Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Even) Examination May-2022 CS3CO15 / IT3CO14

Object Oriented Analysis & Design

Branch/Specialisation: CSE / IT Programme: B.Tech.

Duration: 3 Hrs. Maximum Marks: 60

indicated A

	-	uestions are compulsory. Into should be written in full ins	ernal choices, if any, are indicated. Answe tead of only a, b, c or d.	ers c	
Q.1	i.	Models are useful because to (a) Simplify reality (b) Help understanding com	•	1	
		(c) Act as templates of system			
		(d) All of these			
	ii.	The approach in RUP is known to be:		1	
		(a) Activity driven	(b) Technology driven		
		(c) Usecase driven	(d) Planning driven		
	iii.	iii. A relation between classes as whole part such that part is			
		when whole ends execution	is called as:		
		(a) Aggregation	(b) Composition		
		(c) Hierarchy	(d) Association		
	iv.	CRC Cards are acronyms for	or:	1	
		(a) Class, Responsibility, Collaborations			
		(b) Class, Relations, Conne	ctions		
		(c) Connections, Relations,	Collaborations		
		onnections			
	v.	v. A guard condition in state diagram is-			
		(a) A boolean expression	(b) State of an object		
		(c) Event description	(d) Transition name		
	vi.	Aggregation is		1	
		(a) Set of relationship	(b) Composed of relationship		
		(c) Part of relationship	(d) All of these		
			P.T.	.O.	

	vii.	Logical Components are-		1
		(a) Middleware components		
		(b) Business and process components		
		(c) Physically deployed component	nents	
		(d) Service components		
	viii.	Grouping of elements to provide	e service is termed as-	1
		(a) Subsystem (b	o) Package	
		(c) Class (d	I) Component	
	ix.	What answers "are we building	a right product?"	1
		(a) Verification (b) Validation	
		(c) Testing (d	I) Performance	
	х.	Re-engineering does not include	e-	1
		(a) Re-implementing legacy sys	tem	
		(b) Re-documenting legacy syst	ems	
		(c) Re-architecting legacy system	ms	
		(d) Re-structuring legacy system	ns	
Q.2	i.	3		2
		design.		
	ii.	Define iterations and its importance in software development. Elaborate on the 4+1 architectural views of RUP.		
iii.		Elaborate on the 4+1 architectural views of RUP.		
OR	iv.	Clearly enumerate and explain the distinguished object-oriented characteristics.		
Q.3	i.	How to identify potential classes	s in any software system?	2
Q.J	ii.	How to identify potential classes in any software system? 2 Explain the various types of relationship amongst classes taking 8		
	11.	suitable example for each.	relationship amongst classes taking	O
OR	iii.	±	agram to shop from an online portal	8
OK	111.	· · · · · · · · · · · · · · · · · · ·	nalities to sign up, login, add items to	O
			nent options and so on. Assume all	
			d online ordering system. You may	
			problem statement to clearly define	
		functional requirements.	processing successions to clearly define	
Q.4	i.	Describe various elements of a s	state digaram	3
Ų.4	1.	Describe various cicilicitis of a s	siaic uiagiaiii.	J

	11.	Simulate in Activity Diagram a situation for Students who wish to	7
		take admission in Medi-caps University. The system begins when	
		students passing their qualifying exam register into the system.	
		Upon verification of valid documents and allotment of vacant seats	
		(out of total seats in a branch) for a discipline, the student is enrolled	
		in a class. The system ends with generation of enrollment number of	
		the student.	
		Assume all fields necessary for registering in the system on your	
		own.	
OR	iii.	Draw a sequence diagram for the following scenario - Getting on a	7
OK	111.		,
		flight. Start at home, check in at the counter, go through security,	
		and end up at the gate. (If you have time during the exercise, get	
		yourself to your seat.)	
Q.5	i.	Explain deployment diagram in detail.	4
	ii.	Explain any two types of structural, behavioral and creational	6
		patterns each.	
OR	iii.	What are component diagrams and how are they associated with	6
		interfaces?	
Q.6		Write short notes on any two:	
	i.	Reengineering and reverse engineering concepts	5
	ii.	Quality and its classification	5
	iii.	V Model for testing	5
		_	

Marking Scheme

CS3CO15 / IT3CO14 Object Oriented Analysis & Design

Q.1 i.		Models are useful because they:		1		
		(d) All of these				
	ii.	The approach in RUP is known to be:		1		
iii.		(c) Usecase driven				
	iii.	A relation between classes as whole part such that	t part is destroyed	1		
		when whole ends execution is called as:				
		(b) Composition				
	iv.	CRC Cards are acronyms for:		1		
		(a) Class, Responsibility, Collaborations				
	v.	A guard condition in state diagram is-		1		
		(a) A boolean expression				
	vi.	Aggregation is		1		
		(c) Part of relationship				
	vii.	Logical Components are-		1		
		(b) Business and process components		_		
	viii.	Grouping of elements to provide service is termed	as-	1		
	•	(a) Subsystem What answers "are we building a right product?"				
	ix.	What answers "are we building a right product?"		1		
		(b) Validation		4		
	х.	Re-engineering does not include-		1		
		(c) Re-architecting legacy systems				
Q.2	i.	Difference b/w object-oriented analysis and object-	-oriented design	2		
		As per the explanation				
	ii.	Define iterations and its importance in software development.				
		As per the explanation	_			
	iii.	4+1 architectural views of RUP.		5		
		Diagram	2 marks			
		Description	3 marks			
OR	iv.	Distinguished object-oriented characteristics		5		
		1 mark for each characteristic	(1 mark * 5)			
Q.3 i.	i.	Any four potential classes in any software system		2		
		0.5 mark for each	(0.5 mark * 4)			
	ii.	Types of relationship amongst classes		8		

		Description	3 marks	
		Diagram with example	5 marks	
OR	iii.	Draw a systematic use case diagram		8
		As per the explanation		
Q.4	i.	Elements of a state diagram.		3
Q.Ŧ	ii.	Assume all fields necessary for registering in the	e system on vour	7
	11.	own.	e system on your	,
		As per the explanation		
OR	iii.	Draw a sequence diagram for the following scenarion	io	7
		As per the explanation		
Q.5	i.	Deployment diagram		4
Q.5	1.	Description Description	2 marks	•
		Diagram	2 marks	
	ii.	Any two types of structural	2 marks	6
	111.	Behavioral	2 marks	U
		Creational patterns	2 marks	
OR	iii.	Component diagrams and association with interfac		6
011			(2 marks * 3)	Ü
Q.6		Write short notes on any two:		
i.		Reengineering and reverse engineering concepts		5
		Definition	2 marks	
		Differences	2 marks	
		Importance	1 mark	
	ii.	Quality Definition	2 marks	5
		Its classification	3 marks	
	iii.	V Model for testing	2 marks	5
		Diagram	3 marks	
