COMP4131: Data Modelling and Analysis

Lecture 7: Gaussian Process Regression and Classification

Daokun Zhang

University of Nottingham Ningbo China daokun.zhang@nottingham.edu.cn

31 March, 2025

Overview

Gaussian Process

2 Gaussian Process Regression

3 Gaussian Process Classification

Gaussian Process

Linear Regression

Recall the probabilistic analysis of the standard linear regression model with Gaussian noise

$$f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}), \quad y = f(\mathbf{x}) + \varepsilon,$$

where ε is the additive noise that follows an i.i.d Gaussian distribution with zero mean and variance σ_n^2 :

$$\varepsilon \sim \mathcal{N}\left(0, \sigma_n^2\right)$$
.

Given the training data $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ and $\mathbf{y} = \{y_1, \dots, y_N\}$, we can use maximum likelihood estimation (MLE) to find the solution of \mathbf{w} as

$$\mathbf{w}^* = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{y},$$

where $\mathbf{\Phi} = [\phi(\mathbf{x}_1), \cdots, \phi(\mathbf{x}_N)]^{\mathrm{T}}$ is an $N \times M$ matrix.

Bayesian Linear Regression

In the Bayesian formalism, we can specify a prior over the parameters, expressing our beliefs about the parameters before we look at the observations. We put a Gaussian prior with mean vector $\mu_{\mathbf{w}}$ and covariance matrix $\Sigma_{\mathbf{w}}$ on the weights

$$\mathbf{w} \sim \mathcal{N}\left(oldsymbol{\mu}_{\mathbf{w}}, oldsymbol{\Sigma}_{\mathbf{w}}
ight)$$
 .

Due to the randomness in \mathbf{w} , $f(x) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})$ is no longer a deterministic but a random function. Let f_p denote the linear function value $f(\mathbf{x}_n)$ at sample \mathbf{x}_n , then f_1, \dots, f_N follow a multivariate Gaussian distribution with

$$\mathbb{E}\left[f_{p}\right] = \boldsymbol{\mu}_{\mathbf{w}}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_{p}),$$

$$\mathsf{Cov}\left(f_{n}, f_{m}\right) = \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)^{\mathrm{T}} \boldsymbol{\Sigma}_{\mathbf{w}} \boldsymbol{\phi}\left(\mathbf{x}_{m}\right).$$

Now we get a Gaussian process $f(\mathbf{x})$ with mean function $m(\mathbf{x}) = \boldsymbol{\mu}_{\mathbf{w}}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$ and covariance function $k(\mathbf{x}, \mathbf{x}') = \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \boldsymbol{\Sigma}_{\mathbf{w}} \boldsymbol{\phi}(\mathbf{x}')$.

31 March, 2025

Gaussian Process

Definition: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

Implications

- "a collection of random variables" means a set that has
 - a finite number of random variables
 - an infinite number of random variables
- "any finite number of which have a joint Gaussian distribution" means:
 - multiple random variables follow a joint multivariate Gaussian distribution
 - after marginalization, a single random variable follows a univariate Gaussian distribution

Gaussian Process

A Gaussian process is completely specified by its mean function and covariance function. We define mean function $m(\mathbf{x})$ and the covariance function $k(\mathbf{x}, \mathbf{x}')$ as

$$m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})],$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbb{E}\left[\left\{f(\mathbf{x}) - m(\mathbf{x})\right\}\left\{f(\mathbf{x}') - m(\mathbf{x}')\right\}\right],$$

and write the Gaussian process as

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$
.

Usually, for notational simplicity we will take the mean function to be zero, i.e., set $m(\mathbf{x}) = 0$.

