Practice set-1

1. A double pendulum consists of two point masses m attached by strings of length l as shown in the figure: The kinetic energy of the pendulum is

[NET/JRF(DEC-2011)]

A.
$$\frac{1}{2}ml^2 \left[\dot{\theta}_1^2 + \dot{\theta}_2^2 \right]$$

B.
$$\frac{1}{2}ml^2 \left[2\dot{\theta}_1^2 + \dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2\cos(\theta_1 - \theta_2) \right]$$

C.
$$\frac{1}{2}ml^2 \left[\dot{\theta}_1^2 + 2\dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2\cos(\theta_1 - \theta_2) \right]$$

D.
$$\frac{1}{2}ml^2 \left[2\dot{\theta}_1^2 + \dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2\cos(\theta_1 + \theta_2) \right]$$

Solution:

Let co-ordinate (x_1, y_1) and (x_2, y_2) .

$$K.E. = \frac{1}{2}m(\dot{x}_{1}^{2} + \dot{y}_{1}^{2}) + \frac{1}{2}m(\dot{x}_{2}^{2} + \dot{y}_{2}^{2})$$

$$x_{1} = l\sin\theta_{1}, y_{1} = l\cos\theta_{1} \Rightarrow \dot{x}_{1}$$

$$= l\cos\theta_{1}\dot{\theta}_{1}, \dot{y}_{1} = -l\sin\theta_{1}\dot{\theta}_{1}$$

$$x_{2} = l\sin\theta_{1} + l\sin\theta_{2}, y_{2} = l\cos\theta_{1} + l\cos\theta_{2}$$

$$\Rightarrow \dot{x}_{2} = l\cos\theta_{1}\dot{\theta}_{1} + l\cos\theta_{2}\dot{\theta}_{2}, \dot{y}_{2}$$

$$= l(-\sin\theta_{1}\dot{\theta}_{1}) + l(-\sin\theta_{2})\dot{\theta}_{2}$$

Put the value of $\dot{x}_1, \dot{y}_1, \dot{x}_2, \dot{y}_2$ in K.E equation, one will get

$$T = \frac{1}{2}ml^{2} \left[2\dot{\theta}_{1}^{2} + \dot{\theta}_{2}^{2} + 2\dot{\theta}_{1}\dot{\theta}_{2}\cos(\theta_{1} - \theta_{2}) \right]$$

So the correct answer is **Option** (B)

2. A particle of mass m moves inside a bowl. If the surface of the bowl is given by the equation $z = \frac{1}{2}a(x^2 + y^2)$, where a is a constant, the Lagrangian of the particle is

[NET/JRF(DEC-2011)]

A.
$$\frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2 - gar^2)$$

C.
$$\frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2 + r^2\sin^2\theta\dot{\phi}^2 - gar^2)$$

B.
$$\frac{1}{2}m\left[\left(1+a^2r^2\right)\dot{r}^2+r^2\dot{\phi}^2\right]$$

D.
$$\frac{1}{2}m\left[\left(1+a^2r^2\right)\dot{r}^2+r^2\dot{\phi}^2-gar^2\right]$$

$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - mgz.$$

where
$$z = \frac{1}{2}a\left(x^2 + y^2\right)$$

It has cylindrical symmetry. Thus $x = r\cos\phi$, $y = r\sin\phi$, $z = \frac{1}{2}a\left(r^2\right)$

$$\dot{x} = \dot{r}\cos\phi - r\sin\phi\dot{\phi}, \dot{y}$$

$$= \dot{r}\sin\phi + r\cos\phi\dot{\phi} \text{ and } \dot{z} = a(r\dot{r})$$

So,
$$L = \frac{1}{2}m\left[\left(1 + a^2r^2\right)\dot{r}^2 + r^2\dot{\phi}^2 - gar^2\right]$$

So the correct answer is **Option (D)**

3. The Lagrangian of a particle of mass m moving in one dimension is given by

$$L = \frac{1}{2}m\dot{x}^2 - bx$$

where b is a positive constant. The coordinate of the particle x(t) at time t is given by: (in following c_1 and c_2 are constants)

[NET/JRF(JUNE-2013)]

A.
$$-\frac{b}{2m}t^2 + c_1t + c_2$$

B.
$$c_1t + c_2$$

C.
$$c_1 \cos\left(\frac{bt}{m}\right) + c_2 \sin\left(\frac{bt}{m}\right)$$

D.
$$c_1 \cosh\left(\frac{bt}{m}\right) + c_2 \sinh\left(\frac{bt}{m}\right)$$

Solution:

Equation of motion
$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0 \Rightarrow \frac{d}{dt} (m\dot{x}) + b$$

$$=0 \Rightarrow m\ddot{x} + b = 0 \Rightarrow m\ddot{x} = -b$$

$$\frac{d^2x}{dt^2} = -\frac{b}{m} \Rightarrow \frac{dx}{dt} = -\frac{b}{m}t + c_1 \Rightarrow x$$
$$= -\frac{b}{m}\frac{t^2}{2} + c_1t + c_2$$

So the correct answer is **Option** (A)

4. A particle moves in a potential $V = x^2 + y^2 + \frac{z^2}{2}$. Which component(s) of the angular momentum is/are constant(s) of motion?

[NET/JRF(DEC-2013)]

B.
$$L_x, L_y$$
 and L_z

C. only
$$L_x$$
 and L_y

D. only
$$L_z$$

Solution:

A particle moves in a potential
$$V = x^2 + y^2 + \frac{z^2}{2}$$

$$V(r, \theta, \phi) = r^2 \sin^2 \theta \cos^2 \phi + r^2 \sin^2 \theta \sin^2 \phi + \frac{r^2}{2} \cos^2 \theta$$

$$V(r, \theta, \phi) = r^2 \sin^2 \theta + \frac{r^2}{2} \cos^2 \theta$$

Now ϕ is cyclic-co-ordinate (p_{ϕ}) i.e L_z is constant of motion.

