MATH 5473 Homework I LUO Yuanhui

- 3. Positive Semi-definiteness: Recall that a n-by-n real symmetric matrix K is called positive semi-definite $(p.s.d. \text{ or } K \succeq 0)$ iff for every $x \in \mathbb{R}^n$, $x^T K x \geq 0$.
 - (a) Show that $K \succeq 0$ if and only if its eigenvalues are all nonnegative.
 - (b) Show that $d_{ij} = K_{ii} + K_{jj} 2K_{ij}$ is a squared distance function, *i.e.* there exists vectors $u_i, v_j \in \mathbb{R}^n$ $(1 \le i, j \le n)$ such that $d_{ij} = ||u_i u_j||^2$.
 - (c) Let $\alpha \in \mathbb{R}^n$ be a signed measure s.t. $\sum_i \alpha_i = 1$ (or $e^T \alpha = 1$) and $H_\alpha = I e\alpha^T$ be the Householder centering matrix. Show that $B_\alpha = -\frac{1}{2}H_\alpha DH_\alpha^T \succeq 0$ for matrix $D = [d_{ij}]$.
 - (d) If $A \succeq 0$ and $B \succeq 0$ $(A, B \in \mathbb{R}^{n \times n})$, show that $A + B = [A_{ij} + B_{ij}]_{ij} \succeq 0$ (elementwise sum), and $A \circ B = [A_{ij}B_{ij}]_{ij} \succeq 0$ (Hadamard product or elementwise product).

(a) (
$$\Rightarrow$$
) If $K \succeq 0$, for \forall its eigenvalue λ , $X^T K X = \lambda X^T X > 0$
 $\Rightarrow \lambda > 0$
(\Leftarrow) If all its eigenvalues $\lambda_{\bar{\nu}} > 0$, $i^{\geq 1,2} - n$, then

$$x^T k x = (Cx)^T \Lambda(Cx) = \sum_{i=1}^{2} \lambda_i p_i^2 >0$$
, where $Cx = (p_1, \dots, p_n)^T$

(b) Since
$$K \geq 0$$
, then $\exists U = (u_1, ..., u_n)$, $u_0 \in \mathbb{R}^n$, s.e. $K = U^T U$, then $d\hat{y} = K\hat{x}\hat{i} + K\hat{y}\hat{j} - 2K\hat{i}\hat{j} = U_1^T U_1^T + U_2^T U_1^T - 2U_0^T U_2^T = U_1^T U_1^T + U_2^T U_1^T - 2U_0^T + U_2^T U_1^T - 2U_0^T + U_1^T + U_2^T +$

W) Let
$$K = \text{diag } K \in \mathbb{R}^n$$
, then $D = Ke^T + eK^T - 2K$, $TrK \ge 0$,

We have
$$H_{\alpha}(Re^{T})H_{\alpha}^{T}=(1-e\alpha^{T})Re^{T}(1-\alpha e^{T})=(1-e\alpha^{T})Re^{T}(1-\alpha e^{T$$

 $H_{\alpha}\widetilde{K}H_{\alpha}^{T}$ For $\forall x$, $\chi^{T}B_{\alpha}\chi = Tr(\chi^{T}B_{\alpha}\chi) = Tr(H_{\alpha}\widetilde{K}H_{\alpha}^{T}) \geq 0$, then $B_{\alpha} \succeq 0$

(d) D, If $A \succeq 0$, $B \succeq 0$, for $\forall x \in \mathbb{R}^{n}$, $x^{\Gamma}(A+B) \times = x^{T}A \times + x^{T}B \times 0$ $\geqslant 0$, then $A+B \succeq 0$

 Θ . If $A \succeq 0$, $B \succeq 0$, $\exists R, S$ s.t. $A = R^TR$, $B = S^TS$, then for $\forall x \in R^T$, $\chi^T(A \cdot B) \times \chi^T(R^TR) \cdot (S^TS) \times \chi^T(S^TRX) > 0$

then A∘B ≥ 0

- 4. Distance: Suppose that $d: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$ is a distance function.
 - (a) Is d^2 a distance function? Prove or give a counter example.
 - (b) Is \sqrt{d} a distance function? Prove or give a counter example.

Let d=1x-y1, it can be shown that d is a distance

Consider X=0, y=2, z=4, then $d^2(x,z)=16 > d^2(x,y)+d^2(y,z)$

=8. Therefore, de às not a distance function

(b) Jd is a distance function, proof:

Let $g(\lambda) = \frac{1}{T(\frac{1}{2})} \lambda^{-\frac{1}{2}}$, then $\int_0^\infty \frac{1 - \exp(-\lambda d)}{\lambda} g(\lambda) d\lambda$

 $=\frac{1}{2}\int_{0}^{\infty}\frac{1}{7(\frac{1}{2})}\lambda^{-\frac{3}{2}}\left(1-\exp\left(-\lambda d\right)\right)d\lambda=d^{\frac{1}{2}}$

Therefore, $\frac{1}{2}(d) = d^{\frac{1}{2}}$ is a Schoenberg Trunsform, according to the theorem in lecture notes, $d^{\frac{1}{2}}$ is a distance function.