

PERTEMUAN 2

Data warehouse and Business Intelligence

Pokok Bahasan

Pertemuan Ke-	Pokok Bahasan
1	Business Intelligence
2	Data Warehousing
3	Business Performance Management
4	Business Performance Management Methodologies
5	Pengantar Data Mining
6	Metode Learning Algoritma Data Mining
7	Review dan Quiz
8	UTS
9	Studi Kasus
10-15	Presentasi Tugas Kelompok
16	UAS

Rencana Pembelajaran

Tugas Kelompok

- ✓ Buat Kelompok maximal 4 orang/kelompok.
- ✓ Pengolahan data menggunakan tools rapidminer
- ✓ Menggunakan salahsatu metode data mining
- ✓ Dataset menggunakan data public atau private, setiap kelompok beda dataset
- ✓ Kumpulkan tugas kelompok tersebut berupa : makalah, dan powerpoint pada pertemuan 10 dan bisa dipresentasikan.
- ✓ Mengumpulkan draft artikel ilmiah.
- ✓ Nilai project & presentasi akan menjadi nilai kelompok, keaktifan dan nilai penguasaan materi.

Business Intelligence and Decision Support (9th Ed., Prentice Hall)

Chapter 2:
Data Warehousing

Pengertian Data Warehouse

- Repositori fisik di mana data relasional diorganisasikan secara khusus untuk menyediakan data yang dibersihkan perusahaan dalam format standar
- Data Warehouse adalah kumpulan desain basis data terintegrasi dan berorientasi subjek untuk mendukung fungsi DSS, di mana setiap unit data adalah non-volatile dan relevan dengan waktu tertentu"

Karakteristik DW

- Berorientasi pada objek
- Terintegrasi
- Time-variant (time series)
- Nonvolatile
- Diringkas
- Tidak dinormalisasi
- Metadata
- Berbasis web, relational/multi-dimensi
- Client/server
- Real-time dan/atau right-time (aktif)

Data Mart

Departmen data warehouse yang hanya menyimpan data yang relevan

Dependent data mart
 Subset yang dibuat langsung dari data warehouse

- Independent data mart

Data warehouse kecil yang dirancang untuk unit bisnis strategis atau departemen

Pengertian Data Warehousing

Operational data stores (ODS)

Suatu tipe database sering digunakan sebagai area sementara untuk suatu data warehouse

Oper marts

Mart data operasional.

Enterprise data warehouse (EDW)

Data warehouse untuk perusahaan.

Metadata

Suatu data tentang data. Dalam data warehouse, metadata mendeskripsikan konten datawarehouse dan cara akuisisi dan penggunaannya

Kerangka Konseptual DW

Arsitektur Umum DW

- Arsitektur Tiga Tingkat (Three-tier architecture)
 - Perangkat lunak akuisisi data (back-end)
 - 2. Data warehouse yang berisi data & perangkat lunak
 - 3. Software Client (front-end) yang memungkinkan pengguna untuk mengakses dan menganalisis data warehouse
 - Arsitektur Dua Tingkat (Two-tier architecture)
 - 2 tingkatan pertama dalam arsitektur tiga tingkat digabungkan menjadi satu
 - ... kadang hanya ada satu tingkat?

Arsitektur Umum DW

2-tier architecture

1-tier
Architecture
?

Pertimbangan Arsitektur DW

- Masalah yang perlu dipertimbangkan ketika memutuskan arsitektur mana yang akan digunakan:
 - Database Management System (DBMS) yang mana yang harus dipakai?
 - Apakah akan menggunakan proses parallel dan/atau partisi?
 - Apakah alat migrasi data akan digunakan untuk memuat data warehouse?
 - Alat apa yang akan digunakan untuk mendukung pengambilan dan analisis data?

Arsitektur DW Berbasis Web

Arsitektur Alternatif DW

Arsitektur Alternatif DW

Arsitektur Mana yang Paling Baik?

- Bill Inmon Vs. Ralph Kimball
- Enterprise DW Vs. Data Marts approach

	Independent Data Marts	Bus Architecture	Hub-and- Spoke Architecture	Centralized Architecture (No Dependent Data Marts)	Federated Architecture
Information Quality	4.42	5.16	5.35	5.23	4.73
System Quality	4.59	5.60	5.56	5.41	4.69
Individual Impacts	5.08	5.80	5.62	5.64	5.15
Organizational Impacts	4.66	5.34	5.24	5.30	4.77

Empirical study by Ariyachandra and Watson (2006)

Arsitektur Data Warehousing

Sepuluh faktor yang berpotensi mempengaruhi keputusan pemilihan arsitektur:

- Saling ketergantungan informasi antar unit organisasi
- 2. Kebutuhan informasi manajemen tingkat atas
- 3. Urgensi kebutuhan akan data warehouse
- 4. Sifat tugas end-user
- 5. Kendala pada sumber daya

- Pandangan strategis dari data warehouse sebelum implementasi
- Kompatibilitas dengan sistem yang ada
- 8. Kemampuan yang dirasakan dari staf TI in-house
- 9. Masalah teknis
- 10. Faktor Sosial/politik

Enterprise Data Warehouse (by Teradata Corporation)

Data Integration and the Extraction, Transformation, and Load (ETL) Process

- Integrasi Data (Data integration)
 - Integrasi yang terdiri dari tiga proses utama: <u>akses data</u>, <u>federasi</u> <u>data</u>, dan <u>perubahan tangkapan</u>.
- Enterprise application integration (EAI)
 - Sebuah teknologi yang menyediakan kendaraan untuk mendorong data dari sumber sistem ke dalam data warehouse
- Enterprise information integration (EII)
 evolving tool space yang menjanjikan integrasi data real-time
 dari berbagai sumber
- Service-oriented architecture (SOA)
 Cara baru untuk mengintegrasikan sistem informasi

Data Integration and the Extraction, Transformation, and Load (ETL) Process

Extraction, transformation, and load (ETL) process

ETL

- Masalah yang mempengaruhi pembelian alat ETL
 - Alat transformasi data mahal
 - Alat transformasi data mungkin memiliki kurva belajar yang panjang
- Kriteria penting dalam memilih alat ETL
 - Kemampuan untuk membaca dan menulis ke sejumlah sumber data / arsitektur yang tidak terbatas
 - Pengambilan dan pengiriman metadata secara otomatis
 - Sejarah kesesuaian dengan standar terbuka
 - Antarmuka yang mudah digunakan untuk pengembang dan fungsional user

Manfaat DW

- Manfaat langsung dari data warehouse
 - Mengizinkan pengguna akhir melakukan analisis ekstensif
 - Mengizinkan tampilan konsolidasi data perusahaan
 - Informasi yang lebih baik dan lebih tepat waktu
 - Peningkatan kinerja sistem
 - Penyederhanaan akses data
- Manfaat tidak langsung dari data warehouse
 - Meningkatkan pengetahuan bisnis
 - Menghadirkan keunggulan kompetitif
 - Meningkatkan layanan dan kepuasan pelanggan
 - Memfasilitasi pengambilan keputusan
 - Membantu dalam mereformasi proses bisnis

Pengembangan Data Warehouse

- Pendekatan pengembangan data warehouse
 - Model Inmon : Pendekatan EDW (top-down)
 - Model Kimball : Pendekatan Data mart (bottom-up)
 - Model mana yang terbaik?
 - There is no one-size-fits-all strategy to DW
 - Salah satu alternative ada pada hosted warehouse
- Struktur Data warehouse:
 - The Star Schema vs. Relational
- Real-time pada datawarehouse?

www.bsi.ac.id

DW Development Approaches

(Inmon A	Approach)
(1111110117	Approacri

(Kimball Approach)

Effort	Data Mart Approach	EDW Approach
Scope	One subject area	Several subject areas
Development time	Months	Years
Development cost	\$10,000 to \$100,000+	\$1,000,000+
Development difficulty	Low to medium	High
Data prerequisite for sharing	Common (within business area)	Common (across enterprise)
Sources	Only some operational and external systems	Many operational and external systems
Size	Megabytes to several gigabytes	Gigabytes to petabytes
Time horizon	Near-current and historical data	Historical data
Data transformations	Low to medium	High
Update frequency	Hourly, daily, weekly	Weekly, monthly
Technology		
Hardware	Workstations and departmental servers	Enterprise servers and mainframe computers
Operating system	Windows and Linux	Unix, Z/OS, OS/390
Databases	Workgroup or standard	Enterprise database servers
	database servers	See Table & 3 for

See Table 8.3 for details

DW Structure: Star Schema (a.k.a. Dimensional Modeling)

Pemodelan Dimensi

Kubus Data

Objek dua dimensi, tiga dimensi, atau lebih tinggi di mana setiap dimensi data mewakili ukuran yang menarik

- Grain
- Drill-down
- Slicing

Praktik Terbaik untuk Mengimplementasikan DW

- Proyek harus sesuai dengan strategi perusahaan
- Harus ada persetujuan penuh untuk proyek
- Sangat penting untuk mengelola ekspektasi user
- Data warehouse harus dibangun secara bertahap
- Kemampuan beradaptasi harus dibangun sejak awal
- Proyek harus dikelola oleh profesional IT dan bisnis (hubungan bisnis-pemasok harus dikembangkan)
- Hanya memuat data yang telah dibersihkan / berkualitas tinggi
- Jangan mengabaikan persyaratan pelatihan
- Sadar secara politis.

