COMP 6721 Applied Artificial Intelligence (Fall 2023)

Worksheet #9: Introduction to Natural Language Processing (NLP)

Language Model. In Natural Language Processing (NLP), a bigram language model is a simple yet effective way to understand the probability of a word sequence. It calculates the likelihood of a word w_n appearing after a given word w_{n-1} . We use Maximum Likelihood Estimation (MLE) to determine these probabilities from a given corpus: $P(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$, where $C(w_{n-1}w_n)$ is the count of the occurrence of w_{n-1} followed by w_n . So, given the following corpus of three sentences:

- $\langle s \rangle$ I am Sam $\langle s \rangle$
- <s> Sam I am </s>
- <s> I do not like green eggs and ham </s>

compute the following bigram probabilities:

Sentence Probability. Given an English language model with the following *bigram* probabilities, compute the probability for the sentence "I want to eat British food":

```
P(I want to eat British food)
                .16|P(want|I) =
                                .32|P(eat|to) =
P(on|eat) =
                                                    .26
               .06|P(would|I) =
                                .29 P(have to) =
P(some|eat) =
                                                    .14
                                                           =_____
P(British|eat) =
               .001|P(don't|I) =
                                .08|P(spend|to) =
                                                    .09
                                                             .....
                .25|P(to|want) =
                                .65 | P(food|British) =
P(I|<s>) =
                                                     .6
P(I'd|<s>) =
               .06|P(a|want) =
                                .5 | P(restaurant|British) = .15
                                                             .....
P(</s>|British) =
                .1|P(</s>|food) = .25|P(</s>|restaurant) = .35|
```

Corpus Probabilities. Given a corpus with |V| = 1616 different words and a total of N = 10000 bigrams:

	I	want	to	eat	Chinese	food	lunch	 Total
I	8	1087	0	13	0	0	0	C(I)=3437
want	3	0	786	0	6	8	6	C(want)=1215
to	3	0	10	860	3	0	12	C(to)=3256
eat	0	0	2	0	19	2	52	C(eat)=938
Chinese	2	0	0	0	0	120	1	C(Chinese)=213
food	19	0	17	0	0	0	0	C(food)=1506
lunch	4	0	0	0	0	1	0	C(lunch)=459
								N=10,000

compute the probabilites for $P(II) = \underline{\hspace{1cm}}, P(I|I) = \underline{\hspace{1cm}}$ and $P(lunch|I) = \underline{\hspace{1cm}}$.

Smoothing. We can avoid zero probabilities by *smoothing*, here we use add-one (or *Laplace*) smoothing:

	I	want	to	eat	Chinese	food	lunch	 Total
I	8-9	1087 1088	1	14	1	1	1	:
want	3 4	1088	787	1	7	9	7	C(want) + V = 2831
to	4	1	11	861	4	1	13	C(to) + V = 4872
eat	1	1	23	1	20	3	53	C(eat) + V = 2554
Chinese	3	1	1	1	1	121	2	C(Chinese) + V = 1829
food	20	1	18	1	1	1	1	C(food) + V = 3122
lunch	5	1	1	1	1	2	1	C(lunch) + V = 2075

· · · · · · · · · · · · · · · · · · ·	
P(II) = , $P(I I) = $ and $P(lunch I) =$	
where B is the number of "bins" we added +1 to (so here, $ V ^2$). Compute the new probabilities:	
computing the new bigram probabilities as $P_{\text{Add1}}(w_n w_{n-1}) = \frac{C(w_{n-1}w_n)+1}{C(w_{n-1})+ V }$ and $P_{\text{Add1}}(w_{n-1}w_n) = \frac{C(w_{n-1}w_n)+1}{N+1}$	$\frac{w_n)+1}{B}$

Part-of-Speech Tagging. Given the following lexicon, assign a *part-of-speech* (POS) tag to each word for the sentence below:

Lexicon:

```
N --> flight | trip | breeze | morning
                                           // noun
V --> is | prefer | like
                                           // verb
Adj --> direct | cheapest | first
                                           // adjective
Pro --> me | I | you | it
                                           // pronoun
PN --> Chicago | United | Los Angeles
                                           // proper noun
D --> the | a | this
                                           // determiner
Prep --> from | to | in
                                           // preposition
Conj --> and | or | but
                                           // conjunction
```

I	prefer	a	direct	flight	to	Chigaco.

Parsing. Now, given the following context-free grammar:

Grammar:

create a parse tree for the sentence, "I prefer a direct flight to Chicago." using the POS tags you assigned above:

Word Sense Disambiguation. Using the following probabilities you obtained from a training corpus (|V|=50):

```
P(the|BANK1) = (5+.5) / (30+.5V) P(the|BANK2) = (3+.5) / (12 + .5V) P(world|BANK1) = (1+.5) / 55 P(world|BANK2) = (0+.5) / 37 P(and|BANK1) = (0+.5) / 55 P(and|BANK2) = (1+.5) / 37 P(Potomac|BANK1) = (0+.5) / 55 P(Potomac|BANK2) = (1+.5) / 37 P(Potomac|BANK1) = 5/7 P(BANK2) = 2/7
```

Using "add 0.5" smoothing as shown above, with a context window of ± 3 , find the correct sense for bank in the sentence, "I like the Potomac bank":

```
1. Score(BANK1) = 2. Score(BANK2) =
```

Note: Words not shown in the list above have an unsmoothed probability of 0. Use logs.