PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: **A1** A61K 39/395, 39/42, C12Q 1/00, 1/70, G01N 33/53

(11) International Publication Number:

WO 00/69462

(43) International Publication Date: 23 November 2000 (23.11.00)

(21) International Application Number:

PCT/US00/13694

(22) International Filing Date:

18 May 2000 (18.05.00)

(30) Priority Data:

60/134,702

18 May 1999 (18.05.99) US

(71) Applicant (for all designated States except US): SMITHKLINE BEECHAM CORPORATION [US/US]; One Franklin Plaza, Philadelphia, PA 19103 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): GROSS, Mitchell, S. [US/US]; 667 Pugh Road, Wayne, PA 19087 (US). SWEET, Raymond, W. [US/US]; 108 Edgehill Road, Bala Cynwyd, PA 19004 (US). TAYLOR, Geraldine [GB/GB]; Compton, Newbury, Berkshire RG20 7NN (GB).
- (74) Agents: BAUMEISTER, Kirk et al.; Smithkline Beecham Corporation, Corporate Intellectual Property, UW2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939 (US).

(81) Designated States: AE, AL, AU, BA, BB, BG, BR, CA, CN, CZ, DZ, EE, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT, LV, MA, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, TZ, UA, US, UZ, VN, YU, ZA, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: HUMAN MONOCLONAL ANTIBODY

(57) Abstract

This invention relates to novel human monoclonal antibodies (mAbs) and to the genes encoding same. More specifically, this invention relates to human monoclonal antibodies specifically reactive with an epitope of the fusion (F) protein of Respiratory Syncytial Virus (RSV). Such antibodies are useful for the therapeutic and/or prophylactic treatment of RSV infection in human patients, particularly infants and young children.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

\mathbf{AL}	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	$\mathbf{M}\mathbf{W}$	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
$\mathbf{E}\mathbf{E}$	Estonia	LR	Liberia	SG	Singapore		

HUMAN MONOCLONAL ANTIBODY

Field of the Invention

5

10

30

This invention relates to novel human monoclonal antibodies (mAbs) and to the genes encoding same. More specifically, this invention relates to human monoclonal antibodies specifically reactive with an epitope of the fusion (F) protein of Respiratory Syncytial Virus (RSV). Such antibodies are useful for the therapeutic and/or prophylactic treatment of RSV infection in human patients, particularly infants and young children.

Background of the Invention

Respiratory syncytial virus (RSV) is the major cause of lower respiratory disease in children, giving rise to predictable annual epidemics of bronchiolitis and pneumonia in children worldwide. The virus is highly contagious, and infections can occur at any age.

Comprehensive details concerning RSV infection and its clinical features can be obtained from excellent recent reviews by McIntosh, K. and R. M. Chanock, In:

"Respiratory Syncytial Virus", Ch. 38, B.N. Fields ed., Raven Press (1990) and Hall, C.B., In: "Textbook of Pediatric Disease" Feigin and Cherry, eds., W.B. Saunders, pgs 1247-1268 (1987).

RSV is distributed worldwide. One of the most remarkable features of the epidemiology of RSV virus, as mentioned above, is the consistent pattern of infection and disease. Other respiratory viruses cause epidemics at irregular intervals or exhibit a mixed endemic/epidemic pattern, but RSV is the only respiratory viral pathogen that produces a sizable epidemic every year in large urban centers. In the

temperate areas of the world, RSV epidemics have occurred primarily in the late fall, winter or spring but never during the summer. The occurrence and spread of infection within a community is characteristic and easily diagnosed, leading to sharp rises in cases of bronchiolitis and pediatric pneumonia and the number of hospital admissions of young children with acute lower respiratory tract disease. Other respiratory viral agents that occur in outbreaks are rarely present at the same time as RSV.

Primary RSV infection occurs in the very young.

Zero to 2 year old infants are the most susceptible and represent the primary affected population. In this group, 1 out of 5 will develop lower respiratory (below larynx) disease upon infection and this ratio stays the same upon reinfection. By 1 year of age, 25-50% of infants have specific antibodies as a result of natural infection and this is close to 100% by age 4-5. Thus, virtually all children have been infected before they have entered school.

Age, sex, socioeconomic and environmental factors can all influence the severity of disease. Hospitalization is required in 1-3% of cases of RSV infection and is usually of long duration (up to 3 25 weeks). The high morbidity of RSV infection, especially in infancy, has also been implicated in the development of respiratory problems later in life. With current intensive care in the U.S. and the other developed countries, overall mortality for normal subjects is low (less than 2% of hospitalized subjects). However, 30 mortality is much higher in less developed countries and, even in developed countries, mortality is high in certain risk groups such as in infants with underlying cardiac condition (cyanotic congenital heart disease) or

respiratory disease (bronchopulmonary dysplasia) where
the progression of symptoms may be rapid. For instance,
mortality in infants with cyanotic congenital heart
disease has been reported to be as high as 37%. In

premature infants apneic spells due to RSV infection may
occur and, in rare cases, cause neurologic or systemic
damage. Severe lower respiratory tract illness
(bronchiolitis and pneumonia) is most common in patients
under six months of age. Infants who have apparently
recovered completely from this illness may display
symptomatic respiratory abnormalities for years
(recurrent wheezing, decreased pulmonary function,
recurrent cough, asthma, and bronchitis).

Immunity to RSV appears to be short-lived, thus 15 reinfections are frequent. The mechanisms by which the immune system protects against RSV infection and reinfection are not well understood. It is clear, however, that immunity is only partially protective since reinfection is common at all ages, and sometimes 20 occurs in infants only weeks after recovery from a primary infection. Both serum and secretory antibodies (IgA) have been detected in response to RSV infection in adults as well as in very young infants. However, the titers of serum antibodies to the viral F or G glycoprotein, as well as of neutralizing antibodies 25 found in infants (1-8 months of age) are 15-25% of those found in older subjects. These reduced titers may contribute to the increased incidence of serious infection in younger children.

30 Evidence for the role of serum antibodies in protection against RSV virus has emerged from epidemiological as well as animal studies. In adults exposed naturally to the virus, susceptibility correlated well with low serum antibody level. In

infants, titers of maternally transmitted antibodies correlate with resistance to serious disease [Glezen, W.P. et al., J. Pediatr. 98:708-715 (1981)]. Other studies show that the incidence and severity of lower respiratory tract involvement is diminished in the presence of high serum antibody [McIntosh, K. et al., J. Infect. Dis. 138:24-32 (1978)] and high titers of passively administered serum neutralizing antibodies have been shown to be protective in a cotton rat model of RSV infection [Prince, G. A. et al., Virus Res. 3:193-206 (1985)].

Children lacking cell-mediated immunity are unable to overcome their infection and shed virus for many months in contrast to children with normal immune

15 systems. Similarly, nude mice infected with RSV virus persistently shed virus. These mice can be cured by adoptive transfer of primed T cells [Cannon, M. J. et al., Immunology 62:133-138 (1987)].

In summary, it appears that both cellular and humoral immunity are involved in protection against infection, reinfection and RSV disease and that although antigenic variation is limited, protective immunity is not complete even after multiple exposures.

20

25

30

RSV, belonging to the family paramyoxoviridae, is a negative-strand unsegmented RNA virus with properties similar to those of the paramyxoviruses. It has, however been placed in a separate genus Pneumovirus, based on morphologic differences and lack of hemagglutinin and neuraminidase activities. RSV is pleomorphic and ranges in size from 150-300 nm in diameter. The virus matures by budding from the outer membrane of a cell and virions appear as membrane-bound particles with short, closely spaced projections or "spikes". The RNA genome encodes 10 unique viral

polypeptides ranging in size from 9.5 kDa to 160 kDa [Huang, Y. T. and G. W. Wertz, J. Virol. 43:150-157 (1982)]. Seven proteins (F, G, N, P, L, M, M2) are present in RSV virions and at least three proteins (F, G, and SH) are expressed on the surface of infected cells. The F protein [SEQ ID NO: 20] has been conclusively identified as the protein responsible for cell fusion since specific antibodies to this protein inhibit syncytia formation in vitro and cells infected with vaccinia virus expressing recombinant F protein form syncytia in the absence of other RSV virus proteins. In contrast, antibodies to the G protein do

not block syncytia formation but prevent attachment of

the virus to cells.

30

15 RSV can be divided into two antigenically distinct subgroups, (A & B) [Mufson, M. A. et al., J. Gen'l. Virol. 66:2111-2124 (1985)]. This antigenic dimorphism is linked primarily to the surface attachment (G) glycoprotein [Johnson, R. A. et al., Proc. Nat'l. Acad. 20 Sci. USA 84:5625-5629 (1987)]. Strains of both group A and B circulate simultaneously, but the proportion of each may vary unpredictably from year to year. effective therapy must therefore target both subgroups of the virus and this is the reason for the selection of 25 the highly conserved surface fusion (F) protein as target antigen for mAb therapy as will be discussed later.

The induction of neutralizing antibodies to RSV virus appears to be limited to the F and G surface glycoproteins. Of these two proteins, the F protein is the major target for cross-reactive neutralizing antibodies associated with protection against different strains of RSV virus. In addition, experimental vaccination of mice or cotton rats with F protein also

results in cross protection. The antigenic relatedness of the F protein across strains and subgroups of the virus is reflected in its high degree of homology at the amino acid level. In contrast, in the two subgroups and various strains of RSV, antigenic dimorphism was linked 5 primarily to the G glycoprotein. The F protein has a predicted molecular weight of 68-70 kDa; a signal peptide at its N-terminus; a membrane anchor domain at its C terminus; and is cleaved proteolytically in the infected cell prior to virion assembly to yield 10 disulfide linked F_2 and F_1 . Five neutralizing epitopes have been identified within the F protein sequence [SEQ ID NO: 20] and map to residues 205-225; 259-278; 289-299: 483-488 and 417-438. Studies to determine the frequency of sequence diversion in the F protein [SEQ ID 15 NO: 20] showed that the majority of the neutralizing epitopes were conserved in all of the 23 strains of RSV virus isolated in Australia, Europe, and regions of the U.S. over a period of thirty years. In another study, 20 seroresponses of forty three infants and young children to primary infection with subgroup A or a subgroup B strain showed that responses to homologous and heterologous F antigens were not significantly different, while the G proteins of the subgroup A and B 25 strains were quite unrelated. Moreover, antibody inhibition of virus-mediated cell fusion in vitro versus inhibition of infection correlates best with protection in animal models and fusion inhibition is primarily restricted to F protein specific antibodies.

Prophylactic treatment for RSV infection is thus desirable for the high risk groups of children as well as for all children in underdeveloped countries.

However, a vaccine for RSV infection is not currently available. Severe safety issues surrounding an

30

attenuated whole virus vaccine tested in the 1960s, as well as the potential of induced immunopathology associated with the newer candidate subunit vaccines make the prospects of a vaccine in the near future appear remote. To date one drug therapy, Ribavirin, a broad spectrum antiviral, has been approved. Ribavirin has gained only minimal acceptance owing to problems of administration, mild toxicity and questionable efficacy. In the majority of cases, hospitalized children receive no drug therapy and receive only intensive supportive care which is extremely costly. It is clear that there is a need for a safe, effective and easily administered drug for the treatment of RSV infection.

10

The use of passive antibody therapy in humans is well documented and is being used to treat other 15 infectious diseases such as hepatitis and cytomegalovirus. The feasibility of passive antibody treatment/protection against RSV has been well established using animal models. Most of the earlier passive transfer studies in animals against infectious 20 agents, including RSV, utilized murine mABs. Studies in animals have clearly demonstrated that polyclonal and monoclonal antibody against both F and G glycoprotein can confer passive protection in RSV virus infection when given prophylactically or therapeutically [Prince, 25 et al., supra]. In these studies, passive transfer of neutralizing F or G mAbs to mice, cotton rats or monkeys, significantly reduce or completely prevent replication of the RSV virus in the lungs. However, as 30 discussed above, clearly, the F protein is the more important target for antibody therapy.

Recently, the FDA has approved for use intravenous gammaglobulins (IVIG) isolated from pooled human sera. Initial reports from this study had been encouraging

5

[Groothuis, J. R. et al., Antimicrob. Agents Chemo. 35(7):1469-1473 (1991)]. However, generic shortcomings of IVIGs exist and include, without limitation, the fact that such products are human blood derived and grams of antibody often need to be administered to achieve an effective dose.

Alternatively, monoclonal antibodies have been employed. The advantages of such an approach include: a higher concentration of specific antibody can be achieved thereby reducing the amount of globulin 10 required to be given; the reliance on direct blood products can be eliminated; the levels of antibody in the preparation can be more uniformly controlled and the routes of administration can be extended. While passive immunotherapy employing monoclonal antibodies from a 15 heterologous species (e.g., murine) has been suggested (See: PCT Application PCT/US94/08699, Publication No. WO 95/04081), one alternative to reduce the risk of an undesirable immune response on the part of the patient directed against the foreign antibody is to employ 20 "humanized" antibodies. These antibodies are substantially of human origin, with only the Complementarity Determining Regions (CDRs) being of nonhuman origin. Particularly useful examples of this approach are disclosed in PCT Application 25 PCT/GB91/01554, Publication No. WO 92/04381 and PCT Application PCT/GB93/00725, Publication No. WO93/20210. Clinical trials are on-going to evaluate the efficacy of humanized antibodies for treatment of RSV infection in young children. 30

A second and more preferred approach is to employ fully human mAbs. Unfortunately, there have been few successes in producing human monoclonal antibodies through classic hybridoma technology. Indeed,

acceptable human fusion partners have not been identified and murine myeloma fusion partners do not work well with human cells, yielding unstable and low producing hybridoma lines. However, recent advances in molecular biology and immunology make it now possible to isolate human mABs, particularly directed against foreign infectious agents.

Fully human mAbs to RSV F protein [SEQ ID NO: 20] remain a desirable option for the treatment of this disease. Although some success has been reported in 10 obtaining fragments of such mAbs [Barbas, C.F. et al., Proc. Nat'l. Acad. Sci. USA 89:10164-10168 (1992); Crowe, J. E. et al., Proc. Nat'l. Acad. Sci. USA 91: 1386-1390 (1994) and PCT application number 15 PCT/US93/08786, published as WO94/06448, March 31, 1994)], the achievement of such results is not straightforward. Novel human mABs, when and however obtained, are particularly useful alone or in combination with existing molecules to form immunotherapeutic compositions. 20

There exists a need in the art for useful prophylactic compositions for the prevention or passive treatment of RSV.

25 Brief Description of the Invention

30

In one aspect, this invention provides fully human monoclonal antibodies and functional fragments thereof specifically reactive with an F protein epitope of RSV and capable of neutralizing RSV infection. These human mABs specific for the F protein of RSV virus may be useful to passively treat or prevent infection.

In another aspect, the present invention provides modifications to neutralizing single chain Fv fragments (scFV) specific for the F protein of RSV produced by

random combinatorial cloning of human antibody sequences and isolated from a filamentous phage Fab display library.

In still another aspect, there is provided a reshaped or altered human antibody containing human heavy and light chain constant regions from a first human donor and heavy and light chain variable regions or the CDRs thereof derived from human neutralizing monoclonal antibodies for the F protein of RSV derived from a good human donor

10 from a second human donor.

5

30

In yet another aspect, the present invention provides a pharmaceutical composition which contains one (or more) altered or reshaped antibodies and a pharmaceutically acceptable carrier.

In yet another aspect, the invention provides a pharmaceutical composition comprising at least one dose of an immunotherapeutically effective amount of the reshaped, altered or monoclonal antibody of this invention in combination with at least one additional monoclonal, altered or reshaped antibody. A particular embodiment is provided in which the additional antibody is an anti-RSV antibody distinguished from the subject antibody of the invention by virtue of being reactive with a different epitope of the RSV F protein antigen than the subject antibody of the invention.

In a further aspect, the present invention provides a method for passive immunotherapy of RSV disease in a human by administering to said human an effective amount of the pharmaceutical composition of the invention for the prophylactic or therapeutic treatment of RSV infection.

In yet another aspect, the present invention provides methods for, and components useful in, the recombinant production of human and altered antibodies

(e.g., engineered antibodies, CDRs, Fab or F(ab)₂
fragments, or analogs thereof) which are derived from
human neutralizing monoclonal antibodies (mAbs) for the
F protein of RSV. These components include isolated

5 nucleic acid sequences encoding same, recombinant
plasmids containing the nucleic acid sequences under the
control of selected regulatory sequences which are
capable of directing the expression thereof in host
cells (preferably mammalian) transfected with the

10 recombinant plasmids. The production method involves
culturing a transfected host cell line of the present
invention under conditions such that the human or
altered antibody is expressed in said cells and
isolating the expressed product therefrom.

In still another aspect of the invention is a method to diagnose the presence of RSV in a human which comprises contacting a sample of biological fluid with the human antibodies and altered antibodies and fragments thereof of the instant invention and assaying for the occurrence of binding between said human antibody (or altered antibody, or fragment) and RSV.

Other aspects and advantages of the present invention are described further in the detailed description and the preferred embodiments thereof.

25

30

15

20

Brief Description of the Drawings

Fig. 1A is a graph illustrating the competition of $G\lambda$ -1 scFV phage binding with RSV19 mAb [International patent publication No. WO92/04381, published March 19, 1992].

