ZJU Summer 2023 Contest 3 Contest Analysis

Group S

07.10.2023

Group S 07.10.2023 1/18

A. Permutation Compression II ^{题目大意}

● 给一个长度为 *n* 的排列,每次可以删除一个前缀最大值。求在删除 次数最少的情况下使得是前缀最大值的位置最多,输出方案。

Group S 07.10.2023 2 / 18

A. Permutation Compression II

题解

- 通过这样的操作可以让原序列的任何一个递增子序列成为答案。因 为我们可以从前往后依次删除不在该子序列中的数。
- 那么前缀最大值的位置数量最多就是最长上升子序列。假设 LIS 为 $i_1, i_2, \ldots i_k$,那么对于所有 $i_t \le u \le i_{t+1}$,如果 $p_u \ge p_{i_t}$,我们就需要删除 p_u ,所以对于一个 LIS 删除次数是固定的,等于符合上述条件的元素个数。
- 我们可以通过 DP 来求出最少有多少这样的元素,或者只需要贪心选择出现位置最靠前的 LIS,因为这样可以同时使得 p_{i_t} 尽量大,容易证明这样是正确的。
- 时间复杂度 $\Theta(n \log n)$ 。

3/18

B. Simple Calculation 题目大意

• 给定 n, k, t, 定义 $g(x) = k \cdot \phi(x)$ 。 计算 $g^{(t)}(n)$.

Group S 07.10.2023 4/18

B. Simple Calculation

题解

- 每个 n 和 $g^{(\cdot)}(n)$ 中的素因子在 $2\log(n)$ 轮后就会消失。余下的 k 对于结果的影响 (在 $2\log(n)$ 轮之后) 是一个等比数列。
- 所以我们可以暴力模拟前 $\min(2\log(\max(n,k)),t)$ 轮,之后用快速幂计算剩余轮次的贡献。
- 使用 {std::map} 来维护素因子及其因子分解结果。
- 时间复杂度为 $\mathcal{O}(\sqrt{n}\log(n) + \sqrt{k}\log(k) + \log(t))$ 。

5/18

C. Yet Another Modify and Query Problem 题目大意

- 给一个序列, 支持以下操作:
 - 单点修改。
 - 找出最小的 $i \in [l, r]$,使得将 A_i 替换成 v 之后原序列中相邻元素的 大小关系不会改变。

6/18

C. Yet Another Modify and Query Problem

题解 1

- 对于 i, Ai 可以替换的值为一个区间。有四种情况:
 - $A_{i-1} \le A_i \le A_{i+1}$: $v \in [A_{i-1}, A_{i+1}]$.
 - $A_{i-1} \le A_i > A_{i+1}$: $v \in [\max(A_{i-1}, A_{i+1} + 1), \infty)$.
 - $A_{i-1} > A_i \le A_{i+1}$: $v \in (-\infty, \min(A_{i-1} 1, A_{i+1})$.
 - $A_{i-1} > A_i > A_{i+1}$: $v \in [A_{i+1} + 1, A_{i-1} 1]$.
- 令 g(i) 为 A_i 对应的区间, 注意到对于区间 [l,r], 对于区间内的 g(i) 的并集为至多两个区间。用线段树维护这些区间,在线段树上二分,时间复杂度为 $\Theta(n\log n)$ 。

Group S 07.10.2023 7/18

- 对于在区间 [/, r] 中插入, 我们只需要考虑前三个单调的段。
- 证明需要讨论所有情况, 留作读者的练习。
- 可以用 std::set 维护所有满足 A_{i-1} ≤ A_i > A_{i+1} 或
 A_{i-1} > A_i ≤ A_{i+1} 的 i, 然后检查这些关键位置, 并且在关键位置之间的序列二分即可。
- 时间复杂度也是 $\Theta(n \log n)$ 。

8/18

Group S

D. Putata Strikes Back ^{题目大意}

◆ 给定三个字符串集合 P, Q, R。询问有多少对 (A, B) 使得 A 是某个 P_i 的前缀, B 是某个 Q_i 的后缀且 AB 某个 R_k 的子串。

<ロ > ←□ > ←□ > ← = → ← = → へへの

Group S 07.10.2023 9 / 18

D. Putata Strikes Back

题解

- 对 P 和 Q^R 分别建 AC 自动机, 这里 Q^R 是翻转 Q 中的每个串。将 他们称为 A_P, A_Q 。
- 对于长为 / 的串 $S \in R$,假设 pre(S, i), suf(S, i) 表示 $S_1S_2...S_i$ 和 $S_iS_{i+1}...S_l$.
- 对于某个 i, pre(S, i) 在 A_P 中接受节点为 x 且 suf(S, i+1) 在 A_Q 中接受节点为 y, 那么所有满足在 A_P 的 fail 树上 u 是 x 祖先, 在 A_Q 的 fail 树上 v 是 y 的祖先的节点对 (u, v) 都代表一组合法的 (A, B)。

D. Putata Strikes Back

题解

- 那么现在问题就是,给定两棵树和若干节点对 (x, y),计算有多少对节点 (u, v) 使得存在 (x, y),满足在第一棵树上 $u \in X$ 的祖先,在第二棵树上 $v \in Y$ 的祖先。
- 枚举节点 u, 对于所有满足 x 在 u 子树内的 (x,y) 来说, 可能的 v 即 所有 y 到根的链的并中的节点。假设这个并集为 S(u), 那么我们可以通过合并所有 u 的儿子 t 的 S(t) 来得到 S(u)。那么我们就可以用启发式合并或线段树合并维护这个集合和大小,时间复杂度 $\Theta(n\log n)$ 或 $\Theta(n\log^2 n)$ 。

11 / 18

E. Xor is Add ^{题目大意}

• 构造一个排列 p, 使得 $p_i \oplus i = p_i + i$.

<ロ > ←□ > ←□ > ← = → ← = → へへの

Group S 07.10.2023 12 / 18

E. Xor is Add

题解

- 根据 $p_i + i = 2 \cdot (p_i \& i) + (p_i \oplus i)$, 可以转化为 $p_i \& i = 0$ 。
- 考虑 n-1 的最高位。假设为 k, 那么我们可以将所有满足 $x \ge 2^k$ 的 x = 0 $y = 2^{k+1} 1 x$ 配对, 即 $p_x = y$, $p_y = x$ 。
- 然后问题的规模就被缩小为 $n' = 2^{k+1} n$,并且边界情况为 n = 1 或 n = 0,都是平凡的。
- 时间复杂度为 $\Theta(n)$ 。

13 / 18

F. Tag Game ^{题目大意}

- 给一张有向图, 每条边可以以两种方法通过:
 - 使用 t 时间通过,有 $\frac{P}{100}$ 的概率被传送回 1 号点
 - 使用 c 时间通过
- 计算从 1 到 n 的期望最小时间。

14 / 18

F. Tag Game 颞解

- 当我们处在同一节点时,最优策略总是固定的,如果我们被传送回 1号节点,那么我们一定会沿着相同的路径回来。
- 我们可以用 Dijkstra 算法来计算最短路,时间复杂度 $\Theta(m \log n)$ 。
- 我们也可以二分答案,从 n 号点倒推,但是需要注意实现的常数, 时间复杂度为 $\Theta(m \log n \log(\frac{n \cdot maxw}{c}))$ 。

Group S 07.10.2023 15 / 18

G. Open Trains 题目大意

• T 次询问,每次给两个圆 $(x_1, y_1, r_1), (x_2, y_2, r_2)$,询问在第一个圆上 有多少长度使得顺时针方向切线和第二个圆相交,且距离 $\leq L$ 。

G. Open Trains

题解

- 求出两个圆的外公切线和内公切线,一定是夹在一条外公切线和内功切线中间的一段。
- 注意到切线到第二个圆的长度在这段上先递减再递增,可以三分找到最小值再在两边二分求出答案,时间复杂度 $\Theta(T\log(\frac{1}{arepsilon}))$ 。
- 也可以用几何方法直接得到表达式计算,时间复杂度 $\Theta(T)$ 。

17 / 18

Thanks!

Group S 07.10.2023 18/18