ЛЕКЦИЯ № 8

Методы многомерной оптимизации

Методы многомерной оптимизации без ограничений.

Метод Хука-Дживса (Х-Д)

Геометрическая интерпретация метода Хука-Дживса в случае двухпараметрической задачи

Метод Хука-Дживса (Х-Д)

Алгоритм:

```
Ш.0. Выбор: y^0 \in X \in E^n (стартовая точка), \varepsilon, \delta , l = 0 (счётчик точек). Ш.1. Выполняется покоординатный спуск — однократный проход: от точки x^0 \equiv y^1 поочередно по каждой координате x_k \ (k = 1, n) к точке x^n Ш.2. Осуществляется движение «по образцу»: y^{(p+1)} = y^{(p)} + \Delta y^{(p)}; \Delta y^{(p)} = \alpha_{II}^{*(p)} d^{(p)} \alpha_{II}^{*(p)} = Arg \min \varphi(y^{(p)} + \alpha^{(p)} d^{(p)}) Ш3. Проверка сходимости: E \subseteq \mathbb{Z}[\|y^{(p+1)} - y^{(p)}\| < \delta \setminus \{\varphi(y^{(p+1)}) - \varphi(y^{(p)})\} < \varepsilon \} . То \{x^e = y^{(p+1)}; \text{конец}\}
```

Если
$$\left\| y^{(p+1)} - y^{(p)} \right\| \le \delta \right) \land \left\| \varphi(y^{p+1}) - \varphi(y^{(p)}) \right\| \le \varepsilon$$
 , то $\left\{ x^e = y^{(p+1)}; \text{конец} \right\}$ иначе $\left\{ x^0 = y^{(p+1)}; k = 0; p = p+1; \text{переход на Ш1.} \right\}$

.

Идея

- Пусть целевая функция овражная. Число граничных точек – N+1, где N – размерность пространства варьируемых переменных. Строим симплекс из начальной точки. Ищем его центр тяжести и из наихудшей точки через центр тяжести проводим прямую и строим новый симплекс. Симплексы постепенно уменьшаются при подходе к экстремуму.
- Метод деформируемых симплексов не имеет ничего общего с симлекс-методом линейного программирования.

Геометрическая интерпретация метода Нелдера-Мида в случае двухпараметрической задачи

Алгоритм

Ш0. Задание: 1) начального шага
$$S$$
; 2) точности $\alpha = 1$ - коэф. отражения коэффициенты $\beta = 0.5$ - коэф. сжатия $\gamma = 2$ - коэф. растяжения

<u>Ш1.</u> Построение исходного симплекса (т.е. нахождение n + 1 граничных точек)

$$x_i^{(0)} = x_1^{(0)} + D_i$$
 , где $D_i = egin{bmatrix} d_1 \ d_2 \ \dots \ d_2 \end{bmatrix}$, $D_2 = egin{bmatrix} d_2 \ d_1 \ \dots \ d_2 \end{bmatrix}$,...., $D_n = egin{bmatrix} d_2 \ d_2 \ \dots \ d_1 \end{bmatrix}$

$$d_1 = \frac{s}{n\sqrt{2}}(\sqrt{n+1} + n - 1)$$

$$d_2 = \frac{s}{n\sqrt{2}}(\sqrt{n+1} - 1)$$

n – размерность пространства, d1 – смещается в соответствии с номером точки.

— редукция всего симплекса в сторону наилучшего решения.
Ш6. Если
$$\left[\frac{1}{n+1}\sum_{i=1}^{n+1}\left[\varphi(x_i^{(k)})-\varphi(x_l^{(k)})\right]^2\right]^{1/2}\leq \varepsilon$$
 , то $\left\{x^e=x_l;$ конец $\right\}$

иначе $\{k = k + 1;$ переход на Ш2. $\}$

<u>Методы, использующие</u> <u>производные.</u>

Как мы уже видели, простейшие методы I порядка (метод наискорейшего спуска) и II порядка (метод Ньютона) в чистом виде не очень удобны для вычислений. В связи с этим были разработаны методы, которые позволяют преодолеть их недостатки. Наиболее распространенными в настоящее время методами являются метод сопряженных градиентов (метод Флетчера-Ривза), который является усовершенствованием метода наискорейшего спуска и квазиньютоновские методы, которые представляют собой развитие метода Ньютона.

