ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОВРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Работа 3.3.3. Опыт Милликена

Работу выполнил:

Долгов Александр Алексеевич, группа Б01-106

Содержание

1	Аннотация	3
2	Методика измерений	3
3	Теоретические сведения	3
	3.1 Движение капли под действием силы тяжести	3
	3.2 Движение капли в электрическом поле	4
4	Экспериментальная установка	5
5	Измерения и обработка их результатов	5
	5.1 Постоянные величины	5
	5.2 Измерение заряда капель	5
	5.3 Подвешивание капли	6
6	Вывод	6
7	Приложения	7
	7.1 (This reverse	7

1 Аннотация

В данной работе измеряются заряды небольших масляных капель. Оказывается, что они кратный одной и той же величине. Так находится элементарный заряд.

2 Методика измерений

Измерение заряда капель осуществляется по их движению в воздухе под действием силы тяжести и вертикального электрического поля. В плоский конденсатор с горизонтальными пластинами через отверстие в верхней пластине вппрыскиваются мелкие капли масла. На пластины конденсатора подаётся постоянное напряжение, которое можно изменять в ходе опыта.

Вледствие трения об воздух капли при распылении приобретают случайный по величине и знаку электрический заряд. Попадая в конденсатор, капли движутся в воздухе, опускаясь под действием силы тяжести, и поднимаясь под действием электрического поля. Наблюдая капли с помощью микроскопа, можно измерить времена опускания и подъёма капли на фиксированное расстояние, что позволяет определить заряд капли.

3 Теоретические сведения

3.1 Движение капли под действием силы тяжести

Запишем уравнение движения капли в проекции на направление \vec{q} :

$$m\dot{v}^{\downarrow} = mg - F_{TD},$$
 (1)

где $F_{\rm rp}$ - сила вязкого трения капли о воздух. Поскольку исследования движения капли проводятся при сравнительно малых скоростях, следовательно, обтекание капли оказывается ламинарным, и применима формула Стокса:

$$F_{\rm TD} = 6\pi\eta r\nu := k\nu \tag{2}$$

Подставим (2) в (1):

$$m\dot{v}^{\downarrow} = mg - kv^{\downarrow} \implies \dot{v}^{\downarrow} + \frac{k}{m}v^{\downarrow} = g$$

Общее решение последнего дифференциального уравнения имеет вид:

$$\nu^{\downarrow}(t) = Ce^{-\frac{k}{m}t} + \frac{mg}{k}$$

Пусть $v^{\downarrow}(0) = 0$, тогда:

$$0 = C + \frac{mg}{k} \implies C = -\frac{mg}{k}$$

Отсюда получаем зависимость скорости от времени:

$$v^{\downarrow}(t) = \frac{mg}{k} \left(1 - e^{-\frac{k}{m}t} \right)$$

Заметим, что $\lim_{t\to\infty} \nu(t)^{\downarrow}:=\frac{\mathfrak{m}\mathfrak{g}}{k}.$ Окончательно формула принимает вид:

$$v^{\downarrow}(t) = v_{\infty}^{\downarrow} \left(1 - e^{-\frac{k}{m}t} \right) \tag{3}$$

Выразим установившуюся скорость капли через более удобные величины:

$$v_{\infty}^{\downarrow} = \frac{mg}{k} = \frac{4}{3} \frac{\rho \pi r^3 g}{6\pi \eta r} = \frac{2}{9} \frac{\rho}{\eta} r^2 g$$

Из уравнения (3) можно получить характерное время установления скорости (время, за которое скорость изменится в $1-\frac{1}{e}$ раз):

$$\tau = \frac{m}{k} = \frac{v_{\infty}^{\downarrow}}{q} = \frac{2}{9} \frac{\rho}{\eta} r^2$$

Из последнего выражения видно, что это характерное время установления скорости быстро уменьшается с уменьшением радиуса капли. Следовательно, для мелких капель оно насколько мало, что их движение можно всегда считать равномерным со скоростью v_{∞}^{\downarrow} .

Пусть за время \mathbf{t}^{\downarrow} капля опустилась на \mathbf{h} , тогда

$$h \approx v_{\infty}^{\downarrow} t^{\downarrow} = \frac{2}{9} \frac{\rho}{\eta} r^2 g t^{\downarrow}$$

Отсюда находим радиус капли:

$$r = \sqrt{\frac{9}{2} \frac{\eta}{\rho} \frac{h}{g t^{\downarrow}}} \tag{4}$$

3.2 Движение капли в электрическом поле

Пусть расстояние между пластинами конденсатора равно l, а напряжение между ними - l. Тогда напряжённость электрического поля в конденсаторе равна $E=\frac{l}{l}$. Если капля поднимается, то проекция закона движения на направление скорости имеет вид:

$$m\dot{v}^{\uparrow} = \frac{qU}{l} - mg - kv^{\uparrow} \implies \dot{v}^{\uparrow} + \frac{k}{m}v^{\uparrow} = \frac{qU}{ml} - g$$

