Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum 2

Úloha č. VIII

Název úlohy: Měření impedancí rezonanční metodou

Jméno: Ján Kovačovský Obor: FOF

Datum měření: 11.11. 2019 Datum odevzdání: 18.11. 2019

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0-3	
Teoretická část	0-2	
Výsledky a zpracování měření	0-9	
Diskuse výsledků	0-4	
Závěr	0-1	
Použitá literatura	0-1	
Celkem	max. 20	

Posuzoval: dne:

1 Pracovná úloha

- 1. Zmerajte indukčnosti L_A a L_B a vlastné kapacity C_A a C_B cievok A a B.
- 2. Z merania celkovej indukčnosti $L_{1,2}$ cievok A a B určite ich vzájomnú indukčnosť M. Diskutujte platnosť vzť ahu medzi vzájomnou indukčnosť ou M, indukčnosť ami cievok L_A , L_B a celkovou indukčnosť ou $L_{1,2}$.
- Pre jedno zapojenie zmerajte rezonančnú krivku. Nameraný priebeh porovnajte graficky s teoretickým a vyhodnoť te mieru útlmu, činiteľ akosti a náhradný sériový odpor obvodu.
- 4. Vykonajte kalibráciu otočného kondenzátora diferenčnou metódou a výsledok vyneste do grafu.

2 Teória

2.1 Rezonančná frekvencia RLC obvodu

Pre RLC obvod, ktorý je tvorený cievkou L, odporom R a kapacitou C zapojenými sériovo platí [1]

$$U = I\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2},\tag{1}$$

kde U je efektívne napätie, I je efektívny prúd v obvode a ω je uhlová frekvencia striedavého prúdu. Pre paralelné zapojenie týchto prvkov platí obdobný vzťah

$$I = U\sqrt{\frac{1}{R^2} + \left(\omega C - \frac{1}{\omega L}\right)^2}.$$
 (2)

Pri udržovaní konštantného napätia v sériovom obvode potečie obvodom maximálny prúd I_r pri uhlovej frekvencii ω_r , pre ktorú platí [1]

$$\omega_r = \frac{1}{\sqrt{IC}}. (3)$$

Obdobne bude pre paralelný obvod platiť, že pri konštantnom prúde bude na prvkoch obvodu maximálne napätie U_r znova pri uhlovej frekvencii ω_r vyhovujúcej vzťahu (3). Frekvenciu $f_r = \omega_r/2\pi$ nazývame rezonančná frekvencia. V sériovom obvode potom dochádza pri frekvencii f_r k prúdovej rezonancii a v paralelnom k napäťovej.

Nakoľ ko ideálna cievka s nulovou vlastnou kapacitou C_0 neexistuje, upravíme vzť ah (3) na

$$\omega_r = \frac{1}{\sqrt{L(C+C_0)}}. (4)$$

2.2 Redukovaná rezonančná krivka

Redukovanou rezonančnou krivkou rozumieme závislosť premennej hodnoty prúdu $I/I_r=y$ pre sériový obvod, resp. napätia $U/U_r=y$ pre paralelný na rozdelení $\omega/\omega_r=x$. Hodnoty I_r a U_r , ku ktorým vzť ahujeme prúd resp. napätie sú maximálne hodnoty týchto veličín pri rezonancii. Ak potom označíme

$$d = R\sqrt{\frac{C}{L}} \tag{5}$$

pre sériový obvod a pre paralelný

$$d = \frac{1}{R} \sqrt{\frac{L}{C}} \tag{6}$$

môžeme vzťahy (1) a (2) previesť na tvar

$$y^2 = \frac{d^2}{d^2 + \left(x - \frac{1}{x}\right)^2},\tag{7}$$

ktorý popisuje redukovanú rezonančnú krivku. Veličinu d nazývame mierou útlmu a charakterizuje šírku rezonančnej krivky.

Činiteľ akosti Q cievky je daný vzťahom podľa [1]

$$Q = \frac{\omega_r L}{R_S} = \frac{1}{d},\tag{8}$$

kde R_S je náhradný sériový odpor obvodu.

