# Developing an Antimicrobial Strategy for Sepsis in Malawi

\_

Thesis submitted in accordance with the requirements of the Liverpool School of Tropical Medicine for the degree of Doctor in Philosophy by Joseph Michael Lewis

August 2019

## Contents

| Pı | refac | e                                                      | 9  |
|----|-------|--------------------------------------------------------|----|
| 1  | Intr  | roduction                                              | 11 |
|    | 1.1   | Chapter Overview                                       | 13 |
|    | 1.2   | Sepsis in sub-Saharan Africa                           | 13 |
|    | 1.3   | ESBL-E in sub-Saharan Africa                           | 13 |
|    | 1.4   | Conclusions                                            | 13 |
|    | 1.5   | Thesis overview                                        | 13 |
|    | 1.6   | Appendix                                               | 13 |
|    | 1.7   | References                                             | 13 |
| 2  | Met   | chods                                                  | 15 |
|    | 2.1   | Chapter Overview                                       | 17 |
|    | 2.2   | Study site                                             | 17 |
|    | 2.3   | Clinical Study                                         | 17 |
|    | 2.4   | Diagnostic Laboratory Procedures                       | 17 |
|    | 2.5   | Molecular methods                                      | 17 |
|    | 2.6   | Bioinformatics                                         | 17 |
|    | 2.7   | Statistical Analysis                                   | 17 |
|    | 2.8   | Study Team                                             | 17 |
|    | 2.9   | Data Collection and Storage                            | 17 |
|    | 2.10  | Ethical Approval, Consent and Participant Remuneration | 17 |
| 3  | My    | cobacterium tuberculosis BSI: an IPD meta analysis     | 19 |
| 4  | Sep   | sis in Blantyre, Malawi                                | 21 |
|    | 4.1   | Chapter overview                                       | 21 |
|    | 4.2   | Methods                                                | 21 |
|    | 43    | Results                                                | 21 |

| 4 CONTENTS |
|------------|
|------------|

| 6            | Gut                    | mucosal carriage of ESBL-E in Blantyre, Malawi             | 31 |
|--------------|------------------------|------------------------------------------------------------|----|
| 7            | $\mathbf{W}\mathbf{h}$ | ole genome sequencing of ESBL $E.\ coli$ carriage isolates | 33 |
|              | 7.1                    | Chapter overview                                           | 35 |
|              | 7.2                    | Methods                                                    | 35 |
|              | 7.3                    | Results                                                    | 35 |
|              | 7.4                    | Discussion                                                 | 35 |
|              | 7.5                    | Appendix                                                   | 35 |
| $\mathbf{R}$ | efere                  | nces                                                       | 37 |

# List of Tables

| 4.1 | Participant Characteristics                              | 23 |
|-----|----------------------------------------------------------|----|
| 4.2 | Prehospital heathcare seeking and antimicrobial exposure | 27 |
| 4.3 | Admission physiology, haematology and biochemistry       | 28 |

6 LIST OF TABLES

# List of Figures

| 4.1 | Study recruitment and follow up    | 22 |
|-----|------------------------------------|----|
| 4.2 | Symptoms of recruited participants | 26 |

8 LIST OF FIGURES

# Preface

Placeholder

10 LIST OF FIGURES

## Introduction

Placeholder

#### 1.1 Chapter Overview

- 1.2 Sepsis in sub-Saharan Africa
- 1.2.1 Search strategy
- 1.2.2 Defining sepsis
- 1.2.3 Applicability of sepsis-3 definitions in sub-Saharan Africa
- 1.2.4 Sepsis epidemiology in sub-Sahara Africa
- 1.2.4.1 Incidence
- 1.2.4.2 Risk factors: the sepsis population in sub-Saharan Africa
- 1.2.4.3 **Outcomes**
- 1.2.5 Sepsis aetiology in sub-Saharan Africa
- 1.2.5.1 Bacterial zoonoses, Rickettsioses and arboviruses
- 1.2.5.2 HIV opportunistic infections: PCP, histoplasmosis and cryptococcal disease
- 1.2.6 Sepsis management
- 1.2.6.1 Early goal directed therapy
- 1.2.6.2 Evidence to guide antimicrobial therapy in sSA
- 1.2.6.3 Evidence to guide intravenous fluid therapy in sub-Saharan Africa
- 1.3 ESBL-E in sub-Saharan Africa
- 1.3.1 Search strategy
- 1.3.2 Introduction: definition and classification of ESBL-E
- 1.3.3 Global molecular epidemiology of ESBL-E: an overview
- 1.3.3.1 1980s-1990s: First identification of ESBL in nosocomial pathogens
- 1.3.3.2 1990s-2010s: Emergence and globalisation of CTX-M

# Methods

Placeholder

#### 2.1 Chapter Overview

- 2.2 Study site
- 2.2.1 Malawi
- 2.2.2 Queen Elizabeth Central Hospital
- 2.2.3 Participating Laboratories
- 2.2.3.1 Malawi-Liverpool-Wellcome Clinical Research Programme
- 2.2.3.2 Malawi College of Medicine Tuberculosis Laboratory
- 2.2.3.3 Wellcome Trust Sanger Institute
- 2.3 Clinical Study
- 2.3.1 Entry Criteria
- 2.3.2 Study Visits and Patient Sampling
- 2.3.2.1 Enrollment assessment and first six hours
- 2.3.2.2 Subsequent visits
- 2.3.2.3 Blood, urine, and stool, sputum and CSF collection
- 2.3.2.4 Imaging: chest x-ray and ultrasound scanning
- 2.3.3 Outcomes and sample size calculations
- 2.4 Diagnostic Laboratory Procedures
- 2.4.1 Point of care diagnostics
- 2.4.2 Laboratory diagnostics
- 2.4.2.1 Haematology and biochemistry
- 2.4.2.2 Aerobic blood and CSF culture
- 2.4.2.3 Mycobacterial blood culture

Mycobacterium tuberculosis BSI: an IPD meta analysis

### Sepsis in Blantyre, Malawi

#### 4.1 Chapter overview

#### 4.2 Methods

blah blah

#### 4.3 Results

#### 4.3.1 Study population

Figure 4.1 shows flow through the study. 225 patients were recruited in 20 months between 19th February 2017 and 2nd October 2018. In total, 4 patients (2%) were lost to follow up over the 180-day study period; 5 patients (2%) withdrew; and 7 patients (3%) transferred out of the study area before 180 days. Four of the five patients who withdrew gave a reason for their wish to withdraw, all that they no longer wished the inconvenience of being involved in the study. 15/225 (7%) patients had their final study visit before 180 days, and so were not included in the 180-day outcome analysis.

#### 4.3.2 Symptoms and health-seeking behaviour

Table 4.1 shows the baseline characteristics of the recruited participants. They were young (median [IQR] age 36 [28-44]) and predominantly HIV-infected. Of those who were HIV-infected, the majority (117/143 [82%]) were on ART, almost exclusively the Malawian first-line



Figure 4.1: Study recruitment and follow up.

regimen of efavirenz, lamivudine and tenofovir. Figure 4.2 shows the presenting symptoms of the participants. Almost all (221/225 [98%] of participants) experienced subjective fever. Participants had been unwell for some time, a median (IQR) of 7 (3-14) days; 32/225 (14%) of participants had been unwell for more than 4 weeks. 18/225 (8%) of participants had been admitted to hospital within the last 4 weeks. Over half (123/225 [55%]) of participants had sought care for their current ilness (Table 4.2), most commonly (101/123 [82%] of participants) at a government health centre, a median (IQR) or 2 (1-6) days previously. 60/225 (27%) of all participants had recieved an antimicrobial for their current illness: 7/60 (12%) of all prehospital antimicrobials were antimalarials, the remainder anitbacterial, most commonly co-trimoxazole or ciprofloxacin. Prehopsital intravenous or intramuscular antimirobials were administered in 16/60 (27%) participants recieving antimicrobials: ceftriaxone (n=6), benzylpenicillin (n=4), gentamicin (n=3) and artesunate (n=3).

4.3. RESULTS 23

Table 4.1: Participant Characteristics

| Variable                                        | Value              |  |
|-------------------------------------------------|--------------------|--|
| Demographics                                    |                    |  |
| Age (years)                                     | 36 (28-44)         |  |
| Male sex                                        | 114/225 (51%)      |  |
| HIV/TB status                                   | , ( , , ,          |  |
| HIV Reactive                                    | 143/225 (64%)      |  |
| HIV Non Reactive                                | 70/225 (31%)       |  |
| HIV Unknown                                     | 12/225 (5%)        |  |
| Ever treated for TB                             | 37/225 (16%)       |  |
| Of those, current TB treatment                  | 10/37 (27%)        |  |
| ART status*                                     | , , ,              |  |
| Current ART                                     | 117/143 (82%)      |  |
| Months on ART                                   | 29 (4-73)          |  |
| ART regimen: EFV/3TC/TDF                        | 110/117 (94%)      |  |
| ART regimen: other                              | 7/117 (6%)         |  |
| Current $CPT^{\dagger}$                         | 98/141 (70%)       |  |
| Tobacco/alcohol use                             | , , ,              |  |
| Never tobacco                                   | 196/225 (87%)      |  |
| Ex tobacco                                      | 17/225 (8%)        |  |
| Current tobacco                                 | 12/225(5%)         |  |
| Current alcohol                                 | 51/225 (23%)       |  |
| Education                                       | , , ,              |  |
| Primary incomplete or complete                  | 97/225 (43%)       |  |
| Secondary school complete                       | 48/225 (21%)       |  |
| Some secondary education                        | 47/225 (21%)       |  |
| College or higher                               | 17/225 (8%)        |  |
| No formal schooling                             | 16/225 (7%)        |  |
| Employment                                      |                    |  |
| Unemployed                                      | 82/225 (36%)       |  |
| Currently employed                              | 65/225 (29%)       |  |
| Self-employed                                   | 56/225 (25%)       |  |
| Student                                         | 21/225 (9%)        |  |
| Retired                                         | 1/225~(0%)         |  |
| Toilet facilities                               |                    |  |
| Pit latrine with slab $+/-$ foot rest           | $104/225 \ (46\%)$ |  |
| Hanging toilet/latrine                          | 59/225 (26%)       |  |
| Pit latrine with slab and cover $+/-$ foot rest | 45/225 (20%)       |  |
| Flush Toliet (any type)                         | 14/225~(6%)        |  |
| No toilet                                       | 2/225~(1%)         |  |
| Composting toilet                               | 1/225 (0%)         |  |
| Main water source                               |                    |  |
| Piped outside dwelling                          | $69/225 \ (31\%)$  |  |

| Variable                                       | Value              |
|------------------------------------------------|--------------------|
| Tube well/borehole                             | 64/225 (28%)       |
| Public tap/standpipe                           | 51/225 (23%)       |
| Piped into dwelling                            | $30/225 \ (13\%)$  |
| Unprotected well/spring                        | 5/225 (2%)         |
| Surface water (including rainwater collection) | 4/225 (2%)         |
| Tube well with powered pump                    | $2/225 \ (1\%)$    |
| Electricty                                     |                    |
| Electricity available in house                 | 119/225~(53%)      |
| Main cooking fuel                              |                    |
| Charcoal                                       | $161/225 \ (72\%)$ |
| Wood                                           | 61/225 (27%)       |
| Electricity                                    | 3/225 (1%)         |
| Animals at home?                               |                    |
| Any animal                                     | 71/225 (32%)       |
| Poultry                                        | 46/71 (65%)        |
| Dogs                                           | 18/71 (25%)        |
| Goats                                          | 12/71(17%)         |
| Other                                          | $11/71 \ (15\%)$   |

Table 4.1: Participant Characteristics (continued)

#### Note:

ART = Antiretroviral therapy, CPT = Co-trimoxazole preventative therapy, EFV: Efavirenz, 3TC: Lamivudine, TDF: Tenofovir. Numeric values are median (IQR)) unless otherwise stated.

#### 4.3.3 Admission physiology and laboratory investigations

Figure to show crossover

#### 4.3.4 Aetiology

#### 4.3.5 Treatment

Table: Time to antimicrobials Time to fluid Amount of fluid

<sup>\*</sup> ART status includes HIV reactive only as denominator

 $<sup>^\</sup>dagger$  Missing CPT data for two participants.

4.3. RESULTS 25



Figure 4.2: Symptoms of recruited participants. A: Row and column clustered heatmap of participant symptoms. Each row represents a patient. Red = presence, blue = absence. B: Frequency of occurence of symptoms

#### 4.3.6 Outcome

Table - 28 and 90 day mortality

 $\label{eq:figure-KM} \text{Figure-KM survival curve}$ 

Logistic regression - determinants of 28 day mortality

Morbidity -

4.3. RESULTS 27

Table 4.2: Prehospital heathcare seeking and antimicrobial exposure

| Variable                                                   | Value             |
|------------------------------------------------------------|-------------------|
| Pre-hospital healthcare seeking                            |                   |
| Sought care prior to attendance at hospital                | 123/225 (55%)     |
| At health centre                                           | 101/123~(82%)     |
| At hospital                                                | $16/123 \ (13\%)$ |
| At private doctor                                          | $8/123 \ (7\%)$   |
| Somewhere else                                             | 1/123~(1%)        |
| Days prior to today that participant sought care           | 2'(1-6)           |
| Prehospital antimicrobial exposure                         |                   |
| Recieved any antimicrobial prior to attendance at hospital | 60/225~(27%)      |
| Co-trimoxazole                                             | 12/60(20%)        |
| Ciprofloxacin                                              | 10/60~(17%)       |
| Amoxicillin                                                | $9/60 \ (15\%)$   |
| Ceftriaxone                                                | 6/60 (10%)        |
| Metronidazole                                              | 5/60 (8%)         |
| Benzylpenicillin                                           | 4/60~(7%)         |
| Artesunate                                                 | 3/60 (5%)         |
| Gentamicin                                                 | 3/60 (5%)         |
| Erythromycin                                               | 2/60 (3%)         |
| LA                                                         | 2/60 (3%)         |
| SP                                                         | $2/60 \ (3\%)$    |
| Azithromycin                                               | 1/60 (2%)         |
| Flucloxacillin                                             | 1/60 (2%)         |
| Days prior to today that antimicrobials started            | 2(1-5)            |
| Method of transport to hospital                            |                   |
| Minibus                                                    | 78/225 (35%)      |
| Taxi                                                       | 65/225~(29%)      |
| Private car/truck                                          | 42/225 (19%)      |
| Ambulance                                                  | $37/225 \ (16\%)$ |
| Other                                                      | $2/225 \ (1\%)$   |
| Walk                                                       | 1/225~(0%)        |
| Cost (MWK) of transport to hospital                        | 1000 (275-3000)   |

#### Note:

 $\label{eq:LA} LA = Lume fantrine-artemether, SP = Sulfamethoxazole-pyrimethamine, MWK \\ = Malawian Kwacha. Numeric values are median (IQR)) unless otherwise stated.$ 

Table 4.3: Admission physiology, haematology and biochemistry

| Variable                                                 | Value              |  |
|----------------------------------------------------------|--------------------|--|
| Admission physiology                                     |                    |  |
| Temperature (°C)                                         | 38.5 (37.9-39.0)   |  |
| Heart rate (min <sup>-1</sup> ))                         | 121 (101-132)      |  |
| Systolic blood pressure (mmHg)                           | 99 (85-119)        |  |
| Diatsolic blood pressure (mmHg)                          | 66 (57-76)         |  |
| Respiratory rate (min <sup>-1</sup> )                    | 34 (32-38)         |  |
| Oxygen saturation $(\%)$                                 | 96 (95-98)         |  |
| GCS                                                      | ( (                |  |
| 15                                                       | 204/225 (91%)      |  |
| 11-14                                                    | 16/225 (7%)        |  |
| < 11                                                     | 5/225 (2%)         |  |
| Admission CD4 count                                      |                    |  |
| CD4 count* ( $\mu$ L <sup>-1</sup> )                     | 98 (31-236)        |  |
| Admission haematology                                    |                    |  |
| Haemoglobin (x $10^9 \text{ g dL}^{-1}$ )                | 10.8 (8.2-13.2)    |  |
| White cell count $(x10^9 L^{-1})$                        | $6.5 \ (4.4-11.4)$ |  |
| Neutrophil count (x10 <sup>9</sup> L <sup>-1</sup> )     | 4.0(2.1-7.5)       |  |
| Platelet count count (x10 <sup>9</sup> L <sup>-1</sup> ) | 218 (146-297)      |  |
| Admission biochemistry                                   |                    |  |
| Potassium (mmol L <sup>-1</sup> )                        | 4.0(3.6-4.4)       |  |
| Bicarbonate (mmol L <sup>-1</sup> )                      | 19 (17-22)         |  |
| Chloride (mmol L <sup>-1</sup> )                         | 101 (97-104)       |  |
| Urea (mmol L <sup>-1</sup> )                             | 4.8 (3.5-8.0)      |  |
| Creatinine (mmol L <sup>-1</sup> )                       | 76 (59-103)        |  |

#### Note:

 ${\rm GCS}={\rm Glasgow}$  coma scale. Numeric values are median (IQR)) unless otherwise stated.

<sup>\*</sup> CD4 count includes only HIV-infected participants.

Early response to resusitation in sepsis

Gut mucosal carriage of ESBL-E in Blantyre, Malawi

# Whole genome sequencing of ESBL $E.\ coli$ carriage isolates

Placeholder

 $34 CHAPTER\ 7.\ \ WHOLE\ GENOME\ SEQUENCING\ OF\ ESBL\ E.\ COLI\ CARRIAGE\ ISOLATES$ 

#### 7.1 Chapter overview

- 7.2 Methods
- 7.2.1 Bioinformatic pipeline
- 7.2.2 Global  $E.\ coli$  collection
- 7.2.3 Statistical analysis
- 7.3 Results
- 7.3.1 Samples and quality control
- 7.3.2 Phylogroup, MLST and core genome phylogeny of study isolates
- 7.3.3 Study isolates in a global context
- 7.3.4 Antimicrobial resistance determinants
- 7.3.4.1  $\beta$ -lactam resistance
- 7.3.4.2 Quinolone resistance
- 7.3.4.3 Aminoglycoside resistance
- 7.3.4.4 Chloramphenicol, co-trimoxazole, tetracycline and other resistance determinants
- 7.3.4.5 Clustering and lineage association of AMR determinants
- 7.3.5 Plasmid replicons
- 7.3.6 Testing metadata associations: SNP distance, hierBAPS sequence clusters and ESBL-clusters
- 7.3.6.1 Hierarchical BAPS clustering of core gene pseudosequences
- 7.3.6.2 ESBL-clusters
- 7.3.6.3 Assessing for healthcare-associated lineages
- 7.3.6.4 Assessing for within-patient conservation of lineage or MGE
- 7.4 Diagrapion

 $36 CHAPTER\ 7.\ \ WHOLE\ GENOME\ SEQUENCING\ OF\ ESBL\ E.\ COLI\ CARRIAGE\ ISOLATES$ 

### References