Ενεργειακή ολοκλήρωση και Κοστολόγηση

Vidianos Giannitsis

April 1, 2023

Contents

1 Εισαγωγή											
2	$\mathbf{A} \mathbf{v}$	Αναγνώριση θερμών και ψυχρών ρευμάτων									
	2.1	Block 100 - Διαχωρισμός των τριών κομματιών της βιομάζας	4								
	2.2	Block 200 - Παραγωγή Γλυκόζης									
	2.3	Block 300 - Λέβητας Καύσης Λιγνίνης									
	2.4	Block 400 - Παραγωγή Γλυκερόλης									
	2.5	Block 500 - Καθαρισμός Γλυχερόλης									
	2.6	Block 600 - Παραγωγή Κυκλοπεντανόνης με την Φουρφουράλη ως Ενδιάμεσο	(
	2.7	Block 700 - Καθαρισμός της Κυκλοπεντανόνης	,								
	2.8	Τελική εικόνα									
			`								
3	Υπο	ολογισμοί Ενεργειακής Ολοκλήρωσης	1(
	3.1	Εναλλακτικά σενάρια ολοκλήρωσης	1								
	3.2	Συμπεράσματα									
		3.2.1 Σχόλια για την ολοκλήρωση διάφορων κομματιών									
		3.2.2 Αλλαγές στο ΜΣΓ									
		3.2.3 Απαίτηση σε θερμές παροχές									
4	Ko	στολόγηση	2								
	4.1	Προεπεξεργασία (Blocks 100-200)	2								
	4.2	Κύχλο Rankine (Block 300)									
	4.3	Παραγωγή και Καθαρισμός Γλυκερόλης (Blocks 400-500)	2								
	4.4	Παραγωγή και Καθαρισμός Κυκλοπεντανόνης (Blocks 600-700)									

1 Εισαγωγή

Στην πρόοδο αυτή εξετάστηκε η ενεργειακή ολοκλήρωση των ρευμάτων και διεργασιών που υπάρχουν, με σκοπό την ελαχιστοποίηση θερμών και ψυχρών παροχών που απαιτούνται. Επίσης, εξετάστηκε και μία πρώτη εικόνα της κοστολόγησης, η οποία βέβαια θα ολοκληρωθεί για την τελική πρόοδο.

2 Αναγνώριση ϑ ερμών και ψυχρών ρευμάτων

Για να γίνει η ενεργειακή ολοκλήρωση, πρέπει πρώτα να αναγνωριστούν όλα τα θερμά και ψυχρά ρεύματα της διεργασίας. Αυτή η διαδικασία γίνεται παρακάτω.

2.1 Block 100 - Διαχωρισμός των τριών κομματιών της βιομάζας

Το block αυτό είναι για την βασική διεργασία διαχωρισμού την έκρηξη ατμού και της επακόλουθες διεργασίες διαχωρισμού κυτταρίνης-λιγνίνης. Ως τροφοδοσία έχει νερό για παραγωγή ατμού, πυρηνόξυλο (πρώτη ύλη) και τα υδατικά διαλύματα που απαιτούνται για τις διεργασίες διαχωρισμού. Προιόντα είναι τα τρία βασικά ρεύματα ξυλόζης, κυτταρίνης και λιγνίνης.

Σχήμα 1: Block 100 στο Aspen

Στο block αυτό, έχουμε τα εξής.

- Ατμός της τροφοδοσίας ο οποίος θερμαίνεται από θερμοκρασία περιβάλλοντος μέχρι 232 °C (ψυχρό ρεύμα). Το ρεύμα με το οποίο εναλλάσσει θερμότητα είναι βοηθητική παροχή της διεργασίας. Κάποια από την θερμότητα του προσφέρεται για την θέρμανση και διάσπαση του πυρηνόξυλου, ενώ ο υπόλοιπος ατμός, μαζί με τα υπόλοιπα ατμώδη υπολείμματα της έκρηξης (κυρίως CO2) διατίθενται ως ένα θερμό ρεύμα της διεργασίας. Βέβαια, αν παρατηρηθεί πως υπάρχει περίσσεια θερμικής ενέργειας, μπορεί αυτό το ρεύμα να μην χρησιμοποιηθεί.
- Κυτταρίνη και Λιγνίνη που βγαίνουν από το steam explosion στους 232 και πρέπει να ψυχθούν μέχρι την θερμοκρασία λειτουργίας της αλκαλικής εκχύλισης (80 oC). Μπορούμε να εκμεταλλευτούμε το υπάρχον θερμικό περιεχόμενο τους για να θερμάνουμε και το διάλυμα καυστικού νατρίου όμως. Η θερμοκρασία βγαίνει 80.65 oC αν ο εναλλάκτης το ψύξει μέχρι τους 105 oC .
- Η ξυλόζη οδηγείται στην διεργασία παραγωγής χυχλοπεντανόνης, για αυτό για το block αυτό δεν μεταβάλλεται η θερμότητα της.
- Θέρμανση του διαλύματος χλωρίνης (bleach) καθώς για την πλήρη απολιγνοποίση θέλουμε εφαρμογή του διαλύματος αυτού στους $70~^{o}C$ (ψυχρό ρεύμα). Στο παρόν διάγραμμα ροής γίνεται εν μέρει με την θερμότητα των ατμών της έκρηξης ατμού και μετά με την ανάμιξη με το ρεύμα κυτταρίνης για τελική θερμοκρασία $69.9~^{o}C$. Στην ανάμιξη αυτή έχουμε και μείωση της θερμότητας του ρεύματος κυτταρίνης κατά $10~^{o}C$ περίπου.

Άρα μπορούμε να κάνουμε τον εξής πίνακα για τα εκμεταλλεύσιμα θερμά και ψυχρά ρεύματα

	Πίναχας	; 1: Θερμά	100		
Ρεύμα	Είδος	T_{in} (C)	T_{out} (C)	Παροχή (kmol/hr)	Σ ύσταση
FeedSteam	Ψυχρό	20	232	633.22	Νερό
Vapors	Θερμό	232	30	905.27	Νερό 0.92
					$CO_2 \ 0.08$
CellLig	Θερμό	232	80.65	84.76	Κυτταρίνη 0.5
					Λ ιγνίνη 0.5
NaOH	Ψυχρό	20	80.65	80.37	Νερό
Bleach	Ψυχρό	20	69.9	55.62	Νερό 99.5
					Χλωρίνη 0.05
Cellulose	Θέρμο	80.65	69.9	54.32	Κυτταρίνη 0.78
					Λιγνίνη 0.22

2.2 Block 200 - Παραγωγή Γλυκόζης

Στο block αυτό θεωρείται ως τροφοδοσία η καθαρή κυτταρίνη του block 100 και νερό το οποίο απαιτείται για την υδρόλυση της κυτταρίνης. Προιόν της διεργασίας είναι η γλυκόζη που θα τροφοδοτηθεί στον βιοαντιδραστήρα παραγωγής γλυκερόλης (block 400).

Σχήμα 2: Block 200 στο Aspen

Στο block αυτό:

- Θέλουμε η κυτταρίνη και το νερό να τροφοδοτηθούν στους $50~^oC$ για την υδρόλυση. Για αυτό, το νερό πρώτα θερμαίνεται μέχρι μία θερμόκρασία και μετά αναμιγνύεται με την κυτταρίνη για τελική θερμοκρασία $49.75~^oC$. Το νερό ξεκινάει από θερμοκρασία περιβάλλοντος και θερμαίνεται (επειδή η θερμοκρασία θα πέσει πολύ αν αναμιχθούν ως έχει) ενώ η κυτταρίνη ψύχεται από τους $69.9~^oC$.
- Η γλυκόζη ψύχεται από τους $50~^oC$ στους οποίους παράχθηκε μέχρι τους $30~^oC$ η οποία είναι η βέλτιστη λειτουργία του αντιδραστήρα παραγωγής γλυκερόλης στο block 400. Άρα μπορούμε να κάνουμε τον εξής πίνακα για τα εκμεταλλεύσιμα θερμά και ψυχρά ρεύματα

	Πίνακας 2: Θερμά και Ψυχρά Ρεύματα στο Block 200								
Ρεύμα	Είδος	$T_{in}(C)$	$T_{out}(C)$	Π αροχή (kmol/hr)	Σ ύσταση				
PureCell	Θερμό	61.97	49.75	42.55	Κυτταρίνη				
SachWater	Ψυχρό	20	49.75	715	Νερό				
Glucose	Θερμό	50	30	669.45	Νερό 0.97				
					Γλυκόζη 0.03				

2.3 Block 300 - Λέβητας Καύσης Λιγνίνης

Το block αυτό έχει την προσομοίωση του λέβητα που χρησιμοποιείται για την καύση της λιγνίνης. Η λιγνίνη καίγεται και από τα καυσαέρια της παράγεται ατμός υψηλής πίεσης τον οποίο μπορούμε να εκμεταλλευτούμε σε άλλα σημεία της εγκατάστασης. Νερό αντλείται από χαμηλή πίεση μέχρι τα 40 bar η οποία είναι η πίεση λειτουργίας του λέβητα αυτού. Προιόν του block 300 είναι ο ατμός υψηλής πίεσης που είναι αρκετά χρήσιμος για την εγκατάσταση. Αν χρησιμοποιηθεί όλη η λιγνίνη για παραγωγή ατμού ο οποίος θα διατεθεί ως θερμαντικό μέσο, μιλάμε για ένα θερμό ρεύμα με ενθαλπία 88.6 MW. Παρότι στο αρχείο αυτό δεν έχουν αναφερθεί οι ενεργειακές απαιτήσεις των διεργασιών, μία πρόχειρη προσέγγιση μας λέει πως όλες οι διεργασίες που έχουμε, χωρίς καμία ολοκλήρωση έχουν απαίτηση σε θερμή βοηθητική παροχή 23 MW. Άρα υπάρχει μία μεγάλη περίσσεια θερμικής ενέργειας, η οποία όταν υπάρχει σε μία εγκατάσταση χρησιμοποιείται για ηλεκτροπαραγωγή.

Σχήμα 3: Block 300 στο Aspen

Εφόσον αυτό το block χρησιμοποιεί ένα κύκλο Rankine για ηλεκτροπαραγωγή (λόγω της τεράστιας περίσσειας θερμικής ενέργειας που έχει), τα ρεύματα του δεν θα ληφθούν υπόψην στην ολοκλήρωση της διεργασίας, αλλά όπου χρειάζεται βοηθητική θερμή παροχή θα υποθέτεται ότι είναι η παροχή FH-301 του διαγράμματος αυτού, η οποία είναι ατμός στα 40 bar και $364.8\ ^oC$ και η ποσότητα της θα είναι τέτοια ώστε να είναι αρκετή για όλα τα θερμά της διεργασίας.

2.4 Block 400 - Παραγωγή Γλυκερόλης

Στο block αυτό φαίνεται ο βιοαντιδραστήρας του μικροοργανισμού C. glycerinogenes ο οποίος χρησιμοποιείται για την παραγωγή γλυκερόλης. Ως τροφοδοσία χρησιμοποιείται ένα μίγμα υδατικού διαλύματος γλυκόζης μαζί με ουρία (πηγή αζώτου) και επαρκές οξυγόνο για την αερόβια καλλιέργεια. Επίσης στο feed υπάρχει και μικρή ποσότητα βιομάζας για να ξεκινήσει η αντίδραση.

Σχήμα 4: Block 400 στο Aspen

Στο block αυτό, όλα τα ρεύματα τροφοδοτούνται στους 30 ^{o}C και αντιδρούν σε αντιδραστήρα σταθερής θερμοκρασίας. Άρα, δεν υπάρχει καμία μεταβολή στην θερμοκρασία των ρευμάτων και άρα κανένα θερμό ή ψυχρό ρεύμα να χρησιμοποιηθεί.

2.5 Block 500 - Καθαρισμός Γλυχερόλης

Το block αυτό είναι για τον διαχωρισμό των προιόντων του βιοαντιδραστήρα και την ανάκτηση της καθαρής εμπορεύσιμης γλυκερόλης. Τροφοδοσία του είναι το προιόν του block 400, δηλαδή τα προιόντα του βιοαντιδραστήρα μετά την πρώτη βαθμίδα θέρμανσης από την γλυκερόλη. Προιόν της διεργασίας είναι η καθαρή γλυκερόλη και δύο υδατικά κλάσματα τα οποία χρησιμοποιούνται για την θέρμανση.

Στο block αυτό υπάρχουν:

• Θέρμανση του προιόντος του βιοαντιδραστήρα μέχρι τους $140~^{o}C$ για flash και έπειτα απόσταξη (ψυχρό ρεύμα).

Σχήμα 5: Block 500 στο Aspen

Παραγωγή 3 διαθέσιμων θερμών ρευμάτων, ένα την ατμώδη φάση του flash, ένα με σχεδόν καθαρό νερό από το απόσταγμα της αποστακτικής και ένα καθαρής γλυκερόλης.
 Ο χαρακτηρισμός των ρευμάτων αυτών είναι

Ρεύμα	Είδος	T_{in} (C)	T_{out} (C)	Παροχή (kmol/hr)	Σ ύσταση
RProd	Ψυχρό	30	140	774.29	Νερό 0.89
					$CO_2 \ 0.08$
					Γλυκερόλη 0.02
					Άλλα 0.01
FlashVaps	Θερμό	140	30	745.99	Νερό 0.91
					$CO_2 \ 0.089$
					Άλλα 0.01
GlycWater	Θερμό	144.4	30	9.82	Νερό
PureGlycerol	Θερμό	288.9	30	15.9	Γλυκερόλη

Αξίζει να αναφερθεί πως ο χαραχτηρισμός άλλα αναφέρεται σε περίσσεια αντιδρώντων (ουρία, οξυγόνο), την παραγόμενη βιομάζα και τα παραπροιόντα της αντίδρασης (οξικό οξύ και αιθανόλη) τα οποία είναι σε αρκετά μικρές ποσότητες συγκριτικά με το νερό, το CO_2 και την γλυκερόλη. Στους υπολογισμούς της ενεργειακής ολοκλήρωσης θα αγνοηθούν.

