Взаимодействие фотонов с веществом. Образование пар

Н. М. Артемьева

Суммарное сечение взаимодействия фотонов с веществом

При прохождении γ -излучения через вещество интенсивность пучка γ -квантов ослабляется, что является результатом их взаимодействия с атомами вещества.

В полное сечение взаимодействия фотонов с веществом в различной степени вносят вклад разные процессы (рис. 1).

На рис. 1 заметно, что эффективное сечение фотоэффекта (σ_{ph}) на атомах вещества доминирует при энергиях фотонов ниже 0.1 МэВ в углероде и ниже 1 МэВ в свинце.

Вторым по величине вклада в полное сечение в этой же области энергий γ -квантов является релеевское рассеяние — когерентное рассеяние фотонов на атомах вещества. Ни ионизации, ни возбуждения атомов при релеевском рассеянии не происходит, γ -квант рассеивается упруго.

Главным механизмом ослабления первичного пучка γ -квантов при энергиях γ -кванта выше 0.1 МэВ в веществе с малыми значениями Z и выше 1 МэВ в веществах с большим Z становится некогерентное рассеяние фотонов на электронах вещества (эффект Комптона).

При превышении энергией γ -кванта удвоенной массы электрона $2m_ec^2=1.02$ МэВ становится возможным процесс образования пары, состоящей из электрона и позитрона. Сечение рождения пары в поле ядра (σ_{np} на рис. 1) доминирует в области высоких энергий фотонов. На

Рис. 1. Сечение взаимодействия фотонов с углеродом (Z=6) и свинцом (Z=82) при энергиях фотона от 10 эВ до 100 ГэВ. σ_{ph} — сечение фотоэффекта, σ_{coh} — сечение релеевского рассеяния, σ_{C} — сечение комптоновского рассеяния, σ_{np} — сечение рождения пары в поле ядра, σ_{ep} — сечение образования пар в поле атомных электронов, σ_{GDR} — сечение ядерного фотопоглощения.

рис. 1 показано также сечение образования пар в поле атомных электронов (σ_{ep}) .

При дальнейшем увеличении энергии γ -квантов затрагивается уже внутренняя структура атомных ядер. Для энергий γ -квантов, больших 10 МэВ, увеличивается вероятность процесса взаимодействия фотона с ядрами вещества с возбуждением ядерных состояний. При энергиях около 20–25 МэВ для легких ядер (A<40) и 13–15 МэВ для тяжелых ядер в эффективном сечении ядерного фотопоглощения наблюдается максимум, который называется гигантским дипольным резонансом (σ_{GDR} на графиках рис. 1).

В области энергий γ -квантов от 10 кэВ до примерно 10 МэВ (т. е. излучаемых возбужденными ядрами при переходах в основное и низшие возбужденные состояния) ослабление потока фотонов при прохождении через вещество определяется, преимущественно, тремя процессами: фотоэффектом, комптон-эффектом и образованием пар в кулоновском поле атомных ядер. Суммарное сечение для этих процессов равно

$$\sigma = \sigma_{\text{фот}} + \sigma_{\text{компт}} + \sigma_{\text{пар}},$$

где $\sigma_{\rm фот} \sim Z^5/E_{\gamma}^2(E_{\gamma})$ — сечение фотоэффекта, $\sigma_{
m компт} \sim Z/E_{\gamma}$ — сечение

Рис. 2. Зависимость линейного коэффициента поглощения фотонов от энергии в свинце (слева) и алюминии (справа)

эффекта Комптона, $\sigma_{\rm nap} \sim Z^2 \ln 2E_{\gamma}$ — сечение образования пар. Уменьшение потока фотонов происходит экспоненциально:

$$I(x) = I(0)e^{-n\sigma x} = I(0)e^{-\tau x},$$

где n — концентрация атомов поглотителя.

Обычно с поглощением фотонов в веществе связывают еще два понятия:

- 1. Линейный коэффициент поглощения $\tau=n\sigma$ (рис. 2) это такая толщина вещества в сантиметрах, на которой поток фотонов ослабляется в e раз.
- 2. Массовый коэффициент поглощения $\mu = \tau/\rho = \sigma n/\rho$ (рис. 3), где ρ (г/см) плотность вещества. Смысл у μ тот же эта такая толщина вещества в г/см², на которой поток ослабляется в e раз.

Образование электрон-позитронных пар

Возможность процесса образования электрон-позитронных пар при достаточно высокой энергии гамма-квантов была обнаружена Полем Дираком в 1932 году. Упрощенно говоря, этот процесс состоит в том, что квант поглощается, а рождаются и вылетают электрон и позитрон (рис. 4).

Согласно опыту и квантовоэлектродинамическому расчету, поглощение фотона и рождение пары происходит не внутри ядра, а около него

Рис. 3. Зависимость массового коэффициента поглощения фотонов от их энергии в алюминии, меди и свинце

Рис. 4. Образование пары электрон-позитрон

Рис. 5. Зависимость сечения рождения пар от энергии фотонов

в области, имеющей размер порядка комптоновской длины волны электрона $\lambda_0 = 2.4 \cdot 10^{-10}$ см. Передача импульса отдачи ядру происходит посредством его кулоновского поля. Без передачи импульса постороннему телу превращение фотона в электронно-позитронную пару запрещено законами сохранения энергии и импульса, имеющими следующий вид:

$$h\nu = 2m_e c^2 + T_- + T_+ + T_{\rm s},$$

$$\overrightarrow{h\nu} = \overrightarrow{\overline{m_e\beta_-c}} + \overrightarrow{\overline{m_e\beta_+c}} + \overrightarrow{\overline{p_{\mathrm{s}}}},$$

где β_- и β_+ — относительные скорости электрона и позитрона, T_- и T_+ — их кинетические энергии, а $T_{\rm f}$ и $\vec{p}_{\rm f}$ — энергия и импульс ядра отдачи.

