Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский университет ИТМО

Факультет программной инженерии и компьютерной техники

Моделирование Лабораторная работа №1 Вариант № 9

Выполнил: студент группы Р3308,

Васильев Н. А.

Преподаватель: Авксентьева Е. Ю.

Цель работы

Изучение методов обработки и статистического анализа результатов измерений на примере заданной числовой последовательности путем оценки числовых моментов и выявления свойств последовательности на основе корреляционного анализа, а также аппроксимация закона распределения заданной последовательности по двум числовым моментам случайной величины.

Ход работы

Этап 1

Оценки математического ожидания, дисперсии, среднеквадратического отклонения, коэффициента вариации заданной числовой последовательности и доверительные интервалы для оценки математического ожидания с доверительными вероятностями 0,9; 0,95 и 0,99.

Характеристики заданной ЧП

	_	1	характеристи	іки задапной	1 111					
V		Количество случайных величин								
Характеристика		10	20	50	100	200	300			
Мат. ож.	Знач,	7,8039	9,7395	8,8681	11,9753	10,9057	10,2263			
	%	76,31%	95,24%	86,72%	117,10%	106,64%				
Дов. инт. (0,9)	Знач,	3,7858	3,8244	2,1846	7,2860	3,8424	2 (570			
	%	142,44%	143,89%	82,19%	274,13%	144,57%	2,6579			
Дов. инт. (0,95)	Знач,	4,5111	4,5570	2,6031	8,6819	4,5786	3,1671			
	%	142,44%	143,89%	82,19%	274,13%	144,57%				
Дов. инт. (0,99)	Знач,	5,9286	5,9889	3,4210	11,4099	6,0172	4,1622			
	%	142,44%	143,89%	82,19%	274,13%	144,57%				
Дисперсия	Знач,	52,9729	108,1188	88,1969	1962,1372	1091,4166	783,3186			
	%	6,76%	13,80%	11,26%	250,49%	139,33%	765,5160			
C	Знач,	7,2782	10,3980	9,3913	44,2960	33,0366	27,9878			
С. к. о.	%	26,00%	37,15%	33,55%	158,27%	118,04%				
К-т вариации	Знач,	0,9326	1,0676	1,0590	3,6990	3,0293	2.7269			
	%	34,08%	39,01%	38,69%	135,16%	110,69%	2,7368			

% - относительные отклонения рассчитанных значений от значений, полученных для выборки из трехсот величин.

Вывод из Этапа 1: Дисперсия и среднеквадратическое отклонение увеличиваются с размером выборки, что указывает на большую вариативность данных. Однако при больших объемах выборки наблюдается стабилизация этих показателей. Коэффициент вариации показывает умеренные изменения, что говорит о стабильности отношения стандартного отклонения к среднему при увеличении выборки.

Этап 2

Значений заданной числовой последовательности с результатами анализа характера числовой последовательности.

График 1

Вывод из Этапа 2: Изучив график значений числовой последовательности, можно сделать вывод, что последовательность не имеет явных трендов (не является периодической, возрастающей или убывающей).

Этап 3

Результаты автокорреляционного анализа (значения коэффициентов автокорреляции со сдвигом $1, 2, 3, \ldots$)

Коэффициенты автокорреляции

Сдвиг ЧП	1	2	3	4	5	6	7	8	9	10
К-т АК	-	-	-	-	-	-	-	-	0,0235	-
	0,0180	0,0125	0,0260	0,0357	0,0089	0,0437	0,0097	0,0367		0,0320

График 2

Вывод из Этапа 3: Из результатов автокорреляционного анализа можно сделать вывод, что последовательность можно считать случайной. Нет явной тенденции или периодичности, что подтверждает случайный характер последовательности.

Этап 4

Гистограмма распределения частот для заданной числовой последовательности

График 3

Математическое ожидание: 10,2263

СКО: 27,9878

Коэффициент вариации: 2,7368

Вывод из Этапа 4: Исходя из гистограммы мы можем видеть, что большая часть значений располагается в промежутке от 0 до $100. \text{ CV}^2 = 7,4903 > 1 \rightarrow \text{необходимо}$ подобрать гиперэкспоненциальную модель.

Этап 5

Параметры, рассчитанные по двум начальным моментам и определяющие вид аппроксимирующего закона распределения заданной случайной последовательности (равномерный; экспоненциальный; нормированный Эрланга; гипоэкспоненциальный; гиперэкспоненциальный).

На предыдущем этапе мы получили, что нам необходимо использовать гиперэкспоненциальный закон.

$$q \le \frac{2}{1 + v^2} \approx 0.23801$$

Возьмем
$$q = 0,2$$
:
 $v = 2,7368 \Rightarrow v^2 = 7,4903$
 $t = 10,2263$

$$t_1 = \left[1 + \sqrt{\frac{1 - q}{2q}(v^2 - 1)}\right]t$$
$$t_1 = 47,07035$$

$$t_2 = \left[1 - \sqrt{\frac{q}{2(1-q)}(v^2 - 1)}\right]t$$
$$t_2 = 1,01534$$

Получаем следующий аппроксимирующий закон распределения:

$$F(r1,r2) = t1 \times -ln(1-r2)$$
 при $r1 < q$
 $F(r1,r2) = t2 \times -ln(1-r2)$ при $r1 \ge q$

Вывод из Этапа 5: Исходя из прошлого этапа и вычислений в данном этапе, можем сказать, что аппроксимирующий закон распределения данной последовательности гиперэкспоненциальный.

Этап 6

Описание алгоритма (программы) формирования аппроксимирующего закона распределения и расчета значений всех числовых характеристик с иллюстрацией (при защите отчета) его работоспособности.

```
class HyperexponentialGenerator:
   def init (self, ref mean: float, ref std: float, q: float = 0.2):
       self.ref mean = ref mean
       self.ref std = ref std
       self.q = q
       self.t1, self.t2 = self. estimate params()
   def estimate params(self) -> Tuple[float, float]:
       var coeff = self.ref std / self.ref_mean
       var term = (var coeff ** 2 - 1)
        if var term < 0:</pre>
           print("Warning: Invalid value for sqrt, setting default values
for t1 and t2.")
            return self.ref mean, self.ref mean
        t1 = (1 + sqrt(((1 - self.q) / (2 * self.q)) * var term)) *
self.ref mean
        t2 = (1 - sqrt((self.q / (2 * (1 - self.q))) * var term)) *
self.ref mean
        print(f'q = {self.q} \nt1 = {t1} \nt2 = {t2} \n')
        return t1, t2
   def generate sample(self, n samples: int = 300) -> List[float]:
       np.random.seed(42)
        choices = np.random.uniform(0, 1, n samples)
        r values = np.random.uniform(0, 1, n samples)
        rates = np.where(choices < self.q, self.t1, self.t2)</pre>
        samples = -rates * np.log(1 - r values)
       return samples.tolist()
   def save to file(self, samples: List[float], filename: str =
'hyperexp params.txt'):
       with open (filename, 'w') as f:
            for sample in samples:
                f.write(f"{sample}\n")
```

Вывод из Этапа 6: Я реализовал алгоритм генерации выборки гиперэкспоненциального распределения, где параметры t_1 и t_2 вычисляются на основе среднего и стандартного

отклонения исходных данных. Генерация выборки осуществляется с использованием этих параметров и вероятности q. Результаты сохраняются в файл для дальнейшего анализа.

Этап 7 Характеристики сгенерированной ЧП

Vanavaranyaryyaa		Количество случайных величин								
Характеристика		10	20	50	100	200	300			
Мат. ож.	Знач,	27,538	22,418	15,730	16,341	14,788	12 505			
	%	202,70%	165,02%	115,78%	120,28%	108,85%	13,585			
Дов. инт. (0,9)	Знач,	29,026	16,163	7,466	6,311	4,462	2 206			
	%	857,29%	477,38%	220,51%	186,40%	131,79%	3,386			
Дов. инт. (0,95)	Знач,	34,586	19,259	8,896	7,520	5,317	4,034			
	%	857,29%	477,38%	220,51%	186,40%	131,79%				
Дов. инт. (0,99)	Знач,	45,454	25,311	11,691	9,883	6,987	5,302			
	%	857,29%	477,38%	220,51%	186,40%	131,79%				
Дисперсия	Знач,	3113,904	1931,080	1030,067	1472,093	1471,703	1271,067			
	%	244,98%	151,93%	81,04%	115,82%	115,78%	12/1,00/			
С. к. о.	Знач,	55,802	43,944	32,095	38,368	38,363	35,652			
	%	156,52%	123,26%	90,02%	107,62%	107,60%				
К-т вариации	Знач,	2,026	1,960	2,040	2,348	2,594	2.624			
	%	77,22%	74,69%	77,75%	89,47%	98,85%	2,624			

График 4

К-т АК	-	-	-	0,0637	-	-	0,0436	0,0613	0,0120	-
	0,0138	0,0603	0,0311	0,0007	0,0708	0,0507	0,0150	0,0015	0,0120	0,0041

Коэффициенты автокорреляции

График 5

Значимой автокорреляции не обнаружено – последовательность можно считать случайной.

График 6

Рассчитаем коэффициент корреляции между последовательностями:
$$r = \frac{\sum_{i=1}^{n} (x_i - \underline{x})(y_i - \underline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \underline{x})^2 \times \sum_{i=1}^{n} (y_i - \underline{y})^2}} = -0,030061$$

Дополнительно рассчитаем его при помощи библиотеки *NumPy* для *Python*.

correlation numpy = np.corrcoef(x, y)[0, 1]

Коэффициент корреляции (NumPy): -0.030061

 $|r| < 0.1 \Rightarrow$ очень слабая корреляция между исходной и сгенерированной числовыми последовательностями.

Вывод из Этапа 7: Я проанализировал сгенерированную последовательность, рассчитал коэффициент корреляции между исходной и сгенерированной последовательностями и получили значение, которое указывает на очень слабую корреляцию между последовательностями. Это подтверждает, что сгенерированные данные слабо связаны с исходными.

Вывод

В ходе лабораторной работы была проанализирована заданная числовая последовательность: вычислены её математическое ожидание, дисперсия и другие статистические характеристики. Гистограмма не выявила признаков тренда или периодичности, а автокорреляционный анализ подтвердил случайный характер данных. На основе полученных параметров был подобран аппроксимирующий закон распределения и сгенерирована новая последовательность. Коэффициенты вариации обеих последовательностей оказались близки к 2,7, а автокорреляция — около нуля, что подтверждает их случайность. Несмотря на различие в среднем и дисперсии, оно укладывается в доверительные интервалы, что говорит о приемлемом качестве аппроксимации.