Global Families Project

Global Families Project Team

6/22/23

Table of contents

1	Project Summary	3						
2	Research Team							
3	Simulated Multi-Country Data							
	3.1 Variables and Variable Labels	6						
	3.2 A Sample Of The Data	7						
4	A Quick Introduction to R	8						
	4.1 Why Use R?	. 8						
	4.2 Get R	. 8						
	4.3 Get Data	. 8						
	4.4 Process and Clean Data	9						
	4.5 Visualize Data	10						
	4.5.1 Histogram	10						
	4.5.2 Barplot	10						
	4.6 Analyze Data: Descriptive Statistics	11						
Re	eferences	12						
Α _Ι	ppendices	12						
Α	Simulating MICS Data	13						
	A.1 Call Relevant Libraries	13						
	A.2 Setup Some Basic Parameters of the Data	14						
	A.3 Simulate Data Based on MICS	14						
	A.3.1 Level 2	14						
	A.3.2 Level 1	15						
	A.3.3 Variable Labels	15						
	A.4 Explore The Simulated Data With A Graph	16						
	A.5 Explore The Simulated Data With A Logistic Regression	17						
	A.6 Write data to various formats	19						

1 Project Summary

Gender inequality perpetuates harmful norms that justify violence against women and children and is associated with higher rates of family violence.

Worldwide, parental physical abuse is a common form of family violence that children are exposed to at alarming rates. Parental engagement in physical abuse is linked to negative child outcomes including depression, anxiety, and aggression that may persist into adulthood. Globally, these continuing mental health and aggression problems may have high financial costs, with effects both on social service systems and developing economies.

Despite the substantial scholarship on parent- and family-level predictors of parent-to-child physical violence, important questions remain about societal-level predictors of parental physical abuse and its associations with young children's development in developing and transitional countries.

A further gap in prior literature is the lack of studies that have examined potential moderators such as child age and household economic status in the associations between gender inequality and parental violence against children.

Using data from over 520,000 families in 57 low- and middle-income countries (LMICs), the current project seeks to address these research gaps by examining the associations of country-level gender inequality and violent social contexts with caregivers' use of physically abusive behavior and child social-emotional development. We will employ multilevel models using data on parental physical violence against children, family socio-economic characteristics, and children's social-emotional development from the UNICEF Multiple Indicator Cluster Surveys (MICS) and data on country-level gender inequality and violent social contexts from the United Nations Development Programme on Human Development and the World Health Organization Global Health Observatory.

The specific aims are to 1) examine the associations of gender inequality with parental child physical abuse in LMICs, and the moderating roles of child age and household economic status in these associations, 2) examine the associations of violent social norms and crimes with parental physical abuse in LMICs, and 3) examine the associations of parental physical abuse with child social-emotional development in the context of gender inequality and violent norms and crimes in LMICs, and whether country-level normativeness of physical abuse moderates these associations.

The proposed studies will advance the understanding of macro-level social and economic indicators that perpetuate caregivers' physical violence against children in international contexts.

Study findings will inform cross-cultural programs and policies that reduce gender disparities and prevent parental physical abuse to promote child social-emotional development across the globe.

In addition, these studies will provide rigorous research engagement opportunities to undergraduate students and graduate students and strengthen the research environment at the University of Michigan-Flint.

2 Research Team

Julie Ma, Principal Investigator

Associate Professor of Social Work, UM-Flint

Professor Ma's research interests center around the effects of neighborhood disadvantage and negative parenting on the well-being of children. Her research builds on her experience in parent education programs that serve families in marginalized communities in Michigan. Much of her current research focuses on the risks of negative contextual and family influences such as neighborhood poverty and disorganization, and parental corporal punishment on behavior problems and maltreatment in early childhood.

Andy Grogan-Kaylor, Co-Investigator

Sandra K. Danziger Collegiate Professor, Professor of Social Work

Professor Grogan-Kaylor's research focuses on knowledge development and intervention research on children and families with the aim of reducing violence against children and improving family and child wellbeing. Grogan-Kaylor's current research projects examine parenting behaviors such as physical punishment and parental expressions of emotional warmth and support, and their effects on children's aggression, antisocial behavior, anxiety, and depression.

