|                                         |                | Щи                           | ttiploee  | Models.      |              |                  |
|-----------------------------------------|----------------|------------------------------|-----------|--------------|--------------|------------------|
| 2,7 & C.) are both fine but 2.7 better. | 1. Ordered Fa  | oirs: state<br>(a, b) + cb   |           | ionship      |              |                  |
|                                         | Orolered       | Tròples: la,                 | b, c).    |              |              |                  |
|                                         |                | n-Tuple: (a,<br>Ordered pair |           |              |              |                  |
| extensional:<br>fivite &                | )(a,b), (d     | e, d), (0, 4)                | }.        |              |              |                  |
| abstract                                | 2. Extensional | Multiplace                   | Model.    |              |              |                  |
|                                         | 13. Every      |                              | dicate ca | n be def     | ined extens  | ionally by a     |
| order matters                           | e.g. 72        | S (Turtles.<br>98, Turtles)  | Slugs),(1 |              |              |                  |
|                                         |                |                              |           |              |              | t includes th    |
|                                         | itself         | Sc1. 1), (2,                 |           | of the u     | viverse of a | liscourse with   |
|                                         | 3) Gienerio    | /specific                    | item wh   | en translati | ig.          |                  |
|                                         |                | 1.61x → Ay 1<br>1x 1.61x → H |           |              |              | Y                |
|                                         | 3. Examples:   |                              |           |              |              |                  |
| petter start                            | 12. Ax C7x     | N GIX). YXC                  |           | 4 (zy))      | 4367x -> 4   | 'y H(yx)). Unvai |
| uomtifier.                              | 1   44         | in 7 and 6<br>his 4 some     |           | ring         | NYXC7x ->    | Dy H Cyx).       |

| $\sim C: Sth. in 7 and nothing H 7 = \exists x (7x \land no \exists y Hyx)). VD: 90, 1 F: 90 G: 90$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H2: \(\lambda(0,1)\)\  20 \(\frac{1}{2}\) \(\lambda(0,1)\)\)  \(\frac{1}{2}\) \(\frac{1}{2}\)  \(\frac{1}{2}\) \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\)  \(\frac{1}{2}\) |
| Pr2: a in F and a M's a different F and not a different F M's a.  Pr3: Everything is in F exclusive or G.  NC: 5th. M Hself.  D: So. 1, 2}  Pr2: a in F and a M's a different F and not a different F M's a.  No. (1,0).  NC: 5th. M Hself.  Pr2: a in F and a M's a different F and not a different F M's a.  No. (1,0).  NC: 5th. M Hself.  Pr2: a in F and a M's a different F and not a different F M's a.  NC: 5th. M Hself.  NC: 5th. M Hself.  Pr2: a in F and a M's a different F and not a different F M's a.  NC: 5th. M Hself.  NC: 5th. M Hself.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $a^{?} \circ F': 90.13$ $G': 923$ $M^{2}: 9(0.1), (2,2)3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