2.6 Block 600 - Παραγωγή Κυκλοπεντανόνης με την Φουρφουράλη ως Ενδιάμεσο

Το block αυτό είναι αυτό που αξιοποιεί την ημικυτταρινική φάση της βιομάζας όπως αυτή βγαίνει από το steam explosion στο block 100. Στο block αυτό παράγεται αρχικά ένα ενδιάμεσο προιόν, η φουρφουράλη, από την ξυλόζη ενώ αυτή οδηγείται σε έναν δεύτερο αντιδραστήρα, όπου με προσθήκη υδρογόνου, η φουρφουράλη μετατρέπεται σε κυκλοπεντανόνη, το τελικό μας προιόν.

Στο block αυτό:

• Τροφοδοτείται αρχικά η ξυλόζη στους 232 oC όπως βγήκε από την έκρηξη ατμού και θερμαίνεται μέχρι τους 243 oC όπου λειτουργεί ο πρώτος αντιδραστήρας (ψυχρό ρεύμα)

Σχήμα 6: Block 600 στο Aspen

• Ψύχεται το προιόν της πρώτης αντίδρασης για να τροφοδοτηθεί στους $160\ ^oC$ στον $20\$ αντιδραστήρα (θερμό ρεύμα).

Άρα τα διαθέσιμα ρεύματα είναι

Πίναχας 3: Θερμά και Ψυχρά Ρεύματα στο Block 600

Ρεύμα	Είδος	T_{in} (C)	T_{out} (C)	Παροχή (kmol/hr)	Σ ύσταση
XylFeed	Ψυχρό	232	243	26.38	Ξυλόζη
FurFeed	Θερμό	243	160	105.52	Νερό 0.75
					Φουρφουράλη 0.25

2.7 Block 700 - Καθαρισμός της Κυκλοπεντανόνης

Το block αυτό έχει ως σχοπό τον χαθαρισμό του προιόντος του block 600, δηλαδή του προιόντος του αντιδραστήρα της χυχλοπεντανόνης. Αυτό είναι μίγμα νερού-χυχλοπεντανόνης με μιχρή περίσσεια φουρφουράλης χαι υδρογόνου από την αντίδραση. Προιόν της διεργασίας αυτής είναι η εμπορεύσιμη πλέον χυχλοπεντανόνη υψηλής χαθαρότητας.

Σχήμα 7: Block 700 στο Aspen

Αρχικά το προιόν έρχεται σε θερμοκρασία και πίεση περιβάλλοντος. Έπειτα, περνάει ένα flash για να φύγει το αέριο υδρογόνο, μία εκχύλιση για να φύγει το νερό και τέλος μία

απόσταξη για να διαχωριστεί η κυκλοπεντανόνη από τον διαλύτη (τολουόλιο). Το υδρογόνο και το νερό που απομακρύνονται είναι σε θερμοκρασία περιβάλλοντος άρα η θερμική τους εκμετάλλευση δεν έχει ιδιαίτερο νόημα.

Πίνακας 4: Θερμά και Ψυχρά Ρεύματα στο Block 700

Ρεύμα	Είδος	$T_{in}(C)$	T_{out} (C)	Παροχή (kmol/hr)	Σ ύσταση
CyclReac	Θερμό	160	30	2132.66	Κυκλοπεντανόνη 0.2
					Νερό 0.79
					Υδρογόνο 0.01
Cycl	Θερμό	130	30	26	Κυκλοπεντανόνη 0.98
					Φουρφουράλη 0.015
					Τολουόλιο 0.005
Tol	Θερμό	50	30	51.02	Τολουόλιο 0.98
					Νερό 0.01
					Κυκλοπεντανόνη 0.01

2.8 Τελική εικόνα

Έχοντας δει όλα τα blocks ξεχωριστά, μπορούμε να φτιάξουμε τον συνολικό πίνακα ψυχρών και θερμών ρευμάτων ο οποίος είναι

Πίνακας 5: Συνολικός Πίνακας Θερμών και Ψυχρών της διεργασίας

Ρεύμα	Είδος	T _{in} (C)	T _{out} (C)	Παροχή (kmol/hr)	Σύσταση
FeedSteam	Ψυχρό	20	232	633.22	Νερό
Vapors	Θερμό	232	30	905.27	Νερό 0.92
					$CO_2 \ 0.08$
CellLig	Θερμό	232	80.65	84.76	Κυτταρίνη 0.5
					Λ ιγνίνη 0.5
NaOH	Ψυχρό	20	80.65	80.37	Νερό
Bleach	Ψυχρό	20	69.9	55.62	Νερό 99.5
					Χλωρίνη 0.05
Cellulose	Θέρμο	80.65	69.9	54.32	Κυτταρίνη 0.78
					Λ ιγνίνη 0.22
PureCell	Θερμό	61.97	49.75	42.55	Κυτταρίνη
SachWater	Ψυχρό	20	49.75	715	Νερό
Glucose	Θερμό	50	30	669.45	Νερό 0.97
					Γλυκόζη 0.03
RProd	Ψυχρό	30	140	774.29	Νερό 0.89
					$CO_2 \ 0.08$
					Γλυκερόλη 0.02
					Άλλα 0.01
FlashVaps	Θερμό	140	30	745.99	Νερό 0.91
					$CO_2 \ 0.089$
					Άλλα 0.01
GlycWater	Θερμό	144.4	30	9.82	Νερό

Continued on next page

Continued from previous page

Ρεύμα	Είδος	T_{in} (C)	T_{out} (C)	Παροχή (kmol/hr)	Σύσταση
PureGlycerol	Θερμό	288.9	30	15.9	Γλυκερόλη
XylFeed	Ψυχρό	232	243	26.38	Ξυλόζη
FurFeed	Θερμό	243	160	105.52	Νερό 0.75
					Φουρφουράλη 0.25
CyclReac	Θερμό	160	30	2132.66	Κυκλοπεντανόνη 0.2
					Νερό 0.79
					Υδρογόνο 0.01
Cycl	Θερμό	130	30	26	Κυκλοπεντανόνη 0.98
					Φουρφουράλη 0.015
					Τολουόλιο 0.005
Tol	Θερμό	50	30	51.02	Τολουόλιο 0.98
					Νερό 0.01
					Κυκλοπεντανόνη 0.01

Με αυτά τα δεδομένα μπορούν να υπολογιστούν οι ειδικές θερμοχωρητικότητες για όλα τα ρεύματα και έπειτα και οι θερμοχωρητικότητες. Αρχικά, παρατίθεται ένας πίνακας με την θερμοχωρητικότητα κάθε ουσίας που μας ενδιαφέρει

Πίνακας 6: Θερμοχωρητικότητες ουσιών

11 / 1	
Ουσία	Cp (J/mol K)
Νερό	75.38
Κυτταρίνη	89.63
Λ ιγνίνη	90.98
Γλυκόζη	225
Γλυκερόλη	225.4
CO_2	37.35
Ξυλόζη	178.1
Φουρφουράλη	159.5
Κυκλοπεντανόνη	112.18
Υδρογόνο	14.5
Τολουόλιο	158.4

και από αυτά υπολογίζονται οι ειδικές θερμοχωρητικότητες και οι θερμοχωρητικότητες των ρευμάτων

