Inference in Simple Linear Regression

Residuals and Error Variance Estimation

· Residual:

The difference between the observed value Y_i and the predicted value $A+Bx_i$:

$$Residual_i = Y_i - (A + Bx_i)$$

• Sum of Squares of Residuals (SSR):

$$SSR = \sum_{i=1}^{n} (Y_i - A - Bx_i)^2$$

• Key Point:

$$rac{SSR}{\sigma^2} \sim \chi^2_{n-2}$$

(follows chi-square distribution with n-2 degrees of freedom).

▼ Thus:

$$E\left[\frac{SSR}{n-2}\right] = \sigma^2$$

meaning $\frac{SSR}{n-2}$ is an **unbiased estimator** of σ^2 .

Proof Outline: Why Degrees of Freedom = n-2

• Since $Y_i \sim N(lpha + eta x_i, \sigma^2)$,

the standardized errors are independent standard normals.

- Summing squared errors (without estimating parameters) gives χ^2_n .
- Estimating A and B uses up 2 degrees of freedom, thus:

$$rac{SSR}{\sigma^2} \sim \chi^2_{n-2}$$

Maximum Likelihood Estimators (MLEs)

• If Y_i are normal, the **joint density**:

$$f(y_1,...,y_n) = \prod_{i=1}^n rac{1}{\sqrt{2\pi\sigma^2}} e^{-(y_i - lpha - eta x_i)^2/2\sigma^2}$$

• To maximize likelihood → Minimize:

$$\sum (y_i - \alpha - \beta x_i)^2$$

Conclusion:

Least squares estimators A and B are also the maximum likelihood estimators!

Summary Formulas

Define:

•
$$S_{xY} = \sum (x_i - \bar{x})(Y_i - \bar{Y}) = \sum x_i Y_i - n\bar{x}\bar{Y}$$

•
$$S_{xx} = \sum (x_i - \bar{x})^2 = \sum x_i^2 - n\bar{x}^2$$

•
$$S_{YY}=\sum (Y_i-ar{Y})^2=\sum Y_i^2-nar{Y}^2$$

Then:

$$B=rac{S_{xY}}{S_{xx}} \qquad A=ar{Y}-Bar{x} \qquad SSR=rac{S_{xx}S_{YY}-S_{xY}^2}{S_{xx}}$$

Distribution of Estimators A and B

Under the normality assumption:

•
$$A \sim N\left(lpha, \sigma^2 rac{\sum x_i^2}{nS_{xx}}
ight)$$

•
$$B \sim N\left(eta, rac{\sigma^2}{S_{xx}}
ight)$$

Also:

$$rac{SSR}{\sigma^2} \sim \chi^2_{n-2} \quad ext{and} \quad SSR ext{ is independent of } A, B$$

Hypothesis Testing about eta

Test:

• Null Hypothesis: $H_0: \beta=0$

• Alternative Hypothesis: $H_1: eta
eq 0$

Test Statistic:

$$TS = \sqrt{(n-2)S_{xx}} rac{|B|}{\sqrt{SSR}}$$

Under $H_0, TS \sim t_{n-2}$.

V Decision Rule:

Reject H_0 if:

$$|TS|>t_{\gamma/2,n-2}$$

where $t_{\gamma/2,n-2}$ is the critical value from the t-distribution table.

Confidence Interval for β

A $100(1-\alpha)\%$ confidence interval for β is:

$$\left(B-t_{lpha/2,n-2}\sqrt{rac{SSR}{(n-2)S_{xx}}},\; B+t_{lpha/2,n-2}\sqrt{rac{SSR}{(n-2)S_{xx}}}
ight)$$

Inference for α (Intercept)

Similarly, the confidence interval for α can be built:

$$A\pm t_{lpha/2,n-2}\sqrt{rac{SSR}{n(n-2)S_{xx}}\sum x_i^2}$$

Prediction at a New Point x_0

• Predict mean response at x_0 :

Predicted value = $A + Bx_0$

Distribution:

$$A+Bx_0\sim N\left(lpha+eta x_0,\sigma^2\left(rac{1}{n}+rac{(x_0-ar{x})^2}{S_{xx}}
ight)
ight)$$

• Confidence interval:

$$A+Bx_0\pm t_{lpha/2,n-2}\sqrt{rac{SSR}{n-2}\left(rac{1}{n}+rac{(x_0-ar{x})^2}{S_{xx}}
ight)}$$

igspace This gives a range where the mean value at x_0 is expected to lie.