

CS 559: Machine Learning Fundamentals and Applications

Lecture 6

Lecturer: Xinchao Wang

xinchao.wang@stevens.edu

Teaching Assistant: Yiding Yang

yyang99@stevens.edu

Overview

- Fisher Linear Discriminant (DHS Chapter 3 and notes based on course by Olga Veksler, Univ. of Western Ontario)
- Generative vs. Discriminative Classifiers
- Linear Discriminant Functions (notes based on Olga Veksler's)

Fisher Linear Discriminant Analysis (LDA/FDA/FLDA)

- PCA finds directions to project the data so that variance is maximized
- PCA does not consider class labels
- Variance maximization not necessarily beneficial for classification

Data Representation vs. Data Classification

• Fisher Linear Discriminant: project to a line which preserves direction useful for data classification

Fisher Linear Discriminant

 Main idea: find projection to a line such that samples from different classes are well separated

- Suppose we have 2 classes and d-dimensional samples x₁,...,x_n where:
 - n₁ samples come from the first class
 - n₂ samples come from the second class
- Consider projection on a line
- Let the line direction be given by unit vector v
- The scalar $\mathbf{v}^t \mathbf{x}_i$ is the distance of the projection of \mathbf{x}_i from the origin
- Thus, v^tx_i is the projection of x_i into a one dimensional subspace

- The projection of sample x_i onto a line in direction v is given by v^tx_i
- How to measure separation between projections of different classes?
- Let $\widetilde{\mu}_1$ and $\widetilde{\mu}_2$ be the means of projections of classes 1 and 2
- Let μ_1 and μ_2 be the means of classes 1 and 2
- $|\widetilde{\mu}_1 \widetilde{\mu}_2|$ seems like a good measure

$$\widetilde{\mu}_{1} = \frac{1}{n_{1}} \sum_{x_{i} \in C1}^{n_{1}} v^{t} x_{i} = v^{t} \left(\frac{1}{n_{1}} \sum_{x_{i} \in C1}^{n_{1}} x_{i} \right) = v^{t} \mu_{1}$$
similarly,
 $\widetilde{\mu}_{2} = v^{t} \mu_{2}$

- How good is $|\widetilde{\mu}_1 \widetilde{\mu}_2|$ as a measure of separation?
 - The larger it is, the better the expected separation

- The vertical axis is a better line than the horizontal axis to project to for class separability
- However $|\widetilde{\mu}_1 \widetilde{\mu}_2| < |\widehat{\mu}_1 \widehat{\mu}_2|$

• The problem with $|\widetilde{\mu}_1 - \widetilde{\mu}_2|$ is that it does not consider the variance of the classes

- We need to normalize $|\widetilde{\mu}_1 \widetilde{\mu}_2|$ by a factor which is proportional to variance
- For samples $z_1,...,z_n$, the sample mean is: $\mu_z = \frac{1}{n} \sum_{i=1}^n z_i$
- Define scatter as:

$$s = \sum_{i=1}^{n} (z_i - \mu_z)^2$$

- Thus scatter is just sample variance multiplied by n
 - Scatter measures the same thing as variance, the spread of data around the mean
 - Scatter is just on different scale than variance

- Fisher Solution: normalize $|\widetilde{\mu}_1 \widetilde{\mu}_2|$ by scatter
- Let $y_i = v^t x^i$, be the projected samples
- The scatter for projected samples of class 1 is

$$\widetilde{\mathbf{S}}_{1}^{2} = \sum_{\mathbf{y}_{i} \in Class \ 1} (\mathbf{y}_{i} - \widetilde{\boldsymbol{\mu}}_{1})^{2}$$

The scatter for projected samples of class
 2 is

$$\widetilde{\mathbf{S}}_{2}^{2} = \sum_{\mathbf{y}_{i} \in Class \ 2} (\mathbf{y}_{i} - \widetilde{\boldsymbol{\mu}}_{2})^{2}$$

Fisher Linear Discriminant

- We need to normalize by both scatter of class 1 and scatter of class 2
- The Fisher linear discriminant is the projection on a line in the direction **v** which maximizes

want projected means far from each other

$$J(v) = \frac{(\underline{\mu_1 - \mu_2})^2}{\widetilde{\mathbf{S}}_1^2 + \widetilde{\mathbf{S}}_2^2}$$

want scatter in class 1 is as small as possible, i.e. samples of class 1 cluster around the projected mean $\tilde{\mu}_1$

want scatter in class 2 is as small as possible, i.e. samples of class 2 cluster around the projected mean μ_2

$$J(\mathbf{v}) = \frac{(\tilde{\mu}_1 - \tilde{\mu}_2)^2}{\tilde{\mathbf{s}}_1^2 + \tilde{\mathbf{s}}_2^2}$$

• If we find **v** which makes **J(v)** large, we are guaranteed that the classes are well separated

Fisher Linear Discriminant - Derivation

$$J(\mathbf{v}) = \frac{(\tilde{\mu}_1 - \tilde{\mu}_2)^2}{\tilde{\mathbf{s}}_1^2 + \tilde{\mathbf{s}}_2^2}$$

- All we need to do now is express J(v) as a function of v and maximize it
 - Straightforward but need linear algebra and calculus
- Define the class scatter matrices S_1 and S_2 . These measure the scatter of original samples x_i (before projection)

$$S_{1} = \sum_{x_{i} \in Class \ 1} (x_{i} - \mu_{1})(x_{i} - \mu_{1})^{t}$$

$$S_{2} = \sum_{x_{i} \in Class \ 2} (x_{i} - \mu_{2})(x_{i} - \mu_{2})^{t}$$

Define within class scatter matrix

$$S_W = S_1 + S_2$$

$$\widetilde{S}_1^2 = \sum_{y_i \in Class\ 1} (y_i - \widetilde{\mu}_1)^2$$

•
$$\mathbf{y}_i = \mathbf{v}^t \mathbf{x}_i$$
 and $\tilde{\mu}_1 = \mathbf{v}^t \mu_1$

$$\widetilde{S}_{1}^{2} = \sum_{y_{i} \in Class \ 1} (\mathbf{v}^{t} \mathbf{x}_{i} - \mathbf{v}^{t} \mu_{1})^{2}
= \sum_{y_{i} \in Class \ 1} (\mathbf{v}^{t} (\mathbf{x}_{i} - \mu_{1}))^{t} (\mathbf{v}^{t} (\mathbf{x}_{i} - \mu_{1}))
= \sum_{y_{i} \in Class \ 1} ((\mathbf{x}_{i} - \mu_{1})^{t} \mathbf{v})^{t} ((\mathbf{x}_{i} - \mu_{1})^{t} \mathbf{v})
= \sum_{y_{i} \in Class \ 1} \mathbf{v}^{t} (\mathbf{x}_{i} - \mu_{1}) (\mathbf{x}_{i} - \mu_{1})^{t} \mathbf{v} = \mathbf{v}^{t} \mathbf{S}_{1} \mathbf{v}$$

• Similarly
$$\widetilde{s}_2^2 = v^t S_2 v$$

$$\widetilde{s}_1^2 + \widetilde{s}_2^2 = v^t S_1 v + v^t S_2 v = v^t S_W v$$

Define between class scatter matrix

$$S_B = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^t$$

- S_B measures separation of the means of the two classes before projection
- The separation of the projected means can be written as

$$(\tilde{\mu}_1 - \tilde{\mu}_2)^2 = (\mathbf{v}^t \mu_1 - \mathbf{v}^t \mu_2)^2$$

$$= \mathbf{v}^t (\mu_1 - \mu_2)(\mu_1 - \mu_2)^t \mathbf{v}$$

$$= \mathbf{v}^t \mathbf{S}_B \mathbf{v}$$

• Thus our objective function can be written:

$$J(\mathbf{v}) = \frac{(\widetilde{\mu}_1 - \widetilde{\mu}_2)^2}{\widetilde{\mathbf{s}}_1^2 + \widetilde{\mathbf{s}}_2^2} = \frac{\mathbf{v}^t \mathbf{S}_B \mathbf{v}}{\mathbf{v}^t \mathbf{S}_W \mathbf{v}}$$

