2章のストーリー

- ・清原は、市の医療費削減のために健診結果から 糖尿病の発病を予測するサービスを立ち上げた いと考える
- さやかは識別問題の解法として、ロジスティック識別と決定木について教える

基礎的な識別(2章)

識別

- ・識別とは
 - 教師あり学習のひとつ
 - •特徴から**クラス**を予測する(できれば確率も得たい)

- •2クラス識別でのロジスティック識別の考え方
 - 入力された特徴が正例である確率を得たい
 - ・確率=0.5の点の集合を識別面と考える

・識別面の式

$$\hat{g}(\mathbf{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_d x_d + w_0 = \mathbf{w}^T \mathbf{x} = 0$$

- 正例の \boldsymbol{x} に対しては $\hat{g}(\boldsymbol{x}) > 0$
- 負例の \boldsymbol{x} に対しては $\hat{g}(\boldsymbol{x}) < 0$
- これを確率と対応付けたい ⇒ シグモイド関数

係数 w の求め方

• 尤度(モデルのもっともらしさ)が最大となるよう調整

$$P(D|\boldsymbol{w}) = \prod_{\boldsymbol{x}_i \in D} o_i^{y_i} (1 - o_i)^{(1 - y_i)}$$

$$D: \widehat{\boldsymbol{z}} = \emptyset$$

- 尤度の最大化
 - \Rightarrow 対数尤度の最小化に読み替え $E(\boldsymbol{w}) = -\log P(D|\boldsymbol{w})$
 - ⇒ 最急勾配法による最適化
 - 1. wの初期値を適当に設定
 - 以下の式でwの更新を 繰り返す

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \frac{\partial E(\boldsymbol{w})}{\partial \boldsymbol{w}}$$

 η :学習係数

 wの変化量が一定以下に なれば終了

ロジスティック識別の具体例

- Diabetesデータ
 - •年齢・血圧・BMIなどから糖尿病検査結果を予測

		_							
No.	1: preg	2: plas	3: pres	4: skin	5: insu	6: mass	7: pedi	8: age	9: class
	Numeric	Nominal							
1	6.0	148.0	72.0	35.0	0.0	33.6	0.627	50.0	tested_positive
2	1.0	85.0	66.0	29.0	0.0	26.6	0.351	31.0	tested_negative
3	8.0	183.0	64.0	0.0	0.0	23.3	0.672	32.0	tested_positive
4	1.0	89.0	66.0	23.0	94.0	28.1	0.167	21.0	tested_negative
5	0.0	137.0	40.0	35.0	168.0	43.1	2.288	33.0	tested_positive
6	5.0	116.0	74.0	0.0	0.0	25.6	0.201	30.0	tested_negative
7	3.0	78.0	50.0	32.0	88.0	31.0	0.248	26.0	tested_positive
I -									* * * *

妊娠回数 血糖値 血圧 皮下脂肪 インスリン BMI 家系 年齢 検査結果

予測式

```
-4.18 +
[preg] * 0.06 +
[plas] * 0.02 +
[pres] * -0.01 +
[insu] * -0 +
[mass] * 0.04 +
[pedi] * 0.47 +
[age] * 0.01
```

係数w

ロジスティック識別の具体例

- ・データの標準化
 - ・各特徴のスケールを平均0、分散1に揃える
 - 特徴が結果に寄与する度合いが係数の大きさでわかる

```
4: skin 5: insu 6: mass 7: pedi
1: preq
         2: plas
                 3: pres
                                                             8: age
                                                                        9: class
        Numeric Numeric Numeric Numeric Numeric Numeric Numeric
                                                                         Nominal
0.639... 0.847... 0.149... 0.906... -0.692... 0.203... 0.468... 1.42... tested positive
-0.84... -1.12... -0.16... 0.530... -0.692... -0.683... -0.36... -0.19... tested negative
1.233... 1.942... -0.26... -1.28... -0.692... -1.102... 0.604... -0.10... tested positive
-0.84... -0.99... -0.16... 0.154... 0.123... -0.493... -0.92... -1.04... tested_negative
-1.14... 0.503... -1.50... 0.906... 0.765... 1.408... 5.481... -0.02... tested positive
0.342... -0.15... 0.252... -1.28... -0.692... -0.810... -0.81... -0.27... tested negative
  妊娠回数 血糖値 血圧 皮下脂肪 インスリン BMI 家系
                                                             年齢
                                                                    検査結果
```

```
-0.43 +
[preg] * 0.2 +
[plas] * 0.56 +
[pres] * -0.13 +
[insu] * -0.07 +
[mass] * 0.35 +
[pedi] * 0.16 +
[age] * 0.09
```

カテゴリ特徴に対する識別

ゴルフをする日のデータ

	天候	気温	湿度	風	play
1	晴	高	高	なし	no
2	晴	高	高	あり	no
3	曇	高	高	なし	yes
4	雨	中	高	なし	yes
5	雨	低	標準	なし	yes
6	雨	低	標準	あり	no
7	曇	低	標準	あり	yes
8	晴	中	高	なし	no
9	晴	低	標準	なし	yes
10	R	中	標準	なし	yes
11	晴	中	標準	あり	yes
12	曇	中	高	あり	yes
13	曇	高	標準	なし	yes
14	雨	中	高	あり	no

- ・決定木とは
 - 事例を分類する質問を繰り返す

- ・決定木の作り方
 - ・大きな木を作れば(原理的には)データを100%正 しく識別できる
 - 小さな木で多くのデータが正しく識別できれば、その木は未知のデータに対しても正しい識別を行う可

能性が高い

p.65 2コマ目

- ・小さな木の作り方
 - •分類能力の高い質問を、木の根に近いところに配置 する

・分類能力の低い質問

・分類能力の高い質問

•得られた決定木

•数値特徴に対する決定木

 $x_2 < \theta_1$

識別の実用化事例

- •オートマギ、NTTドコモ
 - •居眠り運転検知

https://www.nikkei.com/article/DGXMZO38577940V01C18A2XY0000/

- ・国立国際医療研究センター
 - 糖尿病の発症リスク予測

http://www.ncgm.go.jp/riskscore/