# 数据科学导论期末大作业

# 一. 数据来源及数据背景

我们采用的是 2014 年 1 月 1 日 0 时至 2016 年 11 月 26 日 23 时的北京空气质量历史数据,网址为 <a href="http://beijingair.sinaapp.com/">http://beijingair.sinaapp.com/</a>。数据集中包含时间,污染物实时浓度,污染物 24 小时均值,空气质量指数(air quality index, AQI)及监测点名称。

在该数据集中,除 AQI 为计算所得外,其余数据均为测量所得。其中,时间包含年月日,精确到每小时;污染物实时浓度及污染物 24 小时均值所包含的指标如表 1 所示;监测点的详细信息如表 2 所示。

表 1 污染物指标的中文含义、单位及对应英文

| 污染物指标       | 污染物项目 P                | 单位        | 对应英文      |
|-------------|------------------------|-----------|-----------|
|             | 颗粒物(粒径<=2.5 um)1 小时平均  | μ $g/m^3$ | PM2.5     |
| 污染物实时浓度     | 颗粒物(粒径<=10 um)1 小时平均   | μ $g/m^3$ | PM10      |
|             | 二氧化硫 1 小时平均            | μ $g/m^3$ | SO2       |
|             | 二氧化氮 1 小时平均            | μ $g/m^3$ | NO2       |
|             | 臭氧 1 小时平均              | μ $g/m^3$ | О3        |
|             | 一氧化碳 1 小时平均            | $mg/m^3$  | CO        |
|             | 颗粒物(粒径<=2.5 um)24 小时平均 | μ $g/m^3$ | PM2.5_24h |
| 污染物 24 小时均值 | 颗粒物(粒径<=10 um)24 小时平均  | μ $g/m^3$ | PM10_24h  |
|             | 二氧化硫 24 小时平均           | μ $g/m^3$ | SO2_24h   |
|             | 二氧化氮 24 小时平均           | μ $g/m^3$ | NO2_24h   |
|             | 臭氧 24 小时平均             | μ $g/m^3$ | O3_24h    |
|             | 一氧化碳 24 小时平均           | $mg/m^3$  | CO_24h    |

表 2 监测点详细信息

|         | 监测点  | 监测点全称   |  |
|---------|------|---------|--|
| 城市环境评价点 | 东四   | 东城东四    |  |
|         | 天坛   | 东城天坛    |  |
|         | 官园   | 西城官园    |  |
|         | 万寿西宫 | 西城万寿西宫  |  |
|         | 奥体中心 | 朝阳奥体中心  |  |
|         | 农展馆  | 朝阳农展馆   |  |
|         | 万柳   | 海淀万柳    |  |
|         | 北部新区 | 海淀北部新区  |  |
|         | 植物园  | 海淀北京植物园 |  |
|         | 丰台花园 | 丰台花园    |  |
|         | 云岗   | 丰台云岗    |  |
|         | 古城   | 石景山古城   |  |
| 郊区环境评价点 | 房山   | 房山良乡    |  |
|         | 大兴   | 大兴黄村镇   |  |

|         | 亦庄   | 亦庄开发区           |  |
|---------|------|-----------------|--|
|         | 通州   | 通州新城            |  |
|         |      |                 |  |
|         | 顺义   | 顺义新城            |  |
|         | 昌平   | 昌平镇             |  |
|         | 门头沟  | 门头沟龙泉镇          |  |
|         | 平谷   | 平谷镇             |  |
|         | 怀柔   | 怀柔镇             |  |
|         | 密云   | 密云镇             |  |
|         | 延庆   | 延庆镇             |  |
| 对照点及区域点 | 定陵   | 昌平定陵            |  |
|         | 八达岭  | 京西北八达岭,京西北区域点   |  |
|         | 密云水库 | 京东北密云水库, 京东北区域点 |  |
|         | 东高村  | 京东东高村, 京东区域点    |  |
|         | 永乐店  | 京东南永乐店, 京东南区域点  |  |
|         | 榆垡   | 京南榆垡, 京南区域点     |  |
|         | 琉璃河  | 京西南琉璃河,京西南区域点   |  |
|         | 定陵   | 昌平定陵            |  |
| 交通污染监测点 | 前门   | 前门东大街,前门交通点     |  |
|         | 永定门内 | 永定门内大街,永定门交通点   |  |
|         | 西直门北 | 西直门北大街,西直门交通点   |  |
|         | 南三环  | 南三环西路,南三环交通点    |  |
|         | 东四环  | 东四环北路,东四环交通点    |  |

