

LELEC1755

Partie « Lignes de transmission »

CM3

Introduction aux circuits distribués

Des champs électromagnétiques aux ondes de tension et de courant dans les lignes de transmission

Matière traitée dans le 3e module LELEC1755

1. Limite de la représentation par éléments localisés ... « tension et courant deviennent des ondes »

2. Champs dans les lignes de transmission

> ondes TEM, TE et TM

───⇒ équation de Helmholtz

 \Longrightarrow paramètres fondamentaux: α , β , Z_c , L, C

> application au câble coaxial

3. Lignes avec pertes

> dans le milieu

□ dans les conducteurs

4. Circuit distribué équivalent d'une ligne TEM

Au CM2, on a lié la notion de capacité, inductance et résistance aux champs électromagnétiques et aux équations de Maxwell

- > Eléments de circuit considérés comme idéaux (R ou L ou C)
- Pertes dans les éléments idéaux modélisée par une résistance (série ou parallèle)

Le circuit suivant pose cependant question

R_c, L, C ?? combinés

Que se passe-t-il à très basse fréquence (et DC) ?

$$\overline{E_0} = \frac{V_0}{b} \overline{a_x}$$

$$\overline{H_0} = 0$$

$$CEP$$

$$a$$

$$CEP$$

$$CEP$$

$$C = \left(\frac{\varepsilon a}{b}\right) l$$

Décomposition en série des champs en fonction de la fréquence (phaseurs)

$$E_{x} = E_{x0} + E_{x1}\omega + E_{x2}\omega^{2} + \cdots$$

(2)

$$E_{xn}$$
, $H_{yn} = f(z, g\acute{e}om\acute{e}trie)$

$$H_y = H_{y0} + H_{y1}\omega + H_{y2}\omega^2 + \cdots$$

Champs incorporés dans Maxwell

 \triangleright Condition limite en z = 0 (phaseurs)

$$\nabla \times \overline{E} = -j\omega\mu\overline{H}$$

$$\nabla \times \overline{H} = j\omega\overline{D}$$

$$\frac{dE_x}{dz} = -j\omega\mu H_y$$

$$I = I_0 = aH_y \Big|_{z=0} H_{y0}(z=0) = \frac{I_0/a}{E_{x0}(z=0)}$$

$$E_{x0}(z=0) = \frac{I_0/a}{I_0R_c/b}$$

$$H_{yn} = 0 = E_{xn}; n = 1,2,...$$

$$I = I_0 = a H_y \Big|_{z=0}$$
 $H_{y0}(z=0) = \frac{I_0}{a}$
 $E_{x0}(z=0) = \frac{I_0 R_c}{b}$
 $H_{yn} = 0 = E_{xn}; n = 1,2,...$

Injectant les expressions (1) et (2) dans les équations ci-dessus et égalisant les termes de même puissance en ω , on obtient

$$\frac{dE_{x0}}{dz} = 0 \qquad \frac{dE_{x1}}{dz} = -j\mu H_{y0}$$

$$\frac{dH_{y0}}{dz} = 0 \qquad \frac{dH_{y1}}{dz} = -j\varepsilon E_{x0}$$

$$\frac{dE_{x2}}{dz} = -j\mu H_{y1}$$

$$\frac{dH_{y2}}{dz} = -j\varepsilon E_{x1}$$
...

Décomposition en série des champs en fonction de la fréquence (phaseurs)

➤ Ordre 0: E_{x0} et H_{y0} sont indépendants de z, ils gardent donc la valeur obtenue en z=0

$$\frac{dE_{x0}}{dz} = 0 \qquad H_{y0} = \frac{I_0}{a}$$

$$\frac{dH_{y0}}{dz} = 0 \qquad E_{x0} = \frac{I_0R_c}{b}$$

> Ordre 1: les constantes d'intégration sont nulles car H_{v1} = E_{x1} = 0 en z = 0

(ı)

$$\begin{split} \frac{dE_{x1}}{dz} &= -j\mu H_{y0} & \omega E_{x1} &= -j\omega\mu \frac{I_0}{a}z = -j\beta_0 z \left(\frac{\eta I_0}{a}\right) \\ \frac{dH_{y1}}{dz} &= -j\varepsilon E_{x0} & \omega H_{y1} &= -j\omega\varepsilon \frac{I_0 R_c}{b}z = -j\beta_0 z \left(\frac{I_0 R_c}{\eta b}\right) \\ \beta_0 &= \omega\sqrt{\varepsilon\mu} \; ; \; \eta = \sqrt{\frac{\mu}{\varepsilon}} \end{split}$$

