(1)

(a). Degree distribution.

$$\lim_{n \to \infty} P(D=k) = \lim_{n \to \infty} {n-1 \choose k} p^{k} (1-p)^{n-1-k}$$

$$= \lim_{n \to \infty} \frac{(n-1)!}{k! (n-1-k)!} p^{k} (1-p)^{n-1-k}$$

we keep (n-1)p constant, and denote it = (n-1)p,

therefore,
$$\lim_{n\to\infty} P(D=k) = \lim_{n\to\infty} \frac{(n-1)^k p^k (n-1)!}{k! (n-1-k)! (n-1)^k (1-\frac{\lambda}{n-1})} {n-1-k}$$

$$= \lim_{n\to\infty} \frac{\lambda^k}{k!} \cdot \frac{(n-1)(n-\lambda)(n-\lambda)(n-\lambda)(n-k)}{(n-1)^k} (1-\frac{\lambda}{n-1})^{n-1-k}$$

$$= \frac{\lambda^k}{k!} e^{-\lambda}$$

16) The expected number of triangles. E[T]we first denote a random combination of vertices in graph, define, $Y_m=1$ when these 3 points form a triangle $P(Y_m=1)=p^3$

Ym=0 when not;
There are
$$\binom{n}{n}$$
 such combinations, $T = \sum_{m \neq 1}^{n} Y_m$
Therefore,
 $E[T] = \sum_{m \neq 1}^{n} E[Y_m]$

$$= \binom{n}{3} \cdot \left[p^3 \times 1 + (1-p^3) \times 0 \right] = \frac{n(n-1)(n-3)}{6} p^3$$

10) It is obvious that

we need to prove when $n \rightarrow \infty$, the first & third part $\rightarrow 0$.

(i)
$$P(diameter(G(n,p))=1) = p^{\binom{n}{2}} = p^{\frac{n(n+1)}{2}}$$

every vertice connect to each other, $\lim_{n\to\infty} p^{\frac{n(n+1)}{2}} = 0$ ($p + (0.1)$)

	iii) For comparing P(diameter (GCA, P)) =>),
	We denote event Ai. all di >> in graph, G
	the collection of 6:
112 2200 223	$P(A_i) = P(d_i > \lambda)$
Without and "Line Browning"	which mean no connection between two vertices, and no connections to common neighbor
And the Park State of	$P(di>z) = (1-p)(1-p^2)^{n-2}$
NAMES OF THE PROPERTY OF THE P	therefore. $P(A = \{G: D > 2\}) = P(A_1) \cup P(A_2) \cup \dots \cup P(A_{(2)})$ $\leq P(A_1) + P(A_2) + \dots + P(A_{(2)})$
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{n(n-1)}{2}(1-p)(1-p^2)^{n-2}$
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	lim P(diameter (Genp)) >>)
A THE STATE OF THE	= lm (1-p) (1-p) /1-p
WAS TAXABLE CARE	> 0
	Therefore, lim P(diamoner(6(n,p)=2)=1
127 de 200	