facebook.com/bac35

1

المستوى

سوال : اثبت أن الشعاعين AC ، AB مرتبطان خطيا

الإجابة: نبين أنه يوجد عدد حقيقي t يحقق AB = t AC

سوال2 بين أن النقاط C ، B ، A في استقامية

الإجابة: نبين أن الشعاعين AC ، AB مرتبطان خطيا

سؤال 3: بين أن الأشعة AD ، AC ، AB مرتبطة خطيا

 $\overrightarrow{AD} = t \overrightarrow{AD} + k \overrightarrow{AC}$ نبين أنه يوجد عددان حقيقيان $k \cdot t$ يحققان

سوال4: بين أن النقاط D · C · B · A تنتمي إلى مستو واحد.

الإجابة: نبين أن الأشعة AD ، AC ، AB مرتبطة خطيا

سوال5! بين أن الشعاعين ED ، AB متعامدان

الإجابة: نبين أن ED • AB = 0

 \overline{n} له A وناظم له A الذي يشمل النقطة A وناظم له A

الإجابة: يمكن إتباع إحدى الطريقتين التاليتين:

طريقة (1) ب معادلة المستوي (P) من الشكل: ax + by + cz + d = 0 حيث:

 $d = -(ax_A + by_A + cz_A)$ و $n \in \mathbb{R}$ و $a = -(ax_A + by_A + cz_A)$

طريقة (M:(2) فقطة كيفية من الفضاء.

نضع: AM • n = 0 ثم نحسب AM • n

سوال إلى المعادلة ديكارتية للمستوي (P) المحوري للقطعة [AB]

الإجابة عمكن إتباع إحدى الطريقتين التاليتين:

طريقة (1) نضع: AM = BM م نحسب BM ، AM

طريقة (C:(2) منتصف القطعة [AB] و M نقطة كيفية من الفضياء.

 $\overrightarrow{CM} \cdot \overrightarrow{AB} = 0$ ثضع: $\overrightarrow{CM} \cdot \overrightarrow{AB} = 0$ ثم نحسب

معوال 8 بين أن النقاط C ، B ، A تعين مستويا.

الإجابة: نبين أن الشعاعين BC ، AB غير مرتبطين خطيا

سوال و تحقق أن الشعاع n ناظم للمستوي (ABC).

$$\begin{cases}
\overrightarrow{n} \cdot \overrightarrow{AB} = 0 \\
\overrightarrow{n} \cdot \overrightarrow{AC} = 0
\end{cases}$$

$$\frac{1}{n} \cdot \overrightarrow{AC} = 0$$

سوال10: d ، c ، b ، a اعداد حقيقية معلومة مع: (0,0,0) ≠ (a,b,c)

. a x + b y + c z + d = 0 هي: ABC هي: a x + b y + c z + d = 0

$$\begin{cases} a x_A + b y_A + c z_A + d = 0 \\ a x_B + b y_B + c z_B + d = 0 \end{cases}$$
 الإجابة: نبين أن: $a x_C + b y_C + c z_C + d = 0$

سوال 11: حدد مركبات الشعاع n ناظم المستوي (ABC).

$$\begin{cases} \overrightarrow{u} \cdot \overrightarrow{AB} = 0 \\ \overrightarrow{u} \cdot \overrightarrow{AC} = 0 \end{cases}$$
 هي أحد حلول الجملة \overrightarrow{n} الإجابة: مركبات الشعاع \overrightarrow{n} هي أحد حلول الجملة

سوال 12 أكتب تمثيلا وسيطيا للمستوي (ABC)

الإجابة: نضع: $\overrightarrow{AM} = t \overrightarrow{AB} + k \overrightarrow{AC}$ ثم نطبق مبر هنة تساوي شعاعين حيث: $k \cdot t$

. ax + by + cz + d = 0 معرف بالمعادلة (P) معرف عدد المعادلة

احسب d بعد النقطة A عن المستوي d).

.
$$d = \frac{\left| a \, x_A + b \, y_A + c \, z_A + d \right|}{\sqrt{a^2 + b^2 + c^2}}$$
 يعطى بالعلاقة الإجابة: العدد d

سوال 14: (P) مستو شعاع ناظم له n.

تحقق أن النقطة H هي المسقط العمودي للنقطة E على المستوي (P).

الإجابة: نبين أن: • النقطة H تنتمي إلى المستوي (P)

• الشعاعين EH ، مرتبطان خطيا.

 \overline{n} مستو شعاع ناظم له \overline{n} مستو

(P) على المسقط العمودي للنقطة E على المستوى

المستقيم في الفضاء

سؤال16: اكتب تمثيلا وسيطيا للمستقيم (AB)

الإجابة: Mنقطة كيفية من الفضاء و t وسيط حقيقي.

نضع: $\overline{AM} = t \overline{AB}$ ثم نطبق مبر هنة تساوي شعاعين

سوال17: اكتب تمثيلا ديكارتيا للمستقيم (AB)

الإجابة: يمكن إتباع إحدى الطريقتين التاليتين

طريقة (1): نطبق مبر هنة الارتباط الخطي للشعاعين AB ، AM

طريقة (2): نكتب التمثيل الوسيطي للمستقيم (AB) ثم نستنتج التمثيل الديكارتي له.

سوال18: تحقق أن النقطة C تنتمي إلى المستقيم (AB)

الإجابة: نبين أن الشعاعين AB ، AC مرتبطان خطيا.

سوال19: اكتب تمثيلا وسيطيا للقطعة [AB]

 $\beta \leq t \leq \alpha$ نضع: $\overline{AM} = t \overline{AB}$ ثم نطبق مبر هنة تساوي شعاعين مع: $\beta \leq t \leq \alpha$ حيث $\beta \cdot \alpha$ عددان حقيقيان معلومان.

سؤال20: (Δ) مستقيم معرف بجملة معادلتين ديكارتيتين.

أكتب تمثيلا وسيطيا للمستقيم (Δ) .

الإجابة: يمكن إتباع إحدى الطريقتين التاليتين

طريقة (1): نختار نقطتين A ، B من المستقيم (Δ) فيكون (AB) = (Δ) فيكون (Δ) (Δ

سوال21: (AB)مستقيم معرف بجملة معادلات وسيطية بدلالة وسيط مفروض t.

حدد احداثيات H المسقط العمودي للنقطة D على المستقيم (AB)

t الإجابة: انطلاقا من المعادلة $\overrightarrow{DH} \cdot \overrightarrow{AB} = 0$ نجد قيمة الوسيط

ولتعيين احداثيات H نعوض عن الوسيط t في المعادلات الوسيطية للمستقيم (AB).

وال 22 احسب d بعد النقطة d عن المستقيم d الإجابة: يمكن إتباع إحدى الطريقتين التاليتين: طريقة d نحدد النقطة d المسقط العمودي للنقطة d على المستقيم d فيكون d = d .

طريقة α : نضع: α عيث: α فيكون α غير α حيث: α هي حل α المعادلة α

سطح كرة

• تعطى النقاط (2,1,2) ، A(1,0,2) ، (3,2,−2)
 • تعطى النقاط (2,1,3) ، A(1,0,2)
 • تعطى النقاط (2,2,0,2)
 • تعطى النقاط (2,2,0,2)
 • تعطى النقاط (2,2,0,2)
 • تعطى النقاط (2,2,0,2)

 α التي مركزها A وطول نصف قطرها (S) التي مركزها الكوة فطرها الكرة (S) التي الكرة الكرة

الإجابة: M نقطة كيفية من الفضاء.

 $AM^2 = \alpha^2$ نضع : $AM = \alpha$ فیکون: $(x - x_A)^2 + (y - y_A)^2 + (z - z_A)^2 = \alpha^2$ إذن:

 $_{\mathrm{B}}$ التي مركزها $_{\mathrm{A}}$ وتشمل النقطة B الكرة ($_{\mathrm{S}}$) التي مركزها $_{\mathrm{B}}$ وتشمل النقطة

 $(x-1)^2 + y^2 + (z-2)^2 = 3$ إذن: $AM^2 = AB^2$ نضع:

سوال25 أكتب معادلة ديكارتية لسطح الكرة (S) التي قطرها [AB]

الإجابة: نضع: BM • BM و AM ثم نحسب الجداء السلمي AM • BM .

ax + by + cz + d = 0معرف بالمعادلة (P) معرف (P)

اكتب معادلة ديكارتية لسطح الكرة (S) التي مركزها A وتمس المستوي (P)

الإجابة; نصف قطر سطح الكرة (S) هو d بعد النقطة A عن المستوي (P).

 $(x-1)^2 + y^2 + (z-2)^2 = d^2$ معناه: $AM^2 = d^2$

ه الوضع النسبي لمستقيم ومستو

نعتبر في الفضاء المستويين (P_1) ، (P_2) حيث:

 $(P_2): x+y+z-1=0$ $(P_1): x+y-z+3=0$

 (P_1) بين أن المستقيم (IJ) لا يقطع المستوي (P_1) .

الإجابة: نتبع إحدى الطريقتين التاليتين

 (P_1) والنقطة I لا تنتمي إلى المستوي $\overline{IJ \cdot u} \neq 0$ والنقطة I

حيث: $\overline{\mathbf{u}}$ شعاع ناظم المستوي (P_1) .

x = 1 - t مع: t = 0 مع: t = 0

4 = 0: (1-t)+t-(0)+3=0 ومنه: x+y-z+3=0 نجد: (1-t)+t-(0)+3=0

لا توجد حلول ، إذن: المستقيم (IJ) لا يقطع المستوي (P_1) .

سوال (P_1) بين أن المستقيم (Ik) يقطع المستوي (P_1) في نقطة يطلب تعيينها.

x=1-t x=1-t الإجابة: التمثيل الوسيطي للمستقيم (Ik) هو: y=0 مع: t وسيط حقيقي. z=t

لدینا: x+y-z+3=0 نجد: x+y-z+3=0 نجد: x+y-z+3=0 نجد: x+y-z+3=0 نجد: x+y-z+3=0 نجد: y=z+3=0 نجد: y

سوال 29 بين أن المستقيم (Jk)محتوى في المستوي (P_2) .

الإجابة: يمكن إتباع إحدى الطريقتين التاليتين:

 (P_2) نبين ان $\overrightarrow{Jk} \cdot \overrightarrow{v} = 0$ والنقطة $\overrightarrow{Jk} \cdot \overrightarrow{v} = 0$ نبين ان $\overrightarrow{Jk} \cdot \overrightarrow{v} = 0$

 (P_2) حيث: \overline{V} شعاع ناظم المستوي

طريقة (2): التمثيل الوسيطي للمستقيم (Jk) هو: y = -t مع: t وسيط حقيقي. 0 = 0 : x + y + z - 1 = 0 لدينا: x + y + z - 1 = 0 نجد: 0 = 0يوجد عدد غير منته من الحلول ، إذن: المستقيم (Jk)محتوى في المستوي (P_2) . والوضع النسبي لمستقيم وسطح كرة $(x+1)^2 + y^2 + (z+2)^2 = 6$ نعتبر في الفضاء سطح الكرة (S)حيث: سوال30: بين أن المستقيم (IJ) يمس سطح الكرة (S) في نقطة يطلب تعيينها. الإجابة: التمثيل الوسيطي للمستقيم (IJ) هو: y = t مع: t وسيط حقيقي. $(z-t)^2+t^2+4=6$ دينا: $(x+1)^2+y^2+(z+2)^2=6$ ومنه: $t^2 - 2t + 1 = 0$ بما أن: $\Delta = 0$ فإن: المستقيم (IJ) مماس لسطح الكرة (S) تعيين إحداثيات نقطة التماس: (x,y,z)=(0,1,0) ومنه: t=1 هو t=1 ومنه t=1سوال31، بين أن المستقيم (Ik) لا يقطع سطح الكرة (S). الإجابة: التمثيل الوسيطي للمستقيم (Ik) هو: y=0 مع: t وسيط حقيقي. $(2-t)^2 + (t+2)^2 = 6$ الدينا: $(x+1)^2 + y^2 + (z+2)^2 = 6$ ومنه: نجد: $t^2 = -1$ لا تقبل أي حل ، إذن: المستقيم (Ik) لا يقطع سطح الكرة (S). سوال32: بين أن المستقيم (Jk) يقطع سطح الكرة (S) في نقطتين يطلب تعيينهما. الإجابة: التمثيل الوسيطي للمستقيم (Jk) هو: y=-t مع: t وسيط حقيقي. $(x+1)^2 + (t+3)^2 = 6$ ادينا: $(x+1)^2 + y^2 + (z+2)^2 = 6$

 $t^2 + 3t + 2 = 0$:

بما أن: $0 < 1 = \Delta$ فإن: المستقيم (Jk) يقطع سطح الكرة (S) في نقطتين تعيين إحداثيات نقطتا التقاطع:

حلا المعادلة 0 = 2 + 3t + 2 هما: 1 - ، 2 -ومنه: (x,y,z) = (0,1,0) أو (x,y,z) = (0,1,0)

• الوضع النسبي لمستو وسطح كرة

نعتبر في الفضاء سطح الكرة (S) التي مركزها المبدأ O وطول نصف قطرها P=2 والمستوي (P) المعرف بالمعادلة 0=0+3

- سوال33: بين أن المستوي (P)يمس سطح الكرة (S)في نقطة Aيطلب تعيينها.

R = 2 يساوي P الإجابة: نبين أن بعد المركز O عن المستوي P

- سؤال34: بين أن المستوي (IJk) يقطع سطح الكرة (S) في دائرة يطلب تعيين مركزها A وطول نصف قطرها r.

 $d = \frac{1}{\sqrt{3}}$ نبين أن d > d < R هو بعد المركز O عن المستوي (P). $d = \sqrt{3}$ = d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d < R و d

نعتبر في الفضاء المستويات (P_1) ، (P_2) ، (P_2) حيث:

$$(P_3): \begin{cases} x = t+1 \\ y = 2t+k \end{cases} , (P_2): x+y+z=0 , (P_1): y+2z-1=0 \\ z = 3t+2k$$

سوال35: 1) بين أن المستويين (P_1) ، (P_2) متقاطعان وفق مستقيم (Δ) (2) أكتب تمثيلا وسيطيا للمستقيم (Δ) .

الإجابة: 1) نبين أن شعاعي ناظمي المستويين $\left(P_{1}\right)$ ، $\left(P_{2}\right)$ غير مرتبطين خطيا.

 (Δ) التمثیل الوسیطی للمستقیم (Δ) هو التمثیل الوسیطی للمستقیم (Δ) حیث: (Δ) نقطتان من المستقیم (Δ)

سؤال36: بين أن المستويين (P₂) ، (IJk) متوازيان ومختلفان

ان: سین ان:

نعاعي ناظمي المستويين (P_2) ، (IJk) مرتبطان خطيا.

 (P_2) لا تنتمي إلى المستوي (IJk) الا تنتمي الى المستوي (P_2)

سوال 37: أدرس الوضع النسبي للمستوي (IJk) والمستوي (P_3):

الإجابة: نعوض z ، y ، x في معادلة المستوي (IJk) فنحصل على معادلة ذات مجهولين k ، t

الوضع النسبي لمستقيمين

نعتبر في الفضاء المستقيمات (Δ_1) ، (Δ_2) ، حيث:

$$(\Delta_3):\begin{cases} x = 1 \\ y = 1 - 2\lambda \end{cases}, (\Delta_2):\begin{cases} x = 1 + \beta \\ y = 1 \end{cases}, (\Delta_1):\begin{cases} x = 2 \\ y = \alpha \\ z = 1 - \alpha \end{cases}$$

