1 TODO!!

- (a) Finish symplectic geometry course
 - (a) figure out if symplectic toric is the same as projective toric variety (projectivity needed to come from a polytope and also to be Kahler)
 - (b) review coisotropic reduced and write some notes
 - (c) hyperkahler reduction examples
 - (d) are there examples of noncompact hyperkahlers?
 - (e) work out the kinks in notes on hamiltonian actions
- (b) review killing homotopy groups columbia lectures and write some notes
- (c) figure out those damn jet bundles and connections on principal bundles
 - (a) RMK: π^*E is NOT trivial for a vector bundle let alone a fiber bundle. it does get equiped with a canonical section but for a vector bundle this is just the trivial section, only for a principal bundle does giving a section trivialize it.
 - (b) role of atiyah sequence vs jet bundle sequence
 - (c)
- (d) spectral sequences for tor and ext in derived category
 - (a) application to universal coefficient theorem
 - (b) Kunneth spectral sequence
 - (c) Kunneth formula for smash product?
 - (d) why are derived functors triangulated
 - (e) derived functors in terms of Kan extensions (NOTES)
- (e) write notes on universal morphisms
- (f) G-action of X/Y induces map Descent data X/Y to G-equivariant sheaves
 - (a) isomorphism when X/Y is a G-cover i.e. $X \to Y$ is a G-torsor
 - (b) write down explicit G-equivariant structure on Ω_X
 - (c) Galois descent derive explicit form
- (g) Weil restriction
 - (a) write down trivialization after going back up
 - (b) Galois descent in explicit form
- (h) notes on Galois actions on schemes
- (i) notes on Frobenii
- (j) notes on universal constructions in math with examples

2 Some Connection Musings

Definition 2.0.1. Let $f: E \to X$ be a smooth surjection (in the smooth category, what should it be in the algebraic category?) then an *Erhesmann connection* is a splitting of the sequence of vector bundles,

$$0 \longrightarrow \ker \mathrm{d} f \longrightarrow TE \longrightarrow \pi^*TX \longrightarrow 0$$

where we usually call $V = \ker df$ the vertical bundle. In algebraic language, V is the dual of the relative differentials so the connection corresponds to a splitting of,

$$0 \longrightarrow f^*\Omega_X \longrightarrow \Omega_E \longrightarrow \Omega_{E/X} \longrightarrow 0$$

Remark. Such splittings are supposed to correspond to smooth sections of the map $J^1(E) \to E$. We now explain how this works. Unfortunately, I don't know a good unified language to describe the jet bundles so I will give the algebraic and smooth definitions.

Definition 2.0.2. Given a smooth surjection $f: E \to X$, consider the *n*-th thickened diagonal, $X \to X_n \to X \times_S X$. Then we consider the functor sending $T \to S$ to pairs of maps $T \to X$ and $T \times_X X_n \to E$ such that the diagram,

$$E \xrightarrow{f} X \\ \uparrow \qquad \uparrow^{\pi_1} \\ T \times_X X_n \longrightarrow X_n \\ \downarrow \qquad \downarrow^{\pi_2} \\ T \longrightarrow X$$

commutes. Then the jet scheme $J_n(E/X)$ with maps $J_n(E/X) \to X$ and $J^n(E/X) \times_X X_n \to E$ represents this functor.

3 Counterexamples In Geometry

Example 3.0.1. The Hopf surface is the compact complex surface $H = \mathcal{C}^2 \setminus \{0\}/\mathbb{Z}$ where $\mathbb{Z} \subset \mathcal{C}^2$ via $(z_1, z_2) \mapsto (\lambda z_1, \lambda z_2)$ for $0 < \lambda < 1$. This surface has $h^{1,0} = 1$ but $h^{0,1} = 0$. Furthermore, H is diffeomorphic to $S^3 \times S^1$. This provides:

- (a) a compact complex manifold that is not Kähler
- (b) a compact complex manifold without Hodge symmetry
- (c) a compact complex manifold that is not symplectic $(H^2(H,\mathbb{Z})=0)$

Remark. From the exponential exact sequences,

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathcal{O}_X \xrightarrow{\exp} \mathcal{O}_X^{\times} \longrightarrow 0$$

we have that,

4 Two Capacitors

Let $q_1(0) = Q$ and $q_2(0) = 0$ and $I = \dot{q}_1 = \dot{q}_2$ so $q = q_1 - q_2$ is constant so $q_1 = Q + q_2$. Now,

$$R\dot{q_2} + \frac{q_1}{C_1} + \frac{q_2}{C_2} = 0$$

Therefore,

$$\dot{q_2} = \frac{Q}{RC_1} + q_2 \left(\frac{1}{RC_1} + \frac{1}{RC_2}\right)$$