Πίνακας 7: Θερμοχωρητικότητες ρευμάτων

Ρεύμα	Παροχή $(kmol/h)$	Cp (J/mol K)	CP (MJ/h K)
FeedSteam	633.22	75.38	47.732124
StExpVapors	905.27	72.34	65.487232
CellLig	84.76	90.31	7.6546756
NaOH	80.37	75.38	6.0582906
Bleach	55.62	75.38	4.1926356
Cellulose	54.32	89.93	4.8849976
PureCell	42.55	89.63	3.8137565
SachWater	715	75.38	53.8967

Continued on next page

Continued from previous page

	1 0		
Ρεύμα	Παροχή (kmol/h)	Cp (J/mol K)	CP (MJ/h K)
Glucose	669.45	79.87	53.468972
RProd	774.29	74.58	57.746548
FlashVapors	745.99	71.96	53.681440
GlycWater	9.82	75.38	0.7402316
PureGlyc	15.9	225.4	3.58386
XylFeed	26.38	178.1	4.698278
FurFeed	105.52	96.41	10.173183
CyclReac	24.61	112.71	2.7737931
CyclWater	106.9	76.12	8.137228

Επίσης, μπορεί να κατασκευαστεί και ο πίνακας των ανηγμένων θερμοκρασιών του συστήματος

Με βάση τους δύο αυτούς πίναχες μπορεί να γίνει η ενεργειαχή ολοχλήρωση

3 Υπολογισμοί Ενεργειακής Ολοκλήρωσης

Αρχικά, φτιάχνουμε τον χρήσιμο αυτό πίνακα.

Πίνακας 9: Χαρακτηρισμός των "ψευδο"-ρευμάτων του ενεργειακού καταρράκτη

T_1	T_2	ΔT	CPc	CPh	CP	$\Delta \mathrm{H}$
283.9	248	35.9	0	3.584	-3.584	-128.6656
248	238	10	4.698	3.584	1.114	11.14
238	237	1	4.698	13.757	-9.059	-9.059
237	227	10	47.732	13.757	33.975	339.75
227	155	72	47.732	83.315	-35.583	-2561.976
155	145	10	47.732	91.792	-44.06	-440.6
145	139.4	5.6	105.479	91.792	13.687	76.6472
139.4	135	4.4	105.479	92.532	12.947	56.9668
135	125	10	105.479	161.279	-55.8	-558.
125	85.65	39.35	105.479	150.889	-45.41	-1786.8835
85.65	75.65	10.	111.537	150.889	-39.352	-393.52
75.65	74.9	0.75	111.537	148.119	-36.582	-27.4365
74.9	64.9	10.	115.730	148.119	-32.389	-323.89
64.9	56.97	7.93	115.730	143.233	-27.503	-218.09879
56.97	54.75	2.22	115.730	147.048	-31.318	-69.52596
54.75	45	9.75	169.627	147.048	22.579	220.14525
45	35	10	169.627	208.023	-38.396	-383.96
35	25	10	111.880	208.023	-96.143	-961.43

ο οποίος θα ειναι και το κύριο εργαλείο που θα χρησιμοποιήσουμε για την ολοκλήρωση. Με βάση αυτό, μπορεί να φτιαχθεί και το μεγάλο σύνθετο γράφημα.

Από τον παραχάτω πίναχα, αν dH ο πίναχας των ενθαλπιών, μπορεί να υπολογιστεί η ενεργειαχή στάθμη για το μεγάλο σύνθετο γράφημα από τον χώδικα cumdH = -min(cumsum(-dH)) + cumsum(-dH) από τα οποία προχύπτει ο πίναχας

Πίνακας 8: Πίνακας ανηγμένων θερμοκρασιών

Ρεύμα	Είδος	$T_{in}(C)$	T_{out} (C)
FeedSteam	Ψ υχρό	25	237
StExpVapors	Θερμό	227	25
CellLig	Θερμό	227	75.65
NaOH	Ψ υχρό	25	85.65
Bleach	Ψ υχρό	25	74.9
Cellulose	Θερμό	75.65	64.9
PureCell	Θερμό	56.97	44.75
SachWater	Ψ υχρό	25	54.75
Glucose	Θερμό	45	25
RProd	Ψ υχρό	35	145
FlashVaps	Θερμό	135	25
GlycWater	Θερμό	139.4	25
PureGlycerol	Θερμό	283.9	25
XylFeed	Ψ υχρό	237	248
FurFeed	Θερμό	238	155
Cyclo	Θερμό	262.8	25
CyclWater	Θερμό	196.5	25

Πίνακας 10: Δεδομένα για τον ενεργειακό καταρράκτη

Cumulative Dh	T
213.165	283.9
341.831	248
330.691	238
339.750	237
0	227
2561.976	155
3002.576	145
2925.928	139.4
2868.962	135
3426.962	125
5213.845	85.65
5607.365	75.65
5634.802	74.9
5958.692	64.9
6176.790	56.97
6246.316	54.75
6026.171	45
6410.131	35
7371.561	25

Με τα ρεύματα αυτά ως έχουν, προχύπτει ότι απαιτείται μία μεγάλη ποσότητα ψυχρής παροχής και μιχρή ποσότητα θερμής. Αυτό είναι ανεπιθύμητο επειδή η μονάδα έχει διαθέσιμη θερμή παροχή δωρεάν ενώ το ίδιο δεν ισχύει για την ψυχρή παροχή. Βέβαια, πολύ από αυτήν την απαίτηση οφείλεται στην εχμετάλλευση του θερμιχού περιεχομένου των προιόντων τα οποία δεν είναι ανάγχη να ψυχθούν και τα εχμεταλλευόμαστε μόνο αν βοηθάνε.

3.1 Εναλλακτικά σενάρια ολοκλήρωσης

Τα δύο σημαντικότερα θερμά ρεύματα που συνεισφέρουν σε αυτό το ανεπιθύμητο αποτέλεσμα είναι οι ατμοί της έκρηξης ατμού (οι οποίοι είναι σε πολύ υψηλή θερμοκρασία και είναι αρκετά μεγάλη ποσότητα) και οι ατμοί του flash στον καθαρισμό της γλυκερόλης που είναι επίσης μεγάλη ποσότητα νερού στην ατμώδη φάση. Αν δεν χρησιμοποιηθεί τίποτα από τα δύο, το

Continued from previous page

Cumulative Dh	Т
3352.640	139.4
3007.530	135
2910.660	125
2120.630	85.65
1859.280	75.65
1837.601	74.9
1506.621	64.9
1205.408	56.97
1129.553	54.75
270.91	45
0	35
306.56	25

Το ΜΣΓ της περίπτωσης αυτής φαίνεται στην επόμενη σελίδα.

Με βάση το αποτέλεσμα αυτό, θεωρείται ότι υπάρχει περιθώριο να εκμεταλλευτούμε το θερμό ρεύμα που παραλείψαμε (καθώς υπάρχει μία σχετικά μεγάλη απαίτηση σε θερμό), αλλά δεν υπάρχει λόγος να ψυχθεί αυτό μέχρι χαμηλή θερμοκρασία επειδή όσο περισσότερο ψύχεται, τόσο περισσότερη ψυχρή παροχή θα θέλουμε. Από τους παραπάνω υπολογισμούς, βλέπουμε ότι η συνολική θερμοχωρητικότητα των θερμών είναι χαμηλή μέχρι τους $135\ ^oC$ και μετά, που αρχίζουν να ψύχονται οι ατμοί του flash από τον καθαρισμό της γλυκερόλης, οι οποίοι έχουν υψηλή θερμοχωρητικότητα, υπάρχει αρκετή θερμή παροχή. Άρα, είναι αρκετά πιθανό η ψύξη των ατμών του steam explosion μέχρι τους $135\ ^oC$ στο $135\ ^oC$ στο $135\ ^oC$ στο $135\ ^oC$ να είναι βοηθητική, μειώνοντας σημαντικά την απαίτηση σε θερμή παροχή χωρίς να αυξάνει πολύ την απαίτηση σε ψυχρή βοηθητική παροχή.

