Санкт-Петербургский государственный университет Кафедра системного программирования

Волков Григорий Валерьевич

Система для моделирования работы инструментов технического анализа на финансовых рынках

Бакалаврская работа

Научный руководитель: д.ф.-м.н., профессор О.Н. Граничин

Рецензент: Ведущий инженер программист, ООО "Синопсис СПб" К. М. Григель

SAINT PETERSBURG STATE UNIVERSITY

Software engineering

Grigorii Volkov

System for simulation of technical analysis tools application on financial markets

Bachelor's Thesis

Scientific supervisor: Dr. Sc. (Phys.-Math.), professor Oleg Granichin

Reviewer:

Synopsys LLC, Senior Software Engineer Konstantin Grigel

Оглавление

В	Введение						
1.	Вве	дение в предметную область	6				
	1.1.	Финансовый рынок	6				
	1.2.						
	1.3.	Инструменты технического анализа	7				
		1.3.1. Простое скользящее среднее	8				
		1.3.2. Экспоненциальное скользящее среднее	8				
		1.3.3. Средний истинный диапазон	9				
		1.3.4. Линии Боллинджера	10				
		1.3.5. SPS	11				
	1.4.	Стратегия	12				
		1.4.1. Пересечение скользящих средних	12				
		1.4.2. Пересечение линий Боллинджера	13				
		1.4.3. SPS	15				
	1.5.	Моделирование торгов	16				
	1.6.	Метрики	16				
2.	Пос	Постановка задачи 18					
3.	Требования к прототипу системы 19						
	3.1.	Симуляция торговли	19				
	3.2.	Исторические данные	19				
	3.3.	Возможность добавление новых стратегий	19				
	3.4.	Учёт дополнительных параметров финансового рынка .	20				
	3.5.	Оценка стратегий	20				
4.	Обз	ор существующих решений	21				
	4.1.	AlgoTerminal	21				
		PyAlgoTrade	21				
5.	Apx	китектура	23				
	5.1.	Поставщик данных	23				

	5.2.	Индикатор и стратегия	24			
	5.3.	Аккаунт	25			
	5.4.	Состояние рынка	26			
6.	Экс	перименты	27			
	6.1.	Метод проведения экспериментов	27			
	6.2.	Сравнительный анализ	28			
За	клю	чение	2 9			
Список литературы						

Введение

Финансовый рынок — это рынок, на котором производится торговля ценными бумагами и производными инструментами, такими как фьючерсы, опционы. Анализом финансового рынка называют поиск зависимостей между факторами, влияющими на тот или иной актив, и динамикой его стоимости. Впоследствии, на основе этих зависимостей строится предположение о будущей цене.

Анализом рынка занимаются его участники: будь то профессиональный аналитик или же частный инвестор. Для принятия решения о купле-продаже актива, как правило, применяется анализ. Анализ финансового рынка бывает двух типов: технический [3] и фундаментальный [6]. Первый тип представляет из себя формально описанный алгоритм, который использует прошлые значения цен, объемы торгов и другую статистическую информацию. Фундаментальный анализ, в свою очередь, оценивает общее состояние финансово-экономических отраслей, инвестиционную привлекательность отдельных компаний, новостной фон. Так как фундаментальный тип анализа сложно поддать формализации, в работе предпочтение отдаётся техническому.

Технический анализ проводится с помощью инструментов анализа [7]. Под инструментами подразумеваются индикаторы, значения которых используются для прогнозирования. На основе индикаторов создаются стратегии. Задача стратегии заключается в вынесении решения на основе значений индикаторов о покупке или продаже актива. Как правило, стратегии технического анализа проверяются на исторических данных аналитиками или автоматически, путём симуляции торговли.

Существует множество систем [5] [1] [8], производящих симуляцию торговли с использованием исторических данных. Но при попытке протестировать собственный подход пользователи сталкиваются с ограничениями по способу описания стратегий. Недостаток свободы в реализации алгоритмов технического анализа для их автоматизированного тестирования мотивировал автора работы на создание прототипа системы, решающей данную проблему.