So the correct answer is **Option (D)**

5. A pendulum consists of a ring of mass M and radius R suspended by a massless rigid rod of length l attached to its rim. When the pendulum oscillates in the plane of the ring, the time period of oscillation is [NET/JRF(DEC-2013)]

A.
$$2\pi\sqrt{\frac{l+R}{g}}$$

B.
$$\frac{2\pi}{\sqrt{g}} \left(l^2 + R^2 \right)^{1/4}$$

C.
$$2\pi\sqrt{\frac{2R^2+2Rl+l}{g(R+l)}}$$

D.
$$\frac{2\pi}{\sqrt{g}} \left(2R^2 + 2Rl + l^2 \right)^{1/4}$$

The moment of inertia about pivotal point is given by

$$I = I_{cm} + Md^2 = MR^2 + M(l+R)^2$$

If ring is displaced by angle θ then potential energy is $-Mg(l+R)\cos\theta$.

The Lagrangian is given by

$$L = \frac{1}{2}I\dot{\theta}^2 - V(\theta)$$

$$= \frac{1}{2}\left(MR^2 + M(l+R)^2\right)\dot{\theta}^2 + Mg(l+R)\cos\theta$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) - \left(\frac{\partial L}{\partial \theta}\right) = 0 \Rightarrow \left(MR^2 + M(l+R)^2\right)\ddot{\theta} + Mg(l+R)\sin\theta = 0$$
For small oscillation $\sin\theta = \theta \Rightarrow \left(MR^2 + M(l+R)^2\right)\ddot{\theta} + Mg(l+R)\theta = 0$
Time period is given by $2\pi\sqrt{\frac{2R^2 + 2Rl + l^2}{g(R+l)}}$.

So the correct answer is **Option** (C)

6. Consider a particle of mass *m* attached to two identical springs each of length *l* and spring constant *k* (see the figure). The equilibrium configuration is the one where the springs are unstretched. There are no other external forces on the system. If the particle is given a small displacement along the *x*-axis, which of the following describes the equation of motion for small oscillations?

[NET/JRF(DEC-2013)]

A.
$$m\ddot{x} + \frac{kx^3}{l^2} = 0$$

$$\mathbf{B.} \ m\ddot{x} + kx = 0$$

$$\mathbf{C.} \ m\ddot{x} + 2kx = 0$$

$$\mathbf{D.} \ m\ddot{x} + \frac{kx^2}{l} = 0$$

The lagrangian of system is given by

$$L = \frac{1}{2}m\dot{x}^2 - V(x)$$

The potential energy is given by

$$V(x) = \frac{k}{2} \left[(x^2 + l^2)^{\frac{1}{2}} - l \right]^2 + \frac{k}{2} \left[(x^2 + l^2)^{\frac{1}{2}} - l \right]^2$$
$$V(x) = k \left[(x^2 + l^2)^{\frac{1}{2}} - l \right]^2$$

For small oscillation one can approximate potential by Taylor expansion

$$V(x) = kl^{2} \left[\left(1 + \frac{x^{2}}{l^{2}} \right)^{\frac{1}{2}} - 1 \right]^{2} \Rightarrow V(x)$$

$$= kl^{2} \left[\left(1 + \frac{1}{2} \frac{x^{2}}{l^{2}} - \frac{1}{8} \frac{x^{4}}{l^{4}} \right) - 1 \right]^{2}$$

$$V(x) = \frac{kl^{2}}{4} \left(\frac{x^{2}}{l^{2}} \right)^{2} \Rightarrow V(x) = k \left(\frac{x^{4}}{4l^{2}} \right)$$

So Lagrangian of system is given by $L = \frac{1}{2}m\dot{x}^2 - k\left(\frac{x^4}{4l^2}\right)$

The Lagranges equation of motion $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \left(\frac{\partial L}{\partial x} \right) = 0 \Rightarrow m\ddot{x} + \frac{kx^3}{l^2} = 0$

So the correct answer is **Option** (A)

7. The equation of motion of a system described by the time-dependent Lagrangian

$$L = e^{\gamma t} \left[\frac{1}{2} m \dot{x}^2 - V(x) \right]$$
 is

[NET/JRF(DEC-2014)]

A.
$$m\ddot{x} + \gamma m\dot{x} + \frac{dV}{dx} = 0$$

C.
$$m\ddot{x} - \gamma m\dot{x} + \frac{dV}{dx} = 0$$

B.
$$m\ddot{x} + \gamma m\dot{x} - \frac{dV}{dx} = 0$$

$$\mathbf{D.} \ m\ddot{x} + \frac{dV}{dx} = 0$$

$$\therefore L = e^{\gamma t} \left[\frac{1}{2} m \dot{x}^2 - V(x) \right] \Rightarrow \frac{\partial L}{\partial \dot{x}}$$

$$= e^{\gamma t} m \dot{x} \text{ and } \frac{\partial L}{\partial x} = -\frac{\partial V}{\partial x} e^{\gamma t}$$

$$\therefore \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0 \Rightarrow \frac{d}{dt} \left(e^{\gamma t} m \dot{x} \right) + \frac{\partial V}{\partial x} e^{\gamma t}$$

$$= m \ddot{x} e^{rt} + m \dot{x} \gamma e^{\gamma t} + \frac{\partial V}{\partial x} e^{rt} = 0$$

$$\left(m \ddot{x} + m \gamma \dot{x} + \frac{\partial V}{\partial x} \right) e^{\gamma t} = 0 \Rightarrow m \ddot{x} + \gamma m \dot{x} + \frac{\partial V}{\partial x} = 0$$

So the correct answer is **Option** (A)

8. A particle of unit mass moves in the *xy*-plane in such a way that $\dot{x}(t) = y(t)$ and $\dot{y}(t) = -x(t)$. We can conclude that it is in a conservative force-field which can be derived from the potential

[NET/JRF(JUNE-2015)]

A.
$$\frac{1}{2}(x^2+y^2)$$

B.
$$\frac{1}{2}(x^2-y^2)$$

C.
$$x+y$$

D.
$$x - y$$

Solution:

$$\therefore \dot{x} = y \text{ and } \dot{y} = -x$$

$$\Rightarrow \quad \ddot{x} = \dot{y} = -x \quad \text{and } \ddot{y} = -\dot{x} = -y$$

$$\Rightarrow \quad \ddot{x} + x = 0 \quad \text{and } \ddot{y} + y = 0$$
that is possible for $L = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}m\dot{y}^2 - \frac{1}{2}\left(x^2 + y^2\right)$

$$\Rightarrow V = \frac{1}{2}\left(x^2 + y^2\right)$$

So the correct answer is **Option** (A)

