

Proposta de teste de avaliação	
Matemática A	
10.º ANO DE ESCOLARIDADE	
Duração: 90 minutos Data:	

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

- 1. Na figura estão representados, num referencial o. n. xOy:
 - a circunferência que passa nos pontos A, B e C, de coordenadas (0,7), (0,-3) e (4,-5), respetivamente;
 - a reta r definida pela equação vetorial $(x, y) = (2, -4) + k(1, 2), k \in \mathbb{R}$.

- **1.1.** Mostre que a reta r é a mediatriz do segmento de reta [BC].
- **1.2.** Mostre que o centro da circunferência é o ponto de coordenadas (5, 2).
- **1.3.** Sabe-se que [CD] é um diâmetro da circunferência e que $\vec{u} = \overrightarrow{CD}$.

As coordenadas do vetor \vec{u} são:

(A) (1, 7)

(B) (6, 9)

(C) (2, 14)

- **(D)** (10, 10)
- **1.4.** Sejam $E \in F$ os pontos de interseção da reta r com os eixos $Ox \in Oy$, respetivamente. Mostre que o triângulo [EFC] é isósceles e determine a sua área.

2. Na figura está representado, num referencial o.n. Oxyz, o cubo [ABCDEFGH].

Sabe-se que:

- os vértices A, B e H têm coordenadas (-2, 1, -2), (-2, -3, 1) e (3, 0, 5), respetivamente;
- α é o plano mediador do segmento de reta AB.
- **2.1.** As coordenadas do ponto E são:

(A)
$$(3, 4, 2)$$

(B)
$$(-2, 4, 2)$$

(C)
$$(-2, 0, 5)$$

(D)
$$(3, -4, 8)$$

- **2.2.** Mostre que o plano α pode ser definido pela equação 8y 6z + 5 = 0.
- **2.3.** Para um certo número real k, o ponto de interseção do plano α com a reta AB tem coordenadas (8k, 4k, 2k).

O valor de k é:

(B)
$$-\frac{1}{2}$$

(C)
$$-\frac{1}{4}$$

(D)
$$-\frac{1}{8}$$

2.4 Seja Q o ponto da reta AB tal que d(A, Q) = 15 e d(B, Q) > 15.

Determine as coordenadas do ponto Q.

2.5. Considere a superfície esférica S de centro H e que passa no ponto G. Caracterize a interseção da superfície esférica S com o plano yOz.

3. Na figura está represento o gráfico de uma função f de domínio [-4, 2].

3.1. Em qual das seguintes figuras pode estar representado o gráfico da função h definida por

$$h(x) = -f\left(\frac{x}{2}\right)?$$

(A)

(B)

(C)

(D)

3.2. Sabe-se que g é uma função **ímpar** definida por g(x) = f(x+a).

O valor de a é:

(A) 1

(B)

(C) −2

(D) −1

4. Pretende-se construir uma caixa sem tampa, com a forma de um prisma quadrangular, a partir de uma folha de cartão quadrada, com 14 cm de lado, cortando quatro quadrados com *x* cm de lado e efetuando as dobragens sugeridas na figura.

- **4.1.** Mostre que, para 0 < x < 7, o volume da caixa, em centímetros cúbicos e em função de x, é dado pela expressão $V(x) = 4x^3 56x^2 + 196x$.
- **4.2.** Mostre que V(1) = 144 e interprete este resultado, indicando as dimensões da caixa que lhe está associada.
- **4.3.** Mostre que, para além de x = 1, existe outro valor de x para o qual V(x) = 144. Indique, neste caso, as dimensões da caixa.

Sugestão: Tenha em conta que V(1) = 144 e fatorize o polinómio definido por V(x) - 144.

