Lunes	Martes	Miércoles	Jueves	Viernes
 Conceptos básicos 	One-way ANOVA	LM Simples	• LM múltiples con interacción	 Resolución de práctica
• T-test	Two-way ANOVA	• LM múltiples sin interacción		(?) ¿Cambio de hora? LM mixtos GLM Cervezas

Repaso de Conceptos básicos y T-test

Asunciones: Todos los análisis estadísticos asumen ciertas características de los datos.
 Se deben comprobar <u>antes</u> de llevar a cabo el modelo

Normalidad

>shapiro.test(db\$Mass)

Shapiro-Wilk normality test

data: db\$Mass

W = 0.98599, p-value = 0.2366

H0: Distribución normal

Ha: Distribución no normal

Homogeneidad de varianza (Homocedasticidad)

```
> leveneTest(db$Mass~db$KnownSex)
Levene's Test for Homogeneity of Variance (center = median)
```

H0: Homogeneidad en varianza

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Ha: Heterogeneidad en varianza

Ambos son test estadísticos PERO **NO NOS PERMITEN COMPROBAR NUESTRA HIPÓTESIS**, SOLO LAS ASUNCIONES DEL MODELO A UTILIZAR

• Varianza vs. Rango: Ambas son medidas de dispersión, pero...

Varianza:

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$$

Rango: mín y máx de variable numérica

Repaso de Conceptos básicos y T-test

T-test

Comparar dos grupos
 H0= las medias de los dos grupos son iguales
 Ha= las medias de los dos grupos son distintas
 >t.test(Y ~ X)

ANOVA (One-way)

Comparar más de dos grupos

H0= La media de los grupos no difiere

Ha= La media de los grupos difiere al menos entre dos grupos

>aov(Y ~ X) %>%summary()

ANOVA (Two-way)

• Comparar el efecto de la combinación de varios factores

H0= La media de los grupos no difiere

Ha= La media de los grupos difiere al menos entre dos grupos

>aov(Y ~ X1* X2) %>%summary()

Estadística aplicada en R Modelos Lineales:

Regresión simple Regresión múltiple sin interacción Regresión múltiple con interacción

-Febrero 2021-

Carlota Solano Álvaro Arredondo

1. ¿Qué es?

Es un método de estimación de la relación entre una variable dependiente y otra independiente.

→ El objetivo es encontrar la línea que mejor defina los datos

2. ¿Cuándo se puede utilizar?

Cuando quieres definir cómo se relacionan dos elementos.

Correlación no implica causalidad

1. ¿Qué es?

Es un método de estimación de la relación entre una variable dependiente y otra independiente.

→ El objetivo es encontrar la línea que mejor defina los datos

2. ¿Cuándo se puede utilizar?

Cuando quieres definir cómo se relacionan dos elementos.

Correlación no implica causalidad

Global Average Temperature vs. Number of Pirates

1. ¿Qué es?

Es un método de estimación de la relación entre una variable dependiente y otra independiente.

→ El objetivo es encontrar la línea que mejor defina los datos

2. ¿Cuándo se puede utilizar?

Cuando quieres definir cómo se relacionan dos elementos.

Correlación no implica causalidad

Global Average Temperature vs. Number of Pirates

1. ¿Qué es?

Es un método de estimación de la relación entre una variable dependiente y otra independiente.

→ El objetivo es encontrar la línea que mejor defina los datos

2. ¿Cuándo se puede utilizar?

Cuando quieres definir cómo se relacionan dos elementos.

Correlación no implica causalidad

3. ¿Qué tipo de datos se necesitan?

Variable respuesta (dep.; y) → Numérica y continua

Variable explicativa (indep.; x) → Numérica y continua

$$y = a + m x$$

$$y_i = b_0 + b_1 x_i + \varepsilon_i$$

Intercepto Pendiente Error o residuo

1. ¿Qué es?

Es un método de estimación de la relación entre una variable dependiente y otra independiente.

→ El objetivo es encontrar la línea que mejor defina los datos

2. ¿Cuándo se puede utilizar?

Cuando quieres definir cómo se relacionan dos elementos.

Correlación no implica causalidad

3. ¿Qué tipo de datos se necesitan?

