LOGIQUE

Exercices

Elliot LOUVEAU

elliot.louveau@eduservices.org

TABLE DES MATIERES

BASIQUES ERREUR! SIGNET NON DEFINI.

PROPOSITIONS ET CONNECTEURS LOGIQUES:

- **3.4** On note P et Q les affirmations suivantes :
- P = « Paul aime le foot »
- Q = « Paul aime les maths »

Représenter les affirmations suivantes sous forme symbolique en utilisant P, Q et des connecteurs logiques.

- A = « Paul aime le foot mais pas les maths »
- B = « Paul n'aime ni le foot, ni les maths »
- C = « Paul aime le foot ou il aime les maths et pas le foot »
- D = « Paul aime les maths et le foot ou il aime les maths mais pas le foot »
- 3.5 Quelles sont les valeurs de vérité des propositions suivantes :

•
$$A = \ll \pi = 5 \text{ et } 2 + 3 = 5 \text{ }$$

• B =
$$\alpha \pi = 5$$
 ou 2 + 3 = 5 »

•
$$C = \langle \langle \pi \rangle \approx 3.14 \Rightarrow 5 + 6 = 11 \rangle$$

•
$$D = \langle (\pi = 5) \Rightarrow 2 + 3 = 5 \rangle$$

•
$$E = \ll 4 = 5 \Rightarrow A$$
 est vraie » (A est la proposition citée plus haut)

•
$$F = \ll 5 + 5 = 10 \iff \pi = 11 \gg$$

3.6 Quelles sont les valeurs de vérité des propositions suivantes :

$$A =$$
 « 11 > 0 et 3 < 2 »

$$D = \ll 3 < 2 \Rightarrow 5 = 5$$
»

$$B =$$
 « 11 > 0 ou 3 < 2 »

$$E = \langle \langle 4 \rangle \neq 1 \Rightarrow 4 = 1 \rangle$$

$$C =$$
 « $3 > 6$ ou $6 > 20$ »

$$F = \ll 4 < 5 \Leftrightarrow 10 = 1 + 9 \gg$$

CALCULS BOOLEENS

3.16 Pour les valeurs de a, b et c données, calculer les expressions A, B et C :

$$A = \overline{a} + b + \overline{c}, \qquad B = a\overline{b} + c, \qquad C = (a+b)\overline{c}$$

$$B = a\overline{b} + c,$$

$$C = (a+b)\bar{c}$$

a)
$$a = 0, b = 1, c = 1$$

b)
$$a = 1, b = 1, c = 1$$

c)
$$a = 1, b = 1, c = 0$$

Démonstration par table de vérité

3.19 Démontrer à l'aide d'une table de vérité les formules suivantes :

a)
$$a+b+\overline{a}\cdot\overline{b}=1$$

b)
$$(a+b)\overline{a}\cdot\overline{b}=0$$

Démonstrations par calculs

3.22 Démontrer par calculs les formules suivantes :

a)
$$a + ab = a + b$$

b)
$$(a+b)(a+\overline{b}) = a$$

3.23 Démontrer par calculs les formules suivantes :

a)
$$a+b+\overline{a}\cdot\overline{b}=1$$

b)
$$(a+b)\overline{a}\cdot\overline{b}=0$$

TABLEAU DE KARNAUGH

3.24 Démontrer à l'aide d'un tableau de Karnaugh les formules suivantes :

a)
$$a + ab = a + b$$

b)
$$a+b+\overline{a}\cdot\overline{b}=1$$

3.25 a) Représenter par un tableau de Karnaugh les expressions :

$$A = ab + \overline{c}$$
 et $B = \overline{a} + bc$

b) Utiliser le tableau pour déterminer les expressions de \overline{A} et \overline{B} .

3.26 a) Représenter par un tableau de Karnaugh les expressions :

$$A = a\overline{c} + \overline{b}c + abc$$
 et $B = \overline{a}b + \overline{b}c + a\overline{c}$

b) Utiliser le tableau pour déterminer les expressions de \overline{A} et \overline{B} .

3.27 Soient $A = ab + \overline{c}$ et $B = \overline{a} + bc$. Montrer par calculs que $\overline{A} = \overline{a}c + \overline{b}c$ et que $\overline{B} = a\overline{c} + a\overline{b}$.

DIVERS

Corrections prochaine séance

3.29 On considère la loi * définie par la table de vérité du tableau :

Tableau 3.23

а	b	a*b
0	0	0
0	1	1
1	0	1
1	1	0

- a) En logique, quel est l'équivalent de cette loi?
- b) À l'aide d'une table de vérité, montrer que $a*b = \overline{a} \cdot b + a \cdot \overline{b}$
- c) Démontrer par calculs que $a * b = (a + b) \cdot (\bar{a} + \bar{b})$.

3.32 Soit $A = \overline{a} \cdot \overline{b} \cdot \overline{c} + a\overline{b}c + \overline{a} \cdot \overline{b} + a\overline{b} \cdot \overline{c}$. Simplifier A avec un diagramme de Karnaugh, puis vérifier par des calculs.

3.36 Une société désire recruter en interne des collaborateurs pour sa filiale en Asie. Pour chaque employé, on définit les variables booléennes suivantes :

a = 1 s'il a plus de cinq ans d'ancienneté dans l'entreprise.

b = 1 s'il possède un BTS SIO.

c = 1 s'il parle couramment l'anglais.

La direction des ressources humaines décide que pourront postuler les employés :

- qui satisfont aux trois conditions ;
- ou qui ont moins de cinq ans d'expérience mais qui maîtrisent l'anglais ;
- ou qui ne maîtrisent pas l'anglais mais ont un BTS SIO.
- a) Écrire une expression booléenne E traduisant les critères de sélection de la direction.
- b) Représenter l'expression E par un tableau de Karnaugh.
- c) À l'aide du tableau, donner une expression simplifiée de E.
- d) Retrouver le résultat par calcul.
- e) Déduire des questions 3 ou 4 une version simplifiée des critères de la direction.

