Machine Learning for NFT Price Predictions

Mingxuan He

Booth School of Business, University of Chicago mingxuanh@uchicago.edu

November 30, 2023

Mingxuan He DL for NFT Pricing November 30, 2023 1/13

Primer on NFTs

- NFTs are unique digital assets (e.g. photos) stored on a blockchain.
- Mostly transacted using cryptocurrencies, predominantly Ethereum.
- Most NFTs are sold on "marketplaces", grouped by "collections"

Figure 1: The Pudgy Penguins collection on OpenSea marketplace.

Mingxuan He DL for NFT Pricing November 30, 2023 2 / 13

Motivation

Various applications of NFT pricing models: Trading, decentralized borrowing/lending, tokenized real-world assets.

Literature:

- NFT prices co-moves with market trends (Jain et al., 2022; Kapoor et al., 2022; Kong & Lin, 2021; Nadini et al., 2021)
- High rarity drives up NFT prices (Kong & Lin, 2021; Mekacher et al., 2022)

Project goal:

- Build a ML model for a specific collection to predict the price of NFTs in real-time.
- Incorporate data on market prices and individual rarity.

Mingxuan He DL for NFT Pricing November 30, 2023 3 / 13

Data Sources

- Dune Analytics¹: Public database of NFT trades on Ethereum.
- OpenSea API²: Data from largest NFT marketplace on traits and rarity for each NFT in their collections.

Mingxuan He

¹https://dune.com

²https://docs.opensea.io/reference/api-overview

Data Features

Market features (by collection, daily)

- Trading volume
- 5% price
- Highest price
- Lowest price

Traits (by NFT)

- Background color
- Eyes
- ... (7 total)

Last sale (by NFT)

- Price of last sale
- Time since last sale

Rarity Rank (by NFT)

 Rarity rank within the collection (computed using OpenRarity Standard)

Price history (Bored Apes)

Bored Ape Yacht Club historical trades

Figure 2: Bored Apes: Historical trades.

Mingxuan He DL for NFT Pricing November 30, 2023

6/13

PCA analysis

Figure 3: Bored Apes: Top 3 principal components.

Mingxuan He DL for NFT Pricing November 30, 2023 7/13

Baseline Models

Framework: Python sklearn

- Linear models: OLS, Lasso, Ridge
- Tree-based models: Random Forest

Deep Learning Model

Framework: Python tensorflow.keras

Figure 4: Neural network architecture

Mingxuan He DL for NFT Pricing November 30, 2023 9 / 13

Introduction Data Modeling Results
00 000 0000 00

NN Training

Figure 5: NN: Training loss by epoch

Mingxuan He DL for NFT Pricing November 30, 2023 10 / 13

Figure 6: NN: Validation loss by epoch

Mingxuan He DL for NFT Pricing November 30, 2023

11 / 13

troduction Data Modeling Results
0 000 00000 ●0

Results

Current performance: tree-based models > neural net > linear models

Model	MSE loss
OLS	455.8
Lasso	467.7
Ridge	455.8
Random Forest	219.4
Gradient Boosting	209.1
FF Neural Net	287.8

Mingxuan He DL for NFT Pricing November 30, 2023 12 / 13

ntroduction Data Modeling Results
0 00 0000 0000

Next Steps

- Test modeling pipeline on more collections (Punks, Penguins, Ninjas, etc.)
- Implement more neural nets (RNN/LSTM, etc.)

Github repo: https://github.com/mingxuan-he/NFT-pred

