Лекция №9

Акименко, Демидова, Корж, Куркчи, Мазур, Мжачев, Повх, Струшкевич, Таушканов

Построение остовных деревьев графа

 $G(V, R), G_0(V, R_0)$ – остовное дерево $R_0 \in R$

Через $G_T(V_T, R_T)$ обозначим часть остовного дерева, сформированного до текущей итерации. Если $IV_TI = n$, то $G_T(V_T, R_T) = G_0(V, R_0)$.

Через d_i обозначим значение веса вершины, соответствующего пути с минимальной длиной. Для каждой вершины $V_i \in V \setminus V_T$ при условии $\exists (V_j, V_i) \in R \setminus R_T$, где $V_j \in V_T$, определяется $d_i = min_i(w(V_i, V_i))$.

 $\forall V_i \in V \setminus V_T \Rightarrow d_i = min_j(w(V_j, V_i))$ І $\exists (V_j, V_i) \in R \setminus R_T, V_j \in V_T$ (формализация способа определения веса для каждой вершины)

На текущей итерации множество $V_T = V_T \cup \{V_t\}$; $d_t = min_i(d_i \mid V_i \in V \setminus V_T)$; $R_T = R_T \cup \{(V_j, V_t)\}$ (Формализация способа определения той вершины, которая будет включена в V_T) $IV_TI = n$ (Условие остановки)

Введём в рассмотрение два параметра (α_i , β_i) $\alpha_i = j$, $\beta_i = (V_j, V_i)$ Параметры (α_i , β_i) изменяются по ходу реализации алгоритма. α_i — номер вершины соединение с которой рассматриваемой вершины V_i гарантирует вес d_i (Номер вершины с которой нужно соединить V_i что бы получить вес d_i).

Пример реализации последовательного алгоритма построения остовного дерева.

- 1) $\forall V_i \in V \setminus V_T$, $\forall V_j \in V_T$ $\exists (V_j, V_i) \in R \setminus R_T$ определить $d_i = min_i(w(V_i, V_i))$
- 2) $V_t \in V \setminus V_T$, $d_t = min_i(d_i) \Rightarrow V_T = V_T \cup \{V_t\}$, $\alpha_t = j$, $\beta_t = (V_j, V_t)$

Параллельная реализация

Обозначения:

- 1) ј номер ПЭ (P_j ПЭ, P количество ПЭ) Распределение по каждому ПЭ Р_і данных реализуется следующим образом:
- 2) $V_j = \{V_{ij+1}, V_{ij+2}, ..., V_{ij+k}\}$, где k = n/P; $i_j = k^*(j-1) = \{V_{ij+h} \mid h = 1...k\}$;
- 3) Каждому ПЭ назначается набор весов $\Delta_{i} = \{d_{ij+h} \mid h = 1..k\};$
- 4) Вертикальные полосы столбцов матрицы смежности на основе которых будет выполнятся переопределение значений d_{ij+h} . $A = \{\alpha_{ij+1}, \alpha_{ij+2}, ..., \alpha_{ij+k}\}$ часть матрицы смежности

Базовой подзадачей, выполняемой на каждом ПЭ, является расчёт значений d_{ij+h}, для вершин, рассматриваемых на данном ПЭ.

Порядок действий при параллельной реализации алгоритма построения основного дерева графа:

- 1. На каждом ПЭ P_{j} реализуется определение значений d_{ij+h} I $h = 1..k, <math>d_{ij+h} \in \Delta_{j}$, для $V_{ij+h} \in V_{j}$
- 2. Определяется значение d_{j} , являющееся минимальным среди всех значений d_{ij+h} , входящих в Δ_i . d_j = min_h(d_{ij+h} | h=1..k)
- 3. Реализуется сбор d_{ij+h} с ПЭ Рj и определение значения $d_t = min_j(d_j \mid j = 1..P)$ Вершина V_t добавляется в $V_T = V_T \cup \{V_t\}$, это множество широковещательно рассылается. Рассылка V_T приведёт к исключению V_t из соответствующего множества вершин, с которым работает ПЭ P_j и к исключению веса d_t из соответствующего множества Δ_j . $\Delta_j = \Delta_j \setminus \{d_t\}$. С учётом набора A выполняется повторный расчёт значений $d_{ij+h} \in \Delta_j$ соответствующего P_j

Пример реализации параллельного алгоритма при P = 2