Name: Elle Nguyen

Daniel B. Szyld

3 October 2023

Due Thursday 5 October 2023, 11 AM

Linear Algebra, Math 2101-002 Homework set #5

- 1. (3 points).
- (a). Give an example of two 2×2 singular matrices A, B, such that A + B is nonsingular.
- (b). Give an example of two 2×2 nonsingular matrices A, B, such that A + B is singular.
- **2.** (3 points).
- (a). Prove that if Q_1 and Q_2 are orthogonal matrices, then, their product Q_1Q_2 is also an orthogonal matrix.
- (b) Prove that for any finite set of orthogonal matrices Q_1, Q_2, \ldots, Q_k , their product $Q_1Q_2\cdots Q_k$ is also an orthogonal matrix.
- **3.** (4 points).

Let P be an orthogonal projection, i.e., $P^2 = P$, and $P^T = P$. Let Q = I - P.

- (a). Show that Q is also an orthogonal projection.
- (b). Show that PQ = 0 and QP = 0.

(a)
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 is singular because $A_1 & A_2$ are multiples of each other $(A_1 = A_2)$

$$B = \begin{bmatrix} 1 & -1 \end{bmatrix}$$
 is singular because $B_1 & B_2$ are multiples of each other $(B_1 = -B_2)$

(b)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ are nonsingular since neither columns are multiples of each other

$$A + B = \begin{bmatrix} 1+0 & 0+1 \\ 0+1 & 1+0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 is singular (like part (a))

```
2 (a) To see if Q_1Q_2 is an orthogonal matrix, need to show (Q_1Q_2)^TQ_1Q_2=I consider (Q_1Q_2)^TQ_1Q_2 by property of transposition (AB)^T=B^TA^T
=Q_2^TIQ_2 by property of identity matrix SO(Q_1^TQ_1)=I
=Q_2^TQ_2 by property of identity matrix IA=A
=I Q_2 is orthogonal matrix SO(Q_2^TQ_2)=I
(Q_1Q_2)^TQ_1Q_2=I
(Q_1Q_2)^TQ_1Q_2=I
Q_1Q_2 is an orthogonal matrix by definition QED!
(b) Assume the product P=Q_1Q_2...Q_k
To show P is an orthogonal matrix, need to show P^TP=I
Consider P^TP
=(Q_1Q_2...Q_k)^T(Q_1Q_2...Q_k)
=Q_k^T...Q_1^TQ_1^TQ_1Q_2...Q_k by property of transposition (AB)^T=B^TA^T
```

Since Q_1 , Q_2 ... Q_k are arbitrary orthogonal matrices, the above steps can be performed repeatedly to achieve

= $Q_{k}^{\mathsf{T}} ... Q_{2}^{\mathsf{T}} \stackrel{\mathsf{T}}{=} Q_{2} ... Q_{k} Q_{i}$ is orthogonal matrix so $Q_{i}^{\mathsf{T}} Q_{i} = I$

= $Q_k^T ... Q_2^T Q_2 ... Q_k$ by property of identity matrix IA = A

$$P^{T}P = Q_{k}^{T}Q_{k} = I$$

$$Q_{k} \text{ is orthogonal matrix so } Q_{k}^{T}Q_{k} = I$$

$$P^{T}P = I$$

 $: (Q_1 Q_2 ... Q_K)^T (Q_1 Q_2 ... Q_K) = I$

:. Q1Q2...Qk is an orthogonal matrix by definition QED!

(a) To show that Q is an orthogonal projection, wish to show:

(i) $Q^2 = Q$ Consider $Q^2 = Q \cdot Q = (I - P)(I - P)$ since given Q = I - P $= I^2 - IP - PI + P^2$ by distributive law = I - P - P + P by property of identity matrix = I - P = Q (IP = PI = P) & $P^2 = P$

 $\therefore Q^2 = Q \qquad QED!$

```
Consider Q^T = (I - P)^T = I^T - P^T by property of transposition (A - B)^T = A^T - B^T
                                 = I - P by property of identity matrix I^T = I
= Q & P^T = P (given)
      : Q^T = Q
     Since (i) & (ii) are satisfied, Q is an orthogonal projection QEP!
(b) Consider PQ = P(I - P) = PI - P^2 by distributive law 
= P - P by property of identity modrix 
= O (PI = P) & <math>P^2 = P (given)
     PQ = 0 QED!
     Consider QP = (I - P)P = IP - P^2 by distributive law
                                    = P - P by property of identity mothix
= O (IP = P) & P^2 = P (given)
     : QP = O QED!
```