

1. Tame de l'image intermediane A₁D₁ (von exercice il 10).

La taille de l'image finale
$$A'B'$$
 est donc : $\overline{A'B'} = \overline{A_1B_1} \times g_y$ $\overline{A'B'} = 8,7 \, mm$

 $\overline{A_1B_1} = \alpha.f_1'$ $\alpha = 0.5^{\circ} = 8.7.10^{-3} \, rad \, | \, \overline{A_1B_1} = 2.8 \, mm$

5.1. Sur le schéma, on voit que :
$$\overline{S_2A'} = e$$
 et $\overline{S_2A_1} = f_1' + e$

5.2. La relation de conjugaison appliquée au miroir
$$M_2$$
 donne :

5.2. La relation de conjugaison appliquee au miroir
$$M_2$$
 donne :
$$\frac{1}{S_0 A_1} + \frac{1}{S_0 A_2} = \frac{1}{f_0'} \quad \text{donc} \quad \frac{1}{f_1' + e} + \frac{1}{e} = \frac{1}{f_0'} \quad \frac{2e + f_1'}{e_1(f_1' + e)} = \frac{1}{f_0'}$$

On obtient une équation du second degré : $e^2 + (f_1' - 2f_2') \cdot e - f_1' \cdot f_2' = 0$ dont la solution positive est : $e = 233 \, mm$

5.3. On obtient alors:
$$\overline{S_2A_1} = f_1' + e = -95 \, mm$$
 et $\overline{S_2A'} = e = 233 \, mm$

Le grandissement transversal vaut alors : $g_y = -\frac{\overline{S_2 A'}}{\overline{S_2 A_1}}$ $g_y = 2,45$