

T10: Počítačové služby Simulace Twitteru (nyní X)

Pavel Stepanov xstepa77 Gleb Litvinchuk xlitvi02

2. prosince 2024

Obsah

1	Úvod					
	1.1	Podíl autorů a zdroje informací				
	1.2	Prostředí a podmínky experimentů				
2	Rozbor tématu a použitých metod a technologií					
	2.1	Použité postupy pro vytvoření modelu				
	2.2	Původ použitých metod a technologií				
3	Koncepce modelu					
	3.1	Vyjádření konceptuálního modelu				
	3.2	Formy konceptuálního modelu				
4	Architektura simulačního modelu					
	4.1	Mapování konceptuálního modelu do simulačního				
5	Podstata simulačních experimentů a jejich průběh					
	5.1	Postup experimentování				
	5.2	Dokumentace jednotlivých experimentů				
		5.2.1 Experiment 1: Vliv počtu vlivných uživatelů				
		5.2.2 Experiment 2: Vliv struktury sítě				
		5.2.3 Experiment 3: Změna pravděpodobností akcí podle času				
	5.3	Závěry experimentů				
6	Shr	nutí simulačních experimentů a závěr				

1 Úvod

Cílem této práce je vytvořit simulační model sociální sítě podobné Twitteru (nyní známé jako \mathbf{X}), který umožní analyzovat chování uživatelů, šíření informací a vliv různých faktorů na aktivitu v síti. Na základě modelu a simulačních experimentů bude ukázáno, jak různé parametry ovlivňují dynamiku interakcí mezi uživateli.

Model využívá Petriho sítě pro formální popis procesů v sociální síti a programovací jazyk C pro implementaci simulace. Smyslem experimentů je demonstrovat, jak počet vlivných uživatelů, struktura sítě a časové vzorce aktivity ovlivňují celkovou aktivitu na platformě.

1.1 Podíl autorů a zdroje informací

Na práci se podíleli Pavel Stepanov a Gleb Litvinchuk. Informace pro tvorbu modelu byly získány z veřejně dostupných zdrojů, zejména z odborných článků a dokumentace týkající se sociálních sítí a jejich modelování. Přestože jsme nekonzultovali s odborníky v oboru, snažili jsme se využít důvěryhodné zdroje pro podporu našich závěrů.

1.2 Prostředí a podmínky experimentů

Experimentální ověřování validity modelu probíhalo v prostředí osobního počítače přes WSL (OS: Debian GNU/Linux 11 (bullseye) on Windows 10 x86_64 ,Kernel: 5.15.167.4-microsoft-standard-WSL2) . Kód byl kompilován pomocí GCC a spouštěn na procesoru AMD Ryzen 7 2700X (16) @ $3.693\mathrm{GHz}$ s 16 GB RAM. Pro zajištění reprodukovatelnosti výsledků byly použity náhodné generátory s seedem.

2 Rozbor tématu a použitých metod a technologií

Sociální sítě jako Twitter (nyní X) jsou komplexní systémy, ve kterých uživatelé interagují různými způsoby. Pro modelování takového systému je potřeba zohlednit paralelní a asynchronní povahu uživatelských akcí. Petriho sítě (viz předmět IMS, slajd č. 126) jsou vhodným nástrojem pro modelování takových systémů, protože umožňují reprezentovat stavy (místa) a přechody mezi nimi, včetně synchronizace a konkurence.

2.1 Použité postupy pro vytvoření modelu

Pro vytvoření modelu jsme použili Petriho sítě, které umožňují formální a grafické zobrazení interakcí v systému. Tento přístup je vhodný pro náš problém, protože:

- Umožňuje modelovat paralelní procesy a asynchronní události.
- Poskytuje jasnou strukturu pro implementaci v programovacím jazyce.
- Je dobře zdokumentován a široce používán pro modelování podobných systémů

.

2.2 Původ použitých metod a technologií

Implementace simulace byla provedena v programovacím jazyce C, který je vhodný pro výkonné zpracování a manipulaci s datovými strukturami na nízké úrovni. Všechny použité algoritmy a datové struktury byly vytvořeny autory projektu. Kód byl psán s ohledem na efektivitu a čitelnost, bez použití externích knihoven vyžadujících speciální licence.

3 Koncepce modelu

Konceptuální model je abstrakcí reality, která redukuje systém na soubor relevantních faktů pro sestavení simulačního modelu. V našem případě jsme se zaměřili na klíčové prvky sociální sítě:

- Uživatelé (běžní a vlivní).
- Akce uživatelů (tweetování, retweetování, lajkování, odpovídání).
- Struktura sítě (následovníci).
- Časové prodlevy a pravděpodobnosti akcí.

Některé složitosti reálných sociálních sítí byly zjednodušeny nebo zanedbány, například vliv geolokace nebo individuálních zájmů uživatelů, protože pro potřeby našeho modelu nejsou klíčové a jejich zahrnutí by nadměrně komplikovalo model bez významného přínosu pro naše závěry.

3.1 Vyjádření konceptuálního modelu

Konceptuální model jsme vyjádřili pomocí Petriho sítě, která je znázorněna na obrázku 1. Tento způsob reprezentace umožňuje srozumitelně zachytit stavy a přechody v systému, včetně synchronizace procesů.

3.2 Formy konceptuálního modelu

Na obrázku 1 jsou znázorněna místa (kruhy) představující stavy uživatelů (např. *Neaktivní uživatelé*, *Aktivní uživatelé*) a přechody (obdélníky) představující akce (např. *Aktivace uživatele*, *Uživatel provádí akci*). Šipky ukazují tok mezi místy a přechody.

