

Red-Teaming and Cyber Risk Assessment at Sandia

PRESENTED BY

Taylor McKenzie

International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Background

- Received Ph.D. in Economics from the University of Oregon in 2017
 - Focus in industrial organization and econometrics
 - Efficiency analyses (technical and allocative)
 - Structural modeling of pricing and economies of scale
- Experience interning at Pacific Northwest National Laboratory
 - Disease modeling
 - Nuclear proliferation pathway analysis
 - Social media analytics
 - Social network analysis for cyber vulnerabilities
- Currently a Senior Cybersecurity Researcher at Sandia National Laboratories
 - Risk and resilience analyses
 - Statistical analyses for variety of projects

Outline

- 1. Risk, resilience, and vulnerability analysis
- 2. Red-teaming and the Sandia's process
 - How we approach vulnerability analysis
 - Limitations of our approach and what we've done to address customer needs (blue slides)
- 3. Lessons learned

Risk, Resilience, and Vulnerability Analysis

- Motivating question: How can weaknesses in a system affect ability to perform its mission?
- Risk analysis: Threats (from any source), vulnerability to those threats, and consequence
- When all values are quantitative and relevant probabilities are known:

$$Risk = \sum_{T} \Pr(T) \times \left(\sum_{V} \Pr(V|T) \times \left(\sum_{C} C \times \Pr(C|T, V) \right) \right)$$

- Quantitative risk analysis can be difficult, especially for cyber systems
 - Broad threat landscape
 - Vulnerability set is not well-understood; many vulnerabilities exist but are not known
 - Can be difficult to determine how threats and vulnerabilities lead to consequences

Risk, Resilience, and Vulnerability Analysis

- There are several alternative methods to address difficulties with quantitative risk analysis
- Resilience analysis: Vulnerability to a specific threat and resulting consequences; focus on system's ability to withstand and quickly recover from disruption
- Vulnerability analysis: Specific consequence of concern and vulnerabilities that can lead to that consequence
- Qualitative risk analysis: Score threat, vulnerability, and consequence on a qualitative scale; develop method to combine qualitative scores into overall risk
 - Useful when some information is available, but not enough to use quantitative risk framework

Qualitative Risk Assessment: Prioritizing Improvements

- The Cyber Security Advisor (CSA) group under the Department of Homeland Security performs cybersecurity assessments with the goal of improving security measures for high-risk organizations
- CSA has relatively limited resources, wanted a method and tool to prioritize engagements (conferences, industry working groups, etc.)
- We focused on measuring cyber risk posed to organization and the likelihood that engagements will lead to eventual assessments

7

Qualitative Risk Assessment: Prioritizing Improvements

- Likelihood of successful engagement could be assessed quantitatively using historical engagement data
 - Some problems with endogeneity and separating effects (e.g., is an advisor particularly successful, or do most engagements with a particular industry lead to assessments?)
- Relied on qualitative measures of threat, vulnerability, and consequence
 - Some intuition on types of targets adversaries would target, vulnerabilities present, and potential impacts
 - Example: Larger organizations face higher threat and greater consequence than smaller organizations
- Developed initial method of combining measures into overall risk
- Polled CSA with hypothetical engagements, asked them to score each component and overall risk
 - Used for improving and validating methodology

8

Vulnerability Analysis and Red Teaming

- Vulnerability analysis often takes the form of red teaming
 - Red teaming: Assuming the role of an adversary to identify vulnerabilities and their consequence
- There are many flavors of red teaming
- Sandia's main red teaming effort is unique in a few ways
 - Information Design Assurance Red Team (IDART)
 - Considers a realistic adversary for a given target
 - An adversary would not launch a sophisticated attack to break into your home wireless network
 - Considers a realistic attack path, including a combination of cyber and physical actions
 - Why do something the hard way?
 - Documents the process and areas of improvement

IDART Process

- 1. Identify consequences of concern (nightmare scenarios)
- 2. Define a model of a realistic adversary, including skills and tolerance for risk
- 3. Collect information about the system, including potential weaknesses and attack vectors
- 4. Identify and document easiest (low effort, low likelihood of detection) attack paths that result in consequences of concern
- 5. (Optional) Demonstrate attack paths to show feasibility

10 IDART Process

- 1. Identify consequences of concern (nightmare scenarios)
- 2. Define a model of a realistic adversary, including skills and tolerance for risk
- 3. Collect information about the system, including potential weaknesses and attack vectors
- 4. Identify and document easiest (low effort, low likelihood of detection) attack paths that result in consequences of concern
- 5. (Optional) Demonstrate attack paths to show feasibility

11

Nightmare Consequences

- What consequences can the customer absolutely not tolerate?
- Advantages:
 - Impacts are clear and understandable to the decision-maker
 - Improving vulnerabilities that lead to high-consequence impacts can have greatest return
 - Can be easier to identify and explain attack paths that result in high-consequence outcomes
- Disadvantages:
 - There can be other consequences that are high-impact but not "the worst thing that can happen"
 - High-impact consequences the customer is less familiar with may be overlooked

Categorizing Consequences

- It can be helpful to categorize consequences to identify potential attack paths
- For information systems, consequences/capabilities measured in terms of 1
 - Confidentiality: Ability to protect information from unauthorized access
 - Integrity: Ability to protect information from unauthorized changes
 - Availability: Ability to provide access to system or services when requested
 - (Less frequently) Accountability/non-repudiation: Ability to track actions on a system and associate them with specific actors²
 - (Less frequently) Assurance: Ability to trust metrics and system analysis to ensure it performs its mission
- Nightmare consequence examples
 - Systems that store personal information: Confidentiality
 - Power system: Availability
 - Power system information/control infrastructure: Integrity and Availability

^{1.} See Stoneburner, Gary, Clark Hayden, and Alexis Feringa. Engineering principles for information technology security (a baseline for achieving security). Booz-Allen and Hamilton Inc Mclean VA, 2001.

^{2.} For example, see RAND Report 2395: Olympic-Caliber Cybersecurity

Consequences More Generally

- For other projects/applications, we want to quantify consequence impact beyond "the worst thing that can happen"
 - These consequences may be less understood by decision-makers (e.g., system-level impacts)
 - It may be difficult to determine exactly how consequences propagate
 - It can be difficult/impossible to numerically quantify consequences, necessitating qualitative measures
- Involved in a few projects that dealt with these issues

Projects Quantifying Consequence: Network simulation

- Quantifying resilience of enterprise network to various cyber attacks
- EmulyticsTM: Simulation of real cyber system with high fidelity
 - Ability to simulate individual components, interaction between components
 - Ability to plug in real hardware
 - See how the system would respond to a disruption without affecting real operations
- Able to simulate network and observe system-level values (e.g., latency, connectivity, uptime)
 - Included hosts (e.g., running Windows and additional software), servers, communications
 - Tested various disruption scenarios: Denial of service, random/systematic outages
- Some problems:
 - System-level values are noisy
 - Decision-makers need higher-level information
 - Difficult to understand exactly how system-level impacts affect ability to perform mission

Projects Quantifying Consequence: Network simulation

- Performed state estimation to estimate true quantities of interest
 - Aimed to describe ability of hosts to communicate with servers and each other
 - Example: If a given host made a request to a given server, with what probability could it expect the response is received? How long could the host expect to wait for a reply?
- Deliberated with team and people familiar with system to convert system-level metrics to higher levels
 - Measures of confidentiality, integrity, and availability for services/capabilities provided by system
 - Measures of ability to perform specific actions given system attributes

- 1. Identify consequences of concern (nightmare scenarios)
- 2. Define a model of a realistic adversary, including skills and tolerance for risk
- 3. Collect information about the system, including potential weaknesses and attack vectors
- 4. Identify and document easiest (low effort, low likelihood of detection) attack paths that result in consequences of concern
- 5. (Optional) Demonstrate attack paths to show feasibility

Adversary Models: Generic Threat Matrix

- For IDART, hypothetical adversaries are qualitatively rated along six attributes
 - Intensity: Risk tolerance for getting caught and negative consequences
 - Stealth: Ability to maintain secrecy through attack
 - Time: Amount time the adversary is willing to spend planning, developing, and deploying attack
 - Technical personnel: Size of technical team
 - Knowledge: Level of cyber and other knowledge possessed by adversary
 - Access: Ability to access facility or system, either by opportunity, force/coercion, or insider assistance
- Attribute ratings are then aggregated into an overall adversary level using the generic threat matrix (1-High, 8-Low)
 - This is a subjective, deliberative process, often end up with more than one possible categorization
- This process is based on SAND Report 2007-5791: Categorizing Threats
 - Reviews actual attacks and characteristics of real adversaries
 - Develops abstract method of categorizing threats that can be used openly

	Threat Profile						
	Commitment			Resources			
Threat					Knowledge		
Level	Intensity	Stealth	Time	Technical Personnel	Cyber	Kinetic	Access
1	Н	Н	Years to Decades	Hundreds	Н	Н	Н
2	Н	Н	Years to Decades	Tens of Tens	M	Н	M
3	Н	Н	Months to Years	Tens of Tens	Н	M	M
4	М	Н	Weeks to Months	Tens	Н	М	M
5	Н	M	Weeks to Months	Tens	M	M	M
6	M	M	Weeks to Months	Ones	M	М	L
7	M	M	Months to Years	Tens	L	L	L
8	L	L	Days to Weeks	Ones	L	L	L

