2.4 The precise definition of a limit

- 1. definition of limit 極限定義
- 2. one-side limit 單邊極限
- 3. infinite limit 無限極限

什麼叫靠近 (approach)? 一公分? 一公尺? 一公里? 你問我靠你有多近?我挨你有幾分?你去想一想,你去看一看, ε - δ 我的近.

Definition of limit 0.1

Recall: $\lim_{x\to a} f(x) = L \iff f(x) \to L \text{ as } x \to a$. 怎麼說明靠近 (approach " \to ")? 要用 ε - δ 語言: 以 ε & δ 代表<u>距離</u>, 用來描述<u>靠近</u>.

Define: f(x) is defined on (b, c) with b < a < c (except a possibly).

$$\lim_{x \to a} f(x) = L$$

 $\boxed{\lim_{x\to a} f(x) = L}$ if $\forall \ \varepsilon>0, \ \exists \ \delta>0, \ \ni \ 0<|x-a|<\delta \implies |f(x)-L|<\varepsilon.$

如果對所有 $\varepsilon > 0$, 都存在 $\delta > 0$, 使得只要 $0 < |x-a| < \delta$, 就會 $|f(x)-L| < \varepsilon$.

Notation:

: for all 對所有;
: exists 存在;
: such that (s.t.) 使得; implies 若 (前者爲真) 則 (後者爲真).

 $\lim f(x) = L$ 代表: 如果你要 f(x) 以 (你要的) ε 的距離靠近 L, 它能保證, 只要 x 是以 (保證會有) δ 的距離靠近 a 就有。

反過來 (腳色互換), 要證明 $\lim_{x\to a}f(x)=L$, 就要對任意給定的 ε 找出 δ , 保證只要 x 是以 δ 的距離 (或更小) 靠近 a, f(x) 就會以 (至少有) ε 的距離靠近 L。

Ex:
$$f(x) = \begin{cases} 2x - 1, & x \neq 3 \\ 6, & x = 3 \end{cases}$$
, $\lim_{x \to 3} f(x) = 5$ (polynomial).

How to prove $f(x) \to 5$ as $x \to 3$?

Case 1. $\varepsilon = 0.1$.

$$|f(x) - L| = |(2x - 1) - 5| = 2|x - 3| < 0.1 \iff |x - 3| < 0.05.$$
 所以只要 x 以 0.05 的距離靠近 3 , $f(x)$ 就會以 0.1 的距離靠近 5 .

Case 2. $\varepsilon = 0.01$.

$$|f(x)-L|=|(2x-1)-5|=2|x-3|<0.01\iff |x-3|<0.005.$$
 所以只要 x 以 0.005 的距離靠近 $3, f(x)$ 就會以 0.01 的距離靠近 $5.$

Case 3. $\varepsilon > 0$.

$$|f(x) - L| = |(2x - 1) - 5| = 2|x - 3| < \varepsilon \iff |x - 3| < \frac{\varepsilon}{2}.$$

所以只要 x 以 $\delta \stackrel{(\leq)}{=} \frac{\varepsilon}{2}$ (或更小) 的距離靠近 3, f(x) 就會以 (至少有) ε 的 $\longrightarrow 5$

距離靠近 5. ... By the definition of limit, $\lim_{x\to 3} f(x) = 5$.

Note: 不要搞反了: $|f(x) - L| < \varepsilon$ $0 < |x - a| < \delta$. f(x) 靠近 L 的地方可能很多, 可能 x 離 a 很遠, 但是 f(x) 還是很靠近 L.

0.2 One-side limit

Define:

$$\lim_{x \to a^{-} \atop a^{+}} f(x) = L$$
 if $\forall \varepsilon > 0, \exists \delta > 0, \ni a - \delta < x < a \implies |f(x) - L| < \varepsilon$.
$$a < x < a + \delta$$
 (Prove by definition " $\lim_{x \to a} f(x) = L \iff \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L$ ".)
$$\lim_{x \to 0^{+}} f(x) = \infty$$

$$\lim_{x \to 0^{+}} f(x) = 0$$

0.3 Infinite limit

Define:

$$\lim_{x \to a} f(x) = \infty$$

$$\frac{a^{-}}{a^{+}} - \infty$$
if
$$\forall M > 0, \exists \delta > 0, \ni 0 < |x - a| < \delta \implies f(x) > M.$$

$$N < 0 \qquad \qquad a - \delta < x < a$$

$$a < x < a + \delta$$

怎麼描述任意大/小? 任何 (至少比零)大/小的 M/N, 都能找到 δ , 保證只要 x 以 δ 的距離 (從 $\mathbf{z}/$ 右邊) 靠近 a, f(x) 就會比 M/N 還大/小。

How to prove limit: (標準流程)

Step 1. Guessing a value for δ ($\delta = \delta(\varepsilon)$).

Step 2. Showing this δ works.

Example 0.1 Prove $\lim_{x\to 3} (4x - 5) = 7$.

1.
$$|(4x-5)-7|<\varepsilon\iff 4|x-3|<\varepsilon\iff |x-3|<\frac{\varepsilon}{4},\ guess\ \delta=\frac{\varepsilon}{4}.$$

2. Given $\varepsilon > 0$, choose $\delta = \frac{\varepsilon}{4}$.

If $0 < |x-3| < \delta$, then $|f(x)-7| = |(4x-5)-7| = 4|x-3| < 4 \cdot \delta = 4 \cdot \frac{\varepsilon}{4} = \varepsilon$. Therefore, by the definition (of the limit), $\lim_{x \to 3} (4x-5) = 7$.

Skill 1: 用 $|f(x) - L| < \varepsilon$ 推出 $|x - a| < \delta(\varepsilon)$, 猜 $\delta = \delta(\varepsilon)$.

Example 0.2 Prove $\lim_{x\to 0^+} \sqrt{x} = 0$.

1.
$$|\sqrt{x} - 0| = \sqrt{x} < \varepsilon \iff x < \varepsilon^2$$
, guess $\delta = \varepsilon^2$.

2. Given $\varepsilon > 0$, choose $\delta = \varepsilon^2$.

If $0 < x < \delta$, then $|f(x) - 0| = |\sqrt{x} - 0| = \sqrt{x} < \sqrt{\delta} = \sqrt{\varepsilon^2} = \varepsilon$. Therefore, by the definition (of the right-hand limit), $\lim_{x \to 0^+} \sqrt{x} = 0$.

Attention: $\lim_{x\to 0} \sqrt{x} \neq 0$. (Can you explain why?)

Example 0.3 Prove $\lim_{x\to a} c = c$. (Choose $\delta = 1$.)

Example 0.4 Prove $\lim_{x\to a} x = a$. (Choose $\delta = \varepsilon$.)

Example 0.5 *Prove* $\lim_{x \to 3} x^2 = 9$.

1.
$$|x^2 - 9| = |x + 3||x - 3|$$
. $(|x - 3|$ 很靠近零, 但是 $|x + 3|$ 呢?) idea: $if |x + 3| < C$ and $|x - 3| < \frac{\varepsilon}{C}$ for some $C > 0$, then $|x^2 - 9| < C \cdot \frac{\varepsilon}{C} = \varepsilon$.

When |x-3|<1, |x+3|<7; so let C=7 and guess $\delta=\min\left\{1,\frac{\varepsilon}{7}\right\}$.

2. Given $\varepsilon > 0$, choose $\delta = \min\left\{1, \frac{\varepsilon}{7}\right\}$. (選最小才能保證 <, < 都成立.)
If $0 < |x-3| < \delta$, then $0 < |x-3| < 1 \implies |x+3| < 7$, and $0 < |x-3| < \frac{\varepsilon}{7}$, so $|f(x)-9| = |x^2-9| = |x+3||x-3| < 7 \cdot \frac{\varepsilon}{7} = \varepsilon$.
Therefore, by the definition, $\lim_{x \to 3} x^2 = 9$.

Skill 2: δ 可以嘗試一些數字 (like 1) 夾住其他乘積項, 再讓 δ 取最小值.

[Another method]: (用 Skill 1)

Choose $\delta = \min\{3 - \sqrt{9 - \varepsilon}, \sqrt{9 + \varepsilon} - 3\}$ when $\varepsilon < 9$, and choose $\delta = \sqrt{9 + \varepsilon} - 3$ when $\varepsilon \ge 9$.

Example 0.6 Prove limit law: (addition)

$$\lim_{x \to a} f(x) = L \& \lim_{x \to a} g(x) = M \implies \lim_{x \to a} [f(x) + g(x)] = L + M.$$

Proof. Given $\varepsilon > 0$. $|[f(x) + g(x)] - (L + M)| = |(f(x) - L) + (g(x) - M)| \le$ |f(x) - L| + |g(x) - M|. $(: |a + b| \le |a| + |b|)$

$$\therefore \lim_{x \to a} f(x) = L, \ \exists \ \delta_1 > 0, \ \ni 0 < |x - a| < \delta_1 \implies |f(x) - L| < \frac{\varepsilon}{2}.$$

$$\lim_{x \to a} g(x) = M, \ \exists \ \delta_2 > 0, \ \ni 0 < |x - a| < \delta_2 \implies |g(x) - M| < \frac{\varepsilon}{2}.$$

Choose $\delta = \min\{\delta_1, \delta_2\}$.

If $0 < |x - a| < \delta$, then $0 < |x - a| < \delta_1$ and $0 < |x - a| < \delta_2$, and so $|f(x) - L| < \frac{\varepsilon}{2}$ and $|g(x) - M| < \frac{\varepsilon}{2}$,

$$\implies |[f(x) + g(x)] - (L+M)| \le |f(x) - L| + |g(x) - M| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$
Therefore, by the definition, $\lim_{x \to a} [f(x) + g(x)] = L + M$.

Skill 3: 用 triangle inequality 三角不等式 $(|a+b| \le |a|+|b|, |a+b+c| \le |a|+|b|)$ |a|+|b|+|c|,...) 分成總和爲 ε 的多項 $(\frac{\varepsilon}{2}+\frac{\varepsilon}{2},\frac{\varepsilon}{3}+\frac{2\varepsilon}{3},\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3},...),$ 找出 個別的 δ , 最後再取最小值 (保證每項不等式都成立)

Example 0.7 (Extended) (continuous) $\implies \lim f(x)g(x) = LM$.

Proof. $|fg - LM| = |(fg - Lg) + (Lg - LM)| \le |f - L||g| + |L||g - M|$. 1. $\exists \delta_1 \ni |x - a| < \delta_1 \implies |g - M| < 1 \iff |g| < |M| + 1$; 2. $\exists \delta_2 \ni |x - a| < \delta_2 \implies |f - L| < \frac{\varepsilon}{2(|M| + 1)}$;

1.
$$\exists \delta_1 \ni |x-a| < \delta_1 \implies |g-M| < 1 \iff |g| < |M| + 1;$$

2.
$$\exists \ \delta_2 \ni |x - a| < \delta_2 \implies |f - L| < \frac{\varepsilon}{2(|M| + 1)}$$

$$\beta. \exists \delta_3 \ni |x-a| < \delta_3 \implies |g-M| < \frac{\varepsilon}{2(|L|+1)}.$$
 (避開 $L=0$)

Choose $\delta = \min\{\frac{\delta_1}{\varepsilon}, \delta_2, \delta_3\}$. If $0 < |x - a| < \delta$, then (略) and $|fg - LM| < \frac{\varepsilon}{2(|M| + 1)} \cdot \frac{\varepsilon}{|M| + 1} + |L| \cdot \frac{\varepsilon}{2(|L| + 1)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

[Another proof:] (時間夠再說)

$$|fg - LM| \le |f - L||g - M| + |L||g - M| + |f - L||M|$$

$$\begin{split} &|fg-LM| \leq |f-L||g-M| + |L||g-M| + |f-L||M| \\ &< \frac{\binom{\delta_1}{\varepsilon}}{3\max\{1,|M|\}} \cdot \binom{\delta_3}{1} + |L| \cdot \frac{\binom{\delta_1}{\varepsilon}}{3\max\{1,|L|\}} + \frac{\binom{\delta_2}{\varepsilon}}{3\max\{1,|M|\}} \cdot |M| \end{split}$$

$$<\frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \text{ when choose } \delta = \min\{\delta_1, \delta_2, \delta_3\}.$$

$$(\frac{\varepsilon}{3\max\{1,|L|\}}=\min\{rac{arepsilon}{3},rac{arepsilon}{3|L|}\}$$
. 分割 $arepsilon$ 與選擇 δ 的方法都不是唯一.)

Example 0.8 (infinite limit) Prove $\lim_{x\to 0} \frac{1}{x^2} = \infty$.

1.
$$\frac{1}{x^2} > M \iff |x| < \frac{1}{\sqrt{M}}, \ guess \ \delta = \frac{1}{\sqrt{M}}.$$

2. Given
$$M > 0$$
, choose $\delta = \frac{1}{\sqrt{M}}$

2. Given
$$M > 0$$
, choose $\delta = \frac{1}{\sqrt{M}}$.

If $0 < |x - 0| < \delta$, then $\frac{1}{x^2} > \frac{1}{\delta^2} = \frac{1}{(\frac{1}{\sqrt{M}})^2} = M$.

Therefore, by the definition, $\lim_{x\to 0} \frac{1}{x^2} = \infty$. $(\frac{1}{x^2} \to \infty \text{ as } x \to 0.)$

Remind:
$$\lim_{x \to a} f(x) = L$$
 or $f(x) \to L$ as $x \to a$

$$0 \longrightarrow 0$$

$$a^{-}$$

$$a^{+}$$

$$-\infty$$

$$a^{+}$$

$$\begin{array}{ccc} \text{if } \forall & \varepsilon > 0 \text{ , } \exists \; \delta > 0, \ni 0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon. \\ M > 0 & \frac{a - \delta < x < a}{N < 0} & f(x) > M \\ N < 0 & a < x < a + \delta & f(x) < N \end{array}$$

When proving

- limit: $0 |x-a| < \delta$ iff x = a.
- one-side limit: $a \delta < x < a \& a < x < a + \delta$ 左右邊不同.
- infinite limit: f(x) > M & f(x) < N 沒有絕對值.

Remark: 計算極限的方法: 極限律, 左右極限, 夾擠定理, 都可用 ε - δ 證明. (Try to prove by ε - δ : limit laws, left/right-hand limits, Squeeze Theorem.)

♦ Additional: Proof of left/right-hand limits

"
$$\lim_{x \to a} f(x) = L \iff \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L$$
"

Proof.

$$(\Rightarrow) \forall \varepsilon > 0,$$

If
$$a - \delta < x < a$$
, then $0 < a - x = |x - a| < \delta$, $\implies |f(x) - L| < \varepsilon$.

 \therefore by the definition, $\lim_{x\to a^-} f(x) = L$.

If
$$a < x < a + \delta$$
, then $0 < x - a = |x - a| < \delta$, $\Longrightarrow |f(x) - L| < \varepsilon$.

 \therefore by the definition, $\lim_{x \to \infty} f(x) = L$.

$$(\Leftarrow) \ \forall \ \varepsilon > 0,$$

$$\therefore \lim_{x \to a^{-}} f(x) = L, \ \exists \ \delta_{1} > 0 \ni a - \delta_{1} < x < a \implies |f(x) - L| < \varepsilon;$$

$$\lim_{x \to a^{+}} f(x) = L, \ \exists \ \delta_{2} > 0 \ \ni \ a < x < a + \delta_{2} \implies |f(x) - L| < \varepsilon.$$

Choose $\delta = \min\{\delta_1, \delta_2\}$.

If
$$0 < |x-a| < \delta$$
, then
$$\begin{cases} \text{either } -\delta < x - a < 0, & a - \delta_1 < a - \delta < x < a \\ \text{or } 0 < x - a < \delta, & a < x < a + \delta < a + \delta_2 \end{cases}$$
$$\implies |f(x) - L| < \varepsilon.$$

 \therefore by the definition, $\lim f(x) = L$.

