

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6: C09K 9/02, G02F 1/15

(11) Internationale Veröffentlichungsnummer: WO 97/30134

A1 (43) Internationales

Veröffentlichungsdatum:

21. August 1997 (21.08.97)

(21) Internationales Aktenzeichen:

PCT/EP97/00498

(22) Internationales Anmeldedatum: 4. Februar 1997 (04.02.97)

(30) Prioritätsdaten:

196 05 451.6

15. Februar 1996 (15.02.96)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BAYER AKTIENGESELLSCHAFT [DE/DE]; D-51368 Leverkusen

(DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): CLAUSSEN, Uwc [DE/DE]; Am Wasserturm 15 b, D-51379 Leverkusen (DE). BERNETH, Horst [DE/DE]; Erfurter Strasse 1, D-51373 Leverkusen (DE). HAARER, Dietrich [DE/DE]; Hangweg 30, D-95448 Bayreuth (DE). SIMMERER, Jürgen [DE/DE]; Koldestrasse 8, D-91052 Erlangen (DE). SCHALLER, Jochen [DE/DE]; Marienstrasse 29, D-95126 Schwarzenbach (DE).

AKTIENGE-(74) Gemeinsamer Vertreter: BAYER SELLSCHAFT; D-51368 Leverkusen (DE).

(81) Bestimmungsstaaten: CA, CZ, JP, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: ELECTROCHROMIC SYSTEM

(54) Bezeichnung: ELEKTROCHROMES SYSTEM

(57) Abstract

The electrochromic system proposed includes at least one reducible substance OX2 and at least one oxidizable substance RED1 cross-linked to each other by a bridging unit. The system is suitable for use in electrochromic devices.

(57) Zusammenfassung

Das neue elektrochrome System enthält mindestens eine reduzierbare und mindestens eine oxidierbare Substanz OX2 bzw. RED1, die durch ein Brückenglied miteinander verknüpft sind und eignet sich hervorragend zur Anwendung in einer elektrochromen Vorrichtung.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	мх	14 H
AT	Österreich	GE	Georgien	NE.	Mexiko
ΑÜ	Australien	GN	Guinea	NL NL	Niger
BB	Barbados	GR	Griechenland		Niederlande
BE	Belgien	HU	Ungam	- NO	Norwegen
BF	Burkina Faso	IE	Irland	NZ	Neusceland
BG	Bulgarien	ir	Italien	PL	Polen
BJ	Benin	JP	Impan	PT	Portugal
BR	Brasilien	KE	Kenya	RO	Rumānies
BY	Belarus	KG	Kirgisistan	RU	Russische Föderation
CA	Kanada	KP		SD	Sudan
CF	Zentrale Afrikanische Republik	KR	Demokratische Volksrepublik Korea Republik Korea	SE	Schweden
CG	Kongo	KZ	Kasachstan	SG	Singapur
СН	Schweiz	LI	Liechtenstein	SI	Slowenien
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slowakei
CM	Kamerun	LR		SN	Senegal
CN	China	LK	Liberia	\$Z	Swasiland
CS	Tschechoslowakei		Litauen	TD	Tschad
CZ	Tschechische Republik	LU	Luxemburg	TG	Togo
DE	Deutschland	LV	Lettland	ΤJ	Tadschikistan
DK	Dånemark	MC	Monaco	TT	Trinidad und Tobago
EE	Estland	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	UG	Uganda
FI	Finaland	ML	Mali	US	Vereinigte Staaten von Amerika
FR	Frankreich	MN	Mongolei	UZ	Uabekistan
GA		MR	Mauretanien	YN	Vietnam
UA.	Gabon	MW	Malawi		

15

Elektrochromes System

Die vorliegende Erfindung betrifft ein elektrochromes System, eine elektrochrome Flüssigkeit enthaltend dieses elektrochrome System, eine elektrochrome Vorrichtung sowie neue elektrochrome Substanzen und Verfahren zu deren Herstellung.

Elektrochrome Vorrichtungen, die ein elektrochromes System enthalten, sind bereits bekannt.

Solche Vorrichtungen enthalten als elektrochromes System üblicherweise Paare von Redoxsubstanzen, die in einem inerten Lösungsmittel gelöst sind. Zusätzlich können Leitsalze, Lichtstabilisatoren und Substanzen, die die Viskosität beeinflussen, enthalten sein.

Als Paar von Redoxsubstanzen wird je eine reduzierbare und eine oxidierbare Substanz verwendet. Beide sind farblos oder nur schwach gefärbt. Unter Einfluß einer elektrischen Spannung wird die eine Substanz reduziert, die andere oxidiert, wobei wenigstens eine farbig wird. Nach Abschalten der Spannung bilden sich die beiden ursprünglichen Redoxsubstanzen wieder zurück, wobei Entfärbung bzw. Farbaufhellung auftritt.

Aus US-4.902.108 ist bekannt, daß solche Paare von Redoxsubstanzen geeignet sind, bei denen die reduzierbare Substanz wenigstens zwei chemisch reversible Reduktionswellen im cyclischen Voltammogramm und die oxidierbare Substanz entsprechend wenigstens zwei chemisch reversible Oxidationswellen besitzt.

Elektrochrome Vorrichtungen können auf vielfältige Weise Anwendung finden. So können sie z.B. als Automobilrückspiegel ausgebildet sein, der bei Nachtfahrt durch Anlegen einer Spannung abgedunkelt werden kann und somit das Blenden durch Scheinwerfer fremder Fahrzeuge verhindert wird (vgl. z.B. US-3.280.701, US-4.902.108, EP-A-0.435.689). Weiterhin können solche Vorrichtungen auch in Fensterscheiben oder Autosonnendächern eingesetzt werden, wo sie nach Anlegen einer Spannung das Sonnenlicht abdunkeln. Letztlich kann mit solchen Vorrichtun-

10

15

20

25

30

gen auch eine Matrixanzeige aufgebaut werden zur bildlichen Darstellung von Informationen wie Buchstaben, Zahlen und Zeichen.

Elektrochrome Vorrichtungen bestehen normalerweise aus einem Paar Glas- oder Kunststoffscheiben, von denen im Falle eines Autospiegels eine verspiegelt ist. Eine Seite dieser Scheiben ist mit einer lichtdurchlässigen, elektrisch leitfähigen Schicht, z.B. Indium-Zinn-Oxid (ITO), beschichtet. Aus diesen Scheiben wird nun eine Zelle aufgebaut, indem sie mit ihrer einander zugewandten elektrisch leitfähig beschichteten Seite mit einem ringförmigen oder rechteckigen Dichtungsring verbunden, vorzugsweise verklebt werden. Der Dichtungsring stellt einen gleichmäßigen Abstand zwischen den Scheiben her, beispielsweise 0,1 bis 0,5 mm. In diese Zelle wird nun über eine Öffnung eine elektrochrome Lösung eingefüllt und die Zelle dicht verschlossen. Über die ITO-Schicht lassen sich die beiden Scheiben getrennt kontaktieren.

Bei den aus dem Stand der Technik bekannten elektrochromen Systemen sind solche Paare von Redoxsubstanzen enthalten, die nach Reduktion bzw. Oxidation farbige Radikale, Kationradikale oder Anionradikale bilden, die chemisch reaktiv sind. Wie beispielsweise aus Topics in Current Chemistry, Vol. 92, S. 1-44 (1980) bekannt ist, können solche Radikal(ionen) empfindlich gegenüber Elektrophilen oder Nukleophilen oder auch Radikalen sein. Es muß deshalb zum Erreichen einer hohen Stabilität einer elektrochromen Vorrichtung, die ein solches elektrochromes System enthält, das mehrere tausend Schaltcyclen überstehen soll, dafür gesorgt werden, daß das verwendete Lösungsmittel absolut frei von Elektrophilen, z.B. Protonen, Nukleophilen und Sauerstoff ist. Weiterhin muß dafür gesorgt werden, daß sich solche reaktiven Spezies nicht durch elektrochemische Prozesse an den Elektroden während des Betriebs der elektrochromen Vorrichtung bilden.

Die gemäß obiger Reaktionsgleichung formulierte Rückreaktion zu RED_1 und OX_2 erfolgt auch während des Betriebs der elektrochromen Vorrichtung kontinuierlich abseits der Elektroden innerhalb des Lösungsvolumens. Wegen der beschriebenen Gefahren von Abbaureaktionen der Radikal-(ionen) durch Elektrophile, Nukleophile oder Radikale ist es für die Langzeitstabilität des Displays wichtig, daß die Rückreaktion gemäß obiger Reaktionsgleichung möglichst rasch und ohne Nebenreaktionen erfolgen kann.

Es wurde gefunden, daß durch eine Kopplung von RED_1 und OX_2 über eine kovalente chemische Bindung die Elektronenübertragung erleichtert wird und somit die Rückreaktion gemäß obiger Reaktionsgleichung beschleunigt und Nebenreaktionen vermieden werden können.

Die vorliegende Erfindung betrifft demnach ein elektrochromes System, enthaltend mindestens eine oxidierbare Substanz RED₁, die durch Elektronenabgabe an einer Anode und mindestens eine reduzierbare Substanz OX₂, die durch Elektronenaufnahme an einer Kathode, jeweils unter Zunahme der Extinktion im sichtbaren Bereich des Spektrums von einer schwach gefärbten oder farblosen Form in eine gefärbte Form OX₁ bzw. RED₂ übergeht, wobei nach Ladungsausgleich jeweils die schwach gefärbte bzw. farblose Form zurückgebildet wird, dadurch gekennzeichnet, daß mindestens eine der enthaltenen Substanzen RED₁ und OX₂ über eine Brücke kovalent miteinander verknüpft sind.

Die Reduktions- und Oxidationsprozesse in dem erfindungsgemäßen elektrochromen System erfolgen im allgemeinen durch Elektronenaufnahme bzw. -abgabe an einer Kathode bzw. Anode, wobei zwischen den Elektroden vorzugsweise eine Potentialdifferenz von 0,3 bis 3 V herrscht. Nach Abschalten des elektrischen Potentials erfolgt im allgemeinen spontan ein Ladungsausgleich zwischen den Substanzen RED₂ und OX₁, wobei eine Entfärbung bzw. Farbaufhellung eintritt. Ein solcher Ladungsausgleich erfolgt auch bereits während des Stromflusses im Innern des Elektrolytvolumens.

Das erfindungsgemäße elektrochrome System enthält bevorzugt mindestens eine elektrochrome Substanz der Formel (I)

$$Y + (B-Z)_{3}(B-Y)_{5} = B-Z$$
 (I),

25 worin

15

20

Y und Z unabhängig voneinander für einen Rest OX_2 oder RED_1 stehen, wobei aber mindestens ein Y für OX_2 und mindestens ein Z für RED_1 steht,

wobei

OX₂ für den Rest eines reversibel elektrochemisch reduzierbaren Redoxsystems steht, und

RED₁ für den Rest eines reversibel elektrochemisch oxidierbaren Redoxsystems steht,

- 5 B für ein Brückenglied steht,
 - c für eine ganze Zahl von 0 bis 5 steht, und

a und b unabhängig voneinander für eine ganze Zahl von 0 bis 5 stehen, vorzugsweise für eine ganze Zahl von 0 bis 3 stehen.

Bevorzugt enthält das elektrochrome System mindestens eine elektrochrome

Substanz der Formel (I), worin

Y für OX₂ und Z für RED₁ steht und Y und Z in ihrer Reihenfolge alternieren.

Insbesondere bevorzugt enthält das erfindungsgemäße elektrochrome System mindestens eine elektrochrome Substanz der Formeln

$$OX_2$$
-B-RED₁ (Ia),

 $OX_2-B-RED_1-B-OX_2 (Ib),$

 $RED_1-B-OX_2-B-RED_1$ (Ic), oder

 OX_2 - $(B-RED_1-B-OX_2)_d$ - $B-RED_1$ (Id),

worin

OX2, RED1 und B die oben angegebene Bedeutung haben, und

20 d für eine ganze Zahl von 1 bis 5 steht.

Ganz besonders bevorzugt enthält das erfindungsgemäße elektrochrome System mindestens eine elektrochrome Substanz der Formeln (Ia)-(Id),

worin

5

10

OX₂ für den Rest einer kathodisch reduzierbaren Substanz steht, die im cyclischen Voltammogramm, aufgenommen in einem inerten Lösungsmittel bei Raumtemperatur, wenigstens zwei chemisch reversible Reduktionswellen zeigt, wobei die erste dieser Reduktionswellen zu einer Zunahme der Extinktion bei wenigstens einer Wellenlänge im sichtbaren Bereich des elektromagnetischen Spektrums führt,

RED₁ für den Rest der anodisch reversibel oxidierbaren Substanz steht, die im cyclischen Voltammogramm, aufgenommen in einem inerten Lösungsmittel bei Raumtemperatur, wenigstens zwei chemisch reversible Oxidationswellen zeigt, wobei die erste dieser Oxidationswellen zu einer Zunahme der Extinktion bei wenigstens einer Wellenlänge im sichtbaren Bereich des elektromagnetischen Spektrums führt, und

B für ein Brückenglied steht.

Besonders bevorzugt ist ein erfindungsgemäßes elektrochromes System, welches mindestens eine Substanz der Formel (Ia)-(Id) enthält, worin

OX₂ für einen Rest der Formeln

$$R^{69}$$
 R^{70}
 R^{69}
 R^{70}
 R^{69}
 R^{70}
 R^{70}

$$R^{6} \xrightarrow{R^{4}} Z^{1} \xrightarrow{R^{5}} R^{7}$$

$$Z^{1} \xrightarrow{R^{2}} Z^{1} \xrightarrow{R^{2}} R^{7}$$

$$Z^{1} \xrightarrow{R^{2}} Z^{1} \xrightarrow{R^{3}} R^{7}$$

$$Z^{1} \xrightarrow{R^{3}} Z^{1} \xrightarrow{R^{3}} R^{7}$$

steht, wobei

5

10

 R^2 bis R^5 , R^8 , R^9 , R^{16} bis R^{19} unabhängig voneinander C_1 - bis C_{18} -Alkyl, C_2 - bis C_{12} -Alkenyl, C_3 - bis C_7 -Cycloalkyl, C_7 - bis C_{15} -Aralkyl oder C_6 - bis C_{10} - Aryl bedeuten oder

- R4 und R5 oder R8 und R9 gemeinsam eine -(CH2)2- oder -(CH)3-Brücke bilden,
- R⁶, R⁷ und R²² bis R²⁵ unabhängig voneinander Wasserstoff, C₁- bis C₄-Alkyl, C₁- bis C₄-Alkoxy, Halogen, Cyano, Nitro oder C₁- bis C₄-Alkoxycarbonyl bedeuten oder
- 5 R²² und R²³ und/oder R²⁴ und R²⁵ eine -CH=CH-CH=CH-Brücke bilden,
 - R¹⁰ und R¹¹; R¹² und R¹³; R¹⁴ und R¹⁵ unabhängig voneinander Wasserstoff oder paarweise eine -(CH₂)₂-, -(CH₂)₃- oder -CH=CH-Brücke bedeuten,
 - R²⁰ und R²¹ unabhängig voneinander O, N-CN, C(CN)₂ oder N-C₆- bis C₁₀-Aryl bedeuten,
- 10 R²⁶ Wasserstoff, C₁- bis C₄-Alkyl, C₁- bis C₄-Alkoxy, Halogen, Cyano, Nitro, C₁- bis C₄-Alkoxycarbonyl oder C₆- bis C₁₀-Aryl bedeutet,
 - R^{69} bis R^{74} unabhängig voneinander Wasserstoff oder C_1 - C_6 -Alkyl bedeuten, oder R^{69} ; R^{12} und/oder R^{70} ; R^{13} eine -CH=CH-CH=CH-Brücke bilden,
 - E^1 und E^2 unabhängig voneinander O, S, NR^1 oder $C(CH_3)_2$ bedeuten oder
- 15 E¹ und E² gemeinsam eine -N-(CH₂)₂-N-Brücke bilden,
 - R^1 C_1 bis C_{18} -Alkyl, C_2 bis C_{12} -Alkenyl, C_4 bis C_7 -Cycloalkyl, C_7 bis C_{15} -Aralkyl, C_6 bis C_{10} -Aryl bedeutet,
- eine direkte Bindung, -CH=CH-, -C(CH₃)=CH-, -C(CN)=CH-, -CCl=CCl-, -C(OH)=CH-, -CCl=CH-, -C=C-, -CH=N-N=CH-, -C(CH₃)=N-N=C(CH₃)-oder -CCl=N-N=CCl- bedeutet,
 - Z^2 -(CH₂)_r- oder -CH₂-C₆H₄-CH₂- bedeutet,
 - r eine ganze Zahl von I bis 10 bedeutet,
 - X ein unter den Bedingungen redox-inertes Anion bedeutet,

wobei die Bindung zum Brückenglied B über einen der Reste R^2 - R^{19} , R^{22} - R^{27} oder im Falle, daß E^1 oder E^2 für NR^1 steht über R^1 erfolgt und die genannten Reste dann für eine direkte Bindung stehen,

RED₁ für einen der folgenden Reste

$$R^{28}$$
 N
 R^{30}
 R^{31}
 R^{31}
 R^{31}

$$R^{28}$$
 R^{33} R^{30} R^{31} (XI),

10

$$\mathbb{R}^{4^{1}}$$

$$\mathbb{E}^{5}$$

$$\mathbb{R}^{48}$$

$$(XVI),$$

$$R^{49} \xrightarrow{E^{6}} E^{7} = Z^{4} = \langle E^{8} \xrightarrow{R^{51}} R^{51} \rangle$$
 (XVII),

$$R^{55}$$
 R^{53}
 R^{55}
 R^{50}
 R^{50}
 R^{50}
 R^{50}
 R^{50}
 R^{50}
 R^{50}

$$R^{62}$$
 R^{63} R^{64} R^{65} R^{66} R^{67} (XX),

steht, worin

5

10

R²⁸ bis R³¹, R³⁴, R³⁵, R³⁸, R³⁹, R⁴⁶, R⁵³ und R⁵⁴ unabhängig voneinander C₁- bis C₁₈-Alkyl, C₂- bis C₁₂-Alkenyl, C₃- bis C₇-Cycloalkyl, C₇- bis C₁₅-Aralkyl oder C₆- bis C₁₀-Aryl bedeuten, und R⁴⁶, R⁵³ und R⁵⁴ zusätzlich Wasserstoff bedeuten,

 R^{32} , R^{33} , R^{36} , R^{37} , R^{40} , R^{41} , R^{42} bis R^{45} , R^{47} , R^{48} , R^{49} bis R^{52} und R^{55} bis R^{57} unabhängig voneinander Wasserstoff, C_1 - bis C_4 -Alkyl, C_1 - bis C_4 -Alkoxy, Halogen, Cyano, Nitro, C_1 - bis C_4 -Alkoxycarbonyl oder C_6 - bis C_{10} -Aryl

bedeuten und R⁵⁷ und R⁵⁸ zusätzlich einen gegebenenfalls benzanellierten aromatischen oder quasiaromatischen fünf- oder sechsgliedrigen heterocyclischen Ring bedeuten und R⁴⁸ zusätzlich NR⁷⁵R⁷⁶ bedeutet,

- R^{49} und R^{50} und/oder R^{51} und R^{52} eine $-(CH_2)_3$ -, $-(CH_2)_4$ -, $-(CH_2)_5$ oder -CH=CH-CH=CH-Brücke bilden,
 - Z³ eine direkte Bindung, eine -CH=CH- oder -N=N-Brücke bedeutet,
 - =Z⁴= eine direkte Doppelbindung, eine =CH-CH= oder =N-N=-Brücke bedeutet,
 - E^3 bis E^5 , E^{10} und E^{11} unabhängig voneinander O, S, NR^{59} oder $C(CH_3)_2$ bedeuten und E^5 zusätzlich C = O oder SO_2 bedeutet, oder
- 10 E³ und E⁴ unabhängig voneinander -CH=CH- bedeuten,
 - E⁶ bis E⁹ unabhängig voneinander S, Se oder NR⁵⁹ bedeuten,
 - R⁵⁹, R⁷⁵ und R⁷⁶ unabhängig voneinander C₁- bis C₁₂-Alkyl, C₂- bis C₈-Alkenyl, C₃- bis C₇-Cycloalkyl, C₇- bis C₁₅-Aralkyl oder C₆- bis C₁₀-Aryl bedeuten und R⁷³ zusätzlich Wasserstoff bedeutet, oder
- 15 R⁷³ und R⁷⁴ in der Bedeutung von NR⁷³R⁷⁴ gemeinsam mit dem N-Atom, an das sie gebunden sind, einen fünf- oder sechsgliedrigen, gesättigten Ring bilden, der weitere Heteroatome enthalten kann,
- R⁶¹ bis R⁶⁸ unabhängig voneinander Wasserstoff, C₁- bis C₆-Alkyl, C₁- bis C₄-Alkoxy, Cyano, C₁- bis C₄-Alkoxycarbonyl oder C₆- bis C₁₀-Aryl bedeuten, oder
 - R⁶¹; R⁶² und R⁶⁷; R⁶⁸ unabhängig voneinander gemeinsam eine -(CH₂)₃-, -(CH₂)₄oder -CH=CH-CH=CH-Brücke bilden,
 - v eine ganze Zahl zwischen 0 und 10 bedeutet,

wobei die Bindung zum Brückenglied B über einen der Reste R²⁸-R⁵⁸, R⁶¹, R⁶², R⁶⁷, R⁶⁸ oder im Falle, daß einer der Reste E³-E¹¹ für NR⁵⁹ steht über R⁵⁹ erfolgt und die genannten Reste dann für eine direkte Bindung stehen, und

- B für ein Brückenglied der Formeln $(CH_2)_n$ oder $[Y_s^1(CH_2)_m Y_0^2]_o$ $(CH_2)_p Y_q^3$ steht, welche jeweils gegebenenfalls durch C_1 bis C_4 -Alkoxy, Halogen oder Phenyl substituiert sind,
 - Y¹ bis Y³ unabhängig voneinander für O, S, NR⁶⁰, COO, CONH, NHCONH, Cyclopentandiyl, Cyclohexandiyl, Phenylen oder Naphthylen stehen,
- R⁶⁰ C₁- bis C₆-Alkyl, C₂- bis C₆-Alkenyl, C₄- bis C₇-Cycloalkyl, C₇- bis C₁₅Aralkyl oder C₆- bis C₁₀-Aryl bedeutet,
 - n eine ganze Zahl von 1 bis 12 bedeutet,

m und p unabhängig voneinander eine ganze Zahl von 0 bis 8 bedeuten,

- o eine ganze Zahl von 0 bis 6 bedeutet und
- q und s unabhängig voneinander 0 oder 1 bedeuten.
- Ganz besonders bevorzugt ist ein erfindungsgemäßes elektrochromes System, welches mindestens eine Substanz der Formel (Ia)-(Id) enthält,

worin

OX₂ für einen Rest der Formeln (II), (III), (IV) oder (V) steht,

wobei

20 R², R³, R⁴, R⁵, R⁸ und R⁹ unabhängig voneinander für C₁- bis C₁₂-Alkyl, C₂- bis C₈-Alkenyl, C₅- bis C₇-Cycloalkyl, C₇- bis C₁₅-Aralkyl oder C₆- bis C₁₀- Aryl stehen.

- R⁶ und R⁷ unabhängig voneinander für Wasserstoff, Methyl, Ethyl, Methoxy, Ethoxy, Fluor, Chlor, Brom, Cyano, Nitro, Methoxycarbonyl oder Ethoxycarbonyl stehen,
- R¹⁰, R¹¹, R¹², R¹³ und R¹⁴, R¹⁵ unabhängig voneinander für Wasserstoff oder, falls Z¹ eine direkte Bindung bedeutet, jeweils gemeinsam für eine -(CH₂)₂-, -(CH₂)₃- oder -CH=CH-Brücke stehen,

oder

- R⁴, R⁵ und R⁸, R⁹ unabhängig voneinander paarweise gemeinsam für -(CH₂)₂-oder -(CH₃)₃-Brücke stehen, falls Z¹ eine direkte Bindung bedeutet,
- 10 R⁶⁹ bis R⁷⁴ unabhängig voneinander Wasserstoff oder C₁-C₄-Alkyl bedeuten,
 - E¹ und E² gleich sind und für O, S, NR¹ oder C(CH₃)₂ stehen oder gemeinsam eine -N-(CH₂)₂-N-Brücke bilden,
 - R^1 für C_1 bis C_{12} -Alkyl, C_2 bis C_4 -Alkenyl, C_5 bis C_7 -Cycloalkyl, C_7 bis C_{15} -Aralkyl oder C_6 bis C_{10} -Aryl steht,
- für eine direkte Bindung, -CH=CH-, -C(CH₃)=CH-, -C(CN)=CH-, -C=C-oder -CH=N-N=CH- steht,
 - Z^2 für -(CH)_r- oder -CH₂-C₆H₄-CH₂- steht,
 - r für eine ganze Zahl zwischen 1 und 6 steht,
 - X' für ein unter den Bedingungen redox-inertes, farbloses Anion steht,
- wobei die Bindung zum Brückenglied B über einen der Reste R²-R¹¹ oder im Falle, daß E¹ oder E² für NR¹ steht über R¹ erfolgt und die genannten Reste dann für eine direkte Bindung stehen,
 - RED₁ für einen Rest der Formeln (X), (XI), (XII), (XIII), (XVI), (XVII), (XVIII) oder (XX) steht,
- 25 wobei

- R^{28} bis R^{31} , R^{34} , R^{35} , R^{38} , R^{39} , R^{46} , R^{53} und R^{54} unabhängig voneinander C_1 bis C_{12} -Alkyl, C_2 bis C_8 -Alkenyl, C_5 bis C_7 -Cycloalkyl, C_7 bis C_{15} -Aralkyl oder C_6 bis C_{10} -Aryl bedeuten und
- R⁴⁶, R⁵³ und R⁵⁴ zusätzlich Wasserstoff bedeuten,
- 5 R³², R³³, R³⁶, R³⁷, R⁴⁰, R⁴¹, R⁴⁷ bis R⁵², R⁵⁵ und R⁵⁶ unabhängig voneinander Wasserstoff, Methyl, Ethyl, Methoxy, Ethoxy, Fluor, Chlor, Brom, Cyan, Nitro, Methoxycarbonyl, Ethoxycarbonyl oder Phenyl bedeuten und
 - R⁵⁷ und R⁵⁸ zusätzlich 2- oder 4-Pyridyl bedeuten und
 - R⁴⁸ zusätzlich NR⁷⁵R⁷⁶ bedeutet,
- 10 Z³ eine direkte Bindung, eine -CH=CH- oder -N=N-Brücke bedeutet,
 - =Z⁴= eine direkte Doppelbindung, eine =CH-CH= oder =N-N=-Brücke bedeutet,
 - E³ bis E⁵, E¹⁰ und E¹¹ unabhängig voneinander O, S, NR⁵⁹ oder C(CH₃)₂ bedeuten, E³ und E⁴ aber die gleiche Bedeutung haben,
 - E⁶ bis E⁹ untereinander gleich sind und S, Se oder NR⁵⁹ bedeuten und
- 15 E^5 zusätzlich C = 0 bedeutet,
 - E⁶ für NR⁵⁹ steht, wobei R⁵⁹ eine direkte Bindung zur Brücke B bedeutet und
 - E⁷ bis E⁹ die oben angegebene Bedeutung besitzen, aber untereinander nicht gleich sein müssen,
- R⁵⁹, R⁷⁵ und R⁷⁶ unabhängig voneinander C₁- bis C₁₂-Alkyl, C₂- bis C₈-Alkenyl,

 C₅- bis C₇-Cycloalkyl, C₇- bis C₁₅-Aralkyl oder C₆- bis C₁₀-Aryl bedeuten,

 und R⁷³ zusätzlich Wasserstoff bedeutet oder
 - R⁷³ und R⁷⁴ in der Bedeutung NR⁷³R⁷⁴ gemeinsam mit dem N-Atom, an das sie gebunden sind, Pyrrolidino, Piperidino oder Morpholino bedeuten,

R⁶¹, R⁶² und R⁶⁷, R⁶⁸ unabhängig voneinander für Wasserstoff, C₁- bis C₄-Alkyl, Methoxycarbonyl, Ethoxycarbonyl oder Phenyl oder paarweise gemeinsam für eine -(CH₂)₃- oder -(CH₂)₄-Brücke stehen,

R⁶³ bis R⁶⁶ für Wasserstoff stehen und

5 v für eine ganze Zahl von 1 bis 6 steht,

wobei die Bindung zum Brückenglied B über einen der Reste R²⁸-R⁴¹, R⁴⁶-R⁵⁶, R⁶¹, R⁶², R⁶⁷, R⁶⁸ oder im Falle, daß einer der Reste E³-E¹¹ für NR⁵⁹ steht, über R⁵⁹ erfolgt und die genannten Reste dann für eine direkte Bindung stehen,

- B für ein Brückenglied der Formeln $-(CH_2)_n$ -, $-(CH_2)_m$ -O- $(CH_2)_p$ -, $-(CH_1)_m$ -NR⁶⁰- $(CH_2)_p$ -, $-(CH_2)_m$ -C₆H₄- $(CH_2)_p$ -, $-[O-(CH_2)_p]_o$ -O-, $-[NR^{60}-(CH_2)_p]_o$ -NR⁶⁰-, $-[C_6H_4-(CH_2)_p]_o$ -C₆H₄-, $-(CH_2)_m$ -OCO-C₆H₄-COO- $(CH_2)_p$ -, $-(CH_2)_m$ -NHCO-C₆H₄-CONH- $(CH_2)_p$ -, $-(CH_2)_m$ -NHCO-NH- $(CH_2)_p$ -, $-(CH_2)_m$ -NHCO- $(CH_2)_t$ -CONH- $(CH_2)_t$ -NHCO- $(CH_2)_t$ -CONH- $(CH_2)_t$ -NHCONH- $(CH_2)_t$ -NHCONH- $(CH_2)_t$ -Steht,
 - R⁶⁰ für Methyl, Ethyl, Benzyl oder Phenyl steht,
 - n für eine ganze Zahl von 1 bis 10 steht,

m und p unabhängig voneinander für eine ganze Zahl von 0 bis 4 stehen,

- o für eine ganze Zahl von 0 bis 2 steht und
- 20 t für eine ganze Zahl von 1 bis 6 steht.

Insbesondere bevorzugt ist ein erfindungsgemäßes elektrochromes System, welches mindestens eine Substanz der Formel (Ia)-(Id) enthält,

worin

OX₂ für einen Rest der Formeln (II), (IV) oder (V) steht,

worin

5

20

- R², R⁴ und R⁸ für eine direkte Bindung zum Brückenglied B stehen,
- R³, R⁵ und R⁹ unabhängig voneinander für Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Benzyl oder Phenyl stehen, oder im Falle der Formeln Ic oder Id ebenfalls für eine direkte Bindung zum Brückenglied B stehen,
- R⁶ und R⁷ gleich sind und für Wasserstoff, Methyl, Methoxy, Chlor, Cyano oder Methoxycarbonyl stehen,
- R¹⁰, R¹¹, R¹², R¹³ und R¹⁴, R¹⁵ unabhängig voneinander für Wasserstoff oder, falls Z¹ eine direkte Bindung bedeutet, jeweils paarweise zusammen für eine -CH=CH-Brücke stehen,
 - R⁶⁹ bis R⁷² gleich sind und Wasserstoff, Methyl oder Ethyl bedeuten,
 - R⁷³ und R⁷⁴ Wasserstoff bedeuten.
 - E¹ und E² gleich sind und für O oder S stehen,
- 15 Z¹ für eine direkte Bindung oder -CH=CH- steht,
 - X' für ein unter den Bedingungen redox-inertes, farbloses Anion steht,
 - RED₁ für einen Rest der Formeln (X), (XII), (XIII), (XVI) oder (XVII) steht,
 - R²⁸, R³⁴, R³⁸, R⁴⁶ und R⁴⁹ für eine direkte Bindung zum Brückenglied B stehen,
 - R²⁹ bis R³¹, R³⁵ und R³⁹ unabhängig voneinander für Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Benzyl oder Phenyl stehen, oder im Falle der Formeln Ib oder Id R³⁰, R³⁵ und R³⁹ ebenfalls für die direkte Bindung zum Brückenglied B stehen,
 - R³², R⁴⁷ und R⁴⁸ für Wasserstoff stehen,

- R³⁶, R³⁷, R⁴⁰, R⁴¹ und R⁵⁰ bis R⁵² unabhängig voneinander für Wasserstoff, Methyl, Methoxy, Chlor, Cyan, Methoxycarbonyl oder Phenyl stehen, oder im Falle der Formeln Ib oder Id R⁵¹ ebenfalls für eine direkte Bindung zum Brückenglied B steht,
- 5 Z³ für eine direkte Bindung, eine -CH=CH- oder -N=N-Brücke steht,
 - =Z⁴= für eine direkte Doppelbindung, eine =CH-CH= oder =N-N=-Brücke steht,
 - E³ bis E⁵ unabhängig voneinander für O, S oder NR⁵⁹ stehen, E³ und E⁴ aber die gleiche Bedeutung haben,
 - E⁶ bis E⁹ untereinander gleich sind und für S, Se oder NR⁵⁹ stehen,
- 10 R⁵⁹ für Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Benzyl oder Phenyl steht, oder im Falle der Formel XVI in Ib oder Id ebenfalls für eine direkte Bindung zum Brückenglied B steht,
- B für ein Brückenglied der Formeln - $(CH_2)_n$ -, - $(CH_2)_m$ -O- $(CH_2)_p$ -, - $(CH_2)_m$ -NR⁶⁰- $(CH_2)_p$ -, - $(CH_2)_m$ -C₆H₄- $(CH_2)_p$ -, - $(CH_2)_p$ -NR⁶⁰-, - $(CH_2)_p$ -O-C, -NR⁶⁰- $(CH_2)_p$ -NR⁶⁰-, - $(CH_2)_m$ -OCO-C₆H₄-COO- $(CH_2)_p$ -, - $(CH_2)_m$ -NHCO-C₆H₄-CONH- $(CH_2)_p$ -, - $(CH_2)_m$ -NHCONH-C₆H₄-NHCONH- $(CH_2)_p$ -, - $(CH_2)_m$ -NHCONH- $(CH_2)_p$ -, - $(CH_2)_m$ -NHCONH- $(CH_2)_p$ -, - $(CH_2)_m$ -NHCONH- $(CH_2)_p$ -, steht,
- 20 R⁶⁰ für Methyl steht,
 - n für eine ganze Zahl von 1 bis 10 steht,

m und p gleich sind und für eine ganze Zahl von 0 bis 2 stehen und

- t für eine ganze Zahl von 1 bis 6 steht.
- Ganz besonders bevorzugt ist ein erfindungsgemäßes elektrochromes System, welches mindestens eine Substanz der Formel (Ia) entsprechend einer der Formeln

$$R^{3} \xrightarrow{+} N \xrightarrow{+} Z^{1} \xrightarrow{+} (CH_{2})_{m} \xrightarrow{+}$$

$$R^{6}$$
 E^{1}
 N
 $(CH_{2})_{m}$
 $(CH_{2})_{m}$
 R^{47}
 $(XXII),$
 R^{7}

$$R^{70}$$
 R^{13}
 R^{12}
 R^{69}
 R^{13}
 R^{12}
 R^{69}
 R^{13}
 R^{12}
 R^{13}
 R^{13}
 R^{14}
 R^{13}
 R^{14}
 R^{15}
 R^{15}

$$E^{1} = (CH_{2})_{m} + (CH_{2})_{m$$

$$R^{3}$$
 R^{12}
 R^{13}
 R^{12}
 R^{69}
 R^{3}
 R^{72}
 R^{72}

$$E^{1} \xrightarrow{N} \xrightarrow{(CH_{2})_{m}} \xrightarrow{(CH_{2})_{m}} \xrightarrow{O} \xrightarrow{E^{6}} E^{8} \xrightarrow{R^{51}}$$

$$E^{2} \xrightarrow{N} \xrightarrow{R^{5}} \xrightarrow{R^{52}}$$

$$2X^{-} \xrightarrow{R^{7}} \xrightarrow{R^{7}} (XXX)$$

enthält, oder mindestens eine Substanz der Formel (Ib) entsprechend einer der Formeln

$$R^{3-}N \longrightarrow Z^{1} \longrightarrow N^{+}(CH_{2})_{m} \longrightarrow J_{U}(CH_{2})_{m} \longrightarrow O$$
 R^{72}
 R^{71}
 $R^{72} \longrightarrow D$
 $R^{72} \longrightarrow D$
 $R^{71} \longrightarrow D$
 $R^{72} \longrightarrow D$
 $CH_{2})_{m} \longrightarrow D$
 CH_{2}
 $CH_{$

oder mindestens eine Substanz der Formel (Ic) entsprechend einer der Formeln

$$R^{48}$$
 E^{1}
 $N - (CH_{2})_{m}$
 CH_{2}
 R^{47}
 R^{48}
 E^{1}
 $N - (CH_{2})_{m}$
 R^{48}
 E^{1}
 $N - (CH_{2})_{m}$
 R^{47}
 R^{48}
 E^{1}
 R^{48}
 E^{1}
 R^{48}
 E^{1}
 R^{48}
 E^{1}
 R^{48}
 E^{1}
 $E^$

(XXXVIII),

(XXXIX),

$$R^{35} - N = 4$$
 $E^{1} - N - (CH_{2})_{m} - (CH_{2})_{m} - N = 4$
 $R^{35} - N = 4$
 R^{35

(XL),

(XLI),

5 worin

R³, R⁵, R³⁵ und R³⁹ unabhängig voneinander für Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl oder Benzyl stehen,

R⁶, R⁷ und R³⁶, R³⁷ paarweise gleich sind und für Wasserstoff, Methyl, Methoxy, Chlor, Cyano oder Methoxycarbonyl stehen,

10 R¹² und R¹³ für Wasserstoff oder, wenn Z¹ eine direkte Bindung bedeutet, gemeinsam für eine CH=CH-Brücke stehen,

R⁶⁹ bis R⁷² gleich sind und für Wasserstoff oder Methyl stehen,

E1 und R2 gleich sind und für O oder S stehen,

- Z¹ für eine direkte Bindung oder -CH=CH- steht,
- R^{32} , R^{47} und R^{48} für Wasserstoff stehen,
- E³ bis E⁵ unabhängig voneinander für O, S oder NR⁵⁹ stehen, wobei E³ und E⁴ aber gleich sind,
- R²⁹ bis R³¹ und R⁵⁹ unabhängig voneinander für Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl oder Benzyl stehen, wobei R²⁹ bis R³¹ vorzugsweise gleich sind,
 - R⁴⁰ und R⁴¹ gleich sind und für Wasserstoff, Methyl, Ethyl, Propyl, Butyl oder Phenyl stehen.
- 10 Z³ für eine direkte Bindung, -CH=CH- oder -N=N- steht,
 - R⁵⁰ bis R⁵² unabhängig voneinander für Wasserstoff, Methyl, Methoxy, Chlor, Cyano, Methoxycarbonyl, Ethoxycarbonyl oder Phenyl stehen, vorzugsweise jedoch gleich sind,

E⁶ bis E⁹ untereinander gleich sind und für S, Se oder NR⁵⁹ stehen,

- 15 Z⁴ für eine direkte Doppelbindung, eine =CH-CH= oder =N-N=-Brücke steht,
 - m für eine ganze Zahl von 1 bis 5 steht,
 - u für 0 oder 1 steht und
 - X' für ein unter den Bedingungen redox-inertes, farbloses Anion steht.

Elektrochrome Substanzen der Formel (I)

20
$$Y + (-B - Z)_a + (B - Y)_b + (B - Z)_a + (B - Y)_b + (B - Z)_a + (B - Y)_b + (B - Z)_a + (B - Z)_$$

worin

Y und Z unabhängig voneinander für einen Rest OX_2 oder RED_1 stehen, wobei aber mindestens ein Y für OX_2 und mindestens ein Z für RED_1 steht,

wobei

5

- OX₂ für den Rest eines reversibel elektrochemisch reduzierbaren Redoxsystems steht, und
- RED₁ für den Rest eines reversibel elektrochemisch oxidierbaren Redoxsystems steht, aber nicht für einen Rest der Formel (XX),
- 10 B für ein Brückenglied steht,
 - c für eine ganze Zahl von 0 bis 5 steht, und
 - a und b unabhängig voneinander für eine ganze Zahl von 0 bis 5, vorzugsweise für eine ganze Zahl von 0-3, stehen,

mit Ausnahme von Verbindungen der Formel

15
$$H_3C - CH_2 - CH_2 - N + (CH_2)_m - N S$$

worin

- m für eine ganze Zahl von 2 bis 16 steht, und
- X die oben angegebene Bedeutung hat,

sind neu und ebenfalls Gegenstand der vorliegenden Erfindung.

Von den elektrochromen Substanzen der Formel (I) sind diejenigen bevorzugt, welche den Formeln (Ia) bis (Id)

 OX_2 -B-RED,

(Ia),

 OX_2 -B-RED₁-B-OX₂

(lb),

5

RED₁-B-OX₂-B-RED₁

(Ic),

 ${}^{\circ}OX_2 - (B-RED_1 - B-OX_2)_d - B-RED_1$ (Id),

worin OX_2 , RED_1 und B die oben angegebenen allgemeinen und bevorzugten Bedeutungen haben und

- d für eine ganze Zahl von 1 bis 5 steht,
- 10 entsprechen.

Insbesondere bevorzugt sind elektrochrome Substanzen der Formel (Ia) entsprechend den Formeln

$$R^{70}$$
 R^{13}
 R^{12}
 R^{69}
 R^{70}
 R^{13}
 R^{12}
 R^{69}
 R^{13}
 R^{12}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{12}
 R^{13}
 R^{13}
 R^{13}
 R^{12}
 R^{13}
 R

$$R^{6}$$
 E^{1}
 $N - (CH_{2})_{m}$
 E^{2}
 $N - R^{5}$
 R^{7}
 R^{7}
 R^{48}
 R^{48}

$$R^{70}$$
 R^{13}
 R^{12}
 R^{69}
 R^{13}
 R^{12}
 R^{69}
 R^{13}
 R^{12}
 R^{13}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R

$$\begin{array}{c}
R^{6} \\
\downarrow \\
E^{1} \\
N \\
CH_{2})_{m}
\end{array}$$

$$\begin{array}{c}
R^{32} \\
\downarrow \\
R^{30}
\end{array}$$

$$\begin{array}{c}
R^{30} \\
\downarrow \\
R^{31}
\end{array}$$

$$\begin{array}{c}
R^{31} \\
\downarrow \\
R^{7}
\end{array}$$

$$R^{70}$$
 R^{13}
 R^{12}
 R^{69}
 R^{3}
 R^{71}
 R^{71}

$$E^{1} = N - (CH_{2})_{m} + (CH_{2}$$

$$R^{70}$$
 R^{13}
 R^{12}
 R^{69}
 R^{3}
 R^{71}
 $R^$

$$E^{1} \xrightarrow{h} (CH_{2})_{m} \xrightarrow{(CH_{2})_{m}} 0$$

$$E^{2} \xrightarrow{N-R^{5}} P^{5}$$

$$E^{2} \xrightarrow{N-R^{5}} P^{5}$$

$$E^{7} \xrightarrow{(XXX),} P^{7}$$

$$E^{1} \xrightarrow{N} (CH_{2})_{m} = 0$$

$$R^{50} \xrightarrow{E^{7}} Z^{4} = E^{6} \xrightarrow{R^{51}} R^{52}$$

oder elektrochrome Substanzen der Formel (1b)

(XXXIV),

oder elektrochrome Substanzen der Formel (1c)

$$R^{48}$$
 E^{1}
 $N - (CH_{2})_{m}$
 CH_{2}
 R^{47}
 R^{48}
 R^{48}
 R^{48}
 R^{48}
 R^{48}
 R^{48}
 R^{49}
 R^{49}

(XXXVIII),

$$R^{35} \longrightarrow N \longrightarrow E^{4}$$

$$R^{35}$$

(XXXXIX),

$$R^{35} - N = 4$$

$$E^{1} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$R^{35} - N = 4$$

$$E^{1} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N - (CH_{2})_{m} \times N = 4$$

$$E^{3} \times N \times N = 4$$

$$E^{3}$$

(XL),

(XLII)

- 5 worin
 - R³, R⁵, R³⁵ und R³⁹ unabhängig voneinander für Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl oder Benzyl stehen,
 - R⁶, R⁷ und R³⁶, R³⁷ paarweise gleich sind und für Wasserstoff, Methyl, Methoxy, Chlor, Cyano oder Methoxycarbonyl stehen,
- 10 R¹² und R¹³ für Wasserstoff oder, wenn Z¹ eine direkte Bindung bedeutet, gemeinsam für eine CH=CH-Brücke stehen,
 - R^{69} bis R^{72} gleich sind und für Wasserstoff oder Methyl stehen,

- E¹ und R² gleich sind und für O oder S stehen,
- Z¹ für eine direkte Bindung oder -CH=CH steht,
- R³², R⁴⁷ und R⁴⁸ für Wasserstoff stehen,
- E³ bis E⁵ unabhängig voneinander für O, S oder NR⁵⁹ stehen, wobei E³ und E⁴
 aber gleich sind,
 - R²⁹ bis R³¹ und R⁵⁹ unabhängig voneinander für Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl oder Benzyl stehen, wobei R²⁹ bis R³¹ vorzugsweise gleich sind,
- R⁴⁰ und R⁴¹ gleich sind und für Wasserstoff, Methyl, Ethyl, Propyl, Butyl oder Phenyl stehen,
 - Z³ für eine direkte Bindung, -CH=CH- oder -N=N- steht,
 - R⁵⁰ bis R⁵² unabhängig voneinander für Wasserstoff, Methyl, Methoxy, Chlor, Cyano, Methoxycarbonyl, Ethoxycarbonyl oder Phenyl stehen, vorzugsweise jedoch gleich sind,
- 15 E⁶ bis E⁹ untereinander gleich sind und für S, Se oder NR⁵⁹ stehen,
 - Z⁴ für eine direkte Doppelbindung, eine =CH-CH= oder =N-N=-Brücke steht,
 - m für eine ganze Zahl von 1 bis 5 steht,
 - u für 0 oder 1 steht und
 - X für ein unter den Bedingungen redox-inertes, farbloses Anion steht.
- Die neuen Substanzen der Formel (Ia)

 OX_7 -B-RED₁ (Ia),

vorzugsweise solche Substanzen, die den Formeln (XXI) bis (XXX) entsprechen, können hergestellt werden durch Umsetzung von Verbindungen der Formel

$$OX_2$$
-B-A (XLIII)

mit Verbindungen der Formel

$$RED_1$$
 (XLIV)

oder durch Umsetzung von Verbindungen der Formel

$$OX_2$$
 (XLV)

mit Verbindungen der Formel

$$A-B-RED_1$$
 (XLVI),

10 wobei

A eine Abgangsgruppe wie Chlor, Brom, Iod, OSO₂-Alkyl, OSO₂-Perfluoralkyl oder OSO₂-Aryl bedeutet

und OX_2 , RED_1 und B die oben angegebene allgemeine und bevorzugte Bedeutung besitzen.

