AMENDMENTS TO THE CLAIMS:

Please amend the claims as follows:

1. (Original) Electrolytic compositions comprising a perfluoropolyether additive of formula (I):

wherein:

d, e, f are integers; a, b, c can be zero or integers; said units being statistically distributed along the chain, a+b+c+d+e+f such that the number average molecular weight ranges from 500 to 5×10^{5} , preferably from 1,000 to 50,000;

T are end groups selected from -CF₂X (X=F, CF₃, C1), -C₃F₇, -CF(CF₃)COO⁻ (1/n)Mⁿ⁺, -CF₂COO⁻ (1/n)Mⁿ⁺, -CF₂C(O(1/n)Mⁿ⁺)₂CF₃;

Mⁿ⁺ is a cation having valence n=1-4 selected from Li⁺, Na⁺, K⁺, Cs⁺, Mg²⁺, Ca²⁺, Sr²⁺,
Ba²⁺, metal cations of the group IIIA such as Al³⁺; transition metal cations, such as Fe²⁺,
Fe³⁺, Zn²⁺, Ti⁴⁺, Cu²⁺;

tetraalkylammonium NR₄⁺ cations, trialkylammonium NR₃⁺ cations, wherein R is selected from H, a linear or branched when possible C₁-C₄ lower alkyl.

- 2. (Currently amended) Electrolytic compositions according to claim 1, wherein Mⁿ⁺ is a monovalent cation (n=1), preferably M=Li+.
- 3. (Previously Presented) Electrolytic compositions according to claim 1, furthermore comprising:
- one or more aprotic polar solvents;
- a conductive salt.
- 4. (Original) Electrolytic compositions according to claim 3, wherein the conductive salt cation is selected from the group comprising alkaline, alkaline-earth metals, trivalent metals, tetra-alkyulammonium; the anion is selected from PF_6^- , CIO_4^- , AsF_6^- , BF_4^- , $(R_{f1}SO_2)$ $(R_{f2}SO_2)N^-$, $R_{fv}SO_3^-$ wherein R_{f1} , R_{f2} , R_{fv} are independently selected from C_1 - C_4 perfluoroalkyl groups optionally containing heteroatoms.
- 5. (Currently amended) Electrolytic compositions according to claim 3, wherein the aprotic polar solvents are selected from 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,3-dioxolane, 2-methyl-1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, N,N-dimethylformamide, dimethylsulphoxide, ester carbonates such as dimethylcarbonate, diethylcarbonate, propylencarbonate, ehylencarbonate ethylene carbonate.
- 6. (Original) Electrolytic compositions according to claim 5, wherein the solvents are ester carbonates.

- 7. (Currently amended) Electrolytic compositions according to claim [[1]] 3, wherein [[the]] a concentration of conductive salt in the electrolytic solution is higher than 0.5 moles/litre, preferably in the range 0.5-2 moles/litre.
- 8. (Currently amended) Electrolytic compositions according to claim 1, wherein the concentration of the perfluoropolyether additive is higher than 10 meq/litre (calculated as cation Mⁿ⁺), preferably in the range 10 meq/litre-500 meq-/litre.
- 9. (Previously presented) Electrolytic compositions according to claim 1, wherein the ionic species are at least partially dissolved or dispersed in a matrix material.
- 10. (Original) Electrolytic compositions according to claim 9, wherein the matrix material is in the form of solid, liquid polymer, gel or porous membrane.
- 11. (Previously presented) Electrolytic compositions according to claim 9, wherein the matrix material in the form of solid polymer is selected from polyethylenoxide, polyesters, polyacrylates, polyvinilydenfluoride, polyacrylonitrile.
- 12. (Previously presented) Electrolytic compositions according to claim 9, wherein the matrix material in the form of porous solid membranes is selected from polyethylene, polypropylene having a surface tension in the range 28 35 mN/m (dyne/cm).

- 13. (Previously presented) Electrolytic compositions according to claim 1, wherein the perfluoropolyether additive of formula (I) is obtainable by conversion of the fluorosulphonyl groups -SO₂F into -SO₃M groups carried out on the homopolymers of the monomer CF₂=CFOCF₂CF₂SO₂F or on the copolymers of said monomer with perfluoroolefins.
- 14. (Original) Electrolytic compositions according to claim 13, wherein the perfluoroolefins are tetrafluoroethylene and/or perfluoropropene.
- 15. (Currently amended) Use of the electrolytic compositions according to claim 1, in electrochemical systems, such as lithium batteries. A method for improving the weattability of components of electrochemical systems comprising the preparation of the electrolytic composition of claim 1.
- 16. (Previously presented) Electrochemical system comprising the electrolytic compositions according to claim 1.
- 17. (Currently amended) Perfluoropolyether additives according to claim [[1]] 19.
- 18. (New) Electrolytic compositions according to claim 7, wherein the concentration of conductive salt in the electrolytic solution is in the range 0.5 2 moles/litre.

- 19. (New) Electrolytic compositions according to claim 2, wherein M is Li⁺.
- 20. (New) Electrolytic compositions according to claim 8, Electrolytic compositions according to claim 1, wherein the concentration of the perfluoropolyether additive is in the range 10 meq/litre 500 meq/litre.
- 21. (New) The method according to claim 15, wherein the electrochemical systems are lithium batteries.