The Algorithm Selection Problem

for Solving Sudoku with Metaheuristics

Danielle Notice Ahmed Kheiri Nicos G. Pavlidis

Lancaster University

Introduction

- Which algorithm performs best on a particular problem instance?
- No Free Lunch Theorem [1] there is no single algorithm that will be guaranteed to perform well across all instances.
- Relationship between instances and algorithm performance for an automated algorithm selection model.

The Algorithm Selection Problem

Instance space - problem instances, their features and algorithm performance in a shared space [2].

Sudoku Meta-data

Problem Description

Sudoku is a puzzle which consists of an $n^2 \times n^2$ grid divided into n^2 sub-grids each of size $n \times n$.

column										
	2	7	1				8			cell
	8					3		4		
				8		2			7	fixed cell
	6		8	2				7		
sub-grid			2				1			
		1				7	2		8	
	3			5		4				
row		2		9					5	
			9				6	3	1	

Objective: to fill each cell in a way that every row, column and sub-grid contains each integer between 1 and n^2 exactly once.

The problem space included 1000 instances from [3], all with n = 3.

Feature Space

A set of 54 features from the following groups:

- · Puzzle mask
- Puzzle Rating Systems

Feature Space

A set of 54 features from the following groups:

- · Puzzle mask
- · Puzzle Rating Systems
- · Graph Colouring Problem
- · SAT Problem

Algorithm Space

We considered four local-search metaheuristic solvers:

- simulated annealing (SA)
- record-to-record travel (RR)
- reduced variable neighbourhood search (RVNS)
- steepest descent algorithm (SD)

Performance Space

- The cost function represents the number of values from one to nine that are not present in each row, each column and each sub-grid.
- · A problem instance is **solved** when the cost is zero.
- 20 runs with fixed budget for each problem instance and algorithm.

Performance Space

We considered 2 performance metrics:

- Success Rate the proportion of runs in which a solution with cost zero is found within the fixed budget.
- Mean cost-time where for a given instance and run, cost-time is defined as:

$$c_{\text{best}} + \frac{i_{\text{best}}}{maxlts}$$

Data Analytics [2, 4]

MATILDA

Melbourne Algorithm Test Instance Library with

MATILDA - Constructing the Instance Space

- 1. Preparation for Learning of Instance Meta-data (PRELIM) Pre-processes the meta-data by:
 - · bounding and scaling the feature matrix;
 - · calculating a binary performance metric.

MATILDA - Constructing the Instance Space

- 1. Preparation for Learning of Instance Meta-data (PRELIM)
 Pre-processes the meta-data by:
 - · bounding and scaling the feature matrix;
 - · calculating a binary performance metric.
- Selection of Instance Features to Explain Difficulty (SIFTED)
 Identifies a subset of features which are most correlated with algorithm performance and are uncorrelated with each other.

MATILDA - Constructing the Instance Space

- 1. Preparation for Learning of Instance Meta-data (PRELIM)
 Pre-processes the meta-data by:
 - · bounding and scaling the feature matrix;
 - · calculating a binary performance metric.
- Selection of Instance Features to Explain Difficulty (SIFTED)
 Identifies a subset of features which are most correlated with algorithm performance and are uncorrelated with each other.
- Projecting Instances with Linearly Observable Trends (PILOT)
 Aims to find a lower-dimensional projection of the features which has a linear relationship with these features and the performance of each of the algorithms.

Performance Prediction

MATILDA trains a support vector machine (SVM) for each algorithm to predict the binary performance measure.

The Selector:

• If only one algorithm with good performance, it is selected as the best.

Performance Prediction

MATILDA trains a support vector machine (SVM) for each algorithm to predict the binary performance measure.

The Selector:

- If only one algorithm with good performance, it is selected as the best.
- If multiple algorithms, then the algorithm whose model has the highest precision is selected.

Performance Prediction

MATILDA trains a support vector machine (SVM) for each algorithm to predict the binary performance measure.

The Selector:

- If only one algorithm with good performance, it is selected as the best.
- If multiple algorithms, then the algorithm whose model has the highest precision is selected.
- If none of the algorithms, then the algorithm with the highest average performance is selected.

Results

Prediction Model Evaluation - Success Rates

Two absolute thresholds for good performance: SR > 0 and SR > 0.5.

Figure 1: Average model evaluation metrics for SVMs and Selector

	SA	RR	RVNS	SD
Average SR	0.088	0.086	0.062	0.058
Pr(SR > 0) Pr(SR > 0.5)				0.326
PI(3R > 0.3)	0.041	0.041	0.041	0.039

 Table 1: Probability distribution of Success Rates

Instance Space Projections - Success Rates

Figure 2: Projection of instance space showing the selected algorithm

	SA	RR	RVNS	SD
Average SR	0.088	0.086	0.062	0.058
Pr(SR > 0) Pr(SR > 0.5)	0.438 0.041			

Table 1: Probability distribution of Success Rates

Prediction Model Evaluation - Mean Cost-Time

Two absolute thresholds for good performance: CT < 2.5 and CT < 2.

