Clustering Lecture 6: Spectral Methods

Jing Gao SUNY Buffalo

Outline

Basics

Motivation, definition, evaluation

Methods

- Partitional
- Hierarchical
- Density-based
- Mixture model
- Spectral methods

Advanced topics

- Clustering ensemble
- Clustering in MapReduce
- Semi-supervised clustering, subspace clustering, co-clustering, etc.

Motivation

Complex cluster shapes

- K-means performs poorly because it can only find spherical clusters
- Density-based approaches are sensitive to parameters

Spectral approach

- Use similarity graphs to encode local neighborhood information
- Data points are vertices of the graph
- Connect points which are "close"

Similarity Graph

- Represent dataset as a weighted graph G(V,E)
- All vertices which can be reached from each other by a path form a connected component
- Only one connected component in the graph—The graph is fully connected

 $V=\{x_i\}$ Set of *n* vertices representing data points

 $E=\{W_{ij}\}$ Set of weighted edges indicating pair-wise similarity between points

Graph Construction

ε-neighborhood graph

— Identify a threshold value, ε , and include edges if the affinity between two points is greater than ε

• *k*-nearest neighbors

- Insert edges between a node and its k-nearest neighbors
- Each node will be connected to (at least) k nodes

Fully connected

- Insert an edge between every pair of nodes
- Weight of the edge represents similarity
- Gaussian kernel:

$$w_{ij} = \exp(-\|x_i - x_j\|^2 / \sigma^2)$$

E-neighborhood Graph

ε-neighborhood

- Compute pairwise distance between any two objects
- Connect each point to all other points which have distance smaller than a threshold ε

Weighted or unweighted

- Unweighted—There is an edge if one point belongs to the ε –neighborhood of another point
- Weighted—Transform distance to similarity and use similarity as edge weights

kNN Graph

Directed graph

Connect each point to its k nearest neighbors

kNN graph

- Undirected graph
- An edge between x_i and x_j : There's an edge from x_i to x_j OR from x_j to x_i in the directed graph

Mutual kNN graph

- Undirected graph
- Edge set is a subset of that in the kNN graph
- An edge between x_i and x_j : There's an edge from x_i to x_j AND from x_i to x_i in the directed graph

Clustering Objective

Traditional definition of a "good" clustering

- Points assigned to same cluster should be highly similar
- Points assigned to different clusters should be highly dissimilar

Apply this objective to our graph representation

Minimize weight of between-group connections

Graph Cuts

- Express clustering objective as a function of the edge cut of the partition
- Cut: Sum of weights of edges with only one vertex in each group
- We wants to find the minimal cut between groups

Bi-partitional Cuts

Minimum (bi-partitional) cut

$$\min Cut(C_1, C_2) = \sum_{i \in C_1} \sum_{j \in C_2} w_{ij}$$

Example

• Minimum Cut

$$Cut(BCDE, A) = 0.17$$

Normalized Cuts

Minimal (bipartitional) normalized cut

$$\min \frac{Cut(C_1, C_2)}{Vol(C_1)} + \frac{Cut(C_1, C_2)}{Vol(C_2)} = \min \left(\frac{1}{Vol(C_1)} + \frac{1}{Vol(C_2)}\right) Cut(C_1, C_2)$$

$$Vol(C) = \sum_{i \in C, j \in V} w_{ij}$$

Unnormalized cuts are attracted to outliers

Example

Normalized Minimum Cut

$$NormCut(C_1, C_2) = \frac{Cut(C_1, C_2)}{Vol(C_1)} + \frac{Cut(C_1, C_2)}{Vol(C_2)}$$

Example

Normalized Minimum Cut

$$NormCut(C_1, C_2) = \frac{Cut(C_1, C_2)}{Vol(C_1)} + \frac{Cut(C_1, C_2)}{Vol(C_2)}$$

NormCut(BCDE, A) = 1.067

NormCut(ABC, DE) = 1.038

Problem

- Identifying a minimum cut is NP-hard
- There are efficient approximations using linear algebra
- Based on the Laplacian Matrix, or graph
 Laplacian

