

(BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND INFORMATION TECHNOLOGY)

EXAMINATIONS 2018

BATCH 2018

Time: 3 Hours

Dated:06-02-2019 Max.Marks:60

Differential & Integral Calculus - MT-171 Note: Attempt all questions. (4) Q#1:a) Do as directed. Prove that $\cos h(z + 2\pi i) = \cosh z$ Find Cartesian equation of the curve representing $|z + 2| = 2\sqrt{2}$. Also sketch on argand Calculate the principal argument and modulus of $z = \frac{1}{1+i}$ Find the rectangular form of $\sqrt{12}e^{\frac{\lambda \pi}{6}}$ Solve $x^4 + i = 0$ OR Express $\cos 6x$ in terms of $\cos x$. (4) (4) e) Show that: $\tanh^{-1} z = \frac{1}{2} \log \left(\frac{1+z}{1-z} \right)$ Q#2-a) Find Maclaurian series of $tan^{-1}(x^2)$ or e^{5x} . (4) b) Check Continuity at x=2 of $f(x) = \begin{cases} x^2 & -2 \le x < 0 \\ 2x & 0 \le x < 2 \\ 4-x & 2 \le x < 6 \end{cases}$ (4) of $x^2y^n + xy' + y = 0$, show that $x^2y^{n+2} + (2n+1)xy^{n+1} + (n^2+1)y^n = 0$ OBS: a Apply L Hopital to find the limit of $\lim_{x\to 0} \frac{\sqrt{1+x}-1-\binom{x}{2}}{x^2}$ (4) Find the radius of the curvature of the cycloid $r = a(1 + \cos\theta)$ at $\theta = 0$. (4) Find the relative extrema of $f(x) = \frac{1}{2}x^2 - 3x^{\frac{5}{2}}$ using second derivative test. (4) $\sqrt{14}$ a Evaluate $\int \sin^2 x \cos^2 x \, dx$ using reduction formula (4) $\int \sin^m u \cos^n u \, du = \frac{-\sin^{m-1}u\cos^{n+1}u}{m+n} + \frac{m-1}{m+n} \int \sin^{m-2}u\cos^n u \, du$ Is the area under the curve $y = \frac{1}{\sqrt{x}}$ from x = 0 to x = 1 convergent? If so, what is it? Determine $\int_0^{\pi/8} \sin^2 4x \cos^5 4x dx$ using Beta integral. Q#5 (a) A scaler field V = x + y + z exists over the surface S defined by 2x + 2y + z = 2 bounded by x = 0, y = 0, z = 0 in the first octant. Evaluate the surface integral $\int V ds$ over this surface. (6) Use a triple integral to evaluate $l = \iiint 3(x^2y + y^2z)dv$ bounded by the planes x = 1, x = 3, y = -1, y = 1, z = 2, z = 4.

SEAT NO. _

NED UNIVERSITY OF ENGINEERING & TECHNOLOGY

FIRST YEAR OMPUTER SCIENCE & INFORMATION TECHNOLOGY (SPECIALIZATION IN ARTIFICIAL INTELLIGENCE/ CYBER SECURITY) FALL SEMESTER EXAMINATIONS 2022 **BATCH 2022**

Time: 3 Hours

Dated:02-02-2023 Max.Marks:60

Differential & Integral Calculus - MT-171

NOTE: Attempt All Questions		
QUESTION NO 1(a)	CLO2: PLO2 : C3	6 MARKS
Find the centroid of the area bour	nded by $y = x^3$, $x = 2$ and the x-axis.	
QUESTION NO 1(b)	CLO2: PLO2 : C3	6 MARKS
A curve C, is defined by parametrifield $F = yi + x^2j + (z + x)k$.	ically by $x = 4$ $y = t^3$ $z = 5 + t$ and is locally	ated within a vector
(a)Find the coordinates of the pol	int P on the curve where the parameter t takes	the value 1.
(b) Find the coordinates of the po	oint Q where the parameter t takes the value 3.	
(c) By expressing the line integral to Q. Note that $ds = dxi + dyj + d$	$\int_{c} F \cdot ds$ entirely in terms of t find the value of t + dzk .	the line integral from P
QUESTION NO 2(a)	CLO2: PLO2 : C3	6 MARKS
Evaluate by using reduction forms	ula $\int_0^{\frac{\pi}{2}} \sin^{10} x \ dx$.	
QUESTION NO 2(b)	CLO2: PLO2 : C3	6 MARKS
Evaluate by using beta and gamm	a function $\int_0^{\frac{\pi}{2}} \frac{\sin^s x}{\sqrt{\cos}} dx$.	
QUESTION NO 3(a)	CLO2: PLO2 : C3	6 MARKS
ind the curvature and radius of c	urvature of $x = t^2$, $y = t^3$ at $t = 1/2$.	
		appropries.
DESTION NO 3(b)	CLO2: PLO2 : C3	6 MARKS
	increases from 3 to 3.2 cm, other decreases	
ne side of a right angled triangle tal differentiations to calculate t	increases from 3 to 3.2 cm, other decreases	from 4 to 3.96 cm. Use
ne side of a right angled triangle tal differentiations to calculate t	increases from 3 to 3.2 cm, other decreases the change in hypotenuse.	from 4 to 3.96 cm. Use
ne side of a right angled triangle tal differentiations to calculate the second value of the complex of $Z=-3-3$.	increases from 3 to 3.2 cm, other decreases the change in hypotenuse. CLO1: PLO1 : C1	from 4 to 3.96 cm. Use 6 MARKS o polar form.
ne side of a right angled triangle tal differentiations to calculate t	increases from 3 to 3.2 cm, other decreases the change in hypotenuse. CLO1: PLO1 : C1 31 on an argand diagram. Also convert it int CLO1: PLO1 : C1	from 4 to 3.96 cm. Use
ne side of a right angled triangle tal differentiations to calculate the differentiations to calculate the differentiations of the calculate the complex no $Z=-3-3$ distribution is complex no then prove \sec^2	increases from 3 to 3.2 cm, other decreases the change in hypotenuse. CLO1: PLO1 : C1 31 on an argand diagram. Also convert it int CLO1: PLO1 : C1	from 4 to 3.96 cm. Use 6 MARKS o polar form. 6 MARK
ne side of a right angled triangle tal differentiations to calculate the UESTION NO 4(a) report the complex no $Z=-3-3$	increases from 3 to 3.2 cm, other decreases the change in hypotenuse. CLO1: PLO1: C1 3i on an argand diagram. Also convert it int CLO1: PLO1: C1 $z = 1 + \tan^2 z$ CLO1: PLO1: C1	from 4 to 3.96 cm. Use 6 MARKS o polar form.

SEAT	NO.	

FIRST YEAR FALL SEMESTER (BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY) **EXAMINATIONS 2019 BATCH 2019**

Time: 3 Hours

Dated:30-01-2020 Max.Marks:60

Differential & Integral Calculus - MT-171

NOTE: Attempt all questions.

QUESTION#01

(05+05+03+05+05+05+02)=30 Marks)

. (a) Find the value of n such that the equation $v = r^n (3 \cos^2 \theta - 1)$ satisfies the relation. $\frac{\partial}{\partial r} \left(r^2 \frac{\partial v}{\partial r} \right) + \frac{1}{\sin \theta} \cdot \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v}{\partial \theta} \right) = 0$

(b) Show that the function $f(x, y) = x^3 + y^3 - 63(x + y) + 12xy$ is maximum at (-7,-7) and minimum at

(c) Apply an appropriate formula to find the radius of curvature of the cycloid $x = a(t + \sin t), y = a(1 - \cos t)$

Use Leibnitz theorem to find nth differential coefficient of $(1 - x^2)y_2 + xy_1 + y = 0$

(e) Use L'hopital rule to evaluate

(i) $\lim_{x\to 0} \frac{x \cos x - \ln(1+x)}{x^2}$ (ii) $\lim_{x\to 0} \frac{\ln(1+x^2)}{\sin^3 x}$ (f) Find all asymptotes of the curve $x^2y^2 (x^2 - y^2)^2 = (x^2 + y^2)^3$.

(g) Find the value of k for which the given function is continuous

$$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}; & x \neq 3 \\ k; & x = 3 \end{cases}$$

QUESTION#02

(05+05+05=15 Marks)

(a) Derive reduction formula of $\int tan^n x \, dx$ and evaluate $\int tan^7 x \, dx$

(b) Apply an appropriate method to evaluate

 $\int_0^\infty \sqrt{x} \, e^{-\sqrt[3]{x}} \, dx \qquad \text{(ii)} \quad \int_0^\pi \sin^6 \frac{t}{2} \cos^3 \frac{t}{2} \, dt$

(c) Determine the convergence or divergence of the given improper integral $\int_0^8 \frac{1}{\sqrt[3]{\pi}} dx$

QUESTION#03

(05+05+05=15 Marks)

(a) Evaluate $\iint F \cdot \hat{n} \, ds$ where $F = 18z \, \hat{i} - 12 \, \hat{j} + 3y \, \hat{k}$ and S is the surface of the plane 2x + 3y + 6z =12 bounded by the region $x = 0 \rightarrow 6$ and $y = 0 \rightarrow \frac{12-2x}{3}$

(b) Use De Moivre's theorem to express $\sin^9 \theta$ in terms of sines of multiples of θ .

(e) Apply generalized De Moivre's theorem to find the four roots of -8+8i

FIRST YEAR(BACHELOR OF SCIENCE IN COMPUTER SCIENCE & INFORMATION TECHNOLOGY)
FALL SEMESTER EXAMINATIONS 2022
BATCH 2022

Time: 3 Hours

Dated:02-02-2023 Max.Marks:60

Differential & Integral Calculus - MT-171

- Attempt ALL questions. All questions carry equal marks.
- -All subparts of a question should be solved in one place.
- -Make sure to write question number and its subparts correctly.

CLO1 CLO2
-Question 1 -Question 2-6
-10 marks -50 marks

Q-1:

(a) Express cos50 and sin50 in terms of trigonometric function series.

[3 marks]

(b) Solve $x^3 + 1 = 0$ with the help of De Moivre's theorem.

[3 marks]

(c) Solve the following.

[4 marks]

(i)
$$\lim_{x\to\infty} \frac{(\cos x)^{100}}{x^{6}+x^{100}+1}$$

(ii)
$$\lim_{x\to\infty} x\cos\left(\frac{\pi}{4x}\right)Sin\left(\frac{\pi}{4x}\right)$$

Q-2:

(a) If $y = Ae^{-kt}cos(pt + c)$, where A, k, p and c are constant.

[5 marks]

Prove that $y'' + 2ky' + (p^2 + k^2)y = 0$ where $y' = \frac{dy}{dt}$ and $y'' = \frac{d^2y}{dt^2}$

(b) Find series of

[5 marks]

- (i) cosx in power series of $(x \frac{\pi}{2})$
- (use taylor series)
- (ii) e^x in power series of x

(use maclaurin series)

Q-3:

- (a) Derive the formula of $\int_0^{\frac{\pi}{2}} sin^n x dx$ by beta gamma functions and evaluate $\int_0^{\frac{\pi}{2}} sin^{11} x dx$. [5 marks]
- (b) If $F = 3xyi y^2j$, Evaluate $\int_C \vec{F} \, d\vec{r}$ where c is the curve $y = 2x^2$ in xy-plane from (0,0) to (1,2). [5 marks]

P.T.O

Scanned with CamScanner

Q-4:

- (a) An open rectangular container is to have a volume of 108 m³. Determine the least surface area of material required.
 [5 marks]
- (b) Find gradient or divergence of following.

[5 marks]

- (i) $V = x^2 yzi 2xyj + yzk$
- (ii) $\Phi = 12y^2x \cos z^2y + 2x^2z xy$

Q-5:

- (a) Apply double integration to find area of the region bounded by the parabola $y = x^2$ and straight line y = x + 2. [3 marks]
- (b) Apply triple integration to evaluate $\iiint 64x^2y^3z\ dV$ over a rectangular box defined by $-1 \le x \le 2$, $0 \le y \le 3$ and $0 \le z \le 2$ [3 marks]
- (c) Given $f(x) = 3x^4 2x^3 12x^2 + 18x + 15$, find relative extrema by using first and second derivative test, also sketch the graph. [4 marks]

Q-6:

(a) Find all asymptotes of each of the following.

[5 marks]

- (i) $f(x) = x^2y^2 x^2y xy^2 + x + y + 1$
- (ii) $f(x) = \frac{1}{8 (\frac{5}{\sqrt{2}})}$
- (b) Prove $\int sin^n x dx = \frac{-cosxsin^{n-1}x}{n} + \frac{n-1}{n} \int sin^{n-2}x \ dx$ and evaluate $\int sin^8x \ dx$ by using reduction formula. [5 marks]

GOOD LUCK!

Scanned with CamScanner

NED UNIVERSITY OF ENGINEERING & TECHNOLOGY FIRST YEAR COMPUTER SCIENCE & INFORMATION TECHNOLOGY

(SPECIALIZATION IN DATA SCIENCE) FALL SEMESTER EXAMINATIONS 2022 **BATCH 2022**

Time: 3 Hours

Dated:02-02-2023 Max.Marks:60

INSTRUCTIONS:

- 1. Attempt all questions.
- 2. Be sure to mark the question number and its subparts correctly in your answer book and all subparts are to be solved in one place.

Catalogue de Langue de Catalogue de la Catalog		TO STATE OF THE ST	
Question No:		Total Marks	
Q1	CLO 1	10	
Q2	CLO 1	15	
Q3	CLO2	10	
Q4	CLO 2	15	
Q5	CLO 2	10	

Q-1:

[10 MARKS]

a) Evaluate the limit of the following:

1)
$$\lim_{x\to 0} (1 + \sin x)^{\frac{1}{x}}$$

2)
$$\lim_{h\to 0} \left(\frac{(6+h)^2-36}{h}\right)$$

b) sketch the graph of the following function and check the continuity:

$$f(x) = \begin{cases} -2x - 4 \\ x^2 - 2 \\ 2 \end{cases}$$

$$x < -2 \\
 -2 \le x < 1 \\
 -x \ge 1$$

- a) Express $\frac{(\cos\theta + i\sin\theta)^8}{(\sin\theta + i\cos\theta)^4}$ in the form (x + iy).
- b) Solve $x^4 + i = 0$.
- c) Prove that $\sin^2 z + \cos^2 z = 1$

Q#3:

- a) Determine the dimensions of a rectangular box, open at the top, having a volume of $32ft^3$, and requiring the least amount of material for its construction.
- b) Given that $y^2 = f(x)$, evaluate.

$$\frac{d}{dx} \left[y^3 \frac{d^2 y}{dx^2} \right] = -$$

- a) Evaluate $I=\iiint_S (xz+yz)dv$, where S is bounded by the cylinder $x^2+y^2=16$ and the planes z=0 and z=3 also find the volume of S.
- b) Find the area of the region R enclosed by the parabola $y = x^2$ and the line y = x + 2.
- Find the asymptote parallel to co-ordinates axes of the curve $4x^2 + 9y^2 = x^2y^2$

[10 MARKS]

Q#5:

- a) Evaluate $\iint_S \vec{F} \hat{n} ds$ where $\vec{F} = 18z\hat{i} + 12\hat{j} + 3y\hat{k}$ and S is the surface of the plane $2x + 3y + 3y\hat{k}$ 6z = 12 in first octant.
- b) If $\vec{F} = 3xy\hat{\imath} y^2\hat{\jmath}$, evaluate $\int_c \vec{F} d\vec{r}$ where c is the curve $y = 2x^2$ in the xy-plane from (0,0) to

SEAT NO. CT - OCS

NED UNIVERSITY OF ENGINEERING & TECHNOLOGY

FIRST YEAR(BACHELOR OF SCIENCE IN COMPUTER SCIENCE & INFORMATION TECHNOLOGY) FALL SEMESTER EXAMINATIONS 2021

BATCH 2021

Time: 3 Hours

Dated:08-03-2022 Max.Marks:60

Differential & Integral Calculus - MT-171

SECTION A (CLO 1)

Q.1 (a) Find the limit of the following function by using L-Hopital Rule:

(5)

Determine $f(x) = \begin{cases} x^2 + 2x + 1 & x < 1 \\ 2 & x = 1 \text{ is continuous at } x = 1 \text{ or not?} \end{cases}$ Also sketch the great for integral x = 1 is x = 1.

(5)

Also sketch the graph of a given function.

SECTION B (CLO 3)

Q.2 (a) When two resistors having resistances R_1ohms and R_2ohms are connected in parallel, their combined resistance Rohms is $R = \frac{R_1R_2}{(R_1+R_2)}$.

(5)

Show that:

 $R_1^2 \frac{\partial^2 R}{\partial R_2^2} + R_2^2 \frac{\partial^2 R}{\partial R_2^2} = \frac{-4R^2}{R_1 + R_2}$

Q.2 (b) Find fourth order derivative of $f(x) = \frac{e^{2x+1}}{x}$ by using Leibnitz Theorem.

(5)

Apply Maclaurin's Series to show that

 $\cos x = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{(2n-2)}}{2(n-1)!}$

Q.3 (a) Find curvature and radius of curvature $y = 2x^3 - x +$

(5)

(5)

Q.3 (b) Find

- The intervals on which f(x) is increasing,
- 2. The intervals on which f(x) is decreasing,
- The open intervals on which f(x) is concave up,
- 4. The open intervals on which f(x) is concave down,
- 5. The x-coordinates of all inflection points.

where
$$f(x) = \ln \sqrt{x^2 + 4}$$

(5)

Find the vertical and horizontal asymptote(s) of the given curve. $y = \frac{2x^2 + 1}{3x^2 + 6x}$ Use a double integral to evaluate the volume of the solid shown in the figure.

 $V = \int_{-2}^{2} \int_{-2}^{\sqrt{4-x^2}} (4-x^2-y^2) \ dy \ dx$

Evaluate the following definite integral by using the properties of Beta and Gamma functions.

 $\int_0^{\frac{\pi}{4}} \sin^4 2x \cos^6 2x \ dx$

P.T.O

(5)

- Q.5 (a) Drive Reduction formula of $\int tan^n x \, dx$ and use it to evaluate the integral $\int_0^{\frac{\pi}{4}} tan^{10} x \, dx$ (5)
- Q.5 (b) Does the definite integral for the function $f(x) = \frac{\cos x}{\sqrt{1-\sin x}}$ for the limits 0 to $\frac{\pi}{2}$ converge or diverge? (5) If it converges, find the value.

SECTION C (CLO 5)

Q.6 (a) Find the volume of the parallelepiped determined by scalar triple product of \mathbf{w} , \mathbf{u} and \mathbf{v} . where (5) $u = \langle 4, 2, -5 \rangle$, $v = \langle 1, 3, -7 \rangle$ and $w = \langle 6, 1, 2 \rangle$.

Volume = $| \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) |$

Q.6 (b) Find the roots of the equation by using De-Moivre's theorem $1 - x + x^2 - x^3 + x^4 - x^5 = 0$. (5)

2+4-2(-5)

NED UNIVERSITY OF ENGINEERING & FECHNOLOGY
FIRST YEAR FALL SESSESSIER GRACHELOGOUS SCHOOLE IN APPLIED PHYSICS
[ADDUSTRIAL CHEMISTRY]
EXAMINATIONS 2019
BATCH 3019 Calculus - MII-173 (05+05+05+05+05+05=30 Marks) OUESTION#01 (a) Prove that y = f(x + at) + g(x - at) satisfies $\frac{d^2y}{dx^2} = a^2 \left(\frac{d^2y}{dx^2}\right)$ where f and g are assumed to be at (b) Examine the function $f(x, y) = y^2 + 4xy + 3x^2 + x^3$ for extreme values. (c) Apply an appropriate formula to find the curvature of $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ at $\theta = 0$ (#) Find nth differential coefficient of e^x , sin^3x (e) Use I 'hopital rule to evaluate $\lim_{x\to 0} \frac{\sin x - \sin ax}{x(\cos x - \cos ax)}$ (i) Find all asymptotes of the function (x+y)(x-y)(2x-y) - 4x(x-2y) + 4x = 0(05+05+05=15 Marks) (a) Derive reduction formula of $\int Cosec^n x dx$ and evaluate $\int cse^S x dx$ (b) Apply an appropriate method to evaluate $\int_0^{\infty} x^{n-1} e^{-h^2x^2} dx \qquad (ii) \quad \int_0^1 (1-x^3)^{-\frac{1}{2}} dx$ (c) Determine the convergence of divergence of the given improper integral $\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)}$ (05+05+05=15 Marks) OUESTION#03 (a) Evaluate $\iint F_* \hat{n} \, ds$ where $F = (x + y^2)\hat{i} - 2x\hat{j} + 2yz\hat{k}$ and S is the surface of the plane 2x + y + y + 12z = 6 bounded by the region $x = 0 \rightarrow 3$ and $y = 0 \rightarrow 6 - 2x$ (b) Prove that $\frac{\sin \theta \theta}{\cos \theta} = 32 \sin^5 \theta - 32 \sin^3 \theta + 6 \sin \theta$ (c) Apply generalized De Moivre's theorem to find the four roots of -2-2i

SEAT	NO.	

FIRST YEAR FALL SEMESTER (BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY) **EXAMINATIONS 2019 BATCH 2019**

Time: 3 Hours

Dated:30-01-2020 Max.Marks:60

Differential & Integral Calculus - MT-171

NOTE: Attempt all questions.

QUESTION#01

(05+05+03+05+05+05+02)=30 Marks)

. (a) Find the value of n such that the equation $v = r^n (3 \cos^2 \theta - 1)$ satisfies the relation. $\frac{\partial}{\partial r} \left(r^2 \frac{\partial v}{\partial r} \right) + \frac{1}{\sin \theta} \cdot \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v}{\partial \theta} \right) = 0$

(b) Show that the function $f(x, y) = x^3 + y^3 - 63(x + y) + 12xy$ is maximum at (-7,-7) and minimum at

(c) Apply an appropriate formula to find the radius of curvature of the cycloid $x = a(t + \sin t), y = a(1 - \cos t)$

Use Leibnitz theorem to find nth differential coefficient of $(1 - x^2)y_2 + xy_1 + y = 0$

(e) Use L'hopital rule to evaluate

(i) $\lim_{x\to 0} \frac{x \cos x - \ln(1+x)}{x^2}$ (ii) $\lim_{x\to 0} \frac{\ln(1+x^2)}{\sin^3 x}$ (f) Find all asymptotes of the curve $x^2y^2 (x^2 - y^2)^2 = (x^2 + y^2)^3$.

(g) Find the value of k for which the given function is continuous

$$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}; & x \neq 3 \\ k; & x = 3 \end{cases}$$

QUESTION#02

(05+05+05=15 Marks)

(a) Derive reduction formula of $\int tan^n x \, dx$ and evaluate $\int tan^7 x \, dx$

(b) Apply an appropriate method to evaluate

 $\int_0^\infty \sqrt{x} \, e^{-\sqrt[3]{x}} \, dx \qquad \text{(ii)} \quad \int_0^\pi \sin^6 \frac{t}{2} \cos^3 \frac{t}{2} \, dt$

(c) Determine the convergence or divergence of the given improper integral $\int_0^8 \frac{1}{\sqrt[3]{\pi}} dx$

QUESTION#03

(05+05+05=15 Marks)

(a) Evaluate $\iint F \cdot \hat{n} \, ds$ where $F = 18z \, \hat{i} - 12 \, \hat{j} + 3y \, \hat{k}$ and S is the surface of the plane 2x + 3y + 6z =12 bounded by the region $x = 0 \rightarrow 6$ and $y = 0 \rightarrow \frac{12-2x}{3}$

(b) Use De Moivre's theorem to express $\sin^9 \theta$ in terms of sines of multiples of θ .

(e) Apply generalized De Moivre's theorem to find the four roots of -8+8i