An R script to generate Figs. 1 - 3 and Performance Comparison Tables

Musa AA and Reinsch N

2025-03-05

```
knitr::opts_chunk$set(echo = TRUE)
options(scipen = 999) # Prevent scientific notation on axes
```

Overview

This document loads data, processes it, and generates three figures along with several performance comparison tables:

- 1. Figure 1: Density plots of Mendelian sampling variances and trait correlations.
- 2. Figure 2: Similarity matrices and Euclidean clustering of the matrices for the aggregate genotype of milk traits.
- 3. Figure 3: Benchmark plots comparing computation time and memory usage.
- 4. Performance Comparison Tables 1 and 2: Summaries from the same benchmark dataset used in Figure 3. These tables report the mean computation time (in minutes) and peak memory usage (in GB) for PyMSQ and gamevar.
- 5. Performance Table 3: Benchmarking of similarity matrices using PyMSQ.

1. Density Plots

Import Packages

We load required libraries

```
library(ggplot2)  # For creating plots
library(reshape2)  # For reshaping data
library(corrplot)  # For correlation plots
require(RColorBrewer)  # For color palettes
library(pheatmap)  # For heatmaps
library(ggpubr)  # For arranging ggplot figures
library(plyr)  # For data manipulation
library(knitr)  # For document generation
library(reticulate)  # For interfacing with Python
```

Import Data from PyMSQ

```
source_python("debug.py")
data <- py$load_package_data()
gmap <- data[["chromosome_data"]]  # genetic map</pre>
```

```
meff <- data[["marker_effect_data"]]  # marker effects
gmat <- data[["genotype_data"]]  # phased genotype
group <- data[["group_data"]]  # group data
ped <- data[["pedigree_data"]]

# define number of traits and index weight
no_traits <- ncol(meff)  # 3 traits
index_wt <- c(1, 1, 1)</pre>
```

Compute Mendelian (co-)variance and correlation using PyMSQ

Prepare and Plot the Density Data

We extract, reshape, and plot the data:

```
# Extract relevant columns
msv_traits <- data.frame(msvmsc[, c("fat", "protein", "pH")])</pre>
# Compute coefficient of variation for each column
round(sapply(msv_traits, function(x) sd(x) / mean(x)) * 100, 2)
mscorr_traits <- data.frame(mscorr[, c("protein_fat", "pH_fat", "pH_protein")])</pre>
# Compute mean correlation
round(sapply(mscorr traits, function(x) mean(x)), 2)
# Compute range of correlations
round(sapply(mscorr_traits, function(x) range(x)), 3)
# Compute percentage of negative values
round(sapply(mscorr_traits, function(x) (sum(x < 0)/265)*100), 1)
# Reshape data
df_msv <- melt(msv_traits)</pre>
colnames(df_msv) <- c("Trait", "Variance")</pre>
df_mscorr <- melt(mscorr_traits)</pre>
colnames(df_mscorr) <- c("Trait", "Correlation")</pre>
# Create density plots
plot1 <- ggplot(df_msv, aes(Variance, color = Trait)) +</pre>
  stat_density(geom = "line", position = "identity") +
  theme_classic() +
 theme(legend.position = "top") +
 scale_color_manual(values = c("black", "blue", "red")) +
```

```
ylab("Density")

plot2 <- ggplot(df_mscorr, aes(Correlation, color = Trait)) +
    stat_density(geom = "line", position = "identity") +
    theme_classic() +
    theme(legend.position = "top") +
    scale_color_manual(values = c("black", "blue", "red")) +
    ylab("Density") +
    scale_x_continuous(limits = c(-0.3, 1), breaks = seq(-0.25, 1, by = 0.25))</pre>
```

Save and Display Figure 1

We combine the density plots and save them as a TIFF file. We then embed the resulting image:

Figure 1: Density plots of Mendelian sampling variances and trait correlations. Panel A displays the variance in fat yield (FY, kg), protein yield (PY, kg), and pH (mol/L). Panel B shows correlations between these traits.

2. Similarity Matrices

We then derive similarity matrices.

```
range(std_sim_without_diag, na.rm = TRUE)

# find the minimum value in sim and check the corresponding value in std_sim
minVal <- min(sim_without_diag, na.rm = TRUE)
minPos <- which(sim_without_diag == minVal, arr.ind = TRUE)
correspondingPos <- std_sim[minPos[1], minPos[2]]</pre>
```

Save and Display Figure 2

```
# Determine number of individuals within each paternal half-sib family
pedigree <- data[["pedigree_data"]][-1, ]</pre>
ped <- as.data.frame(pedigree[,2])</pre>
no <- NULL
for (i in 1:length(unique(ped[, 1]))) {
  first <- length(which(ped[, 1] == i))</pre>
  if (i == 1) {
    no <- c(no, first)
  } else {
    no \leftarrow c(no, first + no[i-1])
}
png("Figure2.png", width = 8, height = 4, units = 'in', res = 700)
par(mfrow = c(1, 2), oma = c(0, 0, 0, 0.1) + 0.1, mar = c(0, 0, 0, 0) + 0.1)
cols <- brewer.pal(9, "Blues")</pre>
corrplot(sim, is.corr = FALSE, method = "color", cl.lim = range(sim),
         cl.digits = 1, cl.cex = 0.80, tl.col = "black", tl.pos = "n",
         col = cols, cl.align.text = "c", mar = c(0, 0, 1, 0)) -> p
corrRect(p, c(1, no), col = "red")
corrplot(std_sim, is.corr = FALSE, method = "color", cl.lim = range(std_sim),
         cl.digits = 1, cl.cex = 0.80, tl.col = "black", tl.pos = "n",
         col = cols, cl.align.text = "c", mar = c(0, 0, 1, 0)) -> p
corrRect(p, c(1, no), col = "red")
mtext(expression(bold("A")), side = 3, outer = TRUE, cex = 1, las = 0, line = -1, adj = 0)
mtext(expression(bold("B")), at = 0.52, side = 3, outer = TRUE, cex = 1, las = 0, line = -1)
dev.off()
## pdf
```

Now we display Figure 2:

3. Benchmark Plots

We then process benchmark data (computation time and memory usage) and generate a 2×2 panel plot.

```
library(dplyr)
library(ggplot2)

# Read csv files
perf_ind <- read.csv("performance_analysis.csv")</pre>
```


Figure 2: Unstandardized (A) and standardized (B) similarity matrices for the aggregate genotype of some milk traits for 265 cows from five half-sib families (separated by red lines).

```
perf_mark <- read.csv("performance_analysis_mark.csv")</pre>
# Compute computation time (convert seconds to minutes) and its SD
time ind summary <- perf ind %>%
  group_by(no_individuals) %>%
  summarise(
   PyMSQ_mean = mean(time_PyMSQ, na.rm = TRUE) / 60,
              = sd(time PyMSQ, na.rm = TRUE) / 60,
    gamevar mean = mean(time gamevar, na.rm = TRUE) / 60,
    gamevar sd = sd(time gamevar, na.rm = TRUE) / 60
  )
# Compute peak memory usage (GB) and its SD
mem_ind_summary <- perf_ind %>%
  group_by(no_individuals) %>%
  summarise(
    PyMSQ_mean = mean(peak_memory_usage_PyMSQ, na.rm = TRUE),
   PyMSQ_sd = sd(peak_memory_usage_PyMSQ, na.rm = TRUE),
    gamevar_mean = mean(peak_memory_usage_gamevar, na.rm = TRUE),
                = sd(peak_memory_usage_gamevar, na.rm = TRUE)
    gamevar_sd
  )
# Compute computation time (in minutes) & its SD (markers)
time_mark_summary <- perf_mark %>%
  group_by(no_markers) %>%
  summarise(
   PyMSQ mean = mean(time PyMSQ, na.rm = TRUE) / 60,
   PyMSQ_sd = sd(time_PyMSQ, na.rm = TRUE) / 60,
    gamevar_mean = mean(time_gamevar, na.rm = TRUE) / 60,
```

```
gamevar_sd = sd(time_gamevar, na.rm = TRUE) / 60
)

# Compute peak memory usage (in GB) & its SD (markers)
mem_mark_summary <- perf_mark %>%
    group_by(no_markers) %>%
    summarise(
    PyMSQ_mean = mean(peak_memory_usage_PyMSQ, na.rm = TRUE),
    PyMSQ_sd = sd(peak_memory_usage_PyMSQ, na.rm = TRUE),
    gamevar_mean = mean(peak_memory_usage_gamevar, na.rm = TRUE),
    gamevar_sd = sd(peak_memory_usage_gamevar, na.rm = TRUE)
)
```

