

Flow Field Partition for Underwater Vehicle Path Planning

Mengxue Hou, Georgia Institute of Technology

· · · Communication link

Objective

To develop a compressed representation of the spatial and temporal variation of the ocean flow field that facilitate fast path planning.

Motivation

Sharing field estimation data among agents will facilitate planning performance of the fleet.

- Constrained communication capacity limits the amount of information that can be shared among agents;
- Computation cost of AUV path planning increases in the case of complicated flow map.

Novelty and Contribution

Grid-based flow map
Spatial variation

Feature map
Partitions of uniform flow speed
Temporal variation of the partitioned flow

Relating flow partition to Koopman Operator Theory

Observable

Evolution of state $\mathbf{z}_{k+1} = \mathbf{f}(\mathbf{z}_k)$

Finite dimension nonlinear dynamics

Define $\phi_j(\mathbf{x}) = \mathbb{I}_{\mathbf{x} \in R_j}$,

 $\mathbf{u}(\mathbf{z}_k, \mathbf{x}) = \sum_{j=1}^{\infty} \bar{\mathbf{u}}_j(\mathbf{z}_k) \phi_j(\mathbf{x})$

 $\mathcal{K}\mathbf{u}(\mathbf{z}_k, \mathbf{x}) = \sum_{j=1}^{\infty} \bar{\mathbf{u}}_j(\mathbf{z}_{k+1}) \phi_j(\mathbf{x})$

 $\mathbf{u}(\mathbf{z}, \mathbf{x}, t)$

Evolution of observables $\mathcal{K}\mathbf{u}(\mathbf{z}_k, \mathbf{x}) = \mathbf{u}(\mathbf{z}_{k+1}, \mathbf{x})$

Infinite dimension linear dynamics

Flow partition can be a novel data driven method to compute the Koopman modes and Koopman eigenfunctions of the flow field.

Method of Evolving Junctions

Infinite dimensional path planning

Finite dimension optimization on junction positions

Features:

- Low computation cost
- Guaranteed global optimality
- Applicable to various cost functions

Representing Spatial Variation of the Flow Field

$$\min J = \sum_{\alpha=1}^{k} \sum_{\mathbf{y} \in R_{\alpha}} \sum_{t \in T} \operatorname{dist}^{2}(\mathbf{y}(t), \mu_{\alpha})$$

Partitioned regions

Centroid of data points in α^{th} region

$$\sum_{t \in T} \operatorname{dist}^{2}(\mathbf{y}(t), \mu_{\alpha}) = T \operatorname{dist}^{2}(\bar{\mathbf{y}}, \mu_{\alpha}) + \sum_{t \in T} \operatorname{dist}^{2}(\mathbf{y}(t), \bar{\mathbf{y}})$$

$$\min \sum_{\alpha=1}^{k} \sum_{\mathbf{y} \in R_{\alpha}} \operatorname{dist}^{2}(\bar{\mathbf{y}}, \mu_{\alpha})$$

Difference between time-averaged flow obs. and centroid of data points in α^{th} region

[1] Haoyan Zhai, Mengxue Hou, Fumin Zhang, and Haomin Zhou, "Method of evolving junction on optimal path planning in flow fields," in preparation for submission. Preprint available at http://arxiv.org/abs/1904.11554

Representing Temporal Variation of the Flow Field

$$\min_{\Theta_{\alpha}} J_{\alpha} = \sum_{\mathbf{x} \in R_{\alpha}} \sum_{t \in T} ||\mathbf{f}_{\alpha}(\Theta_{\alpha}, t) - \mathbf{F}(\mathbf{x}, t)||^{2}$$

Time series model containing a set of unknown parameters Θ_{α}

$$\sum_{\mathbf{x}\in R_{\alpha}}||\mathbf{f}_{\alpha}(\Theta_{\alpha},t)-\mathbf{F}(\mathbf{x},t)||^{2}$$

$$= n(R_{\alpha})||\mathbf{f}_{\alpha}(\Theta_{\alpha}, t) - \phi_{\alpha}(t)||^{2} + \sum ||\mathbf{F}(\mathbf{x}, t) - \phi_{\alpha}(t)||^{2}$$

$$\min_{\Theta_{\alpha}} \sum_{t \in T} ||\mathbf{f}_{\alpha}(\Theta_{\alpha}, t) - \phi_{\alpha}(t)||^{2}$$

Difference between spatial-averaged flow and timeseries model in α^{th} region

Partition of Ocean Surface Flow Field

 $48\ hrs$ time-averaged flow 5/27, 00:00– 5/29, 00:00 UTC, 2017 at Cape Hatteras, NC

Partitioned flow field

Comparison between true flow, spatially averaged flow and the uniform flow predicted by ARIMA model in region 4. Left: W-E flow comparison. Right: N-S flow comparison.

Original flow field $\sim 5 \times 10^5$ data points

Partitioned flow field ~ 10³ data points

Comparison between MEJ and LSM

Comparison between time-optimal path planned by MEJ and LSM in 2D jet flow

	MEJ	LSM
θ_1	8.4785	8.4113
θ_2	-40.1878	-39.7923
θ_3	8.4783	8.2147
Time	$0.110 \mathrm{\ secs}$	$10.328 \mathrm{\ secs}$

Comparison between time-optimal path planned by MEJ and LSM in 3D jet flow

15、			* [<u></u> Optimal p	path
	(1.38	38,0.4598,	15)		
10、			(-0.911	1,-0.8775, 1	0)
5				-	
0 __ 10	0				
у	-10 -10	-5	0 X	5	10

	MEJ	LSM
θ_1	82.7924	83.5659
θ_2	62.0255	63.3118
θ_3	73.7397	73.8027
γ_1	-136.0775	-135.6592
γ_2	30.2293	30.2407
γ_3	-161.6199	-161.2246
Time	$0.57 \mathrm{\ secs}$	$10125.2 \mathrm{\ secs}$

Acknowledgements

The research work is supported by ONR grant N00014-16-1-2667, NSF grant OCE-1559475, NOAA grant NA16NOS0120028.

Co-Authors

Haoyan Zhai, Haomin Zhou, and Fumin Zhang Georgia Institute of Technology