Décomposition en série des champs en fonction de la fréquence (phaseurs)

 ω^2

$$\frac{dE_{x2}}{dz} = -j\mu H_{y1} \qquad \omega^2 E_{x2} = \frac{I_0 R_c}{b} \frac{(j\beta_0 z)^2}{2!} \qquad \frac{dE_{x3}}{dz} = -j\mu H_{y2} \qquad \omega^3 E_{x3} = -\frac{I_0 \eta}{a} \frac{(j\beta_0 z)^3}{3!}$$

$$\frac{dH_{y2}}{dz} = -j\varepsilon E_{x1} \qquad \omega^2 H_{y2} = \frac{I_0}{a} \frac{(j\beta_0 z)^2}{2!} \qquad \frac{dH_{y3}}{dz} = -j\varepsilon E_{x2} \qquad \omega^3 H_{y3} = -\frac{I_0 R_c}{\eta b} \frac{(j\beta_0 z)^3}{3!}$$

$$E_{x} = \frac{I_{0}R_{c}}{b} \left[1 - \left(\frac{\eta b}{aR_{c}} \right) (j\beta_{0}z) + \frac{(j\beta_{0}z)^{2}}{2!} - \left(\frac{\eta b}{aR_{c}} \right) \frac{(j\beta_{0}z)^{3}}{3!} + \cdots \right]$$

$$H_{y} = \frac{I_{0}}{a} \left[1 - \left(\frac{aR_{c}}{\eta b} \right) (j\beta_{0}z) + \frac{(j\beta_{0}z)^{2}}{2!} - \left(\frac{aR_{c}}{\eta b} \right) \frac{(j\beta_{0}z)^{3}}{3!} + \cdots \right]$$

$$V = bE_x = I_0 R_c \left[1 + \frac{(j\beta_0 z)^2}{2!} + \frac{(j\beta_0 z)^4}{4!} \dots - \frac{\eta}{r} \left((j\beta_0 z) + \frac{(j\beta_0 z)^3}{3!} + \dots \right) \right]$$

$$V = I_0 R_c [\cosh(j\beta_0 z) - \chi \sinh(j\beta_0 z)]$$

Décomposition en série des champs en fonction de la fréquence (phaseurs)

$$V = I_0 R_c [\cosh(j\beta_0 z) - \chi \sinh(j\beta_0 z)]$$

$$I = aH_y = I_0 \left[\cosh(j\beta_0 z) - \frac{1}{\chi} \sinh(j\beta_0 z) \right]$$

sont des solutions de l'équation d'ondes $(e^{\pm j\beta z}) \rightarrow$ que devient la théorie des circuits (LELEC1370) ?

Cette structure n'est ni une capacité, ni une inductance mais le siège d'une onde de tension $V(z, t) = f_V(\omega t \pm \beta z) \neq V(t)$ et d'une onde de courant $I(z, t) = f_I(\omega t \pm \beta z) \neq I(t)$

Example Les différents termes de la décomposition en série sont de la forme $(j\beta_0 l)^n$ et dépendent donc du rapport l/λ entre la longueur de l'élément et la longueur d'onde

Transmission de l'énergie et de l'information dans la direction z

Lignes de transmission → structure propageant les ondes EM

Circuit localisé (LELEC1370, LELEC1755-CM2) → circuit distribué car une dimension est grande par rapport à la longueur d'onde

Transmission → propagation le long de la ligne

 $e^{\pm j\beta z}$ phaseur (domaine fréquentiel) $\cos(\omega t \pm \beta z)$ domaine temporel

→ Lorsqu'un signal sinusoidal est envoyé sur une ligne de transmission, il subit un délai

Les lignes usuelles sont uniformes càd leur configuration transverse est indépendante de *z* Exemple de ligne non uniforme: ligne radiale

Une ligne de transmission est capable de guider un grand nombre de modes (configurations de champs différentes), mais on utilise généralement les lignes à des fréquences telles qu'un seul mode se propage (! pertes par conversion de mode)

Dans ce cours, on s'intéresse aux ondes planes les surfaces à phase constante sont des plans

Plan transverse ≡ plan perpendiculaire à la direction de propagation

- Ondes TEM (Transverse Electro-Magnétique): les champs électrique et magnétique sont entièrement transverses, leurs composantes longitudinales sont nulles
- Ondes TE (Transverse Electrique): seul le champ électrique est purement transverse, le champ magnétique a une composante longitudinale
- Ondes TM (Transverse Magnétique): seul le champ magnétique est purement transverse, le champ électrique a une composante longitudinale

