*** Applied Machine Learning Fundamentals *** Bayesian Decision Theory

Daniel Wehner, M.Sc.

SAPSE / DHBW Mannheim

Winter term 2023/2024

Lecture Overview

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Regression

Unit V Classification I

Unit VI Evaluation

Unit VII Classification II

Unit VIII Clustering

Unit IX Dimensionality Reduction

Agenda for this Unit

Bayesian Decision Theory

Introduction Class Conditional Probabilities Class Priors Bayes' Theorem Bayes' optimal Classifier

(Multinomial) Naïve Bayes Assumptions and Algorithm An Example Laplace Smoothing

3 Gaussian Naïve Bayes

Handling of continuous Data Maximum Likelihood Estimation (MLE) Generative vs. Discriminative Models

Wrap-Up

Summary Self-Test Questions Lecture Outlook

Section: Bayesian Decision Theory

Statistical Methods

- Statistical methods assume that the process that 'generates' the data is governed by the rules of probability
- The data is understood to be a set of random samples from some underlying probability distribution
- This is the reason for the name statistical machine learning

The basic assumption about how the data is generated is always there, even if you don't see a single probability distribution!

Running Example: Optical Character Recognition (OCR)

Goal: Classify a new letter so that the probability of a wrong classification is minimized

Class Conditional Probabilities

- First concept: Class conditional probabilities
- Probability of x given a specific class \mathcal{C}_k is formally written as:

$$p(\mathbf{x}|\mathcal{C}_k) \in [0,1] \tag{1}$$

• $x \in \mathbb{R}^m$ is a feature vector, e.g. # black pixels, height-width ratio, ...

Class Conditional Probabilities (Ctd.)

If x = 15 we would predict class a, since p(15|a) > p(15|b).

If x = 25 we would output class b, since p(25|b) > p(25|a).

Class Conditional Probabilities (Ctd.)

- Which class should be chosen now?
- The conditional probabilities are the same... 🙎

Class Prior Probabilities

- Second concept: Class priors
- The prior probability of a data point belonging to a particular class \mathcal{C}_k

$$C_1 \equiv a$$
 $p(C_1) = 0.75$
 $C_2 \equiv b$ $p(C_2) = 0.25$

• By definition:

How would you decide now?

- $0 \leqslant p(\mathcal{C}_k) \leqslant 1, \ \forall k$
- The sum of all probabilities equals one: $\sum_{k=1}^{|\mathcal{C}|} p(\mathcal{C}_k) = 1$
- The class prior is equivalent to a prior belief in the class label

How to get the Prior Probabilities?

Count Count's advice:

Simply count the number of instances in each class!

Introduction
Class Conditional Probabilities
Class Priors
Bayes' Theorem
Bayes' ootimal Classifier

Bayes' Theorem

- What we actually want to compute: $p(\mathcal{C}_k|\mathbf{x}) \Rightarrow \text{Posterior probability}$
- We can compute it by applying Bayes' theorem
- This is one of the most important formulas (!!!)

Class posterior
$$p(\mathcal{C}_{k}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_{k}) \cdot p(\mathcal{C}_{k})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\mathcal{C}_{k}) \cdot p(\mathcal{C}_{k})}{\sum_{j=1}^{|\mathcal{C}|} p(\mathbf{x}|\mathcal{C}_{j}) \cdot p(\mathcal{C}_{j})}$$
(2)
Normalization term

Calculation of the Posterior Probability

- By applying Bayes' theorem we can compute the posterior
- Simply plug and into Bayes' theorem
 - Class prior probabilities
 - 2 Class conditional probabilities

We get the final decision boundary

a Priori vs. a Posteriori

a Priori

A belief or conclusion based on assumptions or reasoning of some sort rather than actual experience or empirical evidence. Before actually encountering, experiencing, or observing a fact.

a Posteriori

A fact, belief, or argument that is based on actual experience, experiment, or observation.

Error Minimization

$$\begin{split} p(\textit{error}) &= p(x \in \mathcal{R}_1, \mathcal{C}_2) + p(x \in \mathcal{R}_2, \mathcal{C}_1) \\ &= \overbrace{\int_{\mathcal{R}_1} p(x|\mathcal{C}_2) \cdot p(\mathcal{C}_2) \, \mathrm{d}x}_{\text{Resont area}} + \\ &= \underbrace{\int_{\mathcal{R}_2} p(x|\mathcal{C}_1) \cdot p(\mathcal{C}_1) \, \mathrm{d}x}_{\text{blue area}} \end{split}$$

Introduction
Class Conditional Probabilitic
Class Priors
Bayes' Theorem
Bayes' optimal Classifier

Bayes' optimal Classifier

- Decision rule:
 - Decide \mathcal{C}_1 , if $p(\mathcal{C}_1|\mathbf{x}) > p(\mathcal{C}_2|\mathbf{x})$
 - This is equivalent to: (we don't need the normalization)

$$p(\mathbf{x}|\mathcal{C}_1) \cdot p(\mathcal{C}_1) > p(\mathbf{x}|\mathcal{C}_2) \cdot p(\mathcal{C}_2) \tag{3}$$

• Which is in turn equivalent to:

$$\frac{p(\mathbf{x}|\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)} > \frac{p(\mathcal{C}_2)}{p(\mathcal{C}_1)} \tag{4}$$

• A classifier obeying this rule is called Bayes' optimal Classifier

Section: (Multinomial) Naïve Bayes

A naïve Assumption

• We want to compute $p(\mathcal{C}_k|x)$. Recall Bayes' theorem:

Our first classification algorithm!

(5)

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k) \cdot p(\mathcal{C}_k)}{p(\mathbf{x})}$$

- Assumptions:
 - All features x_j are pairwise conditionally independent (\Rightarrow naïve)

$$p(\mathbf{x}|\mathcal{C}_k) = p(x_1|\mathcal{C}_k) \cdot p(x_2|\mathcal{C}_k, x_1) \cdot p(x_3|\mathcal{C}_k, x_1, x_2) \cdot \dots = \prod_{i=1}^m p(x_i|\mathcal{C}_k)$$
 (6)

• p(x) is constant w. r. t. class label \Rightarrow It is omitted

How to get the most probable Class?

- Given:
 - New instance $\mathbf{x} = \langle x_1, x_2, \dots, x_m \rangle$ to be classified
 - Finite set of κ classes $\{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_{\kappa}\}$
 - Labeled training data (⇒ supervised learning)
- Wanted: Most probable class \mathcal{C}_{MAP} (maximum aposteriori) for x:

$$\mathcal{C}_{MAP} = \underset{\mathcal{C}_k \in \{\mathcal{C}_1, \dots, \mathcal{C}_k\}}{\text{arg max}} \widehat{p}(\mathcal{C}_k | \boldsymbol{x})$$
(7)

$$\widehat{p}$$
 denotes an approximated probability

$$= \underset{\mathcal{C}_k \in \{\mathcal{C}_1, \dots, \mathcal{C}_\kappa\}}{\operatorname{arg max}} \widehat{p}(\mathcal{C}_k) \prod_{j=1}^m \widehat{p}(x_j | \mathcal{C}_k)$$
(8)

How to get the most probable Class? (Ctd.)

Example Data Set

Outlook	Temperature	Humidity	Wind	PlayGolf
sunny	hot	high	weak	no
sunny	hot	high	strong	no
overcast	hot	high	weak	yes
rainy	mild	high	weak	yes
rainy	cool	normal	weak	yes
rainy	cool	normal	strong	no
overcast	cool	normal	strong	yes
sunny	mild	high	weak	no
sunny	cool	normal	weak	yes
rainy	mild	normal	weak	yes
sunny	mild	normal	strong	yes
overcast	mild	high	strong	yes
overcast	hot	normal	weak	yes
rainy	mild	high	strong	no
sunny	cool	high	strong	???

How to estimate the Probabilities?

- How to estimate the probabilities $\widehat{p}(\mathcal{C}_k)$ and $\widehat{p}(x_j|\mathcal{C}_k)$?
- Solution: Simply count the occurrences

$$\widehat{p}(\mathcal{C}_k) = \frac{\sum_{i=1}^n \mathbb{1}\{y^{(i)} = \mathcal{C}_k\}}{n}$$
(9)

$$\widehat{p}(x_j = v | \mathcal{C}_k) = \frac{\sum_{i=1}^n \mathbb{1}\{x_j^{(i)} = v \land y^{(i)} = \mathcal{C}_k\}}{\sum_{i=1}^n \mathbb{1}\{y^{(i)} = \mathcal{C}_k\}}$$
(10)

• $\mathbb{1}\{bool\}$ is the indicator function (returns 1, if bool is true, 0 otherwise. E.g.: $\mathbb{1}\{1+1=2\}=1$, $\mathbb{1}\{3=2\}=0$)

Let's compute some Probabilities

- New instance $x = \langle sunny, cool, high, strong \rangle$
- What is its class?
- Let's compute some of the probabilities needed:

$$\widehat{p}(\textit{Golf} = \textit{yes}) = ^{9}/_{14} = 0.64$$

$$\widehat{p}(\textit{Golf} = \textit{no}) = ^{5}/_{14} = 0.36$$

$$\widehat{p}(\textit{Outlook} = \textit{sunny}|\textit{Golf} = \textit{yes}) = ^{2}/_{9} = 0.22$$

$$\widehat{p}(\textit{Outlook} = \textit{sunny}|\textit{Golf} = \textit{no}) = ^{3}/_{5} = 0.60$$

Class Prediction

$$\widehat{p}(yes|\mathbf{x}) = \widehat{p}(sunny|yes) \cdot \widehat{p}(cool|yes) \cdot \widehat{p}(high|yes) \cdot \widehat{p}(strong|yes) \cdot \widehat{p}(yes)$$

$$= 0.0053$$

$$\widehat{p}(no|\mathbf{x}) = \widehat{p}(sunny|no) \cdot \widehat{p}(cool|no) \cdot \widehat{p}(high|no) \cdot \widehat{p}(strong|no) \cdot \widehat{p}(no)$$

$$= 0.0206$$

$$= 0.0206$$

Classification: $C_{MAP} = no$ (no golf today...)

Scaling the Output

- But wait! These probabilities don't sum up to one!?!?
 - This is because we dropped the normalization term p(x)
 - Scaling can fix this:

$$\widehat{p}(yes|\mathbf{x})_{norm} = \frac{0.0053}{0.0053 + 0.0206} = 0.205$$

$$\widehat{p}(no|\mathbf{x})_{norm} = \frac{0.0206}{0.0053 + 0.0206} = 0.795$$

Scaling does not change the prediction

Laplace Smoothing

- **Problem:** A feature value v^* in the test data not seen during training
- $\widehat{p}(v^{\star}|\mathcal{C}_k) = 0$: The whole product becomes zero...
- Solution: Laplace smoothing

$$\widehat{p}(\mathcal{C}_k) = \frac{\sum_{i=1}^n \mathbb{1}\{y^{(i)} = \mathcal{C}_k\} + 1}{n + \kappa}$$
(11)

$$\widehat{p}(x_j = v | \mathcal{C}_k) = \frac{\sum_{i=1}^n \mathbb{1}\{x_j^{(i)} = v \land y^{(i)} = \mathcal{C}_k\} + 1}{\sum_{i=1}^n \mathbb{1}\{y^{(i)} = \mathcal{C}_k\} + \kappa}$$
(12)

