Salary Prediction - Exploratory Data Analysis

The script loads, explores, and visualizes the salary prediction datasets.

```
Author = Marzena Porebski
Email = mmazur5@yahoo.com
```

```
In [130]: #import libraries
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    %matplotlib inline
```

Load the data

```
In [131]: #Read in files into a Pandas dataframe
Job_Data = pd.read_csv('E:/job_data.csv')
Salaries = pd.read_csv('E:/salaries.csv')
```

Examine the data

```
In [132]: Job_Data.head(5)
```

Out[132]:

	jobld	companyld	jobType	degree	major	industry	yearsExperience	m
0	JOB1362684407687	COMP37	CFO	MASTERS	MATH	HEALTH	10	
1	JOB1362684407688	COMP19	CEO	HIGH_SCHOOL	NONE	WEB	3	
2	JOB1362684407689	COMP52	VICE_PRESIDENT	DOCTORAL	PHYSICS	HEALTH	10	
3	JOB1362684407690	COMP38	MANAGER	DOCTORAL	CHEMISTRY	AUTO	8	
4	JOB1362684407691	COMP7	VICE_PRESIDENT	BACHELORS	PHYSICS	FINANCE	8	

In [133]: Salaries.head(5)

Out[133]:

	jobld	salary
0	JOB1362684407687	130
1	JOB1362684407688	101
2	JOB1362684407689	137
3	JOB1362684407690	142
4	JOB1362684407691	163

```
In [134]: Job_Data.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 1000000 entries, 0 to 999999
          Data columns (total 8 columns):
           iobId
                                  1000000 non-null object
           companyId
                                  1000000 non-null object
           jobType
                                 1000000 non-null object
                                 1000000 non-null object
           degree
                                 1000000 non-null object
           major
           industry
                                   1000000 non-null object
          yearsExperience 1000000 non-null int64 milesFromMetropolis 1000000 non-null int64
           dtypes: int64(2), object(6)
           memory usage: 61.0+ MB
In [135]: Salaries.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 1000000 entries, 0 to 999999
          Data columns (total 2 columns):
           jobId
                     1000000 non-null object
           salary
                     1000000 non-null int64
           dtypes: int64(1), object(1)
           memory usage: 15.3+ MB
```

Clean the data

look for duplicate data, invalid data (e.g. salaries <=0), or corrupt data and remove it

```
In [136]: Job_Data.duplicated().sum()
Out[136]: 0
In [137]: Salaries.duplicated().sum()
Out[137]: 0
```

Identify numerical and categorical variables

Summarize numerical and categorical variables separately

```
In [141]:
            Job_Data.describe(include = [np.number])
Out[141]:
                    yearsExperience milesFromMetropolis
                                         1000000.000000
             count
                    1000000.000000
                          11.992386
                                              49.529260
             mean
               std
                          7.212391
                                              28.877733
              min
                          0.000000
                                               0.000000
                          6.000000
              25%
                                              25.000000
              50%
                          12.000000
                                              50.000000
              75%
                          18.000000
                                              75 000000
              max
                          24.000000
                                              99.000000
In [142]:
            Job Data.describe(include = ['0'])
Out[142]:
                                 jobld companyld jobType
                                                                   degree
                                                                             major industry
                                                                  1000000
              count
                              1000000
                                          1000000 1000000
                                                                           1000000
                                                                                    1000000
                              1000000
             unique
                                               63
                                                         8
                                                                                          7
                     JOB1362684508638
                                          COMP39
                                                   SENIOR HIGH_SCHOOL
                                                                             NONE
                                                                                       WEB
                top
                                            16193
                                                    125886
                                                                   236976
                                                                            532355
                                                                                     143206
               freq
```

