A[16]	A[0]	A[5]	A[10]	A[15]		
D[2]	A[1]	A[15]	0	1	0	1		
D[1]	0	1	0	0	1	1		
D[0]	0	0	0	0	0	0		

 $^{^{\}star}$ See the following table for bit mappings.

CSn

A1

Tdh |

► Tw aitn 🖛

Tracc

Figure 3.22: Register Burst Read, Type A Host Interface, Indirect Addressing

→ Trdh → Trdz →

→ Trdw t

\$\$

\$\$

► Tw ttri

► Trdw t

Handshake Mode:

Tw aitn

Addr

D[15:0]

RDn

WAITn

WRn/BEn[1:0]

Table 3.18 Register Read D[15:0] Bit Mapping for Addr* in Figure 3.22

	Address Phase						
Data Bus	16bit Host Bus	8	us				
Data Bus	Addr1	Addr1	Addr2	Addr3			
D[15]	Х						
D[14]	х						
D[13]	A[12]						
D[12]	A[11]						
D[11]	A[10]						
D[10]	A[9]						
D[9]	A[8]						
D[8]	A[7]						
D[7]	A[6]	A[4]	A[9]	x			
D[6]	A[5]	A[3]	A[8]	x			
D[5]	A[4]	A[2]	A[7]	A[12]			
D[4]	A[3]	A[1]	A[6]	A[11]			
D[3]	A[2]	A[0]	A[5]	A[10]			
D[2]	A[1]	0	1	0			
D[1]	Х	0	0	1			
D[0]	1	1	1	1			

Note: To perform Burst Read operations, as shown in Figure 3.22, set DC01[8] = 1.

^{*} See the following table for bit mappings.

CSn Tw rah Α1 -Twrl-WRn/BEn[1:0] **∢**—Tdh—► D[15:0] Addr1* Addr2* DO X Dn X Tracc ◆Tracc RDn Handshake Mode: ► Twaitn ► Tw aitn ▼Tw ttri Tw ttri **◄**Tw ttri WAITn -

Figure 3.23: Memory Burst Read, Type A Host Interface, Indirect Addressing

Table 3.19 Memory Read D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.23

	Address Phase						
Data Bus	16bit H	lost Bus					
Data Bus	Addr1	Addr2	Addr1	Addr2	Addr3	Addr4	
D[15]	A[14]	х					
D[14]	A[13]	х					
D[13]	A[12]	х					
D[12]	A[11]	х					
D[11]	A[10]	х					
D[10]	A[9]	х					
D[9]	A[8]	х					
D[8]	A[7]	х					
D[7]	A[6]	х	A[4]	A[9]	A[14]	A[19]	
D[6]	A[5]	A[19]	A[3]	A[8]	A[13]	A[18]	
D[5]	A[4]	A[18]	A[2]	A[7]	A[12]	A[17]	
D[4]	A[3]	A[17]	A[1]	A[6]	A[11]	A[16]	
D[3]	A[2]	A[16]	A[0]	A[5]	A[10]	A[15]	
D[2]	A[1]	A[15]	0	1	0	1	
D[1]	0	1	0	0	1	1	
D[0]	0	0	0	0	0	0	

Note: To perform Burst Read operations, as shown in Figure 3.23 set DC01[8] = 1

^{*} See the following table for bit mappings.

Figure 3.24: Register Burst Write, Type A Host Interface, Indirect Addressing

^{*} See the following table for bit mappings.

Table 3.20 Register Burst Write D[15:0] Bit Mapping for Addr* in Figure 3.24

Register bu	ase			
Data Bus	16bit Host Bus	8bit Host Bu		us
	Addr1	Addr1	Addr2	Addr3
D[15]	X			
D[14]	Х			
D[13]	A[12]			
D[12]	A[11]			
D[11]	A[10]			
D[10]	A[9]			
D[9]	A[8]			
D[8]	A[7]			
D[7]	A[6]	A[4]	A[9]	х
D[6]	A[5]	A[3]	A[8]	х
D[5]	A[4]	A[2]	A[7]	A[12]
D[4]	A[3]	A[1]	A[6]	A[11]
D[3]	A[2]	A[0]	A[5]	A[10]
D[2]	A[1]	0	1	0
D[1]	Х	0	0	1
D[0]	1	1	1	1

Note: To perform Burst Write operations as shown in Figure 3.24 set DC01[9] = 1.

–Tw rh—► ←Tw rh→ CSn Α1 –Tw rh—i -Tw rh-WRn/Ben[1:0] -Tdh--Tdh-**→ →** Tds D[15:0] Addr1* Addr2* D0 Dn Handshake Mode: ►Tw ttri **→** Tw aitn **→** Twttri WAITn

Figure 3.25: Memory Burst Write, Type A Host Interface, Indirect Addressing

Table 3.21 Memory Write D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.25

	Address Phase					
Data Bus	16bit Host Bus		8bit Host Bus			
	Addr1	Addr2	Addr1	Addr2	Addr3	Addr4
D[15]	A[14]	х				
D[14]	A[13]	х				
D[13]	A[12]	х				
D[12]	A[11]	х				
D[11]	A[10]	х				
D[10]	A[9]	х				
D[9]	A[8]	х				
D[8]	A[7]	х				
D[7]	A[6]	х	A[4]	A[9]	A[14]	A[19]
D[6]	A[5]	A[19]	A[3]	A[8]	A[13]	A[18]
D[5]	A[4]	A[18]	A[2]	A[7]	A[12]	A[17]
D[4]	A[3]	A[17]	A[1]	A[6]	A[11]	A[16]
D[3]	A[2]	A[16]	A[0]	A[5]	A[10]	A[15]
D[2]	A[1]	A[15]	0	1	0	1
D[1]	0	1	0	0	1	1
D[0]	0	0	0	0	0	0

Note: To perform Burst Write operations as shown in Figure 3.25 set DC01[9] = 1.

^{*} See the following table for bit mappings.

Figure 3.26: Register/Memory Burst Write, Type A Host Interface, 8bit and 16bit Direct Addressing

Figure 3.27: Register/Memory Burst Write, Type A Host Interface, 32bit Direct Addressing

Figure 3.28: Register/Memory Burst Read, Type A Host Interface, 16bit and 8bit, Direct Addressing

Figure 3.29: Register/Memory Burst Read, Type A Host Interface, 32bit, Direct Addressing

3.4.4.2 Type A Host Interface Timing Parameters

Table 3.19 provides the AC timing parameters for the preceding Type A host interface timing diagrams (Figures 3.8 through 3.29.)

Note: TM is the memory clock period in ns, and TF is the FIFO clock period in ns.

Note: Some timing values vary according to BVDD (1.71 V or 2.4 V) and are listed

accordingly.