1. Введение в предметную область

В разделе описываются основные определения, подходы и метрики, которые используются в работе.

1.1. Финансовый рынок

Финансовый рынок — это рынок, на котором люди торгуют финансовыми ценными бумагами и производными инструментами (фьючерсами, опционами, и т.п.). В рамках данной работы финансовый рынок рассматривается как источник информации о исторических показаний цен актива и площадка для размещения сделок о купле-продаже определённых активов.

1.2. Исторические данные

Под историческими данными понимается следующая информация о финансовом инструменте.

- 1. Цена открытия (open price) цена актива, установленная в момент начала торговой сессии.
- 2. Цена закрытия (close price) цена последней сделки, зарегистрированная в момент конца торговой сессии.
- 3. Наивысшая цена (high price) максимальная цена актива, установленная в ходе торговой сессии.
- 4. Наименьшая цена (low price) максимальная цена актива, установленная в ходе торговой сессии.
- 5. Объём торгов количество активов, перешедших от одного владельца другому в течение торговой сессии.

Торговая сессия — это временной промежуток, на протяжении которого которого активные участники рынка ведут торги. Например,

торговая сессия Московской фондовой биржи начинается в 10:00 и заканчивается в 18:45. Поэтому, торговая сессия идентифицируется днём работы биржи. Исторические данные принято иллюстрировать с помощью *японских свечей*. Японские свечи позволяют лаконично представить различные типы цен в рамках торговой сессии. Если свеча голубого цвета, то цена закрытия выше цены открытия. В противном случае, свеча серого цвета. На рис.1 показано, как следует интерпретировать японские свечи.

Рис. 1: Японские свечи

1.3. Инструменты технического анализа

Под инструментами технического анализа (или техническими индикаторами) подразумеваются алгоритмы, которые на вход получают статистическую информацию рынка (такую, как прошлые значения цен, объёмы торгов и пр.), а на выход дают одно или несколько значений индикаторов. Затем, эти значения используются для формирования каких-либо выводов о ситуации на финансовом рынке относительно актива и принятия решения о купле-продаже.

Ниже приведено описание технический индикаторов, которые будут использованы для апробации.

1.3.1. Простое скользящее среднее

Простое скользящее среднее (simple moving average, SMA) — классический индикатор, который рассчитывается по следующей формуле:

$$SMA = \frac{\sum_{i=0}^{n-1} open_i}{n},$$

где:

n — период простого скользящего среднего,

 $open_i$ – цена открытия i дней назад ($open_0$ соответствует цене открытия текущего дня),

SMA — значение индикатора.

Скользящее среднее используется для аппроксимации тренда в виду хаотичного движения цены. На рис.2 представлен график скользящего среднего для периода n=14.

Рис. 2: Скользящее среднее с периодом 14 дней

1.3.2. Экспоненциальное скользящее среднее

Экспоненциальное скользящее среднее (exponential moving average - EMA) — индикатор, который является частным случаем взвешенного скользящего среднего. Индикатор придаёт больший вес последним знаениям цен, и меньший — более ранним. Значение индикатора рассчитывается рекурсивно по следующей формуле:

$$EMA_{n-1} = open_i \cdot k + EMA_{i-1} \cdot (1-k),$$

$$EMA_0 = open_0$$
,

где:

n — период экспоненциального скользящего среднего,

 $open_i$ – цена открытия i дней назад ($open_0$ соответствует цене открытия текущего дня),

k – весовой коэффициент, находящийся в интервале от 0 до 1 (как правило берётся равным $\frac{2}{n+1}$),

 EMA_{n-1} – значение индикатора.

На рис.3 представлен график экспоненциального скользящего среднего для периода n=14 и k=0,13.

