SDS 383D: Final Project Notes

May 15, 2017

Professor Scott

Spencer Woody

Let y_{nrt} be the read count of gene $n \in \{1, 2, ..., N\}$ in replicate $r \in \{1, 2, ..., R_n\}$ at continuous time $t \in \mathbf{t}_{nr}$, where \mathbf{t}_{nr} is a vector of length T_{nr} . We use a negative-binomial regression model,

$$(y_{nrt}|\psi_{nr}(t)) \sim \text{NB}\left(\alpha_n, \frac{\exp\left[\psi_{nr}(t)\right]}{1 + \exp\left[\psi_{nr}(t)\right]}\right),$$

with a hierarchical Gaussian process prior on $\psi_{nr}(t)$,

$$\psi_{nr}(t) \sim \text{GP}(g_n(t), k_{\psi}(t, t'))$$

$$g_n(t) \sim \text{GP}(0, k_g(t, t')),$$

for some covariance functions $k_{\psi}(t,t')$ and $k_{g}(t,t')$, which respectively depend on hyperparameters θ_{ψ} and θ_{g} (which might both be vectors). Notice that the expectation of y_{nrt} is

$$\mathbb{E}(y_{nrt}|\psi_{nr}(t)) = \alpha_n \cdot \exp\left[\psi_{nr}(t)\right]$$

Then introduce a Polya-Gamma latent variable,

$$\omega_{nrt} \sim PG(y_{nrt} + \alpha_n, 0),$$

whose expectation is

$$\mathbb{E}_{\omega_{nrt}}\left[\exp\left(-\omega_{nrt}\left[\psi_{nr}(t)\right]^{2}/2\right)\right] = \cosh^{-(y_{nrt}+\alpha_{n})}(\psi_{nr}(t)/2).$$

The joint likelihood may be written as

$$p(y_{nrt}|\psi_{nr}(t),\omega_{nrt}) \propto \frac{\left(\exp\left[\psi_{nr}(t)\right]\right)^{y_{nrt}}}{\left(1 + \exp\left[\psi_{nr}(t)\right]\right)^{\alpha_n + y_{nrt}}}$$

$$= \frac{2^{-(y_{nrt} + \alpha_n)} \cdot \exp\left(\frac{y_{nrt} - \alpha_n}{2}\psi_{nr}(t)\right)}{\cosh^{y_{nrt} + \alpha_n}(\psi_{nr}(t)/2)}$$

$$\propto \exp\left(\frac{y_{nrt} - \alpha_n}{2}\psi_{nr}(t)\right) \mathbb{E}_{\omega_{nrt}}\left[\exp\left(-\omega_{nrt}\left[\psi_{nr}(t)\right]^2/2\right)\right].$$

Suppose we have observations from times \mathbf{t}_{nr} , so the data vector is $\mathbf{y}_{nr} = \{y_{nrt}\}_{t \in \mathbf{t}_{nr}}$ which is associated with draws from the GP $\psi_{nr} = \{\psi_{nr}(t)\}_{t \in \mathbf{t}_{nr}}$. Then there is the latent variable vector $\boldsymbol{\omega}_{nr} = \{\omega_{nrt}\}_{t \in \mathbf{t}_{nr}}$ and also define the diagonal matrix $\boldsymbol{\Omega}_{nr} = \mathrm{diag}\left(\boldsymbol{\omega}_{nr}\right)$. Finally define the vector \mathbf{g}_n be a vector of draws from the GP $g_n(t,t')$ at times \mathbf{t}_{nr} and the matrix $\mathbf{K}_{\psi}(\mathbf{t}_{nr},\mathbf{t}_{nr'})$ such that it's (i,j) element is $k_{\psi}(\mathbf{t}_{nr}[i],\mathbf{t}_{nr'}[j])$ and $\mathbf{K}_{g}(\mathbf{t}_{nr},\mathbf{t}_{nr'})$ is defined similarly. Now we can find the marginal prior of distribution of ψ_{nr} with

