Measure Theory

Kaizhao Liu

 $\mathrm{May}\ 25,\ 2025$

Contents

1	Real Analysis	ŀ
	1.1	E
	1.2 Differentiation and Integration	

4 CONTENTS

Chapter 1

Real Analysis

1.1

1.2 Differentiation and Integration

For conceptual simplicity, we study \mathbb{R} instead of \mathbb{R}^n in this section. Let us first recall what we learned in elementary calculus.

Theorem 1.2.1. Let f be a continuous function on [a,b], and F be the function defined, for all x in [a,b], by

$$F(x) = \int_{a}^{x} f(t) dt.$$

Then F is uniformly continuous on [a,b] and differentiable on (a,b), and

$$F'(x) = f(x).$$

Theorem 1.2.2 (Newton-Leibniz). Let f be a Riemann integrable function on [a,b], and F a continuous function on [a,b] which is an antiderivative of f in (a,b):

$$F'(x) = f(x).$$

Then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Definition 1.2.3 (Total Variation). The total variation of a function f defined on [a,b] is the quantity

$$V_a^b(f) = \sup_{P \in \mathcal{P}} \sum_{i=0}^{n_P - 1} |f(x_{i+1}) - f(x_i)|,$$

where

 $\mathcal{P} = \{P = \{x_0, \cdots, x_{n_P}\} | P \text{ is a partition of } [a, b] \text{ satisfying } x_i \leq x_{i+1} \text{ for } 0 \leq i \leq n_P - 1\}.$

If $V_a^b(f) < +\infty$, then f is said to be of bounded variation on [a, b].

Example 1.2.4. The continuous function

$$f(x) = \begin{cases} 0, & x = 0\\ x \sin(\frac{1}{x}), & x \neq 0 \end{cases}$$

is not of bounded variation on $[0, 2/\pi]$. Just consider the partition

$$P = \{0, \frac{2}{2n-1}, \frac{2}{2n-3}, \cdots, \frac{2}{3}, 1\}.$$

Theorem 1.2.5 (Jordan Decomposition Theorem).

$$f(x) = g(x) - h(x)$$

where g(x) and h(x)

Bounded variable functions says that it has a length

Bounded variable functions are a.e. differentiable But it does not satisfies the desirable property: Length is equal to the integral of derivative, which is also known as the **fundamental theorem of calculus**. It turns out that absolute continuous functions is exactly the set of functions that satisfies this property.

Example 1.2.6.

Definition 1.2.7 (Absolute Continuity). A function $f : [a, b] \to \mathbb{R}$ is absolutely continuous if for every positive number ϵ , there is a positive number δ such that whenever a finite sequence of pairwise disjoint sub-intervals (x_k, y_k) satisfies

$$\sum_{k=1}^{N} (y_k - x_k) < \delta$$

then

$$\sum_{k=1}^{N} |f(y_k) - f(x_k)| < \epsilon.$$

Absolutely continuous functions are of bounded variation.

Proposition 1.2.8. *If* $f : [a,b] \to \mathbb{R}$ *is absolutely continuous, then it is of bounded variation on* [a,b].

Theorem 1.2.9. If f is absolute continuous function on [a, b], then

$$f(x) - f(a) = \int_{a}^{x} f'(t)dt, \quad x \in [a, b].$$

It is beneficial to compare it with the "classical" version (Theorem 1.2.2).