Kapitel 1

Maße

In diesem Abschnitt werden wir uns drei Fragen stellen:

- Was können wir messen?
- Wie können wir messen?
- Wie können wir Maße ökonomisch definieren?

1.1 Mengensysteme

Definition 1.1.1. Sei Ω eine beliebige Menge. Dann heißt $\mathfrak{C} \subseteq 2^{\Omega}$ ein Mengensystem (über Ω).

Definition 1.1.2. Eine Mengenfunktion μ auf dem Mengensystem $\mathfrak C$ heißt additiv, falls

$$\mu\left(\biguplus_{i\in I} A_i\right) = \sum_{i\in I} \mu(A_i)$$

Definition 1.1.3 (Semiring). Sei \mathfrak{T} ein nichtleeres Mengensystem über Ω . Dann heißt \mathfrak{T} Semiring (im weiteren Sinn), falls

1. Durchschnittsstabilität:

$$A, B \in \mathfrak{T} \Rightarrow A \cap B \in \mathfrak{T}$$

2. Leiterbildung:

$$A,B\in\mathfrak{T},A\subseteq B\Rightarrow \exists n\in\mathbb{N}:C_1,...,C_n\in\mathfrak{T}:\forall i\neq j:C_i\cap C_j=\varnothing,A\setminus B=\bigcup_{i=1}^nC_i$$

gilt zusätzlich für die Leiter

$$\forall k = 1, ..., n : A \cup \bigcup_{i=1}^{k} C_i \in \mathfrak{T},$$

so spricht man von einem Semiring im engeren Sinn.

Definition 1.1.4 (Ring). Sei \Re ein nichtleeres Mengensystem über Ω . \Re heißt Ring, falls

1. Differenzenstabilität:

$$A, B \in \mathfrak{R} \Rightarrow B \setminus A \in \mathfrak{R}$$

2. Vereinigungsstabilität:

$$A, B \in \mathfrak{R} \Rightarrow A \cup B \in \mathfrak{R}$$

Definition 1.1.5 (Sigmaring). Sei \mathfrak{R}_{σ} ein nichtleeres Mengensystem über Ω . \mathfrak{R}_{σ} heißt Sigmaring, falls

1. Differenzenstabilität:

$$A, B \in \mathfrak{R}_{\sigma} \Rightarrow B \setminus A \in \mathfrak{R}_{\sigma}$$

2. Sigma-Vereinigungsstabilität:

$$A_n \in \mathfrak{R}_{\sigma} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathfrak{R}_{\sigma}$$

Definition 1.1.6 (Algebra). Sei A ein nichtleeres Mengensystem über Ω. A heißt Algebra, falls

1. Abgeschlossenheit bzgl. Komplementbildung:

$$A \in \mathfrak{A} \Rightarrow A^c \in \mathfrak{A}$$

2. Vereinigungsstabilität:

$$A, B \in \mathfrak{A} \Rightarrow A \cup B \in \mathfrak{A}$$

Definition 1.1.7 (Dynkin System). Sei \mathfrak{D} ein nichtleeres Mengensystem über Ω . \mathfrak{D} heißt Dynkin-System (im weiteren Sinn), falls

1. Sigmaadditivität:

$$A_i \in \mathfrak{D}: A_i \ \textit{disjunkt} \Rightarrow \bigcup_{i \in \mathbb{N}} A_i \in \mathfrak{D}$$

2. Differenzenstabilität:

$$\forall A, B \subseteq \Omega : A, B \in \mathfrak{D} \Rightarrow B \setminus A \in \mathfrak{D}$$

Ist zusätzlich noch

$$\Omega \in \mathfrak{D}$$

erfüllt, so spricht man von einem Dynkin-System im engeren Sinn.

Lemma 1.1.8. (i) Wenn ein Dynkinsystem abgeschlossen bezüglich \cap ist, so ist es eine Sigmaalgebra.

(ii) Sei \mathfrak{C} ein Mengensystem, welches abgeschlossen bezüglich \cap ist, so gilt:

$$\mathfrak{D}(\mathfrak{C}) = \mathfrak{A}_{\sigma}(\mathfrak{C})$$

(iii) Für endliche Maße μ, ν auf einem Ring \Re ist

$$\{a \in \mathfrak{R} : \mu(A) = \nu(A)\}\$$

ein Dynkinsystem im weiteren Sinn.

Satz 1.1.9. Eine Mengenfunktion μ auf einem Semiring im engeren Sinn $\mathfrak T$ ist genau dann additiv, wenn für disjunkte Mengen $A, B \in \mathfrak T$ mit $A \cup B \in \mathfrak T$ gilt:

$$\mu(A \cup B) = \mu(A) + \mu(B)$$

Beweis. Es gilt $A \cap B = \emptyset$ und $\mu(A \cup B) = \mu(A) + \mu(B)$

Dann folgt mittels vollständiger Induktion, dass für disjunkte $(A_i)_{i\in I}$ aus \mathfrak{T} gilt:

$$\mu\left(\biguplus_{i\in I} A_i\right) = \sum_{i\in I} \mu(A_i)$$

Beispiel 1.1.0.1.

- Für ein beliebiges Ω ist $\mathfrak{C} := \{A \subset \Omega : |A| < \infty\}$ ein Ring und damit auch ein Semiring.
- Sei $a \in \mathbb{N}$, so ist $\mathfrak{C} := \{A \subset \Omega : |A| < a\}$ für $|\Omega| > a$ nur ein Semiring
- $\mathfrak{C} := \{A \subset \Omega : card(A) \leq \aleph_0\}$ eine Sigmaalgebra

Satz 1.1.10. \mathfrak{T} sei ein Semiring (in weiterem Sinne) und $I := \{1, ..., n\}$. Dann gilt:

$$\Re(\mathfrak{T}) = \{\bigcup_{i=1}^{n} A_i, n \in \mathbb{N}, A_i \in \mathfrak{T}\} = \{\sum_{i=1}^{n}, n \in \mathbb{N}, A \in \mathfrak{T}\}$$

Beweis. Da $\mathfrak{R}(\mathfrak{T})$ abgeschlossen bezüglich der Vereinigung ist, gilt

$$\mathfrak{R}(\mathfrak{T})\supset\{\bigcup_{i=1}^n A_i, n\in\mathbb{N}, A_i\in\mathfrak{T}\}$$

Nun muss man nur noch die andere Inklusion zeigen.

Es gilt $M:=\{\bigcup_{i=1}^n A_i, n\in\mathbb{N}, A_i\in\mathfrak{T}\}$ ist abgeschlossen bezüglich der Vereinigung. Nun wollen wir die Abgeschlossenheit bezüglich der Mengendifferenz zeigen. Dazu seien $A,B\in M.$ Es gilt:

$$A \backslash B = A \cap B^c = A \cap (\Omega \cap B) \in M$$

da M abgeschlossen bezüglich des Durchschnittes ist. Somit ist die Gleichheit gezeigt.

Satz 1.1.11. Sei C ein nicht leeres Mengensystem. Dann ist

$$\{\bigcap_{i=1}^{n} A_i | n \in \mathbb{N}, A_1 \in \mathfrak{C}, A_i \in \mathfrak{C} \lor A_i^c \in \mathfrak{C}, i \ge 1\}$$

ein Semiring.

Beispiel 1.1.0.2. Intervalle

 $\mathfrak{T} := \{(a,b) | a \leq b \land a, b \in \mathbb{R}\}$ "westlich" und $\{[a,b) | a \leq b \land a, b \in \mathbb{R}\}$ "russisch"bilden Semiringe. Im $\mathbb{R}^n : (a, b] = (a_1, b_1] \times (a_2, b_2] \times ... \times (a_n, b_n]$

Der erzeugte Sigmaring von \mathfrak{T} sind die Borelmengen $\mathfrak{B}(\mathfrak{B}_n)$

Für zwei Semiringe $\mathfrak{T}_1,\mathfrak{T}_2$ ist

$$\mathfrak{T}_1 \times \mathfrak{T}_2 = \{ A_1 \times A_2 | A_1 \in \mathfrak{T}_1 \land A_2 \in \mathfrak{T}_2 \}$$

ein Semiring.

Definition 1.1.12. Ein Mengensystem € heißt monoton, wenn

$$A_n \in \mathfrak{C}, A_n \subset A_{n+1}, n \in \mathbb{N} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathfrak{C}$$

oder

$$A_n \in \mathfrak{C}, A_n \supset A_{n+1}, n \in \mathbb{N} \Rightarrow \bigcap_{n \in \mathbb{N}} A_n \in \mathfrak{C}$$

Satz 1.1.13 (monotone classstheorem). Der von einem Ring erzeugte Sigmaring stimmt mit dem erzeugten monotonen System überein (Jeder monotone Ring ist Sigmaring)

Definition 1.1.14. Für Zahlenfolgen:

$$\limsup_{n \in \mathbb{N}} x_n = \inf_{n \in \mathbb{N}} \sup_{k > n} x_n$$

$$\liminf_{n\in\mathbb{N}} x_n = \sup_{n\in\mathbb{N}} \inf_{k\geq n} x_n$$

Für Mengenfolgen:

$$\limsup_{n \in \mathbb{N}} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} A_n = \{x : x \in A_n \text{ für unenlich viele } n\}$$
$$\liminf_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{k > n} A_n = \{x : x \in A_n \text{ für fast alle } n\}$$

Bemerkung. Es gibt einige Tricks, wenn man mit Mengen arbeitet:

- 1. Folgen monoton machen: Sei $(A_n)_{n\in\mathbb{N}}$ eine Mengenfolge, so ist $B_n = \bigcup_{i=1}^n A_i$ eine monoton wachsende Folge.
- 2. Folgen disjunkt machen: Sei $C_1 = B_1 = A_1$

$$C_n = B_n \backslash B_{n-1} = \left(\bigcup_{j=1}^n A_j\right) \backslash \bigcup_{i=1}^{n-1} A_i = \left(\bigcup_{j=1}^{n-1} A_j \cup A_n\right) \backslash \bigcup_{i=1}^{n-1} A_i = \emptyset \cup A_n \backslash \bigcup_{i=1}^{n-1} A_i$$

mit
$$\bigcup_{n\in\mathbb{N}} C_n = \bigcup_{n\in\mathbb{N}} A_n$$

3. Klassische Tauschgeschäft: Wenn du eine Gleichung willst, musst du 2 Ungleichungen zeigen

$$x = y \Leftrightarrow (x \le y) \land (x \ge y)$$
$$A = B \Leftrightarrow (A \subset B) \land (A \supset B)$$

4. Prinzip der guten Menge: Wenn du zeigen willst, dass alle Elemente x aus einer Menge X eine Eigenschaft haben, dann zeigt man $Y \supset X$ für:

$$Y := \{x \in X | x \text{ hat die Eigenschaft}\}$$

Definition 1.1.15. Seien $\mathfrak{S}_1, \mathfrak{S}_2$ Sigmaalgebren über Ω , so heißt $\mathfrak{S}_1 \times \mathfrak{S}_2 = \mathfrak{A}_{\sigma}(\mathfrak{S}_1 \otimes \mathfrak{S}_2)$ die Produktalgebra

Definition 1.1.16. Sei $f: \Omega_1 \to \Omega_2$ und $A \in \Omega_2$, so heißt

$$f^{-1}(A) := \{x \in \Omega_1 | f(x) \in A\}$$

das Urbild von A.

Satz 1.1.17. Sei $f: \Omega_1 \to \Omega_2$, \mathfrak{S}_2 Sigmaalgebra über Ω_2 dann ist $f^{-1}(\mathfrak{S}_2) := \{f^{-1}(A) : A \in \mathfrak{S}_2\}$ eine Sigmaalgebra über Ω_1

Beweis. Es gilt zu zeigen:

- 1. $f^{-1}(\mathfrak{S}_2) \neq \emptyset$ da $\emptyset \in \mathfrak{S}_2$ und stets $f(\emptyset) = \emptyset$.
- 2. $A \in f^{-1}(\mathfrak{S}_2) \Rightarrow A^c \in f^{-1}(\mathfrak{S}_2)$

$$A \in f^{-1}(\mathfrak{S}_2) \Rightarrow \exists B \in \mathfrak{S}_2 : f^{-1}(B) = A \Rightarrow A^c = f^{-1}(B)^c = f^{-1}(B^c) \in f^{-1}(\mathfrak{S}_2)$$

3. $(A_n)_{n\in\mathbb{N}}, A_n\in f^{-1}(\mathfrak{S}_2)\Rightarrow \bigcup_{n\in\mathbb{N}}A_n\in f^{-1}(\mathfrak{S}_2)$

$$\Rightarrow \exists (B_n)_{n \in \mathbb{N}} : A_n = f^{-1}(B_n) \Rightarrow \bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} f^{-1}(B_n) = f^{-1}\left(\bigcup_{n \in \mathbb{N}} B_n\right) \in f^{-1}(\mathfrak{S}_2)$$

Also ist $f^{-1}(\mathfrak{S}_2)$ eine Sigmaalgebra.

Bemerkung. Dieser Satz funktioniert auch für:

- Semiringe

Jedoch nicht für

- Dynkin-Systeme
- monotone Systeme

Satz 1.1.18. Sei $f: \Omega_1 \to \Omega_2$ und \mathfrak{C} ein beliebiges Mengensystem über Ω_2

$$\Rightarrow \mathfrak{A}_{\sigma}(f^{-1}(\mathfrak{C})) = f^{-1}(\mathfrak{A}_{\sigma}(\mathfrak{C}))$$

Beweis. Wir zeigen zwei Inklusionen:

 $A_1:=\mathfrak{A}_{\sigma}(f^{-1}(\mathfrak{C}))\subset f^{-1}(\mathfrak{A}_{\sigma}(\mathfrak{C}))=:A_2$ laut dem vorherigen Satz. " $A_1\supset A_2$ "vermittels dem Prinzip der gutem Menge Sei $G:=\{A\in\mathfrak{A}_{\sigma}(\mathfrak{C})|f^{-1}(A)\in\mathfrak{A}_{\sigma}(f^{-1}(\mathfrak{C}))\}$

Sei
$$G := \{ A \in \mathfrak{A}_{\sigma}(\mathfrak{C}) | f^{-1}(A) \in \mathfrak{A}_{\sigma}(f^{-1}(\mathfrak{C})) \}$$

- 1. Es ist klar, dass $\mathfrak{C} \subset G$
- 2. Zu zeigen: G ist Sigmaalgebra Sei $A \in G : f^{-1}(A) \in \mathfrak{A}_{\sigma}(f^{-1}(\mathfrak{C}))$

$$\Rightarrow f^{-1}(A^c) = f^{-1}(A)^c \in \mathfrak{A}_{\sigma}(f^{-1}(\mathfrak{C}))$$

Also ist $A^c \in G$.

Sei $A_n \in G, n \in \mathbb{N}$

$$\Rightarrow f^{-1}(A_n) \in \mathfrak{A}_{\sigma}(f^{-1}(\mathfrak{C})) \Rightarrow f^{-1}\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \bigcup_{n \in \mathbb{N}} f^{-1}(A_n) \in \mathfrak{A}_{\sigma}(f^{-1}(\mathfrak{C}))$$

Also ist $G = \mathfrak{A}_{\sigma}(\mathfrak{C})$.

Damit ist die Aussage bewiesen.

