# AP Physics C - SHM Lab

Ben Feuer and Kwame Addison

January 13, 2024

Part 1: Measure the effective spring constant of two springs

Data Table

| Trial # | Mass(kg) | 4 * T (s) | T(s)   | $T^2(s^2)$ |
|---------|----------|-----------|--------|------------|
| 1       | 0.497    | 4.32      | 1.08   | 1.1664     |
| 2       | 0.497    | 4.37      | 1.0925 | 1.19355625 |
| 3       | 0.497    | 4.5       | 1.125  | 1.265625   |
| 4       | 0.597    | 4.99      | 1.2475 | 1.55625625 |
| 5       | 0.597    | 4.81      | 1.2025 | 1.44600625 |
| 6       | 0.597    | 4.79      | 1.1975 | 1.43400625 |
| 7       | 0.797    | 5.48      | 1.37   | 1.8769     |
| 8       | 0.797    | 5.67      | 1.4175 | 2.00930625 |
| 9       | 0.797    | 5.5       | 1.375  | 1.890625   |
| 10      | 0.997    | 6.07      | 1.5175 | 2.30280625 |
| 11      | 0.997    | 6.05      | 1.5125 | 2.28765625 |
| 12      | 0.997    | 5.95      | 1.4875 | 2.21265625 |
| 13      | 1.197    | 6.49      | 1.6225 | 2.63250625 |
| 14      | 1.197    | 6.42      | 1.605  | 2.576025   |
| 15      | 1.197    | 6.51      | 1.6275 | 2.64875625 |

## Graph



#### Result

The slope of the line of best fit is k=19.54181671 N/m as it is equal to the slope of the line of best fit in the graph above multiplied by  $4\pi^2$ .

Part 2: Measure the spring constant of a each individual spring

Data Table for Spring 1

| Mass(kg) | Force(N) | Displacement(m) |
|----------|----------|-----------------|
| 0.05     | 0.49     | 0.15            |
| 0.1      | 0.98     | 0.285           |

# Data Table for Spring 2

| Mass(kg) | Force(N) | Displacement(m) |
|----------|----------|-----------------|
| 0.05     | 0.49     | 0.03            |
| 0.1      | 0.98     | 0.065           |
| 0.15     | 1.47     | 0.1             |
| 0.2      | 1.96     | 0.133           |

# Graph for Spring 1



### Graph for Spring 2



#### Result

Using the slope of the line of best fit for each graph, we can calculate the spring constant for each spring. For spring 1, the spring constant is k = 3.63 N/m. For spring 2, the spring constant is k = 0.07 N/m (it may be hard to see the values in the graph due to its low resolution).

Part 3: Find  $k_{eff}$  for the two springs using Newton's Laws Diagram of the System



# Derivation of $k_{eff}$

At the system equilibrium position,  $F_{net} = 1$ . If you pull the cart towards spring 1, then spring 2 will pull with an additional force  $k_2x$  and spring 1 will have a reduced force of  $-k_1x$  and therefore  $F_{net} = k_2x - (-k_1x) = (k_2 + k_1)x$ . Therefore,  $k_{eff} = k_1 + k_2$ .

### Error Anlysis

Because, using Part Two of the lab, we found the values of  $k_1$  and  $k_2$ , we can calculate  $k_{eff}$  which is 3.63 + 0.07 = 4N/m. This value is very different than the value we got from Part One of the lab: 19.54N/m. This means our percent error is equal to:

 $\%E = \frac{4 - 19.54}{19.54} * 100\% = -79.5\%$ 

This large error is attributable to inaccurate measurings, and the effect of the mass of the spring. The non-zero mass of the spring when implemented in part one of the lab means that the period is larger as it is part of the period equation:  $T=2\pi\sqrt{\frac{m}{k}}$ . Therefore, the mass of the springs is directly attributable to the error.