Section: Gaussian Naïve Bayes

Handling of continuous Data

- We have learned about Bayes' optimal classifiers which classify data based on the probability distribution $p(\mathbf{x}|\mathcal{C}_k) \cdot p(\mathcal{C}_k)$
- Multinomial naïve Bayes can only be used for discrete data
- How to get these probabilities in the continuous case?
 - The prior $p(\mathcal{C}_k)$ is still easy to compute
 - The estimation of class conditional probabilities $p(x|\mathcal{C}_k)$ is more complicated
 - ullet Assume labeled data; estimate the density separately for each class \mathcal{C}_k
- NB: For ease of notation: $p(x) \equiv p(x|\mathcal{C}_k)$

Training Data Example

General Approach

• Given some (continuous) training data $X = \{x^{(i)}\}_{i=1}^n$ (where all $x^{(i)}$ belong to the same class):

• Estimate p(x) using a fixed parametric form:

Example: Gaussian Distribution

One common case is the Gaussian distribution:

$$p(x|\mu, \sigma^2) = \mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$
 (13)

- Notation for parametric models:
 - $p(x|\theta)$
 - In the case of a Gaussian: $\theta = \{\mu, \sigma^2\}$, where $\mu \equiv \text{mean}$, and $\sigma^2 \equiv \text{variance}$

Learning the Parameters

- ullet Learning means estimating the parameters $oldsymbol{ heta}$ given the data $oldsymbol{X}$
- Likelihood of the parameters θ :
 - Is defined as the probability that X was generated by a probability density function (pdf) with parameters θ

$$\mathcal{L}(\boldsymbol{\theta}) = p(\boldsymbol{X}|\boldsymbol{\theta}) \tag{14}$$

We want to maximize the likelihood

⇒ Maximum likelihood estimation (MLE)

A fundamental Assumption

- How to compute $\mathcal{L}(\boldsymbol{\theta})$?
- The data is assumed to be i. i. d. (independent and identically distributed):
 - Two random variables x_1 and x_2 are independent, if

$$P(x_1 \leqslant \alpha, x_2 \leqslant \beta) = P(x_1 \leqslant \alpha) \cdot P(x_2 \leqslant \beta) \quad \forall \alpha, \beta \in \mathbb{R}$$
 (15)

• Two random variables x_1 and x_2 are identically distributed, if

$$P(x_1 \leqslant \alpha) = P(x_2 \leqslant \alpha) \quad \forall \alpha \in \mathbb{R}$$
 (16)

Computation of the Likelihood

$$\mathcal{L}(\boldsymbol{\theta}) = p(\boldsymbol{X}|\boldsymbol{\theta})$$
$$= p(x^{(1)}, x^{(2)}, \dots, x^{(n)}|\boldsymbol{\theta})$$

data is independent:

$$= p(x^{(1)}|\boldsymbol{\theta}) \cdot p(x^{(2)}|\boldsymbol{\theta}) \cdot \ldots \cdot p(x^{(n)}|\boldsymbol{\theta})$$

data is identically distributed:

$$=\prod_{i=1}^n p(x^{(i)}|\boldsymbol{\theta})$$

What is the problem here?

(17)

Computation of the Likelihood (Ctd.)

- Problem: Large *n* might cause arithmetic underflows! (why?)
- Transform the likelihood using the logarithm ⇒ log-likelihood

$$\mathcal{LL}(m{ heta}) = \log \mathcal{L}(m{ heta})$$

$$= \log \prod_{i=1}^n p(x^{(i)}|m{ heta})$$

$$\log \Pi = \Sigma \log$$

Why is this an allowed transformation?

$$= \sum_{i=1}^{n} \log p(x^{(i)}|\boldsymbol{\theta}) \tag{18}$$

Maximum Likelihood of a Gaussian

• $\theta = \{\mu, \sigma^2\}$

$$\mathcal{LL}(\{\mu, \sigma^2\}) = \sum_{i=1}^{n} \log \mathcal{N}(x^{(i)}|\mu, \sigma^2)$$
 (19)

$$= \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{(x^{(i)} - \mu)^2}{2\sigma^2} \right\}$$
 (20)

• Find μ_{ml} and σ_{ml}^2 which maximize the log-likelihood:

$$\mu_{\textit{ml}}$$
, $\sigma^2_{\textit{ml}} = rg \max_{\mu,\sigma^2} \mathcal{LL}(oldsymbol{ heta})$

Maximum Likelihood of a Gaussian (Ctd.)

