Formalization of DFA using lattices

Recall worklist algorithm

Using lattices

- · We formalize our domain with a powerset lattice
- · What should be top and what should be bottom?

Using lattices

- · We formalize our domain with a powerset lattice
- What should be top and what should be bottom?
- · Does it matter?
 - It matters because, as we've seen, there is a notion of approximation, and this notion shows up in the lattice

Using lattices

- · Unfortunately:
 - dataflow analysis community has picked one direction
 - abstract interpretation community has picked the other
- We will work with the abstract interpretation direction
- Bottom is the most precise (optimistic) answer,
 Top the most imprecise (conservative)

Direction of lattice

- · Always safe to go up in the lattice
- Can always set the result to \top
- · Hard to go down in the lattice
- So ... Bottom will be the empty set in reaching defs

Worklist algorithm using lattices

Termination of this algorithm?

- · For reaching definitions, it terminates...
- · Why?
 - lattice is finite
- · Can we loosen this requirement?
 - Yes, we only require the lattice to have a finite height
- Height of a lattice: length of the longest ascending or descending chain
- Height of lattice (2^S, ⊂) =

Termination of this algorithm?

- · For reaching definitions, it terminates...
- · Why?
 - lattice is finite
- · Can we loosen this requirement?
 - Yes, we only require the lattice to have a finite height
- Height of a lattice: length of the longest ascending or descending chain
- Height of lattice (2^S, ⊆) = | S |

Termination

 Still, it's annoying to have to perform a join in the worklist algorithm

 It would be nice to get rid of it, if there is a property of the flow functions that would allow us to do so

Even more formal

- To reason more formally about termination and precision, we re-express our worklist algorithm mathematically
- We will use fixed points to formalize our algorithm

Fixed points

- Recall, we are computing m, a map from edges to dataflow information
- Define a global flow function F as follows: F takes a map m as a parameter and returns a new map m', in which individual local flow functions have been applied

Fixed points

- We want to find a fixed point of F, that is to say a map m such that m = F(m)
- · Approach to doing this?
- Define $\stackrel{\sim}{\perp}$, which is \perp lifted to be a map:
- Compute F(⊥), then F(F(⊥)), then F(F(F(⊥))), ... until the result doesn't change anymore

Fixed points

· Formally:

Soln =
$$\bigcup_{i=0}^{\infty} F^{i}(\widetilde{\perp})$$

- We would like the sequence Fⁱ(⊥) for i = 0, 1, 2
 ... to be increasing, so we can get rid of the outer join
- Require that F be monotonic:

$$- \forall a, b . a \sqsubseteq b \Rightarrow F(a) \sqsubseteq F(b)$$

Fixed points

Fixed points

$$\widetilde{L} \ \widetilde{\subseteq} \ F(\widetilde{L})$$

$$F(\widetilde{L}) \subseteq F(F(\widetilde{L}))$$

$$F^{k}(\widetilde{L}) \subseteq F^{k+1}(\widehat{L})$$

$$F^{k+1}(\widetilde{L}) \subseteq F^{k+2}(\widetilde{L})$$

Back to termination

- So if F is monotonic, we have what we want: finite height ⇒ termination, without the outer join
- Also, if the local flow functions are monotonic, then global flow function F is monotonic

Another benefit of monotonicity

- Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it fp.
- Then:

Another benefit of monotonicity

- Suppose Marsians came to earth, and miraculously give you a fixed point of F, call it fp.
- Then:

Another benefit of monotonicity

· We are computing the least fixed point...

Recap

- · Let's do a recap of what we've seen so far
- Started with worklist algorithm for reaching definitions

Worklist algorithm for reaching defns

Generalized algorithm using lattices

Next step: removed outer join

- Wanted to remove the outer join, while still providing termination guarantee
- To do this, we re-expressed our algorithm more formally
- We first defined a "global" flow function F, and then expressed our algorithm as a fixed point computation

Guarantees

- If F is monotonic, don't need outer join
- If F is monotonic and height of lattice is finite: iterative algorithm terminates
- If F is monotonic, the fixed point we find is the least fixed point.

What about if we start at top?

• What if we start with $\widetilde{\top}$: $F(\widetilde{\top})$, $F(F(\widetilde{\top}))$, $F(F(F(\widetilde{\top})))$

What about if we start at top?

- What if we start with $\widetilde{\top}$: $F(\widetilde{\top})$, $F(F(\widetilde{\top}))$, $F(F(F(\widetilde{\top})))$
- · We get the greatest fixed point
- Why do we prefer the least fixed point?
 More precise

Graphically, another way	