EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES VIDEO ANALYSIS

Date	16 November 2022
Team ID	PNT2022TMID10687
Project Name	Emerging Methods for Early Detection of Forest Fires

Importing The ImageDataGenerator Library

import tensorflow import keras

from keras.preprocessing.image import ImageDataGenerator

Define the parameters/arguments for ImageDataGenerator class

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,rotati on_range=180,zoom_range=0.2, horizontal flip=True) test datagen=ImageDataGenerator(rescale=1./255)

Applying ImageDataGenerator functionality to trainset

x train=train datagen.flow from directory(r'D:/IBM/archive/Dataset/

Dataset/train_set',target_size=(128,128),batch_size=32, class_mode='binary')

Found 436 images belonging to 2 classes.

Applying ImageDataGenerator functionality to testset

x_test=test_datagen.flow_from_directory(r'D:/IBM/archive/Dataset/ Dataset/test_set',target_size=(128,128),batch_size=32, class_mode='binary')

Found 121 images belonging to 2 classes.

Import model building libraries

#To define Linear initialisation import Sequential from
keras.models import Sequential #To add layers import Dense from
keras.layers import Dense

#To create Convolution kernel import Convolution2D from
keras.layers import Convolution2D

#import Maxpooling layer

from keras.layers import MaxPooling2D

#import flatten layer from keras.layers import

Flatten import warnings

warnings.filterwarnings('ignore')

Initializing the model

```
model=Sequential() Add CNN Layer
model.add(Convolution2D(32,
(3,3),input shape=(128,128,3),activation='relu'))
#add maxpooling layer
model.add(MaxPooling2D(pool_size=(2,2)))
#add
           flatten
                         layer
model.add(Flatten()) Add Hidden Layer
#add hidden layer
model.add(Dense(150,activation='relu'))
#add output layer
model.add(Dense(1,activation='sigmoid'))
Configure the learning process
model.compile(loss='binary_crossentropy',optimizer="adam",metrics=["ac curacy"])
Train the model
model.fit_generator(x_train,steps_per_epoch=14,epochs=10,validation_da ta=x_test,validation_steps=4)
Epoch 1/10
accuracy: 0.6995 - val_loss: 0.2322 - val_accuracy: 0.9256
Epoch 2/10
accuracy: 0.7913 - val_loss: 0.5338 - val_accuracy: 0.8182
Epoch 3/10
accuracy: 0.8647 - val_loss: 0.1472 - val_accuracy: 0.9504
Epoch 4/10
14/14 [============] - 36s 3s/step - loss: 0.2811 -
accuracy: 0.8784 - val_loss: 0.0512 - val_accuracy: 0.9835
Epoch 5/10
```

accuracy: 0.9037 - val loss: 0.1337 - val accuracy: 0.9339

```
Epoch 6/10
accuracy: 0.9083 - val loss: 0.0566 - val accuracy: 0.9917
Epoch 7/10
14/14 [=============] - 36s 3s/step - loss: 0.1648 -
accuracy: 0.9335 - val loss: 0.0464 - val accuracy: 0.9835
Epoch 8/10
14/14 [=============] - 35s 3s/step - loss: 0.1761 -
accuracy: 0.9220 - val loss: 0.0440 - val accuracy: 0.9835
Epoch 9/10
accuracy: 0.9060 - val loss: 0.0428 - val accuracy: 0.9917
Epoch 10/10
14/14 [==========================] - 35s 3s/step - loss: 0.1938 - accuracy: 0.9220 - val loss: 0.0586 -
val_accuracy: 0.9752
<keras.callbacks.History at 0x1ec83f578e0>
Save The Model model.save("forest1.h5")
Predictions
#import load model from keras.model from
keras.models import load model #import image class from
keras
from tensorflow.keras.preprocessing import image #import numpy import numpy as np #import
cv2 import cv2
#load the saved model =
load model("forest1.h5")
img=image.load img(r'D:/IBM/archive/Dataset/Dataset/test set/forest/
0.48007200_1530881924_final_forest.jpg') x=image.img_to_array(img)
res = cv2.resize(x, dsize=(128, 128), interpolation=cv2.INTER_CUBIC)
#expand the image shape
x=np.expand_dims(res,axis=0) pred= model.predict(x)
1/1 [=======] - 0s 182ms/step pred
array([[0.]], dtype=float32)
```

OpenCV For Video Processing

```
#import opencv library import cv2
#import numpy import numpy as np
#import image function from keras from
keras.preprocessing import image #import load model
from keras from keras.models import load model #import
client from twilio API from twilio.rest import Client
#import playsound package
#from playsound import playsound
#load the saved model model=load_model("forest1.h5")
video=cv2.VideoCapture(0) name=['forest','with fire']
Creating An Account In Twilio Service
account_sid='AC7fbd9e1b65a166f13459d8eca7b664cf'
auth token='8e7e8e6672a8fb0a908ab3137560022d' client=Client(account sid,auth token)
message=client.messages \
.create(
body='Forest Fire is detected, stay alert', from ='+18434385489', to='+91
95666 05556'
) print(message.sid)
SM60a70f73fc42eacabbbb8f87d34cadbc Sending Alert Message
from tensorflow.keras.utils import load_img,img_to_array while(1): success, frame=
video.read() cv2.imwrite("image.jpg",frame)
  img=load_img("image.jpg",target_size=(128,128)) x=img_to_array(img)
x=np.expand_dims(x,axis=0) predict_x=model.predict(x)
  #classes x=np.argmax(qqqpredict x,axis=1)
#pred=model.predict classes(x) p=predict_x[0]
print(predict x)
  #cv2.putText(frame, "predicted class="+str(name[p]),
(100,100), cv2. FONT HERSHEY SIMPLEX, 1, (0,0,0), 1)
pred=model.predict(x) if pred[0]==1:
account sid='AC7fbd9e1b65a166f13459d8eca7b664cf'
auth token='8e7e8e6672a8fb0a908ab3137560022d'
                                                  client=Client(account sid,auth token)
message=client.messages \
   .create(
   body='Forest Fire is detected, stay alert', from_='+18434385489',to='+91 95666
05556')
          print(message.sid)
                               print('Fire Detected')
                                                     print('SMS sent!') else:
print('No Danger')
                   cv2.imshow("image",frame) if cv2.waitKey(1) & 0xFF ==
          break video.release() cv2.destroyAllWindows()
ord('q'):
```

1/1 [=========] - Os 112ms/step [[0.]]

1/1 [======] - 0s 44ms/step
No Danger
1/1 [======] - 0s 30ms/step
[[0.]]
1/1 [======] - 0s 26ms/step
No Danger
1/1 [======] - 0s 27ms/step
[[1.]]
1/1 [======] - 0s 39ms/step
SMd96d46906fc89f8045d0ef2dd63d7c90 Fire Detected
SMS sent!
1/1 [======] - 0s 50ms/step
[[1.]]
1/1 [======] - 0s 42ms/step
SM3c04ad27dcceb5c97d6338c075ad3639 Fire Detected
SMS sent!
1/1 [======] - 0s 32ms/step
[[0.]]
1/1 [======] - 0s 31ms/step
No Danger
1/1 [======] - 0s 32ms/step
[[1.]]
1/1 [======] - 0s 28ms/step
SMa1f8dc905448597cac5146476855ed85 Fire Detected
SMS sent!
1/1 [======] - 0s 37ms/step
[[0.01424243]]
1/1 [======] - 0s 30ms/step
No Danger
1/1 [======] - 0s 36ms/step
[[1.]]
1/1 [======] - 0s 29ms/step

SM3bd2503d7e5e1e2e4021d01f7295fb8b Fire Detected SMS sent! 1/1 [======] - 0s 64ms/step [[0.]] 1/1 [======] - 0s 48ms/step No Danger 1/1 [=======] - 0s 43ms/step [[0.]] 1/1 [======] - 0s 49ms/step No Danger 1/1 [======] - 0s 52ms/step [[1.]] 1/1 [=======] - 0s 60ms/step SM3a57c94bccd3c9e0255a263f48f822b0 Fire Detected SMS sent!