

Direct Kinematics

Prof. Dr. Karsten Berns

Robotics Research Lab Department of Computer Science University of Kaiserslautern, Germany

Contents

- Degrees of freedom of a robotic system
 - Kinematic degrees of freedom of a robot
- Models
 - Dynamic model
 - Geometric model
 - Kinematic model
- <u>Examples</u>
- Robot kinematics
 - Direct kinematics problem (Forward kinematics)

Direct Kinematics 2 rrlab.cs.uni-kl.de

Direct Kinematic Problem

Degree of Freedom (DoF) f of an Object in E_3

- Number of possible independent movements in relation to the BCS
 - Minimal number of translations and rotations for complete description of the object's pose
- For objects with unconstrained movement in 3D-space f = 6
 - 3 translations
 - 3 rotations

Kinematic Degrees of Freedom of a Robot

- Degrees of freedom of a rotational joint: $F_R \leq 3$
 - Hinge joint
 - Cardan joint
 - Linear joint
 - Spherical joint
- DoF of a translational joint: $F_T = 1$

Relation between f and F

- The relationship holds: $F \ge f$
- Examples
 - 8-axis robot: DoF f = 6, kinematic DoF F = 8
 - Human hand: f = 6, F = 22
 - Human arm including shoulder: f = 6, F = 12
- In order to reach a DoF f = 6 for a robot's effector, it requires at least F = 6 axes of movement

Models: Terminology

- Geometry: Mathematical description of robot form
 - Displays bodies graphically
 - Basis of movement calculation
 - Identification of acting forces and moments
 - Starting point of distance and collision measurement
- Kinematics: Geometric and analytic description of mechanical systems` states of movement
- Dynamics: Investigates movement of objects based on the forces and moments acting upon them

Direct Kinematics 7 rrlab.cs.uni-kl.de

Kinematic Model

- Describes the pose (position and orientation) of bodies in space with the help of the geometric model
- Kinematic chain: Several bodies, kinematically connected via joints (e.g. robot arm)
 - Closed kinematic chains
 - Open kinematic chains
- Purpose of kinematic model
 - Determining the relation between joint values and poses
 - Reachability analysis

Dynamic Model

- Describes forces and moments acting in a mechanical multibody system
- Purpose of dynamic model
 - Dimensioning of driving mechanism
 - Optimization of construction (light weight)
 - Consideration of bending and stiffness
 - Support for controller design

Geometric Model

Classification:

- 2D-model
- 2,5D-model
- 3D-model
- Edge or wire-frame models
- Surface models
- Volumetric models

Geometric Model: Block World

- Bodies represented by enveloping cuboids (bounding boxes)
- Easy calculation with regard to collision avoidance

Direct Kinematics 11 rrlab.cs.uni-kl.de

Geometric Model: Edge Model

- Bodies represented by polygons (edges)
- Quick visualization

Direct Kinematics 12 rrlab.cs.uni-kl.de

Geometric Models: Volumetric Models

- Precise representation of bodies
- Exact computation of contact points for collision avoidance
- Representation with animations

Direct Kinematics 13 rrlab.cs.uni-kl.de

Kinematic Models: Links and Joints

Direct Kinematics 14 rrlab.cs.uni-kl.de

Kinematic Model: Puma 260

Volumetric model

- Every arm element corresponds to a rigid body
- Every arm element is joined to the next via a linear or rotational joint
- Each joint has only one DoF (rot. or transl.)
- Kinematic pair = joint + joined arm elements

Puma 260

- 6-axis robot
- Basis and 6 arm elements (links)

Kinematic Model: Coordinate Systems

In order to describe the kinematics of a robot (kinematic chain), it is necessary to define the links' poses in relation to a reference coordinate system.

- Each link receives a fixed local CS
- Origin of each CS in joint responsible for moving given link
- A transformation matrix, relating the local CS to the reference system, needs to be determined for every link
- Transformation of local CS to reference CS via description vector or 4×4 homogenous transformation matrix.

Link Parameters

- Every link i is connected through 2 confining joints i and i + 1
- Let g_i and g_{i+1} be movement axes of joints (skewed to each other)
- Let a_i be the normal between g_i and g_{i+1}
- The distance of intersections of a_{i-1} and a_i with g_i is referred to as joint offset d_i
- Angle θ_i between a_{i-1} und a_i is referred to as joint angle
- Length of a_i (shortest distance between g_i and g_{i+1}) is called link length

Direct Kinematics

• Angle α_i between g_i und g_{i+1} is called link twist

Parameters of Joints

Parameter	Symbol	Rotational joint	Prismatic joint
Link length	а	Invariant	Invariant
Link twist	α	Invariant	Invariant
Joint distance	d	Invariant	Variable
Joint angle	θ	Variable	Invariant

Derivation of Joint Distance and Angle

Direct Kinematics 19 rrlab.cs.uni-kl.de

Definition of coordinate systems for every joint:

- Origin of CS i lies in intersection of a_i and g_{i+1}
- Axis z_i lies along the joint axis g_{i+1}
- Axis x_i follows as extension of normal a_i
- Complemented by axis y_i , so that a clockwise CS follows
- Origin of CS 0 can be freely placed along g_1
- The last coordinate system lies in the end effector

