

Solve multiband Eliashberg equations

This software provides three programs:
1. ebmb itself solves the multiband Eliashberg equations (Eqs. 1 or 4) on a cut-off imaginary axis and optionally continues the results to the real axis via Padé approximants. The normal-state equations (Eq. 7) can also be solved on the real axis.
A material is defined by nothing but an ELIASHBERG spectral function or, as fallback, an EINSTEIN phonon frequency and intra- and interband electron-phonon couplings, Coulomb pseudo-potentials and, if desired, the band densities of Bloch states, otherwise assumed to be constant.
2. critical finds the critical point via the bisection method varying a parameter of choice. Superconductivity is defined by the kernel of the linearized gap equation (Eq. 5 or 6) having an eigenvalue greater than or equal to unity.
 tc finds the critical temperature for each band separately via the bisection method. Su- perconductivity is defined by the order parameter exceeding a certain threshold. Usually, it is preferable to use critical.
—— Installation ————————————————————————————————————
The makefile is designed for the GNU or Intel Fortran compiler:
<pre>\$ make FC=gfortran FFLAGS='-03 -fopenmp' \$ python3 -m pip install -e .</pre>
—— Reference ————
ebmb is stored on <i>Zenodo:</i> https://doi.org/10.5281/zenodo.13341224. The theory is described here: https://scipost.org/theses/132/.
— Licence —
This program is free software: you can redistribute it and/or modify it under the terms of the

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see https://www.gnu.org/licenses/.

Copyright © 2016–2025 Jan Berges

– Outline —

Let $\hbar=k_{\rm B}=1$. Fermionic and bosonic Matsubara frequencies are defined as $\omega_n=(2n+1)\pi T$ and $\nu_n=2n\pi T$, respectively. The quantity of interest is the Nambu self-energy matrix¹

$$\boldsymbol{\Sigma}_{i}(n) = i\omega_{n}[1 - Z_{i}(n)]\mathbf{1} + \underbrace{Z_{i}(n)\,\Delta_{i}(n)}_{\boldsymbol{\phi}_{i}(n)}\boldsymbol{\sigma}_{1} + \chi_{i}(n)\boldsymbol{\sigma}_{3},$$

where the Pauli matrices are defined as usual and i is a band index. Renormalization $Z_i(n)$, order parameter $\phi_i(n)$ and energy shift $\chi_i(n)$ are determined by the Eliashberg equations²

$$Z_{i}(n) = 1 + \frac{T}{\omega_{n}} \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\omega_{m} Z_{j}(m)}{\Theta_{j}(\varepsilon, m)} \Lambda_{ij}^{-}(n, m),$$

$$\phi_{i}(n) = T \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\phi_{j}(m)}{\Theta_{j}(\varepsilon, m)} [\Lambda_{ij}^{+}(n, m) - U_{ij}^{*}(m)],$$

$$\chi_{i}(n) = \chi_{C_{i}} - T \sum_{j} \sum_{m=0}^{N-1} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\varepsilon - \mu + \chi_{j}(m)}{\Theta_{j}(\varepsilon, m)} \Lambda_{ij}^{+}(n, m),$$

$$\Theta_{i}(\varepsilon, n) = [\omega_{n} Z_{i}(n)]^{2} + \phi_{i}^{2}(n) + [\varepsilon - \mu + \chi_{i}(n)]^{2},$$

$$(1)$$

and may then be analytically continued to the real-axis ($i\omega_n \to \omega + i\eta$) by means of Padé approximants.³ The electron-phonon coupling matrices and the rescaled Coulomb pseudo-potential are connected to the corresponding input parameters via

$$\Lambda_{ij}^{\pm}(n,m) = \lambda_{ij}(n-m) \pm \lambda_{ij}(n+m+1), \qquad \lambda_{ij}(n) = \int_{0}^{\infty} d\omega \frac{2\omega \alpha^{2} F_{ij}(\omega)}{\omega^{2} + \nu_{n}^{2}} \stackrel{=}{\underset{\text{Einstein}}} \frac{\lambda_{ij}}{1 + \left[\frac{\nu_{n}}{\omega_{E}}\right]^{2}}, \\
U_{ij}^{*}(m) = \begin{cases} 2\mu_{ij}^{*}(\omega_{N_{C}}) & \text{for } m < N_{C}, \\ 0 & \text{otherwise,} \end{cases} \frac{1}{\mu_{ij}^{*}(\omega_{N_{C}})} = \frac{1}{\mu_{ij}^{*}} + \ln \frac{\omega_{E}}{\omega_{N_{C}}} \tag{2}$$

with the Eliashberg spectral function $\alpha^2 F_{ij}(\omega)$ and $\mu_{ij}^* = \mu_{ij}^*(\omega_{\rm E})$ per definition. Alternatively, if the density of states $n_i(\varepsilon)$ per spin as a function of energy ε is given,

$$\frac{1}{\mu_{ij}^{*}(\omega_{N_{C}})} = \frac{1}{\mu_{ij}} + \frac{1}{\pi} \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \begin{cases} \frac{1}{\varepsilon - \mu_{0}} \arctan \frac{\varepsilon - \mu_{0}}{\omega_{N_{C}}} & \text{for } \varepsilon \neq \mu_{0}, \\ \frac{1}{\omega_{N_{C}}} & \text{otherwise,} \end{cases}$$
(3)

where D is the electronic bandwidth. μ_0 and μ are the chemical potentials for free and interacting particles, whose number n_0 , n (including a factor of 2 for the spin) is usually conserved:

$$\sum_{i} \int_{-\infty}^{\infty} d\varepsilon \frac{2n_{i}(\varepsilon)}{e^{(\varepsilon-\mu_{0})/T}+1} = n_{0} \stackrel{!}{=} n = \sum_{i} \int_{-\infty}^{\infty} d\varepsilon \, n_{i}(\varepsilon) \left[1 - 4T \sum_{n=0}^{N-1} \frac{\varepsilon - \mu + \chi_{i}(n)}{\Theta_{i}(\varepsilon, n)} - \frac{2}{\pi} \arctan \frac{\varepsilon - \mu + \chi_{C_{i}}}{\omega_{N}} \right].$$

It is unusual but possible to also consider the COULOMB contribution to the energy shift:

$$\chi_{C_i} = \sum_{j} \int_{-\infty}^{\infty} d\varepsilon \frac{n_j(\varepsilon)}{n_j(\mu_0)} \left[2T \sum_{m=0}^{N-1} \frac{\varepsilon - \mu + \chi_j(m)}{\Theta_j(\varepsilon, m)} + \frac{1}{\pi} \arctan \frac{\varepsilon - \mu + \chi_{C_j}}{\omega_N} \right] \mu_{ij}.$$

¹Y. Nambu, Phys. Rev. **117**, 648 (1960)

²G. M. ELIASHBERG, Soviet Phys. JETP **11**, 696 (1960).

A comprehensive review is given by P. B. ALLEN and B. MITROVIĆ in Solid state physics 37 (1982)

³H. J. VIDBERG and J. W. SERENE, J. Low Temp. Phys. **29**, 179 (1977)

For a given scalar $\alpha^2 F(\omega)$, an effective phonon frequency can be calculated in different ways. We follow ALLEN and DYNES,⁴ who define the logarithmic and the second-moment average frequency and use the latter as $\omega_{\rm E}$ in Eqs. 2 and 3 for rescaling μ^* :

$$\omega_{\log} = \exp\left[\frac{2}{\lambda} \int_0^\infty \frac{\mathrm{d}\omega}{\omega} \alpha^2 F(\omega) \ln(\omega)\right], \qquad \overline{\omega}_2 = \sqrt{\frac{2}{\lambda} \int_0^\infty \mathrm{d}\omega \, \alpha^2 F(\omega) \, \omega}.$$

Approximating $n_i(\varepsilon) \approx n_i(\mu_0)$ yields $\chi_i(n) = 0$ and the constant-DOS ELIASHBERG equations

$$Z_{i}(n) = 1 + \frac{\pi T}{\omega_{n}} \sum_{j} \sum_{m=0}^{N-1} \frac{\omega_{m}}{\sqrt{\omega_{m}^{2} + \Delta_{j}^{2}(m)}} \Lambda_{ij}^{-}(n, m),$$

$$\Delta_{i}(n) = \frac{\pi T}{Z(n)} \sum_{j} \sum_{m=0}^{N-1} \frac{\Delta_{j}(m)}{\sqrt{\omega_{m}^{2} + \Delta_{j}^{2}(m)}} [\Lambda_{ij}^{+}(n, m) - U_{ij}^{*}(m)].$$
(4)

At the critical temperature, $\phi_i(m)$ is infinitesimal and negligible relative to ω_m . This yields

$$\phi_{i}(n) = \sum_{j} \sum_{m=0}^{N-1} K_{ij}(n, m) \,\phi_{j}(m),$$

$$K_{ij}(n, m) = T \int_{-\infty}^{\infty} d\varepsilon \frac{n_{j}(\varepsilon)}{n_{j}(\mu_{0})} \frac{\Lambda_{ij}^{+}(n, m) - U_{ij}^{*}(m)}{\Theta_{j}(\varepsilon, m)},$$
(5)

where $\Theta_i(\varepsilon, m)$ is obtained from Eqs. 1 for $\phi_i(m) = 0$. Similarly, in the constant-DOS case,

$$\Delta_{i}(n) = \sum_{j} \sum_{m=0}^{N-1} K_{ij}(n, m) \Delta_{j}(m),$$

$$K_{ij}(n, m) = \frac{1}{2m+1} [\Lambda_{ij}^{+}(n, m) - \delta_{ij} \delta_{nm} D_{i}^{N}(n) - U_{ij}^{*}(m)],$$

$$D_{i}^{N}(n) = \sum_{j} \sum_{m=0}^{N-1} \Lambda_{ij}^{-}(n, m) \stackrel{N=\infty}{=} \sum_{j} [\lambda_{ij} + 2 \sum_{m=1}^{n} \lambda_{ij}(m)].$$
(6)

 $Z_i(n)$ is not biased by the cutoff if $D_i^{\infty}(n)$ is used in place of $D_i^N(n)$ in the kernel $K_{ij}(n,m)$.

The ELIASHBERG equations can also be solved on the real axis,⁵ which allows for exact analytic continuation without Padé approximants. They are implemented for the normal state:

$$\Sigma_{11i}(\omega) = \underbrace{\sum_{j} \int_{-\infty}^{\infty} d\varepsilon \frac{A_{j}(\varepsilon)}{n_{j}(\mu_{0})} \left[\mu_{ij} \left(\frac{1}{2} - f(\varepsilon) \right) + \int_{0}^{\infty} d\omega' \alpha^{2} F_{ij}(\omega') \sum_{\pm} \pm \frac{f(\varepsilon) + n(\pm \omega')}{\omega - \varepsilon \pm \omega'} \right]}_{\chi_{C_{i}}}$$
(7)

with the Fermi function $f(\varepsilon)=1/(\mathrm{e}^{\varepsilon/T}+1)$ and the Bose function $n(\omega)=1/(\mathrm{e}^{\omega/T}-1)$. The quasiparticle density of states $A_i(\omega)=-\frac{1}{\pi}\operatorname{Im} G_i(\omega+\mathrm{i}\eta)$ follows from the Green function

$$G_i(\omega) = -\int_{-\infty}^{\infty} d\varepsilon \, n_i(\varepsilon) \frac{\omega Z_i(\omega) + \varepsilon - \mu + \chi_i(\omega)}{\Theta_i(\varepsilon, \omega)} \stackrel{\phi=0}{=} \int_{-\infty}^{\infty} d\varepsilon \frac{n_i(\varepsilon)}{\omega - \varepsilon + \mu - \Sigma_{11i}(\omega)}.$$

Note that the code can replace $\Sigma_{11i}(\omega + i\eta)$ by $\text{Re}\,\Sigma_{11i}(\omega + i\eta) + i\,\text{Im}\,\Sigma_{11i}(\omega + i0^+)$.

⁴P. B. Allen and R. C. Dynes, Phys. Rev. B **12**, 905 (1975)

⁵D. J. Scalapino, J. R. Schrieffer and J. W. Wilkins, Phys. Rev. **148**, 263 (1966). See also L. X. Benedict, C. D. Spataru and S. G. Louie, Phys. Rev. B **66**, 085116 (2002)

• Parameters are defined on the command line:

```
\ \langle program \rangle \langle key 1 \rangle = \langle value 1 \rangle \langle key 2 \rangle = \langle value 2 \rangle \dots
```

The available keys and default values are listed in Table 1.

- The columns ebmb, tc and critical show which keys are used by these programs.
- The rightmost column indicates which parameters may be chosen as variable for critical. The variable is marked with a negative sign; its absolute value is used as initial guess. If no parameter is negative, the critical temperature is searched for.
- lambda, muStar, and muC expect flattened square matrices of equal size the elements
 of which are separated by commas. It is impossible to vary more than one element
 at once.
- dos has lines ε/eV n_1/eV^{-1} n_2/eV^{-1} ... with ε increasing.
- a2F has lines ω/eV $\alpha^2 F_{1,1}$ $\alpha^2 F_{2,1}$... with ω increasing.
- The relative change in the sample spacing of the real-axis frequencies between $\omega=0$ and $\omega=x$ is logscale $\cdot |x|$. Thus, logscale =0 corresponds to equidistant sampling.
- Unless tell=false, the results are printed to standard output.
- Unless file=none, a binary output file is created. For critical and tc it simply contains one or more double precision floating point numbers, for ebmb the format defined in Tables 2 and 3 is used.
- The provided *Python* wrapper functions load the results into *NumPy* arrays:

⟨replace⟩ decides whether an existing ⟨file⟩ is used or overwritten.

—— Acknowledgment ———

Parts of the program are inspired by the EPW code⁶ and work of Malte Rösner.

— Contact

Any feedback may be directed to jan.berges@uni-bremen.de.

⁶See F. Giustino, M. L. Cohen and S. G. Louie, Phys. Rev. B **76**, 165108 (2007) for a methodology review. Results related to Eliashberg theory are given by E. R. Margine and F. Giustino, Phys. Rev. B **87**, 024505 (2013)

				>				ico ne
key file	default none	unit -	- Symbo	output file	epuly +	+	ر ^ن ې +	ical die
form tell	F16.12 true	_	_	number edit descriptor use standard output?	+	+	++	_
T	10	K	Τ	temperature	+	+	+	+
omegaE cutoff cutoffC	0.02 15 ω_N	eV ω_{E} ω_{E}	$\omega_{E} \ \omega_{N} \ \omega_{N_{C}}$	EINSTEIN frequency overall cutoff frequency COULOMB cutoff frequency	+ + +	+ + +	+ + +	+ - -
lambda, lamda muStar, mu* muC	1 0 0	1 1 1	$\lambda_{ij} \ \mu^*_{ij} \ \mu_{ij}$	electron-phonon coupling rescaled Соисомв potential unscaled Соисомв parameter	+ + +	+ + +	+ + +	+ + +
bands	1	1	_	number of bands	+	+	+	_
dos, DOS a2f, a2F	none none	_ _	-	file with density of states file with ELIASHBERG function	++	++	++	
n mu conserve chi chiC Sigma	- 0 true true false false	1 eV - - -	n ₀ μ ₀ - - -	initial occupancy number initial chemical potential conserve particle number? consider energy shift $\chi_i(n)$? consider COULOMB part χ_{C_i} ? calculate Σ_{11i} ?	+ + + + + +	+ + + + -	+ + + + -	
steps	250000	1	_	maximum number of iterations	+	+	+	_
epsilon toln error zero rate	$10^{-13} \\ 10^{-10} \\ 10^{-5} \\ 10^{-10} \\ 10^{-1}$	a.u. 1 a.u. eV 1	- - - -	negligible float difference tolerance for occupancy number bisection error negligible gap at \mathcal{T}_c (threshold) growth rate for bound search	+ + - -	+ + + +	+ + + - +	_ _ _ _
lower upper points logscale eta, 0+ measurable	$0 \ \omega_N \ 0 \ 1 \ 10^{-3} \ { m false}$	eV eV 1 1/eV eV	- - - - η	minimum real-axis frequency maximum real-axis frequency number of real-axis frequencies scaling of logarithmic sampling broadening of retarded objects find measurable gap?	+ + + + + +			
unscale rescale imitate	true true false	- - -	- - -	estimate missing muC from mu*? use μ_{ij}^* rescaled for cutoff? use $Z_i(n)$ biased by cutoff?	+ + -	+ + -	+ + +	_ _ _
divdos stable normal realgw etaIm0 noZchi	true false false false true false	- - - -	- - - -	divide by $n_j(\mu_0)$ in Eqs. 1, 3? calculate $A_i(\omega)$ differently? enforce normal state? do real-axis GW_0 calculation? send $\eta \to 0^+$ in $\operatorname{Im} \Sigma_{11i}(\omega + \mathrm{i}\eta)$? skip Z and χ for realgw?	+ + + + + +	+ - - - -	+ - - - -	
power	true	_	_	power method for single band?	_	_	+	_

Table 1: Input parameters.

 $\begin{array}{c} \text{\langle CHARACTERS key \rangle:} \langle n_1 \times \ldots \times n_r \text{ NUMBERS value} \rangle \\ \text{associate key with value} \end{array}$

DIM: $\langle \text{INTEGER } r \rangle \langle r \text{ INTEGERS } n_1 \dots n_r \rangle$ define shape (column-major)

INT: take NUMBERS as INTEGERS
REAL: take NUMBERS as DOUBLES

Table 2: Statements allowed in binary output. The data types CHARACTER, INTEGER and DOUBLE take 1, 4 and 8 bytes of storage, respectively.

imaginary-axis results iomega MATSUBARA frequency (without i) $ω_n$ Delta gap $\Delta_i(n)$ Z renormalization $Z_i(n)$ chi energy shift (*) $\chi_i(n)$ Sigma normal self-energy (#) Sigma=true $\Sigma_{11i}(n)$ chiC Coulomb part of energy shift (*) χ_{C_i} phiC Coulomb part of order parameter Φ_{C_i} status status (steps until convergence or -1) - occupancy results (*) DOS given states integral of density of states $\sum_i \int d\omega n_i(\varepsilon)$ inspect integral of spectral function (**) $\sum_i \int d\omega n_i(\varepsilon)$ inspect integral of spectral function (**) $\sum_i \int d\omega n_i(\varepsilon)$ inspect integral of spectral function (**) $\sum_i \int d\omega n_i(\varepsilon)$ inspect integral of spectral function (**) $\sum_i \int d\omega n_i(\varepsilon)$ inspect integral of spectral function (**) $\sum_i \int d\omega n_i(\varepsilon)$ inspect intital final ω no ω ω lambda electron-phonon cou					
Delta gap $A_i(n)$ Z renormalization $Z_i(n)$ chi energy shift (*) $X_i(n)$ Sigma normal self-energy (#) Sigma=true $\Sigma_{11i}(n)$ chiC Coulomb part of energy shift (*) $\Sigma_{11i}(n)$ chiC Coulomb part of energy shift (*) $\Sigma_{11i}(n)$ chiC Coulomb part of order parameter status status (steps until convergence or -1) $ -$	_imaginary-a				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	iomega	Matsubara frequency (without i)	ω_n		
Chi energy shift (*) $\chi_i(n)$ Sigma normal self-energy (#) Sigma=true $\Sigma_{11i}(n)$ ChiC COULOMB part of energy shift (*) χ_{Ci} phiC Status status (steps until convergence or -1) $-$ occupancy results (*) DOS given states integral of density of states inspect integral of spectral function (**) $\sum_i \int d\omega n_i(\varepsilon)$ inspect initial number in final chemical potential mu final electron-phonon coupling omegaE $EINSTEIN$ frequency omegaLog logarithmic average frequency omega $EINSTEIN$ frequency omega frequency omega frequency $EINSTEIN$ frequency EI	Delta	gap	$\Delta_i(n)$		
Sigma normal self-energy (#) Sigma=true chic Coulomb part of energy shift (*) χ_{Ci} phic Status status (steps until convergence or -1) $-$ occupancy results (*) DOS given states integral of density of states inspect integral of spectral function (**) $\sum_{i} \int d\varepsilon n_{i}(\varepsilon)$ inspect initial number in final mu initial mu initial mu initial mu initial occupancy number n	Z	renormalization	$Z_i(n)$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	chi	energy shift (*)	$\chi_i(n)$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sigma	normal self-energy (#) Sigma=true	$\Sigma_{11i}(n)$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	chiC	Coulomb part of energy shift (*)	χ_{C_i}		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	phiC	Coulomb part of order parameter	ϕ_{C_i}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	status	status (steps until convergence or $-$	1) –		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	occupancy r	(*) DOS given			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\sum_{i} \int d\varepsilon n_{i}(\varepsilon)$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	inspect	integral of spectral function (**)	$\sum_{i} \int d\omega A_{i}(\omega)$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n0	initial)	n_0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n	final beccupancy number	n		
effective parametersa2F givenlambdaelectron-phonon coupling omegaE λ_{ij} omegaEomegaLog omega2ndlogarithmic average frequency second-moment average frequency ω_{log} ω_{log} omega2ndsecond-moment average frequency ω real-axis results(**) points > 0omega Re[Delta]real imaginary ω Im[Delta]real imaginarygap $\Delta_i(\omega)$ Re[Z] Im[Z]real imaginaryrenormalization $Z_i(\omega)$ Re[chi] Im[chi]real imaginaryenergy shift (*) $\chi_i(\omega)$ Re[Sigma] Im[Sigma]real imaginarynormal self-energy (#) $\Sigma_{11i}(\omega)$ DOSquasiparticle density of states (*) $A_i(\omega)$ measurable resultsmeasurable=trueDelta0measurable gap $\Delta_{0i} = \text{Re}[\Delta_i(\Delta_{0i})]$	mu0	initial) shamical natantial	μ_0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mu	final Chemical potential	μ		
omegaE EINSTEIN frequency omegaLog logarithmic average frequency omega2nd second-moment average frequency $\overline{\omega}_2$ real-axis results ω [*** points > 0 omega frequency ω	effective par	a2F given			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lambda	electron-phonon coupling	λ_{ij}		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	omegaE		•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	omegaLog	logarithmic average frequency	$\omega_{ m log}$		
omega frequency ω Re[Delta] real ω Im[Delta] imaginary ω gap ω ω Re[Z] real ω Im[Z] imaginary ω renormalization ω Re[Chi] real ω Im[Chi] imaginary ω energy shift (*) ω Re[Sigma] real ω Im[Sigma] imaginary ω normal self-energy (#) ω Re[Sigma] Im[Sigma] imaginary ω normal self-energy (#) ω Quasiparticle density of states (*) ω Reasurable results measurable ω measurable gap ω ω Reasurable ω Reasura	omega2nd	second-moment average frequency			
Re[Delta] real gap $\Delta_i(\omega)$ Re[Z] real renormalization $Z_i(\omega)$ Re[chi] real energy shift (*) $X_i(\omega)$ Re[Sigma] real normal self-energy (#) $\Sigma_{11i}(\omega)$ DOS quasiparticle density of states (*) $A_i(\omega)$ measurable results measurable gap $\Delta_{0i} = \text{Re}[\Delta_i(\Delta_{0i})]$	real-axis re	(**) points > 0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	omega	frequency	ω		
Re[Z] real imaginary renormalization $Z_i(\omega)$ Re[chi] real imaginary energy shift (*) $\chi_i(\omega)$ Re[Sigma] real imaginary normal self-energy (#) $\Sigma_{11i}(\omega)$ DOS quasiparticle density of states (*) $A_i(\omega)$ measurable results measurable=true Delta0 measurable gap $\Delta_{0i} = \text{Re}[\Delta_i(\Delta_{0i})]$	Re[Delta]	real ן	4 ()		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>Im[Delta]</pre>	imaginary } gap	$\Delta_i(\omega)$		
Re[chi] real energy shift (*) $\chi_i(\omega)$ Re[Sigma] real imaginary normal self-energy (#) $\Sigma_{11i}(\omega)$ DOS quasiparticle density of states (*) $A_i(\omega)$ measurable results measurable gap $\Delta_{0i} = \text{Re}[\Delta_i(\Delta_{0i})]$	Re[Z]	real) renormalization	7(.)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Im[Z]	imaginary Frenormalization	$Z_i(\omega)$		
Re[Sigma] real imaginary normal self-energy (#) $\Sigma_{11i}(\omega)$ DOS quasiparticle density of states (*) $A_i(\omega)$ measurable results measurable=true Delta0 measurable gap $\Delta_{0i} = \text{Re}[\Delta_i(\Delta_{0i})]$	Re[chi]	real)	()		
Im[Sigma] imaginary $\}$ normal self-energy $(\#)$ $\Sigma_{11i}(\omega)$ DOS quasiparticle density of states $(*)$ $A_i(\omega)$ measurable results measurable=true Delta0 measurable gap $\Delta_{0i} = \text{Re}[\Delta_i(\Delta_{0i})]$	<pre>Im[chi]</pre>	imaginary } energy snift (*)	$\chi_i(\omega)$		
DOS quasiparticle density of states (*) $A_i(\omega)$ measurable results measurable=true Delta0 measurable gap $\Delta_{0i} = \text{Re}[\Delta_i(\Delta_{0i})]$	Re[Sigma]	real]	T (.)		
measurable resultsmeasurable=trueDelta0measurable gap $\Delta_{0i} = \text{Re}[\Delta_i(\Delta_{0i})]$	<pre>Im[Sigma]</pre>	imaginary normal self-energy (#)	$\Sigma_{11i}(\omega)$		
Delta0 measurable gap $\Delta_{0i} = \text{Re}[\Delta_i(\Delta_{0i})]$	DOS	quasiparticle density of states (*)	$A_i(\omega)$		
	measurable	measurable=true			
	Delta0	measurable gap	$\Delta_{0i} = \text{Re}[\Delta_i(\Delta_{0i})]$		
	status0	status of measurable gap	=		

Table 3: Keys used in binary output.