2560.
$$\frac{1}{1001} + \frac{1}{2001} + \frac{1}{3001} + \dots + \frac{1}{1000n+1} + \dots$$
2561.
$$1 + \frac{2}{3} + \frac{3}{5} + \dots + \frac{n}{2n-1} + \dots$$
2562.
$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots + \frac{1}{(2n-1)^2} + \dots$$
2563.
$$\frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{3}} + \frac{1}{3\sqrt{4}} + \dots$$

$$\dots + \frac{1}{n\sqrt{n+1}} + \dots$$
2564.
$$\frac{1}{\sqrt{1 \cdot 3}} + \frac{1}{\sqrt{3 \cdot 5}} + \dots$$

2565. Доказать, что ряд чисел, обратных членам арифметической прогрессии, расходится.

2566. Доказать, что если ряды $\sum_{n=1}^{\infty} a_n(A)$ и $\sum_{n=1}^{\infty} b_n(B)$

сходятся н $a_n \leqslant c_n \leqslant b_n$ (n=1, 2, ...), то ряд $\sum_{n=1}^{\infty} c_n$ (C) также сходится. Что можно сказать о сходимости ряда (C), если ряды (A) и (B) расходятся?

2567. Пусть даны два расходящихся ряда $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ с неотрицательными членами.

что можно сказать о сходимости рядов:

a)
$$\sum_{n=1}^{\infty} \min(a_n, b_n)$$
 H 6) $\sum_{n=1}^{\infty} \max(a_n, b_n)$?

2568. Доказать, что если ряд $\sum_{n=1}^{\infty} a_n \ (a_n \geqslant 0)$ сходится, то ряд $\sum_{n=1}^{\infty} a_n^2$ также сходится. Обратное утверждение неверно; привести примеры.

2569. Доказать, что если ряды $\sum_{n=1}^{\infty} a_n^2$ н $\sum_{n=1}^{\infty} b_n^2$ сходятся, то сходятся также ряды $\sum_{n=1}^{\infty} |a_n b_n|$, $\sum_{n=1}^{\infty} (a_n + b_n)^2$, $\sum_{n=1}^{\infty} \frac{|a_n|}{n}$.