Algoritmos matemáticos sobre matrices:

Representaciones especiales de matrices, Algoritmo de Strassen, multiplicación y triangulación de matrices

Jose Aguilar

Matriz

Una matriz es un arreglo rectangular de elementos (números reales) ordenados en filas y columnas:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}$$

 a_{ii} es el elemento situado en la i-ésima fila y en la jésima columna. La matriz tiene *m* filas y *n* columnas.

$$B = \begin{bmatrix} 3 & 1 & -8 & 5 & 0 \\ 5 & 2 & 4 & 0 & 1 \end{bmatrix}_{2x5}$$
 B es una matriz de orden 2x5.

Matriz

Las matrices son de suma importancia en las ciencias, como la ingeniería, la economía y otras ciencias aplicadas.

Son útiles para representar datos en forma ordenada, para modelar problemas y resolver sistemas de ecuaciones, etc.

Cotización del Oro (Londres, US\$/oz.)

	20-Mar-06	21-Mar-06	22-Mar-06	23-Mar-06	24-Mar-06
09:00	553.1	554.1	551.1	551.7	554.2
10:00	551.4	548.2	550.1	549.8	556.4
11:00	554.2	549.7	550.3	547.9	560.2
12:00	555.0	550.3	550.7	547.6	559.7

Igualdad de matrices

Dos matrices A y B del **mismo orden** son iguales si todos sus elementos correspondientes son iguales.

$$A_{mxn} = B_{mxn} \Leftrightarrow [a_{ij}] = [b_{ij}]$$

Matrices especiales: Matriz fila y matriz columna

Las matrices filas son las de orden 1xn y las matrices columnas son las de orden mx1 (vectores)

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{m1} \end{bmatrix} \quad \text{B es una matriz columna.}$$

Matrices especiales: Matriz diagonal

Es la matriz cuadrada

$$a_{ij} = \begin{cases} \lambda_i & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases} \quad \lambda_i \in \mathbf{R}$$

Es la matriz cuadrada
$$A_{nxn} = [a_{ij}] \text{ definida por:}$$

$$A = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

$$a_{ij} = \begin{cases} \lambda_i & \text{si } i = j \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Matrices especiales: Matriz identidad

matriz diagonal, en la cual los elementos de la diagonal principal son todos iguales a 1. $I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$

$$I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Matriz cuadrada

Es aquella que tiene el mismo número de filas que de columnas, es decir m = n. En estos casos se dice que la matriz cuadrada es de orden n, y no $n \times n$.

Los elementos a_{ij} con i = j, o sea a_{ii} forman la llamada diagonal principal de la matriz cuadrada, y los elementos a_{ij} con i + j = n + 1 la diagonal secundaria.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix}$$

Matrices especiales: Matriz Triangular

Es una matriz cuadrada que tiene nulos todos los elementos que están a un mismo lado de la diagonal principal.

Matriz triangular inferior: es una matriz cuadrada cuyos elementos situados por encima de la diagonal principal son todos iguales a cero.

$$a_{ij} = 0, \forall i < j$$

Matriz triangular superior: es una matriz cuadrada cuyos elementos situados por debajo de la diagonal principal son todos iguales a cero.

$$a_{ij} = 0, \forall i > j$$

Matriz transpuesta

Dada una matriz $A_{mxn} = [a_{ij}]$, llamaremos matriz transpuesta de A a la matriz que resulta de intercambiar en A las filas por columnas. Esta matriz estará denotada por $A_{nxm}^t = [a_{ii}]$.

$$A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \\ 1 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \\ 1 & -1 \end{bmatrix} \qquad A^{t} = \begin{bmatrix} 2 & 5 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$

Propiedades:

$$1) \left(A^{t}\right)^{t} = A$$

$$2) (kA)^{t} = kA^{t}, k \in R$$

3)
$$(A \pm B)^t = A^t \pm B^t$$

4)
$$(A.B)^{t} = B^{t}.A^{t}$$

Matrices especiales: Matriz simétrica y antisimétrica

Una matriz **cuadrada** A se llama simétrica si $A^t = A$ y antisimétrica si $A^t = -A$.

$$A = \begin{bmatrix} 2 & 1 & 5 \\ 1 & 4 & 6 \\ 5 & 6 & 9 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 & -4 & 3 \\ -1 & 0 & 7 & 2 \\ 4 & -7 & 0 & -6 \\ -3 & -2 & 6 & 0 \end{bmatrix}$$

- ✓ A es una matriz simétrica, pues $A^t = A$.
- ✓ B es una matriz antisimétrica, pues $B^t = -B$.

