Affine Invariant Covariance Estimation for Heavy-Tailed Distributions

Dmitrii M. Ostrovskii Alessandro Rudi INRIA Paris, Ecole Normale Supérieure

COLT 2019 Phoenix, AZ June 28, 2019

Covariance Estimation Problem

Problem: estimate the covariance matrix $\mathbf{S} = \mathbf{E}[XX^{\top}]$ of a zero-mean random vector $X \in \mathbb{R}^d$ from its n i.i.d. copies $X_1, ..., X_n$.

Empirical covariance estimator:

$$\widetilde{\mathbf{S}} = \frac{1}{n} \sum_{i=1}^{n} X_i X_i^{\top}.$$

- easy to compute: $O(nd^2)$ time, $O(d^2)$ memory.
- statistically favorable when data is light-tailed.
- equivariant: \widetilde{S} behaves as S under linear transforms: $\widetilde{S}' = ASA^{\top}$.

Equivariance is useful in applications – gives affine invariant bounds.

Empirical Covariance Estimator: Background

• $\widetilde{\mathbf{S}}$ is statistically favorable when data is light-tailed:

Assumption: subgaussian marginals. For any $u \in \mathbb{R}^d$ and $p \ge 2$,

$$\mathbf{E}^{1/p}[|\langle X,u\rangle|^p] \leq \kappa \sqrt{p}\, \mathbf{E}^{1/2}[\langle X,u\rangle^2],$$

where κ is a constant for any u and p.

• E.g., this holds with $\kappa=3$ when $X\sim\mathcal{N}(0,\mathbf{S})$ with arbitrary \mathbf{S} .

Theorem (Koltchinskii and Lounici [2014]): with probability $\geq 1-\delta$,

$$rac{\|\widetilde{\mathsf{S}}-\mathsf{S}\|}{\|\mathsf{S}\|}\lesssim \kappa^2\sqrt{rac{\mathtt{r}(\mathsf{S})+\log(1/\delta)}{n}},$$

where $\|\cdot\|$ is the operator norm, $\mathbf{r}(\mathbf{S}) = \frac{\mathsf{Tr}(\mathbf{S})}{\|\mathbf{S}\|}$ the effective rank.

Affine Invariant Bound via Equivariance

$$\frac{\|\widetilde{\mathbf{S}} - \mathbf{S}\|}{\|\mathbf{S}\|} \lesssim \kappa^2 \sqrt{\frac{\mathbf{r}(\mathbf{S}) + \log(1/\delta)}{n}}, \quad \mathbf{r}(\mathbf{S}) = \frac{\mathsf{Tr}(\mathbf{S})}{\|\mathbf{S}\|}.$$

The bound is **not** affine invariant, while the assumption is. Let's fix it:

- $\widetilde{\mathbf{S}}$ is **equivariant**: behaves the same as \mathbf{S} under linear transforms.
- Consider (virtual) **decorrelated observations** $Z_i = \mathbf{S}^{-1/2}X_i$ with **identity covariance** and empirical covariance estimator

$$\frac{1}{n}\sum_{i=1}^n Z_i Z_i^{\top} = \mathbf{S}^{-1/2}\widetilde{\mathbf{S}}\mathbf{S}^{-1/2}.$$

Hence, using the previous result,

$$\|\mathbf{S}^{-1/2}(\widetilde{\mathbf{S}} - \mathbf{S})\mathbf{S}^{-1/2}\| \lesssim \kappa^2 \sqrt{\frac{d + \log(1/\delta)}{n}} =: \varepsilon.$$

Equivalently, $(1-\varepsilon)\mathbf{S} \preccurlyeq \widetilde{\mathbf{S}} \preccurlyeq (1+\varepsilon)\mathbf{S}$, so **relative-scale** eigenvalue bounds.

• Applications in random-design least-squares, noisy subspace iteration.

