INGENIERÍA EN ELECTRÓNICA, AUTOMATIZACIÓN Y CONTROL

"DISEÑO E IMPLEMENTACIÓN DE UNA ORTESIS VETERINARIA DE UN GRADO DE LIBERTAD UTILIZADA EN LA FASE II DE LA REHABILITACIÓN DE RODILLA EN CANINOS DE LA FUNDACIÓN PAE"

Autores:

Cisneros Jumbo, Diego Sebastián Esparza Echanique, Ronnie Alexis

Director:

Ing. Erazo Sosa, Andres Sebastian

Fecha:

05/07/2019

CONTENIDO

INTRODUCCIÓN

- Antecedentes
- Justificación e Importancia
- Alcance
- Objetivos

FUNDAMENTOS TEÓRICOS

READECUACIÓN DE LA ORTESIS VETERINARIA

- Parámetros de la ortesis veterinaria
- Cálculo del torque para mover la pierna del canino
- Selección del actuador
- Adaptación física de la ortesis
- Parámetros para realizar los ejercicios de rehabilitación
- Sistema de control

CIRCUITO PARA ELECTROMIOGRAFÍA EN CANINOS

- Parámetros de un electromiograma (EMG)
- Diseño del circuito
- Análisis para el uso del EMG en caninos
- DISEÑO DE LA APLICACIÓN MÓVIL
- RESULTADOS
 - Integración de la ortesis + EMG + App (Sistema PhysiCan)
 - Funcionamiento
- CONCLUSIONES

La fisioterapia veterinaria a través de los años...

ANTECEDENTES

1960-1997: en Europa nace la rehabilitación veterinaria y se vuelve convencional

2007: "8" Congreso Iberoamericano de Ingeniería Mecánica": exoesqueleto de rehabilitación de brazo

2011: resultados de rehabilitación en humanos para rehabilitación en animales

Veterinarios buscan adquirir conocimientos/trabajos que permitan optimizar terapias

ANTECEDENTES

2015: Ecuador, clínicas veterinarias con equipo de rehabilitación escaso y se improvisan elementos alternativos

J. Rojas diseña equipo de ortopedia y rehabilitación para caninos en la U. del Azuay

2016: técnicas de fisioterapia y programas de rehabilitación veterinaria

2018: M. Nacevilla, adaptación de ortesis veterinaria para rehabilitación de rodilla en caninos, como apoyo para la fisiatra en la fundación "PAE"

2018: Hosp. Veterinario Valencia Sur, incorpora electromiografía: diagnosticar de manera más precisa enfermedades del sistema nervioso

JUSTIFICACIÓN E IMPORTANCIA

- En el país no ha existido avance en cuanto a ortopedia canina a nivel tecnológico.
- PAE, clínica que posee la Ortesis de Rehabilitación creada por Ing. Mireya Nacevilla con puntos a mejorar.
- 2013, REDVET: "La terapia física en medicina veterinaria es un tema nuevo que se debe integrar como parte de los tratamientos en las clínicas... con uso de nueva tecnología".

JUSTIFICACIÓN E IMPORTANCIA

- Para 2016 las mascotas han pasado de ser animales para cuidado y seguridad a considerarse como parte de la familia y solo en Quito están presentes en el 43% de los hogares. Teniendo un mercado nacional de 58 millones de dólares.
- Plan Nacional para el Buen Vivir (2017-2021): Objetivo 5, Política 5.3: Promover la investigación, formación, capacidad y transferencia tecnológica, innovación y emprendimiento, en articulación con las necesidades sociales, para impulsar el cambio en la matriz productiva.
- Reglamento Nacional de Tenencia de Perros: Art 3: es obligación del propietario otorgar las condiciones de vida adecuadas y un hábitat dentro de un entorno saludable. (Secretaría General, Ministerio de Salud, 2009)

ALCANCE

- Automatización de los ejercicios de rehabilitación, de manera que la fisiatra pueda atender otros pacientes a la par.
- Trabajar sobre el prototipo de M. Nacevilla: nuevo motor, sensado de actividad muscular (EMG), aumentar prestaciones aplicación móvil.
- Aumentar rangos de movimiento (limitado de 120° y 80°), capacidad de carga del motor, control de velocidad, generación de historia clínica.

INTRODUCCIÓN PhysiCan W Healthy Pet. Happy Pet **ALCANCE** Sistema Propuesto: Aplicación Diagrama de funcionamiento Base de Datos Móvil Comunicación Inalámbrica DAQ EMG Comunicación serial Controlador **PWM** Circuito EMG Actuador Servomotor Ortesis Móvil

OBJETIVO GENERAL

Diseñar e implementar un prototipo portátil de ortesis de un grado de libertad utilizada en la rehabilitación de rodilla en caninos con visualización EMG digital.

