ORF526 - Problem Set 9

Bachir EL KHADIR

December 3, 2015

Question 1

Because it is predictable we have that $E[M_{n+1}|F_n] = M_{n+1}$, and because it is a martingale $E[M_{n+1}|F_n] = M_n$. Therefore M_n is constant equal to M_0 .

Question 2

Let $M_n = X_0 + \sum_{i=0}^{n-1} X_{i+1} - E[X_{i+1}|F_i], A_n = X_n - M_n = \sum_{i=0}^{n-1} E[X_{i+1}|F_i] - X_i$ and as a convention $A_0 = 0$. Then

- (M_n) is an (F_n) martingale because
 - It is (F_n) -adapted: For all n, M_n for i = 0...n 1, X_{i+1} and $E[X_{i+1}|F_i]$ are F_n measurable.
 - $-M_{n+1}-M_n=X_{n+1}-E[X_{n+1}|F_n],$ so

$$E[M_{n+1}|F_n] - M_n = E[M_{n+1} - M_n|F_n] = E[X_{n+1}|F_n] - E[E[X_{n+1}|F_n]|F_n] = 0$$

- (A_n) is a non-decreasing predictable process because:
 - (A_n) is predictable because for $i < n, X_i$ and $E[X_{i+1}|F_i \text{ are } F_i \subset F_n \text{ measurable}]$
 - (A_n) is non-decreasing: $A_{n+1} A_n = E[X_{n+1}|F_n] X_n \ge 0$ because X_n is a submartingale.

The decomposition is unique, because if there exist an other decomposition $X_n = M'_n + A'_n$ with the same properties then: $M_n - M'_n = A_n - A'_n$, which a marintgale (as the difference of two martingales), and predictable (as the difference of two predictable processes). By question 1, this sequence is constant equal to $A_0 - A'_0 = 0$

Question 3

Let $n, p \in \mathbb{N}$,

By the itereated expectation:

$$E[M_{n+i+1}M_{n+i}] = E[E[M_{n+i+1}|F_n]M_{n+i}] = E[M_n^2]$$

So:

$$||M_{n+p} - M_n||_2^2 = E[|M_{n+p} - M_n|^2] = E[M_{n+p}^2] + E[M_n^2] - 2E[M_{n+p}M_n] = E[M_{n+p}^2] - E[M_n^2]$$

 M_n^2 is a submartingale, so $E[M_n^2]$ is non-decreasing, and since it is bounded, it converges and therefore $E[M_{n+p}^2] - E[M_n^2] \to_{n,p} 0$ c/c: $||M_{n+p} - M_n||_2 \to_{n,p} 0$, and (M_n) is a cauchy sequence.

Question 4

1. M_n is L^p bounded and p>1, so (M_n) is uniformly integrable, and therefore: M_n

Question 5

 $B_n = \sum_i B_{i+1} - B_i = \sum_i Y_i$ Let F_n be the filtration generated by B_n

- 1. B_n is F_n adapted, so is $B_n^2 n$
- 2. B_n^2 is L_1 , and

$$E[B_{n+1}^2 - (n+1)|B_n] = E[(B_{n+1} - B_n + B_n)^2 - (n+1)]$$

$$= E[(B_{n+1} - B_n)^2 |B_n] + E[B_n^2 |B_n] + 2E[(B_{n+1} - B_n)B_n |F_n] - (n+1)$$

$$= E[\mathcal{N}(0,1)^2] + B_n^2 - (n+1)$$
(because $B_{n+1} - B_n \sim \mathcal{N}(0,1)$ and is independent from B_n)
$$= B_n^2 - n$$

so $B_n^2 - n$ is a martingale.

3. where $Y_i = B_{i+1} - B_i \sim \mathcal{N}(0, 1)$ are iid

$$E[\exp(\sigma B_n - \frac{1}{2}\sigma n^2)] =$$

Question 6

1.

$$a \log(b) \le a \log(a) + \frac{b}{e} \iff \frac{a}{b} \log(\frac{b}{a}) \le \frac{1}{e}$$

$$\iff \frac{\log(x)}{x} \le \frac{\log(e)}{e}$$

$$\iff f(x) \le f(e)$$

$$(x = \frac{b}{a})$$

Where $f: x \to \frac{\log(x)}{x}$ for x > 0, $f'(x) = \frac{1 - \log(x)}{x^2} = -\frac{\log(\frac{x}{e})}{x^2}$ is positive when $x \le e$ and negative otherwise, so f has a global maximum in x = e.

Question 8

By indepedence of the X_i , $E[X_1|S_n, S_{n+1}...] = E[X_1|S_n, X_{n+1}, ...] = E[X_1|S_n]$ By symmetry, $E[X_i|S_n] = E[X_n|S_n]$, and therefore: $S_n = E[S_n|S_n] = \sum_{i=1}^n E[X_i|S_n] = nE[X_1|S_n]$, ie $E[X_1|S_n, S_{n+1}...] = \frac{S_n}{n}$