# DIGITAL SYSTEMS TESTING AND TESTABLE DESIGN

**Revised Printing** 

MIRON ABRAMOVICI, AT&T Bell Laboratories, Murray Hill MELVIN A. BREUER, University of Southern California, Los Angeles ARTHUR D. FRIEDMAN, George Washington University



The Institute of Electrical and Electronics Engineers, Inc., New York



This is the IEEE revised printing of the book previously published by W. H. Freeman and Company in 1990 under the title *Digital Systems Testing and Testable Design*.

© 1990 by AT&T. All rights reserved.

THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC. 3 Park Avenue, 17<sup>th</sup> Floor, New York, NY 10016-5997

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, e-mail: permcoordinator@wiley.com.

For general information on our other products and services please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

#### ISBN 0-7803-1062-4

Printed in the United States of America 10 9 8

To our families, who were not able to see their spouses and fathers for many evenings and weekends, and who grew tired of hearing "leave me alone, I'm working on the book." Thank you Gaby, Ayala, Orit, Sandy, Teri, Jeff, Barbara, Michael, and Steven. We love you.

## CONTENTS

| PREFACE |      |                                                  |      |  |  |  |
|---------|------|--------------------------------------------------|------|--|--|--|
| Но      | w Th | is Book Was Written                              | xvii |  |  |  |
| 1.      | INT  | 1                                                |      |  |  |  |
| 2.      | МО   | 9                                                |      |  |  |  |
|         | 2.1  | Basic Concepts                                   | 9    |  |  |  |
|         | 2.2  | Functional Modeling at the Logic Level           | 10   |  |  |  |
|         |      | 2.2.1 Truth Tables and Primitive Cubes           | 10   |  |  |  |
|         |      | 2.2.2 State Tables and Flow Tables               | 13   |  |  |  |
|         |      | 2.2.3 Binary Decision Diagrams                   | 17   |  |  |  |
|         |      | 2.2.4 Programs as Functional Models              | 18   |  |  |  |
|         | 2.3  | Functional Modeling at the Register Level        | 20   |  |  |  |
|         |      | 2.3.1 Basic RTL Constructs                       | 20   |  |  |  |
|         |      | 2.3.2 Timing Modeling in RTLs                    | 23   |  |  |  |
|         |      | 2.3.3 Internal RTL Models                        | 24   |  |  |  |
|         | 2.4  | Structural Models                                | 24   |  |  |  |
|         |      | 2.4.1 External Representation                    | 24   |  |  |  |
|         |      | 2.4.2 Structural Properties                      | 26   |  |  |  |
|         |      | 2.4.3 Internal Representation                    | 29   |  |  |  |
|         |      | 2.4.4 Wired Logic and Bidirectionality           | 31   |  |  |  |
|         | 2.5  | Level of Modeling                                | 32   |  |  |  |
|         | REF  | FERENCES                                         | 35   |  |  |  |
|         | PRC  | DBLEMS                                           | 36   |  |  |  |
| 3.      | LOC  | GIC SIMULATION                                   | 39   |  |  |  |
|         | 3.1  | 39                                               |      |  |  |  |
|         | 3.2  | Problems in Simulation-Based Design Verification | 41   |  |  |  |
|         | 3.3  | Types of Simulation                              | 42   |  |  |  |
|         | 3.4  | The Unknown Logic Value                          | 43   |  |  |  |
|         | 3.5  | Compiled Simulation                              | 46   |  |  |  |
|         | 3.6  | Event-Driven Simulation                          | 49   |  |  |  |
|         | 3.7  | Delay Models                                     | 52   |  |  |  |
|         |      | 3.7.1 Delay Modeling for Gates                   | 52   |  |  |  |
|         |      | 3.7.2 Delay Modeling for Functional Elements     | 54   |  |  |  |
|         |      | 3.7.3 Delay Modeling in RTLs                     | 55   |  |  |  |
|         |      | 3.7.4 Other Aspects of Delay Modeling            | 55   |  |  |  |
|         | 3.8  |                                                  |      |  |  |  |
|         | 3.9  | 3.9 Hazard Detection                             |      |  |  |  |
|         | 3.10 | Gate-Level Event-Driven Simulation               | 64   |  |  |  |

|             |      | 3.10.1 Transition-Independent Nominal Transport Delays | 64  |  |  |  |  |
|-------------|------|--------------------------------------------------------|-----|--|--|--|--|
|             |      | 3.10.2 Other Logic Values                              | 71  |  |  |  |  |
|             |      | 3.10.2.1 Tristate Logic                                | 71  |  |  |  |  |
|             |      | 3.10.2.2 MOS Logic                                     | 72  |  |  |  |  |
|             |      | 3.10.3 Other Delay Models                              | 74  |  |  |  |  |
|             |      | 3.10.3.1 Rise and Fall Delays                          | 74  |  |  |  |  |
|             |      | 3.10.3.2 Inertial Delays                               | 76  |  |  |  |  |
|             |      | 3.10.3.3 Ambiguous Delays                              | 76  |  |  |  |  |
|             |      | 3.10.4 Oscillation Control                             | 77  |  |  |  |  |
|             | 3.11 | Simulation Engines                                     | 79  |  |  |  |  |
|             |      | FERENCES                                               | 84  |  |  |  |  |
|             | PRC  | DBLEMS                                                 | 86  |  |  |  |  |
| 4.          | FAU  | JLT MODELING                                           | 93  |  |  |  |  |
|             | 4.1  | Logical Fault Models                                   | 93  |  |  |  |  |
|             | 4.2  | Fault Detection and Redundancy                         | 95  |  |  |  |  |
|             |      | 4.2.1 Combinational Circuits                           | 95  |  |  |  |  |
|             |      | 4.2.2 Sequential Circuits                              | 103 |  |  |  |  |
| •           | 4.3  | Fault Equivalence and Fault Location                   | 106 |  |  |  |  |
|             |      | 4.3.1 Combinational Circuits                           | 106 |  |  |  |  |
|             |      | 4.3.2 Sequential Circuits                              | 108 |  |  |  |  |
|             | 4.4  | Fault Dominance                                        | 109 |  |  |  |  |
|             |      | 4.4.1 Combinational Circuits                           | 109 |  |  |  |  |
|             |      | 4.4.2 Sequential Circuits                              | 110 |  |  |  |  |
| 4           | 4.5  | S                                                      |     |  |  |  |  |
| 4           | 4.6  | The Multiple Stuck-Fault Model                         | 118 |  |  |  |  |
| 4           | 4.7  | Stuck RTL Variables                                    | 122 |  |  |  |  |
| 4           | 4.8  |                                                        |     |  |  |  |  |
| ]           | REF  | 123                                                    |     |  |  |  |  |
| ]           | PRC  | DBLEMS                                                 | 126 |  |  |  |  |
| <b>5.</b> ] | FAU  | JLT SIMULATION                                         | 131 |  |  |  |  |
| :           | 5.1  | 1 Applications                                         |     |  |  |  |  |
| :           | 5.2  | General Fault Simulation Techniques                    | 134 |  |  |  |  |
|             |      | 5.2.1 Serial Fault Simulation                          | 134 |  |  |  |  |
|             |      | 5.2.2 Common Concepts and Terminology                  | 134 |  |  |  |  |
|             |      | 5.2.3 Parallel Fault Simulation                        | 135 |  |  |  |  |
|             |      | 5.2.4 Deductive Fault Simulation                       | 139 |  |  |  |  |
|             |      | 5.2.4.1 Two-Valued Deductive Simulation                | 140 |  |  |  |  |
|             |      | 5.2.4.2 Three-Valued Deductive Simulation              | 145 |  |  |  |  |
|             |      | 5.2.5 Concurrent Fault Simulation                      | 146 |  |  |  |  |
|             |      | 5.2.6 Comparison                                       | 154 |  |  |  |  |
|             | 5.3  | Fault Simulation for Combinational Circuits            | 155 |  |  |  |  |
|             |      | 5.3.1 Parallel-Pattern Single-Fault Propagation        | 156 |  |  |  |  |
|             |      | 5.3.2 Critical Path Tracing                            | 157 |  |  |  |  |
|             | 5.4  | Fault Sampling                                         |     |  |  |  |  |

|    | 5.5<br>5.6 | Statistical Fault Analysis Concluding Remarks                   | 169<br>172 |  |  |  |  |
|----|------------|-----------------------------------------------------------------|------------|--|--|--|--|
|    |            | REFERENCES                                                      |            |  |  |  |  |
|    | PRC        | OBLEMS                                                          | 177        |  |  |  |  |
| 6. | TES        | 181                                                             |            |  |  |  |  |
|    | 6.1        | 5.1 Basic Issues                                                |            |  |  |  |  |
|    | 6.2        | ATG for SSFs in Combinational Circuits                          | 182        |  |  |  |  |
|    |            | 6.2.1 Fault-Oriented ATG                                        | 182        |  |  |  |  |
|    |            | 6.2.1.1 Common Concepts                                         | 189        |  |  |  |  |
|    |            | 6.2.1.2 Algorithms                                              | 196        |  |  |  |  |
|    |            | 6.2.1.3 Selection Criteria                                      | 213        |  |  |  |  |
|    |            | 6.2.2 Fault-Independent ATG                                     | 220        |  |  |  |  |
|    |            | 6.2.3 Random Test Generation                                    | 226        |  |  |  |  |
|    |            | 6.2.3.1 The Quality of a Random Test                            | 227        |  |  |  |  |
|    |            | 6.2.3.2 The Length of a Random Test                             | 227        |  |  |  |  |
|    |            | 6.2.3.3 Determining Detection Probabilities                     | 229        |  |  |  |  |
|    |            | 6.2.3.4 RTG with Nonuniform Distributions                       | 234        |  |  |  |  |
|    |            | 6.2.4 Combined Deterministic/Random TG                          | 235        |  |  |  |  |
|    |            | 6.2.5 ATG Systems                                               | 240        |  |  |  |  |
|    |            | 6.2.6 Other TG Methods                                          | 246        |  |  |  |  |
|    | 6.3        | ATG for SSFs in Sequential Circuits                             | 249        |  |  |  |  |
|    |            | 6.3.1 TG Using Iterative Array Models                           | 249        |  |  |  |  |
|    |            | 6.3.2 Simulation-Based TG                                       | 262        |  |  |  |  |
|    |            | 6.3.3 TG Using RTL Models                                       | 264        |  |  |  |  |
|    |            | 6.3.3.1 Extensions of the <i>D</i> -Algorithm                   | 265        |  |  |  |  |
|    |            | 6.3.3.2 Heuristic State-Space Search                            | 269        |  |  |  |  |
|    |            | 6.3.4 Random Test Generation                                    | 271        |  |  |  |  |
|    | 6.4        | Concluding Remarks                                              | 272        |  |  |  |  |
|    | REF        | 274                                                             |            |  |  |  |  |
|    | PRC        | 281                                                             |            |  |  |  |  |
| 7. | TES        | STING FOR BRIDGING FAULTS                                       | 289        |  |  |  |  |
| ′. | 7.1        | The Bridging-Fault Model                                        | 289        |  |  |  |  |
|    | 7.2        | <u> </u>                                                        |            |  |  |  |  |
|    | 7.3        | _ <del>_</del> <del>_</del> <del>_</del>                        |            |  |  |  |  |
|    | 7.4        | 8 8                                                             |            |  |  |  |  |
|    | 7.5        |                                                                 |            |  |  |  |  |
|    | 7.6        |                                                                 |            |  |  |  |  |
|    |            | REFERENCES                                                      |            |  |  |  |  |
|    | PRC        | 302<br>302                                                      |            |  |  |  |  |
| 8. | ELIN       | NCTIONAL TESTING                                                | 305        |  |  |  |  |
| ο. | 8.1        | Basic Issues                                                    | 305        |  |  |  |  |
|    | 8.2        | 305                                                             |            |  |  |  |  |
|    | 0.2        | Functional Testing Without Fault Models 8.2.1 Heuristic Methods | 305        |  |  |  |  |
|    |            | 0.4.1 Heurishe Memons                                           | 303        |  |  |  |  |

|    |                                                                  | 8.2.2                                                      | Function   | nal Testing with Binary Decision Diagrams         | 309        |  |
|----|------------------------------------------------------------------|------------------------------------------------------------|------------|---------------------------------------------------|------------|--|
|    | 8.3                                                              | Exhau                                                      | stive and  | Pseudoexhaustive Testing                          | 313        |  |
|    |                                                                  | 8.3.1                                                      | Combin     | ational Circuits                                  | 313        |  |
|    |                                                                  |                                                            | 8.3.1.1    | Partial-Dependence Circuits                       | 313        |  |
|    |                                                                  |                                                            | 8.3.1.2    | Partitioning Techniques                           | 314        |  |
|    |                                                                  | 8.3.2                                                      | Sequent    | ial Circuits                                      | 315        |  |
|    |                                                                  | 8.3.3                                                      | Iterative  | Logic Arrays                                      | 317        |  |
|    | 8.4                                                              | Functi                                                     | onal Test  | ting with Specific Fault Models                   | 323        |  |
|    |                                                                  | 8.4.1                                                      | Function   | nal Fault Models                                  | 323        |  |
|    |                                                                  | 8.4.2                                                      | Fault M    | odels for Microprocessors                         | 325        |  |
|    |                                                                  |                                                            | 8.4.2.1    | Fault Model for the Register-Decoding             |            |  |
|    |                                                                  |                                                            |            | Function                                          | 327        |  |
|    |                                                                  |                                                            | 8.4.2.2    | Fault Model for the Instruction-Decoding and      |            |  |
|    |                                                                  |                                                            |            | Instruction-Sequencing Function                   | 328        |  |
|    |                                                                  |                                                            |            | Fault Model for the Data-Storage Function         | 329        |  |
|    |                                                                  |                                                            |            | Fault Model for the Data-Transfer Function        | 329        |  |
|    |                                                                  |                                                            | 8.4.2.5    | Fault Model for the Data-Manipulation             |            |  |
|    |                                                                  |                                                            |            | Function                                          | 329        |  |
|    |                                                                  | 8.4.3                                                      |            | neration Procedures                               | 330        |  |
|    |                                                                  |                                                            | 8.4.3.1    | <i>c c</i>                                        | 330        |  |
|    |                                                                  |                                                            | 8.4.3.2    | Testing the Instruction-Decoding and Instruction- |            |  |
|    |                                                                  |                                                            |            | Sequencing Function                               | 332        |  |
|    |                                                                  |                                                            | 8.4.3.3    | Testing the Data-Storage and Data-Transfer        |            |  |
|    |                                                                  |                                                            |            | Functions                                         | 336        |  |
|    |                                                                  | 8.4.4                                                      | A Case     |                                                   | 337        |  |
|    |                                                                  |                                                            | uding Rei  | marks                                             | 337        |  |
|    |                                                                  | EREN                                                       |            |                                                   | 338        |  |
|    | PRO                                                              | BLEM                                                       | S          |                                                   | 341        |  |
| 9. | DESIGN FOR TESTABILITY                                           |                                                            |            |                                                   |            |  |
|    | 9.1                                                              | Testab                                                     | ility      |                                                   | 343        |  |
|    |                                                                  |                                                            | Trade-O    |                                                   | 344        |  |
|    |                                                                  |                                                            |            | ability and Observability                         | 345        |  |
|    | 9.2                                                              |                                                            | -          | for Testability Techniques                        | 347        |  |
|    |                                                                  |                                                            | Test Poi   |                                                   | 347        |  |
|    |                                                                  |                                                            | Initializa |                                                   | 351        |  |
|    |                                                                  | 9.2.3                                                      |            | able Multivibrators                               | 351        |  |
|    |                                                                  |                                                            |            | ors and Clocks                                    | 353        |  |
|    |                                                                  | 9.2.5                                                      |            | ing Counters and Shift Registers                  | 354        |  |
|    |                                                                  | 9.2.6                                                      |            | ning of Large Combinational Circuits              | 355        |  |
|    |                                                                  | 9.2.7                                                      |            | Redundancy                                        | 356        |  |
|    | 0.2                                                              | 9.2.8                                                      |            | Feedback Paths                                    | 358<br>358 |  |
|    | 9.3 Controllability and Observability by Means of Scan Registers |                                                            |            |                                                   |            |  |
|    | 0.4                                                              | 9.3.1 Generic Boundary Scan 9.4 Generic Scan-Based Designs |            |                                                   |            |  |
|    | 9.4                                                              |                                                            |            | C                                                 | 364        |  |
|    |                                                                  | 9.4.1                                                      | ruii Ser   | ial Integrated Scan                               | 365        |  |

|     |      | 9.4.2              | Isolated Serial Scan                              | 366        |  |  |  |
|-----|------|--------------------|---------------------------------------------------|------------|--|--|--|
|     |      | 9.4.3              | Nonserial Scan                                    | 368        |  |  |  |
|     | 9.5  | Storag             | ge Cells for Scan Designs                         | 368        |  |  |  |
|     | 9.6  | Classic            | cal Scan Designs                                  | 374        |  |  |  |
|     | 9.7  | Scan I             | Design Costs                                      | 382        |  |  |  |
|     | 9.8  | Board-             | -Level and System-Level DFT Approaches            | 382        |  |  |  |
|     |      | 9.8.1              | System-Level Busses                               | 383        |  |  |  |
|     |      | 9.8.2              | System-Level Scan Paths                           | 383        |  |  |  |
|     | 9.9  |                    | Advanced Scan Concepts                            | 385        |  |  |  |
|     |      |                    | Multiple Test Session                             | 385        |  |  |  |
|     |      | 9.9.2              | Partial Scan Using I-Paths                        | 386        |  |  |  |
|     |      | 9.9.3              | BALLAST — A Structured Partial Scan Design        | 390        |  |  |  |
|     | 9.10 |                    | lary Scan Standards                               | 395        |  |  |  |
|     |      |                    | Background                                        | 395        |  |  |  |
|     |      |                    | Boundary Scan Cell                                | 398        |  |  |  |
|     |      |                    | Board and Chip Test Modes                         | 399        |  |  |  |
|     |      |                    | The Test Bus                                      | 401        |  |  |  |
|     |      | 9.10.5             | Test Bus Circuitry                                | 402        |  |  |  |
|     |      |                    | 9.10.5.1 The TAP Controller                       | 402        |  |  |  |
|     |      |                    | 9.10.5.2 Registers                                | 407<br>408 |  |  |  |
|     |      | REFERENCES         |                                                   |            |  |  |  |
|     | PRO  | BLEM               | S                                                 | 412        |  |  |  |
| 10. | COM  | 421<br>421         |                                                   |            |  |  |  |
|     | 10.1 |                    | eneral Aspects of Compression Techniques          |            |  |  |  |
|     |      |                    | -Count Compression                                | 423        |  |  |  |
|     |      |                    | sition-Count Compression                          | 425        |  |  |  |
|     |      | -                  | y-Check Compression                               | 428        |  |  |  |
|     |      | •                  | rome Testing                                      | 429        |  |  |  |
|     | 10.6 | _                  | ature Analysis                                    | 432        |  |  |  |
|     |      | 10.6.              |                                                   |            |  |  |  |
|     |      | 10.64              | Registers                                         | 432        |  |  |  |
|     |      |                    | 2 LFSRs Used as Signature Analyzers               | 441        |  |  |  |
|     | 10.7 |                    | Multiple-Input Signature Registers luding Remarks | 445        |  |  |  |
|     |      |                    | 447<br>448                                        |            |  |  |  |
|     |      | FERENCES<br>OBLEMS |                                                   |            |  |  |  |
|     | PRU  | BLEM               | 5                                                 | 452        |  |  |  |
| 11. |      |                    | SELF-TEST                                         | 457        |  |  |  |
|     | 11.1 |                    | duction to BIST Concepts                          | 457        |  |  |  |
|     |      | 11.1.1             |                                                   | 458        |  |  |  |
|     | 11.0 | 11.1.2             |                                                   | 459        |  |  |  |
|     | 11.2 |                    | Pattern Generation for BIST                       | 460        |  |  |  |
|     |      | 11.2.1             | S                                                 | 460        |  |  |  |
|     |      | 11.2.2             | <u> </u>                                          | 460        |  |  |  |
|     |      | 11.2.3             | 3 Pseudoexhaustive Testing                        | 461        |  |  |  |