Variable respuesta (dep.; y) → Numérica y continua

Variable explicativa (indep.; x) → Numérica y continua

$$y = a + m x$$

$$y_i = b_0 + b_1 x_i + \varepsilon_i$$

Intercepto Pendiente Error o residuo

 $\varepsilon = valor \, real - predicho \, por \, modelo$

1. ¿Qué es?

Es un método de estimación de la relación entre una variable dependiente y otra independiente.

→ El **objetivo** es encontrar la línea que mejor defina los datos = **Encontrar los valores de b0 y b1 que nos permiten minimizar la suma de los cuadrados de los residuos**

$$y_i = b_0 + b_1 x_i + \varepsilon_i$$

IQ Scores

1. ¿Qué es?

Es un método de estimación de la relación entre una variable dependiente y otra independiente.

→ El **objetivo** es encontrar la línea que mejor defina los datos = **Encontrar los valores de b0 y b1 que nos**

permiten minimizar la suma de los cuadrados de los residuos

$$y_i = b_0 + b_1 x_i + \varepsilon_i$$

$$SSres = \sum_{i=1}^{N} (\boldsymbol{\varepsilon_i})^2$$

1. ¿Qué es?

Es un método de estimación de la relación entre una variable dependiente y otra independiente.

→ El **objetivo** es encontrar la línea que mejor defina los datos = **Encontrar los valores de b0 y b1 que nos**

permiten minimizar la suma de los cuadrados de los residuos

$$y_i = b_0 + b_1 x_i + \varepsilon_i$$

$$SSres = \sum_{i=1}^{N} (\boldsymbol{\varepsilon_i})^2$$

1. ¿Qué es?

Es un método de estimación de la relación entre una variable dependiente y otra independiente.

→ El **objetivo** es encontrar la línea que mejor defina los datos = **Encontrar los valores de b0 y b1 que nos permiten minimizar la suma de los cuadrados de los residuos**

$$SSres = \sum_{i=1}^{n} (\varepsilon_i)^2 \rightarrow Mide la varianza no explicada por el modelo$$

$$SStotal = \sum_{i=1}^{n} (y_i - \bar{y})^2 \rightarrow Mide la varianza del modelo$$

$$R^2 = 1 - \frac{SSres}{SStotal} \rightarrow \text{proporción de varianza de}$$

la var. respuesta que está explicada por el modelo

1. ¿Qué es?

Es un método de estimación de la relación entre una variable dependiente y otra independiente.

→ El **objetivo** es encontrar la línea que mejor defina los datos = **Encontrar los valores de b0 y b1 que nos permiten minimizar la suma de los cuadrados de los residuos**

$$SSres = \sum_{i=1}^{n} (\varepsilon_i)^2 \rightarrow Mide la varianza no explicada por el modelo$$

$$SStotal = \sum_{i=1}^{n} (y_i - \bar{y})^2 \rightarrow Mide la varianza del modelo$$

$$R^2 = 1 - \frac{\mathit{SSres}}{\mathit{SStotal}} o \mathsf{proporción} \, \mathsf{de} \, \mathsf{varianza} \, \mathsf{de}$$

la var. respuesta que está explicada por el modelo

- 4. ¿Qué asunciones tiene?
- La relación entre variables es lineal.
- Distribución **normal** de los residuos (o de las variables) del modelo.
- Igualdad de varianza de los residuos en torno a la línea de la regresión.
- **Independencia** de las observaciones (i.e. de los datos).
- 5. Matemáticamente, ¿cuál es la hipótesis?

H0: No existe una relación entre las variables estudiadas

Ha: Existe una relación lineal entre las variables

- 6. ¿Cómo se corre en R?
 - > holi<-lm (y ~ x)
 > summary(holi)

- 4. ¿Qué asunciones tiene?
- La relación entre variables es lineal.
- Distribución **normal** de los residuos (o de las variables) del modelo.
- Igualdad de varianza de los residuos en torno a la línea de la regresión.
- **Independencia** de las observaciones (i.e. de los datos).

¡Ojo con los outliers → valores atípicos!

H0: No existe una relación entre las variables estudiadas

6. ¿Cómo se corre en R?

Ha: Existe una relación lineal entre las variables

7. ¿Cómo se interpreta el resultado de R?

```
> lmtree<-lm(trees$volume~trees$Height)
                                             Estimación de coeficientes que definen la línea de regresión
> summary(1mtree)
                                             - (Intercept) = intercepto = b0: Valor de y cuando x=0
call:
                                              - Var. explicativa = pendiente = b1: Por cada incremento en una
lm(formula = trees$volume ~ trees$Height)
                                                                        unidad en la var. explicativa, la var.
Residuals:
                                                                        respuesta varía b1
             10 Median
    Min
                                     Max
-21.274 -9.894 -2.894
                                  29.852
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
             -87.1236
                          29.2731 -2.976 0.005835 **
trees$Height
                           0.3839
               1.5433
                                    4.021 0.000378 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 13.4 on 29 degrees of freedom
Multiple R-squared: 0.3579,
                               Adjusted R-squared: 0.3358
F-statistic: 16.16 on 1 and 29 DF, p-value: 0.0003784
```

7. ¿Cómo se interpreta el resultado de R?

```
> lmtree<-lm(trees$Volume~trees$Height)
                                              Estimación de coeficientes que definen la línea de regresión
> summary(1mtree)
                                              - (Intercept) = intercepto = b0: Valor de y cuando x=0
call:
                                               - Var. explicativa = pendiente = b1: Por cada incremento en una
lm(formula = trees$Volume ~ trees$Height)
                                                                          unidad en la var. explicativa, la var.
Residuals:
                                                                          respuesta varía b1
             10 Median
    Min
                                      Max
-21.274 -9.894
                 -2.894
                                   29.852
                                                                      (Poco valor biológico) Cuando un árbol tiene
Coefficients:
                                                                      una altura cero, su volumen es -87.12 dm^3
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
             -87.1236
                          29.2731
                                    -2.976 0.005835 **
                                                                      Por cada dm de altura más, el volumen del
trees$Height
                1.5433 -
                          0.3839
                                     4.021 0.000378 ***
                                                                      árbol incrementa 1.54 dm<sup>3</sup>.
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 13.4 on 29 degrees of freedom
Multiple R-squared: 0.3579,
                                Adjusted R-squared: 0.3358
F-statistic: 16.16 on 1 and 29 DF, p-value: 0.0003784
```

7. ¿Cómo se interpreta el resultado de R?

```
> lmtree<-lm(trees$Volume~trees$Height)
                                              Estimación de coeficientes que definen la línea de regresión
> summary(1mtree)
                                              - (Intercept) = intercepto = b0: Valor de y cuando x=0
call:
                                              - Var. explicativa = pendiente = b1: Por cada incremento en una
lm(formula = trees$Volume ~ trees$Height)
                                                                         unidad en la var. explicativa, la var.
Residuals:
                                                                         respuesta varía b1
    Min
             10 Median
                                     Max
-21.274 -9.894 -2.894
                                  29.852
                                                           Std. Error = Error estándar: precisión de la media estimada
                                                            (!) \pm 1.96* s.e.= 95%Cl
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                          29.2731 -2.976 0.005835 **
(Intercept)
             -87.1236
trees$Height
                           0.3839 4.021 0.000378
               1.5433
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Signif. codes:
Residual standard error: 13.4 on 29 degrees of freedom
                               Adjusted R-squared: 0.3358
Multiple R-squared: 0.3579,
F-statistic: 16.16 on 1 and 29 DF, p-value: 0.0003784
```

7. ¿Cómo se interpreta el resultado de R?

```
> lmtree<-lm(trees$Volume~trees$Height)
                                               Estimación de coeficientes que definen la línea de regresión
> summary(1mtree)
                                               - (Intercept) = intercepto = b0: Valor de y cuando x=0
call:
                                                - Var. explicativa = pendiente = b1: Por cada incremento en una
lm(formula = trees$Volume ~ trees$Height)
                                                                           unidad en la var. explicativa, la var.
Residuals:
                                                                           respuesta varía b1
    Min
              10 Median
                                       Max
-21.274 -9.894 -2.894
                                   29.852
                                                             Std. Error = Error estándar: precisión de la media estimada
                                                              (!) \pm 1.96* s.e.= 95%Cl
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                                                                  \rightarrow T- value: estimación/s.e. --> \uparrow t value= \downarrow s.e.
                                    -2.976 0.005835 **
(Intercept)
             -87.1236
                           29.2731
trees$Height
                            0.3839
                                     4.021 0.000378 ***
               1.5433
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 13.4 on 29 degrees of freedom
Multiple R-squared: 0.3579,
                                Adjusted R-squared: 0.3358
F-statistic: 16.16 on 1 and 29 DF, p-value: 0.0003784
```

