

Población y Salud en Mesoamérica

Revista electrónica publicada por el Centro Centroamericano de Población, Universidad de Costa Rica, 2060 San José, Costa Rica http://ccp.ucr.ac.cr

Población y Salud en Mesoamérica

Revista electrónica semestral, ISSN-1659-0201 Volumen 6, número 1, artículo 5 Julio - diciembre, 2008 Publicado 22 de julio, 2008 http://ccp.ucr.ac.cr/revista/

Tablas de mortalidad, jubilación e invalidez, Costa Rica 2000-2005

Luis Rosero Bixby Andrea Collado Chaves

2008 Centro Centroamericano de Población

Tablas de mortalidad, jubilación e invalidez, Costa Rica 2000-2005

Costa Rican Life Tables for Retairment and Disability, 2000-2005

Luis Rosero Bixby¹ y Andrea Collado Chaves²

RESUMEN

Se estimaron las tablas de vida de Costa Rica del período 2000-2005, detalladas por edades simples y hasta los 115 años de edad. Además, se comparó el patrón de mortalidad general con la de los derecho habientes a pensión dentro de los regímenes contributivos. También, se proyectó una tabla de vida para 2025-2030 y un modelo para estimar las probabilidades de muerte por edades simples, sexo y año calendario dentro del período 2006-2050. La comparación tabla de vida 2000-05 con la de cinco años atrás muestra el progreso en la esperanza de vida. Al nacer, la esperanza de vida fue de 78,2 años para ambos sexos (75,9 para los hombres y 80,6 las mujeres). Costa Rica continúa ocupando el segundo lugar de América como el país de mayor esperanza de vida al nacer, solo superado por Canadá. La esperanza de vida a los 65 años (edad aproximada de jubilación), aumentó medio año para los varones y casi un año para las mujeres; pasando de 16,9 a 17,5 años en hombres y de 19,1 a 19,9 en mujeres. La comparación de los patrones de mortalidad de la población general con las poblaciones con derecho a pensión, mostró que la mortalidad de los derecho habientes no difiere significativamente de la mortalidad de la población total, en cambio para los jubilados e inválidos si se observaron diferencias. La tabla de mortalidad proyectada estima las condiciones probables de mortalidad que vivirán quienes se pensionen en 2007-2011. La proyección supuso un progreso cada vez más lento en la esperanza de vida. Estas tablas de vida se prepararon para la Superintendencia de Pensiones, de manera que sirvan como referencia en cálculos actuariales de seguros de vida y pensiones vitalicias.

Palabras Clave: Mortalidad, Probabilidades de muerte, Esperanza de Vida, Jubilado, Inválido

ABSTRACT

It estimates complete (single ages) life tables for Costa Rica, 2000-2005, up to the age 115 years, as well as a projection for 2025-2030 and a simple model of the death probabilities by age, sex and calendar year in the period 2006-2050. It compares mortality in the general population with the groups of right-owners of retirement pension, the old-age retirees and the disabled-retirees. The estimated life expectancy at birth was 78.2 years for both sexes (75.9 men and 80.6 women). Costa Rica continues to have the second highest life expectancy in the Americas (Canada has the highest). Life expectancy at 65 years, the retirement age approximately, increased half a year for men and almost one year for women from 1995-2000 to 2000-20005: from 16.9 to 17.5 years for men and 19.1 to 19.9 for women. The mortality pattern among the pension-right-owners does not differ significantly from the pattern in the general population. In contrast, the data showed significant differences in mortality of the old-age retirees and the disabled-retirees when compared to the general population. The life table projected for 2025-2030 estimates the likely mortality of those opting for retirement in 2007-2011. This projection assumes slow progress in life expectancy. The Costa Rican Superintendence of Pensions has made mandatory the use of these life table estimates inactuarial computations of life insurances and lifetime pensions.

Keywords: Mortality, Death probabilities, Life Expectancy, Retirement, Disability retirement

Recibido: 10 de junio, 2008 **Aprobado:** 22 de Julio, 2008

¹ Director, Centro Centroamericano de Población. Docente, Universidad de Costa Rica. lrosero@ccp.ucr.ac.cr

² Investigadora, Centro Centroamericano de Población. Docente, Universidad de Costa Rica. acollado@ccp.ucr.ac.cr

1. INTRODUCCION

Este artículo presenta dos juegos de tablas de mortalidad de Costa Rica: (1) las de la población de Costa Rica en el periodo 2000-2005 y (2) las recomendadas para quienes opten por una pensión y que corresponden, en promedio, a las proyectadas para 2025-2030. También presenta un modelo paramétrico para proyectar las probabilidades de morir para cada sexo, edad y año calendario. Además, el artículo presenta los patrones de mortalidad de las personas pensionadas por vejez (jubilados) y pensionadas bajo los regímenes de invalidez (2000-2005). El detalle de las tablas de mortalidad se presenta en los anexos.

Estas tablas de mortalidad se distinguen en varios aspectos de las tablas anuales que se estiman rutinariamente en el país. (1) Incluyen una cuidadosa evaluación y, cuando es necesario, corrección de la información base, especialmente de la población de adultos mayores. (2) Estiman los patrones de mortalidad y supervivencia por edades simples y hasta edades avanzadas (115 años). (3) Procuran remover el "ruido" de fluctuaciones aleatorias en los datos mediante la agregación para un periodo quinquenal y mediante suavizamiento de las curvas por edad con modelos matemáticos.

Las tablas de mortalidad se han preparado de manera que sirvan como referencia durante varios años a actividades que, como los seguros de vida, pensiones vitalicias, planeación de servicios de salud, requieren información sobre probabilidades de muerte y supervivencia y expectativas de vida en Costa Rica en las distintas edades. La Superintendencia de Pensiones (SUPEN) ha adoptado estas tablas de mortalidad como las oficiales del país y de uso obligatorio para las operadoras de pensiones.

Estas tablas del periodo 2000-2005 tienen como antecedentes directo tablas similares preparadas para el periodo 1995-2000 con procedimientos similares (Rosero-Bixby, Brenes y Collado-Chaves, 2005).

2. DATOS Y METODOS

La tabla 1 resume las fuentes de información utilizadas, describe brevemente la información aportada por la fuente e indica para qué cómo fue utilizada.

2.1 Procedimiento para la construcción de las tablas de vida 2000-2005

El punto de partida para la construcción de las tablas de vida fue la estimación de las tasas de mortalidad por edades simples y sexo del período 2000-2005. La estimación siguió diferentes procedimientos para tres tramos de edad:

- 1. De los 5 a los 89 años de edad se determinaron las tasas de mortalidad como el cociente entre las defunciones registradas y corregidas del 2000 al 2005 (numerador) y la suma de las estimaciones de la población a junio de cada año (denominador).
- 2. Para los primeros cinco años de vida, las tasas se calcularon a partir de una estimación directa de las probabilidades de muerte en las distintas cohortes de nacimientos.

 Las tasas de mortalidad de las personas de 90 años y más se estimaron usando los registros del Tribunal Superno de Elecciones (TSE) y el método de cohortes extintas y cuasi-extintas.

Los datos de defunciones y los nacimientos del período se tabularon por año de edad y año de ocurrencia y se corrigieron por subregistro y registro tardío. Se determinó que las defunciones ocurridas e inscritas en el 2005 deben inflarse en 3,0%; las del 2004 e inscritas hasta el 2005, en 0,2% y las de 2003 y 2002 en 0,1%. Los nacimientos también fueron corregidos; para el período 2000-2003 se inflaron en 1%, para el 2004 en 0,9% y durante el 2005 en 0,8%. En ambos casos la corrección se hace para tomar en cuenta registros que ocurrirán del 2007 en adelante. Estas correcciones utilizan el Instituto Nacional de Estadística y Censos (INEC) y el Centro Centroamericano de Población (CCP) en sus estimaciones y proyecciones de población.

La población por sexo y edades simples de los años 2001-2005 se tomó de las estimaciones y proyecciones oficiales de población (INEC & CCP, 2002), disponibles en la Web en: http://censos.ccp.ucr.ac.cr/.

Las probabilidades de muerte de los menores de cinco años se estimaron directamente usando el método de Greville (Ortega, 1987), que consiste en observar por cohortes las defunciones de los menores, desde que nacen hasta que alcanzan la edad 5. La población de 0 a 4 años nacida en el exterior, según el censo, representa un 1,6% de la población nacida en Costa Rica. Por consiguiente, los datos de nacimientos fueron multiplicados por un factor de 1,016 para corregir por la inmigración en estas edades y contar con estimaciones válidas de la población menor de 5 años. Las tasas de mortalidad son el cociente entre defunciones y el número de personas-años vividos en el período.

Las tasas de mortalidad a edades de 90 y más se obtuvieron directamente del padrón electoral, que es más confiable que el censo para estimar la población en estas edades. Las defunciones también se tomaron de los datos del TSE. Para comprobar si hubo subregistro de algunas muertes, se observaron las cohortes que debían haberse extinguido hacia finales del 2005. Con este método se comprobó que las generaciones nacidas entre 1880 y 1895 habían desaparecido del registro (si hubiese habido subregistro de defunciones se verían individuos con edades de 120 años o similares). La edad máxima alcanzada fue de 109 años (Rosero-Bixby, 2005).

Las tasas de los 75 a 104 años tienen un primer suavizamiento con un modelo relacional de mortalidad para edades avanzadas en países de baja mortalidad, desarrollado por Himes et al (1994). El modelo se estimó por regresión en los logaritmos de las tasas. Las tasas estimadas con este modelo presentan una correlación de 0,999 con la serie original. Para las edades de 105 a 115 años, las tasas de mortalidad se extrapolaron usando esta ecuación de regresión.

Un atributo importante de las tablas de vida requerido por los actuarios es que la serie de probabilidades y tasas de mortalidad varíe suavemente con la edad. Se procedió en consecuencia a suavizar la serie observada de tasas de mortalidad por edades simples de 0 a 115 años para cada uno de los sexos utilizando un procedimiento de regresión local disponible en el paquete estadístico STATA (2004), comando "lowess".

El Anexo 1 muestra dos juegos de tasas de mortalidad (m_x) : las observadas (m_{xob}) y las ajustadas (m_{xai}) . El coeficiente de correlación entre las dos series es de 0,999 para cada sexo.

Para pasar de tasas (m_x) a probabilidades (q_x) de muerte se usó la relación propuesta por Reed y Merrell (en Ortega, 1987), excepto en el primer año de vida, en el cual se usaron factores de separación diferentes para hombres y mujeres, a saber: 0,131882 para los hombres y 0,161474 para las mujeres. Estos factores se calcularon con los datos de defunciones y sobrevivientes derivados del método de Greville. El resto de funciones de la tabla se determinaron por métodos convencionales (Ortega, 1987).

2.2 Procedimiento para la construcción de las tablas de vida 2025-2030

Distintos actuarios (Montero de Miguel, 2002; Facultad e Instituto de Actuarios, 2002; Rosas, 2002) señalan como problema que la tabla de vida estimada, pese a su actualización, no es útil para los cálculos actuariales porque refleja las condiciones de muerte del período y no incorpora los cambios en la mortalidad que sucederán en el futuro. Si las rentas se calculan con la mortalidad actual y la mortalidad en el futuro disminuye (como se espera que suceda), las empresas aseguradoras podrían verse en problemas financieros.

Consecuentemente, los actuarios recomiendan estimar tablas de vida que representen las condiciones futuras de mortalidad. Para el periodo 1995-2000 se concluyó que las tablas proyectadas para 2020-25 podían tomarse como representativas de las condiciones de mortalidad que enfrentarán las personas que se pensionen. Para el periodo 2000-2005, la tabla representativa para aplicar a los nuevos pensionados sería la de la proyección 2025-2030. La identificación de ese período se puede resumir en tres pasos:

- 1. Identificación de las cohortes representativas de quienes optarán por pensionarse a corto plazo. Esta cohorte está representada por los nacidos en 1945 más/menos 7 años.
- 2. Determinación del patrón esperado de mortalidad de estas cohortes en el pasado y en las proyecciones oficiales de población.
- 3. Identificación del año o período en el futuro que tiene la esperanza de vida proyectada más parecida a la esperanza de vida a la edad de pensionarse de esta cohorte representativa. Este período es 2025-2030.

Para la estimación de la tabla de vida 2025-2030, se evaluó la vigencia de la proyección oficial de la esperanza de vida. Se encontró que para el período 2000-2005 la esperanza de vida al nacer es prácticamente idéntica a la que se había proyectado en el 2000 (Tabla 2). Esto significa que la proyección oficial de mortalidad sigue vigente y, por tanto, basta tomar de la proyección la tabla para el periodo 2025-2030 como representativa del comportamiento futuro de la mortalidad del país.

2.3 Modelo para proyectar la mortalidad y generar tablas dinámicas

La recomendación para el cálculo de productos actuariales es utilizar la tabla 2025-2030 porque representa el mejor pronóstico de las condiciones de mortalidad de los futuros pensionados. No obstante, algunos actuarios podrían desear una estimación más precisa de estos cambios que les permita obtener probabilidades de morir para cada edad, sexo y cohorte o año calendario.

Una posibilidad para este tipo de necesidades de información es hacer tablas de vida dinámicas; como lo hace la Facultad e Instituto de Actuariado de Inglaterra (http://www.actuaries.org.uk). El modelo propuesto por la Facultad e Instituto de Actuarios basa la proyección de la probabilidad de muerte (q_x) en probabilidades observadas y estandarizadas para la población inglesa y un factor de reducción que varía en función del tiempo y la edad.

Por sugerencia de actuarios del Instituto Nacional de Seguros (Villalobos, 2007), se adoptó un procedimiento análogo para Costa Rica que propone una única ecuación para estimar los valores de q_x en función de la edad y el año, a partir de un juego de probabilidades de morir correspondiente al período base, que en este caso es 2000-2005. La ecuación se estimó usando una regresión múltiple a partir de las series de probabilidades de muerte para hombres y mujeres, años simples de edad y los períodos 1995-2000, 2000-2005, 2020-2025, 2025-2030 y 2045-2050. La ecuación a estimar es:

$$q_{t,x}=A \bullet q_{7,x}^{\beta_1} \bullet x^{\beta_2} \bullet t^{\beta_3}$$

Donde:

 q_{tx} es la probabilidad de morir en el año t y la edad x;

 q_{7x} es la probabilidad de morir en el período base 2000-2005; i. e. t = 7 y la edad x. t es el año a proyectar menos 1995. Por ejemplo para el período 2012, t = 17; x es la edad en años cumplidos;

A y β son parámetros a estimar con regresión múltiple

Con el modelo se re-estimó la serie de probabilidades de muerte del periodo 2025-2030 y la tabla de vida correspondiente. Esta tabla asume 2027 como año central y usa la edad 0,5 para estimar la probabilidad del primer año. Supone además que los factores de separación de la edad cero son los mismos que en el período 2000-2005 (0,131882 hombres y 0,161474 mujeres). El resto de funciones de la tabla se determinan usando métodos convencionales. Los resultados de esta tabla se presentan en el Anexo 2.

