Physics

Wolfgang Peter

2025-06-12

Table of contents

Preface		3
1	Introduction	4
2	 Kinematik 2.1 Grundgleichung	6 6 6
3	3 Summary	9
Re	References	10

Preface

This is a Quarto book.

To learn more about Quarto books visit https://quarto.org/docs/books.

1 + 1

[1] 2

1 Introduction

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

1 + 1

[1] 2

2 Kinematik

2.1 Grundgleichung

Gleichförmige und beschleunigte Bewegung.

Point-kinetics in a fixed coordinate system

$$\vec{v(t)} = \frac{d\vec{r(t)}}{dt} = \dot{\vec{r}}$$

$$\vec{a} = \dot{\vec{v}} = \ddot{\vec{r}}$$

acceleration is constant: $v(t) = v_0 + at$ and $s(t) = s_0 + v_0 t + \frac{1}{2}at^2$

2.2 Kochrezept zum Lösen von Textaufgaben

- 1) Alle Parameter aufschreiben und in SI-Einheiten umrechnen
- 2) Die Gesuchte(n) Parameter als Funktion hinschreiben
- 3) Nur bei veränderliche Bewegung wird je nach Fragestellung entweder ein s,t-Diagramm, ein v,t-Diagramm oder ein a,t-Diagramm erstellt
- 4) Grundgleichung hinschreiben
- 5) Entwicklung der gesuchten Beziehung und Berechnung
- 6) Kontrolle durch Überschlagsrechnung

2.3 Gleichförmige und beschleunigte Bewegung.

2.3.1 Beispiele

Quelle: Berber, Joachim, u. a. Physik in Formeln und Tabellen. 7., Durchges. Aufl, Teubner, 1994.

- 1. Welche mittlere Geschwindigkeit v_m hat der Kolben eines PKW bei einer Drehzahl von $n=3600min^{-1}$ und einem Kolbenhub von h=0.069m
- 2. Durch Seitenwind werden die Abgase eines 90~m langen Diesel getriebenen Zuges der mit einer Geschwindigkeit von $v_1 = 70km/h$ fährt angetrieben so dass sie 30~m seitwärts vom Zug wahrgenommen werden welche Wind-Geschwindigkeit v_2 ist der Zug ausgesetzt?
- 3. Ein Sprinter legt die Strecke s=100m in $t_1=10.4s$ zurück davon die ersten $s_1=50m$ gleichmäßig beschleunigt und der Rest mit konstanter Geschwindigkeit wie groß sind die erreichte Höchstgeschwindigkeit und die Beschleunigung?

2.3.2 Lösungen

Welche mittlere Geschwindigkeit v_m hat der Kolben eines PKW bei einer Drehzahl von $n=3600min^{-1}$ und einem Kolbenhub von h=0.069m

1. Parameter und SI-Einheiten

```
\begin{array}{l} h = 0.069 \\ n = 3600 \\ \text{\#' Umrechnen in SI Einheit} \\ h <- h \ / \ 60 \end{array}
```

- 2. Funktion v = f(s, t)
- 3. s,t-Diagramm nicht zielführend da es um die Durchschnitts-Geschwingigkeit handelt.
- 4. gesuchten Beziehung $\bar{v}=\frac{1}{2}(v_0+v)=\frac{\Delta s}{\Delta t}$ mit $\Delta t=n^{-1}$ und $\Delta s=2h$

```
v_m \leftarrow 2 * h * n
```

Ergebniss $v_m = 8.28 \text{ m/s}$

Durch Seitenwind werden die Abgase eines 90m langen Diesel getriebenen Zuges der mit einer Geschwindigkeit von $v_1=70km/h$ fährt angetrieben so dass sie 30 m seitwärts vom Zug wahrgenommen werden welche Wind-Geschwindigkeit v_2 ist der Zug ausgesetzt?

1. Parameter und SI-Einheiten

```
s_1 = 90
v_1 = 70
s_2 = 30
# SI Einheit
v_1 <- v_1 * 1000 / 60 / 60</pre>
```

- 2. Funktion v = f(s, t)
- 3. s,t-Diagramm nicht zielführend da es um die Durchschnitts-Geschwingigkeit handelt.
- Konstante Geschwindigkeit: $s = v \cdot t$

```
t <- s_1 / v_1
v_2 <- s_2 /t
```

Wind-Geschwindigkeit = 6.5 m/s

Ein Sprinter legt die Strecke s=100m in $t_1=10.4s$ zurück davon die ersten $s_1=50m$ gleichmäßig beschleunigt und der Rest mit konstanter Geschwindigkeit wie groß sind die erreichte Höchstgeschwindigkeit und die Beschleunigung?

```
s = 100
t_1 = 10.4
s_1 = 50
```

- Konstante Geschwindigkeit: $s = v \cdot t$
- Konstante Beschleunigung: $v=v_0+a\cdot t;\, s=v_0t+\frac{1}{2}at^2$

3 Summary

In summary, this book has no content whatsoever.

1 + 1

[1] 2

References

Knuth, Donald E. 1984. "Literate Programming." Comput.~J.~27~(2): 97–111. https://doi.org/10.1093/comjnl/27.2.97.