Deep Learning

Deep learning

Representation learning with a hierarchy of concepts

Those concepts are represented by layers in a neural network model

Kyle Bradbury Lecture 14

Unsupervised models

Autoencoders

Types of Deep Learning Tools

Supervised models

- Image analysis:
 - Convolutional Neural Networks (CNNs)
 - ...and Vision Transformers (ViTs)
- Text analysis and NLP
 - Transformers
- Timeseries analysis:
 - Transformers
 - Recurrent Neural Networks (RNNs)

Generative models

- Generative Adversarial Networks (GANs)
- Diffusion Models (e.g. DALL-E 2, Stable Diffusion)
- Generative Pre-trained Transformer (GPT)

Azimov Institute: http://www.asimovinstitute.org/neural-network-zoo/

A mostly complete chart of

Autoencoders

Image from: https://www.jeremyjordan.me/autoencoders/

Autoencoders

Our goal is often to develop a good **encoder** that represents our features well

Convolutional Neural Networks

AlexNet

Input

11x11 conv, 96

5x5 conv, 256

max pool

3x3 conv, 384

max pool

3x3 conv, 384

3x3 conv, 256

max pool

FC 4096

FC 4096

FC 1000

softmax

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.

Input or output layer

Convolutional Layer

Fully Connected Layer

max pooling layer

Convolutional Neural Networks

Image from the Mathworks

Convolution in 1 dimension

$$z_2 = x_1 w_1 + x_2 w_2 + x_3 w_3$$

$$z_3 = x_2 w_1 + x_3 w_2 + x_4 w_3$$

$$z_1 = 0 w_1 + x_1 w_2 + x_2 w_3$$

 $z_1 = x_1 w_1 + x_2 w_2 + x_3 w_3$

ata:	X					1	VVeig	hts: w	7	•	Outp	ut: x *	< W
1	2	5	1	4	2		1	1	1				
0	2	3	2	0	0	*	0	0	0	=			
4	5	5	9	8	1		-1	-1	-1				
6	3	4	2	3	1								
0	1	9	8	7	2							•	•
2	3	5	5	5	6								
	1 0 4 6	 2 2 2 5 3 1 	1 2 5 0 2 3 4 5 5 6 3 4 0 1 9	1 2 5 1 0 2 3 2 4 5 5 9 6 3 4 2 0 1 9 8	1 2 5 1 4 0 2 3 2 0 4 5 5 9 8 6 3 4 2 3 0 1 9 8 7	1 2 5 1 4 2 0 2 3 2 0 0 4 5 5 9 8 1 6 3 4 2 3 1 0 1 9 8 7 2	1 2 5 1 4 2 0 2 3 2 0 0 ** 4 5 5 9 8 1 6 3 4 2 3 1 0 1 9 8 7 2	1 2 5 1 4 2 0 2 3 2 0 0 4 5 5 9 8 1 6 3 4 2 3 1 0 1 9 8 7 2	1 2 5 1 4 2 0 2 3 2 0 0 4 5 5 9 8 1 6 3 4 2 3 1 0 1 9 8 7 2	1 2 5 1 4 2 0 2 3 2 0 0 0 0 4 5 5 9 8 1 6 3 4 2 3 1 0 1 9 8 7 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

2D Convolution

Kyle Bradbury Deep Learning Lecture 14

10

Data:	x				
1	2	5	1	4	2

1	2	5	1	4	2
0	2	3	2	0	0
4	5	5	9	8	1
6	3	4	2	3	1
0	1	9	8	7	2
2	3	5	5	5	6

Λ	/ _C	ia	h	ts	W
/ V		IJ	П	ιS	VV

<u> </u>					
1	1	1			
0	О	O			
-1	1	-1			

Output:
$$x * w$$

Computing
$$1.1 + 1.2 + 1.5$$
 one output value:

$$(-1)\cdot 4 + (-1)\cdot 5 + (-1)\cdot 5$$

Data:	X	

Dala.	Data. X					
1	2	5	1	4	2	
0	2	3	2	0	0	
4	5	5	9	8	1	
6	3	4	2	3	1	
0	1	9	8	7	2	
2	3	5	5	5	6	

A /		1 4	
/\/△		hts	• 1A7
V	14		. <i>VV</i>

1	1	1
0	О	0
-1	-1	-1

Output: x * w

-6		

Computing 1.1 + 1.2 + 1.5one output value:

$$(-1)\cdot 4 + (-1)\cdot 5 + (-1)\cdot 5 = -6$$

Data:	X
-------	---

1	2	5	1	4	2
0	2	3	2	0	0
4	5	5	9	8	1
6	3	4	2	3	1
0	1	9	8	7	2
2	3	5	5	5	6

Weights: w

1	1	1
O	О	0
-1	-1	-1

Output: X * w

-6	-11	

Computing 1.2 + 1.5 + 1.1one output value:

$$(-1)\cdot 5 + (-1)\cdot 5 + (-1)\cdot 9 = -1$$

Dat	a:	X
$\mathbf{D}\mathbf{a}$	a.	

1	2	5	1	4	2
0	2	3	2	0	0
4	5	5	9	8	1
6	3	4	2	3	1
0	1	9	8	7	2
2	3	5	5	5	6

	\bigvee	'e	ig	ht	ts		W
--	-----------	----	----	----	----	--	---

1	1	1
0	0	0
-1	-1	-1

Output: X * w

-6	-11	-12	

Computing 1.5 + 1.1 + 1.4one output value:

$$0.3 + 0.2 + 0.0 +$$

$$(-1)\cdot 5 + (-1)\cdot 9 + (-1)\cdot 8 = -12$$

Data	:	X
------	---	---

1	2	5	1	4	2
0	2	3	2	0	0
4	5	5	9	8	1
6	3	4	2	3	1
0	1	9	8	7	2
2	3	5	5	5	6

Λ	/e	ia	ht	S:	W
V		19	116	O .	

