Equazioni Differenziali Nonlineari

Corso di Laurea Magistrale in Matematica

Foglio 1

1.1 Esercizio

Provare che l'equazione di Lapace $\Delta u=0$ è invariante per rotazioni, cioè che se u è armonica in \mathbb{R}^N e Q è una matrice ortogonale, allora la funzione

$$v(x) := u(Qx) \qquad x \in \mathbb{R}^N$$

è armonica.

1.2 Esercizio

Dare una prova diretta del fatto che, se $u \in C^2(\Omega) \cap C(\overline{\Omega})$ è armonica in un aperto limitato Ω , allora

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u.$$

1.3 Esercizio

Una funzione $v \in C^2(\Omega)$ si dice subarmonica in Ω se

$$-\Delta v \leqslant 0$$
 in Ω .

(a) Provare che una funzione $v \in \mathrm{C}^2(\Omega)$ è subarmonica se e solo se

$$v(x) \leqslant \int_{B_r(x)} v(y) \, \mathrm{d}y$$
 per ogni $B_r(x) \subset\subset \Omega$.

- (b) Sia $\phi: \mathbb{R} \to \mathbb{R}$ convessa e regolare e sia u una funzione armonica. Provare che $\phi(u)$ è subarmonica.
- (c) Provare che $v := |Du|^2$ è subarmonica se u è armonica.

1.4 Esercizio

Sia Ω un aperto limitato di \mathbb{R}^N e sia $v \in C^2(\Omega) \cap C(\overline{\Omega})$ subarmonica in Ω .

- (a) Provare che v verifica il principio di massimo forte in Ω .
- (b) Provare che $\max_{\overline{\Omega}} v = \max_{\partial \Omega} v$.
- (c) Sia $h \in C^2(\Omega) \cap C(\overline{\Omega})$ armonica in Ω tale che

$$h \geqslant v \quad \text{su } \partial \Omega.$$

Provare che $h \geqslant v$ in Ω . Se Ω è connesso, provare inoltre che

$$h > v$$
 in Ω oppure $h = v$ in Ω .

1.5 Esercizio

Sia Ω un aperto limitato di \mathbb{R}^N . Provare che esiste una costante C, che dipende solo da Ω , tale che

$$\max_{\overline{\Omega}} |u| \leqslant C \left(\max_{\partial \Omega} |g| + \max_{\overline{\Omega}} |f| \right)$$

dove u è una soluzione regolare di

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{su } \partial \Omega. \end{cases}$$

1.6 Esercizio

Sia u la soluzione di

$$\begin{cases} -\Delta u = 0 & \text{in } \mathbb{R}_+^N \\ u = g & \text{su } \partial \mathbb{R}_+^N \end{cases}$$

data dalla formula di Poisson per il semispazio. Supponiamo g continua e limitata e che g(y) = |y| per $y \in B_1(0) \cap \partial \mathbb{R}^N_+$. Mostrare che Du è non limitata in un intorno di x = 0.

1.7 Esercizio

(a) Indichiamo con B^+ la metà palla aperta $B_1(0) \cap \mathbb{R}^N_+$. Sia $u \in C^2(\overline{B^+})$ armonica in B^+ e tale che u = 0 su $\partial B^+ \cap \partial \mathbb{R}^N_+$. Definiamo

$$v(x_1, \dots, x_N) := \begin{cases} u(x_1, \dots, x_{N-1}, x_N) & \text{se } x_N \ge 0\\ -u(x_1, \dots, x_{N-1}, -x_N) & \text{se } x_N < 0. \end{cases}$$

Dimostrare che $v \in C^2(B_1(0))$ e quindi che v è armonica in $B_1(0)$.

(b) Provare che il risultato continua a valere anche nel caso in cui $u \in C(\overline{B^+}) \cap C^2(B^+)$.

1.8 Esercizio

Una funzione $u \in C(\Omega)$ si dice *subarmonica* in Ω se per ogni $B_r(x) \subset\subset \Omega$ e per ogni funzione h continua in $\overline{B_r}(x)$ e armonica in $B_r(x)$ si ha

$$h \geqslant u$$
 on $\partial B_r(x)$ \Longrightarrow $h \geqslant u$ in $B_r(x)$.

Provare che una funzione $u \in \mathcal{C}(\Omega)$ è subarmonica se e solo se soddisfa la disuguaglianza del valor medio localmente, i.e. se per ogni $x \in \Omega$ esiste un $\delta = \delta(x) > 0$ tale che

$$u(x) \leqslant \int_{\partial B_r(x)} u \, d\mathcal{H}^{N-1}$$
 per ogni $r \leqslant \delta$.

1.9 Esercizio

Una funzione $u \in \mathcal{C}(\Omega)$ si dice debolmente subarmonica in Ω se

$$\int_{\Omega} u \, \Delta \varphi \, \mathrm{d}x \geqslant 0 \qquad \text{per ogni } \varphi \in \mathrm{C}_c(\Omega) \text{ con } \varphi \geqslant 0.$$

- (a) Sia $u \in C^2(\Omega)$. Provare che u è debolmente subarmonica se e solo se $-\Delta u \leq 0$ in Ω .
- (b)* Sia $u \in C(\Omega)$. Provare che u è debolmente subarmonica se e solo se è subarmonica.

1.10 Esercizio

Si consideri in \mathbb{R}^2 il cono chiuso C espresso in coordinate polari come

$$C := \{ (\rho, \theta) : \rho \geqslant 0, \theta \in [-\theta_0, \theta_0] \},$$

dove $\theta_0 \in (0, \pi/2)$. Mostrare che è possibile scegliere $\alpha > 0$ in modo tale che la funzione

$$w(\rho, \theta) := \rho^{\alpha} \cos(\alpha \theta)$$

sia armonica e strettamente positiva in $\mathbb{R}^2 \setminus C$.

1.11 Esercizio

- (a) Mostrare che un aperto Ω soddisfa la condizione di palla esterna se $\partial\Omega$ è localmente di classe $C^2.$
- (b) Mostrare che un aperto Ω soddisfa la condizione di cono esterno se $\partial\Omega$ è localmente Lipschitziano.

Suggerimenti

Esercizio 1.2: provare che la funzione $u(x) + \varepsilon |x|^2$, con $\varepsilon > 0$, non può assumere il suo massimo su $\overline{\Omega}$ in un punto interno.

Esercizio 1.5:
$$-\Delta \left(u + \lambda \frac{|x|^2}{2N} \right) \leqslant 0 \text{ for } \lambda := \max_{\overline{\Omega}} |f|.$$

Esercizio 1.6: stimare $\frac{u(he_n) - u(0)}{h}$.

Esercizio 1.7-(b): usare la formula di Poisson per la palla.

Esercizio 1.9–(b): regolarizzare la u facendone la convoluzione con un opportuno mollificatore e usare l'equivalenza stabilita al punto precedente. Per mostrare che la nozione di sottoarmonicità è stabile per convoluzione, usare l'Esercizio 1.8. Per evitare ulteriori dettagli tecnici, si provi dapprima il risultato nel caso $\Omega = \mathbb{R}^N$.