## 1

## Control Systems

G V V Sharma\*

## **CONTENTS**

## 1 Mason's Gain Formula

| 1 | Mason's Gain Formula |                                   | 1 | 2 Bode Plot                             |
|---|----------------------|-----------------------------------|---|-----------------------------------------|
|   |                      |                                   |   | 2.1 Introduction                        |
| 2 | <b>Bode Plot</b>     |                                   | 1 | 2.2 Example                             |
|   | 2.1                  | Introduction                      | 1 | 3 Second order System                   |
|   | 2.2                  | Example                           | 1 | 3.1 Damping                             |
| 3 | Second order System  |                                   | 1 | 3.2 Example                             |
|   | 3.1                  | Damping                           | 1 | 4 Routh Hurwitz Criterion               |
|   | 3.2                  | Example                           | 1 | 4.1 Routh Array                         |
| 4 | Routh I              | Hurwitz Criterion                 | 1 | 4.2 Marginal Stability                  |
|   | 4.1                  | Routh Array                       | 1 | 4.3 Stability                           |
|   | 4.2                  | Marginal Stability                | 1 | 5 STATE-SPACE MODEL                     |
|   | 4.3                  | Stability                         | 1 | 5.1 Controllability and Observability   |
| 5 | State-Space Model    |                                   | 1 | 5.2 Second Order System                 |
|   | 5.1                  | Controllability and Observability | 1 | 6 Nyquist Plot                          |
|   | 5.2                  | Second Order System               | 1 | 7 Compensators                          |
| 6 | Nyquist Plot         |                                   | 1 | 8 Nyquist Plot                          |
|   |                      |                                   |   | 8.1. Loop Tranfer function of a feedbac |
| 7 | Compensators         |                                   | 1 | C(s)H(s) $s+3$                          |

1

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

**Nyquist Plot** 

8

svn co https://github.com/gadepall/school/trunk/ control/codes

\*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

edback system is

$$G(s)H(s) = \frac{s+3}{s^2(s-3)}$$
 (8.1.1)

Take the Nyquist contour in the clockwise direction.

Then the Nyquist plot of G(s)H(s) encircles -1 + i0

- (A) Once in clockwise direction
- (B) Twice in clockwise direction
- (C) Once in anticlockwise direction
- (D) Twice in clockwise direction

**Solution:** Substituting  $s = j\omega$  in (8.1.1),

$$G(j\omega)H(j\omega) = \frac{j\omega + 3}{(j\omega)^2(j\omega - 3)}$$
(8.1.2)  
$$G(j\omega)H(j\omega) = \frac{j\omega + 3}{\omega^2(3 - j\omega)}$$
(8.1.3)

$$G(j\omega)H(j\omega) = \frac{j\omega + 3}{\omega^2(3 - j\omega)}$$
(8.1.3)

$$|G(j\omega)H(j\omega)| = \frac{(\sqrt{\omega^2 + 9})}{(\omega)^2(\sqrt{\omega^2 + 9})}$$
 (8.1.4)

$$\left| G(j\omega) H(j\omega) \right| = \frac{1}{(\omega)^2}$$
 (8.1.5)

Above code gives us the Nyquist plot The Nyquist plot of G(s)H(s) encircles -1 + j0 once in clockwise direction

$$\angle G(j\omega)H(j\omega) = \tan^{-1}\left(\frac{\omega}{3}\right) - (\pi/2 + \pi/2 - \tan^{-1}\left(\frac{\omega}{3}\right))$$
(8.1.6)

$$\angle G(j\omega)H(j\omega) = 2\tan^{-1}\left(\frac{\omega}{3}\right)$$
 (8.1.7)

8.2. Find  $G(j\omega)H(j\omega)$  for the Nyquist plotting **Solution:** From (8.1.5) and (8.1.7)

$$G(j\omega)H(j\omega) = \frac{1}{(\omega)^2} \angle 2 \tan^{-1} \left(\frac{\omega}{3}\right)$$
 (8.2.1)

8.3. Nyquist plot and verify your result
Solution: For the Nyquist plot,
We need to draw the polar plot by varying ω from 0 to ∞

$$\lim_{\omega \to \infty} G(j\omega) H(j\omega) = 0 \angle 180 \tag{8.3.1}$$

$$\lim_{\omega \to 0} G(j\omega) H(j\omega) = \infty \angle 0$$
 (8.3.2)

The Nyquist plot is as shown



Fig. 8.3

Since there are two poles on the origin we get 2 infinite radius semicircles which start where the mirror image ends and terminate where the actual plot started in clockwise direction.