ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №3

ЗАЩИТА ИНФОРМАЦИИ ОТ УТЕЧКИ ПО АКУСТИЧЕСКОМУ КАНАЛУ ПАССИВНЫМИ МЕТОДАМИ

1 Краткие теоретические сведения

Акустический (речевой) канал – это канал распространения акустических волн Человеческая газовую, твердую И жидкую среду. речь наиболее через распространенный способ обмена информацией между людьми, поэтому попытки перехвата речевой акустической информации (утечки по акустическому каналу) давно уже стали традиционными. Особая заинтересованность злоумышленников в получении информации объясняется тем, что речь довольно часто содержит конфиденциальные и даже секретные сведения.

Сегодня известны различные способы негласного съема акустической информации. Довольно прост в реализации способ подслушивания с использованием виброакустических каналов утечки информации, который даже не требует от злоумышленника кратковременного захода в прослушиваемое помещение.

Для перехвата речевой информации по виброакустическим каналам в качестве средств акустической разведки используются электронные стетоскопы и закладные устройства с датчиками контактного типа. Наиболее часто для передачи информации с закладных устройств используется радиоканал, поэтому радиостетоскопами. В качестве датчиков средств акустической разведки используются контактные микрофоны (вибропребразователи), чувствительность которых составляет от 50 до 100 мкВ/Па, что, дает возможность прослушивать разговоры и улавливать слабые звуковые колебания (шорохи, тиканье часов) через бетонные и кирпичные стены толщиной более 100 см, а также двери, оконные рамы и инженерные коммуникации. Электронные стетоскопы и закладные устройства с датчиками контактного типа позволяют перехватывать речевую информацию без физического доступа людей в защищаемые помещения. Их датчики наиболее часто устанавливаются на наружных поверхностях зданий, на оконных проемах и рамах, в смежных (служебных и технических) помещениях за дверными проемами, ограждающими конструкциями, на перегородках, трубах систем отопления и водоснабжения, коробах воздуховодов вентиляционных и других систем.

Сила (интенсивность) звука — количество звуковой энергии, проходящей за единицу времени через единицу площади, измеряется в ваттах на квадратный метр (Bt/m^2). Звуковое давление и сила звука связаны между собой квадратичной зависимостью, то есть увеличение звукового давления в два раза приводит к увеличению силы звука в четыре раза. Уровень силы звука — отношение силы данного звука I к нулевому (стандартному, опорному) значению силы звука, равному $I_0 = 10^{-12} \, Bt/m^2$, выраженное в децибелах (дБ):

$$N_{\rm I} = 10 \lg \frac{I}{I_0} \tag{1}$$

Уровни звукового давления и силы звука, выраженные в дБ, совпадают по величине. Порог слышимости — наиболее тихий звук, который еще способен слышать человек на частоте $1000 \, \Gamma$ ц, что соответствует звуковому давлению $2 \times 10^{-5} \, \text{H/m}^2$.

Громкость звука — интенсивность звукового ощущения, вызванная данным звуком у человека с нормальным слухом. Громкость зависит от силы звука и его частоты, измеряется пропорционально логарифму силы звука и выражается количеством дБ, на которое данный звук превышает по интенсивности звук, принятый за порог слышимости. Единица измерения громкости — фон. Динамический диапазон — диапазон громкостей звука или разность уровней звукового давления самого громкого и самого тихого звуков, выраженная в дБ.

Возможности по перехвату информации будут во определяться МНОГОМ ослаблением информационного сигнала в ограждающих конструкциях и уровнем контактного микрофона. внешних ШУМОВ месте установки Результаты ослабления информационного экспериментальных исследований сигнала (звукоизоляции) Q стен и сплошных перегородок приведены в таблице 1. Звукоизоляцию можно рассчитать по формуле:

$$Q = 10\lg \frac{I_{nomewehue}}{I_{\kappa opudop}},$$
 (2)

где $I_{nomeщenue}$ — сила звука в защищаемом помещении;

 $I_{\kappa opu\partial op}$ – сила звука в незащищённом коридоре.

