Math 217: "Prove or Disprove" Practice for Final Exam

On the Exam and on this review, the words "eigenvalue, eigenvector, eigenbasis, and eigenspace" all refer to the these concepts over the **real numbers** unless otherwise stated. The word "diagonalizable" means **diagonalizable over the real numbers**, unless we explicitly say "diagonalizable over the complex numbers."

- 1. A square matrix is invertible if and only if zero is not an eigenvalue.
- 2. If $T:V\to V$ and $S:V\to V$ are linear transformations, both with eigenvalue 5, then $T\circ S$ also has eigenvalue 5.
- 3. If A and B are 2×2 matrices, both with eigenvalue 5, then A + B also has eigenvalue 5.
- 4. A square matrix has determinant zero if and only if zero is an eigenvalue.
- 5. If B is the \mathfrak{B} -matrix of some linear transformation $V \stackrel{T}{\to} V$. Then for all $\vec{v} \in V$, we have $B[\vec{v}]_{\mathfrak{B}} = [T(\vec{v})]_{\mathfrak{B}}$.
- 6. If $V \xrightarrow{T} W \xrightarrow{S} V'$ are linear transformations, then $\operatorname{im}(ST) \subset \operatorname{im}S$.
- 7. If $V \xrightarrow{T} W \xrightarrow{S} V'$ are linear transformations, then $\ker(T) \subset \ker(ST)$.
- 8. Suppose $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is the matrix of a transformation $V \xrightarrow{T} V$ with respect to some basis $\mathfrak{B} = (f_1, f_2, f_3)$. Then f_1 is an eigenvector.
- 9. Suppose $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is the matrix of a transformation $V \xrightarrow{T} V$ with respect to some basis $\mathfrak{B} = (f_1, f_2, f_3)$. Then $T(f_1 + f_2 + f_3)$ is $6f_1 + 2f_2 + f_3$.

- 10. If A and B are similar, then they have the same trace and determinant.
- 11. Let $T: V \to V$ be a linear transformation, and suppose that T has a \mathcal{B} -matrix which is lower triangular for some $\mathcal{B} = (f_1, \ldots, f_n)$. Then T has at least one eigenvector.
- 12. There exists a linear transformation with exactly 6 eigenvectors.
- 13. The polynomials $x + 1, x^3, x^2$ span the vector space \mathcal{P}_3 .
- 14. The polynomials $x + 1, x^3, x^2, x^3 + x^2 + x + 1$ span the vector space \mathcal{P}_3 .
- 15. The set of polynomials $\{x+1, x^3, x^2, x^3+x^2+x+1\}$ is a linearly independent set in \mathcal{P}_5 .
- 16. Suppose that T is a linear transformation of rank 5 from the space $U^{3\times3}$ of upper triangular matrices to itself. If the characteristic polynomial of T is (x-1)(x-2)(x-3)(x-4)(x-5)(x-b), then it is possible to find the exact value of b.
- 17. The rank of $\frac{d^2}{dx^2}$ on \mathcal{P}_{17} is 16.
- 18. The matrices $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, and $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ form a basis for the space of symmetric 2×2 matrices.
- 19. If $f, g, h \in P_6$ are eigenvectors for a linear transformation $T : \mathcal{P}_6 \to \mathcal{P}_6$ with eigenvalues 3, 4, 0 respectively, then T(2f 3g + h) = 6f 12g.
- 20. The only rotation $\mathbb{R}^2 \to \mathbb{R}^2$ which has a real eigenvalue are rotations that induce the identity transformation (so through $\pm 2\pi, \pm 4\pi$, etc).
- 21. If the change of basis matrix $S_{\mathcal{A}\to\mathcal{B}} = \begin{bmatrix} \vec{e}_4 & \vec{e}_3 & \vec{e}_2 & \vec{e}_1 \end{bmatrix}$, then the elements of \mathcal{A} are the same as the element of \mathcal{B} , but in a different order.