Table 3.22: Type A Host Interface Timing Parameters

Symbol	Description		in (ns): d Conditions		ax (ns): d Conditions
Tdh	Write cycles: Data hold time from rising edge of WRn/CSn, whichever comes first	0		N/A	
Tds	Write cycles: Data setup time to rising edge of WRn/CSn whichever comes first.	20		N/A	
Tracc	Read cycles:	N/A		2.4 V < BVD	D ≤ 3.6 V
	Maximum read access time from the begin- ning of the read cycle to the first valid data			4*TM + 35	Memory
	access.			2.5*TF + 30	FIFO Status Registers
				47	Register and JPEG Read DMA FIFO
				1.7 V ≤ BVD	D < 2.4
				4*TM + 50	Memory
				2.5*TF + 50	FIFO Status Registers
				69	Register and JPEG Read DMA FIFO
Trlz	Read cycles: Time from RDn low to Data Low-Z for an RDn- controlled read.	0		N/A	
Trdah	Read cycles: Address hold time from rising edge of CSn/RDn, whichever comes first.	-0.6		N/A	
Trdas	Read cycles: Address setup time to falling edge of CSn/RDn, whichever comes last.	0		N/A	
Trdh	Read cycles:	5	No handshake	N/A	
	Read enable Inactive time measured from the end of one read cycle to the beginning of the next read cycle.	26	Handshake		
Trdhpg	Read cycles: Data hold time from beginning of valid Address access in page mode	N/A	-	7	
Trdl	Read cycles:	2.4 V < BVDD ≤ 3.6 V		N/A	
	Read enable active low time. CSn-controlled read cycles:CSn low time	4*TM + 35	Memory		
	RDn-controlled read cycles:RDn low time	47	Register + JPEG Read DMA FIFO		
		1.7 V <u><</u> BV□	DD < 2.4		
		4*TM + 50	Memory		
		69	Register + JPEG Read DMA FIFO		

Table 3.22: Type A Host Interface Timing Parameters

Symbol	Description	Min (ns): Time and Conditions			ax (ns): d Conditions	
Trdwt	Time from rising edge of RDn to falling edge	N/A		2.4 V < BVD	D ≤ 3.6 V	
	of WAITn			17	Memory	
				31	Register	
				1.7 V <u><</u> BVD	D < 2.4	
				27	Memory	
				42	Register	
Trdz	Time from rising edge of CSn to data bus floating state	6		15		
Trpacc	Page Mode access:	N/A		2.4 V < BVD	D ≤ 3.6 V	
	Maximum read access time <u>following</u> the first			30	Memory	
	access of a page.			32	Register and Read DMA FIFO	
				1.7 V <u><</u> BVD	D < 2.4	
				45	Memory	
				45	Register and Read DMA FIFO	
Twaitn	WAITn/RDYn assertion time from the falling edge of WRn/CSn, whichever comes last.	N/A				
				1.7 V ≤ BV D	DD < 2.4	
Twrah	Write cycles: Address hold time from the edge of CSn/WRn, whichever comes first.	0		N/A		
Twras	Write cycles: Address valid setup time to the falling edge of CSn/WRn, whichever comes first.	0 N/A				
Twrcyc	Write cycle time requirement: Time from the beginning of one write cycle to the beginning of the next write cycle.	T _{WRL} + T _{WRH} 1.5*TM + 4 (Whichever is		N/A		
Twrh	Write Enable Inactive Time:	10	No handshake	N/A		
	Time from the end of one write cycle to the beginning of the next write cycle.	26	Handshake			
Twrl	Write Enable Active time:	2.4 V < BVD	DD <u><</u> 3.6 V	N/A		
	CSn-controlled write cycle: CSn active time	30				
	WRn-controlled write cycle: WRn active time	1.7 V ≤ BV E 45	DD < 2.4			
Twrrdh	Write cycles:	5	No Handshake	N/A		
	Time from the end of one read cycle to WRn assertion Time from CSn rising edge to WRn falling edge	26	Handshake			
	Read cycles:	5	No Handshake	N/A		
	Time from the end of one read cycle to RDn assertion Time from CSn rising edge to RDn falling edge	26	Handshake			

Table 3.22: Type A Host Interface Timing Parameters

Symbol	Description		Ain (ns): nd Conditions	Max (ns): Time and Conditions
Twrrds	Write cycles:	5	No handshake	N/A
	Time the RDn is high before a write cycle: Time from RDn rising edge to WRn falling edge.	26	Handshake	-
	Read cycles:	5	No handshake	
	Time the WRn is high before a read cycle: Time from WRn rising edge to RDn falling edge.	26	Handshake	
Twrwt	Time from WRn rising edge until WAITn fall- ing edge	N/A		2.4 V < BVDD ≤ 3.6 V 17
				1.7 V ≤ BVDD < 2.4 26
Twttri	Time from rising edge of CSn to beginning of tri-state condition of WAITn	N/A		29

3.4.4.3 Type B Host Interface

This section shows the timing characteristics for a Type B Host Bus interface using both direct addressing and indirect addressing.

- Direct Addressing Read/Write Timing Diagrams
 Figure 3.30 through Figure 3.33
- Indirect Addressing Read/Write Timing Diagrams
 Figure 3.34 through Figure 3.37

All Type B Timing Diagrams refer to the timing parameters in Table 3.28.

Note: The WAITn signal used in handshake mode and Page mode writes and reads is tri-stated. Use either a pull-up or a pull-down resistor with this signal, according to the Host CPU specifications.

Note: For an 8bit Type B Host Interface tie DSn0 to ground. If it is already being driven in 8bit mode, tie it to the related host pin.

Table 3.23 Type B Data Strobe (Byte Enable) Signals for Different Size Host Busses

Type B Host	32bit Host Bus		16bit Host Bus		8bit Host Bus	
Interface Signal Name	Function	Signal	Function	Signal	Function	Signal
DSn0	Data Strobe 1 [7:0]	DSn0	Data Strobe 1 [7:0]	DSn0	Data Strobe 1 [7:0] (Tied low or to a related host pin.)	DSn0
DSn1	Data Strobe 2 [15:8]	DSn1	Data Strobe 2 [15:8]	DSn1	A[0]	A[0]
DSn2	Data Strobe 3 [23:16]	DSn2	A1	A1	A1	A1
DSn3	Data Strobe 4 [31:24]	DSn3	Not used: Tie low externally	N/A	Not used: Tie low externally	N/A

Figure 3.30: CS-controlled Write, Type B 8bit and 16bit Host Interface, Direct Addressing

Figure 3.31: CS-controlled Write Operation, Type B 32bit Host Interface, Direct Addressing

Figure 3.32: CS-controlled Read, Type B 8bit and 16bit Host Interface, Direct Addressing

Figure 3.33: CS-controlled Read, Type B 32bit Host Interface, Direct Addressing

Figure 3.34: Register Write, Type B Host Interface, Indirect Addressing

 $^{^{\}star}$ See the following table for bit mappings.