9. The Lagrangian of a particle moving in a plane s given in Cartesian coordinates as

$$L = \dot{x}\dot{y} - x^2 - y^2$$

In polar coordinates the expression for the canonical momentum p_r (conjugate to the radial coordinate r) is

[NET/JRF(DEC-2015)]

A.
$$r\sin\theta + r\dot\theta\cos\theta$$

B.
$$\dot{r}\cos\theta + r\dot{\theta}\sin\theta$$

C.
$$2\dot{r}\cos\theta - r\dot{\theta}\sin2\theta$$

D.
$$\dot{r}\sin 2\theta + r\dot{\theta}\cos 2\theta$$

$$L = \dot{x}\dot{y} - x^2 - y^2 = \dot{x}\dot{y} - \left(x^2 + y^2\right)$$

$$x = r\cos\theta, y = r\sin\theta \Rightarrow \dot{x} = \dot{r}\cos\theta - r\sin\theta\dot{\theta},$$

$$\dot{y} = \dot{r}\sin\theta + r\cos\theta\dot{\theta}$$

$$L = \dot{r}^2\sin\theta\cos\theta - r^2\sin\theta\cos\theta\dot{\theta}^2 + \dot{r}r\cos^2\theta\dot{\theta} - \dot{r}r\sin^2\theta\dot{\theta}$$

$$P_r = \frac{\partial L}{\partial \dot{r}} \Rightarrow 2\dot{r}\sin\theta\cos\theta + r\dot{\theta}\left(\cos^2\theta - \sin^2\theta\right)$$

$$\Rightarrow P_r = \dot{r}\sin2\theta + r\dot{\theta}\cos2\theta$$

So the correct answer is **Option** (**D**)

10. The dynamics of a particle governed by the Lagrangian

$$L = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2 - kx\dot{x}t \text{ describes}$$

[NET/JRF(DEC-2016)]

- A. An undamped simple harmonic oscillator
- **B.** A damped harmonic oscillator with a time varying damping factor
- C. An undamped harmonic oscillator with a time dependent frequency
- **D.** A free particle

Solution:

$$L = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2 - kx\dot{x}t$$

$$\frac{\partial L}{\partial \dot{x}} = m\dot{x} - kxt, \frac{\partial L}{\partial x} = -kx - k\dot{x}t$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}}\right) - \frac{\partial L}{\partial x} = 0 \Rightarrow m\ddot{x} - k\dot{x}t - kx + kx + k\dot{x}t$$

$$= 0 \Rightarrow m\ddot{x} = 0$$

So motion is equivalent to free particle

So the correct answer is **Option** (**D**)

11. The parabolic coordinates (ξ, η) are related to the Cartesian coordinates (x, y) by $x = \xi \eta$ and y = $\frac{1}{2}(\xi^2 - \eta^2)$. The Lagrangian of a two-dimensional simple harmonic oscillator of mass m and angular frequency wis afting your future

[NET/JRF(DEC-2016)]

A.
$$\frac{1}{2}m\left[\dot{\xi}^2 + \dot{\eta}^2 - \omega^2(\xi^2 + \eta^2)\right]$$

B.
$$\frac{1}{2}m(\xi^2 + \eta^2) \left[\left(\dot{\xi}^2 + \dot{\eta}^2 \right) - \frac{1}{4}\omega^2 \left(\xi^2 + \eta^2 \right) \right]$$

C.
$$\frac{1}{2}m(\xi^2 + \eta^2) \left[\dot{\xi}^2 + \dot{\eta}^2 - \frac{1}{2}\omega^2\xi\eta \right]$$

D.
$$\frac{1}{2}m(\xi^2 + \eta^2) \left[\dot{\xi}^2 + \dot{\eta}^2 - \frac{1}{4}\omega^2 \right]$$

Solution:

For two dimensional Harmonic oscillation

$$\begin{split} L &= \frac{1}{2} m \left(\dot{x}^2 + \dot{y}^2 \right) - \frac{1}{2} m \omega^2 \left(x^2 + y^2 \right) \\ x &= \xi \eta, \quad y = \frac{1}{2} \left(\xi^2 - \eta^2 \right) \\ \dot{x} &= \dot{\xi} \eta + \xi \dot{\eta}, \quad \dot{y} = \xi \dot{\xi} - \eta \dot{\eta} \\ L &= \frac{1}{2} m \left[(\dot{\xi} \eta + \xi \dot{\eta})^2 + (\xi \dot{\xi} - \eta \dot{\eta})^2 \right] - \frac{1}{2} m \omega^2 \left[\xi^2 \eta^2 + \frac{1}{4} \left(\xi^2 - \eta^2 \right)^2 \right] \end{split}$$

$$\begin{split} L &= \frac{1}{2} m \left(\dot{\xi}^2 \eta^2 + \xi^2 \dot{\eta}^2 + \xi^2 \dot{\xi}^2 + \eta^2 \dot{\eta}^2 \right) - \frac{1}{8} m \omega^2 \left(\xi^4 + \eta^4 + 2 \xi^2 \eta^2 \right) \\ &= \frac{1}{2} m \left(\xi^2 + \eta^2 \right) \left(\dot{\eta}^2 + \dot{\xi}^2 \right) - \frac{1}{8} m \omega^2 \left(\xi^2 + \eta^2 \right)^2 \\ &= \frac{1}{2} m \left(\xi^2 + \eta^2 \right) \left[\dot{\eta}^2 + \dot{\xi}^2 - \frac{1}{4} \omega^2 \left(\xi^2 + \eta^2 \right) \right] \end{split}$$

So the correct answer is **Option** (B)

12. The spring constant k of a spring of mass m_s is determined experimentally by loading the spring with mass M and recording the time period T, for a single oscillation. If the experiment is carried out for different masses, then the graph that correctly represents the result is

[NET/JRF(DEC-2017)]

Solution:

The Langrangian of system.

$$L = \frac{1}{2} \cdot \frac{m_s}{3} \dot{x}^2 + \frac{1}{2} M \dot{x}^2 - \frac{1}{2} k x^2, \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0$$
$$\frac{d}{dt} \frac{\partial L}{\partial x} = 0 \Rightarrow \left(\frac{m_s}{3} + M \right) \ddot{x} = -kx$$
$$T = 2\pi \sqrt{\frac{M + \frac{m_s}{3}}{k}} \Rightarrow T^2 = 4\pi \frac{\left(M + \frac{m_s}{3} \right)}{k}$$