Resiko Implementasi DW

- Tidak ada misi atau tujuan
- Kualitas data sumber tidak diketahui
- Keterampilan tidak pada tempatnya
- Anggaran tidak memadai
- Kurangnya perangkat lunak pendukung
- Sumber data tidak dipahami
- Sponsor yang lemah
- Pengguna tidak melek komputer
- Masalah politik atau perang wilayah
- Ekspektasi pengguna yang tidak realistis

(Continued ...)

Resiko Implementasi DW

- Risiko arsitektur dan desain
- Cakupan creep dan perubahan persyaratan
- Vendor di luar kendali
- Berbagai platform
- Key people meninggalkan proyek
- Kehilangan sponsor
- Terlalu banyak teknologi baru
- Harus memperbaiki sistem operasional
- Lingkungan terdistribusi secara geografis
- Tim geografi dan budaya bahasa

Hal yang harus dihindari untuk keberhasilan Implementasi DW

- Dimulai dengan rantai sponsor yang salah
- Menetapkan harapan yang tidak dapat Anda penuhi
- Terlibat dalam perilaku naif secara politis
- Memuat warehouse dengan informasi hanya karena ketersediaan
- mempercayai bahwa desain database data warehouse sama dengan desain DB transaksional
- Memilih manajer data warehouse yang berorientasi teknologi daripada berorientasi pengguna

(...see more on page 356)

Real-time DW

(a.k.a. Active Data Warehousing)

- Memungkinkan pembaruan data real-time untuk analisis real-time dan pengambilan keputusan secara real-time pula sedang berkembang sangat pesat
 - Push vs. Pull (of data)
- Memperhatikan real-time BI
 - Tidak semua data harus diperbarui terus menerus
 - Ketidakcocokan laporan menghasilkan laporan yg terpisah
 - Mungkin mahal biaya
 - Mungkin juga tidak layak

Evolution of DSS & DW

Data Sophistication

Active Data Warehousing (by Teradata Corporation)

Active Access

Front-Line operational decisions or services supported by near-real-time (NRT) access; Service Level Agreements of 5 seconds or less

Active Load

Intra-day data acquisition; Mini-batch to NRT trickle data feeds measured in minutes or seconds

Active Events

Proactive monitoring of business activity initiating intelligent actions based on rules and context; to systems or users supporting an operational business process

Active Workload Management

Dynamically manage system resources for optimum performance and resource utilization supporting a mixedworkload environment

Active Enterprise Integration

Integration into the Enterprise Architecture for delivery of intelligent decisioning services

Active Availability

Business Continuity to support the requirements of the business (up to 7X24)

Comparing Traditional and Active DW

Traditional Data Warehouse Environment	Active Data Warehouse Environment
Strategic decisions only	Strategic and tactical decisions
Results sometimes hard to measure	Results measured with operations
Daily, weekly, monthly data currency acceptable; summaries often appropriate	Only comprehensive detailed data available within minutes is acceptable
Moderate user concurrency	High number (1,000 or more) of users accessing and querying the system simultaneously
Highly restrictive reporting used to confirm or check existing processes and patterns; often uses predeveloped summary tables or data marts	Flexible ad hoc reporting, as well as machine-assisted modeling (e.g., data mining) to discover new hypotheses and relationships
Power users, knowledge workers, internal users	Operational staffs, call centers, external users

Data Warehouse Administration

- Karena ukurannya yang besar dan sifatnya yang intrinsik, DW membutuhkan pemantauan yang kuat untuk menjaga efisiensi, produktivitas, dan keamanannya.
- Administrasi dan manajemen gudang data yang berhasil memerlukan keterampilan dan kemahiran yang melampaui apa yang diperlukan oleh administrator basis data tradisional.
 - Membutuhkan keahlian dalam perangkat lunak yang tinggi, perangkat keras, dan teknologi jaringan berkinerja tinggi

DW Scalability and Security

- Scalability
 - Masalah utama yang berkaitan dengan skalabilitas:
 - Jumlah data di warehouse
 - Seberapa cepat warehouse diharapkan tumbuh
 - Jumlah pengguna bersamaan
 - Kompleksitas kueri pengguna
 - GSkalabilitas yang baik berarti bahwa kueri dan fungsi akses data lainnya akan tumbuh secara linear dengan ukuran warehouse
- Security
 - Penekanan pada keamanan dan privasi