ECS404: Computer Systems and Networks 2016 Week 5

Signed Integers, Floating Point, Character Sets

This week

- Number representation
 - Brief recap on Unsigned
 - Signed
 - Floating Point
 - Rounding errors: Why you should be careful
- Character Sets
 - Common character sets and their structure.

Learning Objectives: Signed Integers

- Use of 2's complement to represent signed integers.
- Basic structure of 2's complement representation: which numbers can be represented, and the geometrical relationship between numbers and representations.
- Why we use it rather than sign and magnitude: how operations are implemented.
- How to encode and decode numbers into 2's complement: algorithms

Learning Objectives: Floating Point

- Floating point real numbers
- Scientific representation and its structure
- IEEE binary floating point numbers
- Rounding errors and problems with fixed width floating point systems.

Learning Objectives: Character Sets

- Text representation:
- ASCII, ISO-xxxx and Unicode-based character sets: numbers of bits used and basic facts about representations.

Number systems and recap

Three types of numbers

- Unsigned: we can think of these as positive integers (whole numbers)
- Signed: regular integers, can be positive or negative
- Floating point: real numbers, not necessarily whole numbers.

Three types of numbers

class	examples	representation	Java
unsigned	0,1,2,3	unsigned binary	
signed	3,-2,-1,0,1,2,3	2's complement	byte, short, int, long
floating point	-2.80,1.00,3.14	IEEE floating point	float, double

Java has 8 primitive datatypes

- byte: 8 bit signed 2's complement
- short: 16 bit signed 2's complement
- int: 32 bit signed 2's complement
- long: 64 bit signed 2's complement
- float: 32 bit IEEE floating point
- double: 64 bit IEEE floating point

C has a subtly different collection

- unsigned unsigned integers
- int, long signed integers
- float, double floating point

All of these have fixed size (typically 32 or 64 bits), but can differ between implementations.

Examples: unsigned

- 32 bit: 4 8-byte blocks, numbers from 0 to 2³²-1
- Standard binary representation
- 00000000 00000000 00000000 00001001 = 9

Operations: unsigned

- Can use standard long addition to add (and subtraction to subtract, though we did not see that)
- Can use standard long multiplication to multiply... but binary version is easier because we only have to copy (shift) multiplicand.

Operations: unsigned

 Equality testing is easy: equal if and only if bit patterns the same

 Checking for < is easy: scan from left and first difference gives the order.

Operations: unsigned

 Checking for < is easy: scan from left and first difference gives the order.

First difference shows top larger than bottom.

Signed Integers (2's complement)

Negative numbers

- Of course we also need negative numbers.
- Let's think about how we might do that.

Obvious answer

- Do what we do...
- Use one bit to give the sign, and the rest to give the magnitude.

Obvious answer

First bit is sign (1=-)

1000 0000 0000 0000 0000 0000 0001 0100

Remaining 31 bits are magnitude (20)

So this is -20

Problem 1

- We have two zeroes
- This makes some of our most common operations harder: testing for 0 and testing for equality

 $-0 = 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000$

Problem 2

- The algorithm for adding two positive or two negative numbers is basically addition.
- The algorithm for adding a positive number to a negative one is basically subtraction.
- So our circuitry is more complicated, and probably slower.

Example

- Suppose we are using 8 bits, and we use the first bit as a sign 0 is positive, and 1 is negative, say.
- 00001001 represents 9
- 10001001 represents -9
- 00000101 represents 5
- 10000101 represents -5

Example

- To compute 00001001 + 00000101 we add the last seven bits: 0001001 + 0000101
- Similarly to compute 10001001 + 10000101 we add the last seven bits.
- To compute 00001001 + 10000101 we subtract the last seven bits: 0001001 - 0000101 (and must check we get the sign right).
- To compute 10001001 + 00000101 we subtract the last seven bits in the other order: 0000101 0001001 (and again must check we get the sign right)... though we could use the above and just negate at the last minute.
- In any case, this is quite complicated.

• there is a better way: 2's complement

- 32 bit sign and magnitude uses unsigned 0...2³¹-1 to represent signed 0...2³¹-1, and the unsigned 2³¹...2³²-1 to represent signed 0...-(2³¹-1) (decreasing)
- 32 bit 2's complement uses unsigned 0...2³¹-1 to represent signed 0...2³¹-1, and the unsigned 2³¹... 2³²-1 to represent signed 2³¹..-1 (increasing)

Unsigned

Unsigned

Unsigned

- We have not duplicated any representations.
- (So tests for 0 and equality will be simple).
- We have not reversed any line segments.

- Positive signed 0 to 2³¹-1 are represented by themselves.
- Negative signed -2³¹ to -1 are represented by (themselves plus 2³²).
- So -3 is represented by $-3+2^{32}=2^{32}-3$.
- Note that this is between 0 and 2³².

8 bit 2's complement

- For exercises we will use 8 bit 2's complement.
- 8 bit $(2^7 = 128)$
- 8 bit unsigned can represent numbers 0..255
- 8 bit 2's complement represents $-2^7 = -128 ... 127 = 2^7 1$

unsigned

signed

- 32 bit
- 32 bit unsigned can represent numbers 0..2³²-1
- 32 bit 2's complement represents -2³¹ .. 2³¹-1

signed

- 32 bit
- On this bit signed = unsigned

- 32 bit
- On this bit signed = unsigned 2³²

unsigned 0 2^{31} -1 2^{31} 2^{32} -1 0 2^{31} -1 -2^{31} -2 -2^{31} +1 -2 -1 signed

- So it is always the case that if we take any 32-bit sequence, then the (unsigned value) (signed value) is divisible by 2³²
- In other words the signed value = unsigned value mod 2³²

Operations mod n

Mathematical Property:

If $a1 = a2 \mod n$ and $b1 = b2 \mod n$, then

- $a1 + b1 = a2 + b2 \mod n$
- $a1 b1 = a2 b2 \mod n$
- $a1 * b1 = a2 * b2 \mod n$

Practical consequence

 With 2's complement, we can use unsigned addition, subtraction, multiplication algorithms to implement signed addition, subtraction, multiplication.

