Test of Hypotheses for independence of Attributes

Test of Hypotheses for independence of Attributes

Another important application of χ^2 test is the testing of independence of attributes.

Attributes: Attributes are qualitative characteristic such as levels of literacy, employment status, *etc.*, which are quantified in terms of levels/scores.

Contigency table: Independence of two attributes is an important statistical application in which the data pertaining to the attributes are cross classified in the form of a two – dimensional table. The levels of one attribute are arranged in rows and of the other in columns. Such an arrangement in the form of a table is called as a contingency table.

Step 1: Framing the hypotheses

Null hypothesis H_0 : The two attributes are independent

Alternative hypothesis H_i : The two attributes are not independent.

Step 2 : Data

The data set is given in the form of a contigency as under. Compute expected frequencies E_{ij} corresponding to each cell of the contingency table, using the formula

$$E_{ij} = \frac{R_i \times C_j}{N}$$
; $i = 1, 2, ...m$; $j = 1, 2, ...n$

where,

N = Total sample size

 $R_i = \text{Row sum corresponding to } i^{\text{th}} \text{ row}$

 C_j = Column sum corresponding to j^{th} column

The contingency table consisting of m rows and n columns. The observed data is presented in the form of a contingency table :

		Attribute B				Total		
		B_1	B_{2}		B_{j}		B_n	
	A_1	O ₁₁	O ₁₂		O_{1j}		O_{1n}	R_1
	A_2	O ₂₁	O ₂₂		O_{2j}		O_{2n}	R_2
P a	:	:	:	:	:	:	:	:
ut(
Attribute A	$A_{ m i}$	O_{i1}	O_{i2}		O_{ij}		O_{in}	R_{i}
V	:	:	:	:	:	:	:	:
	•	•	•	•	•	•	•	•
	A_m	O_{m1}	O_{m2}		O_{mj}		O_{mn}	R_m
Total	$C_{_1}$	C_2	•••	C_{j}		$C_{\rm n}$	$N = m \times n$	

Step 3: Level of significance

Fix the desired level of significance α

Step 4 : Calculation

Calculate the value of the test statistic as

$$\chi_0^2 = \sum_{i=1}^m \sum_{j=1}^n \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

Step 5: Critical value

The critical value is obtained from the table of χ^2 with (m-1)(n-1) degrees of freedom at given level of significance, α as $\chi^2_{(m-1)(n-1),\alpha}$.

Step 6 : Decision

Decide on rejecting or not rejecting the null hypothesis by comparing the calculated value of the test statistic with the table value. If $\chi_0^2 \ge \chi^2_{(m-1)(n-1),\alpha}$ reject H_0 .

Note:

- N, the total frequency should be reasonably large, say greater than 50.
- No theoretical cell-frequency should be less than 5. If cell frequencies are less than 5, then it should be grouped such that the total frequency is made greater than 5 with the preceding or succeeding cell.

Example

The following table gives the performance of 500 students classified according to age in a computer test. Test whether the attributes age and performance are independent at 5% of significance.

Performance	Below 20	21-30	Above 30	Total
Average	138	83	64	285
Good	64	67	84	215
Total	202	150	148	500

Solution:

Step 1: Null hypothesis H_0 : The attributes age and performance are independent.

Alternative hypothesis H_1 : The attributes age and performance are not independent.

Step 2 : Data

Compute expected frequencies E_{ij} corresponding to each cell of the contingency table, using the formula

$$E_{ij} = \frac{R_i \times C_j}{N}$$
 $i = 1, 2; j = 1, 2, 3$

where,

N = Total sample size

 $R_i = \text{Row sum corresponding to } i^{\text{th}} \text{ row}$

 C_i = Column sum corresponding to j^{th} column

Performance	Below average	Average	Above average	Total
Average	$\frac{285 \times 202}{500} = 115.14$	$\frac{285 \times 150}{500} = 85.5$	$\frac{285 \times 148}{500} = 84.36$	285
Good	$\frac{215 \times 202}{500} = 86.86$	$\frac{215 \times 150}{500} = 64.5$	$\frac{215 \times 148}{500} = 63.64$	215
Total	202	150	148	500

Step 3 : Level of significance $\alpha = 5\%$

Step 4 : Calculation

Calculate the value of the test statistic as

$$\chi_0^2 = \sum_{i=1}^2 \sum_{j=1}^3 \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

This chi-square test statistic is calculated as follows:

$$\chi_0^2 = \frac{(138 - 115.14)^2}{115.14} + \frac{(83 - 85.50)^2}{88.50} + \frac{(64 - 84.36)^2}{84.36} + \frac{(64 - 86.86)^2}{86.86} + \frac{(67 - 64.50)^2}{64.50} + \frac{(84 - 63.64)^2}{63.64}$$

= 22.152 with degrees of freedom (3-1)(2-1) = 2

Step 5 : Critical value

From the chi-square table the critical value at 5% level of significance is $\chi^2_{(2-1)(3-1),0.05} = \chi^2_{2,0.05} = 5.991$.

Step 6: Decision

As the calculated value $\chi_0^2 = 22.152$ is greater than the critical value $\chi_{2,0.05}^2 = 5.991$, the null hypothesis H_0 is rejected. Hence, the performance and age of students are not independent.

If the contigency table is 2 x 2 then the value of χ^2 can be calculated as given below:

	A	not A	Total
В	а	b	a+b
not B	С	d	c+d
Total	a+c	b+d	N=a+b+c+d

$$\chi_0^2 = \frac{N(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)} \sim \chi_\alpha^2(1d.f)$$

Example

A survey was conducted with 500 female students of which 60% were intelligent, 40% had uneducated fathers, while 30 % of the not intelligent female students had educated fathers. Test the hypothesis that the education of fathers and intelligence of female students are independent.

Solution:

Step 1: Null hypothesis H_0 : The attributes are independent *i.e.* No association between education fathers and intelligence of female students

Alternative hypothesis H_1 : The attributes are not independent *i.e* there is association between education of fathers and intelligence of female students

Step 2 : Data

The observed frequencies (O) has been computed from the given information as under.

	Intelligent females	Not intelligent females	Row total
Educated fathers	300-120 = 180	$\frac{30}{100} \times 200 = 60$	240
Uneducated fathers	$\frac{40}{100} \times 300 = 120$	200-60 = 140	260
Total	$\frac{60}{100} \times 500 = 300$	500-300 = 200	N= 500

Step 3 : Level of significance

$$\alpha = 5\%$$

Step 4 : Calculation

Calculate the value of the test statistic as

$$\chi_0^2 = \frac{N(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$

where, a = 620, b = 380, c = 550, d = 450 and N = 2000

$$\chi_0^2 = \frac{2000(620 \times 450 - 380 \times 550)^2}{(620 + 380)(550 + 450)(620 + 550)(380 + 450)} = 10.092$$

Step 5 : Critical value

From chi-square table the critical value at 5% level of significance is $\chi^2_{1,0.05} = 3.841$

Step 6 : Decision

The calculated value $\chi_0^2 = 10.092$ is greater than the critical value $\chi_{1,0.05}^2 = 3.841$, the null hypothesis H_0 is rejected. Hence, education of fathers and intelligence of female students are not independent.