Matrix Representations

- Similarity matrix (W)
 - $-n \times n$ matrix
 - $-W = [w_{ij}]$: edge weight between vertex x_i and x_j

	<i>X</i> ₁	X_2	<i>X</i> ₃	X ₄	X_5	<i>X</i> ₆
<i>X</i> ₁	0	0.8	0.6	0	0.1	0
X ₂	0.8	0	0.8	0	0	0
X ₃	0.6	0.8	0	0.2	0	0
<i>X</i> ₄	0	0	0.2	0	0.8	0.7
X ₅	0.1	0	0	0.8	0	0.8
X ₆	0	0	0	0.7	0.8	0

- Important properties
 - Symmetric matrix

Matrix Representations

- Degree matrix (D)
 - -n x n diagonal matrix
 - $-D(i,i) = \sum_{j} w_{ij}$: total weight of edges incident to vertex x_i

	<i>X</i> ₁	X ₂	<i>X</i> ₃	X ₄	X ₅	X ₆
<i>X</i> ₁	1.5	0	0	0	0	0
X ₂	0	1.6	0	0	0	0
<i>X</i> ₃	0	0	1.6	0	0	0
X ₄	0	0	0	1.7	0	0
<i>X</i> ₅	0	0	0	0	1.7	0
<i>X</i> ₆	0	0	0	0	0	1.5

- Used to
 - Normalize adjacency matrix

Matrix Representations

Laplacian matrix (L)

L = D - W

 $-n \times n$ symmetric matrix

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X ₄	<i>X</i> ₅	<i>X</i> ₆
<i>X</i> ₁	1.5	-0.8	-0.6	0	-0.1	0
X ₂	-0.8	1.6	-0.8	0	0	0
<i>X</i> ₃	-0.6	-0.8	1.6	-0.2	0	0
<i>X</i> ₄	0	0	-0.2	1.7	-0.8	-0.7
X ₅	-0.1	0	0	-0.8	1.7	-0.8
X ₆	0	0	0	-0.7	-0.8	1.5

Important properties

- Eigenvalues are non-negative real numbers
- Eigenvectors are real and orthogonal
- Eigenvalues and eigenvectors provide an insight into the connectivity of the graph...

Find An Optimal Min-Cut (Hall'70, Fiedler'73)

• Express a bi-partition (C_1, C_2) as a vector

$$f_i = \begin{cases} 1 & \text{if } x_i \in C_1 \\ -1 & \text{if } x_i \in C_2 \end{cases}$$

 We can minimise the cut of the partition by finding a non-trivial vector f that minimizes the function

$$g(f) = \sum_{i,j \in V} w_{ij} (f_i - f_j)^2 = f^T L f$$
Laplacian matrix

Why does this work?

How eigen decomposition of L relates to clustering?

$$\begin{array}{ll} L = D - W & f(x_j) = f_j \text{ cluster assignment} \\ f^T L f &= f^T D f - f^T W f \\ &= \sum_i d_i f_i^2 - \sum_{ij} f_i f_j w_{ij} \\ &= \frac{1}{2} \left(\sum_i \left(\sum_j w_{ij} \right) f_i^2 - 2 \sum_{ij} f_i f_j w_{ij} + \sum_j \left(\sum_i w_{ij} \right) f_j^2 \right) \\ &= \frac{1}{2} \sum_{ij} w_{ij} (f_i - f_j)^2 & \text{--Cluster objective function} \end{array}$$

 if we let f be eigen vectors of L, then the eigenvalues are the cluster objective functions

Optimal Min-Cut

- The Laplacian matrix *L* is semi positive definite
- The Rayleigh Theorem shows:
 - The minimum value for g(f) is given by the 2nd smallest eigenvalue of the Laplacian L
 - The optimal solution for f is given by the corresponding eigenvector λ_2 , referred as the Fiedler Vector