Translating between unsigned and 2's complement

- There is more than one way.
- You ALWAYS have to distinguish between:
- signed distinguish between positive and negative (>= 0 and <0)
- unsigned distinguish between $< 2^{n-1}$ and $>= 2^{n-1}$

- We will use 8 bit 2's complement.
- Case 1: integer is positive
- Method: convert to unsigned binary. Pad with initial zeroes to correct length.
- Example: 20
- Convert to unsigned binary: 10100
- Pad with initial zeroes: 00010100

- We will use 8 bit 2's complement.
- Case 2: integer is negative
- Goal: if integer is x, then representation will be unsigned binary translation of 2ⁿ+x
- Example: x=-20, then representation is $2^8+(-20) = 128 20$

- 8 bit 2's complement, negative input: -20
- Representation of x is unsigned binary translation of 2ⁿ+x
- Example: x=-20, then representation is $2^8+(-20) = 256 20$
- There are many ways to calculate this.

- 8 bit 2's complement, negative input: -20
- Method 1: Do the subtraction 256-20 in decimal.
 Convert result to binary.
- 256 20 = 236
- $236_{10} = 11101100_2$
- Result: 1110 1100

- 8 bit 2's complement, negative input: -20
- Method 1: Do the subtraction 128-20 in decimal, then convert result to binary. Pad with zeroes.
- Problem: can leave you with a (very) large number to convert to binary.

- 8 bit 2's complement, negative input: -20
- Method 2: Convert 20 to binary. Do the subtraction 256-20 in binary.
- $20_{10} = 10100_2$
- Result: 1 0000 0000 1 0100

- 8 bit 2's complement, negative input: -20
- Method 2: Convert 20 to binary. Do the subtraction 256-20 in binary.

First two digits OK

1 0000 0000

1 0100 -

Next needs borrow

1 0000 0000

1111 1100 Borrows

1 0100
100

From then on, OK Effectively flip the bit.

1 0000 0000 1111 1100 Borrows 1 0100 -1110 1100

Result is: 1110 1100

- If you look at the last algorithm, you see that you can write it as:
 - translate to binary
 - do something complicated with the bits (scan from right till first one, leave that unchanged, then flip all the bits to the left...
 - some of you may have been taught this

A better method:

To compute -n where n is in 2's complement binary:

1. flip the bits of n (ie change 0's to 1's and vice versa)

Example: take 6 in 8-bit: 0000 0110 goes to 1111 1001

(Note: if we add these two together we get 1111 1111, so in unsigned terms this is equivalent to computing 255 - n = 256 - 1 - n = 256 - n - 1. In general if we are using k bits it is 2^k-n-1).

To compute -n where n is in 2's complement binary:

- 1. flip the bits of n (ie change 0's to 1's and vice versa)
- 2. add 1

Example: take 6 in 8-bit: 0000 0110 goes to

- 1. 1111 1001
- 2. 1111 1010

(Note: in stage 1 we computed 256 - n -1, so this second stage gives 256 -n. The last 8 bits of this are the 2's complement representation of -n. In general if we are using k bits, we get 2^k-n).

To compute -n where n is in 2's complement binary:

1. flip the bits of n (ie change 0's to 1's and vice versa)

2. add 1

Note: both of these operations are basic binary operations that the cpu will have as standard instructions.

Translation to and from 2's complement

- There are other ways of doing this.
- You will NOT be penalised for using them PROVIDED you explain your method clearly.

Examples: signed

- 32 bit: 4 8-byte blocks, numbers from -2³¹ to 2³¹-1
- Standard 2's complement representation

Floating Point

Floating point

- Computers use the IEEE floating point standard to represent real numbers (real is in the mathematical sense of numbers that are not integers).
- This is based on standard scientific notation, but using a normalised form, and expressed in binary.
- Most common is 64 bit and we will use that in examples.

Scientific Notation

- Scientists write very large or very small numbers in scientific notation.
- Number is written as:
 - 2.9979 x 10⁸ (speed of light)
 - or 6.626 x 10⁻³⁴ (Planck's constant)

Scientific Notation

Parts of the number:

2.9979 x 10⁸ (speed of light)

• or 6.626 x 10⁻³⁴ (Planck's constant)

Scientific Notation

Parts of the number:

2.9979 x 10⁸ (speed of light)

significand is between 1 and 10

exponent is either positive or negative

• or 6.626 x 10⁻³⁴ (Planck's constant)

Scientific notation

Multiplying two numbers in scientific notation

$$(2.4 \times 10^{20}) * (1.5 \times 10^{-5})$$

Multiply significands

Add exponents

$$= 3.6 \times 10^{15}$$

Adding two numbers in scientific notation

$$(2.4 \times 10^{20}) + (1.2 \times 10^{19})$$

= 2.52×10^{20}

Translate to same exponent: $1.2 \times 10^{19} = 0.12 \times 10^{20}$

Add significands: 2.4 + 0.12 = 2.52

Computers

- Use a similar scheme to represent real numbers.
- It is called floating point.
- It uses a fixed size representation.
- But first we think about fixed size decimal scientific notation.

