I feel confident with one-dimensional waves:

A. Yes

B. Sort of

C. Not really

D. Nope

A function, f(x, t), satisfies this PDE:

$$\frac{\partial^2 f}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2}$$

Which of the following functions work?

A. $\sin(k(x-vt))$

B. exp(k(-x-vt))

 $C. a(x + vt)^3$

D. All of these.

E. None of these.

A "right moving" solution to the wave equation is:

$$f_R(z, t) = A \cos(kz - \omega t + \delta)$$

Which of these do you prefer for a "left moving" soln?

$$A. f_L(z, t) = A \cos(kz + \omega t + \delta)$$

$$B. f_L(z, t) = A \cos(kz + \omega t - \delta)$$

$$C.f_L(z,t) = A\cos(-kz - \omega t + \delta)$$

$$D. f_L(z, t) = A \cos(-kz - \omega t - \delta)$$

E. more than one of these!

(Assume k, ω, δ are positive quantities)

Two different functions $f_1(x, t)$ and $f_2(x, t)$ are solutions of the wave equation.

$$\frac{\partial^2 f}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2}$$

Is $(Af_1 + Bf_2)$ also a solution of the wave equation?

A. Yes, always

B. No, never

C. Yes, sometimes depending on f_1 and f_2

Two traveling waves 1 and 2 are described by the equations:

$$y_1(x, t) = 2 \sin(2x-t)$$

 $y_2(x, t) = 4 \sin(x-0.8t)$

All the numbers are in the appropriate SI (mks) units.

Which wave has the higher speed?

A. 1

B. 2

C. Both have the same speed

Two impulse waves are approaching each other, as shown. Which picture correctly shows the total wave when the two waves are passing through each other?

A solution to the wave equation is:

$$f(z,t) = A\cos(kz - \omega t + \delta)$$

- What is the speed of this wave?
- Which way is it moving?
- If δ is small (and >0), is this wave "delayed" or "advanced"?
- What is the frequency?
- The angular frequency?
- The wavelength?
- The wave number?

A solution to the wave equation is:

$$f(z,t) = Re \left[Ae^{i(kz - \omega t + \delta)} \right]$$

- What is the speed of this wave?
- Which way is it moving?
- If δ is small (and >0), is this wave "delayed" or "advanced"?
- What is the frequency?
- The angular frequency?
- The wavelength?
- The wave number?

A complex solution to the wave equation in 3D is:

$$\widetilde{f}(\mathbf{r},t) = \widetilde{A} e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$$

- What is the speed of this wave?
- Which way is it moving?
- Why is there no δ ?
- What is the frequency?
- The angular frequency?
- The wavelength?
- The wave number?