

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUAÇÃO PROGRAMA DE DISCIPLINA

Nome do Componente Curricular em português: HISTÓRIA DA ELETRICIDADE E DO CONTROLE AUTOMÁTICO			Código:
Nome do Componente Curricular em inglês:			
HISTORY OF ELECTRICITY AND AUTOMATIC CONTROL			
Nome e sigla do departamento:			Unidade Acadêmica:
DEPARTAMENTO DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO			ESCOLA DE MINAS (EM)
(DECAT)			
Modalidade de oferta: [X] presencial [] a distância			
Carga horária semestral		Carga horária semanal	
Total	Extensionista	Teórica	Prática
30 horas	15 horas	1 horas/aula	1 horas/aula

Ementa: Fundamentos Físicos, Experimentais e Históricos da Eletricidade, do Magnetismo e da Automação; O Mundo Antigo; a Revolução Científica; Sólidos e Fluidos Elásticos; A Telegrafia Elétrica; Os primeiros Sistemas de transmissão de Energia; A Eletrônica e o Computador Digital; A descoberta da Realimentação e os primeiros Sistemas de Controle; O Controlador Lógico-Programável e a Automação Industrial; A Inteligência Artificial; A Pesquisa e a Escrita da História da Ciência e da Tecnologia; Produção de Textos, oficinas e material de divulgação (Extensionista);

Conteúdo programático:

Unidade 1 – Fundamentos Experimentais e Históricos da Engenharia de Controle e Automação

A pesquisa e a escrita da história da ciência e tecnologia; Fundamentos físicos, experimentais e históricos da Engenharia de Controle e Automação;

Unidade 2 - O mundo antigo: controle e automação na antiguidade

O mundo antigo, noções de força, fluxo de virtudes, carga elétrica, alma magnética; Pioneiros da automação e do controle; Uso de realimentação em dispositivos da antiguidade; Simulacros e Autômatos;

Unidade 3 - Dos organismos aos mecanismos: fundamentos experimentais da eletricidade

Difusão de virtudes, Condução e o início da ciência Magnética; Gilbert: Magneto Terrestre e o versório; A penugem flutuante de Guericke; O mecanismo ACR e o aterramento elétrico; O pêndulo de Gray; Existe só um tipo de carga?

Unidade 4 - A revolução científica

O mundo como um relógio; As novas ciências de Galileu; Kepler: a virtude solar, a Lei do inverso quadrado e a heurística da ação à distância; Descartes: a matéria sutil e a mecânica de vórtices; Sólidos e Fluidos elásticos; Newton e a Eletricidade;

Unidade 5 - Da elasticidade à eletricidade

Atração e Repulsão; Benjamin Franklin e a garrafa de Leyden: a "avó" do capacitor moderno; Teoria do fluidos elétricos único e duplo; Eletricidade como ente matemático; Sólidos elásticos: cordas vibrantes e equação de onda; Fluidos elásticos: a equação do calor, as séries e a transformada de Fourier;

Unidade 6 - A telegrafia elétrica

Primórdios da telegrafia, telegrafia óptica e semafórica; As exposições "universais"; O te-

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUAÇÃO PROGRAMA DE DISCIPLINA

légrafo de Gauss e Weber; A telegrafia no imaginário popular; A Internet Vitoriana;

Unidade 7 - O marco zero da engenharia elétrica

O grande cabo transatlântico (1857-1866); Equação do Telegrafista: Heaviside versus Gauss e Weber; De Michael Faraday a Oliver Heaviside: os seguidores de Maxwell e suas 4 equações; A engenharia telegráfica e a Transformada de Laplace;

Unidade 08 – Sistemas Realimentados: fundamentos experimentais e históricos

Moinhos e máquinas à vapor: a válvula governadora de Watt; Dispositivos governadores e o artigo "On Governors" de J. C. Maxwell;

Unidade 09 - A "Guerra das Correntes"

Os primeiros sistemas de transmissão de energia; A "guerra das correntes": Corrente Contínua (CC) versus Corrente Alternada (CA): Steinmetz, números complexos e a teoria dos fasores; História dos Medidores de Energia elétrica; A máquina de Gramme e a Lâmpada elétrica:

Unidade 10 - A eletrônica e o computador digital

O rádio: o telégrafo que se ouve; A televisão: William Crookes, os tubos de raios catódicos e o osciloscópio; O efeito Edison e a revolução da eletrônica: diodo, triodo e transistor. Charles Babage, a condessa Ada Lovelace e o Computador Digital;

Unidade 12 - O controlador Lógico-Programável e a Automação Industrial

Automação Analógica baseada em relé; O Computador Digital e os primeiros sistemas de Automação Industrial; O controlador Lógico Programável (CLP).

Unidade 11 - A descoberta da realimentação e a Engenharia de Controle

O amplificador com realimentação negativa; a solução de Black e o surgimento da Engenharia de Controle.

Unidade 13 - A inteligência Artificial

A inteligência computacional: o perceptron e as redes Neurais; Lógica nebulosa; Autômatos finitos e as Redes de Petri.

Unidade 14 - Ações Extensionistas

Divulgação científica de tópicos relacionados à História da Eletricidade e da Automação por meio de Enciclopédias Digitais de acesso livre e código aberto (Wikipedia, Wikisources); Replicação de Experimentos de interesse histórico (a partir de material reciclado e/ou de baixo custo) e oferecimento de oficinas/tutoriais para a comunidade; Rodas de conversa comunitárias sobre a História e Impactos da Automação no presente e futuro da humanidade; Exposições públicas (virtuais ou presenciais, a depender dos recursos disponíveis);

Bibliografia básica:

- 1. Ryder, J. D.; Fink, D. J. Engineers and Electrons: a century of electrical progress. v. 1. New York: IEEE Press, 1983. Disponível em: https://archive.org/details/engineerselectro0000ryde.
- 2. Assis, A. K. T. Os fundamentos experimentais e históricos da eletricidade. v. 1-2. Montreal: Apeiron, 2010. Disponível em: http://www.ifi.unicamp.br/~assis/Eletricidade.pdf;
- 3. Aguirre, L. A. Sistemas Realimentados: uma abordagem histórica. São Paulo: Blucher, 2020.

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUAÇÃO PROGRAMA DE DISCIPLINA

Bibliografia complementar:

- 1. Tonidandel, D. A. V. The Ground Zero of Electrical Engineering: the Flow Analogy for Electricity and Magnetism, from Antiquity to Telegraphy. 231f. Tese (Doutorado em Engenharia Elétrica) Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, 2021. Disponível em: http://hdl.handle.net/1843/38345.
- 2. Whittaker, E. A history of the theories of aether and electricity. Dublin, Ireland: Longmans, Green and Co., 1910. Disponível em: https://archive.org/details/ahistorytheori-e00whitgoog. Reimpresso por Forgotten Books, 2015. isbn: 978-1-4400-4453-3.
- 3. Mayr, O. Feedback Mechanisms in the Historical Collections of the National Museum of History and Technology. Washington: Smithsonian Institution Press, 1971. Disponível em: https://doi.org/10.5479/si.00810258.12.1.
- 4. Mach, E. History and root of the principle of the conservation of energy. Chicago: The Open Court Publishing Co., 1910. Disponível em: https://archive.org/details/historyan-drootp00machgoog.
- 5. Potamian, B.; Walsh, J. J. Makers of Electricity. v. 1. New York: Fordham University Press, 1909. Disponível em: https://archive.org/details/MakersOfElectricity/page/n1/mode/2up.