CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 5 SETTEMBRE 2017

Svolgere i seguenti esercizi,

qiustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola** e **gruppo** di **appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Siano n e k due numeri naturali e sia A un insieme di cardinalità n. Assumendo $k \le n$, quale tra questi tre numeri è $|\{B \subseteq A \mid |B| = k\}|$?

$$n!/k!;$$
 $\binom{n}{k};$ $n!/(n-k)!.$

Se |A| = 10, quanti sono:

- (i) i sottoinsiemi di A di cardinalità 3?
- (ii) quelli di cardinalità 7?
- (iii) le applicazioni iniettive da $\{1, 2, 3\}$ ad A?

Esercizio 2. Studiare le due equazioni congruenziali

(A):
$$18x \equiv_{62} 13$$
 e (B): $18x \equiv_{62} 14$,

determinando per ciascuna di esse l'insieme di tutte le soluzioni intere.

Esercizio 3. Sia $S = \{0, 1, 2, 3, 4, 5\}$. Esiste una ed una sola relazione di equivalenza \sim in S tale che $\{2,3\} \subseteq [0]_{\sim}$, $1 \sim 4$ e $|S/\sim| = 3$.

- (i) Descrivere S/\sim elencando gli elementi di ciascuna classe di equivalenza rispetto a \sim . Si consideri l'applicazione $f\colon a\in S\mapsto [a]_{\sim}\in \mathcal{P}(S)$.
 - (ii) f è iniettiva? f è suriettiva?
 - (iii) Vero o falso (e perché): \sim è il nucleo di equivalenza di f.

Esercizio 4. Si consideri la relazione d'ordine σ definita in $\mathbb{N} \times \mathbb{N}$ ponendo, per ogni $a, b, c, d \in \mathbb{N}$,

$$(a,b) \sigma (c,d) \iff (a \le c \wedge b|d).$$

- (i) Determinare in $(\mathbb{N} \times \mathbb{N}, \sigma)$ gli eventuali elementi minimali, massimali, minimo, massimo.
- (ii) Elencare i minoranti e descrivere i maggioranti in $(\mathbb{N} \times \mathbb{N}, \sigma)$ di $X = \{(2, 14), (5, 21)\}$ e individuare, se esistono, (o spiegare perché non esistono) inf X e sup X in $(\mathbb{N} \times \mathbb{N}, \sigma)$.
- (iii) Trovare, se possibile, due sottoinsiemi B e C di $\mathbb{N} \times \mathbb{N}$ tali che |B| = |C| = 4 e
 - (a) (B, σ) sia un reticolo booleano;
 - (b) (C, σ) sia totalmente ordinato.

Sia $T = \{(1,1), (1,2), (1,3), (1,5), (1,60), (2,0), (2,5)\}.$

- (iv) Disegnare il diagramma di Hasse di (T, σ) , stabilendo se questo è un reticolo, un reticolo distributivo, un reticolo complementato.
- (v) Esiste $y \in \mathbb{N} \times \mathbb{N}$ tale che $(T \cup \{y\}, \sigma)$ sia un reticolo booleano?

Esercizio 5.

- (i) Sia $f = (x^3 + \bar{1})(x^3 x + \bar{1}) \in \mathbb{Z}_3[x]$. Dopo aver calcolato $f(-\bar{1})$, si decomponga f in prodotto di polinomi irriducibili monici.
- (ii) Sempre in $\mathbb{Z}_3[x]$, si consideri l'operazione binaria * definita ponendo, per ogni $g, h \in \mathbb{Z}_3[x]$, $g * h = g^2 + h$.
 - (a) * è commutativa? * è associativa?
 - (b) $(\mathbb{Z}_3[x],*)$ ha elementi neutri a sinistra, neutri a destra, neutri?
 - (c) L'insieme $\{xg \mid g \in \mathbb{Z}_3[x]\}$ è una parte chiusa in $(\mathbb{Z}_3[x], *)$?