Рис. 3: Экспоненциальное скользящее среднее с периодом 14 дней

1.3.3. Средний истинный диапазон

Средний истинный диапазон (average true range, ATR) — индикатор технического анализа, используемый для измерения волатильности рынка. Впервые упомянут Дж. Уэллсом Уайлдером-младшим в его книге «Новые концепции в технических торговых системах». Индикатор рассчитывается по следующей формуле:

$$ATR = \frac{1}{n} \sum_{i=1}^{n} max(high_i - low_i, |high_i - close_{i+1}|, |low_{i+1} - close_{i+1}|),$$

где:

n — период среднего истинного диапазона, $open_i$ — цена открытия i дней назад,

 $close_i$ – цена закрытия i дней назад,

 $high_i$ – максимальная цена сделки i дней назад,

 low_i — минимальная цена сделки i дней назад,

ATR — значение индикатора.

На рис.4 представлен график среднего истинного диапазона для периода n=14.

Рис. 4: Средний истинный диапазон с периодом 14 дней

Высокие значения среднего истинного диапазона свидетельствуют высоких колебаниях цены. В свою очередь, низкие значения являются индикатором постоянности тренда.

1.3.4. Линии Боллинджера

Линии Боллинджера [2] (Bollinger Bands) — технический индикатор, представляющий из себя две линии, ограничивающие динамику цены сверху и снизу. Индикатор был разработан техническим аналитиком Джоном Боллинджером. Графически полосы Боллинджера — это три линии. Центральная линия — простое скользящее среднее. Верхняя и нижние линии рассчитываются по формуле:

$$BB_{upper} = SMA_n + k\sigma(close_{1:n}),$$

$$BB_{lower} = SMA_n - k\sigma(close_{1:n}),$$

где:

n — период индикатора,

 SMA_n — простое скользящее среднее с периодом n, $\sigma(close_{1:n})$ — среднеквадратичное отклонение цен закрытия за последние n дней,

k — коэффициент, определяющий количество стандартных отклонений (как правило, коэффициент задают равным двум),

 BB_{upper} – значение для верхней линии Боллинджера,

 BB_{lower} – значение для нижней линии Боллинджера.

На рис.5 представлены полосы Боллинджера для периода n=14 дней и k=2.

Рис. 5: Линии Боллинджера с периодом 14 дней

Ширина коридора, создаваемого верхней и нижней линиями Боллинджера является индикатором волатильности. Также, линии Боллинджера свидетельствуют о возможной смене тренда при выходе цены за верхнюю или нижнюю линии.

1.3.5. SPS

Знако-возмущённые суммы (Sign-Perturbed Sums, SPS) [9], [4] — алгоритм построения доверительных интервалов для неизвестных параметров линейных систем при слабых статистических допущениях. На вход алгоритму подаётся некоторое количество последних значений временного ряда. Алгоритм обладает следующими параметрами:

ullet q и m — параметры, задающие доверительную вероятность $p=1-\frac{q}{m};$

• период – количество значений временного ряда, подаваемых на вход.

Данный алгоритм было предложено использовать в качестве инструмента технического анализа и исследовать зависимость тренда от полученного с помощью алгоритма доверительного интервала для коэффициента прямой, описывающией этот тренд.

На рис.6 представлен результат работы SPS. Доверительный интервал цены строится на основе доверительного интервала коэффициента прямой, описывающей тренд.

Рис. 6: Доверительные интервалы, построенные SPS

1.4. Стратегия

Под стратегией понимается формально описанное правило, на основе которого принимается решение о покупке актива (открытии позиции) или продаже актива (закрытии позиции). При этом говорят, что стратегия «подаёт сигнал» о покупке или продаже. Ниже описаны стратегии, которые будут использованы при апробации.

1.4.1. Пересечение скользящих средних

Пересечение скользящих средних (moving averages crossing) — одна из самых популярных стратегий, используемых на финансовом рынке. Стратегия основывается на гипотезе о том, что пересечение скользящих средних с различным периодом является сигналом о возможной смене

тренда. Если скользящая средняя с меньшим периодом проходит выше скользящей средней с большим периодом, то тренд считается восходящим. В противном случае, тренд считается нисходящим. Формально стратегия описывается следующим образом:

1. Используемые индикаторы:

- Два экспоненциальных скользящих средних с различными периодами: $period_{fast}$ и $period_{slow}$ такие, что $period_{fast} < period_{slow}$;
- Средний истинный диапазон с периодом $period_{atr}$;

2. Дополнительные параметры:

• k – коэффициент волатильности

3. Шаги стратегии:

- (а) Вычисление ema_{fast} и ema_{slow} экспоненциальных скользящих средних с периодами $period_{fast}$ и $period_{slow}$ соответственно.
- (b) Если значение скользящего среднего с периодом $period_{fast} > period_{slow}$, то тренд считается восходящим, в противном случае тренд оценивается как нисхожящий.
- (c) Если $|ema_{fast} ema_{slow}| >= k \cdot atr$, то делается вывод о скорой смене тренда и подаётся сигнал о покупке в случае восходящего тренда и о продаже в случае нисходящего.

На рис.7 представлены графики используемых стратегией индикаторов с указанием сигналов о покупке или продаже.

1.4.2. Пересечение линий Боллинджера

Данная стратегия основана на предположении о том, что выход цены за коридор, создаваемый линиями Боллинджера свидетельствует о возможной смене тренда. Формально стратегия описывается следующим образом:

Рис. 7: Стратегия «Пересечение скользящих средних»

1. Используемые индикаторы:

- Линии Боллинджера с периодом $period_{bb}$;
- Средний истинный диапазон с периодом $period_{atr}$;

2. Дополнительные параметры:

• k – коэффициент волатильности.

3. Шаги стратегии:

- (a) Вычисление bb_{upper} , bb_{lower} значения верхней, нижней линий Боллинджера соответственно.
- (b) Вычисление atr значения среднего истинного диапазона.
- (c) Если цена открытия меньше bb_{lower} на величину, превышающую значение $k \cdot atr$, то подаётся сигнал на покупку.
- (d) Если цена открытия выше bb_{upper} на величину, превышающую значение $k \cdot atr$, то подаётся сигнал на продажу.

На рис.8 представлены графики используемых стратегией индикаторов с указанием сигналов о покупке или продаже.

Рис. 8: Стратегия «Пересечение линий Боллинджера»

1.4.3. SPS

Было предложено апробировать алгоритм SPS в качестве стратегии в рамках прототипа. Стратегия отталкивается от той гипотезы, что выход цены за границы доверительного интервала свидетельствует о возможной смене тренда. Стратегия имеет следующее описание:

1. Используемые индикаторы:

- SPS с заданой доверительной вероятностью $p=1-\frac{q}{m}$ и периодом sps_{period} ;
- Средний истинный диапазон с периодом $period_{atr}$;

2. Дополнительные параметры:

• k – коэффициент волатильности.

3. Шаги стратегии:

- (а) Вычисление sps_{upper}, sps_{lower} верхней и нижней границы доверительного интервала.
- (b) Вычисление atr значения среднего истинного диапазона.
- (c) Если цена отрытия $open_i$ меньше sps_{lower} на величину, превышающую значение $k \cdot atr$, то подаётся сигнал на покупку.

(d) Если цена отрытия $open_i$ больше sps_{upper} на величину, превышающую значение $k \cdot atr$, то подаётся сигнал на продажу.

1.5. Моделирование торгов

Имея исторические данные изменениия цен какого-либо финансового инструмента и стратегию, возможно моделирование торгов на рынке. На каждой итерации моделирования симулятору подаётся на вход новая единица исторических данных, имитируя этим завершенную торговую сессию. В рамках работы под единицей исторических данных понимается информация о торговом дне биржи.

1.6. Метрики

Для определения качества той или иной стратегии используются специальные метрики. В работе используются следующие метрики:

- 1. Среднегодовая доходность среднегодовое отношение дохода к начальному депозиту (балансу).
- 2. Среднегодовая волатильность отношение среднеквадратичного отклонения ежедневного дохода к квадратному корню временного периода.
- 3. Максимальная просадка максимальная разница между двумя значениями баланса, идущими друг за другом, выраженная в процентах.
- 4. Ожидаемый выигрыш средняя доходность для одной позиции.
- 5. Процент выигрышных сделок отношение позиций, закрытых с положительным доходом, к общему количеству сделок.
- 6. Коэффициент Шарпа отношение среднегодовой доходности к среднегодовой волатильности.

