Exercice 1

Exprimer en fonction du nombre e chacun des nombres suivants :

1.
$$A = \exp(-4)$$
,

2.
$$B = \frac{\exp(2,8)}{\exp(0,8)}$$

3.
$$C = \exp(\sqrt{2} - 5) \times \exp(2 - \sqrt{2})$$
.

Exercice 2

Simplifier chacune des expressions :

1.
$$\sqrt{e} \times e^2$$

1.
$$\sqrt{e} \times e$$

2. $e^{-3}\sqrt{e}$

3.
$$(e^x + e^{-x})^2 - (e^x - e^{-x})^2$$

4.
$$e^{2x} + e^{-2x} - (e^x - e^{-x})^2$$

Exercice 3 Résolutions

Résoudre l'équation ou l'inéquation proposée

1.
$$\exp(x) = e^2$$

$$4. e^{x^2 - x} \le e$$

$$6. \ \frac{e^x + 5}{e^{-x} + 5} = 1$$

2.
$$\exp(x) < e^2$$

3. $e^{3-x} \le 0$

5.
$$\frac{x}{e^x} > 0$$

Exercice 4 Limites

Déterminer la limite en $+\infty$ des fonctions suivantes :

1.
$$f(x) = e^x + e^{-x}$$

2.
$$g(x) = \frac{3}{6 + 2e^{-x}}$$

3.
$$h(x) = \frac{x+3}{e^x+1}$$

Exercice 5

Identifier parmi les courbes suivantes les courbes représentatives des fonctions:

3.
$$f_3: x \mapsto e^x - 1$$

2.
$$f_2: x \mapsto 1 - \frac{e^x}{2}$$

4.
$$f_4: x \mapsto e^{-x}$$

Exercice 6

Soit $\mathcal C$ la courbe représentative de la fonction exponentielle. Montrer que la tangente à $\mathcal C$ au point d'abscisse 1 passe par l'origine du repère.

Exercice 7

Si l'on devait représenter graphiquement la fonction exponentielle (dans un repère orthonormal, unité 1 cm) sur l'intervalle [0; 25], montrer que la hauteur de la bande de papier dépasserait la distance de la terre à la lune (385 000 km)!

Exercice 8 Avec les dérivées

Préciser sur quel domaine les fonctions sont dérivables et calculer leur dérivée.

1.
$$f(x) = e^{4-x}$$

3.
$$f(x) = e^{x^2 + 5x}$$

5.
$$f(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$
 6. $f(x) = e^{\frac{1}{x}}$

6.
$$f(x) = e^{\frac{1}{x}}$$

$$2. \ f(x) = e^{\cos x}$$

4.
$$f(x) = x^2 e^{-x^2}$$

4.
$$f(x) = x^2 e^{-x^2}$$

Exercice 9

En utilisant l'approximation affine de la fonction exponentielle pour x voisin de 0, donner, sans calculatrice, une valeur approchée des nombres suivants : $A = e^{-0.01}$, $B = e^{-0.03} + e^{-0.04}$

Exercice 10

Calculer la dérivée cinquième des fonctions suivantes : $f(x) = e^{5x}$ et $g(x) = e^x \cos x$

Exercice 11 l'équation f' = kf

Dans chaque cas, donner une expression de f(x) (f étant une fonction dérivable sur \mathbb{R}) en fonction de x et d'une constante arbitraire.

1.
$$f' = 3f$$

2.
$$f = 2f'$$

3.
$$f' = 0, 3f$$

3.
$$f' = 0, 3f$$
 4. $2f + 3f' = 0$

Exercice 12

Dans chaque cas, expliciter f(x):

1.
$$f' + 2f = 0$$
, $f(0) = 7$

2.
$$f' - 5f = 0$$
, $f(0) = 60$.

Exercice 13 La fonction $f: x \mapsto (x+1)^2 e^{-x}$

- 1. Étudier la limite de f en $+\infty$. Interpréter géométriquement.
- 2. Étudier, lorsque x tend vers $-\infty$ les limites de f(x) et de $\frac{f(x)}{x}$. Interpréter géométriquement.
- 3. Calculer f'(x) et dresser le tableau de variations de f.
- 4. Tracer la courbe de f et préciser la tangente au point d'abscisse 0.

Exercice 14 Une loi gamma.

La fonction suivante permet de modéliser des phénomène aléatoire se produisant en moyenne trois fois par unité de temps (loi « gamma trois ») : $f(x) = \frac{1}{2}x^2e^{-x} \quad (x \ge 0)$.

Etudier la fonction f sur $[0, +\infty[$:

- 1. Limite en $+\infty$.
- 2. Dérivée et sens de variation.
- 3. Courbe représentative.

Exercice 15 Soit la fonction définie sur \mathbb{R} par $f(x) = \frac{3x^2 + ax + b}{x^2 + 1}$.

- 1. Déterminer la valeur des réels a et b pour que la courbe de f soit tangente au point A(0;3) à la droite d d'équation y = 4x + 3.
- 2. Etudier la position de la courbe par rapport à d au voisinage de A et illustrer graphiquement cette situation.

Exercice 16 On considère la fonction f définie sur \mathbb{R} par $f(x) = e^{2x} - e^x + 3$.

- 1. Etudier les variations de f. Déterminer les limites de f aux bornes.
- 2. En utilisant les résultats précédents, déterminer le nombre de solution de f(x) = a en fonction du réel a.

Exercice 17 Soit $f(t) = ae^x + 2e^{-x+b}$.

Déterminer la valeur des réels a et b sachant que f(0) = 1 et f'(1) = 2.

Exercice 18 – Partie A – Etude d'une fonction auxiliaire.

Soit g la fonction définie sur \mathbb{R} par $g(x) = e^x(x+3) - 1$.

- 1. Déterminer la limite de q en $+\infty$ et la limite de q en $-\infty$.
- 2. Déterminer, à l'aide de la dérivée g', le sens de variation de g. En déduire le tableau de variation de g.
- 3. Montrer que l'équation g(x) = 0 admet une solution unique α qui appartient à l'intervalle]-4;0[.
- 4. Déduire des questions précédentes le signe de q(x) en fonction de x.

- Partie B - Etude d'une fonction et tracé de sa courbe.

Soit f la fonction définie sur \mathbb{R} par $f(x) = -x + e^x(x+2)$. On note \mathcal{C} sa courbe dans un repère orthogonal d'unités 2 cm en abscisses et 3 cm en ordonnées.

- 1. (a) Déterminer la limite de f en $-\infty$
 - (b) Montrer que la droite d d'équation y = -x est asymptote à \mathcal{C} en $+\infty$
 - (c) Etudier en fonction des valeurs x les positions de \mathcal{C} et d.
- 2. En remarquant que f(x) peut s'écrire $f(x) = e^x \left[\frac{-x}{e^x} + (x+2) \right]$, déterminer la limite de f en $+\infty$.
- 3. Vérifier que pour tout réel x on a f'(x) = g(x).
- 4. Dresser le tableau de variations de f.
- 5. Déterminer une équation de la tangente T à $\mathcal C$ en son point A d'abscisses 0.
- 6. Déterminer, à l'aide de la calculatrice, une valeur approchée de α à 10^{-2} près, puis une valeur approchée de $f(\alpha)$ à 10^{-2} près.
- 7. Tracer \mathcal{C} , la tangente T et l'asymptote d dans le même repère.