Kansrekenen

Sandra Van Aert

6 oktober 2011

Kansrekening of kanstheorie

- processen of experimenten waarvan de uitkomst onzeker is
- deterministisch proces: zuiver water kookt bij 760 mm luchtdruk en 100 °C
- meeste processen zijn stochastisch of probabilistisch
 - opgooien van dobbelsteen
 - percentage defecte producten op een productielijn gedurende een bepaalde periode
- kansrekening doet uitspraken over de waarschijnlijkheid van bepaalde uitkomsten
- kans = uitdrukking van (on)waarschijnlijkheid

Verschil kansrekenen - statistiek

- kansrekenen bestudeert rechtstreeks populaties en processen
 Voorbeeld: kans berekenen om minstens 20 keer een 6 te gooien wanneer een eerlijke dobbelsteen 100 keer wordt opgegooid
- statistiek bestudeert populaties en processen via steekproefgegevens
 Voorbeeld: eerlijkheid dobbelsteen nagaan op basis van gegevens na een groot aantal keer dobbelsteen op te gooien

Kansexperiment *E*

- uitkomstenruimte Ω = verzameling van alle mogelijke uitkomsten
- ► E_1 : opgooien muntstuk $\rightarrow \Omega_1 = \{\text{kop, munt}\}$
- ► E_2 : opgooien dobbelsteen $\rightarrow \Omega_2 = \{1, 2, 3, 4, 5, 6\}$
- ► E_3 : aantal keer dat dobbelsteen opgegooid moet worden vooraleer een 6 bekomen wordt $\rightarrow \Omega_3 = \{1, 2, 3, ...\}$
- ► E_4 : bedieningstijd van een klant aan bankloket $\rightarrow \Omega_4 = \{t: t > 0\}$
- ► E_2 : opgooien dobbelsteen $\rightarrow \Omega_5 = \{\text{even, oneven}\}$

Gebeurtenis G

- ► gebeurtenis *G* = een verzameling van mogelijke uitkomsten
- E_1 : opgooien muntstuk $\rightarrow G_1 = \{\text{kop}\}\$
- ► E_2 : opgooien dobbelsteen $\rightarrow G_2 = \{2,4,6\}$
- ► E_3 : aantal keer dat dobbelsteen opgegooid moet worden vooraleer een 6 bekomen wordt $\rightarrow G_3 = \{1, 2, 3\}$
- ► E_4 : bedieningstijd van een klant aan bankloket → $G_4 = \{t: 2 \text{ minuten} \le t \le 5 \text{ minuten}\}$

Enkele begrippen

- elementaire gebeurtenis: bevat slechts één uitkomst
- een gebeurtenis G doet zich voor wanneer de uitkomst van het kansexperiment een element is van G
- ▶ G_1 en G_2 doen zich samen voor als de uitkomst tot zowel G_1 als G_2 behoort, m.a.w. tot $G_1 \cap G_2$
- mekaar uitsluitende gebeurtenissen kunnen zich niet samen voordoen, d.i. als doorsnede ledig

Enkele begrippen

- ▶ gebeurtenis G_1 of G_2 doet zich voor als de uitkomst tot ofwel G_1 ofwel tot G_2 behoort, m.a.w. tot $G_1 \cup G_2$
- ► het complement *G*^c van een gebeurtenis *G* is de verzameling van alle mogelijke uitkomsten die niet in *G* zitten

Verzamelingenleer

- unie of vereniging $G = G_1 \cup G_2 \cup \cdots \cup G_k = \bigcup_{i=1}^k G_i$
 - exhaustief als unie = Ω
 - ene gebeurtenis doet zich voor of de andere

▶ doorsnede
$$G = G_1 \cap G_2 \cap \cdots \cap G_k = \bigcap_{i=1}^k G_i$$

- disjuncte, mekaar uitsluitende gebeurtenissen als $G_1 \cap G_2 = \emptyset$
- gebeurtenissen doen zich samen voor: en
- verschil $G = G_1 \setminus G_2$
 - ▶ deelverzameling: $G \subseteq G_1$

Verzamelingenleer

- complement $G^c = \Omega \setminus G$
 - $G \cup G^c = \Omega$
 - $G \cap G^c = \emptyset$

- ▶ partitie $G_1, G_2, ..., G_k \subset \Omega$
 - deelverzamelingen zijn niet leeg: $G_i \neq \emptyset$, $\forall i$
 - ► hun unie is Ω : $G_1 \cup G_2 \cup \cdots \cup G_k = \Omega$
 - ► alle deelverzamelingen zijn disjunct: $G_i \cap G_i = \emptyset$, $\forall i \neq j$

Partities: voorbeelden

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

1.
$$G_1 = \{1, 3, 5\}$$
 en $G_2 = \{2, 4, 6\}$

2.
$$G_1 = \{1\}, G_2 = \{3\} \text{ en } G_3 = \{2, 4, 5, 6\}$$

3.
$$G_1 = \{1\}, G_2 = \{2\}, \dots, G_6 = \{6\}$$

Definitie van kans

- kans drukt waarschijnlijkheid of onwaarschijnlijkheid van een gebeurtenis G uit
- ► functie *P*(*G*) die met *G* een reëel getal associeert
- 3 definities
 - empirische of frequentiedefinitie
 - klassieke definitie van Laplace
 - axiomatische definitie

Empirische of frequentiedefinitie

- herhaal een experiment een groot aantal keer(n)
- ► noteer de frequentie dat gebeurtenis G zich voordoet: $f_n(G)$

$$P(G) = \lim_{n \to \infty} \frac{f_n(G)}{n}$$

Klassieke definitie van Laplace

- veronderstelt dat de waarschijnlijkheid van alle elementaire gebeurtenissen gekend is
- gemakshalve: alle elementaire gebeurtenissen even waarschijnlijk

$$P(G) = \frac{\text{aantal elementen in } G}{\text{aantal elementen in } \Omega}$$

$$P(\text{even}) = \frac{\text{aantal even uitkomsten}}{\text{aantal elementen in }\Omega} = \frac{3}{6} = \frac{1}{2}$$

Axiomatische definitie

- ▶ reële functie *P*()
- ▶ axioma 1: $P(G) \ge 0$
- ▶ axioma 2: $P(\Omega) = 1$
- ▶ axioma 3: indien $G_1, G_2,...$ mekaar uitsluitende gebeurtenissen zijn, dan geldt dat

$$P(G_1 \cup G_2 \cup ...) = P(G_1) + P(G_2) + \cdots$$

→ rekenregels

Rekenregels

- $P(\emptyset) = 0$
- ► indien $G_1 \subseteq G_2$, dan is $P(G_2 \setminus G_1) = P(G_2) P(G_1)$ en $P(G_1) \le P(G_2)$
- ▶ $0 \le P(G) \le 1$
- $P(G) + P(G^c) = 1 \text{ zodat } P(G^c) = 1 P(G)$
- $P(G_1 \cup G_2) = P(G_1) + P(G_2) P(G_1 \cap G_2)$

(optelregel)

►
$$P(G_1 \cup G_2 \cup G_3) = P(G_1) + P(G_2) + P(G_3)$$

- $P(G_1 \cap G_2) - P(G_1 \cap G_3) - P(G_2 \cap G_3)$
+ $P(G_1 \cap G_2 \cap G_3)$

(veralgemeende optelregel)

Illustratie van kansregels

lukraak trekken van een brief verstuurd met De Post

- priorzegel of niet
- aantal dagen onderweg

	1	2	3	>3
Prior	0.400	0.060	0.035	0.005
N-Prior	0.180	0.225	0.085	0.010

Gebeurtenissen G_1 **EN** G_2 **doen zich** voor

	1	2	3	>3
Prior	0.400	0.060	0.035	0.005
N-Prior	0.180	0.225	0.085	0.010

 G_1 : levering binnen 2 dagen

G₂: prior

$$P(G_1 \cap G_2) = 0.400 + 0.060 = 0.460$$

Complementregel

$$P(G) = 0.035 + 0.005 + 0.180 + 0.225 + 0.085 + 0.010 = 0.540$$

	1	2	3	>3
Prior	0.400	0.060	0.035	0.005
N-Prior	0.180	0.225	0.085	0.010

$$G^c$$
 $P(G^c) = 1 - P(G) = 1 - 0.540 = 0.460$

Optelregel: Gebeurtenis G_1 **OF** G_2 doet zich voor

	1	2	3	>3
Prior	0.400	0.060	0.035	0.005
N-Prior	0.180	0.225	0.085	0.010

 G_1 : levering binnen 2 dagen $P(G_1) = 0.400 + 0.060 + 0.180 + 0.225 = 0.865$

$$G_2$$
: prior $P(G_2) = 0.400 + 0.060 + 0.035 + 0.005 = 0.500$

$$P(G_1 \cup G_2) = 0.865 + 0.500 - 0.460 = 0.905$$

Optelregel: speciaal geval Elkaar uitsluitende gebeurtenissen

	1	2	3	>3
Prior	0.400	0.060	0.035	0.005
N-Prior	0.180	0.225	0.085	0.010

 G_1 : priorzegel en levering na meer dan 2 dagen $P(G_1) = 0.035 + 0.005 = 0.040$

$$G_2$$
: levering binnen 1 dag $P(G_2) = 0.400 + 0.180 = 0.580$

$$P(G_1 \cup G_2) = 0.040 + 0.580 - 0 = 0.620$$

Voorwaardelijke kans

- wat is de kans dat je met een dobbelsteen een getal gooit dat kleiner is dan of gelijk aan 3, gegeven dat je weet dat het een even getal is?
- ► **notatie**: $P(G_1 | G_2)$ met $G_1 = \{1, 2, 3\}$ en $G_2 = \{2, 4, 6\}$
- oplossing:
- hoeveel elementen zijn er kleiner dan of gelijk aan 3 én even? 1
- ▶ hoeveel elementen zijn even? 3

► antwoord?
$$P(G_1 \mid G_2) = \frac{1}{3} = \frac{1/6}{3/6} = \frac{P(G_1 \cap G_2)}{P(G_2)}$$

Voorwaardelijke kans

kans op
$$\underbrace{\text{levering} \leq 2 \text{ dagen}}_{G_1}$$
, gegeven $\underbrace{\text{prior}}_{G_2}$

	1	2	3	>3
Prior	0.400	0.060	0.035	0.005
N-Prior	0.180	0.225	0.085	0.010

$$P(G_1 \cap G_2) = 0.400 + 0.060 = 0.460$$

$$P(G_2) = 0.400 + 0.060 + 0.035 + 0.005 = 0.500$$

$$P(G_1 \mid G_2) = 0.460/0.500 = 0.920$$

Voorwaardelijke kans

- ▶ **definitie**: $P(G_1 | G_2) = P(G_1 \cap G_2)/P(G_2)$
- productregel:

$$P(G_1 \cap G_2) = P(G_1 \mid G_2) \cdot P(G_2)$$

= $P(G_2 \mid G_1) \cdot P(G_1)$

- ► G_2 bevat negatieve informatie over G_1 : $P(G_1 \mid G_2) < P(G_1)$
- ► G_2 bevat positieve informatie over G_1 : $P(G_1 | G_2) > P(G_1)$
- ► G_2 bevat geen info over G_1 (onafhankelijk): $P(G_1 | G_2) = P(G_1) \Rightarrow P(G_1 \cap G_2) = P(G_1) \cdot P(G_2)$

Illustratie: positieve informatie

	1	2	3	>3
Prior	0.400	0.060	0.035	0.005
N-Prior	0.180	0.225	0.085	0.010

 G_1 : levering binnen 2 dagen $P(G_1) = 0.400 + 0.060 + 0.180 + 0.225 = 0.865$

$$G_2$$
: prior $P(G_1 \mid G_2) = 0.460/0.500 = 0.920$

0.920 > 0.865 dus G_2 bevat positieve informatie over G_1

Onafhankelijke gebeurtenissen

- ▶ **definitie**: $P(G_1 | G_2) = P(G_1)$
- gevolgen:

$$P(G_1 \cap G_2) = P(G_1 \mid G_2) \cdot P(G_2)$$

= $P(G_1) \cdot P(G_2)$

$$P(G_2 \mid G_1) = P(G_1 \cap G_2)/P(G_1)$$

= $P(G_1) \cdot P(G_2)/P(G_1)$
= $P(G_2)$

Illustratie

- spel van 52 kaarten
- één kaart wordt lukraak getrokken
- G_1 : trekken van een aas
- ► G₂: trekken van een rode kaart

$$P(G_1) = \frac{4}{52} = \frac{1}{13}$$

$$P(G_1) = \frac{4}{52} = \frac{1}{13}$$

$$P(G_1 \mid G_2) = \frac{P(G_1 \cap G_2)}{P(G_2)} = \frac{2/52}{26/52} = \frac{2}{26} = \frac{1}{13}$$

optelregel voor elkaar uitsluitende gebeurtenissen toepassen

$$\overbrace{P(G_0 \mid G_1) \cdot P(G_1)} \overbrace{P(G_0 \mid G_2) \cdot P(G_2)} \overbrace{P(G_0 \mid G_3) \cdot P(G_3)}$$

$$P(G_0) = \sum_{i=1}^{k} P(G_0 \mid G_i) \cdot P(G_i)$$

Kansregel van Bayes

$$P(G_j \mid G_0) = \frac{P(G_j \cap G_0)}{P(G_0)} \qquad \text{(definitie voorwaardelijke kans)}$$

$$= \frac{P(G_0 \mid G_j) \cdot P(G_j)}{P(G_0)} \qquad \text{(productregel)}$$

$$= \frac{P(G_0 \mid G_j) \cdot P(G_j)}{\sum_{i=1}^k P(G_0 \mid G_i) \cdot P(G_i)} \qquad \text{(stelling van de totale kans)}$$

Toepassing kansregel van Bayes

- test op HIV-virus
 - sensitiviteit 98%
 - specificiteit 95%

- gebeurtenissen
 - pos. test: positief testresultaat
 - HIV: effectief besmet
 - pos. test^c: negatief testresultaat
 - ► HIV^c: niet besmet

Vervolg toepassing

- sensitiviteit
 - P(pos. test | HIV) = 0.98
 - $P(\text{pos. test}^c \mid \text{HIV}) = 0.02$
- specificiteit
 - $P(\text{pos. test}^{c} \mid \text{HIV}^{c}) = 0.95$
 - $P(\text{pos. test} \mid \text{HIV}^c) = 1 0.95 = 0.05$
- Wat is de kans dat u besmet bent indien de test voor u positief is?
- ► *P*(HIV | pos. test)

$$= \frac{P(\text{pos. test}|\text{HIV}) \cdot P(\text{HIV})}{P(\text{pos. test}|\text{HIV}) \cdot P(\text{HIV}) + P(\text{pos. test}|\text{HIV}^c) \cdot P(\text{HIV}^c)}$$

$$=\frac{0.98\cdot0.001}{0.98\cdot0.001+0.05\cdot0.999}=0.0192$$
 (geen risicogedrag)

Vervolg toepassing

- sensitiviteit
 - P(pos. test | HIV) = 0.98
 - $P(\text{pos. test}^c \mid \text{HIV}) = 0.02$
- specificiteit
 - $P(\text{pos. test}^{c} \mid \text{HIV}^{c}) = 0.95$
 - $P(\text{pos. test} \mid \text{HIV}^c) = 1 0.95 = 0.05$
- Wat is de kans dat u besmet bent indien de test voor u positief is?
- ► *P*(HIV | pos. test)

$$= \frac{P(\text{pos. test}|\text{HIV}) \cdot P(\text{HIV})}{P(\text{pos. test}|\text{HIV}) \cdot P(\text{HIV}) + P(\text{pos. test}|\text{HIV}^c) \cdot P(\text{HIV}^c)}$$

$$=\frac{0.98\cdot0.10}{0.98\cdot0.10+0.05\cdot0.90}=0.6853$$
 (risicogedrag)