Fig. 1B is a graph illustrating the competition of $G\lambda$ -1 scFV phage binding with RSV B4 mAb [International patent publication No. WO93/20210, published October 14, 1993].

Fig. 2 is a graph illustrating virus neutralization by scFV phages, $G\lambda$ -1, $G\lambda$ -3, and G_K -1 with RSV strain 273.

Fig. 3 illustrates the DNA sequence [SEQ ID NO: 1] and protein sequence (amino acids reported in single letter code) [SEQ ID NO: 2] for the G λ -1 light chain variable region, processed N-terminus through framework

5

10

IV.

Fig. 4 illustrates the DNA sequence [SEQ ID NO: 3] and protein sequence (amino acids reported in single letter code) [SEQ ID NO: 4] for the $G\lambda$ -1 heavy chain variable region, processed N-terminus through framework IV.

Fig. 5 illustrates the cloning strategy used for the construction of the $G\lambda-1$ monoclonal antibody. The heavy chain V region was cloned into the pCD derivative vector as a XhoI-ApaI fragment. The entire light chain V region was cloned into the pCN derivative vector, 43-1pcn, as a SacI-AvrII fragment. Details are described below.

Fig. 6 provides a comparison of the heavy chain amino acid sequences of the $G\lambda$ -1 single chain F_{ν} [SEQ ID NO: 5] and various monoclonal antibodies of this invention. The amino acid sequences of the heavy chains for the A [SEQ ID NO: 7] and B [SEQ ID NO: 8] constructs are shown. Numbering of the residues is based on the germline (GL) gene Dp58 [SEQ ID NO: 6], beginning at the mature processed amino terminus and ending at CDR3. The "-" indicates identity to the preceding sequence (eg., A compared to B). Bold residues correspond to the leader region, and to CDRs 1-3.

Fig. 7 provides a comparison of the light chain amino acid sequences of the G λ -1A single chain F $_v$ [SEQ ID NO: 9] and various monoclonal antibodies of this

invention. The amino acid sequences of the light chains for the A [SEQ ID NO: 11] and B [SEQ ID NO: 12] constructs are shown. Numbering of the residues in the VK region is based on the germline (GL) gene DpL8 [SEQ ID NO: 10], beginning at the mature processed amino terminus and ending at CDR3. For reference to framework 4, the actual numbering is also shown for $G\lambda$ -1A. As in Fig. 6, the "-" indicates identity to the preceding sequence.

Figs. 8A to 8F illustrate the continuous DNA sequence [SEQ ID NO: 13] of the expression plasmid $G\lambda$ lApcd containing the RSV neutralizing human $G\lambda$ -1 mAb for the heavy chain. The start of translation, leader peptide, amino-terminal processing site, carboxy terminus of the $G\lambda$ -1 heavy chain, and Eco RI restriction

terminus of the $G\lambda$ -1 heavy chain, and Eco RI restriction endonuclease cleavage site are shown.

Figs. 9A to 9E illustrate the continuous DNA sequence [SEQ ID NO: 14] of the expression plasmid $G\lambda$ -1Apcn containing the RSV neutralizing human $G\lambda$ -1 mAb for the light chain. The corresponding features for the light chain as for Figs. 8A-8F are shown.

20

25

30

Figs. 10A and 10B illustrate the continuous DNA sequence [SEQ ID NO: 15] of the coding region of the heavy chain of plasmid $G\lambda$ -1Bpcd. Bolded residues indicate differences from the full vector sequence for $G\lambda$ -1Apcd in Figs. 8A-8F [SEQ ID NO: 13].

Fig. 11 is the DNA sequence [SEQ ID NO: 16] of the coding region for the light chain of plasmid $G\lambda$ -1Bpcn. Bolded residues indicate differences from the full vector sequence for $G\lambda$ -1Apcn in Figs. 9A-9E [SEQ ID NO: 14].

<u>Detailed Description of</u> the Invention

This invention provides useful human monoclonal antibodies (and fragments thereof) reactive with the F protein of RSV, isolated nucleic acids encoding same and various means for their recombinant production as well as therapeutic, prophylactic and diagnostic uses of such antibodies and fragments thereof.

I. Definitions.

15

20

25

30

As used in this specification and the claims, the 10 following terms are defined as follows:

"Altered antibody" refers to a protein encoded by an altered immunoglobulin coding region, which may be obtained by expression in a selected host cell. Such altered antibodies are engineered antibodies (e.g., chimeric, humanized, or reshaped or immunologically edited human antibodies) or fragments thereof lacking all or part of an immunoglobulin constant region, e.g., Fv, Fab, or $F(ab')_2$ and the like.

"Altered immunoglobulin coding region" refers to a nucleic acid sequence encoding an altered antibody of the invention or a fragment thereof.

"Reshaped human antibody" refers to an altered antibody in which minimally at least one CDR from a first human monoclonal donor antibody is substituted for a CDR in a second human acceptor antibody. Preferrably all six CDRs are replaced. More preferrably an entire antigen combining region (e.g., Fv, Fab or F(ab')₂) from a first human donor monoclonal antibody is substituted for the corresponding region in a second human acceptor monoclonal antibody. Most preferrably the Fab region from a first human donor is operatively linked to the appropriate constant regions of a second human acceptor antibody to form a full length monoclonal antibody.

"First immunoglobulin partner" refers to a nucleic acid sequence encoding a human framework or human immunoglobulin variable region in which the native (or naturally-occurring) CDR-encoding regions are replaced by the CDR-encoding regions of a donor human antibody. The human variable region can be an immunoglobulin heavy chain, a light chain (or both chains), an analog or functional fragments thereof. Such CDR regions, located within the variable region of antibodies

(immunoglobulins) can be determined by known methods in the art. For example, Kabat et al. (Sequences of Proteins of Immunological Interest, 4th Ed., U.S. Department of Health and Human Services, National Institutes of Health (1987)) disclose rules for locating CDRs. In addition, computer programs are known which are useful for identifying CDR regions/structures.

20

25

30

"Second fusion partner" refers to another nucleotide sequence encoding a protein or peptide to which the first immunoglobulin partner is fused in frame or by means of an optional conventional linker sequence (i.e., operatively linked). Preferably the fusion partner is an immunoglobulin gene and when so, it is referred to as a "second immunoglobulin partner". The second immunoglobulin partner may include a nucleic acid sequence encoding the entire constant region for the same (i.e., homologous - the first and second altered antibodies are derived from the same source) or an additional (i.e., heterologous) antibody of interest. It may be an immunoglobulin heavy chain or light chain (or both chains as part of a single polypeptide). second immunoglobulin partner is not limited to a particular immunoglobulin class or isotype. addition, the second immunoglobulin partner may comprise part of an immunoglobulin constant region, such as found

in a Fab, or $F(ab)_2$ (i.e., a discrete part of an appropriate human constant region or framework region). A second fusion partner may also comprise a sequence encoding an integral membrane protein exposed on the outer surface of a host cell, e.g., as part of a phage display library, or a sequence encoding a protein for analytical or diagnostic detection, e.g., horseradish peroxidase (HRP), β -galactosidase, etc.

5

The terms Fv, Fc, Fd, Fab, or F(ab')₂ are used with

their standard meanings [see, e.g., Harlow et al.,

Antibodies A Laboratory Manual, Cold Spring Harbor
Laboratory, (1988)].

As used herein, an "engineered antibody" describes a type of altered antibody, i.e., a full-length synthetic antibody (e.g., a chimeric, humanized, 15 reshaped or immunologically edited human antibody as opposed to an antibody fragment) in which a portion of the light and/or heavy chain variable domains of a selected acceptor antibody are replaced by analogous parts from one or more donor antibodies which have 20 specificity for the selected epitope. For example, such molecules may include antibodies characterized by a humanized heavy chain associated with an unmodified light chain (or chimeric light chain), or vice versa. 25 Engineered antibodies may also be characterized by alteration of the nucleic acid sequences encoding the acceptor antibody light and/or heavy variable domain framework regions in order to retain donor antibody binding specificity. These antibodies can comprise 30 replacement of one or more CDRs (preferably all) from the acceptor antibody with CDRs from a donor antibody

A "chimeric antibody" refers to a type of engineered antibody which contains naturally-occurring

described herein.

5

10

25

30

variable region (light chain and heavy chains) derived from a donor antibody in association with light and heavy chain constant regions derived from an acceptor antibody from a heterologous species.

A "humanized antibody" refers to a type of engineered antibody having its CDRs derived from a non-human donor immunoglobulin, the remaining immunoglobulin-derived parts of the molecule being derived from one (or more) human immunoglobulin(s). In addition, framework support residues may be altered to preserve binding affinity [see, e.g., Queen et al., Proc. Nat'l. Acad. Sci. USA, 86:10029-10032 (1989), Hodgson et al., Bio/Technology, 9:421 (1991)].

An "immunologically edited antibody" refers to a

15 type of engineered antibody in which changes are made in
donor and/or acceptor sequences to edit regions in
respect of cloning artifacts, germ line enhancements,
etc. aimed at reducing the likelihood of an
immunological response to the antibody on the part of a

20 patient being treated with the edited antibody.

The term "donor antibody" refers to an antibody (monoclonal, or recombinant) which contributes the nucleic acid sequences of its variable regions, CDRs, or other functional fragments or analogs thereof to a first immunoglobulin partner, so as to provide the altered immunoglobulin coding region and resulting expressed altered antibody with the antigenic specificity and neutralizing activity characteristic of the donor antibody. One donor antibody suitable for use in this invention is a Fab fragment of a human neutralizing monoclonal antibody designated as Fab $G\lambda$ -1. Fab $G\lambda$ -1 is defined as a having the variable light and heavy chain DNA and amino acid sequences $G\lambda$ -1 as shown in Figs. 3, 4, 8A-8F and 9A-9E [SEQ ID NOS: 1-4, 13 and 14].

5

The term "acceptor antibody" refers to an antibody (monoclonal or recombinant) from a source genetically unrelated to the donor antibody, which contributes all (or any portion, but preferably all) of the nucleic acid sequences encoding its heavy and/or light chain framework regions and/or its heavy and/or light chain constant regions to the first immunoglobulin partner. Preferably a human antibody is the acceptor antibody.

"CDRs" are defined as the complementarity determining region amino acid sequences of an antibody 10 which are the hypervariable regions of immunoglobulin heavy and light chains [see, e.g., Kabat et al., Sequences of Proteins of Immunological Interest, 4th Ed., U.S. Department of Health and Human Services, 15 National Institutes of Health (1987)]. There are three heavy chain and three light chain CDRs (or CDR regions) in the variable portion of an immunoglobulin. "CDRs" as used herein refers to all three heavy chain CDRs, or all three light chain CDRs (or both all heavy 20 and all light chain CDRs, if appropriate). CDRs provide the majority of contact residues for the binding of the antibody to the antigen or epitope. CDRs of interest in this invention are derived from donor antibody variable heavy and light chain sequences, and include analogs of 25 the naturally occurring CDRs, which analogs also share or retain the same antigen binding specificity and/or neutralizing ability as the donor antibody from which they were derived.

By "sharing the antigen binding specificity or neutralizing ability" is meant, for example, that although Fab G λ -1 may be characterized by a certain level of antigen affinity, a CDR encoded by a nucleic acid sequence of Fab G λ -1 in an appropriate structural environment may have a lower, or higher affinity. It is

expected that CDRs of Fab $G\lambda$ -1 in such environments will nevertheless recognize the same epitope(s) as does the intact Fab $G\lambda$ -1. A "functional fragment" is a partial heavy or light chain variable sequence (e.g., minor deletions at the amino or carboxy terminus of the immunoglobulin variable region) which retains the same antigen binding specificity and/or neutralizing ability as the antibody from which the fragment was derived.

5

30

An "analog" is an amino acid sequence modified by

10 at least one amino acid, wherein said modification can
be a chemical modification, or a substitution or a
rearrangement of a few amino acids (i.e., no more than
10), which modification permits the amino acid sequence
to retain the biological characteristics, e.g., antigen

15 specificity and high affinity, of the unmodified
sequence. For example, (silent) mutations can be
constructed, via substitutions, when certain
endonuclease restriction sites are created within or
surrounding CDR-encoding regions.

20 Analogs may also arise as allelic variations. An "allelic variation or modification" is an alteration in the nucleic acid sequence encoding the amino acid or peptide sequences of the invention. Such variations or modifications may be due to degeneracy in the genetic code or may be deliberately engineered to provide desired characteristics. These variations or modifications may or may not result in alterations in any encoded amino acid sequence.

The term "effector agents" refers to non-protein carrier molecules to which the altered antibodies, and/or natural or synthetic light or heavy chains of the donor antibody or other fragments of the donor antibody may be associated by conventional means. Such non-protein carriers can include conventional carriers used

in the diagnostic field, e.g., polystyrene or other plastic beads, polysaccharides, e.g., as used in the BIAcore (Pharmacia) system, or other non-protein substances useful in the medical field and safe for administration to humans and animals. Other effector agents may include a macrocycle, for chelating a heavy metal atom, or radioisotopes. Such effector agents may also be useful to increase the half-life of the altered antibodies, e.g., polyethylene glycol.

II. Combinatorial Cloning.

5

10

15

20

25

30

As mentioned above, a number of problems have hampered the direct application of the hybridoma technology [G. Kohler and C. Milstein, Nature, 256: 495-497 (1975)] to the generation and isolation of human monoclonal antibodies. Among these are a lack of suitable fusion partner myeloma cell lines used to form hybridoma cell lines as well as the poor stability of such hybridomas even when formed. These shortcomings are further exacerbated in the case of RSV because of the paucity of viral specific B cells in the peripheral circulation. Therefore, the molecular biological approach of combinatorial cloning is preferred.

Combinatorial cloning is disclosed generally in PCT Publication No. WO90/14430. Simply stated, the goal of combinatorial cloning is to transfer to a population of bacterial cells the immunological genetic capacity of a human cell, tissue or organ. It is preferred to employ cells, tissues or organs which are immunocompetent. Particularly useful sources include, without limitation, spleen, thymus, lymph nodes, bone marrow, tonsil and peripheral blood lymphocytes. The cells may be optionally RSV stimulated in vitro, or selected from donors which are known to have produced an immune response or donors who are HIV but asymptomatic.

PCT/US00/13694 WO 00/69462

The genetic information isolated from the donor cells can be in the form of DNA or RNA and is conveniently amplified by Polymerase Chain Reaction (PCR) or similar techniques. When isolated as RNA the genetic information is preferably converted into cDNA by reverse transcription prior to amplification. amplification can be generalized or more specifically tailored. For example, by a careful selection of PCR primer sequences, selective amplification of immunoglobulin genes or subsets within that class of

5

25

30

10 genes can be achieved.

Once the component gene sequences are obtained, in this case the genes encoding the variable regions of the various heavy and light antibody chains, the light and heavy chain genes are associated in random combinations 15 to form a random combinatorial library. Various recombinant DNA vector systems have been described to facilitate combinatorial cloning [see: PCT Publication No. W090/14430 supra; Scott and Smith, Science 249:386-406 (1990); or U. S. Patent 5,223,409]. Having 20 generated the combinatorial library, the products can, after expression, be conveniently screened by biopanning with RSV F protein or, if necessary, by epitope blocked biopanning as described in more detail below.

As described herein, it is preferred to use single chain antibodies for combinatorial cloning and screening and then to convert them to full length mAbs after selection of the desired candidate molecules. However, Fab fragments of mAbs can also be used for cloning and screening.

III. Antibody Fragments.

The present invention contemplates the use of scFv, Fab, or F(ab')₂ fragments to derived full-length mAbs directed against the F protein of RSV. Although these

fragments may be independently useful as protective and therapeutic agents in vivo against RSV-mediated conditions or in vitro as part of an RSV diagnostic, they are employed herein as a component of a reshaped 5 human antibody. A scFv fragment contains the light and heavy chain variable regions joined by a linker of about 12 amino acids in either a light-linker-heavy or a heavy-linker-light orientation. A Fab fragment contains the entire light chain and amino terminal portion of the 10 heavy chain; and a F(ab')₂ fragment is the fragment formed by two Fab fragments bound by additional disulfide bonds. RSV binding monoclonal antibodies provide sources of scFv or Fab fragments which can be obtained from a combinatorial phage library [see, e.g., Winter et al., Ann. Rev. Immunol., 12:433-455 (1994) or 15 Barbas et al., Proc. Nat'l. Acad. Sci. (USA) 89, 10164-10168 (1992), which are both hereby incorporated by

IV. Anti-RSV Antibody Amino Acid and Nucleotide20 Sequences of Interest.

reference in their entireties].

25

The Fab $G\lambda$ -1 or other antibodies described herein may contribute sequences, such as variable heavy and/or light chain peptide sequences, framework sequences, CDR sequences, functional fragments, and analogs thereof, and the nucleic acid sequences encoding them, useful in designing and obtaining various altered antibodies which are characterized by the antigen binding specificity of the donor antibody.

As one example, the present invention thus provides variable light chain and variable heavy chain sequences from the RSV human Fab $G\lambda$ -1A and sequences derived therefrom. The heavy chain variable region of Fab $G\lambda$ -1A is illustrated by Figs. 4, 8A-8F and 10A-10B [SEQ ID NOS: 3-4, 13 and 15].

The nucleic acid sequences of this invention, or fragments thereof, encoding the variable light chain and heavy chain peptide sequences are also useful for mutagenic introduction of specific changes within the nucleic acid sequences encoding the CDRs or framework regions, and for incorporation of the resulting modified or fusion nucleic acid sequence into a plasmid for expression. For example, silent substitutions in the nucleotide sequence of the framework and CDR-encoding regions can be used to create restriction enzyme sites which would facilitate insertion of mutagenized CDR (and/or framework) regions. These CDR-encoding regions may be used in the construction of reshaped human antibodies of this invention.

10

15

20

25

30

Taking into account the degeneracy of the genetic code, various coding sequences may be constructed which encode the variable heavy and light chain amino acid sequences, and CDR sequences of the invention as well as functional fragments and analogs thereof which share the antigen specificity of the donor antibody. The isolated nucleic acid sequences of this invention, or fragments thereof, encoding the variable chain peptide sequences or CDRs can be used to produce altered antibodies, e.g., chimeric or humanized antibodies, or other engineered antibodies of this invention when operatively combined with a second immunoglobulin partner.

It should be noted that in addition to isolated nucleic acid sequences encoding portions of the altered antibody and antibodies described herein, other such nucleic acid sequences are encompassed by the present invention, such as those complementary to the native CDR-encoding sequences or complementary to the human framework regions surrounding the CDR-encoding regions. Such sequences include all nucleic acid sequences which

by virtue of the redundancy of the genetic code are capable of encoding the same amino acid sequence as given in Figs. 3 and 4 [SEQ ID NOS: 2 and 4]. Figs. 6 and 7 [SEQ ID NOS: 5-12] provide representations of such sequences. Other useful DNA sequences encompassed by this invention include those sequences which hybridize under stringent hybridization conditions [See: T. Maniatis et al., Molecular Cloning (A Laboratory Manual), Cold Spring Harbor Laboratory (1982), pages 387 10 to 389] to the DNA sequences encoding the $G\lambda-1$ antibodies (e.g., sequences of Figs. 3, 4, 8A-8F through 11 [SEQ ID NOS: 1-4, 13-16]) and which retain the antigen binding properties of those antibodies. An example of one such stringent hybridization condition is hybridization at 4XSSC at 65°C, followed by a washing in 15 0.1XSSC at 65°C for an hour. Alternatively an exemplary stringent hybridization condition is in 50% formamide, 4XSSC at 42°C. Preferably, these hybridizing DNA sequences are at least about 18 nucleotides in length, 20 i.e., about the size of a CDR.

V. Altered Immunoglobulin Coding Regions and Altered Antibodies.

25

30

Altered immunoglobulin coding regions encode altered antibodies which include engineered antibodies such as chimeric antibodies, humanized, reshaped, and immunologically edited human antibodies. A desired altered immunoglobulin coding region contains CDR-encoding regions in the form of scFv regions that encode peptides having the antigen specificity of an RSV antibody, preferably a high affinity antibody such as provided by the present invention, inserted into an acceptor immunoglobulin partner.

When the acceptor is an immunoglobulin partner, as defined above, it includes a sequence encoding a second

antibody region of interest, for example, an Fc region. Immunoglobulin partners may also include sequences encoding another immunoglobulin to which the light or heavy chain constant region is fused in frame or by means of a linker sequence. Engineered antibodies directed against functional fragments or analogs of RSV may be designed to elicit enhanced binding with the same antibody.

5

10

15

20

25

30

The immunoglobulin partner may also be associated with effector agents as defined above, including non-protein carrier molecules, to which the immunoglobulin partner may be operatively linked by conventional means.

Fusion or linkage between the immunoglobulin partners, e.g., antibody sequences, and the effector agent may be by any suitable means, e.g., by conventional covalent or ionic bonds, protein fusions, or hetero-bifunctional cross-linkers, e.g., carbodiimide, glutaraldehyde, and the like. Such techniques are known in the art and readily described in conventional chemistry and biochemistry texts.

Additionally, conventional linker sequences which simply provide for a desired amount of space between the second immunoglobulin partner and the effector agent may also be constructed into the altered immunoglobulin coding region. The design of such linkers is well known to those of skill in the art.

In addition, signal sequences for the molecules of the invention may be modified to enhance expression. For example the reshaped human antibody having the signal sequence and CDRs derived from the Fab $G\lambda$ -1 heavy chain sequence, may have the original signal peptide replaced with another signal sequence such as the Campath leader sequence [Page, M. J. et al., BioTechnology 9:64-68(1991)].

An exemplary altered antibody, a reshaped human antibody, contains a variable heavy and the entire light chain peptide or protein sequence having the antigen specificity of Fab G λ -1, fused to the constant heavy regions $C_{\text{H-1}}-C_{\text{H-3}}$ derived from a second human antibody.

In still a further embodiment, the engineered antibody of the invention may have attached to it an additional agent. For example, the procedure of recombinant DNA technology may be used to produce an engineered antibody of the invention in which the Fc fragment or $C_{H-2}C_{H-3}$ domain of a complete antibody molecule has been replaced by an enzyme or other detectable molecule (i.e., a polypeptide effector or reporter molecule).

10

25

30

20 Another desirable protein of this invention may comprise a complete antibody molecule, having full length heavy and light chains, or any discrete fragment thereof, such as the Fab or $F(ab')_2$ fragments, a heavy chain dimer, or any minimal recombinant fragments thereof such as an F_v or a single-chain antibody (SCA) or any other molecule with the same specificity as the selected donor Fab $G\lambda$ -1. Such protein may be used in the form of an altered antibody, or may be used in its unfused form.

Whenever the immunoglobulin partner is derived from an antibody different from the donor antibody, e.g., any isotype or class of immunoglobulin framework or constant regions, an engineered antibody results. Engineered antibodies can comprise immunoglobulin (Ig) constant regions and variable framework regions from one source, e.g., the acceptor antibody, and one or more (preferably all) CDRs from the donor antibody, e.g., the anti-RSV antibody described herein. In addition, alterations, e.g., deletions, substitutions, or additions, of the

5

10

15

20

25

30

acceptor mAb light and/or heavy variable domain framework region at the nucleic acid or amino acid levels, or the donor CDR regions may be made in order to retain donor antibody antigen binding specificity or to reduce potential immunogenicity.

Such engineered antibodies are designed to employ one (or both) of the variable heavy and/or light chains of the RSV mAb (optionally modified as described) or one or more of the below-identified heavy or light chain CDRs. The engineered antibodies of the invention are neutralizing, i.e., they desirably inhibit virus growth in vitro and in vivo in animal models of RSV infection.

Such engineered antibodies may include a reshaped human antibody containing the human heavy and light chain constant regions fused to the RSV antibody functional fragments. A suitable human (or other animal) acceptor antibody may be one selected from a conventional database, e.g., the KABAT® database, Los Alamos database, and Swiss Protein database, by homology to the nucleotide and amino acid sequences of the donor antibody. A human antibody characterized by a homology to the framework regions of the donor antibody (on an amino acid basis) may be suitable to provide a heavy chain constant region and/or a heavy chain variable framework region for insertion of the donor CDRs. suitable acceptor antibody capable of donating light chain constant or variable framework regions may be selected in a similar manner. It should be noted that the acceptor antibody heavy and light chains are not required to originate from the same acceptor antibody.

Desirably the heterologous framework and constant regions are selected from human immunoglobulin classes and isotypes, such as IgG (subtypes 1 through 4), IgM, IgA and IgE. The Fc domains are not limited to native

sequences, but include mutant variants known in the art that alter function. For example, mutations have been described in the Fc domains of certain IgG antibodies that reduce Fc-mediated complement and Fc receptor

- 5 binding [see, e.g., A. R. Duncan et al., Nature,
 332:563-564 (1988); A. R. Duncan and G. Winter, Nature,
 332:738-740 (1988); M.-L. Alegre et al., J. Immunol.,
 148:3461-3468 (1992); M.-H. Tao et al., J. Exp. Med.,
 178:661-667 (1993); and V. Xu et al. J. Biol. Chem.,
- 269:3469-2374 (1994)]; alter clearance rate [J.-K. Kim et al., Eur. J. Immunol., 24:542-548 (1994)]; and reduce structural heterogeneity [S. Angal et al., Mol. Immunol. 30:105-108 (1993)]. Also, other modifications are possible such as oligomerization of the antibody by
- addition of the tailpiece segment of IgM and other mutations [R. I. F. Smith and S. L. Morrison,

 Biotechnology 12:683-688 (1994); R. I. F. Smith et al.,

 J. Immunol., 154: 2226-2236 (1995)] or addition of the tailpiece segment of IgA [I. Kariv et al., J. Immunol.,
- 157: 29-38 (1996)]. However, the acceptor antibody need not comprise only human immunoglobulin protein sequences. For instance a gene may be constructed in which a DNA sequence encoding part of a human immunoglobulin chain is fused to a DNA sequence encoding a non-immunoglobulin amino acid sequence such as a polypeptide effector or reporter molecule.

The altered antibody thus preferably has the structure of a natural human antibody or a fragment thereof, and possesses the combination of properties required for effective therapeutic use, e.g., treatment of RSV mediated diseases in man, or for diagnostic uses.

30

It will be understood by those skilled in the art that an altered antibody may be further modified by changes in variable domain amino acids without

necessarily affecting the specificity and high affinity of the donor antibody (i.e., an analog). It is anticipated that heavy and light chain amino acids may be substituted by other amino acids either in the variable domain frameworks or CDRs or both.

Particularly preferred is the immunological editing of such reconstructed sequences as illustrated in the examples herein.

5

25

30

In addition, the variable or constant region may be altered to enhance or decrease selective properties of the molecules of the instant invention, as described above. For example, dimerization, binding to Fc receptors, or the ability to bind and activate complement [see, e.g., Angal et al., Mol. Immunol, 30:105-108 (1993); Xu et al., J. Biol. Chem, 269:3469-3474 (1994); and Winter et al., EP 307,434-B].

Such antibodies are useful in the prevention and treatment of RSV mediated disorders, as discussed below.

VI. Production of Altered antibodies and 20 Engineered Antibodies.

The resulting reshaped human antibodies of this invention can be expressed in recombinant host cells, e.g., COS, CHO or myeloma cells. A conventional expression vector or recombinant plasmid is produced by placing these coding sequences for the altered antibody in operative association with conventional regulatory control sequences capable of controlling the replication and expression in, and/or secretion from, a host cell. Regulatory sequences include promoter sequences, e.g., CMV promoter, and signal sequences, which can be derived from other known antibodies. Similarly, a second expression vector can be produced having a DNA sequence which encodes a complementary antibody light or heavy chain. Preferably this second expression vector is

identical to the first except insofar as the coding sequences and selectable markers are concerned. This ensures as far as possible that each polypeptide chain is functionally expressed. Alternatively, the heavy and light chain coding sequences for the altered antibody may reside on a single vector.

A selected host cell is co-transfected by conventional techniques with both the first and second vectors (or simply transfected by a single vector) to create the transfected host cell of the invention comprising both the recombinant or synthetic light and heavy chains. The transfected cell is then cultured by conventional techniques to produce the engineered antibody of the invention. The production of the antibody which includes the association of both the recombinant heavy chain and light chain is measured in the culture by an appropriate assay, such as an enzymelinked immunosorbent assay (ELISA) or radioimmunoassay (RIA). Similar conventional techniques may be employed to construct other altered antibodies and molecules of this invention.

Suitable vectors for the cloning and subcloning steps employed in the methods and construction of the compositions of this invention may be selected by one of skill in the art. For example, the conventional pUC series of cloning vectors, may be used. One vector used is pUC19, which is commercially available from supply houses, such as Amersham (Buckinghamshire, United Kingdom) or Pharmacia (Uppsala, Sweden). Any vector, which is capable of replicating readily, has an abundance of cloning sites and selectable genes (e.g., antibiotic resistance), and is easily manipulated, may be used for cloning. Thus, the selection of the cloning vector is not a limiting factor in this invention.

5

10

25

30

Similarly, the vectors employed for expression of the engineered antibodies according to this invention may be selected by one of skill in the art from any conventional vectors. Preferred vectors include for example plasmids pCD or pCN. The vectors also contain selected regulatory sequences (such as CMV promoters) which direct the replication and expression of heterologous DNA sequences in selected host cells. These vectors contain the above described DNA sequences which code for the engineered antibody or altered immunoglobulin coding region. In addition, the vectors may incorporate the selected immunoglobulin sequences modified by the insertion of desirable restriction sites for ready manipulation.

The expression vectors may also be characterized by genes suitable for amplifying expression of the heterologous DNA sequences, e.g., the mammalian dihydrofolate reductase gene (DHFR). Other preferable vector sequences include a polyadenylation (polyA)

20 signal sequence, such as from bovine growth hormone (BGH) and the betaglobin promoter sequence (betaglopro). The expression vectors useful herein may be synthesized by techniques well known to those skilled in this art.

The components of such vectors, e.g. replicons, selection genes, enhancers, promoters, signal sequences and the like, may be obtained from commercial or natural sources or synthesized by known procedures for use in directing the expression and/or secretion of the product of the recombinant DNA in a selected host. Other appropriate expression vectors of which numerous types are known in the art for mammalian, bacterial, insect, yeast, and fungal expression may also be selected for this purpose.

The present invention also encompasses a cell line transfected with a recombinant plasmid containing the coding sequences of the engineered antibodies or altered immunoglobulin molecules thereof. Host cells useful for the cloning and other manipulations of these cloning vectors are also conventional. However, most desirably, cells from various strains of *E. coli* are used for replication of the cloning vectors and other steps in the construction of altered antibodies of this

10 invention.

5

25

30

Suitable host cells or cell lines for the expression of the engineered antibody or altered antibody of the invention are preferably mammalian cells such as CHO, COS, a fibroblast cell (e.g., 3T3), and myeloid cells, and more preferably a CHO or a myeloid 15 cell. Human cells may be used, thus enabling the molecule to be modified with human glycosylation patterns. Alternatively, other eukaryotic cell lines may be employed. The selection of suitable mammalian 20 host cells and methods for transformation, culture, amplification, screening and product production and purification are known in the art. See, e.g., Sambrook et al., Molecular Cloning (A Laboratory Manual), 2nd edit., Cold Spring Harbor Laboratory (1989).

Bacterial cells may prove useful as host cells suitable for the expression of the recombinant scFvs, Fabs and MAbs of the present invention [see, e.g., Plückthun, A., Immunol. Rev., 130:151-188 (1992)]. The tendency of proteins expressed in bacterial cells to be in an unfolded or improperly folded form or in a nonglycosylated form does not pose as great a concern because Fabs are not normally glycosylated and can be engineered for exported expression, thereby reducing the high concentration that facilitates misfolding.

Nevertheless, any recombinant Fab produced in a bacterial cell would be screened for retention of antigen binding ability. If the molecule expressed by the bacterial cell was produced and exported in a properly folded form, that bacterial cell would be a desirable host. For example, various strains of E. coli used for expression are well-known as host cells in the field of biotechnology. Various strains of B. subtilis, Streptomyces, other bacilli and the like may also be employed in this method.

Where desired, strains of yeast cells known to those skilled in the art are also available as host cells, as well as insect cells, e.g. *Drosophila* and *Lepidoptera* and viral expression systems [see, e.g.

Miller et al., Genetic Engineering, 8:277-298, Plenum Press (1986) and references cited therein].

20

25

invention.

The general methods by which the vectors of the invention may be constructed, the transfection methods required to produce the host cells of the invention, and culture methods necessary to produce the altered antibody of the invention from such host cell are all conventional techniques. Likewise, once produced, the altered antibodies of the invention may be purified from the cell culture contents according to standard procedures of the art, including ammonium sulfate precipitation, affinity columns, column chromatography, gel electrophoresis and the like. Such techniques are within the skill of the art and do not limit this

30 Yet another method of expression of reshaped antibodies may utilize expression in a transgenic animal. An exemplary systems is described in U. S. Patent No. 4,873,316. The expression system described in that reference uses the animal's casein promoter and,

when transgenically incorporated into a mammal, permits the female to produce the desired recombinant protein in its milk.

Once expressed by the desired method, the

engineered antibody is then examined for in vitro
activity by use of an appropriate assay. At present,
conventional ELISA assay formats are employed to assess
qualitative and quantitative binding of the altered
antibody to RSV. Additionally, other in vitro assays

and in vivo animal models may also be used to verify
neutralizing efficacy prior to subsequent human clinical
studies performed to evaluate the persistence of the
altered antibody in the body despite the usual clearance
mechanisms.

15 VII. Therapeutic/Prophylactic Uses.

25

30

This invention also relates to a method of treating humans experiencing RSV-related symptoms which comprises administering an effective dose of antibodies including one or more of the antibodies (altered, reshaped,

20 monoclonal, etc.) described herein or fragments thereof.