1.2 Maße und Inhalte

Definition 1.2.1. Ein Inhalt μ auf einem Mengensystem C heißt endlich, wenn für alle $A \in C$:

$$\mu(A) < \infty$$

Definition 1.2.2. Ein Maß μ auf C heißt sigmaendlich, wenn für jedes $A \in C$ Mengen $A_n \in$ $C, n \in \mathbb{N}$ existieren mit $\mu(A_n) < \infty, A \subseteq \bigcup_{n \in \mathbb{N}} A_n$.

Definition 1.2.3. Ein Inhalt μ auf C heißt totalendlich, wenn

$$\Omega \in C \wedge \mu(\Omega) < \infty$$

Definition 1.2.4. Ein Inhalt μ auf C heißt total sigmaendlich, wenn es $A_n \in C, n \in \mathbb{N}$ gibt mit $\mu(A_n) < \infty \text{ und } \Omega \subseteq \bigcup_{n \in \mathbb{N}} A_n.$

Definition 1.2.5. $A \in C$ hat sigmaendliches $Ma\beta$ (A ist sigmaendlich), wen es $A_n \in C$, $n \in \mathbb{N}$: $\mu(A_n) < \infty \ und \ A \subseteq \bigcup A_n$.

Definition 1.2.6. μ heißt Wahrscheinlichkeitsmaß, wenn $\mu(\Omega) = 1$.

Beispiel 1.2.0.1. Sei $\Omega \neq \emptyset$ endlich, $C = 2^{\Omega}$, $\mu(A) = \frac{|A|}{|\Omega|}$.

Beispiel 1.2.0.2. Sei $\Omega = \{1, 2, 3, 4, 5, 6\}$, also ein "fairer Würfel".

Beispiel 1.2.0.3. Sei $\Omega = \{(1,1), (1,2), ..., (2,1), (2,2), ..., (6,6)\}$, also würfeln mit zwei Würfeln, Würfel sind unterscheidbar.

Definition 1.2.7. Sei $\Omega \neq \emptyset$ beliebige Menge und \mathfrak{S} eine Sigmaalgebra über Ω . Dann heißt (Ω, \mathfrak{S}) Messraum.

Definition 1.2.8. Sei μ ein Ma β auf \mathfrak{S} und (Ω, \mathfrak{S}) Messraum. Dann hei β t $(\Omega, \mathfrak{S}, \mu)$ Ma β raum.

Beispiel 1.2.0.4. $(\Omega, 2^{\Omega}, \mu), \Omega \neq \emptyset$ endlich, $C = 2^{\Omega}, \mu(A) = \frac{|A|}{|\Omega|}$ ist der Laplace-Wahrscheinlichkeitsraum.

Satz 1.2.9. Seien μ_n Inhalte auf \mathfrak{C} , und existiere $\mu(A) = \lim_{n \to \infty} \mu_n(A)$. Dann ist μ ein Inhalt.

Beweis. $A = \sum_{i=1}^k A_i$, $\mu(A) = \sum_{i=1}^k \mu_n(A_i)$, für $n \to \infty$ gehen beide Seiten gegen μ , stimmt also.

Satz 1.2.10 (Satz von Vitali-Hahn Saks:). Wenn $\mathfrak C$ ein Sigmaring ist und μ_n endliche Maße und für alle $A \in \mathfrak C$: $\mu(A) = \lim_{n \to \infty} \mu_n(A)$, dann ist μ auch ein Maß.

Beweis. noch nicht, Eigenschaften fehlen noch.

Satz 1.2.11. Sei μ ein Inhalt/Maß auf einem Ring. Dann gilt:

1. Monotonie:

$$A, B \in \mathfrak{R}, A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$$

2. Additionstheorem:

$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$$

3. Allgemeineres Additionstheorem:

$$\mu\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{J \subseteq \{1,\dots,n\}, J \neq \emptyset} (-1)^{|J|-1} \mu\left(\bigcap_{i \in J} A_{i}\right)$$

$$= \sum_{k=1}^{n} (-1)^{k-1} S_{k} \quad f \ddot{u} r S_{k} = \sum_{i \le i_{1} < \dots < i_{k} \le n} \mu\left(\bigcap_{k=1}^{n} A_{i_{k}}\right)$$

4. Subadditivität:

$$\mu\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} \mu(A_i)$$

Beweis. 1. Es gilt:

$$B = A \cup (B \setminus A) \Rightarrow \mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$$

Nun ist außerdem mit $\mu(A) < \infty$:

$$\mu(B \setminus A) = \mu(B) - \mu(A)$$

2. Für $A, B \in \mathfrak{R}$:

$$\mu(B \setminus A) = \mu(B \setminus (A \cap B)) = \mu(B) - \mu(A \cap B) (\text{ wenn } \mu(A \cap B) < \infty)$$
$$\Rightarrow \mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$$

Außerdem (Zusatz für zwei Mengen):

$$\mu(A \cup B \cup C) = \mu((A \cup B) \cup C)$$

= $\mu(A) + \mu(B) + \mu(C) - \mu(A \cap B) - \mu(A \cap C) - \mu(B \cap C) + \mu(A \cap B \cap C)$

3. Es gilt:

$$A, B \in \mathfrak{R} : \mu(A \cup B) = \mu(A \cup (B \setminus A)) = mu(A) + \mu(B \setminus A) \le \mu(A) + \mu(B)$$

$$\Rightarrow \mu\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} \mu(A_i)$$

4. Induktion (wahrscheinlich)

Satz 1.2.12. Sei μ Inhalt auf \Re , $A_n, n \in \mathbb{N}$, $A \subseteq \Re$, dann gilt:

$$\sum_{n\in\mathbb{N}} A_n \subseteq A \Rightarrow \sum_{n\in\mathbb{N}} \mu(A_n) \le \mu(A)$$

Beweis. Es gilt:

$$\sum_{n=1}^{N} A_n \subseteq A \Rightarrow \mu\left(\sum_{n=1}^{N} A_n\right) \le \mu(A)$$

$$\Rightarrow \sum_{n=1}^{N} \mu(A_n) \le \mu(A)$$

Für $n \to \infty$:

$$\sum_{n\in\mathbb{N}}\mu(A_n)\leq\mu(A)$$

1.2.1 Folgerungen für Maße

Satz 1.2.13. Sei μ ein Maß auf \Re :

1. Stetigkeit von unten:

$$A_n \uparrow A, A_n, A \in \mathfrak{R}$$

$$\Rightarrow \mu(A) = \lim_{n \to \infty} \mu(A_n)$$

2. Stetigkeit von oben:

$$A_n \downarrow A, A_n, A \in \mathfrak{R} \land \mu(A_1) < \infty$$

$$\Rightarrow \mu(A) = \lim_{n \to \infty} \mu(A_n)$$

Beweis. 1. Sei $B_1 = A_1$ und $B_n = A_n \setminus A_{n-1}$. Nun sind B_n disjunkt und $A_n = \sum_{i=1}^n B_i$. Nun gilt:

$$\mu(A_n) \sum_{i=1}^n \mu(B_i)$$

und:

$$A = \sum_{i=1}^{\infty} B_i$$

$$\Rightarrow \mu(A) = \sum_{i=1}^{\infty} \mu(B_i) = \lim_{n \to \infty} \sum_{i=1}^{n} \mu(B_i) = \lim_{n \to \infty} \mu(A_n)$$

2.
$$\mu(A) = \lim_{n \to \infty} \mu(A_n)$$

$$\mu(A_1 \setminus A) = \lim_{n \to \infty} \mu(A_1 \setminus A_n) = \lim_{n \to \infty} \mu(A_1) - \lim_{n \to \infty} \mu(A_n)$$

Eigenschaften von Maßen (Inhalten) auf Ringen(Semiringen) 1.2.2

Satz 1.2.14. Sei μ ein Maß auf dem Ring \Re , $A_n \uparrow A$, A_n , $A \in \Re$. Dann gilt

$$\mu(A) = \lim_{n \to \infty} \mu(A_n)$$

Entsprechendes für $A_n \downarrow A$.

Satz 1.2.15. Sei μ Inhalt auf Ring \Re ist genau dann ein Ma β , wenn μ stetig von unten ist.

Beweis. Seien $A_n, A \in \mathfrak{R}, A = \sum_{n \in \mathbb{N}} A_n, A_n$ paarweise disjunkt. Sei

$$B_n = \sum_{i=1}^n A_i$$

Nun gilt $B_n\uparrow A.~\mu$ ist nun stetig von unten, also

$$\mu(A) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \mu(\sum_{i=1}^n A_i) = \lim_{n \to \infty} \sum_{i=1}^n \mu(A_i) = \sum_{i=1}^\infty \mu(A_i)$$

 \Box .

Satz 1.2.16. Sei μ ein endlicher Inhalt auf einem Ring \Re . Dann ist μ genau dann ein Ma β , wenn er stetig von oben bei Ø ist, also

$$A_n \downarrow \varnothing \Rightarrow \mu(A_n) \to 0.$$

Beweis. Sei $A_n, A \in \mathfrak{R}, A = \sum_{n=1}^{\infty} A_n$. $\mathbf{Z}: \mu(A) = \sum_{n=1}^{\infty} \mu(A_n)$.

Nämlich:

$$A = \sum_{i=1}^{n} A_i \cup \sum_{i=n+1}^{\infty}$$

$$B_n := \sum_{i=n+1}^{\infty} \Rightarrow B_n = A \setminus (\sum_{i=1}^n A_i) \in \mathfrak{R}$$

Nun gilt:

$$\mu(A) = \sum_{i=1}^{n} \mu(A_i) + \mu(B_n)$$

Nun gilt:

$$\lim_{n \to \infty} B_n = \bigcap_{n \in \mathbb{N}} B_n = \bigcap_{n \in \mathbb{N}} A \setminus \left(\bigcup_{i=1}^n A_i\right) = A \setminus \left(\bigcup_{n \in \mathbb{N}} \bigcup_{i=1}^n A_i\right) = \emptyset$$

Also $B_n \downarrow \emptyset$. Also:

$$\mu(A) = \lim_{n \to \infty} \left(\sum_{i=1}^{n} A_i + \mu(B_n) \right) = \sum_{i=1}^{\infty} +0$$

 \Box .

Bemerkung. Dieses Argument kann auch umgedreht werden. Dies werden wir später zumindest einmal benutzen.

Satz 1.2.17. Sei μ ein Ma β auf dem Ring(Semiring) \Re , $A_n, A \in \Re$ mit

$$A \subseteq \bigcup_{n \in \mathbb{N}} A_n$$

so gilt

$$\mu(A) \leq \sum_{n \in \mathbb{N}} \mu(A_n)$$
. (μ ist abzählbar-, bzw sigmasubadditiv)

Beweis. Sei $B_n = A \cap \bigcup_{i=1}^n A_i = \bigcup_{i=1}^n A \cap A_i$. Es gilt also $B_n \uparrow A$. Aus der endlichen Subadditivität erhalten wir:

$$\mu(B_n) \le \sum_{i=1}^n \mu(A_i \cap A) \le \sum_{i=1}^n \mu(A_i) \le \sum_{i=1}^\infty \mu(A_i)$$

$$\Rightarrow \mu(A) = \lim_{n \to \infty} \mu(B_n) \le \sum_{i=1}^{\infty} \mu(A_i)$$

Satz 1.2.18. Sei μ ein Maß auf dem Sigmaring \Re und A_n eine Folge von Mengen aus \Re . Dann gilt:

$$\limsup_{n \to \infty} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k > n} A_k$$

Satz 1.2.19. Lemma von Borel Cantelli:

Sei μ ein Maß auf einem Sigamring \mathfrak{R} . Ist $\sum_{n\in\mathbb{N}}\mu(A_n)<\infty$ für $A_n\in\mathfrak{R}$, so gilt:

$$\mu(\limsup_{n\to\infty} A_n) = 0$$

Beweis. Sei $\epsilon > 0$ beliebig. Es gilt:

$$\mu(\limsup A_n) \le \mu\left(\bigcup_{k \ge n_0} A_k\right) \le \sum_{k \ge n_0} \mu(A_k) \le \epsilon$$

 \Box .

Bemerkung. Als Hausübung: Ist μ endliches Maß auf einem Sigmaring, so gilt

$$\mu(\limsup_{n\to\infty} A_n) \ge \limsup_{n\to\infty} \mu(A_n).$$

Beispiel 1.2.2.1 (Additionstheorem). Die Anzahl der Permutationen von n Elementen ohne Fixpunkt.

$$\mathbb{P}(\text{kein Fixpunkt}) = 1 - \mathbb{P}(\text{Fixpunkt}) = 1 - \mathbb{P}\left(\bigcup A_i\right)$$

mit $A_i = [i \text{ ist Fixpunkt }].$

$$\mathbb{P}\left(\bigcup A_{i}\right) = \sum_{i=1}^{n} \mathbb{P}(A_{i}) - \sum_{1 \leq i_{1} \leq i_{2} \leq n} \mathbb{P}(A_{i_{1}} \cap A_{i_{2}}) + \sum \mathbb{P}(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{2}}) - \dots$$

Es gilt:

$$\mathbb{P}(A_i) = \frac{(n-1)!}{n!}$$

$$\mathbb{P}(A_i \cap A_0) = \frac{(n-2)!}{n!}$$

$$\mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k}) = \frac{(n-k)!}{n!}$$

Jetzt: (was auch immer S_k ist...)

$$S_k = \frac{(n-k)!}{n!} \left(\begin{array}{c} n \\ k \end{array} \right) = \frac{1}{k!}$$

Damit:

$$\mathbb{P}\left(\bigcup A_i\right) = \sum_{k=1}^n (-1)^{k-1} \frac{1}{k!}$$

$$\Rightarrow \mathbb{P}(\text{kein Fixpunkt}) = 1 - \sum_{k=1}^n (-1)^{k-1} \frac{1}{k!} = \sum_{k=0}^n (-1)^k \frac{1}{k!} \ n \xrightarrow{\rightarrow} \infty \ \frac{1}{e}$$

1.2.3 Bedingte Wahrscheinlichkeit

Definition 1.2.20. Sei $(\Omega, \mathfrak{S}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Nun heißt $A, B \in \mathfrak{S}$ Ereignisse. Gilt $\mathbb{P}(B) \neq 0$ so heißt

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

die bedingte Wahrscheinlichkeit.

Definition 1.2.21. Ereignisse A und B heißen unabhängig, wenn

$$P(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

Definition 1.2.22. Allgemeiner heißen Ereignisse $A_1, ..., A_n$ unabhängig, wenn

$$\mathbb{P}\left(\bigcap_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} \mathbb{P}(A_i).$$

Definition 1.2.23. Ereignisse $A_1, ..., A_n$ heißen paarweise unabhängig, wenn:

$$\forall i, j \in \{1, ..., n\} : i \neq j \Rightarrow \mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j).$$

Bemerkung. Es gilt:

$$\mathbb{P}(A \cap B) = \mathbb{P}(B)\mathbb{P}(A|B) = \mathbb{P}(A)\mathbb{P}(B|A)$$

und:

$$\mathbb{P}(A_{i} \cap ... \cap A_{n}) = \mathbb{P}(A_{1})\mathbb{P}(A_{2}|A_{1})\mathbb{P}(A_{3}|A_{1} \cap A_{2})...P(A_{n}|A_{1} \cap ... \cap A_{n})$$

Dies ist das Multiplikationstheorem für Wahrscheinlichkeiten.

