

Master Seminar:

Computational Finance and Financial Management

Submitted By:

Md Mehedi Hasan (230319)

Md Najmul Sharkar (229940)

Under the supervision of:

Prof. Dr. Elmar Lukas

Dipl.-Ing. Gordon Briest

Management Summary

Prediction of the stock market using historical trend is noticeably challenging, and it has been the area of research for many decades. The report analyzes technical aspects of stock price movements based on a machine learning model, particularly using Logistic Regression (LR) and Naive Bayes (NB) algorithms. The study will examine the effectiveness of model prediction in stock price movement in trading strategies considering with and without trading cost.

Technical analysis opposes the fundamental theory of the Efficient Market Hypothesis (EMH) as well as Random walk Hypothesis as market direction cannot be estimated through historical data analysis. However, in recent years some statistical model integrated in machine learning algorithm has some ability to anticipate the movement of stock prices (Dongdong Lv et. el 2019).

Logistic regression is a classification model to classify the binary or multi-class label based on multiple independent variables. It uses the sigmoid activation function (appendix 1) to calculate each class's probability, where a predefined threshold determines the class label. It can be applied to predict the stock market movement (e.g., up or down) using single or numerous features as independent variables. The naive Bayes is another type of classification model based on the Bayes theorem that assumes features independence on each other and estimates features prior probability and likelihood probability with each attribute for each class to calculate the posterior probability using the Bayes formula. The higher probability predicts the class label.

Different indices, stocks, and commodities/currencies have been extracted from yahoo finance and onvista into python, and the closing price is taken as the base price. Logarithmic return of assets closing price assures the data stationarity. Jarque-Bera test validates the dataset's log return is normally distributed (see appendix 2). The binary value of log return eliminates the seasonality and trend from the datasets. Class label as Upward [1] and Downward [-1] movement has been obtained from log return where the threshold is 0. Different binary lag variables, e.g., five lags, five digitized lags, five ROC lags, have been created to perform the test within the model. From Appendix 3, Table:1, it has been observed that digitize lag features

produce higher cumulative returns while conducting vectorized backtesting with relatively similar volatility. Therefore, findings of digitized lag feature employed in different trading strategies.

Performance evaluations have been conducted with two different portfolios to \$100,000 and \$10,000, respectively, while considering the trading cost. From Appendix 4, Table:3 shows that eleven assets beat traditional buy and hold strategy return while considering no trading cost. With considering the trading cost, yields are sensitive to different portfolios. For Example, Dow Jones produces a 276% cumulative return in the higher portfolio amount in the Logistic Regression model, whereas only 18% in the lower portfolio cannot beat the benchmark return of 87%. This trend holds almost for all the asset categories. Therefore it shows lower portfolio amount yields relatively very low compare to the higher portfolio amount.

Another type of performance evaluation has been considered with the python library "Backtrader" that helps traders develop their trading strategies and evaluate the performance using python library "pyfolio" developed by quantipion. The Initial Portfolio amount is \$100,000 with a 0.09% commission on each transaction without considering short selling. The strategy is, when the next day prediction according to the models is higher than 0, it will buy the shares with the next day opening price as much as possible within portfolio amount and sell owned shares when the prediction is negative. Appendix 5 demonstrates that the trading strategy using backtrader beat the usual strategy with higher return without considering the trading cost. However, returns are relatively low, even negative in some cases, including the trading cost. Appendix 5 Table 4.3 indicates that Ahold's performance is very satisfactory without any trading cost, but with trading cost, no transaction occurs during the backtesting period.

In a nutshell, from the above studies, it can be perceived that technical analysis beat the conventional approach among all asset classes without considering the trading cost. However, it produces inadequate yields while commission added in transactions, even worst in a lower portfolio amount. In most cases, both model's accuracy exceeds 51%, slightly better than random guessing.

References:

- LV, D., Yuan, S., Li, Meizi., Xiang, Yang. (2019). An Empirical Study of Machine Learning Algorithms for Stock Daily Trading Strategy. Hindawi. Retrieved from https://www.hindawi.com/journals/mpe/2019/7816154/
- Navlani, A. (2018). Naive Bayes Classification using Scikit-learn. Datacamp. Retrieved from https://www.datacamp.com/community/tutorials/naive-bayes-scikit-learn
- Amidi, A., Amidy, S.(N.D). CS 229 Machine Learning. Retrieved from https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning#linear-models

Logistic Regression. Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Logistic regression

Yahoo Finance. https://finance.yahoo.com/

Appendix 1:

Equation of Logistics Regression and Naïve Bayes

Sigmoid Activation Function:

$$g(z) = \frac{1}{1 + e^{-z}}$$

Where,

g(z) = Output between 0 and 1 (Probability Estimate)

z = input to the function

e= base of natural log

Naïve Bayes:

$$y = argmaxP(y) \prod_{i=1}^{n} P(x_i|y_i)$$

Where,

P(y) = Class Probabilit

 $P(x_i|y_i) = Conditional Probability$

Appendix 2:

Normal Distribution Graph

Appendix 3:

Table 1: Vectorized back-testing cumulative return of different lag feature variables.

