Week 2-2 Adam Algo, GC with Momentum (Exponentially Weight MA) + RMS prop

笔记本: DL 2 - Deep NN Hyperparameter Tunning, Regularization & Optimization

创建时间: 2021/1/9 11:15 **更新时间:** 2021/1/9 12:33

adam paper:

https://arxiv.org/pdf/1412.6980.pdf

Exponentially weighted moving averages

Exponentially weighted averages

Andrew Ng

Exponentially weighted averages

(all these weights approximately add up to 1) after 1/epi -> 1/e weight, rather small

Implementing exponentially weighted averages

$$v_{0} = 0$$

$$v_{1} = \beta v_{0} + (1 - \beta) \theta_{1}$$

$$v_{2} = \beta v_{1} + (1 - \beta) \theta_{2}$$

$$v_{3} = \beta v_{2} + (1 - \beta) \theta_{3}$$
...
$$\vdots$$

$$V_{0} := \beta v + (1 - \beta) \phi_{2}$$

$$\vdots$$

$$V_{0} := \beta v + (1 - \beta) \phi_{2}$$

$$\vdots$$

$$V_{0} := \beta v + (1 - \beta) \phi_{2}$$

$$\vdots$$

$$V_{0} := \beta v + (1 - \beta) \phi_{2}$$

$$\vdots$$

$$V_{0} := \beta v + (1 - \beta) \phi_{1}$$

$$\vdots$$

$$V_{0} := \beta v + (1 - \beta) \phi_{2}$$

Andrew Ng

(memory efficient)

Bias correction

if we initialize with 0, it gives the purple curve

average of these derivatives

(add friction so that its horizontal speed along the bowl gets smaller)

Implementation details

On iteration
$$t$$
:

Compute dW , db on the current mini-batch

 $v_{dW} = \beta v_{dW} + (1 - \beta)dW$
 $v_{db} = \beta v_{db} + (1 - \beta)db$
 $W = W - \alpha v_{dW}$, $b = b - \alpha v_{db}$

Hyperparameters: α , β
 $\beta = 0.9$

where for α for α for α and α

In practice, people don't usually do this (bias correction) because after just ten iterations, your moving average will have warmed up and is no longer a bias estimate.

We sometimes omit the (1-beta) term, but it is not so intuitive and we may need to adjust the learning rate correspondingly

larger db gets more scale division, also enables larger learning rate

We also add a epsilon for numerical stability (division by zero)

Adam optimization algorithm Value 0, Salue 0. Value 0, Salue 0 On itente to: Compute also, do using cure mini-botch Value \beta_1 Value + (1-\beta_1)d\omega, Value + (1-\beta_1)d\omega = \beta_1 Value + (1-\beta_1)d\omega) = \beta_2 Salue + (1-\beta_2)d\omega = \beta_2 Salue + (1-\beta_2)d\omega = \beta_1 Value + \beta_2 Value + \

(there is db^2)

Hyperparameters choice:

Adaptive moment estimation (first order momentum + second order momentum)