

Архитектура блокчейн-систем

Криптовалюты

- Разновидность цифровой валюты, создание и учёт операций с которой обеспечивает децентрализованная платёжная система в автоматическом режиме
- Для защиты системы в неё интегрированы криптографические методы, используемые:
 - для подтверждения создания и переводов денежных единиц;
 - для генерации идентификаторов пользователей (адресов).

Свойства криптовалют

- Децентрализация. Отсутствует орган администрирования, контролирующий эмиссию и перемещения криптовалюты. Эмиссия осуществляется всей сетью в соответствии с определёнными алгоритмами, платежи происходят непосредственно между участниками системы без посредников.
- **Открытость.** Возможность использования криптовалюты доступна любому пользователю, присоединившемуся к системе.
- Не имеет внутренней стоимости. Ценность криптовалюты определяется исключительно ожиданиями её пользователей.
- Не имеет материального воплощения. Хранится и перемещается только в электронном виде.
- **Псевдонимность.** Пользователи идентифицируются при помощи адресов, генерируемых криптографическим алгоритмом, информации о реальном субъекте в системе не хранится.

Транзакция в обычной платежной системе

Транзакция в криптовалюте

Криптоэкономика

- В рейтинге <u>Coinmarketcap</u> участвует около **10 тыс.** криптовалют.
- Суммарная капитализация рынка на конец 3 квартала 2024 г. 2,3 трлн долл.
- Доля Биткоина на рынке около **56%**, Etherium **14%**.

	Name	Price	Market Cap 🕕	Volume(24h) 🕕
1	Bitcoin BTC	\$65,562.37	\$1,295,519,971,984	\$17,687,431,985 269,720 BTC
2	♦ Ethereum ETH	\$2,666.60	\$320,963,879,237	\$11,599,371,284 4,349,677 ETH
3	Tether USDT	\$1.00	\$119,431,014,222	\$42,317,502,559 42,312,616,620 USDT
4	BNB BNB	\$600.58	\$87,643,988,576	\$1,953,866,011 3,253,861 BNB
5	Solana SOL	\$156.81	\$73,535,607,599	\$1,526,745,776 9,739,056 SOL

Криптокошелёк

- Средство для хранения закрытых ключей пользователя.
- Например, для алгоритма электронной подписи ECDSA
- Закрытый ключ S: случайное число между единицей и порядком подгруппы.
- Открытый ключ О:

O = SG

Пример:

- закрытый ключ:

- открытый ключ:

0479be66 7ef9dcbb ac55a062 95ce870b 07029bfc db2dce28 d959f281 5b16f8179 8483ada7 726a3c46 55da4fbf c0e1108a 8fd17b44 8a685541 99c47d08 ffb10d4b8

- Bitcoin-aдрес: 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH

Криптокошелёк

- **Горячий** кошелёк, средства с которого можно потратить в любое время. Приложение, веб-сайт или устройство, которое управляет закрытыми ключами.
- **Холодный** кошелёк, не предназначенный для регулярного отправления криптовалюты, однако средства на него можно получить в любое время. Самый простой "холодный" кошелёк лист бумаги, на котором записан закрытый ключ.
- **Кастодиальный** кошелёк, который зарегистрирован на каком-либо сервисепосреднике, например, на криптобирже. Управляется из веб-интерфейса, пароль можно быстро и легко восстановить, но при этом посредник знает вашу личность и имеет доступ к активам.
- **Некастодиальный** предполагает, что все ключи и пароли находятся только у владельца. Если владелец что-то забудет/потеряет, восстановить доступ к кошельку будет невозможно.
- Аппаратный устройства, подключаемые к ПК. Отличаются особо высокой степенью защиты.
- Программный приложение на мобильном телефоне, ПК, интернет-сервере.

Системы торговли криптовалютой

- **Централизованные криптобиржи (Centralized Exchange, CEX)** платформы для торговли криптовалютами и производными инструментами, выступающие посредниками между продавцами и покупателями.
- **Децентрализованные криптобиржи (Decentralized Exchange, DEX)** P2P-сервисы для обмена криптовалюты и производных инструментов между своими клиентами.
- **Криптовалютные обменные сервисы (криптообменники)** сервисы, осуществляющие непосредственную торговлю криптовалютой с использованием собственных кошельков сервиса.

