Why $N_{\rm eff} \neq 3.046$

Jack Bennett. UNSW

Supervisor: Yvonne Wong

Outline

- Motivations
- Theory;
 - Active Transport
 - Finite Temperature QED
- Our work:
 - Solve ODE
 - Add next order

Motivations

• For years (2005), SM has predicted $N_{\rm eff} = 3.046$ [1]

• Recently, [2] gave a different answer $N_{\rm eff} = 3.052$ using a "non-perturbative" method.

• Who is right? Can we improve upon correct result? What is $N_{\rm eff}$?

Effective number of neutrinos

• Simplistic view: How is the total energy density is divided up?

• Set a time: after electron annihilation epoch; before neutrinos become non-relativistic

$$\rho_R = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_{\gamma}$$

• Where have these terms come from?

Deviation from $N_{\text{eff}} = 3$

$$\rho_R = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_{\gamma}$$

- Exchange energy with photons?
 - Not coupled directly.
 - Indirect four diagrams at tree level

http://www.mushtukov.com/

- T=MeV Neutrinos decouple
- T=0.5 MeV e+- decouple.

Figure 1: Feynman diagrams for the processes of neutral current (NC) ve-scattering (a), and charged current (CC) vee-scattering via the exchange of a W-Boson (b,c).

https://cds.cern.ch/record/248487/

Active transport

Neutrino decouple \sim MeV e^{\pm} annihilation \sim 0.5MeV

- Do all electrons annihilate instantaneously?
 - Fermi-Dirac distributions
- Are all neutrinos decoupled when electrons annihilate?
- Some energy transferred to neutrino sector
- Use continuity equation

Finite-temperature QED

$$\rho_R = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_{\gamma}$$

- Electrons and photons gain self energy through QED.
- Thermal masses instructive mentally
- $m_e^2 \rightarrow m_e^2 + \delta m_e^2(T), m_\gamma^2 \rightarrow \delta m_\gamma^2(T).$

• Not fully relativistic – lowers ρ_{γ} but ρ_{ν} same : $N_{\rm eff}$ increases

New Variables

$$x = m_e R(T)$$
$$y = pR(T)$$
$$z = T_{\gamma} R(T)$$

• Go to co-moving variables

$$x = m_e R(T)$$

$$y = pR(T)$$

$$z = T_{\gamma}R(T)$$

- R(T) is some normalized scale factor $\propto a$
 - $R(T_d) = \frac{1}{T_v}$
- Relativistic temperatures evolve $\propto \frac{1}{a}$
- $p \propto \frac{1}{a}$
- Need P and ρ . Related.

$$\rho = -P + T \frac{\partial P}{\partial T}$$

Continuity Equation

$$x = m_e/T_{\nu}$$
$$y = p/T_{\nu}$$
$$z = T_{\gamma}/T_{\nu}$$

• Normally
$$\frac{d}{dt}\rho = -3H(\rho + P)$$
.

$$\bar{P} = P \left(\frac{x}{m_e}\right)^4$$

• Need to track *H*. Tough.

$$\bar{\rho} = \rho \left(\frac{x}{m_e}\right)^4$$

- Co-moving continuity equation $\frac{d}{dx}\bar{\rho} = \frac{1}{x}(\bar{\rho} 3\bar{P})$
- When does this approach work?

$$\frac{d}{dx}\bar{\rho} = \frac{1}{x}(\bar{\rho} - 3\bar{P})$$

ODE

$$x = m_e/T_{\nu}$$
$$y = p/T_{\nu}$$
$$z = T_{\gamma}/T_{\nu}$$

•
$$\frac{dz}{dx} = \frac{\frac{1}{x}(\bar{\rho}^0 - 3\bar{P}^0) - \frac{\partial\bar{\rho}^0}{\partial x} + G_1(x,z)}{\frac{\partial\bar{\rho}^0}{\partial z} + G_2(x,z)}$$

eg
$$P^0 = \frac{T}{\pi^2} \int_0^\infty dp \ p^2 \ln \left[\frac{(1 + e^{-E_e/T})^2}{(1 - e^{-E_{\gamma}/T})} \right]$$

- G's encode QED corrections. Interplay.
- Want $\frac{dz}{dx}$, tells us how $z\left(T_{\gamma}/T_{\nu}\right)$ evolves. $\Delta N_{\rm eff} = -12\frac{\delta z}{z_0}$, $\delta z = z_{\rm fin} z_0$, $z_0 = \left(\frac{11}{4}\right)^{1/3}$.

$$\frac{dz}{dx} = \frac{\frac{1}{x} (\bar{\rho}^0 - 3\bar{P}^0) - \frac{\partial \bar{\rho}^0}{\partial x} + G_1}{\frac{\partial \bar{\rho}^0}{\partial z} + G_2}$$
Higher order

$$x = m_e/T_{\nu}$$
$$y = p/T_{\nu}$$
$$z = T_{\gamma}/T_{\nu}$$

•
$$G_1^{(i)} = \frac{1}{x} \left(\bar{\rho}^{(i)} - 3\bar{P}^{(i)} \right) - \frac{\partial \bar{\rho}^{(i)}}{\partial x}$$

•
$$G_2^{(i)} = \frac{\partial \overline{\rho}^{(i)}}{\partial z}$$

• e.g
$$P^{(2)} = -\int_0^\infty \frac{\mathrm{d}p}{2\pi^2} \left[\frac{p^2}{E_e} \frac{\delta m_e^2}{1 + e^{E_e/T}} + \frac{p}{2} \frac{\delta m_\gamma^2}{e^{p/T} - 1} \right]$$

journals.aps.org/prd/pdf/10.1103/PhysRevD.49.611

$$\mathcal{O}(e^2)$$

$$\mathcal{O}(e^3)$$

Solutions

• Wrote C++ code to solve

- Sensitive to T_D .
- $T_D = 1.41 \text{ MeV } [3],$
- $N_{\rm eff}^{(2)} = 3.046;$
- $N_{\rm eff}^{(3)} = 3.045$
- Similar to inc. ν osc.

$$\frac{dz}{dx} = \frac{\frac{1}{x} (\bar{\rho}^0 - 3\bar{P}^0) - \frac{\partial \bar{\rho}^0}{\partial x} + G_1}{\frac{\partial \bar{\rho}^0}{\partial z} + G_2}$$

Future

$$x = m_e/T_v$$
$$y = p/T_v$$
$$z = T_\gamma/T_v$$

• Even higher order pointless?

• Include non-instantaneous neutrino decoupling

• Neutrino oscillations

$$\frac{dz}{dx} = \frac{\frac{1}{x} (\bar{\rho}^0 - 3\bar{P}^0) - \frac{\partial \bar{\rho}^0}{\partial x} + G_1}{\frac{\partial \bar{\rho}^0}{\partial z} + G_2}$$

Conclusion

$$x = m_e/T_{\nu}$$
$$y = p/T_{\nu}$$
$$z = T_{\gamma}/T_{\nu}$$

- What is ρ_{ν}/ρ_{γ} ?
- Find P and ρ .
- Annihilations. Thermal effects

• Use continuity equation, solve for z. Get N_{eff}