So the correct answer is **Option** (A)

13. The motion of a particle in one dimension is described by the Langrangian $L = \frac{1}{2} \left(\left(\frac{dx}{dt} \right)^2 - x^2 \right)$ in suitable units. The value of the action along the classical path from x = 0 at t = 0 to $x = x_0$ at $t = t_0$, is [NET/JRF(DEC-2018)]

A.
$$\frac{x_0^2}{2\sin^2 t_0}$$

B.
$$\frac{1}{2}x_0^2 \tan t_0$$

C.
$$\frac{1}{2}x_0^2 \cot t_0$$

D.
$$\frac{x_0^2}{2\cos^2 t_0}$$

$$L = \frac{1}{2}\dot{x}^2 - \frac{1}{2}x^2$$

From Lagrangian equation of motion, $\frac{d}{dt} \left(\frac{\partial L}{\partial x} \right) - \frac{\partial L}{\partial x} = 0$

The solution is
$$= A \sin t + B \cos t$$

 $t = 0, \quad x = 0, \quad B = 0$
 $x = A \sin t$
 $t = t_0, \quad x = x_0, A = \frac{x_0}{\sin t_0}$
 $x = \frac{x_0}{\sin t_0} \sin t, \quad \dot{x} = \frac{x_0}{\sin t_0} \cos t$
 $A = \int_0^{t_0} L dt = \int_0^{t_0} \frac{1}{2} \dot{x}^2 dt - \int_0^{t_0} \frac{1}{2} x^2 dt$
 $= \frac{1}{2} \frac{x_0^2}{\sin^2 t_0} \int_0^{t_0} \cos^2 t dt - \frac{1}{2} \frac{x_0^2}{\sin^2 t_0} \int_0^{t_0} \sin^2 t dt$
 $= \frac{1}{2} \frac{x_0^2}{\sin^2 t_0} \left[\int_0^{t_0} \cos^2 t dt - \int_0^t \sin^2 t dt \right]$
 $= \frac{1}{2} \frac{x_0^2}{\sin^2 t_0} \int_t^{t_0} \cos 2t dt = \frac{1}{2} \frac{x_0^2}{\sin^2 t_0} \frac{\sin 2t_0}{2} \Big|_0^{t_0} = \frac{x_0^2}{2} \cot t_0$

So the correct answer is **Option** (C)

14. Two particles of masses m_1 and m_2 are connected by a massless thread of length l as shown in figure below.

The particle of mass in on the plane undergoes a circular motion with radius r_0 and angular momentum L. When a small radial displacement \in (whew \in \ll < r_0) is applied, its radial coordinate is found to oscillate about r_0 . The frequency of the oscillations is

[NET/JRF(JUNE-2019)]

A.
$$\sqrt{\frac{7m_2g}{\left(m_1+\frac{m_2}{2}\right)r_0}}$$

B.
$$\sqrt{\frac{7m_2g}{(m_1+m_2)r_0}}$$

C.
$$\sqrt{\frac{3m_2g}{\left(m_1+\frac{m_2}{2}\right)r_0}}$$

D.
$$\sqrt{\frac{3m_2g}{(m_1+m_2)r_0}}$$

Solution:

$$L = \frac{1}{2} (m_1 + m_2) \ddot{r} + \frac{1}{2} m_1 r^2 \dot{\theta}^2 - m_2 g (l - r)$$
Lagrangian equation of motion;
$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{r}} \right) - \frac{\partial L}{\partial r} = 0$$

$$(m_1 + m_2) \ddot{r} - m_1 r \dot{\theta}^2 + m_2 g = 0$$

Hence angular momentum is conserved

$$m_1 r^2 \dot{\theta} = m_1 r_0^2 \dot{\theta}_0 \Rightarrow \dot{\theta} = \frac{r_0^2 \dot{\theta}_0}{r^2}$$
For circular motion $m r_0 \dot{\theta}_0^2 = m_2 g$
so $r \dot{\theta}^2 = \frac{m_2}{m_1} \left(\frac{r_0}{r}\right)^3 g$

$$(m_1 + m_2)\ddot{r} - m_2 \left(\frac{r_0}{r}\right)^3 g + m_2 g = 0$$

Put
$$r = r_0 + \in \ddot{r} = \ddot{\varepsilon}$$

$$(m_1 + m_2) \stackrel{.}{\in} -m_2 \left(\frac{r_0}{r_0 + \varepsilon}\right)^3 g + m_2 g \Rightarrow (m_1 + m_2) \stackrel{.}{\in} -m_2 r_0^3 (r_0 + \varepsilon)^{-3} g + m_2 g$$

$$(m_1 + m_2) \ddot{\times} - m_2 r_0^3 g r_0^{-3} \left(1 + \frac{\varepsilon}{r_0} \right)^{-3} + m_2 g = 0$$

$$(m_1 + m_2) \ddot{+} \frac{m_2 3\varepsilon}{r_0} = 0 \Rightarrow \omega = \sqrt{\frac{3m_2 g}{(m_1 + m_2) r_0}}$$

So the correct answer is **Option** (**D**)

15. Which of the following terms, when added to the Lagrangian $L(x, y, \dot{x}, \dot{y})$ of a system with two degrees of freedom will not change the equations of motion? (check question)

[NET/JRF(DEC-2019)]

A.
$$x\ddot{x} - y\ddot{y}$$

B.
$$x\ddot{y} - y\ddot{x}$$

$$\mathbf{C.} \ x\dot{y} - y\dot{x}$$

D.
$$y\dot{x}^2 + x\dot{y}^2$$

Solution:

$$L(x, y, \dot{x}, \dot{y})$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0, \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}} \right) - \frac{\partial L}{\partial y} = 0$$

$$L' = L(x, y, \dot{x}, \dot{y}) + x\ddot{y} - y\ddot{x}$$

$$L' = L(x, y, \dot{x}, \dot{y}) + x\ddot{y} - y\ddot{x}$$

$$\frac{d'}{dt'} \left(\frac{\partial L'}{\partial \dot{x}}\right) - \frac{\partial L'}{\partial x} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}}\right) - \frac{\partial L}{\partial x} + \ddot{y}$$

$$= 0 = 0 + \ddot{y} = 0 \Rightarrow \dot{y} = c_1$$

$$= 0 = 0 + \ddot{y} = 0 \Rightarrow \dot{y} = c_1$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial y} \right) - \frac{\partial L'}{\partial y} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}} \right) - \frac{\partial L}{\partial y} + \ddot{x}$$

$$= 0 = 0 - \ddot{x} = 0 \Rightarrow \dot{x} = c_2$$

So the correct answer is **Option** (B)