The therapeutic response induced by the use of the molecules of this invention is produced by binding to RSV and thus subsequently blocking RSV propagation. Thus, the molecules of the present invention, when in preparations and formulations appropriate for therapeutic use, are highly desirable for those persons experiencing RSV infection. For example, longer treatments may be desirable when treating seasonal episodes or the like. The dose and duration of treatment relates to the relative duration of the molecules of the present invention in the human circulation, and can be adjusted by one of skill in the art depending upon the condition being treated and the general health of the patient.

5

10

The altered antibodies, antibodies and fragments thereof of this invention may also be used alone or in conjunction with other antibodies, particularly human or humanized mAbs reactive with other epitopes on the F protein or other RSV target antigens as prophylactic agents.

The mode of administration of the therapeutic and prophylactic agents of the invention may be any suitable route which delivers the agent to the host. The altered antibodies, antibodies, engineered antibodies, and fragments thereof, and pharmaceutical compositions of the invention are particularly useful for parenteral administration, i.e., subcutaneously, intramuscularly, intravenously, or intranasally.

15 Therapeutic and prophylactic agents of the invention may be prepared as pharmaceutical compositions containing an effective amount of the altered antibody of the invention as an active ingredient in a pharmaceutically acceptable carrier. An aqueous 20 suspension or solution containing the antibody, preferably buffered at physiological pH, in a form ready for injection is preferred. The compositions for parenteral administration will commonly comprise a solution of the engineered antibody of the invention or 25 a cocktail thereof dissolved in an pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers may be employed, e.g., 0.4% saline, 0.3% glycine, and the like. These solutions are sterile and generally free of particulate matter. 30 solutions may be sterilized by conventional, well known sterilization techniques (e.g., filtration). compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and

buffering agents, etc. The concentration of the antibody of the invention in such pharmaceutical formulation can vary widely, i.e., from less than about 0.5%, usually at or at least about 1% to as much as 15 or 20% by weight and will be selected primarily based on fluid volumes, viscosities, etc., according to the particular mode of administration selected.

Thus, a pharmaceutical composition of the invention for intramuscular injection could be prepared to contain 10 1 mL sterile buffered water, and between about 1 ng to about 100 mg, e.g. about 50 ng to about 80 mg, or more preferably, about 5 mg to about 75 mg, of an engineered antibody of the invention. Similarly, a pharmaceutical composition of the invention for intravenous infusion could be made up to contain about 250 ml of sterile 15 Ringer's solution, and about 1 to about 75 and preferably 5 to about 50 mg/ml of an engineered antibody of the invention. Actual methods for preparing parenterally administrable compositions are well known 20 or will be apparent to those skilled in the art and are described in more detail in, for example, Remington's Pharmaceutical Science, 15th ed., Mack Publishing Company, Easton, Pennsylvania.

25 prophylactic agents of the invention, when in a pharmaceutical preparation, be present in unit dose forms. The appropriate therapeutically effective dose can be determined readily by those of skill in the art. To effectively treat an inflammatory disorder in a human or other animal, one dose of approximately 0.1 mg to approximately 20 mg per 70 kg body weight of a protein or an antibody of this invention should be administered parenterally, preferably i.v. or i.m. (intramuscularly).

Such dose may, if necessary, be repeated at appropriate time intervals selected as appropriate by a physician.

The altered antibodies and engineered antibodies of this invention may also be used in diagnostic regimens,

5 such as for the determination of RSV mediated disorders or tracking progress of treatment of such disorders. As diagnostic reagents, these altered antibodies may be conventionally labeled for use in ELISAs and other conventional assay formats for the measurement of RSV

10 levels in serum, plasma or other appropriate tissue, or the release by human cells in culture. The nature of the assay in which the altered antibodies are used are conventional and do not limit this disclosure.

The antibodies, altered antibodies or fragments thereof described herein can be lyophilized for storage and reconstituted in a suitable carrier prior to use. This technique has been shown to be effective with conventional immunoglobulins and art-known lyophilization and reconstitution techniques can be employed.

15

20

25

30

The following examples illustrate various aspects of this invention including the construction of exemplary engineered antibodies and expression thereof in suitable vectors and host cells, and are not to be construed as limiting the scope of this invention. All amino acids are identified by conventional three letter or single letter codes. All necessary restriction enzymes, plasmids, and other reagents and materials were obtained from commercial sources unless otherwise indicated. All general cloning ligation and other recombinant DNA methodology were as performed in T. Maniatis et al., cited above, or Sambrook et al., cited above.

Example 1: Isolation of $G\lambda-1$ scFv-1

Single chain (sc) Fv libraries were prepared from an individual purposely exposed to RSV and selected against recombinant RSV F-protein following described procedures [R. H. Jackson et al, in Protein Engineering, A Practical Approach, A. R. Rees et al eds, Oxford University Press, chapter 12, pp. 277-301, 1992; H. R. Hoogenboom et al., Nucl. Acid Res., 19: 4133-4137 (1991); J. D. Marks et al., J. Mol. Biol., 222: 581-597 (1991)]. Briefly, lymphocytes were isolated from a 10 blood sample taken 15 days post exposure. RNA isolated from the lymphocytes was used for preparation of scFv encoding repertoires for phage display. Sets of Vregion primers were paired with constant region primers for heavy chain domain 1 IgG and IgM and light chain C-K 15 and $C-\lambda$ and then linked in a scFv VH-VL orientation with a 15 amino acid spacer (glycine₄-serine)₃ [SEQ ID NO: 21] by overlap PCR [see J. D. Marks et al., cited above, for description of the primers].

The resulting four scFv repertoires (V-κ with IgG and IgM, V-λ with IgG and IgM) were cloned into a phagemid vector similar to pHEN1 [H. R. Hoogenboom et al., cited above] resulting in fusion of the scFvs to gene III of phage fd. The vector was then transformed into E. coli (e.g., strain TG1) by electroporation to yield the corresponding phagemid libraries.

Phage libraries displaying the scFv-gene 3 fusions were prepared by infection of each of the plasmid libraries with the M13K07 helper phage [R. H. Jackson, cited above] and were individually subjected to 2 rounds of panning against recombinant F-protein coated onto plastic. In the first round, 10¹¹ phage in 2.5 ml phosphate buffered saline (PBS)/2% MarvalTM non-fat dry

30

E. coli were infected with the eluted phage and 96 colonies from each starting library were superinfected with helper phage and screened for F-protein binding activity. Only four positive clones were obtained from the 2 IgM libraries, whereas 41 positives were observed for the IgG libraries. By partial sequence analysis, all of the clones carried one of three different heavy chains. Complete sequences were obtained for the heavy and light chain V-regions for six clones, all from the IgG libraries.

Serial dilutions of titered phage stocks of each of these six clones were tested by ELISA for binding to recombinant F-protein and to RSV infected cell lysate. All showed binding to F-protein with the phage designated $G\lambda$ -1 showing the best activity. However, $G\lambda$ -1 and three other clones showed little binding to the RSV lysate.

25

30

Three clones: $G\lambda-1$, $G\lambda-3$ (lysate binding positive), and $G\kappa-1$ (lysate binding negative), where " κ " and " λ " designate the class of the light chain, were characterized further for competition of their binding by F-protein specific neutralizing monoclonal antibodies, and their ability to inhibit virus

infection. The neutralizing mAbs RSV19 and B4 described
in International patent publication No. WO92/04381,
published March 19, 1992, and International patent
publication No. WO93/20210, published October 14, 1993,
5 recognize distinct epitopes on the F-protein. GK-1 was
strongly inhibited by both antibodies. Gλ-1 was
significantly inhibited by B4 only. GK-3 was not
inhibited by either antibody (shown for Gλ-1 only; see
Figs. 1A and 1B). In initial assays (Table I,
10 experiments 1-3), all three clones showed neutralizing
activity in vitro, with Gλ-1 being the most potent (Fig.
2, a graph of experiment 2), while control wild-type
phage (M13K07) not displaying scFv had no effect.

To address the possibility that neutralization

15 might result just from phage coating of virus,
irrespective of epitope, a phage preparation of the nonneutralizing Fab 5-16 was tested in the same assay. In
three out of four assays, this preparation also showed
good neutralization activity, as did the control phage

20 in two of these assays (Table I, experiments 4-7). This
confounding observation of variable neutralization by
both Fab 5-16 and control M13K07 phage rendered the
viral neutralization studies inconclusive.

Table I

Phage Sample	Virus Neutralization (IC ₅₀ x 10 ⁻⁷) ¹ (aru or kru/ml) ²						
					Experiment	#	
	1	2	3	4	5_	6	7
Gκ-1 a	1,600		<300				
b				<10	<7		
Gλ-1 a		80	<300				
b				8.1	11		
C							120
Gλ-3 a		900	<300	180			
b					<7	10	
С							730
M13K07a			>105	>105		>5,000	
b					+all dil.	+all dil.	>104
Fab 5-19a				>105	40	180	
b							3.5

5

Legend:

- Assay according to M. J. Cannon, J. Virol. Meth., 16:293-301. Virus at 100 infectious centers/well was incubated with dilutions of the indicated phage for 1 hr and then added to susceptible cells for 3 hr. The virus/phage solution was aspirated and replaced with fresh medium and the cells were incubated overnight before peroxidase staining for virus infected cells.
- aru = ampicillin resistance units, a measure of phagmid containing particles.

kru = kanamycin resistance units, a measure of
particles containing the phage genome (for the
M13K07 control only).

25

In the face of these results, made more ambiguous by the dependence of all assays on phage stocks verses antibody proteins of known concentration, $G\lambda$ -1 was selected as the most likely candidate for a potent neutralizing antibody based on (1) its apparent better binding to F-protein, (2) its selective inhibition of binding by the B4 antibody, and (3) its suggested activity over background in the virus neutralization assay.

10

25

30

Example 2: Conversion of $G\lambda-1$ scFV to mAb Version A

The DNA and encoded protein sequences of the VH and VL regions of Gλ-1 are shown in Figs. 3 [SEQ ID NOS: 1 and 2] and 4 [SEQ ID NOS: 3 and 4], respectively. For expression in mammalian cells, the heavy chain variable region and the light chain variable region from the Gλ-1 plasmid were cloned into derivatives of plasmid pCDN [Nambi, A. et al., Mol. Cell. Biochem., 131:75-86 (1994)] in which the expression of the antibody chain is driven by the cytomegalovirus promoter (CMV) promoter. Plasmid pCD-HC68B is used for expressing full length heavy chains and plasmid pCN-HuLC, for expressing full length light chains.

In the initial constructs, changes in the sequence at the amino terminus were introduced by the PCR primers used for cloning the light chain and heavy chain variable regions from plasmid $G\lambda$ -1. In these constructs, the peptide signal sequence for both the heavy and light chains is derived from the Campath light chain [M. J. Page et al., Biotechnology 9: 64-68 (1991)]. The heavy chain of $G\lambda$ -1 was PCR amplified from $G\lambda$ -1 phagemid DNA, using primers for the amino terminus and framework 4 of the variable region. The resulting

PCR fragment was cut with XhoI (site introduced by the amino terminus primer) and BstEII (naturally occurring site in framework 4), and cloned into an intermediate vector, F4HCV, at the XhoI/BstEII sites.

5 This cloning grafted the variable region of $G\lambda-1$ onto the constant region of another anti-RSV heavy chain 194-F4 [cloned at SmithKline Beecham from a human hybridoma]. This intermediate clone was cut with XhoI and Bsp120I, and introduced into the same sites in pCD-10 HC68B. The XhoI site is introduced at the amino terminus by the PCR primer and, when cloned into pCD-HC68B at the same site is preceded in frame by the Campath leader sequence. The Bsp120I site is a naturally occurring, highly conserved sequence at the 15 beginning of the C_{H-1} domain, and when cloned into pCD-HC68B at the same site, is in frame with the remaining sequence for the C_{H-1} through C_{H-3} regions of human IgG_1 . In the resulting construct, $G\lambda$ -1Apcd (Figs. 8A-8F [SEQ ID NO: 13]), the amino acids immediately following the 20 Campath leader are EVQLLE [SEQ ID NO: 17], where the residues LE are encoded by the nucleotide sequence for the XhoI cloning site.

The light chain of Gλ-1 was PCR amplified from the Gλ-1 phagemid DNA, using primers for the amino terminus and framework 4 of the variable region. The resulting PCR fragment was cut with SacI (site introduced by the amino terminus primer) and AvrII (naturally occurring site in framework 4), and cloned into 43-1pcn at the SacI/AvrII sites. This cloning grafted the variable region of Gλ-1, in frame, onto the constant region of another anti-RSV lambda light chain 43 [P. Tsui et al., J. Immunol., 157: 772-780 (1996)], which had been cloned at SmithKline Beecham from a combinatorial library derived from RNA isolated from human spleen. The SacI

site is introduced at the amino terminus by the PCR primer and, when cloned into 43pcn at the same site, is preceded in frame by the Campath leader sequence. The first two amino acids of the mature light chain are therefore deleted. In the resulting construct, Gλ-1Apcn (Figs. 9A-9E [SEQ ID NO: 14]), the first two amino acids immediately following the leader are EL, where the residues EL are encoded by the nucleotide sequence for the SacI cloning site.

The nucleotide sequences of the plasmids $G\lambda$ -1Apcd and $G\lambda$ -1Apcn are shown in Figs. 8A-8F [SEQ ID NO: 13] and 9A-9E [SEQ ID NO: 14] respectively. This set of vectors was used to produce antibody $G\lambda$ -1A in COS cells and in CHO cells.

15

20

25

30

Example 3: Cloning Of The Corrected $G\lambda-1$ Heavy and Light Chains

In cloning the variable region of the $G\lambda$ -1 heavy chain from the single chain Fv (scFv) format into the full length format, the fifth amino acid at the amino terminus was changed from Val to Leu, for cloning purposes. To correct this change, PCR primers were designed for the amino terminus of the $G\lambda$ -1 heavy chain cloned into pCD, which reverted the fifth amino acid back to Val. The correction was introduced via the PCR overlap technique using the correction primers and primers annealing to sequences within the CMV promoter and the C_{H-2} constant region as the outside 5' and 3' primers, respectfully. The final PCR product was digested with restriction enzymes, EcoRI and Bsp120I, and cloned into the $G\lambda$ -1Apcd vector at the same sites to create $G\lambda$ -1Bpcd.

The final construct was sequenced to verify that the amino terminus of the heavy chain had been corrected from EVQLLE [SEQ ID NO: 17] to EVQLVE [SEQ ID NO: 18] (see Fig 6). The nucleotide sequence of coding region for the corrected heavy chain, $G\lambda$ -1B, is shown in Figs. 10A-10B [SEQ ID NO: 15].

In cloning the variable region of the $G\lambda-1$ light chain from the scFy format into the full length format, changes were introduced at the amino terminus for cloning purposes. Specifically, the first 2 amino acids 10 (Gln and Ser) of the light chain were deleted and the third amino acid was changed from Val to Glu. To correct these changes, PCR primers were designed for the amino terminus of the $G\lambda-1$ light chain cloned into pCN, which replaced the two deleted amino acids (Gln and Ser) 15 and reverted the third amino acid back to Val. The corrections were introduced via the PCR overlap technique using the correction primers and primers annealing to sequences within the CMV promoter and the λ constant region as the outside 5' and 3' primers, 20 respectfully. The final PCR product was digested with restriction enzymes, EcoRI and AvrII and cloned into the $G\lambda$ -1Apcn vector at the same sites to create $G\lambda$ -1Bpcn.

The final construct was sequenced to verify that the amino terminus of the light chain had been corrected from --EL to QSVL (amino acids 1-4 of SEQ ID NO: 10).

25

30

The nucleotide sequence of coding region for the corrected light chain, $G\lambda$ -1B, is shown in Fig. 11 [SEQ ID NO: 16]. This vector $G\lambda$ -1Bpcn, was used with $G\lambda$ -1Bpcd to produce antibody $G\lambda$ -1B, in COS cells and in CHO cells.

Example 4: Production of $G\lambda-1$ mABs in Mammalian Cells For initial characterization, the mAb constructs for each version, $G\lambda$ -1A heavy and light chain, $G\lambda$ -1B heavy and light chain, were expressed in COS cells essentially as described in Current Protocols in 5 Molecular Biology, eds F. M. Ausubel et al., 1988, John Wiley & Sons, vol. 1, section 9.1. On day 1 after the transfection, the culture growth medium was replaced with a serum-free medium [SmithKline Beecham] which was 10 changed on day 3. Similar satisfactory results are obtained using a publicly available medium, DMEM supplemented with ITS^{TM} Premix, an insulin, transferrin, selenium mixture (Collaborative Research, Bedford, MA) and 1 mg/ml bovine serum albumin (BSA).

The mAb was prepared from the day 3 + day 5 conditioned medium by standard protein A affinity chromatography methods (e.g., as described in Protocols in Molecular Biology) using, for example, Prosep A affinity resin (Bioprocessing Ltd., UK).

To produce larger quantities of the $G\lambda$ -1B mAB (100-200 mgs), the vectors were introduced into a proprietary CHO cell system. However, similar results will be obtained using dhfr $^-$ CHO cells as previously described [P. Hensley et al., J. Biol. Chem., 269:23949-23958

25

30

(1994)]. Briefly, a total of 30 μg of linearized plasmid DNA (15 μg each of the A or B set of heavy chain and light chain vectors) is electroporated into 1×10^7 cells. The cells are initially selected in nucleoside-free medium in 96 well plates. After three to four weeks, media from growth positive wells is screened for human immunoglobulin using an ELISA assay. The highest expressing colonies are expanded and selected in

increasing concentrations of methotrexate for

5

10

15

amplification of the transfected vectors. The antibody is purified from conditioned medium by standard procedures using protein A affinity chromatography (Protein A sepharose, Pharmacia) followed by size exclusion chromatography (Superdex 200, Pharmacia).

The concentration and the antigen binding activity of the eluted antibody are measured by ELISA. The antibody containing fractions are pooled and further purified by size exclusion chromatography. As expected for any such antibody, by SDS-PAGE, the predominant protein product migrated at approximately 150 kd under non-reducing conditions and as two bands of 50 and 25 kd under reducing conditions. For antibody produced in CHO cells, the purity was > 90%, as judged by SDS-PAGE, and the concentration was accurately determined by amino acid analysis.

Example 5: Binding of the $G\lambda$ -1 mABs to recombinant F protein

Binding of the $G\lambda$ -1 mABs to recombinant F protein 20 was measured in a standard solid phase ELISA. Antigen diluted in PBS pH 7.0 was adsorbed onto polystyrene round-bottom microplates (Dynatech, Immunolon II) for 18 hours. Wells were then aspirated and blocked with 0.5% 25 boiled casein (BC) in PBS containing 1% Tween 20 (PBS/0.05% BC) for two hours. Antibodies (50 μ l/well) were diluted to varying concentrations in PBS/0.5% BC containing 0.025% Tween 20 and incubated in antigen coated wells for one hour. Plates were washed three 30 times with PBS containing 0.05% Tween 20, using a Titertek 320 microplate washer, followed by addition of HRP-labelled protein A/G (50 μ l) diluted 1:5000. After washing three times, TMBlue substrate (TSI, #TM102) was added and plates were incubated an additional 15

minutes. The reaction was stopped by addition of 1 N $$\rm H_2SO_4$$ and absorbance read at 450 nm using a Biotek ELISA reader.

The antigen binding epitope of the $G\lambda$ -1 mABs was examined in a competition ELISA. The $G\lambda-1$ mABs were 5 mixed with increasing concentrations of RSMU19 or B4, two potent neutralizing mAbs [Tempest et al., Biotech., 9: 266-271 (1991); Kennedy et al., J. Gen. Virol., 69: 3023-3032 (1988)] and added to F protein-coated wells. 10 The epitope regions recognized by mAbs RSMU19 and B4 are quite distinct from each other as previously described in Arbiza et al., <u>J. Gen. Virol.</u>, 73: 2225-2234 (1992). The concentration of the $G\lambda$ -1 mABs used in competition studies was determined previously to give 90% maximal binding to F antigen. Binding of the $G\lambda-1$ mABs in the 15 presence of other mABs was detected using HRP-labelled goat anti-human IgG. The reaction was developed as stated above.

The Gλ-1 mABs demonstrated potent binding to

recombinant F (rF) protein by ELISA (EC₅₀ for mAB B = 2.6 ng/ml). Binding of the Gλ-1 mABs to rF protein was inhibited by mAb B4, for which the F protein amino acids critical for antigen recognition are amino acids 268, 272 and 275 of SEQ ID NO: 20). Binding of the Gλ-1 mABs to rF protein was not inhibited by mAb RSMU19, for which F protein amino acid 429 of SEQ ID NO: 20 is critical for antigen recognition. These results indicate that residues in the region of amino acids 255-275 of the F protein [SEQ ID NO: 20] are critical for Gλ-1 mAB

recognition.

Example 6: In vitro Fusion-Inhibition Activity of the $G\lambda-1$ mABs

The ability of the $G\lambda-1$ mABs to inhibit virusinduced cell fusion was determined using a modification of the in vitro microneutralization assay [Beeler et al., J. Virol., 63:2941-2950 (1989)]. In this assay, 50 μ l of RS Long strain virus (10-100 TCID₅₀/well [American Type Culture Collection ATCC VR-26] were mixed with 0.1 ml VERO cells (5X103/well) [ATCC CCL-81] in Minimum 10 Essential Media (MEM) containing 2% fetal calf serum (FCS), for 4 hours at 37°C, 5% CO₂. Serial two-fold dilutions (in quadruplicate) of mAB (50 μ l) were then added to wells containing virus-infected cells. Control cultures contained cells incubated with virus only 15 (positive virus control) or cells incubated with media alone.

Cultures were incubated at 37°C in 5% CO₂ for 6 days at which time cytopathic effects (CPE) in virus control wells were > 90%. Microscopic examination for

20 cytopathic effects were confirmed by ELISA. Media was aspirated from cultures and replaced with 50 µl of 90% methanol containing 0.6% H₂O₂. After 10 minutes, fixative was aspirated and plates were air dried overnight. Viral antigen was detected in the fixed

25 cultures using 1 µg/ml biotinylated RSCHB4 (a human Fc derivative of the bovine B4 mAb [SmithKline Beecham]), followed by HRP-labelled streptavidin (Boehringer-Mannheim) diluted 1:10,000. The reaction was developed

30 Absorbance was measured at 450 nm $(O.D._{450})$.

Fusion-inhibition titers were defined as the concentration of antibody which caused a 50% reduction in ELISA signal (ED $_{50}$) as compared to virus controls.

using TMBlue and stopped by addition of 1N H2SO4.

Based on the curve generated in the ELISA by the standard virus titration, a 50% reduction in $O.D._{450}$ corresponded to \geq 90% reduction in virus titer. Calculation of the 50% point was based on regression analysis of the dose titration.

The G λ -1 mABs demonstrated potent *in vitro* fusion-inhibition activity against type A RS Long strain virus (ED $_{50}$ for mAB B of 0.51 \pm 0.38 μ g/ml). In this *in vitro* fusion-inhibition assay, G λ -1 mAB B was more active than the humanized mAB RSHZ19 (ED $_{50}$ of 0.4-3.0 μ g/ml) [Wyde et al., Pediatr. Res., 38(4):543-550] in comparative assays.

Example 7: In vivo Activity of $G\lambda-1$ mAB B: Prophylaxis and Therapy in Balb/c Mouse Model

Balb/c mice (5/group) were inoculated intraperitoneally with doses ranging from 0.06 mg/kg to 5 mg/kg of $G\lambda$ -1 mAB B either 24 hours prior (prophylaxis) or 4 days after (therapy) intranasal infection with 10^5 PFU of the A2 strain of human RSV. Mice were sacrificed 5 days after infection. Lungs were harvested and homogenized to determine virus titers.

Virus was undetectable in the lungs of mice treated prophylactically with ≥ 1.25 mg/kg G λ -1 mAB B either prophylactically or therapeutically. See Table II below. Significant viral clearance (2-3 log₁₀) was also achieved in animals receiving 0.31 mg/kg G λ -1 mAB B either prophylactically or therapeutically.

5

10

15

20

25

Table II: $G\lambda$ -1 mAB B Prophylaxis and Therapy in Balb/c Mice

5	Treatment	Dose (mg/kg)	Lung Virus Titer Prophylaxis	(log ₁₀ /g lung) Therapy
5	Gλ-1 mAB B	5 1.25 0.31 0.06	<1.7 <1.7 1.8 + 0.3 4.3 + 0.7	<1.7 <1.7 2.9 + 0.4 4.5 + 0.3
10	PBS	_	4.8 <u>+</u> 0.7	4.7 <u>+</u> 0.2

15

The G λ -1 mABs have potent antiviral activity in vitro against a broad range of native RSV isolates of both type A and B, and show prophylactic and therapeutic efficacy in vivo in animal models. Thus, the G λ -1 mABs are candidates for therapeutic, prophylactic, and diagnostic application in man.

Numerous modifications and variations of the
20 present invention may be made by one of skill in the art
in view of the invention described herein. Such
modifications are believed to be encompassed by the
specification and claims of the present invention. All
references cited above are incorporated by reference
25 herein.

WHAT IS CLAIMED IS:

1. A human monoclonal antibody and functional fragments thereof, specifically reactive with an F protein epitope of Respiratory Syncytial Virus and capable of neutralizing infection by said virus selected from the group consisting of $G\lambda$ -1A and $G\lambda$ -1B.

- 2. The monoclonal antibody according to Claim 1 which comprises the light chain amino acid sequence of Fig. 3 SEQ ID NO: 2 and the heavy chain amino acid sequence of Fig. 4 SEQ ID NO: 4.
- 3. The monoclonal antibody according to Claim 1 which comprises the light chain amino acid sequence encoded by the DNA sequence of Fig. 11 SEQ ID NO: 16 and the heavy chain amino acid sequence encoded by the DNA sequence of Figs. 10A-10B SEQ ID NO: 15.
- 4. The monoclonal antibody according to Claim 1 wherein said fragment is selected from the group consisting of Fv, Fab and $F(ab')_2$.
- 5. An isolated nucleic acid molecule selected from the group consisting of:
- (a) a nucleic acid sequence encoding any of the human monoclonal antibodies, altered antibodies and CDRs of any of the claims 1-4;
- (b) a nucleic acid complementary to any
 of the sequences in (a); and
- (c) a nucleic acid sequence of 18 or more nucleotides capable of hybridizing to the CDRs of any of claims 1-4 under stringent conditions.

6. The isolated nucleic acid molecule according to Claim 5 comprising the sequences of Figs. 8A-8F and 9A-9E SEQ ID NOS: 13 and 14, or Figs. 10A-10B and 11 SEQ ID NOS: 15 and 16.

- 7. A recombinant plasmid comprising the nucleic acid sequences of any of Claims 5 or 6.
- 8. A host cell comprising the plasmid of Claim 7.
- 9. A process for the production of a human antibody specific for RSV comprising culturing the host cell of Claim 8 in a medium under suitable conditions of time temperature and pH and recovering the antibody so produced.
- 10. A method of detecting RSV comprising contacting a source suspected of containing RSV with a diagnostically effective amount of the monoclonal antibody of Claim 1 and determining whether the monoclonal antibody binds to the source.
- 11. A method for providing passive immunotherapy to RSV disease in a human, comprising administering to the human an immunotherapeutically effective amount of the monoclonal antibody of Claim 1.
- 12. The method according to Claim 11 wherein the passive immunotherapy is provided prophylactically.
- 13. A pharmaceutical composition comprising at least one dose of an immunotherapeutically effective

amount of the monoclonal antibody of Claim 1 in a pharmaceutically acceptable carrier.

- 14. A pharmaceutical composition comprising at least one dose of an immunotherapeutically effective amount of the monoclonal antibody of Claim 1 in combination with at least one additional monoclonal antibody.
- 15. The pharmaceutical composition according to Claim 14 wherein said additional monoclonal antibody is an anti-RSV antibody distinguished from the antibody of Claim 1 by virtue of being reactive with a different epitope of the RSV F protein antigen.

 $\label{eq:Fig.1A} Fig.~1A$ RSV19/GI1 scFv phage competition

B4/GI1 scFv phage competition

Fig. 1B

 $\label{eq:Fig.2} Fig.~2$ Neutralisation of RS/V/273 with phage Fv

FIGURE 3

1	CAGTCTGTGTTGACGCAGCCGCCCTCAGTCTCTGCGGCCCCAGGACAGAA Q S V L T Q P P S V S A A P G Q K	50
51	GGTCACCATCTCCTGCACTGGGAGCAGCTCCAACCTCGGGGCAGGTTATG V T I S C T G S S S N L G A G Y D	100
101	ATGTTCACTGGTACCGGCAACTTCCAGGGACAGCCCCCAAACTCCTCATC V H W Y R Q L P G T A P K L L I	150
151	TATGATAACAACAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTC Y D N N N R P S G V P D R F S G S	200
201	CAAGTCTGGCCCTCAGCCTCCCTGGCCATCTCTGGGCTCCAGGCTGAGG K S G P S A S L A I S G L Q A E D	250
251	ATGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGAATGGTTAT E A D Y Y C Q S Y D S S L N G Y	300
301	GTCTTCGGAACTGGGACCCAGCTCACCGTCCTAGGT V F G T G T Q L T V L G	336

FIGURE 4

1	GAGGTGCAGCTGGTGGAGTCTGGGGGGGGTC E V Q L V E S G G G L V Q P G G S	50
51	CCTGAGACTCTCCTGCGCAGCCTCTGGAGTCTCCCTCAGTGGATACAAGA L R L S C A A S G V S L S G Y K M	100
101	TGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGGTCTCTTCC N W V R Q A P G K G L E W V S S	150
151	ATTACTGGTATGAGTAATTACATACACTACTCAGACTCAGTGAAGGGCCG I T G M S N Y I H Y S D S V K G R	200
201	ATTCACCATCTCCAGAGACAACGCCATGAACTCACTGTATCTGCAAATGA F T I S R D N A M N S L Y L Q M N	250
251	ACAGCCTGACAGCCGAGGACACGGGTGTTTATTATTGTGCGACACAACCG S L T A E D T G V Y Y C A T Q P	300
301	GGGGAGCTGGCGCCTTTTGACCATTGGGGCCAGGGAACCCTGGTCACCGT G E L A P F D H W G Q G T L V T V	350
351	CTCCTCA S S	357

Figure 5

FIGURE 6

Comparison of the Heavy Chain Amino Acid Sequences of the $G\lambda{-}1$ single chain fv and mAbs

Leader and Variable Regions

GL Dp58: Gλ-1 scFv:		EVQLVESGGGLVQPGGSLR	
Gλ-1A:	MGWSCIILFLVATATGV	HSL	
Gλ-1B:		 V	
	CDR1	CDR2	
-		VS YISSSGSTIYYADSVKG RF	
$G\lambda-1$ scFV:		S-TGMSNY-H-S	
Gλ-1A:			
Gλ-1B:			
		CDR3	
GL: Dp58:	LOMNSLRAEDTAVYYCA	 R	
Gλ-1 scFv:	~	r qpgelapfdh wgqgtlvtvs	S
Gλ-1A:			_
Gλ-1B:			_

FIG 7

Comparison of the Light Chain Amino Acid Sequences of the G λ -1A: single chain Fv and mAbs

Leader and Variable Regions

				CDR1
GL DpL8:	Q	SVLTQPPSVS	GAPGQRVTIS	CTGSSSNIG
Gλ-1 scFv:	-		4K	L-
Gλ-1A:	MGWSCIILFLVATATGVHS	E		
Gλ-1B:		SV		
		CDR2		
GL DpL8:	AGYDVH WYQQLPGTAPKLLI	Y gnsnrps gvi	PDRFSGSKSG	TSASLAITGL
Gλ-1scFv:	R	-D-N 		PS
Gλ-1A:				
Gλ-1B:				_ _
	ann 2			
	CDR3			
CL D I O		-		
•	QAEDEADYYC			
Gλ-1 scFv:	QSYDSSLNGY	$oldsymbol{v}$ FGTGTQLTVI	J.G	
Gλ-1A:				
Gλ-1B:				

FIGURE 8A

1	gacgtcgcggccgctctaggcctccaaaaaagcctcctcactacttctgg
51	aatagctcagaggccgaggcggcctcggcctctgcataaataa
101	tagtcagccatgcatggggggagaatgggcggaactgggcggagttagg
151	ggcgggatgggcggagttaggggggggactatggttgctgactaattgag
201	atgcatgctttgcatacttctgcctgctggggagcctggggactttccac
251	acctggttgctgactaattgagatgcatgctttgcatacttctgcctgc
301	ggggagcctggggactttccacaccctaactgacacacattccacagaat
351	taattcccggggatcgatccgtcgacgtacgactagttattaatagtaat
401	caattacggggtcattagttcatagcccatatatggagttccgcgttaca
451	taacttacggtaaatggcccgcctggctgaccgcccaacgacccccgccc
501	attgacgtcaataatgacgtatgttcccatagtaacgccaatagggactt
551	tccattgacgtcaatgggtggactatttacggtaaactgcccacttggca
601	gtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatga
651	cggtaaatggcccgcctggcattatgcccagtacatgaccttatgggact
701	ttcctacttggcagtacatctacgtattagtcatcgctattaccatggtg
751	atgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacg
801	gggatttccaagtctccaccccattgacgtcaatgggagtttgttt
851	accaaaatcaacgggactttccaaaatgtcgtaacaactccgcccattg
901	acgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagc
951	EcoRI tgggtacgtgaaccgtcagatcgcctggagacgccatcgaattctgagca
1001	$\begin{array}{cccccc} \text{cacaggacctcacc} \underline{\text{atg}} \text{ggatggagctgtatcatcctcttcttggtagca} \\ \hline \text{M} & \text{G} & \text{W} & \text{S} & \text{C} & \text{I} & \text{L} & \text{F} & \text{L} & \text{V} & \text{A} \\ \\ & \text{Leader start} \end{array}$

XhoI

1051 acagctacaggtgtccactccgaggtccaactgctcgagtctgggggagg
T A T G V H S E V Q L L E S--Processed N-term

FIGURE 8B

1101	cttggtacagcctggggggtccctgagactctcctgcgcagcctctggag
1151	tctccctcagtggatacaagatgaactgggtccgccaggctccagggaag
1201	gggctggaatgggtctcttccattactggtatgagtaattacataca
1251	ctcagactcagtgaagggccgattcaccatctccagagacaacgccatga
1301	actcactgtatctgcaaatgaacagcctgacagccgaggacacgggtgtt
1351	tattattgtgcgacacaaccgggggagctggcgccttttgaccattgggg
1401	BstEII Bsp120I ccagggaaccctggtcaccgtctcctcagcctccaccaagggcccatcgg Q G T L V T V S S / framework IV / CH1
1451	tettececetggcaccetectecaagagcacetetgggggcacageggce
1501	ctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtg
1551	gaactcaggcgcctgaccagcggcgtgcacaccttcccggctgtcctac
1601	BstEII agtcctcaggactctactccctcagcagcgtggtgaccgtgccctccagc
1651	agcttgggcacccagacctacatctgcaacgtgaatcacaagcccagcaa
1701	caccaaggtggacaagaaagttgagcccaaatcttgtgacaaaactcaca
1751	catgcccaccgtgcccagcacctgaactcctggggggaccgtcagtcttc
1801	ctcttcccccaaaacccaaggacaccctcatgatctcccggacccctga
1851	ggtcacatgcgtggtggtggacgtgagccacgaagaccctgaggtcaagt
1901	tcaactggtacgtggacggcgtggaggtgcataatgccaagacaaagccg
1951	cgggaggagcagtacaacagcacgtaccgggtggtcagcgtcctcaccgt
2001	
	cctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtctcca
2051	acaaagccctcccagccccatcgagaaaaccatctccaaagccaaaggg
2101	cagccccgagaaccacaggtgtacaccctgcccccatcccgggatgagct
2151	gaccaagaaccaggtcagcctgacctgcctggtcaaaggcttctatccca

FIGURE 8C

2201	gcgacatcgccgtggagtgggagagcaatgggcagccggagaacaactac
2251	aagaccacgcctcccgtgctggactccgacggctccttcttcctctacag
2301	caageteacegtggacaagageaggtggcageaggggaaegtetteteat
2351	gctccgtgatgcatgaggctctgcacaaccactacacgcagaagagcctc
2401	tccctgtctccgggtaaa <u>tga</u> tagatatctacgtatgatcagcctcgact S P G K * C-term of heavy chain
2451	gtgccttctagttgccagccatctgttgtttgcccctcccccgtgccttc
2501	cttgaccctggaaggtgccactcccactgtcctttcctaataaaatgagg
2551	aaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggg
2601	gtggggcaggacagcaagggggggggattgggaagacaatagcaggcatgc
2651	tggggatgcggtgggctctatggaaccagctggggctcgacagcgctgga
2701	tctcccgatccccagctttgcttctcaatttcttatttgcataatgagaa
2751	aaaaaggaaaattaattttaacaccaattcagtagttgattga
2801	cgttgccaaaaaggatgctttagagacagtgttctctgcacagataagga
2851	caaacattattcagagggagtacccagagctgagactcctaagccagtga
2901	gtggcacagcattctagggagaaatatgcttgtcatcaccgaagcctgat
2951	tccgtagagccacaccttggtaagggccaatctgctcacacaggatagag
3001	agggcaggagccagggcagagcatataaggtgaggtaggatcagttgctc
3051	ctcacatttgcttctgacatagttgtgttgggagcttggatagcttggac
3101	agctcagggctgcgatttcgcgccaaacttgacggcaatcctagcgtgaa
3151	ggctggtaggattttatccccgctgccatcatggttcgaccattgaactg
3201	catcgtcgccgtgtcccaaaatatggggattggcaagaacggagacctac
3251	cctggcctccgctcaggaacgagttcaagtacttccaaagaatgaccaca
3301	acctcttcagtggaaggtaaacagaatctggtgattatgggtaggaaaac
3351	ctggttctccattcctgagaagaatcgacctttaaaggacagaattaata

FIGURE 8D

3401 tagttctcagtagagaactcaaagaaccaccacgaggagctcattttctt 3451 gccaaaagtttggatgatgccttaagacttattgaacaaccggaattggc 3501 aagtaaagtagacatggtttggatagtcggaggcagttctgtttaccagg 3551 aagccatgaatcaaccaggccaccttagactctttqtgacaaggatcatq 3601 caggaatttgaaagtgacacgtttttcccagaaattgatttggggaaata 3651 taaacttctcccagaatacccaggcgtcctctctgaggtccaggaggaaa 3701 3751 gatgctttcaagttctctgctcccctcctaaagctatgcatttttataag 3801 accatgggacttttgctggctttagatcagcctcgactgtgccttctagt 3851 3901 aggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgc 3951 attgtctgagtaggtgtcattctattctggggggtggggtggggcaggac 4001 agcaagggggaggattgggaagacaatagcaggcatgctggggatgcggt 4051 gggctctatggaaccagctggggctcgatcgagtgtatgactgcggccqc 4101 gatecegtegagagettggegtaateatggteatagetgttteetgtgtg 4151 aaattgttatccgctcacaattccacacaacatacgagccggaagcataa 4201 agtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcg 4251 ttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgca 4301 ttaatgaatcggccaacgcgcggggagagggggtttgcgtattgggcgct 4351 cttccgcttcctcgctcactgactcgctgcgctcggttcggctgcgg 4401 cgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatc 4451 aggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggcca 4501 ggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgccc 4551 cctgacgagcatcacaaaatcgacgctcaagtcagaggtggcgaaaccc 4601 gacaggactataaagataccaggcgtttccccctggaagctccctcgtgc

FIGURE 8E

4651 gctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctc 4701 $\verb"ccttcgggaagcgttgcccatgctcatgctcatgcttatgctcatgctgtatgctcatgctgtatgctcatgctgtatgctcatgctgtatgctcatgctgtatgctcatgctgtatgctcatgctgtatg$ 4751 ttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccg 4801 ttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaac 4851 $\verb|ccggtaagacacgacttatcgccactggcagccactggtaacaggat|\\$ 4901 tagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtgc 4951 ctaactacggctacactagaaggacagtatttggtatctgcgctctgctg 5001 aagccagttaccttcggaaaaagagttggtagctcttgatccggcaaaca 5051 aaccaccgctggtagcggtggttttttttgtttgcaagcagcagattacgc 5101 gcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtct 5151 gacgctcagtggaacgaaaactcacgttaagggattttggtcatgagatt 5201 atcaaaaaggatcttcacctagatccttttaaattaaaaatgaagtttta 5251 aatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgc 5301 ttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccat 5351 agttgcctgactccccgtcgtgtagataactacgatacgggagggcttac 5401 catctggccccagtgctgcaatgataccgcgagacccacgctcaccggct 5451 ccagatttatcagcaataaaccagccagccggaagggccgagcgcagaag 5501 tggtcctgcaactttatccgcctccatccagtctattaattgttgccggg 5551 aagctagagtaagttcgccagttaatagtttgcgcaacgttgttgcc 5601 attgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcatt 5651 cagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgt 5701 gcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaag 5751 ttggccgcagtgttatcactcatggttatggcagcactgcataattctct 5801 tactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaa

FIGURE 8F

5851	ccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccg
5901	gcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgct
5951	catcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgc
6001	tgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttca
6051	gcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggca
6101	aaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactca
6151	tactcttcctttttcaatattattgaagcatttatcagggttattgtctc
6201	atgagcggatacatatttgaatgtatttagaaaaataaacaaataggggt
6251	tccgcgcacatttccccgaaaagtgccacct

FIGURE 9A

1	gacgtcgcggccgctctaggcctccaaaaaagcctcctcactacttctgg
51	aatagctcagaggccgaggcggcctcggcctctgcataaataa
101	tagtcagccatgcatgggggggagaatgggcggaactgggcggagttagg
151	ggcgggatgggcggagttaggggggggactatggttgctgactaattgag
201	atgcatgctttgcatacttctgcctgctggggagcctggggactttccac
251	acctggttgctgactaattgagatgcatgctttgcatacttctgcctgc
301	ggggagcctggggactttccacaccctaactgacacacattccacagaat
351	taattcccggggatcgatccgtcgacgtacgactagttattaatagtaat
401	caattacggggtcattagttcatagcccatatatggagttccgcgttaca
451	taacttacggtaaatggcccgcctggctgaccgcccaacgacccccgccc
501	attgacgtcaataatgacgtatgttcccatagtaacgccaatagggactt
551	tccattgacgtcaatgggtggactatttacggtaaactgcccacttggca
601	gtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatga
651	cggtaaatggcccgcctggcattatgcccagtacatgaccttatgggact
701	ttcctacttggcagtacatctacgtattagtcatcgctattaccatggtg
751	atgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacg
801	gggatttccaagtctccaccccattgacgtcaatgggagtttgttt
851	accaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattg
901	acgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagc
951	EcoRI tgggtacgtgaaccgtcagatcgcctggagacgccatcgaattctgagca
1001	cacaggacctcaccatgggatggagctgtatcatcctcttcttggtagca M G W S C I I L F L V A Leader start

SacI

1051 acagctacaggtgtccactccgagctcacgccgccctcagtctctgc T A T G V H S \underline{E} \underline{L} \underline{T} Q -- Processed N-term

FIGURE 9B

1101	ggccccaggacagaaggtcaccatctcctgcactgggagcagctccaacc
1151	tcggggcaggttatgatgttcactggtaccggcaacttccagggacagcc
1201	cccaaactcctcatctatgataacaacaatcggccctcaggggtccctga
1251	ccgattctctggctccaagtctggcccctcagcctccctggccatctctg
1301	ggctccaggctgaggatgaggctgattattactgccagtcctatgacagc
1351	AvrII agcctgaatggttatgtcttcggaactgggacccagctcaccgt <u>cctagg</u> T Q L T V L G Framework IV / C
1401	tcagcccaaggctgcccctcggtcactctgttcccgccctcctctgagg
1451	agcttcaagccaacaaggccacactggtgtgtctcataagtgacttctac
1501	ccgggagccgtgacagtggcctggaaggcaattagcagccccgtcaaggc
1551	gggagtggagaccaccacacctccaaacaagcaacaacaagtacgcgg
1601	ccagcagctatctgagcctgacgcctgagcagtggaagtcccacagaagg
1651	tacagctgccaggtcacgcatgaagggagcaccgtggagaagacagtggc
1701	ccctacagaatgttca $\underline{\text{tag}}$ ttctagatctacgtatgatcagcctcgactg P T E C S \star C-term light chain
1751	tgccttctagttgccagccatctgttgtttgcccctcccccgtgccttcc
1801	ttgaccctggaaggtgccactcccactgtcctttcctaataaaatgagga
1851	aattgcatcgcattgtctgagtaggtgtcattctattct
1901	tggggcaggacagcaagggggggggattgggaagacaatagcaggcatgct
1951	ggggatgcggtgggctctatggaaccagctggggctcgacagctcgagct
2001	agctttgcttctcaatttcttatttgcataatgagaaaaaaaggaaaatt
2051	aattttaacaccaattcagtagttgattgagcaaatgcgttgccaaaaag
2101	gatgctttagagacagtgttctctgcacagataaggacaaacattattca
2151	gagggagtacccagagctgagactcctaagccagtgagtg

FIGURE 9C

2201 ctagggagaaatatgcttgtcatcaccgaagcctgattccgtagagccac 2251 accttggtaagggccaatctgctcacacaggatagagggcaggagcca 2301 gggcagagcatataaggtgaggtaggatcagttgctcctcacatttgctt 2351 ctgacatagttgttgggagcttggatcgatccaccatggttgaacaag 2401 atggattgcacgcaggttctccggccgcttgggtggagaggctattcggc 2451 tatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccg 2501 2551 gtgccctgaatgaactgcaggacgaggcagcgggctatcgtggcc 2601 acgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcggg 2651 aagggactggctattgggcgaagtgccggggcaggatctcctgtcat 2701 ctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgcgg 2751 cggctgcatacgcttgatccggctacctgcccattcgaccaccaagcgaa 2801 acatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatc 2851 aggatgatctggacgaagagcatcaggggctcgcgccagccgaactgttc 2901 gccaggctcaaggcgcgcatgcccgacggcgaggatctcgtcgtgaccca 2951 tggcgatgcctgcttgccgaatatcatggtggaaaatggccgcttttctg 3001 gattcatcgactgtggccggctgggtgtggcggaccgctatcaggacata 3051 gcgttggctacccgtgatattgctgaagagcttggcggcgaatgggctga 3101 ccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcg 3151 cettetategeettettgaegagttettetgagegggaetetggggtteg 3201 aaatgaccgaccaagcgacgcccaacctgccatcacgagatttcgattcc 3251 accgccqccttctatgaaaqqttqqqcttcqqaatcqttttccqqqacqc 3301 cggctggatgatcctccagcgcggggatctcatgctggagttcttcgccc 3351 accccaacttgtttattgcagcttataatggttacaaataaagcaatagc

FIGURE 9D

3401 atcacaaatttcacaaataaagcattttttttcactgcattctagttgtgg 3451 tttgtccaaactcatcaatgtatcttatcatgtctggatcgcggcgcga 3501 tcccgtcgagagcttggcgtaatcatggtcatagctgtttcctgtgtgaa 3551 attgttatccgctcacaattccacacaacatacgagccggaagcataaag 3601 tgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgtt 3651 gcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcatt 3701 aatgaatcggccaacgcgggggagaggcggtttgcgtattgggcgctct 3751 tccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcg 3801 agcggtatcagctcactcaaaggcggtaatacggttatccacagaatcag 3851 gggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccagg 3901 aaccgtaaaaaggccgcgttgctggcgtttttccataggctccgccccc 3951 tgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccga 4001 caggactataaagataccaggcgtttccccctggaagctccctcgtgcgc 4051 tctcctgttccgaccctgccgcttaccggatacctgtccgcctttctccc 4101 ttcqqqaaqcqtqqcqtttctcaatqctcacqctqtaqqtatctcaqtt 4151 cggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgtt 4201 cagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaaccc 4251 ggtaagacacgacttatcgccactggcagcagccactggtaacaggatta 4301 gcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcct 4351 aactacggctacactagaaggacagtatttggtatctgcgctctgctgaa 4401 4451 ccaccgctggtagcggttgtttttttgtttgcaagcagcagattacgcgc 4501 agaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctga 4551 cgctcagtggaacgaaaactcacgttaagggattttggtcatgagattat

FIGURE 9E

4601 caaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaa 4651 tcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatag 4701 4751 ttgcctgactccccgtcgtgtagataactacgatacgggagggcttacca 4801 tctggcccagtgctgcaatgataccgcgagacccacgctcaccggctcc 4851 agatttatcagcaataaaccagccagccggaagggccgagcgcagaagtg 4901 gtcctgcaactttatccgcctccatccagtctattaattgttgccgggaa 4951 qctaqaqtaaqtaqttcqccagttaatagtttgcgcaacgttgttgccat 5001 5051 gctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgc 5101 5151 ggccgcagtgttatcactcatggttatggcagcactgcataattctctta 5201 ctgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaacc 5251 aaqtcattctqaqaatagtqtatgcggcgaccgagttgctcttgcccggc 5301 gtcaatacgggataataccgcgccacatagcagaactttaaaagtgctca 5351 tcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctg 5401 ttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagc 5451 atcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaa 5501 atqccqcaaaaaqqqaataaqqqcqacacqqaaatqttgaatactcata 5551 $\verb|ctcttcctttttcaatattattgaagcatttatcagggttattgtctcat|\\$ 5601 gagcggatacatatttgaatgtatttagaaaaataaacaaataggggttc 5651 cgcgcacatttccccgaaaagtgccacct

FIGURE 10A

EcoRI <u>gaattc</u> tgagca	1000
cacaggaceteace ${\rm \underline{atg}}$ ggatggagetgtateateetettettggtagea ${\rm \underline{M}}$ G W S C I I L F L V A	1050
acagctacaggtgtccactccgaggt $\underline{\mathbf{g}}$ ca $\underline{\mathbf{g}}$ ctg $\underline{\mathbf{g}}$ t $\underline{\mathbf{g}}$ gagtctggggagg T A T G V H S $\underline{\mathbf{E}}$ V Q L $\underline{\mathbf{V}}$ E S - N-term	1100
cttggtacagcctggggggtccctgagactctcctgcgcagcctctggag	1150
teteceteagtggatacaagatgaactgggteegeeaggeteeagggaag	1200
gggctggaatgggtctcttccattactggtatgagtaattacataca	1250
ctcagactcagtgaagggccgattcaccatctccagagacaacgccatga	1300
actcactgtatctgcaaatgaacagcctgacagccgaggacacgggtgtt	1350
tattattgtgcgacacaaccgggggagctggcgccttttgaccattgggg	1400
Bsp120I ccagggaaccctggtcaccgtctcctcagcctccaccaagggcccatcgg	1450
tettececetggcacectectecaagagcacetetgggggcacageggee	1500
ctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtg	1550
gaactcaggcgccctgaccagcggcgtgcacaccttcccggctgtcctac	1600
agtcctcaggactctactccctcagcagcgtggtgaccgtgccctccagc	1650
agcttgggcacccagacctacatctgcaacgtgaatcacaagcccagcaa	1700
caccaaggtggacaagaagttgagcccaaatcttgtgacaaaactcaca	1750
catgcccaccgtgcccagcacctgaactcctggggggaccgtcagtcttc	1800
ctcttcccccaaaacccaaggacaccctcatgatctcccggacccctga	1850
ggtcacatgcgtggtggtggacgtgagccacgaagaccctgaggtcaagt	1900
tcaactggtacgtggacggcgtggaggtgcataatgccaagacaaagccg	1950
cgggaggagcagtacaacagcacgtaccgggtggtcagcgtcctcaccgt	2000
cctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtctcca	2050

FIGURE 10B

acaaagccctcccagcccccatcgagaaaaccatctccaaagccaaaggg	2100
cagccccgagaaccacaggtgtacaccctgcccccatcccgggatgagct	2150
gaccaagaaccaggtcagcctgacctgcctggtcaaaggcttctatccca	2200
gcgacatcgccgtggagtgggagagcaatgggcagccggagaacaactac	2250
aagaccacgcctcccgtgctggactccgacggctccttcttcctctacag	2300
caagctcaccgtggacaagagcaggtggcagcaggggaacgtcttctcat	2350
gctccgtgatgcatgaggctctgcacaaccactacacgcagaagagcctc	2400
tccctgtctccgggtaaatgatagatatct	

S P G K *

FIGURE 11

EcoRI	
<u>gaattc</u> tgagca	1000
cacaggacctcaccatgggatggagctgtatcatcctcttcttggtagca \overline{M} G W S C I I L F L V A	1050
acagetacaggtgtccactce	1100
ctctgcggccccaggacagaaggtcaccatctcctgcactgggagcagct	1150
ccaacctcggggcaggttatgatgttcactggtaccggcaacttccaggg	1200
acagccccaaactcctcatctatgataacaacaatcggccctcaggggt	1250
ccctgaccgattctctggctccaagtctggcccctcagcctccctggcca	1300
tctctgggctccaggctgaggatgaggctgattattactgccagtcctat	1350
gacagcagcctgaatggttatgtcttcggaactgggacccagctcaccgt	1400
AvrII cctaggtcagcccaaggctgccccctcggtcactctgttcccgccctcct	1450
ctgaggagcttcaagccaacaaggccacactggtgtgtctcataagtgac	1500
ttctacccgggagccgtgacagtggcctggaaggcaattagcagcccgt	1550
caaggcgggagtggagaccaccacacctccaaacaaagcaacaacaagt	1600
acgcggccagcagctatctgagcctgacgcctgagcagtggaagtcccac	1650
agaaggtacagctgccaggtcacgcatgaagggagcaccgtggagaagac	1700
agtggcccctacagaatgttca $\underline{\text{tag}}$ ttctagatctacgtatgatcagcct P T E C S *	1750

WO 00/69462 1 PCT/US00/13694

SEQUENCE LISTING

(1)	GENERAL	INFORMATION	N:

- (i) APPLICANT: SmithKline Beecham, PLC
- (ii) TITLE OF INVENTION: Human Monoclonal Antibody
- (iii) NUMBER OF SEQUENCES: 21
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SmithKline Beecham Corporation
 - (B) STREET: 709 Swedeland Road
 - (C) CITY: King of Prussia
 - (D) STATE: PA
 - (E) COUNTRY: USA
 - (F) ZIP: 19406-2799
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: GB
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: King, William T.
 - (B) REGISTRATION NUMBER: 30,954
 - (C) REFERENCE/DOCKET NUMBER: #
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 610-270-4800
 - (B) TELEFAX: 610-270-4026
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 336 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..336
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CAG TCT GTG TTG ACG CAG CCG CCC TCA GTC TCT GCG GCC CCA GGA CAG
Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly Gln

1 10 15

AAG GTC ACC ATC TCC TGC ACT GGG AGC AGC TCC AAC CTC GGG GCA GGT 96

TAT GAT GTT CAC TGG TAC CGG CAA CTT CCA GGG ACA GCC CCC AAA C Tyr Asp Val His Trp Tyr Arg Gln Leu Pro Gly Thr Ala Pro Lys L 35 40 45	
CTC ATC TAT GAT AAC AAC AAT CGG CCC TCA GGG GTC CCT GAC CGA T Leu Ile Tyr Asp Asn Asn Asn Arg Pro Ser Gly Val Pro Asp Arg F 50 55 60	
TCT GGC TCC AAG TCT GGC CCC TCA GCC TCC CTG GCC ATC TCT GGG C Ser Gly Ser Lys Ser Gly Pro Ser Ala Ser Leu Ala Ile Ser Gly I 65 70 75	
CAG GCT GAG GAT GAG GCT GAT TAT TAC TGC CAG TCC TAT GAC AGC AGIN Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser S	
CTG AAT GGT TAT GTC TTC GGA ACT GGG ACC CAG CTC ACC GTC CTA G Leu Asn Gly Tyr Val Phe Gly Thr Gly Thr Gln Leu Thr Val Leu G 100 105 110	

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 112 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly Gln
1 10 15

Lys Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Leu Gly Ala Gly 20 25 30

Tyr Asp Val His Trp Tyr Arg Gln Leu Pro Gly Thr Ala Pro Lys Leu 35 40 45

Leu Ile Tyr Asp Asn Asn Asn Arg Pro Ser Gly Val Pro Asp Arg Phe 50 55 60

Ser Gly Ser Lys Ser Gly Pro Ser Ala Ser Leu Ala Ile Ser Gly Leu 65 70 75 80

Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Ser 85 90 95

Leu Asn Gly Tyr Val Phe Gly Thr Gly Thr Gln Leu Thr Val Leu Gly 100 105 110

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 357 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS(B) LOCATION: 1..357

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

			TCT Ser						48
		 	GCA Ala	 					96
		 	CAG Gln	 				-	144
			AGT Ser 55						192
		 	TCC Ser	 					240
		 	ACA Thr	 	 				288
			CTG Leu						336
CTG Leu									357

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 119 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Val Ser Leu Ser Gly Tyr 20 25 30

Lys Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

35 40 45

Ser Ser Ile Thr Gly Met Ser Asn Tyr Ile His Tyr Ser Asp Ser Val

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Met Asn Ser Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Thr Ala Glu Asp Thr Gly Val Tyr Tyr Cys
85 90 95

Ala Thr Gln Pro Gly Glu Leu Ala Pro Phe Asp His Trp Gly Gln Gly 100 105 110

Thr Leu Val Thr Val Ser Ser 115

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 119 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Val Ser Leu Ser Gly Tyr 20 25 30

Lys Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Met Asn Ser Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Thr Ala Glu Asp Thr Gly Val Tyr Tyr Cys
85 90 95

Ala Thr Gln Pro Gly Glu Leu Ala Pro Phe Asp His Trp Gly Gln Gly 100 105 110

Thr Leu Val Thr Val Ser Ser 115

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 98 amino acids(B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30

Glu Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 138 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly
1 10 15

Val His Ser Glu Val Gln Leu Leu Glu Ser Gly Gly Leu Val Gln 20 25 30

Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Val Ser Leu 35 40 45

Ser Gly Tyr Lys Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60

Glu Trp Val Ser Ser Ile Thr Gly Met Ser Asn Tyr Ile His Tyr Ser 65 70 75 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Met Asn 85 90 95

Ser Leu Tyr Leu Gln Met Asn Ser Leu Thr Ala Glu Asp Thr Gly Val

WO 00/69462 6 PCT/US00/13694

100 105 110

Tyr Tyr Cys Ala Thr Gln Pro Gly Glu Leu Ala Pro Phe Asp His Trp 115 120 125

Gly Gln Gly Thr Leu Val Thr Val Ser Ser 130 135

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 138 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
 - Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 10 15
 - Val His Ser Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln 20 25 30
 - Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Val Ser Leu 35 40 45
 - Ser Gly Tyr Lys Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60
 - Glu Trp Val Ser Ser Ile Thr Gly Met Ser Asn Tyr Ile His Tyr Ser 65 70 75 80
 - Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Met Asn 85 90 95
 - Ser Leu Tyr Leu Gln Met Asn Ser Leu Thr Ala Glu Asp Thr Gly Val $100 \\ 0.0 \\ 105 \\ 110$
 - Tyr Tyr Cys Ala Thr Gln Pro Gly Glu Leu Ala Pro Phe Asp His Trp 115 120 125
 - Gly Gln Gly Thr Leu Val Thr Val Ser Ser 130 135
- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 111 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly Gln 1 5 10 15

Lys Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Leu Gly Ala Gly 20 25 30

Tyr Asp Val His Trp Tyr Arg Gln Leu Pro Gly Thr Ala Pro Lys Leu 35 40 45

Leu Ile Tyr Asp Asn Asn Asp Pro Ser Gly Val Pro Asp Arg Phe 50 60

Ser Gly Ser Lys Ser Gly Pro Ser Ala Ser Leu Ala Ile Ser Gly Leu 65 70 75 80

Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Ser 85 90 95

Leu Asn Gly Tyr Val Phe Gly Thr Gly Thr Gln Leu Thr Val Leu
100 105 110

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 90 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
1 10 15

Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Ile Gly Ala Gly 20 25 30

Tyr Asp Val His Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu 35 40 45

Leu Ile Tyr Gly Asn Ser Asn Arg Pro Ser Gly Val Pro Asp Arg Phe 50 55 60

Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu 65 70 75 80

Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys 85 90

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 128 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly
1 10 15

Val His Ser Glu Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly 20 25 30

Gln Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Ile Gly Ala 35 40 45

Gly Tyr Asp Val His Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys 50 55 60

Leu Leu Ile Tyr Gly Asn Ser Asn Arg Pro Ser Gly Val Pro Asp Arg 65 70 75 80

Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly 85 90 95

Leu Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser 100 105 110

Ser Leu Asn Gly Tyr Val Phe Gly Thr Gly Thr Gln Leu Thr Val Leu 115 120 125

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 130 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly
1 5 10 15

Val His Ser Gln Ser Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala 20 25 30

Pro Gly Gln Arg Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Ile 35 40 45

Gly Ala Gly Tyr Asp Val His Trp Tyr Gln Gln Leu Pro Gly Thr Ala 50 60

Pro Lys Leu Leu Ile Tyr Gly Asn Ser Asn Arg Pro Ser Gly Val Pro 65 70 75 80

WO 00/69462 9 PCT/US00/13694

Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile 85 90 95

Thr Gly Leu Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr 100 105 110

Asp Ser Ser Leu Asn Gly Tyr Val Phe Gly Thr Gly Thr Gln Leu Thr
115 120 125

Val Leu 130

(2) INFORMATION FOR SEO ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6281 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GACGTCGCGG CCGCTCTAGG CCTCCAAAAA AGCCTCCTCA CTACTTCTGG AATAGCTCAG 60 AGGCCGAGGC GGCCTCGGCC TCTGCATAAA TAAAAAAAT TAGTCAGCCA TGCATGGGGC 120 GGAGAATGGG CGGAGTTAGG GGCGGGATGG GCGGAGTTAG GGGCGGGACT 180 ATGGTTGCTG ACTAATTGAG ATGCATGCTT TGCATACTTC TGCCTGCTGG GGAGCCTGGG 240 GACTTTCCAC ACCTGGTTGC TGACTAATTG AGATGCATGC TTTGCATACT TCTGCCTGCT 300 GGGGAGCCTG GGGACTTTCC ACACCCTAAC TGACACACAT TCCACAGAAT TAATTCCCGG 360 GGATCGATCC GTCGACGTAC GACTAGTTAT TAATAGTAAT CAATTACGGG GTCATTAGTT 420 CATAGCCCAT ATATGGAGTT CCGCGTTACA TAACTTACGG TAAATGGCCC GCCTGGCTGA 480 CCGCCCAACG ACCCCCGCCC ATTGACGTCA ATAATGACGT ATGTTCCCAT AGTAACGCCA 540 ATAGGGACTT TCCATTGACG TCAATGGGTG GACTATTTAC GGTAAACTGC CCACTTGGCA 600 GTACATCAAG TGTATCATAT GCCAAGTACG CCCCCTATTG ACGTCAATGA CGGTAAATGG 660 CCCGCCTGGC ATTATGCCCA GTACATGACC TTATGGGACT TTCCTACTTG GCAGTACATC 720 TACGTATTAG TCATCGCTAT TACCATGGTG ATGCGGTTTT GGCAGTACAT CAATGGGCGT 780 GGATAGCGGT TTGACTCACG GGGATTTCCA AGTCTCCACC CCATTGACGT CAATGGGAGT 840 TTGTTTTGGC ACCAAATCA ACGGGACTTT CCAAAATGTC GTAACAACTC CGCCCCATTG 900 ACGCAAATGG GCGGTAGGCG TGTACGGTGG GAGGTCTATA TAAGCAGAGC TGGGTACGTG 960 AACCGTCAGA TCGCCTGGAG ACGCCATCGA ATTCTGAGCA CACAGGACCT CACCATGGGA 1020 TGGAGCTGTA TCATCCTCTT CTTGGTAGCA ACAGCTACAG GTGTCCACTC CGAGGTCCAA 1080

W O 00/09402					1 61/6500/1509	•
CTGCTCGAGT	CTGGGGGAGG	CTTGGTACAG	CCTGGGGGGT	CCCTGAGACT	CTCCTGCGCA	1140
GCCTCTGGAG	TCTCCCTCAG	TGGATACAAG	ATGAACTGGG	TCCGCCAGGC	TCCAGGGAAG	1200
GGGCTGGAAT	GGGTCTCTTC	CATTACTGGT	ATGAGTAATT	ACATACACTA	CTCAGACTCA	1260
GTGAAGGGCC	GATTCACCAT	CTCCAGAGAC	AACGCCATGA	ACTCACTGTA	TCTGCAAATG	1320
AACAGCCTGA	CAGCCGAGGA	CACGGGTGTT	TATTATTGTG	CGACACAACC	GGGGAGCTG	1380
GCGCCTTTTG	ACCATTGGGG	CCAGGGAACC	CTGGTCACCG	TCTCCTCAGC	CTCCACCAAG	1440
GGCCCATCGG	TCTTCCCCCT	GGCACCCTCC	TCCAAGAGCA	CCTCTGGGGG	CACAGCGGCC	1500
CTGGGCTGCC	TGGTCAAGGA	CTACTTCCCC	GAACCGGTGA	CGGTGTCGTG	GAACTCAGGC	1560
GCCCTGACCA	GCGGCGTGCA	CACCTTCCCG	GCTGTCCTAC	AGTCCTCAGG	ACTCTACTCC	1620
CTCAGCAGCG	TGGTGACCGT	GCCCTCCAGC	AGCTTGGGCA	CCCAGACCTA	CATCTGCAAC	1680
GTGAATCACA	AGCCCAGCAA	CACCAAGGTG	GACAAGAAAG	TTGAGCCCAA	ATCTTGTGAC	1740
AAAACTCACA	CATGCCCACC	GTGCCCAGCA	CCTGAACTCC	TGGGGGGACC	GTCAGTCTTC	1800
CTCTTCCCCC	CAAAACCCAA	GGACACCCTC	ATGATCTCCC	GGACCCCTGA	GGTCACATGC	1860
GTGGTGGTGG	ACGTGAGCCA	CGAAGACCCT	GAGGTCAAGT	TCAACTGGTA	CGTGGACGGC	1920
GTGGAGGTGC	ATAATGCCAA	GACAAAGCCG	CGGGAGGAGC	AGTACAACAG	CACGTACCGG	1980
GTGGTCAGCG	TCCTCACCGT	CCTGCACCAG	GACTGGCTGA	ATGGCAAGGA	GTACAAGTGC	2040
AAGGTCTCCA	ACAAAGCCCT	CCCAGCCCCC	ATCGAGAAAA	CCATCTCCAA	AGCCAAAGGG	2100
CAGCCCCGAG	AACCACAGGT	GTACACCCTG	CCCCCATCCC	GGGATGAGCT	GACCAAGAAC	2160
CAGGTCAGCC	TGACCTGCCT	GGTCAAAGGC	TTCTATCCCA	GCGACATCGC	CGTGGAGTGG	2220
GAGAGCAATG	GGCAGCCGGA	GAACAACTAC	AAGACCACGC	CTCCCGTGCT	GGACTCCGAC	2280
GGCTCCTTCT	TCCTCTACAG	CAAGCTCACC	GTGGACAAGA	GCAGGTGGCA	GCAGGGGAAC	2340
GTCTTCTCAT	GCTCCGTGAT	GCATGAGGCT	CTGCACAACC	ACTACACGCA	GAAGAGCCTC	2400
TCCCTGTCTC	CGGGTAAATG	ATAGATATCT	ACGTATGATC	AGCCTCGACT	GTGCCTTCTA	2460
GTTGCCAGCC	ATCTGTTGTT	TGCCCCTCCC	CCGTGCCTTC	CTTGACCCTG	GAAGGTGCCA	2520
CTCCCACTGT	CCTTTCCTAA	TAAAATGAGG	AAATTGCATC	GCATTGTCTG	AGTAGGTGTC	2580
ATTCTATTCT	GGGGGGTGGG	GTGGGGCAGG	ACAGCAAGGG	GGAGGATTGG	GAAGACAATA	2640
GCAGGCATGC	TGGGGATGCG	GTGGGCTCTA	TGGAACCAGC	TGGGGCTCGA	CAGCGCTGGA	2700
TCTCCCGATC	CCCAGCTTTG	CTTCTCAATT	TCTTATTTGC	ATAATGAGAA	AAAAAGGAAA	2760
ATTAATTTTA	ACACCAATTC	AGTAGTTGAT	TGAGCAAATG	CGTTGCCAAA	AAGGATGCTT	2820
TAGAGACAGT	GTTCTCTGCA	CAGATAAGGA	CAAACATTAT	TCAGAGGGAG	TACCCAGAGC	2880
TGAGACTCCT	AAGCCAGTGA	GTGGCACAGC	ATTCTAGGGA	GAAATATGCT	TGTCATCACC	2940
GAAGCCTGAT	TCCGTAGAGC	CACACCTTGG	TAAGGGCCAA	TCTGCTCACA	CAGGATAGAG	3000