#### 二. AQI 重新计算

根据环境保护部发布的环境空气质量指数(AQI)技术规定(试行),污染物项目 P 的空气质量分指数 $IAQI_p$ 的计算公式为:

$$IAQI_p = \frac{IAQI_{Hi} - IAQI_{Lo}}{BP_{Hi} - BP_{Lo}} (C_P - BP_{Lo}) + IAQI_{Lo}$$

其中,

 $IAQI_p$ 代表污染物项目 P 的空气质量分指数;

 $C_P$ 代表污染物项目 P 的质量浓度值;

 $BP_{Hi}$ 代表<mark>图 1</mark>中与 $C_P$ 相近的污染物浓度限值的高位值;

 $BP_{Lo}$ 代表<mark>图 1</mark> 中与 $C_P$ 相近的污染物浓度限值的低位值;

 $IAQI_{Hi}$ 代表<mark>图 1</mark> 中与 $BP_{Hi}$ 对应的空气质量分指数;

 $IAQI_{Lo}$ 代表<mark>图 1</mark>中与 $BP_{Lo}$ 对应的空气质量分指数。

空气质量指数AQI的计算公式为:

$$AQI = \max\{IAQI_p\}, p = 1,2, \dots n_{\circ}$$

因此,通过已有的污染物实时浓度及平均浓度按照以上两个公式重新计算,理论上应该得到与数据集中的 AQI 相近的结果。我们猜测,不同污染物对空气质量分数 AQI 的贡献可能不同,其中 PM2.5 及 PM10 可能是突出最为贡献的污染物。因此,我们采用 PM2.5、PM2.5\_24h、PM10 及 PM10\_24h 进行空气质量指数 AQI\_NEW 的计算,与数据集中的 AQI 进行比较。

图 1 污染物项目浓度限值

|        | 污染物项目浓度限值     |                     |                    |                          |                      |            |                          |           |                      |               |
|--------|---------------|---------------------|--------------------|--------------------------|----------------------|------------|--------------------------|-----------|----------------------|---------------|
|        |               |                     |                    |                          | 颗粒物                  |            |                          |           |                      | 颗粒物           |
| 空气质量   | 二氧化硫          | 二氧化硫                | 二氧化氮               | 二氧化氮                     | (粒径小                 | 一氧化碳       | 一氧化碳                     | 自気(0)     | 臭氧 (O <sub>3</sub> ) | (粒径小          |
| 分指数    | $(SO_2)$      | (SO <sub>2</sub> )  | (NO <sub>2</sub> ) | (NO <sub>2</sub> )       | 于等于                  | (CO)       | (CO)                     | 1 小时      | 8小时滑                 | 于等于           |
| (IAQI) | 24 小时         | 1 小时                | 24 小时              | 1 小时                     | 10μm)                | 24 小时      | 1 小时                     | 平均/       | 动平均/                 | 2.5µm)        |
| (IAQI) | 平均/           | 平均/                 | 平均/                | 平均/                      | 24 小时                | 平均/        | 平均/                      | (3)       | (μg/m <sup>3</sup> ) | 24 小时         |
|        | $(\mu g/m^3)$ | $(\mu g/m^3)^{(1)}$ | (μg/m³)            | (μg/m <sup>3</sup> ) (1) | 平均/                  | $(mg/m^3)$ | (mg/m <sup>3</sup> ) (1) | (μg/III ) | μg/III /             | 平均/           |
|        |               |                     |                    |                          | (μg/m <sup>3</sup> ) |            |                          |           |                      | $(\mu g/m^3)$ |
| 0      | 0             | 0                   | 0                  | 0                        | 0                    | 0          | 0                        | 0         | 0                    | 0             |
| 50     | 50            | 150                 | 40                 | 100                      | 50                   | 2          | 5                        | 160       | 100                  | 35            |
| 100    | 150           | 500                 | 80                 | 200                      | 150                  | 4          | 10                       | 200       | 160                  | 75            |
| 150    | 475           | 650                 | 180                | 700                      | 250                  | 14         | 35                       | 300       | 215                  | 115           |
| 200    | 800           | 800                 | 280                | 1 200                    | 350                  | 24         | 60                       | 400       | 265                  | 150           |
| 300    | 1 600         | (2)                 | 565                | 2 340                    | 420                  | 36         | 90                       | 800       | 800                  | 250           |
| 400    | 2 100         | (2)                 | 750                | 3 090                    | 500                  | 48         | 120                      | 1 000     | (3)                  | 350           |
| 500    | 2 620         | (2)                 | 940                | 3 840                    | 600                  | 60         | 150                      | 1 200     | (3)                  | 500           |

