Appunti di Topologia Algebrica

Simone Riccio

31 maggio 2025

Indice

1	Gruppo Fondamentale	1
	1.1 Motivazione	1
2	Rivestimenti	6

1 Gruppo Fondamentale

1.1 Motivazione

Una delle motivazioni che porta a definire il gruppo fondamentale è la necessità di distinguere due spazi topologici a meno di omeomorfismo.

Esempio 1.1.

Si consideri il disco

$$D^n := \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$$

Al variare di n naturale i D^n non sono intuitivamente omeomorfi, tuttavia dimostrarlo usando solo la topologia generale è difficile.

È semplice mostrare che $D^1 \not\cong D^n$ per $n \geq 2$, usando l'insieme delle componenti connesse. Infatti, per ogni $x \in D^n$ lo spazio topologico $D^n \setminus \{x\}$ è connesso per ogni $n \geq 2$, mentre $D^1 \setminus \{x\}$, essendo il segmento [-1,1] senza un punto, ha due componenti connesse.

Tale argomentazione non funziona già per provare a distinguere D^2 dai D^n con $n \ge 3$. Introduciamo quindi il gruppo fondamentale, che permetterà in futuro di distinguerli tutti.

Definizione 1.1 (Omotopia).

Date due funzioni continue $f, g: X \to Y$ tra spazi topologici, si dice che f e g sono **omotope** se esiste una funzione

$$H:I\times X\to Y$$

continua e tale che:

- H(0,x) = f(x) per ogni $x \in X$;
- H(1,x) = g(x) per ogni $x \in X$.
- H(s,y) = H(s,x) per ogni $s \in I$ e per ogni $x,y \in X$ tali che f(x) = f(y).

Si dice che H è un'omotopia tra f e g e si scrive

$$f \sim g$$

Inoltre si può vedere un'omotopia come una famiglia di funzioni contiune:

$$\{f_s: X \to Y\}_{s \in I} \quad con \ f_s(x) = H(s, x).$$

Che rappresentano una deformazione continua di f in g.

Definizione 1.2 (Omotopia di cammini a estremi fissi).

Due cammini $\gamma_0, \gamma_1: I \to X$ si dicono **omotopi** (a estremi fissi) se esiste una funzione

$$H:I\times I\to X$$

continua e tale che:

- $H(0,t) = \gamma_0(t)$ per ogni $t \in I$;
- $H(1,t) = \gamma_1(t)$ per ogni $t \in I$;
- H(s,0) = H(s,1) per ogni $s \in I$.

Si dice che H è un'omotopia di cammini a estremi fissi e si scrive

$$\gamma_0 \sim \gamma_1$$
.

Infatti è facile verificare che l'essere omotopi a estremi fissi induce una relazione di equivalenza sull'insieme dei cammini in X.

Definizione 1.3 (Giunzione di cammini).

Siano $f, g: I \to X$ due cammini in X con f(1) = g(0), allora la **giunzione** di f e g è il cammino

$$f*g:I\to X:t\mapsto \begin{cases} f(2t) & se\ 0\le t\le \frac{1}{2},\\ g(2t-1) & se\ \frac{1}{2}< t\le 1. \end{cases}$$

Lemma 1.1 (Giunzione di cammini e omotopia).

Se $f \sim f'$ e $g \sim g'$, allora $f * g \sim f' * g'$.

Dimostrazione. Sia $H_f: I \times I \to X$ un'omotopia di f e f' e $H_g: I \times I \to X$ un'omotopia di g e g'. Definiamo l'omotopia

$$H: I \times I \to X: (s,t) \mapsto \begin{cases} H_f(2s,t) & \text{se } 0 \le s \le \frac{1}{2}, \\ H_g(2s-1,t) & \text{se } \frac{1}{2} < s \le 1. \end{cases}$$

che risulta continua. Infatti la continuità di H_f e H_g implica la continuità di H, essendo le due funzioni definite su due intervalli disgiunti. Inoltre si verifica facilmente che H soddisfa le condizioni richieste. \square

Osservazione 1.1.

Si noti che la giunzione di cammini non è definita su ogni coppia di cammini, ma solo su quelle che hanno il punto finale del primo uguale al punto iniziale del secondo. Tuttavia, se si considerano solo i cammini chiusi **che partono da uno stesso punto iniziale**, la giunzione è chiaramente sempre definita.

Da ora in poi gli spazi topologici considerati saranno sempre localmente connessi.

Teorema 1.1 (Poincaré).

Se X uno spazio topologico e $x_0 \in X$ un punto fisso.

Il prodotto dato dalla giunzione di cammini induce una struttura di gruppo sulle classi di omotopia dei cammini chiusi in X aventi punto iniziale x_0 .

Tale gruppo è chiamato gruppo fondamentale di X in x_0 e si denota con $\pi_1(X, x_0)$.

In tale gruppo l'elemento neutro è rappresentato dal cammino costante in x_0 e l'inverso di un cammino γ è il cammino

$$\gamma^{-1}(t) = \gamma(1-t)$$

che è l'inverso rispetto alla giunzione di cammini.

Per la dimostrazione del teorema di Poincaré ci basta dimostrare prima un lemma.

Lemma 1.2. (Riparametrizzazione di un cammino e omotopia)

Sia $\gamma:I\to X$ un cammino in X e sia $\varphi:I\to I$ una funzione continua tale che $\phi(0)=0$ e $\phi(1)=1$. Allora $\gamma\circ\varphi:I\to X$ è un cammino in X e $\gamma\sim\gamma\circ\varphi$.

Dimostrazione. Basta mostrare che la funzione φ è omotopa all'identitaà id_I . L'omotopia è data dalla famiglia di funzioni

$$\varphi_s: I \to I: t \mapsto (1-s)t + s\varphi(t).$$

E poi boh.. buco.

Teorema di Poincarè.

• (Associatività) Siano $\gamma_1, \gamma_2, \gamma_3 : I \to X$ tre cammini chiusi in X con punto iniziale x_0 . Si ha che

$$(\gamma_1 * \gamma_2) * \gamma_3 \sim \gamma_1 * (\gamma_2 * \gamma_3).$$

Poiché $\gamma_1 * (\gamma_2 * \gamma_3)$ si può vedere come una Riparametrizzazione del cammino $(\gamma_1 * \gamma_2) * \gamma_3$ e quinid usare il lemma.

• (Unità) L'elemento neutro del gruppo fondamentale è il cammino costante in x_0 , che si denota con $e: I \to x_0$.

Infatti, per ogni cammino $\gamma:I\to X$ si ha che $\gamma*e$ è la Riparametrizzazione di γ secondo la mappa

$$\varphi: I \to I: t \mapsto \begin{cases} 2t & \text{se } 0 \le t \le \frac{1}{2}, \\ 1 & \text{se } \frac{1}{2} < t \le 1 \end{cases}.$$

• (Inverso) Sia

$$\gamma_s: I \to X: t \mapsto \begin{cases} \gamma(t) & \text{se } 0 \le t \le s, \\ \gamma(s) & \text{se } s < t \le 1. \end{cases}$$

La famiglia di cammini $\{\gamma_s\}_{s\in I}$, che non sono lacci, rappresenta un'omotopia tra il cammino costante in x_0 e il cammino γ , tuttavia **non rappresenta un'omotopia ad estremi fissi** poiché $\gamma_s(1) \neq \gamma(1)$. Vale peroche $\gamma_s(0) = \gamma(0)$ cioè il punto iniziale è fisso. In modo analogo la famiglia di cammini data da

$$\gamma_s^{-1}(t) := qamma_s(1-t)$$

rappresenta un'omotopia tra il cammino costante in x_0 e il cammino γ^{-1} , ma non ad estremi fissi. A questo punto si verifica che la famiglia di **cammini chiusi** $\{\gamma_s * \gamma_s^{-1}\}_{s \in I}$ rappresenta un'omotopia **ad estremi fissi** tra il cammino costante in x_0 e il cammino $\gamma * \gamma^{-1}$. Si fa in maniera analoga per mostrare che $\gamma^{-1} * \gamma \sim e_{x_0}$

Esempio 1.2.

$$\pi_1(\mathbb{R}^n, x_0) = \{e_{x_0}\} \quad \forall x_0 \in \mathbb{R}^n.$$

Siano $\alpha, \beta: I \to \mathbb{R}^n$ due cammini chiusi in \mathbb{R}^n con punto iniziale x_0 . La famiglia di cammini chiusi definita da

$$f_s: I \to \mathbb{R}^n: t \mapsto (1-s)\alpha(t) + s\beta(t)$$

definisce un'omotopia ad estremi fissi tra α e β .

Piuin generale, l'omotopia definita equella che per ogni punto dei cammini percorre al variare di s il segmento che unisce i due cammini in quell'istante t, e dunque la stessa argomentazione vale per dimostrare che:

$$\forall X \subset \mathbb{R}^n \ convesso,$$

 $\pi_1(X, x_0) = \{e_{x_0}\} \quad \forall x_0 \in \mathbb{R}^n.$

Proposizione 1.1 (Gruppo fondamentale di un connesso per archi).

Sia X uno spazio topologico connesso per archi, allora

$$\pi_1(X, x_0) \cong \pi_1(X, x_1) \quad \forall x_0, x_1 \in X.$$

In altre parole, il gruppo fondamentale di uno spazio topologico connesso per archi non dipende dal punto iniziale scelto.

Dimostrazione. Sia $f: I \to X$ un cammino tale che $f(0) = x_0$ e $f(1) = x_1$, che esiste poiché X è connesso per archi. Tale cammino induce un isomorfismo tra i gruppi fondamentali in x_0 e x_1 :

$$\pi_1(X, x_0) \xrightarrow{\sim} \pi_1(X, x_1)$$

$$[\gamma] \mapsto [f * \gamma * f^{-1}]$$

con inversa data da

$$\pi_1(X, x_1) \xrightarrow{\sim} \pi_1(X, x_0)$$

 $[\gamma] \mapsto [f^{-1} * \gamma * f].$

Infatti, si verifica prima di tutto la buona definizione:

Se $\gamma_1 \sim \gamma_2$ sono due cammini chiusi in X, per il lemma della Riparametrizzazione, si ha che

$$f * \gamma_1 * f^{-1} \sim f * \gamma_2 * f^{-1}$$
.

Inoltre, si verifica che l'immagine di un cammino chiuso in x_0 è un cammino chiuso in x_1 e viceversa. Si si veririfica che le funzioni appena definite sono effettivamente degli omomorfismi di gruppo poichesi ha che:

$$f * \gamma_1 * \gamma_2 * f^{-1} \sim (f * \gamma_1 * f^{-1}) * (f * \gamma_2 * f^{-1})$$

usando l'associatività che anche se non dimostrata vale anche per cammini chiusi.

Infine, si verifica facilmente che le due mappe sono una l'inversa dell'altra.

Osservazione 1.2.

L'isomorfismo tra i due gruppi fondamentali non è canonico, poiché dipende dalla scelta del cammino f tra i due punti x_0 e x_1 .

Definizione 1.4 (Spazio semplicemente connesso).

Uno spazio topologico X si dice **semplicemente connesso** se è connesso per archi e il suo gruppo fondamentale è banale, cioè

$$\pi_1(X, x_0) = \{e_{x_0}\} \quad \forall x_0 \in X.$$

Osservazione 1.3.

Se X è semplicemente connesso e $\alpha, \beta: I \to X$ sono due cammini allora

$$\alpha(0) = \beta(0), \quad \alpha(1) = \beta(1) \implies \alpha \sim \beta$$

Dato che il cammino $\alpha * \beta^{-1}$ è chiuso e il gruppo fondamentale è banale, quindi

$$\alpha * \beta^{-1} \sim e_{x_0} \implies \alpha \sim \beta.$$

Osservazione 1.4 (La funtorialità del gruppo fondamentale).

Siano X, Y due spazi topologici e $\varphi: X \to Y$ una mappa continua tale che $\varphi(x_0) = y_0$ per due punti fissi $x_0 \in X$ e $y_0 \in Y$.

Allora φ induce un omomorfismo di gruppi

$$\varphi_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

definito da

$$\varphi_*([\gamma]) = [\varphi \circ \gamma]$$

Si verifica facilmente che la mappa è ben definita ed è un omomorifsmo di gruppi. Inoltre, vale che, se $\varphi = \operatorname{id}_X$ allora $\varphi_* = \operatorname{id}_{\pi_1(X,x_0)}$ e se $(\psi \circ \varphi)_* = \psi_* \circ \varphi_*$. Nel linguaggio delle categorie quindi si dice che

$$\pi_1: \mathbf{Top} \to \mathbf{Grp}: X \mapsto \pi_1(X, x_0)$$

è un funtore da Top, la categoria degli spazi topologici, a Grp, la categoria dei gruppi.

Proposizione 1.2.

$$\varphi_* : \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

è un isomorfismo di gruppi, dove $x_0 \in X$ *e* $y_0 = \varphi(x_0) \in Y$.

Dimostrazione.

Poiché φ è un omeomorfismo, essa è continua e ha un'inversa continua $\varphi^{-1}: Y \to X$. Cioè $\varphi^{-1} \circ \varphi = \mathrm{id}_X$ e $\varphi \circ \varphi^{-1} = \mathrm{id}_Y$, quindi segue dalla funtorialitá che

$$\varphi_* \circ \varphi_*^{-1} = id_{\pi_1(X,x_0)}$$
 e $\varphi_*^{-1} \circ \varphi_* = id_{\pi_1(Y,y_0)}$.

Quindi φ_* è un isomorfismo di gruppi, poiché ha un'inversa data da φ_*^{-1} .

Definizione 1.5 (Spazi omotopicamente equivalenti).

Due spazi topologici X e Y si dicono omotopicamente equivalenti se esistono due funzioni continue

$$f:X\to Y \quad e \quad g:Y\to X$$

tali che:

- $g \circ f$ è omotopa all'identità su X;
- $f \circ g$ è omotopa all'identità su Y.

Si denota con $X \simeq Y$ se X e Y sono omotopicamente equivalenti.

Esempio 1.3.

