Podstawy programowania

Wykład I Cyfrowa reprezentacja informacji Algorytmy – metody prezentacji i zapisu

Część I

Diaczego system binarny?

Pojęcie bitu

Bit – jednostka informacji wystarczająca do zakomunikowania jednego z dwu równo prawdopodobnych zdarzeń.

1

0

Przyczyny zastosowania systemu binarnego

kb	Mb	Gb	Tb
kilobit	megabit	gigabit	terabit

1 bajt = 8 bitów (ang. byte)

kB	MB	GB	ТВ
kilobajt	megabajt	gigabajt	terabajt

Przyczyny zastosowania systemu binarnego

Przyczyny zastosowania systemu binarnego w technologii cyfrowej to:

- łatwość implementacji elektrycznej i elektronicznej,
- odporność na zakłócenia,
- możliwość interpretacji cyfr {0,
 I} jako wartości logicznych (algebra Boole'a).

Przyczyny zastosowania systemu binarnego

Ciekawostka:

Jedynym znanym komputerem zbudowanym z elementów

3-stanowych był eksperymentalny radziecki Sietuń (1959).

Element reprezentujący jednostkę informacji stanowiła para rdzeni magnetycznych, z których każdy mógł być namagnesowany w jednym z dwóch kierunków; czwarty -niewykorzystany stan -służył do celów kontrolnych.

Pozycyjne systemy liczbowe

System dziesiętny

Ile różnych liczb można zapisać w systemie dziesiętnym za pomocą 3 cyfr?

System dziesiętny

0 0 0 0 0 1 0 0 2 ... 9 9 7 9 9 8 9 9 9

Tysiąc – od 0 do 999

W dowolnym systemie liczbowym można przedstawić

liczb/kombinacji.

Przykładowa liczba 907 w systemie dziesiętnym powstaje wg poniższego schematu:

9 0 7 =
$$9*100+0*10+7*1=907_{10}$$

System o dowolnej podstawie

System pozycyjno-wagowy: na przykład liczba 444

Wagi systemu dziesiętnego: 1, 10, 100, 1000,

$$L = C_{n-1} \cdot P^{n-1} + C_{n-2} \cdot P^{n-2} + \dots + C_1 \cdot P^1 + C_0 \cdot P^0$$

C – elementy zbioru cyfr dostępnych w danym systemie,

$$C \in \{0,...,P-1\},\$$

P – podstawa systemu, P = 2, 4, 8, 10, 16 (60 – Babilon, czas),

n – liczba całkowita.

System o dowolnej podstawie

Przykłady:

$$P = 2 \rightarrow C \in \{0,1\}$$

$$P = 4 \rightarrow C \in \{0,1,2,3\}$$

$$P = 8 \rightarrow C \in \{0,1,2,3,4,5,6,7\}$$

$$P = 10 \rightarrow C \in \{0,1,2,3,4,5,6,7,8,9\}$$

$$P = 16 \rightarrow C \in \{0,1,2,3,4,5,6,7,8,9\}$$

$$C \in \{0,1,2,3,4,5,6,7,8,9\}$$

$$Q \in \{0,1,2,3,4,5,6,7,8,9\}$$

System o dowolnej podstawie

ZAPIS liczby 1011 w różnych systemach (n = 4):

$$1011_{(2)} = 1.2^{3} + 0.2^{2} + 1.2^{1} + 1.2^{0} = 8 + 0 + 2 + 1 = 11$$

$$1011_{(4)} = 1.4^{3} + 0.4^{2} + 1.4^{1} + 1.4^{0} = 64 + 0 + 4 + 1 = 69$$

$$1011_{(8)} = 1.8^{3} + 0.8^{2} + 1.8^{1} + 1.8^{0} = 512 + 0 + 8 + 1 = 521$$

$$1011_{(10)} = 1.10^{3} + 0.10^{2} + 1.10^{1} + 1.10^{0} = 1000 + 0 + 10 + 1 = 1011$$

$$1011_{(16)} = 1.16^{3} + 0.16^{2} + 1.16^{1} + 1.16^{0} = 4096 + 0 + 16 + 1 = 4113$$

Systemy niepozycyjne

Zupełnie inna sytuacja występuje w zapisie liczby w systemie rzymskim.

Kolejne liczby od 1;:::; 9 mają postać:

I; II; III; IV; V; V I; V II; V III; IX

Widać, że w takim zapisie pozycja cyfry (o ile w ogóle można mówić w tym wypadku o cyfrze), nie jest związana z wyznaczaniem jej wartości, lecz istotna jest postać całej liczby.

Taki system zapisu nazywamy addytywnym systemem liczbowym.

