Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Московский институт электронной техники»

Кафедра Высшая математика 1

Филиппов Сергей Александрович

Бакалаврская работа по направлению 01.03.04 «Прикладная математика» (бакалавриат)

Топологические полигоны над полугруппами

Студент Филиппов С.А.

Руководитель ВКР,

д.ф.-м.н., профессор Кожухов И.Б.

Оглавление

Введени	e		2	
Глава 1.	Основные понятия и конструкции		5	
Глава 2.	Основ	ная часть	9	
2.1.	Тополог	гии, индуцированные частичным порядком	9	
2.2.	Поиск т	Поиск топологий на конечных алгебрах		
	2.2.1.	Описание алгоритма нахождения всех топологий на ко-		
		нечном множестве	12	
2.3.	Решеткі	и топологий конечной алгебры	14	
	2.3.1.	Решетки топологий на конечной цепи с операцией "огра-		
		ниченного сложения"	14	
	2.3.2.	Решетки топологий на конечной цепи с операцей тах .	20	
	2.3.3.	Решетки топологий на конечной цепи с n-арной опера-		
		цией	23	
Заключение			27	
Список литературы			29	
Прилож	ение А.	Топологии, сохраняющие операцию "ограниченного		
сложения" для $X = \{0, 1, 2, 3, 4\}$				
Приложение Б. Топологии, сохраняющие операцию $\max $ для $X = \{0, 1, 2, 3\}$				
Приложо	ение В.	Ссылка на github репозиторий с программным колом	43	

Введение

В современном мире математика играет все более важную роль, занимая центральное место во многих научных и практических областях. В ее сердце лежат такие разделы как: алгебра, топология и теория чисел, которые играют ключевую роль в исследовании различных математических и физических явлений.

Топология, как наука о качественных свойствах и структуре пространства, изучает понятие непрерывности и свойства топологических пространств. Она дает нам возможность абстрагироваться от конкретных объектов и изучать их глобальные свойства. Топологические методы используются во многих областях, включая физику, экономику, биологию и информатику.

Алгебра, с другой стороны, изучает математические структуры и операции, которые могут быть применены к различным объектам. Этот раздел математики позволяет нам анализировать и решать сложные задачи, используя абстрактные алгебраические системы. Алгебраические методы находят свое применение в криптографии, физике элементарных частиц и теории кодирования.

Изучение производных структур математических объектов (таких как группа автоморфизмов, решетка конгруэнций и пр.) играет важную роль для развития теорий, так как они содержат в себе информацию о свойствах и структуре самих объектов. Так, например, целая ветвь в теории универсальных алгебр занимается изучением решеток конгруэнций. На ряду с решетками конгруэнций рассматривают решетки топологий универсальных алгебр. Так, в [1] показано, что решетка, двойственная к решетке конгруэнций произвольной алгебры, изоморфна некоторой подрешетке решетки топологий этой алгебры. В работе [2] показано, что решетка квазипорядков и решетка топологий конечной цепи X_n из n элементов изоморфны булеану из 2^{2n-2} элементов.

Стоит отметить, что исследование взаимосвязи топологической структуры с порядковой представляет интерес само по себе, а порядковая структура на

множестве предоставляет более богатый выбор операций для наделения множества алгебраической структурой. Поэтому данный вопрос может быть рассмотрен в качестве побочной задачи.

Любую алгебру с n-арной операцией можно свести к алгебре с унарными операциями, которую можно рассматривать как полигон над собой. Действительно, пусть (A, f) - алгебра с n-арной операцией $f(x_1, x_2, \ldots, x_n), a_1, a_2, \ldots, a_n \in A$. Тогда алгебру (A, f) можно свести к унарной алгебре (A, Ω) с операциями $\varphi_{i,a_1,a_2,\ldots,a_n}(x) = f(a_1, a_2, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$. Любая унарная алгебра, в свою очередь, является полигоном над полугруппой S, порожденной операциями из Ω относительно композиции отображений. С учетом этого, в рамках данной темы можно рассмотреть связь топологических структур с операциями на произвольных универсальных алгебрах.

Целью данной работы является исследование взаимосвязи топологических и алгебраических структур.

Для достижения данной цели были сформулированы следующие задачи:

- 1. Рассмотреть способы введения топологии на упорядоченном множестве;
- 2. Рассмотреть взаимосвязь непрерывных и изотонных отображений на пространствах с топологией, индуцированной порядком;
- 3. Разработать алгоритм, позволяющий находить все топологии на конечном множестве, относительно которых произвольная операция непрерывна;
- 4. Реализовать возможность визуализации решеток на ЭВМ;
- 5. Построить решетки топологий на множествах различных мощностей, сохраняющих операцию "ограниченного сложения" и проверить, являются ли они дистрибутивными или модулярными;
- 6. Построить решетки топологий на множествах различных мощностей, сохраняющих операцию max и проверить, являются ли они дистрибутивны-

ми или модулярными.

Необходимые сведения из общей топологии можно найти в [3] и [4], теории полугрупп в [5], [6], теории полигонов в [6], [7], [8], теории решеток в [9].

Глава 1

Основные понятия и конструкции

Частично упорядоченным множеством называется пара (X, \leq) , где X - это множество, а \leq - бинарное отношение, удовлетворяющее аксиомам:

PO1)
$$\forall x \in X : x \leq x$$

PO2)
$$\forall x, y \in X : x \le y \land y \le x \implies x = y$$

PO3)
$$\forall x, y, z \in X : x \le y \land y \le z \implies x \le z$$

Частично упорядоченное множество называется *линейно упорядоченным* или *цепью*, если удовлетворяет следующей аксиоме:

LO1)
$$\forall x, y \in X : x \le y \lor y \le x$$

Отображение $f: X \to Y$ из частично упорядоченного множества X в частично упорядоченное множество Y называется *изотонным*, если выполнено: $\forall x_1, x_2 \in X: x_1 \leq x_2 \implies f(x_1) \leq f(x_2).$

Yниверсальной алгеброй или просто алгеброй называется непустое множество A, снабженное набором n-арных операций. Множество Ω символов n-арных операций, определенных на A называется сигнатурой алгебры A.

Полугруппой S называется алгебра с одной ассоциативной бинарной операцией *, т.е. выполняется:

$$a * (b * c) = (a * b) * c$$

Для любых элементов a, b, c из множества S.

Верхней (нижней) полурешёткой называется частично упорядоченное множество, в котором у любых двух элементов есть супремум sup (инфимум inf).

Частично упорядоченное множество, являющееся и верхней и нижней полурешеткой относительно порядка на нем, называется *решёткой*. Если любое непустое подмножество решетки имеет супремум и инфимум, то решётка называется *полной*.

Решетка $\mathfrak Q$ называется *модулярной*, если удовлетворяет условию $\forall x,y,z\in \mathfrak Q: x\geq z \implies x \wedge (y\vee z) = (x\wedge y)\vee z.$

Решетка $\mathfrak Q$ называется ∂ истрибутивной, если удовлетворяет условию $\forall x,y,z\in \mathfrak Q: (x\wedge y)\vee (x\wedge z)=x\wedge (y\vee z).$

Модулярность является необходимым условием дистрибутивности.

Непустое множество A называется npaвым nonuroнom had nonyrpynnoй S, если задано отображение $\mu: A \times S \to A$, $(a,s) \mapsto as := \mu(a,s)$, удовлетворяющее условию a(st) = (as)t при всех $a \in A$, $s,t \in S$. Левый полигон над полугруппой S определяется двойственным образом. Как уже отмечалось во введении, любую универсальную алгебру с n-арной операцией можно свести к унарной алгебре и рассматривать как полигон над полугруппой S, порожденной операциями из сигнатуры относительно композиции отображений.

Топологией на множестве X называется набор $\mathcal T$ его подмножеств, удовлетворяющий аксиомам:

O1)
$$\emptyset, X \in \mathcal{T}$$

O2)
$$\forall U, V \in \mathcal{T} : U \cap V \in \mathcal{T}$$

O3)
$$\forall \mathcal{F} \subset \mathcal{T} : \bigcup_{U \in \mathcal{F}} U \in \mathcal{T}$$

Пара (X, \mathcal{T}) называется *топологическим пространством*. Подмножества X, принадлежащие семейству \mathcal{T} называются *отпольными*. Подмножество X называется *замкнутым множеством*, если дополнение к нему открыто. *Окрестностью* точки $x \in X$ называется всякое открытое множество U такое, что $x \in U$.

Пусть (X, \mathcal{T}) – топологическое пространство. Семейство $\mathfrak{B} \subset \mathcal{T}$ такое, что каждое непустое открытое множество представимо в виде объединения

некоторого подсемейства $\mathfrak B$ называется базой топологии $\mathcal T$.

Всякая база обладает следующими свойствами:

B1)
$$\forall B_1, B_2 \in \mathfrak{B} \quad \forall x \in B_1 \cap B_2 \quad \exists B \in \mathfrak{B} : x \in B \subset B_1 \cap B_2$$

B2)
$$\forall x \in X \quad \exists B \in \mathfrak{B} : x \in B$$

Семейство $\mathcal{P} \subset \mathcal{T}$ такое, что набор пересечений $\bigcap \mathcal{P}_n$ его конечных подсемейств $\mathcal{P}_n \subset \mathcal{P}$ является базой топологии \mathcal{T} , называется *предбазой топологии* \mathcal{T} .

Отображение $f: X \to Y$ из топологического пространства (X, \mathcal{T}_X) в топологическо пространство (Y, \mathcal{T}_Y) называется *непрерывным*, если $\forall U \in \mathcal{T}_Y: f^{-1}(U) \in \mathcal{T}_X$, т.е. если прообраз всякого открытого подмножества пространства Y является открытым подмножеством пространства X.

Пусть даны множество X и семейство \mathfrak{B} его подмножеств, удовлетворяющее условиям (B1)-(B2). Пусть \mathcal{T} - семейство всех подмножеств множества X, являющихся объединениями подсемейств \mathfrak{B} . Семейство \mathcal{T} удовлетворяет условиям (O1)-(O3), а \mathfrak{B} является базой топологического пространства (X,\mathcal{T}) . Топология \mathcal{T} называется топологией, порожденной базой \mathfrak{B} (см. [3, Предложение 1.2.1.]).

Пусть даны множество X, семейство топологических пространств $\{Y_s\}_{s\in S}$ и семейство проекций $\{f_s\}_{s\in S}$, где f_s - отображение X в Y_s . Тогда на X можно задать топологию, порожденную базой, состоящей из всех множеств вида $\bigcap_{i=1}^k f_{s_i}^{-1}(V_i)$, где $s_1, s_2, \ldots, s_k \in S$ и V_i - произвольное открытое подмножество пространства Y_{s_i} , $i=1,2,\ldots,k$. Такая топология называется топологией, порожденной семейством отображений $\{f_s\}_{s\in S}$ (см. [3, Предложение 1.4.8.]).

Пусть $\{X_s\}_{s\in S}$ – семейство топологических пространств. Рассмотрим произведение $X=\prod_{s\in S}X_s$ множеств $\{X_s\}_{s\in S}$ и семейство отображений $\{p_s\}_{s\in S}$, где p_s ставит в соответствие точке $x=\{x_s\}\in X=\prod_{s\in S}X_s$ ее s-ю координату $x_s\in X_s$. Множество X с топологией, порожденной семейством отображений $\{p_s\}_{s\in S}$ называется произведением пространств $\{X_s\}_{s\in S}$, а сама топология называется топологией произведения или тихоновской топологией.

Пусть (A, \mathcal{T}, Ω) — универсальная алгебра с сигнатурой Ω и топологией \mathcal{T} на носителе, f — n-арная операция из сигнатуры. Операция f называется f непрерывной, если верно следующее условие:

$$\forall x_1, x_2, \dots, x_n \in A \forall W(f(x_1, x_2, \dots, x_n)) \in \mathcal{T} \exists U_1(x_1), U_2(x_2), \dots, U_n(x_n) \in \mathcal{T} :$$

$$f(U_1(x_1), U_2(x_2), \dots, U_n(x_n)) \subset W(f(x_1, x_2, \dots, x_n))$$

Топология на носителе A, относительно которой каждая операция из сигнатуры Ω непрерывна, называется *топологией на алгебре* A.

Глава 2

Основная часть

2.1. Топологии, индуцированные частичным порядком

Рассмотрим подмножества множества Х следующего вида:

$$B_x = \{ y \in X | y \le x \}$$

Покажем, что набор подмножеств $\mathfrak{B} = \bigcup_{x \in X} B_x$ – является базой некоторой топологии на X. Для этого необходимо проверить свойства базы топологии. Если оба свойства верны, семейство \mathfrak{B} - порождает на X топологию.

ightharpoonup Проверим свойство (B1): пусть $B_x, B_y \in \mathfrak{B}$ и $x_0 \in B_x \cap B_y$. Нужно показать, что существует такое $B \in \mathfrak{B}$, что $x_0 \in B \subset B_x \cap B_y$. Заметим: $B_{x_0} = \{z \in X | z \leq x_0\} \subseteq B_x$ т.к. $x_0 \in B_x$. Аналогично, $B_{x_0} \subseteq B_y$. Тогда, с учетом замечания имеем: $x_0 \in B_{x_0}$ и $B_{x_0} \subseteq B_x \cap B_y$.

Выполнение свойства (B2) - очевидно. Действительно, пусть $x \in X$ - про- извольный элемент. $x \in B_x = \{y \in X | y \le x\} \in \mathfrak{B}$ по свойству (PO1). \lhd

Теперь рассмотрим подмножества вида:

$$B_x^s = \{ y \in X | y < x \}$$

Набор $\mathfrak{B}^s = \bigcup_{x \in X} B_x^s$ не удовлетворяет свойству (B2) в общем случае (например, если в X есть максимальный элемент). Доопределим набор, добавив в него множество X: $\mathfrak{B}^s = \{X\} \bigcup (\bigcup_{x \in X} B_x^s)$, тогда свойство (B2) будет выполнено и набор \mathfrak{B}^s порождает некоторую топологию на X.

Предложение 2.1. Пусть $(X, \leq), (Y, \preccurlyeq) - \partial ва частично упорядоченных множества с топологией порожденной базой вида <math>\mathfrak{B}$ и $f: X \to Y$ – отображение между ними. Отображение f – непрерывно тогда и только тогда, когда оно изотонно.

Пусть f — изотонно, и $y \in$ — произвольный элемент. Рассмотрим $V_y = \{z \in Y | z \leq y\} \in \mathfrak{B}^Y$, где \mathfrak{B}^Y — база в Y. Положим $U = f^{-1}(V_y)$ и пусть $x \in U$ — произольный элемент. В силу изотонности отображения: $\forall t \in X : t \leq x \implies f(t) \leq f(x)$. Значит $f(t) \in V_y$ и, следовательно, $t \in U$. Тогда $B_x = \{t \in X | t \leq x\} \subseteq U$ и, в силу произвольности элемента $x : f^{-1}(V_y) = U = \bigcup_{x \in U} B_x$. Так, прообраз базового множества V_y представим в виде объединения открытых, следовательно отображение f — непрерывно.

Необходимость:

Пусть теперь f – непрерывно. Рассмотрим $V_{f(x)} = \{y \in Y | y \leq f(x)\} \in \mathfrak{B}^Y$, где x – некоторый элемент из X. $U = f^{-1}(V_{f(x)})$ – открыто в силу непрерывности отображения f. По определению базы топологии в $X:\exists B(x)\in \mathfrak{B}^X:B(x)\subset U$, причем B(x) имеет вид: $B(x)=\{t\in X|t\leq x_0\}$, где $x_0\in X$ и $x\leq x_0$. Пусть x' – произвольный элемент, не превосходящий x. Тогда $x'\in B(x)$ по свойству (PO3), а значит $x'\in U=f^{-1}(V_{f(x)})$, так как $B(x)\in U$. Следовательно $f(x')\in V_{f(x)}$, откуда заключаем, что $f(x')\leq f(x)$. Таким образом, f – изотонно. \lhd

Если задать на X,Y топологии, порожденные базами вида \mathfrak{B}^s , то утверждение будет неверно, причем обе импликации неверны. Действительно, пусть $f:X\to Y$ — непрерывно. Покажем, что в общем случае оно не изотонно: рассмотрим $X=\{0,1\}$ с естественным порядком, $Y=\{a,b\},a< b,f(0)=f(1)=a$. $\{a\}$ — открыто в Y,0<1, но $f(0)\not=f(1)$. Пусть теперь $f:X\to Y$ — изотонно. Покажем, что в общем случае оно не непрерывно: рассмотрим $X=\{0,1,a\},0<1$, $Y=\{0,1,2\}$ с естественным порядком, $Y=\{0,1,2\}$ с естественным порядком, $Y=\{0,1,2\}$ с естественным т.к. $Y=\{0,1\}$ — открыто в Y, $Y=\{0,1\}$ — не является открытым в Y.

2.2. Поиск топологий на конечных алгебрах

Пусть (X, Ω) - алгебра на конечном множестве X мощности n с сигнатурой Ω . В общем случае задача поиска всех топологий, относительно которых каждая операция из Ω непрерывна, решается алгоритмически. В первом приближении алгоритм решения следующий:

- 1. Найти все топологии на множестве X
- 2. Проверить непрерывность операций из сигнатуры для каждой найденной топологии.

Шаг 2 будем выполнять простой проверкой для каждой операции f из Ω , используя определение непрерывности n-арной операции:

$$\forall x_1, x_2, \dots, x_n \in X \forall W(f(x_1, x_2, \dots, x_n)) \in \mathcal{T} \exists U_1(x_1), U_2(x_2), \dots, U_n(x_n) \in \mathcal{T} :$$

$$f(U_1(x_1), U_2(x_2), \dots, U_n(x_n)) \subset W(f(x_1, x_2, \dots, x_n))$$

Рассмотрим шаг 1 более детально: необходимо разработать алгоритм, позволяющий находить все топологии на конечном множестве. Наиболее наивным способом был бы полный перебор всех возможных наборов подмножеств булеана 2^X и проверка каждого на соответствие аксиомам топологии (O1) - (O3). Однако, данный алгоритм требует большого количества вычислений, т.к. возникает необходимость перебирать 2^{2^X} элементов.

Воспользуемся следующей идеей из статьи [10]: заметим, что если на множестве X задана топология \mathcal{T} , то задан и набор замкнутых множеств $\mathfrak{C} = \{X \setminus U | U \in \mathcal{T}\}$, удовлетворяющий аксиомам, двойственным к (O1)-(O3). Верно и обратное: если задан набор замкнутых множеств \mathfrak{C} , удовлетворяющий аксиомам, двойственным к (O1)-(O3), то задана топология $\mathcal{T} = \{X \setminus F | F \in \mathfrak{C}\}$.

Замкнутые множества можно рассматривать как идемпотенты относительно оператора замыкания Cl. Тогда, топологическое пространство можно определить следующим образом:

Множество X называют топологическим пространством, если задано отображение $Cl: 2^X \to 2^X$, удовлетворяющее условиям:

a)
$$Cl(\emptyset) = \emptyset$$

b)
$$\forall A \in 2^X : A \subset Cl(A)$$

c)
$$\forall A, B \in 2^X : Cl(A \cup B) = Cl(A) \cup Cl(B)$$

d)
$$\forall A \in 2^X : Cl(Cl(A)) = Cl(A), \text{ r.e. } Cl^2 = Cl$$

Отображение Cl называют замыканием. Множество Cl(U) называют замыканием множества U.

Таким образом, задача сводится к поиску всех возможных операторов замыкания, так как если задан оператор замыкания, то задан и набор замкнутых множеств. Заметим, что в силу тождественности свойства (а), пустое множество можно исключить из 2^X для сокращения количества вычислений и доопределить оператор по завершении алгоритма, используя свойство (а).

2.2.1. Описание алгоритма нахождения всех топологий на конечном множестве

Занумеруем все одноэлементные подмножества X степенями двойки и представим в двоичном виде. Все остальные подмножества X, кроме пустого множества, автоматически будут пронумерованы с использованием оператора побитового или \wedge , т.к. полугруппа (\mathbb{Z}_n, \wedge) , где $n = |2^X|$ изоморфна полугруппе $(2^X, \bigcup)$, а множество $\mathcal{A} = \{2^i | i = 0, 1, \dots, m-1\} \cup \{0\}$, где m = |X| является порождающим в (\mathbb{Z}_n, \wedge) . Элементы множества $\mathcal{A} \setminus \{0\}$ назовем *атомарными*, а соответствующие им множества назовем одноименно. Пустому множеству будет соответствовать $0 \in \mathbb{Z}_n$. Таким образом, если известны образы атомарных элементов при применении оператора Cl к соответствующим атомарным множествам, то с учетом свойства (а), известно и замыкание каждого подмножества

множества X, а значит задан набор замкнутых множеств. Заметим, что при этом сохраняется свойство (c).

Поставим в соответствие каждому атомарному элементу множество потенциальных образов таким образом, чтобы не нарушалось свойство (b). В итоге получим матрицу $m \times \frac{n}{2}$, в строках которой располагаются потенциальные образы атомарных элементов.

Далее будем строить оператор следующим образом: выберем образ из первой строки матрицы, вычеркнем ее. Теперь вычеркнем элементы из остальных строк матрицы так, чтобы не нарушалось свойство (d). Условия для вычеркивания элемента следующие:

1.
$$A \subset \varphi(B) \land \varphi(A) \bigcup \varphi(B) \neq \varphi(B)$$
;

2.
$$B \subset \varphi(A) \land \varphi(A) \cup \varphi(B) \neq \varphi(A)$$
,

где A - атомарное множество, соответствующее атомарному элементу, образ которого был определен предыдущим, B - атомарное множество, соответствующее текущей строке в матрице. Перебор по первой строке и вычеркивание элементов образуют рекурсию, выход из которой будет выполнен, когда матрица будет пуста.

После выхода из рекурсии, полученный набор образов атомарных элементов необходимо доопределить образами элементов \mathbb{Z}_n , порожденных множеством \mathcal{A} , используя оператор побитового или \wedge .

Получив таким образом все возможные множества образов элементов множества \mathbb{Z}_n и перейдя к соответствующим им подмножествам множества X, получим все возможные наборы замкнутых множеств и соответствующие им топологии.

2.3. Решетки топологий конечной алгебры

Множество топологий на конечном множестве X образует полную решетку относительно отношения \subseteq , т.е. произвольное семейство топологий имеет точную верхнюю и точную нижнюю грани. Точная верхняя грань - это топология, для которой объединение этого семейства является предбазой. Точная нижняя грань - это пересечение топологий из семейства. Минимумом решетки при этом является антидискретная топология $\Delta = \{\emptyset, X\}$, а максимумом - дискретная топология $\nabla = 2^X$. Известно, что набор топологий, сохраняющих некоторую фиксированную операцию * является полной подрешеткой решетки всех топологий на X.

За неимением более предпочтительного аналога для визуализации решеток на ЭВМ была решено работать с графами. Для реализации представления набора топологий в виде решетки была использована руthon-библиотека «Networkx» и пакет утилит «Graphviz». В «Graphviz» был выбран алгоритм «dot», который находит оптимальную конфигурацию вершин итогового графа, располагая вершины слоями и минимизируя количество пересечений ребер.

2.3.1. Решетки топологий на конечной цепи с операцией "ограниченного сложения"

Пусть (X, \leq) - конечная цепь из n элементов. Можно считать, что $X = \{0, 1, 2, \ldots, n-1\}$ с естественным порядком, т.к. конечная цепь из n элементов изоморфна данной.

Наделим Х следующей бинарной операцией:

$$x*y := egin{cases} x+y, \ ext{если}\ x+y \leq m \ m, \ ext{где}\ m = \max X \end{cases}$$

Приведем полученные результаты при n = 2, 3, 4, 5:

Топологии, сохраняющие операцию * для $X = \{0, 1\}$:

- 1. $\mathcal{T}_0 = \{\emptyset, \{0, 1\}\}$
- 2. $\mathcal{T}_1 = \{\emptyset, \{0\}, \{0, 1\}\}$
- 3. $\mathcal{T}_2 = \{\emptyset, \{1\}, \{0, 1\}\}$
- 4. $\mathcal{T}_3 = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$

Рис. 2.1. Решетка топологий, сохраняющих операцию * при |X|=2

Здесь и далее: зеленым цветом выделены вершины, соответствующие топологиям, сохраняющим операцию; желтым цветом выделена топология, соответствующая минимуму решетки Δ ; фиолетовым цветом выделена вершина, соответствующая максимуму решетки ∇ .

Данная решетка дистрибутивна.

Топологии, сохраняющие операцию * для $X = \{0, 1, 2\}$:

1.
$$\mathcal{T}_0 = \{\emptyset, \{0, 1, 2\}\}$$

2.
$$\mathcal{T}_1 = \{\emptyset, \{0\}, \{0, 1, 2\}\}$$

3.
$$\mathcal{T}_2 = \{\emptyset, \{1, 2\}, \{0, 1, 2\}\}$$

4.
$$\mathcal{T}_3 = \{\emptyset, \{0\}, \{1, 2\}, \{0, 1, 2\}\}\$$

5.
$$\mathcal{T}_4 = \{\emptyset, \{0\}, \{0, 1\}, \{0, 1, 2\}\}$$

6.
$$\mathcal{T}_5 = \{\emptyset, \{2\}, \{1, 2\}, \{0, 1, 2\}\}$$

7.
$$\mathcal{T}_6 = \{\emptyset, \{2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$$

8.
$$\mathcal{T}_7 = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 1, 2\}\}$$

9.
$$\mathcal{T}_8 = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\}$$

10.
$$\mathcal{T}_9 = \{\emptyset, \{0\}, \{2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$$

11.
$$\mathcal{T}_{10} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}\$$

Рис. 2.2. Решетка топологий, сохраняющих операцию * при |X|=3

Заметим, что решетка не является модулярной и, следовательно, дистрибутивной, т.к. содержит пентагон $\{1, 3, 4, 7, 8\}$.

Топологии, сохраняющие операцию * для $X = \{0, 1, 2, 3\}$:

1.
$$\mathcal{T}_0 = \{\emptyset, \{0, 1, 2, 3\}\}$$

2.
$$\mathcal{T}_1 = \{\emptyset, \{0\}, \{0, 1, 2, 3\}\}$$

3.
$$\mathcal{T}_2 = \{\emptyset, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

4.
$$\mathcal{T}_3 = \{\emptyset, \{0\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

5.
$$\mathcal{T}_4 = \{\emptyset, \{2,3\}, \{1,2,3\}, \{0,1,2,3\}\}$$

6.
$$\mathcal{T}_5 = \{\emptyset, \{0\}, \{0, 1\}, \{0, 1, 2, 3\}\}$$

7.
$$\mathcal{T}_6 = \{\emptyset, \{3\}, \{2,3\}, \{1,2,3\}, \{0,1,2,3\}\}$$

8.
$$\mathcal{T}_7 = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 1, 2, 3\}\}$$

9.
$$\mathcal{T}_8 = \{\emptyset, \{0\}, \{0, 1\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

10.
$$\mathcal{T}_9 = \{\emptyset, \{0, 2, 3\}, \{2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}\$$

11.
$$\mathcal{T}_{10} = \{\emptyset, \{3\}, \{0, 2, 3\}, \{2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}\$$

12.
$$\mathcal{T}_{11} = \{\emptyset, \{0\}, \{0, 2, 3\}, \{2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}\$$

13.
$$\mathcal{T}_{12} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}\$$

14.
$$\mathcal{T}_{13} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}\$$

15.
$$\mathcal{T}_{14} = \{\emptyset, \{3\}, \{1,3\}, \{0,2,3\}, \{2,3\}, \{1,2,3\}, \{0,1,2,3\}\}$$

16.
$$\mathcal{T}_{15} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}\$$

17.
$$\mathcal{T}_{16} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

18.
$$\mathcal{T}_{17} = \{\emptyset, \{3\}, \{0, 3\}, \{0, 2, 3\}, \{2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}\$$

19.
$$\mathcal{T}_{18} = \{\emptyset, \{0\}, \{3\}, \{0, 3\}, \{0, 2, 3\}, \{2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

20.
$$\mathcal{T}_{19} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

21.
$$\mathcal{T}_{20} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 2, 3\}, \{2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

$$22. \ \mathcal{T}_{21} = \{\emptyset, \{3\}, \{0,3\}, \{1,3\}, \{0,2,3\}, \{2,3\}, \{0,1,3\}, \{1,2,3\}, \{0,1,2,3\}\}$$

23.
$$\mathcal{T}_{22} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

24.
$$\mathcal{T}_{23} = \{\emptyset, \{0\}, \{3\}, \{0, 3\}, \{1, 3\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

25.
$$\mathcal{T}_{24} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

26.
$$\mathcal{T}_{25} = \{\emptyset, \{0\}, \{1\}, \{3\}, \{0, 3\}, \{0, 1\}, \{1, 3\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

27.
$$\mathcal{T}_{26} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

28.
$$\mathcal{T}_{27} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{3\}, \{0, 1\}, \{0, 3\}, \{0, 2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

Рис. 2.3. Решетка топологий, сохраняющих операцию * при |X|=4

Решетка не является модулярной и, следовательно, дистрибутивной.

Топологии, сохраняющие операцию * для $X = \{0, 1, 2, 3, 4\}$:

Список топологий в приложении А в виду громоздкости.

Решетка не является модулярной и, следовательно, дистрибутивной.

Рис. 2.4. Решетка топологий, сохраняющих операцию * при |X|=5

2.3.2. Решетки топологий на конечной цепи с операцей тах

Как отмечалось во введении, в статье [2, Теорема 2.], была доказана теорема, дающая полное описание решетки топологий конечной цепи, сохраняющих операции $\wedge = \min u \vee = \max$. Показано, что эта решетка изоморфна булеану из 2^{2n-2} элементов. Рассмотрим решетку топологий конечной цепи, сохраняющих только операцию $\vee = \max$.

При n=2 все топологии на X сохраняют обе операции min, max. Решетка топологий, соответственно, такая же как на рисунке 2.1.

Топологии, сохраняющие операцию $\max \, \mathbf{для} \, X = \{0, 1, 2\} :$

- 1. $\mathcal{T}_0 = \{\emptyset, \{0, 1, 2\}\}\$
- 2. $\mathcal{T}_1 = \{\emptyset, \{0, 1\}, \{0, 1, 2\}\}$
- 3. $\mathcal{T}_2 = \{\emptyset, \{0\}, \{0, 1, 2\}\}$

4.
$$\mathcal{T}_3 = \{\emptyset, \{1, 2\}, \{0, 1, 2\}\}$$

5.
$$\mathcal{T}_4 = \{\emptyset, \{2\}, \{0, 1, 2\}\}$$

6.
$$\mathcal{T}_5 = \{\emptyset, \{1\}, \{0, 1\}, \{0, 1, 2\}\}$$

7.
$$\mathcal{T}_6 = \{\emptyset, \{2\}, \{1, 2\}, \{0, 1, 2\}\}\$$

8.
$$\mathcal{T}_7 = \{\emptyset, \{2\}, \{0, 1\}, \{0, 1, 2\}\}\$$

9.
$$\mathcal{T}_8 = \{\emptyset, \{0\}, \{1, 2\}, \{0, 1, 2\}\}\$$

10.
$$\mathcal{T}_9 = \{\emptyset, \{0\}, \{0, 1\}, \{0, 1, 2\}\}$$

11.
$$\mathcal{T}_{10} = \{\emptyset, \{2\}, \{0, 2\}, \{0, 1, 2\}\}\$$

12.
$$\mathcal{T}_{11} = \{\emptyset, \{1\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\}\$$

13.
$$\mathcal{T}_{12} = \{\emptyset, \{0\}, \{2\}, \{0, 2\}, \{0, 1, 2\}\}$$

14.
$$\mathcal{T}_{13} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 1, 2\}\}$$

15.
$$\mathcal{T}_{14} = \{\emptyset, \{2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$$

16.
$$\mathcal{T}_{15} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\}$$

17.
$$\mathcal{T}_{16} = \{\emptyset, \{1\}, \{2\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\}\$$

18.
$$\mathcal{T}_{17} = \{\emptyset, \{0\}, \{2\}, \{0, 1\}, \{0, 2\}, \{0, 1, 2\}\}$$

19.
$$\mathcal{T}_{18} = \{\emptyset, \{0\}, \{2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$$

20.
$$\mathcal{T}_{19} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$$

Рис. 2.5. Решетка топологий, сохраняющих операцию max при |X|=3

Здесь и далее: зеленым цветом выделены вершины, соответствующие топологиям, сохраняющим как операцию max, так и операцию min; красным цветом выделены вершины, соответствующие топологиям, сохраняющим только операцию max; желтым цветом выделена топология, соответствующая минимуму решетки Δ ; фиолетовым цветом выделена вершина, соответствующая максимуму решетки ∇ .

Решетка не является модулярной и, следовательно, дистрибутивной.

Топологии, сохраняющие операцию для $X = \{0, 1, 2, 3\}$:

Список топологий в приложении Б в виду громоздкости.

Рис. 2.6. Решетка топологий, сохраняющих операцию max при |X|=4

Решетка не является модулярной и, следовательно, дистрибутивной.

2.3.3. Решетки топологий на конечной цепи с n-арной операцией

Пусть, как и ранее,

 $X = \{0, 1, 2, \dots, n-1\}$ с естественным порядком. Рассмотрим следующую операцию:

$$f(x, y, z, t) = \begin{cases} [xy]_n + [zt]_n, [xy]_n + [zt]_n < m; \\ m, [xy]_n + [zt]_n \ge m, \end{cases}$$

где $m = \max(X)$, $[x]_n$ – остаток от деления x на n.

При n=2 все топологии на X сохраняют данную операцию, решетка топологий, соответственно, такая же как на рисунке 2.1.

Топологии, сохраняющие операцию для $X = \{0, 1, 2\}$:

1.
$$\mathcal{T}_0 = \{\emptyset, \{0, 1, 2\}\}$$

2.
$$\mathcal{T}_1 = \{\emptyset, \{0\}, \{0, 1, 2\}\}$$

3.
$$\mathcal{T}_2 = \{\emptyset, \{1, 2\}, \{0, 1, 2\}\}$$

4.
$$\mathcal{T}_3 = \{\emptyset, \{0\}, \{1, 2\}, \{0, 1, 2\}\}$$

5.
$$\mathcal{T}_4 = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$$

Рис. 2.7. Решетка топологий, сохраняющих операцию f при |X|=3

Данная решетка дистрибутивна.

При n=4 операцию сохраняют только дискретная и антидискретная топологии. При n=5 решетка топологий, сохраняющих операцию f, изоморфна решетке на рисунке 2.7.

Топологии, сохраняющие операцию для $X = \{0, 1, 2, 3, 4\}$:

1.
$$\mathcal{T}_0 = \{\emptyset, \{0, 1, 2, 3, 4\}\}$$

2.
$$\mathcal{T}_1 = \{\emptyset, \{0\}, \{0, 1, 2, 3, 4\}\}$$

3.
$$\mathcal{T}_2 = \{\emptyset, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$$

4.
$$\mathcal{T}_3 = \{\emptyset, \{0\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$$

5.
$$\mathcal{T}_4 = \{\emptyset, \{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{0, 3\}, \{0, 2\}, \{0, 4\}, \{0, 1\}, \{1, 4\}, \{1, 3\}, \{1, 2\}, \{2, 3\}, \{2, 4\}, \{0, 2, 4\}, \{0, 2, 3\}, \{0, 3, 4\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 3, 4\}, \{1, 2, 4\}, \{0, 2, 3, 4\}, \{0, 1, 3, 4\}, \{0, 1, 2, 3\}, \{0, 1, 2, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$$

Пусть (X,Ω) — конечная алгебра. Исходя из симметричности решеток, рассмотренных в данном разделе, предположим, что отображение φ , заданное формулой $\varphi(\mathcal{T}) = \{X \setminus U | U \in \mathcal{T}\}$, является автоморфизмом решетки топологий на X, сохраняющих операции из сигнатуры.

Предложение 2.2. Пусть X - конечная алгебра c сигнатурой Ω и $\mathfrak L$ - решетка топологий на X, относительно которых все операции из сигнатуры непрерывны. Отображение φ , заданное формулой: $\varphi(\mathcal T) = \{X \setminus U | U \in \mathcal T\}$, где $\mathcal T \in \mathfrak L$, является автоморфизмом решетки $\mathfrak L$.

ightharpoonup Пусть $\psi - n$ -арная операция из Ω . Покажем, что образ $\varphi(\mathcal{T})$ топологии \mathcal{T} , сохраняющей операцию ψ при отображении φ является топологией, сохраняющей операцию ψ , т.е. принадлежит решетке \mathfrak{L} .

Очевидно, что $\varphi(\mathcal{T})$ удовлетворяет аксиомам топологии (O1)-(O3). Чтобы доказать, что операция ψ – непрерывна относительно топологии $\varphi(\mathcal{T})$, вопспользуемся другим определением непрерывности операции:

n-арная операция ψ непрерывна, если непрерывно отображение $f: X^n \to X$ такое, что $(x_1, x_2, \dots, x_n) \mapsto \psi(x_1, x_2, \dots, x_n)$.

Пусть $X \setminus U$ — произвольное открытое множество в $\varphi(\mathcal{T})$. В силу непрерывности отображения f, прообраз $f^{-1}(X \setminus U)$ — замкнут в X^n с тихоновской топологией, порожденной (X,\mathcal{T}) . Так как всякое открытое множество U' в X^n представимо в виде $U' = \bigcup_{s \in S} \prod_{i=1}^n U_{i_s}$, где $U_{i_s} \in \mathcal{T}$, то $f^{-1}(X \setminus U) = X^n \setminus (\bigcup_{s \in S} \prod_{i=1}^n U_{i_s}) = \bigcap_{s \in S} (X^n \setminus (\prod_{i=1}^n U_{i_s})) = \bigcap_{s \in S} ((\prod_{i=1}^n X) \times (X \setminus U_{i_s}) \times (\prod_{j>i} X))$, причем семейство $f^{-1}(X)$

S конечно в силу конечности топологии \mathcal{T} . Так как $\forall s \in S \forall i = 1, 2, ..., n$: $(X \setminus U_{i_s}), X \in \varphi(\mathcal{T})$, то $f^{-1}(X \setminus U)$ — открыто в X^n с тихоновской топологией, порожденной $(X, \varphi(\mathcal{T}))$, а значит операция ψ — непрерывна в $(X, \varphi(\mathcal{T}))$.

Покажем, что φ — гомоморфизм решеток, т.е. что $\varphi(\mathcal{T}_1 \vee \mathcal{T}_2) = \varphi(\mathcal{T}_1) \vee \varphi(\mathcal{T}_2)$ и $\varphi(\mathcal{T}_1 \wedge \mathcal{T}_2) = \varphi(\mathcal{T}_1) \wedge \varphi(\mathcal{T}_2)$.

Действительно, $\varphi(\mathcal{T}_1) \wedge \varphi(\mathcal{T}_2) = \{X \setminus U | U \in \mathcal{T}_1\} \wedge \{X \setminus U | U \in \mathcal{T}_2\} = \{X \setminus U | U \in \mathcal{T}_1\} \cap \{X \setminus U | U \in \mathcal{T}_2\} = \{X \setminus U | U \in \mathcal{T}_1 \cap \mathcal{T}_2\} = \{X \setminus U | U \in \mathcal{T}_1 \wedge \mathcal{T}_2\} = \varphi(\mathcal{T}_1 \wedge \mathcal{T}_2).$

Рассмотрим $\mathcal{T}_1 \vee \mathcal{T}_2$. По определению операции \vee в решетке топологий, $\mathcal{T}_1 \vee \mathcal{T}_2 = \{\bigcup_{i=1}^k \bigcap_{j=1}^m U_{i_j} | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \}$ т.к. объединение топологий является предбазой топологии $\mathcal{T} = \mathcal{T}_1 \vee \mathcal{T}_2$. Заметим, что $D = \{\bigcap_{i=1}^s \bigcup_{j=1}^t U_{i_j} | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} \subset \{\bigcup_{i=1}^k \bigcap_{j=1}^m U_{i_j} | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \mathcal{T}$. Это следует из того, что $\bigcup \mathcal{U}$, где $\mathcal{U} \subset \mathcal{T}_1 \cup \mathcal{T}_2$ открыто в (X,\mathcal{T}) и, в силу конечности топологий $\mathcal{T}_1,\mathcal{T}_2 - \bigcap_{s \in S} (\bigcup \mathcal{U}_s)$ тоже открыто в топологии \mathcal{T} , а значит элементы множества D содержатся в \mathcal{T} . С учетом этого замечания и двойственного к нему для топологии $\mathcal{T}' = \varphi(\mathcal{T}_1 \vee \mathcal{T}_2)$: $\varphi(\mathcal{T}_1 \vee \mathcal{T}_2) = \varphi(\{\bigcap_{i=1}^s \bigcup_{j=1}^s U_{i_j} | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} \cup \{\bigcup_{i=1}^s \bigcap_{j=1}^s U_{i_j} | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} \cup \{\bigcup_{i=1}^s \bigcap_{j=1}^s (X \setminus U_{i_j}) | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \{\bigcup_{i=1}^s \bigcap_{j=1}^s (X \setminus U_{i_j}) | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \{\bigcup_{i=1}^s \bigcap_{j=1}^s (X \setminus U_{i_j}) | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \{\bigcup_{i=1}^s \bigcap_{j=1}^s (X \setminus U_{i_j}) | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \{\bigcup_{i=1}^s \bigcap_{j=1}^s (X \setminus U_{i_j}) | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \{\bigcup_{i=1}^s \bigcap_{j=1}^s (X \setminus U_{i_j}) | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \{\bigcup_{i=1}^s \bigcap_{j=1}^s (X \setminus U_{i_j}) | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \{\bigcup_{i=1}^s \bigcap_{j=1}^s (X \setminus U_{i_j}) | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \{\bigcup_{i=1}^s \bigcap_{j=1}^s (X \setminus U_{i_j}) | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \{\bigcup_{i=1}^s \bigcap_{j=1}^s (X \setminus U_{i_j}) | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \{\bigcup_{i=1}^s \bigcap_{j=1}^s (X \setminus U_{i_j}) | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \{\bigcup_{i=1}^s \bigcap_{j=1}^s (X \setminus U_{i_j}) | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \{\bigcup_{i=1}^s \bigcap_{j=1}^s (X \setminus U_{i_j}) | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \{\bigcup_{i=1}^s \bigcap_{j=1}^s (X \setminus U_{i_j}) | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \{\bigcup_{i=1}^s \bigcap_{j=1}^s (X \setminus U_{i_j}) | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \{\bigcup_{i=1}^s \bigcap_{j=1}^s (X \setminus U_{i_j}) | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \{\bigcup_{i=1}^s \bigcap_{i=1}^s (X \setminus U_{i_j}) | U_{i_j} \in \mathcal{T}_1 \cup \mathcal{T}_2 \} = \{\bigcup_{i=1}^s \bigcap_{i=1}^s (X \setminus U_{i_j}) | U_$

Биективность φ является очевидным следствием того что φ - инволютивный гомоморфизм. \lhd

Из этого непосредственно следует, что φ является автоморфизмом решетки всех топологий на конечном множестве.

Заключение

В данной работе мы ограничились изучением топологических структур на конечных универсальных алгебрах и взаимосвязи топологической и порядковой структуры на множестве.

В первой части работы бал рассмотрен способ введения топологии на частично упорядоченном множестве с нестрогим порядком и похожий способ для строгого порядка. В первом случае оказалось, что отображение между пространствами с топологиями, индуцированными нестрогими порядками непрерывно тогда и только тогда, когда оно изотонно. В случае со строгими порядками данный результат неверен, причем как непрерывность отображения не следует из изотонности, так и изотонность отображения не следует из его непрерывности.

Во второй части работы мы исследовали взаимосвязь операций и топологий на множестве. Была реализована программа на языке python, позволяющая:

- 1. Находить все топологии на конечном множестве;
- 2. Проводить проверку операций на непрерывность;
- 3. Визуализировать решетки топологий;
- 4. Проводить проверку решетки на модулярность;
- 5. Проводить проверку решетки на дистрибутивность.

С помощью данной программы были построены решетки топологий на конечной цепи X из n элементов для: бинарной операции "ограниченного сложения" (n=2,3,4,5), бинарной операции max (n=2,3,4) и операции

$$f(x, y, z, t) = \begin{cases} [xy]_n + [zt]_n, [xy]_n + [zt]_n < m; \\ m, [xy]_n + [zt]_n \ge m, \end{cases}$$

где $m = \max(X), [x]_n$ – остаток от деления x на n. (n = 2, 3, 4, 5)

Для каждой из полученных решеток было выяснено, является ли она дистрибутивной или модулярной.

Из соображений симметрии было выдвинуто и доказано предположение о том, что отображение φ , заданное формулой $\varphi(\mathcal{T})=\{X\setminus U|U\in\mathcal{T}\}$ является автоморфизмом решетки топологий на конечной алгебре (X,Ω) , сохраняющих операции из сигнатуры.

Список литературы

- 1. *Карташова А. В.* О решетках конгруэнции и топологий унарных алгебр // Чебышевский сборник. 2011. Т. 12, 2 (38). С. 27—33.
- 2. *Веселова А. А., Кожухов И. Б.* Решётки топологий и квазипорядков конечной цепи // Чебышевский сборник. 2023. Т. 24. С. 12—21.
- 3. Энгелькинг Р. Общая топология. 1986.
- 4. *Бурбаки Н*. Общая топология (основные структуры): пер. сфранц. СН Крачковского, под ред. ДА Райкова. 1968.
- Клиффорд А., Престон Г. Алгебраическая теория полугрупп: Том 1. М.:Мир, 1972.
- 6. *Kilp M.*, *Knauer U.*, *Mikhalev A. V.* Monoids, Acts and Categories: With Applications to Wreath Products and Graphs. A Handbook for Students and Researchers. T. 29. Walter de Gruyter, 2011.
- 7. *Клиффорд А.*, *Престон Г.* Алгебраическая теория полугрупп: Том 2. М.:Мир, 1972.
- 8. *Кожухов И. Б.*, *Михалёв А. В.* Полигоны над полугруппами // Фундаментальная и прикладная математика. 2020. Т. 23, № 3. С. 141—199.
- 9. Гретцер Г. Общая теория решеток. 1982.
- Шилин И., Китюков В. Программный способ вычисления топологий и исследования их свойств // Прикладная информатика. 2013. 1 (43). С. 127—136.