 Maximize J(v) by taking the derivative w.r.t. v and setting it to 0

$$\frac{d}{dv}J(v) = \frac{\left(\frac{d}{dv}v^{t}S_{B}v\right)v^{t}S_{W}v - \left(\frac{d}{dv}v^{t}S_{W}v\right)v^{t}S_{B}v}{\left(v^{t}S_{W}v\right)^{2}}$$

$$= \frac{(2S_{B}v)v^{t}S_{W}v - (2S_{W}v)v^{t}S_{B}v}{\left(v^{t}S_{W}v\right)^{2}} = 0$$

Need to solve
$$\mathbf{v}^{t}\mathbf{S}_{W}\mathbf{v}(\mathbf{S}_{B}\mathbf{v}) - \mathbf{v}^{t}\mathbf{S}_{B}\mathbf{v}(\mathbf{S}_{W}\mathbf{v}) = \mathbf{0}$$

$$\Rightarrow \frac{v^{t}S_{W}v(S_{B}v)}{v^{t}S_{W}v} - \frac{v^{t}S_{B}v(S_{W}v)}{v^{t}S_{W}v} = 0$$

$$\Rightarrow S_B V - \frac{V^t S_B V (S_W V)}{V^t S_W V} = 0$$

$$\Rightarrow S_B V = \lambda S_W V$$

generalized eigenvalue problem

$$S_B V = \lambda S_W V$$

• If S_W has full rank (the inverse exists), we can convert this to a standard eigenvalue problem

$$S_W^{-1}S_BV=\lambda V$$

• But $S_B x$ for any vector x, points in the same direction as μ_1 - μ_2

$$S_B X = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^t X = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^t X = \alpha(\mu_1 - \mu_2)^t X$$

• Based on this, we can solve the eigenvalue problem directly

$$S_{W}^{-1}S_{B}[S_{W}^{-1}(\mu_{1}-\mu_{2})] = S_{W}^{-1}[\alpha(\mu_{1}-\mu_{2})] = \alpha[S_{W}^{-1}(\mu_{1}-\mu_{2})]$$

Example

- Data
 - Class 1 has 5 samples
 c₁=[(1,2),(2,3),(3,3),(4,5),(5,5)]
 - Class 2 has 6 samples
 c₂=[(1,0),(2,1),(3,1),(3,2),(5,3),(6,5)]
- Arrange data in 2 separate matrices

$$\boldsymbol{c}_1 = \begin{bmatrix} 1 & 2 \\ \vdots & \vdots \\ 5 & 5 \end{bmatrix} \qquad \boldsymbol{c}_2 = \begin{bmatrix} 1 & 0 \\ \vdots & \vdots \\ 6 & 5 \end{bmatrix}$$

 Notice that PCA performs very poorly on this data because the direction of largest variance is not helpful for classification

· First compute the mean for each class

$$\mu_1 = mean(c_1) = \begin{bmatrix} 3 & 3.6 \end{bmatrix}^t$$
 $\mu_2 = mean(c_2) = \begin{bmatrix} 3.3 & 2 \end{bmatrix}^t$

Compute scatter matrices S₁ and S₂ for each class

$$S_1 = 4 * cov(c_1) = \begin{bmatrix} 10 & 8.0 \\ 8.0 & 7.2 \end{bmatrix}$$
 $S_2 = 5 * cov(c_2) = \begin{bmatrix} 17.3 & 16 \\ 16 & 16 \end{bmatrix}$

- Within class scatter: $S_W = S_1 + S_2 = \begin{bmatrix} 27.3 & 24 \\ 24 & 23.2 \end{bmatrix}$
 - it has full rank, don't have to solve for eigenvalues
- The inverse of S_W is: $S_W^{-1} = inv(S_W) = \begin{bmatrix} 0.39 & -0.41 \\ -0.41 & 0.47 \end{bmatrix}$
- Finally, the optimal line direction v is:

$$v = S_W^{-1}(\mu_1 - \mu_2) = \begin{bmatrix} -0.79 \\ 0.89 \end{bmatrix}$$

- As long as the line has the right direction, its exact position does not matter
- The last step is to compute the actual 1D vector **y**
 - Separately for each class

Multiple Discriminant Analysis

- Can generalize FLD to multiple classes
 - In case of *c* classes, we can reduce dimensionality to 1, 2, 3,..., **c-1** dimensions
 - Project sample x_i to a linear subspace $y_i = V^t x_i$
 - **V** is called projection matrix

