

Topics

Neural Networks

- ► Linear models
- ► Non-linear models

Training Neural Networks

- ► Derivatives in graphs
- ► Backpropagation

Neural Networks

Powerful and flexible Machine Learning framework

lackbox Describe $f: \mathbf{x} \mapsto \mathbf{w}$ via composition of simple sub-functions

Can be configured to be universal approximators

- Can represent arbitrary decision boundaries (classification)
- Can approximate any function to any degree (regression)

Deep Learning is virtually always implemented this way

Neural Networks

An (Artificial) Neural Network (NN)

- ▶ Is a directed computational graph
- ► Vertices (neurons or units) are scalar functions of input
- Edges define data flow

And thus a function $f: \mathbf{x} \in \mathbb{R}^D \mapsto \mathbf{w} \in \mathbb{R}^T$

- ► That is composed of other functions (neurons)
- lacktriangle Neurons operate on (subsets of) ${f x}$ and/or neuron output

Neural Networks Example

$$w = f(x) = f(g_1(h_1(x), h_2(x)), g_2(h_2(x), h_3(x)))$$

Feed-Forward Neural Networks

Feed-Forward NNs are acyclic

► NNs with cycles are called Recurrent NNs

Can order neurons by distance from input(s)

- Neurons at same level in hierarchy form a layer
- ▶ Neurons in same layer usually perform same kind of operation

Deep Neural Networks Definition

NNs with several layers are called deep (DNNs)

- ▶ Deep Learning is Machine Learning with DNNs
- ► Network below has depth of 3 (don't count input)

Feed-Forward Neural Networks Definition

D input units (x) and T output units (f)

Flexible number of hidden units (h, g)

Linear Neural Networks

Recall that in linear models $\mathbf{w} = \mathbf{W}\mathbf{x} + \mathbf{b}$

$$\mathbf{v} \in \mathbb{R}^D$$
, $\mathbf{w} \in \mathbb{R}^T$, $\mathbf{W} = [\mathbf{w}_1; \dots; \mathbf{w}_T]$

To obtain the corresponding NN we define

- ▶ One input layer with *D* neurons
- One output layer with T neurons
- ► Each output neuron as $n_t(\mathbf{x}) = \mathbf{w}_t \mathbf{x} + b_t$

Linear Neural Networks

Linear Neural Networks

Each neuron in output layer computes linear function

► Such neurons/layers are called linear

Output neurons are connected to all neurons in previous layer

► Such neurons/layers are called fully-connected or dense

(D)NNs for classification end with a linear layer

► Sometimes the softmax is also considered part of the NN

Linear NNs lack capacity (f is linear)

To increase the capacity we add

- ▶ A linear hidden layer with H neurons $v_h = n_h(\mathbf{x})$
- lacktriangle A layer with H non-linear activation functions $a_h(v_h)$

Common activation functions for linear layers

- $a_h(v_h) = \tanh(v_h)$
- $a_h(v_h) = 1/(1 + \exp(-v_h))$ (logistic sigmoid)

Such NNs are called Multi-Layer Perceptrons (MLPs)

▶ One or more of such pairs of hidden layers

Activation functions as layers

- ► Some papers/libraries consider activation functions own layers
- Others consider them part of the previous layer
- We will adopt both views depending on the context

Representational capacity depends on (hyperparameters)

- ► Number of hidden units *H*
- ► Type of activation functions
- Number of hidden layers (depth)

In practice a single pair of hidden layers is common

► Two pairs are used sometimes (also in DL)

MLPs and Gradient Descent in action

Image from cs.stanford.edu

We already know how to train (D)NN classifiers

- ightharpoonup Cross-entropy loss $L(\theta)$
- ▶ Minibatch Gradient Descent with (Nesterov) momentum

In case of an MLP θ consists of

- lacktriangle Multiplicative weights $\mathbf{w}_1 \cdots \mathbf{w}_H$ and $\mathbf{w}_1 \cdots \mathbf{w}_T$
- ightharpoonup Additive biases $b_1 \cdots b_H$ and $b_1 \cdots b_T$

Calculating the Gradient

For Gradient Descent we must calculate $\nabla L(\boldsymbol{\theta})$

- ▶ We have not covered how to do this yet
- ► Can you think of an easy way?

