FOUNDATIONS OF STATISTICAL MACHINE LEARNING

CLASSICAL LEARNING MODEL Domain Set \longrightarrow Set of objects for labelling (X)Depicted as feature vectors

(input to the algorithm)

Label Set -> Set of possible labels (Y) Training Data -> S = X x Y
Feature vectors + Labels. Learner's Output -> Hypothesis function h: X-> (Prediction Algorithm -> A Distribution -> Distrubution D exists on domain X For labels -> There exist correct labelling function (f) Loss Function $L_{P,f}(h) = Pr \left[h(x) \neq f(x) \right]$ $z \in D$

EMPIRICAL RISK MINIMISATION

 $f \rightarrow unknown D \rightarrow unknown$ * Minimising error over training data Learner has S according to D

SAMPLE DISTRIBUTION

DVERFITTING:-

 $S = (x_1, y_1), (x_2, y_2) \dots (x_m, y_m)$ where RinD $y_i = f(x_i)$ $L_{S} = \frac{|\{i \in [m] | h(x_i) \neq f(x_i)\}|}{||x_i|||}$

The distribution D may confuse a learner

**Find h that minimizes Ls

**Finding h may not be an efficient

to learn a wrong rule.

**Because S is a part way because all possible functions

of D and does not represent may be very large.

This rule will work

**This rule will possible functions

**This rule will work

**This rule will possible functions

ERM_H (s) = argmin L_s(h)

* A restrictive If may make learning the problem easy.

*If H is restricted, it can lead to large inductive BIAS

Over which hypothesis classes

H will ERM, not lead Result of to overfitting ?? applying ERM H

Non-intuitive of ERM H

REALIZABILITY ASSUMPTION: f & H

hs = argmin Ls(h)
heH

ACCURACY PARAMETER:

 $L_{D,f}(h_s) \Rightarrow \text{Probability of choosing}$ an example $\times ND$ such that $h_s(z) \neq f(z)$

If Lp, + (hs) < E, then learner is approximately correct 1-E ⇒ Accuracy Parameter

THEOREM: Let H be a finite hypothesis class of functions from domain X to range $\{0,1\}$. Then for every $f \in \mathcal{H}$ and every Dover X, Pr [Lo,f (ERM (s)) > E] < |H| · (1-E) M

South Sample

* Theorem holds for Size

every m and every E

Therefore if |H| is bounded or fin Size of H goes down exponentally Therefore, if IHI is bounded or finite, → As long as e^{-em} dominates |H| then we can bound /H/·(1-E)M we can contain error in Lo,f(hs) by changing sample size M. PROOF: HB > BAD FUNCTIONS {h | LD, f(h) > E} SMALL ERROR FUNCTIONS & h | Ls(h) = 0} GOAL: To bound Pr[JheHB such that Ls(h)=0] Pr[$\exists h \in \mathcal{H}_{B} \text{ and } L_{S}(h)=0$] $\leq |\mathcal{H}_{B}| \Pr[L_{S}(h)=0]$ Assumption about $\mathcal{H}_{B} \Rightarrow L_{p,f}(h) > E$ Thus $Pr[L_S(h) = 0 \text{ for } h \in \mathcal{H}_B] \leq (1-\epsilon)^m$ Finally $Pr[\exists h \in \mathcal{H}_{B} \text{ and } ls(h) = 0] \leq |\mathcal{H}_{B}|(1-\epsilon)^{m}$ $\leq |\mathcal{H}|(1-\epsilon)^{m}$

ROBABILISTICALLY APPROXIMATELY CORRECT

A class Il is said to be PAL learnable, if there is a function $M_{\mathcal{H}}:(0,1)\times(0,1)\to N$ and learning algorithm A such that for every E, SE (0,1), for every Distribution D and for every $f \in \mathcal{H}$ $Pr\left[L_{D,f}\left(A(s)\right) \leqslant \varepsilon\right] > 1-\delta$ $s \sim D^{M}$ for any $m \geq M_{H}\left(\varepsilon,\delta\right)$ $1-\delta \rightarrow Confidential$

 $E \rightarrow Accuracy Parameter$ $1-S \rightarrow Confidence Parameter$

What Algorithm to use? > ERMh Since /H/(1-E)^m ≤ /H/e^{-EM} ≤ 8 $M_{H}(\varepsilon, \delta) = \ln(|\mathcal{H}|) + \ln(\sqrt{\varepsilon})$

STRENGTM: Valid for any distribution

How to remove this assumption ??

* Agnostic PAC learning

used when we assumed Lo(h)=0 if h = ERMH (S)

Removing realisability assumption $D o Distribution over imes imes imes imes Marginal D_x o Distribution over unlabelled domain points <math>D((x,y)|x) o conditional probability of labels for each domain point.$

TRUE ERROR/RISK: The likelihood of h making an error when labelled points are drawn as per D

$$L_D(h) = \Pr \left[h(x) \neq y \right]$$

$$(x,y)_{ND}$$

BAYES OPTIMAL PREDICTOR

$$f_D(x) = \begin{cases} 1 & \text{if } Pr[y=1|x] > 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Prove that: For any classifier q, Lp(fp) < Lp(g)

PROBLEM: Learner does not know D

AGNOSTIC PAC LEARNING

A class H is said to be agnostic PAC learnable, if there is a function $M_H:(0,1)\times(0,1)\to IN$ and a learning algorithm A such that for every distribution D on XxY

Pr $\left[L_D(A(s)) \leqslant \min_{h \in \mathcal{H}} \left\{L_D(h)\right\} + \varepsilon\right] > 1 - \delta$

for any m > mH (E, 8)

STRENGTH: Realizability assumption not necessary * If $H_1 = H_2$, H_1 is easier Lannot guarantee O error
This is best possible
function

with respect to min { bo(h)}

→ Different notion of loss

OTHER LEARNING TASKS:

① Multiclass Prediction

② Real valued Prediction (Regression)

General Setup for Learning:

- 1) Binary Label Prediction

- (3) Regression

@ Multiclass Prediction

= l(h, (x,t)) = (h(x)-t)2

 $\int loss = \int \int h(x) \neq y$

 $= 2 \left((q ... 4), 2 \right) = \min_{k \in \mathbb{Z}} \| (q ... 4)^2$

(9) Classification

LEARNING PARADIGM: UNIFORM CONVERGENCE

DEFINITION: A sample $S = ((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n))$ is ϵ -representative of a class H with respect to the distribution D if Hh E H $\Big| L_s(h) - L_p(h) \Big| \le \epsilon$ where $L_s(h) = L \le L(h, (x_1, y_1))$ $M = L_s(h) = L \le L(h, (x_1, y_1))$

* Note that if S is indeed representative of H with respect to D then ERM, is a good learning strategy

CLAIM: If S is 6-representative of H with respect to D they for any ERM function hs

 $L_D(h_s) \leqslant \min_{h \in H} (L_D(h)) + 2\epsilon$

PROOF: $L_p(h_s) \leq L_s(h_s) + \epsilon \leq \min_{h \in H} \left[L_s(h) + \epsilon\right] \leq \min_{h \in H} \left[L_p(h)\right] + 2\epsilon$

* Practical approach to infinite classes -> Discretization

EXAMPLE
$$\longrightarrow$$
 $H_{\kappa}^{thr} = \left\{ h_{r} : h_{r}(x) = \begin{cases} 0 & x \leqslant r, r \in \{0, \frac{1}{\kappa}, \frac{2}{\kappa} \dots 1\} \end{cases} \right\}$

A In theory, the may not be a good approximation of tother

NO FREE LUNCH THEOREM:

Let x be a domain of size n.

Let Hall be the set of all possible labellings.

$$H_{\eta}^{\text{oll}} = \left\{ h: \chi \rightarrow [0,1] \right\} \qquad \left| H_{\eta}^{\text{oll}} \right| = 2^{h}$$

NFL proves that
$$M_{H_n}\left(\frac{1}{8},\frac{1}{7}\right) \ge \frac{n}{2}$$

Therefore, the class of labelling functions over an infinite domain is not PAC-learnable.

TRADE OFF:

Let A be a learning algorithm for the task of binary classication over the domain set X. let m < 1x1/2. Then I D over X , {0,1} such that

$$\exists f: X \rightarrow \{0,1\}$$
 such that $L_D(f) = 0$

$$\exists f: X \rightarrow \{0,1\}$$
 such that $L_{D}(f)=0$ $Pr_{S \cup D^{M}}\{L_{D}(A(S)) \geq 1/8\} \geq 1/7$

MOTIVATION FOR VC DIMENSION:

-> Comes from proof of no-free-lunch theorem.

NOTION OF SHATTERING A SET

A set of points $S \subseteq X$ is said to be shattered by H for every possible labellings of points in S as O-1, there is a function $h \in H$ that realises this labelling.

EXAMPLE 1:

 $\mathcal{H} = \{[0, b]/b \in \mathbb{R}^{20}\}$ * \mathcal{H} can shafter any set of size 1. Exception: x=0 case. * It cannot shatter any sets of size 2.

EXAMPLE 2:

H = {[a,6] | a,6 ER and a<b} + H can shatter any set of size 2 * H cannot shalter any set of size 3

EXAMPLE 3:

* If can shatter any set of size 2 SHATTERED UNSHATTERED It is a set of linear functions ** H can shatter some sets of size 3

VAPNIK - CHERVONENKIS DIMENSION:

Let H be a hypothesis class over functions from X to {0,1}.

The VC-Dimension of H is the size of the largest finite subset of X such that it is shottered by H. it is shattered by H.

O If I a subset of size I such that it can be shattered by H, then VC dimension of H is at least d.

DIf no subset of size d is shattered by H, then VC dimension of H is less than d.