

Course > Section... > 1.2 Co... > 1.2.4 Q...

1.2.4 Quiz: Using the graph of dP/dt versus P

☐ Bookmark this page

View Larger Image **Image Description**

Question 1

2/2 points (graded)

Wes showed how to use the graph of $rac{dP}{dt}$ versus P to see whether the population will be increasing or decreasing for a given population level.

When the nonulation is between 0 and 40, 000, the graph of $\frac{dP}{dt}$ is above the horizontal axis.

A. This means $\frac{dP}{dt}$ is

positive	~
p 00.0.00	•

- negative
- zero
- none of above
- We cannot tell from this graph.

B. This means the population is

- increasing
- decreasing
- constant
- zero
- none of above
- We cannot tell from this graph.

Explanation

When the population is between 0 and 40,000, the graph of $\frac{dP}{dt}$ is above the horizontal axis, so $\frac{dP}{dt}>0$ and thus P(t), the population size, is increasing.

Submit

You have used 1 of 4 attempts

1 Answers are displayed within the problem

Question 2

1/1 point (graded)

At what population level is the population increasing fastest? Why?

- When P = 10,000
- When P = 20,000
- When P = 30,000
- When P = 40,000
- When P = 50,000
- None of the above.

Explanation

At P=20,000, the graph of $\frac{dP}{dt}$ has a maximum (this is the x-coordinate of the vertex of the parabola $y=\frac{1}{10}P(1-\frac{P}{40000})$). Thus the derivative is greatest at P=20,000, and the population is increasing fastest here.

Note: This means there will be an inflection point in the graph of P versus t, as P goes from concave up ($\frac{dP}{dt}$ increasing) to concave down ($\frac{dP}{dt}$ decreasing). The graph of P(t) will look qualitatively like the graph of the function in the Item Response Theory section, and in fact, the solution to the differential equation is a logistic function.

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

Question 3

1/1 point (graded)

Wes used arrows on the horizontal axis of the graph of $\frac{dP}{dt}$ versus P to represent intervals of P-values for which the population P is increasing or decreasing. An arrow to the left means for population levels in this interval, P is decreasing. An arrow to the right means P is increasing.

Try this on your own: Ask yourself for which P-values the derivative is positive. Then draw arrows on the horizontal axis to the right, to indicate that P is increasing. Do the same for where the derivative is negative.

Once you are done, compare your graph with the graphs below. Which is the correct one?

Image Description for All Graphs

Explanation

When 0 < P < 40,000, the graph is above the axis because dP/dt is positive, so P is increasing. We draw an arrow to the right – in the direction of increasing P – along this portion of the P axis.

When P>40,000, the graph of dP/dt is below the axis because dP/dt<0. P is decreasing. We put an arrow to the left on this part of the P axis to indicate that P is decreasing here.

For P < 0 the model doesn't make biological sense. We ignore this part of the graph.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Question 4

1/1 point (graded)

Recall we can classify equilibrium solutions as stable, unstable or semi-stable (see previous section). The solution P(t)=40,000 represents a:

- stable solution.
- unstable solution.
- semistable solution.
- generic function. This is not an equilibrium solution.

Explanation

Recall the red arrows on the graph indicate when P is increasing or decreasing. For P=40,000, we look at the value of $\frac{dP}{dt}$ for values near 40,000 (slightly less and slightly more). This tells us how the population P is changing.

According to the model, populations below 40,000 increase toward P=40,000 and populations above 40,000 decrease toward P=40,000. Therefore, P=40,000 is a stable equilibrium point.

Submit

You have used 1 of 2 attempts

3 Answers are displayed within the problem

Learn About Verified Certificates

© All Rights Reserved

© 2012–2018 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open edX logos are registered trademarks or trademarks of edX Inc. | 粤ICP备17044299号-2

