ст. гр. 221701 Телица Илья

Задача 10. Обработка одномерной выборки (Вариант 23)

По выборке одномерной случайной величины:

- получить вариационный ряд;
- построить на масштабно-координатной бумаге формата A4 график эмпирической функции распределения $F^*(x)$;
- построить гистограмму равноинтервальным способом;
- построить гистограмму равновероятностным способом;
- вычислить точечные оценки математического ожидания и дисперсии;
- вычислить интервальные оценки математического ожидания и дисперсии ($\gamma = 0.95$);
- выдвинуть гипотезу о законе распределения случайной величины и проверить ее при помощи критерия согласия χ^2 и критерия Колмогорова (α = 0,05). График гипотетической функции распределения $F_0(x)$ построить совместно с графиком $F^*(x)$ в той же системе координат и на том же листе.

Одномерная выборка 1

 $7.34\ 3.60\ 9.79\ 2.10\ -5.36\ 9.03\ 3.98\ 1.66\ -2.00\ 6.91\ 4.98\ -6.56\ 3.89\ 3.76\ 8.32\ 1.15\ 6.62$ $3.55\ 1.99\ 6.84\ -1.58\ 2.16\ -1.86\ 0.28\ 2.62\ 7.27\ 3.36\ 3.52\ -7.21\ 2.53\ 5.19\ 7.18\ 4.13\ 11.30\ -2.03\ 4.02$ $-1.39\ 0.26\ 1.03\ 0.57\ 1.07\ 10.30\ -0.19\ 4.53\ 3.89\ 7.17\ 3.90\ 1.22\ 2.39\ -1.06\ 2.51\ 1.20\ 3.34\ 9.50\ -0.29\ 6.43\ 5.09\ -3.66\ 6.61\ 4.95\ 7.56\ 1.26\ -1.31\ -2.03\ 4.39\ 0.56\ 4.62\ 3.72\ 0.56\ 4.02\ 3.11\ 3.43\ 9.79$ $1.08\ 2.20\ 3.12\ 1.98\ -3.31\ 5.51\ 3.02\ 1.61\ 7.96\ 0.13\ -5.17\ 4.85\ 4.36\ 7.59\ 13.04\ 8.53\ -0.47\ 5.38\ 5.48$ $-2.38\ 2.55\ 6.48\ 0.92\ -0.16\ -0.25\ 11.82\ 4.87$

Задание 1

Вариационный ряд:

 $-7,21\ -6,56\ -5,36\ -5,17\ -3,66\ -3,31\ -2,38\ -2,03\ -2,03\ -2,00\ -1,86\ -1,58\ -1,39\ -1,31\ -1,06\ -0,47\ -0,29\ -0,25\ -0,19\ -0,16\ 0,13\ 0,26\ 0,28\ 0,56\ 0,56\ 0,57\ 0,92\ 1,03\ 1,07\ 1,08\ 1,15\ 1,20\ 1,22\ 1,26\ 1,61\ 1,66\ 1,98\ 1,99\ 2,10\ 2,16\ 2,20\ 2,39\ 2,51\ 2,53\ 2,55\ 2,62\ 3,02\ 3,11\ 3,12\ 3,34\ 3,36\ 3,43\ 3,52\ 3,55\ 3,60\ 3,72\ 3,76\ 3,89\ 3,89\ 3,90\ 3,98\ 4,02\ 4,02\ 4,13\ 4,36\ 4,39\ 4,53\ 4,62\ 4,85\ 4,87\ 4,95\ 4,98\ 5,09\ 5,19\ 5,38\ 5,48\ 5,51\ 6,43\ 6,48\ 6,61\ 6,62\ 6,84\ 6,91\ 7,17\ 7,18\ 7,27\ 7,34\ 7,56\ 7,59\ 7,96\ 8,32\ 8,53\ 9,03\ 9,50\ 9,79\ 9,79\ 10,30\ 11,30\ 11,82\ 13,04$

Задание 2

Эмпирическая функция распределения представлена следующей формулой:

$$F^{*}(x) = p^{*}(X < x) = \begin{cases} 0, & x \le \hat{x}_{1}, \\ \vdots \\ \frac{i}{n}, & \hat{x}_{i} < x \le \hat{x}_{i+1} \\ \vdots \\ 1, & x > \hat{x}_{n}. \end{cases}$$

По данной формуле построим график эмпирической функции распределения $F^*(x)$. Так как $F^*(x)$ неубывающая и все ступеньки графика $F^*(x)$ имеют одинаковую величину 1/n, то таблицу значений эмпирической функции распределения $F^*(x)$ можно не вычислять, а построить ее график непосредственно по и вариационному ряду, начиная с его первого значения

Задание 3

Определим количество интервалов M, необходимое для построения гистограмм.

