Communities

Question 1:

For the following graph:

Write the adjacency matrix A, the degree matrix D, and the Laplacian matrix L. For each, find the sum of all entries and the number of nonzero entries.

Adjacent Matrix:

	1	2	3	4	5	6	7	8
1	0	1	0	0	0	0	0	1
2	1	0	1	0	0	0	0	1
3	0	1	0	1	0	0	1	0
4	0	0	1	0	1	1	0	0
5	0	0	0	1	1	0	0	0
6	0	0	0	1	1	0	1	0
7	0	0	1	0	0	1	0	1
8	1	1	0	0	0	0	1	0

Number of non-zero entries = 22, Sum of all elements = 22

Degree Matrix:

	1	2	3	4	5	6	7	8
1	2	0	0	0	0	0	0	0

2	0	3	0	0	0	0	0	0
3	0	0	3	0	0	0	0	0
4	0	0	0	3	0	0	0	0
5	0	0	0	0	2	0	0	0
6	0	0	0	0	0	3	0	0
7	0	0	0	0	0	0	3	0
8	0	0	0	0	0	0	0	3

Number of non-zero entries = 8, Sum of all entries = 8

Laplacian Matrix (L = D - A)

	1	2	3	4	5	6	7	8
1	2	-1	0	0	0	0	0	-1
2	-1	3	-1	0	0	0	0	-1
3	0	-1	3	-1	0	0	-1	0
4	0	0	-1	3	-1	-1	0	0
5	0	0	0	-1	2	-1	0	0
6	0	0	0	-1	-1	3	-1	0
7	0	0	-1	0	0	-1	3	-1
8	-1	-1	0	0	0	0	-1	3

Number of non-zero entries = 30, Sum of all entries = 0

Question 2:

Consider the following undirected graph (i.e., edges may be considered bidirectional):

Run the "trawling" algorithm for finding dense communities on this graph and find all complete bipartite subgraphs of types $K_{3,2}$ and $K_{2,2}$. Note: In the case of $K_{2,2}$, we consider $\{\{W,X\},\{Y,Z\}\}$ and $\{\{Y,Z\},\{W,X\}\}$ to be identical.

From the given graph $A = \{B, C, E\}$; $B = \{A, C, D, E\}$; $C = \{A, B, E\}$; $D = \{B, E\}$; $E = \{A, B, C, D\}$

So, B and E have support more than 3 Therefore, Bipartite subgraph of K_{3,2}

Bipartite subgraph of K_{2, 2}

Question 3:

We fit AGM to the network on the left, and found the parameters on the right:

Network

Learned AGM parameters

Find the optimal values for p_A and p_B .

a)
$$P_a = \frac{No.of\ edges\ in\ the\ network}{Total\ possible\ no.of\ edges} = \frac{7}{\frac{5}{2}c} = \frac{7}{10} = 0.7$$

b)
$$P_b = \frac{No.of\ edges\ in\ the\ network}{Total\ possible\ no.of\ edges} = \frac{9}{6c} = \frac{9}{15} = 0.6$$