MA3104

Linear Algebra II

Autumn 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Contents

1	$\operatorname{Lin}_{f e}$	ear operators on a vector space	1
	1.1	Preliminaries	1
	1.2	Field ideals	1
	1.3	Eigenvalues and eigenvectors	2
	1.4	Annihilating polynomials	3

1 Linear operators on a vector space

1.1 Preliminaries

We discuss finite dimensional vector spaces V over some field \mathbb{F} , along with linear operators $T: V \to V$. We also assume that V has the inner product $\langle \cdot, \cdot \rangle$.

Theorem 1.1. Let $\mathcal{L}(V)$ be the set of all linear operators on the vector space V. Then, $\mathcal{L}(V)$ is a linear algebra over the field \mathbb{F} .

1.2 Field ideals

Definition 1.1. Let \mathbb{F} be a field, and let $\mathbb{F}[x]$ be the ring of polynomials with coefficients from \mathbb{F} . An ideal in $\mathbb{F}[x]$ is a subspace I such that $fg \in I$ for all $f \in \mathbb{F}[x]$, $g \in I$.

Definition 1.2. Given $p \in \mathbb{F}[x]$, the set

$$I_p = \mathbb{F}[x]p = \{fp : f \in \mathbb{F}[x]\}$$

is called the principal ideal generated by p.

Theorem 1.2. Every ideal in $\mathbb{F}[x]$ is a principal ideal.

Remark. This is analogous to the theorem which states that every subgroup of a cyclic group is cyclic. Both lead to a precise definition of the greatest common divisor.

Corollary 1.2.1. Let M be a non-trivial ideal in $\mathbb{F}[x]$. Then, there exists a unique monic polynomial $p \in \mathbb{F}[x]$ (leading coefficient 1) such that M is precisely the principal ideal generated by p.

1.3 Eigenvalues and eigenvectors

Definition 1.3. Let $T \in \mathcal{L}$ and $\lambda \in \mathbb{F}$. We say that λ is an eigenvalue or characteristic value of T if T \boldsymbol{v} for some non-zero $\boldsymbol{v} \in V$. The vector \boldsymbol{v} is called an eigenvector of T.

Theorem 1.3. Let $T \in \mathcal{L}$ and $\lambda \in \mathbb{F}$. The following are equivalent.

- 1. λ is an eigenvalue of T.
- 2. $T \lambda I$ is singular.
- 3. $\det(\mathbf{T} \lambda \mathbf{I}) = 0$.

Definition 1.4. The polynomial det(T-xI) is called the characteristic polynomial of T.

Definition 1.5. Two linear operators $S, T \in \mathcal{L}(V)$ are similar if there exists an invertible operator $X \in \mathcal{L}(V)$ such that $S = X^{-1} T X$.

Remark. Similarity is an equivalence relation on $\mathcal{L}(V)$, thus partitioning it into similarity classes.

Lemma 1.4. Similar linear operators have the same characteristic polynomial.

Proof. Let S, T be similar with $S = X^{-1} T x$. Then,

$$det(S - x I) = det(X^{-1} T X - x X^{-1} X)
= det(X^{-1}) det(T - x I) det(X)
= det(T - x I).$$

Definition 1.6. A linear operator $T \in \mathcal{L}(V)$ is diagonalizable if there is a basis of V consisting of eigenvectors of T.

Remark. The matrix of T with respect to such a basis is diagonal.

1.4 Annihilating polynomials

Definition 1.7. An polynomial p such that p(T) = 0 for a given linear operator $T \in \mathcal{L}V$ is called an annihilating polynomial of T.

Lemma 1.5. Every linear operator $T \in \mathcal{L}(V)$, where V is finite dimensional, has a non-trivial annihilating polynomial.

Proof. Note that the operators $1, T, T^2, \ldots, T^{n^2} \in \mathcal{L}(V)$, of which there are $n^2 + 1$, are linearly dependent, since dim $\mathcal{L}(V) = n^2$.

Lemma 1.6. The annihilating polynomials of T form an ideal in $\mathbb{F}[x]$.

Definition 1.8. The minimal polynomial of T is the unique monic generator of the annihilating polynomials of T.

Remark. The minimal polynomial of T divides all its annihilating polynomials.

Theorem 1.7. The minimal polynomial and characteristic polynomial of T share the same roots, except for multiplicities.

Proof. Let p be the minimal polynomial of T and let f be its characteristic polynomial.

First, let $\lambda \in \mathbb{F}$ be a root of the minimal polynomial, i.e. $p(\lambda) = 0$. The Division Algorithm guarantees

$$p = (x - \lambda)q$$

for some monic polynomial q. By the minimality of the degree of p, we have $q(T) \neq 0$, hence there exists non-zero $\mathbf{v} \in V$ such that $q(T)\mathbf{v} \neq \mathbf{0}$. Thus,

$$(T - \lambda I)q(T)v = 0$$

which shows that λ is an eigenvalue, i.e. a root of the characteristic polynomial f.

Next, suppose that λ is a root of the characteristic polynomial, i.e. $f(\lambda) = 0$. Thus, λ is an eigenvalue of T hence there exists non-zero $\mathbf{v} \in V$ such that $\mathrm{T}\mathbf{v} = \lambda\mathbf{v}$. This gives $p(\mathrm{T})\mathbf{v} = p(\lambda)\mathbf{v}$, but $p(\mathrm{T}) = 0$ identically. This forces $p(\lambda) = 0$.

Theorem 1.8 (Cayley-Hamilton). The characteristic polynomial of T annihilates T.

Corollary 1.8.1. The minimal polynomial of T divides its characteristic polynomial.

Corollary 1.8.2. The minimal polynomial of T in a finite-dimensional vector space V is at most dim V.