Topología general

Pablo Pallàs

13 de febrero de 2023

Índice

1.	Espacios topológicos 1.1. Espacios topológicos	1
2.	Aplicaciones continuas y homeomorfismos	2
3.	Separación y numerabilidad	2
4.	Espacios métricos	2
5.	Compacidad	2
6.	Conexión	2

1. Espacios topológicos

1.1. Espacios topológicos

Sea X un conjunto y $\mathcal{P}(X) = \{A : A \subset X\}$ el conjunto de sus partes, entonces:

Definición 1.1. Una topología sobre un conjunto X es un subconjunto $\tau \subset \mathcal{P}(X)$ que satisface:

- I. El conjunto vacío \emptyset y el conjunto total X pertenecen a τ .
- II. La unión arbitraria de elementos de τ también pertenece a τ .
- III. La intersección finita de elementos de τ también pertenece a τ .

El par (X, τ) lo denominaremos **espacio topológico** y a los elementos de τ los llamaremos **abiertos**.

Es decir, podríamos decir que una topología es una colección de subconjuntos que contiene al vacío y al total, y que es cerrada para las uniones arbitrarias y las intersecciones finitas.

Ejemplo 1.1.1. Sea X un conjunto arbitrario $y \tau_D = \mathcal{P}(X)$. Entonces, τ_D es una topología en X ya que contiene a todos los subconjuntos de X, en particular al vacío y al total, es cerrada para las uniones arbitrarias y para las intersecciones finitas. A esta topología la denominaremos topología discreta, y al conjunto X dotada de esta topología espacio discreto.

Ejemplo 1.1.2. Sea X un conjunto arbitrario $y \tau_I = \{\emptyset, X\}$. Entonces la colección τ_I es una topología sobre X: contiene al vacío y al total, la unión de ambos es $X \in \tau_I$ y la intersección es $\emptyset \in \tau_I$. Esta topología la denominaremos **topología indiscreta**, y es la topología más simple que puede tener un conjunto. A un conjunto X dotado con esta topología lo denominaremos **espacio indiscreto**.

Definición 1.2. Dos topologías τ_1, τ_2 sobre un conjunto X se dicen **comparables** si $\tau_1 \subset \tau_2$ ó $\tau_2 \subset \tau_1$. Si $\tau_1 \subset \tau_2$ diremos que τ_2 es más **fina** (tiene más abiertos) que τ_1 .

Notar que si τ_1 y τ_2 son dos topologías sobre X es fácil ver que $\tau_1 \cap \tau_2$ es una topología sobre X. En general, la unión $\tau_1 \cup \tau_2$ no es necesariamente una topología.

Definición 1.3. Sea (X, τ) un espacio topológico, un conjunto $\mathfrak{B} \subset \tau$ de abiertos se dice **base** de τ si todo elemento de τ es unión de elementos de \mathfrak{B} .

Ejemplo 1.3.1. Veamos algunos ejemplos:

- 1. La propia topología τ es base de sí misma.
- 2. Es claro que $\mathfrak{B} = \{\{x\} : x \in X\}$ es base de la topología discreta τ_D sobre X.
- 3. El conjunto de intervalor $\mathfrak{B}_U = \{(a,b) : a,b \in \mathbb{R}\}$ es una base para la topología usual sobre \mathbb{R} , τ_U .

Proposición 1.4. Sea (X, τ) un espacio topológico, entonces $\mathfrak{B} \subset \tau$ es una base si y sólo si para todo $U \in \tau$ y todo $x \in U$ existe $B \in \mathfrak{B}$ tal que $x \in B \subset U$.

- 2. Aplicaciones continuas y homeomorfismos
- 3. Separación y numerabilidad
- 4. Espacios métricos
- 5. Compacidad
- 6. Conexión