Merge two tables into single data table

```
In [143]: Salary Predictions = pd.merge(Job Data, Salaries, on='jobId')
In [144]: Salary Predictions.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 1000000 entries, 0 to 999999
          Data columns (total 9 columns):
          jobId
                                  1000000 non-null object
          companyId
                                  1000000 non-null object
          jobType
                                 1000000 non-null object
                                 1000000 non-null object
          degree
          major
                                  1000000 non-null object
          industry
                                  1000000 non-null object
          yearsExperience
                                 1000000 non-null int64
          milesFromMetropolis
                                  1000000 non-null int64
          salary
                                  1000000 non-null int64
          dtypes: int64(3), object(6)
          memory usage: 76.3+ MB
```

```
In [145]: Salary_Predictions.head()
```

Out[145]:

	jobld	companyld	jobType	degree	major	industry	yearsExperience	m
0	JOB1362684407687	COMP37	CFO	MASTERS	MATH	HEALTH	10	
1	JOB1362684407688	COMP19	CEO	HIGH_SCHOOL	NONE	WEB	3	
2	JOB1362684407689	COMP52	VICE_PRESIDENT	DOCTORAL	PHYSICS	HEALTH	10	
3	JOB1362684407690	COMP38	MANAGER	DOCTORAL	CHEMISTRY	AUTO	8	
4	JOB1362684407691	COMP7	VICE_PRESIDENT	BACHELORS	PHYSICS	FINANCE	8	
4								•

Visualize salary information

```
In [146]: plt.figure(figsize = (14, 6))
    plt.subplot(1,2,1)
    sns.boxplot(train_df.salary)
    plt.subplot(1,2,2)
    sns.distplot(Salary_Predictions.salary, bins=20)
    plt.show()
```


Use IQR rule to identify potential outliers

```
In [147]: stat = Salary_Predictions.salary.describe()
    print(stat)
    IQR = stat['75%'] - stat['25%']
    upper = stat['75%'] + 1.5 * IQR
    lower = stat['25%'] - 1.5 * IQR
    print('The upper and lower bounds for suspected outliers are {} and {}.'.format(upper, lowe r))
    count    1000000.000000
```

 mean
 116.061818

 std
 38.717936

 min
 0.000000

 25%
 88.000000

 50%
 114.000000

 75%
 141.000000

 max
 301.000000

Name: salary, dtype: float64

The upper and lower bounds for suspected outliers are 220.5 and 8.5.

Examine potential outliers

```
In [148]: #outliers below Lower bound
Salary_Predictions[Salary_Predictions.salary < 8.5]</pre>
```

Out[148]:

	jobld	companyld	jobType	degree	major	industry	yearsExperi
30559	JOB1362684438246	COMP44	JUNIOR	DOCTORAL	MATH	AUTO	_
495984	JOB1362684903671	COMP34	JUNIOR	NONE	NONE	OIL	
652076	JOB1362685059763	COMP25	СТО	HIGH_SCHOOL	NONE	AUTO	
816129	JOB1362685223816	COMP42	MANAGER	DOCTORAL	ENGINEERING	FINANCE	
828156	JOB1362685235843	COMP40	VICE_PRESIDENT	MASTERS	ENGINEERING	WEB	

```
In [149]: #outliers above upper bound
Salary_Predictions.loc[Salary_Predictions.salary > 222.5, 'jobType'].value_counts()
```

```
Out[149]: CEO 2893
CFO 1308
CTO 1298
VICE_PRESIDENT 520
MANAGER 188
SENIOR 50
JUNIOR 16
```

Name: jobType, dtype: int64

```
In [150]: # Check most suspicious potential outliers above upper bound
    Salary_Predictions[(Salary_Predictions.salary > 222.5) & (Salary_Predictions.jobType == 'JU
    NIOR')]
```

