Ngày Tháng Năm..... Nguyễn Minh Duc - ITITI 121045 - Lab 3 - Mclah 61. a) 10x+21c, ->c, =27 (1) -34-6x + 21, = -615 (2) x, +12 + 5x, = -21.5 (31) Times -3 to (1) and subgract from (2) $10x_1 + 2x_2 - x_3 = 27$ (1) -5.42 + 17 x, = -53.4 (2) $x_1 + x_2 + 5x_3 = -21.5$ (3) times 1 to (1) and subtract from (3) -5.4x, +1.7x = -534 (2) 0.8x, +5.11, = -24.2 (3) times -0.8 to (2) and subtract from (3) 10 x, +2x, -x, =27 (1) -54x + 1.7c, = -53.4 (2) 5. 35185 x = 16. 28889 (3) =) 1, = 3 64 36 - 6 2, = 10.84706 8 1, = 4.83495 0.5 b) Substitute the x, x, x, into (1) (2) (3) we get answer sept respectively: (1) = 27_00002 (2) = -61 SOCOA (3) = -21.5

HÒA BÌNH

								Ngày	Ti	háng	Năi	m		
			40		0	- 1/			1					
	Web	lare -	12 x	722	+2r	, 7/16			y=1					
				$\frac{1}{2}$ t_{l}	+ -	23	-	7	4-1					
				5	3				x, =/					
			0	nginal	-8	x = -	8							
	Byb	stituting		Jegur 1	ions	give	the	same	va	mes.	7		,	1.
	03,	2x	+12-	= 2		Matrix	2	_ 1	-1	1 = 2				1
and the specific of the state of		524	+212+	-2c, =	1	>	5	2	-	2 = 9) -			- h-%
		329	TRITS	×3 = 5	R1/2		3	1		1 - 5	5			9 11.5
Rz - \(\frac{5}{2}\)R1	2	1	1:	2	M1/2	> .	1	0.5	- 05	5:1				
R3 - 3 R1.	0	J	4.5	4	VV.		a	-0.5	4	5: 4				
,	LO	-0,5	25 :	کے کے	R3-R2 R1-0.) (0	-9	: -2	1			
R2/-05	1	0.5	-05.			7	1	0	4	; 5	7			
R3/-2	10	1 =	9 ;	8	RE 13.	5E3	0	1	0					
e.tr. River		0	1.	1.	Rzta		0	0	1	2 J	\int			600
	1	U	0:	4/1		X4 =	3	1						
400		0	0:	\$ 2	4)	スジ	21	C	he h			rute be	wh	
		15c,		c,	2200	2,2		3300	nto by	iginal	Q qu	utions)		
		3c, +				*	ea	3						Service .
-		-40, -	c, +1	12c,=	2400		Y		`				-1	
-		33	500 + 3	Bez tc.	, C2	120	0 +30	, +6c		240	0+40	+()	1	7 7 2 24
			15		1. 6.		18		70,		12	4 02	3	
		1 .	2	3	4		5	6		-).A	Fier	6 iterati	ins,	
A Committee of Committee	E,	0 2		59,46	281 0	1 283	7	2844	08		1	e con ou	1.	
	1	0 103	(3) 2	03 89	114	E6 217	8	212.	308	1 1		C2 - 212	1	
	e,	28	1, 3413(3 48	311,5	B217	.8	312	495/	c,=31	2.455			
1.46,4544 - 3								4-1	1/2	diff :	1.15%	9 = 36	5/	
					٠.) HÒA	BÌNH	3=0%		

```
#Nguyễn Minh Đức - ITITIU21045 TMCLab03 Q1
def gauss elimination(A, B):
   a = len(B)
    for pivot in range(a):
       # Partial pivoting
       max row = pivot
       for i in range(pivot + 1, a):
           if abs(A[i][pivot]) > abs(A[max_row][pivot]):
               \max row = i
       A[pivot], A[max row] = A[max row], A[pivot]
       B[pivot], B[max_row] = B[max_row], B[pivot]
       # Make the pivot element 1
       pivot_element = A[pivot][pivot]
       for j in range(pivot, a):
           A[pivot][j] /= pivot_element
       B[pivot] /= pivot_element
       # Eliminate other rows
       for i in range(a):
           if i != pivot:
               factor = A[i][pivot]
               for j in range(pivot, a):
                   A[i][j] -= factor * A[pivot][j]
               B[i] -= factor * B[pivot]
    return B
# Coefficients of the linear equations
A = [[10, 2, -1], [-3, -6, 2], [1, 1, 5]]
# Constants on the right-hand side
B = [27, -61.5, -21.5]
# Solve the system of linear equations
solution = gauss elimination(A, B)
# Display the solution
for i, sol in enumerate(solution):
    print(f'x_{i+1} = \{sol\}')
x 3 = -6.0
                                            Code
                                                        Text
```

```
def gauss elimination partial pivoting(A, B):
    a = len(B)
    for pivot in range(a):
       # Partial pivoting
       max_row = pivot
       for i in range(pivot + 1, a):