Direct Kinematics 20 rrlab.cs.uni-kl.de

Direct Kinematics 21 rrlab.cs.uni-kl.de

- Transformation from OCS of link i to OCS of link i-1 via Denavit-Hartenberg-Transformation
- Requirements
 - All CS follow the Denavit-Hartenberg-Convention
 - Parameters of link i are known

Literature: Denavit, Hartenberg: "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices", Journal of Applied Mechanics, vol 77, pp 215-221

Direct Kinematics 22 rrlab.cs.uni-kl.de

Denavit-Hartenberg-Transformation

Transformation from OCS_i to OCS_{i-1}

(1) Rotation θ_i around z_{i-1} -axis so that x_{i-1} -axis lies parallel to x_i -axis

$$R_{z_{i-1}}(\theta_i) = \begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i) & 0 & 0\\ \sin(\theta_i) & \cos(\theta_i) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(2) Translation d_i along z_{i-1} -axis to the intersection point of z_{i-1} and x_i

$$T_{Z_{i-1}}(d_i) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Direct Kinematics 23 rrlab.cs.uni-kl.de

Denavit-Hartenberg-Transformation

Transformation from OCS_i to OCS_{i-1}

(3) Translation a_i along x_i -axis in order to make the origins of the coordinate systems congruent

$$T_{x_i}(a_i) = \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(4) Rotation α_i around x_i -axis, to transform the z_{i-1} -axis into z_i

$$R_{x_i}(\alpha_i) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha_i) & -\sin(\alpha_i) & 0 \\ 0 & \sin(\alpha_i) & \cos(\alpha_i) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Direct Kinematics 24 rrlab.cs.uni-kl.de

Denavit-Hartenberg-Transformation

In matrix notation, the D-H-Transformation of the coordinate system of link i-1 to i looks like:

$$^{i-1}_{i}A = R_{z_{i-1}}(\theta_i) \cdot T_{z_{i-1}}(d_i) \cdot T_{x_i}(a_i) \cdot R_{x_i}(\alpha_i)$$

$$=\begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i) \cdot \cos(\alpha_i) & \sin(\theta_i) \cdot \sin(\alpha_i) & a_i \cdot \cos(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \cdot \cos(\alpha_i) & -\cos(\theta_i) \cdot \sin(\alpha_i) & a_i \cdot \sin(\theta_i) \\ 0 & \sin(\alpha_i) & \cos(\alpha_i) & d_i \\ 0 & 0 & 1 \end{bmatrix}$$

Denavit-Hartenberg-Transformation (Inverse)

The inverse of transformation matrix ${}^{i-1}_iA$ corresponds to the transformation from CS_{i-1} to CS_i :

$$i^{-1}iA^{-1} = i^{-1}iA$$

$$= \begin{bmatrix} \cos(\theta_i) & \sin(\theta_i) & 0 & -a_i \\ -\cos\alpha_i\sin(\theta_i) & \cos(\theta_i)\cdot\cos(\alpha_i) & \sin(\alpha_i) & -d_i\sin(\alpha_i) \\ \sin(\theta_i)\cdot\sin(\alpha_i) & -\sin(\alpha_i)\cos(\theta_i) & \cos(\alpha_i) & -d_i\cos(\alpha_i) \\ 0 & 0 & 1 \end{bmatrix}$$

Denavit-Hartenberg-Transformation (Inverse)

To determine the pose of the manipulator (Tool Center Point, TCP) in relation to the BCS, the D-H-matrices are multiplied in order of the corresponding links:

$$\underset{\mathsf{TCP}}{\mathsf{Basis}} A = \underset{1}{\mathsf{Basis}} A(\theta_1) \cdot \underset{2}{\overset{1}{\mathsf{2}}} A(\theta_2) \cdots \underset{n-1}{\overset{n-2}{\mathsf{2}}} A(\theta_{n-1}) \cdot \underset{n}{\overset{n-1}{\mathsf{1}}} A(\theta_n)$$

rrlab.cs.uni-kl.de

27

Approach with D-H

- (1) Finding the normal a_i
 - Joint axes g_i
 - a_i points from g_i to g_{i+1}
- (2) Defining the CS
 - Origin O_i in the intersection of a_i with g_{i+1}
 - x_i lies on normal a_i and points in the same direction
 - z_i lies on g_{i+1} , in the direction allowing joint rotation or translation in mathematically positive sense
 - y_i completes the clockwise CS; at TCP, y_iindicates width of opening

Direct Kinematics 28 rrlab.cs.uni-kl.de

02.11.2022 Direct Kinematics 29 rrlab.cs.uni-kl.de

Approach with D-H

Special cases of (1), (2)

- g_i and g_{i+1} intersect
 - Direction of x_i not defined
 - x_i arises from x_{i-1} through smallest possible rotation around z_{i-1}
- g_i and g_{i+1} are parallel or collinear
 - Intersection of a_i and g_{i+1} not well defined
 - Determine the normals by backstepping (recursively)
 - Starting at next uniquely identifiable origin O_j with j > i
 - At last joint, the origin is in the center of TCP