7. ¿Cómo se interpreta el resultado de R?

```
> lmtree<-lm(trees$Volume~trees$Height)
                                                Estimación de coeficientes que definen la línea de regresión
> summary(1mtree)
                                                - (Intercept) = intercepto = b0: Valor de y cuando x=0
call:
                                                 - Var. explicativa = pendiente = b1: Por cada incremento en una
lm(formula = trees$Volume ~ trees$Height)
                                                                             unidad en la var. explicativa, la var.
Residuals:
                                                                             respuesta varía b1
              10 Median
    Min
                                        Max
-21.274 -9.894
                  -2.894
                                    29.852
                                                              Std. Error = Error estándar: precisión de la media estimada
                                                               (!) ±1.96* s.e.= 95%CI
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                                                                   \rightarrow T- value: estimación/s.e. --> \uparrow t value= \downarrow s.e.
                                     -2.976 0.005835
(Intercept)
              -87.1236
                           29.2731
trees$Height
                            0.3839
                                      4.021 0.000378
                1.5433
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
Signif. codes:
                                                                       Pr(>|t|)= p-valor y significancia \rightarrow Valores
                                                                        estadísticamente distintos (o no) de cero.
Residual standard error: 13.4 on 29 degrees of freedom
Multiple R-squared: 0.3579,
                                   Adjusted R-squared: 0.3358
F-statistic: 16.16 on 1 and 29 DF, p-value: 0.0003784
```

7. ¿Cómo se interpreta el resultado de R?

```
> lmtree<-lm(trees$volume~trees$Height)
                                                    Residual standard error: desviación estándar de residuos.
> summary(1mtree)
                                                             Cuanto menor sea el valor, mejor es la predicción
call:
lm(formula = trees$Volume ~ trees$Height)
Residuals:
    Min
             10 Median
                                    Max
-21.274 -9.894 -2.894 12.068
                                 29.852
Coefficients:
             Estimate Std. Error t va(lue Pr(>|t|)
                         29.2731
(Intercept) -87.1236
                                  -2.976 0.005835
trees$Height 1.5433
                          0.3839
                                   4.021 0.000378
                        0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 13.4 on 29 degrees of freedom
                               Adjusted R-squared: 0.3358
Multiple R-squared: 0.3579,
F-statistic: 16.16 on 1 and 29 DF, p-value: 0.0003784
```

7. ¿Cómo se interpreta el resultado de R?

```
> lmtree<-lm(trees$volume~trees$Height)
                                                     Residual standard error: desviación estándar de residuos.
> summary(1mtree)
                                                              Cuanto menor sea el valor, mejor es la predicción
call:
lm(formula = trees$Volume ~ trees$Height)
                                                        Degrees of freedom: grados de libertad:
Residuals:
    Min
             10 Median
                                     Max
-21.274 -9.894 -2.894 12.068
                                  29.852
Coefficients:
             Estimate Std. Error t value Pr(/>
(Intercept)
             -87.1236
                         29.2731
                                   -2.976 \ 0.005835
trees$Height
               1.5433
                          0.3839
                                    4.021 0.000378
                        0.001 '/**'
Residual standard error: 13.4 on 29 degrees of freedom
                                Adjusted R-squared: 0.3358
Multiple R-squared: 0.3579,
F-statistic: 16.16 on 1 and 29 DF, p-value: 0.0003784
```

