WHAT IS CLAIMED IS:

1. A compound of formula I:

$$(R^{1})_{a}$$
 Ar^{1} E $(R^{2})_{b}$ Ar^{2} $(R^{3})_{c}$ R^{4} R^{5} R^{7} R^{6} R^{6}

wherein:

Ar¹ represents phenyl, (3-6C)cycloalkyl, (3-5C)heteroaryl or (3-5C)heterocyclyl; wherein the heteroaryl and heterocyclyl groups contain 1 or 2 ring heteroatoms selected independently from oxygen, nitrogen and sulfur;

a is 0 or an integer from 1 to 3;

each R¹ is selected independently from (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl, cyano, halo, -OR^{1a}, -SR^{1b}, -S(O)R^{1c}, -S(O)₂R^{1d}, -NR^{1e}R^{1f} and -C(O)OR^{1g}; or two adjacent R¹ groups are joined together to form (3-6C)alkylene, (2-4C)alkylene-O- or -O-(1-4C)alkylene)-O-;

each of R^{1a}, R^{1b}, R^{1c}, R^{1d}, R^{1e}, R^{1f} and R^{1g} is independently hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl;

Ar² represents phenyl, (3-6C)cycloalkyl, (3-5C)heteroaryl or (3-5C)heterocyclyl; wherein the heteroaryl and heterocyclyl group contain 1 or 2 ring heteroatoms selected independently from oxygen, nitrogen and sulfur;

b is 0 or an integer of from 1 to 3;

each R^2 is selected independently from (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl, cyano, halo, $-OR^{2a}$, $-SR^{2b}$, $-S(O)R^{2c}$, $-S(O)_2R^{2d}$, $-NR^{2e}R^{2f}$ and $-C(O)OR^{2g}$; or two adjacent R^2 groups are joined together to form (3-6C)alkylene, (2-

25 4C)alkylene-O- or -O-(1-4C)alkylene)-O-;

each of R^{2a}, R^{2b}, R^{2c}, R^{2d}, R^{2e}, R^{2f} and R^{2g} is independently hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl;

5

10

15

W^a and W^b are selected independently from hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl, or together with the nitrogen atom to which they are attached, W^a and W^b form a pyrrolidin-1-yl, piperidin-1-yl, piperazin-1-yl, morpholin-4-yl or thiomorpholin-4-yl group; or W^a and one R¹ are joined to form a covalent bond;

W^c is hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl;

c is 0 or an integer of from 1 to 4;

each R³ is independently selected from (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl, cyano, halo, -OR^{3a}, -SR^{3b}, -S(O)R^{3c}, -S(O)₂R^{3d} and -NR^{3e}R^{3f} and -C(O)OR^{3g}; or two R³ groups are joined to form (1-3C)alkylene, (2-3C)alkenylene or oxiran-2,3-diyl;

each of R^{3a}, R^{3b}, R^{3c}, R^{3d}, R^{3e}, R^{3f} and R^{3g} is independently hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl;

z is 1 or 2;

R⁴ is a divalent group of the formula:

15

20

5

10

$$-(R^{4a})_d - (A^1)_e - (R^{4b})_f - Q - (R^{4c})_g - (A^2)_h - (R^{4d})_i -$$

wherein

d, e, f, g, h and i are each independently selected from 0 and 1;

R^{4a}, R^{4b}, R^{4c} and R^{4d} are each independently selected from (1-10C)alkylene, (2-10C)alkenylene and (2-10C)alkynylene, wherein each alkylene, alkenylene or alkynylene group is unsubstituted or substituted with from 1 to 5 substituents independently selected from (1-4C)alkyl, fluoro, hydroxy, phenyl and phenyl-(1-4C)alkyl;

A¹ and A² are each independently selected from (3-7C)cycloalkylene, (6-10C)arylene, -O-(6-10C)arylene, (6-10C)arylene-O-, (2-9C)heteroarylene, -O-(2-9C)heteroarylene, (2-9C)heteroarylene-O- and (3-6C)heterocyclene, wherein each cycloalkylene is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl, and each arylene, heteroarylene or heterocyclene group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy;

Q is selected from a bond, -O-, -C(O)O-, -OC(O)-, -S-, -S(O)-, -S(O)₂-,

 $-N(Q^a)C(O)-, -C(O)N(Q^b)-, -N(Q^c)S(O)_2-, -S(O)_2N(Q^d)-, -N(Q^e)C(O)N(Q^f)-, -N(Q^g)S(O)_2N(Q^h)-, -OC(O)N(Q^i)-, -N(Q^j)C(O)O- \ and -N(Q^k);$

Q^a, Q^b, Q^c, Q^d, Q^e, Q^f, Q^g, Q^h, Qⁱ, Q^j and Q^k are each independently selected from hydrogen, (1-6C)alkyl, A³ and (1-4C)alkylene-A⁴, wherein the alkyl group is unsubstituted or substituted with from 1 to 3 substituents independently selected from fluoro, hydroxy and (1-4C)alkoxy; or together with the nitrogen atom and the group R^{4b} or R^{4c} to which they are attached, form a 4-6 membered azacycloalkylene group;

A³ and A⁴ are each independently selected from (3-6C)cycloalkyl, (6-10C)aryl, (2-9C)heteroaryl and (3-6C)heterocyclyl, wherein each cycloalkyl is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl and each aryl, heteroaryl or heterocyclyl group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl and (1-4C)alkoxy;

provided that the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R⁴ is attached is in the range of from 4 to 16;

R⁵ represents hydrogen or (1-4C)alkyl;

 R^6 is -NR^{6a}CR^{6b}(O) or -CR^{6c}R^{6d}OR^{6e} and R⁷ is hydrogen; or R⁶ and R⁷ together form -NR^{7a}C(O)-CR^{7b}=CR^{7c}-, -CR^{7d}=CR^{7e}-C(O)-NR^{7f}-, -NR^{7g}C(O)-CR^{7h}R⁷ⁱ-CR^{7j}R^{7k}- or - CR^{7l}R^{7m}-CR⁷ⁿR^{7o}- C(O) -NR^{7p}-:

each of R^{6a} , R^{6b} , R^{6c} , R^{6d} and R^{6e} is independently hydrogen or (1-4C)alkyl; and each of R^{7a} , R^{7b} , R^{7c} , R^{7d} , R^{7e} , R^{7f} , R^{7g} , R^{7h} , R^{7i} , R^{7i} , R^{7i} , R^{7h} , R^{7n} , R^{7n} , R^{7n} , R^{7n} and R^{7p} is independently hydrogen or (1-4C)alkyl;

wherein each alkyl, alkenyl, alkylene and cycloalkyl group in R¹, R^{1a-g}, R², R^{2a-g}, R³, R^{3a-g}, W^{a-c} is optionally substituted with from 1 to 5 fluoro substituents; or a pharmaceutically acceptable salt or solvate or stereoisomer thereof.

25

5

10

15

- 2. The compound of Claim 1, wherein the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R⁴ is attached is in the range of from 8 to 14.
- 30 3. The compound of Claim 2, wherein the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R⁴ is attached is 8, 9, 10 or 11.

