Zadatak 1 Zadatak 2. Zadatak 3. Zadatak 4. Zadatak 5. Zadatak 6.

Kružno gibanje i dinamika (Vježbe 2)

Marko Sossich

29. ožujka 2021.

Zadatak 1 Zadatak 2. Zadatak 3. Zadatak 4. Zadatak 5. Zadatak 6.

Sadržaj

- Zadatak 1
- Zadatak 2.
- Zadatak 3.
- Zadatak 4.
- Zadatak 5.
- Zadatak 6.

Zadatak 1.

1. Sitna kuglica vrti se kružnicom polumjera r stalnim tangencijalnim ubrzanjem a_t . U kojem će trenu motreći od početka gibanja, radijalna akceleracija biti dvostruko veća od tangencijalne ako je r=50 cm, $a_t=0.01$ m/s²?

(Rješenje:
$$a_r = \frac{a_t^2}{r}t^2 \Rightarrow t = 10 \text{ s}$$
).

Zadatak 2.

2. Točka rotira oko nepokretne osi kutnom akceleracijom $\alpha=\beta t$, gdje je $\beta=2\cdot 10^{-2}~{\rm rad/s^3}$. Za koliko vremena od početka rotacije će vektor ubrzanja u nekoj proizvoljnoj točki zatvarati kut $\phi=60^\circ$ s vektorom njene brzine.

(*Rješenje*:
$$t = \sqrt[3]{\frac{4\tan\varphi}{\beta}} = 7$$
 s).

Zadatak 3.

3. Točka na rubu kotača polumjera $R=80~{\rm cm}$ kreće se po zakonu $s=kt^3$, gdje je $k=0.1~{\rm m/s^3}$. Koliki je iznos ukupnog ubrzanja te točke u trenutku kada je brzina $v_1=3~{\rm m/s}$.

(*Rješenje:*
$$a = \sqrt{12kv_1 + \frac{v_1^4}{R^2}} = 11.41 \text{ m/s}^2$$
).

Zadatak 4.

4. Fenjer koji proizvodi tanak vodoravan snop svjetlosti visi na niti te se jednoliko okreće oko uspravne osi čineći 30 okretaja u minuti. Snop svjetlosti pada na ravan uspravan zid koji je od fenjera udaljen D=2 m. Odredi brzinu svijetle mrlje na zidu u trenutku kada snop pada na zid pod kutem $\varphi=45^\circ$ u odnosu na okomicu. (*Rješenje:* $v=2D\omega=12.57$ m/s).

Zadatak 5.

5. Za sustav utega s koloturom (Slika 1.) poznate su ove veličine: $m_1 = 2$ kg, $m_2 = 1.2$ kg i prikloni kut kosine $\alpha = 50^{\circ}$. Izračunajte akceleraciju sustava ako je $\mu=1.2$. (*Rješenje:* $a=g\frac{m_1-m_2(\sin\alpha+\mu\cos\alpha)}{m_1+m_2}=0.47 \text{ m/s}^2$).

(*Rješenje*:
$$a = g \frac{m_1 - m_2(\sin \alpha + \mu \cos \alpha)}{m_1 + m_2} = 0.47 \text{ m/s}^2$$
).

Slika: 1

Zadatak 6.

6. Za koji će nagib kosine α vrijeme spuštanja materijalne točke od njenog vrha do dna biti minimalno? Nakon koliko vremena će se tijelo spustiti do dna kosine ako joj je baza 4 m?

(*Rješenje*:
$$\alpha_{min} = \frac{\pi}{4} \Rightarrow t_{min} = \sqrt{\frac{4A}{g}} = 1.28 \text{ s}$$
).