2. 4 Tablas de vida de los derecho habientes a pensión y jubilados

El estudio de la mortalidad de derecho habientes, jubilados y pensionados por invalidez, utilizó una muestra al azar de 8.000 personas mayores de 55 años seleccionadas del IX Censo de Población de Costa Rica, 2000 que se describe en Rosero-Bixby, Brenes y Collado (2005). A los individuos de esta muestra se les agregó información de fechas de muerte e historial de pensiones utilizando los números de cédula para empatar con las bases de datos correspondientes.

Los resultados de la muestra expandida se compararon con la estimación de la Encuesta de Hogares de Propósitos Múltiples (INEC, 2007 y 2001-06) y con los datos publicados en los Anuarios Estadísticos (CCSS, 2001a y 2006). La tabla 3 presenta esta comparación.

La comparación entre las fuentes muestra menores discrepancias para los hombres que para las mujeres, pero las diferencias observadas están dentro del margen de variación debido a los errores muestrales, eso significa que los datos de las dos fuentes son en esencia los mismos.

Para comprobar si la mortalidad de las personas con derecho a pensión, jubiladas e inválidos difiere significativamente de las tasas observadas para los costarricenses durante 2000-2005, se dio seguimiento a los individuos de la muestra por seis años y cinco meses, esto es, desde la fecha del censo (28 de junio de 2000) hasta la fecha de cierre del archivo de defunciones del TSE (30 de noviembre de 2006).

Se usó un modelo relacional de tres parámetros propuesto por Rosero-Bixby (2005) para el estudio de la mortalidad de las personas adultas mayores. La tabla de mortalidad de los jubilados se calculó a partir de las tasas de mortalidad estimadas por el modelo y los resultados se presentan en el Anexo 3.

El modelo supone que las tasas de mortalidad del grupo en estudio son un producto de las tasas de mortalidad de Costa Rica V y tres parámetros que denotan: el nivel relativo de la de mortalidad del grupo a la edad x=65 (M); el efecto del envejecimiento relativo a la mortalidad observada (A) y el efecto del sexo (S) medido con una variable d=1 si es varón. Valores de uno en estos parámetros significan que no hay diferencia con la población total en el efecto correspondiente. Si la multiplicación de los parámetros da como resultado la unidad significa que la mortalidad del subgrupo (derecho habientes, jubilados o inválidos) es igual a la mortalidad de toda la población. En símbolos:

$$m_{xd} = V_{xd} M A^{(x-65)} S^d$$

Estos tres parámetros se estiman usando una regresión de Poisson con el software STATA (Statacorp, 2004) para cada subgrupo de interés: toda la muestra, derecho habientes, jubilados e inválidos, junto con variables de interacción entre sexo (*d*) y edad (*x*).

2. 5 Tablas de vida de los pensionados por invalidez

La tasa de mortalidad por invalidez es el cociente entre el número de defunciones en cada edad y sexo y el número correspondiente de años personas de observación. Las series de tasas de mortalidad por edad observadas fueron ajustadas de modo que varíen suavemente con la edad.

Para estimar las tasas de mortalidad, se dio seguimiento a los pensionados por invalidez durante seis años (desde el 1 de enero del 2000 hasta el 31 de diciembre de 2005). Al reorganizar la información sobre la base de segmentos de edad, el número de observaciones pasó de 55.126 personas a 262.562 segmentos. Las tasas se estimaron usando el paquete "Stata 9 SE", específicamente con el comando "strate" (StatCorp, 2004). Las tasas de mortalidad en el rango de 110 a 114 se estimaron con el modelo relacional propuesto por Rosero-Bixby (2005).

Para pasar de tasas (m_x) a probabilidades de muerte (q_x) , se usó la relación de Reed y Merrell (Ortega, 1987). Se estimó la mortalidad para hombres y mujeres de 20 a 114 años de edad (Anexo 4).

No se estimaron tasas de mortalidad, ni probabilidades de muerte para ambos sexos porque no se tiene elementos para ponderar los datos de hombres y de mujeres (por ejemplo, no se puede asumir que el número en cada sexo es el mismo y darles igual ponderación). Tampoco se calcularon las otras funciones de la tabla de mortalidad (en particular, la esperanza de vida) por la gran heterogeneidad de quienes entran a la condición de invalidez. Por ejemplo, no se puede suponer que las probabilidades de morir de los pensionados por invalidez a los 60 años son aplicables a los pensionados a la edad 40 (estos últimos tiene una mortalidad más alta). Al no poder hacer este supuesto, sería incorrecto construir la cohorte hipotética implícita en la tabla de vida y en la estimación de la esperanza de vida.

En el Anexo 5 se pueden consultar los conceptos de derecho habiente a pensión, jubilado, pensionado por invalidez y otros.

3. RESULTADOS

La esperanza de vida al nacimiento en 2000-2005 resultó en 78,2 años para ambos sexos, 75,9 años para los hombres y 80,6 años para las mujeres. Esto representa una ganancia de más de un año si se compara con la esperanza de vida al nacer estimada para 1995-2000 (77,0 total, 74,6 hombres, 79,4 mujeres).

Los logros en el descenso de la mortalidad en Costa Rica se reflejan de manera notable en la evolución de la esperanza de vida al nacimiento, que ha pasado de 42,2 años en 1930 a 78,2 años a finales de siglo (Gráfica 1); vale decir una ganancia promedio de aproximadamente medio año, por cada año calendario, durante siete décadas y media.

La esperanza de vida a los 65 años tiene especial interés porque muestra la situación a la edad aproximada de jubilación de las personas. La ganancia a estas edades ha sido también considerable, aunque no tan grande como al nacimiento.

La esperanza de vida a los 65, pasó de 11 años en 1930 a casi 19 años en el 2000-2005, es decir un aumento aproximado de dos meses y medio por cada año transcurrido durante el último lustro. La esperanza de vida a los 65 años aumentó del período 1995-2000 al 2000-2005, medio año para los varones y casi un año para las mujeres. Es decir, a los 65 años, la esperanza de vida pasó de 16,9 a 17,5 años y de 19,1 a 19.9, respectivamente (Gráfica 1).

La gráfica 2 compara las tasas de mortalidad por edades simples y sexo para los períodos 1995-2000 y 2000-2005. La comparación en primer lugar evalúa la coherencia en los patrones de mortalidad por edad de las tablas en ambos periodos y, en segundo, evidencia la caída de las tasas de mortalidad en todas las edades y en los dos sexos. Se observa, además el patrón característico de mayor mortalidad de los hombres, especialmente entre los adultos jóvenes.

La caída proporcional de la mortalidad en estos cinco años ha sido más acentuada en los menores de cinco años y más leve en los adultos mayores, como se observa en la tabla 4 que muestra los

porcentajes de disminución calculados con las tasas de mortalidad de la población estacionaria implícita en la tabla de vida.

El Anexo 1 presenta las tablas de mortalidad completas de los costarricenses, 2000-2005.

Para estudiar la mortalidad diferencial para los subgrupos de pensionados (derecho habientes, jubilados e inválidos) se compararon las tasas de mortalidad de los costarricenses con las tasas de mortalidad de cada subgrupo. Primero las comparaciones se hicieron a partir de la muestra representativa de adultos mayores.

Antes de presentar los resultados de esta comparación se hace una breve caracterización de la muestra.

3. 1 La muestra para estudiar la mortalidad diferencial

El número de individuos incluidos en la muestra fue 7.894 para un total de 49.124 años de observación entre el 28 de junio del 2000 y el 30 de noviembre de 2006, o la fecha de defunción (tabla 5). El número de defunciones registrado en este periodo fue 2.614, casi un 70% más de defunciones que las observadas en el estudio anterior (Rosero-Bixby, Brenes y Collado, 2005).

El 25% de las observaciones corresponden a individuos de 80 o más años, quienes registran el 80% de las defunciones. Dado que las fracciones muestrales difieren según la edad, los totales de la tabla 5 no son representativos de la población de Costa Rica.

El 59% de los individuos en la muestra son derecho habientes. Cuando se infiere esta cantidad para la población de adultos mayores del país, para el año 2000, los derecho habientes en estas edades corresponden a unas 275 mil personas; cifra que es casi idéntica a la reportada por la Encuesta de Hogares del 2000 (277 mil). Esta estimación no se compara con el dato censal porque, un 17% de las personas que según las categorías del censo eran derecho habientes, estaban mal clasificados y correspondían a pensionados por cuenta del Estado.

En lo que respecta al número de pensionados, un tercio de las personas de la muestra pertenecen a regímenes contributivos. Entre el total de pensionados de los regímenes contributivos la mayoría son jubilados, esto equivale al 19% de los adultos de la muestra (Tabla 6).

¿Cuánto se asemeja el patrón de mortalidad de la muestra al descrito por la tabla de vida de Costa Rica 2000-2005? La gráfica 3 muestra que las tasas de mortalidad por edad de la muestra no difieren significativamente de las de la población en el periodo 2000-2005, excepto en el último grupo de edad que es muy peculiar (100 o más años) y que influye poco en la estimaciones. Esto significa que el patrón de mortalidad de la muestra estudiada es representativo de la población de Costa Rica.

La tabla 7 presenta la estimación de los tres parámetros del modelo para: (1) toda la muestra, (2) los derecho habientes, (3) la muestra de jubilados y (4) la muestra de pensionados por invalidez. Se confirma que la mortalidad de la muestra no difiere significativamente de toda la población (los tres intervalos de confianza incluyen la unidad), lo que permite a la vez utilizar la muestra para medir las diferencias entre los subgrupos de pensionados.

La tabla 7 muestra que la mortalidad de los derecho habientes no difiere significativamente de la mortalidad de toda la población de Costa Rica. En cambio para los jubilados e inválidos, sí se observan diferencias. En el caso de los jubilados, el modelo estima efectos significativos por sexo. Por el contrario, para los pensionados por invalidez, el nivel de la mortalidad es mayor que el nivel observado para los costarricenses, pero la relación no es diferente por sexo, aunque sí varía con la edad.

Para apreciar mejor los efectos que estima el modelo y observar los patrones de mortalidad de jubilados e inválidos en comparación con todos los costarricenses, la gráfica 4 muestra las tasas relativas de los jubilados e inválidos por sexo y edad. Valores cercanos a la unidad indican que las tasas de jubilados o inválidos y de toda Costa Rica son similares, por el contrario cuando la relación es mayor a la unidad, las tasas de la subpoblación en estudio son más altas que la población total y cuando la relación es menor a la unidad, las tasas son más bajas.

De acuerdo con el modelo, alrededor de los 65 años de edad, los hombres jubilados tienen una mortalidad similar a la población total (tasa relativa de uno), mientras que las mujeres tienen una mortalidad que es el 77% de la de toda la población (23% más baja). Conforme se avanza en edad, la mortalidad relativa de los dos sexos disminuye linealmente. Por ejemplo a los 85 años de edad, los jubilados varones ostentan una mortalidad que es el 94% de la de toda la población y las mujeres 74%.

Las tasas relativas de las mujeres jubiladas siempre son más bajas que las de los varones, lo que significa que la brecha entre los sexos es mayor que la observada en toda la población. Por ejemplo, a los 65 años de edad, los varones jubilados tienen una mortalidad que es 94% mayor que las mujeres, mientras que en toda la población esta sobremortalidad es 52%.

Para los pensionados por invalidez y de acuerdo con el modelo, se observan efectos que difieren sustancialmente de la unidad, pero que son muy parecidos entre los sexos. A edades tempranas, la mortalidad de los inválidos es mucho mayor que la observada en la población general, pero este efecto disminuye con la edad. Alrededor de los 60 años de edad, los pensionados por invalidez tienen una mortalidad que es casi el doble que en toda la población; a los 90 años la mortalidad de este grupo es la misma que la población.

Los resultados de la estimación de la mortalidad de los pensionados por invalidez a partir de la muestra se compararon con los resultados obtenidos por el CCP usando el universo de pensionados por invalidez de la Caja Costarricense de Seguro Social (CCSS) a noviembre del 2006 y con las probabilidades de muerte de una tabla de mortalidad estimada recientemente por la CCSS (Torres, 2004).

El número de individuos incluidos en este universo fue 55.126 (28% mujeres) para un total de 262.606 años de observación entre el 1 de enero del 2000 y el 31 de diciembre del 2005, o la fecha de defunción, para quienes murieron antes.

La tabla 8 muestra que más del 50% de los pensionados está entre los 45 y los 64 años de edad. Un cuarto del total de pensionados está entre los 65 y 74 años. En los rangos de edad menores de 44 y mayores de 75 años, hay una cantidad aproximadamente igual de personas.

El número de defunciones registrado en este periodo fue 7.798, la gran mayoría (82%) fueron en varones. El 50% de las defunciones ocurren a una edad inferior a los 70 años, pero de ellas la mitad se concentra entre los 60 y 69 años de edad y menos del 10% de las muertes ocurre antes de los 44 o después de los noventa (Tabla 8). Se desconocen las características de la población que se utilizó en el estudio de Torres (2004).

De las tasas observadas se obtuvo un conjunto de tasas ajustadas para cumplir con los requerimientos actuariales. El Anexo 4 muestra dos juegos de tasas de mortalidad (m_x): las observadas y las ajustadas. El coeficiente de correlación entre las dos series es 0,95 para varones y 0,90 en el caso de las mujeres. Esta menor correlación en el caso de las mujeres se debe a que sus tasas observadas son más fluctuantes en especial en edades extremas.

La comparación de las probabilidades de morir estimadas por la CCSS (Torres, 2004), con las estimadas por el CCP se observan en la Gráfica 5. A partir de los 60 años las tendencias son muy similares en todo el rango de edad. Sin embargo, la estimación de la CCSS muestra probabilidades de morir más altas que las observadas por el CCP, en especial para los varones.

La explicación de estas discrepancias no es simple. Una diferencia está en los métodos para estimar las tasas de mortalidad; el CCP usa un análisis longitudinal mientras que la CCSS calcula tasas de corte transversal. La otra diferencia es el período de referencia. El quinquenio utilizado por la CCSS representa el promedio del período 1998-2002, mientras que el CCP hace un seguimiento a partir del 2000 y hasta el 2005.