Example: For Bayesian linear regression model $f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})$ with prior $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{\mathbf{w}})$, we have the mean and covariance function

$$m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})] = \phi(\mathbf{x})^{\mathrm{T}} \mathbb{E}[\mathbf{w}] = 0,$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbb{E}\left[f(\mathbf{x})f(\mathbf{x}')\right] = \phi(\mathbf{x})^{\mathrm{T}} \mathbb{E}\left[\mathbf{w}\mathbf{w}^{\mathrm{T}}\right] \phi(\mathbf{x}') = \phi(\mathbf{x})^{\mathrm{T}} \mathbf{\Sigma}_{\mathbf{w}} \phi(\mathbf{x}').$$

Kernel Trick

The covariance function $k(\mathbf{x}, \mathbf{x}')$ can be extended to any kernel functions.

For all \mathbf{x} and \mathbf{x}' in the input space \mathcal{X} , the function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a kernel function, if there exists a feature map $\varphi: \mathcal{X} \to \mathcal{V}$ that satisfies

$$k(\mathbf{x}, \mathbf{x}') = \langle \varphi(\mathbf{x}), \varphi(\mathbf{x}') \rangle_{\mathcal{V}},$$

where $\mathcal V$ is a inner product space, and $\langle \cdot, \cdot \rangle_{\mathcal V}$ is the inner product operation defined by $\mathcal V$.

An alternative definition can be formulated by the *positive semidefinite* (*PSD*) property: For any points $(\mathbf{x}_1,\ldots,\mathbf{x}_n)$ in \mathcal{X} , and all choices of n real-valued coefficients (c_1,\ldots,c_n) , the function $k:\mathcal{X}\times\mathcal{X}\to\mathbb{R}$ is a kernel function, if

$$\sum_{i=1}^n \sum_{j=1}^n k(\mathbf{x}_i, \mathbf{x}_j) c_i c_j \geq 0.$$

The spanned matrix, $\mathbf{K} \in \mathbb{R}^n \times \mathbb{R}^n$ with its ij-th entry $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$, is called Gram matrix.

Kernel Trick

Many kernels can be chosen for various application scenarios

- Fisher kernel
- Polynomial kernel
- Radial basis function kernel (RBF)
- String kernels
- Graph kernels

The Radial basis function kernel (RBF) is also called squared-exp or Gaussian kernel, which is formulated as

$$k_{\mathrm{SE}}\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)=\sigma_{f}^{2}\exp\left(-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2}}{2\ell^{2}}\right).$$

Prediction with Noise-free Observations

We first consider the ideal case where the observation y can be described by a Gaussian process $f(\mathbf{x}) \sim \mathcal{GP}\left(0, k(\mathbf{x}, \mathbf{x}')\right)$ in a noise-free manner, i.e., y = f(x). For a set of test samples with size n_* , and feature matrix \mathbf{X}_* , its function value vector \mathbf{f}_* follows a multivariate Gaussian distribution

$$\label{eq:fspectrum} f_* \sim \mathcal{N}\left(0, \textit{K}(\textit{\textbf{X}}_*, \textit{\textbf{X}}_*)\right),$$

where $K(\cdot, \cdot)$ is the covariance matrix between two collections of input feature vectors.

If we are given a set of training samples with size n, and feature matrix \boldsymbol{X} , its function value vector \boldsymbol{f} should follow a multivariate Gaussian distribution jointly with \boldsymbol{f}_*

$$\left[\begin{array}{c} f \\ f_* \end{array}\right] \sim \mathcal{N}\left(0, \left[\begin{array}{ccc} \textit{K}(\textit{X}, \textit{X}) & \textit{K}(\textit{X}, \textit{X}_*) \\ \textit{K}(\textit{X}_*, \textit{X}) & \textit{K}(\textit{X}_*, \textit{X}_*) \end{array}\right]\right).$$

Prediction with Noise-free Observations

Given the observations of \mathbf{f} , the posterior distribution of \mathbf{f}_* is also a Gaussian distribution

$$\begin{split} \mathbf{f}_* | \mathbf{X}_*, \mathbf{X}, \mathbf{f} &\sim \mathcal{N}\left(\mathbf{K}(\mathbf{X}_*, \mathbf{X}) \, \mathbf{K}(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f} \right. \\ & \left. \mathbf{K}(\mathbf{X}_*, \mathbf{X}_*) - \mathbf{K}(\mathbf{X}_*, \mathbf{X}) \, \mathbf{K}(\mathbf{X}, \mathbf{X})^{-1} \mathbf{K}(\mathbf{X}, \mathbf{X}_*) \right). \end{split}$$

The prior and posterior distributions of \mathbf{f}_* with the RBF kernel function $k(\mathbf{x}_p, \mathbf{x}_q) = \exp(-\frac{1}{2} ||\mathbf{x}_p - \mathbf{x}_q||_2^2)$.

