Report No: CCISE190102402

FCC REPORT

(Bluetooth)

Applicant: GNJ Manufacturing Inc

Address of Applicant: 5811 West Hallandale Beach Blve. West Park, FL 33023

Equipment Under Test (EUT)

Product Name: Survivor

Model No.: Survivor

Trade mark: CellAllure

FCC ID: 2AAE9CAPHG57

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 09 Jan., 2019

Date of Test: 09 Jan., to 13 Mar., 2019

Date of report issued: 13 Mar., 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	13 Mar., 2019	Original

Tested by: Date: 13 Mar., 2019

Test Engineer

Reviewed by: Date: 13 Mar., 2019

Project Engineer

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	
3		
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
,	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T.	5
	5.3 Test environment and test mode	
,	5.4 DESCRIPTION OF SUPPORT UNITS	
,	5.5 MEASUREMENT UNCERTAINTY	6
	5.6 LABORATORY FACILITY	
	5.7 LABORATORY LOCATION	
;	5.8 TEST INSTRUMENTS LIST	7
6	TEST RESULTS AND MEASUREMENT DATA	8
(6.1 ANTENNA REQUIREMENT	8
	6.2 CONDUCTED EMISSIONS	
(6.3 CONDUCTED OUTPUT POWER	12
(6.4 20DB OCCUPY BANDWIDTH	
	6.5 CARRIER FREQUENCIES SEPARATION	
	6.6 HOPPING CHANNEL NUMBER	
	6.7 DWELL TIME	
	6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
,	6.9.1 Conducted Emission Method	
	6.9.2 Radiated Emission Method	
(6.10 Spurious Emission	
	6.10.1 Conducted Emission Method	
	6.10.2 Radiated Emission Method	
7	7 TEST SETUP PHOTO	53
8	R FUT CONSTRUCTIONAL DETAILS	54

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna Requirement	15.203 & 15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Spurious Emission	15.205 & 15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	GNJ Manufacturing Inc
Address:	5811 West Hallandale Beach Blve. West Park, FL 33023
Manufacturer/ Factory:	Shenzhen Mensichuang Electronics Technology Co., Ltd
Address:	Floor3 building 2, Hongye Industrial Park, Le Zhujiao Village, Huangmabu Community, Xixiang Street, Bao'an District, Shenzhen City, Guangdong Province, China

5.2 General Description of E.U.T.

Product Name:	Survivor
Model No.:	Survivor
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	0.8 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V, 5800mAh
AC adapter:	Model: L13 Input: AC100-240V, 50/60Hz, 0.1A Output: DC 5.0V, 1A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation	Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		
Remark: Cha	Remark: Channel 0, 39 &78 selected for GFSK, π/4-DQPSK and 8DPSK.						

Report No: CCISE190102402

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Modes:	
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.
Hopping mode:	Keep the EUT in hopping mode.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019	
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919l)	
Dro omniii or	LID	0447D	24475	03-07-2018	03-06-2019	
Pre-amplifier	HP	8447D	2944A09358	03-07-2019	03-06-2020	
Dra amplifian	CD	DAD 4040	DAR 1010	03-07-2018	03-06-2019	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2019	03-06-2020	
Chartrum analyzar	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019	
Spectrum analyzer	Ronde & Schwarz	F3P30	101454	03-07-2019	03-06-2020	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019	
EMI Took Doosiyar	Dahda 8 Cahusan	ECDD7	404070	03-07-2018	03-06-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2019	03-06-2020	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019	
Cable	ZDECL	Z 100-INJ-INJ-01	1000430	03-07-2019	03-06-2020	
Cable	MICRO-COAX	MFR64639	V40742 F	03-07-2018	03-06-2019	
Cable	WICKU-COAX	WIFR04039	K10742-5	03-07-2019	03-06-2020	
Cable	SUHNER	SUCOFLEX100	E9102/4DF	03-07-2018	03-06-2019	
Cable	SURINER	SUCUFLEXIUU	58193/4PE	03-07-2019	03-06-2020	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0			

