30 Сложение магнитных полей

Магнитное поле, создаваемое несколькими магнитами, можно рассматривать как наложение полей, создаваемых каждым магнитом в отдельности.

Принцип суперпозиции магнитных полей. Если магниты M_1, M_2, \ldots по отдельности создают в данной точке поля $\vec{B_1}, \vec{B_2}, \ldots$, то вместе они создают в данной точке поле

$$\vec{B} = \vec{B}_1 + \vec{B}_2 + \dots \tag{1}$$

Этот принцип можно проиллюстрировать для случая двух магнитов (рис. 1).

Рис. 1. Принцип суперпозиции магнитных полей

Магнит M_1 создает в точке A поле $\vec{B_1}$, а магнит M_2 в этой же точке создает поле $\vec{B_2}$. Согласно вышеуказанному принципу вместе они создают в точке A поле $\vec{B} = \vec{B_1} + \vec{B_2}$ (рис. 1).

Индукции магнитных полей в общем случае складываются векторно.

Задача. Два одинаковых магнита M_1 и M_2 расположены так, что их оси лежат на одной прямой OO'; магниты обращены друг к другу одноименными полюсами (рис. 2). Чему равен модуль результирующего вектора магнитной индукции в точке A, лежащей на прямой OO' и равноудаленной от обоих магнитов?

Рис. 2. К задаче

Решение. Так как точка A одинаково удалена от одноименных полюсов магнитов M_1 и M_2 (или густота собственных магнитных линий каждого магнита в этой точке одинакова), то соответствующие магнитные индукции \vec{B}_1 и \vec{B}_2 , создаваемые этими магнитами в данной точке, одинаковы по величине (рис. 3).

$$O$$
 ----- \vec{B}_2 A \vec{B}_1 O' Рис. 3. К задаче

Так как векторы \vec{B}_1 и \vec{B}_2 равны по модулю и противоположны по направлению, то результирующий вектор \vec{B} , вычисляемый по формуле (1), равен нулю: $\vec{B} = \vec{B}_1 + \vec{B}_2 = 0$. Соответственно, модуль вектора \vec{B} равен нулю.