REVIEW NOTES: Data Science and Machine Learning

A. Muci alex.muci@gmail.com

April 2017

Abstract

These are review notes on data science and machine learning based on various sources.

Please do not quote or circulate.

JEL classification: XXX, YYY.

Keywords: Systematic trading, algorithms, risk factors, API

Contents

1	Data Analysis				
	1.1	NumPy	1		
	1.2	Pandas	3		
	1.3	SciPy	9		
	1.4	Matplotlib			
	1.5	Seaborn	14		
	1.6	Plotly and Cufflinks	18		
	1.7	Example: finance nb	19		
2	Machine Learning				
	2.1	Linear regression	23		
	2.2	Logistic regression & Titanic dataset	25		
	2.3	Naive Bayes	30		
	2.4	K Nearest Neighbours			
	2.5	Decision Trees and Random Forests	34		
	2.6	Support Vector Machines	36		
	2.7	K Means Clustering	37		
	2.8	Principal Component Analysis	39		
	2.9	Recommender systems	41		
	2.10	Natural Language Processing (NLTK)	41		
	2.11	Big Data (Spark)	41		
		Deep Learning (Tensorflow)			
Δ	From	n scratch	42		

The following notes summaries materials from three main sources:

- Udemy course by Portilla: Python Data Science and Machine Learning Bootcamp
- free online book: Introduction to Statistical Learning
- part of a book: Deep Learning by Goodfellow et al.

1 Data Analysis

First section is a crush course in two types of libraries: one for handling data (Numpy and Pandas) and one for visualisation (Matplotlib and Seaborn)

1.1 NumPy

Numpy is the Python library for **linear algebra** (vectors and matrices) on which most useful libraries are built on (e.g. Pandas, SciPy, Ski-learn, ...). It is fast since bound to C libraries.

```
import numpy as np # using NumPy
```

1.1.1 Numpy Array

Arrays come in two flavours: vectors (1-dim arrays) or matrices (2-dim arrays). The following shows a few methods and a couple of attributes.

```
my_array = np.array([1,2,3]) # convert list into an array...
# ... and list of lists ..., note extra []
my_matrix = np.array([[1,2,3], [4,5,6]])

np.arange(start, end, step) # return value ranges

np.zeros(3) # 1-dim array of 3 zeros
np.zeros((3,4)) # matrix (2-dim array) of 3 x 4 zeroes, note extra ()
np.ones((3,4)) # matrix of 3 x 4 of ones
```

```
np.linspace(start, end, no_of_points) # rtrn evenly-spaced values
np.eye(3) # identity matrix 3 x 3

np.random.rand(5) # random no. in (0,1)
np.random.rand(5,5) # two-dim of random no.
np.random.randn(3) # 3 std Gaussian random no., note final 'n'
np.random.randint(low, higher, no_of_num) # rnd int in (low, high)
np.random.seed(101) # seed for reproducing results

my_array.reshape(4,4) # reshape an array in a matrix 4x4

my_arr.max() # return max value, similarly for min

my_arr.argmax() # return index location of max value
# for df NB: df.idxmax # rtrn idx across df series

my_arr.shape # diplay an array dimension (NB: attribute, not method)
my_arr.dtype # display data type (e.g. int32)
```

1.1.2 Numpy array Indexing

How to select elements in an array (also using boolean conditions).

1.1.3 Numpy operations

How to perform operations.

Note that in case of division by zero, there will not be any error msg (just warnings) and **nan** will be returned. Similarly, in case operations return infinity (e.g. +/- something/0), one gets just warnings and a +/-**inf** result.

1.2 Pandas

One can think of Pandas as a powerful Excel version to read and manipulate data.

```
import numpy as np
import pandas as pd
```

1.2.1 Series

This is a data type of Pandas similar to a NumPy array (built, indeed, on top of it), but with axis labels (i.e. **indexed by labels** besides number location) and can hold **any** Python **object** (not just numbers). You can convert a list, array or dictionary to a Series.

```
pd.Series(dic) # note: labels are the dict keys

pd.Series([sum, len, print]) # Series can hold any Python object
```

Pandas makes use of index names or numbers by allowing for fast look ups of information (works like a hash table or dictionary).

```
ser1 = pd.Series([1,2,3,4],index=['USA', 'Ger','USSR', 'Japan'])
ser1['USSR'] # returns 3
ser1 + ser2 # operations are based on index, if discrepancies 'NaN'
```

1.2.2 DataFrames

DataFrame is the workhorse of pandas (inspired by R language), akin to a bunch of Series that share same index.

There are various methods to get data (note that DataFrames columns are just Series, try type() fnct).

Index manipulation:

```
df.reset_index() # reset to default index: 0, 1, ..., n
df['States'] = 'CA NY WY OR CO'.split() # add a new Series
df.set_index('States') # make 'States' the new index
df.set_index('States', inplace=True) # use inplace (permanent)
# multi-index
outside = ['G1','G1','G1','G2','G2','G2']
inside = [1,2,3,1,2,3]
hier_index = list(zip(outside,inside))
hier_index = pd.MultiIndex.from_tuples(hier_index)
df = pd.DataFrame(np.random.randn(6,2),
                  index=hier_index,
                  columns = ['A', 'B'])
df.loc['G1'].loc[1]
df.index.names = ['Group','Num']
df.xs(['G1',1]) # cross-section grab, see more below
df.xs(1,level='Num')
```

1.2.3 Missing data

Examples to deal with the very common issue of missing data.

```
df.dropna(thresh=2) # remove rows where NaN >= 2

df.fillna(value='FILL') # insert 'FILL' where NaN

df['A'].fillna(value=df['A'].mean()) # insert col mean where NaN
```

1.2.4 Groupby

The 'groupby' method allows to 1. group rows of data together in order to 2. call aggregate functions:

```
# Create dataframe
data = {'Company':['GOOG','GOOG','MSFT','MSFT','FB','FB'],
        'Person':['Sam','Charlie','Amy','Vanessa','Carl','Sarah'],
        'Sales': [200,120,340,124,243,350]}
df = pd.DataFrame(data)
by_comp = df.groupby("Company") # group rows together of
                          # a column name , here 'Company'
by_comp.mean()
               # call aggregate method: rtrn table with mean
                # for each company
                # e.g. .std .max() .count() .describe() ...
# or, better,
byMonth = df.groupby('Month').count()
byMonth.head() # to display
# group by two variables (multi-idx), then unstuck() (2nd var -> col)
df.groupby(by=['Day of Week', 'Hour']).count()['Reason'].unstack()
# NB: difference between above and following call
df[df['Reason'] == 'Traffic'].groupby('Date').count()['lat']
```

