ml-01

November 29, 2019

1 Python for Data Science

Machine Learning 1 - Introduction and Simple Supervised Learning

2 Overview

- What is Machine Learning (ML)?
- Where does it come from?
- What ML is not
- Application Examples

3 What is Machine Learning?

Given

- a model class f(.) (Neural Networks, Linear models, Random Forests, ...)
- some data x

Machine Learning:

Learn function f(x) that takes data as input and makes a prediction

4 Machine Learning Systems in Practice

5 Some ML Applications

Data	Prediction	Popular models
Email Texts	Spam or not?	Linear Models
Clicks/Likes	Personality, credit risk, playlists,	Linear Models
Text in one language	Text in another language	Neural networks
Images	Object on image	Neural Networks
Text	Spoken Language	Neural Networks
Spoken Language	Text	Neural Networks

6 What is Machine Learning

- ML researchers come from many disciplines:
 - Statistics
 - Mathematics
 - Physics
 - Computer Science
- Some consider ML (or its methods) a subfield of the above genres
- Also, ML has many fields / synonyms:
 - Artificial Intelligence
 - Data Mining
 - Information Retrieval
 - Data Science
- Hence there are many definitions

7 What is Machine Learning

Some definitions that can be helpful:

ML systems

- learn rules from data (as opposed to handcrafted rules)
- perform cognitive tasks (as in: emulating human cognition)

8 A Short History of Machine Learning

- 1632: Bodies as biological machines, [Descartes, 1632]
- 1940/50: From machines to intelligent machines
 - Cybernetics mechanics of cognition [Wiener, 1948]
 - Turing Test [Turing, 1950]: Can machines think?

- Perceptron [Rosenblatt, 1958]: Artificial 'brains'
- Eliza [Weizenbaum, 1966]: Better than psychotherapy!
- Chinese Room argument [Searle, 1980]: Against functionalism
- 1973 AI winter [Lighthill, 1973] Classical AI was mainly built on hand made rules

Problem: No scalability, no unified theory of cognition

New AI: Let machines learn rules from data [Russell and Norvig, 2010]

9 What is Artificial Intelligence?

9.1 Alan Turing

- Important theoretical work on computability
- Programmed first chess program
- Helped to crack Enigma encryption
- Most important Computer Science Prize: Turing Award
- Many people at the time were complaining about the hybris behind the research on intelligent machines
- Turing thought that in order to argue about this, one needs a proper definition of intelligence

9.2 The Imitation Game

In 1950 A.M. Turing proposed the Imitation Game [Turing, 1950].

- Interrogator communicates with two participants via teleprompter
- One of the participants is a computer
- The task of the interrogator is to find out who is human.

This is often referred to as the Turing Test:

- Many humans fail the this test
- Many machines pass it nowadays some passed it already in the 1960

9.3 ELIZA - An Early Chatbot

- **Human** All men are alike
- Eliza In what way?
- **Human** They're always bugging us about something or other
- Eliza Can you think of a specific example
- Human Well, my boyfriend made me come here
- Eliza Your boyfriend made you come here?
- Human He says I'm depressed much of the time
- Eliza I am sorry to hear you're depressed
- **Human** It's true, I am unhappy

- Eliza Do you think coming here will help you not to be unhappy?
- Human I need some help, that much seems certain.
- Eliza What would it mean to you if you got some help?
- **Human** Perhaps I could learn to get along with my mother.
- Eliza Tell me more about your family ...

10 What Machine Learning is not

- Algorithms that do not learn from data
- Expert systems with hand crafted logic / rules

10.1 Example: Rule Based System For Spam Classification

11 Why Machine Learning

- Rule based systems (old AI) are great:
 - Testing is easy
 - Always interpretable
 - Debugging is easy
- But rule based systems are problematic
 - Require human experts to set up rules
 - Rules need to be kept up to date
 - Doesn't scale
 - Doesn't generalize

12 A ML Spam Classifier

```
def predict_spam(word_histogram = {'Viagra': 1, ...}):
```

```
# Learned rules
rules = {'Viagra': 10.0, 'Homework': -1.0, ...}
spam_score = 0.0
# Word histograms are weighted and summed up
for word, weight in rules.items():
    spam_score += word_histogram[word] * weight
return spam_score > 0
```

13 Rules and Data are Vectors

- Rules learned by Machine Learning can be expressed as matrix/vector operations
- In this form, rules can be treated as mathematical functions f(x)
- Vector representation helps to understand some ML models
- Mathematical functions can be optimized

