

Global Bird's Eye View Semantic Mapping

Hefeng Zhou, Ding Zhong, Yiwei Gui, and Yiting Wang Electrical and Computer Engineering Department, University of Michigan

Processing

MotionNet

AI-IMU

Mapping

Semantic Map

Abstract

- We integrate AI-IMU[1] and MotionNet[2] to achieve robust localization and semantic scene understanding. AI-IMU dynamically adapts to varying sensor noise and motion patterns. MotionNet generates dense semantic BEV maps and effectively filters dynamic obstacles.
- Experimental validation on the SemanticKITTI dataset demonstrates strong robustness and accuracy in challenging scenarios, including dynamic objects and sensor dropout.

Motivation

- LiDAR and vision-based SLAM systems tend to degrade significantly in the presence of occlusion, dynamic objects, and sensor dropout.
- IMUs suffer from drift and error accumulation when used in isolation.

Data Sets

We evaluate our method on the SemanticKITTI dataset

Methodology

Sensors

LiDAR

 IMU

- MotionNet processes LiDAR point clouds to produce accurate semantic BEV maps using a Spatio-Temporal Pyramid Network (STPN).
- AI-IMU employs an **Invariant Extended** Projection onto BEV Kalman Filter (IEKF) enhanced by CNNadaptive pseudo-measurement covariance for precise IMUbased localization.
- Semantic maps from MotionNet are spatially aligned with accurate poses estimated by AI-IMU, enabling consistent semantic mapping.
- Our integrated framework effectively captures dynamic scenes and maintains robustness even when LiDAR or visual data are compromised.

Results

Class ID		car	bicycle	road	parking	sidewalk	building	fence
Baseline I	oU (%)	74.8	-	82.8	24.6	53.0	16.0	15.6
Ours IoU	(%)	71.59	15.62	87.09	61.32	67.07	19.63	29.63
Class ID		vegetation	terrain	pole	traffic-sign	moving-car	moving-person	
Baseline I	oU (%)	49.3	50.3	_	-	-	-	
Ours IoU	(%)	45.91	64.44	22.92	17.98	49.19	20.23	
mIoU (%))	Ours (13 classes): 44.05			Baseline: 45.80			
+1 mIoU on	Baseline Classes Only (%)	Ours: 60.44						

- Our method improved IoU scores on crucial urban classes, such as roads, sidewalks, and terrains.
- Overall mIoU across all 13 classes was 44.05%, slightly below the baseline's 45.80%. When evaluating only classes present in the baseline, our approach notably outperformed, achieving an mIoU of 60.44%.
- These results highlight our model's strong capability in critical urban segmentation scenarios.

[1] M. Brossard, A. Barrau, and S. Bonnabel, "Ai-imu dead-reckoning," IEEE Transactions on Intelligent Vehicles, vol. 5, no. 4, pp. 585-

[2] P. Wu, S. Chen, and D. N. Metaxas, "Motionnet: Joint perception and motion prediction for autonomous driving based on bird's eyeview maps," in Proceedings of the IEEE/CVF Conference on ComputerVision and Pattern Recognition (CVPR), June 2020