REGRESIÓN GAMMA

Oihane Álvarez, Gabriel Carbonell, Daniel Hernández, Celia Sifre

► El Modelo Lineal Generalizado (MLG) gamma no se encuentra entre los modelos más comúnmente utilizados, sin embargo, es de gran utilidad cuando nos enfrentamos a ciertos tipos de datos. Lo que tienen en común los datos que se modelizan con una Gamma es que son de tipo continuo y asimétricos por la derecha.

Y una variable aleatoria sigue una distribución gamma de parámetros $\nu>0$ y $\lambda>0$, Y $\sim Ga(\nu,\lambda)$, si su función de densidad de probabilidad es:

$$f(y) = \frac{1}{\Gamma(\nu)} \lambda^{\nu} y^{\nu - 1} e^{-\lambda y} \qquad y > 0$$

Donde $\Gamma(\cdot)$ es la función gamma es:

$$\Gamma(\nu) = (\nu - 1)!$$
 si $\nu > 0$

Esperanza:

$$E(y) = \nu/\lambda$$

Varianza:

Sin embargo, para el propósito de un Modelo Lineal Generalizado, es conveniente reparametrizar la ecuación sustituyendo

$$\lambda = \nu/\mu$$

tal que la densidad quedaría:

$$f(y) = \frac{1}{\Gamma(\nu)} (\frac{\nu}{\mu})^{\nu} y^{\nu-1} e^{-(\frac{y\nu}{\mu})} \qquad y > 0$$

Con la reparametrización,

$$E(y) = \nu/(\nu/\mu) = \mu$$

y la varianza es

$$Var(y) = \nu/(\nu^2/\mu^2) = \mu^2/\nu = E(y)^2/\nu$$

Además ν describe la forma y λ describe la escala de la distribución. Observamos que significa esto:

Función de densidad distribuciones gamma

PROPIEDADES DISTRIBUCIÓN GAMMA

- La distribución exponencial es un caso particular de la distribución gamma, Gamma $(1,\lambda)\sim {\sf Expo}(\lambda)$
- La distribución χ^2 es un caso particular de la distribución gamma, donde $\lambda=1/2$ y $\nu={\rm df}/2$ (df \equiv grados de libertad).

EJEMPLOS SITUACIONES

Variables respuesta que toman valores continuos, positivos y asimétricos a la derecha. Se emplea comúnmente en estudios de fiabilidad, análisis de supervivencia, gestión de riesgos...

- ► Tiempo de vida útil de una maquina o electrodoméstico
- Número de individuos involucrados en accidentes de tráfico en el área urbana
- Altura a la que se inician las precipitaciones
- Consumo diario de energía (en millones de kW*h) en una ciudad

FAMILIA EXPONENCIAL (I)

Se dice que una variable aleatoria Y con distribución gamma pertenece a la familia exponencial si su función de densidad se puede expresar de la forma siguiente:

$$f(y; \theta, \phi) = \exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y; \theta)\right\}$$

- ightharpoonup a(),b(),c() son funciones específicas de la distribución
- ightharpoonup heta es un parámetro denominado natural o canónico
- lacktriangle ϕ es un parámetro muy relacionado con la dispersión.

FAMILIA EXPONENCIAL (II)

Así nuestro objetivo es a partir de la función de densidad de una distribución gamma obtener la expresión anterior. Con este objetivo aplicaremos la exponencial del logaritmo a la función de densidad.

$$f(y) = \frac{1}{\Gamma(\nu)} \left(\frac{\nu}{\mu}\right)^{\nu} y^{\nu-1} e^{-\left(\frac{y-\nu}{\mu}\right)} \qquad y > 0$$

Primeramente usamos el logaritmo.

$$\log(f(y)) = -\log(\Gamma(\nu)) + \nu \log(\nu) - \nu \log(\mu) + \nu \log(y) - \log(y) - \frac{y \nu}{\mu}$$

Así, aplicando la exponencial para despejar f(y) obtenemos:

$$f(y) = \exp\left\{-\log(\Gamma(\nu)) + \nu\log(\nu) - \nu\log(\mu) - \frac{\nu\ y}{\mu} + (\nu-1)\log(y)\right\}$$

FAMILIA EXPONENCIAL (III)

Así denotando $\theta=-1/\mu$, donde θ es el parámetro denominado natural o canónico y $\phi=1/\nu$, donde ϕ es el parámetro relacionado con la dispersión. Sustituyendo queda:

$$f(y) = \exp\{ (y\theta)/\phi + \log(-\theta)/\phi -$$
$$-\log(\Gamma(1/\phi)) + 1/\phi \log(1/\phi) + (1/\phi - 1)\log(y) \}$$

