

软件测试基础与实践

实验报告

实验名称:	黑盒测试实验一	
实验地点:	<u>软件学院机房</u>	
实验日期:	2020 年 12 月 3 日	
442 M Jul &	_1 \ _+_	
学生姓名:	<u>叶宏庭</u>	
学生学号:	71118415	

东南大学 软件学院 制

一、实验目的

- (1) 能熟练应用黑盒测试中的等价类划分方法设计测试用例;
- (2) 能熟练应用黑盒测试中的边界值分析方法设计测试用例;
- (3) 能数量综合使用等价类划分和边界值分析解决黑盒测试需求;
- (4) 能够在黑盒测试用例设计中同时考虑正面测试和负面测试;
- (5) 学习测试用例的书写。

二、实验内容

(一) 题目 1: NextDate 问题的黑盒测试

1. 实验背景

日期是软件中被频繁处理的信息之一,软件开发人员有必要了解的一些公历历法的相关知识。 公历的前身是古罗马凯撒修订的儒略历。根据儒略历的规定,每 4 年有 1 个闰年,闰年为 366 日, 其余 3 年(称为平年)各有 365 日。公元年数能被 4 除得尽的是闰年。儒略历 1 年平均长 365.25 日,比实际公转周期的 365.2422 日长 11 分 14 秒,即每 400 年约长 3 日。这样到公元 16 世纪 时已经积累了有 10 天误差。可以明显感觉到两至两分提前了。在此情况下,教皇格列高里十三世 于 1582 年宣布改历。先是一步到位把儒略历 1582 年 10 月 4 日的下一天定为格列历 10 月 15 日,中间跳过 10 天。同时修改了儒略历置闰法则。除了保留儒略历年数被 4 除尽的是闰年外。增 加了被 100 除得尽而被 400 除不尽的则不是闰年的规定。这样的做法可在 400 年中减少 3 个闰 年。在格列高里历历法里,400 年中有 97 个闰年(每年 366 日)及 303 个平年(每年 365 日),所以 每年平均长 365.2425 日,与公转周期的 365.2422 日十分接近。可基本保证到公元 5000 年前误差 不超过 1 天。在软件开发和测试中,我们需要注意以下的一些有用信息:

- 1582 年 10 月 5 日至 10 月 14 日排除在公历外
- 2038 年 1 月 19 日是 BIOS 提供的记时基准时间 1970 年 1 月 1 日的最大值(下一个 千年虫问题的根源)
- 英国 1752 年才采用阳历,他们扣除 9/3/1752 到 9/13/1752 年同步以月亮为参照的立法注意,以上信息中,后两条并不影响我们所进行的测试活动,可不用考虑。

2. 实验要求

NextDate 程序中有 3 个输入,分别对应一个日期的年、月、日,程序能输出给定日期的下一天。程序能接收的日期输入范围为 1582 年 1 月 1 日到 3000 年 12 月 31 日。

要求:

- (1) 综合使用等价类划分和边界值分析方法对该程序进行黑盒测试;
- (2) 设计的测试用例都要有充分的设计理由。

3. 实验过程与结果

(1) 等价类划分法

① 等价类划分

有效等价类 无效等价类 无效等价类 无效等价类

首先根据输入的年份, 月份进行等价类初步划分, 初步划分结果如下表:

输入数据	有效等价类	无效等价类
年份 yy	1. 1582 <= yy <= 3000	3. yy < 1582
		4. $yy > 3000$
月份 mm	2. 1 <= mm <= 12	5. mm <= 0
		6. mm > 12
日期 dd	参照下方给出的日期划分表	

输入	数据 mm	有效等价类	无效等价类
大月(1,3,	5, 7, 8, 10, 12)	7. 1 <= dd <= 31	11. dd <= 0
			12. dd >= 32
小月(4	, 6, 9, 10)	8. 1 <= dd <= 30	13. dd <= 0
			14. dd >= 31
平月 (2)	yy 闰年	9. 1 <= dd <= 29	15. dd <= 0
			16. dd >= 30
	yy 非闰年	10. 1 <= dd <= 28	17. dd <= 0
			18. dd >= 29