1	1	1
0	O	0
-1	-1	-1

Output: X * w

-6	-11	-12	-11

one output value:

0.2

Computing
$$1.1 + 1.4 + 1.2$$

15

2D Convolution

$$(-1)\cdot 9 + (-1)\cdot 8 + (-1)\cdot 1 = -1$$

+ 0.0

Data:	\boldsymbol{X}
-------	------------------

1	2	5	1	4	2
0	2	3	2	0	0
4	5	5	9	8	1
6	3	4	2	3	1
0	1	9	8	7	2
2	3	5	5	5	6

Weights: w

1	1	1
0	0	0
-1	-1	-1

Output: X * w

-6	-11	-12	-11
-7			

Computing 1.0 + 1.2 + 1.3one output value:

16

$$0.4 + 0.5 + 0.5 +$$

$$(-1)\cdot 6 + (-1)\cdot 3 + (-1)\cdot 4 = -7$$

	Data:	X					
	1	2	5	1	4	2	
	0	2	3	2	0	0	3
•	4	5	5	9	8	1	
	6	3	4	2	3	1	
	0	1	9	8	7	2	
	2	3	5	5	5	6	

Weights: w					
1	1	1			
O	O	O			
-1	1	-1			
3 x 3					

Output: X * w

-6	-11	-12	-11
-7	-2	-2	-4
4	1	-2	1
3	-4	-6	-10

4 x 4

6 x 6

What features do layers respond to?

Olah et al, 2017: https://distill.pub/2017/feature-visualization/

Features

Dataset Examples show us what neurons respond to in practice

Animal faces—or snouts? mixed4a, Unit 240

Clouds—or fluffiness? mixed4a, Unit 453

Buildings—or sky? mixed4a, Unit 492

Olah et al, 2017: https://distill.pub/2017/feature-visualization/

Resources on Visualization of Features

Feature visualization: https://distill.pub/2017/feature-visualization/

Building blocks of interpretability: https://distill.pub/2018/building-blocks/

Activation Activation Atlases: https://distill.pub/2019/activation-atlas/

Convolution Example

Convolution Layer

32x32x3 image 5x5x3 filter 32 convolve (slide) over all spatial locations 32

activation map

From Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

From Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Parameters =
$$(5*5*3)*6 = 450$$

$$(5*5*6)*10 = 1,500$$

From Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018

1 x 1 Convolution Explained

From Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018

Max Pooling

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

From Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018

Fully Connected Layer

AlexNet

Input

11x11 conv, 96

5x5 conv, 256

max pool

3x3 conv, 384

max pool

3x3 conv, 384

3x3 conv, 256

max pool

FC 4096

FC 4096

FC 1000

softmax

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.

max pooling layer

AlexNet (2012)

Input 11x11 conv, 96 5x5 conv, 256 max pool

(2014)

VGG16

Input

3x3 conv, 64

max pool

3x3 conv, 128

3x3 conv, 128

max pool

3x3 conv, 256

3x3 conv, 256

3x3 conv. 256

max pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

max pool 3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

max pool

FC 4096

FC 4096

FC 1000

softmax

3x3 conv, 64

VGG19 (2014)

Input 3x3 conv, 64

3x3 conv, 64

max pool

3x3 conv, 128

3x3 conv, 128

max pool 3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

max pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

max pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

max pool

FC 4096

FC 4096

FC 1000

softmax

3x3 conv, 384 max pool 3x3 conv. 384 3x3 conv, 256 max pool FC 4096 FC 4096

Fewer layers, larger filters

FC 1000

softmax

Fully Connected Layer max pooling layer

Input or output layer

Convolutional Layer

Key

Note: an

activation

function is

applied to

each layer

the output of

CNN Architectures

Adapted from Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018

Residual Networks (ResNet)

Skip Connection enable faster convergence, more effectively backpropate the error signal (avoiding vanishing gradients)

He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Object detection

Building 0.8

Building 0.7

Image segmentation

32

Deep Learning

Lecture 14

Scene classification

AlexNet VGG GoogLeNet ResNet

Inception DenseNet SqueezeNet EfficientNet

is classified

Object detection

Faster/Fast/R-CNN Mask R-CNN YOLO Single Shot Detector (SSD) RetinaNet

Object type & probability

Confidence or probability Residential 0.6 Commercial 0.2 **Forest** 0.1 0.075 **Desert Body of water** 0.025 Each image (scene)

Image segmentation

U-Net (2015) SegNet (2016) DeepLab (2017) FCN (2016)

Deep Learning

Lecture 14 33

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Fei-Fei Li et al. 2010 (link)

Competition at:

Conference on Computer Vision and Pattern Recognition (CVPR)

USED FOR MODEL PRETRAINING

In the competition's first year teams had varying success. Every team got at least 25%

below 25%.

In 2012, the team to first use deep learning was the only

team to get their error rate

The following year

wrong.

100%

wrong

50

Deep Learning Models Compared

Models compared for ImageNet Many of these models are available through Keras (<u>link</u>)

A. Canziani, E. Culurciello and A. Paszke, "Evaluation of neural network architectures for embedded systems," 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, 2017, pp. 1-4.

Deep learning frameworks

Tensorflow (<u>link</u>)

Framework for implementing graphical models, such as neural networks

Keras (link)

Wrapper for Tensorflow to make coding easier: higher level and excellent API

PyTorch (link)

Framework for implementing graphical models, such as neural networks

KERAS DEMO

Generative Adversarial Networks

Image from: https://skymind.ai/wiki/generative-adversarial-network-gan