Asset's		2 L	ags	3 L	ags	4 Lags		5 Lags		Digitize Lags	
Return		LR	NB	LR	NB	LR	NB	LR	NB	LR	NB
Dow Jones	1.31	1.31	1.31	1.31	1.31	1.31	1.31	1.31	1.31	2.64	2.65
Euro Stoxx	1.18	1.18	1.18	1.18	1.18	1.42	1.42	1.42	1.42	1.62	1.93
MSCI	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.31	1.31	1.27	1.25
Alphabet	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.70	2.04
AIG	0.94	1.07	1.07	1.86	1.86	3.30	3.30	2.20	3.05	4.55	1.46
Walmart	1.52	2.05	2.05	2.34	2.34	2.20	2.36	2.40	2.30	2.19	2.11
SAP	1.32	1.32	1.32	2.09	2.09	1.52	1.52	1.33	1.27	1.36	2.17
Allianz	1.32	1.32	1.32	1.98	1.98	1.12	1.12	2.26	3.24	3.14	1.70
Ahold	1.05	1.24	1.24	1.19	1.19	1.36	1.18	1.19	1.19	0.98	1.74
SoftBank	2.36	0.85	0.85	2.28	2.28	1.38	1.38	1.06	0.82	1.14	2.16
Dai-ichi	0.94	3.89	3.89	3.89	3.89	2.48	4.20	3.10	2.49	4.63	2.73
Familymart	0.77	0.77	1.50	0.40	0.40	0.40	0.40	5.60	5.12	0.56	1.29
Gold	1.48	1.48	1.48	1.40	1.40	1.62	1.62	1.74	1.74	2.18	1.75
Oil	2.29	2.29	2.29	2.29	2.29	2.29	2.29	3.17	3.17	4.08	4.17
Bitcoin-Eur	2.37	2.33	2.33	2.33	2.31	2.33	2.31	2.46	3.01	1.67	4.11

 Table 2: Annual Volatility of each for Digitized lag features.

Assets's	Digitiz	e Lags	Volatility Digitized lags				
Assets s	LR	NB	LR	NB			
Dow Jones	2.64	2.65	0.2020	0.2022			
Euro Stoxx 50	1.62	1.93	0.2005	0.2004			
MSCI	1.27	1.25	0.1410	0.1411			
Alphabet	1.70	2.04	0.2644	0.2641			
AIG	4.55	1.46	0.3760	0.3764			
Walmart	2.19	2.11	0.2207	0.2205			
SAP	1.36	2.17	0.2842	0.2838			
Allianz	3.14	1.70	0.2614	0.2617			
Ahold	0.98	1.74	0.2166	0.2160			
SoftBank	1.14	2.16	0.3933	0.3930			
Dai-ichi	4.63	2.73	0.3507	0.3506			
Familymart	0.56	1.29	1.4056	1.4057			
Gold	2.18	1.75	0.1469	0.1471			
Oil	4.08	4.17	0.4801	0.4801			
Bitcoin-Euro	1.67	4.11	0.6196	0.6178			

Appendix 4

Performance Evaluation of Simple back-testing

 Table 3: Simple Back-testing result with different portfolio amount

				hout g Cost		With Tra	ading Cost		
	Asset's	Benchmark	Cum.	Return	Cum. I	Return	Cum. Return		
Categories	Name	Cumulative Return	LR	NB	LR	NB	LR	NB	
				ılative urn	Port \$ 100	folio 0,000	Portfolio \$ 10,000		
	Dow Jones	1.87	4.04	3.51	3.76	3.24	1.18	0.81	
Indices	Euro Stoxx	1.18	1.62	1.93	1.49	1.80	0.35	0.60	
	MSCI	1.71	1.79	1.63	1.65	1.50	0.37	0.28	
	Alphabet	2.45	2.27	3.58	2.09	3.33	0.43	1.13	
Large Cap USA	AIG	0.66	5.90	3.54	5.41	3.32	1.00	1.33	
OSA	Walmart	2.24	3.72	4.75	3.44	4.44	0.93	1.71	
	SAP	1.66	2.62	4.73	2.46	4.46	1.01	2.08	
Large Caps Europe	Allianz	1.32	3.14	1.70	2.89	1.54	0.64	0.12	
Lurope	Ahold	1.11	1.12	3.45	1.01	3.22	-0.01	1.22	
	SoftBank	3.25	0.98	3.71	0.88	3.41	-0.07	0.65	
Large Caps Asia Pacific	Dai-ichi	0.87	8.36	9.55	7.71	9.10	1.88	5.12	
Asia raciile	Familymart	1.72	1.32	0.93	1.30	0.91	1.07	0.72	
	Gold	1.73	3.21	2.58	2.97	2.39	0.79	0.67	
Commodities	Oil	2.29	4.08	4.17	3.84	4.01	1.70	2.54	
& Currencys	Bitcoin-Euro	2.37	1.67	4.11	1.62	4.04	1.09	3.34	

Performance graph of simple back-testing

Figure 1: Back-testing Performance of Dow Jones Industrial Average

Figure 2: Back-testing Performance of Alphabet

Figure 3: Back-testing Performance of Ahold Delhaize

Figure 4: Back-testing Performance of FamilyMart

Figure 5: Back-testing Performance of Gold

Appendix 5:

Performance Evaluation of Backtrader back-testing using pyfolio

Table 4.1: Performance of Indices

Assets	Date Range	Months	Par	ticulars	Bench. Return	Annual return	Cum. returns	Volatility	Sharpe ratio	Max drawdown
			LR	W-C		51.2%	679.9%	13.7%	3.08	-22.6%
DowJones	1/12/2016-	59	LK	w/o-c	1.87	69.8%	1288.6%	13.9%	3.89	-22.5%
Dominies	12/31/2020	39	NB	W-C	1.87	54.0%	753.6%	13.6%	3.25	-22.9%
			INB	w/o-c		72.1%	1383.3%	13.6%	4.07	-22.5%
			LR	w-c	1.18	49.8%	642.0%	11.7%	3.5	-5.9%
EuroStoxx	1/12/2016-	59	LK	w/o-c		69.6%	1271.0%	12.6%	4.27	-8.5%
50	12/31/2020	59	ND	W-C		39.0%	412.0%	13.0%	2.6	-8.8%
			NB	w/o-c		59.9%	922.7%	13.3%	3.59	-8.7%
			LD	W-C		-0.2%	-1.0%	9.0%	0.02	-13.3%
I IVISCI I I	1/12/2016-	58	LR	w/o-c	1.71	8.7%	50.6%	9.7%	0.91	-11.6%
	12/31/2020		NB	W-C		-0.7%	-3.4%	8.4%	-0.04	-13.8%
				w/o-c		10.3%	61.8%	9.4%	1.1	-11.8%

 Table 4.2: Performance of Large Cap USA

Assets	Date Range	Months	Part	ticulars	Bench. Return	Annual return	Cum. Returns	Volatility	Sharpe ratio	Max drawdown
			LR	W-C		75.8%	1554.4%	12.9%	443.0%	-8.0%
Alphabet	1/12/2016-	59	LK	w/o-c	2.45	163.3%	12214.1%	16.9%	584.0%	-9.2%
Alphabet	12/31/2020	39	NB	W-C		69.3%	1272.1%	14.8%	364.0%	-13.3%
			IND	w/o-c		125.9%	5649.0%	18.6%	449.0%	-22.4%
		59	LR	W-C	0.66	0.0%	0.0%	0.0%	0.0%	0.0%
American	1/12/2016-			w/o-c		43.2%	491.5%	25.9%	151.0%	-26.0%
Group	12/31/2020	39	NID	W-C		0.0%	0.0%	0.0%	0.0%	0.0%
			NB	w/o-c		47.9%	595.3%	26.8%	159.0%	-33.1%
			LD	W-C		4.0%	21.5%	9.0%	48.0%	-14.2%
Malmant	1/12/2016-	F0	LR	w/o-c	2.24	48.0%	600.7%	17.6%	232.0%	-14.8%
Walmart 12/3:	12/31/2020	59	NB	W-C		4.1%	21.8%	5.3%	78.0%	-6.3%
				w/o-c		60.3%	942.0%	16.8%	290.0%	-13.0%

