

CSEN1001

Computer and Network Security

Mervat AbuElkheir

Ahmad Helmy

Mohamed Abdelrazik

Lecture (6)

- Traditional private/secret/single key cryptography uses one key
- Shared by both sender and receiver
- If this key is disclosed communications are compromised
- Also is symmetric, parties are equal
- □ Hence does not protect sender from receiver forging a message & claiming it's sent by sender

- □ Probably most significant advance in the 3000 year history of cryptography
- ☐ Uses two keys a public & a private key
- □ Asymmetric since parties are not equal
- □ Uses clever application of number theoretic concepts to function
- Complements rather than replaces private key crypto

- □ Developed to address two key issues:
 - Key distribution how to have secure communications in general without having to trust a KDC with your key
 - Digital signatures how to verify that a message comes intact from the claimed sender
- □ Public invention due to Whitfield Diffie & Martin Hellman at Stanford University in 1976
 - known earlier in classified community

- □ Two keys are related:
 - a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures
 - a private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures
- □ Is **asymmetric** because
 - those who encrypt messages or verify signatures
 cannot decrypt messages or create signatures

Public Key Cryptosystems

Public Key Applications

- □ Can classify uses into 3 categories:
 - Encryption/decryption (provide confidentiality)
 - Digital signatures (provide authentication)
 - Key exchange (of session keys)
- □ Some algorithms are suitable for all uses, others are specific to one

Public Key Algorithms

- □ Diffie-Hellman key exchange algorithm
 - only allows exchange of a secret key
- □RSA (Rivest, Shamir, Adleman)
 - developed in 1977
 - only widely accepted public-key encryption algorithm
 - given tech advances, need 1024+ bit keys
- □ Digital Signature Standard (DSS)
 - provides only a digital signature function with SHA-1
- ☐ Elliptic curve cryptography (ECC)
 - new, security like RSA, but with much smaller keys

Algorithm	Digital Signature	Symmetric Key Distribution	Encryption of Secret Keys
RSA	Yes	Yes	Yes
Diffie-Hellman	No	Yes	No
DSS	Yes	No	No
Elliptic Curve	Yes	Yes	Yes

- □ Public-Key algorithms rely on three principles:
 - It is computationally easy to generate key pairs
 - It is computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known
 - It is computationally infeasible to find private key knowing only algorithm & public key
 - Either of the two related keys can be used for encryption, with the other used for decryption (for some algorithms)

$$C = f_k(P)$$
 easy if k and P are known $P = f_k^{-1}(C)$ easy if k and C are known infeasible if C is known but k is unknown

Security of Public Key Cryptography

- □ Like private key schemes brute force **exhaustive search** attack is always theoretically possible
- □ But keys used are too large (>512bits)
- □ Security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalysis) problems
- More generally the hard problem is known, but is made hard enough to be impractical to break
- □ Requires the use of very large numbers
- □ Hence is slow compared to private key schemes

Mathematical Background

 $Remainder = x \mod y$

Ex: 53 mod 19

1. Calculate floor(x/y)
$$\rightarrow \left[\frac{x}{y}\right]$$
 2. $\left[\frac{53}{19}\right] = 2$

3. Remainder =
$$x - \left(\left| \frac{x}{y} \right| \times y \right)$$
 3. Remainder = 53 - 38 = 15

GCD and Multiplicative Inverse

- ☐ The greatest common divisor (gcd) between two numbers is the largest integer that will divide both numbers
 - \Rightarrow gcd(4,10) = 2
- ☐ If two numbers have a gcd of 1, then the smaller of the two numbers has a multiplicative inverse in the modulo of the larger number

 - $4 \times 7 = 28 = 1 \mod 9 \implies 28 1 = 27$, which is dividable by 9

Prime Numbers

- □ A prime is a number that can only be divided without a remainder by itself and 1
- □ For any prime number p, every number from 1 up to p-1 has a gcd of 1 with p
- □ Therefore every number from 1 up to p − 1 has a multiplicative inverse in mod p

Euler's Totient

- □ The number of elements that have a multiplicative inverse in a set of modulo integers □ Φ(n)
 - Also the number of elements with GCD = 1 with the integer
 - $_{ extstyle }$ denoted using the Greek symbol phi ϕ
- \square For a prime number p, $\phi(p) = p 1$

$$\phi(7) = 6$$

	v O i	
	n	$\phi(n)$
•	1	1
	2	1
	3	2
	4	2
	5	4
	6	2
	7	6
	8	4
	9	6
	10	4
	11	10

RSA

- □ By Rivest, Shamir & Adleman of MIT in 1977
- □ Best known & widely used public-key scheme
- □ Based on exponentiation over integers modulo a prime
 - N.B. exponentiation takes O((log n)³) operations (easy)
- ☐ Uses large integers (e.g. 1024 bits)
- Security due to cost of factoring large numbers
 - □ N.B. factorization takes O(e log n log log n) operations (hard)

RSA Key Setup

Each user generates a public/private key pair by:

- 1. Selecting two large primes at random: p, q
- 2. Computing their system modulus $n = p \cdot q$
 - Note that Euler's Totient $\phi(n) = (p-1) \cdot (q-1)$
- 3. Selecting at random the encryption key *e*
 - \rightarrow where $3 \le e < \phi(n)$, $\gcd(e, \phi(n)) = 1$
- 4. Solve the following equation to find decryption key *d*
 - $e \times d \equiv 1 \mod \phi(n)$ and $d < \phi(n)$ $[e \times d = 1 + k \times \phi(n) \text{ for some } k]$
- 5. Publish the public encryption key: $PU = \{e, n\}$
- 6. Keep secret the private decryption key: $PR = \{d, n\}$

RSA Use

- □ To encrypt a message *M* the sender:
 - \Box obtains **public key** of recipient $PU = \{e, n\}$
 - \square computes: $C = M^e \mod n$, where $0 \le M < n$
- □ To decrypt the ciphertext *C* the owner:
 - \square uses their private key $PR = \{d, n\}$
 - \Box computes: $M = C^d \mod n$
- □ Note that the message M must be smaller than the modulus n (block if needed)