MA 519: Homework 1

Carlos Salinas

August 30, 2016

PROBLEM 1.1 (HANDOUT 1, # 5 [FELLER VOL. 1])

A closet contains five pairs of shoes. If four shoes are selected at random, what is the probability that there is at least one complete pair among the four?

Solution. \blacktriangleright Let Ω denote the sample space and A denote the event that at least 1 complete pair of shoes is among the 4. We can reduce the problem of finding P(A) into finding the probabilities of the mutually exclusive events

$$A_1 := \{ \text{ exactly 1 pair is among the 4} \}$$

and

$$A_1 := \{ \text{ exactly 2 pairs are among the 4} \}.$$

since $A = A_1 \cup A_2$, and using the additivity of P,

$$P(A) = P(A_1) + P(A_2).$$

(To keep the problem short, we will not show that $A_1 \cap A_2 = \emptyset$ and $A = A_1 \cup A_2$.)

First, let us count the number of sample points in Ω : since the closet contains 5 pairs of shoes it contains a total of 10 choose out of which we are selecting 4. Hence, the number of sample points is

$$\#\Omega = \binom{10}{4} = \frac{10!}{4!6!} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6!}{4 \cdot 3 \cdot 2 \cdot 6!} = 10 \cdot 3 \cdot 7 = 210. \tag{1.1}$$

Now we count the sample points in A_1 and A_2 : counting the points in A_2 is immediate since we are not taking into consideration the order in which we select the pair

$$\#A_2 = {5 \choose 2} = \frac{5!}{2!3!} = \frac{5 \cdot 4 \cdot 3!}{2 \cdot 3!} = 5 \cdot 2 = 10.$$
 (1.2)

Counting the points in A_1 is not much harder: first, we observe that there are 5 pairs to choose from and for the remaining two shoes we must choose one shoe (either a right or a left) from the remaining 4 pairs which leaves 7 - 1 = 6 other shoes to choose from; *i.e.* the number of sample points in A_1 is

$$5 \cdot 4 \cdot 6 = 120. \tag{1.3}$$

Taking the results of (1.1), (1.2) and (1.3), the probability that there is at least one complete pair among the four is

$$P(A) = P(A_1) + P(A_2) = \frac{120}{210} + \frac{10}{210} = \frac{130}{210} \approx 0.6190.$$

PROBLEM 1.2 (HANDOUT 1, #7 [FELLER VOL. 1])

A gene consists of 10 subunits, each of which is normal or mutant. For a particular cell, there are 3 mutant and 7 normal subunits. Before the cell divides into 2 daughter cells, the gene duplicates. The corresponding gene of cell 1 consists of 10 subunits chosen from the 6 mutant and 14 normal units. Cell 2 gets the rest. What is the probability that one of the cells consists of all normal subunits.

Solution. \blacktriangleright We shall employ the sames strategy as that of Problem 1.1. Let A denote the event that one of the cells contains all normal units. Then, like Problem 1.1, we can reduce the problem of finding the probability of A to finding the probability of

 $A_1 := \{ \text{cell 1 consists of all normal subunits } \}$

and

 $A_2 := \{ \text{ cell 1 contains 6 mutant cells } \}$

and taking their sum.

Now, let us count the number of points in our sample space Ω . Assuming the configuration of the subunits in a gene does not matter, we have

$$\#\Omega = \begin{pmatrix} 20\\10 \end{pmatrix} = 184756 \tag{1.4}$$

sample points.

Now we count the number of points in A_1 and A_2 these are: for A_1 we choose 10 subunits from among the 14 normal subunits giving us

$$#A_1 = \begin{pmatrix} 14\\10 \end{pmatrix} = 1001 \tag{1.5}$$

sample points. For A_2 , we must choose all 6 mutant subunits leaving 4 choices from among the 14 normal subunits giving us

$$#A_1 = \begin{pmatrix} 14\\4 \end{pmatrix} = 1001. \tag{1.6}$$

Thus, we have

$$P(A) = P(A_1) + P(A_2) = \frac{1001}{184756} + \frac{1001}{184756} \approx 0.01083.$$

PROBLEM 1.3 (HANDOUT 1, # 9 [FELLER VOL. 1])

From a sample of size n, r elements are sampled at random. Find the probability that none of the N prespecified elements are included in the sample, if sampling is

- (a) with replacement;
- (b) without replacement.

Compute it for r = N = 10, n = 100.

