Package 'SafeQuant'

July 16, 2015

Type Package	
Title SafeQuant: Proteomics Data Analysis	
Version 2.1	
Date 2015-07-16	
Author Erik Ahrne	
Maintainer Erik Ahrne <erik.ahrne@unibas.ch></erik.ahrne@unibas.ch>	
Description The SafeQuant Package includes methods for analysis of quantitative Proteomics data. More documentation to come.	
Imports affy, limma, gplots, seqinr, corrplot, optparse, data.table, epiR	
License GPL-3	
R topics documented:	
addIdQvalues	3
barplotMSSignal	3
createCalibrationCurve	4
createExpDesign	5
createExpressionDataset	
cvBoxplot	
expDesignTagToExpDesign	
export.safeQuantAnalysis	
getAllCV	9
getAllEBayes	
getBaselineIntensity	
getCV	
getExpDesignProgenesisCsv	
getGlobalNormFactors	
getIBAQEset	
getIdLevelQvals	
getImpuritiesMatrix	15

56

Index

getIntSumPerProtein	16
getLoocvFoldError	17
getMeanCenteredRange	
getModifProteinCoordinates	18
getMotifX	19
getNbDetectablePeptides	
getNbMisCleavages	
getNbPeptidesPerProtein	
getPeptides	
getRatios	
getRTNormFactors	
getScoreCutOff	
getSignalPerCondition	
getTopX	
getUserOptions	
globalNormalize	
hClustHeatMap	
isCon	
isDecoy	
isStrippedACs	
missinValueBarplot	
pairsAnnot	
parseMaxQuantProteinGroupTxt	
parseProgenesisFeatureCsv	
parseProgenesisPeptideMeasurementCsv	35
parseProgenesisProteinCsv	36
parseScaffoldRawFile	37
perFeatureNormalization	38
plotAbsEstCalibrationCurve	39
plotExpDesign	39
plotIdScoreVsFDR	40
plotMSSignalDistributions	41
plotNbIdentificationsVsRT	41
plotNbValidDeFeaturesPerFDR	42
plotPrecMassErrorDistrib	43
plotPrecMassErrorVsScore	43
plotROC	44
plotRTNorm	45
plotRTNormSummary	46
plotScoreDistrib	47
plotVolcano	47
plotXYDensity	48
print.safeQuantAnalysis	49
purityCorrectTMT	49
removeOutliers	50
rollUp	51
rtNormalize	52
setNbPeptidesPerProtein	53
sqNormalize	53
stripACs	54

addIdQvalues 3

addIdQvalues	Add identification leve q-values to ExpressionSet (calculated based on target-decoy score distribution)

Description

Add identification leve q-values to ExpressionSet (calculated based on target-decoy score distribution)

Usage

```
addIdQvalues(eset = eset)
```

Arguments

eset

ExpressionSet

Details

if ptm column is part if the ExpressionSet q-values are calculated seperately for modified and non-modified features

Value

ExpressionSet object

Note

No note

See Also

```
getIdLevelQvals
```

Examples

```
print("No examples")
```

barplotMSSignal

Barplot of ms-signal per column

Description

Barplot of ms-signal per column

Usage

```
barplotMSSignal(eset,
  col = as.character(.getConditionColors(eset)[pData(eset)$condition, ]),
  method = "sum", cex.lab = 1.25, cex.axis = 1.25,
  labels = rownames(pData(eset)), ...)
```

4 createCalibrationCurve

Arguments

matrix matrix of ms-signals

color color

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

createCalibrationCurve

S3 class object describing a calibration curve and storing some figures of merit

Description

S3 class object describing a calibration curve and storing some figures of merit

Usage

```
createCalibrationCurve(eset, method = "blank")
```

Arguments

eset ExpressionSet

method to calculate Limit of Detection / Limit of Quantification. c("blank","low")

Details

No details

Value

calibrationCurve object

Note

No note

createExpDesign 5

References

Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics, Mani et al. (2012), http://www.ncbi.nlm.nih.gov/pubmed/23176545

Examples

```
print("No examples")
```

createExpDesign

Create Experimental Design

Description

Create Experimental Design

Usage

```
createExpDesign(tag, nbPlex)
```

Arguments

tag user input tag e.g. 1,2,3:4,5,6 indicating two condition with 3 reps each

nbPlex tmt 6 or 10 plex

Details

The first listed condition is always the control condition

Value

expDesign data.frame

Note

No note

References

NA

```
print("No examples")
```

 ${\tt createExpressionDataset}$

Create ExpressionSet object

Description

Create ExpressionSet object

Usage

```
createExpressionDataset(expressionMatrix = expressionMatrix,
  expDesign = expDesign, featureAnnotations = featureAnnotations)
```

Arguments

```
expression Matrix
```

matrix of expression signals per feature and sample

expDesign

experimental design data.frame

 $feature \verb|Annotations|$

data.frame including e.g: Protein Description, Id score etc.