|     |            |                                       |            | Logical Segmentation                         | 462         |  |
|-----|------------|---------------------------------------|------------|----------------------------------------------|-------------|--|
|     |            |                                       |            | Constant-Weight Patterns                     | 463         |  |
|     |            |                                       | 11.2.3.3   |                                              | 466         |  |
|     |            |                                       | 11.2.3.4   | Test Pattern Generators for Pseudoexhaustive |             |  |
|     |            |                                       |            | Tests                                        | 471         |  |
|     |            |                                       |            | Physical Segmentation                        | 476         |  |
|     |            |                                       |            | BIST Architectures                           | 477         |  |
|     | 11.4       | _                                     | BIST Arc   |                                              | 483         |  |
|     |            | 11.4.1                                |            | lized and Separate Board-Level BIST          |             |  |
|     |            |                                       |            | ure (CSBL)                                   | 483         |  |
|     |            |                                       |            | Evaluation and Self-Test (BEST)              | 483         |  |
|     |            |                                       |            | Test Socket (RTS)                            | 484         |  |
|     |            |                                       |            | a-Chip Self-Test (LOCST)                     | 486         |  |
|     |            | 11.4.5                                |            | ng Using MISR and Parallel SRSG              | 400         |  |
|     |            |                                       | (STUMPS    | •                                            | 488         |  |
|     |            | 11.4.6                                |            | rent BIST Architecture (CBIST)               | 490         |  |
|     |            | 11.4.7                                |            | lized and Embedded BIST Architecture with    | 400         |  |
|     |            | 11.40                                 | -          | Scan (CEBS)                                  | 490         |  |
|     |            |                                       |            | Test Data (RTD)                              | 492         |  |
|     |            |                                       |            | cous Self-Test (SST)                         | 493         |  |
|     |            |                                       | •          | nalysis Testing System (CATS)                | 495<br>496  |  |
|     |            |                                       |            | Self-Test Path (CSTP)                        | 501         |  |
|     |            | 11.4.12                               |            | Logic-Block Observation (BILBO)              | 510         |  |
|     |            | 11 / 12                               |            | Case Study                                   | 513         |  |
|     | 11.5       |                                       | Summary    | BIST Concepts                                | 513         |  |
|     | 11.3       |                                       | Test Sche  | •                                            | 515         |  |
|     |            |                                       |            | f BILBO Registers                            | 517         |  |
|     |            |                                       |            | trusion BIST                                 | 520         |  |
|     | 11.6       |                                       |            | est at Board Level                           | 523         |  |
|     |            | RENCES                                |            | est at Board Level                           | 524         |  |
|     |            | BLEMS                                 | ,          |                                              | 532         |  |
|     | TROI       | DEIVIS                                |            |                                              | 55 <b>2</b> |  |
| 12. | LOGI       | C-LEVE                                | L DIAGN    | OSIS                                         | 541         |  |
|     |            | Basic C                               |            |                                              | 541         |  |
|     |            | Fault D                               |            |                                              | 543         |  |
|     | 12.3       | Guided-Probe Testing                  |            |                                              |             |  |
|     | 12.4       | Diagnosis by UUT Reduction            |            |                                              |             |  |
|     | 12.5       | •                                     |            |                                              |             |  |
|     | 12.6       |                                       | -          | or Diagnosis                                 | 557         |  |
|     | 12.7       | -                                     | Cause Anal | •                                            | 559         |  |
|     | 12.8       | · · · · · · · · · · · · · · · · · · · |            |                                              |             |  |
|     | REFERENCES |                                       |            |                                              |             |  |
|     | PROF       | BLEMS                                 |            |                                              | 568         |  |
|     |            |                                       |            |                                              |             |  |