- 7. Количество инвестиций количество закрытых позиций по итогу симуляции.
- 8. Среднее время удержания среднее количество дней удержания актива.

2. Постановка задачи

Целью работы является создание прототипа программного комплекса для автоматического тестирования стратегий технического анализа на исторических данных.

Для достижения цели были поставлены следующие задачи:

- Разработать требования к прототипу системы;
- разработать архитектуру прототипа системы;
- реализовать прототип системы;
- описать и реализовать метрики качества работы стратегий;
- реализовать инструменты технического анализа в рамках разработанного прототипа и оценить их эффективность;
- апробировать алгоритм SPS в рамках разработанного прототипа системы и оценить его эффективность.

3. Требования к прототипу системы

Основным требованием к прототипу является модульность, которая позволит расширять и дополнять систему в дальнейшем. Также прототип должен наиболее детально моделировать работу финансового рынка. Для этого необходимо учитывать сторонние факторы (такие, как комиссии за совершение сделки) при построение модели. Ниже перечислены требования к прототипу системы с объяснением причин, по которым они были выдвинуты.

3.1. Симуляция торговли

Ключевая функциональность прототипа системы заключается в возможности симуляции работы финансового рынка. В ходе симуляции должны использоваться исторические данные рынка, которые подаются на вход стратегиям для принятия решения о купле-продаже.

3.2. Исторические данные

Прототип системы должен быть абстрагирован от источника данных. Связано это с тем, что исторические данные могут быть представлены в различных форматах. Это может быть, как CSV файл, так и база данных.

3.3. Возможность добавление новых стратегий

Прототип системы должен быть реализован с возможностью добавления новых стратегий для их последующего тестирования. Причём, необходимо организовать эту возможность наиболее удобным с точки зрения пользователя способом. Языком описания стратегий должен являться Python. Данное требование было выдвинуто с целью лёгкой интеграции ранее написанных на этом языке алгоритмов.

3.4. Учёт дополнительных параметров финансового рынка

Реализованный прототип должен наиболее точно описывать финансовый рынок. Для этого должны учитываться дополнительные параметры рынка, к которым относятся:

- Комиссия за совершение сделки;
- ullet возможность маржинальной 1 торговли.

3.5. Оценка стратегий

Необходимо реализовать метрики, которые будут описывать результат работы стратегии по завершению симуляции торгов. Впоследствии, эти метрики должны использоваться для формальной оценки стратегии.

 $^{^{1}}$ Маржинальная торговля – проведение торговых операций с использованием денег, предоставляемых торговцу в кредит под залог оговоренной суммы – маржи

4. Обзор существующих решений

Систем с описанной выше функциональностью большое число. Однако, они однотипны и для анализа были разбиты на две группы. Из каждой группы был выбран и проанализирован популярный представитель.

4.1. AlgoTerminal

Фреймворк для алгоритмического трейдинга, охватывающий весь жизненный цикл автоматизированной торговли: разработку стратегии, её тестирование и оптимизацию. Это коммерческий проект с закрытым исходным кодом. При этом, фреймворк AlgoTerminal[1] обладает следующими особенности:

- 1. Фреймворк обладает высоким порогом вхождения. Это связано с переусложнённым API для описания стратегий.
- 2. Возможность использовать только языки платформы .NET.
- 3. Отсутствует возможность тестирования стратегий на своих данных.

Исходя из вышеперечисленные особенностей, AlgoTerminal не соответствует выдвинутым требованиям. В частности, отсутствует совместимость с различными источниками исторических данных.

4.2. PyAlgoTrade

PyAlgoTrade — фреймворк для языка Python, использующийся для описания индикаторов и стратегий, а также для их тестирования путём симуляции торговли. В качестве входных данных используется CSV^1 файл. Также, по итогу симуляции можно получить значения слудующих метрик:

 $^{^{1}}$ CSV (от англ. Comma-Separated Values — значения, разделённые запятыми) — текстовый формат, предназначенный для представления табличных данных.

