CAN207 Continuous and Discrete Time Signals and Systems

Lecture-10
Laplace Transform

Zhao Wang
Zhao.wang@xjtlu.edu.cn
Room EE322

Content

- 1. Introduction to Laplace Transform
 - Eigenfunctions: $e^{j\omega t}$ and e^{st}
 - Definition of Laplace transform (also called s-transform)
- 2. Region of Convergence (ROC)
 - Zeros and Poles
 - ROC propreties
 - Causality
 - Stability

1.1 Review of CTFS and CTFT

Review CTFS/CTFT

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\Omega_0 t} \qquad x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$
$$a_k = \frac{1}{T} \int_{T} x(t) e^{-jk\Omega_0 t} dt \qquad X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

- Eigenfunction
 - The response of an LTI system to a complex exponential input is the same complex exponential with only a change in amplitude

$$e^{j\omega_k t} \to H(\omega_k)e^{j\omega_k t}$$

1.2 Eigenfunction - more general

- Eigen function
 - Proof for the previous complex exponential:

$$e^{j\omega_k t} \to \int_{-\infty}^{\infty} h(\tau)e^{j\omega_k(t-\tau)}d\tau = e^{j\omega_k t} \int_{-\infty}^{\infty} h(\tau)e^{-j\omega_k \tau}d\tau = e^{j\omega_k t}H(\omega_k)$$

- where $e^{j\omega_k t}$ is a special complex exponential, with magnitude fixed at 1, and the exponent is pure imaginary.
- It can be generalized by extending the pure imaginary exponent to a common complex number $s = \sigma + j\omega$, where σ is the real part, and $j\omega$ is the imaginary part (same as the $j\Omega_k$ before), now:

$$e^{st} \to \int_{-\infty}^{\infty} h(\tau)e^{s(t-\tau)}d\tau = e^{st} \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau = e^{st}H(s)$$

Transfer function = Laplace transform $H(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt$

1.3 Definition of Laplace transform

• The Laplace transform* is

$$X(s) = \mathcal{L}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

- where $s = \sigma + j\omega$.
- The Laplace transform is closely related to CTFT by:

$$X(\sigma + j\omega) = \int_{-\infty}^{\infty} x(t)e^{-(\sigma + j\omega)t}dt = \int_{-\infty}^{\infty} x(t)e^{-\sigma t}e^{-j\omega t}dt$$

- which suggests that the Laplace transform is the Fourier transform of $x(t)e^{-\sigma t}$;
- The value of σ would affect the convergence of the CTFT of $x(t)e^{-\sigma t}$.

Example 1

- Let's look at $x(t) = e^{-at}u(t)$
- Recall its CTFT

$$X(\omega) = \int_0^\infty e^{-at} e^{-j\omega t} dt = \frac{1}{j\omega + a}$$

- where the integration converges when a > 0.
- The Laplace transfrom of x(t) is

$$X(s) = X(\sigma + j\omega) = \int_0^\infty e^{-(\sigma + a)t} e^{-j\omega t} dt = -\frac{e^{-(\sigma + a)t} e^{-j\omega t}}{j\omega + (\sigma + a)} \bigg|_0^\infty = \frac{1}{j\omega + \sigma + a}$$

- where the integration converges when $\sigma + a > 0$.
- In other words, the Laplace transform of x(t) is

$$X(s) = \frac{1}{s+a}, \quad \Re e\{s\} > -a$$

- In this example, the Laplace transform of x(t) exist even if the CTFT of x(t) does not exist (when a < 0).

Example 2

- Let's look at $x(t) = -e^{-at}u(-t)$
- The Laplace transfrom of x(t) is

$$X(s) = -\int_{-\infty}^{0} e^{-(s+a)t} dt = \frac{e^{-(s+a)t}}{s+a} \Big|_{-\infty}^{0}$$

- For convergence, we need $\Re e\{s\}$ + *a* < 0, such that $e^{-(\sigma+a)t}$ goes to zero when *t* goes to −∞.
- Therefore, $X(s) = \frac{1}{s+a}$, $\Re e\{s\} < -a$
- We see that the Laplace transform expressions for $e^{-at}u(t)$ and $-e^{-at}u(-t)$ are both $\frac{1}{s+a}$, but the ranges of $\Re\{s\}$ that ensures convergence are different.
- In other words, to obtain the Laplace transform, we need to specify both the expression of X(s) and the region of convergence (ROC) that tells us the range of values of s when X(s) is valid.