Shawna Lee, Co-Investigator

Professor of Social Work

Professor Lee is a professor at the University of Michigan School of Social Work. She is the director of the Parenting in Context Research Lab and the director of the Program Evaluation Group at the School. Lee has published on topics related to child maltreatment, fathers' parenting, father-child relationships, parenting stress and family functioning, and parental discipline. Her recent research focuses on parenting and stress during the COVID-19 pandemic.

3 Simulated Multi-Country Data

This website makes use of simulated data. Data come from 30 hypothetical countries. Data contain measures of a few key aspects of parenting¹ or caregiving that have proven salient in the empirical literature on parenting to date. The outcome is aggression against other children.

i Download The Data

- R format
- Stata Format
- SPSS

load("./simulate-data/MICSsimulated.RData")

3.1 Variables and Variable Labels

pander::pander(labelled::look_for(MICSsimulated)[1:5])

pos	variable	label	col_type	levels
1	id	id	int	NULL
2	country	country	int	NULL
3	GII	gender inequality index	int	NULL
4	cd1	spank	int	NULL
5	cd2	beat	int	NULL
6	cd3	shout	int	NULL
7	cd4	explain	int	NULL
8	aggression	aggression	int	NULL

¹We use the term parenting throughout this site, but are aware that such parenting may come from biological parents, or from other caregivers.

3.2 A Sample Of The Data

A sample of the data is given below.

pander::pander(head(MICSsimulated))

Table 3.2: Simulated Multicountry Data

id	country	GII	cd1	cd2	cd3	cd4	aggression
1	1	20	0	1	0	1	1
2	1	20	0	0	1	0	1
3	1	20	0	0	0	1	1
4	1	20	1	1	0	1	1
5	1	20	0	0	1	1	0
6	1	20	1	0	0	1	1

4 A Quick Introduction to R

4.1 Why Use R?

R has a reputation for being difficult to learn, and a lot of that reputation is deserved. However, it is possible to teach R in an accessible way, and a little bit of R can take you a long way.

R is open source, and therefore free, statistical software that is particularly good at obtaining, analyzing and visualizing data.

R Commands are stored in a *script* or *code* file that usually ends in .R, e.g. myscript.R. The command file is distinct from your actual data, stored in an .RData file, e.g. mydata.RData.

A great deal of data analysis and visualization involves the same core set of steps.

Given the fact that we often want to apply the same core set of tasks to new questions and new data, there are ways to overcome the steep learning curve and learn a replicable set of commands that can be applied to problem after problem. The same 5 to 10 lines of R code can often be tweaked over and over again for multiple projects.

have a question \rightarrow get data \rightarrow process and clean data \rightarrow visualize data \rightarrow analyze data \rightarrow make conclusions

4.2 Get R

R is available at https://www.r-project.org/. R is a lot easier to run if you run it from RStudio, http://www.rstudio.com.

4.3 Get Data

Data often comes from other types of data files like SPSS, Stata, or Excel. Especially in beginning R programming, getting the data into R can be the most complicated part of your program.

```
load("./simulate-data/MICSsimulated.RData") # data in R format
```

If data are in other formats, slightly different code may be required.

```
library(haven) # library for importing data
mydata <- read_sav("the/path/to/mySPSSfile.sav") # SPSS
mydata <- read_dta("the/path/to/myStatafile.dta") # Stata
library(readxl) # library for importing Excel files
mydata <- read_excel("the/path/to/mySpreadsheet.xls")
save(mydata, file = "mydata.RData") # save in R format</pre>
```

4.4 Process and Clean Data

The \$ sign is a kind of "connector". mydata\$x means: "The variable x in the dataset called mydata".

```
MICSsimulated\$cd1[MICSsimulated\$cd1 == -9] <- NA # missing (-9) to NA
```

R makes a strong distinction between *continuous numeric* variables that measure scales like mental health or neighborhood safety, and *categorical factor variables* that measure non-ordered categories like religious identity or gender identity.