20

25

- 4. The compound of Claim 1, wherein Ar¹ and Ar² independently represent phenyl, (3-6C)cycloalkyl or (3-5C)heteroaryl.
- 5. The compound of Claim 4, wherein Ar¹ and Ar² are independently selected from phenyl, pyridyl, thienyl, cyclobutyl, cyclopentyl or cyclohexyl.
 - 6. The compound of Claim 5, wherein Ar¹ and Ar² are both phenyl.
 - 7. The compound of Claim 1, wherein a, b and c are 0.
 - 8. The compound of Claim 1, wherein E is -C(O)NW^aW^b.
 - 9. The compound of Claim 8, wherein E is $-C(O)NH_2$.
- 15 10. The compound of Claim 1, wherein z is 1.
 - 11. The compound of Claim 1, wherein R⁶ is -NHCHO or -CH₂OH and R⁷ is hydrogen; or R⁶ and R⁷ together form -NHC(O)-CH=CH-, -CH=CH-C(O)-NH-, -CH₂-CH₂-C(O)NH- or -NHC(O)-CH₂-CH₂-.
 - 12. The compound of Claim 1, wherein R^4 is a divalent group of the formula: $-(R^{4a})_{d}$ where R^{4a} is (4-10C)alkylene.
 - 13. The compound of Claim 12, wherein R^4 is $-(CH_2)_8$, $-(CH_2)_9$, and $-(CH_2)_{10}$.
 - 14. The compound of Claim 1, wherein R⁴ is a divalent group of the formula:

$$-(R^{4a})_d-(A^2)_h-(R^{4d})_i$$

wherein R^{4a} is (1-10C)alkylene; A^2 is (6-10C)arylene or (2-9C)heteroarylene; and R^{4d} is (1-10C)alkylene.

15. The compound of Claim 1, wherein R⁴ is a divalent group of the formula:

$$-(R^{4a})_d$$
-Q- $(A^2)_h$ - $(R^{4d})_i$ -

- wherein Q is -O- or $-N(Q^k)$ -; Q^k is hydrogen or (1-3C)alkyl; R^{4a} is (1-10C)alkylene; A^2 is (6-10C)arylene or (2-9C)heteroarylene; and R^{4d} is (1-10C)alkylene.
 - 16. The compound of Claim 1, wherein Q is $-N(Q^a)C(O)$ or $-C(O)N(Q^b)$ -.

17. The compound of Claim 16, wherein R⁴ is selected from:

$$---(CH_2)_m$$
 $-- C-N_1--(CH_2)_n$ $---$

wherein m is an integer from 2 to 10; and n is an integer from 2 to 10; provided that m + n is an integer from 4 to 12;

$$\begin{array}{c} O \\ ---(CH_2)_o - \stackrel{||}{C} - \stackrel{||}{N} - \stackrel{||}{ } - \stackrel{||}{ }$$

20

25

10

wherein o is an integer from 2 to 7; and p is an integer from 1 to 6; provided that o + p is an integer from 3 to 8; and wherein the phen-1,4-ylene group is optionally substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy;

$$--(CH_2)_q$$
 $--CH_2$ $--CH_2$ $--CH_2$ $--CH_2$ $--CH_2$ $--CH_2$

wherein q is an integer from 2 to 6; r is an integer from 1 to 5; and s is an integer from 1 to 5; provided that q + r + s is an integer from 4 to 8; and wherein the phen-1,4-ylene group is optionally substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy;

$$--$$
 (CH₂)_t $-$ N $-$ C $-$ (CH₂)_u $--$

wherein t is an integer from 2 to 10; and u is an integer from 2 to 10; provided that t + u is an integer from 4 to 12;

$$-- (CH2)v - N - C - CH2)w - CH2)w - CH2)w - CH2$$

wherein v is an integer from 2 to 7; and w is an integer from 1 to 6; provided that v + w is an integer from 3 to 8; and wherein the phen-1,4-ylene group is optionally substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy; and

$$--(CH_2)_x - N - C - (CH_2)_y - C - (CH_2)_z - CH_2$$

wherein x is an integer from 2 to 6; y is an integer from 1 to 5; and z is an integer from 1 to 5; provided that x + y + z is an integer from 4 to 8; and wherein the phen-1,425 ylene group is optionally substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy.

18. A compound of formula II:

$$\begin{array}{c} O \\ N \\ N \\ R^4 \end{array} \begin{array}{c} O \\ N \\ R^7 \end{array} \begin{array}{c} O \\ O \\ R^6 \end{array}$$

II

5 wherein

R⁴ is a divalent group of the formula:

$$-(R^{4a})_d$$
 $-(A^1)_e$ $-(R^{4b})_f$ $-Q$ $-(R^{4c})_g$ $-(A^2)_h$ $-(R^{4d})_i$

10 wherein

15

20

d, e, f, g, h and i are each independently selected from 0 and 1;

R^{4a}, R^{4b}, R^{4c} and R^{4d} are each independently selected from (1-10C)alkylene, (2-10C)alkenylene and (2-10C)alkynylene, wherein each alkylene, alkenylene or alkynylene group is unsubstituted or substituted with from 1 to 5 substituents independently selected from (1-4C)alkyl, fluoro, hydroxy, phenyl and phenyl-(1-4C)alkyl;

A¹ and A² are each independently selected from (3-7C)cycloalkylene, (6-10C)arylene, -O-(6-10C)arylene, (6-10C)arylene-O-, (2-9C)heteroarylene, -O-(2-9C)heteroarylene, (2-9C)heteroarylene-O- and (3-6C)heterocyclene, wherein each cycloalkylene is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl, and each arylene, heteroarylene or heterocyclene group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo,

(1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl,

-C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy;

Q is selected from a bond, -O-, -C(O)O-, -OC(O)-, -S-, -S(O)-, -S(O)₂-,

25 $-N(Q^a)C(O)$ -, $-C(O)N(Q^b)$ -, $-N(Q^c)S(O)_2$ -, $-S(O)_2N(Q^d)$ -, $-N(Q^e)C(O)N(Q^f)$ -, $-N(Q^g)S(O)_2N(Q^h)$ -, $-OC(O)N(Q^i)$ -, $-N(Q^j)C(O)O$ - and $-N(Q^k)$;

Q^a, Q^b, Q^c, Q^d, Q^e, Q^f, Q^g, Q^h, Qⁱ, Q^j and Q^k are each independently selected from hydrogen, (1-6C)alkyl, A³ and (1-4C)alkylene-A⁴, wherein the alkyl group is unsubstituted or substituted with from 1 to 3 substituents independently selected from fluoro, hydroxy and (1-4C)alkoxy; or together with the nitrogen atom and the group R^{4b} or R^{4c} to which they are attached, form a 4-6 membered azacycloalkylene group;

A³ and A⁴ are each independently selected from (3-6C)cycloalkyl, (6-10C)aryl, (2-9C)heteroaryl and (3-6C)heterocyclyl, wherein each cycloalkyl is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl and each aryl, heteroaryl or heterocyclyl group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl and (1-4C)alkoxy;

provided that the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R⁴ is attached is in the range of from 4 to 16;

 R^6 is -NR^{6a}CR^{6b}(O) or -CR^{6c}R^{6d}OR^{6e} and R⁷ is hydrogen; or R⁶ and R⁷ together form -NR^{7a}C(O)-CR^{7b}=CR^{7c}-, -CR^{7d}=CR^{7e}-C(O)-NR^{7f}-, -NR^{7g}C(O)-CR^{7h}R⁷ⁱ-CR^{7j}R^{7k}- or -CR^{7l}R^{7m}-CR⁷ⁿR^{7o}- C(O) -NR^{7p}-:

each of R^{6a} , R^{6b} , R^{6c} , R^{6d} and R^{6e} is independently hydrogen or (1-4C)alkyl; and each of R^{7a} , R^{7b} , R^{7c} , R^{7d} , R^{7e} , R^{7f} , R^{7g} , R^{7h} , R^{7i} , R^{7i} , R^{7k} , R^{7l} , R^{7m} , R^{7n} , R^{7o} and R^{7p} is independently hydrogen or (1-4C)alkyl;

or a pharmaceutically acceptable salt or solvate or stereoisomer thereof.