	Exchange	Trading volume(24h)	Weekly Visits	# Coins	Fiat Supported
1	Sinance	\$9,303,291,259	10,650,815	425	EUR, GBP, BRL and +8 more ①
2	Coinbase Exchange	\$1,132,370,148	33,921	258	USD, EUR, GBP
3	BYBIT Bybit	\$3,018,683,089	4,547,879	662	USD, EUR, GBP and +3 more ①
4	ж окх	\$1,538,413,583	4,082,687	310	AED, ARS, AUD and +43 more ①
5	Upbit	\$2,010,386,002	1,032,611	215	KRW

Bitcoin

31 октября 2008 года	Sa Sy
	Ca
	на

атоши Накомото Биткоин: система цифровой пиринговой

Bitcoin сегодня

Общая капитализация 1,3 трлн долл. США Greenland (56 % всего рынка криптовалют) Russian Federation Ежесуточный объём торгов 14 млрд долл. США Более 18 тыс. Marshall Islands Kirihati Congo (the Democratic Republic of the) узлов в сети по всему миру

Bitcoin

- В блокчейне хранится информация о **транзакциях** передаче цифровых денег между пользователями.
- Минимальная денежная единица **1 сатоши** = **10**⁻⁸ биткоина (ВТС).
- Каждый пользователь в сети Биткоин имеет один или несколько кошельков, представляющих собой пару ключей ECDSA.
- Кошелёк идентифицируется **адресом**, получаемым хешированием открытого ключа, например:

1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa

Первый адрес в сети Биткоин, принадлежащий Сатоши Накамото, на котором содержатся 50 замороженных биткоинов, полученных в качестве вознаграждения за генерацию нулевого блока.

ECDSA B Bitcoin

• Уравнение эллиптической кривой:

$$y^2 = x^3 + 7$$

- Базовая точка *G*:

x = 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798,

y = 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8

- Порядок точки = FFFFFFF FFFFFFF FFFFFFF BAAEDCE6 AF48A03B BFD25E8C D0364141
- Данная реализация известна как *secp256k1* и является частью семейства решений эллиптической кривой в области конечных полей, предложенных к использованию в криптографии.

Характеристики сети

- Сеть работает на консенсусе **Proof-of-Work**, узлы сети (майнеры) получают вознаграждение за создание блока, а также комиссию с транзакций, записанных в блок.
- Первоначальное вознаграждение за майнинг составляло 50 ВТС. Оно уменьшается вдвое через каждые 210 тыс. блоков (примерно раз в 4 года) **халвинг**. Последний халвинг произошёл в апреле 2024 года в блоке 840 000.

3,125 биткоина – текущее вознаграждение майнеров за блок

- Вознаграждение за блок станет менее 1 сатоши примерно в 2140 году. После этого выпуск новых биткоинов прекратится.
- Общее количество биткоинов в системе не может превысить **21 млн**
- К настоящему времени выпущено **19,76 млн ВТС**, т.е. около **94%** всех монет в системе.

Комиссия за транзакции

- Комиссия за транзакции определяется динамически в зависимости от загрузки сети.
- Размер комиссии зависит от размера транзакции и от приоритетности её обработки.
- Комиссия рассчитывается за 1 байт, поэтому чем больше входов и выходов содержит транзакция тем комиссия выше.
- Максимальная комиссия берётся за включение транзакции в ближайший блок (10 мин.). Средний приоритет включение в ближайшие 1 3 блока (ожидание до 30 мин.), низкий приоритет ожидание до 6 блоков (до 1 часа).
- Текущую комиссию можно посмотреть на специальных ресурсах, например

https://bits.media/fee/bitcoin/

Транзакции

Служебная информация:

- версия;
- количество входов;
- количество выходов;
- время блокировки.

Откуда получены деньги:

- идентификатор предыдущей транзакции;
- номер выхода предыдущей транзакции;
- скрипт подписи scriptSig.

