12/12/2024

PROJECT REPORT

MACHINE LEARNING

Sahal Saeed 22i-0476 AI-A FAST NUCES

Table of Contents

Р	hase 1: Data Preprocessing and Feature Engineering	2
	1. Data Integration	2
	2. Data Cleaning and Transformation	2
	2.1 Handle Missing Values	2
	2.2 Format Time Fields	2
	3. Feature Engineering	2
	3.1 Calculate Departure Delay	2
	3.2 Merge Weather Data	3
	3.3 Extract Temporal Features	3
Ρ	hase 2: Exploratory Data Analysis (EDA)	3
	1. Visualizations	3
	1.1 Delay Distributions	3
	1.2 Temporal Analysis	4
	1.3 Category-Wise Analysis	6
	2. Correlation Analysis	7
		_
	3. Comparison	9
Ρ	3. Comparison	
Ρ		9
Р	hase 3: Analytical and Predictive Tasks	9 9
Р	hase 3: Analytical and Predictive Tasks	9 9
P	hase 3: Analytical and Predictive Tasks 1. Classification Tasks 1.1 Binary Classification	9 9 9
P	hase 3: Analytical and Predictive Tasks 1. Classification Tasks 1.1 Binary Classification Objective:	9 9 9 9
P	hase 3: Analytical and Predictive Tasks 1. Classification Tasks 1.1 Binary Classification Objective: Steps:	9 9 9 9
	hase 3: Analytical and Predictive Tasks 1. Classification Tasks 1.1 Binary Classification Objective: Steps: 1.2 Multi-Class Classification	9 9 9 9
	hase 3: Analytical and Predictive Tasks 1. Classification Tasks 1.1 Binary Classification Objective: Steps: 1.2 Multi-Class Classification 2. Regression Analysis	9 9 9 9 10 11
	hase 3: Analytical and Predictive Tasks 1. Classification Tasks 1.1 Binary Classification Objective: Steps: 1.2 Multi-Class Classification 2. Regression Analysis hase 4:	9 9 9 10 11
	hase 3: Analytical and Predictive Tasks 1. Classification Tasks 1.1 Binary Classification Objective: Steps: 1.2 Multi-Class Classification 2. Regression Analysis hase 4: 1. Hyperparameter Tuning.	9 9 9 10 11 11
Ρ	hase 3: Analytical and Predictive Tasks 1. Classification Tasks 1.1 Binary Classification Objective: Steps: 1.2 Multi-Class Classification 2. Regression Analysis hase 4: 1. Hyperparameter Tuning. 2. Validation.	99910111111
Ρ	hase 3: Analytical and Predictive Tasks 1. Classification Tasks 1.1 Binary Classification Objective: Steps: 1.2 Multi-Class Classification 2. Regression Analysis hase 4: 1. Hyperparameter Tuning 2. Validation 3. Model Comparison	99910111111

Phase 1: Data Preprocessing and Feature Engineering

1. Data Integration

Objective: Combine the weather dataset with the flight dataset to enrich the features for analysis and modeling.

Steps:

- 1. Join the weather dataset and flight dataset on common attributes such as date, time, and location (e.g., airport).
- 2. Ensure the integrity of the integrated dataset by validating the correctness of merged records.

2. Data Cleaning and Transformation

2.1 Handle Missing Values

- Identify missing values in critical fields (e.g., scheduled time, actual time, weather attributes).
- Apply appropriate imputation techniques:
- Mean/median for numerical fields.
- Mode for categorical fields.
- For time-related fields, interpolate or forward-fill based on temporal patterns.

2.2 Format Time Fields

- Convert time fields (e.g., Scheduled Departure, Actual Departure, Estimated Arrival) into a standard `datetime` format.
- Calculate additional time-based differences such as:
- Actual Departure Scheduled Departure (departure delay).
- Scheduled Arrival Scheduled Departure (planned flight duration).

3. Feature Engineering

3.1 Calculate Departure Delay

- Compute the `departure_delay` as the difference between `actual_departure_time` and `scheduled_departure_time`.
- Categorize delays for multi-class classification tasks.

