

AD-A129 958 PRODUCTION OF SHORT-WAVELENGTH (XUV) PHOTONS FROM
ION-LASER-EXCITED-SURFACE. (U) ROCHESTER UNIV NY DEPT OF
CHEMISTRY H LEE ET AL JUN 83 UROCHESTER/DC/83/TR-35
UNCLASSIFIED N00014-80-C-0472 F/G 7/4 NL

END
DATE
FILED 1
7-83
DTIC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

ADA129958

OFFICE OF NAVAL RESEARCH

Contract N00014-80-C-0472

Task No. NR 056-749

TECHNICAL REPORT No. 35

Production of Short-Wavelength (XUV) Photons from Ion-Laser-
Excited-Surface Charge Exchange: $\text{Li}^{3+}, \text{He}^+$ + Si(111) Systems

by

Hai-Woong Lee and Thomas F. George

Prepared for Publication

in

Coherence and Quantum Optics V,
Proceedings of the Fifth Rochester Conference on Coherence
and Quantum Optics, ed. by L. Mandel and E. Wolf (Plenum, New York)

Department of Chemistry
University of Rochester
Rochester, New York 14627

June 1983

JUN 29 1983

A

Reproduction in whole or in part is permitted for any
purpose of the United States Government.

This document has been approved for public release
and sale; its distribution is unlimited.

DTC FILE COPY

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER UROCHESTER/DC/83/TR-35 ✓	2. GOVT ACCESSION NO. <i>ATD-A129958</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Production of Short-Wavelength (XUV) Photons from Ion-Laser-Excited-Surface Charge Exchange: Li ³⁺ , He ⁺ + Si(111) Systems	5. TYPE OF REPORT & PERIOD COVERED Interim Technical Report	
7. AUTHOR(s) Hai-Woong Lee and Thomas F. George	6. PERFORMING ORG. REPORT NUMBER N00014-80-C-0472	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Chemistry University of Rochester Rochester, New York 14627	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR 056-749	
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research Chemistry Program Code 472 Arlington, Virginia 22217	12. REPORT DATE June 1983	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 5	
15. SECURITY CLASS. (of this report) Unclassified		
16. DISTRIBUTION STATEMENT (of this Report) This document has been approved for public release and sale; its distribution is unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES Prepared for publication in Coherence and Quantum Optics V, Proceedings of the Fifth Rochester Conference on Coherence and Quantum Optics, ed. by L. Mandel and E. Wolf (Plenum, New York)		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) PRODUCTION OF SHORT-WAVELENGTH LIGHT Li ³⁺ , He ⁺ + Si(111) ION-SURFACE CHARGE EXCHANGE SEMICLASSICAL THEORY LASER-EXCITED SURFACE STATES HIGH INVERSION DENSITIES MODERATE LASER POWERS		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Semiclassical calculations are carried out for the probabilities of electron transfer for Li ³⁺ and He ⁺ ions colliding with a Si(111) surface, where a laser is used to excite electrons in silicon from the valence band to surface states. It is shown that with a moderate-power laser, high inversion densities of Li ²⁺ and He ⁺ can be obtained, as necessary for high gain.		

To appear in the Proceedings of the
Fifth Rochester Conference on Coherence
and Quantum Optics, ed. by L. Mandel and
E. Wolf (Plenum, New York).

PRODUCTION OF SHORT-WAVELENGTH (XUV) PHOTONS FROM ION-LASER-
EXCITED-SURFACE CHARGE EXCHANGE: $\text{Li}^{3+}, \text{He}^+ + \text{Si}(111)$ SYSTEMS

Hai-Woong Lee

Department of Physics
Oakland University
Rochester, Michigan 48063

and

Thomas F. George

Department of Chemistry
University of Rochester
Rochester, New York 14627

ABSTRACT

Semiclassical calculations are carried out for the probabilities of electron transfer for Li^{3+} and He^+ ions colliding with a $\text{Si}(111)$ surface, where a laser is used to excite electrons in silicon from the valence band to surface states. It is shown that with a moderate-power laser, high inversion densities of Li^{2+} and He^+ can be obtained, as necessary for high gain.

INTRODUCTION

It has been proposed^{1,2} that some selected charge-exchange processes may serve as a means of achieving population inversion for short-wavelength (VUV and soft X-ray) lasers. In a recent study,^{2,3} we have analyzed the possibility of obtaining coherent short-wavelength radiation based on neutralization of positive ions A^{m+} at a semiconductor surface S,

In particular, we have proposed that significant enhancement of gain can be achieved by electronically exciting the surface exposed to impinging ions. This is based on the observation that the capture probability is significantly higher for a surface electron (especially for an electron in normally unoccupied surface bands in the band gap region) than for a bulk electron.² If a large number of bulk electrons can be excited to surface bands by irradiating a surface with a source of appropriate power and wavelength, a significant enhancement of gain results. In Reference 3, cross-section and gain calculations on the system

have been carried out.

Here we consider the following two processes:

Process (3) produces Li^{2+} predominantly in the third excited level, $\text{Li}^{2+}(4\ell)$. Process (4) is not a short-wavelength laser candidate, but it may represent an efficient way of producing metastable helium atoms, $\text{He}(2^3S)$.

CALCULATIONS AND RESULTS

The probability P for capture of a surface electron by the incoming ion (Li^{3+} or He^+) is calculated using the semiclassical formula^{2,3}

$$P = 1 - \exp[-\frac{4}{v} \int_0^\infty dz \Gamma(z)], \quad (5)$$

where

$$\Gamma(z) = \frac{\pi}{\hbar} \rho(E_0) |H_{IF}^{E_0}(z)|^2, \quad (6)$$

z is the ion-surface separation, v is the ion velocity assumed to be constant, ρ denotes the density of surface states, E_0 is the resonance energy, and $H_{IF}^{E_0}$ is the coupling matrix element for an electron of energy E_0 . [The transfer of a surface electron of energy E_0 to the ion is an energy conserving process. Note that E_0 changes with time because the initial and final potential energy curves vary with z .] We assume that charge exchange occurs mainly as a result of a repulsive force between the ion and the surface, and evaluate the coupling matrix element according to the formula

$$H_{IF}^{E_0(z)} = \frac{1}{2} |E_0 + E_A| F(z). \quad (7)$$

F is the overlap between the initial state (i.e., surface state) and the final state (i.e., atomic state into which the electron is captured) of the electron, and E_A is the effective ionization energy of the final state [$E_A \approx -7.6$ eV for $\text{Li}^{2+}(4\ell)$ and $E_A \approx -4.8$ eV for $\text{He}(2^3S)$, measured from the ionization level]. The resonance energy E_0 is calculated by assuming that the potential energy curves are determined mainly by image forces, which yields

$$E_0 = E_A + \frac{N(K-1)e^2}{4(K+l)z}, \quad (8)$$

where $N = 5$ for Li^{3+} -Si and $N = 1$ for He^+ -Si, and K is the dielectric constant of the solid ($K = 11.8$ for silicon). The density of surface states of silicon is taken to be⁴ $\rho/\text{area} = 4 \times 10^{14}/\text{eV}\cdot\text{cm}^2$. The integration in Equation (5) can now be performed numerically.

For Process (3) we obtain $P \approx 1 - \exp(-0.00645/v)$, where the velocity v is to be expressed in atomic units. At $v = 0.1$ a.u. $\approx 2.2 \times 10^7$ cm/sec we have $P \approx 0.063$, which yields the charge-exchange cross section $\sigma \approx 2.7 \text{ \AA}^2$. [The cross section σ was estimated using a simple formula $\sigma \approx \pi z_0^2 P$, where z_0 is the ion-surface separation at which electron capture occurs. $z_0 \approx 3.7 \sim 5.0 \text{ \AA}$ for Process (3).] This value of cross section is large enough to give a high inversion density of Li^{2+} necessary for high gain, provided that high densities of Li^{3+} and surface electrons are provided. The required density of surface electrons³ is typically on the order of $10^{16} \sim 10^{18}/\text{cm}^3$, which corresponds to the area density $10^9 \sim 10^{11}/\text{cm}^2$. This value of the area density of surface electrons appears to be well within the reach of a moderate-power infrared laser.⁵

For Process (2) we obtain $p \approx 1 - \exp(-0.0695/v)$, where the velocity v again is to be expressed in atomic units. At $v = 0.1$ a.u. $\approx 2.2 \times 10^7$ cm/sec, we have $P \approx 0.50$, which yields $\sigma \approx 11 \text{ \AA}^2$ ($z_0 \approx 2.6 \sim 4.5 \text{ \AA}$). For production of high-density metastable helium atoms one must pump a sufficient number of bulk electrons into surface bands. In view of the fact that this can be achieved with the use of a moderate-power laser, the density of metastable helium produced by the Process (2) may well be limited by the available density of He^+ .

Finally, it should be mentioned that our analysis is based on a one-dimensional nearly-free-electron model of a surface^{5,6} according to which a semiconductor has a direct gap. In reality, however, semiconductors like silicon have an indirect gap and the excitation of a surface by radiation may have to be accompanied by photon excitations.

ACKNOWLEDGMENTS

This research was supported by the U.S. Army Research Office, the Air Force Office of Scientific Research (AFSC), United States Air Force, under Grant AFOSR-82-0046, the Office of Naval Research, the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the Research Corporation. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon. HWL acknowledges Oakland University for a Research Fellowship, and TFG acknowledges the Camille and Henry Dreyfus Foundation for a Teacher Scholar Award (1975-84) and the John Simon Guggenheim Memorial Foundation for a Fellowship (1983-84).

REFERENCES

1. A. V. Vinogradov and I. I. Sobel'man, The Problem of Laser Radiation Sources in the Far Ultraviolet and X-Ray Regions, Sov. Phys. JETP 36: 1115 (1973); M. O. Scully, W. H. Louisell and W. B. McKnight, A Soft X-Ray Laser Utilizing Charge Exchange, Opt. Commun. 9: 246 (1973); J. S. Helman, C. Rau and C. F. Bunge, X-Ray Laser Implementation by Means of a Strong Source of High-Spin Metastable Atoms, Phys. Rev. A 27: 262 (1983).
2. H. W. Lee, W. C. Murphy and T. F. George, Neutralization of Ions at an Electronically-Excited Semiconductor Surface, Chem. Phys. Lett. 93: 221 (1982).
3. H. W. Lee and T. F. George, Emission of Short-Wavelength Photons from Ion-Surface Charge Exchange, IEEE J. Quantum Electron., submitted.
4. S. G. Davison and J. D. Levine, Surface States, in "Solid State Physics," Vol. 25, H. Ehrenreich, F. Seitz and D. Turnbull, eds., Academic Press, New York (1970), and references therein.
5. W. C. Murphy, A. C. Beri, T. F. George and J. Lin, Analysis of Laser-Enhanced Adsorption/Desorption Processes on Semiconductor Surfaces via Electronic Surface State Excitation, Mat. Res. Soc. Symp. Proc. 17: 273 (1983).
6. W. C. Murphy and T. F. George, Laser-Induced Electron-Phonon Processes at Metal Surfaces, Surface Sci., submitted.

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	<u>No. Copies</u>		<u>No. Copies</u>
Office of Naval Research Attn: Code 413 800 North Quincy Street Arlington, Virginia 22217	2	Naval Ocean Systems Center Attn: Mr. Joe McCartney San Diego, California 92152	1
ONR Pasadena Detachment Attn: Dr. R. J. Marcus 1030 East Green Street Pasadena, California 91106	1	Naval Weapons Center Attn: Dr. A. B. Amster, Chemistry Division China Lake, California 93555	1
Commander, Naval Air Systems Command Attn: Code 310C (H. Rosenwasser) Department of the Navy Washington, D.C. 20360	1	Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93401	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12	Dean William Tolles Naval Postgraduate School Monterey, California 93940	1
Dr. Fred Saalfeld Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375	1	Scientific Advisor Commandant of the Marine Corps (Code RD-1) Washington, D.C. 20380	1
U.S. Army Research Office Attn: CRD-AA-IP P. O. Box 12211 Research Triangle Park, N.C. 27709	1	Naval Ship Research and Development Center Attn: Dr. G. Bosmajian, Applied Chemistry Division Annapolis, Maryland 21401	1
Mr. Vincent Schaper DTNSRDC Code 2803 Annapolis, Maryland 21402	1	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112	1
Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1	Mr. A. M. Anzalone Administrative Librarian PLASTEC/ARRADCOM Bldg 3401 Dover, New Jersey 07801	1
Dr. David L. Nelson Chemistry Program Office of Naval Research 800 North Quincy Street Arlington, Virginia 22217	1		

