Résumé des algorithmes d'optimisation vus en cours

Nom	Problème	Algorithme	Hypothèses	Convergence
Gradient	$\min_{x} f(x)$	$x_{k+1} = x_k - \frac{1}{L}\nabla f(x_k)$	f dérivable et ∇f L -lipschitzien $+$ f convexe $+$ f μ -fortement convexe	$f(x_{k+1}) \le f(x_k)$ $f(x_k) - f(x^*) \le \frac{L \ x_0 - x^*\ ^2}{2k}$ $f(x_k) - f(x^*) \le \left(1 - \frac{\mu}{L}\right)^k L \ x_0 - x^*\ ^2$
Gradient proximal	$\min_{x} f(x) + g(x)$ $F = f + g$	$x_{k+1} = \operatorname{prox}_{\frac{1}{L}g} \left(x_k - \frac{1}{L} \nabla f(x_k) \right)$	$ abla f$ L-lipschitzien $+ f$ et g convexes $+ F$ μ -fortement convexe	$F(x_{k+1}) \le F(x_k)$ $F(x_k) - F(x^*) \le \frac{L \ x_0 - x^*\ ^2}{2k}$ $F(x_k) - F(x^*) \le \left(1 - \frac{\mu}{L}\right)^k L \ x_0 - x^*\ ^2$
Uzawa (ou méthode des multiplicateurs)	$ \min_{x} f(x) $ sc: $Ax = b$	$x_{k+1} = \arg\min_{x} f(x) + \langle \lambda_k, Ax - b \rangle$ $\lambda_{k+1} = \lambda_k + \frac{\mu}{\ A\ ^2} (Ax_{k+1} - b)$	f μ -fortement convexe	$(x_k, \lambda_k) o (x^*, \lambda^*)$ (x^*, λ^*) point selle du lagrangien
Décomposition/ coordination	$\min_{x} f(x) + g(Mx)$	$x_{k+1} = \arg\min_{x} f(x) + \langle \lambda_k, Mx \rangle$ $z_{k+1} = \arg\min_{z} g(z) - \langle \lambda_k, z \rangle$ $\lambda_{k+1} = \lambda_k + \frac{\mu}{\ MM^T + I\ } (Mx_{k+1} - z_{k+1})$	f et g μ -fortement convexes	$(x_k, z_k, \lambda_k) \to (x^*, Mx^*, \lambda^*)$
ADMM	$\min_{x} f(x) + g(Mx)$	$x_{k+1} = \arg\min_{x} f(x) + \langle \lambda_k, Mx \rangle + \frac{\gamma}{2} Mx - z_k ^2$ $z_{k+1} = \arg\min_{z} g(z) - \langle \lambda_k, z \rangle + \frac{\gamma}{2} Mx_{k+1} - z ^2$ $\lambda_{k+1} = \lambda_k + \gamma (Mx_{k+1} - z_{k+1})$	f et g convexes	$\lambda_k \to \lambda^* \in \arg\max_{\lambda} \mathcal{D}(\lambda)$ $Mx_k - z_k \to 0$ $f(x_k) + g(z_k) \to f(x^*) + g(Mx^*)$