Heavy-Tailed Distributions: Truncation

Assumption: marginals for any $u \in \mathbb{R}^d$ have **kurtosis** bounded by κ :

$$\mathsf{E}^{1/4}[|\langle X, u \rangle|^4] \le \kappa \mathsf{E}^{1/2}[\langle X, u \rangle^2].$$

Under this Asm., Minsker and Wei [2017] consider the truncation estimator

$$\widehat{\mathbf{S}}^{\mathsf{MW}} = \frac{1}{n} \sum_{i=1}^{n} \tau_{\theta}(\|\mathbf{X}_i\|^2 / \|\mathbf{S}\|) X_i X_i^{\top},$$

where $\tau_{\theta}(\cdot)$ is the truncation map given by $\tau_{\theta}(x) = \min(x,\theta)/x$, and prove

$$\frac{\|\widehat{\mathbf{S}}^{\mathsf{MW}} - \mathbf{S}\|}{\|\mathbf{S}\|} \lesssim \kappa^2 \sqrt{\frac{\mathbf{r}(\mathbf{S}) \cdot \log(2d/\delta)}{n}}.$$

• We would like affine-invariant bound, something like

$$\|\mathbf{S}^{-1/2}(\widehat{\mathbf{S}} - \mathbf{S})\mathbf{S}^{-1/2}\| \lesssim \kappa^2 \sqrt{\frac{d \cdot \log(2d/\delta)}{n}}.$$

• By equivariance, this bound would hold for the oracle "estimator":

$$\widehat{\mathbf{S}}^* = \frac{1}{n} \sum_{i=1}^n \tau_{\theta}(\|\mathbf{S}^{-1/2} X_i\|^2) X_i X_i^{\top}.$$

Main Result

Theorem. Under the kurtosis assumption, there exists an estimator $\hat{\mathbf{S}}$, with time complexity $O(nd^2 + d^3)$ and memory complexity $O(d^2)$, that satisfies,

$$\|\mathbf{S}^{-1/2}(\widehat{\mathbf{S}} - \mathbf{S})\mathbf{S}^{-1/2}\| \le 48\kappa^2 \sqrt{\frac{d \cdot \log(2d/\delta)}{n}}$$

with probability at least $1-\delta$, provided that

$$n \ge 96^2 \kappa^4 d \log(2d/\delta) \cdot \log(\text{cond}(\mathbf{S})).$$

- Extra factor log(cond(S)) in the required n, but not in the rate.
- Similar cost as for the empirical covariance estimator when $n \gg d$.
- Estimator requires (loose) bounds on $\|\mathbf{S}\|$ and $\lambda_{\min}(\mathbf{S})$.

$$\frac{\|\widehat{\mathbf{S}}^{\mathsf{MW}} - \mathbf{S}\|}{\|\mathbf{S}\|} \lesssim \kappa^2 \sqrt{\frac{\mathbf{r}(\mathbf{S}) \cdot \log(2d/\delta)}{n}}$$
$$\widehat{\mathbf{S}}^{\mathsf{MW}} = \frac{1}{n} \sum_{i=1}^{n} \tau(\|X_i\|^2 / \|\mathbf{S}\|) X_i X_i^{\top}$$

$$\|\mathbf{S}^{-1/2}(\widehat{\mathbf{S}} - \mathbf{S})\mathbf{S}^{-1/2}\| \lesssim \kappa^2 \sqrt{\frac{d \cdot \log(2d/\delta)}{n}}$$
$$\widehat{\mathbf{S}}^* = \frac{1}{n} \sum_{i=1}^n \tau(\|\mathbf{S}^{-1/2} X_i\|^2) X_i X_i^{\top}$$

$$\frac{\|\widehat{\mathbf{S}}^{\mathsf{MW}} - \mathbf{S}\|}{\|\mathbf{S}\|} \lesssim \kappa^2 \sqrt{\frac{\mathbf{r}(\mathbf{S}) \cdot \log(2d/\delta)}{n}}$$
$$\widehat{\mathbf{S}}^{\mathsf{MW}} = \frac{1}{n} \sum_{i=1}^{n} \tau(\|\mathbf{X}_i\|^2 / \|\mathbf{S}\|) X_i X_i^{\top}$$

