

Time Series Forecasting

Programming for Data Science

Classical Time Series Forecasting

Time Series

- Sequence of measure values
- Equidistant
- Complete

Forecast Models

- One model represents one time series
 - Trend (long-term changes)
 - Season (regular reoccurring changes)
- Accuracy is the only requirement

ARMA Models

Box and Jenkins Methodology

Modeling time series with AutoRegression

Classification and Model Hierarchy

• AR(p): $\hat{x}_t = c + \sum_{i=1}^p \phi_i \cdot x_{t-i}$ AutoRegression

- MA(q): $\hat{x}_t = \sum_{i=1}^q \theta_i \cdot \varepsilon_{t-i}$ Moving Average
- ε_0 , \cdots , $\varepsilon_q=0$, $\varepsilon_i=x_{t-i}-\hat{x}_{t-i}$ MA, q=2, (θ_1 =0.5, θ_2 =0.5)

• Combine AR and MA by addition: $\hat{x}_t = \sum_{i=1}^p \phi_i \cdot x_{t-i} + \sum_{i=1}^q \theta_i \cdot \varepsilon_{t-i} + c$ The constant c also needs to be optimized.

Model Estimation (Math Part)

Problem

 Find the model parameters that minimize the error on the training data

Example

- Forecast Model Type AR(2):
 - $\hat{x}_t = \phi_1 \cdot x_{t-1} + \phi_2 \cdot x_{t-2}$
- Error Metric: MSE
 - $\frac{1}{n} \sum_{i=1}^{n} (x_i \hat{x}_i)^2$

Model Estimation

Global Optimization Methods

Grid Search (Derivation Free)

- Simple but robust method: no local suboptimal
- First define a step width to sample the parameter space (Grid)
- Exponential number of combinations X^D (granularity X and dimensionality D)
- Model evaluation for every combination

Task

Step 0

- Load the given csv file in your language/environment.
- Explore the data and its structure.

Step 1

Implement the AR and MA parts of the ARMA model*.

Step 2

• Use a general purpose optimizer (Nelder-Mead) to fit the model parameters to a given time series.

Step 3

- Search for the optimal combination of AR (p) and MA (q) components of the model for each given time series*. Perform a grid search* for $p \in [0,3]$ and $q \in [0,3]$. (Slide 5, Steps 1-6)
- Report the forecast error (insample error).

^{*}use your own implementation

Package suggestions

R

- (data.table)
- stats

python3

- pandas
- numpy
- scipy.optimize
- (matplotlib)

Modeling Results

Result

 Mean Squared Error of all time series using the best combination of p and q and a constant c

Comparison

- The values for p and q can vary based on your implementation and parameter initialization
- Only compare if your MSE correlate with our solution and are in a similar range

shop_id	Mean Squared Error
145	210
260	345
315	303
375	265
548	403
560	1272
750	539
897	9458
1332	3476
1750	377

Exercise Appointment

We compare and discuss the results

- Tuesday, 12.01.2021,
- Consultation: Please use the forum in Opal.
- Please prepare your solutions! Send us your code!

If you have questions, please mail us:

<u>claudio.hartmann@tu-dresden.de</u> Orga + Code +Task + R <u>lucas.woltmann@tu-dresden.de</u> Python

