```
Zad1
```

```
import pandas as pd
import numpy as np
data·=·pd.read_csv('penguins.csv')
data
```

	rowid	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm
0	1	Adelie	Torgersen	39.1	18.7	181.0
1	2	Adelie	Torgersen	39.5	17.4	186.0
2	3	Adelie	Torgersen	40.3	18.0	195.0
3	4	Adelie	Torgersen	NaN	NaN	NaN
4	5	Adelie	Torgersen	36.7	19.3	193.0
339	340	Chinstrap	Dream	55.8	19.8	207.0
340	341	Chinstrap	Dream	43.5	18.1	202.0
341	342	Chinstrap	Dream	49.6	18.2	193.0
342	343	Chinstrap	Dream	50.8	19.0	210.0
343	344	Chinstrap	Dream	50.2	18.7	198.0
344 rows × 9 columns						
1						·

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	rowid	344 non-null	int64
1	species	344 non-null	object
2	island	344 non-null	object
3	bill_length_mm	342 non-null	float64
4	bill_depth_mm	342 non-null	float64
5	flipper_length_mm	342 non-null	float64
6	body_mass_g	342 non-null	float64
7	sex	333 non-null	object
8	year	344 non-null	int64
d+vn	$ac \cdot float64(4)$ int	64(2) object(3)	

dtypes: float64(4), int64(2), object(3)
memory usage: 24.3+ KB

data.describe()

	rowid	${\tt bill_length_mm}$	${\tt bill_depth_mm}$	flipper_length_mm	body_mass_g	
count	344.000000	342.000000	342.000000	342.000000	342.000000	
mean	172.500000	43.921930	17.151170	200.915205	4201.754386	:
std	99.448479	5.459584	1.974793	14.061714	801.954536	
min	1.000000	32.100000	13.100000	172.000000	2700.000000	:
25%	86.750000	39.225000	15.600000	190.000000	3550.000000	:
50%	172.500000	44.450000	17.300000	197.000000	4050.000000	:
75%	258.250000	48.500000	18.700000	213.000000	4750.000000	;
max	344.000000	59.600000	21.500000	231.000000	6300.000000	:
4					→	

```
dataset = data[["bill_length_mm", "flipper_length_mm"]]
```

dataset = dataset.dropna(axis=0)

dataset

	bill_length_mm	flipper_length_mm
0	39.1	181.0
1	39.5	186.0
2	40.3	195.0
4	36.7	193.0
5	39.3	190.0
339	55.8	207.0
340	43.5	202.0
341	49.6	193.0

import matplotlib.pyplot as plt
from scipy.cluster import hierarchy

#plt.axhline(6, color='red');

clusters = hierarchy.linkage(dataset, method="complete")
plt.figure(figsize=(30, 10))
dendrogram = hierarchy.dendrogram(clusters)

Liczba klastrów: 2

```
clusters = hierarchy.linkage(dataset, method="average")
plt.figure(figsize=(30, 10))
dendrogram = hierarchy.dendrogram(clusters)
#plt.axhline(6, color='red');
```


Liczba klastrów: 1

```
clusters = hierarchy.linkage(dataset, method="ward")
plt.figure(figsize=(30, 10))
dendrogram = hierarchy.dendrogram(clusters)
#plt.axhline(6, color='red');
```



```
from sklearn.cluster import AgglomerativeClustering
model = AgglomerativeClustering(linkage='complete',n_clusters=k,affinity='euclidean', distance_threshold=None)
model.fit(dataset)
   AgglomerativeClustering(linkage='complete', n_clusters=3)
model.labels_
  0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 1,\ 1,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 1,\ 0,
       0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
          1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                                     1,
       0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1,
       1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
       1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 1,
       2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1,
       2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2,
       2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2,
       2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2,
       2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2,
          2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1,
       0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1,
       1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,
       1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1])
complete=model.labels
k = 3
model = AgglomerativeClustering(linkage='average',n_clusters=k,affinity='euclidean', distance_threshold=None)
model.fit(dataset)
   AgglomerativeClustering(linkage='average', n_clusters=3)
model.labels
   0, 0, 0, 0, 0, 0, 0, 0, 0,
                     0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 1,
      1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0])
average=model.labels_
model = AgglomerativeClustering(linkage='single',n_clusters=k,affinity='euclidean', distance_threshold=None)
model.fit(dataset)
   AgglomerativeClustering(linkage='single', n_clusters=3)
model.labels
   0, 0, 0, 0, 0, 0, 0, 0, 0,
                     0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0,
      0,
          0, 0, 0, 0, 0,
                  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                     0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
```

```
single=model.labels_
```

```
k = 3 model = AgglomerativeClustering(linkage='ward',n_clusters=k,affinity='euclidean', distance_threshold=None) model.fit(dataset)
```

AgglomerativeClustering(n_clusters=3)

```
model.labels
```

```
array([2, 2, 1, 1, 1, 2, 1, 1, 1,
                     2, 2, 2, 1,
    2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 1, 1,
                             1,
                               2, 2, 2, 2, 1, 2, 1, 2,
                         2,
                             2,
        2, 1, 1, 2, 1,
                   1,
                     2, 1,
                           1,
                 1,
                               1,
                                   1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 2,
                         2, 1,
                             1.
                               1,
                                 2, 1, 1,
    1, 1,
        1, 2, 2, 2, 0,
                 1, 1,
                     2, 1,
                         1,
                           1,
                             2,
                               1,
                                 1,
                                   2,
        1, 1, 1,
             1, 1,
                 1, 1,
                     2,
                       1,
                         2,
                             2,
    1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1,
        0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1])
```

ward=model.labels_

import seaborn as sns

```
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15,5))
sns.scatterplot(ax=axes[0], data=dataset, x='bill_length_mm', y='flipper_length_mm').set_title('Bez klastrów')
sns.scatterplot(ax=axes[1], data=dataset, x='bill_length_mm', y='flipper_length_mm', hue=complete).set_title('Z klastrami');
```


fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15,5))
sns.scatterplot(ax=axes[0], data=dataset, x='bill_length_mm', y='flipper_length_mm').set_title('Bez klastrów')
sns.scatterplot(ax=axes[1], data=dataset, x='bill_length_mm', y='flipper_length_mm', hue=average).set_title('Z klastrami');


```
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15,5))
sns.scatterplot(ax=axes[0], data=dataset, x='bill_length_mm', y='flipper_length_mm').set_title('Bez klastrów')
```

sns.scatterplot(ax=axes[1], data=dataset, x='bill_length_mm', y='flipper_length_mm', hue=single).set_title('Z klastrami');

fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15,5))
sns.scatterplot(ax=axes[0], data=dataset, x='bill_length_mm', y='flipper_length_mm').set_title('Bez klastrów')
sns.scatterplot(ax=axes[1], data=dataset, x='bill_length_mm', y='flipper_length_mm', hue=ward).set_title('Z klastrami');

Płatne usługi Colab - Tutaj możesz anulować umowy