

ORDERED UNDIRECTED GRAPH ORIENTATIONS

Why

1

There is a natural orientation of an ordered undirected graph.

Motivating Result

An ordered undirected graph can be converted into a directed graph by orienting the eges from lower to higher index. The orientation of an ordered undirected graph (V, E), σ is the directed graph (V, F) where

$$\{v, w\} \in V \longrightarrow (v, w) \in F \text{ and } \sigma^{-1}(v) < \sigma^{-1}(w).$$

In other words, we can "convert" the ordered undirected graph by "orienting" the edges from lower to higher index.

Proposition 1. Let $G = ((V, E), \sigma)$ be an ordered undirected graph. The orientation of G is acyclic.

Proof. Contradiction on the existence of a cycle.²
$$\Box$$

Conversely, consider the directed acyclic graph (V, F). To each topological numbering of σ (V, F) (see Directed Paths) there exists an ordered undirected graph $((V, E), \sigma)$ where (V, E) is the skeleton of (V, F).

¹Future editions will include.

²Future editions will expand.

