in The Claim:

- A rollover control system for an automotive vehicle 1. (Currently Amended) comprising:
- an active suspension having an independently adjustable unloading side and a an independently adjustable loading side;
- a rollover sensor generating a rollover signal for detecting an imminent rollover of the vehicle; and
- a controller coupled to said rollover sensor for controlling the active suspension to generate a restoring torque in response to the rollover signal.
- 2. (Original) A rollover control system as recited in claim 1 wherein said controller controls the loading side to a loaded condition and controls the unloading side to an unloaded condition to provide the restoring torque.
- 3. (Original) A rollover control system as recited in claim 1 wherein said controller controls the loading side to a loaded condition and simultaneously controls the unloading side to an unloaded condition to provide the restoring torque.
- 4. (Original) A rollover control system as recited in claim 1 wherein said rollover sensor comprises a speed sensor generating a first signal corresponding to wheel speed of the vehicle.
- A rollover control system as recited in claim 1 wherein said rollover sensor is selected from the group of a speed sensor, a lateral acceleration sensor, a roll rate sensor, a yaw rate sensor and a longitudinal acceleration sensor.
- 6. (Original) A rollover control system as recited in claim 1 wherein said rollover sensor is selected from the group of a speed sensor, a lateral acceleration sensor, a roll rate sensor, a yaw rate sensor and a steering wheel angle sensor.
- 7. (Original) A rollover control system as recited in claim 1 further comprising a sensor selected from the group of a steering angle sensor, acceleration sensor and a pitch rate sensor.

- A rollover control system as recited in claim 1 8. (Currently Amended) wherein said controller determines vehicle speed at a center of gravity of the vehicle in response to [[said]] a steering angle and said from a steering sensor.
- 9. (Original) A rollover control system as recited in claim 1 further comprising a brake controller coupled to said controller, said brake controller controlling front brake force and rear brake force in response to said rollover signal.
- A rollover control system as recited in claim 9 10. (Currently Amended) wherein said controller changes the restoring torque by changing [[the]] a steering angle factor in combination with [[said]] a brake force distribution.
- A rollover control system as recited in claim 1 11. (Currently Amended) wherein said controller changes the restoring torque by controlling [[the]] steered wheels.
- 12. (Original) A method of controlling rollover stability of a vehicle having an active suspension having a first side suspension and a second side suspension comprising the steps of:

sensing imminent rollover of the vehicle in response to a rollover signal; generating a restoring torque in response to the rollover signal by controlling the active suspension.

- 13. (Original) A method as recited in claim 12 wherein the step of generating a restoring torque comprises unloading the first side suspension.
- 14. (Original) A method as recited in claim 12 wherein the step of generating a restoring torque comprises loading the second side suspension corresponding to the loading side suspension.
- 15. (Original) A method as recited in claim 12 wherein the step of generating a restoring torque comprises generating a restoring torque in response to the rollover signal by controlling the active suspension and a brake force distribution.
- 16. (Original) A method as recited in claim 12 wherein the step of generating a restoring torque comprises generating a restoring torque in response to the rollover signal by controlling the active suspension and a steering angle.

- 17. (Original) A method as recited in claim 12 wherein the step of generating a restoring torque comprises simultaneously unloading the first side suspension and loading the second side suspension corresponding to the loading side suspension.
- A method of controlling rollover stability of a vehicle 18. (Currently Amended) having a first side suspension and a second side suspension comprising the steps of:

sensing imminent rollover of the vehicle in response to a rollover signal;

determining a loading side and [[a]] an unloading side of the vehicle in response to the rollover signal;

unloading the first side suspension corresponding to the unloading side suspension;

loading the second side suspension corresponding to the loading side suspension;

generating a restoring torque in response to the steps of unloading and loading to counter the imminent rollover.

- 19. (Original) A method as recited in claim 18 wherein prior to the step of loading and unloading generating the restoring torque by changing a steering angle of the vehicle.
- 20. (Original) A method as recited in claim 18 wherein prior to the step of loading and unloading generating the restoring torque by changing a brake force distribution.
- 21. (Currently Amended) A method as recited in claim 18 wherein prior to the step of loading and unloading generating the restoring torque by changing [[the]] a steering angle factor in combination with [[said]] a brake force distribution.
- 22. (Original) A method as recited in claim 18 wherein the steps of loading and unloading are performed simultaneously.