Explorando estadísticas de permutaciones: contando con *q*'s

Ignacio Rojas ¹

Mayo, 2023

¹Colorado State University

Permutaciones

Definición

Una permutación de un conjunto A es una biyección $\sigma:A\to A$.

Permutaciones

Definición

Una permutación de un conjunto A es una biyección $\sigma: A \rightarrow A$.

Estamos más familiarizados con permutaciones de [n] donde

$$[n] = \{1, 2, \ldots, n\}$$

Permutaciones

Definición

Una permutación de un conjunto A es una biyección $\sigma: A \rightarrow A$.

Estamos más familiarizados con permutaciones de [n] donde

$$[n] = \{1, 2, \dots, n\}$$

• Consideremos la permutación σ :

$$\sigma(1) = 3$$
, $\sigma(2) = 5$, $\sigma(3) = 4$, $\sigma(4) = 1$, $\sigma(5) = 2$.

Esta notación es poco conveniente...

Escribamos σ de distintas formas:

Escribamos σ de distintas formas:

• Como un emparejamiento:

Escribamos σ de distintas formas:

• Como un emparejamiento:

• Como una matriz:

Escribamos σ de distintas formas:

• Como un emparejamiento:

• Como una matriz:

• Como una lista:

Escribamos σ de distintas formas:

• Como un emparejamiento:

• Como una matriz:

• Como una lista:

• Como un gráfico:

Una forma más, por ciclos:

Tenemos $\sigma = 35412$:

Una forma más, por ciclos:

Tenemos $\sigma = 35412$:

Una forma más, por ciclos:

Tenemos $\sigma = 35412$:

Entonces:

$$\sigma = 35412 = (134)(25).$$

Un breve ejercicio

Tome otra permutación de 5 elementos, distinta a $\sigma=35412$ y escríbala como:

- Un emparejamiento.
- Una matriz.
- Una lista.

También:

- Dibuje el gráfico de su permutación.
- Descompóngala por ciclos.

El grupo simétrico

Definición

El conjunto de todas las permutaciones es

$$S_n = \{ \sigma \text{ es una permutación de } [n] \}.$$

El grupo simétrico

Definición

El conjunto de todas las permutaciones es

$$S_n = \{ \sigma \text{ es una permutación de } [n] \}.$$

Ejemplo

En S_2 :

$$S_2 = \{12, 21\}.$$

El grupo simétrico

Definición

El conjunto de todas las permutaciones es

$$S_n = \{ \sigma \text{ es una permutación de } [n] \}.$$

Ejemplo

En S_2 :

$$S_2 = \{12, 21\}.$$

Ejemplo

En *S*₃:

$$S_3 = \{123, 213, 132, 321, 231, 312\}.$$

Definición

Una estadística es una función:

$$f: S_n \to \mathbb{N}.$$

Definición

Una estadística es una función:

$$f: S_n \to \mathbb{N}$$
.

• El <u>orden</u> de una permutación es

$$\operatorname{ord}(\sigma) = \min\{ n \in \mathbb{N} \mid \sigma^n = \operatorname{id} \}.$$

Definición

Una estadística es una función:

$$f: S_n \to \mathbb{N}$$
.

• El <u>orden</u> de una permutación es

$$\operatorname{ord}(\sigma) = \min\{ n \in \mathbb{N} \mid \sigma^n = \operatorname{id} \}.$$

• El orden es una estadística: $\sigma \mapsto \operatorname{ord}(\sigma)$.

Definición

Una estadística es una función:

$$f: S_n \to \mathbb{N}$$
.

• El <u>orden</u> de una permutación es

$$\operatorname{ord}(\sigma) = \min\{ n \in \mathbb{N} \mid \sigma^n = \operatorname{id} \}.$$

- El orden es una estadística: $\sigma \mapsto \operatorname{ord}(\sigma)$.
- Para $\sigma = 35412$, tenemos ord $(\sigma) = 6$.

Definición

Una estadística es una función:

$$f: S_n \to \mathbb{N}$$
.

• El <u>orden</u> de una permutación es

$$\operatorname{ord}(\sigma) = \min\{ n \in \mathbb{N} \mid \sigma^n = \operatorname{id} \}.$$

- El orden es una estadística: $\sigma \mapsto \operatorname{ord}(\sigma)$.
- Para $\sigma = 35412$, tenemos ord $(\sigma) = 6$.
- De hecho

$$\operatorname{ord}(\sigma) = \prod_{(*)} (\operatorname{Longitudes de sus ciclos}).$$

Inversiones

Definición

El <u>número de inversiones</u> de una permutación σ es la cantidad de parejas $(\sigma(i),\sigma(j))$ con

$$i < j$$
, y $\sigma(i) > \sigma(j)$.

Inversiones

Definición

El <u>número de inversiones</u> de una permutación σ es la cantidad de parejas $(\sigma(i),\sigma(j))$ con

$$i < j$$
, y $\sigma(i) > \sigma(j)$.

Para $\sigma = 35412$:

Inversiones

Definición

El <u>número de inversiones</u> de una permutación σ es la cantidad de parejas $(\sigma(i), \sigma(j))$ con

$$i < j$$
, y $\sigma(i) > \sigma(j)$.

Para $\sigma = 35412$:

Es decir, $inv(\sigma)$ es una estadística.

Descensos

Definición

El <u>número de descensos</u> de una permutación σ es la cantidad de índices i con $\sigma(i) > \sigma(i+1)$.

El conjunto de descensos es $D(\sigma) = \{i \mid \sigma(i) > \sigma(i+1)\}$

Descensos

Definición

El <u>número de descensos</u> de una permutación σ es la cantidad de índices i con $\sigma(i) > \sigma(i+1)$.

El conjunto de descensos es $D(\sigma) = \{i \mid \sigma(i) > \sigma(i+1)\}$

Para $\sigma = 35412$:

Descensos

Definición

El <u>número de descensos</u> de una permutación σ es la cantidad de índices i con $\sigma(i) > \sigma(i+1)$.

El conjunto de descensos es $D(\sigma) = \{i \mid \sigma(i) > \sigma(i+1)\}$

Para $\sigma = 35412$:

Nuevamente, $des(\sigma)$ es una estadística.

Índice Mayor

Definición

El <u>índice mayor</u> de una permutación σ es la suma de los índices i donde ocurren descensos.

Índice Mayor

Definición

El <u>índice mayor</u> de una permutación σ es la suma de los índices i donde ocurren descensos.

Formalmente:

$$\mathsf{maj}(\sigma) = \sum_{i \in D(\sigma)} i.$$

Índice Mayor

Definición

El <u>índice mayor</u> de una permutación σ es la suma de los índices i donde ocurren descensos.

Formalmente:

$$\mathsf{maj}(\sigma) = \sum_{i \in D(\sigma)} i.$$

Para $\sigma = 35412$:

Resumen y ejercicio

- Órden: Cuantas veces la compongo para que sea la identidad.
- Inversiones: Número de parejas en orden opuesto.
- Descensos: Número de inversiones seguidas.
- Índice Mayor: Suma de los índices donde hay descensos.

Resumen y ejercicio

- Órden: Cuantas veces la compongo para que sea la identidad.
- Inversiones: Número de parejas en orden opuesto.
- Descensos: Número de inversiones seguidas.
- Índice Mayor: Suma de los índices donde hay descensos.

Con su permutación del inicio, encuentre el valor de las estadísticas.

Contando con q's

Ejemplo

Supongamos que tenemos 5 lápices, 2 botellas de agua y 3 cuadernos. Si al bulto echamos sólo uno de cada uno, ¿de cuántas maneras podemos acomodar el bulto?

Contando con q's

Ejemplo

Supongamos que tenemos 5 lápices, 2 botellas de agua y 3 cuadernos. Si al bulto echamos sólo uno de cada uno, ¿de cuántas maneras podemos acomodar el bulto?

