A Littlewood-Type Identity for Robbins Polynomials

Hans Höngesberg
University of Ljubljana, Slovenia

Joint work with Ilse Fischer (University of Vienna)

15th Nordic Combinatorial Conference (NORCOM) Reykjavík, Iceland 16-18 June 2025

Generalising the determinant

▶ The classical notion of a determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} \coloneqq ad - bc.$$

▶ In the early 1980s, Robbins and Rumsey wanted to generalise the classical determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}_{\lambda} := ad + \lambda bc.$$

Through Dodgson condensation, we obtain the notion of λ-determinant for any square matrix.

Leibniz formula for λ-determinants

Theorem (Leibniz formula)

The determinant of an $n \times n$ matrix M is

$$|M| = \sum_{\sigma \in \mathfrak{S}_n} (-1)^{inv(\sigma)} \prod_{i=1}^n \mathfrak{m}_{i,\sigma(i)}.$$

Theorem (Robbins, Rumsey 1986)

The λ -determinant of an $n \times n$ matrix M is

$$|M|_{\lambda} = \sum_{A \in \mathcal{ASM}_n} \lambda^{inv(A)} (1 + \lambda^{-1})^{\mathcal{N}(A)} \prod_{i,j=1}^n m_{i,j}^{\alpha_{i,j}},$$

where we sum over all alternating sign matrices $A = (a_{i,j})_{1 \le i,j \le n}$.

Alternating sign matrices

Definition (Robbins, Rumsey 1986)

An alternating sign matrix (ASM) of order n is an $n \times n$ -matrix with entries -1, 0 or +1 such that

- the entries in each row and each column sum to 1, and
- the nonzero entries alternate in sign along each row and each column.

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 1 \\ 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Every permutation matrix is an ASM!

Alternating sign matrices

 Mills, Robbins and Rumsey conjectured the number of ASMs of order n to be

$$\prod_{j=0}^{n-1} \frac{(3j+1)!}{(n+j)!} = 1, 2, 7, 42, 429, 7436, \dots$$

which was first established by Zeilberger in 1996.

- ▶ Alternative proofs by Kuperberg 1996, Fischer 2007.
- There are three other classes of combinatorial objects, that are enumerated by the same formula:
 - descending plane partitions
 - totally symmetric self-complementary plane partitions
 - alternating sign triangles

Descending plane partitions

Definition (Andrews 1979)

A descending plane partition (DPP) of order n is the filling of a shifted Young diagram with positive integers less than or equal to n such that

- the entries weakly decrease along rows
- and strictly decrease down columns, and
- the first part in each row is strictly larger than the length of the row
- but less than or equal to the length of the previous row.

11	10	10	10	7	5	4	4	3
	7	7	6	5	3	1		
		5	5	4	2		'	
			4	3	1			
				2		•		

ASMs and DPPs are equinumerous

Theorem (Andrews 1979, Zeilberger 1996)

ASMs and DPPs of the same order are equinumerous.

Example for n = 3:

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$\varnothing \quad \boxed{2} \quad \boxed{3} \quad \boxed{3} \quad \boxed{1} \quad \boxed{3} \quad \boxed{2} \quad \boxed{3} \quad \boxed{3} \quad \boxed{3}$$

Problem

Construct a bijection between ASMs and DPPs!

Semistandard Young tableaux

Schur functions s_{λ} are generating functions of semistandard Young tableaux (SSYT) of shape $\lambda = (\lambda_1 \ge \cdots \ge \lambda_n > 0)$:

$$\lambda = (5,4,3,3,1)$$
 weight:
$$\prod_{i\geqslant 1} x_i^{\sharp i} = x_1^3 x_2 x_3^2 x_4^2 x_5^2 x_6^3 x_7^2 x_8$$

The classical Littlewood identities

The sums of Schur polynomials over certain classes of integer partitions λ admit nice factorisations:

Theorem (Schur, Littlewood)

$$\sum_{\lambda} s_{\lambda}(x_{1}, \dots, x_{n}) = \prod_{i=1}^{n} \frac{1}{1 - x_{i}} \prod_{1 \leq i < j \leq n} \frac{1}{1 - x_{i}x_{j}}$$

$$\sum_{\lambda \text{ even}} s_{\lambda}(x_{1}, \dots, x_{n}) = \prod_{i=1}^{n} \frac{1}{1 - x_{i}^{2}} \prod_{1 \leq i < j \leq n} \frac{1}{1 - x_{i}x_{j}}$$

$$\sum_{\lambda' \text{ even}} s_{\lambda}(x_{1}, \dots, x_{n}) = \prod_{1 \leq i < j \leq n} \frac{1}{1 - x_{i}x_{j}}$$