Table 3.24 Register Write D[15:0] Bit Mapping for Addr* in Figure 3.34

	Address Phase						
Data Bus	16bit Host Bus	8bit Host Bus					
	Addr*	Addr*1	Addr*2	Addr*3			
D[15]	Х						
D[14]	Х						
D[13]	A[12]						
D[12]	A[11]						
D[11]	A[10]						
D[10]	A[9]						
D[9]	A[8]						
D[8]	A[7]						
D[7]	A[6]	A[4]	A[9]	х			
D[6]	A[5]	A[3]	A[8]	х			
D[5]	A[4]	A[2]	A[7]	A[12]			
D[4]	A[3]	A[1]	A[6]	A[11]			
D[3]	A[2]	A[0]	A[5]	A[10]			
D[2]	A[1]	0	1	0			
D[1]	Х	0	0	1			
D[0]	1	1	1	1			

ASn Trdah ◄ **←**—Trdas— Α1 Tcsass → Tcsash CS RD/WRn DSn[1:0] Tracc→ **∢**Trdz**→** Addr* D[15:0] -Data Handshake Mode: **∢**Twaitn → Twttri **→** WAlTn -

Figure 3.35: Register Read, Type B Host Interface, Indirect Addressing

Table 3.25 Register Read D[15:0] Bit Mapping for Addr* in Figure 3.35

	Address Phase						
Data Bus	16bit Host Bus	8bit Host Bus					
	Addr*	Addr*1	Addr*2	Addr*3			
D[15]	Х						
D[14]	Х						
D[13]	A[12]						
D[12]	A[11]						
D[11]	A[10]						
D[10]	A[9]						
D[9]	A[8]						
D[8]	A[7]						
D[7]	A[6]	A[4]	A[9]	х			
D[6]	A[5]	A[3]	A[8]	х			
D[5]	A[4]	A[2]	A[7]	A[12]			
D[4]	A[3]	A[1]	A[6]	A[11]			
D[3]	A[2]	A[0]	A[5]	A[10]			
D[2]	A[1]	0	1	0			
D[1]	Х	0	0	1			
D[0]	1	1	1	1			

^{*} See the following table for bit mappings.

Figure 3.36: Memory Write, Type B Host Interface, Indirect Addressing

Table 3.26 Memory Write D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.36

	Address Phase						
Data Bus	16bit Host Bus		8bit Host Bus				
	Addr1	Addr2	Addr1	Addr2	Addr3	Addr4	
D[15]	A[14]	х					
D[14]	A[13]	х					
D[13]	A[12]	х					
D[12]	A[11]	х					
D[11]	A[10]	х					
D[10]	A[9]	х					
D[9]	A[8]	х					
D[8]	A[7]	х					
D[7]	A[6]		A[4]	A[9]	A[14]	A[19]	
D[6]	A[5]	A[19]	A[3]	A[8]	A[13]	A[18]	
D[5]	A[4]	A[18]	A[2]	A[7]	A[12]	A[17]	
D[4]	A[3]	A[17]	A[1]	A[6]	A[11]	A[16]	
D[3]	A[2]	A[16]	A[0]	A[5]	A[10]	A[15]	
D[2]	A[1]	A[15]	0	1	0	1	
D[1]	0	1	0	0	1	1	
D[0]	0	0	0	0	0	0	

^{*} See the following table for bit mappings.

←Tcsass → Tcsass ◆Tcsass ◆Tcsash ASn → Trdas → Trdah Α1 RD/WRn DSn[1:0] CS → Trdz ← Tracc→ Addr1* Addr2* D[15:0] -Data

Figure 3.37: Memory Read, Type B Host Interface, Indirect Addressing

Table 3.27 Memory Read D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.37

	Address Phase					
Data Bus	16bit H	lost Bus	8bit Host Bus			
	Addr1	Addr2	Addr1	Addr2	Addr3	Addr4
D[15]	A[14]	Х				
D[14]	A[13]	х				
D[13]	A[12]	х				
D[12]	A[11]	х				
D[11]	A[10]	х				
D[10]	A[9]	х				
D[9]	A[8]	х				
D[8]	A[7]	х				
D[7]	A[6]	х	A[4]	A[9]	A[14]	A[19]
D[6]	A[5]	A[19]	A[3]	A[8]	A[13]	A[18]
D[5]	A[4]	A[18]	A[2]	A[7]	A[12]	A[17]
D[4]	A[3]	A[17]	A[1]	A[6]	A[11]	A[16]
D[3]	A[2]	A[16]	A[0]	A[5]	A[10]	A[15]
D[2]	A[1]	A[15]	0	1	0	1
D[1]	0	1	0	0	1	1
D[0]	0	0	0	0	0	0

^{*} See the following table for bit mappings.

Figure 3.38: Register/Memory Page Read, Type B 8bit and 16bit Host Interface, Direct Addressing

Figure 3.39: Register/Memory Page Read, Type B 32bit Host Interface, Direct Addressing

3.4.4.4 Type B Host Interface Timing Parameters

Table 3.29 provides the AC timing parameters for the preceding Type B-style host interface timing diagrams in Figure 3.30 through Figure 3.39.

Note: TM is the memory clock period in ns. TF is the FIFO clock period.

Table 3.28 Type B Host Interface Timing Parameters

Symbol	Description	Mi	in (ns): d Conditions		Max (ns): Time and Conditions	
Tcsash	CSn Hold CS hold time from rising edge of ASn	0		N/A		
Tcsass	CS Setup CS setup time to falling edge of ASn	0		N/A		
Tdh	Write cycles: Data hold time from rising edge of WRn/ASn, or falling edge of RD, whichever comes first	0		N/A		
Tds	Write cycles: Data setup time to rising edge of WRn/ASn, whichever comes first.	20		N/A		
Tracc	Read cycles:	N/A		2.4 V < BVD	D ≤ 3.6 V	
	Maximum read access time from the beginning of the			4*TM + 35	Memory	
	read cycle to the first valid data access.			2.5*TF + 30	FIFO Status Registers	
				47	Registers and JPEG Read DMA FIFO	
				1.7 V <u><</u> BVD	D < 2.4 V	
				4*TM + 50	Memory	
				2.5*TF + 50	FIFO Status Registers	
				69	Registers and JPEG Read DMA FIFO	
Trdah	Read cycles: Address hold time from rising edge of ASn/WRn, whichever comes first.	0		N/A		
Trdas	Read cycles: Address setup time to falling edge of ASn/WRn, whichever is asserted last.	0		N/A		
Trdh	Read cycles:	5	No handshake	N/A		
	Read enable Inactive time from the end of one read cycle to the beginning of the next read cycle.	26	Handshake			
Trdhpg	Data Hold Time in Page Mode Read	N/A		7		
Trdl	Read enable active low time.	2.4 V < BVD	1	N/A		
	ASn-controlled read cycles: ASn low time Rd/WRn-controlled read cycles:RD/WRn high time	4*TM + 35	Memory			
		47	Register and JPEG Read DMA FIFO			
		1.7 V <u><</u> BVD	DD < 2.4 V			
		4*TM + 50	Memory			
		69	Register + JPEG Read DMA FIFO			
Trdz	Time from rising edge of ASn to data bus floating state	6		15		

