Randomized Trials and Hypothesis Checking

Chapter 21

Performance Enhancing Drugs

Randomized trials

- The gold standard of clinical research
 - Randomized Trial or Randomized Control Trial (RCT)
- Using random sampling, participants are divided into an intervention or treatment group and a control group
 - Treatment group receives new treatment, undergoes new test, etc.
 - Control group receives placebo or known test
 - The control group serves as a baseline
- Samplings could be simple or stratified (chapter 17)

RCT subtypes

- Parallel groups
 - Each participant is randomly assigned
- Crossover study
 - Each participant receives the treatment over time but randomly assigned when to receive treatment
- Cluster trial
 - Groups/clusters of participants are assigned to a trial
 - Cohort study
- Factorial
 - Each participant is randomly assigned to a group that receives a specific combination of intervention and non-intervention

RCT process

- Allocation concealment treatment to be allocated is not known before the participant is assigned
- Blinded the participant does not know whether they are in the treatment or control group
 - May not be ethical to actually blind participants
- Double blind researchers do not know which participants are in which group

RCT analysis methods

- Binary data
 - Logistic regression
- Continuous data
 - ANCOVA analysis of covariance
- Time-to-event data
 - Censored or survival analysis

Hypothesis testing

- Create an alternative hypothesis and a corresponding null hypothesis
 - Taking Bobiva will make you a charming individual (alternative hypothesis)
 - Taking *Bobiva* will not make you a charming individual (null hypothesis)
- Understand the statistical assumptions about the sample
 - Both control and treatment groups will contain both naturally charming and less charming individuals
- Compute a relevant test statistic
 - Increase between pre and post test Prince Charming Assessments
- Derive the probability of the test statistic under null hypothesis
- Decide whether the probability is small enough to reject the null hypothesis

Rejecting the null hypothesis

- Determine a threshold, α , for rejecting the null hypothesis
 - Common values are 0.05 and 0.01
 - Could be lower and sometimes higher
- If the probability of the null hypothesis holds is $< \alpha$
 - Reject the null hypothesis with confidence α
 - Accept the negation of the null hypothesis with probability of $1-\alpha$
- Notice that we do not accept the alternative hypothesis

Testing errors

- Type I Error
 - The larger α the more likely we are to reject a true null hypothesis
- Type II Error
 - The smaller α the more likely we are to accept a false null hypothesis

Table of error types		Null hypothesis (H_0) is	
		True	False
Decision About Null Hypothesis (H ₀)	Reject	Type I error (False Positive)	Correct inference (True Positive)
	Fail to reject	Correct inference (True Negative)	Type II error (False Negative)

What has the more severe consequence?

The "Student's" t-test

- The t-statistic tells us how different the estimate is from the null hypothesis
 - Measured in units of Standard Error
 - The larger the value the more likely we can reject the H_o
- T-statistic is used much like standard deviation
 - 97% of normally distributed data is within 3σ of μ
- We will compare to a t-distribution based on degrees of freedom

Degrees of freedom

- Describes the amount of independent information used to create the t-statistic
 - Generally look like normal distributions
 - Df < 30 have 'fatter' tails
 - Df >= 30 more like normal

Degrees of freedom example

•
$$variance(X) = \frac{\sum_{x \in X} (x - \mu)^2}{|X|}$$

- If we have 3 samples
 - We can calculate the mean
 - With the mean and any 2 values we can calculate the 3rd value
 - **So** we have 2 degrees of freedom
- For a single sample, df = # examples -1
- For two groups, df = # examples 2

T-tests in SciPy.stats

- Independent t-test each observation represents a different participant
 - stats.ttest ind(sample1, sample2)
- Paired (dependent) t-test each participant is in each treatment (crossover study)
 - stats.ttest rel(sample1, sample2)
- One sample compared against a 'known' population mean
 - stats.ttest_1samp(sample, pop_mean)
- All return
 - Statistic
 - P-value

A paired test example

- We want to test a new home page
- We want 40 participants to rate the current and new pages
- Independent test
 - Recruit 80 participants
 - 40 test current, 40 test new
 - Df = 80 2 = 78
- Matched Pairs (dependent)
 - Recruit 40 participants
 - 20 test new then current, 20 test current then new
 - Df = 40 1 = 39

t vs. normal distribution

```
tstat = 2.13165598142
tDist = []
nDist =
numBins = 1000
for i in range(10000000):
     tDist.append(scipy.random.standard t(198))
                                                        T-Distribution with 198 Degrees of FreedonNormal Distribution
     nDist.append(random.gauss(0, 1))
                                                           0.005
                                                           0.004
                                                                                 0.004
                                                         0.003
0.002
                                                                                 0.003
                                                                               Probability
                                                                                 0.002
                                                           0.001
                                                                                 0.001
```

0.000

0.000

T-Statistic

0

Standard Deviation

What can we do with the p-value?

