

Modélisation de l'impact des gaz à effet de serre

Samuel Paillat

Romane LANERES
Clara MELINE
Anouk PETITGAS
Tom PHILIPPE
Arthur SARRAU
Nina ZEDDOUN

Objectifs du projet

Trois objectifs:

- Comprendre le phénomène de gaz à effet de serre et son impact sur Terre
- Quantifier l'influence des GES sur les flux radiatifs et sur la température terrestre
- Modéliser numériquement l'impact des GES et décrire le plus fidèlement possible ce mécanisme

Clara

Tom

Méthodologie et répartition du travail

Tom

Explication du phénomène de l'effet de serre

Bilan radiatif sans atmosphère

Production = Échanges + Stockage

$$\Phi_{emis} = \Phi_{absorbe}$$

$$\Phi_{emis,Terre} = 4\pi R_T^2 \sigma T^4 = 121 \ PW$$

$$T = \sqrt[4]{\frac{\Phi_{abs,Terre}}{4\pi R_T^2 \sigma}} = 235 \text{ K} = -19^{\circ}\text{C}$$

Comparaison des modèles avec et sans atmosphère

1er modèle : sans atmosphère

absorbé (atm) = émis(Surface Terre)

Hypothèse : T(Terre)=T(atmosphère)

Modélisation de l'atmosphère

Modélisation de la température dans l'atmosphère

Profil de la pression en fonction de l'altitude

$$P(\mathbf{z}) = \begin{cases} P(z_i) \left(\frac{T(z)}{T(z_i)}\right)^{\frac{-Mg}{Ra}} &, \mathbf{z} \in [0; z_{trop}[\cup[z_{strat1}; z_{meso}[\\ P(z_{trop})e^{-\frac{gM}{RT}(z-z_{trop})} &, \mathbf{z} \in [z_{trop}; z_{strat1}[\end{cases}$$

Profil de la densité particulaire volumique de l'air en fonction de l'altitude

$$\mathbf{n}(\mathbf{z}) = \begin{cases} \frac{P(z_i) \left(\frac{T(z)}{(Tz_i)}\right)^{\frac{-Mg}{Ra(z)}}}{k_B T(z)} &, \mathbf{z} \in [0; z_{trop}[\cup [z_{strat1}; z_{meso}[\\ \frac{P(z_i)e^{-\frac{gM}{RT}(z-z_{trop})}}{k_B T} &, \mathbf{z} \in [z_{trop}; z_{strat1}[\\ \end{cases}$$

Bilan radiatif terrestre avec effet de serre

Pour quantifier les flux, on prend en compte le CO2 dans l'atmosphère avec ses coéfficiets d'absorbance et de transmittance

$$1 - \tau_{CO2}(\lambda) = \int_0^{h_{max}} k_{abs}(\lambda) \times n_{CO2}(z) dz$$

Bilan thermique:

$$\sigma T_T^4 = \frac{1}{2} \int_{\lambda} (1 - \tau_{CO_2}) M_{\lambda, T}^0 \, d\lambda + \int_{\lambda} \tau_{CO_2} E_{\lambda, T}^0 \, d\lambda \times (1 - \bar{a_T}) \quad (BT)$$

Traitement des données et modélisation numérique

```
def fonction transmittance vers absorbance(transmittance):
         """ Réalise une fonction absorbance qui retourne un objet de type <function> """
        def absorbance(x):
             """ Réalise l'opération 1 - transmittance pour une valeur x donnée""
            return 1 - transmittance(x)
        return absorbance
10 def évaluer_fonction_interpolation (fonction, valeur):
         """ Obtenir l'image d'une valeur à travers une fonction de classe <interp1D> """
       return (fonction.__call__(valeur)).tolist()
14 def fonction_mathématique_interpolation (longueur_onde, taux_CO2):
          "" Retourne l'absorbance et la transmittance du CO2 en fonction de
        la longueur d'onde (en m) sous forme d'un objet de type <function>
        qui est mathématiquement continu """
        def valeur_interpolation (longueur_onde, taux_CO2):
             """ Retourne la transmittance et l'absorbance du CO2 à une longueur d'onde donnée,
            sous la forme d'un objet de classe <interp1D> """
           return interp1d(longueur_onde, taux_CO2, kind = 'linear'
                           bounds_error = False, fill_value = (1, 1))
        transmittance = lambda x: évaluer_fonction_interpolation(valeur_interpolation(longueur_onde, taux_CO2), x) \
                       if (min(longueur_onde) <= x) and (x <= max(longueur_onde)) \</pre>
        absorbance = fonction transmittance vers absorbance(transmittance)
```

- Bases de données : NIST, HITRAN
- Modules Python
- Prolongements par continuité

 $3 \text{ modèles} \rightarrow 3 \text{ étapes}$

1 - Traitement

données

2 – Mise en place mathématique

3 - Calcul de flux

Conclusions et perspectives

3 modèles :
 Sans atmosphère
 Avec atmosphère isotherme
 Avec atmosphère non-isotherme

• Quantifier les flux émis et reçus par la Terre et l'atmosphère:

Méthode physique Méthode numérique

• Intérêt environnemental et scientifique

