- 1-1 簡介不確定度
- 1-2 不確定度的組合
- 1-3 物理量的因次

測量與不確定度

1-1 🗓

簡介不確定度

教學策略

一、從誤差到不確定度

1. 誤差:過往分析實驗數據時,多採用測量值與真值的差值,也就是誤差 (error),來標定測量值的可信度。如下圖所示,誤差的定義為

誤差=測量值-直值

- 2. 真值:實際情形下,真值是未知的,無法由實驗數據推得。我們可以藉由測量數據,得 出某一物理量的測量平均值,然而無從得知其真值;既然無法得知真值,故誤差也無從 定義,更無法有效估算。
- 3.不確定度:原先國際上對於誤差分析並無共識,直到 1993 年,才由國際標準組織 ISO 聯合其他國際組織,以不確定度 (uncertainty) 的觀念取代誤差,並建立量測不確定度的評估與表示規則,通稱不確定度國際標準 (Guide to the Expression of Uncertainty in Measurement, ISO-GUM)。其後不確定度的分析逐漸為各界接受,成為比對分析量測結果的國際標準。
- 4. 測量結果的表示法:根據 ISO-GUM 的不確定度評估與表示規則,測量某物理量 x 時,在取得多次的測量數據後,可將測量結果表示為(如下頁圖)

測量結果=最佳估計值 \pm 標準不確定度= $X \pm u(X)$

上式中 u(X) 為標準不確定度,簡稱不確定度,一般至多保留兩位有效數字,而最佳估計值 X 的有效數字,則與不確定度的末位對齊。

5. 誤差與不確定度的比較: 誤差與不確定度的差異如下表

物理量	誤差	不確定度
意涵	測量值與真值的差	測量值的分散程度
數值	正負值皆有可能	恆為正值
符號	無規定	以 u(X) 表示
分類	系統誤差、隨機誤差	A 類評估和 B 類評估

二、不確定度的 A 類評估

1. 不確定度的分類:根據國際標準,不確定度分為 A、B 兩類。

(1)A 類評估:依據多次測量數據,進行統計分析而來。

(2)B 類評估:依其他資訊來源,例如材料或儀器特性、製造商提供的規格說明、過往類似數據的統計分析、數據隨附的不確定度、校正證書等等研判而來;亦即 B 類評估的不確定度,是直接引用已知數據,而非測量者進行統計分析所得來的。

2. 平均值與標準差 (standard deviation):對某物理量 x 進行 n 次測量,得到測量數據 x_1 , x_2 , ..., x_n 。由測量數據可得平均值 \overline{x} 與標準差 s 分別為

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

$$s = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n - 1}} = \sqrt{\frac{1}{n - 1} \sum_{i=1}^n (x_i - \overline{x})^2}$$

(可就《知識延長線》中的母體標準差以及樣本標準差做簡單說明,可適時消除學生對於計算標準差時,為何不是除以樣本數n,而是除以n-1的疑慮。因為統計學中關於標準差的分類,並非本章課程的學習重點,因此不必列為評量範圍。)

3.標準不確定度的定義:根據 ISO-GUM,標準不確定度 u(X) 的定義為

$$u(X) = \frac{S}{\sqrt{n}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

計算不確定度時,原則上採用無條件進位法,至多保留2位有效數字;但2位有效數字的下一位數為零時,則採用捨去法。

- 4. 最佳估計值:將平均值 \bar{x} 的計算結果,以四捨五入的方式,保留到與不確定度的末位一致,即為最佳估計值X。
- 5.A 類評估的計算流程:
 - (1)求出平均值 \bar{x} 與標準差s:將測量數據 x_i 代入平均值與標準差公式,分別算出 \bar{x} 與s,可暫時不需擔心保留位數,將計算結果寫下即可。

(此時可適時說明《小百科》中,關於有效數字的判定法則以及採用科學記號的用意。)

- (2)求出不確定度 u(X): 將 $u(X) = \frac{s}{\sqrt{n}}$ 的計算結果,以無條件進位法,至多保留 2 位有效數字;但 2 位有效數字的下一位數為零時則捨去。
- (3)求出最佳估計值 X: 將平均值 \bar{x} 的計算結果,以四捨五入的方式,保留到與不確定度的 末位一致。
- (4)寫出測量結果:測量結果=最佳估計值 ± 不確定度= $X \pm u(X)$ 。

- 6.A 類評估的實例說明:例如對同 1 枝鉛筆的長度進行 4 次測量,得到測量數據分別為 15.15 cm, 15.15 cm, 15.20 cm, 15.30 cm。
 - (1)平均值與標準差:由各測量數據 x_i 與測量次數 n,得到數據的平均值與標準差分別為

$$\overline{x} = \frac{15.15 + 15.15 + 15.20 + 15.30}{4} = 15.20 \text{(cm)}$$

$$s = \sqrt{\frac{(15.15 - 15.20)^2 + (15.15 - 15.20)^2 + (15.20 - 15.20)^2 + (15.30 - 15.20)^2}{4 - 1}}$$

$$= 0.07071 \cdots \text{(cm)}$$

(2)不確定度:將標準差s與測量次數n = 4代入不確定度公式,

$$u(X) = \frac{s}{\sqrt{n}} = \frac{0.07071\cdots}{\sqrt{4}} = 0.03535\cdots(\text{cm})$$

將 u(X) 以無條件進位法,並保留 2 位有效數字,得 u(X) = 0.036 cm。

- (3)最佳估計值:將平均值 \bar{x} 以四捨五入的方式,保留到與不確定度的末位一致,故最佳估計值 $X=15.200~{
 m cm}$ 。
- (4)測量結果:測量結果=最佳估計值 ± 不確定度= X ± u(X),即測量結果= (15.200 ± 0.036) cm。(測量鉛筆的長度時,一般使用的直尺最小刻度為公釐,最後記錄測量值時,可加入一位估計值,例如 15.15 cm、15.20 cm 等測量值。由上述 A 類評估的計算標準,測量結果中的最佳估計值以及不確定度,其最末位數並不一定是測量工具的最小刻度,也不一定是最小刻度的下一位。)
- 7. 測量值與測量結果的關係:當測量結果表示為 $X \pm u(X)$ 時,並非代表所有測量值都介於 X u(X) 與 X + u(X) 之間。例如鉛筆長度的測量結果 = (15.200 ± 0.036) cm,但有些測量值比 15.236 cm 還大,有些測量值比 15.164 cm 還小,並非所有的測量數據都會介於兩者之間。

(如果數據量夠多且數據屬常態分布,正負一個標準差內的數據範圍,會占所有數據的 68%,因此測量結果有相當大的機率會落在 X-u(X) 與 X+u(X) 之間;但是像課本舉的 例子測量身高、範例 1-1 測週期,都只有測量 4 次,以 4 次算出來的標準差,跟大數據的 標準差,情況大不相同,這牽涉到統計學的分析方法,由於其技術性細節略為繁瑣,所以在此略過不談。)

8.不確定度與測量的精確性:不確定度的大小代表測量值的分散程度,因此不確定度愈小, 表示測量的精確性愈高,也可以說測量結果的品質較好。例如兩種不同的測量方法,得 到鉛筆長度的測量結果分別為 (15.200 ± 0.036) cm、 (15.200 ± 0.014) cm,雖然兩種測量結果的「值」都是 15.200 cm,但後者測量結果的「質」確實優於前者,亦即前者具有較多的不確定性。

9. 影響不確定度的因素:要確切理解不確定度 $u(X) = \frac{s}{\sqrt{n}}$ 背後的統計意義並不容易,但概略來說,不確定度 u(X) 主要與兩個因素有關,即測量方法及測量次數。測量方法的設計會影響標準差 s,但即便測量的標準差相同,只要增加測量次數 n,也可以降低不確定度。