1.2.5 Merging, joining and concatenating

There are 3 main ways to combine DataFrames together: merging, joining and concatenating.

```
pd.concat([df1,df2,df3]) # glue together DataFrames along axis
```

1.2.6 Operations

Some examples of more operations:

```
df.head()
df.tail()

df['col2'].unique()  # show unique values
df['col2'].nunique() # no. of unique values (one value)
df['col2'].value_counts()  # count no. same value appears
df['col2'].value_counts().head() # top 5

def times2(x):
         return x*2
df['col1'].apply(times2)  # apply fnct to each element
df['col1'].apply(lambda x: x*2)  # similar

# How many people have the word Chief in their job title? (tricky)
def chief_string(title):
    if 'chief' in title.lower():
        return True
    else:
```

```
return False
sum(sal['JobTitle'].apply(lambda x: chief_string(x)))

del df['col1'] # another way to remove permanently a column
    df.columns # columns names
    df.index

df.sort_values(by='col2') # sort; note: inplace=false by default

df.isnull() # boolean: find null values, return True/False

df.pivot_table(values='D',index=['A', 'B'],columns=['C'])

df['timeStamp'] = pd.to_datetime(df['timeStamp']) # from str to datet
    df['Hour'] = df['timeStamp'].apply(lambda time: time.hour)
```

1.2.7 Data input and output

Pandas offers a variety of way to read or output files:

1.2.8 Built-in visualisation

Built-off of matplotlib, in Pandas for easy of use.

Matplotlib has style sheets you can use to make your plots look a little nicer. These style sheets include 'bmh', 'fivethirtyeight', 'ggplot', 'dark_background'

and more. Some example below.

```
df1['A'].hist() # hist before any style

# call the style and plot with the style
import matplotlib.pyplot as plt
plt.style.use('ggplot')
df1['A'].hist()
```

There are several built-in plot types in pandas. Some examples below:

```
df2.plot.area(alpha=0.4) # note transparency param
df2.plot.bar(stacked=True)
df1['A'].plot.hist(bins=50, alpha=0.5, label="X")
df1.plot.line(x=df1.index,y='B',figsize=(12,3),lw=1)
df1.plot.scatter(x='A',y='B')

df = pd.DataFrame(np.random.randn(1000, 2), columns=['a', 'b'])
df.plot.hexbin(x='a',y='b',gridsize=25,cmap='Oranges')

df2.plot.box() # Can also pass a by= argument for groupby
df2['a'].plot.kde()

df2.plot.density() # more
```

1.3 SciPy

SciPy is a collection of math algorithms and useful functions built on NumPy. It makes Python a data processing system rivalling MatLab, Octave, R, etc.

Scientific applications using SciPy benefit from the additional modules in numerous niches: everything from parallel programming, web and data-base subroutines, and classes.

Some examples in linear algebra:

```
import numpy as np
A = np.array([[1,2,3],[4,5,6],[7,8,8]]) # matrix
from scipy import linalg # get relevant module
```

```
linalg.det(A) # compute determinant of a matrix
P, L, U = linalg.lu(A) # get matrix decomposition
EigenW, EigenV = linalg.eig(A) # eigen vectors and values
linalg.solve(A,v) # solve systems of linear eq.
```

1.4 Matplotlib

Created by John Hunter to replicate MatLab'plotting in Python. You can see examples/gallery with **code** to copy in the official webpage: http://matplotlib.org/.

1.4.1 Basic

Two ways to use it: simple way or object-oriented API (i.e. instantiate fig obects and then call methods). Second is more flexible and recommended for multiplots.

```
# 1b. simple line plot
fig = plt.figure() # create empty canvas
# then add axes: left, bottom, width, height (0 to 1)
axes = fig.add_axes([0.1,0.1,0.8,0.8])
# plot
axes.plot(x,y,'b')
axes.set_xlabel('Set X Label') # NB: 'set_'
axes.set_ylabel('Set y Label')
axes.set_title('Set Title') # method for setting titles
# 2b. multiplots on same canvas (one inset)
fig = plt.figure()
axes1 = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # main axes
axes2 = fig.add_axes([0.2, 0.5, 0.4, 0.3]) # inset axes
# Larger Figure Axes 1
axes1.plot(x, y, 'b')
axes1.set_xlabel('X_label_axes2')
axes1.set_ylabel('Y_label_axes2')
axes1.set_title('Axes 2 Title')
# Insert Figure Axes 2
axes2.plot(y, x, 'r')
axes2.set_xlabel('X_label_axes2')
axes2.set_ylabel('Y_label_axes2')
axes2.set_title('Axes 2 Title')
fig
# 2c. multiplots on same canvas (next)
# Empty canvas of 1 by 2 subplots
fig, axes = plt.subplots(nrows=1, ncols=2) # unpacking
for ax in axes: \# NB: ax[0] and ax[1]
   ax.plot(x, y, 'b')
   ax.set_xlabel('x')
   ax.set_ylabel('y')
   ax.set_title('title')
```

```
# another example of unpacking (NB: vs above)
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True, figsize=(10,6))
fig # Display the figure object
fig.tight_layout() # or plt.tight_layout() to adjust overlapping
# figsize(width, height), dpi is dots-per-inch (pixel)
fig = plt.figure(figsize=(8,4), dpi=100)
# output in PNG, JPG, EPS, SVG, PGF, PDF, ...
fig.savefig("filename.png", dpi=200) # save fig, dpi optional
# adding legend: label='label txt'
ax.plot(x, x**3, label="x**3")
ax.legend()
# and its position
ax.legend(loc=1) # upper right corner
ax.legend(loc=2) # upper left corner
ax.legend(loc=3) # lower left corner
ax.legend(loc=4) # lower right corner
ax.legend(loc=0) # let matplotlib decide best
# or just outside upper corner
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
# colours: by name or RGB hex code
x.plot(x, x+1, color="blue", alpha=0.5) # half-transparant
# linewidth or lw (0.25... 3) and
# linestyle or ls: "-", "-.", ":", "steps"
# marker = '+', 'o', '*', 's', ',', '.', '1', '2', '3', '4', ...
ax.plot(x, x+5, color="green", linewidth=3, linestyle=',-')
ax.plot(x, x+6, color="green", lw=3, ls='-.')
ax.plot(x, x+13, color="purple", lw=1, ls='-',
       marker='0', markersize=2)
# set_ylim and set_xlim methods in the axis object
axes[0].set_ylim([0, 60])
```

```
axes[0].set_xlim([2, 5])

# barplots, histograms, scatter plots, and much more.
plt.scatter(x,y)
plt.hist(random.sample(range(1, 1000), 100))
data = [np.random.normal(0, std, 100) for std in range(1, 4)]
plt.boxplot(data,vert=True,patch_artist=True);
```

