

CS918: LECTURE 15

Relevance Feedback and Query Expansion

Arkaitz Zubiaga, 21st November, 2018

RECAP: INDEX ELIMINATION FOR EFFICIENCY

- Basic algorithm; cosine computation algorithm **only** considers docs **containing at least one query term**.
- Take this further:
 - Only consider high-idf query terms.
 - Only consider docs containing many query terms.
 - Champion lists.
- And of course, for frequent queries, cache results.

RECAP: NET SCORE

- The **net score** is a simple, total score combining **relevance and authority.**
 - net-score(q,d) = g(d) + cosine(q,d)

Now we seek the top K docs by net score

RECAP: BUILDING AN ENTIRE SEARCH ENGINE

RECAP: A PRECISION-RECALL CURVE

RECAP: PRECISION AT K

- A **simple approach** is <u>precision@k</u>, i.e. ratio of relevant items within the top k results.
 - Good if ranking is not important, however these have the same precision@5 of 0.4:
 (regardless of relevant items being the top 2 or the bottom 2 items)
 - 1: R, 2: R, 3: NR, 4: NR, 5: NR
 - 1: NR, 2: NR, 3: NR, 4: R, 5: R
- Better metrics when ranking is important: MAP, NDCG.

RECAP: EVALUATION WITH MAP vs NDCG

- Both consider top results are more important.
- MAP is simple, easy to understand, widely used.
- NDCG can consider different levels of relevance.
 - Instead of just relevant (1) vs non-relevant (0).
 - NDCG can take relevance scores from e.g. 0 to 5.
 - Especially used in these cases.
 - MAP can only handle 0's and 1's.

LECTURE 15: CONTENTS

- Why improve recall.
- Relevance feedback.
 - Interactive relevance feedback.
 - Rocchio' feedback.

Query expansion.

MOTIVATION

- Search queries can be ambiguous.
- If I search for:
 - jaguar: am I looking for the animal or a car?
 - windows: the operating system, window frames or glasses?

MOTIVATION

- Search queries may need expanding/altering.
- If I search for:
 - aircraft: should we also return results for 'plane'?
 - **study**: document containing 'learn' is also relevant?
 - covetry: did you mean 'Coventry'?
- So far, we're not dealing with this.

MOTIVATION

- Main challenge: we want to **improve recall**.
 - Generally more important than precision.
- Losing a bit of precision is not that bad: If I search for 'windows', I can accept having 5 results for the OS and 5 for frames.
- Losing recall is: If I search for 'automobile', not getting a relevant result that contains 'car' is a big mistake.

OPTIONS FOR IMPROVING RECALL

Local methods:
 Adjust query based on returned documents.

Relevance feedback (RF), Pseudo-RF, Indirect RF

Global methods:
 Modify the query, without retrieving documents.

Query expansion, Linguistic processing of query (spelling correction, stemming,...)

LOCAL METHODS: RELEVANCE FEEDBACK

INTUITION OF RELEVANCE FEEDBACK

Rather than just a query-response paradigm,

we understand **search as a conversation** between searcher and engine.

• The user will be requested to give feedback on the returned results.

INTUITION OF RELEVANCE FEEDBACK

- User issues a query.
- Search engine returns results.
- User marks docs as relevant or non-relevant.
- Search engine reformulates the query based on feedback.
- Search engine returns results for reformulated query.
 - We expect recall to improve in 2nd iteration.

INTUITION OF RELEVANCE FEEDBACK

RELEVANCE FEEDBACK: EXAMPLE

• I issue a search query 'car' in Google Images.

RELEVANCE FEEDBACK: EXAMPLE

RELEVANCE FEEDBACK: EXAMPLE

RELEVANCE FEEDBACK: EXAMPLE

Search engine: oh, you seem to be looking for red cars!

• Query: "car" → "red car"

RELEVANCE FEEDBACK: EXAMPLE

RELEVANCE FEEDBACK: EXAMPLE

RELEVANCE FEEDBACK: EXAMPLE

• Search engine: oh, right, that's sports car that you're after.

• Query: "red car" → "red sports car"

RELEVANCE FEEDBACK: EXAMPLE

HOW TO USE RELEVANCE FEEDBACK

- Key idea is to rely on centroids.
- A centroid is the average data point for a set of vectors/documents.

$$\vec{\mu}(D) = \frac{1}{|D|} \sum_{d \in D} \vec{v}(d)$$

ROCCHIO' ALGORITHM

- Given user's original query: q
- And user's relevance feedback: D_R and D_{NR} .
- We aim to find the optimised query that satisfies the feedback: \mathbf{q}_{OPT} .

ROCCHIO' ALGORITHM

- **Intuition**: new query q_{OPT} must be:
 - As **similar** as possible to docs deemed **relevant**.
 - As dissimilar as possible to docs deemed non-relevant.

$$\vec{q}_{opt} = \arg\max_{\vec{q}} [\sin(\vec{q}, \mu(D_r)) - \sin(\vec{q}, \mu(D_{nr}))]$$

i.e. find **q** with max **similarity** wrt **centroid of relevant docs**, and max **dissimilarity** wrt **centroid of non-relevant docs**.

ROCCHIO' ALGORITHM

- This is however hard to optimise.
 - We'd need to try many different q's we don't have time.

$$\vec{q}_{opt} = \arg\max_{\vec{q}} [\sin(\vec{q}, \mu(D_r)) - \sin(\vec{q}, \mu(D_{nr}))]$$

• The simpler alternative that Rocchio' relies on:

$$\vec{q}_{opt} = \mu(D_r) + [\mu(D_r) - \mu(D_{nr})]$$

ROCCHIO' EXAMPLE

• Circles: relevant

• Crosses: non-relevant

ROCCHIO' EXAMPLE

Relevance feedback collected

ROCCHIO' EXAMPLE

 After applying Rocchio' we want to achieve something like this →

i.e. the relevant bit+ an additional areathat's far from thenon-relevant docs

ROCCHIO' EXAMPLE

• With relevance feedback:

we calculate the centroids for relevant docs: μ_{R}

non-relevant docs: μ_{NR}

ROCCHIO' EXAMPLE

• We calculate:

$$\mu_{\text{NR}}$$
 – μ_{R}

difference between the two centroids

ROCCHIO' EXAMPLE

• Add the difference to μ_R .

• Which will give us q_{OPT}.

• Remember:

$$\vec{q}_{opt} = \mu(D_r) + [\mu(D_r) - \mu(D_{nr})]$$

ROCCHIO' EXAMPLE

• q_{OPT} covers the desired area.

WARWICK

ROCCHIO' EXAMPLE

 A real example may not have so clearly separated rel vs non-rel docs.

but we can still expect it to help.

ROCCHIO: ANOTHER ALTERNATIVE

• Another alternative of Rocchio' (called Rocchio, no apostrophe):

$$\vec{q}_m = \alpha \vec{q}_0 + \beta \mu(D_r) - \gamma \mu(D_{nr})$$

q_m: modified query

q₀: initial query

 $\mu(D_{D})$, $\mu(D_{ND})$: centroid of relevant and non-relevant docs

 α , β , γ : weights

• Weights can be adjusted based on relevance feedback, i.e. are there more rel (higher α , β) or non-rel docs (higher γ).

USE OF RELEVANCE FEEDBACK

- Relevance feedback can be useful in some search engines, but often not used by search engines (at least not visible to the end user)
- Why?
 - Do web users really want to provide feedback, or would they rather revise their query?
 - The user doesn't see the alterations made to the query. Why have certain documents now been retrieved?
- But, of course, you can have **people in-house providing relevance feedback**. This can be used to provide improved results to end users.

LIMITATIONS OF RELEVANCE FEEDBACK

- Relevance feedback will **fail to capture**:
 - Misspellings: to correct misspellings, we'll need to rewrite queries (e.g. query expansion), adjusting the query vector will not help.
 - Cross-language information retrieval: to search for docs in multiple language, we'll need machine translation, adjusting the query vector will not suffice.

ASSUMPTION FOR RF TO WORK

- We need relevant docs to be similar to each other, i.e. to form a single cluster.
- It will not work for cases with multiple clusters. e.g. a cluster for "UK", and another for "Britain".

PSEUDO RELEVANCE FEEDBACK

- Automating collection of relevance feedback.
- Pseudo relevance feedback (PRF):
 - Retrieve top k docs for user's query.
 - Assume top m are relevant (for a small m).
 - Use Rocchio' algorithm using those m docs as the relevant set.
- It tends to work well, while saving user's time.
- Several iterations of PRF can lead to query drift.

INDIRECT RELEVANCE FEEDBACK

- Avoids asking the user for judgements.
- Instead, make assumptions, e.g.:
 - user clicking on a search result indicates it is relevant → this will help us improve results for future repetitions of the same query.
 - user **scrolling down on search results** means first few visible results were not enough.

INDIRECT RELEVANCE FEEDBACK

- **Pro:** easy to collect, no explicit user input needed.
- Con: no guarantee that scrolling down means top results weren't good enough.
- Con: user may find the web page wasn't relevant after clicking.

 Note: user clicks looking only at the snippet.

GLOBAL METHODS: QUERY EXPANSION

QUERY EXPANSION

- With relevance feedback, we were looking at the results to reformulate the query.
 - e.g. move query away from non-relevant docs.
- For query expansion, we only look at the query, e.g.:
 - User enters: t₁ t₂
 - We consider query needs adding t₃ and t₄.
 - We will actually search for: t₁ t₂ t₃ t₄.

QUERY EXPANSION: EXAMPLE

QUERY EXPANSION: EXAMPLE

WARWICK

QUERY EXPANSION: EXAMPLE

TYPES OF QUERY EXPANSION

- Many possible options for query expansion, e.g.:
 - Acronyms: "UK" → "United Kingdom"
 - Misspellings: "warwik" → "warwick"
 - Synonyms: "connexion" → "connection"
 - Spelling variations: "realise" → "realize"
 - Translations: "Londra" → "London"

QUERY EXPANSION

- Query expansion is usually performed using a **global resource**, e.g. **thesauri** or **list of common misspellings**.
 - This global resource is **not query-dependent**.

How do we generate these global resources?

THESAURI AND OTHER RESOURCES

- Some types of resources:
 - Existing **thesauri** (e.g. WordNet).
 - Thesauri derived from our collections:
 - Use PPMI, word embeddings, etc.
 - Collect user feedback:
 - Store user's query log, find when they retype queries.
 - When we said "did you mean Warwick", did they click on it?

THESAURI

- Use hypernyms.
- User issues query "truck repair".
- If we have few relevant results, give them results for "vehicle repair" instead?

WORDNET SYNSETS

- dog = domestic dog = canis familiaris
- We can use WordNet synset to expand the query with synonyms, in different cases:
 - Original query (dog) returns too many results, use more specialised word (canis familiaris).
 - Original query (canis familiaris) returns too few results, use more widely used words (dog).

WORDNET: ANTONYMS

- Use antonyms from WordNet to exclude search results.
- Particularly useful when original query returns too many results.
- e.g. user issues query "short stay car park".
 - exclude everything having "long stay car park", despite having significant overlap of ¾ keywords.

QUERY LOG MINING

- Store queries + clicks of users.
- For instance, for users searching for "warwic", we'll give them a link: "did you mean Warwick?".
- If many users click on it, we're confident it needs to be corrected.
- For future users, directly show results for "Warwick" instead when they search for "warwic".

USER-SPECIFIC QUERY EXPANSION

- You can do many more, user-specific expansions using query logs.
- Say I've searched for "Coventry hotels" and for "Birmingham hotels".
- Next, if I type "London", I'll likely be looking for "London hotels"?

WORD EMBEDDINGS

• Expand by using similar/related words.

QUERY EXPANSION: CAVEAT

- We need to be careful with the expansions we make.
- For instance, for a query: apple computer
- I may end up expanding it to: apple **fruit** computer

QUERY EXPANSION: WORD2VEC

With Word2Vec, use as many words as possible to find similar words.

```
model.most_similar(positive=['apple', 'computer'])
rather than
model.most_similar(positive=['apple'])
or even better if we're able to determine that the user is not interested in fruits:
model.most_similar(positive=['apple', 'computer'], negative=['fruit'])
```


SUMMARY

- Local methods: (pseudo-/indirect) relevance feedback.
 - Tends to be effective.
 - Can be cumbersome for the user.
 - Better to have people in-house providing feedback.
- Global methods: query expansion.
 - Widely used.
 - Provided that queries are short, lacking specificity, expanding helps.
 - We need to be careful not to incorporate wrong keywords (apple fruit vs computer).

ASSOCIATED READING

 Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval (Vol. 1, No. 1, p. 496). Cambridge: Cambridge university press. Chapter 9.

https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf