Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Отчет по лабораторной работе №1

по дисциплине «Низкоуровневое программирование» **Машина Тьюринга**

> Работу выполнил: Ильин В.П. Группа: 35300901/10005 Преподаватель: Коренев Д.А.

Санкт-Петербург 2022

Содержание

1.	Техническое задание	3
2.	Метод решения	3
3.	Описание состояний	3
4.	Работа программы	5

1. Техническое задание

Написать программу преобразования двоичного кода в унарный. Вид исходных данных: положительное двоичное число. Начальное положение головки: последняя цифра числа.

2. Метод решения

Унарные числа представляются в виде последовательности единиц, длина которой равна самому числу. Например: 1-1, 3-111, 5-11111.

Для перевода из двоичного кода будем последовательно идти по всем цифрам числа, начиная с конца. На каждом шаге смотрим на текущую цифру: если это 0, то удваиваем текущее значение степени двойки, временно записанное слева от входного числа, а если 1, то накапливаем ответ справа, после чего также увеличиваем степень. В конце заменяем обработанный символ на служебный (x) и переходим к следующему.

В результате обработки всех цифр числа на ленте останутся только последнее значение степени двойки в унарном коде, изначальное число со всеми цифрами, замененными на x и ответ, поэтому достаточно будет дойти до самого левого символа значения степени двойки, и сначала стереть степень, а затем все символы x.

Например, рассмотрим перевод числа 10:

$$1x \rightarrow 1 \ 1x \rightarrow 11 \ 1x \rightarrow 11 \ xx \ 11 \rightarrow 11$$

3. Описание состояний

Алфавит:

- 0 одновременно выполняет функцию двоичной цифры и временного знака во время удвоения степени (для уменьшения используемого алфавита)
- 1 двоичная и унарная цифра
- х служебный символ

Внутри подпрограммы удвоения числа будем обозначать новую цифру при помощи x, а 0 – уже удвоенную.

Состояния:

- Q_1 начальное состояние итерации обработки одной цифры двоичного числа. Если цифра 0 переход к Q_2 , 1 к Q_{10} . Если цифры кончились и головка указывает на пробел, то переход к Q_{19} .
- Q_2 состояние для перевода головки налево от исходного числа.
- Q_3 находимся на крайнем символе текущего значения степени двойки. Если это пробел (т.е. если рассматривалася первая цифра числа), то переходим к Q_9 , оставляя единицу. Если же это 1, то начинаем удваивать значение степени. Переход к Q_4 .

- Q_4 если головка смотрит на единицу, значит удвоение не завершено. Временно заменяем единицу на 0 и переходим к Q_5 . Если же головка смотрит на x, то это правая цифра, добавленная в результате удвоения, а значит все исходное число уже удвоено. Переходим к Q_7 .
- Q_5 идем налево до тех пор, пока не встретим пробел, на место которого ставим x. Переходим к Q_6 .
- Q_6 возвращаемся на последний необработанный символ удваимового числа. Начинаем новую итерацию переходом к Q_4 .
- Q_7 встаем на самый левый символ итогового числа и переходим к Q_8 .
- Q_8 заменяем все x и 0 на единицы и заканчиваем подпрограмму удвоения переходом к Q_9 .
- Q_9 после удвоения степени возвращаемся к последней необработанной цифре числа. Для этого пропускаем все символы, кроме служебного, которым отмечена последняя обработанная цифра. Найдя служебный, встаем слева от него и начинаем следующую итерацию.
- Q_{10} пропускаем исходное число, переходим к Q_{11} .
- Q_{11} переходим к последней цифре значения степени двойки и начинаем накапливать ответ. Для этого временно помечаем ее служебным символом и переходим в состояние Q_{12} .
- Q_{12} пропускаем все уже перенесенные в ответ единицы и, дойдя до пробела, попадаем на исходное число. Переходим в состояние Q_{13} .
- Q_{13} пропускаем число, переводя головку направо. Дойдя до пробела, переходим в Q_{14} .
- Q_{14} переходим направо от текущего ответа. Дойдя до пробела, дописываем единицу и переходим в Q_{15} .
- Q_{15} возвращаемся к исходному числу и переходим в Q_{16} .
- Q_{16} пропускаем исходное число и переходим в Q_{17} .
- Q_{17} пропускаем все перенесенные единицы, обозначенные служебными символами. Дойдя до конца, смотрим на символ слева от них. Если это 1, то начинаем следующую итерацию переноса единицы, переход в Q_{12} . Если это пробел, то значит все единицы уже перенесены, переход в Q_{18} .
- Q_{18} переводим все служебные символы в значении степени назад в единицы. Дойдя до пробела, возвращаемся на один символ налево и переходим в Q_4 для удвоения степени.
- Q_{19} чистим степень, переходим к Q_{20} .
- Q_{20} чистим исходное число. Встретив единицу, завершаем работу программы, так как единицы остались только в ответе.

4. Работа программы