$$p(\mathbf{\psi}_{nr}|\mathbf{g}_{n}, \theta_{\psi}) \sim \mathcal{N}\left(\mathbf{f}_{n}, \mathbf{K}_{\psi}(\mathbf{t}_{nr}, \mathbf{t}_{nr})\right)$$

$$p(\mathbf{f}_{n}|\theta_{g}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{K}_{g}(\mathbf{t}_{nr}, \mathbf{t}_{nr})\right)$$

$$\Rightarrow p(\mathbf{\psi}_{nr}|\theta_{\psi}, \theta_{g}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{K}_{\psi}(\mathbf{t}_{nr}, \mathbf{t}_{nr}) + \mathbf{K}_{g}(\mathbf{t}_{nr}, \mathbf{t}_{nr})\right).$$

Define the vector $\mathbf{\theta} = (\theta_{\psi}, \theta_{g})^{T}$ to contain the hyperparameters of both covariance functions, $k_{g}(\cdot, \cdot)$ and $k_{\psi}(\cdot, \cdot)$. We can now write the prior of the concatenated vector $\mathbf{\psi}_{n} = \{\mathbf{\psi}_{nr}\}_{r=1}^{R_{n}}$ as

$$p(\mathbf{\psi}_n|\mathbf{\theta}) = \mathcal{N}(\mathbf{0}, \mathbf{K}_n)$$

where the matrix \mathbf{K}_n is a $R_n \times R_n$ arrangement of matrices, each of which has dimension $T_{nr} \times T_{nr'}$ and is

$$\mathbf{K}_{n}[r,r'] = \operatorname{cov}(\mathbf{\psi}_{nr},\mathbf{\psi}_{nr'}) = \begin{cases} \mathbf{K}_{g}(\mathbf{t}_{nr},\mathbf{t}_{nr}) + \mathbf{K}_{\psi}(\mathbf{t}_{nr},\mathbf{t}_{nr}) & \text{if } r = r' \\ \mathbf{K}_{g}(\mathbf{t}_{nr},\mathbf{t}_{nr'}) & \text{otherwise} \end{cases}$$

The conditional posterior of ψ_n , given the values of ω_n and the data vector $\mathbf{y}_n = \{\mathbf{y}_{nr}\}_{r=1}^{R_n}$ is

$$p(\mathbf{\psi}_{n}|\mathbf{y}_{n}, \mathbf{\omega}_{n}, \mathbf{\theta}), \propto p(\mathbf{\psi}_{n}|\mathbf{\theta}) \prod_{r=1}^{R_{n}} \prod_{t \in \mathbf{t}_{nr}} p(y_{nrt}|\mathbf{\psi}_{nr}(t), \omega_{nrt})$$

$$\propto p(\mathbf{\psi}_{n}|\mathbf{\theta}) \prod_{r=1}^{R_{n}} \prod_{t \in \mathbf{t}_{nr}} \exp \left[-\frac{\omega_{nrt}}{2} \left(\mathbf{\psi}_{nr}(t) - \frac{y_{nrt} - \alpha_{n}}{2\omega_{nrt}} \right)^{2} \right], \text{ define } z_{nrt} = \frac{y_{nrt} - \alpha_{n}}{2},$$

$$\propto p(\mathbf{\psi}_{n}|\mathbf{\theta}) \cdot \exp \left[-\frac{1}{2} \left(\mathbf{\psi}_{n} - \mathbf{\Omega}_{n}^{-1} \mathbf{z}_{n} \right)^{T} \mathbf{\Omega}_{n} \left(\mathbf{\psi}_{n} - \mathbf{\Omega}_{n}^{-1} \mathbf{z}_{n} \right) \right]$$

$$\propto \mathcal{N} \left(\mathbf{\psi}_{n} | \mathbf{\Sigma}_{n} \mathbf{z}_{n}, \mathbf{\Sigma}_{n} \right), \text{ with } \mathbf{\Sigma}_{n} = \left(\mathbf{K}_{n}^{-1} + \mathbf{\Omega}_{n} \right)^{-1}.$$

The conditional posterior of each ω_{nrt} is

$$p(\omega_{nrt}|y_{nrt},\psi_{nr}(t),\mathbf{t}_{nr}) \propto \left[\exp\left(-\omega_{nrt}\left[\psi_{nr}(t)\right]^{2}/2\right)\right] \cdot \text{PG}(\omega_{nrt}|y_{nrt}+\alpha_{n},0)$$
$$\propto \text{PG}(\omega_{nrt}|y_{nrt}+\alpha_{n},\psi_{nr}(t)).$$

Prediction

Now suppose that we want to infer the underlying time series of both the gene-level function and each replicate-level function, i.e. \mathbf{g}_n^{\star} which is $g_n(t)$ at times \mathbf{t}_n^{\star} and ψ_{nr}^{\star} which is $\psi_{nr}(t)$ at times \mathbf{t}_{nr}^{\star} . The respective joint distributions between these vectors and ψ_n are

$$\begin{bmatrix} \boldsymbol{\psi}_{n} \\ \boldsymbol{g}_{n}^{\star} \end{bmatrix} \sim \mathcal{N} \left(\boldsymbol{0}, \begin{bmatrix} \mathbf{K}_{n} & \mathbf{K}_{n\star}^{T} \\ \mathbf{K}_{n\star} & \mathbf{K}_{n\star\star} \end{bmatrix} \right)$$

$$\begin{bmatrix} \boldsymbol{\psi}_{n} \\ \boldsymbol{\psi}_{nr}^{\star} \end{bmatrix} \sim \mathcal{N} \left(\boldsymbol{0}, \begin{bmatrix} \mathbf{K}_{n} & \mathbf{K}_{nr\star}^{T} \\ \mathbf{K}_{nr\star} & \mathbf{K}_{nr\star\star} \end{bmatrix} \right)$$

with $\mathbf{K}_{n\star}$ and $\mathbf{K}_{nr\star}$ are defined element-wise such that

$$\mathbf{K}_{n\star}[i,j] = \operatorname{cov}\left(\mathbf{g}_{n}^{\star}[i], \mathbf{\psi}_{n}[j]\right) = k_{g}(\mathbf{t}_{n}^{\star}[i], \mathbf{t}_{n}[j])$$

$$\mathbf{K}_{nr\star}[i,j] = \operatorname{cov}\left(\mathbf{\psi}_{nr}^{\star}[i], \mathbf{\psi}_{n}[j] \in \mathbf{\psi}_{nr'}\right) = \begin{cases} k_{g}(\mathbf{t}_{nr}^{\star}[i], \mathbf{t}_{n}[j]) + k_{\psi}(\mathbf{t}_{nr}^{\star}[i], \mathbf{t}_{n}[j]) & \text{if } r = r' \\ k_{g}(\mathbf{t}_{ni}^{\star}[i], \mathbf{t}_{n}[j]) & \text{otherwise} \end{cases}$$

and the matrices $\mathbf{K}_{n\star\star}$ and $\mathbf{K}_{nr\star\star}$ are

$$\mathbf{K}_{n\star\star} = \mathbf{K}_{\mathcal{S}}(\mathbf{t}_{n}^{\star}, \mathbf{t}_{n}^{\star})$$

$$\mathbf{K}_{n\star\star} = \mathbf{K}_{\mathcal{S}}(\mathbf{t}_{n}^{\star}, \mathbf{t}_{n}^{\star}) + \mathbf{K}_{\psi}(\mathbf{t}_{n}^{\star}, \mathbf{t}_{n}^{\star}).$$

The conditional distribution of \mathbf{g}_n^{\star} given $\mathbf{\psi}_n$ is

$$(\mathbf{g}_n^{\star}|\mathbf{\psi}_n, \mathbf{\theta}) \sim \mathcal{N}\left(\mathbf{K}_{n\star}\mathbf{K}_n^{-1}\mathbf{\psi}_n, \mathbf{K}_{n\star\star} - \mathbf{K}_{n\star}\mathbf{K}_n^{-1}\mathbf{K}_{n\star}^T\right).$$

