4-3 In-Class Exercise

1. Determine whether the polynomial $1 + x + x^2$ is a linear combination of

$$\mathbf{p}_1 = 2 + x + x^2$$
, $\mathbf{p}_2 = 1 - x^2$, $\mathbf{p}_3 = 1 + 2x$.

$$k_1(2+x+x^2)+k_2(1-x^2)+k_3(1+2x)=a+bx+cx^2$$
.
 $(2k_1+k_2+k_3)+(k_1+2k_3)x+(k_1-k_2)x^2=a+bx+cx^2$.

with augmented matrix
$$\begin{bmatrix} 2 & 1 & 1 & a \\ 1 & 0 & 2 & b \\ 1 & -1 & 0 & c \end{bmatrix}$$

The coefficient matrix $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & -1 & 0 \end{bmatrix}$ has determinant $5 \neq 0$

So we can solve the system for all possible choices of *a*, *b*, and *c*.

Hence, $\mathbf{p} = 1 + x + x^2$ is in the span of $\mathbf{p}_1, \mathbf{p}_2$, and \mathbf{p}_3 .

4-3 Suggested Exercises

1. Determine whether the following polynomials span P_2 .

$$\mathbf{p}_1 = 1 + x,$$
 $\mathbf{p}_2 = 1 - x,$ $\mathbf{p}_3 = 1 + x + x^2,$ $\mathbf{p}_4 = 2 - x^2$

2. Express the vector $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$

as a linear combination of

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, D = \begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix}$$

1. The given polynomials span P_2 if an arbitrary polynomial in P_2 , $\mathbf{p} = a_0 + a_1 x + a_2 x^2$ can be expressed as a linear combination

$$a_0 + a_1 x + a_2 x^2 = k_1 (1 + x) + k_2 (1 - x) + k_3 (1 + x + x^2) + k_4 (2 - x^2)$$

Grouping the terms according to the powers of x yields

$$a_0 + a_1 x + a_2 x^2 = (k_1 + k_2 + k_3 + 2k_4) + (k_1 - k_2 + k_3) x + (k_3 - k_4) x^2$$

Since this equality must hold for every real value x, the coefficients associated with the like powers of x on both sides must match. This results in the linear system

whose augmented matrix $\begin{bmatrix} 1 & 1 & 1 & 2 & a_0 \\ 1 & -1 & 1 & 0 & a_1 \\ 0 & 0 & 1 & -1 & a_2 \end{bmatrix}$ reduces

to
$$\begin{bmatrix} 1 & 0 & 0 & 2 & \frac{1}{2} a_0 + \frac{1}{2} a_1 - a_2 \\ 0 & 1 & 0 & 1 & \frac{1}{2} a_0 - \frac{1}{2} a_1 \\ 0 & 0 & 1 & -1 & a_3 \end{bmatrix}$$
 therefore the system has a solution for every choice of a_1, a_2, a_3

and a_3 . We conclude that the polynomials \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 , and \mathbf{p}_4 span P_2 .

We need to solve the equation $k_1\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} + k_2\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} + k_3\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + k_4\begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ to express

the vector $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ as the desired linear combination. We can rewrite this as

$$\begin{bmatrix} k_1 + 2k_4 & -k_1 + k_2 + k_3 \\ k_4 & 2k_1 + k_2 - k_4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}.$$
 Equating coefficients produces a linear system whose augmented

 $\text{matrix is} \begin{bmatrix} 1 & 0 & 0 & 2 & 1 \\ -1 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 2 & 1 & 0 & -1 & 4 \end{bmatrix}. \text{ This matrix has reduced row echelon form} \begin{bmatrix} 1 & 0 & 0 & 0 & -3 \\ 0 & 1 & 0 & 0 & 12 \\ 0 & 0 & 1 & 0 & -13 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$

hence
$$-3\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} + 12\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} - 13\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + 2\begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
.

3. Suppose that $\mathbf{v}_1 = (2, 1, 0, 3)$, $\mathbf{v}_2 = (3, -1, 5, 2)$, and $\mathbf{v}_3 = (-1, 0, 2, 1)$. Which of the following vectors are in span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?

a.
$$(2,3,-7,3)$$

4. Determine whether the matrices span M_{22} .

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$

3. (a)

In order for the vector (2,3,-7,3) to be in $\operatorname{span}\{v_1,v_2,v_3\}$, there must exist scalars a, b, and c such that

$$a(2,1,0,3)+b(3,-1,5,2)+c(-1,0,2,1)=(2,3,-7,3)$$

Equating corresponding components on both sides yields the linear system

$$2a + 3b - 1c = 2$$

 $1a - 1b + 0c = 3$
 $0a + 5b + 2c = -7$
 $3a + 2b + 1c = 3$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$

This system is consistent (its only solution is a=2, b=-1, c=-1), therefore (2,3,-7,3) is in span $\{\mathbf v_1,\mathbf v_2,\mathbf v_3\}$.

3. (b)

In order for the vector (1,1,1,1) to be in span $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$, there must exist scalars a, b, and c such that

$$a(2,1,0,3) + b(3,-1,5,2) + c(-1,0,2,1) = (1,1,1,1)$$

Equating corresponding components on both sides yields the linear system

$$2a + 3b - 1c = 1$$

 $1a - 1b + 0c = 1$
 $0a + 5b + 2c = 1$
 $3a + 2b + 1c = 1$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$ This system is

inconsistent therefore (1,1,1,1) is not in span $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$.

4.

The given matrices span M_{22} if an arbitrary matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ can be expressed as a linear combination

$$k_1\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} + k_2\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + k_3\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} + k_4\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. We can rewrite this as

$$\begin{bmatrix} k_1 + k_2 & k_2 + k_3 \\ k_1 + k_4 & k_3 + k_4 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$
 Equating coefficients produces a linear system whose augmented matrix

is
$$\begin{bmatrix} 1 & 1 & 0 & 0 & a \\ 0 & 1 & 1 & 0 & b \\ 1 & 0 & 0 & 1 & c \\ 0 & 0 & 1 & 1 & d \end{bmatrix}$$
. The coefficient matrix has $\det \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} = 0$ which means the system is

not consistent. We conclude that the given matrices do not span M_{22} .

5. Let W be the solution space to the system $A\mathbf{x} = \mathbf{0}$. Determine whether the set $\{\mathbf{u}, \mathbf{v}\}$ spans W.

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{u} = (1, 0, -1, 0), \mathbf{v} = (0, 1, 0, -1)$$

6. In each part, let $T_A: R^3 \to R^2$ be multiplication by A, and let $\mathbf{u}_1 = (0, 1, 1)$ and $\mathbf{u}_2 = (2, -1, 1)$ and $\mathbf{u}_3 = (1, 1, -2)$. Determine whether the set $\{T_A(\mathbf{u}_1), T_A(\mathbf{u}_2), T_A(\mathbf{u}_3)\}$ spans R^2 .

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

The solution space W to the homogenous system $A\mathbf{x} = \mathbf{0}$ where $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ is obtained from

the reduced row echelon form $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$ The general solution in vector form is

(x, y, z, w) = (s, t, -s, -t) = s(1, 0, -1, 0) + t(0, 1, 0, -1) therefore the solution space is spanned by the vectors $\mathbf{v}_1 = (1, 0, -1, 0)$ and $\mathbf{v}_2 = (0, 1, 0, -1)$. We conclude that the vectors $\mathbf{u} = (1, 0, -1, 0)$ and $\mathbf{v} = (0, 1, 0, -1)$ span the solution space W.

The vectors $T_A(0,1,1) = (1,0)$, $T_A(2,-1,1) = (1,-2)$, and, $T_A(1,1,-2) = (2,3)$ span \mathbb{R}^2 if an arbitrary vector

 $\mathbf{b} = (b_1, b_2)$ can be expressed as a linear combination

$$(b_1, b_2) = k_1(1, 0) + k_2(1, -2) + k_3(2, 3)$$

Equating corresponding components on both sides yields the linear system

$$1k_1 + 1k_2 + 2k_3 = b_1$$

$$0k_1 - 2k_2 + 3k_3 = b_2$$

The reduced row echelon form of the coefficient matrix of this system is $\begin{bmatrix} 1 & 0 & \frac{7}{2} \\ 0 & 1 & -\frac{3}{2} \end{bmatrix}$, therefore the

system is consistent for all right hand side vectors **b**.

We conclude that $T_A(\mathbf{u}_1)$, $T_A(\mathbf{u}_2)$, and, $T_A(\mathbf{u}_3)$ span R^2 .