

FIG. 1

FIG. 2

FIG. 3A

FIG. 4A

FIG. 4B

FIG. 5A

FIG. 5B

FIG. 6A

MAGNETOMETER SECTION

300

302

QUADRANT/SENSOR POSITION DETERMINATION

COMPUTER PROGRAM

DETERMINE DOWN DIRECTION

- DETERMINE $\vec{H}(t)$ VECTOR FROM $H_x(t)$, $H_y(t)$, $\Delta\theta(t)$

- DETERMINE DOWN DIRECTION ANGLE

$$\theta = \cos^{-1} \frac{H_x(t)}{(H_x^2 + H_y^2)^{1/2}}$$

$\Delta\vec{H}(t) = \theta(t)$ AS MEASURED FROM TOOL X-AXIS
 $\Delta\vec{D}(t) = \theta(t) - \phi$ AS MEASURED FROM TOOL X-AXIS

- DETERMINE BOTTOM QUADRANT

$$Q_{BOT}(t) = \Delta\vec{D}(t) - 45^\circ \text{ TO } \Delta\vec{D}(t) + 45^\circ$$

$$Q_{LEFT}(t) = \Delta\vec{D}(t) + 45^\circ \text{ TO } \Delta\vec{D}(t) + 135^\circ$$

$$Q_{TOP}(t) = \Delta\vec{D}(t) + 135^\circ \text{ TO } \Delta\vec{D}(t) + 225^\circ$$

$$Q_{RIGHT}(t) = \Delta\vec{D}(t) + 225^\circ \text{ TO } \Delta\vec{D}(t) - 45^\circ$$

- DETERMINE QUADRANT OF SENSOR

$\Delta\vec{S}(t)$ IS MEASURED FROM X-AXIS AND $\vec{H}(t)$ VECTOR

$\Delta\vec{S}$ IS α DEGREES FROM X-AXIS

$\Delta\vec{H}(t)$ IS $\theta(t)$ DEGREES FROM X-AXIS

$\Delta\vec{S}(t) = \alpha$ AS MEASURED FROM X-AXIS IS

IN Q_{BOT} WHEN $\Delta\vec{S}(t) = \alpha$ IS BETWEEN $\theta(t) - \phi - 45^\circ$
 AND $\theta(t) - \phi + 45^\circ$, ETC.

310

FIG.6B

FIG.6C

FIG.6D

FIG.6E

FIG.6F

FIG. 7A

FIG. 7B

FIG. 8

315

FIG.9

FIG. 10A-1

326

FIG.10A-2

FROM FIG.10A-1

FIG. 10B

FIG. 10C

FIG. 10D-1

FIG. 10D-2

FIG.11B

FROM FIG.11A

FIG. 12A

FIG.12

FROM FIG.12A

FROM
FIG.10A-1 $P_{bROTBOT}$

335

FROM
FIG.8FROM
FIG.10A-2 $P_{bROTRIGHT}$ FROM
FIG.8

DETERMINE:

- THEORETICAL STANDARD DEVIATIONS (SOFT AND HARD)
- STANDARD DEVIATIONS OF SAMPLES (SOFT AND HARD)
- DELTA COUNT RATES (SOFT AND HARD)
- MACROSCOPIC CROSS-SECTION U_{ROTBOT}

$$U_{ROTBOT} = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE} - ACRSOFT}{\text{HARD COUNT RATE} - ACRHARD} \right)^B} \right] - E$$

$$\bullet P_{EFROTBOT} = \frac{U_{ROTBOT}}{P_{bROTBOT}}$$

 $P_{EFROTBOT}$

SOFT WINDOW COUNT RATE SAMPLES
IN QRIGHT LONG OR SHORT
HARD WINDOW COUNT RATE SAMPLES
IN QRIGHT LONG OR SHORT
COUNT RATES

DETERMINE:

- THEORETICAL STANDARD DEVIATIONS (SOFT AND HARD)
- STANDARD DEVIATIONS OF SAMPLES (SOFT AND HARD)
- DELTA COUNT RATES (SOFT AND HARD)
- MACROSCOPIC CROSS-SECTION $U_{ROTRIGHT}$

$$U_{ROTRIGHT} = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE} - ACRSOFT}{\text{HARD COUNT RATE} - ACRHARD} \right)^B} \right] - C$$

$$\bullet P_{EFROTRIGHT} = \frac{U_{ROTRIGHT}}{P_{bROTRIGHT}}$$

 $P_{EFROTRIGHT}$

SOFT WINDOW COUNT RATE SAMPLES
IN QTOP LONG OR SHORT
HARD WINDOW COUNT RATE SAMPLES
IN QTOP LONG OR SHORT
COUNT RATES

TO FIG.12C

FIG. 1

FROM FIG. 12B

FROM
FIG.10A-2

$P_{bROT TOP}$

335 ~

FROM
FIG.8

FROM
FIG.10A-2

$P_{bROT LEFT}$

DETERMINE:

- THEORETICAL STANDARD DEVIATIONS (SOFT AND HARD)
- STANDARD DEVIATIONS OF SAMPLES (SOFT AND HARD)
- DELTA COUNT RATES (SOFT AND HARD)
- MACROSCOPIC CROSS-SECTION $U_{ROT TOP}$

$$U_{ROT TOP} = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE} - \Delta C_{R, SOFT}}{\text{HARD COUNT RATE} - \Delta C_{R, HARD}} \right) - B} \right] - C$$

$$\bullet P_{EFROT TOP} = \frac{U_{ROT TOP}}{P_{bROT TOP}}$$

$P_{EFROT TOP}$

SOFT WINDOW COUNT RATE SAMPLES
IN QLEFT LONG OR SHORT
HARD WINDOW COUNT RATE SAMPLES
IN QLEFT LONG OR SHORT
COUNT RATES

DETERMINE:

- THEORETICAL STANDARD DEVIATIONS (SOFT AND HARD)
- STANDARD DEVIATIONS OF SAMPLES (SOFT AND HARD)
- DELTA COUNT RATES (SOFT OR HARD)
- MACROSCOPIC CROSS-SECTION $U_{ROT LEFT}$

$$U_{ROT LEFT} = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE} - \Delta C_{R, SOFT}}{\text{HARD COUNT RATE} - \Delta C_{R, HARD}} \right) - B} \right] - C$$

$$\bullet P_{EFROT LEFT} = \frac{U_{ROT LEFT}}{P_{bROT LEFT}}$$

$P_{EFROT LEFT}$

FIG. 12D

FIG.12E

FROM FIG.12D

FROM FIG.8

335-

SOFT WINDOW COUNT RATE SAMPLES IN QRIGHT LNG. OR SHT.
 HARD WINDOW COUNT RATE SAMPLES IN QRIGHT LNG. OR SHT.
 ACQUISITION TIME SAMPLES

- DETERMINE MACROSCOPIC CROSS-SECTION URIGHT's AS A FUNCTION OF ACQUISITION TIME

$$U_{RIGHT} = \left[\frac{K}{(SOFT\ COUNT\ RATE) - B} \right] - C$$

PEFRORTRIGHT

- DETERMINE STANDARD DEVIATION FROM URIGHT's
- DETERMINE PEFRORTRIGHT FROM DISTRIBUTION OF URIGHT's

FROM FIG.8

SOFT WINDOW COUNT RATE SAMPLES IN QTOP LNG. OR SHT.
 HARD WINDOW COUNT RATE SAMPLES IN QTOP LNG. OR SHT.
 ACQUISITION TIME SAMPLES

- DETERMINE MACROSCOPIC CROSS-SECTION UTOP's AS A FUNCTION OF ACQUISITION TIME

$$U_{TOP} = \left[\frac{K}{(SOFT\ COUNT\ RATE) - B} \right] - C$$

PEFRORTTOP

- DETERMINE STANDARD DEVIATION FROM UTOP's
- DETERMINE PEFRORTTOP FROM DISTRIBUTION OF UTOP's

TO FIG.12F

FIG. 12F

FROM FIG. 12E

FROM
FIG. 8

SOFT WINDOW COUNT RATE SAMPLES IN QLEFT LNG. OR SHT.
HARD WINDOW COUNT RATE SAMPLES IN QLEFT LNG. OR SHT.
ACQUISITION TIME SAMPLES

335 ✓

- DETERMINE MACROSCOPIC CROSS-SECTION U_{LEFT}'S AS A FUNCTION OF ACQUISITION TIME

$$U_{LEFT} = \left[\frac{K}{\left(\frac{\text{SOFT COUNT RATE}}{\text{HARD COUNT RATE}} \right) - B} \right] - C$$

- DETERMINE STANDARD DEVIATION FROM U_{LEFT}'S
- DETERMINE PEFROT_{LEFT} FROM DISTRIBUTION OF U_{LEFT}'S

PEFROT_{LEFT}

FIG. 13

350

FROM
FIG. 4A-B

COMPUTER PROGRAM FOR ULTRASONIC STANDOFF OUTPUTS

- RECORD STANDOFF AS A FUNCTION OF QUADRANT
- DEVELOP HISTOGRAM OF ALL STANDOFFS AND HISTOGRAM OF STANDOFFS PER QUADRANT
- DETERMINE STANDOFF_{Avg}, STANDOFF_{Max}, STANDOFF_{Min} FOR EACH QUADRANT
- DETERMINE HOLE SHAPE:
HORIZONTAL DIAMETER ————— H DIAMETER
VERTICAL DIAMETER ————— V DIAMETER

FIG.14A

TO FIG. 14B

FIG. 14B

FROM FIG. 14A

FIG. 15A

COMPUTER PROGRAM FOR ROTATIONAL NEUTRON POROSITY

FROM FIG. 4A-B

345~

TOTAL NEUTRON COUNT RATES
AS A FUNCTION OF TIME
NEAR AND FAR

- DEVELOP HISTOGRAMS OF NEAR AND FAR NEUTRON COUNT RATES
- DETERMINE STANDARD DEVIATION OF NEAR AND FAR COUNT RATES
- DETERMINE ROTATIONAL NEUTRON POROSITY

ROT NEUTRON
POROSITY OF
BOREHOLE

TO FIG. 15B

FIG.15B

CONTINUATION OF FIGURE 15A

FIG. 15C

FROM FIG. 15B

**FROM
FIG. 4A-B**

345

**NEUTRON COUNT RATES IN QTOP
AS A FUNCTION OF TIME NEAR
AND FAR**

- DEVELOP HISTOGRAMS OF NEAR AND FAR NEUTRON COUNT RATES
- DETERMINE STANDARD DEVIATION OF NEAR AND FAR COUNT RATES
- DETERMINE ROTATIONAL NEUTRON POROSITY IN QTOP

**ROT NEUTRON
POROSITY
IN QTOP**

**FROM
FIG. 4A-B**

**NEUTRON COUNT RATES IN QLEFT
AS A FUNCTION OF TIME NEAR
AND FAR**

- DEVELOP HISTOGRAMS OF NEAR AND FAR NEUTRON COUNT RATES
- DETERMINE STANDARD DEVIATION OF NEAR AND FAR COUNT RATES
- DETERMINE ROTATIONAL NEUTRON POROSITY IN QLEFT

**ROT NEUTRON
POROSITY
IN QLEFT**

Figure 16B

Figure 16A

Figure 17A

Figure 17B