Transposición de matrices

Suma y diferencia de matrices

Producto de una matriz por un número

Propiedades simplificativas

Producto de matrices

Matrices inversibles

Suma y diferencia de matrices

La suma de dos matrices A=(aij), B=(bij) de la misma dimensión, es otra matriz S=(sij) de la misma dimensión que los sumandos y con término genérico sij=aij+bij. Por tanto, para poder sumar dos matrices estas han de tener la misma dimensión.

La suma de las matrices A y B se denota por A+B.

Ejemplo

$$\begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix} + \begin{pmatrix} 1 & -1 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 7 & -1 \end{pmatrix}$$

Sin embargo,
$$\begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix} + \begin{pmatrix} 9 \\ 0 \end{pmatrix}$$
 no se pueden sumar.

La diferencia de matrices A y B se representa por A-B, y se define como: A-B = A + (-B)

Propiedades de la suma de matrices

$$1^a$$
. A + (B + C) = (A + B) + C

Propiedad Asociativa

$$2^{a}$$
. A + B = B + A

Propiedad conmutativa

$$3^a$$
. A + 0 = A (0 es la matriz nula)

Matriz Nula

 $4^{\underline{a}}$. La matriz -A, que se obtiene cambiando de signo todos los elementos de A, recibe el nombre de matriz opuesta de A, ya que A + (-A) = 0.

Producto de una matriz por un número

El producto de una matriz A = (aij) por un número real k es otra matriz B = (bij) de la misma dimensión que A y tal que cada elemento bij de B se obtiene multiplicando aij por k, es decir, $bij = k \cdot aij$.

Ejemplo:

$$3 \cdot \begin{pmatrix} 2 & -1 & 0 \\ 4 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 3 \cdot 2 & 3 \cdot (-1) & 3 \cdot 0 \\ 3 \cdot 4 & 3 \cdot 1 & 3 \cdot 3 \end{pmatrix} = \begin{pmatrix} 6 & -3 & 0 \\ 12 & 3 & 9 \end{pmatrix}$$

El producto de la matriz A por el número real k se designa por $k \cdot A$. Al número real k se le llama también escalar, y a este producto, producto de escalares por matrices

Propiedades del producto de una matriz por un escalar

1^a k (A + B) = k A + k E

Propiedad distributiva 1a

$$2^{a}$$
. $(k + h)A = kA + hA$

Propiedad distributiva 2^a

$$3^a$$
 k [h A] = (k h) A

Propiedad asociativa mixta

$$4^{a}$$
 1 · A = A · 1 = A

Elemento unidad

Propiedades simplificativas

Si
$$A + C = B + C \Leftrightarrow A = B$$

Si $kA = kB \Leftrightarrow A = B$ si k es distinto de 0

Si $kA = hA \Leftrightarrow h = k \text{ si } A \text{ es distinto de } 0$

Matrices por bloques

a11	a12	a13	a14	b11	b12
a21	a22	a23	a24	b21	b22
a31	a32	a33	a34	b31	b32
a41	a42	a43	a44	b41	b42

Matrices por bloques

A ₁₁	A ₁₂
A ₂₁	A ₂₂

B₁₁

$A_{11}B_{11} + A_{12}B_{21}$
A ₂₁ B ₁₁ +A ₂₂ B ₂₁

Algoritmo de Strassen y multiplicación de matrices

Producto de matrices

Dadas dos matrices A y B, su producto es otra matriz P cuyos elementos se obtienen multiplicando las filas de A por las columnas de B. De

Es evidente que el número de columnas de A debe coincidir con el número de filas de B.

Si A tiene dimensión $m \times n$ y B dimensión $n \times p$, la matriz P será de orden $m \times p$:

$$p_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Ejemplo:
$$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 & 0 \\ 2 & 5 & 3 \end{pmatrix}$$
 no se pueden multiplicar
$$\begin{pmatrix} r & s \\ t & u \end{pmatrix} \cdot \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} = \begin{pmatrix} ra_1 + sb_1 & ra_2 + sb_2 & ra_3 + sb_3 \\ ta_1 + ub_1 & ta_2 + ub_2 & ta_3 + ub_3 \end{pmatrix}$$

Producto de matrices

Sean $\mathbf{A} = \{a_{ik}\}$ una matriz de dimensión $m \times n$ y $\mathbf{B} = \{b_{kj}\}$ una matriz de dimensión $n \times s$. El producto \mathbf{AB} es la matriz $\mathbf{C} = \{c_{ij}\}$ de dimensión $m \times s$, donde la entrada c_{ij} de \mathbf{C} es el producto punto de la i-ésima fila de \mathbf{A} y la j-ésima columna de \mathbf{B} .