Beispiel 1.2.3.1 (Bedingte Wahrscheinlichkeiten (Multiplikationstheorem)). In einer Urne liegen zwei schwarze und drei weiße Kugeln. Es wird 3-mal ohne Zurücklegen gezogen, wobei das Ziehen der Laplace-Wahrscheinlichkeit folgt. Nun ist

$$\mathbb{P}(\text{Alle 3 Kugeln weiß}) = \mathbb{P}(A_1 \cap A_2 \cap A_3)$$

wobei $A_i = ,i$ -te Kugel ist weiß". Also

$$\mathbb{P}(A_1 \cap A_2 \cap A_3) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_1 \cap A_2)$$

mit

$$P(A_1) = \frac{3}{5}$$

$$P(A_2|A_1) = \frac{2}{4} = \frac{1}{2}$$

$$P(A_3|A_2 \cap A_1) = \frac{1}{3}$$

und damit

$$\mathbb{P}(\text{Alle 3 Kugeln weiß}) = \frac{1}{10}$$

Beispiel 1.2.3.2. Selbe Voraussetzungen wie im vorigen Beispiel. Nun ist

$$\begin{split} \mathbb{P}(\text{genau 2 Kugeln weiß}) &= \mathbb{P}(\text{wws}) + \mathbb{P}(\text{wsw}) + \mathbb{P}(\text{sww}) \\ &= \mathbb{P}(A_1 \cap A_2 \cap A_3^c) + \mathbb{P}(A_1 \cap A_2^c + A_3) + \mathbb{P}(A_1^c \cap A_2 \cap A_3) \\ &= \frac{3}{5} \frac{2}{4} \frac{2}{3} + \frac{3}{5} \frac{2}{4} \frac{2}{3} + \frac{2}{5} \frac{3}{4} \frac{2}{3} = 3 \cdot \frac{12}{60} = \frac{3}{5}. \end{split}$$

Dieses Beispiel kann analog auf jede Anzahl an Kugeln fortgesetzt werden.

Satz 1.2.24 (Borel-Cantelli II). Sei $(\Omega, \mathfrak{S}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Sei $A_n \in \mathfrak{S}$ eine Folge unabhängiger Ereignisse.

Ist nun

$$\sum_{n=0}^{\infty} \mathbb{P}(A_n) = \infty$$

so folgt

$$\mathbb{P}(\limsup_{n\to\infty} A_n) = 1$$

Beweis. Definition des lim sup war:

$$\limsup_{n \to \infty} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} A_k$$

und damit nach den de Morgan'schen Regeln:

$$(\limsup_{n \to \infty} A_n)^c = \bigcup_{n \in \mathbb{N}} \bigcap_{k > n} A_k^c$$

Betrachten wir nun $\bigcap_{k>n} A_k^c$. Die A_k^c sind nun auch unabhängig. (siehe Übung) Also:

$$\bigcap_{k \ge n} A_k^c = \lim_{N \to \infty} \bigcap_{k=n}^N A_k^c$$

$$\Rightarrow \mathbb{P}\left(\bigcap_{k \ge n} A_k^c\right) = \lim_{N \to \infty} \prod_{k=n}^\infty \mathbb{P}(A_k^c) = \prod_{k=n}^\infty \mathbb{P}(A_k^c) = \prod_{k=n}^\infty (1 - \mathbb{P}(A_k))$$

mit $1 + x \le e^x$ folgt

$$\prod_{k=n}^{\infty} (1 - \mathbb{P}(A_k)) \le \prod_{k=n}^{\infty} e^{-\mathbb{P}(A_k)} = e^{-\sum_{k\geq n}^{\infty} \mathbb{P}(A_k)} = \lim_{n \to \infty} -e^{-n} = 0$$

Damit:

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}A_{k}\right)\leq\sum_{n=1}^{\infty}\mathbb{P}\left(\bigcap_{k=n}^{\infty}A_{k}\right)=\sum_{n=1}^{\infty}0=0$$

 \Box .

1.2.4 Der Fortsetzungssatz für Maßfunktionen

In diesem Abschnitt werden wir den folgenden Satz beweisen:

Satz 1.2.25 (Fortsetzungssatz für Maßfunktionen). Sei μ ein Maß auf einem Ring \Re . Dann gilt:

1. μ kann zu einem Ma β $\tilde{\mu}$ auf dem erzeugten Sigmaring fortgesetzt werden.

2. Wenn μ sigmaendlich ist, dann ist $\widetilde{\mu}$ eindeutig bestimmt.

Bemerkung. Wir werden $\widetilde{\mu}$ im Folgenden immer mit μ bezeichnen, da es nicht wichtig ist, ob wir auf einem Ring oder auf dem erzeugten Sigmaring arbeiten.

Bemerkung. Die Motivation für diesen Satz ist das klassische Ausschöpfungs-, bzw Exhaustionsprinzip, das z.B. Archimedes und Eudoxos bearbeitet haben. Dabei wurde die Fläche eines Kreises durch Rechtecke approximiert. Damit ist (A ist die Fläche des Kreises, B die Fläche der Vierecke)

$$\mu^+(A) = \inf\{\mu(B) : A \subseteq B, B \in \mathfrak{R}\}\$$

$$\mu^-(A) = \sup\{\mu(B) : B \subseteq A, B \in \mathfrak{R}\}\$$

wenn $\mu^+(A) = \mu^-(A)$, dann ist A messbar (im Sinn von Jordan). Dann μ^* das Jordon-Maß.

$$\mu^*(A) = \inf\left(\sum_{n \in \mathbb{N}} \mu(B_n)\right), B_n \in \mathfrak{R}, A \subseteq \bigcup_{n \in \mathbb{N}} B_n$$
$$= \inf\left\{\sum_{n \in \mathbb{N}} \mu(B_n) : B_n \in \mathfrak{R}, A \subseteq \sum_{n \in \mathbb{N}} B_n\right\}$$

Die letzte Gleichheit folgt durch Zeigen von \leq und \geq .

Definition 1.2.26. Das Ma β von einem Ma β μ erzeugte Ma β

$$\mu^*(A) = \inf\{\sum_{n \in \mathbb{N}} \mu(B_n) : B_n \in \mathfrak{R}, A \subseteq \sum_{n \in \mathbb{N}} B_n\}$$

heißt äußeres Maß oder Jordan-Maß. Hierbei wird

$$\inf \varnothing = \infty$$

gesetzt.

Definition 1.2.27. *Ist* $\mu(\Omega) < \infty$, *so ist*

$$\mu_*(A) = \mu(\Omega) - \mu^*(A^c)$$

das innere $Ma\beta$.

Definition 1.2.28 (vorläufige Definition). A heißt messbar, falls

$$\forall E \in \mathfrak{R} : \mu(E) = \mu^*(E \cap A) + \mu^*(E \setminus A).$$

Definition 1.2.29. A heißt messbar, wenn

$$\forall B \subseteq \Omega : \mu^*(B) = \mu^*(B \cap A) + \mu^*(B \setminus A).$$

Satz 1.2.30 (Eigenschaften von äußeren Maßfunktionen). Sei μ ein Maß und μ^* das von μ erzeugte äußere Maß. Dann gilt:

- 1. $\mu^*(A) \geq 0$
- 2. $\mu^*(\emptyset) = 0$
- 3. Monotonie:

$$A \subseteq B \subseteq \Omega \Rightarrow \mu^*(A) \le \mu^*(B)$$

4. Sigmasubadditivität:

$$A \subseteq \bigcup_{n \in \mathbb{N}} A_n \subseteq \Omega$$

$$\Rightarrow \mu^*(A) \le \sum_{n \in \mathbb{N}} \mu^*(A_n)$$

Definition 1.2.31. Eine Funktion $\mu^*: 2^{\Omega} \to [0, \infty]$ heißt eine äußere Maßfunktion, wenn sie die Eigenschaften 1.-4. besitzt.

Bemerkung. Will man zeigen, dass μ^* ein äußeres Maß ist, so muss man nur 1.,2. und 4. zeigen, 3. folgt dann automatisch.

Beweis. Eigenschaften 1. und 2. sind klar. Bleibt also noch 4. zu zeigen, 3. folgt ja automatisch. Sei also $A \subseteq \bigcup_{n \in \mathbb{N}} A_n$. Zu zeigen ist nun, dass

$$\mu^*(A) \le \sum_{n \in \mathbb{N}} \mu^*(A_n)$$

wenn $\sum_{n\in\mathbb{N}} \mu^*(A_n) = \infty$, so sind wir fertig. Sei also $\sum_{n\in\mathbb{N}} \mu^*(A_n) < \infty$. Dann ist

$$\mu^*(A_n) = \inf\{\sum_{k \in \mathbb{N}} \mu(B_k) : A_n \subseteq \bigcup B_k, B_k \in \mathfrak{R}\}$$

Sei $\epsilon > 0$. Für $B_{nk} \in \mathfrak{R} : A_n \subseteq \bigcup_{k \in \mathbb{N}} B_{nk}$ und $\sum_{k \in \mathbb{N}} \mu(B_{nk}) \le \mu^*(A_n) + \frac{\epsilon}{2}$. Nun ist

$$\bigcup_{n\in\mathbb{N}} A_n \subseteq \bigcup_{n\in\mathbb{N}} \bigcup_{k\in\mathbb{N}} B_{nk}$$

und damit

$$\mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right) \le \sum_{n \in \mathbb{N}} \sum_{k \in \mathbb{N}} \mu(B_n k) \le \sum_{n \in \mathbb{N}} (\mu^* (A_n) + \frac{\epsilon}{2^n}) = \sum_{n \in \mathbb{N}} \mu^* (A_n) + \epsilon$$
$$\Rightarrow \mu \left(\bigcup_{n \in \mathbb{N}} A_N \right) \le \sum_{n \in \mathbb{N}} \mu^* (A_n)$$

 \Box .

Beispiel 1.2.4.1. Sei $|\Omega| \geq 3$ und

$$\mu^*(A) = \left\{ \begin{array}{l} 0: A = \varnothing \\ 1: A \notin \{\varnothing, \Omega\}, A \subseteq \Omega \\ 2: A = \Omega \end{array} \right.$$

Definition 1.2.32. $A \subseteq \Omega$ heißt messbar (μ^* -messbar), wenn

$$\forall B \subseteq \Omega : \mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c).$$

 ${\bf Bemerkung.}\ {\bf Um}$ die Messbarkeit von A zu zeigen, genügt es zu zeigen, dass

$$\mu^*(B) > \mu^*(B \cap A) + \mu^*(B \cap A^c),$$

da die Ungleichung "≤" trivialerweise immer erfüllt ist.

Definition 1.2.33. m_{μ^*} bezeichnet das System aller μ^* -messbaren Mengen. Ist klar, um welches $Ma\beta \mu^*$ es sich handelt (oder das egal ist), so schreiben wir einfach m.

Satz 1.2.34. 1. m ist eine Sigmaalgebra, $\mu^*|_m$ ein Maß.

2. Wenn μ^* von einem Ma β μ auf einem Ring \Re erzeugt wird und $\mu^*(B) = \mu(B)$, so folgt $\Re \subseteq m$.

Beweis. Wir beweisen zunächst 2.:

Sei $B \subset \Omega, A \in \mathfrak{R}B_n \in \mathfrak{R}, B \subseteq \bigcup_{n \in \mathbb{N}} B_n, \mu^*(B) < \infty$. Dann ist

$$\sum_{n \in \mathbb{N}} \mu(B_n) = \sum_{n \in \mathbb{N}} \mu\left((B_n \cap A) \cup (B_n \cap A^c)\right)$$

$$= \sum_{n \in \mathbb{N}} (\mu(B_n \cap A) + \mu(B_n \setminus A))$$

$$= \sum_{n \in \mathbb{N}} \mu(B_n \cap A) + \sum_{n \in \mathbb{N}} \mu(B_n \setminus A)$$

$$\geq \mu^*(B \cap A) + \mu^*(B \cap A^c)$$

$$\Rightarrow \mu^*(B) \geq \mu^*(B \cap A) + \mu^*(B \setminus A)$$

Sei nun $A \in \mathfrak{R}, A \subseteq \bigcup A_n, A_n \in \mathfrak{R}$.

$$\mu(A) \le \sum \mu(A_n)$$

wurde schon gezeigt. Sei jetzt $A_1 = A$, $A_n = \emptyset$ für n > 1. Dann folgt

$$\mu^*(A) \ge \mu(A),$$

A ist also messbar.

Für 1. erste Behauptung: m ist Algebra und $\mu^*|_m$ ist additiv. Wir wollen zeigen:

$$A_1, A_2$$
 messbar $\Rightarrow A_1 \cup A_2$ messbar

$$A \text{ messbar} \Rightarrow A^c \text{ messbar}$$

Das zweite folgt direkt daraus, dass $A^{cc}=A$ und die Definition von "messbar" diesbezüglich symmetrisch ist.

Für das erste sei $B \subseteq \Omega$. Nun ist A_1 messbar, also

$$\mu^*(B) = \mu^*(B \cap A_1) + \mu^*(B \cap A_1^c)$$

und mit

$$\mu^*(B \cap A_1) = \mu^*(B \cap A_1 \cap A_2) + \mu^*(B \cap A_1 \cap A_2^c)$$
$$\mu^*(B \cap A_1^c) = \mu^*(B \cap A_1^c \cap A_2) + \mu^*(B \cap A_1^c \cap A_2^c)$$

ergibt sich:

$$\mu^*(B) = \mu^*(B \cap A_1 \cap A_2) + \mu^*(B \cap A_1 \cap A_2^c) + \mu^*(B \cap A_1^c \cap A_2) + \mu^*(B \cap A_1^c \cap A_2^c)$$

$$\geq \mu^* ((B \cap A_1 \cap A_2) \cup (B \cap A_1 \cap A_2^c) \cup (B \cap A_1^c \cap A_2)) + \mu^*(B \cap (A_1 \cup A_2)^c)$$

$$= \mu^*(B \cap (A_1 \cup A_2)) + \mu^*(B \cap (A_1 \cup A_2)^c)$$

Damit ist m tatsächlich eine Algebra.

Um nachzuweisen, dass $\mu^*|_m$ additiv ist, seien $A_1, A_2 \in m$, $A_1 \cup A_2 = \emptyset$. Über die Messbarkeit von A_1 erhalten wir:

$$\mu^*(A_1 \cup A_2) = \mu^*((A_1 \cup A_2) \cap A_1) + \mu^*((A_1 \cup A_2) \cap A_1^c) = \mu^*(A_1) + \mu^*(A_2)$$

 \Box .

 \Box .

 \Box .

