EXHIBIT D

Computer Architecture

A Quantitative Approach

SIXTH EDITION

John L. Hennessy

Stanford University

David A. Patterson

University of California, Berkeley

WITH CONTRIBUTIONS BY

Krste Asanović

University of California, Berkeley

Jason D. Bakos

University of South Carolina

Robert P. Colwell

R&E Colwell & Assoc. Inc.

Abhishek Bhattacharjee

Rutgers University

Thomas M. Conte

Georgia Tech

José Duato

Proemisa

Diana Franklin

University of Chicago

David Goldberg

eBay

Norman P. Jouppi

Google

Sheng Li

Intel Labs

Naveen Muralimanohar

HP Labs

Gregory D. Peterson

University of Tennessee

Timothy M. Pinkston

Sixth Edition

John L. Hennessy | David A. Patterson

COMPUTER Architecture

University of Southern California

Parthasarathy Ranganathan

Google

David A. Wood

University of Wisconsin-Madison

Cliff Young

Google

Amr Zaky

University of Santa Clara

Table of Contents

Cover image

Title page

Inside Front Cover

In Praise of Computer Architecture: A Quantitative Approach Sixth Edition

Copyright

Dedication

Foreword

Preface

Why We Wrote This Book

This Edition

Topic Selection and Organization

An Overview of the Content

Navigating the Text

Chapter Structure

Case Studies With Exercises

Supplemental Materials

Helping Improve This Book

Concluding Remarks

Acknowledgments

1. Fundamentals of Quantitative Design and Analysis

Abstract

- 1.1 Introduction
- 1.2 Classes of Computers
- 1.3 Defining Computer Architecture
- 1.4 Trends in Technology
- 1.5 Trends in Power and Energy in Integrated Circuits
- 1.6 Trends in Cost
- 1.7 Dependability
- 1.8 Measuring, Reporting, and Summarizing Performance
- 1.9 Quantitative Principles of Computer Design

Case 1:19-cv-12551-FDS Document 112-5 Filed 01/08/21 Page 4 of 4

Although efficient, ISPs have two major downsides. Given the increasing demand for improved image quality in handheld devices, the first is the inflexibility of an ISP, especially as it takes years to design and manufacture a new ISP within an SOC. The second is that these computing resources can be used only for the image-enhancing function, no matter what is needed at the time on the PMD. Current generation ISPs handle workloads at up to 2 Tera-operations per second on a PMD power budget, so a DSA replacement has to achieve similar performance and efficiency.

Pixel Visual Core Software

Pixel Visual Core generalized the typical hardwired pipeline organization of kernels of an ISP into a directed acyclic graph (DAG) of kernels. Pixel Visual Core image-processing programs are typically written in Halide, which is a domain-specific functional programming language for image processing. Figure 7.31 is a Halide example that blurs an image. Halide has a functional section to express the function being programmed and a separate schedule section to specify how to optimize that function to the underlying hardware.

```
Func buildBlur(Func input) {
    //Functional portion (independent of target processor)
    Func blur_x(*blur_x*), blur_y(*blur_y*);
    blur_x(x,y) = (input(x-1,y) + input(x,y)*2 + input(x+1,y)) / 4;
    blur_y(x,y) = (blur_x(x,y-1) + blur_x(x,y)*2 + blur_x(x,y+1)) / 4;

if (has_ipu) {
    // Schedule portion (directs how to optimize for target processor)
    blur_x.ipu(x,y);
    blur_y.ipu(x,y);
}

return blur_y;
```

FIGURE 7.31 Portion of a Halide example to blur an image.

The ipu(x,y) suffix schedules the function to Pixel Visual Core. A blur has the effect of looking at the image through a translucent screen, which reduces noise and detail. A Gaussian function is often used to blur the image.

Pixel Visual Core Architecture Philosophy

The power budget of PMDs is 6–8 W for bursts of 10–20 seconds, dropping down to tens of milliwatts when the screen is off. Given the challenging energy goals of a PMD chip, the Pixel Visual Core architecture was strongly shaped by the relative energy costs for the primitive operations mentioned in Chapter 1 and made explicit in Figure 7.32. Strikingly, a single 8-bit DRAM access takes as much energy as 12,500 8-bit additions or 7–100 8-bit SRAM accesses, depending on the organization of the SRAM. The 22 × to 150 × higher cost of IEEE 754 floating-point operations over 8-bit integer operations, plus the die size and energy benefits of storing narrower data, strongly favor using narrow integers whenever algorithms can accommodate them.

Operation	Energy (pJ)	Operation	Energy (pJ)	Operation	Energy (pJ)
8b DRAM LPDDR3	125.00	8b SRAM	1.2-17.1	16b SRAM	2.4-34.2
32b Fl. Pt. muladd	2.70	8b int muladd	0.12	16b int muladd	0.43
32b Fl. Pt. add	1.50	8b int add	0.01	16b int add	0.02

FIGURE 7.32 Relative energy costs per operation in picoJoules assuming TSMC 28-nm HPM process, which was the process Pixel Visual Core used [17] [18][19][20].

The absolute energy cost are less than in Figure 7.2 because of using 28 nm instead of 90 nm, but the relative energy costs are similarly high.

In addition to the guidelines from Section 7.2, these observations led to other themes that guided the Pixel Visual Core design:

- Two-dimensional is better than one-dimensional: Two-dimensional organizations can be beneficial for processing images as it minimizes communication distance and because the two- and three-dimensional nature of image data can utilize such organizations.
- Closer is better than farther: Moving data is expensive. Moreover, the relative cost of moving data to an ALU operation is increasing. And of course DRAM time and energy costs far exceed any local data storage or movement.

A primary goal in going from an ISP to an IPU is to get more reuse of the hardware via programmability. Here are the three main features of the Pixel Visual Core:

- 1. Following the theme that two-dimensional is better than one-dimensional, Pixel Visual Core uses a two-dimensional SIMD architecture instead of one-dimensional SIMD architecture. Thus it has a two-dimensional array of independent processing elements (PEs), each of which contains 2 16-bit ALUs, 1 16-bit MAC unit, 10 16-bit registers, and 10 1-bit predicate registers. The 16-bit arithmetic follows the guideline of providing only the precision needed by the domain.
- 2. Pixel Visual Core needs temporary storage at each PE. Following the guideline from Section 7.2 of avoiding caches, this PE memory is a compiler-managed scratchpad memory. The logical size of each PE memory is 128 entries of 16 bits, or just 256 bytes. Because it would be inefficient to implement a separate small SRAM in each PE, Pixel Visual Core instead groups the PE memory of 8 PEs together in a single wide SRAM block. Because the PEs operate in SIMD fashion, Pixel Visual Core can bind all the individual reads and writes together to form a "squarer" SRAM, which is more efficient than narrow and deep or wide and shallow SRAMs. Figure 7.33 shows four PEs.
- 3. To be able to perform simultaneous stencil computations in all PEs, Pixel Visual Core needs to collect inputs from nearest neighbors. This communication pattern requires a "NSEW" (North, South, East, West) shift network: it can shift data en masse between the PEs in any compass direction. So that it doesn't lose pixels along the edges as it shifts images, Pixel Visual Core connects the endpoints of the network together to form a torus.

FIGURE 7.33 The two-dimensional SIMD includes two-dimensional shifting "N," "S," "E," "W," show the direction of the shift (North, South, East, West). Each PE has a software-controlled scratchpad memory.

Note that the shift network is in contrast with the systolic array of processing element arrays in the TPU and Catapult. In this case, software explicitly moves the data in the desired direction across the