

Presentation of the team

Juan Felipe Restrepo Author

Sara Valentina
Cortes
Author

Andrea SernaLiterature review

Mauricio ToroData preparation

Problem Statement

Streets of Medellín, Origin and Destination

Three paths that reduce both the risk of harassment and distance

Solution Algorithm

Explanation of the algorithm

Dijkstra Algorithm for the Shortest Path

Complexity of the algorithm

	Time complexity	Complexity of memory
Dijkstra	O((V+E) Log V)	O(V)

Time and memory complexity of the algorithm name. V is the vertex of the graph and E the edges

First path minimizing distance

Origin	Destination	Distance (meters)	Risk of harassment (between 0 and 1)
EAFIT University	National University	7686.62	0.71

Distance and risk of harassment for the path that minimizes distance. Execution time of 0,14 seconds.

Second path minimizing harassment risk = d^r

Origin	Destination	Distance (meters)	Risk of harassment (between 0 and 1)
EAFIT University	National University	11027.69	0.47

Distance and risk of harassment for the path that minimizes $r = d^r$. Execution time of 0,15 seconds.

Third path minimizing distance and harassment risk = d + r / 2

Origin	Destination	Distance (meters)	Risk of harassment (between 0 and 1)
EAFIT University	National University	7762.26	0.72

Distance and risk of harassment for the path that minimizes distance and harassment risk. Execution time of 0,19 seconds.

Visual comparison of the three paths

Path	Combination
Shortest	Distance only
Safe and Short	d + r / 2
Safest	d^r

- Openity: National University
- Start point: EAFIT University

Future work directions

Databases

Implement
a Graph
Database

Consider other variables

Project 1

Create a
Web
application

Software Engineering

• • • • • • Create a real time Mobile application

Project 2

Implement ML Algorithms

Report accepted in OSF.IO

Sara V C Manrique, Juan F R Buitrago, Andrea Serna, and Mauricio Toro. 2022. Finding the shortest path preventing sexual harassment through algorithms. Retrieved from osf.io/qtj2c