Fixed width decimal

- Use a similar scheme to represent real numbers.
- It is called floating point.
- It uses a fixed size representation (we refer to it as fixed width).
- But first we think about fixed width decimal scientific notation.

Fixed width decimal

Significand: limited number of significant figures

Fixed width decimal: example

Significand: limited to 6 significant figures

Problems with fixed width representations

- 1. You can't represent every number accurately.
 - Some numbers are too big: 10¹⁰²
 - Some numbers are just too small: 10⁻¹⁰²
 - Some numbers have too many decimal places: 10/3
 = 3.33333333....
 - All of these numbers have to be approximated.
 - This introduces rounding errors.

Rounding errors

- Given a number we round it to the nearest number we can represent.
 - 10⁻¹⁰² is too small to represent and would be rounded to 0.

 - 10¹⁰² would probably not be rounded (it is 100 times larger than the closest number we can represent). We would just say we had a number too big to represent.
 - The difference between the accurate number and the nearest representable number is the rounding error.

Problems with fixed width representations

- 2. You get rounding errors when you add or multiply two representable numbers together.
 - $1x10^7 + 4x10^0 = 1.000004x10^7$ which gets rounded to $1.00000x10^7$
 - 1.00001x10⁰ * 1.1x10⁰ = 1.100011x10⁰ which gets rounded to 1.10001x10⁰

Problems with fixed width representations

- 3. If you use two different mathematically equivalent methods to compute a value, you may get slightly different results.
 - it is easy (and sobering) to run a test and find out for how many whole numbers N, N*(1/N) is not equal to 1.

Problems with fixed width floating-point

- Rounding: you can't represent numbers accurately
- Operations: even when two numbers are representable accurately, it is usually not the case that their sum/difference/ product/quotient is. So operations of addition, subtraction, multiplication, division introduce further errors.
- Because of rounding, if you try to compute a number in two different ways, you will often get different results (technically this is statistically usually, but not always for simple examples).
- Therefore you should NEVER use equality testing on floating point reals.

Computers

- use standard forms of fixed with reals
- very similar to the fixed width decimal we just saw
- formalised by the IEEE.

IEEE binary floating point

- The way this should be implemented is set out in IEEE standards (IEEE=Institute of Electrical and Electronics Engineers).
- The relevant one is IEEE 754 as revised in 2008: IEEE 754-2008, on QMPlus.

Basic structure (IEEE p8)

- Signed zero and non-zero floating-point numbers of the form $(-1)^s \times b^e \times m$, where
 - s is 0 or 1.
 - e is any integer $emin \le e \le emax$..
 - m is a number represented by a digit string of the form $d_0 \cdot d_1 d_2 ... d_{p-1}$ where d_i is an integer digit $0 \le d_i < b$ (therefore $0 \le m < b$).

Table 3.2—Parameters defining basic format floating-point numbers

	Binary format (b=2)			Decimal format (b=10)	
parameter	binary32	binary64	binary128	decimal64	decimal 128
p, digits	24	53	113	16	34
emax	+127	+1023	+16383	+384	+6144

emin shall be 1-emax for all formats.

64-bit reals

I bit for the sign

Figure 3.1—Binary interchange floating-point format

- II bits for the exponent
- 53 bit precision
- This makes 65 bits.
- Lose one bit by using normalised form (if you know the leading bit is 1, you don't need to record it).

64-bit reals: sign

Figure 3.1—Binary interchange floating-point format

- I bit for the sign
- 0 is positive
- I is negative
- This is because $(-1)^0 = 1$, and $(-1)^1 = -1$

• II bits for the expon

Figure 3.1—Binary interchange floating-point format

- emax is 1023
- \bullet emin is I emax = I 1023 = -1022
- biased means "start at emin"
- I00 0000 0000 = I024 represents I
- 011 1111 1111 = 1023 represents 0
- 100 0000 0001 = 1025 represents 2

• II bits for the exponent

Figure 3.1—Binary interchange floating-point format

- emax is 1023
- emin is I emax = I 1023 = -1022
- biased means "start at emin"
- 100 0000 0000 = 1024 represents 1
- 0|| |||| ||| = || 1023 represents 0
- 100 0000 0001 = 1025 represents 2
- So we get exponent by subtracting 1023 from the unsigned value.

- II bits for the exponent
- emax is 1023

Figure 3.1—Binary interchange floating-point format

- emin is I emax = I 1023 = -1022
- biased means "start at emin"
- We get exponent by subtracting 1023 from the unsigned value.
- This means 000 0000 0000 = 0 represents exponent 0 -1023 = -1023, which is out of range.
- And III IIII IIII = 2047 represents exponent 2047 1023 = 1024, which is also out of range.
- That gives us some room to represent other things: e.g. 0, overflow, infinities, NaN's

II bits for the exponent

Figure 3.1—Binary interchange floating-point format

- emax is 1023
- emin is I emax = I 1023 = -1022
- biased means "start at emin"
- This means 000 0000 0000 = 0 represents exponent 0
 -1023 = -1023, which is out of range.
- Note that in our experiment 0 was represented by 0000 0000 0000 0000 0000
- This uses that out of range exponent.

Within each format, the following floating-point data shall be represented:

- Signed zero and non-zero floating-point numbers of the form $(-1)^s \times b^e \times m$, where
 - s is 0 or 1.
 - e is any integer $emin \le e \le emax$..
 - m is a number represented by a digit string of the form $d_0 \cdot d_1 d_2 ... d_{p-1}$ where d_i is an integer digit $0 \le d_i < b$ (therefore $0 \le m < b$).
- Two infinities, $+\infty$ and $-\infty$.
- Two NaNs, qNaN (quiet) and sNaN (signaling).

These are the only floating-point data represented.

64-bit reals: significand

• 52 bits for the significand.

Figure 3.1—Binary interchange floating-point format

- Unless a binary number is 0, its most significant digit will be 1.
- This contrasts with decimal, where the most significant digit can be any of 1..9.
- This means that a normalised binary real in scientific notation will always look like:
- +/- $1.d_1d_2d_3...$ * 2^e
- In IEEE floating point, the significand bits give us d₁d₂d₃...

64-bit reals: significand

- 52 bits for the significand.
- This means that a normalised binary real in scientific notation will always look like:
- +/- I.d₁d₂d₃... * 2^e
- In IEEE floating point, the significand bits give us d₁d₂d₃...
- So 0000 0000 ... 0000 means we have 1.000... as our significand (hence a power of 2: 1/4,1/2,1,2,4,...)
- Similarly 0100 0000 ... 0000 means we have 1.01 times a power of 2, and 1.01 is $5/4 = 1.25 (101_2 = 5_{10})$, and shift two places corresponds to division by $2^2 = 4$).

Big Endian and Little Endian

- Remember: data is organised into 8-bit bytes.
- There is a choice about which order to store the bytes in.
- We are used to seeing high-order bytes first. This is Big Endian.
- Intel and others use Little Endian (low-order bytes first).
- This is used for both integers and reals.
- It can be a little confusing when looking at bit dumps.

Floating Point

- One theme of this course is that many of the techniques used in computing correspond very closely to things we use or do already in real life.
- The computer representation of reals corresponds to scientific notation.
- More specifically it corresponds to scientific notation to a fixed number of places, and with a fixed range of possible powers of 10.

Floating Point: additional material

Compare what we have just seen with

- Speed of light: 2.997930 * 10⁸ ms⁻¹
- Mass of hydrogen atom: 1.67 x 10⁻²⁴ g
- Avogadro's constant: 6.02214179×10²³

Rounding I

- If we take an arbitrary real number, then it probably isn't one of our floating-point reals.
- Example: the closest we get to 1/3 is 3.33 e -1.
- This is out by 0.00033333....
- So we get errors when we put numbers into the system.
- These errors can build up as the program runs.

 and we certainly can't represent numbers like pi, e, or the square root of 2 exactly.

- Moreover, how accurately we can represent a number depends on how big it is.
- Near 0 we can get within 10-9 of a number. Smallest non-zero number we can represent is 1.00*109 if we only allow significands beginning with 1-9. It's 0.01*10-9 = 1.00*10-11 if we allow ones beginning with 0.
- That's 0.00000001 in the first case and 0.0000000001 in the second.

- Up near 1,000,000 we have:
- $1,000,000 = 1.00*10^6$
- so the next number we can represent is 1.01*10⁶
- $1.01*10^6 = 1,010,000$
- So the gap between numbers we can represent has jumped to 10,000.
- In other words, we cannot represent 1,005,000 accurately.

Class question

 What is the smallest whole number we can't represent?

Ans: 1001

• It would be 1.001*10³ which requires 4 digits in the exponent.

- We basically use two algorithms, one for addition and one for subtraction.
- Let's concentrate on addition.
- ASSUME: significand is between 1.000... and 9.999...
- IE it has a single digit to the left of the decimal point, and that digit is not 0.

Addition

- To add x*10^a and y*10^b:
- Take the greater of a and b (without loss of generality, suppose it's a).
- Shift y right by a-b, to get y' $(y*10^b = y'*10^a)$
- Add x and y' essentially as integers to get z
- Round z to the correct number of places to get z'
- If the result is less than 10, answer is z'*10^a
- If the result is bigger than 10, shift right by 1 to get z", answer is z"
 * 10^{a+1}.

Addition (Example)

- To add $x*10^a = 2.01*10^3$ and $y*10^b = 3.24*10^{2}$
- Take the greater of a and b (a=3).
- Shift y right by a-b=1, to get y'=0.324 $(y*10^b = y'*10^a)$
- Add x and y' essentially as integers (2010 and 0324) to get z=2.334
- Round z to the correct number of places to get z'=2.33
- If the result is less than 10, answer is $z'*10^a = 2.33*10^3$

Addition (Example)

- To add $x*10^a = 9.80 * 10^4$ and $y*10^b = 4.67 * 10^3$
- Take the greater of a and b (a=4).
- Shift y right by a-b=1, to get y'=0.467 $(y*10^b = y'*10^a)$
- Add x and y' essentially as integers to get z = 10.267
- Round z to the correct number of places to get z' = 10.3
- If the result is less than 10, answer is z'*10^a
- If the result is bigger than 10, shift right by 1 to get z'' = 1.03, answer is $z'' * 10^{a+1} = 1.03 * 10^5$.

- When we add, multiply or subtract two floating-point numbers we don't necessarily get another one.
- Example: I.23eI + 4.56e-I
 - = 1.23el + 0.0456el
 - = 1.2756eI
 - Now we have to decide which number to use as the value of the sum.: it could be either 1.27e1 or 1.28e1
 - We could decide to: round to +∞, round to -∞, round to nearest, round toward zero, round away from 0.
 - In fact, IEEE does not allow round away from 0, and there are two variants of round to nearest: round ties to even and round ties away from 0.
 - These errors can build up too.

- Just to ram this point home: take a couple of extreme examples.
- 1.00 + 0.001 = 1.0 e0 + 1.0e-3 = 1.0 e0 !!!
- 1000 + 1 = 1.0e3 + 1.0e0 = 1.0 e3 = 1000 !!!
- This kind of thing really happens on your computer (not with these numbers), and we will be doing some experiments to see more detail.
- Notice that we are getting this problem because the numbers are apart by a factor of 10³, which corresponds to the number of significant figures we have in the representation.

Experiment week4.6.c

Live experiment

Another test: week4.7.c

 Actually, we don't need the constants to show this. We can find values.

```
#include <stdio.h>

main()
{
    double a = 1.0;
    double e = 1.0;
    int n = 0;
    while ((a+e)!=a) {
        e = e/2;
        n++;
        }
    printf("For a = %e: n = %i; e = %e\n",a,n,e);
}
```

```
Edmunds-MacBook:C-code edmundr$ ./week4.7
For a = 1.000000e+00: n = 53; e = 1.110223e-16
Edmunds-MacBook:C-code edmundr$
```

Operations

5.4.1 Arithmetic operations

Implementations shall provide the following *formatOf* general-computational operations, for destinations of all supported arithmetic formats, and, for each destination format, for operands of all supported arithmetic formats with the same radix as the destination format. These operations shall not propagate non-canonical results.

- formatOf-addition(source1, source2)
 - The operation **addition**(x, y) computes x+y.
 - The preferred exponent is min(Q(x), Q(y)).
- formatOf-subtraction(source1, source2)
 - The operation **subtraction**(x, y) computes x-y.
 - The preferred exponent is min(Q(x), Q(y)).
- formatOf-multiplication(source1, source2)
 - The operation **multiplication**(x, y) computes $x \times y$.
 - The preferred exponent is Q(x) + Q(y).
- formatOf-division(source1, source2)
 - The operation **division**(x, y) computes x/y.
 - The preferred exponent is Q(x) Q(y).
- formatOf-squareRoot(source1)
 - The operation **squareRoot**(x) computes \sqrt{x} . It has a positive sign for all operands ≥ 0 , except that **squareRoot**(-0) shall be -0.
 - The preferred exponent is floor(Q(x)/2).
- formatOf-fusedMultiplyAdd(source1, source2, source3)
 - The operation **fusedMultiplyAdd**(x, y, z) computes ($x \times y$) + z as if with unbounded range and precision, rounding only once to the destination format. No underflow, overflow, or inexact exception (see 7) can arise due to the multiplication, but only due to the addition; and so fusedMultiplyAdd differs from a multiplication operation followed by an addition operation.
 - The preferred exponent is min(Q(x)+Q(y), Q(z)).
- formatOf-convertFromInt(int)
 - It shall be possible to convert from all supported signed and unsigned integer formats to all supported arithmetic formats. Integral values are converted exactly from integer formats to floating-point formats whenever the value is representable in both formats. If the converted value is not exactly representable in the destination format, the result is determined according to the applicable rounding-direction attribute, and an inexact or floating-point overflow exception arises as specified in Clause 7, just as with arithmetic operations. The signs of integer zeros are preserved. Integer zeros without signs are converted to +0.
 - The preferred exponent is 0.

 The standard also specifies arithmetical operations...

More on rounding

- The inexactness in floating-point means that you need to be careful how you do things.
- There are some basic rules:
 - never base a test on whether two floating-point numbers are equal (see experiment)
 - never simply use raw values (almost always better to work with a base and offset, x+e).
- For more (much more) see "What every computer scientist should know about floating-point arithmetic"

Reading

- What every computer scientist should know about floating-point arithmetic.
- IEEE 754-2008

Floating Point: end of additional material

Character Sets

Text: the simplest example

- Computers need to deal with text.
- Text is made up of individual characters.
- Each character is represented as a number.
- Exactly how it is represented as a number depends on the encoding and the "character set" being used.

From a mail message header

```
From: <concurrency-request@listserver.tue.nl>
Subject: Concurrency Digest, Vol 8, Issue 90
To: <concurrency@listserver.tue.nl>
Reply-To: <concurrency@listserver.tue.nl>
Date: Sat, 14 Jun 2014 19:54:09 +0200
Message-ID: <mailman.11.1402768449.7567.concurrency@listserver.tue.nl>
Content-Type: text/plain; charset="us-ascii"
Content-Transfer-Encoding: 7bit
X-BeenThere: concurrency@listserver.tue.nl
X-Mailman-Version: 2.1.12
```

Another

neywell and BBC".

```
X-MS-Exchange-Organization-AuthMechanism: 03
X-MS-Exchange-Organization-AuthSource: DB4PR07MB332.eurprd07.prod.outlook.com
X-MS-Has-Attach:
X-MS-Exchange-Organization-SCL: -1
X-MS-TNEF-Correlator:
Content-Type: text/plain; charset="iso-8859-2"
Content-Transfer-Encoding: quoted-printable
MIME-Version: 1.0

Dear Bill,
In the "strong links with business" part of the letter I'd add "Philips, Ho=
```

QMPlus Web Page

Characters: ASCII

- The oldest and still the most famous representation is ASCII (American Standard Code for Information Interchange).
- It uses 7 bits, and so numbers $0...2^7$ I = 127
- It is based on the idea of an old-style lineprinter.

Regular ASCII Chart (character codes 0 - 127)

	000d	00h	Α.	(nul)	016d	10h	•	(dle)	032d	20h	ш	0484	30h	0	064d	40h	0	080d	50h	P	096d	60h	6	112d	70h	P
	001d	01h	0	(soh)	017đ	11h	•	(dc1)	0334	21h	!	0494	31h	1	065d	41h	A	081d	51h	Q	097d	61h	a	113d	71h	q
	002d	02h	•	(stx)	0184	12h	:	(dc2)	0344	22h	"	050₫	32h	2	0664	42h	В	082d	52ħ	R	098d	62h	Ъ	114d	72h	r
	003d	03h	٠	(etx)	0194	13h	H	(dc3)	035d	23h	#	051d	33h	3	067d	43h	C	083d	53h	S	099d	63h	С	115d	73h	s
	004d	04h	٠	(eot)	020d	14h	P	(dc4)	0364	24h	\$	0524	34h	4	068d	44h	D	084d	54h	T	100d	64h	d	116d	74h	t
	005d	05h	٠	(enq)	0214	15h	5	(nak)	0374	25h	%	0534	35h	5	069d	45h	Ε	085d	55ħ	U	101d	65h	0	117d	75h	u
ار	006d	06h	٠	(ack)	022đ	16h	-	(syn)	0384	26h	k	0544	36ħ	6	070d	46ħ	F	086d	56h	V	102d	66h	f	118d	76h	v
1	007d	07h	•	(bel)	023d	17h	ŧ	(etb)	0394	27h	*	055d	37h	7	071d	47h	G	087d	57h	W	103d	67h	g	119d	77h	w
	0084	08h		(bs)	024d	18h	Ť	(can)	0404	28h	(0564	38ħ	8	072d	48ħ	H	088d	58h	X	104d	68h	h	120d	78h	x
	009d	09h		(tab)	025d	19h	į.	(em)	041d	29h)	057d	39h	9	0734	49ħ	Ι	089d	59h	Y	105d	69h	i	121d	79h	У
	010 <i>d</i>	OAh		(lf)	0264	1Ah		(eof)	0424	2Ah	*	0584	3Ah	:	074d	4Ah	J	090d	5Ah	Z	106d	6Ah	j	122d	7Ah	z
	011d	OBh	ď	(vt)	027 đ	1Bh	+	(esc)	043d	2Bh	+	059d	3Bh	;	075d	4Bh	K	091d	5Bh]	107d	6Bh	k	123 <i>d</i>	7Bh	{
	012d	OCh		(np)	0284	1Ch	L	(fs)	044d	2Ch	,	060d	3Ch	<	076d	4Ch	L	092d	5Ch	1	108d	6Ch	1	124d	7Ch	1
	013d	ODh	3	(cr)	029d	1Dh	**	(gs)	045d	2Dh	-	061d	3Dh	=	077d	4Dh	M	093d	5Dh]	109d	6Dh	m	125d	7Dh	}
	014d	OEh	я	(so)	030d	1Eh	•	(rs)	0464	2Eh		0624	3Eh	>	078d	4Eh	N	094d	5Eh	^	110d	6Eh	n	126d	7Eh	~
l	015 <i>d</i>	OFh	ø	(si)	0314	1Fh	•	(us)	047d	2Fh	/	063d	3Fh	?	079d	4Fh	0	095d	5Fh	_	111d	6Fh	0	127 d	7Fh	Δ

0

Some things to notice

- 7 bits: abcdefg
- A-Z occupy: 65-90: 1000001-1011010
- a-z occupy: 97-122: 1100001-1111010
- they differ by exactly 32 (hence in one bit), and capitals start at binary 100000.
- 0-9 occupies: 48-57 (binary 0110000 0111001)

Some things to notice

- There's a whole bunch of strange stuff, eg carriage return (moves the print head back to the start of the line) and line-feed (moves the paper up a line).
- There are no pound signs (only dollar=36), and no funny accents.

More modern character sets

- Computers work in units of 2ⁿ bits. So more modern character sets would have 8 bits not 7, and 256 characters (0..255) not 128 (0..127).
- Most modern character sets are standardised by ISO (International Standards Organisation).

ISO-8859-1

- Extension of ASCII (to 8 bits)
- (Was) default character set in many browsers (now UTF-8)
- One of a number of ISO character sets designed to allow 8-bit encoding of other national alphabets.
- This one is Latin, and includes most European symbols (eg accents).

ISO-8859-1 (Latin)

Char	Code	Name	Description
à	224	agrave	a grave
á	225	aacute	a acute
â	226	acirc	a circumflex
ã	227	atilde	a tilde
ä	228	auml	a umlaut
å	229	aring	a ring
æ	230	aelig	ae ligature
ç	231	ccedil	c cedilla
è	232	egrave	e grave
é	233	eacute	e acute
ê	234	ecirc	e circumflex
ë	235	euml	e umlaut
ì	236	igrave	i grave
í	237	iacute	i acute
î	238	icirc	i circumflex
ï	239	iuml	i umlaut

