Lista Semana 02

Questão 3

f) Se A, B e C são conjuntos, então $A \cup (B \cap C) = (A \cup B) \cap C$.

Questão 4

e) $A \cup (B \cap (A \cup C)) = A \cup (B \cap C)$.

Lista Semana 03

Questão 7

c)
$$(A - B) - C = A - (B \cup C)$$
.

$$j (A \cap B) \cap (A - B) = (A - B) \cap (B - A) = \emptyset.$$

Questão 11

c)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Questão 12

b) Suponha $A \neq \emptyset$ e $C \neq \emptyset$, com $A \neq C$. Mostre que $A \subseteq B$ e $C \subseteq D$ se, e somente se, $A \times C \subseteq B \times D$.

Lista Semana 04

Questão 6 Seja $A = \mathbb{R}^2$ e considere o conjunto definido por

$$(a, b)R(c, d)$$
 quando $2a - b = 2c - d$.

Mostre que R é uma relação de equivalência sobre \mathbb{R}^2 .

Questão 8 Seja $A = \mathbb{R}^3$. Dados $u = (x_1, y_1, z_1), v = (x_2, y_2, z_2) \in \mathbb{R}^3$ defina

$$u \cdot v = x_1 x_2 + y_1 y_2 + z_1 z_2.$$

Tome um elemento fixo $w=(\alpha,\beta,\gamma)\in\mathbb{R}^3$ e defina

$$u \sim v$$
 quando $u \cdot w = v \cdot w$.

Mostre que \sim é uma relação de equivalência sobre \mathbb{R}^3 .

Questão 11 Seja $A=\mathbb{Z}\times\mathbb{Z}^*$, onde $\mathbb{Z}^*=\mathbb{Z}\setminus\{0\}$. Para $(a,b),\,(c,d)\in A,$ considere a seguinte relação

$$(a,b)R(c,d)$$
 quando $ad=bc$.

b) Descreva a classe de equivalência $\overline{(0,1)},\,\overline{(1,1)},\,\overline{(1,2)},\,\overline{(2,1)},\,\overline{(2,2)},\,\overline{(2,3)}.$

Questão 15 Defina

$$H = \{2^m \mid m \in \mathbb{Z}\} \in \mathbb{Q}^+ = \{x \in \mathbb{Q} \mid x > 0\}.$$

Seja R dado por

$$R = \left\{ (x, y) \in \mathbb{Q}^+ \times \mathbb{Q}^+ : \frac{x}{y} \in H \right\}.$$

- a) Mostre que R é uma relação de equivalência em \mathbb{Q}^+ .
- b) Determine a classe de equivalência de 3.