HAEKTPONIKH II

Ref. Toshiba [from W. Sansen: 'Analog Design Essentials']

Technology Roadmap

Technology Roadmap - cont'd

ITRS Technology Nodes and Chip Capabilities ²					
	2004	2007	2010	2018	
DRAM Half-Pitch (nanometers)	90	65	45	18	
DRAM Memory Size (mega or gigabits)	1G	2G	4G	32G	
DRAM Cost/Bit (micro-cents)	2.7	0.96	0.34	0.021	
Microprocessor Physical Gate Length (nanometers)	37	25	18	7	
Microprocessor Speeds (GHz)	4.2	9.3	15	53	

Technology Trends

→ SiGe BiCMOS

Technology nodes include 0.18µm, 0.13µm and, recently 90 nm. The latter can provide bipolar transistors with a unity gain frequency beyond 200GHz.

→ CMOS

Technology nodes include 0.18µm down to 22nm or even smaller.

- Applications from cellular telephony transceivers (1-2 GHz) to WLAN applications (5GHz) to UWB (10GHz) and radar applications (40GHz – 60GHz)
- RF front-end designs as high as 100GHz have been recently reported using a 65nm digital CMOS process (ISSCC 2008)

The MOS Transistor

nMOS device

symbol

- Substrate doping ≈ 10¹⁶ atoms/cm³
- Gate material : low resistivity polysilicon
- Gate SiO₂ thickness: 100 Å to only a few atoms in modern nm processes (SiO₂ to be replaced by high-k dielectric materials in deep nm processes)
- Conditions for proper operation of the nMOS device :

$$V_{SB} \ge 0$$

 $V_{DB} \ge 0$

The BS and BD diodes are always reverse – biased.

• The MOS transistor is a bilateral device but we always consider the condition :

$$V_{DS} \ge 0$$

Operation of the MOS Transistor

(i) $V_{GS} < 0$: holes are accumulated at the surface.

As V_{GS} increases, the holes concentration is reduced.

- (ii) $V_{GS} = V_{FB}$ (FB flat-band voltage) : The surface becomes electrically neutral (fig. (a))
- (iii) $V_{GS} > V_{FB}$: As V_{GS} increases, the depletion region under the gate is as deep as is around the S and D regions (fig. (b)). Electrons are now free to move in the channel : the surface is **inversed**.
- (iv) Depending on the V_{GS} value, three inversion regions are defined :
 - Weak
 - Moderate
 - Strong

Operation of the MOS Transistor - cont'd

The Body effect

• The body effect is caused by V_{SB} : an increase in the V_{SB} value increases the depletion regions under the S and D regions. Therefore, a higher V_{GS} value is now demanded in order for the inversion layer to become equally thick compared to the S and D regions.

The Drain Current

- A drain to source voltage is now applied (V_{DS} > 0)
 Thus: V_{DB} = V_{DS} + V_{SB}: the depletion region under the D region becomes deeper.
- A free electron approaching the D region is now swiftly pulled towards the drain. This phenomenon defines the drain current (I_D) with a conventional direction from the drain to the source.

The MOS Transistor: I – V Characteristics

The MOS Transistor: Operation in Strong Inversion

We mostly focus in strong inversion operation (V_{GS} is larger than V_T by 100 – 200 mV min.) In strong inversion, the following equations apply :

$$I_{D} = \begin{cases} K' \frac{W}{L} \Big[2(V_{GS} - V_{T}) V_{DS} - (1 + \delta) V_{DS}^{2} \Big], & V_{DS} \leq V'_{DS} \text{ (n o rsat.)} \\ k' \frac{W}{L} (V_{GS} - V_{T})^{2}, & V_{DS} \geq V'_{DS} \text{ (sat.)} \end{cases}$$

$$V'_{\rm DS} = \frac{V_{\rm GS} - V_{\rm T}}{1 + \delta}, \quad K' = \frac{1}{2} \mu C'_{\rm o\,x}$$
 $\mu = \text{carrier mobility}$
$$C'_{\rm ox} = \text{oxide capacitance per unit area}$$

$$k' = \frac{K'}{1 + \delta}$$
 $\delta = \text{between 0 and 1}$

Operation of the MOS Transistor: Body Effect

Threshold voltage
$$V_{\rm T} = V_{\rm TO} + \gamma (\sqrt{V_{\rm SB} + \varphi_{\rm B}} - \sqrt{\varphi_{\rm B}})$$

$$V_{TO} = V_{T} \Big|_{V_{SB}=0}$$

$$\gamma = \frac{\sqrt{2qN_{A}\epsilon_{S}}}{C'_{ox}}$$

q = electron charge

 N_A = body's doping concentration

 $\varepsilon_{\rm S}$ = Si permittivity

$$\phi_{\rm B} = 0.6 \text{V} \div 0.7 \text{V}$$

Operation of the MOS Transistor: Saturation Region

I_D dependence on V_{DS} in saturation region (channel length modulation)

$$I_{D} \approx k' \frac{W}{L} (V_{CS} - V_{T})^{2} \left(1 + \frac{V_{DS} - V_{DS}'}{V_{A}}\right), \quad V_{DS} > V_{DS}'$$

- V_A is a process dependent parameter, equivalent to the Early voltage of bipolar transistors
- V_A ~ L

MOS Transistor Modeling

Small - signal equivalent circuit : low - frequencies model

transconductance

body transconductance

output conductance

Small – signal equivalent circuit : low frequencies

Small – signal parameters in strong inversion

$$g_{m} = \begin{cases} 2K'\left(\frac{W}{L}\right)V_{DS} & \text{, no ns at.} \\ 2K'\left(\frac{W}{L}\right)V'_{DS} & \text{, sat.} \end{cases}$$

$$g_{mb} = bg_m$$
, sat. and nonsat., $b = \frac{\gamma}{2\sqrt{V_{SB} + \phi_B}}$

$$g_{d} = \begin{cases} 2K' \left(\frac{W}{L}\right) \left[V_{CS} - V_{T}(1+\delta)V_{DS}\right] & \text{nonsat.} \\ \approx \frac{I_{D}}{V_{A}} & \text{sat.} \end{cases}$$

Applying superposition : $\Delta I_D = g_m \Delta V_{C\!S} + g_{mb} \Delta V_{B\!S} + g_d \Delta V_{D\!S}$

Velocity Saturation

• Further increase in V_{GS} leads to high electric fields in the channel : electrons move at maximum speed υ_{sat} ($\approx 10^7$ cm/s)

• The transconductance reaches a maximum value at velocity saturation :

Overdrive voltage

- The value $(V_{GS} V_T)$ is often called overdrive voltage (V_{od}) .
- Typical values for V_{od} for operation in strong inversion are around 0.2V (low end) and 0.5V (high end).
- The max. V_{od} value for the transition between strong inversion and velocity saturation is proportional to the channel length L.

$$V_{od,\text{max}} = (V_{GS} - V_T)_{\text{max}} \approx 5L$$

nm CMOS: The challenge

Geometry (µm)	V _{DD} (V)	V _T (V)	V _{od,max} (V)
0.5	3.6	0.6	2.5
0.18	2	0.4	0.9
0.13	1.6	0.3	0.65
0.09	1	0.27	0.45
0.065	1	0.24	0.32

- As geometry shrinks, $V_{\text{od,min}}$ and $V_{\text{od,max}}$ approach each other : no margin left between strong inversion and velocity saturation.
- As geometry shrinks, the design of analog and RF ICs becomes more challenging in terms of biasing.

Small – signal equivalent circuit : moderate frequencies

The MOS device capacitances formed are shown in the figure. The following types of capacitances are formed:

(A) Overlap capacitances

$$C_{gse} = W d_{ov} C'_{ox}$$
$$C_{gde} = W d_{ov} C'_{ox}$$

(B) Junction capacitances

$$C_{bse} = C_{bde} = A_{S1} \frac{C'_{j01}}{\sqrt{1 + \frac{V_{SB}}{\phi_o}}} + A_{S2} \frac{C'_{j02}}{\sqrt{1 + \frac{V_{SB}}{\phi_o}}}$$

 A_{S1} = junction's bottom area

 A_{S2} = junction's sidewall area

 C'_{i0i} = unit area junction capacitance for $V_{SB} = 0$

 Φ_{o} = junction potential

Small – signal equivalent circuit : moderate frequencies – cont'd

(b): Small – signal equivalent circuit for moderate frequencies

(C) Intrinsic capacitances

where $C_{ox} = C'_{ox}(WL)$

C_{bsi}≈ bC_{gsi}

 $C_{bdi} \approx bC_{gdi}$

Based on the above definitions, the small – signal equivalent circuit of Fig. (b) for moderate frequencies is formed.

where $C_{xy} = C_{xyi} + C_{xye}$ C_{bb} , is the body-substrate capacitance and applies only to triple-well devices.

The MOS Transistor at High Frequencies

- The internal cutoff frequency f_{Ti}
 - The gate current at dc or low frequencies is practically zero.
 - At high frequencies, a capacitive gate current appears
 - Considering the intrinsic part of the transistor, the small signal equivalent circuit is derived.

 The internal (or intrinsic) cutoff frequency is defined as the value of f at which the amplitudes of drain and gate currents become equal.

MOS Transistor SPICE Models

- Most popular MOS transistor SPICE models
 - BSIM3v3
 - BSIM4
 - PSP
 - EKV
- For RF devices, a complete subcircuit is built around the intrinsic transistor model.
- SPICE like MOS transistor models usually exhibit non physical behavior due to poor implementation.
- Benchmark tests have been developed to reveal modeling problems.

Other MOS Devices

The pMOS transistor

The triple-well nMOS transistor

The MOS Transistor in Weak and Moderate Inversion

- In weak inversion, the transistor exhibits an exponential I_D – V_{GS} characteristic.
- In moderate inversion, no simple expression for the I-V characteristic can be denoted.

- The limits of the three regions of inversion (V_K, V_M, V_H) are process-dependent, closed formulae exist but are not handy.
- The lower limit (V_K, I_K) is the threshold where leakage currents are comparable to the drain current.

Το Τρανζίστορ ως Δίοδος

• Το MOS τρανζίστορ γίνεται στοιχείο δύο ακροδεκτών.

•
$$V_{\text{CS}} = V_{\text{DS}} \Rightarrow V_{\text{DS}} > V_{\text{CS}} - V_{\text{T}}$$
 άρα

το τρανζίστορ είναι ΠΑΝΤΑ στον κορεσμό.

$$I = k' \frac{W}{L} (V - V_T)^2$$
 \rightarrow δίοδος με τετραγωνική

Ι – V χαρακτηριστική

Μετατοπιστές – Διαιρέτες Τάσης

Μετατοπιστές τάσης (level shifters)

Διαιρέτες τάσης (voltage dividers)

Αν αυξηθεί το V_{DD} + V_{SS} , η γραμμή φόρτου γίνεται έτσι. Το σημείο λειτουργίας από Α γίνεται $B \to T\alpha \ V_x$ δεν αλλάζει πολύ

Βασικά Δομικά Στοιχεία Ενισχυτών – Αναστροφέας με Αντίσταση

Στον κορεσμό:

$$I_{D} = k' \left(\frac{W}{L}\right)_{1} \left(V_{IN} - V_{TO}\right)^{2}$$

$$V_{OUT} = V_{DD} + V_{SS} - RI_{D}$$

$$\Rightarrow V_{OUT} = V_{DD} + V_{SS} - Rk' \left(\frac{W}{L}\right)_{1} \left(V_{IN} - V_{TO}\right)^{2}$$

Αναστροφέας με Αντίσταση - συνέχεια

ΙΚΑΣ (σε χαμηλές συχνότητες) :

$$A_{o} = \frac{u_{out}}{u_{in}} = -\frac{(g_{m}u_{in})(r_{d}//R)}{u_{in}} = -g_{m}(r_{d}//R)$$

Για μεγάλη ενίσχυση χρειάζεται μεγάλο R, άρα μεγάλο εμβαδόν στο Ο.Κ. Μια καλύτερη λύση δίνεται παρακάτω.

Αναστροφέας CMOS

Αναστροφέας CMOS - συνέχεια

$$A_o \approx -\frac{g_{mN}}{g_{dN} + g_{dP}} \approx -\frac{2\sqrt{k_N' \left(\frac{W}{L}\right)_{\!\!N} I_D}}{\frac{I_D}{V_{\!AN}} + \frac{I_D}{V_{\!AP}}} = -\frac{2\sqrt{k_N' \left(\frac{W}{L}\right)_{\!\!N}} \left(\frac{W}{L}\right)_{\!\!N}}{\frac{1}{V_{\!AN}} + \frac{1}{V_{\!AP}}} \frac{1}{\sqrt{I_D}}$$

Για μεγάλο A_o , υποθ. σταθερό I_D και σταθερό $(W\!/L)_N$, χρειάζονται μεγάλα V_{AN} , V_{AP} , άρα μεγάλα L. Επίσης, για σταθερά W και L , $A_o \sim \frac{1}{\sqrt{I_D}}$.

Για μεγάλο A_o , χρειάζεται λοιπόν μικρό I_D άρα, για σταθερά W και L, χρειάζεται μικρό V_{GS} $-V_T$.

Αναστροφέας Cascode

Για περισσότερη ενίσχυση, η αγωγιμότητα φορτίου πρέπει να είναι μικρότερη από $g_{\rm dN}+g_{\rm dP}$. Χρησιμοποιούμε ένα στάδιο <u>cascode</u> :

$$g_{x} = \frac{g_{d1}}{\left(\frac{g_{m2}}{g_{d2}}\right)} \text{ KOI } g_{y} = \frac{g_{d4}}{\left(\frac{g_{m3}}{g_{d3}}\right)}$$

$$A_{o} = -\frac{g_{m1}}{g_{x} + g_{y}}$$

Με κοινό σώμα για τα M_3 , M_4 μπορούμε να χρησιμοποιήσουμε κοινό πηγάδι.

Ακόλουθος Πηγής (Source Follower)

Ακόλουθος Πηγής (Source Follower) - συνέχεια

Υπολογισμός κέρδους με ΙΚΑΣ

R=εσωτ. αντίσταση πηγής ρεύματος

$$A_o = \frac{g_m}{g_m + g_d + 1/R}$$

Αγνοούμε φαιν. Early και φαιν. σώματος

Differential Mode (DM)

Common Mode (CM)

$$V_{\text{OD}} \equiv V_{\text{O1}} - V_{\text{OI2}}$$
$$V_{\text{OC}} \equiv \frac{V_{\text{O1}} + V_{\text{O2}}}{2}$$

$$V_{ID} \equiv V_{I1} - V_{I2}$$

$$V_{IC} \equiv \frac{V_{I1} + V_{I2}}{2}$$

Το Διαφορικό Ζεύγος - συνέχεια

Κέρδος διαφ. σήματος
$$\,A_{\rm dm}^{}=\frac{V_{\rm od}^{}}{V_{\rm id}^{}}\,$$

Κέρδος κοινού σήματος
$$A_{cm} = \frac{V_{oc}}{V_{ic}}$$

Λόγος απόρριψης κοινού σήματος
$$(CMRR) = \frac{A_{dm}}{A_{cm}}$$

Για την εύρεση του A_{dm} :

$$i = g_{m} \frac{V_{id}}{2} \Rightarrow$$

$$V_{od} = -\left(g_{m} \frac{V_{id}}{2}\right)\left(\frac{1}{g_{L}}\right)$$

$$A_{dm} = -\frac{g_{m}}{g_{L}}$$

Το Διαφορικό Ζεύγος - συνέχεια

Για την εύρεση του A_{cm} :

Υποθ.
$$g_o \ll g_m$$

Δείτε το σαν ακολουθητή πηγής. $V_x \approx V_{ic}$

$$\Rightarrow i_{ss} = g_o V_x \approx g_o V_{ic}$$

$$V_{oc} = -\left(\frac{i_{ss}}{2}\right)\left(\frac{1}{g_L}\right) = -\frac{g_o V_{ic}}{2g_o}$$

$$A_{cm} \approx -\frac{g_o}{2g_L}$$

Το Διαφορικό Ζεύγος – Ανάλυση Μεγάλου Σήματος

0.25

Από KVL :
$$V_{i1}-V_{gsl}+V_{gs2}-V_{i2}=0$$

$$V_{gs}=V_{T}+\sqrt{\frac{2I_{d}}{k'(W/L)}}$$

άρα
$$V_{id} = V_{i1} - V_{i2} = \frac{\sqrt{I_{d1}} - \sqrt{I_{d2}}}{\sqrt{\frac{k'}{2} \frac{W}{L}}}$$

$$I_{d1} + I_{d2} = I_{TAIL}$$

αντικαθιστώντας :

οπότε

$$I_{d1} = \frac{I_{TAL}}{2} + \frac{k'}{4} \frac{W}{L} V_{id} \sqrt{\frac{4I_{TAL}}{k'(W/L)} - V_{id}^2}$$

$$V_{i\,d} \le \sqrt{2} \left(\sqrt{\frac{2I_{d1}}{k'(W/L)}} \right) \bigg|_{V_{i\,d}=0} = \sqrt{2} V_{ov} \Big|_{V_{i\,d}=0}$$

-0.25

Καθρέφτες Ρεύματος

- Οι καθρέφτες ρεύματος χρησιμοποιούνται για τη δημιουργία πόλωσης από ένα ρεύμα αναφοράς.
- Το κέρδος ρεύματος του καθρέφτη καθορίζεται από τις γεωμετρικές διαστάσεις των τρανζίστορ.
- Ιδανικά το κέρδος ρεύματος είναι ανεξάρτητο από τη συχνότητα.
- Ιδανικά το ρεύμα εξόδου είναι ανεξάρτητο της τάσης εξόδου (ιδανική πηγή ρεύματος).
- ΜΗ ΙΔΑΝΙΚΟΤΗΤΕΣ
 - Εξάρτηση του κέρδους ρεύματος από τη συχνότητα.
 - Εξάρτηση του ρεύματος εξόδου από την τάση (πεπερασμένη αντίσταση εξόδου).
 - Σφάλμα κέρδους (συστηματικό/τυχαίο)

Απλός Καθρέφτης MOS

$$\bullet \quad V_{GS2} = V_{GS1}$$

•
$$V_{\text{CS} 2} = V_{\text{T}} + \sqrt{\frac{2I_{\text{D2}}}{k'(W/L)_2}} = V_{\text{CS} 1} = V_{\text{T}} + \sqrt{\frac{2I_{\text{D1}}}{k'(W/L)_1}}$$

υποθέτοντας $g_d \rightarrow 0$ (αγνοούμε φαινόμενο Early)

• Έτσι :
$$\mathbf{I}_{\mathrm{D2}} = \frac{\left(\mathbf{W}/\mathbf{L}\right)_{\!\!2}}{\left(\mathbf{W}/\mathbf{L}\right)_{\!\!1}} \mathbf{I}_{\mathrm{D1}}$$

$$\frac{(W/L)_2}{(W/L)_1} = λόγος καθρεπτισμού$$

Ένταξη φαινομένου Early στον καθρέφτη ρεύματος

$$I_{D2} = \frac{(W/L)_2}{(W/L)_1} I_{D1} \left(1 + \frac{V_{DS2} - V_{DS1}}{V_A} \right)$$

Απλός Καθρέφτης MOS - συνέχεια

- Το συστηματικό σφάλμα ορίζεται ως $E = \frac{V_{DS2} V_{DSI}}{V_{A}}$
- Άρα η αλλαγή στο ρεύμα πόλωσης (I_{D2}) θα επηρρεάσει τη V_{DS2} και κατά συνέπεια θα μεταβάλλει το συστηματικό σφάλμα E.
- Η επίδραση της τάσης εισόδου στο ρεύμα πόλωσης:

$$V_{in} = V_{CS1} = V_T + V_{od}$$
 (overdrive oltag):

$$V_{od} \sim \sqrt{I_D}$$

• Τυχαίο σφάλμα:

Οφείλεται σε μη ταίριασμα μεταξύ των τρανζίστορ Μ1 και Μ2 κατά τη διαδικασία κατασκευής του ολοκληρωμένου κυκλώματος

• Συνδεσμολογία cascode:

Υπολογισμοί αντίστασης εξόδου $r_{\text{out}} \equiv \frac{u_x}{i_x}$ ΙΚΑΣ

• Η αγωγιμότητα εξόδου της συνδεσμολογίας cascode (g_{out}) είναι πολύ μικρότερη αυτής του απλού τρανζίστορ (g_d) .

