- Find the inverse of the given relation? 1.
 - a) $\{(2, 1), (-2, 3), (3, 4), (-3, 2), (1, 5)\}$
 - b) $\{(-7,3),(-2,1),(-2,4),(0,7)\}$
- 2. For the following functions:
 - a) $f(x) = \sqrt{x+5} + 1$
 - b) $f(x) = \frac{x+4}{x-3}$
 - i) Is f(x) one-to-one?
 - ii) Find the inverse, if exists.
 - iii) Determine the Domain for the inverse function
- 3. Write each equation in its logarithmic form
 - a) $5^{-3} = \frac{1}{125}$

c) $e^{-1} = 0.368$

e) $e^{x} = z$

b) $4^{2y} = 24.5$

- d) $15^{0.457} = 3$
- 4. Write each equation in its exponential form
 - $a) \quad 6 = \log_2 64$

c) $y = \ln 2^{\pi}$

e) $\log y = x$

b) $2 = \log_3 x$

d) $6.2 = \ln x$

f) $\log_3 x = \frac{1}{3}$

- **5.** Graph and determine its *asymptote* (label the graph).
 - a) f(x) = log(x+2)
- c) $f(x) = \ln(2x-4)$

b) $f(x) = \left(\frac{1}{3}\right)^{x-3}$

- d) $f(x) = e^{2x} 4$
- 6. Find the *domain*, *range* and the *asymptote* of each logarithmic function
 - a) $f(x) = 2 + \ln(2x 4)$
- b) $f(x) = \ln(7 x)$
- $c) f(x) = \ln\left(x^2 4x 5\right)$

- d) $f(x) = \ln(x-3)^2$
- e) $f(x) = \log(\frac{x-7}{x+5})$ f) $f(x) = 5 + e^{2x+3}$

- g) $f(x) = 2 3e^{x+1}$
- h) $f(x) = 2^{3x+1}$

7. Express in terms of sums and differences of logarithms

a)
$$\log_3\left(\frac{x^3y^2}{z}\right)$$

$$b) \quad \log\left(\frac{x^3y^2}{\sqrt[3]{(z+1)^2}}\right)$$

c)
$$\log_b \left(\frac{x^3 y^2}{a^4 b^5} \right)$$

8. Write each expression as a single logarithm

$$a) \ \frac{1}{3} \left(\log_4 x - \log_4 y \right)$$

b)
$$2\ln(x-3)-\frac{1}{2}\ln(x+2)+4\ln x-\ln y$$

c)
$$\frac{2}{3} \left[\ln(x^2 - 4) - \ln(x + 2) \right] + \ln(x + y)$$

9. Solve the exponential equation

a)
$$2^{2x+1} = 64$$

c)
$$3^{x+4} = 2^{2x+5}$$

b)
$$5^{x+3} = 25^{x-5}$$

d)
$$e^{1-8x} = 7957$$

10. Solve the Logarithmic equation

a)
$$\log_3(x+2) + \log_3 x = 1$$

$$b) \quad \ln \sqrt{x+4} = 1$$

c)
$$\ln(x-3) = \ln(7x-23) - \ln(x+1)$$

d)
$$\log_2 3x + \log_2 3 = \log_2 (2x + 15)$$

- 11. The population of the United States is about 300 million. If it is growing at a rate of 2.1% per year, how long to the nearest tenth of a year, will it take for the population to triple?
- 12. An endangered species of fish has a population that is decreasing exponentially according to the equation $A(t) = 14000e^{kt}$ where A is the fish population t years after 1990. The fish population was 14,000 in 1990, and nine years later it was 12,000. Use this information to find k to 4 decimal places.
- 13. In 2000, the population of China was about 1.3 billion. In 2003, the population was 1.33 billion.
 - a) Find the exponential growth rate
 - b) Find the exponential growth function
 - c) Estimate the population in 2009
 - d) After how long will the population be double what it was in 2000?

Solution

1.
$$a. \{(1, 2), (2, -2), (4, 3), (2, -3), (5, 1)\}$$

b.
$$\{(3, -7), (1, -2), (4, -2), (7, 0)\}$$

2. a)
$$f(x) = \sqrt{x+5} + 1$$

i)
$$f(a) = f(b)$$

$$\Rightarrow \sqrt{a+5}+1 = \sqrt{b+5}+1$$

$$\Rightarrow \sqrt{a+5} = \sqrt{b+5}$$
 (square both side)