4 Architektura simulačního modelu

Implementace simulačního modelu vychází z konceptuálního modelu a je realizována v programovacím jazyce C. Hlavní myšlenkou je reprezentovat uživatele a jejich interakce pomocí datových struktur a zpracovávat události pomocí událostmi řízené simulace

4.1 Mapování konceptuálního modelu do simulačního

- Místa v Petriho síti jsou mapována na stavy uživatelů v programu (INACTIVE, ACTIVE).
- **Přechody** jsou reprezentovány funkcemi, které mění stavy uživatelů a plánují nové události.
- Časové prodlevy a pravděpodobnosti jsou implementovány pomocí náhodných generátorů a časových plánů událostí.
- Uživatelé jsou reprezentováni strukturou s identifikátorem, typem (běžný nebo vlivný), stavem a seznamem následovníků.
- **Události** jsou zpracovávány v prioritní frontě událostí, což zajišťuje správné pořadí jejich zpracování.

Obrázek 1: Petriho síť modelující chování uživatelů v sociální síti

5 Podstata simulačních experimentů a jejich průběh

Cílem experimentování je zjistit, jak různé faktory ovlivňují aktivitu v sociální síti. Potřebujeme model, abychom mohli simulovat složité interakce mezi velkým počtem uživatelů a analyzovat výsledky v kontrolovaném prostředí.

5.1 Postup experimentování

Experimenty byly navrženy tak, aby postupně měnily jeden parametr systému a sledovaly jeho vliv na výsledky:

- Experiment 1: Měnili jsme počet vlivných uživatelů a sledovali dopad na počet interakcí.
- Experiment 2: Upravením průměrného počtu následovníků jsme zkoumali vliv struktury sítě.
- Experiment 3: Změnou časových pravděpodobností aktivace jsme analyzovali distribuci aktivity během dne.

5.2 Dokumentace jednotlivých experimentů

5.2.1 Experiment 1: Vliv počtu vlivných uživatelů

Vstupní podmínky:

- Celkový počet uživatelů: 100
- Počet vlivných uživatelů: 5, 10, 20
- Průměrný počet následovníků: 5 pro běžné uživatele, vlivní uživatelé mají 5x více následovníků

Výsledky jsou uvedeny v tabulce 1.

Poč. vlivn. uživatelů	Celk. poč. tweetů	Retweety	Lajky	Odpovědi
5 (5%)	10045	7355	3763	3784
10 (10%)	11414	8322	4310	4402
20 (20%)	16799	12769	6333	6356

Tabulka 1: Výsledky experimentu 1

Závěr experimentu:

Zvýšení počtu vlivných uživatelů vede k nárůstu interakcí, což potvrzuje naši hypotézu.

5.2.2 Experiment 2: Vliv struktury sítě

Vstupní podmínky:

• Celkový počet uživatelů: 100

• Počet vlivných uživatelů: 5

• Průměrný počet následovníků: 2.5, 5, 10

Výsledky jsou uvedeny v tabulce 2.

Prům. poč. následovníků	Celk. poč. tweetů	Retweety	Lajky	Odpovědi
2.5	10045	7355	3763	3784
5	60285	45299	22531	22647
6	130881	98265	49293	49207

Tabulka 2: Výsledky experimentu 2

Závěr experimentu:

Zvýšení propojenosti sítě zvyšuje počet interakcí až do určitého bodu, po kterém se efekt saturuje (pokud přesahné MAX hodnoty).

5.2.3 Experiment 3: Změna pravděpodobností akcí podle času

Vstupní podmínky:

• Celkový počet uživatelů: 100

• Počet vlivných uživatelů: 5

• Průměrný počet následovníků: 5

• Aktivní časové intervaly: různé (viz tabulka 3)

Aktivní čas	Celk. poč. tweetů	Retweety	Lajky	Odpovědi
8:00 - 22:00 (58,3%)	10045	7355	3763	3784
0:00 - 24:00 (100%)	12255	9235	4651	4472
10:00 - 16:00 (25%)	8770	6477	3337	3252

Tabulka 3: Výsledky experimentu 3

Závěr experimentu:

Časové rozložení aktivity ovlivňuje celkový počet interakcí, ale změny nejsou dramatické.

5.3 Závěry experimentů

Provedli jsme celkem 30 experimentů ve třech různých situacích. Během experimentování nebyly nalezeny chyby v modelu, které by ovlivnily výsledky. Výsledky experimentů jsou konzistentní a potvrzují naše předpoklady o chování systému.

6 Shrnutí simulačních experimentů a závěr

Z výsledků experimentů vyplývá, že:

- Počet vlivných uživatelů výrazně ovlivňuje aktivitu v síti. Strategické zaměření na tyto uživatele může zvýšit celkovou aktivitu na platformě.
- Struktura sítě a propojenost mezi uživateli hraje klíčovou roli v šíření informací. Optimalizace doporučovacích algoritmů může přispět k větší angažovanosti uživatelů.
- Časové vzorce aktivity mají menší, ale stále významný vliv na celkovou aktivitu. Plánování publikací s ohledem na časové vzorce může zvýšit efektivitu komunikace.

Validita modelu byla ověřena konzistencí výsledků s teoretickými předpoklady a literaturou. V rámci projektu vznikl simulační model sociální sítě, který může být dále rozšířen a použit pro další analýzy.

Reference

- [1] Twitter (nyní X) https://x.com/
- [2] IMS Simulace systémů. Přednášky z předmětu IMS, FIT VUT. http://perchta.fit.vutbr.cz:8000/vyuka-ims/uploads/1/IMS.pdf.