Task 2

This is the task 2 portion of my D214 Course for the WGU MS Data Analytics Masters Degree.

Research Question

Summarize the original real-data research question you identified in task 1. Your summary should include justification for the research question you identified in task 1, a description of the context in which the research question exists, and a discussion of your hypothesis.

Do songs that are released after Spotify comes out have a statistically significantly shorter average length than songs that came out before Spotify (2008)?

This question would benefit from data analysis because it gives us insight into both a cultural aspect of modern society in the seemingly widespread shortening of consumed entertainment and a guideline for musicians. It gives a measure for where the music industry could possibly be going and whether there are outliers that are able to make longer music, or if statistically it is necessary to stay within the bounds of certain song timeframes.

My hypothesis for this research question is that released music has become statistically significantly shorter since after Spotify's release.

Data Collection

B. Report on your data-collection process by describing the relevant data you collected, discussing one advantage and one disadvantage of the data-gathering methodology you used, and discussing how you overcame any challenges you encountered during the process of collecting your data.

For data collection, I will be using a dataset from Kaggle that has 1.3 million songs with metadata related to answering the hypothesis of this question.

Data Extraction and Preparation

C. Describe your data-extraction and -preparation process and provide screenshots to illustrate each step. Explain the tools and techniques you used for data extraction and data preparation, including how these tools and

techniques were used on the data. Justify why you used these particular tools and techniques, including one advantage and one disadvantage when they are used with your data-extraction and -preparation methods.

My data extraction and preparation process involves importing the track metadata.

The libraries I use are:

- Pandas: Used for dataframe manipulation
- matplotlib: Used for visualization

```
In [32]:
           import pandas as pd
           import matplotlib.pyplot as plt
           import scipy.stats as stats
           df = pd.read csv('tracks features.csv')
 In [3]:
 In [4]:
           df.head()
 Out [4]:
                                       id
                                             name
                                                     album
                                                                           album_id
                                                                                        artists
                                                       The
                                                                                         ['Rage
                                                     Battle
                                                                                        Against
                                                                                                ['2d0hyoQ!
           0
               7lmeHLHBe4nmXzuXc0HDjk
                                            Testify
                                                             2eia0myWFgoHuttJytCxgX
                                                     Of Los
                                                                                           The
                                                   Angeles
                                                                                      Machine']
                                                       The
                                                                                         ['Rage
                                          Guerrilla
                                                     Battle
                                                                                        Against
           1
                  1wsRitfRRtWyEapl0q22o8
                                                             2eia0myWFgoHuttJytCxgX
                                                                                                ['2d0hyoQ!
                                             Radio
                                                     Of Los
                                                                                           The
                                                   Angeles
                                                                                      Machine']
                                                       The
                                                                                         ['Rage
                                             Calm
                                                     Battle
                                                                                        Against
           2
                 1hR0fIFK2qRG3f3RF70pb7
                                                             2eia0myWFgoHuttJytCxgX
                                                                                                ['2d0hyoQ!
                                             Like a
                                                     Of Los
                                                                                           The
                                             Bomb
                                                    Angeles
                                                                                      Machine']
                                                       The
                                                                                         ['Rage
                                               Mic
                                                     Battle
                                                                                        Against
           3
               2lbASgTSoDO7MTuLAXITW0
                                                            2eia0myWFgoHuttJytCxgX
                                                                                                ['2d0hyoQ!
                                            Check
                                                     Of Los
                                                                                           The
                                                   Angeles
                                                                                      Machine']
                                                       The
                                                                                         ['Rage
                                             Sleep
                                                     Battle
                                                                                        Against
                                                            2eia0myWFgoHuttJytCxgX
           4 1MQTmpYOZ6fcMQc56Hdo7T
                                                                                                ['2d0hyoQ!
                                            Now In
                                                     Of Los
                                                                                           The
                                           the Fire
                                                                                      Machine']
                                                    Angeles
```

5 rows × 24 columns

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1204025 entries, 0 to 1204024

Data columns (total 24 columns): # Column Non-Null Count Dtype _____ 0 1204025 non-null object id 1 1204025 non-null object name 2 album 1204025 non-null object 1204025 non-null object 3 album_id artists 1204025 non-null object 5 artist ids 1204025 non-null obiect 6 track number 1204025 non-null int64 7 disc number 1204025 non-null int64 8 explicit 1204025 non-null bool 9 1204025 non-null float64 danceability 1204025 non-null float64 10 energy 11 key 1204025 non-null int64 12 loudness 1204025 non-null float64 1204025 non-null int64 13 mode 14 speechiness 1204025 non-null float64 15 acousticness 1204025 non-null float64 16 instrumentalness 1204025 non-null float64 17 liveness 1204025 non-null float64 18 valence 1204025 non-null float64 19 tempo 1204025 non-null float64 1204025 non-null int64 20 duration ms 21 time signature 1204025 non-null float64 1204025 non-null int64 22 year 1204025 non-null object 23 release date dtypes: bool(1), float64(10), int64(6), object(7)

memory usage: 212.4+ MB

A lot of this data is not relevant for the analysis, so I will only keep important metadata and release dates.

```
In [6]: df = df[['name', 'album', 'artists', 'duration_ms', 'year', 'release_date']]
In [7]: df
```

	name	album	artists	duration_ms	year	release_date
0	Testify	The Battle Of Los Angeles	['Rage Against The Machine']	210133	1999	1999-11-02
1	Guerrilla Radio	The Battle Of Los Angeles	['Rage Against The Machine']	206200	1999	1999-11-02
2	Calm Like a Bomb	The Battle Of Los Angeles	['Rage Against The Machine']	298893	1999	1999-11-02
3	Mic Check	The Battle Of Los Angeles	['Rage Against The Machine']	213640	1999	1999-11-02
4	Sleep Now In the Fire	The Battle Of Los Angeles	['Rage Against The Machine']	205600	1999	1999-11-02
•••				•••		
1204020	Gospel of Juke	Notch - EP	['FVLCRVM']	276213	2014	2014-01-09
1204021	Prism Visions	Notch - EP	['FVLCRVM']	363179	2014	2014-01-09
1204022	Tokyo 360	Notch - EP	['FVLCRVM']	385335	2014	2014-01-09
1204023	Yummy!	Notch - EP	['FVLCRVM']	324455	2014	2014-01-09
1204024	That's The Way It Is	Notch - EP	['FVLCRVM']	304982	2014	2014-01-09

1204025 rows × 6 columns

Data Cleaning

Out[7]:

Treating Nulls and Old Songs With Wrong Release Dates

First I want to start by getting some useful stats about the data. We can see there a few songs without release dates so I will drop those

In [8]: df.loc[df['year'] == 0]

	name	album	artists	duration_ms	year	release_date
815351	Jimmy Neutron	Optimism 2	['iCizzle']	183000	0	0000
815352	I Luv You	Optimism 2	['iCizzle']	145161	0	0000
815353	My Heart	Optimism 2	['iCizzle']	176561	0	0000
815354	I Am (Invincible)	Optimism 2	['iCizzle']	192000	0	0000
815355	Flower Power	Optimism 2	['iCizzle']	138666	0	0000
815356	Heard It Low	Optimism 2	['iCizzle']	138667	0	0000
815357	Hangin On	Optimism 2	['iCizzle']	142620	0	0000
815358	815358 God Loves You	Optimism 2	['iCizzle']	161000	0	0000
815359	You In My Life	Optimism 2	['iCizzle']	214867	0	0000
815360	I Wonder	Optimism 2	['iCizzle']	180822	0	0000

```
In [9]: df = df.loc[df['year'] != 0]
```

Then we will look into the oldest songs in the dataset

```
In [10]: # This gives us the oldest released song in the dataset
df['year'].min()
```

Out[10]: 1900

Out[8]:

Out of curiousity I will look at some info related to the songs released in 1900.

Appears they are mostly from Rabih Abou-Khalil. The issue is that the songs here were released in 1996. I will drop these songs since they are not correct

```
In [11]: df.loc[df['year'] == 1900]
```

	name	album	artists	duration_ms	year	release_date
450071	Arabian Waltz	Arabian Waltz	['Rabih Abou- Khalil']	493867	1900	1900-01-01
450072	Dreams Of A Dying City	Arabian Waltz	['Rabih Abou- Khalil']	730667	1900	1900-01-01
450073	Ornette Never Sleeps	Arabian Waltz	['Rabih Abou- Khalil']	421760	1900	1900-01-01
450074	Georgina	Arabian Waltz	['Rabih Abou- Khalil']	672707	1900	1900-01-01
450075	No Visa	Arabian Waltz	['Rabih Abou- Khalil']	601027	1900	1900-01-01
450076	The Pain After	Arabian Waltz	['Rabih Abou- Khalil']	566840	1900	1900-01-01
459980	Catania	Al-Jadida	['Rabih Abou- Khalil']	465000	1900	1900-01-01
459981	Nashwa	Al-Jadida	['Rabih Abou- Khalil']	578000	1900	1900-01-01
459982	An Evening With Jerry	Al-Jadida	['Rabih Abou- Khalil']	423000	1900	1900-01-01
459983	When The Lights Go Out	Al-Jadida	['Rabih Abou- Khalil']	433960	1900	1900-01-01
459984	Story Teller	Al-Jadida	['Rabih Abou- Khalil']	532173	1900	1900-01-01
459985	Ornette Never Sleps	Al-Jadida	['Rabih Abou- Khalil']	243867	1900	1900-01-01
459986	Nadim	Al-Jadida	['Rabih Abou- Khalil']	513000	1900	1900-01-01
459987	Wishing Well	Al-Jadida	['Rabih Abou- Khalil']	325000	1900	1900-01-01

In [12]: df = df.loc[df['year'] != 1900]

Now that those rows are dropped lets look at what is next

In [13]: # This gives us the oldest released song in the dataset
df['year'].min()

Out[13]: 1908

Out[11]:

This album also seems to be set as the wrong year so I will drop it

In [14]: df.loc[df['year'] == 1908]

	name	album	artists	duration_ms	year	release_date
358067	Hard Times	Living Chicago Blues, Vol. 3	['A.C. Reed']	198533	1908	1908-08-01
358068	She's Fine	Living Chicago Blues, Vol. 3	['A.C. Reed']	258227	1908	1908-08-01
358069	Moving Out Of The Ghetto	Living Chicago Blues, Vol. 3	['A.C. Reed']	233733	1908	1908-08-01
358070	Going To New York	Living Chicago Blues, Vol. 3	['A.C. Reed']	219173	1908	1908-08-01
358071	Big Leg Woman	Living Chicago Blues, Vol. 3	['Scotty And The Rib Tips']	221400	1908	1908-08-01
358072	Careless With Our Love	Living Chicago Blues, Vol. 3	['Scotty And The Rib Tips']	182733	1908	1908-08-01
358073	Road Block	Living Chicago Blues, Vol. 3	['Scotty And The Rib Tips']	169733	1908	1908-08-01
358074	Poison Ivy	Living Chicago Blues, Vol. 3	['Scotty And The Rib Tips']	197467	1908	1908-08-01
358075	l Dare You	Living Chicago Blues, Vol. 3	['Lovie Lee']	168200	1908	1908-08-01
358076	Nobody Knows My Troubles	Living Chicago Blues, Vol. 3	['Lovie Lee']	318627	1908	1908-08-01
358077	Sweet Little Girl	Living Chicago Blues, Vol. 3	['Lovie Lee']	193933	1908	1908-08-01
358078	Naptown	Living Chicago Blues, Vol. 3	['Lovie Lee']	185000	1908	1908-08-01
358079	Drown In My Own Tears	Living Chicago Blues, Vol. 3	['Lacy Gibson']	280573	1908	1908-08-01
358080	Crying For My Baby	Living Chicago Blues, Vol. 3	['Lacy Gibson']	168893	1908	1908-08-01
358081	Feel So Bad	Living Chicago Blues, Vol. 3	['Lacy Gibson']	234640	1908	1908-08-01
358082	Wish Me Well	Living Chicago Blues, Vol. 3	['Lacy Gibson']	177627	1908	1908-08-01
358083	Have You Ever Loved A Woman	Living Chicago Blues, Vol. 3	['Sons of the Blues']	370067	1908	1908-08-01
358084	Berlin Wall	Living Chicago Blues, Vol. 3	['Sons of the Blues']	265640	1908	1908-08-01

In [15]: df = df.loc[df['year'] != 1908]

358085

Prisoner Of The

Blues

Out[14]:

The aptly named Music of Cuba 1909 seems to be in the right release years so I will keep these here

['Sons of the

Blues']

253667 1908

1908-08-01

In [16]: df.loc[df['year'] == 1909].head()

Living Chicago

Blues, Vol. 3

		name	album	artists	duration_ms	year	release_date
	181527	Unknown	The Music Of Cuba 1909-1951	['Orquesta Felipe Valdéz', 'Pablo Valenzuela']	210227	1909	1909
	181528	Se Acabó La Choricera	The Music Of Cuba 1909-1951	['Floro Zorrilla', 'Miguel Zaballa']	193533	1909	1909
1	181529	Miguel, Los Hombres No Lloran	The Music Of Cuba 1909-1951	['Sexteto Nacional']	173840	1909	1909
	181530	Somos Ocho Orientales	The Music Of Cuba 1909-1951	['Grupo Típico Oriental']	193573	1909	1909
	181531	Tus Manos Blancas	The Music Of Cuba 1909-1951	['Maria Cervantes']	182600	1909	1909

Analysis

Out[16]:

D. Report on your data-analysis process by describing the analysis technique(s) you used to appropriately analyze the data. Include the calculations you performed and their outputs. Justify how you selected the analysis technique(s) you used, including one advantage and one disadvantage of these technique(s).

I will start by creating a graph showing the number of songs that came out before and after 2008. The red line indicates the year that Spotify was released

```
In [17]: year_count = df['year'].value_counts().sort_index()

In [18]: plt.bar(year_count.index, year_count.values)

plt.xlabel('Years')
plt.ylabel('Count of Songs Released')
plt.title('Count of Songs Released on Spotify by Year')

plt.axvline(x=2008, color='red', linestyle='--', linewidth=1)
plt.show()
```

Count of Songs Released on Spotify by Year

Next I would like to know what the oldest and newest songs in the dataset are

```
In [19]: print('Oldest: ',df['year'].min())
print('Newest: ',df['year'].max())
```

Oldest: 1909 Newest: 2020

Another thing I would like to know is the number of songs we have data on before and after 2008.

