Disentangling Uncertainty in Machine Translation Evaluation

Chrysoula Zerva ^{1,4}
Taisiya Glushkova ^{1,4}
Ricardo Rei ^{2,3,4}
André F. T. Martins ^{1,2,4}

NEW FRONTIERS IN TECH

¹Instituto de Telecomunicações, ²Unbabel, ³Inesc ID, ⁴Instituto Superior Técnico & LUMLIS (Lisbon ELLIS Unit)

Introduction

Lexical and Neural-based metrics share a **list of limitations**:

- lack of robustness
- lack of reliability
- lack of interpretability in scores

• ..

Our goal:

to fill this gap and improve the existing metrics

Methods

- Direct uncertainty prediction (DUP)
 a two-step approach which uses supervision over the quality prediction errors
- Heteroscedastic regression (HTS)
 estimates input-dependent aleatoric uncertainty
 and can be combined with MC dropout
- KL-divergence minimization (KL)
 estimates uncertainty from annotator
 disagreements, when multiple annotations are
 available for the same example

$$egin{aligned} \epsilon^* &= |\hat{q} - q^*| \ & \mathcal{L}_{ ext{HTS}}^{ ext{E}}(\hat{\epsilon}; \epsilon^*) = rac{(\epsilon^*)^2}{2\hat{\epsilon}^2} + rac{1}{2} ext{log}(\hat{\epsilon})^2 \end{aligned}$$

$$\mathcal{L}_{ ext{HTS}}(\hat{\mu},\hat{\sigma}^2;q^*) = rac{(q^*-\hat{\mu})^2}{2\hat{\sigma}^2} + rac{1}{2} ext{log}\,\hat{\sigma}^2.$$

$$\mathcal{L}_{\mathrm{KL}}(\hat{\mu}, \hat{\sigma}^2; \mu^*, \sigma^{*2}) = \frac{(\mu^* - \hat{\mu})^2 + \sigma^{*2}}{2\hat{\sigma}^2} + \frac{1}{2}\log\frac{\hat{\sigma}^2}{\sigma^{*2}} - \frac{1}{2}$$

Experiments

Results for segment-level DA and MQM

10		UPS ↑	ECE↓	Sha. ↓	NLL↓	PPS ↑
WMT20 DA	σ ² -fixed MCD DE HTS HTS+MCD DUP	0.106 0.134 0.177 0.254 0.182	0.019 0.016 0.019 0.015 <u>0.013</u> 0.014	0.415 <u>0.377</u> 0.366 0.450 0.528 0.437	1.236 1.199 <u>1.156</u> 1.201 1.167 1.190	0.444 0.443 <u>0.460</u> 0.444 0.429 0.444
WMT21 MQM	σ ² -fixed MCD DE HTS HTS+MCD KL DUP	- 0.179 0.128 0.307 <u>0.311</u> 0.296 0.285	0.055 <u>0.024</u> 0.051 0.041 0.037 0.046 0.039	0.371 0.334 <u>0.236</u> 0.284 0.388 0.273 0.634	2.090 1.686 2.631 2.264 <u>1.614</u> 2.595 1.778	0.377 0.460 <u>0.479</u> 0.445 0.445 0.443 0.377

Identification of noisy references

Evaluation Metrics

Results for segment-level DA and MQM Sharpness: Epistemic uncertainty caused by out-of-domain data

Main Takeaways

- improved results on uncertainty prediction for the WMT metrics task datasets
- a substantial reduction in computational costs (compared to MCD and DE)
- the ability of new uncertainty predictors to target different aleatoric and epistemic uncertainty sources in MT evaluation, such as:
- low quality references
- out-of-domain data

This work was supported by P2020 project MAIA (LISBOA-01-0247- FEDER045909).