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESC!	101100	03-07-2018	03-06-2019	
EIVII Test Receiver	Ronde & Schwarz	ESCI	ESCI 101189		03-06-2020	
Pulse Limiter	COLUMA DEDECIA	03-07-2018	03-06-2019			
Puise Limitei	SCHWARZBECK	OSRAM 2306	9731	03-07-2019	03-06-2020	
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cabla	11D 40500A N/A	10503A N/A		03-07-2018	03-06-2019	
Cable	HP			03-07-2019	03-06-2020	
EMI Test Software	AUDIX	E3	\	ersion: 6.110919l)	

Test results and measurement data

6.1 Antenna Requirement

FCC Part 15 C Section 15.203 & 247(b) Standard requirement: 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement: (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. **E.U.T Antenna:** The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is 0.8 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.207		
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz, Sweep time=auto	
Limit:	Frequency range	Limit (c	dBuV)
-	(MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the log	arithm of the frequency.	
Test setup:	Reference	e Plane	
	AUX Equipment Test table/Insulation plane Remark EUT: Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	EMI Receiver	ower
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Product name:	Survivor	Product model:	Survivor
Test by:	Alex	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5°C Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	₫B	₫B	dBu₹	−−dBuV	<u>d</u> B	
1	0.190	32.17	0.16	10.76	43.09	64.02	-20.93	QP
2	0.190	23.40	0.16	10.76	34.32	54.02	-19.70	Average
3	0.381	30.70	0.12	10.72	41.54	58.25	-16.71	QP
4 5 6	0.381	20.53	0.12	10.72	31.37	48.25	-16.88	Average
5	0.510	34.04	0.12	10.76	44.92	56.00	-11.08	QP
	0.521	21.55	0.12	10.76	32.43	46.00	-13.57	Average
7	0.763	16.18	0.13	10.80	27.11	46.00	-18.89	Average
8	0.984	27.25	0.13	10.87	38.25	56.00	-17.75	QP
9	2.500	15.03	0.15	10.94	26.12	46.00	-19.88	Average
10	2.622	24.07	0.16	10.93	35.16	56.00	-20.84	QP
11	6.914	8.79	0.25	10.80	19.84	50.00	-30.16	Average
12	25.321	23.79	0.34	10.87	35.00	60.00	-25.00	QP

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Survivor	Product model:	Survivor
Test by:	Alex	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%
	AC 120 V/60 Hz AC 120 V/60 Hz 5 Read LISN Level Factor dBuV dB 1 29.82 0.93 1 23.31 0.93 1 31.48 0.97 1 24.41 0.97 3 37.69 0.97 1 24.41 0.97 3 37.69 0.97 1 23.04 0.97 1 29.84 0.99 1 31.15 0.99	Environment: 2 Frequency (MHz) Cable Loss Level dB dBuV 10. 76 41.51 10. 76 35.00 10. 72 43.17 10. 72 36.10 10. 76 49.42 10. 76 49.42 10. 76 40.21 10. 80 35.50 10. 87 43.17 10. 87 34.88 10. 93 41.76 10. 91 43.05	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)	
Test Method:	ANSI C63.10:2013 and KDB 558074	
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)	
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data:

Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
	GFSK mod	de		
Lowest channel	6.86	30.00	Pass	
Middle channel	6.23	30.00	Pass	
Highest channel	6.02	30.00	Pass	
	π/4-DQPSK mode			
Lowest channel	7.98	21.00	Pass	
Middle channel	7.55	21.00	Pass	
Highest channel	6.63	21.00	Pass	
	8DPSK mode			
Lowest channel	8.59	21.00	Pass	
Middle channel	8.13	21.00	Pass	
Highest channel	7.33	21.00	Pass	

Test plot as follows:

6.4 20dB Occupy Bandwidth

. 2002 000apy 24.14.11.41.1		
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 and KDB 558074	
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak	
Limit:	N/A	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data:

Toot channel	20dB Occupy Bandwidth (kHz)			
Test channel	GFSK	π/4-DQPSK	8DPSK	
Lowest	956	1284	1254	
Middle	956	1284	1248	
Highest	956	1290	1248	

Test plot as follows:

6.5 Carrier Frequencies Separation

ord during troquencie	Carrier Frequencies Separation		
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak		
Limit:	a) 0.025MHz or the 20dB bandwidth (whichever is greater)b) 0.025MHz or two-thirds of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
	GFSK				
Lowest	1004	956.00	Pass		
Middle	1000	956.00	Pass		
Highest	1004	956.00	Pass		
	π/4-DQPSK mode				
Lowest	1000	860.00	Pass		
Middle	1004	860.00	Pass		
Highest	1000	860.00	Pass		
8DPSK mode					
Lowest	1004	836.00	Pass		
Middle	1008	836.00	Pass		
Highest	1004	836.00	Pass		

Note: According to section 6.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	956	956.00
π/4-DQPSK	1290	860.00
8DPSK	1254	836.00

Test plot as follows:

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 and KDB 558074	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 and KDB 558074	
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data (Worse case):

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.13952		
GFSK	DH3	0.27360	0.4	Pass
	DH5	0.31701		
	2-DH1	0.13760		
π/4-DQPSK	2-DH3	0.27392	0.4	Pass
	2-DH5	0.31829		
	3-DH1	0.13824		
8DPSK	3-DH3	0.26976	0.4	Pass
	3-DH5	0.31488		

Note:

The test period = 0.4 Second/Channel x 79 Channel = 31.6 s

Calculation Formula: Dwell time = Ton time per hop * Hopping numbers * Period

For example:

DH1 time slot=0.436*(1600/ (2*79)) * 31.6=139.52ms

DH3 time slot=1.710*(1600/ (4*79)) * 31.6=273.60ms

DH5 time slot=2.972*(1600/ (6*79)) * 31.6=317.01ms

Test plot as follows:

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Non-hopping mode and hopping mode				
Test results:	Pass				

Test plot as follows:

6.9.2 Radiated Emission Method

Test Method: Test Frequency Range: 2.3GHz to 2.5GHz Test Distance: 3m Receiver setup: Frequency Peak Above 1GHz Frequency Limit: Frequency Limit (dBuV/m @3m) Remark Above 1GHz Above 1GHz Frequency Limit (dBuV/m @3m) Remark Above 1GHz Test setup: Test setup: 1. The EUT was placed on the top of a rotating table 1.5meters above ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height anten tower. 3. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make measurement. 4. For each suspected emission, the EUT was arranged to its worst of and then the antenna was tuned to heights from 1 meter to 4 measurement. 4. For each suspected emission, the EUT was arranged to its worst of and then the antenna was tuned to heights from 1 meter to 4 measurement. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower that limit specified, then testing could be stopped and the peak values the EUT would be reported. Otherwise the emissions that did not 10dB margin would be re-tested one by one using peak, quasi-pei average method as specified and then reported in a data sheet.	Tadiated Lillission W	ı	0	5 000						
Test Procedure: Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5meters above ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height anten tower. 3. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make measurement. 4. For each suspected emission, the EUT was arranged to its worst and then the antenna was sured to heights from 1 meter to 4 meter and the rota table was turned from 0 degrees to 360 degrees to fir maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower tha limit specified, then testing could be stopped and the peak values the EUT would be reported. Otherwise the emissions that did not 10dB margin would be re-tested one by one using peak, quasing the values the EUT would be reported. Otherwise the emissions that did not 10dB margin would be re-tested one by one using peak, quasing to average method as specified and then reported in a data sheet.	•	FCC Part 15 C Section 15.209 and 15.205								
Test Distance: Receiver setup: Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Average 1MHz 3MHz Average 1MHz MHz Average 1MHz MHz Average 1MHz Average										
Receiver setup: Frequency										
Limit: Frequency Limit (dBuV/m @3m) Remark Above 1GHz Frequency Limit (dBuV/m @3m) Remark Above 1GHz Test setup: Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5meters abov ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height anten tower. 3. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make measurement. 4. For each suspected emission, the EUT was arranged to its worst of and then the antenna was tuned to heights from 1 meter to 4 meter and the rota table was turned from 0 degrees to 360 degrees to if maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower tha limit specified, then testing could be stopped and the peak values the EUT would be reported. Otherwise the emissions that did not 1 10dB margin would be re-tested one by one using pak, quasi-peak average method as specified and then reported in a data sheet.										
Limit: Frequency Limit (dBuV/m @3m) Remark Above 1GHz Above 1GHz Test setup: Test setup: 1. The EUT was placed on the top of a rotating table 1.5meters above ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antentower. 3. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make measurement. 4. For each suspected emission, the EUT was arranged to its worst of and the rota table was turned from 0 degrees to 360 degrees to firm maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower tha limit specified, then testing could be stopped and the peak values the EUT would be re-tested one by one using peak, quasi-peak average method as specified and then reported in a data sheet.	Receiver setup:	Frequency						Remark		
Limit: Frequency Limit (dBuV/m @3m) Remark Above 1GHz 54.00 Average Value 74.00 Peak Value Test setup: 1. The EUT was placed on the top of a rotating table 1.5meters above ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height anten tower. 3. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make measurement. 4. For each suspected emission, the EUT was arranged to its worst of and then the antenna was turned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to firm maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower that limit specified, then testing could be stopped and the peak values the EUT would be re-tested one by one using peak, quasi-peak average method as specified and then reported in a data sheet.		Above 1GHz						Peak Value		
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5meters above ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antentower. 3. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make measurement. 4. For each suspected emission, the EUT was arranged to its worst of and then the antenna was turned to heights from 1 meter to 4 meterna and the rota table was turned from 0 degrees to 360 degrees to fir maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower that limit specified, then testing could be stopped and the peak values the EUT would be re-tested one by one using peak, quasi-peak average method as specified and then reported in a data sheet.							ИHz	Average Value		
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5meters above ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height anten tower. 3. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make measurement. 4. For each suspected emission, the EUT was arranged to its worst of and then the antenna was tuned to heights from 1 meter to 4 meter and the rota table was turned from 0 degrees to 360 degrees to fir maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower tha limit specified, then testing could be stopped and the peak values the EUT would be reported. Otherwise the emissions that did not 10dB margin would be re-tested one by one using peak, quasi-pea average method as specified and then reported in a data sheet.	Limit:	Frequen	су	Lim	•	3m)				
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5meters above ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height anten tower. 3. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make measurement. 4. For each suspected emission, the EUT was arranged to its worst of and then the antenna was tuned to heights from 1 meter to 4 meter and the rota table was turned from 0 degrees to 360 degrees to fir maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower tha limit specified, then testing could be stopped and the peak values the EUT would be reported. Otherwise the emissions that did not 10dB margin would be re-tested one by one using peak, quasi-pea average method as specified and then reported in a data sheet.		Above 1G	SHz							
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5meters above ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antentower. 3. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make measurement. 4. For each suspected emission, the EUT was arranged to its worst of and then the antenna was tuned to heights from 1 meter to 4 meter and the rota table was turned from 0 degrees to 360 degrees to fir maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower that limit specified, then testing could be stopped and the peak values the EUT would be reported. Otherwise the emissions that did not it 10dB margin would be re-tested one by one using peak, quasi-peak average method as specified and then reported in a data sheet.		14			74.00		F	Peak Value		
ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antentower. 3. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make measurement. 4. For each suspected emission, the EUT was arranged to its worst of and then the antenna was tuned to heights from 1 meter to 4 meter and the rota table was turned from 0 degrees to 360 degrees to firm maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower that limit specified, then testing could be stopped and the peak values the EUT would be reported. Otherwise the emissions that did not he 10dB margin would be re-tested one by one using peak, quasi-peak average method as specified and then reported in a data sheet.		(Turntable) Ground Reference Plane								
	Test Procedure:	 ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 								
Note to details	Test Instruments:	_			·					
Test mode: Non-hopping mode	Test mode:	Non-hopping m	node							
Test results: Passed	Test results:	Passed								

GFSK Mode:

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:			Survivor				Product Model:		Survivor			
Γest E	Ву:			Yaro			Те	st mode:	I	DH1 Tx mo	le	
Test C	Cha	nnel:		Lowest channel Polarization: Horizontal			Horizontal					
Test \	Volta	age:		AC 120/60)Hz		En	vironment	:	Temp: 24 ℃	Huni: 5	7%
110	Leve	el (dBu\	//m)									
100												0
80										FCC	PART 15 (I	PK)
60	م	~~ ~~		~	~~~ <u>~</u>			~~~	~~~ √~~	FÇC	PART 15 (AV)
40									A P.	2		
20												
0	231	0 23	20			2350 Freq	uency (MH	z)				240
		1	Freq		Intenna Factor	Cable	Preamp		Limit Line	Over Limit	Remark	
	•		MHz	dBu₹	dB/m		<u>d</u> B	dBuV/m	dBuV/m			
1 2		2390. 2390.		20.63 9.31	27.37 27.37	4.69 4.69	0.00 0.00		74.00 54.00		Peak Average	e

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Survivor	Product Model:	Survivor
Test By:	Yaro	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

				Co. Co.				
Freq								
MHz	dBu∜	<u>dB</u> /m	<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	MHz 2483,500	Freq Level MHz dBuV 2483.500 21.19	Freq Level Factor MHz dBuV dB/m 2483.500 21.19 27.57	Freq Level Factor Loss MHz dBuV dB/m dB 2483.500 21.19 27.57 4.81	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 2483.500 21.19 27.57 4.81 0.00	Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 2483.500 21.19 27.57 4.81 0.00 55.27	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 2483.500 21.19 27.57 4.81 0.00 55.27 74.00	ReadAntenna Cable Preamp Limit Over

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Survivor			Pr	oduct Mod	el:	Survivor			
est By: Yaro				Te	est mode:		DH1 Tx mode			
Test Channel:	Highest c	hannel		Po	olarization:		Horizontal			
Test Voltage:	AC 120/6	0Hz		Er	nvironment	:	Temp: 24℃	Huni: 57%		
110 Level (dBuV/m 100 80 60)							PART 15 (PK)		
20 02478 Fre	eq Level Iz dBuV	ntenna Factor — dB/m	Cable Loss dB	Factor dB	Level	dBuV/m				
1 2483.50 2 2483.50		27.57 27.57	4.81 4.81	0.00 0.00			-19.04 -9.63	Peak Average		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

π/4-DQPSK mode

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

roduct	Name:	Survivor			Pr	oduct Mod	el:	Survivor	
est By:		Yaro			Те	est mode:		2DH1 Tx m	ode
est Cha	annel:	Lowest channel Polarization: Horizon				Horizontal			
est Vol	tage:	AC 120/60)Hz		Er	nvironment	:	Temp: 24℃ Huni: 57%	
	and AdDad Head								
110 Le	vel (dBuV/m)								
100								-	
									Λ
80									
-								FCC	PART 15 (PK)
co									1
60	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				was was			FCC	PART 15 (AV)
			****					2	200
40									
20									
0									
23	10 2320			2350 Fred	uency (MH	lz)			240
		72						12500.00	
	Free		ntenna Fester			Level	Limit		Remark
	rreq	rever	ractor	F022					Kemark
	MHz	dBu∜	dB/m	dB	₫B	dBuV/m	dBuV/m	dB	
1	2390.000	19.78	27.37	4.69	0.00	53.52	74.00	-20.48	Peak
2	2390.000	9.31	27.37	4.69					Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	Name:	Survivor			P	roduct Mod	el:	Survivor	
Test By:		Yaro			Т	est mode:		2DH1 Tx m	ode
Test Cha	annel:	Highest of	channel		P	olarization:		Vertical	
Test Vol	est Voltage: AC 120/60Hz Environment: Temp: 24°C Huni: 57%				Huni: 57%				
1	and AdDa Man						•		
110 Lev	/el (dBuV/m)								
100									
80									
/		100						FCC	PART 15 (PK)
60		\							
00								FCC	PART 15 (AV)
		2			537				
40									
20									
0 247	70								2500
241	10			Freq	uency (Mi	Hz)			2500
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∇	<u>dB</u> /π	d <u>B</u>	dE	dBuV/m	dBuV/m	dB	
1	2483.500	22.09	27.57	4.81	0.00			-17.83	
2	2483.500	10.17	27.57	4.81	0.00	44.25	54.00	-9.75	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

roduct Name:	Survivor		Product Model: Survivor			
est By:	Yaro		Test mode:	2DH1 Tx mod	de	
est Channel:	Highest channel		Polarization:	Horizontal		
Test Voltage: AC 120/60Hz			Environment:	Temp: 24℃	Huni: 57%	
110 Level (dBuV/m) 100 80 40 20	2				ART 15 (PK) ART 15 (AV)	
2478		Frequency (DALL 2)		2500	

dB dBuV/m dBuV/m

54.59

45.55

碅

74.00 -19.41 Peak

54.00 -8.45 Average

Remark:

1

2

MHz

20.51

11.47

2483.500

2483.500

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

dB/m

27.57

27.57

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

₫₿

0.00

0.00

4.81

4.81

8DPSK mode

roduc	t Name:	Survivor			Pr	oduct Mod	del:	Survivor		
est By	<i>/</i> :	Yaro Test mode: Lowest channel Polarization:			Те	est mode:		3DH1 Tx mode		
est Ch	nannel:				:	Vertical				
est Vo	oltage:	AC 120/60	OHz		Er	nvironmen	t:	Temp: 24℃	Huni:	57%
Le	evel (dBuV/m)									
110	,									
100										Λ
80								FCC	PART 15	PK)
										/ /
60		~~~~			Anna		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	FCC	PART 15	AV)
			•	V				2	2 (9)	
40										
20										
023	310 2320			2350				*		240
				Fred	quency (MH	IZ)				
					Preamp Factor		Limit Line			
	Freq	TOOOT								
	Freq MHz	dBuV			dB	dBuV/m	dBuV/m			
1				<u>d</u> B 4.69				-20.85		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name: Survivor				Pre	oduct Mod	el:	Survivor			
est By:	By: Yaro			Yaro Test mode:				3DH1 Tx m	ode	
est Cha	nnel:	Lowest ch	annel		Po	larization:		Horizontal		
est Volt	age:	AC 120/60)Hz		En	vironment		Temp: 24℃ Huni: 57%		
Leve	el (dBuV/m)									
1										
00									Λ	
80								FCC	PART 15 (PK)	
60	and the same of the	~~~~~	~~~~	- A		·		FCC	PART 15 (AV)	
		100000000000000000000000000000000000000						2		
40										
20										
2310	2320			2350	uanau (MIII)	-1			240	
				rreq	uency (MH:	۷)				
	Free		ntenna Factor				Limit	Over Limit	Remark	
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1	2390.000	20.94		4.69	0.00	54.68	74.00	-19.32	Peak	
2	2390.000	9.55	27.37	4.69	0.00	43.29	54.00	-10.71	Average	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Survivor	Product Model:	Survivor
Test By:	Yaro	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

