進階機器學習

國立中山大學 資訊工程系 張雲南

Course info

♦Instructor:

- ◆張雲南 Yun-Nan Chang
 - Room EC5006, TEL: (07) 525-2000-ext 4332
 - Email: ynchang@cse.nsysu.edu.tw

♦TA:

- ◆游辰生 m103040086@student.nsysu.edu.tw @ 電資EC5009B
- ◆陳啟嘉 m103040071@student.nsysu.edu.tw @ 電資EC5009B
- ♦Office Hour @ 電資EC5006
 - ◆Tue 10:00~12:00
 - ◆Thu 10:00~11:00

Course info

Pre-requisites:

- ◆ Python programming
- ◆ Basic machine learning concept

♦ Grading Policy:

◆ Homework	35~40%
◆ Final Project	15~25%
◆ Term Exam	30%
◆ Others	5~10%

♦ Course Homepage:

◆中山網路大學 http://cu.nsysu.edu.tw

♦ Notes:

◆ At most 2人/group

Teaching materials

- Reference:
 - Ian Goodfellow and Yoshua Bengio, 2016, Deep Learning, The MIT Press, Cambridge, Massachusetts, London, England
 - Online videos
 - 台大NTU 李宏毅
 - 台大NTU 林軒田
- Handout Materials (Slides)
- Python package http://scikit-learn.org/
 - On-line e-book
- Data set http://www.kaggle.com

Course content

- Neural network & Backpropagation
- ◆Tensorflow/Pytorch
- Convolutional Neural Network (CNN)
- Object and Pose Detection
- **♦**GAN
- ♦ Recurrent Neural Network (RNN)
- Anomaly Detection
- Semi-supervised Learning

Al vs ML vs DL

Machine Learning

- **Train** a *model* by *data* to learn the mapping of *features (X)* to the results (Y). $f: X \to Y$
 - ◆The *model* is used to realize the mapping function, and will be implemented by the software.
 - ◆ Depending on the relationship between X and Y, different types of models may be chosen.
 - ◆The dimension of X and Y may be low or high, but they all have to be encoded by numbers.

Regression

$$\diamond y = f(x_1, x_2, \dots, x_n)$$

- \diamond Target y is a float.
- ♦ For example:
 - ♦ Oil price forecast
 - House price estimation

◆Use *data* to learn *hypothesis functions* based on different machine-learning *models*.

^{*} The data range was chosen from July 2005 onwards because the Ringgit was unpegged after July 2005.

Classification

- $\diamond y = f(x_1, x_2, \dots, x_n)$
- ♦ Target y is a binary vector or discrete number, which corresponds to some categories.
- ♦ For example:
 - ♦ Iris flowers classification
 - ♦ Yes/NO, Live/Dead, Positive/negative,.....

Iris Versicolor

Iris Setosa

Iris Virginica

Pattern recognition

- $\diamond y = f(x_1, x_2, \dots, x_n)$
- ◆Target y is a list of triplets (class, w, h)
- ♦ For example:
 - Object Detection

Data generation

$$\diamond y = f(x_1, x_2, \dots, x_n)$$

➤ Target y is a vector.

(1.2,0.8)

Hello

I'm fine

this bird is red with white and has a very short beak

Segmentation

$$\diamond y = f(x_1, x_2, \dots, x_n)$$

◆Target y is a high-dimensional vector consisting of discrete numbers.

Semantic Segmentation

Instance Segmentation

Action choice

$$\diamond y = f(x_1, x_2, \dots, x_n)$$

- ♦ Target y corresponds to the actions to be taken.
- ♦ For example:
 - ◆AlphaGo
 - ◆ Play video game

Face/Voice Identification

Keypoint Detection

Part affinity fields

Anomaly detection

Combinational Optimization

Supervised learning

♦Training stage

♦Inference stage

* Depend on whether the object function includes "label".

Supervised learning

♦Training stage

 Y_2 : Monkey

 Y_4 : Dog

 X_4

 Y_1 : Monkey

 Y_3 : Dog

♦Inference stage

Supervised learning for regression

Unsupervised learning

♦Training stage

dataset

* Clustering's object function is to minimize the maximum cluster distance.