2.3 Indukčnosť a vlastná kapacita cievok

Na rozdiel od ideálnej majú reálne cievky nenulovú vlastnú kapacitu C_0 pre ktorú platí [1]

$$\frac{1}{\omega_r^2} = L(C + C_0). \tag{9}$$

Meraním rezonančnej frekvencie pre rôzne hodnoty premennej kapacity určíme hodnoty C_0 a L a ich štatistické chyby lineárnou regresiou.

2.4 Vzájomná indukčnosť cievok

Celková indukčnosť sériovo zapojených cievok L_A a L_B je daná [1]

$$L_{1,2} = L_A + L_B \pm 2M, (10)$$

kde M označuje vzájomnú indukčnosť týchto cievok, pre ktoré platí [1]

$$M = \frac{L_1 - L_2}{4}. (11)$$

Kladné znamienko, resp. záporné označuje súhlasný, resp. nesúhlasný smer vinutia.

2.5 Kalibrácia otočného kondenzátora

Kapacitu kondenzátora určíme diferenčnou metódou. Obvod s kondenzátorom so známou kapacitou C_1 vyladíme do rezonancie. Následne k nemu paralelne pripojíme kondenzátor s neznámou kapacitou, vyladíme obvod do rezonancie a odpočítame kapacitu C_2 . Neznámu kapacitu C_x určíme zo vzťahu podľa [1]

$$C_x = C_1 - C_2. (12)$$

2.6 Spracovanie merania

Chyby merania počítame podľa [2] ako

$$\sigma_{\nu} = \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{mer}}^2} \tag{13}$$

kde σ_{stat} je štatistická chyba a σ_{mer} je chyba meradla (polovica dieliku na stupnici) pri meraní veličiny ν .

Pri výpočte chýb odvodených veličín používame Gaussov vzorec podľa [2]

$$\sigma_f = \sqrt{\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 \sigma_{x_i}^2}.$$
 (14)

kde x_i sú namerané veličiny v jednotlivých meraniach i, n je ich počet a σ je ich rozptyl, dopočítame ostávajúce chyby. Pri digitálnych prístrojoch počítame chybu spôsobom uvedeným v návode.

2.7 Schéma zapojenia obvodu

Obr. 1: Schéma zapojenia rezonančného obvodu. Prevzaté z [1].

3 Výsledky merania

3.1 Vlastná kapacita a indukčnosť cievok

Meranie u oboch cievok sme opakovali pre 5 hodnôt danej kapacity C kondenzátora. Rezonančnú frekvenciu sme neurčovali priamo, nakoľ ko priebeh rezonančnej funkcie v okolí maxima je príliš konštantný a galvanometrom, s ktorým sme merali, nedokážeme určiť presnú hodnotu maxima. Našli sme preto dve frekvencie f_1 a f_2 , pre ktoré galvanometer ukazoval rovnakú výchylku, t.j. symetrické hodnoty f_1 , f_2 z oboch strán rezonančnej krivky. Hodnotu maxima potom dostaneme ako aritmetický priemer týchto dvoch hodnôt. Namerané hodnoty a dopočítané veličiny sú uvedené v tabuľ ke 1. Chybu merania rezonančnej frekvencie odhadujeme na 1 kHz a pre kapacitu kondenzátora na 0.2 pF.

Tabul'ka 1: Závislosť rezonančnej frekvencie na kapacite pre cievku A

<i>C</i> [pF]	f_1 [kHz]	f_2 [kHz]	f_r [kHz]	$1/\omega_r^2 [10^{-14} s^2]$
200	674.6	680.0	677.3	5.5
400	508.4	510.3	509.4	9.8
600	420.9	425.4	423.2	14.1
800	368.0	373.0	370.5	18.5
1000	332.1	336.3	334.2	22.7

Tabul'ka 2: Závislosť rezonančnej frekvencie na kapacite pre cievku B

<i>C</i> [pF]	f_1 [kHz]	f_2 [kHz]	f_r [kHz]	$1/\omega_r^2 [10^{-14} s^2]$
1000	313.4	322.6	318.0	25.0
800	349.0	359.9	354.5	20.2
600	400.7	414.1	407.4	15.3
400	486.5	502.8	494.7	10.4
200	676.8	689.8	683.3	5.4

Hodnoty z tabuliek 1 a 2 sú vynesené do grafu 1, kde sú preložené lineárnymi funkciami tvaru $f(x) = a \cdot (x + b)$ podľa vzťahu (9). Výsledky tohoto fitu sú zhrnuté v nasledujúcej tabuľke, t.j. tab. 3, kde chyba indukčnosti L a kapacity C je určená podľa vzťahu (13) ako súčet chyby fitu a chyby vypočítanej vzťahom podľa (14)

$$\sigma_L = \sigma_{C_0} = \sqrt{\frac{1}{n-1} \sum_i \left[\left(2 \frac{\sigma_f}{f_i} \right)^2 + \left(\frac{\sigma_C}{C_i} \right)^2 \right]}$$
 (15)

Graf 1: Závislosť prevrátenej hodnoty druhej mocniny uhlovej frekvencie na kapacite C pre jednotlivé cievky

Tabuľ ka 3: Výsledné hodnoty indukčností a vlastných kapacít cievok A a B

cievka	C_0 [pF]	$L [\mu H]$
A	56.3 ± 0.8	215.0 ± 1.6
В	21.7 ± 1.1	245.3 ± 0.7

3.2 Vzájomná indukčnosť cievok

Postup merania bol obdobný ako v prvej úlohe. Tu nám už ale pôsobí aj vzájomná indukčnosť týchto cievok a teda nemožno použiť vypočítané hodnoty z predošlej úlohy. Meranie sme vykonali znova pre 5 hodnôt, jednak pri súhlasnom a potom nesúhlasnom vinutí ¹. V tabuľke 4 sú uvedené namerané hodnoty pri súhlasnom vinutí zapojenia cievok a v tab. 5 pri nesúhlasnom.

Chyba merania vzájomnej indukčnosti bola určená vzť ahom (13) ako súčet chyby fitu a prenosu chyby vypočítanej vzť ahom pre prenos chyby podľ a (14)

¹používame vzorec (10), v ktorom + značí súhlasný smer vinutia oboch cievok a – nesúhlasný

$$\sigma_M = M \sqrt{\left(\frac{\sigma_{L_1}}{L_1}\right)^2 + \left(\frac{\sigma_{L_2}}{L_2}\right)^2} \tag{16}$$

Tabul'ka 4: Závislosť rezonančnej frekvencie na kapacite pre zapojenie cievok pri súhlasnom smere vinutia

<i>C</i> [pF]	f_1 [kHz]	f_2 [kHz]	f_r [kHz]	$1/\omega_r^2 [10^{-14} s^2]$
200	430.0	461.3	445.7	12.8
400	312.5	334.5	323.5	24.2
600	256.3	276.3	266.3	35.7
800	222.6	241.0	231.8	47.1
1000	199.8	216.3	208.1	58.5

Tabul'ka 5: Závislosť rezonančnej frekvencie na kapacite pre zapojenie cievok pri nesúhlasnom smere vinutia

C [pF]	f_1 [kHz]	f_2 [kHz]	f_r [kHz]	$1/\omega_r^2 [10^{-14} s^2]$
1000	266.8	275.3	271.1	34.5
800	296.9	306.9	301.9	27.8
600	342.5	351.7	347.1	21.0
400	417.5	424.1	420.8	14.3
200	573.6	584.8	579.2	7.6

Hodnoty z tabuliek 4 a 5 sú vynesené do grafu 2, kde sú preložené lineárnymi funkciami tvaru $f(x) = a \cdot (x + b)$ podľ a vzť ahu (9). Chyba indukčnosti L a kapacity C je určená podľ a vzť ahu (15).

