Aufgabe 2

 $\text{Zu } A \in \text{Mat}(m,K), C \in \text{Mat}(n,K) \text{ definiere die Blockmatrix } B(A,C) := \begin{pmatrix} A & 0 \\ 0 & C \end{pmatrix} \in \text{Mat}(m+n,K).$ Wir zeigen: $\det(B(A,C)) = \det(A) \cdot \det(C).$

a)

Sei $\det(C) = 0$. Nutze (D6), (D7) und erhalte C' in oberer Dreiecksform mit $\det(C') = \pm \det(C) = 0$. Aus Satz 6.7 folgt direkt

$$\det(C') = 0 \quad \stackrel{\text{(6.7)}}{\Leftrightarrow} \quad \operatorname{rg}(C') = \tilde{\operatorname{rg}}(C') \neq n$$

Da C' in oberer Dreiecksform steht aber nicht vollen Rang hat, muss mindestens die letzte Zeile null sein. Also ist

$$C'_{nn} = 0 \quad \Leftrightarrow \quad B(A,C')_{m+n,m+n} = 0 \quad \stackrel{\text{\tiny (D5)}}{\Rightarrow} \quad \det(B(A,C)) = \pm \det(B(A,C')) = 0.$$

b)

Sei nun $\det(C) \neq 0$. Wir definieren $\det: \operatorname{Mat}(m,K) \to K, \ A \mapsto \det(B(A,C)) \cdot \det(C)^{-1}$.

(D1) det ist zeilenlinear, denn für alle $A \in \operatorname{Mat}(m,K)$ mit Zeilen $\tilde{a}_1,\ldots,\tilde{a}_m,\tilde{a}'_i,\tilde{a}''_i \in (K^m)^t$ und $\lambda \in K$ gilt

$$\widetilde{\det}\begin{pmatrix} \widetilde{a}_{1} \\ \vdots \\ \lambda(\widetilde{a}'_{i} + \widetilde{a}''_{i}) \\ \vdots \\ \widetilde{a}_{m} \end{pmatrix} = \det\begin{pmatrix} a_{1} \\ \vdots \\ \lambda(\widetilde{a}'_{i} + \widetilde{a}''_{i}) & 0 \\ \vdots \\ \widetilde{a}'_{m} \\ 0 & C \end{pmatrix} \cdot \det(C)^{-1}$$

$$= \lambda \cdot \det\begin{pmatrix} \widetilde{a}_{1} \\ \vdots \\ \widetilde{a}'_{i} & 0 \\ \vdots \\ \widetilde{a}'_{m} \\ 0 & C \end{pmatrix} \cdot \det(C)^{-1} + \lambda \cdot \det\begin{pmatrix} \widetilde{a}_{1} \\ \vdots \\ \widetilde{a}''_{i} & 0 \\ \vdots \\ \widetilde{a}''_{m} \\ 0 & C \end{pmatrix} \cdot \det(C)^{-1}$$

$$= \lambda \cdot \widetilde{\det}\begin{pmatrix} \widetilde{a}_{1} \\ \vdots \\ \widetilde{a}'_{i} \\ \vdots \\ \widetilde{a}'_{m} \end{pmatrix} + \lambda \cdot \widetilde{\det}\begin{pmatrix} \widetilde{a}_{1} \\ \vdots \\ \widetilde{a}''_{i} \\ \vdots \\ \widetilde{a}''_{m} \end{pmatrix}$$

$$= \lambda \cdot \widetilde{\det}\begin{pmatrix} \widetilde{a}_{1} \\ \vdots \\ \widetilde{a}''_{i} \\ \vdots \\ \widetilde{a}''_{m} \end{pmatrix} + \lambda \cdot \widetilde{\det}\begin{pmatrix} \widetilde{a}_{1} \\ \vdots \\ \widetilde{a}''_{i} \\ \vdots \\ \widetilde{a}''_{m} \end{pmatrix}$$

(D2) $\widetilde{\det}$ ist alternierend, denn falls $\tilde{a}_i = \tilde{a}_j$, $i \neq j$, so ist auch $\tilde{b}_i = (\tilde{a}_i \ 0) = (\tilde{a}_j \ 0) = \tilde{b}_j$ also $\det(B(A,C)) = 0$ und somit $\widetilde{\det}(A) = 0 \cdot \det(C)^{-1} = 0$.

(D3) det ist normiert, denn für $B^{(m)} := B(\mathbb{1}_m, C)$ streiche rekursiv die erste Zeile und Spalte. Wir zeigen nun, dass die Determinante bei dieser Striechung erhalten bleibt. Dazu verwenden wir den Spaltenentwicklungssatz von Laplace:

$$\det(B^{(m)}) = \sum_{i=1}^{m+n} (-1)^{i+1} \cdot b_{i1} \cdot \det(B_{i1}^{(m) \text{ Str}})$$

$$= (-1)^{1+1} \cdot b_{11} \cdot \det(B_{11}^{(m) \text{ Str}}) + \sum_{i=2}^{m+n} (-1)^{i+1} \cdot b_{i1} \cdot \det(B_{i1}^{(m) \text{ Str}})$$

$$= 1 \cdot 1 \cdot \det(B_{11}^{(m) \text{ Str}}) + \sum_{i=2}^{m+n} (-1)^{i+1} \cdot 0 \cdot \det(B_{i1}^{(m) \text{ Str}})$$

$$= \det(B_{11}^{(m) \text{ Str}}) = \det(B^{(m-1)})$$

Wir erhalten schließlich $B^{(0)} = C$. Also ist

$$\det(B^{(m)}) \cdot \det(C)^{-1} = \det(B^{(0)}) \cdot \det(C)^{-1} = \det(C) \cdot \det(C)^{-1} = 1.$$

Da $\widetilde{\det}$ (D1), (D2), (D3) erfüllt und die Determinantenabbildung eindeutig ist muss $\widetilde{\det} = \det$ sein. also ist

$$\det(A) = \widetilde{\det}(A) = \det(B(A, C)) \cdot \det(C)^{-1}$$

$$\Leftrightarrow \det(A) \cdot \det(C) = \det(B(A, C)) \quad \Box$$