Algorithm, Design & Analysis

Lecture 18: Dijkstra's Algorithm

Muhammad Bilal & Muhammad Asharib

Information Technology University

March 27, 2025

March 27, 2025

About Your Fellows

- Hi there! We are Asharib and Bilal.
- We are Associate Students at ITU.

Introduction to Dijkstra's Algorithm

- Used to find the shortest path from a single source to all vertices or a specified vertex in a weighted graph.
- Using a priority queue (min-heap) for efficient vertex selection.
- Decrease-Key heap operation is used to maintain an optimized priority queue.

Dijkstra works like a miser traveling the world—always taking the cheapest step forward to minimize cost.

What is Decrease Key

Heap Operation - Decrease-Key

Definition:

- The decrease-key operation is used when an edge relaxation lowers the shortest known distance of a vertex.
- Helps update distances and maintains the heap property by sifting up updated elements.

Step 1: Initial Min-Heap

Before decrease-key: The key at node 10 is reduced to 1.

Step 2: Update Key $(10 \rightarrow 1)$

Key changed: Node 10 is now 1. Heap property

is violated.

Step 3: Sift-Up (Swap 1, 5)

Step: Node 1 swaps with its parent (5).

March 27, 2025

Step 4: Sift-Up (Swap 1, 2)

Step: Node 1 swaps with its parent (2).

Min-Heap property restored.

Final Heap After Decrease-Key

Final Structure: Min-Heap is now valid!

March 27, 2025

Time Complexity Analysis

Time Complexity for Binary Heap

- **Insert**: $O(\log N)$
- **Delete Min:** $O(\log N)$
- Decrease Key: $O(\log N)$

Back to Dijkstra's Algorithm

Algorithm Explanation

Initialization:

- Set all distances except the source to infinity (∞) .
- Set the distance from the source to 0.
- Store all vertices in a min-heap based on their current shortest distances.

Processing Nodes (Main Loop):

- Extract the vertex *u* with the smallest distance from the heap.
- Relax all its neighbors v:
 - If a shorter path to v is found through u, update d[v].
 - ullet Update the predecessor of v to track the shortest path.
 - The decrease-key operation is used to update the heap efficiently.

Pseudocode

Dijkstra's Algorithm:

- $d[v] = \infty$ for all V.
- $\pi[v] = \text{NIL for all V}$.
- $d[s] = \phi$
- H = Insert all vertices into a min-heap with their distances.
- For i = 1 to n:
 - u = deleteMin(H)
 - For all edges (u, v):
 - If d[u] + w(u, v) < d[v]:

 - $\pi[v] = u$.
 - decreaseKey(H, v, d[v])

Dijkstra's Algorithm - Example

Step 8: Updating Neighbors of F

Step 10: Updating Neighbors of C ;

Step 11: Selecting G: Smallest Distance(Goal Reached!);

Time Complexity Analysis

Time Complexity of Dijkstra's Algorithm

- Using Binary Heap: $O((V + E \log V))$
- Using Fibonacci Heap: O(V + E)
- Why Fibonacci Heap? Improves performance by making decrease-key O(1) amortized time.

Understanding of Fabonacci Heap & Amortized Cost

Fibonacci Heaps & Efficiency

• Fibonacci heaps allow faster updates by reducing decrease-key cost.

Time Complexity of Decrease-Key

- Binary Heap: $O(\log V)$
- Fibonacci Heap: O(1) amortized time
- Analogy with binary counting:
 - The cost of incrementing a binary number depends on bit flips.
 - Similar logic applies to heap restructuring.

Amortized Cost

Amortized Cost

The amortized cost is the average cost of each operation in an algorithm when spread over a sequence of operations, even if some are more expensive. It gives a clearer picture of overall efficiency.

Amortized Cost (Binary Counter)

Understanding the Cost of Incrementing a Binary Counter

- Each increment operation flips bits from 0 to 1 or 1 to 0.
- Worst case: All *n* bits flip (e.g., $1111 \rightarrow 0000$).
- m operations can have a complexity of $O(m \cdot n)$.

Amortized Analysis Using the Coin Method

Basic Idea:

- Each increment earns 2 coins.
- Flipping 0 to 1 costs 1 coin.
- Flipping 1 to 0 costs 1 coin.
- At the end of increment, the remaining coins move to savings.

Step 1: Incrementing from 0000 to 0001

• We get 2 coins at start of the incrementing step

Step 1: Incrementing from 0000 to 0001

- 1 coin is spent on flipping 0 to 1
- The remaining 1 coin will be moved to carry box

Step 2: Incrementing from 0001 to 0010

Step 2: Incrementing from 0001 to 0010

- 1 carry coin utilized for flipping 1 to 0
- 1 coin is spent on flipping 0 to 1
- The remaining 1 coin will be moved to carry box

Step 3: Incrementing from 0010 to 0011

Step 3: Incrementing from 0010 to 0011

- 1 coin is spent on flipping 0 to 1
- The remaining 1 coin will be moved to carry box

Step 4: Incrementing from 0011 to 0100

Step 4: Incrementing from 0011 to 0100

- Both carry coins are utilized for flipping 1's to 0's
- 1 coin is spent on flipping 0 to 1
- The remaining 1 coin will be moved to carry box

Why This Improves the Cost

- Each bit flip collects coins for future flips.
- When a bit flips, it spends coins collected earlier.
- Each increment operation only requires 1 new coin.
- Even if multiple bits flip, the cost is already covered by previous savings.
 - Total flips in m operations: O(m) instead of O(m ⋅ n).
 Average cost per operation: O(1).

Why This Improves the Cost: Line Graph

Observation:

The cost is going up and down at each step, Resulting in an amortized cost of 2m = O(m) instead of O(mn).

• Can not handle negative weights.

Step 1: Start with S (Goal is A) ;

Step 2: Updating Neighbors of S

Step 3: Selecting A :Smallest Distance (Goal Reached!) ;

Incorrect Shortest Distance;

The Real Shortest Distance;

Why Dijkstra's Algorithm Failed?

- Dijkstra assumes all edge weights are non-negative.
- The negative weight edge (B \rightarrow A, cost = -3) breaks this assumption.
- Once a node is visited in Dijkstra's algorithm, it is never reprocessed, leading to incorrect results.
- In this case, the shortest path $S \to B \to A$ (cost=3) is **never found**, as Dijkstra **incorrectly finalizes** d(A)=5 **too early**.

Applications of Dijkstra's Algorithm

- **Network Routing:** Finding shortest paths in computer networks.
- GPS & Navigation: Used in Google Maps to find the shortest routes.
- **Social Networks:** Finding the shortest connection path between users.
- **Airline Route Optimization:** Finding the cheapest travel routes.

