FUCO5A – Circuito Série-Paralelo e Divisores Série-Paralelo.

Prof. Dr. Layhon Santos

layhonsantos@utfpr.edu.br

Objetivos

- Aprender a respeito das características singulares das configurações em série-paralelo e
- Solucionar problemas envolvendo tensão, corrente, ou potência de qualquer elemento individual ou de qualquer combinação de elementos.
- Familiarizar-se com a fonte com divisor de tensão e com as condições necessárias para usá-la efetivamente.
- Aprender a usar um potenciômetro para controlar a tensão através de uma dada carga (revisão).

Série-Paralelo

- ✓ Uma configuração em série-paralelo é aquela que é formada por uma combinação de elementos em série-paralelo.
- ✓ Uma configuração complexa é aquela em que nenhum dos elementos está em série ou em paralelo.

Circuitos em Série-Paralelo

- ✓ R3 e R4 estão em série.
- ✓ R2 está em paralelo com R2 e (R3 + R4).
- ✓ R1 está em série com o paralelo de R2 com (R3 + R4).

Método de Redução e Retorno

Método de Redução e Retorno

- ✓ Esse processo o capacita a reduzir o circuito a sua forma mais simples através da fonte e, então, determinar a corrente fornecida pela fonte.
- ✓ Na fase de retorno, você usa a corrente fornecida pela fonte resultante para trabalhar a incógnita desejada. P

Determine a corrente I_3 .

Determine a corrente I_s , $I_4 e V_2$.

Método do Diagrama em Blocos

✓ Série:

$$R_{1.2} = R_1 + R_2$$

✓ Paralelo:

$$R_{1||2} = R_1 || R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

Com carga.

Revisão (Resistores)

Determine os valores máximos e mínimos de resistências que o resistores com as faixas coloridas a seguir podem apresentar sem exceder a tolerância especificada pelo fabricante:

	1ª faixa	2ª faixa	3ª faixa	4ª faixa
a)	cinza	vermelho	marrom	ouro
b)	vermelho	vermelho	marrom	prata
c)	branco	marrom	laranja	_
d)	branco	marrom	vermelho	ouro
e)	laranja	branco	verde	_

Determine o código de cores para os seguintes resistores com tolerância de 10 por cento:

- a) 68 Ω
- **b)** 0.33Ω
- c) 22 kΩ
- d) 5,6 M Ω

Revisão (Divisor de Tensão e corrente)

$$V_x = R_x \frac{E}{R_T}$$

$$I_x = \frac{R_T}{R_x} I_T$$

Revisão (LKT e LKC)

