ĐỒ HỌA 3D BIẾN ĐỔI QUAN SÁT

Biến đối quan sát là gì?

Chuyển tọa độ của các đối tượng từ hệ tọa độ độ thế giới thực sang hệ tọa độ quan sát (tọa độ camera).

hệ tọa độ camera

hệ tọa độ thế giới thực

Mô tả camera

Anh hưởng của các tham số

VRP vị trí camera

VRP(400, 0, 200)

VRP(800, 0, 400)

Ảnh hưởng của các tham số

v_{look} hướng ngắm

ngắm gốc (0, 0, 0)

ngắm điểm (0, 100, 0)

Ảnh hưởng của các tham số

v_{up} hướng trên

Xây dựng hệ tọa độ camera

Gốc của hệ tọa độ VRP

Vector đơn vị

$$ec{\mathbf{n}} = -rac{ec{\mathbf{v}}_{\mathsf{look}}}{\|ec{\mathbf{v}}_{\mathsf{look}}\|}$$

$$\vec{u} = \frac{\vec{v}_{up} \times \vec{n}}{\left\| \vec{v}_{up} \times \vec{n} \right\|}$$

$$\vec{v} = \vec{n} \times \vec{u}$$

Phép biến đổi về hệ tọa độ camera

1. Tịnh tiến

Phép biến đổi về hệ tọa độ camera

2. Quay

Phép biến đổi về hệ tọa độ camera

Công thức

Phép biến đổi quan sát = Tịnh_tiến + Quay.

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -VRP_{X} & -VRP_{Y} & -VRP_{Z} & 1 \end{pmatrix}, R = \begin{pmatrix} u_{x} & v_{x} & n_{x} & 0 \\ u_{y} & v_{y} & n_{y} & 0 \\ u_{z} & v_{z} & n_{z} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

và

$$M = T.R = \begin{pmatrix} u_x & v_x & n_x & 0 \\ u_y & v_y & n_y & 0 \\ u_z & v_z & n_z & 0 \\ -\overline{VRP}.\vec{u} & -\overline{VRP}.\vec{v} & -\overline{VRP}.\vec{n} & 1 \end{pmatrix}$$

Cách chuyển tọa độ

Cài đặt


```
TAffine3D LookAt3D (TPoint3D vc, TPoint3D ve, TPoint3D vup)
{
       TAffine3D T;
       TPoint3D u, v, n;
       n = Norm(ve-vc);
       u = Norm(vup * n);
       v = n * u;
       T.M[0][0] = u.x; T.M[0][1] = v.x;
       T.M[1][0] = u.y; T.M[1][1] = v.y;
       T.M[2][0] = u.z; T.M[2][1] = v.z;
       T.M[3][0] = -vc^u; T.M[3][1] = -vc^v;
       T.M[0][2] = n.x; T.M[0][3] = 0;
       T.M[1][2] = n.y; T.M[1][3] = 0;
       T.M[2][2] = n.z; T.M[2][3] = 0;
       T.M[3][2] = -vc^n; T.M[3][3] = 1;
       return T;
```