19. A compound of formula III:

III

25

10

15

20

wherein

R⁴ is a divalent group of the formula:

$$-(R^{4a})_d$$
- $(A^1)_e$ - $(R^{4b})_f$ - Q - $(R^{4c})_g$ - $(A^2)_h$ - $(R^{4d})_i$ -

5 wherein

10

15

20

25

30

d, e, f, g, h and i are each independently selected from 0 and 1;

R^{4a}, R^{4b}, R^{4c} and R^{4d} are each independently selected from (1-10C)alkylene, (2-10C)alkenylene and (2-10C)alkynylene, wherein each alkylene, alkenylene or alkynylene group is unsubstituted or substituted with from 1 to 5 substituents independently selected from (1-4C)alkyl, fluoro, hydroxy, phenyl and phenyl-(1-4C)alkyl;

A¹ and A² are each independently selected from (3-7C)cycloalkylene, (6-10C)arylene, -O-(6-10C)arylene, (6-10C)arylene-O-, (2-9C)heteroarylene, -O-(2-9C)heteroarylene, (2-9C)heteroarylene-O- and (3-6C)heterocyclene, wherein each cycloalkylene is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl, and each arylene, heteroarylene or heterocyclene group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy;

Q is selected from a bond, -O-, -C(O)O-, -OC(O)-, -S-, -S(O)-, -S(O)₂-, -N(Q^a)C(O)-, -C(O)N(Q^b)-, -N(Q^c)S(O)₂-, -S(O)₂N(Q^d)-, -N(Q^e)C(O)N(Q^f)-,

 $-N(Q^g)S(O)_2N(Q^h)_{-}$, $-OC(O)N(Q^i)_{-}$, $-N(Q^j)C(O)O_{-}$ and $-N(Q^k)_{+}$;

Q^a, Q^b, Q^c, Q^d, Q^e, Q^f, Q^g, Q^h, Qⁱ, Q^j and Q^k are each independently selected from hydrogen, (1-6C)alkyl, A³ and (1-4C)alkylene-A⁴, wherein the alkyl group is unsubstituted or substituted with from 1 to 3 substituents independently selected from fluoro, hydroxy and (1-4C)alkoxy; or together with the nitrogen atom and the group R^{4b} or R^{4c} to which they are attached, form a 4-6 membered azacycloalkylene group;

A³ and A⁴ are each independently selected from (3-6C)cycloalkyl, (6-10C)aryl, (2-9C)heteroaryl and (3-6C)heterocyclyl, wherein each cycloalkyl is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl and each aryl, heteroaryl or heterocyclyl group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl and (1-4C)alkoxy;

provided that the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R⁴ is attached is in the range of from 4 to 16;

or a pharmaceutically acceptable salt or solvate or stereoisomer thereof.

20. A compound of formula IV:

wherein

5

15

20

R⁴ is a divalent group of the formula:

$$-(R^{4a})_{d}-(A^{1})_{e}-(R^{4b})_{f}-Q-(R^{4c})_{g}-(A^{2})_{h}-(R^{4d})_{i}-$$

wherein

d, e, f, g, h and i are each independently selected from 0 and 1;

R^{4a}, R^{4b}, R^{4c} and R^{4d} are each independently selected from (1-10C)alkylene, (2-

10C)alkenylene and (2-10C)alkynylene, wherein each alkylene, alkenylene or alkynylene group is unsubstituted or substituted with from 1 to 5 substituents independently selected from (1-4C)alkyl, fluoro, hydroxy, phenyl and phenyl-(1-4C)alkyl;

A¹ and A² are each independently selected from (3-7C)cycloalkylene, (6-10C)arylene, -O-(6-10C)arylene, (6-10C)arylene-O-, (2-9C)heteroarylene, -O-(2-9C)heteroarylene, (2-9C)heteroarylene-O- and (3-6C)heterocyclene, wherein each cycloalkylene is unsubstituted or substituted with from 1 to 4 substitutents selected

independently from (1-4C)alkyl, and each arylene, heteroarylene or heterocyclene group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo,

 $(1-4C) alkyl, (1-4C) alkoxy, -S-(1-4C) alkyl, -S(O)-(1-4C) alkyl, -S(O)_2-(1-4C) alkyl, -S(O)_2-(1-4C)_2-(1-4C) alkyl, -S(O)_2-(1-$

10

15

25

- -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy; $Q \text{ is selected from a bond, -O-, -C(O)O-, -OC(O)-, -S-, -S(O)-, -S(O)_2-, -N(Q^a)C(O)-, -C(O)N(Q^b)-, -N(Q^c)S(O)_2-, -S(O)_2N(Q^d)-, -N(Q^e)C(O)N(Q^f)-, -N(Q^g)S(O)_2N(Q^h)-, -OC(O)N(Q^i)-, -N(Q^i)C(O)O- and -N(Q^k);}$
- Q^a, Q^b, Q^c, Q^d, Q^e, Q^f, Q^g, Q^h, Qⁱ, Q^j and Q^k are each independently selected from hydrogen, (1-6C)alkyl, A³ and (1-4C)alkylene-A⁴, wherein the alkyl group is unsubstituted or substituted with from 1 to 3 substituents independently selected from fluoro, hydroxy and (1-4C)alkoxy; or together with the nitrogen atom and the group R^{4b} or R^{4c} to which they are attached, form a 4-6 membered azacycloalkylene group;
- A³ and A⁴ are each independently selected from (3-6C)cycloalkyl, (6-10C)aryl, (2-9C)heteroaryl and (3-6C)heterocyclyl, wherein each cycloalkyl is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl and each aryl, heteroaryl or heterocyclyl group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl and (1-4C)alkoxy;
- provided that the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R⁴ is attached is in the range of from 4 to 16;

or a pharmaceutically acceptable salt or solvate or stereoisomer thereof.

- 21. The compound of any one of Claims 18, 19 or 20, wherein the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R⁴ is attached is in the range of from 8 to 14.
 - 22. The compound of any one of Claims 18, 19 or 20, wherein the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R⁴ is attached is 8, 9, 10 or 11.
 - 23. The compound of any one of Claims 18, 19 or 20, wherein R^4 is a divalent group of the formula: $-(R^{4a})_{d}$ where R^{4a} is (4-10C)alkylene.
- The compound of Claim 23, wherein R^4 is $-(CH_2)_8$, $-(CH_2)_9$, and $-(CH_2)_{10}$.

25. The compound of any one of Claims 18, 19 or 20, wherein R⁴ is a divalent group of the formula:

$$-(R^{4a})_d-(A^2)_h-(R^{4d})_i-$$

5

wherein R^{4a} is (1-10C)alkylene; A^2 is (6-10C)arylene or (2-9C)heteroarylene; and R^{4d} is (1-10C)alkylene.

26. The compound of any one of Claims 18, 19 or 20, wherein R⁴ is a divalent 10 group of the formula:

$$-(R^{4a})_d-Q-(A^2)_h-(R^{4d})_i-$$

wherein Q is -O- or -N(Q^k)-; Q^k is hydrogen or (1-3C)alkyl; R^{4a} is (1-15 10C)alkylene; A² is (6-10C)arylene or (2-9C)heteroarylene; and R^{4d} is (1-10C)alkylene.

