elect Rows				Thu Jul 26 18, 14:	09:16
Data					
Data instances: 12	294				
Features: 69					
Meta attributes: 2 Condition: Magnet		ation is c	defined		
Matching data					
Data instances: 29 Features: 62	94				
Meta attributes: 2					
Non-matching data	ı				
D-4- i	200				
Data instances: 10 Features: 67					
Meta attributes: 2					
elect Columns				Thu Jul 26 18, 14:	09:28
Input data					
to Late Early, Relati Late Weighted Mas Ti, V, Zr, Nb, Mo, Ht	ive to Eass, Late f, Ta, W, nsverse otal: 64 f	arly SiCA Mean Ele Ce, Ann Annealin features)	l, Relativectrons, lealing te g field, F	Total Late Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, we to Late SiCAI, Relative to Early BP, Relative to Late BP, Relative to Early GaGe, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Early Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, emperature (K), Annealing Time (s), Primary Crystallization Onset (K), Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longit Ribbon Thickness (um), Coercivity, Curie Temp, Core Loss, Electrical Resistivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diametro.	Area, Cu, Ag, tudinal
Output data					
Late, V, Late Weigh Coercivity, Grain Dia Early GaGe, Perme	Relative nted Mas ameter, eability, I	to Late Ess, Delta Primary Early Me	T2, Rela Crystalliz an Elect	e, Electrical Resistivity, Late Weighted Volume, Relative to Fe GaGe, Delta T1, Delta T0, Early Weighted Area, Ag, Relative to Fe SiCAI, Relative to Late SiCAI, Relative to Late BP, AI, Early Weighted Mass, Mo, Core Loss, Total SiCAI, Primary Crystallization Onset (K), W, Cu, Magnetos zation Peak (K), Total Early Transition, Relative to Early SiCAI, Relative to Fe BP, Total Late Transition, Relative to Early BP, Relative to Fe Early, R rons, Late Mean Electrons, Hf, LogPermeability, Ti, Longitudinal Annealing field, LogCoercivity, Transverse Annealing field, Curie Temp, Relative to GaGe, Late Weighted Area)	striction, Relative to
reprocess				Thu Jul 26 18, 14:	09:33
Settings					
Namelia Featur	aa. Cant	ios by Ma	odian Ca	nole by CD	
Normalize Feature	es: Ceni	er by ivie	edian, Sc	ale by SD	
est & Score				Thu Jul 26 18, 14:	09:38
Settings					
	tratifical (20 fold C	roea vali	tation	
Sampling type: St	uauned 2	zu-ioia Ci	ioss valid	autori	
Scores					
Method	MSE	RMSE	MAE	R2	
kNN	0.030	0.172		0.801	
Tree	0.027	0.165		0.818	
SVM		0.250	0.187		
Random Forest	0.021	0.144		0.862	
Neural Network	0.028	0.166	0.112		
Linear Regression	U.064	0.254	0.192	U.5/1	

Thu Jul 26 18, 14:10:23

Name: Tree

Model parameters

Pruning: at least two instances in leaves, at least four instances in internal nodes, maximum depth 8

Splitting: Stop splitting when majority reaches 95% (classification only)

Binary trees: Yes

Data

Data instances: 294

Features: Fe, Si, B, P, Zr, Nb, Annealing temperature (K), Annealing Time (s), Secondary Crystallization Peak (K), Ribbon Thickness (um), Total BP (total: 11 features)

Meta attributes: Composition ID, Reference DOI

Target: Magnetic Saturation

Color: Magnetic Saturation

Random Forest Thu Jul 26 18, 14:10:31

Name: Random Forest

Model parameters

Number of trees: 10

Maximal number of considered features: unlimited

Fixed random seed: 4

Maximal tree depth: 8 Stop splitting nodes with maximum instances: 4

Data

Data instances: 294

Features: Fe, Si, B, P, Zr, Nb, Annealing temperature (K), Annealing Time (s), Secondary Crystallization Peak (K), Ribbon Thickness (um), Total BP (total: 11 features)

Meta attributes: Composition ID, Reference DOI Target: Magnetic Saturation

Color: Magnetic Saturation

Linear Regression Thu Jul 26 18, 14:10:43

Name: Linear Regression

Model parameters

Regularization: No Regularization

Data

Data instances: 294

Features: Fe, Si, B, P, Zr, Nb, Annealing temperature (K), Annealing Time (s), Secondary Crystallization Peak (K), Ribbon Thickness (um), Total BP (total: 11 features)
Meta attributes: Composition ID, Reference DOI
Target: Magnetic Saturation

Scatter Plot Thu Jul 26 18, 14:10:48

Color: Magnetic Saturation

kNN Thu Jul 26 18, 14:10:54

Name: kNN

Model parameters

Number of neighbours: 3 Metric: Euclidean Weight: Uniform

Data

Data instances: 294

Features: Fe, Si, B, P, Zr, Nb, Annealing temperature (K), Annealing Time (s), Secondary Crystallization Peak (K), Ribbon Thickness (um), Total BP (total: 11 features)

Meta attributes: Composition ID, Reference DOI

Target: Magnetic Saturation

Scatter Plot Thu Jul 26 18, 14:10:59

Color: Magnetic Saturation

Neural Network Thu Jul 26 18, 14:11:11

Name: Neural Network

Model parameters

Hidden layers: 40, 20, 10 Activation: ReLu Solver: Adam Alpha: 1.0 Max iterations: 5000

Data

Data instances: 294
Features: Fe, Si, B, P, Zr, Nb, Annealing temperature (K), Annealing Time (s), Secondary Crystallization Peak (K), Ribbon Thickness (um), Total BP (total: 11 features)

Meta attributes: Composition ID, Reference DOI Target: Magnetic Saturation

Scatter Plot Thu Jul 26 18, 14:11:16

Color: Magnetic Saturation

SVM Thu Jul 26 18, 14:11:33

Name: SVM

Model parameters

SVM type: v-SVM, v=0.35, C=0.899999999999997 **Kernel:** Linear

Numerical tolerance: 0.001

Iteration limt: 5000

Data

Data instances: 294

Features: Fe, Si, B, P, Zr, Nb, Annealing temperature (K), Annealing Time (s), Secondary Crystallization Peak (K), Ribbon Thickness (um), Total BP (total: 11 features)

Meta attributes: Composition ID, Reference DOI

Target: Magnetic Saturation

Scatter Plot Thu Jul 26 18, 14:11:41

Color: Magnetic Saturation