$$\frac{\|\widehat{\mathbf{S}}^{\mathsf{MW}} - \mathbf{S}\|}{\|\mathbf{S}\|} \lesssim \kappa^2 \sqrt{\frac{\mathbf{r}(\mathbf{S}) \cdot \log(2d/\delta)}{n}} \qquad \|\mathbf{S}^{-1/2}(\widehat{\mathbf{S}} - \mathbf{S})\mathbf{S}^{-1/2}\| \lesssim \kappa^2 \sqrt{\frac{d \cdot \log(2d/\delta)}{n}}$$

$$\widehat{\mathbf{S}}^{\mathsf{MW}} = \frac{1}{n} \sum_{i=1}^{n} \tau(\|X_i\|^2/\|\mathbf{S}\|) X_i X_i^{\mathsf{T}}$$

$$\widehat{\mathbf{S}}^* = \frac{1}{n} \sum_{i=1}^{n} \tau(\|\mathbf{S}^{-1/2}X_i\|^2) X_i X_i^{\mathsf{T}}$$

General problem for $\lambda > 0$:

$$\|(\mathbf{S} + \lambda \mathbf{I})^{-1/2}(\widehat{\mathbf{S}} - \mathbf{S})(\mathbf{S} + \lambda \mathbf{I})^{-1/2}\| \lesssim \kappa^2 \sqrt{\frac{d_{\lambda}(\mathbf{S}) \cdot \log(2d/\delta)}{n}},$$

where $d_{\lambda}(\mathbf{S}) = \text{Tr}[\mathbf{S}(\mathbf{S} + \lambda \mathbf{I})^{-1}]$ is the effective dimension, with oracle

$$\widehat{\mathbf{S}}_{\lambda}^* = \frac{1}{n} \sum_{i=1}^n \tau(\|(\mathbf{S} + \lambda \mathbf{I})^{-1/2} X_i\|^2) X_i X_i^{\top}.$$

$$\frac{\|\widehat{\mathbf{S}}^{\mathsf{MW}} - \mathbf{S}\|}{\|\mathbf{S}\|} \lesssim \kappa^2 \sqrt{\frac{\mathbf{r}(\mathbf{S}) \cdot \log(2d/\delta)}{n}}$$
$$\widehat{\mathbf{S}}^{\mathsf{MW}} = \frac{1}{n} \sum_{i=1}^{n} \tau(\|\mathbf{X}_i\|^2 / \|\mathbf{S}\|) X_i X_i^{\top}$$

$$\frac{\|\widehat{\mathbf{S}}^{\mathsf{MW}} - \mathbf{S}\|}{\|\mathbf{S}\|} \lesssim \kappa^2 \sqrt{\frac{\mathbf{r}(\mathbf{S}) \cdot \log(2d/\delta)}{n}} \qquad \|\mathbf{S}^{-1/2}(\widehat{\mathbf{S}} - \mathbf{S})\mathbf{S}^{-1/2}\| \lesssim \kappa^2 \sqrt{\frac{d \cdot \log(2d/\delta)}{n}}$$

$$\widehat{\mathbf{S}}^{\mathsf{MW}} = \frac{1}{n} \sum_{i=1}^{n} \tau(\|X_i\|^2/\|\mathbf{S}\|) X_i X_i^{\mathsf{T}}$$

$$\widehat{\mathbf{S}}^* = \frac{1}{n} \sum_{i=1}^{n} \tau(\|\mathbf{S}^{-1/2}X_i\|^2) X_i X_i^{\mathsf{T}}$$

General problem for $\lambda > 0$:

$$\|(\mathbf{S} + \lambda \mathbf{I})^{-1/2}(\widehat{\mathbf{S}} - \mathbf{S})(\mathbf{S} + \lambda \mathbf{I})^{-1/2}\| \lesssim \kappa^2 \sqrt{\frac{d_{\lambda}(\mathbf{S}) \cdot \log(2d/\delta)}{n}},$$

where $d_{\lambda}(\mathbf{S}) = \text{Tr}[\mathbf{S}(\mathbf{S} + \lambda \mathbf{I})^{-1}]$ is the effective dimension, with oracle

$$\widehat{\mathbf{S}}_{\lambda}^* = \frac{1}{n} \sum_{i=1}^n \tau(\|(\mathbf{S} + \lambda \mathbf{I})^{-1/2} X_i\|^2) X_i X_i^{\top}.$$