Direct Kinematics 30 rrlab.cs.uni-kl.de

Direct Kinematics: Approach with D-H

- (3) Determining the transformation matrix ${}^{i+1}_{i}A$
 - Rotation of CS of joint i around z_{i-1} with joint angle θ_i $\rightarrow x'_{i-1}$ is parallel to x_i
 - Translation by d_i along z_{i-1}
 - \rightarrow Origin lies in intersection of z_{i-1} and x_i
 - Translation by $|a_i|$ along x_i
 - → Origins are congruent
 - Rotation around x_i with twist α_i
 - $\rightarrow Z'_{i-1}$ is parallel to z_i
 - Combination of all these results:

$$_{i}^{i-1}A = R_{z_{i-1}}(\theta_i) \cdot T_{z_{i-1}}(d_i) \cdot T_{x_i}(|a_i|) \cdot R_{x_i}(\alpha_i)$$

Direct Kinematics 31 rrlab.cs.uni-kl.de

Joint	a_i	α_i	d_i	θ_i
1	a_1	0	0	$ heta_1$
2	a_2	0	0	$oldsymbol{ heta}_2$
3	a_3	0	0	θ_3

$$\begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i) \cdot \cos(\alpha_i) & \sin(\theta_i) \cdot \sin(\alpha_i) & a_i \cdot \cos(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \cdot \cos(\alpha_i) & -\cos(\theta_i) \cdot \sin(\alpha_i) & a_i \cdot \sin(\theta_i) \\ 0 & \sin(\alpha_i) & \cos(\alpha_i) & d_i \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow i^{i-1}A = \begin{bmatrix} c_i & -s_i & 0 & a_i \cdot c_i \\ s_i & c_i & 0 & a_i \cdot s_i \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Direct Kinematics 32 rrlab.cs.uni-kl.de

Result:

$$\begin{cases} 0 \\ 3A = {}^{0}_{1}A \cdot {}^{1}_{2}A \cdot {}^{2}_{3}A = \\ 0 \\ 0 + \theta_{2} \end{cases} \begin{cases} c_{123} - s_{123} & 0 & a_{1} \cdot c_{1} + a_{2} \cdot c_{12} + a_{3} \cdot c_{123} \\ s_{123} c_{123} & 0 & a_{1} \cdot s_{1} + a_{2} \cdot s_{12} + a_{3} \cdot s_{123} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{cases}$$

With:

$$s_{123} = \sin(\theta_1 + \theta_2 + \theta_3)$$
 and $c_{123} = \cos(\theta_1 + \theta_2 + \theta_3)$

Direct Kinematics 33 rrlab.cs.uni-kl.de

Joint	a_i	α_i	d_i	θ_i
1	0	-90°	0	$ heta_1$
2	0	90 °	d_2	$oldsymbol{ heta}_2$
3	0	0	d_3	0

$${}_{1}^{0}A = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}A = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Direct Kinematics 34 rrlab.cs.uni-kl.de

$${}_{3}^{2}A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow {}_{0}^{3}A = {}_{1}^{0}A \cdot {}_{2}^{1}A \cdot {}_{3}^{2}A = \begin{bmatrix} c_{1} \cdot c_{2} & -s_{1} & c_{1} \cdot s_{2} & c_{1} \cdot s_{2} \cdot d_{3} - s_{1} \cdot d_{2} \\ s_{1} \cdot c_{2} & c_{1} & s_{1} \cdot s_{2} & s_{1} \cdot s_{2} \cdot d_{3} + c_{1} \cdot d_{2} \\ -s_{2} & 0 & c_{2} & c_{2} \cdot d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Joint	a_i	α_i	d_i	θ_i
1	0	90°	0	$ heta_1$
2	a_2	0	0	$ heta_2$
3	a_3	0	0	θ_3

Direct Kinematics 36 rrlab.cs.uni-kl.de

Direct Kinematics 37 rrlab.cs.uni-kl.de

Robot Kinematics

- Describes relations between joint angle space and the end effector's pose space in world coordinates
 - Joint angle space:
 Robot coordinates, configuration space
 - EE: Abbreviation for end effector
- Direct kinematic problem (forward kinematics)
- Inverse kinematic problem (backward kinematics)

Direct Kinematics 38 rrlab.cs.uni-kl.de

Direct Kinematics Problem (Forward Kinematics)

- The manipulator's pose is to be determined from D-Hparameters and joint
- $\vec{\theta}$ given

Direct Kinematics Summary

- Sketch of the manipulator
- Enumerate links: Basis = 0, last link = n
- Identify and enumerate the joints
- Draw axes z_i for every joint i
- Determine parameters a_i between z_{i-1} and z_i
- Draw x_{i-1} -axes
- Determine parameter α_{i-1} (twist around x_{i-1} -axes)
- Determine parameter d_i (offset)
- Determine angle θ_i around z_i -axes
- Joint-transformation matrices $A_{i-1,1}$

Inverse Kinematic Problem (Chapter 7)

How should I move my hand there?

Find the joint angles

Coming up next ...

Real and Dual Quaternions

Direct Kinematics rrlab.cs.uni-kl.de