FIM

Cotações:

Item														
Cotação (em pontos)														
1.1.	1.2	1.3.	1.4.	2.1.	2.2.	2.3.	2.4.	2.5.	3.1.	3.2.	4.1	4.2.	4.3.	Total
15	20	10	15	10	15	10	20	15	10	10	15	15	20	200

Proposta de resolução

1.
$$A(0,7), B(0,-3) \in C(4,-5)$$

1.1. Seja P(x, y) um ponto qualquer da mediatriz do segmento de reta [BC].

$$(x-0)^{2} + (y+3)^{2} = (x-4)^{2} + (y+5)^{2} \Leftrightarrow$$

$$\Leftrightarrow x^{2} + y^{2} + 6y + 9 = x^{2} - 8x + 16 + y^{2} + 10y + 25 \Leftrightarrow$$

$$\Leftrightarrow 6y - 10y = -8x + 16 + 25 - 9 \Leftrightarrow$$

$$\Leftrightarrow -4y = -8x + 32 \Leftrightarrow y = 2x - 8$$

$$r: (x,y) = (2, -4) + k(1, 2), k \in \mathbb{R}$$

A reta r passa no ponto de coordenadas (2, -4) e tem a direção do vetor $\vec{r}(1, 2)$, pelo que o seu declive é $m = \frac{2}{1} = 2$. Logo a reta r pode ser definida pela equação:

$$y + 4 = 2(x - 2) \Leftrightarrow y = 2x - 4 - 4 \Leftrightarrow y = 2x - 8$$

Portanto, a reta r é a mediatriz do segmento de reta [BC].

1.2. [AB] e [BC] são cordas da circunferência. Logo, o ponto de interseção das mediatrizes de[AB] e [BC] é o centro da circunferência.

A reta r: y = 2x - 8 é a mediatriz do segmento de reta [BC]Como os pontos A(0,7) e B(0,-3) têm a mesma abcissa, a mediatriz de [AB] é a reta horizontal s de equação

$$y = \frac{7-3}{2} \Leftrightarrow y = 2.$$

$$\begin{cases} y = 2x - 8 & (2 = 2x - 8) & (2x = 10) \end{cases}$$

 $\begin{cases} y = 2x - 8 \\ y = 2 \end{cases} \Leftrightarrow \begin{cases} 2 = 2x - 8 \\ y = 2 \end{cases} \Leftrightarrow \begin{cases} 2x = 10 \\ y = 2 \end{cases} \Leftrightarrow \begin{cases} x = 5 \\ y = 2 \end{cases}$

Seja K o centro da circunferência. Então, K(5, 2).

Se [CD] é um diâmetro da circunferência, então $\overrightarrow{CD} = 2\overrightarrow{CK}$.

$$\overrightarrow{CK} = K - C = (5, 2) - (4, -5) = (1, 7)$$

$$\overrightarrow{CD} = 2\overrightarrow{CK} = 2(1, 7) = (2, 14)$$

Resposta: (C)

1.3.

1.4.
$$r: y = 2x - 8$$

Ponto
$$E: y = 0 \land y = 2x - 8 \Leftrightarrow y = 0 \land 0 = 2x - 8 \Leftrightarrow y = 0 \land x = 4$$

 $E(4,0)$

Ponto
$$F: \quad x = 0 \land y = 2x - 8 \Leftrightarrow x = 0 \land y = -8$$

$$F(0, -8)$$

$$C(4, -5)$$

$$\overline{EC} = \sqrt{(4-4)^2 + (-5-0)^2} = 5$$

$$\overline{FC} = \sqrt{(4-0)^2 + (-5+8)^2} = \sqrt{16+9} = 5$$

Como $\overline{EC} = \overline{FC}$, o triângulo $\left[EFC \right]$ é isósceles.

$$\overline{EF} = \sqrt{(0-4)^2 + (-8-0)^2} = \sqrt{16+64} = \sqrt{16\times5} = 4\sqrt{5}$$

Seja M o ponto médio de [EF].

$$\overline{ME} = \frac{4\sqrt{5}}{2} = 2\sqrt{5}$$

$$\overline{ME}^2 + \overline{MC}^2 = \overline{EC}^2$$

$$(2\sqrt{5})^2 + h^2 = 5^2 \Leftrightarrow h^2 = 25 - 20 \Leftrightarrow h = \sqrt{5}$$

$$A_{[EFC]} = \frac{\overline{EF} \times h}{2} = \frac{4\sqrt{5} \times \sqrt{5}}{2} = 2 \times 5 = 10$$

$$A_{[EFC]} = 10$$
 u.a.

2. A(-2,1,-2), B(-2,-3,1) e H(3,0,5)

2.1.
$$E = H + \overrightarrow{HE} = H + \overrightarrow{BA}$$

 $\overrightarrow{BA} = A - B = (-2, 1, -2) - (-2, -3, 1) = (0, 4, -3)$
 $E = H + \overrightarrow{BA} = (3, 0, 5) + (0, 4, -3) = (3, 4, 2)$

Resposta: (A)

2.2. Seja x P(x, y, z) um ponto qualquer do plano mediador de AB.

$$(x+2)^{2} + (y-1)^{2} + (z+2)^{2} = (x+2)^{2} + (y+3)^{2} + (z-1)^{2} \Leftrightarrow$$

$$\Leftrightarrow y^{2} - 2y + 1 + z^{2} + 4z + 4 = y^{2} + 6y + 9 + z^{2} - 2z + 1 \Leftrightarrow$$

$$\Leftrightarrow -8y + 6z - 5 = 0 \Leftrightarrow 8y - 6z + 5 = 0$$

2.3. Como α é o plano mediador do segmento de reta [AB], interseta este segmento no seu ponto

médio:
$$M\left(\frac{-2-2}{2}, \frac{1-3}{2}, \frac{-2+1}{2}\right) = M\left(-2, -1, -\frac{1}{2}\right)$$

$$(8k, 4k, 2k) = \left(-2, -1, -\frac{1}{2}\right) \Leftrightarrow 8k = -2 \land 4k = -1 \land 2k = -\frac{1}{2} \Leftrightarrow k = -\frac{2}{8} \land k = -\frac{1}{4} \land k = -\frac{1}{4} \Leftrightarrow k = -\frac{1}{4}$$

Resposta: (C)

2.4
$$\overrightarrow{AB} = -\overrightarrow{BA} = (0, -4, 3)$$

Se o ponto Q pertence à reta AB e d(A,Q)=15, então \overrightarrow{AQ} é colinear com \overrightarrow{AB} e $\|\overrightarrow{AQ}\|=15$, ou seja:

$$\overrightarrow{AQ} = k \overrightarrow{AB} \text{ e } \|\overrightarrow{AQ}\| = 15 \text{ , para algum } k \in \mathbb{R}$$

$$\|\overrightarrow{AB}\| = \sqrt{0^2 + (-4)^2 + 3^2} = \sqrt{25} = 5$$

$$\|\overrightarrow{AQ}\| = \|k \overrightarrow{AB}\| \Leftrightarrow 15 = |k| \|\overrightarrow{AB}\| \Leftrightarrow 15 = |k| \times 5 \Leftrightarrow$$

$$\Leftrightarrow |k| = 3 \Leftrightarrow k = 3 \lor k = -3$$

Se d(A,Q)=15 e d(B,Q)>15, então \overrightarrow{AQ} tem sentido contrário ao de \overrightarrow{AB} , pelo que $\overrightarrow{AQ}=-3\overrightarrow{AB}=-3(0,-4,3)=(0,12,-9)$. $Q=A+\overrightarrow{AQ}=(-2,1,-2)+(0,12,-9)=(-2,13,-11)$

2.5. Centro:
$$H(3, 0, 5)$$

Raio:
$$r = \overline{HG} = \overline{AB} = \|\overline{AB}\| = 5$$
; $S: (x-3)^2 + y^2 + (z-5)^2 = 25$
Plano $yOz: x = 0$

$$(x-3)^2 + y^2 + (z-5)^2 = 25 \land x = 0 \Leftrightarrow$$

$$\Leftrightarrow (0-3)^2 + y^2 + (z-5)^2 = 25 \land x = 0 \Leftrightarrow$$

$$\Leftrightarrow 9 + y^2 + (z-5)^2 = 25 \land x = 0 \Leftrightarrow$$

$$\Leftrightarrow y^2 + (z-5)^2 = 25 - 9 \land x = 0 \Leftrightarrow$$

$$\Leftrightarrow y^2 + (z-5)^2 = 16 \land x = 0$$

A interseção da superfície esférica S com o plano yOz é a circunferência contida neste plano, cujo centro é o ponto de coordenadas (0, 0, 5) e que tem raio 4.

3.

O gráfico de g é a imagem do gráfico de f pela dilatação horizontal de coeficiente 2.

O gráfico de h é a imagem do gráfico de g pela reflexão de eixo Ox.

Resposta: (B)

$$3.2. \quad g(x) = f(x+a)$$

$$D_f = [-4, 2]$$

$$D_g = \{x - a : x \in D_f\} = [-4 - a, 2 - a]$$

Como g é uma função ímpar, -4-a e 2-a terão de ser simétricos. Logo:

$$-4-a=-(2-a) \Leftrightarrow -4-a=-2+a \Leftrightarrow$$

$$\Leftrightarrow$$
 $-a - a = -2 + 4 \Leftrightarrow -2a = 2 \Leftrightarrow a = -1$

Resposta: (D)

4. 4.1.
$$V(x) = (14-2x) \times (14-2x) \times x = (14-2x)^2 x =$$

= $(14^2 - 2 \times 14 \times 2x + 4x^2) x =$
= $(196-56x+4x^2) x =$

$$=4x^3 - 56x^2 + 196x$$

$$x > 0 \land 14 - 2x > 0 \Leftrightarrow x > 0 \land x < 7$$

$$V(x) = 4x^3 - 56x^2 + 196x$$
, com $0 < x < 7$

4.2.
$$V(1) = 4 \times 1^3 - 56 \times 1^2 + 196 \times 1 = 4 - 56 + 196 = 4 + 140 = 144$$

Para x = 1, obtém-se uma caixa cuja base é um quadrado com 12 cm $(14 - 2 \times 1 = 12)$ de lado e que tem 1 cm de altura. Logo, o seu volume é igual a 12 cm \times 12 cm \times 1 cm = 144 cm³.

4.3.
$$V(x) = 144 \Leftrightarrow V(x) - 144 = 0$$

Seja
$$P(x) = V(x) - 144 = 4x^3 - 56x^2 + 196x - 144$$

1 é um zero de P(x), dado que P(1) = V(1) - 144 = 144 - 144 = 0.

Aplicando a regra de Ruffini, temos:

$$P(x) = (x-1)(4x^2 - 52x + 144)$$

$$4x^2 - 52x + 144 = 0 \Leftrightarrow x^2 - 13x + 36 = 0 \Leftrightarrow$$

$$\Leftrightarrow x = \frac{13 \pm \sqrt{\left(-13\right)^2 - 4 \times 36}}{2} \Leftrightarrow x = \frac{13 \pm \sqrt{169 - 144}}{2} \Leftrightarrow$$

$$\Leftrightarrow x = \frac{13 \pm \sqrt{25}}{2} \Leftrightarrow x = \frac{13 \pm 5}{2} \Leftrightarrow x = 4 \lor x = 9$$

$$P(x) = 4(x-1)(x-4)(x-9)$$

$$P(x) = 0 \land 0 < x < 7 \Leftrightarrow x = 1 \lor x = 4$$

Portanto, para x = 4 também se obtém uma caixa com 144 cm³ de volume. Neste caso, a caixa tem 4 cm de altura e a base é um quadrado com 6 cm $(14-2\times4=6)$ de lado.

