Time Domain Analysis

Jay Khandkar January 18, 2021

Contents

1	Current And Voltage Conventions	:
2	First Order Circuits: RL and RC	3
	2.1 RL Circuits	
	2.1.1 The Natural Response	:

1 Current And Voltage Conventions

The conventions we shall follow, simply state that when current "flows into" the positive terminal of the capacitor/inductor, as indicated by the polarity of v in Fig.1.1, it is taken as positive. We may then write

$$i = C \frac{dv}{dt}$$
$$v = L \frac{di}{dt}$$

Figure 1.1: The voltage conventions

2 First Order Circuits: RL and RC

A first order circuit is one that is governed by a first order differential equation. Often, it is incorrectly stated that a first order circuit is one that contains only one energy storage element (capacitor/inductor). This is wrong, as there are certain arrangements of R-L and R-C circuits which can be simplified to obtain a first order equation, as we shall see later.

2.1 RL Circuits

2.1.1 The Natural Response

A *natural response* is one that is free of any external voltage/current sources, which are also known as *forcing functions*. It depends on the "general nature" of the circuit (types of elements, sizes and interconnections). It is also known as the *transient response*, as without any external sources, it must eventually die out. Consider the simple series RL circuit shown in