Sistemas Distribuídos – Fundamentos de Algoritmos Distribuídos

Prof. DSc Marcelo Lisboa Rocha

Introdução

- O modelo fundamental é definido sobre um Grafo
 (G)
- G=(N, E/D), onde N é o conjunto de vértices representando processadores, processos, entre outros, e E é o conjunto de arestas não-orientadas e D é o conjunto de arestas orientadas.
- Para cada nó n_i ∈N, temos dois conjuntos:
 - (In):In_i ⊆ N: conjunto de vizinhos n_i de n_i tais que $n_i \rightarrow n_i \in D$
 - (Out):Out_i \subseteq N: conjunto de vizinhos n_k de n_i tais que $n_i \rightarrow n_k \in D$

Introdução

- Modelos de Temporização de G
 - G é Síncrono
 - G é Assíncrono
- Observações
 - Não existe sistema real síncrono, mas sincronizável.
 - No caso assíncrono, as computações são todas <u>reativas</u> no sentido em que um nó realiza computação em duas situações:
 - Ao iniciar "espontâneamente".
 - Ao receber mensagem de algum vizinho.

Exemplo de Algoritmo Assíncrono

Algoritmo

Para cada $n_i \in N$ (tem $|In_i|$ vizinhos)

Início espontâneo do algoritmo (um ou mais dos n_i)

- Compute;
- Se necessário Envie Msg para os membros de algum subconjunto de Out_{i:}

Repetir

Receba Msg de algum n_i

- Compute;
- Se necessário Envie Msg para os membros de algum subconjunto de Out_{i;}

Até n_i saiba que (ocorreu terminação global) ou (não receberá mais mensagens).

Fim Para

Eleição de Líder em Redes Arbitrárias

- Cada nodo é univocamente identificado por um ID.
- A rede é representada por um grafo G conectado não-direcionado.
- Objetivo: um nodo apenas se declarar líder, mudando seu status para líder.
- Em alguns casos, que demais elementos reconheçam que não se tornaram líderes, mudando seu status para não-líder.
- É possível que o número de nodos, N, e o diâmetro, diam, seja conhecido de todos os processos.

Eleição de Líder: Algoritmo Simples de Inundação

- Premissa: processos conhecem o diâmetro diam
- Algoritmo inunda a rede com o ID máximo, de forma que cada nodo propague a seus vizinhos o valor mais alto registrado até o momento
- Descrição:
 - cada processo armazena o máximo ID visto
 - a cada rodada, cada processo envia o atual valor máximo para todos seus vizinhos
 - após diam rodadas, se o ID máximo registrado por um processo é seu próprio ID, então ele é o líder, caso contrário, ele é um não-líder
- E o conhecimento da identidade do líder em outros processos?

Éleição de Líder: Algoritmo Simples de Inundação

Eleição de Líder: Algoritmo Simples de Inundação

- Análise de Complexidade:
 - Complexidade de tempo: diam rodadas
 - Complexidade de comunicação: diam x número_arestas
- Otimização 1:
 - Se o processo p_i recebe valor maior de processo p_j, p_j não precisa enviar mensagem para p_i
- Otimização 2:
 - Processos enviam o valor máximo de ID apenas quando o mesmo é descoberto (acrescentar uma variável "new_info" a cada nó)
 - No pior caso dá o mesmo resultado.