Hartshorne 1.2 Exercises: Projective Varieties F

Feiyang Lin and Luke Trujillo

Exercise 2.1	Prove the '	'homogeneous	Nullstellensatz,	' which says	if $\mathfrak{a} \subseteq S$ is	a homogeneous	ideal, and if	$f \in S$ is
a homogeneous	s polynomia	l with $\deg f >$	0, such that $f(x)$	P) = 0 for all	$l P \in Z(\mathfrak{a})$	in \mathbf{P}^n , then f^q	$\in \mathfrak{a}$ for some	q > 0.

Solution:

Exercise 2.2 For a homogeneous ideal $\mathfrak{a} \subseteq S$, show that the following conditions are equivalent:

- (i.) $Z(\mathfrak{a}) = \emptyset$ (the empty set);
- (ii.) $\sqrt{\mathfrak{a}} = \text{either } S \text{ or the ideal } S_+ = \bigoplus_{d>0} S_d;$
- (iii.) $\mathfrak{a} \supseteq S_d$ for some d > 0.

Solution:

Exercise 2.3

- (a) If $T_1 \subseteq T_2$ are subsets of S^h , then $Z(T_1) \supseteq Z(T_2)$.
- (b) If $Y_1 \subseteq Y_2$ are subsets of \mathbf{P}^n , then $I(Y_1) \supseteq I(Y_2)$.
- (c) For any two subsets Y_1, Y_2 of \mathbf{P}^n , $I(Y_1 \cup Y_2) = I(Y_1) \cap I(Y_2)$.
- (d) If $\mathfrak{a} \subseteq S$ is a homogeneous ideal with $Z(\mathfrak{a}) \neq \emptyset$, then $I(Z(\mathfrak{a})) = \sqrt{\mathfrak{a}}$.
- (e) For any subset $Y \subseteq \mathbf{P}^n$, $Z(I(Y)) = \overline{Y}$.

Solution:

Exercise 2.4

- (a) There is a one-to-one inclusion-reversing correspondence between algebraic sets in \mathbf{P}^n and homogeneous radical ideals of S not equal to S_+ given by $Y \mapsto I(Y)$ and $\mathfrak{a} \mapsto Z(\mathfrak{a})$. Note: Since S_+ does not occur in this correspondence, it is sometimes called te *irrelevant* maximal ideal of S.
- (b) An algebraic set $Y \subseteq \mathbf{P}^n$ is irreducible if and only if I(Y) is a prime ideal.
- (c) Show that \mathbf{P}^n itself is irreducible.

Solution:

Exercise 2.5

- (a) \mathbf{P}^n is a noetherian topological space.
- (b) Every algebraic set in \mathbf{P}^n can be written uniquely as a finite union of irreducible algebraic sets, no one containing another. These are called its *irreducible components*.

Solution: