BDP - Assignment 4 - BhoiteShivani - CodeOnly

```
In [1]: import pandas as pd
import requests
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import us
```

Year 1

url = "https://earthquake.usgs.gov/fdsnws/event/1/query?format=csv&starttime=2016-01-01&endtime=2017-01-01&minmagnitude=4 (https://earthquake.usgs.gov/fdsnws/event/1/query?format=csv&starttime=2016-01-01&endtime=2017-01-01&minmagnitude=4)"

Year1 = requests.get(url).text f = open("Year1.csv", "w") f.write(Year1) f.close()

Year 2

url = "https://earthquake.usgs.gov/fdsnws/event/1/query?format=csv&starttime=2017-01-01&endtime=2018-01-01&minmagnitude=4 (https://earthquake.usgs.gov/fdsnws/event/1/query?format=csv&starttime=2017-01-01&endtime=2018-01-01&minmagnitude=4)"

Year2 = requests.get(url).text f = open("Year2.csv", "w") f.write(Year2) f.close()

Year 3

url = "https://earthquake.usgs.gov/fdsnws/event/1/query?format=csv&starttime=2018-01-01&endtime=2019-01-01&minmagnitude=4 (https://earthquake.usgs.gov/fdsnws/event/1/query?format=csv&starttime=2018-01-01&endtime=2019-01-01&minmagnitude=4)."

Year3 = requests.get(url).text f = open("Year3.csv", "w") f.write(Year3) f.close()

Year 4

url = "https://earthquake.usgs.gov/fdsnws/event/1/query?format=csv&starttime=2019-01-01&endtime=2019-10-02&minmagnitude=4 (https://earthquake.usgs.gov/fdsnws/event/1/query?format=csv&starttime=2019-01-01&endtime=2019-10-02&minmagnitude=4)"

Year4 = requests.get(url).text f = open("Year4.csv", "w") f.write(Year4) f.close()

```
In [65]: df_year1 = pd.read_csv('Year1.csv')
    df_year2 = pd.read_csv('Year2.csv')
    df_year3 = pd.read_csv('Year3.csv')
    df_year4 = pd.read_csv('Year4.csv')

    frames=[df_year1,df_year2,df_year3,df_year4]
    all_data_df=pd.concat(frames,sort=False)
    all_data_df.to_csv('All_Data.csv')

#All the data is combined and Stored into All_data.csv

In []: #Reading from the csv which contains the entire data
    final_df = pd.read_csv('All_Data.csv')

    final_df = final_df.loc[:, ~final_df.columns.str.contains('^Unnamed')]
    final_df.count()

In []: final_df=final_df[final_df['type']=='earthquake']
    final_df.count()
```

1) Use describe to get the basic statistics of all the columns (5 points)

```
In [ ]: final_df.describe()
```

2) Get the top 10 earthquakes by magnitude (5 points)

3) Handle all Null/empty data by filling it with zeros (10 points)

```
In [ ]: final_df=final_df.fillna(0)
final_df
```

4) Find the top 10 places where the strongest earthquakes occurred (15 points)

```
In [ ]: newdf=final_df.nlargest(10, 'mag')
    newdf['place'].str.split('of').str[-1]
```

5) Find the top 10 places where the weakest earthquakes occurred (15 points)

```
In [ ]: newdf=final_df.nsmallest(10, 'mag')
    newdf['place'].str.split('of').str[-1]
```