			ReadAntenna Cable Preamp Level Factor Loss Factor							
5	MHz	dBu∜		<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
1 2	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Survivor	Product Model:	Survivor	
Test By:	Yaro	Test mode:	3DH1 Tx mode	
Test Channel:	Highest channel	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

	ReadAnt Freq Level Fa		Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜		<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2483,500 2483,500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
•	` '					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Non-hopping mode					
Test results:	Pass					

Test plot as follows:

6.10.2 Radiated Emission Method

	5.10.2 Radiated Emission Method						
Test Requirement:	FCC Part 15 C		5.209	l			
Test Method:	ANSI C63.10: 2	013					
Test Frequency Range:	9 kHz to 25 GH:	Z					
Test Distance:	3m	T					
Receiver setup:	Frequency	Detect	or	RBW	VBV	V	Remark
	30MHz-1GHz	Quasi-p	eak	120kHz	300kl	Ηz	Quasi-peak Value
	Above 1GHz	Peak		1MHz	3MH	lz	Peak Value
	7.5575 7.57.12	RMS		1MHz	3MH	z	Average Value
Limit:	Frequenc	•	Lim	it (dBuV/m @	93m)		Remark
	30MHz-88N	ИHz		40.0		C	Quasi-peak Value
						Quasi-peak Value	
	216MHz-960	MHz		46.0			Quasi-peak Value
	960MHz-10	SHz		54.0		C	Quasi-peak Value
	Above 1GHz 54.0						Average Value
	74.0 Peak Value						Peak Value
	Below 1GHz Antenna Tower Search Antenna RF Test Receiver Ground Plane Above 1GHz						Search Antenna Test eiver
Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz) /1.5m(above 1GHz) above the ground at a 3 meter chamber. The table						
	was rotated 3 radiation.						

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	 The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the
	 maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.8 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