Ejemplo

Ahora dos lapices pesan 2 gramos, otros dos pesan 3 y uno 4. Los cuadernos pesan 10 y 12. Las botellas pesan 12, 12 y 13. De las 30 maneras, cuantos arreglos van a pesar 25 gramos en total?

q-análogos

Definición

Para un conjunto X con una estadística $s:X\to\mathbb{N}$, un \underline{q} -análogo de |X| es

$$|X|_q = \sum_{x \in X} q^{s(x)}.$$

q-análogos

Definición

Para un conjunto X con una estadística $s:X\to\mathbb{N}$, un \underline{q} -análogo de |X| es

$$|X|_q = \sum_{x \in X} q^{s(x)}.$$

Volviendo al ejemplo pasado...

$$L = 2q^2 + 2q^3 + q^4$$
, $C = q^{10} + q^{12}$, $B = 2q^{12} + q^{13}$.

q-análogos

Definición

Para un conjunto X con una estadística $s:X\to\mathbb{N}$, un \underline{q} -análogo de |X| es

$$|X|_q = \sum_{x \in X} q^{s(x)}.$$

Volviendo al ejemplo pasado...

$$L = 2q^2 + 2q^3 + q^4$$
, $C = q^{10} + q^{12}$, $B = 2q^{12} + q^{13}$.

Entonces

$$L \cdot C \cdot B = q^{29} + 4q^{28} + 7q^{27} + 8q^{26} + 6q^{25} + 4q^{24}.$$

q-análogos para S_3

		ord	inv	des	maj
()	123				
(12)	213				
(23)	132				
(13)	321				
(123)	231				
(132)	312				

q-análogos para S_3

		ord	inv	des	maj
()	123				
(12)	213				
(23)	132				
(13)	321				
(123)	231				
(132)	312				

De aquí que

$$ullet$$
 $\sum_{\sigma \in S_3} q^{\operatorname{ord}(\sigma)} =$

$$ullet$$
 $\sum_{\sigma \in \mathcal{S}_3} q^{\mathsf{inv}(\sigma)} =$

$$ullet$$
 $\sum_{\sigma \in S_3} q^{\operatorname{des}(\sigma)} =$

$$ullet$$
 $\sum_{\sigma \in \mathcal{S}_3} q^{\mathsf{maj}(\sigma)} =$

Observemos que el resultado

$$\sum_{\sigma \in \mathcal{S}_3} q^{\mathsf{maj}(\sigma)} = \sum_{\sigma \in \mathcal{S}_3} q^{\mathsf{inv}(\sigma)}$$

se extiende a un hecho general:

Observemos que el resultado

$$\sum_{\sigma \in S_3} q^{\mathsf{maj}(\sigma)} = \sum_{\sigma \in S_3} q^{\mathsf{inv}(\sigma)}$$

se extiende a un hecho general:

Teorema

Vale para todo n que

$$\sum_{\sigma \in S_n} q^{\mathsf{maj}(\sigma)} = \sum_{\sigma \in S_n} q^{\mathsf{inv}(\sigma)}$$

y a esta cantidad le llamamos el factorial cuántico $(n!)_q$.

Definición

El análogo cuántico de n es

$$(n)_q = (1+q+q^2+\cdots+q^{n-1}) = \frac{q^n-1}{q-1}$$

Definición

El análogo cuántico de n es

$$(n)_q = (1 + q + q^2 + \dots + q^{n-1}) = \frac{q^n - 1}{q - 1}$$

Teorema

El factorial cuántico satisface la siguiente recurrencia:

$$(n!)_q = (n)_q((n-1)!)_q.$$

Definición

El análogo cuántico de n es

$$(n)_q = (1 + q + q^2 + \dots + q^{n-1}) = \frac{q^n - 1}{q - 1}$$

Teorema

El factorial cuántico satisface la siguiente recurrencia:

$$(n!)_q = (n)_q((n-1)!)_q.$$

Podemos extender mucho más y hablar del coeficiente binomial cuántico:

$$\binom{n}{k}_q = \frac{(n!)_q}{((n-k)!)_q(k!)_q}.$$

Algunos objetos enumerados por números cuánticos:

• Número de inversiones en S_n .

