EXERCISE 11.4

(1) The distances of the point of concurrency of the medians of a triangle from its vertices are respectively 1.2cm; 1.4 cm and 1.5 cm. Find the lengths of its medians.

Solution Let ABC be a triangle with center of gravity at G where $\overline{MAG} = 1.2cm$, $\overline{MG} = 1.4cm$, $\overline{MCG} = 1.5cm$ Required To find the length of AP, BQ,

Proof:

CR

$$m\overline{AP} = \frac{3}{2} \times (mAG)$$

$$= \frac{3}{2} \times 1.2 = 1.8 \text{ cm}$$

$$m\overline{BQ} = \frac{3}{2} \times (m\overline{BG})$$

$$= \frac{3}{2} \times 1.4 = 2.1 \text{ cm}$$

$$m\overline{CR} = \frac{3}{2} \times (mCG)$$

$$= \frac{3}{2} \times 1.5 = 2.25 \text{ cm}$$

(2) Prove that the point of concurrency of the medians of a triangle and the triangle which is made by joining the mid-points of its sides is the same.

Given

In $\triangle ABC$, \overline{AQ} , \overline{BR} , \overline{CP} are its medians that are concurrent at point G. $\triangle PQR$ is formed by joining mid-points of \overline{AB} , \overline{BC} , \overline{CA}

To Prove

Point G is point of concurrency of triangle PQR.

	Statem	ents	Reasons
	PR BC		P, R are mid-points of AB and AC
⇒	PR BQ	(i)	
	$\overline{RQ}\ AB$		P, Q are mid-points of AB and BC
⇒	$\overline{RQ} \ \overline{PB}$	(ii)	
<i>∴</i>	PBQR is a para	illelogram.	
•	BR, PQ are its	diagonals, that	bisect each other at T.
	T is mid-point	PQ, similarly	
	S is mid-point	of PR and U is	mid-point of \overline{PQ} .

Theorem

If three or more parallel lines make congruent segments on a transversal, they also intercept congruent segments on any other line that cuts them.

Given

AB||CD||EF

The transversal \overrightarrow{LX} intersects \overrightarrow{AB} , \overrightarrow{CD} and \overrightarrow{EF} at the points M, N and P respectively, such that $\overrightarrow{MN} \cong \overrightarrow{NP}$. The transversal \overrightarrow{QY} intersects them at points R, S and T respectively.

To Prove

 $\overline{RS} \cong \overline{ST}$

Construction

From R, draw $\overline{RU} \parallel \overline{LX}$, which meets \overline{CD} at U. From S, draw $\overline{SV} \parallel \overline{LX}$ which meets \overline{EF} at V. as shown in the figure let the angles be labeled as

 $\angle 1$, $\angle 2$, $\angle 3$ and $\angle 4$

Proof

Statements	Reasons RU LX (construction)
MNUR is a parallelogram	
	AB CD (given)
$\therefore \overline{MN} \cong \overline{RU} \qquad \qquad \dots (i)$	(opposite sides of a parallelogram)

	Simila	arly,		
But $\overline{MN} \cong \overline{NP}$ (iii) {from (i), (ii) and (iii)} $\overline{RU} \cong \overline{SV}$ Each is $\ \overline{LX}$ (construction) Corresponding angles \overline{LX} Corresponding angles Corresponding angles \overline{LX} Construction) Corresponding angles \overline{LX} Corresponding angles \overline{LX} Proved S.A.A. \cong S.A.A. (corresponding sides of a congruent Proved Prov		$\overline{NP} \cong \overline{SV}$	(ii)	Given
Also $\overline{RU} \overline{SV}$ $\therefore \angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$ In $\Delta RUS \leftrightarrow \Delta SVT$, Proved $\overline{RU} \cong \overline{SV}$ $\angle 1 \cong \angle 2$ $\angle 3 \cong \angle 4$ $\therefore \Delta RUS \cong \Delta SVT$ Proved S.A.A. $\cong S.A.A.$ $\therefore \Delta RUS \cong \Delta SVT$ $\Rightarrow \overline{RU} \cong \overline{RU} \cong \overline{RU}$ S.A.A. $\cong S.A.A.$ $\Rightarrow \overline{RU} \cong \overline{RU} \cong \overline{RU} \cong \overline{RU}$ S.A.A. $\cong S.A.A.$ $\Rightarrow \overline{RU} \cong \overline{RU} \cong \overline{RU} \cong \overline{RU}$ Corresponding angles S.A.A. $\cong S.A.A.$ Corresponding sides of a congruent	But	$\overline{MN} \cong \overline{NP}$	(iii)	
	<i>:</i> .	$\overline{RU} \cong \overline{SV}$		Each is II LX (construction)
and $\angle 3 \cong \angle 4$ In $\triangle RUS \leftrightarrow \triangle SVT$, Proved $RU \cong \overline{SV}$ Proved $\angle 1 \cong \angle 2$ Proved $\angle 3 \cong \angle 4$ S.A.A. \cong S.A.A. $\therefore \triangle RUS \cong \triangle SVT$ (corresponding sides of a congruent	Also	RUII SV		Corresponding angles
In $\triangle RUS \leftrightarrow \triangle SVT$, Proved $ RU \cong \overline{SV} $ Proved $ \angle 1 \cong \angle 2 $ $ \angle 3 \cong \angle 4 $ $ \therefore \triangle RUS \cong \triangle SVT $ Respectively. S.A.A. \cong S.A.A. $ (corresponding sides of a congruent) $	<i>:</i> .	$\angle 1 \cong \angle 2$		Corresponding angles
$ \overline{RU} \cong \overline{SV} $ $ \angle 1 \cong \angle 2 $ $ \angle 3 \cong \angle 4 $ ∴ $ \Delta RUS \cong \Delta SVT $ $ \overline{RU} \cong \overline{SV} $ S.A.A. $\cong S$.A.A. (corresponding sides of a congruent properties)	and	∠3 ≅ ∠4		
Proved $ \angle 1 \cong \angle 2 $ $ \angle 3 \cong \angle 4 $ $ \therefore \Delta RUS \cong \Delta SVT $ $ ARUS \cong \Delta SVT $ (corresponding sides of a congruent congruent)	In	$\Delta RUS \leftrightarrow \Delta SVT$,		Proved
		$\overline{RU} \cong \overline{SV}$		Proved
$\therefore \Delta RUS \cong \Delta SVT$ $\therefore \Delta RUS \cong \Delta SVT$ $\text{(corresponding sides of a congruent)}$		∠1 ≅ ∠2		Proved
		$\Delta RUS \cong \Delta SVT$		

Corollaries (i) A line, through the mid-point of one side, parallel to another side of a triangle, bisects the third side.

Given In ΔABC, D is the mid-point of AB.

 $\overline{DE} \parallel \overline{BC}$ which cuts \overline{AC} at E.

To prove

 $\overline{AE} \cong \overline{EC}$

Construction

Through A, draw $\overrightarrow{LM} \parallel \overline{BC}$.

Proof

Statements	Reasons
Intercepts cut by \overrightarrow{LM} , \overrightarrow{DE} , \overrightarrow{BC} on	
\overrightarrow{AC} are congruent. i.e., $\overrightarrow{AC} \cong \overrightarrow{EC}$	\[\left\{\frac{\text{Intercepts}}{\text{BC}}\text{ on AB}\text{ are congruent (given)} \]

- (ii) The parallel line from the mid-point of one non-parallel side of a trapezium to the parallel sides bisects the other non-parallel side.
- (iii) If one side of a triangle is divided into congruent segments, the line drawn from the point of division parallel to the other side will make congruent segments on third side.