Symbol	Description		Min (ns): and Conditions	Max (ns): Time and Conditions	
Trpacc	Page Mode access:			2.4 V < B	8VDD <u><</u> 3.6 V
	Maximum read access time <i>following</i> the first access			30	Memory
	of a page.			32	Register and JPEG Read DMA FIFO
				1.7 V ≤ B	SVDD < 2.4 V
				45	Memory
				45	Register and JPEG Read DMA FIFO
Twaitn	WAITn/RDYn assertion time from the falling edge of WRn/CSn, whichever comes last.	N/A		2.4 V < B	SVDD <u><</u> 3.6 V
				1.7 V ≤ B 40	SVDD < 2.4 V
Twrah	Write cycles: Address hold time from the rising edge of ASn/WRn, whichever comes first.	0		N/A	
Twras	Write cycles: Address setup time from the edge of ASn/WRn, whichever comes first.	0		N/A	
Twrcyc	Write cycle time requirement: Time from the beginning of one write cycle to the beginning of the next write cycle.	1.5*TM +4 OR T _{WRL} + T _{WRH} (Whichever comes first)		N/A	
Twrh	Write Enable Active Time: Time from the end of one write cycle to the beginning of the next write cycle	10 26	No handshake Handshake	N/A	
Twrl	Write Enable Active time: ASn-controlled write cycle:	2.4 V < B ¹	VDD <u><</u> 3.6 V	N/A	
	ASn active time RD/WRn-controlled write cycle: RD/WRn active time	1.7 V ≤ B ′ 45	VDD < 2.4 V		
Twrrds	Write cycles:	5	No handshake	N/A	
	Time the RDn is high before a write cycle: Time from RDn rising edge to ASn falling edge.	26	Handshake		
	Read cycles:	5	No handshake		
	Time the WRn is low before a read cycle:	26	Handshake		
Twrwt	Time from WRn rising edge until WAITn falling edge	N/A		2.4 V < B	3.6 V ≤ 3.6 V
				1.7 V ≤ E 26	SVDD < 2.4 V
Twttri	Time from rising edge of ASn to beginning of tri-state condition of WAITn	N/A		29	

3.4.4.5 Type C Host Interface

This section shows the timing characteristics for a Type C Host Bus interface using both direct addressing and indirect addressing.

Direct Addressing Read/Write Timing Diagrams
 Figure 3.42 through Figure 3.53
 Figure 3.60 through Figure 3.63

Indirect Addressing Read/Write Timing Diagrams
 Figure 3.52 through Figure 3.59

All Type C Timing Diagrams refer to the timing parameters in Table 3.38.

Note: The WAITn signal used in handshake mode, Burst mode, and Page mode writes and reads is tri-stated. Use either a pull-up or a pull-down resistor with this signal, according to the Host CPU specifications.

Note: For an 8bit Type C Host Interface tie WEn to ground or to the related host pin.

Table 3.29 Type C Byte-enable Signals for Different Size Host Busses

Type C Host	Function					
Interface Signal Name	32bit Host Bus	16bit Host Bus	8bit Host Bus			
WEn0	Write Enable 1 [7:0]	Write Enable 1 [7:0]	Write Enable 1 [7:0]			
WEn1	Write Enable 2 [15:8]	Write Enable 2 [15:8]	A[0]			
WEn2	Write Enable 3 [23:16]	A[1]	A[1]			
WEn3	Write Enable 4 [31:24]	Not used: Tie low externally	Not used: Tie low externally			

Figure 3.40: WEn-controlled Write, Type C 8bit and 16bit Host Interface, Direct Addressing

Figure 3.41: WEn-controlled Write, Type C 32bit Host Interface, Direct Addressing

Figure 3.42: CSn-controlled Write, Type C 8bit and 16bit Host Interface, Direct Addressing

Figure 3.43: CSn-controlled Write, Type C 32bit Host Interface, Direct Addressing

Figure 3.44: OEn-controlled Read, Type C 8bit and 16bit Host Interface, Direct Addressing

Figure 3.45: OEn-controlled Read, Type C 32bit Host Interface, Direct Addressing

Figure 3.46: CSn-controlled Read, Type C 8bit and 16bit Host Interface, Direct Addressing

Figure 3.47: CSn-controlled Read, Type C 32bit Host Interface, Direct Addressing

Figure 3.48: Page-Mode Read, Type C 8bit and 16bit Host Interface, Direct Addressing

Note: There is no restriction on the page length.

Figure 3.49: Page-Mode Read, Type C 32bit Host Interface, Direct Addressing

Note: There is no restriction on page length.

-Tw rl--Tw rl--Tw rh-CSn Tw ras **∢**Tw ras → Tw rah **∢**Twrah → Α1 OEn -Tw rh-WEn[1:0] **∢**Tdh **►**Tdh∢ Tds -Trdz-Tds Data Addr* D[15:0] Handshake Mode: ➤ Tw aitn ► → Tw ttri -► Tw aitn **►** Tw ttri WAITn -

Figure 3.50: Register Write, Type C Host Interface, Indirect Addressing

Table 3.30 Register Write D[15:0] Bit Mapping for Addr* in Figure 3.50

	Address Phase						
Data Bus	16bit Host Bus	8bit Host Bus					
	Addr*	Addr*1	Addr*2	Addr*3			
D[15]	Х						
D[14]	Х						
D[13]	A[12]						
D[12]	A[11]						
D[11]	A[10]						
D[10]	A[9]						
D[9]	A[8]						
D[8]	A[7]						
D[7]	A[6]	A[4]	A[9]	х			
D[6]	A[5]	A[3]	A[8]	х			
D[5]	A[4]	A[2]	A[7]	A[12]			
D[4]	A[3]	A[1]	A[6]	A[11]			
D[3]	A[2]	A[0]	A[5]	A[10]			
D[2]	A[1]	0	1	0			
D[1]	Х	0	0	1			
D[0]	1	1	1	1			

^{*} See the following table for bit mappings.

Figure 3.51: Register Read Operation, Type C Host Interface, Indirect Addressing

^{*} See the following table for bit mappings.