Nun bleibt noch zu zeigen, dass m Sigmaalgebra ist, seien also $A_n \in m, A_n$ disjunkt, $B \subseteq \Omega$. $\not \mathbb{Z}$:

$$\mu^*(B) \ge \mu^* \left(B \cap \bigcup_{n \in \mathbb{N}} A_n \right) + \mu^* \left(B \setminus \bigcup_{n \in \mathbb{N}} A_n \right)$$

Wir wissen schon:

$$\mu^*(B) = \mu^* \left(B \cap \bigcup_{n=1}^N A_n \right) + \mu^* \left(B \setminus \bigcup_{n=1}^N A_n \right)$$

$$\geq \mu^* \left(B \cap \bigcup_{n=0}^N A_n \right) + \mu^* \left(B \setminus \bigcup_{n \in \mathbb{N}} A_n \right)$$

$$= \sum_{n=1}^N \mu^*(B \cap A_n) + \mu^* \left(B \setminus \bigcup_{n \in \mathbb{N}} A_n \right)$$

Für $n \to \infty$ erhalten wir also

$$\mu^*(B) \ge \sum_{n \in \mathbb{N}} \mu^*(B \cap A_n) + \mu^* \left(B \setminus \bigcup_{n \in \mathbb{N}} A_n \right) \ge \mu^* \left(\bigcup_{n \in \mathbb{N}} (B \cap A_n) \right) + \mu^* \left(B \setminus \bigcup_{n \in \mathbb{N}} A_n \right)$$

Bemerkung. Der erste Teil des Fortsetzungssatzes ist damit bewiesen. Bleibt also noch der folgende Satz zu zeigen:

Satz 1.2.35. Ist $\widetilde{\mu}$ eine Fortsetzung von μ auf $\mathfrak{R}_{\sigma}(\mathfrak{R})$ ist, dann gilt

$$\widetilde{\mu} = \mu^*|_{\mathfrak{R}}$$

Satz 1.2.36. Ist μ auf \Re sigmaendlich, dann auch auf dem erzeugten Sigmaring.

Beweis. Z

$$\mathfrak{R}^* = \{A \subseteq \Omega : A \text{ ist sigmaendlich}\} = \{A \subseteq \exists B_1 \in \mathfrak{R}, n \in \mathbb{N} : \mu(B_n) < \infty \land A \subseteq \bigcup B_n\}$$

ist Sigmaring.

- $A, B \in \Re^* \Rightarrow A \setminus B \in \Re^*$: trivial
- $A_n \in \mathfrak{R}^*, n \in \mathbb{N} \Rightarrow \bigcup A_n \in \mathfrak{R}^*$: Sei $A_n \subseteq \bigcup B_{nk}, B_k \in \mathfrak{R}, \mu(B_{nk}) < \infty$. Dann ist

$$\bigcup A_n \subseteq \bigcup_n \bigcup_k B_{nk}$$

und damit folgt die Behauptung.

Satz 1.2.37. Für $A \in \mathfrak{R}_{\sigma}(\mathfrak{R}) : \widetilde{A} \leq \mu^*(A)$

Beweis. Sei $A \in \mathfrak{R}, A \subseteq \bigcup B_n, B_n \in \mathfrak{R}$. Nun gilt:

$$\sum_{n\in\mathbb{N}} \mu(B_n) = \sum_{n\in\mathbb{N}} \widetilde{\mu}(B_n) \ge \widetilde{\mu}\left(\bigcup B_N\right) \ge \widetilde{\mu}(A)$$

Nimmt man das inf über alle $(B_n)_{n\in\mathbb{N}}$, so erhält man $\mu^*(A)$.

Satz 1.2.38. $\widetilde{\mu}(A) = \mu^*(A)$ (siehe oben)

Beweis. Ist A sigmaendlich, so folgt:

$$\exists B_n \in \mathfrak{R}, n \in \mathbb{N}, \mu(B_n) < \infty, a \subseteq \bigcup B_n,$$

wobei wir die B_n oBdA als disjunkt annehmen können, da wir sie notfalls disjunkt machen können. Nun ist

$$\widetilde{\mu}(A) = \widetilde{\mu}\left(A \cap \bigcup_{n \in \mathbb{N}} B_n\right) = \widetilde{\mu}\left(\bigcup_{n \in \mathbb{N}} A \cap B_n\right) = \sum_{n \in \mathbb{N}} \widetilde{\mu}(A \cap B_n)$$

Nun zeigen wir:

$$\widetilde{\mu}(A \cap B_n) = \mu^*(A \cap B_n),$$

dann können wir die obere Gleichungskette nach hinten durchlaufen und sind fertig. Also: Wir wissen:

$$\widetilde{\mu}(A \cap B_n) \le \mu^*(A \cap B_n)$$

$$\widetilde{\mu}(A^c \cap B_n) \le \mu^*(A^c \cap B_n)$$

Außerdem, da A messbar:

$$\mu(B_n) = \mu^*(B_n) = \mu^*(A^c \cap B_n) + \mu(A \cap B_n) \ge \widetilde{\mu}(A^c \cap B_n) + \widetilde{\mu}(A^c \cap B_n) = \widetilde{\mu}(B_n) = \mu(B_n),$$

womit für \geq auch = folgt und $\widetilde{\mu}(A \cap B_n) = \mu^*(A \cap B_n)$ bewiesen ist. Damit folgt also auch:

$$\widetilde{\mu} = \mu^*|_{\mathfrak{R}_{\sigma}(\mathfrak{R})}$$

Bemerkung. Nun ist der Fortsetzungssatz für Maßfunktionen vollständig bewiesen.

1.2.5 Zusammenhang zwischen dem Maß auf dem Ring und dem Maß auf dem Sigmaring

Satz 1.2.39 (Approximationstheorem I). Sei μ ein sigmaendliches Ma β auf einem Ring \Re . Sei $A \in \Re_{\sigma}(\Re), \mu(A) < \infty$. Dann gilt

$$\forall \epsilon > 0 : \exists B \in \mathfrak{R} : \mu(A\Delta B) < \epsilon$$

Beweis. Mit $\mu(A) < \infty$ und

$$\mu(A) = \mu^*(A) = \inf \left\{ \sum_{n \in \mathbb{N}} \mu(B_n) : B_n \in \mathfrak{R}, A \subseteq \bigcup_{n \in \mathbb{N}} B_n \right\}$$

folgt: Wir wählen ein (B_n) , sodass $\sum_{n\in\mathbb{N}}\mu(B_n)\leq \mu(A)+\frac{\epsilon}{2}$. Das geht, weil wir ja beliebig nahe an das Infimum herankommen können. Wir wählen nun N so, dass $\sum_{n>N}\mu(B_n)<\frac{\epsilon}{2}$. Sei weiters

$$B:=\bigcup_{n=1}^{N}B_{n}\in\mathfrak{R}.$$

Dann folgt:

$$\mu(A\Delta B) = \mu(A \setminus B) + \mu(B \setminus A)$$

Außerdem:

$$A \setminus B \subseteq \bigcup_{n \in \mathbb{N}} B_n \setminus \bigcup_{n=1}^N B_n \subseteq \bigcup_{n > N} B_n.$$

Damit gilt:

$$\mu(A \setminus B) \le \sum_{n>N} \mu(B_n) < \frac{\epsilon}{2}$$

$$\mu(B \setminus A) \le \mu\left(\left(\bigcup_{n \in \mathbb{N}} B_n\right) \setminus A\right) = \mu\left(\bigcup_{n \in \mathbb{N}} B_n\right) - \mu(A) \le \sum_{n \in \mathbb{N}} \mu(B_n) - \mu(A) < \frac{\epsilon}{2}$$

und wir sind fertig.

Bemerkung. Es gilt auch

$$|\mu(A) - \mu(B)| \le \mu(A\Delta B)$$

Bemerkung. Wir nehmen nun an, dass $\Omega \in \mathfrak{R}_{\sigma}(\mathfrak{R})$, der erzeugte Sigmaring ist also schon eine Sigmaalgebra.

Definition 1.2.40. Sei $(\Omega, \mathfrak{S}, \mu)$ Maßraum. Ist $\mu(A) = 0$, so heißt A Nullmenge.

Satz 1.2.41. Ist A messbar, so kann man A schreiben als Vereinigung einer Menge aus dem Sigmaring und einer Nullmenge, also

$$A = F \cup N, F \in \mathfrak{R}_{\sigma}, N \subseteq M \in \mathfrak{R}_{\sigma} : \mu(M) = 0$$

Beweis. Sei $A \subseteq \Omega$. Mit

$$\mu^*(A) = \inf \left\{ \sum_{n \in \mathbb{N}} \mu(B_n), B_n \in \mathfrak{R}, A \subseteq \bigcup_{n \in \mathbb{N}} B_n \right\}$$

erhalten wir über

$$\sum_{n \in \mathbb{N}} \mu(B_n) \ge \mu\left(\bigcup_{n \in \mathbb{N}} B_n\right)$$

das folgende:

$$\mu^*(A) \ge \inf \{ \mu(B) : B \in \mathfrak{R}_{\sigma}, A \subseteq B \}$$

und damit folgt

$$\mu^*(A) = \inf \{ \mu(B) : B \in \mathfrak{R}_{\sigma}, A \subseteq B \}$$

Wir nehmen nun ein (C_n) mit $C_n \in \mathfrak{R}, \bigcup_{n \in \mathbb{N}} = \Omega, C_n$ disjunkt und $\forall n \in \mathbb{N} : \mu(C_n) < \infty$. Ist $A \in m_{\mu^*}$ messbar, $\mu^*(A \cap C_n) < \infty$, $\mu^*(A \cap C_n) = \inf\{\mu(B) : B \in \mathfrak{R}_{\sigma}, A \cap C_n \subseteq B\}$, dann wählen wir ein $B_k \in \mathfrak{R}_{\sigma}$, sodass

$$A \cap C_n \subseteq B_k, \mu(B_k) \le \mu^*(A \cap C_n) + \frac{1}{k}.$$

Sei

$$D_n = \bigcap_{k \in \mathbb{N}} B_k$$

also

$$A \cap C_n \subseteq D_n, \mu(D_n) = \mu^*(A \cap C_n)$$

Analog: $E_n \in \mathfrak{R}_{\sigma}, A^c \cap C_n \subseteq E_n, \mu(E_n) = \mu^*(A^c \cap C_n)$:

$$\mu(C_n) = \mu^*(C_n \cap A) + \mu(C_n \cap A^c) = \mu(E_n) + \mu(D_n)$$

oBdA: $E_n, D_n \subseteq C_n$. Nun ist

$$\mu(D_n) = \mu(C_n) - \mu(D_n) = \mu(C_n \subseteq D_n)$$

Über

$$D_n \supseteq A \cap C_n \wedge F_n := C_n \setminus E_n \subseteq A \cap C_n$$
$$\mu(D_n \setminus F_n) = \mu(D_n) - \mu(F_n) = 0$$
$$F_n \subseteq A \cap C_n \subseteq F_n \cup (D_n \setminus F_n)$$

erhalten wir

$$\bigcup_{n\in\mathbb{N}} F_n \subseteq A \subseteq \bigcup_{n\in\mathbb{N}} F_n \cup \bigcup_{n\in\mathbb{N}} (D_n \setminus F_n)$$

Wir betrachten

$$\mu\left(\bigcup_{n\in\mathbb{N}}(D_n\setminus F_n)\right)\leq \sum_{n\in\mathbb{N}}\mu(D_n\setminus F_n)=0$$

Nun können wir A schreiben als

$$A = F \cup N, F \in \mathfrak{R}_{\sigma}, N \subseteq M \in \mathfrak{R}_{\sigma} : \mu(M) = 0$$

Definition 1.2.42. Ein Maßraum $(\Omega, \mathfrak{S}, \mu)$ heißt vollständig, wenn

$$A \in \mathfrak{S}, \mu(A) = 0, B \subseteq A \Rightarrow B \in \mathfrak{S}$$

Definition 1.2.43. Sei $(\Omega, \mathfrak{S}, \mu)$ Maßraum. Mit

$$\overline{\mathfrak{S}} := \{ A \cup N, A \in \mathfrak{S}, \exists M \in \mathfrak{S} : N \subseteq M, \mu(B) = 0 \}$$

und

$$\overline{\mu}(A \cup N) = \mu(A)$$

heißt der vollständige Maßraum $(\Omega, \overline{\mathfrak{S}}, \overline{\mu})$ die Vervollständigung von $(\Omega, \mathfrak{S}, \mu)$.

Satz 1.2.44. Ist $\mu*$ das von einem Ma β μ auf dem Ring \Re erzeugte äußere Ma β , so ist ein $A \subseteq \Omega$ messbar genau dann, wenn

$$\forall B \in \mathfrak{R} : (\mu^*(B) =) \mu(B) = \mu^*(B \cap A) + \mu^*(B \setminus A).$$

Ist zusätzlich $\mu(\Omega) < \infty \ (\mu^*(\Omega) < \infty)$, dann ist A messbar, wenn

$$\mu(\Omega) = \mu^*(A) + \mu^*(A^c).$$

Beweis. Eine Richtung ist klar.

Für die andere sei $C \subseteq \Omega$.

Z:

$$\mu^*(C) = \mu^*(C \cap A) + \mu^*(C \setminus A),$$

also nur die Richtung \geq , \leq wird durch die Subadditivität schon garantiert. Sei nun (B_n) eine Überdeckung von $C, C \subseteq \bigcup_{n \in \mathbb{N}} B_n$. Nun gilt:

$$\sum_{n\in\mathbb{N}}\mu(B_n)=\sum_{n\in\mathbb{N}}\mu^*(B_n\cap A)+\sum_{n\in\mathbb{N}}\mu^*(B_n\setminus A)\geq\mu^*(C\cap A)+\mu^*(C\setminus A)$$

Durch Infimumbildung ergibt sich die Behauptung.

Sei nun $\mu(\Omega) < \infty$. Sei $E \in \mathfrak{R}$, dann ist

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

$$\mu^*(A^c) = \mu^*(A^c \cap E) + \mu^*(A^c \cap E^c)$$

und somit

$$\mu(\Omega) = \mu^*(A) + \mu^*(A^c) = \mu^*(A \cap E) + \mu^*(A \cap E^c) + \mu^*(A^c \cap E) + \mu^*(A^c \cap E^c) \ge \mu(E) + \mu(E^c) = \mu(\Omega)$$

Damit folgt statt \geq Gleichheit.

1.2.6 Maße auf $(\mathbb{R},\mathfrak{B})$

Die Frage, die sich stellt ist: Ist μ^* auf \mathbb{R} frei definiert, wann gilt $\mathfrak{B} \subseteq \mathfrak{M}_{\mu^*}$?

Definition 1.2.45. Seien $A, B \in \mathbb{R}$. Dann ist der Abstand

$$d(A, B) := \inf\{|x - y|, x \in A, y \in B\}.$$

Ein äußeres Maß μ^* heißt arithmetisch, wenn

$$\forall A, B \in \mathbb{R} : d(A, B) > 0 \Rightarrow \mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$$

Satz 1.2.46 (Satz von Carathéodory). $\mathfrak{B} \subseteq \mathfrak{M}_{\mu^*}$ genau dann, wenn μ^* arithmetisch ist.

Beweis. Dieser Satz erfordert einige Trickserei und wird hier nicht bewiesen.

1.2.7 Maße auf $(\mathbb{R}, \mathfrak{B})$, zweiter Anlauf

Im folgenden ist immer $\mathfrak{T} := \{(a, b], a \leq b, a, b \in \mathbb{R}\}.$

Satz 1.2.47. μ ist genau dann endliches Maß auf \mathfrak{T} , wenn

$$\forall x \in \mathbb{R} \exists \delta(x) > 0 : \mu((x - \delta(x), x]) < \infty$$

Beweis. In der Übung.

Definition 1.2.48. μ auf $(\mathbb{R}, \mathfrak{B})$ heißt Lebesgue-Stieltjes Ma β , oder lokalendlich, wenn jede beschränkte Borelmenge endliches Ma β hat.