A pesar de las diferencias metodologías entre las tasa de la CCSS y el CCP, la tendencia por edad en las series permite ver que la mortalidad de los inválidos es más alta que la mortalidad de los costarricenses y que este patrón es similar para los dos sexos pero varía con la edad. En las edades muy jóvenes, antes de los 45 años, la mortalidad de los inválidos es hasta cinco y diez veces mayor que la mortalidad de los costarricenses. Estas diferencias comienzan a cerrarse conforme mayor es la edad de la persona pensionada. A los 60 años la diferencia entre las probabilidades de muerte de los pensionados por invalidez y los costarricenses es apenas el doble y de los 75 años en adelantes ya no existe diferencia (Gráfica 6).

3. 2 Proyección de la mortalidad futura de los pensionados

Después de observar detalladamente la mortalidad de la población de costarricenses y compararla con los diferentes grupos de pensionados de los regímenes contributivos, persiste el problema de la proyección de la mortalidad de los futuros pensionados.

Las proyecciones de la mortalidad venidera en Costa Rica, preparadas como parte de las proyecciones oficiales de población (CCP & INEC 2002), proporcionan un escenario probable o una adivinanza educada del futuro. Estas proyecciones prevén que para el 2045-2050 la población costarricense tendrá una esperanza de vida al nacimiento de 82,3 años, comparada con la de 78,2 del 2000-2005. Esta proyección, concuerda con las hipótesis de las Naciones Unidas en sus proyecciones mundiales de población.

El modelo para estimar las probabilidades de muerte q_{tx} , en cualquier año t comprendido entre 1995 y 2050 y en las edades x entre 0,5 y 114 años cumplidos, usó la información observada

durante los períodos 1995-2000 y 2000-2005 y las proyecciones oficiales para estimar los parámetros de la siguiente ecuación:

$$q_{t,x}$$
=1,789 • $q_{7,x}^{1,054}$ • $x^{-0,035}$ • $t^{-0,121}$

Donde:

 q_{tx} es la probabilidad proyectada de morir en el año t y la edad x; q_{7x} es la probabilidad de morir en el período base $(q_x, Anexo 1)$; i. e. t=7 y la edad x. t es el año que se va proyectar menos 1995. Por ejemplo para el período 2012, t=17;

El modelo para proyectar las probabilidades de muerte derivado de estas tendencias futuras resulta en una esperanza de vida al nacimiento de 81,2 años (79,1 varones; 83,4 mujeres) en 2050. Esto implica ganancias algo menores en la esperanza de vida que las de la proyección oficial (82,3 ambos sexos; 79,8 hombres y 84,9 mujeres).

El objetivo de este modelo es que los actuarios interesados puedan hacer cálculos más precisos de las probabilidades de muerte de un año y edad en particular, para determinar la renta vitalicia de, por ejemplo, una cohorte. El modelo también se utilizó para ajustar la proyección de la mortalidad de los pensionados, de modo que éstas sean coherentes con tablas de vida dinámicas.

La tabla de mortalidad proyectada para 2025-2030 aproxima de manera conveniente las condiciones probables de mortalidad que en promedio enfrentarán los costarricenses que hoy tienen alrededor de 60 años de edad y están por pensionarse en los próximos cinco años. De acuerdo con este pronóstico se espera un progreso cada vez más lento en la esperanza de vida al nacer y a los 65 años de edad.

Para la edad en que aproximadamente se opta por una pensión, los 65 años, las proyecciones al 2050 (proyectadas con el modelo) pronostican una ganancia de 2 años en la esperanza de vida, en comparación con el período actual.

4. DISCUSIÓN

La mortalidad de los costarricenses para el periodo 2000-2005 sigue el descenso pronosticado en un estudio efectuado hace cinco años (Rosero-Bixby et al, 2005). Por otra parte, los datos muestran que la mortalidad de los derecho habientes no difiere de la mortalidad de la población total. Este último resultado discrepa del encontrado cinco años atrás en la misma muestra de individuos, pero en un periodo más corto (2000-2002).

El hecho de que no se encuentren diferencias entre la mortalidad de derecho habientes y la población general tiene dos posibles explicaciones: (1) el primer estudio siguió a los individuos de la muestra durante un periodo muy breve (dos años); (2) el primer estudio hizo imputaciones para identificar los individuos pensionados por el régimen no contributivo (dato no disponible en el censo del 2000), mientras que en el actual, se dispuso de información precisa de estas pensiones.

En el análisis de la mortalidad diferencial de los jubilados y pensionados por invalidez, se encontró que las personas jubiladas tienen una menor mortalidad. Por el contrario, las personas pensionadas por invalidez tienen una mayor mortalidad que la población general.

Para el caso de las personas jubiladas, el sexo es muy importante. Las mujeres presentan una menor mortalidad que los varones jubilados y una menor mortalidad que las mujeres costarricenses. Estas diferencias se amplían conforme aumenta la edad. En cambio, la mortalidad de los varones jubilados no difiere de la población masculina general.

El hallazgo de la menor mortalidad de las mujeres jubiladas debe tomarse con cautela, esta es la primera vez que se hace un estudio de mortalidad diferencial para los pensionados por vejez y los resultados podrían ser muy coyunturales y propios del grupo en este momento del tiempo. Debido al rápido y considerable incremento de la participación de la mujer en la actividad económica, es probable que las jubiladas de mañana tengan una composición diferente de las de hoy.

Los pensionados por invalidez presentan mortalidades más altas que la población general. En este grupo no se observan diferencias por sexo, pero sí por edad. En la medida que el pensionado alcanza edades superiores, las diferencias en la mortalidad tienden a disminuir, de modo que después de los 75 años, la mortalidad observada en hombres y mujeres pensionados por invalidez es la misma que la mortalidad de la población total.

Estos resultados fueron corroborados en dos estudios independientes: el de mortalidad diferencial en una muestra de 8.000 costarricenses y una tabla de mortalidad preparada por la CCSS. En el tramo crucial de edades 55 a 90 años hay una buena concordancia de las tres estimaciones. Antes de los 55 años, las tasas relativas estimadas por el CCP son mayores a las estimadas por la CCSS en especial para mujeres.

La estimación para edades jóvenes, especialmente 20 a 40 años, indica probabilidades de muerte varias veces mayores que la población general. Este no es un resultado sorpresivo pues cabía esperar que una persona joven a la que se le ha adjudicado una pensión de invalidez tenga severos problemas de salud que se reflejan en una muy alta probabilidad de muerte. Más bien sorprende que esta sobre-mortalidad relativa de los pensionados por invalidez tienda a desaparecer a edades mayores. Esto último sugiere que los pensionados por invalidez después de, digamos, los 60 años de edad no presentan realmente deficiencias en su salud y más bien estarían utilizando el mecanismo de la pensión de invalidez para obtener un retiro anticipado. La entrada masiva de pensionados por invalidez en edades cercanas a los 60 años, observada en el estudio de las tablas de invalidez (Collado & Rosero, 2007b), respalda la hipótesis del uso de la pensión por invalidez como un retiro anticipado.

Si la presunción anterior es cierta, los pensionados por invalidez constituirían un grupo muy heterogéneo al que no es apropiado hacerles un análisis de tabla de vida. Habría por lo menos dos grandes grupos: (1) el de los que obtuvieron esta pensión a edades jóvenes y que realmente tienen problemas de invalidez; y (2) el grupo que no tiene realmente problemas de invalidez y que obtuvo esta pensión a edades más avanzadas para lograr un retiro anticipado. Debido a esta heterogeneidad, cualquier análisis de los patrones de mortalidad de los "inválidos" debe necesariamente distinguir grupos de edad al adjudicarse la pensión o, en otras palabras, deben construirse tablas separadas de mortalidad según grupos de edad al pensionarse. Puede

anticiparse que, por ejemplo, la tasa de mortalidad a los 65 años de edad, será mucho más alta entre los pocos sobrevivientes de los que se pensionaron a edades jóvenes que entre quienes se pensionaron recientemente, digamos, a los 60 años.

Dado lo anterior, y dado que probablemente la situación puede cambiar muy rápido en Costa Rica ante modificaciones en los reglamentos y procedimientos para adjudicar estas pensiones, se recomienda un estudio a fondo del régimen de invalidez antes de tomar decisiones sobre las tablas de vida a usar para los pensionados en este régimen.

Considerando que no hay diferencias significativas en la mortalidad de los derechohabientes, se recomienda usar la tabla de vida proyectada para toda la población (2025-2030) en los cálculos actuariales relacionados con pensiones vitalicias y similares.

El modelo para proyectar las probabilidades de muerte permite a los actuarios del país preparar juegos de probabilidades de muerte específicos para cada cohorte. Conviene advertir, empero, que el modelo solo puede usarse para el período 2006-2050 que sirvió de base para su estimación. Después del 2050, cualquier proyección es muy aventurada. Una posibilidad es suponer constante la mortalidad de 2050 en adelante.

Por ejemplo, para una persona que se pensionará a la edad 68 en 2008, puede construirse una tabla dinámica iniciando con la probabilidad de morir a la edad 68 (q_{68}) de 2008, q_{69} de 2009, hasta llegar a q_{110} de 2050. De la edad 111 en adelante (q_{111} hasta q_{114}) se deben usar las probabilidades de muerte 2050.

Ya sea que se use la proyección 2025-2030 o las tablas dinámicas, se recomienda que estas estimaciones se actualicen periódicamente (cada cinco años). En otras palabras, que las estimaciones presentadas se usen únicamente para cálculos actuariales de personas que se pensionen en 2007-2011 y que en este último año se actualicen las estimaciones para quienes se pensiones en 2012-2016 y así sucesivamente.

A manera de resumen, la tabla 9 compara las probabilidades de muerte por mil, a los 60 años de edad (probabilidad de morir el año siguiente para individuos que llegaron con vida a los 60 años), estimadas en cada uno de los anexos:

Convendrá observar cuidadosamente si resultados similares para jubilados e inválidos se registran en el futuro y ponderar juiciosamente los pros y contras de incorporar diferenciales en cálculos actuariales de pensiones. Como regla general, dejar de lado las tablas de mortalidad de toda la población y usar tablas especificas de subgrupos es poco recomendable, pues puede llevar a exageraciones o discriminaciones inapropiadas. En todo caso, este es un tema de política actuarial que los actuarios están en mejor posición de debatir.

Además, es deseable que en el futuro el sistema de pensiones complementarias genere sus propios datos para la determinación de las tablas de vida de sus derecho habientes.

4. REFERENCIAS

- CCSS (2001a). *Anuario Estadístico*, 2000. Departamento de Estadística de la Dirección Actuarial y de Planificación Económica. Presidencia Ejecutiva. Caja Costarricense del Seguro Social. http://www.ccss.sa.cr/actuarial/estadist/anuarios/anuar00/anpres.htm
- CCSS (2001b). Estadística de Patronos, Trabajadores y Salarios (EPT). Departamento de Estadística de la Dirección Actuarial y de Planificación Económica. Presidencia Ejecutiva. Caja Costarricense del Seguro Social. http://www.ccss.sa.cr/actuarial/estadist/ept/ept2000/eptjn00.html
- CCSS (2004). *Anuario Estadístico*, 2003. Departamento de Estadística de la Dirección Actuarial y de Planificación Económica. Presidencia Ejecutiva. Caja Costarricense del Seguro Social. http://www.ccss.sa.cr/actuarial/estadist/anuarios/anuar03/default.htm
- CCSS (2006). *Anuario Estadístico*, 2005. Departamento de Estadística de la Dirección Actuarial y de Planificación Económica. Presidencia Ejecutiva. Caja Costarricense del Seguro Social. http://www.ccss.sa.cr/actuarial/estadist/anuarios/anuar05/default.htm
- CCSS (2007). Tabulados especiales de los trabajadores que cotizan al seguro de pensiones por sexo y edades simples, 2001-2005. Departamento de Estadística de la Dirección Actuarial y de Planificación Económica. Presidencia Ejecutiva. CCSS.
- Facultad e Instituto de Actuarios (2002). Formulae and Tables for Examinations of The Facultiy of Actuaries and The Institute of Actuaries. The Faculty of Actuaries and The Institute of Actuaries.
- Himes, C., Preston, S., & Condran, G. (1994). A relational model of mortality at older ages in low mortality countries. *Population Studies*, 48(3), 269-291.
- INEC & CCP (2002). Estimaciones y Proyecciones de Población Costa Rica 1970-2050 Actualizadas al 2000. San José, Costa Rica: Instituto Nacional de Estadística y Censos (INEC) y Centro Centroamericano de Población (CCP).
- INEC (2000). Censo de Población y Vivienda, 2000. Instituto Nacional de Estadística y Censos (INEC).
- INEC (2000-05). *Estadísticas Vitales*. Instituto Nacional de Estadística y Censos (INEC). Acceso a bases de datos a partir de la página web del CCP, PDQ-Explorer. http://censos.ccp.ucr.ac.cr/
- INEC (2001-06). Encuestas de Hogares de Pronósticos Múltiples. Instituto Nacional de Estadística y Censos (INEC). Acceso a bases de datos a partir de la página web del CCP. http://encuestas.ccp.ucr.ac.cr/
- INEC (2007). Solicitud de tabulados especiales preguntas 7.1 y 7.2. *Encuesta de Hogares de Propósitos Múltiples*, 2003 y 2005. Instituto Nacional de Estadística y Censos (INEC).
- McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models. London: Chapman and Hall.

- Montero de Miguel, M.E. (2002), Informe sobre las tablas de Vida Completas, Costa Rica 1995-2000. Informe entregado a la Superintendencia de Pensiones.
- Ortega, A. (1987). *Tablas de mortalidad*. San José, CR: Centro Latinoamericano de Demografía CELADE.
- Rosas, N.A. (2002). Comunicación por correo electrónico. 19 Agosto 2002. nrosas@cnsf.gob.mx
- Rosero-Bixby, L. (2005). *Costa Rican nonagenarians: are they the longest living male humans?* Paper presented at the IUSSP XXV International Population Conference, Tours, France, 2005.
- Rosero-Bixby, L., Brenes, G. & Collado-Chaves. A. (2002). Mortalidad específica de los derecho habientes del régimen contributivo de pensiones. Costa Rica 2000-2002. *Informe de Consultoría*. Centro Centroamericano de Población Centro Centroamericano de Población.
- Rosero-Bixby, L., Brenes, G. & Collado-Chaves, A. (2005). Tablas de vida para cálculo actuarial de rentas vitalicias y retiro programado. Costa Rica circa 2000. En: R. Chinchilla (Editor.), *Población y Salud en Mesoamérica*. Centro Centroamericano de Población. (173-205)
- Statacorp. (2004). *Stata Statistical Software: release 9.0.* College Station, Texas: Stata Corporation.
- Torres, C (2004). *Tabla de Mortalidad para la población pensionada por invalidez*. Estudio 10. Departamento Actuarial de la Dirección Actuarial y de Planificación Económica. Presidencia Ejecutiva. Caja Costarricense del Seguro Social.
- Villalobos, J.A. (2007). Comunicación personal en una reunión organizada por la SUPEN. 23 marzo 2007. jvillalobos@ins-cr.com.

