Monte Carlo Methods: Lecture 2 : Transformation and Rejection

Nick Whiteley

Overview of this lecture

What we have seen . . .

How to generate uniform U[0,1] pseudo-random numbers.

This lecture will cover . . .

Generating random numbers from any distribution using

- transformations (CDF inverse, Box-Muller method).
- rejection sampling.

2.1 Transformation Methods

Transformation methods: Idea

We can generate

$$U \sim \mathsf{U}[0,1].$$

• Can we find a transformation T such that

$$T(U) \sim F$$

for a distribution of interest with CDF F?

One answer to this question: inversion method.

The CDF and its generalised inverse (1)

Cumulative distribution function (CDF)

$$F(x) = \mathbb{P}(X \le x)$$

Generalised inverse of the CDF

$$F^{-}(u) := \inf\{x: F(x) \ge u\}$$

The CDF and its generalised inverse (2)

Properties of F^- (taken without proof)

- $F^{-}(F(x)) \le x, \quad \forall x \in F^{-}([0,1])$
- $F(F^{-}(u)) \ge u, \quad \forall u \in [0,1]$

CDF inversion method (1)

Theorem 2.1: Inversion method

Let $U \sim U[0,1]$ and F be a CDF. Then $F^-(U)$ has the CDF F.

Proof: From the definition of the CDF, $F(x) = \mathbb{P}(U \leq F(x))$, so we need to prove that

$$\mathbb{P}(F^-(U) \le x) = \mathbb{P}(U \le F(x)), \quad \forall x.$$

It is sufficient to prove the equivalence:

$$F^-(U) \le x \Leftrightarrow U \le F(x)$$
.

CDF inversion method (2)

We start by proving that

$$U \le F(x) \Rightarrow F^{-}(U) \le x$$
.

For all $(v,w) \in [0,1] \times [0,1]$ such that $v \leq w$,

$$\{x : F(x) \ge w\} \subset \{x : F(x) \ge v\}$$

$$\Rightarrow \inf\{x : F(x) \ge w\} \ge \inf\{x : F(x) \ge v\}$$

$$\Leftrightarrow F^{-}(w) > F^{-}(v),$$

so in words, F^- is non-decreasing. We then have that

$$U \le F(x) \Rightarrow F^{-}(U) \le F^{-}(F(x)).$$

CDF inversion method (3)

Next, by the given property $F^-(F(x)) \leq x$,

$$U \le F(x) \Rightarrow F^{-}(U) \le x,$$

as required. It remains to prove the implication

$$F^-(U) \le x \Rightarrow U \le F(x)$$
.

As F is non-decreasing by definition,

$$F^-(U) \le x \Rightarrow F(F^-(U)) \le F(x).$$

To make the final step we use the property that $F(F^-(U)) \ge U$, yielding

$$F^-(U) \le x \Rightarrow U \le F(x)$$
. \square

CDF inversion method (4)

So we have a simple algorithm for drawing $X \sim F$:

- ② Set $X = F^{-}(U)$.

(requires that $F^-(\cdot)$ can be evaluated efficiently)

Example 2.1: Exponential distribution

The exponential distribution with rate $\lambda > 0$ has the CDF $(x \ge 0)$

$$F_{\lambda}(x) = 1 - \exp(-\lambda x)$$

$$F_{\lambda}^{-}(u) = F_{\lambda}^{-1}(u) = -\log(1 - u)/\lambda.$$

So we have a simple algorithm for drawing $Expo(\lambda)$:

- $\textbf{0} \ \, \mathsf{Draw} \,\, U \sim \mathsf{U}[0,1].$
- ② Set $X = -\frac{\log(1-U)}{\lambda}$, or equivalently $X = -\frac{\log(U)}{\lambda}$.

Example 2.2: Box-Muller method for generating Gaussians

• Consider a bivariate real-valued random variable (X_1,X_2) and its polar coordinates (R,θ) , i.e.

$$X_1 = R \cdot \cos(\theta), \qquad X_2 = R \cdot \sin(\theta)$$
 (1)

- Then the following equivalence holds: $X_1, X_2 \overset{\text{i.i.d.}}{\sim} \mathsf{N}(0,1) \Longleftrightarrow \theta \sim \mathsf{U}[0,2\pi] \text{ and } R^2 \sim \mathsf{Expo}(1/2)$ indep.
- Suggests following algorithm for generating two Gaussians $X_1, X_2 \overset{\text{i.i.d.}}{\sim} \mathsf{N}(0,1)$:
 - **①** Draw angle $\theta \sim \mathsf{U}[0,2\pi]$ and squared radius $R^2 \sim \mathsf{Expo}(1/2)$.
 - Convert to Cartesian coordinates as in (1)
- \bullet From $U_1,U_2 \overset{\text{i.i.d.}}{\sim} \mathsf{U}[0,1]$ we can generate R and θ by

$$R = \sqrt{-2\log(U_1)}, \qquad \theta = 2\pi U_2,$$

giving

$$X_1 = \sqrt{-2\log(U_1)} \cdot \cos(2\pi U_2), \qquad X_2 = \sqrt{-2\log(U_1)} \cdot \sin(2\pi U_2)$$

