

#### Vehicle Tutorial Chapter 4: Property-Driven Training

Today's presentors: Ekaterina Komendantskaya and Luca Arnaboldi (live), Matthew Daggitt (online), on behalf of the Vehicle team



#### We will discuss:

 $\blacktriangleright$  ... why and how training is a part of verification of neural networks



#### We will discuss:

- ▶ ... why and how training is a part of verification of neural networks
- $\blacktriangleright$  ... what choices exist for implementing this, generally



#### We will discuss:

- ▶ ... why and how training is a part of verification of neural networks
- ▶ ... what choices exist for implementing this, generally
- ▶ ... what choices **Vehicle** makes in this respect



#### We will discuss:

- ▶ ... why and how training is a part of verification of neural networks
- ▶ ... what choices exist for implementing this, generally
- ▶ ... what choices **Vehicle** makes in this respect
- ... theoretical and practical issues with the chosen methods, and **Vehicle**'s take on them

## Recap: four PL problems



## Recap: four PL problems



- $I^O$  Interoperability properties are not portable between training/counter-example search/ verification.
- $I^P$  Interpretability code is not easy to understand.
- $I^{\int}$  Integration properties of networks cannot be linked to larger control system properties.
- ${\cal E}^G$  Embedding gap little support for translation between problem space and input space.

## Why Training is a part of Verification?



## Why Training is a part of Verification?



For Chapter 3 exercise on verifying a small Fashion MNIST network, the answer would be:

|               | $\epsilon = 0.01$ |   | $\epsilon = 0.05$ |   | $\epsilon = 0.1$ | $\epsilon = 0.5$ |
|---------------|-------------------|---|-------------------|---|------------------|------------------|
| Success rate: | 82.6<br>(413/500) | % | 29.8<br>(149/500) | % | 3.8 % (19/500)   | 0 % (0/500)      |

#### A few words on the context



- 1943 Perceptron by McCullogh and Pitts
- 90-2000 Rise of machine learning applications
  - 2013 C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing properties of neural networks. 2013. (10000+ citations on GS)
- 2013-.. Tens of thousands of papers on adversarial training (in the attack-defence style)

A. C. Serban, E. Poll, J. Visser. Adversarial Examples - A Complete Characterisation of the Phenomenon. 2019.

#### A few words on the context



- 1943 Perceptron by McCullogh and Pitts
- 90-2000 Rise of machine learning applications
  - 2013 C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing properties of neural networks. 2013. (10000+ citations on GS)
  - 2013-.. Tens of thousands of papers on adversarial training (in the attack-defence style)
    - A. C. Serban, E. Poll, J. Visser. Adversarial Examples A Complete Characterisation of the Phenomenon. 2019.
    - 2017 First Neural network verification attempts
      - G. Katz, C.W. Barrett, D.L. Dill, K. Julian, M.J. Kochenderfer: Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. CAV (1) 2017: 97-117.
      - X. Huang, M. Kwiatkowska, S. Wang, M. Wu. Safety Verification of Deep Neural Networks. CAV (1) 2017: 3-29.
- 2017-.. Hundreds of papers on neural network verification



#### Training for Robustness



#### Training for Robustness

#### Training generally:

- 1. depends on data
- 2. depends on loss functions
- 3. some other parameters like shape of the functions

#### 1. Data Augmentation

Suppose we are given a data set  $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n)\}$ . Prior to training, generate new training data samples close to existing data and label them with the same output as the original data.



C. Shorten, T.M. Khoshgoftaar: A survey on image data augmentation for deep learning. J. Big Data 6, 60~(2019)

#### 1. Data Augmentation

Suppose we are given a data set  $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n)\}$ . Prior to training, generate new training data samples close to existing data and label them with the same output as the original data.



C. Shorten, T.M. Khoshgoftaar: A survey on image data augmentation for deep learning. J. Big Data 6, 60~(2019)



#### 1. Data Augmentation

Suppose we are given a data set  $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n)\}$ . Prior to training, generate new training data samples close to existing data and label them with the same output as the original data.



C. Shorten, T.M. Khoshgoftaar: A survey on image data augmentation for deep learning. J. Big Data  $6,\,60~(2019)$ 



## However,





## However,





## Adversarial Training





## 2. Solutions Involving Loss Functions

Given a data set  $\mathcal{D}$ , a function  $f: \mathbb{R}^n \to \mathbb{R}^m$ , a loss function  $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$  computes a penalty proportional to the difference between the output of f on a training input x and a desired output y.

## 2. Solutions Involving Loss Functions

Given a data set  $\mathcal{D}$ , a function  $f: \mathbb{R}^n \to \mathbb{R}^m$ , a loss function  $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$  computes a penalty proportional to the difference between the output of f on a training input x and a desired output y.

#### Example (Cross Entropy Loss Function)

Given a function  $f: \mathbb{R}^n \to [0,1]^m$ , the cross-entropy loss is defined as

$$\mathcal{L}_{ce}(\mathbf{x}, \mathbf{y}) = -\sum_{i=1}^{m} \mathbf{y}_i \log(f(\mathbf{x})_i)$$
 (1)

where  $\mathbf{y}_i$  is the true probability for class i and  $f(\mathbf{x})_i$  the probability for class i as predicted by f when applied to  $\mathbf{x}$ .

