

Master of Science in Analytics

Model Selection & Regularization

Machine Learning 1

Goal & definitions

Goals

- Reduce the complexity [number of features] in a model
- O Why?

Model Selection

- Select optimal feature set for model
- Useful for [linear] regression and classification

Regularization

- Shrink feature coefficients of least squares to (near) zero
- In theory: reduces variance

Dimension Reduction

Use fewer features by projecting into M-dimensional space

Example data - Credit.csv

credit

- ID primary_key: INTEGER
- income: DECIMAL(6,2)
- limit: DECIMAL(6,2)
- rating: INTEGER
- cards: INTEGER
- age: INTEGER
- education: INTEGER
- gender: VARCHAR(5)
- student: BOOLEAN
- married: BOOLEAN
- ehnicity: VARCHAR(20)
- balance: DECIMAL(5,2)

Cards:

Education:

Income:

Limit:

Rating:

Predictors vs. errors

Evaluating models

Problem:

- Models with more features always* have lower RSS, higher R²
- Cannot compare models with difference in numbers of features
- Must determine test error across models

Estimating test error

Directly: use validation set / cross validation

Indirectly: make adjustment to training error, account for overfitting

Evaluating models - C_p

Estimate:

$$C_p = \frac{1}{n} \left(\text{RSS} + 2d\hat{\sigma}^2 \right)$$

- \circ ... where d = number of features in model
- What it's doing
 - \circ Adds $2d\sigma^2$ penalty to training set RSS (i.e. lower C_p is better score)
 - Accounts for higher test set error?

Evaluating models - AIC

- Akaike information criterion
- Estimate:

$$AIC = \frac{1}{n\hat{\sigma}^2} \left(RSS + 2d\hat{\sigma}^2 \right)$$

- What it's doing
 - Also adds "additional features" penalty
 - Equal to C_ρ for (Gaussian) linear regression
- Comparison (example)
 - Can compare two AIC models, x & y, using exp((x-y)/2)
 - Example: aic(model 1) = 61; aic(model 2) = 65
 - Model 1 is 54.6 more probable than model 2 to be a better model

Evaluating models - BIC

- Bayesian information criterion
- Estimate:

BIC =
$$\frac{1}{n} \left(RSS + \log(n) d\hat{\sigma}^2 \right)$$

- ... where *n* is number of observations
- What it's doing
 - Also adds a large "additional features" penalty, based also on n
 - Tends to create smaller models than C_p

Evaluating models - Adjusted R²

- Recall R²
 - \circ R² = 1 RSS/TSS
 - RSS always decreases with more features, so R² always increases
- Estimate:

Adjusted
$$R^2 = 1 - \frac{RSS/(n-d-1)}{TSS/(n-1)}$$

• ... where *n* is number of observations

Intuition

- Adding features with high variance increases d
- i.e. also adds an "additional features" penalty
- Best possible score is 1.0

Comparison (credit.csv)

Implementation in scikit-learn

- 1) Import data
 - a) If necessary, split data into train, test sets
- 2) Coerce data into:
 - a) X = List-of-lists / numpy matrix: all features
 - b) Y = List / numpy vector: all targets

```
# 3a) BIC / AIC
```

from sklearn.linear_model import LassoLarsIC

```
model = LassoLarsIC(criterion='bic') # ... or 'aic'
model.fit(X, Y)
alpha = model.alpha_
```

```
# 3b) R2
# Needs hypotheses for Y
from sklearn.metrics import r2_score
```

r2 = r2 score(Y, hypotheses)

4) Compare the result with other models

Subset selection

- Fit a model for each subset of features
- Algorithm:

```
\mathcal{M}_0 \leftarrow \varnothing For k = 1, 2, ..., p:
   Fit (p choose k) models, each with k predictors \mathcal{M}_k \leftarrow \text{model with lowest RSS (highest R}^2?)
Output model from [\mathcal{M}_0 - \mathcal{M}_p] with lowest error
```

- This approach:
 - Uses cross-validation to avoid training set bias
 - Is impractical: running time comparable to SAT

Forward stepwise selection

- One tractable variation of subset selection
- Algorithm:

```
\mathcal{M}_0 \leftarrow \varnothing For k = 0, 1, ..., p - 1: Consider adding best predictor to each model \mathcal{M}_k Choose best among p - k models (lowest RSS?) Output model from [\mathcal{M}_0 - \mathcal{M}_p] with lowest error
```

Problem: does not account for feature combinations

# Variables	Best subset	Forward stepwise
One	rating	rating
Two	rating, income	rating, income
Three	rating, income, student	rating, income, student
Four	cards, income	rating, income,
	student, limit	student, limit

