

JSS MAHAVIDYAPEETIIA JSS SCIENCE AND TECHNOLOGY, UNIVERSITY, MYSURU - 570006

5th Semester B.E. INTERNAL ASSESSMENT TEST 1 EC530 CONTROL SYSTEMS

Duration: 1 Hours

Date: 18, September, 2018

MAX MARKS: 20

Name of Paper Setter: Dr.Sudarshan Patilkulkarni

Course Outcome Covered:

1. Student will be able to model various physical systems as transfer function.

Cognitive Domains:

Definitions	I. Remembering	II. Understanding	III. Applying	IV. Analyzing	V. Evaluating	VI. Creating
Bloom's Definition	Exhibit memory of previously learned material by recalling facts, terms, basic concepts, and answers.	10000 0114 14645 57	Solve problems to new situations by applying acquired knowledge, facts, techniques and rules in a different way.	Examine and break information into parts by identifying motives or causes. Make inferences and find evidence to support generalizations.	defend opinions	Compile information together in a different way by combining elements in a new pattern or proposing alternative solutions.

Q.	CO	Question	Cognitive I	00-	Marks
No			main		
1	1	For the mechanical system shown in Figure 1, apply suitable laws and	L3		8
		write differential equations only in terms of input variable u(t) and			
		output variable y(t). Hence construct the transfer function $\frac{Y(s)}{U(s)}$.	,		٠
		OR		-	
2	1	For the electrical circuit shown in Figure 2, apply suitable law and write	L3		8
		differential equations only in terms of input variable u(t) and output			
		variable y(t). Hence construct the transfer function $\frac{Y(s)}{U(s)}$.			
3	1	For the interconnected system in Figure 3, obtain the overall transfer	L3		7
		function $\frac{Y(s)}{U(s)}$ by applying the Mason's gain formula. Show all graphs.			,=
4	1	For the parallel RL circuit in Figure 4, derive the output current ex-	L3		5
		pression in s-domain for step input. Write the time-domain output			
		current expression, if input signal is a pulse of height one Amps and			
		duration 1 second. (Hint: Use LTI property)		3	

JSS MAHAVIDYAPEETHA
JSS SCIENCE AND TECHNOLOGY, UNIVERSITY, MYSURU - 570006

5th Semester B.E. INTERNAL ASSESSMENT TEST 1 EC530 CONTROL SYSTEMS

Duration: 1 Hour

Date: 16, October, 2018

MAX MARKS: 20

Name of Paper Setter: Dr.Sudarshan Patilkulkarni

Course Outcome Covered:

2. Student will be able to do stability analysis of systems.

3. Student will be able to do time domain and frequency domain analysis using appropriate tools.

4. Student will be able to design PI, PD, PID controllers and phase-lead compensator.

Cognitive Domains:

- C. Marie II Bamam	ering II. Understanding	III. Applying	IV. Analyzing	V. Evaluating	VI. Creating
Bloom's Definition Definition Definition Lerned Definition Definit	mory Demonstrate understanding of facts and ideas by organizing, comparing,		Examine and break information into parts by identifying motives or causes. Make inferences and find evidence to support generalizations.	defend opinions by making	Compile information together in a different way b combining elements in a new pattern or proposing alternative solutions.

ΓΩ	СО	CD	Question	Marks
No			In a unity feedback system, plant model is $G(s) = \frac{1}{s(s+6)^2}$ and	6
1	2	L3	controller is $D(s) = K \frac{s+2}{s+3}$. By applying Routh test, determine	
			the values of K that will keep the closed-loop system stable.	

In a unity feedback system it is given that $L(s) = \frac{25}{s(s^2 + 7s + 31)}$. 2 L3 + L(S)] By using Routh test, determine how many poles of the closed-loop system are to the right of s=-2. For the system shown in Figure 3, $G(s) = \frac{10}{s+10}$, F(s)L33 $\frac{1}{s+2}$ and $H(s) = \frac{1}{s+1}$. Find the expressions for transfer function of closed-loop system $G_{cl}(s)$, L(s) and E(s). Compute steady state error values, when standard reference inputs are applied to the closed-loop system. Given the plant model $G(s)=rac{10}{s+10}$, design a PI controller for L34 4 the dominant pole-location in closed-loop system to be $-10\pm j10$ Determine the steady state error for step and ramp reference inputs.

Figure 3

JSS MAHAVIDYAPEETHA JSS SCIENCE AND TECHNOLOGY, UNIVERSITY, MYSURU - 570006

5th Semester B.E. INTERNAL ASSESSMENT TEST 3 EC530 CONTROL SYSTEMS

Duration: 1 Hour

Date: 20, November, 2018

MAX MARKS: 20

Name of Paper Setter: Dr.Sudarshan Patilkulkarni ,

Course Outcome Covered:

- 4. Student will be able to design PI, PD, PID controllers and phase-lead compensator..
- 5. Student will be able to model, analyze and design controllers using state-space methods.

Cognitive Domains:

Definitions	I. Remembering	II, Understanding	III. Applying	IV, Analyzing	V. Evaluating	VI, Creating
Bioam's Definition	Exhibit memory of previously learned material by recalling facts, terms, basic concepts, and answers.	Demonstrate understanding of facts and ideas by organizing, comparing translating, interpreting, giring descriptions, and stating main ideas.	Solve problems to new situations by applying acquired knowledge, facts, sechniques and rules in a different way.	Examine and treak information into parts by identifying motives or causes. Make inforences and find evidence to support generalizations.	defend opinions	Compile information together in a different way be combining elements in a new pattern or proposing alternative solutions.

			`	Marks
Q.	CO	Blooms	Question	
No		Level		0
1	4	L3	Given the plant $G(s) = \frac{1}{s(s+4)}$ design a phase-lead controller such that	8
			dominant poles of the closed-loop system satisfy $\zeta = 0.6$ and $\omega_n = 0.6$	
			110mad/coc . (1.64)0-2-10/	6
2	5	L3	Given the state-space model of a physical system:	."
			$A = \begin{bmatrix} -5 & 1 \\ 0 & -8 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix},$	
			find the the transfer function of the system. Hence write the controller canonical	
			$V_{\text{model}}(A, B_{\alpha}, C_{\alpha})$	6
3	5	L3	For the mechanical system shown in Figure 3, write the differential equations and obtain a state-space model. (Hint: 4th order system)	
			obtain a state-space model. (************************************	

OR

4	5	L3	For the electric circuit shown in Figure 4, write the appropriate differential equations. Obtain a state-space model by defining voltages across capacitors and current	ь
			through the inductor as state-variables.	14.

Code No: EC530

JSS Mahavidyapeetha
JSS Science and Technology University
JSS Technical Institution's Campus,
Mysuru – 570 006

V Semester B.E. Degree Semester End Examination, December 2018

Branch: Electronics & Communication Engineering

Section: A & B

Name of the Paper Setter: Dr S Patilkulkarni

CONTROL SYSTEMS

Duration: 3 Hours Date: 08.12.2018 Time: 02.00 to 05.00PM

Max. Marks: 100 Day: Saturday

or proposing

alternative

solutions

ideas, or

a set of

criteria

quality of work based on

and find

evidence

to support

generalizations.

D - C - '4'	Domesing	Understanding	Applying	Analyzing	Evaluating	Creating
Definitions	Remembering				Present and	Compile
Bloom's	Exhibit memory of	Demonstrate	Solve problems			information
Definition	previously learned	understanding of	to new	break	defend	
	material by recalling	facts and ideas	situations by	information	opinions	together in
	facts, terms, basic	by organizing,	applying	into parts by	by making	a different
	concepts,	comparing,	acquired	identifying	judgments	way by
	and answers.	translating,	knowledge,	motives or	about	combining
	and answers.	Interpreting,	facts.	causes. Make	information,	elements in
		giving descriptions	techniques	Inferences	validity of	new pattern
		giving descriptions	techniques		tundity of	

and stating main

Ideas.

and rules in

a different

Way

Cou	Course Outcome: At the end of the course, the student should be able to					
1.	Demonstrate knowledge of modeling various physical systems as transfer function.					
2.	Analyze stability of control systems by applying suitable tests.					
3.	Analyze the control systems in time domain and frequency domain using appropriate tools.					
4.	Design and test the controllers for transfer function models.					
5.	Design and test the controllers for state – space models.					

Instructions to the Candidate:

- 1. Part A is compulsory.
- 2. Answer Part- B as per the internal choice
- 3. Sketch neat diagram wherever necessary.

