"Visible and Invisible"understanding energy transitions through carbon lock-ins

Aman MALIK

4

7 November 2019

Motivation of my PhD

- We need an energy transition get rid of fossil and embrace RE.
- This can be achieved through policies (among other things magic).
- But, policy-making is fickle.
- Our hope is to steer policy.
 - By informing the impacts of current policies,
 - By providing visions of the future and their outcomes
- Through:

Our understanding of energy, economic and political sciences.

the tendency of carbon-intensive technological systems to **persist over time (inertia**), *locking -out* lower-carbon alternatives

the tendency of carbon-intensive technological systems to **persist over time (inertia**), *locking -out* lower-carbon alternatives

the tendency of carbon-intensive technological systems to **persist over time (inertia**), *locking -out* lower-carbon alternatives

the tendency of carbon-intensive technological systems to **persist over time (inertia**), *locking -out* lower-carbon alternatives

Large investments, existing network, long-lived effects

Reducing stranded assets through early action in the Indian power sector

Aman Malik, Christoph Bertram, Jacques Despres, Johannes Emmerling, Shinichiro Fujimori, Amit Garg, Elmar Kriegler, Gunnar Luderer, Ritu Mathur, Mark Roelfsema, Swapnil Shekhar, Saritha Vishwanathan, Zoi Vrontisi

Multi-model scenario comparison

Scenario name	Definition
Early action	Currently implemented policies till 2020 followed by a carbon budget constraint till 2100, corresponding to well-below 2 C.
Delayed action	Currently implemented policies and NDC till 2030 followed by carbon budget constraint till 2100, corresponding to well-below 2 C

Coal-based generation continues to increase under current policies and NDCs model AIM/Enduse India MARKAL Power generation from coal (TWh) 2000 historical sources CEA **IEM** 1000 **IESS**

2020

2025

2030

2010

2015

Rapid growth in wind

Delayed mitigation causes more stranding from plants yet to be built, compared to early action

Delayed mitigation causes more stranding from plants yet to be built, compared to early action

Delayed mitigation causes more stranding from plants yet to be built, compared to early action

Main insights

- Under current policies and pledges of the Indian NDC (nationally determined contribution), coal-based power generation continues to increase.
- Solar and Wind grow rapidly through ambitious policy targets and decreasing costs.
- Delays in stringent climate mitigation require more stranding, as it allows more coal plants to be built in the near-term (132-233 GW).
- A policy <u>limiting coal plants to those under construction</u> combined with <u>higher solar targets</u> could prevent significant stranded capacity and allow higher mitigation ambition now and in the future.

However, remember policy-making is fickle!

Objective ----- Limitations

Employment analysis in REMIND

Ex-post analysis

To be able to find direct jobs created and lost in different power producing sectors for different scenarios in REMIND.

Technology value chain

Difference across space and time

Types of employment

Direct

Jobs related to core activities. E.g., specialty contractors, construction workers, clean-up crews, truck drivers

Indirect

Extraction and processing of raw materials. E.g., copper and steel, marketing and selling, consultancy, R & D.

Induced

Jobs arising from the economic activities of direct and indirect employees.

Measuring Direct Employment - Employment factors

- Employment factors indicate the number of full-time equivalent (FTE) jobs created per physical unit of choice. (e.g., Jobs/MW or Jobs/MWh or Jobs/PJ)
- Different employment factors for different phases of the life cycle
- Measures only direct jobs does not account for economic interactions and other dynamic effects
- The quickest, most methodologically simple, and least expensive approach

Employment factors range widely for the same technology

As well as within a country

Project	Project size MW	Installation Jobs/MW	O/M jobs/MW	
Wind farm 1	4100	1.57	0.31	
Wind farm 2	3700	5.8	0.2	
Wind farm 3	3640	7.4	0.6	
Wind farm 4	1800	0.7	0.14	
Wind farm 5	1700	5.12	0.35	
Wind farm 6	390	0.48	0.15	
Wind farm 7	107	0.07	0.3	
Wind farm 8	50	0.51	0.45	
Wind farm 9	30	0.87	0.36	
Wind farm 10	25	0.16	0.24	

Source: NREL (2004), data for USA

Employment factor approach

Employment factors – CMI, O & M

	Construction/installation	Manufacturing	Operations & maintenance	Fuel – PRIMARY energy demand	
	Job years/ MW	Job years/ MW	Jobs/MW		
Coal	11.4	5.1	0.14	Regional	
Gas	1.8	2.9	0.14	Regional	
Nuclear	11.8	1.3	0.6	0.001 jobs per GWh final energy demand	
Biomass	14.0	2.9	1.5	29.9 jobs/PJ	
Hydro-large	7.5	3.9	0.2		
Hydro-small	15.8	11.1	4.9		
Wind onshore	3.0	3.4	0.3		
Wind offshore	6.5	13.6	0.15		
PV	13.0	6.7	0.7		
Geothermal	6.8	3.9	0.4		
Solar thermal	8.9	4.0	0.7		
Ocean	10.3	10.3	0.6		
Geothermal - heat	6.9 jobs/ MW (construction and manufacturing)				
Solar – heat	8.4 jobs/ MW (construction and manufacturing)				
Nuclear decommissioning	0.95 jobs per MW decommissioned				
Combined heat and power	CHP technologies use the geothermal, etc., increase				

Dominish et al. (2019)

	Employment factor Jobs per PJ	Tonnes per person per year (coal equivalent)		
World average	36.2	943		
OECD North America	3.5	9613		
OECD Europe	36.2	942		
OECD Asia-Oceania	3.6	9455		
India	33.6	1016		
China	52.9	645		
Africa	13.7	2482		
Eastern Europe/Eurasia	36.0	948		
Developing Asia	6.5	5273		
Latin America	12.5	2725		
Middle East	Used world average because no employment data were available			

Employment factors – fuel supply

Regional multipliers

	2015	2020	2030	2040	2050
OECD (North America, Europe, Pacific)	1.0	1.0	1.0	1.0	1.0
Latin America	3.4	3.4	3.4	3.1	2.9
Africa	5.7	5.7	5.6	5.2	4.9
Middle East	1.4	1.5	1.5	1.4	1.3
Eastern Europe/Eurasia	2.4	2.4	2.2	2.0	1.8
India	7.0	5.6	3.7	2.7	2.0
Developing Asia	6.1	5.3	4.2	3.5	2.9
China	2.6	2.2	1.6	1.3	1.1

Dominish et al. (2019)

World employment in the energy sector

Teske et al. (2015), Dominish et al. (2019)

Limitations of Employment factor approach

- Using regional factors for developing or emerging countries.
- No sensitivity analysis on employment factors (EFs) or decline factors
- Distinction between technologies. E.g., solar PV and rooftop
- Old data on employment factors, share of trade
- Contribution of learning effects and regional differences of EFs not disintagled.

Kuldeep et al. (2019)

Further outlook and Ideas

- Addressing the limitations of previous studies while analysing with REMIND.
- Starting with India and Europe
- Downscaling jobs –
- Loses and gains don't coincide geographically

Thank you! amalik@pík-potsdam.de

Questions and Comments?

Backup

Proposed methodology ex-post analysis


```
 \begin{array}{l} \text{Jobs}_{\text{t,R,T}} = \text{EC}_{\text{t,R,T}} \: \text{X} \: \text{EF}^{\text{T}}_{\text{Inst,OM,Heatsupply}} \: + \\ \text{EC}_{\text{t,R,T}} \: \text{X} \: \text{EF}^{\text{T}}_{\text{localExtract}} \: \: \text{X} \: \text{share local}_{\text{R,T}} \: + \\ \text{(World} \: \text{EC}_{\text{T}} - \text{EC}_{\text{R}}) \: \text{X} \: \text{share of export in world extraction}_{\text{R,T}} \: \text{x} \: \text{EF}^{\text{T}}_{\text{localExtract}} \: + \\ \text{AC}_{\text{t,R,T}} \: \text{X} \: \text{EF}^{\text{T}}_{\text{localmanu}} \: \text{X} \: \text{share local}_{\text{R,T}} \: + \\ \text{(World} \: \text{AC}_{\text{T}} - \text{AC}_{\text{R}}) \: \text{X} \: \text{share of export in world manufacturing}_{\text{R,T}} \: \text{x} \: \text{EF}^{\text{T}}_{\text{localmanu}} \end{aligned}
```

Proposed methodology downscaling

Objective:

Use current configuration of power plants and mines to downscale jobs from country to sub-regional scale. Extrapolate setup into the future.

Needed:

- 1. Bottom-up data on power plants and mines
- 2. Bottom-up data on total employment per technology per country

1. Power plants searching for open-access plant-level data

Other sources?

2. Employment data

Other methods of measuring employment

Source: IRENA elaboration, adapted from Breitschopf, Nathani, and Resch (2012)

Carbon budgets

	Carbon budget for India (Gt CO2)		
	Early action	Delayed action	
Global models	25-86	32-91	
IIM-AIM	~ 115	~140	
India-Markal*	187	191	

Table S3 Budget ranges from preliminary global least-cost pathways with strengthening after 2020 that were used to inform the choice of national budgets, although some adjustment was made after initial scenario tests.

Power generation from gas

Secondary Energy –all

Stranded capacity- early action

Stranded capacity- Delayed action

Average stranded capacity

Model	Average stranded capacity (GW)			
	Early action		Delayed action	
	2021-20507	2021-2060 ⁸	2031-2050	2031-2070
AIM	148	131	201	143
GEM_E3	100	-	233	-
IMAGE	114	120	133	155
India MARKAL	11	-	132	-
POLES	78	83	176	152
REMIND	111	104	176	159
WITCH	159	140	164	109
Median	111	120	175	151

Final Energy of Electricity

Carbon Price

Final Energy

Price of power generation

