ㅈ-ㅂ지구에서 구름형 및 구름량의 최근변동특징

배호연, 정상일

세계적으로 물자원에 대한 수요가 높아지고 담수자원이 부족됨에 따라 오늘날 대기 중의 구름물자원을 효과적으로 개발리용하기 위한 연구[1,2]가 활발히 벌어지고있다.

우리 나라에서 X - H X + T = X + T

론문에서는 인공강우에 필요한 기초자료를 마련하는데 목적을 두고 X-ㅂ지구에서 구름형 및 구름량의 최근변동특징에 대하여 고찰하였다.

1. ㅈ-ㅂ지구에서 구름형의 변동특징

ㅈ─ㅂ지구에서 구름의 월별출현일수를 분석하기 위하여 해당 기상관측소들의 1988 년부터 2017년까지의 구름관측자료를 리용하였다.

표 1에는 ㅈ-ㅂ지구의 10년평균월별구름일수에 대한 통계자료가 제시되여있다.

지구	통계기간	원												합계
	0/11/11	1	2	3	4	5	6	7	8	9	10	11	12	
Χ	1988년 — 1997년	20.9	21.1	26.4	27.2	29.8	30.0	30.9	30.8	29.9	26.2	25.1	25.0	323.3
	1998년 - 2007년	23.0	21.4	26.3	28.6	29.6	29.4	30.9	31.0	29.1	27.0	26.3	22.5	325.1
	2008년 -2017년	21.2	21.1	26.8	27.5	29.3	29.8	31.0	30.8	29.7	27.2	27.2	23.5	325.1
	평균	21.7	21.2	26.5	27.8	29.6	29.7	30.9	30.9	29.6	26.8	26.2	23.6	324.5
	1988년 — 1997년	20.2	21.9	28.2	28.5	30.4	29.8	30.9	30.9	28.6	26.3	23.9	23.7	323.3
Н	1998년 - 2007년	21.4	20.8	26.8	29.2	30.0	29.5	30.9	31.0	29.0	25.4	23.6	21.8	319.4
	2008년 - 2017년	20.7	22.1	28.7	28.1	29.8	29.6	31.0	30.9	29.5	27.6	26.7	23.1	327.8
	평균	20.8	21.6	27.9	28.6	30.1	29.6	30.9	30.9	29.0	26.4	24.7	22.9	323.4

표 1. ㅈ-ㅂ지구의 10년평균월별구름일수(d)

표 1에서 보는바와 같이 년중 총구름일수는 ㅈ지구에서 평균 324일로서 총일수의 88.9%에 해당되며 ㅂ지구에서는 평균 323일로서 88.6%에 해당된다. 특히 ㅈㅡㅂ지구에서 4월부터 9월까지의 기간에는 구름이 끼지 않은 날이 거의 없고 95%이상이 구름이 낀 날들이다.

한편 구름일수가 1988년 - 1997년기간에 비하여 2008년 - 2017년기간에 년중 평균적으로 지지구인 경우 1.8일, 비지구인 경우 4.5일 더 많아졌다. 물론 1998년 - 2007년기간과 2008년 - 2017년기간에 구름이 낀 일수가 지지구인 경우 변동이 없지만 비지구인 경우에는 오히려 1998년 - 2007년기간에 더 작았다. 총체적으로 지 - 비지구에서 최근년간에 구름일수가 증가하였다는것을 알수 있다.

표 2에서는 ㅈ-ㅂ지구의 10년평균월별강수일수를 보여준다.

쾨그	통계기간 .	월												합계
<u> </u>	0 / 1 / 1 년	1	2	3	4	5	6	7	8	9	10	11	12	
天	1988년 —1997년	4.7	4.4	6.9	8.7	11.8	12.7	15.6	11.3	8.4	5.5	6.9	6.6	103.5
	1998년 - 2007년	,	٠.,		8.6	9.0	11.5	13.0	11.3	8.1	6.1	6.7	6.0	94.8
	2008년 -2017년	4.0	4.8	7.1	8.3	9.9	11.2	14.5	11.0	5.4	5.8	8.5	6.5	97.0
	평 균	4.4	4.4	6.6	8.5	10.2	11.8	14.4	11.2	7.3	5.8	7.4	6.4	98.4
	1988년 — 1997년	6.2	4.3	8.4	8.2	13.3	13.9	17.3	12.4	8.3	7.4	7.5	6.4	113.6
Н	1998년 - 2007년	5.8	5.0	6.7	10.1	9.8	11.7	14.6	11.5	7.6	6.8	7.5	5.8	102.9
	2008년 -2017년	3.3	3.9	7.4	8.1	10.6	13.0	15.4	12.8	7.3	6.4	8.3	6.6	103.1
	평균	5.1	4.4	7.5	8.8	11.2	12.9	15.8	12.2	7.7	6.8	7.8	6.3	106.5

표 2. ㅈ-ㅂ지구의 10년평균월별강수일수(d)

표 2에서 알수 있는것은 구름일수와 반대로 강수일수는 1988년 —1997년기간에 비하여 2008년 —2017년기간에 작아졌다. 즉 평균적으로 ㅈ지구인 경우 6.5일, 비지구인 경우 10.5일 감소하였다. 구름일수가 증가하고 강수일수가 감소한것은 ㅈㅡㅂ지구에서 인공강우의 필요성과 함께 그 가능성을 시사해준다.

지- H지구에서 자연강수가 거의 없을뿐아니라 인공적방법으로도 강수를 실현시키기 어려운 상충운(권운, 권적운 및 권충운)과 중충운(고적운, 고충운)이 낀 10년평균월별구름 일수를 보면 표 3과 같다.

지구	통계기간		월											
^1 1	6세시년	1	2	3	4	5	6	7	8	9	10	11	12	합계
Х	1988년 — 1997년	7.1	8.3	6.9	6.0	4.1	1.4	0	0.5	1.2	5.8	4.5	6.6	52.4
	1998년 - 2007년	9.4	8.0	6.8	7.2	5.2	2.9	1.3	1.3	2.7	4.6	5.5	6.8	61.7
	2008년 - 2017년	6.7	5.3	5.0	5.6	4.6	1.0	0.3	0.5	2.6	3.3	3.8	4.2	42.9
	평균	7.7	7.2	6.2	6.3	5.3	1.8	0.5	0.8	2.2	4.2	4.6	5.9	52.7
	1988년 — 1997년	8.5	9.2	9.3	5.9	3.1	1.5	0.6	1.1	2.4	6.8	5.9	9.2	63.5
н	1998년 - 2007년	7.5	6.5	5.7	6.1	5.6	3.7	1.4	1.7	4.5	5.0	6.9	6.0	60.6
П	2008년 - 2017년	6.6	5.8	5.7	5.4	4.1	0.7	0.4	0.8	3.3	5.4	5.9	6.3	50.4
	평균	7.5	7.2	8.9	5.8	4.3	2.0	0.8	1.2	3.4	5.7	6.2	7.4	60.4
							,							

표 3. ㅈ-ㅂ지구에서 상층운과 중층운이 낀 10년평균월별구름일수(d)

표 3에서 보는바와 같이 상충운과 중충운이 낀 일수는 30년간을 통하여 거의 일정한데 여름철에 적고 봄철과 겨울철에 약간 많은 편이다. 이것은 년중 여름철과 가을철에 하충운이 낀 일수가 많은것과 관련된다. 표 3에서 특징적인것은 2008년—2017년기간의 년중 총일수가 여러 기간들의 평균보다 ㅈ지구인 경우 9.8일, ㅂ지구인 경우 10일 더 작다는것이다.

표 4에 의하면 이와는 반대로 2008년 - 2017년기간의 년중 하층운과 수직발달운이 낀 총일수가 30년평균보다 지지구인 경우 8.5일, 버지구인 경우 12.7일 더 많다는것을 알수 있다.

인공강우에 제일 적합한 구름들이 하층운과 수직발달운이라는 연구결과의 견지에서 볼 때 이것은 X-H지구에서 수력발전능력조성을 위한 인공강우에 유리하다고 볼수 있다.

지구	· 통계기간 _						월							합계
-11	0/11/11/11	1	2	3	4	5	6	7	8	9	10	11	12	H / II
	1988년 - 1997년	13.8	12.8	19.5	21.2	25.7	28.6	31.0	30.7	27.7	21.4	20.6	18.4	271.4
天	1998년 -2007년	13.6	13.3	19.5	21.5	24.4	26.5	29.8	29.9	26.4	22.6	20.8	15.7	264.0
	2008년 -2017년	13.5	15.8	21.8	22.0	24.7	28.8	30.7	30.3	27.1	24.1	23.5	19.3	281.6
	평 균	13.6	13.9	20.3	21.6	24.9	28.8	30.5	30.3	27.1	22.7	21.6	17.8	273.1
	1988년 —1997년	10.7	12.7	18.9	22.6	27.3	28.3	30.3	29.8	26.2	19.5	18.0	14.3	258.6
н	1998년 -2007년	13.9	14.6	21.1	23.1	24.4	25.8	29.5	29.3	24.5	20.4	15.7	14.2	256.5
	2008년 -2017년	14.2	16.3	22.0	22.8	25.7	28.9	30.6	30.0	26.2	22.2	20.8	16.8	276.5
	평 균	12.9	14.5	20.7	22.8	25.8	27.7	30.1	29.7	25.6	20.7	18.2	15.1	263.8

표 4. ㅈ-ㅂ지구에서 하층운과 수직발달운이 낀 월별10년평균일수(d)

지- H지구에서 하층운과 수직발달운의 월별분포를 보면 겨울을 제외하고 모든 계절에 매달 15일이상 하층운이 나타나고있다. 특히 여름철에는 매달 27일이상 하층운이나 수직발달운이 형성되여 강수의 형성에 유리한 조건을 준다.

