G = { Reis, Nuclean Kearto Hela}

T = { Cola, Fourta Sprite }

(Reis Cola) (Reis Fourta) (Rais

GXT - 2 (Reis, Cola) (Reis, Fank) (Rais, Sprite) (Nulle, Cola), (Nucleus Fank) (Nulle, Sprite) (Kert. Cola), (Kat. Fance) (Nart. Sprite) **6.2 Def** (Tupel und Kreuzprodukt). Komplett analog zu (geordneten) Paaren definiert man auch (geordnete) Tripel (a,b,c), (geordnete) Quadrupel (a,b,c) und noch allgemeiner (geordnete) n-Tupel (x_1,\ldots,x_n) mit $n\in\mathbb{N}_0$. Dem entsprechend betrachtet man auch das Kreuzprodukt $A\times B\times C$ von drei Mengen, das Kreuzprodukt $A\times B\times C\times D$ von vier Mengen und allgemein auch das Kreuzprodukt

$$X_1 \times \ldots \times X_n := \{(x_1, \ldots, x_n) : x_1 \in X_1, \ldots, x_n \in X_n\}$$

von Mengen X_1, \ldots, X_n .

Das Element x_i mit $i \in \{1, ..., n\}$ im n-Tupel $(x_1, ..., x_n)$ heißt die i-te Komponente des Tupels.

O-Type! ()

$$d$$
-Type! (a) = a

Für eine Menge X führt man die Bezeichnung

$$X^n := \underbrace{X \times \ldots \times X}_{n \text{ mal}} = \{(x_1, \ldots, x_n) : x_1, \ldots, x_n \in X\}$$

ein.

$$= \{ (x^{1}, x^{2}) : o = x^{2}, o = x^{2}, 0 = x^{2},$$

6.3 Aufgabe. Was stellen die folgenden Kreuzprodukte geometrisch dar? Zeichnen Sie diese Mengen:

7 Prädikate und Quantoren

7.1 Def. Sei X Menge. Dann heißt $P: X \rightarrow \{falsch, wahr\}$ Prädikat auf X.

7.2. Informell beschrieben ist ein Prädikat:

- ullet eine Aussage mit einer Variablen x, die man mit Werten aus dem vorgegeben Bereich X belegen kann. Dabei hängt im Allgemeinen der Wahrheitswert der Aussage von der Wahl von x ab.
- eine Eigenschaft, die für ein variables $x \in X$ erfüllt oder nicht erfüllt ist.

7.3 Bsp. $P: \mathbb{N} \to \{\text{falsch}, \text{wahr}\} \text{ mit } P(k) := ", k(k+1) \text{ ist durch } 3 \text{ teilbar"}.$

$$P(12) = 42.13$$
 is and 3 teilear — ist Wahr

 $P(12) = Wahr$
 $P(13) = 43.14$ ist anoth 3 teilear — ist fac(sel)

 $P(13) = 54$

7.4 Bsp. $P: \mathbb{R}^2 \to \{ \text{falsch, wahr} \} \text{ mit } P(x,y) := ,, x^2 + y^2 \le 1 \text{ ".}$

$$P(\frac{1}{2},\frac{1}{3}) = \frac{(\frac{1}{2})^2 + (\frac{1}{3})^2}{(\frac{1}{3})^2 + (\frac{1}{3})^2} \le 1^{-1}$$

$$= \frac{(\frac{1}{2})^2 + (\frac{1}{3})^2}{(\frac{1}{3})^2 + (\frac{1}{3})^2} \le 1^{-1} = \frac{(\frac{1}{3})^2}{(\frac{1}{3})^2} = \frac{(\frac{1}{3})^2}{(\frac{1}{3})^2$$

7.5. Für eine gegebene Menge X hat man eine natürliche Bijektion zwischen der Menge $\{falsch, wahr\}^X$ aller Prädikate auf X und der Menge 2^X aller Teilmengen von X. Jedes Prädikat $P: X \to \{falsch, wahr\}$ erzeugt die Menge $\{x \in X : P(x)\}$ und jede Menge $A \subseteq X$ erzeugt das Prädikat $P(x) := x \in X$ ".

7.6 Def. $\forall x \in X : P(x)$ für ein Prädikat P auf eine Menge X steht für die Aussage "die Bedingung P(x) gilt für alle $x \in X$." \forall heißt das *Allgemeinheitsquantor* (Bedeutung: für \forall lle).

 $\exists x \in X : P(x)$ bezeichnet die Aussage "die Bedingung P(x) gilt für ein $x \in X$." \exists heißt Existenzquantor (Bedeutung: es \exists xistiert).

