哈爾濱Z紫大學 实验报告

实验(五)

题			目	LinkLab
				链接
专			业	计算机类
学			号	1190201816
班			级	1903012
学			生	数红雨
指	탺	教	师	史先俊
实	验	地	点	G709
实	验	日	期	2021.5.19

计算机科学与技术学院

目 录

第1章 实验基本信息	3 -
1.1 实验目的	3 - 3 - 3 -
第 2 章 实验预习	4-
2.1 请按顺序写出 ELF 格式的可执行目标文件的各类信息(5 分) 2.2 请按照内存地址从低到高的顺序,写出 LINUX 下 X64 内存映像。(2.3 请运行 "LINKADDRESS -U 学号 姓名"按地址循序写出各符号的地并按照 LINUX 下 X64 内存映像标出其所属各区。	5分)-4- 址、空间。 5- 5- 序的名字。
第3章 各阶段的原理与方法	15 -
3.1 阶段 1 的分析	- 16 18 21 -
第4章 总结	22 -
4.1 请总结本次实验的收获4.2 请给出对本次实验内容的建议	
参考文献	23 -

第1章 实验基本信息

1.1 实验目的

理解链接的作用与工作步骤 掌握 ELF 结构、符号解析与重定位的工作过程 熟练使用 Linux 工具完成 ELF 分析与修改

1.2 实验环境与工具

1.2.1 硬件环境

X64 CPU; 2GHz; 2G RAM; 256GHD Disk 以上

1.2.2 软件环境

Windows7 64 位以上; VirtualBox/Vmware 11 以上; Ubuntu 16.04 LTS 64 位/优麒麟 64 位;

1.2.3 开发工具

Visual Studio 2010 64 位以上; GDB/OBJDUMP; DDD/EDB 等

1.3 实验预习

- 上实验课前,必须认真预习实验指导书(PPT 或 PDF)
- 了解实验的目的、实验环境与软硬件工具、实验操作步骤,复习 与实验有关的理论知识。
 - 请按顺序写出 ELF 格式的可执行目标文件的各类信息。
 - 请按照内存地址从低到高的顺序,写出 Linux 下 X64 内存映像。
- 请运行"LinkAddress -u 学号 姓名"按地址顺序写出各符号的地址、空间。并按照 Linux 下 X64 内存映像标出其所属各区。
- 请按顺序写出 LinkAddress 从开始执行到 main 前/后执行的子程序的名字。(gcc 与 objdump/GDB/EDB)

第2章 实验预习

2.1 请按顺序写出 ELF 格式的可执行目标文件的各类信息(5 分) ELF 头

段头部表:将连续的文件映射到运行时的内存段

. init: 定义了 init 函数,程序初始化代码会调用它

. text: 已编译程序的机器代码

. rodata: 只读数据,比如 printf 语句中的格式串和开关语句的跳转表

. data: 己初始化的全局和静态 C 变量

. bss: 未初始化的全局和静态 C 变量

- . symtab : 一个符号表,它存放在程序中定义和引用的函数和全局变量的信息
- . debug : 一个调试符号表,其条目时程序中定义的全局变量和类型定义,程序中定义和引用的全局变量,以及原始的 C 源文件。
- . line: 原始 C 源程序的行号和. text 节中机器指令之间的映射
- . strtab: 一个字符串表,其内容包括.symtab 和.debug 节中的符号表,以及节头部中的节名字。

节头部表: 描述目标文件的节。

2. 2 请按照内存地址从低到高的顺序,写出 Linux 下 X64 内存映像。 (5 分)

2.3 请运行 "LinkAddress -u 学号 姓名" 按地址循序写出各符号的地址、空间。并按照 Linux 下 X64 内存映像标出其所属各区。

(5分)