Приложение А

Топологии, сохраняющие операцию

"ограниченного сложения" для $X = \{0, 1, 2, 3, 4\}$

1.
$$\mathcal{T}_0 = \{\emptyset, \{0, 1, 2, 3, 4\}\}\$$

2.
$$\mathcal{T}_1 = \{\emptyset, \{0\}, \{0, 1, 2, 3, 4\}\}$$

3.
$$\mathcal{T}_2 = \{\emptyset, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$$

4.
$$\mathcal{T}_3 = \{\emptyset, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$$

5.
$$\mathcal{T}_4 = \{\emptyset, \{0\}, \{0, 1\}, \{0, 1, 2, 3, 4\}\}$$

6.
$$\mathcal{T}_5 = \{\emptyset, \{0\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$$

7.
$$\mathcal{T}_6 = \{\emptyset, \{3,4\}, \{2,3,4\}, \{1,2,3,4\}, \{0,1,2,3,4\}\}$$

8.
$$\mathcal{T}_7 = \{\emptyset, \{0\}, \{0, 1\}, \{0, 1, 2\}, \{0, 1, 2, 3, 4\}\}$$

9.
$$\mathcal{T}_8 = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 1, 2, 3, 4\}\}$$

10.
$$\mathcal{T}_9 = \{\emptyset, \{0, 2, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$$

11.
$$\mathcal{T}_{10} = \{\emptyset, \{4\}, \{3,4\}, \{2,3,4\}, \{1,2,3,4\}, \{0,1,2,3,4\}\}$$

12.
$$\mathcal{T}_{11} = \{\emptyset, \{0\}, \{0, 2, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$$

13.
$$\mathcal{T}_{12} = \{\emptyset, \{0\}, \{0, 1\}, \{0, 1, 2\}, \{0, 1, 2, 3\}, \{0, 1, 2, 3, 4\}\}$$

14.
$$\mathcal{T}_{13} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 1, 2\}, \{0, 1, 2, 3, 4\}\}$$

15.
$$\mathcal{T}_{14} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$$

16.
$$\mathcal{T}_{15} = \{\emptyset, \{3,4\}, \{0,2,3,4\}, \{2,3,4\}, \{1,2,3,4\}, \{0,1,2,3,4\}\}$$

17.
$$\mathcal{T}_{16} = \{\emptyset, \{3,4\}, \{1,3,4\}, \{0,2,3,4\}, \{2,3,4\}, \{1,2,3,4\}, \{0,1,2,3,4\}\}$$

18.
$$\mathcal{T}_{17} = \{\emptyset, \{4\}, \{3,4\}, \{0,2,3,4\}, \{2,3,4\}, \{1,2,3,4\}, \{0,1,2,3,4\}\}$$

19.
$$\mathcal{T}_{18} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3, 4\}\}\$$

20.
$$\mathcal{T}_{19} = \{\emptyset, \{0, 3, 4\}, \{3, 4\}, \{0, 2, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$$

21.
$$\mathcal{T}_{20} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 1, 2\}, \{0, 1, 2, 3\}, \{0, 1, 2, 3, 4\}\}\$$

22.
$$\mathcal{T}_{21} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3, 4\}\}\$$

23.
$$\mathcal{T}_{22} = \{\emptyset, \{0\}, \{0, 3, 4\}, \{3, 4\}, \{0, 2, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$$

24.
$$\mathcal{T}_{23} = \{\emptyset, \{4\}, \{0, 3, 4\}, \{3, 4\}, \{0, 2, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$$

25.
$$\mathcal{T}_{24} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 2, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$$

26.
$$\mathcal{T}_{25} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$$

27.
$$\mathcal{T}_{26} = \{\emptyset, \{4\}, \{3,4\}, \{1,3,4\}, \{0,2,3,4\}, \{2,3,4\}, \{1,2,3,4\}, \{0,1,2,3,4\}\}$$

28.
$$\mathcal{T}_{27} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}, \{0, 1, 2, 3, 4\}\}$$

29.
$$\mathcal{T}_{28} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}, \{0, 1, 2, 3, 4\}\}$$

30.
$$\mathcal{T}_{29} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 2\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 2, 3\}, \{0, 1, 2, 3, 4\}\}$$

31.
$$\mathcal{T}_{30} = \{\emptyset, \{4\}, \{2,4\}, \{3,4\}, \{1,3,4\}, \{0,2,3,4\}, \{2,3,4\}, \{1,2,3,4\}, \{0,1,2,3,4\}\}$$

32.
$$\mathcal{T}_{31} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3, 4\}\}$$

33.
$$\mathcal{T}_{32} = \{\emptyset, \{0, 3, 4\}, \{3, 4\}, \{1, 3, 4\}, \{0, 2, 3, 4\}, \{0, 1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$$

- 34. $\mathcal{T}_{33} = \{\emptyset, \{4\}, \{0, 4\}, \{0, 3, 4\}, \{3, 4\}, \{0, 2, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 35. $\mathcal{T}_{34} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}, \{0, 1, 2, 3, 4\}\}$
- 36. $\mathcal{T}_{35} = \{\emptyset, \{4\}, \{0, 3, 4\}, \{3, 4\}, \{1, 3, 4\}, \{0, 2, 3, 4\}, \{0, 1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 37. $\mathcal{T}_{36} = \{\emptyset, \{0\}, \{4\}, \{0, 4\}, \{0, 3, 4\}, \{3, 4\}, \{0, 2, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 38. $\mathcal{T}_{37} = \{\emptyset, \{4\}, \{2, 4\}, \{0, 2, 4\}, \{3, 4\}, \{1, 3, 4\}, \{0, 2, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 39. $\mathcal{T}_{38} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 40. $\mathcal{T}_{39} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 2\}, \{1, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 2, 3\}, \{0, 1, 2, 3, 4\}\}$
- 41. $\mathcal{T}_{40} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}, \{0, 1, 2, 3, 4\}\}$
- 42. $\mathcal{T}_{41} = \{\emptyset, \{0\}, \{0, 3, 4\}, \{3, 4\}, \{1, 3, 4\}, \{0, 2, 3, 4\}, \{0, 1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 43. $\mathcal{T}_{42} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 44. $\mathcal{T}_{43} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 2, 3\}, \{0, 1, 2, 3, 4\}\}$
- 45. $\mathcal{T}_{44} = \{\emptyset, \{4\}, \{1,4\}, \{0,3,4\}, \{3,4\}, \{1,3,4\}, \{0,2,3,4\}, \{0,1,3,4\}, \{2,3,4\}, \{1,2,3,4\}, \{0,1,2,3,4\}\}$

- 46. $\mathcal{T}_{45} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 2, 3\}, \{0, 1, 2\}, \{0, 1, 2, 3\}, \{0, 1, 2, 3, 4\}\}$
- 47. $\mathcal{T}_{46} = \{\emptyset, \{4\}, \{2, 4\}, \{0, 3, 4\}, \{3, 4\}, \{1, 3, 4\}, \{0, 2, 3, 4\}, \{0, 1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 48. $\mathcal{T}_{47} = \{\emptyset, \{4\}, \{0, 4\}, \{0, 3, 4\}, \{3, 4\}, \{1, 3, 4\}, \{0, 2, 3, 4\}, \{0, 1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 49. $\mathcal{T}_{48} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}, \{0, 1, 2, 3, 4\}\}$
- 50. $\mathcal{T}_{49} = \{\emptyset, \{0\}, \{4\}, \{0, 4\}, \{0, 3, 4\}, \{3, 4\}, \{1, 3, 4\}, \{0, 2, 3, 4\}, \{0, 1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 51. $\mathcal{T}_{50} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 52. $\mathcal{T}_{51} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 3, 4\}, \{3, 4\}, \{1, 3, 4\}, \{0, 2, 3, 4\}, \{0, 1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 53. $\mathcal{T}_{52} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 2\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}, \{0, 2, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 54. $\mathcal{T}_{53} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{2, 3\}, \{0, 2, 3\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}, \{0, 1, 2, 3, 4\}\}$
- 55. $\mathcal{T}_{54} = \{\emptyset, \{4\}, \{1,4\}, \{2,4\}, \{0,3,4\}, \{3,4\}, \{1,2,4\}, \{1,3,4\}, \{0,2,3,4\}, \{0,1,3,4\}, \{2,3,4\}, \{1,2,3,4\}, \{0,1,2,3,4\}\}$
- 56. $\mathcal{T}_{55} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 3\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 2, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 2, 3\}, \{0, 1, 2, 3, 4\}\}$
- 57. $\mathcal{T}_{56} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{1, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}, \{0, 1, 2, 3, 4\}\}$

- 58. $\mathcal{T}_{57} = \{\emptyset, \{4\}, \{0, 4\}, \{1, 4\}, \{0, 3, 4\}, \{0, 1, 4\}, \{3, 4\}, \{1, 3, 4\}, \{0, 2, 3, 4\}, \{0, 1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 59. $\mathcal{T}_{58} = \{\emptyset, \{4\}, \{0, 4\}, \{2, 4\}, \{0, 3, 4\}, \{0, 2, 4\}, \{3, 4\}, \{1, 3, 4\}, \{0, 2, 3, 4\}, \{0, 1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 60. $\mathcal{T}_{59} = \{\emptyset, \{0\}, \{4\}, \{0, 4\}, \{2, 4\}, \{0, 3, 4\}, \{0, 2, 4\}, \{3, 4\}, \{1, 3, 4\}, \{0, 2, 3, 4\}, \{0, 1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 61. $\mathcal{T}_{60} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{2, 3\}, \{0, 2, 3\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 62. $\mathcal{T}_{61} = \{\emptyset, \{0\}, \{4\}, \{0, 4\}, \{1, 4\}, \{0, 3, 4\}, \{0, 1, 4\}, \{3, 4\}, \{1, 3, 4\}, \{0, 2, 3, 4\}, \{0, 1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 63. $\mathcal{T}_{62} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{1, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 64. $\mathcal{T}_{63} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 3, 4\}, \{0, 1, 2\}, \{3, 4\}, \{1, 3, 4\}, \{0, 1, 3, 4\}, \{0, 2, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 65. $\mathcal{T}_{64} = \{\emptyset, \{0\}, \{1\}, \{4\}, \{0, 1\}, \{0, 4\}, \{1, 4\}, \{0, 3, 4\}, \{0, 1, 4\}, \{3, 4\}, \{1, 3, 4\}, \{0, 1, 3, 4\}, \{0, 2, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 66. $\mathcal{T}_{65} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{2, 3\}, \{0, 1, 2\}, \{0, 2, 3\}, \{1, 2, 3\}, \{0, 2, 3, 4\}, \{0, 1, 2, 3\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 67. $\mathcal{T}_{66} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{3\}, \{0, 1\}, \{0, 3\}, \{0, 2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}, \{0, 1, 2, 3, 4\}\}$