Table 3.31 Register Read D[15:0] Bit Mapping for Addr* in Figure 3.54

	Address Phase						
Data Bus	16bit Host Bus	8bit Host Bus					
	Addr*	Addr*1	Addr*2	Addr*3			
D[15]	Х						
D[14]	Х						
D[13]	A[12]						
D[12]	A[11]						
D[11]	A[10]						
D[10]	A[9]						
D[9]	A[8]						
D[8]	A[7]						
D[7]	A[6]	A[4]	A[9]	х			
D[6]	A[5]	A[3]	A[8]	х			
D[5]	A[4]	A[2]	A[7]	A[12]			
D[4]	A[3]	A[1]	A[6]	A[11]			
D[3]	A[2]	A[0]	A[5]	A[10]			
D[2]	A[1]	0	1	0			
D[1]	Х	0	0	1			
D[0]	1	1	1	1			

CSn Twras **←**Twras **⊸**Twrah Α1 -Twrl-Twrl WEn[1:0] **∢**Tdh **∢**Tdh Tds -Tds Addr2* D[15:0] Addr1* Data **⊸**Twrrds T wrrdh OEn Handshake Mode: ►Twaitn **→** Twttri → T waitn WAITn

Figure 3.52: Memory Write, Type C Host Interface, Indirect Addressing

Table 3.32 Memory Write D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.52

	Address Phase						
Data Bus	16bit Host Bus		8bit Host Bus				
	Addr1	Addr2	Addr1	Addr2	Addr3	Addr4	
D[15]	A[14]	Х					
D[14]	A[13]	х					
D[13]	A[12]	х					
D[12]	A[11]	х					
D[11]	A[10]	х					
D[10]	A[9]	х					
D[9]	A[8]	х					
D[8]	A[7]	х					
D[7]	A[6]	х	A[4]	A[9]	A[14]	A[19]	
D[6]	A[5]	A[19]	A[3]	A[8]	A[13]	A[18]	
D[5]	A[4]	A[18]	A[2]	A[7]	A[12]	A[17]	
D[4]	A[3]	A[17]	A[1]	A[6]	A[11]	A[16]	
D[3]	A[2]	A[16]	A[0]	A[5]	A[10]	A[15]	
D[2]	A[1]	A[15]	0	1	0	1	
D[1]	0	1	0	0	1	1	
D[0]	0	0	0	0	0	0	

^{*} See the following table for bit mappings.

Figure 3.53: Memory Read, Type C Host Interface, Indirect Addressing

^{*} See the following table for bit mappings.

Table 3.33 Memory Read D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.53

	Address Phase						
Data Bus	16bit Host Bus						
	Addr1	Addr2	Addr1	Addr2	Addr3	Addr4	
D[15]	A[14]	х					
D[14]	A[13]	х					
D[13]	A[12]	х					
D[12]	A[11]	х					
D[11]	A[10]	х					
D[10]	A[9]	х					
D[9]	A[8]	х					
D[8]	A[7]	х					
D[7]	A[6]	х	A[4]	A[9]	A[14]	A[19]	
D[6]	A[5]	A[19]	A[3]	A[8]	A[13]	A[18]	
D[5]	A[4]	A[18]	A[2]	A[7]	A[12]	A[17]	
D[4]	A[3]	A[17]	A[1]	A[6]	A[11]	A[16]	
D[3]	A[2]	A[16]	A[0]	A[5]	A[10]	A[15]	
D[2]	A[1]	A[15]	0	1	0	1	
D[1]	0	1	0	0	1	1	
D[0]	0	0	0	0	0	0	

CSn **→**Trdah Trdas Tw rah Α1 Tdh |◀ D[15:0] Addr* D0 Dn Tracc → Trdz < **OEn** WEn[1:0] Handshake Mode: →Tw aitn → Trdw t ► Tw aitn ► Tw ttri → Trdw t ► Tw ttri WAITn

Figure 3.54: Register Burst Read, Type C Host Interface, Indirect Addressing

Table 3.34 Register Read D[15:0] Bit Mapping for Addr* in Figure 3.54

	Address Phase						
Data Bus	16bit Host Bus	81	us				
	Addr*	Addr*1	Addr*2	Addr*3			
D[15]	Х						
D[14]	Х						
D[13]	A[12]						
D[12]	A[11]						
D[11]	A[10]						
D[10]	A[9]						
D[9]	A[8]						
D[8]	A[7]						
D[7]	A[6]	A[4]	A[9]	x			
D[6]	A[5]	A[3]	A[8]	x			
D[5]	A[4]	A[2]	A[7]	A[12]			
D[4]	A[3]	A[1]	A[6]	A[11]			
D[3]	A[2]	A[0]	A[5]	A[10]			
D[2]	A[1]	0	1	0			
D[1]	Х	0	0	1			
D[0]	1	1	1	1			

Note: Tie WRn low.

Note: To perform Burst Read operations as shown in Figure 3.54 set DC01[8] = 1.

^{*} See the following table for bit mappings.

Figure 3.55: Memory Burst Read, Type C Host Interface, Indirect Addressing

^{*} See the following table for bit mappings.

Table 3.35 Memory Read D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.55

Address Phase						
Data Bus	16bit H	ost Bus	8bit Host Bus			
	Addr1	Addr2	Addr1	Addr2	Addr3	Addr4
D[15]	A[14]	x				
D[14]	A[13]	х				
D[13]	A[12]	х				
D[12]	A[11]	х				
D[11]	A[10]	х				
D[10]	A[9]	х				
D[9]	A[8]	х				
D[8]	A[7]	х				
D[7]	A[6]	х	A[4]	A[9]	A[14]	A[19]
D[6]	A[5]	A[19]	A[3]	A[8]	A[13]	A[18]
D[5]	A[4]	A[18]	A[2]	A[7]	A[12]	A[17]
D[4]	A[3]	A[17]	A[1]	A[6]	A[11]	A[16]
D[3]	A[2]	A[16]	A[0]	A[5]	A[10]	A[15]
D[2]	A[1]	A[15]	0	1	0	1
D[1]	0	1	0	0	1	1
D[0]	0	0	0	0	0	0

Note: To perform Burst Read operations as shown in Figure 3.55 set DC01[8] = 1.

CSn -Twrl-Twrh-► Twrl - Twrh – Twrh WEn[1:0] **OEn** Twras Tw rah A1 **←**Tdh→ **→**Tds**←** D[15:0] Addr* D0 Dn Handshake Mode: **∢**Twrwt**→** → Tw aitn 🖛 → Tw ttri ► Twaitn → Tw ttri WAITn

Figure 3.56: Register Burst Write, Type C Host Interface, Indirect Addressing

Table 3.36 Register Write D[15:0] Bit Mapping for Addr* in Figure 3.56

	Address Phase							
Data Bus	16bit Host Bus	8bit Host Bus						
	Addr*	Addr*1	Addr*2	Addr*3				
D[15]	Х							
D[14]	Х							
D[13]	A[12]							
D[12]	A[11]							
D[11]	A[10]							
D[10]	A[9]							
D[9]	A[8]							
D[8]	A[7]							
D[7]	A[6]	A[4]	A[9]	х				
D[6]	A[5]	A[3]	A[8]	х				
D[5]	A[4]	A[2]	A[7]	A[12]				
D[4]	A[3]	A[1]	A[6]	A[11]				
D[3]	A[2]	A[0]	A[5]	A[10]				
D[2]	A[1]	0	1	0				
D[1]	Х	0	0	1				
D[0]	1	1	1	1				

Note: Tie WRn low.

Note: To perform Burst Write operations as shown in Figure 3.56 set DC01[9] = 1.

^{*} See the following table for bit mappings.

Figure 3.57: Memory Burst Write, Type C Host Interface, Indirect Addressing

^{*} See the following table for bit mappings.