Prediction using Noisy Observations

It is typical for more realistic modelling situations that we do not have access to function values themselves, but only noisy versions thereof $y = f(\mathbf{x}) + \varepsilon$.

Assuming additive independent identically distributed Gaussian noise ε with zero mean and variance σ_n^2 , the prior on the noisy observations becomes another Gaussian distribution with mean $\mathbb{E}[y] = \mathbb{E}[f(\mathbf{x}) + \varepsilon] = 0$, and covariance

$$cov(y_p, y_q) = k(\mathbf{x}_p, \mathbf{x}_q) + \sigma_n^2 \delta_{pq} \text{ or } cov(\mathbf{y}) = K(\mathbf{X}, \mathbf{X}) + \sigma_n^2 I,$$

where δ_{pq} is a Kronecker delta symbol which is one if and only if p=q and zero otherwise.

We can write the joint distribution of the observed target values ${\bf y}$ and the function values ${\bf f}_*$ of test samples under the prior as

$$\left[\begin{array}{c} \mathbf{y} \\ \mathbf{f}_* \end{array}\right] \sim \mathcal{N}\left(\mathbf{0}, \left[\begin{array}{ccc} \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I} & \mathbf{K}(\mathbf{X}, \mathbf{X}_*) \\ \mathbf{K}(\mathbf{X}_*, \mathbf{X}) & \mathbf{K}(\mathbf{X}_*, \mathbf{X}_*) \end{array}\right]\right).$$

Deriving the conditional distribution, we arrive at the key predictive equations for Gaussian process regression

$$egin{aligned} \mathbf{f}_* | \mathbf{X}, \mathbf{y}, \mathbf{X}_* &\sim \mathcal{N}\left(\mathbf{ar{f}}_*, \mathsf{cov}\left(\mathbf{f}_*
ight)
ight), \ \mathsf{where} \ & \bar{\mathbf{f}}_* \triangleq \mathbb{E}\left[\mathbf{f}_* | \mathbf{X}, \mathbf{y}, \mathbf{X}_*
ight] = \mathbf{K}(\mathbf{X}_*, \mathbf{X}) \left[\mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}
ight]^{-1} \mathbf{y}, \ & \mathsf{cov}\left(\mathbf{f}_*
ight) = \mathbf{K}(\mathbf{X}_*, \mathbf{X}_*) - \mathbf{K}(\mathbf{X}_*, \mathbf{X}) \left[\mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}
ight]^{-1} \mathbf{K}(\mathbf{X}, \mathbf{X}_*). \end{aligned}$$

Graphical model (chain graph) for a Gaussian process for regression. Squares represent observed variables and circles represent unknowns.

By using a compact form of the notation setting $\mathbf{K} = \mathbf{K}(\mathbf{X}, \mathbf{X})$ and $\mathbf{k}_* = \mathbf{K}(\mathbf{X}, \mathbf{x}_*)$ for a test sample \mathbf{x}_* , the prediction f_* for the single test sample \mathbf{x}_* has mean \bar{f}_* and variance $\mathbb{V}\left[f_*\right]$ as

$$\begin{split} \bar{f}_* &= \mathbf{k}_*^\top \left(\mathbf{K} + \sigma_n^2 \mathbf{I} \right)^{-1} \mathbf{y}, \\ \mathbb{V}\left[f_* \right] &= k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^\top \left(\mathbf{K} + \sigma_n^2 \mathbf{I} \right)^{-1} \mathbf{k}_*. \end{split}$$

