Multiplexers/Demultiplexers

TEKNIK INFORMATIKA

Overview

- Multiplexers (MUXs)
 - Functionality
 - Circuit implementation with MUXs
- Demultiplexers

Multiplexer

- "Selects" binary information from one of many input lines and directs it to a single output line.
- Also known as the "selector" circuit,
- Selection is controlled by a particular set of inputs lines whose # depends on the # of the data input lines.
- For a 2ⁿ-to-1 multiplexer, there are 2ⁿ data input lines and *n* selection lines whose bit combination determines which input is selected.

MUX

Chapter 3-iii: Combinational Logic Design (3.7) 6-May-10

Remember the 2 - 4 Decoder?

6-May-10 Chapter 3-iii: Combinational Logic Design (3.7)

4 to 1 MUX

6-May-10

Chapter 3-iii: Combinational 6
Logic Design (3.7)

4-to-1 MUX (Gate level)

Multiplexer (cont.)

- Until now, we have examined single-bit data selected by a MUX. What if we want to select m-bit data/words?
 à Combine MUX blocks in parallel with common select and enable signals
- Example: Construct a logic circuit that selects between 2 sets of 4-bit inputs (see next slide for solution).

Example: Quad 2-to-1 MUX

- Uses four 4-to-1
 MUXs with common
 select (S) and
 enable (E).
- Select line chooses between A_i's and B_i's. The selected four-wire digital signal is sent to the Y_i's
- Enable line turns MUX on and off (E=1 is on).

Chapter 3-iii: Combinational Logic Design (3.7)

Implementing Boolean functions with Multiplexers

- Any Boolean function of *n* variables can be implemented using a 2ⁿ⁻¹-to-1 multiplexer.
 A MUX is basically a decoder with outputs ORed together, hence this isn't surprising.
- The SELECT signals generate the minterms of the function.
- The data inputs identify which minterms are to be combined with an OR.

Example

- • $F(X,Y,Z) = X'Y'Z + X'YZ' + XYZ' + XYZ = \Sigma m(1,2,6,7)$
- •There are n=3 inputs thus we need a 2²-to-1 MUX
- •The first n-1 (=2) inputs serve as the selection lines

6-May-10 Chapter 3-iii: Combinational Logic Design (3.7)

Efficient Method for implementing Boolean functions

- For an n-variable function (e.g., f(A,B,C,D)):
 - Need a 2^{n-1} line MUX with n-1 select lines.
 - Enumerate function as a truth table with consistent ordering of variables (e.g., A,B,C,D)
 - Attach the most significant n-1 variables to the n-1 select lines (e.g., A,B,C)
 - Examine pairs of adjacent rows (only the least significant variable differs, e.g., D=0 and D=1).
 - Determine whether the function output for the (A,B,C,0) and (A,B,C,1) combination is (0,0), (0,1), (1,0), or (1,1).
 - Attach 0, D, D', or 1 to the data input corresponding to (A,B,C) respectively.

Another Example

- Consider F(A,B,C) = àm(1,3,5,6). We can implement this function using a 4-to-1 MUX as follows.
- The index is ABC. Apply A and B to the S₁ and S₀ selection inputs of the MUX (A is most sig, S₁ is most sig.)
- Enumerate function in a truth table.

MUX Example (cont.)

	Α	В	С	F
When A=B=0, F=C —	0	0	0	0
		0	1	1
When A=0, B=1, F=C —	0	1	0	0
VVIICITA-O, D-1, 1-C	0	1	7	1/
When A=1, B=0, F=C —	1	0	0	0
VVIICII A-I, D-U, I -C —	1	0	1	1
When A=B=1, F=C'	1	1	0	(1)
VVIIEIT A=D=1, F=C	1	1	1	0

MUX implementation of $F(A,B,C) = \sum m(1,3,5,6)$

Or Simply....