Куда направляются деньги:

- сумма (в сатоши);
- скрипт открытого ключа scriptPubKey.

Coinbase - транзакция

- Транзакция, перечисляющая вознаграждение узлу за добычу нового блока.
- Является первой по счёту транзакцией в блоке.
- Не содержит ссылок на предыдущие транзакции, так как распределяет вновь созданные системой деньги.

Связь входов и выходов в транзакциях

- Все транзакции, кроме coinbase, тратят средства из непотраченных выходов предыдущих транзакций (UTXO, unspent transaction output).
- Разница между суммой входов и суммой выходов транзакции представляет комиссию узла за её включение в блок.

- ▶ Мемпул место, где все действительные транзакции ждут подтверждения сетью Bitcoin.
- Каждый узел в сети имеет свою версию мемпула, образуемого входящими в него транзакциями. Узлы распространяют подписанные транзакции по сети.
- Майнеры имеют возможность выбирать транзакции для включения в блок из мемпула.
 В первую очередь выбираются транзакции, имеющие наибольшую комиссию.
- Размер мемпула это среднее количество транзакций в мемпулах отслеживаемых системой узлов.
- ▶ Большой размер мемпула указывает на больший сетевой трафик, что приведет к увеличению среднего времени подтверждения и более высокой платы за приоритет.
- При приближении размера пула к объему доступной памяти узел задает минимальную комиссию. Транзакции, в которых комиссия не достигает этого порога, удаляются из пула, после чего в пул допускаются только транзакции с достаточной комиссией.

https://www.blockchain.com/ru/explorer/charts/mempool-size

Прежде чем поместить транзакцию в мемпул, узел должен выполнить следующие действия.

- 1. Проверить правильность синтаксиса транзакции.
- 2. Убедиться, что списки входов и выходов транзакции не пусты.
- 3. Убедиться, что размер транзакции в байтах меньше, чем максимальный размер блока.
- 4. Убедиться, что все выходы и их сумма являются допустимыми денежными значениями.
- 5. Убедиться, что транзакция не является coinbase-транзакцией.
- 6. Отклонить транзакцию, если транзакция уже есть в пуле или главной ветви блока.
- 7. Отклонить транзакцию, если какой-либо из ее входов ссылается на выход другой транзакции в пуле.

- 8. Для каждого входа: если транзакция с соответствующим выходом является coinbase-транзакцией, убедиться, что она имеет как минимум 100 подтверждений (COINBASE_MATURITY), в противном случае отклонить транзакцию.
- 9. Для каждого входа: если соответствующего входу выхода не существует, отклонить транзакцию.
- 10. Используя транзакции с соответствующими выходами, убедиться, что каждый вход и сумма являются допустимыми денежными значениями. Если сумма входов меньше, чем сумма выходов, отклонить транзакцию.
- 11. Если сумма входов меньше, чем сумма выходов, отклонить транзакцию.
- 12. Если комиссия за транзакцию (определяемая как разность между суммой входов и суммой выходов) слишком мала для включения транзакции в блок, отклонить транзакцию.

https://www.blockchain. com/ru/charts/mempool -size?timespan=60days

Размер мемпула (байты)

Общий размер ожидающих подтверждения транзакций в байтах.

https://www.blockchain. com/charts/mempoolcount

Количество транзакций в мемпуле

Общее количество неподтвержденных транзакций в мемпуле.

Структура блока Биткоин

Номер версии блока, определяющий, какой набор правил проверки блоков должен использоваться

Хеш предыдущего блока

Корень дерева Меркла хешей транзакций, включённых в блок

Время начала решения задачи майнинга

Значение сложности сети, определяющее максимальный допустимый хеш заголовка блока

Одноразовый номер

Первая транзакция в блоке

. . .

Дерево Меркла

Бинарное дерево, каждая вершина которого содержит хеши следующих вершин. Используется для эффективного обобщения и проверки целостности больших наборов данных.

