Chapters 9.3-9

Riccardo Miccini¹ Eren Can ¹

¹Technical University of Denmark Digital Communication

November 19, 2016

Modulation Schemes not Requiring Coherent References

In this section, now we consider two modulation schemes that you do not need to require the acquisition of a local reference signal in phase coherence with the received carrier.

Differential Phase-Shift Keying (DPSK)

- The implementation of a such a scheme presupposes two things;
 - 1 The unknown phase perturbation on the signal varies slowly that the phase is constant from one signalling interval to next.
 - 2 The phase during a given signalling interval bears a known relationship to the phase during the preceding signalling interval bears a known relationship to the phase during the preceding signalling interval.

Table 9.3 Differential Encoding Example

Message sequence:		1	0	0	1	1	1	0	0	0
Encoded sequence:	1	1	0	1	1	1	1	0	1	0
Reference digit: Transmitted phase:	↑ 0	0	π	0	0	0	0	π	0	π

Differential Encoding Message Sequence

- An arbitrary reference binary digit is being selected as an initial digit of the sequence
- For each digit , the present digit used as a reference
- 0 in the message sequence is encoded as a transition from state of reference digit to the opposite state in the encoded message sequence
- 1 encoded as no change of state

Figure 9.16

Block diagram of a DPSK modulator

Differential Encoding Message Sequence

- Implementation of differentially coherent demodulator is shown in figure 4.
- The reference signal and noise passed through a bandpass filter and then correlated by bit by bit of the signal plus noise.
- After the reference bit and plus the first encoded bit, signal input become $S_1 = A\cos(\omega_c)t$ and $R_1 = A*\cos(w_c)*t$
- Than the output correlator is; $v_1 = \int_0^T A^2 \cos^2(\omega_c t) dt$ which eventually become $\frac{1}{2}A^2T$

Comparison of Digital Modulation Systems

Multipath Interference

Equalization

Equalization by Zero Forcing

Equalization by Minimum Mean-Squared Error

Tap Weight Ajustment (LMS Algorithm)

