Queue and Priority Queue

Lesson 5.2

Learning Objectives

- LO 5.2.1 **Enumerate** and **define** the basic operations of a queue ADT
- LO 5.2.2 **Compute** the asymptotic complexities of queue operations
- LO 5.2.3 **Assert** solutions on computing problems involving queue ADT

Queue

- Queue is an ADT that follows the principle **First In, First Out** (*FIFO*).
- Just like stack, it is linear in form thus it can either be implemented using either an array or any type of linked list.

Queue Operations

• The main operations on a queue are enqueue and dequeue

• **Enqueue** *inserts* the element at the *rear* of the queue

• **Dequeue** removes/deletes the element at the front of the queue

Queue Operations

- Some of the auxiliary operations of the queue include; but not limited to,
 - GetFront return the element at the front of the queue
 - IsEmpty returns 1 if the queue is empty and 0 otherwise
 - IsFull returns 1 if the queue is full and 0 otherwise

Priority Queue

- Priority queue is a queue that updates its order of elements based on prioritization
- A prioritization formula based on element attributes and/or values should be defined and this will be used during sorting the elements every after enqueue

Applications of Queue

- Managing requests on a single shared resource such as CPU scheduling and disk scheduling
- Handling hardware or real-time systems interrupts
- Handling website traffic
- Routers and switches in networking
- Maintaining the playlist in media players

Strengthening the the Learning Objectives

LO 5.2.1 Enumerate and define the basic operations of a queue ADT

What are the basic operations of a queue ADT and what do they do?

LO 5.2.2 Compute the asymptotic complexities of queue operations

Construct a queue ADT structure in 2 implementations: using arrays and circular linked lists. Compute and compare the asymptotic complexity of all five (5) operations based on their most efficient implementations.

LO 5.2.3 Assert solutions on computing problems involving queue ADT

Implement the function josephusProblem. In the Josephus problem, n people arranged themselves in a circle, eliminating every mth person starting from the 1st person in succession until only 1 person is left. A demonstration on the problem (elimination) is shown on the immediate image on the right with n = 12 and m = 5.