1.4.2 Advanced

Some more:

```
axes[1].set_yscale("log") # add logarithm scale
ax.set_xticks([1, 2, 3, 4, 5]) # or set_yticks, [] where ticks placed
ax.set_xticklabels([r'$\alpha$', r'$\beta$', r'$\gamma$',
            r'$\delta$', r'$\epsilon$'], fontsize=18)
# distance between x and y axis and the numbers on the axes
matplotlib.rcParams['xtick.major.pad'] = 5 # = 3 default
matplotlib.rcParams['ytick.major.pad'] = 5
# when saving figures the labels are sometimes clipped,
# and it can be necessary to adjust the positions of axes
fig.subplots_adjust(left=0.15, right=.9, bottom=0.1, top=0.9)
axes[0].grid(True)
axes[1].grid(color='b', alpha=0.5, linestyle='dashed', linewidth=0.5)
ax.spines['bottom'].set_color('blue')
ax.spines['top'].set_color('blue')
ax.spines['left'].set_color('red')
ax.spines['left'].set_linewidth(2)
fig, ax = plt.subplots()
cnt = ax.contour(Z, cmap=matplotlib.cm.RdBu, vmin=abs(Z).min(), vmax=ab
# ... and much more ... look at the matplotlib gallery
```

1.5 Seaborn

Seaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack (incl. support for numpy and pandas data structures and statistical routines from scipy and statsmodels).

Check gallery at http://seaborn.pydata.org/

```
import seaborn as sns
%matplotlib inline # for notebooks only
```

1.5.1 Distribution plots

We look at 5 different distribution plots:

```
tips = sns.load_dataset('tips') # sns comes with built-in datasets
tips.head() # pandas dataframes
# 1. for uni-variate distribution
sns.distplot(tips['total_bill']) # NB: Series
sns.distplot(tips["total_bill"], kde=False, bins=30) # with some params
# 2. for bi-variate data (NB: how two variables expressed)
sns.jointplot(x="total_bill",y="tip",data=tips,kind="scatter")
# or kind= "scatter ,
                         reg , resid , 'kde', 'hex'
# 3. pairwise relationships (table of dists)
sns.pairplot(tips) # NB: all Dataframe
sns.pairplot(tips, hue='sex', palette='coolwarm') # NB: hue support
# for uni-variate distr: dash marks for every point
sns.rugplot(tips['total_bill'])
# kdeplots are Kernel Density Estimation plots
sns.kdeplot(tips['total_bill']) # or
sns.kdeplot(df['col1'], df['col2']) # for bi-variate
```

1.5.2 Categorical plots

Below there are 6 example plots for categorical (i.e. non-numerical) data.

```
# 1. & 2. aggregate categorical data
sns.barplot(x='sex',y='total_bill',data=tips) # by default y=mean(y)
sns.barplot(x='sex',y='total_bill',data=tips,estimator=np.std) #NB:std
sns.countplot(x='sex',data=tips) # like barplot but y = count of x
# 3 & 4. distribution of categorical data
sns.boxplot(x="day", y="total_bill", data=tips,palette='rainbow')
sns.boxplot(data=tips,palette='rainbow',orient='h') # NB: entire df
sns.boxplot(x="day", y="total_bill", hue="smoker",data=tips,
            palette="coolwarm")
sns.violinplot(x="day", y="total_bill", data=tips,palette='rainbow')
sns.violinplot(x="day", y="total_bill", data=tips,
               hue='sex',palette='Set1') # hue
sns.violinplot(x="day", y="total_bill", data=tips,hue='sex',
                split=True,palette='Set1') # split hue
# 5 & 6. draw scatter where one variable is categorical
sns.stripplot(x="day", y="total_bill", data=tips)
sns.stripplot(x="day", y="total_bill", data=tips,
              jitter=True, hue='sex',split=True)
# swarmplot is similar to stripplot(), but points adjusted
# (only along the categorical axis) so that they do not overlap
sns.swarmplot(x="day", y="total_bill", data=tips)
sns.swarmplot(x="day", y="total_bill",
           hue='sex',data=tips, palette="Set1", split=True)
# combining categorial plots (swarmplot into violin, see below)
sns.violinplot(x="tip", y="day", data=tips,palette='rainbow')
sns.swarmplot(x="tip", y="day", data=tips,color='black',size=3)
# factorplot is the most general form of a categorical plot
# it can take in a kind parameter to adjust the plot type:
sns.factorplot(x='sex',y='total_bill',data=tips,kind='bar') #barplot
```

1.5.3 Matrix plots

Matrix plots is basically a **heatmap** for correlations or similar numbers (or **clustermap**: clustered heatmap).

```
tips.corr() # matrix of correl
sns.heatmap(tips.corr()) # matrix of corr by colour
sns.heatmap(tips.corr(),cmap='coolwarm',annot=True) # NB annot inside

flights = sns.load_dataset('flights')
flights.pivot_table(values='passengers',index='month',columns='year')
sns.heatmap(pvflights,cmap='magma',linecolor='white',linewidth=1)

sns.clustermap(pvflights) # months/years grouped by similarities
sns.clustermap(pvflights,cmap='coolwarm',standard_scale=1)
```