參考補充 計算標準差時為何須取測量偏差值的平方

由於測量時免不了隨機變動,因此各個數據 x_i 不會恰好等於平均值 \overline{x} ,而會有所偏差 $\Delta_i = x_i - \overline{x}$ 。有些偏差為正,有些偏差為負,若是將所有偏差相加,其和恰好為零:

$$\sum_{i=1}^{n} \Delta_{i} = \sum_{i=1}^{n} (x_{i} - \overline{x}) = \left(\sum_{i=1}^{n} x_{i}\right) - n\overline{x} = 0$$

因此若要描述偏離最佳估計值的程度,必須將各個數據的偏差平方相加,才可避免正負偏差相 消的困境:

$$\sum_{i=1}^{n} \Delta_{i}^{2} = \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \ge 0$$

當利用統計學來分析測量數據時,其偏離最佳估計值的程度即可用標準差 s 來表示。

三、不確定度的 B 類評估

- 1.B 類評估:除了測量統計分析外,藉由其他資訊來評估不確定度,即是 B 類評估,包括 儀器製造商的規格說明、過往類似數據的統計分析、數據隨附的不確定度等等。
- 2.精密度 (accuracy)、精準度 (precision)、精度等名詞:過往常見的準確度、精密度、精度等,皆為與誤差有關的概念,且容易與不確定度混淆,應避免使用這些名詞解說不確定度。
- 3. 儀器最小刻度 (minimum scale) 與 B 類不確定度的關係:一般儀器的最小刻度,可當作 B 類評估的不確定度來源;亦即取儀器最小刻度的 $\frac{1}{2\sqrt{3}}$ 做為 B 類評估的不確定度,如下

B 類不確定度=
$$\frac{最小刻度}{2\sqrt{3}} \approx 0.2887 \times$$
 最小刻度

故測量結果可表示為

測量結果=最佳估計值 \pm 不確定度=儀器顯示的讀數 \pm $\frac{最小刻度}{2\sqrt{3}}$

4.B 類評估的計算流程:

- (1)求出不確定度 u(X): 依據儀器最小刻度、規格說明、過往數據分析、數據隨附資料等等估算,以無條件進位法,至多保留 2 位有效數字;但 2 位有效數字的下一位數為零時,則採用捨去法。
- (2)求出最佳估計值 X:將測量值(儀器顯示的讀數)以四捨五入的方式,保留到與不確定 度的末位一致。
- (3)寫出測量結果:測量結果=最佳估計值 \pm 不確定度= $X \pm u(X)$ 。

- 5.B 類評估的實例說明:例如小龍以最小刻度為 0.1 kg 的電子體重計量體重,總共量了 4次,體重計上都顯示一模一樣的數值 62.3 kg;此時若由 A 類評估的方法,所得標準不確定度為 0,因此需進行 B 類評估。
 - (1)不確定度: $\frac{最小刻度}{2\sqrt{3}} = \frac{0.1 \text{ kg}}{2\sqrt{3}} \approx 0.02887 \text{ kg}$,以無條件進位法保留 2 位有效數字,可得 $u(X) = 0.029 \text{ kg} \circ$
 - (2)最佳估計值:最佳估計值必須與不確定度的末位一致,因此將測量值 62.3 kg 再補二位,即 X = 62.300 kg。
 - (3)測量結果: 測量結果= $X \pm u(X) = (62.300 \pm 0.029)$ kg。
 - (一般體重計上顯示的讀數單位為 kg,而物理上重量的單位為 kgw,由於地表上物體的重量正比於質量,亦即 1 kg 的物體其重量為 1 kgw,因此這裡沿用體重計的讀數單位 kg,實際上也代表 kgw。)

想一想解答

1. 林同學和王同學測量同一物體的長度各5次,數據如下(單位為公釐):

林同學:48、48、50、52、52 王同學:46、50、50、50、54

兩人測得數據的平均值都是50公釐,但兩人的測量結果一定相同嗎? (P.8)

一定。測量結果=最佳估計值 ± 不確定度,兩人測得數據的平均值相同,僅表示最佳估計值相同,但不確定度不一定會相同。經由計算:

林同學測量結果= (50.00 ± 0.90) mm; 王同學測量結果= (50.0 ± 1.3) mm。

迷思概念釐清

- 1. 測量的不確定度,可能是正值,也有可能是負值。
- ❷錯。不論是 A 類評估或是 B 類評估,測量的不確定度皆為正值。
- 2.實驗誤差,就是不確定度國際標準 ISO-GUM 所提到的不確定度。
- 3. 測量結果的最佳估計值,等於所有測量數據的平均值。
- 晉錯。將平均值以四捨五入的方式,保留到與不確定度的末位一致,即為最佳估計值 X,因此最佳估計值與平均值不一定相等。
- 4. 對某一個物理量進行多次測量,所得到的不確定度會小於標準差。
- **含**對。不確定度 u(X) 與標準差 s 的關係為 $u(X) = \frac{s}{\sqrt{n}}$,因為測量次數 n > 1,所以 $u(X) = \frac{s}{\sqrt{n}} < s$ 。
- 5. 測量結果的不確定度,其最末位數須等於測量工具最小刻度的下一位。
- 晉錯。測量結果中的最佳估計值以及不確定度,其最末位數並不一定是測量工具的最小刻度,也不一定是最小刻度的下一位。
- 6.以儀器對某一個物理量進行多次測量,若所得數據皆相同,則測量的不確定度為0。
- **曾**錯。雖然由 A 類評估的方法,所得不確定度為 0,但若進行 B 類評估時,則不確定度就不是 0。

1-2

不確定度的組合

教學策略

一、兩類不確定度的組合

1. A 類與 B 類不確定度的組合:若測量時同時存在 A 類與 B 類的不確定度,且其不確定度分別為 u_a 、 u_B ,根據 ISO-GUM 評估準則,其組合不確定度 u 可表示為

$$u=\sqrt{u_A^2+u_B^2}$$

二、物理量加減後的不確定度

- 1.物理量相加後的不確定度:若獨立測量物理量 $x \cdot y$ 後,相加所得的物理量為z = x + y。
 - (1)不確定度:根據 ISO-GUM 評估準則,不確定度 u(Z) 可表示為

$$u(Z) = \sqrt{u(X)^2 + u(Y)^2}$$

將 u(Z) 的計算結果以無條件進位法,至多保留 2 位有效數字;但 2 位有效數字的下一位數為零時,則採用捨去法。

- (2)最佳估計值:最佳估計值 Z = X + Y,其有效位數的取法,需依照組合後的不確定度 u(Z) 來計算,以四捨五入的方式,保留到與不確定度的末位一致。
- (3) 測量結果: 測量結果= $Z \pm u(Z) = (X + Y) \pm \sqrt{u(X)^2 + u(Y)^2}$ 。
- 2.相加後不確定度的實例說明:例如前述小龍以最小刻度 0.1 kg 的電子體重計量體重,其體重的測量結果為 $X \pm u(X) = (62.300 \pm 0.029)$ kg;若小騰也以此電子體重計量體重,得到體重的測量結果為 $Y \pm u(Y) = (58.700 \pm 0.029)$ kg。若想要求得小龍和小騰的總質量。
 - (1)不確定度:u(X) = u(Y) = 0.029 kg,不確定度 u(Z) 可表示為

$$u(Z) = \sqrt{u(X)^2 + u(Y)^2} = \sqrt{0.029^2 + 0.029^2} = 0.04101 \cdots \text{(kg)} \approx 0.041 \text{(kg)}$$

(2)最佳估計值: X = 62.300 kg、Y = 58.700 kg,最佳估計值為

$$Z = X + Y = 62.300 + 58.700 = 121.000(kg)$$

(3)測量結果: 測量結果= $Z \pm u(Z) = (121.000 \pm 0.041) \text{ kg}$ 。

- 3.物理量相減後的不確定度:若獨立測量物理量 $x \cdot y$ 後,相減所得的物理量為z = x y。
 - (1)不確定度:根據 ISO-GUM 評估準則,不確定度 u(Z) 可表示為

$$u(Z) = \sqrt{u(X)^2 + u(Y)^2}$$

將 u(Z) 的計算結果以無條件進位法,至多保留 2 位有效數字;但 2 位有效數字的下一位數為零時,則採用捨去法。

- (2)最佳估計值:最佳估計值 Z = X Y,其有效位數的取法,需依照組合後的不確定度 u(Z) 來計算,以四捨五入的方式,保留到與不確定度的末位一致。
- (3)測量結果: 測量結果= $Z \pm u(Z) = (X-Y) \pm \sqrt{u(X)^2 + u(Y)^2}$ 。

_{參考補充}/ 測量 10 枚硬幣的總厚度與 1 枚硬幣的厚度到底有什麼關係 ?