♦Inference stage

Unsupervised learning

Clustering

Self-supervised Learning

- ♦The labels are created automatically from the original data.
- Mostly used as a pretext task, which will be followed by downstream tasks.

Semi-supervised Learning

Only label small part of the big dataset.

 $h(X^{(i)})$ $h_M(x; w, m)$ Model evaluator

generator

* Train a model that can generate outputs that resemble the given training data.

♦Inference stage

 $(Y^{(L)})$ • • • • • $(Y^{(2)})(Y^{(1)})$

Generator learning

Reinforcement

♦ Train *an agent function* to decide *actions* which can lead to maximum *rewards*.

Reinforcement Learning

♦In Gomoku, one who can form an unbroken chain of five is the winner

State *s*_t

Board

Environment

Opponent

Action a_t

Where to place the stone

Reward r_t

Win: get 1 point

Not-Win: get 0

Loss: get -1 point 31

Sampling & Learning

The END

Right perception of current AI tech

ImageNet Large Scale Visual Recognition Competition

14 million images, 20000 categories

Three driving forces for Al

◆數據 Data

◆演算法 Algorithm ★

- ◆ Machine learning model (Neural Network architecture)
- Training schemes and methods
- ♦計算能力 Computing Power
 - ◆Tesla M40 GPU: 14 days, nVidia DGX (8 x P100 GPU): 21hr
 - ♦ Training Data: ImageNet 1K, ~1M image, 1000 class
 - ResNet-50, 90 epochs, Top-1 Accuracy: 72%

What is machine learning

test

Learning.....

"貓"

這是"貓"

寫一個程式賦予他學習的能力

"狗"

"羊駝"

Import package

Ex & Hyper (meta) -parameters

Load dataset

♦Setting of sklearn decision-tree module

sklearn.tree.DecisionTreeClassifier

class sklearn.tree. DecisionTreeClassifier (criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False)

[source]

♦Setting of sklearn SVM module

sklearn.svm.SVC

class sklearn.svm. SVC (C=1.0, kernel='rbf', degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None) [source]

```
from sklearn import svm
from sklearn import datasets
                                   Choose model
#digit dataset from sklearn
                                   Set hyper para
digits = datasets.load digits()
#creat the LinearRegression model
clf = svm.SVC(C=1.0, kernel='linear')
#set training set
x, y = digits.data[:-1], digits.target[:-1]
#train model
                                   Set label
clf.fit(x,y)
                           Fit model
#predit
y_pred = clf.predict([digits.data[-1]])
y_true = digits. target[-1]
print(y_pred)
                                  inference
print(y true)
               Display result
[8]
```

Unsupervised learning

Clustering

Generator learning

♦Training stage

Reinforcement

Train a agent function to decide action

Reinforcement Learning

♦In Gomoku, one who can form an unbroken chain of five is the winner

State *s*_t

Board

Environment

Opponent

Action a_t

Where to place the stone

Reward r_t

Win: get 1 point

Not-Win: get 0

Loss: get -1 point 43

Reward

Agent

Action a_t

Action a_{t+1}

State s_t

Reward r_t

State s_{t+1}

Reward r_{t+1}

0

Environment

0

How Machine Learning Works

 $DX = (dx_1, dx_2, \cdots, dx_{nx})$

trained model

 $DY = (dx_1, dx_2, \cdots, dx_{ny})$

- **⋄***nx*: Input data dimension
- **⋄**ny: output data dimension.
 - **>** ny=1 for binary classification, regression.

競賽參與

- ♦請參與公開之AI或機器學習競賽
 - ◆競賽成績必須能於學期結束前公佈
- ◆教育部全國大專校院人工智慧競賽 AI CUP 2021
 - ♦ https://moeaincu.wixsite.com/aicup/copy-of-ai-cup-2020
 - ◆水稻無人機全彩影像植株位置自動標註與應用
- ◆教育部全國大專校院人工智慧競賽 AI CUP 2020
 - ◆和弦辨識競賽: 佳作
 - ◆愛文芒果五類不良品分類競賽:佳作

課程AI平台帳號申請

- ◆每組可以申請一個帳號
- ◆資源有限,請分散使用