16. A point mass m, is constrained to move on the inner surface of a paraboloid of revolution $x^2 + y^2 = az$ (where a > 0 is a constant). When it spirals down the surface, under the influence of gravity (along -zdirection), the angular speed about the z-axis is proportional to

[NET/JRF(JUNE-2020)]

A. 1 (independent of
$$z$$
)

C.
$$z^{-1}$$

D.
$$z^{-2}$$

Solution:

Using Lagrangian in cylindrical coordinate

$$L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2 + \dot{z}^2) - mgz$$

with constraint
$$x^2 + y^2 = az \Rightarrow r^2 = az \Rightarrow \dot{z} = \frac{2r\dot{r}}{a}$$

$$L = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\theta}^2 + \left(\frac{2r\dot{r}}{a}\right)^2\right) - \frac{mgr^2}{a}$$

$$\theta \text{ is cyclic coordinate so } \frac{\partial L}{\partial \theta} = 0 \Rightarrow \frac{\partial L}{\partial \dot{\theta}} = J \Rightarrow mr^2\dot{\theta} = J \Rightarrow \dot{\theta} \propto \frac{1}{r^2} \propto \frac{1}{z}$$

So the correct answer is **Option** (C)

Answer key				
Q.No.	Answer	Q.No.	Answer	
1	В	2	D	
3	A	4	D	
5	C	6	A	
7	A	8	A	
9	D	10	D	
11	В	12	A	
13	C	14	D	
15	В	16	C	

Practice set-2

1. A particle of mass m slides under the gravity without friction along the parabolic path $y = ax^2$, as shown in the figure. Here a is a constant.

The Lagrangian for this particle is given by

[GATE 2012]

A.
$$L = \frac{1}{2}m\dot{x}^2 - mgax^2$$

B.
$$L = \frac{1}{2}m(1 + 4a^2x^2)\dot{x}^2 - mgax^2$$

C.
$$L = \frac{1}{2}m\dot{x}^2 + mgax^2$$

D.
$$L = \frac{1}{2}m(1+4a^2x^2)\dot{x}^2 + mgax^2$$

Solution:

Equation of constrain is given by $y = ax^2, K.E., T = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2)$

$$\dot{y} = 2ax\dot{x} \Rightarrow T = \frac{1}{2}m(\dot{x}^2 + 4a^2x^2\dot{x}^2)$$

$$= \frac{1}{2}m\dot{x}^2(1 + 4ax^2)$$

$$V = mgy = mgax^2$$

$$\therefore L = T - V \Rightarrow L$$

$$= \frac{1}{2}m(1+4a^2x^2)\dot{x}^2 - mgax^2$$

So the correct answer is **Option** (B)

2. The Lagrange's equation of motion of the particle for above question is given by

[GATE 2012]

A.
$$\ddot{x} = 2gax$$

B.
$$m(1+4a^2x^2)\ddot{x} = -2mgax - 4ma^2x\dot{x}^2$$

C.
$$m(1+4a^2x^2)\ddot{x} = 2mgax + 4ma^2x\dot{x}^2$$

D.
$$\ddot{x} = -2gax$$

$$\frac{d}{dt}\left(\frac{dL}{d\dot{x}}\right) = \frac{dL}{dx} \Rightarrow m\ddot{x}\left(1 + 4a^2x^2\right)$$
$$= -4ma^2x\dot{x}^2 - 2mgax$$

So the correct answer is **Option** (B)

3. The Lagrangian of a system with one degree of freedom q is given by $L = \alpha \dot{q}^2 + \beta q^2$, where α and β are non-zero constants. If p_q denotes the canonical momentum conjugate to q then which one of the following statements is CORRECT?

[GATE 2013]

- **A.** $p_q = 2\beta q$ and it is a conserved quantity.
- **B.** $p_q = 2\beta q$ and it is not a conserved quantity.
- C. $p_q = 2\alpha \dot{q}$ and it is a conserved quantity.
- **D.** $p_q = 2\alpha \dot{q}$ and it is not a conserved quantity.

Solution:

As,
$$\frac{\partial L}{\partial \dot{q}} = p_q$$
 but $\frac{\partial L}{\partial q} \neq 0$. Thus, it is not a conserved quantity.

So the correct answer is **Option** (**D**)

4. A bead of mass m can slide without friction along a massless rod kept at 45° with the vertical as shown in the figure. The rod is rotating about the vertical axis with a constant angular speed ω . At any instant r is the distance of the bead from the origin. The momentum conjugate to r is

[GATE 2014]

 \mathbf{A} . $m\dot{r}$

B.
$$\frac{1}{\sqrt{2}}mi$$

C.
$$\frac{1}{2}m\dot{r}$$

D.
$$\sqrt{2}m\dot{r}$$

Solution:

$$L = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\theta}^2 + r^2\sin^2\theta\dot{\phi}^2\right) - mgr\cos\theta$$
 Equation of constrain is $\theta = \frac{\pi}{4}$ and it is given $\dot{\phi} = \omega$

quation of constrain is
$$\theta = \frac{1}{4}$$
 and it is given $\phi = \omega$

$$L = \frac{1}{2}m\left(\dot{r}^2 + \frac{1}{2}r^2\omega^2\right) - \frac{1}{\sqrt{2}}mgr$$

Thus the momentum conjugate to r is $p_r = \frac{\partial L}{\partial \dot{r}} \Rightarrow p_r = m\dot{r}$

So the correct answer is **Option** (A)

5. The Lagrangian of a system is given by $L = \frac{1}{2}ml^2 \left[\dot{\theta}^2 + \sin^2\theta \dot{\phi}^2\right] - mgl\cos\theta$, where m,l and g are constants. Which of the following is conserved?

[GATE 2016]

A. $\dot{\varphi} \sin^2 \theta$

- **B.** $\dot{\varphi} \sin \theta$
- C. $\frac{\dot{\varphi}}{\sin \theta}$
- **D.** $\frac{\phi}{\sin^2 \theta}$

Solution: As φ is cyclic coordinate, so $\frac{\partial L}{\partial \dot{\varphi}} = p_{\varphi} = ml^2 \sin^2 \dot{\varphi}$, is a constant since m, l and g are constants. Thus $\dot{\varphi} \sin^2 \theta$ is conserved.

