Problem 1 (5 points)

Answer with explanations and proof. Suppose $f(n) = 2^{(\log n)^2}$, $g(n) = n^3$, $h(n) = \binom{n}{2}$. You need to first arrange f(n), g(n), h(n) in increasing order of asymptotics as $f_1(n)$, $f_2(n)$, $f_3(n)$, and explain whether the consecutive terms $f_i(n)$, $f_{i+1}(n)$ (for i = 1, 2) satisfy a $f_i(n) = o(f_{i+1}(n))$ or $f_i(n) = \Theta(f_{i+1}(n))$?

First observe that
$$h(n) = \binom{n}{2} = \frac{n!}{2(n-2)!} = \frac{n(n-1)}{2}$$

It follows that

$$\lim_{n\to\infty} \frac{h(n)}{g(n)} = \lim_{n\to\infty} \frac{n^2 - n}{2n^3} = \lim_{n\to\infty} \frac{1}{2n} - \frac{1}{2n^2} = 0$$

Hence
$$h(n) = o(g(n)).$$

We next compare g(n) and f(n). Observe that

$$\lim_{n\to\infty} \frac{\log g(n)}{\log f(n)} = \lim_{n\to\infty} \frac{\log n^3}{\log 2^{((\log n)^2)}} = \log \frac{3\log n}{(\log n)^2}$$

$$=\lim_{n\to\infty}\frac{3}{\log n}=0$$

Thus
$$\log (g(n)) = o(\log (f(n)))$$
. Using a theorem from class we obtain $g(n) = o(f(n))$

Problem 2 (5 points)

The running time of an algorithm is given by the function T(n) which satisfies the following recurrence relation T(n) = 5T(n-1) - 6T(n-2). Also T(1) = 8, T(2) = 22 time units. Prove that $T(n) = 2 \times 3^n + 2^n$ (time units) is a solution for the above recurrence for integer $n \ge 1$.

Since the recurrence uses T(n-1) and T(n-2) we must first show that the formula holds at n=1 and n=2. We have

$$2 \times 3' + 2' = 8 = T(1)$$

 $2 \times 3^2 + 2^2 = 22 = T(2)$

Now, fix k=3 and assume that

$$T(k-1) = 2 \times 3^{k-1} + 2^{k-1}$$
 and that $T(k-2) = 2 \times 3^{k-2} + 2^{k-2}$

From our recurrence relation and using our induction hypothesis we have

$$T(k) = 5T(n-1) - 6T(n-2)$$

$$= 5 \cdot 2 \cdot 3^{k-1} + 5 \cdot 2^{k-1} - 6 \cdot 2 \cdot 3^{k-2} - 6 \cdot 2^{k-2}$$

$$= 10 \cdot 3^{k-1} + 5 \cdot 2^{k-1} - (2 \cdot 2 \cdot 3) \cdot 3^{k-2} - (2 \cdot 3) \cdot 2^{k-2}$$

$$= 10 \cdot 3^{k-1} + 5 \cdot 2^{k-1} - 4 \cdot 3^{k-1} - 3 \cdot 2^{k-1}$$

$$= 6 - 3^{k-1} + 2 - 2^{k-1}$$
$$= 2 - 3^k + 2^k$$

We conclude using incluction that
$$T(n)=2\cdot 3^n+2^n$$
 for all $n=1$

Problem 3 (3 points total)

There are m red balls and n blue balls in a bag, and balls are picked at random from the bag. Prove that the probability that we pick at least one ball of each color conditioned on picking a total of k balls is $1 - \frac{\binom{m}{k} + \binom{n}{k}}{\binom{m+n}{k}}$. You can assume that $k \leq \min\{m, n\}$.

First note that the probability in question is equal to one minus the probability that either all balls selected are blue or all balls selected are red.

There are (m) ways to pick only blue balls and (n) ways to pick only red balls.

These two events are disjoint, so it follows that there are (m) + (n) ways to only pick red balls or blue balls

Problem 5 (2+2 points)

Identify if the following proofs are correct. If not, explain what is wrong in them.

1. We start with the following 12 points connected by links.

Each of these links is deleted independently with probability $\frac{1}{3}$.

Claim. The expected number of squares remaining after the links are deleted is $\frac{80}{81}$.

Proof. Before we start, there are 5 possible squares that could remain intact. Let S_1 be an indicator random variable that is 1 if the first square remains intact and 0 otherwise. Similarly define S_2, S_3, S_4, S_5 for the other squares.

We have that for i = 1, 2, 3, 4, 5,

$$\Pr\{S_i = 1\} = \left(1 - \frac{1}{3}\right)^4 = \frac{16}{81},$$

Let S be the number of squares that remain. We get

$$\mathbb{E}[S] = \sum_{i=1}^{5} \mathbb{E}[S_i] = 5 \cdot \frac{16}{81} = \frac{80}{81}.$$

The proof is correct.

2. Suppose there are 1000 students in the students are related if they share the sam	2023 Northwestern Freshman class. Say two
Claim. Every student is related to some	other student.
Proof. We give a proof of the claim using the pigeonhole principle. There are 1000 students, and the birthdays of the students have to be one among the 365 days in the year. In the setting of the pigeonhole principle, there are 1000 pigeons, and at most 365	
pigeonholes. By the pigeonhole principle	the students can not have distinct birthdays. ry student there is at least one other student
The proof is income	ect. The pigeonhole
principal only all	ect. The pigeonhole ows us to conclude at least one day on students have a birthday.
which multiple	studente have a birthday.
In particular, the lin	e "Furthermore,
In particular, the lin since 1000 > 2. (36 student there is	5), for every
other student wh	to has the same birthday
is false.	