15 Insbesondere ist mit OX₂-B-A eine der folgenden Verbindungen gemeint:

$$R^{70}$$
 R^{13}
 R^{12}
 R^{69}
 R^{71}
 R^{71}
 R^{71}
 R^{71}
 R^{71}
 R^{71}
 R^{71}

$$E^{1} \longrightarrow N \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow A$$

$$Z \longrightarrow V \longrightarrow V$$

$$E^{2} \longrightarrow N \longrightarrow R^{5}$$

$$Z \times V \longrightarrow V$$

$$R^{7}$$

$$Z \times V \longrightarrow V$$

$$Z$$

worin

5

A die oben angegebene Bedeutung hat, insbesondere für Brom steht und die übrigen Reste die oben unter der Definition der Formeln (XXI) und (XXII) angegebene Bedeutung haben.

Insbesondere ist mit RED₁-B-A eine der folgenden Verbindungen gemeint:

$$A-(CH_2)_{m} \xrightarrow{\qquad \qquad } CH_2)_{m} = N \qquad E^5 \qquad (IL),$$

$$R^{35} = N \qquad E^{4}$$

$$N \qquad N \qquad (L),$$

$$R^{36} \qquad N \qquad E^{3}$$

$$A-(CH_{2}) \xrightarrow{m} (CH_{2})_{m} \xrightarrow{N} (CH_{2})_{m} \xrightarrow{N} (LI),$$

$$A - (CH_2)_m - (CH_2$$

$$A - (CH_{2})_{m} (CH_{2})_{m} O = E^{6} E^{8} R^{51}$$

$$(LIII),$$

$$R^{50} E^{7} Z^{4} = E^{9} R^{52}$$

5 worin

A die oben angegebene Bedeutung hat, insbesondere für Brom steht und die übrigen Reste die oben in der Definition der Formeln (XXI), (XXIII), (XXV), (XXVII) und (XXIX) angegebene Bedeutung haben.

Insbesondere ist dann mit RED, eine der folgenden Verbindungen gemeint:

15

worin die Reste die oben angegebene Bedeutung haben.

Insbesondere ist dann mit OX₂ eine der folgenden Verbindungen gemeint:

$$R^{69}$$
 R^{12}
 R^{13}
 R^{70}
 R^{70}
 R^{14}
 R^{15}
 R^{72}
 R

worin die Reste die oben angegebene Bedeutung besitzen.

Die Umsetzung der Komponenten (XLIII) und (XLIV) miteinander erfolgt vorzugsweise in polaren Lösungsmitteln wie Alkoholen - z.B. Methanol, Ethanol, Propanol, tert.-Butanol - , Nitrilen - z.B. Acetonitril, Propionitril - , Amiden - z.B. Dimethylformamid, N-Methylpyrrolidon - , Dimethylsulfoxid oder Sulfolan in Gegenwart basischer Verbindungen wie Hydroxide - z.B. Natrium- oder Kalium-hydroxid - , Oxiden - , z.B. Magnesiumoxid - , Alkoholaten - , z.B. Natriummethylat, Kalium-tert.-butylat - , Amiden - z.B. Natriumamid - oder basischen Ionenaustauschern bei Temperaturen zwischen 0°C und dem Siedepunkt des Mediums, vorzugsweise bei 5 bis 70°C. Die Produkte der Formel (I) fallen je nach Art des Anions X entweder direkt aus dem Medium aus oder können durch Zusatz

von beispielsweise Wasser oder Alkoholen ausgefällt werden oder das Lösungsmittel wird im Vakuum abdestilliert.

Die Umsetzung der Komponenten (XLV) und (XLVI) erfolgt unter den oben angegebenen Bedingungen, jedoch in Abwesenheit einer basischen Verbindung.

In beiden Fällen kann es notwendig sein, die Anionen der so erhaltenen elektrochromen Substanzen der Formel (I) auszutauschen. Dies kann erfolgen mittels Ionenaustauschern oder durch Umfällen mittels Natrium-, Kalium- oder Tetraalkylammoniumsalzen der entsprechenden gewünschten, redox-inerten Anionen. Geeignete Lösungsmittel für diese Operation sind die oben beschriebenen Alkohole und Nitrile sowie Wasser. Geeignete Salze sind beispielsweise Natriumtetrafluoroborat, Natriumperchlorat, Natrium-hexafluorosilikat, Natriumhexafluorophosphat, Tetrabutylammoniumtetrafluoroborat.

Die Grundkörper OX₂ und RED₁ sind bekannt, beispielsweise die Substanzen der Formeln (II) bis (IX) aus Topics in Current Chemistry, Vol. 92, S. 1-44 (1980), Angew. Chem. 90, 927 (1978), Adv. Mater. 3, 225 (1991), DE-OS 3,917,323 und beispielsweise die Substanzen der Formeln (X) bis (XIX) aus Topics in Current Chemistry, Vol. 92, S. 1-44 (1980), Angew. Chem. 90, 927 (1978), J. Am. Chem. Soc. 117, 8528 (1995), J. C. S. Perkin II, 1990, 1777 und DE-OS 4,435,211 oder aus der dort jeweils zitierten Literatur oder lassen sich analog herstellen.

Die Komponenten OX₂-B-A (XLIII), speziell (XLVII) und (XLVIII), und A-B-RED₁ (XLVI), speziell (IL) bis (LIII), lassen sich dann aus OX₂ und RED₁ in einfacher Weise herstellen durch Umsetzung mit beispielsweise

A-B-A (LXI)

in einem der oben genannten Lösungsmittel, im Fall RED₁ in Gegenwart, im Falle OX₂ in Abwesenheit einer der oben genannten basischen Verbindungen unter den oben genannten Reaktionsbedingungen.

Ganz analog lassen sich die neuen Substanzen der Formeln (Ib) bis (Id) herstellen.

Die Substanzen der Formel (Ib)

 OX_2 -B-RED₁-B-OX₂ (Ib),

vorzugsweise solche Substanzen, die den Formeln (XXXI) bis (XXXVI) entsprechen, können hergestellt werden durch Umsetzung von 2 Äquivalenten von Verbindungen der Formel

 OX_2 -B-A (XLIII)

mit einem Äquivalent Verbindungen der Formel

RED₁ (XLIV),

wobei OX2, RED1, A und B die oben angegebene Bedeutung besitzen.

Insbesondere sind mit OX₂-B-A die oben genannten Verbindungen der Formeln (XLVII) und (XLVIII) gemeint. Mit RED₁ sind insbesondere die oben genannten Verbindungen der Formeln (LIV), (LV) und (LVIII) gemeint,

worin

E⁵ für NH steht,

R³⁵ für Wasserstoff steht,

15 R⁵¹ für -COOH steht und

die anderen Reste die oben angegebene Bedeutung besitzen.

Die Substanzen der Formel (Ic)

 $RED_1-B-OX_2-B-RED_1$ (Ic),

vorzugsweise solche Substanzen, die den Formeln (XXXVII) bis (XLII) ent-20 sprechen, können hergestellt werden durch Umsetzung von 2 Äquivalenten Verbindungen der Formel

A-B-RED, (XLVI)

15

mit einem Äquivalent Verbindungen der Formel

$$OX_2$$
 (XLV),

wobei OX2, RED1, A und B die oben angegebene Bedeutung besitzen.

Insbesondere sind mit A-B-RED₁ die oben genannten Verbindungen der Formeln (IL), (L) und (LIII) gemeint. Mit OX_2 ist insbesondere eine der folgenden Verbindungen gemeint:

worin

10 die Reste die oben angegebene Bedeutung besitzen.

Die Reaktionsbedingungen sind dann ganz analog zu den oben angegebenen.

In den obengenannten Substituentenbedeutungen sind Alkylreste, auch abgewandelte, wie z.B. Alkoxy- oder Aralkylreste, vorzugsweise solche mit 1 bis 12 C-Atomen, insbesondere mit 1 bis 8 C-Atomen, sofern nichts anderes angegeben ist. Sie können geradkettig oder verzweigt sein und gegebenenfalls weitere Substituenten tragen wie z.B. C_1 - bis C_4 -Alkoxy, Fluor, Chlor, Hydroxy, Cyano, C_1 -bis C_4 -Alkoxycarbonyl oder COOH.

Unter Cycloalkylresten werden vorzugsweise solche mit 3 bis 7 C-Atomen, insbesondere 5 oder 6 C-Atomen verstanden.

Alkenylreste sind vorzugsweise solche mit 2 bis 8 C-Atomen, insbesondere 2 bis 4 C-Atomen.

Arylreste, auch solche in Aralkylresten, sind vorzugsweise Phenyl- oder Naphthylreste, insbesondere Phenylreste. Sie können durch 1 bis 3 der folgenden Reste substituiert sein: C_1 - bis C_6 -Alkyl, C_1 - bis C_6 -Alkoxy, Fluor, Chlor, Brom, Cyano,

10

15

20

Hydroxy, C_1 - bis C_6 -Alkoxycarbonyl oder Nitro. Zwei benachbarte Reste können auch einen Ring bilden.

Das erfindungsgemäße elektrochrome System enthält vorzugsweise mindestens ein Lösungsmittel, wodurch eine elektrochrome Flüssigkeit entsteht, die ebenfalls Gegenstand der vorliegenden Erfindung ist.

Geeignete Lösungsmittel sind alle unter den gewählten Spannungen redox-inerten Lösungsmittel, die keine Elektrophile oder Nukleophile abspalten können oder selber als ausreichend starke Elektrophile oder Nukleophile reagieren und so mit den farbigen Radikalionen reagieren könnten. Beispiele sind Propylencarbonat, γ -Butyrolacton, Acetonitril, Propionitril, Glutaronitril, Methylglutarnitril, 3,3'-Oxydipropionitril, Hydroxypropionitril, Dimethylformamid, N-Methylpyrrolidon, Sulfolan, 3-Methylsulfolan oder Mischungen davon. Bevorzugt sind Propylencarbonat und Mischungen davon mit Glutaronitril oder 3-Methylsulfolan.

Die erfindungsgemäße elektrochrome Flüssigkeit kann mindestens ein inertes Leitsalz enthalten.

Als inerte Leitsalze sind Lithium-, Natrium- und Tetraalkylammoniumsalze geeignet, insbesondere letztere. Die Alkylgruppen können zwischen 1 und 18 C-Atome aufweisen und gleich oder verschieden sein. Bevorzugt ist Tetrabutylammonium. Als Anionen zu diesen Salzen, aber auch als Anionen X in den Formeln (I), (II), (IV), (VI), (VII) kommen alle redox-inerten, farblosen Anionen in Frage. Beispiele sind Tetrafluoroborat, Perchlorat, Methansulfonat, Trifluormethansulfonat, Perfluorbutansulfonat, Benzolsulfonat, Hexafluorophosphat, Hexafluoroarsenat und Hexafluorosilikat. Im letzteren Falle steht X für 1/2 SiF₆²⁻.

Die Leitsalze werden vorzugsweise im Bereich 0 bis 1 molar eingesetzt.

Als weitere Zusätze zu der elektrochromen Flüssigkeit können Verdicker eingesetzt werden, um die Viskosität der Flüssigkeit zu steuern. Das kann Bedeutung
haben zur Vermeidung von Segregation, d.h. der Bildung von streifiger oder
fleckiger Farbbildung bei längerem Betrieb einer die erfindungsgemäße
elektrochrome Flüssigkeit enthaltenden elektrochromen Vorrichtung im
eingeschalteten Zustand, und zur Steuerung der Ausbleichgeschwindigkeit nach
Abschalten des Stroms.

10

15

20

25

30

Als Verdicker eignen sich alle für diese Zwecke üblichen Verbindungen wie z.B. Polyacrylat, Polymethacrylat (Luctite L®), Polycarbonat und Polyurethan.

Die elektrochrome Flüssigkeit kann auch gelförmig sein.

Als weitere Zusätze für die elektrochrome Flüssigkeit kommen UV-Absorber zur Verbesserung der Lichtechtheit in Frage. Beispiele sind Uvinul® 3000 (2,4-Dihydroxybenzophenon, BASF), SANDUVOR® 3035 (2-Hydroxy-4-n-octyloxybenzophenon, Clariant), Tinuvin® 571 (2-(2H-Benzotriazol-2-yl)-6-dodecyl-4-methylphenol, Ciba), Cyasorb 24TM (2,2'-Dihydroxy-4-methoxybenzophenon, American Cyanamid Company), UVINUL® 3035 (Ethyl-2-cyano-3,3-diphenylacrylat, BASF), Uvinul® 3039 (2-Ethylhexyl-2-cyano-3,3-diphenylacrylat, BASF), UVINUL® 3088 (2-Ethylhexyl-p-methoxycinnamat, BASF).

Die UV-Absorber werden im Bereich 0,01 bis 2 mol/l, vorzugsweise 0,04 bis 1 mol/l eingesetzt.

Die erfindungsgemäße elektrochrome Flüssigkeit enthält die Substanzen der Formel (I), insbesondere der Formeln (Ia) bis (Id), jeweils in einer Konzentration von mindestens 10⁻⁴ mol/l, vorzugsweise 0,001 bis 1 mol/l Es können auch Mischungen mehrerer elektrochromer Substanzen der Formel (I) eingesetzt werden.

Die erfindungsgemäßen elektrochromen Flüssigkeiten sind bestens als Bestandteil einer elektrochromen Vorrichtung geeignet. Weiterer Gegenstand der vorliegenden Erfindung sind demnach elektrochrome Vorrichtungen enthaltend eine erfindungsgemäße elektrochrome Flüssigkeit. Der Aufbau einer elektrochromen Vorrichtung, die z.B. als Fensterscheibe, Autosonnendach, Automobil-Rückspiegel oder Display ausgebildet sein kann, ist im Prinzip bekannt. Die erfindungsgemäße elektrochrome Vorrichtung besteht aus zwei einander zugewandten, lichtdurchlässigen Glas- oder Kunststoffscheiben, von denen gegebenenfalls eine verspiegelt ist und deren einander zugewandten Seiten elektrisch leitfähig beschichtet sind, z.B. mit Indium-Zinn-Oxid (ITO), zwischen denen sich die erfindungsgemäße elektrochrome Flüssigkeit befindet. Als leitfähige Materialien sind auch geeignet: Antimon-dotiertes Zinnoxid, Fluor-dotiertes Zinnoxid, Antimon-dotiertes Zinkoxid, Aluminium-dotiertes Zinkoxid, Zinnoxid; auch leitfähige organische Polymere wie gegebenenfalls substituierte Polythienyle, Polypyrrole, Polyaniline, Polyacetylen. Im Falle, daß eine der Scheiben verspiegelt ist, kann auch diese als leitfähige Schicht genutzt werden. Der Abstand der beiden Scheiben beträgt im allgemeinen

10

0,005-2 mm, vorzugsweise 0,02-0,5 mm. Der gewünschte Abstand zwischen den Scheiben wird im allgemeinen durch einen Dichtungsring hergestellt.

PCT/EP97/00498

Die erfindungsgemäße selbstlöschende einzellige elektrochrome Vorrichtung kann zusätzlich zu den oben beschriebenen elektrochromen Substanzen der Formeln (I), insbesondere den Formeln (Ia) bis (Id), auch andere enthalten, wie sie beispielsweise in US-P 4,902,108, Topics in Current Chemistry, Vol. 92, S. 1-44 (1980) und Angew. Chem. 90, 927 (1978) beschrieben sind. Solche elektrochromen Substanzen entstammen beispielsweise den oben unter den Formeln (II) bis (XX) angegebenen Gruppen, wobei dann keiner der angeführten Reste die Bedeutung "direkte Bindung zur Brücke B" besitzen kann. Eine Zumischung solcher Redoxsysteme kann beispielsweise vorteilhaft sein, um bei der erfindungsgemäßen elektrochromen Vorrichtung den Farbton, z.B. des Displays, im eingeschalteten Zustand zu korrigieren oder zu intensivieren.