Πίνακας 13: Καταρράκτης με μερική ψύξη των ατμών του steam explosion

T_1	T_2	ΔT	CPc	CPh	CP	$\Delta { m H}$
283.9	248	35.9	0	3.584	-3.584	-128.6656
248	238	10	4.698	3.584	1.114	11.14
238	237	1	4.698	13.757	-9.059	-9.059
237	227	10	47.732	13.757	33.975	339.75
227	155	72	47.732	83.315	-35.583	-2561.976
155	145	10	47.732	91.792	-44.06	-440.6
145	139.4	5.6	105.479	91.792	13.687	76.6472
139.4	135	4.4	105.479	92.532	12.947	56.9668
135	125	10	105.479	95.792	9.687	96.87
125	85.65	39.35	105.479	85.402	20.077	790.02995
85.65	75.65	10.	111.537	85.402	26.135	261.35
75.65	74.9	0.75	111.537	82.632	28.905	21.67875
74.9	64.9	10.	115.730	82.632	33.098	330.98
64.9	56.97	7.93	115.730	77.746	37.984	301.21312
56.97	54.75	2.22	115.730	81.561	34.169	75.85518
54.75	45	9.75	169.627	81.561	88.066	858.6435
45	35	10	169.627	142.536	27.091	270.91
35	25	10	111.880	142.536	-30.656	-306.56

Σχήμα 8: Μεγάλο Σύνθετο Γράφημα

Πίναχας 11: Καταρράχτης χωρίς steam explosion vapors

T_1	T_2	$\Delta \mathrm{T}$	CPc	CPh	CP	$\Delta \mathrm{H}$
283.9	248	35.9	0	3.584	-3.584	-128.6656
248	238	10	4.698	3.584	1.114	11.14
238	237	1	4.698	13.757	-9.059	-9.059
237	227	10	47.732	13.757	33.975	339.75
227	155	72	47.732	17.828	29.904	2153.088
155	145	10	47.732	26.305	21.427	214.27
145	139.4	5.6	105.479	26.305	79.174	443.3744
139.4	135	4.4	105.479	27.045	78.434	345.1096
135	125	10	105.479	95.792	9.687	96.87
125	85.65	39.35	105.479	85.402	20.077	790.02995
85.65	75.65	10.	111.537	85.402	26.135	261.35
75.65	74.9	0.75	111.537	82.632	28.905	21.67875
74.9	64.9	10.	115.730	82.632	33.098	330.98
64.9	56.97	7.93	115.730	77.746	37.984	301.21312
56.97	54.75	2.22	115.730	81.561	34.169	75.85518
54.75	45	9.75	169.627	81.561	88.066	858.6435
45	35	10	169.627	142.536	27.091	270.91
35	25	10	111.880	142.536	-30.656	-306.56

3.2 Συμπεράσματα

Συμπέρασμα ότι με την ενεργειακή ολοκλήρωση αυτή, η οποία θεωρείται και η καλύτερη, οι ενεργειακές απαιτήσεις της διεργασίας γίνονται

Απαίτηση σε ψυχρή παροχή $306.56~{
m MJ/h}$ σε θερμοκρασία κάτω από $25~{}^oC$ στο ${
m M}\Sigma\Gamma$ (δηλαδή κάτω από $20~{}^oC$, άρα στους $15~{}^oC$ πχ).

Απαίτηση σε θερμή παροχή: $351.73~{
m MJ/h}$. Αν εκμεταλλευτούμε την μικρή τσέπη που δημιουργείται στο πάνω μέρος του ${
m M}\Sigma\Gamma$, τότε η θερμή παροχή πρέπει να διατίθεται τουλάχιστον στους $235~{}^{o}C$ σε αυτό (δηλαδή τουλάχιστον $240~{}^{o}C$ αν χρησιμοποιούμε την πραγματική θερμοκρασία), αλλιώς πρέπει να διατίθεται στους $284~{}^{o}C$ τουλάχιστον.

Επίσης, πέρα από αυτήν την ενεργειακή τσέπη η οποία έχει δημιουργηθεί και επιτρέπει ο ατμός που παράγεται να είναι σε χαμηλότερη ενεργειακή στάθμη, υπάρχει και άλλη μία, η οποία είναι πάρα πολύ σημαντικής έκτασης και επιτρέπει την πλήρη ενεργειακή αυτονομία όλων των ρευμάτων από $227\ ^oC$ μέχρι λίγο πάνω από $45\ ^oC$.

Επίσης, αξίζει να σημειωθεί πως ο κόμβος ανάσχεσης είναι το δεύτερο σημείο του γραφήματος με το πρώτο να είναι πολύ μικρό. Άρα, οι περιοχές μέσα και κάτω από τον κόμβο ανάσχεσης είναι πολύ μικρές. Αυτό μπορεί να δημιουργήσει προβλήματα εάν θέλουμε να ολοκληρώσουμε μία αντλία θερμότητας (μέσα από τον κόμβο ανάσχεσης) ή έναν ενδόθερμο αντιδραστήρα (κάτω από τον κόμβο ανάσχεσης).

3.2.1 Σχόλια για την ολοκλήρωση διάφορων κομματιών

1. Αντιδραστήρας παραγωγής γλυκερόλης Ο αντιδραστήρας λειτουργεί στους 30 βαθμούς κελσίου και είναι εξώθερμος. Στο μεγάλο σύνθετο γράφημα θα έμπαινε στους 25 °C το οποίο είναι κάτω από τον κόμβο ανάσχεσης κατά 10. Λόγω της πολύ στενής θερμοκρασιακής περιοχής στην οποία μπορεί να διεξαχθεί η αντίδραση, θεωρούμε πως δεν αξίζει να μελετηθεί ένα σενάριο ολοκλήρωσης του αντιδραστήρα αυτού με την υπόλοιπη διεργασία (όπου θα έπρεπε η θερμοκρασία λειτουργίας να αυξηθεί κατά 10 τουλάχιστον βαθμούς).

 Σ χήμα 9: Μεγάλο Σύνθετο Γράφημα χωρίς τους ατμούς της έκρηξης ατμού

 Σ χήμα 10: Μεγάλο Σ ύνθετο Γράφημα με μεριχή ψύξη των ατμών της έχρηξης ατμού

Πίνακας 14: Δεδομένα για τον ενεργειακό καταρράκτη

Cumulative Dh	T
351.734	283.9
480.399	248
469.259	238
478.318	237
138.568	227
2700.544	155
3141.144	145
3064.497	139.4
3007.530	135
2910.660	125
2120.630	85.65
1859.280	75.65
1837.601	74.9
1506.621	64.9
1205.408	56.97
1129.553	54.75
270.91	45
0	35
306.56	25

Ακόμη όμως και να γινόταν, η απαίτηση σε ψύξη είναι υψηλή $(12901.5~\mathrm{MJ/hr})$ και με την υπάρχουσα διεργασία και ολοκλήρωση, δεν περισσεύει πουθενά τόση ψυχρή παροχή.

