

NLP Basic – 08 Pre-trained Word Vectors

AI VIET NAM Nguyễn Quốc Thái

CONTENT

1	Pre-trained Word Vectors
2	Text Classification
3	Summary

Pre-trained Language Models (LMs)

Pre-trained Language Models (LMs)

Pre-trained Language Models (LMs)

Word2Vec

Word2Vec

Perplexity

	Cs	DE	Es	FR	RU
Vocab. size	46k	37k	27k	25k	63k
CLBL	465	296	200	225	304
CANLM	371	239	165	184	261
LSTM	366	222	157	173	262
sg	339	216	150	162	237
sisg	312	206	145	159	206

ELMO

Paper Pre-trained

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE
SQuAD	Liu et al. (2017)	84.4	81.1	85.8
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17
SRL	He et al. (2017)	81.7	81.4	84.6
Coref	Lee et al. (2017)	67.2	67.2	70.4
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5

The conditional probability:

$$Q_{ij} = \frac{\exp(\mathbf{u}^T \mathbf{v}_i)}{\sum_{\mathbf{w} \in \mathbf{v}} \exp(\mathbf{u}^{\mathbf{w}})}$$
Using co-occurrence probabilities:

$$J = -- \qquad \qquad X_{ij} \ log$$

$$Q_{ij}$$

$$\qquad \qquad i \qquad j \in context(i)$$

NER Task

Model	Dev	Test	ACE	MUC7
Discrete	91.0	85.4	77.4	73.4
SVD	90.8	85.7	77.3	73.7
SVD-S	91.0	85.5	77.6	74.3
SVD-L	90.5	84.8	73.6	71.5
HPCA	92.6	88.7	81.7	80.7
HSMN	90.5	85.7	78.7	74.7
CW	92.2	87.4	81.7	80.2
CBOW	93.1	88.2	82.2	81.1
GloVe	93.2	88.3	82.9	82.2

Pre-trained Glove Embedding

Download pre-trained word vectors

- Pre-trained word vectors. This data is made available under the <u>Public Domain Dedication and License</u> v1.0 whose full text can be found at: http://www.opendatacommons.org/licenses/pddl/1.0/.
 - o Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove.6B.zip
 - Common Crawl (42B tokens, 1.9M vocab, uncased, 300d vectors, 1.75 GB download): glove.42B.300d.zip
 - Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove.840B.300d.zip
 - Twitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download): glove.twitter.27B.zip
- Ruby script for preprocessing Twitter data

Pre-trained Glove Embedding

Version: 6B 400K Vocab 50 D

```
embeddings_dict = {}
with open("/content/glove.6B.50d.txt", 'r') as f:
    for line in f:
        values = line.split()
        word = values[0]
        vector = np.asarray(values[1:], "float32")
        embeddings_dict[word] = vector

def embedding(word):
    return embeddings_dict.get(word, embeddings_dict.get('unk'))
```


Pre-trained Glove Embedding

Version: 6B 400K Vocab 50 D

```
embedding('man')
```


Pre-trained Glove Embedding

Version: 6B 400K Vocab 50 D

Pre-trained Glove Embedding

Find Synonyms Find Analogies

Pre-trained Glove Embedding

Find Synonyms

Given a word

Find top k synonym words

```
def find_closest_embeddings(target_embedding, top_word, score="cosine"):
    score_dict = {}
    if score == "euclidean":
        for word in embeddings_dict.keys():
            score_dict[word] = euclidean_distance(embedding(word), target_embedding)
        score_dict = sorted(score_dict.items(), key=lambda kv: kv[1])
    if score == "cosine":
        for word in embeddings_dict.keys():
            score_dict[word] = cosine_similarity(embedding(word), target_embedding)
        score_dict = sorted(score_dict.items(), key=lambda kv: kv[1], reverse=True)
    return score_dict[:top_word]
```


Pre-trained Glove Embedding

Find Synonyms Given a word Find top k synonym words

```
#Use euclidean distance
find_closest_embeddings(embedding("man"), 5, score="euclidean")

[('man', 0.0),
    ('woman', 2.6026237),
    ('another', 2.8089325),
    ('boy', 2.8093922),
    ('one', 2.9732437)]

#Use cosine similarity
find_closest_embeddings(embedding("man"), 5)

[('man', 1.0),
    ('woman', 0.8860338),
    ('boy', 0.8564431),
    ('another', 0.84528404),
    ('old', 0.8372183)]
```


Pre-trained Glove Embedding

Find Analogies

Given 3 words

Find a word with analogies relationship

Example:

"man": "woman":: "son": "daughter"

a:b::c:d

Vec(a) + Vec(d) = Vec(b) + Vec(c)

Pre-trained Glove Embedding

Find Analogies

Given 3 words

Find a word with analogies relationship

Example:

```
"man": "woman":: "son": "daughter"
```

a:b::c:d

```
Vec(a) + Vec(d) = Vec(b) + Vec(c)
```

```
def find analogy(word a, word b, word c, score="cosine"):
    x = embedding(word c) + embedding(word b) - embedding(word a)
    return find closest embeddings(x, 5, score=score)
find analogy("man", "woman", "son", score="euclidean")
[('daughter', 1.5812494),
 ('mother', 2.448467),
 ('wife', 2.4532523),
 ('son', 2.6026237),
 ('father', 2.7388973)]
find_analogy("man", "woman", "son")
[('daughter', 0.9658342),
 ('mother', 0.91536117),
 ('wife', 0.9149919),
 ('son', 0.903869),
 ('niece', 0.8937417)]
```


Neural Network


```
model_nn = Sequential()
model_nn.add(Embedding(vocab_size, embedding_dim, input_length=max_length))
model_nn.add(Flatten())
model_nn.add(Dense(10, activation='relu'))
model_nn.add(Dense(1, activation='sigmoid'))
model_nn.compile(
loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy']

model_nn.summary()
```

Model: "sequential_2"

Layer (type)	Output	Shape	Param #
embedding_2 (Embedding)	(None,	100, 200)	3000000
flatten_2 (Flatten)	(None,	20000)	0
dense_2 (Dense)	(None,	10)	200010
dense_3 (Dense)	(None,	1)	11
Total params: 3 200 021			

Total params: 3,200,021 Trainable params: 3,200,021 Non-trainable params: 0

Review: Embedding Layer

[0 4 2 3] 1 5 6 1 2 Input shape: 2x5

Vocab size = 7

Embedding matrix

0	0.1	3.1	Select	[w[O V	v[4	w[2]		W
1	0.5	2.5	Operation	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		ντ[6	w[3]		J
2	1.3	0.6		w[:) v]	v[6	w[1] w[2]	_	w]
3	0.4	0.1				Outpu	ıt matı		_
4	0.7	1.4			*				
5	2.3	1.7			3.1	1.4	0.6	0.1	2.5
6	2.5	2.5		0.1	0.7	1.3	0.4	0.5	_
	•			2.3	2.5	0.5	1.3	0.4	

Input shape: 2x5x2

Pre-trained Glove Embedding

Embedding matrix

0	<00V>	0.1	0.1
1	<pad></pad>	0.5	0.5
2	<unk></unk>	0.3	0.6
3	language	0.7	0.7
4	mưa	0.7	0.4

Final embedding matrix

0	<00V>	0.1	0.1
1	<pad></pad>	0.5	0.5
2	<unk></unk>	0.3	0.6
4	language	0.7	0.7

Output

Pre-trained Glove Embedding

Glove embedding matrix

Output

```
count = 0
embedding_matrix = np.zeros((vocab_size, embedding_dim))

for word, i in tokenizer.word_index.items():
    if i < vocab_size:
        embedding_vector = embeddings_dict.get(word)

    # Words not found in the mebedding index will all if embedding_vector is not None:
        embedding_matrix[i] = embedding_vector</pre>
```


Output

 $\mathbf{x}_{\mathbf{t}}$

 \mathbf{x}_{t+1}

 \mathbf{x}_{t-1}

2 – Text Classification

Pre-trained Glove Embedding

Final embedding matrix


```
vocab_size = 15000
max_length = 100
membedding_dim = 200
```

```
embeddings dict = {}
                                                                   with open("/content/glove.6B.200d.txt", 'r') as f:
              0
                                                                        for line in f:
                                                                           values = line.split()
              0
                0 0
        0 0
                                                                           word = values[0]
                                                                           vector = np.asarray(values[1:], "float32")
                                                                           embeddings dict[word] = vector
  0
           0 0 0
                         0
                            0 0
0
                                                                   def embedding(word):
 \mathbf{E}
               \mathbf{E}
                                                                       return embeddings dict.get(word, embeddings dict.get('unk'))
```


Pre-trained Glove Embedding

Basic NLP Course

01 02	Introduction Preprocessing
03	Language Modeling
04	Part Of Speech (POS)
05	Constituency Parsing
06	Basic Vectorization
07	Word2Vec
08	Pretrained Model

2 - Preprocessing

2 - Preprocessing

❖ 3 – Language Model

♦ 4 – POS Tagging - NER

Model: Hidden Markov Model (HMM)

♦ 5 – Constituency Parsing (CFG)

G = (T, N, P, S, R)

T: a set of terminal symbols

N: a set of non-terminal symbols

P(P N): a set of pre-terminal symbols

S: a start symbol

R: a set of rules or productions

 $R = \{ | N, (TN) \}$

Grammar in CNF

- 1. Start S
- 2. S NP VP
- 3. NP Det Noun
- 4. NP NN PP
- 5. PP Prep NP
- 6. VP V NP
- 7. a. VP V Args b. Args NP PP
- 8. V ate
- 9. NP John
- 10. NP ice-cream, snow
- 11. Noun ice-cream, pizza
- 12. Noun table, guy, campus
- 13. Det the
- 14. Prep on

5 – Dependency Parsing

A graph G = (V, A)

V vertices $\{w_0=root, w_1,..., w_n\}$ usually one per word in sentence

A arcs $\{(w_i, r, w_j): w_i \neq w_j) \mid w_i \in V,$ $w_j \in V-w_0, r \in R_x\}$

 R_x : a set of all possible dependency relations in x

5 – Dependency Parsing

Dependency Tree

a ROOT

Each word has a single head

Dependency structure is **connected**

Projective

Acyclic

Unique path from ROOT to each word

6 – Basic Vectorization

- □ One-hot encoding□ Bag-of-words (BoW)□ Bag-of-N-gram
- Rome Paris word V

 Rome = [1, 0, 0, 0, 0, 0, 0, ..., 0]

 Paris = [0, 1, 0, 0, 0, 0, ..., 0]

 Italy = [0, 0, 1, 0, 0, 0, ..., 0]

 France = [0, 0, 0, 1, 0, 0, ..., 0]

TF*IDF weight vectors

⋄ 7 – Word2Vec

❖ 7 – Pre-trained Embedding

NLP Pipeline

The neural history of NLP

Question Answer

2018

3 - Summary

The neural history of NLP

Pretrained Language Models

Reference

- 1. https://web.stanford.edu/~jurafsky/slp3/
- 2. http://web.stanford.edu/class/cs224n/
- 3. https://d2l.ai/
- 4. http://nlpprogress.com/
- 5. https://github.com/undertheseanlp/NLP-Vietnamese-progress

Thanks! Any questions?