ıl.

Hands-on Activity 8.1: Aggregating Data with Pandas

Submitted by: Delloson, Angelo Dan Renz G. **bold text

Performed on: 10/7/2024 Submitted on: 7/ / 2024

Submitted to: Engr Roman M. Richard

```
1 import pandas as pd
2 import numpy as np
1 earthquake_df = pd.read_csv('earthquakes.csv')
2 earthquake_df.head()
\overline{2}
         mag magType
                                 time
                                                       place tsunami parsed_place
     0 1.35
                   ml 1539475168010 9km NE of Aguanga, CA
                                                                    0
                                                                            California
     1 1.29
                   ml 1539475129610 9km NE of Aguanga, CA
                                                                    0
                                                                            California
     2 3.42
                   ml 1539475062610 8km NE of Aguanga, CA
                                                                    0
                                                                            California
     3 0.44
                   ml
                       1539474978070 9km NE of Aguanga, CA
                                                                    0
                                                                            California
     4 2.16
                  md 1539474716050 10km NW of Avenal, CA
                                                                    0
                                                                            California
```

```
Generate code with earthquake_df
                                                 View recommended plots
1 ml_earthquake = earthquake_df.query('magType == "ml"')
2
3
4 print("Bin number :" ,max(ml_earthquake.mag))
5 print()
7 earthquake_bins = pd.cut(ml_earthquake.mag, bins = 6, labels = ['0-1', '1-2', '2-3', '3-4', '4-5', '5-6'])
8 earthquake_bins.value_counts()
→ Bin number : 5.1
    mag
           3436
    2-3
    1-2
           1889
    3-4
           1027
    0-1
    4-5
            160
    5-6
    Name: count, dtype: int64
1 faang_df = pd.read_csv('faang.csv', index_col = 'date', parse_dates= ['date'])
2 faang_df
4 g_faang = faang_df.groupby('ticker').resample('M')
5 g_faang.agg({
6
      'open' : np.mean,
       'high' : np.max,
       'low' : np.min,
8
      'close' : np.mean,
10
      'volume' : np.sum
11 })
```

III.