بين أن المستقيمين (Δ_1) ، (Δ_2) ليسا من نفس المستوي بين أن المستوي

الإجابة: نبين أن:

ف شعاعي توجيه المستقيمين (Δ_1) ، (Δ_2) غير مرتبطين خطيا \bullet

الجملة
$$\alpha = 1 + \beta = 2$$
 α الجملة $\alpha = 1 - \alpha$

سوال39: بين أن المستقيمين (Δ_2) ، (Δ_3) متقاطعان في نقطة يطلب تعيينها. الإجابة: نبين أن:

• شعاعي توجيه (Δ_2) ، (Δ_3) غير مرتبطين خطيا

الجملة
$$1=1+\beta$$
 تقبل حلا وحيدا. $1-2\lambda=1$ $2\lambda=\beta$

تعيين إحداثيات نقطة التقاطع:

حل الجملة هو: $(0,0) = (\beta,\lambda)$ إذن إحداثيات نقطة التقاطع هي: (1,1,0)

سوال 40. اثبت أن المستقيمين (Δ_1) ، (Δ_3) متوازيان ومختلفان.

الإجابة: نبين أن:

مرتبطان خطيا (Δ_3) ، (Δ_1) مرتبطان خطيا Δ_3

• نقطة من المستقيم (Δ_1) لا تنتمي إلى المستقيم (Δ_3) .

• الوضع النسبي لثلاث مستويات

نعتبر في الفضاء المستويات (P_1) ، (P_2) ، (P_3) حيث:

 $(P_3): x+y+3=0$ $(P_2): 2x+y+z-1=0$ $(P_1): x-y+z=0$

 (Δ) بين أن المستويين (P_1) ، (P_2) ، (P_2) متقاطعان وفق مستقيم

 (P_3) ، (P_2) ، (P_1) ، (P_1) ، (2)

الإجابة: 1) نبين أن ناظمي المستويين (P_1) ، (P_2) غير مرتبطين خطيا

 (P_3) ، (P_2) ، (P_1) ، (P_1) ، (P_1) المى يؤول در اسمة الوضع النسبي للمستويات (P_3) ، (P_2) ، (P_3) (P_3) در اسة الوضع النسبي للمستقيم

م مرجح جملة مثقلة

سوال42: أحسب احداثيات Gمركز ثقل المثلث ABC

 (x_G, y_G, z_G) هي (x_G, y_G, z_G) حيث:

 $z_G = \frac{z_A + z_B + z_C}{3}$, $y_G = \frac{y_A + y_B + y_C}{3}$, $x_G = \frac{x_A + x_B + x_C}{3}$

 $3\overline{GI} = 2\overline{Ik}$: لتكن G النقطة المعرفة كما يلي: G

اثبت أن النقطة G مرجح النقطتين k ' I المرفقتين بمعاملين يطلب تعيينهما.

 $5\overrightarrow{GI} - 2\overrightarrow{Gk} = \overrightarrow{0}$ ومنه: $3\overrightarrow{GI} = 2\overrightarrow{IG} + 2\overrightarrow{Gk} = 3\overrightarrow{GI} = 2\overrightarrow{Ik}$ ومنه: $3\overrightarrow{GI} = 2\overrightarrow{Ik} = 5\overrightarrow{GI} = 2\overrightarrow{Ik}$

 $\{(I;5),(k;-2)\}$ إذن: G مرجح الجملة

سؤال44: G مرجح الجملة {(I;2), (k;3)}

من أجل أي جملة مثقلة تكون النقطة I مرجحا ؟.

 $3\overline{lk} - 5\overline{lG} = \overline{0}$ ومنه: $3\overline{lk} = \overline{0}$ ومنه: $3\overline{lk} = \overline{0}$ ومنه: $3\overline{lk} - 5\overline{lG} = \overline{0}$

 $\{(G;-5),(k;3)\}$ إذن: I مرجح الجملة

سوال45 M نقطة كيفية من المستقيم (IJ).