There are 540,129 songs released before 2008 and 663,853 songs released in and after 2008. This is quite a lot of data for both sides so I think this will be fairly representative of the music on spotify.

```
In [20]: print('Pre-2008 Count: ',df['year'].loc[df['year'] < 2008].count())
print('2008 & After Count: ',df['year'].loc[df['year'] >= 2008].count())

Pre-2008 Count: 540129
2008 & After Count: 663853
```

ANOVA Analysis

To do the analysis, I will split the data into two seperate dataframes. One dataframe will contain duration of songs released before 2008, and the second dataframe will include duration of songs from 2008 and after.

```
pre_2008 = df[['duration_ms','year']].loc[df['year'] < 2008]</pre>
In [25]:
          df['year'].loc[df['year'] < 2008]## Data Summary and Implications
In [27]: pre 2008.head()
Out[27]:
            duration_ms year
          0
                 210133 1999
                 206200 1999
          1
          2
                 298893 1999
          3
                 213640 1999
          4
                 205600 1999
          during_after_2008 = df[['duration_ms', 'year']].loc[df['year'] >= 2008]
In [30]:
In [31]:
          during_after_2008.head()
Out[31]:
             duration_ms year
          22
                  224307 2018
          23
                  238000 2018
                  268013 2018
          24
          25
                  277813 2018
                 209960 2018
          26
In [35]: print("ANOVA Results: " , "\n", stats.f_oneway(pre_2008['duration_ms'],during_a
         ANOVA Results:
          F_onewayResult(statistic=1.9157774994603458, pvalue=0.16632315098948963)
          From this ANOVA analysis, we can determine that the two means of pre-2008 and
          during/post-2008 are not the same.
In [40]: #get mean values
          mean_value1 = pre_2008['duration_ms'].mean()
          mean value2 = during after 2008['duration ms'].mean()
          print('Averages: ',mean_value1, mean_value2)
          labels = ['Pre-2008', 'During/Post-2008']
          means = [mean_value1, mean_value2]
          plt.title('Pre-2008 Duration Mean vs. During/Post 2008 Mean')
          plt.xlabel('Release Year')
          plt.ylabel('Duration (MS)')
          plt.bar(labels, means)
         Averages: 249064.81797311382 248653.40735072372
```


I am curious to see if on the graph we can see a more significant change if we just focus on various times post-2008 since it was not as extreme a reduction as I personally expected.

```
In [47]: during_after_2016 = df[['duration_ms','year']].loc[df['year'] >= 2016]
    during_after_2020 = df[['duration_ms','year']].loc[df['year'] >= 2020]

#get mean values
    mean_value1 = pre_2008['duration_ms'].mean()
    mean_value2 = during_after_2008['duration_ms'].mean()
    mean_value3 = during_after_2016['duration_ms'].mean()
    mean_value4 = during_after_2020['duration_ms'].mean()

print('Averages: ',mean_value1, mean_value2, mean_value3, mean_value4 )

labels = ['Pre-2008', 'During/Post-2008', 'During/Post-2016', 'During/Post-2020', means = [mean_value1, mean_value2, mean_value3, mean_value4]

plt.figure(figsize=(8, 6))

plt.title('Pre-2008 Duration Mean vs. During/Post 2008 Mean')
    plt.ylabel('Release Year')
    plt.ylabel('Duration (MS)')

plt.bar(labels, means)
```

Averages: 249064.81797311382 248653.40735072372 240693.216293713 222865.38444 769525

E. Summarize the implications of your data analysis by discussing the results of your data analysis in the context of the research question, including one limitation of your analysis. Within the context of your research question, recommend a course of action based on your results. Then propose two directions or approaches for future study of the data set.

Release Year

The implications of my data analysis are that there was a statistically significant change in the duration of music before 2008 and during/post-2008. We know this since the ANOVA analysis returns that our p-value is .166, which means we have to reject our null-hypothesis that the two means of the dataset are the same, which would imply that the average duration of songs would have changed.

The implication of this analysis is that music is being reduced by a statistically significant amount as time goes on. We can see that in the graph if we focus on smaller time points past 2008 that the mean appears to be reduced even more. This data is not enough to attribute the causation to Spotify's release. In terms of recommended course of action, as a musician, one can justify a reduced length in songs length as it appears that the trend is to continue to reduce the average length of songs as time goes on. If one would want to break the trend, creating a longer song would be different then what most people are moving towards.

F. Acknowledge sources, using in-text citations and references, for content that is quoted.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f_oneway.html