So the correct answer is **Option** (A)

6. If the Lagrangian $L_0 = \frac{1}{2}m\left(\frac{dq}{dt}\right)^2 - \frac{1}{2}m\omega^2q^2$ is modified to $L = L_0 + \alpha q\left(\frac{dq}{dt}\right)$, which one of the following is TRUE?

[GATE 2017]

- A. Both the canonical momentum and equation of motion do not change
- B. Canonical momentum changes, equation of motion does not change
- C. Canonical momentum does not change, equation of motion changes
- **D.** Both the canonical momentum and equation of motion change

Solution:

For Lagrangian
$$L_0 = \frac{1}{2}m\left(\frac{dq}{dt}\right)^2 - \frac{1}{2}m\omega^2q^2$$

canonical momentum is $p = m\dot{q}$

and equation of motion is given by

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \left(\frac{\partial L}{\partial q}\right) = 0 \Rightarrow m\ddot{q} + m\omega^2 q = 0$$

For Lagrangian
$$L = L_0 + \alpha q \left(\frac{dq}{dt}\right) \Rightarrow L$$

$$=\frac{1}{2}m\left(\frac{dq}{dt}\right)^2-\frac{1}{2}m\omega^2q^2+\alpha q\dot{q}$$

Canonical momentum is $p = m\dot{q} + \alpha q$

Equation of motion is,

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \left(\frac{\partial L}{\partial q}\right) = 0 \Rightarrow m\ddot{q} + m\omega^2 q = 0$$

So the correct answer is **Option** (B)

7. A double pendulum consists of two equal masses m suspended by two strings of length l. What is the Lagrangian of this system for oscillations in a plane? Assume the angles θ_1 , θ_2 made by the two strings are small (you can use $\cos \theta = 1 - \theta^2/2$).

Note:
$$\omega_0 = \sqrt{g/l}$$
.

[JEST 2014]

A.
$$L \approx ml^2 \left(\dot{\theta}_1^2 + \frac{1}{2} \dot{\theta}_2^2 - \omega_0^2 \theta_1^2 - \frac{1}{2} \omega_0^2 \theta_2^2 \right)$$

B.
$$L \approx ml^2 \left(\dot{\theta}_1^2 + \frac{1}{2} \dot{\theta}_2^2 + \dot{\theta}_1 \dot{\theta}_2 - \omega_0^2 \theta_1^2 - \frac{1}{2} \omega_0^2 \theta_2^2 \right)$$

C.
$$L \approx ml^2 \left(\dot{\theta}_1^2 + \frac{1}{2} \dot{\theta}_2^2 - \dot{\theta}_1 \dot{\theta}_2 - \omega_0^2 \theta_1^2 - \frac{1}{2} \omega_0^2 \theta_2^2 \right)$$

D.
$$L \approx ml^2 \left(\frac{1}{2} \dot{\theta}_1^2 + \frac{1}{2} \dot{\theta}_2^2 + \dot{\theta}_1 \dot{\theta}_2 - \omega_0^2 \theta_1^2 - \omega_0^2 \theta_2^2 \right)$$

$$\begin{aligned} x_1 &= l \sin \theta_1, \\ y_1 &= l \cos \theta_1 \\ x_2 &= x_1 + l \sin \theta_2 \\ y_2 &= y_1 + l \cos \theta_2 \\ \dot{x}_2 &= l \cos \theta_1 \dot{\theta}_1 + l \cos \theta_2 \dot{\theta}_2, \\ \dot{y}_2 &= -l \sin \theta_1 \dot{\theta}_1 - l \sin \theta_2 \dot{\theta}_2 \\ \dot{x}_2^2 + \dot{y}_2^2 &= l^2 \cos^2 \theta_1 \dot{\theta}_1^2 + l^2 \cos^2 \theta_2 \dot{\theta}_2^2 \\ &+ 2l^2 \cos \theta_1 \dot{\theta}_1 \cos \theta_2 \dot{\theta}_2 + l^2 \sin \theta_1^2 \dot{\theta}_1^2 \\ &+ l^2 \sin \theta_2^2 \dot{\theta}_2^2 + 2l^2 \sin \theta_1 \sin \theta_2 \dot{\theta}_1 \dot{\theta}_2 \\ \Rightarrow \dot{x}_2^2 + \dot{y}_2^2 &= l^2 \dot{\theta}_1^2 + l^2 \dot{\theta}_2^2 + 2l^2 \cos (\theta_1 - \theta_2) \dot{\theta}_1 \dot{\theta}_2 \end{aligned}$$
 also $\dot{x}_1^2 + \dot{y}_1^2 = l^2 \dot{\theta}_1^2$

$$\begin{split} L &= T - V = \frac{1}{2} m \left(\dot{x}_1^2 + \dot{y}_1^2 + \dot{x}_2^2 + \dot{y}_2^2 \right) - mgy_1 - mgy_2 \\ \Rightarrow L &= \frac{1}{2} m \left(l^2 \dot{\theta}_1^2 + l^2 \dot{\theta}_1^2 + l^2 \dot{\theta}_2^2 + 2 l^2 \cos \left(\theta_1 - \theta_2 \right) \dot{\theta}_1 \dot{\theta}_2 \right) \\ &+ 2 mgl \cos \theta_1 + mgl \cos \theta_2 \\ \Rightarrow L &= ml^2 \left[\dot{\theta}_1^2 + \frac{1}{2} \dot{\theta}_2^2 + \dot{\theta}_1 \dot{\theta}_2 + \frac{2g}{2l} \left(1 - \frac{\theta_1^2}{2} \right) + \frac{1}{2} \frac{g}{l} \left(1 - \frac{\theta_2^2}{2} \right) \right] \\ &\left[\because \cos \left(\theta_1 - \theta_2 \right) \approx 1 \right] \\ \Rightarrow L &= ml^2 \left[\dot{\theta}_1^2 + \frac{1}{2} \dot{\theta}_2^2 + \dot{\theta}_1 \dot{\theta}_2 + \frac{g}{l} - \frac{g}{l} \frac{\theta_1^2}{2} + \frac{g}{2l} - \frac{g}{2l} \frac{\theta_2^2}{2} \right] \end{split}$$

comparing given options, option (B) is correct i.e.

$$L = ml^2 \left(\dot{\theta}_1^2 + \frac{1}{2} \dot{\theta}_2^2 + \dot{\theta}_1 \dot{\theta}_2 - \frac{\omega_0^2 \dot{\theta}_1^2}{2} - \frac{1}{4} \omega_0 \dot{\theta}_2^2 \right)$$

So the correct answer is **Option** (B)

8. A bike stuntman rides inside a well of frictionless surface given by $z = a(x^2 + y^2)$, under the action of gravity acting in the negative z direction. $\vec{g} = -g\hat{z}$. What speed should be maintain to be able to ride at a constant height z_0 without falling down?

