6

	ith the line of centres. The coefficient of restitution between the spheres is $\frac{1}{2}$.
(a)	Show that the speed of B after the collision is $\frac{3u\cos\alpha}{2(1+k)}$ and find also an expression for the speed α along the line of centres after the collision, in terms of k , u and α .

© UCLES 2022 9231/32/M/J/22 After the collision, the kinetic energy of A is equal to the kinetic energy of B.

(b) Given that $\tan \alpha = \frac{2}{3}$, find the possible values of k. [5]