Within class scatter matrix:

$$S_W = \sum_{i=1}^c S_i = \sum_{i=1}^c \sum_{x_k \in class \ i} (x_k - \mu_i)(x_k - \mu_i)^t$$

Between class scatter matrix

$$S_B = \sum_{i=1}^{c} n_i (\mu_i - \mu)(\mu_i - \mu)^t$$
mean of all data mean of class i

Objective function

$$J(V) = \frac{\det(V^{t}S_{B}V)}{\det(V^{t}S_{W}V)}$$

$$J(V) = \frac{\det(V^{t}S_{B}V)}{\det(V^{t}S_{W}V)}$$

Solve generalized eigenvalue problem

$$S_B V = \lambda S_W V$$

- There are at most **c-1** distinct eigenvalues
 - with **v**₁...**v**_{c-1} corresponding eigenvectors
- The optimal projection matrix V to a subspace of dimension k is given by the eigenvectors corresponding to the largest k eigenvalues
- Thus, we can project to a subspace of dimension at most c-1

FDA and MDA Drawbacks

- Reduces dimension only to k = c-1
 - Unlike PCA where dimension can be chosen to be smaller or larger than c-1
- For complex data, projection to even the best line may result in non-separable projected samples

FDA and MDA Drawbacks

- FDA/MDA will fail:
 - If J(v) is always 0: when $\mu_1 = \mu_2$

• If **J(v)** is always small: classes have large overlap when projected to any line (PCA will also fail)

Generative vs. Discriminative Approaches

Parametric Methods vs. Discriminant Functions

- Assume the shape of density for classes is known $p_1(x|\theta_1)$, $p_2(x|\theta_2)$,...
- Estimate θ_1 , θ_2 ,... from data
- Use a Bayesian classifier to find decision regions

- Assume discriminant functions are of known shape $I(\theta_1)$, $I(\theta_2)$, with parameters θ_1 , θ_2 ,...
- Estimate θ_1 , θ_2 ,... from data
- Use discriminant functions for classification

Parametric Methods vs. Discriminant Functions

- In theory, Bayesian classifier minimizes the risk
 - In practice, we may be uncertain about our assumptions about the models
 - In practice, we may *not really need* the actual density functions
- Estimating accurate density functions is much harder than estimating accurate discriminant functions
 - Why solve a harder problem than needed?

Generative vs. Discriminative Models

Training classifiers involves estimating f: $X \rightarrow Y$, or P(Y|X)

Discriminative classifiers

- 1. Assume some functional form for P(Y|X)
- 2. Estimate parameters of P(Y|X) directly from training data

Generative classifiers

- Assume some functional form for P(X|Y), P(X)
- 2. Estimate parameters of P(X|Y), P(X) directly from training data
- 3. Use Bayes rule to calculate $P(Y|X=x_i)$

Generative vs. Discriminative Example

- The task is to determine the language that someone is speaking
- Generative approach:
 - Learn each language and determine which language the speech belongs to

- Discriminative approach:
 - Determine the linguistic differences without learning any language a much easier task!

Generative vs. Discriminative Taxonomy

Generative Methods

- Model class-conditional pdfs and prior probabilities
- "Generative" since sampling can generate synthetic data points
- Popular models
 - Multi-variate Gaussians, Naïve Bayes
 - Mixtures of Gaussians, Mixtures of experts, Hidden Markov Models (HMM)
 - Sigmoidal belief networks, Bayesian networks, Markov random fields

Discriminative Methods

- Directly estimate posterior probabilities
- No attempt to model underlying probability distributions
- Focus computational resources on given task—better performance
- Popular models
 - Logistic regression
 - SVMs
 - Traditional neural networks
 - Nearest neighbor
 - Conditional Random Fields (CRF)

Generative Approach

Advantage

- <u>Prior information</u> about the structure of the data is often most naturally specified through a generative model P(X|Y)
 - For example, for male faces, we would expect to see heavier eyebrows, a more square jaw, etc.