Κασκοδικός Καθρέφτης MOS - συνέχεια

• Με βάση την προηγούμενη ανάλυση:

$$R_{out} = r_{d2} [1 + (g_{m2} + g_{mb2})r_{d1}] + r_{d1}$$

[έχει ληφθεί υπόψη και το φαινόμενο σώματος]

- Ο κασκοδικός καθρέφτης βοηθά να φτιαχτεί πηγή ρεύματος πιο κοντά στην ιδανική.
- Ακόμη μεγαλύτερη βελτίωση μπορεί να επιτευχθεί εάν χρησιμοποιηθεί διπλός κασκοδικός καθρέφτης.
- Μειονέκτημα είναι η δυσκολία πόλωσης των κυκλωμάτων όπου χρησιμοποιούνται κασκοδικοί καθρέφτες ρεύματος – ιδιαίτερα σε χαμηλές τάσεις τροφοδοσίας.

Καθρέφτης Ρεύματος Wilson

- Μηχανισμός αρνητικής ανάδρασης επιτυγχάνει τη σταθερότητα του ρεύματος εξόδου :
 - Υποθέτουμε ότι το Ιουτ αυξάνεται.
 - V_{GM1} αυξάνεται.
 - V_{GM3} αυξάνεται.
 - Αναγκαστικά V_{DM3} μειώνεται διότι I_{ref} σταθερό
 - Άρα V_{GM2} μειώνεται και I_{out} μειώνεται.
- Στο διπλανό σχήμα φαίνεται μια βελτιωμένη έκδοση του καθρέφτη ρεύματος Wilson.

Καθρέφτης Ρεύματος Wilson - συνέχεια

 Το συστηματικό σφάλμα κέρδους του απλού καθρέφτη Wilson δίνεται από τη σχέση:

$$E = \frac{V_{DS1} - V_{DS3}}{V_{A}} = -\frac{V_{CS2}}{V_{A}}$$

• Το τρανζίστορ Μ4 του βελτιωμένου καθρέφτη Wilson έρχεται να εξισώσει τις τάσεις V_{DS} και έτσι να ελαχιστοποιήσει το συστηματικό σφάλμα.

- Εάν χρειάζονται μικρά ρεύματα πόλωσης σε ένα κύκλωμα, τότε οι προαναφερθείσες συνδεσμολογίες καθρεφτών δεν ενδείκνυνται εάν θέλουμε χαμηλή κατανάλωση και περιορισμό του εμβαδού στην επιφάνεια του πυριτίου.
- Στην περίπτωση αυτή χρησιμοποιείται η πηγή ρεύματος Widlar του σχήματος.

- Επειδή το I_{out} εξαρτάται πολύ λιγότερο από το ρεύμα εισόδου και την τάση τροφοδοσίας γι' αυτό το κύκλωμα ονομάζεται <u>πηγή</u> ρεύματος και όχι καθρέφτης ρεύματος.
- Η ύπαρξη της αντίστασης R_2 δημιουργεί διαφορετική V_{GS} στο M2 από το M1 (κάτι που δεν ισχύει στους απλούς καθρέφτες). Έτσι το I_{out} μπορεί να είναι σημαντικά μικρότερο.

$$\sqrt{I_{\text{out}}} = \frac{-\sqrt{\frac{2}{k'(W/L)_2}} + \sqrt{\frac{2}{k'(W/L)_2} + 4R_2V_{\text{odl}}}}{2R_2}$$