•								
Char	Code	Name	Description					
ð	240	eth	eth					
ñ	241	ntilde	n tilde					
ò	242	ograve	o grave					
ó	243	oacute	o acute					
ô	244	ocirc	o circumflex					
õ	245	otilde	o tilde					
ö	246	ouml	o umlaut					
÷	247	divide	division sign					
ø	248	oslash	o slash					
ù	249	ugrave	u grave					
ú	250	uacute	u acute					
û	251	ucirc	u circumflex					
ü	252	uuml	u umlaut					
ý	253	yacute	y acute					
þ	254	thorn	thorn					
ÿ	255	yuml	y umlaut					

har	Code	Name	Description	Char	Code	Name	Description
	32	-	Normal space	0	45	-	Digit0
!	33	-	Exclamation	1	49	-	Cigit1
	34	quot	Double quote	2	50	-	Cigit 2
*	35	-	Hash or pound	3	51	-	Digit3
*	36	-	Dollar	4	52	-	Cigit 4
%	37	-	Percent	5	53	-	Digit5
å	38	-	Ampersand	6	54	-	Digit 6
	29	-	Apostrophe	7	55		Digit?
(40	-	Open brecket	8	56	-	Cigitô
)	41.	-	Close brecket	9	5.7	1	Digit9
	42		Asterisk	1	58	-	Colon
+	43	-	Plus sign	1	59	-	Senicolon
	:44	-	Comma	<	60	Jt.	Less then
-	45	-	Mnus sign	*	61	-	Equels
	45	-	Period	>	155	gri	Greeter than
7	47	,	Forward slash	7	63	7	Overstion man

c

Char	Code	Name	Description	Char	Code	Nome	Description
6	64	-	Atsign	P	80	-	P
A	65	-	A	Q	61		o .
В	66	-	В	R	52		R
C	67	-	С	S	83		S
D	68	-	D	T	84		Т
E	69	-	E	U	- 05	1	U
F	70	-	F	V	06		V
G	71		G	W	87		w
Н	72	1	H	X	50		×
I	73	-	1	Y	89		Y
3	74	×	J	2	10		2
K	75	-	K.	1	91		Open squere bracket
I.	76	-	L	1	1/2	1	Backslash
м	77		M	1	93		Close square bracket
N	76	-	N	Α.	94		Pointer
0	79		0	-	15	1	Underscore

Short	Code	Name	Description	Char	Code	Name	Description
1.	96	1.	Огаче вссем	p	112		p.
	97	-	a	q	113		q
b	98	ж.	b	P	114		4
ŧ	99	-	e		115	+	9
d	100	-	d .		114		
e	191	,	а.	u	117		W
f	102		*	¥	118		٧
E	103	1.	9	w	119		w
h	104	4	h	X	120	×	×
i	105	· ·	i	y	121		У
j	106		ji .	z	122		ł
k	107	+	k	1	123	*	Left brace
ı	100		9	- 1	124		Vertical bar
m	109	. K	m	1	125	-	Pight brace
n	110	+	rs .	.00	126		Táse
	111	-	0	×	127	-	(Unused)

Char	Code	Name	Description	Cher	Code	Name	Description
	160	літр	Non-breaking space		176.	deg	Degree sign
1	161	iexel	Inverted exclamation	1.	177	plusmo	Plus-minus sign
¢	162	cent	Centaign	1	178	sup2	Supervoript 2
£	163	pound	Pound sign		179	10p3	Supercript 3
0	164	curren	Owency sign	,	180	acute	Spacing acute
¥	165	yen	Yen sign	и	181	mi0'0	Micro sign
1	166	brybar	Orokes ber	1	182	pere.	Paragraph sign
ş	167	sect	Section sign		183	middet	Middle dot
*	160	uni	Umlaut or diseresis	1	194	Decidi	Specing ceditie
0	169	copy	Copyright sign	1	105	sup1	Supervoiet 1
	170	ordf	Feminine ordinal	1	106	ordm	Masculine ordinal
*	121	laquo	Left angle quotes	,	187	raquo	Fight angle quotes
4	172	not	Logicel not sign	14	188	9ac14	One quarter
7	173	sky	Softhyphes	16	109	tec12	One half
0	174	reg	Registered trademark	94	190	tinc34	Three-quarters
	175	macr	Specing mecron	4	191	iquest	Inverted question may
		3					Accessor to the second

Char	Code	Name	Description	Char	Code	Name	Description
À	192	Agrave	Agrava	Ð	208	ETH	ETH
A	193	Ascule	A scute	Ñ	209	Milde	Nitide
Á	194	Aciro	A circumflex	0	210	Ograva	Ograve
À	195	Allide	ANde	0	211	Cacule	O acute
À	196	Aurel	Aumleut	Ô	212	Ocirc	O circumflex
À	192	Aring	Aring	Ó	213	Otide	Otide
Æ	198	AElig	All ligature	0	214	Ount	O umlaut
Ç	199	Coedil	C cedilla	×	215	tnes	Multiplication sign
Ė	200	Egreve	E grave	Ø	216	Oslash	O slesh
Ė	201	Encute	E acute	U	217	Ugrave	Ugrave
Ė	202	Ecirc	E circumflex	Ü	218	Uscute	U acute
E	203	Eurol	E umleut	Û	219	Ucirc	U circumflex
1	204	igrave	1 grave	U	228	Uuml	U umleut
1	205	Tecute	Lecone	Ŷ	221	Yecvle	Yeovle
Ì	206	laire	l circumflex	Þ	222	THORN	THORN
Ĭ	297	Suni	Eurolaut	B	223	stig	sheep s

