International Rectifier

IRF6646PbF IRF6646TRPbF

DirectFET™ Power MOSFET ②

RoHs Compliant ①

- Lead-Free (Qualified up to 260°C Reflow)
- Application Specific MOSFETs
- Ideal for High Performance Isolated Converter Primary Switch Socket
- Optimized for Synchronous Rectification
- Low Conduction Losses
- High Cdv/dt Immunity
- Low Profile (<0.7mm)
- Dual Sided Cooling Compatible ①
- Compatible with existing Surface Mount Techniques ①

	Typical values (unless otherwise specified)								
	V _{DSS}	Vo	is	$R_{DS(on)}$					
Ī	80V ma	x ±20V	max	7.6mΩ@ 10V					
	Q _{g tot}	\mathbf{Q}_{gd}	Q	gs2	Q_{rr}	Q _{oss}	$V_{gs(th)}$		
	36nC	12nC	2.0	nC	48nC	18nC	3.8V		

Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) ①

			,	•				
SQ	SX	ST	MQ	ΜX	ΜT	MN		

Description

The IRF6646PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET™ packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.

The IRF6646PbF is optimized for primary side bridge topologies in isolated DC-DC applications, for 48V(±10%) or 36V to 60V ETSI input voltage range systems, and is also ideal for secondary side synchronous rectification in regulated isolated DC-DC topologies. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated DC-DC converters.

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	80	V
V_{GS}	Gate-to-Source Voltage	±20	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V 3	12	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V 3	9.6	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V ④	68	
I _{DM}	Pulsed Drain Current ®	96	
E _{AS}	Single Pulse Avalanche Energy ®	230	mJ
I _{AB}	Avalanche Current ⑤	7.2	Α

Fig 1. Typical On-Resistance vs. Gate Voltage

Notes:

- ① Click on this section to link to the appropriate technical paper.
- ② Click on this section to link to the DirectFET Website.
- 3 Surface mounted on 1 in. square Cu board, steady state.

Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage

- ④ T_C measured with thermocouple mounted to top (Drain) of part.
- ⑤ Repetitive rating; pulse width limited by max. junction temperature.
- © Starting $T_{.1} = 25$ °C, L = 8.8mH, $R_{G} = 25\Omega$, $I_{AS} = 7.2$ A.

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	80			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.10		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		7.6	9.5	mΩ	V _{GS} = 10V, I _D = 12A ⑦
V _{GS(th)}	Gate Threshold Voltage	3.0		4.9	٧	$V_{DS} = V_{GS}$, $I_D = 150\mu A$
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient		-11		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 80V, V_{GS} = 0V$
				250	1	$V_{DS} = 64V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	1	V _{GS} = -20V
gfs	Forward Transconductance	17			S	$V_{DS} = 10V, I_{D} = 7.2A$
Q_g	Total Gate Charge		36	50		
Q_{gs1}	Pre-Vth Gate-to-Source Charge		7.6		1	$V_{DS} = 40V$
Q_{gs2}	Post-Vth Gate-to-Source Charge		2.0		nC	$V_{GS} = 10V$
Q_{gd}	Gate-to-Drain Charge		12		1	$I_D = 7.2A$
Q_godr	Gate Charge Overdrive		14		1	See Fig. 15
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		14		1	
Q _{oss}	Output Charge		18		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_G	Gate Resistance		1.0		Ω	
$t_{d(on)}$	Turn-On Delay Time		17			$V_{DD} = 40V, V_{GS} = 10V$ ⑦
t _r	Rise Time		20		1	$I_D = 7.2A$
t _{d(off)}	Turn-Off Delay Time		31		ns	$R_G=6.2\Omega$
t _f	Fall Time		12			See Fig. 16 & 17
C _{iss}	Input Capacitance		2060			$V_{GS} = 0V$
C _{oss}	Output Capacitance		480		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		120			f = 1.0MHz
C _{oss}	Output Capacitance		2180			$V_{GS} = 0V, V_{DS} = 1.0V, f=1.0MHz$
C _{oss}	Output Capacitance		310			$V_{GS} = 0V, V_{DS} = 64V, f=1.0MHz$

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			2.5®		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			96	1	integral reverse
	(Body Diode) S					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	٧	$T_J = 25^{\circ}C, I_S = 7.2A, V_{GS} = 0V ?$
t _{rr}	Reverse Recovery Time		36	54	ns	$T_J = 25$ °C, $I_F = 7.2$ A, $V_{DD} = 40$ V
Q_{rr}	Reverse Recovery Charge		48	72	nC	di/dt = 100A/µs ⑦ See Fig. 18

Notes:

- $\ensuremath{ \mbox{\Large \sc S}}$ Repetitive rating; pulse width limited by max. junction temperature.
- $\ensuremath{\mathfrak{T}}$ Pulse width $\le 400 \mu s$; duty cycle $\le 2\%$.
- $\ensuremath{\$}$ Thermally limited and used $R_{\theta ja}$ to calculate.