所属区	个股好的地址、空间(地址从小到大)					
只读代码段	exit 0x401100 4198656					
(.init .text .redat	printf 0x4010e0 4198624					
a)	malloc 0x4010f0 4198640					
	free 0x4010a04198560					
	strcpy 0x4010b0 4198576					
读写段	show_pointer 0x401205 4198917					
(.dara .bss)	useless 0x4011f64198902					

	main 0x40123a 4198970							
	global 0x404080 4210816							
	big array 0x404140 4211008							
	huge array 0x1404140 20988224							
运行时堆	p1 0x7face78c9010 140380595851280							
(由 malloc 创建)	p2 0x4331b6b0 1127331504							
	p3 0x7face78a8010 140380595716112							
	p4 0x7faca78a7010 140379521970192							
	p5 0x7fac278a6010 140377374482448							
用户栈	env 0x7ffe743b04f0 140730848445680							
(运行时创建)	env[0] *env 0x7ffe743b12e6 140730848449254							
	SHELL=/bin/bash							
	env[1] *env 0x7ffe743b12f6 140730848449270							
	SESSION_MANAGER=local/fhy1190201816-virtual-mach							
	env[2] *env 0x7ffe743b1376 140730848449398							
	QT_ACCESSIBILITY=1							
	env[3] *env 0x7ffe743b1389 140730848449417							
	COLORTERM=truecolor							
	env[4] *env 0x7ffe743b139d 140730848449437							
	XDG_CONFIG_DIRS=/etc/xdg/xdg-ubuntu:/etc/xdg							
	env[5] *env 0x7ffe743b13ca 140730848449482							

XDG MENU PREFIX=gnomeenv[6] *env 0x7ffe743b13e1 140730848449505 GNOME DESKTOP SESSION ID=this-is-deprecated env[7] *env 0x7ffe743b140d 140730848449549 GTK_IM_MODULE=fcitx env[8] *env 0x7ffe743b1421 140730848449569 LANGUAGE=zh CN:zh:en US:en env[9] *env 0x7ffe743b143c 140730848449596 QT4 IM MODULE=fcitx env[10] *env 0x7ffe743b1450 140730848449616 LC ADDRESS=zh CN. UTF-8 env[11] *env 0x7ffe743b1467 140730848449639 GNOME SHELL SESSION MODE=ubuntu env[12] *env 0x7ffe743b1487 140730848449671 LC NAME=zh CN. UTF-8 env[13] *env 0x7ffe743b149b 140730848449691 SSH_AUTH_SOCK=/run/user/1000/keyring/ssh env[14] *env 0x7ffe743b14c4 140730848449732 XMODIFIERS=@im=fcitx env[15] *env 0x7ffe743b14d9 140730848449753

DESKTOP SESSION=ubuntu

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
env[16]	*env	0x7ffe743b14f0	140730848449776							
LC_MONETARY=zh_CN. UTF-8										
env[17]	*env	0x7ffe743b1508	140730848449800							
SSH_AGENT_PID=1266										
env[18]	*env	0x7ffe743b151b	140730848449819							
GTK_MODULES=gail:atk-bridge										
env[19]	*env	0x7ffe743b1537	140730848449847							
PWD=/home/fhy-1190201816/桌面/HITICS										
env[20]	*env	0x7ffe743b155e	140730848449886							
XDG_SESSION_DESKTOP=ubuntu										
env[21]	*env	0x7ffe743b1579	140730848449913							
LOGNAME=	fhy-1	190201816								
env[22]	*env	0x7ffe743b1590	140730848449936							
XDG_SESSION_TYPE=x11										
env[23]	*env	0x7ffe743b15a5	140730848449957							
GPG_AGENT_INFO=/run/user/1000/gnupg/S.gpg-agent										
env[24]	*env	0x7ffe743b15d9	140730848450009							
XAUTHORITY=/run/user/1000/gdm/Xauthority										
env[25]	*env	0x7ffe743b1602	140730848450050							
WINDOWPA	ATH=2									
env[26]	*env	0x7ffe743b160f	140730848450063							

```
HOME=/home/fhy-1190201816
env[27] *env 0x7ffe743b1629
                               140730848450089
USERNAME=fhy-1190201816
env[28] *env 0x7ffe743b1641
                               140730848450113
IM CONFIG PHASE=1
env[29] *env 0x7ffe743b1653
                               140730848450131
LC PAPER=zh CN. UTF-8
env[30] *env 0x7ffe743b1668
                               140730848450152
LANG=zh CN. UTF-8
env[31] *env 0x7ffe743b1679
                               140730848450169
LS COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:
01;31:*. arc=01;31:*. arj=01;31:*. taz=01;31:*. lha=
01;31:*. | z=01;31:*. | zo=01;31:*. xz=01;31:*. zst=01
=01;31:*. rar=01;31:*. a|z=01;31:*. ace=01;31:*. zoo
.mjpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35
01;35:*. mov=01;35:*. mpg=01;35:*. mpeg=01;35:*. m2v
*. asf=01;35:*. rm=01;35:*. rmvb=01;35:*. flc=01;35:
:*. aac=00;36:*. au=00;36:*. flac=00;36:*. m4a=00;36
00:36:
env[32] *env 0x7ffe743b1c68
                               140730848451688
XDG CURRENT DESKTOP=ubuntu:GNOME
env[33] *env 0x7ffe743b1c89
                               140730848451721
VTE_VERSION=6200
env[34] *env 0x7ffe743b1c9a
                               140730848451738
```