Table 3.37 Memory Write D[15:0] Bit Mapping for Addr1* and Addr2* in Figure 3.57

	Address Phase							
Data Bus	16bit Host Bus		8bit Host Bus					
	Addr1	Addr2	Addr1	Addr2	Addr3	Addr4		
D[15]	A[14]	Х						
D[14]	A[13]	х						
D[13]	A[12]	х						
D[12]	A[11]	х						
D[11]	A[10]	х						
D[10]	A[9]	х						
D[9]	A[8]	х						
D[8]	A[7]	х						
D[7]	A[6]	х	A[4]	A[9]	A[14]	A[19]		
D[6]	A[5]	A[19]	A[3]	A[8]	A[13]	A[18]		
D[5]	A[4]	A[18]	A[2]	A[7]	A[12]	A[17]		
D[4]	A[3]	A[17]	A[1]	A[6]	A[11]	A[16]		
D[3]	A[2]	A[16]	A[0]	A[5]	A[10]	A[15]		
D[2]	A[1]	A[15]	0	1	0	1		
D[1]	0	1	0	0	1	1		
D[0]	0	0	0	0	0	0		

Note: Tie WRn low. To perform Burst Write operations as shown in Figure 3.54, set DC01[9] = 1

Figure 3.58: Register/Memory Burst Write, Type C Host 8bit and 16bit Interface,
Direct Addressing

Figure 3.59: Register/Memory Burst Write, Type C Host 32bit Interface, Direct Addressing

Figure 3.60: Register/Memory Burst Read, Type C 8bit and 16bit Host Interface,
Direct Addressing

Figure 3.61: Register Memory Burst Read, Type C 32bit Host Interface, Direct Addressing

3.4.4.6 Type C Host Interface Timing Parameters

Table 3.39 provides the AC timing parameters for the preceding Type C-style host interface timing diagrams in Figure 3.40 through Figure 3.61.

Note: TM is the memory clock period in ns. TF is the FIFO clock period.

Table 3.38 Type C Host Interface Timing Parameters

Table 3.38 Type C Host Interface Timing Parameters Simple I								
Symbol	Description	Time and Conditions		Time and Conditions				
Tdh	Write cycles:	0		N/A	<u></u>			
	Data hold time from rising edge of CSn			.,,,,				
Tds	Write cycles:	20		N/A				
	Data setup time to rising edge of CSn.							
Tracc	Read cycles:	N/A		2.4 V < BVD	D <u><</u> 3.6 V			
	Maximum read access time from the beginning of the read cycle to the first valid data access.			4*TM + 35	Memory			
				2.5*TF + 30	FIFO Status Registers			
				47	Register and JPEG Read DMA FIFO			
				1.7 V <u><</u> BVD	D < 2.4			
				4*TM + 50	Memory			
				2.5*TF + 50	FIFO Status Registers			
				69	Register and JPEG Read DMA FIFO			
Trdah	Read cycles: Address hold time from rising edge of CSn or WEn, whichever comes first.	0		N/A				
Trdas	Read cycles: Address setup time to falling edge of CSn or WEn, whichever comes last.	0		N/A				
Trdh	Read cycles:	5	No handshake	N/A				
	Read enable Inactive time measured from the end of one read cycle to the beginning of the next read cycle.	26	Handshake					
Trdhpg	Data Hold Time in page mode read	N/A		7				
Trdl	Write cycles:	2.4 V < BVE	DD ≤ 3.6 V	N/A				
	Read enable active low time.	4*TM + 35	Memory					
	CSn-controlled write cycles:CSn low time OEn-controlled write cycles:OEn low time	47	Register and JPEG Read DMA FIFO					
		1.7 V ≤ BVE	DD < 2.4					
		4*TM + 50	Memory					
		69	Register and JPEG Read DMA FIFO					
Trdwt	Time from rising edge of OEn to falling edge of WAITn	N/A		2.4 V < BVD	DD ≤ 3.6 V			
				17	Memory			
				31	Register			
				1.7 V <u><</u> BVD	DD < 2.4			
				27	Memory			
				42	Register			
Trdz	Time from rising edge of CSn to data bus floating state	6		15				

Symbol	Description		Min (ns): Time and Conditions		Max (ns): and Conditions	
Trpacc	Page Mode access:	N/A		2.4 V < B	/DD <u><</u> 3.6 V	
	Maximum read access time <i>following</i> the first access of a page.			30	Memory	
	or a page.			32	Register and JPEG Read DMA FIFO	
				1.7 V ≤ B\	/DD < 2.4	
				45	Memory	
				45	Register and JPEG Read DMA FIFO	
Twaitn	WAITn/RDYn assertion time from the falling edge of CSn.	N/A		2.4 V < B V	VDD <u><</u> 3.6 V	
				1.7 V ≤ B V 40	/DD < 2.4	
Twrah	Write cycles: Address hold time from the rising edge of CSn or WEn, whichever comes first.	0		N/A		
Twras	Write cycles: Address setup time from the edge of CSn or WEn, whichever comes first.	0	0			
Twrcyc	Write cycle time requirement: Time from the beginning of one write cycle to the beginning of the next write cycle.	T _{wrl +} T _{wrH} OR 1.5*Tm + 4 (Whichever is longer)		N/A		
Twrh	Write Enable Inactive Time:	10	No handshake	N/A		
	Time from the end of one write cycle to the beginning of the next write cycle	26	Handshake			
Twrl	Write Enable Active time: CSn-controlled write cycle: CSn active time	2.4 V < BVD 30	D ≤ 3.6 V	N/A		
	WRn-controlled write cycle: WRn active time	1.7 V ≤ BVD 45	D < 2.4			
Twrrdh	WEn Assertion time	5	No handshake	N/A		
	Immediately after a read cycle: Time from CSn rising edge to WEn falling edge	26	Handshake			
	OEn Assertion time	5	No handshake			
	Immediately following a write cycle: Time from CSn rising edge to OEn falling edge	26	Handshake			
Twrrds	Time for OEn to be de-asserted	5	No handshake	N/A		
	Before a write cycle: Time from rising edge of OEn to falling edge of CSn for write cycles	26	Handshake			
	Time for WEn to be de-asserted	5	No handshake			
	Before a read cycle: Time from rising edge of WEn to falling edge of CSn for read cycles	26	Handshake			
Twttri	Time from rising edge of CSn to beginning of tri-state condition of WAITn	N/A		29		

3.4.5 Flat Panel Interface

FIGURE 3.62: Flat Panel Output Timing

TSCLK

THI

TDOVD

FDE, FD[17:0], VDE

FHSYNC, FVSYNC,
FLCLKx, FMODx, PWMx

Table 3.39: AC Timing Characteristics - Panel Output Timing

Symbol	Parameter	Min	Max	Units
T _{SCLK}	Shift clock cycle time, CPU Interface	20	-	ns
	Shift clock cycle time, Direct Parallel Interface	125	-	ns
T _{DOVD}	Data signals output valid time	-3	4	ns
T _{COVD}	Control signals output valid time	-3	3	ns
T _{HI/} T _{SCLK}	Shift clock duty cycle	40	60	%

Note: AC Timing is specified with output loading = 25 pF.