14 Vectors

15 Vector Transpose

16 Vector Scaling

17 Vector Addition

18 Vector Scaling and Addition

19 Vector Inner Product: Similarity of Vectors

$$\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^{\top} \mathbf{w} = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

$$= \sum_{i}^{D} v_i w_i$$

20 Spam Classification as Vector Operation

21 Training Machine Learning Models

- After feature extraction, many data sets can be modeled with the same methods
- The usual procedure:
 - Pick a Machine Learning model (Neural Network, Linear Regression, ...)
 - Pick a loss function (mean squared error, accuracy, ...)
 - Pick a regularizer (controls the complexity of a model, more on that later)
 - Pick an *optimizer* (Usually some gradient descent version)

- Minimize the weighted sum of loss and regularizer on some training data
- Evaluate the loss function on some independent test data (cross-validation)

22 Objective Functions of ML Models

Most ML models have objective functions like

$$e(w) = l(x, w) + r(w)$$

where l(x, w) is called **loss** and measures the prediction quality and r(w) is called **regularizer** and measures the complexity of the model

A simple loss function would be

$$||y - \hat{y}||_2^2$$

where \hat{y} is some prediction of some (target) variable

A simple regularizer would be the L_2 or euclidean norm of w

$$||w||_{2}^{2}$$

meaning we penalize models with large coefficients in w

23 Minimizing Mathematical Functions: Gradient Descent

Objective functions can be minimized by gradient descent

$$w_{t+1} \leftarrow w_t - \eta \nabla e(w)$$

where

- w are the parameters to be optimized
- \bullet t is the iteration
- η is the learning rate
- $\nabla e(w)$ is the gradient of the objective function with respect to w

23.1 Derivatives of Univariate Functions

Function $f(x)$	Derivative $f'(x)$
$\overline{x^n}$	nx^{n-1}
cf(x)	cf'(x)
•••	•••

23.2 Derivatives of Vector Values Functions

For vector values functions $f(\mathbf{x}): \mathbb{R}^D \to \mathbb{R}^U$

the gradient $\nabla f(\mathbf{x})$ at position \mathbf{x} is

$$\nabla f(\mathbf{x}) = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \dots \right]$$

Function $f(\mathbf{x})$	Derivative $\nabla f(\mathbf{x})$
$\overline{\mathbf{x}^{ op}}\mathbf{w}$	w
$\mathbf{x}^{ op}\mathbf{x}$	$2\mathbf{x}$
$\mathbf{x}^{\top} A$	A
	

24 Types of Machine Learning Models

- Unsupervised Learning:
 - Learns to reconstruct data
 - Used to find patterns to focus on or to discard
 - Does not require labels
 - Examples: PCA, Autoencoder Neural Networks, Clustering
- Supervised learning:
 - Learns to predict target variable
 - Examples for continuous target variables (Regression): Linear Regression, Kernel Regression, Neural Networks
 - Examples for categorical target variables (Classification): Logistic Regression, Support Vector Machines, Neural Networks

25 Choosing Machine Learning Models

from sklearn, figure by Andreas Mueller.

Taken

26 Some Challenges of Machine Learning

- ML systems don't require rules, just data
 - Data implicitly defines the rules to learn
 - Scales well, provided there is training data
- ML systems can be difficult:
 - Not all parameters can be easily optimized (e.g. model *hyperparameters*, such as: which model or features should I use)
 - Often training data is not available
 - Overfitting to training data
 - Behaviour changes with data quality
 - Difficult to test

27 The Perceptron Learning Algorithm

28 The Perceptron Learning Algorithm

- Frank Rosenblatt was an American Psychologist
- He invented the Perceptron Algorithm the first neural network
- Perceptrons were shortly afterwards criticized for their simplicity
- Took until the 80ies until they were rediscovered. And then again in 2012.