Given the fact that the marginal posterior of ψ_n is

$$(\mathbf{\psi}_n|\mathbf{y}_n,\mathbf{\omega}_n,\mathbf{\theta}) \sim \mathcal{N}\left(\mathbf{\Sigma}_n\mathbf{z}_n,\mathbf{\Sigma}_n\right)$$

and using Lemma 0.1 we can write the marginal posterior of \mathbf{g}_n^{\star} as

$$(\mathbf{g}_n^{\star}|\mathbf{y}_n,\boldsymbol{\omega}_n,\boldsymbol{\theta}) \sim \mathcal{N}\left(\mathbf{K}_{n\star}\mathbf{K}_n^{-1}\boldsymbol{\Sigma}_n\mathbf{z}_n,\ \mathbf{K}_{n\star}\mathbf{K}_n^{-1}\boldsymbol{\Sigma}_n\mathbf{K}_n^{-1}\mathbf{K}_{n\star}^T + \mathbf{K}_{n\star\star} - \mathbf{K}_{n\star}\mathbf{K}_n^{-1}\mathbf{K}_{n\star}^T\right).$$

Similarly, the marginal posterior of ψ_{nr}^{\star} is

$$(\psi_{nr}^{\star}|\mathbf{y}_n, \boldsymbol{\omega}_n, \boldsymbol{\theta}) \sim \mathcal{N}\left(\mathbf{K}_{nr\star}\mathbf{K}_n^{-1}\boldsymbol{\Sigma}_n\mathbf{z}_n, \ \mathbf{K}_{nr\star}\mathbf{K}_n^{-1}\boldsymbol{\Sigma}_n\mathbf{K}_n^{-1}\mathbf{K}_{nr\star}^T + \mathbf{K}_{nr\star\star} - \mathbf{K}_{nr\star}\mathbf{K}_n^{-1}\mathbf{K}_{nr\star}^T\right).$$

Covariance matrix function

We choose the Matérn(5/2) covariance function,

$$k(t,t') = \tau_1^2 \exp\left\{1 + \sqrt{5} \cdot \frac{d}{b} + \frac{5}{3} \cdot \frac{d^2}{b^2}\right\} \exp\left\{-\sqrt{5} \cdot \frac{d}{b}\right\}, \ d = \|t - t'\|,$$
 (1)

so the parameters are $\theta = (b, \tau_1^2, \tau_2^2)^T$, and we refer to b as the *relative length* parameter, τ_1^2 is the *amplitude* parameter, and τ_1^2 is the *nugget* parameter.

Lemma 0.1. Define the random vectors x and γ such that the conditional distribution of x given γ and the marginal distribution of γ are, respectively,

$$(x|\gamma) \sim \mathcal{N}_n(A\gamma, \Sigma)$$

 $\gamma \sim \mathcal{N}_p(m, V)$

where A is a $n \times p$ matrix. Then the joint distribution of (x, γ) is

$$\begin{bmatrix} x \\ \gamma \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} Am \\ m \end{bmatrix}, \begin{bmatrix} AVA^T + \Sigma & AV \\ VA^T & \Sigma \end{bmatrix} \right). \tag{2}$$

Proof. Equivalently, *x* may be written as

$$x = A\gamma + \epsilon$$
, $\epsilon \sim \mathcal{N}_n(0, \Sigma)$

and then $(x, \gamma)^T$ is multivariate normal because it can be written as an affine transformation of univariate normal variables,

$$\begin{bmatrix} x \\ \gamma \end{bmatrix} = \begin{bmatrix} A \\ \mathcal{I}_p \end{bmatrix} \gamma + \begin{bmatrix} \mathcal{I}_n \\ \mathcal{O}_{p \times n} \end{bmatrix} \epsilon.$$

From this, the mean and covariance matrix in (2) may be derived from properties of the multivatiate normal distribution.

Page 4 of 4