Solution. \blacktriangleright For part (a), with replacement, the number of points in the sample space Ω_a is given by the expression

$$\#\Omega_a = \binom{n+r-1}{r}.$$

Let A_a be the event that none of the N prespecified elements appear (with $N \le r$). Now to find $P(A_a)$, we count the sample points in A_a these are: there are N elements to avoid so n-N elements to choose from with replacement. This gives us

$$\#A_a = \binom{(n-N)+r-1}{r}.$$

Thus, the probability of A_a happening is

$$P(A_a) = \binom{(n-N)+r-1}{r} / \binom{n+r-1}{r} = \frac{(n-1)\cdots((n-1)-N+1)}{(n+r-1)\cdots((n+r-1)-N+1)}.$$
 (1.7)

For part (b), without replacement, the number of points in the sample space Ω_b is given by the expression

$$#\Omega_b = \binom{n}{r}.$$

Let A_b be the event that none of the N prespecified elements appear (with $N \le r$). Again, to find $P(A_b)$ we need only count the sample points in A_b : there are N elements to avoid so n-N elements to choose from without replacement. Hence,

$$#A_b = \binom{n-N}{r}.$$

Thus, the probability of A_b happening is

$$P(A_b) = \binom{n-N}{r} / \binom{n}{r} = \frac{(n-1)\cdots(n-N)}{(n+r-1)\cdots(n+r-N)}.$$
(1.8)

Lastly, we compute, using Eqs. (1.7) and (1.8), we compute the probabilities in (a) and (b) with r = N = 10 and n = 100. These are:

$$P(A_a) = \frac{99 \cdots 90}{109 \cdots 100} \approx 0.3654,$$

and

$$P(A_b) = \frac{90 \cdots 81}{100 \cdots 91} \approx 0.3305.$$

PROBLEM 1.4 (HANDOUT 1, # 11 [TEXT 1.3])

A telephone number consists of ten digits, of which the first digit is one of 1, 2, ..., 9 and the others can be 0, 1, 2, ..., 9. What is the probability that 0 appears at most once in a telephone number, if all the digits are chosen completely at random?

Solution. \blacktriangleright Let Ω be the sample space and let A be the event that at 0 appears at most once in a telephone number if all the digits are chosen completely at random. First, let us count the number of elements in the sample space, this is

$$\#\Omega = 9 \cdot 10^9$$

where the first digit is taken from among 1, 2, ..., 9 and the remaining 9 out of 0, 1, 2, ..., 9. Assuming randomness (*i.e.* that every sample point is equally likely), it suffices to count the sample points in the event. We do this by decomposing A into the union of mutually exclusive events

 $A_i = \{ \text{ telephone numbers with exactly one 0 in the } i\text{-th position} \}.$

The number of sample points in A_i is

$$\#A_i = 9 \cdot 9^8$$

since we must choose 8 digits of the number from among $1, \ldots, 9$ digits (with repetition). Thus,

$$P(A) = P(A_1) + \cdots + P(A_9) = \frac{9 \cdot 9 \cdot 9^8}{9 \cdot 10^9} = \left(\frac{9}{8}\right)^9 \approx 0.3874.$$

PROBLEM 1.5 (HANDOUT 1, # 12 [TEXT 1.6])

Events A, B and C are defined in a sample space Ω . Find expressions for the following probabilities in terms of P(A), P(B), P(C), P(AB), P(AC), P(BC) and P(ABC); here AB means $A \cap B$, etc.:

- (a) the probability that exactly two of *A*, *B*, *C* occur;
- (b) the probability that exactly one of these events occur;
- (c) the probability that none of these events occur.

Solution. \triangleright These are all easy consequences of the inclusion-exclusion formula. For part (a) we have is AB + AC + BC - ABC

$$P(AB + AC + BC) = P(AB) + P(AC) + P(BC) - 2P(ABC).$$

For part (b) we have

$$P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC).$$

Lastly, for part (c) we have

$$P(\Omega) - P(A) - P(B) - P(C) + P(AB) + P(AC) + P(BC) + 2P(ABC).$$

PROBLEM 1.6 (HANDOUT 1, # 13 [TEXT 1.8])

Mrs. Jones predicts that if it rains tomorrow it is bound to rain the day after tomorrow. She also thinks that the chance of rain tomorrow is 1/2 and that the chance of rain the day after tomorrow is 1/3. Are these subjective probabilities consistent with the axioms and theorems of probability?

Solution. ► The probabilities seem to be consistent with the axioms and theorems of probability. If the event *A* it will rain tomorrow implies that *B* it will rain the day after tomorrow then $P(B) \le P(A)$.

PROBLEM 1.7 (HANDOUT 1, # 16)

Consider a particular player, say North, in a Bridge game. Let X be the number of aces in his hand. Find the distribution of X.

Solution. ▶

◀

PROBLEM 1.8 (HANDOUT 1, # 20)

If 100 balls are distributed completely at random into 100 cells, find the expected value of the number of empty cells.

Replace 100 by n and derive the general expression. Now approximate it as n tends to ∞ .

Solution. ▶