		_
	•	_
-	7	w

		open	high	low	close	volume
ticker	date					
AAPL	2018-01-31	170.714690	176.6782	161.5708	170.699271	659679440
	2018-02-28	164.562753	177.9059	147.9865	164.921884	927894473
	2018-03-31	172.421381	180.7477	162.4660	171.878919	713727447
	2018-04-30	167.332895	176.2526	158.2207	167.286924	666360147
	2018-05-31	182.635582	187.9311	162.7911	183.207418	620976206
	2018-06-30	186.605843	192.0247	178.7056	186.508652	527624365
	2018-07-31	188.065786	193.7650	181.3655	188.179724	393843881
	2018-08-31	210.460287	227.1001	195.0999	211.477743	700318837
	2018-09-30	220.611742	227.8939	213.6351	220.356353	678972040
	2018-10-31	219.489426	231.6645	204.4963	219.137822	789748068
	2018-11-30	190.828681	220.6405	169.5328	190.246652	961321947
	2018-12-31	164.537405	184.1501	145.9639	163.564732	898917007
AMZN	2018-01-31	1301.377143	1472.5800	1170.5100	1309.010952	96371290
	2018-02-28	1447.112632	1528.7000	1265.9300	1442.363158	137784020
	2018-03-31	1542.160476	1617.5400	1365.2000	1540.367619	130400151
	2018-04-30	1475.841905	1638.1000	1352.8800	1468.220476	129945743
	2018-05-31	1590.474545	1635.0000	1546.0200	1594.903636	71615299
	2018-06-30	1699.088571	1763.1000	1635.0900	1698.823810	85941510
	2018-07-31	1786.305714	1880.0500	1678.0600	1784.649048	97629820
	2018-08-31	1891.957826	2025.5700	1776.0200	1897.851304	96575676
	2018-09-30	1969.239474	2050.5000	1865.0000	1966.077895	94445693
	2018-10-31	1799.630870	2033.1900	1476.3600	1782.058261	183228552
	2018-11-30	1622.323810	1784.0000	1420.0000	1625.483810	139290208
	2018-12-31	1572.922105	1778.3400	1307.0000	1559.443158	154812304
FB	2018-01-31	184.364762	190.6600	175.8000	184.962857	495655736
	2018-02-28	180.721579	195.3200	167.1800	180.269474	516621991
	2018-03-31	173.449524	186.1000	149.0200	173.489524	996232472
	2018-04-30	164.163557	177.1000	150.5100	163.810476	751130388
	2018-05-31	181.910509	192.7200	170.2300	182.930000	401144183
	2018-06-30	194.974067	203.5500	186.4300	195.267619	387265765
	2018-07-31	199.332143	218.6200	166.5600	199.967143	652763259
	2018-08-31	177.598443	188.3000	170.2700	177.491957	549016789
	2018-09-30	164.232895	173.8900	158.8656	164.377368	500468912
	2018-10-31	154.873261	165.8800	139.0300	154.187826	622446235
	2018-11-30	141.762857	154.1300	126.8500	141.635714	518150415
	2018-12-31	137.529474	147.1900	123.0200	137.161053	558786249
GOOG	2018-01-31	1127.200952	1186.8900	1045.2300	1130.770476	28738485
	2018-02-28	1088.629474	1174.0000	992.5600	1088.206842	42384105
	2018-03-31	1096.108095	1177.0500	980.6400	1091.490476	45430049
	2018-04-30	1038.415238	1094.1600	990.3700	1035.696190	41773275
	2018-05-31	1064.021364	1110.7500	1006.2900	1069.275909	31849196
	2018-06-30	1136.396190	1186.2900	1096.0100	1137.626667	32103642
	2018-07-31	1183.464286	1273.8900	1093.8000	1187.590476	31953386
	2018-08-31	1226.156957	1256.5000	1188.2400	1225.671739	28820379
-1	2018-09-30	1176.878421	1212.9900	1146.9100	1175.808947	28863199

```
2018-10-31 1116.082174 1209.9600
                                                  995.8300 1110.940435
                                                                         48496167
             2018-11-30
                        1054.971429
                                      1095.5700
                                                  996.0200
                                                           1056.162381
                                                                         36735570
             2018-12-31
                        1042.620000
                                      1124.6500
                                                  970.1100
                                                            1037.420526
                                                                         40256461
      NFLX
             2018-01-31
                          231.269286
                                       286.8100
                                                  195.4200
                                                            232.908095
                                                                        238377533
             2018-02-28
                          270.873158
                                       297.3600
                                                  236.1100
                                                            271.443684
                                                                        184585819
             2018-03-31
                          312.712857
                                       333.9800
                                                  275.9000
                                                            312.228095 263449491
                                                  271.2239
             2018-04-30
                          309.129529
                                       338.8200
                                                            307.466190 262064417
             2018-05-31
                          329.779759
                                       356.1000
                                                  305.7300
                                                            331.536818 142051114
             2018-06-30
                          384.557595
                                       423.2056
                                                  352.8200
                                                            384.133333 244032001
             2018-07-31
                          380.969090
                                       419.7700
                                                  328.0000
                                                             381.515238 305487432
             2018-08-31
                          345.409591
                                       376.8085
                                                  310.9280
                                                            346.257826 213144082
             2018-09-30
                          363.326842
                                       383.2000
                                                  335.8300
                                                             362.641579 170832156
             2018-10-31
                          340.025348
                                       386.7999
                                                  271.2093
                                                             335.445652 363589920
             2018-11-30
                          290.643333
                                       332.0499
                                                  250.0000
                                                             290.344762 257126498
             2018-12-31
                          266.309474
                                       298.7200
                                                  231.2300
                                                            265.302368 234304628
1 # creating crosstab with the earthquake data
2
3 earthquake_crosstab = pd.crosstab(
4
      index = earthquake_df.tsunami,
      columns = earthquake_df.magType,
5
6
      values = earthquake_df.mag,
      aggfunc = max
9 earthquake_crosstab
\overline{\mathbf{T}}
     magType mb mb_lg
                            md
                                      ml ms_20
                                                                         tsunami
                                                                         th
         0
              5.6
                     3.5 4.11
                                 1.1 4.2
                                           NaN 3.83
                                                        5.8
                                                             4.8
                                                                  6.0
         1
              6.1
                    NaN NaN NaN 5.1
                                            5.7 4.41 NaN
                                                           NaN
                                                                 7.5
Next steps:
             Generate code with earthquake_crosstab
                                                        View recommended plots
1 aggre_faang = faang_df.groupby('ticker').rolling('60D')
2 aggre_faang_agg = aggre_faang.agg({
3
       'open' : np.mean,
       'high' : np.max,
4
      'low' : np.min,
      'close' : np.mean,
6
       'volume' : np.sum
8 })
9 aggre_faang_agg
```

```
\overline{\pm}
                                        high
                              open
                                                   1ow
                                                            close
                                                                        volume
     ticker
                  date
     AAPL 2018-01-02 166.927100 169.0264 166.0442 168.987200
                                                                    25555934.0
             2018-01-03 168.089600 171.2337 166.0442 168.972500
                                                                    55073833.0
             2018-01-04 168.480367 171.2337
                                              166.0442 169.229200
                                                                    77508430.0
             2018-01-05
                       168.896475 172.0381
                                              166.0442 169.840675
             2018-01-08 169.324680 172.2736 166.0442
                                                      170.080040
                                                                   121736214.0
       ...
                                          ...
      NFLX 2018-12-24 283.509250 332.0499 233.6800 281.931750 525657894.0
             2018-12-26 281.844500 332.0499 231.2300 280.777750
                                                                   520444588.0
             2018-12-27 281.070488 332.0499 231.2300 280.162805 532679805.0
             2018-12-28 279.916341 332.0499 231.2300 279.461341 521968250.0
             2018-12-31 278.430769 332.0499 231.2300 277.451410 476309676.0
    1255 rows × 5 columns
1 P_table_faang = faang_df.pivot_table(
      values = ['open', 'high', 'low', 'close', 'volume'],
2
      index = 'ticker',
3
4
      aggfunc = np.mean
5)
7 P_table_faang
\overline{\Rightarrow}
                   close
                                 high
                                                          open
                                                                      volume
                                                                               ☶
     ticker
                                                                                16
     AAPL
              186.986218
                          188.906858
                                       185.135729
                                                    187.038674 3.402145e+07
     AMZN
             1641.726175 1662.839801 1619.840398 1644.072669 5.649563e+06
       FΒ
              171.510936
                           173.615298
                                        169.303110
                                                    171.454424 2.768798e+07
     GOOG
             1113.225139 1125.777649 1101.001594 1113.554104 1.742645e+06
      NFLX
              319.290299
                           325.224583
                                       313.187273
                                                    319.620533 1.147030e+07
             Generate code with P table faang
                                                 View recommended plots
Next steps:
1 nflx_data = faang_df.query('ticker == "NFLX"')
2 nflx_Zscores = nflx_data.loc[
      '2018', ['open', 'high', 'low', 'close', 'volume']
4 ].apply(lambda x: x.sub(x.mean()).div(x.std()))
5
6 nflx_Zscores
```