3.2 Merge Weather Data

- Extract relevant weather features (e.g., temperature, wind speed, humidity).
- Merge weather data with flight data based on timestamp and location (e.g., airport code).

3.3 Extract Temporal Features

- Derive additional features to capture patterns:
- 1. Day of the Week: Extract Day names (e.g., Monday, Tuesday).
- 2. Hour of the Day: Bin time into hourly intervals.
- 3. Month of the Year: Extract month names.
- Optional: Add derived features such as holidays or seasonal indicators.

Phase 2: Exploratory Data Analysis (EDA)

1. Visualizations

1.1 Delay Distributions

- Plot a histogram to visualize the distribution of delay durations.

1.2 Temporal Analysis

- Use line plots or bar charts to analyze delays across different temporal dimensions:
- Hour of the day.
- Day of the week.
- Month of the year.
- Average delay across hours

Average delay across week

Average delay across month

1.3 Category-Wise Analysis

- Group delays by:
- Airline.

- Departure airport.

- Flight status (on-time or delayed).

2. Correlation Analysis

- Analyze the relationship between weather features and flight delays.
- Use visualizations such as:
- 1. Heatmaps to show correlations between numerical attributes.

2. Scatter plots for delay duration vs. temperature or wind speed.

3. Comparison

- Compare delay statistics across training and testing datasets to ensure consistency in data distributions.

Phase 3: Analytical and Predictive Tasks

1. Classification Tasks

1.1 Binary Classification

Objective: Classify flights as "on-time" (delay = 0) or "delayed" (delay > 0).

Steps:

1. Train a binary classification model using features such as weather, time, and airline data.

2. Evaluate performance:

Accuracy: Measure overall correctness.

Precision-Recall: Assess balance between false positives and false negatives.

F1-Score: Evaluate the harmonic mean of precision and recall.

Class-wise Precision-Recall: Break down precision and recall for each class.

Confusion Matrix: Visualize prediction errors.

1.2 Multi-Class Classification

Objective: Categorize flights into:

- 1. No Delay (0 min).
- 2. Short Delay (<45 min).
- 3. Moderate Delay (45–175 min).
- 4. Long Delay (>175 min).

Steps:

- 1. Train a multi-class classification model.
- 2. Evaluate performance:

Accuracy: Measure classification accuracy.

Precision-Recall: Evaluate performance per class.

F1-Score: Assess overall balance between precision and recall.

Confusion Matrix: Identify specific areas of misclassification.

2. Regression Analysis

Objective: Predict exact delay durations.

Steps:

- 1. Train regression models (e.g., Linear Regression, Random Forest Regressor, Gradient Boosting).
- 2. Validate models using cross-validation techniques.
- 3. Evaluate performance:

Mean Absolute Error (MAE): Average magnitude of errors.

Root Mean Square Error (RMSE): Penalizes larger errors more heavily.

Phase 4: Model Optimization and Evaluation

1. Hyperparameter Tuning

- Use techniques like:

Grid Search: Exhaustive search over a parameter grid.

Random Search: Randomly sample parameter combinations.

2. Validation

- Apply k-fold cross-validation to:
- Reduce overfitting.
- Assess model performance on different subsets of the training data.

3. Model Comparison

- Compare models based on:
- Performance metrics (e.g., Accuracy, MAE, RMSE).
- Robustness to unseen data.
- Training and inference time.

Phase 5: Model Testing

1. Predictions on Test Dataset

- Use trained models to make predictions on the test dataset.
- Evaluate and save predictions:

Regression: Predict exact delay durations.

Classification: Predict delay categories (No Delay, Short, Moderate, Long) or binary outcomes (on-time/delayed).

2. Submission Format

- For classification tasks:
- Delay column must contain string labels ("on-time" or "delayed").
- Avoid numerical values like 0 or 1 in the submission.
- For regression tasks:
- Submit predicted delay durations directly as numerical values.