Así, finalmente tendremos que

$$b(heta) = -\log(- heta),$$
 $a(\phi) = \phi,$ $c(y,\phi) = -\log(\Gamma(1/\phi)) + 1/\phi\log(1/\phi) + (1/\phi - 1)\log(y)$

MODELO DE REGRESIÓN GAMMA

La variable respuesta Y_i es continua y positiva:

$$Y_i (i = 1, ..., n)$$
 i.i.d $Gamma(\nu, \lambda)$

Predictor lineal formado por una combinación lineal de las componentes $X^{(1)}, X^{(2)}, ..., X^{(p)}$ que indican tanto covariables como variables indicadoras e interacciones de ellas.

Hay varias funciones de enlace que unen el predictor lineal con la respuesta media, las cuales son: el logaritmo $g(\mu) = log(\mu)$, la identidad $g(\mu) = \mu$ y la inversa $g(\mu) = 1/\mu$.

Es posible llevar a cabo una transformación sobre la varianza y unirla con el predictor lineal.

El ajuste con regresión Gamma evita la realización de transformaciones de la variables respuesta.

FUNCIONES LINK

Enlace logaritmo:

$$\begin{split} \log\left(\mu_{i}\right) &= \beta_{0} + \beta_{1}X_{i}^{(1)} + \ldots + \beta_{p}X_{i}^{(p)}, i = 1, \ldots, n \\ \mu_{i} &= \exp\left\{\beta_{0} + \beta_{1}X_{i}^{(1)} + \ldots + \beta_{p}X_{i}^{(p)}\right\} \\ \operatorname{Var}\left(Y_{i}\right) &= \frac{\mu^{2}}{\nu} = \frac{1}{\nu}\mu^{2} = \frac{1}{\nu}\left(\exp\left\{\beta_{0} + \beta_{1}X_{i}^{(1)} + \ldots + \beta_{p}X_{i}^{(p)}\right\}\right)^{2} \end{split}$$

Interpretación: como cambios porcentuales en E(Y) por cada incremento de una unidad en X_j (% = $100 \cdot (e^{\beta_j})$).

FUNCIONES LINK (II)

Enlace identidad:

$$\mu_{i} = \beta_{0} + \beta_{1} X_{i}^{(1)} + \ldots + \beta_{p} X_{i}^{(p)}, i = 1, \ldots, n$$

$$Var(Y_{i}) = \frac{\mu^{2}}{\nu} = \frac{1}{\nu} \mu^{2} = \frac{1}{\nu} \left(\beta_{0} + \beta_{1} X_{i}^{(1)} + \ldots + \beta_{p} X_{i}^{(p)}\right)^{2}$$

Interpretación: el incremento de una unidad en X_j hace crecer E(Y) en β_j .

Enlace inverso (canónico)

$$\frac{1}{\mu_i} = \beta_0 + \beta_1 X_i^{(1)} + \ldots + \beta_p X_i^{(p)}, i = 1, \ldots, n$$

$$\text{Var}(Y_i) = \frac{\mu^2}{\nu} = \frac{1}{\nu} \mu^2 = \frac{1}{\nu} \left(\frac{1}{\beta_0 + \beta_1 X_i^{(1)} + \ldots + \beta_p X_i^{(p)}} \right)^2$$

EJEMPLOS DE APLICACIÓN

El uso de gamma GLM es adecuado para datos continuos, positivos y con sesgo a la derecha. Estos son algunos ejemplos de aplicación para los diferentes enlaces.

Enlace logaritmo:

Tiempo de supervivencia. Tiempo de Supervivencia de los Pacientes con Nefropatía Diabética (Grover et al., 2013).

Enlace identidad:

BMI. Índice de masa corporal (IMC) (Kaggle, 2017).

Enlace canónico:

Número de reclamaciones. Número de reclamaciones por daños en automóviles (IBM, 2021).

AJUSTE DEL MODELO (I)

Ajuste del modelo por Ajuste por Mínimos Cuadrados Ponderados Iterados. Especificando una estimación inicial de $\hat{\beta}$ se obtienen los parámetros del predictor lineal del modelo $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_p)$.

Utilizando el estadístico de Wald, se puede contrastar si los valores de los parámetros β_i valen 0 y obtener un intervalo de confianza al $(1-\alpha)100\%$ de cada parámetro. Contraste:

$$H_0: \beta_i = 0$$

$$H_1: \beta_i \neq 0$$

Si β_i la covariable X_i no tendrá influencia en la variable respuesta (siempre en presencia del resto).

