8.1 Outline

•

8.2 Trends in First Ionization Energies

- As one goes down a group, less energy is required to remove the first electron.
 - For atoms in the same group, Z_{eff} is essentially the same, but the valence electrons are farther from than . . .
- Generally, as one goes across a row/period, it becomes more difficult to remove an electron.
 - As you go from left to right $\rightarrow Z_{eff}$ increases!

Account for the decrease in ionization energy in going from nitrogen (N) to oxygen (O) despite the increase in effective nuclear charge (Z_{eff}) .

8.3 Electron Affinity

Electron affinity is the energy change accompanying the addition of an electron to a gaseous atom:

$$CL(g) + e^{-} \longrightarrow Cl^{-}(g)$$
 $E_a = -349 \frac{kJ}{mol}$

Energy is typically released when an electron is added to a gaseous atom. The process is said to be exothermic, so the energy has a negative sign associated with it.

The electron affinity of lithium is a negative value, whereas the electron affinity of Beryllium is a positive value. Use electron configuration to account for this observation.