CC102: VECTOR CALCULUS AND LINEAR ALGEBRA CREDITS = 5 (L=3, T=2, P=0)

Course Objectives:

The basic necessity for the Foundation of Engineering & Technology being Mathematics, the main aim is, to teach Mathematical methodology, develop Mathematical skills & enhance thinking power of students.

Teaching and Assessment Scheme:

Te	Teaching Scheme			Marks Distribution				
				Theory Marks		Practical Marks		Total
L	Т	P	С	ESE	CE	ESE	CE	Marks
3	2	0	5	70	30	30	20	150

Course Contents:

Unit No.	Topics	Teaching Hours
1	Matrices and its applications:	08
	Types of Matrices, Elementary Row and Column Operations, REF, RREF, Rank of Matrix by Different Techniques, Solution of Homogeneous and Non-homogeneous System of Linear Equation.	
2	Linear algebra:	12
	Euclidean N-Space, General Vector Spaces, Subspaces, Linear Independence, Basis and Dimension, Row and Column Spaces, Rank, Inner Product Spaces, Length and Angle in Inner Product Spaces, Orthonormal Bases; Gram Schmidt Process.	
3	Linear transformations:	07
	Introduction, Properties-Kernel and Range, Linear Transformation from Rn to Rm, Matrices of Linear Transformations.	
4	Eigen values and Eigen vectors:	07
	Eigen Values and Eigen Vectors, Cayley-Hamilton Theorem,	

	Diagonalization, Orthogonal Diagonalization, Symmetric Matrices. Quadratic Forms and its Applications.	
5	Vector calculus: Differentiation of Vectors –Gradient, Divergence, Curl, Directional Derivatives. Line, Surface Integrals-Statements of Green's, Gauss' Divergence and Stoke's Theorems- Applications to Engineering Problems.	10
	Total Hours	44

List of References:

- 1. Howard A. and Chris R., "Elementary Linear Algebra", John Wiley & Sons, 2005.
- 2. Grewal B. S., "Higher Engineering Mathematics", Khanna Publisher, New Delhi, (Latest Edition).
- 3. Bali N. P. and Goyal M., "Engineering Mathematics", Laxmi Publication (Latest Edition).

Course Outcomes (COs):

On successful completion of the course, students will be able to:

- 1. Solve system of linear equations using different tools of linear algebra for the problems arising in the field of engineering.
- 2. Apply vectors in higher dimensional space in experimental data, storage and warehousing, electrical circuits, graphical images, economics, mechanical systems and in physical sciences.
- 3. Use Eigen values and Eigen vector in different subjects of engineering like control theory, vibration analysis, electric circuits, advanced dynamics and quantum mechanics.
- 4. Apply linear transformation in subject like computer graphics, cryptography, thermodynamics etc.
- 5. Apply differential and integral vector calculus to the problems in \mathbb{R}^3 .
- 6. Use the techniques and theory of linear algebra to model various real world problems.