假設測量 10 枚硬幣厚度所得的測量結果為 $X \pm u(X)$,可不可以將 1 枚硬幣的厚度表示為 $\frac{1}{10}X \pm \frac{1}{10}u(X)$ 呢?嚴格來説,這是不行的。

首先必須定義新的隨機變數 $Z = \frac{X_1 + X_2 + \dots + X_{10}}{10} = \frac{X}{10}$, 其中 X_1 , X_2 , ..., X_{10} 為各個

硬幣厚度的最佳估計值,而 $X=X_1+X_2+\cdots+X_{10}$ 為這 10 枚硬幣的總厚度,此時 $u(Z)=\frac{1}{10}$

u(X) 的關係式才可成立。因為在沒有定義新的隨機變數之前,雖然測得 10 枚硬幣的總厚度,也不能做為 10 枚個別硬幣厚度的加總,而且還必須假設 X_1 , X_2 ,…, X_{10} 的機率分布都相同,才可以用這樣的測量方式去近似 1 枚硬幣的厚度;若是這 10 枚硬幣是不同種類型的,雖然總厚度還是會遵循特定的機率分布,但此時除以 10 之後的隨機變數,就沒有太大的意義。

如果你很嚴格遵循上述方式來定義這些隨機變數,仍須注意 Z 只能代表這 10 枚硬幣中平均 1 枚硬幣的厚度,即便這些硬幣看起來都一樣,但彼此的厚度仍存在些微差距,所以 Z 生 u(Z) 並不能代表每 1 枚硬幣的厚度。在實務上若想知道某 1 枚硬幣的厚度,最好還是對該枚硬幣做直接測量。

三、物理量乘除後的不確定度

1.相對標準不確定度:考慮物理量相乘 z = xy 或相除 $z = \frac{x}{y}$ 的情形,由於 u(X)、u(Y) 的因次不見得相同,此時可引入相對標準不確定度 (relative standard uncertainty) 的概念,其定義為不確定度除以最佳估計值的絕對值:

$$u_r(X) = \frac{u(X)}{|X|} \cdot u_r(Y) = \frac{u(Y)}{|Y|}$$

上式中最佳估計值 $X \times Y$ 出現絕對值,是為了使相對不確定度 $u_r(X) \times u_r(Y)$ 恆為正值。

2.相對不確定度的組合:物理量相乘或相除後,其相對不確定度的組合公式為

$$u_r(Z) = \sqrt{u_r(X)^2 + u_r(Y)^2} \Rightarrow \frac{u(Z)}{|Z|} = \sqrt{\frac{u(X)^2}{X^2} + \frac{u(Y)^2}{Y^2}}$$

- 3.物理量相乘後的不確定度:若獨立測量物理量 $x \cdot y$ 後,相乘所得的物理量為z = xy。
 - (1)不確定度:根據相對不確定度的組合公式,可得不確定度 u(Z) 為

$$u(Z) = |Z| \sqrt{\frac{u(X)^2}{X^2} + \frac{u(Y)^2}{Y^2}} = |XY| \sqrt{\frac{u(X)^2}{X^2} + \frac{u(Y)^2}{Y^2}} = \sqrt{Y^2 u(X)^2 + X^2 u(Y)^2}$$

將 u(Z) 的計算結果以無條件進位法,至多保留 2 位有效數字;但 2 位有效數字的下一位數為零時則捨去。

- (2)最佳估計值:最佳估計值 Z = XY,其有效位數的取法,需依照組合後的不確定度 u(Z) 來計算,以四捨五入的方式,保留到與不確定度的末位一致。
- (3)測量結果:

測量結果=
$$Z \pm u(Z) = XY \pm |XY| \sqrt{\frac{u(X)^2}{X^2} + \frac{u(Y)^2}{Y^2}}$$
。

4. 相乘後不確定度的實例說明:以桌面的面積測量為例,假如桌面長度 x 與寬度 y 的測量結果如下表。

物理量	最佳估計值	不確定度	測量結果表示
長度 x	X = 1.0050 m	u(X) = 0.0060 m	$(1.0050 \pm 0.0060) \mathrm{m}$
寬度 y	Y = 1.2500 m	u(Y) = 0.0050 m	$(1.2500 \pm 0.0050) \mathrm{m}$

(1)不確定度:依不確定度組合公式

$$u(Z) = \sqrt{Y^2 u(X)^2 + X^2 u(Y)^2}$$

= $\sqrt{1.2500^2 \times 0.0060^2 + 1.0050^2 \times 0.0050^2} = 0.009027 \cdots (m^2) \approx 0.0091(m^2)$

- (2)最佳估計值: $Z = XY = 1.0050 \times 1.2500 = 1.25625000 \text{(m}^2\text{)} \approx 1.2563 \text{(m}^2\text{)}$ 。
- (3) 測量結果 : 測量結果 = $Z \pm u(Z) = (1.2563 \pm 0.0091) \,\mathrm{m}^2 \,$ 。
- 5. 物理量相除後的不確定度:若獨立測量物理量 $x \cdot y$ 後,相除所得的物理量為 $z = \frac{x}{v}$ 。
 - (1)不確定度:根據相對不確定度的組合公式,可得不確定度 u(Z) 為

$$u(Z) = |Z| \sqrt{\frac{u(X)^2}{X^2} + \frac{u(Y)^2}{Y^2}} = \left| \frac{X}{Y} \right| \sqrt{\frac{u(X)^2}{X^2} + \frac{u(Y)^2}{Y^2}} = \sqrt{\frac{u(X)^2}{Y^2} + \frac{X^2 u(Y)^2}{Y^4}}$$

將 u(Z) 的計算結果以無條件進位法,至多保留 2 位有效數字;但 2 位有效數字的下一位數為零時則捨去。

1 測量與不確定度

- (2)最佳估計值:最佳估計值 $Z = \frac{X}{Y}$,其有效位數的取法,需依照組合後的不確定度 u(Z) 來計算,以四捨五入的方式,保留到與不確定度的末位一致。
- (3) 測量結果: 測量結果= $Z \pm u(Z) = \frac{X}{Y} \pm \left| \frac{X}{Y} \right| \sqrt{\frac{u(X)^2}{X^2} + \frac{u(Y)^2}{Y^2}}$ 。
- 6. 相除後不確定度的實例說明:以測量繩波的波速為例,假如振盪器與牆壁距離 x、繩波傳遞時間 t 的測量結果如下表。

物理量	最佳估計值	不確定度	測量結果表示
距離 x	X = 8.425 m	u(X) = 0.012 m	$(8.425 \pm 0.012) \mathrm{m}$
時間 <i>t</i>	T = 1.25 s	u(T) = 0.10 s	$(1.25 \pm 0.10) \mathrm{s}$