AGRADECIMIENTOS

Este estudio es producto de una contratación que la Superintendencia de Pensiones (SUPEN) de Costa Rica hizo con el Centro Centroamericano de Población durante el año 2006-2007. Se agradece al Superintendente Javier Cascante por autorizar la publicación de estos resultados con fines académicos. También se agradece el apoyo de Tomás Soley de la SUPEN y las recomendaciones de José Ángel Villalobos del Instituto Nacional de Seguros.

Tabla 1. Descripción de las fuentes de información consultadas y su utilización

Fuente	Descripción	Utilizada para:
Anuario Estadístico de la CCSS, 2001a, 2004 y 2006. INEC, 2007	Pensiones otorgadas bajo el IVM y cotizantes del Seguro de Pensiones, por grupos de edad Encuesta de Hogares de	Validar información de pensionados según régimen (contributivo no contributivo) y tipo de pensión (vejez, invalidez, beneficiario)
INEC, 2000-2005	Propósitos Múltiples (EHMP) Defunciones de las Estadísticas	Validar la información sobre
	Vitales	mortalidad de los costarricenses
INEC & CCP, 2002	Proyecciones oficiales de la esperanza de vida y las probabilidades de muerte (q_x)	Validar proyección de la esperanza de vida y construir el modelo para proyectar q_x
		Continúa Tabla 1
División de Pensiones de	Números de cédula y fechas de	Tasas de mortalidad de las personas
la Caja Costarricense de	adjudicación de la pensión del	pensionadas por invalidez
Seguro Social (CCSS)	total de pensionados por invalidez en el régimen del IVM.	Seguimiento de la mortalidad de pensionados por invalidez
INEC, 2000	Micro datos del Censo de Población *	Estimar las tasas de mortalidad de derecho habientes
División de Pensiones de	Pensionados por invalidez, vejez	Estimar la mortalidad de derecho
la CCSS	o muerte del IVM**	habientes, jubilados e inválidos
División de Pensiones de	Pensionados del Régimen no	Distinguir los pensionados por este
la CCSS	Contributivo de monto básico**	régimen
Departamento de	Cotizante, causante o beneficiario	Definir fecha de pensión de
Informática del	del régimen del Magisterio**	jubilados e inválidos
Magisterio Nacional		
Dirección de Pensiones,	Pensionado dentro de los	Definir fecha de pensión de
Ministerio de Trabajo y	regímenes administrados por esta	jubilados e inválidos y regímenes
Seguridad Social	Dirección**	no contributivos
Tribunal Supremo de	Actualización de los archivos de	Mortalidad de derecho habientes,
Elecciones (TSE), 2007	nacimientos y defunciones	jubilados e inválidos.

^{*} Muestra representativa de adultos mayores seleccionada a partir del Censo **Empates de cédulas con la muestra representativa de la población adulta mayor del país.

Tabla 2. Esperanza de vida observada y comparación con la esperanza de vida proyectada

Período	Esperanza de vida al nacer		Esperanza d	Esperanza de vida 65 años		
2000-05	Hombres	Mujeres	Hombres	Mujeres		
Observada	75,9	80,6	17,5	19,9		
Proyectada	75,8	80,5	17,3	19,8		

Tabla 3. Número pensionados según la Encuesta de Hogares de Propósitos Múltiples y la muestra expandida, por tipo de régimen. 2000 y 2005

Régimen de pensión	20	2000^{1}		005^2
	EHPM	Muestra	EHPM	Muestra
Total				
Regímenes contributivos ³	123.109	133.864	141.292	136.283
Regímenes no contributivos ⁴	51.711	67.366	58.806	68.429
Hombres				
Regímenes contributivos ³	71.039	76.786	77.840	77.463
Regímenes no contributivos ⁴	20.160	27.083	24.058	25.660
Mujeres				
Regímenes contributivos ³	52.070	57.077	63.452	58.820
Regímenes no contributivos ⁴	31.551	40.283	34.748	42.769

¹⁻ Personas de 55 años o más.

Fuente: Elaboración propia a partir de la página web: http://encuestas.ccp.ucr.ac.cr/. INEC, 2001-06.

Tabla 4. Porcentaje de cambio en las tasas de mortalidad por grandes grupos de edad, Diferencia entre el período 2000-2005 y 1995-2000

Grupo de edad	Hombres	Mujeres
Niños menores de 5 años	-18%	-15%
Jóvenes de 5 a 24 años	-12%	-4%
Adultos de 25 a 64 años	-9%	-9%
Adultos mayores de 65 años y más	-3%	-4%

²⁻ Personas de 60 años o más.

³⁻ Se consideran pensionados de regímenes contributivos todas las personas que acceden al Seguro Social por medio de una pensión del IVM, del Magisterio, Poder Judicial, Hacienda u otro.

⁴⁻ Se consideran pensionados de regímenes no contributivos todas las personas que acceden al Seguro Social por medio de una pensión del régimen no contributivo.

Tabla 5. Individuos y años/persona en la muestra

-		Años/	Defun-
Edad/ Sexo	Individuos		ciones
Edad/ Sexo	marviduos	persona	Ciones
Total	7.894	49.124	2.614
Edad			
55-59	833	2.313	19
60-64	1.039	6.584	60
65-69	1.040	7.365	95
70-74	1.042	7.341	159
75-79	997	6.966	227
80-84	950	6.487	345
85-89	389	4.074	321
90-94	795	2.655	350
95-99	688	3.840	736
100 y más	121	1.499	302
Sexo			
Mujeres	4.122	25.868	1.318
Hombres	3.772	23.256	1.296

Tabla 6. Características de los individuos en la muestra

Régimen	Muestra sin ponderar		Muestra ponderada		
De pensión	Personas	Personas Porcentaje		Porcentaje	
Total	7.894	100	406.386	100	
Derecho habiente	7.074	100	400.500	100	
Sí	4.654	59	275.324	68	
No	3.240	41	131.062	32	
Pensionado					
No pensionado	3.080	39	205.703	51	
Jubilado	1.492	19	78.904	19	
Invalidez	654	8	33.656	8	
Beneficiario	477	6	21.873	5	
RNC	2.191	28	66.190	16	

Tabla 7. Parámetros del modelo relacional de mortalidad. Muestra de adultos mayores de Costa Rica 2000-2005

Efectos	Parámetro	Interv. confianza 95%		nza 95%			
Muestra total							
M nivel	0,965	(0,869	-	1,072)			
A edad (65=0)	0,998	(0,994)	-	1,001)			
S (varón=1)	1,007	(0,930	-	1,091)			
Derecho habie	ntes						
M nivel	0,948	(0,825	-	1,090)			
A edad (65=0)	0,997	(0,992)	-	1,002)			
S (varón=1)	1,051	(0,937	-	1,179)			
Jubilados							
M nivel	0,772	(0,581	-	1,027)			
A edad (65=0)	0,998	(0,988)	-	1,007)			
S (varón=1)	1,276	(1,006	-	1,618)			
Inválidos	Inválidos						
M nivel	1,585	(1,089	-	2,309)			
A edad (65=0)	0,976	(0,964	-	0,989)			
S (varón=1)	0,970	(0,713	-	1,321)			

Las áreas sombreadas indican efectos significativos.

Tabla 8. Individuos y años/persona

		Años/	Defun-
Edad/ Sexo	Individuos	persona	ciones
Total	55.126	262.606	7.798
Edad			
15-24	196	377	12
25-34	1.456	4.579	90
35-44	4.250	15.431	284
45-54	9.971	38.826	704
55-64	19.714	76.657	1.474
65-74	13.061	81.634	2.085
75-84	5.161	34.844	1.871
85-94	1.266	9.756	1.170
95 y más	51	501	108
Sexo			
Mujeres	15.180	74.690	1.367
Hombres	39.946	187.916	6.431

Tabla 9. Probabilidad de morir para individuos de 60 años de edad

Tasas de mortalidad ajustadas	Hombres	Mujeres
Población de Costa Rica 2000-2005	10,1	6,5
Jubilados de Costa Rica 2000-2005	10,1	5,1
Inválidos de Costa Rica 2000-2005	17,5	11,7
Inválidos de IVM 2000-2005	24,5	16,0
Recomendada futuros pensionados:		
Proyección Costa Rica 2020-2025 (modelo)	8,0	5,1

Gráfica 1. Esperanza de vida al nacer y esperanza de vida a los 65 años por sexo. Costa Rica, 1930-2005

Gráfica 2. Comparación de las tasas de mortalidad específicas por sexo y edades simples. Costa Rica, 1995-2000 y 2000-2005

Gráfica 3. Tasas de mortalidad por edad de la tabla de vida de los costarricenses, 2000-2005 y de la muestra de adultos mayores de 60 y más, 2000-2005.

Gráfica 4. Tasas de mortalidad de los jubilados relativa a toda la población, 2000-2005. Adultos mayores de 60 y más.

Gráfica 5. Probabilidad de morir relativa a toda la población, 2000-2005. Universo de inválidos de la CCSS (CCP-IVM), muestra de adultos mayores de 60 y más (CCP muestra) y estimación de la CCSS.

Gráfica 6. Comparación de las probabilidades de muerte relativas de los inválidos y los costarricenses del IVM-CCSS por edades simples, 2000-2005.

5. ANEXOS

Anexo 1.1. Tabla de vida población masculina, 2000-2005

Edad	Tasa de	Tasa de	Probabilidad	Número de	Defuncio-	Tiempo	Tiempo por	Esperanza
	mortalidad	mortalidad	condicional	sobrevivientes	nes en la	vivido en	vivir desde	de vida a la
	observada	ajustada	de muerte	a edad x	edad x	la edad x	la edad x	edad x
X	$\mathbf{m}_{\mathbf{xob}}$	$\mathbf{m}_{\mathbf{xaj}}$	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{l_x}$	$\mathbf{d}_{\mathbf{x}}$	$\mathbf{L}_{\mathbf{x}}$	$\mathbf{T}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$
0	0,011199	0,011416	0,011304	100 000	1130	99 019	7 586 228	75,86
1	0,000803	0,001005	0,001005	98 870	99	98 820	7 487 209	75,73
2	0,000461	0,000398	0,000397	98 770	39	98 751	7 388 389	74,80
3	0,000404	0,000319	0,000319	98 731	31	98 715	7 289 639	73,83
4	0,000303	0,000283	0,000282	98 700	28	98 686	7 190 924	72,86
5	0,000239	0,000251	0,000251	98 672	25	98 659	7 092 238	71,88
6	0,000204	0,000250	0,000250	98 647	25	98 635	6 993 579	70,90
7	0,000236	0,000235	0,000235	98 622	23	98 611	6 894 944	69,91
8	0,000194	0,000227	0,000227	98 599	22	98 588	6 796 333	68,93
9	0,000247	0,000227	0,000227	98 577	22	98 566	6 697 746	67,94
10	0,000182	0,000238	0,000238	98 554	23	98 543	6 599 180	66,96
11	0,000227	0,000259	0,000259	98 531	26	98 518	6 500 637	65,98
12	0,000257	0,000295	0,000295	98 505	29	98 491	6 402 119	64,99
13	0,000343	0,000352	0,000352	98 476	35	98 459	6 303 629	64,01
14	0,000376	0,000431	0,000431	98 442	42	98 420	6 205 170	63,03
15	0,000491	0,000527	0,000527	98 399	52	98 373	6 106 749	62,06
16	0,000706	0,000639	0,000638	98 347	63	98 316	6 008 376	61,09
17	0,000802	0,000762	0,000761	98 285	75	98 247	5 910 060	60,13
18	0,000866	0,000886	0,000885	98 210	87	98 166	5 811 813	59,18
19	0,001085	0,000991	0,000990	98 123	97	98 074	5 713 647	58,23
20	0,001114	0,001074	0,001073	98 026	105	97 973	5 615 573	57,29
21	0,001238	0,001142	0,001141	97 920	112	97 864	5 517 600	56,35
22	0,001107	0,001193	0,001193	97 809	117	97 750	5 419 735	55,41
23	0,001248	0,001226	0,001225	97 692	120	97 632	5 321 985	54,48
24	0,001331	0,001251	0,001250	97 572	122	97 511	5 224 353	53,54
25	0,001242	0,001278	0,001277	97 450	124	97 388	5 126 842	52,61
26	0,001311	0,001311	0,001310	97 326	127	97 262	5 029 454	51,68
27	0,001298	0,001343	0,001342	97 198	130	97 133	4 932 191	50,74
28	0,001338	0,001373	0,001372	97 068	133	97 001	4 835 058	49,81
29	0,001378	0,001404	0,001403	96 935	136	96 867	4 738 057	48,88
30	0,001581	0,001434	0,001433	96 799	139	96 729	4 641 190	47,95
31	0,001290	0,001465	0,001464	96 660	142	96 589	4 544 461	47,01
32	0,001556	0,001493	0,001491	96 518	144	96 446	4 447 872	46,08
33	0,001463	0,001510	0,001509	96 374	145	96 302	4 351 425	45,15
34	0,001656	0,001532	0,001531	96 229	147	96 155	4 255 124	44,22
35	0,001514	0,001576	0,001575	96 082	151	96 006	4 158 968	43,29
36	0,001489	0,001639	0,001638	95 930 05 773	157	95 852	4 062 962	42,35
37 38	0,001661	0,001724	0,001723	95 773 05 608	165 176	95 691 05 521	3 967 110	41,42
	0,001765	0,001837 0,001992	0,001836 0,001990	95 608 05 433	176	95 521 05 338	3 871 420	40,49
39	0,001928	0,001992	0,001990	95 433	190	95 338	3 775 899	39,57

Anexo 1.1. Tabla de vida población masculina, 2000-2005 (Continuación)