TECHNICAL REPORT DISTRIBUTION LIST, 056

No. <u>Copies</u>		No. <u>Copies</u>		
	Dr. G. A. Somorjai Department of Chemistry University of California Berkeley, California 94720	1	Dr. W. Kohn Department of Physics University of California (San Diego) La Jolla, California 92037	1
1	Dr. J. Murday Naval Research Laboratory Surface Chemistry Division (6170) 455 Overlook Avenue, S.W. Washington, D.C. 20375	1	Dr. R. L. Park Director, Center of Materials Research University of Maryland College Park, Maryland 20742	1
1	Dr. J. B. Hudson Materials Division Rensselaer Polytechnic Institute Troy, New York 12181	1	Dr. W. T. Peria Electrical Engineering Department University of Minnesota Minneapolis, Minnesota 55455	1
1	Dr. Theodore E. Madey Surface Chemistry Section Department of Commerce National Bureau of Standards Washington, D.C. 20234	1	Dr. Chia-wei Woo Department of Physics Northwestern University Evanston, Illinois 60201	1
1	Dr. J. M. White Department of Chemistry University of Texas Austin, Texas 78712	1	Dr. Robert M. Hexter Department of Chemistry University of Minnesota Minneapolis, Minnesota 55455	1
1	Dr. Keith H. Johnson Department of Metallurgy and Materials Science Massachusetts Institute of Technology Cambridge, Massachusetts 02139	1	Dr. R. P. Van Duyne Chemistry Department Northwestern University Evanston, Illinois 60201	1
1	Dr. J. E. Demuth IBM Corporation Thomas J. Watson Research Center P. O. Box 218 Yorktown Heights, New York 10598	1	Dr. S. Sibener Department of Chemistry James Franck Institute 5640 Ellis Avenue Chicago, Illinois 60637	1
1	Dr. C. P. Flynn Department of Physics University of Illinois Urbana, Illinois 61801	1	Dr. M. G. Lagally Department of Metallurgical and Mining Engineering University of Wisconsin Madison, Wisconsin 53706	1

TECHNICAL REPORT DISTRIBUTION LIST, 056

<u>No.</u> <u>Copies</u>		<u>No.</u> <u>Copies</u>	
	Dr. Robert Gomer Department of Chemistry James Franck Institute 5640 Ellis Avenue Chicago, Illinois 60637	1	Dr. K. G. Spears Chemistry Department Northwestern University Evanston, Illinois 60201
	Dr. R. G. Wallis Department of Physics University of California, Irvine Irvine, California 92664	1	Dr. R. W. Plummer University of Pennsylvania Department of Physics Philadelphia, Pennsylvania 19104
	Dr. D. Ramaker Chemistry Department George Washington University Washington, D.C. 20052	1	Dr. E. Yeager Department of Chemistry Case Western Reserve University Cleveland, Ohio 41106
	Dr. P. Hansma Physics Department University of California, Santa Barbara Santa Barbara, California 93106	1	Professor D. Hercules University of Pittsburgh Chemistry Department Pittsburgh, Pennsylvania 15260
	Dr. J. C. Hemminger Chemistry Department University of California, Irvine Irvine, California 92717	1	Professor N. Winograd The Pennsylvania State University Department of Chemistry University Park, Pennsylvania 16802
	Dr. Martin Fleischmann Department of Chemistry Southampton University Southampton SO9 5NH Hampshire, England	1	Professor T. F. George The University of Rochester Chemistry Department Rochester, New York 14627
	Dr. G. Rubloff IBM Thomas J. Watson Research Center P. O. Box 218 Yorktown Heights, New York 10598	1	Professor Dudley R. Herschbach Harvard College Office for Research Contracts 1350 Massachusetts Avenue Cambridge, Massachusetts 02138
	Dr. J. A. Gardner Department of Physics Oregon State University Corvallis, Oregon 97331	1	Professor Horia Metiu University of California, Santa Barbara Chemistry Department Santa Barbara, California 93106
	Dr. G. D. Stein Mechanical Engineering Department Northwestern University Evanston, Illinois 60201	1	Professor A. Steckl Rensselaer Polytechnic Institute Department of Electrical and Systems Engineering Integrated Circuits Laboratories Troy, New York 12181

TECHNICAL REPORT DISTRIBUTION LIST, 056

<u>No.</u>	<u>Copies</u>	<u>No.</u>	<u>Copies</u>
Dr. John T. Yates Department of Chemistry University of Pittsburgh Pittsburgh, Pennsylvania 15260	1		
Professor G. H. Morrison Department of Chemistry Cornell University Ithaca, New York 14853	1		
Captain Lee Myers AFOSR/NC Bolling AFB Washington, D.C. 20332	1		
Dr. David Squire Army Research Office P. O. Box 12211 Research Triangle Park, NC 27709	1		
Professor Ronald Hoffman Department of Chemistry Cornell University Ithaca, New York 14853	1		