<u>Метод Флетчера-Ривза</u>

Метод сопряженных градиентов состоит в построении матрицы сопряжения Q(k) такой, что $d^{(k+1)T}Q^{(k)}d^{(k)}=0$. Флетчером-

Ривзом была предложена процедура, состоящая в следующем:

Строится последовательность точек:

$$x^{(k+1)} = x^{(k)} + \alpha^{*(k)} d^{(k)}$$

$$d^{(k)} = -\nabla \varphi(x^{(k)}) + \omega^{(k)} d^{(k-1)}$$

$$\omega^{(k)} = -\frac{\nabla \varphi(x^{(k)})^T \nabla \varphi(x^{(k)})}{\nabla \varphi(x^{(k-1)})^T \nabla \varphi(x^{(k-1)})} = -\frac{\left\|\nabla \varphi(x^{(k)})\right\|^2}{\left\|\nabla \varphi(x^{(k-1)})\right\|^2}$$

– поправка, формировани матрицы сопряжения Q(k).

Алгоритм метода Флетчера-Ривза.

<u>Шо.</u> Выбор параметров точности $\delta, \varepsilon, k = 0$.

Ш1.Выбор начальной точки
$$x^{(0)}$$
 . Вычислить $\varphi(x^{(0)}), \nabla \varphi(x^{(0)}), d^{(0)} = -\nabla \varphi(x^{(0)})$

Ш2. Вычислить
$$\alpha^{*(k)} = Arg \min \varphi(x^{(k)} + \alpha^{(k)}d^{(k)}); x^{(k+1)} = x^{(k)} + \alpha^{*(k)}d^{(k)}$$

$$\underline{ \textbf{ Ш3}}. \ \mathsf{Вычислить} \ \ \omega^{(k+1)} = -\frac{\left\|\nabla \varphi(x^{(k+1)})\right\|^2}{\left\|\nabla \varphi(x^{(k)})\right\|^2}; d^{(k+1)} = -\nabla \varphi(x^{(k+1)}) + \omega^{(k+1)} d^{(k)}.$$

Ш4. Проверка сходимости:

Если
$$\left\|d^{(k+1)}\right\| \le \varepsilon$$
) $\vee \left(\left\|x^{(k+1)} - x^{(k)}\right\| \le \delta\right)$, то $\left\{x^e = x^{(k+1)}; \text{конец}\right\}$

Иначе
$$\{$$
если $[k+1 < n]$, то $\{x^{(k)} = x^{(k+1)}; k = k+1;$ переход на Ш $2\}$ если $[k=n]$, то $\{x^{(0)} = x^{(k+1)}; k = 0;$ переход на Ш $1\}$

 \bar{x}

<u>Квазиньютоновские методы</u> (Методы переменной метрики).

Идея метода:

Продифферинцируем разложение в ряд Тейлора функцию $\varphi(\mathbf{x})$ в окрестности т. \overline{X} т.е. $U_{\varepsilon}(\overline{x})$. $\varphi(\overline{x}+\Delta x)=\varphi(\overline{x})+\nabla\varphi(\overline{x})^T\Delta x+0(\left\|\Delta x\right\|^2)$ Обозначим: $\Delta x^{(k)}=\Delta x$ $\nabla\varphi(\overline{x}^{(k)})=\nabla\varphi(\overline{x})$ $\nabla\varphi(\overline{x}+\Delta x)=\nabla\varphi(\overline{x})+H(\overline{x})^T\Delta x+...$ $\nabla\varphi(x^{(k)})=\nabla\varphi(\overline{x})$ $\nabla\varphi(x^{(k)})=\nabla\varphi(x^{(k)}+\Delta x^{(k)})$ $\nabla\varphi(x^{(k)})=\nabla\varphi(x^{(k)}+\Delta x^{(k)})$ Тогда $\Delta y^{(k)}=y^{(k)}=y^{(k)}=y^{(k)}=y^{(k)}$ откуда $\Delta x^{(k)}=H^{-1}\Delta y^{(k)}$, $\Delta y^{(k)}=H(x^{(k)})\Delta x^{(k)}$ $\Delta y^{(k)}=H(x^{(k)})\Delta x^{(k)}$ $\Delta y^{(k)}=H(x^{(k)})\Delta x^{(k)}$, требующая вычисления 2-х частных производных.

Идея квазиньютоновских методов состоит в аппроксимации матрицы Гессе матрицами, корректирующими на каждой итерации исходную матрицу так, чтобы через n-итераций получить матрицу близкую к матрице Гессе.

Обозначим $\Delta x^{(k)} = \widetilde{H}^{(k+1)} \Delta g^{(k)}$, где $\widetilde{H}^{(k+1)}$ - аппроксимация обратной матрицы Гессе.

Пусть
$$\widetilde{H}^{(k+1)}=\widetilde{H}^{(k)}+\Delta\widetilde{H}^{(k)}$$
 , тогда $\Delta x^{(k)}=(\widetilde{H}^{(k)}+\Delta\widetilde{H}^{(k)})\Delta g^{(k)}$

или $\Delta x^{(k)} = \widetilde{H}^{(k)} \Delta g^{(k)} + \Delta \widetilde{H}^{(k)} \Delta g^{(k)}$. Выразим $\Delta \widetilde{H}^{(k)}$ через $\widetilde{H}^{(k)}, \Delta g^{(k)}$

и вспомогательные векторы y и z . Тогда: $\Delta \tilde{H}^{(k)} = \frac{\Delta x^{(k)} y^T}{y^T \Delta g^{(k)}} - \frac{\tilde{H}^{(k)} \Delta g^{(k)} z^T}{z^T \Delta g^{(k)}}$,

то есть $\Delta \tilde{H}^{(k)} = A^{(k)} - B^{(k)}$. Необходимо, чтобы векторы y и z

имели размерност $\Delta \chi, \Delta g$

В зависимости от подбора векторов у и z получим различные варианты метода

переменной метрики.
$$A^{(k)} = \frac{\Delta x^{(k)} y^T}{y^T g^{(k)}} \quad , \quad B^{(k)} = \frac{\widetilde{H}^{(k)} \Delta g^{(k)} z^T}{z^T \Delta g^{(k)}} \quad .$$

1. Метод Девидона – Флетчера – Пауэлла (1964г. DFP).

$$y^{(k)} = \Delta x^{(k)}$$

$$z^{(k)} = \tilde{H}^{(k)} \Delta g^{(k)}$$

$$\Delta \tilde{H}^{(k)} = \frac{\Delta x^{(k)} \Delta x^{(k)T}}{\Delta x^{(k)T} \Delta g^{(k)}} - \frac{\tilde{H}^{(k)} \Delta g^{(k)} \Delta g^{(k)T} \tilde{H}^{(k)T}}{\Delta g^{(k)T} \tilde{H}^{(k)T} \Delta g^{(k)}}$$

2.Метод Бройдена (В).

$$y^{(k)} = z^{(k)} = (\Delta x^{(k)} - \tilde{H}^{(k)} \Delta g^{(k)})$$

$$\Delta \tilde{H}^{(k)} = \frac{\Delta x^{(k)} (\Delta x^{(k)} - \tilde{H}^{(k)} \Delta g^{(k)})^T}{(\Delta x^{(k)} - \tilde{H}^{(k)} \Delta g^{(k)})^T \Delta g^{(k)}} - \frac{\tilde{H}^{(k)} \Delta g^{(k)} (\Delta x^{(k)} - \tilde{H}^{(k)} \Delta g^{(k)})^T}{(\Delta x^{(k)} - H^{(k)} \Delta g^{(k)})^T \Delta g^{(k)}}$$

Здесь так же как и в методе сопряженных градиентов на каждой итерации формируется новая матрица сопряжения $Q^{(k)}$, где

$$Q^{(k)} = \tilde{H}^{-1(k)}; \ d^{(k+1)T}Q^{(k)}d^{(k)} = 0;$$
$$x^{(k+1)} = x^{(k)} + \alpha^{*(k)}d^{(k)};$$

При этом:
$$d^{(k)} = -(\tilde{H}^{(k)} + \Delta \tilde{H}^{(k)})^T \nabla \varphi(x^{(k)});$$
 $\alpha^{*(k)} = Arg \min \varphi(x^{(k)} + \alpha^{(k)}d^{(k)}).$

Алгоритм квазиньютоновских методов.

<u>шо.</u> Выбор параметров точности ε,δ, k=0. Выбор нач. точки $\chi^{(0)}$.

Ш2. Вычислить:
$$\left\{ \alpha^{*(k)} = Arg \min \varphi(x^{(k)} + \alpha^{*(k)}d^{(k)}); x^{(k+1)} = x^{(k)} + \alpha^{*(k)}d^{(k)} \right\}$$

$$extbf{\underline{\textit{Ш3}}}$$
. Вычислить: $\left\{ \nabla \varphi(x^{(k+1)}); \Delta g^{(k)} = \nabla \varphi^{(k+1)} - \nabla \varphi^{(k)}; \right\}$

ш5. Если
$$\left\|d^{(k+1)}\right\| \le \varepsilon\right) \lor \left(x^{(k+1)} - x^{(k)}\right) \le \delta$$
, то $\left\{x^e = x^{(k+1)}; KOHEU\right\}$

Иначе
$$\{x^{(k)} = x^{(k+1)}; k = k+1;$$
переход на Ш2. $\}$