AJUSTE DEL MODELO (II)

Si no se conoce el parámetro de forma ν , podemos conocer dicho parámetro y el de la dispersión ϕ usando el método de máxima verosimilitud que es aproximadamente:

$$\hat{\phi} = \frac{1}{\nu} = \frac{D(y, \hat{\mu})}{n - p}$$

Donde n es el número total de datos y p el número parámetros. D es la DEVIANCE para una distribución Gamma, que se define de la siguiente manera, $D(y,\hat{\mu}) = -2\sum (In(y_i/\hat{\mu}_i) - ((y_i-\hat{\mu}_i)/\hat{\mu}_i))$

AJUSTE DEL MODELO (III)

La estimación de la dispersión mediante esta expresión es sensible a valores pequeños de y_i y además no están definidas para cuando $y_i = 0$. Por ello, es preferible la estimación de la dispersión mediante el método de Pearson:

$$\hat{\phi} = \frac{1}{\nu} = \frac{X^2}{n - p}$$

Donde el estadístico de chi-cuadrado X^2 de Pearson se basa en la diferencia al cuadrado entre los valores observados y los esperados, entre los esperados. Es decir,

$$X^2 = \sum_i (observados_i - esperados_i)^2 / esperados_i = \sum_i (y_i - \hat{\mu_i})^2 / \hat{\mu_i}$$

VALORACIÓN DEL AJUSTE Y DIAGNÓSTICO DEL MODELO (I)

Para valorar el ajuste del modelo, se emplea el estadístico DEVIANCE, y alternativamente a éste, se puede emplear el estadístico chi-cuadrado X^2 de Pearson.

Para conocer si nuestro modelo es adecuado:

Se comprueba que los residuos DEVIANCE o Pearson estén entre -2 y 2, así como si tienen un comportamiento normal.

VALORACIÓN DEL AJUSTE Y DIAGNÓSTICO DEL MODELO (II)

Para determinar si el modelo tiene un buen ajuste:

- ► El estadístico DEVIANCE será pequeño
- ▶ El estadístico DEVIANCE deberá distribuirse como una X^2 con n (p + 1) grados de libertad. Contraste:

 H_0 : El modelo propuesto tiene un buen ajuste

 H_1 : El modelo propuesto no tiene un buen ajuste

▶ La diferencia de DEVIANCES entre el modelo nulo y el modelo propuesto nos da una idea de la calidad del ajuste de dicho modelo. Además, esta aproximación es más precisa que la de la DEVIANCE misma.

ELECCIÓN DEL MEJOR MODELO (I)

A nivel de mejor ajuste, tres estrategias:

- Diferencia de DEVIANCES. Un modelo más complejo siempre tendrá una DEVIANCE menor, pero se puede determinar si esa disminución de DEVIANCE es significativa mediante la diferencia de DEVIANCES.
- Se pueden emplear criterios AIC, AICc, BIC, etc. Estos criterios penalizan la complejidad del modelo y cuanto menor sea su valor, mejor será el ajuste del modelo.
- Cuando hay un número de modelos grande, se puede hacer una selección forward o backward, mientras que si el número es pequeño, se puede hace un análisis detallado de los modelos.

ELECCIÓN DEL MEJOR MODELO (II)

A nivel de mejor capacidad predictiva:

Validación cruzada (CV). También sirve para seleccionar el conjunto de variables que mejor predicen la variable respuesta.

BIBLIOGRAFÍA (I)

- ► Faraway, J.J. (2006). Extending the Linear Model with R. CRC/Chapman and Hall.
- ► Camargo Lozano, B. (2018). Regresión Gamma generalizada: Extensiones y aplicaciones al análisis de datos espaciales.
- Grover, Gurprit & Sabharwal, Alka & Mittal, Juhi. (2013). An Application of Gamma Generalized Linear Model for Estimation of Survival Function of Diabetic Nephropathy Patients.
- Johnson, P.E. (2014). GLM with a Gamma-distributed Dependent Variable.

BIBLIOGRAFÍA (II)

- ▶ ibm.com (2021). Fitting a Gamma Regression to Car Insurance Claims (Generalized Linear Models). [online] Available at: https://www.ibm.com/docs/en/spssmodeler/18.1.1?topic=smt-fitting-gamma-regression-carinsurance-claims-generalized-linear-models [Accessed 5 May 2022].
- ▶ Tatman, R. (2018). Regression Challenge: Day 4 (Gamma Distribution). [online] Kaggle.com. Available at: https://www.kaggle.com/code/rtatman/regression-challenge-day-4-gamma-distribution/notebook [Accessed 6 May 2022].
- DHSC Analysts (2021). Chapter 11 Testing regression assumptions | Intermediate R - R for Survey Analysis. Bookdown.org.