(1)不確定度:依不確定度組合公式

$$u(Z) = \sqrt{\frac{u(X)^2}{T^2} + \frac{X^2 u(T)^2}{T^4}} = \sqrt{\frac{0.012^2}{1.25^2} + \frac{8.425^2 \times 0.10^2}{1.25^4}} = 0.539 \cdot \cdot \cdot (\text{m/s}) \approx 0.54 (\text{m/s})$$

- (2)最佳估計值: $Z = \frac{X}{T} = \frac{8.425}{1.25} = 6.74 (\text{m/s})$ 。
- (3)測量結果: 測量結果= $Z \pm u(Z) = (6.74 \pm 0.54) \text{ m/s}$ 。

公式整理/ 不確定度組合公式整理

- 1. 同時存在 A 類不確定度 u_A 與 B 類不確定度 u_B : $u = \sqrt{u_A^2 + u_B^2}$
- 2. 物理量 z = x + y 時:測量結果= $Z \pm u(Z) = (X + Y) \pm \sqrt{u(X)^2 + u(Y)^2}$
- 3. 物理量 z = x y 時:測量結果= $Z \pm u(Z) = (X Y) \pm \sqrt{u(X)^2 + u(Y)^2}$
- 4. 物理量 z = xy 或 $z = \frac{x}{y}$ 時:相對不確定度 $\frac{u(Z)}{|Z|} = \sqrt{\frac{u(X)^2}{X^2} + \frac{u(Y)^2}{Y^2}}$
- 5. 物理量 z = xy 時:測量結果= $Z \pm u(Z) = XY \pm |XY| \sqrt{\frac{u(X)^2}{X^2} + \frac{u(Y)^2}{Y^2}}$
- 6. 物理量 $z = \frac{x}{y}$ 時:測量結果= $Z \pm u(Z) = \frac{X}{Y} \pm \left| \frac{X}{Y} \right| \sqrt{\frac{u(X)^2}{X^2} + \frac{u(Y)^2}{Y^2}}$

參考補充/ 關於測量與不確定度的試題設計

由於測量的平均值、標準差以及不確定度的計算,過程都頗為繁瑣,無論是課堂上的講解,或是做為考試評量,如果不能使用計算機的情況下,對老師與學生來說,都是一項艱鉅的挑戰。因為這些計算過程並非本章的學習重點,所以應該善用電腦或計算機做為課堂上講解輔助的教具,除了實際演練整個流程之外,也可以讓學生熟悉簡易程式的應用。

但是考試中可能不適合讓學生使用計算機,這時候試題的設計就非常重要。因為學生要學習的是平均值、標準差以及不確定度的定義,還有實際數據出現之後,該如何決定這些數值,所以試題應盡可能避開類似標準差的繁瑣計算過程。以課本範例 1-1 為例,題幹直接將測量的平均值、標準差列出來,便省去複雜的計算過程;其次,將測量次數設計為 4 次(或 9 次、16 次等)的目的,就是因為不確定度必須將標準差除以 \sqrt{n} ,也巧妙避開了平方根的繁瑣計算。底下再用另一個例子,説明不確定度的組合,也可以利用這些技巧設計本章的試題。

例如小龍測量甲、乙兩根小木棍的長度,且各進行 4 次測量,所測得的數據,以及測量的平均值和標準差,如右表所示。由表中標準差的數據,可得甲、乙兩根小木棍長度測量的不確定度 u(X)、u(Y),分別為

$$u(X) = \frac{s(x)}{\sqrt{4}} = \frac{0.05972\cdots}{2}$$

$$= 0.02986\cdots \approx 0.030(\text{cm})$$

$$u(Y) = \frac{s(y)}{\sqrt{4}} = \frac{0.07932\cdots}{2}$$

$$= 0.03966\cdots \approx 0.040(\text{cm})$$

	甲木棍	乙木棍
第1次測量	2.06 cm	15.12 cm
第2次測量	2.02 cm	15.16 cm
第3次測量	1.92 cm	15.23 cm
第4次測量	1.98 cm	15.30 cm
平均值	1.995 cm	15.2025 cm
標準差	0.05972···cm	0.07932···cm

根據上述不確定度 $u(X) \setminus u(Y)$,可分別求得最佳估計值 $X \setminus Y$ 分別為

$$X = 1.995 \text{ cm} \cdot Y = 15.203 \text{ cm}$$

因此甲、乙小木棍長度的測量結果可表示為

甲木棍長=
$$X \pm u(X) = (1.995 \pm 0.030)$$
 cm
乙木棍長= $Y \pm u(Y) = (15.203 \pm 0.040)$ cm

若小龍想進一步求得兩木棍的總長度,則此時總長度的最佳估計值為

$$Z = X + Y = 1.995 \text{ cm} + 15.203 \text{ cm} = 17.198 \text{ cm}$$

根據不確定度的組合公式,可得組合後的不確定度為

$$u(Z) = \sqrt{u(X)^2 + u(Y)^2} = \sqrt{0.030^2 + 0.040^2} = 0.050$$
(cm)

因此兩木棍的總長度可記為

總長度=
$$Z \pm u(Z) = (17.198 \pm 0.050)$$
 cm

上述計算過程都避開了繁複的計算,甚至不確定度組合也利用 $3^2+4^2=5^2$ 的關係,讓整個過程的講解,或是做為一道評量的試題,都可以變得簡單易懂。至於物理量乘除後的不確定度,則可利用相對不確定度的組合公式,讓 $u_r(X) \times u_r(Y) \times u_r(Z)$ 三者的比例,成為 3:4:5 或是 5:12:13 等關係,一樣會有上述的效果,但這可能需要老師稍微費心去嘗試數據的比例。雖然實際測量結果不太可能出現這麼巧妙的數字,但在教學跟命題時,這可能是不得不的權宜之計。

想一想解答

- 1.以游標尺來測量十張紙的總厚度,是疊起來一起測量比較好?還是分開測量再加總 比較好? (P.16)
- **答**疊起來一起測量比較好。

10 張紙疊起來一起測 ⇒ 不確定度為 u(X)

單獨測1張紙,分別對10張紙測量⇒每1張紙的不確定度

分別為
$$u(X_1) \cdot u(X_2) \cdot \cdots \cdot u(X_{10})$$

當測量工具、測量者相同時,u(X) 和 $u(X_1)$ 、 $u(X_2)$ 、…、 $u(X_{10})$ 差不多一樣,但若分開 測量再加總後,10 張紙總厚度的組合不確定度 $u(Z) = \sqrt{u(X_1)^2 + u(X_2)^2 + \cdots + u(X_{10})^2}$ 因 $\sqrt{u(X_1)^2 + u(X_2)^2 + \cdots + u(X_{10})^2} > u(X)$,故 10 張紙疊起來一起測比 10 張分開測量再加總,會有較佳的測量品質。

迷思概念釐清

- 1. 若測量時同時存在 A 類與 B 類的不確定度,且其不確定度分別為 $u_A \cdot u_B$,則其組合不確定度會同時大於 u_A 與 u_B 。
- **含**對。根據 ISO-GUM 評估準則,其組合不確定度為 $u = \sqrt{u_A^2 + u_B^2}$,因此 $u > u_A$ 且 $u > u_B$ 。
- 2. 兩物理量 $x \cdot y$ 相加後的不確定度,為 $x \cdot y$ 個別物理量不確定度之和。
- 營錯。根據 ISO-GUM 評估準則,相加後的不確定度,為個別物理量不確定度的平方和之後的平方根,即 $u(Z) = \sqrt{u(X)^2 + u(Y)^2}$ 。
- 3. 兩物理量 $x \cdot y$ 相減後的最佳估計值,為 $x \cdot y$ 個別物理量最佳估計值之差,且其有效位數需以四捨五入的方式,保留到與不確定度的末位一致。
- **含**對。設物理量 $x \times y$ 的最佳估計值分別為 $X \times Y$,則相減後的最佳估計值Z = X Y,且其有效位數的取法,需依照組合後的不確定度u(Z)來計算,以四捨五入的方式,保留到與不確定度的末位一致。