注意: 特定无效等价类 19: 1582/10/5~1582/10/14 的日期输入

College of Software Engineering Southeast University

② 测试用例设计

编号	测试用例 yy/mm/dd	等价类覆盖	输入类型	预期结果 yy/mm/dd
1	1588/8/31	1, 2, 7	有效	1588/9/1
2	1588/9/30	1, 2, 8	有效	1588/10/1
3	1588/2/29	1, 2, 9	有效	1588/3/1
4	1589/2/28	1, 2, 10	有效	1589/3/1
5	1700/2/28	1, 2, 10	有效	1700/3/1
6	1588/8/0	1, 2, 11	无效	警告信息
7	1588/8/33	1, 2, 12	无效	警告信息
8	1588/9/0	1, 2, 13	无效	警告信息
9	1588/9/33	1, 2, 14	无效	警告信息
10	1588/2/0	1, 2, 15	无效	警告信息
11	1588/2/30	1, 2, 16	无效	警告信息
12	1589/2/0	1, 2, 17	无效	警告信息
13	1589/2/29	1, 2, 18	无效	警告信息
14	1588/0/1	1, 5	无效	警告信息
15	1588/13/1	1, 6	无效	警告信息
16	1581/4/1	3	无效	警告信息
17	3001/4/1	4	无效	警告信息
18	1582/10/5	19	无效	警告信息

(2) 边界条件法

- ① 确定边界条件
 - i) 每次只考虑一个参数的边界,固定其他参数
 - ii) 补充确定的关联边界值

边界条件设计

a) 固定 dd、yy 的月边界条件

mm: 1, 12 dd: 1-28

边界条件	mm	dd	yy
1	1	1-28	1582-3000
2	12	1-28	1582-3000

b) 固定 mm、yy 的日边界条件

dd: 1, 30, 31 dd: 大/小月 yy: 1582-3000

边界条件	mm	dd	уу
3	小月	1	1582-3000
4	小月	30	1582-3000

College of Software Engineering Southeast University

5	大月	1	1582-3000
6	大月	31	1582-3000
7	2 月	1	闰年
8	2 月	29	闰年
9	2 月	1	非闰年
10	2 月	28	非闰年

c) 固定 mm、dd 的年边界条件

yy: 1582, 3000, 闰年, 非闰年

mm: 1-12 dd: 1-28

边界条件	mm	dd	уу
11	1-12	1-28	1582
12	1-12	1-28	3000

d) 补充确定的关联边界条件

边界条件	mm	dd	уу
13	1	1	1582
14	12	31	3000
15	10	5	1582
16	10	14	1582

②测试用例设计

总测试用例数 = 3 * 16 = 48

编号	测试用例 yy/mm/dd	边界条件	输入类型	预期结果 yy/mm/dd
1	1588/0/28		无效	警告信息
2	1588/1/28	1	有效	1588/1/29
3	1588/2/28		有效	1588/2/29
4	1588/11/28		有效	1588/11/29
5	1588/12/28	2	有效	1588/12/29
6	1588/13/28		无效	警告信息
7	1588/9/0		无效	警告信息
8	1588/9/1	3	有效	1588/9/2
9	1588/9/2		有效	1588/9/3
10	1588/9/29		有效	1588/9/30
11	1588/9/30	4	有效	1588/10/1
12	1588/9/31		无效	警告信息
13	1588/8/0		无效	警告信息
14	1588/8/1	5	有效	1588/8/2
15	1588/8/2		有效	1588/8/3
16	1588/8/30		有效	1588/8/31

College of Software Engineering Southeast University

17	1588/8/31	6	有效	1588/9/1
18	1588/8/32		无效	警告信息
19	1588/2/0		无效	警告信息
20	1588/2/1	7	有效	1588/2/2
21	1588/2/2		有效	1588/2/3
22	1588/2/28		有效	1588/2/29
23	1588/2/29	8	有效	1588/3/1
24	1588/2/30		无效	警告信息
25	1589/2/0		无效	警告信息
26	1589/2/1	9	有效	1589/2/2
27	1589/2/2		有效	1589/2/3
28	1589/2/27		有效	1589/2/28
29	1589/2/28	10	有效	1589/3/1
30	1589/2/29		无效	警告信息
31	1581/1/1		无效	警告信息
32	1582/1/1	11	有效	1582/1/2
33	1583/1/1		有效	1583/1/2
34	2999/1/1		有效	2999/1/2
35	3000/1/1	12	有效	3000/1/2
36	3001/1/1		无效	警告信息
37	1581/12/31		无效	警告信息
38	1582/1/1	13	有效	1582/1/2
39	1582/1/2		有效	1582/1/3
40	3000/12/30		有效	3000/12/31
41	3000/12/31	14	有效	3001/1/1
42	3001/1/1		无效	警告信息
43	1582/10/4		有效	1582/10/15
44	1582/10/5	15	无效	警告信息
45	1582/10/6		无效	警告信息
46	1582/10/13		无效	警告信息
47	1582/10/14	16	无效	警告信息
48	1582/10/15		有效	1582/10/16

(二) 题目 2:四边形覆盖问题的黑盒测试

1. 实验背景

四边形覆盖问题描述:

- (1)程序输入: 2 个四边形: (X1Coord, Y1Coord, Width1, Height1) 和 (X2Coord, Y2Coord, Width2, Height2), 其中前 2 个参数是四边形左上角坐标,后 2 个参数指四边形的宽和高;
- (2)程序输出:两个四边形的覆盖关系。
- (3) 四边形覆盖: 判断 2 个四边形在平面上的覆盖关系。

2. 实验要求

- (1)利用等价类划分和边界值分析方法,设计四边形覆盖问题的测试用例。请给出测试用例的 具体设计思路。
- (2) github 上有一个少有人关注的项目 https://github.com/cuthullu/box-black-box,(可下载该项目的源码 box-black-box-gh-pages.zip,解压后可运行 index.html)。这个项目中,给出了四边形问题的可视化测试界面,其中还包含 5 种判断四边形关系的函数。
- (3)请利用(1)中设计的测试用例来对 box-black-box 项目进行黑盒测试,通过黑盒测试,分析该项目给出的 6种函数中是否存在 BUG。

3. 实验过程与结果

- (一)等价类划分法
 - ① 等价类划分

等价类编号	覆盖情况
1	无覆盖
2	部分覆盖
3	完全覆盖

② 测试用例设计

- I) 无覆盖与部分覆盖考虑八个方向的覆盖情况;
- II) 完全覆盖考虑互相包含两种情况

III) 部分覆盖考虑两个四边形形成"+"形状。

编号	四边形 1	四边形 2	覆盖等价类
1	(5, 5, 2, 2)	(5, 3, 1, 1)	1
2	(5, 5, 2, 2)	(3, 3, 1, 1)	1
3	(5, 5, 2, 2)	(3, 5, 1, 1)	1
4	(5, 5, 2, 2)	(3, 7, 1, 1)	1
5	(5, 5, 2, 2)	(5, 8, 1, 1)	1
6	(5, 5, 2, 2)	(7, 8, 1, 1)	1
7	(5, 5, 2, 2)	(8, 5, 1, 1)	1
8	(5, 5, 2, 2)	(8, 3, 1, 1)	1
9	(5, 5, 2, 2)	(5, 4, 2, 2)	2
10	(5, 5, 2, 2)	(4, 4, 2, 2)	2
11	(5, 5, 2, 2)	(4, 5, 2, 2)	2
12	(5, 5, 2, 2)	(4, 6, 2, 2)	2
13	(5, 5, 2, 2)	(5, 6, 2, 2)	2
14	(5, 5, 2, 2)	(6, 6, 2, 2)	2
15	(5, 5, 2, 2)	(6, 5, 2, 2)	2
16	(5, 5, 2, 2)	(6, 4, 2, 2)	2
17	(5, 5, 1, 3)	(4, 6, 3, 1)	2
18	(4, 6, 3, 1)	(5, 5, 1, 3)	2
19	(5, 5, 3, 3)	(6, 6, 1, 1)	3
20	(5, 5, 3, 3)	(4, 4, 5, 5)	3

(二)边界条件法

① 确定边界条件

- 1) 无覆盖情况下,存在边重合,分为上下左右四边
- II) 无覆盖情况下,存在顶点重合,分四个顶点
- III) 完全覆盖情况下,存在边重合,分为上下左右四边
- IV) 完全覆盖情况下,存在顶点重合,分四个顶点

② 设计测试用例

编号	四边形 1	四边形 2	边界条件
1	(5, 5, 2, 2)	(5, 4, 1, 1)	
2	(5, 5, 2, 2)	(4, 5, 1, 1)	I
3	(5, 5, 2, 2)	(5, 7, 1, 1)	
4	(5, 5, 2, 2)	(7, 5, 1, 1)	
5	(5, 5, 2, 2)	(4, 4, 1, 1)	
6	(5, 5, 2, 2)	(4, 7, 1, 1)	II
7	(5, 5, 2, 2)	(7, 7, 1, 1)	
8	(5, 5, 2, 2)	(7, 4, 1, 1)	
9	(5, 5, 2, 2)	(5, 5, 1, 1)	

College of Software Engineering Southeast University

10	(5, 5, 2, 2)	(5, 6, 1, 1)	III, IV
11	(5, 5, 2, 2)	(6, 6, 1, 1)	
12	(5, 5, 2, 2)	(6, 5, 1, 1)	