1.5.4 Regression plots

There are many in-buil capabilities for regression, here we only show lmplot()

```
# chart with points and fitted regression (and stdev overlaid)
# NB: can be an alternative to plt.scatter with 'fit_reg=False'
sns.lmplot(x='tota_bill',y='tip',data=tips)
sns.lmplot(x='total_bill',y='tip',data=tips,hue='sex')
sns.lmplot(x='total_bill',y='tip',data=tips,hue='sex',
       palette='coolwarm', markers=['o','v'],
       scatter_kws={'s':100}) # last is squared markersize
# two charts next, one for male and one for female
sns.lmplot(x='total_bill',y='tip',data=tips,col='sex')
# four charts - NB: row and col
sns.lmplot(x="total_bill", y="tip", row="sex", col="time",data=tips)
# using (..., fit_reg=False, ..) is like a scatter plot (ie no fit regr
  aspect and size
sns.lmplot(x='total_bill',y='tip',data=tips,col='day',
        hue='sex',palette='coolwarm',
        aspect=0.6, size=8)
```

1.5.5 Grids

Grids (PairGrid, JoinGrid, and the more general FacetGrid) are generic types of plots that allow to map different plot types to rows and columns of a grid.

```
iris = sns.load_dataset('iris')
# 1. Pairgrid is a general version of pairplot() type grids
g = sns.PairGrid(iris) # Just an empty PairGrid
g.map(plt.scatter) # then map scatter to all
# Map to upper, lower, and diagonal
g = sns.PairGrid(iris)
g.map_diag(plt.hist) # NB: _diag, _upper, _lower
g.map_upper(plt.scatter)
g.map_lower(sns.kdeplot) # NB: sns.
# NB: pairplot-> hist mapped on diagonal & scatter everywhere else
# 2. JointGrid is the general version for jointplot() type grids
g = sns.JointGrid(x="total_bill", y="tip", data=tips)
g = g.plot(sns.regplot, sns.distplot)
# 3. FacetGrid is the GENERAL way to create grids 2x2
g = sns.FacetGrid(tips, col="time", row="smoker") # empty Grid
g = g.map(plt.hist, "total_bill")
g = sns.FacetGrid(tips, col="time", row="smoker", hue='sex') # hue
# Notice two arguments after plt.scatter call
g = g.map(plt.scatter, "total_bill", "tip").add_legend()
# FacetGrid 1x2
g = sns.FacetGrid(data=titanic,col='sex')
g.map(plt.hist, 'age') # x = age, y = male, female
# FacetGrid histogram with hue
g = sns.FacetGrid(df, hue="Private",
                palette='coolwarm', size=6, aspect=2)
g = g.map(plt.hist,'Grad.Rate',
```

1.5.6 Style and Colour

```
sns.set_style('white') # background colour
sns.set_style('whitegrid') # another
sns.set_style('ticks') # external ticks
sns.despine() # spine removal
sns.set_palette("GnBu_d") # grey colour

plt.figure(figsize=(12,3)) # can use this in sns to control size
sns.set_context('poster',font_scale=4) # allows overriding default
sns.countplot(x='sex',data=tips,palette='coolwarm') # no default-ones
```

1.6 Plotly and Cufflinks

Plotly is a library that allows you to create **interactive** plots that you can use in dashboards or websites (you can save them as html files or static images) - check https://plot.ly/.

Cufflinks instead links Plotly to Pandas (also check technical analysis library of Cufflinks, still in beta version - see github rep).

```
# installation
pip install plotly # also via conda
pip install cufflinks
```

Set-up is the most complicated thing, then it works by just adding an 'i' to 'plot'.

Let's create a couple of fake dataframes (5x4, 3x2, 3D) and ...

... let's explore Plotly functionality (double-click on pic to zoom out), by just adding an 'i' to 'plot' and specifying the 'kind' is all we need:

```
# Scatter plots
df.iplot(kind='scatter', x='A', y='B', mode='markers', size=10)
# Bar plots
df2.iplot(kind='bar',x='Category',y='Values')
df.count().iplot(kind='bar')
# Boxplots
df.iplot(kind='box') # click on relevant Series to show
# 3D surfaces
df3.iplot(kind='surface',colorscale='rdylbu')
# Spreads
df[['A','B']].iplot(kind='spread')
# Histogram
df['A'].iplot(kind='hist',bins=25)
# Bubble: e.g. GDP charts
df.iplot(kind='bubble',x='A',y='B',size='C')
# Similar to sns.pairplot()
df.scatter_matrix()
```

1.7 Example: finance nb

Just a quick ref for finance nb:

```
from pandas_datareader import data, wb
start = datetime.datetime(2006, 1, 1)
```

```
end = datetime.datetime(2016, 1, 1)
# CitiGroup
C = data.DataReader("C", 'google', start, end)
# ... more
# Could also do this for a Panel Object
df = data.DataReader(['BAC', 'C', 'GS', 'JPM', 'MS',
     'WFC'], 'google', start, end)
# otherwise
bank_stocks = pd.concat([BAC, C, GS, JPM, MS, WFC],
            axis=1, keys=tickers) # NB axis and keys
bank_stocks.columns.names = ['Bank Ticker','Stock Info']
# using xc (multi-level indexing fnct)
bank_stocks.xs(key='Close',axis=1,level='Stock Info').max()
# get rtrns
returns = pd.DataFrame() # get empty df
for tick in ['BAC', 'C', 'GS', 'JPM', 'MS', 'WFC']:
    returns[tick+' Return'] = bank_stocks[tick]['Close'].pct_change()
# visualise
sns.pairplot(returns[1:])
returns.idxmin() # when drawdown
returns.std() # std dev for 6 rtrns series
# plot (2 ways for panel data: loop or .xs)
for tick in tickers:
    bank_stocks[tick]['Close'].plot(figsize=(12,4),label=tick)
# or alternative
bank_stocks.xs(key='Close',axis=1,level='Stock Info').plot()
# moving avg
plt.figure(figsize=(12,6))
BAC['Close'].ix['2008-01-01':'2009-01-01'].
        .rolling(window=30).mean().plot(label='30 Day Avg')
BAC['Close'].ix['2008-01-01':'2009-01-01'].plot(label='BAC CLOSE')
plt.legend()
# cluster
```

2 Machine Learning

Machine learning is a method of data analysis that automates analytical model building, using algorithms that iteratively learn from data.