Algunos objetos enumerados por números cuánticos:

- Número de inversiones en S_n .
- En el plano proyectivo sobre \mathbb{F}_q con $q=p^k$ tenemos

$$|\mathbb{P}^n_{\mathbb{F}_q}|=(n+1)_q.$$

Algunos objetos enumerados por números cuánticos:

- Número de inversiones en S_n .
- En el plano proyectivo sobre \mathbb{F}_q con $q=p^k$ tenemos

$$|\mathbb{P}^n_{\mathbb{F}_q}|=(n+1)_q.$$

• El número de subespacios k dimensionales de \mathbb{F}_q^n es $\binom{n}{k}_q$.

Algunos objetos enumerados por números cuánticos:

- Número de inversiones en S_n .
- En el plano proyectivo sobre \mathbb{F}_q con $q=p^k$ tenemos

$$|\mathbb{P}^n_{\mathbb{F}_q}|=(n+1)_q.$$

• El número de subespacios k dimensionales de \mathbb{F}_q^n es $\binom{n}{k}_q$.

Algunos objetos enumerados por números cuánticos:

- Número de inversiones en S_n .
- En el plano proyectivo sobre \mathbb{F}_q con $q=p^k$ tenemos

$$|\mathbb{P}^n_{\mathbb{F}_q}|=(n+1)_q.$$

• El número de subespacios k dimensionales de \mathbb{F}_q^n es $\binom{n}{k}_q$. Y otros resultados interesantes como:

Algunos objetos enumerados por números cuánticos:

- Número de inversiones en S_n .
- En el plano proyectivo sobre \mathbb{F}_q con $q=p^k$ tenemos

$$|\mathbb{P}^n_{\mathbb{F}_q}|=(n+1)_q.$$

• El número de subespacios k dimensionales de \mathbb{F}_q^n es $\binom{n}{k}_q$.

Y otros resultados interesantes como:

• El teorema binomial cuántico, si xy = qyx entonces

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k}_q x^k y^{n-k}.$$

Algunos objetos enumerados por números cuánticos:

- Número de inversiones en S_n .
- En el plano proyectivo sobre \mathbb{F}_q con $q=p^k$ tenemos

$$|\mathbb{P}^n_{\mathbb{F}_q}|=(n+1)_q.$$

• El número de subespacios k dimensionales de \mathbb{F}_q^n es $\binom{n}{k}_q$.

Y otros resultados interesantes como:

• El teorema binomial cuántico, si xy = qyx entonces

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k}_q x^k y^{n-k}.$$

• La recurrencia cuántica de Pascal:

$$\binom{n}{k}_q = \binom{n-1}{k-1}_q + q^k \binom{n-1}{k}_q.$$

Otra, otra, otra...

Veamos una estadística más:

Definición

La carga de una permutación σ se define de la siguiente manera:

- ullet Escriba un subíndice de 0 bajo cada entrada de σ .
- Para cada entrada i > 2 aumente en 1 su subíndice si i está a la derecha de i-1. Y sino, déjelo igual.

Sume todos los subíndices al final, eso es $c(\sigma)$.

Otra, otra, otra...

Veamos una estadística más:

Definición

La carga de una permutación σ se define de la siguiente manera:

- ullet Escriba un subíndice de 0 bajo cada entrada de σ .
- Para cada entrada i > 2 aumente en 1 su subíndice si i está a la derecha de i-1. Y sino, déjelo igual.

Sume todos los subíndices al final, eso es $c(\sigma)$.

En el caso de $\sigma = 35412$ tenemos:

Otra, otra, otra...

Veamos una estadística más:

Definición

La carga de una permutación σ se define de la siguiente manera:

- ullet Escriba un subíndice de 0 bajo cada entrada de σ .
- Para cada entrada i > 2 aumente en 1 su subíndice si i está a la derecha de i-1. Y sino, déjelo igual.

Sume todos los subíndices al final, eso es $c(\sigma)$.

En el caso de $\sigma = 35412$ tenemos:

En general
$$\sum q^{c(g)} = (n!)_q$$
.