System dwójkowy (binarny)

Korzystając z definicji pozycyjnego systemu liczbowego otrzymujemy, że podstawą systemu dwójkowego jest liczba 2, oraz cyframi tego systemu są elementy zbioru <0; I >.

Zapiszmy przykładową liczbą w tym systemie

$$x = |0| | | |0| | |0|_{(2)}$$

otrzymujemy:

$$x = 1*2^9 + 0*2^8 + 1*2^7 + 1*2^6 + 1*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 1*2^1 + 0*2^0$$

Zastępując teraz potęgi liczby 2 odpowiednimi wartościami, otrzymujemy

$$x = |*512 + 0*256 + |*128 + |*64 + |*32 + | \\
+ |*16 + 0*8 + |*4 + |*2 + 0*1 = 758_{(10)}$$

System dwójkowy (binarny)

Zapis binarny prosty pozwala za pomocą n cyfr zapisywać liczby z zakresu:

$$0 \leq L_{10} \leq 2^n-1$$

Dla **n = 8**:
$$0 \le L_{10} \le 2^8 - 1 = 256 - 1 = 255$$

$$11111111_{(2)} = 2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 =$$

= 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255₍₁₀₎

System dwójkowy (binarny)

ZALETY:

- prostota
- łatwa realizacja techniczna (elektronika)
- możliwość interpretacji cyfr {0, I} jako wartości logicznych (algebra Boole'a)

WADY:

- długość zapisu
- przyzwyczajenie

Ważniejsze potęgi dwójki

$$2^{0} = 1$$

$$2^{1} = 2$$

$$2^{2} = 4$$

$$2^3 = 8$$

$$2^4 = 16$$

$$2^{5} = 32$$

$$2^{6} = 64$$

$$2^{7} = 128$$

$$2^{8} = 256 = 1$$
 bajt

$$2^{16} = 65.536$$

$$2^{24} = 16.777.216$$

$$2^{10}$$
bajtów=1kB (1024)

$$2^{20}$$
bajtów=1MB (1024*1024)

$$2^{30}$$
 bajtów=1GB (1024*1024*1024)

Ważniejsze potęgi dwójki

Kolor 24 / 32 bitowy, dźwięk 16 bitowy

$$2^{24} = 2^{10} * 2^{10} * 2^{4} = 1024 * 1024 * 16 \approx 16\,000\,000$$

$$2^{32} \approx 1\,000\,000\,000 * 4$$

System dwójkowy - konwersja

KONWERSJA LICZBY DZIESIĘTNEJ DO DWÓJKOWE.

$$(147)_{10} = (?)_2$$

	Reszta:			
147 : 2 = 73	$C_0 = 1$			
73 : 2 = 36	$C_1 = 1$			
36 : 2 = 18	$C_2 = 0$			
18 : 2 = 9	$C_3 = 0$	8		
9 : 2 = 4	C ₄ = 1			
4:2=2	$C_5 = 0$			
2:2=1	$C_6 = 0$			
1:2=0	$C_7 = 1$			

$$(147)_{10} = (10010011)_2$$

 $10010011 = 1.2^7 + 1.2^4 + 1.2^1 + 1.2^0 =$
 $= 128 + 16 + 2 + 1 = 147$

System dwójkowy - arytmetyka

Dodawanie w systemie dwójkowym

Dodawanie jest realizowane podobnie jak dla systemu dziesiętnego, należy jedynie pamiętać, że

$$1_{(2)} + 1_{(2)} = 10_{(2)}$$

System dwójkowy - arytmetyka

Odejmowanie w systemie dwójkowym

00111001	00101101
- 00001101	- 00010001
00101100	00011100

W przypadku odejmowania 0 - I w systemie dwójkowym, musimy dokonać zapożyczenia I na następnej pozycji liczby.

System dwójkowy - arytmetyka

Mnożenie w systemie dwójkowym

Mnożenie jest wykonywane analogicznie jak mnożenie w systemie dziesiętnym.

System dwójkowy - arytmetyka

Dzielenie w systemie dwójkowym

110		1011	
10010:1	11=00000110	1111001:10	11=1011
- 11		- 1011	
1		10000	
11		- 1011	
- 11			
		1011	
0		- 1011	
		0	

Dzielenie podobnie jak mnożenie wykonujemy tak samo jak w przypadku dzielenia w systemie dziesiętnym.

System szesnastkowy (hexadecymalny)

Duże liczby binarne są nieczytelne.

Celem wprowadzenia systemy szesnastkowego jest skrócenie zapisu bez przeliczania na system dziesiętny.

