Introduction

- Definition of AI:- Artificial Intelligence (AI) means making computers or machines think and act like humans
- Definition of Big Data Analytics:- Big Data Analytics means looking at a huge amount of information to find useful patterns, trends, or insights
- Big Data Analytics is changing how society functions by helping governments, businesses, and communities make smarter decisions

Historical Context

- 1943 First neural network model by McCulloch & Pitts
- **1950** Turing proposes the *Turing Test*
- 1956 Term "AI" coined at Dartmouth Conference
- 1997 IBM's Deep Blue defeats chess champion Garry Kasparov
- 2012 Deep Learning revolution with ImageNet victory
- 2016 AlphaGo beats world Go champion
- Now Al in real life: chatbots, self-driving cars, health, finance

Why Society Needs AI and Big Data

- Big Data Analysis Al can process vast datasets to find patterns humans can't.
- Medical Diagnosis Al systems detect diseases (e.g., cancer, diabetic retinopathy) faster and more accurately.
- Natural Language Understanding Powers tools like ChatGPT, translation, and voice assistants.
- Predictive Analytics Used in finance, weather forecasting, and business planning.

AI Applications

- Healthcare
- Education
- Agriculture
- Transportation
- Finance

Al in Healthcare

- Medical history
- Lab results
- Prescriptions
- Imaging (X-rays, MRIs)

Al in Education

- Tracks student progress in real time
- Adjusts difficulty level automatically
- Repeats tough topics, skips mastered ones
- Suggests next best topic to learn

Al in Agriculture

- Crop Monitoring Drones & sensors detect plant health and pests
- Smart Irrigation AI decides when and how much to water
- Soil Analysis Al recommends fertilizers based on soil quality
- Yield Prediction Predicts harvest quantity using weather & crop data
- Weed & Pest Control Al spots and treats only affected areas

Al in Transportation

- Perception Detects people, cars, traffic signals, and obstacles
- Decision-Making Chooses when to stop, turn, or change lanes
- Navigation Uses maps and GPS to plan routes
- Learning Improves driving with data from past trips

Al in Finance

- Analyzes market trends, news, and stock data in real time
- Makes split-second decisions to trade at the best price
- Can run 24/7 without emotional bias
- Used by banks, hedge funds, and even retail investors

Environmental Monitoring

- Analyzes huge datasets from satellites, oceans, and weather stations
- Faster & more accurate predictions of storms, droughts, and temperature changes
- Identifies hidden climate patterns across decades of data
- Helps create real-time climate alerts and disaster response systems

Ethical Considerations

- Al systems use large amounts of personal data to learn and improve
- If not protected, it can lead to data leaks, identity theft, or misuse
- People must have control over how their data is collected and used

Challenges

- Keeps personal, financial, and business information safe
- Prevents hacking, data breaches, and ransomware attacks
- Ensures data stays private, accurate, and accessible only to the right people

Economic Impact

- E-commerce Online buying/selling (e.g., Amazon, Flipkart)
- Digital Payments UPI, Paytm, Google Pay
- Online Services EdTech, FinTech, HealthTech
- Remote Work & Gig Platforms Freelance jobs via platforms like Upwork, Uber

Social Impact

- Educates people on rights, safety, and responsibilities
- Helps prevent misinformation and harmful behavior
- Empowers citizens to make informed decisions
- Essential for public health, digital literacy, and climate action

Role in Pandemic Response

- Mobile apps & websites to report and view case updates
- Uses GPS & Bluetooth to trace contact with infected individuals
- Real-time dashboards to monitor case trends and hotspots
- Helps health officials with testing, isolation & vaccination plans

Al & Big Data in Law Enforcement

- CCTV Cameras Public and private spaces
- Digital Surveillance Monitoring internet use, GPS, and social media
- Biometric Monitoring Face recognition, fingerprint scanning
- Al Surveillance Detects unusual patterns in crowds or online behavior

Al in E-Commerce

- Tracks what users view, buy, or search
- Learns user patterns and predicts what they'll like next
- Recommends items in real time to improve user experience and sales
- Used by Amazon, Netflix, YouTube, Flipkart, etc.

Smart Cities Initiatives

- Sensors detect real-world data: temperature, motion, light, pressure, etc.
- Devices send this data to other devices or cloud systems
- Al can analyze and act on this data (e.g., turn off lights, send alerts)

Future Trends

- Speeds up machine learning and optimization tasks
- Handles massive datasets more efficiently
- Improves prediction accuracy in fields like drug discovery, finance, and climate modeling

Role of Government

- Protecting Citizens' Rights
 - Enforcing data privacy & cyber safety (via DPDP Act 2023)
 - Preventing misuse of AI in surveillance or bias
- Policy & Legal Frameworks
 - Developing national AI policies (via MeitY & NITI Aayog)
 - Ensuring AI systems are ethical, fair, and transparent
- Promoting Awareness
 - Digital India campaigns for digital literacy & safety
 - Training in schools and rural areas

Use-Case-1: Transportation & Logistics

DHL:

Uses AI & Big Data to optimize delivery routes, predict package volumes, and reduce carbon emissions.

FedEx:

Employs Al-driven logistics and data analytics to improve delivery times and enhance customer experience.

Use-Case-2: Energy Sector

GE uses Al & Big Data to power its Digital
 Wind Farm platform, which improves turbine efficiency, reduces maintenance costs, and maximizes renewable energy generation

Use-Case-3: Telecommunications

Automates network traffic balancing and load distribution

Detects and resolves network faults in real time

- Enables self-healing networks using machine learning algorithms
- Optimizes signal strength and coverage based on user patterns

Use-Case-4: Entertainment & Media

Analyzes user behavior, preferences, and watch history

- Recommends personalized content (movies, music, shows)
- Continuously learns and updates based on real-time data
- Improves user engagement and retention

Use-Case-5: Cybersecurity

Monitors network traffic for anomalies and suspicious behavior

Uses machine learning to identify new & evolving threats

Automates incident detection & response

Helps prevent data breaches, phishing, and malware attacks

Use-Case 6: Human Resources

- Scans and filters thousands of resumes quickly
- Matches candidates based on skills, experience, and keywords
- Removes human bias by focusing on objective criteria
- Speeds up shortlisting and improves hiring efficiency

Use-Case 7: Legal Industry

- Quickly scans large volumes of case laws, statutes, and legal documents
- Identifies relevant precedents and legal arguments
- Uses natural language processing (NLP) for accurate keyword/context matching
- Reduces time spent on manual research and increases precision

General AI vs Narrow AI

 General AI is a type of artificial intelligence that can think, learn, and solve problems like a human across many different tasks—not just one specific job.

General AI (Robot film)

Learn anything a human can

Transfer knowledge between tasks

Understand context deeply

Show creativity, common sense, and emotional intelligence

Narrow Al

- Narrow Al is a type of artificial intelligence that is designed to do one specific task very well — such as recognizing faces, recommending movies, or translating language.
- It cannot think or learn beyond its programmed function, unlike humans or General AI

Ex.OpenAl's GPT-4

- Understand and generate human-like language
- Solve math problems, write code, summarize legal documents, answer medical questions, and even compose poetry
- Works across multiple domains, learning patterns from massive datasets

Examples of Narrow Al

- Voice assistants (Siri, Alexa)
- Recommendation systems (Netflix, Amazon)
- Facial recognition
- Spam email filters

Current Status in the Real World

- Narrow Al is widely used in industry today
- General AI remains a theoretical goal under active research

Challenges in Achieving General Al

- Ethical implications
- Safety and control issues
- Massive computational power requirements
- Complex understanding of human cognition

Introduction to AI Fields

Image Processing

 Manipulation and analysis of visual data (images) to extract meaningful information

 Used in medical imaging, satellite imagery, object detection, and industrial automation

Tools for Image Processing

OpenCV, PIL (Python Imaging Library), MATLAB, Scikit-Image

Computer Vision

- Enables machines to interpret and make decisions based on visual data (videos, images)
- Image Processing focuses on pixel-level changes;
 Computer Vision understands image content

Applications of Computer Vision

 Facial recognition, autonomous vehicles, surveillance systems, and AR/VR

Popular Libraries in CV

OpenCV, TensorFlow, PyTorch, YOLO (You Only Look Once)

Robotics

 Design, construction, and operation of robots that perform tasks autonomously or semi-autonomously

Types of Robots

Humanoid, Industrial, Autonomous Vehicles, Drones

Robotics Applications

Manufacturing, healthcare surgery, military, space exploration

Natural Language Processing (NLP)

 Allows machines to understand, interpret, and generate human language

Tasks in NLP

• Text classification, sentiment analysis, translation, summarization, chatbots.

Popular NLP Tools

spaCy, NLTK, GPT, BERT, HuggingFace Transformers

Career Map: Al & Big Data Analytics

Education Requirements

• Bachelor's degree in CS, IT, Math, Statistics, etc

Advanced Education

Master's, PhD or Online Certifications in AI/ML, Data Science

Certifications

Google AI, Microsoft Azure AI, IBM Data Science,
 Coursera, edX

Core Skills for AI Roles

Python, R, TensorFlow, PyTorch, Statistics, Neural Networks

Core Skills for Big Data Roles

Hadoop, Spark, SQL, NoSQL, Data Warehousing

Soft Skills

 Critical Thinking, Problem Solving, Communication, Teamwork

Role 1: Data Analyst

 Entry-level, focuses on interpreting and analyzing data patterns.

Role 2: Data Scientist

Advanced analytics, machine learning, predictive modeling

Role 3: Machine Learning Engineer

Build ML models, algorithms, and data pipelines

Role 4: Al Research Scientist

Conduct research on new AI techniques and applications

Role 5: NLP Engineer

Work with human language processing systems

Role 6: Computer Vision Engineer

Work with image and video data for automation

Role 7: Data Engineer

Build and maintain large-scale processing systems

Role 8: Business Intelligence Analyst

Translate data into strategic business decisions

Job Search Platforms

LinkedIn, Naukri, Kaggle Jobs, Upwork

Supervised vs Unsupervised vs Deep Learning

Overview of Machine Learning Paradigms

What is Machine Learning?

 Definition:-Machine Learning (ML) is a branch of artificial intelligence (AI) that gives computers the ability to learn without being explicitly programmed

Types of ML

- 1) Supervised Learning
- 2) Unsupervised Learning
- 3) Reinforcement Learning

Supervised Learning

- Definition: Supervised learning is a type of machine learning where the model is trained on a labeled dataset
- Characteristics of Supervised Learning
 - -Mainly used in classification and regression
 - -Common models include Linear Regression, Decision Trees, SVM, k-NN

Unsupervised Learning

- Definition:-Unsupervised learning is a type of machine learning where the model is trained on unlabeled data
- Characteristics of Supervised Learning
 - -Mainly used in Clustering and Dimensionality Reduction
- -K-Means Clustering, Hierarchical Clustering, DBSCAN, PCA

Reinforcement Learning

- Definition:-Reinforcement learning (RL) is a type of machine learning where an agent learns to take actions in an environment to maximize cumulative rewards
- Characteristics of Reinforcement Learning

Game playing (e.g., AlphaGo), robotics, self-driving cars, automated trading

Examples of Supervised Learning

- Email Spam Detection
- Loan Prediction

Advantages of Supervised Learning

- High Accuracy
- Easy to Understand

Disadvantages of Supervised Learning

- Requires Labeled Data
- Expensive

Examples of Unsupervised Learning

- News Grouping
- Social Network Analysis
- Music Genre

Advantages of Unsupervised Learning

No Labeled Data Needed

Disadvantages of Unsupervised Learning

- Hard to Interpret
- Lower Accuracy

Deep Learning

- Definition:-Deep learning is a subset of machine learning that uses artificial neural networks with multiple layers (deep neural networks) to model and learn complex patterns in large amounts of data
- Characteristics of Deep Learning
- -Performs best with large amounts of labeled data
- -Needs powerful GPUs or TPUs for training deep models.
- -Excellent for image recognition, speech translation, autonomous vehicles, etc.

Examples of Deep Learning

- Image Recognition
- Language Translation

Popular Deep Learning Algorithm

- AAN
- CNN
- RNN
- GAN