Weekly Puzzle Number Theory

Thomas Winrow-Campbell

17/11/2024 - 24/12/2024

What you need to know:

We shall use the notation a|b to mean a is a divisor of b. The definition of $x \equiv y \pmod{m}$ is that m|(x-y).

Questions:

Modular arithmetic:

- 1. (a) What is the set of all x satisfying $x \equiv 2 \pmod{5}$?
 - (b) Prove that if $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$, then $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$.
 - (c) Prove that if $a \equiv b \pmod{m}$ then $ka \equiv kb \pmod{m}$.
 - (d) Prove that if $a \equiv b \pmod{m}$ then $a^k \equiv b^k \pmod{m}$.

One can calculate the last digit of an integer, n, by calculating what $n \pmod{10}$ is.

- (e) $11 \equiv 1 \pmod{10}$, so what is the last digit of 11^{1000} ?
- (f) What is the last digit of 12^{1000} ?
- (g) Prove that a number is divisible by 9 if and only if the sum of its digits is also divisible by 9.

Irrationality:

- 2. (a) Prove that $\log_2 3$ is irrational. (Hint: proof by contradiction.)
 - (b) Prove that $\sqrt{2}$ is irrational.
 - (c) Why does a similar proof not work for $\sqrt{4}$?

Prime numbers:

3. (a) Prove there is no largest prime number.

Fermat's little theorem states that if p is a prime number, then for any integer $x, x^p \equiv x \mod p$.

(b) Prove Fermat's little theorem. (Hint: proof by induction.)

When massive primes are found, they are often Mersenne numbers, which are integers of the form $2^n - 1$, where n is an integer. A Mersenne prime is a number with is both a Mersenne number and a prime number.

- (c) Suppose a and p are positive integers. Prove that if $a^p 1$ is prime, then either a = 2 or p = 1.
- (d) Prove that if $2^p 1$ is prime, then p is prime. (Hint: contrapositive.)