Lecture 18: Gaussian Mixture Model, Expectation Maximization

Unsupervised learning

- Aim: explore the structure (pattern, regularities) of the data
- Tasks:
 - o Clustering (e.g. GMM)
 - o Dimensionality Reduction (e.g. PCA)
 - Learning parameters of probabilistic models
- Applications:
 - Market basket analysis
 - o Outlier detection
 - Unsupervised tasks in (supervised) ML pipelines

Gaussian Mixture Model (GMM)

- A probabilistic view of clustering
- Requires the user to choose the number of clusters in advance
- Gives a power to express uncertainty about the origin ("weights") of each point
 - \circ Each point originates from cluster c with probability w_c , c=1,...,k
- · Still originats from one particular cluster, but not sure from which one
- Data points are samples from a mixture of K distributions (components)
 - In principle, we can adopt any probability distribution for the components
 - Howeer, normal distribution is a common modelling choice -> GMM
- (d-dimensional) Gaussian distribution

$$\circ \ N(x|\mu,\Sigma) = (2\pi)^{-rac{d}{2}} |\Sigma|^{-rac{1}{2}} \exp(-rac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$$

• Gaussian Mixture Distribution: (for each data point)

$$\circ \ P(x) = \Sigma_{i=1}^k w_j N(x|\mu_j,\Sigma_j) = \Sigma_{i=1}^k P(C_j) P(x|C_j)$$

- $\circ \ P(x|C_j)$ is **conditional density** for component j
- $\circ \;\;$ Here $P(C_j) \geq 0$ and $\Sigma_{j=1}^k P(C_j) = 1$
- o (Unkown) params of the model are:
 - $P(C_j), \mu_j, \Sigma_j \text{ for } j=1,...,k$

Mixture and individual component densities are re-scaled for visualisation purposes

Figure: Bishop

Clustering as model estimation

- Clustering now amounts to finding parameters of the GMM that "best explain" the observed data
 - \circ -> **MLE** that maximise $p(x_1,...,x_n)$

Fitting the GMM

- Aim: find parameters that maximise $p(x_1,...,x_n)$
- Cannot solve analytically by taking (first) derivative!
 - Solution: Use Expectation-Maximisation (EM)

Expectation Maximisation (EM) algorithm

- Motivation:
 - Sometimes we don't observe some of the variables needed to compute the loglikelihood
 - Hidden variables
 - 2. Sometimes the form of log-likelihood is inconvenient to work with
 - (No closed form solution...)
- EM is an algorithm
 - A way to solve the problem posed by MLE
 - Especially **convenient** under unobserved latent variables
- MLE can be found by other methods
 - o E.g. Gradient Descent

Algorithm (Simple version)

- 1. Initialisation K clusters and their parameters
- 2. Iteration Step:
 - o E-step:

- Estimate the cluster of each data point
- M-step:
 - Re-estimate the cluster parameters
 - ullet $(\mu_j, \Sigma_j), p(C_j)$ for each cluster j

EM for GMM and generally

- EM is a general tool
 - Purpose: implement MLE under latent (missing) variables Z
- Variables and params in GMM
 - Variables:
 - lacktriangle Observed: Point locations X
 - ullet Hidden: Cluster assignments Z
 - o Parameters:
 - θ : cluster locations and scales (and $p(C_i)'s$)
- What EM is really doing:
 - o Coordinate ascent on lower-bound on the log-likelihood
 - M-step: ascent in modelled parameter θ
 - E-step: ascent in marginal likelihood P(Z)
 - Each step moves towards a local optimum
 - Can get stuck (at local optima)
 - Need random restarts

Not-Examinable Part

- Log is a convex function (can use Jensen's inequality)
- Maximise $\log p(X|\theta)$ difficult
 - Maximise $\log p(X, Z|\theta)$ (log complete likelihood) instead
- ullet Marginalise and use Jensen's Inequality to get lower-bound $E_Z[\lograc{p(x,z| heta)}{p(z)}]$
 - \circ Note: $p(z) = p(z|x,\theta)$
- · Maximising lowerbound:
 - Equivalent to maximising original incomplete likelihood
 - Since $p(z) = p(z|x, \theta)$ makes the lower bound tight
- Resulting EM algorithm:
 - 1. Initialisation: choose random initial values of $heta^{(1)}$
 - 2. Update:
 - lacksquare E-step: compute $Q(heta, heta^{(t)}) = E_{Z|X, heta^{(t)}}[\log p(X,Z| heta)]$
 - 3. Termination: If no change then stop
 - 4. Go to step 2
- The algorithm could results in local maximum

Estimating Parameters of GMM

- Can't compute the complete likelihood because we don't know z
- ullet EM handles this by replacing $\log p(X,z| heta)$ with $E_{Z|X, heta^{(t)}[\log p(X,z| heta)]}$
 - \circ Requires: $p(z|X, \theta^{(t)})$
 - \circ Assuming z_i are pairwise independent, we need $P(z_i=c|x_i, heta^{(t)})$
- E-step: calculating cluster responsibility (weights)

$$\circ~$$
 Use Bayes rule: $r_{ic}=P(z_i=c|x_i, heta^{(t)})=rac{w_cN(x_i|\mu_c,\Sigma_c)}{\Sigma_{l=1}^kw_lN(x_i|\mu_l,\Sigma_l)}$

- $\circ~$ That (posterior) probability: responsibility that cluster c takes for data point i
- M-step:
 - \circ Take partial derivatives of $Q(\theta, \theta^{(t)})$ with respect to each of the parameters and set the derivatives to 0
 - Obtain new parameter estimates:

$$w_c^{(t+1)} = \frac{1}{n} \sum_{i=1}^n r_{ic} \leftarrow \text{all data points}$$

$$\mu_c^{(t+1)} = \frac{\sum_{i=1}^n r_{ic} x_i}{r_c}$$

$$* \text{ Here } r_c \equiv \sum_{i=1}^n r_{ic}$$

$$\Sigma_c^{(t+1)} = \frac{\sum_{i=1}^n r_{ik} x_i x_i'}{r_k} - \mu_c^{(t)} \left(\mu_c^{(t)}\right)'$$

(Estimates for step (t+1))

K-means as a EM for a restricted GMM

- Consider GMM in which:
 - $\circ~$ All components have the same fixed probability: $w_c=1/k$
 - \circ Each Gaussian has the fixed covariance matrix $\Sigma_c = \sigma^2 I$
 - \circ Only component centroids $\mu_{\mathbf{c}}$ need to be estimated
- Approximate cluster responsibility:
 - o Deterministic assignment:
 - $r_i c = 1$ if centroid $\mu_c^{(t)}$ is closest to point x_i
 - $r_i c = 0$ otherwise
- Results in E-step: μ_c should be set as a centroid of points assigned to cluster c
- => k-means algorithm