Propriété des ondes TEM: leurs composantes obéissent aux équations de la statique dans le plan transverse (démonstration: cfr. suite) \rightarrow dans le plan transverse (en tout z donné), représentation par un circuit localisé (mais uniquement valable pour une longueur dz infinitésimale)

Démonstration: on décompose les champs et les opérateurs dans leur composante transverse t (attention $t \neq$ temps) et leur composante

longitudinale suivant z

$$\nabla = \nabla_t + \frac{\overline{a_z}}{\partial z} \frac{\partial}{\partial z} \quad \text{et} \quad \overline{\overline{E}} = \overline{E_t} + \frac{\overline{a_z}}{a_z} E_z$$

$$\Rightarrow \text{gradient spatial dans le plan transverse !!}$$

On applique cette décomposition aux équations de Maxwell

$$\nabla \times \overline{\mathcal{E}} = -\mu \frac{\partial \overline{\mathcal{H}}}{\partial t}$$

$$\nabla \times \overline{\mathcal{H}} = \varepsilon \frac{\partial \overline{\mathcal{E}}}{\partial t} + \sigma \overline{\mathcal{E}}$$
dérivée temporelle!!

Ondes TEM

2. Champs dans les lignes de transmission

$$\left(\nabla_{t} + \overline{a_{z}} \frac{\partial}{\partial z}\right) \times \left(\overline{E_{t}} + \overline{a_{z}} \mathcal{E}_{z}\right) = -\mu \left(\frac{\partial \left(\overline{\mathcal{H}_{t}} + \overline{a_{z}} \mathcal{H}_{z}\right)}{\partial t}\right)$$

$$\nabla_{t} \times \overline{\mathcal{E}_{t}} + \overline{a_{z}} \times \frac{\partial \overline{\mathcal{E}_{t}}}{\partial z} + \nabla_{t} \times \overline{a_{z}} \mathcal{E}_{z} + \overline{a_{z}} \times \overline{a_{z}} \frac{\partial \mathcal{E}_{z}}{\partial z} = -\mu \left(\frac{\partial \left(\overline{\mathcal{H}_{t}} + \overline{a_{z}} \mathcal{H}_{z}\right)}{\partial t}\right)$$

$$= 0$$

--- suivant z

____ dans le plan transverse

En séparant les composantes, on obtient

suivant z

$$\nabla_t \times \overline{\mathcal{E}}_t = -\mu \frac{\partial \mathcal{H}_z}{\partial t} \overline{a}_z$$

dans le plan transverse

$$\overline{a_z} \times \frac{\partial \overline{\mathcal{E}_t}}{\partial z} + \left(\nabla_t \times \mathcal{E}_z \overline{a_z}\right) = -\mu \frac{\partial \mathcal{H}_t}{\partial t}$$

Ondes TEM

Avec l'autre équation

$$\nabla_{t} \times \overline{\mathcal{H}_{t}} = \left(\varepsilon \frac{\partial}{\partial t} + \sigma \right) \mathcal{E}_{z} \overline{a_{z}}$$

$$\overline{a_z} \times \frac{\partial \overline{\mathcal{H}}_t}{\partial z} + \nabla_t \times \mathcal{H}_z \overline{a_z} = \left(\varepsilon \frac{\partial}{\partial t} + \sigma\right) \overline{\mathcal{F}_t}$$

Dans le cas des ondes TEM

$$\mathcal{E}_z = 0$$

et
$$\mathcal{H}_z = 0$$

Equations de la statique $\begin{vmatrix} V_t \times \mathcal{E}_t = 0 \\ \nabla_t \times \overline{\mathcal{H}}_t = 0 \end{vmatrix}$

$$\begin{cases} \nabla_t \times \overline{\mathcal{E}_t} = 0 \\ \nabla_t \times \overline{\mathcal{H}_t} = 0 \end{cases}$$

Equations d'ondes ??

$$\overline{a_z} \times \frac{\partial \overline{\mathcal{E}_t}}{\partial z} = -\mu \frac{\partial \overline{\mathcal{H}_t}}{\partial t}$$

$$\overline{a_z} \times \frac{\partial \overline{\mathcal{H}_t}}{\partial z} = \varepsilon \frac{\partial \overline{\mathcal{E}_t}}{\partial t} + \sigma \overline{\overline{\mathcal{E}_t}}$$

$$\overline{\mathcal{E}_t} \perp \overline{\mathcal{H}_t}$$

... et l'un se calcule aisément par rapport à l'autre

Dans un CEP, on ne peut avoir ni champ électrique, ni champ magnétique variable dans le temps

- → ligne avec conducteurs CEP : mêmes conditions aux limites qu'en statique
- \rightarrow pas d'onde TEM à l'intérieur d'un tube creux en CEP $(\overline{\mathcal{E}} = \overline{0})$
- → pour une onde TEM il faut au moins 2 conducteurs

Applications: lignes coaxiale, bifilaire, micro-ruban, coplanaire, etc.