Эффективность дерева Меркла

Количество транзакций	Прибл. размер блока	Размер пути (в хэшах)	Размер пути (в байтах)
16 транзакций	4 килобайта	4 хэшей	128 байт
512 транзакций	128 килобайт	9 хэшей	288 байт
2048 транзакций	512 килобайт	11 хэшей	352 байт
65535 транзакций	16 мегабайт	16 хэшей	512 байт

Типы транзакций Bitcoin

- Начиная с версии ядра Bitcoin Core 0.9, можно выделить следующие стандартные типы типы транзакций:
 - Плата на открытый ключ (Р2РК)
 - Плата на хэш открытого ключа (Р2РКН)
 - Плата на скрипт (P2SH)
 - Коллективная подпись (Multisig)
 - Нулевые данные
- Основная часть транзакций в блокчейне Р2РКН. Небольшую часть занимают P2SH и Multisig.
- ➤ С версии Bitcoin Core 0.16 начали использоваться транзакции Segregated Witness (SegWit), позволяющие хранить электронные подписи в отдельной структуре данных вне основной цепочки.

Язык Script для Bitcoin

- Транзакции в Bitcoin включают в себя скрипты для исполнения.
- Язык программирования скриптов так и называется "Script"
 - разработан специально для использования в сети Bitcoin;
 - очень узкая функциональность;
 - стеково-ориентированный;
 - ограничения по времени выполнения/памяти;
 - не имеет циклов.
- Программы на языке "Script" состоят из двух частей: скрипта открытого ключа (scriptPubKey), записанного в выход предыдущей транзакции и скрипта подписи (scriptSig), записанного во вход текущей транзакции.
- ▶ Транзакция считается корректной, если входной скрипт подписи проверяемой транзакции объединенный со скриптом открытого ключа предыдущей транзакции, отрабатывает без ошибок и по окончании работы в стеке находится значение **True**.

Язык Script для Bitcoin

- ▶ Всего 256 кодов операций (15 не работают, 75 в резерве):
 - Работа со стеком (загрузка/выгрузка данных)
 - Арифметические
 - Условные (if/then)
 - Криптографические (хэши, проверка подписи, проверка множественных подписей)
- Длина каждой операции (без обрабатываемых данных) 1 байт.
- Примеры команд:

Word	Opcode	Hex	Input	Output	Description
OP_0, OP_FALSE	0	0x00	Nothing.	(empty value)	An empty array of bytes is pushed onto the stack. (This is not a no-op: an item is added to the stack.)
N/A	1-75	0x01-0x4b	(special)	data	The next opcode bytes is data to be pushed onto the stack
OP_PUSHDATA1	76	0x4c	(special)	data	The next byte contains the number of bytes to be pushed onto the stack.
OP_PUSHDATA2	77	0x4d	(special)	data	The next two bytes contain the number of bytes to be pushed onto the stack in little endian order.
OP_PUSHDATA4	78	0x4e	(special)	data	The next four bytes contain the number of bytes to be pushed onto the stack in little endian order.
OP_1NEGATE	79	0x4f	Nothing.	-1	The number -1 is pushed onto the stack.
OP_1, OP_TRUE	81	0x51	Nothing.	1	The number 1 is pushed onto the stack.
OP_2-OP_16	82-96	0x52-0x60	Nothing.	2-16	The number in the word name (2-16) is pushed onto the stack.

