Obliczenia naukowe

Felix Zieliński 272336

Lista 2

TODO OPIS, czy zadanie 2? CO SIE STALO Z GNUPLOTEM zadanie 3, ta bogusowa tabela w 4, zadanie 5 opis i wnioski, zadanie 6, opisy funkcji, wnioski koncowe, wszystkie bogusowe tabele i obrazki, dlaczego w 4 zespolone??????????????

Zadanie 1. Niewielkie zmiany danych oraz ich wpływ na wyniki obliczeń.

W ramach przypomnienia zadania: na poprzedniej liście należało obliczyć iloczyny skalarne dwóch wektorów na cztery rózne sposoby.

Zaimplementowałem każdy z podanych w poleceniu sposobów, tak więc funkcja a liczy "w przód", od pierwszych indeksów, funkcja b "w tył", analogicznie, a c oraz d liczą, odpowiednio, od największego do najmniejszego oraz od najmniejszego do największego względem ich wartości absolutnej.

Różnica w tym zadaniu, a zadaniu 5. z poprzedniej listy polegała na dokonaniu drobnej zmiany w niektórych wartościach wektora. Poniżej prezentuję wyniki otrzymane po, jak i przed tej zmianie:

Sposób	Float32 stare	Float32 nowe	Float64 stare	Float64 nowe
a	-0.4999443	-0.4999443	1.0251881368296672e-10	-0.004296342739891585
b	-0.4543457	-0.4543457	-1.5643308870494366e-10	-0.004296342998713953
c	-0.5	-0.5	0.0	-0.004296342842280865
d	-0.5	-0.5	0.0	-0.004296342842280865

Tabela 1: Porównanie nowych i starych danych

gdzie wartość prawidłowa wynosi:

-1.00657107000000e-11

Jak widać, wyniki dla typu Float32 nie zmieniły się. Jest to spowodowane niewystarczającą do zauważenia różnicy precyzją zapisu liczby zmiennopozycyjnej w tym typie.

Natomiast w typie Float64 różnica jest znaczna mimo tak niewielkiej zmiany

danych. Mimo że wyniki nadal odbiegają od prawidłowego, są one mu znacznie bliższe.

Można więc stwierdzić, że zadanie to było **źle uwarunkowane** - o wysokim wskaźniku uwarunkowania. Wskaźnik ten określa, w jakim stopniu błąd reprezentacji numerycznej danych wejściowych dla danego problemu będzie wpływać na błąd wyniku. Małe zmany danych w tym zadaniu spowodowały znaczną zmianę wyników.

Zadanie 2. W tym zadaniu należało narysować wykres funkcji

$$f(x) = e^x \ln(1 + e^{-x})$$

w dwóch różnych programach do wizualizacji danych. Zdecydowałem się na użycie WolframaAlpha, Desmosa oraz Gnuplota

Rysunek 1: Wolfram Alpha: plot $e^x * \ln(1 + e^{-x})$ from x = -10 to x = 40

Rysunek 2: Desmos

Granica tej funkcji dla x zmierzającego do nieskończoności wynosi

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^x \ln(1 + e^{-x}) = 1$$

Jak można zauważyć, dla wartości $x \ge 32$ wykresy zaczynają wskazywać błędne wartości, każdy na trochę inny sposób. Oscylują one wokół 1, coraz bardziej odbiegając od jej wartości, a następnie spadają do 0.

Dzieje się tak, gdyż dla x > 30 wartości e^x są już tak duże, że mnożenie jej z niewielką wartością $ln(1+e^{-x})$ skutkuje znacznymi błędami przybliżenia, które dla ok x = 38 powodują zwracanie wartości 0. Jest to spowodowane przybliżeniem $1+e^{-x}\approx 1$, i tym samym całej wartości logarytmu do 0. Tak więc algorytm obliczający wartości f(x) nie jest stabilny numerycznie.

Rysunek 3: Gnuplot

Zadanie 3. W zadaniu tym należało rozwiązać liniowy układ równań $\mathbf{A} * \mathbf{x} = \mathbf{b}$ dla danej macierzy współczynników $A \in \mathbb{R}^{n \times n}$ i wektora prawych stron $b \in \mathbb{R}^n$. Macierze były generowane poprzez dostarczone przez prowadzącego funkcje: generującą macierz Hilberta \mathbf{n} -tego stopnia oraz generującą losową macierz \mathbf{n} -tego stopnia z zadanym wskaźnikiem uwarunkowania.

