FD Algos for Divisible Goods

Remember duality

Given a minimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
subject to $h_i(x) \le 0, \quad i = 1, \dots m$

$$\ell_j(x) = 0, \quad j = 1, \dots r$$

we defined the Lagrangian:

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x)$$

and Lagrange dual function:

$$g(u,v) = \min_{x \in \mathbb{R}^n} L(x, u, v)$$

Karush-Kuhn-Tucker conditions

Given general problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
subject to $h_i(x) \le 0, i = 1, \dots m$

$$\ell_j(x) = 0, j = 1, \dots r$$

The Karush-Kuhn-Tucker conditions or KKT conditions are:

•
$$0 \in \partial f(x) + \sum_{i=1}^{m} u_i \partial h_i(x) + \sum_{j=1}^{r} v_j \partial \ell_j(x)$$
 (stationarity)

- $u_i \cdot h_i(x) = 0$ for all i (complementary slackness)
- $h_i(x) \le 0, \; \ell_j(x) = 0 \; \text{for all} \; i,j$ (primal feasibility)
- $u_i \ge 0$ for all i (dual feasibility)

Recall: CEEI Characterization

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (X_1, ..., X_n)$

- Optimal bundle: For each buyer i
 - $\square p \cdot X_i = 1$
 - $\square X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_j} = \max_{k \in M} \frac{V_{ik}}{p_k}$, for all good j
- \blacksquare Market clears: For each good j,

$$\sum_{i} X_{ij} = 1.$$

$$\min - \sum_{i \in A} \log V_i(X_i)$$

$$\text{s.t.} \sum_{i \in A} X_{ij} - 1 \le 0, \forall j \in G$$

$$-X_{ij} \le 0, \forall i \in A, j \in M$$

The Lagrange dual function:

$$L(p,q) := \min_{X \in \mathbb{R}^{mn}} - \sum_{i \in A} \log V_i(X_i) + \sum_{j \in M} p_j \left(\sum_{i \in A} X_{ij} - 1 \right) + \sum_{i,j} q_{ij} (-X_{ij}),$$

$$= 0$$

where $p, q \ge 0$. Recall that $V_i(X_i) = \sum_{j \in M} p_j X_{ij}$, we have that

$$\frac{\partial L(p,q)}{\partial X_{ij}} = -\frac{V_{ij}}{V_i(X_i)} + p_j - q_{ij} = 0.$$

Since $q_{ij} \geq 0$, we have

$$\frac{V_{ij}}{V_i(X_i)} \le p_j.$$

Theorem. Solutions of EG convex program are exactly the CEE.

$$\begin{array}{c} \textit{Proof.} \Rightarrow (\textit{Using KKT}) \\ \forall j, \ p_j > 0 \Rightarrow \sum_i X_{ij} = 1 \\ \hline \\ \textit{Dual condition to } X_{ij} : \\ \hline \\ \frac{V_{ij}}{V_i(X_i)} \leq p_j \Rightarrow \frac{V_{ij}}{p_j} \leq V_i(X_i) \Rightarrow p_j > 0 \Rightarrow \textit{market clears} \\ \end{array}$$

→buy only MBB goods

$$X_{ij} > 0 \Rightarrow \frac{V_{ij}}{p_j} = V_i(X_i)$$

$$\downarrow$$

$$\sum_{i} V_i V_i - (\sum_{i} p_i V_i) V_i(V_i)$$

$$\sum_{j} V_{ij} X_{ij} \stackrel{\downarrow}{=} \left(\sum_{j} p_{j} X_{ij} \right) V_{i}(X_{i})$$

$$\Rightarrow \sum_{j} p_{j} X_{ij} = 1$$

⇒ optimal bundle

м

(Recall) Fisher's Model

- Set *A* of *n* agents. Set *G* of *m* divisible goods.
- Each agent *i* has
 - \square budget of B_i euros
 - \square valuation function $v_i: \mathbb{R}_+^m \to \mathbb{R}_+$ over bundles of goods.

Linear: for bundle $x_i = (x_{i1}, ..., x_{im}), v_i(x_i) = \sum_{j \in G} v_{ij} x_{ij}$

Supply of every good is one.

(Recall) Competitive Equilibrium

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (x_1, ..., x_n)$

- Optimal bundle: Agent i demands $x_i \in \operatorname{argmax} v_i(x)$ $x \in R_m^+: p \cdot x \leq B_i$
- Market clears: For each good j, demand = supply

Fairness and efficiency guarantees:

Pareto optimal (PO)
Weighted Envy-free
Weighted Proportional
Maximizes W. NW.

Algorithm: Set up as a "flow problem"

Max Flow (One slide overview)

Directed Graph

Theorem: Max-flow = Min-cut s-t

s-t cut: $S \subset V$, $s \in S$, $t \notin S$

cut-value: $C(S) = \sum_{\substack{(u,v) \in E: \\ u \in S, v \notin S}} c_{(u,v)}$

Min s-t cut: $\min_{S \subset V: s \in S, t \notin S} C(S)$

Given $s, t \in V$. Capacity c_e for each edge $e \in E$. Find maximum flow from s to t, $(f_e)_{e \in E}$ s.t.

Capacity constraint

$$f_e \le c_e$$
, $\forall e \in E$

• Flow conservation: at every vertex $u \neq s$, t total in-flow = total out-flow

Can be solved in strongly polynomial-time

CE Characterization

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (x_1, ..., x_n)$

■ Optimal bundle: Agent *i* demands $x_i \in \underset{x: p \cdot x \leq B_i}{\operatorname{argmax}} v_i(x)$

$$\Box p \cdot x_i = B_i$$

$$\square x_{ij} > 0 \Rightarrow \frac{v_{ij}}{p_j} = \max_{k \in G} \frac{v_{ik}}{p_k}$$
, for all good j

■ Market clears: For each good j, demand = supply

$$\sum_{i} x_{ij} = 1.$$

Competitive Equilibrium → Flow

Pirces
$$p = (p_1, ..., p_m)$$
 and allocation $F = (f_1, ..., f_n)$

$$f_{ij} = x_{ij}p_j$$
 (money spent)

- Optimal bundle: Agent *i* demands $x_i \in argmax_{x: p \cdot x \leq B_i} v_i(x)$
 - $\Box \sum_{j \in G} f_{ij} = B_i$

$$\Box f_{ij} > 0 \Rightarrow \frac{v_{ij}}{p_j} = \underbrace{\max_{k \in G} \frac{v_{ik}}{p_k}}_{\text{for all good } j}$$

→ Maximum bang-per-buck (*MBB*)

■ Market clears: For each good j, demand = supply

$$\sum_{i \in N} f_{ij} = p_j$$

Competitive Equilibrium → Flow

CE:
$$(p, F)$$
 s.t.

$$\sum_{i \in N} f_{ij} = p_j \sum_{j \in M} f_{ij} = B_i$$

$$f_{ij} > 0 \text{ on MBB edges}$$

Max-flow = min-cut
=
$$\sum_{j \in G} p_j = \sum_{i \in A} B_i$$

Issue: Eq. prices and hence also MBB edges not known!

Fix [DPSV'08]: Start with low prices, keep increasing.

Maintain:

- 1. Flow only on MBB edges
- 2. $Min-cut = \{s\}$ (goods are fully sold)

Invariants

- Flow only on MBB edges
- $Min-cut = \{s\}$ (goods are sold)

Init: $\forall j \in G$, $p_j < \min_i \frac{B_i}{m}$, and at least one MBB edge to j

Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in G$, $p_j < \min_i \frac{B_i}{m}$, and at least one MBB edge to j

Increase *p*:

$\alpha = 1$ MBB edges ∞ cap.

 $= \underset{j \in G}{\operatorname{argmax}}$

Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase $p: \uparrow \alpha$

Observation: If α is increased further, then G_F can not be fully sold. And $\{s\}$ will cease to be a min-cut.

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Event 1: New cross-cutting min-cut

Agents in A_F exhaust all their money.

 G_F : Goods that have MBB edges only from A_F .

A tight-set.

Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Event 1: A tight subset G_F Call it *frozen:* (G_F, A_F) .

Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M$, $p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Event 1: A tight subset G_F

Call it *frozen*: (G_F, A_F) .

Freeze prices in G_F .

Increase prices in G_D .

Observation: If α is increased further, then **S** can not be fully sold. And $\{s\}$ will cease to be a min-cut.

Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$

N(S): Neighbors of SMove (S, N(S)) from dynamic to frozen.

Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$ Move (S, N(S)) to frozen part *Freeze prices in* G_F , and increase in G_D .

Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$ Move (S, N(S)) from active to frozen Freeze prices in G_F , and increase in G_D .

OR

Event 2: New MBB edge

Must be between $i \in A_D \& j \in G_F$. Recompute active and frozen.

Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M$, $p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$ Move (S, N(S)) from active to frozen Freeze prices in G_F , and increase in G_D .

OR

Event 2: New MBB edge

Has to be from $i \in A_D$ to $j \in G_F$. Recompute active and frozen: Move the component containing good j from frozen to active.

Observations: Prices only increase.

Each increase can be lower bounded.

Both the events can be computed efficiently.

Converges to CE in finite time.

Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$ Move (S, N(S)) from active to frozen. Freeze prices in G_F , and increase in G_D .

OR

Event 2: New MBB edge Must be from $i \in A_D$ to $j \in G_F$. Recompute active and frozen.

Stop: all goods are frozen.

Example

Input

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init.

Event 1

Event 2

Formal Description

- Init: $p \leftarrow$ "low-values" s.t. $\{s\}$ is a min-cut. $(G_D, A_D) \leftarrow (G, A), (G_F, A_F) \leftarrow (\emptyset, \emptyset)$
- While($G_D \neq \emptyset$)
 - \square $\alpha \leftarrow 1$, $p_j \leftarrow \alpha p_j \ \forall j \in G_D$. Increase α until

Event 1: Set $S \subseteq G_D$ becomes tight.

 $N(S) \leftarrow agents \text{ w/ MBB edges to } S \text{ (neighbors)}.$

Move (S, N(S)) from (G_D, A_D) to (G_F, A_F) .

Event 2: New MBB edge appears between $i \in A_D$ and $j \in G_F$ Add $(j \to i)$ edge to graph.

Move component of j from (G_F, A_F) to (G_D, A_D) .

• Output (p, F)

Event 2: New MBB edge appears between $i \in A_D$ and $j \in G_F$

Exercise ©

Event 1: Set $S^* \subseteq G_D$ becomes tight.

$$\alpha^* = \frac{\sum_{i \in N(S^*)} B_i}{\sum_{j \in S^*} p_j}$$

$$= \min_{S \subseteq G_D} \frac{\sum_{i \in N(S)} B_i}{\sum_{j \in S} p_j} > \alpha(S)$$

Find $S^* = \underset{S \subseteq G_D}{\operatorname{argmin}} \alpha(S)$

Event 1: Set $S^* \subseteq G_D$ becomes tight.

$$\alpha^* = \frac{\sum_{i \in N(S^*)} B_i}{\sum_{j \in S^*} p_j}$$

$$= \min_{S \subseteq G_D} \frac{\sum_{i \in N(S)} B_i}{\sum_{j \in S} p_j} > \alpha(S)$$

Find
$$S^* = \underset{S \subseteq G_D}{\operatorname{argmin}} \alpha(S)$$

Event 1: Set $S^* \subseteq G_D$ becomes tight.

$$\alpha(S) = \frac{\sum_{i \in N(S)} B_i}{\sum_{j \in S} p_j}$$
Find $S^* = \underset{S \subseteq G_D}{\operatorname{argmin}} \alpha(S)$

Claim. Can be done in O(n) min-cut computations

Efficient Flow-based Algorithms

- Polynomial running-time
 - □ Compute *balanced-flow*: minimizing l_2 norm of agents' surplus [DPSV'08]
- Strongly polynomial: Flow + scaling [Orlin'10]

Exchange model (barter):

- Polynomial time [DM'16, DGM'17, CM'18]
- Strongly polynomial for exchange
 - ☐ Flow + scaling + approximate LP [GV'19]

Hylland-Zeckhauser

(an extension)

Motivation: Matching

Goal: Design a method to match goods to agents so that

- The outcome is Pareto-optimal and envy-free
- Strategy-proof: Agents have no incentive to lie about their $v_{ij}s$.

Hylland-Zeckhauzer'79: Compute CEEI where every agent wants total amount of at most one unit.

But the outcome is a fractional allocation!

Think of it as probabilities/time-shares/...[]

HZ Equilibrium

Given:

- Agents $A = \{1, ..., n\}$, indivisible goods $G = \{1, ..., n\}$
- v_{ij} : value of agent i for good j.
 - \square If *i* gets *j* w/ prob. x_{ij} , then the expected value is: $\sum_{j \in G} v_{ij} x_{ij}$

Want: prices $p = (p_1, ..., p_n)$, allocation $X = (x_1, ..., x_n)$

- Each good *j* is allocated: $\sum_{i \in A} x_{ij} = 1$
- Each agent *i* gets an optimal bundle subject to
 - □ \$1 budget, and unit allocation.

$$x_i \in \underset{x \in R_+^m}{\operatorname{argmax}} \left\{ \sum_j v_{ij} x_j \ \middle| \ \sum_j x_j = 1, \sum_j p_j x_j \le 1 \right\}$$

HZ Equilibrium

Hyllander-Zeckhauzer'79

Exists. Pareto optimal, Strategy proof in large markets.

Vazirani-Yannakakis'20

- Irrational equilibrium prices ⇒ not in PPAD
- In FIXP
- Algorithm for bi-valued preferences:

$$v_{ij} \in \{a_i, b_i\}$$
 where $a_i, b_i \ge 0$

$$(v_{ij}\in\{0,1\})$$

At equilibrium, an agent's utility is at most 1.

Perfect matching \Rightarrow An equilibrium is,

- Allocation on the matching edges
- Zero prices

 $(v_{ij} \in \{0,1\})$

Want:
$$(p, X)$$

Each good *j* is sold (1 unit) Each agent *i* gets

$$x_i \in \underset{x:\sum_j x_j=1,\sum_j p_j x_j \leq 1}{\operatorname{argmax}} \sum_{j \in G} v_{ij} x_j$$

No perfect matching

- Min vertex cover: $(G_1 \cup A_2)$
 - \square No $A_1 G_2$ edge

$$(v_{ij} \in \{0,1\})$$

Want: (p, X)

Each good *j* is sold (1 unit) Each agent *i* gets

$$x_i \in \underset{x:\sum_j x_j=1,\sum_j p_j x_j \leq 1}{\operatorname{argmax}} \sum_{j \in G} v_{ij} x_j$$

No perfect matching

- Min vertex cover: $(G_1 \cup A_2)$
 - \square No $A_1 G_2$ edge
 - \square For each $S \subseteq A_2$, $|N(S) \cap G_2| \ge |S|$
 - Else get smaller VC by replacing S with $N(S) \cap G_2$

Max matching in (G_2, A_2) matches all of A_2 .

Subgraph (G_2, A_2) satisfies hall's condition for A_2 .

 $(v_{ij} \in \{0,1\})$

Want: (p, X)

Each good *j* is sold (1 unit) Each agent *i* gets

$$x_i \in \underset{x:\sum_j x_j=1,\sum_j p_j x_j \leq 1}{\operatorname{argmax}} \sum_{j \in G} v_{ij} x_j$$

No perfect matching

- Min vertex cover: $(G_1 \cup A_2)$
 - \square No $A_1 G_2$ edge
 - $\exists \text{ For each } S \subseteq A_2, |N(S) \cap G_2| \ge |S|$
 - Max matching in (G_2, A_2) matches all of A_2 .

VY'20 Algorithm $(v_{ij} \in \{0,1\})$

Running-time:

Strongly polynomial

Want: (p, X)

Each good *j* is sold (1 unit) Each agent *i* gets

$$x_i \in \underset{x:\sum_j x_j=1,\sum_j p_j x_j \leq 1}{\operatorname{argmax}} \sum_{j \in G} v_{ij} x_j$$

No perfect matching

- Min vertex cover: $(G_1 \cup A_2)$
- **Eq. Prices:** CEEI prices for G_1 , and 0 prices for G_2
- Eq. Allocation
 - \Box $i \in A_2$ gets her matched good

□ $i \in A_1$ gets CEEI allocation + unmatched goods from G_2

bi-values: $v_{ij} \in \{a_i, b_i\}$, $0 \le a_i < b_i$

Reduces to $v_{ij} \in \{0,1\}$

Exercise.

HZ Equilibrium

Computation for the general case.

Is it hard? OR is it (approximation) polynomial-time?

PPAD-hard, when #values=4 and eps=1/n^c "Computational Hardness of the Hylland-Zeckhauser Scheme" SODA'22

- Efficient algorithm when #goods or #agents is a constant [DK'08, AKT'17]
 - ☐ Cell-decomposition and enumeration

New open problems:

- 1. #values=3?
- 2. constant approximation?

What about chores?

■ CEEI exists but may form a non-convex set [BMSY'17]

- Efficient Computation?
 - □ Open: Fisher as well as for CEEI
 - ☐ For constantly many agents (or chores) [BS'19, GM'20]
 - \square Fast path-following algorithm [CGMM.'20]
- Hardness result for an exchange model [CGMM.'20]

Above may be outdated, one can do the literature search and use the newest result as your project topic!

References.

[AKT17] Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." *Proceedings of the 2017 ACM Conference on Economics and Computation*. 2017.

[BMSY17] Anna Bogomolnaia, Herv´e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Competitive division of a mixed manna. Econometrica, 85(6):1847–1871, 2017.

[BMSY19] Anna Bogomolnaia, Herv'e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Dividing bads under additive utilities. Social Choice and Welfare, 52(3):395–417, 2019.

[BS19] Brânzei, Simina, and Fedor Sandomirskiy. "Algorithms for Competitive Division of Chores." *arXiv preprint arXiv:1907.01766* (2019).

[GM20] Garg, Jugal, and Peter McGlaughlin. "Computing Competitive Equilibria with Mixed Manna." *Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems*. 2020.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Competitive Allocation of a Mixed Manna. *arXiv* preprint arXiv:2008.02753.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Dividing Bads is Harder than Dividing Goods: On the Complexity of Fair and Efficient Division of Chores. *arXiv preprint arXiv:2008.00285*.

[DK08] Devanur, Nikhil R., and Ravi Kannan. "Market equilibria in polynomial time for fixed number of goods or agents." 2008 49th Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2008.

[DPSV08] Devanur, Nikhil R., et al. "Market equilibrium via a primal--dual algorithm for a convex program." *Journal of the ACM (JACM)* 55.5 (2008): 1-18.

[HZ79] Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to positions. Journal of Political economy, 87(2):293–314, 1979.

[VY20] Vazirani, Vijay V., and Mihalis Yannakakis. "Computational Complexity of the Hylland-Zeckhauser Scheme for One-Sided Matching Markets." *arXiv preprint arXiv:2004.01348* (2020).

THANK YOU