

How food delivery time affect your willingness to place an order?

Yulong Gong, Tzuhua Huang, Chenzhi Pan, Muyan Xie, Yichi Zhang, Yangyang Zhou

Our Researchers

Yulong Gong

Tzuhua Huang

Chenzhi Pan

Muyan Xie

Yichi Zhang

Yangyang Zhou

Agenda

Introduction

Experiment Design

Analysis

- Balance check
- ATE & CATE & Heterogeneity
- Cuisine Analysis

Conclusion

- limitation
- Future research
- Bibliography

Introduction

Research Question

When everything holds constant, how will the food delivery time interval affect a consumer's willingness to place an order?

- According to Resendes (2020), 33% of customers are willing to pay more in exchange for faster delivery speed.
- From Feb.2020 to Apr.2020, the restaurants who actively use online ordering increase 169% and weekly sales increase 840%.

Hypothesis

Under the same ordering time condition, the shorter the delivery time period is, the more willingly the consumer is to place the order.

Implications

- Have a better understanding of the influence of wait time on consumers' willingness to place an order.
- Help to develop an win-win environment for consumers and businesses entities.

Experiment Design

6 Treatment Randomization

Used built-in randomizer to assign participants to either interface.

Ended up collecting 90 valid responses from 91 participants.

Questionnaire Design

Built our questionnaire and simulated two interfaces based on our experiment.

Conducted Experiment

Posted the questionnaire on social media and sent it to friends.

Ran regressions for balance check and data analysis

Questionnaire Design

Step 1: Collect users' general information.

What is your age?
What is your gender?
Are you a student?
Do you currently work/study from home?

Step 2: Understand users' experience of using food delivery service app.

How often do you order takeout/delivery?

What's your favorite cuisine when you order takeout/delivery?

Do you currently have an account on the following platforms?

Are you a prime member of these platforms?

Questionnaire Design

Step 3: Simulate two interfaces and randomly assign one of them to the participants.

Treatment

TGI Fridays

15-25 min

\$0.49 Delivery Fee

Control

Analysis:Balance Check

	Dependent variable:				
	wfh (1)	student (2)	member (3)	frequency (4)	chinese (5)
any_treatment				0.111 (0.101)	
Constant				0.600*** (0.071)	
Observations R2 Adjusted R2 Residual Std. Error (df = 88) F Statistic (df = 1; 88)	-0.006		0.017	90 0.014 0.002 0.477 1.220	
Note:			*p<0.1;	**p<0.05;	***p<0.01

Are you a student?

Do you currently work/study from home?

Are you a member of any food delivery platforms?

How often do you order delivery?

What's your favorite cuisine?

When you order takeout/delivery?

Analysis:EDA

Order Frequency Distribution

Food Preference Distribution

Analysis: ATE & Heterogeneity

ATE

- Probability of ordering ~ any_treatment
 - Treatment group is 13 % more likely to order
 - Significant at 95% level

○ probability

Favor Cuisine

- probability of ordering ~ any_treatment * favor cuisine (Chinese / non-Chinese)
 - CATE for Chinese: 13.2%
 - CATE for non-Chinese: 11.2%

Heterogeneity

- Order Frequency
 - probability of ordering ~ any_treatment * order frequency (> 2 times a week/ otherwise)
 - CATE for High-frequency user:16.4%
 - CATE for Low-frequency user: 4%

Analysis: Cuisine

restaurants ~ any_treatment

- Fast Food and Italian Food: the difference between treatment group and control group is statistically significant at 90% confidence level.
- The result might implies that people who order from a fast food restaurant or a pizzeria are more time sensitive. They want their delivery time range as short as possible.

Dependent Var.:	American	Japanese	Italian
(Intercept)	0.5556*** (0.0749)	0.6889*** (0.0698)	0.3778*** (0.0731)
any_treatment	-0.0222 (0.1062)	0.1333 (0.0905)	0.2000. (0.1043)
S.E. type	Heteroskedasrob.	Heteroskedasrob.	Heteroskedasrob.
S.E. type Observations	Heteroskedasrob. 90	Heteroskedasrob. 90	Heteroskedasrob. 90

Dependent Var.:	Chinese	Fast
(Intercept)	0.7111*** (0.0683)	0.5333*** (0.0752)
any_treatment	0.1556. (0.0854)	0.2000* (0.1005)
S.E. type	Heteroskedasrob.	Heteroskedasrob.
S.E. type Observations	Heteroskedasrob. 90	Heteroskedasrob. 90

Conclusion

Conclusion:

ATE: 13%, Significant at 95% level

CATE: Chinese(13.2), Non-Chinese(11.2%);

High-

frequency(16.4%),

Low-frequency(4%).

Cuisines: Fast and Italian (90%

Limitation:

Questionnaire design:

Incomprehensive food type

Wording issue

Picture choosing

Distribution

Future research:

Distributed in a large scale, to find out block-wise characteristics.

Add a question about the price to test the relationship between waiting time and spending price.

Bibliography

- Foreit, K. G., & Foreit, J. R. (2004). Willingness to pay surveys for setting prices for reproductive health products and services a user's manual.
- Parry, T. (2016, Sept 13). Delivery time influences 87% of online shoppers' purchase decisions, Multichannel Merchant, retrieved from https://multichannelmerchant.com/must-reads/delivery-time-influences-87-online-shoppers-purchase-decisions/
- Lock, S. (2020). Food delivery services: market share U.S. 2018-2022. Statista. Retrieved from https://www.statista.com/statistics/1080860/market-share-us-food-delivery-companies/
- Resendes,.S (2020). 26 Online ordering statistics every restaurateur should know in 2020. Upserve. Retrieved from https://upserve.com/restaurant-insider/online-ordering-statistics/