Absolute Maximum Ratings

	Parameter	Max.	Units
$P_D @ T_A = 25^{\circ}C$	Power Dissipation ③	2.8	W
P _D @T _A = 70°C	Power Dissipation 3	1.8	
$P_D @ T_C = 25^{\circ}C$	Power Dissipation 4	89	
T _P	Peak Soldering Temperature	270	°C
T_J	Operating Junction and	-40 to + 150	
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient 3 0		45	
$R_{\theta JA}$	Junction-to-Ambient	12.5		
$R_{\theta JA}$	Junction-to-Ambient ® 0	20		°C/W
$R_{\theta JC}$	Junction-to-Case 4 0		1.4	
$R_{\theta J\text{-PCB}}$	Junction-to-PCB Mounted	1.0		
	Linear Deratinig Factor ③	0.0	022	

Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ${\mathbb O}$

Notes:

- Used double sided cooling , mounting pad.
- Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- $\textbf{0} \quad \mathsf{R}_{\theta} \text{ is measured at } \mathsf{T}_{\mathsf{J}} \text{ of approximately } 90^{\circ}\mathsf{C}.$

③ Surface mounted on 1 in. square Cu (still air).

Mounted to a PCB with small clip heatsink (still air)

® Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)

IRF6646PbF

International TOR Rectifier

Fig 4. Typical Output Characteristics

Fig 6. Typical Transfer Characteristics

Fig 8. Typical Capacitance vs.Drain-to-Source Voltage

Fig 5. Typical Output Characteristics

Fig 7. Normalized On-Resistance vs. Temperature

Fig 9. Typical On-Resistance vs. Drain Current

IRF6646PbF

Fig 10. Typical Source-Drain Diode Forward Voltage

Fig11. Maximum Safe Operating Area

Fig 12. Maximum Drain Current vs. Ambient Temperature

Fig 13. Typical Threshold Voltage vs. Junction Temperature

Fig 14. Maximum Avalanche Energy vs. Drain Current

Fig 15a. Gate Charge Test Circuit

Fig 16a. Unclamped Inductive Test Circuit

Fig 17a. Switching Time Test Circuit

Fig 15b. Gate Charge Waveform

Fig 16b. Unclamped Inductive Waveforms

Fig 17b. Switching Time Waveforms

Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs

DirectFET™ Substrate and PCB Layout, MN Outline (Medium Size Can, N-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.

This includes all recommendations for stencil and substrate designs.

IRF6646PbF

DirectFET™ Outline Dimension, MN Outline (Medium Size Can, N-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.

This includes all recommendations for stencil and substrate designs.

DirectFET™ Part Marking

DirectFET™ Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6646TRPBF). For 1000 parts on 7" reel, order IRF6646TR1PBF

	REEL DIMENSIONS									
S ⁻	TANDARI	OPTION	(QTY 48	00)	TR	1 OPTION	(QTY 10	00)		
	ME	TRIC	IMP	ERIAL	ME	TRIC	IMP	ERIAL		
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
Α	330.0	N.C	12.992	N.C	177.77	N.C	6.9	N.C		
В	20.2	N.C	0.795	N.C	19.06	N.C	0.75	N.C		
С	12.8	13.2	0.504	0.520	13.5	12.8	0.53	0.50		
D	1.5	N.C	0.059	N.C	1.5	N.C	0.059	N.C		
E	100.0	N.C	3.937	N.C	58.72	N.C	2.31	N.C		
F	N.C	18.4	N.C	0.724	N.C	13.50	N.C	0.53		
G	12.4	14.4	0.488	0.567	11.9	12.01	0.47	N.C		
Н	11.9	15.4	0.469	0.606	11.9	12.01	0.47	N.C		

LOADED TAPE FEED DIRECTION

DIMENSIONS								
	ME	ETRIC	IMPERIAL					
CODE	MIN	MAX	MIN	MAX				
Α	7.90	8.10	0.311	0.319				
В	3.90	4.10	0.154	0.161				
С	11.90	12.30	0.469	0.484				
D	5.45	5.55	0.215	0.219				
E	5.10	5.30	0.201	0.209				
F	6.50	6.70	0.256	0.264				
G	G 1.50 N.C		0.059	N.C				
Н	1.50	1.60	0.059	0.063				

Data and specifications subject to change without notice.

This product has been designed and qualified for the Consumer market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/