Bemerkung. Dazu muss man ein Maß finden, dass für alle $a < b \mu((a, b])$ festlegt. Dies ist nicht ganz frei möglich, die Additivität muss erfüllt werden, also

$$\mu((a,c]) = \mu((a,b]) + \mu((b,c]).$$

Wir beginnen dazu mit einem Spezialfall, dass $\mu(\mathbb{R}) < \infty$:

Beispiel 1.2.7.1. Sei

$$F(x) = \mu((-\infty, x]) < \infty$$

dann ist für a < b:

$$(-\infty, a] \cup (a, b] = (-\infty, b]$$
$$\mu((-\infty, a]) + \mu((a, b]) = \mu((-\infty, b])$$
$$\Rightarrow \mu((a, b]) = F(b) - F(a)$$

Definition 1.2.49. $F: \mathbb{R} \to \mathbb{R}$ heißt Verteilungsfunktion von μ , wenn $\mu((a,b]) = F(b) - F(a)$.

Bemerkung.

$$F(x) = \mu((0, x]), x \ge 0,$$

damit:

$$\mu((a,b]) = F(b) - F(a)$$

und F(0) = 0.

für

$$\mu((x,0]) = F(0) - F(x)$$

 $\Rightarrow F(x) = -\mu((x,0]),$

eine Verteilungsfunktion muss also die Form

$$F(x) = \begin{cases} \mu((0,x]) : x \ge 0 \\ -\mu((x,0]) : x < 0 \end{cases}$$

dies funktioniert, siehe Aufgaben ($\mathbf{Z}\mu((a,b]) = F(b) - F(a)$). Dies fassen wir im folgenden Satz zusammen:

Satz 1.2.50. Zu jeder Lebesgue-Stieltjes Maßfunktion gibt es eine Verteilungsfunktion. Diese ist bis auf eine additive Konstante eindeutig bestimmt.

1.2.8 Ergänzungen zu bedingten Wahrscheinlichkeiten

Satz 1.2.51 (Satz von der vollständigen Wahrscheinlichkeit). Sei $(\Omega, \mathfrak{S}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Sei dann $(B_i, i \in I)$ eine Partition, I höchstens abzählbar mit $B_i \in \mathfrak{S}, \mathbb{P}(B_i) > 0, \sum_{i \in I} B_i = \Omega$ und $A \in \mathfrak{S}$. Dann ist

$$\mathbb{P}(A) = \sum_{i \in I} \mathbb{P}(B_i) \mathbb{P}(A|B_i).$$

Beweis. Es gilt:

$$\mathbb{P}(A) = \mathbb{P}(A \cap \Omega) = \mathbb{P}\left(A \cap \bigcup_{i \in I} B_i\right) = \mathbb{P}\left(\bigcup_{i \in I} A \cap B_i\right) = \sum_{i \in I} \mathbb{P}(A \cap B_i) = \sum_{i \in I} \mathbb{P}(B_i)\mathbb{P}(A|B_i)$$

Satz 1.2.52 (Satz von Bayes). Sei $(\Omega, \mathfrak{S}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Sei wieder $(B_i, i \in I)$ eine Partition, I höchstens abzählbar mit $B_i \in \mathfrak{S}, \mathbb{P}(B_i) > 0, \sum_{i \in I} B_i = \Omega$ und $A \in \mathfrak{S}$. Zusätzlich zu vorher gelte $\mathbb{P}(A) > 0$. Dann gilt:

$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A \cap B_i)}{\mathbb{P}(A)} = \frac{\mathbb{P}(B_i)\mathbb{P}(A|B_i)}{\mathbb{P}(A)} = \frac{\mathbb{P}(B_i)\mathbb{P}(A|B_i)}{\sum_{i \in I} \mathbb{P}(B_i)\mathbb{P}(A|B_j)}$$

Definition 1.2.53. Die $\mathbb{P}(B_i)$ in den Sätzen vorher heißen a-priori Wahrscheinlichkeiten, $\mathbb{P}(B_i|A)$ die a-posteriori Wahrscheinlichkeiten.

Beispiel 1.2.8.1. Es gibt vier Blutgruppen, A, B, AB, 0. Die Blutgruppe der Frau ist A, die des Sohnes ist 0. Wie ist die Wahrscheinlichkeit für die Blutgruppe des Mannes?

Mit zusätzlichem Wissen über Genetik, kann man über die Wahrscheinlichkeiten p_a, p_b, p_0 für das Auftreten der Allele a, b, 0 die Wahrscheinlichkeit der Blutgruppen ausrechnen. In der Bevölkerung haben Blutgruppe 0 40% der Bevölkerung, Blutgruppe A 47%, B 9% und AB 4%. Damit erhalten wir:

$$0.4 = p_0^2$$

$$0.47 = p_a^2 + 2p_a p_0$$

$$0.09 = p_b^2 + 2p_b p_0$$

$$0.04 = 2p_a p_b$$

Eine gute Approximation ist

$$p_a \approx \frac{9}{30}, \quad p_b \approx \frac{2}{30}, \quad p_0 \approx \frac{19}{30}.$$

Damit erhält man:

$$\mathbb{P}(\text{Sohn } 0|0) = 1$$

$$\mathbb{P}(\text{Sohn } 0|A) = \frac{1}{2}$$

$$\mathbb{P}(\text{Sohn } 0|B) = \frac{1}{2}$$

und

$$\mathbb{P}(0|\text{Sohn }0) = \frac{p_0^2}{p_0^2 + p_a p_0 + p_b p_0} = p_0,$$

genauso für A und B, also ist die Wahrscheinlichkeit für Blutgruppe 0 am größten.

1.2.9 Eigenschaften von Verteilungsfunktionen

Satz 1.2.54. Sei $F : \mathbb{R} \to \mathbb{R}$ eine Verteilungsfunktion. Dann gilt:

1. Monotonie:

$$a \le b \Rightarrow F(a) \le F(b)$$

2. Rechtsstetigkeit:

$$b_n \downarrow b \Rightarrow F(b_n) \downarrow F(b)$$

Beweis.

- 1. trivial
- 2. Sei $a \leq b$, $b_n \downarrow b$, also

$$(a,b_n]\downarrow(a,b]$$

und über die Stetigkeit von oben von Maßen

$$\mu((a,b_n]) \to \mu((a,b])$$

$$\Rightarrow F(b_n) - F(a) \to F(b) - F(a)$$

Satz 1.2.55. Sei $F: \mathbb{R} \to \mathbb{R}$ nichtfallend und rechtsstetig. Dann ist durch

$$\mu_F((A, b]) := F(b) - F(a)$$

ein Maß auf $\mathfrak{T} = \{(a, b], a \leq b, a, b, \in \mathbb{R}\}$ definiert.

Beweis.

1. μ_F ist Inhalt:

$$\mu_F(\emptyset) = \mu_F((a, a]) = F(a) - F(a) = 0$$

und

$$\mu_F((a,b]) \ge 0$$

folgt sofort. Für die Additivität benutzen wir, dass $\mathfrak T$ ein Semiring im engeren Sinn ist. Ist außerdem die Vereinigung zweier Intervalle wieder ein Intervall, so hat die Vereinigung die Form:

$$(a,b] \cup (b,c] = (a,c],$$

also

$$\mu_F((a,b]) + \mu_F((b,c]) = F(b) - F(a) + F(c) - F(b) = F(c) - F(a) = \mu_F((a,c]).$$

2. Sigmaadditivität:

Sei also

$$(a,b] = \sum_{n \in \mathbb{N}} (a_n, b_n].$$

Dann wissen wir schon, dass, da μ_F Inhalt ist, gilt:

$$\mu_F((a,b]) \ge \sum_{n \in \mathbb{N}} \mu_F((a_n,b_n]).$$

Z:

$$\mu_F((a,b]) \le \sum_{n \in \mathbb{N}} \mu_F((a_n, b_n])$$

Sei a' > a, $F(a') \le F(a) + \epsilon$ und $b'_n > b_n$, $F(b'_n) \le F(b_n) + \frac{\epsilon}{2^n}$. Dann ist

$$[a',b]\subseteq (a,b]=\bigcup_{n\in\mathbb{N}}(a_n,b_n]\subseteq\bigcup_{n\in\mathbb{N}}(a_n,b'_n)$$

Nach dem Satz von Heine-Borel gibt es also eine endliche Teilüberdeckung, also

$$\exists N \in \mathbb{N} : [a',b] \subseteq \bigcup_{n=1}^N (a_n,b'_n)$$

$$\Rightarrow (a',b] \subseteq \bigcup_{n=1}^{N} (a_n,b'_n].$$

Nun haben wir eine endliche Vereinigung und wir erhalten aus der endlichen Subadditivität des Inhalts μ_F :

$$\mu_F((a',b]) \le \sum_{n=1}^N \mu_F((a_n,b'_n]) \le \sum_{n=1}^\infty \mu_F((a_n,b'_n])$$

$$F(b) - F(a) - \epsilon \le F(b) - F(a') \le \sum_{n \in \mathbb{N}} (F(b'_n) - F(a_n))$$

$$\Rightarrow F(b) - F(a) - \epsilon \le \sum_{n \in \mathbb{N}} (F(b_n) + \frac{\epsilon}{2^n} - F(a_n)) = \sum_{n \in \mathbb{N}} (F(b_n) - F(a_n)) + \epsilon$$

$$\Rightarrow F(b) - F(a) \le \sum_{n \in \mathbb{N}} (F(b_n) - F(a_n)) + 2\epsilon,$$

da ϵ beliebig, erhalten wir die Behauptung.

Bemerkung. Für Wahrscheinlichkeitsmaße μ hat die Verteilungsfunktion

$$F(x) := \mu((-\infty, x])$$

die zusätzlichen Eigenschaften:

•

$$0 \le F \le 1$$

•

$$\lim_{x \to -\infty} F(x) = 0$$

•

$$\lim_{x \to +\infty} F(X) = 1.$$

Eine Verteilungsfunktion, die das erfüllt, heißt Verteilungsfunktion im engeren Sinn.

1.2.10 Maße von Mengen mit Verteilungsfunktionen

Ab diesem Kapitel werden wir offene Intervallgrenzen auch mit eckigen Klammern schreiben. Wir wissen schon:

$$\mu(]a,b]) = F(b) - F(a).$$

Was passiert, $f \ddot{u} r \mu([a,b]), \mu([a,b]), \mu([a,b])$?

$$\mu([a,b]) = \mu(\bigcap_{n \in \mathbb{N}}]a - \frac{1}{n}, b]) = \lim_{n \to \infty} \mu(F(b) - F(a - \frac{1}{n})) = F(b) - F(a - 0)$$

$$\mu(]a,b[) = \mu(\bigcup_{n \in \mathbb{N}}]a,b-\frac{1}{n}]) = \lim_{n \to \infty} (F(b-\frac{1}{n}) - F(a)) = F(b-0) - F(a)$$

$$\mu([a,b[) = F(b-0) - F(a-0))$$

Und damit auch

$$\mu(\lbrace x \rbrace) = \mu([x, x]) = F(x) - F(x - 0) (= \text{Sprungh\"ohe von } F \text{ in } x)$$

Satz 1.2.56. Jedes (sigma-)endliche Ma β μ auf (Ω, \mathfrak{S}) lässt sich darstellen als Summe eines stetigen Ma β es μ_c und eines diskreten Ma β es μ_d , wobei

 \bullet μ_d diskret, wenn es eine Menge D gib, die höchstens abzählbar ist, sodass

$$\mu(D^c) = 0.$$

• μ_c stetig, wenn

$$\forall w \in \Omega : \mu_c(\{w\}) = 0.$$

Nämlich

$$\mu(A) = \mu(A \cap D^c) + \mu(A \cap D) = 0 + \mu(\bigcup_{x \in A \cap D} \{x\}) = \sum_{x \in A \cap D} \mu(\{x\}) = \sum_{x \in A} \mu(\{x\})$$

Beweis. In der Übung.

Beispiel 1.2.10.1. Sei μ ein endliches Lebesgue-Stieltjes Maß auf $(\mathbb{R}, \mathfrak{B})$. Für die Verteilungsfunktion $F(x) = \mu(]-\infty, x[)$ kann man nun, da μ dargestellt werden kann als

$$\mu = \mu_c + \mu_d$$

auch zerlegen in

$$F = F_c + F_d, F_d(x) = \sum_{y \le x} \mu_d(\{y\}).$$

Wir erhalten den folgenden Satz:

Satz 1.2.57. Jede diskrete Verteilungsfunktion (Verteilungsfunktion eines diskreten, endlichen $Ma\beta es$) auf \mathbb{R} lässt sich anschreiben als

$$F(x) = \sum_{y \le x} p(y).$$

Ist $\sum_{y \in \mathbb{R}} p(y) = 1$, so nennen wir p Wahrscheinlichkeitsfunktion. Umgekehrt gibt es zu jeder Funktion p mit $p(y) \geq 0$ eine diskrete Verteilungsfunktion.

Definition 1.2.58. Ein Wahrscheinlichkeitsmaß \mathbb{P} auf $(\mathbb{R}, \mathfrak{B})$ heißt Verteilung.

Satz 1.2.59. Ist eine Verteilungsfunktion F(x) (stückweise) stetig differenzierbar, $f(x) := F'(x) \ge 0$, so ist

$$\mu_F(]a,b]) = \int_a^b f(x)dx.$$

f(x) heißt dann Dichtefunktion.

Bemerkung. Ist $\mu_F(\mathbb{R}) = 1$, so ist

$$1 = \int_{-\infty}^{+\infty} f(x)dx.$$

Bemerkung. Wir werden anstatt des Riemann-Integrals bald ein Lebesgue-Integral schreiben.

Beispiel 1.2.10.2 (Standardnormalverteilung).

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

Aus der Analysis ist schon bekannt

$$\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi},$$

also

$$\int_{-\infty}^{+\infty} \varphi(x) dx = 1.$$

Wir erhalten die Verteilungsfunktion

$$\Phi(x) := \int_{-\infty}^{x} \varphi(x) dx.$$

Dann ist

$$\mathbb{P}_{\Phi}([a,b]) = \Phi(b) - \Phi(a).$$

Zum Beispiel also

$$\mathbb{P}_{\Phi}(]-1,2]) = \Phi(2) - \Phi(-1) = 0.9772 - 0.1587 = 0.8185,$$

$$\Phi(1.67) = 0.9525$$

Beispiel 1.2.10.3. Allgemeiner nimmt man

$$\mathcal{N}(\mu, \sigma^2, x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

1.2.11 Mehrdimensionale Lebesgue-Stieltjes Maße und Verteilungsfunktionen

Der hier verwendete Maßraum ist $(\mathbb{R}^d, \mathfrak{B}_d)$ mit

$$\mathfrak{B}_d := \mathfrak{A}_{\sigma} \left(\{ [a, b] : a, b \in \mathbb{R}, a \leq b \} \right),$$

wobei die Ungleichung $a \leq b$ komponentenweise zu verstehen ist, also

$$a < b : \Leftrightarrow \forall i \in \{1, ..., d\} : a_i < b_i$$

und

$$[a, b] :=]a_1, b_1] \times [a_2, b_2] \times ... \times [a_d, b_d]$$

Definition 1.2.60. Sei μ ein Lebesgue-Stieltjes Ma β auf $(\mathbb{R}^d, \mathfrak{B}_d)$, wenn für beschränkte Mengen $A \in \mathfrak{B}_d$

$$\mu(a) < \infty$$
.