- 27. The compound of any one of Claims 18, 19 or 20, wherein Q is $-N(Q^a)C(O)$ or $-C(O)N(Q^b)$ -.
- 20 28. The compound of Claim 27 wherein R⁴ is selected from:

$$--(CH_2)_m$$
 $--C-N_1$ $--(CH_2)_n$ $---$

wherein m is an integer from 2 to 10; and n is an integer from 2 to 10; provided that m + n is an integer from 4 to 12;

$$--(CH2)o - C-N - (CH2)p - --$$

wherein o is an integer from 2 to 7; and p is an integer from 1 to 6; provided that o + p is an integer from 3 to 8; and wherein the phen-1,4-ylene group is optionally substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy;

wherein q is an integer from 2 to 6; r is an integer from 1 to 5; and s is an integer from 1 to 5; provided that q + r + s is an integer from 4 to 8; and wherein the phen-1,4-ylene group is optionally substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy;

$$\begin{array}{c} O \\ II \\ --- (CH_2)_t -- N - C --- (CH_2)_u --- \end{array}$$

wherein t is an integer from 2 to 10; and u is an integer from 2 to 10; provided that t + u is an integer from 4 to 12;

$$-- (CH2)v - N - C - CH2)w - C - (CH2)w - C - CH2 - CH$$

wherein v is an integer from 2 to 7; and w is an integer from 1 to 6; provided that v + w is an integer from 3 to 8; and wherein the phen-1,4-ylene group is optionally substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy; and

20

15

wherein x is an integer from 2 to 6; y is an integer from 1 to 5; and z is an integer from 1 to 5; provided that x + y + z is an integer from 4 to 8; and wherein the phen-1,4-ylene group is optionally substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, $-S(O)_2-(1-4C)$ alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy.

```
The compound of any one of Claims 18, 19 or 20, wherein R<sup>4</sup> is selected
10
                     29.
         from:
         -(CH_2)_7-;
         -(CH_2)_8-;
         -(CH_2)_9-;
15
        -(CH_2)_{10}-;
         -(CH_2)_{11}-;
         -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(CH<sub>2</sub>)<sub>5</sub>-;
         -(CH_2)_2N(CH_3)C(O)(CH_2)_5-;
         -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(phen-1,4-ylene)CH<sub>2</sub>-;
20
        -(CH<sub>2</sub>)<sub>2</sub>NHC(O)(phen-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>NHC(O)NH(CH<sub>2</sub>)<sub>5</sub>-;
        -(CH<sub>2</sub>)<sub>3</sub>NHC(O)NH(CH<sub>2</sub>)<sub>5</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>C(O)NHCH<sub>2</sub>(cyclohex-1,3-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>NHC(O)(cis-cyclopent-1,3-ylene)-;
25
        -(CH<sub>2</sub>)<sub>2</sub>NHC(O)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
         1-[-(CH_2)_2C(O)](piperidin-4-yl)(CH<sub>2</sub>)<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>NHC(O)(trans-cyclohex-1,4-ylene)CH<sub>2</sub>-;
        -(CH<sub>2</sub>)<sub>2</sub>NHC(O)(cis-cyclopent-1,3-ylene)-;
        -(CH<sub>2</sub>)<sub>2</sub>NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
30
        1-[-(CH<sub>2</sub>)<sub>2</sub>NHC(O)](piperidin-4-yl)(CH<sub>2</sub>)<sub>2</sub>-;
```

--158--

-CH₂(phen-1,4-ylene)NH(phen-1,4-ylene)CH₂-;