- **含**錯。物理量x的相對標準不確定度定義為 $u_r(X) = \frac{u(X)}{|X|}$,由於不確定度u(X)與最佳估計值的絕對值 |X|,皆大於零,因此相對標準不確定度 $u_r(X)$ 必為正值。
- 5. 兩物理量相乘後,其不確定度的有效位數,需以四捨五入的方式,至多保留2位有效數字。

1-39

物理量的因次

教學策略

一、因次的概念

- 1. 因次:物理量必須同時包含數值與單位,才具有定量分析的意義,這些無法僅用數值表示,還必定同時包含單位的物理量,稱為具有因次 (dimension) 的物理量。
- 2. 力學的基本因次: 力學中以質量、長度、時間來作為基本量, 其因次分別表示為 M、L、T,稱為基本因次, 其他物理量的因次都可依此推導出來。
- 3. 因次的運算:
 - (1)因次的加減:可進行加減運算的物理量,必定有相同的因次,運算結果亦具有相同的因次。但並非因次相同即可進行加減,如功與力矩的因次相同(皆為 ML^2T^{-2}),但兩者是不同的物理量,所以不可相加或相減。
 - (2)因次的乘除:物理量間乘除運算而導出的因次,必可以表示為質量、長度、時間等基本因次的冪次組合,即 $\mathbf{M}^a\mathbf{L}^b\mathbf{T}^c$,其中 a、b、c 可為整數或分數。
- 4. 因次的表示法:以中括弧[]表示物理量的因次。例如
 - (1)速度: $[v] = [位移 / 時間] = LT^{-1}$ 。
 - (2)加速度: [a] = [速度變化/時間] = LT^{-2} 。
 - (3)力: $[F] = [質量 × 加速度] = MLT^{-2}$ 。
 - (4)力矩: $[\tau] = [力 \times 力臂] = ML^2T^{-2}$ 。
 - (5)角度: $[\theta]$ = [弧長 / 半徑] = 1 。(角度 θ 定義為所張的弧長 S 除以半徑 r ,其單位為弧度。但由於弧長與半徑的因次均為長度,相除後的角度為無因次的物理量,其因次表示為 1 。)
 - (6) 重力常數:[G] = [力 × 距離 2 / 質量 2] = $\frac{MLT^{-2} \cdot L^2}{M^2}$ = $M^{-1}L^3T^{-2}$ 。

二、因次分析

- 1. 因次分析:用來分析判斷一個物理量計算的結果是否合理,或是分析數個物理量之間關係的方法,稱為因次分析。
- 2.因次分析的實例:如右圖所示,如果想要求得彈簧 物體系統的振動週期 T,與各個物理量間的關係,可依下列因次分析的步驟:

- (1)找出與週期 T 有關的物理量:若忽略一切阻力的效應,這可能包含彈性常數 k、物體質量 m、振幅 R。
- (2)寫出物理量的因次: $[k] = [力 / 形變量] = \frac{\text{MLT}^{-2}}{\text{L}} = \text{MT}^{-2}$,[m] = M,[R] = L。
- (3)分析各物理量與時間的關係:

令物體的振動週期 $T = ak^b m^c R^d$, 其中 a 為無因次的常數, 故

$$[T] = [k]^b [m]^c [R]^d \Rightarrow T = (MT^{-2})^b M^c L^d$$

等式兩邊因次的冪次須相等,因此

$$\int T 的幂次: 1 = -2b \Rightarrow b = -\frac{1}{2}$$

M 的冪次:
$$0 = b + c \Rightarrow c = \frac{1}{2} \Rightarrow T = a\sqrt{\frac{m}{k}}$$

L 的幂次:
$$0 = d \Rightarrow d = 0$$

(第5章會詳述正確公式為
$$T = 2\pi \sqrt{\frac{m}{k}}$$
)

想一想解答

1. 小智思考一個問題(如圖),最後解出答案為 $a = \frac{a_1 + a_2}{a_1 a_2}$,如果用因次分析的方法檢查答案,此答案是否

正確? (P.20)

督以因次的角度來看, $[a] = LT^{-2}$;

$$\left[\frac{a_1 + a_2}{a_1 a_2}\right] = \frac{LT^{-2}}{LT^{-2} \cdot LT^{-2}} = L^{-1}T^2$$

兩者的因次明顯不同,答案必不正確。

註:正確解法與答案如下:

同時推甲和乙: $F = (m_{\mathbb{H}} + m_{\mathbb{Z}}) \cdot a \Rightarrow F = (\frac{F}{a_1} + \frac{F}{a_2}) \cdot a \Rightarrow a = \frac{1}{\frac{1}{a_1} + \frac{1}{a_2}} = \frac{a_1 a_2}{a_1 + a_2} \circ$

問題:

光滑水平面上,分別施F的水平力作用於甲和乙,產生的加速度分別為 a_1 和 a_2 。如圖,若今F的水平力同時施於甲和乙,則加速度a=?

迷思概念釐清

- 1.一般物理常數,例如重力常數,是沒有因次的。
- **督**錯。多數的物理常數都是有因次的,例如重力常數的因次為 $[G] = M^{-1}L^3T^{-2}$ 。
- 2. 因次不同的物理量,仍然可以進行加減運算。
- 晉錯。因次不同的物理量,代表其單位也不同,因此單位不同的物理量若進行加減運算,並不具物理意義。
- 3. 因次相同的物理量,即可進行加減運算。
- **8**錯。因次相同的物理量,仍有可能是不同的物理量,不一定可以進行加減運算。
- 4. 兩個單位不同的物理量,其因次有可能相同。
- 營對。例如 180 m 和 180 cm,兩者單位不同,但兩者的因次都是長度。
- 5. 光子的能量 E 與頻率 f 的關係為:E = hf,則普朗克常數 h 的因次為 ML^2T^{-1} 。
- **含**對。 $[h] = [能量/頻率] = [能量 × 週期] = ML^2T^{-2} \cdot T = ML^2T^{-1}$ 。

第 章 習題解答

基礎題

1-1

簡介不確定度

- 1. 實驗時,某一組同學用直尺測量一支鉛筆的長度,共進行 9 次測量,測量的 9 筆數據經組員計算後,得到平均值為 10.7575 cm、標準差為 0.07588 cm。僅考慮不確定度的 A 類評估,試問此次測量的:
 - (1)不確定度為多少?
 - (2) 最佳估計值為多少?
 - (3)鉛筆長度的測量結果為多少?
 - 答 (1) 0.026 cm (2) 10.758 cm (3) (10.758 ± 0.026) cm
 - 解析 (1)不確定度 $u(X) = \frac{s(x)}{\sqrt{n}} = \frac{0.07588}{\sqrt{9}} = 0.02529 = 0.026$ (cm)(無條件進位取 2 位有效數字)。
 - (2) 最佳估計值 X = 10.758(cm)(四捨五入保留至與不確定度的末位一致)。
 - (3)鉛筆長度的測量結果= $X \pm u(X) = (10.758 \pm 0.026)$ cm。
- 2. 在金屬比熱實驗中,老師取出一臺電子秤(電子秤的最小刻度為 0.01 g),請林同學測量鋁塊的質量,結果電子秤上顯示的讀數為 30.15 g,則鋁塊的質量應記為多少 g?
 - 答 (30.1500 ± 0.0029) g
 - 解析 不確定度 $u(X) = \frac{最小刻度}{2\sqrt{3}} = \frac{0.01}{2\sqrt{3}} \approx 0.0029 \,\mathrm{g}$ (無條件進位保留 2 位有效數字)

最佳估計值 $X = 30.1500 \, \mathrm{g}$ (保留至與不確定度的末位一致) 故測量結果= $(30.1500 \pm 0.0029) \, \mathrm{g}$ 。