3.4.6 Video Input Interface

VCLK (active high)

Tpvcwh

Tpvdh

VID[7:0], VSYNC, VHSYNC

Tpvds

Tpvct

Figure 3.63: Video Parallel Input Clock Timing

Table 3.40: Video Parallel Input Clock Timing

Symbol	Parameter	Rev: A or B	Min	Max	Unit
T _{pvcc}	VCLK cycle time	Rev B	13.8	-	ns
		Rev A	18.5	-	
T _{pvcwl}	VCLK low pulse width	Rev B	4.5	_	ns
		Rev A	6	-	
T _{PVCWH}	VCLK high pulse width	Rev B	7.7	-	ns
		Rev A	10.5	-	
T_{pvds}	VID[7:0] data setup time	•	5	_	ns
T_{pvdh}	VID[7:0] data hold time	4	-	ns	
T _{PVCT}	VCLK Rise/fall transition time		-	**	ns

^{**} T_{PVCT} can have any period as long as the remaining Video Parallel Input Clock setup and hold times are within the NVIDIA specifications given here.

3.5 Package Specifications

3.5.1 Mechanical Drawings

Figure 3.64: GoForce 4000 10 x 10 mm Package Mechanical Drawing

NOTE:

- 1. CONTROLLING DIMENSIONS: MILLIMETER.
- PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- 3 DIMENSION 6 IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C.
- 4. THERE SHALL BE A MINIMUM CLEARANCE OF 0.50mm BETWEEN THE EDGE OF THE SOLDER BALL AND THE BODY EDGE.
- 5. REFERENCE DOCUMENT: JEDEC MO-207.
- 6. THE PATTERN OF PIN 1 FIDUCIAL IS FOR REFERENCE ONLY.
- 7. DRAWING NOT TO SCALE.

Table 3.41 Symbol and Dimension Call Outs

Symbol	D	Imension in I	mm	Dir	Dimension in inches				
Symbol	MIN	Nominal	MAX	MIN	Nominal	MAX			
A	1.10	1.15	1.20	0.043	0.045	0.047			
A1	0.16	0.21	0.26	0.006	0.008	0.010			
A2	0.40	0.45	0.50	0.019	0.018	0.020			
φb	0.25	0.30	0.35	0.010	0.012	0.014			
(diameter b)									
D	9.90	10.00	10.10	0.390	0.394	0.398			
E	9.90	10.00	10.10	0.390	0.394	0.398			
D1		8.45 BASIC	-1	0.333 BASIC					
E1		7.15 BASIC		0.281 BASIC					
е		0.65 BASIC		0.026 BASIC					
aaa		0.15		0.006					
ссс		0.20		0.008					
ddd		0.10		0.004					
eee		0.15		0.006					
fff		0.10		0.004					
MD/ME* 14/12									
Total Number of Balls: 168									

^{*} MD/ME = (Number of balls in row)/(number of balls in column)

Note:

Parameters for aaa, bbb, ccc, ddd, eee, and fff are measured according to JEDEC specification MO-207. The diameters of eee and fff are specified for worst case material conditions, with respect to datum C. The diameter of eee is also measured with respect to datums A and B.

3.5.2 **Ball Map**

The GoForce 4000 package is a 10×10 mm 168-pin chip-scale BGA package. It is ball-compatible with the GoForce 3000 (which is in a 8×10 mm package). Relative to GoForce 3000, GoForce 4000 contains an additional row of 14 balls on one edge of the package. Figure 3.65 shows the GoForce 4000 ball map. Differences with GoForce 3000 are shaded in red.

Figure 3.65: GoForce 4000 Ball Map

TOP VIEW 168 Pin Array

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Α	O A17	O A16	O A11	O A9	O MD1	O A19	O vvsync	O VGP2	O VGP0	O VD0	O	O VGP4	O VGP3	O VGP1	Α
В	O A15	O A14	O A18	O A7	O BGP0	BEn3	O VID7	O VID5	O VID3	O VID1	O VID6	O VID4	O VID2	O vclk	В
С	O A12	O A10	O A13	O A5	O MD2	O TRST	O TMS	O TD0	O FCLK1	O FCLK0	O ENVEE	O	O ENVDD	O VVDD	С
D	O A6	O A4	O A8	O A3	O BVDD	CVDD	С	O TDI	O FD13	O FVSYNC	O FMOD0	O FVDD	O FFCLK	O FHSYNC	D
E	OSCFI	O A1	O A2	O BVDD	CVDD	O MD0	O GND	O GND	CVDD	O FD9	O FDE	O FD1	O FD0	O FSCLK	E
F	Oscfo	OSCR	RDYn	O BEn1	CVDD	O GND	O GND	O GND	CVDD	O FD7	O FD5	O FD4	O FD2	O FD3	F
G	O INTRn	O WRn	O D14	O BEn0	CVDD	O GND	O GND	O GND	O FD15	O FD11	O FD6	O FD12	O FD8	O FD10	G
Н	O D9	O D5	D3	O RDn	O PORn	O GND	O SDD1	O FGP0	O FGP2	O FGP5	O FD14	O FVDD	O FD16	O FD17	Н
J	O D7	O D1	O D6	O D15	O CSn	SDVDD	O SDD3	O	O SDD2	O FGP7	O FGP9	O FMOD1	O FGP3	O FGP1	J
K	O D0	O D4	O D8	O D13	O D22	O GND	O D27	O SDD0	O SDCMD	O SDGP1	O FGP11	O FGP4	O FGP8	O FGP6	K
L	O D12	O D2	O D10	O D11	O D21	O D24	D26	O D29	O D31	SDGP0	O FGP12	O FGP10	O FGP13	O FGP14	L
М	D16	O D17	O D18	O D19	O D20	O D23	O D25	O D28	O D30	O BVDD	O NC	O NC	O NC	O NC	M
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