Word	Opcode	Hex	Input	Output	Description
OP_TOALTSTACK	107	0x6b	x1	(alt)x1	Puts the input onto the top of the alt stack. Removes it from the main stack.
OP_FROMALTSTACK	108	0x6c	(alt)x1	х1	Puts the input onto the top of the main stack. Removes it from the alt stack.
OP_IFDUP	115	0x73	х	x / x x	If the top stack value is not 0, duplicate it.
OP_DEPTH	116	0x74	Nothing	<stack size=""></stack>	Puts the number of stack items onto the stack.
OP_DROP	117	0x75	х	Nothing	Removes the top stack item.
OP_DUP	118	0x76	х	хх	Duplicates the top stack item.
OP_NIP	119	0x77	x1 x2	x2	Removes the second-to-top stack item.
OP_OVER	120	0x78	x1 x2	x1 x2 x1	Copies the second-to-top stack item to the top.
OP_PICK	121	0x79	xn x2 x1 x0 <n></n>	xn x2 x1 x0 xn	The item <i>n</i> back in the stack is copied to the top.
OP_ROLL	122	0x7a	xn x2 x1 x0 <n></n>	x2 x1 x0 xn	The item <i>n</i> back in the stack is moved to the top.
OP_ROT	123	0x7b	x1 x2 x3	x2 x3 x1	The 3rd item down the stack is moved to the top.
OP_SWAP	124	0x7c	x1 x2	x2 x1	The top two items on the stack are swapped.
OP_TUCK	125	0x7d	x1 x2	x2 x1 x2	The item at the top of the stack is copied and inserted before the second-to-top item
OP_2DROP	109	0x6d	x1 x2	Nothing	Removes the top two stack items.
OP_2DUP	110	0x6e	x1 x2	x1 x2 x1 x2	Duplicates the top two stack items.
OP_3DUP	111	0x6f	x1 x2 x3	x1 x2 x3 x1 x2 x3	Duplicates the top three stack items.
OP_20VER	112	0x70	x1 x2 x3 x4	x1 x2 x3 x4 x1 x2	Copies the pair of items two spaces back in the stack to the front.
OP_2ROT	113	0x71	x1 x2 x3 x4 x5 x6	x3 x4 x5 x6 x1 x2	The fifth and sixth items back are moved to the top of the stack.
OP_2SWAP	114	0x72	x1 x2 x3 x4	x3 x4 x1 x2	Swaps the top two pairs of items.

Связь входов и выходов в транзакциях

Транзакция Р2РК

- ➤ Самая первая транзакция в сети Биткоин между Сатоши Накамото и Хэлом Финни в 2009 году записана в блоке 170.
- Выход транзакции содержит скрипт открытого ключа:

```
4104ae1a62... # открытый ключ Хэла Финни OP_CHECKSIG # проверка подписи
```

Переведённые средства были потрачены в блоке 92 240. Вход соответствующей транзакции содержал скрипт подписи:

```
47304402205... # подпись Хэла Финни
```

Транзакция Р2РК

Транзакция Р2РКН

- В транзакции Р2РК открытый ключ виден всем уже на выходе транзакции снижает безопасность. Кроме того его надо передавать между пользователями для включения в scriptPubKey.
- > Скрипт открытого ключа scriptPubKey:

```
      OP_DUP
      # копирование предыдущего значения в стеке

      OP_HASH160
      # хэширование предыдущего значения

      69e02f19...
      # хэш открытого ключа

      OP_EQUALVERIFY
      # проверка равенства

      OP_CHECKSIG
      # проверка подписи
```

Скрипт подписи scriptSig:

```
47304402203... # подпись 0d40be0d3c... # открытый ключ
```

Проверка скрипта Р2РКН

47304402203... 0d40be0d3c...

OP_DUP
OP_HASH160
69e02f19...

OP_EQUALVERIFY

OP_CHECKSIG

Плата на скрипт (P2SH)

- Используется для перечисления средств на адрес смарт-контракта.
- Отправитель может не знать код скрипта, но получатель должен предоставить его хэш.
- При попытке потратить транзакцию скрипт выполняется в два этапа:
 - 1. Выполняется проверка хеша скрипта
 - 2. В случае успеха выполняется сам скрипт.
- Затраты на запись в транзакцию скрипта несёт получатель средств при их последующей трате.

Скрипт	OP_HASH160		
Открытого	<hash160< td=""></hash160<>		
ключа	(redeemScript)>		
	OP_EQUAL		
Скрипт	<sig></sig>		
подписи	[sig]		
	[sig]		
	<publickey></publickey>		
	[PublicKey]		
	<redeemscript></redeemscript>		

Выполнение транзакции P2SH

Коллективная подпись (Multisig)

- Используется если потратить полученные средства можно только с согласия М из N участников.
- Скрипт открытого ключа содержит ключи всех N участников.
- В скрипте подписи должно находиться М подписей для разблокировки транзакции.

