Letian Chen

⊠ letian.chen@gatech.edu

http://www.letianchen.me/

 \Box +1 (404) 247-9580

O Zac Chen

EDUCATION

Georgia Institute of Technology, Atlanta GA

Expected 2024

Doctor of Philosophy in Computer Science, School of Interactive Computing. GPA: 4.00/4.00

Georgia Institute of Technology, Atlanta GA

May 2020

Master of Science in Computer Science, College of Computing. GPA: 4.00/4.00

- Thesis: "Robot Learning from Heterogeneous Demonstration"
- Concentration: Machine Learning

Peking University, Beijing China

July 2018

Bachelor of Science in Psychology, School of Psychological and Cognitive Sciences. GPA: 3.78/4.00 Bachelor of Science in Computer Science, School of Electronics Engineering and Computer Science. GPA: 3.80/4.00

INDUSTRY EXPERIENCE

iRobot Corporation, Reinforcement Learning Intern

May 2021 - Aug 2021

- Identified real-world challenges of Offline Policy Evaluation (OPE) techniques
- Created a benchmark dataset for OPE where real-world challenges present
- Proposed ad-hoc OPE algorithm selection methods via validation mechanisms

Publications

	_ 1	D	г,	1	1
U	0	ĸ	L		.Ζ

L. Chen*, S. Jayanthi*, R. R. Paleja, D. Martin, V. Zakharov, and M. Gombolay, "Fast lifelong adaptive inverse reinforcement learning from crowdsourced demonstrations," in Proceedings of Conference on Robot Learning (CoRL), 2022

AAAI' 22 IML Workshop

L. Chen*, S. Jayanthi*, and M. Gombolay, "Strategy discovery and mixture in lifelong learning from heterogeneous demonstration," in Proceedings of AAAI Interactive Machine Learning workshop, 2022

T-RO

E. Seraj, L. Chen, and M. Gombolay, "A hierarchical coordination framework for joint perception-action tasks in composite robot teams," IEEE Transactions on Robotics, 2021

AAAI' 21 Fall Symposium

L. Chen, R. Paleja, and M. Gombolay, "Towards sample-efficient apprenticeship learning from suboptimal demonstration," in Artificial Intelligence for Human-Robot Interaction (AI-HRI), AAAI Fall Symposium Series, 2021

MICCAI' 21

D. Dias, M. Zenati, R. Srey, D. Arney, L. Chen, R. Paleja, L. Kennedy-Metz, and M. Gombolay, "Using machine learning to predict perfusionists' critical decision-making during cardiac surgery," in Augmented Environments for Computer Assisted Interventions (AE-CAI), Computer Assisted and Robotic Endoscopy (CARE), and Context-Aware Operating Theaters (OR 2.0) Joint MICCAI workshop, 2021

AAMAS' 21 **ARMS Workshop**

R. Paleja, A. Silva, L. Chen, and M. Gombolay, "Interpretable and personalized apprenticeship scheduling: Learning interpretable scheduling policies from heterogeneous user demonstrations," in AAMAS Autonomous Robots and Multirobot Systems (ARMS) Workshop, 2021

CoRL' 20

[Best Paper Finalist] [Plenary Talk] L. Chen, R. Paleja, and M. Gombolay, "Learning from suboptimal demonstration via self-supervised reward regression," in *Proceedings of* Conference on Robot Learning (CoRL), 2020