Bemerkung. Sei μ ein endliches Maß. Dann können wir die Verteilungsfunktion wieder anschreiben als

$$F(x) = \mu(] - \infty, x]) = \mu(] - \infty, x_1]) \times ... \times \mu(] - \infty, x_d]).$$

Genügt dies, um μ festzulegen?

Beispiel 1.2.11.1. Für d=2 erhalten wir:

$$\mu([a,b]) = F(b_1,b_2) - F(a_1,b_2) - F(b_1,a_2) + F(a_1,a_1).$$

Wir können den Satz von oben also zmd. für den 2-dimensionalen Raum erweitern:

Satz 1.2.61. F ist eine Verteilungsfunktion von einem Lebesgue-Stieltjes Maβ μ, wenn

• F rechtsstetiq ist, also

$$x_n \downarrow x \Rightarrow F(x_n) \downarrow F(x)$$

• F monoton ist, also

$$a \le b \Rightarrow F(b_1, b_2) - F(a_1, b_2) - F(b_1, a_2) + F(a_1, a_2) \ge 0$$

Beweis. Analog zum 1-dimensionalen Fall.

Beispiel 1.2.11.2. Für $d \geq 2$ erhalten wir:

$$\mu(]a,b]) = \mu(]a_1,b_1] \times ... \times]a_d,b_d]) = \sum_{e \in \{0,1\}^d} F(ae + b(1-e)),$$

wobei

$$ae + b(1 - e) = (a_1e_1 + b_1(1 - e_1), ..., a_de_d + b_d(1 - e_d)).$$

Definition 1.2.62 (Differenzoperatoren).

$$\Delta_i(a_i,b_i):\mathbb{R}^{\mathbb{R}^d}\to\mathbb{R}^{\mathbb{R}^d};$$

$$f \mapsto \Delta_i(a,b)f(x_1,...,x_d) := f(x_1,...,x_{i-1},b_i,x_{i+1},...x_d) - f(x_1,...,x_{i-1},a_i,x_{i+1},...,x_d)$$

Beispiel 1.2.11.3. d = 2. $f(x_1, x_2) = x_1 x_2$.

$$\Delta_1(4,17)f(x_1,x_2) = 17x_2 - 4x_2 - 13x_2 - 13x_2$$

bzw

$$\Delta_1(a_1, b_1) f(x_1, x_2) = (b_1 - a_1) x_2$$

$$\Delta_1(a_1, b_1) \Delta_2(a_2, b_2) f(x_1, x_2) = (b_1 - a_1) b_2 - (b_1 - a_1) a_2 = (b_1 - a_1) (b_2 - a_2)$$

Bemerkung. Damit ist (für $d \in \mathbb{N}$)

$$\mu_F(a,b) = \Delta_1(a_1,b_1)\Delta_2(a_2,b_2)...\Delta_d(a_d,b_d)F$$

Und

$$\Delta_i(a_i, b_i) F(x_1, ..., x_d) = \int_{a_i}^{b_i} \frac{\partial}{\partial x_i} F(x_1, ..., x_d) dx_i$$

Beispiel 1.2.11.4. Endliche Maße:

$$F(x) = \mu(]-\infty,x])$$

Wir betrachten den Spezialfall für d=2. Dann ist

$$\mu([0,x]) = F(x_1,x_2) - F(x_1,0) - F(0,x_2) + F(0,0).$$

Setze $F(x_1,0) = F(0,x_2) = 0$. Dann ist für x > 0

$$F(x_1, x_2) = \mu(]0, x_1] \times]0, x_2])$$

und für $x_1 \ge 0, x_2 < 0$

$$\mu([0, x_1] \times [x_2, 0]) = F(x_1, 0) - F(0, 0) - F(x_1, x_2) + F(0, x_2) = -F(x_1, x_2).$$

Dies lässt sich quadrantenweise durchführen.

Allgemein:

$$F(x) = \mu(|\min(x, 0), \max(x, 0)|) \operatorname{sgn}(x),$$

wobei das Minimum und Maximum koordinatenweise zu verstehen ist und

$$\operatorname{sgn}(x) = \prod_{i=1}^{n} \operatorname{sgn}(x_i)$$

Definition 1.2.63. Das d-dimensionale Lebesguema β λ_d ist

$$\lambda_d(]a,b]) = \prod_{i=1}^d (b_i - a_i)$$

und

$$F(x_1, ..., x_d) = x_1 \cdots x_d.$$

Mit Hilfe des Fortsetzungssatzes erhalten wir das Maß λ_d auf \mathfrak{B}_d .

Die λ_d^* -messbaren Mengen werden mit \mathfrak{L}_d (d-dimensionale Lebesguemengen) bezeichnet, wobei

$$A \in \mathfrak{L}_d \Leftrightarrow A = B \cup N, B \in \mathfrak{B}_d, \exists M \in \mathfrak{B}_d : N \subseteq M, \lambda_d(M) = 0$$

Satz 1.2.64. Sei λ_d das Lebesguemaß auf \mathfrak{B}_d . Dann gilt:

• λ_d ist translations invariant:

$$A \oplus c := \{x + c : x \in A\},$$

$$A \in \mathfrak{L}_d, c \in \mathbb{R}^d \Rightarrow A \oplus c \in \mathfrak{L}_d, \lambda_d(A \oplus c) = \lambda_d(A)$$

Beweis.

• Wir zeigen zunächst

$$A \in \mathfrak{L}_d, c \in \mathbb{R}^d \Rightarrow A \oplus c \in \mathfrak{L}_d.$$

Sei A =]a, b] und $\mathfrak{S} := \{A \in \mathfrak{B}_d : A \oplus c \in \mathfrak{B}_d\}$. \mathfrak{S} ist Sigmaalgebra, damit gilt die Behauptung. $\lambda_d(A \oplus c) = \lambda_d(A)$ für $A \in \mathfrak{B}$ ist klar, da sie auf dem Semiring gilt, damit auch auf den Borelmengen.

Satz 1.2.65. Wenn μ auf $(\mathbb{R}^d, \mathfrak{B}_d)$ ein translationsinvariantes Lebesgue-Stieltjes Ma β ist, dann ailt

$$\mu = c\lambda_d, c \geq 0.$$

Beweis. Wir führen den Beweis nur im Fall d = 1, in höheren Dimensionen funktioniert der Beweis analog.

Es gilt mit $c := \mu(]0,1]$)

$$\mu(]a,b]) = \mu(]0,b-a])$$

$$\mu(]0,1]) = \mu\left(\bigcup_{i=1}^{n}]\frac{i-1}{n},\frac{i}{n}]\right) = \sum_{i=1}^{n} \mu(]\frac{i-1}{n},\frac{i}{n}]) = n\mu(]0,\frac{1}{n}])$$

$$\Rightarrow \mu(]0,\frac{1}{n}]) = \frac{c}{n}$$

und damit schließlich

$$\mu(]0, \frac{m}{n}]) = \mu\left(\bigcup_{i=1}^{m}]\frac{i-1}{n}, \frac{i}{n}]\right) = m\mu(]0, \frac{1}{n}]) = c\frac{m}{n}.$$

Für $x \in \mathbb{Q}^+$ folgt dann $\mu(]0,x]) = cx$. Für $x \in \mathbb{R}^+$ wähle $x_n \in \mathbb{Q}^+$ mit $x_n \downarrow x$, dann gilt

$$\mu(]0,x]) = \mu\left(\bigcap_{n \in \mathbb{N}}]0,x_n]\right) = \lim_{n \to \infty} \mu(]0,x_n]) = \lim_{n \to \infty} cx_n = cx$$

also die Behauptung

$$\mu(|a,b| = c(b-a) = c\lambda(|a,b|).$$

Definition 1.2.66. Sei $\Omega = [0, 1]$, dann ist

$$x \sim y :\Leftrightarrow y - x \in \mathbb{Q}$$

eine Äquivalenzrelation.

Dann zerlegen wir Ω in Äquivalenzklassen und bilden mithilfe des Auswahlaxioms eine Menge V, die aus jeder Äquivalenzklasse genau einen Vertreter wählt. Eine solche Menge heißt Vitali-Menge und ist nicht Lebesgue-Messbar.

Beweis. Wäre V Lebesgue messbar, so hätte sie ein Lebesgue-Maß. Sei $q \in \mathbb{Q} \cap [-1, 1]$. Sind nun $q_1 \neq q_2$ zwei solche rationalen Zahlen, dann ist

$$(V \oplus q_1) \cap (V \oplus q_2) = \varnothing.$$

Nämlich: Wäre dies nicht so, dann würde für ein $y \in (V \oplus q_1) \cap (V \oplus q_2)$ gelten

$$x_1 := y - q_1 \in V \text{ und } x_2 := y - q_2 \in V$$

$$\Rightarrow x_2 - x_1 = q_1 - q_2 \in \mathbb{Q} \Rightarrow x_1 \sim x_2, x_1 \neq x_2 \notin \mathbb{Q}$$

Wäre nun $V \in \mathfrak{L}$, dann auch

$$\bigcup_{q\in\mathbb{Q}\cap[-1,1]}V\oplus q=W,$$

also

$$\lambda(W) = \sum_{q \in \mathbb{Q} \cap [-1,1]} \lambda(V \oplus q)$$

mit

$$[0,1]\subseteq W\subseteq [-1,2]$$

folgt

$$1 \le \lambda(W) \le 3$$
,

nun gilt also

$$\lambda(V) = 0 \Rightarrow \lambda(W) = 0$$

$$\lambda(V) > 0 \Rightarrow \lambda(W) = \infty$$

Bemerkung. Übliche Schlamperei:

$$\mathbb{R}^n \times \mathbb{R}^m = \mathbb{R}^{m+n},$$

und

$$\mathfrak{B}_n \times \mathfrak{B}_m = \mathfrak{B}_{n+m}$$

Satz 1.2.67. Seien Ω_1, Ω_2 Mengen und $\mathfrak{C}_1, \mathfrak{C}_2$ Mengensysteme über Ω_1, Ω_2 . Dann ist

$$\mathfrak{A}_{\sigma}(\mathfrak{C}_1) \times \mathfrak{A}_{\sigma}(\mathfrak{C}_2) = \mathfrak{A}_{\sigma}(\mathfrak{C}_1 \otimes \mathfrak{C}_2),$$

wobei

$$\mathfrak{C}_1 \otimes \mathfrak{C}_2 := \{A_1 \times A_2 : A_1 \in \mathfrak{C}_1, A_2 \in \mathfrak{C}_2\}$$

und

$$\mathfrak{A}_{\sigma}(\mathfrak{C}_1) \times \mathfrak{A}_{\sigma}(\mathfrak{C}_2) := \mathfrak{A}_{\sigma}(\mathfrak{A}_{\sigma}(\mathfrak{C}_1 \otimes \mathfrak{C}_2))$$

Beweis. Kann man mit dem Prinzip der guten Mengen machen, vielleicht in der Übung.

1.2.12 Approximationssätze und Regularität

Definition 1.2.68. Sei μ ein Inhalt auf $(\mathbb{R}^d, \mathfrak{B}_d)$ bzw $(\mathbb{R}^d, \mathfrak{S})$ mit $\mathfrak{B}_d \subseteq \mathfrak{S}$, dann heißt $A \in \mathfrak{S}$ regulär von oben, wenn

$$\mu(A) = \inf{\{\mu(U) : A \subseteq U, U \text{ offen}\}}.$$

 μ heißt dann regulär von oben, wenn alle $A \in \mathfrak{S}$ regulär von oben.

Definition 1.2.69. Sei μ ein Inhalt auf $(\mathbb{R}^d, \mathfrak{B}_d)$ bzw $(\mathbb{R}^d, \mathfrak{S})$ mit $\mathfrak{B}_d \subseteq \mathfrak{S}$, dann heißt $A \in \mathfrak{S}$ regulär von unten, wenn

$$\mu(A) = \sup \{ \mu(K) : K \subseteq A, K \ kompakt \}.$$

 μ heißt dann regulär von unten, wenn alle $A \in \mathfrak{S}$ regulär von oben.

Definition 1.2.70. Wenn μ bzw $A \in \mathfrak{S}$ sowohl regulär von oben als auch regulär von unten sind, dann heißen sie regulär.

Satz 1.2.71. Ein regulärer Inhalt ist ein Maß.

Beweis. ist eh klar.

Satz 1.2.72. Sei μ ein Lebesgue-Stieltjes Ma β auf $(\mathbb{R}^d, \mathfrak{B}_d)$, dann ist μ regulär von oben.

Satz 1.2.73. Ist μ ein sigmaendliches Maß auf $(\mathbb{R}^d, \mathfrak{B}_d)$, so ist μ regulär von unten.

Zusammenfassend ergibt das dann:

Satz 1.2.74. Jedes Lebesgue-Stieltjes Maß ist regulär.

Beweis (1. Satz). Wir schränken μ auf den Semiring $\mathfrak{T} = \{ [a,b], a \leq b, a,b \in \mathbb{R}^d \}$ ein. Dann erzeugt $\mu|_{\mathfrak{T}}$ ein äußeres Maß μ^* . Mithilfe der Eindeutigkeit der Fortsetzung gilt

$$\forall A \in \mathfrak{B} : \mu^*(A) = \mu(A).$$

also

$$\mu(A) = \mu^*(A) = \inf \left\{ \sum_{n \in \mathbb{N}} \mu(]a_n, b_n] \right\}, A \subseteq \bigcup_{n \in \mathbb{N}}]a_n, b_n] \right\}.$$

Im Fall $\mu(A) = \infty$ sind wir fertig. Wir betrachten also $\mu(A) < \infty$. Dann

$$\exists a_n, b_n, n \in \mathbb{N} : A \subseteq \bigcup_{n \in \mathbb{N}}]a_n, b_n] \text{ und } \sum_{n \in \mathbb{N}} \mu(]a_n, b_n]) \le \mu(A) + \epsilon \quad \forall \epsilon > 0$$

Wähle nun $b'_n > b_n$ sodass

$$\mu(]a_n, b'_n[) \le \mu(]a_n, b_n[) + \frac{\epsilon}{2^n}$$

Dann $(U := \bigcup_{n \in \mathbb{N}}]a_n, b'_n[)$

$$\mu(U) = \mu\left(\bigcup_{n \in \mathbb{N}} |a_n, b_n'|\right) \le \sum_{n \in \mathbb{N}} \mu(|a_n, b_n'|) \le \sum_{n \in \mathbb{N}} \mu(|a_n, b_n|) + \epsilon$$

Satz 1.2.75. Ein endliches/sigmaendliches Maß μ auf $(\mathbb{R}^d, \mathfrak{B}_d)$ ist regulär von unten.

Beweis. Auch hier begnügen wir uns mit d=1, der allgemeine Fall läuft genau so, ist nur mehr Schreibarbeit.

