Abgabe: 11.12.2022 Codierungstheorie

Übungsblatt 7

Aufgabe 1.

- a) Bestimmen Sie eine Paritätsprüfmatrix und eine Erzeugermatrix des $[6,2]_{19}$ –
 Reed-Solomon-Codes C bezüglich der Punkte $b_1 = 1$, $b_2 = 3$, $b_3 = 4$, $b_4 = 6$, $b_5 = 7$ und $b_6 = 8$ (über \mathbb{F}_{17}). Dieser Code hat Zuverlässigkeit d(C) = 5 und Fehlerkorrekturschranke t = 2.
- b) Bestimmen Sie die Codewörter c und \widetilde{c} , die zu den Nachrichtenwörtern m=(9,7) und $\widetilde{m}=(15,2)$ gehören.

(Die redundanten Buchstaben sind dabei als führende Buchstaben c_1 , c_2 , c_3 und c_4 einzufügen).

Aufgabe 2.

- a) Bestimmen Sie eine Paritätsprüfmatrix und eine Erzeugermatrix des $[7,3]_{17}$ –Reed-Solomon-Codes bezüglich der Punkte $b_1=1,\ b_2=3,\ b_3=5,\ b_4=7,\ b_5=9,\ b_6=11$ und $b_7=13$ (über \mathbb{F}_{17}).
- b) Bestimmen Sie die Godewörter c und \tilde{c} , die zu den Nachrichtenwörtern m=(6,7,8) und $\tilde{m}=(11,8,4)$ gehören.

(Die redundanten Buchstaben sind dabei als führende Buchstaben c_1 , c_2 , c_3 und c_4 einzufügen).

Aufgabe 3. Wir betrachten den Körper \mathbb{F}_8 mit der Relation $\alpha^3 = \alpha + 1$ und den $[6,4]_8$ -Reed-Solomon-Code C bezüglich der Punkte 1, α^2 , $\alpha^2 + \alpha$, $\alpha^2 + 1$, α und $\alpha + 1$.

- a) Bestimmen Sie eine Erzeuger- und eine Relationenmatrix von C (in der Standarddarstellung, d.h. mit höchster α -Potenz α^2).
- b) Bestimmen Sie die Codewörter c und \tilde{c} , die zu den Nachrichtenwörtern

$$m=(\alpha,\,\alpha^2,\,\alpha+1,\,1)$$

Abgabe: 11.12.2022 angewandte Informatik

und

$$\widetilde{m} = (\alpha^2 + 1, \alpha^2 + \alpha, 1, \alpha)$$

gehören.

(Die redundanten Buchstaben sind dabei als führende Buchstaben c_1 und c_2 einzufügen).

Aufgabe 4. Wir betrachten den Körper \mathbb{F}_8 mit der Relation $\alpha^3 = \alpha + 1$ und den $[6,2]_8$ -Reed-Solomon-Code C bezüglich der Punkte $1, \alpha^2 + 1, \alpha^2 + \alpha + 1, \alpha^2 + \alpha, \alpha + 1$ und α^2 .

- a) Bestimmen Sie eine Erzeuger- und eine Relationenmatrix von C (in der Standarddarstellung, d.h. mit höchster α -Potenz α^2).
- b) Bestimmen Sie die Codewörter c und \tilde{c} , die zu den Nachrichtenwörtern

$$m = (\alpha, \alpha + 1)$$

und

$$\widetilde{m} = (\alpha^2 + 1, \alpha^2 + \alpha)$$

gehören.

(Die redundanten Buchstaben sind dabei als führende Buchstaben c_1 , c_2 , c_3 und c_4 einzufügen).