Edad	Tasa de	Tasa de	Probabilidad	Número de	Defuncio-	Tiempo	Tiempo por	Esperanza
	mortalidad	mortalidad	condicional	sobrevivien-	nes en la	vivido en		de vida a la
	observada	ajustada	de muerte	tes a edad x	edad x	la edad x	la edad x	edad x
X	$\mathbf{m}_{\mathbf{xob}}$	m_{xaj}	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{l_x}$	$\mathbf{d}_{\mathbf{x}}$	$\mathbf{L}_{\mathbf{x}}$	T_{x}	$\mathbf{e}_{\mathbf{x}}$
40	0,002221	0,002165	0,002162	95 243	206	95 140	3 680 561	38,64
41	0,002003	0,002332	0,002329	95 037	221	94 926	3 585 421	37,73
42	0,002568	0,002492	0,002489	94 816	236	94 698	3 490 495	36,81
43	0,002699	0,002671	0,002667	94 580	252	94 454	3 395 798	35,90
44	0,002706	0,002879	0,002875	94 327	271	94 192	3 301 344	35,00
45	0,003082	0,003105	0,003100	94 056	292	93 910	3 207 152	34,10
46	0,003404	0,003324	0,003319	93 765	311	93 609	3 113 242	33,20
47	0,003674	0,003548	0,003542	93 453	331	93 288	3 019 633	32,31
48	0,003531	0,003798	0,003791	93 122	353	92 946	2 926 345	31,42
49	0,003862	0,004082	0,004074	92 769	378	92 580	2 833 399	30,54
50	0,004317	0,004398	0,004389	92 391	405	92 189	2 740 819	29,67
51	0,004533	0,004778	0,004766	91 986	438	91 767	2 648 630	28,79
52	0,005399	0,005235	0,005221	91 548	478	91 309	2 556 863	27,93
53	0,005772	0,005732	0,005716	91 070	521	90 809	2 465 555	27,07
54	0,006072	0,006230	0,006211	90 549	562	90 268	2 374 745	26,23
55	0,006729	0,006742	0,006720	89 987	605	89 684	2 284 478	25,39
56	0,007254	0,007294	0,007268	89 382	650	89 057	2 194 793	24,56
57	0,007435	0,007894	0,007863	88 732	698	88 383	2 105 736	23,73
58	0,008732	0,008556	0,008520	88 035	750	87 660	2 017 353	22,92
59	0,009463	0,009297	0,009254	87 285	808	86 881	1 929 693	22,11
60	0,009748	0,010149	0,010098	86 477	873	86 040	1 842 813	21,31
61	0,010619	0,011096	0,011036	85 604	945	85 131	1 756 772	20,52
62	0,011287	0,012115	0,012043	84 659	1020	84 149	1 671 641	19,75
63	0,013385	0,013268	0,013181	83 639	1102	83 088	1 587 492	18,98
64	0,014518	0,014642	0,014537	82 537	1200	81 937	1 504 404	18,23
65	0,016403	0,016235	0,016106	81 337	1310	80 682	1 422 467	17,49
66	0,017311	0,018007	0,017848	80 027	1428	79 313	1 341 785	16,77
67	0,020184	0,019877	0,019684	78 599	1547	77 825	1 262 472	16,06
68	0,021192	0,021804	0,021572	77 051	1662	76 220	1 184 647	15,37
69	0,023962	0,023827	0,023549	75 389	1775	74 502	1 108 427	14,70
70	0,026533	0,026014	0,025684	73 614	1891	72 669	1 033 925	14,05
71	0,026845	0,028484	0,028089	71 723	2015	70 716	961 257	13,40
72	0,030557	0,031422	0,030941	69 709	2157	68 630	890 541	12,78
73	0,033088	0,034812	0,034223	67 552	2312	66 396	821 910	12,17
74	0,037655	0,038604	0,037880	65 240	2471	64 004	755 514	11,58
75 75	0,043893	0,042799	0,041910	62 769	2631	61 453	691 510	11,02
76	0,047710	0,047279	0,046196	60 138	2778	58 749	630 057	10,48
77	0,051185	0,051903	0,050600	57 360	2902	55 909	571 308	9,96
78 70	0,055883	0,056567	0,055021	54 458	2996	52 959	515 399	9,46
79	0,060676	0,061419	0,059599	51 461	3067	49 928	462 440	8,99

Anexo 1.1. Tabla de vida población masculina, 2000-2005 (Continuación)

Edad	Tasa de mortalidad observada	Tasa de mortalidad ajustada	Probabilidad condicional de muerte	Número de sobrevivientes a edad x	Defuncio- nes en la edad x	Tiempo vivido en la edad x	Tiempo por vivir desde la edad x	Esperanza de vida a la edad x
X	m_{xob}	$\mathbf{m}_{\mathrm{xaj}}$	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{l_x}$	$\mathbf{d}_{\mathbf{x}}$	$\mathbf{L}_{\mathbf{x}}$	$T_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$
80	0,065506	0,066730	0,064586	48 394	3126	46 831	412 512	8,52
81	0,070198	0,072591	0,070058	45 269	3171	43 689	365 680	8,08
82	0,077769	0,078975	0,075983	42 097	3199	40 502	321 991	7,65
83	0,085152	0,085902	0,082370	38 899	3204	37 299	281 489	7,24
84	0,092946	0,093388	0,089223	35 694	3185	34 103	244 190	6,84
85	0,100761	0,101440	0,096539	32 510	3138	30 939	210 087	6,46
86	0,108830	0,110055	0,104302	29 371	3063	27 836	179 148	6,10
87	0,117092	0,119385	0,112635	26 308	2963	24 820	151 312	5,75
88	0,127909	0,129740	0,121794	23 345	2843	21 915	126 492	5,42
89	0,138150	0,141430	0,132023	20 501	2707	19 138	104 577	5,10
90	0,151301	0,154523	0,143340	17 795	2551	16 507	85 439	4,80
91	0,167693	0,168575	0,155324	15 244	2368	14 046	68 933	4,52
92	0,183041	0,183239	0,167654	12 876	2159	11 781	54 887	4,26
93	0,202361	0,198456	0,180262	10 717	1932	9 735	43 106	4,02
94	0,212078	0,214126	0,193049	8 786	1696	7 921	33 371	3,80
95	0,227468	0,230189	0,205953	7 089	1460	6 343	25 450	3,59
96	0,244889	0,246874	0,219142	5 629	1234	4 997	19 107	3,39
97	0,263190	0,264517	0,232853	4 396	1024	3 870	14 110	3,21
98	0,282346	0,283366	0,247240	3 372	834	2 942	10 240	3,04
99	0,302326	0,303178	0,262075	2 538	665	2 194	7 298	2,88
100	0,323082	0,323741	0,277169	1 873	519	1 604	5 104	2,72
101	0,344560	0,344996	0,292451	1 354	396	1 148	3 500	2,59
102	0,366691	0,366876	0,307850	958	295	804	2 352	2,46
103	0,389399	0,389308	0,323295	663	214	551	1 548	2,34
104	0,412599	0,412205	0,338711	449	152	369	998	2,22
105	0,436192	0,435478	0,354025	297	105	241	629	2,12
106		0,459027	0,369166	192	71	154	388	2,02
107		0,482750	0,384065	121	46	96	234	1,93
108		0,506541	0,398659	74	30	59	138	1,85
109		0,530293	0,412889	45	18	35	79	1,76
110		0,553899	0,426704	26	11	20	44	1,67
111		0,577256	0,440058	15	7	11	24	1,58
112		0,600319	0,452943	8	4	6	12	1,46
113		0,623098	0,465383	5	2	3	6	1,28
114		0,645554	0,477373	2	1	2	2	1,00
115				1	1	1	1	0,50

Anexo 1.2. Tabla de vida población femenina, 2000-2005

Edad	Tasa de	Tasa de	Probabilidad	Número de	Defuncio-	Tiempo	Tiempo por	Esperanza
	mortalidad	mortalidad	condicional	sobrevivien-	nes en la	vivido en		de vida a la
	observada	ajustada	de muerte	tes a edad x	edad x	la edad x	la edad x	edad x
X	m_{xob}	$\mathbf{m}_{\mathbf{xaj}}$	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{l_x}$	$\mathbf{d}_{\mathbf{x}}$	$\mathbf{L}_{\mathbf{x}}$	$\mathbf{T}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$
0	0,009133	0,009133	0,009064	100 000	906	99 240	8 059 665	80,60
1	0,000804	0,000804	0,000804	99 094	80	99 054	7 960 425	80,33
2	0,000285	0,000318	0,000318	99 014	31	98 998	7 861 371	79,40
3	0,000276	0,000255	0,000255	98 983	25	98 970	7 762 373	78,42
4	0,000235	0,000226	0,000226	98 957	22	98 946	7 663 403	77,44
5	0,000204	0,000201	0,000201	98 935	20	98 925	7 564 457	76,46
6	0,000131	0,000200	0,000200	98 915	20	98 905	7 465 532	75,47
7	0,000246	0,000188	0,000188	98 895	19	98 886	7 366 627	74,49
8	0,000153	0,000181	0,000181	98 877	18	98 868	7 267 741	73,50
9	0,000176	0,000181	0,000181	98 859	18	98 850	7 168 873	72,52
10	0,000198	0,000187	0,000187	98 841	18	98 832	7 070 024	71,53
11	0,000145	0,000198	0,000198	98 822	20	98 813	6 971 192	70,54
12	0,000202	0,000218	0,000218	98 803	21	98 792	6 872 379	69,56
13	0,000243	0,000245	0,000245	98 781	24	98 769	6 773 587	68,57
14	0,000281	0,000277	0,000277	98 757	27	98 744	6 674 818	67,59
15	0,000301	0,000310	0,000310	98 730	31	98 715	6 576 074	66,61
16	0,000376	0,000340	0,000340	98 699	34	98 683	6 477 360	65,63
17	0,000386	0,000365	0,000365	98 666	36	98 648	6 378 677	64,65
18	0,000371	0,000382	0,000382	98 630	38	98 611	6 280 030	63,67
19	0,000424	0,000388	0,000388	98 592	38	98 573	6 181 419	62,70
20	0,000424	0,000390	0,000390	98 554	38	98 535	6 082 846	61,72
21	0,000381	0,000394	0,000394	98 515	39	98 496	5 984 311	60,74
22	0,000348	0,000398	0,000398	98 477	39	98 457	5 885 815	59,77
23	0,000393	0,000403	0,000403	98 437	40	98 418	5 787 358	58,79
24	0,000437	0,000410	0,000410	98 398	40	98 378	5 688 940	57,82
25	0,000432	0,000426	0,000426	98 357	42	98 337	5 590 563	56,84
26	0,000441	0,000450	0,000450	98 316	44	98 293	5 492 226	55,86
27	0,000419	0,000476	0,000475	98 271	47	98 248	5 393 933	54,89
28	0,000508	0,000503	0,000502	98 225	49	98 200	5 295 685	53,91
29	0,000573	0,000535	0,000535	98 175	53	98 149	5 197 485	52,94
30	0,000558	0,000571	0,000571	98 123	56	98 095	5 099 336	51,97
31	0,000602	0,000606	0,000606	98 067	59	98 037	5 001 241	51,00
32	0,000662	0,000637	0,000636	98 007	62	97 976	4 903 204	50,03
33	0,000678	0,000664	0,000663	97 945	65	97 912	4 805 228	49,06
34	0,000670	0,000688	0,000688	97 880	67	97 846	4 707 316	48,09
35	0,000761	0,000707	0,000707	97 813	69	97 778	4 609 470	47,13
36	0,000696	0,000733	0,000733	97 743	72	97 708	4 511 692	46,16
37	0,000789	0,000775	0,000774	97 672	76	97 634	4 413 984	45,19
38	0,000659	0,000840	0,000839	97 596	82	97 555	4 316 350	44,23
39	0,000932	0,000929	0,000929	97 514	91	97 469	4 218 795	43,26

Anexo 1.2. Tabla de vida población femenina, 2000-2005 (Continuación)

Edad	Tasa de	Tasa de	Probabilidad	Número de	Defuncio-	Tiempo	Tiempo por	Esperanza
	mortalidad	mortalidad	condicional	sobrevivien-	nes en la	vivido en	vivir desde	de vida a la
	observada	ajustada	de muerte	tes a edad x	edad x	la edad x	la edad x	edad x
X	$\mathbf{m}_{\mathbf{xob}}$	m _{xaj}	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{l_x}$	$\mathbf{d}_{\mathbf{x}}$	$\mathbf{L}_{\mathbf{x}}$	$\mathbf{T}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$
40	0,000963	0,001037	0,001037	97 424	101	97 373	4 121 326	42,30
41	0,001187	0,001163	0,001162	97 323	113	97 266	4 023 953	41,35
42	0,001425	0,001302	0,001301	97 210	126	97 146	3 926 687	40,39
43	0,001337	0,001437	0,001436	97 083	139	97 013	3 829 541	39,45
44	0,001577	0,001572	0,001571	96 944	152	96 868	3 732 527	38,50
45	0,001812	0,001718	0,001717	96 791	166	96 708	3 635 660	37,56
46	0,001708	0,001883	0,001882	96 625	182	96 534	3 538 952	36,63
47	0,001998	0,002058	0,002056	96 443	198	96 344	3 442 417	35,69
48	0,002332	0,002230	0,002228	96 245	214	96 138	3 346 073	34,77
49	0,002472	0,002428	0,002425	96 031	233	95 914	3 249 935	33,84
50	0,002714	0,002650	0,002647	95 798	254	95 671	3 154 021	32,92
51	0,002478	0,002885	0,002881	95 544	275	95 407	3 058 350	32,01
52	0,003393	0,003145	0,003140	95 269	299	95 119	2 962 943	31,10
53	0,003265	0,003450	0,003445	94 970	327	94 806	2 867 824	30,20
54	0,003712	0,003790	0,003783	94 643	358	94 464	2 773 018	29,30
55	0,004190	0,004144	0,004135	94 285	390	94 090	2 678 554	28,41
56	0,004608	0,004504	0,004494	93 895	422	93 684	2 584 464	27,53
57	0,004945	0,004904	0,004892	93 473	457	93 244	2 490 781	26,65
58	0,005100	0,005374	0,005360	93 015	499	92 766	2 397 537	25,78
59	0,005716	0,005923	0,005906	92 517	546	92 244	2 304 770	24,91
60	0,006096	0,006560	0,006538	91 971	601	91 670	2 212 527	24,06
61	0,007402	0,007274	0,007248	91 369	662	91 038	2 120 857	23,21
62	0,008101	0,008056	0,008024	90 707	728	90 343	2 029 819	22,38
63	0,009041	0,008890	0,008851	89 979	796	89 581	1 939 476	21,55
64	0,009741	0,009760	0,009713	89 183	866	88 750	1 849 895	20,74
65	0,010330	0,010702	0,010646	88 316	940	87 846	1 761 145	19,94
66	0,011761	0,011764	0,011697	87 376	1022	86 865	1 673 299	19,15
67	0,012152	0,012954	0,012872	86 354	1112	85 799	1 586 434	18,37
68	0,014368	0,014253	0,014154	85 243	1207	84 639	1 500 635	17,60
69	0,015752	0,015698	0,015577	84 036	1309	83 382	1 415 996	16,85
70	0,017434	0,017304	0,017157	82 727	1419	82 017	1 332 614	16,11
71	0,018203	0,019131	0,018952	81 308	1541	80 537	1 250 596	15,38
72	0,020933	0,021215	0,020995	79 767	1675	78 930	1 170 059	14,67
73	0,022511	0,023608	0,023335	78 092	1822	77 181	1 091 130	13,97
74	0,025804	0,026320	0,025982	76 270	1982	75 279	1 013 949	13,29
75	0,029369	0,029367	0,028947	74 288	2150	73 213	938 670	12,64
76	0,032605	0,032736	0,032214	72 138	2324	70 976	865 457	12,00
77	0,035751	0,036418	0,035773	69 814	2497	68 565	794 481	11,38
78 70	0,039900	0,040396	0,039604	67 316	2666	65 984	725 915	10,78
79	0,044166	0,044785	0,043813	64 651	2833	63 234	659 932	10,21