1-2 不確定度的組合

- 3. 承第 2 題,林同學測得另一銅塊,在電子秤上的讀數為 99.32 g,則鋁塊和銅塊的總質量應表示為 多少 g ?(已知 $\sqrt{(0.29)^2+(0.29)^2}\approx 0.4101$)
 - 答 (129.4700 ± 0.0041) g
 - 解析 物理量相加的測量結果 = $(X + Y) \pm \sqrt{u(X)^2 + u(Y)^2}$

不確定度 = $\sqrt{u(X)^2 + u(Y)^2}$ = $\sqrt{(0.0029)^2 + (0.0029)^2} \approx 0.004101 \approx 0.0041$ g (保留 2 位有效 數字;因 2 位有效數字的下一位數為零,故捨去較為合理。)

最佳估計值=X + Y = 30.1500 + 99.3200 = 129.4700 g(保留至與不確定度的末位一致) ⇒ 總質量的測量結果= $(129.4700 \pm 0.0041) g$ 。

1-3 物理

物理量的因次

4. 根據牛頓第二運動定律公式:

力=質量×加速度,力的因次可以表示為:

(A) MLT (B) ML/T (C) MT/L (D) ML^2/T (E) $ML/T^2 \circ$

答 (E)

解析
$$[F] = [m][a] = M \cdot (LT^{-2}) = M \cdot L/T^2$$

5. 物理學上,長度、時間、質量的因次分別以 L、T、M 來表示;而在之前物理課程的能量單元中,作功公式 W=FS、動能公式 $K=\frac{1}{2}mv^2$ 、重力位能公式 U=mgh。根據上述內容,試回答下列問題: (1) 功的因次如何表示?

(A) MLT^{-1} (B) $ML^{-1}T$ (C) ML^2T^{-2} (D) $ML^{-2}T^2$ (E) $M^2L^{-2}T^2 \circ$

(2) 動能的因次如何表示?

(A) MLT^{-1} (B) $ML^{-1}T$ (C) ML^2T^{-2} (D) $ML^{-2}T^2$ (E) $M^2L^{-2}T^2$ \circ

(3)重力位能的因次如何表示?

(A) MLT^{-1} (B) $ML^{-1}T$ (C) $ML^{2}T^{-2}$ (D) $ML^{-2}T^{2}$ (E) $M^{2}L^{-2}T^{2}$ \circ

答 (1) (C) (2) (C) (3) (C)

解析 $(1)[W] = [F][S] = MLT^{-2} \cdot L = ML^{2}T^{-2} \circ$

 $(2)[K] = [m][v]^2 = M(LT^{-1})^2 = ML^2T^{-2} \circ$

(3) $[U] = [m][g][h] = M(LT^{-2})L = ML^2T^{-2} \circ$

進階題

1-1 簡介不確定度

1. 如圖所示,林同學和王同學在實驗室將電池、LED 燈、電阻以電路板相連接,電路開通後,兩人用指針式的毫安培計,測量通過 LED 燈電流各 4 次,並求得實驗數據的標準差,數據如下表,僅考慮 A 類不確定度,試回答下列問題:

	第1次	第2次	第 3 次	第4次	標準差 s
林同學	3.0 mA	3.2 mA	3.1 mA	3.6 mA	0.26299 mA
王同學	3.2 mA	3.0 mA	2.9 mA	3.8 mA	0.40311 mA

(1)請將林同學和王同學的測量結果填入下表中。(表格單位為 mA)

	最佳估計值	A 類不確定度	測量結果
林同學			
王同學			

- (2)哪一位同學的測量品質較佳?
- (3)劉同學改用數位式三用電表的安培檔來取代毫安培計,重新測量電路中通過 LED 燈的電流,結果螢幕上顯示的電流讀數為 3.1 mA,若此三用電表安培檔的最小刻度為 0.1 mA,則劉同學的測量結果應表示為多少 mA?

答 (1)表格單位為 mA

最佳估計值		A 類不確定度	測量結果
林同學	3.23	0.14	(3.23 ± 0.14)
王同學	3.23	0.21	(3.23 ± 0.21)

(2) 林同學 (3) (3.100 ± 0.029) mA

解析
$$(1)u_{h}(X) = \frac{s(x)}{\sqrt{n}} = \frac{0.26299}{\sqrt{4}} = 0.131495 \approx 0.14 (mA)$$
(無條件進位保留 2 位有效數字)
$$\bar{x}_{h} = \frac{3.0 + 3.2 + 3.1 + 3.6}{4} = 3.225 (mA) \Rightarrow X_{h} = 3.23 (mA)$$

 \Rightarrow 林同學的測量結果為:(3.23 ± 0.14) mA。

$$u_{\pm}(X) = \frac{s(x)}{\sqrt{n}} = \frac{0.40311}{\sqrt{4}} = 0.201555 \approx 0.21 \text{(mA)}$$
(無條件進位保留 2 位有效數字)

$$\overline{x}_{\pm} = \frac{3.2 + 3.0 + 2.9 + 3.8}{4} = 3.225 \text{(mA)} \Rightarrow X_{\pm} = 3.23 \text{(mA)}$$

⇒ 王同學的測量結果為: (3.23 ± 0.21) mA。

- (2) 因林同學測量結果的不確定度較小,故林同學測量的品質較王同學為佳。
- (3)不確定度 $u(X) = \frac{最小刻度}{2\sqrt{3}} = \frac{0.1}{2\sqrt{3}} \approx 0.029 \text{ mA} (無條件進位保留 2 位有效數字)$

最佳估計值 $X = 3.100 \, \text{mA}$ (保留至與不確定度的末位一致) 故劉同學的測量結果= (3.100 ± 0.029) mA。

1-3 物理量的因次

2. 將彈簧一端固定,另一端繫著質量為m的物體後,可以進行振動實驗。已知 彈簧的彈性常數為 k、圓周率為 π ,請利用因次分析,推論算式 $2\pi\sqrt{\frac{m}{k}}$ 最可能为下列間傾便物理是 $2\pi\sqrt{\frac{m}{k}}$ 能為下列哪個物理量?

- (A) 時間 (B) 速度 (C) 加速度 (D) 長度 (E) 力。
- 答 (A)

 $[\pi$ 為圓周率,無因次 $\cdots\cdots$ ①

解析 $\left\{m \text{ 為質量 , 因次為 M } \cdots \right\}$

 $\left\{\begin{array}{l} k$ 為彈簧的彈性常數,由 $F=kx\Rightarrow k$ 的因次為 $\frac{[F]}{[x]}=\frac{\mathbf{M}\cdot\mathbf{L}\mathbf{T}^{-2}}{\mathbf{L}}=\mathbf{M}\mathbf{T}^{-2}\cdots\cdots3\right\}$

綜合 (1)(2)(3) 可得:

$$2\pi\sqrt{\frac{m}{k}}$$
的因次為: $\sqrt{\frac{M}{MT^{-2}}}=\sqrt{T^2}=T$

故 $2\pi\sqrt{\frac{m}{k}}$ 最可能為時間的物理量。

(事實上: $2\pi\sqrt{\frac{m}{k}}$ 是彈簧作簡諧運動的振動週期)

- 3. 物理學家愛因斯坦 1905 年提出狹義相對論,指出若將物體質量 m 和真空中光速 c 的平方相乘, 可以得到一個物理量。試問此物理量的因次為下列哪一個組合?
 - (A) MLT^{-1} (B) $ML^{-1}T$ (C) $ML^{2}T^{-2}$ (D) $ML^{-2}T^{2}$ (E) $M^{2}L^{-2}T^{2}$ \circ

答 (C)

解析 $\begin{cases} m 為 質量 \Rightarrow 因次為 M \\ c 為光速 \Rightarrow 因次為 LT^{-1} \end{cases}$