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

```
print("No examples")
```

cvBoxplot 7

cvBoxplot

C.V. boxplot

Description

C.V. boxplot

Usage

```
cvBoxplot(eset,
  col = as.character(.getConditionColors(eset)[unique(pData(eset)$condition),
  ]), cex.names = 0.9, cex.axis = 1.25, cex.lab = 1.25, ...)
```

Arguments

eset

ExpressionSet

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt expDesignTagToExpDesign}$

Create experimental design data.frame from user input string

Description

Create experimental design data.frame from user input string

Usage

```
expDesignTagToExpDesign(tag, expDesignDefault)
```

Arguments

string tag

data.frame default expDesign

Details

tag: 1,2:3:4,5,6 condition is Control 1 Condition 1 TRUE 2 Condition 1 TRUE 3 Condition 1 TRUE 4 Condition 2 FALSE 5 Condition 2 FALSE 6 Condition 2 FALSE

Value

data.frame describing experimental design

Note

No note

References

NA

Examples

```
print("No examples")
```

```
export.safeQuantAnalysis
```

Export content of safeQuantAnalysis object

Description

Export content of safeQuantAnalysis object

Usage

```
## S3 method for class 'safeQuantAnalysis'
export(sqa, nbRows = nrow(sqa$pValue),
  file = NA)
```

Arguments

sqa safeQuantAnalysis object

nbRows Number of rows to export. Features are ordred by increasing minimal p.value

Details

NA

Note

No note

References

NA

getAllCV 9

See Also

```
safeQuantAnalysis
```

Examples

```
print("No examples")
```

getAllCV

Calculate Coefficiant of Variance per feature (Relative standard Deviation) per Condition

Description

Calculate Coefficiant of Variance per feature (Relative standard Deviation) per Condition

Usage

```
getAllCV(eset)
```

Arguments

eset

ExpressionSet

Details

CV = sd / mean

Value

data.frame of CVs per condition

Note

No note

References

NA

See Also

getCV

```
print("No examples")
```

10 getAllEBayes

getAllEBayes

Perform statistical test (mderated t-test), comparing all case to control

Description

Perform statistical test (mderated t-test), comparing all case to control

Usage

```
getAllEBayes(eset = eset, adjust = F, log = T, method = "pairwise")
```

Arguments

eset ExpressionSet

adjust TRUE/FALSE adjust for multiple testing using Benjamini & Hochberg (1995)

method log T/F log-transform expression values

method c("pairwise", "all")

Details

No details

Value

ExpressionSet object

Note

No note

References

Empirical Bayes method, Smyth (2004), http://www.ncbi.nlm.nih.gov/pubmed/16646809

See Also

eBayes

```
print("No examples")
```

getBaselineIntensity 11

getBaselineIntensity Get signal at zscore x (x standard deviations below mean)

Description

Get signal at zscore x (x standard deviations below mean)

Usage

```
getBaselineIntensity(intensities, promille = 5)
```

Arguments

intensities refrence run signals

percentile baseline value set as specified promille

Value

baseline value

Note

No note

References

NA

Examples

```
print("No examples")
```

getCV

Calculate Coefficiant of Variance per feature (Relative standard Deviation)

Description

Calculate Coefficiant of Variance per feature (Relative standard Deviation)

Usage

```
getCV(data)
```

Arguments

data data.frame of replicate signals

Details

CV = sd / mean

Value

vector of CVs

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt getExpDesignProgenesisCsv}$

Parse Experimental Design from Progenesis Csv Export

Description

Parse Experimental Design from Progenesis Csv Export

Usage

```
getExpDesignProgenesisCsv(file,
  expressionColIndices = .getProgenesisCsvExpressionColIndices(file))
```

Arguments

file

path to progenesis csv file

Details

No details

Value

data.frame describing experimental design

Note

No note

References

NA

```
print("No examples")
```

getGlobalNormFactors 13

 ${\tt getGlobalNormFactors}$

Get normalization factors. calculated as summed/median signal per run (column) over summed/median of first run.

Description

Get normalization factors. calculated as summed/median signal per run (column) over summed/median of first run.

Usage

```
getGlobalNormFactors(eset, method = "sum")
```

Arguments

eset

ExpressionSet

Details

No details

Value

vector of normalization factors

Note

No note

References

NA

Examples

```
print("No examples")
```

getIBAQEset

Calculate intensity-based absolute-protein-quantification (iBAQ) metric per protein

Description

Calculate intensity-based absolute-protein-quantification (iBAQ) metric per protein

Usage

```
getIBAQEset(eset, proteinDB = NA, peptideLength = c(5, 36),
   nbMiscleavages = 0, proteaseRegExp = .getProteaseRegExp("trypsin"))
```