- ullet Compute the partial derivatives with respect to the parameters $oldsymbol{ heta}$
- Derivative w. r. t. μ:

$$\nabla_{\mu}\mathcal{L}\mathcal{L}(\boldsymbol{\theta}) = \nabla_{\mu} \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x^{(i)} - \mu)^2}{2\sigma^2}\right\} = \sum_{i=1}^{n} \frac{x^{(i)} - \mu}{\sigma^2}$$

Set derivative to zero and solve:

$$\sum_{i=1}^{n} (x^{(i)} - \mu) \stackrel{!}{=} 0 \Leftrightarrow n \cdot \mu = \sum_{i=1}^{n} x^{(i)} \Leftrightarrow \mu = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

Maximization of the Likelihood

We can classify!

• Maximum likelihood parameters:

Looks familiar?

$$\mu_{ml} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$
 $\sigma_{ml}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu_{ml})^{2}$

- Now we can use Bayes' rule to predict class labels
 - We have the priors...
 - ...and the class conditionals
- Also, the decision boundary can be computed

Multivariate Case

- The solution above is for 1-D data; what if we have more dimensions?
- Multivariate Gaussian distribution:

$$\mathcal{N}_{D}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^{D}|\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\}$$
(21)

Luckily, the derivations don't change:

$$\mu_{ml} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)} \qquad \Sigma_{ml} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}^{(i)} - \mu_{ml}) (\mathbf{x}^{(i)} - \mu_{ml})^{\mathsf{T}}$$
 (22)

Gaussian naïve Bayes – Final Model

$$p(\mathcal{C}_k|\mathbf{x}) = \mathcal{N}_D(\mathbf{x}|\boldsymbol{\mu}_{\mathcal{C}_k}, \boldsymbol{\Sigma}_{\mathcal{C}_k}) \cdot p(\mathcal{C}_k)$$

NB: $\mathcal{N}_D(\mathbf{x}|\boldsymbol{\mu}_{\mathcal{C}_k}, \boldsymbol{\Sigma}_{\mathcal{C}_k})$ denotes the Gaussian distribution estimated for class \mathcal{C}_k (using MLE). $p(\mathcal{C}_k)$ is the prior probability of class \mathcal{C}_k (as in the discrete case).

Generative vs. Discriminative Models

Generative Model

The artist

A generative algorithm models how the data was generated. It models the respective probability distributions.

Discriminative Model

The lousy painter

A **discriminative** algorithm does not care about how the data was generated. **It only knows how to distinguish the classes.**

Section: Wrap-Up

Summary

- Important concepts: Class conditional probabilities and class priors
- Use Bayes' theorem to get the class posteriors
- Bayes' optimal classifier: Decide for the most probable class
- Naïve Bayes assumes all features to be pairwise conditionally independent
- We can use **parametric models** to estimate the density of the data. They assume a certain **parametric form**, e.g. a Gaussian distribution
- This allows us to work with continuous features

Self-Test Questions

- 1 What are class conditional probabilities?
- 2 What does Bayes' optimal mean?
- 3 How can we incorporate prior knowledge about the class distribution into the classification?
- What is the naïve assumption which naïve Bayes makes? When might this be a problem?
- 5 Explain what maximum aposteriori is!
- 6 What is maximum likelihood estimation? How can you get the maximum likelihood estimate for a Gaussian distribution?

What's next...?

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Regression

Unit V Classification I

Unit VI Evaluation

Unit VII Classification II

Unit VIII Clustering

Unit IX Dimensionality Reduction

Thank you very much for the attention!

Topic: *** Applied Machine Learning Fundamentals *** Bayesian Decision Theory

Term: Winter term 2023/2024

Contact:

Daniel Wehner, M.Sc.
SAPSE / DHBW Mannheim
daniel.wehner@sap.com

Do you have any questions?