TAUTOLOGY INNOVATION SCHOOL

CROSS DATION

BY TAUTOLOGY

Cross Validation

What is k-fold Cross Validation?

k-fold cross validation คือ วิธีการวัดประสิทธิภาพของ model บนข้อมูล k กลุ่มที่ แตกต่างกัน

		Traini	ng Set		Test Set	4-fold CV
Split1	Fold1	Fold2	Fold3	Fold4	7	รับโมดุล 4 ดับ
Split2	Fold1	Fold2	Fold3	Fold4	V	13.10.10.10/62
Split3	Fold1	Fold2	Fold3	Fold4		Training data
Split4	Fold1	Fold2	Fold3	Fold4		Validation data

Cross Validation

- 1. แบ่งข้อมูลใน dataset ออกเป็น training set และ test set
- 2. แบ่งข้อมูลใน training set ออกเป็น k กลุ่ม (k folds)
- 3. สร้างชุดข้อมูล k ชุด (k splits) จากข้อมูล k กลุ่ม (k folds)
- 4. ในแต่ละ split เรากำหนดให้มี 1 fold เป็น validation set และ fold ที่เหลือเป็น training set
- 5. สำหรับแต่ละ split ให้สร้าง model จาก training set และวัดประสิทธิภาพบน validation set
- 6. พิจารณาประสิทธิภาพบน validation set ของทุก split

1. แบ่งข้อมูลใน dataset ออกเป็น training set และ test set

Dataset

Training Set

Test Set

2. แบ่งข้อมูลใน training set ออกเป็น k กลุ่ม (k folds)

3. สร้างชุดข้อมูล k ชุด (k splits) จากข้อมูล k กลุ่ม (k folds)

ในแต่ละ split เรากำหนดให้มี 1 fold เป็น validation set และ fold ที่เหลือเป็น training set

		Dataset					
		Traini	ng Set		Test Set		
Split1	Fold1	Fold2	Fold3	Fold4			
Split2	Fold1	Fold2	Fold3	Fold4			
Split3	Fold1	Fold2	Fold3	Fold4			
Split4	Fold1	Fold2	Fold3	Fold4			

5. สำหรับแต่ละ split ให้สร้าง model จาก training set และวัดประสิทธิภาพบน validation set

6. พิจารณาประสิทธิภาพบน validation set ของทุก split

	Fo	Mean	Variance		
1	2	3	4	Meall	variance
0.78	0.72	0.80	0.78	0.77	0.0009

Normanz model illa variance infula

Cross Validation

Advantage of k-fold CV

Close to Real Performance

Model Selection

Close to Real Performance

การวัดประสิทธิภาพของ model บน validation set ที่แตกต่างกันหลายชุด ทำให้เราได้ ประสิทธิภาพที่ใกล้เคียงประสิทธิภาพที่แท้จริงของ model

	Fo	Mean	Variance		
1	2	(3)	4	Medii	variance
0.78	0.72	0.80	0.78	0.77	0.0009

Advantage of k-fold CV

Close to Real Performance

Model Selection

Model Selection

การที่เรารู้ประสิทธิภาพที่ใกล้เคียงจริง ทำให้เราสามารถเปรียบเทียบประสิทธิภาพของ model หลาย ๆ ตัว เพื่อเลือก model ที่เหมาะสมกับการใช้งานที่สุดได้

Model		Fo	Mean	Variance		
	1	2	ø	4	Meall	Variance
Model 1	0.78	0.72	0.80	0.78	0.77	0.0009
Model 2	0.80	0.80	0.72	0.80	0.78	0.0012
Model 3	0.82	0.74	0.80	0.74	0.775	0.001275
Model 4	0.79	0.74	0.78	0.76	0.7675	0.000369
Model 5	0.74	0.72	0.76	0.78	0.75	0.0005

model 6

Advantage of k-fold CV

Close to Real Performance

Model Selection

Cross Validation

Extension

How to select k?

Cross Validation for Time Series

How to select k?

-หนังสือ An introduction to statistical learning, James et al. (2013)-

Extension

How to select k?

Cross Validation for Time Series

สำหรับข้อมูลที่อยู่ในรูปแบบของ time series นั้น <mark>เราไม่สามารถทำ k-fold</mark> CV แบบปกติได้

เนื่องจากข้อมูลที่อยู่ในรูปแบบของ time series เป็นข้อมูลที่ขึ้นกับเวลา <mark>ลำดับการ</mark> เกิดขึ้นก่อนหลังของข้อมูลจึงมีความสำคัญ

กราฟแสดงข้อมูลระหว่างราคาสูงสุดของ EURUSD ในแต่ละวัน

การนำข้อมูลที่เกิดขึ้นทีหลังมาใช้เป็น training set และนำข้อมูลที่เกิดขึ้นก่อนมาใช้เป็น validation set จะทำให้ประสิทธิภาพที่วัดได้ ไม่สื่อถึงประสิทธิภาพที่แท้จริง

กราฟแสดงข้อมูลระหว่างราคาสูงสุดของ EURUSD ในแต่ละวัน

Training data

Validation data

การนำข้อมูลที่เกิดขึ้นทีหลังมาใช้เป็น training set และนำข้อมูลที่เกิดขึ้นก่อนมาใช้เป็น validation set จะทำให้ประสิทธิภาพที่วัดได้ ไม่สื่อถึงประสิทธิภาพที่แท้จริง

กราฟแสดงข้อมูลระหว่างราคาสูงสุดของ EURUSD ในแต่ละวัน

Training data

Validation data

การนำข้อมูลที่เกิดขึ้นทีหลังมาใช้เป็น training set และนำข้อมูลที่เกิดขึ้นก่อนมาใช้เป็น validation set จะทำให้ประสิทธิภาพที่วัดได้ ไม่สื่อถึงประสิทธิภาพที่แท้จริง

กราฟแสดงข้อมูลระหว่างราคาสูงสุดของ EURUSD ในแต่ละวัน

Training data

Validation data

รูปแบบการทำ k-fold CV สำหรับ time series เป็นดังนี้

Extension

How to select k?

Cross Validation

Conclusion

- ◆ k-fold cross validation คือ การวัดประสิทธิภาพของ model บนข้อมูล k กลุ่มที่ แตกต่างกัน
- ประสิทธิภาพของ model ที่วัดได้จาก k-fold CV จะใกล้เคียงประสิทธิภาพที่แท้จริง ของ model
- สามารถนำไปต่อยอดเพื่อทำ model selection
- ♦ k ที่เหมาะสมคือ 5 folds หรือ 10 folds
- สำหรับข้อมูลที่เป็น time series ต้องคำนึงถึงลำดับก่อนหลังของข้อมูลด้วย

Cross Validation

