实验三实验报告

姓名: 常书浩 学号: 201220130

一、实验目的

1、 掌握时序逻辑电路设计的基本方法;

2、 学会利用锁存器和触发器构建计数器和移位寄存器的方法;

3、 熟悉计数器和移位寄存器的应用;

4、 掌握寄存器堆的设计方法;

二、实验内容

1. 根据 以下 所给出的功能表和电路原理图 构建 4 位同步二进制计数器 CNTR4U 子 电路,利用该子电路和少量门电路分别通过清零和置位端各设计一个 10 进制计数器。要求:清零计数从 0 到 9 循环,置位计数从 6 到 15 循环,将 4 位输出位通过分线器连接到一个十六进制数码管,RCO 输出端连接到一个 LED 指示灯(提示: 当计数值为 1111 时,RCO 输出为 1

1). 电路原理图

2). 子电路实验器材

非门×3、2输入与门×15、2输入或门×4、3输入与门×1、5输入与门×1、异或门×4、缓冲器×1、D锁存器×4、分线器×1、16进制数码管×1、LED指示灯×1

3). 实验步骤

A. 子电路连接

B. 封装电路

C.清零电路

D. 置位电路

4). 仿真检测

置位从6到15循环,清零0到9循环

2. 根据 以下 所给出的功能表和电路原理图 构建 4 位通用移位寄存器 SHRG4U 子电路利用该 SHRG4U 子电路和少量门电路 重复 生成二进制序列"0 001001101011111"。实验时先装载初始数值 如 0 001)),然后 将电路设置为左移或右移模式,通过 将SHRG4U 的 状态信号 Q D 、 QC 、 QB 、 QA 作为 反馈数字 电路的输入信号,该电路 输出信号再 接入到左移输入端(LIN)或右移输入 端 RIN)),以生成所要求的二进制序列 。 测试时 将 QA 、 Q B 输出 信号 和时钟信号连接到数字示波器 画出观察到连续 16 个周期的波形 同时 将 4 位输出信号 通过分线器 连接到 一个 十 六进制数码管,写出输出的伪随机 数 。

1). 电路原理

Function	Inputs			Next state			
	CLR	S1	so	QA*	QB*	QC*	QD*
Clear	1	х	X	0	0	0	0
Hold	0	0	0	QA	QB	QC	QD
Shift right	0	0	1	RIN	QA	QB	QC
Shift left	0	1	0	QB	QC	QD	LIN
Load	0	1	1	Α	В	C	D

2). 子电路实验器材 10个1位输入引脚, 16个4输入与门, 4个4输入或门, 4个D触发器, 4个输出引脚 6个非门

3). 连接子电路

4). 根据题意设计反馈电路

5). 连接主电路

6). 仿真模拟检测

3. 根据 以下 寄存器堆的原理图及给出 的 引脚图, 构建 实现至少含有 8 个 3 2 位寄存器堆Regfile 的 读写电路 写入操作需有时钟信号控制,读取操作是组合电路 。

1). 电路原理图

2). 实验器材

2个32位多路选择器,1个32位译码器,1个32位输入引脚,3个5位输入引脚,2个1位输入引脚,2个32位输出引脚,16个3输入与门,16个32位寄存器

3). 连接实验器材

- 4). 封装寄存器堆
- 5). 连接8个寄存器堆

6). 仿真检测

7). 遇到的问题 错把伪选择器当成多路选择器

四、思考题

- 1、 如何利用 C NTR4U 实现从任意初始 值 开始的 10 进制计数器? 设置为load模式, 并设置初始值
- 2、 如何 用两 片 CNTR4U 子电路 设计一个 60 进制计数器? 两片进行级联,第一片做个位,计数到60后清零第二片加1
- 3、 在寄存器堆中, 如何实现 0 号寄存器始终存储数值 0? 译码后0号位置空
- 4、 如何用组合电路实现4位移位寄存器? 4个D触发器,前一个的Q作为下一个的D,共用一个clk信号