7. ¿Cómo se interpreta el resultado de R?

```
> lmtree<-lm(trees$volume~trees$Height)
                                                      Residual standard error: desviación estándar de residuos.
> summary(1mtree)
                                                               Cuanto menor sea el valor, mejor es la predicción
call:
lm(formula = trees$Volume ~ trees$Height)
                                                        Degrees of freedom: grados de libertad
Residuals:
    Min
             10 Median
                                     Max
-21.274 -9.894 -2.894 12.068
                                  29.852
                                                             (...) R-squared: R^2: proporción de la varianza
                                                            explicada por el modelo.
Coefficients:
             Estimate Std. Error t va(lue Pr(/>|t|)
             -87.1236
                                   -2.976 0.005835
(Intercept)
                          29.2731
                                    4.021 0.000378
trees$Height
               1.5433
                           0.3839
                                             0.05 '.' 0.1 ' '1
                   '***' 0.001 '/**'
Residual standard error: 13.4 on 29 degrees of freedom
                              Adjusted R-squared: 0.3358
Multiple R-squared: 0.3579,
F-statistic: 16.16 on 1 and 29 DF, p-value: 0.0003784
```

7. ¿Cómo se interpreta el resultado de R?

```
> lmtree<-lm(trees$Volume~trees$Height)
                                                       Residual standard error: desviación estándar de residuos.
> summary(1mtree)
                                                                Cuanto menor sea el valor, mejor es la predicción
call:
lm(formula = trees$Volume ~ trees$Height)
                                                          Degrees of freedom: grados de libertad:
Residuals:
             10 Median
                                      Max
-21.274 -9.894 -2.894 12.068
                                   29.852
                                                              (...) R-squared: R^2: proporción de la varianza
                                                              explicada por el modelo.
Coefficients:
              Estimate Std. Error t va(lue Pr(/>|t|)
                                    -Z.976 0/005835
(Intercept)
             -87.1236
                          29.2731
                                     4.021 0.000378
trees$Height
               1.5433
                           0.3839
                                              0.05 '.' 0.1 ' '1
                         0.001
                                                                     F-stats & p-value: Test general para comprobar
Residual standard error: 13.4 on 29 degrees of freedom
                                                                     la H0 \rightarrow Todos los coeficientes del modelo son
                               Adjusted R-squared: 0.3358
Multiple R-squared: 0.3579,
                                                                     igual a cero.
F-statistic: 16.16 on 1 and 29 DF, p-value: 0.0003784
```

8. ¿Cómo se puede representar?

- > plot(data\$y ~ data\$x)
- > abline(a=intercepto, b=pendiente)

R

4.1. Ejercicios de Modelos Lineales

Ejercicio: 4. Ejer_LMs (primera parte)

1. ¿Qué es?

Es un método de estimación de la relación entre una variable dependiente y varias variables independientes.

→ El objetivo es encontrar la línea que mejor defina los datos

2. ¿Cómo difiere del modelo lineal simple? Incluimos más de una variable explicativa para estudiar cómo todas afectan a nuestra variable respuesta

$$y_i = b_0 + b_1 x_{i1} + b_2 x_{i2} + \cdots + \varepsilon_i$$
Intercepto

From Effecto de x1

From o residuo

3. ¿Qué tipo de datos se necesitan? Variable respuesta (dep.; y) \rightarrow Numérica y continua Variables explicativas (indep.; x) \rightarrow Continuas y/o categóricas

Variables continuas → pendiente: efecto del incremento de una unidad de x sobre y Variables categóricas → intercepto: efecto del cambio de grupo de x sobre y

- 4. ¿Qué asunciones tiene?
- Variables indeps. (x) no correlacionadas
- Principio de parsimonia
- Relación lineal entre vars. respuesta y explicativas
- Distribución normal de los residuos del modelo (o de las variables numéricas)
- Igualdad de varianza de los residuos en torno a la línea de la regresión
- Independencia de las observaciones ¡Ojo con los outliers!

$$y_i = b_0 + b_1 cont. x_{i1} + b_2 cat. x_{i2} + \varepsilon_i$$

5. Matemáticamente, ¿cuál es la hipótesis?

HO: No existe una relación entre las variables estudiadas

$$b1 = 0$$

H0: Los distintos grupos de la var. categórica no difieren en la variable respuesta

$$b0 = b2$$

Ha: Existe una relación lineal entre las variables b1 ≠ 0

Ha: Los distintos grupos de la var. categórica no difieren en la variable respuesta

6. ¿Cómo se corre en R?

