Properties of the unit impulse function: $\delta(at) = \frac{1}{101}\delta(t)$ 2) $\delta(-t) = \delta(t)$ 3) $\int_{t_L}^{t_2} x(t) \delta(t-t_0) dt = \begin{cases} x(t_0), & t_L < t_0 < t_2 \\ 0, & \text{otherwise} \end{cases}$ $\begin{cases} \text{undefined}, & t_0 = t_1 \\ t_0 = t_2 \end{cases}$ 4) \times 4) $\delta(t-t_0)=\times(t_0)\delta(t-t_0)$, \times 4) contin. $t=t_0$ 5) $\int_{t_1}^{t_2} x(t) \delta^{(n)}(t-t_0) dt = (-1)^n x^{(n)}(t_0)$, $t_1 \in (-1)^n t_1$ 6) If f(t) = g(t) $f(t) = a_0 \delta(t) + a_1 \delta(t) + \dots + a_n \delta(t) = 0$ $g(t) = b_0 \delta(t) + b_1 \delta(t) + \dots + b_n \delta(t) t$ $g(t) = b_0 \delta(t) + b_1 \delta(t) + \dots + b_n \delta(t) t$ $a_n = b_n$. Examples: 1) $\int_{2}^{5} \cos(3\pi t) \delta(t-1) dt = 0$

1)
$$\int_{2}^{3} \cos(3\pi t) \delta(t-1) dt = 0$$

2) $\int_{0}^{3} \cos(3\pi t) \delta(t-1) dt = 1 \cos(3\pi t) \Big|_{t=1}^{2} \cos(3\pi t) \Big|_{t=1}^{2} \cos(3\pi t)$

3)
$$\int_{0}^{5} \cos(3\pi t) \frac{d\delta(t-1)}{dt} dt = (-1)^{4} \cdot \frac{d\cos(3\pi t)}{dt} = 0$$

 $(prop. 5) = 3\pi \sin(3\pi) = 0$
4) $\int_{-10}^{10} \cos(3\pi t) \delta(2t) dt = \int_{-20}^{20} \cos(3\pi t) \frac{1}{2} \delta(t) dt$
 $= \frac{1}{2} \cos(3\pi \cdot 0) = \frac{1}{2} \cos(0) = \frac{1}{2} (prop. 1)$
5) $2\delta(t) + 3 \frac{d\delta(t)}{dt} = \alpha \delta(t) + b \frac{\delta(t)}{dt} + c - \frac{1}{2} \frac{\delta(t)}{dt}$
 $\alpha = 2$
 $b = 3$
 $c = 0$
6) $\frac{d[e^{-4t}ut]}{dt} = \frac{de^{-4t}ut}{dt} \cdot ut + e^{-4t} \frac{du(t)}{dt}$
 $= -4 \cdot e^{-4t}u(t) + e^{-4t} \frac{\delta(t)}{\delta(t)}$

Signals Power Energy Average Power: total energy: E=lim (1x(+) 12dt $= \int_{-\infty}^{+\infty} |x \omega|^2 dt$ If and only if: If and only if 04P 200 ELO F=0 Example 1: $x_1(t) = A \cdot e^{-at} u(t)$, a>0 E= 1=0 | A.e-at. ut) |2 dt = \int_{\alpha}(A.e-at).0\frac{1}{1} \frac{1}{1} \frac{1}{1} A.e-at_1|^2 dt = 1+00 A2. e-201 dt = A2 200 energy signal

P= lim
$$\frac{1}{2T}\int_{-T}^{T} |Au(t)|^2 dt = \lim_{t \to \infty} \frac{1}{2T}\int_{-T}^{T} |Au(t)|^2 dt$$

Signals | P= \frac{1}{To}\int_{to} |x_p(u)|^2 dt = \frac{1}{To}\int_{to} |x_p(u)|^2 dt = \frac{1}{To}\int_{-T}^{T} |au(t)|^2 dt = \lim_{t \to \infty} \frac{1}{2T}\int_{-T}^{T} |au(t)|^2 dt = \lim_{t \to \infty} \frac{1}{2T}\int_{-T}^{T}

Fourier (oetficient.

$$X_{pt} = \frac{1}{2} + \frac{1}{2} \cos 2x$$
 $A^{2} = \frac{1}{2} + \frac{1}{2} \cos 2x$
 $A^{2} = \frac{1}{2} \cot 7x$
 A

$$X_0 = \frac{1}{2}$$
 $X_1 = \frac{1}{2}$
 $X_{-1} = \frac{1}{2}$

$$X_{-4} = -\frac{1}{4}$$
 $X_{-4} = -\frac{1}{4}$

Symmetry Properties

$$X_n = |X_n|e^{j\Delta x_n}$$

$$|X_n| = |X_{-n}|$$

$$/X_n = -/X_{-n}$$

Amplitude Even Symmetry

Phase Odd Symmetry.

$$\times$$
 (t) = \times (-t)

Odd signal

$$\times (t) = - \times (-t)$$

In -> imaginary.

Odd haffwave symmetry:

$$X(t \pm \frac{T_0}{2}) = -X(t)$$

 $X_n = 0$, $n = 0$, ± 2 , ± 4 , - - -

Read Pages 22-27