Anexo 1.2. Tabla de vida población femenina, 2000-2005 (Continuación)

Edad	Tasa de mortalidad observada	Tasa de mortalidad ajustada	Probabilidad condicional de muerte	Número de sobrevivientes a edad x	Defuncio- nes en la edad x	Tiempo vivido en la edad x	Tiempo por vivir desde la edad x	Esperanza de vida a la edad x
X	m_{xob}	m_{xaj}	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{l_x}$	$\mathbf{d}_{\mathbf{x}}$	$\mathbf{L}_{\mathbf{x}}$	$T_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$
80	0,048994	0,049694	0,048498	61 818	2998	60 319	596 698	9,65
81	0,053581	0,055130	0,053661	58 820	3156	57 242	536 379	9,12
82	0,060636	0,061070	0,059271	55 664	3299	54 014	479 137	8,61
83	0,067274	0,067550	0,065353	52 364	3422	50 653	425 123	8,12
84	0,074055	0,074583	0,071911	48 942	3519	47 182	374 470	7,65
85	0,081305	0,082177	0,078941	45 423	3586	43 630	327 287	7,21
86	0,089651	0,090366	0,086463	41 837	3617	40 028	283 657	6,78
87	0,098051	0,099249	0,094554	38 220	3614	36 413	243 629	6,37
88	0,107489	0,109022	0,103375	34 606	3577	32 817	207 216	5,99
89	0,118834	0,119939	0,113128	31 028	3510	29 273	174 399	5,62
90	0,129155	0,132150	0,123913	27 518	3410	25 813	145 126	5,27
91	0,143080	0,145416	0,135484	24 108	3266	22 475	119 312	4,95
92	0,158625	0,159472	0,147579	20 842	3076	19 304	96 837	4,65
93	0,177302	0,174323	0,160178	17 766	2846	16 343	77 533	4,36
94	0,190143	0,190054	0,173325	14 920	2586	13 627	61 190	4,10
95	0,204065	0,206570	0,186908	12 334	2305	11 182	47 562	3,86
96	0,221946	0,223860	0,200893	10 029	2015	9 022	36 380	3,63
97	0,240922	0,242165	0,215442	8 014	1727	7 151	27 359	3,41
98	0,260976	0,261784	0,230745	6 288	1451	5 562	20 208	3,21
99	0,282077	0,282657	0,246703	4 837	1193	4 240	14 646	3,03
100	0,304184	0,304558	0,263098	3 644	959	3 164	10 406	2,86
101	0,327234	0,327370	0,279800	2 685	751	2 309	7 241	2,70
102	0,351148	0,351014	0,296719	1 934	574	1 647	4 932	2,55
103	0,375833	0,375399	0,313759	1 360	427	1 147	3 285	2,42
104	0,401181	0,400420	0,330820	933	309	779	2 139	2,29
105	0,427070	0,425959	0,347804	625	217	516	1 360	2,18
106		0,451886	0,364612	407	149	333	844	2,07
107		0,478064	0,381150	259	99	209	511	1,97
108		0,504351	0,397330	160	64	128	301	1,88
109		0,530603	0,413073	97	40	77	173	1,79
110		0,556675	0,428307	57	24	45	96	1,70
111		0,582426	0,442972	32	14	25	52	1,60
112		0,607821	0,457071	18	8	14	27	1,48
113		0,632885	0,470642	10	5	7	13	1,30
114		0,657560	0,483675	5	3	4	5	1,02
115				3	3	1	1	0,50

Anexo 1.3. Tabla de vida ambos sexos, 2000-2005

Edad	Tasa de	Probabilidad	Número de	Defuncio-	Tiempo	Tiempo por	Esperanza
	mortalidad	condicional	sobrevivien-	nes en la	vivido en	vivir desde	
		de muerte	tes a edad x	edad x	la edad x	la edad x	edad x
X	$\mathbf{m}_{\mathbf{x}}$	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{l_x}$	d _x	L_{x}	T_{x}	$\mathbf{e}_{\mathbf{x}}$
0	0,010301	0,010211	100 000	1021	99 127	7 817 173	78,17
1	0,000907	0,000906	98 979	90	98 934	7 718 046	77,98
2	0,000359	0,000359	98 889	35	98 871	7 619 112	77,05
3	0,000288	0,000288	98 854	28	98 839	7 520 241	76,07
4	0,000255	0,000255	98 825	25	98 813	7 421 401	75,10
5	0,000227	0,000227	98 800	22	98 789	7 322 589	74,12
6	0,000226	0,000225	98 778	22	98 767	7 223 800	73,13
7	0,000212	0,000212	98 755	21	98 745	7 125 033	72,15
8	0,000204	0,000204	98 734	20	98 724	7 026 288	71,16
9	0,000205	0,000205	98 714	20	98 704	6 927 564	70,18
10	0,000213	0,000213	98 694	21	98 684	6 828 860	69,19
11	0,000229	0,000229	98 673	23	98 662	6 730 176	68,21
12	0,000257	0,000257	98 650	25	98 638	6 631 514	67,22
13	0,000300	0,000300	98 625	30	98 610	6 532 877	66,24
14	0,000356	0,000356	98 596	35	98 578	6 434 266	65,26
15	0,000421	0,000421	98 560	41	98 540	6 335 688	64,28
16	0,000492	0,000492	98 519	49	98 495	6 237 149	63,31
17	0,000568	0,000568	98 470	56	98 443	6 138 654	62,34
18	0,000639	0,000639	98 415	63	98 383	6 040 211	61,38
19	0,000696	0,000696	98 352	68	98 317	5 941 828	60,41
20	0,000739	0,000739	98 283	73	98 247	5 843 511	59,46
21	0,000776	0,000775	98 211	76	98 173	5 745 264	58,50
22	0,000804	0,000804	98 134	79	98 095	5 647 091	57,54
23	0,000823	0,000822	98 056	81	98 015	5 548 996	56,59
24	0,000839	0,000839	97 975	82	97 934	5 450 981	55,64
25	0,000860	0,000860	97 893	84	97 851	5 353 047	54,68
26	0,000889	0,000888	97 809	87	97 765	5 255 196	53,73
27	0,000918	0,000917	97 722	90	97 677	5 157 431	52,78
28	0,000946	0,000945	97 632	92	97 586	5 059 754	51,82
29	0,000978	0,000977	97 540	95	97 492	4 962 168	50,87
30	0,001010	0,001010	97 445	98	97 395	4 864 676	49,92
31	0,001043	0,001043	97 346	101	97 295	4 767 281	48,97
32	0,001072	0,001071	97 245	104	97 193	4 669 985	48,02
33	0,001094	0,001093	97 141	106	97 087	4 572 793	47,07
34	0,001117	0,001116	97 034	108	96 980	4 475 705	46,12
35	0,001148	0,001148	96 926	111	96 870	4 378 725	45,18
36	0,001193	0,001192	96 815	115	96 757	4 281 855	44,23
37	0,001256	0,001256	96 699	121	96 639	4 185 098	43,28
38	0,001345	0,001345	96 578	130	96 513	4 088 459	42,33
39	0,001468	0,001467	96 448	141	96 377	3 991 946	41,39

Anexo 1.3. Tabla de vida ambos sexos, 2000-2005 (Continuación)

Edad	Togo do	Probabilidad	Número de	Defuncio-	Tiempo	Tiempo por	Esperanza
	Tasa de	condicional	sobrevivien-	nes en la	vivido en	vivir desde	de vida a la
	mortalidad	de muerte	tes a edad x	edad x	la edad x	la edad x	edad x
X	$\mathbf{m}_{\mathbf{x}}$	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{l_x}$	$\mathbf{d}_{\mathbf{x}}$	$\mathbf{L}_{\mathbf{x}}$	T_{x}	$\mathbf{e}_{\mathbf{x}}$
40	0,001608	0,001607	96 307	155	96 229	3 895 569	40,45
41	0,001754	0,001753	96 152	169	96 068	3 799 339	39,51
42	0,001904	0,001902	95 983	183	95 892	3 703 272	38,58
43	0,002061	0,002059	95 801	197	95 702	3 607 380	37,66
44	0,002232	0,002230	95 604	213	95 497	3 511 677	36,73
45	0,002418	0,002415	95 390	230	95 275	3 416 180	35,81
46	0,002610	0,002607	95 160	248	95 036	3 320 905	34,90
47	0,002809	0,002805	94 912	266	94 779	3 225 869	33,99
48	0,003020	0,003016	94 646	285	94 503	3 131 090	33,08
49	0,003261	0,003255	94 360	307	94 207	3 036 587	32,18
50	0,003529	0,003523	94 053	331	93 887	2 942 381	31,28
51	0,003836	0,003829	93 722	359	93 542	2 848 493	30,39
52	0,004194	0,004185	93 363	391	93 167	2 754 951	29,51
53	0,004594	0,004584	92 972	426	92 759	2 661 784	28,63
54	0,005012	0,005000	92 546	463	92 315	2 569 025	27,76
55	0,005444	0,005429	92 083	500	91 833	2 476 710	26,90
56	0,005898	0,005881	91 583	539	91 314	2 384 877	26,04
57	0,006396	0,006375	91 045	580	90 754	2 293 563	25,19
58	0,006959	0,006935	90 464	627	90 151	2 202 808	24,35
59	0,007601	0,007572	89 837	680	89 497	2 112 658	23,52
60	0,008342	0,008307	89 157	741	88 786	2 023 161	22,69
61	0,009168	0,009126	88 416	807	88 013	1 934 375	21,88
62	0,010063	0,010013	87 609	877	87 170	1 846 362	21,08
63	0,011051	0,010990	86 732	953	86 255	1 759 192	20,28
64	0,012164	0,012090	85 779	1037	85 260	1 672 936	19,50
65	0,013420	0,013330	84 742	1130	84 177	1 587 676	18,74
66	0,014821	0,014712	83 612	1230	82 997	1 503 499	17,98
67	0,016333	0,016201	82 382	1335	81 715	1 420 502	17,24
68	0,017925	0,017766	81 047	1440	80 327	1 338 788	16,52
69	0,019635	0,019444	79 607	1548	78 833	1 258 460	15,81
70	0,021505	0,021276	78 059	1661	77 229	1 179 627	15,11
71	0,023621	0,023345	76 399	1784	75 507	1 102 398	14,43
72	0,026091	0,025755	74 615	1922	73 654	1 026 891	13,76
73	0,028930	0,028517	72 693	2073	71 657	953 237	13,11
74	0,032120	0,031612	70 620	2232	69 504	881 580	12,48
75	0,035666	0,035041	68 388	2396	67 190	812 076	11,87
76	0,039506	0,038740	65 992	2557	64 713	744 886	11,29
77	0,043569	0,042640	63 435	2705	62 083	680 173	10,72
78 78	0,047800	0,046685	60 730	2835	59 313	618 090	10,18
79	0,052334	0,051000	57 895	2953	56 419	558 777	9,65

Anexo 1.3. Tabla de vida ambos sexos, 2000-2005 (Continuación)

Edad	Tasa de mortalidad	Probabilidad condicional de muerte	Número de sobrevivientes a edad x	Defunciones en la edad x	Tiempo vivido en la edad x	Tiempo por vivir desde la edad x	Esperanza de vida a la edad x
X	$\mathbf{m}_{\mathbf{x}}$	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{l_x}$	$\mathbf{d}_{\mathbf{x}}$	$\mathbf{L}_{\mathbf{x}}$	T_x	$\mathbf{e}_{\mathbf{x}}$
80	0,057355	0,055756	54 942	3063	53 411	502 359	9,14
81	0,062904	0,060989	51 879	3164	50 300	448 948	8,65
82	0,068964	0,066668	48 715	3248	47 093	398 648	8,18
83	0,075559	0,072810	45 467	3310	43 813	351 554	7,73
84	0,082702	0,079419	42 157	3348	40 483	307 741	7,30
85	0,090403	0,086492	38 809	3357	37 130	267 258	6,89
86	0,098677	0,094033	35 452	3334	33 783	230 128	6,49
87	0,107647	0,102140	32 118	3281	30 475	196 345	6,11
88	0,117554	0,111012	28 838	3201	27 233	165 870	5,75
89	0,128670	0,120867	25 637	3099	24 082	138 637	5,41
90	0,141106	0,131769	22 538	2970	21 047	114 555	5,08
91	0,154539	0,143400	19 568	2806	18 158	93 508	4,78
92	0,168671	0,155478	16 762	2606	15 451	75 350	4,50
93	0,183486	0,167967	14 156	2378	12 959	59 900	4,23
94	0,199001	0,180861	11 778	2130	10 705	46 941	3,99
95	0,215140	0,194076	9 648	1872	8 703	36 236	3,76
96	0,231985	0,207660	7 776	1615	6 960	27 533	3,54
97	0,249808	0,221805	6 161	1367	5 470	20 573	3,34
98	0,268883	0,236687	4 794	1135	4 220	15 103	3,15
99	0,289078	0,252165	3 660	923	3 192	10 882	2,97
100	0,310172	0,268031	2 737	734	2 365	7 690	2,81
101	0,332061	0,284180	2 003	569	1 714	5 325	2,66
102	0,354667	0,300528	1 434	431	1 215	3 611	2,52
103	0,377895	0,316988	1 003	318	841	2 396	2,39
104	0,401639	0,333468	685	228	569	1 554	2,27
105	0,425781	0,349875	457	160	375	986	2,16
106	0,450195	0,366118	297	109	241	610	2,06
107	0,474748	0,382109	188	72	151	369	1,96
108	0,499306	0,397766	116	46	93	217	1,87
109	0,523732	0,413013	70	29	55	125	1,78
110	0,547895	0,427782	41	18	32	70	1,69
111	0,571670	0,442015	24	10	18	37	1,59
112	0,595018	0,455711	13	6	10	19	1,47
113	0,617960	0,468900	7	3	5	9	1,30
114	0,640448	0,481575	4	2	3	4	1,01
115			2	2	1	1	0,50