$$\Rightarrow a + 5 = b + 5$$

$$\Rightarrow a = b \rightarrow f(x)$$
 is one-to-one

ii)
$$y = \sqrt{x+5} + 1$$

$$\Rightarrow x = \sqrt{y+5} + 1$$

$$\Rightarrow x-1=\sqrt{y+5}$$

$$\Rightarrow (x-1)^2 = y+5$$

$$\Rightarrow y = (x-1)^2 - 5 = f^{-1}(x)$$

iii) Domain:
$$x \ge 1$$

b)
$$f(x) = \frac{x+4}{x-3}$$

i)
$$f(a) = f(b)$$

$$\Rightarrow \frac{a+4}{a-3} = \frac{b+4}{b-3}$$

$$\Rightarrow$$
 $(a+4)(b-3) = (a-3)(b+4)$

$$\Rightarrow ab - 3a + 4b - 12 = ab + 4a - 3b - 12$$

$$\Rightarrow$$
 $-3a = 4a - 7b$

$$\Rightarrow$$
 $-7a = -7b$

$$\Rightarrow a = b$$

$$\rightarrow f(x)$$
 is one-to-one

ii)
$$y = \frac{x+4}{x-3}$$

$$\Rightarrow x = \frac{y+4}{y-3}$$

$$\Rightarrow x(y-3) = y+4$$

$$\Rightarrow xy - 3x = y + 4$$

$$\Rightarrow xy - y = 3x + 4$$

$$\Rightarrow$$
 $y(x-1) = 3x + 4$

$$\Rightarrow y = \frac{3x+4}{x-1} = f^{-1}(x)$$

iii) Domain of
$$f^{-1}(x)$$
: $\{x | x \neq 1\}$

- 3. a) $\log_5 \frac{1}{125} = -3$ b) $2y = \log_4 24.5$ c) $\ln(0.3679) = -1$

- d) $0.4057 = \log_{15} 3$ e) $x = \ln z$
- **4.** a) $2^6 = 64$ b) $3^2 = x$ c) $e^y = 2^{\pi}$ d) $e^{6.2} = x$ e) $y = 10^x$ f) $x = 3^{\frac{1}{3}}$

5. $a) f(x) = \log(x+2)$

Asymptote: x = -2

\boldsymbol{x}	y
-2	
-1.5	3
-1	1
0	.3

Shifted

left 2 units

b) $f(x) = \left(\frac{1}{3}\right)^{x-3}$

Asymptote: y = 0

x	y
2	3
3	1
4	.33
5	.1

c) $f(x) = \ln(2x - 4)$

Asymptote: x = 2

X	у
2	
2.5	0
3	.7
4	1.4

a)
$$f(x) = e^{2x} - 4$$

Asymptote: y = -4

x	•	y
-	-1	-3.9
0)	-3
1		3.4
2	,	51

- a) Domain: $(2, \infty)$; Range: $(-\infty, \infty)$; Asymptote: x = 26.
 - b) Domain: $(-\infty, 7)$; Range: $(-\infty, \infty)$; Asymptote: x = 7
 - c) Domain: $(-\infty, -1) \cup (5, \infty)$; Range: $(-\infty, \infty)$; Asymptote: x = -1, x = 5
 - d) Domain: $(-\infty, 3) \cup (3, \infty)$; Range: $(-\infty, \infty)$; Asymptote: x = 3
 - e) Domain: $(-\infty, -5) \cup (7, \infty)$; Range: $(-\infty, 0) \cup (0, \infty)$; Asymptote: x = -5, x = 7
 - f) Domain: $(-\infty, \infty)$; Range: $(5, \infty)$; Asymptote: y = 5
 - g) Domain: $(-\infty, \infty)$; Range: $(-\infty, 2)$; Asymptote: y = 2
 - h) Domain: $(-\infty, \infty)$; Range: $(0, \infty)$; Asymptote: y = 0
- 7. $a) 3\log_3 x + 2\log_3 y \log_3 z$
 - b) $3\log x + 2\log y \frac{2}{3}\log(z+1)$
 - c) $3\log_b x + 2\log_b y 4\log_b a 5$

- 8. a) $\log_4\left(\sqrt[3]{\frac{x}{y}}\right)$ b) $\ln\left(\frac{x^4(x-3)^2}{y\sqrt{x+2}}\right)$ c) $\ln(x-2)^{2/3}(x+y)$ or $\ln\sqrt[3]{(x-2)^2}(x+y)$

- a) $\frac{5}{2}$ b) x = 13 c) $\frac{5 \ln 2 4 \ln 3}{\ln 3 2 \ln 2}$ d) ≈ -0.9977

- **10.** *a*) 1
- b) 3.389 c) 4, 5 d) $\frac{15}{7}$

- $\frac{1000}{21}$ ln 3 years 11.
- **12.** k = -0.0171
- 13.
- a) $k \approx 0.0076$ b) $A(t) = 1.3e^{.0076t}$
- c) 1.392 billion
- *d*) 91.2 years