           if abs(A[i][pivot]) > abs(A[max_row][pivot]):
               \max row = i
       A[pivot], A[max_row] = A[max_row], A[pivot]
       B[pivot], B[max row] = B[max row], B[pivot]
       # Make the pivot element 1
       pivot elem = A[pivot][pivot]
       for j in range(pivot, a):
           A[pivot][j] /= pivot_elem
       B[pivot] /= pivot elem
       # Eliminate other rows
       for i in range(a):
           if i != pivot:
               factor = A[i][pivot]
               for j in range(pivot, a):
                   A[i][j] -= factor * A[pivot][j]
               B[i] -= factor * B[pivot]
    return B
# Coefficients of the linear equations
A = [[8, -2, 2], [10, 2, 4], [12, 2, 2]]
# Constants on the right-hand side
B = [8, 16, 16]
# Solve the system of linear equations
solution = gauss_elimination_partial_pivoting(A, B)
# Display the solution
for i, sol in enumerate(solution):
   print(f'x_{i+1} = \{sol\}')
    x 2 = 1.0
```

```
#Nguyễn Minh Đức - ITITIU21045 TMCLab03 Q3
import numpy as np
# Coefficient matrix A
A = np.array([[2, 1, -1]],
              [5, 2, 2],
              [3, 1, 1]])
# Right-hand side vector B
B = np.array([2, 9, 5])
# Augment the coefficient matrix with the right-hand side vector
augmented_matrix = np.column_stack((A, B))
# Perform Gauss-Jordan elimination
a = len(augmented matrix)
for i in range(a):
    # Find the pivot row
    pivot row = i
    for j in range(i, a):
        if abs(augmented_matrix[j, i]) > abs(augmented_matrix[pivot_row, i]):
            pivot row = j
    # Check if the pivot element is close to zero
    if abs(augmented matrix[pivot row, i]) < 1e-10:</pre>
    augmented_matrix[i], augmented_matrix[pivot_row] = augmented_matrix[pivot_row], augmented_matrix[i]
    # Make the pivot element 1
    pivot_elem = augmented_matrix[i, i]
    augmented matrix[i] = (augmented matrix[i] / pivot elem)
    # Eliminate other rows
    for j in range(a):
       if j != i:
            factor = augmented_matrix[j, i]
            augmented_matrix[j] -= factor * augmented_matrix[i]
# Extract the solution
solution = augmented_matrix[:, -1]
# Display the solution
for i, sol in enumerate(solution):
    print(f'x {i+1} = {sol}')
\rightarrow x_1 = 1
     x_2 = 2
     x 3 = 0
```

```
#Nguyễn Minh Đức - ITITIU21045 TMCLab03 Q4
def gauss seidel(A, B, initial guess, max iterations, tolerance):
    a = len(B)
    x = initial_guess.copy()
    for in range(max iterations):
        x_new = x.copy()
        for i in range(a):
            s1 = sum(A[i][j] * x_new[j] for j in range(i))
            s2 = sum(A[i][j] * x[j] for j in range(i + 1, a))
            x_{new}[i] = (B[i] - s1 - s2) / A[i][i]
        \max_{i} diff = \max(abs((x_new[i] - x[i]) / x_new[i]) for i in range(a))
        x = x_new
        if max diff < tolerance:</pre>
            return x
    return x
# Coefficients of the linear equations
A = [[15, -3, -1],
    [-3, 18, -6],
     [-4, -1, 12]
# Constants on the right-hand side
B = [3300, 1200, 2400]
# Initial guess
initial_guess = [0, 0, 0]
# Maximum number of iterations
max iterations = 1000
# Tolerance (5%)
tolerance = 0.05
# Solve the system of linear equations using Gauss-Seidel
solution = gauss seidel(A, B, initial guess, max iterations, tolerance)
# Display the solution
for i, sol in enumerate(solution):
    print(f'c_{i+1} = {sol}')
     c 1 = 283.7028230420921
     c 2 = 217.8033174275813
     c 3 = 312.71788413299583
```