Απόκριση Συχνότητας - Αναστροφέας

$$g_t = g_{dN} + g_{dP}$$
, $C_t = C_{bdP} + C_{bdN} + C_{gdP} + C_L$

Απόκριση Συχνότητας - Αναστροφέας

Μετατροπή κατά Norton:

$$V_{\text{OUT}} = -[(g_{\text{m}} - s C_{\text{gdN}})V_{\text{in}}] \frac{1}{g_{\text{t}} + s(C_{\text{t}} + C_{\text{gdN}})}$$

$$A(s) = \frac{V_{OUT}}{V_{IN}} = -\frac{g_{m} - sC_{gdN}}{g_{t} + s(C_{t} + C_{gdN})} = -\left(\frac{g_{m}}{g_{t}}\right) \frac{1 - s(C_{gdN}/g_{m})}{1 + s\left(\frac{C_{t} + C_{gdN}}{g_{t}}\right)} = A_{o} \frac{1 - \frac{s}{Z}}{1 - \frac{s}{p}}$$

$$A_{o} = -rac{g_{m}}{g_{t}}$$
 $z = rac{g_{m}}{C_{gdN}}$ $p = -rac{g_{t}}{C_{t} + C_{gdN}}$ Μηδενικό στο θετικό ημιεπίπεδο!

$$p = -\frac{g_t}{C_t + C_{gdN}}$$

Απόκριση Συχνότητας – Ακόλουθος Πηγής

$$g_t = g_d + \frac{1}{R}$$

$$C_t = C_{bd} + C_L + C_{bb},$$

Απόκριση Συχνότητας - Ακόλουθος Πηγής

$$A(s) = \frac{V_{OUT}}{V_{IN}} = A_o \left(\frac{1 - \frac{s}{z}}{1 - \frac{s}{p}} \right)$$

$$A_{o} = \frac{g_{m}}{g_{m} + g_{t}}, \quad z = -\frac{g_{m}}{C_{g \, s}}, \quad p = -\frac{g_{m}}{C_{g \, s} + C_{t}} \left(1 + \frac{g_{t}}{g_{m}}\right) \approx -\frac{g_{m}}{C_{g \, s} + C_{t}} \quad \text{av} \quad g_{m} >> g_{t}$$

Στις χαμηλές συχνότητες, η χωρητικότητα εισόδου είναι : $C_{i \ n} \approx C_{g d} + C_{g s} (1-A_o) \approx C_{g d} \quad \alpha \nu \quad A_o \approx 1$

Αγωγιμότητα εξόδου :
$$g_{\text{out}} = \frac{V_{\text{x}}}{I_{\text{x}}} = g_{\text{m}} + g_{\text{t}} \approx g_{\text{m}} \; , \quad \text{an} \quad g_{\text{m}} >> g_{\text{t}}$$

Απόκριση Συχνότητας – Στάδιο Cascode

Ολική αγωγιμότητα στον κόμβο εξόδου:

$$g_{\text{out}} = g_{\text{v}} + g_{\text{w}}$$

$$g_{v} = \frac{g_{d1}}{g_{m2}/g_{d2}}, \quad g_{w} = \frac{g_{d4}}{g_{m3}/g_{d3}}$$

Ολική χωρητικότητα στον κόμβο εξόδου:

$$\mathbf{C}_{\rm t} = \mathbf{C}_{\rm gd2} + \mathbf{C}_{\rm bd2} + \mathbf{C}_{\rm gd3} + \mathbf{C}_{\rm db3} + \mathbf{C}_{\rm L}$$
 tuckón cárthta poptóu

Βαθμίδες Εξόδου - Ο Ακόλουθος Πηγής

$$V_i = V_{gs1} + V_o = V_{ov1} + V_{T1} + V_o$$

$$V_{i} = V_{o} + V_{TO} + \gamma \left(\sqrt{2\phi_{\rm B} + \underbrace{V_{o} + V_{DD}}_{V_{SB}}} - \sqrt{2\phi_{\rm B}} \right) + \sqrt{\frac{2\left(I_{Q} + \frac{V_{o}}{R_{L}}\right)}{k'(W/L)_{1}}}$$

$$V_i|_{V_o=0} = V_{TO} + \gamma \left(\sqrt{2\phi_{\rm B} + V_{DD}} - \sqrt{2\phi_{\rm B}} \right) + \sqrt{\frac{2I_Q}{k\prime(W/L)_1}}$$

