Specyfikacja funkcjonalna projektu indywidualnego AiSD GR1

Hubert Nakielski

Listopad 2020

Nazwa programu

VaccineOptimizer

Cel projektu

Celem projektu jest minimalizacja kosztów sprzedaży szczepionek przy jednoczesnym zapewnieniu dostaw do wszystkich aptek. Projekt powinien dostarczać najbardziej opłacalną dla danych aptek konfigurację.

Dane wejściowe

Na wejście powinien być dostarczany plik wejściowy w formacie o rozszerzeniu .inp, podający informacje o:

- Producentach szczepionek (id producenta, nazwa, dzienna produkcja)
- Aptekach (id apteki, nazwa, dzienne zapotrzebowanie)
- Połączeniach producentów i aptek (id producenta, id apteki, dzienna maksymalna liczba dostarczanych szczepionek, koszt szczepionki [zł])

Table 1: Producenci

id producenta int	nazwa String	dzienna produkcja int
0	BioTech 2.0	900
1	Eko Polska 2020	1300
2	Post-Covid Sp. z o.o.	1100

Table 2: Apteki

id apteki int	nazwa String	dzienne zapotrzebowanie int	
0	CentMedEko Centrala	450	
1	CentMedEko	690	
2	CentMedEko Nowogrodzka	1200	

Table 3: Połączenia producentów i aptek

id producenta int	id apteki int	dzienna maksymalna liczba _{int} dostarczanych szczepionek	koszt szczepionki [zł] double
0	0	800	70.5
0	1	600	70
0	2	750	90.99
1	0	900	100
1	1	600	80
1	2	450	70
2	0	900	80
2	1	900	90
2	2	300	100

Dla powyższych danych ↑ plik wejściowy powinien wyglądać następująco:

- # Producenci szczepionek (id | nazwa | dzienna produkcja)
- 0 | BioTech 2.0 | 900
- 1| Eko Polska 2020 | 1300
- 2 | Post-Covid Sp. z o.o. | 1100
- # Apteki (id | nazwa | dzienne zapotrzebowanie)
- 0 | CentMedEko Centrala | 450
- 1| Cent
Med Eko24h| 690
- 2| CentMedEko Nowogrodzka | 1200
- # Połączenia producentów i aptek (id producenta | id apteki | dzienna maksymalna liczba dostarczanych szczepionek | koszt szczepionki [zł])
- 0 | 0 | 800 | 70.5
- 0 | 1 | 600 | 70
- 0 | 2 | 750 | 90.99
- 1 | 0 | 900 | 100
- 1 | 1 | 600 | 80
- 1 | 2 | 450 | 70
- 2 | 0 | 900 | 80
- 2 | 1 | 900 | 90
- 2 | 2 | 300 | 100

Dane wyjściowe

Program na wyjście przekazuje, do pliku znajdującego się w folderze result o nazwie result.txt, dane najbardziej opłacalnej konfiguracji połączeń pomiędzy producentami, a aptekami. Wygenerowane dane będą przekazane w poniższym formacie:

```
Nazwa producenta -> Nazwa apteki [Koszt = ilość kupionych szczepionek * cena jednej szczepionki = koszt kupionych szczepionek w PLN]
...
Opłaty całkowite: opłata całkowita w PLN

Przykład:
BioTech 2.0 -> CentMedEko Centrala [Koszt = 300 * 70.5 = 21150 zł]
Eko Polska 2020 -> CentMedEko Centrala [Koszt = 150 * 100 = 15000 zł]
/*
...
kolejne wiersze opisujące ustalone połączenia pomiędzy producentami, a aptekami
...
*/
Opłaty całkowite: 36150 zł
```

Struktura katalogów

Komunikaty błędów

Program weryfikuje poprawność pliku wejściowego oraz danych wejściowych i wyświetla odpowiedni komunikat do wystąpionego błędu. Błędy wykrywalne przez program:

- łączna dzienna produkcja szczepionek będzie mniejsza niż łączne dzienne zapotrzebowanie;
- wystąpi błąd w składni pliku wejściowego;
- liczba połączeń producentów i aptek nie jest równa iloczynowi ilości producentów i aptek;
- nazwy bądź id aptek się powtarzają;
- nazwy bądź id producentów się powtarzają.

Uruchomienie programu

Do uruchomienia programu potrzebne jest zainstalowane oprogramowanie Java 14.0.1, możliwe do pobrania tutaj.

Aby uruchomić program należy, będąc w odpowiednim pliku obejmującym, wpisać komendę w terminalu:

```
java -jar VaccineOptimizer.jar
```

A następnie, po prośbie programu, podać ścieżkę pliku wejściowego:

```
Proszę podać ścieżkę pliku wejściowego: <ścieżka pliku wejściowego.inp>
```

Program utworzy plik z wynikami w folderze result.

Testowanie

Do testowania kodu użyję narzędzia JUnit, a działanie algorytmu liczącego przetestuję ręcznie.