- 1. Коэффициент Шарпа.
- 2. Среднегодовая доходность.
- 3. Максимальная просадка.
- 4. Количество выигрышных сделок.

PyAlgoTrade также не соответствует выдвинутым требованиям в виду отсутствия возможности использования источников исторических данных, отличных от CSV файла. Вдобавок, фреймворк даёт доступ к сравнительно небольшому количеству метрик.

5. Архитектура

На рис.9 представлена диаграмма последовательности, которая высокоуровнево описывает процессы, происходящие при работе прототипа.

Рис. 9: Диаграмма последовательности

Ниже описаны основные составляющие прототипа системы.

5.1. Поставщик данных

Для предоставления исторических данных может использоваться любой класс, унаследованный от поставщика данных (DataProvider). На рис.10 представлена диаграмма класса и его классы-наследники:

- 1. SQLiteProvider поставщик данных, использующий SQLite базу данных;
- 2. CSVProvider поставщик данных, использующий CSV файл.

Задача поставщика данных — предоставить исторические значения цен в виде экземпляра класса Instrument, который является абстракцией финансового инструмента.

Рис. 10: Диаграмма классов, связанных с поставщиком данных

5.2. Индикатор и стратегия

Индикатор (Indicator) и стратегия (Strategy) реализованы в виде абстрактных классов. Для использования собственных индикаторов и стратегий необходимо реализовать их, унаследовавшись от данных классов. Результатом работы индикатора является его численное значение. В свою очередь, результатом стратегии является один из следующих сигналов, выраженных числом:

- сигнал о покупке: 1;
- сигнал о продаже: -1;
- сигнал о бездействии: 0.

Прототип реализован с возможностью использования нескольких стратегий одновременно. Экземпляр класса Портфолио (Portfolio) агрегирует в себе стратегии и принимает на их основе решение об открытии или закрытии позиции согласно следующему правилу:

• если сумма всех сигналов больше 0, то принимается решение об открытии позиции;

- если сумма всех сигналов меньше 0, то принимается решение о закрытии позиции;
- если сумма всех сигналов равна 0, то никакого решения, касающегося открытия или закрытия позиции не принимается.

На рис.11 изображена диаграмма описанных в данном подразделе классов.

Рис. 11: Диаграмма классов, связанных с индикаторами и стратегиями

5.3. Аккаунт

Аккаунт — класс, являющийся абстракцией пользователя. Именно экземпляр этого класса в конечном итоге открывает и закрывает позиции. На рис.12 представлены классы Аккаунта (Account) и Позиции (Position).

Рис. 12: Диаграмма классов Аккаунта и Позиции

5.4. Состояние рынка

Состояние рынка (MarketState) — класс, производящий симуляцию поступающих с финансового рынка данных. На рис.13 изображена диаграмма класса и его связи с вышеизложенными частями прототпа.

Рис. 13: Диаграмма состояния рынка

6. Эксперименты

В разделе приведён сравнительный анализ описанных в главе 1 стратегий, а также описание методики, по которой производились эксперименты.

6.1. Метод проведения экспериментов

Набор данных (dataset) для тестирования был предоставлен со стороны потенциального заказчика прототипа в виде SQLite базы данных. На рис.14 представлена структура таблиц базы данных.

Рис. 14: ER-модель базы исторических данных

Сравение апробированных стратегий проводилось с помощью метода forward optimization. Forward optimization — метод оценки эффективности стратегии, основанный на оптимизации параметров на одном временном промежутке, а тестировании и получении метрик — на другом.

Для проведения экспериментов были взяты десять финансовых инструментов, включенных в набор данных и исторические данные за шесть лет. Затем, для каждых двух подряд идущих годов из полученных исторических данных была проведена симуляция следующим образом:

• на первом годе производится оптимизация параметров;

• на втором годе производится симуляция и получение метрик.