G_ENABLE_DIAGNOSTIC=0

env[35] *env 0x7ffe743b1cb0 140730848451760

GNOME_TERMINAL_SCREEN=/org/gnome/Terminal/screen

env[36] *env 0x7ffe743b1d06 140730848451846

INVOCATION_ID=aae393fab2254cfcb3df4476db66eb78

env[37] *env 0x7ffe743b1d35 140730848451893

MANAGERPID=917

env[38] *env 0x7ffe743b1d44 140730848451908

CLUTTER_IM_MODULE=fcitx

env[39] *env 0x7ffe743b1d5c 140730848451932

LESSCLOSE=/usr/bin/lesspipe %s %s

env[40] *env 0x7ffe743b1d7e 140730848451966

XDG SESSION CLASS=user

env[41] *env 0x7ffe743b1d95 140730848451989

TERM=xterm-256color

env[42] *env 0x7ffe743b1da9 140730848452009

LC_IDENTIFICATION=zh_CN. UTF-8

env[43] *env 0x7ffe743b1dc7 140730848452039

LESSOPEN=| /usr/bin/lesspipe %s

env[44] *env 0x7ffe743b1de7 140730848452071

USER=fhy-1190201816

er	nv [45]	*env	0x7ffe743b1dfb	140730848452091					
GN	NOME_TER	RMINAL	SERVICE=:1. 102						
er	nv [46]	*env	0x7ffe743b1e19	140730848452121					
D	I SPLAY=	: 0							
er	nv [47]	*env	0x7ffe743b1e24	140730848452132					
SH	HLVL=1								
er	nv[48]	*env	0x7ffe743b1e2c	140730848452140					
LC	C_TELEPI	HONE=z	zh_CN. UTF-8						
er	nv [49]	*env	0x7ffe743b1e45	140730848452165					
Q	QT_IM_MODULE=fcitx								
er	nv[50]	*env	0x7ffe743b1e58	140730848452184					
LC	LC_MEASUREMENT=zh_CN. UTF-8								
er	nv[51]	*env	0x7ffe743b1e73	140730848452211					
P.	APERS I ZI	E=a4							
er	nv [52]	*env	0x7ffe743b1e80	140730848452224					
X	XDG_RUNTIME_DIR=/run/user/1000								
er	nv [53]	*env	0x7ffe743b1e9f	140730848452255					
LC	C_TIME=2	zh_CN.	UTF-8						
er	nv [54]	*env	0x7ffe743b1eb3	140730848452275					
JO	OURNAL_S	STREAM	M=8:78940						
er	nv [55]	*env	0x7ffe743b1eca	140730848452298					

XDG DATA DIRS=/usr/share/ubuntu:/usr/local/share env[56] *env 0x7ffe743b1f1f 140730848452383 PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/u env[57] *env 0x7ffe743b1f87 140730848452487 GDMSESSION=ubuntu env[58] *env 0x7ffe743b1f99 140730848452505 DBUS SESSION BUS ADDRESS=unix:path=/run/user/100 env[59] *env 0x7ffe743b1fcf 140730848452559 LC NUMERIC=zh CN. UTF-8 env[60] *env 0x7ffe743b1fe6 140730848452582 =. /a. out gint0 0x41404140 1094730048 glong 0x404088 4210824 cstr 0x4040a0 4210848 pstr 0x4020204202528 gc 0x40204c 4202572 cc 0x402060 4202592 local int 00x7ffe743aff8c 140730848444300 local int 10x7ffe743aff90 140730848444304 local static int 0 0x41404144 1094730052

local static int 1 0x4041104210960

local astr 0x7ffe743affd0 140730848444368 local pstr 0x4020d04202704 argc 0x7ffe743aff7c 140730848444284 argv 0x7ffe743b04c8 140730848445640 argv[0] 7ffe743b12c6 argv[1] 7ffe743b12ce argv[2] 7ffe743b12d1 argv[3] 7ffe743b12dc argv[0] 0x7ffe743b12c6 140730848449222 . /a. out argv[1] 0x7ffe743b12ce 140730848449230 -u argv[2] 0x7ffe743b12d1 140730848449233 1190201816 argv[3] 0x7ffe743b12dc 140730848449244 樊红雨

2.4请按顺序写出 LinkAddress 从开始执行到 main 前/后执行的子程序的名字。(gcc 与 objdump/GDB/EDB)(5 分)

main 执行前:

<_init>:

<.plt>

<puts@plt>

<__stack_chk_fail@plt>

<__printf_chk@plt> <free@plt> <malloc@plt> <__cxa_finalize@plt> <_start> <deregister_tm_clones> <register_tm_clones> <__do_global_dtors_aux> <frame_dummy> <useless> <show_pointer> main 执行后: <main> <__libc_csu_init> <__libc_csu_fini> <_fini>

第3章 各阶段的原理与方法

每阶段 40 分, phasex.o 20 分, 分析 20 分, 总分不超过 80 分

3.1 阶段1的分析

程序运行结果截图:

```
fhy-1190201816@fhy1190201816-virtual-machine:~/桌面/HITICS/linklab-1190201816$ gcc -m32 -no-pie -o linkbomb main.o phase1.o
fhy-1190201816@fhy1190201816-virtual-machine:~/桌面/HITICS/linklab-1190201816$ .
/linkbomb
1190201816
fhy-1190201816@fhy1190201816-virtual-machine:~/桌面/HITICS/linklab-1190201816$
```

分析与设计的过程:

1. 使用 readelf -a phase1.o 命令查看 elf 文件的内容,发现字符串输出的其实地址.data 节中偏移量为 32。

```
节头:
 [Nr] Name
                                                                  ES Flg Lk Inf Al
                                                   0ff
                                                           Size
   0]
                         NULL
                                          00000000 000000 000000 00
                                                                          0
                                                                               0 0
      .text
                         PROGBITS
                                          00000000 000034 00001e 00
                                                                           0
                                                                               0
       .rel.text
                                          00000000 0002bc
                                                           000010 08
                         REL
                                                                        Ι
   21
                                                                               1
      .data
                         PROGBITS
                                          00000000 000060 0000e4 00
                                                                               0
                                          00000000 0002cc 000008 08
      .rel.data
                                                                               3
                                                                                  4
                         RFL
                         NOBITS
      .bss
                                          00000000 000144 000000 00
                                                                                 1
   6]
      .comment
                         PROGBITS
                                          00000000 000144 00002d 01
                                                                          0
                                                                               0
                                                                                 1
      .note.GNU-stack
                         PROGBITS
                                          00000000 000171 000000 00
                                                                           0
                                                                               0
                                                                                  1
                                          00000000 000174 00001c 00
      .note.gnu.pr[...]
                        NOTE
                                                                               0
   9] .eh frame
                         PROGBITS
                                          00000000 000190 000038 00
                                                                               0
                                                                               9
  [10]
      .rel.eh_frame
                         REL
                                          00000000 0002d4 000008 08
  [11]
      .symtab
                         SYMTAB
                                          00000000 0001c8 0000d0 10
                                                                          12
                                                                              10
                                                                                 4
  [12]
      .strtab
                         STRTAB
                                          00000000 000298 000021 00
                                                                               0
      .shstrtab
                         STRTAB
                                          00000000 0002dc 00006e 00
 [13]
```

2. 使用命令 gcc -m32 -no-pie -o linkbomb main.o phase1.o,将 main.o 和 phase1.o 链接成 linkbomb.o,运行 linkbomb 程序,看到原本该程序输出的 字符串:

```
fhy-1190201816@fhy1190201816-virtual-machine:~/桌面/HITICS/linklab-1190201816$ ./linkbomb
SHEqv3T yJnLZJyYDvBts0G5MMKLEOOK958HwTIbQ5yQn7tQc6VW6Zc25DNGpmKvRhTDNliUIjqrXzUMlTw8qz56EiBTlEi2Kaq3pw4v4hoHAsdcD pVK
```

3. 使用 hexedit, 进入 phase1.o,将原本输出的字符串的十六进制修改为学号 1190201816 的十六进制。通过观察右边字符串,将原本的输出字符串替换,

剩余的空间由00补充,在进行链接与输出:

重新连接并输出的结果:

fhy-1190201816@fhy1190201816-virtual-machine:~/桌面/HITICS/linklab-1190201816\$ gcc -m32 -no-pie -o linkbomb main.o phase1.o fhy-1190201816@fhy1190201816-virtual-machine:~/桌面/HITICS/linklab-1190201816\$./linkbomb 1190201816

3.2 阶段 2 的分析

程序运行结果截图:

分析与设计的过程:

1. 将文件链接,gcc -m32 -o -no-pie linkbomb2 main.o phase.o 得到链接后的文件 linkbomb.o,对 linkbomb2 运用 objdump 进行反汇编,然后查看 VqfjiByY 函数和 do_phase 函数的反汇编代码。

```
080491fa <VqFjiByY>:
                 f3 0f 1e fb
80491fa:
                                           endbr32
80491fe:
                 55
                                           push
                                                   %ebp
80491ff:
                 89 e5
                                           mov
                                                   %esp,%ebp
8049201:
                                                   $0x8,%esp
                 83 ec 08
                                           sub
                83 ec 08
68 7c a0 04 08
ff 75 08
8049204:
                                                   $0x8,%esp
                                           sub
8049207:
                                                   S0x804a07c
                                           push
804920c:
                                           pushl
                                                   0x8(%ebp)
804920f:
                 e8 5c fe
                           ff ff
                                           call
                                                   8049070 <strcmp@plt>
8049214:
                 83 c4 10
                                                   $0x10,%esp
                                           add
                85 c0
8049217:
                                           test
                                                   %eax,%eax
                 75 10
                                                   804922b <VqFjiByY+0x31>
8049219:
                                           jne
804921b:
                 83 ec 0c
                                           sub
                                                   $0xc,%esp
                    75 08
804921e:
                                           pushl
                                                  0x8(%ebp)
8049221:
                 e8 5a fe ff ff
                                                   8049080 <puts@plt>
                                           call
                 83 c4 10
8049226:
                                           add
                                                   $0x10,%esp
8049229:
                 eb
                    01
                                                   804922c <VqFjiByY+0x32>
                                           jmp
804922b:
                 90
                                           nop
804922c:
                 c9
                                           leave
804922d:
                                           ret
```

观察 VqfjiByY 函数,在执行 strcmp 之前,将两个参数入栈,其中一个参数的地址为: 0x804a07c。

通过 edb 查看该内存中存储的变量:

leal 0x804a07c, %eax

ASCII "1190201816"

发现 0x804a07c 存储的变量为我的学号。

那么另一个变量即为 VqfjiByY 函数的参数。

0804922e <do_phase>:

804922e: f3 0f 1e fb endbr32

8049232: 55 push %ebp

8049233: 89 e5 mov %esp,%ebp

do_phase 剩余代码为 nop, 留给我们进行补充。

2. 根据 1 中的分析,我们知道了,我们需要在 do_phase 中插入汇编代码,将 我的学号传入 VqfjiByY 函数中,并且调用 VqfjiByY 函数。

所以记下 VqfjiByY 函数的地址: 0x80491fa。

3. 编写汇编代码:

1 lea 0x804a07c,%eax 2 lea 0x080491fa,%ecx 3 push %eax 4 call *%ecx 5 pop %eax

首先,将 0x804a07c 即存储学号的地址传入寄存器%eax 中,将 VqfjiByY 函数的首地址 0x80491fa 传入寄存器%ecx 中,将寄存器%eax 入栈,即将我的学号作为参数入栈,调用函数 VqfjiByY,在调用完函数 VqfjiByY 后,将%eax pop 出栈,使栈帧恢复原状,防止发生段错误。

4. 查看汇编代码的十六进制:

使用 gcc -m32 -c 命令将汇编代码编译为可重定位文件,利用 objdump -d 命令查看汇编代码的十六进制:

```
Disassembly of section .text:
00000000 <.text>:
          8d 05 7c a0 04 08
8d 0d fa 91 04 08
                                                    0x804a07c,%eax
0x80491fa,%ecx
    0:
                                          lea
    б:
                                          lea
   c:
          50
                                          push
                                                    %eax
    d:
          ff d1
                                          call
                                                    *%ecx
          58
                                          pop
                                                    %eax
```

利用 hexedit,将这些十六进制覆盖到 phase2.o 文件中的 nop(90)上:

5. 使用 gcc -m32 -no-pie -o linkbomb2 main.o phase.o 进行链接,重新胜过 linkbomb2 的可执行文件,运行查看结果:

3.3 阶段3的分析

程序运行结果截图:

分析与设计的过程:

1. 需要查看 cookie 的字符串, 我们使用 edb, 进入 do_phase 函数:

```
Registers

EAX ffaff032 ASCII "ouvaxrhqw"

ECX 00000031

EDX ffaff031 ASCII "jouvaxrhqw"

EBX 00000000
```

```
0804:9250 8d 55 e9
                                     leal -0x17(%ebp),
0804:9253 8b 45 e4
                                     movl -0x1c(%ebp), %eax
0804:9256 01 d0
                                     addl %edx, %eax
0804:9258 Of b6
                                      movzbl 0(%eax),
0804:925b 0f b6 c0
                                     movzbl %al, %eax
0804:925e 0f b6 80 40 c0 04 08
                                     movzbl 0x804c040(%eax), %ea
0804:9265 Of be c0
                                     movsbl %al, %eax
0804:9268 83 ec 0c
                                     subl $0xc, %esp
0804:926b 50
                                     pushl %eax
0804:926c e8 3f fe ff
                                     calll 0x80490b0
0804:9271 83 c4 10
                                     addl $0x10, %esp
0804:9274 83 45 e4 01
                                     addl $1, -0x1c(%ebp)
0804:9278 8b 45 e4
                                     movl -0x1c(%ebp), %eax
0804:927b 83 f8 09
                                     cmpl $9, %eax
                                     jbe 0x8049250
0804:927e 76 d0
```

发现在进入循环后,寄存器中保存的一个字符串 jouvaxrhqw 在被一个字符一个字符读取,并且这个字符串的长度刚好与学号长度相同,这与 PPT 中的 cookie 的操作完全相同,所以猜测该字符串即为 cookie 串。

2. 我们现在需要查看全局变量 **char PHASE3_CODEBOOK[256]**的名称。 利用 readelf -s 命令查看 phase3.o 的符号表:

```
fhy-1190201816@fhy1190201816-virtual-machine:-/桌面/HITICS/linklab-1190201816$ readelf -s phase3.0

Symbol table '.symtab' contains 14 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 000000000 0 NOTYPE LOCAL DEFAULT UND
1: 00000000 0 FILE LOCAL DEFAULT ABS phase3.c
2: 00000000 0 SECTION LOCAL DEFAULT 1
3: 00000000 0 SECTION LOCAL DEFAULT 3
4: 00000000 0 SECTION LOCAL DEFAULT 5
5: 00000000 0 SECTION LOCAL DEFAULT 7
6: 00000000 0 SECTION LOCAL DEFAULT 7
6: 00000000 0 SECTION LOCAL DEFAULT 8
7: 00000000 0 SECTION LOCAL DEFAULT 9
8: 00000000 0 SECTION LOCAL DEFAULT 9
9: 00000020 256 OBJECT GLOBAL DEFAULT 6
9: 00000020 256 OBJECT GLOBAL DEFAULT 1 do_phase
11: 00000000 0 NOTYPE GLOBAL DEFAULT UND putchar
12: 00000000 0 NOTYPE GLOBAL DEFAULT UND putchar
13: 00000000 0 NOTYPE GLOBAL DEFAULT UND pstack_chk_fail
13: 00000000 0 NOTYPE GLOBAL DEFAULT UND stack_chk_fail
```

发现只有一个长度为 256 并且类型为 COM 的变量,名称为 FJSVvWtATw。可以利用强弱符号的性质,我们在链接时将该数组进行初始化,内容为根据 cookie 计算出的学号的排列。这样就可以使 do_phase 输出我们的学号。

3. 建立对应关系:

Cookie 串	j	0	u	v	a	X	r	h	q	W
ASCII 码	106	111	117	118	97	120	114	104	113	119
对应学号	1	1	9	0	2	0	1	8	1	6

根据对应规则,对应学号在长度为 256 的字符数组中的下标即为对应字母的 ASCII 码。可以写一个 C 程序来生成这个数组:

```
for (size_t i = 0; i < 256; i++)
    switch (i)
    {
    case 106:
       ch[i] = '1';
       break;
    case 111:
       ch[i] = '1';
       break;
    case 117:
                                     case 104:
        ch[i] = '9';
                                          ch[i] = '8';
       break;
                                         break;
    case 118:
                                     case 113:
        ch[i] = '0';
                                          ch[i] = '1';
       break;
                                         break;
    case 97:
                                     case 119:
        ch[i] = '2';
                                          ch[i] = '6';
       break;
                                         break;
    case 120:
        ch[i] = '0';
                                     default:
        break;
                                          ch[i] = '0';
    case 114:
                                         break;
        ch[i] = '1';
        break;
```

我利用了一个循环语句和一个 case 语句,将学号放入数组中与之对应的下标的位置,并且在其他无关位置都放入'0'。

字符串的结果:

Char FJSVvWtATw[256] =

将该语句写入一个 c 文件中,对该 c 文件执行 gcc -m32 -c -o 命令

得到 phase3_patch.o 文件

使用 gcc -m32 -no-pie -o linkbomb3 main.o phase3.o phase3_patch.o 进行链接操作,生成可执行文件 linkbomb3.

4. 运行结果:

3.4 阶段 4 的分析

程序运行结果截图:

分析与设计的过程:

3.5 阶段5的分析

程序运行结果截图:

分析与设计的过程:

第4章 总结

4.1 请总结本次实验的收获

学会了 hexedit 工具的使用; 学会了将多个.o 文件链接在一起运行; 学会了 readelf 查看 elf 头文件。

4.2 请给出对本次实验内容的建议

希望老师可以将第二阶段进行优化,因为我感觉第二阶段与上个实验类似,都可以利用修改栈帧的方式使程序输出学号。

注:本章为酌情加分项。

参考文献

为完成本次实验你翻阅的书籍与网站等

- [1] 林来兴. 空间控制技术[M]. 北京: 中国宇航出版社, 1992: 25-42.
- [2] 辛希孟. 信息技术与信息服务国际研讨会论文集: A 集[C]. 北京: 中国科学 出版社, 1999.
- [3] 赵耀东. 新时代的工业工程师[M/OL]. 台北: 天下文化出版社, 1998 [1998-09-26]. http://www.ie.nthu.edu.tw/info/ie.newie.htm(Big5).
- [4] 谌颖. 空间交会控制理论与方法研究[D]. 哈尔滨: 哈尔滨工业大学, 1992: 8-13.
- [5] KANAMORI H. Shaking Without Quaking[J]. Science, 1998, 279 (5359): 2063-2064.
- [6] CHRISTINE M. Plant Physiology: Plant Biology in the Genome Era[J/OL]. Science, 1998, 281: 331-332[1998-09-23]. http://www.sciencemag.org/cgi/collection/anatmorp.