Chapter 1

Sang Tran

September 12, 2024

RUDIN Chapter 1 problems 1, 4, 5, 7(abc), 6, 7(defg), 8, 9, 10, 13, 14, 15, 17.

Suppose r + x is rational then

$$x = x + (r - r) = (x + r) - r \in \mathbb{Q}$$

since \mathbb{Q} is closed under addition, which contradicts x is irrational.

Suppose rx is rational, since r is rational and $r \neq 0$ we have

$$\frac{1}{r} \in \mathbb{Q}$$
 and $x = x \frac{r}{r} = (rx) \frac{1}{r} \in \mathbb{Q}$

since \mathbb{Q} is closed under multiplication, which contradicts x is irrational.

4. Since E is non-empty subset of an ordered set S, take $x \in E$ and thus by our assumption, we have $\alpha, \beta \in S$ where $\alpha \leq x$ and $x \leq \beta$. By transitivity property of an ordered set, we conclude $\alpha \leq \beta$.

5. $A \neq \emptyset, A \subseteq \mathbb{R}$, and bounded below. Hence, $\beta = \inf A$ exists. Since $A \neq \emptyset, -A \neq \emptyset$. Suffice to prove $\sup(-A) = -\beta$.

We know that $\forall x \in A, x \geq \beta$, or equivalently $\forall -x \in -A, -x \leq -\beta$, thus $-\beta$ is an upper bound of -A.

On the other hand, since $\beta = \inf A$, thus $\beta + e$ for any e > 0 is not a lower bound of A, or in other words, $\exists x' \in A$ such that $x' < \beta + e$, but this means $\exists -x' \in -A$ such that $-x' > -\beta - e$ and $-\beta - e < -\beta$. Thus, $-\beta - e$ for any e > 0 is not an upper bound of -A.

7(abc). Fix b > 1 and y > 0,

(a)

Base case for n = 1 is true trivially. Suppose true for n, want to show

$$b^{n+1} - 1 \ge (n+1)(b-1)$$

We have

$$b^{n+1} - 1 = b^{n+1} - b + b - 1 = b(b^n - 1) + b - 1 \ge nb(b-1) + b - 1$$

But since b > 1, so

$$b^{n+1} - 1 \ge n(b-1) + b - 1 = (n+1)(b-1)$$

By induction, we're done.

(b) Substitute b with $b^{\frac{1}{n}} > 1$ to (a) we have (b).

(c) Since t > 1, t - 1 > 0. Then $n(t - 1) > b - 1 \ge n(b^{\frac{1}{n}} - 1)$, and thus, $t > b^{\frac{1}{n}}$.

6. For (c) change the definition of B(x) to require t < x (instead of $t \le x$).

Fix b > 1.

(a) Let k = mq = np.

We have $((b^m)^{\frac{1}{n}})^{nq} = (b^m)^q = b^{mq}$ and $((b^p)^{\frac{1}{q}})^{nq} = (b^p)^n = b^{np}$. By theorem 1.21, there exists only one y > 0 such that $y^{nq} = b^k$. Hence, $(b^m)^{\frac{1}{n}} = (b^p)^{\frac{1}{q}}$. Thus $b^r = (b^m)^{\frac{1}{n}}$ is well-defined, since any two representations of r yield the same value.

Let $r = \frac{m}{n}$, $s = \frac{p}{q}$ where $n, q \neq 0$. Then we have

$$b^{r+s} = b^{\frac{mq+np}{nq}} = (b^{mq+np})^{\frac{1}{nq}} = (b^{mq}b^{np})^{\frac{1}{nq}}$$

where the last equality comes from the rules for integer exponents. By the corrolary of theorem 1.21, we have

$$b^{r+s} = (b^{mq})^{\frac{1}{nq}} (b^{np})^{\frac{1}{nq}} = b^{\frac{m}{n}} b^{\frac{p}{q}} = b^r b^s$$

where the second to last equality is from (a).