где q - заряд капли. Частное решение данного дифференциального уравнения при нулевой начальной скорости имеет вид:

$$v^{\uparrow}(t) = \left(\frac{qU}{kl} - v_{\infty}^{\downarrow}\right) \left(1 - e^{-\frac{k}{m}t}\right)$$

Отсюда находим установившуюся скорость:

$$\nu_{\infty}^{\uparrow} = \frac{q u}{k l} - \nu_{\infty}^{\downarrow}$$

Пусть за время \mathbf{t}^{\uparrow} капля поднялась на высоту \mathbf{h} (ту же самую, на которую она ранее опускалась), тогда:

$$\begin{split} h &\approx \nu_{\infty}^{\uparrow} t^{\uparrow} = \left(\frac{q U}{k l} - \nu_{\infty}^{\downarrow}\right) t^{\uparrow} = \left(\frac{q U}{k l} - \frac{h}{t^{\downarrow}}\right) t^{\uparrow} \\ & \frac{q U}{k l} = h \left(\frac{1}{t^{\uparrow}} + \frac{1}{t^{\downarrow}}\right) \\ & q = k \frac{h l}{U} \frac{t^{\uparrow} + t^{\downarrow}}{t^{\uparrow} \cdot t^{\downarrow}} \\ & q = 6 \pi \eta r \frac{h l}{U} \frac{t^{\uparrow} + t^{\downarrow}}{t^{\uparrow} \cdot t^{\downarrow}} \end{split}$$

Подставим в поледнее выражение радиус капли из формулы (4):

$$q = 6\pi\eta \sqrt{\frac{9}{2}} \frac{\eta}{\rho} \frac{h}{gt^{\downarrow}} \frac{hl}{ll} \frac{t^{\uparrow} + t^{\downarrow}}{t^{\uparrow} \cdot t^{\downarrow}}$$

$$q = 9\pi \frac{l}{ll} (\eta h)^{\frac{3}{2}} \frac{t^{\uparrow} + t^{\downarrow}}{t^{\uparrow} \cdot (t^{\downarrow})^{\frac{3}{2}}} \sqrt{\frac{2}{\rho g}}$$
(5)

Формула (5) позволяет найти заряд капли, если известно время её подъёма в электрическом поле и опускания в поле тяжести.

Рис. 1 Схема экспериментальной установки

4 Экспериментальная установка

Схема установки представлена на рисунке 1. Масло разбрызгивается пульверизатором. Капли масла попадают в конденсатор С через небольшое отверстие в верхней пластине. При этом часть из них вследствие трения об воздух приобретает случайный по величине и знаку электрический заряд.

Напряжение на пластины подаётся от регулируемого выпрямителя и измеряется вольтметром V. Ключ K позволяет менять направление поля в конденсаторе, чтобы можно было работать как с положительно, так и с отрицательно заряженными каплями. При размыкании ключа K конденсатор разряжается через дополнительное сопротивление $R \approx 10 \, \mathrm{MOm}$.

Поскольку исследуемые капли малы, наблюдать из возможно только через микроскоп. В фокальной плоскости измерительного микроскопа виден ряд горизонтальных линий, расстояние между которыми постоянно и равно $\Delta h = 0.25$ мм. Микроскоп снабжён камерой с выводом изображения на монитор ПК.

5 Измерения и обработка их результатов

5.1 Постоянные величины

Таблица 1 Постоянные величины

l, см	l, см h, мм		η, Па · с	ρ, κ г /м ³	
0.725	0.75	500	$1.85 \cdot 10^{-5}$	898	

5.2 Измерение заряда капель

Считаем, что в формуле (5) погрешностями всех величин можно пренебречь по отношению к погрешностям t^{\downarrow} и t^{\uparrow} , которые равны между собой и равны $\sigma_t=0.2$ с - среднее время реакции человека. Тогда формула (5) приобретает вид:

 $q=K\frac{t^{\uparrow}+t^{\downarrow}}{t^{\uparrow}\cdot(t^{\downarrow})^{\frac{3}{2}}},$

где все величины без погрешностей собраны в константе K. Таким образом, абсолютная погрешность σ_q заряда капли определяется по формуле:

 $\sigma_q = \sigma_t \cdot \sqrt{\left(\frac{\partial q}{\partial t^\uparrow}\right)^2 + \left(\frac{\partial q}{\partial t^\downarrow}\right)^2}$

и равна:

$$\sigma_q = K\sigma_t \cdot \sqrt{\frac{1}{4} \frac{(3t^\uparrow + t^\downarrow)^2}{(t^\uparrow)^2 \cdot (t^\downarrow)^5} + \frac{1}{(t^\uparrow)^4 \cdot t^\downarrow}} = q \frac{\sigma_t}{t^\uparrow + t^\downarrow} \sqrt{\left(\frac{1}{2} + \frac{3t^\uparrow}{2t^\downarrow}\right)^2 + \left(\frac{t^\downarrow}{t^\uparrow}\right)^2}$$

Выл измерен заряд 7 капель, для каждой из которых проводилось по 6 серий измерений времени движения вверх и вниз. Результаты измерений вместе с расчитанными значениями зарядов и их погрешностей приведены в таблице 1.

