10 線形微分方程式の多項式解 の解答例

演習 10.1 (1) まず、各 n について $\varphi(x^n)$ がどうなるかを調べる. $n \ge 2$ のとき、

$$\varphi(x^n) = (x^2 + 1)n(n-1)x^{n-2} - 3xnx^{n-1} + 3x^n = (n-3)(n-1)x^n + n(n-1)x^{n-2}.$$

n=1 のときは $\varphi(x)=0,\ n=0$ のときは $\varphi(1)=3$ となる. 従って, $\varphi(x^n)$ は常に n 次以下の多項式となる. $f(x)=c_0+c_1x+\cdots+c_nx^n$ とするとき, φ は線形写像だから,

$$\varphi(f(x)) = c_0 \varphi(1) + c_1 \varphi(x) + \dots + c_n \varphi(x^n)$$

となり、上記より各 $\varphi(1), \varphi(x), \dots, \varphi(x^n)$ はすべて n 次以下の多項式だから、 $\varphi(f(x))$ も n 次以下の多項式である。また、 $\varphi(1), \varphi(x), \dots, \varphi(x^n)$ のうち x^n の項を含む(可能性がある)のは $\varphi(x^n)$ のみだから、 $\varphi(f(x))$ の x^n の項の係数は $c_n\varphi(x^n)$ のそれと一致する。よって求める係数は

$$\begin{cases} 3c_0 & (n=0 \text{ のとき}) \\ 0 & (n=1 \text{ のとき}) \\ (n-3)(n-1)c_n & (n \ge 2 \text{ のとき}) \end{cases}$$

となる.

(2) $f(x)=c_0+c_1x+\cdots+c_nx^n$ $(c_n\neq 0)$ とおく. もし $\varphi(f(x))=0$ であるなら、とくに $\varphi(f(x))$ の x^n の項も 0 であるはず. しかし $n\geq 4$ のときは $(n-3)(n-1)c_n\neq 0$ となってしまうから、 $\varphi(f(x))=0$ となるためには少なくとも $n\leq 3$ でなければならない. 言い換えれば、 $\ker\varphi$ の元はすべて 3 次以下の多項式である. よって $\ker\varphi\subset V_3$.

$$(3)$$
 $\psi(1)=3$, $\psi(x)=0$, $\psi(x^2)=2-x^2$, $\psi(x^3)=6x$ だから, 求める表現行列は

$$\left(\begin{array}{cccc}
3 & 0 & 2 & 0 \\
0 & 0 & 0 & 6 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right).$$

(4) $f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3$ とすると,

$$\psi(f(x)) = 0 \iff \begin{pmatrix} 3 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} 3c_0 + 2c_2 & = 0 \\ 6c_3 & = 0 \\ -c_2 & = 0 \end{cases}$$
$$\Leftrightarrow c_0 = c_2 = c_3 = 0.$$

よって $\operatorname{Ker} \psi = \{c_1 x \mid c_1 \in \mathbb{R}\} = \langle x \rangle$ であり, x がその基底である.