

Chapter 21 Electric Potential

§ 1 Electric Potential Energy

The similarity of electrostatic and gravitational force

$$\vec{F} = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2} \hat{r} \qquad \text{electrostatic}$$

$$\overrightarrow{F} = -G \frac{Mm}{r^2} \hat{r}$$
 gravitational

▶Both forces depend on the inverse square of the separation distance between the two objects.

Electrostatic vs. gravitational

$$\overrightarrow{F} = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2} \hat{r}$$
 electrostatic

$$\vec{F} = -G \frac{Mm}{r^2} \hat{r}$$
 gravitational

➤ The work done by the gravitational force on the object m depends only on the starting and finishing points and does not depend on the path taken between the points —— gravitational force is a conservative force.

$$\Delta U = U_f - U_i = -W_{if} = -\int_i^f \overrightarrow{F_c} \cdot d\overrightarrow{s}$$

the gravitational potential energy difference

$$\Delta U = \left(-G\frac{Mm}{r_f}\right) - \left(-G\frac{Mm}{r_i}\right)$$

The electric potential energy

- The electric potential energy
 - ▶ Because of the similarity of the electrostatic and gravitational force laws, the electrostatic force is also conservative, and there is a potential energy associated with the configuration of a system (the relative locations of the charges).

$$\vec{F} \cdot d\vec{s} = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2} \hat{r} \cdot d\vec{s} = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2} ds \cos\theta = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2} dr$$

The electric potential energy

The electric potential energy difference between A and B

$$\Delta U = -\int_{A}^{B} \overrightarrow{F} \cdot d\overrightarrow{s} = -\int_{r_{A}}^{r_{B}} \frac{1}{4\pi\varepsilon_{0}} \frac{Qq}{r^{2}} dr$$

$$= \left(\frac{1}{4\pi\varepsilon_{0}} \frac{Qq}{r_{B}}\right) - \left(\frac{1}{4\pi\varepsilon_{0}} \frac{Qq}{r_{A}}\right)$$

If we set $U_A(\infty)=0$ as our reference potential energy, the potential energy at any point in space is $U(r)=\frac{1}{4\pi\varepsilon_0}\frac{Qq}{r}$

Electric potential

- Electric potential
 - ▶ Consider a test charge q_0 in the field of charge Q. The potential energy U associates with both the test charge q_0 and the source charge q_1 , which means that the U characterizes the interaction of two charges with one another.

another.
$$\Delta U_{BA} = \left(\frac{1}{4\pi\varepsilon_0} \frac{q_0 Q}{r_B}\right) - \left(\frac{1}{4\pi\varepsilon_0} \frac{q_0 Q}{r_A}\right) = -\int_A^B \overrightarrow{F} \cdot d\overrightarrow{s} = -q_0 \int_A^B \overrightarrow{E} \cdot d\overrightarrow{s}$$

The potential energy per unit test charge, which is symbolized as $\Delta U/q_0$, is independent of the test charge q_0 , and is characteristic only of the field of due to source charge q which we are investigating — we define the electric potential difference ΔV to be the electric potential energy difference per unit test charge.

$$\Delta V_{BA} = V_B - V_A = \frac{\Delta U_{BA}}{q_0} = -\frac{1}{q_0} \int_A^B \overrightarrow{F} \cdot d\overrightarrow{s} = -\int_A^B \overrightarrow{E} \cdot d\overrightarrow{s}$$

Electric potential

$$\Delta V_{BA} = V_B - V_A = \frac{\Delta U_{BA}}{q_0} = -\frac{1}{q_0} \int_A^B \overrightarrow{F} \cdot d\overrightarrow{s} = -\int_A^B \overrightarrow{E} \cdot d\overrightarrow{s}$$

▶ If we set $U(\infty) = 0$ as our reference potential

$$V_B = \int_B^\infty \vec{E} \cdot d\vec{s},$$

$$V_P = \int_P^\infty \vec{E} \cdot d\vec{s}$$

SI unit: 1V=1 J/C

The Circulation law of electric potential

The Circulation law of electric potential

$$\int_{acb} \vec{E} \cdot d\vec{s} = \int_{adb} \vec{E} \cdot d\vec{s}$$

$$\int_{acb} \vec{E} \cdot d\vec{s} - \int_{adb} \vec{E} \cdot d\vec{s} = \int_{acb} \vec{E} \cdot d\vec{s} + \int_{bda} \vec{E} \cdot d\vec{s} = 0$$

$$\oint_{L} \vec{E} \cdot \vec{ds} = 0$$
 The circulation law of electric potential

electric potential

This law means that the electrostatic field is a conservative field!