Graf 2: Závislosť prevrátenej hodnoty druhej mocniny uhlovej frekvencie na kapacite C pre obe smery vinutia cievok

Z oboch fitov potom dostávame indukčnosti pre oba smery vinutia ako

$$L_{+} = (571.5 \pm 7.8) \,\mu\text{H}, L_{-} = (336.5 \pm 7.2) \,\mu\text{H}$$

a použitím vzť ahu (11) aj vzájomnú indukčnosť použitých cievok

$$M = (58.8 \pm 3.3) \,\mu\text{H}.$$

Vzťahom (10) následne dopočítame hodnoty celkovej indukčnosti pre obe smery zapojenia vinutia a tak ich môžeme porovnať s vyššie vypočítanými. Tieto hodnoty nám vyšli ako

$$L_{+}^{'} = (577.9 \pm 9.2) \,\mu\text{H}$$
 a $L_{-}^{'} = (342.7 \pm 8.9) \,\mu\text{H}$.

Hodnoty sa teda v rámci chyby zhodujú a môžeme považovať vzťah (10) resp. (11) za potvrdený.

3.3 Rezonančná krivka

Namerali sme rezonančnú krivku pre nesúhlasne vinutie cievok A,B a hodnotu C = 200 pF. Maximálna výchylka na galvanometri bola 47, čo zodpovedá hodnote $y^2 = 1$ a $x = f/f_r$ na redukovanej rezonančnej krivke. Nakoľ ko pracujeme s rovnakým zapojením obvodu ako v predošlej úlohe, t.j. nesúhlasné vinutie cievok A,B pre kapacitu C = 200 pF, môžeme použiť hodnotu $f_r = (579.2 \pm 1.1)$ kHz odtiaľ.

dieliky	f [kHz]	X	y^2	dieliky	f [kHz]	X	y^2
47	578.5	0.9988	1.0000	35	585.4	1.0107	0.7447
45	575.8	0.9941	0.9574	30	587.8	1.0148	0.6383
40	573.5	0.9902	0.8511	25	590.6	1.0197	0.5319
30	569.9	0.9839	0.6383	20	594.3	1.0261	0.4255
25	567.8	0.9803	0.5319	15	599.9	1.0357	0.3191
20	565.6	0.9765	0.4255	10	610	1.0532	0.2128

Tabuľka 6: Namerané hodnoty výchyliek na galvanometri v závislosti na frekvencii

Graf 3: Redukovaná rezonančná krivka preložená teoretickou závislosť ou

Hodnoty $y^2(x)$ v grafe 3 boli preložené funkciou podľa teórie tvaru $f(x) = \frac{d^2}{d^2 + (x-1/x)^2}$, kde bol parameter $d = (0.0417 \pm 0.0011)$

dopočítaný programom GNUplot.

Činiteľ akosti Q bol určený podľa vzťahu (8) a jeho chybu uvažujeme rovnakú ako relatívnu chybu miery útlmu.

$$Q = (23.9 \pm 1.2)$$

Rovnako podľa vzťahu (8) určíme aj náhradný sériový odpor obvodu R_S , kde chyba je odhadnutá rovnako na 5%.

$$R_S = (58.9 \pm 2.9) \Omega$$

3.4 Kalibrácia otočného kondenzátora

Meranie sme vykonávali podľa postupu uvedeného v teórii, kde nami známou kapacitou je $C_1 = 1100$ pF. Rezonančná frekvencia pri tejto kapacite je $f_r = (579.2 \pm 1.1)$ kHz. Namerané hodnoty spolu s vypočítanou kapacitou otočného kondenzátora C_x sú uvedené v tabuľ ke 7. Tieto hodnoty sú nižšie vynesené do grafu a preložené polynomickou funkciou² g(x) tretieho stupňa, ktorá najpresnejšie opisovala body grafu.

T.1. 191 . 7. N	/ .1. 1! .1		/ 1.1/1	' . 1 1
Tabul'ka 7: Namerané hodno	v vvchvijek na i	otocnom kondenzatore	v zavisiosti na :	ieno kanacite (
rabar ka 7. ramerane noano	y vychrymen na	Otochom Kondenzatore	V Zuvibiobii iiu	jeno Rupuene \mathcal{L}_{χ}

výchylka [°]	<i>C</i> ₁ [pF]	C ₂ [pF]	C_x [pF]
0	1100	1029.0	71.0
20	1100	1030.0	70.0
40	1100	1022.0	78.0
60	1100	1002.0	98.0
80	1100	990.0	110.0
100	1100	863.5	236.5
120	1100	731.0	369.0
140	1100	581.5	518.5
160	1100	362.0	738.0
180	1100	143.0	957.0

Graf 4: Závislosť kapacity otočného kondenzátoru na výchylke na jeho stupnici

$$g(x) = 6.13x^3 + 0.03x^2 - 1.59x + 81.58$$

 $^{^2}$ kde xzastupuje premennú $^\circ$ vynesenú na x-ovej osi

4 Diskusia výsledkov

Pri určovaní vlastných kapacít a indukčností oboch cievok a neskôr indukčnosti pri ich sériovom zapojení 3 sme využili stav rezonancie a teda známe vzťahy pre tento stav obvodu. Rezonančná frekvencia pre rôzne hodnoty zapojeného kondenzátora odpovedala teoretickému vzťahu pre prevrátenú hodnotu druhej mocniny uhlovej frekvencie a to tak, že jej závislosť na kapacite bola vždy lineárna. Meraním sme potvrdili, že reálna cievka disponuje vlastnou kapacitou, ktorá nie je zanedbateľ ná oproti ideálnej cievke, ktorej vlastnú kapacitu neuvažujeme. K určovaniu rezonančnej frekvencie sme merali rovnaké hodnoty na galvanometri na oboch stranách rezonančnej krivky a priemerom týchto hodnôt sme dopočítavali f_r . Tento spôsob bol jednoznačne presnejší, ako meranie maxima, nakoľ ko nami používaný galvanometer nemal dostatočnú presnosť a hodnoty v príliš veľ kom okolí maxima tejto závislosti mali lineárny priebeh. Chybu spôsobenú touto metódou môžeme odhadovať v ráde desatín kHz, no citlivosť použitého galvanometru nebola dostatočná a isté hodnoty sme nedokázali zmerať presne na oboch stranách rezonančnej krivky.

Vypočítaná hodnota vzájomnej indukčnosti pre dvojicu cievok A,B odpovedá teoretickému vzťahu, kde vypočítané hodnoty sa líšia od nameraných v ráde jednotiek, t.j. tretia platná cifra. Teoretický vzťah môžeme teda považovať za overený.

Tvar rezonančnej krivky odpovedá teoretickému predpokladu, ale je vidieť, že body nie sú symetrické z oboch strán tak, ako sme predpokladali. Toto je pravdepodobne spôsobené nedostatočným počtom nameraných hodnôt, a teda aj keď je väčšina hodnôt nameraná v symetrických bodoch na tejto krivke, zmeraním viacero hodnôt by sa pravdepodobne vystreď ovali a nespôsobili dojem, že meranie je nepresné. Fakt, že namerané hodnoty nie sú symetrické je pravdepodobne spôsobené galvanometrom, nakoľ ko ukazoval rovnakú výchylku pri príliš veľ kom rozmedzí frekvencií. Hodnoty boli preložené teoretickou závislosť ou (7) programom GNUplot, ktorý taktiež určil presnosť tohoto fitu metódou najmenších štvorcov. Miera útlmu d bola tiež určená lineárnou interpoláciou nameraných hodnôt najbližších hodnote $y^2 = 0.5$ a využitím vzť ahu $d = |x_1 - x_2|$. Takto vypočítaná hodnota parametra d bola v rozmedzí chyby fitu, no nakoľ ko sa nám počas merania nepodarilo dostať dostatočne blízko k hodnote $y^2 = 0.5$, chyba tohoto výpočtu prevyšovala naše očakávania a ďalej sme uvažovali hodnotu vypočítanú fitom programu GNUplot uvedenú v sekcii 3.4.

Následne sme určili aj hodnotu činiteľ a akosti cievky Q a náhradného sériového odporu R_S , hodnoty ktorých sú taktiež uvedené v sekcii 3.4.

Otočný kondenzátor sme kalibrovali za rovnakých podmienok ako meranie rezonančnej krivky, t.j. $f_r = (579.2 \pm 1)$ kHz a pevnú kapacitu sme určili ako C = 1100 pF, čo bola maximálna hodnota na integrovanom kondenzátore a tú sme zvolili z dôvodu neznalosti kapacity otočného kondenzátora v ani jednom bode výchylky na jeho stupnici. Pri kalibrácii vzniká chyba nepresným určovaním rezonancie pri zmene vnútornej kapacity. Namerané hodnoty boli preložené polynomickou funkciou tretieho stupňa, kde absolútny člen označuje kapacitu pri nulovej výchylke. Tieto hodnoty boli preložené viacerými funkciami podobného tvaru⁴ programom GNUplot, no táto vykazovala najmenšiu chybu, t.j. najmenšiu odchýlku od nameraných hodnôt, a teda najpresnejšie určuje závislosť kapacity otočného kondenzátora na výchylke na jeho stupnici. Fakt, že hodnota kapacity pri nulovej výchylke bola vyššia ako tá nasledujúca a teda aj fitovaná funkcia má minimum mimo nulovej výchylky bol pravdepodobne spôsobený systematickou chybou a pre väčšiu presnosť, by bolo nutné ď alšie a to presnejšie meranie.

Chyby všetkých meraní sú prevažne na strane experimentátora. Určovanie kapacity na oboch kondenzátoroch a hlavne nepresná práca s galvanometrom, t.j. nepresné odčítanie hodnôt zo stupníc zapríčinilo väčšinu chýb.

5 Záver

Namerali sme indukčnosti L a vlastné kapacity C_0 cievok A,B ako

$$L_A = (215.0 \pm 1.6) \,\mu\text{H}, \ C_{0_A} = (56.3 \pm 0.8) \,\text{pF}$$

 $L_B = (245.3 \pm 0.7) \,\mu\text{H}, \ C_{0_B} = (21.7 \pm 1.1) \,\text{pF}.$

³či už pri súhlasnom alebo nesúhlasnom vinutí

⁴napr. exponenciála alebo polynómy iných stupňov

Následne sme určili vzájomnú indukčnosť sériovo zapojených cievok z merania závislosti rezonančnej frekvencie na kapacite pri súhlasnom a nesúhlasnom smere vinutia cievok A,B ako

$$M = (58.8 \pm 3.3) \,\mu\text{H},$$

kde jednotlivé indukčnosti pri oboch smeroch vinutia boli

$$L_{+} = (571.5 \pm 7.8) \,\mu\text{H}, L_{-} = (336.5 \pm 7.2) \,\mu\text{H}.$$

Namerali sme rezonančnú krivku pre nesúhlasne vinutie cievok A,B a hodnotu C = 200 pF. Maximálna výchylka na galvanometri bola 47. Ako rezonančnú frekvenciu sme použili hodnotu $f_r = (579.2 \pm 1.1)$ kHz a pevnú kapacitu C = 200 pF. Namerané hodnoty sme preložili funkciou $f(x) = \frac{d^2}{d^2 + (x - 1/x)^2}$, ktorá zodpovedá teórii a následne sme určili mieru útlmu ako

$$d = (0.0417 \pm 0.0011)$$

Potom sme tiež určili činiteľ akosti cievky

$$Q = (23.9 \pm 1.2)$$

a hodnotu náhradného sériového odporu

$$R_S = (58.9 \pm 2.9) \Omega$$
.

Otočný kondenzátor sme kalibrovali za pri rezonančnej frekvencii $f_r = (579.2 \pm 1.1)$ kHz a pevnej kapacite C = 1100 pF. Závislosť jeho kapacity na výchylke na jeho stupnici bola nafitovaná funkciou ktorá najpresnejšie opisovala tieto hodnoty je

$$g(x) = 6.13x^3 + 0.03x^2 - 1.59x + 81.58.$$

Citácie

- [1] *Štúdium rezonancie v obvode online*. URL: https://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_208.pdf (cit. 26. 10. 2019).
- [2] J. Englich. Úvod do praktické fyziky I. Praha: Matfyzpress, 2006. ISBN: 80-86732-93-2.