## 1. PM2.5 及 PM2.5 24h

#### 1.1 总体分布

在剔除异常值之后,将由 PM2.5 及 PM2.5\_24h 所计算出的 AQI\_NEW 和原始数据集中的 AQI 的 概 率 密 度 曲 线 进 行 比 较 , 如 图 2( 左 ) 所 示 , PM2.5\_AQI\_NEW 或 PM2.5\_24h\_AQI\_NEW 大体趋势与原始 AQI 一致,但存在一定差异。由于平日里 AQI 的最 大值被人为设置为 500,因此我们将 AQI=500 作为分界线,分别观察当 AQI<500 及 AQI>500 时,PM2.5 及 PM2.5 24h 所计算出的 AQI NEW 与原始 AQI 的差异情况。

如图 2(中)所示,当 0<AQI<150 时,PM2.5\_AQI\_NEW 及 PM2.5\_24h\_AQI\_NEW 所对应的峰值小于原始 AQI 所对应的峰值,说明当空气质量良好时,PM2.5 或 PM2.5\_24h 均不是影响 AQI 的主要因素;当 150<AQI<500 时,PM2.5\_AQI\_NEW 及 PM2.5\_24h\_AQI\_NEW 与原始 AQI 差异较小,概率分布曲线较为接近,说明在空气质量一般时,PM2.5 或 PM2.5\_24h 均是影响 AQI 的主要因素。如图 2(右)所示,当 500<AQI<1200 时,PM2.5\_AQI\_NEW 及 PM2.5\_24h\_AQI\_NEW 所对应的概率大于原始 AQI 所对应的概率,由 PM2.5 及 PM2.5\_24h 所引起的空气严重污染的概率大大高于官方确认的"爆表"概率。

图 2 PM2.5/PM2.5 24h 所得 AQI NEW 及原始 AQI 的概率密度图



# 1.2 差值比较

将 PM2.5\_AQI\_NEW 及 PM2.5\_24h\_AQI\_NEW 与原始 AQI 分别作差,得出 diff1 及 diff2, 因为样本量足够大,因此可以将 diff1 及 diff2 视为正态分布进行考察,如图 3 所示。对于 PM2.5\_AQI\_NEW 与原始 AQI 所得的 diff1 而言,平均值为 4.64,方差为 66.83;而对于 PM2.5 24h AQI NEW 与原始 AQI 所得的 diff2 而言,平均值为 5.27,方差为 19.46。