Another way to look at the expression of the mean \bar{f}_* is to see it as a linear combination of N kernel functions, each one centered on a training point, by writing

$$\bar{f}_* = \sum_{i=1}^N \alpha_i k(\mathbf{x}_i, \mathbf{x}_*),$$

where $oldsymbol{lpha} = \left(oldsymbol{\mathit{K}} + \sigma_{\mathit{n}}^2 oldsymbol{\mathit{I}}
ight)^{-1} \mathbf{y}.$


```
\mathbf{input} \colon X \text{ (inputs)}, \mathbf{y} \text{ (targets)}, k \text{ (covariance function)}, \sigma_n^2 \text{ (noise level)}, \\ \mathbf{x}_* \text{ (test input)} \\ 2 \colon L \coloneqq \mathrm{cholesky}(K + \sigma_n^2 I) \\ \boldsymbol{\alpha} \coloneqq L^\top \backslash (L \backslash \mathbf{y}) \\ 4 \colon \bar{f}_* \coloneqq \mathbf{k}_*^\top \boldsymbol{\alpha} \\ \mathbf{v} \coloneqq L \backslash \mathbf{k}_* \\ 6 \colon \mathbb{V}[f_*] \coloneqq k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{v}^\top \mathbf{v} \\ \log p(\mathbf{y}|X) \coloneqq -\frac{1}{2}\mathbf{y}^\top \boldsymbol{\alpha} - \sum_i \log L_{ii} - \frac{n}{2}\log 2\pi \\ 8 \colon \mathbf{return} \colon \bar{f}_* \text{ (mean)}, \mathbb{V}[f_*] \text{ (variance)}, \log p(\mathbf{y}|X) \text{ (log marginal likelihood)} \\
```

Algorithm for Gaussian process regression, where the predictions (the target value's mean and variance) at the test sample \mathbf{x}_* and the log marginal likelihood on training set are returned.

Varying the Hyperparameters

Setting the RBF kernel $k(\mathbf{x}_p, \mathbf{x}_q) = \sigma_f^2 \exp(-\frac{1}{2\ell^2} ||\mathbf{x}_p - \mathbf{x}_q||_2^2)$ as the covariance function, the covariance between the observations y_p and y_q becomes

$$\operatorname{cov}\left(y_{p}, y_{q}\right) = \sigma_{f}^{2} \exp\left(-\frac{1}{2\ell^{2}} \|\mathbf{x}_{p} - \mathbf{x}_{q}\|_{2}^{2}\right) + \sigma_{n}^{2} \delta p q,$$

which implies that the model relies on three hyperparameters:

- signal variance σ_f^2
- noise variance σ_n^2
- ullet length-scale ℓ

The log marginal likelihood can be used to tune the hyperparameters.

Varying the Hyperparameters

Small length-scale $\ell=0.3 \to {\sf a}$ sharply varying function f with small noise. Large length-scale $\ell=3 \to {\sf a}$ slowly varying function f with large noise. Moderate length-scale $\ell=1 \to {\sf exact}$ fitting of the underlying function f.

Gaussian Process Classification

Binary Gaussian Process Classifier

For binary classification with label candidate set $\{+1,-1\}$, linear regression uses the sigmoid function to squash the linear regression output into the label probability $p(y=+1|\mathbf{x})=\sigma(\mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}))$.

In Gaussian process, the latent function value $f(\mathbf{x})$ is used to construct the linear regression output.