10

15

20

Beispiele:

Beispiel 1

Herstellung einer elektrochromen Substanz der Formel (I)

a) 5.0 g 4,4'-Dipyridyl wurden in 30 ml wasserfreiem Acetonitril bei 50°C gelöst. Während 50 min tropften bei dieser Temperatur 2.7 g Benzylbromid dazu. Nach 3 h bei 50°C wurde abgekühlt und der hellgelbe Niederschlag abgesaugt. Dieser wurde mit 60 ml Toluol gewaschen und im Vakuum getrocknet. Man erhielt 3.9 g (75 % d. Th.) des Produkts der Formel

b) 10.1 g Phenothiazin wurden in 60 ml wasserfreiem N-Methylpyrrolidon unter N₂-Atmosphäre bei Raumtemperatur gelöst. 5.9 g Kalium-tert.-butylat wurden zugesetzt. Es entstand unter Erwärmung auf 30 °C eine orange Suspension, die 30 min bei 30 °C gerührt wurde. Dann wurden 54 g 1,4-Dibrombutan auf einmal zugesetzt. Die Temperatur stieg dabei bis auf 53°C an. Während 45 min wurde auf 70 °C geheizt, 15 min bei dieser Temperatur gehalten und dann abgekühlt. Die hellbraune Suspension wurde in 1 l Wasser eingetragen. Mit 3x200 ml Toluol wurde extrahiert, der Extrakt wurde mit 5x200 ml Wasser gewaschen, über Natriumsulfat getrocknet und am Rotationsverdampfer eingeengt. Der ölige Rückstand wurde in 400 ml Hexan gelöst, vom Unlöslichen filtriert und erneut eingeengt. Anschließend wurde bei 0.1 bis 0.5 mbar der Überschuß an 1,4-Dibrombutan abdestilliert. Man erhielt 9.6 g (57 % d. Th.) eines rötlichgelben, zähen Öls der Formel

$$(LXV).$$

10

15

20

c) 3.7 g des Phenothiazins der Formel (LXV) wurden in 10 ml wasserfreiem N-Methylpyrrolidon bei Raumtemperatur unter N₂-Atmosphäre gelöst. 1.8 g des Dipyridiniumsalzes der Formel (LXIV) wurden zugesetzt. Die Suspension wurde während 1 h auf 80 °C geheizt und insgesamt 13 h bei dieser Temperatur gehalten. Dabei wurde die Suspension immer dicker. Nach Abkühlen auf Raumtemperatur wurde abgesaugt und mit 5 ml N-Methylpyrrolidon gewaschen. Das hygroskopische Rohprodukt der Formel

mit X^* = Br wurde in 7 ml Methanol aufgelöst und filtriert. In das Filtrat wurden während 2 h 3.0 g Tetrabutylammoniumtetrafluoroborat eingestreut. Langsam entstand eine Fällung, die während 18 h Rühren bei Raumtemperatur vervollständigt wurde. Schließlich wurde abgesaugt, mit Methanol bis zum farblosen Ablauf gewaschen und im. Vakuum getrocknet. Man erhielt 0.5 g (13 % d. Th.) blaß bläuliches Pulver der Formel (LXVI) mit $X^* = BF_4^*$.

In einer elektrochromeren Vorrichtung gemäß Beispiel 29-30 wurde eine violettblaue Färbung mit $\lambda_{max} = 517$ und 606 nm erzielt.

Beispiel 2

- a) Unter Stickstoffatmosphäre wurden 9,2 g Phenazin in 60 ml wasserfreiem Tetrahydrofuran suspendiert. Während 15 min tropften 30,8 ml 20 gew.-%ige Phenyllithiumlösung in Cyclohexan/Diethylether 7:3 dazu, wobei die Temperatur bei max. 35°C gehalten wurde. Die Lösung wurde 30 min bei Raumtemperatur nachgerührt.
- Bei 15°C wurden in einer Portion 30,2 ml 1,4-Dibrombutan dazugegeben.

 Die Temperatur stieg dabei bis 38°C an. Nach 6 h bei Raumtemperatur wurde mit 200 ml Wasser versetzt und der pH auf 7,0 gestellt. Die organische Phase wurde abgetrennt, dreimal mit je 100 ml Wasser gewa-

10

15

schen und im Vakuum eingeengt. Schließlich wurde überschüssiges 1,4-Dibrombutan bei einem Druck von 0,2 mbar abdestilliert. Der ölige Rückstand wurde in 400 ml Ethanol heiß gelöst. Das nach dem Erkalten ausgefallene Produkt wurde abgesaugt, mit Ethanol und Hexan gewaschen und getrocknet. Man erhielt 8,0 g (41 % d. Th.) blaßgelbes Pulver des 9,10-Dihydrophenazins der Formel

b) 7,5 g des 9,10-Dihydrophenazins der Formel (LXVII) aus a) und 6,1 g 4,4'-Dipyridyl wurden in 100 ml Acetonitril 24 h bei 70°C unter Stickstoffatmosphäre gerührt. Nach dem Abkühlen wurde abgesaugt und mit 50 ml Aceton gewaschen. Nach dem Trocknen erhielt man 6,3 g (60 % d. Th.) des Salzes der Formel

c) 6,1 g des unter b) erhaltenen Salzes wurden in 70 ml N-Methyl-2-pyrrolidon zusammen mit 2,7 ml Benzylbromid 7 h bei 70°C unter Stickstoffatmosphäre gerührt. Nach dem Abkühlen wurde mit 150 ml Toluol verdünnt und das ausgefallene Produkt abgesaugt. Es wurde gründlich mit 150 ml Toluol und 500 ml Hexan gewaschen und getrocknet. Man erhielt 5,5 g (69 % d. Th.) des Dipyridiniumsalzes der Formel

10

15

20

mit X = Br'.

d) 4,0 g dieses Produkts aus c) wurden unter Stickstoffatmosphäre in 100 ml Methanol bei 65°C gelöst. Während 5 min wurden 7,4 g Tetrabutylammoniumtetrafluoroborat eingestreut. Es trat eine Fällung auf. Nach 5 min bei 65°C wurde abgekühlt, abgesaugt, mit 200 ml Methanol und 50 ml Hexan gewaschen und im Vakuum getrocknet. Man erhielt 3,4 g (83 % d. Th.) blaß beiges Pulver der Formel (LXIX) mit X = BF₄.

In einer elektrochromen Vorrichtung gemäß Beispiel 29-30 wurde eine grünlich-blaue Färbung mit λ_{max} = 466 und 407 nm erzielt.

Beispiel 3

a) 45,3 g 2-Methylthiobenzthiazol wurden in 75 ml Toluol gelöst. 151 ml 1,4-Dibrombutan und eine Spatelspitze Kaliumiodid wurden zugesetzt. 4 h wurde gekocht und dann abgekühlt. Es wurde filtriert und mit 50 ml Toluol gewaschen. Das Filtrat wurde auf 50°C geheizt und mit 35,9 ml Dimethylsulfat versetzt. 8 h wurde bei 50°C gerührt, abgekühlt, abgesaugt und mit 250 ml Toluol gewaschen. Das Produkt wurde in 100 ml Aceton aufgerührt, erneut abgesaugt und mit 300 ml Aceton gewaschen. Man erhielt nach dem Trocknen im Vakuum 53,1 g (50 % d. Th.) des Salzes der Formel

10

15

20

b) In 60 ml Acetonitril wurden unter Stickstoffatmosphäre 6,95 g des Benzthiazoliumsalzes der Formel (LXX) aus a) und 2,9 g des Hydrazons der Formel

$$\begin{array}{c|c}
S \\
N \\
NH_2
\end{array}$$
(LXXI)

(von der Fa. Aldrich Chemical Company Ltd., England) suspendiert. Bei Raumtemperatur wurden 2,3 ml Triethylamin zugegeben. Es entstand kurzzeitig eine Lösung, dann bildete sich ein Niederschlag. Nach 5 h bei Raumtemperatur wurde schließlich abgesaugt, mit 50 ml Methanol, 100 ml Wasser und weiteren 50 ml Methanol bis zum farblosen Ablauf gewaschen und im Vakuum getrocknet. Man erhielt 6,0 g (83 % d. Th.) des Azins der Formel

c) Wurde analog zu Beispiel 1 a) gearbeitet, aber statt Benzylbromid 6,8 ml Butylbromid eingesetzt, so erhielt man 5,2 g (57 % d. Th.) des Pyridiniumsalzes der Formel

d) 2,0 g des Azins der Formel (LXXII) aus b) und 1,3 g des Pyridiniumsalzes der Formel (LXXIII) aus c) wurden in 20 ml N-Methyl-2-pyrrolidon unter Stickstoffatmosphäre 102 h bei 80°C gerührt. Nach dem Abkühlen wurde ein grünliches kristallines Produkt abgesaugt und mit 50 ml Aceton gewa-

schen. Nach dem Trocknen erhielt man 0,25 g (7,6 % d. Th.) des Dipyridiniumsalzes der Formel

mit X = Br

5 e) 0,25 g des Produkts aus c) wurden in 5 ml Methanol fast vollständig gelöst. 0,45 g Tetrabutylammoniumtetrafluoroborat wurden zugesetzt. Es wurde 17 h bei Raumtemperatur gerührt, wobei das Produkt allmählich kristallin wurde. Es wurde abgesaugt, mit 25 ml Methanol, 25 ml Wasser und erneut mit 25 ml Methanol gewaschen. Nach dem Trocknen erhielt man 0,15 g (59 % d. Th.) hellgraues Pulver der Formel (LXXIV) mit X = BF₄.

In einer elektrochromen Vorrichtung gemäß Beispiel 29-30 wurde eine grüne Färbung mit λ_{max} = 402; 606; 734 nm erzielt.

Beispiel 4

4,0 g des Phenothiazins der Formel (LXV) aus Beispiel 1b) und 0,95 g
4,4'-Dipyridyl wurden in 10 ml Acetonitril unter Stickstoffatmosphäre 9 h
bei 70°C gerührt. Die Suspension wurde dann mit 10 ml N-Methyl-2-pyrrolidon verdünnt und 25 h bei 70°C und 7 h bei 80°C gerührt. Nach dem
Abkühlen wurde abgesaugt, mit 50 ml Methanol gewaschen und im
Vakuum getrocknet. Man erhielt 1,6 g (32 % d. Th.) des Dipyridiniumsalzes der Formel

mit X = Br.

- b) 1,4 g des Salzes der Formel (LXXV) aus a) wurden in 20 ml Methanol bei Rückfluß teilweise gelöst. 2,3 g Tetrabutylammoniumtetrafluoroborat wurden zugesetzt. Es wurde noch 5 min gekocht und dann kaltgerührt. Das ausgefallene Produkt wurde abgesaugt, mit 50 ml Methanol, 50 ml Wasser und erneut mit 50 ml Methanol gewaschen und im Vakuum getrocknet. Man erhielt 1,1 g (77 % d. Th.) Dipyridiniumsalz der Formel (LXXV) mit $X = BF_4$.
- In einer elektrochromen Vorrichtung gemäß Beispiel 29-30 wurde eine violettblaue Färbung mit $\lambda_{max} = 517$ und 606 nm erzielt.

Ganz analog wurden die folgenden Beispiele hergestellt.

Beispiel	OX2-B-RED,	Farbe
9	CH_3	violettblau
7	$CH_{3}^{+} \cdot N$ $CH_{3}^{-} \cdot N$ $H_{2}^{-} \cdot C$ $H_{2}^{-} \cdot CH_{3}$ $CH_{3}^{+} \cdot CH_{3}$ $CH_{3}^{+} \cdot CH_{3}$	grünlichblau
∞	C ₂ H ₅	grün

Beispiel	OX ₂ -B-RED ₁	Farbe
. 6	$\begin{pmatrix} & & & & & & \\ & & & & & & \\ & & & & & $	grün
10	$C_2H_5 - N$ $C_2H_5 - N$ $N - (CH_2)_4 \cdot O - C$ S	blau
=	$H_{9}C_{4} - N$ $N - (CH_{2})_{4} - N$ Se $2 BF_{4}^{\Theta}$	violett

Beispiel	OX ₂ -B-RED ₁	Farbe
12	$CH_3 \longrightarrow N$ $CH_3 \longrightarrow N$ $CH_3 \longrightarrow N$ $CH_2 \longrightarrow N$ $CH_3 \longrightarrow N$	blau
13	2 BF 6	rotstichig blau
	COOCH ₃ + N + N + S S S S S S S S S S S S S	
	2 ClO ₄	
41	S = N - N = S	grün

Beispiel	OX ₂ -B-RED ₁	Farbe
18		blau
	$ \begin{array}{c c} \Theta \\ CH_2-N \\ N-(CH_2)_6-N \\ N-CH_3 \end{array} $	
	2 PF 6	
P. State Control of the Control of t	CH3—N N—CH3	
19	CH ₃	rotstichig blau
	θ/ CH ₂ -N/ N-CH ₂ -CH ₂ -CH ₂ -CH ₂ -O	
	H. O.	
20	CH ₃ —N	violett
	CH, G	

RED ₁ -B-OX ₂ -B-RED ₁	Farbe	grünstichig blau	H ₂ -CH ₂ CH ₂ CH ₂ O-CO S S COOCH, blau CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₃ CH ₄ CH ₃ CH ₄ CH ₃ CH ₄ CH
Beispiel 21		⊕ Z Z	S S CO-O-CH ₁

Farbe	ខ្ពស់ព	grünlichblau	violett
OX ₂ -B-RED ₁ -B-OX ₂	CH, CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH, CH, CH, CH, CH, CH, CH, CH, CH, CH,		CH; N 4BF,
Bcispiel	23	24	25

OX ₂ -B-RED ₁ -B-OX ₂	Brun A CH ₃ SO ₃	Brünlich blau	ell Ne CH,
Beispiel OX ₂ -B-RE	26 P	27 CH ₃ -N	28

Beispiel 29

5

10

25

Es wurde eine Zelle aus zwei Indium-Zinn-Oxid (ITO)-beschichteten Glasplatten und einem Dichtungsring gebaut, wie sie in US-P 4,902,108 beschrieben ist. Sie wurde unter Stickstoffatmosphäre über eine Öffnung in dem Dichtungsring befüllt mit einer Lösung, die 0,03 molar an der elektrochromen Substanz der Formel (LXXIV) mit $X^{\Theta} = BF_4^{\Theta}$ gemäß Beispiel 3, in wasserfreiem Glutarsäuredinitril war. Die Zelle wurde luftdicht verschlossen. Die Lösung in der Zelle war blaßgelb. Nach Anlegen einer Spannung von 1.5 V färbte sich die Lösung rasch intensiv grün, nach Abschalten der Spannung entfärbte sich der Zellinhalt innerhalb von 1 min wieder vollständig. Durch Kurzschließen der Zelle erfolgte die Entfärbung rascher.

Nach 9 000 Färbe-/Entfärbe-Zyklen arbeitete die Zelle noch einwandfrei.

Beispiel 30

Es wurde wie in Beispiel 4 eine Zelle gebaut. Eine der Glasplatten war jedoch auf der der ITO-Schicht abgewandten Seite verspiegelt.

Sie wurde unter N₂-Atmosphäre befüllt mit einer Lösung, die 0,03 molar an der elektrochromen Substanz der Formel (LXIX) mit X⁹ = BF₄⁹ gemäß Beispiel 2 in wasserfreiem Propylencarbonat war. Die Farbe der Lösung in der Zelle war blaßgelb. Nach Anlegen einer Spannung von 0,9 V färbte sie sich die Lösung rasch tief grünlich blau, nach Abschalten der Stromzufuhr und Kurzschließen entfärbte sich der Zellinhalt innerhalb von ca. 10 s wieder und resultierte in dem ursprünglichen Blaßgelb. Mehr als 30 000 solcher Schaltcyclen wurden ohne irgendwelche Veränderungen überstanden.