- 22. The map assigning $\langle A, B \rangle$ to trace (AB^T) is an inner product on the space of all $\mathbb{R}^{2\times 2}$ matrices.
- 23. If $T: \mathbb{R}^{7 \times 8} \to \mathbb{R}^{3 \times 8}$ is a linear transformation whose 0-eigenspace has dimension 33, then T is surjective.
- 24. An orthogonal matrix must have at least one real eigenvalue.
- 25. The determinant of the differentiation map of \mathcal{P}_3 is zero.
- 26. If A is a 3×4 matrix, then the matrix $A^T A$ is similar to a diagonal matrix with three or less non-zero entries.
- 27. If A is similar to both D_1 and D_2 , where D_1 and D_2 are diagonal, then $D_1 = D_2$.
- 28. If A and B are similar to Q, then A is similar to B.
- 29. Let u and v be any two orthonormal vectors in an inner product space. Then $||u-v||=\sqrt{2}$.
- 30. If $\langle x,y\rangle = -\langle y,x\rangle$ in some inner product space, then x is orthogonal to y.
- 31. A linear transformation of a 7-dimensional space to itself has at least one real eigenvalue.
- 32. Let $V \xrightarrow{T} V$ be a linear transformation, and suppose that x and y are linearly independent eigenvectors with different eigenvalues. Then x + y is NOT an eigenvector.
- 33. If $\langle x,y\rangle=\langle x,z\rangle$ for vectors x,y,z in an inner product space, then y-z is orthogonal to x.
- 34. For any matrix A and any column vector \vec{b} , the system $A^T A \vec{x} = A^T \vec{b}$ is consistent.

- 35. If A is the $\mathfrak{B} = (\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4)$ matrix of a transformation T and $\begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ are the \mathfrak{B} -coordinates of \vec{x} , then $T(\vec{x}) = 2\vec{v}_1 + \vec{v}_3$.
- 36. If A is the $\mathfrak{B}=(\vec{v}_1,\vec{v}_2,\vec{v}_3,\vec{v}_4)$ matrix of a transformation T and $T(\vec{v}_3)=\vec{v}_1+\vec{v}_3$, then $A\vec{e}_3=\vec{e}_1+\vec{e}_3$.
- 37. For any $n \times n$ matrix A, and any vectors $\vec{x}, \vec{y} \in \mathbb{R}^n$, we have $A\vec{x} \cdot \vec{y} = \vec{x} \cdot A^T \vec{y}$.
- 38. For any symmetric $n \times n$ matrix A, and any vectors $\vec{x}, \vec{y} \in \mathbb{R}^n$, we have $A\vec{x} \cdot \vec{y} = A\vec{y} \cdot \vec{x}$.
- 39. If an 5×5 matrix P has eigenvalues 1, 2, 4, 8 and 16, then P is similar to a diagonal matrix.
- 40. If A is an orthogonal matrix, then its only real eigenvalues are ± 1 .
- 41. The functions $\sin x$ and $\cos x$ are orthogonal in the inner product defined by $\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f g dx$.
- 42. Suppose we have an inner product space V and w and v are orthonormal vectors in V. Then for any $f \in V$, the element $\langle w, f \rangle w + \langle v, f \rangle v$ is the closest vector to f in the span of v and w.
- 43. In any inner product space, $||f|| = \langle f, f \rangle$ for all f.
- 44. Consider $\mathbb{R}^{2\times 2}$ as an inner product space with the inner product $\langle A,B\rangle=$ trace A^TB . Then $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \mid \mid = \sqrt{(a^2+b^2+c^2+d^2)}$.
- 45. The matrices $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are orthonormal in the inner product $\langle A, B \rangle = \text{trace } A^T B$ on $\mathbb{R}^{2 \times 2}$.