Скрипт	<m></m>
Открытого	
ключа	[B pubkey]
	[C pubkey]
	<n></n>
	OP_CHECKMULTISIG
Скрипт	OP_0
подписи	<asig></asig>
	[Bsig]
	[Csig]

Multisig 2/3

Multisig 2/3

- Если Алиса и Боб удовлетворены исполнением контракта – они подписывают транзакцию средства переводятся.
- Если возникли разногласия они обращаются к Виктору.
- Виктор и одна из сторон подписывают транзакцию и деньги либо возвращаются к Алисе, либо переводятся Бобу.

Скрипт	OP_2
Открытого	04a882d414e
ключа	046ce31db9b
	0411ffd36c7
	OP_3
	OP_CHECKMULTISIG
Скрипт	OP_0
подписи	30440220762
	3045022100a

Транзакции с нулевыми данными

Скрипт Открытого	OP_RETURN
ключа	<от 0 до 40 байт данных>
Скрипт подписи	Отсутствует, т.к. транзакции с нулевыми данными не могут
	быть потрачены

Стандартные транзакции

Начиная с версии ядра Bitcoin Core 0.9.3, стандартные транзакции должны соответствовать следующим условиям:

- Транзакция должна быть завершена: ее время блокировки должно быть в прошлом либо меньше или равно текущей высоте блока.
- Размер транзакции должен быть меньше 100 000 байт. Это примерно в 200 раз больше, чем типичная транзакция Р2РКН с одним входом и одним выходом.
- Каждый из скриптов подписи транзакции должен быть меньше 1650 байт. Этого достаточно, чтобы выполнить проверку 15 транзакций с несколькими подписями вида P2SH с использованием сжатых открытых ключей.
- Открытые транзакции с несколькими подписями, которые не являются транзакциями типа P2SH и для которых требуется более 3 открытых ключей, в настоящее время являются нестандартными.
- Задача скрипта подписи заключается в том, чтобы поместить данные в стек для выполнения проверки. Он не может использовать коды операций, за исключением тех, которые помещают данные в стек.
- Выход транзакции не может быть меньше, чем 1/3 от того количества сатоши, которое необходимо потратить в качестве комиссии за транзакцию. Исключение составляют стандартные транзакции с нулевыми данными, у которых выход должен содержать нулевую сумму.

Развитие сети Биткоин

- **Bitcoin Improvement Proposal** (BIP) документ, предоставляющий информацию сообществу биткоина, в основном разработчикам, о предлагаемых улучшениях в сети.
- Выкладываются на GitHub для обсуждения сообществом:

https://github.com/bitcoin/bips

- Если предложение поддерживается разработчиками, в ПО вносятся соответствующие изменения.
- Однако, каждый узел <u>самостоятельно</u> решает, устанавливать ли новую версию ПО или нет. В результате работы на разных узлах разных версий ПО блоки могут формироваться по разным алгоритмам в блокчейне возникают форки.

Софтфорки и хардфорки

• Софтфорк – обновление с обратной совместимостью, то есть обновленные узлы могут взаимодействовать с узлами со старой версией ПО. Обычно софтфорк происходит при добавлении новых правил, которые не противоречат старым.

Пример: софтфорк SegWit

- Изменил формат блоков и транзакций, цифровые подписи были вынесены в отдельное хранилище.
- Старые узлы все еще могли проверять блоки и транзакции (изменение формата не противоречило правилам), но просто не понимали их. Для прочтения определенных полей и анализа дополнительных данных необходимо переключение на новое программное обеспечение.
- Даже через несколько лет после активации SegWit ещё не все узлы в сети были обновлены.

Софтфорки и хардфорки

- **Хардфорк** обновление программного обеспечения, несовместимое с предыдущими версиями. Обычно это происходит, когда изменения ПО приводят к противоречию с существующим правилам работы сети.
- Узлы, использующие новую версию ПО, не могут взаимодействовать со старыми.
- В результате блокчейн разделяется на две отдельные сети: одну со старыми правилами и другую с новыми.