• Left: $\lambda = \|\mathbf{S}\|$, oracle is $\hat{\mathbf{S}}^{\text{MW}}$ – available! Right: $\lambda = 0$ – what we need.

$$\frac{\|\widehat{\mathbf{S}}^{\mathsf{MW}} - \mathbf{S}\|}{\|\mathbf{S}\|} \lesssim \kappa^2 \sqrt{\frac{\mathbf{r}(\mathbf{S}) \cdot \log(2d/\delta)}{n}}$$
$$\widehat{\mathbf{S}}^{\mathsf{MW}} = \frac{1}{n} \sum_{i=1}^{n} \tau(\|\mathbf{X}_i\|^2 / \|\mathbf{S}\|) X_i X_i^{\top}$$

$$\frac{\|\widehat{\mathbf{S}}^{\mathsf{MW}} - \mathbf{S}\|}{\|\mathbf{S}\|} \lesssim \kappa^2 \sqrt{\frac{\mathbf{r}(\mathbf{S}) \cdot \log(2d/\delta)}{n}} \|\mathbf{S}^{-1/2}(\widehat{\mathbf{S}} - \mathbf{S})\mathbf{S}^{-1/2}\| \lesssim \kappa^2 \sqrt{\frac{d \cdot \log(2d/\delta)}{n}}$$

$$\widehat{\mathbf{S}}^{\mathsf{MW}} = \frac{1}{n} \sum_{i=1}^{n} \tau(\|X_i\|^2 / \|\mathbf{S}\|) X_i X_i^{\top}$$

$$\widehat{\mathbf{S}}^* = \frac{1}{n} \sum_{i=1}^{n} \tau(\|\mathbf{S}^{-1/2} X_i\|^2) X_i X_i^{\top}$$

General problem for $\lambda > 0$:

$$\|(\mathbf{S} + \lambda \mathbf{I})^{-1/2}(\widehat{\mathbf{S}} - \mathbf{S})(\mathbf{S} + \lambda \mathbf{I})^{-1/2}\| \lesssim \kappa^2 \sqrt{\frac{d_{\lambda}(\mathbf{S}) \cdot \log(2d/\delta)}{n}},$$

where $d_{\lambda}(\mathbf{S}) = \text{Tr}[\mathbf{S}(\mathbf{S} + \lambda \mathbf{I})^{-1}]$ is the effective dimension, with oracle

$$\widehat{\mathbf{S}}_{\lambda}^* = \frac{1}{n} \sum_{i=1}^n \tau(\|(\mathbf{S} + \lambda \mathbf{I})^{-1/2} X_i\|^2) X_i X_i^{\top}.$$

- Left: $\lambda = \|\mathbf{S}\|$, oracle is $\hat{\mathbf{S}}^{\text{MW}}$ available! Right: $\lambda = 0$ what we need.
- Construction: start with $\hat{\mathbf{S}}^{(0)} = \hat{\mathbf{S}}^{\text{MW}}$, and approximate $\hat{\mathbf{S}}^*$ iteratively:

$$\widehat{\mathbf{S}}^{(t+1)} = \frac{1}{n} \sum_{i=1}^{n} \tau(\|(\widehat{\mathbf{S}}^{(t)} + \lambda_t)^{-1/2} X_i\|^2) X_i X_i^{\top}$$

with $\lambda_t = \|\mathbf{S}\| \cdot 2^{-t}$. Proceed for $\log(\text{cond}(\mathbf{S}))$ iterations, until $\lambda \leq \lambda_{\min}(\mathbf{S})$.

