

Direktor: Prof. Dr.-Ing. Mladen Berekovic

Studienbegleitende Fachprüfung im Rahmen der Bachelorprüfung im Studiengang Robotik und Autonome Systeme / Informatik Leistungszertifikat Typ A SS 2018

Lehrmodul: Mobile Roboter

Prüfer: Prof. Dr.-Ing. Heiko Hamann

10. Oktober 2018

Name:		
	Matrikelnummer:	

1	2	3	4	5	6	Σ
						/100

Name:	Matrikelnummer:

Name:	Matrikelnummer:
Turrer	

Aufgabe 1: Planung mit Strips

(20 Punkte)

Gegeben sei folgende Repräsentation eines Weltmodels. In der Welt befinden sich die Räume R1, R2 und R3. Die Räume sind durch die Türen D1 und D2 miteinander verbunden. Im Raum R1 befindet sich ein Roboter, in Raum R2 die Box B1 und der Raum R3 ist initial leer. Der Roboter kann Türen durchschreiten und Boxen durch Türen in einen anderen Raum schieben. Das Ziel des Roboters soll es sein die Box B1 in den Raum R3 zu schieben.

a) Definieren Sie in einem ersten Schritt geeignete Eigenschaften bzw. Prädikate für eine

Planung mit Strips.		

Operator	preconditions	add-list	delete-list
operator	preconditions	dad 113t	delete list

Operator	Zustand
NIT	
e) Was ist der	Nachteil an einer Plangenerierung mit Strips?

Name:		Matrikelnummer:
Aufg	abe 2: Roboterkonzeption	(15 Punkte)
zwisch Inform	nen festgelegten Stationen navigieren so nationen zu der aktuellen Stationen auf einer iner Umgebung kollidieren, insbesondere	n Service-Roboters, der innerhalb eines Museums oll und bei Bedarf den Besuchern zusätzliche m Display präsentiert. Der Roboter darf dabei nicht sollen Kollisionen mit den Besuchern verhindert
a)	_	men würden Sie sich entscheiden (SPA,SA,P-SA)? arum dieses Ihrer Ansicht nach geeignet bzw.
		/4

b)	Sie haben bei dem Antrieb des Roboters die Wahl zwischen einem Differentialantrieb und einem holonomen Antrieb mit Omniwheels. Begründen Sie Ihre Wahl und beschreiben oder skizzieren Sie für beide Möglichkeiten wie eine Fahrtplanung bestimmt werden kann.

Name:

c)	Wählen Sie drei Sensoren aus um in dem Museum zu navigieren (bekannte Karte) und auch
	auf dynamische Hindernisse wie Besucher zu reagieren. Begründen Sie ihre Wahl.

Aufgabe 3: Karten

(20 Punkte)

a) Zeichnen Sie in der folgenden Abbildung den Sichtbarkeitsgraphen ein. Markieren Sie anschließend einen möglichst kurzen Pfad vom Start zum Ziel.

b) Zeichnen Sie in der folgenden Abbildung nun die exakte Zellzerlegung (jede Zelle ist entweder komplett frei oder belegt) ein. Führen Sie die Zerlegung nur in der Vertikalen durch. Konstruieren Sie anschließend einen Graphen und markieren Sie den kürzesten Weg.

N NI	e 4: Robotik-Definitionen	Pohat"
N	ennen Sie die Eigenschaften eines "Personal	RODOT .
L		
) N	ennen Sie 5 Sensortypen, die ein Transportro	bboter zur Lokalisierung nutzen kann.

c)	Begründen Sie, warum ein Exoskelett ein Roboter ist oder warum nicht.
d)	Name and addition City die Von und Nachteile die einem Leufschaten (- D. OCCAD)
,	Nennen und erklären Sie die Vor- und Nachteile, die einen Laufroboter (z.B. OSCAR) gegenüber einem rein radbetriebenen Roboter (z.B. HECTOR) hat.
,	
,	
,	
-,	
,	
,	
-,	

Name:

		(455 14)
	abe 5: Thymio-Programmierung	(15 Punkte)
	iliegende Code erkennt weiße Linien auf dem Boden (eine vir er davon weg.	tuelle Mauer) und bewegt die
a) b) c)	wenn sie sich treffen. Nachdem die Roboter angehalten haben, sollen sie sich 2 Se	Bitte verändern und ergänzen n fallen. oter für 5 Sekunden anhalten,
	Richtung drehen, bevor sie wieder vorwärts fahren. Bitte am Anfang immer die Codezeile angeben, an der eine stattfindet!	e Ergänzung im Original-Code

Name:	 Matrikelnummer:

Name:	 Matrikelnummer:

```
1 import dbus
 2 import dbus.mainloop.glib
3 import gobject
4 import time
 5 from random import randint, random
6 from optparse import OptionParser
8 proxSensorsVal=[0,0,0,0,0]
9 groundSensorsVal=[0,0]
10 forward_button=0
11 center_button=0
12 robotState = 1
13 turnDirection = "left"
14 ....
15
16 def BEECLUST():
   global robotState
17
     global turnDirection
18
19
20
     network.GetVariable("thymio-II", "prox.horizontal",
21
              reply_handler=get_variables_reply,error_handler=get_variables_error)
22
23
      network.GetVariable("thymio-II", "prox.ground.reflected",
24
              reply_handler=get_ground_sensors,error_handler=get_variables_error)
25
       network.GetVariable("thymio-II", "button.forward",r
26
              eply_handler=get_forward_button,error_handler=get_variables_error)
27
      network.GetVariable("thymio-II", "button.center",
28
              reply_handler=get_center_button,error_handler=get_variables_error)
29
30
      if forward_button == 1:
          robotState = 1
31
32
      elif center_button == 1:
33
          robotState = 0
34
      if groundSensorsVal[0] > 900 or groundSensorsVal[1] > 900:
35
36
          if robotState != 2:
               turnDirection = "left" if random() > 0.5 else "right"
37
38
              robotState = 2
39
              turn(turnDirection)
40
41
42
     if robotState == 0:
           network.SetVariable("thymio-II", "motor.left.target", [0])
43
44
           network.SetVariable("thymio-II", "motor.right.target", [0])
45
       elif robotState == 1:
          network.SetVariable("thymio-II", "motor.left.target", [100])
46
           network.SetVariable("thymio-II", "motor.right.target", [100])
47
48
      elif robotState == 2:
49
          if ...: #time is not up keep turning
50
              turn(turnDirection)
52
               robotState = 1
53
54
      print "state = " + str(robotState)
55
56
     return True
57
58 def turn(direction = "left"):
59
      if direction == "left":
          network.SetVariable("thymio-II", "motor.left.target", [-200])
60
61
          network.SetVariable("thymio-II", "motor.right.target", [200])
62
63
           network.SetVariable("thymio-II", "motor.left.target", [200])
           network.SetVariable("thymio-II", "motor.right.target", [-200])
64
65
66 def get_variables_reply(r):
67 global proxSensorsVal
68
      proxSensorsVal=r
69
```

Name:	Matrikelnummer:
indific.	Matrix Ciriarinici.

```
70 def get_ground_sensors(r):
       global groundSensorsVal
71
        groundSensorsVal=r
72
73
74 def get_forward_button(r):
75
        global forward_button
76
        forward\_button = r[0]
77 def get_center_button(r):
78
       global center_button
79
        center_button=r[0]
80
81 def get_variables_error(e):
82
        print 'error:'
83
        print str(e)
84
       loop.quit()
85
86 if __name__ == '__main__':
        parser = OptionParser()
87
        parser.add_option("-s", "--system", action="store_true", dest="system", default=False,help="use the system")
88
89
       (options, args) = parser.parse_args()
90
        \tt dbus.mainloop.glib.DBusGMainLoop(set\_as\_default=True)
91
92
       if options.system:
93
           bus = dbus.SystemBus()
94
        else:
95
           bus = dbus.SessionBus()
96
        network = dbus.Interface(bus.get_object('ch.epfl.mobots.Aseba', '/'), dbus_interface='ch.epfl.mobots.As
97
98
        print network.GetNodesList()
99
100
        print 'starting loop'
        loop = gobject.MainLoop()
101
        handle = gobject.timeout_add (100, BEECLUST) \#every \ 0.1 \ sec
102
103
```

Name:		Matrikelnummer:	
Aufg	abe 6: Roboter-Lernen	(15 Punkte)	
a)	In Bezug auf künstliche neuronale Netze: i. Definieren und erklären Sie die Funktionsweise der Komponenten eines künstlichen Neurons: Input, Transferfunktion und Aktivierungsfunktion.		
		lie lineare, die Stufen- und die sigmoide e Unterschiede in ihrer Wirkung haben.	
	quantum quantu		

b)	Man nehme an, dass wir einen Thymio-Roboter nutzen und dieser lernen soll, einer weißen Linie auf schwarzem Grund zu folgen (line following). Erklären Sie Ihren Ansatz für diese Lernaufgabe, wenn Sie jeweils i. Q-learning, ii. Hebbsches Lernen, iii. künstliche Evolution (z.B. einen genetischer Algorithmus) verwenden würden. Was muss für jeden dieser Algorithmen im Allgemeinen definiert und als Eingabe bereitgestellt werden? Wie würden Sie diese Eingabe dann hier für das Linienfolgeverhalten definieren?