# LEPL 1504 - Livrable 2 Analyse dynamique du VTT complet et morphologie du vélo chargé

# 1 Introduction

Ce document sert de référence à la modélisation complète d'un vélo tout-terrain (VTT).



FIGURE 1 – Modèle complet de Cross-Country Tout-Suspendu <sup>1</sup>.

# 2 Modélisation

#### 2.1 Géométrie et caractérisation dynamique

Les données géométriques du vélo sont reprises aux Figures 2 et 3 et les données relatives aux masses et inerties sont référencées dans la table 1.

<sup>1.</sup> Culture Vélo. (2023). Les Différents types de VTT. Retrieved from https://www.culturevelo.com/Les-Differents-types-de-VTT



FIGURE 2 – Schéma du modèle 2D simplifié. Il faut considérer un angle de chasse de  $\alpha_{FS}=\pi/6$  rad.



Figure 3 – Données géométriques.

Coordonnées données dans le repère local de chaque corps indiqué sur le schéma ci-dessus :

$$\mathbf{a}^{1} = \begin{bmatrix} 0.45 & 0 & 0.60 \end{bmatrix}^{T} m \qquad \mathbf{a}^{2} = \begin{bmatrix} -0.05 & 0 & 0.23 \end{bmatrix}^{T} m \qquad \mathbf{a}^{3} = \begin{bmatrix} -0.16 & 0 & 0.58 \end{bmatrix}^{T} m$$

$$\mathbf{a}^{4} = \begin{bmatrix} -0.03 & 0 & 0.04 \end{bmatrix}^{T} m \qquad \mathbf{a}^{5} = \begin{bmatrix} 0 & 0 & 0.11 \end{bmatrix}^{T} m \qquad \mathbf{a}^{6} = \begin{bmatrix} -0.43 & 0 & -0.04 \end{bmatrix}^{T} m$$

$$\mathbf{a}^{7} = \begin{bmatrix} 0 & 0 & 0.03 \end{bmatrix}^{T} m \qquad \mathbf{a}^{8} = \begin{bmatrix} 0.39 & 0 & 0 \end{bmatrix}^{T} m \qquad \mathbf{a}^{9} = \begin{bmatrix} -0.11 & 0 & 0.04 \end{bmatrix}^{T} m$$

$$\mathbf{a}^{10} = \begin{bmatrix} 0.05 & 0 & 0.04 \end{bmatrix}^{T} m \qquad \mathbf{a}^{11} = \begin{bmatrix} 0 & 0 & -0.20 \end{bmatrix}^{T} m \qquad \mathbf{a}^{12} = \begin{bmatrix} 0 & 0 & -0.40 \end{bmatrix}^{T} m$$

|                           | masse $[kg]$ | $ \mathbf{I}_{11} [kg\cdot m^2]$ | $\mathbf{I}_{22} \; [kg \cdot m^2]$ | $\mathbf{I}_{33} [kg \cdot m^2]$ |
|---------------------------|--------------|----------------------------------|-------------------------------------|----------------------------------|
| Chassis* (Frame)          | 65           | 0.9                              | 1.2                                 | 0.2                              |
| Amortisseur (Slider)      | 0.2          | 0.001                            | 0.001                               | 0.001                            |
| Piston (Piston)           | 0.5          | 0.001                            | 0.007                               | 0.001                            |
| Bras inférieur (LowerArm) | 0.3          | 0                                | 0.005                               | 0                                |
| Bras supérieur (TopArm)   | 0.3          | 0                                | 0.005                               | 0                                |
| Culbuteur (Rocker)        | 0.25         | 0                                | 0.001                               | 0                                |
| Roues (Wheels)            | 1.2          | 0.04                             | 0.08                                | 0.04                             |

Table 1 – Masses et inerties du modèle simplifié. Les paramètres  $\mathbf{I}_{11}$ ,  $\mathbf{I}_{22}$  et  $\mathbf{I}_{33}$  correspondent aux moments d'inertie (éléments diagonaux de la matrice d'inertie dans les repères des corps donnés à la Figure 3). Les produits d'inertie (éléments hors diagonaux de la matrice) sont négligés. \*La masse du chassis inclut la masse du cycliste.

Centres de masses donnés dans le repère local de chaque corps indiqués par la lettre l sur le schéma de la Figure 3:

$$\begin{split} \mathbf{CM}^{Frame} &= \begin{bmatrix} 0.15 & 0 & 0.40 \end{bmatrix}^T m & \mathbf{CM}^{Slider} = \begin{bmatrix} 0 & 0 & -0.10 \end{bmatrix}^T m \\ \mathbf{CM}^{Piston} &= \begin{bmatrix} 0 & 0 & -0.20 \end{bmatrix}^T m & \mathbf{CM}^{Rocker} = \begin{bmatrix} -0.03 & 0 & 0.02 \end{bmatrix}^T m \\ \mathbf{CM}^{TopArm} &= \begin{bmatrix} 0.19 & 0 & 0.01 \end{bmatrix}^T m & \mathbf{CM}^{LowerArm} = \begin{bmatrix} -0.21 & 0 & -0.02 \end{bmatrix}^T m \\ \mathbf{CM}^{Wheel} &= \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T m \end{split}$$

Le chassis du vélo complet a **6 degrés de liberté**. De plus, il faut aussi considérer un degré de liberté associé à la direction.