可以发现,diff1 及 diff2 的平均值均为正数,说明使用 PM2.5 或 PM2.5\_24h 所计算的 AQI\_NEW 总体高于原始 AQI,这一结果能够从图 2 中得到解释,即 PM2.5 或 PM2.5\_24h 所计算的 AQI\_NEW 在空气污染严重时概率较高,因此拉高了总体平均值。此外,diff2 的方差远小于 diff1 的方差,说明使用 PM2.5\_24h 所计算的 AQI\_NEW 较为稳定,因而与原始 AQI 更为接近。



图 3 diff1 及 diff2 的概率密度图

#### 1.3 正确匹配

当 PM2.5\_AQI\_NEW 及 PM2.5\_24h\_AQI\_NEW 与原始 AQI 的差值 diff 足够小时,可以 视为一次正确匹配。为寻找正确匹配所适合的误差阈限,我们将 diff 1 及 diff2 在 0,±1,±2,±3,±4,±5 时的频数进行统计,如表 3 所示。当误差阈限严格为 0 时,PM2.5 所计算的 AQI\_NEW 只有 1.02%能够与原始 AQI 正确匹配,而 PM2.5\_24h 所计算的 AQI\_NEW 有 21.05%能够与原始 AQI 正确匹配;随着误差阈限的放松,diff1 及 diff2 的累积正确匹配率均在上升,当误差阈限放宽至±5 时,PM2.5 所计算的 AQI\_NEW 有 10.78%能够与原始 AQI 正确匹配,而 PM2.5\_24h 所计算的 AQI\_NEW 有 59.10%能够与原始 AQI 正确匹配。这一结果再次证明使用 PM2.5\_24h 所得出的 AQI\_NEW 更为接近原始 AQI。

| 农 J unit |            |            |            |            |  |  |
|----------|------------|------------|------------|------------|--|--|
| Diff 数值  | Diff1 累积正确 | Diff2 累积正确 | Diff1 累积正确 | Diff2 累积正确 |  |  |
|          | 频次         | 频次         | 匹配率        | 匹配率        |  |  |
| 0        | 8955       | 184807     | 0.01019961 | 0.2104923  |  |  |
| ±1       | 26197      | 367230     | 0.02983798 | 0.4182693  |  |  |
| ±2       | 43470      | 413862     | 0.04951166 | 0.4713824  |  |  |
| ±3       | 60704      | 453806     | 0.06914092 | 0.5168780  |  |  |

表 3 diff1 及 diff2 的累积正确频次及匹配率

| ±4 | 77764 | 487533 | 0.08857200 | 0.5552926 |
|----|-------|--------|------------|-----------|
| ±5 | 94650 | 518889 | 0.10780490 | 0.5910066 |

## 2. PM10 及 PM10 24h

#### 2.1 总体分布

在剔除异常值之后,将由 PM10 及 PM10\_24h 所计算出的 AQI\_NEW 和原始数据集中的 AQI 的概率密度曲线进行比较,如图 4 所示,PM10\_AQI\_NEW 或PM10\_24h\_AQI\_NEW 与原始 AQI 差异较大。当 0<AQI<100 时,PM10\_AQI\_NEW 及PM10\_24h\_AQI\_NEW 所对应的概率大于原始 AQI 所对应的概率;而当 100<AQI<500时,PM10\_AQI\_NEW 及 PM10\_24h\_AQI\_NEW 所对应的概率小于原始 AQI 所对应的概率。这一结果表明,PM10 及 PM10\_24h 所引起的空气质量污染普遍较轻,并且 PM10 及PM10\_24h 对于严重空气污染时的贡献不大。

0.010-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.0000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.0000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.0000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.0000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.0000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.00

图 4 PM10/PM10 24h 所得 AQI NEW 及原始 AQI 的概率密度图

#### 2.2 差值比较

将 PM10\_AQI\_NEW 及 PM10\_24h\_AQI\_NEW 与原始 AQI 分别作差,得出 diff4 及 diff5,因为样本量足够大,因此可以将 diff4 及 diff5 视为正态分布进行考察,如图 5 所示。对于 PM10\_AQI\_NEW 与原始 AQI 所得的 diff4 而言,平均值为 22.43,方差为 54.12;而对于 PM10\_24h\_AQI\_NEW 与原始 AQI 所得的 diff5 而言,平均值为 26.28,方差为 41.63。

