Programação dinâmica

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

"Programação dinâmica é um nome chique para recursão com uma tabela."

lan Parberry.

Mochila binária

Problema

Indiana Jones descobriu um novo sítio arqueológico:

- O sítio contém diversos itens históricos.
- Ele irá levar alguns itens na mochila.
- Mas a mochila tem um limite de peso W.

Ele tem *n* itens disponíveis:

- \triangleright Cada item *i* tem um peso w_i .
- \triangleright Cada item *i* tem um valor c_i .

Pergunta: Quais itens escolher para maximizar o valor?

Problema da mochila binário

Problema

Entrada: Um inteiro não negativo W representando a capacidade, um vetor de inteiros não negativos w representando pesos e um vetor de inteiros não negativos c representando valores.

Solução: Um subconjunto $I \subseteq \{1, 2, ..., n\}$ tal que $\sum_{i \in I} w_i \leq W$.

Objetivo: MAXIMIZAR $\sum_{i \in I} c_i$.

Podemos fazer algumas suposições:

- 1. $\sum_{i=1}^{n} w_i > W$.
- 2. $0 < w_i \le W$ para todo i = 1, ..., n.

Força bruta

Algoritmo de força bruta:

- ► Há 2ⁿ possíveis subconjuntos de itens.
- ► Testar cada um deles é impraticável!

Subproblema:

- \triangleright Consideramos os itens em uma ordem definida $1, \ldots, n$.
- Considere números k e d tais que $0 \le d \le W$ e $1 \le k \le n$.
- Defina z[k, d] como o maior valor de uma solução para uma instância com os k primeiros itens e uma mochila com capacidade d.

Vamos computar z[k, d] utilizando indução em k.

Projeto por Indução

Queremos computar z[k, d].

Base:

► Se k = 0, então z[0, d] = 0.

Hipótese de indução:

Sabemos computar z[k-1, d'] para todo d'.

Passo:

- Considere o último item k do subproblema.
 - 1. Se ele pertencer à solução:

$$z[k,d] = z[k-1,d-w_k] + c_k$$

2. Se ele NÃO pertencer:

$$z[k,d] = z[k-1,d]$$

- Note que se $w_k > d$, então k não pertence à solução.
- Do contrário, não sabemos se k está na solução.
- ▶ Computamos z[k, d] como o máximo entre os dois casos.

Projeto por Indução

Podemos computar z[k, d] com a recorrência:

$$z[k,d] = \begin{cases} 0 & \text{se } k = 0 \\ z[k-1,d] & \text{se } w_k > d \\ \max\{z[k-1,d], \ z[k-1,d-w_k] + c_k\} & \text{se } w_k \le d \end{cases}$$

Programação dinâmica

Observe que as capacidades são inteiros:

- \triangleright Criamos uma tabela com n+1 linhas e W+1 colunas.
- O número de entradas da tabela é (n+1)(W+1).
- Inicializamos a primeira linha com 0.
- O cálculo de uma entrada só depende da linha anterior!
- ▶ O valor do problema original será z[n, W].

Algoritmo de programação dinâmica

```
Algoritmo: MOCHILA(W, w, c, n)

para d \leftarrow 0 até W
```

8 devolva z[n, W]

Análise

Tempo de execução:

- A complexidade de tempo é O(nW).
- É um algoritmo pseudo-polinomial:
 - A complexidade é polinomial em n e W.
 - Mas W é um número da entrada.

Recuperando a solução:

- O algoritmo NÃO devolve uma solução ótima, somente o valor.
- Podemos obtê-la a partir da tabela z.

Recuperação da solução

Algoritmo: Mochila-Solução (W, z, n)

```
\begin{array}{c|cccc} 1 & d \leftarrow W \\ 2 & \mathsf{para} & k \leftarrow n \ \mathsf{at\'e} \ 1 \\ 3 & & \mathsf{se} \ z[k,d] = z[k-1,d] \\ 4 & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &
```

8 devolva x

O vetor x que indica os itens de uma solução ótima.

Complexidade de espaço

É possível economizar memória:

- A complexidade de espaço é O(nW).
- Precisamos apenas da última linha para a recorrência.
- Assim, mantemos no máximo duas linhas.
- ightharpoonup O algoritmo melhorado usa apenas O(W) de espaço.
- Mas isso inviabiliza a recuperação da solução.

ÁRVORE DE BUSCA ÓTIMA

Árvores binárias de busca

Considere um conjunto de chaves de busca:

- ▶ Elas podem ser ordenadas de forma que $e_1 < e_2 < \cdots < e_n$.
- $ightharpoonup f_i$ é a frequência de consulta para a chave e_i .

Vamos criar uma árvore binária de busca:

- Respeita a propriedade de busca.
- Ou seja, nós na subárvore esquerda de e_i têm chaves menores que e_i e nós na subárvore direita têm chaves maiores.
- A consulta a uma chave acessa os nós antecedentes.

Pergunta: Qual árvore minimiza o número de acessos a nós?

Problema da árvore de busca ótima

Problema

Entrada: Uma sequência de chaves $e_1 < e_2 < \cdots < e_n$ e as

frequências de consulta f_i para cada chave e_i .

Solução: Uma árvore binária de busca com nós e_1, e_2, \ldots, e_n .

Objetivo: MINIMIZAR número total de nós consultados.

Propriedade da árvore de busca

Considere a árvore a seguir:

Seja T uma árvore de busca com A < B < C < D:

- Pergunta: A árvore acima pode ser subárvore de T?
- ▶ Resposta: NÃO, ela deveria conter o elemento C como raiz, mas aí não seria uma árvore de busca.

Propriedade da árvore de busca

Considere uma árvore de busca T:

- Seja T_k a subárvore enraizada em algum elemento e_k .
- Suponha que T_k contém elementos e_i e e_i para i < j.
- ▶ Então T_k contém **todos** os elementos e_ℓ de e_i até e_j .

Podemos mostrar isso da seguinte forma:

- ▶ Considere e_{ℓ} com $i < \ell < j$.
- Suponha que e_{ℓ} também não é descendente de e_k .
- ▶ Tampouco e_{ℓ} pode ser antecessor de e_k .
- Se e_a é o primeiro ancestral comum a e_k e a e_ℓ .
- ▶ Então $k < a < \ell$ ou $\ell < a < k$:
 - 1. No primeiro caso teríamos $j < a < \ell$.
 - 2. No segundo caso teríamos $\ell < a < i$.
- Isso é uma contradição, então e_ℓ é descendente de e_k.

Subestrutura ótima

Considere uma árvore de busca T enraizada em e_k .

- Suponha que ela contém $\{e_i, \ldots, e_{k-1}, e_k, e_{k+1}, \ldots, e_i\}$:
 - No ramo esquerdo deve haver os elementos e_i, \ldots, e_{k-1} .
 - No ramo direito deve haver os elementos e_{k+1}, \ldots, e_i .

- Se T é uma árvore de busca ótima.
- Então as **subárvores** esquerda e direita também são.

Subproblema

Definimos o seguinte subproblema:

- Considere um par de índices (i, j).
- Seja a[i,j] o **menor** número de acessos de uma árvore de busca que contém e_i, \ldots, e_j .

Podemos computar a[i,j] usando uma recorrência:

$$a[i,j] = \begin{cases} 0 & \text{se } i > j, \\ \sum_{t=i}^{j} f_t + \min_{i \le k \le j} \left\{ a[i,k-1] + a[k+1,j] \right\} & \text{se } i \le j \end{cases}$$

Correção da recorrência

Lema

O número de acessos a nós de uma árvore de busca que contém e_i, \ldots, e_i é pelo menos a[i, j].

Iremos mostrar por indução em n = j - i + 1:

- Para n = 0, a árvore é vazia e o número de acessos é 0.
- Suponha que $n \ge 1$ e seja e_i a raiz de uma árvore ótima.
- Para cada t = i, ..., j devemos acessar a raiz f_t vezes.
- ▶ Além disso, devemos somar os acessos às subárvores.
- Pela hipótese de indução, o número de acessos da árvore esquerda é pelo menos a[i, k-1].
- O da subárvore direta é computado por a[k+1,j].
- Como consideramos o mínimo entre todos k, o lema segue.

Implementando o algoritmo

- Podemos pré-computar $f_{ij} = \sum_{t=i}^{j} f_t$ em $\Theta(n^2)$.
- ▶ Considere elementos dummy e_0 e e_{n+1} com $f_0 = f_{n+1} = 0$.
- ightharpoonup a[i,j] é o número acessos para a subárvore com e_i,\ldots,e_j .
- ightharpoonup r[i,j] indica o índice raiz dessa subárvore.
- Preenchemos a tabela em ordem do tamanho u = j i + 1.

Algoritmo

Algoritmo: ÁRVORE-BUSCA(f)

```
1 para i \leftarrow 1 até n+1
a[i, i-1] ← 0 \triangleright subárvore vazia
3 para u \leftarrow 1 até n
         para i \leftarrow 1 até n - u + 1
             i \leftarrow i + u - 1
              a[i,j] \leftarrow \infty
               para k \leftarrow i até j
                     aux \leftarrow f_{ii} + a[i, k-1] + a[k+1, j]
                     se a[i,j] > aux
                  a[i,j] \leftarrow auxr[i,j] \leftarrow k
10
11
```

12 devolva a[1, n]

A complexidade de tempo é $O(n^3)$

SUBSEQUÊNCIA COMUM MÁXIMA

Subsequência

Vamos trabalhar com sequências de símbolos:

- ► Considere uma sequência $X = \langle x_1, x_2, \dots, x_m \rangle$
- e uma outra sequência $Z = \langle z_1, z_2, \dots, z_k \rangle$.

Dizemos que Z é uma **subsequência** de X se:

- Existe uma sequência crescente de índices $\langle i_1, i_2, \dots, i_k \rangle$
- $ightharpoonup x_{i_j} = z_j$ para cada $j = 1, 2, \dots, k$.

Exemplo:

- ightharpoonup Sequência X = ABCDEFG.
- ightharpoonup Subsequência Z = ADFG.

Subsequência comum máxima

Problema (Subsequência comum máxima)

Entrada: Duas sequências sequência X e Y.

Solução: Uma subsequência **comum** Z de X e Y.

Objetivo: MAXIMIZAR o comprimento de Z.

Subestrutura ótima

Vamos estudar uma solução ótima:

- Considere as sequências $X = \langle x_1 \dots x_m \rangle$ e $Y = \langle y_1 \dots y_n \rangle$:
- A subsequência comum máxima é $Z = \langle z_1 \dots z_k \rangle$.

Seja S uma sequência de comprimento n:

- \triangleright Denotamos por S_i o **prefixo** de S de comprimento i.
- Por exemplo, se S = ABCDEFG, então $S_2 = AB$.

Projeto por indução

 $\mathsf{Relembrando}:\ X=\langle x_1\ldots x_m\rangle\ \mathsf{e}\ Y=\langle y_1\ldots y_n\rangle.$

Base:

▶ Se m = 0 ou n = 0, então $Z = \emptyset$ com tamanho 0.

Hipótese de indução:

Sabemos computar a solução se X' tem tamanho m' e Y' tem tamanho n', onde $0 \le m' < m$ e $0 \le n' < n$.

Passo:

- 1. Se $x_m = y_n$:
 - $z_k = x_m = y_n$ é o último elemento da solução ótima.
 - $ightharpoonup Z_{k-1}$ é subsequência comum máxima de X_{m-1} e Y_{n-1} .
- 2. Se $x_m \neq y_n$:
 - Pelo menos x_m ou y_n não é parte da solução ótima.
 - ▶ Logo, Z é subsequência comum máxima de X_{m-1} e Y,
 - ou **Z** é subsequência comum máxima de X e Y_{n-1} .

Subproblema

Definimos o seguinte subproblema:

- ► Considere i = 0, 1, ..., m e j = 0, 1, ..., n.
- Seja c[i,j] o comprimento da subsequência comum mais longa dos prefixos X_i e Y_j .

Podemos utilizar a seguinte recorrência:

$$c[i,j] = \begin{cases} 0 & \text{se } i = 0 \text{ ou } j = 0 \\ c[i-1,j-1] + 1 & \text{se } x_i = y_j \\ \max \left\{ c[i-1,j], c[i,j-1] \right\} & \text{se } x_i \neq y_j \end{cases}$$

Algoritmo de programação dinâmica

Algoritmo: SCM(X, m, Y, n)

```
para i \leftarrow 0 até m
    c[i, 0] \leftarrow 0
    para j \leftarrow 1 até n
       c[0,j] \leftarrow 0
    para i \leftarrow 1 até m
             para i = 1 até n
                      se x_i = y_i
                               c[i,j] \leftarrow c[i-1,j-1] + 1
b[i,j] \leftarrow "xv"
 9
                      senão
10
                                se c[i, j-1] > c[i-1, j]
11
                                        c[i,j] \leftarrow c[i,j-1]
b[i,j] \leftarrow "x"
12
13
14
                                        c[i,j] \leftarrow c[i-1,j]
b[i,j] \leftarrow y''
15
16
```

devolva c[m, n]

A tabela b guarda quais subproblemas foram escolhidos.

Análise

Complexidade de tempo:

- Cada entrada da tabela é preenchida em tempo constante.
- Assim, o algoritmo gasta tempo O(mn).

Complexidade de espaço:

- ightharpoonup O algoritmo gasta tabelas de tamanho total O(mn).
- Podemos manter apenas duas linhas ou colunas.
- ▶ O algoritmo melhorado usa memória $O(\min\{m, n\})$.
- Mas manter a tabela b permite encontrar a solução.

Recuperando uma solução

```
Algoritmo: RECUPERA-SCM(b, X, i, j)
1 se i = 0 ou j = 0
      retorne
  se b[i,j] = "xy"
      RECUPERA-SCM(b, X, i - 1, j - 1)
      imprima x_i
  senão
      se b[i, j] = "x"
          RECUPERA-SCM(b, X, i, j - 1)
8
      senão
9
          RECUPERA-SCM(b, X, i - 1, j)
10
```

A chamada inicial é Recupera-SCM(b, X, m, n).

Programação dinâmica

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

