代数系统(五)

代数格

南京大学计算机科学与技术系

内容提要

- 代数格的定义
- 格的对偶原理
- 子格
- 格同态、格同构
- 分配格
- 有界格
- 有补格
- 有补分配格

格 (回顾)

- (S,≼)的一个(偏序)格,如果下列条件成立:
 - 设(S,≼)是偏序集
 - $\forall x, y \in S$, $fact{x,y}$ 的最小上界 $factorize{ub}{x,y}$, 记为 $factorize{x}$, 记为 $factorize{x}$
 - $\forall x, y \in S$, 存在 $\{x,y\}$ 的最大下界 $glb\{x,y\}$, 记为 $x \land y$ 。
- 设(S, ≼)是格,则(S, ∧, ∨)有下列性质:
 - 结合律: $(a \land b) \land c = a \land (b \land c), (a \lor b) \lor c = a \lor (b \lor c)$
 - 交換律: $a \wedge b = b \wedge a$, $a \vee b = b \vee a$
 - 吸收律: $a \wedge (a \vee b) = a$, $a \vee (a \wedge b) = a$

代数格(定义)

• 设L是一个集合, ^和>是L上的二元运算, 且满足结合律、 交换律、<u>吸收律</u>, 则称(L, ^, >)是代数格。

等 式	名 称
$x \wedge (y \wedge z) = (x \wedge y) \wedge z$ $x \vee (y \vee z) = (x \vee y) \vee z$	结合律
$x \wedge y = y \wedge x$ $x \vee y = y \vee x$	交换律
$x \lor (x \land y) = x$ $x \land (x \lor y) = x$	吸收律

- $\forall x, y \in \mathbf{B}, x \land y = x \text{ iff } x \lor y = y$
 - 若 $x \wedge y = x$, 则 $x \vee y = (x \wedge y) \vee y = y$ //吸收律
 - 若 $x \lor y = y$, 则 $x \land y = x \land (x \lor y) = x$ //吸收律
- $\forall x, y \in \mathbf{B}$, 定义 $x \leq y$ iff $x \wedge y = x$ (即 $x \vee y = y$)
 - 证明这个关系满足自反性、反对称性、传递性。
 - 这个偏序构成一个格。
 - lub{x,y} 即为 *x*∨*y*。
 - glb{x,y} 即为 *x*∧*y*。
- 代数格等同于 (偏序) 格

格的代数性质

结合律

交換律

吸收律

幂等律

吸收律

幂等律

 $x \wedge \underline{x} = x \wedge (\underline{x \vee (x \wedge x)}) = x$ (两次应用吸收律)

同理可证: $x \lor x = x$

大」恰叫刈油可型

- $a \land b \le a$ 和 $a \lor b \ge a$ 互为对偶命题
- 对偶命题构成规律
 - 格元素名不变

• 对偶命题的例子

• ≼与≽, ∧与∨全部互换。

- 如果命题P对一切格为真,则P的对偶命题P*也对一切格为真。
 - 证明思路:证明P*对任意格(S, ≼)为真
 - 定义S上的二元关系 \leq *, $\forall a,b \in S$, $a \leq$ * $b \Leftrightarrow b \leq a$, 显然 \leq * 是偏序。
 - $\forall a,b \in S, a \land *b = a \lor b, a \lor *b = a \land b$ 所以(S, $\leq *$)也是格
 - 这里 $a \wedge *b$, $a \vee *b$ 分别是a,b关于偏序≤*的最大下界和最小上界。
 - P*在(S, ≼)中为真*当且仅当P*在(S, ≼*)中为真。
 - P在一切格中为真,::P*在一切格中为真。

子格

■ 子格(sub lattice)是格的子代数。设 $\langle L, \Lambda, V \rangle$ 是格,非空集合 $S \subseteq L$,若S 关于L 中的运算 Λ, V 仍构成格,称 $\langle S, \Lambda, V \rangle$ 是L的子格

例 13.5 设格 L 如图 3 所示. 令 $S_1 = \{a, e, f, g\}, S_2 = \{a, b, e, g\}$ S_1 不是 L 的子格,因为 $e, f \in S_1$ 但 $e \land f = c \notin S_1$. S_2 是 L 的子格.