Пример: хардфорк ВСН

- Изменил максимальный размер блока, увеличив его до 8 Мб.
- Старые узлы не принимали блоки, генерируемые новым ПО.
- В результате с блока № 478 559 (1 августа 2017) сеть разделилась на классический Bitcoin (BTC) и Bitcoin Cash (BCH).
- Так как все блоки до этого у сетей одинаковы, каждый адрес ВТС получил то же самое количество монет в сети ВСН.

Блокчейн-эксплореры

- Информация, хранящаяся в публичных блокчейнах, является общедоступной.
- Она может быть получена непосредственно из цепочки для этого нужно установить себе на компьютер программное обеспечение узла блокчейна и скачать её копию.
- Доступ к информации из цепочки также предоставляют сторонние сервисы, например при криптобиржах и т.д. блокчейн-эксплореры.
- Доступ возможен из обычного браузера:

https://www.blockchain.com/explorer/

https://blockchair.com/

https://etherscan.io/

Blockchain.com

Возможности поиска:

- По номеру блока в цепочке
- По адресу пользователя
- По хешу блока/транзакции

Генезис-блок

- Изучить содержимое генезис-блока Биткоина
 - Когда он добыт?
 - Кто его добыл?
 - Сколько транзакций он содержит?
 - Были ли потрачены средства, полученные в coinbaseтранзакции?
 - Каков текущий баланс адреса, на который были переведены средства в coinbase-транзакции?
 - Сколько транзакций было совершено с участием этого адреса?
 - Когда была совершена последняя транзакция с этого адреса?
 Сколько средств было переведено в этой транзакции?

Первая транзакция между пользователями

- Перевод 10 ВТС от Сатоши Накамото Хэлу Финни
- Хеш транзакции:

f4184fc596403b9d638783cf57adfe4c75c605f6356fbc91338530e9831e9e16

Bitcoin Pizza Day

- 22 мая 2010 года американский криптоэнтузиаст Ласло Ханеч заплатил своему коллеге Джереми Стердиванту 10 000 ВТС за 2 пиццы Papa John's.
- Это событие вошло в историю развития криптовалют как Bitcoin Pizza Day и считается первой покупкой реального товара за биткоины.
- Транзакция по переводу средств записана в блоке Биткоина № 57 043

Задание:

- 1. Сколько входов использовано в данной транзакции?
- 2. Какую комиссию уплатил Ханеч за эту транзакцию?
- 3. Потратил ли Стердивант полученные средства?
- 4. Сколько средств сейчас находится на счетах Ханеча и Стердиванта, которые участвовали в транзакции?

Хардфорк ВСН

- Хардфорк, который привёл к появлению Bitcoin Cash (BCH), произошёл 1 августа 2017 года в блоке № 478 559.
- Сравните предыдущие и данные блоки в цепочках ВТС и ВСН.
- Адреса, существовавшие в сети Биткоин до хардфорка, продублировались в ВСН.
- Сравните транзакции и балансы адреса Сатоши Накамото, существующего в цепочках ВТС и ВСН.

1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa

API сервиса Blockchain.info

https://www.blockchain.com/ru/explorer/api/blockchain_api

Блок по хешу:

https://blockchain.info/rawblock/
block_hash>

• Транзакция по хешу:

https://blockchain.info/rawtx/<tx_hash>

• Блок по порядковому номеру (высоте):

https://blockchain.info/block-height/<block_height>?format=json

• Блоки по времени (за 24 часа):

https://blockchain.info/blocks/<time_in_ms>?format=json

API сервиса Blockchain.info

• Один адрес:

https://blockchain.info/rawaddr/<bitcoin_address>

• Несколько адресов:

https://blockchain.info/multiaddr?active=<address>|<address>|

• Непотраченные транзакции (UTXO):

https://blockchain.info/unspent?active=<address>

• Баланс адреса:

https://blockchain.info/balance?active=<address>

Домашнее задание

Изучить самостоятельно API сервиса blockchain.info

https://www.blockchain.com/ru/explorer/api/blockchain_api