Save and Display Benchmark Plot (Figure 3)

```
png("Figure3.png", width = 9, height = 8, units = "in", res = 700)
par(mfrow = c(2, 2), oma = c(5,3,1,4.6)+0.1, mar = c(2,1,1,0)+0.1)
# Panel A: Computation Time vs. Individuals
with(time_ind_summary, {
  plot(no_individuals, PyMSQ_mean, type = "1", col = "blue",
       ylim = range(c(PyMSQ_mean - PyMSQ_sd, PyMSQ_mean + PyMSQ_sd,
                      gamevar_mean - gamevar_sd, gamevar_mean + gamevar_sd)),
       xlab = "", ylab = "Time (min)", xaxt = "n", yaxt = "n")
  axis(2, col.axis = "black", las = 2)
  box()
  lines(no_individuals, gamevar_mean, type = "1", col = "red")
  # PyMSQ error bars
  arrows(no_individuals, PyMSQ_mean - PyMSQ_sd,
         no_individuals, PyMSQ_mean + PyMSQ_sd,
         angle = 90, code = 3, col = "blue", length = 0.05)
  # gamevar error bars
  arrows (no individuals, gamevar mean - gamevar sd,
         no_individuals, gamevar_mean + gamevar_sd,
         angle = 90, code = 3, col = "red", length = 0.05)
mtext(expression(bold("A")), side = 3, line = 0.5, adj = 0)
# Panel B: Computation Time vs. Markers
with(time mark summary, {
  plot(no_markers, PyMSQ_mean, type = "1", col = "blue",
       ylim = range(c(PyMSQ_mean - PyMSQ_sd, PyMSQ_mean + PyMSQ_sd,
                      gamevar_mean - gamevar_sd, gamevar_mean + gamevar_sd)),
       xlab = "Number of Markers", ylab = "", axes = FALSE)
  axis(4, col.axis = "black", las = 2)
  lines(no_markers, gamevar_mean, type = "l", col = "red")
  arrows(no_markers, PyMSQ_mean - PyMSQ_sd,
         no_markers, PyMSQ_mean + PyMSQ_sd,
         angle = 90, code = 3, col = "blue", length = 0.05)
  arrows(no_markers, gamevar_mean - gamevar_sd,
         no_markers, gamevar_mean + gamevar_sd,
         angle = 90, code = 3, col = "red", length = 0.05)
```

```
mtext(expression(bold("B")), side = 3, line = 0.5, adj = 0)
# Panel C: Peak Memory Usage vs. Individuals
with(mem_ind_summary, {
  plot(no_individuals, PyMSQ_mean, type = "1", col = "blue",
       ylim = range(c(PyMSQ_mean - PyMSQ_sd, PyMSQ_mean + PyMSQ_sd,
                      gamevar_mean - gamevar_sd, gamevar_mean + gamevar_sd)),
       xlab = "Number of Individuals", ylab = "Peak Memory Usage (GB)",