It is used for: fraud detection (unsupervised), recognised someone in a picture give some of its previous pics (supervised), customer segmentation, credit scoring, image recognition, sentiment analysis, etc.

There are three main kinds of machine learning:

- Supervised 1 labeled examples, i.earning: algorithms trained using inputs (also called features, independent variables, ...) with corresponding correct outputs (also called labels in classification, dependent variables, ...) that are used by the algo to learn by comparing forecasted vs. correct output to find errors and modify model accordingly. Commonly used for predictions; e.g. regression.
- Unsupervised learning: system does not have correct outputs as example, aim is to **explore** data to find some structure within (segmenting the data); i.e. mainly clustering or dimensionality reduction.
- Reinforcement learning: algorithm learns by trial and error which actions yields greatest rewards, mostly used in gaming, navigation or robotics. Three main parts: agent (learner), environment (everything the agent interacts with) and actions (what the agent can do).

Using Scikit Learn in Python, main steps (uniform interface across methods):

```
conda install scikit-learn # installation

# every algorithm exposed via an 'estimator'
from sklearn.[family] import Model # general form
```

```
from sklearn.linear_model import LinearRegression # example
# all estimator params have default value
model = LinearRegression(normalize=True)
print(model)
# LinearRegression(copy_X=True,...)
# split data (cross-validation)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.3)
# in order not to throw away data we can also use
# KFold cross-validation
from sklearn.model_selection import KFold
kf = KFold(size_data, size_testing_set,shuffle=True)
# read some more online ...
# once created, model has to be fitted
model.fit(X_train, y_train)
model.fit(X_train) # for unsupervised learning
# get predictions
predictions = model.predict(X_test) # for both supervised \& un-super..
proba = model.predict_proba(X_test) # for supervised classification
                 # rtrn prob a new obs has each categorical label
# evaluation
model.score() # for supervised 1., between 0 and 1
model.transform(X_new) # for unsupervised 1.
# transform new data into new basis
# model.fit_transform() # for fitting \& transform
```

If you want to use sklearn datasets do the following:

```
from sklearn.datasets import load_boston
boston = load_boston()
print(boston.DESCR)
boston_df = boston.data # dataframe
```

2.0.1 Bias-Variance trade-off

Trade-off between training error (bias) reduction and increase in testing error (variance). Complexity increases the fitting of the training data (reducing bias) but increase errors on new data (higher variance or over-fitting). Combining the two effects we get a plot of the MSE that resembles a parable (min is the point at which extra complexity increases more variance than reduces bias: i.e. going from under-fitting to over-fitting).

2.1 Linear regression

Regression name comes from Francis Galton study on relationship between heights of fathers vs. sons: sons tended to be as tall as father but height also tended to 'regress' towards the mean.

Coefficients (or betas) in the linear case are found by equalling to zero the derivative of SSE with respect to the beta (β_1 and β_0). For higher dimension you express everything in matrix terms (Xw = y), multiplying first both sides by the transpose of X (because such product has a *nice* inverse, i.e. always square and symmetric¹) and then solve:

$$w = (X^T X)^{-1} X^T y$$

Code steps:

```
# read and check data
USAhousing = pd.read_csv('USA_Housing.csv')
USAhousing.head() # .info() .describe()

USAhousing.info()
USAhousing.describe()
USAhousing.columns
# explore data
```

¹This comes from equalling to zero the derivative of the error SSE: $e^T e$ written explicitly as in 1-dim case.

```
sns.pairplot(USAhousing)
sns.distplot(USAhousing['Price'])
sns.heatmap(USAhousing.corr())
# first split up data into an X array that contains the features
# to train on, and an y array with the target variable
X = USAhousing[['Avg. Area Income', 'Avg. Area House Age', ...
                'Area Population']]
y = USAhousing['Price']
# split the data into a training set and a testing set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =
        train_test_split(X, y, test_size=0.4, random_state=101)
# import, create and train model
from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(X_train,y_train)
# print interecept \& coefficients
print(lm.intercept_) # NB: name here and below
coeff_df = pd.DataFrame(lm.coef_,index=X.columns,
              columns = ['Coefficient']) # table
coeff_df
# predictions
predictions = lm.predict(X_test)
# evaluation
plt.scatter(y_test, predictions)
sns.distplot((y_test-predictions),bins=50) # redisual plot
from sklearn import metrics
print('MAE:', metrics.mean_absolute_error(y_test, predictions))
print('MSE:', metrics.mean_squared_error(y_test, predictions))
print('RMSE:',
        np.sqrt(metrics.mean_squared_error(y_test, predictions)))
```

2.1.1 Multiple linear regression, polynominal

ENTER MY NOTES HERE

Polynomial regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modelled as an nth degree polynomial in x: it fits a nonlinear relationship between the value of x and the corresponding conditional mean of y, denoted E(y-x). Although a nonlinear model to the data, as a statistical estimation problem it is linear (i.e. the regression function E(y-x) is linear in the unknown parameters that are estimated from the data); hence polynomial regression is considered to be a special case of multiple linear regression.

2.2 Logistic regression & Titanic dataset

Logistic regression is a **classification** method. For example binary classifications like spam vs. ham emails, loan default (yes/no), ... vs. linear regression where prediction is a *continuous* value.

Logistic reg. is instead to predict discrete categories (for example two classes 0 and 1). We cannot use linear regression for binary data (see fig 2)

Figure 1: Linear vs. Logistig regression

Sigmoid (aka Logistic) function takes in any value and outputs it between

0 and 1:

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

hence we can use Linear Regression solution $y = b_0 + b_1 x$ and replace it into z: returning the **probability** (between 0 and 1) of belonging to a class: class

Figure 2: From linear to logistic

0 if prob below 0.5 and class 1 if above (see 2).

Use **confusion matrix** to evaluate the model (e.g. disease vs. test) and true positive/true of the Logistic (or any classification model)

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Basic Terminology:

- True Positives (TP)
 True Negatives (TN)
 False Positives (FP)
 False Negatives (FN)

Figure 3: Confusion matrix

This is a *short* list of rates that are often computed from a confusion matrix for a binary classifier:

- Accuracy: (TP+TN)/tot = (100+50) / 165 = 0.91
- Error rate: (FP+FN)/tot = 1 Accuracy

- Recall (or Sensitivity or True Positive Rate): TP/(actual yes) = 100 / 105 = 0.95
- Specificity: TN/(actual no) = 50 / 60
- Precision TP/(predicted yes) = 100 / 110 = 0.91

Use Precision and Recall rather than Accuracy rate (see 'accuracy paradox² in wikipedia).