1.4 Fourier Transform VS Laplace Transform

• Fourier Transform

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

• Two cases:

Laplace Transform

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

Importance of Laplace Transform

- The Laplace Transform is a tool used to convert an operation of a real time domain variable *t* into an operation of a complex domain variable *s*;
- By operating on the transformed complex signal rather than the original real signal it is often possible to substantially simplify a problem involving:
 - Linear Differential Equations
 - Convolutions
 - Systems with Memory
- Operations on signals involving linear differential equations may be difficult to perform strictly in the time domain
- These operations may be Simplified by:
 - Converting the signal to the Complex Domain
 - Performing Simpler Equivalent Operations
 - Transforming back to the Time Domain

2.1 Convergence

• Finding the Laplace Transform requires integration of the function from minus infinity to infinity

$$X(s) = \mathcal{L}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

- For X(s) to exist, the integral must converge;
- Convergence means that the area under the integral is finite;
- Laplace Transform, X(s), exists only for a set of points in the s-domain called the Region of Convergence (ROC)
 - *s* is the complex frequency;
 - *s*-domain is the complex plane.
- In general, $x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s)$, $\mathcal{R}e\{s\}$, $s \in ROC$.

10

>Re{s}

 $Im\{s\}$

2.1 Convergence - Magnitude of X(s)

- For a complex X(s) to exist, it's magnitude must converge $|X(s)| < \infty$
- By replacing s with $\sigma + j\omega$, it can be rewritten as:

$$|X(s)| = \left| \int_{-\infty}^{\infty} x(t)e^{-(\sigma+j\omega)t} dt \right| \le \int_{-\infty}^{\infty} |x(t)e^{-\sigma t}e^{-j\omega t}| dt$$

$$\le \int_{-\infty}^{\infty} |x(t)||e^{-\sigma t}||e^{-j\omega t}| dt$$

- $|e^{-\sigma t}|$ is a real number, therefore $|e^{-\sigma t}| = e^{-\sigma t}$;
- $|e^{-j\omega t}|$ is a complex number with a magnitude of 1;
- Therefore, the Magnitude Bound of X(s) is dependent only upon the magnitude of x(t) and the real part of s:

$$|X(s)| \le \int_{-\infty}^{\infty} |x(t)| e^{-\sigma t} dt$$

The Region of Convergence (ROC, range of complex frequency) is defined as the region where the real part of s meets this criteria 11

2.1 ROC Graphical Depiction

- The *s*-domain can be graphically depicted as a 2D plot of the real and imaginary portions of *s*;
- In general the ROC is a stripe in the complex *s*-domain;

2.1 ROC plots of Example 1 & 2

• The ROC of the Laplace transforms of $e^{-at}u(t)$ and $-e^{-at}u(-t)$ can be plotted in the complex plane (also called s-plane) as:

Quiz 1

• 1. Find the Laplace transform of $x(t) = 3e^{-2t}u(t) - 2e^{-t}u(t)$

• 2. Find the Laplace transform of $x(t) = e^{-|t|}$

2.2 Zeros and Poles

• In the previous example

$$X(s) = \frac{s-1}{(s+2)(s+1)}, \Re\{s\} > -1$$

- we see that X(1) = 0 and $X(s) \rightarrow \infty$ when s = -1, -2.
- also, X(s) goes to zero if s goes to infinity.
- The values of s that makes X(s) = 0 are called the zeros;
- The values of s that makes $X(s) = \infty$ are called the poles;
- The zeros and the poles (apart from those at infinity) can be plotted in the s-plane alongside with the ROC:
 - "o" for zeros.
 - "x" for poles.

s-plane

2.2 Zeros and Poles

 Determine the poles and zeros of the following systems:

- a)
$$H(s) = \frac{(s+4)(s+5)}{s^2(s+2)(s-2)}$$

$$- b) H(s) = \frac{s^2 + 1}{s^2 + 2s + 1}$$

$$- c) H(s) = \frac{2s+5}{s^2+s-6}$$

 $Im\{s\}$

 $\mathfrak{I}m\{s\}$

 $\rightarrow \mathcal{R}e\{s\}$

 $\Rightarrow \mathcal{R}e\{s\}$

Quiz 2

• 1. Find the Laplace transform of $x(t) = e^{-2t}u(t) + e^{-t}\cos(3t)u(t)$

• 2. Find the Laplace transform of

$$x(t) = \delta(t) - \frac{4}{3}e^{-t}u(t) + \frac{1}{3}e^{2t}u(t)$$

- The ROC can provide some information about the time-domain function.
- For example, we saw that the Laplace transforms of $e^{-at}u(t)$ and $-e^{-at}u(-t)$ have the same algebraic expression, but the ROCs $\Re\{s\} > -a$ and $\Re\{s\} < -a$ are completely different.
- In fact, time-domain characteristics of a function would impose constraints to the ROC of the Laplace transform.
- Let's see the properties of ROC.

- Property 1: The ROC of X(s) consists of stripes parallel to the jw-axis in the s-plane.
 - This can be seen because the Laplace transform of x(t) is equivalent to the Fourier transform of $x(t)e^{-\sigma t}$, where only $\Re\{s\} = \sigma$ from s would affect the convergence.

- <u>Property 2</u>: For rational Laplace transforms, the ROC does not contain any poles.
 - A rational Laplace transform means $X(s) = \frac{N(s)}{D(s)}$, where N(s) and D(s) are polynomials of s. If the ROC contains a pole, then D(s) = 0 at that pole and X(s) goes to infinity.