Similarly, for Gaussian process classification, we can also construct the label probability via the sigmoid function

$$p(y=+1|f(\mathbf{x}))=\sigma(f(\mathbf{x})).$$

Different from $\mathbf{w}^{\mathrm{T}}\phi(\mathbf{x})$, $f(\mathbf{x})$ is Gaussian random variable, we need to marginalize it to get the posterior probability

$$p(y=+1|\mathbf{x})=\int p(y=+1|f)p(f|\mathbf{x})\mathrm{d}f.$$

Binary Gaussian Process Classifier

Given a training set $\{X, y\}$, for a new test sample x_* , Gaussian process classifier predicts its label by estimating the posterior probability

$$egin{aligned} ar{\pi}_* & riangleq
ho(y_* = +1 | \mathbf{X}, \mathbf{y}, \mathbf{x}_*) = \int
ho(y_* = +1 | f_*)
ho(f_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_*) \, \mathrm{d}f_* \ & = \int \sigma(f_*)
ho(f_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_*) \, \mathrm{d}f_*. \end{aligned}$$

To achieve the estimation, we need first calculate the posterior distribution of the latent variable f_* corresponding to the test sample \mathbf{x}_*

$$ho\left(f_{*}|oldsymbol{\mathcal{X}},\mathbf{y},\mathbf{x}_{*}
ight)=\int
ho\left(f_{*}|oldsymbol{\mathcal{X}},\mathbf{x}_{*},\mathbf{f}
ight)
ho(\mathbf{f}|oldsymbol{\mathcal{X}},\mathbf{y})\mathrm{d}\mathbf{f},$$

where $p(\mathbf{f}|\mathbf{X},\mathbf{y}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})/p(\mathbf{y}|\mathbf{X})$ is the posterior over the latent variables and $p(\mathbf{y}|\mathbf{f})$ is computed by applying the elementwise sigmoid function to \mathbf{f} .

In the regression case, \mathbf{y} and f_* jointly follow a multivariate Gaussian distribution, the conditional probability distribution $p(f_*|\mathbf{X},\mathbf{y},\mathbf{x}_*)$ can be computed analytically.

However, in the classification case, due to the computational intractability of the distribution $p(\mathbf{f}|\mathbf{X},\mathbf{y})$, the posterior distribution $p(f_*|\mathbf{X},\mathbf{y},\mathbf{x}_*)$ cannot be computed analytically with the intractable integral.

To solve this problem, we resort to the Laplace approximation that approximates the distribution $p(\mathbf{f}|\mathbf{X},\mathbf{y})$ with a Gaussian distribution $q(\mathbf{f}|\mathbf{X},\mathbf{y})$, obtained by doing a second order Taylor expansion of $\log p(\mathbf{f}|\mathbf{X},\mathbf{y})$ around the maximum of the posterior

$$q(\mathbf{f}|\mathbf{X},\mathbf{y}) = \mathcal{N}\left(\mathbf{f}|\hat{\mathbf{f}},\mathbf{A}^{-1}\right) \propto \exp\left(-\frac{1}{2}(\mathbf{f}-\hat{\mathbf{f}})^{\top}\mathbf{A}(\mathbf{f}-\hat{\mathbf{f}})\right),$$

where $\hat{\mathbf{f}} = \operatorname{argmax}_{\mathbf{f}} p(\mathbf{f}|\mathbf{X}, \mathbf{y})$ and $\mathbf{A} = -\nabla\nabla \log p(\mathbf{f}|\mathbf{X}, \mathbf{y})|_{\mathbf{f} = \hat{\mathbf{f}}}$ is the Hessian matrix of the negative log posterior at that point.

By Bayes' rule, the posterior over the latent variables $p(\mathbf{f}|\mathbf{X},\mathbf{y})$ is given by

$$p(\mathbf{f}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{y},\mathbf{f}|\mathbf{X})}{p(\mathbf{y}|\mathbf{X})} = \frac{p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})}{p(\mathbf{y}|\mathbf{X})},$$

but $p(\mathbf{y}|\mathbf{X})$ is independent of \mathbf{f} , we only need to consider the un-normalized posterior $p(\mathbf{y}, \mathbf{f}|\mathbf{X}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})$ when maximizing w.r.t. \mathbf{f} .

