Lab 4 (assignment date: 2018/04/25; due date 2018/05/08)

Image Restoration

- 1. Remove the noise from the input images Q4_1_1.tif, Q4_1_2.tif, Q4_1_3.tif and Q4_1_4.tif. Submit your code and the output images with file names of Q411_学号.m and Q411_学号.tif, etc. Explain what method is used to each of the images.
- 2. Image Q4_2.tif was degraded from an original image due to the atmosphere turbulence given on slide 65 with k = 0.0025. Restore the original image from the input Q4_2.tif by using full inverse filtering, radially limited inverse filtering and Wiener filtering. Submit your code and the output images with file names of Q42_学号.m and Q42_学号.tif, etc. Discuss how the parameters, if any, are determined, and the different effects by using the different algorithms.

Additional question (with additional marks)

- 3. Restore the original images from the inputs Q4_3_1.tif, Q4_3_2.tif and Q4_3_3. Submit your code and the output images with file names of Q431_学号.m and Q431_学号.tif, etc. Explain what method is used to restore each of the images.
- Discuss the following, but NOT limited to the following:
 - 1. Slide 27 shows the results using contraharmonic filters. Why the algorithms thins the dark part for Q>0, and thickens the black part for Q<0?
- 2. Slide 38 shows the results using adaptive local noise reduction filters. A global variance σ^2_{η} of the image has to be estimated. What's the effect or what's the consequence if the estimated σ^2_{η} is larger than the actual global variance? What if smaller?
- Send your codes and report to
- 11749181@mail.sustc.edu.cn 助教马定妃
- Image files are named accordingly.