- > guisante<-lm(data=db, y ~ xcont + xcat)</pre>
- > summary(guisante)

7. ¿Cómo se interpreta el resultado de R?

E.g. El arrendajo azul requiere de un pico largo para alcanzar a sus presas (larvas dentro de troncos). Queremos estudiar si aquellos individuos con pico más largo, tienen una mayor masa corporal, y si esta masa difiere entre machos y hembras. ¿Presentan una mayor masa aquellos individuos que tienen un pico más largo, y difiere esta entre machos y hembras?

Multiple R-squared: 0.1944,

7. ¿Cómo se interpreta el resultado de R?

E.g. El arrendajo azul requiere de un pico largo para alcanzar a sus presas (larvas dentro de troncos). Queremos estudiar si aquellos individuos con pico más largo, tienen una mayor masa corporal, y si esta masa difiere entre machos y hembras. ¿Existe una relación entre la masa y la longitud del pico en arrendajos azules, y difieren machos y hembras en su morfología?

Adjusted R-squared: 0.181

```
> m1<-lm(data=BJ, Mass~BillLength+KnownSex)</pre>
> summary(m1)
Call:
lm(formula = Mass ~ BillLength + KnownSex, data ≥ BJ)
Residuals:
                    Median
     Min
               10
                                          Max
-11.1547 -2.9219
                              2.8162
                    0.2954
                                      10.0722
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
             40.0083
                          9.6042
BillLength
              1.2321
                          0.3965
KnownSexM
              1.8436
                          0.9287
                                   1.985
                                          0.04940 *
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
Signif. codes:
Residual standard error: 4.314 on 120 degrees of freedom
```

F-statistic: 14.48 on 2 and 120 DF, p-value: 2.326e-06

Estimación de coeficientes que definen la línea de regresión

- (Intercept) = intercepto <u>de grupo de referencia</u>: Valor de y cuando x=0

- Var. Explicativa <u>continua</u> = <u>pendiente</u>: efecto del incremento de una unidad de Head sobre Mass

- Var. Explicativa <u>categórica</u> = <u>intercepto</u>: efecto del cambio de grupo <u>respecto al grupo de referencia</u>

(Poco valor biológico) Cuando un arrendajo HEMBRA no tiene pico, su masa es de 40.01 g.

Por cada mm de pico más, la masa de los arrendajos HEMBRA Y MACHO incrementa 1.23 g.

Cuando un arrendajo MACHO no tiene pico, su masa es de (40.01+1.84) g.

7. ¿Cómo se interpreta el resultado de R?

E.g. El arrendajo azul requiere de un pico largo para alcanzar a sus presas (larvas dentro de troncos). Queremos estudiar si aquellos individuos con pico más largo, tienen una mayor masa corporal, y si esta masa difiere entre machos y hembras. ¿Existe una relación entre la masa y la longitud del pico en arrendajos azules, y difieren machos y hembras en su morfología?

```
> m1<-lm(data=BJ, Mass~BillLength+KnownSex)</pre>
> summary(m1)
Call:
lm(formula = Mass ~ BillLength + KnownSex, data = BJ)
Residuals:
                   Median
     Min
               1Q
                                  3Q
                                          Max
-11.1547 -2.9219 0.2954
                            2.8162 10.0722
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
             40.0083
                         9.6042
BillLength
              1.2321
                         0.3965
KnownSexM
              1.8436
                         0.9287
                                   1.985
                                          0.04940 *
```

Significancia de coeficientes que definen la línea de regresión

- Intercepto de grupo de referencia difiere significativamente de cero
- -La pendiente (var. explicativa <u>continua</u>) difiere significativamente de cero, i.e. existe una relación entre variables
- -Intercepto del <u>segundo grupo alfanumérico</u> difiere significativamente del intercepto <u>del grupo de referencia</u>

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '

Residual standard error: 4.314 on 120 degrees of freedom Multiple R-squared: 0.1944, Adjusted R-squared: 0.181 F-statistic: 14.48 on 2 and 120 DF, p-value: 2.326e-06

8. ¿Cómo se puede representar?

8. ¿Cómo se puede representar?

R

4.2. Ejercicios de Modelos Lineales

Ejercicio: 4. Ejer_LMs (segunda parte)