Ganz analog zu den Beispielen 29-30 wurden unter Verwendung der in den Beispielen 1-28 aufgeführten elektrochromen Substanzen elektrochrome Zellen aufgebaut, wobei ähnlich gute Ergebnisse erzielt wurden.

10

20

Patentansprüche

- 1. Elektrochromes System, enthaltend mindestens eine oxidierbare Substanz RED₁, die durch Elektronenabgabe an einer Anode und mindestens eine reduzierbare Substanz OX₂, die durch Elektronenaufnahme an einer Kathode, jeweils unter Zunahme der Extinktion im sichtbaren Bereich des Spektrums von einer schwach gefärbten oder farblosen Form in eine gefärbte Form OX₁ bzw. RED₂ übergeht, wobei nach Ladungsausgleich jeweils die schwach gefärbte bzw. farblose Form zurückgebildet wird, dadurch gekennzeichnet, daß mindestens eine der enthaltenen Substanzen RED₁ und OX₂ über eine Brücke kovalent miteinander verknüpft sind.
- 2. Elektochromes System gemäß Anspruch 1, dadurch gekennzeichnet, daß es mindestens eine elektrochrome Substanz der Formel (I)

$$Y + (B-Z)_a (B-Y)_b = B-Z$$
 (I),

worin

15 Y und Z unabhängig voneinander für einen Rest OX₂ oder RED₁ stehen, wobei aber mindestens ein Y für OX₂ und mindestens ein Z für RED₁ steht,

wobei

OX₂ für den Rest eines reversibel elektrochemisch reduzierbaren Redoxsystems steht, und

RED₁ für den Rest eines reversibel elektrochemisch oxidierbaren Redoxsystems steht,

B für ein Brückenglied steht,

c für eine ganze Zahl von 0 bis 5 steht, und

25 a und b unabhängig voneinander für eine ganze Zahl von 0 bis 5 stehen, enthält.

- 3. Elektrochromes System gemäß Anspruch 1 und 2, dadurch gekennzeichnet, daß es mindestens eine elektrochrome Substanz der Formel (I), worin Y für OX₂ und Z für RED₁ steht und Y und Z in ihrer Reihenfolge alternieren enthält.
- 5 4. Elektrochromes System gemäß Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß es mindestens eine elektrochrome Substanz der Formeln

$$OX_2$$
-B-RED₁ (la),

$$OX_2$$
-B-RED₁-B-OX₂ (Ib),

$$RED_1-B-OX_2-B-RED_1$$
 (Ic), oder

$$OX_2$$
-(B-RED₁-B-OX₂)_d-B-RED₁ (Id),

worin

10

20

25

OX2, RED1 und B die oben angegebene Bedeutung haben, und

d für eine ganze Zahl von 1 bis 5 steht,

enthält.

15 5. Elektrochromes System gemäß Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß es mindestens eine elektrochrome Substanz der Formeln (Ia)(Id),

worin

OX₂ für den Rest einer kathodisch reduzierbaren Substanz steht, die im cyclischen Voltammogramm, aufgenommen in einem inerten Lösungsmittel bei Raumtemperatur, wenigstens zwei chemisch reversible Reduktionswellen zeigt, wobei die erste dieser Reduktionswellen zu einer Zunahme der Extinktion bei wenigstens einer Wellenlänge im sichtbaren Bereich des elektromagnetischen Spektrums führt,

RED₁ für den Rest der anodisch reversibel oxidierbaren Substanz steht, die im cyclischen Voltammogramm, aufgenommen in einem inerten Lösungsmittel bei Raumtemperatur, wenigstens zwei chemisch reversible Oxidationswellen zeigt, wobei die erste dieser Oxidationswellen zu einer Zunahme der Extinktion bei wenigstens einer Wellenlänge im sichtbaren Bereich des elektromagnetischen Spektrums führt, und

B für ein Brückenglied steht,

enthält.

10 6. Elektrochromes System gemäß Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß es mindestens eine Substanz der Formel (Ia)-(Id) enthält, worin

OX₂ für einen Rest der Formeln

$$R^{2} - N = Z^{1} - Z^{1} -$$

$$R^{5}$$
 E^{1}
 E^{2}
 E^{2}
 E^{3}
 E^{7}
 E^{7}
 E^{7}
 E^{7}
 E^{7}

$$R^{\frac{16}{16}}N = O$$

$$O - R^{17}$$

$$X^{-}$$
(VI),

steht, wobei

5

10

 R^2 bis R^5 , R^8 , R^9 , R^{16} bis R^{19} unabhängig voneinander C_1 - bis C_{18} -Alkyl, C_2 - bis C_{12} -Alkenyl, C_3 - bis C_7 -Cycloalkyl, C_7 - bis C_{15} -Aralkyl oder C_6 - bis C_{10} -Aryl bedeuten oder

R⁴ und R⁵ oder R⁸ und R⁹ gemeinsam eine -(CH₂)₂- oder -(CH)₃-Brücke bilden,

 R^6 , R^7 und R^{22} bis R^{25} unabhängig voneinander Wasserstoff, C_1 - bis C_4 - Alkyl, C_1 - bis C_4 -Alkoxy, Halogen, Cyano, Nitro oder C_1 - bis C_4 - Alkoxycarbonyl bedeuten oder

- R²² und R²³ und/oder R²⁴ und R²⁵ eine -CH=CH-CH=CH-Brücke bilden,
- R¹⁰ und R¹¹; R¹² und R¹³; R¹⁴ und R¹⁵ unabhängig voneinander Wasserstoff oder paarweise eine -(CH₂)₂-, -(CH₂)₃- oder -CH=CH-Brücke bedeuten,
- 5 R⁶⁹ bis R⁷⁴ unabhängig voneinander Wasserstoff oder C₁-C₆-Alkyl bedeuten, oder
 - R⁶⁹; R¹² und/oder R⁷⁰; R¹³ eine -CH=CH-CH=CH-Brücke bilden,
 - R^{20} und R^{21} unabhängig voneinander O, N-CN, $C(CN)_2$ oder N-C₆- bis C_{10} -Aryl bedeuten,
- Wasserstoff, C₁- bis C₄-Alkyl, C₁- bis C₄-Alkoxy, Halogen, Cyano, Nitro, C₁- bis C₄-Alkoxycarbonyl oder C₆- bis C₁₀-Aryl bedeutet,
 - E¹ und E² unabhängig voneinander O, S, NR¹ oder C(CH₃)₂ bedeuten oder
 - E¹ und E² gemeinsam eine -N-(CH₂)₂-N-Brücke bilden,
- R¹ C_{1} bis C_{18} -Alkyl, C_{2} bis C_{12} -Alkenyl, C_{4} bis C_{7} -Cycloalkyl, C_{7} bis C_{15} -Aralkyl, C_{6} bis C_{10} -Aryl bedeutet,
 - Z¹ eine direkte Bindung, -CH=CH-, -C(CH₃)=CH-, -C(CN)=CH-,
 -CCl=CCl-, -C(OH)=CH-, -CCl=CH-, -C=C-, -CH=N-N=CH-,
 -C(CH₃)=N-N=C(CH₃)- oder -CCl=N-N=CCl- bedeutet,
 - Z^2 -(CH₂)_r- oder -CH₂-C₆H₄-CH₂- bedeutet,
- 20 r eine ganze Zahl von 1 bis 10 bedeutet und
 - X' ein unter den Bedingungen redox-inertes Anion bedeutet,

wobei die Bindung zum Brückenglied B über einen der Reste R²-R¹⁹, R²²-R²⁷ oder im Falle, daß E¹ oder E² für NR¹ steht über R¹ erfolgt und die genannten Reste dann für eine direkte Bindung stehen,

RED₁ für einen der folgenden Reste

$$R^{28}$$
 N
 R^{32}
 R^{30}
 R^{31}
 R^{31}

$$R^{28}$$
 R^{33} R^{30} R^{30} R^{31} R^{31}

$$R^{42}$$
 R^{44} R^{45} R^{43} (XIV),

5

$$\mathbb{R}^{47}$$
 \mathbb{E}^{5}
 \mathbb{R}^{48}
 \mathbb{R}^{48}
 \mathbb{R}^{48}

$$R^{49} = E^6 = Z^4 = E^8 = R^{51}$$
 (XVII),

$$R^{55}$$
 E^{10}
 E^{11}
 E^{56}
 E^{56}
 E^{56}
 E^{56}

$$R^{62}$$
 R^{63} R^{64} R^{65} R^{66} R^{67} R^{68} R^{61} R^{68} R^{68}

10

steht, worin

- R^{28} bis R^{31} , R^{34} , R^{35} , R^{38} , R^{39} , R^{46} , R^{53} und R^{54} unabhängig voneinander C_1 bis C_{18} -Alkyl, C_2 bis C_{12} -Alkenyl, C_3 bis C_7 -Cycloalkyl, C_7 bis C_{15} -Aralkyl oder C_6 bis C_{10} -Aryl bedeuten, und R^{46} , R^{53} und R^{54} zusätzlich Wasserstoff bedeuten,
- R³², R³³, R³⁶, R³⁷, R⁴⁰, R⁴¹, R⁴² bis R⁴⁵, R⁴⁷, R⁴⁸, R⁴⁹ bis R⁵² und R⁵⁵ bis R⁵⁷ unabhängig voneinander Wasserstoff, C₁- bis C₄-Alkyl, C₁- bis C₄-Alkoxy, Halogen, Cyano, Nitro, C₁- bis C₄-Alkoxycarbonyl oder C₆- bis C₁₀-Aryl bedeuten und R⁵⁷ und R⁵⁸ zusätzlich einen gegebenenfalls benzanellierten aromatischen oder quasiaromatischen fünf- oder sechsgliedrigen heterocyclischen Ring bedeuten und R⁴⁸ zusätzlich NR⁷⁵R⁷⁶ bedeutet,
 - R^{49} und R^{50} und/oder R^{51} und R^{52} eine -(CH₂)₃-, -(CH₂)₄-, -(CH₂)₅- oder -CH=CH-CH=CH-Brücke bilden,
- eine direkte Bindung, eine -CH=CH- oder -N=N-Brücke bedeutet,
 - =Z⁴= eine direkte Doppelbindung, eine =CH-CH= oder =N-N=-Brücke bedeutet,
 - E^3 bis E^5 , E^{10} und E^{11} unabhängig voneinander O, S, NR^{59} oder $C(CH_3)_2$ bedeuten und E^5 zusätzlich C = O oder SO_2 bedeutet, oder
- 20 E³ und E⁴ unabhängig voneinander -CH=CH- bedeuten,
 - E⁶ bis E⁹ unabhängig voneinander S, Se oder NR⁵⁹ bedeuten,
 - R^{59} , R^{75} und R^{76} unabhängig voneinander C_1 bis C_{12} -Alkyl, C_2 bis C_8 -Alkenyl, C_3 bis C_7 -Cycloalkyl, C_7 bis C_{15} -Aralkyl oder C_6 bis C_{10} -Aryl bedeuten und R^{73} zusätzlich Wasserstoff bedeutet oder
- 25 R⁷³ und R⁷⁴ in der Bedeutung von NR⁷³R⁷⁴ gemeinsam mit dem N-Atom, an das sie gebunden sind, einen fünf- oder sechsgliedrigen, gesättigten Ring bedeuten, der weitere Heteroatome enthalten kann,

15

- R⁶¹ bis R⁶⁸ unabhängig voneinander Wasserstoff, C₁- bis C₆-Alkyl, C₁- bis C₄-Alkoxy, Cyano, C₁- bis C₄-Alkoxycarbonyl oder C₆- bis C₁₀-Aryl bedeuten, oder
- R^{61} ; R^{62} und R^{67} ; R^{68} unabhängig voneinander gemeinsam eine - $(CH_2)_3$ -, - $(CH_2)_4$ oder -CH=CH-CH=CH-Brücke bilden,
 - v eine ganze Zahl zwischen 0 und 10 bedeutet,

wobei die Bindung zum Brückenglied B einen der Reste R²⁸-R⁵⁸, R⁶¹, R⁶², R⁶⁷, R⁶⁸ oder im Falle, daß einer der Reste E³-E¹¹ für NR⁵⁹ steht über R⁵⁹ erfolgt und die genannten Reste dann für eine direkte Bindung stehen, und

- 10 B für ein Brückenglied der Formeln $-(CH_2)_n$ oder $-[Y^1_s(CH_2)_m-Y^2]_o-(CH_2)_p-Y^3_q$ steht, welche jeweils gegebenenfalls durch C_1 bis C_4 -Alkoxy, Halogen oder Phenyl substituiert sind,
 - Y¹ bis Y³ unabhängig voneinander für O, S, NR⁶⁰, COO, CONH, NHCONH, Cyclopentandiyl, Cyclohexandiyl, Phenylen oder Naphthylen stehen,
 - R^{60} C_1 bis C_6 -Alkyl, C_2 bis C_6 -Alkenyl, C_4 bis C_7 -Cycloalkyl, C_7 bis C_{15} -Aralkyl oder C_6 bis C_{10} -Aryl bedeutet,
 - n eine ganze Zahl von 1 bis 12 bedeutet,

m und p unabhängig voneinander eine ganze Zahl von 0 bis 8 bedeuten,

20 o eine ganze Zahl von 0 bis 6 bedeutet und

q und s unabhängig voneinander 0 oder 1 bedeuten.

