# Ehrenfeucht-Fraïssé Games for Metric Temporal Logic on Data Words

Claudia Carapelle, Shiguang Feng,
Oliver Fernandez Gil, Karin Quaas
Universität Leipzig





# Extensions of Linear Temporal Logic

Theorem:  $MTL(\mathbb{N}) = TPTL(\mathbb{N})$  [Alur&Henzinger, 1993]

Theorem:  $MTL(\mathbb{R}_{\geq 0}) \subsetneq TPTL(\mathbb{R}_{\geq 0})$  [Bouyer et al, 2010]

What is the relative expressiveness of  $MTL(\mathbb{Z})$  and  $TPTL(\mathbb{Z})$ ?

#### Nonmonotonic Data Words

Data words over finite set **P** of propositional variables.

$$(P_0, d_0)(P_1, d_1)(P_2, d_2)(P_3, d_3) \cdots \in (2^{\mathbf{P}} \times \mathbb{N})^{\omega}$$

 $d_1, d_2, d_3, \dots$  nonmonotonic sequence

e.g., computation of a one-counter machine

# Metric Temporal Logic

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \psi \mid \varphi U_I \psi \quad (p \in P, I \subseteq \mathbb{Z} \text{ is an interval})$$

$$w = (P_0, d_0)(P_1, d_1)(P_2, d_2) \dots$$

$$(w,i) \models \varphi_1 U_I \varphi_2$$
 iff  $\exists j > i$  such that  $(w,j) \models \varphi_2$  and  $\forall i < k < j, (w,k) \models \varphi_1$  and  $d_j - d_i \in I$ 

## **Timed Propositional Temporal Logic**

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \psi \mid \varphi U \psi \mid x.\varphi \mid x \sim c$$
(x is a register variable,  $c \in \mathbb{Z}, \sim \in \{\leq, <, =, >, \geq\}$ )

$$(w,i,v) \models x.\varphi$$
 iff  $(w,i,v[x \mapsto d_i]) \models \varphi$   
 $(w,i,v) \models x \sim c$  iff  $d_i - v(x) \sim c$ 

 $(v: X \to \mathbb{N} \text{ a function from register variables to natural numbers,}$   $v[x \mapsto n]$  changes the value of v(x) to n.)

Played by: Spoiler • and Duplicator •

Played by: Spoiler • and Duplicator •

Constraints set I

Example:  $I = \{-\infty, -2, 0, 4, +\infty\}$ 

Played by: Spoiler • and Duplicator •

Example: 
$$I = \{-\infty, -2, 0, 4, +\infty\}$$

$$w_0 \stackrel{0}{\stackrel{\bullet}{p}} \stackrel{10}{q} \stackrel{2}{q} \stackrel{5}{p} \cdots$$
 $w_1 \stackrel{0}{\stackrel{\bullet}{p}} \stackrel{2}{q} \stackrel{3}{q} \stackrel{3}{q} \cdots$ 

Played by: Spoiler • and Duplicator •

Example: 
$$I = \{-\infty, -2, 0, 4, +\infty\}$$



Played by: Spoiler • and Duplicator •

Example: 
$$I = \{-\infty, -2, 0, 4, +\infty\}$$



Played by: Spoiler • and Duplicator •

Example: 
$$I = \{-\infty, -2, 0, 4, +\infty\}$$





Played by: Spoiler • and Duplicator •

Example: 
$$I = \{-\infty, -2, 0, 4, +\infty\}$$





Played by: Spoiler • and Duplicator •

Example: 
$$I = \{-\infty, -2, 0, 4, +\infty\}$$





Played by: Spoiler • and Duplicator •

Example: 
$$I = \{-\infty, -2, 0, 4, +\infty\}$$





Played by: Spoiler • and Duplicator •

Example: 
$$I = \{-\infty, -2, 0, 4, +\infty\}$$





#### Main Theorems

#### Theorem 1

The following are equivalent:

- 1. Duplicator has a winning strategy for  $GAME_k^l(w_0, w_1)$ .
- 2.  $w_0$  and  $w_1$  satisfy the same formulas in  $MTL_k^{\mathbf{I}}(\mathbb{Z})$ .

$$\mathsf{MTL}^{\mathsf{I}}_k(\mathbb{Z})$$
: •  $k$  nested until operators,

• 
$$\varphi_1 U_{[a,b]} \varphi_2 \Rightarrow a,b \in I$$

$$\mathsf{MTL}(\mathbb{Z}) = \bigcup_{k,\mathsf{I}} \mathsf{MTL}_k^{\mathsf{I}}(\mathbb{Z})$$

#### Main Theorems

#### Theorem 2

Let  $\varphi \in \mathsf{TPTL}(\mathbb{Z})$ , the following are equivalent:

- 1.  $\varphi$  is not definable in MTL( $\mathbb{Z}$ ).
- 2.  $\forall \mathbf{I}, k, \exists w_0 \models \varphi, w_1 \not\models \varphi$  such that Duplicator can win  $GAME_k^{\mathbf{I}}(w_0, w_1)$ .

#### Main Theorems

#### Theorem 3

 $\mathsf{MTL}(\mathbb{Z}) \subsetneq \mathsf{TPTL}(\mathbb{Z})$ 

#### Proof:

$$x.FFF(x = 0) \in TPTL(\mathbb{Z})$$
 cannot be expressed in  $MTL(\mathbb{Z})$ 

$$w_0 \leftarrow \sigma - 2r \quad \sigma - r \quad \sigma \quad \sigma + r \quad \sigma + 2r \quad \cdots$$

$$w_1 \leftarrow \sigma \qquad \sigma - r \qquad \sigma \qquad \sigma + r \qquad \sigma + 2r \qquad \sigma + 3r \qquad \cdots$$

# Further Applications of the EF Game on MTL

► Theorem 4: The following MTL membership decision problem is undecidable:

GIVEN:  $\varphi \in \mathsf{TPTL}(\mathbb{Z})$ 

QUESTION: Is  $\varphi$  definable in MTL( $\mathbb{Z}$ )?

- ▶ EF game for MTL can also be used for proving results for timed words over  $\mathbb{R}_{\geq 0}$ .
- ▶ We define also an EF game for TPTL.