1 Теория

1.1 Статические деревья отказов

Легче всего поддаются анализу статические деревья отказов с независимыми поддеревьями. Пример такого дерева приведён на рисунке 1.

Круглыми узлами обозначены элементарные события (независимые от остальных). Обычно предполагается, что эти события имеют экспоненциальное распределение, т.е. $P(t_a < t) = F_a(t) = 1 - e^{-\lambda_a t}$, где $P(t_a < t)$ – вероятность того, что событие a произойдёт до момента t ($F_a(t)$ используется далее по тексту для обозначения распределений величин), t_a – время события a, λ_a – интенсивность события a (задана заранее).

Узлами традиционной формы обозначены логические операции AND и OR. Прямоугольный узел указывает на итоговое событие, которое нужно проанализировать.

Подобные деревья поддаются анализу методами простейшей теории вероятностей. Задавшись интересующим временем T, определим вероятности элементарных событий: $p_a = F(T) = 1 - e^{\lambda_a t}$. После этого, используя формулы для вероятностей произведения и суммы событий, получим вероятности всех остальных событий. Для первого дерева на рисунке 1 имеем:

$$\begin{aligned} p_{a} &= 1 - e^{-\lambda_{a}T} \\ p_{b} &= 1 - e^{-\lambda_{b}T} \\ p_{c} &= 1 - e^{-\lambda_{c}T} \\ p_{d} &= 1 - e^{-\lambda_{d}T} \\ p_{x} &= p_{a}p_{b} \\ p_{y} &= p_{c}p_{d} \\ p_{z} &= 1 - (1 - p_{x})(1 - p_{y}) = p_{x} + p_{y} - p_{x}p_{y} \end{aligned}$$

В случае с зависимыми поддеревьями такой подход неприменим. В таком случае на помощь приходит рассмотрение условных вероятностей и применение правила Байеса. Для комбинирования распределений вводится новое понятие — условное распределение. Каждый узел AND и OR заменяется соответствующим условным распределением. После этого вся система раскрывается по правилу Байеса и сворачивается по всем переменным, кроме последней, для получения итогового распределения.

Например, для второй системы из рисунка 1 распределения элементарных событий и условные распределения событий составных выглядят следующим образом (таблицы распределений AND и OR показаны на рисунке 2):

$$\begin{aligned} p_a: \ p_{a=0} &= e^{-\lambda_a t}, \ p_{a=1} &= 1 - e^{-\lambda_a t} \\ p_b: \ p_{b=0} &= e^{-\lambda_b t}, \ p_{b=1} &= 1 - e^{-\lambda_b t} \\ p_c: \ p_{c=0} &= e^{-\lambda_c t}, \ p_{c=1} &= 1 - e^{-\lambda_c t} \\ p_{x|ab} &= \text{AND}_{x|ab} \\ p_{y|bc} &= \text{AND}_{y|bc} \\ p_{z|xy} &= \text{OR}_{z|xy} \end{aligned}$$

Раскрывая условные вероятности по правилу Байеса, получаем совместное распределение:

$$p_{abcxyz} = p_{z|xy} p_{x|ab} p_{y|bc} p_a p_b p_c.$$

Которое, вообще говоря, зависит от 6 переменных и, следовательно, состоит из $2^6 = 64$ параметров. И, чтобы получить распределение p_z , нужно просуммировать по всем остальным переменным, а именно по a,b,c,x,y, то есть:

$$p_z = \sum_{a,b,c,x,y} p_{abcxyz} = \sum_{a,b,c,x,y} p_{z|xy} p_{x|ab} p_{y|bc} p_a p_b p_c.$$