Spectral Bi-partitioning Algorithm

1. Pre-processing

Build Laplacian matrix L of the graph

	X ₁	X ₂	<i>X</i> ₃	X ₄	X ₅	<i>X</i> ₆
X ₁	1.5	-0.8	-0.6	0	-0.1	0
X ₂	-0.8	1.6	-0.8	0	0	0
<i>X</i> ₃	-0.6	-0.8	1.6	-0.2	0	0
<i>X</i> ₄	0	0	-0.2	1.7	-0.8	-0.7
X ₅	-0.1	0	0	-0.8	1.7	-0.8
<i>X</i> ₆	0	0	0	-0.7	-0.8	1.5

2. Decomposition

Find eigenvalues X
 and eigenvectors Λ
 of the matrix L

$$A = \begin{bmatrix} 0.4 \\ 2.2 \\ 2.3 \\ 2.5 \end{bmatrix}$$

3.0

X =	0.4	0.2	0.1	0.4	-0.2	-0.9
	0.4	0.2	0.1	-0.	0.4	0.3
	0.4	0.2	-0.2	0.0	-0.2	0.6
	0.4	-0.4	0.9	0.2	-0.4	-0.6
	0.4	-0.7	-0.4	-0.8	-0.6	-0.2
	0.4	0.7	-0.2	0.5	0.8	0.9

_	Map vertices to
	corresponding
	components of λ_2

X ₁	0.2
X ₂	0.2
х ₃	0.2
X ₄	-0.4
X ₅	-0.7
x ₆	-0.7

Spectral Bi-partitioning Algorithm

The matrix which represents the eigenvector of the Laplacian (the eigenvector matched to the corresponded eigenvalues with increasing order)

0.41	-0.41	0.65-	0.31-	0.38-	0.11
0.41	-0.44	0.01	0.30	0.71	0.22
0.41	-0.37	0.64	0.04	0.39-	0.37-
0.41	0.37	0.34	0.45-	0.00	0.61
0.41	0.41	0.17-	0.30-	0.35	0.65-
0.41	0.45	0.18-	0.72	0.29-	0.09

Spectral Bi-partitioning

Grouping

- Sort components of reduced 1-dimensional vector
- Identify clusters by splitting the sorted vector in two (above zero, below zero)

Split at 0

- Cluster C_1 : Positive points
- Cluster C_2 : Negative points

X ₁	0.2
X ₂	0.2
X ₃	0.2

X ₄	-0.4
x ₅	-0.7
x ₆	-0.7

Normalized Laplacian

Laplacian matrix (L)

$$L = D^{-1}(D - W)$$

 $L = D^{-0.5}(D - W)D^{-0.5}$

1.00	-0.52	-0.39	0.00	-0.06	0.00
-0.52	1.00	-0.50	0.00	0.00	0.00
-0.39	-0.50	1.00	-0.12	0.00	0.00
0.00	0.00	-0.12	1.00	0.47-	0.44-
-0.06	0.00	0.00	-0.47	1.00	0.50-
0.00	0.00	0.00	0.44-	0.50-	1.00

K-Way Spectral Clustering

- How do we partition a graph into k clusters?
 - 1. Recursive bi-partitioning (Hagen et al., '91)
 - Recursively apply bi-partitioning algorithm in a hierarchical divisive manner.
 - Disadvantages: Inefficient, unstable
 - 2. Cluster multiple eigenvectors (Shi & Malik,'00)
 - Build a reduced space from multiple eigenvectors.
 - Commonly used in recent papers
 - A preferable approach

Eigenvectors & Eigenvalues

K-way Spectral Clustering Algorithm

Pre-processing

Compute Laplacian matrix L

Decomposition

- Find the eigenvalues and eigenvectors of L
- Build embedded space from the eigenvectors corresponding to the k smallest eigenvalues

Clustering

 Apply k-means to the reduced n x k space to produce k clusters

How to select k?

- Eigengap: the difference between two consecutive eigenvalues
- Most stable clustering is generally given by the value k that maximizes the expression $\Delta_k = |\lambda_k \lambda_{k-1}|$

$$\max \Delta_k = \left| \lambda_2 - \lambda_1 \right|$$

 \Rightarrow Choose k=2

Take-away Message

- Clustering formulated as graph cut problem
- How min-cut can be solved by eigen decomposition of Laplacian matrix
- Bipartition and multi-partition spectral clustering procedure