

Psicoacustica Parte 2

Prof. Filippo Milotta milotta@dmi.unict.it

Il suono – Percezione umana

In che modo le grandezze fisiche che caratterizzano le onde (frequenza, ampiezza o l'intero spettro), influiscono sulla percezione del suono?

Grandezza	Percezione
Frequenza	Suono acuto o grave
Ampiezza	Volume alto o basso
Spettro	Timbro o armonia del suono

 In realtà ogni grandezza influenza in misura minore le percezioni legate alle altre due grandezze.

Altezza percepita (dal testo)

- Il parametro percettivo dell'altezza (=ampiezza, volume) è legato in generale alla nozione di frequenza fondamentale di un suono
- Nel caso di segnali complessi, individuare la frequenza fondamentale potrebbe non essere immediato e si procede per inferenza
 - Altezza residua o frequenza fantasma
 - Si cerca cioè di stimare quale poteva essere la frequenza fondamentale

Altezza percepita

- Dal punto di vista della frequenza fondamentale, si rimanda al concetto di ottava già definito nelle precedenti lezioni
- Lez 6 Acustica 6, slide 5 e seguenti

Percezione...

Un esempio con la luce

- In astronomia si distingue la luminosità delle stelle in apparente ed assoluta
 - Accade così che stelle tanto luminose ma lontane possano essere percepite come meno luminose rispetto a stelle poco luminose ma vicine

Approfondimento: Magnitudine apparente della luminosità

 Inizialmente c'erano solo 6 magnitudini da 1 a 6, poi fu formalizzata in una scala completa

Ampiezza – Decibel SIL

L'ampiezza di un'onda sonora può anche essere misurata in funzione dell'intensità attraverso una superfice di un metro quadro. In questo caso si utilizzano i decibel SIL (Sound Intensity Level), simbolo $dB_{\rm SIL}$

In particolare, sia I l'intensità di un suono $(\frac{W}{m^2})$, si definisce livello di intensità sonora:

$$SIL = 10 \log_{10} \frac{I}{I_0}$$

Dove I_0 è l'intensità associata alla soglia minima di udibilità, pari a $10^{-12} \frac{W}{m^2}$. Sebbene in alcuni casi i valori SPL e SIL coincidano, essi hanno comunque un significato fisico differente.

Volume percepito

- L'ampiezza si può misurare in termini di intensità tramite il Sound Intensity Level (SIL)
- La soglia minima di udibilità in termini di intensità è $I_0 = 10^{-12} \frac{W}{m^2}$ per un suono di 1000 Hz
 - La percezione del volume è legata anche alla frequenza!
- L'unità di misura del volume percepito sono i foni (phons)
 - Ovviamente non ha nulla a che fare
 con i foni per asciugare i capelli... ma così è facile ricordarli

Volume percepito – Il phon (dal testo)

- Un suono ha un volume di x phon, se un suono di 1000 Hz che viene percepito con lo stesso volume ha un'intensità di x dB
 - Per esempio il valore della pressione sonora corrispondente alla curva isofonica di 40 phon, per un suono puro con frequenza pari a 1000 Hz, equivale a 40 dB mentre alla frequenza di 500 Hz equivale a circa 38 dB
- Diagramma di Fletcher-Munson delle curve isofoniche (o isofone), costruito in maniera statistica ed empirica

Prima di vedere le curve isofoniche...

...diamo un'occhiata alle curve isometriche

 Ogni curva identifica tutti i punti isometrici , cioè alla stessa altezza

Curve isofoniche (dal testo)

I punti che fanno parte della stessa curva isofonica vengono percepiti come aventi lo stesso volume

 Nel punto (x,y) del diagramma viene rappresentato un tono di frequenza x Hz a un'intensità di y dB

Curve isofoniche (Diogramma Eletcher Munso

(Diagramma Fletcher-Munson)

Harvey Fletcher (1884 – 1981)

Noto come Il padre della Stereofonia

 Fisico, contribuì agli studi sulla percezione sonora. Lavorò nei Bell Labs, dove fu autore della prima trasmissione stereofonica dal vivo. Morì per un ictus.

Stereofonia: Localizzazione delle sorgenti sonore ITD e IID

- Interaural Time Difference (ITD)
- Interaural Intensity/Level Difference (IID o ILD)

Approfondimenti

- [EN] YouTube: ITD and how to find your phone https://www.youtube.com/watch?v=CqB95rj_txl
- [EN] YouTube: shooting drones and why dogs tilt their heads
 https://www.youtube.com/watch?v=Oai7HUqncAA