7. Elektrochromes System gemäß Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß es mindestens eine Substanz der Formel (Ia)-(Id) enthält,

worin

OX₂ für einen Rest der Formeln (II), (III), (IV) oder (V) steht,

wobei

- R², R³, R⁴, R⁵, R⁸ und R⁹ unabhängig voneinander für C₁- bis C₁₂-Alkyl, C₂- bis C₈-Alkenyl, C₅- bis C₇-Cycloalkyl, C₇- bis C₁₅-Aralkyl oder C₆- bis C₁₀-Aryl stehen,
 - R⁶ und R⁷ unabhängig voneinander für Wasserstoff, Methyl, Ethyl, Methoxy, Ethoxy, Fluor, Chlor, Brom, Cyano, Nitro, Methoxycarbonyl oder Ethoxycarbonyl stehen,
- R¹⁰, R¹¹; R¹², R¹³ und R¹⁴, R¹⁵ unabhängig voneinander für Wasserstoff oder, falls Z¹ eine direkte Bindung bedeutet, jeweils paarweise gemeinsam für eine -(CH₂)₂-, -(CH₂)₃- oder -CH=CH-Brücke stehen,

oder

- R⁴, R⁵ und R⁸, R⁹ unabhängig voneinander jeweils paarweise gemeinsam für -(CH₂)₂- oder -(CH₃)₃-Brücke stehen, falls Z¹ eine direkte Bindung bedeutet,
 - R⁶⁹ bis R⁷⁴ unabhängig voneinander Wasserstoff oder C₁-C₄-Alkyl bedeuten,
- E¹ und E² gleich sind und für O, S, NR¹ oder C(CH₃)₂ stehen oder gemeinsam eine -N-(CH₂)₂-N-Brücke bilden,
 - R^1 für C_1 bis C_{12} -Alkyl, C_2 bis C_4 -Alkenyl, C_5 bis C_7 -Cycloalkyl, C_7 bis C_{15} -Aralkyl oder C_6 bis C_{10} -Aryl steht,
 - Z¹ für eine direkte Bindung, -CH=CH-, -C(CH₃)=CH-, -C(CN)=CH-, -C=C- oder -CH=N-N=CH- steht,
- 25 Z^2 für -(CH)_t- oder -CH₂-C₆H₄-CH₂- steht,

10

15

- r für eine ganze Zahl zwischen 1 und 6 steht,
- X' für ein unter den Bedingungen redox-inertes, farbloses Anion steht,

wobei die Bindung zum Brückenglied B über einen der Reste R²-R¹¹ oder im Falle, daß E¹ oder E² für NR¹ steht über R¹ erfolgt und die genannten Reste dann für eine direkte Bindung stehen,

RED₁ für einen Rest der Formeln (X), (XI), (XII), (XIII), (XVII), (XVIII), (XVIII) oder (XX) steht,

wobei

- R²⁸ bis R³¹, R³⁴, R³⁵, R³⁸, R³⁹, R⁴⁶, R⁵³ und R⁵⁴ unabhängig voneinander C₁- bis C₁₂-Alkyl, C₂- bis C₈-Alkenyl, C₅- bis C₇-Cycloalkyl, C₇- bis C₁₅-Aralkyl oder C₆- bis C₁₀-Aryl bedeuten und
 - R⁴⁶, R⁵³ und R⁵⁴ zusätzlich Wasserstoff bedeuten,
 - R³², R³³, R³⁶, R³⁷, R⁴⁰, R⁴¹, R⁴⁷ bis R⁵², R⁵⁵ und R⁵⁶ unabhängig voneinander Wasserstoff, Methyl, Ethyl, Methoxy, Ethoxy, Fluor, Chlor, Brom, Cyan, Nitro, Methoxycarbonyl, Ethoxycarbonyl oder Phenyl bedeuten und
 - R⁵⁷ und R⁵⁸ zusätzlich 2- oder 4-Pyridyl bedeuten und
 - R⁴⁸ zusätzlich NR⁷⁵R⁷⁶ bedeutet,
 - Z³ eine direkte Bindung, eine -CH=CH- oder -N=N-Brücke bedeutet,
- 20 =Z⁴= eine direkte Doppelbindung, eine =CH-CH= oder =N-N=-Brücke bedeutet,
 - E³ bis E⁵, E¹⁰ und E¹¹ unabhängig voneinander O, S, NR⁵⁹ oder C(CH₃)₂ bedeuten, E³ und E⁴ aber die gleiche Bedeutung haben,
 - E⁶ bis E⁹ untereinander gleich sind und S, Se oder NR⁵⁹ bedeuten und

- E⁵ zusätzlich C = O bedeutet,
- E⁶ für NR⁵⁹ steht, wobei R⁵⁹ eine direkte Bindung zur Brücke B bedeutet und
- E⁷ bis E⁹ die oben angegebene Bedeutung besitzen, aber untereinander nicht gleich sein müssen,
 - R⁵⁹, R⁷⁵ und R⁷⁶ unabhängig voneinander C₁- bis C₁₂-Alkyl, C₂- bis C₈Alkenyl, C₅- bis C₇-Cycloalkyl, C₇- bis C₁₅-Aralkyl oder C₆- bis
 C₁₀-Aryl bedeuten, und R⁷³ zusätzlich Wasserstoff bedeutet oder
- R⁷³ und R⁷⁴ in der Bedeutung von NR⁷³R⁷⁴ gemeinsam mit dem N-Atom, an das sie gebunden sind, Pyrrolidino, Piperidino oder Morpholino bedeuten,
 - R⁶¹, R⁶² und R⁶⁷, R⁶⁸ unabhängig voneinander für Wasserstoff, C₁- bis C₄-Alkyl, Methoxycarbonyl, Ethoxycarbonyl oder Phenyl oder paarweise gemeinsam für eine -(CH₂)₃- oder -(CH₂)₄-Brücke stehen,
- 15 R⁶³ bis R⁶⁶ für Wasserstoff stehen und
 - v für eine ganze Zahl von 1 bis 6 steht,

wobei die Bindung zum Brückenglied B über einen der Reste R²⁸-R⁴¹, R⁴⁶-R⁵⁶, R⁶¹, R⁶², R⁶⁷, R⁶⁸ oder im Falle, daß einer der Reste E³-E¹¹ für NR⁵⁹ steht, über R⁵⁹ erfolgt und die genannten Reste dann für eine direkte Bindung stehen,

B für ein Brückenglied der Formeln $-(CH_2)_n$ -, $-(CH_2)_m$ -O- $(CH_2)_p$ -. $-(CH)_m - NR^{60} - (CH_2)_p$ -, $-(CH_2)_m - C_6H_4 - (CH_2)_p$ -, $-[O-(CH_2)_p]_o$ -O-, $-[NR^{60} - (CH_2)_p]_o - NR^{60}$ -, $-[C_6H_4 - (CH_2)_p]_o - C_6H_4$ -, $-(CH_2)_m - OCO - C_6H_4 - COO - (CH_2)_p$ -, $-(CH_2)_m - NHCO - C_6H_4 - CONH - (CH_2)_p$ -, $-(CH_2)_m - NHCONH - C_6H_4 - NHCONH - (CH_2)_p$ -, $-(CH_2)_m - OCO - (CH_2)_t - COO - (CH_2)_-$, $-(CH_2)_m - NHCO - (CH_2)_t - CONH - (CH_2)_p$ -,

 $-(CH_2)_m$ -NHCONH- $(CH_2)_t$ -NHCONH- $(CH_2)_p$ - steht,

- R⁶⁰ für Methyl, Ethyl, Benzyl oder Phenyl steht,
- n für eine ganze Zahl von 1 bis 10 steht,

m und p unabhängig voneinander für eine ganze Zahl von 0 bis 4 stehen,

- o für eine ganze Zahl von 0 bis 2 steht und
 - t für eine ganze Zahl von 1 bis 6 steht.
 - 8. Elektrochromes System gemäß Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß es mindestens eine Substanz der Formel (Ia)-(Id) enthält,

worin

10

OX₂ für einen Rest der Formeln (II), (IV) oder (V) steht,

wobei

- R², R⁴ und R⁸ für eine direkte Bindung zum Brückenglied B stehen,
- R³, R⁵ und R⁹ unabhängig voneinander für Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Benzyl oder Phenyl stehen, oder
- 15 R³, R⁵ und R⁹ im Falle der Formeln Ic und Id auch für eine direkte Bindung zum Brückenglied B stehen,
 - R⁶ und R⁷ gleich sind und für Wasserstoff, Methyl, Methoxy, Chlor, Cyano oder Methoxycarbonyl stehen,
- R¹⁰, R¹¹, R¹², R¹³ und R¹⁴, R¹⁵ unabhängig voneinander für Wasserstoff oder, falls Z¹ eine direkte Bindung bedeutet, jeweils paarweise zusammen für eine -CH=CH-Brücke stehen,

 R^{69} bis R^{72} gleich sind und Wasserstoff, Methyl oder Ethyl bedeuten,

R⁷³ und R⁷⁴ Wasserstoff bedeuten,

E1 und E2 gleich sind und für O oder S stehen,

- Z¹ für eine direkte Bindung oder -CH=CH- steht,
- 5 X für ein unter den Bedingungen redox-inertes, farbloses Anion steht,
 - RED₁ für einen Rest der Formeln (X), (XII), (XIII), (XVI) oder (XVII) steht,
 - R²⁸, R³⁴, R³⁸, R⁴⁶ und R⁴⁹ für eine direkte Bindung zum Brückenglied B stehen,
- 10 R²⁹ bis R³¹, R³⁵ und R³⁹ unabhängig voneinander für Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Benzyl oder Phenyl stehen, oder
 - R³⁰, R³⁵ und R³⁹ im Falle der Formeln Ib und Ic auch für eine direkte Bindung zum Brückenglied B stehen,
- 15 R³², R⁴⁷ und R⁴⁸ für Wasserstoff stehen,
 - R³⁶, R³⁷, R⁴⁰, R⁴¹ und R⁵⁰ bis R⁵² unabhängig voneinander für Wasserstoff, Methyl, Methoxy, Chlor, Cyano, Methoxycarbonyl oder Phenyl stehen, oder
- R⁵¹ im Falle der Formeln Ib und Id auch für eine direkte Bindung zum Brückenglied B steht,
 - Z³ für eine direkte Bindung, eine -CH=CH- oder -N=N-Brücke steht,
 - =Z⁴= für eine direkte Doppelbindung, eine =CH-CH= oder =N-N=-Brücke steht,

E³ bis E⁵ unabhängig voneinander für O, S oder NR⁵⁹ stehen, E³ und E⁴ aber die gleiche Bedeutung haben,

E⁶ bis E⁹ untereinander gleich sind und für S, Se oder NR⁵⁹ stehen,

- R⁵⁹ für Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Benzyl oder Phenyl steht, oder
- R⁵⁹ im Falle der Formel XVI in Formel Ib und Id auch für eine direkte Bindung zum Brückenglied B steht,
- B für ein Brückenglied der Formeln $-(CH_2)_n$ -, $-(CH_2)_m$ -O- $(CH_2)_p$ -, $-(CH_2)_m NR^{60} (CH_2)_p$ -, $-(CH_2)_m C_6H_4$ - $(CH_2)_p$ -, $-O-(CH_2)_p O-, -NR^{60} (CH_2)_p NR^{60}$ -, $-(CH_2)_m OCO C_6H_4 COO (CH_2)_p$ -, $-(CH_2)_m NHCO C_6H_4 CONH (CH_2)_p$ -, $-(CH_2)_m NHCONH C_6H_4 NHCONH (CH_2)_p$ -, $-(CH_2)_m OCO (CH_2)_t COO (CH_2)_p$ -, $-(CH_2)_m NHCO (CH_2)_t CONH (CH_2)_p$ -, $-(CH_2)_m NHCONH (CH_2)_t NHCONH (CH_2)_p$ steht,

R⁶⁰ für Methyl steht,

n für eine ganze Zahl von 1 bis 10 steht,

m und p gleich sind und für eine ganze Zahl von 0 bis 2 stehen und

- 20 t für eine ganze Zahl von 1 bis 6 steht.
 - 9. Elektrochromes System gemäß Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß es mindestens eine elektrochrome Substanz der Formel (Ia)

$$OX_2$$
-B-RED₁ (Ia)

entsprechend einer der Formeln

$$R^{3} \xrightarrow{+} N$$
 R^{72}
 R^{13}
 R^{12}
 R^{69}
 R^{10}
 R^{13}
 R^{12}
 R^{69}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{11}
 R^{11}
 R^{11}
 R^{11}
 R^{11}

$$R^{3} \xrightarrow{R^{70}} R^{13} R^{12} \xrightarrow{R^{69}} R^{69} \xrightarrow{N} (CH_2)_m (CH_2)_m (CH_2)_m = R^{35} \xrightarrow{N} E^4 (XXIII),$$

$$R^{3} \xrightarrow{+} N$$
 $R^{70} \xrightarrow{R^{13}} R^{12} \xrightarrow{R^{69}} R^{69} \xrightarrow{+} (CH_{2})_{m} \xrightarrow{+} (CH_{2})_{m} \xrightarrow{+} N$
 $R^{71} \xrightarrow{+} R^{71} R^{71} \xrightarrow{+} R^{71} R^{71} \xrightarrow{+} R^{71} R^{71} \xrightarrow{+} R^{71} R^{71}$

$$R^{70}$$
 R^{13}
 R^{12}
 R^{69}
 R^{3}
 R^{71}
 R^{71}

$$E^{1} = N - (CH_{2})_{m} + (CH_{2}$$

$$R^{70}$$
 R^{13}
 R^{12}
 R^{89}
 R^{71}
 R^{71}
 R^{71}
 R^{71}
 R^{71}
 R^{72}
 R^{71}
 R^{71}
 R^{72}
 R^{71}
 R

oder

$$R^{6}$$
 E^{1}
 N^{-}
 CH_{2}
 N^{-}
 CH_{2}
 N^{-}
 N^{-}

(XXXIV),

$$R^{3} - N = Z^{1} - N + (CH_{2})_{m}(-CH_{2})_{m} = 0$$

$$R^{50} = 0$$

$$R^{51} = 0$$

$$CH_{2})_{m}(-CH_{2})_{m}(-CH_{2})_{m} = 0$$

$$CH_{2})_{m}(-CH_{2})_{m}(-CH_{2})_{m}(-CH_{2})_{m} = 0$$

$$CH_{2})_{m}(-CH_{2})_{m}(-CH_{2})_{m}(-CH_{2})_{m} = 0$$

$$CH_{2})_{m}(-CH_{2})_{m}(-CH_{2})_{m}(-CH_{2})_{m} = 0$$

$$CH_{2})_{m}(-CH_{2})_{m}(-CH_{2})_{m}(-CH_{2})_{m}(-CH_{2})_{m} = 0$$

$$CH_{2})_{m}(-CH_{2})_{m}(-CH_{2})_{m}(-CH_{2})_{m} = 0$$

oder mindestens eine Substanz der Formel (Ic) entsprechend einer der Formeln

$$R^{48}$$
 E^{1}
 $N^{-}(CH_{2})_{m}$
 E^{5}
 R^{47}
 R^{48}
 E^{1}
 $N^{-}(CH_{2})_{m}$
 R^{48}
 E^{1}
 $N^{-}(CH_{2})_{m}$
 R^{48}
 E^{1}
 $E^$

(XXXVIII),

$$R^{35} \stackrel{N}{\longrightarrow} E^{4}$$

$$R^{36} \stackrel{R^{70}}{\longrightarrow} R^{13} \stackrel{R^{12}}{\longrightarrow} R^{70} \stackrel{R^{70}}{\longrightarrow} R^{70} \stackrel{R^{13}}{\longrightarrow} R^{12} \stackrel{R^{70}}{\longrightarrow} R^{70} \stackrel{R^{13}}{\longrightarrow} R^{12} \stackrel{R^{70}}{\longrightarrow} R^{70} \stackrel{R^{13}}{\longrightarrow} R^{12} \stackrel{R^{12}}{\longrightarrow} R^{11} \stackrel{R^{12}}{\longrightarrow} R^{11} \stackrel{R^{12}}{\longrightarrow} R^{11} \stackrel{R^{12}}{\longrightarrow} R^{11} \stackrel{R^{13}}{\longrightarrow} R^{12} \stackrel{R^{14}}{\longrightarrow} R^{11} \stackrel{R^{15}}{\longrightarrow} R^{11} \stackrel{$$

(XXXIX),

$$R^{37}$$
 R^{37}
 R^{35}
 R^{35}

(XL),

5 enthält, worin

- R³, R⁵, R³⁵ und R³⁹ unabhängig voneinander für Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl oder Benzyl stehen,
- R⁶, R⁷ und R³⁶, R³⁷ paarweise gleich sind und für Wasserstoff, Methyl, Methoxy, Chlor, Cyano oder Methoxycarbonyl stehen,
- 10 R¹² und R¹³ für Wasserstoff oder, wenn Z¹ eine direkte Bindung bedeutet, gemeinsam für eine CH=CH-Brücke stehen,

R⁶⁹ bis R⁷² gleich sind und für Wasserstoff oder Methyl stehen,

E¹ und R² gleich sind und für O oder S stehen,

- Z1 für eine direkte Bindung oder -CH=CH steht,
- R32, R47 und R48 für Wasserstoff stehen,
- E³ bis E⁵ unabhängig voneinander für O, S oder NR⁵⁹ stehen, wobei E³ und E⁴ aber gleich sind,
- R²⁹ bis R³¹ und R⁵⁹ unabhängig voneinander für Methyl, Ethyl, Propyl,
 Butyl, Pentyl, Hexyl oder Benzyl stehen, wobei R²⁹ bis R³¹
 vorzugsweise gleich sind,
 - R⁴⁰ und R⁴¹ gleich sind und für Wasserstoff, Methyl, Ethyl, Propyl, Butyl oder Phenyl stehen,
- 10 Z³ für eine direkte Bindung, -CH=CH- oder -N=N- steht,
 - R⁵⁰ bis R⁵² unabhängig voneinander für Wasserstoff, Methyl, Methoxy, Chlor, Cyano, Methoxycarbonyl, Ethoxycarbonyl oder Phenyl stehen, vorzugsweise jedoch gleich sind,
 - E⁶ bis E⁹ untereinander gleich sind und für S, Se oder NR⁵⁹ stehen,
- 15 Z⁴ für eine direkte Doppelbindung, eine =CH-CH= oder =N-N=-Brücke steht,
 - m für eine ganze Zahl von 1 bis 5 steht,
 - u für 0 oder 1 steht und
 - X für ein unter den Bedingungen redox-inertes, farbloses Anion steht.
- 20 10. Elektrochrome Substanz entsprechend der Formel

$$Y \leftarrow B - Z \rightarrow B - Y \rightarrow D C B - Z$$
 (I),

worin

Y und Z unabhängig voneinander für einen Rest OX_2 oder RED_1 stehen, wobei aber mindestens ein Y für OX_2 und mindestens ein Z für RED_1 steht,

wobei

5

10

- OX₂ für den Rest eines reversibel elektrochemisch reduzierbaren Redoxsystems steht, und
- RED₁ für den Rest eines reversibel elektrochemisch oxidierbaren Redoxsystems steht, wobei der Rest der Formel (XX)

wobei R⁶¹-R⁶⁸ und v die in Anspruch 6 angegebene Bedeutung haben, ausgenommen ist,

B für ein Brückenglied steht,

c für eine ganze Zahl von 0 bis 5 steht, und

15 a und b unabhängig voneinander für eine ganze Zahl von 0 bis 5 stehen, vorzugsweise für eine ganze Zahl von 0 bis 3 stehen,

mit Ausnahme von Verbindungen der Formel

worin

m für eine ganze Zahl von 2 bis 16 steht, und

X die oben angegebene Bedeutung hat.

