第 1 章 指数型分布族 1.1 指数型分布族

第1章 指数型分布族

1.1 指数型分布族

定義 1.1.1 (指数型分布族). X を可測空間、 $\emptyset \neq \mathcal{P} \subset \mathcal{P}(X)$ とする。 \mathcal{P} が X 上の**指数型分布族 (exponential family)** であるとは、次が成り立つことをいう: $\exists (V,T,\mu)$ s.t.

- (E0) V は有限次元 \mathbb{R} -ベクトル空間である。
- (E1) $T: X \to V$ は可測写像である。
- **(E2)** μ は X 上の σ -有限測度であり、 $\forall p \in \mathcal{P}$ に対し $p \ll \mu$ をみたす。
- (E3) $\forall p \in \mathcal{P}$ に対し、 $\exists \theta \in V^{\vee}$ s.t.

$$\frac{dp}{d\mu}(x) = \frac{\exp\langle\theta, T(x)\rangle}{\int_{\mathcal{X}} \exp\langle\theta, T(y)\rangle \,\mu(dy)} \quad \mu\text{-a.e. } x \in \mathcal{X}$$
 (1.1.1)

である。ただし $\langle \cdot, \cdot \rangle$ は自然なペアリング $V^{\vee} \times V \to \mathbb{R}$ である。

さらに次のように定める:

- (V,T,μ) を \mathcal{P} の実現 (representation) という。
 - V の次元を (V,T,μ) の次元 (dimension) という。
 - T を (V, T, μ) の十分統計量 (sufficient statistic) という。
 - $-\mu \in (V,T,\mu)$ の基底測度 (base measure) という。

定義 1.1.2 (自然パラメータ空間). 写像 $P: V^{\vee} \to \mathcal{P}$ を

$$P(\theta) := \frac{\exp\langle\theta, T(x)\rangle}{\int_X \exp\langle\theta, T(y)\rangle \,\mu(dy)} \tag{1.1.2}$$

で定める。

集合

$$\Theta_{(V,T,\mu)} := \left\{ \theta \in V^{\vee} \mid \int_{X} \exp\langle \theta, T(y) \rangle \, \mu(dy) < +\infty, \ P(\theta) \in \mathcal{P} \right\}$$
 (1.1.3)

を (V,T,μ) に関する \mathcal{P} の**自然パラメータ空間 (natural parameter space)** という。

集合

$$\widetilde{\Theta}_{(V,T,\mu)} := \left\{ \theta \in V^{\vee} \mid \int_{X} \exp\langle \theta, T(y) \rangle \, \mu(dy) < +\infty \right\} \tag{1.1.4}$$

を (V, T, μ) により生成される自然パラメータ空間 という。

• $\mathbb{E} \oplus \mathbb{E}$ $\mathbb{E} \oplus \mathbb{E}$ $\mathbb{E} \oplus \mathbb{E}$ $\mathbb{E} \oplus \mathbb{E}$ $\mathbb{E} \oplus \mathbb{E} \oplus \mathbb{E}$

$$\psi(\theta) := \log \int_{X} \exp\langle \theta, T(y) \rangle \, \mu(dy) \tag{1.1.5}$$

 (V,T,μ) の対数分配関数 (log-partition function) という。

第 1 章 指数型分布族 1.1 指数型分布族

定義 1.1.3 (full). $\Theta_{(V,T,\mu)} = \widetilde{\Theta}_{(V,T,\mu)}$ のとき、 \mathcal{P} は full であるという。

以下 $\Theta_{(V,T,\mu)}$ や $\widetilde{\Theta}_{(V,T,\mu)}$ を文脈に応じて単に Θ や $\widetilde{\Theta}$ と記すことがある。

命題 1.1.4 $(\widetilde{\Theta}$ は凸集合). $\widetilde{\Theta}_{(T,\mu)}$ は V^{\vee} の凸集合である。

証明 $\theta, \theta' \in \widetilde{\Theta}, t \in (0,1)$ とし、 $(1-t)\theta + t\theta' \in \widetilde{\Theta}$ を示せばよい。そこで $p \coloneqq \frac{1}{1-t}, q \coloneqq \frac{1}{t}$ とおくと、 $p, q \in (1, +\infty)$ であり、 $\frac{1}{p} + \frac{1}{q} = (1-t) + t = 1$ であり、 $e^{(1-t)\langle \theta, T(x) \rangle} \in L^p(X, \mu)$ かつ $e^{t\langle \theta', T(x) \rangle} \in L^q(X, \mu)$ だから、Hölder の不等式より

$$\int_{\mathcal{X}} e^{\langle (1-t)\theta + t\theta', T(x)\rangle} \,\mu(dx) = \int_{\mathcal{X}} e^{(1-t)\langle \theta, T(x)\rangle} e^{t\langle \theta', T(x)\rangle} \,\mu(dx) \tag{1.1.6}$$

$$\leq \left(\int_{\mathcal{X}} e^{(1-t)\langle \theta, T(x)\rangle p} \,\mu(dx)\right)^{1/p} \left(\int_{\mathcal{X}} e^{t\langle \theta, T(x)\rangle q} \,\mu(dx)\right)^{1/q} \tag{1.1.7}$$

$$= \left(\int_{\mathcal{X}} e^{\langle \theta, T(x) \rangle} \, \mu(dx)\right)^{1/p} \left(\int_{\mathcal{X}} e^{\langle \theta, T(x) \rangle} \, \mu(dx)\right)^{1/q} \tag{1.1.8}$$

$$<+\infty$$
 (1.1.9)

が成り立つ。したがって $(1-t)\theta+t\theta'\in\widetilde{\Theta}$ である。

例 1.1.5 (有限集合上の確率分布). [TODO] V に修正 $X = \{1, \ldots, n\}$ 、 γ を X 上の数え上げ測度とする。X 上の確率分布全体の集合 $\mathcal{P}(X)$ が X 上の指数型分布族であることを確かめる。 δ^j $(j=1,\ldots,n)$ を点 j での Dirac 測度とおく。任意の $P \in \mathcal{P}(X)$ に対し、

$$P(dk) := \sum_{j=1}^{n} a_j \delta^j(dk), \quad a_1, \dots, a_n \in \mathbb{R}_{>0}, \quad \sum_{j=1}^{n} a_j = 1$$
 (1.1.10)

が成り立つから、 δ_{ik} ($j,k=1,\ldots,n$) を Kronecker のデルタとして

$$P(dk) = \exp\left(\sum_{j=1}^{n} (\log a_j) \delta_{jk}\right) \gamma(dk)$$
(1.1.11)

$$= \exp\left(\sum_{j=1}^{n} \theta_{j} \delta_{jk}\right) \gamma(dk) \tag{1.1.12}$$

(ただし $\theta_j := \log a_j$) と表せる。したがって $T: X \to \mathbb{R}^n$, $k \mapsto {}^t(\delta_{1k}, \dots, \delta_{nk})$ とおけば、 (T, γ) を実現として $\mathcal{P}(X)$ は指数型分布族となることがわかる。

例 1.1.6 (正規分布族). [TODO] V に修正 $X=\mathbb{R}$ 、 λ を \mathbb{R} 上の Lebesgue 測度とする。X 上の確率分布の集合

$$\mathcal{P} := \left\{ P_{(\mu,\sigma^2)}(dx) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \lambda(dx) \mid \mu \in \mathbb{R}, \ \sigma^2 > 0 \right\}$$
 (1.1.13)

を**正規分布族** (family of normal distributions) という。このとき P が X 上の指数型分布族であることを確か

第 1 章 指数型分布族 1.2 最小次元実現

める。任意の $P_{(\mu,\sigma^2)} \in \mathcal{P}$ に対し

$$P_{(\mu,\sigma^2)}(dx) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \lambda(dx)$$
(1.1.14)

$$= \exp\left(-\frac{1}{2\sigma^2}(x^2 - 2\mu x + \mu^2) - \frac{1}{2}\log 2\pi\sigma^2\right)\lambda(dx)$$
 (1.1.15)

$$= \exp\left(\left[\frac{\mu}{\sigma^2} - \frac{1}{2\sigma^2}\right] \begin{bmatrix} x \\ x^2 \end{bmatrix} - \frac{\mu^2}{2\sigma^2} - \frac{1}{2}\log 2\pi\sigma^2\right) \lambda(dx)$$
 (1.1.16)

$$= \exp\left(\left[\theta_1 \quad \theta_2\right] \begin{bmatrix} x \\ x^2 \end{bmatrix} + \frac{\theta_1^2}{4\theta_2} - \frac{1}{2}\log\left(-\frac{\pi}{\theta_2}\right)\right) \lambda(dx) \tag{1.1.17}$$

(ただし $\theta_1 := \frac{\mu}{\sigma^2}$, $\theta_2 := -\frac{1}{2\sigma^2}$) が成り立つから、 $T: X \to \mathbb{R}^2$, $x \mapsto {}^t(x, x^2)$ とおけば、 (T, λ) を実現として \mathcal{P} は指数型分布族となることがわかる。

例 1.1.7 (Poisson 分布族). [TODO] V に修正 $X=\mathbb{N}$ 、 γ を \mathbb{N} 上の数え上げ測度とする。X 上の確率分布の集合

$$\mathcal{P} := \left\{ P_{\lambda}(dk) = \frac{\lambda^k}{k!} e^{-\lambda} \gamma(dk) \mid \lambda > 0 \right\}$$
 (1.1.18)

を P_{λ} を Poisson 分布族 (family of Poisson distributions) という。このとき P が X 上の指数型分布族であることを確かめる。任意の $P_{\lambda} \in P$ に対し

$$P_{\lambda}(dk) = \frac{\lambda^k}{k!} e^{-\lambda} \gamma(dk)$$
 (1.1.19)

$$= \exp\left(k\log\lambda - \lambda\right) \frac{1}{k!} \gamma(dk) \tag{1.1.20}$$

$$= \exp\left(\theta k - e^{\theta}\right) \frac{1}{k!} \gamma(dk) \tag{1.1.21}$$

 $(ただし \theta := \log \lambda)$ が成り立つから、 $T: X \to \mathbb{R}, k \mapsto k$ とおけば、 $\left(T, \frac{1}{k!} \gamma(dk)\right)$ を実現として \mathcal{P} は指数型分布族となることがわかる。

1.2 最小次元実現

[TODO] 節の内容を整理する

定義 1.2.1 (最小次元実現). 実現 (V,T,μ) が P の実現のうちで次元が最小のものであるとき、 (V,T,μ) を P の 最小次元実現 (minimal representation) という。

最小次元実現を特徴づける2つの条件を導入する。

命題-定義 1.2.2 (条件 A). \mathcal{P} の実現 (V,T,μ) に関する次の条件は同値である:

- (1) $P: \Theta \to \mathcal{P}(X)$ は単射である。
- (2) $\forall \theta \in V^{\vee}$ に対し「 $\langle \theta, T(x) \rangle = \text{const. } \mu\text{-a.e.}x \implies \theta = 0$ 」が成り立つ。
- (3) V の任意の真アファイン部分空間 W に対し、「 $T(x) \in W$ μ -a.e.x でない」が成り立つ。

第 1 章 指数型分布族 1.2 最小次元実現

これらの条件が成り立つとき、 (V,T,μ) は**条件 A** をみたすという。

証明 [TODO] 修正

(1) \Rightarrow (2) (V,T,μ) が条件 A をみたすとする。背理法のため、ある $u \neq 0$ が存在して $\langle u,T(x)\rangle$ が X 上 μ -a.e. 定数であると仮定しておく。 $p \in \mathcal{P}$ とし、定義 1.1.1 の条件 (E3) の $\theta \in V^{\vee}$ をひとつ選ぶと、

$$\frac{dp}{d\mu}(x) = \frac{e^{\langle \theta, T(x) \rangle}}{\int_X e^{\langle \theta, T(y) \rangle} \mu(dy)}$$
(1.2.1)

$$= \frac{e^{\langle \theta, T(x) \rangle}}{\int_{\mathcal{X}} e^{\langle \theta, T(y) \rangle} \mu(dy)} \cdot \frac{e^{\langle u, T(x) \rangle}}{e^{\langle u, T(x) \rangle}}$$
(1.2.2)

$$= \frac{e^{\langle \theta + u, T(x) \rangle}}{\int_{X} e^{\langle \theta, T(y) \rangle} e^{\langle u, T(x) \rangle} \mu(dy)}$$
(1.2.3)

$$= \frac{e^{\langle \theta + u, T(x) \rangle}}{\int_{X} e^{\langle \theta, T(y) \rangle} e^{\langle u, T(y) \rangle} \mu(dy)}$$
(1.2.4)

$$= \frac{e^{\langle \theta + u, T(x) \rangle}}{\int_{\mathcal{X}} e^{\langle \theta + u, T(y) \rangle} \mu(dy)}$$
(1.2.5)

を得る。したがって $\theta+u$ も定義 1.1.1 の条件 (E3) を満たすが、いま $u \neq 0$ より $\theta+u \neq \theta$ だから、 (T,μ) が $\mathcal P$ の極小実現であることに反する。背理法より定理が示された。

 $(2) \Rightarrow (1)$ $\theta, \theta' \in V^{\vee}$ が定義 1.1.1 の条件 (E3) をみたすとすると、

$$e^{\langle \theta, T(x) \rangle - \psi(\theta)} = \frac{dp}{d\mu}(x) = e^{\langle \theta', T(x) \rangle - \psi(\theta')} \qquad \mu\text{-a.e.} x \in \mathcal{X}$$
 (1.2.6)

が成り立つ。式を整理して

$$\langle \theta - \theta', T(x) \rangle = \psi(\theta) - \psi(\theta') \qquad \mu\text{-a.e.} x \in X$$
 (1.2.7)

が成り立つ。したがって (1) より $\theta = \theta'$ である。

<u>(2) ⇒(3)</u> 対偶を示す。(3) の否定より、ある真ベクトル部分空間 $W \subseteq V$ および $b \in T(X)$ が存在して $T(x) \in W + b$ μ -a.e.x が成り立つ。すると $W^{\perp} \subset V^{\vee}$ は空でないから、ある $\theta \in W^{\perp}$, $\theta \neq 0$ が存在する。よって $\langle \theta, T(x) \rangle = \langle \theta, T(x) - b \rangle + \langle \theta, b \rangle = \langle \theta, b \rangle$ μ -a.e.x となり、(2) の否定が従う。

(3) ⇒(2) 対偶を示す。(2) の否定より、ある $\theta \in V^{\vee}$ 、 $\theta \neq 0$ および $c \in \mathbb{R}$ が存在して $\langle \theta, T(x) \rangle = c$ μ -a.e.x が成り立つ。そこで $A := \{v \in V \mid \langle \theta, v \rangle = c\}$ とおけば、A は V の真アファイン部分空間であり、 $T(x) \in A$ μ -a.e.x が成り立つから、(3) の否定が従う。

定理 1.2.3 (条件 A をみたす実現の存在). P を可測空間 X 上の指数型分布族とする。このとき、条件 A をみたす P の実現が存在する。

証明 (V,T,μ) は \mathcal{P} の実現のうちで次元が最小のものであるとする。 (V,T,μ) の次元 (m とおく) が 0 ならば V^{\vee} は 1 点集合だから証明は終わる。

以下 $m \ge 1$ の場合を考え、 (V,T,μ) が「 θ が一意の実現」であることを示す。背理法のために (V,T,μ) が

第1章 指数型分布族 1.2 最小次元実現

「 θ が一意の実現」でないこと、すなわちある $p_0 \in \mathcal{P}$ および $\theta_0, \theta_0' \in V^{\lor}$, $\theta_0 \neq \theta_0'$ が存在して

$$\exp\left(\langle \theta_0, T(x) \rangle - \psi(\theta_0)\right) = \frac{dp_0}{d\mu}(x) = \exp\left(\langle \theta_0', T(x) \rangle - \psi(\theta_0')\right) \qquad \mu\text{-a.e. } x \in \mathcal{X}$$
 (1.2.8)

が成り立つことを仮定する。証明の方針としては、次元m-1の実現 (V',T',μ) を具体的に構成することによ り、 (V,T,μ) の次元mが最小であることとの矛盾を導く。

さて、式 (1.2.8) を整理して

$$\langle \theta_0 - \theta_0', T(x) \rangle = \psi(\theta_0) - \psi(\theta_0') \qquad \mu\text{-a.e. } x \in X$$
 (1.2.9)

を得る。表記の簡略化のために $\theta_1 \coloneqq \theta_0 - \theta_0' \in V^{\vee}$, $r \coloneqq \psi(\theta_0) - \psi(\theta_0') \in \mathbb{R}$ とおけば

$$\langle \theta_1, T(x) \rangle = r \qquad \mu\text{-a.e. } x \in X$$
 (1.2.10)

を得る。ここで $V' := (\mathbb{R}\theta)^{\mathsf{T}} = \{v \in V \mid \langle \theta, v \rangle = 0\}$ とおき、次の claim を示す。

Claim ある可測写像 $T': X \to V'$ および $v_0 \in V$ が存在して $T(x) = T'(x) + v_0 (\mu-a.e.x)$ が成り立つ。

(:) いま背理法の仮定より $\theta_1 \neq 0$ であるから、 θ_1 を延長した V^{\vee} の基底 $\theta_1, \ldots, \theta_m$ が存在する。こ のとき、 θ_1,\dots,θ_m を双対基底に持つ V の基底 v_1,\dots,v_m が存在する。この基底 v_1,\dots,v_m に関する T の成分表示を $T(x) = \sum_{i=1}^m T^i(x)v_i$, $T^i: X \to \mathbb{R}$ とおくと、(1.2.10) より $T^1(x) = \langle \theta_1, T(x) \rangle = r$ (μ-a.e.x) が成り立つ。そこで $v_0 := rv_1 \in V$ とおくと $\langle \theta_1, T(x) - v_0 \rangle = 0$ (μ-a.e.x) が成り立つから、可測写像 $T': X \to V'$

$$T'(x) := \begin{cases} T(x) - v_0 & (\langle \theta_1, T(x) - v_0 \rangle = 0) \\ 0 & (\text{otherwise}) \end{cases}$$
 (1.2.11)

と定めることができる。このT,v0が求めるものである。

 (V',T',μ) が $\mathcal P$ の実現であることを示す。定義 1.1.1 の条件 (E0)-(E2) は明らかに成立しているから、あとは条 件 (E3) を確認すればよい。そこで $p \in \mathcal{P}$ とする。いま (V, T, μ) が \mathcal{P} の実現であることより、ある $\theta \in V^{\vee}$ が 存在して

$$\frac{dp}{d\mu}(x) = \frac{\exp\langle\theta, T(x)\rangle}{\int_{\mathcal{X}} \exp\langle\theta, T(y)\rangle \,\mu(dy)} \qquad \mu\text{-a.e. } x \in \mathcal{X}$$
 (1.2.12)

が成り立つ。T', v_0 を用いて式変形すると、 μ -a.e.x に対し

$$\frac{dp}{d\mu}(x) = \frac{\exp\left(\langle \theta, T(x) \rangle\right)}{\int_{\mathcal{X}} \exp\left(\langle \theta, T(x) \rangle\right) \, \mu(dy)} \tag{1.2.13}$$

$$= \frac{\exp(\langle \theta, T'(x) \rangle + \langle \theta, v_0 \rangle)}{\int_X \exp(\langle \theta, T'(x) \rangle + \langle \theta, v_0 \rangle) \, \mu(dy)}$$
(1.2.14)

$$= \frac{\exp(\langle \theta, T'(x) \rangle + \langle \theta, v_0 \rangle)}{\int_X \exp(\langle \theta, T'(x) \rangle + \langle \theta, v_0 \rangle) \mu(dy)}$$

$$= \frac{\exp(\langle \theta, T'(x) \rangle)}{\int_X \exp(\langle \theta, T'(x) \rangle) \mu(dy)}$$
(1.2.14)

が成り立つ。したがって (V',T',μ) は条件 (E3) も満たし、 ρ の実現であることがいえた。 (V',T',μ) は次元 m-1 だから (V,T,μ) の次元 m の最小性に矛盾する。背理法より (V,T,μ) は $\mathcal P$ の「 θ が一意の実現」である。

//

第 1 章 指数型分布族 1.2 最小次元実現

例 1.2.4. [TODO] V に修正例 1.1.5 の (T, γ) は $\mathcal{P}(X)$ の条件 A をみたす実現である。実際、任意の $P \in \mathcal{P}(X)$ に対し、 θ_i は $\theta_i = \log P(\{j\})$ $(j=1,\ldots,n)$ として一意に決まる。

定義 1.2.5 (条件 B). \mathcal{P} の実現 (V,T,μ) に関する条件

(1) $\Theta^{\mathcal{P}} \bowtie V^{\vee} \mathcal{E}$ affine span $\mathcal{F} \mathcal{S}_{\circ}$

が成り立つとき、 (V,T,μ) は**条件 B** をみたすという。

本節の目標は、最小次元実現の間のアファイン変換の一意存在を述べた定理 1.2.15 の証明である。本節では、定理などのステートメントを簡潔にするために圏の言葉を用いる。

命題-定義 1.2.6. 次のデータにより圏が定まる:

- 対象: P の実現 (V,T,μ) 全体
- 射: (V,T,μ) から (V',T',μ') への射は、V から V' への全射アファイン写像 (L,b) $(L \in \text{Lin}(V,V'), b \in V')$ であって T'(x) = L(T(x)) + b μ -a.e.x をみたすもの
- 合成: アファイン写像の合成 $(L,b)\circ (K,c)=(LK,Lc+b)$

この圏を $C_{\mathcal{P}}$ と記す。

証明 示すべきことは、射の合成が射であること、恒等射の存在、結合律の 3 点である。射の合成が射であることは、全射と全射の合成が全射であることと、 μ と μ' が互いに絶対連続であることから従う。また、 (V,T,μ) の恒等射は明らかに恒等写像 $(id_V,0)$ であり、結合律はアファイン写像の合成の結合律より従う。

条件 A は射の一意性を保証する。

命題 1.2.7 (条件 A をみたす対象からの射の一意性). $(V,T,\mu),(V',T',\mu')$ を $\mathbf{C}_{\mathcal{P}}$ の対象とする。このとき、 (V,T,μ) が条件 A をみたすならば、 (V,T,μ) から (V',T',μ') への射は一意である。

証明 (L,b), (K,c) を (V,T,μ) から (V',T',μ') への射とする。射の定義より

$$\begin{cases} T'(x) = L(T(x)) + b & \mu\text{-a.e.}x \\ T'(x) = K(T(x)) + c & \mu\text{-a.e.}x \end{cases}$$
 (1.2.16)

が成り立つから、2式を合わせて

$$(K - L)(T(x)) = b - c$$
 μ -a.e. x (1.2.17)

となる。そこで基底を固定して成分ごとに (V,T,μ) の条件 A(2) を適用すれば、K=L を得る。よって上式で K=L として b=c μ -a.e. したがって b=c を得る。以上より (L,b)=(K,c) である。

射が存在するための十分条件を調べる。

第 1 章 指数型分布族 1.2 最小次元実現

命題 1.2.8 (条件 A, B をみたす対象への射の存在). (V,T,μ) を \mathbf{C}_P の対象とする。このとき、 (V,T,μ) が 条件 A と条件 B をみたすならば、任意の対象 (V',T',μ') から (V,T,μ) への射が存在する。

この命題の証明には次の補題を用いる。

補題 1.2.9. $(V,T,\mu),(V',T',\mu')$ を $\mathbf{C}_{\mathcal{P}}$ の対象とし、 $\theta:\mathcal{P}\to\Theta^{\mathcal{P}}$ および $\theta':\mathcal{P}\to\Theta'^{\mathcal{P}}$ を P,P' の右逆写像とする。このとき、任意の $p,q\in\mathcal{P}$ に対し、

$$\langle \theta(p) - \theta(q), T(x) \rangle - \psi(\theta(p)) + \psi(\theta(q))$$

$$= \langle \theta'(p) - \theta'(q), T'(x) \rangle - \psi'(\theta'(p)) + \psi'(\theta'(q))$$
(1.2.18)

が成り立つ。

証明 $p,q \in \mathcal{P}$ を任意とすると、指数型分布族の定義と μ,μ' が互いに絶対連続であることより、 μ -a.e.x に対し

$$\frac{dp}{d\mu}(x) = \exp(\langle \theta(p), T(x) \rangle - \psi(\theta(p))), \qquad \frac{dp}{d\mu'}(x) = \exp(\langle \theta'(p), T'(x) \rangle - \psi'(\theta'(p)))$$

$$\frac{dq}{d\mu}(x) = \exp(\langle \theta(q), T(x) \rangle - \psi(\theta(q))), \qquad \frac{dq}{d\mu'}(x) = \exp(\langle \theta'(q), T'(x) \rangle - \psi'(\theta'(q)))$$
(1.2.19)

が成り立つ。さらにp,qが互いに絶対連続であることから、 μ -a.e.xに対し

$$\frac{dp}{dq}(x) = \frac{dp}{d\mu}(x) \left| \frac{dq}{d\mu}(x) \right| = \exp\left\{ \langle \theta(p) - \theta(q), T(x) \rangle - \psi(\theta(p)) + \psi(\theta(q)) \right\}$$
(1.2.20)

$$\frac{dp}{dq}(x) = \frac{dp}{d\mu'}(x) \left| \frac{dq}{d\mu'}(x) = \exp\left\{ \langle \theta'(p) - \theta'(q), T'(x) \rangle - \psi'(\theta'(p)) + \psi'(\theta'(q)) \right\} \right. \tag{1.2.21}$$

が成り立つ。log をとって補題の主張の等式を得る。

命題 1.2.8 の証明 Step 0: V, V^{\vee} の基底を選ぶ (V, T, μ) の条件 B より、 V^{\vee} のあるアファイン基底 $a^{i} \in \Theta^{\mathcal{P}}$ (i = 0, ..., m) が存在する。そこで $e^{i} := a^{i} - a^{0} \in V^{\vee}$ (i = 1, ..., m) とおくとこれは V^{\vee} の基底である。 さらに e^{i} の双対基底を V の元と同一視したものを $e_{i} \in V$ (i = 1, ..., m) とおいておく。

Step 1: 射 (L,b) の構成 P,P' の右逆写像 $\theta: \mathcal{P} \to \Theta^{\mathcal{P}}$ および $\theta': \mathcal{P} \to \Theta'^{\mathcal{P}}$ をひとつずつ選んで $p^i := P(a^i) \in \mathcal{P} \ (i=0,\ldots,m)$ とおき、(L,b) を次のように定める:

$$L: V' \to V, \quad t' \mapsto \langle \theta'(p^i) - \theta'(p^0), t' \rangle e_i$$
 (1.2.22)

$$b := \{ \psi(\theta(p^i)) - \psi(\theta(p^0)) - \psi'(\theta'(p^0)) + \psi'(\theta'(p^0)) \} e_i \in V$$
(1.2.23)

示すべきことは、

$$T(x) = L(T'(x)) + b \quad \mu'$$
-a.e.x (1.2.24)

が成り立つことと、(L,b) が全射となることである。

Step 2: T(x) = L(T'(x)) + b の証明 各 i = 1, ..., m に対し、補題 1.2.9 より

$$\langle \theta(p^{i}) - \theta(p^{0}), T(x) \rangle - \psi(\theta(p^{i})) + \psi(\theta(p^{0}))$$

$$= \langle \theta'(p^{i}) - \theta'(p^{0}), T'(x) \rangle - \psi'(\theta'(p^{i})) + \psi'(\theta'(p^{0}))$$

$$\mu'-\text{a.e.}x$$

$$(1.2.25)$$

第 1 章 指数型分布族 1.2 最小次元実現

となる。ここで (V,T,μ) の条件 A (1) より $\theta(p^i)=a^i$ が成り立つから、(1.2.25) より

$$\langle a^{i} - a^{0}, T(x) \rangle = \langle \theta'(p^{i}) - \theta'(p^{0}), T'(x) \rangle + \psi(\theta(p^{i})) - \psi(\theta(p^{0})) - \psi'(\theta'(p^{i})) + \psi'(\theta'(p^{0})) \qquad \mu'-\text{a.e.} x$$

$$(1.2.26)$$

したがって

$$T(x) = L(T'(x)) + b$$
 μ' -a.e. x (1.2.27)

が成り立つ。

Step 3: (L,b) が全射であることの証明 L が全射であることをいえばよい。もしL が全射でなかったとすると、 $T(x) = L(T'(x)) + b \in \text{Im } L + b$ が μ' -a.e.x したがって μ -a.e.x に対し成り立つことになるが、Im L + b は V の真アファイン部分空間だから (V,T,μ) の条件 A (3) に反する。よってL は全射である。

各条件をみたさない場合にも、射が存在する。

補題 1.2.10 (条件 A をみたさない対象からの射の存在). (V,T,μ) を $\mathbf{C}_{\mathcal{P}}$ の対象とする。このとき、 (V,T,μ) が条件 A をみたさないならば、 (V,T,μ) よりも次元の小さいある対象 (V',T',μ') への射 $(V,T,\mu) \to (V',T',\mu')$ が存在する。

証明 (V,T,μ) が条件 A をみたさないという仮定から、ある $\theta \in V^{\vee}$, $\theta \neq 0$ および $r \in \mathbb{R}$ が存在して

$$\langle \theta, T(x) \rangle = r \qquad \mu\text{-a.e.}x$$
 (1.2.28)

が成り立つ。そこで $V' := (\mathbb{R}\theta)^{\perp} = \{v \in V \mid \langle \theta, v \rangle = 0\}$ とおくと、ある可測写像 $T' : X \to V'$ および $v_0 \in V$ が存在して $T(x) = T'(x) + v_0$ (μ -a.e.x) が成り立つ。このように定めた組 (V', T', μ) が $\mathcal P$ の実現であることは一旦認めて最後に示すこととし、まず次元と射について確かめる。

まず (V',T',μ) の次元は $\dim V' = \dim V - 1 < \dim V$ より (V,T,μ) の次元よりも小さい。また、射影 $\pi: V \to V'$ をひとつ選べば、 $(\pi,0)$ は明らかに (V,T,μ) から (V',T',μ) への射を与える。

あとは (V',T',μ) が $\mathcal P$ の実現であることを示せばよい。指数型分布族の定義の条件 (E0), (E1), (E2) は明らかに成立しているから、あとは条件 (E3) を確認すればよい。そこで $p\in \mathcal P$ を任意とする。いま (V,T,μ) が $\mathcal P$ の実現であることから、ある $\theta\in V^\vee$ が存在して

$$\frac{dp}{d\mu}(x) = \frac{\exp\langle\theta, T(x)\rangle}{\int_{Y} \exp\langle\theta, T(y)\rangle \,\mu(dy)} \qquad \mu\text{-a.e.}x$$
 (1.2.29)

が成り立つ。T', v_0 を用いて式変形すると、 μ -a.e.x に対し

$$\frac{dp}{d\mu}(x) = \frac{\exp(\langle \theta, T(x) \rangle)}{\int_{\mathcal{X}} \exp(\langle \theta, T(x) \rangle) \ \mu(dy)}$$
(1.2.30)

$$= \frac{\exp(\langle \theta, T'(x) \rangle + \langle \theta, v_0 \rangle)}{\int_{\mathcal{X}} \exp(\langle \theta, T'(x) \rangle + \langle \theta, v_0 \rangle) \, \mu(dy)}$$
(1.2.31)

$$= \frac{\exp\left(\langle \theta, T'(x) \rangle\right)}{\int_{X} \exp\left(\langle \theta, T'(x) \rangle\right) \, \mu(dy)} \tag{1.2.32}$$

П

が成り立つ。したがって (V',T',μ) は条件 (E3) も満たし、 $oldsymbol{arPhi}$ の実現であることがいえた。

第 1 章 指数型分布族 1.2 最小次元実現

補題 1.2.11 (条件 B をみたさない対象からの射の存在). (V,T,μ) を $\mathbf{C}_{\mathcal{P}}$ の対象とする。このとき、 (V,T,μ) が条件 B をみたさないならば、 (V,T,μ) よりも次元の小さいある対象 (V',T',μ') への射 $(V,T,\mu) \to (V',T',\mu')$ が存在する。

証明 (V,T,μ) が条件 B をみたさないとする。すると、ある真ベクトル部分空間 $W \subsetneq V^{\vee}$ および $\theta_0 \in \Theta^{\mathcal{P}}$ が存在して $\operatorname{aspan} \Theta^{\mathcal{P}} = W + \theta_0$ が成り立つ。そこで $\widetilde{V} := V/W^{\perp}$ と定め、 $\pi \colon V \to \widetilde{V}$ を自然な射影として $\widetilde{T} := \pi \circ T \colon X \to \widetilde{V}$ と定める。また、X 上の測度 $\widetilde{\mu}$ を $\widetilde{\mu} := \exp \langle \theta_0, T(x) \rangle \cdot \mu$ と定める。このように定めた組 $(\widetilde{V}, \widetilde{T}, \widetilde{\mu})$ が \mathcal{P} の実現であることは一旦認めて最後に示すこととし、まず次元と射について確かめる。

まず $(\widetilde{V},\widetilde{T},\widetilde{\mu})$ の次元は $\dim \widetilde{V} = \dim V - \dim W^{\perp} = \dim W < \dim V^{\vee} = \dim V$ より (V,T,μ) の次元よりも小さい。また、 $(\pi,0)$ は明らかに (V,T,μ) から $(\widetilde{V},\widetilde{T},\widetilde{\mu})$ への射を与える。

あとは $(\widetilde{V},\widetilde{T},\widetilde{\mu})$ が $\mathcal P$ の実現であることを示せばよい。指数型分布族の定義の条件 (E0), (E1), (E3) の成立は簡単に確かめられるから、ここでは条件 (E3) だけ確かめる。そこで $p\in\mathcal P$ を任意とする。 (V,T,μ) が $\mathcal P$ の実現であることから、ある $\theta\in V^\vee$ が存在して

$$p(dx) = \frac{\exp \langle \theta, T(x) \rangle}{\int_{\mathcal{X}} \exp \langle \theta, T(x) \rangle \ d\mu(x)} \mu(dx)$$
 (1.2.33)

が成り立つ。ここで線型写像 $\langle \theta - \theta_0, \cdot \rangle : V \to \mathbb{R}$ は $\operatorname{Ker} \langle \theta_0, \cdot \rangle \supset W^{\perp}$ をみたすから、図式

$$V \xrightarrow{\langle \theta - \theta_0, \cdot \rangle} \mathbb{R}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\widetilde{V}$$

$$\widetilde{\theta}$$

$$(1.2.34)$$

を可換にする線型写像 $\widetilde{\theta}$: $\widetilde{V}\to\mathbb{R}$ すなわち線型形式 $\widetilde{\theta}\in\widetilde{V}^\vee$ が存在する。この $\widetilde{\theta}$ が条件 (E3) をみたすものであることを確かめればよいが、各 $x\in X$ に対し

$$\langle \widetilde{\theta}, \widetilde{T}(x) \rangle = \langle \theta - \theta_0, T(x) \rangle$$
 (1.2.35)

$$= \langle \theta, T(x) \rangle - \langle \theta_0, T(x) \rangle \tag{1.2.36}$$

が成り立つから

$$p(dx) = \frac{\exp \langle \theta, T(x) \rangle}{\int_X \exp \langle \theta, T(x) \rangle \ \mu(dx)} \mu(dx)$$
 (1.2.37)

$$= \frac{\exp\left\langle \widetilde{\theta}, \widetilde{T}(x) \right\rangle \exp\left\langle \theta_0, T(x) \right\rangle}{\int_{\mathcal{X}} \exp\left\langle \widetilde{\theta}, \widetilde{T}(x) \right\rangle \exp\left\langle \theta_0, T(x) \right\rangle \mu(dx)} \mu(dx) \tag{1.2.38}$$

$$= \frac{\exp\left\langle \widetilde{\theta}, \widetilde{T}(x) \right\rangle}{\int_{\mathcal{X}} \exp\left\langle \widetilde{\theta}, \widetilde{T}(x) \right\rangle \widetilde{\mu}(dx)} \widetilde{\mu}(dx)$$
 (1.2.39)

となる。したがって条件 (E3) の成立が確かめられた。以上より $(\widetilde{V},\widetilde{T},\widetilde{\mu})$ は ${\cal P}$ の実現である。これで証明が完了した。

以上の補題を用いて最小次元実現の特徴づけが得られる。

第 1 章 指数型分布族 1.2 最小次元実現

定理 1.2.12 (最小次元実現の特徴づけ). $\mathcal P$ の実現 (V,T,μ) に関する次の条件は同値である:

- (1) (V,T,μ) は \mathcal{P} の最小次元実現である。
- (2) (V,T,μ) は条件 A と条件 B をみたす。

証明 (1) \Rightarrow (2) 最小次元実現 (V,T, μ) が条件 A, B のいずれかをみたさなかったとすると、補題 1.2.10, 1.2.11 よりとくに (V,T, μ) よりも次元の小さい実現が存在することになり、矛盾が従う。

 $(2) \Rightarrow (1)$ (V,T,μ) が条件 A と条件 B をみたすとする。 $\mathcal P$ の任意の実現 (V',T',μ') に対し、命題 1.2.8 より全射線型写像 $L:V'\to V$ が存在するから、 $\dim V \leq \dim V'$ である。したがって V は $\mathcal P$ の最小次元実現である。

例 1.2.13 (正規分布族の最小次元実現). 定理 1.2.12 により、例 1.1.6 でみた正規分布族の例は最小次元実現であることがわかる。実際、 $T(x) = {}^t(x,x^2)$ の像は \mathbb{R}^2 のいかなる真アファイン部分空間にも a.e. で含まれることはないから、条件 A (3) が成り立つ。また、 $\Theta^P = \mathbb{R} \times \mathbb{R}_{<0}$ となることから条件 B も成り立つ。

本節の目標の定理を示す。

定理 1.2.14 (最小次元実現の間のアファイン変換). $(V,T,\mu),(V',T',\mu')$ がともに最小次元実現ならば、 (V,T,μ) から (V',T',μ') への射 (L,b) がただひとつ存在する。さらに、L は線型同型写像である。

証明 命題 1.2.7, 1.2.8 より、射 (L,b): $(V,T,\mu) \to (V',T',\mu')$ はただひとつ存在する。また、命題 1.2.8 より存在する射 $(V',T',\mu') \to (V,T,\mu)$ をひとつ選んで (K,c) とおくと、合成射 $(K,c) \circ (L,b)$, $(L,b) \circ (K,c)$ は命題 1.2.7 より恒等射 $(\mathrm{id}_V,0)$, $(\mathrm{id}_{V'},0)$ に一致する。したがって L は線型同型写像である。

同じことを圏の言葉を使わずに言い換えると次のようになる。

定理 1.2.15 (最小次元実現の間のアファイン変換). (V,T,μ) , (V',T',μ') を $\mathbf{C}_{\mathcal{P}}$ の対象とする。このとき、 (V,T,μ) , (V',T',μ') がともに最小次元実現ならば、全射線型写像 $L:V\to V'$ とベクトル $b\in V'$ であって

$$T'(x) = L(T(x)) + b$$
 μ -a.e. x (1.2.40)

をみたすものがただひとつ存在する。さらに、Lは線型同型写像である。

系 1.2.16 (自然パラメータの変換). 上の定理の状況で、さらに $\theta^0 \in V^\vee$ であって

$$\theta(p) = {}^{t}L(\theta'(p)) + \theta^{0} \qquad (\forall p \in \mathcal{P})$$
(1.2.41)

をみたすものがただひとつ存在する。ただし写像 $\theta: \mathcal{P} \to \Theta^{\mathcal{P}}$ および $\theta': \mathcal{P} \to \Theta'^{\mathcal{P}}$ は P, P' の $\Theta^{\mathcal{P}}, \Theta'^{\mathcal{P}}$ 上への 制限の逆写像である。

第 1 章 指数型分布族 1.3 対数分配関数

証明 Step 1: 一意性 θ^0 が $(V,T,\mu),(V',T',\mu')$ に対し一意であることは L,θ,θ' の一意性より明らかである。

Step 2: 存在 $q \in \mathcal{P}$ をひとつ選んで $\theta^0 \coloneqq -{}^tL(\theta(q)) + \theta'(q) \in V^\vee$ と定め、この θ^0 が (1.2.41) をみたすことを示せばよい。そこで $p \in \mathcal{P}$ を任意とすると、補題 1.2.9 より

$$\langle \theta(p) - \theta(q), T(x) \rangle - \psi(\theta(p)) + \psi(\theta(q))$$

$$= \langle \theta'(p) - \theta'(q), T'(x) \rangle - \psi'(\theta'(p)) + \psi'(\theta'(q))$$

$$\mu-a.e.x$$
(1.2.42)

が成り立ち、さらに (1.2.40) より

$$\langle \theta(p) - \theta(q), L(T(x)) + b \rangle - \psi(\theta(p)) + \psi(\theta(q))$$

$$= \langle \theta'(p) - \theta'(q), T'(x) \rangle - \psi'(\theta'(p)) + \psi'(\theta'(q))$$

$$(1.2.43)$$

が成り立つから、式を整理して

$$\langle {}^{t}L(\theta(p) - \theta(q)) - (\theta'(p) - \theta'(q)), T'(x) \rangle$$

$$= -\langle \theta(p) - \theta(q), b \rangle + \psi(\theta(p)) - \psi(\theta(q)) - \psi'(\theta'(p)) + \psi'(\theta'(q))$$

$$\mu\text{-a.e.}x$$
(1.2.44)

となる。この右辺はxによらないから、 (V',T',μ') の条件 A (2) より

$${}^{t}L(\theta(p) - \theta(q)) - \theta'(p) - \theta'(q) = 0 \tag{1.2.45}$$

$$\therefore \qquad {}^{t}L(\theta(p)) + \theta^{0} = \theta'(p) \tag{1.2.47}$$

が成り立つ。 $p \in \mathcal{P}$ は任意であったから、(1.2.41) の成立が示された。

1.3 対数分配関数

[TODO] 一般化した命題を使って証明を修正する

本節ではXを可測空間、 $\mathcal{P}\subset\mathcal{P}(X)$ をX上の指数型分布族、 (V,T,μ) を \mathcal{P} の次元mの実現、 $\Theta\subset V^\vee$ を自然パラメータ空間、 $\psi\colon\Theta\to\mathbb{R}$ を対数分配関数とする。 V^\vee における Θ の内部を Θ° と記す。さらに関数 $h\colon X\times\Theta\to\mathbb{R}$ および $\lambda\colon\Theta\to\mathbb{R}$ を

$$h(x,\theta) := e^{\langle \theta, T(x) \rangle}$$
 $((x,\theta) \in X \times \Theta)$ (1.3.1)

$$\lambda(\theta) := \int_{X} h(x, \theta) \, \mu(dx) \quad (\theta \in \Theta)$$
 (1.3.2)

と定める (つまり $\psi(\theta) = \log \lambda(\theta)$ である)。

本節の目標は次の定理を示すことである。

定理 1.3.1 (λ と ψ の C^{∞} 性と積分記号下の微分). $\varphi = (\theta_1, \ldots, \theta_m)$: $\Theta^{\circ} \to \mathbb{R}^m$ を Θ° 上のチャートとする。この とき、任意の $k \in \mathbb{Z}_{\geq 1}, i_1, \ldots, i_k \in \{1, \ldots, m\}$ に対し、

$$\partial_{i_k} \cdots \partial_{i_1} \lambda(\theta) = \int_{\mathcal{X}} \partial_{i_k} \cdots \partial_{i_1} h(x, \theta) \, \mu(dx) \quad (\theta \in \Theta^\circ)$$
 (1.3.3)

が成り立つ (∂_i は $\frac{\partial}{\partial \theta_i} \in \Gamma(T\Theta^\circ)$ の略記)。ただし、左辺の微分可能性および右辺の可積分性も定理の主張に含まれる。とくに λ および ψ は Θ° 上の C^∞ 関数である。

第 1 章 指数型分布族 1.3 対数分配関数

定理1.3.1の証明には次の事実を用いる。

事実 1.3.2 (積分記号下の微分). \mathcal{Y} を可測空間、 ν を \mathcal{Y} 上の測度、 $I \subset \mathbb{R}$ を開区間、 $f: \mathcal{Y} \times I \to \mathbb{R}$ を

- (i) 各 $t \in I$ に対し $f(\cdot,t)$: $\mathcal{Y} \to \mathbb{R}$ が可測
- (ii) 各 $y \in \mathcal{Y}$ に対し $f(y,\cdot)$: $I \to \mathbb{R}$ が微分可能

をみたす関数とする。このとき、fに関する条件

(1) 各 $t \in I$ に対し $f(\cdot,t) \in L^1(\mathcal{Y},\nu)$ である。

(2) ある ν -可積分関数 Φ : $\mathbf{y} \to \mathbb{R}$ が存在し、すべての $t' \in I$ に対し $\left| \frac{\partial f}{\partial t}(y,t') \right| \leq \Phi(y)$ a.e.y である。

が成り立つならば、関数 $I \to \mathbb{R}$, $t \mapsto \int_{\mathcal{V}} f(y,t) \nu(dy)$ は微分可能で、

$$\frac{\partial}{\partial t} \int_{\mathcal{Y}} f(y,t) \, \nu(dy) = \int_{\mathcal{Y}} \frac{\partial f}{\partial t}(y,t) \, \nu(dy) \tag{1.3.4}$$

が成り立つ。

補題を次に示す。

定理 1.3.1 の証明において最も重要なステップは、事実 1.3.2 の前提が満たされることの確認である。そのための

補題 1.3.3 (優関数の存在). e^i ($i=1,\ldots,m$) を V^\vee の基底とし、この基底が定める Θ° 上のチャートを $\varphi=(\theta_1,\ldots,\theta_m)$: $\Theta^\circ\to\mathbb{R}^m$ とおく。このとき、任意の $k\in\mathbb{Z}_{\geq 1},\ i_1,\ldots,i_k\in\{1,\ldots,m\}$ に対し、次が成り立つ:

- (1) 任意の $\theta \in \Theta^{\circ}$ に対し、関数 $\partial_{i_{\star}} \cdots \partial_{i_{\star}} h(\cdot, \theta) : X \to \mathbb{R}$ は $L^{1}(X, \mu)$ に属する。
- (2) 任意の $\theta \in \Theta^{\circ}$ に対し、 Θ° における θ のある近傍 U と、ある μ -可積分関数 Φ : $X \to \mathbb{R}$ が存在し、すべての $\theta' \in U$ に対し $|\partial_{i_k} \cdots \partial_{i_1} h(x, \theta')| \leq \Phi(x)$ a.e.x が成り立つ。

証明 (1) は (2) より直ちに従うから、(2) を示す。そこで $\theta \in \Theta^{\circ}$ を任意とする。補題の主張は座標 $\theta_1, \ldots, \theta_m$ を平行移動して考えても等価だから、点 θ の座標は $\varphi(\theta) = 0 \in \mathbb{R}^m$ であるとしてよい。

Step 1: U の構成 $\varepsilon > 0$ を十分小さく選び、 \mathbb{R}^m 内の閉立方体

$$A_{2\varepsilon} := \prod_{i=1}^{m} [-2\varepsilon, 2\varepsilon] \quad A_{\varepsilon} := \prod_{i=1}^{m} [-\varepsilon, \varepsilon]$$
(1.3.5)

が $\varphi(\Theta^\circ)$ に含まれるようにしておく。すると $U := \varphi^{-1}(\operatorname{Int} A_\varepsilon) \subset \varphi(\Theta^\circ)$ は θ の近傍となるが、これが求める U の条件を満たすことを示す。

Step 2: h の座標表示 まず具体的な計算のために h の座標表示を求める。いま各 $\theta' \in U$ に対し

$$h(x, \theta') = \exp\langle \theta', T(x) \rangle = \exp\langle \theta_i(\theta')e^i, T(x) \rangle = \exp\left(\theta_i(\theta')T^i(x)\right)$$
(1.3.6)

が成り立っている。ただし $T^i: X \to \mathbb{R}, x \mapsto \langle e^i, T(x) \rangle (i = 1, ..., m)$ とおいた。したがって

$$\partial_{i_k} \cdots \partial_{i_1} h(x, \theta') = T^{i_1}(x) \cdots T^{i_k}(x) \exp\left(\theta_i(\theta') T^i(x)\right)$$
(1.3.7)

と表せることがわかる。

第 1 章 指数型分布族 1.3 対数分配関数

<u>Step 3: Φ の構成</u> Φ を構成するため、式 (1.3.7) の絶対値を上から評価する。表記の簡略化のため $t' \coloneqq (t'_1, \dots, t'_m) \coloneqq \varphi(\theta') \in \mathbb{R}^m$ とおいておく。まず $\frac{k+1}{\varepsilon} \frac{\varepsilon}{k+1} = 1$ より

$$\left| T^{i_1}(x) \cdots T^{i_k}(x) \exp\left(\sum_{i=1}^m t_i' T^i(x)\right) \right| = \left(\frac{k+1}{\varepsilon}\right)^k \left(\prod_{\alpha=1}^k \frac{\varepsilon}{k+1} |T^{i_\alpha}(x)|\right) \exp\left(\sum_{i=1}^m t_i' T^i(x)\right)$$
(1.3.8)

であり、 の部分を評価すると

$$\prod_{\alpha=1}^{k} \frac{\varepsilon}{k+1} |T^{i_{\alpha}}(x)| \le \prod_{\alpha=1}^{k} \left(\exp\left(\frac{\varepsilon}{k+1} T^{i_{\alpha}}(x)\right) + \exp\left(-\frac{\varepsilon}{k+1} T^{i_{\alpha}}(x)\right) \right) \quad (\because s \le e^{s} + e^{-s} \ (s \in \mathbb{R}))$$
 (1.3.9)

$$= \sum_{\sigma \in \{\pm 1\}^k} \exp\left(\sum_{\alpha=1}^k \frac{\varepsilon}{k+1} \sigma_\alpha T^{i_\alpha}(x)\right) \quad (∵ 式の展開)$$
 (1.3.10)

 $(\sigma_{\alpha}$ は σ の第 α 成分) となるから、式 (1.3.8) と式 (1.3.10) を合わせて

$$(1.3.8) \le C \sum_{\sigma \in \{\pm 1\}^k} \exp\left(\sum_{\alpha=1}^k \frac{\varepsilon}{k+1} \sigma_\alpha T^{i_\alpha}(x)\right) \exp\left(\sum_{i=1}^m t_i' T^i(x)\right)$$
(1.3.11)

$$= C \sum_{\sigma \in \{\pm 1\}^k} \exp\left(\sum_{\alpha=1}^k \frac{\varepsilon}{k+1} \sigma_\alpha T^{i_\alpha}(x) + \sum_{i=1}^m t_i' T^i(x)\right)$$
(1.3.12)

となる。ただし $C:=\left(\frac{k+1}{\varepsilon}\right)^k\in\mathbb{R}_{>0}$ とおいた。ここで最終行の exp の中身について、各 $i=1,\ldots,m$ に対し $T^i(x)$ の係数を評価することで、ある $t''\in A_{2\varepsilon}$ が存在して

$$(1.3.12) = C \sum_{\sigma \in \{\pm 1\}^k} \exp\left(\sum_{i=1}^m t_i'' T^i(x)\right) = 2^k C \exp\left(\sum_{i=1}^m t_i'' T^i(x)\right)$$
(1.3.13)

と表せることがわかる。そこで $|t_i''| \le 2\varepsilon$ (i = 1, ..., m) より

$$(1.3.13) \le 2^k C \prod_{i=1}^m \left(\exp\left(2\varepsilon T^i(x)\right) + \exp\left(-2\varepsilon T^i(x)\right) \right)$$
(1.3.14)

$$=2^{k}C\sum_{\tau\in\{\pm 1\}^{m}}\exp\left(\sum_{i=1}^{m}2\varepsilon\tau_{i}T^{i}(x)\right) \tag{1.3.15}$$

を得る。この右辺は (t' によらないから) θ' によらない X 上の関数であり、また \sum の各項が $2\varepsilon\tau\in A_{2\varepsilon}$ ゆえ に μ -可積分だから式全体も μ -可積分である。したがってこれが求める優関数である。

目標の定理 1.3.1 を証明する。

定理 1.3.1 の証明. 定理 1.3.1 のステートメントで与えられているチャート $\varphi = (\theta_1, \dots, \theta_m)$ は (V^{\vee}) の基底が定めるものとは限らない) 任意のものであるが、実は定理の主張を示すには、 V^{\vee} の基底をひとつ選び、その基底が定めるチャート $\widetilde{\varphi} = (\widetilde{\theta}_1, \dots, \widetilde{\theta}_m)$ に対して定理の主張を示せば十分である。その理由は次である:

- 式 (1.3.3) の左辺の微分可能性は、 λ が C^{∞} であればよいから、チャート $\widetilde{\varphi}$ で考えれば十分。
- 式 (1.3.3) の右辺の可積分性および式 (1.3.3) の等号の成立については、Leibniz 則より、 λ の $\widetilde{\theta}_1, \ldots, \widetilde{\theta}_m$ に関する k 回偏導関数が、 λ の $\theta_1, \ldots, \theta_m$ に関する k 回以下の偏導関数たちの (x によらない) $C^{\infty}(\Theta^{\circ})$ -係

第 1 章 指数型分布族 1.4 Fisher 計量

数の線型結合に書けることから従う。

そこで、以降 φ は V^{\vee} の基底が定めるチャートとする。

補題 1.3.3 (1) より、式 (1.3.3) の右辺の可積分性はわかっている。よって、残りの示すべきことは

- (i) 式 (1.3.3) の左辺の微分可能性
- (ii) 式 (1.3.3) の等号の成立

の2点である。

まず $k=1,i_k=1$ の場合に (i), (ii) が成り立つことを示す。そのためには、 $t=(t_1,\ldots,t_m)\in\varphi(\Theta^\circ)$ を任意に固定したとき、 t_1 を含む $\mathbb R$ の十分小さな開区間 I が存在して、関数

$$g: X \times I \to \mathbb{R}, \quad (x,s) \mapsto h(x, \varphi^{-1}(s, t_2, \dots, t_m))$$
 (1.3.16)

が事実 1.3.2 の仮定 (1), (2) をみたすことをいえばよい。

いま $\varphi^{-1}(t) \in \Theta^{\circ}$ だから、補題 1.3.3(2) のいう Θ° における $\varphi^{-1}(t)$ の近傍 U と μ -可積分関数 $\Phi: X \to \mathbb{R}$ が存在する。このとき $\varphi(U)$ は \mathbb{R}^m における t の近傍となるから、 t_1 を含む \mathbb{R} の十分小さな開区間 I が存在して

$$I \times \{t_2\} \times \dots \times \{t_m\} \subset \varphi(U) \tag{1.3.17}$$

が成り立つ。この I を用いて定まる関数 g が事実 1.3.2 の仮定 (1), (2) をみたすことを確認する。

まず補題 1.3.3 の結果 (1) より、g は事実 1.3.2 の仮定 (1) をみたす。また補題 1.3.3 の結果 (2) より、g は事実 1.3.2 の仮定 (2) をみたす。したがって k=1, $i_k=1$ の場合について (i),(ii) が示された。

同様にして $i_k=2,\ldots,m$ の場合についても示される。以降、k に関する帰納法で、すべての $k\in\mathbb{Z}_{\geq 1}$ および $i_1,\ldots,i_k\in\{1,\ldots,m\}$ に対して示される。これで定理の証明が完了した。

定理 1.3.1 から次の系が従う。

系1.3.4. $\varphi = (\varphi_1, \dots, \varphi_m)$: $\Theta^\circ \to \mathbb{R}^m$ を V^\vee の基底が定めるチャートとする。また、各 $\theta \in \Theta$ に対し、X 上の確率測度 P_θ を $P_\theta(dx) = e^{\langle \theta, T(x) \rangle - \psi(\theta)}$ $\mu(dx)$ と定める。このとき、任意の $k \in \mathbb{Z}_{>1}$, $i_1, \dots, i_k \in \{1, \dots, m\}$ に対し、

$$E_{P_{\theta}}[T^{i_k}(x)\cdots T^{i_1}(x)] = \frac{\partial_{i_k}\cdots\partial_{i_1}\lambda(\theta)}{\lambda(\theta)} \quad (\theta \in \Theta^{\circ})$$
(1.3.18)

が成り立つ。ただし、左辺の期待値の存在も系の主張に含まれる。

1.4 Fisher 計量

Fisher 計量を定義する。

命題-定義 1.4.1 (Fisher 計量). ψ を Θ ° 上の C^{∞} 関数とみなすと、各 $\theta \in \Theta$ ° に対し (Hess ψ) $_{\theta} \in T^{(0,2)}_{\theta}\Theta$ ° は $Var_{P_{\theta}}[T]$ に一致する。さらに (V,T,μ) が条件 A をみたすならば、Hess ψ は正定値である。

したがって (V,T,μ) が条件 A をみたすとき、Hess ψ は Θ ° 上の Riemann 計量となり、これを ψ の定める **Fisher 計量 (Fisher metric)** という。

証明 まず (Hess ψ) $_{\theta} = \operatorname{Var}_{P_{\theta}}[T] \ (\theta \in \Theta^{\circ})$ を示す。 Θ° 上の D-アファイン座標 $\theta^{i} \ (i = 1, ..., m)$ をひとつ選ぶ と、 $\ref{eq:posterior}$ に関する Hess ψ の成分表示は Hess $\psi = \frac{\partial^{2} \psi}{\partial \theta^{i} \partial \theta^{j}} d\theta^{i} \otimes d\theta^{j}$ となる。ここで系 1.3.4 より

$$\frac{\partial^2 \psi}{\partial \theta^i \partial \theta^j}(\theta) = \partial_i \partial_j \log \lambda(\theta) \tag{1.4.1}$$

$$= \partial_i \left(\frac{\partial_j \lambda(\theta)}{\lambda(\theta)} \right) \tag{1.4.2}$$

$$= \frac{\partial_i \partial_j \lambda(\theta)}{\lambda(\theta)} - \frac{\partial_i \lambda(\theta) \partial_j \lambda(\theta)}{\lambda(\theta)^2}$$
(1.4.3)

$$= E[T^{i}(x)T^{j}(x)] - E[T^{i}(x)]E[T^{j}(x)]$$
(1.4.4)

$$= E[(T^{i}(x) - E[T^{i}(x)])(T^{j}(x) - E[T^{j}(x)])]$$
(1.4.5)

を得る。ただし $E[\cdot]$ は P_{θ} に関する期待値 $E_{P_{\theta}}[\cdot]$ の略記である。したがって $\operatorname{Hess}_{\theta}\psi = \operatorname{Var}_{P_{\theta}}[T]$ が成り立つ。 次に、 (V,T,μ) が条件 A をみたすとし、 $\operatorname{Hess}_{\psi}\psi$ が正定値であることを示す。すなわち、各 $\theta\in\Theta^{\circ}$ に対し $(\operatorname{Hess}_{\psi})_{\theta}$ が正定値であることを示す。そのためには各 $u\in V^{\vee}$ に対し「 $(\operatorname{Hess}_{\psi})_{\theta}(u,u)=0$ ならば u=0」を示せばよいが、上で示したことと系 1.5.2 より

$$(\operatorname{Hess} \psi)_{\theta}(u, u) = (\operatorname{Var}_{P_{\theta}}[T])(u, u) = \langle u \otimes u, \operatorname{Var}_{P_{\theta}}[T] \rangle = \operatorname{Var}_{P_{\theta}}[\langle u, T(x) \rangle]$$

$$(1.4.6)$$

と式変形できるから、 $(\text{Hess}\,\psi)_{\theta}(u,u)=0$ ならば**??**より $\langle u,T(x)\rangle$ は a.e. 定数であり、したがって条件 A より u=0 となる。よって $(\text{Hess}\,\psi)_{\theta}$ は正定値である。したがって $\text{Hess}\,\psi$ は正定値である。

1.5 Amari-Chentsov テンソルと α -接続

1.5.1 多様体構造と平坦アファイン接続

命題-定義 1.5.1 (\mathcal{P} が開であること). 指数型分布族 \mathcal{P} に関し、次は同値である:

- (1) ある最小次元実現 (V,T,μ) に対し、 $\Theta^{\mathcal{P}}_{(V,T,\mu)}$ は V^{\vee} で開である。
- (2) すべての最小次元実現 (V,T,μ) に対し、 $\Theta^{\mathcal{P}}_{(V,T,\mu)}$ は V^{\vee} で開である。

P がこれらの同値な 2 条件をみたすとき、P は**開 (open)** であるという。P が開かつ full のとき、P は regular であるという。

証明 (1) \Rightarrow (2) は、系 1.2.16 より最小次元実現の真パラメータ空間がアファイン変換で写り合うことから従う。(2) \Rightarrow (1) は最小次元実現が存在することから従う。

以降、本節ではPは開とする。

命題-定義 1.5.2 ($\mathcal P$ の自然な多様体構造). $\mathcal P$ 上の多様体構造 $\mathcal U$ であって次をみたすものがただひとつ存在する:

• \mathcal{P} の任意の最小次元実現 (V,T,μ) に対し、 \mathcal{U} は全単射 $\theta_{(V,T,\mu)}$ により $\Theta_{(V,T,\mu)}^{\mathcal{P}}$ から \mathcal{P} 上に誘導された 多様体構造に一致する。

この U を P の自然な多様体構造という。

П

証明 Step 1: U の一意性 U の存在を仮定すれば、最小次元実現をひとつ選ぶことで U が決まるから、U は一意である。

Step 2: \mathcal{U} の存在 最小次元実現 (V,T,μ) をひとつ選び、 $\theta \coloneqq \theta_{(V,T,\mu)}$ とおき、 θ により $\Theta^{\mathcal{P}}_{(V,T,\mu)}$ から \mathcal{P} 上に誘導された多様体構造を \mathcal{U} とおく。この \mathcal{U} が求めるものであることを示せばよい。示すべきことは、 (V',T',μ') を最小次元実現とし、 $\theta' \coloneqq \theta_{(V',T',\mu')}$ とおき、 \mathcal{U}' を θ' により $\Theta^{\mathcal{P}}_{(V',T',\mu')}$ から \mathcal{P} 上に誘導された多様体構造とするとき、恒等写像 id: $(\mathcal{P},\mathcal{U}) \to (\mathcal{P},\mathcal{U}')$ が微分同相となることである。これは図式

$$(\mathcal{P}, \mathcal{U}) \xrightarrow{\mathrm{id}} (\mathcal{P}, \mathcal{U}')$$

$$\theta \downarrow \qquad \qquad \downarrow \theta'$$

$$\Theta^{\mathcal{P}}_{(V,T,\mu)} \xrightarrow{F} \Theta^{\mathcal{P}}_{(V',T',\mu')}$$

$$(1.5.1)$$

の可換性と、 θ , θ' , F が微分同相であることから従う。ただし F とは、系 1.2.16 より一意に存在するアファイン変換 $V^{\vee} \to V'^{\vee}$ の制限である。

以降、本節では ρ に自然な多様体構造が定まっているものとする。

命題-定義 1.5.3 (\mathcal{P} 上の自然な平坦アファイン接続). \mathcal{P} 上の平坦アファイン接続 ∇ であって次をみたすものがただひとつ存在する:

• \mathcal{P} の任意の最小次元実現 (V,T,μ) に対し、 $\Theta^{\mathcal{P}}_{(V,T,\mu)}$ 上の標準的な平坦アファイン接続を $\widetilde{\nabla}$ とおくと、 ∇ は $\nabla = \theta^*_{(V,T,\mu)}\widetilde{\nabla}$ をみたす。

この ∇ を P 上の**自然な平坦アファイン接続**という。

証明には次の補題を用いる。

補題 1.5.4 (アファイン変換によるアファイン接続の引き戻し). V,V' を有限次元 \mathbb{R} -ベクトル空間、 $F:V\to V'$ をアファイン変換、 ∇,∇' をそれぞれ V,V' 上の標準的な平坦アファイン接続とする。このとき $F^*\nabla'=\nabla$ が成り立つ。

事実 1.5.5 (ベクトル場の押し出しと関数). M,N を (有限次元実 C^{∞}) 多様体、 $F:M\to N$ を微分同相写像とする。このとき、次が成り立つ:

- (1) 任意の $f \in C^{\infty}(M)$ に対し $F_*(fX) = f \circ F^{-1}F_*X$ が成り立つ。
- (2) 任意の $g \in C^{\infty}(N)$ に対し $((F_*X)g) \circ F = X(g \circ F)$ が成り立つ。

事実 1.5.6 (アファイン変換によるベクトル場の押し出し). V,V' を m 次元 \mathbb{R} -ベクトル空間、 ∂_i,∂_i' $(i=1,\ldots,m)$ をそれぞれ V,V' の基底をベクトル場とみなしたもの、 $F:V\to V'$ をアファイン変換とし、 ∂_i,∂_i' に関する F の行列表示を $(a_i^i)_{i,j}$ とする。このとき、 $F_*\partial_j=a_i^j\partial_i'$ が成り立つ。

証明 ∂_i, ∂'_i (i = 1, ..., m) をそれぞれ V, V' の基底をベクトル場とみなしたものとし、 ∂_i, ∂'_i に関する F の行

列表示を $(a_i^i)_{i,j}$ とおき、その逆行列を $(\overline{a}_i^i)_{i,j}$ とおく。任意の $X=X^i\partial_i,\ Y=Y^i\partial_i\in\Gamma(TV)$ に対し

$$(F^*\nabla')_X Y = F_*^{-1} \left(\nabla'_{F_* X} F_* Y \right) \tag{1.5.2}$$

$$=F_*^{-1}\left(\nabla'_{F_*(X^i\partial_i)}F_*(Y^j\partial_j)\right) \tag{1.5.3}$$

$$=F_{*}^{-1}\left(\nabla'_{X^{i}\circ F^{-1}F_{*}\partial_{i}}(Y^{j}\circ F^{-1}F_{*}\partial_{j})\right) \quad (\text{\sharp \sharp 1.5.5 (1))}$$

$$\tag{1.5.4}$$

$$= F_*^{-1} \left(\nabla'_{X^i \circ F^{-1} \, a_i^k \partial_k^j} (Y^j \circ F^{-1} \, a_j^l \partial_l^j) \right) \quad (\$ \not\equiv 1.5.6)$$
 (1.5.5)

$$= F_{*}^{-1} \left(X^{i} \circ F^{-1} a_{i}^{k} a_{j}^{l} \nabla_{\partial_{i}}^{\prime} (Y^{j} \circ F^{-1} \partial_{l}^{\prime}) \right)$$
(1.5.6)

$$=F_*^{-1}\left(X^i\circ F^{-1}\,a_i^k\,a_i^l\partial_k'(Y^j\circ F^{-1})\partial_l'\right)\quad (基底\,\partial_i'\,の定める座標は\,\nabla'-アファイン) \tag{1.5.7}$$

$$=F_{*}^{-1}\left(X^{i}\circ F^{-1}a_{i}^{k}a_{j}^{l}((F_{*}^{-1}\partial_{k}^{\prime})Y^{j})\circ F^{-1}\partial_{l}^{\prime}\right) \quad (\text{\sharp \sharp 1.5.5 (2)})$$

$$= X^{i} a_{i}^{k} a_{i}^{l} (F_{*}^{-1} \partial_{k}^{\prime}) (Y^{j}) F_{*}^{-1} \partial_{l}^{\prime} \quad (\$ \sharp 1.5.5 (1))$$

$$\tag{1.5.9}$$

$$= X^{i} a_{i}^{k} a_{i}^{l} \widetilde{a}_{k}^{m} \partial_{m} (Y^{j}) \widetilde{a}_{l}^{n} \partial_{n} \quad (\text{\mathbb{P}} \pm 1.5.6)$$

$$\tag{1.5.10}$$

$$=X^{i}\partial_{i}(Y^{j})\partial_{i} \tag{1.5.11}$$

$$=\nabla_X Y \tag{1.5.12}$$

となる。よって $F^*\nabla' = \nabla$ が成り立つ。

命題-定義 1.5.3 の証明 Step 1: ∇ の一意性 ∇ の存在を仮定すれば、最小次元実現をひとつ選ぶことで ∇ が決まるから、 ∇ は一意である。

<u>Step 2: ∇ の存在</u> 最小次元実現 (V,T,μ) をひとつ選び、 $\theta := \theta_{(V,T,\mu)}$ 、 $\Theta^{\mathcal{P}}_{(V,T,\mu)}$ 上の標準的な平坦アファイン接続を $\widetilde{\nabla}$ 、 $\nabla := \theta^*\widetilde{\nabla}$ と定める。この ∇ が求めるものであることを示せばよい。示すべきことは、 (V',T',μ') を最小次元実現とし、 $\theta' := \theta_{(V',T',\mu')}$ 、 $\Theta^{\mathcal{P}}_{(V',T',\mu')}$ 上の標準的な平坦アファイン接続を $\widetilde{\nabla}'$ とおくとき、 $\theta^*\widetilde{\nabla} = \theta'^*\widetilde{\nabla}'$ が成り立つことである。そこで、系 1.2.16 より一意に存在するアファイン変換 $V^\vee \to V'^\vee$ を F とおくと、

$$= \theta^* \widetilde{\nabla} \quad (\text{#B 1.5.4}) \tag{1.5.14}$$

が成り立つ。したがって $\theta^*\widetilde{\nabla}=\theta'^*\widetilde{\nabla}'$ が示された。よって ∇ は命題-定義の主張の条件をみたす。

以降、本節ではPに自然な平坦アファイン接続 ∇ が定まっているものとする。

1.5.2 Fisher 計量

命題-定義 1.5.7 (\mathcal{P} 上の Fisher 計量). \mathcal{P} 上の Riemann 計量 g であって次をみたすものがただひとつ存在する:

• \mathcal{P} の任意の最小次元実現 (V,T,μ) に対し、 $\Theta^{\mathcal{P}}_{(V,T,\mu)}$ 上の Fisher 計量を \widetilde{g} とおくと、 $g=\theta^*_{(V,T,\mu)}\widetilde{g}$ が成り立つ。

これを P 上の Fisher 計量という。

証明には次の補題を用いる。

補題 1.5.8. $(V,T,\mu),(V',T',\mu')$ を $\mathcal P$ の最小次元実現とし、 $\theta \coloneqq \theta_{(V,T,\mu)},\ \theta' \coloneqq \theta_{(V',T',\mu')}$ とおき、 $\Theta^{\mathcal P}_{(V',T',\mu')}$ 上の Fisher 計量をそれぞれ g,g' とおき、定理 1.2.15 より一意に存在する線型同型写像 $V \to V'$ を L とおく。 このとき、各 $p \in \mathcal P$ に対し $g_{\theta(p)} = (L \otimes L)(g'_{\theta'(p)})$ が成り立つ。

証明 L は T'(x) = L(T(x)) + const. μ -a.e.x をみたし、また各 $p \in \mathcal{P}$ に対し $g_{\theta(p)} = \text{Var}_p[T]$, $g'_{\theta'(p)} = \text{Var}_p[T']$ が 成り立つから、期待値と分散のペアリングの命題 () と同様の議論により補題の主張の等式が成り立つ [TODO] 命題を一般化する。

命題-定義 1.5.7 の証明 Step 1: g の一意性 g の存在を仮定すれば、最小次元実現をひとつ選ぶことで g が決まるから、g は一意である。

<u>Step 2: g の存在</u> 最小次元実現 (V,T,μ) をひとつ選び、 $\theta := \theta_{(V,T,\mu)}$ 、 $\Theta_{(V,T,\mu)}^{\mathcal{P}}$ 上の Fisher 計量を \widetilde{g} とおき、 $g := \theta^*\widetilde{g}$ と定める。このg が求めるものであることを示せばよい。示すべきことは、 (V',T',μ') を最小次元実現とし、 $\theta' := \theta_{(V',T',\mu')}$ 、 $\Theta_{(V',T',\mu')}^{\mathcal{P}}$ 上の Fisher 計量を \widetilde{g}' とおいて、 $\theta^*g = \theta'^*g'$ が成り立つことである。そこで定理 1.2.15 より一意に存在する線型同型写像 $V \to V'$ を L とおくと、各 $p \in \mathcal{P}$, $u,v \in T_p\mathcal{P}$ に対し

$$(\theta^*g)_p(u,v) = g_{\theta(p)}(d\theta_p(u), d\theta_p(v)) \tag{1.5.15}$$

$$= \langle g_{\theta(p)}, d\theta_p(u) \otimes d\theta_p(v) \rangle \tag{1.5.16}$$

$$= \left\langle (L \otimes L) g'_{\theta'(p)}, d\theta_p(u) \otimes d\theta_p(v) \right\rangle \quad (\text{#\text{II} 1.5.8}) \tag{1.5.17}$$

$$= \left\langle g'_{\theta'(p)}, {}^{t}L \circ d\theta_{p}(u) \otimes {}^{t}L \circ d\theta_{p}(v) \right\rangle \tag{1.5.18}$$

$$= \left\langle g'_{\theta'(p)}, d({}^{t}L \circ \theta)_{p}(u) \otimes d({}^{t}L \circ \theta)_{p}(v) \right\rangle \tag{1.5.19}$$

$$= \left\langle g'_{\theta'(p)}, d\theta'_p(u) \otimes d\theta'_p(v) \right\rangle \quad (L \, \succeq \, \theta, \theta' \, \text{の関係}) \tag{1.5.20}$$

$$= g_n'(d\theta_n'(u), d\theta_n'(v)) \tag{1.5.21}$$

$$= (\theta'^* g')_{\nu}(u, v) \tag{1.5.22}$$

が成り立つ。したがって $\theta^*g = \theta'^*g'$ が示された。よって g は命題-定義の主張の条件をみたす。

以降、本節ではPに Fisher 計量gが定まっているものとする。

1.5.3 Amari-Chentsov テンソルと α-接続

定義 1.5.9 (Amari-Chentsov テンソル). \mathcal{P} 上の (0,3)-テンソル場 S を $S := \nabla_g$ で定め、これを \mathcal{P} 上の Amari-Chentsov テンソル (Amari-Chentsov tensor) という。また、 \mathcal{P} 上の (1,2)-テンソル場 A を次の関係式 により定める:

$$g(A(X,Y),Z) = S(X,Y,Z) \quad (\forall X,Y,Z \in \Gamma(T\mathcal{P})) \tag{1.5.23}$$

以降、「Amari-Chentsov テンソル」を「AC テンソル」と略記することがある。

以降、本節ではPに Amari-Chentsov テンソルSが定まっているものとする。

命題 1.5.10 (AC テンソルの成分). (V,T,μ) を $\mathcal P$ の最小次元実現、 $\Theta^{\mathcal P} \coloneqq \Theta^{\mathcal P}_{(V,T,\mu)}$, $\theta \coloneqq \theta_{(V,T,\mu)}$ 、 (V,T,μ) の対数分配関数を ψ とおく。このとき、 $\mathcal P$ 上の任意の ∇ -アファイン座標 $x \coloneqq (x^1,\ldots,x^m)$: $\mathcal P \to \mathbb R^m$ に対し、 $\varphi \coloneqq (\varphi^1,\ldots,\varphi^m) \coloneqq x \circ \theta^{-1} \colon \Theta^{\mathcal P} \to \mathbb R^m$ とおくと、S の成分は

$$S_{ijk}(p) = \frac{\partial^3 \psi}{\partial \varphi^i \partial \varphi^j \partial \varphi^k}(\theta(p)) = E_p \left[(T_i - E_p[T_i])(T_j - E_p[T_j])(T_k - E_p[T_k]) \right]$$
(1.5.24)

をみたす。ただし T_i $(i=1,\ldots,m)$ とは、同一視 $V=V^{\vee\vee}=T^{\vee}_{\theta(p)}\Theta^{\mathcal{P}}$ により $d\varphi^i$ $(i=1,\ldots,m)$ を V の基底とみなしたときの T の成分である。

証明 左側の等号と右側の等号についてそれぞれ示す。

Step 1: 左側の等号 $\Theta^{\mathcal{P}}$ 上の標準的な平坦アファイン接続を $\widetilde{\nabla}$ とおき、 ψ の定める $\Theta^{\mathcal{P}}$ 上の Fisher 計量を \widetilde{g} とおくと、

$$S\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}\right) = \left(\nabla_{\frac{\partial}{\partial x^{i}}}g\right)\left(\frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}\right) \tag{1.5.25}$$

$$= \left(\left(\theta^* \widetilde{\nabla} \right)_{\frac{\partial}{\partial x^i}} (\theta^* \widetilde{g}) \right) \left(\frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^k} \right) \tag{1.5.26}$$

$$= \left(\theta_*^{-1} \left(\widetilde{\nabla}_{\theta_* \frac{\partial}{\partial x^i}} \widetilde{g}\right)\right) \left(\frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^k}\right) \tag{1.5.27}$$

$$= \left(\widetilde{\nabla}_{\theta_* \frac{\partial}{\partial x^i}} \widetilde{g}\right) \left(d\theta \left(\frac{\partial}{\partial x^j} \right), d\theta \left(\frac{\partial}{\partial x^k} \right) \right) \tag{1.5.28}$$

$$= \left(\widetilde{\nabla}_{\frac{\partial}{\partial \varphi^{i}}}\widetilde{g}\right) \left(\frac{\partial}{\partial \varphi^{j}}, \frac{\partial}{\partial \varphi^{k}}\right) \tag{1.5.29}$$

$$= \left(\frac{\partial}{\partial \varphi^{i}} \left(\frac{\partial^{2} \psi}{\partial \varphi^{l} \partial \varphi^{n}}\right) d\varphi^{l} d\varphi^{n}\right) \left(\frac{\partial}{\partial \varphi^{j}}, \frac{\partial}{\partial \varphi^{k}}\right) \quad (\varphi \ \text{は $\widetilde{\nabla}$-アファイン座標})$$
 (1.5.30)

$$=\frac{\partial^3 \psi}{\partial \varphi^i \partial \varphi^j \partial \varphi^k} \tag{1.5.31}$$

となるから、命題の主張の左側の等号が従う。

Step 2: 右側の等号 「 E_p 」の下付きの p を省略して書けば、直接計算より

$$E[(T_i - E[T_i])(T_i - E[T_i])(T_k - E[T_k])]$$
(1.5.32)

$$= E[T_i T_j T_k] - E[T_i] E[T_j T_k] - E[T_j] E[T_k T_i] - E[T_k] E[T_i T_j] + 2E[T_i] E[T_j] E[T_k]$$
(1.5.33)

が成り立つ。一方、 $\lambda\coloneqq\exp\psi$ とおき、 $\frac{\partial}{\partial\varphi^i}$ を ∂_i と略記すれば、直接計算より

$$\frac{\partial^3 \psi}{\partial \varphi^i \partial \varphi^j \partial \varphi^k} = \partial_i \partial_j \partial_k \log \lambda \tag{1.5.34}$$

$$=\frac{\partial_{i}\partial_{j}\partial_{k}\lambda}{\lambda}-\frac{(\partial_{i}\lambda)(\partial_{j}\partial_{k}\lambda)}{\lambda^{2}}-\frac{(\partial_{j}\lambda)(\partial_{k}\partial_{i}\lambda)}{\lambda^{2}}-\frac{(\partial_{k}\lambda)(\partial_{i}\partial_{j}\lambda)}{\lambda^{2}}+2\frac{(\partial_{i}\lambda)(\partial_{j}\lambda)(\partial_{k}\lambda)}{\lambda^{3}}$$
(1.5.35)

が成り立つ。この右辺を系 1.3.4 により期待値の形で表せば式 (1.5.33) に一致するから、命題の主張の右側の 等号が従う。

定義 1.5.11 (α -接続). $\alpha \in \mathbb{R}$ とする。 \mathcal{P} 上のアファイン接続 $\nabla^{(\alpha)}$ を次の関係式により定める:

$$g(\nabla_X^{(\alpha)}Y,Z) = g(\nabla_X^{(g)}Y,Z) - \frac{\alpha}{2}S(X,Y,Z) \qquad (X,Y,Z \in \Gamma(T\mathcal{P})) \tag{1.5.36}$$

この $\nabla^{(\alpha)}$ を (g,S) の定める α -接続 (α -connection) という。とくに $\alpha=1$, -1 の場合をそれぞれ e-接続 (e-connection)、m-接続 (m-connection) という。

命題 1.5.12 ($\nabla^{(g)}$, $\nabla^{(a)}$ の AC テンソルによる表示). $\boldsymbol{\mathcal{P}}$ 上の任意の ∇ -アファイン座標に関し、 $\nabla^{(g)}$ および $\nabla^{(a)}$ の 接続係数は次をみたす:

(1)

$$\Gamma^{(g)}{}^{k}_{ij} = \frac{1}{2} A^{k}_{ij}, \quad \Gamma^{(g)}{}_{ijk} = \frac{1}{2} S_{ijk}$$
 (1.5.37)

(2) すべての $\alpha \in \mathbb{R}$ に対し

$$\Gamma^{(\alpha)}{}^{k}_{ij} = \frac{1-\alpha}{2} A^{k}_{ij}, \quad \Gamma^{(\alpha)}{}_{ijk} = \frac{1-\alpha}{2} S_{ijk}$$
 (1.5.38)

とくに $\alpha=1$ のとき $\Gamma^{(1)}{}^{k}_{ij}=0$, $\Gamma^{(1)}{}_{ijk}=0$ である。

証明 (1) (1.5.37) の左側の等式は

$$\Gamma^{(g)}{}^{k}_{ij} = \frac{1}{2} g^{kl} \left(\partial_i g_{jl} + \partial_j g_{li} - \partial_l g_{ij} \right) \tag{1.5.39}$$

$$= \frac{1}{2} g^{kl} \left(S_{ijl} + S_{jli} - S_{lij} \right) \quad (\text{命題 1.5.10})$$
 (1.5.40)

$$= \frac{1}{2} g^{kl} S_{ijl} \tag{1.5.41}$$

$$=\frac{1}{2}A_{ij}^{k} \tag{1.5.42}$$

より従う。gで添字を下げて (1.5.37) の右側の等式も従う。

(2) α -接続の定義より $\Gamma^{(\alpha)}_{ijk} = \Gamma^{(g)}_{ijk} - \frac{\alpha}{2} S_{ijk}$ だから、(1) とあわせて (1.5.38) の左側の等式が従う。g で添字を下げて (1.5.37) の右側の等式も従う。

命題 1.5.13 (捩率と曲率の AC テンソルによる表示). \mathcal{P} 上の任意の ∇ -アファイン座標に関し、 $\nabla^{(\alpha)}$ の捩率テンソル $T^{(\alpha)}$ および (1,3)-曲率テンソル $R^{(\alpha)}$ の成分表示は次をみたす:

(1) すべての $\alpha \in \mathbb{R}$ に対し

$$T^{(\alpha)}{}^{k}_{ij} = 0 (1.5.43)$$

(2) すべての $\alpha \in \mathbb{R}$ に対し

$$R^{(\alpha)}{}^{l}_{ijk} = \frac{1-\alpha}{2} \left(\partial_i A^l_{jk} - \partial_j A^l_{ik} \right) + \left(\frac{1-\alpha}{2} \right)^2 \left(A^m_{jk} A^l_{im} - A^m_{ik} A^l_{jm} \right)$$
(1.5.44)

とくに $\alpha = 1$ のとき $R^{(1)}_{ijk}^{l} = 0$ である。

証明 (1)

$$T^{(\alpha)}{}_{ij} = \Gamma^{(\alpha)}{}^k_{ij} - \Gamma^{(\alpha)}{}^k_{ji} \tag{1.5.45}$$

$$=\frac{1-\alpha}{2}A_{ij}^{k}-\frac{1-\alpha}{2}A_{ji}^{k} \quad (\text{命題 } 1.5.12(2)) \tag{1.5.46}$$

$$= 0 \quad (A_{ij}^k = A_{ii}^k) \tag{1.5.47}$$

より従う。

(2)

$$R^{(\alpha)}{}^{l}_{ijk} = \partial_i \Gamma^{(\alpha)}{}^{l}_{jk} - \partial_j \Gamma^{(\alpha)}{}^{l}_{ik} + \Gamma^{(\alpha)}{}^{m}_{jk} \Gamma^{(\alpha)}{}^{l}_{im} - \Gamma^{(\alpha)}{}^{m}_{ik} \Gamma^{(\alpha)}{}^{l}_{jm}$$

$$(1.5.48)$$

$$= \frac{1-\alpha}{2} \left(\partial_i A^l_{jk} - \partial_j A^l_{ik} \right) + \left(\frac{1-\alpha}{2} \right)^2 \left(A^m_{jk} A^l_{im} - A^m_{ik} A^l_{jm} \right) \quad (\text{$\widehat{\alpha}$B 1.5.12(2)})$$
 (1.5.49)

より従う。

1.6 指数型分布族の具体例

1.6.1 具体例: 有限集合上の full support な確率分布の族

本節では、有限集合上の full support な確率分布の族について、 α -接続に関する測地線方程式を求めてみる。

設定 1.6.1 (有限集合上の full support な確率分布の族). $X := \{1, ..., n\} (n \in \mathbb{Z}_{\geq 1})$ とし、

$$\mathcal{P} := \left\{ \sum_{i=1}^{n} p_i \delta^i \in \mathcal{P}(\mathcal{X}) \,\middle|\, 0 < p_i < 1 \,(i=1,\ldots,n) \right\}$$

$$\tag{1.6.1}$$

とおく。ただし δ^i は 1 点 $i \in X$ での Dirac 測度である。これが X 上の指数型分布族であることは例 1.1.5 で確かめた。

命題 1.6.2 (最小次元実現の構成およびP が開であることの確認).

(1) (V,T,γ) を次のように定めると、これは ρ の実現となる:

$$V := \mathbb{R}^{n-1},\tag{1.6.2}$$

$$T: \mathcal{X} \to V, \quad k \mapsto {}^{t}(\delta_{1k}, \dots, \delta_{(n-1)k}),$$
 (1.6.3)

(2) この実現の対数分配関数
$$\psi \colon \widetilde{\Theta} \to \mathbb{R}$$
 は $\psi(\theta) = \log \left(1 + \sum_{i=1}^{n-1} \exp \theta^i \right)$ となる。

(3) 写像 $P := P_{(V,T,\nu)} : \widetilde{\Theta} \to \mathcal{P}(X)$ は次をみたす:

$$P(\theta) = \frac{1}{1 + \sum_{i=1}^{n-1} \exp \theta^i} \left(\sum_{i=1}^{n-1} (\exp \theta^i) \delta^i + \delta^n \right)$$
 (1.6.5)

(4) $\Theta = \widetilde{\Theta} = V^{\vee}$ が成り立つ。

(5) 次の写像 θ : $\mathcal{P} \to \Theta$ は P の逆写像である:

$$\theta: \mathcal{P} \to \Theta, \quad \sum_{i=1}^{n} p_i \delta^i \mapsto \left(\log \frac{p_1}{p_n}, \dots, \log \frac{p_{n-1}}{p_n}\right)$$
 (1.6.6)

(6) (V,T,γ) は最小次元実現である。とくに \mathcal{P} は開である。

証明 (1)

$$p(dk) = \exp\left\{\sum_{i=1}^{n-1} (\log p_i) \delta_{ik} + \left(\log \left(1 - \sum_{i=1}^{n-1} p_i\right)\right) \delta_{n,k}\right\} \gamma(dk)$$
 (1.6.7)

$$= \exp\left\{\sum_{i=1}^{n-1} \left(\log p_i - \log\left(1 - \sum_{i=1}^{n-1} p_i\right)\right) \delta_{ik} + \log\left(1 - \sum_{i=1}^{n-1} p_i\right)\right\} \gamma(dk)$$
 (1.6.8)

と表せることから従う。

(2) 対数分配関数の定義より

$$\psi(\theta) = \log \int_{X} \exp \langle \theta, T(k) \rangle \ \gamma(dk)$$
 (1.6.9)

$$= \log \sum_{i=1}^{n} \exp \left(\sum_{j=1}^{n-1} \theta^j \delta_{ji} \right)$$
 (1.6.10)

$$= \log \left(\sum_{i=1}^{n-1} \exp \theta^i + 1 \right)$$
 (1.6.11)

である。

(3) P の定義より

$$P(\theta) = \exp(\langle \theta, T(k) \rangle - \psi(\theta))\gamma \tag{1.6.12}$$

$$= \frac{1}{1 + \sum_{i=1}^{n-1} \exp \theta^{i}} \exp \left(\sum_{i=1}^{n-1} \theta^{i} \delta_{ik} \right) \gamma$$
 (1.6.13)

$$= \frac{1}{1 + \sum_{i=1}^{n-1} \exp \theta^i} \left(\sum_{i=1}^{n-1} (\exp \theta^i) \delta^i + \delta^n \right)$$
 (1.6.14)

である。

- (4) 可積分性を考えると明らかに $\widetilde{\Theta} = V^{\vee}$ である。また P が (3) のように表せることから $P(\widetilde{\Theta}) \subset \mathcal{P}$ がわかる。したがって $V^{\vee} = \widetilde{\Theta} \subset P^{-1}(\mathcal{P}) = \Theta$ である。よって $\Theta = \widetilde{\Theta} = V^{\vee}$ である。
 - (5) $P \circ \theta$, $\theta \circ P$ を直接計算すれば確かめられる。
- <u>(6)</u> 最小次元実現の特徴づけを確かめればよい。条件 A(3) が成り立つことは、いま V の任意のアファイン部分空間に対し「 $T(x) \in W$ γ -a.e.x」と「 $T(x) \in W$ $\forall x$ 」が同値であることから明らか。条件 B が成り立つことは $\Theta = V^{\vee}$ よりわかる。

以降、 \mathcal{P} には自然な位相および多様体構造が入っているものとして扱い、 \mathcal{P} 上の自然な平坦アファイン接続を ∇ 、Fisher 計量を g、(0,3),(1,2) 型の Amari-Chentsov テンソルをそれぞれ S,A とおく。また、 θ : $\mathcal{P} \to \Theta$ は多様体 \mathcal{P} の座標とみなす。

注意 1.6.3 (\mathcal{P} の 2 通りの位相 & 多様体構造). \mathcal{P} 上の位相 & 多様体構造として、 \mathcal{X} 上の符号付き測度全体のなすベクトル空間 $\mathcal{S}(\mathcal{X}) \cong \mathbb{R}^n$ の部分多様体としてのものと、指数型分布族としての自然なものの 2 通りを考えられるが、これらは互いに一致する。なぜならば、いずれの位相 & 多様体構造に関しても写像 $\theta: \mathcal{P} \to \Theta$ は微分同相写像だからである。

命題 1.6.4 (Fisher 計量の成分). 座標 $\theta = (\theta^1, \dots, \theta^{n-1})$ に関する Fisher 計量 g の成分は

$$g_{ij}(p) = \delta_{ij}p_i - p_ip_j \qquad (p \in \mathcal{P}, i, j = 1, ..., n - 1)$$
 (1.6.15)

となる。

証明 微分同相写像 θ により g を Θ 上のテンソル場とみなして計算すれば、各 $p \in \mathcal{P}$ に対し

$$g_{ij}(p) = (\text{Var}_p[T])(e^i, e^j)$$
 (1.6.16)

$$= E_{\nu}[(T^{i} - E_{\nu}[T^{i}])(T^{j} - E_{\nu}[T^{j}])]$$
(1.6.17)

$$= \sum_{k=1}^{n} (\delta_{ik} - p_i)(\delta_{jk} - p_j)p_k$$
 (1.6.18)

$$=\delta_{ij}p_i - p_ip_j \tag{1.6.19}$$

が成り立つ。

命題 1.6.5 (AC テンソルの成分). 座標 θ に関する AC テンソル S の成分は

$$S_{ijk}(p) = p_i \delta_{ij} \delta_{jk} - p_i p_k \delta_{ij} - p_i p_j \delta_{jk} - p_j p_k \delta_{ik} + 2p_i p_j p_k \qquad (p \in \mathcal{P}, i, j, k = 1, \dots, n - 1)$$
 (1.6.20)

となる。

証明 命題 1.5.10 を用いると

$$S_{iik}(p) = E_v[(T^i - E_v[T^i])(T^j - E_v[T^j])(T^k - E_v[T^k])]$$
(1.6.21)

となるから、命題 1.6.4 と同様に直接計算して命題の主張の等式が得られる。

以降、n=3 の場合を考える。

命題 1.6.6 (n=3 での g, S, A の計算). 座標 θ に関し、g の行列表示は

$$(g_{ij})_{i,j} = \begin{pmatrix} p_1(1-p_1) & -p_1p_2 \\ -p_1p_2 & p_2(1-p_2) \end{pmatrix}, \quad (g^{ij})_{i,j} = \frac{1}{p_3} \begin{pmatrix} \frac{p_3}{p_1} + 1 & 1 \\ 1 & \frac{p_3}{p_2} + 1 \end{pmatrix}$$
(1.6.22)

となる。Sの成分は

$$S_{111} = p_1 - 3p_1^2 + 2p_1^3, (1.6.23)$$

$$S_{112} = S_{121} = S_{211} = -p_1 p_2 + 2p_1^2 p_2, (1.6.24)$$

$$S_{122} = S_{212} = S_{221} = -p_1 p_2 + 2p_1 p_2^2, (1.6.25)$$

$$S_{222} = p_2 - 3p_2^2 + 2p_2^3 (1.6.26)$$

となる。A の成分は

$$A_{11}^{1} = 1 - 2p_1, A_{11}^{2} = 0 (1.6.27)$$

$$A_{12}^{1} = A_{21}^{1} = -p_2, A_{12}^{2} = A_{21}^{2} = -p_1 (1.6.28)$$

$$A_{22}^{1} = 0,$$
 $A_{22}^{2} = 1 - 2p_2$ (1.6.29)

となる。

証明 g の行列表示は命題 1.6.4 よりわかる。その逆行列は直接計算よりわかる。S の成分は命題 1.6.5 よりわかる。A の成分は「 $A_{ij}^{k}=g^{kl}S_{ijl}$ 」を用いて求める。具体的には以下の行列を直接計算すればわかる:

$$\begin{pmatrix} A_{11}^{1} & A_{12}^{1} & A_{22}^{1} \\ A_{11}^{2} & A_{12}^{2} & A_{22}^{2} \end{pmatrix} = \frac{1}{p_3} \begin{pmatrix} \frac{p_3}{p_1} + 1 & 1 \\ 1 & \frac{p_3}{p_2} + 1 \end{pmatrix} \begin{pmatrix} S_{111} & S_{121} & S_{221} \\ S_{112} & S_{122} & S_{222} \end{pmatrix}$$
(1.6.30)

命題 1.6.7 (n=3 での測地線方程式). 各 $\alpha \in \mathbb{R}$ に対し、座標 θ に関する $\nabla^{(\alpha)}$ -測地線の方程式は

$$\ddot{\theta^{1}} = -\frac{1-\alpha}{2} \left(\left(1 - \frac{2 \exp \theta^{1}}{1 + \exp \theta^{1} + \exp \theta^{2}} \right) (\dot{\theta^{1}})^{2} - \frac{2 \exp \theta^{2}}{1 + \exp \theta^{1} + \exp \theta^{2}} \dot{\theta^{1}} \dot{\theta^{2}} \right)$$
(1.6.31)

$$\ddot{\theta}^{2} = -\frac{1-\alpha}{2} \left(-\frac{2 \exp \theta^{1}}{1 + \exp \theta^{1} + \exp \theta^{2}} \dot{\theta}^{1} \dot{\theta}^{2} + \left(1 - \frac{2 \exp \theta^{2}}{1 + \exp \theta^{1} + \exp \theta^{2}} \right) (\dot{\theta}^{2})^{2} \right)$$
(1.6.32)

となる。とくに $\alpha = 1$ のとき

$$\ddot{\theta^1} = 0, \quad \ddot{\theta^2} = 0 \tag{1.6.33}$$

である。

証明 測地線の方程式

$$\ddot{\theta}^{\dot{k}} = -\Gamma^{\dot{k}}_{ij}\dot{\theta}^{\dot{i}}\dot{\theta}^{\dot{j}} \tag{1.6.34}$$

に、命題 1.5.12 の等式
$$\Gamma^{(\alpha)}{}^{k}_{ij}=\frac{1-\alpha}{2}A_{ij}^{k}$$
 を代入して得られる。

1.6.2 具体例: 正規分布族

本節では、正規分布族について、α-接続に関する測地線方程式を求めてみる。

設定 1.6.8 (正規分布族). X ≔ ℝ とし、

$$\mathcal{P} := \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \lambda(dx) \in \mathcal{P}(X) \,\middle|\, (\mu,\sigma) \in \mathbb{R} \times \mathbb{R}_{>0} \right\}$$
(1.6.35)

とおく。これがX上の指数型分布族であることは例1.1.6で確かめた。

以降、次の事実をしばしば用いる:

事実 1.6.9. 次の 2 つの写像は互いに逆な C^{∞} 写像である:

$$\mathbb{R} \times \mathbb{R}_{>0} \to \mathbb{R} \times \mathbb{R}_{<0}, \qquad (\mu, \sigma) \mapsto \left(\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2}\right),$$
 (1.6.36)

$$\mathbb{R} \times \mathbb{R}_{<0} \to \mathbb{R} \times \mathbb{R}_{>0}, \qquad (\theta^1, \theta^2) \mapsto \left(-\frac{\theta^1}{2\theta^2}, \sqrt{-\frac{1}{2\theta^2}}\right)$$
 (1.6.37)

命題 1.6.10 (最小次元実現の構成およびP が開であることの確認).

(1) (V,T,λ) を次のように定めると、これは ρ の実現となる:

$$V = \mathbb{R}^2, \tag{1.6.38}$$

$$T: \mathcal{X} \to V, \quad x \mapsto {}^t(x, x^2),$$
 (1.6.39)

$$\lambda$$
: Lebesgue 測度. (1.6.40)

- (2) この実現の対数分配関数 $\psi \colon \widetilde{\Theta} \to \mathbb{R}$ は $\psi(\theta) = -\frac{(\theta^1)^2}{4\theta^2} \frac{1}{2}\log(-\theta^2) + \frac{1}{2}\log\pi$ となる。
- (3) $\Theta = \widetilde{\Theta} = \mathbb{R} \times \mathbb{R}_{<0}$ が成り立つ。
- (4) 次の写像 $\theta: \mathcal{P} \to \Theta$ は $P := P_{(V,T,\lambda)}$ の逆写像である:

$$\theta: \mathcal{P} \to \Theta, \quad p \mapsto \left(\frac{E_p[x]}{\operatorname{Var}_p[x]}, -\frac{1}{2\operatorname{Var}_p[x]}\right)$$
 (1.6.41)

(5) (V,T,λ) は最小次元実現である。とくにP は開である。

証明 (1) 実現であることは例 1.1.6 で確かめた。

- (2) 対数分配関数の定義から直接計算よりわかる。
- - (4) $(\theta^1, \theta^2) \in \mathbb{R} \times \mathbb{R}_{<0}$ と $(\mu, \sigma) \in \mathbb{R} \times \mathbb{R}_{>0}$ の対応に注意すれば直接計算よりわかる。
- (5) 最小次元実現の特徴づけの条件 A(3) と条件 B が成り立つことから、最小次元実現であることがわかる。

以降、 \mathcal{P} には自然な位相および多様体構造が入っているものとして扱い、 \mathcal{P} 上の自然な平坦アファイン接続を ∇ 、Fisher 計量を g、(0,3),(1,2) 型の Amari-Chentsov テンソルをそれぞれ S,A とおく。また、 $\theta:\mathcal{P}\to\Theta$ は多様 体 \mathcal{P} の座標とみなす。

命題 1.6.11. 座標 (μ, σ) に関する g の行列表示は

$$(g_{ij})_{i,j} = \begin{pmatrix} \frac{1}{\sigma^2} & 0\\ 0 & \frac{2}{\sigma^2} \end{pmatrix}, \qquad (g^{ij})_{i,j} = \begin{pmatrix} \sigma^2 & 0\\ 0 & \frac{\sigma^2}{2} \end{pmatrix}$$
(1.6.42)

となる。

証明 微分同相写像 θ により g を Θ 上のテンソル場とみなして計算する。座標 (θ^1,θ^2) と座標 (μ,σ) の間の座標変換が $\theta^1=\frac{\mu}{\sigma^2}$, $\theta^2=-\frac{1}{2\sigma^2}$ および $\mu=-\frac{\theta^1}{2\theta^2}$, $\sigma=\sqrt{-\frac{1}{2\theta^2}}$ であることに注意すると

$$d\mu = -\frac{1}{2\theta^2}d\theta^1 + \frac{\theta^1}{2(\theta^2)^2}d\theta^2, \qquad d\sigma = \frac{1}{2\sqrt{2}}(-\theta^2)^{-3/2}d\theta^2, \tag{1.6.43}$$

$$d\theta^{1} = \frac{1}{\sigma^{2}}d\mu - \frac{2\mu}{\sigma^{3}}d\sigma, \qquad d\theta^{2} = \frac{1}{\sigma^{3}}d\sigma, \qquad (1.6.44)$$

さらに

$$(d\theta^{1})^{2} = \frac{1}{\sigma^{4}}(d\mu)^{2} - \frac{\mu}{\sigma^{5}}d\mu d\sigma + \frac{4\mu^{2}}{\sigma^{6}}(d\sigma)^{2},$$
(1.6.45)

$$d\theta^1 d\theta^2 = \frac{1}{\sigma^5} d\mu d\sigma - \frac{2\mu}{\sigma^6} (d\sigma)^2, \tag{1.6.46}$$

$$(d\theta^2)^2 = \frac{1}{\sigma^6} (d\sigma)^2 \tag{1.6.47}$$

である。したがって、 Θ 上の標準的な平坦アファイン接続をDとおくと

$$Dd\mu = \frac{1}{(\theta^2)^2} d\theta^1 d\theta^2 - \frac{\theta^1}{(\theta^2)^3} (d\theta^2)^2 = \frac{4}{\sigma} d\mu d\sigma,$$
 (1.6.48)

$$Dd\sigma = \frac{3}{4\sqrt{2}}(-\theta^2)^{-5/2}(d\theta^2)^2 = \frac{3}{\sigma}(d\sigma)^2$$
 (1.6.49)

である。よって

$$d\psi = \frac{\mu}{\sigma^2} d\mu + \left(-\frac{\mu^2}{\sigma^3} + \frac{1}{\sigma}\right) d\sigma,\tag{1.6.50}$$

$$Hess \psi = Dd\psi \tag{1.6.51}$$

$$= d\left(\frac{\mu}{\sigma^2}\right)d\mu + \frac{\mu}{\sigma^2}Dd\mu + d\left(-\frac{\mu^2}{\sigma^3} + \frac{1}{\sigma}\right)d\sigma + \left(-\frac{\mu^2}{\sigma^3} + \frac{1}{\sigma}\right)Dd\sigma \tag{1.6.52}$$

$$= \frac{1}{\sigma^2} (d\mu)^2 + \frac{2}{\sigma^2} (d\sigma)^2 \tag{1.6.53}$$

である。これより命題の主張が従う。

命題 1.6.12 (AC テンソルの成分). 座標 (μ, σ) に関する AC テンソル S の成分は

$$S_{111} = 0 (1.6.54)$$

$$S_{112} = S_{121} = S_{211} = \frac{2}{\sigma^3} \tag{1.6.55}$$

$$S_{122} = S_{212} = S_{221} = 0 (1.6.56)$$

$$S_{222} = \frac{8}{\sigma^3} \tag{1.6.57}$$

である。座標 (μ, σ) に関する A の成分は

$$A_{11}^{1} = 0, A_{11}^{2} = \frac{1}{\sigma}, (1.6.58)$$

$$A_{12}^{1} = A_{21}^{1} = \frac{2}{\sigma}, \qquad A_{12}^{2} = A_{21}^{2} = 0,$$
 (1.6.59)

$$A_{22}^{1} = 0,$$
 $A_{22}^{2} = \frac{4}{\sigma}$ (1.6.60)

である。

証明 微分同相写像 θ により S,A を Θ 上のテンソル場とみなして計算する。 Θ 上の標準的な平坦アファイン接続を D とおくと

$$DDd\psi = D\left(\frac{1}{\sigma^2}(d\mu)^2 + \frac{2}{\sigma^2}(d\sigma)^2\right)$$
(1.6.61)

$$= -\frac{2}{\sigma^3} (d\mu)^2 d\sigma + \frac{1}{\sigma^2} D(d\mu)^2 - \frac{4}{\sigma^3} (d\sigma)^3 + \frac{2}{\sigma^2} D(d\sigma)^2$$
 (1.6.62)

ここで

$$D(d\mu)^2 = 2d\mu Dd\mu = \frac{8}{\sigma}(d\mu)^2 d\sigma,$$
(1.6.63)

$$D(d\sigma)^2 = 2d\sigma Dd\sigma = \frac{6}{\sigma}(d\sigma)^3$$
 (1.6.64)

だから

$$DDd\psi = \frac{6}{\sigma^3}(d\mu)^2 d\sigma + \frac{8}{\sigma^3}(d\sigma)^3$$
 (1.6.65)

である。これより命題の主張の式が得られる。A の成分は「 $A_{ij}^{\ \ k}=g^{kl}S_{ijl}$ 」を用いて直接計算より得られる。

命題 1.6.13 (接続係数).

(1) 座標 (μ, σ) に関する ∇^g の接続係数は

$$\Gamma_{11}^{g_{11}^1} = 0, \qquad \Gamma_{12}^{g_{12}^1} = \Gamma_{21}^{g_{21}^1} = -\frac{1}{\sigma}, \qquad \Gamma_{22}^{g_{12}^1} = 0,$$
(1.6.66)

$$\Gamma^{g_{11}^2} = \frac{1}{2\sigma}, \qquad \Gamma^{g_{12}^2} = \Gamma^{g_{21}^2} = 0, \qquad \Gamma^{g_{22}^2} = -\frac{1}{\sigma}$$
(1.6.67)

である。

(2) 座標 (μ, σ) に関する $\nabla^{(\alpha)}$ の接続係数は

$$\Gamma^{(\alpha)}{}_{11}^{1} = 0, \qquad \Gamma^{(\alpha)}{}_{12}^{1} = \Gamma^{(\alpha)}{}_{21}^{1} = -\frac{1+\alpha}{\sigma}, \qquad \Gamma^{(\alpha)}{}_{22}^{1} = 0,$$
 (1.6.68)

$$\Gamma^{(\alpha)}_{11}^2 = \frac{1-\alpha}{2\sigma}, \qquad \Gamma^{(\alpha)}_{12}^2 = \Gamma^{(\alpha)}_{21}^2 = 0, \qquad \qquad \Gamma^{(\alpha)}_{22}^2 = -\frac{1+2\alpha}{\sigma}$$
 (1.6.69)

である。

証明 Γ^g は $\Gamma^g{}^k{}_{ij} = \frac{1}{2} g^{kl} \left(\partial_i g_{jl} + \partial_j g_{li} - \partial_l g_{ij} \right)$ を直接計算することで得られる。 $\Gamma^{(\alpha)}$ は $\Gamma^{(\alpha)}{}^k{}_{ij} = \Gamma^g{}^k{}_{ij} - \frac{\alpha}{2} A_{ij}{}^k$ より得られる。

命題 1.6.14 (測地線方程式). (μ, σ) 座標に関する $\nabla^{(\alpha)}$ -測地線の方程式は

$$\begin{cases}
\ddot{\mu} - \frac{2(1+\alpha)}{\sigma}\dot{\mu}\dot{\sigma} = 0, \\
\ddot{\sigma} + \frac{1-\alpha}{2\sigma}\dot{\mu}^2 - \frac{1+2\alpha}{\sigma}\dot{\sigma}^2 = 0
\end{cases}$$
(1.6.70)

である。とくに $\alpha = 0$ のとき

$$\begin{cases} \ddot{\mu} - \frac{2}{\sigma}\dot{\mu}\dot{\sigma} = 0, \\ \ddot{\sigma} + \frac{1}{2\sigma}\dot{\mu}^2 - \frac{1}{\sigma}\dot{\sigma}^2 = 0 \end{cases}$$
 (1.6.71)

である。

証明 測地線の方程式「 $\ddot{x^k} = -\Gamma^k_{ij}\dot{x^i}\dot{x^j}$ 」に接続係数を代入して得られる。

命題 1.6.15. ∇^g-測地線の像は、楕円

$$\left(\frac{x - x_0}{\sqrt{2}}\right)^2 + y^2 = r^2 \qquad (x_0 \in \mathbb{R}, \ r \in \mathbb{R}_{>0})$$
 (1.6.72)

の一部または y 軸に平行な直線の一部である。

証明1) 測地線の方程式

$$\ddot{\mu} - \frac{2}{\sigma}\dot{\mu}\dot{\sigma} = 0,\tag{1.6.73}$$

$$\ddot{\sigma} + \frac{1}{2\sigma}\dot{\mu}^2 - \frac{1}{\sigma}\dot{\sigma}^2 = 0 \tag{1.6.74}$$

を変形していく。

 $\dot{\mu} = 0$ の場合は $\mu = \text{const.}$ ゆえに測地線は y 軸に平行な直線の一部である。

以下、 $\dot{\mu} \neq 0$ の場合を考える。(1.6.73) の両辺を $\dot{\mu}$ で割って

$$\frac{\ddot{\mu}}{\dot{\mu}} - 2\frac{\dot{\sigma}}{\sigma} = 0 \tag{1.6.75}$$

これより $\log \mu = 2\log \sigma + \text{const.}$ したがって

$$\dot{\mu} = k\sigma^2 \qquad (k \in \mathbb{R}) \tag{1.6.76}$$

である。一方、 ∇^g は g の Levi-Civita 接続であるから、測地線の速度ベクトルの g に関する大きさは一定、 すなわち

$$\frac{\dot{\mu}^2 + 2\dot{\sigma}^2}{\sigma^2} = r^2 \qquad (a \in \mathbb{R})$$
 (1.6.77)

である。(1.6.77) に (1.6.76) を代入して

$$\frac{k^2\sigma^4 + 2\dot{\sigma}^2}{\sigma^2} = a^2 \tag{1.6.78}$$

第 1 章 指数型分布族 1.7 α -接続

$$\dot{\sigma} = \pm \sigma \sqrt{\frac{a^2 - k^2 \sigma^2}{2}} \tag{1.6.79}$$

を得る。これと (1.6.76) より

$$\frac{d\mu}{d\sigma} = \frac{\dot{\mu}}{\dot{\sigma}} = \frac{k\sigma^2}{\pm \sigma \sqrt{\frac{a^2 - k^2 \sigma^2}{2}}}$$
(1.6.80)

$$= \mp \frac{\sqrt{2}|a|}{k} \frac{\left(\frac{k}{a}\right)^2 \sigma}{\sqrt{1 - \left(\frac{k}{a}\right)^2 \sigma^2}}$$
(1.6.81)

$$\therefore \mu = \mp \frac{\sqrt{2}|a|}{k} \sqrt{1 - \left(\frac{k}{a}\right)^2 \sigma^2} + \mu_0 \qquad (\mu_0 \in \mathbb{R})$$
 (1.6.82)

を得る。よって

$$(\mu - \mu_0)^2 = \frac{2a^2}{k^2} - 2\sigma^2 \tag{1.6.83}$$

 $r := \frac{a}{k}$ とおいて整理すれば

$$\left(\frac{\mu - \mu_0}{\sqrt{2}}\right)^2 + \sigma^2 = r^2 \tag{1.6.84}$$

が得られる。

1.7 α -接続

指数型分布族の α -接続について考える。以降、 $\mathcal P$ を可測空間 $\mathcal X$ 上の open な指数型分布族、 ∇ を $\mathcal P$ 上の自然な平坦アファイン接続、 $\mathcal S$ を $\mathcal P$ 上の Fisher 計量、 $\mathcal S$, $\mathcal S$ をそれぞれ (0,3), (1,2) 型の Amari-Chentsov テンソル、 $\nabla^{(\alpha)}$ ($\alpha \in \mathbb R$) を α -接続とする。

命題 1.7.1 (曲率の AC テンソルによる表示). $\alpha \in \mathbb{R}$ 、 $R^{(\alpha)}$ を $\nabla^{(\alpha)}$ の (1,3)-曲率テンソルとする。このとき、 $\boldsymbol{\mathcal{P}}$ の任意の ∇ -アファイン座標に関し、 $R^{(\alpha)}$ の成分は

$$R^{(\alpha)}{}_{ijk}{}^{l} = -\frac{1-\alpha^{2}}{4} \left(A_{jk}{}^{m} A_{im}{}^{l} - A_{ik}{}^{m} A_{jm}{}^{l} \right)$$
 (1.7.1)

となる。

証明 命題 1.5.13 の式

$$R^{(\alpha)}{}^{l}{}^{l} = \frac{1 - \alpha}{2} \left(\partial_{i} A_{jk}{}^{l} - \partial_{j} A_{ik}{}^{l} \right) + \left(\frac{1 - \alpha}{2} \right)^{2} \left(A_{jk}{}^{m} A_{im}{}^{l} - A_{ik}{}^{m} A_{jm}{}^{l} \right)$$
(1.7.2)

を変形する。

$$\partial_i A_{jk}^{\ l} - \partial_j A_{ik}^{\ l} = \partial_i (g^{la} S_{jka}) - \partial_j (g^{la} S_{ika}) \tag{1.7.3}$$

$$= \partial_i(g^{la})S_{ika} + g^{la}\partial_i S_{ika} - \partial_i(g^{la})S_{ika} - g^{la}\partial_i S_{ika}$$
(1.7.4)

$$= \partial_i(g^{la})S_{jka} - \partial_j(g^{la})S_{ika} \tag{1.7.5}$$

¹⁾ 証明の流れは [?, Chap.3 14.4] を参考にした。

第 1 章 指数型分布族 1.7 α-接続

である。右辺第1項について、 $0 = \partial_i \delta_m^l = \partial_i (g^{la}g_{ma}) = \partial_i (g^{la})g_{ma} + g^{lb}\partial_i (g_{mb})$ より $\partial_i (g^{la}) = -g^{ma}g^{lb}\partial_i (g_{mb})$ だから

$$\partial_i(g^{la})S_{jka} = -g^{ma}g^{lb}\partial_i(g_{mb})S_{jka} \tag{1.7.6}$$

$$=-g^{ma}g^{lb}S_{imb}S_{jka} (1.7.7)$$

$$= -A_{im}^{l} A_{ik}^{m} ag{1.7.8}$$

同様にして

$$\partial_{j}(g^{la})S_{ika} = -A_{jm}{}^{l}A_{ik}{}^{m} \tag{1.7.9}$$

を得る。 したがって $\partial_i A_{jk}^{l} - \partial_j A_{ik}^{l} = -A_{im}^{l} A_{jk}^{m} + A_{jm}^{l} A_{ik}^{m}$ だから

$$R^{(\alpha)}{}_{ijk}{}^{l} = \left(-\frac{1-\alpha}{2} + \left(\frac{1-\alpha}{2}\right)^{2}\right) \left(A_{jk}{}^{m}A_{im}{}^{l} - A_{ik}{}^{m}A_{jm}{}^{l}\right) = -\frac{1-\alpha^{2}}{4} \left(A_{jk}{}^{m}A_{im}{}^{l} - A_{ik}{}^{m}A_{jm}{}^{l}\right)$$
(1.7.10)

系 1.7.2.

- (1) $\forall \alpha \in \mathbb{R}$ に対し $R^{(\alpha)} = (1 \alpha^2)R^{(0)} = R^{(-\alpha)}$.
- (2) 次は同値:
 - (a) すべての $\alpha \in \mathbb{R}$ に対し、 $\nabla^{(\alpha)}$ は平坦である。
 - (b) ある $\alpha \neq \pm 1$ が存在し、 $\nabla^{(\alpha)}$ は平坦である。

証明 (1) 命題 1.7.1 より明らか。

- (2) まず(1)より次は同値である:
- (a)′ $\forall \alpha \in \mathbb{R}$ に対し $R^{(\alpha)} = 0$.
- (b)' $\exists \alpha \neq \pm 1$ s.t. $R^{(\alpha)} = 0$.

さらに α -接続はすべて torsion-free だから、曲率が 0 であることと平坦であることは同値である。

定理 1.7.3 (α -接続による双対構造). 任意の $\alpha \in \mathbb{R}$ に対し、3 つ組 (g, $\nabla^{(\alpha)}$, $\nabla^{(-\alpha)}$) は $\boldsymbol{\mathcal{P}}$ 上の双対構造となる。さらに、 $\alpha = \pm 1$ ならば (g, $\nabla^{(\alpha)}$, $\nabla^{(-\alpha)}$) は双対平坦である。

証明 双対構造であることは、すべての $X,Y,Z \in \mathfrak{X}(\mathcal{P})$ に対し

$$g(\nabla_X^{(\alpha)}Y, Z) + g(Y, \nabla_X^{(-\alpha)}Z) = g(\nabla_X^g Y, Z) - \frac{\alpha}{2}S(X, Y, Z) + g(Y, \nabla_X^g Z) + \frac{\alpha}{2}S(X, Z, Y)$$
(1.7.11)

$$= g(\nabla_x^g Y, Z) + g(Y, \nabla_x^g Z) \tag{1.7.12}$$

$$=X(g(Y,Z)) \tag{1.7.13}$$

より従う。 $\alpha = \pm 1$ で双対平坦となることは系 1.7.2 よりわかる。

第 1 章 指数型分布族 1.8 期待値パラメータ

1.8 期待値パラメータ

命題-定義 1.8.1 (期待値パラメータ空間). 集合

$$\mathcal{M} := \left\{ E_p[T] \in V \mid p \in \mathcal{P} \right\} \tag{1.8.1}$$

は V の開部分多様体となり、写像 $\eta: \mathcal{P} \to \mathcal{M}, p \mapsto E_p[T]$ は微分同相写像となる。

M を (V,T,μ) に関する $\mathcal P$ の期待値パラメータ空間 (mean parameter space) といい、 η を (V,T,μ) に関する $\mathcal P$ 上の期待値パラメータ座標 (mean parameter coordinates) という。

この証明には次の2つの事実を使う。

事実 1.8.2 (ψ の微分は十分統計量の期待値). 写像 $\nabla \psi : \Theta \to V^{\vee \vee} = V$ は

$$(\nabla \psi)(\theta(p)) = \eta(p) \qquad (p \in \mathcal{P}) \tag{1.8.2}$$

をみたす。したがって $M = \nabla \psi(\Theta)$ である。

事実 1.8.3. 位相ベクトル空間の凸集合の内部は凸集合である。

命題-定義 1.8.1 の証明 まず M が V の開部分多様体となることを示す。 ψ を $\operatorname{Int}\widetilde{\Theta}$ 上の関数とみなすと、事 実 1.8.3 とあわせて ψ は??の前提をみたすから、?? (1) より $\nabla \psi$: $\operatorname{Int}\widetilde{\Theta} \to V^{\vee\vee} = V$ は局所微分同相、とくに 開写像でもある。したがって $\nabla \psi(\operatorname{Int}\widetilde{\Theta})$ は V の開部分多様体となる。さらに Θ は $\operatorname{Int}\widetilde{\Theta}$ の開集合だから、 $\nabla \psi(\Theta)$ は $\nabla \psi(\operatorname{Int}\widetilde{\Theta})$ の開部分多様体となる。このことと事実 1.8.2 より、 $M = \nabla \psi(\Theta)$ は $\nabla \psi(\operatorname{Int}\widetilde{\Theta})$ の開部分多様体となる。

次に η が微分同相写像であることを示す。?? (2) より $\nabla \psi$ は $\operatorname{Int} \overset{\sim}{\Theta}$ から $\nabla \psi(\operatorname{Int} \overset{\sim}{\Theta})$ への微分同相だから、部分多様体への制限により $\nabla \psi$ は Θ から M への微分同相を与える。したがって写像 $\eta = (\nabla \psi) \circ \theta \colon \mathcal{P} \to M$ は微分同相である。

以降、 $\psi|_{\operatorname{Int}\widetilde{\Theta}}$ の Legendre 変換を M 上に制限したものを ϕ と記す。

定理 1.8.4 (自然パラメータ座標と期待値パラメータ座標の関係). 関数 ψ : $\Theta \to \mathbb{R}$ および ϕ : $M \to \mathbb{R}$ と、 \mathcal{P} 上 の自然パラメータ座標 $\theta = (\theta^1, \dots, \theta^n)$ および期待値パラメータ座標 $\eta = (\eta_1, \dots, \eta_m)$ に関し次が成り立つ:

(1)
$$\frac{\partial \psi}{\partial \theta^{i}}(\theta(p)) = \eta_{i}(p), \qquad \frac{\partial \phi}{\partial \eta_{i}}(\eta(p)) = \theta^{i}(p) \qquad (p \in \mathcal{P}). \tag{1.8.3}$$

(2) g の θ -座標に関する成分は

$$g_{ij}(p) = \frac{\partial^2 \psi}{\partial \theta^i \partial \theta^j}(\theta(p)) = \frac{\partial \eta_j}{\partial \theta^i}(p), \qquad g^{ij}(p) = \frac{\partial^2 \phi}{\partial \eta_i \partial \eta_j}(\eta(p)) = \frac{\partial \theta^i}{\partial \eta_j}(p) \qquad (p \in \mathcal{P})$$
 (1.8.4)

をみたす。

(3) δ_i^j δ_i^j

$$g\left(\frac{\partial}{\partial \theta^i}, \frac{\partial}{\partial \eta_j}\right) = \delta_i^j \tag{1.8.5}$$

第1章指数型分布族 1.8 期待値パラメータ

が成り立つ。

証明 (1) 事実 1.8.2 より $\nabla \psi \circ \theta = \eta$ であることと、?? (4) より $\nabla \phi = (\nabla \psi)^{-1}$ であることから従う。

(2) gの定義および??(5)より従う。

(3)

$$g\left(\frac{\partial}{\partial \theta^{i}}, \frac{\partial}{\partial \eta_{i}}\right) = g\left(\frac{\partial}{\partial \theta^{i}}, \frac{\partial \theta^{k}}{\partial \eta_{i}}, \frac{\partial}{\partial \theta^{k}}\right) = g_{ik}\frac{\partial \theta^{k}}{\partial \eta_{i}} = g_{ik}g^{kj} = \delta_{i}^{j}. \tag{1.8.6}$$

定理 1.8.5. 期待値パラメータ座標は \mathcal{P} 上の $\nabla^{(-1)}$ -アファイン座標である。

証明 $\partial_i = \frac{\partial}{\partial \theta^i}$, $\partial^i = \frac{\partial}{\partial \eta_i}$ と略記すれば、上の定理の (3) より

$$0 = \partial^{i} \delta_{k}^{j} = g\left(\nabla_{\partial^{i}}^{(1)} \partial_{k}, \partial^{j}\right) + g\left(\partial_{k}, \nabla_{\partial^{i}}^{(1)} \partial^{j}\right)$$

$$(1.8.7)$$

だから

$$\Gamma^{(-1)}{}_{k}^{ij} = g\left(\partial_{k}, \nabla_{\partial^{i}}^{(-1)} \partial^{j}\right) \tag{1.8.8}$$

$$= -g\left(\nabla_{\partial^i}^{(1)}\partial_k, \partial^j\right) \tag{1.8.9}$$

$$= -\frac{\partial \theta^{l}}{\partial \eta_{i}} g\left(\nabla_{\partial_{l}}^{(1)} \partial_{k}, \partial^{j}\right) \tag{1.8.10}$$

$$= -\frac{\partial \theta^l}{\partial \eta_i} \Gamma^{(1)j}_{lk} \tag{1.8.11}$$

$$= 0 \qquad (\Gamma^{(1)}{}^{j}_{lk} = 0) \tag{1.8.12}$$

となる。