Anexo 2. Funciones de la tabla de vida proyectada 2025-2030

	Población	masculina	Población	femenina	Ambo	s sexos
Edad	Probabilidad	Esperanza de	Probabilidad	Esperanza de	Probabilidad	Esperanza de
	de muerte	vida en x	de muerte	vida en x	de muerte	vida en x
X	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$
0	0,010694	78,25	0,008473	82,69	0,009610	80,42
1	0,000814	78,09	0,000643	82,40	0,000731	80,20
2	0,000299	77,16	0,000236	81,45	0,000268	79,25
3	0,000234	76,18	0,000185	80,47	0,000210	78,28
4	0,000204	75,20	0,000161	79,49	0,000183	77,29
5	0,000178	74,21	0,000141	78,50	0,000160	76,31
6	0,000176	73,23	0,000139	77,51	0,000158	75,32
7	0,000164	72,24	0,000130	76,52	0,000148	74,33
8	0,000157	71,25	0,000124	75,53	0,000141	73,34
9	0,000157	70,26	0,000124	74,54	0,000141	72,35
10	0,000165	69,27	0,000127	73,55	0,000146	71,36
11	0,000179	68,29	0,000135	72,56	0,000158	70,37
12	0,000205	67,30	0,000149	71,57	0,000178	69,38
13	0,000246	66,31	0,000168	70,58	0,000208	68,40
14	0,000304	65,33	0,000191	69,59	0,000249	67,41
15	0,000375	64,35	0,000214	68,60	0,000296	66,43
16	0,000458	63,37	0,000236	67,62	0,000349	65,45
17	0,000550	62,40	0,000253	66,63	0,000405	64,47
18	0,000644	61,43	0,000265	65,65	0,000459	63,49
19	0,000723	60,47	0,000270	64,67	0,000502	62,52
20	0,000786	59,52	0,000270	63,68	0,000534	61,55
21	0,000837	58,56	0,000272	62,70	0,000561	60,59
22	0,000875	57,61	0,000276	61,72	0,000582	59,62
23	0,000899	56,66	0,000278	60,74	0,000595	58,66
24	0,000917	55,71	0,000283	59,75	0,000607	57,69
25	0,000937	54,76	0,000295	58,77	0,000622	56,72
26	0,000960	53,81	0,000312	57,79	0,000643	55,76
27	0,000984	52,86	0,000330	56,80	0,000664	54,80
28	0,001006	51,92	0,000349	55,82	0,000684	53,83
29	0,001029	50,97	0,000372	54,84	0,000707	52,87
30	0,001051	50,02	0,000399	53,86	0,000731	51,90
31	0,001074	49,07	0,000424	52,88	0,000755	50,94
32	0,001093	48,12	0,000446	51,91	0,000775	49,98
33	0,001106	47,18	0,000465	50,93	0,000791	49,02
34	0,001121	46,23	0,000483	49,95	0,000808	48,06
35	0,001154	45,28	0,000496	48,98	0,000831	47,10
36	0,001202	44,33	0,000515	48,00	0,000864	46,13
37	0,001266	43,38	0,000545	47,02	0,000912	45,17
38	0,001353	42,44	0,000593	46,05	0,000979	44,21
39	0,001472	41,50	0,000659	45,08	0,001072	43,26

Anexo 2. Funciones de la tabla de vida proyectada 2025-2030 (Continuación)

	Población	masculina	Población	femenina	Ambos	s sexos
Edad	Probabilidad	Esperanza de	Probabilidad	Esperanza de	Probabilidad	Esperanza de
	de muerte	vida en x	de muerte	vida en x	de muerte	vida en x
X	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$
40	0,001605	40,56	0,000739	44,11	0,001179	42,30
41	0,001734	39,62	0,000833	43,14	0,001290	41,35
42	0,001858	38,69	0,000938	42,17	0,001405	40,41
43	0,001997	37,76	0,001040	41,21	0,001525	39,46
44	0,002159	36,83	0,001142	40,26	0,001658	38,52
45	0,002336	35,91	0,001253	39,30	0,001802	37,58
46	0,002508	35,00	0,001379	38,35	0,001951	36,65
47	0,002684	34,08	0,001513	37,40	0,002106	35,72
48	0,002882	33,17	0,001646	36,46	0,002271	34,80
49	0,003106	32,27	0,001798	35,52	0,002459	33,87
50	0,003358	31,37	0,001970	34,58	0,002671	32,96
51	0,003660	30,47	0,002153	33,65	0,002914	32,04
52	0,004027	29,58	0,002356	32,72	0,003199	31,14
53	0,004427	28,70	0,002596	31,79	0,003519	30,23
54	0,004829	27,82	0,002864	30,88	0,003853	29,34
55	0,005243	26,96	0,003143	29,96	0,004200	28,45
56	0,005692	26,10	0,003429	29,06	0,004566	27,57
57	0,006180	25,24	0,003748	28,15	0,004969	26,69
58	0,006721	24,40	0,004124	27,26	0,005426	25,82
59	0,007329	23,56	0,004565	26,37	0,005949	24,96
60	0,008030	22,73	0,005079	25,49	0,006555	24,11
61	0,008813	21,91	0,005658	24,62	0,007233	23,26
62	0,009657	21,10	0,006295	23,75	0,007970	22,43
63	0,010616	20,30	0,006976	22,90	0,008787	21,61
64	0,011763	19,51	0,007690	22,06	0,009713	20,79
65	0,013098	18,74	0,008466	21,22	0,010762	19,99
66	0,014588	17,98	0,009344	20,40	0,011937	19,20
67	0,016164	17,24	0,010331	19,59	0,013208	18,43
68	0,017793	16,51	0,011412	18,79	0,014550	17,67
69	0,019507	15,80	0,012619	18,00	0,015994	16,92
70	0,021364	15,11	0,013964	17,22	0,017578	16,19
71	0,023466	14,43	0,015500	16,46	0,019375	15,47
72	0,025972	13,76	0,017258	15,71	0,021479	14,77
73	0,028869	13,11	0,019282	14,98	0,023905	14,08
74	0,032115	12,49	0,021584	14,26	0,026636	13,41
75	0,035710	11,89	0,024176	13,57	0,029678	12,77
76	0,039550	11,31	0,027048	12,89	0,032975	12,14
77	0,043514	10,75	0,030193	12,24	0,036465	11,54
78	0,047509	10,22	0,033595	11,60	0,040098	10,96
79	0,051662	9,71	0,037352	10,99	0,043989	10,39

Anexo 2. Funciones de la tabla de vida proyectada 2025-2030 (Continuación)

	Población	masculina	Población	femenina	Ambo	s sexos
Edad	Probabilidad	Esperanza de	Probabilidad	Esperanza de	Probabilidad	Esperanza de
	de muerte	vida en x	de muerte	vida en x	de muerte	vida en x
X	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$
80	0,056203	9,21	0,041556	10,39	0,048295	9,85
81	0,061207	8,73	0,046212	9,82	0,053053	9,32
82	0,066647	8,26	0,051296	9,27	0,058239	8,82
83	0,072534	7,82	0,056835	8,75	0,063872	8,33
84	0,078875	7,39	0,062834	8,25	0,069958	7,86
85	0,085671	6,98	0,069297	7,76	0,076499	7,42
86	0,092909	6,59	0,076243	7,31	0,083501	6,99
87	0,100709	6,21	0,083747	6,87	0,091058	6,58
88	0,109315	5,85	0,091965	6,45	0,099364	6,19
89	0,118966	5,50	0,101093	6,05	0,108631	5,82
90	0,129688	5,18	0,111233	5,68	0,118926	5,47
91	0,141087	4,88	0,122160	5,32	0,129953	5,14
92	0,152858	4,60	0,133631	5,00	0,141446	4,83
93	0,164936	4,34	0,145627	4,69	0,153371	4,55
94	0,177224	4,09	0,158193	4,40	0,165721	4,28
95	0,189662	3,87	0,171224	4,14	0,178417	4,03
96	0,202410	3,66	0,184686	3,89	0,191506	3,80
97	0,215702	3,46	0,198737	3,66	0,205177	3,58
98	0,229689	3,27	0,213567	3,44	0,219606	3,37
99	0,244152	3,09	0,229083	3,24	0,234655	3,18
100	0,258904	2,93	0,245071	3,05	0,250122	3,01
101	0,273877	2,78	0,261405	2,88	0,265906	2,84
102	0,288999	2,64	0,277996	2,72	0,281924	2,69
103	0,304197	2,51	0,294748	2,57	0,298088	2,55
104	0,319397	2,39	0,311560	2,43	0,314306	2,42
105	0,334524	2,28	0,328331	2,31	0,330485	2,30
106	0,349505	2,18	0,344962	2,20	0,346532	2,19
107	0,364268	2,08	0,361355	2,09	0,362357	2,09
108	0,378749	1,99	0,377419	1,99	0,377875	1,99
109	0,392886	1,90	0,393070	1,89	0,393007	1,89
110	0,406623	1,80	0,408234	1,79	0,407682	1,79
111	0,419914	1,69	0,422845	1,68	0,421839	1,68
112	0,432747	1,55	0,436905	1,54	0,435473	1,54
113	0,445145	1,36	0,450449	1,34	0,448613	1,35
114	0,457101	1,04	0,463463	1,04	0,461248	1,04
115		0,50		0,50		0,50

Anexo 3. Tasas de mortalidad, probabilidades de muerte y esperanza de vida de los jubilados, por edades simples y sexo, 2000-2005.

		Hombres			Mujeres	
Edad	Tasa de	Probabilidad	Esperanza	Tasa de	Probabilidad	Esperanza
Edad	mortalidad	de muerte	de vida	mortalidad	de muerte	de vida
X	$\mathbf{m}_{\mathbf{x}}$	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$	$\mathbf{m}_{\mathbf{x}}$	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$
50	0,00439	0,00438	30,02	0,00207	0,00207	35,69
51	0,00476	0,00475	29,15	0,00226	0,00225	34,76
52	0,00522	0,00521	28,28	0,00246	0,00246	33,84
53	0,00572	0,00570	27,43	0,00270	0,00269	32,92
54	0,00621	0,00619	26,58	0,00296	0,00296	32,01
55	0,00672	0,00670	25,75	0,00324	0,00323	31,10
56	0,00727	0,00725	24,92	0,00352	0,00351	30,20
57	0,00787	0,00784	24,09	0,00383	0,00383	29,31
58	0,00853	0,00850	23,28	0,00420	0,00419	28,42
59	0,00927	0,00923	22,48	0,00463	0,00462	27,53
60	0,01012	0,01007	21,68	0,00513	0,00511	26,66
61	0,01104	0,01098	20,90	0,00567	0,00566	25,79
62	0,01202	0,01195	20,12	0,00627	0,00625	24,94
63	0,01313	0,01305	19,36	0,00690	0,00688	24,09
64	0,01446	0,01436	18,61	0,00756	0,00753	23,26
65	0,01599	0,01587	17,87	0,00827	0,00823	22,43
66	0,01770	0,01754	17,15	0,00906	0,00902	21,61
67	0,01949	0,01930	16,45	0,00996	0,00991	20,80
68	0,02133	0,02110	15,76	0,01093	0,01087	20,01
69	0,02325	0,02298	15,09	0,01201	0,01194	19,22
70	0,02532	0,02501	14,44	0,01320	0,01312	18,45
71	0,02766	0,02728	13,79	0,01456	0,01446	17,68
72	0,03044	0,02999	13,17	0,01611	0,01598	16,94
73	0,03364	0,03309	12,56	0,01788	0,01773	16,20
74	0,03721	0,03654	11,97	0,01989	0,01970	15,49
75	0,04116	0,04034	11,41	0,02214	0,02190	14,79
76	0,04536	0,04436	10,87	0,02462	0,02432	14,11
77	0,04967	0,04848	10,35	0,02732	0,02696	13,45
78	0,05400	0,05259	9,85	0,03023	0,02979	12,81
79	0,05850	0,05684	9,37	0,03344	0,03289	12,18
80	0,06340	0,06146	8,90	0,03701	0,03635	11,58

continua

Anexo 3: Tasas de mortalidad, probabilidades de muerte y esperanza de vida de los jubilados, por edades simples y sexo, 2000-2005 (continuación)

		Hombres			Mujeres	
Edad	Tasa de	Probabilidad	Esperanza	Tasa de	Probabilidad	Esperanza
Edad	mortalidad	de muerte	de vida	mortalidad	de muerte	de vida
X	$\mathbf{m}_{\mathbf{x}}$	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$	$\mathbf{m}_{\mathbf{x}}$	$\mathbf{q}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$
81	0,06880	0,06652	8,45	0,04096	0,04015	11,00
82	0,07467	0,07199	8,02	0,04526	0,04427	10,44
83	0,08103	0,07788	7,60	0,04995	0,04874	9,90
84	0,08787	0,08418	7,20	0,05501	0,05355	9,38
85	0,09522	0,09089	6,82	0,06047	0,05870	8,88
86	0,10306	0,09800	6,45	0,06633	0,06421	8,41
87	0,11152	0,10562	6,09	0,07268	0,07014	7,95
88	0,12090	0,11398	5,76	0,07964	0,07660	7,51
89	0,13148	0,12332	5,43	0,08741	0,08375	7,09
90	0,14330	0,13365	5,13	0,09607	0,09167	6,69
91	0,15596	0,14457	4,84	0,10546	0,10017	6,32
92	0,16912	0,15578	4,57	0,11538	0,10906	5,97
93	0,18272	0,16722	4,33	0,12582	0,11833	5,64
94	0,19667	0,17879	4,10	0,13684	0,12802	5,33
95	0,21091	0,19044	3,88	0,14837	0,13804	5,03
96	0,22565	0,20233	3,68	0,16040	0,14837	4,76
97	0,24120	0,21468	3,49	0,17310	0,15915	4,50
98	0,25776	0,22763	3,31	0,18667	0,17051	4,26
99	0,27512	0,24098	3,14	0,20107	0,18241	4,03
100	0,29307	0,25454	2,99	0,21612	0,19467	3,82
101	0,31155	0,26826	2,84	0,23175	0,20720	3,62
102	0,33051	0,28207	2,70	0,24789	0,21994	3,44
103	0,34987	0,29591	2,58	0,26447	0,23282	3,27
104	0,36956	0,30971	2,46	0,28142	0,24576	3,11
105	0,38948	0,32341	2,35	0,29864	0,25870	2,96
106	0,40955	0,33694	2,25	0,31605	0,27156	2,81
107	0,42968	0,35024	2,15	0,33356	0,28427	2,67
108	0,44976	0,36325	2,06	0,35105	0,29674	2,54
109	0,46971	0,37592	1,96	0,36843	0,30893	2,40
110	0,48944	0,38820	1,86	0,38560	0,32076	2,25
111	0,50885	0,40006	1,74	0,40246	0,33219	2,07
112	0,52790	0,41147	1,59	0,41899	0,34321	1,85
113	0,54661	0,42247	1,38	0,43522	0,35386	1,56
114	0,56494	0,43305	1,05	0,45109	0,36411	1,14
			-	•		•