 Table 4.3: Performance of Large cap Europe

Assets	Date	Month	Particulars		Bench. Return	Annual return	Cum. Returns	Volatility	Sharpe ratio	Max drawdown
			LR	W-C		1.4%	7.1%	13.1%	18.0%	-25.2%
CAD	SAP 1/12/2016- 12/31/2020	59	LK	w/o-c	1.66	27.5%	234.6%	21.9%	122.0%	-31.0%
SAP		39	NID	W-C		4.5%	24.2%	11.3%	44.0%	-18.7%
		NB	w/o-c		28.2%	242.7%	22.7%	121.0%	-33.2%	
		58	LR	W-C		12.7%	79.8%	7.7%	160.0%	-11.1%
Allianz	1/12/2016-		LK	w/o-c	1.32	70.2%	1253.1%	17.0%	322.0%	-21.4%
Allianz	12/31/2020		NB	W-C		11.2%	68.2%	9.6%	116.0%	-18.2%
				w/o-c		59.7%	890.5%	16.9%	285.0%	-22.6%
			LD	W-C		0.0%	0.0%	0.0%	0.0%	0.0%
Abold	1/12/2016-	F0	LR	w/o-c	1.11	94.5%	2634.8%	14.6%	463.0%	-9.7%
Ahold 12/31/2020	59	NB	W-C		0.0%	0.0%	0.0%	0.0%	0.0%	
			w/o-c		52.8%	724.4%	15.6%	280.0%	-14.5%	

 Table 4.4: Performance of Large Cap Asia Pacific.

Assets	Date	Month	Part	Particulars		Annual return	Cum. Returns	Volatility	Sharpe ratio	Max drawdown
	Soft 1/12/2016- Bank 12/31/2020 59		LR	W-C		0.0%	0.0%	0.0%	0	0.0%
Soft		50	LN	w/o-c	3.25	48.4%	598.7%	29.2%	149.0%	-22.8%
Bank		39	NB	W-C		0.0%	0.0%	0.0%	0	0.0%
			IND	w/o-c		2.5%	13.2%	30.2%	23.0%	-61.4%
		57	LR	W-C		-39.9%	-91.3%	25.2%	-189.0%	-91.3%
Dai Ichi	1/12/2016-			w/o-c	0.87	-32.7%	-85.0%	25.7%	-141.0%	-85.1%
Dai ICIII	12/31/2020	57	NB	W-C		-48.9%	-96.0%	25.8%	-247.0%	-96.0%
				w/o-c		-44.1%	-93.8%	26.4%	-207.0%	-93.8%
			LR	W-C		0.0%	0.0%	0.0%	0	0.0%
Family	Family 1/12/2016- Mart 12/31/2020	57	LK	w/o-c	1.72	17.2%	18.2%	85.4%	60.0%	-44.5%
Mart			ND	W-C		0.0%	0.0%	0.0%	0	0.0%
		NB	w/o-c		-20.7%	-21.8%	87.0%	16.0%	-68.8%	

Table 4.5: Commodities and Currencies

Assets	Date	Months	Part	ticulars	Bench. Return	Annual return	Cum. Returns	Volatility	Sharpe ratio	Max drawdown	
				LR	W-C		25.4%	203.2%	11.0%	212.0%	-8.1%
6-1-1	1/12/2016-	F0	LN	w/o-c		42.5%	465.2%	11.1%	325.0%	-7.5%	
Gold	12/31/2020	58	N.D.	W-C		17.9%	124.2%	11.1%	154.0%	-16.9%	
			NB	w/o-c	1.73	33.1%	304.5%	11.0%	264.0%	-16.1%	
	1/12/2016-	50		W-C		0.0%	0.0%	0.0%	0	0.0%	
Oil			LR	w/o-c		516.4%	701124.2 %	33.9%	555.0%	-35.7%	
Oii	12/31/2020	58		W-C	2.29	0.0%	0.0%	0.0%	0	0.0%	
			NB	w/o-c		513.2%	683778.4 %	31.9%	586.0%	-30.6%	
			LD	W-C		88.4%	207.7%	37.4%	188.0%	-14.7%	
Bitcoin-	Bitcoin- Euro 9/24/2019- 12/31/2020	21	LR	w/o-c		108.9%	269.5%	37.5%	215.0%	-12.7%	
Euro			ND	W-C	2.37	40.6%	83.0%	45.6%	99.0%	-38.2%	
		NB	w/o-c	2.57	55.2%	118.2%	46.6%	120.0%	-38.9%		