

Cairo University

Department: Operations Research and Decision Support

Course Name: Systems Modeling and Simulation

Course Code: DS331 / DS241

Instructor: Assoc. Prof. Ayman Ghoneim

Report Documentation For Problem II [Car Dealer] BY:

No.	Name	IDs
1	Hazem Medhat Abd El-Aziz	20210116
2	Mohamed Ashraf Ramdan	20210327
3	Abdullah Mohamed Mokhtar	20210237

Contents

Problem formulation & Objectives	3
System Components.	4
System Analysis	
Experimental Design Parameters:	
Justification of experiment parameters values	
Result Analysis	
Conclusion	18

Problem formulation & Objectives.

Formulation:

A Car dealer has 2 places the first one is the show room (for customers to closely inspect the car and its options) that can hold a maximum of 5 cars, And the other on which is the inventory holds a maximum of 10 cars.

When there is a demand, the cars sell from the inventory first then from the show room.

the car dealer shipping and order every 3 days and the order arrives in "lead time" days and the cost of shipping is 20,000, and the profit selling of a car is 10,000 and if there is a cars remimning is the places each car cost 1000 finally if the demand is more than the cars this is determined as loos.

Objectives:

- -To Calculate whether these prices will lead to a profitable gain or not.
- -To see if the data needs to be adjusted to try to reach the most net profit.

System Components.

Entity: Car.

Attribute: Showroom, Inventory.

Activity: Demand.

State: Number of cars . Event : Shipping order .

System Analysis.

Calendar table:

Da y	Starting showro om cars	Startin g invento ry cars	De ma nd	Showr oom after dema nd	Invento ry after deman d	Showroo m shortage	Invento ry shortag e	Lead Time	Order day	Order quant ity	IS shortag e	Net profit
1	4	3	0	4	3	1	7	NON E	NON E	8	No	-7000
2	4	3	3	4	0	1	10	NON E	NON E	11	No	26000
3	4	0	1	3	0	2	10	2	5	12	No	7000
4	3	0	0	3	0	2	10	NON E	NON E	12	No	-3000
5	5	10	1	5	9	0	1	NON E	NON E	1	No	-24000
6	5	9	1	5	8	0	2	1	7	2	No	-3000

7	5	10	2	5	8	0	2	NON E	NON E	2	No	-13000
8	5	8	1	5	7	0	3	NON E	NON E	3	No	-2000
9	5	7	2	5	5	0	5	2	11	5	No	10000
10	5	5	0	5	5	0	5	NON E	NON E	5	No	-10000

Cumulative distribution tables:

Demand	d l
Cumulative Distribution	Time
0.2	0
0.45	1
0.9	2
0.9	3

Lead Time	
Cumulative Distribution	Time
0.4	1
0.75	2
1	3

Experimental Design Parameters:

Controllable inputs:

- Number of cars in showroom
- Number of cars in inventory

Probabilistic inputs:

- Demand.
- Lead time.

Justification of experiment parameters values

Controllable inputs:

- Number of cars in showroom = 4.
- Number of cars in inventory = 3.

Probabilistic inputs:

- Demand generated randomly every day.
- Lead time generated randomly when an order is placed.

Result Analysis

Test case1:

Number of days small = 50

Output 'Average of Average':
avg profits: 3869.0917581562035
showroom average: 4.0
inventory average: 6.0
demand average: 1.363572344144559

Test case2:

Number of days medium= 500

Number of repeating is 100

Output 'Average of Average':
avg profits: 3726.0071483795136
showroom average: 4.0
inventory average: 6.0
demand average: 1.3614470627090518

<u>Test case3:</u>

Number of days medium= 10000 Number of repeating is 100

Output 'Average of Average':
avg profits: 3688.1431041689725
showroom average: 4.0
inventory average: 6.08
demand average: 1.3596324339328492

Conclusion He should extend the review period of the order, to increase profits because for each shipment it costs 2000.