3.5.2.1 Alphabetic Signal to Ball Mapping

Table 3.42 Alphabetic Signal to Ball Mapping

Signal Name	Ball #						
A1	E2	D9	H1	FD16	H13	NC	M11
A2	E3	D10	L3	FD17	H14	NC	M12
A3	D4	D11	L4	FDE	E11	NC	M13
A4	D2	D12	L1	FFCLK	D13	NC	M14
A5	C4	D13	K4	FGP0	Н8	OSCFI	E1
A6	D1	D14	G3	FGP1	J14	OSCFO	F1
A7	B4	D15	J4	FGP2	H9	OSCR	F2
A8	D3	D16	M1	FGP3	J13	PORn	H5
A9	A4	D17	M2	FGP4	K12	RDn	H4
A10	C2	D18	M3	FGP5	H10	RDYn	F3
A11	A3	D19	M4	FGP6	K14	SDCLK	J8
A12	C1	D20	M5	FGP7	J10	SDCMD	К9
A13	C3	D21	L5	FGP8	K13	SDD0	K8
A14	B2	D22	K5	FGP9	J11	SDD1	H7
A15	B1	D23	M6	FGP10	L12	SDD2	J9
A16	A2	D24	L6	FGP11	K11	SDD3	J7
A17	A1	D25	M7	FGP12	L11	SDGP0	L10
A18	В3	D26	L7	FGP13	L13	SDGP1	K10
A19	A6	D27	K7	FGP14	L14	SDVDD	J6
BEn0	G4	D28	M8	FHSYNC	D14	TCK	D7
BEn 1	F4	D29	L8	FLCLK0	C10	TD0	C8
BEn3	B6	D30	M9	FLCLK1	C9	TD1	D8
BGP0	B5	D31	L9	FMOD0	D11	TMS	C7
BVDD	D5	ENCTL	C12	FMOD1	J12	TRST	C6
BVDD	E4	ENVDD	C13	FSCLK	E14	VCLK	B14
BVDD	M10	ENVEE	C11	FVDD	H12	VGP0	A9
CSn	J5	FD0	E13	FVDD	D12	VGP1	A14
CVDD	D6	FD1	E12	FVSYNC	D10	VGP2	A8
CVDD	E5	FD2	F13	GND	E7	VGP3	A13
CVDD	G5	FD3	F14	GND	E8	VGP4	A12
CVDD	F9	FD4	F12	GND	F6	VHSYNC	A11
CVDD	F5	FD5	F11	GND	F7	VID0	A10
CVDD	E9	FD6	G11	GND	F8	VID1	B10
D0	K1	FD7	F10	GND	G6	VID2	B13
D1	J2	FD8	G13	GND	G7	VID3	В9
D2	L2	FD9	E10	GND	G8	VID4	B12
D3	H3	FD10	G14	GND	H6	VID5	B8
D4	K2	FD11	G10	GND	K6	VID6	B11
D5	H2	FD12	G12	INTRn	G1	VID7	B7
D6	J3	FD13	D9	MD0	E6	VVDD	C14
D7	J1	FD14	H11	MD1	A5	VVSYNC	A7
D8	К3	FD15	G9	MD2	C5	WRn	G2

3.5.2.2 Alphabetic Ball to Signal Mapping

Table 3.43 Alphabetic Ball to Signal Mapping

Ball #	Signal Name						
A1	A17	D1	A6	G1	INTRn	K1	D0
A2	A16	D2	A4	G2	WRn	K2	D4
A3	A11	D3	A8	G3	D14	K3	D8
A4	A9	D4	A3	G4	BEn0	K4	D13
A5	MD1	D5	BVDD	G5	CVDD	K5	D22
A6	A19	D6	CVDD	G6	GND	K6	GND
A7	VVSYNC	D7	TCK	G7	GND	K7	D27
A8	VGP2	D8	TD1	G8	GND	K8	SDD0
A9	VGP0	D9	FD13	G9	FD15	К9	SDCMD
A10	VID0	D10	FVSYNC	G10	FD11	K10	SDGP1
A11	VHSYNC	D11	FMOD0	G11	FD6	K11	FGP11
A12	VGP4	D12	FVDD	G12	FD12	K12	FGP4
A13	VGP3	D13	FFCLK	G13	FD8	K13	FGP8
A14	VGP1	D14	FHSYNC	G14	FD10	K14	FGP6
B1	A15	E1	OSCFI	H1	D9	L1	D12
B2	A14	E2	A1	H2	D5	L2	D2
В3	A18	E3	A2	H3	D3	L3	D10
B4	A7	E4	BVDD	H4	RDn	L4	D11
B5	BGP0	E5	CVDD	H5	PORn	L5	D21
В6	BEn3	E6	MD0	H6	GND	L6	D24
B7	VID7	E7	GND	H7	SDD1	L7	D26
B8	VID5	E8	GND	H8	FGP0	L8	D29
В9	VID3	E9	CVDD	H9	FGP2	L9	D31
B10	VID1	E10	FD9	H10	FGP5	L10	SDGP0
B11	VID6	E11	FDE	H11	FD14	L11	FGP12
B12	VID4	E12	FD1	H12	FVDD	L12	FGP10
B13	VID2	E13	FD0	H13	FD16	L13	FGP13
B14	VCLK	E14	FSCLK	H14	FD17	L14	FGP14
C1	A12	F1	OSCFO	Jl	D7	M1	D16
C2	A10	F2	OSCR	J2	D1	M2	D17
C3	A13	F3	RDYn	J3	D6	M3	D18
C4	A5	F4	BEn 1	J4	D15	M4	D19
C5	MD2	F5	CVDD	J5	CSn	M5	D20
C6	TRST	F6	GND	J6	SDVDD	M6	D23
C7	TMS	F7	GND	J7	SDD3	M7	D25
C8	TD0	F8	GND	J8	SDCLK	M8	D28
C9	FLCLK1	F9	CVDD	J9	SDD2	М9	D30
C10	FLCLK0	F10	FD7	J10	FGP7	M10	BVDD
C11	ENVEE	F11	FD5	J11	FGP9	M11	NC
C12	ENCTL	F12	FD4	J12	FMOD1	M12	NC
C13	ENVDD	F13	FD2	J13	FGP3	M13	NC
C14	VVDD	F14	FD3	J14	FGP1	M14	NC

Solder Reflow 3.6

The solder reflow profile in Figure 3.66 and the reflow profile parameters in Table 3.44 are based on JEDEC Standard J-STD-020B for Small Body components. Refer to the JEDEC specs for further details.

Figure 3.66: Solder Reflow Profile

Table 3.44: Reflow Profile Parameters

Profile Feature	Sn-Pb Eutectic Assembly	Pb-free Assembly		
Average ramp-up rate	3 ° C/second maximum	3 ° C/second maximum		
Preheat				
- Temperature Min (T _{Smin)}	100 ° C	150 ° C		
- Temperature Max (T _{Smax})	150 ° C	200 ° C		
- Time (min to max) (ts)	60-120 seconds	60-180 seconds		
T _{Smax} to TL				
- Ramp-up rate	N/A	3 ° C/second max		
Time maintained above:				
- Temperature (T _L)	183 ° C	217 ° C		
- Time (t _L)	60 - 150 seconds	60 - 150 seconds		
Peak Temperature (T _P)	240 + 0/-5 ° C	250 + 0/-5 ° C		
Time within 5C of actual Peak Temperature (t _P)	10 - 30 seconds	20 - 40 seconds		
Ramp-down Rate	6 ° C/second max.	6 ° C/second max.		
Time from 25C to Peak				
Temperature	6 minutes max.	8 minutes max.		

This page left blank intentionally.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, AND GoForce 4000 are trademarks or registered trademarks of NVIDIA Corporation. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2005 by NVIDIA Corporation. All rights reserved