Bellwork 11/1

Suppose $y = \sqrt{e^x}$, where x and y are functions of t.

- If $\frac{dy}{dt} = 1$, find $\frac{dx}{dt}$ when x = 0.
- If $\frac{dx}{dt} = 1$, find $\frac{dy}{dt}$ when $x = \ln(4)$.

Bellwork 11/1 - Solution

Differentiate:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{e^x}{2\sqrt{e^x}} \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) \implies \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\sqrt{e^x}}{2} \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)$$

Substitute:

Exercise 1

Suppose $6x^2 + 5y^2 = 30$, where x and y are functions of t.

- If $\frac{dy}{dt} = \frac{1}{2}$, find $\frac{dx}{dt}$ when x = 5 and y = 12.
- ② If $\frac{dx}{dt} = -\frac{1}{4}$, find $\frac{dy}{dt}$ when x = 10 and y = 3.

Exercise 1 - Solution

Implicitly Differentiate:

$$12x\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) + 10y\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = 0$$
$$\frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{6x}{5y}\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)$$

Substitute: