Representação de Dados Inteiros com sinal

Representação de Inteiros

- Com *n* bits, podemos ter 2ⁿ valores distintos
- Considerando só inteiros não-negativos (unsigned) a faixa de valores é [0, 2ⁿ -1]
- Considerando inteiros quaisquer (i <0, i >=0), também tem-se apenas 2ⁿ possíveis valores
- Opção 1: (bit mais significativo como sinal).
 - representação por sinal e magnitude
- n = 4 → 15 valores possíveis

0000 0111	0 a 7 decimal
1001 1111	-1 a -7 decimal
1000	zero negativo?

Complemento a 2

- Representação mais usual para inteiros com sinal
 - interpretar o bit mais significativo com peso negativo
 - intervalo de valores: [-2ⁿ⁻¹, 2ⁿ⁻¹-1]
 - com 8 bits: $[-2^7, 2^7-1] \rightarrow [-128, 127]$

$$X_{n-1}, X_{n-2}, \dots, X_3, X_2, X_1, X_0$$

Complemento a 2

Unsigned
$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$
 $B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$

- Exemplos:
 - $-0101 = 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 5$
 - $-1011 = -1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = -8 + 2 + 1 = -5$

Faixa de Valores

Unsigned

•
$$UMax = 2^w - 1$$

111...1

Complemento a 2

•
$$TMin = -2^{w-1}$$

100...0

•
$$TMax = 2^{w-1} - 1$$
 \\
011...1

intervalo é assimétrico!

1/2 para os negativos

½ para positivos + 0

Exemplos para W = 16

	Decimal	Hex	Binary	
UMax	65535	FF FF	11111111 11111111	
TMax	32767	7F FF	01111111 11111111	
TMin	-32768	80 00	10000000 00000000	
-1	-1	FF FF	11111111 11111111	
0	0	00 00	00000000 00000000	

Modelo Circular

binário	Compl-2	binário	Compl-2
0000	0	1000	-8
0001	1	1001	-7
0010	2	1010	-6
0111	7	1111	-1

-8 + 4 + 2 + 1 = -8 + 7

bit mais significativo tem "peso" -8!

Representação de números negativos complemento a 2

Idéia central:

$$(2^n + x) \mod 2^n$$

Se
$$x>= 0$$
 rep₂ $(x) = x$
Se $x<0$ então rep₂ $(x) = 2^n + x$

Exemplos:

$$rep_2(-2) = 2^4 + (-2) = 14 = [1110]$$

 $rep_2(-8) = 2^4 + (-8) = 8 = [1000]$
 $rep_2(-1) = 2^4 + (-1) = 15 = [1111]$

$$[1111] = 15 = 2^4 + x \rightarrow x = 15 - 16 = -1$$

 $[1000] = 8 = 2^4 + x \rightarrow x = 8 - 16 = -8$

binário	Compl-2 binário		Compl-2
0000	0	1111	-1
0001	1	1110	-2
0010	2	1101	-3
		1001	-7
0111	7	1000	-8

Uma outra forma...

- 1. Encontrar a representação de (-x)
- 2. Inverter bit a bit
- 3. Somar 1

```
1111 1011

- 1

1111 1010 → 0000 0101 → 5 → -5
```

Representação binária de um inteiro negativo

• Por que funciona (para x < 0)?

Faixa de Valores

 Maior e menor inteiros que podemos representar com signed/unsigned

	W							
	8	16	32	64				
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615				
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807				
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808				

- C não requer que a representação seja em complemento a 2, mas a maioria das máquinas o faz
- Não é boa prática (para portabilidade) a faixa de valores
 - limits.h> define constantes para os tipos de dados inteiros
 - INT_MAX, INT_MIN, UINT_MAX

Soma e Subtração

- Uma enorme vantagem da representação de inteiros em complemento a 2 é que todas as somas e subtrações empregam o mesmo algoritmo de adição
 - subtração = soma do complemento!
 - o algoritmo para achar o complemento é trivial
- A aritmética módulo 2ⁿ garante que o resultado da soma é correto mesmo com sinais diferentes (a menos de overflow)
- Exemplo para n=3

$$1-2 = (1 \mod 8) + (-2 \mod 8) = -1 \mod 8$$

$$[001] - [010] = [001] + [110] = [111]$$

Soma complemento a 2

(exemplos para 4 bits)

•
$$2 + 3 = 0010 + 0011 = 0101 = 5$$

•
$$7 - 1 = 7 + (-1) = 0111 + 1111 = 0110 = 6$$

•
$$(-3) + 6 = 1101 + 0110 = 0011 = 3$$

•
$$(-1) + (-1) = 1111 + 1111 = 1110 = (-2)$$

Signed e Unsigned em C

- Na conversão entre tipos signed/unsigned de mesmo tamanho, o padrão de bits não é afetado: apenas a interpretação desse padrão muda.
 - int x;
 - unsigned u = (unsigned) x;
 - unsigned t = -1; /* ffffffff interpretado com valor sem sinal */
- Constantes são valores "signed" por default

Exemplos de conversão

- Em expressões com combinações signed/unsigned, é feita conversão do valor signed para unsigned
 - pode afetar operações relacionais!

Operadores relacionais

- Operadores de comparação (<, ==, >, etc.) levam em conta se operandos são unsigned ou compl 2.
- Em assembler existem instruções específicas para cada caso
 - o compilador C gera o código com as instruções corretas, dependendo da declaração dos operandos
- Mas em expressões que envolvem os dois tipos, os valores são tratados como unsigned!
- Exemplo:

```
int a[2] = \{-1, 0\};
if (a[0] < a[1]) \rightarrow true
unsigned int z=0;
if (a[0] < z) \rightarrow false !!!!!
```

Extensão de Representação

- Ocorre quando aumentamos o número de bits usados na representação
 - char para short/int, short para int
- Como converter um número em w bits para w+k bits mantendo o mesmo valor?
 - unsigned : adicionar zeros à esquerda (zero extension)
 - signed: k cópias do bit de sinal (sign extension)

Extensão de Representação

Exemplo: w = 3, k = 2 (extensão de 3 para 5 bits)

•
$$101 = (-1 * 2^2) + 1 = -3$$

•
$$11101 = (-1 * 2^4 + 1 * 2^3 + 1 * 2^2) + 1 = -16 + 8 + 4 + 1 = -3$$

$$(-1 * 2^2 * 4) + (1 * 2^2 * 2) + (1 * 2^2) = (-1 * 2^2)$$

Conversão em C

```
short int x = 15213;
int         ix = (int) x;
short int y = -15213;
int         iy = (int) y;
```

	Decimal	Hex					Bina	ary	
X	15213			3B	6D			00111011	01101101
ix	15213	00	00	3B	6D	0000000	00000000	00111011	01101101
У	-15213			C4	93			11000100	10010011
iy	-15213	FF	FF	C4	93	11111111	11111111	11000100	10010011

Truncamento de Inteiros

- Ocorre quando reduzimos o número de bits usados na representação
 - int para short/char, short para char
- Quando truncamos um inteiro simplesmente removemos os bits mais significativos, o que pode alterar o valor do inteiro!
 - Quando x é unsigned, (short) $x = x \mod 16$
 - Quando x é signed (Compl-2), os bits menos significativos são simplesmente interpretados como complemento a dois (o que pode alterar o sinal!)
- Exemplo (truncamento 8 bits para 4 bits):

```
[00011001] = 25
[1001] = -7
```

Overflow em Compl.-2

 Quando o resultado (x+y) não é representável em n bits

- Para signed:
 - Se x,y tem sinais diferentes, nunca ocorre!
 - Se x> 0 e y>0 overflow ocorre se houver carry do penúltimo para o último bit (resultado negativo!) e sem carry p/ fora
 - Se x<0 e y<0, overflow ocorre quando não há carry do penúltimo para o último, mas sempre haverá do último para fora)
 - Portanto, quando os dois carries são diferentes, o hardware marca a condição de overflow!

Exemplos

Para 4 bits (resultado real em 5 bits):

X	У	x + y	resultado	
-8	-5	-13	3	← Overflow negativo (carry para fora)
[1000]	[1011]	[10011]	[0011]	
-8	-8	-16	0	← Overflow negativo (carry para fora)
[1000]	[1000]	[10000]	[0000]	
-8	5	-3	-3	← Sem overflow
[1000]	[0101]	[11101]	[1101]	
2	5	7	7	← Sem overflow
[0010]	[0101]	[00111]	[0111]	
5	5	10	-6	← Overflow positivo (carry do penúltimo para o último bit)
[0101]	[0101]	[01010]	[1010]	

Obs: para unsigned, overflow é indicado por outra condição: quando houve carry para fora