- 2. Αποσταχτική στήλη γλυκερόλης Ο αναβραστήρας της στήλης λειτουργεί στους $293\,^oC$ στο $M\Sigma\Gamma$ και έχει απαίτηση θερμότητας στους 1105.44 MJ/hr. Αυτό υπερβαίνει τις θερμοκρασίες καθώς και τις ενθαλπίες που υπάρχουν στο διάγραμμα. Άρα, η ολοκλήρωση όλης της στήλης με το υπόλοιπο διάγραμμα ροής είναι ανέφικτη. Όμως, ο συμπηκνωτήρας της στήλης λειτουργεί στους $145\,^oC$ ($140\,^oC$ στο $M\Sigma\Gamma$). Στο σημείο αυτό είναι η μεγάλη ενεργειαχή τσέπη του $M\Sigma\Gamma$, άρα η ολοκλήρωση είναι αρκετά εύκολη. Επίσης, η απαίτηση σε ψύξη είναι σχετικά μικρή (149.49 MJ/hr) άρα ο συμπηκνωτήρας αυτός θα μπορούσε να ολοκληρωθεί ως εναλλάκτης αλλά όχι ως ολόκληρη αποσταχτική.
- 3. Αντιδραστήρας παραγωγής φουρφουράλης Θερμοκρασία λειτουργίας οι $242~^oC$, ή $237~^oC$ στο μεγάλο σύνθετο γράφημα. Ο αντιδραστήρας είναι εξώθερμος, άρα μπορεί να γίνει σωστή ολοκλήρωση. Καθώς είναι αρκετά ψηλά στο γράφημα, υπάρχουν σίγουρα ρεύματα πιο ψυχρά από αυτό για να το ψύξουν. Επίσης, η απαίτηση του σε ψύξη είναι αρκετά χαμηλή $(13.35~{
 m MJ/hr})$ άρα είναι αρκετά εύκολο να χωρέσει.
- 4. Αντιδραστήρας παραγωγής χυχλοπεντανόνης O αντιδραστήρας αυτός λειτουργεί στους $160~^oC$ και είναι εξώθερμος (ως αντίδραση υδρογόνωσης). Στο σημείο αυτό υπάρχει διαθέσιμη θερμιχή ενέργεια λόγω της ενεργειαχής τσέπης (της τάξης των $2500~\mathrm{MJ/hr}$). Βέβαια, ο θερμοτονισμός της αντίδρασης είναι μίας τάξης μεγέθους πάνω από την απαίτηση αυτή άρα δεν μπορεί να καλυφθεί η ανάγχη από τα υπάρχοντα ρεύματα.
- 5. Αποστακτική στήλη κυκλοπεντανόνης Οι θερμικές απαιτήσεις της στήλης υπερβαίνουν την διαθέσιμη θερμότητα της διεργασίας άρα στην παρούσα φάση δεν μπορεί να ολοκληρωθεί. Η απαίτηση σε ψυχρό είναι 8999.76 MJ/hr, η οποία μπορεί να ικανοποιηθεί με νερό ψύξης ενώ αυτή σε θερμό είναι 9543.12 MJ/hr η οποία πρέπει να είναι ατμός σε

- θερμοκρασία τουλάχιστον $140~^{o}C$. Εφόσον αυτή θα παραχθεί από το κύκλο Rankine, είναι εύκολο να ρυθμιστεί κατάλληλα.
- 6. Αντιδραστήρας σακχαροποίησης Ο αντιδραστήρας λειτουργεί στους $50~^oC$ και είναι ενδόθερμος. Είναι πάνω από τον κόμβο ανάσχεσης, αλλά μέσα σε μία σχετικά μεγάλη ενεργειακή τσέπη. Στο σημείο αυτό της τσέπης υπάρχει διαθέσιμη περίπου $1000~{\rm MJ/hr}$ θερμών παροχών και η απαίτηση του αντιδραστήρα είναι $(393.63~{\rm MJ/hr})$ άρα η ολοκλήρωση θεωρείται εφικτή.

3.2.2 Αλλαγές στο $M\Sigma\Gamma$

Για την αποσταχτική της γλυχερόλης, αναφέρθηκε πως μπορεί να ολοκληρωθεί ως εναλλάχτης ο συμπυκνωτήρας χωρίς να ολοκληρώσουμε όλη την στήλη λόγω ανεπάρκειας ενέργειας. Άρα, στους $140~^{o}C$ μπορούμε να πούμε πως υπάρχει ένα επιπλέον θερμό ρεύμα το οποίο έχει ενθαλπία $149.49~{\rm MJ/hr}$. Άρα, μπορεί η περιοχή από τους $145~{\rm μέχρι}$ τους 139.4 να μειώσει την ενθαλπία της κατά αυτόν τον αριθμό. Η ολοκλήρωση αυτή μετακινεί τον κόμβο ανάσχεσης αρκετά πιο ψηλά στο ${\rm M\Sigma}\Gamma$ ($227~^{o}C$) και κάνει τον παλιό κόμβο ανάσχεσης να είναι στα $11~{\rm περίπου}~{\rm MJ/hr}$ αντί για $0.~{\rm H}$ ολοκλήρωση του αντιδραστήρα οδηγεί σε απαίτηση σε θερμή παροχή η οποία είναι περίπου το $0.6~{\rm tη}$ ς αρχικής και σε ελάχιστη αύξηση της απαίτησης σε ψυχρή παροχή, άρα είναι όντως ένα επιθυμητό σενάριο ολοκλήρωσης.

Ομοίως, ο αντιδραστήρας της φουρφουράλης είναι ένας εξώθερμος αντιδραστήρας που μπορεί να λειτουργήσει ως επιπλέον θερμό ρεύμα για την διεργασία με θερμότητα 13.35 MJ/hr στους 237 (θα προστεθεί στο interval 237->227). Αν προσθέσουμε και το ρεύμα αυτό στην προηγούμενη ολοκλήρωση, παρατηρούμε μία μικρή μείωση της απαίτησης σε θερμή παροχή (213.2->199.8) καθώς και μικρή αύξηση της ενεργειακής τσέπης πάνω από τον κόμβο ανάσχεσης. Άρα, έχει θετική επίδραση παρότι αρκετά μικρότερη από την παραπάνω.

Τέλος, ο τρίτος αντιδραστήρας που αναφέρθηκε ότι μπορεί να ολοχληρωθεί είναι ο αντιδραστήρας της σαχχαροποίησης της χυτταρίνης ο οποίος όμως είναι ενδόθερμος, άρα λειτουργεί ως ένα ψυχρό ρεύμα στους 55 oC το οποίο προσθέτει 393.63 MJ/hr στο interval 56.97->54.75. Η ολοχλήρωση αυτή οδηγεί σε μία αρχετά μιχρή μείωση της ψυχρής παροχής αλλά επίσης προχαλεί σχεδόν τριπλασιασμό της απαίτησης σε θερμή παροχή. Συμπέρασμα πως δεν αξίζει να γίνει μία τέτοια ολοχλήρωση όπως χαι οι υπόλοιπες ολοχληρώσεις του ΜΣΓ.