Taking the logarithm on the un-normalized posterior, we get

$$\begin{split} \mathbf{\Psi}(\mathbf{f}) &\triangleq \log p(\mathbf{y}|\mathbf{f}) + \log p(\mathbf{f}|\mathbf{X}) \\ &= \log p(\mathbf{y}|\mathbf{f}) - \frac{1}{2}\mathbf{f}^{\mathrm{T}}\mathbf{K}^{-1}\mathbf{f} - \frac{1}{2}\log |\mathbf{K}| - \frac{n}{2}\log 2\pi, \end{split}$$

where $p(\mathbf{f}|\mathbf{X})$ is a Gaussian distribution $\mathcal{N}(\mathbf{0},\mathbf{K})$, \mathbf{K} is short for the kernel matrix $\mathbf{K}(\mathbf{X},\mathbf{X})$, and $|\mathbf{K}|$ is the determinant of the kernel matrix \mathbf{K} .

Differentiating $\Psi(\mathbf{f})$ w.r.t. \mathbf{f} , we obtain

$$abla \Psi(\mathbf{f}) = \nabla \log p(\mathbf{y}|\mathbf{f}) - \mathbf{K}^{-1}\mathbf{f},$$

$$abla \nabla \Psi(\mathbf{f}) = \nabla \nabla \log p(\mathbf{y}|\mathbf{f}) - \mathbf{K}^{-1},$$

where $\nabla\nabla \log p(\mathbf{y}|\mathbf{f})$ is diagonal, since the distribution for $y_i = +1$ or -1 depends only on f_i , not on $f_{i\neq i}$.

We can apply the Newton-Raphson method to find the latent function value vector $\hat{\mathbf{f}}$ that maximizes $\Psi(\mathbf{f})$, and obtain the approximated probability distribution as

$$q(\mathbf{f}|\mathbf{X},\mathbf{y}) = \mathcal{N}\left(\hat{\mathbf{f}}, \left(\mathbf{K}^{-1} + \mathbf{W}\right)^{-1}\right),$$

where $m{W} \triangleq -
abla
abla \log p(\mathbf{y}|\mathbf{f})|_{\mathbf{f} = \hat{\mathbf{f}}}$.

With $q(\mathbf{f}|\mathbf{X}, \mathbf{y})$ approximating $p(\mathbf{f}|\mathbf{X}, \mathbf{y})$, we can get the approximation for the posterior $p(f_*|\mathbf{X}, \mathbf{y}, \mathbf{x}_*)$ as

$$q\left(f_{*}|oldsymbol{\mathcal{X}},\mathbf{y},\mathbf{x}_{*}
ight)=\int p\left(f_{*}|oldsymbol{\mathcal{X}},\mathbf{x}_{*},\mathbf{f}
ight)q(\mathbf{f}|oldsymbol{\mathcal{X}},\mathbf{y})\mathrm{d}\mathbf{f},$$

where both $p(f_*|\mathbf{X},\mathbf{x}_*,\mathbf{f})$ and $q(\mathbf{f}|\mathbf{X},\mathbf{y})$ are Gaussian distributions. It can be proved that $q(f_*|\mathbf{X},\mathbf{y},\mathbf{x}_*)$ is also a Gaussian distribution with mean and variance as

$$\begin{split} & \mathbb{E}_q\left[f_*|\boldsymbol{X},\mathbf{y},\mathbf{x}_*\right] = \mathbf{k}_*^{\mathrm{T}}\boldsymbol{\mathcal{K}}^{-1}\hat{\mathbf{f}}, \\ & \mathbb{V}_q\left[f_*|\boldsymbol{X},\mathbf{y},\mathbf{x}_*\right] = k\left(\mathbf{x}_*,\mathbf{x}_*\right) - \mathbf{k}_*^{\mathrm{T}}\left(\boldsymbol{\mathcal{K}} + \boldsymbol{\mathcal{W}}^{-1}\right)^{-1}\mathbf{k}_*. \end{split}$$

Finally, the label probability for the test sample \mathbf{x}_* can computed as

$$ar{\pi}_* riangleq
ho(y_* = +1 | oldsymbol{X}, oldsymbol{y}, oldsymbol{x}_*) := \int \sigma(f_*) q(f_* | oldsymbol{X}, oldsymbol{y}, oldsymbol{x}_*) \, \mathrm{d}f_*.$$

Numeric integration techniques are generally used to calculate the one-dimensional integral.

