Computer Graphics

Transformations

Subtopics

Basics

Primitives

Homogeneous Coordinates

Transformations

Linear Transformations

Properties

Linear Combination

Scaling

Rotation

Affine Transformations

Definition

Translation Matrix

Rotation Matrices

Combining Transformations

Relative Frames

Points

Vectors

Frame Change Matrix

General Form

API

Basics - Primitives

We use POINTS - as vectors (x,y,z,w) - to represent geometries.

These can represent:

INPUT: ${p_1, p_2, ..., p_k}$

Points List N points - no lines

Line List (N / 2) lines

Line Strip (N - 1) lines

Triangle List (N / 3) triangles

Triangle Strip (N - 2) triangles

Basics - Homogeneous Coordinates

Note that we are representing these points as a vector of 4 components v = (x,y,z,w)

The w component, denotes whether we are transforming a:

- POINT (x, y, z, 1) - actual location in the coordinates plane

- VECTOR (x, y, z, 0) - only represent magnitude and direction

The transformations can be homogeneously applied to 4x4 matrices just as we do it for 3x3

Note that given two points, p_1 and p_2 , if we subtract them, we will obtain a vector v. Conversely, if we subtract a vector v from p_1 we will obtain a point.

This indicates that properties hold.

Basics - Transformations

Set of triangles which when combined, form the exterior shell of objects.

Linear Transformation - Properties

Given a function t(u) = u', a linear transformation corresponds to such functions on which the following properties hold:

$$t(u + v) = t(u) + t(v)$$
$$t(ku) = kt(u)$$

With some manipulation:

$$t(au + bv + cw) = t(au + (bv + cw))$$

= $at(u) + t(bv + cw)$
= $at(u) + bt(v) + ct(w)$

Linear Transformation - Linear Combination

Now, let $u = (u_1, u_2, u_3)$, $u' = (u_1', u_2', u_3')$... what will be get if we do:

$$t(u) = x*t(u) + y*t(u') + z*t(u'')$$

=
$$(x \ y \ z)$$
 $\begin{pmatrix} u_1 & u_2 & u_3 \\ u'_1 & u'_2 & u'_3 \\ u''_1 & u''_2 & u''_3 \end{pmatrix}$ We obtain the matrix representation of a linear combination

```
= (x(u_1 + u_2 + u_3), y(u_1' + u_2' + u_3'), z(u_1'' + u_2'' + u_3''))
```

Linear Transformation - Scaling

Changing the size of an object.

Given a set of vectors and a scalar value k, we simply scale its components:

$$k(v) = (k^*v_x, k^*v_y, k^*v_z)$$

Following the linear transformation properties:

$$k(u + v) = (k(u_x + v_x), k(u_y + v_y), k(u_z + v_z))$$

$$= (ku_x + kv_x, ku_y + kv_y, ku_z + kv_z)$$

$$= (ku_x, ku_y, ku_z) + (kv_x, kv_y, kv_z)$$

$$= k(u) + k(v)$$

We can derive a matrix representation.

$$S * E$$
, where $E = (e_1, e_2, e_3)$

R³ Standard Basis

with inverse:

Linear Transformation - Scaling

Scaling Matrices:

$$S*(e_{1}, e_{2}, e_{3}, 1) = S*\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} s & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & s & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{vmatrix} 1/s & 0 & 0 & 0 \\ 0 & 1/s & 0 & 0 \\ 0 & 0 & 1/s & 0 \\ 0 & 0 & 0 & 1/s \end{vmatrix}$$

For example: given two points $p_1 = (1, 1, 2)$ and $p_2 = (5, 3, 1)$. We can scale them by a factor of (2, 2, 1) the following way:

$$(-1,1,2,1) * \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = (-2,2,4,1) (5,3,1,1) * \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = (10,6,2,1)$$

Before jumping into 3D - every rotation happens in 2-axes, while 1 always remains still. Let's take a look at 2D rotations first:

If then
$$x = r\cos(t) \qquad x' = r\cos(t + a) = r\cos(t)\cos(a) - r\sin(t)\sin(a) \qquad = x\cos(a) - y\sin(a)$$
$$y = r\sin(t) \qquad y' = r\sin(t + a) = r\sin(t)\cos(a) + r\cos(t)\sin(a) \qquad = y\cos(a) + x\sin(a)$$

With matrices:

$$\begin{array}{c} \text{counter-clockwise} \to & (x,y) & \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta & \\ \\ \text{clockwise} \to & (x,y)^T & \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta & \\ \end{array}$$

We will move a point or vector around an axis (fixed) clockwise.

First of, let $r_a(\mathbf{v}, \theta)$ be the rotation of a vector \mathbf{v} , around an axis \mathbf{a} , θ degrees.

Observe from the picture on the left:

v is the vector we want to rotate around a But in reality, we will end rotating a vector perpendicular to a in 2D!

