EEE 51 Assignment 1

2nd Semester SY 2017-2018

Due: 5pm Tuesday, Jan. 30, 2018 (Rm. 220)

Instructions: Write legibly. Show all solutions and state all assumptions. Write your full name, student number, and section at the upper-right corner of each page. <u>Start each problem on a new sheet of paper</u>. Box or encircle your final answer.

1. **BJT DC Biasing 1.** Consider the circuit shown below. Provided that $V_{CC} = 5V$, $V_{IN} = 3V$ $R_{B1} = 200k\Omega$, $R_{C1} = 2k\Omega$, $R_{C2} = 200\Omega$, $\beta_{Q1} = 100$, $\beta_{Q2} = 50$, $V_{BE1,on} = V_{BE2,on} = 0.7V$ and $V_{CE1,sat} = V_{CE2,sat} = 0.2V$ determine the following:

Figure 1: BJT Darlington Pair

- (a) I_{B1} , I_{C1} and V_{CE1} . State all necessary assumptions. [3 pts]
- (b) I_{C2} and V_{OUT} . State all necessary assumptions. [2 pts]
- (c) Suppose we want to achieve a V_{OUT} of at least 1V by changing R_{B1} . Determine the minimum value of R_{B1} needed to get the desired V_{OUT} . Again, state all necessary assumptions. [2 pts]
- 2. **BJT DC Biasing 2**. To understand her EEE 51 class better, Mina plans to implement the circuit in Figure 2. $V_{CC} = 12V$, $R_1 = 1k\Omega$, $R_2 = 500\Omega$, $R_3 = 129k\Omega$, and $R_4 = 1k\Omega$. For transistor Q_1 , $V_A \to \infty$ and $\beta = 150$. For both Q_1 and Q_2 , $|V_{BE,on}| = 0.7V$ and $|V_{CE,sat}| = 0.2V$. In this circuit, the current through resistor R_1 should be 5mA, and the voltage across R_4 should be 10V. Round your answers up to four decimal places.
 - (a) What is the value of V_{IN} ? [2 pts]
 - (b) Since all components but Q_2 are available at the lab, Mina asks her friends for help to build the circuit. Momo, Jennie, and Irene each offer her a box that contains a BC556A, BC556B, and BC557C respectively. (Datasheet: $https://www.mouser.com/ds/2/302/nxp_bc556_557-1188849.pdf$) To make the circuit operate with the given requirements, which of her friends should Mina choose and why? You can assume that $V_A \rightarrow \infty$ for Q_2 . (Hint: h_{FE} is the same as β .) [2 pts]
 - (c) Mina disconnects R_3 from Q_1 and decides to test only the left side of the circuit. She replaces R_1 with a $2k\Omega$ resistor and R_2 with a $1.25k\Omega$ resistor, and she biases Q_1 with a voltage of 4V. What is the voltage that Mina expects to measure across R_2 ? [2 pts]

Figure 2: Mina's Circuit

3. MOSFET DC Biasing. In the circuit shown in Figure 3, the current across the load resistance R_L is 1 mA. Given that $R_L = 4k\Omega$, $R_3 = 1600\Omega$, and $V_{DD} = 12V$. For both transistors, $|V_{TH}| = 3V$, $k = 1000 \,\mu\text{A}/V^2$ and $\lambda = 0$. Assume that there is no body effect.

Figure 3: MOSFET Circuit

- (a) What is the drain current of transistor M2? [2 pts]
- (b) What is the maximum resistance of resistor R2 such that M2 remains in the saturation region? State all necessary assumptions. [3 pts]
- (c) What must be the resistance of R1 in order to supply the correct voltage to the gate of M2? Use the values from your calculations in (b). [2 pts]

TOTAL: 20 points.