Как видно из таблицы, полученные значения заряда лежат в дапазоне $(1.14; 1.35) \cdot 10^{-19}$ Кл. Таким образом, величина, которой они кратны - некоторое значение заряда из этого интервала. При этом других кратных значений не получено.

5.3 Подвешивание капли

Пусть в формуле (5) $t^{\uparrow} \gg t^{\downarrow}$, тогда выражение для заряда принимает вид:

$$q = 9\pi \frac{l}{U} \left(\frac{\eta h}{t^{\downarrow}} \right)^{\frac{3}{2}} \sqrt{\frac{2}{\rho g}}$$

Отсюда получаем, что погрешность вычисления по последней формуле равна:

$$\sigma_q = \frac{3}{2} \frac{\sigma_t}{t^{\downarrow}} q$$

Было проведено 5 измерений времени падений одной и той же капли при её подвешивании и последующем падении без электрического поля. Результаты измерений вместе с расчитанными значениями заряда и его погрешности приведены в таблице 3.

6 Вывод

Результаты работы таковы, что найденные значения заряда находятся в окрестности некоторой единственной точки. Из этого делаем вывод, что заряд всех исследованных масляных капель был пропорционален элементарному с одним и тем же коэффициентом. Строго говоря, из этого нельзя делать вывод о величине элементарного заряда, поскольку капли могли иметь заряд ne, где n > 1. Однако, поскольку элементарный заряд всё же известнет, ясно, что полученные значения ближе к e, чем к кратным ему значениям. Таким образом, величина элементарного заряда найдена лишь по порядку, а численный коэффициент порядка единицы не совпадает с ожидаемым даже с учётом погрешностей.

Приложения

Таблицы 7.1

Таблица 2 Измерение заряда капель											
		q,	σ_q ,	q, 10 ⁻¹⁰	$\sigma_{\rm q},10^{-10}$			q,	σ_q ,	q, 10 ⁻¹⁰	$\sigma_{\rm q},10^{-10}$
t [↑] , c	t [↓] , c	10 ⁻¹⁹ Кл	10 ⁻¹⁹ Кл	ед. СГС	ед. СГС	t [↑] , c	t [↓] , c	10 ⁻¹⁹ Кл	10 ⁻¹⁹ Кл	ед. СГС	ед. СГС
	Капля 1										
34.41	24.81	1.19		3.58	0.03						
34.09	24.15	1.22		3.67							
32.56	23.88	1.28		3.85							
32.00	24.06	1.30	0.01	3.90							
32.63	23.00	1.31		3.93							
32.33	23.85	1.29		3.88							
33.94	24.28	1.22		3.67							
			Капля 2						Капля 5		
36.42	19.50	1.32		3.95		42.52	17.96	1.23		3.68	
38.64	20.18	1.23	0.01	3.68]	41.21	18.30	1.24	0.01	3.72	0.03
40.65	20.17	1.17		3.52	0.03	39.50	18.03	1.30		3.89	
39.99	19.21	1.23		3.69	0.00	41.57	17.76	1.26		3.78	
37.50	19.75	1.27		3.82		39.71	19.58	1.22		3.67	
41.42	19.39	1.19		3.56		38.57	19.65	1.25		3.75	
			Капля 3			Капля 6					
35.58	19.83	1.33		3.99		36.93	20.61	1.26		3.77	
37.72	20.06	1.26		3.77		35.08	22.41	1.25		3.74	
38.24	21.27	1.20	0.01	3.58	0.03	37.24	23.46	1.15	0.01	3.45	0.03
34.46	20.42	1.34] 0.01	4.02	0.03	36.04	22.03	1.23	0.01	3.69	0.03
38.15	19.79	1.25		3.76		36.17	21.59	1.24		3.72	
38.16	21.43	1.19		3.57		36.30	22.14	1.22		3.66	
Капля 4						Капля 7					
39.16	19.49	1.24	3.72 3.91		33.41	25.07	1.22		3.66		
37.62	19.02	1.30				33.10	24.04	1.26		3.78	
42.78	18.92	1.18		3.53	0.03	34.05	25.95	1.17	0.01	3.52	0.03
37.34	19.65	1.28		3.85		35.34	24.69	1.17	?	3.51	0.00
41.35	19.50	1.18	3.55 3.78	3.55		33.44	24.92	1.22		3.67	
37.93	19.80	1.26		3.78		33.03	25.97	1.21		3.62	

Таблица 3 Подвешивание капли

U, B	t [↓] , c	q, 10 ⁻¹⁹ Кл	$\sigma_{\rm q}$, 10 ⁻¹⁹ Кл	q, 10 ⁻¹⁰ ед. СГС	$\sigma_{ m q},10^{-10}$ ед. СГС
	24.99	2.02	0.02	6.06	0.07
	26.21	1.88	0.02	5.64	0.06
200	26.48	1.85	0.02	5.56	0.06
	25.27	1.99	0.02	5.96	0.07
	24.22	2.12	0.03	6.35	0.08