Product Name:	Survivor	Product Model:	Survivor
Test By:	Carey	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB
1	191.745	52.20	11.25	2.81	28.89	37.37	43.50	-6.13 QP
2	263.819	51.30	13.39	2.85	28.51	39.03	46.00	-6.97 QP
3	287.990	51.73	13.53	2.91	28.47	39.70	46.00	-6.30 QP
4	300.367	51.27	13.61	2.94	28.45	39.37	46.00	-6.63 QP
5	336.035	50.66	14.34	3.05	28.53	39.52	46.00	-6.48 QP
6	360.448	47.09	14.80	3.10	28.61	36.38	46.00	-9.62 QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Toduci	Name:	Survivor				duct Mode	l:	Survivor					
Γest By:		Carey			Tes	t mode:	1	BT Tx mode					
Test Fre	quency:	30 MHz ~	1 GHz		Pola	arization:	1	Horizontal Temp: 24℃ Huni: 57			Horizontal		
Test Vol	tage:	AC 120/60	OHz		Env	ironment:	-						
Lou	rel (dBuV/m)				·								
80 Lev	rei (ubuviiii)												
70													
70													
60		-11							D.DT 45.047				
								FCC	PART 15.247				
50													
40								6					
						4 5	5	4					
					3	1 (1)		9	31 13				
30	1	_	0		3		0	11 1111	. handburghtunde				
	1		2		3		المراضات المراجع	A MANAGERAL	produced by million like				
30	1 may		11	. <u>1</u> 11, 161	3		Majolar alaska k	ha de part de participa de la constanta de la	hickory the world				
20	A way	and the second second	11	MUMIN	MINNAH MANA		Maria Landon de la composição de la comp	had the back of	principles with a literature				
1,000	A man	and the second	11	Mulh	MINNAM NAMES		Majalan ahar da	he de well and the seal	porting and because the outland				
20 10		and the second	many printers	- Juliu Ind	200		No produced and the second						
20		and the second	11	Frequ	200 Jency (MHz		Madalas ababbad	500	harlmadhranthunthu				
20 10	50	Read	100 Ant enna	Cable	uency (MHz Preamp		Limit	500 Over	100				
20 10		Read	100	Cable	uency (MHz	Level		500 Over	100				
20 10	50	Read	100 Antenna Factor	Cable	uency (MHz Preamp Factor		Limit Line	500 Over Limit	100 Remark				
10 0 30	50 Freq	Read. Level	100 Antenna Factor	Cable Loss	uency (MHz Preamp Factor	Level	Limit Line	500 Over Limit	100 Remark				
10 0 30	50 Freq MHz 37.945 83.816	Read. Level dBuV 41.87 42.32	Antenna Factor dB/m 12.37 8.85	Cable Loss dB 1.14 1.79	Preamp Factor dB 29.92 29.61	Level dBuV/m 25.46 23.35	Limit Line dBuV/m 40.00	500 Over Limit ———————————————————————————————————	100 Remark				
10 0 30	50 Freq MHz 37.945 83.816 216.024	Read. Level dBuV 41.87 42.32 44.00	100 Antenna Factor — dB/m 12.37 8.85 12.12	Cable Loss dB 1.14 1.79 2.85	Preamp Factor dB 29.92 29.61 28.73	Level dBuV/m 25.46 23.35 30.24	Limit Line dBuV/m 40.00 40.00 46.00	500 Over Limit ———————————————————————————————————	100 Remark				
10 0 30	50 Freq MHz 37.945 83.816 216.024 263.819	Read. Level dBuV 41.87 42.32 44.00 46.15	100 Antenna Factor — dB/m 12.37 8.85 12.12 13.39	Cable Loss dB 1.14 1.79 2.85 2.85	Preamp Factor dB 29.92 29.61 28.73 28.51	Level dBuV/m 25.46 23.35 30.24 33.88	Limit Line dBuV/m 40.00 40.00 46.00 46.00	500 Over Limit ———————————————————————————————————	100 Remark				
20 10	50 Freq MHz 37.945 83.816 216.024	Read. Level dBuV 41.87 42.32 44.00	100 Antenna Factor — dB/m 12.37 8.85 12.12	Cable Loss dB 1.14 1.79 2.85	Preamp Factor dB 29.92 29.61 28.73	Level dBuV/m 25.46 23.35 30.24	Limit Line dBuV/m 40.00 40.00 46.00 46.00	500 Over Limit ———————————————————————————————————	100 Remark				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804	49.60	30.85	6.80	41.81	45.44	74.00	-28.56	Vertical	
4804	49.12	30.85	6.80	41.81	44.96	74.00	-29.04	Horizontal	
			Dete	ector: Avera	ge Value		_		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	39.83	30.85	6.80	41.81	35.67	54.00	-18.33	Vertical	
4804.00	39.57	30.85	6.80	41.81	35.41	54.00	-18.59	Horizontal	
			Test ch	nannel: Midd	dle channel				
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882 00	48 25	31 20	6.86	41 84	44 47	74 00	-29 53	Vertical	

Frequency (MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4882.00	48.25	31.20	6.86	41.84	44.47	74.00	-29.53	Vertical		
4882.00	49.06	31.20	6.86	41.84	45.28	74.00	-28.72	Horizontal		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4882.00	39.41	31.20	6.86	41.84	35.63	54.00	-18.37	Vertical		
4882.00	40.12	31.20	6.86	41.84	36.34	54.00	-17.66	Horizontal		
				_						

Test channel: Highest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	47.17	31.63	6.91	41.87	43.84	74.00	-30.16	Vertical		
4960.00	47.46	31.63	6.91	41.87	44.13	74.00	-29.87	Horizontal		
			Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	39.12	31.63	6.91	41.87	35.79	54.00	-18.21	Vertical		
4960.00	38.69	31.63	6.91	41.87	35.36	54.00	-18.64	Horizontal		

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.