Out[150]:

	jobld	companyld	jobType	degree	major	industry	yearsExperience	miles
1222	JOB1362684408909	COMP40	JUNIOR	MASTERS	COMPSCI	OIL	24	
27710	JOB1362684435397	COMP21	JUNIOR	DOCTORAL	ENGINEERING	OIL	24	
31355	JOB1362684439042	COMP45	JUNIOR	DOCTORAL	COMPSCI	FINANCE	24	
100042	JOB1362684507729	COMP17	JUNIOR	DOCTORAL	BUSINESS	FINANCE	23	
160333	JOB1362684568020	COMP18	JUNIOR	DOCTORAL	BUSINESS	FINANCE	22	
303778	JOB1362684711465	COMP51	JUNIOR	MASTERS	ENGINEERING	WEB	24	
348354	JOB1362684756041	COMP56	JUNIOR	DOCTORAL	ENGINEERING	OIL	23	
500739	JOB1362684908426	COMP40	JUNIOR	DOCTORAL	ENGINEERING	OIL	21	
627534	JOB1362685035221	COMP5	JUNIOR	DOCTORAL	ENGINEERING	OIL	24	
645555	JOB1362685053242	COMP36	JUNIOR	DOCTORAL	BUSINESS	FINANCE	24	
685775	JOB1362685093462	COMP38	JUNIOR	BACHELORS	ENGINEERING	OIL	24	
743326	JOB1362685151013	COMP14	JUNIOR	DOCTORAL	BUSINESS	FINANCE	19	
787674	JOB1362685195361	COMP43	JUNIOR	DOCTORAL	BUSINESS	FINANCE	18	
796956	JOB1362685204643	COMP30	JUNIOR	MASTERS	BUSINESS	OIL	24	
855219	JOB1362685262906	COMP13	JUNIOR	MASTERS	ENGINEERING	OIL	22	
954368	JOB1362685362055	COMP11	JUNIOR	DOCTORAL	BUSINESS	OIL	24	
4								•

The entries with zero salaries do not appear to be volunteer positions. We are confident that they are instances of missing/corrupt data and should be removed from the training set. The high-salary potential outliers appear to be legitimate. Most roles are C-level executive roles and the junior positions are in industries that are well known for high salaries (oil, finance). We determine these entries to be legitimate and will not remove them.

```
In [151]: # Remove data with zero salaries
Salary_Predictions = Salary_Predictions[Salary_Predictions.salary > 8.5]
```

Exploratory Data Analysis

```
In [152]: def plot_feature(df, col):
              Make plot for each features
              left, the distribution of samples on the feature
              right, the dependance of salary on the feature
              plt.figure(figsize = (14, 6))
              plt.subplot(1, 2, 1)
              if df[col].dtype == 'int64':
                  df[col].value_counts().sort_index().plot()
                  #change the categorical variable to category type and order their level by the mean
          salary
                  #in each category
                  mean = df.groupby(col)['salary'].mean()
                  df[col] = df[col].astype('category')
                  levels = mean.sort_values().index.tolist()
                  df[col].cat.reorder_categories(levels, inplace=True)
                  df[col].value counts().plot()
              plt.xticks(rotation=45)
              plt.xlabel(col)
              plt.ylabel('Counts')
              plt.subplot(1, 2, 2)
              if df[col].dtype == 'int64' or col == 'companyId':
                  #plot the mean salary for each category and fill between the (mean - std, mean + st
          d)
                  mean = df.groupby(col)['salary'].mean()
                  std = df.groupby(col)['salary'].std()
                  mean.plot()
                  plt.fill_between(range(len(std.index)), mean.values-std.values, mean.values + std.v
          alues, \
                                    alpha = 0.1)
              else:
                  sns.boxplot(x = col, y = 'salary', data=df)
              plt.xticks(rotation=45)
              plt.ylabel('Salaries')
              plt.show()
```

In [153]: plot_feature(Salary_Predictions, 'companyId')

The salary is weakly associated with companies.

There is a clear positive correlation between job type and salary.

More advanced degrees tend to correspond to higher salaries.

People with majors of engineering, business and math generally have higher salaries.

Oil, Finance and Web industries generally have higher salaries.

In [46]: plot_feature(Salary_Predictions, 'yearsExperience')

There is a clear correlation between salary and years of experience.

Salaries decrease with the distance to metropolis.

JobID is discarded because it is unique for individual

We see that jobType is most strongly correlated with salary, followed by degree, major, and yearsExperience. Among the features, we see that degree and major have a strong degree of correlation and jobType has a moderate degree of correlation with both degree and major.