$$M \approx \sqrt{n} = \sqrt{100} = 10$$

Для равноинтервальной гистограммы величины h_j, A_j, B_j , рассчитаем по следующей формуле

$$h_j = h = \frac{x_n - x_1}{n}$$
, $\forall j \Rightarrow A_j = x_1 + (j-1)h$, $j = \overline{2, M}$

Шаг интервала $h = \frac{x_{max} - x_{min}}{10}$

$$H = (13,04 - (-7,21))/10 = 2,025$$

j	A _j	B _j	h _j	ν	p _j *	f _j *
1	^ X 1	^ x ₁ + h	h	v_1	$\frac{v_1}{n}$	$\frac{p_1^*}{h}$
M	^ x₁+ (M−1)·h	$\overset{\wedge}{\mathbf{x}_1} + \mathbf{M} \cdot \mathbf{h}$	h	v_{M}	$\frac{v_{M}}{n}$	$\frac{p_{M}^{*}}{h}$

j	A_{j}	\mathbf{B}_{j}	h _j	Vj	p* _j	f^*_{j}
1	-7,21	-5,19	2,025	3	0,03	0,0148
2	-5,19	-3,16	2,025	3	0,03	0,0148
3	-3,16	-1,14	2,025	8	0,08	0,0395
4	-1,14	0,89	2,025	12	0,12	0,0593
5	0,89	2,91	2,025	20	0,20	0,0988
6	2,91	4,96	2,025	24	0,24	0,1185
7	4,96	6,96	2,025	13	0,13	0,0642
8	6,96	8,99	2,025	9	0,09	0,0444
9	8,99	11,02	2,025	5	0,05	0,0247
10	11,02	13,04	2,025	3	0,03	0,0148

Задание 4 Построение равновероятностным способом

	1 1					
j	A _j	B _j	h _j	ν_{j}	p _j *	f_j^*
1	^ X1	$\frac{\stackrel{\wedge}{x_{11}} + \stackrel{\wedge}{x_{10}}}{2}$	$B_1 - A_1$	$\frac{n}{M}$	$\frac{1}{M}$	$\frac{p_1^*}{h_1}$
2	$\frac{\stackrel{\wedge}{\mathbf{x}}_{11} + \stackrel{\wedge}{\mathbf{x}}_{10}}{2}$	$\frac{\stackrel{\wedge}{x_{21}} + \stackrel{\wedge}{x_{20}}}{2}$	$B_2 - A_2$	$\frac{n}{M}$	$\frac{1}{M}$	$\frac{p_2^*}{h_2}$
М	$\frac{\stackrel{\wedge}{x_{v_M}}_{(M-1)+1}+\stackrel{\wedge}{x_{v_M}}_{(M-1)}}{2}$	^ Xn	$B_{M} - A_{M}$	$\frac{n}{M}$	$\frac{1}{M}$	$\frac{p_{M}^{*}}{h_{M}}$

j	$A_{\rm j}$	$B_{\rm j}$	$h_{\rm j}$	Vj	p* _j	f_{j}^{*}
1	-7,21	-1,93	5,280	10	0.1	0,0189
2	-1,93	-0,01	1,915	10	0.1	0,0522
3	-0,01	1,11	1,130	10	0.1	0,0885
4	1,11	2,18	1,065	10	0.1	0,0939
5	2,18	3,35	1,170	10	0.1	0.0855
6	3,35	3,94	0,590	10	0.1	0.1695
7	3,94	4,91	0,970	10	0.1	0.1031
8	4,91	6,62	1,705	10	0.1	0.0587
9	6,62	8,14	1,525	10	0.1	0.0656
10	8,14	13,04	4,9	10	0.1	0.0204

Задание 5

Вычислим точечную оценку математического ожидания по формуле:

$$m_x^* = \bar{x} = \frac{1}{n} \sum_{j=1}^n x_j$$

Пример расчёта

$$m_x^* = \frac{1}{100}((-7,21) + (-6,56) + (-5,36) + \dots + 11,82 + 13,04) = 3,123$$

Вычислим точечную оценку дисперсии по формуле:

$$D_x^* = S_0^2 = \frac{1}{n-1} \sum_{j=1}^n (x_j - \bar{x})^2 = 15,75$$

Математическое ожидание составило 3,123

Дисперсия составляет 15,75

Среднее квадратичное отклонение составляет 3,969

Задание 6

$$y = 0.95$$

Построим доверительный интервал для математического ожидания с надежностью $\gamma = 0.95$ по формуле $I_{\gamma}(m_{\chi}) = \left[\bar{x} - z_{\gamma} \frac{s_0}{\sqrt{n}}; \bar{x} + z_{\gamma} \frac{s_0}{\sqrt{n}}\right]$.

