Combining Datasets: merge and join

One important feature offered by Pandas is its **high-performance**, **in-memory join and merge operations**,

which you may be familiar with **if you have ever worked with** databases.

The main interface for this is the pd.merge function,

and we'll see a few examples of how this can work in practice.

For convenience, **we will again define the** display function from the previous chapter after the usual imports:

```
In []: import pandas as pd
import numpy as np

class display(object):
```

```
"""Display HTML representation of multiple objects"""
template = """<div style="float: left; padding: 10px;">
</div>"""
def __init__(self, *args):
   self.args = args
def repr html (self):
   return '\n'.join(self.template.format(a, eval(a)._representation)
                  for a in self.args)
def repr (self):
   return '\n\n'.join(a + '\n' + repr(eval(a))
                    for a in self.args)
```

Relational Algebra

The behavior implemented in pd.merge is a subset of what is known as relational algebra,

which is a **formal set of rules for manipulating relational data** that forms the conceptual foundation of operations available in most databases.

The strength of the relational algebra approach is that it proposes several fundamental operations,

which become the **building blocks of more complicated operations on any dataset.**

With this lexicon of fundamental operations implemented efficiently in a database or other program, a wide range of fairly complicated composite operations can be performed.

Pandas implements several of these fundamental building blocks in the pd.merge function and the related join method of Series and DataFrame objects.

As you will see, these **let you efficiently link data from different sources.**

Categories of Joins

The pd.merge function implements a number of types of joins: one-to-one, many-to-one, and many-to-many.

All three types of joins are accessed via an identical call to the pd.merge interface;

the type of join performed depends on the form of the input data.

We'll start with some simple examples of the three types of merges, and discuss detailed options a bit later.

One-to-One Joins

Perhaps the **simplest type of merge is the one-to-one join**, which is in many ways similar to the column-wise concatenation.

As a concrete example, consider the following two DataFrame objects, which contain information on several employees in a company:

Out[]: df1 df2

	employee	group		employee	hire_date
0	Bob	Accounting	0	Lisa	2004
1	Jake	Engineering	1	Bob	2008
2	Lisa	Engineering	2	Jake	2012
3	Sue	HR	3	Sue	2014

To combine this information into a single DataFrame , we can use the pd.merge function:

```
In [ ]: df3 = pd.merge(df1, df2)
    df3
```

	employee	group	hire_date
0	Bob	Accounting	2008
1	Jake	Engineering	2012
2	Lisa	Engineering	2004
3	Sue	HR	2014

Out[]:

The pd.merge function recognizes that each DataFrame has an employee column,

and automatically joins using this column as a key.

The result of the merge is a new DataFrame that combines the information from the two inputs.

Notice that **the order of entries in each column is not necessarily maintained:** in this case,

the order of the employee column differs between df1 and df2, and the pd.merge function correctly accounts for this.

Additionally, keep in mind that the **merge in general discards the index,** except in the special case of merges by index (see the left_index and right_index keywords, discussed momentarily).

Many-to-One Joins

Many-to-one joins are joins in which one of the two key columns contains duplicate entries.

For the many-to-one case, the resulting DataFrame will preserve those duplicate entries as appropriate.

Consider the **following example** of a many-to-one join:

```
In [ ]: df4 = pd.DataFrame({'group': ['Accounting', 'Engineering', 'Foundary 'Engineering', 'Foundary 'Engineering', 'Foundary 'Supervisor': ['Carly', 'Guido', 'Steve'] display('df3', 'df4', 'pd.merge(df3, df4)')
```

Out[]: df3

	employee	group	hire_date
0	Bob	Accounting	2008
1	Jake	Engineering	2012
2	Lisa	Engineering	2004
3	Sue	HR	2014

df4

	group	supervisor
0	Accounting	Carly
1	Engineering	Guido
2	HR	Steve

pd.merge(df3, df4)

	employee	group	hire_date	supervisor
0	Bob	Accounting	2008	Carly
1	Jake	Engineering	2012	Guido
2	Lisa	Engineering	2004	Guido
3	Sue	HR	2014	Steve

The resulting DataFrame has an additional column with the "supervisor" information,

where the **information is repeated in one or more locations** as required by the inputs.

Many-to-Many Joins

Many-to-many joins may be a bit confusing conceptually, but are nevertheless well defined.

If the key column in both the left and right arrays contains duplicates,

then the result is a many-to-many merge.

This will be perhaps most clear with a concrete example.

Consider the following, where we have a DataFrame showing one or more skills associated with a particular group.

By performing a many-to-many join, we can recover the skills associated with any individual person:

Out[]: df1 df5

	employee	group		group	skills
0	Bob	Accounting	0	Accounting	math
1	Jake	Engineering	1	Accounting	spreadsheets
2	Lisa	Engineering	2	Engineering	software
3	Sue	HR	3	Engineering	math
			4	HR	spreadsheets
			5	HR	organization

pd.merge(df1, df5)

	employee	group	skills
0	Bob	Accounting	math

	employee	group	skills
1	Bob	Accounting	spreadsheets
2	Jake	Engineering	software
3	Jake	Engineering	math
4	Lisa	Engineering	software
5	Lisa	Engineering	math
6	Sue	HR	spreadsheets
7	Sue	HR	organization

These three types of joins can be used with other Pandas tools to implement a wide array of functionality.

But in practice, **datasets are rarely as clean** as the one we're working with here.

In the following section we'll consider some of the options provided by pd.merge that enable you to tune how the join operations work.

Specification of the Merge Key

We've already seen the default behavior of pd.merge:

it looks for one or more matching column names between the two inputs, and uses this as the key.

However, often the column names will not match so nicely,

and pd.merge provides a variety of options for handling this.

The on Keyword

Most simply, you can explicitly specify the name of the key column using the on keyword,

which takes a column name or a list of column names:

```
In [ ]: display('df1', 'df2', "pd.merge(df1, df2, on='employee')")
```

Out[]: df1 df2

	employee	group		employee	hire_date
0	Bob	Accounting	0	Lisa	2004
1	Jake	Engineering	1	Bob	2008
2	Lisa	Engineering	2	Jake	2012
3	Sue	HR	3	Sue	2014

pd.merge(df1, df2, on='employee')

	employee	group	hire_date
0	Bob	Accounting	2008
1	Jake	Engineering	2012
2	Lisa	Engineering	2004

	employee	group	hire_date	
3	Sue	HR	2014	

This option works only if both the left and right DataFrame s have the specified column name.

The left_on and right_on Keywords

At times you may wish to merge two datasets with different column names;

for example, we may have a dataset in which the employee name is labeled as "name" rather than "employee".

In this case, **we can use** the left_on and right_on keywords to specify the two column names:

Out[]: df1 df3

	employee	group		name	salary
0	Bob	Accounting	0	Bob	70000
1	Jake	Engineering	1	Jake	80000
2	Lisa	Engineering	2	Lisa	120000
3	Sue	HR	3	Sue	90000

pd.merge(df1, df3, left_on="employee",
right_on="name")

	employee	group	name	salary
0	Bob	Accounting	Bob	70000
1	Jake	Engineering	Jake	80000
2	Lisa	Engineering	Lisa	120000

	employee	group	name	salary
3	Sue	HR	Sue	90000

The result has a redundant column that we can drop if desired

—for example, by using the <code>DataFrame.drop()</code> method:

Out[]:		employee	group	salary
	0	Bob	Accounting	70000
	1	Jake	Engineering	80000
	2	Lisa	Engineering	120000
	3	Sue	HR	90000

The left_index and right_index Keywords

Sometimes, rather than merging on a column, you would **instead like to merge on an index.**

For example, your data might look like this:

```
In [ ]: df1a = df1.set_index('employee')
    df2a = df2.set_index('employee')
    display('df1a', 'df2a')
```