Ejemplo:

Fila 2

Columna

3

$$\begin{pmatrix}
2 & -1 & 0 \\
-3 & 5 & 8 \\
0 & 7 & 8
\end{pmatrix}$$
 $\begin{pmatrix}
3 & 8 & 5 & 4 \\
-6 & -4 & 0 & 4 \\
-4 & -5 & 2 & 1
\end{pmatrix}$
 $\begin{pmatrix}
12 & 20 & 10 & 4 \\
-71 & -84 & 1 & 16 \\
-74 & -68 & 16 & 36
\end{pmatrix}$
Posición

 $\begin{pmatrix}
-3/(5) + (5)(0) + (8)(2) = 1
\end{pmatrix}$

Producto de matrices

En general, el elemento c_{ii} está dado por

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj};$$

$$i = 1, ..., m$$

$$j = 1, ..., s$$

Por ejemplo, si A_{3x4} , B_{4x7} , C_{7x3} , los productos AB_{3x7} , BC_{4x3} y CA_{7x4} están definidos, mientras que no es posible multiplicar BA, AC y CB. Debe observarse que el producto de matrices en general no es conmutativa, esto es, aún cuando los productos AB y BA están definidos, no es necesariamente cierto que AB=BA, como muestra el siguiente ejemplo

$$\begin{pmatrix} -1 & 2 \\ 3 & -4 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 4 & 9 \\ -8 & -17 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 \\ 2 & 5 \end{pmatrix} \cdot \begin{pmatrix} -1 & 2 \\ 3 & -4 \end{pmatrix} = \begin{pmatrix} 3 & -4 \\ 13 & -16 \end{pmatrix}$$

Producto de matrices

Propiedades del producto de matrices

 $A \cdot (B \cdot C) = (A \cdot B) \cdot C$ (Propiedad asociativa)

El producto de matrices en general no es conmutativo.

Si A es una matriz cuadrada de orden n se tiene $A \cdot I_n = I_n \cdot A = A$.

Dada una matriz cuadrada A de orden n, no siempre existe otra matriz B tal que $A \cdot B = B \cdot A = I_n$. Si existe dicha matriz B, se dice que es la matriz inversa de A y se representa por A^{-1} .

El producto de matrices es distributivo respecto de la suma de matrices, es decir: $A \cdot (B + C) = A \cdot B + A \cdot C$

Algoritmo secuencial

Caso matrices cuadradas.

```
for (i = 0; i < n; i++) {
        for (j = 0; i < n; j++) {
            c[i][j] = 0;
            for (k = 0; k < n; k++) {
                 c[i][j] += a[i][k] * b[k][j]
            }
        }
    }
}</pre>
```

 n^3 multiplicaciones y n^3 sumas \rightarrow O (n^3)

Implementación recursiva

- La división en submatrices sugiere una estrategia recursiva de divide y vencerás, que puede ser especialmente ventajoso en sistemas de memoria compartida.
- La ventaja de esta estrategia es que en cada paso de recursión, los datos transmitidos son más pequeños y están más localizados.

Divide y venceras

La técnica "divide y vencerás" (DV) consiste en:

- Descomponer el problema que hay que resolver en cierto numero de subproblemas mas pequeños del
- mismo tipo.
- Resolver de forma sucesiva e independiente todos estos subproblemas.
- Combinar las soluciones obtenidas para obtener la solución del problema original.

Características de los problemas resolubles utilizando "divide y vencerás"

- El problema se puede descomponer en otros del mismo tipo que el original y de tamaño mas pequeño
- (formulación recursiva).
- Los subproblemas pueden resolverse de manera independiente.
- Los subproblemas son disjuntos, sin solapamiento.
- La solución final se puede expresar como combinación de las soluciones de los subproblemas.