Ondes TEM sur une ligne sans pertes

→ conducteurs électriques parfaits et milieu sans pertes

$$\overline{a_{z}} \times \frac{\partial \overline{E_{t}}}{\partial z} = -\mu \frac{\partial \overline{\mathcal{H}_{t}}}{\partial t}$$

$$\overline{a_{z}} \times \frac{\partial \overline{\mathcal{H}_{t}}}{\partial z} = \varepsilon \frac{\partial \overline{\mathcal{E}_{t}}}{\partial t} + \sigma \overline{\mathcal{E}_{t}}$$

$$\begin{cases} \nabla_{t} \times \overline{\mathcal{E}_{t}} = 0 \\ \nabla_{t} \cdot \overline{\mathcal{E}_{t}} = 0 \end{cases}$$

Le rotationnel du champ électrique transverse est nul, il dépend d'un potentiel scalaire

$$\overline{\mathcal{E}_t} \stackrel{\Delta}{=} -\nabla_t \phi \qquad \text{ou} \qquad \nabla_t^2 \phi = 0$$

Ondes TEM, lignes sans pertes

On travaille en phaseurs + propagation en z

 \rightarrow la dépendence en z s'écrit uniquement via $e^{-j\beta z}$

$$\phi = \Phi e^{-j\beta z} \quad \text{!!} \quad \underline{\Phi}(x, y)$$

$$\overline{E} = \overline{E}_{t} = -\nabla_{t} \Phi e^{-j\beta z} \qquad \overline{a_{z}} \times \frac{\partial \overline{E}_{t}}{\partial z} = -\mu \frac{\partial \overline{\mathcal{H}}_{t}}{\partial t}$$

$$-\mu j \omega \overline{H}_{t} = \overline{a_{z}} \times (-j\beta) (-\nabla_{t} \Phi) e^{-j\beta z}$$

$$\frac{\partial}{\partial z}$$

$$\overline{H_t} = \frac{\beta}{\omega \mu} \overline{a_z} \times \overline{E_t}$$

$$\overline{E_t} \perp \overline{H_t}$$

$$\overline{H_t} = \frac{\beta}{\omega \mu} \overline{a_z} \times (-\nabla_t \Phi) e^{-j\beta z}$$

Fig. 1.1 - Système à deux conducteurs

2 conducteurs de section quelconque, auxquels on applique une différence de potentiel V_0

Equation de Helmoltz

Calcul de l'exposant β

$$\overline{E} = \overline{E_t} = -\nabla_t \Phi e^{-j\beta z}$$

$$\nabla \times \overline{E} = -j\omega \mu \overline{H}$$

$$\nabla \times \overline{H} = j\omega \varepsilon \overline{E}$$

$$\nabla \times \nabla \times \overline{E} = -j\omega\mu\nabla \times \overline{H} = \omega^{2}\varepsilon\mu\overline{E}$$

$$\nabla (\nabla \cdot \overline{E}) - \nabla^{2}\overline{E} = k^{2}\overline{E}$$

$$= 0$$

$$\nabla = \nabla_t - j\beta z$$

$$\nabla^2 = \nabla_t^2 - \beta^2$$

$$\overline{E_t} = \overline{e_t} e^{-j\beta z}$$

$$k^2 \underline{\Delta} \omega^2 \epsilon \mu$$

$$(\nabla^2 + k^2) \ \overline{E} = 0$$

Equation de Helmholtz

$$\begin{aligned} & \left(\nabla_t^2 + \left(k^2 - \beta^2 \right) \right) \, \overline{e_t} = 0 \\ & \nabla_t \left[\nabla_t^2 + \left(k^2 - \beta^2 \right) \right] \Phi = 0 \end{aligned}$$

Equation de Helmoltz

Calcul de l'exposant β

$$\begin{aligned} & \left(\nabla_t^2 + \left(k^2 - \beta^2 \right) \right) \overline{e_t} = 0 \\ & \nabla_t \left[\nabla_t^2 + \left(k^2 - \beta^2 \right) \right] \Phi = 0 \end{aligned}$$