Из таблицы Лапласа найдём значение аргумента, которое соответствует значению, равному $\frac{\gamma}{2} = 0.475$.

$$z_{0.95} = arg(0.475) = 0.1844$$

Тогда получаем

$$z_{\gamma} \frac{s_0}{\sqrt{n}} = 0.0132$$

$$3,1178 < m_x < 3,1335$$

Построим доверительный интервал для дисперсии с надежностью $\gamma = 0.95$ по формуле:

$$I_{y}(D(x)) = \left[S_{O}^{2} - z_{\gamma} \sqrt{\frac{2}{n-1}} S_{O}^{2}; S_{O}^{2} + z_{\gamma} \sqrt{\frac{2}{n-1}} S_{O}^{2}\right]$$

Тогда получаем

$$z_{\gamma} \sqrt{\frac{2}{n-1}} S_0^2 = 0,4129$$

.

 $15,3401 < D_x < 16,1658$

Задание 7

Выдвинуть гипотезу о законе распределения случайной величины и проверить ее при помощи критерия согласия χ^2 и критерия Колмогорова ($\alpha=0,05$). График гипотетической функции распределения $F_0(x)$ построить совместно с графиком F^* (x) в той же системе координат и на том же листе.

По виду графика эмпирической функции распределения $F^*(x)$ и гистограмм выдвигаем двухальтернативную гипотезу о законе распределения случайной величины: H_0 — величина X распределена по нормальному закону

$$H_0: F_{(x)} = F_{0^{(x)}, f}(x) = f_0(x)$$

$$f_0 x = \frac{1}{\sigma \sqrt{2\Pi}} \exp\left\{-\frac{(x - \alpha)^2}{2\sigma^2}\right\}$$

$$F_0(x) = 0.5 + \Phi\left(\frac{x - m}{\sigma}\right)$$

 H_1 – величина X не распределена по нормальному закону:

$$H_1: F_{(x)} \neq F_{0}(x), f(x) \neq f_0(x)$$

Где $F_0(x)$, $f_0(x)$ — теоретическая функция и плотность распределения. В свою очередь:

$$m = 3,123$$

$$\sigma = 3,969$$

j	A_{j}	B_{j}	$F_0(A_j)$	$F_0(B_j)$	P_{j}	P_j^*	$\frac{\left(P_{j}-P_{j}^{*}\right)^{2}}{P_{j}}$
1	-7,21	-5,19	0,0046	0,0181	0,0135	0,03	0,0091
2	-5,19	-3,16	0,0181	0,0567	0,0386	0,03	0,0025
3	-3,16	-1,14	0,0567	0,1414	0,0847	0,08	0,0003
4	-1,14	0,89	0,1414	0,2869	0,1455	0,12	0,0054
5	0,89	2,91	0,2869	0,4786	0,1917	0,20	0,0003
6	2,91	4,96	0,4786	0,6783	0,1997	0,24	0,0068
7	4,96	6,96	0,6783	0,8332	0,1549	0,13	0,0048
8	6,96	8,99	0,8332	0,9303	0,0971	0,09	0,0006
9	8,99	11,02	0,9303	0,9767	0,0464	0,05	0,0003
10	11,02	13,04	0,9767	0,9938	0,0171	0,03	0,0055
				Сумма	0,9892	1	0,0356

$$\chi 2 = n \sum \frac{(p_i - p_i^*)^2}{p_i}$$
; $p_i = F_0(B_i) - F_0(A_i)$

$$\chi^2 = 100*0,0356=3,56$$

Число степеней свободы k=10 -1 -2=7

Из таблицы распределения Пирсона найдем критическое значение критерия:

$$\chi^2_{\text{kp}}(99;0,95) = 14,07$$

Так как $\chi^2_{\text{кр}} > \chi^2$ то гипотеза H_0 о нормальном распределении принимается.

Проверим гипотезу о нормальном распределении при помощи критерия Колмогорова, где $F_0(x)$ — теоретическая функция распределения

$$H_0: F_{(x)} = F_{0^{(x)}}$$

$$H_1: F_{(x)} \neq F_{0^{(x)}}$$

X	F ₀ (x)	F*(x)	$ F^*(x) - F_0(x) $
-7,21	0	0,0046	0,0046
-5,19	0,03	0,0181	0,0119
-3,16	0,05	0,0567	0,0067
-1,14	0,14	0,1414	0,0014
0,89	0,26	0,2869	0,0269
2,91	0,46	0,4786	0,0186
4,96	0,7	0,6783	0,0217
6,96	0,82	0,8332	0,0132
8,99	0,92	0,9303	0,0103
11,02	0,96	0,9767	0,0167

$$Z = \max |F_{(x_i)}^* - F_0(x_i)| = 0.0269$$

$$\lambda = \sqrt{n} \cdot z = 10 \cdot 0,0269 = 0,269$$

Из таблицы распределения Колмогорова по заданному уровню значимости α =0,05 выбираем критическое значение $\lambda_y=\lambda_{1-a}=\lambda_{0,95}=1,34$

Так как $\lambda < \lambda_y$, то гипотеза H_0 о нормальном распределении принимается.