Anexo 4. Tasa y probabilidad de muerte de los pensionados por invalidez, 2000-2005

-		Hombres			Mujeres	
Edad	Tasa	Tasa	Probabilidad	Tasa	Tasa	Probabilidad
Zada	observada de		morir por	observada de		morir por
	mortalidad	mortalidad	invalidez	mortalidad	mortalidad	invalidez
X	m _{x observada}	m _{xajustada}	$\mathbf{q}_{\mathbf{x}}$	m _{x observada}	m _{xajustada}	$\mathbf{q}_{\mathbf{x}}$
						-
20	0,000000	0,01793	0,01777	0,00000	0,01924	0,01906
21	0,000000	0,01792	0,01776	0,00000	0,01908	0,01890
22	0,120000	0,01792	0,01777	0,05992	0,01888	0,01870
23	0,035122	0,01794	0,01778	0,07414	0,01865	0,01848
24	0,018428	0,01797	0,01782	0,00000	0,01841	0,01824
25	0,025036	0,01802	0,01786	0,05450	0,01815	0,01799
26	0,028509	0,01809	0,01793	0,04170	0,01788	0,01772
27	0,007045	0,01816	0,01800	0,01498	0,01761	0,01745
28	0,027231	0,01825	0,01809	0,04486	0,01733	0,01718
29	0,022048	0,01835	0,01819	0,00947	0,01706	0,01692
30	0,007748	0,01846	0,01830	0,01658	0,01679	0,01665
31	0,033484	0,01858	0,01842	0,00730	0,01652	0,01639
32	0,011490	0,01871	0,01854	0,03732	0,01627	0,01614
33	0,012759	0,01884	0,01867	0,02135	0,01602	0,01589
34	0,013498	0,01898	0,01881	0,02238	0,01578	0,01566
35	0,019322	0,01913	0,01895	0,04477	0,01554	0,01543
36	0,023771	0,01928	0,01910	0,02563	0,01532	0,01520
37	0,019578	0,01944	0,01925	0,01851	0,01510	0,01499
38	0,018619	0,01960	0,01941	0,01381	0,01489	0,01478
39	0,022672	0,01977	0,01957	0,01469	0,01469	0,01458
40	0,018619	0,01994	0,01974	0,01709	0,01449	0,01439
41	0,020927	0,02011	0,01991	0,01460	0,01431	0,01421
42	0,016084	0,02029	0,02008	0,01120	0,01413	0,01403
43	0,018127	0,02046	0,02025	0,01806	0,01397	0,01387
44	0,021566	0,02063	0,02042	0,00860	0,01381	0,01372
45	0,021310	0,02080	0,02059	0,01642	0,01366	0,01357
46	0,015683	0,02096	0,02075	0,01868	0,01352	0,01343
47	0,025648	0,02113	0,02091	0,01640	0,01340	0,01331
48	0,021707	0,02129	0,02106	0,01258	0,01328	0,01320
49	0,022411	0,02144	0,02122	0,01209	0,01318	0,01310
50	0,021315	0,02160	0,02137	0,01414	0,01309	0,01301
51	0,026074	0,02176	0,02153	0,01204	0,01302	0,01294
52	0,019478	0,02193	0,02170	0,00798	0,01297	0,01289
53	0,022751	0,02212	0,02188	0,00710	0,01294	0,01286
54	0,019554	0,02233	0,02209	0,01124	0,01293	0,01285
55	0,023178	0,02258	0,02233	0,01052	0,01297	0,01288
						continúa

Anexo 4. Tasa y probabilidad de muerte de los pensionados por invalidez, 2000-2005 (continuación)

		Hombres			Mujeres	
Edad	Tasa	Tasa	Probabilidad	Tasa	Tasa	Probabilida
	observada de	ajustada de	morir por	observada de	ajustada de	morir por
	mortalidad	mortalidad	invalidez	mortalidad	mortalidad	invalidez
X	m _{x observada}	m _{xajustada}	$\mathbf{q}_{\mathbf{x}}$	m _{x observada}	m _{xajustada}	$\mathbf{q}_{\mathbf{x}}$
56	0,022038	0,02288	0,02262	0,01039	0,01304	0,01296
57	0,020492	0,02325	0,02298	0,01172	0,01316	0,01308
58	0,023468	0,02370	0,02343	0,00989	0,01335	0,01326
59	0,023545	0,02425	0,02396	0,01399	0,01360	0,01351
60	0,027223	0,02492	0,02462	0,01299	0,01393	0,01383
61	0,025057	0,02571	0,02539	0,00996	0,01434	0,01424
62	0,017737	0,02665	0,02631	0,01392	0,01484	0,01474
63	0,023813	0,02775	0,02738	0,01341	0,01545	0,01534
64	0,020594	0,02902	0,02861	0,01152	0,01617	0,01604
65	0,020994	0,03047	0,03002	0,01306	0,01701	0,01687
66	0,024471	0,03212	0,03161	0,01599	0,01797	0,01782
67	0,024606	0,03396	0,03340	0,01311	0,01907	0,01890
68	0,020560	0,03603	0,03540	0,01561	0,02032	0,02012
69	0,025900	0,03832	0,03760	0,01507	0,02172	0,02149
70	0,025498	0,04084	0,04003	0,02029	0,02329	0,02302
71	0,029998	0,04361	0,04269	0,02745	0,02503	0,02472
72	0,029131	0,04663	0,04558	0,01262	0,02695	0,02660
73	0,029314	0,04992	0,04872	0,01419	0,02908	0,02866
74	0,038252	0,05349	0,05210	0,02209	0,03141	0,03093
75	0,037613	0,05734	0,05575	0,02267	0,03397	0,03341
76	0,039406	0,06149	0,05967	0,02591	0,03677	0,03611
77	0,037877	0,06597	0,06387	0,02917	0,03982	0,03905
78	0,048122	0,07078	0,06837	0,03574	0,04317	0,04226
79	0,049449	0,07597	0,07320	0,04896	0,04682	0,04576
80	0,046208	0,08155	0,07837	0,04319	0,05081	0,04956
81	0,054229	0,08757	0,08390	0,05573	0,05518	0,05371
82	0,060370	0,09405	0,08983	0,06504	0,05996	0,05822
83	0,060060	0,10102	0,09616	0,05465	0,06518	0,06313
84	0,080843	0,10849	0,10290	0,05244	0,07087	0,06846
85	0,074219	0,11650	0,11006	0,05801	0,07707	0,07422
86	0,091319	0,12504	0,11764	0,06924	0,08380	0,08044
87	0,083568	0,13411	0,12563	0,06071	0,09109	0,08713
88	0,100000	0,14372	0,13401	0,08765	0,09896	0,09430
89	0,110000	0,15385	0,14276	0,08279	0,10744	0,10196
90	0,120000	0,16449	0,15186	0,05798	0,11655	0,11011
						continúa

Anexo 4. Tasa y probabilidad de muerte de los pensionados por invalidez, 2000-2005 (continuación)

		Hombres		Mujeres			
Edad	Tasa	Tasa	Probabilidad	Tasa	Tasa	Probabilidad	
	observada de	ajustada de	morir por	observada de	ajustada de	morir por	
	mortalidad	mortalidad	invalidez	mortalidad	mortalidad	invalidez	
X	m _{x observada}	m _{xajustada}	$\mathbf{q}_{\mathbf{x}}$	m _{x observada}	m _{xajustada}	$\mathbf{q}_{\mathbf{x}}$	
91	0,160000	0,17562	0,16127	0,15000	0,12631	0,11877	
92	0,150000	0,18722	0,17097	0,20000	0,13675	0,12794	
93	0,150000	0,19927	0,18093	0,23000	0,14788	0,13762	
94	0,190000	0,21174	0,19112	0,13000	0,15974	0,14781	
95	0,220000	0,22462	0,20151	0,19000	0,17234	0,15851	
96	0,210000	0,23788	0,21206	0,35000	0,18569	0,16970	
97	0,250000	0,25149	0,22275	0,06789	0,19981	0,18137	
98	0,180000	0,26543	0,23355	0,17000	0,21467	0,19349	
99	0,240000	0,27965	0,24442	0,29000	0,23028	0,20603	
100	0,300000	0,29412	0,25533	0,19000	0,24665	0,21896	
101		0,30882	0,26625		0,26378	0,23228	
102		0,32370	0,27714		0,28168	0,24596	
103		0,33872	0,28797		0,30034	0,25996	
104		0,35383	0,29871		0,31975	0,27426	
105		0,36897	0,30931		0,33991	0,28882	
106		0,38410	0,31974		0,36080	0,30361	
107		0,39920	0,33000		0,38242	0,31859	
108		0,41422	0,34005		0,40474	0,33372	
109		0,42917	0,34991		0,42775	0,34898	
110		0,44406	0,35959		0,45140	0,36430	
111		0,45890	0,36909		0,47561	0,37962	
112		0,47372	0,37843		0,50020	0,39480	
113		0,48853	0,38764		0,52491	0,40970	
114		0,50335	0,39672		0,54940	0,42410	

Anexo 5. Definición de los conceptos utilizados para la construcción de las tablas

Derecho Habiente:

Se definieron como derecho habientes a quienes indicaron ser pensionados, así como a los asegurados que son trabajadores asalariados y sus dependientes. No se incluyó a los asegurados voluntarios que laboran por cuenta propia, debido a que en su gran mayoría no aportan al sistema de pensiones complementarias. Por la misma razón se excluyeron de los derecho habientes a los asegurados por cuenta del Estado (Rosero & Collado, 2002: 4). Para excluir los asegurados por cuenta del estado se utilizó el historial de pensiones de cada individuo proporcionada por la CCSS. El individuo se consideró sin derecho a pensión complementaria si tenía una pensión otorgada por el régimen no contributivo de monto básico administrado por la CCSS o por alguno de los regímenes no contributivos financiados por FODESAF y administrados por la DNP. De acuerdo con esta depuración, el 25% de los pensionados y el 12% de los asegurados familiares según el Censo en realidad pertenecen al régimen no contributivo (son pensionados por el Estado), lo que representa una exclusión del 17% del total de derecho habientes³.

Jubilado:

De acuerdo con funcionarios de la SUPEN, se define como jubilados a las personas que tienen una pensión por cumplimiento de cuotas, años de servicio o por edad (vejez). Se asume para fines prácticos que una persona adquiere este derecho una sola vez en la vida (en la fecha de la primera pensión directa adjudicada) y no lo pierde hasta su muerte. Se asumió también que eran pensionados directos por vejez, todos los pensionados de los regímenes contributivos administrados por la DNP, Hacienda y el Poder Judicial (328 registros).

Pensionado por invalidez:

Persona a quien se le ha adjudicado una pensión de invalidez. Esta condición debió ser explícita en la información brindada por las administradoras de pensiones.

Fecha de entrada a la pensión

La fecha de entrada a la pensión que permitió determinar el número de nuevos pensionados es la fecha de adjudicación de la pensión, no la fecha cuando sufrió la discapacidad que en la mayoría de los casos no se conoce y puede haber ocurrido meses o años antes de la fecha de adjudicación.

Fecha de adjudicación de la pensión:

Ninguno de los registros de la Dirección Nacional de Pensiones (458) tenían fecha de adjudicación. Tampoco 175 registros de pensiones otorgadas por el Régimen de Hacienda, 12 del IVM, 7 del Poder Judicial, 2 RNC de monto básico y 1 Magisterio. Este 10% de registros sin fecha se imputaron observando las edades de pensión promedio según régimen, tipo de pensión y sexo, con los siguientes criterios:

- A los siete varones que tenían una pensión por vejez del IVM se les asignó la fecha de la pensión al cumplir los 65 años de edad.
- Las cuatro personas que tenían una pensión por invalidez del IVM, se les asignó una edad de 63 años a los varones y 60 a las mujeres. La mitad eran varones.

³ El estudio de hace cinco años no dispuso de información completa sobre pensionados del régimen no contributivo por lo que fue necesario en algunos casos efectuar imputaciones usando métodos de regresión (Rosero & Collado, 2002).

- Para la única persona sin fecha de pensión del Magisterio, se asignó a edad 55. No se reportaron valores faltantes en fechas de pensiones por invalidez en este régimen.
- Para 317 pensionados por vejez de otros regímenes contributivos como Hacienda, Poder Judicial u otros administrados por la DNP se supuso que la pensión fue adjudicada a la edad de 55 a los hombres y a la edad 50 para las mujeres. El 28% eran mujeres.
- Los pensionados de los regímenes no contributivos se les asignó la pensión a la edad 71.5 si eran del régimen de monto básico de la CCSS. Los 280 registros que pertenecían a los regímenes no contributivos administrados por la DNP se les asignó 50 años si eran para mujeres y 55 años si eran varones.

Debe anotarse que la fecha exacta de adjudicación de la pensión es irrelevante para el período anterior al del presente análisis, es decir antes de junio del 2000. En estos casos basta saber que a la fecha del censo ya se le había adjudicado la pensión.

Edad exacta:

Se determinó con la fecha exacta de nacimiento. En este estudio, que es un seguimiento de alrededor de seis años, la observación de cada individuo se divide en segmentos para cada año exacto de edad, como se explica más adelante. En cada uno de estos segmentos se establece la sobrevivencia y la condición de jubilado (y de pensionado por invalidez) por comparación con las fechas respectivas. La condición de derecho habiente se establece al inicio de la observación (junio de 2000) y se mantiene inalterada.

Tasa de mortalidad:

Es el cociente entre el número de defunciones en cada edad, sexo y condición y el número correspondiente de años persona de observación.