Chapter 1 → Matter and Measurement

Uncertainty in Measurment

- Number associated with measurement is obtained from measuring device
- Measurements always have some degree of uncertainty
 - o Important to indicate uncertainty

Significant Figures and Calculations

- Rules for counting significant figures
 - 1) Non-zero integers are always significant
 - 2) Zeros can be interpreted differently
 - a) Leading zeros are zeros that preceed all non-zero digits
 - These are not significant
 - b) Captive zeros are zeros inbetween nonzero digits
 - ❖ These are significant
 - c) Trailing zeros are zeros to the right end of a number
 - Only significant if decimal point is present
 - 3) Exact numbers have ∞ significant figures
- Advantages of Exponential Notation
 - 1) Easy indicated
 - 2) Less zeros are needed to be copied

Dimensional Analysis

- Also known as unit factor method
- Used to convert between units

Density

- The mass of a substance per unit of volume of a substance
- $\rho = \frac{m}{v}$
- Density of a liquid can easily be determined by weighing an accurately known volume of a liquid

^{**}Limit the number of significant figures to the number with least amount in the equation

Classification of Matter

- Matter is anything that has mass and occupies space
- Three states of matter
 - Liquid
 - definite volume; no definite shape
 - o Gas
 - No definite volume or shape
 - Highly compressable
 - Easy to decrease volume of a gas (relativly)
 - Solid
 - Rigid; fixed volume and shape
 - o Solids and liquids are *slightly* compressable
- Most matter is a mixture of pure substances
 - Examples→ wood, gasoline, wine, soil, air
- Mixtures have variable composition
 - Homogenous
 - Visibly, indistinguishable parts
 - Heterogenous
 - Visible, *distinguishable* parts
- Mixtures can be separated by physical means
- Pure substances have a constant composition
 - Can be compounds or free elements
- Boiling and freezing are physical changes
- Distilation
 - o Proces that depends on differences in volatility
 - Volatility→ how readily substances become gasses
- Filtration
 - Used to separate a mixture of liquids and solids
- Chromatography
 - Uses stationary phase (soilid) and mobile phase (liquid)
 - Paper chromatography
 - Porous paper used for stationary phase
 - Drop of liquid is placed on paper then dipped into a liquid
- Compound →substance with constant composition but can be broken down by chemical means
- Chemical change → Given substance becomes a *new* substance with *different* properties and composition
- Elements → cannot be decomposed by chemical or physical means

•
$$T_K = T_C + 273.15$$

•
$$T_C = (T_F - 32)(\frac{5}{9})$$

Temperature Conversions

•
$$T_K = T_C + 273.15$$

• $T_C = (T_F - 32)(\frac{5}{9})$

• $T_F = (T_C \times \frac{9}{5}) + 32$