Vordans kurresætning
Lad CCR² vore en simpel lukket kune.
Sa har R2 C to SH-komponenter:
=> Ext C, som er ubegrænset
Int C, som er begrænset
Desaden er $\partial Ext C = \partial Int C = C$.
Da Cer singel lukket, har R2\C
mindst to SH-komponenter.
AFM $\exists U_1, U_2, U_3$ $\exists SH-komponenter.$
Lad $q \in U$.
Lad Q ₁ , Q ₂ , Q ₃ være 3 disjunkte,
abre buestyther på C.
Da CIQ; er en simpel kurre i R²,
er $V_i = \mathbb{R}^2 \setminus (C \setminus Q_i)$ SH.
Og da C\Q; er lukket jf. Heine-Borel,
er Vi aben.

Da Vi er åben og SH, er Vi "polygonstisammenhangenele", dvs. Vx,y e Vi I polygonsti fra x til y. Sa = Fi12 simpel polygon kurve fra 91 til 92 i Vi, da jf. opg @ ugeseddel 7, medfører eksistensen af en polygonhume elesistensen af en simpel polygonhume. Da 91 og 92 tilhører forskellige Dette SH-komponenter af R2 (, må argument genbruser. genbruges, till passere Q: her gang vi siger noget er simpelt

Lad nu viz vore det forste punkt af
Fill på Q;
Lad riz være det sidste.
Vi ved, at disse rijer findes i Qi
⇒ Fi12 er en sti i R²
-> Fi12 krydser Qi, som er
lukket, da det er en kurve, og kurver i R² er lukkede jf. Heine-Borel.
-) Fi12's endepunliter 91,92 ligger welen for Q:
Mere formelt apskrevet, er min f (Q;)
og max f ⁻² (Qi) veldefinerede som konsekvens
af lemma 3.2,
og vi definerer
ril, rie vol fra disse.

Lad nu Fix vore delen af Fix1 der forbinder 91 til ris. Lad Fiz være delen af Fi12, der 92 til 13. forbinder til , tiz er så simple polygonhurver. Fis (delen fra 13) Hele ris polygonstica hedder Hele polygonstien helder Fi12 113 \bigcup_{j} Husk: V:= R2/(C/Q:)

Af samme årsag som at Fizz eksisterer,
eksisterer også en simpel polygonhurre Fizz.
i V; , som forbinder 9_1 til 93.
Lad ris være det sidste punkt på Fils,
Som ligger i Q;
Lad Fiz were den del af Fizz, der
forbinder 93 til vi3.
Problem: Fijerne overlapper meiske.
Løsning: Juster Fijlene og 9; leme.

Obs: bliver du ferrivet of j'erne, estat ; med I mentalt.

Fasthold et ; (mentalt: 1).

Lad [] = F₁; UF₂; VF₃; være

en graf.

Den indeholder en simpelpolygonhume A;, Som forbinder raj til 2; Da A; ikke kan være en lige linje
fra c_{1j} til c_{2j} , må der være mindst
to kanter på Aj, ag dermed mindst
et hjørne hj, som ikke eret ende punkt.

Der eksisterer tilsvarende en singeel

Polygonsti B; (3) til h; i [5].

Sæt q; til at væe det første punkt
på B;, som ligger på Å;.

Lad Fzj være delen af Bj fra rzj til det nye 9j.

A; består så af nye simple polygonstier Fij fra rij til qj. samt Fij fra rij til qj.

Disse nye valg af Fij mødes hun i 9j. Drs:

 $F_{1j} \cap F_{2j} = F_{2j} \cap F_{3j} = F_{1j} \cap F_{3j} = \{q_j\}$

For at opsummere, har vi mu!

Vi har nu 3 punkter ri1, ri2, ri3 i Q: Et af dem er det midterster punkt, hald dette pi.

Vi lader Ei; være Fi; forlænget med den del af Qi, der går fra Vij til pi. For de midterste punkter sher der altså ilde noget. Dette virker, da Fijerne kun rammer Q: i ét punkt, nemlig rij - resten ligger i Vi.

Hvert par af E_{ij} , E_{ij} , mødes så

kun i ét punkt: Enten et p_i eller et q_j .

Så udgør p_i 'erne, q_i 'erne og E_{ij} 'erne

en indlejret $K_{3,3}$, i \mathbb{R}^2 , hvilket er

en modstrid z

Sa har R² C nøjagtigt to Stl-komponenter.