OBJETIVOS ESPECÍFICOS

- Implementar un controlador y actuador adecuados
- Nueva interfaz gráfica
- Nuevo método de control
- Monitoreo EMG
- Manejo correcto del actuador
- Protocolo de transmisión de datos

CINESITERAPIA PASIVA

"...Conjunto de técnicas de dos tipos, manuales o instrumentales que buscan el movimiento de segmentos corporales mediante un elemento que aplica una fuerza externa..." (Mejía & Saavedra, 2008).

ORTESIS VETERINARIA

"... Dispositivo ortopédico aplicado de forma externa en el cuerpo o extremidad..." (Rubio Fernández, 2011)

RANGOS DE MOVIMIENTO PASIVO (PROM)

"... Los rangos o gama de movimientos pasivos comprenden el grado de movilidad que se lograría en determinada articulación después de aplicar una fuerza externa..." (Ruiz & Amils, 2011)

SERVOMOTOR

"...dispositivo peque \tilde{n} o que incorpora un motor DC, un tren de engranajes, un potenci \acute{o} metro, un circuito integrado y un eje de salida..." (ServoCity)

Posee un sistema de control interno en lazo cerrado:

ELECTROMIOGRAFÍA

"… Es una prueba para estudiar como funcionan muchos de los nervios que transmiten la sensibilidad y la fuerza, así como los músculos…" (Agencia Valenciana de Salud)

¿QUÉ INDICA USUALMENTE?

REGISTRO DE LA ACTIVIDAD ELECTRICA DURANTE LA CONTRACCIÓN MUSCULAR

Estudios Clínicos, Asociación Argentina de Neurología Veterinaria

La tecnología aplicada a la rehabilitación de caninos.

PARÁMETROS DE LA ORTESIS VETERINARIA

- Modelo Caerus CCL Stifle (Knee) Brace (XS):
 - Diseño modular
 - Bisagras para ajuste/bloqueo del movimiento de la rodilla
 - Sistema giratorio de fijación

Tamaño	Longitud de la tibia [cm]	Masa [kg]
X-Small	8.89 – 13.97	4.54 – 11.34 kg

CÁLCULO DEL TORQUE PARA MOVER LA PIERNA DEL CANINO

- Sistema de palancas del miembro posterior:
 - Tercer tipo o interpotente:

Fp: fuerza de potencia o motriz

Fr: Fuerza de carga o resistente

Bp: brazo potente (distancia entre la potencia y

el punto de apoyo)

Br: Brazo resistente (distancia entre el apoyo y

la carga o resistencia)

F: rodilla o punto de apoyo

 En el canino el brazo potente (Bp) corresponde al músculo poplíteo, responsable de la flexión de la rodilla.

CÁLCULO DEL TORQUE PARA MOVER LA PIERNA DEL CANINO

- Distribución de masa corporal del canino.
 - Se consideró el caso más extremo
 - Masa total de 11.34 kg y una longitud de la tibia de 13.97 cm.

Total	Muslo	Pierna	Pie
11.34 kg	1.0206 kg	0.417312 kg	0.291438 kg

CÁLCULO DEL TORQUE PARA MOVER LA PIERNA DEL CANINO

$$Mr = Mp$$

$$Mr = Fr_1 \times Br_1 + Fr_2 \times Br_2$$

$$Fr_1 = (0.4173 + 0.150)[kg] \times 9.8[m/_{S^2}] = 5.55954[N]$$

$$Fr_2 = 0.2914[kg] \times 9.8[m/_{S^2}] = 2.8557[N]$$

 $Mr = 5.55954 [N] \times 0.06985[m] + 2.8557 [N] \times 0.1397[m]$

$$Mr = Mp = 0.7872[N.m]$$

13.97 cm

SELECCIÓN DEL ACTUADOR

Características	Opción 1	Opoión 2	Opoión 2
		Opción 2	Opción 3
Marca	Pololu	Pololu	Hitec
Modelo	20Dx44L	25Dx64L	HS-755 HB
	(producto 3491)	(producto 3217)	
Torque	0.77 Nm	1.16 Nm	1.07 Nm
Existencia en el			
mercado	No	Si	Si
nacional			
Peso	46 gr	101 gr	110 gr
Voltaje de	12 V	12 V	4.8 V
operación			
Corriente	1600 mA	5600 mA	1500 mA
máxima			
Sensor de	No (opción para	Si	Si (No accesible)
posición	acople)		
inetegrado			
Posición del eje	Horizontal	Horizontal	Vertical
Precio	\$22,95 (USA)	\$39,99	\$40
Rango de			
movimiento	0-360°	0-360°	0-180°
angular			

ADAPTACIÓN FÍSICA DE LA ORTESIS

Estructura de fijación diseñada en SolidWorks

ADAPTACIÓN FÍSICA DE LA ORTESIS

extensión y permiten el rango completo en flexión

Tornillos para lograr el giro de la ortesis

Ortesis readecuada

PARÁMETROS PARA REALIZAR LOS EJERCICIOS DE REHABILITACIÓN

posición angular inicial ángulo de flexión tiempo de espera en flexión ángulo de extensión tiempo de espera en extensión Velocidad Número de repeticiones de los ejercicios

SISTEMA DE CONTROL

Diagrama de bloques de un sistema en lazo abierto (Kuo)

Diagrama de bloques de la ortesis readecuada

SISTEMA DE CONTROL

Microprocesador	ATmega32U4
Alimentación / reloj	5V
Reloj	16 MHz
IDE de Programación	Compatible con Arduino IDE
	desde v1.0.1
Programación	On-Board micro-USB
Digital I/Os	12 (5 se pueden utilizar como
	PWM)
Comunicación serial	Micro USB y mediante pines
	RX y TX
Tamaño	1.3 x 0.7" (33.02 x 17.78 mm)

Tarjeta de desarrollo SparkFun Pro Micro

Midiendo la atividad muscular en la rehabilitación.

Parámetros de un electromiograma (EMG)

Forma de medición

- Recopilación de datos.
- Tipos de electrodos

Visualización

- Instrumentación dedicada.
- Dispositivos portátiles

Normalidad

- Comparación de hallazgos del paciente.
- Discernir de manera rápida enfermedades

CRITERIO DEL FISIATRA

Diseño del circuito: (Carlos Santander)

Pre- Amplificación: AD620

Parámetro	Valor
Ganancia del	1-10000
sistema	
Rechazo en modo	>95 Db
común	
Impedancia de	>10 MOhms
entrada	
Respuesta lineal en	1-2 kHz
frecuencia	
Ruidos de línea base	10 – 15 uV

Sistema de

Acoplamientos AC Pre- Amplificación Electrodo1 R1 --//// **2.7K** Salida AD620 TL084D [▼] Sistema de Amplificador de protección Electrodo2 instrumentación V+ (Pierna derecha) GND R9 -////-390k TL084D TL084D Referencia R10 WW 390k

Amplificación

Valores apropiados - A/D

Valores comerciales del
"uC" [-3;3 mV] o [-3;3 V]

Rectificación

Procesamiento de la señal: Tarjeta Teensy 3.2

Dimensiones	18mm x 37 mm x 4mm
Arquitectura y	32-bit ARM Cortex-M4 de 72MHz
frecuencia de trabajo	
Capacidad de	Memoria Flash 256K, RAM 64K,
memoria	EEPROM 2K
Entradas y salidas	34 entradas/salidas digitales, 12
	salidas PWM
Temporizadores	7 temporizadores de
	intervalo/retardo
Manejo de	Todos los pines tienen capacidad
interrupciones	de interrupción

Frecuencia típica de un EMG: 50Hz – 500Hz

Máxima potencia de la señal: 70Hz y 300Hz

5. DISEÑO DE LA APLICACIÓN MÓVIL

El manejo de la rehabilitación a través del teléfono.

DISEÑO DE LA APLICACIÓN MÓVIL

DISEÑO DE LA APLICACIÓN MÓVIL

Primera versión

ORTESIS DE REHABILITACION DE RODILLA	PACIENTES CANINOS
Pacientes Rutinas	REGISTRAN PACIENTE
	CONSULTAR RUTINAS
6 9 5 9 5 9 5 9	*****
4 4 4 4 4 4 4	*****
A de de de de de de de	do at do at the do the da the

REGISTRO DE USUARIOS		
id		
nomb	re	
658)		
enfen	medad	
	REGISTRAR USUARIO CONTINUAR CON RUTINAS	

RUTINAS DE REHABILITACIÓN						
Seleccione el ramgo de movimiento articular:						
EXTENSIÓN:	EXTENSIÓN: FLEXIÓN:					
☐ 110°	☐ 110° ☐ 90°					
☐ 120°		80"				
Seleccione el ti	iempo de duració	in en :				
EXTENSIÓN:		FLEXIÓN:				
3 segundo	9	3 segundos				
5 segundo	5	5 segundos				
7 segundo	s	7 segundos				
Seleccione el n	úmero de repetio	ciones:				
3 veces	5 veces	7 veces				
UBICAR A 100°	EMPEZAR	FINALIZAR				
001010111110	LIII LD 01	1100000				