6) On a per-year basis, use a bar chart to plot the number of earthquakes for each of the following magnitude groups ranges: Group 1: [4,4.5), Group 2: [4.5,5), Group 3: [5,6), Group 4: [6,7), Group 5: (7,MAX]. Pay close attention to the group ranges. (20 points) Please add labels and colors to the plot.

```
In [ ]: #Dividing the entire year into 4 groups
         maxmag= final df['mag'].max()
         bins = 4,4.5,5,6,7, maxmag #for naming the xticks
         df year1 group1 = df year1[(df year1['mag']>=4) & (df year1['mag']<4.5)]</pre>
         df year1_group2 = df_year1[(df_year1['mag']>=4.5) & (df_year1['mag']<5)]</pre>
         df year1 group3 = df year1[(df year1['mag']>=5) & (df year1['mag']<6)]</pre>
         df year1 group4 = df year1[(df year1['mag']>=6) & (df year1['mag']<7)]</pre>
         df_year1_group5 = df_year1[(df_year1['mag']>7) & (df_year1['mag']<=maxma</pre>
         g)]
         df year2 group1 = df year2[(df year2['mag']>=4) & (df year2['mag']<4.5)]
         df year2 group2 = df year2[(df year2['mag']>=4.5) & (df year2['mag']<5)]</pre>
         df year2 group3 = df year2[(df year2['mag']>=5) & (df year2['mag']<6)]</pre>
         df year2 group4 = df year2[(df year2['mag']>=6) & (df year2['mag']<7)]</pre>
         df year2 group5 = df year2[(df year2['mag']>7) & (df year2['mag']<=maxma</pre>
         g)]
         df year3 group1 = df year3[(df year3['mag']>=4) & (df year3['mag']<4.5)]
         df year3 group2 = df year3[(df year3['mag']>=4.5) & (df year3['mag']<5)]</pre>
         df year3 group3 = df year3[(df year3['mag']>=5) & (df year3['mag']<6)]</pre>
         df year3 group4 = df year3[(df year3['mag']>=6) & (df year3['mag']<7)]
         df year3 group5 = df year3[(df year3['mag']>7) & (df year3['mag']<=maxma</pre>
         g)]
         df year4 group1 = df year4[(df year4['mag']>=4) & (df year4['mag']<4.5)]</pre>
         df year4 group2 = df_year4[(df_year4['mag']>=4.5) & (df_year4['mag']<5)]</pre>
         df year4 group3 = df year4[(df year4['mag']>=5) & (df year4['mag']<6)]</pre>
         df year4 group4 = df year4[(df year4['mag']>=6) & (df year4['mag']<7)]</pre>
         df year4 group5 = df year4[(df year4['mag']>7) & (df year4['mag']<=maxma</pre>
         g)]
```

```
In [ ]: #Year 2016
        plt.hist((df year1 group1['mag'],df year1 group2['mag'],df year1 group3[
        'mag'],df_year1_group4['mag'],df_year1_group5['mag']),
                 bins=None, histtype='bar',align='left', rwidth=10)
        plt.xticks(bins,('Group1','Group2','Group3','Group4','Group5'),rotation=
        90)
        plt.xlabel('Maginitude')
        plt.ylabel('Frequency of Earthquake')
        plt.title("Year 2016 - Earthquake count vs Magnitude")
        plt.legend(('Group1','Group2','Group3','Group4','Group5'))
        plt.show()
        #Year 2017
        plt.hist((df year2 group1['mag'],df year2 group2['mag'],df year2 group3[
        'mag'],df_year2_group4['mag'],df_year2_group5['mag']),
                 bins=None, histtype='bar',align='left', rwidth=10)
        plt.xticks(bins,('Group1','Group2','Group3','Group4','Group5'),rotation=
        90)
        plt.xlabel('Maginitude')
        plt.ylabel('Frequency of Earthquake')
        plt.title("Year 2017 - Earthquake count vs Magnitude")
        plt.legend(('Group1','Group2','Group3','Group4','Group5'))
        plt.show()
        #Year 2018
        plt.hist((df year3 group1['mag'],df year3 group2['mag'],df year3 group3[
        'mag'],df year3 group4['mag'],df year3 group5['mag']),
                 bins=None, histtype='bar',align='left', rwidth=10)
        plt.xticks(bins,('Group1','Group2','Group3','Group4','Group5'),rotation=
        90)
        plt.xlabel('Maginitude')
        plt.ylabel('Frequency of Earthquake')
        plt.title("Year 2018 - Earthquake count vs Magnitude")
        plt.legend(('Group1','Group2','Group3','Group4','Group5'))
        plt.show()
        #Year 2019
        plt.hist((df year4 group1['mag'],df year4 group2['mag'],df year4 group3[
         'mag'],df_year4_group4['mag'],df_year4_group5['mag']),
                 bins=None, histtype='bar',align='left', rwidth=10)
        plt.xticks(bins,('Group1','Group2','Group3','Group4','Group5'),rotation=
        90)
        plt.xlabel('Maginitude')
        plt.ylabel('Frequency of Earthquake')
        plt.title("Year 2019 - Earthquake count vs Magnitude")
        plt.legend(('Group1','Group2','Group3','Group4','Group5'))
        plt.show()
```

```
In [ ]: #Trying to plot the entire data in one Map

bins = 4,4.5,5,6,7,maxmag

plt.hist((df_year1['mag'],df_year2['mag'],df_year3['mag'],df_year4['mag']), bins, histtype='bar', align='left', rwidth=0.60)

plt.xticks(bins,('Group1','Group2','Group3','Group4','Group5'))
plt.xlabel('Maginitude')
plt.ylabel('Earth quake count')
plt.title("Earthquake count vs Magnitude")
plt.legend(('2016','2017','2018','2019'))
plt.show()
```

7) Find the 10 countries with the highest number of earthquakes (30 points) (Note: Yes, this is only countries, not full place)

8) Analyze the distribution of the Earthquake magnitudes. This is, make a histogram of the Earthquake count versus magnitude. Make sure to use a Logarithmic scale. What sort of relationship do you see? (20 points) P lease add labels and colors to the plot.

```
In [ ]: plt.hist(x=((df_year1['mag'],df_year2['mag'],df_year3['mag'],df_year4['m ag'])), align='left', log=True)
    plt.xlabel('Maginitude')
    plt.ylabel('Earth quake count')
    plt.title("Earthquake count vs Magnitude")
    plt.legend(('2016','2017','2018','2019'))
    plt.show()
```

Observation - The bar graph here is a UniModal bar graph. It has 1 peak. This shows that there are more number of 4 magnitude earth quakes. And as the magnitude of earth quake increases the frequency of that earth quake reduces. Showing a inverse relationship between the magnitude and the frequency.

