

Molecule. Химия!!!

Имя входного файла: molecule.in Имя выходного файла: molecule.out

Вася и Сережа играют в следующую игру. В некоторых клетках клетчатого листка Сережа рисует один из символов 'H', 'O', 'N' или 'C', после чего Вася должен провести между некоторыми находящимися в соседних клетках символами линии так, чтобы получилось корректное изображение химической молекулы. К сожалению, Сережа любит рисовать много символов, и Вася не может сразу определить, возможно ли вообще нарисовать линии нужным способом. Помогите ему написать программу, которая даст ответ на этот вопрос.

В этой задаче проведенные между символами химических элементов линии будем считать корректным изображением молекулы, если они удовлетворяют следующим условиям:

- каждая линия соединяет символы, нарисованные в соседних (по стороне) клетках,
- между каждой парой символов проведено не более одной линии,
- от каждого элемента отходит ровно столько линий, какова валентность этого элемента (1 для Н, 2 для О, 3 для N, 4 для С).
- пустые клетки ни с чем не соединены, и
- хотя бы в одной клетке нарисован какой-то символ.

Формат входного файла

Первая строка входного файла содержит два натуральных числа n и m ($1 \le n, m \le 50$) — размеры листочка, на котором рисует Сережа. Далее следуют n строк по m символов в каждой, задающих конфигурацию химических элементов, которую нарисовал Сережа; пустые клетки задаются символом '.'.

Формат выходного файла

В выходной файл выведите одно слово «Valid», если линии провести требуемым образом можно, и «Invalid», если нельзя.

Пример

molecule.in	molecule.out
3 4	Valid
нон.	
NCOH	
00	
3 4	Invalid
нон.	
NCOH	
OONH	

Brides. В поисках невест

Имя входного файла: brides.in Имя выходного файла: brides.out

Однажды король Флатландии решил отправить k своих сыновей на поиски невест. Всем известно, что во Флатландии n городов, некоторые из которых соединены дорогами. Король живет в столице, которая имеет номер 1, а город с номером n знаменит своими невестами.

Итак, король повелел, чтобы каждый из его сыновей добрался по дорогам из города 1 в город n. Поскольку, несмотря на обилие невест в городе n, красивых среди них не так много, сыновья опасаются друг друга. Поэтому они хотят добраться до цели таким образом, чтобы никакие два сына не проходили по одной и той же дороге (даже в разное время). Так как король любит своих сыновей, он хочет, чтобы среднее время сына в пути до города назначения было минимально.

Формат входного файла

В первой строке входного файла находятся числа n, m и k — количество городов и дорог во Флатландии и сыновей короля, соответственно $(2 \leqslant n \leqslant 200, 1 \leqslant m \leqslant 2000, 1 \leqslant k \leqslant 100)$. Следующие m строк содержат по три целых положительных числа каждая — города, которые соединяет соответствующая дорога и время, которое требуется для ее прохождения (время не превышает 10^6). По дороге можно перемещаться в любом из двух направлений, два города могут быть соединены несколькими дорогами.

Формат выходного файла

Если выполнить повеление короля невозможно, выведите на первой строке число -1. В противном случае выведите на первой строке минимальное возможное среднее время, которое требуется сыновьям, чтобы добраться до города назначения (не менее, чем с пятью знаками после десятичной точки). В следующих k строках выведите пути сыновей: сначала число дорог в пути и затем номера дорог в пути в том порядке, в котором их следует проходить. Дороги нумеруются, начиная с единицы, в том порядке, в котором они заданы во входном файле.

Пример

•		
	brides.in	brides.out
	5 8 2	3.00000
	1 2 1	3 1 5 6
	1 3 1	3 2 7 8
	1 4 3	
	2 5 5	
	2 3 1	
	3 5 1	
	3 4 1	
	5 4 1	

LCA. Least Common Ancestor

Имя входного файла: lca.in Имя выходного файла: lca.out

Изначально имеется дерево состоящее только из корня (вершина с номером 1). Требуется научиться отвечать на следующие запросы:

- ADD $a\ b$ подвесить вершину b за вершину a (гарантируется, что вершина a уже существует).
- GET $a \ b$ вернуть LCA вершин $a \ u \ b$.

Все номера вершин от 1 до N.

В каждый момент времени у нас есть одно дерево.

Формат входного файла

В первой строке входного файла содержится число k — количество запросов. Следующие k строк содержат сами запросы. Гарантируется, что число запросов каждого из типов не превосходит $5\cdot 10^5$.

Формат выходного файла

Для каждого запроса типа GET выведите в отдельную строку одно целое число — ответ на соответствующий запрос.

Примеры

lca.in	lca.out
9	1
ADD 1 2	1
ADD 1 3	1
ADD 2 4	2
GET 1 3	5
GET 2 3	
GET 3 4	
ADD 2 5	
GET 4 5	
GET 5 5	

RMQ. Range Minimum Query

Имя входного файла: rmq.in Имя выходного файла: rmq.out

Есть массив из N целых чисел и M запросов вида: найти минимум на отрезке с концами $l_i, r_i.$

Формат входного файла

Входной файл содержит T наборов тестовых данных. Каждый набор тестовых данных задаётся числами N, M, A, B ($1 \le N \le 25\,000, 1 \le A, B \le 10^9$), где N — размер массива, M — число запросов. Массив и запросы нужно получить следующим образом: выпишем последовательность чисел $1 \cdot A + B, 2 \cdot A + B, \ldots, (N+2 \cdot M) \cdot A + B$, взятых по модулю 2^{32} . Первые N чисел последовательности — элементы массива, числа с N+1 по $N+2 \cdot M$, взятые по модулю N образуют M пар чисел (l_i-1, r_i-1) — запросы. Ввод заканчивается строкой $0\,0\,0\,0$. Сумма N по всем наборам тестовых данных не превосходит 10^8 , сумма M по всем наборам тестовых данных не превосходит $2 \cdot 10^7$,

Формат выходного файла

Для каждого набора тестовых данных выведите сумму по всем запросам на отдельной строке.

Пример

rmq.in	rmq.out
10 10 955379886 619166003	7671393960
0 0 0 0	

Замечание

Массив:

Запросы:

8 4

4 10

6 2

0 2

8 8

 $4\ 10$

6.6

28

4 10

10 6

28