HO CHI MINH UNIVERSITY OF TECHNOLOGY COMPUTER SCIENCE AND ENGINEERING

Digital Design with the Verilog CO2010

Laborary 2

Using RTL Design to implement a combinational logic

Objective	3
Requirement	3
I. The combination circuit using RLT Method	3
1. Design Mux 2_to_1 module using "assign".	3
2. RTL Viewer.	5
3. Implementation Mux 4_to_1 using Schematic block	6
II. Exercise:	10

Objective

- ❖ Practicing RTL Desing in the combinational circuit (with "assign").
- * How to design circuit by creating a schematic.
- * How to check the RTL schematic using Quartus II.

Requirement

Submit file code Verilog (.v), file block diagram/schematic (.bdf), and a waveform screen when checking circuit under .zip or .rar with name LAB2_MSSV.[zip,rar].

I. The combination circuit using RLT Method

- 1. Design Mux 2_to_1 module using "assign".
 - **Step 1.** Create new project in Quartus II IDE.

Note: FPGA chip is Cyclone IV EP4CGX150DF31C7.!

- **Step 2.** Create new Verilog HDL file.
- **Step 3.** Describe Mux 2_to_1 module as below code:

```
module mux_2to1 (out, sel, in0, in1);
  output out;
  input sel;
  input in0;
  input in1;

assign out = (sel == 1'b0) ? in0 : in1;
endmodule
```

The "assign out = (sel == 1'b0) ? in0 : in1;" means if any input signals such as sel, in0, or in1 changes, the output signal will alter as followed rules:

- If sel == 1'b0, then out = int0.
- If sel == 1'b1, then out = int1.
- **Step 4.** Save Verilog filename correctponse with module's name.
- **Step 5.** Set mux_2to1 as Top level module.
- **Step 6.** Processing → Start → Start Analysis & Synthesis. If succeed, there is a Flow Summary as the below picture.

Figure Error! No text of specified style in document.-1 Flow summary for Analysis and Synthesis process.

Step 7. Pin assignment for INPUT, OUTPUT signals by choosing .Assignments → **Pin Planner**. The Pin Planner will appear as the below image.

Figure Error! No text of specified style in document.-2 Pin Planner.

Assign pins as the Table 2-1:

Table Error! No text of specified style in document.-1 Pin Assignment.

Tín hiệu	Loại	Tên	Chân
out	output	LEDR[0]	PIN_T23
sel	input	SWITCH[0]	PIN_V28
in0	input	SWITCH[1]	PIN U30
in1	input	SWITCH[2]	PIN V21

Step 8. Compile, Install and Check the logic in DE2i-150 board by Processing → Start Compilation (or press Ctr + L)

2. RTL Viewer.

To see RTL view of a module, first, we have to Analysis and Synthesis. Then **Set top level** for the module which needs to see RTL design. And in this lab, it is **mux_2to1.v.**

Double Click to RTL viewer option in Task window.

Figure Error! No text of specified style in document.-3 RTL Viewer Option.

Then we get the result in RTL Viewer window:

Figure Error! No text of specified style in document.-4 mux 2to1 structure in RTL.

3. Implementation Mux 4_to_1 using Schematic block

Step 9. Create mux 2to1 symbol to use in designing by schematic.

- + In Project Navigator window → choose File tab → next choose mux_2to1.v file → Create Symbol Files for Current File
- + Or File → Create/Upload → Create Symbel Files for Current File.

Figure Error! No text of specified style in document.-5 Create symbol for mux_2to_1 file.

Step 10. Create Schematic file.

File \rightarrow New or \square symbol in an accessory bar. Then select Block Diagram/Schematic File type and OK. The window to design schematic is display as below:

Figure Error! No text of specified style in document.-6 Schematic Design window.

Step 11. Some tools for designing in the Schematic window.

- (Select tool): select a component in the schematic window.
- **A** (*Text tool*): create a text component in the schematic window.
- (Symbol tool): Logic components to design such as logic gate, or megafunction.
- (pin tool): create intput, output, and bidir pin.
- [Block tool]: create a function block which makes the design hierarchy.
- (orthogonal node tool): connector
- \(\frac{1}{2}\)(orthogonal bus tool): bus connector
- (Zoom tool): zoom in and zoom out.
- [Full Screen]: choose to work in Full Screen option or not.
- **M**(Find): find a component.

Step 12. Next choose the ⊕ (Symbol tool)

In the Libraries window, choose **Project ->** mux_2to1 symbol -> OK.

Figure Error! No text of specified style in document.-7 Symbol window.

- **Step 13.** Add two more mux_2to1 symbol as below
- Step 14. Add input, output pin.

Choose (pin tool), add pins, and change name by double click on the pin. The result is as below:

Figure Error! No text of specified style in document.-8 Add input and output pin for the design.

Step 15. Connect the pin by click (orthogonal node tool) or the bus by click (orthogonal bus tool), then drag the mouse from a source location to destination location.

Figure Error! No text of specified style in document.-9 After connecting pin and bus.

Step 16. Save schematic design file in .bdf format.

Step 17. Set Top level module

Figure Error! No text of specified style in document.-10 Set Top level module

Step 18. The Analysis & Synthesis.

Step 19. Pin Assignment. Note: delete the old pin from the previous design for mux_2to1 module.

Assign pin as the below table:

Signal	Type	Name	Pin
out	output	LEDR[0]	PIN_T23
sel[0]	input	SWITCH[0]	PIN_V28
sel[1]	input	SWITCH[1]	PIN_V21
in0	input	SWITCH[2]	PIN_C2
in1	input	SWITCH[3]	PIN_AB30
in2	input	SWITCH[4]	PIN_U21
in3	input	SWITCH[5]	PIN_U30

Table Error! No text of specified style in document.-2 Pin table for mux_4to2 module.

Step 20. Compile file to get the result as follow:

Figure Error! No text of specified style in document.-11 Compilation result.

Step 21. Install and test on DE2i-150 board.

II. Exercise:

- 1. [4 points] Design a BCD Decoder to 7-segment LED with the module name is BCD_2_Led7seg (led7seg, enable, BCDin). Detail:
 - o If enable = 0, then the system is disabled with 7-segment LEDs turn off.
 - o If enable = 0, then decode a BCD number from 4-bits to 7-segment LEDs.
 - Note: 7-segment LEDs active HIGH.

Requirment:

- a) Code using the RTL method (with assign) (2 points).
- b) Create file testbench to test the module (2 points).
- c) Take picture of RTL schematic (is a must for the report).
- 2. [8 points] Design a comparison circuit with 2 input [3:0] A, [3:0] B and 1 output [2:0] result. Detail:
 - o If A > B then result [0] = 1, otherwise result [0] = 0.
 - o If A = B then result [1] = 1, otherwise result [1] = 0.
 - o If A < B then result [2] = 1, otherwise result [2] = 0.

The module's name is comparision (result, A, B). Input A, B are assigned to 8 SWITCHs, and output result is connected to 3 LEDRs.

- a) Code using the RTL method (with assign) (2 points).
- b) Create file testbench to test the module (2 points).
- c) Take picture of RTL schematic (is a must for the report).
- d) Design with Schematic: Display input A to HEX6 (a 7-seg LED), and input B to HEX4, then output signal to LEDR (2 points).
- e) Extend: Compare two 5-bits number and output to 7-segment LED using RLT design, input A is out to HEX6 and HEX7, input B is out to HEX4 and HEX5. The result is out to HEX0 with the rule: if A>B then result = 1, A=B then result = 0, A<B then result = 2 (2 points).