| 13. | SELF                                      | -CHECK                                                                                       | KING DES                                               | IGN                                                                  | 569   |
|-----|-------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|-------|
|     | 13.1                                      | Basic C                                                                                      | Concepts                                               |                                                                      | 569   |
|     |                                           |                                                                                              |                                                        | ror-Detecting and Error-Correcting Codes                             | 570   |
|     | 13.3                                      |                                                                                              | e-Bit Erro                                             |                                                                      | 577   |
|     | 13.4                                      |                                                                                              |                                                        | and Self-Checking                                                    | 578   |
|     | 13.5                                      | 3.5 Self-Checking Checkers                                                                   |                                                        |                                                                      |       |
|     | 13.6                                      |                                                                                              | Check Fun                                              |                                                                      | 580   |
|     | 13.7                                      |                                                                                              |                                                        | king m/n Code Checkers                                               | 581   |
|     | 13.8                                      | •                                                                                            |                                                        | king Equality Checkers                                               | 584   |
|     | 13.9                                      | •                                                                                            |                                                        | rger Code Checkers                                                   | 584   |
|     |                                           |                                                                                              | _                                                      | Theory of Self-Checking Combinational                                |       |
|     |                                           | Circuits                                                                                     |                                                        | ,                                                                    | 585   |
|     | 13.11                                     | 13.11 Self-Checking Sequential Circuits                                                      |                                                        |                                                                      |       |
|     |                                           | RENCE                                                                                        |                                                        |                                                                      | 589   |
|     |                                           | BLEMS                                                                                        |                                                        |                                                                      | 590   |
| 1.4 | DI A '                                    | ΓESTIN                                                                                       | C                                                      |                                                                      | 593   |
| 14. |                                           | Introdu                                                                                      |                                                        |                                                                      | 593   |
|     |                                           |                                                                                              | esting Prob                                            | alama                                                                | 594   |
|     | 14.2                                      |                                                                                              | Fault Mo                                               |                                                                      | 594   |
|     |                                           |                                                                                              |                                                        |                                                                      | 597   |
|     | 14.3                                      | 14.2.2 Problems with Traditional Test Generation Methods Test Generation Algorithms for PLAs |                                                        |                                                                      | 597   |
|     | 14.5                                      | 14.3.1 Deterministic Test Generation                                                         |                                                        |                                                                      | 598   |
|     |                                           |                                                                                              |                                                        |                                                                      | 599   |
|     | 14.4                                      |                                                                                              | 14.3.2 Semirandom Test Generation Testable PLA Designs |                                                                      |       |
|     | 14.4                                      | 14.4.1                                                                                       |                                                        | ncurrent Testable PLAs with Special Coding                           |       |
|     |                                           | 14.4.1                                                                                       | 14.4.1.1                                               | PLA with Concurrent Error Detection by a                             | 600   |
|     |                                           |                                                                                              | 14.4.1.1                                               | Series of Checkers                                                   | 600   |
|     |                                           |                                                                                              | 14 4 1 2                                               |                                                                      | 000   |
|     |                                           |                                                                                              | 14.4.1.2                                               | Concurrent Testable PLAs Using Modified                              | 601   |
|     |                                           | 14.4.2                                                                                       | Domits: To                                             | Berger Code                                                          | 603   |
|     |                                           | 14.4.2                                                                                       | •                                                      | estable PLAs PLA with Universal Test Set                             | 603   |
|     |                                           |                                                                                              |                                                        |                                                                      | 605   |
|     |                                           |                                                                                              |                                                        | A Duilt In Salf Testable PLAs                                        | 003   |
|     |                                           |                                                                                              | 14.4.2.3                                               | A Built-In Self-Testable PLA Design with                             | 606   |
|     |                                           | 1442                                                                                         | Ciamatuma                                              | Cumulative Parity Comparison                                         | 608   |
|     |                                           | 14.4.3                                                                                       | _                                                      | e-Testable PLAs                                                      | 609   |
|     |                                           |                                                                                              |                                                        | PLA with Multiple Signature Analyzers                                | 009   |
|     |                                           |                                                                                              | 14.4.3.2                                               | Self-Testable PLAs with Single Signature                             | 600   |
|     |                                           | 1111                                                                                         | D!                                                     | Analyzer                                                             | 609   |
|     |                                           | 14.4.4                                                                                       |                                                        | g and Testing of PLAs                                                | 610   |
|     |                                           |                                                                                              | 14.4.4.1                                               |                                                                      | 611   |
|     |                                           |                                                                                              |                                                        | Parallel-Testable PLAs  Divide and Conguer Strategy for Testable PLA | 614   |
|     |                                           |                                                                                              | 14.4.4.3                                               | Divide-and-Conquer Strategy for Testable PLA                         | Z 1 4 |
|     |                                           | 1445                                                                                         | D11 T                                                  | Design                                                               | 614   |
|     | 145                                       | 14.4.5                                                                                       |                                                        | stable PLA Designs                                                   | 615   |
|     | 14.5 Evaluation of PLA Test Methodologies |                                                                                              |                                                        | 618                                                                  |       |

|     | 14.5.1 Measures of TDMs |        |              | 618                                     |     |
|-----|-------------------------|--------|--------------|-----------------------------------------|-----|
|     |                         |        | 14.5.1.1     | Resulting Effect on the Original Design | 619 |
|     |                         |        | 14.5.1.2     | Requirements on Test Environment        | 619 |
|     |                         | 14.5.2 | Evaluation   | of PLA Test Techniques                  | 620 |
|     | REFE                    | ERENCE | S            |                                         | 627 |
|     | PROI                    | BLEMS  |              |                                         | 630 |
| 15. | SYST                    | TEM-LE | VEL DIAG     | NOSIS                                   | 633 |
|     | 15.1                    | A Simp | ole Model of | f System-Level Diagnosis                | 633 |
|     | 15.2                    | Genera | lizations of | the PMC Model                           | 638 |
|     |                         | 15.2.1 | Generaliza   | ations of the System Diagnostic Graph   | 638 |
|     |                         | 15.2.2 | Generaliza   | ation of Possible Test Outcomes         | 640 |
|     |                         | 15.2.3 | Generaliza   | ation of Diagnosability Measures        | 641 |
|     | REFERENCES              |        |              |                                         |     |
|     | PROF                    | BLEMS  |              |                                         | 645 |
| INE | EX                      |        |              |                                         | 647 |

