Name: Joe **Date:** 26/10/22

We need to calculate the structure factor of the system. This can calculated by finding the Fourier Transform of the order parameter ϕ and then finding $\langle \phi(\mathbf{k})\phi(-\mathbf{k})\rangle$, or $\langle \phi(\mathbf{k})\phi(\mathbf{k}+\mathbf{k_0})\rangle$ for some Fourier space element k_0 (basically the Fourier analogue of calculating the Correlation Function $\langle \phi(\mathbf{x})\phi(\mathbf{x}+\mathbf{r})\rangle$, where $\mathbf{k_0}$ and \mathbf{r} are arbitrary vectors in Fourier and real space). I'm not clear on which equation to use.

Once we have the structure factor S, we can plot it against k for various times t, and we'll find that they produce different decay curves. For larger t, we'll find that the decay curve is steeper. If we scale the k axis by $t^{1/2}$ or $t^{-1/2}$ (I'm not sure which yet), all the curves will fall onto each other.

From this, we should be able to extract the dynamic scaling exponent, which has a value of z=2.

 $\nabla \phi$ can discretised along a square grid with separation Δx in each direction.

$$\nabla \phi \approx \frac{\Delta \phi}{\Delta x^2} \frac{\phi_{i+1,j} + \phi_{i-1,j} + \phi_{i,j+1} + \phi_{i,j-1-4\phi}}{\Delta x^2} \tag{1}$$