

Network Protocol & Traffic Analysis Project Report

1. Packet Capture & Protocol Identification

Screenshot Reference: Screenshot 2025-05-07 at 3.57.12 PM

Identified Protocols:

TCP (Transmission Control Protocol)

Example: Packet No. 165, 166

- Reliable, connection-oriented protocol used for data exchange.
- ARP (Address Resolution Protocol)

Example: Packet No. 173, 174

- Resolves IP addresses to MAC addresses for local network communication.
- MDNS (Multicast DNS) and NBNS (NetBIOS Name Service)

Example: Packet No. 176-183

Used for name resolution on local networks without a centralized DNS server.

These protocols are commonly seen in internal network traffic. TCP handles actual communication, while ARP, MDNS, and NBNS assist with addressing and name resolution.

2. Vulnerability Assessment of ARP

Target Protocol: ARP

Packets Referenced: 173, 174

Description:

- ARP does not have any form of authentication or verification.
- Anyone on the network can send a fake ARP reply.

Example Vulnerability: ARP Spoofing / Man-in-the-Middle (MITM)

- A malicious actor can send a fake ARP reply associating their MAC address with a victim's IP.
- This allows interception or redirection of traffic.

Conclusion:

- ARP is vulnerable by design and should be monitored closely.
- Mitigation strategies: dynamic ARP inspection, static ARP entries, and network segmentation.

3. Network Performance Metrics (Security Perspective)

Observed Metrics in Wireshark:

- Sequence Numbers & Acknowledgments: Indicates packet delivery and tracking.
- TCP Window Sizes: Reflects available buffer size; anomalies might hint at resource exhaustion.
- **Dropped Packets:** 0.0% drop rate observed (indicating good health during capture).
- **Timing:** Timestamp analysis shows consistent and timely packet flow.

Security Insight:

- No retransmissions or delays = no DoS or packet loss during this session.
- Consistent flow and no strange retransmits suggest clean performance.

4. Traffic Pattern Analysis

Normal Traffic:

- TCP communication between internal IPs (e.g., $10.138.16.53 \leftrightarrow 10.138.16.88$).
- ARP request/reply sequences are typical for MAC resolution.

Suspicious Traffic:

- High volume of NBNS and MDNS packets (e.g., Packets 176–183):
 - Repetitive queries to multicast addresses.
 - Might indicate broadcast storm, misconfigured client, or network reconnaissance.

Conclusion:

- Monitor broadcast/multicast services.
- Apply traffic filters (e.g., udp.port == 5353) to isolate and audit such traffic.

5. Conclusion

This packet capture reveals:

- Standard use of TCP, ARP, MDNS, and NBNS.
- Vulnerability in ARP that can lead to MITM attacks.
- Performance metrics indicate a healthy connection.
- Slight anomaly detected in the frequency of name resolution protocols, which may warrant further investigation.