Many statistical and graphical procedures are designed to recognize and work with different variable types. You often *don't* need to use all of the options. e.g. mydata\$w <-factor(mydata\$z) will often work just fine. Changing variables from factor to numeric, and vice versa can sometimes be the simple solution that solves a lot of problems when you are trying to graph your variables.

```
MICSsimulated$aggression <-
  factor(MICSsimulated$aggression, # original numeric variable
    levels = c(0, 1),
    labels = c("no aggression", "aggression"),
    ordered = TRUE) # whether order matters

# MICSsimulated$z <- as.numeric(MICSsimulated$w) # factor to numeric</pre>
```

4.5 Visualize Data

4.5.1 Histogram

```
hist(MICSsimulated$GII, # what I'm graphing
    main = "Gender Inequality Index", # title
    xlab = "GII", # label for x axis
    col = "blue") # color
```

Gender Inequality Index

You often don't need to use all of the options. e.g. hist(mydata\$x) will work just fine.

4.5.2 Barplot

```
barplot(table(MICSsimulated$aggression), # what I'm graphing
    main = "Child Displays Aggression", # title
    xlab = "Aggression", # label for x axis
    col = "gold") # color
```

Child Displays Aggression

You often *don't* need to use all of the options. e.g. barplot(table(mydata\$z)) will work just fine.

4.6 Analyze Data: Descriptive Statistics

```
summary(mydata$x) # for continuous or factor variables

table(mydata$z) # especially suitable for factor variables

summary(MICSsimulated$GII)

Min. 1st Qu. Median Mean 3rd Qu. Max.
15.0 22.0 24.0 24.2 27.0 31.0

table(MICSsimulated$aggression)
```

no aggression aggression 1274 1726

References

- Kreft, I., & de Leeuw, J. (1998). *Introducing multilevel modeling*. SAGE Publications. https://doi.org/10.4135/9781849209366
- Luke, D. (2004). Multilevel modeling. SAGE Publications, Inc. https://doi.org/10.4135/9781412985147
- Rabe-Hesketh, S., & Skrondal, A. (2022). Multilevel and longitudinal modeling using Stata. In *Stata Press* (4th ed.). Stata Press.
- Raudenbush, S. W., & Bryk, A. S. (2002). *Hierarchical linear models: Applications and data analysis methods* (pp. xxiv, 485 p.). Sage Publications.
- Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. In *Applied longitudinal data analysis: modeling change and event occurrence*. Oxford University Press.

A Simulating MICS Data

This appendix details the process of creating the simulated MICS data that is employed in the examples on this website.

MICS data are freely available, but usage of MICS requires completing a user agreement, and registering for a user account, on the MICS website, and thus MICS data should not be shared openly on a public website.

This Appendix is highly technical. It is not necessary to understand this Appendix to benefit from the rest of this website. However, the details of creating this simulated data may be of interest to some users.

A.1 Call Relevant Libraries

We need to call a number of relevant R libraries to simulate the data.

```
library(tibble) # new dataframes
library(ggplot2) # nifty graphs
library(labelled) # labels
library(haven) # write Stata
library(tidyr) # tidy data
library(dplyr) # wrangle data
library(lme4) # multilevel models
library(sjPlot) # nice tables
```

A.2 Setup Some Basic Parameters of the Data

Because simulation is a random process, we set a *random seed* so that the simulation produces the same data set each time it is run.

We are going to simulate data with 30 countries, and 100 individuals per country.

```
set.seed(1234) # random seed

N_countries <- 30 # number of countries

N <- 100 # sample size / country</pre>
```

A.3 Simulate Data Based on MICS

This is multilevel data where individuals are nested, or clustered, inside countries. Excellent technical and pedagogical discussions of multilevel models can be found in Raudenbush & Bryk (2002), Singer & Willett (2003), Rabe-Hesketh & Skrondal (2022), Luke (2004), and Kreft & de Leeuw (1998).

A.3.1 Level 2

Simulating the second level of the data is relatively easy. We simply need to provide the number of countries, and then generate random effects for each country. Random effects are discussed in the above references, but essentially represent country level differences in the data.

We also create GII, a gender inequality index variable, since this is a country level, or Level 2 variable.

```
country <- seq(1:N_countries) # sequence 1 to 30

GII <- rbinom(N_countries, 100, .25) # gender inequality index

u0 <- rnorm(N_countries, 0, .25) # random intercept

u1 <- rnorm(N_countries, 0, .05) # random slope

randomeffects <- data.frame(country, GII, u0, u1) # dataframe of random effects</pre>
```

A.3.2 Level 1

Simulating the Level 1 data is more complex.