格同态

定义 13.5 设 L_1 和 L_2 是格,

$$f: L_1 \rightarrow L_2$$

若 $\forall a,b \in L_1$ 有

$$f(a \land b) = f(a) \land f(b),$$

$$f(a \lor b) = f(a) \lor f(b)$$

成立,则称f为格 L_1 到 L_2 的同态映射,简称格同态.

格同态与格同构

- 设f 是格 L_1 到 L_2 的映射,
 - (1) 若f为格同态映射,则f保序,即

$$(\forall x, y \in L_1) (x \leq y \to f(x) \leq f(y))$$

○ (2) 若f为双射,则f为格同构映射(即格同构)当 且仅当

$$(\forall x, y \in L_1)(x \leq y \Leftrightarrow f(x) \leq f(y))$$

格同态的保序性(续)

例 设 $L_1 = \langle S_{12}, D \rangle$, $L_2 = \langle S_{12}, \triangleleft \rangle$ 是格, 其中: S_{12} 是 12 的所有正因子构成的集合, D 为整除关系, \leq 为通常数的小于或等于关系. 令

$$f:S_{12} \to S_{12}, f(x) = x$$

f是双射,但不是格 L_1 到 L_2 的同构映射. 因为 $f(2) \le f(3)$,但 2 不整除 3. 根据上述定理可知 f 不是同构映射

格同构的直观特征

■ 观察以下2个格的哈斯图:

格同构的直观特征(续)

格同构的直观特征(续)

- Morph ⇒shape

Isomorphic lattices have same Hasse diagrams' shape

几种典型的格

- 定义(三种典型的格):
 - o(1)链(chain)
 - (2) 钻石格 (diamond lattice, M₃)
 - (3) 五角格 (pentagon lattice, N₅)

分配格

■ 定义(分配格): 设⟨L,∧,∨⟩为格,若

 $\forall a, b, c \in L$, 有

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$

则称L为分配格(distributive lattice)

分配格 (续)

 L_1 和 L_2 是分配格, L_3 和 L_4 不是分配格.

图5

在 L_3 中, $b \land (c \lor d) = b \land e = b$, $(b \land c) \lor (b \land d) = a \lor a = a$ 在 L_4 中, $c \lor (b \land d) = c \lor a = c$, $(c \lor b) \land (c \lor d) = e \land d = d$

分配格的判定定理

■ 定理(分配格判定定理一):设L为格,则L是分配格当且仅当L不含有与 M_3 (钻石格)或 N_5 (五角格)同构的子格

■ 推论:

- (1)小于五元的格皆为分配格
- (2)任何链皆为分配格

例 说明图 6 中的格是否为分配格, 为什么?

解 L_1, L_2 和 L_3 都不是分配格.

 $\{a, b, c, d, e\}$ 是 L_1 的子格, 并且同构于钻石格;

 $\{a, b, c, e, f\}$ 是 L_2 的子格, 并且同构于五角格;

 $\{a, c, b, e, f\}$ 是 L_3 的子格, 也同构于钻石格.

■ 定理(分配格判定定理二):设L为格,

则L是分配格当且仅当

 $(\forall a, b, c \in L)(a \land b = a \land c \perp a \lor b = a \lor c)$

$$\rightarrow b = c$$

证 必要性. $\forall a,b,c \in L$, 有

 $b = b \vee (a \wedge b)$

 $= b \vee (a \wedge c)$

 $= (b \lor a) \land (b \lor c)$

 $= (a \lor c) \land (b \lor c)$

 $= (a \wedge b) \vee c$

 $= (a \wedge c) \vee c$

=c

(吸收律,交换律)

(已知条件代入)

(分配律)

(已知条件代入,交换律)

(分配律)

(已知条件代入)

(交换律,吸收律)

例 以下三个格都不是分配格.