3.38 Une entreprise décide de choisir de nouveaux chefs de service parmi ses employés en se servant des variables booléennes suivantes :

- a = 1 si et seulement si l'employé a plus de 10 ans d'ancienneté dans l'entreprise.
- b = 1 si et seulement si l'employé arrive souvent en retard.
- c = 1 si et seulement si l'employé a des relations difficiles avec ses collègues.

L'entreprise fait une première sélection parmi ses employés en considérant les critères suivants : « l'employé est ponctuel et s'entend bien avec ses collègues » ou « l'employé est dans l'entreprise depuis au moins 10 ans ».

- a) Donner l'expression booléenne E correspondant à un employé qui respecte les conditions pour devenir chef de service.
- b) Donner l'expression de \overline{E} à l'aide du tableau de Karnaugh. Retrouver le résultat par calculs.

Exercice tableau de Karnaugh -> expression simplifiée

Déterminer la forme simplifiée des expressions A, B, non(A) et non(B)

Sujet BTS:

Exercice 2 (5 points)

Une association sportive souhaite recruter une personne pour animer son site internet et dynamiser son image. Le candidat recruté devra remplir l'une au moins des quatre conditions suivantes :

- avoir des connaissances en informatique et être sous contrat avec la mairie ;
- ne pas avoir de connaissances particulières en informatique, mais être membre de l'association et être sous contrat avec la mairie ;
- ne pas être membre de l'association mais être sous contrat avec la mairie ;
- ne pas être sous contrat avec la mairie, mais être membre de l'association.

On définit les trois variables booléennes a, b et c de la manière suivante :

- a = 1 si la personne est membre de l'association, et a = 0 sinon;
- b=1 si la personne a des connaissances en informatique, et b=0 sinon;
- c = 1 si la personne est en contrat avec la mairie, et c = 0 sinon.
- 1. Écrire une expression booléenne E traduisant globalement les conditions de recrutement.
- **2.** À l'aide d'un calcul booléen ou d'un tableau de Karnaugh, simplifier l'expression *E* sous la forme d'une somme de deux termes, puis interpréter cela à l'aide d'une phrase.
- 3. Un candidat ayant des connaissances en informatique se présente, mais il est écarté car il ne correspond pas aux critères de recrutement. Que peut-on en déduire sur le profil de ce candidat ?

Exercice 1 5 points

Sur une plateforme de vidéos en ligne, les vidéos sont notées de 0 à 5 par les utilisateurs. Après une période d'observation, les administrateurs de la plateforme décident de mettre une vidéo sur la page d'accueil lorsqu'elle satisfait à l'un au moins des critères suivants :

- la vidéo a obtenu la note 5 et comptabilise un nombre de vues supérieur ou égal à 200;
- la vidéo a obtenu la note 5 et elle est récente;
- la vidéo comptabilise un nombre de vues strictement inférieur à 200 et elle est récente;
- la vidéo n'a pas obtenu la note 5 et comptabilise un nombre de vues supérieur ou égal à 200.

On définit les trois variables booléennes a, b, c de la façon suivante :

- a = 1 si la vidéo a obtenu la note 5, a = 0 sinon;
- b = 1 si la vidéo comptabilise un nombre de vues supérieur ou égal à 200, b = 0 sinon;
- c = 1 si la vidéo est récente, c = 0 sinon.
- 1. L'administrateur de la plateforme a traduit les conditions pour qu'une vidéo soit mise sur la page d'accueil par l'expression booléenne $E = \frac{1}{2}$ Justifier chacun des termes de cette somme.
- 2. a. Représenter l'expression E dans un diagramme de Karnaugh.
 - **b.** En déduire une expression simplifiée de *E* sous la forme d'une somme de deux termes.
 - c. Interpréter cette expression simplifiée de E dans le contexte de l'exercice.
- **3.** Une vidéo qui n'est pas récente, qui n'a pas obtenu la note 5 et qui comptabilise un nombre de vues strictement inférieur à 200 sera-t-elle mise sur la page d'accueil?
- **4.** Donner une expression de \overline{E} à l'aide des variables booléennes précédemment définies. En déduire une définition des vidéos qui ne seront pas mises sur la page d'accueil.

Questions		Réponses proposées	
1.	a et b étant deux variables booléennes, l'expression $\overline{a+b}$ est toujours égale à :	• $\overline{a} + \overline{b}$ • $\overline{a}.\overline{b}$ • $\overline{a}.\overline{b}$ • $\overline{a} + \overline{b} + \overline{a}.\overline{b}$	
2.	a, b et c étant des variables booléennes, une écriture simplifiée de l'expression $E = ab + \overline{bc} + bc + \overline{ac}$ est :	 b+c bc b+c a+b+c 	
3.	Les nombres 63 et 91 :	 sont premiers entre eux sont premiers l'un et l'autre ont un diviseur commun autre que 1 sont divisibles par 3 	
4.	À chaque nombre entier naturel, on associe son double, ce qui définit une application f de \mathbf{N} dans \mathbf{N} . Cette application f est :	 injective surjective ni injective, ni surjective bijective 	
5.	Soit <i>P</i> la proposition : « Tout étudiant en STS SIO connaît le langage Python ». La négation de la proposition <i>P</i> est :	« Aucun étudiant en STS SIO ne connaît le langage Python » « Exactement un étudiant en STS SIO ne connaît pas le langage Python » « Les étudiants en STS SIO ne connaissent pas tous le langage Python » « Tout étudiant en STS SIO connaît le langage JAVA »	