Conclusion

- Affine-Invariant bounds are important in applications.
- For equivariant estimators, they follow "automatically" from operator-norm bounds. However, without equivariance this is not so.

We construct an iterative procedure that results in estimators satisfying such bounds in the case of robust covariance estimation.

Thanks!

- Koltchinskii, V. and Lounici, K. (2014). Concentration inequalities and moment bounds for sample covariance operators. *arXiv:1405.2468*.
- Minsker, S. and Wei, X. (2017). Estimation of the covariance structure of heavy-tailed distributions. *arXiv:1708.00502*.

Analysis

$$\widehat{\mathbf{S}}^{(t+1)} = \frac{1}{n} \sum_{i=1}^{n} \tau(\|(\widehat{\mathbf{S}}^{(t)} + \lambda_t)^{-1/2} X_i\|^2) X_i X_i^\top, \quad 0 \le t \le \log(\text{cond}(\mathbf{S})).$$

Instead, we consider sample splitting:

$$\widehat{\mathbf{S}}^{(t+1)} = \frac{1}{b_t} \sum_{i=1}^{b_t} \tau(\|(\widehat{\mathbf{S}}^{(t)} + \lambda_t)^{-1/2} X_i^{(t+1)}\|^2) X_i^{(t+1)} \left[X_i^{(t+1)}\right]^\top,$$

where $X_1^{(t+1)},...,X_{b_t}^{(t+1)}$ is a fresh batch of observations.

Key lemma: w.h.p. we have correct accuracy at step t+1, i.e.,

$$\|(\mathbf{S} + \lambda_{t+1}\mathbf{I})^{-1/2}(\widehat{\mathbf{S}}^{(t+1)} - \mathbf{S})(\mathbf{S} + \lambda_{t+1}\mathbf{I})^{-1/2}\| \lesssim \underbrace{\kappa^2 \sqrt{\frac{d_{\lambda_{t+1}}(\mathbf{S}) \cdot \log(2d/\delta)}{n}}}_{\varepsilon_{t+1}},$$

provided **fixed accuracy** $\varepsilon_t = 1/2$ at step t.

• Take $b_t = \frac{n}{2 \log(\text{cond}(\mathbf{S}))}$ for $t < \log(\text{cond}(\mathbf{S}))$; b = n/2 in the end.

Application: Ridge Regression with Heavy-Tailed Design

Fit $Y = X^{\top}w^*$ from i.i.d. sample $(X_i, Y_i)_{i=1}^n$ with $\mathbf{E}[X] = 0$, $\mathbf{E}[XX^{\top}] = \mathbf{S}$.

• Ridge regression estimator of w*:

$$\widetilde{w}_{\lambda} = \frac{1}{n} \sum_{i=1}^{n} (\widetilde{\mathbf{S}} + \lambda \mathbf{I})^{-1/2} X_i Y_i.$$

• Instead, consider

$$\widehat{w}_{\lambda} = \frac{1}{n} \sum_{i=1}^{n} (\widehat{\mathbf{S}} + \lambda \mathbf{I})^{-1/2} \widehat{Z}_{i},$$

where $\widehat{\mathbf{S}}$ is computed from a hold-out sample by our method; \widehat{Z}_i 's are obtained by appropriately truncating $Z_i = X_i Y_i$'s in $\|\cdot\|_{(\widehat{\mathbf{S}} + \lambda \mathbf{I})^{-1}}$ -norm.

Theorem. With prob. $1 - \delta$,

$$\|\widehat{w}_{\lambda} - w^*\|_{\mathbf{S}}^2 \lesssim \left[\left(\kappa^4 + \kappa^2 \varkappa^2\right) \frac{v^2 d_{\lambda}(\mathbf{S}) \log(2d/\delta)}{n} + \lambda^2 \left\| (\mathbf{S} + \lambda \mathbf{I})^{-1/2} w^* \right\|^2 \right],$$

whenever X has κ -bounded marginal kurtoses, $\mathbf{E}[Y^2] \leq v^2$, $\mathbf{E}[Y^4] \leq \varkappa^4 v^4$.