Студент: Анвар Тлямов

Группа: М4140

Дата: 31 марта 2021 г.

Задание №1

2)

$$L = \{ w \in \{a, b\}^* | |w|_a \ge |w|_b \}$$
 (1)

Пусть L регулярный язык, рассмотрим слово $w = b^n a^n = xyz$, $|xy| \le n$.

Пусть $y=b^r$, где $1\leq r\leq n$. Тогда $x=b^l$, где $0\leq l\leq n$. $xy^kz=b^{n-r+kr}a^n$

Возьмем $k=2:xy^kz=b^{n+r}a^n$. Получаем слово не из языка, что противоречие.

$$L = \{ w \in \{a, b\}^* | |w|_a \neq |w|_b \}$$
 (2)

Давайте возьмем дополнение к языку, то есть язык, в котором количество букв a равно количеству букв b. Теперь же я хочу воспользоваться тем, что пересечение двух регулярных языков регулярно. Давайте возьмем в качестве второго языка $\{a^*b^*\}$. Ну просто порядок задал таким образом. Пересечение будет равно языку, в котором количество букв а и b совпадают и порядок: первыми идут a, потом идут b. Возьмем тогда слово $w = a^n b^n$ из такого пересеченного языка.

 $y = a^r$, где $0 \le r \le n$. $x = a^l$, где $0 \le l \le n$. Ясно, что $xy^kz = a^{n-r+kr}b^n$ и при k=2 достаточно, чтобы получить противоречие.

6)

$$L = \{\alpha a \beta | \alpha, \beta \in \{a, b\}^*, |\alpha|_b > |\beta|_a\}$$
(3)

Давайте возьмем $|\alpha|=n$ Пусть слово будет таким: $w=xyz=(b^n)a(a^{n-1})$. В качестве возьмем $y = b^r$, где $1 \le r \le n$.

 $x=b^l$, где $0 \le l \le n-1$

Тогда $xy^kz=b^{n-r+kr}aa^{n-1}$

Пусть k=0: $b^{n-r}aa^{n-1}$, так как r у нас с единицы начинается, то это не является нашим языком, противоречие.

8)

$$L = \{wa^m | 1 < |w|_b < m\} \tag{4}$$

Давайте возьмем m=n, тогда $w=b^n$ и нашим словом будем $W=b^na^n$.

Пусть $y=b^r$, где $1\leq r\leq n;$ $x=b^l,$ где $0\leq l\leq n-1.$ $xy^kz=b^{n-r+rk}a^n$

Возьмем $k = 2 : b^{n+r}a^n$, противоречие