Disadvantages

- The generative approach does not directly target the classification model P(Y|X) since the goal of generative training is P(X|Y)
- If the data x are complex, finding a suitable generative data model P(X|Y) is a difficult task
- Since each generative model is separately trained for each class, there is *no competition* amongst the models to explain the data
- The decision boundary between the classes may have a simple form, even if the data distribution of each class is complex

Barber, Ch. 13 34

Discriminative Approach

Advantages

- The discriminative approach directly addresses finding an accurate classifier P(Y|X) based on modelling the decision boundary, as opposed to the class conditional data distribution
- Whilst the data from each class may be distributed in a complex way, it could be that the decision boundary between them is relatively easy to model

Disadvantages

- Discriminative approaches are usually trained as "black-box" classifiers, with <u>little prior knowledge</u> built used to describe how data for a given class is distributed
- <u>Domain knowledge</u> is often more easily expressed using the generative framework

Barber, Ch. 13 35

Linear Discriminant Functions

LDF: Introduction

- Discriminant functions can be more general than linear
- For now, focus on linear discriminant functions
 - Simple model (should try simpler models first)
 - Analytically tractable
- Linear Discriminant functions are optimal for <u>Gaussian distributions</u> with <u>equal covariance</u>
- May not be optimal for other data distributions, but they are very simple to use

LDF: Two Classes

A discriminant function is linear if it can be written as

$$g(x) = w^t x + w_0$$

• ${m w}$ is called the weight vector and ${m w}_o$ is called the bias or threshold

LDF: Two Classes

- Decision boundary $g(x) = w^t x + w_0 = 0$ is a hyperplane
 - Set of vectors \mathbf{x} , which for some scalars $\mathbf{a_0}$,..., $\mathbf{a_d}$, satisfy $\mathbf{a_0} + \mathbf{a_1} \mathbf{x^{(1)}} + ... + \mathbf{a_d} \mathbf{x^{(d)}} = \mathbf{0}$
 - A hyperplane is:
 - a point in 1D
 - a line in 2D
 - a plane in 3D

LDF: Two Classes

$$g(x) = w^t x + w_0$$

- w determines the orientation of the decision hyperplane
- $\mathbf{w_0}$ determines the location of the decision surface

- Suppose we have m classes
- Define m linear discriminant functions

$$g_i(x) = w_i^t x + w_{i0}$$

- Given \mathbf{x} , assign to class $\mathbf{c_i}$ if
 - $g_i(x) > g_j(x)$, $i \neq j$
- Such a classifier is called a linear machine
- A linear machine divides the feature space into \mathbf{c} decision regions, with $\mathbf{g}_{i}(\mathbf{x})$ being the largest discriminant if \mathbf{x} is in the region R_{i}

• For two contiguous regions $\mathbf{R_i}$ and $\mathbf{R_j}$, the boundary that separates them is a portion of the hyperplane $\mathbf{H_{ij}}$ defined by:

$$g_{i}(\mathbf{X}) = g_{j}(\mathbf{X}) \iff \mathbf{w}_{i}^{t} \mathbf{X} + \mathbf{w}_{i0} = \mathbf{w}_{j}^{t} \mathbf{X} + \mathbf{w}_{j0}$$
$$\iff (\mathbf{w}_{i} - \mathbf{w}_{j})^{t} \mathbf{X} + (\mathbf{w}_{i0} - \mathbf{w}_{j0}) = \mathbf{0}$$

- Thus w_i w_j is normal to H_{ij}
- The distance from x to H_{ij} is given by:

$$d(x,H_{ij}) = \frac{g_i(x) - g_j(x)}{\|\mathbf{w}_i - \mathbf{w}_j\|}$$

Decision regions for a linear machine are convex

$$y,z \in R_i \Rightarrow \alpha y + (1-\alpha)z \in R_i$$

$$\forall j \neq i$$
 $g_i(y) \geq g_j(y)$ and $g_i(z) \geq g_j(z) \Leftrightarrow \Leftrightarrow \forall j \neq i$ $g_i(\alpha y + (1 - \alpha)z) \geq g_j(\alpha y + (1 - \alpha)z)$

 In particular, decision regions must be spatially contiguous

• Thus applicability of linear machine mostly limited to unimodal conditional densities $p(x|\theta)$

• Example:

- Need non-contiguous decision regions
- Linear machine will fail