Modelli Probabilistici per le Decisioni

UniShare

Davide Cozzi @dlcgold

Indice

1	Introduzione Ripasso di Probabilità Modelli Probabilistici													2						
2														3						
3														7						
	3.1	Incerte	ezza																	8
		3.1.1	Reti Bayesia	ne																12

Capitolo 1

Introduzione

Questi appunti sono presi a lezione. Per quanto sia stata fatta una revisione è altamente probabile (praticamente certo) che possano contenere errori, sia di stampa che di vero e proprio contenuto. Per eventuali proposte di correzione effettuare una pull request. Link: https://github.com/dlcgold/Appunti.

Capitolo 2

Ripasso di Probabilità

Riprendiamo qualche definizione.

Definizione 1. Definiamo **variabile casuale** come un'osservazione, un esito o un evento il cui valore è incerto.

Definizione 2. Definiamo dominio o spazio degli eventi come l'insieme dei possibili valore che può assumere una variabile casuale.

Definizione 3. Definiamo spazio di probabilità o modello di probabilità come uno spazio degli eventi corredato da un assegnamento:

$$P(\omega), \omega \in \Omega$$

tale che:

- $0 < P(\omega) < 1$
- $\sum_{\omega} p(\omega) = 1$

con omega evento e Ω spazio degli eventi.

Definizione 4. Definiamo **evento atomico o campione** una specificazione completa del calore delle variabili casuali di interesse. L'insieme di tutti i possibili eventi atomici è:

- mutualmente esaustivo (non potendo accadere altro)
- mutualmente esclusivo (può accadere solo un evento atomico di quelli possibili)

Definizione 5. Definiamo un **evento** (non atomico) A può essere un qualunque sottoinsieme di Ω tale che:

$$P(A) = \sum_{\omega \in A} P(\omega)$$

Definizione 6. Definiamo una **variabile aleatoria** è una variabile che può assumere diversi valori in corrispondenza di altrettanti eventi che costituiscono una partizione dello spazio delle probabilità.

Si ricorda che, per una variabile a e una b:

- $0 \le P(a) \le 1$
- $P(\top) = 1 e P(\bot) = 0$
- $P(a \lor b) = P(a) + p(b) p(a \land b)$

Definizione 7. Definiamo una **probabilità condizionata** rappresenta la verosimiglianza che un evento a si verifichi se b si verifica e si denota con:

Si ha quindi la specifica che alcuni eventi rendono altri eventi più o meno verosimili.

Si parla quindi di eventi dipendenti.

Definizione 8. Due eventi sono **indipendenti** se un evento non influisce sulla realizzazione dell'altro:

$$P(a|b) = P(a)$$

Si ha quindi la seguente regola.

Teorema 1 (Regola del prodotto). Possiamo calcolare che due eventi si verifichino contemporaneamente tramite la probabilità condizionata e quella dei singoli eventi:

$$P(a,b) = P(a \land b) = P(a|b)P(b) = P(b|a)P(a)$$

Con $P(a,b) = P(a \wedge b)$ è detta **probabilità congiunta** ("=" perché sono due modi per scriverla).

Posso fare la tabella dei vari eventi condizionati.

Teorema 2 (Regola della somma). Si ha che, avendo la tabella degli eventi:

$$P(x) = \sum_{y} P(x, y)$$

con P(x) detta **probabilità marginale**.

La somma di tutte le possibili combinazioni di eventi, quindi dei valori della tabella, deve dare 1.

Su slide esempio di uso di quanto detto, dove si arriva al teorema di Bayes.

Si vuole infatti passare dal conoscere P(a|b) al consocere P(b|a).

Teorema 3 (Teorema di Bayes). Il teorema enuncia che:

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

Avendo:

- P(h) che è la probabilità conosciuta a priori di h. Tale probabilità riflette qualsiasi conoscenza di base sulla possibilità che h sia corretta
- P(D) che è la probabilità conosciuta a priori di D, ovvero la probabilità che D sia osservato
- P(D|h) che è la probabilità di osservare D in presenza dell'ipotesi h
- P(D|h) che è la probabilità a posteriori di h. Tale probabilità riflette la "confidenza" di avere h dopo che D è stato osservato

In altri termini, avendo:

$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

ho che:

$$P(a|b)P(b) = P(b|a)P(a)$$

arrivando a dire che:

$$P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

notando la correlazione tra probabilità congiunta e Bayes.

Che è il punto fondamentale della moderna teoria dell'intelligenza artificiale in quanto permette di raccogliere l'evidenza senza poi usare le tabelle delle probabilità congiunte, che sarebbero difficilissimi da osservare. Se pensiamo ad alcuni eventi come cause "nascoste" non necessariamente osservabili se modelliamo la verosimiglianza degli eventi osservabili date le cause nascoste si ha:

$$P(causa|effetto) = \frac{P(effetto|causa)P(causa)}{P(effetto)}$$

Si ha quindi un modello per inferire/derivare la verosimiglianza della causa nascosta e quindi rispondendo a:

Avendo quindi la probabilità di una causa dato un effetto. Dato l'effetto modello la causa.

Se non si ha una delle due probabilità a priori posso stimare per poi normalizzare. In altri termini il denominatore P(D) è spesso solo una quantità di normalizzazione, essendo spesso difficile da stimare.

Le probabilità possono essere definite su due approcci:

- approccio frequentista o oggettivista che considera la probabilità come un'entità misurabile legata alla frequenza di accadimento, come si fa ne machine learning
- approccio soggettivista che considera la probabilità come una misura del grado di attesa soggettivo del verificarsi di un evento, come si fa nel corso di statistica

Capitolo 3

Modelli Probabilistici

Nel passato si sono usati **sistemi a regole**, dove codificando tutto quello che può succedere si cercava di giungere ad una decisione. Questo però era molto dispendioso, si arrivava o a vero a falso, senza via di mezzo, e si dovevano avere dati ipoteticamente completi e sicuri in partenza. Si parla in questo caso di **modelli logici**.

Viviamo in un'era dove si hanno molti dati, sia in ambito sociale, che di business che scientifico. Questi dati devono essere analizzati al fine di poter prendere **decisioni** e per farlo si deve per capire la situazione in cui ci si trova e spesso posso capirlo solo osservando i dati, non osservando la variabile specifica. Dalle osservazioni dobbiamo inferire il valore di variabili "nascoste". Spesso si ha a che fare con dati non completi, non consistenti, spesso errati, con rumore di trasmissione etc...

Tali dati sono comunque evidenze per percepire la situazione in cui ci si trova. L'obiettivo del corso è fornire strumenti modellistici per rappresentare l'incertezza nel modello, incertezza per struttura e parametri, e per rappresentare in termini probabilistici gli errori nei dati. Si vuole quindi implementare algoritmi di "ragionamento", automatizzati e adattivi, oltre che robusti e scalabili.

I modelli probabilistici sono anche detti modelli generativi. Si usa la teoria delle probabilità per esprimere incertezza e rumore associati al modello e ai dati, soprattutto usando la teoria Bayesana, per fare previsione e adattare i modelli. Questi modelli permettono di partire da una "credenza" iniziale, anche soggettiva, per poi raccogliere evidenze aggiustando tale modello.

I modelli probabilistici sono anche modelli di machine learning, in quanto apprendono.

Bisogna quindi partire dalle osservazioni generate rispetto ad un valore di variabile per poi inferire tale variabile (ad esempio parto dai risultati di un gioco per capire quando è bravo il giocatore, che non è una variabile che posso

sapere a priori). Si parte dai dati e si arriva al valore della variabile che ha generato questi dati (per questo *modello generativo*). Man mano che raccolgo informazioni raffino il modello, più o meno come fa un essere umano ("più rispondi alle domande all'orale e più il docente capisce il tuo voto, anche se alla fine non si ha la certezza che il voto rispecchi la preparazione"). I dati possono non portare alla certezza, ma più dati si hanno e più ci si avvicina, riducendo l'incertezza.

Un esempio pratico è il modello **Elo** (nato per gli scacchi) da cui deriva quello usato da *Xbox* per capire come appaiare giocatori online in base alle skill. Il valore di bravura viene rappresentato come una distribuzione, in primis con una Gaussiana, con una certa media e una certa varianza/deviazione standard, quindi solo due numeri. Cambiare il modello significa solo cambiare quei due valori. Per confrontare due giocatori capisco la distribuzione a partire dai dati del giocatore che si hanno, diminuendo l'incertezza all'aumentare dei dati. Con il modello probabilistico poi, a partire dal risultato modificherò le distribuzioni di partenza, cambiando la percezione su essi. Nel tempo posso tenere aggiornato i modelli probabilistici che rappresentano una certa variabile e usarli per fare confronti (ad esempio confrontando due giocatori per poi fare l'appaiamento).

Con i modelli probabilistici si ha una capacità espressiva maggiore di quella di un modello logico, avendo le distribuzioni di probabilità e potendo anche usare varie soglie.

Un *modello generativ*o parte dalle probabilità a priori e può "generare" possibili eventi, generando campioni verosimili con una certa distribuzione statistica.

Nella vita reale si osservano degli accadimenti e studiandoli si può risalire alla probabilità degli eventi, tramite l'approccio frequentista.

3.1 Incertezza

Si introduce quindi l'**incertezza**. Non sempre si ha a che fare con dati "certi" e precisi, che possono portare con più facilità ad una certa decisione, potendo giungere ad una decisione **ottimale** senza alcun dubbio su quale essa sia. Con l'**incertezza** sui dati bisogna modificare l'idea di **soluzione ottimale**. Si arriva a dover capire quale sia la **soluzione ottima** in un contesto dove "non si sa cosa succederà", partendo da dati incerti. Si ha che:

• un evento osservato può avere molte cause

- la verosimiglianza di un'ipotesi sulla causa cambia man mano che si raccolgono pezzi di evidenza
- usando modelli probabilistici di ragionamento possiamo calcolare quanto probabile è una certa ipotesi. Si ipotizza che le fonti di incertezza siano quantificabili

Vari esempi di vita in merito sulle slide.

Spesso si ha un approccio "frequentista", valutando la frequenza di un evento per capire la probabilità che tale evento accada, inferendo così una distribuzione di probabilità dalla frequenza con la quale si osservano i dati. Questo è piuù o meno come funziona il cervello umano ma bisogna fare la stessa cosa con un calcolatore e per questo ci verrà incontro il **teorema di Bayes**.

Si ha inoltre che un sistema che considera anche l'incertezza, che è presente in moltissime situazioni, dovrebbe funzionare meglio di uno che non lo fa ma ci serve in primis un modo per rappresentare l'incertezza stessa.

Più parametri ha il modello e più è difficile rappresentarlo.

Si ha il **Degree of Belief** che è una probabilità a priori sono ricavate da:

- osservazioni statistiche
- regole generali e conosciute
- combinazioni di sorgenti di evidenza

In ogni caso si hanno quindi evidenze empiriche. Vediamo ora il rapporto tra i **modelli causali** e la **regola di Bayes**. Ricordiamo che per Bayes si ha:

$$P(causa|effetto) = \frac{P(effetto|causa)P(causa)}{P(effetto)}$$

Con le reti causali vorremmo risalire dall'effetto alla causa ma normalmente si hanno più informazioni su P(causa|effetto) che su P(effetto|causa). Conoscendo P(effetto|causa) per ogni causa posso evitare di calcolare P(effetto), infatti, dato c=causa ed e=effeto:

$$P(c|e) = \frac{P(e|c)P(c)}{P(e)} = \frac{P(e|c)P(c)}{\sum_{\forall h \in causa} P(e|h)P(h)}$$

Vediamo un po' di notazione:

- con < \top, \bot > indichiamo una distribuzione di probabilità

• α costante di normalizzazione per trascurare il denominatore di Bayes (lo sostituisce). È detto fattore di normalizzazione

Esempio 1. Vediamo un esempio:

$$P(meningite = < \top, \bot > |s = \top) = \alpha < P(s|m)P(m), P(s|\neg m)P(\neg m) >$$

SI assume che l'effetto deve essere scaturito a causa di una delle cause ipotizzate e non altre. A volte è più difficile calcolare P(effeto|causa) per tutte le cause indipendentemente che calcolare direttamente P(effetto). Dato:

$$P(A|B) = (B|A)P(A)$$

si ha che:

- P(A) è la probabilità a priori
- P(B|A) probabilità a posteriori
- P(B|A) verosimiglianza

Se la probabilità a priori è nulla si assegna una probabilità ε (anche solo per un'osservazione) a tutti gli eventi che riteniamo possibili, anche se ancora non sono accaduti. Se un evento può realizzarsi deve avere una probabilità a priori, anche se molto piccola. Bisogna poi riscalare la probabilità di tutti per poter includere anche questi eventi rari. **Esempi su slide**.

Vediamo quindi come si **combinano le evidenze**. Qualora si abbiano più effetti il modello diventa più complesso. Per n effetti arei 2^n possibili combinazioni di evidenze da modellate. Si utilizza quindi la **catena di probabilità condizionali**, che, per esempio, per 4 eventi è:

$$P(A, B, C, D) = P(A|B, C, D)P(B|C, D)P(C|D)P(D)$$

ottenuta sfruttando la regola del prodotto:

$$P(A,B) = P(A|B)P(B)$$

La catena di probabilità condizionali è utile per rappresentare la probabilità congiunta in quanto permette una rappresentazione più compatta (potendo mettere anche insieme diverse fonti).

Definizione 9. Considerato un insieme di eventi $E_1, \ldots E_n$ e tutte le possibili combinazioni dei loro valori \top e \bot . Supponiamo di conoscere tutti i valori $P(E_1, \ldots, E_n)$. Supponiamo che un sottoinsieme di questi presenti un

valore definito, ovvero $E_j = e = \top$ allora chiamo **inferenza probabilistica** il processo di calcolo del valore:

$$P(E_i = \top | E_i = e)$$

In generale l'inferenza probabilistica non è trattabile con questo metodo avendo 2^n probabilità congiunte $P(E_1, ... E_n)$.

Si ragiona quindi spesso tramite **metodi approssimati/qualitativi**, avendo magari centinaia di evidenze.

Esempio su slide.

Per risolvere il problema viene anche incontro l'**indipendenza condizio-**nata.

Due eventi possono diventare indipendenti data la presenza di un altro evento, che è causa comune di entrambi. Si passa da una dipendenza causale diretta alla dipendenza dovuta ad un effetto causale indiretto (???). Se si conosce la causa i due eventi sono indipendenti se non la si conosce potrebbero essere dipendenti.

Definizione 10. Definiamo la **regola di marginalizzazione** per due insiemi di variabili Y e Z come:

$$P(Y) = \sum_{z \in Z} P(Y, z)$$

In alternativa uso le probabilità condizionate usando la **regola del condizionamento**:

$$P(Y) = \sum_{z \in Z} P(Y|z)P(z)$$

Potrei anche usare l'**inferenza per enumerazione** dove semplicemente sommo i valori della tabella rispetto a ciò che mi interessa (se voglio $P(c = \top, m = \top)$ sommo tutti i valori con almeno uno dei due nella tabella).

Su slide esempio di conto per tutti con anche conto per α . Un principio generale di computazione è:

- specificare la variabile oggetto della "query"
- fissare lo stato delle variabili per le quali è disponibile l'evidenza
- calcolare la probabilità a posteriori sommando rispetto alle variabili sulle quali non è disponibile evidenza

Quindi indiciamo con x tale variabile oggetto di query. Data la realizzazione congiunta e(evidenza) per un sottoinsieme E di variabili dette **variabili con evidenza** si indica con Y l'insieme restanti variabili. Y è detto insieme delle variabili senza evidenza. L'intero insieme delle variabili del problema è quindi:

$$\{X\} \cup E \cup Y$$

La distribuzione marginale a posteriori di X è ottenuto per marginalizzazione rispetto a Y:

$$P(X|E=e) = \alpha P(X, E=e) = \alpha (X, E=e, Y=y)$$

Posso quindi fare query per qualsiasi variabili avendo la tabella delle probabilità congiunte ma tale metodo non è efficiente.

3.1.1 Reti Bayesiane

Le relazioni di indipendenza condizionata può essere illustrata da un grafo, dove un nodo è collegato ad un altro con arco diretto sse il primo è causa dell'altro:

Esempio 2. Vediamo un esempio:

 $P(carie|mal_di_denti \land incastro) = \alpha P(|mal_di_denti \land incastro|carie) P(carie)$

$$= \alpha P(|mal_di_denti|carie)P(incastro|carie)P(carie)$$

Ulteriori esempi su slide.

Le probabilità congiunte le posso rappresentare in una tabella.

Le **reti Bayesiane** sfruttano grafi diretti aciclici per rappresentare le assunzioni di indipendenza condizionale tra variabili in modo chiaro ed efficiente. Un arco diretto tra A e B rappresenta una relazione di causalità: A influenza B. Si ha quindi che "pattern" di ragionamenti sono un cammino tra un nodo e un altro.

Si passa da $O(2^n)$ a O(n), per n numero di effetti.

Definizione 11. Si ha che l'evento A è condizionalmente indipendente dall'evento B se, dato l'evento C:

$$P(A|B,C) = P(A|C)$$

ovvero la conoscenza di B non porta a nessuna ulteriore variazione della probabilità di A rispetto a quella dell'avverarsi di C.

Dall'indipendenza di A e B dato C si ha che:

$$P(A, B|C) = P(A|C)P(B|C) = P(A, B|C)$$

Se C è un insieme vuoto ho, non avendo correlazione:

$$P(A, B) = P(A)P(B)$$

Le reti Bayesiane quindi analizzano le cause dirette e indirette.