Таблица 1 – Звукоизоляция стен и сплошных перегородок

Tuosingu 1 Sbykonse		Среднее значение Q, дБ, для				
Вид конструкции	Толщина конструкции	среднее зна тепле д, дв, двя среднегеометрической частоты, Гц				
		50	500	1000	2000	4000
Кирпичная кладка,	0,5 кирпича	40	42	48	54	60
оштукатуренная с двух	1 кирпич	44	51	58	64	65
сторон	1,5 кирпича	48	55	61	65	65
	2 кирпича	52	59	65	70	70
	2,5 кирпича	55	60	67	70	70
Железобетонная панель	100мм	40	44	50	55	60
	160 мм	47	51	60	63	63
	300мм	50	58	65	65	65
	400мм	55	61	67	70	70
Гипсобетонная панель	86 мм	33	39	47	54	60
Керамзитобетонная	80мм	34	39	47	52	60
панель	120мм	37	39	47	54	51
	140мм	43	47	53	57	61
Шлакоблоки,	220мм	42	48	54	60	63
оштукатуренные с двух						
сторон						
Древесностружечная	30 мм	26	26	26	26	26
плита (ДСП)						

2 Практическое задание

Задание 2.1. Для защиты речевой информации ограниченного доступа при проведении переговоров компания, арендующая свои производственные площади, использует специальное помещение – защищённый служебный кабинет (ЗСК). Двери и окна ЗСК надёжно защищены от прослушивания техническими средствами защиты информации. Однако кирпичная перегородка, отделяющая ЗСК от незащищённого коридора, неарендуемого компанией и допускающего возможность проникновения в него злоумышленников, имеет толщину всего в полкирпича. Размеры перегородки 10×3 м. Размеры одинарного силикатного кирпича по СТБ 1160-99 «Кирпич и камни керамические. Технические условия» составляют 250×120×65 мм.

таблицы 1 Используя данные приложения А, определить И стоимость дополнительной кирпичной кладки, усиливающей звукоизоляцию стены ДЛЯ обеспечения ослабления О информационного сигнала в стене на частоте 1000 Гц до уровня не менее:

```
58 дБ – для варианта 1, 5, 9;
```

- 61 дБ для варианта 2, 6, 10;
- 65 дБ для варианта 3, 7;
- 67 дБ для варианта 4, 8.

Стоимость кирпича 250 дол. США за кубометр, а стоимость кирпичной кладки (работы) 25 дол. США за кубометр. Толщиной швов между кирпичами, потерями кирпича на бой и другие цели, стоимостью других работ и материалов при усилении звукоизоляции стены в первом приближении пренебречь.

Задание 2.2. Используя формулу 2 и таблицу 1, на частоте 1000 Γ ц определить во сколько раз и на сколько дБ сила звука в коридоре при использовании обсчитанной дополнительной кирпичной кладки ($I_{кор.кир}$) из задания 1 будет больше или меньше силы звука в коридоре при установке не кирпичной перегородки, а перегородки из другого материала ($I_{кор.м}$):

железобетонная панель, толщина 100мм — для варианта 1; железобетонная панель, толщина 300 мм — для варианта 3; железобетонная панель, толщина 300 мм — для варианта 3; железобетонная панель, толщина 400 мм — для варианта 4; гипсобетонная панель, толщина 86 мм — для варианта 5; шлакоблоки, толщина 220 мм — для варианта 6; древесностружечная плита, толщина 30 мм — для варианта 7; керамзитобетонная панель, толщина 80 мм — для варианта 8; керамзитобетонная панель, толщина 120 мм — для варианта 9; керамзитобетонная панель, толщина 140 мм — для варианта 10. В результате расчета ответ записать в следующем виде:

$$I_{\kappa op.\kappa up} \stackrel{>}{<} I_{\kappa op. M}$$
 в ____ раз или на ____ дБ

3 Содержание отчета

- 3.1 Исходные данные, расчеты и результаты по заданию 2.1.
- 3.2 Исходные данные, расчеты и результаты по заданию 2.2.

приложение а

виды кирпичной кладки