11. Elektrochrome Substanzen gemäß Anspruch 10 entsprechend einer der Formeln

$$OX_2$$
-B-RED₁ (Ia),

$$\label{eq:ox2-B-RED} {\rm OX_2\text{-}B\text{-}RED_1\text{-}B\text{-}OX_2} \tag{Ib}),$$

$$-RED_1-B-OX_2-B-RED_1$$
 (Ic),

$$\mathrm{OX_2\text{-}(B\text{-}RED_1\text{-}B\text{-}OX_2)_d\text{-}B\text{-}RED_1} \hspace{0.5cm} (\mathrm{Id}),$$

worin OX₂, RED₁ und B die in Anspruch 10 angegebenen Bedeutungen haben und

- d für eine ganze Zahl von 1 bis 5 steht.
- 12. Elektrochrome Substanzen gemäß Ansprüchen 10 und 11 der Formeln

$$R^{70}$$
 R^{13}
 R^{12}
 R^{69}
 R^{13}
 R^{12}
 R^{13}
 R^{14}
 R^{13}
 R^{14}
 R^{15}

$$R^{3} \xrightarrow{+} N$$
 $R^{70} \times R^{13} \times R^{12} \times R^{69} \times R^{30} \times R^{30} \times R^{31} \times R^{72} \times R^{71} \times R^{1$

$$\begin{array}{c}
R^{6} \\
\downarrow \\
E^{1} \\
N \\
\downarrow \\
R^{7}
\end{array}$$

$$\begin{array}{c}
R^{32} \\
\downarrow \\
R^{30} \\
\downarrow \\
R^{31}
\end{array}$$

$$\begin{array}{c}
R^{32} \\
\downarrow \\
R^{31}
\end{array}$$

$$\begin{array}{c}
R^{31} \\
\downarrow \\
R^{31}
\end{array}$$

$$\begin{array}{c}
R^{31} \\
\downarrow \\
R^{31}
\end{array}$$

$$\begin{array}{c}
R^{31} \\
\downarrow \\
R^{31}
\end{array}$$

$$R^{70}$$
 R^{13}
 R^{12}
 R^{69}
 R^{13}
 R^{12}
 R^{69}
 R^{10}
 R

(XXVII),

$$R^{3} - N \qquad Z^{1} \longrightarrow R^{13} \qquad R^{12} \longrightarrow R^{69} \qquad Q \longrightarrow R^{71} \qquad Q \longrightarrow R^{71} \qquad Q \longrightarrow R^{50} \longrightarrow R^{50$$

$$R^{70} = R^{13} = R^{12} + R^{69} + R^{12} + R^{69} + R^{12} + R^{13} + R$$

(XXXII),

oder mindestens eine Substanz der Formel (Ic) entsprechend einer der Formeln

(XXXVIII),

(XXXIX),

$$R^{35} - N = 4$$
 $R^{35} - N = 4$
 $R^{35} - N$

(XL),

5 enthält, worin

- R^3 , R^5 , R^{35} und R^{39} unabhängig voneinander für Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl oder Benzyl stehen,
- R⁶, R⁷ und R³⁶, R³⁷ paarweise gleich sind und für Wasserstoff, Methyl, Methoxy, Chlor, Cyano oder Methoxycarbonyl stehen,
- 10 R¹² und R¹³ für Wasserstoff oder, wenn Z¹ eine direkte Bindung bedeutet, gemeinsam für eine CH=CH-Brücke stehen,
 - R^{69} bis R^{72} gleich sind und für Wasserstoff oder Methyl stehen

- E1 und R2 gleich sind und für O oder S stehen,
- Z1 für eine direkte Bindung oder -CH=CH- steht,
- R³², R⁴⁷ und R⁴⁸ für Wasserstoff stehen,
- E³ bis E⁵ unabhängig voneinander für O, S oder NR⁵⁹ stehen, wobei E³ und E⁴ aber gleich sind,
- R²⁹ bis R³¹ und R⁵⁹ unabhängig voneinander für Methyl, Ethyl, Propyl,
 Butyl, Pentyl, Hexyl oder Benzyl stehen, wobei R²⁹ bis R³¹
 vorzugsweise gleich sind,
- R⁴⁰ und R⁴¹ gleich sind und für Wasserstoff, Methyl, Ethyl, Propyl, Butyl oder Phenyl stehen,
 - Z³ für eine direkte Bindung, -CH=CH- oder -N=N- steht,
 - R⁵⁰ bis R⁵² unabhängig voneinander für Wasserstoff, Methyl, Methoxy, Chlor, Cyano, Methoxycarbonyl, Ethoxycarbonyl oder Phenyl stehen, vorzugsweise jedoch gleich sind,
- 15 E⁶ bis E⁹ untereinander gleich sind und für S, Se oder NR⁵⁹ stehen,
 - Z⁴ für eine direkte Doppelbindung, eine =CH-CH= oder =N-N=-Brücke steht,
 - m für eine ganze Zahl von 1 bis 5 steht,
 - u für 0 oder 1 steht und
- 20 X für ein unter den Bedingungen redox-inertes, farbloses Anion steht.
 - Verfahren zur Herstellung elektrochromer Substanzen gemäß Ansprüche 10
 bis 12, dadurch gekennzeichnet, daß Verbindungen der Formel

mit Verbindungen der Formel

RED₁ (XLIV)

oder daß Verbindungen der Formel

 OX_2 (XLV)

5 mit Verbindungen der Formel

 $A-B-RED_1$ (XLVI)

wobei

- A eine Abgangsgruppe wie Chlor, Brom, Iod, OSO₂-Alkyl, OSO₂-Perfluoralkyl oder OSO₂-Aryl bedeutet
- und OX₂, RED₁ und B die in Anspruch 10 angegebene Bedeutung besitzen,

umgesetzt werden.

- 14. Elektrochrome Flüssigkeit enthaltend ein elektrochromes System gemäß wenigstens einem der Ansprüche 1 bis 9 und mindestens ein inertes Lösungsmittel.
 - Elektrochrome Vorrichtung enthaltend eine elektrochrome Flüssigkeit gemäß Anspruch 14.
- 16. Elektrochrome Vorrichtung gemäß Anspruch 15, dadurch gekennzeichnet, daß sie als Zelle wie z.B. eine Solarzelle, als Fensterscheibe, Spiegel,
 20 Sonnendach oder Display ausgebildet ist.

17. Elektrochrome Vorrichtung gemäß Ansprüchen 15 und 16, dadurch gekennzeichnet, daß sie aus zwei einander zugewandten lichtdurchlässigen Glasoder Kunststoffscheiben besteht, von denen gegebenenfalls eine verspiegelt ist und deren einander zugewandten Seiten elektrisch leitfähig beschichtet sind zwischen denen die elektrochrome Flüssigkeit enthalten ist.

INTERNATIONAL SEARCH REPORT

Int. .aonal Application No PCT/EP 97/00498

A. CLASSII IPC 6	FICATION OF SUBJECT MATTER C09K9/02 G02F1/15		
	o International Patent Classification (IPC) or to both national class	ification and IPC	
	SEARCHED		
Minimum de IPC 6	ocumentation searched (classification system followed by classification (COOK GOOF	aton symbols)	
Documentat	oon searched other than minimum documentation to the extent that	such documents are included in the fields so	arched
Electronic d	tata base consulted during the international search (name of data bi	ase and, where practical, search terms used)	
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		The second in Ma
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
A	EP 0 240 226 A (GENTEX) 7 Octobe see the whole document	er 1987	1,6
A	EP 0 613 039 A (DONNELLY) 31 Aug see the whole document	gust 1994	1,6
A	GB 2 021 277 A (A.VLADIMIROVICH November 1979 see the whole document	& AL) 28	1
Fu	orther documents are listed in the continuation of box C.	Patent family members are lister	in annex.
'A' docucons 'E' earlie filin 'L' docuc where create 'O' docuconte	categories of cited documents: Iment defining the general state of the art which is not indered to be of particular relevance or document but published on or after the international ig date international ground the published on priority claim(s) or child its cited to establish the publication date of another non or other special reason (as specified) intent referring to an oral disclosure, use, exhibition or crimeans intent published prior to the international filing date but in than the priority date claimed.	"T" later document published after the is or priority date and not in conflict cited to understand the principle or invention "X" document of particular relevance; the cannot be considered novel or canninvolve an inventive step when the "Y" document of particular relevance; the cannot be considered to involve an document is combined with one or ments, such combination being obtain the art. "&" document member of the same pate. Date of mailing of the international. 26.05.97	with the application but theory underlying the claimed invention of be considered to document is taken alone invention inventive step when the more other such document such such such such such such such such
	20 May 1997	Authorized officer	
Name an	nd mailing address of the ISA European Patent Office, P.B. 3818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Drouot, M-C	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int Jonal Application No PCT/EP 97/00498

Patent document cited in search report	Publication date	Patent family member(8)	Publication date
EP 240226 A	07-10-87	US 4902108 A AU 652727 B AU 6804290 A AU 601411 B AU 7068787 A AU 8034394 A DE 3751942 D DE 3751942 T EP 0725305 A JP 62294225 A US 5290930 A US 5282077 A US 5481395 A US 5128799 A	20-02-90 08-09-94 28-02-91 13-09-90 15-10-87 23-02-95 12-12-96 03-04-97 07-08-96 21-12-87 01-03-94 25-01-94 02-01-96 07-07-92
EP 613039 A	31-08-94	US 5140455 A DE 69016181 D EP 0430684 A EP 0430686 A JP 3177822 A US 5472643 A US 5567360 A US 5340503 A	18-08-92 02-03-95 05-06-91 05-06-91 01-08-91 05-12-95 22-10-96 23-08-94
GB 2021277 A	28-11-79	CH 633935 A,B DE 2854812 A FR 2426274 A JP 54155065 A US 4272163 A	14-01-83 13-12-79 14-12-79 06-12-79 09-06-81

INTERNATIONALER RECHERCHENBERICHT

Inte. Joseles Aktenzeichen
PCT/EP 97/00498

A. KLASSIF I PK 6	COSK9/02 GOZF1/15	· · · · · · · · · · · · · · · · · · ·	
Nach der Inte	ernationalen Patentidassifikation (IPK) oder nach der nationalen Klassi	fikation und der IPK	
D DECHER	CHIERTE GEBIETE		
Recherchieru IPK 6	er Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole CO9K GO2F)	
Recherchiert	e aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, sowe	it diese unter die recherchierten Gebiete	fallen
Während der	r iniernationalen Recherche konsultierte elektronische Datenbank (Nam	ne der Datenbank und evil. verwendete	Suchbegnife)
	ESENTLICH ANGESEHENE UNTERLAGEN		
C. ALS WI	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	EP 0 240 226 A (GENTEX) 7.0ktober siehe das ganze Dokument	1987	1,6
A	EP 0 613 039 A (DONNELLY) 31.Augus siehe das ganze Dokument	t 1994	1,6
A	GB 2 021 277 A (A.VLADIMIROVICH & 28.November 1979 siehe das ganze Dokument	AL)	1
	eitere Veräffentlichungen sind der Fortsetzung von Feld C zu	X Siehe Anhang Patentfamilie	
Besonde 'A' Verö aber 'E' ältere Ann 'L' Verò sche ande soll ausg	mehmen re Kategorien von angegebenen Veröffentlichungen : (flentlichung, die den allgemeinen Stand der Technik definiert, nicht als besonders bedeutsam anzusehen ist es Dokument, das jedoch erst am oder nach dem internationalen neidedatum veröffentlicht worden ist iffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- nien zu lassen, oder durch die das Veröffentlichungsdatum einer eren im Recherchenbenicht genannten Veröffentlichung belegt werden oder die aus einem anderen besonderen Grund angegeben ist (wie geführt) öffentlichung, die sich auf eine mündliche Offenbarung, Benutzung, eine Austtellung oder andere Maßnahmen bezieht	T' Spätere Veröffentlichung, die nach d oder dem Priontatsdaum veröffentlichung nicht kollidiert, sondem Erfindung zugrundeliegenden Prinzi Theorie angegeben int "X' Veröffentlichung von besonderer Be- kann allein aufgrund dieser Veröffen- kann nicht als auf erfindenscher Tä- werden, wenn die Veröffentlichung Veröffentlichungen dieser Kategon- diese Verbindung für einen Fachma "&' Veröffentlichung, die Mitglied derse	nur zum Verständnis des der ps oder der ihr zugrundeliegende deutung, die beanspruchte Erfind nülchung nicht als neu oder auf trachtet werden deutung, die beanspruchte Erfind tigkeit berühend betrachtet mit einer oder mehreren anderen ein Verbindung gebracht wird un naheliegend ist
den den	of the state of th	Absendedatum des internationalen	Recherchenberichts
	20.Mai 1997	26.05.97	
Name ur	nd Postanschrift der Internationale Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Bevollmächtigter Bediensteter Drouot, M-C	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Inte. consider Aktonocichen
PCT/EP 97/00498

Angaben zu Veröffentlichungen, die		PC1/E1	37700430
Im Recherchenbericht ngeführtes Patentdokument	Datum der Veröffendichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 240226 A	07-10-87	US 4902108 A AU 652727 B AU 6804290 A AU 601411 B AU 7068787 A AU 8034394 A DE 3751942 D DE 3751942 T EP 0725305 A JP 62294225 A US 5290930 A US 5282077 A US 5481395 A US 5128799 A	20-02-90 08-09-94 28-02-91 13-09-90 15-10-87 23-02-95 12-12-96 03-04-97 07-08-96 21-12-87 01-03-94 25-01-94 02-01-96 07-07-92
EP 613039 A	31-08-94	US 5140455 A DE 69016181 D EP 0430684 A EP 0430686 A JP 3177822 A US 5472643 A US 5567360 A US 5340503 A	18-08-92 02-03-95 05-06-91 05-06-91 01-08-91 05-12-95 22-10-96 23-08-94
GB 2021277 A	28-11-79	CH 633935 A,B DE 2854812 A FR 2426274 A JP 54155065 A US 4272163 A	14-01-83 13-12-79 14-12-79 06-12-79 09-06-81