# ENGLISH ABSTRACT OF JAPANESE LAID-OPEN UTILITY MODEL PUBLICATION NO. 5-71821

#### PROBLEM TO BE SOLVED

To provide a liquid crystal display apparatus that can display images by means of a curved surface displaying system.

#### SOLUTION

A pair of transparent substrates 1 and 2 each having a curved surface are formed. Transparent electrodes 3 and 4 are formed on these transparent substrates 1 and 2, respectively. These transparent substrates 1 and 2 are placed with their surfaces having electrodes thereon facing each other. A polymer dispersion liquid crystal layer 6 is installed between the two transparent substrates 1 and 2. The transmittance of light is controlled by the polymer dispersion liquid crystal layer 6.

#### Explanation of Drawing

- 1 transparent substrate
- 2 transparent substrate
- 3 segmented electrode
- 4 counter electrode
- 6 polymer dispersion liquid crystal layer

G 0 2 F 1/1333

## (19)日本国特新庁 (JP) (12) 公開実用新案公報 (U)

(11)実用新案出願公開番号

### 実開平5-71821

(43)公開日 平成5年(1993)9月28日

(51)Int.Cl.5

識別記号

庁内整理番号

9225-2K 9225-2K

500

FΙ

技術表示箇所

審査請求 未請求 請求項の数1(全 2 頁)

(21)出顯番号

実顧平4-9631

(22)出願日

平成 4年(1992) 2月28日

(71)出願人 000001443

カシオ計算機株式会社

東京都新宿区西新宿2丁目6番1号

(72)考案者 武井 寿郎

東京都八王子市石川町2951番地の5 カシ

オ計算機株式会社八王子研究所内

(74)代理人 弁理士 鈴江 武彦

#### (54) 【考案の名称 】 液晶表示装置

#### (57)【要約】

【目的】 曲面表示方式で画像を表示することができる 液晶表示装置を提供する。

【構成】 それぞれ曲面を有する一対の透明基板1,2 を形成し、これら透明基板1,2にそれぞれ透明の電極 3, 4を形成し、これら透明基板1, 2をその電極形成 面を互いに対向させて配置し、これら一対の透明基板 1,2間に高分子分散液晶層6を設け、この高分子分散 液晶層6で光の透過を制御する。



2

#### 【実用新案登録請求の範囲】

【請求項1】 それぞれ曲面を有する一対の透明基板を 形成し、これら透明基板にそれぞれ透明の電極を形成 し、これら透明基板をその電極形成面を互いに対向させ て配置し、これら一対の透明基板間に高分子分散液晶層 を設けたことを特徴とする液晶表示装置。

#### 【図面の簡単な説明】

【図4】

【図1】本考案の一実施例を示す液晶表示装置の断面 図

【図2】その液晶表示装置を斜め下方から見た斜視図。

【図3】その液晶表示装置における高分子分散液晶層の 一部を拡大して示す断面図。

【図4】その液晶表示装置の使用上の一例を示す説明 図。

#### 【符号の説明】

- 1 …透明基板
- 2…透明基板
- 3…セグメント電極
- 4…対向電極
- 0 6…高分子分散液晶層



### 【考案の詳細な説明】

[0001]

【産業上の利用分野】

本考案は、液晶を用いて画像を表示する液晶表示装置に関する。

[0002]

【従来の技術】

従来一般の液晶表示装置においては、それぞれ透明の電極を形成した平板状の一対の透明基板を、その電極形成面が互いに対向するように枠状のシール材を介して重合配置し、これら一対の透明基板間に液晶を封入し、前記透明電極間に電圧を印加して所要の画像を表示するもので、装置全体が平坦なパネル状に構成されている。

[0003]

【考案が解決しようとする課題】

そこで、本考案は曲面表示方式で画像を表示することができる液晶表示装置を 提供することを目的とするものである。

[0004]

【課題を解決するための手段】

本考案はこのような目的を達成するために、それぞれ曲面を有する一対の透明 基板を形成し、これら透明基板にそれぞれ透明の電極を形成し、これら透明基板 をその電極形成面を互いに対向させて配置し、これら一対の透明基板間に高分子 分散液晶層を設けるようにしたものである。

[0005]

【作用】

このように構成された液晶表示装置は、透明基板の電極間に電圧が印加されて 表示駆動される。高分子分散液晶層中の液晶の分子は電圧が印加されていない状 態では様々な方向を向いており、この状態では高分子分散液晶層を透過する光が 液晶による光散乱作用および液晶と高分子との界面での光散乱作用によって散乱 する。また電極間にしきい値以上の電圧が印加されると、液晶の分子が透明基板 面の接線に対してほぼ直角の方向を向くように配列して透過光が光散乱作用をほ とんど受けずに高分子分散液晶層を透過する。

#### [0006]

したがってこの液晶表示装置を透明基板の表面側から観察すると、電圧が印加されない部分は透過光の散乱により白濁して見え、電圧印加部分は透過した光が見え、これにより所定の画像が表示される。そして透明電極の表面が曲面状であるから、従来の平面表示と異なり、曲面上に画像が表示される独特の趣の曲面表示形態となる。

#### [0007]

#### 【実施例】

以下、本考案の一実施例について図面を参照して説明する。

#### [0008]

36.5 °

本実施例の液晶表示装置においては、図1および図2に示すように、それぞれ ガラス或いはプラスチックにより半球状に形成された一対の透明基板1,2を備 え、全体がドーム状に構成されている。

#### [0009]

一方の透明基板1の曲率半径は他方の透明基板2の曲率半径よりも大きく、また一方の透明基板1には透明なセグメント電極3が、他方の透明基板2には透明な対向電極4がそれぞれ配列形成され、これらセグメント電極3および対向電極4の形成面が互いに向き合うように透明基板1と2が同心的に配置されている。

#### [0010]

透明基板 1, 2の相互間には図示しない複数のスペーサが配設され、これらスペーサにより透明基板 1, 2の対向間隔が一定に保たれているとともに、透明基板 1, 2の周縁の相互間にリング状のシール材 5 が設けられ、このシール材 5 を介して透明基板 1, 2 が互いに接合されている。

#### [0011]

透明基板1,2の相互間には高分子分散液晶層6が設けられ、この高分子分散

液晶層 6 は図3 にその一部を拡大して示すように、透明な高分子 6 a とネマテック液晶 6 b とを混在させたものである。

#### [0012]

このような高分子分散液晶層 6 は、一対の透明基板 1, 2 間のシール材 5 で囲まれた領域内に、光硬化性の高分子のモノマーと液晶とを混合した溶液を真空注入法によって注入し、こののち一方の基板の外面側から光(紫外線)を照射することにより前記高分子のモノマーを光重合させてポリマー化する方法で形成され、液晶 6 b は網状にポリマー化した高分子 6 a の間に封じ込まれている。

#### [0013]

なお、通常の液晶を用いた従来一般の液晶表示装置においては、その液晶の性質上、電極を形成した基板面に配向処理を施す必要があり、このような配向処理の必要から基板を曲面状とすることが困難で平板状の基板を使用せざるを得ないが、本考案のように高分子分散液晶層 6 を用いる場合においては、その配向処理が不要であり、したがって曲面状の基板の使用が可能なものである。

#### (0014)

このように構成された液晶表示装置においては、透明基板 1, 2のセグメント電極 3 と対向電極 4 との間に電圧を印加して表示駆動されるもので、高分子分散液晶層 6 中の液晶 6 bの分子は、電圧が印加されていない状態では様々な方向を向いており、この状態では高分子分散液晶層 6 を透過する光が液晶 6 bによる光散乱作用および液晶 6 b と高分子 6 a との界面での光散乱作用によって散乱する。またセグメント電極 3 と対向電極 4 との間にしきい値以上の電圧が印加されると、液晶 6 b の分子が透明基板 1, 2 面の接線に対してほぼ直角の方向を向くように配列して透過光が光散乱作用をほとんど受けずに高分子分散液晶層 6 を透過する。

#### [0015]

したがってこの液晶表示装置を透明基板1の表面側から観察すると、電圧が印加されない部分は透過光の散乱により白濁して見え、電圧印加部分は透過した光が見え、これにより所定の画像が表示される。そして透明電極1の表面が半球状であるから、従来の平面表示と異なり、半球状の曲面上に画像が表示される独特

の趣の曲面表示形態となり、したがって表示上の興味を増大させることができ、 また多方向から画像を視認できるから、その使用用途の適用範囲も増大する。

#### [0016]

そして本実施例の液晶表示装置においては、その全体がドーム状に形成されているから、図4に示すように、液晶表示装置 a の内側に光源 b を設けるとともに、液晶表示装置 a の上方側にドーム状のスクリーン c を設け、光源 b の光を液晶表示装置 a の高分子分散液晶層 6 を通してその液晶表示装置 a の駆動に応じる画像を投射するように、いわゆるプラネタリウム式の用途に利用するこができる。

#### [0017]

なお、前記実施例においては、液晶表示装置の全体をドーム状としたが、このような形状に限らず、他の形状、例えばいわゆる蒲鉾状などに構成することも可能である。

#### [0018]

#### 【考案の効果】

.....

以上説明したように本考案の液晶表示装置によれば、従来の平面表示と異なり 、曲面上に画像を表示して独特の趣の曲面表示形態を採ることができ、表示上の 興味を増大させ、また使用用途の適用範囲も増大させることができる利点がある