Παρακάτω παρατίθεται και το $M\Sigma\Gamma$ στο οποίο έχουν γίνει οι δύο αυτές προσθήκες.

Έχοντας το ΜΣΓ αυτό, μπορούμε να προχωρήσουμε στο σχεδιασμό του κατάλληλου δικτύου εναλλαγής θερμότητας το οποίο θα έχει η διεργασία. Αυτό όμως θα γίνει σε επόμενο στάδιο.

 Σ χήμα 11: Μεγάλο Σύνθετο Γράφημα μετά την ολοκλήρωση 2 διεργασιών

Πίνακας 15: Δεδομένα για τον ενεργειακό καταρράκτη

Cumulative Dh	T
199.815	283.9
328.481	248
317.341	238
326.4	237
0	227
2561.976	155
3002.576	145
3075.419	139.4
3018.452	135
2921.582	125
2131.552	85.65
1870.202	75.65
1848.523	74.9
1517.543	64.9
1216.330	56.97
1140.475	54.75
281.831	45
10.921	35
317.481	25

3.2.3 Απαίτηση σε θερμές παροχές

Ιδιαίτερο ενδιαφέρον έχει να δούμε πόση ποσότητα ατμού χρειάζεται και σε τι επίπεδα χρειάζεται αυτή. Αυτό είναι ενδιαφέρον επειδή ο ατμός παράγεται από ενσωματωμένο κύκλο Rankine της διεργασίας, άρα μπορούν να επιλεχθούν τα επίπεδα κατάλληλα ανάλογα με τις απαιτήσεις. Η υψηλότερη στάθμη του ατμού είναι αρκετά υψηλή, άρα σίγουρα μπορούν να καλυφθούν όλες οι ανάγκες. Επίσης, πρέπει να ληφθεί υπόψην πως λόγω του κόστους των στροβίλων, είναι σπανίως οικονομικά επιθυμητό να έχουμε πάνω από 3 στρόβιλους στο κύκλο, άρα πάνω από 4 επίπεδα ατμού.

Πίνακας 16: Απαιτούμενα επίπεδα ατμού

Απαίτηση	Θερμότητα (MJ/hr)	Θερμοκρασία (C)
$M\Sigma\Gamma$	199.82	250
Αναβραστήρας Γλυκερόλης	1105.44	300
Αναβραστήρας Κυκλοπεντανόνης	9543.12	140
Αντιδραστήρας Σακχαροποίησης	393.63	60

Από τα 4 ρεύματα αυτά, είναι εύχολο να παρατηρηθούν τα δύο επίπεδα που χρειάζονται. Το πρώτο πρέπει να είναι στους $300~^oC$ τουλάχιστον με θερμική δυνατότητα περίπου $1300~\rm MJ/hr$ ενώ το δεύτερο πρέπει να είναι στους $140~^oC$ τουλάχιστον με θερμική δυνατότητα $10000~\rm MJ/hr$ περίπου.

Το 1ο επίπεδο είναι ο ατμός υψηλής πίεσης ο οποίος παράγεται από τα καυσαέρια. Για να παράγει ικανοποιητικά ποσά ενέργειας το κύκλο, πρέπει να είναι τουλάχιστον στα $100~{\rm bar}$, ώστε η εκτόνωση του να δώσει πολύ έργο. Ο ατμός που χρησιμοποιείται είναι στα $150~{\rm bar}$ και $700~{\rm ^oC}$. Η πρώτη βαθμίδα εκτόνωσης τοποθετείται στα $30~{\rm bar}$ όπου ο ατμός έχει θερμοκρασία $443~{\rm ^oC}$ και η θερμοκρασία του μειώνεται στους $364~{\rm ^oC}$. Η θερμοκρασία είναι πολύ υψηλή διότι ξεκινάμε από ατμό πολύ μεγάλης θερμοκρασίας και πίεσης και η εκτόνωση αυτή οδηγεί

σε αυτήν την θερμοχρασία. Όμως, αυτό είναι καλό επειδή σημαίνει ότι και μετά την θέρμανση που πρέπει να κάνει, είναι ακόμη υπέρθερμος με σχετικά μεγάλο βαθμό υπερθέρμανσης άρα μπορεί να τοποθετηθεί ασφαλώς σε δεύτερο στρόβιλο όπου θα εκτονωθεί μέχρι τα 4 bar και θερμοχρασία 151 °C ώστε να καλύψει τις ανάγκες που χρειάζονται σε χαμηλή θερμοχρασία. Η ποσότητα που χρησιμοποιήθηκε επαρκεί ώστε ο ατμός να φτάσει σε μίγμα με την υγρή φάση ποιότητας 0.5 περίπου. Θα μπορούσαμε να τραβήξουμε μικρότερη ποσότητα εξαρχής, αλλά κινδυνεύουμε να δημιουργηθεί υγρή φάση μέσα στον στρόβιλο (καθώς το νερό είναι κοντά στον κορεσμό του ως έχει) και επίσης, δυσχεραίνουμε την αναθέρμανση η οποία γίνεται με τον υπόλοιπο ατμό στα 30 bar. Η τέταρτη βαθμίδα είναι το νερό χαμηλής πίεσης που τροφοδοτούμε, το οποίο έχει πίεση 0.1 bar.

4 Κοστολόγηση

- 4.1 Προεπεξεργασία (Blocks 100-200)
- 4.2 Κύκλο Rankine (Block 300)

4.3 Παραγωγή και Καθαρισμός Γλυκερόλης (Blocks 400-500)

Έγινε οικονομική αξιολόγηση των blocks 400-500, με τελικό προιόν την γλυκερόλη με καθαρότητα 99.96% σε ποσότητα 12845 tn/year. Βρέθηκε πως η τιμή αγοράς γλυκερόλης σε υψηλή καθαρότητα μπορεί να πουληθεί για 0.34 \$/lb ή 0.732 euro/kg.

Επίσης έγινε και διαστασιολόγηση του εξοπλισμού και οικονομική ανάλυση των παροχών που απαιτούνται. Μια σύντομη περιγραφή των αποτελεσμάτων παρουσιάζονται στον παρακάτω πίνακα. Η παρούσα οικονομική ανάλυση ασχολείται με τις διεργασίες που χρησιμοποιούνται από την έξοδο του βιοαντιδραστήρα και μετά, συνεπώς δεν αγοράζεται κάποια πρώτη ύλη.

Πίνακας 17: Συνολικό κόστος διεργασίας

Summary	
Total Capital Cost [kEuro]	4061
Total Operating Cost [kEuro/Year]	2667
Total Product Sales [kEuro/Year]	8856
Total Utilities Cost [kEuro/Year]	1373
Desired Rate of Return [Percent/'Year]	18,4
P.O. Period [Year]	1,9336
Equipment Cost [kEuro]	392
Total Installed Cost [kEuro]	1349

Συνεπώς για την εγκατάσταση αυτού του εξοπλισμού απαιτούνται 1741,744 kEuro, και αφού ξεκινήσει να λειτουργεί αυτή η θα έχει συνολικό ετήσιο κέρδος της τάξεως των 755,2372 kEuro/y, που σημαίνει ότι θα χρειαστούν γύρω στα 2,3 χρόνια για να γίνει απόσβεση του κόστους εγκατάστασης αυτών των διεργασιών.