W tabelach przedstawiłem błędy względne dla zadanych algorytmów: eliminacji Gaussa oraz inwersji. Uwarunkowanie oraz rząd macierzy są obliczanie poprzez wbudowane w paczkę LinearAlgebra funkcje cond() oraz rank().

Im wyższe uwarunkowanie, tym wyższy błąd względny dla obu metod.

Tak jak przy macierzach Hilberta, w wynikach dla macierzy losowych można zaobserwować rosnący błąd względny. Ponadto widać, że funkcja cond() nie oblicza dokładnie uwarunkowania, tylko je przybliża. Ponadto wartości tych przybliżeń są różne dla różnych procesorów.

Powyższe tabele pozwalają na wyciągnięcie wniosku, że zadanie to było źle uwarunkowane, zwłaszcza dla macierzy Hilberta - wraz ze wzrostem stopnia macierzy ostro rośnie też wskaźnik uwarunkowania i, jednocześnie, błąd względny. Dla macierzy losowych dzieje się podobnie, jednakże ten wzrost jest wolniejszy (błędy są mniejsze).

Zadanie 4. W zadaniu tym należało obliczyć miejsca zerowe zadanego wielomianu P(x) i przedstawić wyniki dla $z_k, 1 \le k \le 20$, obliczając $|P(z_k)|, |p(z_k)|$

n	uwarunkowanie	rząd	błąd metody Gaussa	błąd metody inwersji
1	1.0	1	0.0	0.0
2	19.281470067903967	2	5.661048867003676e-16	1.1240151438116956e-15
3	524.0567775860627	3	8.351061872731819e-15	9.825526038180824e-15
4	15513.738738929662	4	4.2267316576255873e-13	3.9600008750140806e-13
5	476607.2502419338	5	1.256825919192874e-12	8.128168770215688e-12
6	1.495105864177819e7	6	1.5435074657413347e-10	1.0423794065751672e-10
7	4.753673568766496e8	7	6.520804933066021e-9	4.3299229851434615e-9
8	1.5257575563722723e10	8	3.6010489197068436e-7	4.0236799996435915e-7
9	4.9315332284138226e11	9	1.3216991540025553e-5	1.4626798972086921e-5
10	1.6024980732174455e13	10	0.0004194170177181955	0.00040714905218460087
11	5.224780779168285e14	10	0.01004906783345069	0.010645959401385671
12	1.6425917529444498e16	11	0.5502106922296848	0.6697890564301745
13	4.4936679531246986e18	11	70.1556197115221	82.66675811171989
14	3.2198422552156205e17	11	9.649642437452474	10.094732062453225
15	3.3660126672602944e17	12	692.4295360390742	715.740988667373
16	2.249940193352714e18	12	10.414656083840297	8.442143351389534
17	6.26204622473199e17	12	18.67581817300634	17.157982115668773
18	3.266632306940269e18	12	5.40548300394664	3.742412802776696
19	3.462302955915255e18	13	15.073941146224387	16.84769281513296
20	6.806966421072721e18	13	28.79267493699834	30.751202239608727

Tabela 2: Macierze Hilberta

i $|z_k - k|$. Następnie należało powtórzyć eksperyment Wilkinsona, czyli lekko zmodyfikować wielomian i przeprowadzić ponownie obliczenia.

Jak można zauważyć, obliczone miejsca zerowe przy pomocy roots() są zbliżone, ale nie równe wartościom prawidłowym. Przyczyniają się one do otrzymania błędnych wartości funkcji $P(z_k)$ oraz $p(z_k)$. Błędy w obliczeniach miejsc zerowych nie są bardzo duże, a jednak dla niektórych wartości błąd jest znaczący, co wskazuje na złe uwarunkowanie zadania.

W celu powtórzenia eksperymentu Wilkinsona zmodyfikowałem współczynnik przy x^{19} - zmniejszyłem go o 2^{-23} . Taka modyfikacja spowodowała pojawienie pierwiastków zespolonych!

Pomimo dokonania niewielkiej zmiany, pierwiastki są teraz rozmieszczone inaczej. Poprzednio były one rozmieszczone w sposób równomierny. Pojawiły się także liczby zespolone. Udowadnia to, że wyznaczanie pierwiastków wielomianu Wilkinsona jest bardzo źle uwarunkowanym zadaniem.

