

Outline

• Chapter 3.1 Classical Lattice Vibrations (晶格振动的经典理论)

• Chapter 3.2 Phonons (声子)

• Chapter 3.3 Phonon Heat Capacity (声子热容)

• Chapter 3.4 Anharmonicity (非谐效应)

Objectives

> To learn the concept of **normal coordinates.**

> To understand the concept of **phonon** and its physical significance.

> To learn typical quasi-particles.

Normal Coordinates (简正坐标)

- ➤ Normal Coordinates (简正坐标)
 - * We consider a 3D lattice with N atoms. The equilibrium positions of the atoms are R_n , and their displacements from the equilibrium positions at time t are $u_n(t)$ $(n = 1, 2, \dots, 3N)$.

➤ Normal Coordinates (简正坐标)

❖ The interatomic potential energy **V** of the lattice can be expanded about the equilibrium positions in terms of **Taylor series** (泰勒级数):

$$V = V_0 + \sum_{j=1}^{3N} \left(\frac{\partial V}{\partial u_j} \right)_0 u_j + \frac{1}{2} \sum_{i,j=1}^{3N} \left(\frac{\partial^2 V}{\partial u_i \partial u_j} \right)_0 u_i u_j + \cdots$$

Note that
$$\left(\frac{\partial V}{\partial u_j}\right)_0 = 0$$
.

- ➤ Normal Coordinates (简正坐标)
 - \diamond In the harmonic approximation, the potential energy V of the lattice reads:

$$V = \frac{1}{2} \sum_{i,j=1}^{3N} \left(\frac{\partial^2 V}{\partial u_i \partial u_j} \right)_0 u_i u_j$$

The kinetic energy **T** of the lattice can be expressed as:

$$T = \frac{1}{2} \sum_{j=1}^{3N} m_j \, \dot{u}_j^2$$

➤ Normal Coordinates (简正坐标)

❖ To simplify the forms of V and T, we introduce **normal coordinates** $Q_1, Q_2, Q_3, \cdots, Q_{3N}$ that are connected with $u_1, u_2, u_3, \cdots, u_{3N}$ by an **orthogonal transformation** (正交变换):

$$\sqrt{m_i}u_i = \sum_{j=1}^{3N} a_{ij}Q_j$$

➤ Normal Coordinates (简正坐标)

� We can always find a set of a_{ij} such that V and T are both diagonalized (对角化):

$$T = \frac{1}{2} \sum_{j=1}^{3N} \dot{Q}_j^2 \qquad V = \frac{1}{2} \sum_{j=1}^{3N} \omega_j^2 Q_j^2$$

- ➤ Normal Coordinates (简正坐标)
 - ❖ The **generalized momenta** (广义动量) can be obtained as:

$$P_j = \frac{\partial L}{\partial \dot{Q}_j} = \dot{Q}_j$$

Here L = T - V denotes the **Lagrangian** (拉格朗日量) of the system.

- ➤ Normal Coordinates (简正坐标)
 - ❖ Thus, the **Hamiltonian** (哈密顿量) of the system reads:

$$H = T + V = \frac{1}{2} \sum_{j=1}^{3N} (P_j^2 + \omega_j^2 Q_j^2)$$

➤ Normal Coordinates (简正坐标)

The equations of motion can be obtained through $\dot{P}_j = -\frac{\partial H}{\partial Q_j}$. Thus, we can obtain 3N independent equations of motion:

$$\ddot{Q}_j + \omega_i^2 Q_j = 0 \qquad j = 1, 2, \cdots, 3N$$

The solutions:
$$Q_j = A_j e^{i(\omega_j t + \varphi)}$$

❖ The normal coordinates describe independent harmonic oscillations (独立简谐振动)!

- ➤ Normal Coordinates (简正坐标)
 - \diamond The lattice displacements u_n can be expressed in terms of the normal coordinates as:

$$u_n = \sum_{j=1}^{3N} \frac{a_{nj}}{\sqrt{m_n}} Q_j$$

❖ Thus, Q_j essentially represents a **vibration mode** (振动模) of the lattice vibrations!

The number of vibration modes is equal to the degrees of freedom!

- ➤ Normal Coordinates (简正坐标)
 - **The case of a 1D monoatomic chain:**

$$u_n = \sum_{q} u_{nq} = \sum_{q} A_q e^{i(\omega_q t - naq)}$$

- ➤ Normal Coordinates (简正坐标)
 - **The case of a 1D monoatomic chain:**

$$u_n = \sum_{q} u_{nq} = \sum_{q} A_q e^{i(\omega_q t - naq)}$$

The lattice displacements can also be expressed in terms of normal modes as:

$$u_n = \frac{1}{\sqrt{Nm}} \sum_{q} Q_q e^{-inaq}$$

$$Q_q = \sqrt{Nm} A_q e^{i\omega_q t}$$

- ➤ Normal Coordinates (简正坐标)
 - **The case of a 1D monoatomic chain:**

$$\sqrt{m_n}u_n = \sum_q a_{nq}Q_q$$

$$a_{nq} = \frac{1}{\sqrt{N}} e^{-inaq}$$

❖ The normal coordinates Q_q represent the **discrete Fourier transform (离散傅里叶变换)** of the lattice displacements u_n !

- ➤ Normal Coordinates (简正坐标)
 - **The case of a 1D monoatomic chain:**

The normal coordinates $oldsymbol{Q}_{oldsymbol{q}}$ require:

$$Q_q^* = Q_{-q}$$

$$\frac{1}{N} \sum_{n=0}^{N-1} e^{ina(q-q')} = \delta_{qq'}$$

Quantization of Lattice Vibrations (晶格振动的量子化)

- ➤ Quantization of Lattice Vibrations (晶格振动的量子化)
 - ❖ The Hamiltonian of the lattice vibrations expressed in terms of **normal coordinates** (简正坐标) and **generalized momenta** (广义动量) reads:

$$H = \frac{1}{2} \sum_{j=1}^{3N} (P_j^2 + \omega_j^2 Q_j^2)$$

Note that this represents the Hamiltonian of 3N independent harmonic oscillators (3N个独立谐振子)!

- ➤ Quantization of Lattice Vibrations (晶格振动的量子化)
 - The stationary Schrodinger equation reads:

$$\widehat{H}\psi = E\psi$$

Here, $\widehat{H} = \frac{1}{2} \sum_{j=1}^{3N} (\widehat{P}_j^2 + \omega_j^2 \widehat{Q}_j^2)$ denotes the **Hamiltonian operator (哈密顿量算符)**.

- ➤ Quantization of Lattice Vibrations (晶格振动的量子化)
 - The solutions to the Schrodinger equation:

$$\psi_{n_q}$$
 $E_{n_q} = \left(n_q + \frac{1}{2}\right)\hbar\omega_q$ $n_q = 0, 1, 2, 3, \cdots$

 n_q represents the number of phonons at stationary state $oldsymbol{\psi}_{n_q}.$

➤ Phonons (声子)

❖ A phonon represents a quantum of lattice vibrations (晶格振动的量子).

➤ Phonons (声子)

- ❖ A phonon represents a quantum of lattice vibrations (晶格振动的量子).
 - Phonons can be regarded as quasi-particles (准粒子);
 - The **energy** of a phonon is $\hbar \omega_q$;
 - The **quasi-momentum** (准动量) of a phonon is ħ**q**;
 - Phonon belongs to **Bosons** (玻色子) and obeys **Bose-Einstein Statistics** (玻色-爱因斯坦统计):

$$\langle n \rangle = \frac{1}{\mathrm{e}^{\hbar \omega/k_{\mathrm{B}}T} - 1}$$

- ➤ Phonons (声子)
 - ❖ A phonon represents a quantum of lattice vibrations (晶格振动的量子).

$$\langle n \rangle = rac{1}{\mathrm{e}^{\hbar \omega/k_{\mathrm{B}}T} - 1}$$

➤ Phonons (声子)

- * Experimental probe of phonon dispersion:
 - Far-Infrared Spectroscopy (远红外光谱)
 - Infrared Spectroscopy (红外光谱)
 - Raman Spectroscopy (拉曼光谱)
 - Brillouin Spectroscopy (布里渊散射谱)
 - Diffuse X-Ray Scattering (X射线漫散射)
 - Inelastic Neutron Scattering (非弹性中子散射)
 - Inelastic Electron Tunneling Spectroscopy (非弹性电子隧道谱)
 - Ultrasonic Methods (超声技术)

➤ Phonons (声子)

* Experimental probe of phonon dispersion:

$$\frac{p'^2}{2M} - \frac{p^2}{2M} = \pm \hbar \omega_q$$

Conservation of Momentum (动量守恒):
$$p'-p=\pm\hbar q+\hbar G_n$$

➤ Phonons (声子)

* Experimental probe of phonon dispersion:

Inelastic Neutron Scattering (非弹性中子散射)

- ➤ Phonons (声子)
 - **Experimental probe of phonon dispersion:**

China Spallation Neutron Source (CSNS 中国散裂中子源,广东东莞, 2018年8月23日正式投入运行)

Quasi-particles (准粒子)

- ➤ Quasi-particles (准粒子)
 - ❖ Quasi-particles, also called **elementary excitations** (元激发), are the **quanta of the low-lying excited states** (低能激发态的量子) of a solid- or condensed-state system.
 - ❖ Quasi-particles can be either single excitations (单激发) or collective excitations (集体激发).
 - Quasi-particles have a definite energy, and sometimes a definite quasi-momentum.

➤ Quasi-particles (准粒子)

Some important quasi-particles in solids:

	<u> </u>	
Quasiparticle	Field	Туре
Electron/Hole Quasiparticle	Free Electron + Coulomb Interactions	Fermion
电子/空穴准粒子	自由电子 + 库伦相互作用	费米子
Phonon	Lattice Wave	Boson
声子	格波	玻色子
Polaron	Electron/Hole + Phonon "Cloud" (Lattice Distortion)	Fermion
极化子	电子/空穴 + 声子"云" (晶格畸变)	费米子
Exciton	Electron + Hole	Boson
激子	电子 + 空穴	玻色子
Plasmon	Collective Electron Wave	Boson
等离激元	集体电子波	玻色子
Magnon	Spin Wave	Boson
磁子	自旋波	玻色子
Polariton	Photon + Phonon/Exciton/Plasmon/Magnon	Boson
极化激元	光子 + 声子/激子/等离激元/磁子	玻色子

- ➤ Quasi-particles (准粒子)
 - ❖ Interactions between particles and/or quasiparticles (粒子或准粒子之间的相互作用):

➤ Quasi-particles (准粒子)

❖ Electron/Hole Quasiparticle (电子/空穴准粒子):

- Electron/hole quasiparticles are charged quasiparticles travelling in solids.
- The **effective mass** (有效质量) of an electron/hole is determined by its energy dispersion E(k):

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial k^2}$$

$$m^* \neq m_0$$

 m_0 denotes the mass of free electron.

- ➤ Quasi-particles (准粒子)
 - ❖ Polaron (极化子):
 - A polaron is an electron/hole surrounded by phonon cloud as a result of electron-phonon coupling

➤ Quasi-particles (准粒子)

- ❖ Polaron (极化子):
 - A polaron is a **self-trapped state** (自陷态) of an electron/hole. Dynamically, the electron/hole and the induced lattice distortion move as a whole.

- ➤ Quasi-particles (准粒子)
 - ❖ Exciton (激子):
 - An exciton is an electron-hole pair (电子-空穴对) combined by Coulomb attraction.

Wannier-Mott Exciton (瓦尼尔-莫特激子)

Frenkel Exciton (弗伦克尔激子)

STATIONG UNIVERSITY

- ➤ Quasi-particles (准粒子)
 - ❖ Plasmon (等离激元):
 - A plasmon is a quantum of plasma oscillation (等离子体振荡量子).

- ➤ Quasi-particles (准粒子)
 - ❖ Magnon (磁子):
 - A magnon is a quantum of spin wave (自旋波量子).

➤ Quasi-particles (准粒子)

❖ Polariton (极化激元):

In general, polaritons are quasiparticles resulting from strong coupling of electromagnetic waves
 (photons) with an electric or magnetic dipole-carrying excitation, such as:

- 1) phonon-polariton (photon + optical phonon 声子极化激元)
- 2) exciton-polariton (photon + exciton 激子极化激元)
- 3) plasmon-polariton (photon + plasmon 等离极化激元)
- 4) magnon-polariton (photon + magnon 磁子极化激元)

➤ Quasi-particles (准粒子)

- ❖ Phonon-Polariton (声子极化激元):
 - Phonon-polaritons result from strong coupling of **infrared electromagnetic waves (红外电磁波)** with **optical phonons in ionic crystals (离子晶体的光**学声子).

Phonon Spectrum of NaCl Crystal

Dispersion Relation of Phonon-Polariton

➤ Quasi-particles (准粒子)

- ❖ Phonon-Polariton (声子极化激元):
- Phonon-polaritons result from strong coupling of **infrared electromagnetic waves (**红外电磁波) with **optical phonons in ionic crystals (**离子晶体的光学声子).

Lyddane-Sachs-Teller (LST) relation:

$$\frac{\omega_{\rm L0}^2}{\omega_{\rm T0}^2} = \frac{\varepsilon_0}{\varepsilon_{\infty}}$$

Electromagnetic waves with $\omega_{TO} < \omega < \omega_{LO}$ cannot travel in the ionic crystals!

Dispersion Relation of Phonon-Polariton

STATE ONG UNIVERSITY

- ➤ Quasi-particles (准粒子)
 - ❖ Phonon-Polariton (声子极化激元):

黄昆(1919-2005)
著名物理学家
中国固体物理和半导体物理奠基人之一
"声子极化激元"概念的提出者 (1951年)

年轻时的黄昆

与夫人李爱扶 (Avril Rhys)

合作导师Max Born

M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford, 1954).

Summary (总结)

➤ Summary (总结)

❖ Normal Coordinates

Phonon:

A quantum of lattice vibrations.

***** Quasi-particles:

- 1) Electron/hole quasiparticles
- 2) Polaron
- 3) Exciton 4) Plasmon
- 5) Magnon 6) Polariton

Chapter 3.2: 课后作业

考虑一维量子谐振子
$$\hat{H} = \frac{1}{2m}\hat{p}^2 + \frac{1}{2}m\omega^2\hat{x}^2$$
,

证明:

1)
$$[\hat{a}, \hat{a}^+] = 1$$

2)
$$[\hat{a}^{+}\hat{a}, \hat{a}^{+}] = \hat{a}^{+}$$

3)
$$[\hat{a}^+\hat{a}, \hat{a}] = -\hat{a}$$

4)
$$\widehat{H} = \hbar\omega \left(\widehat{a}^{+}\widehat{a} + \frac{1}{2}\right)$$

提交时间: 3月17日之前

提交方式:手写(写明姓名学号)后拍照,通过本班课代表统一提交电子版