

Unit 11: Parallelograms and Triangles

Overview

Parallelogram:

If two opposite sides of a quadrilateral are congruent and parallel, it is a parallelogram.

Medians

A line segment joining a vertex of a triangle to the mid-point of the opposite side is called median of the triangle.

Trisection

The process to divide a line segment into three equal parts.

Theorem 11.11

In a parallelograms

- (i) Opposite sides are congruent
- (ii) Opposite angles are congruent
- (iii)The diagonals bisect each other

Given

In a quadrilateral ABCD, $\overline{AB} \parallel \overline{DC}$, $\overline{BC} \parallel \overline{AD}$ and the diagonals \overline{AC} , \overline{BD} meet each other at point O.

To Prove

- (i) $\overline{AB} \cong \overline{DC}, \overline{AD} \cong \overline{BC}$
- (ii) $\angle ADC \cong \angle ABC$, $\angle BAD \cong \angle BCD$
- (iii) $\overline{OA} \cong \overline{OC}, \overline{OB} \cong \overline{OD}$

Construction

In the figure as shown, we label the angles as $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$ and $\angle 6$.

Proof	
Statements	Reasons
(i) In $\triangle ABD \leftrightarrow \triangle CDB$	
∠4 ≅ ∠1	Alternate angles
$\overline{BD} \cong \overline{BD}$	Common
∠2 ≅ ∠3	Alternate angles
$\therefore \Delta ABD \cong \Delta CDB$	$A.S.A \cong A.S.A$
$So, \overline{AB}, \overline{DC}, \overline{AD} \cong \overline{BC}$	(Corresponding sides of congruent triangles)
and $\angle A \cong \angle C$	(Corresponding angles of congruent triangles)
(ii) Since	
and $\angle 1 \cong \angle 4$ (a)	Proved

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 1 OF 3]

$\angle 2 \cong \angle 3 \dots (b)$	Proved
$\therefore m \angle 1 + m \angle 2 = m \angle 4 + m \angle 3$	From (a) and (b)
or $m\angle ADC = m\angle ABC$	
or $\angle ADC \cong \angle ABC$	

and
$$\angle BAD \cong m \angle BCD$$

(iii) In ΔBOC ↔ΔDOA

$$\overline{BC} \simeq \overline{AD}$$

$$\angle 3 \cong \angle 2$$

$$\therefore \Delta BOC \cong \Delta DOA$$

Hence
$$\overline{OC} \cong \overline{OA}$$
 , $\overline{OB} \cong \overline{OD}$

Proved in (i)

$$(A.A.S \cong A.A.S)$$

Example

The bisectors of two angles on the same side of a parallelogram cut each other at right angles.

Given

A parallelogram ABCD, in which

$$\overline{AB} \parallel \overline{DC}, \overline{AD} \parallel \overline{BC}$$

The bisectors of EA and EB cut each other at E.

$$m\angle E=90^{\circ}$$

Construction:

Name the angles $\angle 1$ and $\angle 2$ as shown in the figure.

Proof

C

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 3 OF 3]