6.2. Сравнительный анализ

В Таблице 1 представлены усреднённые результаты метрик, полученные в результате описанных выше экспериментов.

	Пересечение	Пересечение	
Метрика	скользящих	линий	SPS
	средних	Боллинджера	
Доходность (%)	7,6	32,8	32,7
Волатильность (%)	9,0	9,6	10,6
Максимальная просадка (%)	16,0	12,9	13,9
Ожидаемый выигрыш (%)	1,5	6,3	$14,\!5$
Выигрышные сделки (%)	43,7	71,5	69,0
Коэффициент Шарпа	0,7	5,2	3,2
Количество инвестиций (шт.)	2,9	4,8	5,2
Среднее время удержания (сут.)	26,5	31,6	38

Таблица 1: Результаты экспериментов

Исходя из результатов тестирования стратегий, можно сказать, что SPS в качестве технического индиакатора сравним с такими классическими инструментами технического анализа, как линии Боллинджера и скользящие средние.

Заключение

В ходе выполнения выпускной квалификационной работы были достигнуты следующие результаты.

- 1. Были разработаны и проанализированы требования к прототипу системы моделирования работы инструментов технического анализа.
- 2. Был проведён обзор схожих систем (AlgoTerminal, PyAlgoTrade) и описаны их особенности.
- 3. Разработана архитектура прототипа системы, позволяющая реализовать прототип согласно выдвинутым требованиям.
- 4. Реализован прототип системы, реализующий следующую функциональность:
 - Возможность добавления новых индикаторов и стратегий;
 - Возможность тестирования алгоритмов анализа на исторических данных;
 - Получение значений метрик по итогу симуляции;
 - Получение интерактивного графика, иллюстрирующего значения индикатора.
- 5. Описаны и реализованы метрики для формальной оцениванки работы стратегий.
- 6. Реализованы и оценены следующие стратегии:
 - Пересечение скользящих средних.
 - Пересечение линий Боллинджера.
- 7. Был применён в качестве финансовой стратегии алгоритм SPS и проведён его сравнительный анализ.

Список литературы

- [1] AlgoTerminal LLC. AlgoTerminal algorithmic trading software. URL: https://www.algoterminal.com/.
- [2] Bollinger John. Bollinger Bands[®] // Bollinger Capital Management, Inc. 2019.— URL: https://www.bollingerbands.com/ (online; accessed: 2019).
- [3] Investing.com // Technical Analysis.— 2018.— URL: https://www.investing.com/technical/technical-analysis.
- [4] Marco C. Campi Balázs Cs. Csáji Erik Weyer. Sign-Perturbed Sums: A New System Identification Approach for Constructing Exact Non-Asymptotic Confidence Regions in Linear Regression Models. 2017. URL: https://arxiv.org/pdf/1807.08216.pdf (online; accessed: 2019).
- [5] NinjaTrader LLC. C# framework for developers to build integrated indicators, drawing tools, automated strategies and more.— URL: https://ninjatrader.com/.
- [6] Preston Pysh Stig Brodersen. Warren Buffett Accounting Book: Reading Financial Statements for Value Investing. Pylon Publishing, 2014. URL: https://books.google.ru/books/about/Warren_Buffett_Accounting_Book.html?id=2cfGoAEACAAJ&source=kp_book_description&redir_esc=y.
- [7] Pring Martin J. Technical Analysis Explained: The Successful Investor's Guide to Spotting Investment Trends and Turning Points. 1980.
- [8] PyAlgoTrade, a Python Algorithmic Trading Library. URL: https://github.com/gbeced/pyalgotrade (online; accessed: 2019).
- [9] Волкова М.В. Граничин О.Н. Волков Г.А. Петров Ю.В. О возможности применения метода знако-возмущенных сумм для обработки результатов динамических испытаний // Вестник СПбГУ. Сер.

1. Том 63. Вып.1. 2018. С. 30–40. — 2018. — URL: http://vestnik.spbu.ru/html18/s01/s01v1/04.pdf (дата обращения: 2019).