(c) Define $B(x) = \{b^t | t \in \mathbb{Q}, x \in \mathbb{R}, t < x\}$. Since t < r, we have r - t > 0. Let $r - t = \frac{m}{r}$, m, n > 0.

Claim: if b > 1, then $b^{\frac{1}{n}} > 1$ for $n \in \mathbb{N}$.

$$0 < b - 1 = (b^{\frac{1}{n}})^n - 1^n = (b^{\frac{1}{n}} - 1)((b^{\frac{1}{n}})^{n-1} + (b^{\frac{1}{n}})^{n-2} + \dots + 1)$$

then both terms must have the same sign, and the sign must be positive since if it is negative then

$$(b^{\frac{1}{n}})^{n-1} + (b^{\frac{1}{n}})^{n-2} + \dots + 1 < 0$$

but each of these terms $(b^{\frac{1}{n}})^{n-i}$, for $1 \le i \le n$, is an integer power of a positive number (by theorem 1.21), which is positive. Hence $b^{\frac{1}{n}} > 1$.

Thus, $b^{r-t} = b^{\frac{m}{n}} = (b^m)^{\frac{1}{n}} > 1$. By theorem 1.21, we have $b^t > 0$,

$$b^{r-t} > 1 \Rightarrow b^t b^{r-t} > b^t \Rightarrow b^r > b^t$$
.

Thus, b^r is an upper bound to B(r).

Suffice to show next that if $y \in \mathbb{R}$ and $y < b^r$ or $y^{-1}b^r > 1$, then y is not an upper bound to B(r).

Since $b^r > 0$, y > 0. Apply 7(c), with $t = y^{-1}b^r > 1$, and $n > \frac{b-1}{y^{-1}b^r - 1}$, then

$$b^{\frac{1}{n}} < y^{-1}b^r \Leftrightarrow y < b^{r-\frac{1}{n}} < b^r$$

where the last inequality follows from that fact that $b^{\frac{1}{n}} > 1$. So $\forall y < b^r$, for sufficiently large n, by the Archimedian property, there exists $b^t \in B(r)$ such that $y < b^t < b^r$. Therefore,

$$b^r = \sup B(r)$$
.

Hence it makes sense to define $b^x = \sup B(x)$, $\forall x \in \mathbb{R}$ because by the above argument the equation holds $\forall x \in \mathbb{Q}$.

(d)

For any $r \in \mathbb{Q}$ such that r < x + y, we can write as r = s + t where $s, t \in \mathbb{Q}$ and s < x and t < y. Since take any s such that r - y < s < x (\mathbb{Q} is dense in \mathbb{R}). Then we can take t = r - s, since $r - y < s < x \Rightarrow -x < -s < y - r \Rightarrow r - x < r - s < y$. And conversely, for any $s, t \in \mathbb{Q}$, such that s < x, and t < y, the sum gives a rational t = s + t < x + y.

Thus by definition, we can rewrite $B(x+y) = \{b^{s+r} | s, r \in \mathbb{Q} \land s < x, r < y\}$. Hence $b^s b^r = b^{s+r} \le b^{x+y} = \sup B(x+y)$.

So $b^s \leq \frac{b^{x+y}}{b^r}$ for fixed r < y. But since b^x is $\sup\{b^s | s \in \mathbb{Q}, \ s < x\}$. Then $b^x \leq \frac{b^{x+y}}{b^r} \Leftrightarrow b^r \leq \frac{b^{x+y}}{b^x}$. But since b^y is $\sup\{b^r | r \in \mathbb{Q}, \ r < y\}$, then $b^y \leq \frac{b^{x+y}}{b^x}$. Hence, $b^x b^y \leq b^{x+y}$.

For any $z \in B(x+y)$, we have $z = b^{s+r} = b^s b^r \le b^x b^r \le b^x b^y$ since $b^x = \sup\{b^s | s \in \mathbb{Q}, \ s < x\}$ and $b^y = \sup\{b^r | r \in \mathbb{Q}, \ r < y\}$. So $b^{x+y} \le b^x b^y$. Thus, $b^{x+y} = b^x b^y$.

7(defg).

(d)

If w is such that $b^w < y$. Since $b^{-w} > 0$, then $yb^{-w} > 1$. Let $t = yb^{-w}$. By the Archimedian property, $\exists n \in \mathbb{N}$ such that $n > \frac{b-1}{t-1}$, thus we can apply part (c), and since $b^{-w} > 0$ we have

$$b^{\frac{1}{n}} < ub^{-w} \Leftrightarrow b^{w+\frac{1}{n}} = b^w b^{\frac{1}{n}} < u.$$

(e

If w is such that $b^w > y$. Since y > 0, then $y^{-1}b^w > 1$. Let $t = y^{-1}b^w$. By the Archimedian property, $\exists n \in \mathbb{N}$ such that $n > \frac{b-1}{t-1}$, thus we can apply part (c), and since $b^{-\frac{1}{n}}$, y > 0 we have

$$b^{\frac{1}{n}} < y^{-1}b^w \Leftrightarrow b^{w-\frac{1}{n}} = b^w b^{-\frac{1}{n}} > y.$$

(f)

Let $A = \{w | b^w < y\}$. If $x = \sup A$, by the trichotomy law, either $b^x < y$, $b^x > y$, or $b^x = y$.

If $b^x < y$, then by (d), we can have for sufficiently large n that $b^{x+\frac{1}{n}} < y$, which implies $x + \frac{1}{n} \in A$. But $x + \frac{1}{n} > x = \sup A$, a contradiction.

If $b^x > y$, then by (e), we can have for sufficiently large n that $b^{x-\frac{1}{n}} > y$, which implies $x - \frac{1}{n} \notin A$. If we can show $b^w < y < b^{x-\frac{1}{n}} \Rightarrow w < x - \frac{1}{n} \ \forall w \in A$, we will thus reach a contradiction since $x - \frac{1}{n} < x = \sup A$ is then an upper bound of A.

And hence, $b^x = y$.

Claim: if b > 1 and $\alpha, \beta \in \mathbb{R}$, then $b^{\alpha} < b^{\beta} \Rightarrow \alpha < \beta$.

 $b^{\alpha} < b^{\beta} \Leftrightarrow b^{\alpha-\beta} < 1$ since $b^{-\beta} > 0$. If $\alpha - \beta = 0$, then $b^{\alpha-\beta} = 1$ is not greater than 1. If $\alpha - \beta > 0$, by the following claim, then $b^{\alpha-\beta} > 1$, contradiction. Thus $\alpha - \beta < 0 \Rightarrow \alpha < \beta$.

Claim: if b > 1 and $0 < x \in \mathbb{R}$, $b^x > 1$.

Since \mathbb{Q} is dense in \mathbb{R} , $\exists 0 < q < x$. By the proven claim in (c), $b^q > 1$. And by definition of B(x), we have $b^x \geq b^q \ \forall q \in \mathbb{Q} \ q < x$. Thus, $b^x > 1$.

(g)

Suppose $\exists x_1, x_2 \in \mathbb{R}$ such that $b^{x_1} = b^{x_2} = y$.

If $x_1 < x_2$, then $x_2 - x_1 > 0$. By the previous proven claim in (f) and since $b^{x_1} > 0$, we have

$$b^{x_2-x_1} > 1 \Rightarrow b^{x_2} > b^{x_1}$$

a contradiction.

Similarly, if $x_1 > x_2$, then $x_1 - x_2 > 0$. By the previous proven claim in (f) and since $b^{x_2} > 0$, we have

$$b^{x_1-x_2} > 1 \Rightarrow b^{x_1} > b^{x_2}$$
,

a contradiction.

8

Suppose \mathbb{C} is an ordered field by definition 1.17, we have then by proposition 1.18, if $x \neq 0$ then $x^2 > 0$. Take $i \in \mathbb{C}$, then it follows that $-1 = i^2 > 0$ and also $1 = 1^2 > 0$. But then by (i) of definition 1.17,

$$-1+1 > 0+1 \Rightarrow 0 > 1$$
,

contradiction.

9.

Let z = a + bi, w = c + di, and t = e + fi. With the given ordering, the Trichotomy law holds since $a \neq b \lor c \neq d$ determines either z < w or z > w, and therefore $\neg(a \neq b \lor c \neq d) \Leftrightarrow a = b \land c = d$ determines z = w. Thus it suffices to show the transitivity law holds.

If z < w and w < t, want to show z < t.

Case 1: z < w such that a < c.

- if w < t such that c < e, then by transitivity of the reals a < e, which means z < t.
- if w < t such that c = e but d < f, then a < e, which means z < t.

Case 2: z < w such that a = c but b < d.

- if w < t such that c < e, then a < e, which means z < t.
- if w < t such that c = e but d < f, then by transitivity of the reals b < f, which means z < t.

This ordered set does not have the least upper bound property. Counter example: take non-empty set $A = \{1 + bi | b \in \mathbb{R}\}$. This set bounded above by 2 + 0i, but $\nexists sup A$ since $b \in \mathbb{R}$ is unbounded.

10.

$$\begin{split} z^2 &= (a+bi)^2 \\ &= a^2 - b^2 + 2abi \\ &= \frac{|w| + u}{2} - \frac{|w| - u}{2} + [(|w| - u)(|w| + u)]^{\frac{1}{2}}i \\ &= u + (|w|^2 - u^2)^{\frac{1}{2}}i \\ &= u + (u^2 + v^2 - u^2)^{\frac{1}{2}}i \\ &= u + |v|i. \end{split}$$

And thus, similarly $\overline{z}^2 = u - |v|i$. Therefore,

- if v > 0, then $z^2 = w$.
- if v < 0, then $\overline{z}^2 = w$.
- if v = 0, then $z = \overline{z} = w$.

However, if w = 0, or u = v = 0, then a = b = 0, or $z = \overline{z} = 0$. This implies 0 is the unique square root of w. Thus, if $w \neq 0$, then by the above reasoning, we have z or \overline{z} is the square root of w, i.e. $z^2 = w$ or $\overline{z}^2 = w$. Also by proposition 1.16 (d) of a field, we know then if z is the square root of w, -z is also the square root of w, since $(-z)^2 = (-z)(-z) = zz = z^2 = w$ and similarly for \overline{z} .

13.

By applying theorem 1.33, we have

$$\begin{aligned} ||x| - |y||^2 &= |x|^2 + |y|^2 - 2|x||y| \\ &= |x|^2 + |y|^2 - 2|x||\overline{y}| \\ &= |x|^2 + |y|^2 - 2|x\overline{y}| \\ &\le |x|^2 + |y|^2 - 2|Re(x\overline{y})| \\ &\le |x|^2 + |y|^2 - 2Re(x\overline{y}) \\ &= |x - y|^2. \end{aligned}$$

From the uniqueness assertion of theorem 1.21, taking the square root on both sides of the above inequality yields the desired result.

14.

$$|1+z|^{2} + |1-z|^{2} = (1+z)(1+\overline{z}) + (1-z)(1-\overline{z})$$
$$= 1+z\overline{z}+1+z\overline{z}$$
$$= 2+2(z\overline{z}) = 4.$$

15.

In the proof, the equality holds when either B=0 or $Ba_j-Cb_j=0$. If $B\neq 0$, then B>0, and $Ba_j=Cb_j$ or $a_j=\frac{C}{B}b_j$ for $1\leq j\leq n$, the vector with entries $a_j's$ and the vector with entries $b_j's$ are not linearly independent.

17.

$$|x+y|^{2} + |x-y|^{2} = (x+y) \cdot (x+y) + (x-y) \cdot (x-y)$$
$$= |x|^{2} + 2xy + |y|^{2} + |x|^{2} - 2xy + |y|^{2}$$
$$= 2|x|^{2} + 2|y|^{2}.$$

Geometrically, this means the sum of the squared norms of the diagonals of a parallelogram is the sum of all the squared norms of the sides.