       axes = FALSE)
  axis(2, col.axis = "black", las = 2)
  box()
  lines(no_individuals, gamevar_mean, type = "l", col = "red")
  arrows(no_individuals, PyMSQ_mean - PyMSQ_sd,
         no_individuals, PyMSQ_mean + PyMSQ_sd,
         angle = 90, code = 3, col = "blue", length = 0.05)
  arrows(no_individuals, gamevar_mean - gamevar_sd,
         no_individuals, gamevar_mean + gamevar_sd,
         angle = 90, code = 3, col = "red", length = 0.05)
  axlab = seq(0, max(no_individuals), length.out=11)
  Axis(side = 1, at = axlab, labels = format(axlab, scientific = FALSE), las = 2)
})
mtext(expression(bold("C")), side = 3, line = 0.5, adj = 0)
# Panel D: Peak Memory Usage vs. Markers
with (mem mark summary, {
  plot(no_markers, PyMSQ_mean, type = "1", col = "blue",
       ylim = range(c(PyMSQ_mean - PyMSQ_sd, PyMSQ_mean + PyMSQ_sd,
                      gamevar_mean - gamevar_sd, gamevar_mean + gamevar_sd)),
       xlab = "Number of Markers", ylab = "", axes = FALSE)
  axlab = seq(0, max(no_markers), length.out=11)
  Axis(side = 1, at = axlab, labels = axlab, las = 2)
  axis(4, col.axis = "black", las = 2)
  lines(no_markers, gamevar_mean, type = "l", col = "red")
  arrows(no_markers, PyMSQ_mean - PyMSQ_sd,
         no_markers, PyMSQ_mean + PyMSQ_sd,
         angle = 90, code = 3, col = "blue", length = 0.05)
  arrows(no_markers, gamevar_mean - gamevar_sd,
         no_markers, gamevar_mean + gamevar_sd,
         angle = 90, code = 3, col = "red", length = 0.05)
mtext(expression(bold("D")), side = 3, line = 0.5, adj = 0)
# Add global x and y labels
mtext("Time (min)", at = .75, side = 2, outer = TRUE, cex = 1.2, las = 0, line = 1.8)
mtext("Peak memory usage (GB)", at = .25, side = 2, outer = TRUE, cex = 1.2, las = 0, line = 1.8)
mtext("Time (min)", at = .75, side = 4, outer = TRUE, cex = 1.2, las = 0, line = 3.5)
mtext("Peak memory usage (GB)", at = .25, side = 4, outer = TRUE, cex = 1.2, las = 0, line = 3.5)
mtext("Number of individuals", at = .25, side = 1, outer = TRUE, cex = 1.2, las = 0, line = 2)
mtext("Number of markers", at = .75, side = 1, outer = TRUE, cex = 1.2, las = 0, line = 2)
# Common legend
```