 \longrightarrow Proofs by Robinson-Schensted-Knuth correspondence (RSK)

Combinatorial interpretation of the Littlewood identity

$$\sum_{\lambda} s_{\lambda}(x_1, \dots, x_n) = \prod_{i=1}^n \frac{1}{1 - x_i} \prod_{1 \leq i < j \leq n} \frac{1}{1 - x_i x_j}$$

Schur functions $s_{\lambda}(x_1,\ldots,x_n)$: generating function of semistandard Young tableaux of shape λ

generating function of symmetric matrices $A=(a_{i,j})_{1\leqslant i,j\leqslant n}$ with non-negative integer entries via $\frac{1}{1-x_i}=\sum_{a_{i,i}\geqslant 0}\chi_i^{a_{i,i}}$ and $\frac{1}{1-x_ix_i}=\sum_{a_{i,i}\geqslant 0}(x_ix_j)^{a_{i,j}}$

Robinson-Schensted-Knuth correspondence

Symmetry of RSK:

$$(P,Q) \stackrel{\mathsf{RSK}}{\longleftrightarrow} A \Longleftrightarrow (Q,P) \stackrel{\mathsf{RSK}}{\longleftrightarrow} A^\top.$$

RSK on symmetric matrices A implies the Littlewood identity:

$$\sum_{\lambda} s_{\lambda}(x_1, \dots, x_n) = \prod_{i=1}^n \frac{1}{1 - x_i} \prod_{1 \leq i < j \leq n} \frac{1}{1 - x_i x_j}.$$

Goal: Littlewood identity related to ASMs

Classical identities for sym- \longleftrightarrow Alternating sign matrices metric functions

• Warnaar (2008):

Cauchy identity for Hall– \longleftrightarrow partition function of ASMs Littlewood polynomials

▶ Betea, Wheeler, Zinn-Justin (2015/16):

Various Cauchy/Littlewood ← partition function of symmetry classes of ASMs

• Fischer, H. (2025):

Littlewood identity for Robbins polynomials

(generalised Hall-Littlewood polynomials)

Diagram Diagram alt

Diagonally symmetric alternating sign matrices

Improvement: Alternating sign matrices on both sides!

Main result I: Littlewood identity for Robbins polynomials

Gelfand–Tsetlin patterns

Semistandard Young tableau

Gelfand-Tsetlin pattern

1	1	1	4	6		1 3
2	3	3	5			0 3 3 4
4	5	7		•	\longleftrightarrow	0 0 0 2 2 4 4 5
6	6	8			0	0 0 1 2 3 4 5
7					0	0 0 1 3 3 4 5

$$x_1^3 x_2 x_3^2 x_4^2 x_5^2 x_6^3 x_7^2 x_8$$

weight:
$$\prod_{i=1}^n x_i^{\text{\#}i}$$

$$\prod_{i=1}^n \chi_i^{\sum} \text{ entries in row } i - \sum \text{ entries in row } (i-1)$$

Down-arrowed monotone triangles

Definition

A down-arrowed monotone triangle (DAMT) is a Gelfand–Tsetlin pattern with strict increase along rows where each entry, except for those in the bottom row, is decorated with either \checkmark , \downarrow or \searrow subject to the following rule:

If an entry is equal to one of the entries in the row below, then those entries have to be connected by a slanted arrow (\checkmark or \searrow).