29 The Perceptron Learning Algorithm

Perceptron error $\mathcal{E}_{\mathcal{P}}$ is a function of the weights \boldsymbol{w}

$$\underset{w}{\operatorname{argmin}} \qquad \left(\mathcal{E}_{\mathcal{P}}(\mathbf{w}) = -\sum_{m \in \mathcal{M}} \mathbf{w}^{\top} \mathbf{x}_{m} y_{m} \right) \tag{4}$$

where ${\cal M}$ denotes the index set of all *misclassified* data ${f x}_m$

Eq. 4 can be minimized *iteratively* using **stochastic gradient descent** [Bottou, 2010; Robbins and Monro, 1951]

- 1. Initialize \mathbf{w}^{old} (randomly, 1/n, ...)
- 2. While there are misclassified data points \mathbf{x}_m Pick a random misclassified data point \mathbf{x}_m

$$\mathbf{w}^{\mathsf{new}} \leftarrow \mathbf{w}^{\mathsf{old}} - \eta \nabla \mathcal{E}_{\mathcal{P}}(\mathbf{w}) = \mathbf{w}^{\mathsf{old}} + \eta \mathbf{x}_{m} \mathbf{y}_{m}$$
 (5)

Algorithm 1 Perceptron learning

```
Require: Data X = [\mathbf{x}_1, \dots, \mathbf{x}_N], x_i \in \mathbb{R}^D, Labels y_1, \dots, y_N \in \{-1, +1\},
     iterations its, learning rate \eta
Ensure: w
1: \mathbf{w} = \mathbb{1}_D/(D)
2: for it = 1, \dots, its do
         # Pick a random example
4:
         i = ceil(rand*N)
5:
         # If this example is not correctly classified
6:
         if sign(\mathbf{w}^{\top}\mathbf{x}_i) ! = y_i then
7:
             # Update weight vector
8:
             \mathbf{w} \leftarrow \mathbf{w} + \eta/it \ \mathbf{x}_i y_i
9:
         end if
10: end for
```


30 Application Example: Handwritten Digit Recognition

Since the beginning of AI, handwritten digit recognition was used as a benchmark test.

31 Application Example: Handwritten Digit Recognition

MNIST dataset: - 10 classes - Here: subsampled to 16 by 16 pixels, centered symbols - We train a binary perceptron classifier to distinguish one digit from all others

```
[3]: import scipy as sp
import matplotlib.pyplot as plt
plt.style.use('ggplot')
from sklearn.datasets import load_digits
from assignment_perceptron_solution import perceptron_train

# load the digits dataset from sklearn
X, Y = load_digits(n_class=10, return_X_y=True)

accs = []
for digit_to_recognize in range(10):
    # transform the 10-class labels into binary form
```

```
y = sp.sign((Y==digit_to_recognize)* 1.0 - .5)

# train a perceptron to recognize the digit 5
_, acc = perceptron_train(X,y)
accs.append(acc)
```

```
[4]: # plot the learning curve
plt.figure(figsize=[12,4])
plt.plot(sp.vstack(accs).T)
plt.xlabel("Iterations");plt.ylabel("Accuracy");
plt.legend(range(10));
```


32 Assignment 8

In this exercise you will implement a simple perceptron for handwritten digit recognition

```
[5]: import scipy as sp
from sklearn.datasets import load_digits

def assignment_07_06(digit_to_recognize=5):
    # load the usps digits dataset from sklearn repository
    n_example = 100
    X, Y = load_digits(n_class=10, return_X_y=True)
    plt.matshow(X[n_example,:].reshape(8,8));
    plt.xticks([]);plt.yticks([]);
    plt.title(Y[n_example])
    plt.savefig("usps_example.png")
    # transform the 10-class labels into binary form
    y = sp.sign((Y==digit_to_recognize)* 1.0 - .5)
    _, acc = perceptron_train(X,y)
    plt.figure(figsize=[12,4])
```

```
plt.plot(acc)
          plt.xlabel("Iterations");plt.ylabel("Accuracy");
          plt.savefig("learning_curve.png")
     def perceptron_train(X,Y,iterations=100,eta=.01):
         Trains a perceptron and returns the weights and learning curve
         acc = sp.zeros(iterations)
         # initialize weight vector
         weights = sp.random.randn(X.shape[1]) * 1e-5
         for it in sp.arange(iterations):
             # indices of misclassified data
             wrong = (sp.sign(X @ weights) != Y).nonzero()[0]
             if wrong.shape[0] > 0:
                 # pick a random misclassified data point
                 \# rand_ex = \dots
                 # update weight vector
                 # weights += ...
                 # compute accuracy
                 acc[it] = sp.double(sp.sum(sp.sign(X @ weights)==Y))/X.shape[0]
         # return weight vector and accuracy
         return weights,acc
[61]: assignment_07_06()
```

4

[]: