izrfdmleu

December 1, 2023

Task-02

- Perform data cleaning and exploratory data analysis (EDA) on a dataset of your choice, such as the Titanic dataset from Kaggle. Explore the relationships between variables and identify patterns and trends in the data.
- Dataset :- https://www.kaggle.com/c/titanic/data

```
[]: # CSV file and reads the data into a Pandas DataFrame object.
df=pd.read_csv('titanic.csv')
```

1 Exploratory data analysis(EDA) Python

```
[]: # Shallow copy
df_copy=df.copy()

[]: # The shape of a DataFrame.
df.shape

[]: (891, 12)

[]: # column labels of the Dataframe
df.columns
```

```
[]: Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
            'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
           dtype='object')
[]: # Returns a from the top.
     df.head()
[]:
                     Survived
                               Pclass
        PassengerId
     0
                  1
                             0
                                     3
                  2
     1
                             1
                                     1
                  3
     2
                             1
                                     3
     3
                  4
                             1
                                     1
                  5
                             0
     4
                                     3
                                                       Name
                                                                           SibSp \
                                                                Sex
                                                                       Age
                                   Braund, Mr. Owen Harris
                                                               male
                                                                     22.0
     0
                                                                                1
     1
        Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
     2
                                    Heikkinen, Miss. Laina
                                                             female
                                                                      26.0
                                                                                0
                                                             female
     3
             Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                                     35.0
                                                                                1
     4
                                  Allen, Mr. William Henry
                                                                                0
                                                               male
                                                                     35.0
        Parch
                          Ticket
                                     Fare Cabin Embarked
                                                        S
     0
            0
                       A/5 21171
                                   7.2500
                                            NaN
                                                        С
     1
                       PC 17599
                                  71.2833
                                            C85
     2
               STON/02. 3101282
                                   7.9250
                                            NaN
                                                        S
                                                        S
     3
            0
                          113803
                                  53.1000
                                           C123
     4
            0
                          373450
                                   8.0500
                                                        S
                                            NaN
[]: # Return the last 5 rows
     df.tail()
          PassengerId
[]:
                       Survived
                                  Pclass
                                                                                Name
                                       2
                                                              Montvila, Rev. Juozas
     886
                  887
                               0
     887
                  888
                               1
                                                       Graham, Miss. Margaret Edith
                                       1
     888
                  889
                               0
                                       3
                                          Johnston, Miss. Catherine Helen "Carrie"
     889
                  890
                                       1
                                                              Behr, Mr. Karl Howell
                               1
     890
                  891
                               0
                                       3
                                                                Dooley, Mr. Patrick
                                Parch
                                                     Fare Cabin Embarked
             Sex
                   Age
                        SibSp
                                           Ticket
     886
            male
                  27.0
                             0
                                    0
                                            211536 13.00
                                                            NaN
     887
          female
                 19.0
                             0
                                    0
                                            112053
                                                    30.00
                                                            B42
                                                                        S
                                      W./C. 6607
                                                                        S
     888
          female
                   NaN
                             1
                                    2
                                                    23.45
                                                            NaN
     889
            male
                  26.0
                             0
                                    0
                                            111369
                                                    30.00 C148
                                                                        С
     890
                             0
                                    0
                                            370376
                                                     7.75
            male
                  32.0
                                                            NaN
                                                                        Q
[]: # specific rows of a DataFrame ( "integer location" Method)
     df.iloc[100:200]
```

\	Name				Pclass	Survived	gerId	Passeng	[]:
	ec, Miss. Matilda	etrane	F		3	0	101		100
	stcho ("Pentcho")	lr. Past	Petroff, M		3	0	102		101
	r. Richard Frasar	te, Mr	Whi		1	0	103		102
	, Mr. Gustaf Joel	nsson,	Joha		3	0	104		103
	r. Anders Vilhelm	son, Mr	Gustafss		3	0	105		104
	•••				•••	•••	•••		
	ette, Miss. Elise	Luret			1	1	196		195
	rnagh, Mr. Robert	Merr			3	0	197		196
	Siegwart Andreas	Karl S	Olsen, Mr.		3	0	198		197
	Margaret "Maggie"	liss. Ma	Madigan, M		3	1	199		198
	e ("Mrs Harbeck")	riette	Miss. Her	Yrois	2	0	200		199
	Embarked	Cabin I	Fare	Ticket	arch	SibSp P	Age	Sex	
	S	NaN	7.8958	349245	0	0	28.0	female	100
	S	NaN	7.8958	349215	0	0	NaN	male	101
	S	D26	77.2875	35281	1	0	21.0	male	102
	S	NaN	8.6542	7540	0	0	33.0	male	103
	S	NaN	7.9250	3101276	0	2	37.0	male	104
				•••	•••	•••		•••	
	C	B80	146.5208	C 17569	0 P	0	58.0	female	195
	Q	NaN	7.7500	368703	0	0	NaN	male	196
	S	NaN	8.4042	4579	1	0	42.0	male	197
	Q	NaN	7.7500	370370	0	0	NaN	female	198
	S	NaN	13.0000	248747	0	0	24.0	female	199

[100 rows x 12 columns]

[]: # describe() method gives us summary statistics for numerical columns in ____
__DataFrame.
df.describe().T

[]:		count	mean	std	min	25%	50%	75%	\
	PassengerId	891.0	446.000000	257.353842	1.00	223.5000	446.0000	668.5	
	Survived	891.0	0.383838	0.486592	0.00	0.0000	0.0000	1.0	
	Pclass	891.0	2.308642	0.836071	1.00	2.0000	3.0000	3.0	
	Age	714.0	29.699118	14.526497	0.42	20.1250	28.0000	38.0	
	SibSp	891.0	0.523008	1.102743	0.00	0.0000	0.0000	1.0	
	Parch	891.0	0.381594	0.806057	0.00	0.0000	0.0000	0.0	
	Fare	891.0	32.204208	49.693429	0.00	7.9104	14.4542	31.0	

 max

 PassengerId
 891.0000

 Survived
 1.0000

 Pclass
 3.0000

 Age
 80.0000

 SibSp
 8.0000

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

6.0000

Parch

df.info()

#	Column	Non-Null Count	Dtype		
0	PassengerId	891 non-null	int64		
1	Survived	891 non-null	int64		
2	Pclass	891 non-null	int64		
3	Name	891 non-null	object		
4	Sex	891 non-null	object		
5	Age	714 non-null	float64		
6	SibSp	891 non-null	int64		
7	Parch	891 non-null	int64		
8	Ticket	891 non-null	object		
9	Fare	891 non-null	float64		
10	Cabin	204 non-null	object		
11	Embarked	889 non-null	object		
dtypes: float64(2), int64(5), object(5)					
memory usage: 83.7+ KB					

[]: # Including only string columns in a DataFrame description df.describe(include=object)

Г1: Name Sex Ticket Cabin Embarked 891 891 count 891 204 889 2 unique 891 681 147 3 top Braund, Mr. Owen Harris male 347082 B96 B98 S 577 644 freq 7

2 Data Cleaning

```
[]: # To check for duplicate values in a DataFrame df.duplicated().sum()
```

[]:0

[]: df.drop(columns='PassengerId',inplace=True)

```
[]: # returns the number of missing values.
     df.isnull().sum()
[]: Survived
                   0
    Pclass
                   0
    Name
                   0
     Sex
                   0
    Age
                 177
    SibSp
                   0
    Parch
                   0
    Ticket
                   0
    Fare
                   0
     Cabin
                 687
     Embarked
                   2
     dtype: int64
[]: # Missing value percentage calculator
     df.isnull().sum()*100/df.shape[0]
[]: Survived
                  0.000000
    Pclass
                  0.000000
    Name
                  0.000000
    Sex
                  0.000000
    Age
                 19.865320
    SibSp
                  0.000000
    Parch
                  0.000000
    Ticket
                  0.000000
    Fare
                  0.000000
     Cabin
                 77.104377
     Embarked
                  0.224467
     dtype: float64
[]: # missing value percentage calculator plot
     sns.set_style("whitegrid")
     missing_percentage=df.isnull().sum()*100/df.shape[0]
     plt.figure(figsize=(10, 6))
     missing_percentage.plot(kind='bar', color='skyblue')
     plt.xlabel('Columns')
     plt.ylabel('Percentage of Missing Values')
     plt.title('Percentage of Missing Values in Each Column')
```

[]: Text(0.5, 1.0, 'Percentage of Missing Values in Each Column')

i'll drop capin because the null values are more than 40%

```
[]: # removes columns that contains NULL values
df.drop(columns='Cabin',inplace=True)
```

```
[]: # replaces the NULL values with a specified value df['Embarked'].fillna(method='ffill',inplace=True)
```

```
[]: # The method of replacing NULL values with mean values.

df['Age'].fillna(df['Age'].mean(),inplace=True)
```

```
[]: # used to plot rectangular data in the form of a color-coded matrix.

sns.heatmap(df.corr(),annot=True,cmap='Blues')
```

<ipython-input-22-f636f44a3637>:3: FutureWarning: The default value of
numeric_only in DataFrame.corr is deprecated. In a future version, it will
default to False. Select only valid columns or specify the value of numeric_only
to silence this warning.

```
sns.heatmap(df.corr(),annot=True,cmap='Blues')
```

[]: <Axes: >


```
[]: # checks if there are any missing values in the DataFrame
    df.isnull().sum().any()

[]: False
[]: # Numerical columns list
    numerical_data=df.select_dtypes(include=['int64', 'float64']).columns.tolist()

[]: # Numerical columns list
    object_data=df.select_dtypes(include=['object']).columns.tolist()
    object_data

[]: ['Name', 'Sex', 'Ticket', 'Embarked']

3    visualization
[]: sns.countplot(x='Survived',data=df)
```

plt.title('Distribution of survived Variable')

plt.xlabel('Survived')
plt.ylabel('Count')

[]: Text(0, 0.5, 'Count')


```
[]: survied_fg=sns.FacetGrid(df, col="Survived") survied_fg.map(sns.histplot, "Sex", bins=20)
```

[]: <seaborn.axisgrid.FacetGrid at 0x7e1743a46260>


```
[ ]: sns.countplot(x='Parch',data=df)
```

[]: <Axes: xlabel='Parch', ylabel='count'>


```
[]: sns.catplot(x="Pclass", y="Survived", data=df, kind="bar")
```

[]: <seaborn.axisgrid.FacetGrid at 0x7e170943b850>


```
[]: sns.histplot(df['Age'],kde=True)
```

[]: <Axes: xlabel='Age', ylabel='Count'>

[]: df[numerical_data].hist(figsize=(10,10))
sns.despine()


```
[]: for column in df[numerical_data]:
    plt.figure(figsize=(5, 2))
    sns.boxplot(x=df[column])
    plt.title(f'Box Plot of {column}')
    plt.show()
```



```
[]: sns.catplot(data=df,x='Sex',y='Age',kind="box")
```

[]: <seaborn.axisgrid.FacetGrid at 0x7e17094dd840>


```
[]: sns.scatterplot(df)
```

[]: <Axes: >


```
[]: sns.catplot(x="Sex", y="Age", hue="Pclass", data=df, kind="box") plt.show()
```


[]: sns.boxplot(df[numerical_data])

[]: <Axes: >

4 LabelEncoder

```
[]: lb=LabelEncoder()
     df['Name']=lb.fit_transform(df['Name'])
     df['Ticket']=lb.fit_transform(df['Ticket'])
[]: df = pd.get_dummies(df, columns=['Embarked'])
     df=pd.get_dummies(df,columns=['Sex'])
[]: df
[]:
          Survived Pclass
                             Name
                                          Age
                                               SibSp
                                                       Parch
                                                              Ticket
                                                                          Fare \
                  0
                                    22.000000
     0
                          3
                               108
                                                    1
                                                           0
                                                                  523
                                                                        7.2500
     1
                  1
                               190
                                    38.000000
                                                    1
                                                           0
                                                                  596
                                                                       71.2833
                          1
     2
                  1
                                    26.000000
                                                    0
                                                                  669
                                                                        7.9250
                          3
                               353
                                                           0
     3
                  1
                               272
                                    35.000000
                                                    1
                                                           0
                                                                   49
                                                                       53.1000
                          1
     4
                  0
                          3
                               15
                                    35.000000
                                                    0
                                                           0
                                                                  472
                                                                        8.0500
     886
                  0
                          2
                               548
                                    27.000000
                                                                  101
                                                                       13.0000
                                                    0
     887
                               303
                                    19.000000
                                                                   14
                                                                       30.0000
                  1
                          1
                                                    0
                                                           0
                                                                  675
     888
                               413
                                    29.699118
                                                    1
                                                           2
                                                                       23.4500
```

```
889
              1
                        1
                              81
                                   26.000000
                                                      0
                                                               0
                                                                         8
                                                                            30.0000
890
              0
                        3
                             220
                                   32.000000
                                                      0
                                                               0
                                                                             7.7500
                                                                      466
                                                                 Sex_male
      {\tt Embarked\_C}
                    Embarked_Q
                                   Embarked_S
                                                  Sex_female
0
                                              1
                                0
                                              0
                                                                          0
1
                 1
                                                             1
2
                 0
                                0
                                               1
                                                             1
                                                                          0
3
                 0
                                0
                                                                          0
                                               1
                                                              1
4
                 0
                                0
                                               1
                                                             0
                                                                          1
886
                                0
                                                             0
                                                                          1
                 0
                                               1
887
                 0
                                0
                                              1
                                                             1
                                                                          0
888
                 0
                                0
                                               1
                                                             1
                                                                          0
889
                 1
                                0
                                              0
                                                             0
                                                                          1
890
                 0
                                               0
                                                             0
                                                                          1
```

[891 rows x 13 columns]

```
[]: # x and y spilt
```

```
[ ]: x=df.drop(columns='Survived',axis=1)
y=df['Survived']
```

5 StandardScaler

```
[]: st=StandardScaler()
x=st.fit_transform(x)
```

6 Data Splitting

7 Model building function

```
[]: def train_evaluation_model(model,X_train,X_test,Y_train,Y_test):
    model.fit(X_train,Y_train)
    pred=model.predict(X_test)
    cm=confusion_matrix(Y_test,pred)
    acc=accuracy_score(Y_test,pred)*100
    cr=classification_report(Y_test,pred)
    print('confusion_matrix:\n',cm)
    print('accuracy_score:',acc)
    print('classification_report:\n',cr)
```

8 K-Nearest Neighbors(knn)

```
[]: k=5
     knn=KNeighborsClassifier(n_neighbors=k,p=2)
[]: train_evaluation_model(knn,x_train,x_test,y_train,y_test)
    confusion_matrix:
     [[139 18]
     [ 32 79]]
    accuracy_score: 81.34328358208955
    classification_report:
                   precision
                                                    support
                                recall f1-score
               0
                       0.81
                                 0.89
                                            0.85
                                                       157
               1
                       0.81
                                 0.71
                                            0.76
                                                       111
                                            0.81
                                                       268
        accuracy
       macro avg
                       0.81
                                 0.80
                                            0.80
                                                       268
    weighted avg
                                 0.81
                       0.81
                                            0.81
                                                       268
[]: # K-Nearest Neighbors - Elbow Method Plot
[]: error=[]
     for i in range(1,60):
      knn_i=KNeighborsClassifier(n_neighbors=i)
      knn_i.fit(x_train,y_train)
       y_pred_knn_i=knn_i.predict(x_test)
       error.append(round(np.mean(y_pred_knn_i!=y_test),3))
[ ]: # PLOT FOR ERROR VALUE
     plt.
      aplot(range(1,60),error,color='blue',linestyle='dashed',marker='o',markerfacecolor='red',u
      ⊶markersize=8)
     plt.title('error_values vs k value')
     plt.xlabel('k')
     plt.ylabel("error_value(miscalssification)")
[]: Text(0, 0.5, 'error_value(miscalssification)')
```


9 Support Vector Machine(svm)

```
[]: svm=SVC(kernel='linear')
```

[]: train_evaluation_model(svm,x_train,x_test,y_train,y_test)

confusion_matrix:

[[134 23] [33 78]]

accuracy_score: 79.1044776119403

classification_report:

	precision	recall	f1-score	support
0	0.80	0.85	0.83	157
1	0.77	0.70	0.74	111
accuracy			0.79	268
macro avg	0.79	0.78	0.78	268
weighted avg	0.79	0.79	0.79	268

$\# { m Logistic\ Regression}$

```
[]: lg=LogisticRegression()
```

[]: train_evaluation_model(lg,x_train,x_test,y_train,y_test)

confusion_matrix:

[[134 23] [29 82]]

accuracy_score: 80.59701492537313

classification_report:

	precision	recall	f1-score	support
0	0.82	0.85	0.84	157
1	0.78	0.74	0.76	111
accuracy			0.81	268
macro avg	0.80	0.80	0.80	268
weighted avg	0.81	0.81	0.81	268

[55]: # BY CHANDRASEKAR

[56]: # Happy Coding!