- 46. If f and g are elements in an inner product space satisfying ||f|| = 2, ||g|| = 4 and ||f+g|| = 5, then it is possible to find the exact value of $\langle f, g \rangle$
- 47. If $(\vec{v}_1, \ldots, \vec{v}_d)$ is a basis for the subspace V of \mathbb{R}^n and $\vec{b} \in V$, then the least squares solutions of $\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \ldots & \vec{v}_d \end{bmatrix} \vec{x} = \vec{b}$ are exact solutions to $\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \ldots & \vec{v}_d \end{bmatrix} \vec{x} = \vec{b}$.
- 48. Let V and W be distinct planes in \mathbb{R}^3 and let $\phi_V : \mathbb{R}^3 \to \mathbb{R}^3$ and $\phi_W : \mathbb{R}^3 \to \mathbb{R}^3$ be the orthogonal projections onto V and W, respectively. Then the matrices of ϕ_V and ϕ_W in the standard basis are similar.
- 49. If $(\vec{v}_1, \dots, \vec{v}_d)$ is a basis for the subspace V of \mathbb{R}^n and $\vec{b} \in V^{\perp}$, then the only least squares solutions of $\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \dots & \vec{v}_d \end{bmatrix} \vec{x} = \vec{b}$ is the zero vector.
- 50. Suppose a is an eigenvalue of an invertible matrix A. Then a^{-1} is an eigenvalue of A^{-1} .
- 51. If A is upper triangular, then A is diagonalizable.
- 52. The matrix $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$ has an orthonormal eigenbasis.
- 53. The matrix $\begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$ has an orthonormal eigenbasis.
- 54. Every lower triangular matrix with pairwise distinct diagonal entries has an eigenbasis.
- 55. There are no surjective maps $\mathcal{P}_4 \to \mathbb{R}^{10}$.
- 56. There are no injective maps $\mathcal{P}_{14} \to \mathbb{R}^{10}$.
- 57. Consider the inner product on $\mathbb{R}^{2\times 2}$ defined by $\langle A,B\rangle=\operatorname{trace}(A^TB)$. Then the matrices $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ are orthonormal.

- 58. The rank of the map $\mathbb{R}^{3\times3}\to\mathbb{R}^{3\times3}$ sending $A\mapsto A-A^T$ is three.
- 59. Using the inner product from the previous problem, the closest diagonal matrix to $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is $\begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$.
- 60. There is a matrix which has determinant 6 and trace 5.
- 61. If a 2×2 matrix A has characteristic polynomial $x^2 + bx + c$, then it has an eigenvalue of algebraic multiplicity two if and only if $b^2 = 4c$.
- 62. A 2×2 matrix A has no real eigenvalues if and only if $(\operatorname{trace} A)^2 < 4 \det A$.
- 63. If some eigenspace of an $n \times n$ matrix A has dimension n, then A is a scalar multiple of the identity matrix.
- 64. Let S be an orthogonal 3×3 matrix. The linear transformation $\mathbb{R}^{3 \times 3} \mapsto \mathbb{R}^{3 \times 3}$ sending $X \mapsto S^T X S$ is invertible.
- 65. Let S be an invertible 3×3 matrix. The only eigenvalues of the linear transformation $\mathbb{R}^{3\times3} \mapsto \mathbb{R}^{3\times3}$ sending $X \mapsto S^{-1}XS$ are 0 and 1.
- 66. For any $n \times n$ matrix A, the determinant of kA is $k^n \det A$.
- 67. There exists an orthogonal matrix with eigenvalues 3, 2 and 1.
- 68. There exists a symmetric matrix with no real eigenvalues.
- 69. Let S be an orthogonal matrix and D be diagonal of the same size as S. Then $S^{-1}DS$ is symmetric.