• **Type I error** = False positive.

E.g. In a spam model, clearly worse to have a false positive (i.e. sending to the spam folder a non-spam email) than just the inconvenience of deleting a spam email that makes it to your inbox (false negative). Hence, we want to max **Precision** (up to 1. - how many spam emails correctly identified out of all predicted spam ones);

• Type II error = False negative

E.g. In a medical context, a false negative (sick people sent back home because diagnosed as healthy) is clearly worse than false positives (healthy individuals that have to do more tests). Hence we want to maximise **Recall** (how many diagnosied sick out of all sick people, e.g. precision 80% but recall 95%.).

Other evalutation metrics are F_{beta} (which is a generalisation of $F1_score$, see fig. 4) and Receiver Operating Characteristic ('ROC') curve (where the points are True Positive and True Negative Rate splitting, between (0, 0) and (1, 1))

And now the code:

²For classification problems that are skewed in their classification distributions - e.g. if we had a 100 text messages and only 2 were spam and the rest 98 were not - accuracy by itself is not a very good metric. We could classify 90 messages as not spam (including the 2 that were actually spam, hence they would be false negatives) and 10 as spam (all 10 false positives) and still get a reasonably good accuracy score of 90%. For such cases, precision and recall come in very handy. These two metrics can be combined to get the F1 score, which is weighted (harmonic) average of the precision and recall $F1_score = 2 * \frac{prec*rec}{prec+rec}$

Boundaries in the F-beta score

Note that in the formula for F_{eta} score, if we set eta=0, we get

 $F_0 = \left(1+0^2\right) \cdot \frac{\text{Precision-Recall}}{\text{0-Precision+Recall}} = \frac{\text{Precision-Recall}}{\text{Recall}} = \text{Precision}. \text{ Therefore, the minimum value of } \beta \text{ is zero, and at this value, we get the precision.}$

Now, notice that if N is really large, then

$$F_{\beta} = \left(1 + N^2\right) \cdot \frac{\text{Precision-Recall}}{N^2 \cdot \text{Precision+Recall}} = \frac{\text{Precision-Recall}}{\frac{N^2}{1 + N^2} \text{Precision+} \frac{1}{1 + N^2} \text{Recall}}$$

As N goes to infinity, we can see that $\frac{1}{1+N^2}$ goes to zero, and $\frac{N^2}{1+N^2}$ goes to 1.

Therefore, if we take the limit, we have

$$\lim_{N\to\infty} F_N = \frac{\text{Precision-Recall}}{\text{1-Precision+0-Recall}} = \text{Recall.}$$

Thus, to conclude, the boundaries of beta are between 0 and ∞ .

- If $\beta=0$, then we get **precision**.
- If $\beta=\infty,$ then we get ${\it recall}.$
- For other values of β , if they are close to 0, we get something close to precision, if they are large numbers, then we get something close to recall, and if $\beta=1$, then we get the **harmonic mean** of precision and recall.

Figure 4: F beta

AREA UNDER A ROC CURVE

Figure 5: ROC curve

```
train = pd.read_csv('titanic_train.csv') # load data
# heatmap to visualise missing data
sns.heatmap(train.isnull(),yticklabels=False,cbar=False,cmap='viridis')
# 1. visualise data
sns.set_style('whitegrid')
sns.countplot(x='Survived',hue='Sex',data=train,palette='RdBu_r')
sns.countplot(x='Survived', hue='Pclass', data=train, palette='rainbow')
sns.distplot(train['Age'].dropna(),kde=False,bins=30) # or
train['Age'].hist(bins=30) # NB: no .dropna() needed
# 2. clean data (wealthier passengers -> older)
plt.figure(figsize=(12, 7))
sns.boxplot(x='Pclass',y='Age',data=train,palette='winter')
def impute_age(cols):
    Age = cols[0]
    Pclass = cols[1]
    if pd.isnull(Age): # data missing
        if Pclass == 1:
            return 37
        elif Pclass == 2:
            return 29
        else:
           return 24
    else:
        return Age
 # apply fnct - NB: axis=1
train['Age'] = train[['Age', 'Pclass']].apply(impute_age,axis=1)
 # drop a useless col and na rows
train.drop('Cabin',axis=1,inplace=True)
train.dropna(inplace=True)
# 3. convert categorical vars into dummy variables
# dummies for a series, then concat axis=1
sex = pd.get_dummies(train['Sex'],drop_first=True)
# or, alternatively, train['Sex'] = train.Sex.map({male:1, female:0})
```

```
embark = pd.get_dummies(train['Embarked'],drop_first=True)
# remove unnecessary cols
train.drop(['Sex','Embarked','Name','Ticket'],axis=1,inplace=True)
 # get new cols in (NB: axis=1)
train = pd.concat([train,sex,embark],axis=1)
# alternative: apply dummies to the col & rtrn all
final_data = pd.get_dummies(df_loans,columns=["colum_name"],drop_first=
# 4. build model
 # train
X_train, X_test, y_train, y_test =
     train_test_split(train.drop('Survived',axis=1),
        train['Survived'], test_size=0.30, random_state=101)
 # build
from sklearn.linear_model import LogisticRegression
logmodel = LogisticRegression()
logmodel.fit(X_train,y_train)
predictions = logmodel.predict(X_test)
 # evaluate
from sklearn.metrics import classification_report
print(classification_report(y_test, predictions))
```

To recap, the **evaluation metrics** are:

- <u>regression</u>: mean absolute error (but not differentiable), mean square error, R2.
- <u>classification</u>: accuracy (but note for skew distributions), precision and recall, $F1_score$ and its generalisation, ROC.

2.3 Naive Bayes

One of the major advantages that Naive Bayes has over other classification algorithms is its ability to handle an extremely large number of features. For example, in a spam detector algorithm each word is treated as a feature and there are thousands of different words. Also, it performs well even with the presence of irrelevant features and is relatively unaffected by them. The other major advantage it has is its relative simplicity. Naive Bayes' works well right out of the box and tuning it's parameters is rarely ever necessary, except usually in cases where the distribution of the data is known. It rarely ever overfits the data. Another important advantage is that its model training and prediction times are very fast for the amount of data it can handle.

The term *Naive* in Naive Bayes comes from the fact that the algorithm considers the features that it is using to make the predictions to be *independent* of each other, which may not always be the case.

```
from sklearn.naive_bayes import MultinomialNB
naive_bayes = MultinomialNB()
naive_bayes.fit(training_data, y_train)
predictions = naive_bayes.predict(testing_data)
```

2.3.1 Bag of Words

Bag of Words(BoW) is a concept used to specify the problems that have a collection of text data that needs to be worked with. The basic idea of BoW is to take a piece of text and count the frequency of the words in that text. It is important to note that the BoW concept treats each word individually and the order in which the words occur does not matter.

From scratch:

```
from import CountVectorize
```

From scratch:

```
naive_bayes = MultinomialNB()
naive_bayes.fit(training_data, y_train)
predictions = naive_bayes.predict(testing_data)
```

2.4 K Nearest Neighbours

KNN is a classification (non parametric) algorithm based on a simple principle, first one stores all the data (training) and then follows the steps below for the prediction:

- calculate distance from x to all points in your data,
- sort the data by increasing distance from x,
- predict majority label of the 'K' closest points.

The choice of K will affect what class new point is assigned to (k=1 is very noisy, ...). Simple, but not good for large data sets and for categorical features. Why standardise the variables: the KNN classifier predicts the class of a given test observation by identifying the observations that are nearest to it, therefore the scale of the variables matters (large scale variables will have a much larger effect on the distance and hence on the KNN classifier).

```
# 1. read data
df = pd.read_csv("Classified Data",index_col=0)
# 2. standardise variables (import, fit and transform)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler() # initialise
scaler.fit(df.drop('TARGET CLASS',axis=1)) # targ class = 0 or 1
scaled_features = scaler.transform(df.drop('TARGET CLASS',axis=1))
# scaled_feature is an array now, so we re-create df
# note: scaled_fatures will also work in train or KNN algo
df_feat = pd.DataFrame(scaled_features,columns=df.columns[:-1])
# 3. build model
  # train test split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =
    train_test_split(scaled_features,df['TARGET CLASS'],
        test_size=0.30)
 # using KNN (starting with K = 1)
from sklearn.neighbors import KNeighborsClassifier
```

```
knn = KNeighborsClassifier(n_neighbors=1) # K = 1
knn.fit(X_train,y_train)
pred = knn.predict(X_test)
 # evaluate
from sklearn.metrics import classification_report,confusion_matrix
print(confusion_matrix(y_test,pred))
print(classification_report(y_test,pred))
# from sklearn.metrics import accuracy_score, precision_score, recall_s
 # choose right K value
error_rate = []
for i in range(1,40): # will take some time
    knn = KNeighborsClassifier(n_neighbors=i)
    knn.fit(X_train,y_train)
    pred_ = knn.predict(X_test)
    error_rate.append(np.mean(pred_ != y_test))
plt.figure(figsize=(10,6))
plt.plot(range(1,40),error_rate,color='blue', ls='dashed',
  marker='0', markerfacecolor='red', markersize=10)
plt.title('Error Rate vs. K Value')
plt.xlabel('K')
plt.ylabel('Error Rate')
```

You see that after, say, K>20 the error rate just tends to hover around, say, 0.06-0.05. Get confusion matrix and classification report with say K=20 and compare vs. those of K=1.

2.4.1 KNN regression

It is a non-parametric regression, take average of y's \dots LOOK AT MY NOTES

2.4.2 Kernel regression

Difference: here we weight the contribution of each x we have based on how far away from x at hand, whilst in KNN regression every x is essentially equally-weighted.

To recap:

- parametric: if problem is biased, meaning that you have an idea of the relationship in terms of functional form, then use a parametric model/approach (e.g. how far a cannon is going to shoot, given the angle);
- non-parametric: for un-biased problems, when you have no idea of the functional forms, then best to use a non-parametric approach (e.g. bees population as function of the food richness). More data-intensive since you have to store all data, but no need to guess the form of the solution.

2.5 Decision Trees and Random Forests

- Nodes: split for the value of a certain attribute
- Edges: outcome of a split to next node
- Root: node that performs first split
- Leaves: terminal nodes that predict the outcome

Entropy and Information Gain are the Mathematical Methods of choosing the best split (ref Ch 8 of Gareth et al)

To improve performance, we can use many trees with a random sample of features chosen as the split.

- A new random sample of features is chosen for every single tree at every single split.
- For classification, m (# random features) is typically chosen to be the square root of p (# total features).

Random Forests vs. Trees

Suppose there is one very strong feature in the data set. When using bagged trees, most of the trees will use that feature as the top split, resulting in an

ensemble of similar trees that are *highly correlated*. Averaging highly correlated quantities does not significantly reduce variance. By randomly leaving out candidate features from each split, **Random Forests "decorrelates"** the trees, such that the averaging process can reduce the variance of the resulting model.

```
# 1. read data
df = pd.read_csv('kyphosis.csv')
# 2. visualise
sns.pairplot(df,hue='Kyphosis',palette='Set1')
# 3. Decision Tree & Random Forest
 # train
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =
 train_test_split(df.drop('Kyphosis',axis=1),
   df['Kyphosis'], test_size=0.30)
  # build Decision Tree
from sklearn.tree import DecisionTreeClassifier
dtree = DecisionTreeClassifier()
dtree.fit(X_train,y_train)
predictions = dtree.predict(X_test)
# build Random Forest (NB: .tree vs. .ensemble)
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_estimators=100)
rfc.fit(X_train, y_train)
rfc_pred = rfc.predict(X_test)
# evaluate
from sklearn.metrics import classification_report,confusion_matrix
print(confusion_matrix(y_test, predictions)) # for tree
print(confusion_matrix(y_test,rfc_pred)) # for rdm forest
# and same for classification_report
```

2.6 Support Vector Machines

Separate data using hyperplane (a line in 2-dim, a plane in 3-dim, ...) Coding example using a built-in dataset:

```
# 1. get data
from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
cancer.keys() # data shown in dict keys
# -> dict_keys(['DESCR', 'target', 'data', 'target_names', 'feature_nam
print(cancer['DESCR']) # long description
#set-up df of the features and target
df_feat = pd.DataFrame(cancer['data'],
                    columns=cancer['feature_names'])
df_target = pd.DataFrame(cancer['target'],columns=['Cancer'])
# 2. do some explanatory data analysis
# e.g. sns.pairplot with hue = target
# 3. S V Classifier
# train split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =
   train_test_split(df_feat, df_target,
   test_size=0.30, random_state=101)
  # build 'naive' SVC: WRONG WAY
from sklearn.svm import SVC
model = SVC()
model.fit(X_train,y_train)
predictions = model.predict(X_test)
# evaluate
from sklearn.metrics import classification_report,confusion_matrix
print(confusion_matrix(y_test, predictions))
print(classification_report(y_test, predictions))
# all classficed into a single class... we need GridSearch
```

```
# build SVC properly: use GridSearch (meta-estimator)
from sklearn.model_selection import GridSearchCV
param_grid = {'C': [0.1,1, 10, 100, 1000], # is C not gamma? CHECK!!!
    'gamma': [1,0.1,0.01,0.001,0.0001], 'kernel': ['rbf']}
grid = GridSearchCV(SVC(),param_grid,refit=True,verbose=3)
# rbf: this is actually default, get verbose>0 to see some output
grid.fit(X_train,y_train) # May take awhile!
grid.best_params_ # show best params
grid.best_estimator_ # show best estimator
grid_predictions = grid.predict(X_test)

# evaluate (will be much better than naive one above)
print(confusion_matrix(y_test,grid_predictions))
print(classification_report(y_test,grid_predictions))
```

2.7 K Means Clustering

K Means Clustering is an **unsupervised** learning algorithm that will attempt to group similar elements (PCA instead is a factor based rather than clustering algo). Used for market segmentation, cluster customers based on features, identify similar groups, ...

The K Means Algorithm consists of the following steps:

- choose a number of clusters K (more details later),
- randomly assign each point to a cluster
- until clusters stop changing, repeat the following loop: (i) for each cluster, compute the cluster centroid by taking the mean vector of points in the cluster and (ii) assign each data point to the cluster for which the centroid is the closest.

There is no easy answer on how to choose the best K. One way is the elbow method:

• compute, for some K values (e.g. 2, 4, 6, 8, etc.), the sum of squared error (SSE) between each cluster member and its centroid,

Figure 6: K Means algorithm

• if you plot K vs. SSE you will see that the error decreases as k gets larger, the idea is to choose he K at which SSE decreases abruptly (this produce an elbow effect n the graph - see following fig)

```
# 1. get/create data
from sklearn.datasets import make_blobs # arrays
# Create Data
data = make_blobs(n_samples=200, n_features=2,
centers=4, cluster_std=1.8,random_state=101)

# 2. do some explanatory data analysis
plt.scatter(data[0][:,0],data[0][:,1],c=data[1],cmap='rainbow')
# 'c=' is the color

# 3. K Means Clustering
# create the cluster (NB: no train_test)
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=4) # choose the no. of clusters
kmeans.fit(data[0])
```


Figure 7: Choosing a K value: elbow method

```
# output
kmeans.cluster_centers_ # coordinates for K's
kmeans.labels_ # the labels, see charts below

# visual output: K mean vs. original (NB: only in our example
# since we've the labels - not possible since unsupervised)
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True, figsize=(10,6))
ax1.set_title('K Means') # the chart with the label (NB: 'c=')
ax1.scatter(data[0][:,0],data[0][:,1],c=kmeans.labels_,cmap='rainbow')
ax2.set_title("Original")
ax2.scatter(data[0][:,0],data[0][:,1],c=data[1],cmap='rainbow')
```

2.8 Principal Component Analysis

Principal Component Analysis (PCA) is an **unsupervised** learning algorithm (like K-Means Clustering).

In short, PCA is a transformation of data in attempts to find out what features explain the most variance in the data.

It is difficult to visualize high dimensional data, we can use PCA to find

the first two principal components, and visualize the data in this new, twodimensional space, with a single scatter-plot. Before we do this though, we'll need to scale our data so that each feature has a single unit variance (see scaler() below, in 2. PCA Visualition, or K-Nearest Neighbours 2.4).

```
# 1. Get the data
from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
cancer.keys() # dict_keys(['DESCR', 'data',
               # 'feature_names', 'target_names', 'target'])
print(cancer['DESCR'])
df = pd.DataFrame(cancer['data'],columns=cancer['feature_names'])
# 2. PCA Visuation (but first scale data)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(df)
scaled data = scaler.transform(df)
from sklearn.decomposition import PCA # NB: .[family]
pca = PCA(n_components=2) # instantiate
pca.fit(scaled_data) # find the components (fittinh)
x_pca = pca.transform(scaled_data) # rotation and dim reduction
scaled_data.shape # e.g. (569, 30) vs. below
x_{pca.shape} # (569, 2)
plt.figure(figsize=(8,6))
plt.scatter(x_pca[:,0],x_pca[:,1],c=cancer['target'],cmap='plasma')
plt.xlabel('First principal component')
plt.ylabel('Second Principal Component')
# components stored as attributes
pca.components_
# each row in the matrix array above is a princ. component
# and each column related to orginal features
# We can visualize such relationship with a heatmap:
df_comp = pd.DataFrame(pca.components_,columns=cancer['feature_names'])
plt.figure(figsize=(12,6))
```

```
sns.heatmap(df_comp,cmap='plasma')
# color bar represents corr(feature, principal)
```

Unfortunately, with this great power of dimensionality reduction, comes the cost of being able to easily understand what these components represent. The components correspond to combinations of the original features, the components themselves are stored as an attribute of the fitted PCA object.

2.9 Recommender systems

To be completed

2.10 Natural Language Processing (NLTK)

To be completed

2.11 Big Data (Spark)

To be completed

2.12 Deep Learning (Tensorflow)

To be completed

A From scratch

Some interesting, but not directly related topics are reported here.