Barevné modely, práce s barvou

Martin Klíma

Proč je barva důležitá

- Důležitý vizuální atribut
- Různá zařízení, aplikace, média
 - Monitor
 - Tiskárna
 - Video
 - Televize

Světlo a barvy

- Elektromagnetické vlnění
- Viditelná a neviditelná oblat spektra

červená: 3.8x1014 Hz

fialová: 7.9x1014 Hz

Barvy a jejich vlnové délky

Barva	Vlnová délka (nm)
Červená	625 - 740
Oranžová	590 - 625
Žlutá	565 - 590
Zelená	520 - 565
Tyrkysová	500 - 520
Mordá	435 - 500
Fialová	380 - 435

Světlo

- Popis světla
 - frekvence
 - vlnová délka
- Monochromatické světlo
 - jedna vlnová délka
- Běžné světlo mnoho vlnových délek

Spectra From Common Sources of Visible Light

Světlo – bílé denní světlo

Oko – vnitřní stavba

Sítnice

- Tyčinky:
 - cca 130 mil.
 - Rozlišují odstíny šedi
 - Jsou citlivější na světlo, umožňují vidění za šera.
- Čípky:
 - cca 7 mil.
 - Umožňují barevné vidění (modrá, zelená a červená = kombinace).
 - Žlutá skvrna

Čípky

- Existují tři typy čípků, které mají různou citlivost na různé vlnové délky
- Zhruba odpovídají červené, zelené a modré
- Jejich největší citlivost je 610nm, 430nm a560nm u průměrného jedince

Citlivost čípků na barvu

Optické klamy založené na barvě

Jak absolutně změřit barvu?

Problém, každý člověk vnímá barevný podmět jinak

Jak se měří barva

Absolutní měření (CIE XYZ, L*a*b)

Měří barvu absolutně

Barevný prostor zařízení (RGB, CMY, CMYK)

Používá se ve spojení s konkrétním zařízením

HSV, HLS a další

Experiment CIE

- CIE = International Commission on Illumination
- V roce 1931 provedla experiment, ve kterém byla měřena možnost skládat barvy pomocí R, G a B složky

Experiment

Výsledky experimentu

Výsledky experimentu - diskuse

- Některé barvy nebylo možné pomocí RGB modelu namíchat
- Záporná část R křivky znamená, že bylo třeba přidat R složku na stranu TESTLAMPy.
- Jak modelovat celé barevné spektrum, když RGB to neumí?

- Zavedeme jiné tři barvy, které to umět budou.
- Barvy x, y a z.
- Tyto barvy jsou pouze HYPOTETICKÉ

XYZ model

RGB a XYZ

XYZ model

každá barva C se vypočítá jako

$$C = XX + YY + ZZ$$

Rozsahy je vhodné normalizovat, tj. dostaneme rozsahy 0-1

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$z = \frac{Z}{X + Y + Z} = 1 - x - y$$

xyY model

Složku z je možné vypustit, lze jí vypočítat ze složek x a y. Jakoukoli barvu lze získat ze složek xyY, protože

$$X = \frac{Y}{x}$$

$$Z = \frac{Y}{y}(1 - x - y)$$

Tento model se běžně používá.

Y udává jas (brightness nebo luminance)

x a y udávají barevnost, tj. chrominanci

xyY model

- Trojúhelník ABC ohraničuje GAMUT zařízení, které používá barvy A, B a C
- Úsečka DE udává všechny možné kombinace barev D a E

Jestliže je možné ze dvou barev zkombinovat bílou, jsou to komplementární barvy, př. F, G

 Dominantní vlnová délka

> leží na průsečíku bílého bodu, dané barvy a okraje grafu

....jaká je dominantní barva bodu I?

- Bod I nemá vlastní dominantní vlnovou délku
- Dominantní vlnovou délku určíme jako dom. vlnovou délku komplementární barvy

GAMUT = rozsah barev

RGB

630nm (red), 530nm (green), 450nm (blue)

RGB (CMY) cube

CMY(K)

- Cyan je vše kromě Red
- Yellow je vše kromě Blue
- Magenta je vše kromě Green
- Černá vychází špatně, proto se přidává jako přímá barva

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ B \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ Y \end{bmatrix} - \begin{bmatrix} C \\ M \\ Y \end{bmatrix}$$

Převod mezi RGB a CMY a opačně

RGB a CMY(K)

Další barevné modely

- XYZ (xyY), RGB ani CMYK nejsou příliš intuitivní
- Je třeba něco přirozenějšího

HSV, HSI

HSV model

- Definuje tyto složky
 - Hue = barevná složka
 - Saturation (Chroma) = sytost, čistota barvy
 - Value (Luminance) = světlost barvy, jas , intenzita

HSI (HSL) model

YUV

- Y = luma = jas
- U a V jsou barevné složky
- Používá se pro televizní vysílání
- Jasová složka stačí pro ČB vysílání
- U a V jí doplňují pro barevné vysílání

Práce s barvami

Teplé a studené barvy

- Barvy rozdělujeme na
- Teplé
 - Vyvolávají pocit tepla
 - Vystupují z plochy
- Studené
 - Vyvolávají pocit chladu
 - Ustupují dozadu
- Neutrální
 - Černá, bílá, stupně šedé

Barvy a kontrast

- Kontrast
 - Barevný
 - Tonální
- Max. barevný kontrast
 - Barva a její doplněk
- Max. tonální kontrast
 - Bílá a černá

Barvy a kontrast

- Kontrast
 - Barevný
 - Tonální
- Max. barevný kontrast
 - Barva a její doplněk
- Max. tonální kontrast
 - Bílá a černá

Barevný kontrast

Barvy a kontrast

- Kontrast
 - Barevný
 - Tonální
- Max. barevný kontrast
 - Barva a její doplněk
- Max. tonální kontrast
 - Bílá a černá

Barevný kontrast

Tonální kontrast

Příklad

Moderní byt č. 7/2005

Příklad

Moderní byt č. 10/2003

Příklad

Moderní byt č. 1/2006

Reference

- http://www.olympusmicro.com/primer/lightandcolor/lightsour
- http://www.ncsu.edu/scivis/lessons/colormodels/color_mode
- http://en.wikipedia.org/wiki/CIE_1931_color_space
- http://www.fho-emden.de/~hoffmann/ciexyz29082000.pdf
- http://www.fi.muni.cz/~sochor/M4730/Slajdy/Barvy.pdf