Zadanie 5. W tym zadaniu należało rozważyć model logistyczny:

$$p_{n+1} := p_n + rp_n(1 - p_n), \text{ dla } n = 0, 1, \dots$$

gdzie rjest pewną daną stałą, $r(1-p_n)$ jest czynnikiem wzrostu populacji, a p_0

n	c	uwarunkowanie	rząd	błąd metody Gaussa	błąd metody inwersji
5	10^{0}	1.00000000000000007	5	2.0471501066083611e-16	1.7901808365247238e-16
5	10^{1}	10.000000000000001	5	2.579925170969555e-16	1.4895204919483638e-16
5	10^{3}	999.99999999956	5	4.154180998732242e-14	3.6649738390350505e-14
5	10^{7}	9.999999992624711e6	5	1.2808136131610903e-10	1.2922561774440224e-10
5	10^{12}	1.0000402198324714e12	5	2.4114718692896424e-5	2.1083207553058387e-5
5	10^{16}	6.457380316295465e15	4	0.279866038431425	0.23511506127614903
10	10^{0}	1.000000000000000009	10	3.1006841635969763e-16	2.6506211417561425e-16
10	10^{1}	9.99999999999991	10	2.432376777795247e-16	3.255813018879823e-16
10	10^{3}	999.999999999854	10	5.123291327463699e-15	4.80612456985904e-15
10	10^{7}	9.99999999300524e6	10	2.613887510795298e-10	2.9367939862640613e-10
10	10^{12}	9.999916908430352e11	10	2.5298084239916387e-5	2.7222350440303e-5
10	10^{16}	5.260556228219448e16	9	0.2349713562983511	0.17164964730117435
20	10^{0}	1.000000000000000009	20	5.450279209566124e-16	4.557326905135503e-16
20	10^{1}	9.9999999999999	20	5.318651993048588e-16	3.430930459816227e-16
20	10^{3}	1000.00000000000724	20	4.374127960791212e-14	3.7395403352225206e-14
20	10^{7}	1.0000000008586796e7	20	4.8148086460727405e-12	7.333934288678081e-11
20	10^{12}	1.000058179546536e12	20	5.063442743791289e-5	5.134232142086649e-5
20	10^{16}	9.35903000507404e15	19	0.13171344480426542	0.16281145033250885

Tabela 3: Macierze losowe

jest wielkością populacji stanowiąca procent maksymalnej wielkości populacji dla danego stanu środowiska.

Należało przeprowadzić trzy eksperymenty:

- 1. 40 iteracji modelu logistycznego dla danych $p_0=0.01$ i r=3w Float32
- $2.\ 10$ iteracji modelu logistycznego dla tych samych danych, obcięcie wyniku do trzech miejsc po przecinku, i kontynuowanie iteracji aż do 40-tej, w <code>Float32</code>
- 3. powtórzenie 1-go eksperymentu dla Float64

W tabeli poniżej zaprezentowane są wyniki dla powyższych eksperymentów.

n	1. eksperyment	2. eksperyment (z obcięciem)	3. eksperyment (Float64)
0	0.01	0.01	0.01
1	0.0397	0.0397	0.0397
2	0.15407173	0.15407173	0.15407173000000002
3	0.5450726	0.5450726	0.5450726260444213
4	1.2889781	1.2889781	1.2889780011888006
5	0.1715188	0.1715188	0.17151914210917552
6	0.5978191	0.5978191	0.5978201201070994
7	1.3191134	1.3191134	1.3191137924137974
8	0.056273222	0.056273222	0.056271577646256565
9	0.21559286	0.21559286	0.21558683923263022
10	0.7229306	0.7229306	0.722914301179573
11	1.3238364	1.3241479	1.3238419441684408
12	0.037716985	0.036488414	0.03769529725473175
13	0.14660022	0.14195944	0.14651838271355924
14	0.521926	0.50738037	0.521670621435246

15	1.2704837	1.2572169	1.2702617739350768
16	0.2395482	0.28708452	0.24035217277824272
17	0.7860428	0.9010855	0.7881011902353041
18	1.2905813	1.1684768	1.2890943027903075
19	0.16552472	0.577893	0.17108484670194324
20	0.5799036	1.3096911	0.5965293124946907
21	1.3107498	0.09289217	1.3185755879825978
22	0.088804245	0.34568182	0.058377608259430724
23	0.3315584	1.0242395	0.22328659759944824
24	0.9964407	0.94975823	0.7435756763951792
25	1.0070806	1.0929108	1.315588346001072
26	0.9856885	0.7882812	0.07003529560277899
27	1.0280086	1.2889631	0.26542635452061003
28	0.9416294	0.17157483	0.8503519690601384
29	1.1065198	0.59798557	1.2321124623871897
30	0.7529209	1.3191822	0.37414648963928676
31	1.3110139	0.05600393	1.0766291714289444
32	0.0877831	0.21460639	0.8291255674004515
33	0.3280148	0.7202578	1.2541546500504441
34	0.9892781	1.3247173	0.29790694147232066
35	1.021099	0.034241438	0.9253821285571046
36	0.95646656	0.13344833	1.1325322626697856
37	1.0813814	0.48036796	0.6822410727153098
38	0.81736827	1.2292118	1.3326056469620293
39	1.2652004	0.3839622	0.0029091569028512065
40	0.25860548	1.093568	0.011611238029748606

Tabela 6: Model logistyczny - wyniki

Jak można zauwazyć, ostateczny wynik po obcięciu różni się od tego bez ponad czterokrotnie. Co więcej, w arytmetyce Float64, obliczenia bez obciącia dają nam jeszcze inny, stukrotnie mniejszy wynik od tego z obcięciem we Float32.

Można więc wnioskować, że powyższe zadanie zostało źle uwarunkowane. Obcięcie niewiele znaczących cyfr znacznie zmieniło wyniki. Dodatkowo widać ogromny wpływ użytej prezycji. Zwiększenie jej może pomóc w otrzymaniu dokładniejszego wyniku, jednakże gdyby kontynuować symulację, błąd byłby znaczący.

 ${\bf Zadanie}~{\bf 6.}~{\bf W}$ zadaniu tym, podobnie jak w poprzednim, należało rozważyć równanie rekurencyjne

$$x_{n+1} := x_n^2 + c$$
 dla $n = 0, 1, \dots$

Należało, w arytmetyce Float
64, iterować 40-sto krotnie powyższe równanie, z różnymi wartościami początkowymi
x oraz c. Poniżej znajdują się reprezentacje

k	z_k	$ Pz_k $	$ pz_k $	$ z_k - k $
1	0.9999999999999999	35696.50964788257	368.50964789367345	3.0109248427834245e-13
2	2.00000000000283182	176252.60026668405	15996.60026439321	2.8318236644508943e-11
3	2.9999999995920965	279157.6968824087	100981.69690684375	4.0790348876384996e-10
4	3.9999999837375317	3.0271092988991085e6	252581.31017303217	1.626246826091915e-8
5	5.000000665769791	2.2917473756567076e7	152225.31504973918	6.657697912970661e-7
6	5.999989245824773	1.2902417284205095e8	4.441356137271629e6	1.0754175226779239e-5
7	7.000102002793008	4.805112754602064e8	4.510025884078405e7	0.00010200279300764947
8	7.999355829607762	1.6379520218961136e9	2.309311180467704e8	0.0006441703922384079
9	9.002915294362053	4.877071372550003e9	5.2519713947457147e8	0.002915294362052734
10	9.990413042481725	$1.3638638195458128\mathrm{e}{10}$	1.4705597374927537e9	0.009586957518274986
11	11.025022932909318	3.585631295130865e10	2.257814747009822e9	0.025022932909317674
12	11.953283253846857	$7.533332360358197\mathrm{e}{10}$	5.776283226748977e9	0.04671674615314281
13	13.07431403244734	1.9605988124330817e11	8.720084582957656e8	0.07431403244734014
14	13.914755591802127	3.5751347823104315e11	$2.100530498133618\mathrm{e}{10}$	0.08524440819787316
15	15.075493799699476	8.21627123645597e11	9.0205643837176e10	0.07549379969947623
16	15.946286716607972	$1.5514978880494067\mathrm{e}{12}$	$1.1093925108150577\mathrm{e}{11}$	0.05371328339202819
17	17.025427146237412	3.694735918486229e12	$5.420826950832621\mathrm{e}{11}$	0.025427146237412046
18	17.99092135271648	7.650109016515867e12	$2.0817615965429592\mathrm{e}{12}$	0.009078647283519814
19	19.00190981829944	$1.1435273749721195\mathrm{e}{13}$	4.420887520697798e12	0.0019098182994383706
20	19.999809291236637	$2.7924106393680727\mathrm{e}{13}$	$3.2780945625202856\mathrm{e}{12}$	0.00019070876336257925