Método general "divide y vencerás"

```
function DYC(x)
IF x es suficientemente simple
   RETURN algoritmoBasico(x)
ELSE
   descomponer x en x[1],x[2],...,x[s]
   FOR i ::= 1 TO s
        y[i] ::= DYC(x[i])
   ENDFOR
   combinar y[i] en una solución y a x
   RETURN y
ENDINF
```

Algoritmo de multiplicación de Strassen

Cómo calcular el producto de dos matrices de dos por dos usando menos multiplicaciones que con el método tradicional

Dadas dos matrices

$$A = \begin{vmatrix} a_{11} & a_{12} & y & B = b_{11} & b_{12} \\ a_{21} & a_{22} & b_{21} & b_{22} \end{vmatrix}$$

podemos poner.....

$$m_1 = (a_{21} + a_{22} - a_{11}) (b_{22} - b_{12} + b_{11})$$

 $m_2 = a_{11} b_{11}$
 $m_3 = a_{12} b_{21}$
 $m_4 = (a_{11} - a_{21}) (b_{22} - b_{12})$
 $m_5 = (a_{21} + a_{22}) (b_{12} - b_{11})$
 $m_6 = (a_{12} - a_{21} + a_{11} - a_{22}) b_{22}$
 $m_7 = a_{22} (b_{11} + b_{22} - b_{12} - b_{21})$

Entonces el producto AB queda:

$$m_1 + m_3$$
 $m_1 + m_2 + m_5 + m_6$
 $m_1 + m_2 + m_4 - m_7$ $m_1 + m_2 + m_4 + m_5$

Este procedimiento requiere 7 multiplicaciones para cacular el producto de A y B (pero más sumas que el método tradicional!!).

Algoritmo de multiplicación de Strassen

 Si reemplazamos cada elemento de A y B por una matriz de n x n, las fórmulas anteriores nos dan una forma de multiplicar dos 2n X 2n matrices.

 A partir de esto tenemos un método recursivo para calcular el producto de matrices con n potencia de 2.

 Este método se puede generalizar también a matrices cuyas dimensiones no sean de la forma 2n

Triangulación

Jose Aguilar

Sistema triangular superior

 Los coeficientes por debajo de la diagonal principal son ceros

2	1	-1
0	1.5	1.5
0	0	1

- Operaciones elementales sobre las filas
- Obtener ceros por debajo de la diagonal principal

Índices

- **k:** pivote debajo del cual se van a obtener los ceros de la matriz triangular
- i: fila a transformar que tendrá un cero debajo del pivote en la diagonal
- **j:** para recorrer la fila **i** y hacer las transformaciones

'triangular superior

Public Sub tpsup(x() As Double, ByVal n1 As Integer, ByVal n2 As Integer)

```
For k = 1 To n1 - 1 'Inicia recorrido pivotes

For i = k + 1 To n1 'Inicia recorrido filas

m = x(i, k) / x(k, k) 'múltiplo

For j = k To n1 'Inicia recorrido columnas

x(i, j) = x(i, j) - m * x(k, j)
```

- Operaciones elementales sobre las filas
- Obtener ceros por encima de la diagonal principal

triangular inferior

Public Sub tpinf(x() As Double, ByVal n1 As Integer, ByVal n2 As Integer)

```
For k = n1 To 2 Step -1

For i = k - 1 to To 1 Step -1

m = x(i, k) / x(k, k)

For j = 1 To n1

x(i, j) = x(i, j) - m * x(k, j)
```

Para tres ecuaciones y tres incógnitas

$$2X_{1} + X_{2} - X_{3} = 3$$
 $X_{1} + 2X_{2} + X_{3} = 6$
 $2X_{1} - X_{2} + X_{3} = 5$
Ec. 1
Ec. 2

Para transformar A en una matriz triangular superior:

• Eliminar x_1 de las ecuaciones 2 y 3, utilizando la ecuación 1

$$2X_1 + X_2 - X_3 = 3$$

$$0X1 + (3/2)X2 + (3/2)X3 = 9/2$$

$$0X1 + (-2)X2 + (2)X3 = 2$$

Ec. 1

Ec.
$$2' = \text{Ec.}2 - (1/2) \text{ Ec.}1$$

Ec.
$$3' = \text{Ec.}3 - (2/2)\text{Ec.}1$$

Transformar A en una matriz triangular superior

Eliminar x_2 de la ecuación 3 utilizando la ecuación 2:

$$2X_1 + X_2 - X_3 = 3$$

$$0X1 + (3/2)X2 + (3/2)X3 = 9/2$$

$$0X1 + 0X2 + (4)X3 = 8$$

Ec.
$$3^{"} = \text{Ec.}3^{"} - (-4/3)\text{Ec.}2^{"}$$

Sistema equivalente resultante:

$$2X_1 + X_2 - X_3 = 3$$

$$0X1 + 1.5 X2 + 1.5 X3 = 4.5$$

$$0X1 + 0X2 + 1X3 = 2$$