[JEST 2015]

- A. $\sqrt{gz_0}$
- **B.** $\sqrt{3gz_0}$
- **C.** $\sqrt{2gz_0}$
- **D.** The biker will not be able to maintain a constant height, irrespective of speed.

$$z = a\left(x^2 + y^2\right)$$

Using equation of constrain, we must solve the given system in cylindrical co-ordinate.

$$z = ar^{2}, \dot{z} = 2ar\dot{r} \Rightarrow L$$

$$= \frac{1}{2}m\left(\dot{r}^{2} + r^{2}\dot{\theta} + \dot{z}^{2}\right) - mgz$$

$$\Rightarrow L = \frac{1}{2}m\left(\dot{r}^{2} + r^{2}\dot{\theta} + 4a^{2}r^{2}\dot{r}^{2}\right) - mgar^{2}$$

$$= \frac{1}{2}m\left[\dot{r}^{2}\left(1 + 4a^{2}r^{2}\right) + r^{2}\dot{\theta}^{2}\right] - mgar^{2}$$

Equation of motion

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{r}} \right) - \frac{\partial L}{\partial r} = 0$$

$$\Rightarrow m\ddot{r} \left(1 + 4a^2r^2 \right) + m\dot{r}^2 4a^2r - mr\dot{\theta}^2 + 2mgar = 0$$

$$\text{At } z = z_0, \dot{r} = 0, \quad r = r_0, \text{ so,} mr_0\dot{\theta}^2 = 2mgar_0$$

$$\dot{\theta}^2 = 2ga \Rightarrow \dot{\theta} = \sqrt{2ga}, \frac{v}{r_0}$$

$$= \sqrt{2ga}, v = \sqrt{2ga} \cdot r_0$$

$$v = \sqrt{2ga} \cdot \left(\frac{z_0}{a} \right)^{1/2}$$

$$= \sqrt{2gz_0}$$

$$\left(\because z_0 = ar_0^2 \right)$$

9. The Lagrangian of a particle is given by $L = \dot{q}^2 - q\dot{q}$. Which of the following statements is true?

[JEST 2015]

- **A.** This is a free particle
- **B.** The particle is experiencing velocity dependent damping
- C. The particle is executing simple harmonic motion
- **D.** The particle is under constant acceleration.

$$\therefore L = \dot{q}^2 - q\dot{q} \Rightarrow \frac{\partial L}{\partial \dot{q}}$$

$$= 2\dot{q} - q \Rightarrow \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right)$$

$$= 2\ddot{q} - \dot{q}$$

$$\therefore \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0 \Rightarrow 2\ddot{q} - \dot{q} + \dot{q}$$

$$= 0 \Rightarrow 2\ddot{q} = 0 \Rightarrow \frac{d^2q}{dt^2}$$

$$=0 \Rightarrow \frac{dq}{dt} = C \Rightarrow q = Ct + \alpha$$

So the correct answer is **Option** (A)

10. A hoop of radius a rotates with constant angular velocity ω about the vertical axis as shown in the figure. A bead of mass m can slide on the hoop without friction. If $g < \omega^2 a$ at what angle θ apart from 0 and π is the bead stationary (i.e., $\frac{d\theta}{dt} = \frac{d^2\theta}{dt^2} = 0$)?

[JEST 2016]

A.
$$\tan \theta = \frac{\pi g}{\omega^2 a}$$

B.
$$\sin \theta = \frac{g}{\omega^2 a}$$

C.
$$\cos \theta = \frac{g}{\omega^2 a}$$

D.
$$\tan \theta = \frac{g}{\pi \omega^2 a}$$

Solution:

The Lagrangian of the system is

$$L = \frac{1}{2}ma^2(\dot{\theta}^2 + \sin^2\theta\dot{\phi}^2) + mga\cos\theta$$

The equation of motion is,

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \left(\frac{\partial L}{\partial \theta} \right)$$

$$= 0 \Rightarrow ma^2 \ddot{\theta} - ma^2 \left(\sin \theta \cos \theta \dot{\phi}^2 \right) + mga \sin \theta = 0$$

When bead is stationary, then

$$\frac{d\theta}{dt} = \frac{d^2\theta}{dt^2}$$

$$= 0 \Rightarrow -ma^2 \left(\sin\theta\cos\theta\dot{\phi}^2\right) + mga\sin\theta = 0$$

$$\Rightarrow \dot{\phi} = \omega \text{ and } g < \omega^2 a, \text{ then } \cos\theta = \frac{g}{\omega^2 a}$$

So the correct answer is **Option** (C)

11. A bead of mass M slides along a parabolic wire described by $z = 2(x^2 + y^2)$. The wire rotates with angular velocity Ω about the z - axis. At what value of Ω does the bead maintain a constant nonzero height under the action of gravity along $-\hat{z}$?

