

Kapitel 5: Verkehrslenkung im Internet

- 5.1 Übersicht
- 5.2 Adressen
- 5.3 Lokale Netze: Bridges und Switches
- 5.4 Intra-Domain Routing
- 5.5 Inter-Domain Routing
- 5.6 Internet Protocol (IPv4)
- 5.7 Network Address Translation (NAT)
- 5.8 IPv6
- 5.9 Mobilitätsunterstützung
- 5.10 Zusammenfassung

IPv4 Adresszuteilung

- IPv4 Adressraum ist zu klein
 - 2³² also ungefähr 4.3 Milliarden Adressen
 - weniger als eine Adresse pro Person
- Teile der Welt haben den zugeteilten Adressraum vollständig ausgeschöpft

verbleibende IPv4 Adressen (Anzahl /8s)

IPv4 Verbrauch

IPv6 Adressen

- IPv6, 1998 standardisiert, ab 1999 Adressvergabe
 - 128-Bit Adressen
 - 4.8 * 10²⁸ Adressen pro Person
- Adressformat
 - 8 x 4 Hex: 2001:0db8:0000:0000:0000:ff00:0042:8329
 - führende Nullen können weggelassen werden
 - 2001:0db8:0:0:0:ff00:42:8329 oder 2001:0db8::ff00:42:8329
- Localhost (IPv4/IPv6)
 - IPv4: 127.0.0.1
 - IPv6: ::1
- von IPv4 zu IPv6
 - IPv4 Continuity: Network Address Translation (NAT)
 - IPv6 Migration: schritt-weiser Übergang zu IPv6 in Ko-Existenz mit IPv4

IPv6 Header

- doppelt so groß wie IPv4 Header
- keine Checksum, keine Fragmentierung
- dafür: Extension Headers zur Unterstützung von Source Routing, Mobile IP, Authentisierung, Verschlüsselung, etc.

IPv6 Header

- doppelt so groß wie IPv4 Header
- keine Checksum, keine Fragmentierung
- dafür: Extension Headers zur Unterstützung von Source Routing, Mobile IP, Authentisierung, Verschlüsselung, etc.

IPv6 Einführung

HTTP, FTP, SMTP, RTP, IMAP, ...
TCP, UDP, ICMP
IPv4
Ethernet, 802.11x, DOCSIS, ...
Fiber, Coax, Twisted Pair, Radio, ...

- Wechsel zu IPv6 bedeutet einen Upgrade des Internets
 - alle Router und Endgeräte
 - ICMPv6, DHCPv6, DNSv6
 - ... und nicht zu vergessen: ANWENDUNGEN
- Juni 2012: 0.2% des globalen Verkehrs war IPv6
- 2014: <1% auf Amsterdam IX

IPv6 Traffic at Amsterdam IX

IPv6 Status

- Transit AS: IPv6 wird von den meisten großen Transit AS unterstützt
 - 100% der Top 20, 75% der Top 1000, 30% insgesamt
- Erreichbarkeit von Servern (AAAA existiert und Verbindung über IPv6 erfolgreich, https://www.vyncke.org/ipv6status/):
 - Web: 22% (Deutschland 28%)
 - Email: 24% (Deutschland 18%)
 - DNS: 55% (Deutschland 82%)

IPv4 Support auf Client-Seite zwingend

- IPv6 wird im Netz weitgehend unterstützt
 - aber nicht überall und vor allem nicht von allen Servern

IPv4/IPv6 Migration und Koexistenz

- Viele unterschiedliche Techniken für die verschiedenen Szenarien und Fälle
- Grundlegende Techniken: Address-Translation und Tunneling
- Grundanforderung:
 - müssen Kommunikation mit IPv4 und IPv6 Servern sicherstellen.

Tunneling

Generell:

- Pakete eines Protokolls werden als Payload über eine Tunnelprotokoll übertragen, indem sie am Tunneleingang eingepackt und am Tunnelausgang ausgepackt werden
 - spezielle Tunnelprotokolle: GRE, GTP (im Mobilfunk), IP-in-IP, L2TP,
 VPN, ...
- IPv4 und IPv6:
 - 4in6- und 6in4-Tunnel
 - Beispiel: 6in4

6in4-Tunnel

Techniken für verschiedene Szenarien

Home device	Access network	Destination	Solutions
IPv4	IPv4	IPv4 Internet	Large Scale NAT
IPv4	IPv6	IPv4 Internet	Dual-Stack Lite SAM, 4RD
IPv6	IPv6	IPv4 Internet	NAT64 Stateful NAT64 Stateless IVI
IPv6	IPv4	IPv6 Internet	6to4
			6RD
IPv6	IPv6	IPv6 Internet	Dual-Stack

DS-Lite (DualStack Lite)

DS-Lite

DS-Lite mit A+P NAT (Address+Port)

H T W I G N

DS-Lite mit A+P NAT (Address+Port)

IPv6 Zusammenfassung

- Mischung aus IPv4 Continuity und IPv6 Migration
 - aber IPv6 kommt langsam
 - neuere Router und Hosts sind IPv6 fähig
 - Umstellung kritisch und teuer
 - Was ist mit Anwendungen mit festen IPv4 Einträgen?
- Probleme
 - Kommunikation von IPv6-only AS mit Server in IPv4-onlyAS
 - benötigt Unterstützung von außen
 - Bereitstellen von IPv4-IPv6 Relay
 - Private IPv4 Adresse mit IPv6 AS bedeutet keine Erreichbarkeit von außen,
 da es nur eine öffentliche IPv6 Adresse gibt
- Beispiel für weitere Konsequenzen:
 - Black-Listing:
 - IPv4: Übersichtliche Listen von Spammern/Bots
 - IPv6: Adressen gibt es genug