Contrôle d'analyse I N°2

NOM:	
	Groupe 🗸
PRENOM:	

1. On considère la courbe Γ d'équation $y = \frac{x+1}{x^2-5}$.

Déterminer l'équation cartésienne des tangentes à la courbe Γ issues de l'origine. 3 pts

2. On considère la fonction f définie par

$$f(x) = \frac{2\cos^2(x) - \cos(x) - 1}{\sin(2x)}.$$

- a) Montrer que la fonction f est prolongeable par continuité en x=0.
- b) La fonction ainsi prolongée est-elle continûment dérivable en x=0 ? Justifiez rigoureusement votre réponse.

5,5 pts

3. On considère la fonction g définie par $g(x) = \frac{1}{1 + \sqrt{x^2 - 16}}$.

Calculer l'approximation linéaire de g(5, 12) en $x_0 = 5$.

2.5 pts

4. On considère la courbe Γ définie par l'équation

$$\Gamma: \quad -2x^3 + 3y^2 + 2xy + p = 0, \qquad p \in \mathbb{R}$$

et la droite t d'équation y = -2x + 1.

Déterminer la valeur du paramètre p de sorte que la droite t soit tangente à la courbe Γ (retenir la solution pour laquelle le point de tangence est à coordonnées entières).

4 pts