

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 1/33

SUMMER – 2016 EXAMINATION MODEL ANSWER

Subject: BASIC MATHEMATICS

Subject Code: 17104

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17104 Summer-2016 Page No: 2/28

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wiodel / Miswels	IVICINS	Marks
1.		Attempt any <u>TEN</u> of the following:		20
	(a)	Find x if $\begin{vmatrix} 1 & x & x^2 \\ 1 & 2 & 4 \\ 1 & 2 & 0 \end{vmatrix} = 0$		
	Ans.	$\begin{vmatrix} 1 & 3 & 9 \\ & & \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = 0$ $\therefore 1(18-12) - x(9-4) + x^{2}(3-2) = 0$		
			1	
		$\therefore 6 - 5x + x^2 = 0$	1/2	
		$\therefore (x-3)(x-2) = 0$ $\therefore x = 3 \text{ or } x = 2$	1/2	2
	(b)			
	Ans.	$ \begin{bmatrix} a - 4b & 5 & & 11 & 5 \\ & & & & \end{bmatrix} $		
		a - 4b = 11 $-a + b = -5$	1	
		$\therefore a = 3, b = -2$	1	2
	c)	If $A = \begin{bmatrix} 3 & 2 \\ 1 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -1 \\ 3 & 2 \end{bmatrix}$ verify that $A + B = B + A$ $\begin{bmatrix} 0 & 4 \end{bmatrix} \qquad \begin{bmatrix} 4 & -2 \end{bmatrix}$		
	Ans.	$A + B = \begin{bmatrix} 3 & 2 \\ 1 & -1 \end{bmatrix} + \begin{bmatrix} -1 & -1 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 4 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 4 \end{bmatrix} \begin{bmatrix} 4 & -2 \end{bmatrix} \begin{bmatrix} 4 & 2 \end{bmatrix}$	1	
		$B + A = \begin{bmatrix} -1 & -1 \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} 3 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 4 & 1 \end{bmatrix}$ $\begin{bmatrix} 4 & -2 \end{bmatrix} \begin{bmatrix} 0 & 4 \end{bmatrix} \begin{bmatrix} 4 & 2 \end{bmatrix}$	1	2

Subject Code: 17104 Summer - 2016 Page No: 3/28

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	= 1 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2		Marks
1.	d) Ans.	If $A = \begin{bmatrix} 7 & 0 & 2 \\ 1 & 2 & 6 \end{bmatrix}$, find whether matrix A is singular or non-singular. $\begin{bmatrix} 4 & 5 & 3 \end{bmatrix}$ $\begin{bmatrix} 7 & 0 & 2 \\ 1 & 2 & 6 \end{bmatrix}$ $\begin{bmatrix} 4 & 5 & 3 \end{bmatrix}$ $\begin{vmatrix} 4 & 5 & 3 \end{bmatrix}$ $\begin{vmatrix} 7 & 0 & 2 \\ 1 & 2 & 6 \\ 4 & 5 & 3 \end{bmatrix}$ $= 7(6-30)-0(3-24)+2(5-8)=-174 \neq 0$		
		∴ Matrix A is non singular	1	2
	e)	Resolve into the partial fraction $1 + \frac{1}{x-1}$		
	Ans.	Let =		
		$\frac{1}{(x-1)(x+1)} = \frac{A}{(x-1)} + \frac{B}{(x+1)}$ $\therefore 1 = A(x+1) + B(x-1)$ $put x = 1$ $\therefore 1 = A(1+1)$	1/2	
		$\therefore A = \frac{1}{2}$ $put x = -1$ $\therefore 1 = B(-1 - 1)$	1/2	
		$\therefore B = -\frac{1}{2}$ $\frac{1}{2} \qquad -\frac{1}{2}$	1/2	
		$\therefore 1 + \frac{1}{\frac{1}{2}} = 1 + \frac{1}{\frac{1}{2}} = 1 + \frac{2}{\frac{1}{2}} + \frac{2}{\frac{1}{2}}$	1/2	2

Subject Code: 17104 Summer-2016 Page No: 4/28

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Widdel Aliswers	Warks	Marks
1.				
	f)	2 0 2 0 2 0		
	Ans.	2 0 2 0 2 0		
		$\left(\sqrt{3}\right)^2$ 2 2		
		$\left(\begin{array}{c} \cdot \\ 2 \end{array}\right)$	1	
		$=-\frac{9}{1}$ or -2.25	1	
		4		2
	g)	Prove that $\sin 2A = 2 \sin A \cos A$		
	Ans.	$L.H.S = \sin 2 A = \sin (A + A)$	1/2	
		$= \sin A \cos A + \cos A \sin A$	1	
		$= 2 \sin A \cos A = R.H.S$	1/2	
				2
	b)	1 1		
	h)	$ \frac{1}{2}$ $\frac{1}{3}$		
	Ans.	$\frac{\tan A + \tan B}{}$	1	
	Tills.	1 — tan A tan B 1 — 1		
		$=\frac{\frac{1}{2} \cdot \frac{1}{3}}{\frac{1}{3}} = 1$		2
		1 1	1	2
		2 3		
	i)	Evaluate without using calculator ————		
	1)	1 - tan 32 · tan 88		
	Ans.	$u = \tan (32^{\circ} + 88^{\circ})$		
		=tan120°	1	
		$= \tan \left(90^{\circ} + 30^{\circ} \right)$	1/2	
		$= -\cot 30^{\circ}$		2
		$=-\sqrt{3}$	1/2	