κλίση:
$$\frac{V_o}{V_i} = \frac{g_m R_L}{1 + (g_m + g_{nb})R_L}$$

για
$$R_L \rightarrow \infty$$

$$\frac{V_{o}}{V_{i}} = \frac{g_{m}}{g_{m} + g_{nb}} = \frac{1}{1 + x}$$

όπου $x = 0.1 \div 0.3$ άρα κλίση από $0.7 \div 0.9$

Παραμόρφωση Ακόλουθου Πηγής

$$V_i = V_I + v_i = \sum_{n=0}^{\infty} \frac{f^{(n)}(V_o = V_O)(V_o - V_O)^n}{n!}$$

$$V_i = f(V_o) = V_o + V_{TO} + \gamma \left(\sqrt{V_o + V_{DD} + 2\varphi_B} - \sqrt{2\varphi_B} \right) + V_{ov1}$$

οπότε
$$f'(V_o) = 1 + \frac{\gamma}{2} (V_o + V_{DD} + 2\phi_B)^{-1/2}$$

$$f''(V_o) = -\frac{\gamma}{4} (V_o + V_{DD} + 2\phi_B)^{-3/2}$$

$$f'''(V_o) = \frac{3\gamma}{8} (V_o + V_{DD} + 2\phi_B)^{-5/2}$$

$$V_i = \sum_{n=0}^{\infty} b_n (v_o)^n$$
 όπου $b_n = \frac{f^n (V_o = V_o)}{n!}$

Παραμόρφωση Ακόλουθου Πηγής - συνέχεια

$$v_i = \sum_{n=1}^{\infty} b_n (v_o)^n$$

$$v_o = \sum_{n=1}^{\infty} a_n (v_i)^n = a_1 v_i + a_2 v_i^2 + a_3 v_i^3 + \cdots$$

Αντικαθιστώντας έχουμε:

$$v_i = b_1(a_1v_i + a_2v_i^2 + a_3v_i^3 + \cdots) + b_2(a_1v_i + a_2v_i^2 + a_3v_i^3 + \cdots)^2 + \cdots$$

Εξισώνοντας τους συντελεστές, βρίσκουμε:

$$1 = b_1 \alpha_1$$
$$0 = b_1 \alpha_2 + b_2 \alpha_1^2$$

• • •

οπότε
$$\alpha_2 = -\frac{b_2}{b_1^3}$$

$$\alpha_1 = \frac{1}{b_1}$$

Παραμόρφωση Ακόλουθου Πηγής - συνέχεια

Αντικαθιστώντας τέλος τις τιμές για τα b_n έχουμε :

$$a_1 = \frac{1}{1 + \frac{\gamma}{2} (V_O + V_{DD} + 2\varphi_B)^{-1/2}}$$

$$a_2 = \frac{\frac{\gamma}{8} (V_O + V_{DD} + 2\varphi_B)^{-3/2}}{\left(1 + \frac{\gamma}{2} (V_O + V_{DD} + 2\varphi_B)^{-1/2}\right)^3}$$

Με βάση τα παραπάνω, υπολογίζεται η παραμόρφωση για ημιτονοειδές σήμα εισόδου $v_i = \widehat{v_i} \sin \omega t$:

$$v_o = a_1 \hat{v_i} \sin \omega t + a_2 \hat{v_i}^2 \sin^2 \omega t + a_3 \hat{v_i}^3 \sin^3 \omega t + \dots =$$

$$a_1 \hat{v}_i \sin \omega t + a_2 \frac{\hat{v}_i^2}{2} (1 - \cos 2\omega t) + a_3 \frac{\hat{v}_i^3}{4} (3 \sin \omega t - \sin 3\omega t) + \cdots$$

$$HD_2 = \frac{\gamma}{16} \frac{(V_O + V_{DD} + 2\varphi_B)^{-3/2}}{\left(1 + \frac{\gamma}{2}(V_O + V_{DD} + 2\varphi_B)^{-1/2}\right)^2}$$

γραμμική εξάρτηση από το πλάτος του σήματος εισόδου $HD_2 = \frac{a_2 \widehat{v_i}^2}{2} \frac{1}{a_1 \widehat{v_i}} = \frac{1}{2} \frac{a_2}{a_1} \widehat{v_i}$