Inteligência Artificial Terceira Lista de Exercícios – Gabarito

Prof. Norton Trevisan Roman

21 de março de 2019

1. (Embora eu tenha pedido a árvore, aceito a ordem com que as regiões são pintadas e suas respectivas cores como resposta)

(a)

- (b) N \rightarrow Vm, NE \rightarrow Vd, CO \rightarrow Az, SE \rightarrow Vm, S \rightarrow Vd
- (c) CO \rightarrow Vm, NE \rightarrow Vd, SE \rightarrow Az, N \rightarrow Az, S \rightarrow Vd
- (d) CO \rightarrow Vm, NE \rightarrow Az, SE \rightarrow Vd, N \rightarrow Vd, S \rightarrow Az
- (e) CO \rightarrow Vm, NE \rightarrow Vd, SE \rightarrow Az, N \rightarrow Az, S \rightarrow Vd
- (f) (As marcam comflitos, enquanto que ▲ marca a escolha aleatória)

N	NE	SE	S
Vd	Az	Vm	Vd
		•	
Vd	Az	Vm	Vd
	•		
	A		
Vd	Vd	Vm	Vd
•	•		
A			
Vm	Vd	Vm	Vd
	Vd Vd Vd	Vd Az Vd Az Vd Vd A	Vd Az Vm Vd Az Vm Vd Az Vm Vd Vd Vm

2. Note que, para podermos tentar um valor em uma variável, ela terá que estar em conformidade com a restrição, o que, muitas vezes, envolve verificar se há valor possível nas demais variáveis envolvidas que não quebrem a restrição. Por exemplo, em f_1 qualquer um dos 3 valores podem ser escolhidos inicialmente, pois para cada valor há 2 valores – um em f_2 e outro em f_3 cuja soma dá o valor escolhido em f_1 . Uma vez fixado f_1 como 30, o único valor em f_2 cuja soma a algum dos valores de f_3 dá 30 é o 10, por isso não há outra escolha. Da mesma forma, escolhendo f_1 20, temos duas possibilidades em f_2 que estão em conforme tanto com f_1 quanto com f_3 . Qualquer uma dessa duas (10 e 15), contudo, não consegue valor em f_3 que tenha possível em f_4 , e assim por diante.

3. (a) Considere o grafo de restrição abaixo. Tanto com consistência de arestas quanto com forward checking os domínios permanecem os mesmos.

(b) Partindo do grafo abaixo

Vemos que os domínios, após a propagação com consistência de arestas, ficariam: $1\to p, 2\to v, 3\to p, 4\to v, 5\to p$

(c) $1\rightarrow v,\, 2\rightarrow p,\, 3\rightarrow \{v,\!p\},\, 4\rightarrow p,\, 5\rightarrow \{v,\!p\}$

(d)

- (e) 1=v, 2=p, 1=p, 2=v, 3=p, 4=v, 5=p
- (f) A variável mais restrita é resolvida com valores restantes mínimos e a heurística do grau. Então: 5=p, 2=v, 1=p, 4=v, 3=p
- (a) Formulação A: para cada instrumento/intervalo de tempo, os valores serão o conjunto de observações (das $m \times n$ possíveis) que usam esse instrumento nesse intervalo de tempo, e o valor "vazio"

Formulação B: para cada cientista, o conjunto de todos os pares de observações (é uma restrição que exatamente duas serão atendidas), dentre as n por ele pretendidas

Formulação C: {Aceita, Rejeitada}, indicando se foi possível agendar a observação (note que os detalhes de cada observação fazem parte da descrição da variável agora, e não de seu domínio)

(b) Formulação A: no máximo $m \times n + 1$ (o +1 é pelo "vazio")

Formulação B: $\binom{n}{2}=\frac{n!}{(n-2)!2!}=\frac{n^2-n}{2}$ Formulação C: 2

(c) Formulação A: a segunda, uma vez que cada (instrumento/intervalo) recebe no máximo um de seus possíveis valores, ou seja, uma única observação.

Formulação B: a primeira. Se os valores possíveis são pares de observações, não há como termos um número diferente de 2 observações agendadas por cientista

Formulação C: Nenhuma

(d) Formulação A: A primeira não é binária, pois exige que verifiquemos todos os valores dados a cada vez, para garantir que exatamente 2 observações de cada cientista são feitas. Já a terceira restrição é binária sim. Crie uma restrição entre as 3 variáveis (tomando 2 a 2) com o mesmo intervalo de tempo e exija que os alvos da observação associada a uma delas sejam os mesmos das demais, caso elas não sejam "vazias"

Formulação B: A segunda é binária. Coloque uma restrição entre cada par de variáveis, e exija que não haja conflitos com instrumento/intervalo de tempo. Também a terceira restrição é binária. Coloque uma restrição entre cada par de variáveis e exija que os alvos das observações com o mesmo intervalo de tempo não conflitam

Formulação C: A primeira não é binária, por requerer que olhemos os valores dados a todas as variáveis a cada vez, para garantir que exatamente 2 observações para cada cientista são feitas. A segunda restrição, por sua vez, é binária. Basta colocar uma restrição entre cada par de variáveis e exigir que instrumento/intervalo não conflitam, para dois pedidos atendidos. Da mesma forma, a terceira é binária. Coloque uma restrição entre cada par de variáveis e exija que os alvos das observações atendidas com o mesmo intervalo de tempo não conflitam

5. (a)

(b) A:A2,B:B2,C:C1,D:D2

- (c) A1 (isso reduz a zero o domínio de D backtracking)
 - A2 (o domínio de B é reduzido para $\{1,2\}$, o de C para $\{1\}$ e o de D para $\{2\}$)
 - B1 (o domínio de D é reduzido a zero backtracking)
 - B2 (não há reduções de domínio)
 - C1 (único valor restante para C, não há reduções de domínio)
 - D2 (único valor restante para D)
- 6. (a) $1 = \{Vm\}, 2 = \{Vd,Az\}, 3 = \{Vd,Az\}, 4 = \{Vm,Vd,Az\}, 5 = \{Vm,Az\}$
 - $\begin{array}{lll} \text{(b)} & 1\text{-Vm, 2-Vm (falha), 2-Vd, 3-Vm (falha), 3-Vd (falha), 3-Az, 4-Vm, 5-Vm (falha), 5-Az (falha), 4-Vd (falha), 4-Az (falha), 2-Az, 3-Vm (falha), 3-Vd, 4-Vm, 5-Vm (falha), 5-Az. \end{array}$
 - (c) 1-Vm, 2-Vd, 3-Az, 4-Vm (falha no 5, e não há outro valor em 3 para por, volta a 2 então), 2-Az, 3-Vd, 4-Vm, 5-Az.