برهن أن M مرجح النقطتين J ، J المرفقتين بمعاملين يطلب تعيينهما.

```
الإجابة: لدينا: \overline{IM} = t \overline{IJ} مع: t e mu d
                               (1-t)\overline{IM} + t\overline{JM} = \overline{0} ومنه: (1-t)\overline{IM} = t\overline{MJ} = t\overline{MJ}
            إذن: Mمرجح النقطتين J ، J المرفقتين بالمعاملين t ، t ، t على الترتيب.
                                            سوال46: M نقطة كيفية من المستقيم (ABC).
              برهن أن M مرجح النقاط C ، B ، A المرفقة بمعاملات يطلب تعيينهما.
                     الإجابة: لدينا: \overrightarrow{AM} = t \overrightarrow{AB} + k \overrightarrow{AC} مع: k \cdot t معنان حقيقيان.
                                       \overrightarrow{AM} = t(\overrightarrow{AM} + \overrightarrow{MB}) + k(\overrightarrow{AM} + \overrightarrow{MC})
                                           (1-t-k)\overrightarrow{AM} + t\overrightarrow{BM} + k\overrightarrow{CM} = 0 نجد:
    إذن: Mمرجح النقاط C ، B ، A المرفقة بالمعاملات k ، t ، t ، t على
                                                                                         الترتيب.
                                                                  سوال 47: ABCD مستطيل.
         بين أن النقطة D مرجح النقاط C ، B ، A المرفقة بمعاملات يطلب تحديدها.
                          \overrightarrow{DA} - \overrightarrow{DB} + \overrightarrow{DC} = \overrightarrow{0} نجد: \overrightarrow{AD} = \overrightarrow{BC} الإجابة: انطلاقا من
                                       إذن: D مرجح الجملة {(C;1)} (C;1)} مرجح الجملة
                              مجموعات النقط من الفضاء
                     نعتبر في الفضاء النقاط (1,2,0) ، A(1,2,0) ، (3,0,1)

    حدد في كل حالة من الحالات التالية (E) مجموعة النقط M من الفضاء التي تحقق:

                                                                      \overrightarrow{AM} \cdot \overrightarrow{BM} = 0:48
                                                    الإجابة: نفرض: E منتصف القطعة [AB]
                       (\overrightarrow{AE} + \overrightarrow{EM}) \cdot (\overrightarrow{BE} + \overrightarrow{EM}) = 0 ومنه \overrightarrow{AM} \cdot \overrightarrow{BM} = 0
        AE نجد: EM = AE إذن: (E) سطح كرة مركزها E وطول نصف قطرها
                                                               اي: (E) سطح كرة قطرها [AB]
                                                                           سوال AM = BM : 49
                                    AM^2 - BM^2 = 0 ومنه: AM = BM الإجابة: لدينا
  [AB] ، نفرض: G منتصف القطعة G ، نفرض: G منتصف القطعة G
                                               \overrightarrow{GM} \cdot \overrightarrow{AB} = 0: معناه 2\overrightarrow{GM} \cdot \overrightarrow{AB} = 0
                                        إذن: (E) مستو يشمل النقطة G وشعاع ناظم له AB
```

 $|\overline{MA} + \overline{MB} + \overline{MC}| = 2 :50$ الإجابة: نسمي G مركز ثقل المثلث ABC فنجد: GM = 2 إذن: (E) سطح كرة مركز ها G وطول نصف قطر ها 2. $|\overline{MA} + \overline{MB} + \overline{MC}| = |\overline{MA} - \overline{MB}|$ 5100 الإجابة: نسمي G مركز ثقل المثلث ABC فنجد: GM = AB إذن: (E) سطح كرة مركزها G ونصف قطرها AB. $\overrightarrow{MA} + 2\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{MA} + \overrightarrow{MB} = 52$ [AB] و G' منتصف G مرجح الجملة $\{(A;1),(B;2),(C;1)\}$ و G' منتصف [GG'] نجد: MG = MG' ومنه: (E) المستوي المحوري للقطعة $(\overline{MA} + \overline{MB} - \overline{MC}) \cdot \overline{OM} = 0$:53 الإجابة: نسمي G مرجح الجملة (C;-1)} مرجح الجملة (A;1),(B;1),(C;-1)} [OG]فنجد: $GM \cdot \overrightarrow{OM} = 0$ ومنه: (E)سطح کرة قطرها $A \neq B$ حيث: $k = \overline{EM} \cdot \overline{AB} = k$ عدد حقيقي و $A \neq B$ الإجابة: (E) مستو شعاع ناظم له AB سوال55: AM² - BM² = k عدد حقيقي $(\overrightarrow{AM} + \overrightarrow{BM}) \cdot (\overrightarrow{AM} - \overrightarrow{BM}) = k$ ومنه $AM^2 - BM^2 = k$ $\overrightarrow{GM} \cdot \overrightarrow{AB} = \frac{k}{2}$ منتصف القطعة [AB] فنجد: $\overrightarrow{AB} = k$ معناه: $\overrightarrow{AB} = \frac{k}{2}$ إذن: (E) مستو شعاع ناظم له AB مع: k عدد حقیقي موجب تماما. $\frac{AM}{BM} = k$ الإجابة: نميز الحالتين التاليتين AM = BM تكافئ: $\frac{AM}{BM} = k : k = 1$ • إذن: (E) هي المستوي المحوري للقطعة [AB] $AM^2 = k^2 \times BM^2$ تكافئ: $\frac{AM}{BM} = k : k \neq 1$

```
\overrightarrow{GM} \cdot \overrightarrow{GM} = 0 نجد: (AM - kBM) \cdot (\overrightarrow{AM} + k\overrightarrow{BM}) = 0
           \{(A;1),(B;k)\} و G' مرجح \{(A;1),(B;-k)\} و G مرجح G
                                           إذن: (E) سطح كرة قطرها [GG']
                                       AM^2 + BM^2 - CM^2 = 9:57
                              x^2 + y^2 + z^2 - 6x - 4y + 4 = 0 الإجابة: نجد:
                إذن: (E) سطح كرة مركز ها (3,2,0 ) وطول نصف قطر ها 3
                                     AM^2 + BM^2 - 2CM^2 = 5
               (E) مستو من الفضاء 2x + 2y - z - 3 = 0 مستو من الفضاء
                            سوال 59: \overrightarrow{AM} = \frac{e^t}{e^t + 1} \overrightarrow{AB} عدد حقيقي.
                                              0 < \frac{e^t}{a^t + 1} < 1: if in the interval |
                        فإن: (E) هي نقط القطعة [AB] ما عدا النقطتين B ، A
                               x^2 + y^2 + z^2 - 2x + 4z + 2 = 0 :60
               بین ان (E)سطح کرة یطلب تعیین مرکزها وطول نصف قطرها.
                                 (a,b,c,d)=(-2,4,0,2) الإجابة: لدينا:
                                 \Delta = 12 > 0 نجد: \Delta = a^2 + b^2 + c^2 - 4d
       إذن: (E) سطح كرة مركزها (2-0,0) ونصف قطرها \sqrt{\Delta} = \frac{\sqrt{\Delta}}{2}.
                                       |x+y+z+1| = |x-2z| :61
        2x+y-z+1=0 أو y+3z+1=0 الإجابة: المعادلة (E) تكافئ: y+3z+1=0
          ، y + 3z + 1 = 0 إذن (E) هي اتحاد المستويين المعرفين بالمعادلتين
                                                        2x + y - z + 1 = 0
                             (x+y-z+1)^2+(x-2z)^2=0:62
الإجابة: المعادلة (E) تكافئ: x+y-z+1=0 إذن: (E) مستقيم من الفضاء x-2z=0
```