Вариант 0

Оскільки за завданям необхідно використати вибірки 1,2 и 3, та визначити їх статистичні характеристики, у тому числі спільні, побудуємо наступну звідну таблицю даних та обчислень:

						Таблиця 1	
№ по порядку	Відхилення від номіналу на вході (1)	Відхилення від номіналу на вході (2)	Відхилення від номіналу на виході (3)				
	x_k	y_k	z_k	x_k^2	y <u>k</u>	z_k^2	$x_k \cdot z_k$
0	-1	6	-10	1	36	100	10
1 2	0 1	2 3	33 13	0 1	4 9	1089	0 -13
3	-1 2	5	13 10	4	9 25	169 100	-13 20
4	5	3	-11	25	9		-55
5	1	3		1	9	100	10
6	3	3 -5	5	9	25	25	15
7	-2	2	-4	4	4	16	
8	5	5	25	25	25	625	125
9	4	4	5	16	16	25	20
10	2	-2	-24	4	4	576	-48
11	-2	0	30	4	0	900	-60
12	-2	3	10	4	9	100	-20
13	4	-2	-25	16	4	625	-100
14	-2	3	0	4	9		}
15 16	-2	3	15	4	9		-30
16 17	2	1	18	4	1		}
17 18	0 -1	3 -1	18 5	0		324 25	:
18 19	-1 -1	-1 5	-11	1 1	1 25	25 121	-5 11
20	-1 -1	3	-11 -10	1	23 9	100	10
21	3	4	5	9	16	25	15
22	4	3	-1	16	····		-4
23	-1	2	18	1	4	324	-18
24	2	5	7	4	25	49	14
25	0	5	11	0	25	121	0
26	1	3	10	1	9	100	10
27	-1	5	10	1	25	100	-10
28	2	-1	33	4	1	1089	66
29	5	4	0	25	16	0	0
30	4	5	19	16	25	361	76
31	2	1	3	4	1	9	6
32	-1 =	3	-5 10	1	9	25	5
33 34): 1	0 -2	-10 11	25	0	100	
35	1 1	-2 2	11 -14	1	4	121	
36	-1 2	5	-14 15	4	4 25	196 225	:
37	3	3	-2	4 9	23 9	223 4	-6
38	-1	3	-2 -6	1	9	36	
39	1	-2		1	4	25	;i
40	5	1	20	25		400	

41	3	3	-10	9	9	100	-30
42	2	5	19	4	25	361	38
43	-1	3	-2	1	9	4	2
44	-1	1	-5	1	1	25	5
45	-1	1	5	1	1	25	-5
46	-2	-1	5	4	1	25	-10
47	2	-2	-10	4	4	100	-20
48	-2	4	-2	4	16	4	4
49	2	3	5	4	9	25	10
	50	110	236	310	538		198
	$\sum x_k$	$\sum y_k$	$\sum z_k$	$\sum x_k^2$	$\sum y_k^2$	$\sum z_k^2$	$\sum x_k z_k$

а) У таблиці 2 приведені висхідні дані для побудови статистичного розподілу випадкової величини х. Статистичний розподіл зображено на рис.1.

Таблиця 2.

	x_k	-2	-1	0	1	2	3	4	5
	m _k	7	13	3	4	10	4	4	5
	$F_k = \frac{m_k}{50}$								
į	50	0,14	0,26	0,06	0,08	0,2		0,08	0,1

Рис.1.

гістограма

Середньоарифметичне значення:

$$\overline{x} = \frac{1}{N} \sum_{k=1}^{N} x_k = 1$$

Мода

$$x_m = -1$$

Розмах

$$x_{\text{max}} - x_{\text{min}} = 5 - (-2) = 7$$

$$s/\bar{x} = 2,303502$$

$$s^2 = \frac{1}{N-1} \sum_{k=1}^{N} (x_k - \bar{x})^2 =$$

$$s = \sqrt{s^2} = 2,303502$$

б) Розбиття інтервалу на 10 однакових підінтервалів виконано у таблиці 3. Там же обчислені дані для побудови гістограми - Рис.2.

Таблиця 3.

5,306122

№ інтервалу	Границі інтер	эвалу	m_n	$\frac{m_n}{Nh}$	\overline{X}_n
1	-2	-1,3	7	0,2	-1,65
2	-1,3	-0,6	13	0,371429	-0,95
3	-0,6	0,1	3	0,085714	-0,25
4	0,1	0,8	0	0	0,45
5	0,8	1,5	4	0,114286	1,15
6	1,5	2,2	10	0,285714	1,85
7	2,2	2,9	0	0	2,55
8	2,9	3,6	4	0,114286	3,25
9	3,6	4,3	4	0,114286	3,95
10	4,3	5	5	0,142857	4,65

У таблиці 3 через

 \overline{X}_n

позначені координати середини п-го інтервалу.

Рис. 2.

Означимо середню величину і вибіркову дисперсію:

$$\bar{x} = \frac{1}{N} \sum_{n=1}^{10} \bar{X}_n m_n = 1,01$$

$$\sum_{n=1}^{N} \overline{X}_{n}^{2} m_{n} = 283,265$$

$$s = \frac{1}{N-1} \left(\sum_{n=1}^{N} \overline{X}_{n}^{2} m_{n} - N \overline{x}^{2} \right) = 4,74$$

Розбиття на 5 однакових підінтервалів виконано в таблиці 4. Гістограма зображена на Рис. 3.

Таблиця 4.

J	№ інтервалу	Границі інтер	эвалу	m_n	$\frac{m_n}{Nh}$	\overline{X}_n
	1	-2	-0,6	20	0,571429	-1,3
	2	-0,6	0,8	3	0,085714	0,1
Ĺ.	3	0,8	2,2	14	0,4	1,5
	4	2,2	3,6	4	0,114286	2,9
į	5	3,6	5	9	0,257143	4,3

Рис. 3.

Означимо середню величину та вибіркову дисперсію:

$$\overline{X} = \frac{1}{N} \sum_{n=1}^{5} \overline{X}_{n} m_{n} = 0,912$$

$$\sum_{n=1}^{N} \overline{X}_{n}^{2} m_{n} = 265,38$$

$$s = \frac{1}{N-1} (\sum_{n=1}^{N} \overline{X}_{n}^{2} m_{n} - N \overline{X}^{2}) = 4,4853061$$

в) Розрахункові параметри для побудови емпіричної функції розподілу містяться у таблиці 5, а сама функція побудована на Рис.4.

Таблиця 5.

№ інтервалу	Границі інтер	эвалу	Кумул. Сума	F_n
1	-2	-0,6	20	0,4
2	-0,6	0,8	23	0,46
3	0,8	2,2	37	0,74
4	2,2	3,6	41	0,82
5	3,6	5	50	1

2) Оцінимо вірогідність гіпотези про нормальний розподіл випадкової величини x, використовуючи критерій c^2 (критерій Пірсона). Згідно цього критерія визначимо величину

$$\chi^{2} = \sum_{k=1}^{M} \frac{(m_{k} - Np_{k})^{2}}{Np_{k}}$$

$$P = 1 - \alpha = 1 - 0.1 = 0.9$$

та порівняємо з критичним значенням та числа степеней волі 1. Критичні значення χ^2 містяться у статистичних таблицях. У приведеній формулі M - число интервалів розбиття

$$p_k = \Phi(t_k) - \Phi(t_{k-1}),$$
 $t_k = \frac{X_k - \overline{x}}{s}$

 X_k – границі інтервалів; $\overline{x}=1$, s=2,303502 , l=M-1-c; с - число параметрів, які визначаються за вибіркою.

У даному випадку обидва параметри нормального закону (середня та дисперсія) визначаються за вибіркою, тому c=2; Даний інтервал потрібно розбити таким чином, щоб у кожному підінтервалі були значення випадкової величини. Тому розбиття на 10 підінтервалів непридатне. Використаємо 8 підінтервалів, причому границі крайніх повинні бути відкритими. Тоді M=8; l=M-1-2=8-3=5. Табличне значення c_k^2 (0,9;5)=9,24. Якщо фактичне значення c_k^2 виявиться меншим числом, то з довірчою ймовірністю P=0,9 можна прийняти гіпотезу про нормальний розподіл випадкової величини х. Дані обчислення зведені в таблицю 6

Таблиця 6.

№интер.	Границі інтерв.		t _k	Φ (t _k)	P_k	NP _k	m_k	$\frac{(m_k - Np_k)^2}{Np_k}$
1	$-\infty$	-1,5	-1,085304	-0,360887	0,139113	6,955662	7	0,000282624
2	-1,5	-0,5	-0,651182	-0,242533	0,118353	5,917675	13	8,476189916
3	-0,5	0,5	-0,217061	-0,08592	0,156614	7,830688	3	2,980011912
4	0,5	1,5	0,2170608	0,0859195	0,171839	8,591951	4	2,454159297
5	1,5	2,5	0,6511824	0,2425333	0,156614	7,830688	10	0,600958281
6	2,5	3,5	1,0853039	0,3608868	0,118353	5,917675	4	0,621439336
7	3,5	4,5	1,5194255	0,4314971	0,07061	3,530517	4	0,062431289
8	4,5	+ ∞	+ ∞	0,5	0,068503	3,425146	5	0,724105337
Σ						50	50	15,91957799

$$\chi^{-2} = 15,91958$$

Тому гіпотезу про нормальний розподіл випадкової величини х при заданому рівні значущості приймати не можна.

д) Довірчий інтервал для среднього значення Мх за середньоарифметичним Р та вибірковою дисперсією з надійністю визначається формулою

$$\frac{\left| Mx - \overline{x} \right| < t(\mathrm{P}, N-1) \cdot \frac{s}{\sqrt{N}} }{\frac{Mx - \overline{x}}{s/\sqrt{N}}}$$
 має розподіл Стюдента с N-1 степенями волі.

так як відношення

По таблиці цього розподілу

$$t(P, N-1) = t(P,49) = t(0,9;49) = 1,68$$

Звідси

$$|Mx - x| < 0,5472842$$

тобто

Довірчий інтервал для невідомого параметру P за вибірковою дисперсією σ з надійністю визначається формулою

де

$$z_8 = \sqrt{\frac{N-1}{v_1}}; \quad z_4 = \sqrt{\frac{N-1}{v_2}}$$

 v_1,v_2 — квантилі розподілу χ^2 , такі, що

$$\int_{0}^{v_{1}} p_{\chi^{2}}(v) dv = \int_{v_{2}}^{\infty} p_{\chi^{2}}(v) dv = \frac{\alpha}{2}.$$

$$\sigma^2(N-1)/\sigma^2$$
 Ma

оскільки відношення $s^2(N-1)/\sigma^2$ має χ^2 - розподіл з (N-1) степенями

волі. Коефіцієнти
$$z_4$$
 та $z_8=$ табульовані, зокрема для $\alpha=0,1$ та N-1=49 $z_8=1,2$

Звідси одержимо

$$1.981011904 < \sigma < 2.7642027$$

2. За таблицею 1 визначимо параметри вибірки 2:

$$\overline{y} = \frac{1}{N} \sum_{k=1}^{N} y_k = 2,2$$

$$s_y^2 = \frac{1}{N-1} \sum_{k=1}^{N} (y_k - \overline{y})^2 = 6,0408163$$

Для перевірки гіпотезы про рівність двох середніх необхідно обчислити відношення

$$t = \frac{y - x}{s \cdot \sqrt{\frac{N_2 + N_1}{N_2 \cdot N_1}}}$$

де

$$s = \sqrt{\frac{(N_1 - 1)S_x^2 + (N_2 - 1)S_y^2}{(N_1 - 1) + (N_2 - 1)}}$$

 N_1 — число значень х;

 N_2 – число значень у;

та порівняти с величиною t(P,l) з статистичних таблиць за заданою ймовір-

ністю Р та числом степеней волі.

$$l = N_1 + N_2 - 2$$
.

У даному випадку l=98.

$$s = \sqrt{\frac{s_x^2 + s_y^2}{2}}$$

$$t = \frac{\overline{y - x}}{\sqrt{s_x^2 + s_y^2}} \cdot \sqrt{N} = 2,5189926$$

За таблицями

$$t(0,99;98) = 2,62$$

Оскільки знайдена величина не більша табличної, то розбіжність середніх значень можна вважати випадковою.

3. Використовуючи таблицю 1, знайдемо параметри вибірки 3

$$\bar{z} = 4,72$$

$$s_z^2 = 174,6138776$$

та коефіцієнт кореляції:

$$r = \frac{\sum_{k=1}^{N} x_k z_k - N \cdot \overline{x} \cdot \overline{z}}{\sqrt{\sum_{k=1}^{N} x_k^2 - N \cdot \overline{x}^2} \cdot \sqrt{\sum_{k=1}^{N} z_k^2 - N \cdot \overline{z}}} = -0,02548$$

Коефіцієнт кореляції ε мірою лінійної залежності випадкових величин. Його мале значення $| \ r \ | << 1$ свідчить про відсутстність такої залежності.

Відношення

$$t = \sqrt{N - 2} \frac{|r|}{\sqrt{1 - r^2}}$$

має розподіл Стюдента с N-2 степенями волі. У даному випадку

$$t = 0,1765717$$

Табличне значення t(0,9;48)=1,67.

Тому з довірчою ймовірністю 90% між вибірками 1 та 3 нема лінійної залежності (точніше гіпотезу r=0 відкинути не можна).