Project 1

Dr. Donald Davendra CS471 - Optimization

March 27, 2018

Fifteen selected problems are standard benchmark functions of different properties: Schwefel, De Jong 1, Rosenbrock's Saddle, Rastrigin, Griewangk, Sine Envelope Sine Wave, Stretch V Sine Wave, Ackley One, Ackley Two, Egg Holder, Rana, Pathological, Michalewicz, Master's Cosine Wave, and Schekel's Foxhole. All of the functions are dimension-wise scalable, except for f_{15} , limited by dimension n=10. Functions f_2 and f_3 are unimodal, the rest of the functions are multimodal.

Table 1 presents functions together with global optima coordinates and values, in cases where global optima is known and can be reasonably expressed independent of dimension. The third column gives dimensions used in the experimentation for each function. The last column is the search and initialization range used in the experimentation.

1. Schwefel's function:

$$f_1(x) = \sum_{i=1}^{n} -x_i \cdot \sin\left(\sqrt{|x_i|}\right) \tag{1}$$

2. 1st De Jong's function:

$$f_2(x) = \sum_{i=1}^{n} x_i^2$$
 (2)

3. Rosenbrock

$$f_3(x) = \sum_{i=1}^{n-1} 100 \left(x_i^2 - x_{i+1} \right)^2 + \left(1 - x_i \right)^2$$
 (3)

4. Rastrigin

$$f_4(x) = 2n \sum_{i=1}^{n} x_i^2 - 10 \cdot \cos(2\pi \cdot x_i)$$
 (4)

5. Griewangk

$$f_5(x) = 1 + \sum_{i=1}^{n} \frac{x_i^2}{4000} - \prod_{i=1}^{n} \cos\left(\frac{x_i}{\sqrt{i}}\right)$$
 (5)

6. Sine Envelope Sine Wave

$$f_6(x) = -\sum_{i=1}^{n-1} 0.5 + \frac{\sin(x_i^2 + x_{i+1}^2 - 0.5)^2}{(1 + 0.001(x_i^2 + x_{i+1}^2))^2}$$
(6)

7. Stretched V Sine Wave

$$f_7(x) = \sum_{i=1}^{n-1} \left(\sqrt[4]{x_i^2 + x_{i+1}^2} \cdot \sin\left(50\sqrt[10]{x_i^2 + x_{i+1}^2}\right)^2 + 1 \right)$$
 (7)

8. Ackley's One

$$f_8(x) = \sum_{i=1}^{n-1} \frac{1}{e^{0.2}} \sqrt{x_i^2 + x_{i+1}^2} + 3\left(\cos\left(2x_i\right) + \sin\left(2x_{i+1}\right)\right) \tag{8}$$

9. Ackley's Two

$$f_9(x) = \sum_{i=1}^{n-1} 20 + e - \frac{20}{e^{0.2\sqrt{\frac{x_i^2 + x_{i+1}^2}{2}}}} - e^{0.5(\cos(2\pi \cdot x_i) + \cos(2\pi \cdot x_{i+1}))}$$
(9)

10. Egg Holder

$$f_{10}(x) = \sum_{i=1}^{n-1} -x_i \cdot \sin\left(\sqrt{|x_i - x_{i+1} - 47|}\right) - (x_{i+1} + 47) \cdot \sin\left(\sqrt{|x_{i+1} + 47 + \frac{x_i}{2}|}\right)$$
(10)