Or
$$\nabla_t^2 \Phi = 0$$
 $\beta^2 = k^2$

$$\beta^2 = k^2$$

Soit l'admittance du milieu

$$Y_{\stackrel{\Delta}{=}} \sqrt{rac{\mathcal{E}}{\mu}}$$

$$Y_{\Delta} \sqrt{\frac{\mathcal{E}}{\mu}}$$
 et $Y_{0} = \sqrt{\frac{\mathcal{E}_{0}}{\mu_{0}}}$ dans le vide (= 377 Ω)

On peut écrire le champ magnétique $\overline{H_t} = \frac{\beta}{\omega H} \overline{a_z} \times \overline{E_t}$ sous la forme

$$\overline{H_t} = Y \overline{a_z} \times \overline{E_t} = Y \overline{a_z} \times (-\nabla_t \Phi) e^{-j\beta z}$$

car
$$\frac{\beta}{\omega\mu} = \frac{\omega\sqrt{\varepsilon\mu}}{\omega\mu} = \sqrt{\frac{\varepsilon}{\mu}} = Y$$

TEM \rightarrow équations de la statique dans le plan transverse + propagation en z

- > on définit une onde de tension $V(z)=V_0\ e^{-j\beta z}$ avec $V_0 \triangle \int\limits_{C_1}^{C_2} \nabla_t \Phi \cdot \overline{dl}$
- > on définit une onde de courant $I(z) = I_0 e^{-j\beta z}$

$$\mathbf{avec} \quad I_{\circ} = \oint \overline{H} \cdot \overline{dl} \underline{\triangle} \oint_{\mathcal{C}} Y \overline{a_z} \times (-\nabla_{\mathbf{v}} \Phi) \cdot \overline{dl}$$

car
$$\overline{H_t} = Y\overline{a_z} \times \overline{E_t} = Y\overline{a_z} \times (-\nabla_t \Phi) e^{-j\beta z}$$

Paramètres fondamentaux

Impédance caractéristique
$$Z_C = \frac{1}{Y_C} \stackrel{\Delta}{=} \frac{V_0}{I_0}$$

- $Z_{\mathcal{C}}$ n'est pas l'impédance d'onde (= rapport des champs instantanés, cfr. LEPL1203) ... mais il existe un lien entre les deux (cfr. suite)
- $Z_{\mathcal{C}}$ est le rapport des amplitudes des ondes de tension et de courant se déplacant dans un même sens

Puissance électromagnétique traversant le plan transverse

$$P = \frac{1}{2}Re \int_{A} \overline{E} \times \overline{H}^{*} d\overline{a} = \frac{1}{2}Re \int_{A} \overline{E}_{t} \times \overline{H}_{t}^{*} \overline{a_{z}} da = \frac{1}{2}Re \left(VI^{*}\right)$$
= intégrale du vecteur de

Poynting sur la section
$$= \text{définition "circuits"}$$

→ égalité de ces deux expressions: tension et courant sont donc définis de façon telle qu'ils soient compatibles avec la théorie des circuits ©

$$\overline{E} = -\nabla_{t} \Phi e^{-j\beta z}$$

$$V_{0} \underline{\Delta} \int_{C_{1}}^{C_{2}} \nabla_{t} \Phi \cdot \overline{dl}$$

$$I_{0} \underline{\Delta} \oint_{C} Y \overline{a_{z}} \times (-\nabla_{t} \Phi) \cdot \overline{dl}$$

$$Z_{c} = \frac{1}{Y_{c}} = \frac{V_{0}}{I_{0}}$$

$$\overline{H} = Y \overline{a_{z}} \times \overline{E} \qquad Y_{\underline{\Delta}} \sqrt{\frac{\varepsilon}{\mu}}$$

$$P = \frac{1}{2} Re \int_{A} \overline{E}_{t} \times \overline{H}_{t}^{*} \cdot \overline{a_{z}} da = \frac{1}{2} Re \left(VI^{*}\right)$$

Paramètres linéiques

On définit des paramètres linéiques (par unité de longueur)

> Capacité linéique

$$C = \frac{\rho_l}{V_0} \tag{F/m}$$

$$\rho_S = \bar{n} \cdot \bar{D} = \bar{a}_{\chi} \cdot \varepsilon(-\nabla_t \Phi) \quad (Cb/m^2)$$

$$\rho_l = \int \rho_S \, dl = \int \bar{a}_{x} \, e^{i \varepsilon t} \, (-\nabla_t \Phi) \, dy = \int \varepsilon \left(-\frac{\partial \Phi}{\partial x} \right) \, dy$$

$$I_0 = \int Y \, \overline{a}_z \times (-\nabla_t \Phi) \cdot \overline{dl} = \int Y \left(-\frac{\partial \Phi}{\partial x} \right) dy = \frac{Y \rho_l}{\varepsilon}$$

$$Z_c = \frac{V_0}{I_0} = \frac{\rho_l/C}{Y\rho_l/\varepsilon} = \frac{Z\varepsilon}{C}$$
 ou $Z_c = \frac{\sqrt{\varepsilon\mu}}{C} = \frac{1}{vC}$

