University of Western Ontario

Departments of Applied Mathematics

Calculus 2402A Fall 2020 Midterm Examination

(Online)

Code 111

October 24, 2020 3 hours

Student's Name: Tulun Feng Student Number: 251113969.

Instructions

- 1. Print your Name, Student Number in the box above.
- 2. The Exam Booklet should have 14 pages (including the front page).
- 3. In Part A (Multiple Choice questions), circle the correct answer for each multiple choice question.
- 4. Part B must be answered in the space provided in the Exam Booklet. Unjustified answers will receive little or no credit.
- 5. Pages 13 and 14 of the Exam Booklet are blank and are to be used for Part B if you need extra space for presenting your answers for Part B. Indicate clearly which questions from Part B you are answering there.
- 6. Only scientific non-programmable calculators are permitted.
- 7. Code of Conduct: Students are not allowed to assist or communicate to each other during the exam time. This constitutes a scholastic offence subject to severe academic penalties.
- 8. I pledge on my honour that I have neither given nor received aid on this examination .(You must check the box above before writing the exam. Otherwise, the exam is NOT graded.)
- 9. Total Marks = Part A (40) + Part B (42) = 82 marks.

Part A: 20 multiple choice questions (2 marks each) = 40 marks Do your work in the Scratch Papers. Circle the correct answer for each multiple choice question.

A1: Find the formain of the function $f(x,y) = \ln(9 - x^2 - 9y^2)$. A) $\{(x,y): x^2 + 9y^2 < 9\}$ B) $\{(x,y): \frac{1}{3}x^2 + y^2 < 3\}$ C) $\{(x,y): x^2 + y^2 < 9\}$ D) $\{(x,y): \frac{1}{3}x^2 + y^2 < 1\}$

A)
$$\{(x,y): x^2 + 9y^2 < 9\}$$
 B) $\{(x,y): \frac{1}{3}x^2 + y^2 < 3\}$

C)
$$\{(x,y): x^2 + y^2 < 9\}$$
 D) $\{(x,y): \frac{9}{3}x^2 + y^2 < 1\}$

E)
$$\{(x,y): x^2 + 9y^2 < 1\}$$

A2: Evaluate the limit
$$\lim_{(x,y)\to(0,0)} \frac{1-e^{\sqrt{x^2+y^2}}}{\sqrt{x^2+y^2}}$$
. $\frac{1-e^{\alpha}}{\alpha}$ $\frac{1-e^{\alpha}}{\alpha}$

A) 0 B)
$$-2$$
 C) ∞ D) -1 E) The limit does not exist.

A3: Let
$$f(x,y) = \begin{cases} \frac{\sqrt{2} - kx^2 + \frac{2y^2 - 2ky^2}{x^2 + 2y^2}}{k^2 - 2xy^2} & \text{if } (x,y) \neq (0,0) \\ k^2 + k - 2 & \text{if } (x,y) = (0,0) \end{cases}$$
 where k is a constant real number. Find all values of k so that the function $k = -\frac{2}{k^2}$.

f is continuous at (0,0).

A)
$$-1, 2$$
 B) $1, -2$ C) $\sqrt{3}, -\sqrt{3}$ D) $\sqrt{2}, -\sqrt{2}$ E) none of the above

$$e^{x} \cdot e^{y}$$
A4: Given $z = f(x, y) = x^{3}y - e^{xy}$, find $\frac{\partial z}{\partial x}$. $z = \frac{x^{2}y - e^{xy}}{F_{E}} = \frac{x^{2}y - e^{xy}}{I}$.

A) $3x^{2}y - ye^{xy}$ B) $3x^{2}y - e^{xy}$ C) $x^{3} - xe^{xy}$ D) $x^{3}y - 2e^{xy}$ E) $x^{2}y - xe^{xy}$

A5: Write the equation for the surface obtained by rotating the curve $z = y^2$ (in the yz-plane) about the z-axis.

A)
$$z = -x^2 + y^2$$
 B) $z = x^2 + y^2$ C) $z = x + y^2$ D) $-x^2 - y^2$ E) $z = x^2 - y^2$

Find an equation of the plane tangent to the surface $z = x^2 - y^2$ at the F= x2-y2-2=0 Px=2x Pt=-1.

A)
$$4x + 2y + z = 13$$
 B) $4x + 2y - z = 7$ C) $4x - 2y + z = -9$

D)
$$4x - 2y + z = 9$$
 E) $4x - 2y - z = 3$

and 351 Kelvin, respectively. O.J. So
$$= k.360$$

A) 6.5% B) 1.5% C) -6.5% D) -4.5% E) -1.5%

$$f = 2f - 2f \cdot \frac{2f}{3bo}$$
. 0.468 $\frac{.032}{0.4}$ $k = \frac{2f}{3bo}$.

A9: Calculate and simplify
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$$
 if $z = \frac{x}{x^2 + y^2}$.

A)
$$\frac{4x(x^2 - 3y^2)}{(x^2 + y^2)^3}$$
 B) $-\frac{x^2 - y^2 + 2xy}{(x^2 + y^2)^2}$ C) $\frac{x^2 - y^2 - 2xy}{(x^2 + y^2)^2}$

D) 0 E)
$$\frac{4x(3y^2 - x^2)}{(x^2 + y^2)^3}$$

A)
$$-\frac{6}{25}$$
 B) $\frac{7}{25}$ C) $\frac{8}{25}$ D) 0 E) $-\frac{9}{25}$

A10: Evaluate
$$f_{yz}(3,2,1)$$
 if $f(x,y,z) = x \tan^{-1}(yz)$.

A) $-\frac{6}{25}$ B) $\frac{7}{25}$ C) $\frac{8}{25}$ D) 0 E) $-\frac{9}{25}$

$$\frac{3(-1\cdot 4+1)}{(4+1)^2}$$

$$= -\frac{9}{25}$$

Find the directional derivative of $f(x,y,z) = \ln(xy + yz + zx)$ at the point (1,1,1) in the direction from (1,1,1) to (-1,-2,3).

A) $\frac{2}{\sqrt{17}}$ B) $-\frac{1}{\sqrt{17}}$ C) $-\frac{3}{\sqrt{17}}$ D) $\frac{1}{\sqrt{17}}$ E) $-\frac{2}{\sqrt{17}}$

$$A) \frac{2}{\sqrt{1}}$$

(a)
$$\frac{2}{\sqrt{17}}$$
 (b) $-\frac{1}{\sqrt{17}}$

$$C) - \frac{3}{\sqrt{17}} \quad D)$$

$$D) \frac{1}{\sqrt{17}} \quad E) -\frac{2}{\sqrt{1}}$$

A12: What function is a solution of Laplace's equation $u_{xx} + u_{yy} = 0$?

- A) $u(x,y) = x^2 + y^2$ B) $u(x,y) = x^3 + 3xy^2$
- C) $u(x,y) = \sin(kx)\sin(aky)$ D) $u(x,y) = e^{-x}\cos y e^{-y}\cos x$
- E) $u(x, y) = y/(x^2 a^2y^2)$

A13: If $f(x,y) = x^2y - x^2 - y^2 + y + 25$ then the Hessian of f at (1,1) is.

$$A) \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

B)
$$\begin{bmatrix} 0 & -2 \\ -2 & -12 \end{bmatrix}$$

$$C) \begin{bmatrix} 0 & 2 \\ 2 & -2 \end{bmatrix}$$

A)
$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
 B) $\begin{bmatrix} 0 & -2 \\ -2 & -12 \end{bmatrix}$ C) $\begin{bmatrix} 0 & 2 \\ 2 & -2 \end{bmatrix}$ $\begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$ E) none of the above $\begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$ E) none of the above $\begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$ Fig. $\begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$

$$F_{\pi} = 2\pi y - 2\pi$$

A14: If $f(x,y) = -x^2 + xy - y^2 + 2x - y$ then the critical point of f is $f_x = -2x + y + 2$. Fy = x - 2y - 1.