#### PREFACE

This book provides a comprehensive and detailed treatment of digital systems testing and testable design. These subjects are increasingly important, as the cost of testing is becoming the major component of the manufacturing cost of a new product. Today, design and test are no longer separate issues. The emphasis on the quality of the shipped products, coupled with the growing complexity of VLSI designs, require testing issues to be considered early in the design process so that the design can be modified to simplify the testing process.

This book was designed for use as a text for graduate students, as a comprehensive reference for researchers, and as a source of information for engineers interested in test technology (chip and system designers, test engineers, CAD developers, etc.). To satisfy the different needs of its intended readership the book (1) covers thoroughly both the fundamental concepts and the latest advances in this rapidly changing field, (2) presents only theoretical material that supports practical applications, (3) provides extensive discussion of testable design techniques, and (4) examines many circuit structures used to realize built-in self-test and self-checking features.

Chapter 1 introduces the main concepts and the basic terminology used in testing. Modeling techniques are the subject of Chapter 2, which discusses functional and structural models for digital circuits and systems. Chapter 3 presents the use of logic simulation as a tool for design verification testing, and describes compiled and event-driven simulation algorithms, delay models, and hardware accelerators for simulation. Chapter 4 deals with representing physical faults by logical faults and explains the concepts of fault detection, redundancy, and the fault relations of equivalence and dominance. The most important fault model — the single stuck-fault model — is analyzed in detail. Chapter 5 examines fault simulation methods, starting with general techniques — serial, parallel, deductive, and concurrent — and continuing with techniques specialized for combinational circuits — parallel-pattern single-fault propagation and critical path tracing. Finally, it considers approximate methods such as fault sampling and statistical fault analysis.

Chapter 6 addresses the problem of test generation for single stuck faults. It first introduces general concepts common to most test generation algorithms, such as implication, sensitization, justification, decision tree, implicit enumeration, and backtracking. Then it discusses in detail several algorithms — the *D*-algorithm, the 9V-algorithm, PODEM, FAN, and critical path test generation — and some of the techniques used in TOPS, SOCRATES, RAPS, SMART, FAST, and the subscripted *D*-algorithm. Other topics include random test generation, test generation for sequential circuits, test generation using high-level models, and test generation systems.

Chapter 7 looks at bridging faults caused by shorts between normally unconnected signal lines. Although bridging faults are a "nonclassical" fault model, they are dealt with by simple extensions of the techniques used for single stuck faults. Chapter 8 is concerned with functional testing and describes heuristic methods, techniques using binary decision diagrams, exhaustive and pseudoexhaustive testing, and testing methods for microprocessors.

Chapter 9 presents design for testability techniques aimed at simplifying testing by modifying a design to improve the controllability and observability of its internal signals. The techniques analyzed are general ad hoc techniques, scan design, board and system-level approaches, partial scan and boundary scan (including the proposed JTAG/IEEE 1149.1 standard).

Chapter 10 is dedicated to compression techniques, which consider a compressed representation of the response of the circuit under test. The techniques examined are ones counting, transition counting, parity checking, syndrome checking, and signature analysis. Because of its widespread use, signature analysis is discussed in detail. The main application of compression techniques is in circuits featuring built-in self-test, where both the generation of input test patterns and the compression of the output response are done by circuitry embedded in the circuit under test. Chapter 11 analyzes many built-in self-test design techniques (CSBL, BEST, RTS, LOCST, STUMPS, CBIST, CEBS, RTD, SST, CATS, CSTP, and BILBO) and discusses several advanced concepts such as test schedules and partial intrusion built-in self-test.

Chapter 12 discusses logic-level diagnosis. The covered topics include the basic concepts in fault location, fault dictionaries, guided-probe testing, expert systems for diagnosis, effect-cause analysis, and a reasoning method using artificial intelligence concepts.

Chapter 13 presents self-checking circuits where faults are detected by a subcircuit called a checker. Self-checking circuits rely on the use of coded inputs. Some basic concepts of coding theory are first reviewed, followed by a discussion of specific codes — parity-check codes, Berger codes, and residue codes — and of designs of checkers for these codes.

Chapter 14 surveys the testing of programmable logic arrays (PLAs). First it reviews the fault models specific to PLAs and test generation methods for external testing of these faults. Then it describes and compares many built-in self-test design methods for PLAs.

