

F I G. 1

AXIAL DIRECTION OF THE CORD

F I G. 2

AXIAL DIRECTION OF THE CORD

FIG. 3

F I G. 4 A

F I G. 4 B

STRUCTURE 1

STRUCTURE 2

F I G. 4 C

STRUCTURE 3

F I G. 4 D

STRUCTURE 4

F I G. 4 E

STRUCTURE 5

F I G. 5

STRUCTURE 6

F I G. 6

STRUCTURE 7

F I G. 7

STRUCTURE 8

F I G. 8

STRUCTURE 9

F I G. 9

STRUCTURE 10

F I G. 1 0

STRUCTURE 11

F I G. 11

F I G. 1 2

F I G. 1 3

F I G. 1 4

Tomohisa NISHIKAWA, et al.
RUBBER-STEEL CORD COMPOSITE AND
PNEUMATIC TIRE FOR PASSENGER CARS
Filed May 7, 2001
Our Ref: Q64382
Telephone No.: 202-293-7060
Sheet 13 of 14

F I G. 1 5

F I G. 1 6

F I G. 1 7