9) Analyze the distribution of the Earthquake depths. This is, make a histogram of the Earthquake count versus depth. Make sure to use a Logarithmic scale. What sort of relationship do you see? (20 points) Please add labels and colors to the plot.

Observation - The bar graph here is a Bi Modal bar graph. Here we can observe that there are 2 peaks. The Highest Peak is observed for the lowest depth and then 2nd highest peak is observed at depth between 500-600.

10) Visualize the locations of earthquakes by making a scatterplot of their latitude and longitude. (20 points) Please add labels and colors to the plot.

11) Using the US package (https://pypi.org/project/us/), clean the dataset you used previously to only have data from the USA. You need to create a function that accommodates this. (20 points)

```
In [20]: import us
 In [ ]: newdf=final_df
         #Taking only the last variable, i.e country from the place
         newdf['place']=newdf['place'].str.split('of').str[-1]
         newdf['place']=newdf['place'].str.split(',').str[-1]
         newdf['place']=newdf['place'].str.lstrip()
         #making a new dataframe that will store only the US data
         US df = pd.DataFrame(columns=['time', 'latitude', 'longitude', 'depth',
         'mag', 'magType', 'nst',
                 'gap', 'dmin', 'rms', 'net', 'id', 'updated', 'place', 'type',
                'horizontalError', 'depthError', 'magError', 'magNst', 'status',
                 'locationSource', 'magSource'])
         US_df
 In [ ]: for index, row in newdf.iterrows():
             if((us.states.lookup(row['place']))!=None):
                 US df=US df.append(row)
In [ ]: US df.describe()
 In [ ]: US df.count()
```

12) Using the cleaned US-only version of your dataset answer the following questions (30 points total):

Note: Question 12 has to be correct and match my own solutions, otherwise you will receive no marks for these responses.

a) Find the top 10 US states where the strongest earthquakes occurred (10 points)

```
In [ ]: temp_df=US_df.nlargest(10, 'mag')
temp_df[['place','mag']]
```

b) On a per-year basis, use a bar chart to plot the number of earthquakes for each of the following magnitude groups ranges: Group 1: [4,4.5), Group 2: [4.5,5), Group 3: [5,6), Group 4: [6,7), Group 5: (7,MAX]. Pay close attention to the group ranges. (10 points) Please add labels and colors to the plot.

```
In [ ]: maxmag=US df['mag'].max()
                              US_df_group1 = US_df[(US_df['mag']>=4) & (US_df['mag']<4.5)]
                              US_{df_group} = US_{df_group
                              US df group3 = US df[(US df['mag']>=5) & (US df['mag']<6)]
                              US_df_group4 = US_df[(US_df['mag']>=6) & (US_df['mag']<7)]
                              US df group5 = US df[(US df['mag']>7) & (US df['mag']<=maxmag)]
                              plt.hist((US df group1['mag'],US df group2['mag'],US df group3['mag'],US
                              _df group4['mag'],US df group5['mag']),
                                                               bins=None, histtype='bar',align='left', rwidth=10)
                              plt.xticks(bins,('Group1','Group2','Group3','Group4','Group5'),rotation=
                              90)
                              plt.xlabel('Maginitude')
                              plt.ylabel('Frequency of Earthquake')
                              plt.title("US Earthquake count vs Magnitude")
                              plt.legend(('Group1','Group2','Group3','Group4','Group5'))
                              plt.show()
```

c) Visualize the locations of earthquakes by making a scatterplot of their latitude and longitude. Overlay a US map on top of this plot to match the locations. (20 points) Please add labels and colors to the plot.

```
In [41]: import matplotlib.image as mpimg
   import matplotlib.image as mpimg
   us_img=mpimg.imread('us map.png')

In [ ]: plt.scatter(x=US_df['latitude'],y=US_df['longitude'], alpha=0.4,edgecolo
   rs="blue")

   plt.imshow(us_img, cmap='viridis',extent=[-16, 200, -270, 200], alpha=1)

   plt.ylabel("Longitude", fontsize=14)
   plt.xlabel("Latitude", fontsize=14)
   plt.title("Mapping of US Earthquake",fontsize=19)
   plt.show()
In [ ]:
```