

Cambridge Assessment International Education

Cambridge Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMPUTER SCIENCE

2210/12

Paper 1 Theory

October/November 2019

1 hour 45 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

No marks will be awarded for using brand names of software packages or hardware.

Any businesses described in this paper are entirely fictitious.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

International Education

1 Computer memory size is measured in multiples of bytes.

Four statements about computer memory sizes are given in the table.

Tick (✓) to show if the statement is **True** or **False**.

Statement	True (√)	False (√)
25 kB is larger than 100 MB		
999 MB is larger than 50 GB		
3500 kB is smaller than 2 GB		
2350 bytes is smaller than 2kB		

[4]

2		Von Neumann model for a computer system uses several components in the fetch-exec le. One component that is used is the Control Unit (CU).	ute
	lder	ntify four other components that are used in the Von Neumann model for a computer system	n.
	1		
	2		
	3		
	4		
			[4]
3	The	data from a sensor must be converted from analogue to digital to be processed by a compu	ter.
	(a)	State what is meant by analogue data.	
			[1]
	(b)	State what is meant by digital data.	
			[1]

An 8-bit binary register contains the value:

		0	0	1	1	0	1	0	0	
(a)	Conve	rt the bin	ary value	e to dena	ry.					
(b)	The co	ntents of	f the regi	ster shifte	ed one pl	lace to th	e right w	ould give	e the resu	ılt:
		0	0	0	1	1	0	1	0	
	The co	ntents of	f the regi	ster shov	vn at the	start of o	uestion 4	4 are shi	fted two p	places to the l
	Show t	the conte	ents of the	e register	after thi	s shift ha	ıs taken ı	place.		
Auc	drey war	nts to ser	nd a sour	nd file to						
The	e file is to	oo large t	to attach	to an em	nail so Au	ıdrey dec	ides to c	compress	the file.	
She	e uses lo	ssy com	pression	to reduc	e the siz	e of the s	sound file) .		
(a)	Descri	be how lo	ossy com	npression	reduces	the size	of the so	ound file.		

(D)	INIC	o asks Audrey why she used lossy compression rather than lossiess.
	(i)	State one advantage Audrey could give of using lossy rather than lossless to compress the sound file.
		[1]
	(ii)	State one disadvantage Nico could give of using lossy rather than lossless to compress the sound file.
		[1]
(c)	Auc	drey sometimes records MIDI files.
	(i)	Explain what is meant by a MIDI file.
		[4]
	(ii)	MIDI uses serial data transmission.
	(")	
		Explain two advantages of using serial transmission rather than parallel transmission.
		Advantage 1
		Advantage 2

6 Touch screen technologies can be described as resistive or capacitive.

Six statements are given about resistive and capacitive technology.

Tick (✓) to show if the statement applies to **Resistive** or **Capacitive** technology.

Statement	Resistive (√)	Capacitive (√)
This touch screen has multi-touch capabilities		
This touch screen cannot be used whilst wearing gloves		
This touch screen is made up of two layers with a small space in between		
This touch screen uses the electrical properties of the human body		
This touch screen is normally cheaper to manufacture		
This touch screen has a quicker response time		

[6]

7 Gerald uses a keyboard to enter a website address into the address bar of his browser.

(a) Describe how Gerald's key presses on his keyboard are processed by the computer.

(b)	State three functions of a browser.
	1
	2
	3
	[3]
(-)	
(c)	The website Gerald visits uses https.
	Explain what is meant by https.
	[3]

8 Consider the logic circuit:

(a) Write a logic statement to match the given logic circuit.

.....[3]

(b) Complete the truth table for the given logic circuit.

A	В	С	Working space	Х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

- 9 Maisey purchases a new router and attaches it to her computer. The connection she sets up uses duplex data transmission.
 - (a) Five statements are given about duplex data transmission.

Tick (✓) to show if the statement is **True** or **False**.

Statement	True (✓)	False (√)
Duplex data transmission can be either serial or parallel		
Duplex data transmission is when data is transmitted both ways, but only one way at a time		
Duplex data transmission is always used to connect a device to a computer		
Duplex data transmission is when data is transmitted both ways at the same time		
Duplex data transmission automatically detects any errors in data		

[5]

[4]

(b) Maisey's computer uses an integrated circuit (IC) for data transmission that sends multiple bits at the same time.

State whether the IC uses serial or parallel data transmission.

[1]

(c) Maisey purchases a new printer and connects it to her computer using the USB port.

Explain two benefits of using a USB connection.

Benefit 1

Benefit 2

10	Data	a is valuable to a company.
	(a)	Companies use error detection methods to make sure that data is accurate.
		One error detection method is the use of a check digit.
		Explain what is meant by a check digit and how it is used to detect errors.
		[4]
	(b)	Companies can use a range of security methods to keep their data secure.
	(b)	Companies can use a range of security methods to keep their data secure. Identify two security methods that a company can use to keep their data secure and explain how each method can keep the data secure.
	(b)	Identify two security methods that a company can use to keep their data secure and explain
	(b)	Identify two security methods that a company can use to keep their data secure and explain how each method can keep the data secure.
	(b)	Identify two security methods that a company can use to keep their data secure and explain how each method can keep the data secure.
	(b)	Identify two security methods that a company can use to keep their data secure and explain how each method can keep the data secure. Security method 1
	(b)	Identify two security methods that a company can use to keep their data secure and explain how each method can keep the data secure. Security method 1
	(b)	Identify two security methods that a company can use to keep their data secure and explain how each method can keep the data secure. Security method 1
	(b)	Identify two security methods that a company can use to keep their data secure and explain how each method can keep the data secure. Security method 1
	(b)	Identify two security methods that a company can use to keep their data secure and explain how each method can keep the data secure. Security method 1
	(b)	Identify two security methods that a company can use to keep their data secure and explain how each method can keep the data secure. Security method 1

[6]

11	Rob	pert has a mobile device that uses RAM, ROM and an SSD.	
	(a)	State what the RAM, ROM and SSD are used for.	
		RAM	
		ROM	
		SSD	
			[3]
	(b)	Give two reasons why an SSD, rather than a HDD, is used in the mobile device.	
		Reason 1	
		Reason 2	
			 [2]

11

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.