We uncount the data by 100 to create 100 observations for each country. We then create an id number.

We create randomly simulated parental discipline variables with proportions similar to those in MICS.

Lastly, we need to create the dependent variable. Because this is a dichotomous outcome, the process is somewhat complex. We need to craete a linear combination **z**, using regression weights derived from MICS. We then calculate predicted probabilities, and lastly generate a dichotomous aggression outcome from those probabilities.

```
MICSsimulated <- randomeffects %>%
  uncount(N) %>% # N individuals / country
  mutate(id = row number()) %>% # unique id
  mutate(cd1 = rbinom(N * N countries, 1, .38), # spank
         cd2 = rbinom(N * N_countries, 1, .05), # beat
         cd3 = rbinom(N * N_countries, 1, .64), # shout
         cd4 = rbinom(N * N_countries, 1, .78)) %>% # explain
  mutate(z = 0 + # linear combination based on MICS)
           .01 * GII +
           .23 * cd1 +
           .52 * cd2 +
           .42 * cd3 +
           -.21 * cd4 +
           u0) %>%
  mutate(p = exp(z) / (1 + exp(z))) \%\% # probability
  mutate(aggression = rbinom(N * N_countries, 1, p)) %>% # binomial y
  select(id, country, GII,
         cd1, cd2, cd3, cd4,
         aggression)
```

A.3.3 Variable Labels

We add variable labels to the data which will help us to understand the data as we analyze it.

```
var_label(MICSsimulated$id) <- "id"</pre>
```

```
var_label(MICSsimulated$country) <- "country"

var_label(MICSsimulated$GII) <- "gender inequality index"

var_label(MICSsimulated$cd1) <- "spank"

var_label(MICSsimulated$cd2) <- "beat"

var_label(MICSsimulated$cd3) <- "shout"

var_label(MICSsimulated$cd4) <- "explain"

var_label(MICSsimulated$aggression) <- "aggression"

pander::pander(labelled::look_for(MICSsimulated)[1:5]) # list out variable labels</pre>
```

pos	variable	label	col_type	levels
1	id	id	int	NULL
2	country	$\operatorname{country}$	int	NULL
3	GII	gender inequality index	int	NULL
4	cd1	spank	int	NULL
5	cd2	beat	int	NULL
6	cd3	shout	int	NULL
7	cd4	explain	int	NULL
8	aggression	aggression	int	NULL

A.4 Explore The Simulated Data With A Graph

Exploring the simulated data with a graph helps us to ensure that we have simulated plausible data.

```
ggplot(MICSsimulated,
    aes(x = cd1, # x is spanking
        y = aggression, # y is aggression
        color = factor(country))) + # color is country
geom_smooth(method = "glm", # glm smoother
        method.args = list(family = "binomial"),
        alpha = .1) + # transparency for CI's
labs(title = "Aggression as a Function of Spanking",
```

```
x = "spank",
y = "aggression") +
scale_color_viridis_d(name = "Country") + # nice colors
theme_minimal()
```


A.5 Explore The Simulated Data With A Logistic Regression

Similarly, exploring the data with a logistic regression confirms that we have created plausible data.

Warning in checkConv(attr(opt, "derivs"), opt\$par, ctrl = control\$checkConv, : Model failed to converge with max|grad| = 0.00285334 (tol = 0.002, component 1)

aggression

Predictors

Log-Odds

CI

p

(Intercept)

-0.42

-1.05 - 0.21

0.190

spank

0.16

0.01 - 0.32

0.034

beat

0.61

0.25 - 0.96

0.001

shout

0.35

0.20 - 0.51

< 0.001

explain

-0.41

-0.59 - -0.23

< 0.001

```
gender inequality index
0.03
0.01 - 0.05
0.015
Random Effects
3.29
00 country
0.03
ICC
0.01
N_{country}
30
Observations
3000
Marginal \mathbb{R}^2 / Conditional \mathbb{R}^2
0.029 / 0.037
```

A.6 Write data to various formats

Lastly, we write the data out to various formats: R, Stata, and SPSS.