2. ㅈ-ㅂ지구에서 구름량의 변동특징

구름량은 해당 계절의 대기상태와 지형적특성에 의하여 심하게 변한다.

론문에서는 ㅈㅡㅂ지구에서 구름량의 변동특징을 린접지구와 대비적으로 살펴보기 위하여 1981년-2010년기간 ㅈㅡㅂ지구의 구름량관측자료와 함께 함께 ㅎ지구의 구름량 관측자료를 리용하였다.(표 5)

구름량	지구	1	2	3	4	5	6	7	8	9	10	11	12	년
	天	2.7	3.2	4.4	5.2	6.1	7.3	8.1	7.7	6.6	4.9	4.3	3.2	5.3
전운량	日	2.8	3.3	4.5	5.4	6.3	7.4	8.2	7.8	6.7	4.7	4.0	3.1	5.3
	ত	3.0	3.4	4.4	5.1	6.1	7.4	8.0	7.3	5.8	4.2	3.6	2.9	5.1
	天	1.7	1.9	2.8	3.6	4.7	6.1	7.3	6.8	5.8	4.1	3.6	2.4	4.2
하층운량	日	2.1	2.3	3.4	4.2	4.9	6.3	7.4	6.9	5.8	3.9	3.4	2.5	4.4
	ठ	1.4	1.6	2.1	2.3	3.2	4.6	5.8	5.0	3.5	2.4	2.3	1.6	3.0

표 5. 1981년 - 2010년기간 월평균 전운량 및 하층운량(bar)

표 5에서 보는것처럼 ㅈㅡㅂ지구에서 전운량은 년평균 5.3bar인데 이것은 ㅎ지구의 5.1bar보다 많다. 이 지구에서 년중 전운량은 여름철에 가장 많으며 가을철에도 다른 지방들에 비하여 상대적으로 많다.

하층운량도 전운량과 마찬가지로 ㅈ지구에서 4.2bar, ㅂ지구에서 4.4bar로서 ㅎ지구의 3.0bar에 비하여 상대적으로 많다.

표 6에서 보는바와 같이 ㅈ-ㅂ지구에서 하층운량이 5.1bar이상인 날수는 4~10월사이에 많으며 특히 6~9월사이에 86~87일로서 한해총일수의 57.9~56.9%에 해당된다.

또한 X-H지구의 하층운량이 5.1bar이상인 날수는 ㅎ지구지방에 비하여 3~10월사이에 1.5~2배정도나 더 많다. 그러나 월별강수량분포에서 ㅎ지구에 비하여 X-H지구의 강수량이 적은것은 지형적특성과 함께 강수형성조건이 충분히 만족되지 못하고있다는것을 보여준다.

	표 6. 1961-2010년기간 아동군왕이 5.1Dar이정인 월구														
지구	1	2	3	4	5	6	7	8	9	10	11	12	년		
大	3.3	2.6	6.9	9.2	13.0	19.2	25.5	23.3	18.4	10.4	9.9	7.5	149.2		
日	4.6	4.8	8.0	10.5	14.5	19.5	25.8	23.7	18.5	9.5	8.1	6.3	153.8		
ō	3.2	3.6	5.0	4.4	8.1	14.0	14.7	14.0	7.9	4.0	4.9	4.9	88.7		

표 6. 1981-2010년기간 하층운량이 5.1bar이상인 일수

그러므로 X-H지구에서 강수형성과정에 어떤 촉발조건을 주면 강수량을 늘여 더 많은 물자원을 얻을수 있다는것을 명백히 알수 있다.

맺 는 말

T-H지구에서 최근년간 구름이 낀 일수는 많지만 반대로 강수일수는 적으며 특히 년중 여름철과 가을철에 하층운이 낀 일수가 많다. 또한 상층운과 중층운이 끼는 일수는 감소하고 하층운과 수직발달운이 끼는 일수는 증가한다. 이것은 인공강우에 유리한 조 건으로 된다.

참 고 문 헌

- [1] A. E. Morrison et al.; American Meteorological Society, 48, 1267, 2009.
- [2] E. Freud et al.; Atmospheric Research, 158, 122, 2015.

주체108(2019)년 10월 5일 원고접수

Recent Variation Characteristics of Cloud Type and Amount in "ス& H" Area

Pae Ho Yon, Jong Sang Il

In this paper were illuminated recent variation characteristics of cloud type and amount in "ス& " area in order to obtain basic data needed for the artificial rainfall.

Keywords: cloud type, artificial rainfall