The Circulation law of electric potential

$$\oint_{L} \vec{E} \cdot d\vec{s} = 0$$

Example: For an electric field of a point charge q.

$$\oint \vec{E} \cdot d\vec{s} = \int_a^b \vec{E} \cdot d\vec{s} + \int_b^c \vec{E} \cdot d\vec{s}$$

Loop 1

$$+\int_{c}^{d} \vec{E} \cdot d\vec{s} + \int_{d}^{a} \vec{E} \cdot d\vec{s}$$

$$= \int_{r_b}^{r_c} k_e \frac{q}{r^2} dr + \int_{r_d}^{r_a} k_e \frac{q}{r^2} dr = 0$$

$$\oint \vec{E} \cdot d\vec{s} = 0$$

Loop 2

- Summary of the laws for electrostatic field
 - **◆ Gauss' Law:**

The electrostatic charge is the source of the electrostatic field.

$$\iint_{S} \overrightarrow{E} \cdot d\overrightarrow{A} = \frac{q_{inside}}{\mathcal{E}_{0}}$$

→Circulation Law:

The electrostatic field is a conservative field. Therefore we can introduce a scalar field (electric potential) correlated to the electrostatic field.

$$\oint_L \vec{E} \cdot d\vec{s} = 0$$

§ 2 Calculating the Electric Potential

If the electric field is known

$$V_P = \int_P^\infty \vec{E} \cdot d\vec{s}$$

- If the charge distribution is known
 - ◆The electric potential due to individual charge particles

$$V = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{r_i}$$

The electric potential due to continuous charge distributions

$$V = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r}$$

The electric potential of a dipole

Example: The dipole is along the x axis and is centered at the origin. Calculating the electric potential at any point P along the x axis.

Example — The Electric Dipole

The electric potential of a dipole

Example: The dipole is along the x axis and is centered at the origin. Calculating the electric potential at any point P along the x axis.

Solution:

on:

$$V = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{x-a} + \frac{-q}{x+a} \right)$$

$$= \frac{1}{4\pi\varepsilon_0} \frac{2aq}{x^2 - a^2}$$

$$= \frac{1}{4\pi\varepsilon_0} \frac{p}{x^2 - a^2}$$

$$= \frac{1}{4\pi\varepsilon_0} \frac{p}{x^2} \qquad x >> a$$

Example —— The Electric Dipole

The electric potential of a dipole

Fig. 23-16 (P512 § 21-6)

The electric potential of a dipole

$$V = \frac{1}{4\pi\varepsilon_0} \left(\frac{Q}{r} + \frac{-Q}{r + \Delta r} \right)$$
$$= \frac{Q}{4\pi\varepsilon_0} \frac{\Delta r}{r(r + \Delta r)}$$

$$\Delta r \approx l \cos \theta, \quad r \gg \Delta r$$

$$V = \frac{Q}{4\pi\varepsilon_0} \frac{l \cos \theta}{r^2}$$

$$= \frac{1}{4\pi\varepsilon_0} \frac{p \cos \theta}{r^2}$$

Example: Find the potential energy of an electric dipole in a uniform external field.

Solution I:

The potential energy of a dipole is the sum of the potential energies of positive and negative charges in the field.

$$U = U_{+} + U_{-} = qV(P_{+}) - qV(P_{-})$$

$$= q[V(P_{+}) - V(P_{-})]$$

$$= q\int_{P_{+}}^{P_{-}} \vec{E} \cdot d\vec{s} = q(-El\cos\theta) = -\vec{p} \cdot \vec{E}$$

The Potential Energy of a Dipole in an External Field

Solution II: (P476)

$$\Delta U = U_f - U_i = -W_{if}$$

The work done on the dipole by the electric field to change the angle θ from θ_1 to θ_2 :

$$W = \int_{\theta_1}^{\theta_2} \tau d\theta = -pE \int_{\theta_1}^{\theta_2} \sin \theta d\theta$$
$$= pE \cos \theta_2 - pE \cos \theta_1$$

The work done by a conservative force F decreases the potential energy.

$$U_2 - U_1 = -W = (-pE\cos\theta_2) - (-pE\cos\theta_1)$$

U=0 when
$$\vec{p} \perp \vec{E}$$
 $\theta_1 = 90^{\circ}$, $\cos \theta_1 = 0$, $U = -pE \cos \theta$

The vector description:

$$U = -\vec{p} \cdot \vec{E}$$

$$U = -\vec{p} \cdot \vec{E}$$

- The potential energy is minimum F at $\theta=0^{\circ}$. This is the a point of stable equilibrium.
- The potential energy is maximum at θ=±180°, which is at the point of unstable equilibrium.
- A dipole with mechanical energy. E_{mech} will oscillates back and forth between turning points on either side of θ=0°.

equilibrium

at $\theta = 0^{\circ}$

Example (P510 Ex. 21-8)

The electric potential due to a uniformly charged ring

Example: Find the electric potential at a point P located on the axis of a uniformly charged ring of radius *a* and total charge *Q*.

Example

The electric potential due to a uniformly charged ring

Example: Find the electric potential at a point P located on the axis of a uniformly charged ring of radius *a* and total charge *Q*.

Solution:

$$dV = \frac{1}{4\pi\varepsilon_0} \frac{dq}{\sqrt{x^2 + a^2}}$$

$$V = \frac{1}{4\pi\varepsilon_0} \frac{1}{\sqrt{x^2 + a^2}} \int dq$$

$$= \frac{1}{4\pi\varepsilon_0} \frac{Q}{\sqrt{x^2 + a^2}}$$

Example (P510 Ex. 21-9)

The electric potential due to a uniformly charged disk

A thin flat disk, of radius R, carries a uniformly distributed charge Q. Determine the potential at a point P on the axis of the disk, a distance x from its

center.

Example (P510 Ex. 21-9)

$$dV = \frac{1}{4\pi\varepsilon_0} \frac{dq}{\sqrt{x^2 + r^2}}$$

$$dA = (2\pi r)(dr)$$

$$dq = \frac{Q}{\pi R^2} dA = \frac{2Q}{R^2} r dr$$

$$V = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{\sqrt{x^2 + r^2}}$$

$$=\frac{1}{4\pi\varepsilon_0}\frac{2Q}{R^2}\int_0^R\frac{rdr}{\sqrt{x^2+r^2}}$$

$$=\frac{1}{2\pi\varepsilon_0}\frac{Q}{R^2}(\sqrt{x^2+R^2}-x)$$

A flat ring of inner radius R_1 and outer radius R_2 carries a uniform surface charge density σ . Determine the electric potential at points along

the x axis.

Suppose the flat circular disk has a nonuniform surface charge density $\sigma = ar^2$, where r is measured from the center of the disk. Find the potential at points along the x axis, relative to

V=0 at $x=\infty$.

Example

The electric potential of a uniformly charged sphere

Example: An insulating solid sphere of radius R has a total charge Q, which is distributed uniformly throughout the volume of the sphere.

- (1) Find the electric potential at a point for r > R.
- (2) Find the electric potential at a point for r < R.

Example

The electric potential of a uniformly charged sphere

Solution 1:
$$V = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r}$$

Solution 2:
$$V_P = \int_P^\infty \vec{E} \cdot d\vec{s}$$

$$E = \begin{cases} \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} & \text{for } r > R \\ \frac{1}{4\pi\varepsilon_0} \frac{r}{R^3} Q & \text{for } r < R \end{cases}$$

Example - cont'd

For r>R
$$V_B = \int_r^\infty \vec{E} \cdot d\vec{s}$$

$$= \frac{Q}{4\pi\varepsilon_0} \int_r^\infty \frac{dr}{r^2} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$$

For r<R

$$V_D = \int_r^R \vec{E} \cdot d\vec{s} + \int_R^\infty \vec{E} \cdot d\vec{s}$$

$$= \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^3} \int_r^R r dr + \frac{Q}{4\pi\varepsilon_0} \int_R^\infty \frac{dr}{r^2}$$

$$=\frac{1}{4\pi\varepsilon_0}\frac{Q}{2R^3}\left(R^2-r^2\right)+\frac{1}{4\pi\varepsilon_0}\frac{Q}{R}$$

$$= \frac{1}{4\pi\varepsilon_0} \frac{Q}{2R} \left(3 - \frac{r^2}{R^2} \right) = \frac{Q}{8\pi\varepsilon_0 R} \left(3 - \frac{r^2}{R^2} \right)^2$$

Ch21 Prob. 18, 34, 35, 43 (P520)

§ 3 Equipotential Surfaces

(P511, § 21-5)

- The equipotential surface
 - ♣ An equipotential surface is a three-dimensional surface on which the electric potential V is the same at every point.

The properties of the equipotential surface

- The properties of the equipotential surface
 - ▶ If a test charge moves over an equipotential surface, the electric field can do no work on such a charge.

$$W_{ab} = -q_0 \Delta U = q_0 (U_a - U_b) = 0$$

➡ Field lines and equipotential surface are always mutually perpendicular.

A test charge q_0 moves a distance $d\vec{l}$ on an equipotential surface

$$dW = q_0 \vec{E} \cdot d\vec{l} = q_0 E \cos \theta dl = 0 \implies \vec{E} \perp d\vec{l}$$

▶ In regions where the magnitude of \overline{E} is large, the equipotential surface are close together.

§ 4 Potential Gradient

(P513 § 21-7)

$$-dV = -\left(\frac{\partial V}{\partial x}dx + \frac{\partial V}{\partial y}dy + \frac{\partial V}{\partial z}dz\right)$$

$$= \vec{E} \cdot d\vec{s} = E_x dx + E_y dy + E_z dz$$

$$E_x = -\frac{\partial V}{\partial x}, \quad E_y = -\frac{\partial V}{\partial y}, \quad E_z = -\frac{\partial V}{\partial z}$$

$$\vec{E} = -\left(\hat{i}\frac{\partial V}{\partial x} + \hat{j}\frac{\partial V}{\partial y} + \hat{k}\frac{\partial V}{\partial z}\right) = -\left(\hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right)V$$

$$\vec{E} \text{ is the negative of the gradient of } V.$$

The meaning of the gradient

Two

surfaces

equipotential

▶ Make a displacement $d\vec{s}$ from one equipotential surface to the adjacent surface

$$-dV = \vec{E} \cdot d\vec{s} = E \cos \theta ds$$

$$E\cos\theta = -\frac{dV}{ds}$$

$$E_s = -\frac{\partial V}{\partial s}$$

- ▶ The component of \overrightarrow{E} in any direction is the negative of the rate of change of the electric potential with distance in that direction.
- ▶ Take the s axis to be, in turn, x, y, and z axis, we get the x, y, z components of \overrightarrow{E} at any point are

$$E_x = -\frac{\partial V}{\partial x}, \quad E_y = -\frac{\partial V}{\partial y}, \quad E_z = -\frac{\partial V}{\partial z}$$

The Methods of Calculating the Electric Field

By Coulomb's law:

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r^2} \,\hat{r}$$

- The most general method.
- By Gauss' law:

$$\iint_{S} \vec{E} \cdot d\vec{A} = \frac{q_{inside}}{\mathcal{E}_{0}}$$

- If charge distribution possesses a high degree of symmetry
- By gradient of V:

$$\overrightarrow{E} = -\overrightarrow{\nabla}V$$

▶ If the potential is easy to obtain.

A uniformly charged ring (P514 Ex. 21-11)

Find the electric field at a point P located on the axis of a uniformly charged ring of radius a and total charge Q.

Example

Solution: based on the electric potential:

$$V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{\sqrt{x^2 + a^2}}$$

$$E = -\frac{\partial V}{\partial x}$$

$$= -\frac{Q}{4\pi\varepsilon_0} \frac{d}{dx} (x^2 + a^2)^{-1/2}$$

$$= -\frac{Q}{4\pi\varepsilon_0} \left(-\frac{1}{2}\right) \left(x^2 + a^2\right)^{-3/2} (2x)$$

$$=\frac{1}{4\pi\varepsilon_0}\frac{xQ}{\left(x^2+a^2\right)^{3/2}}$$

A uniformly charged disk (P514 Ex. 21-11)

Find the electric field at a point P located on the axis of a uniformly charged disk of radius R and total charge Q.

A uniformly charged disk (P514 Ex. 21-11)

$$E_y = E_z = 0$$

$$x \ll R$$
, $E_x \approx \frac{Q}{2\pi\varepsilon_0 R^2} = \frac{\sigma}{2\varepsilon_0}$

Prob. 46 (Ch21 P522)

The electric potential in a region of space varies as

$$V = \frac{ay}{b^2 + y^2}$$

Determine \overrightarrow{F}

From the spatial dependence of the electric potential, $V(x, y, z) = ay/(b^2 + y^2)$, we find the components of the electric field from the partial derivatives of *V*:

$$E_{x} = -\frac{\partial V}{\partial x} = 0;$$

$$E_{y} = -\frac{\partial V}{\partial y} = -\frac{a}{(b^{2} + y^{2})} - \frac{ay(-2y)}{(b^{2} + y^{2})^{2}} = \frac{a(y^{2} - b^{2})}{(b^{2} + y^{2})^{2}}.$$

$$E_{z} = -\frac{\partial V}{\partial z} = 0.$$

We can write the electric field:
$$\mathbf{E} = a(y^2 - b^2)/(b^2 + y^2)^2 \mathbf{j}$$
.

Problems

Ch21 Prob. 38, 47 (P521)