Téma 4 - Řazení

Podle originálu RNDr. M. Berezovského s opravdu minimem úprav ...

Různé algoritmy mají různou složitost

Různé algoritmy mají různou složitost: O(n), Ω(n²), Θ(n·log₂(n)), ...

Cvičení

Navrhněte a popište algoritmus pro seřazení balíčku karet.

- Smíte používat obě ruce, v každé smíte držet vždy nanejvýš jednu kartu.
- Během řazení můžete odkládat karty do několika pomocných balíčků.
- V každém okamžiku jsou vidět a známé pouze hodnoty dvou karet.

Úkolem je sestavit algoritmus tak, aby využíval co nejmenšího počtu kroků.

Selection Sort

Řazení výběrem

(minima nebo maxima)

Start

Step 1

Různé algoritmy mají různou složitost: O(n), Ω(n²), Θ(n·log₂(n)), ...


```
for (i = 0; i < n-1; i++) {
                              // select min
  jmin = i;
  for (j = i+1; j < n; j++) {
    if (a[j] < a[jmin]) {</pre>
    jmin = j;
                               // swap min
 min = a[jmin];
  a[jmin] = a[i];
  a[i] = min;
```

i n-i
Select minimum (n-i) tests

Tests total

Step i

$$\sum_{i=1}^{n-1} (n-i) = \sum_{i=1}^{n-1} n - \sum_{i=1}^{n-1} i = n(n-1) - \frac{n(n-1)}{2} = \frac{1}{2} (n^2 - n)$$

Step i

Moves total

$$\sum_{i=1}^{n-1} 3 = 3(n-1)$$

Summary

Tests total

$$\frac{1}{2}(n^2-n) = \Theta(n^2)$$

Moves total

$$3(n-1) = \Theta(n)$$

Operations total

$$\frac{1}{2}(n^2 - n) + 3(n - 1) = \Theta(n^2)$$

Asymptotic complexity of Selection Sort is $\Theta(n^2)$

Insertion Sort

Řazení vkládáním

(na adekvátní pozici)

Insertion Sort

Start

Step 1

Insertion Sort

```
for (i = 1; i < n; i++) {
                            // find & make
                            // place for a[i]
  insVal = a[i];
  j = i-1;
 while ((j >= 0) && (a[j] > insVal)) {
    a[j+1] = a[j];
    j--;
                            // insert a[i]
 a[j+1] = insVal;
```


Insertion Sort

Summary

Tests total

$$n-1 = \Theta(n)$$
 best case $(n^2-n)/2 = \Theta(n^2)$ worst case $(n^2+n+2)/4 = \Theta(n^2)$ average case

Moves total

$$2n-2 = \Theta(n)$$
 best case
 $(n^2 + n - 2)/2 = \Theta(n^2)$ worst case
 $(n^2 + 5n - 6)/4 = \Theta(n^2)$ average case

Asymptotic complexity of Insertion Sort is $O(n^2)$ (!!)

Bubble Sort

Bublinkové třídění

Bubble Sort

Start

Phase 1

Bubble Sort Phase 1

Phase 2

Bubble Sort

Phase 2

Phase 3

Různé algoritmy mají různou složitost: O(n), Ω(n²), Θ(n·log₂(n)), ...

Bubble Sort

```
for (lastPos = n-1; lastPos > 0; lastPos--) {
  for (j = 0; j < lastPos-1; j++) {
   if (a[j] > a[j+1]) swap(a, j, j+1); } }
```

Summary

Tests total

$$(n-1) + (n-2) + ... + 2 + 1 = \frac{1}{2}(n^2 - n) = \Theta(n^2)$$

Moves total

$$0 = \Theta(1)$$
 best case
$$\frac{1}{2}(n^2 - n) = \Theta(n^2)$$
 worst case

Asymptotic complexity of Bubble Sort is $\Theta(n^2)$

Sir Charles Antony Richard Hoare

C.A.R. Hoare: Quicksort. Computer Journal, Vol. 5, 1, 10-15 (1962)

Různé algoritmy mají různou složitost: O(n), Ω(n²), Θ(n·log₂(n)), ...

Conquered!

Partitioning

pivot

Init

Partitioning

Step 1

Partitioning

Step 2

Divide!

Init

Partitioning

Step 1

Různé algoritmy mají různou složitost: O(n), Ω(n²), Θ(n·log₂(n)), ...

Různé algoritmy mají různou složitost: O(n), Ω(n²), Θ(n·log₂(n)), ...

Různé algoritmy mají různou složitost: O(n), Ω(n²), Θ(n·log₂(n)), ...

```
void qSort(Item a[], int low, int high) {
  int iL = low, iR = high;
  Item pivot = a[low];
  do {
    while (a[iL] < pivot) iL++;</pre>
    while (a[iR] > pivot) iR--;
    if (iL < iR) {
      swap(a,iL, iR);
      iL++; iR--;
    else {
      <u>if</u> (iL == iR) { iL++; iR--;}
  while( iL <= iR);</pre>
  if (low < iR) qSort(a, low, iR);</pre>
                                                  Divide!
  if (iL < high) qSort(a, iL, high);
```

Levý index se nastaví na začátek zpracovávaného úseku pole, pravý na jeho konec, zvolí se pivot.

Cyklus:

Levý index se pohybuje doprava a zastaví se na prvku větším nebo rovném pivotu.

Pravý index se pohybuje doleva a zastaví se na prvku menším nebo rovném pivotu.

Pokud je levý index ještě před pravým,

příslušné prvky se prohodí,

a oba indexy se posunou o 1 ve svém směru.

Jinak pokud se indexy rovnají,

jen se oba posunou o 1 ve svém směru.

Cyklus se opakuje, dokud se indexy nepřekříží,

tj. pravý se dostane před levý.

Pak nastává rekurzivní volání na úsek od začátku do pravého(!) indexu včetně a na úsek od levého(!) indexu včetně až do konce, má-li příslušný úsek délku větší než 1.

Asymptotic complexity

Tests and moves total

$$\Theta(n-\log_2(n))$$
 best case

$$\Theta(n \cdot \log_2(n))$$
 average case

$$\Theta(n^2)$$
 worst case

Asymptotic worst case complexity of QuickSort is $O(n^2)$ (!!)

... but! :

"Average" complexity of QuickSort is $\Theta(n-\log_2(n))$ (!!)

Effectivity comparison

N	N ²	$N \times log_2(N)$	$\frac{N^2}{N \times log_2(N)}$	decele- ration (1~ <mark>1sec</mark>)
1	1	0		
10	100	33.2	3.0	3 sec
100	10 000	6 64.4	15.1	15 sec
1 000	1 000 000	9 965.8	100.3	1.5 min
10 000	100 000 000	132 877.1	752.6	13 min
100 000	10 000 000 000	1 660 964.0	6 020.6	1.5 hrs
1 000 000	1 000 000 000 000	19 931 568.5	50 171.7	14 hrs
10 000 000	100 000 000 000 000	232 534 966.6	430 042.9	5 days

Stable sort does not change the (relative) order of elements with equal value.

Stabilní řazení nemění (relativní) pořadí prvků se stejnou hodnotou.

Různé algoritmy mají různou složitost

The complexity

of different algorithms

varies