Cher	Code	None	Description	Char	Code	Name	Description
à	224	ograve	a grave	ŏ	240	gth.	eti
6	225	nacule	a acute	ñ	241	ntida	n tiide
á	226	9090	a crounflex	ò	242	ograve	o grave
á	227	aticle	a tide	ó	243	oacule	o acute
	228	purel	a umlaut	ê	244	ocirc	o circumtex
á	229	ering	a ring	ō	245	otide	o tilde
æ	230	selig	ae ligature	ŏ	245	qumi	o umlaut
•	231	ccedii	c cedille.	+	247	divide	division sign
è	232	egrave	e grave		248	oslash	o slash
é	233	eacule	e ecule	ù	249	1 grave	u grave
ě	234	ecirc	e circumflex	ú	250	vecute	u ocute
é	235	euni	e umlaut	ū	251	acisc	u circumflex
1	236	diana	i grave	0	252	quest	u umiaut
1	237	iecute	i ecule	9	253	yacute	y ecute
î	238	icirc	circumfex	Þ	254	thom	thom
ï	239	iumi	i uniqui	9	255	yund	y unidut

Character set	Description	Covers
ISO-8859-1	Latin alphabet part 1	North America, Western Europe, Latin America, the Caribbean, Canada, Africa
ISO-8859-2	Latin alphabet part 2	Eastern Europe
ISO-8859-3	Latin alphabet part 3	SE Europe, Esperanto, miscellaneous others
ISO-8859-4	Latin alphabet part 4	Scandinavia/Baltics (and others not in ISO-8859-1)
ISO-8859-5	Latin/Cyrillic part 5	The languages that are using a Cyrillic alphabet such as Bulgarian, Belarusian, Russian and Macedonian
ISO-8859-6	Latin/Arabic part 6	The languages that are using the Arabic alphabet
ISO-8859-7	Latin/Greek part 7	The modern Greek language as well as mathematical symbols derived from the Greek
ISO-8859-8	Latin/Hebrew part 8	The languages that are using the Hebrew alphabet
ISO-8859-9	Latin 5 part 9	The Turkish language. Same as ISO-8859-1 except Turkish characters replace Icelandic ones
ISO-8859-10	Latin 6 Lappish, Nordic, Eskimo	The Nordic languages
ISO-8859-15	Latin 9 (aka Latin 0)	Similar to ISO 8859-1 but replaces some less common symbols with the euro sign and some other missing characters
ISO-2022-JP	Latin/Japanese part 1	The Japanese language
ISO-2022-JP-2	Latin/Japanese part 2	The Japanese language
ISO-2022-KR	Latin/Korean part 1	The Korean language

From w3schools.com

But

- 256 characters is not enough...
- if you need to cover more than one language
- if you're a mathematician
- if you're Chinese

And so we have unicode

- Character set used in Java
- First 128 characters are ASCII
- First 256 are ISO-8859-1
- Total number of characters available is: 1,114,112
 = 21 (just over 20) bits
- Lots of segments correspond to particular languages
- See http://www.unicode.org/

Unicode

- Distinguishes between the number of the character (the code point) and the way it is represented.
- So we have UTF-32 (represents character in 32 bits = 4 bytes)
- But also UTF-16 and UTF-8 (16 and 8 bits).
- UTF-8 is now standard on web applications.
- UTF-32 and UTF-16 have "big endian" and "little endian" variants, referring to the order of the bytes.

Unicode encodings

Figure 2-12. Unicode Encoding Schemes

UTF-8

Preferred Usage. UTF-8 is typically the preferred encoding form for HTML and similar protocols, particularly for the Internet. The ASCII transparency helps migration. UTF-8 also has the advantage that it is already inherently byte-serialized, as for most existing 8-bit character sets; strings of UTF-8 work easily with C or other programming languages, and many existing APIs that work for typical Asian multibyte character sets adapt to UTF-8 as well with little or no change required.

From Unicode Standard v 6.2

Translation

- We want you to use UTF-8 for internet and webbased protocols
- here are some reasons

UTF-8

- But UTF-8 uses different numbers of bytes to encode individual characters.
- It therefore has to be cleverly and carefully designed so that it is not ambiguous, and so that as much existing software continues to work with it as possible.
- The designer (Ken Thompson) was one of the lead designers of Unix.

From the rfc for UTF-8

UTF-8 encodes UCS characters as a varying number of octets, where the number of octets, and the value of each, depend on the integer value assigned to the character in ISO/IEC 10646 (the character number, a.k.a. code position, code point or Unicode scalar value). This encoding form has the following characteristics (all values are in hexadecimal):

o Character numbers from U+0000 to U+007F (US-ASCII repertoire) correspond to octets 00 to 7F (7 bit US-ASCII values). A direct consequence is that a plain ASCII string is also a valid UTF-8 string.

From the rfc for UTF-8

- O US-ASCII octet values do not appear otherwise in a UTF-8 encoded character stream. This provides compatibility with file systems or other software (e.g., the printf() function in C libraries) that parse based on US-ASCII values but are transparent to other values.
- Round-trip conversion is easy between UTF-8 and other encoding forms.
- o The first octet of a multi-octet sequence indicates the number of octets in the sequence.
- o The octet values CO, C1, F5 to FF never appear.
- Character boundaries are easily found from anywhere in an octet stream.
- o The byte-value lexicographic sorting order of UTF-8 strings is the same as if ordered by character numbers. Of course this is of limited interest since a sort order based on character numbers is almost never culturally valid.
- o The Boyer-Moore fast search algorithm can be used with UTF-8 data.
- o UTF-8 strings can be fairly reliably recognized as such by a simple algorithm, i.e., the probability that a string of characters in any other encoding appears as valid UTF-8 is low, diminishing with increasing string length.