Instagram Likes: Analysis and Prediction

By: Ayan Bhowmick

Exploratory Data Analysis

Skewness in Variables

- A significant skew was observed in several variables.
- Action Taken: Applied log transformations to likes and no_of_comments; used Box-Cox for follower_counts to normalize distributions. Then applied a standard scaler (as I would later be testing SVMs).

Outlier Removal

Removed outliers in no_of_comments to improve data quality.

Correlation Coefficient Matrices

Histograms and correlation matrices are included to illustrate the results.

Transformation Results

- Correlation coefficient between likes and no_of_comments increased from **0.69** to **0.78** after transformations.
- Skewness dropped to < |1|.

https://github.com/highhe at4/Instagram_Data_Analy sis/blob/main/EDA.ipynb

Feature Selection

- Time Extraction: From a single large, unscaled timestamp, I extracted:
 - Month
 - Day
 - Hour
- Cyclical Transformations: Recognizing the cyclical nature of time:
 - Applied sine and cosine transformations to the hour, allowing for a more accurate representation of proximity (e.g., hour 23 is closer to hour 0 than to hour 12).
- Weekend Indicator: Tested significance of a weekend feature,
 but the correlations with likes were generally low.
- Correlation Insights: The highest correlation observed was
 with the month (0.12). Although this is relatively small, I decided
 to retain it in the dataset to maintain at least one temporal
 factor. I removed all other time dependencies

https://github.com/highheat4/In stagram_Data_Analysis/blob/ma in/metadata_prediction.ipynb

Metadata Analysis & Insights

Ablation Study on Comments

To predict likes for upcoming posts, the comment count is not available in advance. Therefore, an ablation study was conducted by removing the comment feature.

Models Tested

- Five models were evaluated for metadata analysis:
 - Linear Regression
 - Random Forest
 - Gradient Boosting
 - XGBoost
 - Support Vector Machines

Results Without Image Data

Analysis on metadata alone yielded an R² score of 0.888, indicating strong predictive capability, but not perfect.

Impact of Comments on Predictions

o Inclusion of comments significantly influences predictions. Without this feature, the highest R² score dropped to **0.749**.

https://github.com/highheat4/Instagram_Data_Analysis/blob/main/metadata_prediction.ipynb

Holistic Approach

- To leverage image data effectively, two main approaches were employed:
 - o Image-Based Models:
 - Vision Transformers were first fine tuned on a subset of the data, predicting on 'likes' directly.
 - Image embeddings were then extracted using the fine tuned ViTs and used as features for other regression models
 - CLIP Image Classification:
 - CLIP was used to classify images, and the resulting labels were converted into GloVe word embeddings, which
 were then added to the feature set.
- Due to the high dimensionality of these embeddings, dimensionality reduction techniques were applied:
 - PCA was used for 5 different levels of reduction: 1, 2, 5, 20, 50, 100, and 200 dimensions.
 - This would aid other models in performing regression tasks.
- To avoid potential high collinearity between embeddings extracted by the two models, I opted not to combine them into a single feature set.

Trained ViT Direct Prediction

R squared = 0.0932

https://github.com/highheat 4/Instagram_Data_Analysis/ blob/main/core/vit_train.py

- Training on Transformed Data:
 - Ran ViT training on transformed data.
 - Observed that performance worsened with more training.
 - R squared reached -0.85 at some point.
- Ensuring Transformation Issues:
 - To verify that the issue wasn't with the transformations (as ViT requires another transformation for non-image data), ran multiple epochs on untransformed data.
 - Highest R squared achieved: 0.12
 without comments, 0.0932 with
 comments

Trained ViT Embeddings + Metadata

- Model Embedding Extraction:
 - Extracted embeddings from fine-tuned model
- Dimensionality Reduction:
 - Performed Principal Component Analysis (PCA) on embeddings
- Model Training:
 - Utilized same models as in Metadata Analysis
- Results:
 - [Insert key findings here]

CLIP -> GloVe + Metadata

- Image Classification:
 - Used Al-generated list of Instagram-relevant image categories
 - Classified images into these categories using CLIP
- Embedding Processing:
 - Converted categories to GloVe word embeddings
 - Applied PCA for dimensionality reduction
- Model Training:
 - Utilized same models as in Metadata Analysis
- Feature Integration:
 - Combined original metadata with PCA-reduced embeddings
- Result: Slightly better performance on both ablations

https://github.com /highheat4/Instagr am_Data_Analysis /blob/main/core/c lipglove_embeddin g_extract.py

https://github.com/ highheat4/Instagra m_Data_Analysis/bl ob/main/core/word and_md_pred.ipynb

Results and Summary

- Key Findings:
 - Image data marginally improves like count prediction
 - Transformer models alone struggle with accurate predictions
- Implications:
 - Combined approach may yield best performance
 - Observed improvements could be due to random chance
- Limitations:
 - Performance boosts are small
 - Multiple ablations may influence results
- Best Results: CLIP -> GloVe + Metadata
 - With comments, XGB w dimensions reduced to 2; $R^2 = .900$
 - W/o comments, XGB w dimensions reduced to
 5; R^2 = .772

Revisions

Looking back, I believe I could have done outlier detection better than I did to remove outliers in more dimensions than just one