Physique des particules – TD6

www.antoinebourget.org/teaching/particules/

On souhaite construire la décomposition en représentations irréductibles de $\mathfrak{sl}(3,\mathbb{C})$ du produit tensoriel $3 \otimes 3 \otimes 3$. Une base orthonormée de 3 est $\{u,d,s\}$ et dans cette base les générateurs de l'algèbre sont

$$T_{+} = T_{-}^{\dagger} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad U_{+} = U_{-}^{\dagger} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad V_{+} = V_{-}^{\dagger} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$T_{3} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad Y = \frac{1}{3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

Cette représentation est aussi celle dans laquelle on définit l'algèbre :

$$\mathfrak{sl}(3,\mathbb{C}) = \text{Vect}_{\mathbb{C}}(T_+, T_-, U_+, U_-, V_+, V_-, T_3, Y), \tag{1}$$

le crochet de Lie étant le commutateur usuel pour les matrices.

- 1. D'après la forme des générateurs donnée ci-dessus, quel est l'effet des opérateurs d'échelle $T_{\pm},\,U_{\pm}$ et V_{\pm} sur les valeurs propres de T_3 et Y?
- 2. Montrer que $3 \otimes 3$ contient une représentation irréductible de dimension 6 dont on donnera une base orthonormée de vecteurs propres de T_3 et Y. On pourra chercher un vecteur annulé par T_- , U_- et V_- puis agir dessus avec T_+ , U_+ et V_+ .
- 3. Montrer que $3 \otimes 3 = 6 \oplus \bar{3}$ où $\bar{3}$ est une représentation irréductible de dimension 3 non équivalente à 3 et dont on donnera une base.
- 4. Montrer que $6 \otimes 3 = 10 \oplus 8$. Expliciter une base de vecteurs propres de T_3 et Y associée à cette décomposition.
- 5. Montrer $\bar{3} \otimes 3 = 8 \oplus 1$. Expliciter une base de vecteurs propres de T_3 et Y associée à cette décomposition.

On a donc $3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1$. On veut maintenant prendre en compte le spin des quarks.

- 6. On veut que la fonction d'onde décrivant le spin et la saveur soit complètement symétrique sous échange de deux quarks, quel doit être le spin des baryons qui forment le décuplet ?
- 7. Montrer qu'en combinant les deux octets de saveur et les deux doublets de spins on peut aussi former des fonctions d'onde complètement symétriques.
- 8. Justifier qu'il n'est pas possible de combiner une fonction d'onde de spin à celle du singulet de saveur pour créer une fonction d'onde complètement symétrique.

			light baryons.			
	s quarks	C	Octet		Decuplet	
	0	p, n	940 MeV	Δ	1230 MeV	
	1	Σ	1190 MeV	Σ^*	1385 MeV	
	1	Λ	1120 MeV			
	2	Ξ	1320 MeV	Ξ*	1533 MeV	
	3			Ω	1670 MeV	
ddu	$J^P = \frac{1}{2}^+$	ud)	Δ^- (dd	d) Δ ⁰ (d	$J^P = \frac{3}{2}^+$ $du) \qquad \Delta^+ (duu)$	Δ ⁺⁺ (uuu)
ssd	$\begin{array}{c c} \Sigma^0(uds) & \Sigma^+(uus) \\ \hline \Lambda(uds) & \\ d) & \Xi^0(ssu) \end{array}$		$\Sigma^{*-}(\mathrm{dds}) \qquad \Sigma^{*0}(\mathrm{uds}) \qquad \Sigma^{*+}(\mathrm{uus})$ $\Xi^{*-}(\mathrm{ssd}) \qquad \Xi^{*0}(\mathrm{ssu})$			

Table 9.2 Measured masses and number of strange quarks for the L=0

Figure 1: Figure tirée du livre $Modern\ Particle\ Physics$ de Mark Thomson. Les coordonnées sont les valeurs propres pour les opérateurs T_3 (axe horizontal) et Y (axe vertical).

Fig. 9.17 The observed octet and decuplet of light baryon states.