Vi skal vise , at:

→ Den ene er begrænset

→ Den enc er begrænset, den anden ubegrænset.

→ Randene af de to er lig C.

Den are begrænset, den anden ubegrænset.
Cer lukket og begrænset pr Heine-Borel,
så der eksisterer et r>0, så CCB(O
PR B (0) er abenlyst stiSH, så SH.
Så må R2/B, (0) ligge i en SH-komponent
af R2/C, hald denne Ext C.
R2/Bc(0) er ubegrænset, så R2/C
er det også.
Den anden komponent Int C
må så ligge i Br(0), og er
derned begrænset.
the first transfer of

Randen: Vis maj DExt C = D Int C = C A \int(A) er afslutningen A Husk: Randen fra regnet det indre af A, betegnet int (A). Bedre definition fra Martin Wikipedia: ∂ExtC = {x ∈ R2 | Vabre omegne V af x, til svariale er $V \cap ExtC \neq \emptyset$ os $V \cap (R^2 \mid ExtC) \neq \emptyset$ } Int C. Lad $x \in C$. Lad V were en aben

orneyn af X.

Sa Fabent buestylhe $Q \subseteq V \cap C$,

med $x \in Q$.

Lad $p \in Int C$, $q \in Ext C$. Så 3 polygonhurre fra ptil 9 i R2 (C \Q) pga. lemma 2.2 (aben) Den må krydse Q, så der eksisterer punkter på polygonhunen; både ! Vn Ext C saint Vn Int C. DVS VA Int C + Ø + V n Ext C. Sa ma redExtC og xed Int C.

Vi har nu vist, at C. Ed Int C, C. COExt C. For atmise DInt C CC, DExt C CC gor man følgende: /gælder for alle monder Bernark, at Int C = Int C Int Cer en homponent, sa maksimult sammenhængende, så Int C = Int C, da Int C elles ville vore en større sammenhengende nængde. Int C = Int C huris og kum his Int C er lukket, så Int C er lukket i R2/C Tilsverende for Ext (, vigtig Så er IntC, ExtC abre ; R2/C, cla de er hinandens komplementer. R2/ Cer åben iR2, så Int C, Ext C er også åbne i R2 (sesidste side foruddyhming) Så er ExtC = R2 \ IntC, huilket medfører, at DExt C = Ext C \ Int(Ext C) C int(ExtC) Tilsvarende er d'IntC = C. Så er d'ExtC = C = d'IntC = Ext C da Ext C aben

Vis at $K_{3,3}$ ihle han indlejres i \mathbb{R}^2 En indlejring af en graf G i \mathbb{R}^2 er en homeomorf: $f:T_G \to f(T_G)$ er en homeomorf:

$$w_1$$
 $V(K_{3,3}) = 6$
 v_2 $E(K_{3,3}) = 9$.

Bevis AFM at Kz, 3 kan indtejnes.

Benoch, at X(K3,3)=V(K3,3)-E(K3,3)=6-9=-3.

Da $K_{3,3}$ er en sammenhængende plangraf gælder, at $F(K_{3,3}) = 2 - \chi(K_{3,3}) = 2 - (-3) = 5$.

Hver kreds indeholder mindst 4 kanter.

Sa rorer hvert område ved mindst 4 kanter. Hver hant røre oved to områder, så $2 \cdot E(K_{3,3}) \ge 4 \cdot F(K_{3,3})$

Hvillet giver:

 $9 \ge E(K_{3,3}) \ge \frac{4}{2}F(K_{3,3}) = 2.5 = 10$

K5 kan heller
ikke indlejres i R2.

Beriset er identisk

med K3,3, dog

rover hvert område kun 3 kanter, og

V(K5) = 5, E(K5) = 10.

Kuratowskis satming:

En graf G G indeholder

kan indlejres i R²

med hverken K_{3,3} ellen

K₅.

Uddybring 57 side 11

Lad Int C være aben i R2/C.

Det betyder, at der christerer en mængde $U \subseteq \mathbb{R}^2$, som er åben i \mathbb{R}^2 , så $\operatorname{Int} C = U \cap (\mathbb{R}^2 \setminus C)$ if clefinitionen på delrumstopologi.

U og R2/Cer åbne i R2, så Int Cer det også. Tilsvarende for Ext C.