#### 2.2 Force ressort/amortisseur dans la suspension arrière

L'ensemble ressort/amortisseur doit être modélisé comme une force point-à-point. L'intensité de la force est définie par la relation suivante :

$$F_{r/a} = K_r(z - L_0) + D_a \dot{z} \tag{1}$$

avec, dans l'équation, z la distance point à point du lien et sa vitesse suivant l'axe du lien  $\dot{z}$ . Les données numériques pour la raideur et l'amortissement sont reprises dans la table 2.

| raideur         | $K_r$ | 30  | N/mm           |
|-----------------|-------|-----|----------------|
| amort is sement | $D_a$ | 3   | $N \cdot s/mm$ |
| longueur neutre | $L_0$ | 160 | mm             |

TABLE 2 – Données de l'ensemble ressort/amortisseur dans la suspension arrière.

La loi de force pour le lien est indépendante de la génération des équations du mouvement. Elle doit être implémentée dans la fonction user\_linkForces.

### 2.3 Force ressort/amortisseur dans la suspension avant

La force dans la suspension avant est modélisée comme une force interne dans l'articulation prismatique entre l'amortisseur et le piston.

| raideur         | $K_r$ | 5   | N/mm           |
|-----------------|-------|-----|----------------|
| amort is sement | $D_a$ | 0.5 | $N \cdot s/mm$ |
| longueur neutre | $L_0$ | 0   | mm             |

Table 3 – Données de l'ensemble ressort/amortisseur dans la suspension avant.

### 2.4 Forces de contact pneu/sol

Formules extraites de l'article de Sharp<sup>2</sup>:

$$F_{long} = C_{F_X} \kappa \tag{2}$$

$$F_{lat} = -C_{F_Y}\alpha - C_{M_Z}\frac{r_w}{V} - C_{\varphi}\varphi \tag{3}$$

$$M_Z = -C_{M_Z}\alpha\tag{4}$$

Où:

- $\kappa$ ,  $\alpha$  et  $\varphi$  sont le glissement (adimensionnel), l'angle de glissement (en rad) et l'angle de carrossage (en rad). Ces paramètres sont donnés par la fonction mbs\_tgc.tgc\_car\_kine\_wheel.
- Les coefficients  $C_{F_X},\,C_{F_Y},\,C_{\varphi}$  et  $C_{M_Z}$  sont donnés par :
  - $C_{F_X} = 3000 [N]$
  - $C_{F_Y} = 0.25 \cdot F_N \text{ [N/rad]}$
  - $-C_{\varphi} = 1 \cdot F_N [N/rad]$
  - $-C_{M_Z} = coeff_{roue} \cdot C_{F_Y}$  [Nm/rad] avec  $coeff_{roue} = 0.016/0.02$  pour la roue avant/arrière.
  - $F_N = K_p e + D_p \dot{e}$ , la force normale au sol à chaque roue avec e l'écrasement du pneu (donné par la fonction mbs\_tgc.tgc\_car\_kine\_wheel),  $\dot{e}$  la vitesse d'écrasement du pneu (également donnée par la fonction mbs\_tgc.tgc\_car\_kine\_wheel) et  $K_p$ =35 N/mm et  $D_p$ =30 Ns/m les coefficients de raideur et d'amortissement du pneu.
  - $r_w$  est la vitesse de rotation absolue projetée selon l'axe  $\mathbf{I}_3$  du repère inertiel.
  - V est la vitesse du centre de la roue, projetée au sol.

Les forces doivent être appliquées au point géométrique de contact entre le pneu/sol. La distance entre le centre la roue et le point géométrique de contact, exprimée dans le repère solidaire à la roue, est donnée par la fonction mbs\_tgc.tgc\_car\_kine\_wheel. Attention que le vecteur renvoyé par la fonction est de taille 4<sup>3</sup>, alors que la fonction user\_ExtForces attend un vecteur de taille 3. Une transformation est donc nécessaire afin de faire correspondre les composantes.

<sup>2.</sup> Sharp, R. S. (2008). On the Stability and Control of the Bicycle. Applied Mechanics Reviews, 61(6). Retrieved from https://doi.org/10.1115/1.2983014

<sup>3.</sup> dxF = [taille du vecteur, composante 1, composante 2, composante 3]

Pour installer et implémenter le module mbs\_tgc.tgc\_car\_kine\_wheel, il faut suivre les étapes suivantes :

- $\bullet$  Mettre à jour MBsysPy : pip install --index-url https://www.robotran.be/dist/ MBsysPy --user --upgrade
- Téléchargez le module :

  pip install --index-url https://www.robotran.be/dist/ mbs\_tgc --user --upgrade
- Dans le fichier user\_ExtForces.py, importez les fonctions : from mbs\_tgc import \*