## Sobre el código de la PDF de la amplitud

Evelyn G. Coronel Tesis de Maestría en Ciencias Físicas Instituto Balseiro

(29 de diciembre de 2020)

## I. COMO ES LA PDF DE LA AMPLITUD

La función de densidad de probabilidad tiene la siguiente forma:



Fig. 1

$$p(s) = \frac{r}{\sigma^2} \exp\left(-\frac{(r^2 + s^2)}{2\sigma^2} + \frac{rs}{\sigma^2}\right) K_0(\frac{rs}{\sigma^2})$$
 (1)

## II. HACIENDO LA CUENTA

Los pasos que sigo son los siguientes:

- 1. Calculo la probabilidad asociada a  $r_{max} = r + 10\sigma$ . Dado que está tan alejada del valor de amplitud obtenida, el CL $\simeq$  1, por lo que uso este valor para normalizar la Ec. 1 en el código.
- 2. Una vez que tengo la función normalizada, finalmente hago la integral de la ecuación 2 CL(r) hasta un valor inicial de r y el valor de la función p(r).
- 3. Si CL(r) < 0.683:
  - a) Teniendo en cuenta el valor inicial de  $p(r)_1$ , se actualiza el valor  $p(r)_2 \leftarrow p(r)_1 0.01p(r)_1$ .
  - b) Se calcula la integral entre los dos puntos con valores igual a  $p(r)_2$ .
  - c) Si la integral es menor a 0.683, se repite el proceso desde el paso 3a. Caso contrario, si esta integral es mayor o igual a 0.683, se calculan los valores límites de r mediante el valor  $p(r)_2$  en el siguiente paso.
- 4. Para calcular los límites de confianza superior  $r^+$  y inferior  $r^-$ , teniendo en cuenta el valor final  $p(r_N)$  del paso 3c, se calculan los valores de  $r_i$  donde se cumple que  $p(r_i) = p(r)_N$ , los mismos son  $r^+$  y  $r^-$ . Finalmente los límites de confianza se calculan como:

$$\sigma^- = r - r^-$$
$$\sigma^+ = r^+ - r$$

Para alcanzar un nivel del confianza del  $\mathrm{CL}[\%]$  [1], se toma el valor de amplitud  $r^{UL}$  y la integral de la función 1 desde 0 hasta  $r^{UL}$ , donde el resultado debe ser el nivel de confianza CL.

$$CL = \int_0^{r^{UL}} dr \frac{r}{\sigma^2} \exp\left(-\frac{(r^2 + s^2)}{2\sigma^2} + \frac{rs}{\sigma^2}\right) K_0(\frac{rs}{\sigma^2})$$
 (2)

El gráfico de la función se muestra a continuación:

[1] Donde CL=.99 para un 99 % o CL=0.68 para un 68 %,.