Adversary Models: Aggregation

- Why use an aggregate skill level rather than ratings for each attribute?
 - Attribute scores are correlated in real-world adversaries, aggregating ensures hypothetical adversary is more realistic
 - Avoids overfitting adversary characteristics
 - Easier to quickly evaluate attack path difficulties and determine whether the path is feasible to a given adversary
- Disadvantages:
 - Scoring and aggregation can collapse skill sets (e.g., compromising two similar vulnerabilities requires less skill/resources than compromising two very different vulnerabilities)
 - Subjective, may not rely directly on subject matter expertise

- We have been working to make this process less subjective, taking our deliberation out of the process, and relying more on subject matter expertise
- For physical systems, we have surveyed subject matter experts over a variety of dimensions/capabilities to determine what is required to overcome given security measures
- We have taken a couple approaches to using this data
 - Example data: Security measures indexed by letters, experts indexed by subscripts

Security Measure Rating Example

- Previous (deliberative) methodology can/has produced aggregate ratings for scenarios (collection of security measures)
 - Classification model can relate security measure ratings (expert) to aggregate ratings (deliberation)
 - Example: S = (A, C, D); $R(S) = f(A_i, C_i, D_i)$
 - Advantages: Resulting predictions are on same scale as past ratings, directly draw on expertise when possible
 - Disadvantage: Resulting predictions are dependent on past (subjective) aggregate ratings

Security Measure Rating Example

- Cross-domain knowledge used to establish relationship between security measures
- Clusters of security measures with similar difficulties (across skills) grouped together to form "difficulty rating"
- Scenarios can be probabilistically assigned to a group
 - Example: S = (A, C, D); R(S) = (75% Group 1, 25% Group 2)
- Method may be specific to the physical systems we are examining

IDART Process

- 1. Identify consequences of concern (nightmare scenarios)
- 2. Define a model of a realistic adversary, including skills and tolerance for risk
- 3. Collect information about the system, including potential weaknesses and attack vectors
- 4. Identify and document easiest (low effort, low likelihood of detection) attack paths that result in consequences of concern
- 5. (Optional) Demonstrate attack paths to show feasibility

24

System Information and Weaknesses

- Approach: Tour facility, gain as much knowledge of the system as possible, document
- Key takeaway: There are frequently differences between how people think a system is configured vs. how it is actually configured
 - Misunderstanding of terms
 - Outdated system information
 - Plan vs. implementation
- Asking the right questions, asking in several different ways
- Examples:
 - "Our system is air-gapped"
 - How do you update software on your system?
 - Can employees check their personal email? How do you read the news?
 - Is the same account information used on internal (air-gapped) and external (not air-gapped) networks?
 - Network diagram vs. network map results

- 1. Identify consequences of concern (nightmare scenarios)
- 2. Define a model of a realistic adversary, including skills and tolerance for risk
- 3. Collect information about the system, including potential weaknesses and attack vectors
- 4. Identify and document easiest (low effort, low likelihood of detection) attack paths that result in consequences of concern
- 5. (Optional) Demonstrate attack paths to show feasibility

Attack Paths

- Key assumption: An adversary will not do something difficult or easily detectable if the same result can be accomplished by doing something easy or less detectable
 - Example: Produce/procure identical badge and insert credentials into system OR create a look-alike, dress as staff, and ask someone to let you in
- Basic strategy
 - Find a large open wall and post-its
 - Starting points on one side, nightmare consequences on the other
 - Brainstorm steps at any point in the attack sequence based on ideas/expertise
 - Prune steps that are too difficult for adversary model or more difficult than other steps that accomplish same result
 - Chain together steps to create attack path
- Detailed and complete information about the system is critical
- May require some iteration

1DART Process

- 1. Identify consequences of concern (nightmare scenarios)
- 2. Define a model of a realistic adversary, including skills and tolerance for risk
- 3. Collect information about the system, including potential weaknesses and attack vectors
- 4. Identify and document easiest (low effort, low likelihood of detection) attack paths that result in consequences of concern
- 5. (Optional) Demonstrate attack paths to show feasibility

Demonstrating Attack Paths

- Main goal: Show it's possible to make a nightmare consequence happen under the adversarial model
- Showmanship/cool factor never hurts
- Many customers think attacks need to be sophisticated
 - Systems are secured against sophisticated attacks, leave open easier attack paths
 - Showing them an attack can be easy gets them thinking other low-hanging fruit
 - We like to perform assessments in design phase; red-team mentality becomes ingrained in design process
 - We're happy to help identify vulnerabilities, but we like to teach customers to think about potential system weaknesses on their own

Lessons Learned

- Real-life security measures are often not as advanced as expected
 - Attacks do not need to be sophisticated to be successful
 - Security measures tend to focus on one area, leaving open other attack vectors
 - Often not a question of if a system will be compromised, but when; importance of resilience
- Frequent differences between ideas of system configuration and actual configuration
- Quantitative risk analysis can be difficult or infeasible
 - Highlighting vulnerabilities is more approachable and can achieve similar operational goals
 - Other analyses (e.g., resilience analysis) can be useful for other scenarios