在 L_1 中有 $b \lor c = b \lor d, b \land c = b \land d$,但 $c \ne d$ 在 L_2 中有 $b \land c = b \land e, b \lor c = b \lor e$,但 $c \ne e$ 在 L_3 中有 $c \land b = c \land d, c \lor b = c \lor d$,但 $b \ne d$

有界格

- 定义(有界格):设L为格,
 - 若存在 $b \in L$,使得 $\forall x \in L$ 有 $b \leq x$,则称 元素b是格L的全下界(bottom)
 - 若存在 $t \in L$,使得 $\forall x \in L$ 有 $x \leq t$,则称 元素t是格L的全上界(top)

此时格L称为有界格(bounded lattice)

有界格(续)

■ 注意:

- \circ 若格L中存在全下界或全上界,则一定唯一
- \circ 一般将格L的全下界记为0,全上界记为1
- 有界格L一般记为 $\langle L, \land, \lor, 0, 1 \rangle$
- 有界格 $\langle L, \wedge, \vee, 0, 1 \rangle$ 满足同一律,即 $\forall a \in L$:

$$a \lor 0 = a, a \land 1 = a, a \land 0 = 0, a \lor 1 = 1$$

有界格(续)

- \blacksquare 有界格 $\langle L, \wedge, \vee, 0, 1 \rangle$ 满足同一律、支配律
 - 同一律: $\forall a \in L$, $a \lor \mathbf{0} = a$, $a \land \mathbf{1} = a$
 - 支配律: $\forall a \in L$, $a \land \mathbf{0} = \mathbf{0}$, $a \lor \mathbf{1} = \mathbf{1}$
 - 0是关于∨运算的单位元, ∧运算的零元;
 - 1是关于∧运算的单位元, ∨运算的零元。

有界格(续)

■ 事实:

- o 有限格皆为有界格,设 $L = \{a_1, a_2, \cdots, a_n\}$,则 $a_1 \wedge a_2 \wedge \cdots \wedge a_n$ 是L的全下界 $a_1 \vee a_2 \vee \cdots \vee a_n$ 是L的全上界
- 求涉及有界格的命题之对偶命题,须将全下界 与全上界对换

有补格

■ 定义(有界格的补元): 设⟨L,∧,∨,0,1⟩为

有界格, $a \in L$, 若存在 $b \in L$ 使得

 $a \wedge b = \mathbf{0}$ 且 $a \vee b = \mathbf{1}$

成立,则称元素b是a的补元(complement)

- 定理(有界分配格的补元唯一):设 $(L,\Lambda,V,0,1)$ 为有界分配格, $a \in L$,若a存在补元则其补元唯一
- 证明:假设b,c皆为a之补元,则有
 a∨c = 1,a∧c = 0;a∨b = 1,a∧b = 0
 由于全上界和全下界唯一,从而有a∨c = a∨
 b,a∧c = a∧b,由于L是分配格,故b = c.□

事实

- 任何有界格中,全上界1和全下界0互补
- 对于一般元素,可能存在补元,也可能不存在补元
- 补元若存在,则可能唯一,也可能有多个
- 对于有界分配格. 补元若存在则唯一

- 定义(有补格): 设⟨L,∧,∨,0,1⟩为有界格
 - ,若L中所有元素皆存在补元,则称L为
 - 有补格(complemented lattice)
- $\overline{M} : 钻石格<math>M_3$ 和五角格 N_5 皆为有补格

• 代数格:结合律、交换律、吸收律、(幂等律)

• 分配格: 分配律

• 有 界: 同一律、(支配律)

• 有 补: 补 律、(双重补律、德摩根律)

有补分配格 (代数性质)

结合律

交换律

分配律

同一律

补律

吸收律

幂等律

支配律

双重补律

德摩根律