- The p-value does not give the probability that the null hypothesis is True
- p applies only to the sample under evaluation
 - If p is very small then this sample has failed to support the null hypothesis
 - May have an unrepresentative sample
 - Maybe they all watched my TEDz Talk on How to be Charming!
- The larger the sample, study power, the stronger our result will be
- Large samples can be expensive to collect
 - Both in time and money

How many tails

- 2-tailed test
 - H_0 is there is no difference between groups
 - H_1 is there is a difference for good or ill
- 1-tailed test
 - H_0 is there is no difference between groups, or the difference in means is in a specified direction
 - H_1 is there is a difference opposite the null hypothesis
 - Weaker than 2-tailed
 - Can divide p by 2
 - Difference in means must match the hypothesis
 - Should only use if missing an effect in the untested direction is inconsequential

1-sample test

- We have a known mean for our population
- We only need to compare our sample against that mean

Example

- The historical GPA of SOIC grad students is 3.5
- H_0 current applied data science students do not have a statistically significantly higher GPA than other grad students
- H_1 current applied data science students are smarter than average
- Get the GPA of 20 random ADS students
- scipy.stats.ttest 1samp(studs, 3.5)

Skipping these – but read and understand

- 21.4 Words With Friends
 - Gives a good example of how running a Monte Carlo simulation aligns with the t-test
- 21.5 Come to Class
 - Size matters

Testing Multiple Hypotheses

- Are there significant differences between runners from different countries?
 - Compare female runners from Belgium, Brazil, France, Italy and Japan
 - BEL -> BRA, BEL -> FRA, BEL -> ITA, BEL -> JPN
 - BRA -> FRA, BRA -> ITA, BRA -> JPN
 - FRA -> ITA, FRA -> JPN
 - ITA –JPN
 - $\Sigma(n-1)$ Compares
- Bonferroni correction
 - Applies to a 'family' of hypotheses
 - Divide α by m (number of compares)

Bayesian statistics

Frequentist

- Draws conclusions based on frequency of occurrence
- Conclusions based solely on observed data

Bayesian statistics

Utilizes additional, a priori, knowledge

DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE.)

FREQUENTIST STATISTICIAN:

BAYESIAN STATISTICIAN:

Bayesian statistics

- Proposed by Rev. Thomas Bayes 1783
- Popularized by LaPlace in the 1800's

• Events are *not* independent

Example

Suppose we randomly select an adult American

• What is the probability that person is a male weighing more than 180

lb. (~82kg)?

• 0.5 * 0.5 = 0.25?

Example (cont.)

- If the selected person is male, the probability he weighs > 180 is > 0.50
- Empirical rule
 - $1 SD = \pm ^{\sim} 68\%$
 - If mean = 210
 - And SD = 30
 - Left tail ~16%
 - So ~84% of American men weigh > 180 lb.

Conditional Probability

- P(A|B) = Probability of A given B
 - Sometimes called 'likelihood'

•
$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

- P(weight > 180 | male) = Probability that a male weights > 180
 - P(A) = 0.50
 - P(B) = 0.50
 - P(A and B) = 0.42 (84/200)
- So, yes, P(A|B) = 0.42 / 0.5 = 0.84

	Male	Female
> 180	84	16
< 180	16	84

- Our data was made up most data are not symmetric
- Latest data for the US
 - 50.5% Female
 - Mean male weight 195.8
 - Mean female weight 168.5

Bayes Theorm

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)} = \frac{P(B|A) * P(A)}{P(B)}$$

- Measures "degree of belief"
- Requires "prior knowledge"

Bayesian terms

- P(A|B) = posterior This is the value we want to compute
- P(B|A) = likelihood Assuming A occurred, how likely is B
- P(A) = **prior** How likely the event is regardless of the evidence
- P(B) = evidence How likely the evidences is regardless of the event
 - Sometimes referred to as the marginal probability

Other Bayesian thoughts

- $P(\bar{A}|B)$ = Probability of *not* A given B
- $P(\overline{A}|B) + P(A|B) = 1$

- Let say there is a 30% of rain on any given day in April
- On 95% of days when it rains, dark clouds roll in in the morning
- On 25% of days with it does not rain, dark clouds roll in in the morning
- Dark clouds rolled in this morning, what is the chance that it will rain
 P(R|C) = ?

April showers – what do we know?

- P(R|C) = (P(C|R) * P(R)) / P(C)
 - P(R) = 0.30
 - P(C|R) = 0.95
 - $P(C|\bar{R}) = 0.25$
 - What is P(C)?
 - $P(C|R)*P(R) + P(C|\overline{R})*P(\overline{R})$
 - (0.95*0.30) + (0.25*0.70) = 0.46
 - (0.95 * 0.30) / 0.46 = 0.619
- Bring the umbrella!

Multiple conditions

- P(A|B,C) = Probability A is true given B and C are true and B and C are dependent of each other
- P(A,B | C) = Probability both A and B are true given that C is true