Office Copy Ro

Roll Number:	
Thapar Institute of Engineering an	nd Technology Patiala
Computer Science and Engine	ering Department
BE Third Year August 2019 Auxiliary Exam	ML501: Machine Learning
Time: 3 Hours	Max Marks:100
Instructor: Dr. Singara Singh Kasana	

Note: Attempt all questions. All parts of a question must be answered in order. A new question must start from new page.

Q1.	(a) Discuss the principle of Bayesian Learning, with suitable example.(b) What is KNN? Discuss the working of kNN approach.							[20]		
Q2	How decision tree is used in machine learning models? Discuss and compare the procedures which are used in creating a decision tree							[20]		
Q3.	Calculate model evaluation parameters for regression model b/w observed pH values(X) and predicted pH values (Y) of water sample. Make assumption if any.							[10]		
	X	5.5	6.5 6.2	5 7.2	7.4	6.3	6.4	7.6		
	Y	6.1	6.3 6.5	7.6	6.9	6.2	6.8	7.5		
	(iii) (iv) (v)	Mean Abs	n Squared E solute Error (with ±0.2 o							
	(iv)	Mean Abs	solute Error							
	(iv)	Mean Abs Accuracy etween in	ductive and ed? Discus	error) d analyt s differo	ent typ	es of	cluster	ing. V	Vrite the	
	(iv) (v) Compare b	Mean Abs Accuracy etween in ering is us Mean alg	ductive and ed? Discus	error) d analyt s differo	ent typ	es of	cluster	ing. V	Vrite the	
Q4. Q5	(iv) (v) Compare b Why cluste steps of K	Mean Abs Accuracy etween in ering is us Mean alg	ductive and ed? Discus	error) d analyt s differo d calcul	ent typ ate the	es of	cluster	ing. V	Vrite the	[20]
	(iv) (v) Compare b Why cluste steps of K	Mean Abs Accuracy etween in ering is us Mean alg	ductive and ed? Discus	error) d analyt s differo d calcul	ent typ ate the Mark	ese ste	cluster	ing. V	Vrite the	
	(iv) (v) Compare b Why cluste steps of K	Mean Abs Accuracy etween in ering is us Mean alg	ductive and ed? Discussorithm and	error) d analyt s differo d calcul	ent typ ate the Mark	es of ese ste	cluster	ing. V	Vrite the	

50	80	
70	50	
60	40	
10	20	
40	90	
sters, by taking initia se Rectilinear distand en two vectors v1(x1,	ce as the simila	arity measure which
-x1 + y2 - y1		

Create three clu and $C_3(10,20)$. is defined between

$$d(v1, v2) = |x2 - x1| + |y2 - y1|$$

Q6

Discuss GA optimization model, by giving suitable diagram. Also give [20] examples of cross over and mutation, by assuming suitable data and fitness function.

All	the	Best				
-----	-----	------	--	--	--	--

Model Solution