(三) 测试结果

编	四边形 1	四边形 2	预期结	实图	际输出(「 . 算法	正确; F	:算法領	错误)
号			果	a	b	С	d	е	f
1	(5, 5, 2, 2)	(5, 3, 1, 1)	False	T	T	T	F	T	T
2	(5, 5, 2, 2)	(3, 3, 1, 1)	False	T	T	T	T	T	T
3	(5, 5, 2, 2)	(3, 5, 1, 1)	False	T	F	T	F	T	T
4	(5, 5, 2, 2)	(3, 7, 1, 1)	False	T	T	T	T	T	T
5	(5, 5, 2, 2)	(5, 8, 1, 1)	False	T	T	T	F	T	T
6	(5, 5, 2, 2)	(7, 8, 1, 1)	False	T	T	T	T	T	T
7	(5, 5, 2, 2)	(8, 5, 1, 1)	False	T	T	T	F	T	T
8	(5, 5, 2, 2)	(8, 3, 1, 1)	False	T	T	T	T	T	T
9	(5, 5, 2, 2)	(5, 4, 2, 2)	True	T	F	T	T	T	T
10	(5, 5, 2, 2)	(4, 4, 2, 2)	True	T	F	T	T	T	T
11	(5, 5, 2, 2)	(4, 5, 2, 2)	True	T	F	T	T	T	T
12	(5, 5, 2, 2)	(4, 6, 2, 2)	True	T	F	T	T	T	T
13	(5, 5, 2, 2)	(5, 6, 2, 2)	True	T	T	T	T	T	Т
14	(5, 5, 2, 2)	(6, 6, 2, 2)	True	T	T	T	T	T	T
15	(5, 5, 2, 2)	(6, 5, 2, 2)	True	T	T	T	T	T	T
16	(5, 5, 2, 2)	(6, 4, 2, 2)	True	T	F	T	T	T	T
17	(5, 5, 1, 3)	(4, 6, 3, 1)	True	F	F	T	T	T	T
18	(4, 6, 3, 1)	(5, 5, 1, 3)	True	F	T	T	T	T	Т
19	(5, 5, 3, 3)	(6, 6, 1, 1)	True	T	T	T	Т	T	Т
20	(5, 5, 3, 3)	(4, 4, 5, 5)	True	T	F	T	T	T	T
21	(5, 5, 2, 2)	(5, 4, 1, 1)	False	T	T	F	F	T	Т
22	(5, 5, 2, 2)	(4, 5, 1, 1)	False	T	T	F	F	T	T
23	(5, 5, 2, 2)	(5, 7, 1, 1)	False	T	T	F	F	T	Т
24	(5, 5, 2, 2)	(7, 5, 1, 1)	False	T	T	F	F	T	Т
25	(5, 5, 2, 2)	(4, 4, 1, 1)	False	T	T	F	Т	T	Т
26	(5, 5, 2, 2)	(4, 7, 1, 1)	False	T	T	F	Т	T	Т
27	(5, 5, 2, 2)	(7, 7, 1, 1)	False	T	T	F	T	Т	T
28	(5, 5, 2, 2)	(7, 4, 1, 1)	False	T	T	F	T	Т	T
29	(5, 5, 2, 2)	(5, 5, 1, 1)	True	T	T	Т	T	Т	T
30	(5, 5, 2, 2)	(5, 6, 1, 1)	True	T	T	Т	T	Т	T
31	(5, 5, 2, 2)	(6, 6, 1, 1)	True	T	T	T	T	T	T
32	(5, 5, 2, 2)	(6, 5, 1, 1)	True	T	T	T	T	T	T

通过上表测试结果可得知:函数啊 a, b, c, d 存在 BUG。

三、实验思考

- 1. 通过测试,是否发现程序中存在的缺陷? 答:发现缺陷,函数 a, b, c, d 存在 BUG。
- 2. 在黑盒测试中,测试用例的设计实际上是一件非常具有挑战性的工作。谈谈你在进行黑盒测试过程中所碰到的难题。

答: 等价类如何划分, 边界值如何选取, 两种方法会有部分测试用例重合。

3. 思考为什么现在企业内大量的项目主要采用黑盒测试,而比较少而且有限的使用白盒测试技术? 谈谈你对企业这样做的原因的理解和这样做的危害。

答:首先,使用黑盒测试的原因:企业级项目代码量大,如何针对所有代码都进行白盒测试,会耗费很多时间、人力等,因此采用黑盒测试,只要能够满足用户说明的预期输入输出即可。

危害: 黑盒测试容易遗漏一些错误的测试用例,不能找出软件的存在 BUG, 这些 BUG 也许会造成致命性错误。

四、实验体会

通过本次实验,我更加深入理解了黑盒测试的目的与意义,动手实践过程中,对黑盒测试的方法、过程有了初步了解与掌握,希望在未来的学习与工作中,能够继续学习,深入掌握,设计出更好的测试用例,做一个合格的测试工程师。