Examen d'Analyse 3 ECUE 1 Intégrales et Séries

Première Session

Durée: 1 heure 45 minutes

Rédiger avec soin et rigueur – Eviter les ratures – aucun document n'est autorisé

1 Montrer que, l'intégrale

$$I=\int_{-1}^1 t \sqrt{rac{1-t}{1+t}} dt$$

converge puis calculer sa valeur.

• La fonction $f: t \longmapsto t\sqrt{\frac{1-t}{1+t}}$ est continue sur]-1,1], donc la seule borne impropre est -1.

Au voisinage de -1, f a un signe constant et $f(t) \sim \frac{-\sqrt{2}}{(1+t)^{\frac{1}{2}}}$. Et comme $\int_{-1}^{1} \frac{1}{(1+t)^{\frac{1}{2}}} dt$ est une intégrale de Riemann convergente $(\frac{1}{2} < 1)$, donc $I = \int_{-1}^{1} t \sqrt{\frac{1-t}{1+t}} dt$ converge.

• Calcul de
$$I = \int_{-1}^{1} t \sqrt{\frac{1-t}{1+t}} dt$$

- Une méthode:

Faisons le changement de variable $t = \cos x$. On a :

$$dt = -\sin x$$

$$1 - t = 1 - \cos x = 2\sin^2\left(\frac{x}{2}\right)$$

$$1 + t = 1 + \cos x = 2\cos^2\left(\frac{x}{2}\right)$$

$$t = 1 \Longrightarrow x = 0$$

$$t = -1 \Longrightarrow x = -\pi$$

D'où

$$I = \int_{-1}^{1} t \sqrt{\frac{1-t}{1+t}} dt$$

$$= \int_{\pi}^{0} \cos x \sqrt{\frac{1-\cos x}{1+\cos x}} (-\sin x dx)$$

$$= \int_{0}^{\pi} \cos x \sqrt{\frac{2\sin^{2}\left(\frac{x}{2}\right)}{2\cos^{2}\left(\frac{x}{2}\right)}} (\sin x dx)$$

$$= \int_{0}^{\pi} \cos x \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} \cdot 2\sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) dx$$

$$= \int_{0}^{\pi} \cos x \cdot 2\sin^{2}\left(\frac{x}{2}\right) dx$$

$$= \int_{0}^{\pi} \cos x (1-\cos x) dx$$

$$= \int_{0}^{\pi} \left(\cos x - \frac{1+\cos(2x)}{2}\right) dx$$

$$= \left[\sin x - \frac{1}{2}x - \frac{1}{4}\sin(2x)\right]_{0}^{\pi}$$

$$I = -\frac{\pi}{2}.$$

- Une autre méthode :

D'où $I=-\frac{\pi}{2}$.

$$I = \int_{-1}^{1} t \sqrt{\frac{1-t}{1+t}} dt$$

$$= \int_{-1}^{1} t \frac{1-t}{\sqrt{1-t^2}} dt$$

$$I = \int_{-1}^{1} \frac{t}{\sqrt{1-t^2}} dt - \int_{-1}^{1} \frac{t^2}{\sqrt{1-t^2}} dt$$

$$\star \int_{-1}^{1} \frac{t}{\sqrt{1-t^2}} dt = \left[-\sqrt{1-t^2} \right]_{-1}^{1} = 0.$$

$$\star \int_{-1}^{1} \frac{t^2}{\sqrt{1-t^2}} dt = \left[-t\sqrt{1-t^2} \right] + \int_{-1}^{1} \sqrt{1-t^2} dt = \int_{-1}^{1} \sqrt{1-t^2} dt$$

$$= \int_{\pi}^{0} \sqrt{1-\cos^2 x} (-\sin x dx), \quad (\text{en posant } t = \cos x)$$

$$= \int_{0}^{\pi} \sin^2 x dx = \int_{0}^{\pi} \frac{1-\cos(2x)}{2} dx = \left[\frac{x}{2} - \frac{1}{4} \sin(2x) \right]_{0}^{\pi} = \frac{\pi}{2}.$$

- Une autre méthode encore :

Faisons le changement de variable $x = \sqrt{\frac{1-t}{1+t}}$. On a :

$$t = \frac{1 - x^2}{1 + x^2} \quad \text{et } dt = -\frac{4x}{(1 + x^2)^2} dx$$

$$t = 1 \Longrightarrow x = 0$$

$$t = -1 \Longrightarrow x = +\infty$$

D'où

$$I = \int_{-1}^{1} t \sqrt{\frac{1-t}{1+t}} dt = \int_{0}^{+\infty} \frac{1-x^{2}}{1+x^{2}} \cdot x \cdot \frac{4x}{(1+x^{2})^{2}} dx = \int_{0}^{+\infty} \frac{-4x^{4} + 4x^{2}}{(1+x^{2})^{3}} dx$$

La fonction $x \mapsto \frac{-4x^4 + 4x^2}{(1+x^2)^3}$ étant paire sa décomposition en éléments simples est de la forme

$$R(x) = \frac{-4x^4 + 4x^2}{(1+x^2)^3} = \frac{a}{1+x^2} + \frac{b}{(1+x^2)^2} + \frac{c}{(1+x^2)^3}.$$

On a : $c = \lim_{x \to i} (1 + x^2)^3 R(x) = \lim_{x \to i} (-4x^4 + 4x^2) = -8$, $a = \lim_{x \to \infty} x^2 R(x) = -4$ et de R(0) = 0, on tire b = 12. Ainsi

$$R(x) = \frac{-4x^4 + 4x^2}{(1+x^2)^3} = \frac{-4}{1+x^2} + \frac{12}{(1+x^2)^2} + \frac{-8}{(1+x^2)^3}.$$

Or pour tout entier $n \in \mathbb{N}$, si on pose $J_n = \int_0^{+\infty} \frac{1}{(1+x^2)^n} dx$ alors $J_{n+1} = \frac{2n-1}{2n} J_n$.

$$-\int_0^{+\infty} \frac{1}{1+x^2} dx = \left[\arctan x\right]_0^{+\infty} = \frac{\pi}{2}$$
$$-\int_0^{+\infty} \frac{1}{(1+x^2)^2} dx = J_2 = \frac{1}{2} J_1 = \frac{\pi}{4}$$
$$-\int_0^{+\infty} \frac{1}{(1+x^2)^3} dx = J_3 = \frac{3}{4} J_2 = \frac{3\pi}{16}.$$

D'où
$$I = -4J_1 + 12J_2 - 8J_3 = -2\pi + 3\pi - \frac{3\pi}{2} = -\frac{\pi}{2}$$

2 Établir la convergence puis calculer la somme de la série

$$\sum_{n\geq 2}rac{n}{(n^2-1)^2}.$$

• Convergence de $\sum_{n>2} \frac{n}{(n^2-1)^2}$:

On a $\frac{n}{(n^2-1)^2} \underset{+\infty}{\sim} \frac{1}{n^3}$. Comme la série de Riemann $\sum_{n\geq 2} \frac{1}{n^3}$ converge (3>1), donc

$$\sum_{n>2} \frac{n}{(n^2-1)^2}$$
 converge.

• Calcul de
$$\sum_{n=2}^{+\infty} \frac{n}{(n^2-1)^2}$$
:

Par une décomposition en éléments simples, on a $\forall n \geq 2$,

$$\frac{n}{(n^2-1)^2} = \frac{1}{4} \left[\frac{1}{(n-1)^2} - \frac{1}{(n+1)^2} \right].$$

– Une méthode : On va rendre la série telescopique en remarquant que pour tout $n \geq 2$,

$$\frac{n}{(n^2-1)^2} = \frac{1}{4} \left[\left(\frac{1}{(n-1)^2} + \frac{1}{n^2} \right) - \left(\frac{1}{n^2} + \frac{1}{(n+1)^2} \right) \right]$$
$$\frac{n}{(n^2-1)^2} = v_n - v_{n+1} \quad \text{où} \quad v_n = \frac{1}{4} \left(\frac{1}{(n-1)^2} + \frac{1}{n^2} \right).$$

$$\sum_{n=2}^{+\infty} \frac{n}{(n^2-1)^2} = \sum_{n=2}^{+\infty} (v_n - v_{n+1}) \text{ est un série telescopique convergente, par suite} \\ \sum_{n=2}^{+\infty} \frac{n}{(n^2-1)^2} = v_2 - \lim_{n \to \infty} v_n. \\ \text{On a } v_2 = \frac{1}{4} \left(1 + \frac{1}{4}\right) = \frac{5}{16} \text{ et } \lim_{n \to \infty} v_n = \lim_{n \to \infty} \frac{1}{4} \left(\frac{1}{(n-1)^2} + \frac{1}{n^2}\right) = 0, \text{ donc} \\ \sum_{n=2}^{+\infty} \frac{n}{(n^2-1)^2} = \frac{5}{16}.$$

- Une autre méthode : En passant par les sommes partielles.

Soit $S_n = \sum_{k=2}^n \frac{k}{(k^2-1)^2}$ la somme partielle d'ordre n. On a :

$$S_n = \sum_{k=2}^n \frac{1}{4} \left[\frac{1}{(k-1)^2} - \frac{1}{(k+1)^2} \right]$$

$$= \frac{1}{4} \sum_{k=2}^n \frac{1}{(k-1)^2} - \frac{1}{4} \sum_{k=2}^n \frac{1}{(k+1)^2}$$

$$= \frac{1}{4} \sum_{k=1}^{n-1} \frac{1}{k^2} - \frac{1}{4} \sum_{k=3}^{n+1} \frac{1}{k^2}$$

$$= \frac{1}{4} \sum_{k=1}^{n-1} \frac{1}{k^2} - \frac{1}{4} \left(\sum_{k=1}^{n-1} \frac{1}{k^2} - 1 - \frac{1}{4} + \frac{1}{n^2} + \frac{1}{(n+1)^2} \right)$$

$$S_n = \frac{1}{4} \left(1 + \frac{1}{4} - \frac{1}{n^2} - \frac{1}{(n+1)^2} \right).$$

On a

$$\sum_{n=2}^{+\infty} \frac{n}{(n^2 - 1)^2} = \lim_{n \to \infty} S_n = \frac{1}{4} \left(1 + \frac{1}{4} \right) = \frac{5}{16}.$$

|3| Soit lpha>0. On considère la suite des fonctions $(f_n)_{n\in\mathbb{N}}$ définie sur $\mathbb R$ par

$$f_n(x) = n^{lpha} x \mathrm{e}^{-n^2 x^2}, \qquad orall n \in \mathbb{N}, \; orall x \in \mathbb{R}.$$

- a) Montrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement sur \mathbb{R} vers une fonction f que l'on déterminera.
- b) Étudier la convergence uniforme de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ $\operatorname{sur} \mathbb{R}$.
- a) Convergence simple de $(f_n)_n$:

- On a
$$f_n(0) = 0$$
, donc $\lim_{n \to \infty} f_n(0) = 0$.

- Pour
$$x \neq 0$$
, on a $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} n^{\alpha} x e^{-n^2 x^2} = 0$

- Pour $x \neq 0$, on a $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} n^{\alpha} x e^{-n^2 x^2} = 0$.

Dans tous les cas pour tout $x \in \mathbb{R}$, $\lim_{n \to \infty} f_n(x) = 0$, donc la suite de fonctions $(f_n)_n$ converge simplement vers la fonction nulle sur \mathbb{R} .

b) Convergence uniforme de $(f_n)_n$:

Chaque f_n est dérivable et on a pour tout $x \in \mathbb{R}$, $f'_n(x) = n^{\alpha} e^{n^2 x^2} (1 - 2n^2 x^2)$. f_n étant impaire, on donne ses variations sur $[0, +\infty[$:

x	0		$\frac{1}{n\sqrt{2}}$	$+\infty$
$f'_n(x)$		+	0	_
f_n	0 -	*	$f_n\left(\frac{1}{n\sqrt{2}}\right)$)0

D'après le tableau de variation on a $||f_n||_{\infty} = \sup_{x \in \mathbb{R}} |f_n(x)| = f_n(\frac{1}{n\sqrt{2}}) = \frac{1}{\sqrt{2e}} \cdot \frac{1}{n^{1-\alpha}}$. Ainsi

$$\lim_{n \to \infty} ||f_n||_{\infty} = \begin{cases} 0 & \text{si } 0 < \alpha < 1 \\ \frac{1}{\sqrt{2e}} & \text{si } \alpha = 1 \\ +\infty & \text{si } \alpha > 1 \end{cases}$$

Par conséquent la suite de fonctions $(f_n)_n$ converge uniformément vers la fonction nulle si et seulement si $0 < \alpha < 1$.

- a) Montrer que la série de fonction $\sum_{n\geq 1} f_n$ converge sur $[0,+\infty[$ et calculer sa somme.
- b) Que peut-on en déduire concernaant la convergence uniforme et normale de la série de fonction $\sum_{n\geq 1} f_n \ \mathrm{sur}\ [0,+\infty[\,?\,]$

a) • Convergence (simple) de la série de fonctions $\sum_{n\geq 1} f_n$:

- On a
$$f_n(0) = 0$$
, donc $\sum_{n>1} f_n(0) = 0$ converge.

– Pour $x \in]0, +\infty[$, on a

$$\sum_{n\geq 1} f_n(x) = \sum_{n\geq 1} \frac{x}{(1+x^2)^n} = x \sum_{n\geq 1} \left(\frac{1}{1+x^2}\right)^n$$

Or pour tout x>0, $0<\frac{1}{1+x^2}<1$, donc $\sum_{n\geq 1}\left(\frac{1}{1+x^2}\right)^n$ est une série géométrique convergente. Par conséquent $\sum_{n\geq 1}f_n(x)$ converge.

Dsns tous les cas, pour tout $x \in [0, +\infty[$, $\sum_{n \ge 1} f_n(x)$ converge donc la série de fonctions $\sum_{n \ge 1} f_n$ converge sur $[0, +\infty[$.

• Calcul de la somme :

Pour tout $x \in]0, +\infty[$,

$$S(x) = \sum_{n=1}^{\infty} f_n(x) = x \sum_{n=1}^{\infty} \left(\frac{1}{1+x^2} \right)^n = x \frac{\frac{1}{1+x^2}}{1 - \frac{1}{1+x^2}} = \frac{1}{x}.$$

Ainsi la somme S de la série est définie par :

$$S(x) = \begin{cases} 0 & \text{si } x = 0\\ \frac{1}{x} & \text{si } x \in]0, +\infty[\end{cases}$$

b) • Convergence uniforme:

Pour tout $n \in \mathbb{N}^*$, f_n est continue sur $[0, +\infty[$ alors que la somme S n'est pas continue en 0, donc la série de fonctions $\sum_{n \ge 1} f_n$ ne converge pas uniformément.

• Convergence normale:

La série de fonctions $\sum_{n\geq 1} f_n$ ne converge pas uniformément donc elle ne converge pas normalement.