- Property 3: If x(t) is of finite duration and is absolutely integrable, then the ROC is the entire s-plane.
- Again, the Laplace transform of x(t) is equivalent to the Fourier transform of $x(t)e^{-\sigma t}$.
- When x(t) is absolutely integrable (i.e. $\int_{-\infty}^{\infty} |x(t)| dt < \infty$) and of finite duration, either

$$\int_{T_1}^{T_2} |x(t)| e^{-\sigma t} dt < e^{-\sigma T_1} \int_{T_1}^{T_2} |x(t)| dt \text{ for } \sigma > 0$$
or
$$\int_{T_1}^{T_2} |x(t)| e^{-\sigma t} dt < e^{-\sigma T_2} \int_{T_1}^{T_2} |x(t)| dt \text{ for } \sigma < 0$$

- Property 4: If x(t) is right sided and the line $\Re\{s\} = \sigma_0$ is in the ROC, then all values of s for which $\Re\{s\} > \sigma_0$ will also be in the ROC (i.e. right half of the s-plane).
 - as mentioned before, a right sided signal means x(t) = 0 for $t < T_1$, where T_1 is some finite time.
 - similarly, a left sided signal means x(t) = 0 for $t > T_1$.

• Property 5: If x(t) is left sided and the line $\Re\{s\} = \sigma_0$ is in the ROC, then all values of s for which $\Re\{s\} < \sigma_0$ will also be in the ROC (i.e. left half of the s-plane).

- Property 6: If x(t) is two sided (i.e. x(t) is of infinite extent for both t > 0 and t < 0), and if the line $\Re\{s\} = \sigma_0$ is in the ROC, then the ROC will consist of a stripe in the s-plane that includes the line $\Re\{s\} = \sigma_0$.
 - This can be seen by decomposing a two-sided signal into a right-sided signal and a left-sided signal and then apply Properties 4 and 5.

- Property 7: If the Laplace transform X(s) of x(t) is rational, then:
 - its ROC is bounded by poles or extends to infinity.
 - in addition, no poles of X(s) are contained in the ROC.
- Property 8: If the Laplace transform X(s) of x(t) is rational, then:
 - if x(t) is right sided, the ROC is the region in the s-plane to the right of the rightmost pole;
 - if x(t) is left sided, the ROC is the region in the s-plane to the left of the leftmost pole;
- Example: For $X(s) = \frac{1}{(s+1)(s+2)}$, there can be three possible pole-zero plots: s-plane

s-plane

Re

2.4 Causality

- The ROC associated with the system function for a causal system is a right-half plane.
- For a system with a rational system function, causality of the system is equivalent to the ROC being the right-half plane to the right of the rightmost pole.
- Example: consider the following systems:
 - Case 1: $h(t) = e^{-t}u(t)$
 - Case 2: $h(t) = e^{-|t|}$
 - Case 3: $H(s) = \frac{e^s}{s+1}$, $\Re e\{s\} > -1$

2.4 Causality

Causality implies that the ROC is to the right of the rightmost pole, but the converse is not in general true, unless the system function is rational.

2.5 Stability

- Recall the definition of BIBO stable: A system is referred to as BIBO stable if an arbitrary bounded-input signal always produces a bounded-output signal.
- A LTI system is stable if and only if the ROC of its system function H(s) includes the $j\omega$ -axis (i.e. $\Re\{s\} = 0$)
 - Because: stability of the system = h(t) is absolutely integrable $\rightarrow H(\omega)$ converge \rightarrow ROC of H(s) includes $j\omega$ -axis
- Example: consider the following systems:
 - Case 1: $h(t) = e^{-t}u(t)$
 - Case 2: $h(t) = e^{-|t|}$
 - Case 3: $H(s) = \frac{e^s}{s-1}$, $\Re e\{s\} > 1$

2.5 Stability

A causal system with rational system function H(s) is stable if and only if all the poles of H(s) lie in the left-half of the s-plan –i.e., all of the poles have negative real parts.

Quiz 3

• Assuming that the systems are causal, determine if the systems are BIBO stable: $^{\int Jm\{s\}}$

$$-a) H(s) = \frac{(s+4)(s+5)}{s^2(s+2)(s-2)}$$

$$-b) H(s) = \frac{s^2+1}{s^2+2s+1}$$

$$-c) H(s) = \frac{2s+5}{s^2+s-6}$$

Next ...

- Inverse Laplace Transform
- Geometric Evaluation of CTFT based on LT
- Unilateral Laplace Transform
- Analysis of LTIC systems using LT

List of Abbreviations

- FS (CTFS) Fourier Series
- FT (CTFT) Fourier Transform
- LT Laplace Transforms
- ROC Region of Convergence
- Re Real part
- Im Imaginary part
- TD Time Domain
- FD Frequency Domain
- sD s-Domain (complex frequency domain)