-(CH₂)₂C(O)NHCH₂(phen-1,3-ylene)CH₂-;

```
-(CH<sub>2</sub>)<sub>2</sub>C(O)NHCH<sub>2</sub>(pyrid-2,6-ylene)CH<sub>2</sub>-;
        -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(cis-cyclohex-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(trans-cyclohex-1,4-ylene)CH<sub>2</sub>-;
        -(CH<sub>2</sub>)<sub>2</sub>NHC(O)(cis-cyclopent-1,3-ylene)CH<sub>2</sub>-;
        -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)C(O)(phen-1,3-ylene)CH<sub>2</sub>-;
        -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)C(O)(trans-cyclohex-1,4-ylene)CH<sub>2</sub>-;
        -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(phen-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(phen-1,4-ylene)C*H(CH<sub>3</sub>)-((S)-isomer);
        -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(phen-1,4-ylene)C*H(CH<sub>3</sub>)-((R)-isomer);
      2-[(S)-(-CH_2-](pyrrolidin-1-yl)C(O)(CH_2)_4-;
10
        2-[(S)-(-CH_2-](pyrrolidin-1-yl)C(O)(phen-1,4-ylene)CH_2-;
        -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(4-chlorophen-1,3-ylene)CH<sub>2</sub>-;
        -CH<sub>2</sub>(2-fluorophen-1,3-ylene)CH<sub>2</sub>-;
        -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(4-methylphen-1,3-ylene)CH<sub>2</sub>-;
15
        -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(6-chlorophen-1,3-ylene)CH<sub>2</sub>-;
        -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2-chlorophen-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2,6-dichlorophen-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>NHC(O)NHCH<sub>2</sub>(phen-1,3-ylene)CH<sub>2</sub>-;
        4-[-CH<sub>2</sub>-](piperidin-1-yl)C(O)(phen-1,4-ylene)CH<sub>2</sub>-;
20
        -(CH<sub>2</sub>)<sub>2</sub>C(O)N(CH<sub>2</sub>CH<sub>3</sub>)(phen-1,4-ylene)CH<sub>2</sub>-;
        1-[-(CH<sub>2</sub>)<sub>2</sub>NHC(O)](piperidin-4-yl)-;
        -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
        -(CH<sub>2</sub>)<sub>2</sub>NHC(O)(thien-2,5-ylene)CH<sub>2</sub>-;
        -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)C(O)(3-nitrophen-1,4-ylene)CH<sub>2</sub>-;
25
        -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)C(O)(trans-cyclohex-1,4-ylene)-;
         1-[-CH<sub>2</sub>(2-fluorophen-1,3-ylene)CH<sub>2</sub>](piperidin-4-yl)-;
        5-[-(CH<sub>2</sub>)<sub>2</sub>NHC(O)](pyrid-2-yl)CH<sub>2</sub>-;
        -(CH_2)_2(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
        -(CH_2)_3(thien-2,5-ylene)(CH<sub>2</sub>)<sub>3</sub>-;
30
        -(CH<sub>2</sub>)<sub>2</sub>(phen-1,4-ylene)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
        -CH<sub>2</sub>(phen-1,2-ylene)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
        1-[-CH<sub>2</sub>(2-fluorophen-1,3-ylene)CH<sub>2</sub>](piperidin-4-yl)(CH<sub>2</sub>)<sub>2</sub>-;
        1-[-CH<sub>2</sub>(2-fluorophen-1,3-ylene)CH<sub>2</sub>](piperidin-4-yl)CH<sub>2</sub>-;
```

```
-(CH<sub>2</sub>)<sub>2</sub>C(O)NH(3-chlorophen-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2-(CF<sub>3</sub>O-)phen-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>3</sub>(phen-1,3-ylene)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
         -(CH_2)_2S(O)_2NH(CH_2)_5-;
       -CH<sub>2</sub>(phen-1,3-ylene)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2-iodophen-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2-chloro-5-methoxyphen-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2-chloro-6-methylphen-1,4-ylene)CH<sub>2</sub>-;
         -(CH_2)_2C(O)NH(CH_2)_5-;
       -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)S(O)<sub>2</sub>(phen-1,4-ylene)CH<sub>2</sub>-;
10
         -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2-bromophen-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>3</sub>(phen-1,4-ylene)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>3</sub>(phen-1,2-ylene)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
         1-[-CH<sub>2</sub>(2-fluorophen-1,3-ylene)CH<sub>2</sub>](piperidin-4-yl)(CH<sub>2</sub>)<sub>3</sub>-;
15
        -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2-methoxyphen-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>5</sub>NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
         4-[-(CH_2)_2-](piperidin-1-yl)(phen-1,4-ylene)(CH_2)_2-;
        -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(phen-1,4-ylene)CH(CH<sub>3</sub>)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>-(trans-cyclohex-1,4-ylene)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
20
        -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2-fluorophen-1,4-ylene)CH<sub>2</sub>-;
         -(CH_2)_2(phen-1,3-ylene)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2,5-difluorophen-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>NHC(O)(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
         1-[-CH<sub>2</sub>(pyrid-2,6-ylene)CH<sub>2</sub>](piperidin-4-yl)CH<sub>2</sub>-;
        -(CH<sub>2</sub>)<sub>3</sub>NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
25
         -(CH<sub>2</sub>)<sub>2</sub>NH(naphth-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>3</sub>O(phen-1,4-ylene)CH<sub>2</sub>-;
         1-[-(CH<sub>2</sub>)<sub>3</sub>](piperidin-4-yl)CH<sub>2</sub>-;
        4-[-(CH<sub>2</sub>)<sub>2</sub>](piperidin-1-yl)C(O)(phen-1,4-ylene)CH<sub>2</sub>-;
30
        -(CH<sub>2</sub>)<sub>3</sub>(phen-1,4-ylene)NHC(O)(CH<sub>2</sub>)<sub>2</sub>-;
        -(CH_2)_3O(phen-1,4-ylene)(CH_2)_2-;
        2-[-(CH<sub>2</sub>)<sub>2</sub>](benzimidazol-5-yl)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>-(trans-cyclohex-1,4-ylene)NHC(O)(CH<sub>2</sub>)<sub>2</sub>-;
```

```
-(CH<sub>2</sub>)<sub>2</sub>-(trans-cyclohex-1,4-ylene)NHC(O)(CH<sub>2</sub>)<sub>4</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>-(trans-cyclohex-1,4-ylene)NHC(O)(CH<sub>2</sub>)<sub>5</sub>-;
         4-[-(CH_2)_2](piperidin-1-yl)C(O)(CH<sub>2</sub>)<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>NHC(O)NH(phen-1,4-ylene)CH<sub>2</sub>-;
        -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)(CH<sub>2</sub>)<sub>2</sub>(cis-cyclohex-1,4-ylene)-;
         -(CH_2)_2C(O)NH(2,3,5,6-tetrafluorophen-1,4-ylene)CH_2-;
         -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2,6-diiodophen-1,4-ylene)CH<sub>2</sub>-;
         4-[-(CH_2)_2](piperidin-1-yl)C(O)(CH<sub>2</sub>)<sub>3</sub>-;
         4-[-(CH_2)_2](piperidin-1-yl)C(O)(CH<sub>2</sub>)<sub>4</sub>-;
10
       4-[-(CH<sub>2</sub>)<sub>2</sub>](piperidin-1-yl)C(O)(CH<sub>2</sub>)<sub>5</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>C(O)NHCH<sub>2</sub>(phen-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>NHC(O)NHCH<sub>2</sub>(phen-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(2-methylphen-1,4-ylene)CH<sub>2</sub>-;
         1-[-(CH<sub>2</sub>)<sub>3</sub>O(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>](piperidin-4-yl)CH<sub>2</sub>-;
15
        -(CH<sub>2</sub>)<sub>2</sub>C(O)NHCH<sub>2</sub>(phen-1,3-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>O(phen-1,3-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)C(O)CH<sub>2</sub>O(phen-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)C(O)CH<sub>2</sub>O(phen-1,3-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)C(O)(fur-2,5-ylene)CH<sub>2</sub>-;
20
        -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)C(O)(thien-2,5-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>O(phen-1,4-ylene)O(CH<sub>2</sub>)<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>(trans-cyclohex-1,4-ylene)NHC(O)(phen-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>(trans-cyclohex-1,4-ylene)NHC(O)CH<sub>2</sub>O(phen-1,2-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>(trans-cyclohex-1,4-ylene)NHC(O)CH<sub>2</sub>O(phen-1,3-ylene)CH<sub>2</sub>-;
25
        -(CH<sub>2</sub>)<sub>2</sub>(trans-cyclohex-1,4-ylene)NHC(O)CH<sub>2</sub>O(phen-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>(trans-cyclohex-1,4-ylene)NHC(O)(fur-2,5-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>(trans-cyclohex-1,4-ylene)NHC(O)(thien-2,5-ylene)CH<sub>2</sub>-;
         4-[-(CH<sub>2</sub>)<sub>2</sub>](piperidin-1-yl)C(O)CH<sub>2</sub>O(phen-1,2-ylene)CH<sub>2</sub>-;
        4-[-(CH<sub>2</sub>)<sub>2</sub>](piperidin-1-yl)C(O)CH<sub>2</sub>O(phen-1,3-ylene)CH<sub>2</sub>-;
30
        4-[-(CH<sub>2</sub>)<sub>2</sub>](piperidin-1-yl)C(O)CH<sub>2</sub>O(phen-1,4-ylene)CH<sub>2</sub>-;
        4-[-(CH<sub>2</sub>)<sub>2</sub>](piperidin-1-yl)C(O)(fur-2,5-ylene)CH<sub>2</sub>-;
        4-[-(CH<sub>2</sub>)<sub>2</sub>](piperidin-1-yl)C(O)(thien-2,5-ylene)CH<sub>2</sub>-;
        -(CH<sub>2</sub>)<sub>2</sub>(phen-1,4-ylene)NHC(O)(phen-1,3-ylene)CH<sub>2</sub>-;
```

```
-(CH<sub>2</sub>)<sub>2</sub>(phen-1,4-ylene)NHC(O)(phen-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>(phen-1,4-ylene)NHC(O)CH<sub>2</sub>O(phen-1,2-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>(phen-1,4-ylene)NHC(O)CH<sub>2</sub>O(phen-1,3-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>(phen-1,4-ylene)NHC(O)CH<sub>2</sub>O(phen-1,4-ylene)CH<sub>2</sub>-;
        -(CH<sub>2</sub>)<sub>2</sub>(phen-1,4-ylene)NHC(O)(fur-2,5-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>(phen-1,4-ylene)NHC(O)(thien-2,5-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>(trans-cyclohex-1,4-ylene)NHC(O)(phen-1,3-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>3</sub>O(phen-1,3-ylene)CH<sub>2</sub>-;
         -CH<sub>2</sub>CH(OH)CH<sub>2</sub>NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
       -(CH<sub>2</sub>)<sub>4</sub>NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
10
         -(CH_2)_2C(O)NH(phen-1,4-ylene)CH_2NHC(O)CH_2-;
         -(CH<sub>2</sub>)<sub>2</sub>C(O)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>NHC(O)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>C(O)NHCH<sub>2</sub>(trans-cyclohex-1,4-ylene)CH<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>NHC(O)(CH<sub>2</sub>)<sub>5</sub>-;
15
        -(CH<sub>2</sub>)<sub>2</sub>O(phen-1,3-ylene)O(CH<sub>2</sub>)<sub>2</sub>-;
         -(CH<sub>2</sub>)<sub>2</sub>O(phen-1,2-ylene)O(CH<sub>2</sub>)<sub>2</sub>-;
         -CH<sub>2</sub>(phen-1,2-ylene)O(phen-1,2-ylene)CH<sub>2</sub>-;
         -(CH_2)_2C(O)NH(CH_2)_6-;
        -(CH_2)_3(phen-1,4-ylene)(CH<sub>2</sub>)<sub>3</sub>-;
20
       -(CH_2)_3(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
         -(CH_2)_4(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
         -(CH_2)_3(furan-2,5-ylene)(CH_2)_3-;
         -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>3</sub>)C(O)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
        4-[-(CH<sub>2</sub>)<sub>2</sub>](piperidin-1-yl)C(O)NH(phen-1,4-ylene)(CH<sub>2</sub>)<sub>2</sub>-;
25
        -(CH_2)_3(phen-1,3-ylene)(CH<sub>2</sub>)<sub>3</sub>-;
         -(CH<sub>2</sub>)<sub>3</sub>(tetrahydrofuran-2,5-ylene)(CH<sub>2</sub>)<sub>3</sub>-; and
         -(CH<sub>2</sub>)<sub>2</sub>O(phen-1,4-ylene)C(O)(CH<sub>2</sub>)<sub>2</sub>-.
```