Paramètres linéiques

On définit des paramètres linéiques (par unité de longueur)

Indutance linéique

$$L = \frac{\phi}{I_0} \tag{H/m}$$

$$\phi = \int \bar{B} \cdot (-\bar{a}_y) dx$$
 (flux par unité de longueur !!)

$$\phi = \int \mu Y \, \overline{a}_z \times (-\nabla_t \Phi) \cdot \overline{(-a_y)} dx = \int \mu Y \left(\frac{\partial \Phi}{\partial x}\right) dx = \mu Y \Delta \Phi = \mu Y V_0$$

$$L = \mu Y \frac{V_0}{I_0} = \mu Y Z_C = \frac{Z_C}{V}$$

Pour les lignes sans pertes, on obtient

$$Z_c = \sqrt{L/C}$$

$$\mathbf{v} = 1/\sqrt{LC}$$

$$LC = \varepsilon \mu$$

$$\beta = \omega \sqrt{LC}$$

Lien entre les paramètres « circuits » et les paramètres ondulatoires

Equation de Laplace en coordonnées polaires

$$\frac{1}{r}\frac{\partial}{\partial r}\left[r\frac{\partial}{\partial r}\left(\Phi e^{-j\beta z}\right)\right] + \frac{1}{r^2}\frac{\partial^2}{\partial \Phi^2}\left(\Phi e^{-j\beta z}\right) = 0$$

avec
$$\Phi = V_0$$
 sur le conducteur central $(r = a)$
 $\Phi = 0$ sur le conducteur extérieur $(r = b)$

Fig. 1.3 - Câble coaxial

Les conditions aux limites imposent de chercher une solution indépendante de l'angle polaire -> l'équation à résoudre se réduit donc successivement à

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{d\Phi}{dr}\right) = 0 \qquad \text{puis} \qquad \frac{d\Phi}{dr} = \frac{C_1}{r}$$

$$\Phi = C_1 \ln r + C_2$$
 avec $\Phi = (r = a) = V_0$ et $\Phi = (r = b) = 0$

Application: câble coaxial

On en déduit
$$\Phi = V_0 \frac{\ln (r/b)}{\ln (a/b)}$$

ce qui permet de calculer

$$\overline{E} = -\nabla_t \Phi e^{-j\beta z} = \frac{V_0}{\ln(b/a)} \frac{\overline{a_r}}{r} e^{-j\beta z}$$

$$\overline{H} = Y_0 \frac{V_0}{\ln(b/a)} \frac{\overline{a_{\varphi}}}{r} e^{-j\beta z}$$

$$\overline{K} = \overline{n} \times \overline{H} = Y_0 \frac{V_0}{\ln(b/a)} \frac{a_z}{a} e^{-j\beta z}$$

$$\overline{K} = \overline{H} \times \overline{n} = -Y_0 \frac{V_0}{\ln(b/a)} \frac{a_z}{b} e^{-j\beta z}$$

sur la surface intérieure

sur la surface extérieure

Application: câble coaxial

Courant total sur les conducteurs

$$I(r=a) = \oint_{r=a} \overline{H} \cdot \overline{dl} = Y_0 \frac{2\pi V_0}{\ln(b/a)} e^{-j\beta z}$$
 intérieur

$$I(r=b) = -I(r=a)$$

extérieur

Impédance caractéristique

$$Z_c = \frac{V_0}{I_0} = \frac{Z_0 \ln(b/a)}{2\pi}$$
 \rightarrow lien entre impédance d'onde et impédance caractéristique

Flux de puissance

$$P = (1/2) \operatorname{Re} \int_{0}^{b} \int_{0}^{2\pi} \overline{E} \times \overline{H}^{*} \cdot \overline{a_{r}} \, r \, d\phi \, dr$$

Capacité et inductance par unité de longueur

$$C = \frac{2\pi\varepsilon}{\ln(b/a)}$$
 et $L = \frac{\mu}{2\pi}\ln(b/a)$

Relation générale entre Z_c et Z:

$$Z_c = Z \cdot f(\text{g\'eometrie})$$

3. Lignes de transmission avec pertes

Les pertes peuvent modifier la nature des ondes électromagnétiques

- pertes dans le milieu: celui-ci sera caractérisé non plus par une permittivité réelle ε mais par une permittivité complexe $\varepsilon' j\varepsilon'$ ou par la combinaison d'une permittivité et d'une conductivité
- \triangleright pertes dans les conducteurs: ceux-ci ne sont pas parfaits $\varepsilon j\sigma/\omega$