Q. No	со	Cognitive Domain	Question	Marks
1	CO1	L3	For the interconnected system shown in Figure 1, sketch the signal flow graph and then by applying the Mason's gain formula, $\frac{Y(s)}{U(s)}$ determine the overall transfer function	10
2	CO2	L2	For a dynamical system, define BIBO stability. For LTI systems, state and prove theorems that give time – domain condition and S – domain condition for them to be BIBO stable.	10
3(a)	соз	L3	In separate S – plane diagrams, indicate the region of pole – location for following condition:	04
			i) Rise time tr < 2 sec ∽	
			ii) Peak time tp < 1 sec	
			iii) Overshoot Mp < 60% ~	
			iv) Settling time ts < 10sec	
(b)			Given the transfer function of the closed – loop system	06
-	1		$Y(s)$ W_n^2	
			$\frac{Y(s)}{R(s)} = \frac{w_n^2}{s^2 + 2\sum_1 w_n + w_n^2}$	
			Derive expressions for L(s) and E(s). Identify the type and compute the steady state errors for standard reference inputs.	
4	CO4	4 L3	In a unity feedback system, given the standard first order plant and PI controller, derive expressions for damping factor Σ_1 and natural frequency w_n in terms of K_P and K_1 . If $G(s) = \frac{8}{s-8}$ required $\Sigma_1 = 0.8$ and $w_n = 10$ rad / sec, solve for K_1 and K_2 Compute the velocity error constant	
			K _p and K _i . Compute the velocity error constant.	
5	СО	5 L3	Given the circuit shown in Figure 5, with $V_{in}(t) = u(t)$, $V_2(t) = Y(t)$ define the state variables and obtain a state – space model.	10

PART-B

6	CO1	L3	Given the circuit shown in Figure 6, with Vin (t) = u(t), V2 (t) = Y (t), write the differential equations in time domain and then derive the transfer function. If $R_1 = R_2 = 10\Omega$ $C_1 = 0.1F$ and $C_2 = 0.4F$, find the impulse response.	10
			OR	

CO	O1 L3	3	Given the mechanical systems shown in Figure 7, with T (t) = u(t), θ_2 (t) = Y(t) write the torque equations in time domain and then derive the transfer function. If J1 = J2 = 10 Kgm², and friction coefficient b = 100 kg m²/sec. find the impulse response.	10
8	CO2	L3	In a unity feedback system $L(s) = \frac{K}{(s+1)(s+4)^2}$	10
			Determine the range of K for which closed – loop system is stable. When closed loop system is marginally stable, determine the pole locations.	
			OR	n
9	CO2	L3	$L(s) = \frac{60}{s(s^{\frac{1}{2}} + 9s^{\frac{3}{2}} + 27s^{\frac{3}{2}} + 51s + 92)}$	10
			Determine how many poles of the closed loop system are in strict left half of S – plane. Find the values of those poles which are not in strict left half.	
10	CO3	L3	For the system given in Figure 10, obtain expressions for G_{cl} (s), $L(s)$, $E(s)$ and compute the steady state errors for standard reference inputs.	10
100			OR	
11	соз	L3	Given unity feedback system with $L(s) = \frac{K(s+2)}{(s^2 - 2s + 2)}$	10
			Sketch the root locus, showing all the rules. Find K and pole location when poles are on imaginary axis, and also when there are multiple poles.	
12	CO4	L3	Given the plant model $G(s) = \frac{1}{s(s+4)}$ design a phase – lead	10
			controller, SO that dominant poles of the closed loop system satisfy Σ_1 = 0.6 and w_n = 5 rad / sec. Compute the velocity error constant for the system.	
			OR	
13(a)	CO4	L3	Define gain margin and phase margin. Given $G(s) = \frac{1}{s(s+4)}$	06

	compute gain cross over frequency, gain margin and phase margin.	,
(b)	For phase – lead compensator derive expressions for ϕ_{max} and W_{max}	04

14	CO5	L3	Given the state pace model of a system, $A = \begin{bmatrix} -5 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -8 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$	3+2+2+3			
			 a) Sketch the equivalent circuit for the above model b) Test for controllability c) Find the transfer function d) Sketch the controller canonical model 				
	OR						
15(a)	CO5	L3	Sketch the block diagram for state variable feedback system and write the state equations for closed – loop system.	04			
(b)			Given the plant model $A = \begin{bmatrix} 8 & -4 \\ -1 & -2 \end{bmatrix} \qquad \mathcal{B} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \qquad \mathcal{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$ Determine SVFB controller gain K, to place the poles of closed loop system at $-3 \pm \mathrm{j}4$	06			
				P.T.O.			

തെ അത്രത്തെ അത

