Museum Collection Analysis

Yan Gao & Tianxin Deng

Introduction

Dataset - Metropolitan Museum of Art

- Open-access dataset been waived all copyright for data mining
- Rich amount of detailed artworks' information

Motivation

- This dataset has lots of data cleaning problems, which is suitable for practicing data cleaning.
- Most of the data are string rather than numeric type, which could contain some NLP and data extracting works.
- We are interested in the distribution of the artworks by different groups.

	ls_Public_Domain	Department	Object_Name	Credit_Line
448325	False	Photographs	Photograph	Gift of Weston J. Naef, 1974
275017	False	Drawings and Prints	Baseball card, photograph	The Jefferson R. Burdick Collection, Gift of J
91385	False	Costume Institute	Blouse	Brooklyn Museum Costume Collection at The Metr
308586	False	Islamic Art	Coin weight	Gift of Joseph W. Drexel, 1889
29353	True	Arms and Armor	Armet	Bashford Dean Memorial Collection, Funds from

Attributes

- Object Name
- Is Highlight
- Is Public Domain
- Department
- Credit Line
- Etc.

Research Questions

Distribution of departments

Input: Department column

Output: Visualize the departments that are most

worth visiting.

Distribution of artworks' types

Input: Object_Name column

Output: Visualize the top amount of types in

collection.

Distribution of Credit lines by timeline

Input: Credit_Line column

Output: Visualize the timeline of amount of new coming

artworks per year.

Distribution of Artist roles

Input: Artist_Role column

Output: Visualize the most popular artist roles in

the collection

^{*} Some works we already implemented, like checking the typos in artists' names, checking the typos in artist begin date and artist end date, are not included.

Data Cleaning, analyzing and

Wetslater in 2450. Missing values in each column:

	Object Number	0	Object_Begin_Date	0
	Object_Number		Object_End_Date	0
	Is_Highlight	0	Medium	7655
	Is_Public_Domain	0	Dimensions	76600
	Object_ID	0	Credit_Line	722
	Department	0	Geography_Type	432029
	Object_Name	4393	City	460280
	Title	31069	State	489533
	Culture	283517	County	483884
	Period	402975	Country	415578
	Dynasty	469164	Region	460473
	Reign	481245	Subregion	470284
	Portfolio	470439	Locale	476885
	Artist_Role	208640	Locus	485118
	Artist Prefix	394396	Excavation	476482
	Artist_Display_Name	206550	River	490352
	Artist Display Bio	255362	Classification	56481
	Artist_Suffix	480785		
	_	206585	Rights_and_Reproduction	467731
	Artist_Alpha_Sort		Link_Resource	0
	Artist_Nationality	299004	Metadata_Date	0
	Artist_Begin_Date	252956	Repository	0
ř	Artist_End_Date	255734	Tags	213750
e	Object_Date	15034		

Columns with fewer missing values:

- more likely to get general results.
- Analyzed with prior

Columns with considerable missing values

- dropped as less contribution
- filled by existing contents

Distribution of departments

Cleaning: None. This columns is well formatted.

Analyzing:

- We want to see the value counts
- 2. The amount of artworks in each department does not indicate which is worth visiting. We want to find the department with most highlighted artworks which are on display

Results: American Decorative Arts department is the most worth visiting

Distribution of artworks' types

Cleaning: The names of types are quite random defined. So we tokenize the string content, detect and remove the words which are not noun by NLP.

Analyzing: The value counts of types of all the artworks.

Results: Print is the top one. No surprise.

Distribution of Credit lines by timeline

Gift of Weston J. Naef, 1974

The Jefferson R. Burdick Collection, Gift of J...

Brooklyn Museum Costume Collection at The Metr...

Gift of Joseph W. Drexel, 1889

Bashford Dean Memorial Collection, Funds from ...

Credit Line

Cleaning: To build the timeline, the year

information in content should be extracted.

- 1. Use re module to get the year.
- Remove those abnormal data which exceed the history of the museum.
- 3. Change the data type to Datatime

 Analyzing: The value counts of the all the new coming artworks per year. Both actual amount (blue) and the mean of 30 years (green)

Results: We could pair each abnormal peak with the events in the history to explore the truth and track the resources of some artworks which lack information extremely.

Distribution of Artist roles

Cleaning: Some artworks could be contributed by several artist separated by "I". Some contents are not noun.

- 1. Split the content with "I"
- Tokenize the name of roles and convert them to noun by NLP

Analyzing: We visualize the top ten artists roles **Results**: If you are interested in becoming an artist, these should be your right choice.

	Artist_Role
283688	Publisher
295836	Artist
318102	NaN
208688	Artist
291485	Publisher Artist

Horrible Data Cleaning Experience

Compare artists' names: The Artist_Display_Name and

Artist_Alpha_Sort attributes should have the same content. So we want to find a way to check if there is any spelling mistake of the names.

Tools:

- from nameparser.parser import HumanName
- from nltk.tag.stanford import NERTagger
- "Memorable" Experience:
- Separate name which is mixed with some titles.
- Confirm whether is the alpha sort.
- Compare the full name with nick names or abbreviations
- Foreign letters.

Artist_Alpha_Sort	Artist_Display_Name
Ryder, Thomas Ramberg, Johann Heinrich Boydell	Thomas Ryder I Johann Heinrich Ramberg John &
Goodwin & Company	Goodwin & Company
Maillol, Aristide	Aristide Maillol
Caus, Salomon de Norton, Jan	Salomon de Caus Jan Norton
Anonymous Italian 18th century	Anonymous Italian 18th century

Horrible Data Cleaning Experience

Optimal solution: Set a quantile as confidence level. Then find the proportion of how many common words (not letters) does the two columns have. If it exceed the CL, we considered there is no difference, which indicates no typo.

	Artist_Name_Check	Artist_Display_Name	Artist_Alpha_Sort
337079	False	Troels Wörsel	Worsel, Troels
341661	False	Eugéne Zak	Zak, Eugene
112040	False	Charles Girard	Girard Chales
337912	False	Dulce María Nuñez	Nunez, Dulce Maria
341319	False	Axel Brüel	Bruel, Axel
341654	False	Jacques Thénevet	Thenevet, Jacques
240792	False	Christoph Unterberger	Unterperger, Cristoforo
336630	False	Léna Bergner	Bergner, Lena
246043	False	Bernece Berkman-Hunter	Berkman, Bernese
72109	False	Jean Dessès	Desses, Jean

Notepad

Research Questions:

Mainly focused on the different distributions of data

Data cleaning method:

Mainly implemented with NLP.

Potential of Results:

Museum visiting routine suggestion. Artist roles suggestion. Museum history analysis. Artworks source tracking and filling missing document. Check typo for the museum dataset keeper.

Further to explore:

A better way to identify the names of same person. Solution of how to compare the full name with nick names or abbreviations with less cost of computing power.

