Tesina Segnali e Sistemi 2022

Lorenzo Franceschetti Mat. 2000263

Sia dato il segnale $x_t(t)$, ottenuto dalla modulazione in ampiezza del segnale x(t) alla frequenza F_m tramite la seguente operazione:

$$x_t(t) = x(t)\cos(2\pi F_m t) \tag{1}$$

Allora si può ottenere il segnale originale attraverso la seguente procedura:

- Moltiplicare il segnale modulato per $2cos(2\pi F_m t)$
- Filtrare il segnale ottenuto tramite un filtro con risposta in frequenza data da

$$H_{lp}(f) = rect\left(\frac{f}{2B}\right) \tag{2}$$

dove B è la banda monolatera del segnale x(t)

La trasformata di Fourier $X_t(f)$ del segnale $x_t(t)$ risulta essere:

Si nota che, ignorando i due picchi a $\pm 31700Hz$ e $\pm 34750Hz$, la trasformata risulta essere composta da due pezzi identici, uno per valori negativi di frequenza e l'altro per valori positivi, entrambi simmetrici rispetto all'asse passante rispettivamente per -40000Hz e 40000Hz.

Questo è in accordo con la teoria, in quanto la trasformata di un segnale, con trasformata di Fourier X(f), modulato con un coseno di frequenza f_0 è

$$\frac{1}{2}[X(f-f_0) + X(f+f_0)] \tag{3}$$

Essendo $X_t(f)$ la trasformata di un segnale reale, si ha che il suo modulo è pari, dunque è simmetrico rispetto all'asse passante per f = 0. Da ciò si deriva che $F_m = 40000 Hz$.

Ascoltando il segnale demodulato, si nota un disturbo dovuto a una componente ad alta frequenza. Essa deriva dai due picchi presenti nella trasformata $X_t(f)$, che nel segnale demodulato corrispondono a picchi alle frequenze $\pm 5250Hz$ e $\pm 8300Hz$. Per eliminare questo disturbo, si può filtrare il segnale originale con due notch filter, uno con $F_{filter} = 31700Hz$ e l'altro con $F_{filter} = 34750Hz$. In questo modo, i due picchi che danno origine al disturbo nel segnale demodulato scompaiono. Il segnale x(t) che si ottiene dalla demodulazione è più ovattato, in quanto il filtro elimina anche frequenze intorno alla F_{filter} corrispondente.