传感器规格书 (RX-D2620B)

概要描述

电阻式薄膜压力传感器RX-D2620B属于单节点传感器家族中的一员,采用梳型电极的方案, 尾线比较短。RX-D2620B是非常可靠的压阻传感器,当施加在传感器有效区域上的压力(压强)增加,传感器的输出 电阻减小.单点传感器可以使用万用表或者客户自己的电路来测量.

B 类梳型方案的传感器和 A 类方案比优点是成本低,单面出线,寄生电容小,缺点是线性范围小,误差大。B 类方案的传感器更偏向于开关使用。

标准压力量程

50 千克压力

传感器特性

特性	值	注释
最小测力	2 千克	最小测力就是指让传感器的输
传感器量程	50 千克	出电阻小于 500 千欧
压力分辨率	模拟输出,连续的	
压力重复性	10%	
无激励电阻	>2 Mega Ohms	
基材类型	聚酯	厚度 0.075 毫米/0.125 毫米
传感器厚度	0. 20mm	
静态电阻	>2 Mega ohms	不受压,平放,不弯曲
传感器上升时间	<1 ms	
迟滞	+10%	
长时间漂移(蠕变)	20% 1 个小时	施加 90%量程压力
	38% 10 个小时	
使用次数(生命周期)	一百万次	
工作温度	-40°C~60°C	
工作湿度	5%~95%	
寄生电容	20P	

应用信息

• 压力和电阻及电导的关系

RX-D2620B是一个 2 线输出的元件, 输出电阻的大小和施加在传感器有效区域的压力有关. 下面的表格是输出电阻及输出电导和施加压力的对应表格及图.

RX-D2620B-50KG					
输出电阻 压力			输出电导		
单位: 千欧	单位:	千克	1/千欧		
	∞	0	0		
8	86	5	0.0116		
	50	10	0.0200		
:	27	20	0.0370		

30

40

50

0. 05260. 0667

0.0769

19

15

13

• 电阻转换成电压

下图是一个典型电阻到电压的转换电路,后面跟了一级跟随器用于阻抗隔离.这个电路在单点演示系统中使用,其中的运放采用单电源供电.

• 电阻转换成电压

下图是一个典型电阻到电压的转换电路,后面跟了一级跟随器用于阻抗隔离.这个电路在单点演示系统中使用,其中的运放采用单电源供电.

传感器接口选择

▶ 母端子

▶ 带塑胶壳的母端子

> 公端子

传感器尺寸图