14 getIdLevelQvals

Arguments

eset protein level ExpressionSet

peptideLength peptide length interval (to get number of peptides used for normalization)

nbMiscleavages number of mis-cleavages allowed when digesting protein sequences in silico (to

get number of peptides used for normalization)

proteaseRegExp protease Reg Exp cleavage rule

list protein sequneces

Details

No details

Value

ExpressionSet

Note

No note

References

Global quantification of mammalian gene expression control, Schwanhausser (2011), http://www.ncbi.nlm.nih.gov/pubmed/21593866, Critical assessment of proteome-wide label-free absolute abundance estimation strategies. Ahrne (2013), http://www.ncbi.nlm.nih.gov/pubmed/23794183

Examples

```
print("No examples")
```

getIdLevelQvals Calculates identification level q-values based on target-decoy score distributions

Description

Calculates identification level q-values based on target-decoy score distributions

Usage

```
getIdLevelQvals(scores, isDecoy)
```

Arguments

scores peptide/protein identficationscore

isDecoy vector of TRUE/FALSE

getImpuritiesMatrix 15

Details

q-value = (Nb. Decoy Entries at idScore Threshold S^*) / (Nb. Target Entries at idScore Threshold S). (* idScore >= S)

Value

vector of q.values

Note

No note

References

NA

Examples

```
print("No examples")
```

getImpuritiesMatrix

Get Thermo TMT impurity matrix

Description

Get Thermo TMT impurity matrix

Usage

```
getImpuritiesMatrix(plexNb = 6, test = F)
```

Arguments

plexNb

integer, 6 or 10 plex

Details

No details

Value

impurity matrix matrix

Note

No note

References

NA

```
print("No examples")
```

16 getIntSumPerProtein

getIntSumPerProtein Sum up raw intensities per protein and channel. keep track of number of summed spectra and unique peptides

Description

Sum up raw intensities per protein and channel. keep track of number of summed spectra and unique peptides

Usage

```
getIntSumPerProtein(intData, proteinACs, peptides, minNbPeptPerProt = 1)
```

Arguments

intData data.frame of intensities per channel proteinACs vector of protein accession numbers

peptides vector of peptide sequneces

minNbPeptPerProt

minimal number of peptides per protein

Details

NA

Value

list containing 3 objects 1) data.frame of channel intensities per protein ac, 2) vector listing number of summed spectra per protein, 3) vector listing number of summed peptides per protein

Note

No note

References

NA

```
print("No examples")
```

getLoocvFoldError 17

 ${\tt getLoocvFoldError}$

Leave-One-Out Cross Validate Qunatification Model

Description

Leave-One-Out Cross Validate Qunatification Model

Usage

```
getLoocvFoldError(df)
```

Arguments

```
data.frame of two columns 1) "signal" - ms metric 2) "cpc" absolute quantity
```

Details

No details

Value

data.frame of fold errors per (left-out) protein

Note

No note

References

NA

See Also

NA

```
print("No examples")
```

getMeanCenteredRange Get modification coordinates on protein

Description

Get modification coordinates on protein

Usage

```
getMeanCenteredRange(d, nbSd = 4)
```

Arguments

d numeric vector

nbSd range spanning number of sd frmo mean

Details

NA

Value

vector range boundries

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt getModifProteinCoordinates}$

Get modification coordinates on protein

Description

Get modification coordinates on protein

Usage

```
getModifProteinCoordinates(modifAnnot, peptideSeq, proteinSeq)
```

getMotifX 19

Arguments

modifannot modification as annotated by progenesis. E.g. '[15] Phospho (ST)|[30] Phospho

(ST)'

peptideSeq peptide sequence proteinSeq protein sequence

Details

NA

Value

vector of protein coordinates (mmodification residue number)

Note

No note

References

NA

Examples

```
print("No examples")
```

getMotifX

Create motif-x peptide annotation

Description

Create motif-x peptide annotation

Usage

```
getMotifX(modifPos, peptide, proteinSeq, motifLength = 4)
```

Arguments

modifPos vector positions
peptide peptide sequence
proteinSeq protein sequence

motifLength motif flanking sequence

Details

motif-x example PGDYS*TTPG

Value

vector of motifs

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt getNbDetectablePeptides}$

Get number peptides passing defined length criteria

Description

Get number peptides passing defined length criteria

Usage

```
getNbDetectablePeptides(peptides, peptideLength = c(5, 36))
```

Arguments

peptides list of peptides

vector of two integers defining peptide length range

Details

No details

Value

integer corresponding to number of detectable peptides

Note

No note

```
print("No examples")
```

getNbMisCleavages 21

getNbMisCleavages

Get number of mis-cleavages perp peptide

Description

Get number of mis-cleavages perp peptide

Usage

```
getNbMisCleavages(peptide, protease = "trypsin")
```

Arguments

peptide character vector protease regular expression

Details

NA

Value

vector ofintegers

Note

No note

References

NA

Examples

```
print("No examples")
```

```
getNbPeptidesPerProtein
```

Get number of peptides per protein

Description

Get number of peptides per protein

Usage

```
getNbPeptidesPerProtein(eset)
```

Arguments

eset

Expression Set

22 getPeptides

Details

NA

Value

table

Note

No note

References

NA

Examples

```
print("No examples")
```

getPeptides

Digest protein

Description

Digest protein

Usage

```
getPeptides(proteinSeq, proteaseRegExp = .getProteaseRegExp("trypsin"), nbMiscleavages = 0)
```