- 1. norm(a) = n such that ||n|| == 1
- 2. $p = v dot(v,n) n = v proj_{p}(v)$
- 3. $orth(p) = (p \times n)$
- 4. $r_n(p,\theta)$

Finally:
$$r_a(v,\theta) = v + r_n(p,\theta)$$

$$r_n(p,\theta) = \cos(\theta)^*p + \sin(\theta)^* \text{orth}(p)$$

Notice that the ||orth(p)|| == ||n x p|| == ||p||

Finally if

$$R_{a}(v,\theta) = \operatorname{proj}_{n}(v) + r_{n}(p,\theta)$$

$$= \operatorname{dot}(n,v) + \operatorname{r}(p,\theta) + \operatorname{sin}(\theta) + \operatorname{sin$$

Finally, if we apply the equation to the standard basis, we obtain the general rotation matrix on an arbitrary axis:

$$c = cos(q)$$

$$s = sin(q)$$

$$t = (1-c)$$

$$c+tx^2$$

$$txy+sz$$

$$txy+sz$$

$$txz+sy$$

$$txz+sy$$

$$txz+sy$$

$$txz+sy$$

$$txz+sy$$

$$txz+sy$$

$$txz+sy$$

$$txz+sy$$

We can compute the rotation matrix on an arbitrary axis by replacing x y z and t

Example, let's rotate u, q degrees around the x axis such that $x = e_1 (1,0,0)$

We obtain the rotation matrix of
$$R_{e1}(q) \longrightarrow R_{x}(q) = u^{*}$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & c & s \\ 0 & -s & c \end{pmatrix}$$

Furthermore, for origin rotations, we let n, of R_n , be (1,0,0), (0,1,0) and (0,0,1) we obtain:

$$R_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix} \qquad R_{y} = \begin{pmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{pmatrix} \qquad R_{z} = \begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R_{y} = \begin{pmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{pmatrix}$$

$$R_{z} = \begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Note how the row corresponding to the axis we are rotating around, doesn't change!

The following is an example of $R_{V}(n)$ by 45 degrees:

$$R_{y}(n,45) = \begin{pmatrix} \cos 45 & 0 & -\sin 45 \\ 0 & 1 & 0 \\ \sin 45 & 0 & \cos 45 \end{pmatrix} \longrightarrow \begin{pmatrix} \sqrt{2}/2 & 0 & -\sqrt{2}/2 \\ 0 & 1 & 0 \\ \sqrt{2}/2 & 0 & \sqrt{2}/2 \end{pmatrix}$$

Example:

$$R_{y}(u,45) = u * \begin{pmatrix} \sqrt{2/2} & 0 & -\sqrt{2/2} \\ 0 & 1 & 0 \\ \sqrt{2/2} & 0 & \sqrt{2/2} \end{pmatrix} = (2\sqrt{2/2}, 1, 0)$$

$$R_{y}(v,45) = v * \begin{pmatrix} \sqrt{2/2} & 0 & -\sqrt{2/2} \\ 0 & 1 & 0 \\ \sqrt{2/2} & 0 & \sqrt{2/2} \end{pmatrix} = (-2\sqrt{2/2}, -1, 0)$$

Affine Transformations - Definition

Simply a linear transformation AND a translation.

Let t(v) be a linear transformation. Then $t_{affine}(v) = t(v) + b$, hence:

Homogeneous Coordinates

$$t(v) + b = (x,y,z) \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} + (b_x,b_y,b_z) = t(v) + b = (x,y,z,w) \begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ b_x & b_y & b_z & 1 \end{pmatrix}$$

Note that if w = 0, then the translation would not affect a vector. Otherwise, we translate the point

Affine Transformations - Translation

Given a set of point $\langle p_1, p_2, ..., p_k \rangle$ and a vector b, we can displace p_i in direction b:

Any affine translation can be achieved with the following matrix:

With inverse:

$$p_{i}^{*} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ b_{x} & b_{y} & b_{z} & 1 \end{pmatrix} = ((p_{x} + b), (p_{y} + b), (p_{z} + b), (p_{w} * 1)) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -b_{x} & -b_{y} & -b_{z} & 1 \end{pmatrix}$$

Affine Transformations - Rotation

Rotation Matrices using homogeneous coordinates:

$$R_{x} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & \sin\theta & 0 \\ 0 & -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad R_{y} = \begin{pmatrix} \cos\theta & 0 & -\sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ \sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad R_{z} = \begin{pmatrix} \cos\theta & \sin\theta & 0 & 0 \\ -\sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_{y} = \begin{pmatrix} \cos\theta & 0 & -\sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ \sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_{z} = \begin{pmatrix} \cos\theta & \sin\theta & 0 & 0 \\ -\sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Because R_n is orthonormal, for any rotation matrix R_n , its inverse is $R^{-1} = R_n^T$

For an arbitrary axis, is the same criteria:

Convention - rotate on:

у	yaw
Х	pitch
Z	roll

Affine Transformations - Compound Transformations

Here we applied the following transformations:

- Scale p_i by a ½ factor. Rotate p_i by 45 degrees
- Translate p_i (x,y,z,w)

These can be expressed:

$$||(R_p(S(x,y,z,w)))T| = ||(x,y,z,w)(SRT)||$$
step-by-step compound

Recall that each transformation takes the form: p,T, where T is the transformation matrix. Let SRT = $C \rightarrow 2$ multiplications

Clearly both methods are mathematically equivalent, due to the associative (not commutative) nature of matrices. In practice assume there is an object with k points:

- step-by-step:
- compound:

Relative Frames - Vectors

Recall that vector do not have a location in the frame, but rather, they have length and magnitude, which need to translate accordingly to the other frames.

