My problem # 1: bridge between logic and neural

甄景贤 (King-Yin Yan)

General. Intelligence@Gmail.com

Abstract. 如何将神经网络和逻辑规则的结构结合,在混合的泛函空间上做 gradient descent?

1 神经网络的结构

一个 神经网络 F 基本上是:

$$y = (x)$$

$$F(\mathbf{x}) = \mathcal{O}(W_1 \mathcal{O}(W_2 ... \mathcal{O}(W_L \mathbf{x})))$$
(1)

为简单起见,输入 x 和输出 y 都是 n-dim vector。

L 是层数, W_{ℓ} 是每层的**权重**矩阵 (= $n \times n$ square matrices).

○ 是 sigmoid function (其作用是赋予非线性):

$$\bigcirc(\xi) = \frac{1}{1 + e^{-\xi}} \tag{2}$$

applied **component-wise**。必要时 \bigcirc 可以换成 $\mathbb C$ 上的 polynomials。

可以证明,如果层数和 neuron 个数足够多,这些 F functions 的 family F 在某个 function space 上是 dense 的。

Machine learning 的目的是在这 function space 上「计分」(ie, distribute scores $\in \mathbb{R}$ over functions $F \in \mathcal{F}$):

(3)

学习是透过 gradient descent 找出分数 J 最优的 F^* 。方法是:

$$w += \eta \nabla_w J \tag{4}$$

其中 $w=W_{ij}^\ell$ 是第 ℓ 层的第 i,j 个权重, $\nabla_w J=\frac{\partial J}{\partial w}$ 就是 gradient, $\eta\ll 1$ 是控制学习速度的 learning rate。

可以将 \mathcal{F} 看成是由 \bigcirc 和W's generate 出来的 Banach algebra(乘法是 composition)。Banach algebra 和 C^* -algebra 在此处不能应用,因为 \bigcirc 不是线性算子。

2 逻辑结构

重点是想在 \mathcal{F} 的结构上「加入」逻辑 rules 的结构。逻辑是指由一些命题推导出另一些命题:

$$A, B, C, \dots \vdash D \tag{5}$$

这里的 \vdash 的作用 corresponds to F。

逻辑结构有两部分:

• Matching structure: the state variable x is the Cartesian product of a number of smaller states x_i . "Matching" means to check if x_i resides in certain polytope regions:

if
$$Ax_i \ge b$$
 then 1 else 0 (6)

This is the same as applying the step function after a matrix:

$$\mathbf{y} = \mathbf{O}(W \ \mathbf{x}) \tag{7}$$

and this can be easily incorporated in the 神经网络's F if we allow \bigcirc to replace \bigcirc . Finally, 这个 matching 的结果要 multiply with 下面的 linkage function。

• **Linkage** structure: Consider this logic formula and notice the linkages between variables on the left and right sides: (爸爸的爸爸是爷爷)

$$\forall X \ \forall Y \ \forall Z.$$
 grandfather(X,Z) \(\leftarrow \) father(X,Y) \(\Lambda \) father(Y,Z) (8)

In the state space $\mathbb{X} \ni \boldsymbol{x}$, linkage means that F projects the *i*-th coordinate of \boldsymbol{x} directly to the *j*-th coordinate of \boldsymbol{y} . In other words,

$$f: (x_1, ...x_i, ...x_n) \mapsto (y_1, ..., (y_j = x_i), ...y_n)$$
 (9)

I use the notation $F_{(i,j)...}$ to denote that F contains the linkage from coordinate i to coordinate j, and so on.

3 我的问题

怎样将以上的两种结构 "combine" 在一起?

- $F \in \mathcal{F} =$ 所有神经网络函数的 family
- $L \in \mathcal{L} =$ 所有逻辑函数的 family (例如那些具有 linkage structure 的 functions)

目的是在这 "combined family" 上做 gradient descent。

 \mathcal{F} 的 closure 是 dense 的,所以 $\mathcal{F} \supset \mathcal{L}$ 。

但 $\mathcal{F} \not\supseteq \mathcal{L}$ 。例如只要目测就可以看到 $\mathcal{F} \not\ni$ identity function,只能**近似**它。

形象化地看, \mathcal{L} 是 \mathcal{F} 的子集 (注意 x-axis 代表 function space):

我想做的是:在 function space 中搜寻时,将 \mathcal{L} 中的元素加高 priority,换句话说 $L \in \mathcal{L}$ 的分数 J(L) 较高(图中的蓝色虚线)。

注意: 如果 F 有 linkage,那就变成一些 equational constraints over W. 每个 F 用参数 W_{ij}^ℓ 表示, $W \in \mathbb{R}^{\ell \times n \times n} = \mathbb{R}^m$ 。Linkage constraints 造成了 \mathbb{R}^m 里的 variety。

有朋友建议用 Lagrangian multiplier,换句话说,maximize J(x) subject to g(x) = 0. 但注意这个 $x \in \mathcal{F}$ 是函数空间,而且,对於每个 linkage,g(x) = 0 的 constraint 是不同的。这个办法似乎不可行。

有个 algebra 的想法是:将 \mathcal{F} 和 \mathcal{L} 分解成一些 decompositions,然后将这些 factors 混合?但这个 idea 很含糊,我不知是不是这样做的。