A) a saddle point B) a local minimum C) a local maximum D) none of the above

A15: The shortest distance from the point (2, 1, -3) to the plane x + y + z = 1 is

A)
$$\frac{\sqrt{2}}{3}$$
 B) $\frac{\sqrt{3}}{3}$ C) 2 D) $\frac{4}{3}$ E) $\frac{3}{5}$

A16: Find $\iint_R xy \, dA$, where R is the rectangle defined by $0 \le x \le 6$ and $0 \le y \le 4$.

A) 36 B) 168 C) 144 D) 72 E) 288 $\frac{1}{2}y^2x$. = y2x. = 16x.

Evaluate $\iint_{R} (1-x-y) dA \text{ where } R \text{ is the triangle with vertices } (0,0), (1,0)$ and (0,1). $\int_{0}^{1} \int_{0}^{1} (1-x-y) dy dx = \int_{0}^{1} \left(\frac{1}{2} \cdot x\right) dx.$ $A) \frac{1}{2} \quad B) \frac{1}{6} \quad C) \frac{1}{3} \quad D) \frac{2}{3} \quad E) \frac{1}{4}$ $1-x\cdot y.$

Evaluate $\iint_R y^2 dA$ where R is the region bounded by y = 2x, y = 5x and x = 2.

A) 184 B) 160 C) 172 D) 144 E) 156

Find $\iint_R r dA$, where R is the cardioid $r = 1 + \cos \theta$.

A) $\frac{\pi}{2}$ B) $\frac{4\pi}{3}$ C) π D) $\frac{5\pi}{3}$ E) $\frac{3\pi}{2}$ \iint Litters 0) $d\theta$.

A20: Find $\iint_R \frac{y}{x} dA$, where R is the region in the first quadrant lying between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ and between the lines y = 0 and y = x.

(A) $\frac{3}{2} \ln 2$ B) $\frac{3}{16} \ln 2$ C) $\frac{5}{8} \ln 2$ D) $\frac{3}{8} \ln 2$ E) $\frac{3}{4} \ln 2$

Part B: Show all your work for each of the following questions. Total: 42 marks. Do all the 7 questions between B1 and B7.

B1: (6 marks) Given $f(x, y, z) = x^2 + y^2 + z^2 - xy + x - 2z$, find the critical points and classify them.

$$\begin{cases}
f_{x^{2}} = 2x - y + 1 = 0. \\
f_{y} = 2y - x = 0. = 0
\end{cases} \begin{cases}
\pi^{2} - \frac{2}{3}. \\
f_{z} = 2f_{z} - \frac{1}{3}.
\end{cases}$$

$$f_{z} = 2f_{z} - 2f_{z} = 0. = 0$$

$$f_{xx=2=A} \quad f_{xy=-1=D} \quad f_{xz=0=F}$$

$$f_{yy=2=B} \quad f_{yz=0=E}$$

$$f_{zz=C}$$

$$\begin{cases} A - D^2 - 1 = 3 > 0 \\ B - E^2 - 1 = 4 > 0 \end{cases}$$

$$\begin{cases} C - \frac{1}{3}, -\frac{1}{3}, 1 \end{cases} = \frac{4}{9} + \frac{1}{9} + \left(-\frac{2}{9} - \frac{2}{3} - \frac{2}{3} - \frac{2}{3} \right)$$

$$= -\frac{4}{3}$$

B2: (6 marks) Find the highest and lowest points on the ellipse which is the intersection of the cylinder $x^2 + y^2 = 1$ and the plane x + y + z = 1.

B3: (6 marks) The temperature at a point (x, y, y) in a space is given by $T(x,y,z) = \frac{500^{2}}{x^{2} + y^{2} + z^{2}}.$

- (a) Find the rate of change of T at (2,3,3) in the direction of the vector 3î+ĵ+k.
 (b) In which direction from (2,3,3) does the temperature of T increase
- (c) At (2,3,3) what is the maximum rate of change?

