MLP Előrejelzések

Kovászna MLP (12, 12, 12,)		
Előrejelzés	Valódi adat	
4.33	4.60	
4.56	4.30	
4.18	4.20	
4.04	4.10	
4.04	4.00	
3.96	3.80	
3.76	3.80	
3.81	3.80	
3.86	3.80	
3.86	3.80	
3.86	4.20	
4.34	4.90	

Hargita MLP (12, 12, 12,)		
Előrejelzés	Valódi adat	
4.01	3.90	
4.08	4.00	
4.19	4.20	
4.36	4.40	
4.53	4.40	
4.39	4.50	
4.41	4.30	
4.15	4.20	
4.01	4.00	
3.88	3.80	
3.72	3.80	
3.85	3.70	

Maros MLP (12, 12, 12,)		
Előrejelzés	Valódi adat	
2.74	2.80	
2.83	2.90	
2.92	3.10	
3.09	3.20	
3.15	3.20	
3.09	3.10	
2.97	3.10	
2.99	3.00	
2.90	2.70	
2.60	2.70	
2.67	2.70	
2.72	2.70	

Kovászna MLP (12, 12, 12,) Előrejelzés Valódi adat Előrejelzési hibák eloszlása 3.5 3.0 Előfordulások száme 0.0 1.5 1.0 0.5 0.0 -0.2 0.2 Hiba tartomány

Model	MSE	RRMSE	MAPE
Kovászna MLP ((12, 12, 12,), 5 réteg)	5.12 %	5.58 %	3.78 %
Hargita MLP ((12, 12, 12,), 5 réteg)	0.82 %	2.19 %	1.93 %
Maros MLP ((12, 12, 12,), 5 réteg)	1.05 %	3.54 %	2.85 %

Kovászna MLP modell összefoglaló

Bemeneti neuronok száma:	3
Kimeneti neuronok száma:	1
Legjobb random kezdőérték a súlyozásra:	78
Rejtett rétegek és azok neuronjainak száma:	(12, 12, 12,)
Normalizálási eljárás:	standard


```
Bemeneti neuronok száma:
                                                                                                  3
Kimeneti neuronok száma:
Legjobb random kezdőérték a súlyozásra:
                                                                                                  78
Rejtett rétegek és azok neuronjainak száma:
                                                                                                  (12, 12, 12,)
Normalizálási eljárás:
                                                                                                  standard
Optimalizálási Algoritmus:
                                                                                                  adam
Optimalizálási ciklus lépésszáma:
                                                                                                  407
Rejtett rétegek Aktivációs függvénye:
                                                                                                  relu
Kimeneti réteg Aktivációs függvénye:
                                                                                                  identity
                                                               Teszt párok (amiket meg kell jósoljon):
Tanító párok: (amiből megtanulta a súlyokat)
1. [10.9 11.4 11.2] --> 10.7
                                                               1. [3.7 3.8 3.8] --> 3.9
2. [11.4 11.2 10.7] --> 9.6
                                                               2. [3.8 3.8 3.9] --> 4.0
3. [11.2 10.7 9.6] --> 9.3
                                                               3. [3.8 3.9 4. ] --> 4.2
4. [10.7 9.6 9.3] --> 8.6
                                                               4. [3.9 4. 4.2] --> 4.4
```

ELtolási értékek vektora:

5. [9.6 9.3 8.6] --> 8.7

-0.22520519, 0.62175745, 0.48100651, -0.20891602,

```
Rétegek súlyai:
```

5. [4. 4.2 4.4] --> 4.4

[array([[-0.54543861, 0.2955442 , 0.36796545,
0.10961464, 0.27303497, -0.04847711, 0.43218584,
-0.2813862 , -0.47652263, -0.01990147, 0.11695193,

```
-0.5351424 ]), array([-0.15339745, 0.61230329,  0.56800811], [ 0.33007475, -0.25516744, 0.01553964,  0.16531035, 0.07394996, 0.65550689, 0.24018555,  0.01889826, -0.04059433, 0.47507467, 0.50581504,
```

Maros MLP modell összefoglaló

Bemeneti neuronok száma:	3
Kimeneti neuronok száma:	1
Legjobb random kezdőérték a súlyozásra:	80
Rejtett rétegek és azok neuronjainak száma:	(12, 12, 12,)
Normalizálási eljárás:	standard
Optimalizálási Algoritmus:	adam
Optimalizálási ciklus lépésszáma:	314
Rejtett rétegek Aktivációs függvénye:	relu
Kimeneti réteg Aktivációs függvénye:	identity

Tanító párok: (amiből megtanulta a súlyokat)

- 1. [8.3 8.4 8.5] --> 8.2
- 2. [8.4 8.5 8.2] --> 7.9
- 3. [8.5 8.2 7.9] --> 7.8

Teszt párok (amiket meg kell jósoljon):

- 1. [2.6 2.7 2.7] --> 2.8
- 2. [2.7 2.7 2.8] --> 2.9
- 3. [2.7 2.8 2.9] --> 3.1

4. [8.2 7.9 7.8] --> 7.9

ELtolási értékek vektora:

[array([-0.33854096, 0.152649 , -0.46029266, -0.48761522, 0.70447463, 0.73875805, -0.53532659, 4.28362481e-01, 3.86682014e-01, 4.91026264e-01, √ -0.42696592, 0.45394074, -0.04621073, 0.16510926, √

4. [2.8 2.9 3.1] --> 3.2

Rétegek súlyai:

[array([[0.03784063, 0.31925197, -0.29021895, 0.17408085, 0.56929643, 0.33043473, -0.14381248, 0.50359409, -0.5167707 , 0.47275841, 0.03201579, -0.1564595 , -0.09193176, -0.41421107, 0.4458605 ,