Но есть одна тонкость, которая делает этот подход крайне эффективным. А именно: нет необходимости составлять общее (совместное) распределение, чтобы вычислить эту сумму. Можно суммировать по разным переменным по очереди, сохраняя размер сумм небольшим. На примере рассматриваемой системы,

$$p_{z} = \sum_{a,b,c,x,y} p_{z|xy} p_{x|ab} p_{y|bc} p_{a} p_{b} p_{c} = \sum_{b,c,x,y} p_{z|xy} p_{y|bc} p_{b} p_{c} \sum_{a} p_{x|ab} p_{a} =$$

$$= \sum_{b,c,x,y} p_{z|xy} p_{y|bc} p_{b} p_{c} f_{xb} = \sum_{b,x,y} p_{z|xy} p_{b} f_{xb} \sum_{c} p_{y|bc} p_{c} = \sum_{b,x,y} p_{z|xy} p_{b} f_{xb} f_{yb} =$$

$$= \sum_{x,y} p_{z|xy} \sum_{b} p_{b} f_{xb} f_{yb} = \sum_{x,y} p_{z|xy} f_{xy} = \sum_{y} \sum_{x} p_{z|xy} f_{xy} = \sum_{y} f_{zy} = f_{z}.$$

Таким образом, не нужно составлять полное произведение из всех условных вероятностей и потом его раскрывать и суммировать. Можно сворачивать "множители" по очереди: сначала свернуть $p_{x|ab}$ с p_a по переменной a и получить множитель f_{xb} , потом свернуть $p_{y|bc}$ с p_c по переменной c и получить f_{yb} , далее свернуть f_{xb} , f_{yb} , f_b по b и получить f_{xy} и так далее до f_z . Благодаря этому обстоятельству, метод сетей Байеса чрезвычайно эффективен, прост и удобен в использовании.

1.2 Динамические деревья отказов

1.2.1 Основные распределения

В предыдущем разделе рассматривались отказные ситуации, которые действуют по факту и не учитывают предысторию. Когда становится важна предыстория, приходится рассматривать эволюцию системы во времени. Интересный путь рассмотрения был предложен в работе [1].

Будем рассматривать не распределения вероятностей отказов в завимости от времени, а плотности распределений по времени всех участвующих событий. То есть, в случае элементарных событий плотность распределения будет выглядеть следующим образом:

$$f_a = \lambda_a e^{-\lambda_a t_a}.$$

Что, очевидно, соответствует обычному экспоненциальному распределению:

$$P(t_a < t) = \int_{0}^{t} f_a dt_a = 1 - e^{-\lambda_a t}.$$

Плотность распределения узла AND задаётся следующим образом:

$$g_{x|ab} = \delta(t_x - t_a)\theta(t_a - t_b) + \delta(t_x - t_b)\theta(t_b - t_a). \tag{1}$$

Где $\delta(x)$ – дельта-функция Дирака, определяемая условием $\int_{-\infty}^{+\infty} f(x)\delta(x-a)\,\mathrm{d}x = f(a);\ \theta(x)$ – функция Хевисайда:

$$\theta(x) = \begin{cases} 0, x < 0 \\ \frac{1}{2}, x = 0 \\ 1, x > 0 \end{cases}.$$

Формулу (1) достаточно легко понять, если обратить внимание, что при $t_a > t_b$ она принимает вид $g_{x|ab} = \delta(t_x - t_a)$. А последнее распределение означает, что событие X происходит в один момент времени с событием A. То есть, если событие A произошло после B (что подразумевает $t_a > t_b$), то событие X произойдёт с A одновременно. Совершенно аналогично при $t_b > t_a$. Что интересно, в граничном случае, когда $t_a = t_b$, так же получается всё чисто.

Чтобы чуть строже обосновать формулу (1), обозначим распределения событий X, A и B за G_x , G_a и G_b , соответственно. А их плотности за $g_x = G_x'$, $g_a = G_a'$ и $g_b = G_b'$. Имеем:

$$G'_{x}(t_{x}) = g_{x}(t_{x}) = \int_{0}^{+\infty} \int_{0}^{+\infty} g_{x|ab}(t_{x}, t_{a}, t_{b})g_{a}(t_{a})g_{b}(t_{b}) dt_{a} dt_{b} =$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} \left(\delta(t_{x} - t_{a})\theta(t_{a} - t_{b}) + \delta(t_{x} - t_{b})\theta(t_{b} - t_{a})\right) g_{a}(t_{a})g_{b}(t_{b}) dt_{a} dt_{b} =$$

$$= \int_{0}^{+\infty} \theta(t_{x} - t_{b})g_{a}(t_{x})g_{b}(t_{b}) dt_{b} + \int_{0}^{+\infty} \theta(t_{x} - t_{a})g_{a}(t_{a})g_{b}(t_{x}) dt_{a} =$$

$$= g_{a}(t_{x}) \int_{0}^{t_{x}} g_{b}(t_{b}) dt_{b} + g_{b}(t_{x}) \int_{0}^{t_{x}} g_{a}(t_{a}) dt_{a} =$$

$$= g_{a}(t_{x}) \left[G_{b}(t_{x}) - G_{b}(0)\right] + g_{b}(t_{x}) \left[G_{a}(t_{x}) - G_{a}(0)\right] =$$

$$= g_{a}(t_{x})G_{b}(t_{x}) + G_{a}(t_{x})g_{b}(t_{x}) = \left[G_{a}(t_{x})G_{b}(t_{x})\right]'.$$
(2)

То есть $G_x(t) = G_a(t)G_b(t)$, что и подразумевается под вероятностным распределением узла AND.

Плотность распределения узла OR похожа на (1):

$$g_{x|ab} = \delta(t_x - t_a)\theta(t_b - t_a) + \delta(t_x - t_b)\theta(t_a - t_b).$$
(3)

Когда событие B происходит после события A (то есть $t_b > t_a$), тогда событие X происходит с A одновременно $(g_{x|ab} = \delta(t_x - t_a))$. И наоборот. Аналогичное (2) более строгое подтверждение:

$$G'_{x}(t_{x}) = g_{x}(t_{x}) = \int_{0}^{+\infty} \int_{0}^{+\infty} g_{x|ab}(t_{x}, t_{a}, t_{b})g_{a}(t_{a})g_{b}(t_{b}) dt_{a} dt_{b} =$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} \left(\delta(t_{x} - t_{a})\theta(t_{b} - t_{a}) + \delta(t_{x} - t_{b})\theta(t_{a} - t_{b})\right) g_{a}(t_{a})g_{b}(t_{b}) dt_{a} dt_{b} =$$

$$= \int_{0}^{+\infty} \theta(t_{b} - t_{x})g_{a}(t_{x})g_{b}(t_{b}) dt_{b} + \int_{0}^{+\infty} \theta(t_{a} - t_{x})g_{a}(t_{a})g_{b}(t_{x}) dt_{a} =$$

$$= g_{a}(t_{x}) \int_{t_{x}}^{+\infty} g_{b}(t_{b}) dt_{b} + g_{b}(t_{x}) \int_{t_{x}}^{+\infty} g_{a}(t_{a}) dt_{a} =$$

$$= g_{a}(t_{x}) \left[G_{b}(+\infty) - G_{b}(t_{x}) \right] + g_{b}(t_{x}) \left[G_{a}(+\infty) - G_{a}(t_{x}) \right] =$$

$$= g_{a}(t_{x}) + g_{b}(t_{x}) - g_{a}(t_{x})G_{b}(t_{x}) - G_{a}(t_{x})g_{b}(t_{x}) =$$

$$= \left[G_{a}(t_{x}) + G_{b}(t_{x}) - G_{a}(t_{x})G_{b}(t_{x}) \right]'.$$

1.2.2 Наивный Priority AND

Priority AND (PAND) – это узел, который выдаёт событие только в том случае, когда два входящих в него события произошли в строго определённом порядке. Исходя из описанных интерпретаций, логично сделать вывод, что распределение для узла PAND может выглядеть следующим образом:

$$g_{x|ab} = \delta(t_x - t_b)\theta(t_b - t_a). \tag{5}$$

То есть в случае, когда событие A произошло раньше события B ($t_a < t_b$), событие X произойдёт с событием B одновременно ($g_{x|ab} = \delta(t_x - t_b)$). В случае, когда событие B произошло раньше A ($t_b < t_a$), тогда событие X не произойдёт вообще ($g_{x|ab} = 0$).

Однако, тут есть тонкий момент. Для примера рассмотрим дерево отказов, изображённое на рисунке 3. Его общее распределение, согласно сказанному выше, будет иметь вид:

$$g_{abcxy} = \lambda_a e^{-\lambda_a t_a} \lambda_b e^{-\lambda_b t_b} \lambda_c e^{-\lambda_c t_c} \delta(t_x - t_c) \theta(t_c - t_b) [\delta(t_y - t_a) \theta(t_x - t_a) + \delta(t_y - t_x) \theta(t_a - t_x)].$$

Поскольку корнем этого дерева является узел OR, а первый потомок этого узла — это элементарное событие A, то полный интеграл по всем переменным распределения должен быть равен 1, так как событие Y когда-нибудь гарантированно произойдёт. Проинтегрируем в следующем порядке: Y, X, A, C, B:

$$\int_{0}^{+\infty} g_{abcxy} dt_{y} = \lambda_{a} e^{-\lambda_{a} t_{a}} \lambda_{b} e^{-\lambda_{b} t_{b}} \lambda_{c} e^{-\lambda_{c} t_{c}} \delta(t_{x} - t_{c}) \theta(t_{c} - t_{b}) [\theta(t_{x} - t_{a}) + \theta(t_{a} - t_{x})] =$$

$$= \lambda_{a} e^{-\lambda_{a} t_{a}} \lambda_{b} e^{-\lambda_{b} t_{b}} \lambda_{c} e^{-\lambda_{c} t_{c}} \delta(t_{x} - t_{c}) \theta(t_{c} - t_{b}) = g_{abcx},$$

Рис. 1: Два примера статических дерева отказа: с независимыми поддеревьями (слева) и с зависимыми (справа).

$AND_{x ab}$	a = 0		a = 1		OR .	x = 0		x = 1	
	b = 0	b = 1	b = 0	b = 1	$\mathrm{Orc}_{z xy}$	y = 0	y = 1	y = 0	y = 1
x = 0	1	1	1	0	z = 0	1	0	0	0
x = 1	0	0	0	1	z = 1	0	1	1	1

Рис. 2: Условные распределения для узлов AND и OR.

Рис. 3: Пример дерева отказов с узлом PAND.

$$\int_{0}^{+\infty} g_{abcx} dt_{x} = \lambda_{a} e^{-\lambda_{a} t_{a}} \lambda_{b} e^{-\lambda_{b} t_{b}} \lambda_{c} e^{-\lambda_{c} t_{c}} \theta(t_{c} - t_{b}) = g_{abc},$$

$$\int_{0}^{+\infty} g_{abc} dt_{a} = \lambda_{b} e^{-\lambda_{b} t_{b}} \lambda_{c} e^{-\lambda_{c} t_{c}} \theta(t_{c} - t_{b}) = g_{bc},$$

$$\int_{0}^{+\infty} g_{bc} dt_{c} = \int_{t_{b}}^{+\infty} \lambda_{b} e^{-\lambda_{b} t_{b}} \lambda_{c} e^{-\lambda_{c} t_{c}} dt_{c} = \lambda_{b} e^{-(\lambda_{b} + \lambda_{c}) t_{b}} = g_{b},$$

$$\int_{0}^{+\infty} g_{b} dt_{b} = \frac{\lambda_{b}}{\lambda_{b} + \lambda_{c}} \neq 1.$$

Как видно, полный интеграл по всем временам событий не получается равен 1. Ошибка состоит в том, что распределения узлов AND (1) и OR (3) накладывают на распределения входящих в них событий A и B достаточно жёсткие требования, которым не удовлетворяет распределение PAND (5). А именно, если посмотреть внимательно на доказательство (2), станет очевидно, что это доказательство предполагает равенство нулю вероятностей событий A и B в начальный момент времени ($G_a(0) = 0$ и $G_b(0) = 0$).

Аналогичная ситуация с ОR. Доказательство (4) предполагает, что события A и B гарантированно когда-нибудь произойдут ($G_a(+\infty) = 1$ и $G_b(+\infty) = 1$). Однако именно этому условию и не удовлетворяет событие X из дерева отказов на рисунке 3, поскольку оно получено с помощью PAND и обладает шансом не реализоваться (то есть $G_x(+\infty) < 1$).

В принципе, то, что доказательства накладывают указанные ограничения, не показывает то, что сами формулы обладают этими ограничениями. Поэтому можно предположить, что доказательства недостаточно хороши, а сами формулы позволяют оперировать с распределениями, которые в нуле не равны нулю, а в бесконечности не приходят к единице. Однако, легко показать, что это не так. Например, если взять два события A и B, одно из которых не происходит никогда $G_a(t) = 0$, то композиция двух эти событий с помощью узла OR должна давать просто распределение второго события $G(t) = G_b(t)$. Вместо этого получается G(t) = 0, что и показывает, что обсуждаемые ограничения наложены самими формулами для узлов AND и OR.

1.2.3 Композиция PAND и OR

Как было показано, нельзя использовать узел PAND в наивном изложении (5), поскольку он создаёт распределение, которое на бесконечности не подходит к единице. Однако, в исследуемом формализме можно выразить композицию PAND и OR. То есть выразить распределение, у которого три потомка: в PAND заходят два из них, а в OR заходит результат PAND и третий. Распределение плотности вероятности выглядит следующим образом:

$$g_{x|abc} = \left[\delta(t_x - t_b)\theta(t_c - t_b) + \delta(t_x - t_c)\theta(t_b - t_c)\right]\theta(t_b - t_a) + \delta(t_x - t_c)\theta(t_a - t_b). \tag{6}$$

Такое распределение даёт на выходе распределение со всеми необходимыми свойствами(нуль в нуле и единица в бесконечности). Что легко показать:

$$\int_{0}^{+\infty} g_{x|abc} dt_x = [\theta(t_c - t_b) + \theta(t_b - t_c)]\theta(t_b - t_a) + \theta(t_a - t_b) = \theta(t_b - t_a) + \theta(t_a - t_b) = 1.$$
 (7)

То, что указанное условное распределение семантически совпадает с тем, что должно быть, можно показать так же, как раньше, рассматривая разные порядки событий:

$$g_{x|abc} = \begin{cases} \delta(t_x - t_b) : t_a \le t_b \le t_c \\ \delta(t_x - t_c) : t_b < t_a \cup t_c < t_b \end{cases}.$$

2 Реализация

Общее распределение строится из произведения экспоненциальных распределений базовых событий и условных распределений, состоящих из ступенчатых и дельтафункций. Для получения распределения по корневому событию общее распределение интегрируется по всем остальным событиям. При интегрировании суммы произведений ступенчатых функций, дельта-функций и экспонент получаются снова ступенчатые функции, дельта-фукнции и экспоненты. Причём технически процесс этого интегрирования достаточно прост, что наводит на мысль об автоматизации этого процесса. Поэтому текущий раздел посвящён алгоритмизации аналитического интегрирование общего распределения.

2.1 Структура подынтегрального выражения

Под интегралом стоит некоторое выражение, которое после раскрытия всех скобок и приведения подобных слагаемых становится суммой элементарных слагаемых (называемых далее "атомарными"). Например, рассмотрим простое дерево отказов, изображённое на рисунке 3. В совместную плотность распределения этого дерева входят четыре множителя:

$$\begin{split} &\lambda_a e^{-\lambda_a t_a}, \\ &\lambda_b e^{-\lambda_b t_b}, \\ &\lambda_c e^{-\lambda_c t_c}, \\ &\left[\delta(t_x - t_b)\theta(t_c - t_b) + \delta(t_x - t_c)\theta(t_b - t_c)\right]\theta(t_b - t_a) + \delta(t_x - t_c)\theta(t_a - t_b). \end{split}$$

Чтобы получить плотность распределения корневого события (которая зависит только от t_x), нужно проинтегрировать от 0 до $+\infty$ по остальным переменным, а именно по t_a , t_b , t_c . Пусть первой переменной в очереди на интегрирование будет t_a .

Чтобы по ней проинтегрировать, нужно взять интеграл по произведению от первого и четвёртого множителей, поскольку только они зависят от t_a . Интеграл будет выглядеть следующим образом:

$$\int_{0}^{+\infty} \left(\left[\delta(t_x - t_b) \theta(t_c - t_b) + \delta(t_x - t_c) \theta(t_b - t_c) \right] \theta(t_b - t_a) + \delta(t_x - t_c) \theta(t_a - t_b) \right) \lambda_a e^{-\lambda_a t_a} dt_a.$$

После раскрытия скобок получаем:

$$\int_{0}^{+\infty} \left[\delta(t_x - t_b) \theta(t_c - t_b) \theta(t_b - t_a) \lambda_a e^{-\lambda_a t_a} + \delta(t_x - t_c) \theta(t_b - t_c) \theta(t_b - t_a) \lambda_a e^{-\lambda_a t_a} + \delta(t_x - t_c) \theta(t_a - t_b) \lambda_a e^{-\lambda_a t_a} \right] dt_a.$$

Как видно, под интегралом стоит сумма из слагаемых специально вида, а именно это одночлены, состоящие из:

- константы (в данном случае она всюду равна λ_a),
- произведения дельта-функций от разности двух переменных,
- произведения ступенчатых функций от разности двух переменных,
- экспоненты.

Именно такого вида одночлены мы и будем называть "атомарными". Дальнейшее изложение раздела заключается в том, чтобы выстроить алгоритм интегрирования атомарного одночлена. Этого вполне достаточно, поскольку любое получаемое в дальнейшем выражение будет раскладываться в эти атомарные слагаемые, а интеграл от суммы атомарных слагаемых – это сумма интегралов от этих самых слагаемых.

2.2 Интегрирование "дельтой"

Рассмотрим сначала, что делать с дельта-функциями в атомарном одночлене при интегрировании по переменной t. Во-первых, дельта-функции, в которых нет t, в интегрировании не участвуют, а просто выносятся за знак интеграла. Во-вторых, когда под дельта-функцией t присутствует, тогда значение всего интеграла определяется этой дельта-функцией. Проще говоря:

$$\int_{\alpha}^{\beta} \delta(t - \gamma) F(t) dt = \theta(\beta - \gamma) \theta(\gamma - \alpha) F(\gamma). \tag{8}$$

F(t) – некоторая функция, в которой сосредоточена вся остальная часть интегрируемого атомарного одночлена. Тут показано, что при интегрировании "дельтой" t во всём оставшемся выражении заменяется на γ согласно определению дельта-функции, данному ранее.

В том случае, когда под интегралом стоит $\delta(\gamma-t)$, а не рассмотренное $\delta(t-\gamma)$, интегрирование происходит точно так же. Это корректно благодаря чётности дельтафункции.

О множителях $\theta(\beta-\gamma)\theta(\gamma-\alpha)$ следует сказать особо. Они учитывают факт того, что γ может не лежать внутри пределов интеграла. То есть, если вдруг окажется, что $\gamma>\beta$, тогда результат интегрирования занулится. В итоговом выражении за это отвечает можитель $\theta(\beta-\gamma)$. В противном случае $\gamma<\beta$ умножение на единицу не сыграет роли.

Когда верхним пределом интеграла является $+\infty$, множитель $\theta(\beta-\gamma)$ пропадает, поскольку условие $\gamma<+\infty$ выполняется всегда.

2.3 Интегрирование "ступенькой"

Когда среди дельта-функций в атомарном одночлене нет переменной, по которой ведётся интегрирование, можно переходить к рассмотрению ступенчатых функций. Ступенчатая функция не является чётной, поэтому придётся рассматривать два варианта: $\theta(t-\gamma)$ и $\theta(\gamma-t)$.

2.3.1 Положительная ступенька

Под положительной ступенькой подразумевается присутствие множителя $\theta(t-\gamma)$ в подынтегральном выражении при интегрировании по t. В таком случае интеграл раскрывается следующим образом:

$$\int_{\alpha}^{\beta} \theta(t - \gamma) F(t) dt = \theta(\beta - \gamma) \theta(\gamma - \alpha) \int_{\gamma}^{\beta} F(t) dt + \theta(\alpha - \gamma) \int_{\alpha}^{\beta} F(t) dt.$$
 (9)

Во-первых, чтобы обосновать эту формулу, просто рассмотрим различные варианты расположения границ интегрировани (α и β) и начала ступеньки:

$$\int_{\alpha}^{\beta} \theta(t - \gamma) F(t) dt = \begin{cases} \int_{\alpha}^{\beta} F(t) dt, & \gamma \leq \alpha \\ \int_{\beta}^{\alpha} F(t) dt, & \alpha < \gamma \leq \beta \\ 0, & \beta < \gamma \end{cases}.$$

Во-вторых, следует отметить, что указанная формула опирается на тот факт, что $\alpha \leq \beta$, чтобы не порождать множество бесполезных условий в виде $\theta(\alpha-\beta)$, которые потом придётся интегрировать. В силу этого, нужно чётко соблюдать факт того, что нижний предел интегрирования должен быть меньше верхнего предела.

В-третьих, отдельно следует рассмотривать случай, когда верхней границей является бесконечность:

$$\int_{\alpha}^{+\infty} \theta(t - \gamma) F(t) dt = \theta(\gamma - \alpha) \int_{\gamma}^{+\infty} F(t) dt + \theta(\alpha - \gamma) \int_{\alpha}^{+\infty} F(t) dt.$$
 (10)

2.3.2 Отрицательная ступенька

Аналогично, под отрицательной ступенькой подразумевается присутствие множителя $\theta(\gamma-t)$ в подынтегральном выражении при интегрировании по t. Раскрывается следующим образом:

$$\int_{\alpha}^{\beta} \theta(\gamma - t) F(t) dt = \theta(\beta - \gamma) \theta(\gamma - \alpha) \int_{\alpha}^{\gamma} F(t) dt + \theta(\gamma - \beta) \int_{\alpha}^{\beta} F(t) dt.$$
 (11)

Корректность формулы демонстрируется так же, как и раньше:

$$\int_{\alpha}^{\beta} \theta(\gamma - t) F(t) dt = \begin{cases} 0, & \gamma \le \alpha \\ \int_{\gamma}^{\gamma} F(t) dt, & \alpha < \gamma \le \beta \\ \int_{\alpha}^{\beta} F(t) dt, & \beta < \gamma \end{cases}.$$

И ещё так же, как и раньше, отдельно рассматривается случай бесконечной верхней границы интегрирования:

$$\int_{\alpha}^{+\infty} \theta(\gamma - t) F(t) dt = \theta(\gamma - \alpha) \int_{\alpha}^{\gamma} F(t) dt.$$
 (12)

2.4 Интегрирование "экспонентой"

В том случае, когда не осталось ни дельта-функций с интегрируемой переменной, ни ступенек, у атомарного одночлена остаётся лишь экспоненциальная часть, которая интегрируется очевидным образом:

$$\int_{\alpha}^{\beta} e^{-\lambda t} dt = \frac{1}{\lambda} \left(e^{-\lambda \alpha} - e^{-\lambda \beta} \right). \tag{13}$$

2.5 Итого

Подводя итог. В том случае, когда под интегралом есть дельта-функции, содержащие переменную интегрирования, интегрирование производится по формуле 8. Когда дельта-функций, содержащих переменную интегрирования, нет, но есть ступеньки с этой переменной, интегрирование проводится по формулам 9, 10, 11 и 12. Когда ни в дельта-функциях, ни в ступеньках нет переменной интегрирования, остаётся лишь экспонента, которая интегрируется тривиально (см. 13).

Список литературы

[1] Boundali, Dougan. A Continuous-Time Bayesian Network Reliability Modeling, and Analysis Framework. IEEE Transactions on Reliability, 2006.