Zunächst ist μ endlich und damit regulär von oben. Sei $A \in \mathfrak{B}$, dann gibt es ein offenes U mit $A^c \subseteq U, \mu(U) \leq \mu(A^c) + \epsilon$. Bekannterweise ist dann U^c abgeschlossen und

$$\mu(U^c) = \mu(\Omega) - \mu(U) > \mu(\Omega) - \mu(A^c) - \epsilon = \mu(A) - \epsilon,$$

wir können also A durch eine abgeschlossene Menge approximieren. Es fehlt also noch der Schritt der Beschränktheit. $K_N := U^c \cap [-N, N]$ ist nun also kompakt und monoton steigend, $K_N \subseteq K_{N+1}$ und $\bigcup_{N \in \mathbb{N}} K_N = U^c$. Weiters ist

$$\mu(U^c) = \mu\left(\bigcup_{N \in \mathbb{N}} K_N\right) = \lim_{n \to \infty} \mu(K_N)$$

$$\Rightarrow \exists N \in \mathbb{N} : \mu(K_N) \ge \mu(A) - 2\epsilon$$

damit ist für endliche Maße die Regularität von unten gezeigt. Sei nun μ sigmaendlich, dann

$$\exists (B_n)_{n\in\mathbb{N}}\in\mathfrak{B}, \forall n\in\mathbb{N}: \mu(B_n)<\infty$$

mit oBdA $B_n\subseteq B_{n+1}$. (oBdA weil wir ja jede Mengenfolge monoton machen können) Für $A\in\mathfrak{B}$ gilt dann

$$A = A \cap \Omega = A \cap \bigcup_{n \in \mathbb{N}} B_n = \bigcup_{n \in \mathbb{N}} A \cap B_n,$$

also ist

$$\mu(A) = \lim_{n \to \infty} \mu(B_n \cap A).$$

Wähle nun $M < \mu(A)$. Also

$$\exists n \in N : \mu(B_n \cap A) > M.$$

Wir definieren das (endliche) Maß

$$\mu_n(A) := \mu(B_n \cap A).$$

Damit gibt es ein kompaktes $K \subseteq A$ mit $\mu_n(K) > M$. Damit folgt

$$\mu(K) \ge \mu(K \cap B_n) > M.$$

 \Box .

Bemerkung. Eine Funktion $F: \mathbb{R}^d \to \mathbb{R}$ heißt Verteilungsfunktion im engeren Sinn, wenn es ein Wahrscheinlichkeitsmaß \mathbb{P} auf $(\mathbb{R}^d, \mathfrak{B}_d)$ mit

$$F(x) = \mathbb{P}(]-\infty,x]) \quad (=\mathbb{P}(]-\infty,x_1]\times...\times]-\infty,x_d])$$

gibt und F rechtsstetig ist, also

$$\Delta_1(a_1, b_1)...\Delta_d(a_d, b_d)F \geq 0.$$

Zusätzlich muss ein solches F nichtfallend in jeder Argumentvariable $x_1, ..., x_d$ sein, also

$$\forall i = 1, ..., d : \lim_{x_i \to -\infty} F(x_1, ..., x_d) = 0$$

$$\lim_{\min(x_1,...,x_d)\to\infty} F(x_1,...,x_d) = 1$$

Kapitel 2

Das Lebesgue-Integral

Motivation für dieses Kapitel: Wir wollen einen neuen Integralbegriff auf Basis des Riemann-Integrals definieren,

$$\int f = \int_0^\infty \mu([f > x]) dx,$$

wobei f auf beliebigen Mengen definiert sein darf, also wenn μ Maß auf einem Messraum (Ω, \mathfrak{S}) , dann ist

$$f:\Omega\to\mathbb{R}$$

und $\mu([f>x])$ definiert sein soll, also $[f>x]\in\sigma,$ wobei

$$[f > x] := \{\omega \in \Omega : f(\omega) > x\}.$$

Definition 2.0.1. Seien $(\Omega_1, \mathfrak{S}_1)$, $(\Omega_2, \mathfrak{S}_2)$ zwei Messräume, dann heißt

$$f:\Omega_1\to\Omega_2$$

messbar bezüglich $(\Omega_1, \mathfrak{S}_1)$ und $(\Omega_2, \mathfrak{S}_2)$ (oder kürzer $\mathfrak{S}_1 - \mathfrak{S}_2$ -messbar), wenn

$$f^{-1}(\mathfrak{S}_2) \subseteq \mathfrak{S}_1$$

also wenn $\forall A \in \mathfrak{S}_2 : f^{-1}(A) \in \mathfrak{S}_1$. Für eine solche Funktion schreiben wir

$$f:(\Omega_1,\mathfrak{S}_1)\to(\Omega_2,\mathfrak{S}_2).$$

Eine Funktion

$$f:(\Omega,\mathfrak{S})\to(\mathbb{R},\mathfrak{B})$$

heißt dann &-messbar bzw

$$f: (\mathbb{R}^{d_1}, \mathfrak{S}_{d_1}) \to (\mathbb{R}^{d_2}, \mathfrak{B}_{d_2})$$

heißt Borelmessbar,

$$f::(\mathbb{R}^{d_1},\mathfrak{L}_{d_1})\to(\mathbb{R}^{d_2},\mathfrak{B}_{d_2})$$

heißt Lebesguemessbar.

Satz 2.0.2. Sei \mathfrak{C} ein Mengensystem über Ω_2 , das \mathfrak{S}_2 erzeugt, $\mathfrak{S}_2 = \mathfrak{A}_{\sigma}(\mathbb{C}, dann \ ist \ f : \Omega_1 \to \Omega_2 \mathfrak{S}_1 - \mathbb{S}_2$ -messbar genau dann, wenn

$$f^{-1}(\mathfrak{C}) \subset \mathfrak{S}_1$$

Beweis. $\mathfrak{A}_{\sigma}(f^{-1}(\mathfrak{C}) = f^{-1}(\mathfrak{A}_{\sigma}(\mathfrak{C}))$ wurde schon zu Beginn der Vorlesung gezeigt. Wegen

$$f^{-1}(\mathfrak{A}_{\sigma}(\mathfrak{C})) = f^{-1}(\mathfrak{S}_2),$$

sind wir an dieser Stelle schon fertig.

Bemerkung. Für $\mathfrak{S}_2 = \mathfrak{B}$ ist \mathfrak{C} z.B. die Menge der halboffenen Intervalle. Wir können aber auch $\mathfrak{C} = \{]-\infty,b],b\in\mathbb{R}\}$ oder $\mathfrak{C} = \{U\subseteq\mathbb{R},U \text{ offen}\}$ hernehmen. Damit können wir schon einige Sätze beweisen.

Satz 2.0.3. Sei $f: \mathbb{R} \to \mathbb{R}$, bzw $f: \mathbb{R}^d \to \mathbb{R}$, dann ist f Borelmessbar, wenn f

- monoton oder
- \bullet stetig

ist.

Beweis. trivial, mit Erzeugendensystem $\mathfrak{C} = \{U \subseteq \mathbb{R}, U \text{ offen}\}$ und dem Faktum, dass eine Funktion genau dann stetig ist, wenn das Bild offener Mengen wieder offen ist.

Satz 2.0.4. Ist

$$f_1:(\Omega_1,\mathfrak{S}_1)\to(\Omega_2,\mathfrak{S}_2)$$

und

$$f_2:(\Omega_2,\mathfrak{S}_2)\to(\Omega_3,\mathfrak{S}_3),$$

dann ist auch

$$f_2 \circ f_1 : (\Omega_1, \mathfrak{S}_1) \to (\Omega_3, \mathfrak{S}_3)$$

messbar.

Beweis. Sei $A \in \mathfrak{S}_3$, dann ist

$$(f_2 \circ f_1)^{-1}(A) = f_1^{-1}(f_2^{-1}(A)) \in \mathfrak{S}_1,$$

da $f_2^{-1}(A) \in \mathfrak{S}_2$.

 \Box .

Satz 2.0.5. Seien $(\Omega_1, \mathfrak{S}_1), (\Omega_2, \mathfrak{S}_2), (\Omega_3, \mathfrak{S}_3)$ Messräume. Wir bilden den Produktraum $(\Omega_2 \times \Omega_3, \mathfrak{S}_2 \times \mathfrak{S}_3)$. Dann ist

$$f: \Omega_1 \to \Omega_2 \times \Omega_3, f = (f_2, f_3)$$

genau dann

$$f: (\Omega_1, \mathfrak{S}_1) \to (\Omega_2 \times \Omega_3, \mathfrak{S}_2 \times \mathfrak{S}_3),$$

wenn

$$f_2:(\Omega_1,\mathfrak{S}_1)\to(\Omega_2,\mathfrak{S}_2)$$

und

$$f_3:(\Omega_1,\mathfrak{S}_1)\to(\Omega_3,\mathfrak{S}_3).$$

Beweis. • " \Rightarrow ":

Sei $A \in \mathfrak{S}_2$. Dann ist $A \times \Omega_3 \in \mathfrak{S}_2 \times \mathfrak{S}_3$. Damit ist $f^{-1}(A \times \Omega_3) \in \mathfrak{S}_1$, da $f^{-1}(A \times \Omega_3) = f_2^{-1}(A)$.

• "⇐":

Seien $A \in \mathfrak{S}_2, B \in \mathfrak{S}_3$, dann ist

$$f_2^{-1}(A \times B) = f_2^{-1}(A) \cap f_3^{-1}(B) \in \mathfrak{S}_1.$$

Da $C:=\{A\times B:A\in\mathfrak{S}_2,B\in\mathfrak{S}_3\}$ $\mathfrak{S}_2\times\mathfrak{S}_3$ erzeugt, folgt die Behauptung.

 \Box .

Bemerkung. Speziell für $f=(f_1,...,f_d), f:(\Omega,\mathfrak{S})\to(\mathbb{R}^d,\mathfrak{B}_d)$ genau dann, wenn

$$\forall i = 1, ..., d : f_i : (\Omega, \mathfrak{S}) \to (\mathbb{R}, \mathfrak{B}).$$

Definition 2.0.6. *Ist* $(\Omega, \mathfrak{S}, \mathbb{P})$ *ein Wahrscheinlichkeitsraum, so nennt man*

$$S:(\Omega,\mathfrak{S})\to(\mathbb{R}^d,\mathfrak{B}_d)$$

eine d-dimensionale Zufallsvariable oder einen d-dimensionalen Zufallsvektor. Bei d=1 spricht man von der Zufallsvariable.

Satz 2.0.7. Seien $(\Omega_i, \mathfrak{S}_i)$ zwei Messräume und wird \mathfrak{S} durch ein Mengensystem \mathfrak{C} aus Ω_2 erzeugt, so gilt

$$f:(\Omega_1,\mathfrak{S}_1)\to(\Omega_2,\mathfrak{S}_2)\Leftrightarrow f^{-1}(\mathfrak{C}\subseteq\mathfrak{S}_1.$$

Beweis. wird übergangen.

Satz 2.0.8. Ist $f: \mathbb{R}^{d_1} \to \mathbb{R}^{d_2}$ stetig, so ist f Borel-messbar.

Beweis. folgt direkt daraus, dass wenn f stetig ist, das Urbild jeder offenen Menge wieder offen ist.

Satz 2.0.9. *Ist* $f : \mathbb{R} \to \mathbb{R}$ *monoton, so ist* f *Borel-messbar.*

Beweis. Siehe Kusolitsch Beweis von Folgerung 7.10.

Satz 2.0.10. $f := (f_1, ..., f_d) : (\Omega, \mathfrak{S}) \to (\mathbb{R}^d, \mathfrak{B}_d)$ genau dann, wenn

$$\forall i = 1, ..., d : f_i : (\Omega, \mathfrak{S}) \to (\mathbb{R}, \mathfrak{B}).$$

Beweis. Siehe Kusolitsch Beweis Satz 7.11.

Satz 2.0.11. Aus $f_i:(\Omega,\mathfrak{S})\to(\mathbb{R},\mathfrak{B}), i=1,2$ folgt

- 1. $f_1 + f_2 : (\Omega, \mathfrak{S}) \to \mathbb{R}$),
- 2. $f_1 f_2 : (\Omega, \mathfrak{S}) \to \mathbb{R}$),
- 3. $f_1 \wedge f_2 : (\Omega, \mathfrak{S}) \to \mathbb{R}$),
- 4. $f_1 \vee f_2 : (\Omega, \mathfrak{S}) \to \mathbb{R}$).

Beweis. Kuso Folgerung 7.14.

Definition 2.0.12 (7.14).

2.1 Erweitert reellwertige Funktionen

Whaaaaat??

Kuso abschreiben... S.86

Satz 2.1.1. Sei f_n eine Folge messbarer Funktionen. Dann ist

$$M := [\liminf f_n = \limsup f_n] \in \mathfrak{S}$$

Beweis. Siehe Kusolitsch Beweis Satz 7.20.

Satz 2.1.2 (7.24).

2.2 Treppenfunktionen

Definition 2.2.1. Eine Funktion

$$t:\Omega\to\mathbb{R}$$

heißt Treppenfunktion, wenn es eine endliche Zerlegung $A_1,...,A_n$ von Ω und reelle Zahlen $\alpha_1,...,\alpha_n$ gibt mit

$$\forall \omega \in \Omega : t(\omega) = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{A_i}(\omega).$$

Lemma 2.2.2. Eine Funktion $t: \Omega \to \mathbb{R}$ ist genau dann eine Treppenfunktion, wenn es Mengen $B_1, ..., B_m$ und reelle Zahlen gibt, sodass $t = \sum_{j=1}^m \beta_j \mathbb{1}_{B_j}$.

Beweis. Siehe Beweis Lemma 7.26, Kusolitsch.

Bemerkung. Sind die oben genannten Mengen A_i und B_i alle messbar, so ist auch t messbar. Die Umkehrung gilt jedoch im Allgemeinen nicht, man kann also auch eine messbare Treppenfunktoin mit Hilfe einer nichtmessbaren Zerlegung darstellen kann, z.B. $t \equiv 0 = 0\mathbb{1}_A + 0\mathbb{1}_{A^c}$ mit $A \notin \mathfrak{S}$.

Definition 2.2.3. $t = \sum_{i=1}^{n} x_i \mathbb{1}_{[t=x_i]}$ ist die kanonische Darstellung einer messbaren Treppenfunktion.

Satz 2.2.4. Zu jeder messbaren positiven Funktion f gibt es eine monoton steigende Folge (t_n) aus positiven Treppenfunktionen, sodass

$$\forall \omega \in \Omega : f(\omega) = \lim_{n \to \infty} t_n(\omega).$$

Weiters gibt es zu jeder messbaren Funktion f eine Folge (t_n) aus Treppenfunktionen, sodass

$$\forall \omega \in \Omega : f(\omega) = \lim_{n \to \infty} t_n(\omega)$$

und

$$\forall n \in \mathbb{N} : |t_n| \le |f|.$$

Ist f beschränkt, so konvergiert (t_n) gleichmäßig gegen f.

Beweis. Siehe Beweis Satz 7.30, Kusolitsch.

2.3 Konvergenzarten

Definition 2.3.1. Zwei Funktionen f, g sind fast überall gleich, falls sie auf dem Komplement einer Nullmenge gleich sind.

Definition 2.3.2. Eine Folge (f_n) messbarer Funktionen konvergiert gleichmäßig μ -fast überall (bzw P-fs) gegen eine Funktion f, wenn es eine μ -Nullmenge N gibt, sodass (f_n) auf N^c gleichmäßig konvergiert.

Definition 2.3.3. Eine messbare FUnktion f auf einem Maßraum heißt μ -fast überall beschränkt, wenn es ein $c \in \mathbb{R}$ gibt mit $\mu(|f| > c) = 0$.

$$||f||_{\infty} := \text{ess sup } f := \inf\{c \in \mathbb{R} : \mu(|f| > c) = 0\}$$

wird als das essentielle Supremum von f bezeichnet.