A larger Example

A B C D F 0 0 0 0 0 0 F = D 0 0 0 1 1 F = D 0 0 1 1 F = D 0 0 1 1 F = D 0 1 0 1 F = D 0 1 0 1 F = D 0 1 0 1 F = D 1 0 0 1 F = D 1 0 0 F = D 1 0 0 0 F = D 1 0 1 0 F = D 1 0 1 1 F = D 1 0 1 1 F = D 1 1 1 1 F = D 1 1 1 1 F = D					ı	
0 0 0 1 1 F = D 0 0 1 1 1 F = D 0 0 1 1 1 F = D 0 1 0 1 F = D 0 1 0 1 0 F = D 0 1 1 1 0 F = D 1 0 0 F = 0 1 0 0 0 F = 0 1 0 0 1 F = D 1 0 1 1 F = D 1 0 1 1 F = D 1 1 1 1 F = D 1 1 1 1 F = D	Α	В	С	D	F	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	E - D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	1	1	1 – 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	1	0	0	F - D
0 1 0 1 0 F = D 0 1 1 0 0 F = 0 1 1 1 0 0 F = 0 1 0 0 0 0 F = 0 1 0 0 1 0 F = 0 1 0 1 0 F = D 1 0 1 1 F = D 1 1 1 0 0 F = D 1 1 1 0 0 F = D 1 1 1 1 F = 1 1 1 0 1 F = 1	0	0	1	1	1	1 - 0
0 1 0 1 0 0 F = 0 0 1 1 1 0 F = 0 1 0 0 0 F = 0 1 0 0 1 0 F = 0 1 0 0 1 0 F = D 1 0 1 1 F = D 1 1 0 0 1 F = 1 1 1 0 1 F = 1	0	1	0	0	1	F - D
0 1 1 1 0 F = 0 1 0 0 0 0 F = 0 1 0 0 1 0 F = 0 1 0 1 0 F = D 1 0 1 1 F = D 1 1 0 0 1 F = 1 1 1 0 1 F = 1	0	1	0	1	0	1 - 0
0 1 1 1 0 1 0 0 0 0 F = 0 1 0 0 1 0 F = D 1 0 1 1 1 F = D 1 1 0 0 1 F = 1 1 1 0 0 1 F = 1	0	1	1	0	0	E = 0
1 0 0 1 0 F = 0 1 0 1 0 F = D 1 0 1 1 1 F = D 1 1 0 0 1 F = 1 1 1 0 1 1 F = 1 1 1 1 0 1 F = 1	0	1	1	1	0	1 – 0
1 0 0 1 0 1 0 1 0 0 F = D 1 0 1 1 1 F = 1 1 1 0 1 1 F = 1 1 1 1 0 1 F = 1	1	0	0	0	0	E - 0
1 0 1 1 1 F=D 1 1 0 0 1 F=1 1 1 0 1 1 F=1	1	0	0	1	0	0
1 0 1 1 1 1 1 0 0 1 F=1 1 1 0 1 F=1	1	0	1	0	0	E - D
1 1 0 1 1 F=1 1 1 0 1 F=1	1	0	1	1	1	1 - 0
1 1 0 1 1 1 1 1 0 1 F=1	1	1	0	0	1	F - 1
	1	1	0	1	1	' - '
1 1 1 1 1 '-'	1	1	1	0	1	F - 1
	1	1	1	1	1	' - '

MUX as a Universal Gate

 We can construct OR, AND, and NOT gates using 2-to-1 MUXs. Thus, 2-to-1 MUX is a universal gate.

$$Z = X_1 + X_1'X_0$$
 $Z = 0x + 1x' = x'$ $Z = X_1X_0 + 0X_0' = X_1X_0$
= $X_1X_0' + X_1X_0 + X_1'X_0 = X_1 + X_0$

Chapter 3-iii: Combinational Logic Design (3.7)

6-May-

Demultiplexers (DMUX)

- Performs the inverse of a multiplexing operation:
 - Receives data from a single line
 - Transmit it to one of the 2ⁿ possible output lines
 - Selection of a specific output is controlled by the n select lines
 - Demultiplexers are basically decoders! For example, a 2-to-4 DMUX is a 2-to-4 decoder with enable input.