Modified Robbins Polynomials

Definition

The (modified) Robbins polynomial $R_k^*(x_1,...,x_n;u,v,w)$ is the generating function of DAMTs with bottom row k with weight

$$u^{\#\searrow}v^{\#\swarrow}w^{\#\downarrow}$$

$$\times \prod_{i=1}^n x_i^{\sum \text{ entries in row } i-\sum \text{ entries in row } (i-1)+\#\searrow \text{ in row } (i-1)-\#\swarrow \text{ in row } (i-1).$$

Main result I

We establish a Littlewood identity for Robbins polynomials:

Theorem (Fischer, H. 2025)

Let n be a positive integer. Then

$$\begin{split} \sum_{0 \leqslant k_1 < \dots < k_n} R_{(k_1, \dots, k_n)}^*(x_1, \dots, x_n; 1, 1, w) \\ &= \prod_{i=1}^n \frac{1}{1 - x_i} \prod_{1 \leqslant i < j \leqslant n} \frac{x_i + x_j + w x_i x_j}{x_j - x_i} \\ &\times \Pr_{\chi_{even}(n) \leqslant i < j \leqslant n} \left(\begin{cases} 1, & i = 0, \\ \frac{(x_j - x_i)(1 + (1 + w)x_i x_j)}{(x_i + x_j + w x_i x_j)(1 - x_i x_j)}, & i \geqslant 1, \end{cases} \right) \end{split}$$

where Pf denotes the Pfaffian of an upper triangular array and $\chi_{even}(n)$ equals 1 if n is even and 0 otherwise.

Pfaffians

- ► Consider all (2n-1)!! partitions of $\{1, 2, ..., 2n\}$ into pairs.
- ▶ They can be written as $\{(i_1, j_1), \ldots, (i_n, j_n)\}$ with $i_1 < \cdots < i_n$ and $i_k < j_k$ for all $1 \le k \le n$.
- ▶ For a triangular array $A = (a_{i,j})_{1 \le i < j \le 2n}$, the Pfaffian Pf(A) is defined as

$$\sum_{\{(i_1,j_1),\ldots,(i_n,j_n)\}} sgn(i_1j_1\ldots i_nj_n)a_{i_1,j_1}\cdots a_{i_n,j_n},$$

where we sum over all pairings in consideration.

If we complete A to the uniquely determined skew-symmetric matrix M with A being its upper triangular part, then it is well known that

$$Pf(A)^2 = det(M)$$
.

Symmetric functions

Robbins polynomials are connected to other symmetric functions:

- Schur polynomials
- symmetric Grothendieck polynomials
- Hall–Littlewood polynomials
- fully inhomogeneous spin Hall–Littlewood symmetric rational functions (Borodin, Petrov 2018)

Related Littlewood identities

- Littlewood identities for Hall–Littlewood polynomials by Macdonald
- ▶ Refinement by Betea, Wheeler, Zinn-Justin (2015)
- Littlewood identity for spin Hall-Littlewood symmetric functions (Gavrilova 2023)
- → These identities are of different type than ours! We conjecture a generalisation of our identity at the level of spin Hall-Littlewood symmetric functions, which Fischer and Gangl have (almost) proved.

Monotone triangles and alternating sign matrices

Observation (Mills, Robbins, Rumsey 1983)

ASM of order n are in bijective correspondence with monotone triangles with bottom row $(1,2,\ldots,n)$.

Main result II: Combinatorial interpretation of the right-hand side of the Littlewood identity

Six-vertex model

Alternating sign matrices are in correspondence with six-vertex model configurations with domain wall boundary conditions:

Diagonally symmetric alternating sign matrices

Diagonally symmetric alternating sign matrices (DSASMs) correspond to six-vertex model configurations on a triangular grid:

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \longleftrightarrow$$

The generating function of all such six-vertex model configurations of size n, denoted by $6V_{\nabla}(n)$, is called the partition function $Z_{DSASM}(x_1, \dots, x_n)$.

Diagonally symmetric alternating sign matrices

- There are eight different symmetry classes of ASMs that are induced by the symmetry group of the square. The enumeration of these symmetry classes was initiated by Stanley.
- ▶ In $5\frac{1}{2}$ cases, a product formula has been established (Behrend, Fischer, Konvalinka, Kuperberg, Razumov, Stroganov, Okada, Zeilberger).
- DSASMs are the first and only of the remaining symmetry classes for which an enumeration formula is known (Behrend, Fischer, Koutschan 2023):

$$DSASM(n) = \Pr_{\chi_{odd}(n) \leqslant i < j \leqslant n-1} \left(\langle u^i v^j \rangle \frac{(\nu-u)(2+u\nu)}{(1-u\nu)(1-u-\nu)} \right),$$

where $\langle u^i v^j \rangle f(u, v)$ denotes the coefficient of $u^i v^j$ in the expansion of f(u, v).