If u and v are unit vectors aiming along each respective axis, then $p_a = (u_a x + v_a y)$ and $p_b = (u_b x + v_b y)$

If
$$p_a = (ux + vy + qz)$$
 then $p_b = (u'x + v'y + q'z)$

Relative Frames - Points

Given a point's coordinates, relative to a frame, how can be identify the coordinates of the same element (unchanged) relatives to a different frame?

Intuitively, given a point relative to a frame A, we can calculate its coordinates in another frame B by adding the difference of origins in between frames.

$$p_a(u_a x + v_a x + q_a z) = p_b(u_b x + v_b x + q_b z) + Q_b$$

 $q(x, y, z) \rightarrow origin of the relative frame b$

Relative Frames - Frame Change Matrix

Another advantage of using homogeneous coordinates, is that we could handle transformations of points and vectors the same way the following way:

$$p' = xu' + yv' + zs' + wQ$$

If w is 0, then the product is just as if we are transforming the vector, otherwise, it moves the point.

Note how that is the following linear combination:

$$(x , y , z , w) * \begin{pmatrix} \leftarrow & u & \rightarrow \\ \leftarrow & v & \rightarrow \\ Q_x & Q_y & Q_z & 1 \end{pmatrix} = (x' , y' , z' , w')$$
Note that for u , v and z, the fourth component is always 0.

Relative Frames - Frame Change Matrix

As an example, let us compute the matrix which will express $p_a(1,-2,0)$ and $q_a(1,2,0)$ in p_b terms. We know that $Q_b(-6,2,0)$, $u_b(1/\sqrt{2},1/\sqrt{2},0)$, $v_b(-1/\sqrt{2},1/\sqrt{2},0)$ and $w_b(0,0,1)$.

$$p_{a} (1, -2, 0, 1) * \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -6 & 2 & 0 & 1 \end{pmatrix} = p_{b} (-3.8, 1.2, 0, 1)$$

$$q_{a} (1, 2, 0, 0) * \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -6 & 2 & 0 & 1 \end{pmatrix} = p_{b} (-0.7, 2.1, 0, 0)$$

Relative Frames - Computation

Given a point p_A , assume we want to transform it to a relative point p_C

Let A , B , and C be the frames, with $A_{\rm B}$ and $A_{\rm C}$ being their transformation matrix, and G being a transformation matrix from $A_{\rm B}$ to $B_{\rm C}$

Step-by-step:

 $(p_A^*A_B)^*A_C \rightarrow p_C$ i * 2 multiplications

Combined:

 $(p_A^*G) \rightarrow p_C$ i multiplications

Relative Frames - Two-ways conversions

Recall from the matrices properties, that:

$$p_b = p_a A$$

$$p_b A^{-1} = p_a A A^{-1}$$

$$p_b A^{-1} = p_a I$$

$$p_b A^{-1} = p_a$$

Although the same principle is applied to other operations, we can see how nicely it works for frame transformations.

Do not forget that $G = B^{-1}A^{-1}$

Summary

The following is a summary of the transformations presented thus far:

$$at(x,y,z,w) = xt(i) + yt(j) + zt(k) + wb \longrightarrow (x,y,z,w) * \begin{pmatrix} & & t(i) & \longrightarrow \\ & & t(j) & \longrightarrow \\ & & t(k) & \longrightarrow \\ & b_x & b_y & b_z & 1 \end{pmatrix}$$

$$p_{b}(x',y',z',w') = xu' + yv' + zs' + wQ_{b} \longrightarrow (x,y,z,w) * \begin{pmatrix} & & u & \longrightarrow \\ & & v & \longrightarrow \\ & & s & \longrightarrow \\ Q_{x} & Q_{y} & Q_{z} & 1 \end{pmatrix}$$

API

DirectXMath provides:

XMMatrixScaling
XMMatrixScalingFromVector
XMMatrixRotation[X,Y,Z]
XMMatrixRotationAxis
XMMatrixTranslation

XMMatrixTranslationFromVector

XMVector3TransformCoord

XMVector3TransformNormal

- Creates a scaling matrix

- "but using the components of a vector

- Clockwise R_[x,y,z]

Rotates an angle around an axis n

Creates just a translation matrix

- "but using the components of a vector

- Transforms points w=1

Transforms vectors w=0

All these transformations can be done with XMVector4Transform