M derse aller Mensele

Wx EM Fy EM: gist Maker work.

7. PRÄDIKATE UND QUANTOREN

7.7. Negierung von Aussagen:

1.
$$\forall x \in X : P(x) \Leftrightarrow \exists x \in X : \overline{P(x)}$$

2.
$$\exists x \in X : P(x) \Leftrightarrow \forall x \in X : \overline{P(x)}$$

7.8. \forall und \exists lassen sich kombinieren. Seien X,Y Mengen. Wenn man ein Prädikat P auf $X \times Y$ hat, so kann man dafür die Aussagen wie

$$\forall x \in X \exists y \in Y : P(x,y),$$
 $\exists y \in Y \forall x \in X : P(xy)$

und

$$\exists x \in X \forall y \in Y : P(x,y)$$
 $\forall y \in \mathcal{G} \exists_{\kappa} \in \kappa : \mathcal{K}_{\kappa}^{\kappa} \mathcal{Y}_{\kappa}^{\gamma}$

usw. einführen.

7.9. In vorigen Bemerkung ist die Reihenfolge des Quantifizierens relevant. Sei X eine Menge von Personen und A eine Menge von Adressen im Stadtteil Sandow. Die Aussage

$$\forall x \in X \exists a \in A : x \text{ wohnt unter der Adresse } a.$$

lautet, dass alle Personen aus X irgendwo in Sandow wohnen. Die Aussage

$$\exists a \in A \, \forall x \in X : x \text{ wohnt unter der Adresse } a.$$

lautet dagegen, dass alle Personen aus X unter einer und der selben Adresse in Sandow wohnen (z.B. als Wohngemeinschaft). Man sieht, die letztere Aussage ist eine stärkere Bedingung.

7.10 Bsp. Hier ein Beispiel einer Definition aus der Analysis, die man kompakt mit Quantoren und Prädikaten einführen kann.

Sei $(a_n)_{n\in\mathbb{N}}$ Folge reeller Zahlen (mit anderen Worten: $a:\mathbb{N}\to\mathbb{R}$) und sei $\alpha\in\mathbb{R}$. Dann heißt α Grenzwert von $(a_n)_{n\in\mathbb{N}}$, falls das Folgende gilt:

$$\forall \epsilon \in \mathbb{R}_{>0} \exists N \in \mathbb{R} \ \forall n \in \mathbb{N} : ((n \ge N) \Rightarrow (|a_n - \alpha| < \epsilon))$$

$$(\Longrightarrow): \quad a_n \quad \text{self gen} \quad \not \sim \quad n \rightarrow \infty$$

8. RELATIONEN 91

8 Relationen

8.1 Relation

8.1 Def. Seien X, Y Mengen. Dann heißt eine Teilmenge R von $X \times Y$ eine (binäre) Relation zwischen X und Y. Bei X = Y, heßt R eine (binäre) Relation auf X.

8.2. Da man Prädikate auf $X \times Y$ mit Teilmengen von $X \times Y$ identifizieren kann, lassen sich Relationen auch als Prädikate auf $X \times Y$ auffassen.

8.3. Wenn für $x \in X$ und $y \in Y$ die Bedingung $(x, y) \in R$ gilt, so schreibt man x R y.

8. RELATIONEN

95

8.4 Bsp.

• X - Menge von Fahrzeugen

Y - Menge von Features von Fahrzeugen

	Ersatzrad	Radio	Navi	Automatik
$\overline{f_1}$	1	1	1	1
f_2	1	1	1	0
f_3	0	0	1	1
f_4	0	1	1	0

•
$$\leq, <, \geq, >$$
 auf \mathbb{R}

ullet \subseteq als Relation auf 2^X für eine Menge X

• Für $a, b \in \mathbb{N}$ schreibt man a|b, wenn b durch a ohne Rest teilbar ist.

8.2 Äquivalenzrelation

- **8.5 Def.** Sei X Menge und \sim eine Relation auf X. Dann heißt \sim eine Äquivalenzrelation, falls:
 - 1. \sim ist *reflexiv*, d.h. $x \sim x$ für alle $x \in X$.
 - 2. \sim ist symmetrisch, d.h. $x \sim y$ ist äquivalent zu $y \sim x$ für alle $x \in X$.
 - 3. \sim ist transitiv, d.h. aus $x \sim y$ und $y \sim z$ folgt $x \sim z$ für alle $x, y, z \in X$.

