Esercizi di Informatica Teorica Calcolabilità nel modello di Turing

a cura di Luca Cabibbo e Walter Didimo

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

Sommario

- calcolabilità in vari contesti
- riduzioni e calcolabilità
- dimostrazioni di decidibilità di problemi
- dimostrazioni di indecidibilità di problemi

notazioni sul livello degli esercizi: (*) facile, (**) non difficile (***) media complessità, (****) difficile, (****) quasi impossibile

La T-calcolabilità

definizioni di T-calcolabilità in vari contesti:

- calcolo di funzioni parziali di stringa:
- una funzione parziale f: $(\Sigma^*)^n \to \Sigma^*$ è <u>T-calcolabile</u> se esiste una MT tale che: $q_0\underline{x} \mid ---* \underline{x}q_F f(\underline{x}) \Leftrightarrow f$ è definita su $\underline{x} \in (\Sigma^*)^n$ (per tutti gli \underline{x} su cui f non è definita, la MT o termina in uno stato non finale o non termina)
- decisione (calcolo) di predicati:

un predicato su Σ^* è una funzione p: $(\Sigma^*)^n \to \{\text{vero, falso}\};$ p è <u>T-decidibile</u> se esiste una MT che calcola p (altrimenti p è <u>T-indecidibile</u>); p è <u>T-semi-decidibile</u> se esiste una MT che termina in uno stato finale per ogni \underline{x} per cui $\underline{p}(\underline{x})$ è vero, mentre non termina o termina in uno stato non finale per ogni \underline{x} per cui $\underline{p}(\underline{x})$ è falso

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

3

La T-calcolabilità

esemplificazione di linguaggio:

T-calcolabile = calcolabile

T-decidibile = decidibile

T-semi-decidibile = semi-decidibile

alcuni predicati notevoli:

- appartenenza di una stringa ad un linguaggio (riconoscimento di un linguaggio)
- il linguaggi di tipo 0 sono semi-decidibili (accettati da una MT)
- il linguaggi di tipo 1 sono decidibili (riconosciuti da una MT)
- il predicato della fermata (HALT) è <u>indecidibile ma semi-decidibile</u>

Riducibilità di problemi

- una <u>istanza</u> di un problema P è un insieme di specifiche (dati di input) che servono a definire completamente il problema P <u>esempio</u>: sia P il seguente problema: determinare il numero degli abitanti della città x che hanno i capelli di colore y l'<u>istanza generica</u> di P è la coppia <x,y> una <u>istanza specifica</u> di P è ad esempio <Roma, verde>
- una <u>riduzione</u> di un problema A in un problema B è una funzione f che trasforma <u>ogni</u> istanza x di A in una <u>particolare</u> istanza $f(x)=y_x$ di B, in modo tale che trovare una soluzione per il problema B con istanza y_x <u>equivale</u> a trovare una soluzione per il problema A con istanza x; si scrive anche $A \rightarrow^f B$

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

5

Riducibilità e decidibilità

implicazioni importanti:

- se $A \rightarrow^f B$ ed f è calcolabile allora:
 - <u>B</u> è "difficile" almeno quanto <u>A</u> (cioè B è più difficile di A o è difficile quanto A), poiché risolvere B su un particolare insieme di istanze (l'insieme {f(x): x è istanza di A}) equivale a risolvere A su ogni possibile istanza x
 - B è decidibile \Rightarrow A è decidibile
 - A è indecidibile \Rightarrow B è indecidibile

tecnica per dimostrare che un problema P è decidibile: cerco un problema Q decidibile tale che $P \rightarrow^f Q$, con f calcolabile tecnica per dimostrare che un problema P è indecidibile: cerco un problema Q indecidibile tale che $Q \rightarrow^f P$, con f calcolabile

<u>Esercizio 1</u>(****) si considerino i due seguenti problemi:

- il problema <u>CAMMINO</u>: dato un grafo G diretto e due suoi vertici x ed y, esiste un cammino diretto da x ad y?
- il problema <u>APPARTENENZA</u>: dato un linguaggio $L \subseteq \Sigma^*$ non contestuale ed una stringa $w \in \Sigma^*$, w appartiene ad L? sapendo che il problema <u>APPARTENENZA</u> è decidibile, dimostrare la decidibilità del problema <u>CAMMINO</u>.

Soluzione

cerchiamo una f calcolabile, tale che CAMMINO \rightarrow f APPARTENENZA

- una istanza del problema CAMMINO è una tripla <G,x,y>
- una istanza del problema APPARTENENZA è una coppia <L,w>

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

7

Esercizi svolti sulla decidibilità

- definiamo una funzione f che a partire da una istanza <G,x,y> di $\underline{\text{CAMMINO}}$ produce una istanza <L,w $>_{<$ G,x,y $>}$ di $\underline{\text{APPARTENENZA}}$
 - <u>L è il linguaggio definito dalla grammatica</u> <V $_T$,V $_N$, S, P>:
 - V_T ha un simbolo z per ogni vertice z di G
 - \bullet V_N ha un simbolo Z per ogni vertice z di G più l'assioma S
 - P è formato dalle seguenti produzioni:
 - $-S \rightarrow zZ$ e $Z \rightarrow z$ per ogni vertice z di G $-U \rightarrow Z$ per ogni arco (u, z) di G
 - w è la stringa "xy"

 $f(\langle G,x,y\rangle) = \langle L,w\rangle_{\langle G,x,y\rangle}$ è calcolabile, poiché è una semplice "traslitterazione" (traduzione meccanica in numero finito di passi)

• vediamo un <u>esempio di applicazione di f</u>: sia <G,x,y> la seguente istanza

costruiamo l'istanza f (
$$<$$
G,x,y $>$) = $<$ L,w $>_{<$ G,x,y $>$ V_T = {u, v, z, x, y}, V_N = {U, V, Z, X, Y, S}, S=assioma produzioni: $S \rightarrow uU \mid vV \mid zZ \mid xX \mid yY$

$$U \rightarrow u \quad V \rightarrow v \quad Z \rightarrow z \quad X \rightarrow x \quad Y \rightarrow y$$

$$U \rightarrow V \quad V \rightarrow U \mid X \mid Y \quad Z \rightarrow X \mid Y \quad X \rightarrow U$$
stringa w = xy

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

9

Esercizi svolti sulla decidibilità

- dobbiamo dimostrare che esiste un cammino da x ad y in $G \Leftrightarrow w=xy$ appartiene ad L
 - <u>supponiamo che esista un cammino da x ad y in G</u>, e che sia indicato al modo: $x, v_1, v_2, ..., v_n, y$; allora, per costruzione, esistono nella grammatica che genera L le seguenti produzioni: $S \rightarrow xX, X \rightarrow V_1, V_1 \rightarrow V_2, ..., V_n \rightarrow Y, Y \rightarrow y$ quindi, la stringa w=xy è generata dalla grammatica, cioè $w \in L$
 - <u>supponiamo viceversa che w=xy∈ L</u>; una derivazione per w è necessariamente del tipo: $S|-xX|-xV_1|-xV_2|-,...,|-xV_n|-xY|-xy$, e dunque esistono in G gli archi $(x, v_1), (v_1, v_2),..., (v_n, y)$, che definiscono il cammino $x, v_1, v_2, ..., v_n, y$

Esercizio 2(***) dimostrare la decidibilità del seguente problema (IMPLICAZIONE): siano dati un insieme di proposizioni $S=\{P_1, P_2, ..., P_n\}$ ed un insieme di implicazioni logiche su S, $I=\{P_i \Rightarrow P_j : i, j \in \{1, ..., n\}\}$; date due proposizioni P_h e P_k di S, esiste una sequenza di implicazioni logiche del tipo:

$$P_h \Rightarrow P_{i_1} \Rightarrow P_{i_2} \Rightarrow ... \Rightarrow P_{i_r} \Rightarrow P_k$$
?

Soluzione

riduciamo il problema <u>IMPLICAZIONE</u> al problema <u>CAMMINO</u>, il quale è noto essere decidibile;

- una istanza del problema <u>CAMMINO</u> è una tripla <G,x,y>
- una istanza del problema <u>IMPLICAZIONE</u> è una quadrupla <S, I, P_h,P_k>

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

11

Esercizi svolti sulla decidibilità

- <u>definiamo la seguente funzione</u> $f(<S, I, P_h, P_k>) = <G,x,y>_{<S, I, P_h, P_k>}$
 - G ha un vertice r per ogni proposizione P_r di S;
 - G ha un arco (i, j) per ogni implicazione $P_i \Rightarrow P_j$ di I;
 - x = h
 - y = k
- esempio di costruzione tramite f:

$$S = \{P_1, P_2, P_3, P_4, P_5, P_6\}$$

$$I = \{P_1 \Rightarrow P_2, P_5 \Rightarrow P_3, P_1 \Rightarrow P_3, P_6 \Rightarrow P_2, P_5 \Rightarrow P_1, P_4 \Rightarrow P_6, P_5 \Rightarrow P_6\}$$

$$P_h = P_5$$

- <u>dimostriamo la correttezza della riduzione</u>: dobbiamo provare che esiste una sequenza di implicazioni da P_h a $P_k \Leftrightarrow$ esiste un cammino diretto da x ad y in G.
- supponiamo che esista una sequenza di implicazioni del tipo:

$$P_h \Rightarrow P_{i_1} \Rightarrow P_{i_2} \Rightarrow ... \Rightarrow P_{i_r} \Rightarrow P_k$$

allora in G esistono gli archi (h, i_1), (i_1 , i_2), ... (i_r , k), e poiché $x = h$ ed $y = k$, allora tali archi definiscono un cammino da x ad y in G ;

- viceversa, supponiamo esista un cammino x, i_1 , i_2 , ..., i_r , y in G; questo implica che esistono gli archi (x, i_1) , (i_1, i_2) , ... (i_r, y) in G; poiché ad ogni arco di G corrisponde una implicazione in I, e poiché x=h ed y=k, allora esistono le seguenti implicazioni:

$$P_{h} \! \Rightarrow \! P_{i_{1}} \! \Rightarrow \! P_{i_{2}} \! \Rightarrow \! ... \! \Rightarrow \! P_{i_{r}} \! \Rightarrow \! P_{k}$$

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

13

Problemi indecidibili

tecnica per dimostrare che un problema P è indecidibile: cerco un problema Q indecidibile tale che $Q \rightarrow^f P$ ed f è calcolabile

- occorre conoscere almeno un problema Q indecidibile
- esistono <u>due problemi indecidibili notevoli</u> (archetipi):
 - <u>il problema della fermata di una MT (HALT)</u>: data una MT M ed una stringa x, M terminerà la computazione su x?
 - il problema delle corrispondenze di Post (PCP): sia $C = \{(u_1, v_1), (u_2, v_2), ..., (u_n, v_n)\} \text{ un insieme finito di coppie di stringhe sull'alfabeto } \Sigma; esiste una sequenza i_1, i_2, ..., i_k di indici in $\{1,...,n\}$ anche ripetuti tale che: <math>u_{i_1} u_{i_2} u_{i_3} ... u_{i_k} = v_{i_1} v_{i_2} v_{i_3} ... v_{i_k}$? (nota: la sequenza può essere di lunghezza k qualunque)

Esercizio 3(****) dimostrare l'indecidibilità del seguente problema (INCLUSIONE): date due MT, M_1 ed M_2 è vero che $L(M_1) \subseteq L(M_2)$?

Soluzione

dimostriamo che il problema HALT è riducibile al problema INCLUSIONE, cioè riduciamo la generica istanza di HALT ad una particolare istanza del problema INCLUSIONE, in modo tale che la riduzione sia calcolabile;

- analizziamo le istanze dei due problemi:
- una istanza di HALT è costituita da una MT M e da una stringa w
- una istanza di INCLUSIONE è costituita da due MT, M_1 ed M_2

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

15

Esercizi svolti sulla indecidibilità

- definiamo la funzione $f(\langle M, w \rangle) = \langle M_1, M_2 \rangle_{\langle M, w \rangle}$ al modo:
- M₁ è una MT che riconosce solo w (è costruita come un ASF)
- $-M_2 = M$

la funzione f è ovviamente calcolabile;

• dimostriamo che decidere se $L(M_1) \subseteq L(M)$ <u>equivale</u> a decidere se M si ferma quando calcola W:

per la costruzione fatta, decidere se $L(M_1) \subseteq L(M)$ <u>equivale</u> a decidere se $w \in L(M)$ (perché $L(M_1) = \{w\}$); d'altronde, decidere se $w \in L(M)$ <u>equivale</u> a decidere se M si ferma accettando w oppure no.

Esercizio 4(****) dimostrare l'indecidibilità del seguente problema (INTERSEZIONE): date due grammatiche non contestuali G_1 e G_2 , è vero che $L(G_1) \cap L(G_2) = \emptyset$?

Soluzione

cerchiamo una riduzione: PCP \rightarrow f INTERSEZIONE

- analizziamo le istanze dei due problemi:
 - istanza di PCP: $C = \{(u_1, v_1), (u_2, v_2), ..., (u_n, v_n)\}$ su \sum
 - ullet istanza di intersezione: due CFG, G_1 e G_2
- definiamo la funzione $f(\langle C, \Sigma \rangle) = \langle G_1, G_2 \rangle_{\langle C, \Sigma \rangle}$ al modo:

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

17

Esercizi svolti sulla indecidibilità

- introduciamo n simboli: a₁, a₂, ..., a_n
- $-G_1$ è la CFG su $\Sigma \cup \{a_1, a_2, ..., a_n\}$ definita dalle seguenti produzioni: $S_1 \rightarrow u_i a_i$, $S_1 \rightarrow u_i S_1 a_i$ (i = 1,..., n)
- $-G_2$ è la CFG su Σ ∪{ $a_1, a_2, ..., a_n$ } definita dalle seguenti produzioni: S_2 → v_ia_i , S_2 → $v_iS_2a_i$ (i = 1,..., n)
- $\begin{array}{l} \bullet \text{ dimostriamo che decidere se esiste una sequenza di indici } i_1\,,i_2\,,\,...,\,i_k \\ \text{tale che } u_{i_1}\,u_{i_2}\,u_{i_3}\,....\,\,u_{i_k} = v_{i_1}\,v_{i_2}\,v_{i_3}\,...\,\,v_{i_k}\,\underline{\text{ equivale}}\,\,\text{a decidere se} \\ L(G_1) \cap L(G_2) = \varnothing \,\,\text{secondo la costruzione fatta: si osserva che} \\ L(G_1) = \{u_{i_1}\,u_{i_2}\,u_{i_3}\,....\,\,u_{i_m}\,a_{i_m}\,....\,\,a_{i_3}\,a_{i_2}\,a_{i_1}\,\,\forall m \in \mathbf{N}\,\,\text{ed}\,\,i_j \in \{1,\,...,\,n\}\,\,\} \\ L(G_2) = \{v_{i_1}\,v_{i_2}\,v_{i_3}\,....\,\,v_{i_m}\,a_{i_m}\,....\,\,a_{i_3}\,a_{i_2}\,a_{i_1}\,\,\forall m \in \mathbf{N}\,\,\text{ed}\,\,i_j \in \{1,\,...,\,n\}\,\,\} \\ \text{ne segue che } w \in L(G_1) \cap L(G_2) \,\,\Leftrightarrow\, w = u_{i_1}\,u_{i_2}\,u_{i_3}\,...\,\,u_{i_m}\,a_{i_m}\,....\,\,a_{i_3}\,a_{i_2}\,a_{i_1} \\ = v_{i_1}\,v_{i_2}\,v_{i_3}\,...\,\,v_{i_m}\,a_{i_m}\,....\,\,a_{i_3}\,a_{i_2}\,a_{i_1} \,\Leftrightarrow\, u_{i_1}\,u_{i_2}\,u_{i_3}\,...\,\,u_{i_m} = v_{i_1}\,v_{i_2}\,v_{i_3}\,...\,\,v_{i_m} \\ = v_{i_1}\,v_{i_2}\,v_{i_3}\,...\,\,v_{i_m}\,a_{i_m}\,....\,\,a_{i_3}\,a_{i_2}\,a_{i_1} \,\Leftrightarrow\, u_{i_1}\,u_{i_2}\,u_{i_3}\,...\,\,u_{i_m} = v_{i_1}\,v_{i_2}\,v_{i_3}\,...\,\,v_{i_m} \end{array}$

quindi, $L(G_1) \cap L(G_2) = \emptyset \Leftrightarrow \underline{\text{non esiste}}$ una sequenza di indici $i_1, i_2, ..., i_k$ tale che $u_{i_1} u_{i_2} u_{i_3} u_{i_k} = v_{i_1} v_{i_2} v_{i_3} ... v_{i_k};$ dunque, sulla particolare istanza costruita per il problema INTERSEZIONE, rispondere al problema PCP equivale a rispondere al problema INTERSEZIONE

<u>Esercizio 5</u>(*****) dimostrare l'indecidibilità del seguente problema (AMBIGUITA'): data una grammatica G non contestuale, è vero che G è ambigua?

Soluzione

cerchiamo una riduzione: PCP → f AMBIGUITA'

- analizziamo le istanze dei due problemi:
 - istanza di PCP: $C = \{(u_1, v_1), (u_2, v_2), ..., (u_n, v_n)\}$ su \sum
 - istanza di AMBIGUITA': una CFG G

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

19

Esercizi svolti sulla indecidibilità

- definiamo la funzione $f(\langle C, \Sigma \rangle) = \langle G \rangle_{\langle C, \Sigma \rangle}$ al modo:
 - introduciamo n simboli: a₁, a₂, ..., a_n
 - G è la CFG su $\Sigma \cup \{a_1, a_2, ..., a_n\}$ definita al modo:

$$S \rightarrow S_1 | S_2$$
,

$$S_1 \rightarrow u_i a_i$$
, $S_1 \rightarrow u_i S_1 a_i$ ($i = 1,..., n$)

$$S_2 \rightarrow v_i a_i$$
, $S_2 \rightarrow v_i S_2 a_i$ ($i = 1,..., n$)

osserviamo che L(G) = $\{u_{i_1} \ u_{i_2} \ u_{i_3} \ ... \ u_{i_m} \ a_{i_m} \ ... \ a_{i_3} \ a_{i_2} \ a_{i_1} \}$

$$v_{i_1} v_{i_2} v_{i_3} \dots v_{i_m} a_{i_m} \dots a_{i_3} a_{i_2} a_{i_1} \forall m \in \mathbb{N} \text{ ed } i_j \in \{1, ..., n\} \}$$

• dimostriamo che decidere se esiste una sequenza di indici i_1 , i_2 , ..., i_k tale che u_{i_1} u_{i_2} u_{i_3} u_{i_k} = v_{i_1} v_{i_2} v_{i_3} ... v_{i_k} equivale a decidere se G, così come definita, è ambigua:

G è ambigua ⇔ esiste una stringa w di L(G) ottenibile con due derivazioni distinte; d'altronde, data una stringa

 $u_{i_1} u_{i_2} u_{i_3} \dots u_{i_m} a_{i_m} \dots a_{i_3} a_{i_2} a_{i_1} di L(G)$, esiste <u>una sola derivazione</u> che la genera <u>a partire da S_1</u>; tale derivazione è la seguente:

analogamente, data una stringa $v_{i_1} v_{i_2} v_{i_3} \dots v_{i_m} a_{i_m} \dots a_{i_3} a_{i_2} a_{i_1} di L(G)$, esiste <u>una sola derivazione</u> che la genera <u>a partire da S_2</u>;

quindi, esistono due derivazioni distinte per una stringa di L(G)

$$\begin{split} w &= x_{i_1} \ x_{i_2} x_{i_3} \dots x_{i_m} a_{i_m} \dots a_{i_3} a_{i_2} a_{i_1} \Leftrightarrow \text{una derivazione è ottenuta a} \\ \text{partire da } S_1 \text{ e l'altra a partire da } S_2 \Leftrightarrow x_{i_1} \ x_{i_2} x_{i_3} \dots x_{i_m} = u_{i_1} \ u_{i_2} u_{i_3} \dots \\ u_{i_m} &= v_{i_2} v_{i_3} \dots v_{i_m} \end{split}$$

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

21

Esercizi da svolgere sulla indecidibilità

Esercizio 6(***) dimostrare l'indecidibilità dei seguenti problemi:

- EQUIVALENZA: dati due linguaggi non contestuali L_1 ed L_2 è vero che L_1 = L_2 ?
- AMBIGUITA'1: dato un linguaggio L non contestuale, L è inerentemente ambiguo?