30. A compound of formula I:

$$(R^{1})_{a}$$
 Ar^{1} E
 $(R^{2})_{b}$ Ar^{2}
 $(R^{3})_{c}$
 $(R^{3})_{c}$
 R^{4}
 R^{5}
 R^{7}
 R^{6}
 R^{6}

5 wherein:

10

15

Ar¹ represents a phenyl, (5-6C)cycloalkyl, (4-5C)heteroaryl or (4-5C)heterocyclyl group wherein the (4-5C)heteroaryl or (4-5C)heterocyclyl group contains one ring heteroatom selected from oxygen, nitrogen and sulfur;

each R¹ represents an optional substituent on Ar¹ that is independently selected from the group consisting of (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl, cyano, halo, -OR^{1a}, -SR^{1b}, -S(O)R^{1c}, -S(O)₂R^{1d}, and -NR^{1e}R^{1f}; or two adjacent R¹ groups together form (3-6C)alkylene, (2-4C)alkylene-O- or -O-(1-4C)alkylene)-O-; wherein each alkyl, alkenyl or cycloalkyl group is optionally substituted with from 1 to 5 fluorine atoms; each of R^{1a}, R^{1b}, R^{1c}, R^{1d}, R^{1e} and R^{1f} is independently hydrogen or (1-4C)alkyl;

a is 0 or an integer of from 1 to 3;

Ar² represents a phenyl, (5-6C)cycloalkyl, (4-5C)heteroaryl or (4-5C)heterocyclyl

group wherein the (4-5C)heteroaryl or (4-5C)heterocyclyl group contains one ring heteroatom selected from oxygen, nitrogen and sulfur;

each R² represents an optional substituent on Ar² that is independently selected
from the group consisting of (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl,
cyano, halo, -OR^{2a}, -SR^{2b}, -S(O)R^{2c}, -S(O)₂R^{2d}, and -NR^{2e}R^{2f}; or two adjacent R² groups
together form (3-6C)alkylene, (2-4C)alkylene-O- or -O-(1-4C)alkylene)-O-; wherein each
alkyl, alkenyl or cycloalkyl group is optionally substituted with from 1 to 5 fluorine atoms;

each of R^{2a} , R^{2b} , R^{2c} , R^{2d} , R^{2e} and R^{2f} is independently hydrogen or (1-4C)alkyl;

b is 0 or an integer of from 1 to 3;

E is CN or C(O)NW^aW^b;

each of W^a and W^b is independently selected from hydrogen and (1-4C)alkyl, or together with the nitrogen atom to which they are attached form a pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl or thiomorpholin-4-yl group;

c is 0 or an integer of from 1 to 4;

each R³ is a substituent on carbon independently selected from the group consisting of (1-4C)alkyl and fluoro, wherein each alkyl group is optionally substituted with from 1 to 5 fluorine atoms;

z is 1 or 2, the atom bearing the group E being attached to the ring containing the nitrogen atom at the 2- or 3-position with respect to the nitrogen atom;

R⁴ is a divalent group of the formula:

$$-(R^{4a})_d-(A^1)_e-(R^{4b})_f-Q-(R^{4c})_g-(A^2)_h-(R^{4d})_f-Q^{4d}$$

wherein

5

10

15

20

25

30

d, e, f, g, h and i are each independently selected from 0 and 1;

R^{4a}, R^{4b}, R^{4c} and R^{4d} are each independently selected from the group consisting of (1-10C)alkylene, (2-10C)alkenylene and (2-10C)alkynylene wherein each alkylene, alkenylene or alkynylene group is unsubstituted or substituted with from 1 to 5 substituents independently selected from the group consisting of (1-4C)alkyl, fluoro, hydroxy, phenyl and phenyl(1-4C)-alkyl;

A¹ and A² are each independently selected from (3-7C)cycloalkylene, (6-10C)arylene, (2-9C)heteroarylene and (3-6C)heterocyclene; wherein each cycloalkylene is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl and each arylene, heteroarylene or heterocyclene group is unsubstituted or substituted with from 1 to 4 substituents independently selected from the group consisting of halogen, (1-4C)alkyl and (1-4C)alkoxy;

Q is selected from the group consisting of a bond, -O-, -C(O)O-, -OC(O)-, -S-, -S(O)-, -S(O)₂-, -N(Q^a)C(O)-, -C(O)N(Q^b)-, -N(Q^c)S(O)₂-, -S(O)₂N(Q^d)-, -N(Q^e)C(O)N(Q^f)-, -N(Q^g)S(O)₂N(Q^h)-, -OC(O)N(Qⁱ)- and -N(Q^j)C(O)O-;

Q^a, Q^b, Q^c, Q^d, Q^e, Q^f, Q^g, Q^h, Qⁱ and Q^j are each independently selected from the group consisting of hydrogen, (1-6C)alkyl, A³ and (1-4C)alkylene-A⁴; wherein the alkyl group is unsubstituted or substituted with from 1 to 3 substituents independently selected from fluoro, hydroxy and (1-4C)alkoxy; or together with the nitrogen atom and the group R^{4b} or R^{4c} to which they are attached, form a 4-6 membered azacycloalkylene group;

10

15

20

·

A³ and A⁴ are each independently selected from (3-6C)cycloalkyl, (6-10C)aryl, (2-9C)heteroaryl and (3-6C)heterocyclyl; wherein each cycloalkyl is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl and each aryl, heteroaryl or heterocyclyl group is unsubstituted or substituted with from 1 to 4 substituents independently selected from the group consisting of halogen, (1-4C)alkyl and (1-4C)alkoxy;

provided that the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R⁴ is attached is in the range of from 4 to 14;

R⁵ represents hydrogen or (1-4C)alkyl;

 R^6 is -NR^{6a}CR^{6b}(O) or -CR^{6c}R^{6d}OR^{6e} and R⁷ is hydrogen, or R⁶ and R⁷ together form -NR^{7a}C(O)-CR^{7b}=CR^{7c}-, -CR^{7d}=CR^{7e}-C(O)-NR^{7f}-, -NR^{7g}C(O)-CR^{7h}R⁷ⁱ-CR^{7j}R^{7k}- or -CR^{7l}R^{7m}-CR⁷ⁿR^{7o}- C(O) -NR^{7p}-;

each of R^{6a}, R^{6b}, R^{6c}, R^{6d} and R^{6e} is independently hydrogen or (1-4C)alkyl; and each of R^{7a}, R^{7b}, R^{7c}, R^{7d}, R^{7e}, R^{7f}, R^{7g}, R^{7h}, R⁷ⁱ, R⁷ⁱ, R⁷ⁱ, R⁷ⁿ, R^{7m}, R⁷ⁿ, R^{7o} and R^{7p} is independently hydrogen or (1-4C)alkyl;

or a pharmaceutically-acceptable salt or solvate or stereoisomer thereof.