1. \mathbb{R}^n è omotopicamente equivalente ad un punto, cioè si dice che \mathbb{R}^n è **contraibile**. Infatti sia $\varphi: \mathbb{R}^n \to \{0\} \subset \mathbb{R}^n$ la funzione costante in 0, che è continua. e sia $\psi: \{0\} \to \mathbb{R}^n$ anch'essa continua.

Si ha che $\varphi \circ \psi = \mathrm{id}_{\{0\}}$, mentre $\psi \circ \varphi$ è omotopa all'identità su \mathbb{R}^n tramite l'omotopia definita da

$$H: I \times \mathbb{R}^n \to \mathbb{R}^n : (s, x) \mapsto sx.$$

2. S^n è omotopicamente equivalente a $\mathbb{R}^{n+1} \setminus \{0\}$ Infatti se $i: S^n \hookrightarrow \mathbb{R}^n$ è l'inclusione di S^n in $\mathbb{R}^{n+1} \setminus \{0\}$ e

$$\psi: \mathbb{R}^{n+1} \setminus \{0\} \to S^n: x \mapsto \frac{x}{\|x\|}.$$

Si ha che $i \circ \psi = \mathrm{id}_{S^n} \ e \ \psi \circ i \sim \mathrm{id}_{\mathbb{R}^{n+1} \setminus \{0\}} \ tramite \ l'omotopia$

$$H: I \times \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}^{n+1} \setminus \{0\} : (s,x) \mapsto (1-s)x + s\frac{x}{\|x\|}.$$

3. Il Nastro di Möbius è omotopicamente equivalente al cerchio S^1 .

Infatti, sia M il Nastro di Möbius e sia $\varphi: M \to S^1$ la proiezione che manda ogni punto del nastro sul suo bordo. Si ha che φ è continua e suriettiva.

Infatti se consideriamo il quadrato $Q = [-1,1] \times [-1,1]$, tale spazio è omotopicamente equivalente al segmento [-1,1] tramite l'inlcusione del segmento nel quadrato e la proiezione naturale del quadrato sul segmento. Identificando i lati opposti del quadrato in modo da ottenere il Nastro di Möbius, si ha che la proiezione del quadrato sul segmento induce una mappa continua e suriettiva dal Nastro di Möbius al cerchio, con omotopie che passano al quoziente.

Teorema 1.2. (Spazi omotopicaamente equivalenti hanno gruppo fondamentale isomorfo) Siano X e Y spazi topologici **connessi per archi** omotopicamente equivalenti, allora i loro gruppi

$$\pi_1(X, x_0) \cong \pi_1(Y, y_0)$$

per ogni coppia di punti fissi $x_0 \in X$ e $y_0 \in Y$.

fondamentali sono isomorfi:

Lemma 1.3.

Siano $\varphi_0, \varphi_1 : X \to Y$ due funzioni continue tra spazi topologici e siano $x_0 \in X$. Il seguente diagramma commuta:

dove $\tau_f: \pi_1(Y, \varphi_0(x_0)) \to \pi_1(Y, \varphi_1(x_0))$ è l'isomorfismo indotto dal cammino $f: I \to Y: s \mapsto \varphi_s(x_0)$ e $\{\varphi_s | s \in I\}$ è l'omotopia tra φ_0 e φ_1 .

Dimostrazione.

Sia $\gamma: I \to X$ un cammino chiuso in X con punto iniziale x_0 .

Si ha che $\varphi_0 \circ \gamma$ e $\varphi_1 \circ \gamma$ sono due cammini chiusi in Y con punto iniziale $\varphi_0(x_0)$ e $\varphi_1(x_0)$ rispettivamente. Inoltre, per il lemma della Riparametrizzazione, si ha che

$$\varphi_1 \circ \gamma \sim \varphi_0 \circ \gamma$$
.

Quindi, per la funtorialitá del gruppo fondamentale, si ha che

$$[\varphi_1 \circ \gamma] = [\varphi_{1*}(\gamma)] = [\tau_f(\varphi_{0*}(\gamma))] = [\varphi_{0*}(\gamma)].$$

Quindi, l'omomorfismo φ_{0*} è ben definito e si ha che

$$\varphi_{1*}([\gamma]) = [\varphi_1 \circ \gamma] = [\tau_f(\varphi_{0*}(\gamma))] = \tau_f([\varphi_{0*}(\gamma)]).$$

Inoltre, si verifica facilmente che φ_{0*} e φ_{1*} sono omomorfismi di gruppi, poiché

$$\varphi_{1*}([\gamma_1] * [\gamma_2]) = \varphi_{1*}([\gamma_1]) * \varphi_{1*}([\gamma_2])$$

per ogni coppia di cammini chiusi $\gamma_1, \gamma_2 : I \to X$ con punto iniziale x_0 . Infine, si verifica che le due mappe sono l'una l'inversa dell'altra, poiché

2 Rivestimenti