

TDA7231A

1.6W AUDIO AMPLIFIER

- OPERATING VOLTAGE 1.8 TO 15 V
- LOW QUIESCENT CURRENT
- HIGH POWER CAPABILITY
- LOW CROSSOVER DISTORTION
- SOFT CLIPPING

DESCRIPTION

The TDA7231A is a monolithic integrated circuit in 4 + 4 lead minidip package. It is intended for use as class AB power amplifier with wide range of supply voltage in portable radios, cassette recorders and players, etc.

PIN CONNECTION

March 1995 1/5

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	16	V
P _{tot}	Total Power Dissipation at T _{amb} = 50 °C at T _{case} = 70 °C	1.25 4	W W
Ιο	Output Peak Current	1	Α
T _{stg} , T _j	Storage and Junction Temperature	- 40 to 150	°C

THERMAL DATA

Symbol	Parameter		Value	Unit
R _{th j-amb}	Thermal Resistance Junction-ambient Ma	ax.	80	°C/W
R _{th j-pins}	Thermal Resistance Junction-pins Ma	ax.	15	°C/W

ELECTRICAL CHARACTERISTICS (V_s = 6 V, T_{amb} = 25 $^{\circ}C$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		1.8		15	V
Vo	Quiescent Out Voltage	V _S = 6 V V _S = 3 V		2.7 1.2		V
I _d	Quiescent Drain Current			3.6	9	mA
I _b	Input Bias Current			100		nA
Po	Output Power	$\begin{array}{lll} d = 10\% & f = 1 \text{kHz} \\ V_s = 12 V & R_L = 8 \Omega \\ V_s = 9 V & R_L = 4 \Omega \\ V_s = 6 V & R_L = 8 \Omega \\ V_s = 6 V & R_L = 4 \Omega \\ V_s = 3 V & R_L = 4 \Omega \\ V_s = 3 V & R_L = 8 \Omega \end{array}$		1.8 1.6 0.4 0.7 110 70		W W W W mW
d	Distortion	$P_o = 0.2 \text{ W}$ $f = 1 \text{ kHz}$ $R_L = 8 \Omega$		0.3		%
G _v	Closed Loop Voltage Gain			38		dB
R _{in}	Input Resistance	f = 1kHz	100			kΩ
en	Total Input Noise	$R_s = 10k\Omega$ B = Curve A B = 22Hz to 22kHz		2 3		μV μV
SVR	Supply Voltage Rejection	$f = 100Hz$, $R_g = 10k\Omega$	24	33		dB

Figure 1: Test and Application Circuit

Figure 2: P.C. Board and Components Layout of the figure 1 (1:1 scale)

Figure 3: Output Power versus Supply Voltage

Figure 5: Quiescent Output Voltage versus Supply Voltage

Figure 4: Quiescent Current versus Supply Voltage

Figure 6 : Supply Voltage Rejection versus Frequency