- 31. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of any one of Claims 1, 18, 19, 20 or 30.
- 32. The pharmaceutical composition of Claim 31, wherein the composition further comprises a therapeutically effective amount of a steroidal anti-inflammatory agent.
- 25 33. The pharmaceutical composition of Claim 31, wherein the composition further comprises a therapeutically effective amount of a PDE₄ inhibitor.
- 34. A method for treating a pulmonary disorder, the method comprising administering to a patient in need of treatment a therapeutically effective amount of a compound of any one of Claims 1, 18, 19, 20 or 30.

- 35. A method of providing bronchodilation in a patient, the method comprising administering to a patient requiring bronchodilation a therapeutically effective amount of a compound of any one of Claims 1, 18, 19, 20 or 30.
- 5 36. A method of treating chronic obstructive pulmonary disease or asthma, the method comprising administering to a patient in need of treatment a therapeutically effective amount of a compound of any one of Claims 1, 18, 19, 20 or 30.
- 37. A method of studying a biological system or sample comprising a
 10 muscarinic receptor or a β₂ adrenergic receptor, the method comprising:
 - (a) contacting the biological system or sample with a compound of Claim 1; and
 - (b) determining the effects caused by the compound of Claim 1 on the biological system or sample.
 - 38. A process for preparing a compound of formula I:

$$(R^{1})_{a}$$
 Ar^{1} E $(R^{2})_{b}$ Ar^{2} $(R^{3})_{c}$ R^{4} R^{5} R^{7} R^{6} OH

20 wherein:

15

Ar¹ represents phenyl, (3-6C)cycloalkyl, (3-5C)heteroaryl or (3-5C)heterocyclyl; wherein the heteroaryl and heterocyclyl groups contain 1 or 2 ring heteroatoms selected independently from oxygen, nitrogen and sulfur;

a is 0 or an integer from 1 to 3;

each R¹ is selected independently from (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl, cyano, halo, -OR^{1a}, -SR^{1b}, -S(O)R^{1c}, -S(O)₂R^{1d}, -NR^{1e}R^{1f} and

10

20

30

-C(O)OR^{1g}; or two adjacent R¹ groups are joined together to form (3-6C)alkylene, (2-4C)alkylene-O- or -O-(1-4C)alkylene)-O-;

each of R^{1a}, R^{1b}, R^{1c}, R^{1d}, R^{1e}, R^{1f} and R^{1g} is independently hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl;

Ar² represents phenyl, (3-6C)cycloalkyl, (3-5C)heteroaryl or (3-5C)heterocyclyl; wherein the heteroaryl and heterocyclyl group contain 1 or 2 ring heteroatoms selected independently from oxygen, nitrogen and sulfur;

b is 0 or an integer of from 1 to 3;

each R² is selected independently from (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl, cyano, halo, -OR^{2a}, -SR^{2b}, -S(O)R^{2c}, -S(O)₂R^{2d}, -NR^{2e}R^{2f} and -C(O)OR^{2g}; or two adjacent R² groups are joined together to form (3-6C)alkylene, (2-4C)alkylene-O- or -O-(1-4C)alkylene)-O-;

each of R^{2a}, R^{2b}, R^{2c}, R^{2d}, R^{2e}, R^{2f} and R^{2g} is independently hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl;

15 E is -CN, $-C(O)NW^aW^b$ or $-C(O)OW^c$;

W^a and W^b are selected independently from hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl, or together with the nitrogen atom to which they are attached, W^a and W^b form a pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl or thiomorpholin-4-yl group; or W^a and one R¹ are joined to form a covalent bond;

W^c is hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl;

c is 0 or an integer of from 1 to 4;

each R^3 is independently selected from (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (3-6C)cycloalkyl, cyano, halo, $-OR^{3a}$, $-SR^{3b}$, $-S(O)R^{3c}$, $-S(O)_2R^{3d}$ and $-NR^{3e}R^{3f}$ and $-C(O)OR^{3g}$; or two R^3 groups are joined to form (1-3C)alkylene, (2-

25 3C)alkenylene or oxiran-2,3-diyl;

each of R^{3a} , R^{3b} , R^{3c} , R^{3d} , R^{3e} , R^{3f} and R^{3g} is independently hydrogen, (1-4C)alkyl or phenyl-(1-4C)alkyl;

z is 1 or 2;

R⁴ is a divalent group of the formula:

 $-(R^{4a})_d-(A^1)_e-(R^{4b})_f-Q-(R^{4c})_g-(A^2)_h-(R^{4d})_i-$

wherein

10

15

20

25

d, e, f, g, h and i are each independently selected from 0 and 1;

R^{4a}, R^{4b}, R^{4c} and R^{4d} are each independently selected from (1-10C)alkylene, (2-10C)alkenylene and (2-10C)alkynylene, wherein each alkylene, alkenylene or alkynylene group is unsubstituted or substituted with from 1 to 5 substituents independently selected from (1-4C)alkyl, fluoro, hydroxy, phenyl and phenyl-(1-4C)alkyl;

A¹ and A² are each independently selected from (3-7C)cycloalkylene, (6-10C)arylene, -O-(6-10C)arylene, (6-10C)arylene-O-, (2-9C)heteroarylene, -O-(2-9C)heteroarylene, (2-9C)heteroarylene-O- and (3-6C)heterocyclene, wherein each cycloalkylene is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl, and each arylene, heteroarylene or heterocyclene group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl, (1-4C)alkoxy, -S-(1-4C)alkyl, -S(O)-(1-4C)alkyl, -S(O)₂-(1-4C)alkyl, -C(O)O(1-4C)alkyl, carboxy, cyano, hydroxy, nitro, trifluoromethyl and trifluoromethoxy; Q is selected from a bond, -O-, -C(O)O-, -OC(O)-, -S-, -S(O)-, -S(O)₂-,

 $-N(Q^a)C(O)$ -, $-C(O)N(Q^b)$ -, $-N(Q^c)S(O)_2$ -, $-S(O)_2N(Q^d)$ -, $-N(Q^e)C(O)N(Q^f)$ -, $-N(Q^g)S(O)_2N(Q^b)$ -, $-OC(O)N(Q^i)$ -, $-N(Q^i)C(O)O$ - and $-N(Q^k)$;

Q^a, Q^b, Q^c, Q^d, Q^e, Q^f, Q^g, Q^h, Qⁱ, Q^j and Q^k are each independently selected from hydrogen, (1-6C)alkyl, A³ and (1-4C)alkylene-A⁴, wherein the alkyl group is unsubstituted or substituted with from 1 to 3 substituents independently selected from fluoro, hydroxy and (1-4C)alkoxy; or together with the nitrogen atom and the group R^{4b} or R^{4c} to which they are attached, form a 4-6 membered azacycloalkylene group;