Now we display Figure 3:

Figure 3: Benchmark plots comparing computation time (Panels A, B) and memory usage (Panels C, D) for PyMSQ and gamevar.

4. Performance Comparison Tables

We compare PyMSQ and gamevar using two benchmark datasets:

• Individuals Dataset: Number of markers is fixed at 1000, while the number of individuals varies from

5000 to 100000.

• Markers Dataset: Number of individuals is fixed at 500, while the number of markers varies from 2500 to 50000. Both datasets involve 10 traits and 1 chromosome.

```
# For the individuals dataset:
time_ind_summary <- perf_ind %>%
  group by (no individuals) %>%
  summarise(
   PyMSQ time = mean(time PyMSQ, na.rm = TRUE) / 60,
   Gamevar_time = mean(time_gamevar, na.rm = TRUE) / 60
  ) %>%
  mutate(Fold_Faster = Gamevar_time / PyMSQ_time)
mem_ind_summary <- perf_ind %>%
  group_by(no_individuals) %>%
  summarise(
   PyMSQ_memory = mean(peak_memory_usage_PyMSQ, na.rm = TRUE),
   Gamevar_memory = mean(peak_memory_usage_gamevar, na.rm = TRUE)
 mutate(Memory_Ratio = PyMSQ_memory / Gamevar_memory)
# Merge the summaries for individuals:
individuals_summary <- left_join(time_ind_summary, mem_ind_summary, by = "no_individuals") %>%
  rename(
    Number of Individuals = no_individuals,
    `PyMSQ Time (min) = PyMSQ_time,
    `Gamevar Time (min)` = Gamevar_time,
   Time Ratio (Gamevar/PyMSQ) = Fold_Faster,
   `PyMSQ Memory (GB)` = PyMSQ_memory,
    `Gamevar Memory (GB)` = Gamevar_memory,
    `Memory Ratio (PyMSQ/Gamevar)` = Memory_Ratio
  )
# For the markers dataset:
time_mark_summary <- perf_mark %>%
  group_by(no_markers) %>%
  summarise(
   PyMSQ time = mean(time PyMSQ, na.rm = TRUE) / 60,
   Gamevar time = mean(time gamevar, na.rm = TRUE) / 60
  mutate(Fold_Faster = Gamevar_time / PyMSQ_time)
mem_mark_summary <- perf_mark %>%
  group_by(no_markers) %>%
  summarise(
   PyMSQ_memory = mean(peak_memory_usage_PyMSQ, na.rm = TRUE),
   Gamevar_memory = mean(peak_memory_usage_gamevar, na.rm = TRUE)
  ) %>%
  mutate(Memory_Ratio = PyMSQ_memory / Gamevar_memory)
# Merge the summaries for markers:
markers_summary <- left_join(time_mark_summary, mem_mark_summary, by = "no_markers") %>%
 rename(
    `Number of Markers` = no_markers,
```

```
PyMSQ Time (min) = PyMSQ_time,
   Gamevar Time (min) = Gamevar_time,
   Time Ratio (Gamevar/PyMSQ) = Fold_Faster,
   PyMSQ Memory (GB) = PyMSQ_memory,
   Gamevar Memory (GB) = Gamevar_memory,
   Memory Ratio (PyMSQ/Gamevar) = Memory_Ratio
)
```

Display the table for the individuals dataset:

Table 1: Performance Comparison (Individuals Dataset)

	PyMSQ			PyMSQ	Gamevar	
Number of	Time	Gamevar	Time Ratio	Memory	Memory	Memory Ratio
Individuals	(\min)	Time (min)	(Gamevar/PyMSQ)	(GB)	(GB)	(PyMSQ/Gamevar)
5000	0.0735	1.6917	23.0262	0.5492	0.0139	39.5290
10000	0.1340	3.3415	24.9369	0.7896	0.0140	56.2000
15000	0.1945	4.9152	25.2685	1.0361	0.0141	73.5025
20000	0.2380	6.5075	27.3443	1.2809	0.0141	90.6188
25000	0.3052	8.1996	26.8676	1.5272	0.0142	107.2078
30000	0.3567	9.7491	27.3340	1.7837	0.0143	125.1062
35000	0.4025	11.3988	28.3166	2.0036	0.0143	139.8827
40000	0.4731	12.9819	27.4391	2.2311	0.0143	155.8354
45000	0.5218	14.6783	28.1301	2.4683	0.0144	171.4445
50000	0.5775	16.2707	28.1760	2.7052	0.0144	187.2737
55000	0.6475	17.8198	27.5195	2.9305	0.0145	202.6832
60000	0.6973	19.3777	27.7896	3.1631	0.0145	217.8085
65000	0.7651	21.1444	27.6373	3.3932	0.0145	234.1999
70000	0.8220	22.7347	27.6589	3.6307	0.0146	249.1597
75000	0.8868	24.2053	27.2962	3.8740	0.0145	266.3079
80000	0.9366	26.0018	27.7629	4.1030	0.0146	280.3230
85000	0.9942	27.4408	27.6023	4.3259	0.0147	294.8262
90000	1.0470	29.2895	27.9747	4.5471	0.0147	309.1979
95000	1.1101	30.7444	27.6947	4.7721	0.0147	323.7633
100000	1.1609	30.7995	26.5314	4.9705	0.0148	334.9568

Display the table for the markers dataset:

Table 2: Performance Comparison (Markers Dataset)

	PyMSQ			PyMSQ	Gamevar	
Number of	Time	Gamevar	Time Ratio	Memory	Memory	Memory Ratio
Markers	(\min)	Time (min)	(Gamevar/PyMSQ)	(GB)	(GB)	(PyMSQ/Gamevar)
2500	0.0333	2.4414	73.2419	1.1052	0.0729	15.1675
5000	0.0668	10.4440	156.3479	1.2909	0.2827	4.5664

Number of Markers	PyMSQ Time (min)	Gamevar Time (min)	Time Ratio (Gamevar/PyMSQ)	PyMSQ Memory (GB)	Gamevar Memory (GB)	Memory Ratio (PyMSQ/Gamevar)
7500	0.1107	24.6128	222.4045	1.5237	0.6321	2.4105
10000	0.1708	41.5811	243.4966	1.8872	1.1213	1.6831
12500	0.2675	61.8284	231.1198	2.4206	1.7502	1.3830
15000	0.3605	95.3007	264.3447	3.8162	2.5188	1.5151
17500	0.4679	135.2333	289.0526	4.2710	3.4270	1.2463
20000	0.5714	173.6894	303.9894	6.5295	4.4750	1.4591
22500	0.7248	224.9720	310.3847	8.1461	5.6627	1.4386
25000	0.9020	276.2836	306.3011	8.3819	6.9901	1.1991
27500	1.0024	338.1668	337.3515	10.1369	8.4571	1.1986
30000	1.2325	404.2205	327.9635	13.3481	10.0639	1.3263
32500	1.3395	472.9189	353.0519	16.0859	11.8104	1.3620
35000	1.6101	558.0030	346.5678	18.6937	13.6965	1.3648
37500	1.8505	634.4724	342.8685	21.2675	15.7224	1.3527
40000	2.1511	781.0272	363.0799	23.6134	17.8880	1.3201
42500	2.3476	809.9011	344.9935	26.5606	20.1932	1.3153
45000	2.6547	908.1433	342.0889	30.6722	22.6381	1.3549
47500	3.0119	987.5281	327.8773	33.5492	25.2228	1.3301
50000	3.2457	1078.8873	332.4034	36.3486	27.9472	1.3006

5. Performance Table 3: Benchmark of similarity matrices

Using the same data set for benchmarking Mendelian (co-variability), we benchmarked the time and peak memory usage:

```
library(dplyr)
library(knitr)
# Read csv files
perf_ind <- read.csv("similarity_unsaved.csv")</pre>
perf_mark <- read.csv("similarity_mark_unsaved.csv")</pre>
# Compute computation time (in minutes) + SD for individuals
time_ind_summary <- perf_ind %>%
  group_by(no_individuals) %>%
  summarise(
    times = mean(time, na.rm = TRUE) / 60,
    time_sd = sd(time, na.rm = TRUE) / 60
  )
mem_ind_summary <- perf_ind %>%
  group_by(no_individuals) %>%
  summarise(
    memory = mean(peak_memory_usage, na.rm = TRUE),
    memory_sd = sd(peak_memory_usage, na.rm = TRUE)
  )
# Markers scenario
time_mark_summary <- perf_mark %>%
  group_by(no_markers) %>%
  summarise(
```

```
times = mean(time, na.rm = TRUE) / 60,
   time_sd = sd(time, na.rm = TRUE) / 60
  )
mem_mark_summary <- perf_mark %>%
  group_by(no_markers) %>%
  summarise(
   memory = mean(peak memory usage, na.rm = TRUE),
   memory_sd = sd(peak_memory_usage, na.rm = TRUE)
# Merge time & memory for Individuals
ind summary <- left join(time ind summary, mem ind summary, by = "no individuals") %>%
  mutate(
    `Time (min)` = paste0(round(times, 2), " ± ", round(time_sd, 2)),
    `Memory (GB)` = paste0(round(memory, 2), " ± ", round(memory_sd, 2))
  select(no_individuals, `Time (min)`, `Memory (GB)`)
# Merge time & memory for Markers
mark_summary <- left_join(time_mark_summary, mem_mark_summary, by = "no_markers") %>%
  mutate(
    `Time (min)` = paste0(round(times, 2), " ± ", round(time_sd, 2)),
    `Memory (GB)` = paste0(round(memory, 2), " ± ", round(memory_sd, 2))
  select(no_markers, `Time (min)`, `Memory (GB)`)
# Rename to avoid duplicates
ind_summary_renamed <- ind_summary %>%
  rename(
    "No. Individuals" = no_individuals,
    "Time (min) [Ind]" = "Time (min)",
    "Memory (GB) [Ind]" = "Memory (GB)"
mark_summary_renamed <- mark_summary %>%
  rename(
    "No. Markers" = no_markers,
    "Time (min) [Mark]" = "Time (min)",
    "Memory (GB) [Mark]" = "Memory (GB)"
  )
# Combine side by side
results <- cbind(ind summary renamed, mark summary renamed)
# Print the merged table
kable(results, caption = "Benchmark Results for Similarity Matrix")
```

Table 3: Benchmark Results for Similarity Matrix

No. Individuals	Time (min) [Ind]	Memory (GB) [Ind]		Time (min) [Mark]	Memory (GB) [Mark]
5000	0.08 ± 0.02	0.76 ± 0.05	2500	0.04 ± 0.01	0.37 ± 0.03

No. Individuals	Time (min) [Ind]	Memory (GB) [Ind]	No. Mark- ers	Time (min) [Mark]	Memory (GB) [Mark]
10000	0.17 ± 0.01	1.36 ± 0.04	5000	0.07 ± 0	0.63 ± 0.03
15000	0.3 ± 0	2.33 ± 0.16	7500	0.1 ± 0	1.04 ± 0.06
20000	0.44 ± 0	3.33 ± 0.17	10000	0.17 ± 0	1.57 ± 0.19
25000	0.66 ± 0.02	4.93 ± 0.32	12500	0.23 ± 0	2.33 ± 0.06
30000	0.89 ± 0.02	6.78 ± 0.32	15000	0.34 ± 0	3.15 ± 0.05
35000	1.16 ± 0.02	9.12 ± 0.56	17500	0.4 ± 0.01	4.16 ± 0.04
40000	1.45 ± 0.01	11.71 ± 0.77	20000	0.53 ± 0	5.93 ± 0.22
45000	1.82 ± 0.02	14.32 ± 0.62	22500	0.64 ± 0	7.66 ± 0.12
50000	2.2 ± 0	16.76 ± 0.29	25000	0.79 ± 0.02	7.92 ± 0.03
55000	2.62 ± 0	21.18 ± 0.58	27500	0.94 ± 0	9.45 ± 0.04
60000	3.06 ± 0.02	25.8 ± 0.82	30000	1.07 ± 0	12.24 ± 0.41
65000	3.56 ± 0	29.27 ± 0.9	32500	1.24 ± 0.01	15.05 ± 0.36
70000	4.07 ± 0.02	33.67 ± 0.43	35000	1.44 ± 0	17.57 ± 0.28
75000	4.6 ± 0.03	37.55 ± 0.64	37500	1.67 ± 0.1	20.09 ± 0.19
80000	5.26 ± 0.03	44.73 ± 1.62	40000	1.89 ± 0.08	22.5 ± 0.38
85000	5.86 ± 0.05	50.46 ± 0.62	42500	2.07 ± 0.06	24.78 ± 0.68
90000	6.48 ± 0.05	55.42 ± 0.52	45000	2.32 ± 0.07	30.03 ± 0.43
95000	7.15 ± 0.07	60.44 ± 0.67	47500	2.54 ± 0	32.82 ± 0.35
100000	7.93 ± 0.09	69.58 ± 1.87	50000	2.8 ± 0.02	34.28 ± 0.22