

Потешкин Егор Павлович, Голяндина Нина Эдуардовна

Санкт-Петербургский государственный университет Кафедра статистического моделирования

Мат-Мех. Наука 2025 30 апреля 2025, Санкт-Петербург

Есть ли сигнал?

Вопрос: это чистый шум или там есть сигнал?

Постановка задачи

 $\mathsf{X} = (x_1, \dots, x_N)$, $x_i \in \mathbb{R}$ — временной ряд.

Дано: X = T + H + R, где T -тренд, H -периодическая компонента и R -шум.

Проблемы:

- Как проверить наличие сигнала S = T + H?
- Как выделить сигнал S, если он есть?

Методы:

- Monte-Carlo SSA (MC-SSA) [Allen and Smith, 1996] проверяет $H_0: S=0$.
- Singular spectrum analysis (SSA) [Golyandina, Nekrutkin and Zhigljavsky, 2001].

Задача: реализовать алгоритм автоматического выделения сигнала на основе MC-SSA.

Обозначения и известные результаты: оператор вложения и ганкелизации

$$X = (x_1, \dots, x_N)$$
. Зафиксируем L (1 < L < N).

Оператор вложения T_{SSA}:

$$\mathfrak{T}_{\mathsf{SSA}}(\mathsf{X}) = \mathbf{X} = \begin{pmatrix} x_1 & x_2 & \cdots & x_K \\ x_2 & x_3 & \cdots & x_{K+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & \cdots & x_N \end{pmatrix},$$

где
$$K = N - L + 1$$
.

Оператор ганкелизации \mathcal{H} — усреднение матрицы по побочным диагоналям.

Обозначения и известные результаты: алгоритм SSA

Входные данные: временной ряд $X = (x_1, \ldots, x_N)$. Параметры: длина окна L, набор индексов $I \subset \{1, \ldots, d\}$. Выходные данные: оценка сигнала.

Выходные данные: оценка сигнала. Входные данные: Xвременной ряд 1. Вложение Сумма матриц единичного ранга Траекторная матрица 2. Разложение $\mathbf{X} = \sum_{i=1}^{a} \mathbf{X}_{j}$ $\mathbf{X} = \mathfrak{T}_{SSA}(\mathsf{X})$ 3. Группировка Группировка матриц, Результат: SSA разложение соответствующих сигналу 4. Восстановление $X = \widetilde{S} + \widetilde{R}$ $\widetilde{S} = \mathcal{T}_{SSA}^{-1} \circ \mathcal{H}(\mathbf{X}_I)$ $\mathbf{X} = \mathbf{X}_I + (\mathbf{X} - \mathbf{X}_I)$ $\mathbf{X}_I = \sum \mathbf{X}_i$

Пример: применение SSA

Рис.: Элементарные восстановленные компоненты (L=100)

Компоненты, соответствующие сигналу: 1, 2, 5, 6 и 13.

Обозначения и известные результаты: Monte-Carlo SSA

Входные данные: X = S + R, где S — сигнал, R — реализация стационарного процесса ξ с нулевым средним и со спектральной плотностью f_{θ} .

Параметры: длина окна $L, W_1, \dots, W_M \in \mathbb{R}^L$ — нормированные векторы, соответствующие определенным частотам.

Статистика критерия: величины

$$\widehat{p}_k = \left\| \mathbf{X}^{\mathrm{T}} W_k \right\|^2.$$

Распределение \widehat{p}_k при верной H_0 , вообще говоря, неизвестно — оно оценивается с помощью метода Monte Carlo.

Multiple MC-SSA [Golyandina, 2023]: модификация MC-SSA с поправкой на множественные сравнения.

В качестве W_k рассматриваются косинусы с равностоящими частотами $\omega_k=k/(2L),\ k=1,\ldots,L.$

Обозначения и известные результаты: оценка параметров шума

Параметры шума heta, вообще говоря, неизвестны, поэтому их нужно оценивать.

Получить оценки параметров можно, максимизируя правдоподобие Whittle [Whittle, 1953]:

$$\ell_W(\boldsymbol{\theta}) = -\frac{1}{m} \sum_{j=1}^m \left(\ln f_{\boldsymbol{\theta}}(\omega_j) + \frac{I_N(\omega_j)}{f_{\boldsymbol{\theta}}(\omega_j)} \right),$$

где $m=\lfloor (N-1)/2 \rfloor$, $f_{\pmb{\theta}}$ — спектральная плотность $\pmb{\xi}$, I_N — периодограмма исходного ряда, $\omega_j=j/N$.

Оценивать параметры можно по части спектра: пусть $J=\{j_1,\dots,j_p\}$ — индексы частот, которые мы не хотим учитывать при оценке параметров. Тогда при вычислении $\ell_W(\pmb{\theta})$ рассматриваются только индексы $j \not\in J$.

Пример: применение Monte Carlo SSA

 $\mathsf{X}=\mathsf{S}+\pmb{\xi}$, где $\pmb{\xi}$ — красный шум с параметрами $\phi=0.7$ и $\sigma^2=1$, N=200,

$$s_n = 0.075 e^{0.02n} \cos(2\pi n/8) + 2\cos(2\pi n/4) + 0.2 \cdot (-1)^n.$$

Пример: применение Monte Carlo SSA

Рис.: Истинная модель шума

Рис.: Оцененная модель шума

Проблема: при оценивании параметров обнаруживаются не все частоты.

Решение: итеративно применять критерий после выделения одной гармоники, пока гипотеза $H_0:\mathsf{S}=0$ отвергается.

Обозначения и известные результаты: автоматическая группировка в SSA

Для ряда X длины N и $0\leqslant\omega_1\leqslant\omega_2\leqslant0.5$ определим меру

$$T(\mathsf{X};\omega_1,\omega_2) = \frac{1}{\|\mathsf{X}\|^2} \sum_{k:\omega_1 \leqslant k/N \leqslant \omega_2} I_N(k/N),$$

где I_N — периодограмма X.

Величину $T(\mathsf{X};\omega_1,\omega_2)$ можно рассматривать как долю вклада частот, содержащегося в интервале $[\omega_1,\omega_2]$.

Пусть ω^* — значимая частота. Тогда $[\omega_1, \omega_2] = [\omega^* - \delta, \omega^* + \delta].$

Алгоритм autoMCSSA

Пример: применение autoMCSSA

 $\mathsf{X}=\mathsf{S}+\pmb{\xi}$, где $\pmb{\xi}$ — красный шум с параметрами $\phi=0.7$ и $\sigma^2=1,\ N=200$,

$$s_n = 0.075 e^{0.02n} \cos(2\pi n/8) + 2\cos(2\pi n/4) + 0.2 \cdot (-1)^n.$$

Пример: применение autoMCSSA

Параметры: $L_1 = 50$, $L_2 = 100$, $\delta = 1/80$, $T_0 = 0.5$.

Метод autoMCSSA правильно идентифицировал значимые компоненты (1, 2, 5, 6 и 13).

Численное сравнение с autoSSA

Сравним метод autoMCSSA с методом autoSSA [Дудник, 2025].

Рассмотрим временной ряд $\mathsf{X} = \mathsf{S} + \boldsymbol{\xi}$ длины N = 100, где

$$s_n = 0.2e^{0.05n}\cos(2\pi n/4) + 2\cos(2\pi n/3) + (-1)^n,$$

 ${m \xi}$ — красный шум с параметрами $\phi \in \{0,0.5\}$, $\sigma^2 = 1$. Для autoMCSSA были выбраны следующие параметры:

- Длины окна $L_1 = 20$ и $L_2 = 50$;
- Радиус промежутка для вычисления меры T $\delta = 1/80$;
- Порог для меры $T T_0 = 0.5$;
- Максимальное количество итераций: 10.

Численное сравнение с autoSSA

Таблица: MSE выделения сигнала ($\phi=0$)

	Mean MSE	Median MSE
autoMCSSA	0.15196	0.13921
autoSSA	0.14872	0.14003

Таблица: MSE выделения сигнала ($\phi = 0.5$)

	Mean MSE	Median MSE
autoMCSSA	0.11563	0.09038
autoSSA	0.09341	0.08795

Итоги

- Был реализован метод autoMCSSA, позволяющий автоматически выделить значимый сигнал, а также модификация метода Whittle по части спектра.
- Получено, что autoMCSSA позволяет выделять сигнал, компоненты которого в SSA необязательно доминируют.
- **③** При сравнении с autoSSA метод autoMCSSA показал сравнимый результат.
- Необходимо сформулировать подход к выбору параметров autoMCSSA.