```
Jonathon Doretti
```

CSC 355 401T

Database Systems

Assignment 5

Compute the restrictions F1 of F for R1 and F2 of F for R2:

and R2 = ConsultationCode, DoctorID, PatientID, PatientName

F1 : DoctorArea→Office;

DoctorID→DoctorName, DoctorArea

F2 : PatientID→PatientName;

ConsultationCode→DoctorID, PatientID, DoctorID PatientID→ConsultationCode

Decompose R1(DoctorID, DoctorName, DoctorArea, Office) with dependencies: DoctorArea \rightarrow Office;

 ${\sf DoctorID} {\rightarrow} {\sf DoctorName,\ DoctorArea}$

Split R1 into R1.1 = DoctorArea, Office and R1.2 = DoctorID, DoctorName, DoctorArea

Compute the restrictions F1.1 of F for R1.1 and F1.2 of F for R1.2

F1.1 : DoctorArea→Office,

F1.2 : DoctorID→DoctorName, DoctorArea

Decompose R1.1(DoctorArea, Office) with dependencies: DoctorArea→Office

DoctorArea, Office it is in BCNF

Decompose R12(DoctorID, DoctorName, DoctorArea) with dependencies: DoctorID→DoctorName, DoctorArea DoctorID, DoctorName, DoctorArea it is in BCNF

Decompose R2(ConsultationCode, DoctorID, PatientID, PatientName) with dependencies:

PatientID→PatientName

ConsultationCode→DoctorID, PatientID

DoctorID, PatientID→ConsultationCode

Split R2 into R2.1 = PatientID, F and R2.2 = ConsultationCode, DoctorID, PatientID

Compute the restrictions F2.1 of F for R2.1 and F2.2 of F for R2.2

F2.1 : PatientID→PatientName

F2.2 : ConsultationCode→DoctorID, PatientID DoctorID, PatientID→ConsultationCode

Decompose R2.1(PatientID, PatientName) with dependencies:

PatientID→PatientName

PatientID, PatientName it is in BCNF

Decompose R2.2(ConsultationCode, DoctorID, PatientID) with dependencies: ConsultationCode →DoctorID, PatientID DoctorID, PatientID→ConsultationCode

ConsultationCode, DoctorID, PatientID it is in BCNF

2b)

No because $DoctorID \rightarrow DoctorName$, DoctorArea, Office does not have a superkey or any prime attributes.

3a)

R1 (A, B) -
$$A \rightarrow B$$
;

R2 (B, C, D)
$$-$$
 B \rightarrow C D \rightarrow C

R3 (D, E) – E
$$\rightarrow$$
 D

3b)

No, because the union of the projections is not equivalent to F; for example, $\{E\}+=\{E,D,C\}$.

3c)

R1(A,B)

R2(B, C, D) R3(D, E)

R1(A1, A2)

R2(A2, A3, A4)

R4(A4, A5)

Changes in -highlight

Matrix #1	A1	A2	A3	A4	A5
R1	B11	B12	B13	B14	B15
R2	B21	B22	B23	B24	B25
R3	B31	B32	B33	B34	B35

#2 - Changed all cells correlated to row R1

Matrix #2	A1	A2	A3	A4	A5
R1	A1	A2	B13	B14	B15
R2	B21	B22	B23	B24	B25
R3	B31	B32	B33	B34	B35

#3 - Changed all cells correlated to row R2

Matrix #3	A1	A2	A3	A4	A5
R1	A1	A2	B13	B14	B15
R2	B21	A2	A3	A4	B25
R3	B31	B32	B33	B34	B35

#4 - Changed all cells correlated to row R3

Matrix #4	A1	A2	A3	A4	A5
R1	A1	A2	B13	B14	B15
R2	B21	A2	A3	A4	B25
R3	B31	B32	B33	A4	A5

#5 - Apply functional dependency of R2 to R1: A2 \rightarrow A3, A4

Matrix #5	A1	A2	A3	A4	A5
R1	A1	A2	A3	A4	B15
R2	B21	A2	A3	A4	B25
R3	B31	B32	B33	A4	A5

#6 - Apply functional dependencies of A5 in R3: A5 \rightarrow A3, A4

Matrix #6	A1	A2	A3	A4	A5
R1	A1	A2	A3	A4	B15
R2	B21	A2	A3	A4	B25
R3	B31	B32	A3	A4	A5

Answer for 3c: All functional dependencies have been applied and there is no row filled with A's in the matrix - therefore, it does not have the lossless join property.