11. Rana

$$f_{11}(x) = \sum_{i=1}^{n-1} x_i \cdot \sin\left(\sqrt{|x_{i+1} - x_i + 1|}\right) \cdot \cos\left(\sqrt{|x_{i+1} + x_i + 1|}\right) + (x_{i+1} + 1) \cdot \cos\left(\sqrt{|x_{i+1} - x_i + 1|}\right) \cdot \sin\left(\sqrt{|x_{i+1} + x_i + 1|}\right)$$

$$(11)$$

Table 1: Experiments

	Name	Global Optimum x^*	$f(x^*)$	Dimensions	Range
f_1	Schwefel	$(420.9687, 420.9687, \dots, 420.9687)$	-418.9829n	10,20,30	$[-512, 512]^n$
f_2	De Jong 1	O	0	10,20,30	$[-100, 100]^n$
f_3	Rosenbrock's Saddle	$(1,1,\ldots,1)$	0	10,20,30	$[-100, 100]^n$
f_4	Rastrigin	O	-200n	10,20,30	$[-30, 30]^n$
f_5	Griewangk	o	0	10,20,30	$[-500, 500]^n$
f_6	Sine Envelope Sine Wave	_	-1.4915(n-1)	10,20,30	$[-30, 30]^n$
f_7	Stretch V Sine Wave	o	0	10,20,30	$[-30, 30]^n$
f_8	Ackley One	_	-7.54276 - 2.91867(n-3)	10,20,30	$[-32, 32]^n$
f_9	Ackley Two	o	0	10,20,30	$[-32, 32]^n$
f_{10}	Egg Holder	_	_	10,20,30	$[-500, 500]^n$
f_{11}	Rana	_	_	10,20,30	$[-500, 500]^n$
f_{12}	Pathological	_	_	10,20,30	$[-100, 100]^n$
f_{13}	Michalewicz	_	0.966n	10,20,30	$[0,\pi]^n$
f_{14}	Masters' Cosine Wave	О	1-n	10,20,30	$[-30, 30]^n$
f_{15}	Shekel's Foxhole	_	_	10	$[0, 10]^n$

12. Pathological

$$f_{12}(x) = \sum_{i=1}^{n-1} 0.5 + \frac{\sin\left(\sqrt{100x_i^2 + x_{i+1}^2}\right)^2 - 0.5}{1 + 0.001\left(x_i^2 - 2x_i \cdot x_{i+1} + x_{i+1}^2\right)^2}$$
(12)

13. Michalewicz

$$f_{13}(x) = -\sum_{i=1}^{n} \sin(x_i) \cdot \sin\left(\frac{i \cdot x_i^2}{\pi}\right)^{20}$$
(13)

14. Masters Cosine Wave

$$f_{14}(x) = -\sum_{i=1}^{n-1} e^{-\frac{1}{8}(x_i^2 + x_{i+1}^2 + 0.5x_{i+1} \cdot x_i)}$$

$$cos\left(4\sqrt{x_i^2 + x_{i+1}^2 + 0.5x_i \cdot x_{i+1}}\right)$$
(14)

15. Shekel's Foxholes

$$f_{15}(x) = -\sum_{i=1}^{m} \frac{1}{c_i + \sum_{j=1}^{n} (x_j - a_{i,j})^2}$$
 (15)

Recommended value of parameter $m = 30, c_j; j = 1, ..., m$ and $a_{i,j}; i = 1, ..., m; j = 1, ..., n$ are constant numbers fixed in advance, recommended values can be found in the external file Shekel's_Foxholes_Data.txt.

Pseudo-random number generator

Use the **Mersenne Twister** (MT) pseudo-random number generator in your code. The MT webpage is at (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html) and the different programming language codes are available at (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/eversions.html).

Experiment

Generate at least 30 pseudo-random solution vectors and solve for all functions and in given dimensions of 10, 20 and 30. Compute statistical analysis on the obtained results for average, standard deviation, range, median and time.

Submission

The student must submit the following separate files to canvas:

- 1. source codes
- 2. a LATEX typeset report on the results and its analysis

The report must contain an introduction in the problems, the full experimentation results in tabular format and condensed results with statistical analysis.

The files must be submitted through Canvas by 5PM April 6, 2018. The grading rubric is given in Table 2.

Table 2: Grading rubric

File	Aspects	Points
Code	Compiles and executes Explanation	35 15
Report	Results Analysis	25 25