

Proseminar Rechnerarchitektur

Aufgabenzettel 5

Wintersemester 2021/22

3. November 2021

Zu bearbeiten bis Donnerstag, den 11. November.

1 Modellierung eines Automaten

Gegeben sei dieses Zustandsdiagramm eines Automaten:

- a) Beschreiben Sie mit eigenen Worten, was dieser Automat tut.
- b) Zeichnen Sie einen Automaten mit weniger Zuständen, der dieselbe Funktionalität hat.
- c) Bilden Sie die gleiche Funktionalität mit einem Moore-Automaten ab.
- d) Geben Sie die Zustandstabelle des Moore-Automaten an.

(Fortsetzung auf der nächsten Seite)

2 Entwurf des "Gedächtnisses" eines Automaten

Nehmen Sie die unten gegebene Zustandstabelle eines Moore-Automaten an:

\overline{S}	x	S'	y
0	0	0	1
0	1	1	1
1	0	2	0
1	1	0	0
2	0	1	0
2	1	2	0

- a) Wählen Sie eine Zustandskodierung und erstellen Sie eine binäre Zustandstabelle.
- b) Wie viele Flipflops benötigen Sie zur Speicherung der Zustände?
- c) Wählen Sie Flipflop-Typen aus und begründen Sie Ihre Wahl.
- d) Erstellen Sie die Ansteuerungstabellen.

3 Realisierung eines Automaten

Nehmen Sie nun an, dass die Zustände eines Moore-Automaten mit JK-Flipflops realisiert sind. Die Ansteuerungstabelle (mit Ausgabetabelle) des Automaten ist wie folgt:

$q_1 q_0$	\boldsymbol{x}	$q_1' \ q_0'$	$j_1 k_1$	$j_0 k_0$	y
0 0	0	0 0	0 d	0 d	1
0 0	1	0 1	0 d	1 d	1
0 1	0	1 0	1 d	d 1	0
0 1	1	0 0	0 d	d 1	0
1 0	0	0 1	d 1	1 d	0
1 0	1	1 0	d = 0	0 d	0

- a) Ermitteln Sie Ansteuergleichungen und Ausgabegleichung. Minimieren Sie diese, falls notwendig.
- b) Zeichnen Sie das resultierende synchrone Schaltwerk.