Παρουσιάζεται πίνακας με την αναλυτική κοστολόγηση κάθε εξοπλισμού της διεργασίας

Η οικονομική ανάλυση για τις βοηθητικές παροχές που παρουσιάζεται εδώ, αποτελεί την περίπτωση όπου το block 300 της συνολικής διεργασίας δεν αρκεί για να τις καλύψει, παρόλο που προσφέρει μεγάλες ποσότητες ηλεκτρικής ενέργειας και θερμών παροχών. Συνεπώς αυτή η οικονομική ανάλυση αποτελεί ένα worst case scenario όσον αφορά την ηλεκτρική ενέργεια και τις θερμές παροχές, ενώ η ανάλυση για τις ψυχρές παραμένει έγκυρη.

Παρουσιάζονται πίνακες για τα σχεδιαστικά χαρακτηριστικά του εξοπλισμού που προέκυψαν από την διαστασιολόγηση.

Πίνακας 18: Αναλυτική Κοστολόγηση Εξοπλισμού

	Ιίναχας 18: Αναλυτίχη Κο	· · · · · · · · · · · · · · · · · · ·	
Name	Equipment Cost [Euro]	Installed Cost [Euro]	Equipment Weight [Kg]
H-502	23368	120520	$2540,\!1152$
C-501	128984	171948	2131,8824
H-501	8372	65228	231,33192
H-503	25392	124936	2857,6296
R-401	81236	221536	3810,1728
D-501-cond	7728	50508	117,93392
D-501-cond acc	15180	105248	1224,6984
D-501-reb	40388	118036	4490,5608
D-501-reflux pump	4416	27876	90,7184
D-501-tower	33672	172224	2313,3192
F-501-flash vessel	23828	171120	2086,5232
Name	Installed Weight [Kg]		
H-502	12602,60013		
C-501	4186,65416		
H-501	3777,514176		
H-503	13640,41862		
R-401	11077,62382		
D-501-cond	2105,120472		
D-501-cond acc	5870,841256		
D-501-reb	9960,426728		
D F01 (1126,268936		
D-501-reflux pump	1120,200300		
D-501-reflux pump D-501-tower	9538,132576		
	,		

Πίναχας 19: Κοστολόγηση βοηθητικών παροχών

Utilities					
Name	Fluid	Rate	Rate Units	Cost per Hour	Cost Units
Electricity		97,173	KW	6,92843444	Euro/H
Cooling Water	Water	0,00085	$\mathrm{MMGAL}/\mathrm{H}$	0,09384	Euro/H
Steam @100PSI	Steam	19,97789	KLB/H	149,610423	Euro/H

Πίνακας 20: Διαστασιολόγηση Εναλλακτών Θερμότητας

TEMA HEX

I DIVIA II DA				
User tag number	H-502	H-501	H-503	D-501-cond
Number of identical items	1	1	1	1
Heat transfer area [sqm]	$91,\!5801$	$2,\!557231$	110,8726	$0,\!382876279$
Front end TEMA symbol	В	В	В	В
Shell TEMA symbol	\mathbf{E}	\mathbf{E}	\mathbf{E}	E
Rear end TEMA symbol	M	M	M	M
Tube design gauge pressure [barg]	0,020961	1,285044	7,605461	$4,\!1579608$
Tube design temperature [C]	167,789	316,71	192,1111	243,5217839
Tube operating temperature [C]	95	44	164,3333	35
Tube outside diameter [meter]	0,0254	0,0254	0,0254	0,0254
Shell design gauge pressure [barg]	0,020961	2,434211	4,732544	2,4342108
Shell design temperature [C]	167,789	316,71	167,7778	243,5217839
Shell operating temperature [C]	140,0112	288,9322	140	215,7440061
Tube length extended [meter]	6,096	6,096	6,096	6,096
Tube pitch [meter]	0,03175	0,03175	0,03175	0,03175
Number of tube passes	1	1	1	1
Number of shell passes	1	1	1	1

Πίνακας 21: Διαστασιολόγηση φυγοκέντρου

Solid bowl centrif

User tag number	C-501
Remarks 1	Equipment mapped from 'C-501'.
Bowl diameter [meter]	0,4572
Bowl length [meter]	1,016
Flow rate [kg/hr]	1874,336

Πίνακας 22: Διαστασιολόγηση συμπηκνωτή αποστακτικής στήλης

Horizontal drum

Horizoniai drum	
User tag number	D-501-cond acc
Remarks 1	Equipment mapped from 'D-501'.
Liquid volume [l]	1801,449698
Vessel diameter [meter]	0,9144
Vessel tangent to tangent length [meter]	2,7432
Design gauge pressure [barg]	1,03425
Vacuum design gauge pressure [barg]	-1,00667
Design temperature [C]	172,1626089
Operating temperature [C]	144,3848311

Πίνακας 23: Διαστασιολόγηση αναθερμαντή αποστακτικής στήλης

U-tube reboiler

User tag number	D-501-reb
Remarks 1	Equipment mapped from 'D-501'.
Number of identical items	1
Heat transfer area [sqm]	140,2956413
Tube design gauge pressure [barg]	1,28504411
Tube design temperature [C]	343,3333333
Tube operating temperature [C]	288,9322461
Tube outside diameter [meter]	0,0254
Shell design gauge pressure [barg]	2,4342108
Shell design temperature [C]	343,3333333
Shell operating temperature [C]	315,5555556
Tube length extended [meter]	6,096
Tube pitch [meter]	0,03175
Tube pitch symbol	TRIANGULAR
Number of tube passes	2
Duty [cal/sec]	73342,06549
TEMA type	BKU

Πίνακας 24: Δ ιαστασιολόγηση αντλίας αποστακτικής στήλης

Centrif pump

User tag number	D-501-reflux pump
Remarks 1	Equipment mapped from 'D-501'.
Liquid flow rate [l/min]	1,78125534
Fluid specific gravity	1,159661
Design gauge pressure [barg]	1,03425
Design temperature [C]	172,1626089
Fluid viscosity [cP]	0,5
Pump efficiency [fraction]	0,7

Multi-diameter tower	
User tag number	D-501-tower
Remarks 1	Equipment mapped from 'D-501'.
Diameter Bottom section [meter]	0,6096
Bottom tangent to tangent height [meter]	7,3152
Design gauge pressure Bottom [barg]	2,4342108
Design temperature Bottom [C]	316,7100239
Operating temperature Bottom [C]	288,9322461
Number of trays Bottom section	6
Bottom Tray type	SIEVE
Bottom Tray spacing [meter]	0,6096
Molecular Wt Overhead Prod.	92,068115

Πίναχας 26: Διαστασιολόγηση του Flash διαχωριστήρα

Vertical vessel

Vertical Vesser	
User tag number	F-501-flash vessel
Remarks 1	Equipment mapped from 'F-501'.
Liquid volume [l]	8073,163475
Vessel diameter [meter]	1,6764
Vessel tangent to tangent height [meter]	3,6576
Design gauge pressure [barg]	1,03425
Design temperature [C]	167,7777778
Operating temperature [C]	140

4.4 Παραγωγή και Καθαρισμός Κυκλοπεντανόνης (Blocks 600-700)