Out[]: df1a df2a

	group		hire_date
employee		employee	
Bob	Accounting	Lisa	2004
Jake	Engineering	Bob	2008
Lisa	Engineering	Jake	2012
Sue	HR	Sue	2014

You can use the index as the key for merging by specifying the left_index and/or right_index flags in pd.merge():

Out[]: df1a df2a

	group		hire_date
employee		employee	
Bob	Accounting	Lisa	2004
Jake	Engineering	Bob	2008
Lisa	Engineering	Jake	2012
Sue	HR	Sue	2014

pd.merge(df1a, df2a, left_index=True,
right_index=True)

group hire_date employee

Bob Accounting 2008

group hire_date

employee

Jake	Engineering	2012
Lisa	Engineering	2004
Sue	HR	2014

For convenience, Pandas includes the DataFrame.join() method, which performs an index-based merge without extra keywords:

```
In [ ]: df1a.join(df2a)
```

Out[]: group hire_date

employee		
Bob	Accounting	2008
Jake	Engineering	2012
Lisa	Engineering	2004
Sue	HR	2014

If you'd like to mix indices and columns,

you can combine left_index with right_on or left_on
with right_index to get the desired behavior:

```
In [ ]: display('df1a', 'df3', "pd.merge(df1a, df3, left_index=True,
```

Out[]: df1a df3

	group		name	salary
employee		0	Bob	70000
Bob	Accounting	1	Jake	80000
Jake	Engineering	2	Lisa	120000
Lisa	Engineering	3	Sue	90000
Sue	HR			

pd.merge(df1a, df3, left_index=True,
right_on='name')

	group	name	salary
0	Accounting	Bob	70000
1	Engineering	Jake	80000

	group	name	salary
2	Engineering	Lisa	120000
3	HR	Sue	90000

All of these options also work with multiple indices and/or multiple columns;

Specifying Set Arithmetic for Joins

In all the preceding examples we have glossed over one important consideration in performing a join:

the type of set arithmetic used in the join.

This comes up when a value appears in one key column but not the other.

Consider this example:

Out[]: df6 df7

	name	food		name	drink
0	Peter	fish	0	Mary	wine
1	Paul	beans	1	Joseph	beer
2	Mary	bread			

pd.merge(df6, df7)

	name	food	drink
0	Mary	bread	wine

Here we have merged two datasets that have only a single "name" entry in common: Mary.

By default, the result contains the *intersection* of the two sets of inputs;

this is what is known as an inner join.

We can specify this explicitly using the how keyword, which defaults to "inner":

Other options for the how keyword are 'outer', 'left', and 'right'.

An *outer join* **returns a join over the union of the input columns,** and fills in all missing values with NAs:

```
In [ ]: display('df6', 'df7', "pd.merge(df6, df7, how='outer')")
```

Out[]: df6 df7

	name	food		name	drink
0	Peter	fish	0	Mary	wine
1	Paul	beans	1	Joseph	beer
2	Mary	bread			

pd.merge(df6, df7, how='outer')

	name	food	drink
0	Peter	fish	NaN
1	Paul	beans	NaN
2	Mary	bread	wine
3	Joseph	NaN	beer

The *left join* and *right join* return **joins over the left entries and right entries,** respectively.

For example:

```
In [ ]: display('df6', 'df7', "pd.merge(df6, df7, how='left')")
```

Out[]: df6 df7

	name	food		name	drink
0	Peter	fish	0	Mary	wine
1	Paul	beans	1	Joseph	beer
2	Mary	hread			

pd.merge(df6, df7, how='left')

	name	food	drink
0	Peter	fish	NaN
1	Paul	beans	NaN
2	Mary	bread	wine

The output rows now correspond to the entries in the left input.

Using how='right' works in a similar manner.

All of these options can be applied straightforwardly to any of the preceding join types.

Overlapping Column Names: The suffixes Keyword

Last, you may end up in a case where your two input

DataFrame s have conflicting column names.

Consider this **example:**

Out[]: df8 df9

	name	rank		name	rank
0	Bob	1	0	Bob	3
1	Jake	2	1	Jake	1
2	Lisa	3	2	Lisa	4
3	Sue	4	3	Sue	2

pd.merge(df8, df9, on="name")

	name	rank_x	rank_y
0	Bob	1	3
1	Jake	2	1
2	Lisa	3	4

name rank_x rank_y Sue 4 2

Because the output would have two conflicting column names,

```
the merge function automatically appends the suffixes _x and _y to make the output columns unique.
```

If these defaults are inappropriate, it is **possible to specify a custom suffix** using the suffixes keyword:

```
In [ ]: pd.merge(df8, df9, on="name", suffixes=["_L", "_R"])
```

]:		name	rank_L	rank_R
	0	Bob	1	3
	1	Jake	2	1
	2	Lisa	3	4
	3	Sue	4	2

Out[

These suffixes work in any of the possible join patterns, and also work if there are multiple overlapping columns.

Example: US States Data

Merge and join operations come up most often when **combining** data from different sources.

Here we will consider an **example** of some data about US states and their populations.

Let's take a look at the three datasets, using the Pandas read_csv function:

```
In [ ]: pop = pd.read_csv('data/state-population.csv')
    areas = pd.read_csv('data/state-areas.csv')
    abbrevs = pd.read_csv('data/state-abbrevs.csv')

display('pop.head()', 'areas.head()', 'abbrevs.head()')
```

Out[]: pop.head()

	state/region	ages	year	population
0	AL	under18	2012	1117489.0
1	AL	total	2012	4817528.0
2	AL	under18	2010	1130966.0
3	AL	total	2010	4785570.0
4	AL	under18	2011	1125763.0

areas.head()

abbrevs.head()

	state	area (sq. mi)		state	abbreviation
0	Alabama	52423	0	Alabama	AL
1	Alaska	656425	1	Alaska	AK

	state	area (sq. mi)		state	abbreviation
2	Arizona	114006	2	Arizona	AZ
3	Arkansas	53182	3	Arkansas	AR
4	California	163707	4	California	CA

Given this information, say we want to **compute a relatively straightforward result:**

rank US states and territories by their 2010 population density.

We clearly have the data here to find this result, but we'll have to combine the datasets to do so.

We'll **start with a many-to-one merge** that will give us the full state names within the population DataFrame.

We want to **merge based** on the state/region column of pop and the abbreviation column of abbrevs.

We'll use how='outer' to make sure no data is thrown away due to mismatched labels:

Out[]:		state/region	ages	year	population	state
	0	AL	under18	2012	1117489.0	Alabama
	1	AL	total	2012	4817528.0	Alabama
	2	AL	under18	2010	1130966.0	Alabama
	3	AL	total	2010	4785570.0	Alabama
	4	AL	under18	2011	1125763.0	Alabama

Let's **double-check whether there were any mismatches here,** which we can do by looking for rows with nulls:

```
merged.isnull().any()
Out[]: state/region
                         False
                         False
         ages
                         False
         year
         population
                          True
         state
                          True
         dtype: bool
        Some of the population values are null;
        let's figure out which these are!
        merged[merged['population'].isnull()].head()
```

	state/region	ages	year	population	state
2448	PR	under18	1990	NaN	NaN
2449	PR	total	1990	NaN	NaN
2450	PR	total	1991	NaN	NaN
2451	PR	under18	1991	NaN	NaN
2452	PR	total	1993	NaN	NaN

Out[]:

It appears that all the null population values are from Puerto Rico prior to the year 2000;

this is likely due to this data not being available in the original source.

More importantly, we see that some of the new state entries are also null,

which means that **there was no corresponding entry** in the abbrevs key!

Let's figure out which regions lack this match:

```
In [ ]: merged.loc[merged['state'].isnull(), 'state/region'].unique()
Out[ ]: array(['PR', 'USA'], dtype=object)
```

We can quickly infer the issue:

our population data includes entries for Puerto Rico (PR) and the United States as a whole (USA), while these entries do not appear in the state abbreviation key.

We can fix these quickly by filling in appropriate entries:

```
In [ ]: merged.loc[merged['state/region'] == 'PR', 'state'] = 'Puerto
merged.loc[merged['state/region'] == 'USA', 'state'] = 'Unite
merged.isnull().any()
Out[ ]: state/region False
```

ages False
year False
population True
state False
dtype: bool

No more nulls in the state column: we're all set!

Now we can merge the result with the area data using a similar procedure.

Examining our results, we will want to join on the state column in both:

```
In [ ]: final = pd.merge(merged, areas, on='state', how='left')
  final.head()
```

t[]:		state/region	ages	year	population	state	area (sq. mi)
	0	AL	under18	2012	1117489.0	Alabama	52423.0
	1	AL	total	2012	4817528.0	Alabama	52423.0
	2	AL	under18	2010	1130966.0	Alabama	52423.0
	3	AL	total	2010	4785570.0	Alabama	52423.0
	4	AL	under18	2011	1125763.0	Alabama	52423.0

Again, let's check for nulls to see if there were any mismatches:

```
In [ ]: final.isnull().any()
```

```
Out[]: state/region False ages False year False population True state False area (sq. mi) True dtype: bool
```

There are nulls in the area column;

we can take a look to see which regions were ignored here:

```
In [ ]: final['state'][final['area (sq. mi)'].isnull()].unique()
Out[ ]: array(['United States'], dtype=object)

We see that our areas DataFrame does not contain the area
of the United States as a whole.
```

We could **insert the appropriate value** (using the sum of all state areas, for instance),

but in this case we'll just drop the null values

because the **population density of the entire United States is not relevant** to our current discussion:

```
In [ ]: final.dropna(inplace=True)
  final.head()
```

Out[]:

	state/region	ages	year	population	state	area (sq. mi)
0	AL	under18	2012	1117489.0	Alabama	52423.0
1	AL	total	2012	4817528.0	Alabama	52423.0
2	AL	under18	2010	1130966.0	Alabama	52423.0
3	AL	total	2010	4785570.0	Alabama	52423.0
4	AL	under18	2011	1125763.0	Alabama	52423.0

Now we have all the data we need.

To answer the question of interest, let's first **select the portion of the data corresponding** with the year 2010, and the total population.

We'll use the query function to do this quickly:

```
In [ ]: data2010 = final.query("year == 2010 & ages == 'total'")
    data2010.head()
```

Out[]:

	state/region	ages	year	population	state	area (sq. mi)
3	AL	total	2010	4785570.0	Alabama	52423.0
91	AK	total	2010	713868.0	Alaska	656425.0
101	AZ	total	2010	6408790.0	Arizona	114006.0
189	AR	total	2010	2922280.0	Arkansas	53182.0
197	CA	total	2010	37333601.0	California	163707.0

Now let's **compute the population density** and display it in order.

We'll start by re-indexing our data on the state, and then compute the result:

```
In [ ]: data2010.set_index('state', inplace=True)
    density = data2010['population'] / data2010['area (sq. mi)']
In [ ]: density.sort_values(ascending=False, inplace=True)
    density.head()
```

Out[]: state

District of Columbia 8898.897059
Puerto Rico 1058.665149
New Jersey 1009.253268
Rhode Island 681.339159
Connecticut 645.600649

dtype: float64

The result is a ranking of US states, plus Washington, DC, and Puerto Rico, in order of their 2010 population density, in residents per square mile.

We can see that by far the densest region in this dataset is Washington, DC (i.e., the District of Columbia); among states, the densest is New Jersey. We can also check the end of the list:

We see that the least dense state, by far, is Alaska, averaging slightly over one resident per square mile.

This type of data merging is a **common task when trying to answer questions using real-world data sources.**