INT201 Decision, Computation and Language

Tutorial 1

Dr Yushi Li

Constructive proof

A method of proof that demonstrates the existence of a mathematical object (anything that has been formally defined) by creating or providing a method for creating the object.

Example

There exists an object with property \mathcal{P} .

Proof. Here is the object: [...] And here is the proof that the object satisfies property \mathcal{P} : [...]

Constructive proof

Example

Theorem 1.3.5 For every even integer $n \geq 4$, there exists a 3-regular graph with n vertices.

Nonconstructive proof

In a nonconstructive proof, we show that a certain object exists, without actually creating it.

Example

Theorem 1.3.6 There exist irrational numbers x and y such that x^y is rational.

Proof by Contradiction

A form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction

Example

Theorem 1.3.7 Statement S is true.

Proof. Assume that statement S is false. Then, derive a contradiction (such as 1 + 1 = 3).

Example

Theorem 1.3.8 Let n be a positive integer. If n^2 is even, then n is even.

Proof by Induction

A mathematical proof technique. It is essentially used to prove that a statement P(n) holds for every natural number n = 0, 1, 2, 3, ...;

Example

For all positive integers n, we have

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}$$
.