Dans les deux cas, on obtient un exposant de propagation complexe

$$\alpha + j\beta$$

La dépendance en z du phaseur devient

$$e^{-\gamma z} = e^{-\alpha z} e^{-j\beta z}$$

$$\overline{J} = \sigma \overline{E}$$
 ou $\overline{J} = \omega \varepsilon'' \overline{E}$

On introduit une solution du type $e^{-\chi}$ dans les équations de Maxwell qui deviennent

$$\overline{a_z} \times \frac{\partial \mathcal{H}_t}{\partial z} = \varepsilon \frac{\partial \overline{\mathcal{E}_t}}{\partial t} + \sigma \overline{\mathcal{E}_t} \\
\overline{a_z} \times \frac{\partial \overline{\mathcal{E}_t}}{\partial z} = -\mu \frac{\partial \overline{\mathcal{H}_t}}{\partial t} \qquad \qquad \overline{a_z} \times (-\gamma) \overline{H_t} = (j\omega\varepsilon + \sigma) \overline{E_t} \\
\overline{a_z} \times (-\gamma) \overline{E_t} = -j\omega\mu \overline{H_t} \qquad \qquad \gamma = \alpha + j\beta$$

et
$$\nabla \times \nabla \times \overline{E} = -j\omega\mu\nabla \times \overline{H} = -j\omega\mu(j\omega\varepsilon + \sigma)\overline{E}$$
 $\nabla^2 \overline{E} - j\omega\mu(j\omega\varepsilon + \sigma)\overline{E_t} = 0$

En faisant un raisonnement similaire au cas sans pertes, on obtient

$$\gamma = \alpha + j\beta = \sqrt{j\omega\mu(\sigma + j\omega\varepsilon)}$$

$$\gamma = \alpha + j\beta = \sqrt{j\omega\mu(\sigma + j\omega\varepsilon)}$$

On sépare en parties réelles et imaginaires

$$\gamma^{2} = j\omega\mu(j\omega\varepsilon + \sigma)$$

$$(\alpha + j\beta)^{2} = -\omega^{2}\varepsilon\mu + j\omega\mu\sigma$$

$$(\alpha^{2} - \beta^{2}) + 2j\alpha\beta = -\omega^{2}\varepsilon\mu + j\omega\mu\sigma$$

$$\beta^2 - \alpha^2 = \omega^2 \varepsilon \mu$$
 et $\alpha \beta = \omega \mu \sigma / 2$

On obtient l'équation

$$\beta^4 - \omega^2 \varepsilon \mu \beta^2 - (\omega \sigma \mu / 2)^2 = 0$$

On obtient l'équation

$$\beta^4 - \omega^2 \varepsilon \mu \beta^2 - (\omega \sigma \mu / 2)^2 = 0$$

qui a pour solutions

$$\beta^{2} = (\omega^{2} \varepsilon \mu / 2) \left[\sqrt{1 + (\sigma / \omega \varepsilon)^{2}} + 1 \right]$$

$$\alpha^{2} = (\omega^{2} \varepsilon \mu / 2) \left[\sqrt{1 + (\sigma / \omega \varepsilon)^{2}} - 1 \right]$$

pour rappel: vitesse de phase $\omega\sqrt{\varepsilon\mu}$ angle de pertes $tg\delta = \frac{\sigma}{\omega\varepsilon}$

→ on a toujours

$$\beta \ge \omega \sqrt{\varepsilon \mu}$$
 et $\alpha \le \beta$

Dans un bon diélectrique (= faibles pertes, c'est quand même le but !)

- \rightarrow courant de déplacement >> courant de conduction $(\sigma/\omega\varepsilon <<1)$ (autrement dit: effet capacitif >> effet conductif)
- ightarrow les expressions précédentes se décomposer en série en faisant l'hypothèse que $\sigma/\omega\varepsilon<<1$

- \succ coefficient de propagation β identique à celui obtenu dans le cas sans pertes
- \succ coefficient d'atténuation α proportionnel à la conductivité σ

3. Lignes de transmission avec pertes

Pertes dans le milieu: représentation « circuits »