可以发现,diff4 及 diff5 的平均值均为正数,说明使用 PM10 或 PM10\_24h 所计算的 AQI\_NEW 总体高于原始 AQI,这一结果并不能很好地被<mark>图 4</mark> 解释。此外,diff3 与 diff4 的均值与方差均与标准正态分布相差较大,说明无论是 PM10 还是 PM10\_24h 所计算的 AQI\_NEW 均与原始 AQI 相去甚远。

图 5 diff4 及 diff5 的概率密度图



#### 2.3 正确匹配

当 PM10\_AQI\_NEW 及 PM10\_24h\_AQI\_NEW 与原始 AQI 的差值 diff 足够小时,可以视为一次正确匹配。为寻找正确匹配所适合的误差阈限,我们将 diff 4 及 diff5 在 0, ±1, ±2, ±3, ±4, ±5 时的频数进行统计,如表 4 所示。当误差阈限严格为 0 时,PM10 所计算的 AQI\_NEW 只有 0.86%能够与原始 AQI 正确匹配,而 PM10\_24h 所计算的 AQI\_NEW 有 9.88%能够与原始 AQI 正确匹配;随着误差阈限的放松,diff4 及 diff5 的累积正确匹配率均在上升,当误差阈限放宽至±5 时,PM10 所计算的 AQI\_NEW 有 9.32%能够与原始 AQI 正确匹配,而 PM10\_24h 所计算的 AQI\_NEW 有 26.56%能够与原始 AQI 正确匹配。这一结果证明,使用 PM10\_24h 所得出的 AQI\_NEW 与使用 PM10 所得出的 AQI\_NEW 相比,稍微接近原始 AQI 一些。

| Diff 数值 | Diff4 累积正确 | Diff5 累积正确 | Diff4 累积正确  | Diff5 累积正确 |
|---------|------------|------------|-------------|------------|
|         | 频次         | 频次         | 匹配率         | 匹配率        |
| 0       | 7513       | 86795      | 0.008549012 | 0.09876368 |
| ±1      | 22561      | 171380     | 0.02567207  | 0.1950126  |
| ±2      | 37656      | 186999     | 0.04284861  | 0.2127854  |
| ±3      | 52350      | 202960     | 0.05956885  | 0.2309474  |
| ±4      | 67291      | 218177     | 0.07657015  | 0.2482627  |
| ±5      | 81933      | 233414     | 0.09323123  | 0.2656008  |

表 4 diff4 及 diff5 的累积正确频次及匹配率

通过对于 AOI 的重新计算,我们能够得出以下结论:

- 1) PM2.5 及 PM2.5\_24h 是主要空气污染物,而 PM10 及 PM10\_24h 是次要空气污染物,且它们的正确匹配率 PM2.5\_24h>PM10\_24h> PM2.5> PM10,其中 PM2.5\_24h 正确匹配率为 59.10%,PM10\_24h 正确匹配率为 26.56%;
- 2) 使用 PM2.5 及 PM2.5\_24h 进行空气质量指数 AQI\_NEW 计算所得的结果分布在两端,在空气质量良好时, PM2.5 或 PM2.5\_24h 均不是影响 AQI 的主要因素,在空气质量一般时, PM2.5 或 PM2.5\_24h 均是影响 AQI 的主要因素,而在空气质量恶劣时,由 PM2.5 及 PM2.5\_24h 是罪魁祸首的概率大大高于官方"爆表"概率;
- 3) 使用 PM10 及 PM10 24h 进行空气质量指数 AQI NEW 计算所得的结果分布更为集

中,在空气质量良好时,PM10 或  $PM10_24h$  很可能是影响 AQI 的主要因素,而且其他情况时,PM10 或  $PM10_24h$  均不是影响 AQI 的主要因素。