Arguments

proteinSeq

protein sequence

Details

No details

Value

vector of peptides

Note

No note

```
print("No examples")
```

getRatios 23

getRatios

Calculate ratios, comparing all case to control

Description

Calculate ratios, comparing all case to control

Usage

```
getRatios(eset, method = "median", log2 = T)
```

Arguments

eset ExpressionSet method median or mean

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt getRTNormFactors}$

Get retentiontime base normalization factors

Description

Get retentiontime base normalization factors

Usage

```
getRTNormFactors(eset, minFeaturesPerBin = 100)
```

24 getScoreCutOff

Arguments

eset ExpressionSet

minFeaturesPerBin

minumum number of features per bin. If nb. features are < minFeaturesPerBin -> include neighbouring bins.

Details

No details

Value

data.frame normalization factors per retention time bin (minute)

Note

No note

References

In Silico Instrumental Response Correction Improves Precision of Label-free Proteomics and Accuracy of Proteomics-based Predictive Models, Lyutvinskiy et al. (2013), http://www.ncbi.nlm.nih.gov/pubmed/23589346

Examples

```
print("No examples")
```

getScoreCutOff

Get score cutoff for a given fdr cut-off

Description

Get score cutoff for a given fdr cut-off

Usage

```
getScoreCutOff(scores, isDecoy, fdrCutOff = 0.01)
```

Arguments

scores peptide/protein identficationscore

isDecoy vector of TRUE/FALSE

fdrCutOff [0,1]

Details

NA

Value

scoreCutoff

getSignalPerCondition 25

Note

No note

References

NA

Examples

```
print("No examples")
```

getSignalPerCondition Summarize replicate signal per condition (min)

Description

Summarize replicate signal per condition (min)

Usage

```
getSignalPerCondition(eset, method = "median")
```

Arguments

method median (default), mean, max, min, sd data data.frame of replicate signals

Details

No details

Value

data.frame of per condition signals

Note

No note

References

NA

```
print("No examples")
```

26 getTopX

get]	「へっV
26.	100

Roll up feature intensites per unique colum combination

Description

Roll up feature intensites per unique colum combination

Usage

```
getTopX(entryData, topX = 3)
```

Arguments

entryData data.frame listing feature intensities of one entry Typically rows corresponds to

Peptide entries of one protein

 $\begin{array}{ll} \mathsf{topX} & \mathsf{best} \ \mathsf{X} \ \mathsf{flyers} \\ \mathsf{eset} & \mathsf{ExpressionSet} \end{array}$

featureDataColumnName

vector of column names e.g. peptide or proteinName

method "sum", "mean" or "top3"

isProgressBar TRUE/FALSE display progress bar

Details

 $feature Data Column Name = c("peptide", "charge", "ptm"), \ method = c("sum"), \ sums \ up \ intensities per peptie modification charge state$

Value

ExpressionSet object

vector of topX intensities per column (sample)

Note

No note

No note

References

No references

Absolute quantification of proteins by LCMSE: A virtue of parallel MS acquisition, Silva (2006), http://www.ncbi.nlm.nih.gov/pubmed/16219938, Critical assessment of proteome-wide label-free absolute abundance estimation strategies. Ahrne (2013), http://www.ncbi.nlm.nih.gov/pubmed/23794183

See Also

topX

getUserOptions 27

Examples

```
print("No examples")
Calculate Mean of X most intense features
```

getUserOptions

Read User Specified Command Line Options

Description

Read User Specified Command Line Options

Usage

```
getUserOptions(version = version)
```

Arguments

version

Safequant version number

Details

No details

Value

user options list

Note

No note

References

NA

```
print("No examples")
```

28 globalNormalize

globalNormalize	Normalize, Norm factors calculated as median signal per run (col- umn) over median of first run.
	unit) over median of first run.

Description

Normalize, Norm factors calculated as median signal per run (column) over median of first run.

Usage

```
globalNormalize(eset, globalNormFactors)
```

Arguments

eset

Expression Set

Details

No details

Value

eset ExpressionSet

Note

No note

References

NA

See Also

getGlobalNormFactors

```
print("No examples")
```

hClustHeatMap 29

hClustHeatMap	Hierarchical clustering heat map, cluster by runs intensity, features by
	ratio and display log2 ratios to control median

Description

Hierarchical clustering heat map, cluster by runs intensity, features by ratio and display log2 ratios to control median

Usage

```
hClustHeatMap(eset, conditionColors = .getConditionColors(eset),
  breaks = seq(-2, 2, length = 20), ...)
```

Arguments

```
 \begin{array}{ccc} \text{eset} & \text{ExpressionSet} \\ \text{conditionColors} & \\ & \text{data.frame of colors per condition} \end{array}
```

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

isCon

Check if protein is a contaminant entry

Description

Check if protein is a contaminant entry

Usage

```
isCon(ac)
```

Arguments

ac

vector of protein accession numbers

isDecoy

Details

contanminants proteins are typically annotated as: CON_P0000

Value

vector TRUE/FALSE

Note

No note

References

NA

Examples

```
print("No examples")
```

isDecoy

Check if protein is a decoy entry

Description

Check if protein is a decoy entry

Usage

isDecoy(ac)

Arguments

ac

vector of protein accession numbers

Details

decoy proteins are typically annotated as: REV_P0000

Value

vector TRUE/FALSE

Note

No note

References

NA

```
print("No examples")
```

isStrippedACs 31

 $is {\tt StrippedACs}$

Check if ACs are in "non-stripped" uniprot format e.g. "sp\Q8CHJ2\AQP12_MOUSE"

Description

Check if ACs are in "non-stripped" uniprot format e.g. "splQ8CHJ2|AQP12_MOUSE"

Usage

```
isStrippedACs(acs)
```

Arguments

acs

accession numbers

Details

TRUE if less than 10

Value

boolean TRUE/FALSE

Note

No note

References

NA

Examples

```
print("No examples")
```

missinValueBarplot

Plot Percentage of Features with with missing values

Description

Plot Percentage of Features with with missing values

Usage

```
missinValueBarplot(eset,
  col = as.character(.getConditionColors(eset)[pData(eset)$condition, ]),
  cex.axis = 1.25, cex.lab = 1.25, ...)
```

32 pairsAnnot

Arguments

eset

Expression Set

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

pairsAnnot

Plot lower triangle Pearsons R². Diagonal text, upper triangle all against all scatter plots with lm abline

Description

Plot lower triangle Pearsons R^2. Diagonal text, upper triangle all against all scatter plots with lm abline

Usage

```
pairsAnnot(data, textCol = rep(1, ncol(data)), diagText = c(),
col = rgb(0, 100, 0, 50, maxColorValue = 255), ...)
```

Arguments

data

data.frame

Details

No details

Note

No note

References

NA

```
print("No examples")
```

 $\verb"parseMaxQuantProteinGroupTxt"$

Parse MaxQuant Protein Group Txt

Description

Parse MaxQuant Protein Group Txt

Usage

```
parseMaxQuantProteinGroupTxt(file = file, expDesign = expDesign,
  method = "auc")
```

Arguments

file path to MaxQuant Protein txt file expDesign experimental design data.frame

method auc (area under curve) or spc (spectral count)

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

```
print("No examples")
```

 ${\tt parseProgenesisFeatureCsv}$

Parse Progenesis Feature Csv Export

Description

Parse Progenesis Feature Csv Export

Usage

```
parseProgenesisFeatureCsv(file = file,
  expDesign = getExpDesignProgenesisCsv(file), method = "auc")
```

Arguments

file path to Progenesis Feature csv file expDesign experimental design data.frame

method auc (area under curve) or spc (spectral count)

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

```
print("No examples")
```

parse Progenesis Peptide Measurement Csv

Parse Progenesis Peptide Measurement Csv Export

Description

Parse Progenesis Peptide Measurement Csv Export

Usage

```
parseProgenesisPeptideMeasurementCsv(file, expDesign = expDesign,
  method = "auc",
  expressionColIndices = .getProgenesisCsvExpressionColIndices(file, method =
  method))
```

Arguments

file path to Progenesis Peptide Measurement csv file

expDesign experimental design data.frame

method auc (area under curve) or spc (spectral count)

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

```
print("No examples")
```

 ${\tt parseProgenesisProteinCsv}$

Parse Progenesis Protein Csv

Description

Parse Progenesis Protein Csv

Usage

```
parseProgenesisProteinCsv(file = file, expDesign = expDesign,
  method = "auc")
```

Arguments

file path to Progenesis Protein csv file expDesign experimental design data.frame

method auc (area under curve) or spc (spectral count)

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

```
print("No examples")
```

parseScaffoldRawFile 37

```
parseScaffoldRawFile Parse scaffold output .xls file (RAW export)
```

Description

Parse scaffold output .xls file (RAW export)

Usage

```
parseScaffoldRawFile(fileName, expDesign = expDesign,
  keepFirstAcOnly = FALSE, isPurityCorrect = T)
```

Arguments

expDesign experimental design data.frame

keepFirstAcOnly

TRUE/FALSE If multiple ACs in Accession. Numbers filed. Then keep the first

one only

file path to Scaffold file

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

```
print("No examples")
```

perFeatureNormalization

Per Feature Normalization

Description

Per Feature Normalization

Usage

```
perFeatureNormalization(eset, normFactors)
```

Arguments

eset ExpressionSet

matrix normalization factors (logged) (row names are proteins)

