OpenCMISS-iron examples and tests used by OpenCMISS developers at University of Stuttgart, Germany

Christian Bleiler, Andreas Hessenthaler, Thomas Klotz, Aaron Krämer, Benjamin Maier, Sergio Morales, Mylena Mordhorst, Harry Saini

> June 30, 2017 10:16

CONTENTS

1	Introduction					
	1.1	Cmgu	ıi files for cmgui-2.9	4		
	1.2	Variat	tions to consider	4		
	1.3	Folde	r structure	5		
2	Hov	v to wo	vork on this document			
3	Diffusion equation					
	3.1		tion in general form	6		
	3.2 Example-0001					
		3.2.1	Mathematical model - 2D	7		
		3.2.2	Mathematical model - 3D	7		
		3.2.3	Computational model	7		
		3.2.4	Result summary	8		
	3.3	Exam	ple-0001-u	11		
		3.3.1	Mathematical model - 2D	11		
		3.3.2	Mathematical model - 3D	11		
		3.3.3	Computational model	11		
		3.3.4	Result summary	12		
	3.4 Example-0002		ple-0002	15		
		3.4.1	Mathematical model - 2D	15		
		3.4.2	Mathematical model - 3D	15		
		3.4.3	Computational model	15		
		3.4.4	Result summary	16		
	3.5	Exam	ple-0011	19		

^{*} Institute of Applied Mechanics (CE), University of Stuttgart, Pfaffenwaldring 7, 70569 Stuttgart, Germany

[†] Institute for Parallel and Distributed Systems, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany

[‡] Lehrstuhl Mathematische Methoden für komplexe Simulation der Naturwissenschaft und Technik, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany

		3.5.1	Mathematical model - 2D	19
		3.5.2	Mathematical model - 3D	19
		3.5.3	Computational model	19
		3.5.4	Result summary	20
4	Line	ar elast		23
'	4.1		on in general form	23
	4.2		ole-0101	2 4
	4		Mathematical model	24
			Computational model	
		-	Results	24
				24
	т		Validation	24
5		te elastic	· ·	27
6		ier-Stok		28
7	Mor	nodoma	in	29
8	Cell	ML mod	del	30
	SТ	OF FI	GURES	
_ '	<i>3</i> i	01 11	UORES	
Fi	gure :	Í	2D results, iron reference w/ command line argu-	
			ments [2.0 1.0 0.0 8 4 0 1 0]	8
Fi	gure 2	2	2D results, current run w/ command line arguments	
			[2.0 1.0 0.0 8 4 0 1 0]	9
Fiş	gure 3	3	3D results, iron reference w/ command line argu-	
•	-		ments [2.0 1.0 1.0 8 4 4 1 0]	9
Fi	gure 2	4	3D results, current run w/ command line arguments	
•	,	•	[2.0 1.0 1.0 8 4 4 1 0]	10
Fig	gure !	5	2D results, iron reference w/ command line argu-	
•	, ,		ments [2.0 1.0 0.0 8 4 0 1 0]	12
Fig	gure (5	2D results, current run w/ command line arguments	
•	,		[2.0 1.0 0.0 8 4 0 1 0]	13
Fig	gure ;	7	3D results, iron reference w/ command line argu-	-3
	J 1	•	ments [2.0 1.0 1.0 8 4 4 1 0]	13
Fie	gure 8	3	3D results, current run w/ command line arguments	1)
(Surc		[2.0 1.0 1.0 8 4 4 1 0]	14
Fie	gure 9	1	2D results, iron reference w/ command line argu-	14
	5uic y	9	ments [2.0 1.0 0.0 8 4 0 1 0]	16
Fie	gure :	10	2D results, current run w/ command line arguments	10
1.15	guie .	10	[2.0 1.0 0.0 8 4 0 1 0]	4.
г:.	~~~			17
LI	gure :	11	3D results, iron reference w/ command line argu-	
Γ.			ments [2.0 1.0 1.0 8 4 4 1 0]	17
F18	gure :	12	3D results, current run w/ command line arguments	0
			[2.0 1.0 1.0 8 4 4 1 0]	18
Fig	gure :	13	2D results, iron reference w/ command line argu-	
			ments [2.0 1.0 0.0 8 4 0 1 0 1 1]	21
Fig	gure :	14	2D results, current run w/ command line arguments	
			[2.0 1.0 0.0 8 4 0 1 0 1 1]	21
Fi	gure :	15	3D results, iron reference w/ command line argu-	
			ments [2.0 1.0 1.0 8 4 4 1 0 1 1 1]	22
Fiş	gure :	16	3D results, current run w/ command line arguments	
,	-		[2.0 1.0 1.0 8 4 4 1 0 1 1 1]	22
Fi	gure :	17	Results, analytical solution	24
•	_	•		