Każde 4 bity da się przedstawić za pomocą I cyfry szesnastkowej – bez żadnego przeliczania.

```
hex bin dec
 0 0000 0
   0001 1
   0010 2
 3 0011 3
 4 0100 4
   0101 5
   0110 6
   0111 7
   1000 8
   1001 9
 A 1010 10
 B 1011 11
 C 1100 12
   1101 13
   1110 14
   1111 15
```


System szesnastkowy (hexadecymalny)

```
hex bin dec
Przykład:
                                                0000 0
                                                0001 1
0010 2
                                              3 0011 3
0101 0010 1001 0010 0001 1110 0101 0100 1010
                                              4 0100 4
1010 1100
                                                0101 5
                                                0110 6
         1001
              0010 0001 1110
                            0101
                                                0111 7
   5
                                                1000 8
            8
                          \mathbf{E}
                               5
                                                1001 9
1010 1100
                                              A 1010 10
  Α
                                                1011 11
                                              C 1100 12
52821E54AAC
                                                1101 13
                                                1110 14
                                                1111 15
```


System szesnastkowy (hexadecymalny)

System szesnastkowy podlega tym samym zasadą co inne systemy wagowo – pozycyjne .

4 F D 3 0 D

$$=4*16^5+15*16^4+13*16^3+$$

```
hex bin dec
 0 0000 0
 1 0001 1
 2 0010 2
 3 0011 3
 4 0100 4
 5 0101 5
 6 0110 6
 7 0111 7
 8 1000 8
 9 1001 9
 A 1010 10
 B 1011 11
 C 1100 12
 D 1101 13
 E 1110 14
 F 1111 15
```

Kodowanie liczb ujemnych

część ujemna

część dodatnia

Kod U2 (Uzupełnień do dwóch)

Najmniejsza liczba

Największa liczba

$$011111111 = -0 + 127 = 127$$

Kodowanie liczb ujemnych

Problem: wygenerować w KU2 liczbę -5 (przeciwna do +5)

- Zapisać liczbę (+5);
- 2. Zamienić wszystkie 1/0 i 0/1;
- 3. Dodać 1.

Liczby rzeczywiste – zapis stałoprzecinkowy

Liczby rzeczywiste – część całkowita + część ułamkowa

Zapis w dwóch bajtach (16 liczb):

$$2^{7} + 2^{6} + 2^{5} + 2^{4} + 2^{3} + 2^{2} + 2^{1} + 2^{0} = 255$$

$$2^{-1} + 2^{-2} + 2^{-3} + 2^{-4} + 2^{-5} + 2^{-6} + 2^{-7} + 2^{-8} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} = \frac{255}{256}$$

Powyższy zapis ma same wady:

- 1. nie można zapisać liczb większych od 255,
- przy małych liczbach pozostaje dużo wolnego miejsca,
- 3. MARNOWANIE PAMIĘCI KOMPUTEROWEJ.

Liczby rzeczywiste – zapis stałoprzecinkowy

Błąd przy zapisie liczb:

	Liczba dziesiętna	(.76cc carrowita								С	zęść	ułar	nkow	/a						
1.	128	1	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0	0	1
2.	1	0	0	0	0	0	0	0	1	,	0	0	0	0	0	0	0	0	0	1
3.	1/256	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0	1	1

"Obcięcie" liczb na dziewiątym miejscu – błąd bezwzględny $2^{-9} = \frac{1}{2^9} = \frac{1}{512} = 0,001953125$ - wartość tracona z powodu braku miejsca.

BŁĄD WZGLĘDNY:

Liczba 1: ≅ 0,0015%

Liczba 2: ≅ 0,1945%

Liczba 3: ≅50% !

Powyższy sposób zapisu powoduje, że obliczenia są niewiarygodne (obliczenia naukowe, ekonomiczne, multimedialne).

Liczby zmiennopozycyjne

5 973 600 000 000 000 000 000 000 kg (Masa Ziemii)

5,9736*10²⁴

5,9736 E+24

mantysa (precyzja)

cecha (wykładnik)

Notacja naukowa pozwala na kodowanie bardzo dużych / małych liczb

Liczby zmiennopozycyjne

101,101

5,62510

0,101101*2³

Mantysa znormalizowana dla liczb binarnych należy do przedziału $<\frac{1}{2},1$).

W praktyce oznacza to, że przecinek należy ustawić w taki sposób, aby liczba miała postać:

0,**1**xxxxxx...

Dzięki normalizacji zapis staje się jednoznaczny.

znak cecha / wykładnik

mantysa / precyzja

1100101010110101

Standard IEEE 754

pojedyncza precyzja	1	8	23	(32 bity)
podwójna precyzja	1	11	52	(64 bity)

Liczby zmiennopozycyjne

Przykład

1000110110110101

100011011010101

Reprezentacja danych w komputerze

Kod ASCII

American Standard Code for Information Interchange Kod przypisujący 7-bitowe (128 kombinacji) ciągi do znaków.

0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	1	1	1
0	1	1	1	1	0	0	1	1	1	0	1	1	1	1	0	0	1
1	0	1	1	0	1	0	1	1	0	1	0	1	1	0	1	0	1

Kod ASCII

Regionalne strony kodowe

128 kombinacji wystarcza do zakodowania wszystkich liter i cyfr oraz kilkudziesięciu znaków drukowalnych (+ - =...) i niedrukowalnych znaków sterujących (np. nowy wiersz).

Rozbudowanie kodu do 8 bitów pozwala na przypisanie znaków narodowych (ąęäö...). Przykładowo Europa Centralna używa dla swoich alfabetów rozszerzenia iso-8859-2, a Europa Zachodnia iso-8895-1.

Część IV

Pojęcie algorytmu

Trochę historii

Pierwsze opisy, które później nazwano algorytmami, dotyczyły rozwiązań zadań matematycznych.

Pomiędzy 400 a 300 rokiem p.n.e. grecki matematyk i filozof **Euklides**, wymyślił pierwszy znany nam nietrywialny algorytm, czyli przepis na realizację zadania. Był to algorytm znajdowania największego wspólnego dzielnika dwóch dodatnich liczb całkowitych.

Trochę historii

Słowo algorytm pochodzi od nazwiska matematyka arabskiego, który żył na przełomie VIII i IX wieku naszej ery.

Muhammad ibn Musa al-Chorezmi zasłużył się stworzeniem kilku dzieł z dziedziny matematyki, w których opisał dużą ilość reguł matematycznych (w tym dodawania, odejmowania, mnożenia i dzielenia zwykłych liczb dziesiętnych). Opis tych procedur był na tyle precyzyjny i formalny, jak na tamte czasy, że właśnie od jego nazwiska pochodzi słowo algorytm.

Cechy algorytmu

Intuicyjnie algorytm kojarzy się z metodą rozwiązywania zadania, przepisem postępowania czy też ze schematem działania.

Należy jednak podkreślić, że nie każda metoda czy schemat jest algorytmem.

Algorytm powinien spełniać sześć warunków.

Cechy algorytmu

- I. Musi posiadać określony stan początkowy, czyli operację od której zaczyna się jego realizacja.
- Ilość operacji potrzebnych do zakończenia pracy musi być skończona warunek dyskretności (skończoności).
- 3. Musi dać się zastosować do rozwiązywania całej klasy zagadnień, a nie jednego konkretnego zadania warunek uniwersalności.
- 4. Interpretacja poszczególnych etapów wykonania musi być jednoznaczna warunek jednoznaczności.
- 5. Cel musi być osiągnięty w akceptowalnym czasie warunek efektywności.
- 6. Musi posiadać wyróżniony koniec.

Część V

Notacja algorytmów

Metody zapisu algorytmu

Opis słowny za pomocą ograniczonego podzbioru języka naturalnego

Przykład

- Dane są dwie liczby naturalne a i b.
- Oblicz c jako resztę z dzielenia a przez b
- Zastąp a przez b, zaś b przez c.
- Jeżeli b = 0, to szukane NWD wynosi a, w przeciwnym wypadku wróć do punktu drugiego i kontynuuj.

Drzewo algorytmu

Metody zapisu algorytmu

Schematy blokowe. Na razie potraktujmy to jako przykład metody Schemat blokowy sortowania bąbelkowego: zapisu - do tego algorytmy wrócimy na następnym wykładzie start $K \leftarrow 1$ iteracja zewnętrzna wskaż na pierwszy element na liście iteracja wewnętrzna Czy wskazany NIE element jest we właściwej kolejności względem Przykad następnego? $K \leftarrow K + 1$ zamień miejscami element wskazany z następnym TAK $L \leftarrow L + 1$ wskaż następny element L=N-1TAK K=N-1TAK

stop

Metody zapisu algorytmu

Pseudo-język.

Inną metodą przedstawienia algorytmu jest użycie zapisu za pomocą pseudo-języka programowania.

Zaletą tego podejścia jest bardzo łatwa implementacja algorytmu za pomocą konkretnie wybranego, istniejącego języka programowania.

Wadą jest mniejsza przejrzystość zapisu.