Backward stepwise selection

- Another tractable variation of subset selection
- Algorithm:

```
\begin{aligned} \mathcal{M}_{\text{p}} &\leftarrow \text{all features} \\ \text{For } k = \text{p, p-1, ..., 1:} \\ &\quad \text{Consider } k \text{ models with 1 less feature than } \mathcal{M}_{\text{k-1}} \\ &\quad \text{Choose best among } k \text{ models (lowest RSS?)} \\ \text{Output model from } [\mathcal{M}_{\text{O}} - \mathcal{M}_{\text{p}}] \text{ with lowest error} \end{aligned}
```

Problem: fails when n < p

Regularization

- Recall:
 - Regularization / shrinkage: may establish low (zero?) coefficients
 - Effect: decreases variance for noisy features
 - Good in high-dimensional settings
- Techniques:
 - Ridge regression
 - The lasso

- Also known as Tikhonov regularization (β^R)
- Evaluation

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Recall

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

- What it's doing:
 - \circ Adds a shrinkage penalty (to linear regression) when β_i is small
 - When $\lambda = 0$, no penalty

Ridge regression vs. credit

Why does ridge regression work?

- Bias-variance trade-off
 - Increasing λ decreases flexibility of ridge regression
 - o Alternately: bias increases, variance decreases
- We can find optimal λ by looking at MSE

Simulated dataset

Black: squared bias Green: variance Purple: test MSE

Dashed line: min MSE

The lasso

Evaluation

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$

- o ... in other words, similar to ridge regression
- Difference is penalty ($|\beta_i|$) —> ℓ_1 penalty instead of ℓ_2 penalty
- Comparisons to the ball (cf. <u>L1 vs. L2</u> on quora):

Error & constraint - the lasso vs. ridge regression

The effects of the lasso

• The lasso vs. credit

May set feature coefficients to zero

Selecting the tuning parameter λ

- Procedure for a number of λ values
 - Use k-fold CV to estimate average MSE
 - Choose λ with lowest MSE
- We can find optimal λ by looking at MSE

Dimension Reduction

- Recall that data is described in p dimensions
- Goal
 - Re-purpose linear regression model
 - Reduce variance for noisy features
 - Describe data using M+1 coefficients (M < p)
- Techniques:
 - Principal Components
 - Partial Least Squares

Principal Components Analysis

- Principal Component (intuitive)
 - Identify feature with maximum variance
 - Fit (linear) regression to that feature
 - Describe each data point with distance to regression line
- Rinse, wash, repeat:
 - Second Principal Component is created on feature with second most variance
 - Additional Principal Components are (necessarily) orthogonal to others
- ... for dimensional reduction
 - There are always *p* principal components (Why?)
 - Use "description" of points as features
 - Fit model on first M descriptions

Population vs. ad spending data

Data: total ad spending vs. population of city

Green: first principal component Blue: second principal component

PCR

Formally

- Principal component is a normalized linear combination of the original predictors
- First principal component captures the maximum variance

Caution

- Features' should be in some comparable form i.e. normalized
- Features must be numeric; must convert categorical data

Thoughts on PCA

- May choose M through cross-validation
- Terminology
 - PCR: Principal Components Regression
 - PCA-transformation is formally: $X_1, ..., X_p \longrightarrow Z_1, ..., Z_M$
 - We can mitigate overfitting using PCA

Assumptions

- We can mitigate overfitting using PCR
- Using $Z_1, ..., Z_M$ describes data better than $X_1, ..., X_p$
- \circ Z_1 , ..., Z_M is related to outcome (Y) i.e. PCA is *unsupervised*

Implementation in scikit-learn

- 1) Import data
 - a) If necessary, split data into train, test sets
- 2) Coerce data into: X (numpy matrix)

```
# 3a) BIC / AIC
```

from sklearn.decomposition import PCA from sklearn.preprocessing import scale # For normalizing

components = 50 # Must be less than len(features)
pca = PCA(n_components=components)
pca.fit(X)
Optionally, if you need variance
variance = pca.explained_variance_ratio_

Lab

Input

- Use auto.csv [1:-1] in https://github.com/dbrizan/MSAN621-data
- Field [1] = MPG (outcome); field[-1] is the auto make/model
- This is a clean modification of <u>auto data at UCI</u>

What to do

- Get the explained variance list using PCA
- Plot the cumulative explained variance:

```
import matplotlib.pyplot as plt
plt.plot(cumulative_explained_variance)
plt.show()
```


- PLS
 - o PCR identifies maximum variance without considering response
 - PLS identifies Z_1 as max variance with respect to outcome (Y)

Data: total ad spending vs. population of city

PCR: green dotted line PLS: green solid line

Theoretically: better fit to data