

International Symposium on Biomedical Imaging

Semi-supervised Segmentation of Mitochondria from Electron Microscopy Images using Spatial Continuity

University of Chinese Academy of Science

Yunpeng Xiao, Youpeng Zhao, Ge Yang

Background

Figure 1. EM image stack from EPFL dataset Figure 2. Segmentation results of one image slice

- Figure.1 is originally from ref. [1].
- Accurate segmentation of electron microscopy (EM) images is essential for underlying morphology analysis.
- Manual annotation of 3D EM images is laborious.
- We aim to build deep learning models requiring limited labels.

Key Contributions

We propose a semi-supervised segmentation method:

- In the first stage, we train a segmentation network (2D U-Net) using labeled images in a supervised manner.
- In the second stage, we train a a spatial continuity-based model (SCM) using unlabeled images.
 - Develop a morphological post-processing (MPP) for segmentation refinement of unlabeled images.
 - The SCM takes raw segmentation results as input and use the refined segmentation results as training target.
- · We use the random piecewise affine transformation for augmentation.

MPP and SCM

- The MPP module is proposed to obtain the training targets for unlabeled image slices during the second training stage.
- The MPP module includes a spatial continuity-based operator across Z axis at each single XY location to remove segmentation noise.
- To incorporate a full 3D morphological operation on XYZ axes, we propose a spatial continuity-based models.
 - We use the segmentation results obtained from MPP as training targets for the unlabeled images
 - We also use the labeled image slices in this stage to regularize the unsupervised training.
 - The SCM is implemented as a neural network which uses the raw segmentation
 mask of labeled and unlabeled image slice and its adjacent masks as Nchannels input, and output fine segmentation result of the middle slice.

Qualitative results on EPFL dataset

Methods	Labels	Dice (%)	IoU (%)
Lucchi [1]	165	86.7	75.7
Peng [3]	165	90.8	83.4
2D U-Net [2]	165	91.4	84.4
3D U-Net [4]	165	93.5	87.7
Xiao [6]	165	94.7	90.0
Yuan [7]	165	94.8	90.1
Ours	32	94.2	89.0

Affine	MPP	SCM	Dice (%)	IoU (%
-	-	-	90.5	82.6
1	2	-	92.5	86.9
1	✓	-	93.6	88.0
1	1	1	94.2	89.0
89 88 (%87	87	.0	89.0	89.1
	16 slic			89.1 64 slices