[JEST 2017]

A.
$$\sqrt{3g}$$

B.
$$\sqrt{g}$$

C.
$$\sqrt{2g}$$

D.
$$\sqrt{4g}$$

$$L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2 + 16r^2\dot{r}^2) - 2mgr^2 \Rightarrow L$$
$$= \frac{1}{2}m(\dot{r}^2(1 + 16r^2) + r^2\dot{\theta}^2) - 2mgr^2$$

The equation of motion is given by

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{r}} \right) - \frac{\partial L}{\partial r}$$

$$= 0 \Rightarrow m\ddot{r} \left(1 + 16r^2 \right) + 16m\dot{r}^2 r - mr\dot{\theta}^2 + 4mgr = 0$$
At equilibrium, $r = r_0, \dot{r} = 0, \ddot{r} = 0$
So, $-mr_0\dot{\theta}^2 + 4mgr_0 = 0 \Rightarrow \dot{\theta} = \Omega = \sqrt{4g}$

So the correct answer is **Option** (**D**)

12. A possible Lagrangian for a free particle is

[JEST 2017]

A.
$$L = \dot{q}^2 - q^2$$

B.
$$L = \dot{q}^2 - q\dot{q}$$
 C. $L = \dot{q}^2 - q$

C.
$$L = \dot{q}^2 - q$$

D.
$$L = \dot{q}^2 - \frac{1}{a}$$

Solution:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \left(\frac{\partial L}{\partial q} \right) = 0 \Rightarrow 2\ddot{q} - \dot{q} + \dot{q}$$
$$= 0 \Rightarrow \ddot{q} = 0$$

So the correct answer is **Option** (B)

13. A rod of mass m and length l is suspended from two massless vertical springs with a spring constants k_1 and k_2 . What is the Lagrangian for the system, if x_1 and x_2 be the displacements from equilibrium position of the two ends of the rod?

[JEST 2017]

A.
$$\frac{m}{8} \left(\dot{x}_1^2 + 2\dot{x}_1\dot{x}_2 + \dot{x}_2^2 \right) - \frac{1}{2}k_1x_1^2 - \frac{1}{2}k_2x_2^2$$

B.
$$\frac{m}{2} \left(\dot{x}_1^2 + \dot{x}_1 \dot{x}_2 + \dot{x}_2^2 \right) - \frac{1}{4} \left(k_1 + k_2 \right) \left(x_1^2 + x_2^2 \right)$$

C.
$$\frac{m}{6} \left(\dot{x}_1^2 + x_1 \dot{x}_2 + \dot{x}_2^2 \right) - \frac{1}{2} k_1 x_1^2 - \frac{1}{2} k_2 x_2^2$$

C.
$$\frac{m}{6} (\dot{x}_1^2 + x_1 \dot{x}_2 + \dot{x}_2^2) - \frac{1}{2} k_1 x_1^2 - \frac{1}{2} k_2 x_2^2$$

D. $\frac{m}{2} (\dot{x}_1^2 - 2\dot{x}_1 \dot{x}_2 + \dot{x}_2^2) - \frac{1}{4} (k_1 - k_2) (x_1^2 + x_2^2)$

$$T = \frac{1}{2}MV_{c,m}^2 + \frac{1}{2}I_{c,m}\omega^2$$

$$= \frac{1}{2}m\left(\frac{\dot{x}_1 + \dot{x}_2}{2}\right)^2 + \frac{1}{2}\frac{ml^2}{12}\dot{\theta}^2$$
Potential energy is, $V = \frac{1}{2}kx_1^2 + \frac{1}{2}kx_2^2$

$$\sin\theta = \frac{x_2 - x_1}{l} \text{ for small oscillation}\theta$$

$$= \frac{x_2 - x_1}{l} = \dot{\theta}$$

$$= \frac{\dot{x}_2 - \dot{x}_1}{l}$$

$$L = \frac{1}{2}m\left(\frac{\dot{x}_1 + \dot{x}_2}{2}\right)^2 + \frac{1}{2}\frac{ml^2}{12}\left(\frac{\dot{x}_1 - \dot{x}_2}{l}\right)^2 - \frac{1}{2}kx_1^2 - \frac{1}{2}kx_2^2$$

$$= \frac{m}{6}\left(\dot{x}_1^2 + x_1\dot{x}_2 + \dot{x}_2^2\right) - \frac{1}{2}k_1x_1^2 - \frac{1}{2}k_2x_2^2$$

So the correct answer is **Option** (C)

14. Consider the Lagrangian

$$L = 1 - \sqrt{1 - \dot{q}^2} - \frac{q^2}{2}$$

of a particle executing oscillations whose amplitude is A. If p denotes the momentum of the particle, then $4p^2$ is

[JEST 2015]

A. (a)
$$(A^2 - q^2)(4 + A^2 - q^2)$$

B.
$$(A^2+q^2)(4+A^2-q^2)$$

C.
$$(A^2 - q^2)(4 + A^2 + q^2)$$

D.
$$(A^2+q^2)(4+A^2+q^2)$$

Solution: So the correct answer is **Option** (A)

15. Consider the motion of a particle in two dimensions given by the Lagrangian

$$L = \frac{m}{2} (\dot{x}^2 + \dot{y}^2) - \frac{\lambda}{4} (x + y)^2$$

where $\lambda > 0$. The initial conditions are given as y(0) = 0, x(0) = 42 meters, $\dot{x}(0) = \dot{y}(0) = 0$. What is the value of x(t) - y(t) at t = 25 seconds in meters?

[JEST 2019]

Solution:

$$L = \frac{m}{2} (\dot{x}^2 + \dot{y}^2) - \frac{\lambda}{4} (x + y)^2$$

The equation of motion is

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}}\right) - \left(\frac{\partial L}{\partial x}\right) = 0 \Rightarrow m\ddot{x} + \frac{\lambda}{2}x + \frac{\lambda}{2}y = 0 \tag{1}$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{y}}\right) - \left(\frac{\partial L}{\partial y}\right) = 0 \Rightarrow m\ddot{y} + \frac{\lambda}{2}y + \frac{\lambda}{2}x = 0 \tag{2}$$

Subtracting equation (1) from (2) gives $m(\ddot{x} - \ddot{y}) = 0 \Rightarrow \ddot{x} - \ddot{y} = 0$

Integrating both sides with t gives

$$\dot{x}-\dot{y}=c_1$$
 From the equation $\dot{x}(0)=\dot{y}(0)=0, \text{ there } c_1=0$ Hence, $\dot{x}-\dot{y}=0$

Integrating both sides of this equation with t gives

$$x-y = c_2$$
Putting $x(0) = 42, y(0) = 0$ gives
$$42-0 = c_2 \Rightarrow 42$$

Therefore, x - y = 42

The value of x - y is independent of t.

Therefore, at
$$t = 25s$$

$$x(t) - y(t) = 42$$

Answer key				
Q.No.	Answer	Q.No.	Answer	
1	В	2	В	
3	D	4	A	
5	A	6	В	
7	В	8	C	
9	A	10	C	
11	D	12	В	
13	C	14	A	
15	42			