Поскольку при взаимодействии фотона с полем ядра рождаются электрон и позитрон, процесс образования пар имеет энергетический порог, т. е. он происходит, если $h\nu > 2m_ec^2$.

Теоретические расчеты зависимости сечения рождения пар от энергии γ -квантов приводят к довольно сложному виду. Однако для области энергий $5m_ec^2 < h\nu < 50m_ec^2$ эта зависимость может быть представлена в виде

$$\sigma_{\rm nap} \sim Z^2 \ln \frac{E_{\gamma}}{m_e c^2}.$$

Рис. 6. Вероятность образования фотоном электрон-позитронной пары

При энергии фотонов $h\nu < 5m_ec^2$ и $h\nu > 50m_ec^2$ сечение растет медленнее. При $h\nu > 50m_ec^2$ рост сечения ограничивается экранированием кулоновского поля ядра атомными электронами. В предельно релятивистском случае при $h\nu > 10^3m_ec^2$ сечение не зависит от энергии:

$$\sigma_{\text{пар}} \sim 0.08 Z^2 r_e^2 = 0.63 \cdot 10^{-26} Z^2 \text{ cm}^2.$$

На рис. 6 показана вероятность P того, что фотон, взаимодействуя с веществом, образует электрон-позитронную пару. Видно, что вероятность образования электрон-позитронной пары растет с ростом энергии фотона и с увеличением заряда ядра.

Электрон-позитронные пары могут рождаться фотонами в кулоновском поле не только ядра, но и электрона (рис. 7). Порог рождения пар в поле электрона равен $4m_ec^2$. Это связано с тем, что энергию отдачи получает электрон, имеющий малую массу, и пренебречь ею уже нельзя. Такой процесс приводит к гораздо более слабому поглощению гамма-излучения из-за малости соответствующего сечения (для электрона Z=1, а сечение образование пар пропорционально Z^2 : $\sigma_{\rm пар}\sim Z^2\ln E_\gamma$), несмотря на то, что электронов в веществе больше, чем ядер.

На рис. 7 в первом случае энергия отдачи ядра так мала, что на снимке видны только e^+ и e^- . Обе частицы летят (в начале своего пути) в на-

Рис. 7. Образование электрон-позитронных пар в кулоновском поле ядра (слева) и электрона (справа)

Рис. 8. Схема электронно-фотонного ливня

правлении вызвавшего их гамма-кванта под углом $\theta=m_ec^2/E_\gamma$ к нему. Во втором случае кроме электрона и позитрона пары виден также и электрон отдачи.

Процесс образования электрон-позитронных пар наряду с радиационным торможением электронов является причиной возникновения электрон-фотонных ливней в космических лучах. Если гамма-квант, возникающий в результате радиационного торможения электрона, имеет энергию $E_{\gamma}>2m_{e}c^{2}$, то он может образовать пару, электрон и позитрон которой снова создают гамма-кванты радиационного торможения, и т. д. (рис. 8). Процесс нарастает лавинообразно до тех пор, пока энергия электронов не уменьшится до критического значения.

Другие процессы взаимодействия фотонов с веществом

- 1. Ядерный фотоэффект явление, открытое Джеймсом Чедвиком и Морисом Гольдхабером в 1934 г., заключающееся в поглощении γ -кванта ядром и испускании при этом нуклона, т.е. (γ, n) -реакция. Порог ядерного фотоэффекта 6–10 МэВ, т.е. порядка энергии связи нуклонов в ядрах. Сечение ядерного фотоэффекта $\sigma_{\rm яф} \sim Z$ и по величине существенно меньше сечений трех рассмотренных выше эффектов.
- 2. Если энергия фотонов много больше энергии связи нуклонов в ядрах, то может происходить фоторасщепление ядер с вылетом нескольких частиц. Например, $(\gamma, 2p)$, $(\gamma, n, 2p)$ -реакции. Сечение такого процесса $\sigma_{\rm sph} \sim 10^{-26}~{\rm cm}^2$.
- 3. Если $h\nu > 2m_{\mu}c^2$, т. е. $h\nu > 200$ МэВ, то в поле ядра γ -кванты могут образовывать $\mu^-\mu^+$ -пары, аналогично e^-e^+ -парам.
- 4. Если $h\nu>m_\pi c^2$, т. е. $h\nu>140$ МэВ, то может возникать фотогенерация пионов с сечением $\sim 10^{-28}$ см².

Таким образом можно сделать вывод, что поглощение γ -квантов за счет всех перечисленных процессов пренебрежимо мало по сравнению с $\sigma_{\text{пар}}$.

Литература

- 1. «Экспериментальная ядерная физика». К. Н. Мухин
- 2. «Взаимодействие излучения высокой энергии с веществом». Е. А. Мурзина
- 3. «Частицы и атомные ядра». Б.С. Ишханов, И.М. Капитонов, Н.П.Юлин
- 4. «Ядерная физика». Ю. М. Широков, Н. П. Юдин
- 5. «Антиматерия». Б. С. Ишханов, Э. И. Кэбин
- 6. Сайт «Ядерная физика в интернете»: nuclphys.sinp.msu.ru