Figure 3: Average model evaluation metrics for SVMs and Selector

	SA	RR	RVNS	SD
Average CT	2.202	2.085	2.679	2.775
Pr(CT < 2.5) Pr(CT < 2.0)				

Table 3: Probability distribution of Mean Cost-Time

Instance Space Projections - Mean Cost-Time

Figure 4: Projection of instance space showing the selected algorithm

	SA	RR	RVNS	SD
Average CT	2.202	2.085	2.679	2.775
Pr(CT < 2.5) Pr(CT < 2.0)				

Table 2: Probability distribution of Mean Cost-Time

Selected Features

Feature	Description	SR > 0	SR > 0.5	CT < 2	CT < 2.5
fixedDig_max	max number of times each value appears as a fixed				*
	cell				
counts_CV	count of possible values each empty cell can take		*		
	given fixed cells				
counts_min	minimum count as above	*		*	*
counts_naked1	number of empty cells that can take only 1 possible	*	*	*	*
	value given the fixed cells				
counts_naked2	as above - 2 possible values	*		*	*
counts_naked3	as above - 3 possible values	*			
value_max	max number of empty cells that can take each value			*	*
value_mean	mean as above			*	*
value_min	minimum as above			*	*
GCP_avgPath	GCP - average length of the shortest paths for all	*			
	possible vertex pairs				
GCP_clustcoef	GCP - average graph clustering coefficient	*			
GCP_density	GCP - density of the graph			*	*
GCP_nDeg_std	GCP - standard deviation of node degrees			*	
LP_fracInt	SAT - fraction of variables set to 0 or 1 in solution of	*	*	*	*
	LP relaxation				
LPslack_CV	SAT - variable integer slack statistics of LP relaxation			*	*
LPslack entropy	SAT - variable integer slack statistics of LP relaxation	*	*		
SAT ratioLin	SAT - the linearised clause-to-variable ratio	*			
SAT ratioRec	SAT - reciprocal of the clause-to-variable ratio	*	*		
VG CV	SAT - node degree statistics for the variable graph		*		

Conclusion

- · Informative Sudoku features
- · Choice of performance metric
- Predicting "good" performance
- · To consider:
 - · More appropriate evaluation metrics
 - · Higher order puzzles
 - Logic-based solvers

Thank You. Any questions?

References i

D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization," IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

K. Smith-Miles and M. A. Muñoz, "Instance space analysis for algorithm testing: methodology and software tools," ACM Computing Surveys, 2022.

T. Dillon, "Tdoku: A fast Sudoku solver and generator," 2019. (Accessed: June 1, 2022).

M. Muñoz and K. Smith-Miles, "Instance space analysis: A toolkit for the assessment of algorithmic power," 2021 2020.

K. Smith-Miles and L. Lopes, "Measuring instance difficulty for combinatorial optimization problems," Computers & Operations Research, vol. 39, no. 5, pp. 875-889, 2012.

References ii

J. R. Rice, "The algorithm selection problem," in Advances in Computers (M. Rubinoff and M. C. Yovits, eds.), vol. 15, pp. 65–118, Elsevier, 1976.

SIFTED Details

Selection of Instance Features to Explain Difficulty

- SIFTED first calculates the absolute value of Pearson's correlation coefficient between the features and algorithm performance.
- Select the feature most correlated to the performance metric for each algorithm and any other features moderately correlated to the performance of at least one algorithm.
- Apply *k*-means clustering to detect groups of similar features.
- Multiple subsets of k features are obtained by randomly selecting a single feature from each of the k clusters.
- For each such subset of *k* features SIFTED applies PCA to reduce the data to two dimensions.
- Each of the resulting datasets is used to train a Random Forest that predicts Y_{bin} . The optimal subset of features is the one which results in the lowest predictive error .

PILOT Details

Projecting Instances with Linearly Observable Trends

This algorithm aims to find a lower-dimensional projection of the features, $\mathbf{Z} = \mathbf{A_r}\mathbf{F}$, such that \mathbf{Z} has a linear relationship with the original features, and with the performance of the different algorithms. This is formulated as minimising the sum of squared approximation errors as:

$$\min_{A_{r},B_{r},C_{r}} ||F - \hat{F}||_{F}^{2} + ||Y - \hat{Y}||_{F}^{2}$$
(1)

s.t.
$$Z = A_r F$$
 (2)

$$\mathbf{\hat{F}} = \mathbf{B_r} \mathbf{Z} \tag{3}$$

$$\hat{Y} = C_r Z,$$
 (4)

where $A_r \in \mathbb{R}^{2 \times m}$, $B_r \in \mathbb{R}^{m \times 2}$, $C_r \in \mathbb{R}^{a \times 2}$.

Comparison to Logistic Regression

Multinomial logistic regression with l_1 -penalty for feature selection.

- Five classes: one for each of the algorithms and **None** if three or more algorithms tie for best performance.
- Model using success rate:
 - · Similar features selected.
 - Prediction: SA for 338 instances, RR for 4 instance and None for 658 of the instances.
 - Relatively poor accuracy (51%) and precision (63%).
- Model using mean cost-time:
 - No non-zero coefficients (naïve model).
 - · Prediction: RR for all instances.
 - Decent performance accuracy (78%) and precision (83%). Better than the MATILDA selector.