Binary Gaussian Process Classifier

```
input: K (covariance matrix), \mathbf{y} (±1 targets), p(\mathbf{y}|\mathbf{f}) (likelihood function)

2: \mathbf{f} := \mathbf{0} initialization repeat Newton iteration

4: W := -\nabla\nabla \log p(\mathbf{y}|\mathbf{f})
L := \operatorname{cholesky}(I + W^{\frac{1}{2}}KW^{\frac{1}{2}})

6: \mathbf{b} := W\mathbf{f} + \nabla \log p(\mathbf{y}|\mathbf{f})
\mathbf{a} := \mathbf{b} - W^{\frac{1}{2}}L^{\top} \setminus (L \setminus (W^{\frac{1}{2}}K\mathbf{b}))

8: \mathbf{f} := K\mathbf{a} until convergence

10: \log q(\mathbf{y}|X, \theta) := -\frac{1}{2}\mathbf{a}^{\top}\mathbf{f} + \log p(\mathbf{y}|\mathbf{f}) - \sum_{i} \log L_{ii} return: \mathbf{f} := \mathbf{f} (post. mode), \log q(\mathbf{y}|X, \theta) (approx. log marg. likelihood)
```

Training algorithm for the binary Gaussian process classifier with Laplace approximation. The mode $\hat{\mathbf{f}}$ for the posterior probability distribution $p(\mathbf{f}|\mathbf{X},\mathbf{y})$ is returned, as well as the approximated log marginal likelihood, which can be use to tune hyperparameters.

Binary Gaussian Process Classifier

```
input: \hat{\mathbf{f}} (mode), X (inputs), \mathbf{y} (±1 targets), k (covariance function), p(\mathbf{y}|\mathbf{f}) (likelihood function), \mathbf{x}_* test input 2: W := -\nabla\nabla\log p(\mathbf{y}|\hat{\mathbf{f}})
L := \text{cholesky}(I + W^{\frac{1}{2}}KW^{\frac{1}{2}})
4: \bar{f}_* := \mathbf{k}(\mathbf{x}_*)^{\top}\nabla\log p(\mathbf{y}|\hat{\mathbf{f}})
\mathbf{v} := L\setminus(W^{\frac{1}{2}}\mathbf{k}(\mathbf{x}_*))
6: \mathbb{V}[f_*] := k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{v}^{\top}\mathbf{v}
\bar{\pi}_* := \int \sigma(z)\mathcal{N}(z|\bar{f}_*, \mathbb{V}[f_*])dz
8: \mathbf{return}: \bar{\pi}_* (predictive class probability (for class 1))
```

Prediction algorithm for the binary Gaussian classifier with Laplace approximation.

Multi-Class Gaussian Process Classifier

For the multi-class classification problem, where the class label y belongs to the label candidate set $\{1,\cdots,C\}$ with size C, we need to construct a Gaussian process for each class $c\in\{1,\cdots,C\}$, with the latent function value $f^c(\mathbf{x})$ evaluated at \mathbf{x} .

The conditional label probability $p\left(y=c|f^{1}(\mathbf{x}),\cdots,f^{C}(\mathbf{x})\right)$ can be constructed by the softmax function

$$p\left(y=c|f^{1}(\mathbf{x}),\cdots,f^{C}(\mathbf{x})\right)=\frac{\exp\left(f^{c}(\mathbf{x})\right)}{\sum_{c'=1}^{C}\exp\left(f^{c'}(\mathbf{x})\right)}.$$

Following the same procedure as the binary classification case, given a test sample \mathbf{x}_* , we can estimate the posterior probabilities $p(y_* = c | \mathbf{X}, \mathbf{y}, \mathbf{x}_*)$ to predict \mathbf{x}_* 's class label.

References

Williams CK, Rasmussen CE. **Gaussian Processes for Machine Learning**. Cambridge, MA: MIT press; 2006.

Section 1 - Section 3

The End