Details

Example Usage: Normalize phospho peptide signals for Protein Changes

Value

ExpressionSet object

Note

No note

References

No references

See Also

topX

```
print("No examples")
```

```
plotAbsEstCalibrationCurve
```

Plot absolut Estimation calibration Curve

Description

Plot absolut Estimation calibration Curve

Usage

```
plotAbsEstCalibrationCurve(fit, dispElements = c("formula", "lowess",
   "stats"), xlab = "Conc. (CPC) ", ylab = "Pred. Conc. (CPC) ",
   predictorName = paste("log10(", names(coef(fit))[2], ")", sep = ""),
   text = F, cex.lab = 1, cex.axis = 1, cex.text = 1, cex.dot = 1, ...,
   main = "")
```

Arguments

```
fit simple log-linear model
dispElements c("formula","lowess","stats")
cex.lab= expansion factor for axis labels
cex.axis= expansion factor for axis
cex.text= expansion factor for legend
cex.dot= expansion factor for plotted dots
```

Note

No note

References

NA

Examples

```
print("No examples")
```

plotExpDesign

Display experimental design, high-lighting the control condition

Description

Display experimental design, high-lighting the control condition

```
plotExpDesign(eset, condColors = .getConditionColors(eset), version = "X")
```

40 plotIdScoreVsFDR

Arguments

eset

Expression Set

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

plotIdScoreVsFDR

Plot FDR vs. identification score

Description

Plot FDR vs. identification score

Usage

```
plotIdScoreVsFDR(idScore, qvals, qvalueThrs = 0.01,
  ylab = "False Discovery Rate", xlab = "Identification Score", lwd = 1.5,
  ...)
```

Arguments

idScore vector of identification scores

qvals vector of q-valres

qvalueThrs threshold indicated by horizontal line

Details

No details

Note

No note

References

NA

```
print("No examples")
```

plotMSSignalDistributions

Plot ms.signal distributions

Description

Plot ms.signal distributions

Usage

```
plotMSSignalDistributions(d, col = 1:100, cex.axis = 1, cex.lab = 1,
  ylab = "Frequnecy", xlab = "MS-Signal", ...)
```

Arguments

matrix matrix of ms-signals

color color

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

plotNbIdentificationsVsRT

Plot the number of identified Features per Reteintion Time minute.

Description

Plot the number of identified Features per Reteintion Time minute.

Usage

```
plotNbIdentificationsVsRT(eset, cex.axis = 1.25, cex.lab = 1.25,
  col = "blue", lwd = 2, ...)
```

Arguments

eset

ExpressionSet

Note

No note

References

NA

Examples

```
print("No examples")
```

plotNbValidDeFeaturesPerFDR

Plot Total Number of diffrentially Abundant Features (applying ratio cutoff) vs. qValue/pValue for all conditions

Description

Plot Total Number of diffrentially Abundant Features (applying ratio cutoff) vs. qValue/pValue for all conditions

Usage

```
plotNbValidDeFeaturesPerFDR(sqa, upRegulated = T, log2RatioCufOff = log2(1), pvalRange = c(0, 0.3), pvalCutOff = 1, isLegend = T, isAdjusted = T, ylab = "Nb. Features", ...)
```

Arguments

sqa SafeQuantAnalysis Object

upRegulated TRUE/FALSE select for upregulated features

log2RatioCufOff

log2 ratio cut-off

pvalRange pValue/qValue range
pvalCutOff pValue/qValue cut-off

isLegend TRUE/FALSE display legend

isAdjusted TRUE/FALSE qValues/pValue on x-axis

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

plotPrecMassErrorDistrib

Plot Precursor Mass Error Distribution

Description

Plot Precursor Mass Error Distribution

Usage

```
plotPrecMassErrorDistrib(eset, pMassTolWindow = c(-10, 10), ...)
```

Arguments

```
eset ExpressionSet
pMassTolWindow Precursor Mass Error Tolerance Window
```

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

plotPrecMassErrorVsScore

Plot precursorMass error v.s score highlighting decoy and displaying user specified user specified precursor mass filter

Description

Plot precursorMass error v.s score highlighting decoy and displaying user specified user specified precursor mass filter

```
plotPrecMassErrorVsScore(eset, pMassTolWindow = c(-10, 10), ...)
```

44 plotROC

Arguments

eset ExpressionSet

pMassTolWindow Precursor Mass Error Tolerance Window

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

plotROC

Plot Number of Identifications vs. FDR

Description

Plot Number of Identifications vs. FDR

Usage

```
plotROC(qvals, qvalueThrs = 0.01, xlab = "False Discovery Rate",
  ylab = "# Valid Identifications", xlim = c(0, 0.1), breaks = 100,
  col = "blue", lwd = 1.5, ...)
```

Arguments

qvals vector of q-values

qvalueThrs threshold indicated by vertical line

breaks see breaks for hist function

Details

No details

Note

No note

References

NA

plotRTNorm 45

Examples

```
print("No examples")
```

plotRTNorm

Plot all retention time profile overalying ratios

Description

Plot all retention time profile overalying ratios

Usage

```
plotRTNorm(rtNormFactors, eset, samples = 1:ncol(rtNormFactors), main = "",
...)
```

Arguments

rtNormFactors data.frame of normalization factor per r.t bin and sample, obtained by getRT-

NormFactors

eset ExprsssionSet

samples specify samples (sample numbers) to be plotted

Details

No details

Note

No note

References

In Silico Instrumental Response Correction Improves Precision of Label-free Proteomics and Accuracy of Proteomics-based Predictive Models, Lyutvinskiy et al. (2013), http://www.ncbi.nlm.nih.gov/pubmed/23589346

See Also

```
getRTNormFactors
```

```
print("No examples")
```

plotRTNormSummary

Plot all retention time normalization profiles

Description

Plot all retention time normalization profiles

Usage

```
plotRTNormSummary(eset,
  col = as.character(.getConditionColors(eset)[pData(eset)$condition, 1]),
  ...)
```

Arguments

rtNormFactors data.frame of normalization factor per r.t bin and sample, obtained by getRT-

NormFactors

condNames vector of condition names

Details

No details

Note

No note

References

In Silico Instrumental Response Correction Improves Precision of Label-free Proteomics and Accuracy of Proteomics-based Predictive Models, Lyutvinskiy et al. (2013), http://www.ncbi.nlm.nih.gov/pubmed/23589346

See Also

```
{\tt getRTNormFactors}
```

```
print("No examples")
```

plotScoreDistrib 47

plotScoreDistrib

Plot identifications target decoy distribution

Description

Plot identifications target decoy distribution

Usage

```
plotScoreDistrib(targetScores, decoyScores, xlab = "Identification Score",
  ylab = "Counts", ...)
```

Arguments

targetScores
decoyScores

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

plotVolcano

Plots volcano, data points colored by max cv of the 2 compared conditions

Description

Plots volcano, data points colored by max cv of the 2 compared conditions

```
plotVolcano(obj, ratioThrs = 1, pValueThreshold = 0.01, adjusted = T, ...)
```

48 plotXYDensity

Arguments

Details

data.frame input object should contain 3 columns (ratio,qValue,cv)

Note

No note

References

NA

Examples

```
print("No examples")
```

plotXYDensity

Scatter plot with density coloring

Description

Scatter plot with density coloring

Usage

```
plotXYDensity(x, y, isFitLm = T, legendPos = "bottomright",
  disp = c("abline", "R", "Rc"), ...)
```

Arguments

x number vector y number vector

Note

No note

References

NA

```
print("No examples")
```

```
print.safeQuantAnalysis
```

Print content of safeQuantAnalysis object

Description

Print content of safeQuantAnalysis object

Usage

```
## S3 method for class 'safeQuantAnalysis'
print(sqa)
```

Arguments

sqa

safeQuantAnalysis object

Details

NA

Note

No note

References

NA

See Also

```
safeQuantAnalysis
```

Examples

```
print("No examples")
```

 $\verb"purityCorrectTMT"$

Correct channel intensities based on Reporter ion Isotopic Distributions

Description

Correct channel intensities based on Reporter ion Isotopic Distributions

```
purityCorrectTMT(tmtData, impurityMatrix = impurityMatrix,
  invalidReplace = "allNA")
```

50 removeOutliers

Arguments

tmtData data.frame containing tmt channel intensities

method to deal with NA and negative values c("","allZero","allNA","allOrg")

Details

Same method as MSnbase, and described in Breitwieser et al. 2012 (Book Chapter)

Value

data.frame of corrected tmt intensities

Note

No note

References

NA

Examples

```
print("No examples")
```

removeOutliers

Set value to NA if it deviatves with more than 1.5 * IQR from lower/upper quantile

Description

Set value to NA if it deviatives with more than 1.5 * IQR from lower/upper quantile

Usage

```
removeOutliers(x, na.rm = TRUE, ...)
```

Arguments

vector numeric

a logical indicating whether missing values should be removed.

Details

No details

Value

vector numeric

Note

No note

rollUp 51

References

NA

See Also

NA

Examples

```
print("No examples")
```

rollUp

Roll up feature intensites per unique colum combination

Description

Roll up feature intensites per unique colum combination

Usage

```
rollUp(eset, method = "sum", featureDataColumnName = c("proteinName"))
```

Arguments

```
eset ExpressionSet
```

method "sum", "mean" or "top3"

 $feature {\tt DataColumnName}$

vector of column names e.g. peptide or proteinName

Details

 $feature Data Column Name = c("peptide", "charge", "ptm"), \ method = c("sum"), \ sums \ up \ intensities per peptie modification charge state$

Value

ExpressionSet object

Note

No note

References

No references

See Also

topX

```
print("No examples")
```

52 rtNormalize

rtNormalize

Normalization data per retention time bin

Description

Normalization data per retention time bin

Usage

```
rtNormalize(eset, rtNormFactors)
```

Arguments

eset ExpressionSet

rtNormFactors obtained using getRTNormFactors

Details

Normalize for variations in elelctrospray ionization current.