A³ and A⁴ are each independently selected from (3-6C)cycloalkyl, (6-10C)aryl, (2-9C)heteroaryl and (3-6C)heterocyclyl, wherein each cycloalkyl is unsubstituted or substituted with from 1 to 4 substitutents selected independently from (1-4C)alkyl and each aryl, heteroaryl or heterocyclyl group is unsubstituted or substituted with from 1 to 4 substituents independently selected from halo, (1-4C)alkyl and (1-4C)alkoxy;

provided that the number of contiguous atoms in the shortest chain between the two nitrogen atoms to which R⁴ is attached is in the range of from 4 to 16;

R⁵ represents hydrogen or (1-4C)alkyl;

30 R^6 is -NR^{6a}CR^{6b}(O) or -CR^{6c}R^{6d}OR^{6e} and R⁷ is hydrogen; or R⁶ and R⁷ together form -NR^{7a}C(O)-CR^{7b}=CR^{7c}-, -CR^{7d}=CR^{7e}-C(O)-NR^{7f}-, -NR^{7g}C(O)-CR^{7h}R⁷ⁱ-CR^{7j}R^{7k}- or -CR^{7l}R^{7m}-CR⁷ⁿR^{7o}-C(O)-NR^{7p}-;

each of R^{6a}, R^{6b}, R^{6c}, R^{6d} and R^{6e} is independently hydrogen or (1-4C)alkyl; and

each of R^{7a} , R^{7b} , R^{7c} , R^{7d} , R^{7e} , R^{7f} , R^{7g} , R^{7h} , R^{7i} , R^{7j} , R^{7k} , R^{7l} , R^{7m} , R^{7n} , R^{7o} and R^{7p} is independently hydrogen or (1-4C)alkyl;

wherein each alkyl, alkenyl, alkylene and cycloalkyl group in R^1 , R^{1a-g} , R^2 , R^{2a-g} , R^3 , R^{3a-g} , W^{a-c} is optionally substituted with from 1 to 5 fluoro substituents;

or a stereoisomer thereof; the process comprising:

(a) reacting a compound of formula 1:

$$(R^{1})_{a}$$
 Ar^{1} E

$$(R^{2})_{b}$$
 Ar^{2} $(N^{2})_{c}$ NH

1

10

5

or a salt thereof; with a compound of formula 2:

$$X^{1}-R^{4}-N$$
 R^{5}
 R^{7}
 R^{6}
 R^{6}
 R^{6}

15

wherein X^1 represents a leaving group, and P^1 and P^2 each independently represent hydrogen or a hydroxyl-protecting group;

(b) reacting a compound of formula 3:

20

$$(R^{1})_{a}$$
 Ar^{1} E

$$(R^{2})_{b}$$
 Ar^{2} N

$$(R^{3})_{c}$$
 N

$$R^{4}$$
 NHP^{3}

10

15

or salt thereof; wherein P^3 represents hydrogen or an amino-protecting group, with a compound of formula $\underline{4}$:

$$X^2$$
 R^5
 R^7
 QP^4
 QP^5
 QP^5

wherein X² represents a leaving group, and P⁴ and P⁵ each independently represent hydrogen or a hydroxyl-protecting group;

(c) coupling a compound of formula 5:

$$(R^{1})_{a}^{-}Ar^{1}$$
 E
 $(R^{2})_{b}^{-}Ar^{2}$ $(R^{3})_{c}$ $(R^{4a})_{d}^{-}(A^{1})_{e}^{-}(R^{4b})_{f}^{-}X^{Qa}$
 $\underline{5}$

with a compound of formula 6:

$$X^{Qb}$$
- $(R^{4c})_g$ - $(A^2)_h$ - $(R^{4d})_i$ - N - R^5 - R^6
 R^6

wherein X^{Qa} and X^{Qb} each independently represent functional groups that couple to 20 form a group Q, P⁶ represents hydrogen or an amino-protecting group; and P⁷ and P⁸ each independently represent hydrogen or a hydroxyl-protecting group; (d) for a compound of formula I wherein R^5 represents hydrogen, reacting a compound of formula $\underline{3}$ with a compound of formula $\underline{7}$:

OHC
$$R^7$$
 R^6
 R^6
 R^6

or a hydrate thereof (e.g., a glyoxal), wherein P⁹ represents hydrogen or a hydroxylprotecting group, in the presence of a reducing agent;

(e) reacting a compound of formula 1 with a compound of formula 8:

or a hydrate thereof, in the presence of a reducing agent, wherein P¹⁰ and P¹¹ each independently represent hydrogen or a hydroxyl-protecting group; P¹² represents hydrogen or an amino-protecting group; and R⁴ represents a residue that, together with the carbon to which it is attached, affords a group R⁴ upon completion of the reaction;

(f) reacting a compound of formula 9:

$$(R^{1})_{a}^{-}Ar^{1}$$
 E
 $(R^{2})_{b}^{-}Ar^{2}$ $(R^{3})_{c}$ $(R^{3})_{c}$ $(R^{4}-X^{3})_{c}$

20

5

wherein X^3 represents a leaving group, with a compound of formula $\underline{10}$:

$$P^{15}HN$$
 R^{5}
 R^{7}
 R^{6}
 R^{6}

5

wherein P¹³ and P¹⁴ each independently represent hydrogen or a hydroxylprotecting group, and P¹⁵ represents hydrogen or an amino-protecting group;

(g) reacting a compound of formula 11:

$$(R^{1})_{a}^{-}Ar^{1}$$
 E
 $(R^{2})_{b}^{-}Ar^{2}$ $(R^{3})_{c}$ $(R^{3})_{c}$ $(R^{3})_{c}$ $(R^{4})_{c}$ $(R^{5})_{c}$ $(R^{5$

10

with a reducing agent; wherein P¹⁶ represents hydrogen or an amino-protecting group; and P¹⁷ represents hydrogen or a hydroxyl-protecting group;

15

(h) for a compound of formula I in which E represents $C(O)NW^aW^b$, reacting a compound of formula $\underline{12}$:

$$(R^{1})_{a}-Ar^{1}$$
 COOH
 $(R^{2})_{b}-Ar^{2}$ $(R^{3})_{c}$ $(R^{3})_{c}$ $(R^{4}-N)_{c}$ $(R^{5}-N)_{c}$ $(R^{7}-N)_{c}$ $(R^{7}-N)_{c}$

wherein P¹⁸ and P¹⁹ each represents hydrogen or a hydroxyl-protecting group, with a compound of formula <u>13</u>:

10

<u>13</u>

or

(i) reacting a compound of formula 14:

15

$$(R^{1})_{a}$$
 Ar^{1} E
 $(R^{2})_{b}$ Ar^{2} N
 R^{4} H

20

or a hydrate thereof; wherein R^{4"} represents a residue that, together with the carbon to which it is attached, affords an R⁴ group upon completion of the reaction; with a compound of formula <u>10</u> in the presence of a reducing agent;

and then removing any protecting group P^1 , P^2 , P^3 , P^4 , P^5 , P^6 , P^7 , P^8 , P^9 , P^{10} , P^{11} , P^{12} , P^{13} , P^{14} , P^{15} , P^{16} , P^{17} , P^{18} or P^{19} to provide a compound of formula I.

- 39. The process of Claim 38, wherein the process further comprises forming a pharmaceutically acceptable salt of the compound of formula I.
- 5 40. The product prepared by the process of Claim 38 or 39.