(a)
$$T_{x} = \frac{500 \cdot 2x}{(x^{2}+y^{2}+z^{2})^{2}} = \frac{500}{(2)}$$

$$\vec{a} = (\frac{2}{5}, \frac{1}{5}, \frac{1}{5}). \quad T_{y} = -\frac{500 \cdot 2y}{(x^{2}+y^{2}+z^{2})^{2}} = \frac{750}{(2)}$$

$$T_{z} = -\frac{500 \cdot 2y}{(x^{2}+y^{2}+z^{2})^{2}} = \frac{750}{(2)}$$

$$T_{z} = -\frac{500 \cdot 2y}{(x^{2}+y^{2}+z^{2})^{2}} = \frac{750}{(2)}$$

$$T_{z} = -\frac{150}{(2)}$$

16). When the direction is the same as vector à = (500, 750, 750). CC). $\nabla T = \frac{1}{12} + \frac{1}{12} +$

B4: (6 marks) If z = f(x, y), where $x = r \cos \theta$ and $y = r \sin \theta$, find

(a)
$$\frac{\partial z}{\partial r}$$
,

(b)
$$\frac{\partial^2 z}{\partial r^2}$$
.

$$(a) \frac{\partial^2}{\partial r} = \frac{\partial^2}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial^2}{\partial y} \frac{\partial y}{\partial r}$$

$$= \frac{\partial^2}{\partial x} \log 0 + \frac{\partial^2}{\partial y} \sin 0.$$

(b)
$$\frac{d^22}{dr^2} = \frac{d^22}{dx^2} \cos^2\theta + 2 \frac{d^22}{dxdy} \cos\theta \sin\theta + \frac{d^22}{dy^2} \sin^2\theta$$

B5: (6 marks) Find the third degree Taylor polynomial of $f(x,y) = \frac{1}{1+x-y}$ near the point (2,-1).

$$T_3(x,y) = \frac{3}{4} + \frac{3$$

$$T_{3}(x,y) = \frac{1}{4} + \left((x-2) \cdot (-\frac{1}{16}) + (y+1) \cdot (\frac{1}{16})\right) + \frac{1}{2!} \left((x-2)^{2} (\frac{1}{32}) + (y+1)^{2} (\frac{1}{32}) + 2(x-2) (y+1) (-\frac{1}{32})\right)$$

$$+ \frac{1}{2!} \left((x-2)^{3} (\frac{1}{32}) + 3(x-2)^{2} (y+1) (\frac{1}{126}) + 3(x-2) (y+1)^{2} (-\frac{3}{126}) + (y+1)^{3} (\frac{1}{126})\right)$$

B6: (6 marks) Evaluate the following integral by reversing the order of integration and sketch the region of integration.

$$J = \frac{\pi}{3} \quad \pi = 3 \text{ d.} \quad \pi \in [0, 6] \quad \pi \in [0, 1].$$

$$J_{(\pi, y)} = \int_{0}^{2} \int_{0}^{3y} e^{y^{2}} dx dy$$

$$= \int_{0}^{2} 3y e^{y^{2}} dy$$

$$= \frac{3}{2}(e^{y} - 1).$$

the region is a triangle.

B7: (6 marks) Use double integral in polar coordinates to find the area of the region of one loop of the rose $r = \sin(3\theta)$ and sketch the region of integration.

$$A = \int_{-\pi/6}^{\pi/2} \frac{1}{2} r^2 d\theta = \frac{1}{2} \int_{-\pi/6}^{\pi/2} \sin^2 3\theta d\theta$$

$$= \frac{1}{4} \int_{-\pi/6}^{\pi/2} (1 - \cos 6\theta) d\theta$$

$$= \frac{1}{4} (\frac{\pi}{2}).$$

$$= \frac{\pi}{12}.$$

This page is for answers for Part B questions which you could not fit in the space provided. Indicate these clearly. Rough work for Part B questions (not to be graded) should also be done in the Scratch Papers.

This page is for answers for Part B questions which you could not fit in the space provided. Indicate these clearly. Rough work for Part B questions (not to be graded) should also be done in the Scratch Papers.