Example 2.2: Box-Muller method for generating Gaussians

Box-Muller method

O Draw

$$U_1, U_2 \overset{\text{i.i.d.}}{\sim} \mathsf{U}[0,1].$$

Set

$$X_1 = \sqrt{-2\log(U_1)} \cdot \cos(2\pi U_2),$$

 $X_2 = \sqrt{-2\log(U_1)} \cdot \sin(2\pi U_2).$

Then $X_1, X_2 \stackrel{\text{i.i.d.}}{\sim} N(0,1)$.

2.2 Rejection sampling

Basic idea of rejection sampling

- Assume we cannot directly draw from density f.
- Tentative idea:
 - ① Draw X from another density g (similar to f, easy to sample from).
 - ② Only keep some of the X depending on how likely they are under f.

Basic idea of rejection sampling

Consider the identity

$$f(x) = \int_0^{f(x)} 1 \ du = \int \underbrace{1_{0 < u < f(x)}}_{=f(x,u)} du.$$

• f(x) can be interpreted as the marginal density of a uniform distribution on the area under the density f(x):

$$\{(x,u): 0 \le u \le f(x)\}.$$

Sample from f by sampling from the area under the density.

Example 2.3: Sampling from a Beta(3,5) distribution (1)

- How can we draw points from the area under the density?
 - ① Draw (X,U) from the grey rectangle, i.e. $X \sim \mathrm{U}(0,1)$ and $U \sim \mathrm{U}(0,2.4)$.
 - ② Accept X as a sample from f if (X,U) lies under the density (dark grey area).

• Step 2 equivalent to: Accept X if U < f(X), i.e. accept X with probability $\mathbb{P}(U < f(X)|X = x) = f(X)/2.4$.

Example 2.3: Sampling from a Beta(3,5) distribution (2)

- Resulting algorithm:
 - **1** Draw $X \sim U(0, 1)$.
 - ② Accept X as a sample from Beta(3,5) with probability

$$\frac{f(X)}{2.4}$$

 Not every density can be bounded by a box. How can we generalise the idea?

 \leadsto Bounding f by M times another density g.

The rejection sampling algorithm (1)

Algorithm 2.1: Rejection sampling

Given two densities f,g with $f(x) < M \cdot g(x)$ for all x, we can generate a sample from f by

- 1. Draw $X \sim g$.
- 2. Accept X as a sample from f with probability

$$\frac{f(X)}{M \cdot g(X)},$$

otherwise go back to step 1.

Note: $f(x) < M \cdot g(x)$ implies that f cannot have heavier tails than g.

The rejection sampling algorithm (2)

Remark 2.1

If we know f only up to a multiplicative constant, i.e. if we only know $\pi(x)$, where $f(x)=C\cdot\pi(x)$, we can carry out rejection sampling using

$$\frac{\pi(X)}{M \cdot g(X)}$$

as probability of rejecting X, provided $\pi(x) < M \cdot g(x)$ for all x.

Can be useful in Bayesian statistics:

$$f^{\text{post}}(\theta) = \frac{f^{\text{prior}}(\theta)l(\mathbf{y}_1, \dots, \mathbf{y}_n | \theta)}{\int_{\Theta} f^{\text{prior}}(\theta)l(\mathbf{y}_1, \dots, \mathbf{y}_n | \theta) d\theta} = C \cdot f^{\text{prior}}(\theta)l(\mathbf{y}_1, \dots, \mathbf{y}_n | \theta)$$

Example 2.4: Rejection sampling from the N(0,1) distribution using a Cauchy proposal (1)

• Recall the following densities:

$$\begin{aligned} \mathsf{N}(0,1) \quad f(x) &= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \\ \mathsf{Cauchy} \quad g(x) &= \frac{1}{\pi(1+x^2)} \end{aligned}$$

• For $M=\sqrt{2\pi}\cdot\exp(-1/2)$ we have that $f(x)\leq Mg(x)$. \leadsto We can use rejection sampling to sample from f using g as proposal.

Example 2.4: Rejection sampling from the N(0,1) distribution using a Cauchy proposal (2)

- We cannot sample from a Cauchy distribution (g) using a Gaussian (f) as instrumental distribution.
- Whe Cauchy distribution has heavier tails than the Gaussian distribution: there is no $M \in \mathbb{R}$ such that

$$\frac{1}{\pi(1+x^2)} < M \cdot \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2}\right).$$