Représentation par une conductance parallèle ou shunt (dans le plan transverse)

l'équation

$$\nabla \times \overline{H} = (j\omega\varepsilon + \sigma)\overline{E}$$

devient, intégrée autour d'un conducteur

$$\oint_{C} (\nabla \times \overline{H}) \cdot \overline{dl} = I = (j\omega\varepsilon + \sigma) \oint_{C} (-\nabla_{t}\Phi) \cdot \overline{n} \, dl = I_{d} + I_{c}$$

$$G + j\omega C = (I_{d} + I_{c}) / V_{0}$$

$$G = \frac{I_c}{V_0} = \frac{I_c}{I_d} \frac{I_d}{V_0} = \frac{\sigma}{j\omega\varepsilon} j\omega C = \sigma \frac{C}{\varepsilon} = \frac{Z}{Z_0}$$

Formule générale (cfr. CM2)
$$G = \frac{\sigma \oint_{C_1} E_t \cdot n \ dl}{\int_{C_1}^{C_2} \overline{E_t} \cdot \overline{n} \ dl}$$

Câble coaxial (cfr. CM2)

$$G = \frac{2\pi\sigma}{\ln(b/a)}$$

En ces de pertes dans les conducteurs, un courant longitudinal circule à l'intérieur de ces derniers

$$\overline{K_{long}} = \overline{n} \times \overline{H}$$

$$\rightarrow \overline{E_{long}} \quad \text{càd } E_Z \neq 0 \quad !$$

Fig. 1.7 - Condition limite

En toute rigueur, l'onde n'est plus TEM si les pertes sont importantes !

Généralement, ce n'est pas le cas dans les lignes de transmission et on peut donc considérer l'onde comme « quasi »-TEM et calculer le courant et le champ électrique longitudinal à partir des champs TEM calculés en l'absence de pertes

Dans un bon conducteur

- \rightarrow courant de déplacement << courant de conduction $(\omega \varepsilon/\sigma << 1)$
- \rightarrow partant de $\gamma = \alpha + j\beta = \sqrt{j\omega\mu(\sigma + j\omega\varepsilon)}$, on avait trouvé pour α et β

$$\beta^{2} = (\omega^{2} \varepsilon \mu / 2) \left[\sqrt{1 + (\sigma / \omega \varepsilon)^{2}} + 1 \right]$$

$$\alpha^{2} = (\omega^{2} \varepsilon \mu / 2) \left[\sqrt{1 + (\sigma / \omega \varepsilon)^{2}} - 1 \right]$$

qui peuvent se décomposer en série en faisant l'hypothèse que $\omega \varepsilon / \sigma << 1$

$$\beta \cong \sqrt{\omega\mu\sigma/2} \ (1+\omega\varepsilon/2\sigma+\cdots) \cong \sqrt{\omega\mu\sigma/2}$$

$$\alpha \cong \sqrt{\omega\mu\sigma/2} \ (1-\omega\varepsilon/2\sigma+\cdots) \cong \sqrt{\omega\mu\sigma/2} = \delta^{-1} \ (\delta \equiv \text{profondeur de peau})$$

$$\gamma \cong \sqrt{j\omega\mu\sigma} \ (1+j\omega\varepsilon/2\sigma+\cdots) \cong \sqrt{j\omega\mu\sigma}$$

Le calcul du coefficient d'atténuation est la démonstration de l'effet de peau (vu au CM2): les champs EM sont confinés à la surface, ils ne pénètrent pas au-delà de quelques « profondeurs de peau »

 Plus la fréquence augmente, plus l'atténuation est grande (plus la profondeur de peau diminue)

4. Circuit équivalent d'une ligne de transmission

Circuit équivalent d'une ligne TEM

onde TEM →
pertes milieu →
pertes conducteurs →

L, C G (généralement faible)

R (généralement faible)

Circuit équivalent infinitésimal (= circuit distribué, cfr. CM4)

 $\mathbf{Y} = G + j\omega C$

Ceci n'est pas un filtre !!!

4. Circuit équivalent d'une ligne de transmission

Lien entre les paramètres linéiques et les paramètres fondamentaux

Lignes sans pertes

 \rightarrow

Lignes avec pertes

$$Z_c = \sqrt{L/C}$$

$$Z_c = \sqrt{Z/Y}$$

$$Z_{c} = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$

$$v = \frac{1}{\sqrt{LC}}$$

$$v = \frac{1}{\sqrt{\varepsilon\mu}}$$

$$v = \frac{1}{\sqrt{LC}}$$

$$\gamma = j\beta = \omega \sqrt{LC}$$

$$\gamma = \sqrt{ZY}$$

$$\gamma = \alpha + j\beta$$
$$= \sqrt{(R + j\omega L)(G + j\omega C)}$$