Advanced Kernel Methods - Assignment 2

Ragja Palakkadavath - SC18M003

January 2019

1. Solution:

Sobolev Space is an example of an RKHS. $f:[0,1] \to \mathbb{R}$ with f(0)=f(1)=0.

The norm in this space is defined by : $||f_H||^2 = \int (f'(x))^2 dx = \int \omega^2 |F(\omega)| d\omega$

2. Solution:

A Hilbert space H becomes a RKHS F if and only if every point evaluation functionals L_{x_i} that is defined on H are bounded and linear. For L_{x_i} in H to be bounded,

 $\forall x \in X, ||L_x(f)|| = ||f(x)|| = |f(x)| \le ||L|| ||f||, \text{ which means,}$

$$|f(x)| \leqslant c ||f|| \ \forall \ c > 0$$

Checking whether any point evaluation functional in $L_2[0,1]$ is bounded and linear or not:

Let $f = x^n \in L_2[0, 1]$, then $||f||^2 = \langle f, f \rangle = \int_0^1 (f(x))^2 dx$,

$$||f|| = \left[\int_0^1 (f(x))^2 dx \right]^{1/2} = \left[\int_0^1 x^{2n} dx \right]^{1/2} = \frac{1}{\sqrt{2n+1}}$$

 $\therefore \lim_{n \to \infty} \frac{1}{\sqrt{2n+1}} = 0$

At $x = 1, f(1) = (1)^n = 1$ and $||f|| \to 0 \ \forall n$

... It is not possible to find a c that can satisfy the equation: $|f(x)| \le c ||f|| \forall n$, which means that f is not bounded. Therefore, $||L_x(f)||$ is also not bounded. Hence, $L_2[0,1]$ is not a RKHS.

3. Solution:

- (a) CVXOPT package was used for solving the dual objective function.
- (b) Plot of Decision Boundary: Positive points are in blue, negative points are in red and the support vectors are given in green.

Figure 1: Data1 Plot

Figure 2: Data2 Plot

Figure 3: Data3 Plot

Figure 4: Data4 Plot

(c) (i) Data 1

Duality GAP is: 7.02705383925488e-06 Dual Objective Function value is: -2633.3636115724257 Primal Objective Function value is: -2633.3636152995996 Dual Slack variable value is 4.760232566733569e-11 Primal Slack variable value is 4.5149164478011057e-10 Value of bias is 4.187959188283016 Accuracy obtained is 1.0 C obtained after cross validation is 10000

(ii) Data 2

Duality GAP is: 630895479.0425467 Dual Objective Function value is: -530652373436.9928 Primal Objective Function value is: -531283268915.8739 Dual Slack variable value is 50903.99907749032 Primal Slack variable value is 4.6760843213627395e-06 Value of bias is 839001.3711372843 Accuracy obtained is 0.8916666666666667 C obtained after cross validation is 10000

(iii) Data 3

Duality GAP is: 0.001303492497939946 Dual Objective Function value is: -8691.38706189985 Primal Objective Function value is: -8691.388365392348 Dual Slack variable value is 1.9979245279348966e-09 Primal Slack variable value is 7.744077927335914e-10 Value of bias is -3.5350543436941995 Accuracy obtained is 0.975 C obtained after cross validation is 10000

(iv) Data 4

Duality GAP is: 1260879463.6238523 Dual Objective Function value is: -1140988825551.778 Primal Objective Function value is: -1142249705015.0503 Dual Slack variable value is 2041.8622520231381 Primal Slack variable value is 6.455173060607306e-09 Value of bias is 40.871262642799344 Accuracy obtained is 0.9416666666666667 C obtained after cross validation is 1

(v) f/w values and α values for all the data above are present in the attached csv files

4. Solution:

(a) Non linear plot for data set H

Figure 5: Data set H Plot

(b) SVM Classification on Data3new, Data4new parameters of the model

(i) Data3new

Duality GAP is: 0.0005041441728120745 Dual Objective Function value is: -14030.040729550727 Primal Objective Function value is: -14030.041199679468 Dual Slack variable value is 3.07883921575528e-09 Primal Slack variable value is 4.4797550476859113e-10 Value of bias is 15.23387381419978 Accuracy obtained is 0.9

C obtained after cross validation is 10000

(ii) Data4new

Duality GAP is: 228830626.18760592

Dual Objective Function value is: -843271662168.2017 Primal Objective Function value is: -843500492794.3335

Dual Slack variable value is 721.0231281399314

Primal Slack variable value is 6.0718521594421114e-05

Value of bias is 0.4907212272071761

Accuracy obtained is 0.8916666666666667

C obtained after cross validation is 0.01

- (iii) f/w values and α values for all the data above are present in the attached csv files
- (c) SVM Classification Plots

Figure 6: Data set H new Plot

Figure 7: Data set Data 3 new Plot

Figure 8: Data set Data 4 new Plot

(d) Following are the values obtained after calculating \tilde{f} , \tilde{f}_3 , \tilde{f}_4 and $f^{\tilde{new}}$, $f^{\tilde{new}}_3$, $f^{\tilde{new}}_4$ for H, Data3 and Data4:

$$\mid \tilde{f}(x_i) - \tilde{f}^{new}(x_i) \mid = 0$$

$$|\tilde{f}_3(x_i) - f_3^{\tilde{n}ew}(x_i)| = 8.03965312234561e - 12$$

$$|\tilde{f}_4(x_i) - f_4^{new}(x_i)| = 4.70593773486757e - 13$$

Therefore it can be concluded that they are equal in values.

5. Solution:

Given $\tilde{f}(x) = \sum_{i=1}^{N} \alpha_i \langle x_i, x \rangle + b$, where $\tilde{f}(x)$ belongs to RKHS F. Also given, $h(x) = \alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_n x_n + b$, which is an equation in \mathbb{R}^n .

 $\tilde{f}(x)$ represents a hyperplane which is formed using a linear reproducing kernel(input function itself is of the linear form).

Since the RKHS F and the euclidean space \mathbb{R}^n can be related by a one to one mapping, the expressions \tilde{f} and h are same.

6. Solution:

- (a) CVXOPT package was used for solving the dual objective function.
- (b) Plot of Decision Boundary: Positive points are in blue, negative points are in red and the support vectors are given in green.

Figure 9: Data5 Plot

(c) Data 5 Parameters

Duality GAP is: 0.0013369243892240347
Dual Objective Function value is: -17712.314243437075
Primal Objective Function value is: -17712.315580361465
Dual Slack variable value is 2.0682470422925043e-06
Primal Slack variable value is 3.1454590811904395e-09
Value of bias is -0.927034535470621
Accuracy obtained is 0.9
C obtained after cross validation is 10000
Best kernel is Hyperbolic

- (d) f/w values and α values for all the data above are present in the attached csv files
- (e) Cross validation was performed among linear, polynomial, gaussian and hyperbolic kernels and the kernel that gave the best accuracy measure was chosen as the preferred one.
- (f) KKT Complementary conditions have been satisfied by all the data points in Data 5.