Value

data.frame normalization factors per retention time bin (minute)

Note

No note

References

In Silico Instrumental Response Correction Improves Precision of Label-free Proteomics and Accuracy of Proteomics-based Predictive Models, Lyutvinskiy et al. (2013), http://www.ncbi.nlm.nih.gov/pubmed/23589346

See Also

```
{\tt getRTNormFactors}
```

```
print("No examples")
```

```
{\tt setNbPeptidesPerProtein}
```

Set nbPeptides coulmn of featureData

Description

Set nbPeptides coulmn of featureData

Usage

```
setNbPeptidesPerProtein(eset)
```

Arguments

eset

Expression Set

Details

NA

Value

eset

Note

No note

References

NA

Examples

```
print("No examples")
```

sqNormalize

Normalize

Description

Normalize

Usage

```
sqNormalize(eset, method = "global")
```

Arguments

 $\begin{array}{ll} \text{eset} & \text{ExpressionSet} \\ \text{method} & \text{c("global","rt")} \end{array}$

54 stripACs

Details

No details

Value

eset ExpressionSet

Note

No note

References

NA

See Also

getGlobalNormFactors, getRTNormFactors

Examples

```
print("No examples")
```

stripACs

 $strip\ uniprot\ format\ e.g.\ "sp|Q8CHJ2|AQP12_MOUSE" -> Q8CHJ2$

Description

```
strip uniprot format e.g. "splQ8CHJ2|AQP12_MOUSE" -> Q8CHJ2
```

Usage

stripACs(acs)

Arguments

acs

accession numbers

Details

TRUE if less than 10

Value

vector character

Note

No note

References

NA

stripACs 55

Examples

print("No examples")

Index

*Topic normalization	globalNormalize, 28
<pre>getGlobalNormFactors, 13 getLoocvFoldError, 17</pre>	hClustHeatMap, 29
globalNormalize, 28	
removeOutliers, 50	isCon, 29
sqNormalize, 53	isDecoy, 30
	isStrippedACs, 31
addIdQvalues, 3	missinValueBarplot, 31
barplotMSSignal, 3	pairsAnnot, 32
createCalibrationCurve, 4	parseMaxQuantProteinGroupTxt, 33
	parseProgenesisFeatureCsv, 34
createExpDesign, 5	parseProgenesisPeptideMeasurementCsv,
createExpressionDataset, 6	35
cvBoxplot, 7	
eBayes, <i>10</i>	<pre>parseProgenesisProteinCsv, 36 parseScaffoldRawFile, 37</pre>
expDesignTagToExpDesign, 7	perFeatureNormalization, 38
export.safeQuantAnalysis, 8	plotAbsEstCalibrationCurve, 39
ExpressionSet, 6, 33–37	plotExpDesign, 39
	plotIdScoreVsFDR, 40
getAllCV, 9	plotMSSignalDistributions, 41
getAllEBayes, 10	plotNbIdentificationsVsRT, 41
<pre>getBaselineIntensity, 11</pre>	plotNbValidDeFeaturesPerFDR, 42
getCV, 9, 11	plotPrecMassErrorDistrib, 43
<pre>getExpDesignProgenesisCsv, 12</pre>	plotPrecMassErrorVsScore, 43
getGlobalNormFactors, 13	plotROC, 44
getIBAQEset, 13	plotRTNorm, 45
getIdLevelQvals, 3, 14	plotRTNormSummary, 46
<pre>getImpuritiesMatrix, 15</pre>	plotScoreDistrib, 47
getIntSumPerProtein, 16	plotVolcano, 47
getLoocvFoldError, 17	plotXYDensity, 48
getMeanCenteredRange, 18	print.safeQuantAnalysis, 49
getModifProteinCoordinates, 18	purityCorrectTMT, 49
getMotifX, 19	pur reycorrecerrin, 17
<pre>getNbDetectablePeptides, 20</pre>	removeOutliers,50
<pre>getNbMisCleavages, 21</pre>	rollUp, 51
getNbPeptidesPerProtein, 21	rtNormalize, 52
getPeptides, 22	
getRatios, 23	safeQuantAnalysis, 9, 49
getRTNormFactors, 23, 45, 46, 52	setNbPeptidesPerProtein, 53
getScoreCutOff, 24	sqNormalize,53
getSignalPerCondition, 25	stripACs,54
getTopX, 26	
getUserOptions, 27	topX, 26, 38, 51