Für eine Äquivalenzrelation \sim auf einer Menge X und ein $x \in X$ heißt

$$[x]_{\sim} := \{ y \in X : x \sim y \}$$

die Äquivalenzklasse von x bzgl. \sim . Die Menge aller Äquivalenzklassen von \sim ist

$$X/\sim := \{[x]_\sim : x \in X\}.$$

X Merg on Personan Hampter Sanite haben der seller ox and of Laber dan selben Karpterschatt. x ~ y :(=) Ist Agricalectralition (1) x~x (2) x ~ y => y ~ x (3) x ~ y 1 y~ 2 => x ~ 2 = die Wohagen einschaft einer Person t = die ellenge der Wohngeneinsdefter. 8. RELATIONEN 99

8.6 Bsp.

• Sei V endliche Menge und sei $\binom{V}{2}:=\{\{u,v\}:u,v\in V,u\neq v\}$. Das Paar (V,E) mit $E\subseteq\binom{V}{2}$ heißt Graph mit Kantenmenge V und Knotenmenge E.

$$G = (V, E), G = \{1, \dots, 6\}, E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 1\}, \{1, 3\}, \{5, 6\}\}\}$$

Für $a, b \in V$ heißt b von a aus erreichbar (im Graphen G = (V, E)), falls ein $k \in \mathbb{N}_0$ und Elemente $u_0, \ldots, u_k \in V$ existieren mit $u_0 = a$, $u_k = b$ und $\{u_i, u_{i+1}\} \in E$ für alle $i \in \mathbb{N}_0$ mit i < k.

Die Erreichbarkeit ist eine Äquivalenzklasse auf V. Die Äquivalenzklassen (Zusammenhangskomponenten) für dieses Beispiel sind $\{1,2,3,4\}$ und $\{5,6\}$.

• Sei $m \in \mathbb{N}$. Für $a, b \in \mathbb{Z}$ sagt man, dass a kongruent zu b modulo m ist, falls $a - b \in m\mathbb{Z}$, wobei $m\mathbb{Z} := \{mz : z \in Z\}$.

:= Ko-greet models m ceef & m E IN. Derition: a-6 durch on teibas a~6 2.B. M=5 2 ~ 13 ? 124 hein 2 ~ 14 ? معن (54 2 ~ 15 ? 2 ~16 ? 2 ~ 12

Schreibweise: $a \equiv b \mod m$.

Die Kongruenz modulo m ist eine Äquivalenzrelation auf \mathbb{Z} .

• Sei \sim Relation auf $\mathbb{Z} \times \mathbb{N}$, definiert durch $(a,b) \sim (c,d)$ für $a,c \in \mathbb{Z}, b,d \in \mathbb{N}$, wenn ad = bc gilt.

Diese Relation ist eine Äquivalenzrelation (Aufgabe).

D.h. jede rationale Zahl ist eine Äquivalenzklasse von diesem \sim .

8.3 Partialordnungen

$$\frac{2}{3} = \frac{4}{6}$$

8. RELATIONEN 101

8.7 Def. Eine Menge X mit einer binären Relation \succeq darauf heißt Poset (partiell geordnete Menge), wenn für alle $x, y, z \in X$ folgendes gilt:

- $x \leq x$ (Reflexivität)
- $x \leq y$, $y \leq z \Rightarrow x \leq z$ (Transitivität).
- $x \leq y$, $y \leq x \Rightarrow x = y$ (Antisymmetrie).

Die binäre Relation \succeq heißt in diesem Fall die partielle Ordnung auf X.

X Menz, von Schieles: innen BSp. fire jedes x f K lihrt nan are: Noter. M(k) Marke-Nok conf D (x) Deces - Note con x K(k) Runst-Nose work X and wir helnes as dess men jedes x 6 x an den die sheden leen den ande en en her sheden leen X 3 y (=) (x) \le D(g) x,y ex K(x) = K(y) Q x xx v 3 x 3 y, 9 32 => x 52 ③ 水片月月末 二二二十月

M(k) = 3 D(k) = 1 K(k) = 2 K(k) = 2 k(k) = 1 k(k) = 1

8.8 Def. Wenn für ein Poset (X,\succeq) für alle $x,y\in X$, die Bedingung $x\succeq y$ oder die Bedingung $y\succeq x$ erfüllt ist, so nennt man (X,\succeq) eine total geordnete Menge und \succeq eine totale Ordnung auf X.

8. RELATIONEN 103

8.9 Bsp.

- 2^X mit Inklusion.
- N mit Teilbarkeit.
- Substring-Relation auf Strings.