Chapter 15 deals with the problem of testing and diagnosis of a system composed of several independent processing elements (units), where one unit can test and diagnose other units. The focus is on the relation between the structure of the system and the levels of diagnosability that can be achieved.

#### In the Classroom

This book is designed as a text for graduate students in computer engineering, electrical engineering, or computer science. The book is self-contained, most topics being covered extensively, from fundamental concepts to advanced techniques. We assume that the students have had basic courses in logic design, computer science, and probability theory. Most algorithms are presented in the form of pseudocode in an easily understood format.

The progression of topics follows a logical sequence where most chapters rely on material presented in preceding chapters. The most important precedence relations among chapters are illustrated in the following diagram. For example, fault simulation (5) requires understanding of logic simulation (3) and fault modeling (4). Design for

testability (9) and compression techniques (10) are prerequisites for built-in self-test (11).



### Precedence relations among chapters

The book requires a two-semester sequence, and even then some material may have to be glossed over. For a one-semester course, we suggest a "skinny path" through Chapters 1 through 6 and 9 through 11. The instructor can hope to cover only about half of this material. This "Introduction to Testing" course should emphasize the fundamental concepts, algorithms, and design techniques, and make only occasional forays into the more advanced topics. Among the subjects that could be skipped or only briefly discussed in the introductory course are Simulation Engines (Section 3.11),

The Multiple Stuck-Fault Model (4.6), Fault Sampling (5.4), Statistical Fault Analysis (5.5), Random Test Generation (6.2.3), Advanced Scan Techniques (9.9), and Advanced BIST Concepts (11.5). Most of the material in Chapter 2 and the ad hoc design for testability techniques (9.2) can be given as reading assignments.

Most of the topics not included in the introductory course can be covered in a second semester "Advanced Testing" course.

#### Acknowledgments

We have received considerable help in developing this book. We want to acknowledge Xi-An Zhu, who contributed to portions of the chapter on PLA testing. We are grateful for the support provided by the Bell Labs managers who made this work possible — John Bierbauer, Bill Evans, Al Fulton, Hao Nham, and Bob Taylor. Special thanks go to the Bell Labs word processing staff — Yvonne Anderson, Deborah Angell, Genevieve Przeor, and Lillian Pilz — for their superb job in producing this book, to David Hong for helping with troff and related topics, to Jim Coplien for providing the indexing software, and to John Pautler and Tim Norris for helping with the phototypesetter. We want to thank our many colleagues who have been using preprints of this book for several years and who have given us invaluable feedback, and especially S. Reddy, S. Seth, and G. Silberman. And finally, many thanks to our students at the University of Southern California and the Illinois Institute of Technology, who helped in "debugging" the preliminary versions.

Miron Abramovici Melvin A. Breuer Arthur D. Friedman

## How This Book Was Written

Don't worry. We will not begin by saying that "because of the rapid increases in the complexity of VLSI circuitry, the issues of testing, design-for-test and built-in-self-test, are becoming increasingly more important." You have seen this type of opening a million times before. Instead, we will tell you a little of the background of this book.

The story started at the end of 1981. Miron, a young energetic researcher (at that time), noted that Breuer and Friedman's *Diagnosis & Reliable Design of Digital Systems* — known as the "yellow book" — was quickly becoming obsolete because of the rapid development of new techniques in testing. He suggested co-authoring a new book, using as much material from the yellow book as possible and updating it where necessary. He would do most of the writing, which Mel and Art would edit. It all sounded simple enough, and work began in early 1982.

Two years later, Miron had written less than one-third of the book. Most of the work turned out to be new writing rather than updating the yellow book. The subjects of modeling, simulation, fault modeling, fault simulation, and test generation were reorganized and greatly expanded, each being treated in a separate chapter. The end, however, was nowhere in sight. Late one night Miron, in a state of panic and frustration, and Mel, in a state of weakness, devised a new course of action. Miron would finalize the above topics and add new chapters on bridging faults testing, functional testing, logic-level diagnosis, delay-faults testing, and RAM testing. Mel would write the chapters dealing with new material, namely, PLA testing, MOS circuit testing, design for testability, compression techniques, and built-in self-test. And Art would update the material on self-checking circuits and system-level diagnosis.

The years went by, and so did the deadlines. Only Art completed his chapters on time. The book started to look like an encyclopedia, with the chapter on MOS testing growing into a book in itself. Trying to keep the material up to date was a continuous and endless struggle. As each year passed we came to dread the publication of another proceedings of the DAC, ITC, FTCS, or ICCAD, since we knew it would force us to go back and update many of the chapters that we had considered done.

Finally we acknowledged that our plan wasn't working and adopted a new course of action. Mel would set aside the MOS chapter and would concentrate on other, more essential chapters, leaving MOS for a future edition. Miron's chapters on delay fault testing and RAM testing would have the same fate. A new final completion date was set for January 1989.

This plan worked, though we missed our deadline by some 10 months. Out of love for our work and our profession, we have finally accomplished what we had set out to do. As this preface was being written, Miron called Mel to tell him about a paper he just read with some nice results on test generation. Yes, the book is obsolete already. If you are a young, energetic researcher — don't call us.