 $\Rightarrow [mc^2] = M \cdot (LT^{-1})^2 = ML^2T^{-2} \circ$

(事實上: mc^2 是由質量轉換而來的巨大能量,故其因次和能量因次相同)

素養混合題——實驗題

漂浮水面的硬幣

小智閱讀一篇科學文章, 文中提到水黽在 水面上行走的現象, 乃因水的表面張力所致; 將金屬迴紋針輕輕放置於水面上,也可達到懸 浮效果。小智拿新臺幣1元進行此實驗,卻發 現硬幣沉入水中;後來他改取日幣1元,才成 功讓它漂浮。

成分	純鋁
質量	1 g
直徑	20 mm
發行年	昭和 30 年

小智查閱日本造幣局有關日幣 1 元的資料,如圖所示,其主要內容表示:日幣 1 元的材料成分 為純鋁、質量為 1 g, 直徑為 20 mm。試根據上述資料, 回答下列問題:

- 1. 影響物體沉浮的因素,除了上述水的表面張力之外,還必須考慮:物體密度與水的密度大小之比 較、水施予物體的浮力作用等。試問:小智若要利用上述查閱的資料(質量、直徑等數據),來 計算這枚日幣 1 元 (視為實心圓柱體) 的密度,其步驟應如何?
 - 答如詳解
 - 解析 可先測量硬幣的厚度 d,再利用直徑算出硬幣的截面積 A。將厚度 d 乘以截面積 A,得到硬 幣的體積 V。最後由密度 $D = \frac{M}{V}$,計算得出密度。
- 2. 小智取一支數位顯示的游標卡尺(最小刻度為0.01 mm,如圖), 測量這枚1元日幣的厚度5次,得到的各別數值、平均值、標 準差,如表所示。則此測量的 A 類不確定度、B 類不確定度、 組合不確定度,分別為何?(僅須排列算式,不須求出數值)

M	o .			
9 40	16.00 _	का त्रवा भा का का भा का	STAINLESS HARDENED	

$$\stackrel{\bigcirc}{\cong} \frac{0.0279}{\sqrt{5}}; \frac{0.01}{2\sqrt{3}}; \sqrt{(\frac{0.0279}{\sqrt{5}})^2 + (\frac{0.01}{2\sqrt{3}})^2}$$

解析 A 類不確定度:
$$u_A = \frac{s}{\sqrt{n}} = \frac{0.0279}{\sqrt{5}}$$
 (mm)

B 類不確定度:
$$u_B = \frac{$$
最小刻度}{2\sqrt{3}} = \frac{0.01}{2\sqrt{3}} (mm)

組合不確定度:
$$u = \sqrt{u_A^2 + u_B^2} = \sqrt{\left(\frac{0.0279}{\sqrt{5}}\right)^2 + \left(\frac{0.01}{2\sqrt{3}}\right)^2}$$
 (mm) °

次數	測量結果(mm)
第1次	1.49
第2次	1.50
第3次	1.47
第4次	1.43
第5次	1.49
平均值	1.4760
標準差	0.0279

- 3. 承 2.,若組合不確定度欄位的計算結果為 $0.0128 \, (mm)$,則此枚 1 元日幣厚度的測量結果,應如何表示?
 - 答 (1.476±0.013) (mm)
 - 解析 組合不確定度為 0.0128 (mm),無條件進位,保留 2 位有效數字 $\Rightarrow u(X) = 0.013$ (mm)。 平均值為 1.4760 (mm),四捨五入,與不確定度的末位一致 \Rightarrow 最佳估計值 X = 1.476 (mm) \Rightarrow 測量結果 $= X + u(X) = (1.476 \pm 0.013)$ (mm)。
- 4. 根據上述資料及測量結果,計算此枚 1 元日幣的密度,最接近下列哪一個數值? (圓周率 $\pi = 3.14$)

(A) 2.60 (B) 2.40 (C) 2.20 (D) 2.00 (E) 1.80 $g/cm^3 \circ$

答 (C)

解析 由
$$D = \frac{M}{V} = \frac{M}{A \cdot d} = \frac{1}{3.14 \times (\frac{2.00}{2})^2 \times 0.1476} \approx 2.16$$
,選最接近的 (C)。

- 5. 承 4., 這枚硬幣計算所得的密度, 小於鋁的密度(查表為 2.70 g/cm³)。小智觀察硬幣外型, 發現其正反面有凹陷的花紋。據此,該如何解釋密度的計算值與查表值間的差異?
 - 答 如詳解
 - 解析 因硬幣的外緣略高於內部的花紋雕刻,而測量的硬幣厚度為外緣的厚度,因此計算的體積 會大於實際的體積。由密度 $D=\frac{M}{V}$ 可知,若質量 M 固定而 V 愈大,則密度 D 愈小。故計 算的密度會小於 $2.70~{\rm g/cm}^3$ 。
- 6. 物理學上,「表面張力」可定義為:「將液面拉開時,增加單位面積所須作的功。」根據此定義, 表面張力的基本單位組合及因次組合,該如何表示?
 - 答 kg/s^2 ; MT^{-2}
 - 解析 表面張力基本單位組合為: $\frac{J}{m^2} = \frac{N \cdot m}{m^2} = \frac{N}{m} = \frac{kg \cdot m/s^2}{m} = kg/s^2$ 表面張力的因次為: $\frac{[質量]}{[時間]^2} = \frac{M}{T^2} = MT^{-2}$ 。

B類不確定度的困擾

在進行測量時,應該採用適當的不確定度,方能完整表達測量的可信度。在某次物理實驗中,兩位同學利用電子秤來測定未知物的質量,兩人都發現電子秤顯示讀數為 200 g,但採用不同的方式來估算 B 類不確定度。第一位同學認為最小刻度為 1 g,因此利用以下公式來估算 B 類不確定度 u:

$$u = \frac{1}{2\sqrt{3}} g \approx 0.2887 g$$

但第二位同學則參閱說明書,發現廠商考慮所有實際因素後,給出測量值的不確定度為 0.53 g。雖然兩人測得未知物的質量讀數相同,但是對於該採用哪一種方式來估算 B 類不確定度,產生了爭執。第一位同學覺得利用公式得到的不確定度較小,因此可信度較高,但第二位同學認為說明書是廠商提供的專業資訊,當然應該以此為準。到底哪一位同學採用的方式,才會得到合理的 B 類不確定度呢?

- 1. 若採用第一位同學的方式,該如何正確地表達未知物質量的測量結果呢?
 - 答 (200.00±0.29) g
 - 解析 不確定度採無條件進位法,至多取兩位有效數字,故此處應採用 u=0.29 g。最佳估計值位數應與不確定度對齊,故測量結果應表示為 (200.00 ± 0.29) g。
- 2. 根據題幹描述的測量結果,下列哪一項最能正確地反映 B 類不確定度的採用準則呢?
 - (A) 第一位同學採用的估算方法較佳,因為利用了最小刻度
 - (B) 第二位同學採用說明書的資訊,是較為正確的做法
 - (C) 第一位同學只考慮了最小刻度,因此必然會得到較小的不確定度
 - (D) 第二位同學因為忽略測量環境影響,所得 B 類不確定度較大
 - (E) 兩位同學的估計方法都不好,因為並沒有使用數據分析工具。
 - 答 (B)
 - 解析 只有在欠缺其他資訊的條件下,才會利用最小刻度的公式來估算 B 類不確定度。第二位同學採用説明書的資訊,是估算 B 類不確定度的正確做法,故選 (B)。

測量的不確定度

過去的評量很少涉及到測量的不確定度,只有在 91 年指考題出現過 1 題,不過所用到的觀念與方法,與本章所闡述的內容截然不同。該試題如下:

小明想利用自由落體運動公式 v=gt,測量一靜止物體由同一高度下墜抵地時的速率 v。他先由實地測量,得到重力加速度 g 為 9.8 m/s²,接著對物體下墜抵地所需之時間 t,作了 8 次測量,得到下表之結果:

測量次序 n	1	2	3	4	5	6	7	8
抵地時間 t(s)	1.28	1.27	1.28	1.28	1.28	1.27	1.28	1.27

下列以有效數字表示抵地時間t的平均值與抵地速率v,何者最能適當地表示此實驗測量之結果?