- 68. $\mathcal{T}_{67} = \{\emptyset, \{4\}, \{0, 4\}, \{1, 4\}, \{2, 4\}, \{0, 3, 4\}, \{0, 2, 4\}, \{0, 1, 4\}, \{3, 4\}, \{1, 2, 4\}, \{1, 3, 4\}, \{0, 1, 3, 4\}, \{0, 2, 3, 4\}, \{0, 1, 2, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 69. $\mathcal{T}_{68} = \{\emptyset, \{0\}, \{4\}, \{0, 4\}, \{1, 4\}, \{2, 4\}, \{0, 3, 4\}, \{0, 2, 4\}, \{0, 1, 4\}, \{3, 4\}, \{1, 2, 4\}, \{1, 3, 4\}, \{0, 1, 3, 4\}, \{0, 2, 3, 4\}, \{0, 1, 2, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 70. $\mathcal{T}_{69} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{3\}, \{0, 1\}, \{0, 3\}, \{0, 2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 71. $\mathcal{T}_{70} = \{\emptyset, \{0\}, \{1\}, \{4\}, \{0, 1\}, \{0, 4\}, \{1, 4\}, \{2, 4\}, \{0, 3, 4\}, \{0, 2, 4\}, \{0, 1, 4\}, \{3, 4\}, \{1, 2, 4\}, \{1, 3, 4\}, \{0, 1, 3, 4\}, \{0, 2, 3, 4\}, \{0, 1, 2, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 72. $\mathcal{T}_{71} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{3\}, \{0, 1\}, \{0, 3\}, \{0, 2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 2, 3\}, \{1, 2, 3\}, \{0, 2, 3, 4\}, \{0, 1, 2, 3\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 73. $\mathcal{T}_{72} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{4\}, \{0, 1\}, \{0, 2\}, \{0, 4\}, \{1, 4\}, \{1, 2\}, \{2, 4\}, \{0, 3, 4\}, \{0, 1, 2\}, \{0, 2, 4\}, \{0, 1, 4\}, \{3, 4\}, \{1, 2, 4\}, \{1, 3, 4\}, \{0, 1, 3, 4\}, \{0, 2, 3, 4\}, \{0, 1, 2, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 74. $\mathcal{T}_{73} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{3\}, \{0, 1\}, \{0, 3\}, \{0, 2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{0, 3, 4\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 2, 3\}, \{3, 4\}, \{1, 2, 3\}, \{1, 3, 4\}, \{0, 1, 2, 3, 4\}, \{0, 1, 2, 3\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$
- 75. $\mathcal{T}_{74} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{0, 3\}, \{0, 2\}, \{0, 4\}, \{0, 1\}, \{1, 4\}, \{1, 3\}, \{1, 2\}, \{2, 3\}, \{2, 4\}, \{0, 2, 4\}, \{0, 2, 3\}, \{0, 3, 4\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 3, 4\}, \{1, 2, 4\}, \{0, 2, 3, 4\}, \{0, 1, 3, 4\}, \{0, 1, 2, 3\}, \{0, 1, 2, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}, \{0, 1, 2, 3, 4\}\}$

Приложение Б

Топологии, сохраняющие операцию тах для

$$X = \{0, 1, 2, 3\}$$

1.
$$\mathcal{T}_0 = \{\emptyset, \{0, 1, 2, 3\}\}$$

2.
$$\mathcal{T}_1 = \{\emptyset, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

3.
$$\mathcal{T}_2 = \{\emptyset, \{0, 1\}, \{0, 1, 2, 3\}\}$$

4.
$$\mathcal{T}_3 = \{\emptyset, \{2,3\}, \{0,1,2,3\}\}$$

5.
$$\mathcal{T}_4 = \{\emptyset, \{0\}, \{0, 1, 2, 3\}\}$$

6.
$$\mathcal{T}_5 = \{\emptyset, \{3\}, \{0, 1, 2, 3\}\}\$$

7.
$$\mathcal{T}_6 = \{\emptyset, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

8.
$$\mathcal{T}_7 = \{\emptyset, \{1\}, \{0, 1\}, \{0, 1, 2, 3\}\}$$

9.
$$\mathcal{T}_8 = \{\emptyset, \{3\}, \{0, 3\}, \{0, 1, 2, 3\}\}$$

10.
$$\mathcal{T}_9 = \{\emptyset, \{0, 1\}, \{2, 3\}, \{0, 1, 2, 3\}\}$$

11.
$$\mathcal{T}_{10} = \{\emptyset, \{3\}, \{2, 3\}, \{0, 1, 2, 3\}\}$$

12.
$$\mathcal{T}_{11} = \{\emptyset, \{3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

13.
$$\mathcal{T}_{12} = \{\emptyset, \{0\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

14.
$$\mathcal{T}_{13} = \{\emptyset, \{3\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

15.
$$\mathcal{T}_{14} = \{\emptyset, \{3\}, \{0, 1, 3\}, \{0, 1, 2, 3\}\}$$

16.
$$\mathcal{T}_{15} = \{\emptyset, \{2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

17.
$$\mathcal{T}_{16} = \{\emptyset, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2, 3\}\}$$

18.
$$\mathcal{T}_{17} = \{\emptyset, \{1, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

19.
$$\mathcal{T}_{18} = \{\emptyset, \{0\}, \{0, 1\}, \{0, 1, 2, 3\}\}$$

20.
$$\mathcal{T}_{19} = \{\emptyset, \{0, 1\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

21.
$$\mathcal{T}_{20} = \{\emptyset, \{0\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}\$$

$$22. \ \mathcal{T}_{21} = \{\emptyset, \{2,3\}, \{1,2,3\}, \{0,1,2,3\}\}$$

23.
$$\mathcal{T}_{22} = \{\emptyset, \{3\}, \{2,3\}, \{1,2,3\}, \{0,1,2,3\}\}$$

24.
$$\mathcal{T}_{23} = \{\emptyset, \{3\}, \{0, 3\}, \{0, 1, 3\}, \{0, 1, 2, 3\}\}$$

25.
$$\mathcal{T}_{24} = \{\emptyset, \{3\}, \{0, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

26.
$$\mathcal{T}_{25} = \{\emptyset, \{0, 2, 3\}, \{2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}\$$

27.
$$\mathcal{T}_{26} = \{\emptyset, \{2\}, \{2,3\}, \{0,1,2\}, \{0,1,2,3\}\}$$

28.
$$\mathcal{T}_{27} = \{\emptyset, \{1\}, \{0, 1\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}\$$

$$29. \ \mathcal{T}_{28} = \{\emptyset, \{3\}, \{2,3\}, \{0,1,3\}, \{0,1,2,3\}\}$$

30.
$$\mathcal{T}_{29} = \{\emptyset, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

31.
$$\mathcal{T}_{30} = \{\emptyset, \{3\}, \{1,3\}, \{0,1,3\}, \{0,1,2,3\}\}$$

32.
$$\mathcal{T}_{31} = \{\emptyset, \{3\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2, 3\}\}$$

33.
$$\mathcal{T}_{32} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 1, 2, 3\}\}$$

34.
$$\mathcal{T}_{33} = \{\emptyset, \{0\}, \{0, 1\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

35.
$$\mathcal{T}_{34} = \{\emptyset, \{0\}, \{1, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

36.
$$\mathcal{T}_{35} = \{\emptyset, \{2\}, \{0, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

37.
$$\mathcal{T}_{36} = \{\emptyset, \{2\}, \{0, 1\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

38.
$$\mathcal{T}_{37} = \{\emptyset, \{1\}, \{0, 1\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

39.
$$\mathcal{T}_{38} = \{\emptyset, \{0\}, \{3\}, \{0, 3\}, \{0, 1, 2, 3\}\}$$

40.
$$\mathcal{T}_{39} = \{\emptyset, \{3\}, \{0, 1\}, \{0, 1, 3\}, \{0, 1, 2, 3\}\}\$$

41.
$$\mathcal{T}_{40} = \{\emptyset, \{0\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2, 3\}\}\$$

42.
$$\mathcal{T}_{41} = \{\emptyset, \{2\}, \{1, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}\$$

43.
$$\mathcal{T}_{42} = \{\emptyset, \{0\}, \{2\}, \{0, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

44.
$$\mathcal{T}_{43} = \{\emptyset, \{0\}, \{3\}, \{0, 3\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

45.
$$\mathcal{T}_{44} = \{\emptyset, \{3\}, \{1,3\}, \{0,1,3\}, \{1,2,3\}, \{0,1,2,3\}\}$$

46.
$$\mathcal{T}_{45} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}\$$

47.
$$\mathcal{T}_{46} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

48.
$$\mathcal{T}_{47} = \{\emptyset, \{0\}, \{0, 1\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2, 3\}\}$$

49.
$$\mathcal{T}_{48} = \{\emptyset, \{2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

50.
$$\mathcal{T}_{49} = \{\emptyset, \{3\}, \{0, 1\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 2, 3\}\}$$

51.
$$\mathcal{T}_{50} = \{\emptyset, \{3\}, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}\$$

52.
$$\mathcal{T}_{51} = \{\emptyset, \{3\}, \{0, 1\}, \{2, 3\}, \{0, 1, 3\}, \{0, 1, 2, 3\}\}$$

53.
$$\mathcal{T}_{52} = \{\emptyset, \{3\}, \{0, 3\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2, 3\}\}$$

54.
$$\mathcal{T}_{53} = \{\emptyset, \{2\}, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

55.
$$\mathcal{T}_{54} = \{\emptyset, \{0\}, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