One advantage of NNs is that this calculation is very efficient

► Enables us to train complex (D)NNs

Numerical Gradients

One way to obtain $\nabla L(\boldsymbol{\theta})$ is numerical differentiation

- ▶ Vector $\mathbf{1}_p$ is 1 at position p and 0 otherwise
- ► Follows directly from definition of the derivative

Practical considerations

- lacksquare should be close to 0 while avoiding numerical issues
- $\blacktriangleright \ \nabla L_p(\pmb{\theta}) = (L(\pmb{\theta} + \pmb{1}_p \epsilon) L(\pmb{\theta} \pmb{1}_p \epsilon))/2\epsilon \ \text{preferable}$

Numerical Gradients

Trivial to implement

Only an approximation (ϵ cannot be arbitrarily small)

Too inefficient in practice

- ▶ Must evaluate $L \dim(\theta)$ times
- Complex (D)NNs have millions of parameters

Training Neural Networks Analytic Gradients

We thus would prefer the analytic gradient

lackbox Obtain abla L analytically using calculus

Can compute $\nabla L(\boldsymbol{\theta})$ directly

- Accurate (no approximation)
- Potentially much more efficient (single evaluation)

Analytic Gradients

Recall that a NN is a computational graph

- ▶ Function $f : \mathbf{w} \mapsto \mathbf{w}$ composed of other functions
- Loss function of a NN is again a graph

Derivatives in such graphs can be computed iteratively

- ► Recursive application of the chain rule
- ▶ Recall that if F(x) = f(g(x)) then F'(x) = f'(g(x))g'(x)

To compute gradients in such graphs we

- Evaluate the graph and store local results (forward pass)
- Aggregate local gradients (backward pass)

Derivatives in Graphs

Simple example with e(a, b) = (a + b)(b + 1)

Derivatives in Graphs

Forward pass with a=2 and b=1

Derivatives in Graphs

Every node can compute local gradients independently

 $ightharpoonup \partial f/\partial x$ means partial derivative f_x

Derivatives in Graphs

To obtain $\nabla e(2,1)$ we use the multivariate chain rule

We calculate $\nabla e_a(2,1)$ by

- lacktriangle Multiplying local gradients along every path from a to e
- Summing over all resulting values

Same for e_b (and all other variables in general)

Derivatives in Graphs

$$e_a(2,1) = c_a(2,1) \cdot e_c(2,1) = 1 \cdot 2 = 2$$

Image from colah.github.org

Derivatives in Graphs

$$e_b(2,1) = c_b(2,1) \cdot e_c(2,1) + d_b(2,1) \cdot e_d(2,1) = 2 + 3 = 5$$

Derivatives in NN classifiers

Can use the same algorithm to compute $L(\boldsymbol{\theta})$

Recall that the loss is an average over ${\cal S}$ samples

$$\blacktriangleright \ L(\pmb{\theta}) = 1/S \cdot \textstyle\sum_s H(\mathbf{w}_s, \mathsf{softmax}(f(\mathbf{x}_s; \pmb{\theta})))$$

So to compute $\nabla L(\boldsymbol{\theta})$ we

- ▶ Compute $\nabla H(\theta)$ for all s
- Average the results

Derivatives in NN classifiers

To calculate $\nabla H(\boldsymbol{\theta})$ we

- ▶ Decompose the NN to simple functions
- Do the same for the softmax and cross-entropy
- Stack both to obtain a combined graph
- Use the same algorithm as above

Derivatives in NN classifiers

MLPs are graphs of simple functions

► Can decompose the inner products

f	f'
$ \begin{array}{c} x_1 + x_2 \\ x_1 x_2 \\ \tanh(x) \end{array} $	$ \begin{array}{c} 1\\ x_2 \text{ and } x_1\\ 1 - \tanh^2(x) \end{array} $

Derivatives in NN classifiers

As are the cross-entropy and softmax functions

f	f'
$\exp(x)$	$\exp(x)$
ln(x)	1/x
x_1/x_2	$1/x_2 \text{ and } -x_1/x_2^2$

Derivatives in NN classifiers

Linear classifier with D=2 and T=2

Derivatives in NN classifiers

"Attached" softmax and cross-entropy

Derivatives in NN classifiers

Graph is dense

- Must sum over many paths per partial derivative
- Number of paths grows exponentially with graph complexity
- Above algorithm not efficient enough for large NNs

Training Neural Networks Backpropagation

Reverse-mode differentiation solves this problem

- ► Computes derivatives of output node wrt. all other nodes
- Efficiently by touching every edge only once
- Called backpropagation in neural network community

Achieved by

- ► Starting at the output (loss) node
- Propagating local gradients backwards to input nodes
- Storing intermediate results for efficiency

Training Neural Networks Backpropagation

Start at output node e and move towards inputs

At every node n

- ▶ For every child c, compute local gradient $l_c = \partial n/\partial c$
- ▶ For every child c, compute $m_c = l_c \cdot \partial e / \partial n \ (\partial e / \partial e = 1)$
- lacktriangle Compute $\partial e/\partial c$ as sum over all m_c

Backpropagation

Image from colah.github.org

Training Neural Networks Backpropagation

- (D)NNs are always trained using this algorithm
 - ► Can increase efficiency by many magnitudes

In practice

- ► Graph composition not as fine (vectorization)
- ightharpoonup $abla H(m{ heta})$ computed in parallel for all s (data parallelism)

Backpropagation - Example

Forward pass using current parameters and training sample

Backpropagation - Example

Forward pass using current parameters and training sample

Backpropagation - Example

Backward pass step 1

Backpropagation - Example

${\sf Backward\ pass\ step\ } 2$

Backpropagation - Example

Backward pass step 3 (and so on ...)