Tabela 4: Wielomian P(x)

k	z_k	$ Pz_k $	$ pz_k $	$ z_k - k $
1	0.999999999998357 + 0.0i	20259.872313418207	5411.872313429985	$1.6431300764452317 \times 10^{-13}$
2	2.0000000000550373 + 0.0i	346541.4137593836	65453.413724836006	$5.503730804434781 \times 10^{-11}$
3	2.99999999660342 + 0.0i	2.2580597001197007e6	447115.71016096906	$3.3965799062229962 \times 10^{-9}$
4	4.000000089724362 + 0.0i	1.0542631790395478e7	2.0101490631149793e6	$8.972436216225788 \times 10^{-8}$
5	4.99999857388791 + 0.0i	3.757830916585153e7	1.0452670578285774e7	$1.4261120897529622 \times 10^{-6}$
6	6.000020476673031 + 0.0i	1.3140943325569446e8	5.2837387075878106e7	$2.0476673030955794 \times 10^{-5}$
7	6.99960207042242 + 0.0i	3.939355874647618e8	1.3630697385185716e8	0.000397929577579780
8	8.007772029099446 + 0.0i	1.184986961371896e9	5.478192020926859e8	0.007772029099445632
9	8.915816367932559 + 0.0i	2.2255221233077707e9	1.2795423874534175e9	0.0841836320674414
10	10.095455630535774 - 0.6449328236240688i	1.0677921232930157e10	1.8009361907024696e9	0.6519586830380407
11	10.095455630535774 + 0.6449328236240688i	1.0677921232930157e10	1.8009361907024696e9	1.1109180272716561
12	11.793890586174369 - 1.6524771364075785i	3.1401962344429485e10	8.297365882456215e9	1.665281290598479
13	11.793890586174369 + 1.6524771364075785i	3.1401962344429485e10	8.297365882456215e9	2.0458202766784277
14	13.992406684487216 - 2.5188244257108443i	2.157665405951858e11	6.221054312666306e10	2.518835871190904
15	13.992406684487216 + 2.5188244257108443i	2.157665405951858e11	6.221054312666306e10	2.7128805312847097
16	16.73074487979267 - 2.812624896721978i	4.850110893921027e11	5.844684792788262e11	2.9060018735375106
17	16.73074487979267 + 2.812624896721978i	4.850110893921027e11	5.844684792788262e11	2.825483521349608
18	19.5024423688181 - 1.940331978642903i	4.557199223869993e12	2.209747866910055e12	2.4540214463129764
19	19.5024423688181 + 1.940331978642903i	4.557199223869993e12	2.209747866910055e12	2.0043294443099486
20	20.84691021519479 + 0.0i	8.756386551865696e12	2.2517830621461324e13	0.8469102151947894

Tabela 5: Wielomian p(x)

graficzne, wykonane przy pomocy paczki Plots języka Julia, dla poszczególnych wartości.

Powyższe wykresy są są stałe.

Dla wykresu z x = 1.99999999999999999, po pewnym czasie otrzymujemy bardzo niepoprawne wyniki, mniejsze od 2, chociaż, według intuicji, powinny one być bliskie 2.

Dla powyższych wykresów, wyniki są stabilne, oscylują wokół przewidywanych wartości.

Wykresy dla x = 0.75 oraz x = 0.25 po czasie stabilizują się i przyjmują, na zmianę, wartości -1 oraz 0.

Fakt, że dokładność arytmetyki liczb zmiennopozycyjnych jest skończona, wpływa na wyniki (wykresy dla x = 0.75 oraz x = 0.25, które zaczynają zbiegać do liczb całkowitych). Ponadto kumulowanie się błędu (jak podczas obliczeń z x = 1.99999999999) powoduje znaczące odbieganie wyników od ich wartości prawidłowej. Gdy x jest liczbą całkowitą, wyniki zachowują się poprawnie.

Niewielkie zmiany w danych prowadzą w tym zadaniu do róznych wyników - możemy wnioskować, że jest to zadanie źle uwarunkowane.