56.
$$\mathcal{T}_{55} = \{\emptyset, \{3\}, \{0, 3\}, \{1, 3\}, \{0, 1, 3\}, \{0, 1, 2, 3\}\}$$

57.
$$\mathcal{T}_{56} = \{\emptyset, \{2\}, \{0, 1\}, \{2, 3\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

58.
$$\mathcal{T}_{57} = \{\emptyset, \{0\}, \{0, 2, 3\}, \{2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

59.
$$\mathcal{T}_{58} = \{\emptyset, \{0\}, \{3\}, \{0,3\}, \{1,2,3\}, \{0,1,2,3\}\}$$

60.
$$\mathcal{T}_{59} = \{\emptyset, \{1\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

61.
$$\mathcal{T}_{60} = \{\emptyset, \{3\}, \{0, 2, 3\}, \{2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}\$$

62.
$$\mathcal{T}_{61} = \{\emptyset, \{0\}, \{3\}, \{0, 3\}, \{0, 1, 3\}, \{0, 1, 2, 3\}\}\$$

63.
$$\mathcal{T}_{62} = \{\emptyset, \{1\}, \{0, 1\}, \{2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

64.
$$\mathcal{T}_{63} = \{\emptyset, \{2\}, \{3\}, \{2,3\}, \{0,1,2\}, \{0,1,2,3\}\}$$

65.
$$\mathcal{T}_{64} = \{\emptyset, \{0\}, \{3\}, \{0, 3\}, \{0, 1\}, \{0, 1, 3\}, \{0, 1, 2, 3\}\}$$

66.
$$\mathcal{T}_{65} = \{\emptyset, \{3\}, \{0, 3\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 3\}, \{0, 1, 2, 3\}\}$$

67.
$$\mathcal{T}_{66} = \{\emptyset, \{0\}, \{3\}, \{0, 3\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2, 3\}\}$$

68.
$$\mathcal{T}_{67} = \{\emptyset, \{0\}, \{2\}, \{0, 1\}, \{0, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

69.
$$\mathcal{T}_{68} = \{\emptyset, \{3\}, \{0, 3\}, \{1, 3\}, \{0, 1, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

70.
$$\mathcal{T}_{69} = \{\emptyset, \{1\}, \{3\}, \{0, 1\}, \{1, 3\}, \{0, 1, 3\}, \{0, 1, 2, 3\}\}$$

71.
$$\mathcal{T}_{70} = \{\emptyset, \{2\}, \{0, 2\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

72.
$$\mathcal{T}_{71} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}\$$

73.
$$\mathcal{T}_{72} = \{\emptyset, \{0\}, \{3\}, \{0,3\}, \{1,3\}, \{0,1,3\}, \{0,1,2,3\}\}$$

74.
$$\mathcal{T}_{73} = \{\emptyset, \{2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

75.
$$\mathcal{T}_{74} = \{\emptyset, \{3\}, \{1,3\}, \{2,3\}, \{0,1,3\}, \{1,2,3\}, \{0,1,2,3\}\}$$

76.
$$\mathcal{T}_{75} = \{\emptyset, \{1\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

77.
$$\mathcal{T}_{76} = \{\emptyset, \{1\}, \{2\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}\$$

78.
$$\mathcal{T}_{77} = \{\emptyset, \{2\}, \{1, 2\}, \{2, 3\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

79.
$$\mathcal{T}_{78} = \{\emptyset, \{0\}, \{2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}\$$

80.
$$\mathcal{T}_{79} = \{\emptyset, \{3\}, \{0, 3\}, \{0, 2, 3\}, \{2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}\$$

81.
$$\mathcal{T}_{80} = \{\emptyset, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{0,1,2\}, \{1,2,3\}, \{0,1,2,3\}\}$$

82.
$$\mathcal{T}_{81} = \{\emptyset, \{2\}, \{3\}, \{0, 2\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

83.
$$\mathcal{T}_{82} = \{\emptyset, \{0\}, \{3\}, \{0, 3\}, \{0, 2, 3\}, \{2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

84.
$$\mathcal{T}_{83} = \{\emptyset, \{1\}, \{3\}, \{0, 1\}, \{1, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 2, 3\}\}$$

85.
$$\mathcal{T}_{84} = \{\emptyset, \{0\}, \{3\}, \{0,3\}, \{1,2\}, \{0,1,2\}, \{1,2,3\}, \{0,1,2,3\}\}$$

86.
$$\mathcal{T}_{85} = \{\emptyset, \{0\}, \{2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

87.
$$\mathcal{T}_{86} = \{\emptyset, \{1\}, \{3\}, \{0, 1\}, \{1, 3\}, \{0, 1, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

88.
$$\mathcal{T}_{87} = \{\emptyset, \{0\}, \{3\}, \{0, 3\}, \{0, 1\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 2, 3\}\}$$

89.
$$\mathcal{T}_{88} = \{\emptyset, \{0\}, \{3\}, \{0,3\}, \{0,2,3\}, \{2,3\}, \{0,1,3\}, \{0,1,2,3\}\}$$

90.
$$\mathcal{T}_{89} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 2, 3\}, \{2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

91.
$$\mathcal{T}_{90} = \{\emptyset, \{1\}, \{2\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

92.
$$\mathcal{T}_{91} = \{\emptyset, \{0\}, \{3\}, \{0,3\}, \{1,3\}, \{0,1,3\}, \{1,2,3\}, \{0,1,2,3\}\}$$

93.
$$\mathcal{T}_{92} = \{\emptyset, \{0\}, \{2\}, \{0, 2\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$$

94.
$$\mathcal{T}_{93} = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

95.
$$\mathcal{T}_{94} = \{\emptyset, \{2\}, \{3\}, \{0, 1\}, \{2, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 2, 3\}\}$$

96.
$$\mathcal{T}_{95} = \{\emptyset, \{1\}, \{2\}, \{0, 1\}, \{1, 2\}, \{2, 3\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

97.
$$\mathcal{T}_{96} = \{\emptyset, \{1\}, \{3\}, \{0, 1\}, \{1, 3\}, \{2, 3\}, \{0, 1, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

- 98. $\mathcal{T}_{97} = \{\emptyset, \{0\}, \{3\}, \{0, 3\}, \{0, 1\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 3\}, \{0, 1, 2, 3\}\}$
- 99. $\mathcal{T}_{98} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$
- 100. $\mathcal{T}_{99} = \{\emptyset, \{0\}, \{1\}, \{3\}, \{0, 3\}, \{0, 1\}, \{1, 3\}, \{0, 1, 3\}, \{0, 1, 2, 3\}\}$
- 101. $\mathcal{T}_{100} = \{\emptyset, \{0\}, \{2\}, \{0, 1\}, \{0, 2\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$
- 102. $\mathcal{T}_{101} = \{\emptyset, \{3\}, \{0, 3\}, \{1, 3\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$
- 103. $\mathcal{T}_{102} = \{\emptyset, \{2\}, \{0, 2\}, \{1, 2\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$
- 104. $\mathcal{T}_{103} = \{\emptyset, \{0\}, \{2\}, \{3\}, \{0, 3\}, \{0, 2\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2\}, \{0, 1, 2, 3\}\}$
- 105. $\mathcal{T}_{104} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$
- 106. $\mathcal{T}_{105} = \{\emptyset, \{0\}, \{1\}, \{3\}, \{0, 3\}, \{0, 1\}, \{1, 3\}, \{0, 1, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$
- 107. $\mathcal{T}_{106} = \{\emptyset, \{0\}, \{1\}, \{3\}, \{0, 3\}, \{0, 1\}, \{1, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 2, 3\}\}$
- 108. $\mathcal{T}_{107} = \{\emptyset, \{2\}, \{3\}, \{0, 2\}, \{1, 2\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$
- 109. $\mathcal{T}_{108} = \{\emptyset, \{0\}, \{2\}, \{0, 2\}, \{1, 2\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$
- 110. $\mathcal{T}_{109} = \{\emptyset, \{0\}, \{3\}, \{0, 3\}, \{1, 3\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$

- 111. $\mathcal{T}_{110} = \{\emptyset, \{1\}, \{3\}, \{0, 1\}, \{1, 2\}, \{1, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$
- 112. $\mathcal{T}_{111} = \{\emptyset, \{0\}, \{2\}, \{3\}, \{0, 3\}, \{0, 1\}, \{0, 2\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 2, 3\}\}$
- 113. $\mathcal{T}_{112} = \{\emptyset, \{0\}, \{1\}, \{3\}, \{0, 3\}, \{0, 1\}, \{1, 2\}, \{1, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$
- 114. $\mathcal{T}_{113} = \{\emptyset, \{0\}, \{2\}, \{3\}, \{0, 3\}, \{0, 2\}, \{1, 2\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$
- 115. $\mathcal{T}_{114} = \{\emptyset, \{0\}, \{1\}, \{3\}, \{0, 3\}, \{0, 1\}, \{1, 3\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$
- 116. $\mathcal{T}_{115} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{0, 1\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$
- 117. $\mathcal{T}_{116} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 2, 3\}, \{2, 3\}, \{0, 1, 2\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$
- 118. $\mathcal{T}_{117} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{3\}, \{0, 1\}, \{0, 3\}, \{0, 2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$

Приложение В

Ссылка на github репозиторий с программным кодом

https://github.com/SLipWGH/Diplom/tree/master Необходимые зависимости:

- 1. Необходима версия интерпретатора python 3.10.
- 2. Отдельно должен быть установлен пакет "Graphviz"
- 3. Зависимости модулей см. в файле "requirements.txt"

Для проверки произвольной n-арной операции, следует написать функцию, реализовывающую это операцию и создать объект класса "Operation передав в конструктор эту функцию и n. Пример использования есть в Main.py файле (см. функцию "custom_operation_task").