Subject Code: 17104 Summer-2016 Page No: 5/28

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
1.	j) Ans.	Find the principal value of tan $(\sqrt{3})$		
	7 1115.	$\tan \left(\sqrt{3}\right) = \theta$	1/2	
		$\sqrt{3} = \tan \theta$	1/2	
		since $\tan 60^{\circ} = \sqrt{3}$	1/2	
		$\therefore \theta = 60^{\circ}$	1/2	2
				2
	k)	Find the angle by tween the lines $3x + 2y = 6$ and $2x - 3y = 5$		
	Ans.	$m = \frac{-3}{2} m = \frac{2}{3}$		
		$\tan \theta = \frac{\left \frac{m_1 - m_2}{1 + m_1 m_2} \right }{1 + m_1 m_2}$	1	
		$= \frac{\left \frac{-3}{2} - \frac{2}{3} \right }{1 + \frac{-3}{2} \times \frac{2}{3}} = \infty$	1/2	
		$\theta = \tan^{-1} \infty = 90^{\circ} = \frac{\pi}{2}$	1/2	2
	1)	Find the range from the following data:		
	Ans	800, 725, 750, 900, 925,910, 1000, 790, 870, 920		
	Alls	Range = Largest Value - Smallest value		
		=1000-725	1	
		= 275	1	
			•	2
2.		Attempt any <u>FOUR</u> of the following:		16
	a)	Solve the following equations by Cramer's rule:		
		x + y = 3, y + z = 5, z + x = 4		
	Ans	$D = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 1(1-0)-1(0-1)+0(0-1)=2$	1	

Summer-2016 Subject Code: 17104 Page No: 6/28

Que.	Sub. Que.	Model Answers	Marks	Total Marks
2.	Que.	$D_{x} = \begin{vmatrix} 3 & 1 & 0 \\ 5 & 1 & 1 \\ 4 & 0 & 1 \end{vmatrix} = 3(1-0)-1(5-4)+0=2$	1	Warks
		$D_{y} = \begin{vmatrix} 1 & 3 & 0 \\ 0 & 5 & 1 \\ 1 & 4 & 1 \end{vmatrix} = 1(5-4)-3(0-1)+0=4$	1	
		$D = \begin{vmatrix} 1 & 1 & 3 \\ 0 & 1 & 5 \\ 1 & 0 & 4 \end{vmatrix} = 1(4-0)-1(0-5)+3(0-1)=6$	1	
		$x = \frac{D_x}{D} = \frac{2}{2} = 1$ $\frac{D_y}{D} = \frac{4}{2}$ $x = \frac{D_z}{D} = \frac{6}{2} = 3$		
				4
	b)	$\begin{bmatrix} 2 & -3 \end{bmatrix} \begin{bmatrix} 3 & -1 & 2 \end{bmatrix} \qquad \qquad$		
	Ans	$AB = \begin{bmatrix} 2 & -3 \end{bmatrix} \begin{bmatrix} 3 & -1 & 2 \\ & & & \\ & & & \\ \end{bmatrix}$ $\begin{bmatrix} 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 6 - 3 & -2 & 4 - 3 \end{bmatrix}$		
		AB =	1	
		$\begin{bmatrix} 3 & 1 \\ T & & T & \begin{bmatrix} 2 & 1 \\ & -3 & 5 \end{bmatrix} \end{bmatrix}$	1	
		$\begin{bmatrix} 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 3 & 1 \\ & & 1 \end{bmatrix}$ $\begin{bmatrix} 3 & 1 \\ & & 1 \end{bmatrix}$ $\begin{bmatrix} 3 & 1 \\ & & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 1 \\ & & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 1 \\ & & 3 \end{bmatrix}$		
		$\begin{bmatrix} 6 - 3 & 3 + 5 \\ B^{T} A^{T} = \begin{bmatrix} 3 & 8 \\ -2 & -1 \\ 4 - 3 & 2 + 5 \end{bmatrix} \begin{bmatrix} 3 & 8 \\ 1 & 7 \end{bmatrix}$	1	4

Subject Code: 17104 Summer-2016 Page No: 7/28

Que.	Sub.	N. 11A	N/ 1	Total
No.	Que.	Model Answers	Marks	Marks
2.	c) Ans	Find inverse of matrix, $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$		
	TMIS	Let $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & -2 & 1 \end{bmatrix}$ $\therefore A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ $ A = 1(3+0) - 2(-1-0) - 2(2-0)$		
		$\begin{vmatrix} A \end{vmatrix} = 1 \neq 0$ $\therefore A^{-1} \text{ exists}$	1	
		$ \begin{bmatrix} \begin{vmatrix} 3 & 0 \\ -2 & 1 \end{vmatrix} & \begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} -1 & 3 \\ 0 & -2 \end{vmatrix} \\ \begin{vmatrix} 2 & -2 \\ -2 & 1 \end{vmatrix} & \begin{vmatrix} 1 & -2 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 0 & -2 \end{vmatrix} \\ \begin{vmatrix} 2 & -2 \\ 3 & 0 \end{vmatrix} & \begin{vmatrix} 1 & -2 \\ -1 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 2\\ -1 & 3 \end{vmatrix} \end{bmatrix} $ M atrix of minors = $ \begin{vmatrix} 2 & -2 \\ 3 & 0 \end{vmatrix} & \begin{vmatrix} 1 & -2 \\ -1 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 2\\ -1 & 3 \end{vmatrix} $		
		$\begin{bmatrix} 3 & -1 & 2 \\ -2 & 1 & -2 \\ 6 & -2 & 5 \end{bmatrix}$	1	
		$\begin{bmatrix} 6 & -2 & 5 \end{bmatrix}$ Matrix of cofactors = $\begin{bmatrix} 3 & 1 & 2 \\ 2 & 1 & 2 \\ & & \end{bmatrix}$ $\begin{bmatrix} 6 & 2 & 5 \end{bmatrix}$	1/2	
		$A dj. A = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & 2 & 5 \end{bmatrix}$	1/2	
		$A^{-1} = \frac{1}{ A } A \mathrm{d} \mathrm{j} . A$ $\begin{bmatrix} 3 & 2 & 6 \\ -1 & \frac{1}{ A } & & \\ & & 1 \\ 2 & 2 & 5 \end{bmatrix}$	1	4

Subject Code: 17104 Summer-2016 Page No: 8/28

	Sub.	M. 114	3.6 1	Total
No.	Que.	Model Answers	Marks	Marks
2.	d)	$\begin{bmatrix} \begin{bmatrix} 3 & 1 \\ \end{bmatrix} & \begin{bmatrix} 0 & 2 \end{bmatrix} \end{bmatrix} & \begin{bmatrix} x \\ \end{bmatrix} \\ \begin{vmatrix} 3 & -3 \end{vmatrix} & \begin{vmatrix} -5 & 4 \end{vmatrix} \end{bmatrix} \begin{bmatrix} 2 \\ \end{bmatrix} & \begin{vmatrix} z \\ \end{bmatrix}$		
	Ans	$\begin{bmatrix} 9 & 3 & 7 & 0 & 4 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 4 \\ 1 & 1 & 1 \end{bmatrix}$	1	
		$\begin{vmatrix} 1 & 9 & -9 \end{vmatrix} \begin{vmatrix} 1 & -10 & 8 \end{vmatrix} \begin{vmatrix} 1 & 2 \end{vmatrix} \begin{vmatrix} 2 & 1 \end{vmatrix} \begin{vmatrix} 2 & 1 \end{vmatrix}$		
		$ \begin{bmatrix} 9 & -1 \\ & \lceil -1 \rceil & x \end{bmatrix} $ $ \begin{bmatrix} 2 \end{bmatrix} $	1	
		$\begin{bmatrix} -9 - 2 \\ -16 - 12 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$ $\begin{bmatrix} -19 - 34 \end{bmatrix} \begin{bmatrix} z \end{bmatrix}$	1	
		$\begin{bmatrix} -11 \\ -28 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$ $\begin{bmatrix} -53 \end{bmatrix} \begin{bmatrix} z \end{bmatrix}$ $x = -11, y = -28, z = -53$	1	4
	e) Ans	Resolve into partial fraction $\frac{x-5}{x+x-6x}$ $x-5 \qquad x-5 \qquad x-5$		
		3 2 =	1/2	
		$\frac{x-5}{x(x-2)(x+3)} = \frac{A}{x} + \frac{B}{x-2} + \frac{C}{x+3}$ $x = 5 = (x-2)(x+3) A + x(x+3) B + x(x-2) C$		
		x-5 = (x-2)(x+3)A + x(x+3)B + x(x-2)C Put $x = 0$	1/2	
		-5 = (-2)(3)A		
		$\therefore A = \frac{5}{6}$ $Put x = 2$	1/2	
		-3 = (2)(5)B		

Summer-2016 Subject Code: 17104 Page No: 9/28

	~ .			
Que.	Sub.	Model Answers	Mark	Total
No.	Que.		S	Marks
2.		$\therefore B = \frac{-3}{10}$	1	
		Put x = -3		
		-8 = (-3)(-5)C		
		$\therefore C = -\frac{8}{15}$	1	
		$\frac{5}{6} - \frac{-3}{10} - \frac{8}{10}$		
		$\frac{x-5}{x(x-2)(x+3)} = \frac{\frac{5}{6}}{\frac{10}{x}} = \frac{-\frac{8}{10}}{\frac{15}{x}}$	1/2	4
	f)	Resolve into partial fraction $\frac{x^3}{x-1}$		
	Ans			
	Alls	$\frac{x}{\sqrt{3}}$		
		$x^3 - x$		
		- +		
		x		
		x^3 x		
		$\therefore \frac{x}{x-1} = x + \frac{x}{x-1}$	1	
		$\therefore \frac{x}{x-1} = \frac{A}{x-1} + \frac{B}{x+1}$	1/2	
		$\therefore x = (x+1) A + (x-1) B$ Put $x = 1$		
		1 = 2A		
		$A = \frac{1}{2}$	1	
		Put x = -1		
		-1 = -2B		
		$B = \frac{1}{2}$	1	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		$\frac{x}{2}$ $\frac{x}{2}$ $\frac{2}{2}$	1/2	4
				,

Summer-2016 Subject Code: 17104 Page No: 10/28

Que.	Sub.	Madal Aussaus	Manlan	Total
No.	Que.	Model Answers	Marks	Marks
3.		Attempt any <u>FOUR</u> of the following:		16
	a)	Solve the equation by inverse matrix method:		
	ŕ	3x + y + 2z = 3, $2x - 3y - z = -3$, $x + 2y + z = 4$		
	Ans	Let $A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \end{bmatrix}$ $ A = 3(-3+2)-1(2+1)+2(4+3)$ $ A = -3-3+14$ $\therefore A = 8 \neq 0$ $\therefore A^{-1} \text{ exists}$ $A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \end{bmatrix}$ $M \text{ atrix of minors} = \begin{bmatrix} -3 & -1 & 2 & -1 & 2 & -3 \\ 2 & 1 & 1 & 1 & 2 \\ 2 & 1 & 1 & 1 & 2 \end{bmatrix}$ $\begin{bmatrix} -3 & -1 & 2 & -1 & 2 & -3 \\ 2 & 1 & 1 & 1 & 2 \\ 1 & 2 & 3 & 1 & 2 \\ 2 & 1 & 3 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 & 3 & 2 \end{bmatrix}$	1/2	
		$\begin{bmatrix} 1 & 2 \\ -3 & -1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & -3 \end{bmatrix} $ $= \begin{bmatrix} -1 & 3 & 7 \\ -3 & 1 & 5 \\ 5 & -7 & -11 \end{bmatrix}$ $M \text{ atrix of cofactors} = \begin{bmatrix} -1 & -3 & 7 \\ 3 & 1 & -5 \\ 5 & 7 & -11 \end{bmatrix}$ $A \text{ dj.} A = \begin{bmatrix} -1 & 3 & 5 \\ -3 & 1 & 7 \\ 7 & -5 & -11 \end{bmatrix}$	1 1/2	
		$A^{-1} = \frac{1}{ A } A \mathrm{d} \mathrm{j}. A$		

Summer-2016 Subject Code: 17104 Page No: 11/28

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
3.		$\begin{bmatrix} -1 & 3 & 5 \\ \frac{1}{8} & & & \\ 7 & -5 & -11 \end{bmatrix}$	1/2	
		$\begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} -1 & 3 & 5 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ $\therefore y = \begin{bmatrix} x \\ -3 \end{bmatrix} = \begin{bmatrix} -3 & 1 & 7 \\ 1 \end{bmatrix} -3 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ $\begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} -3 - 9 + 20 \\ 1 \end{bmatrix}$ $\begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ 1 \end{bmatrix}$ $\therefore y = \begin{bmatrix} 8 \\ 16 \end{bmatrix}$ $\therefore y = \begin{bmatrix} 8 \\ 16 \end{bmatrix}$ $\begin{bmatrix} z \end{bmatrix} = \begin{bmatrix} 8 \\ -8 \end{bmatrix}$	1/2	
	b	$\begin{bmatrix} x \\ x \end{bmatrix} \begin{bmatrix} 1 \\ y \\ - \end{bmatrix}$ $\begin{bmatrix} z \\ z \end{bmatrix} \begin{bmatrix} -1 \\ z \end{bmatrix}$ $\therefore x = 1, y = 2, z = -1$	1	4
	b) Ans	Resolve into partial fractions: $\frac{3x-2}{(x+2)(x^2+4)}$ $\therefore \frac{3x-2}{(x+2)(x^2+4)} = \frac{A}{(x+2)(x^2+4)}$		
		$(x+2)(x^{2}+4) x+2 x^{2}+4$ $\therefore 3x-2=(x^{2}+4)A+(x+2)(Bx+C)$	1/2	
		Put $x = -2$ $\therefore -8 = 8 A$ $\therefore A = -1$ Put $x = 0$	1	
		$-2 = (4) A + (2) C$ $-2 = -4 + 2 C$ $\therefore C = 1$ Put $x = 1$	1	
		Put $x = 1$ $\therefore 1 = (5) A + 3 (B + C)$ $\therefore 1 = -5 + 3 B + 3$		

Subject Code: 17104 Summer-2016 Page No: 12/28

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
3.		$\therefore 1 - 3 + 5 = 3B$		
		$\therefore 3 = 3B$	4	
		$\therefore B = 1$	1	
		$\therefore \frac{3x-2}{$	1/2	4
	c)	Pasalva into partial fractions $2x+1$		
	()	Resolve into partial fractions $\frac{2x+1}{x(x+1)}$		
	Ans	$\frac{2x+1}{2} = \frac{A}{2} + \frac{B}{2} + \frac{C}{2}$		
		$2x + 1 = x(x + 1) A + (x + 1) B + x^{2} C$	1/2	
		Put x = 0		
		1 = (1) B	1	
		$\therefore B = 1$		
		Put x = -1	1	
		$\therefore -1 = C$		
		Put x = 1		
		$\therefore 3 = (1)(1+1)A + (1+1)B + (1)^{2}C$		
		$\therefore 3 = 2A + 2B + C$		
		$\therefore 3 = 2A + 2 - 1$		
		$\therefore 2 = 2A$	1	
		$\therefore A = 1$		
		2x+1 1 1 -1		
		$\therefore \frac{2x+1}{x(x+1)} = \frac{1}{x} + \frac{1}{x} + \frac{-1}{x+1}$	1/2	4
		2 77		
	d)	Given $\tan (A + B) = \frac{3}{4}$, $\tan (A - B) = \frac{77}{36}$, find $\tan 2A$		
	Ans	Let A + B = x, A - B = y		
		x + y = A + B + A - B = 2A	1	
		$\therefore \tan(x+y) = \tan 2A$	1	

Summer-2016 Subject Code: 17104 Page No: 13/28

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
3.		$\therefore \tan 2A = \frac{\tan x + \tan y}{1 - \tan x \cdot \tan y}$ 3 77	1	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
		$= -\frac{416}{87} = -4.7816$	1	4
	e)	$\frac{\pi}{4}$		
	Ans	$\operatorname{Let} A + B = \frac{\pi}{4}$		
		$\therefore \tan (A + B) = \tan \frac{A}{4}$	1/2	
		$\therefore \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} = 1$	1	
		$\tan A + \tan B = 1 - \tan A \cdot \tan B$	1/2	
		$\tan A + \tan B + \tan A \cdot \tan B = 1$	1/2	
		$\tan A (1 + \tan B) + \tan B + 1 = 1 + 1$	1	
		$(1 + \tan B)(1 + \tan A) = 2$	1/2	4
	f)	$-\frac{1}{2}\left(\frac{1}{2}\right) \qquad -\frac{1}{5}\left(\frac{1}{5}\right) \qquad -\frac{1}{8}\left(\frac{1}{8}\right) \qquad \frac{\pi}{4}$		
	Ans	$ \begin{pmatrix} \frac{1}{2} & \frac{1}{5} & \frac{1}{5} & \frac{1}{8} \\ \frac{1}{5} & \frac{1}{8} & \frac{1}{8} \end{pmatrix} $		
		$= \tan \left \frac{1}{1} \frac{1}{1 - \left + \tan \left(\frac{-}{0} \right) \right } \right $ $= \tan \left(\frac{1}{1 - \left \frac{1}{2} \right } \right) + \tan \left(\frac{-}{0} \right)$	1	
		$= \tan^{-1} \left(\begin{array}{c} 7 \\ \end{array} \right) + \tan^{-1} \left(\begin{array}{c} 1 \\ \end{array} \right)$	1	
		$ \left(\begin{array}{c} 7 & 1 \\ -+- \\ \hline 1 - \frac{7}{9} \times \frac{1}{8} \right) $ $ \frac{\pi}{4} $	2	4

Subject Code: 17104 Summer-2016 Page No: 14/28

Que.	Sub.		Marks	Total					
No.	Que.		Warks	Marks					
4.		Attempt any FOU	<u>IR</u> of the followi	ng:		16			
	a) Prove that $\cos(A + B) = \cos A \cos B - \sin A \sin B$								
	Right Angled Triangle Acute Angle Trigonometric Ratios								
		$\sin A = \frac{PM}{OP}, \cos A = \frac{OM}{OP}$							
		ΔOPQ	∠POQ = B	$\sin B = \frac{PQ}{OQ}, \cos B = \frac{OP}{OQ}$	1				
		ΔPRQ	∠PQR = A	$\sin A = \frac{PR}{PQ}, \cos A = \frac{QR}{PQ}$					
		ΔONQ	∠NOQ = A+B	$\sin(A+B) = \frac{QN}{OQ}, \cos(A+B) = \frac{ON}{OQ}$					
		$\therefore \cos(A+B) = \frac{O}{O}$ $OM -$	\overline{Q}		1/2				
		$= \frac{OM}{O}$ $= \frac{OM - O}{O}$		1/2					
		$= \frac{OM}{OQ} - OM$		1/2					
		=>	$\times \frac{OP}{OQ} - \frac{PR}{PQ} \times \frac{PQ}{OQ}$		17	4			
			$\cos B - \sin A \sin A$		1/2	4			

Subject Code: 17104 Summer-2016 Page No: 15/28

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
4.		Consider a standard unit circle Let P,Q,R,S be points such that $\angle XOP = A$, $\angle XOQ = B$, $\angle XOR = A - B$ From fig. $\angle POQ = A - B$ $\therefore \angle POQ = \angle XOR$ P(cos A, sin A), Q(cos B, sin B) R(cos (A - B), sin (A - B)), S(1,0) \therefore Chord $PQ = C$ hord RS	1	
		$\sqrt{(\cos A - \cos B)^{2} + (\sin A - \sin B)^{2}} = \sqrt{[\cos (A - B) - 1]^{2} + [\sin (A - B) - 0]^{2}}$ $(\cos A - \cos B)^{2} + (\sin A - \sin B)^{2} = [\cos (A - B) - 1]^{2} + [\sin (A - B) - 0]^{2}$ $\therefore \cos^{2} A + \cos^{2} B - 2\cos A \cos B + \sin^{2} A + \sin^{2} B - 2\sin A \sin B =$	1	
		$\cos (A - B) + 1 - 2\cos(A - B) + \sin (A - B)$ $\therefore 1 + 1 - 2(\cos A \cos B + \sin A \sin B) = 1 + 1 - 2\cos(A - B)$	1	
		$\therefore \cos A \cos B + \sin A \sin B = \cos (A - B)$ Replace B by $-B$ in above equation $\therefore \cos A \cos (-B) + \sin A \sin (-B) = \cos (A - (-B))$	1/2	
		$\therefore \cos A \cos (-B) + \sin A \sin (-B) - \cos (A - (-B))$ $\therefore \cos A \cos B - \sin A \sin B = \cos (A + B)$	1/2	4
	b)	Without using calculator prove that		
	Ans.	0 0 0 0 $\frac{\sqrt{3}}{2}$ 0 0 0 $\frac{\sqrt{3}}{2}$	1/2	
			1/2	
		$\cos(-300^{\circ}) = \cos 300^{\circ} \qquad \qquad \dots \text{ Since } \cos(-\theta) = \cos \theta$ $= \sin 30^{\circ}$	1/2	
		$=\frac{1}{2}$	1/2	

Summer-2016 Subject Code: 17104 Page No: 16/28

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	THOUGHT I MISW 613	TVICE IS	Marks
4.		$\sin\left(-330^{\circ}\right) = -\sin 330^{\circ} \qquad \qquad \dots \text{ Since } \sin\left(-\theta\right) = -\sin \theta$	1/2	
		$= -\left(-\sin 30^{\circ}\right)$ $= \frac{1}{2}$	1/2	
		$= \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$ $= 1$		
		= R.H.S.	1	4
	c)	Prove that $\tan 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan A}$		
	Ans.	$\tan 3A = \tan (A + 2A)$ $= \frac{\tan A + \tan 2A}{\ln A}$		
		$\frac{1 - \tan A \tan 2 A}{2 \tan A}$	1	
		$ \frac{\left(\begin{array}{ccc} 2 \tan A \\ 1 - \tan A \end{array}\right)}{\left(1 - \tan^2 A\right) + 2 \tan A} $	1	
		2 2 3	1/2	
		$1 - \tan A - 2 \tan A$	1	
		=	1/2	4
	d)	$-\frac{1}{2}\left(\frac{1}{2}\right) \qquad -\frac{1}{3}\left(\frac{1}{3}\right) \qquad \frac{\pi}{4}$		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject Code: 17104 Summer-2016 Page No: 17/28

Que.	Sub.	75.114		Total
No.	Que.	Model Answers	Marks	Marks
4.	Ans.	$ \frac{\left(\frac{1}{2}\right)}{\left(\frac{2}{2}\right)} \qquad \frac{\left(\frac{1}{2} + \frac{1}{2}\right)}{\left(1 - \frac{1}{2} \times \frac{1}{3}\right)} $	2	
		$=\frac{\pi}{4}$ $$	1	4
	e) Ans.	Prove that $\frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \cos 5A + \cos 6A} = \tan 5A$ $\frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \cos 5A + \cos 6A} = \frac{\sin 4A + \sin 6A + \sin 5A}{\cos 4A + \cos 6A + \cos 5A}$ $= \frac{2\sin 5A \cos(-A) + \sin 5A}{2\cos 5A \cos(-A) + \cos 5A}$ $\frac{\sin 5A \left[2\cos(-A) + 1\right]}{\cos 5A \left[2\cos(-A) + 1\right]}$ $= \tan 5A$	2 1 1	4
	f)	$ \begin{array}{ccc} -1 \left(\frac{4}{5}\right) & -1 \left(\frac{12}{13}\right) & -1 \left(\frac{33}{65}\right) \\ -1 \left(\frac{4}{5}\right) & & \end{array} $		
	Ans.	$\therefore \cos A = \frac{4}{5}$ $\therefore \sin^2 A = 1 - \cos^2 A$ $= 1 - \frac{16}{25}$ $= \frac{9}{25}$ $\therefore \sin A = \frac{3}{5}$ $\cos^{-1}\left(\frac{12}{13}\right) = B$	1	

Subject Code: 17104

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 18/28 Summer-2016

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
4.	Que.	$\therefore \cos B = \frac{12}{13}$ $\therefore \sin^2 B = 1 - \cos^2 B$ $= 1 - \frac{144}{169}$ $= \frac{25}{169}$ $\therefore \sin B = \frac{5}{13}$ $\therefore \cos (A + B) = \cos A \cos B - \sin A \sin B$ $= \frac{412}{513} - \frac{35}{513}$ $= \frac{48}{65} - \frac{15}{65}$ $\therefore A + B = \cos^{-1} \left(\frac{33}{65}\right)$ $\therefore (5) \qquad (13) \qquad (65)$	1 1/2 1/2	Marks 4
		Let $\cos^{-1}\left(\frac{4}{5}\right) = A$ $\therefore \cos A = \frac{4}{5}$ $\therefore \tan A = \frac{3}{4}$ $A = \tan^{-1}\left(\frac{3}{4}\right)$ $\frac{-1}{5} \left(\frac{4}{5}\right) = -1\left(\frac{3}{4}\right)$ $\cos^{-1}\left(\frac{12}{13}\right) = B$	1	

Subject Code: 17104 Summer-2016 Page No: 19/28

Que.	Sub.	Model Answers	Marks	Total
No. 4.	Que.	Model Answers $\therefore \cos B = \frac{12}{13}$ $\therefore \tan B = \frac{5}{12}$ $B = \tan^{-1}\left(\frac{5}{12}\right)$ $\therefore \cos^{-1}\left(\frac{12}{13}\right) = \tan^{-1}\left(\frac{5}{12}\right)$ $L.H.S. = \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{5}{12}\right)$ $= \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{5}{12}\right)$ $= \tan^{-1}\left(\frac{36 + 20}{1 - \frac{15}{48}}\right)$ $= \tan^{-1}\left(\frac{56}{48}\right)$ $= \tan^{-1}\left(\frac{56}{33}\right)$ $= \cot^{-1}\left(\frac{56}{33}\right)$ $\therefore \cos C = \frac{33}{3}$ $\therefore \cos C = \frac{33}{12}$	1 1/2 1/2	Marks
		$\therefore C = \cos^{-1}\left(\frac{33}{65}\right)$ $\therefore C = \cos^{-1}\left(\frac{33}{65}\right)$ $\frac{-1}{65}$ 33	1	4

Subject Code: 17104 Summer-2016 Page No: 20/28

Que.	Sub. Que.	Model Answers	Marks	Total Marks
5.		Attempt any <u>FOUR</u> of the following:		
J.	a)	0 0 0 0 0 3		
	Ans.	0 0 0 0		
		$\frac{1}{2}$ $\frac{\sqrt{3}}{2}$ 0	1/2	
		$= \frac{\sqrt{3}}{2 \sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ}}$	1/2	
		$= \frac{\sqrt{3}}{\cos(-20^\circ) - \cos 60^\circ \sin 80^\circ}$	1/2	
		$\begin{array}{c cccc} & \sqrt{3} & & & & & & \\ \hline 4 & & & & & & \\ \hline & & & & & & \\ \end{array}$	1/2	
		$= \frac{\sqrt{3}}{4} \left[\cos 20^{\circ} \sin 80^{\circ} - \frac{1}{2} \sin 80^{\circ} \right]$	1/	
		$ = \frac{\sqrt{3} \left[\frac{1}{2} 2 \cos 20^{\circ} \sin 80^{\circ} - \frac{1}{2} \sin 80^{\circ} \right] }{\sqrt{2}} $	1/2	
		$\frac{\sqrt{3}}{8}$ $\frac{\sqrt{3}}{\sqrt{3}}$ $\frac{\sqrt{3}}{\sqrt{3}}$ $\frac{\sqrt{3}}{\sqrt{3}}$	1/2	
		$= \frac{\sqrt{3} \left[\sin \left(2 \times 90^{\circ} - 80 \right) + \frac{\sqrt{3}}{-\sin 80^{\circ}} \right]$	1/2	
		$= \frac{\sqrt{3} \left[\sin 80^{\circ} + \frac{\sqrt{3}}{\cos 80^{\circ}} - \sin 80^{\circ} \right]}{\sin 80^{\circ} + \frac{\sqrt{3}}{\cos 80^{\circ}} - \sin 80^{\circ}}$		4
		$=\frac{3}{16}$	1/2	
	b) Ans.	$\left(\frac{C+D}{2}\right) \left(\frac{C-D}{2}\right)$ We know that,		
		$2 \sin A \cos B = \sin (A + B) + \sin (A - B)$	1	
		Put A + B = C		
		$A - B = D$ $\therefore A = \frac{C + D}{2} \text{and} B = \frac{C - D}{2}$	2	
		$\left(\frac{C+D}{2}\right) \left(\frac{C-D}{2}\right)$	1	4

Page No: 21/28 Subject Code: 17104 Summer-2016

Que.	Sub.	Model Angrees	Marks	Total
No.	Que.	Model Answers	Warks	Marks
5.	c) Ans.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
		$\therefore x = \tan A \text{and} y = \tan B$ $\frac{\tan A + \tan B}{1 - \tan A \tan B}$	1	
		$=\frac{x+y}{1-xy}$	1/2	
		$ \frac{1}{-1} \left(\frac{x+y}{1-xy} \right) $ $ \left(1-xy \right) $	1	
		$-1 \qquad -1 \qquad \frac{-1}{\left(\frac{x+y}{1-xy}\right)}$	1/2	4
	d) Ans.	Find the distance between the lines $3x + 2y = 5$ and $6x + 4y = 6$. Let $L: 3x + 2y = 5$		
		and $L_2: 6x + 4y = 6 \implies 3x + 2y = 3$ $\therefore L_1: 3x + 2y - 5 = 0$ $\therefore L_2: 3x + 2y - 3 = 0$	1/2	
		$\therefore a = 3, b = 2, c = -5, c = -3$ distance between the lines is given by,	1	
		$d = \frac{\begin{vmatrix} c - c \\ \sqrt{\frac{2}{2} + \frac{1}{2}} \end{vmatrix}}$	1/2	
		$= \left \frac{-3 - (-5)}{\sqrt{3} + 2} \right $	1	
		$= \left \frac{2}{\sqrt{13}} \right = \frac{2}{\sqrt{13}} u nits$	1	4
	e)	Prove that the length of perpendicular on the line $Ax + By + C = 0$ from the point $P(x, y)$ is $P = \left \frac{Ax + By + C}{\sqrt{A + B}} \right $		

Summer-2016 Subject Code: 17104 Page No: 22/28

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wiodol / Hiswors	MILLING	Marks
5.	Ans.	P Q L: Ax+By+C=0	1/2	
		$ \begin{pmatrix} -C \\ A \end{pmatrix} \qquad \begin{pmatrix} -C \\ B \end{pmatrix} $ $ A (\Delta PQR) = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ -C & 0 & 1 \\ A & -C & 0 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} x_1 & 0 + \frac{C}{B} - y_1 & \frac{C}{A} - 0 \\ 0 & \frac{-C}{B} & 1 \end{vmatrix} $	1/2	
		$= \frac{1}{2} \left[\frac{x \cdot C}{B} + \frac{y \cdot C}{A} + \frac{C^{2}}{AB} \right] = \frac{1}{2} \left[\frac{C}{AB} (Ax_{1} + By_{1} + C) \right]$	1	
		$d(QR) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{\frac{-C}{-C} + \frac{C}{-C}} = \sqrt{\frac{C^2}{A} + \frac{C^2}{B}} = \sqrt{\frac{B^2 C^2 + A^2 C^2}{A B}}$	1/2	
		$\frac{\sqrt{A}}{AB} \sqrt{\frac{B}{2}} \sqrt{\frac{A}{B}}$	1/2	
		$A \left(\Delta P Q R \right) = \frac{1}{2} \times d \left(Q R \right) \times PM$ $\frac{1}{2} \frac{C}{AB} = \frac{1}{2} \times \frac{C}{AB} \times PM$ $\therefore \frac{1}{2} \frac{C}{AB} = \frac{1}{2} \times \frac{C}{AB} \times PM$	1/2	
		$\therefore PM = \left \frac{Ax_1 + By_1 + C}{\sqrt{\frac{2}{3}}} \right \qquad \therefore \text{ distance is always positive}$	1/2	4

Subject Code: 17104 Summer-2016 Page No: 23/28

Que.	Sub.	M. 1.1.A	N/ 1	Total
No.	Que.	Model Answers	Marks	Marks
5.	f) Ans.	Find equation of the line passing through the point of intersection of lines $x + y = 0$ and $2x - y = 9$ and point $(4,5)$. $x + y = 0$, $2x - y = 9$ $\therefore x + y = 0$ $\frac{2x - y = 9}{3x = 9}$	1/2	
		$\therefore x = 3$ $y = -3$ $\therefore \text{ point of intersection } = (3, -3) = (x_1, y_1)$ and given point = $(4, 5) = (x_2, y_2)$ $y - y_1 = x - x_1$ its equation in two points form is	1	
		its equation in two points form is $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$ $\therefore \frac{y - (-3)}{5 - (-3)} = \frac{x - 3}{4 - 3}$	1/2	
		$\therefore \frac{y+3}{8} = x-3$ $\therefore y+3 = 8(x-3)$ $\therefore y+3 = 8x-24$ $\therefore -8x+y+27 = 0 \text{ or } 8x-y-27 = 0$ OR $x+y=0, 2x-y=9$ $\therefore x+y=0$ $2x-y=9$	1	
		3x = 9 $x = 3$ $y = -3$	1/2	
		$\therefore \text{ point of intersection } = (3, -3) = (x_1, y_1)$ and given point = $(4, 5) = (x_2, y_2)$ $\therefore \text{ slope of line is } m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - (-3)}{4 - 3} = 8$ $\therefore \text{ the equation is, } y - y_1 = m(x - x_1)$	1 1/2	
		y - (-3) = 8(x - 3) $y + 3 = 8x - 24$ $8x + y + 27 = 0 or 8x - y - 27 = 0$	1	4

Summer-2016 Subject Code: 17104 Page No: 24/28

Que.	Sub.	M - 1-1 A	Maula	Total
No.	Que.	Model Answers	Marks	Marks
6	a)	Attempt any <u>FOUR</u> of the following: If m_1 and m_2 are the slope of two lines then prove that angle between two lines is $\theta = \tan^{-1} \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $		16
		$\left 1 + m_1 m_2 \right $		
	Ans.	Let θ_1 = Inclination of L_1 θ_2 =Inclination of L_2 \therefore Slope of L_1 is $m_1 = \tan \theta_1$ Slope of L_2 is $m_2 = \tan \theta_2$	1/2	
		$\begin{array}{c c} & L_1 \\ \hline \\ \theta \end{array} \begin{array}{c} L_2 \\ \hline \\ \theta \end{array}$	1	
		$\therefore \text{ from figure,}$ $\theta = \theta_1 - \theta_2$ $\therefore \tan \theta = \tan (\theta_1 - \theta_2)$ $= \frac{\tan \theta - \tan \theta}{1 + \tan \theta_1 \tan \theta_2}$	1/2	
		$\therefore \tan \theta = \frac{m_1 - m_2}{1 + m_1 \cdot m_2}$	1/2	
		Since θ is acute $\therefore \tan \theta = \left \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $ $\therefore \theta = \tan^{-1} \left \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $	1/2	4

Summer-2016 Subject Code: 17104 Page No: 25/28

Que.	Sub.			M	odel Ar	namara				Marks	Total
No.	Que.			IVI	ouel Ai	18WC18				Marks	Marks
No. 6.	Que. b) Ans.	Find the equal $2x + 3y = 13,$ $2x + 3y = 13$ $5x - y = 7$ $2x + 3y = 1$ $15x - 3y = 2$ $17x = 34$ $x = 2, y$ Slope of the lift $m_0 = -\frac{a}{b} = 2$ $y - y_1 = 2$ $y - 3 = -\frac{1}{3}$ $x + 3y - 11 = 2$	5x - y = 3 $= 3$ $= 3$ $= 3 - 1$ $= require$ $m(x - x - x - 2)$	∴ Poin $y + 7 = 0$ ed line i	perpend t of inte O is,	icular to	3x - y + $= (2,3)$	7 = 0	of lines	1 1 1/2	Marks 4
	c)	From the followarks No.of student	wing da 10- 19 06	20- 29	30- 39	nge and 40- 49 14	50- 59	ent of ra 60- 69 04	ange:	72	
	Ans.	student								1 1 1	4

Subject Code: 17104 Summer-2016 Page No: 26/28

Que.	Sub.	Model Angwers M									Monlyo	Total
No.	Que.	Model Answers								Marks	Marks	
6.	d)	Find the mean deviation from median of the following distribution:										
		Weight	10-	15-	20-			35-	40-			
		(in gms)	15	20	25	30	35	40	45			
		No. of items	07	12	16	25	19	15	06			
	Ans.	Class	x_i	f	i	c.f	$D_i = x_i $	- M	f_iD_i			
		10-15	12.5	0	7	07	15.5	5	108.5			
		15-20	17.5	1	2	19	10.5	5	126			
		20-25	22.5	1	6	35	5.5		88		2	
		25-30	27.5	2.	5	60	0.5		12.5			
		30-35	32.5	1	9	79	4.5		85.5			
		35-40	37.5	1.	5	94	9.5		142.5			
		40-45	42.5	0	6	100	14.5	5	87			
		Total		10	00				650			
		$Median = L + \frac{\frac{N}{2} - c.f}{f} \times h$									1	
		$=25 + \frac{50 - 35}{25} \times 5$										
		= 28										
		$\mathbf{M} \cdot \mathbf{D} = \frac{\sum_{i=1}^{n} \frac{D_{i}}{N}}{N}$										
		$=\frac{650}{}=6.5$									1	4
		100										
	e)	In two factories A and B ,engaged in the same area of the industry										
		,the average weekly wages (in Rs.) and the S.D are as below:										
		Fact	ory	Avera	ige w	rages	S.D)				
		A	1		34.5		5.0				1	
		E	3		28.5		4.5				1	

Summer-2016 Subject Code: 17104 Page No: 27/28

Que.	Sub. Que.		Marks	Total Marks					
6.		Which Factor							
	Ans.	For Factory A							
		$C.X = \frac{S.D}{x} = 1$ x 5.0	$0 \ 0$ $1 \ 0 \ 0 = 1 \ 4 \ .4$					1/2	
		$= {34.5} \times $ For Factory I	1						
		C.V = S.D	1/2						
			1						
		$\begin{array}{c c} 28.5 \\ C.V_{A} < C.V_{B} \end{array}$							
			1	4					
	f)	Calculate the distribution:							
		Class Interval	0-10	10-20	20-30	30-40	40-50		
		Frequency	14	23	27	21	15		
								_	
	Ans.	C.I	<i>x</i> _i	Freq	$f_i x_i$	x 2	$f_i x_i^2$		
		0-10	5	14	70	25	350		
		10-20	15	23	345	225	5175	2	
		20-30	25	27	675	625	16875	-	
		30-40	35	21	735	1225	25725		
		40-50	45	15	675	2025	30375	-	
		Total		100	2500		78500		
		$\frac{-}{x} = \frac{\sum f_{i}}{N}$				•			

Subject Code: 17104 Summer-2016 Page No: 28/28

Que.	Sub.		Marks	Total								
No.	Que.	1	Marks									
		$=\sqrt{\frac{78500}{100} - \left(25\right)^2} = 12.65$ OR										
		C.I	<i>x</i> ,	f_{i}	d_{i}	d_i^2	$f_{i}d_{i}$	$f_i d_i^2$				
		0-10	5	14	-2	4	-28	56				
		10-20	15	23	-1	1	-23	23				
		20-30	25	27	0	0	0	0	2			
		30-40	35	21	1	1	21	21				
		40-50	45	15	2	4	30	60				
		Total		100			00	160				
	$x = A + \frac{\sum_{i=1}^{\infty} f_{i} d_{i}}{N} \times h = 25 + \frac{0}{100} \times 10 = 25$ $S.D = \sqrt{\frac{\sum_{i=1}^{\infty} f_{i} d_{i}^{2}}{N} - \frac{\sum_{i=1}^{\infty} f_{i} d_{i}}{N} \times h} \times h$ $= \sqrt{\frac{160}{100} - \left(\frac{0}{100}\right)^{2}} \times 10 = 12.65$									4		
	In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake convenience. Still student may follow a method other than the given therein. In such case, first see whether the method falls within the scop of the curriculum, and then only give appropriate marks in accordant with the scheme of marking.								ce of given scope			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)