Master Thesis	L. Chen, "Robot learning from heterogeneous demonstration," Master Thes	is, 2020		
Neurips' 20	R. Paleja, A. Silva, L. Chen , and G. Matthew, "Interpretable and personalized apprenticeship scheduling: Learning interpretable scheduling policies from heterogeneous user demonstrations," in <i>Proceedings of Advances in Neural Information Processing Systems</i> (NeurIPS), 2020			
HRI' 20	L. Chen , R. Paleja, M. Ghuy, and M. Gombolay, "Joint goal and strategy inference across heterogeneous demonstrators via reward network distillation," in <i>Proceedings of International Conference on Human-Robot Interaction (HRI)</i> , 2020			
Undergrad Thesis	L. Chen , "Model-free vs model-based algorithms in human sequential decision making," <i>Undergraduate Thesis</i> , 2018			
RESEARCH EXPERI	IENCE			
Fast Lifelong Pers	onalized Learning from Demonstrations	2021-2022		
Graduate Research A	ssistant, Advisor: Matthew Gombolay			
Georgia Institute of T				
•	conalization problem in lifelong learning-from-demonstration setting where			
-	terogeneous demonstrations arrive sequentially by federation among users RL framework, FLAIR, to provide efficient personalization and scalability by			
-	mixtures with a concise set of prototypical strategy policies			
• • •	three virtual robotic control tasks and a real robot table-tennis task; achieved			
	on with significantly higher sample efficiency			
Learning from Su	boptimal Demonstration	2020		
	Assistant, Advisor: Matthew Gombolay	_0_0		
Georgia Institute of T	•			
-	cy performance degradation from noise injection with a sigmoid function			
-	RL framework, SSRR, to learn policies that are better than suboptimal demon-			
· · · · · · · · · · · · · · · · · · ·	ng the idealized reward function (i.e., the latent intent of the demonstrator)			
	on three virtual robotic tasks and a real robot table-tennis task; achieved of the demonstrator intention and a better-than-best-demonstration policy			
-		2010		
	Task Reward and Strategy Reward Assistant, Advisor: Matthew Gombolay	2019		
Georgia Institute of T	•			
	latent objective via shared task reward and individual strategy reward			
• Proposed a novel I	RL framework, MSRD, to jointly infer task reward and strategy reward to			
gain a better estima				
	on two virtual robotic control tasks and one real robot table-tennis task;			
	rning of task reward than SOTA AIRL, extracted precise strategic rewards,			
and optimized vers	atile policies that resemble the heterogeneous demonstrations			
Awards & Honor	RS			
	cholarship for AAAI 2022	Feb 2022		
	in Conference on Robot Learning (CoRL 2020)	Nov 2020		
-	hack ATL 2019 Track 2	Nov 2019		
• Graduate of merit i		Jul 2018		
 Excellent Graduate Zhang Wenjin Scho	Jul 2018 Dec 2017			
Scholarship for unc	-	Sep 2017		
Soliolarbilip for unc	2.5	50p 2017		

TEACHING & LEADERSHIP EXPERIENCE

Advising & Mentorship

- Yue Yang, M.Sc. Student at Georgia Tech
- Sravan Jayanthi, B.Sc. Student at Georgia Tech, now M.Sc. Student at Georgia Tech
- Daniel Martin, M.Sc. Student at Georgia Tech, now at Amazon Robotics
- Steve Zakharov, M.Sc. Student at Georgia Tech, now at Blue River Technology
- Sumedh Naik, M.Sc. Student at Georgia Tech, now at Intel
- Van Duong, M.Sc. Student at Georgia Tech, now at Jet Propulsion Laboratory

Teaching Assistantship

- Interactive Robot Learning (CS 7648) (Graduate), Georgia Tech (Spring 2021), with Prof. Matthew Gombolay
- Machine Learning (OMSCS 7641) (Graduate), Georgia Tech (Fall 2020, Spring 2019), with Prof. Charles Isbell
- Introduction to Computation Undergraduate Section, Peking University (Fall 2016), with Prof. Jun Sun

Minister of Academic Department

Students' Union, School of Psychological and Cognitive Sciences, Peking University (2015 - 2016)

ACADEMIC SERVICE

Technical Manuscript Reviewer for

- Conference on Robot Learning (CoRL)
- International Symposium of Robotic Research (ISRR)
- IEEE Robotics and Automation Letters (RA-L)
- International Conference on Intelligent Robots and Systems (IROS)
- International Conference on Robotics and Automation (ICRA)
- International Conference on Autonomous Agents and Multiagent Systems (AAMAS)
- AAAI Fall Symposium Series on AI for HRI
- Robotics: Science and Systems (RSS)
- International Conference on Machine Learning (ICML)