Algorytm Euklidesa w pseudokodzie:

```
NWD(liczba całkowita a, liczba całkowita b)
dopóki b różne od 0
c := reszta z dzielenia a przez b
a := b
b := c
zwróć a
```

Przykłode

Istnieją różne wersje pseudo-języka. Najczęściej jest to PASCAL pozbawiony informacji dla kompilatora (i czasem przetłumaczony na polski)

Zapis algorytmów – zmienne i operatory

Zmienna to w programowaniu element programu, który może mieć przypisaną pewną wartość (wartość może być różna w różnych momentach wykonania programu). Zmienna jest uchwytem do tej wartości.

- W większości języków programowania (poza językami najwyższego poziomu) zmienne musimy zadeklarować, czyli poinformować kompilator, o tym że taka zmienna wystąpi i o tym jaki typ danych zamierzamy w niej przechowywać.
- ✓ Umożliwia to kompilatorowi zarezerwowanie odpowiedniego miejsca w pamięci operacyjnej i dobrane właściwych procedur obliczeniowych (na poziomie języka maszynowego).

Dziś spotkamy typy:

- REAL (liczba rzeczywista)
- INTEGER (całkowita)

Zapis algorytmów – zmienne i operatory

Operatory stosowane w pseudo-języku oraz w schematach blokowych:

+ - */

- chyba nie wymagają komentarza

%

- operator reszty z dzielenia całkowitoliczbowego

sqr (..)

- kwadrat

sqrt (..)

- pierwiastek kwadratowy

==

- pytanie "czy jest równe"

!=

pytanie "czy jest różne" (≠)

> i <

- pytanie czyn jest większe i czy jest mniejsze

>= i <=

- większe lub równe (\geq) i mniejsze lub równe (\leq)

=

operator przypisania (podstawienia) (alternatywnie :=)

Zapis algorytmów – zmienne i operatory

Dwie ważne uwagi:

- Zmienna w programie komputerowym (i algorytmie) to nie to samo co zmienna w zadaniu matematycznym.
- Rozróżniaj operatory:
 - pytanie czy równe
 - operator przypisania

```
x = x + 1
                   - w matematyce jest to równie sprzeczne
x = x + 1
                   - w języku programowania - operacja podstawienia
                   (wartość zapisaną w zmiennej x zwiększamy o I)
```

Zapis algorytmów – schemat blokowy

- ✓ Stan Określa zwykle moment startu i końca.
- ✓ Zapis/odczyt Wskazuje miejsce w których odbywa się zapis danych (lub ich odczyt).
- ✓ Instrukcje Blok instrukcji, które mają być wykonane.
- Decyzja Wyliczenie warunku logicznego znajdującego się wewnątrz symbolu i podjęcie na jego podstawie decyzji.
- Łącznik Połączenie z inną częścią schematu blokowego, np. gdy nie mieści się on na jednej stronie.

Zapis algorytmów – schemat blokowy

Schemat blokowy tworzony jest według następujących reguł:

- 1. Schemat blokowy składa się z bloków połączonych zorientowanymi liniami;
- Bloki obrazują ciąg operacji;
- 3. Zawsze wykonywane są albo wszystkie instrukcje w bloku albo żadna;
- Dalsze operacje nie zależą od poprzednich wariantów, chyba że zależności te zostały przekazane za pomocą danych;
- 5. Kolejność wykonania operacji jest ściśle określona przez zorientowane
- 6. Linie łączące poszczególne bloki;
- 7. Do każdego bloku może prowadzić co najwyżej jedna linia;
- 8. Linie mogą się łączyć ale nie mogą się rozdzielać (bez bloku decyzyjnego).

Część VI

Rodzaje algorytmów

Algorytmy liniowe

Algorytmy rozgałęzione

Algorytmy rozgałęzione – przykład

Przykład:

$$ax^2 + bx + c = 0$$

Algorytmy rozgałęzione wielokrotnie

Algorytmy rozgałęzione wielokrotnie

Algorytmy iteracyjny

NWW – algorytm Euklidesa

Zapis w pseudokodzie

NWD(liczba całkowita a, liczba całkowita b) dopóki b różne od 0 c = reszta z dzielenia a przez b

a = b

b = c

zwróć a

W prezentacji wykorzystano fragmenty i zadania z książek i stron internetowych:

- Piotr Fulmański, Ścibór Sobieski, Wstęp do informatyki, Podręcznik, Wydawnictwo Uniwersytetu Łódzkiego, 2005
 ISBN: 83-7171-844-6
- Maciej M. Sysło, Algorytmy, WSiP, Warszawa 2002, ISBN: 83-02-06659-1
- http://pl.wikipedia.org