## 2. Adversarial Training for Robustness

▶ gradient descent minimises loss  $\mathcal{L}(\hat{\mathbf{x}}, \mathbf{y})$  between the predicted value  $f_{\theta}(\hat{\mathbf{x}})$  and the true value  $\mathbf{y}$ , for each entry  $(\hat{\mathbf{x}}, \mathbf{y})$  in  $\mathcal{D}$ :

$$\min_{\boldsymbol{\theta}} \mathcal{L}(\hat{\mathbf{x}}, \mathbf{y})$$

## 2. Adversarial Training for Robustness

radient descent minimises loss  $\mathcal{L}(\hat{\mathbf{x}}, \mathbf{y})$  between the predicted value  $f_{\theta}(\hat{\mathbf{x}})$  and the true value  $\mathbf{y}$ , for each entry  $(\hat{\mathbf{x}}, \mathbf{y})$  in  $\mathcal{D}$ :

$$\min_{\boldsymbol{\theta}} \mathcal{L}(\hat{\mathbf{x}}, \mathbf{y})$$

- instead minimise the loss with respect to the worst-case perturbation of each sample in  $\mathcal{D}$ .
  - ▶ Replace the standard training objective with:

$$\min_{\theta} \max_{\forall \mathbf{x}: |\mathbf{x} - \hat{\mathbf{x}}| < \epsilon} \mathcal{L}(\mathbf{x}, \mathbf{y})$$

▶ often referred to as the method of "projected gradient descent" (PGD)



I.J. Goodfellow, J. Shlens, C. Szegedy: Explaining and harnessing adversarial examples. 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (2015)

## 3. Lipshitz Continuity



#### Optimise for:

$$\forall \mathbf{x} : |\mathbf{x} - \hat{\mathbf{x}}| \le \epsilon \Rightarrow |f(\mathbf{x}) - f(\hat{\mathbf{x}})| \le L|\mathbf{x} - \hat{\mathbf{x}}|$$



H. Gouk, E. Frank, B. Pfahringer, M.J. Cree: Regularisation of neural networks by enforcing Lipschitz continuity. Machine Learning 110(2), 393–416 (2021)

and much more...



#### Ok, great!

Machine Learning Community knows how to make our networks robust, and maybe even verifiable!

## **A**,

#### Ok, great!

Machine Learning Community knows how to make our networks robust, and maybe even verifiable!

#### But remember:

- $I^{O}$  Interoperability properties are not portable between training/counter-example search/ verification.
- $I^P$  Interpretability ...
- $I^{\int}$  Integration . . .
- $E^G$  Embedding gap ...

# Interpretation of adversarial training in connection to verification properties

► Recall the epsilon ball robustness:  $\forall \mathbf{x} \in \mathbb{B}(\hat{\mathbf{x}}, \epsilon). \ robust(f(\mathbf{x}))$ 



M. Casadio, E. Komendantskaya, M. L. Daggitt, W. Kokke, G. Katz, G. Amir, and I. Rafaeli. 2022. Neural Network Robustness as a Verification Property: A Principled Case Study. CAV'22.

# Interpretation of adversarial training in connection to verification properties

Recall the epsilon ball robustness:

 $\forall \mathbf{x} \in \mathbb{B}(\hat{\mathbf{x}}, \epsilon). \ robust(f(\mathbf{x}))$ 

▶ We can map different kinds of adversarial training to formal properties:

| Training style       | Definition of robust                                                         |
|----------------------|------------------------------------------------------------------------------|
| Data Augmentation    | $argmax \ f(\mathbf{x}) = c$                                                 |
| Adversarial Training | $ f(\mathbf{x}) - f(\hat{\mathbf{x}})  \le \delta$                           |
| Lipschitz Continuity | $ f(\mathbf{x}) - f(\hat{\mathbf{x}})  \le L \mathbf{x} - \hat{\mathbf{x}} $ |
|                      |                                                                              |



M. Casadio, E. Komendantskaya, M. L. Daggitt, W. Kokke, G. Katz, G. Amir, and I. Rafaeli. 2022. Neural Network Robustness as a Verification Property: A Principled Case Study. CAV'22.

## Problem Recap



- one kind of robustness does not necessarily imply another;
- ▶ It is easy to get it wrong, and, while optimising for a wrong kind of robustness, achieve little in verification success rates
- ▶ And what to do with properties that are not  $\epsilon$ -ball robustness?

## Problem Recap



- one kind of robustness does not necessarily imply another;
- ▶ It is easy to get it wrong, and, while optimising for a wrong kind of robustness, achieve little in verification success rates
- ▶ And what to do with properties that are not  $\epsilon$ -ball robustness?

```
I^{O} Interoperability – properties are not portable between training/counter-example search/ verification.
```

 $I^P$  Interpretability ...

 $I^{\int}$  Integration . . .

 $E^G$  Embedding gap ...

## The solution we are looking for





### In Vehicle terms,



