Principal Component Analysis (PCA)

PCA is a popular dimensionality reduction technique for analyzing large datasets containing a high wunder of dimensions/features per observation, increasing the interpretability of data while preserving the waximum amount of information.

Given an unsupervised dataset, the steps to be performed are:

- compute the covariance matrix S;
- compute the highest eigenvalues and the corresponding eigenvectors;
 project all the datapoints in this dimensions;

What happens when you have a small dataset?

Small number of S-dimensional samples, with S >> N

e.g. a small set of high resolution images

In such cases it may be inefficient to find eigenvalues of S.

Instead of considering the covariance matrix $S=X^TX$ we consider the matrix XX^T . The two have the same eigenvalues but X^TX is $D\times D$ and XX^T is $N\times N$.

Solution:
$$\frac{1}{N} \times \times^{T} (\times u_{i}) = \lambda_{i} (\times u_{i})$$

$$\frac{1}{N} \times \times^{T} V_{i} = \lambda_{i} V_{i}$$

Once we compute the eigenvalues we can compute the eigenvectors. We have very efficient ways of computing PCA even with high dimensional data

$$u_{\lambda} = \frac{1}{\sqrt{N \lambda_{\lambda}}} X^{T} v_{\lambda}$$

Probabilistic PCA

Assume we have the imput, $x \in \mathbb{R}^N$ Define another set of variables, $7 \in \mathbb{R}^N$ (reduced space). We don't know these variables

Assume the conditional probability distribution P(x|z) is given by a linear-gaussian model, a gaussian over x centered in a linear combination of z:

If we have the latent variable 7 and the parameters of the model μ , σ then we can generate a distribution of x.

Probabilistic PCA is just a method that, given the dotaset, estimates the parameters W, M, o. We use the maximum likelihood technique:

arguax
$$P(X|W,\mu,\sigma^2) = \sum_{n=1}^{N} ln P(X_n|W,\mu,\sigma^2)$$
 W,μ,σ

Setting the derivative to I we have a closed form solution that depends on the eigenvalues and eigenvectors of S. The proof is not trivial.

Once we have W,μ,σ we can generate new samples of \times (big space) given ε (latent space - reduced space).