7. Lineare Differentialgleichungen 1. Ordnung

Stets in diesem Paragraphen: $n=p=1,\ I\subseteq\mathbb{R}$ sei ein Intervall und $a,s:I\to\mathbb{R}$ stetig. Die Differentialgleichung

$$y' = a(x)y + s(x)$$

heißt eine lineare Differentialgleichung (1. Ordnung), sie heißt homogen, falls $s \equiv 0$, anderenfalls inhomogen, s heißt Störfunktion.

Wir betrachten zunächst die zu obiger Gleichung gehörende homogene Gleichung

$$(H) \quad y' = a(x)y$$

Wegen Ana I, 23.14 besitzt a auf I eine Stammfunktion A.

Satz 7.1 (Lösung einer linearen Dgl 1. Ordnung)

Sei $J\subseteq I$ ein Intervall und $y:J\to\mathbb{R}$ eine Funktion. y ist eine Lösung von (H) auf $J\iff \exists c\in\mathbb{R}: y(x)=ce^{A(x)}$

Beweis

$$, \Leftarrow \text{``: } y'(x) = ce^{A(x)}A'(x) = a(x)y(x) \ \forall x \in J \implies y \text{ l\"{o}st } (H).$$

"
$$\Longrightarrow$$
": $g(x) := \frac{y(x)}{e^{A(x)}} \ (x \in J)$. Nachrechnen: $g'(x) = 0 \ \forall x \in J \implies \exists c \in \mathbb{R} : g(x) = c \ \forall x \in J \implies y(x) = ce^{A(x)} \ (x \in J)$.

Satz 7.2 (Eindeutige Lösbarkeit eines linearen AWPs 1. Ordnung)

Seien $x_0 \in I$ und $y_0 \in \mathbb{R}$. Dann hat das

AWP:
$$\begin{cases} y' = a(x)y \\ y(x_0) = y_0 \end{cases}$$

auf I genau eine Lösung.

Beweis

Sei $c \in \mathbb{R}$ und $y(x) := ce^{A(x)}$ $(x \in I)$.

$$y_0 = y(x_0) \iff y_0 = ce^{A(x)} \iff c = y_0 e^{-A(x_0)}.$$

Beispiel

AWP:
$$\begin{cases} y' = (\sin x)y \\ y(0) = 1 \end{cases} \quad (I = \mathbb{R})$$

 $a(x) = \sin x, \ A(x) = -\cos x;$ allgemeine Lösung der Dgl: $y(x) = ce^{-\cos x} \ (c \in \mathbb{R})$

$$1 = y(0) = ce^{-\cos 0} = ce^{-1} \implies c = e.$$

Lösung des AWPs: $y(x) = ee^{-\cos x} = e^{1-\cos x}$ $(x \in \mathbb{R})$.

Wir betrachten jetzt die inhomogene Gleichung

$$(IH) \quad y' = a(x)y + s(x).$$

Für eine spezielle Lösung y_s von (IH) auf I macht man folgenden Ansatz: $y_s(x) = c(x)e^{A(x)}$, wobei $c: I \to \mathbb{R}$ db. Dieses Verfahren heißt Variation der Konstanten.

 y_s ist eine Lösung von (IH) auf I

$$\iff y_s'(x) = a(x)y_s(x) + s(x)$$

$$\iff c'(x)e^{A(x)} + c(x)e^{A(x)}a(x) = a(x)y_s(x) + s(x)$$

$$\iff c'(x)e^{A(x)} + a(x)y_s(x) = a(x)y_s(x) + s(x)$$

$$\iff c'(x)e^{A(x)} = s(x)$$

$$\iff c'(x) = e^{-A(x)} \dot{s}(x)$$

 \iff c ist eine Stammfunktion von $e^{-A}s$ auf I.

Nach Ana I, 23.14 besitzt $e^{-A}s$ eine Stammfunktion auf I.

Fazit: Die Gleichung (IH) besitzt Lösungen auf I.

Aus 7.1 folgt

$$L_H = \{ y : I \to \mathbb{R} : y \text{ löst } (H) \text{ auf } I \}$$

$$L_{IH} := \{ y : I \to \mathbb{R} : y \text{ löst } (IH) \text{ auf } I \}$$

Bekannt:

$$L_{IH} \neq \emptyset$$

Satz 7.3 (Spezielle Lösungen bei AWPs)

 $J \subseteq I$ sei ein Intervall, $y_s \in L_{IH}, x_0 \in I, y_0 \in \mathbb{R}$

- (1) Ist $y: J \to \mathbb{R}$ eine Lösung von (IH) auf $J \Rightarrow \exists y_1 \in L_H : y = y_1 + y_s$ auf J.
- (2) $y \in L_{IH} \Leftrightarrow y = y_1 + y_s \text{ mit } y_1 \in L_H$
- (3) Das AWP y' = a(x)y + s(x), $y(x_0) = y_0$, ist auf I eindeutig lösbar

Beweis

(1)
$$y_1 := y - y_s$$
 auf $J \Rightarrow y_1' = y' - y_s' = a(x)y + s(x) - (a(x)y_s + s(x)) + s(x)) = a(x)(y - y_s) = a(x)y_1 \Rightarrow y_1 \text{ löst } (H) \text{ auf } J \Rightarrow \exists c \in \mathbb{R} : y_1(x) = ce^{A(x)} \Rightarrow y(x) = ce^{A(x)} + y_s(x) \forall x \in J$

- (2) ", \Rightarrow ": folgt aus (1) mit J = I $a(x)y + s(x) \Rightarrow y \in L_H$
- (3) Sei $c \in \mathbb{R}$ und $y(x) = ce^{A(x)} + y_s(x) \stackrel{(2)}{\Rightarrow} y \in L_{IH}; y_0 = y(x_0) \Leftrightarrow ce^{A(x_0)} + y_s(x_0) = y_0 \Leftrightarrow ce^{A(x_0)} + y_0 \Leftrightarrow ce^{$ $c = (y_0 - y_s(x_0))e^{-A(x_0)}$

Beispiel

- (1) Bestimme die allgemeine Lösung von y' = 2xy + x auf \mathbb{R}
 - 1. Schritt: homogene Gleichung: y' = 2xy; allgemeine Lösung:

$$y(x) = ce^{x^2} (c \in \mathbb{R})$$

2. Schritt: Ansatz für eine spezielle Lösung der inhomogenen Gleichung:

$$y_s(x) = c(x)e^{x^2}.$$

$$y'_s = c'(x)e^{x^2} + c(x)2xe^{x^2} \stackrel{!}{=} 2xy_s(x) + x = 2xc(x)e^{x^2} + x$$

$$y_s - c(x)e^x + c(x)2xe^x - 2xy_s(x) = c'(x) = xe^{-x^2} \Rightarrow c(x) = -\frac{1}{2}e^{-x^2}$$

$$\Rightarrow y_s(x) = -\frac{1}{2}e^{-x^2}e^{x^2} = -\frac{1}{2}$$
Allgemeine Lösung von $y' = 2xy + x$:
$$y(x) = ce^{x^2} - \frac{1}{2}(c \in \mathbb{R})$$

Allgemeine Lösung von
$$y' = 2xy + x$$

$$y(x) = ce^{x^2} - \frac{1}{2}(c \in \mathbb{R})$$

- (2) Löse das AWP: $y' = 2y + e^x$, y(0) = 1
 - 1. Schritt: homogene Gleichung y' = 2y,
 - allgemeine Lösung $y(x) = ce^{2x} (c \in \mathbb{R}$
 - 2. Schritt: Ansatz für eine spezielle Lösung der inhomogenen Gleichung:

$$y_s(x) = c(x)e^{2x}$$

$$y'_s(x) = c'(x)e^{2x} + c(x)2e^{2x} \stackrel{!}{=} 2y_s(x) + e^x$$

$$=2c(x)e^{2x}+e^x$$

$$\Rightarrow c'(x)e^{2x} = e^x \Rightarrow c'(x) = e^{-x} \Rightarrow c(x) = -e^{-x} \Rightarrow y_s(x) = -e^x$$

Allgemein Lösung von
$$y' = 2y + e^x : y(x) = ce^{2x} - e^x$$

3. Schritt:
$$1 = y(0) = c - 1 \Rightarrow c = 2$$

Lösung des AWP:
$$y(x) = 2e^{2x} - e^x$$