Figure 18 Figure 19 Figure 20		252526
LIST OF TAI	BLES	
Table 1	Initials of people working on examples, in alphabetical order (surnames)	5

INTRODUCTION 1

This document contains information about examples used for testing OpenCMISSiron. Read: How-to¹ and [1].

- Cmgui files for cmgui-2.9
- Variations to consider
 - Geometry and topology

1D, 2D, 3D

Length, width, height

Number of elements

Interpolation order

Generated or user meshes

quad/hex or tri/tet meshes

- Initial conditions
- Load cases

Dirichlet BC

Neumann BC

Volume force

Mix of previous items

- Sources, sinks
- Time dependence

Static

Quasi-static

Dynamic

Material laws

Linear

Nonlinear (Mooney-Rivlin, Neo-Hookean, Ogden, etc.)

Active (Stress, strain)

- Material parameters, anisotropy
- Solver

Direct

Iterative

Test cases

Numerical reference data

Analytical solution

• A mix of previous items

¹ https://bitbucket.org/hessenthaler/opencmiss-howto

1.3 Folder structure

TBD..

HOW TO WORK ON THIS DOCUMENT

In the Google Doc at https://docs.google.com/spreadsheets/d/1RGKj8vVPqQ-PH0UwMX_ e9TAzqaYavKi0z0D4pKY9RGI/edit#gid=0 please indicate what you are working on or if a given example was finished

- no mark: to be done
- x: currently working on it
- xx: done

Initials	Full name
СВ	Christian Bleiler
AH	Andreas Hessenthaler
TK	Thomas Klotz
AK	Aaron Krämer
BM	Benjamin Maier
SM	Sergio Morales
MM	Mylena Mordhorst
HS	Harry Saini

 Table 1: Initials of people working on examples, in alphabetical order (surnames).

3 DIFFUSION EQUATION

3.1 Equation in general form

The governing equation is,

$$\partial_t \mathbf{u} + \nabla \cdot [\boldsymbol{\sigma} \nabla \mathbf{u}] = \mathbf{f}, \tag{1}$$

with conductivity tensor $\boldsymbol{\sigma}.$ The conductivity tensor is,

- defined in material coordinates (fibre direction),
- diagonal,
- defined per element.

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.2.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla u = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{2}$$

with boundary conditions

$$u = 0 x = y = 0, (3)$$

$$u = 1$$
 $x = 2, y = 1.$ (4)

No material parameters to specify.

3.2.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{5}$$

with boundary conditions

$$u = 0 \qquad \qquad x = y = z = 0, \tag{6}$$

$$u = 1$$
 $x = 2, y = z = 1.$ (7)

No material parameters to specify.

3.2.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

3.2.4 Result summary

Figure 1: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1

Figure 2: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 3: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 1 o].

Figure 4: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

3.3 Example-0001-u

Example uses user-defined regular meshes in CHeart mesh format and solves a static problem, i.e., applies the boundary conditions in one step.

3.3.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla u = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{8}$$

with boundary conditions

$$u = 0 x = y = 0, (9)$$

$$u = 1$$
 $x = 2, y = 1.$ (10)

No material parameters to specify.

3.3.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{11}$$

with boundary conditions

$$u = 0 \qquad \qquad x = y = z = 0, \tag{12}$$

$$u = 1$$
 $x = 2, y = z = 1.$ (13)

No material parameters to specify.

3.3.3 Computational model

Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

```
2.0 1.0 0.0 8 4 0 1 1
2.0 1.0 0.0 2 1 0 2 1
2.0 1.0 0.0 4 2 0 2 1
2.0 1.0 0.0 8 4 0 2 1
2.0 1.0 1.0 2 1 1 1 0
2.0 1.0 1.0 4 2 2 1 0
2.0 1.0 1.0 8 4 4 1 0
2.0 1.0 1.0 2 1 1 2 0
2.0 1.0 1.0 4 2 2 2 0
2.0 1.0 1.0 8 4 4 2 0
2.0 1.0 1.0 2 1 1 1 1
2.0 1.0 1.0 4 2 2 1 1
2.0 1.0 1.0 8 4 4 1 1
2.0 1.0 1.0 2 1 1 2 1
2.0 1.0 1.0 4 2 2 2 1
2.0 1.0 1.0 8 4 4 2 1
```

• Note: Binary uses command line arguments to search for the relevant mesh files.

3.3.4 Result summary

Figure 5: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1 o].

Figure 6: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 7: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 1 o].

Figure 8: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

3.4 Example-0002

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.4.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{14}$$

with boundary conditions

$$u = 15y$$
 $x = 0$, (15)

$$u = 25 - 18y$$
 $x = 2.$ (16)

No material parameters to specify.

3.4.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = \mathbf{0} \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{17}$$

with boundary conditions

$$u = 15y x = 0, (18)$$

$$u = 25 - 18y$$
 $x = 2.$ (19)

No material parameters to specify.

3.4.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

3.4.4 Result summary

Figure 9: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1

Figure 10: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 $\,$ o].

Figure 11: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 10].

Figure 12: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 o].

3.5 Example-0011

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.5.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot [\sigma \nabla u] = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{20}$$

with boundary conditions

$$u = 0 x = y = 0, (21)$$

$$u = 1$$
 $x = 2, y = 1.$ (22)

The conductivity tensor is defined as,

$$\sigma(x,t) = \sigma = I. \tag{23}$$

3.5.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot [\sigma \nabla u] = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{24}$$

with boundary conditions

$$u = 0$$
 $x = y = z = 0,$ (25)

$$u = 1$$
 $x = 2, y = z = 1.$ (26)

The conductivity tensor is defined as,

$$\sigma(x,t)=\sigma=I. \tag{27}$$

3.5.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

integer: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

float: σ_{11} float: σ_{22}

float: σ_{33} (ignored for 2D)

• Commandline arguments for tests are:

3.5.4 Result summary

Figure 13: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1011].

Figure 14: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0 1 1].

Figure 15: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 10111].

Figure 16: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0 1 1 1].

4 LINEAR ELASTICITY

4.1 Equation in general form

$$\label{eq:delta_theta_$$

4.2 Example-0101

4.2.1 Mathematical model

We solve the following equation,

$$\nabla \cdot \sigma(\mathbf{u}, \mathbf{t}) = \mathbf{0}$$
 $\Omega = [0, 160] \times [0, 120], \mathbf{t} \in [0, 5],$ (29)

with time step size $\Delta_{t}=1$ and boundary conditions

2D: specify thickness, Young's modulus and Poisson's ratio.

- 4.2.2 Computational model
 - Length, width, height
 - Direct/iterative solver
 - Generated/user mesh
 - Number of elements
 - Interpolation order
 - Number of solver steps (time steps, load steps)
- 4.2.3 Results

Figure 17: Results, analytical solution.

4.2.4 Validation

CHeart rev. 6328, Abaqus 2017, analytical reference solution, whatever...

Figure 18: Results, Abaqus reference.

Figure 19: Results, iron reference.

Figure 20: Results, current run.

5 FINITE ELASTICITY

6 NAVIER-STOKES FLOW

7 MONODOMAIN

8 CELLML MODEL

REFERENCES

[1] Chris Bradley, Andy Bowery, Randall Britten, Vincent Budelmann, Oscar Camara, Richard Christie, Andrew Cookson, Alejandro F Frangi, Thiranja Babarenda Gamage, Thomas Heidlauf, et al. Opencmiss: a multi-physics & multi-scale computational infrastructure for the vph/physiome project. Progress in biophysics and molecular biology, 107(1):32-47, 2011.