Seleccione um	a Opció	in		
Documento:				
Nombre:				
Raza:				
Enfermedad:				
Rutinas:				
Angulo de extens	sion:			
Angulo de flexios	K.			
Tiempo en extern				
Tiempo en flexilo	ric.			
Numero de repet	ticiones:			
	CONTINU	IAR CON RUI	TINAS	
c	CONTINU	IAR CON RU	TINAS	
				ion is
	MACI	ÓN PAC		S Y
	MACI			S Y
	MACI	ÓN PAC		S Y
	MACI	ÓN PAC		S Y
	MACI	ÓN PAC		S Y
	MACI	ÓN PAC		S Y
	MACI	ÓN PAC		S Y
	MACI	ÓN PAC		S Y
	MACI	ÓN PAC		S Y
	MACI	ÓN PAC		S Y

DISEÑO DE LA APLICACIÓN MÓVIL

Segunda versión

DISEÑO DE LA APLICACIÓN MÓVIL

Segunda versión

DISEÑO DE LA APLICACIÓN MÓVIL

Formato de Historia clínica automatizada

PAE (Protección Animal Ecuador)

¿Se pudieron unir los sistemas?

Integración de la ortesis + EMG + App = Sistema PhysiCan

TOTAL STATE OF THE PARTY OF THE

Sistema PhysiCan: Diseño de placas

SALIDA MODULO +-12V 0 RX_PRO O 8 0 0 0 0 0 0 0000000 5 0 0 0 0 0 OUTPUT_EMG 000000 PhysiCan[®] TX2_TEENSY

Placa circuito EMG

Placa Circuito de control

Tape

☐ Sistema PhysiCan: Carcasa e implementación

Colocación de placas en la carcasa

TOTAL CONTROL OF THE CONTROL OF THE

Sistema PhysiCan: Carcasa e implementación

Fijación de placas, módulos y conectores

- Pruebas de la Ortesis readecuada: Capacidad de movimiento
- Primeras pruebas de carácter netamente funcional guiadas de la fisiatra de PAE.
- Se realizaron con un canino de la fundación PAE de aproximadamente 6 kg de peso, de raza mestiza; como dato adicional el paciente se encontraba decaído y se encontraba en recuperación; y no presentaba problemas en la rodilla.

Número de prueba	Ángulo de flexión [°]	Tiempo de espera en flexión [s]	Ángulo de extensión [°]	Tiempo de espera en extensión [s]	Número de repeticiones	Velocidad (sin carga) [s/60°]
Primera	100	3	170	3	3	Baja(2.38)
Segunda	100	3	150	3	3	Media(1.48)
Tercera	100	3	150	3	3	Alta (0.99)

Pruebas de la Ortesis readecuada

Ángulos logrados en las pruebas a) flexión 100° (valor logrado 98.6°), b) extensión 150° (valor logrado 149.73°) y c) extensión 170° (valor logrado 167.99°).

Pruebas de la Ortesis readecuada: Control de posición

Se realizaron con otro canino de aproximadamente 7 kg de peso, de raza mestiza; como dato adicional el paciente no presentaba problemas en la rodilla.

Número de prueba	Ángulo de flexión [°]	Tiempo de espera en flexión [s]	Ángulo de extensión [°]	Tiempo de espera en extensión [s]	Número de repeticiones	Velocidad (sin carga) [s/60°]
Primera	110	3	160	3	4	Baja(2.38)
Segunda	110	3	160	3	4	Media(1.48)
Tercera	110	3	160	3	4	Alta (0.99)

51

RESULTADOS

☐ Pruebas de la Ortesis readecuada: Control de posición

Error máximo: 1.1°

Error sobre el rango útil: 1.375%

Error máximo: 1.9°

Error sobre el rango útil: 2.375%

☐ Pruebas de la Ortesis readecuada: Control de posición

Error máximo: 1.95°

Error sobre el rango útil: 2.44%

Sistema de sensado Electromiográfico (Realizado a un integrante del grupo)

☐ Sistema de sensado Electromiográfico (Realizado a un paciente canino)

Ortesis + EMG: Video

CONDICIONES DE APROBACIÓN PARA UNA ORTESIS VETERINARÍA (Tarrago, 2018)

1. Se ha de moldear como si tratará de una segunda piel

2. No puede ni molestar ni doler

3. Que quede muy bien fijada al miembro

4. No debe moverse al andar, no dejar holguras ni puntos de rozamiento

5. Ha de ser ligera y fácil de poner y sacar

CONDICIONES DE APROBACIÓN PARA UNA ORTESIS VETERINARÍA (ENCUESTA)

Por favor, conteste las siguiente encuesta con números del 1 al 5, donde 1 es "EN DESACUERDO" y 5 corresponde a un criterio "COMPLETAMENTE DE ACUERDO"

USTED CONSIDERA QUE:

- 1. ¿La ortesis veterinaria realizada se asemeja a una segunda piel para el paciente?
- 2. ¿La ortesis realizada, podría ayudar a zonas de rotura por exceso de carga?
- 3. ¿La ortesis veterinaria molesta o queda mal fijada al miembro a tratar?
- 4. ¿Identificó algun punto de rozamiento en el uso de la ortesis con el paciente?
- 5. ¿Considera que la ortesis puede llegar a molestar en algun momento al animal?
- 6. ¿La señal EMG (Electromiograma) corresponde a una señal electromiográfica conocida por usted anteriormente?
- 7. ¿El EMG(Electromiograma) lo tomaría como apoyo para evaluar la recuperación del paciente?
- 8. Combinaría su técnica manual de fisioterapia con ejercicios que puede reemplazar la ortesis vetarinaria? *
- 9. Los movimientos de flexión y extensión corresponden a una cinesiterapia pasiva
- 10. El informe generado automaticamente por la aplicación movil le ayudaría a llevar un mejor control de cada paciente?
- 11. ¿Atendería un segundo paciente, mientras la ortesis veterinaria trabaja sobre el primero?
- 12. La relación obtenida a lo largo del estudio: "un disparo brusco en la señal EMG, representa dolor o molestia al momento de realizar la extensión o flexión en la extremidad" es correcta?
- 13. La señal EMG se mantenga a un nivel minimo al momento de realizar movimientos pasivos

TANDERS OF THE PROPERTY OF THE

RESULTADOS

TABULACIÓN DE DATOS

USTED CONSIDERA QUE:	CALIFICACIÓN	CALIFICACIÓN	CALIFICACIÓN	PROMEDIO DE
	VETERIANARIO 1	VETERINARIO 2	VETERINARIO 3	CALIFICACIÓN
1. ¿La ortesis veterinaria realizada se asemeja a una segunda piel para el paciente?	3	1	4	3
2. ¿La ortesis realizada, podría ayudar a zonas de rotura por exceso de carga?	4	2	4	3
3. ¿La ortesis veterinaria molesta o queda mal fijada al miembro a tratar?	3	2	5	3
4. ¿Identificó algun punto de rozamiento en el uso de la ortesis con el paciente?	4	4	4	4
5. ¿Considera que la ortesis puede llegar a molestar en algun momento al animal?	5	5	4	5
6. ¿La señal EMG (Electromiograma) corresponde a una señal electromiográfica conocida por usted anteriormente?	4	5	5	5
7. ¿El EMG(Electromiograma) lo tomaría como apoyo para evaluar la recuperación del paciente?	3	5	4	4
8. Combinaría su técnica manual de fisioterapia con ejercicios que puede reemplazar la ortesis vetarinaria? *	4	2	5	4
9. Los movimientos de flexión y extensión corresponden a una cinesiterapia pasiva	4	5	4	4
10. El informe generado automaticamente por la aplicación movil le ayudaría a llevar un mejor control de cada paciente?	5	5	4	5
11. ¿Atendería un segundo paciente, mientras la ortesis veterinaria trabaja sobre el primero?	4	4	5	4
12. La relación obtenida a lo largo del estudio: "un disparo brusco en la señal EMG,				
representa dolor o molestia al momento de realizar la extensión o flexión en la	3	3	5	4
extremidad" es correcta?				
13. La señal EMG se mantenga a un nivel minimo al momento de realizar movimientos pasivos	3	3	5	4

TOWNER ANTON TREE PROPERTY OF THE PROPERTY OF

RESULTADOS

ANÁLISIS

7. CONCLUSIONES

¿Qué se logró?

CONCLUSIONES

TOPIC ANTON (IN INC.)

- Dispositivo Modular
- Desplazamiento angular
- Actividad Eléctrica Muscular

- Aumento de prestaciones
- Rangos de movimiento
- Validación de ingreso de datos reales
- EMG como medida indirecta de dolor

- Nueva limitación por seguridad
- No existe interferencia entre los 2 sistemas

- Dimensionamiento de torque
- Supera la primera versión
- Aumento de rango en 100%

- Control en posición de lazo abierto
- Primera versión: 4° 10% error
- Segunda versión: 2° 2,5% error

- Circuito EMG no invasivo
- Innovación como sensado EMG portátil

Gracias!