70. If a square matrix B has an orthonormal eigenbasis, then B is symmetric.	
71. If an 7×7 matrix Q has eigenvalues 1 of geometric multiplicity 3 and 2 of geometric multiplicity 4, then Q is invertible.	У
72. There is a 10 by 10 matrix with eigenvalues $1, 2, \ldots, 10$.	
73. There is noninvertible 10 by 10 matrix with eigenvalues $1, 2, \dots, 10$.	
74. There is non-diagonalizable 10 by 10 matrix with eigenvalues 1, 2,, 5, each of algebraic multiplicity 2.	С
75. There is 10 by 10 matrix with eigenvalues 1, 2,, 5, each of geometric multiplicity 2, which does not have an eigenbasis.	1
76. There is non-zero 10 by 10 matrix with an eigenvalue 0 of algebraic multiplicity 10.	
77. There is non-zero 10 by 10 matrix with an eigenvalue 0 of geometric multiplicity 10.	
78. There is a 10 by 10 matrix with an eigenvalue λ of geometric multiplicity 5 and algebraic multiplicity 2.	С
79. The only matrix similar to the zero matrix is the zero matrix itself.	
80. The only matrix similar to the identity matrix is the identity matrix itself.	
81. There is a non-diagonal matrix similar to kI_n for some $k \in \mathbb{R}$.	
82. Let \mathcal{A} and \mathcal{B} be bases for a vector space V of finite dimension, and let linear transformation $T:V\to V$ be an arbitrary linear transformation. Then $[T]_{\mathcal{A}}$ and $[T]_{\mathcal{B}}$ have the same eigenvalues.	

- 83. A matrix has an eigenbasis if and only if all eigenvalues have geometric multiplicity one.
- 84. Every non-zero matrix in $\mathbb{R}^{17\times231}$ is an eigenvector for the transformation $A\mapsto 5A$.
- 85. If two matrices have the same characteristic polynomial, then they are similar.
- 86. There exists a non-zero 5×5 matrix with eigenvalue 0 of geometric multiplicity 5.
- 87. If v is a eigenvector of T, then v is also an eigenvector of T^n for all $n \ge 1$.
- 88. There exists a linear transformation from \mathbb{R}^2 to \mathbb{R}^5 whose kernel consists of exactly two points.
- 89. Let $A, B \in \mathbb{R}^{2 \times 2}$ and let $C, D \in \mathbb{R}^{4 \times 4}$ be the block matrices $\begin{bmatrix} A & 0_{\mathbb{R}^{2 \times 2}} \\ 0_{\mathbb{R}^{2 \times 2}} & B \end{bmatrix}$ and $\begin{bmatrix} 0_{\mathbb{R}^{2 \times 2}} & B \\ A & 0_{\mathbb{R}^{2 \times 2}} \end{bmatrix}$, respectively. Then det $C = \det D$.
- 90. If T has no real eigenvalues, then also T^2 has no real eigenvalues.
- 91. The collection of functions $f_k(x) = \sin(kx) + \cos(kx)$, as k ranges through all positive real numbers, form an infinite set of linearly independent eigenvectors for $\frac{d^2}{dx^2}$.
- 92. A linear transformation $V \xrightarrow{T} V$ (of a finite dimensional vector space) has eigenvalue zero if and only if det T = 0.
- 93. For any $n \times m$ matrix B, the matrix B^TB has an orthonormal eigenbasis.
- 94. A symmetric matrix $n \times n$ matrix has exactly n distinct eigenvalues.
- 95. Let λ be an eigenvalue of a symmetric $n \times n$ matrix. Then the geometric and algebraic multiplicities of λ must be equal.

- 96. A $n \times n$ matrix is diagonalizable if and only if it has n distinct eigenvalues.
- 97. There exists a matrix with one real eigenvalue of algebraic multiplicity 2 and geometric multiplicity 1.
- 98. Let W be the subspace of diagonal matrices in $\mathbb{R}^{n\times n}$, with the inner product $\langle A,B\rangle=\operatorname{trace}(A^TB)$. Then W^{\perp} has dimension n(n-1).
- 99. There exists linear transformation $\mathbb{R}^{2\times 3} \to \mathbb{R}^{2\times 3}$ whose distinct eigenspaces have dimensions 2, 2, and 3, respectively.
- 100. Math 217 is awesome.