Main result II

We relate the Littlewood identity for Robbins polynomial to the partition function of diagonally symmetric alternating sign matrices:

Theorem (Fischer, H. 2025)

Let n be a positive integer. Then

$$\begin{split} \sum_{0 \leq k_1 < \dots < k_n}^{1} R_{(k_1, \dots, k_n)}^*(x_1, \dots, x_n; 1, 1, w) \\ &= \prod_{i=1}^{n} \frac{1}{1 - x_i} \prod_{1 \leq i < j \leq n} \frac{1}{1 - x_i x_j} Z_{DSASM}(x_1, \dots, x_n). \end{split}$$

Main result III: Coefficient of the highest term in the

polynomial expansion of $Z_{DSASM}(x_1, \dots, x_n)$

Main result III

The partition function $Z_{DSASM}(x_1,...,x_n)$ is a symmetric polynomial in $x_1,...,x_n$. What can we say about its Schur expansion? \longrightarrow Work in progress

Theorem (Fischer, H. 2025)

The coefficient of $x_1^{n-1}\cdots x_n^{n-1}$ in $Z_{DSASM}(x_1,\ldots,x_n)$ is given by the generating function

$$\sum_{6V \setminus (n)} w^{\#} \stackrel{\longleftarrow}{\longleftarrow} + \# \stackrel{\longleftarrow}{\longrightarrow} ,$$

which equals

$$w^{\binom{\mathfrak{n}}{2}} \Pr_{\chi_{\text{odd}}(\mathfrak{n}) \leqslant i < j \leqslant \mathfrak{n}-1} \left(\langle \mathfrak{u}^i \mathfrak{v}^j \rangle \frac{(\mathfrak{v}-\mathfrak{u})(1+\mathfrak{u}\mathfrak{v}+\mathfrak{w})}{(1-\mathfrak{u}\mathfrak{v})(\mathfrak{w}-\mathfrak{u}-\mathfrak{v})} \right).$$

Open problem

Problem

Find a bijective proof of the following identity:

$$\sum_{6V \searrow (n)} (-1)^{\# \stackrel{\downarrow}{\longleftarrow} + \# \stackrel{\downarrow}{\longleftarrow} = \sum_{6V \searrow (n)} w^{\# \stackrel{\downarrow}{\longleftarrow} + \# \stackrel{\longleftarrow}{\longleftarrow} + \# \stackrel{\longrightarrow}{\longleftarrow} + \# \stackrel{\longleftarrow}{\longleftarrow} + \# \stackrel{\longleftarrow}{\longleftarrow} + \# \stackrel{\longleftarrow}{\longleftarrow} + \# \stackrel{\longrightarrow}{\longleftarrow} + \# \stackrel{\longleftarrow}{\longleftarrow} + \# \stackrel{\longrightarrow}{\longleftarrow} + \# \stackrel{\longrightarrow}{\longrightarrow} + \# \stackrel{\longrightarrow}{\longleftarrow} + \# \stackrel{\longrightarrow}{\longrightarrow} + \# \stackrel{\longrightarrow$$

Here is an illustration of the case n = 3, for which both sides sum to $1 + w + 2w^2 + w^3$.

DSASM	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$
6V√					
LHS	-1	w + 2	w + 2	$w^2(w+2)$	-(w + 2)
RHS	w^3	w^2	w^2	1	w

Do you want to learn more about ASMs?

Workshop 42 years of alternating sign matrices

- University of Ljubljana (Slovenia), 22-26 September 2025
- Invited speakers:
 - Roger Behrend
 - Philippe Di Francesco
 - Ilse Fischer
 - Christian Krattenthaler
 - Anna Weigandt
- Organised by Matjaž Konvalinka, Florian Schreier-Aigner and Jessica Striker
- More information: https://tinyurl.com/42yearsASMs

Do you want to learn more about ASMs?

Workshop 42 years of alternating sign matrices

- University of Ljubljana (Slovenia), 22-26 September 2025
- Invited speakers:
 - ▶ Roger Behrend
 - Philippe Di Francesco
 - Ilse Fischer
 - Christian Krattenthaler
 - Anna Weigandt
- Organised by Matjaž Konvalinka, Florian Schreier-Aigner and Jessica Striker
- More information: https://tinyurl.com/42yearsASMs

Takk fyrir!