選項	(A)	(B)	(C)	(D)	(E)
t 的平均值 (s)	1.27625	1.276	1.28	1.28	1.28
速率 v (m/s)	12.5073	12.5	12.5	12.51	13

參考答案 B

物體下墜抵地的時間共測量 8 次,故平均值與標準差分別為

$$\overline{t} = \frac{1}{8} \sum_{i=1}^{8} t_i = 1.27625(s)$$

$$s(t) = \sqrt{\frac{1}{8-1} \sum_{i=1}^{8} (t_i - \overline{t})^2} = 0.00517549 \cdots (s)$$

根據標準差可得時間的不確定度為

$$u(T) = \frac{s(t)}{\sqrt{8}} \approx \frac{0.00517549\cdots}{\sqrt{8}} = 0.001829\cdots(s)$$

$$T \pm u(T) = (1.2763 \pm 0.0019) \text{ s}$$

另一個測量為重力加速度,因為題幹只提到小明實地測量得到 g 為 9.8 m/s²,所以無從得知測量的不確定度。若以測量值 9.8 m/s² 推估,由於不確定度至多為 2 位有效數字,且與最佳估計值的末位一致,故合理推論重力加速度的最小不確定度為 0.1 m/s²。如果以重力加速度為 9.8 m/s² \pm 0.1 m/s²,由 v=gt,可得出物體下墜抵地時的速率為

$$V \pm u(V)$$

其中 $V = 9.8 \times 1.2763 = 12.50774$ (m/s),

$$u(V) = \sqrt{(9.8 \times 0.0019)^2 + (1.2763 \times 0.1)^2} = 0.1289 \cdots (\text{m/s}) \approx 0.13 (\text{m/s})$$

故物體下墜抵地時的速率可記為

$$V \pm u(V) = (12.51 \pm 0.13) \text{ m/s}$$

如果不寫出各次測量的不確定度,則物體抵地時間、抵地速率分別為 1.2763 s 與 12.51 m/s,以大考中心公布的答案 (B) 選項來看,時間跟速率都各少了 1 位有效數字。

第

章

深度探索

豪豬教授開講:關於不確定度的精闢解説

你的 A 類、B 類不確定度組合是我的 B 類不確定度

掃描看更多

(X + X) 不確定度 $\neq 2X$ 不確定度

掃描看更多

有效位數取法的 4 個實作法則

掃描看更多

精度、精確度與B類不確定度

掃描看更多

不確定度背後的統計分析

不確定度與過往「誤差」的理論架構截然不同,在教學時若能避免採用過時的名詞與觀念,如真值、誤差、準確度、精密度等等,就不會陷入不必要的迷思中。不確定度的理論核心是統計分析,無論是 A 類或是 B 類不確定度,其統計上的意義通通是一樣的,就是最佳估計值的標準差。

A 類不確定度

先介紹 A 類不確定度該如何分析。假設對某物理量進行 n 次相同但獨立的測量,其結果可由 x_1 , x_2 , ..., x_n 共 n 個隨機變數來描述。定義另一隨機變數來描述測量結果的平均值為

$$A_x \equiv \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$

利用統計分析,隨機變數 A_x 的期望值 $E[A_x]$ 即為最佳估計值 \overline{X} ,而其變異數 $Var[A_x]$ 則為不確定度 u(X) 的平方

$$E[A_x] = \overline{A_x} =$$
最佳估計值 \overline{X}
 $Var[A_x] = \overline{(A_x)^2} - (\overline{A_x})^2 = [不確定度 u(X)]^2$

也就是說,最佳估計值與其不確定度都是隨機變數 A_x 的統計特性而已。

我們可以進一步推導出課本的公式。由於是相同但獨立的測量, $\overline{x_1}=\overline{x_2}=\cdots=\overline{x_n}=\overline{x}$,故可以依此計算隨機變數 A_x 的期望值

$$\overline{A}_x = \frac{1}{n} (\overline{x}_1 + \overline{x}_2 + \dots + \overline{x}_n) = \frac{1}{n} \cdot n\overline{x} = \overline{x}$$

由上式可知,隨機變數 A_x 的期望值即為該測量結果的最佳估計值。

再來計算隨機變數 A_x 的變異數,這計算過程稍稍複雜一些。由於是相同且獨立的測量,若是 i ,j 不同, $\overline{x_ix_j}=\overline{x_i}\cdot\overline{x_j}=\overline{x^2}$,若是對應到同一次的測量,則其變異數皆相同, $\overline{x_ix_j}=\overline{x^2}$ 。依此計算隨機變數 A_x 的變異數為

$$Var[A_x] = \overline{(A_x)^2} - (\overline{A_x})^2 = \frac{1}{n^2} \left[n \cdot \overline{x^2} + 2 \cdot \frac{n(n-1)}{2} \overline{x}^2 \right] - \overline{x}^2 = \frac{1}{n} (\overline{x^2} - \overline{x}^2) = \frac{1}{n} s^2$$

上式中s為測量數據的標準差。將以上的結果開根號,即可求得A類不確定度為

$$u(X) = \sqrt{\operatorname{Var}[A_x]} = \frac{s}{\sqrt{n}}$$

經過這些統計分析後,我們終於降落在高中課本的公式,原來 A 類不確定度公式中的根號,背後有這麼深刻的統計意涵。

B類不確定度

我們也可以藉由統計分析,來估算 B 類不確定度。舉最小刻度為例,若測量結果呈現均勻分布,則測量值 x 可視為連續的隨機變數,其機率分布則由圖中 $P(x) = \frac{1}{a}$ 描述。可利用統計分析方法計算隨機變數 X 的期望值與變異數,並依此求出最佳估計值與不確定度。

● 圖 1 測量值 x 所遵循的均匀分布

由於隨機變數X是連續的,最佳估計值必須由積分才能算出

$$E(X) = \int P(x)x \, dx = \int_{\mu - \frac{a}{2}}^{\mu + \frac{a}{2}} \frac{1}{a} \cdot x \, dx = \frac{1}{2a} x^2 \Big|_{\mu - \frac{a}{2}}^{\mu + \frac{a}{2}} = \frac{1}{2a} \cdot 2\mu a = \mu$$

這個結果與我們的直覺吻合:最佳估計值就是測量結果上下限的代數平均。不確定度可藉由隨機 變數 *X* 的變異數求出,而變異數可以寫成以下積分

$$\operatorname{Var}[X] = \overline{X^2} - \overline{X^2} = \int P(x)x^2 dx - \mu^2 = \int_{\mu - \frac{a}{2}}^{\mu + \frac{a}{2}} \frac{1}{a} \cdot x^2 dx - \mu^2$$
$$= \frac{1}{3a} x^3 \Big|_{\mu - \frac{a}{2}}^{\mu + \frac{a}{2}} - \mu^2 = \frac{1}{3a} \cdot \left(3a\mu^2 + \frac{1}{4}a^3\right) - \mu^2 = \frac{1}{12}a^2$$

不確定度 u(X) 可以藉由變異數開根號求出,其結果為

$$u(X) = \sqrt{\text{Var}[X]} = \frac{a}{2\sqrt{3}} = \frac{\text{最小刻度}}{2\sqrt{3}}$$

由上式可看出 B 類不確定度公式中的 2 根號 3 並無神秘之處, 只是推導過程較為繁瑣。

本章圖片來源

第1章

CH1 章首 shutterstock 圖庫提供

實驗題日幣 1 元 Misogi

實驗題游標卡尺 shutterstock 圖庫提供