Satz 2.3.4. *Sei*

$$\mathfrak{F} := \{ f : (\mathbb{R}^{(n)}, \mathfrak{B}_{(n)}) \to (\mathbb{R}^{(m)}, \mathfrak{B}_{(m)}) \}.$$

Nun ist \mathfrak{F} die kleinste Menge der reellen Funktionen, die die stetigen Funktionen enthält und bezüglich der Bildung von punktweisen Grenzwerten abgeschlossen ist

Beweis. Sei & diese kleinste Menge. Diese existiert, wie man leicht über Durchschnittbildung über alle diese Systeme zeigen kann, nachdem man auch gezeigt hat, dass die gewünschten Eigenschaften durch Durchschnittbildung erhalten werden.

 $\mathfrak{G}\subseteq\mathfrak{F}$ ist offensichtlich. Bleibt also noch " \supseteq ßu zeigen:

Da jede messbare Funktion als Limes von Treppenfunktion dargestellt werden kann, ist zu zeigen, dass \mathfrak{G} alle Treppenfunktionen enthält, wofür es genügt zu zeigen, dass \mathfrak{G} alle Indikatorfunktionen enthält und abgeschlossen bzgl. Addition und Multiplikation ist:

• Abgeschlossenheit:

Z:

$$f, g \in \mathfrak{G} \Rightarrow f + g, fg \in \mathfrak{G}.$$

Wir zeigen dies über das Prinzip der guten Mengen: Sei für $f \in \mathfrak{G}$

$$\mathfrak{G}(f) := \{ g \in \mathfrak{G} : f + g, fg \in \mathfrak{G} \}.$$

Nun ist & bzgl. Limesbildung abgeschlossen:

$$g_n \in \mathfrak{G}(f), g_n \to g \Rightarrow g \in \mathfrak{G}$$

 $\Rightarrow f + g_n \in \mathfrak{G}(f), f + g_n \to g$

und

$$\Rightarrow fg_n \in \mathfrak{G}(f), fg_n \to g,$$

und damit $g \in \mathfrak{G}(f)$. Sind nun f, g stetig, so ist auch fg und f + g stetig und daher in \mathfrak{G} , womit

$$\mathfrak{G} \subseteq \mathfrak{G}(f)$$

folgt, also für stetiges f und $g \in \mathfrak{G}$ folgt $f+g, fg \in \mathfrak{G}$ und analog für vertauschte Rollen von f und g. Dann ist $g \in \mathfrak{G}(f)$, womit \mathfrak{G} abgeschlossen bzgl. Addition und Multiplikation ist.

• Enthält Indikatoren von Borelmengen Sei

$$\mathfrak{C} = \{ A \subseteq B : A() \in \mathfrak{G} \}.$$

Wir müssen nun zeigen, dass $\mathfrak{C} = \mathfrak{B}$. Wir zeigen also zunächst, dass \mathfrak{C} Sigmaalgebra ist.

- Algebra:

Sei $A \in \mathfrak{C}$, dann ist $A() \in \mathfrak{G}$. Dann ist

$$A^{c}() = 1 - A() \in \mathfrak{G} \Rightarrow A^{c} \in \mathfrak{C}.$$

Seien $A, B \in \mathfrak{C}$. Dann ist

$$A \cap B() = A()B() \in \mathfrak{G}.$$

- Sigmaalgebra:

Es genügt zu zeigen: Wenn $A_n \uparrow A$, $A_n \in \mathfrak{C}$, so folgt $A \in \mathfrak{C}$. Nun sind also $A_n() \in \mathfrak{G}$, damit also $A_n() \uparrow A()$ (punktweise) und damit $A \in \mathfrak{C}$ aus der Abgeschlossenheit bzgl punktweisen Limiten.

Nun zeigen wir $a \leq b$: $]a, b] \in \mathfrak{C}$. Wir definieren:

$$f_n(\omega) = \begin{cases} 0 & \text{für } \omega \le a \\ (\omega - a)n & \text{für } a < \omega \le a + \frac{1}{n} \\ 1 & \text{für } a + \frac{1}{n} < \omega \le b \\ 1 - (\omega - b)n & \text{für } b < \omega \le b + \frac{1}{n} \\ 0 & \text{für } \omega > b + \frac{1}{n} \end{cases}$$

Diese sind alle stetig und konvergieren gegen [a, b](), damit also $[a, b] \in \mathfrak{C}$.

Definition 2.3.5. Sei P eine Aussage und $(\Omega, \mathfrak{S}, \mu)$ ein Maßraum. Wir sagen, P gilt fast überall oder fast sicher, wenn es eine Menge $N \in \mathfrak{S}$, $\mu(N) = 0$ gibt mit $P(\omega)$ für fast alle $\omega \in N^c$.

Definition 2.3.6. Seien $(\Omega_1, \mathfrak{S}_1, \mu)$ ein Maßraum und $(\Omega_2, \mathfrak{S}_2)$ ein Messraum. Sei $f : \Omega_1 \to \Omega_2$. f heißt fast überall messbar, wenn

$$\exists \Omega_1' \in \mathfrak{S}_1 : \mu(\Omega_1'^c) = 0,$$

wobei f auch nur auf Ω'_1 definiert sein kann. Dann ist

$$f: (\Omega'_1, \mathfrak{S} \cap \Omega'_1) \to (\Omega_2, \mathfrak{S}_2)$$

Definition 2.3.7. $f_n \to f$ heißt μ -fast überall

$$f_n:(\Omega,\mathfrak{S},\mu)\to(\mathbb{R},\mathfrak{B}),$$

wenn es $N \in \mathfrak{S} : \mu(N) = 0$ mit

$$f_n(\omega) \to f(\omega)$$

für fast alle $\omega \in N^c$.

Definition 2.3.8 (gleichmäßige Konvergenz). $f_n \to f$ ist gleichmäßig konvergent, wenn

$$\forall \epsilon > 0 \exists n_0(\epsilon) \forall \omega \in \Omega \forall n \ge n_0(\epsilon) : |f_n(\omega) - f(\omega)| < \epsilon$$

Definition 2.3.9 (fast überall gleichmäßige Konvergenz). $f_n \to f$ ist fast überall gleichmäßig konvergent für

$$f_n, f: (\Omega, \mathfrak{S}, \mu) \to (\mathbb{R}, \mathfrak{B})$$

wenn es eine Menge $M \in \mathfrak{S}, \mu(M) = 0$ gibt mit $f_n \to f$ gleichmäßig auf M^c .

Bemerkung. $f_n \to f$ gleichmäßig, wenn, wie aus der Analysis bekannt,

$$||f_n - f||_{\text{sup}} = \sup\{|f_n(\omega) - f(\omega)| : \omega \in \Omega\} \to 0.$$

Definition 2.3.10. Sei $f(\Omega, \mathfrak{S}) \to (\mathbb{R}, \mathfrak{B})$, $(\Omega, \mathfrak{S}, \mu)$ Maßraum. Dann ist das Essentielle Supremum von f

ess sup
$$f := \inf\{y \in \mathbb{R} : \mu([f > y]) = 0\}.$$

Bemerkung. Es gilt

$$\mu([f > \operatorname{ess sup} f]) = 0,$$

da

$$\mu([f> \operatorname{ess\ sup} f]) = \mu\left(\bigcup_{n\in\mathbb{N}} [f> \operatorname{ess\ sup} f + \frac{1}{n}]\right) \leq \sum_{n\in\mathbb{N}} \mu([f> \operatorname{ess\ sup} f + \frac{1}{n}]) = \sum_{n\in\mathbb{N}} 0 = 0.$$

Satz 2.3.11. Sei c > 0. Dann ist

ess
$$\sup cf = c \operatorname{ess sup} f$$
.

Weiters ist für $f,g \geq 0$

ess sup
$$f + g \le \operatorname{ess\ sup} f + \operatorname{ess\ sup} g$$

Beweis. Folgt direkt aus der Definition:

ess
$$\sup cf = \inf\{y \in \mathbb{R} : \mu([cf > y]) = 0\}$$

 $= \inf\{c \cdot z \in \mathbb{R} : \mu([cf > cz]) = 0\}$
 $= \inf c \odot \{z \in \mathbb{R} : \mu([f > z]) = 0\}$
 $= c \text{ ess sup } f$

Weiters

$$\begin{split} \mu([f+g>\operatorname{ess\ sup} f+\operatorname{ess\ sup} g]) &\leq \mu([f>\operatorname{ess\ sup} f] \cup [g>\operatorname{ess\ sup} g]) \\ &\leq \mu([f>\operatorname{ess\ sup} f]) + \mu([g>\operatorname{ess\ sup} g]) \\ &= 0 + 0 = 0 \end{split}$$

Definition 2.3.12.

$$||f||_{\infty} := \operatorname{ess sup} |f|.$$

Dies ist fast eine Norm, die erste Eigenschaft fehlt, da

$$||f||_{\infty} = 0 \Leftrightarrow \mu([|f| > 0]) = 0$$

Beweis.

$$||cf||_{\infty} = |c| ||f||_{\infty}$$

folgt direkt aus einem oben bewiesenen Satz.

$$||f + g||_{\infty} = \text{ess sup} \, |f + g| \le \text{ess sup} (|f| + |g|) \le \text{ess sup} \, |f| + \text{ess sup} \, |g| = ||f||_{\infty} + ||g||_{\infty}.$$

Es fehlt

$$||f||_{\infty} = 0 \Leftrightarrow f = 0,$$

denn es gilt

$$||f||_{\infty} = 0 \Leftrightarrow f = 0$$
 fast überall.

Definition 2.3.13. Sei

$$\mathcal{L}_{\infty}(\Omega,\mathfrak{S},\mu):=\left\{f:(\Omega,\mathfrak{S})\to(\overline{\mathbb{R}},\overline{\mathfrak{B}}):f\ \textit{ist fast \"{u}berall messbar},\ \|f\|_{\infty}<\infty\right\},$$

dann ist

$$f \sim g \Leftrightarrow ||f - g||_{\infty} = 0 \Leftrightarrow f = g \text{ fast "überall"}$$

eine Äquivalenzrelation (trivial). Damit ist

$$\mathcal{L}_{\infty}(\Omega,\mathfrak{S},\mu) = \mathcal{L}_{\infty} \setminus \sim$$

und $\|.\|_{\infty}$ eine Norm auf \mathcal{L}_{∞} und somit auch \mathcal{L}_{∞} ein normierter Vektorraum, bzw. sogar ein Banachraum.

Beweis (\mathcal{L}_{∞} ist vollständig). Sei f_n Cauchyfolge bezüglich $\|.\|_{\infty}$, also $\lim_{m,n\to\infty} \|f_n - f_m\|_{\infty} = 0$. Damit konvergiert f_n gleichmäßig und somit auch in \mathcal{L}_{∞} .

Definition 2.3.14. Sei (f_n) eine Folge von Funktionen,

$$f_n:(\Omega,\mathfrak{S})\to(\mathbb{R},\mathfrak{B}),$$

die gegen ein f fast gleichmäßig konvergiert, wenn

$$\forall \varepsilon > 0 \exists A \in \mathfrak{S} : \mu(A^c) < \varepsilon \text{ mit } f_n \to f \text{ gleichmäßig auf } A.$$

Beispiel 2.3.0.1. Sei $([0,1],\mathfrak{B}) \cap [0,1], \lambda|_{\mathfrak{B} \cap [0,1]})$ und

$$f_n(\omega) = \omega^n$$
,

dann ist

$$\lim_{n \to \infty} f_n(\omega) = \begin{cases} 0: & 0 \le \omega < 1 \\ 1: & \omega = 1 \end{cases}$$

wir können also ein beliebig kleines Intervall A um 1 herausnehmen, sodass f_n gleichmäßig auf A^c konvergiert, also konvergiert f_n fast gleichmäßig.

Satz 2.3.15 (Satz von Egorov). Sei $(\Omega, \mathfrak{S}, \mu)$ endlich

$$f_n, f: (\Omega, \mathfrak{S}) \to (\mathbb{R}, \mathfrak{B})$$

dann ist

$$f_n \to f \ \mu - fast \ \ddot{u}berall \Leftrightarrow f_n \to f \ \mu - fast \ gleichm\ddot{a}\beta ig.$$

Beweis.

• "⇐"gilt natürlich immer.

• " \Rightarrow ": Sei $f_n(\omega) \to f(\omega)$, also

$$\forall \varepsilon > 0 \exists N = N(\varepsilon) \forall n \ge N(t) | f_n(\omega) - f(\omega) < \varepsilon.$$

Es gibt $B \in \mathfrak{S}, \mu(B^c) = 0, f_n \to f$ punktweise auf B. Dann gilt für

$$A_{N,\epsilon} = \{\omega : |f_n(\omega) - f(\omega)| < \varepsilon \text{ für } n \ge N,$$

wenn wir ε fix wählen:

$$\bigcup_{N \in \mathbb{N}} A_{N,\varepsilon} \supset B$$

$$\Rightarrow \lim_{N \to \infty} = \mu(B) = \mu(\Omega)$$

Und für $\varepsilon = \frac{1}{2^K}$ wählen wir N_K , sodass

$$\mu(A_{N_{\varepsilon},\frac{1}{2^K}}) \ge \mu(\Omega) - \frac{1}{2^K}.$$

Mit

$$C_K := \bigcap_{k \ge K} A_{N_k, \frac{1}{2^k}}$$

gilt dann

$$\mu(C_K^c) \le \sum_{k > K} \mu(A_{N_k, \frac{1}{2^K}}) \le \frac{2}{2^K}$$

Dann gilt klarerweise

 $f_n \to f$ auf C_K gleichmäßig,

womit die Behauptung bewiesen ist.

Definition 2.3.16. Sei $(\Omega, \mathfrak{S}, \mu)$

$$f_n, f: (\Omega, \mathfrak{S}) \to (\mathbb{R}, \mathfrak{B}).$$

Dann ist $f_n \to f$ im Ma β (in Wahrscheinlichkeit, wenn $(\Omega, \mathfrak{S}, \mu)$ ein Wahrscheinlichkeitsraum ist), wenn

$$\forall \varepsilon > 0 : \lim_{n \to \infty} \mu([|f_n - f|] \ge \varepsilon]) = 0.$$

Bemerkung. Diese Konvergenz ist später wichtig in der Statistik. Dies ist auf endlichen Maßräumen die schwächste Konvergenzart.

Satz 2.3.17. Gilt $f_n \to f$ im Maß und $f_n \to g$ im Maß, so folgt

$$f = g \text{ fast "überall"}.$$

Beweis. Es gilt nun für ein $\varepsilon > 0$

$$\lim_{n \to \infty} \mu([|f_n - f| \ge \frac{\varepsilon}{2}]) = 0$$

$$\lim_{n \to \infty} \mu([|f_n - g| \ge \frac{\varepsilon}{2}]) = 0$$

Also existiert für ein $\delta > 0$ ein $n \in \mathbb{N}$, sodass

$$\mu([|f_n - f| \ge \frac{\varepsilon}{2}]) < \delta.$$

Betrachte nun

$$\mu([|f-g|>\varepsilon]) = \mu([f-f_n+f_n-g>\varepsilon]) \le \mu([|f-f_n|+|f_n-g|>\varepsilon])$$

$$\le \mu([|f_n-f|>\frac{\varepsilon}{2}) + \mu([|f_n-g|>\frac{\varepsilon}{2}]) \le 2\delta$$

und da δ beliebig ist

$$\mu([|f-g|>\varepsilon])=0\Rightarrow \mu([|f-g|>0])=0,$$

womit f = g fast überall.

Bemerkung.