			• •			
AGGGCAGGAG	CCAGGGCAGA	GCATATAAGG	TGAGGTAGGA	TCAGTTGCTC	CTCACATTTG	3060
CTTCTGACAT	AGTTGTGTTG	GGAGCTTGGA	TAGCTTGGAC	AGCTCAGGGC	TGCGATTTCG	3120
CGCCAAACTT	GACGGCAATC	CTAGCGTGAA	GGCTGGTAGG	ATTTTATCCC	CGCTGCCATC	3180
ATGGTTCGAC	CATTGAACTG	CATCGTCGCC	GTGTCCCAAA	ATATGGGGAT	TGGCAAGAAC	3240
GGAGACCTAC	CCTGGCCTCC	GCTCAGGAAC	GAGTTCAAGT	ACTTCCAAAG	AATGACCACA	3300
ACCTCTTCAG	TGGAAGGTAA	ACAGAATCTG	GTGATTATGG	GTAGGAAAAC	CTGGTTCTCC	3360
ATTCCTGAGA	AGAATCGACC	TTTAAAGGAC	AGAATTAATA	TAGTTCTCAG	TAGAGAACTC	3420
AAAGAACCAC	CACGAGGAGC	TCATTTTCTT	GCCAAAAGTT	TGGATGATGC	CTTAAGACTT	3480
ATTGAACAAC	CGGAATTGGC	AAGTAAAGTA	GACATGGTTT	GGATAGTCGG	AGGCAGTTCT	3540
GTTTACCAGG	AAGCCATGAA	TCAACCAGGC	CACCTTAGAC	TCTTTGTGAC	AAGGATCATG	3600
CAGGAATTTG	AAAGTGACAC	GTTTTTCCCA	GAAATTGATT	TGGGGAAATA	TAAACTTCTC	3660
CCAGAATACC	CAGGCGTCCT	CTCTGAGGTC	CAGGAGGAAA	AAGGCATCAA	GTATAAGTTT	3720
GAAGTCTACG	AGAAGAAAGA	CTAACAGGAA	GATGCTTTCA	AGTTCTCTGC	TCCCCTCCTA	3780
AAGCTATGCA	TTTTTATAAG	ACCATGGGAC	TTTTGCTGGC	TTTAGATCAG	CCTCGACTGT	3840
GCCTTCTAGT	TGCCAGCCAT	CTGTTGTTTG	CCCCTCCCCC	GTGCCTTCCT	TGACCCTGGA	3900
AGGTGCCACT	CCCACTGTCC	TTTCCTAATA	AAATGAGGAA	ATTGCATCGC	ATTGTCTGAG	3960
TAGGTGTCAT	TCTATTCTGG	GGGGTGGGGT	GGGGCAGGAC	AGCAAGGGGG	AGGATTGGGA	4020
AGACAATAGC	AGGCATGCTG	GGGATGCGGT	GGGCTCTATG	GAACCAGCTG	GGGCTCGATC	4080
GAGTGTATGA	CTGCGGCCGC	GATCCCGTCG	AGAGCTTGGC	GTAATCATGG	TCATAGCTGT	4140
TTCCTGTGTG	AAATTGTTAT	CCGCTCACAA	TTCCACACAA	CATACGAGCC	GGAAGCATAA	4200
AGTGTAAAGC	CTGGGGTGCC	TAATGAGTGA	GCTAACTCAC	ATTAATTGCG	TTGCGCTCAC	4260
TGCCCGCTTT	CCAGTCGGGA	AACCTGTCGT	GCCAGCTGCA	TTAATGAATC	GGCCAACGCG	4320
CGGGGAGAGG	CGGTTTGCGT	ATTGGGCGCT	CTTCCGCTTC	CTCGCTCACT	GACTCGCTGC	4380
GCTCGGTCGT	TCGGCTGCGG	CGAGCGGTAT	CAGCTCACTC	AAAGGCGGTA	ATACGGTTAT	4440
CCACAGAATC	AGGGGATAAC	GCAGGAAAGA	ACATGTGAGC	AAAAGGCCAG	CAAAAGGCCA	4500
GGAACCGTAA	AAAGGCCGCG	TTGCTGGCGT	TTTTCCATAG	GCTCCGCCCC	CCTGACGAGC	4560
ATCACAAAAA	TCGACGCTCA	AGTCAGAGGT	GGCGAAACCC	GACAGGACTA	TAAAGATACC	4620
AGGCGTTTCC	CCCTGGAAGC	TCCCTCGTGC	GCTCTCCTGT	TCCGACCCTG	CCGCTTACCG	4680
GATACCTGTC	CGCCTTTCTC	CCTTCGGGAA	GCGTGGCGCT	TTCTCAATGC	TCACGCTGTA	4740
GGTATCTCAG	TTCGGTGTAG	GTCGTTCGCT	CCAAGCTGGG	CTGTGTGCAC	GAACCCCCCG	4800
TTCAGCCCGA	CCGCTGCGCC	TTATCCGGTA	ACTATCGTCT	TGAGTCCAAC	CCGGTAAGAC	4860

WO 00/69462			12		PCT/US00/136	94
ACGACTTATC	GCCACTGGCA	GCAGCCACTG	GTAACAGGAT	TAGCAGAGCG	AGGTATGTAG	4920
GCGGTGCTAC	AGAGTTCTTG	AAGTGGTGGC	CTAACTACGG	CTACACTAGA	AGGACAGTAT	4980
TTGGTATCTG	CGCTCTGCTG	AAGCCAGTTA	CCTTCGGAAA	AAGAGTTGGT	AGCTCTTGAT	5040
CCGGCAAACA	AACCACCGCT	GGTAGCGGTG	GTTTTTTGT	TTGCAAGCAG	CAGATTACGC	5100
GCAGAAAAA	AGGATCTCAA	GAAGATCCTT	TGATCTTTTC	TACGGGGTCT	GACGCTCAGT	5160
GGAACGAAAA	CTCACGTTAA	GGGATTTTGG	TCATGAGATT	ATCAAAAAGG	ATCTTCACCT	5220
AGATCCTTTT	AAATTAAAA	TGAAGTTTTA	AATCAATCTA	AAGTATATAT	GAGTAAACTT	5280
GGTCTGACAG	TTACCAATGC	TTAATCAGTG	AGGCACCTAT	CTCAGCGATC	TGTCTATTTC	5340
GTTCATCCAT	AGTTGCCTGA	CTCCCCGTCG	TGTAGATAAC	TACGATACGG	GAGGGCTTAC	5400
CATCTGGCCC	CAGTGCTGCA	ATGATACCGC	GAGACCCACG	CTCACCGGCT	CCAGATTTAT	5460
CAGCAATAAA	CCAGCCAGCC	GGAAGGGCCG	AGCGCAGAAG	TGGTCCTGCA	ACTTTATCCG	5520
CCTCCATCCA	GTCTATTAAT	TGTTGCCGGG	AAGCTAGAGT	AAGTAGTTCG	CCAGTTAATA	5580
GTTTGCGCAA	CGTTGTTGCC	ATTGCTACAG	GCATCGTGGT	GTCACGCTCG	TCGTTTGGTA	5640
TGGCTTCATT	CAGCTCCGGT	TCCCAACGAT	CAAGGCGAGT	TACATGATCC	CCCATGTTGT	5700
GCAAAAAAGC	GGTTAGCTCC	TTCGGTCCTC	CGATCGTTGT	CAGAAGTAAG	TTGGCCGCAG	5760
TGTTATCACT	CATGGTTATG	GCAGCACTGC	ATAATTCTCT	TACTGTCATG	CCATCCGTAA	5820
GATGCTTTTC	TGTGACTGGT	GAGTACTCAA	CCAAGTCATT	CTGAGAATAG	TGTATGCGGC	5880
GACCGAGTTG	CTCTTGCCCG	GCGTCAATAC	GGGATAATAC	CGCGCCACAT	AGCAGAACTT	5940
TAAAAGTGCT	CATCATTGGA	AAACGTTCTT	CGGGGCGAAA	ACTCTCAAGG	ATCTTACCGC	6000
TGTTGAGATC	CAGTTCGATG	TAACCCACTC	GTGCACCCAA	CTGATCTTCA	GCATCTTTTA	6060
CTTTCACCAG	CGTTTCTGGG	TGAGCAAAAA	CAGGAAGGCA	AAATGCCGCA	AAAAAGGGAA	6120
TAAGGGCGAC	ACGGAAATGT	TGAATACTCA	TACTCTTCCT	TTTTCAATAT	TATTGAAGCA	6180
TTTATCAGGG	TTATTGTCTC	ATGAGCGGAT	ACATATTTGA	ATGTATTTAG	AAAAATAAAC	6240
AAATAGGGGT	TCCGCGCACA	TTTCCCCGAA	AAGTGCCACC	Т		6281

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5679 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

WO 00/69462			13		PCT/US00/13	3694
GACGTCGCGG	CCGCTCTAGG	CCTCCAAAAA	AGCCTCCTCA	CTACTTCTGG	AATAGCTCAG	60
AGGCCGAGGC	GGCCTCGGCC	TCTGCATAAA	TAAAAAAAAT	TAGTCAGCCA	TGCATGGGGC	120
GGAGAATGGG	CGGAACTGGG	CGGAGTTAGG	GGCGGGATGG	GCGGAGTTAG	GGGCGGGACT	180
ATGGTTGCTG	ACTAATTGAG	ATGCATGCTT	TGCATACTTC	TGCCTGCTGG	GGAGCCTGGG	240
GACTTTCCAC	ACCTGGTTGC	TGACTAATTG	AGATGCATGC	TTTGCATACT	TCTGCCTGCT	300
GGGGAGCCTG	GGGACTTTCC	ACACCCTAAC	TGACACACAT	TCCACAGAAT	TAATTCCCGG	360
GGATCGATCC	GTCGACGTAC	GACTAGTTAT	TAATAGTAAT	CAATTACGGG	GTCATTAGTT	420
CATAGCCCAT	ATATGGAGTT	CCGCGTTACA	TAACTTACGG	TAAATGGCCC	GCCTGGCTGA	480
CCGCCCAACG	ACCCCCGCCC	ATTGACGTCA	ATAATGACGT	ATGTTCCCAT	AGTAACGCCA	540
ATAGGGACTT	TCCATTGACG	TCAATGGGTG	GACTATTTAC	GGTAAACTGC	CCACTTGGCA	600
GTACATCAAG	TGTATCATAT	GCCAAGTACG	CCCCCTATTG	ACGTCAATGA	CGGTAAATGG	660
CCCGCCTGGC	ATTATGCCCA	GTACATGACC	TTATGGGACT	TTCCTACTTG	GCAGTACATC	720
TACGTATTAG	TCATCGCTAT	TACCATGGTG	ATGCGGTTTT	GGCAGTACAT	CAATGGGCGT	780
GGATAGCGGT	TTGACTCACG	GGGATTTCCA	AGTCTCCACC	CCATTGACGT	CAATGGGAGT	840
TTGTTTTGGC	ACCAAAATCA	ACGGGACTTT	CCAAAATGTC	GTAACAACTC	CGCCCCATTG	900
ACGCAAATGG	GCGGTAGGCG	TGTACGGTGG	GAGGTCTATA	TAAGCAGAGC	TGGGTACGTG	960
AACCGTCAGA	TCGCCTGGAG	ACGCCATCGA	ATTCTGAGCA	CACAGGACCT	CACCATGGGA	1020
TGGAGCTGTA	TCATCCTCTT	CTTGGTAGCA	ACAGCTACAG	GTGTCCACTC	CGAGCTCACG	1080
CAGCCGCCCT	CAGTCTCTGC	GGCCCCAGGA	CAGAAGGTCA	CCATCTCCTG	CACTGGGAGC	1140
AGCTCCAACC	TCGGGGCAGG	TTATGATGTT	CACTGGTACC	GGCAACTTCC	AGGGACAGCC	1200
CCCAAACTCC	TCATCTATGA	TAACAACAAT	CGGCCCTCAG	GGGTCCCTGA	CCGATTCTCT	1260
GGCTCCAAGT	CTGGCCCCTC	AGCCTCCCTG	GCCATCTCTG	GGCTCCAGGC	TGAGGATGAG	1320
GCTGATTATT	ACTGCCAGTC	CTATGACAGC	AGCCTGAATG	GTTATGTCTT	CGGAACTGGG	1380
ACCCAGCTCA	CCGTCCTAGG	TCAGCCCAAG	GCTGCCCCCT	CGGTCACTCT	GTTCCCGCCC	1440
TCCTCTGAGG	AGCTTCAAGC	CAACAAGGCC	ACACTGGTGT	GTCTCATAAG	TGACTTCTAC	1500
CCGGGAGCCG	TGACAGTGGC	CTGGAAGGCA	ATTAGCAGCC	CCGTCAAGGC	GGGAGTGGAG	1560
ACCACCACAC	CCTCCAAACA	AAGCAACAAC	AAGTACGCGG	CCAGCAGCTA	TCTGAGCCTG	1620
ACGCCTGAGC	AGTGGAAGTC	CCACAGAAGG	TACAGCTGCC	AGGTCACGCA	TGAAGGGAGC	1680
ACCGTGGAGA	AGACAGTGGC	CCCTACAGAA	TGTTCATAGT	TCTAGATCTA	CGTATGATCA	1740
GCCTCGACTG	TGCCTTCTAG	TTGCCAGCCA	TCTGTTGTTT	GCCCCTCCCC	CGTGCCTTCC	1800
TTGACCCTGG	AAGGTGCCAC	TCCCACTGTC	CTTTCCTAAT	AAAATGAGGA	AATTGCATCG	1860
C A TITIOTIC TO C A	ama camamaa	mmama mmama	оссертось	maccaca aca	0200220000	1000

CATTGTCTGA GTAGGTGTCA TTCTATTCTG GGGGGTGGGG TGGGGCAGGA CAGCAAGGGG 1920

	GAGGATTGGG	AAGACAATAG	CAGGCATGCT	GGGGATGCGG	TGGGCTCTAT	GGAACCAGCT	1980
	GGGGCTCGAC	AGCTCGAGCT	AGCTTTGCTT	CTCAATTTCT	TATTTGCATA	ATGAGAAAA	2040
	AAGGAAAATT	AATTTTAACA	CCAATTCAGT	AGTTGATTGA	GCAAATGCGT	TGCCAAAAAG	2100
	GATGCTTTAG	AGACAGTGTT	CTCTGCACAG	ATAAGGACAA	ACATTATTCA	GAGGGAGTAC	2160
	CCAGAGCTGA	GACTCCTAAG	CCAGTGAGTG	GCACAGCATT	CTAGGGAGAA	ATATGCTTGT	2220
	CATCACCGAA	GCCTGATTCC	GTAGAGCCAC	ACCTTGGTAA	GGGCCAATCT	GCTCACACAG	2280
	GATAGAGAGG	GCAGGAGCCA	GGGCAGAGCA	TATAAGGTGA	GGTAGGATCA	GTTGCTCCTC	2340
	ACATTTGCTT	CTGACATAGT	TGTGTTGGGA	GCTTGGATCG	ATCCACCATG	GTTGAACAAG	2400
	ATGGATTGCA	CGCAGGTTCT	CCGGCCGCTT	GGGTGGAGAG	GCTATTCGGC	TATGACTGGG	2460
	CACAACAGAC	AATCGGCTGC	TCTGATGCCG	CCGTGTTCCG	GCTGTCAGCG	CAGGGGCGCC	2520
	CGGTTCTTTT	TGTCAAGACC	GACCTGTCCG	GTGCCCTGAA	TGAACTGCAG	GACGAGGCAG	2580
	CGCGGCTATC	GTGGCTGGCC	ACGACGGGCG	TTCCTTGCGC	AGCTGTGCTC	GACGTTGTCA	2640
	CTGAAGCGGG	AAGGGACTGG	CTGCTATTGG	GCGAAGTGCC	GGGGCAGGAT	CTCCTGTCAT	2700
	CTCACCTTGC	TCCTGCCGAG	AAAGTATCCA	TCATGGCTGA	TGCAATGCGG	CGGCTGCATA	2760
	CGCTTGATCC	GGCTACCTGC	CCATTCGACC	ACCAAGCGAA	ACATCGCATC	GAGCGAGCAC	2820
	GTACTCGGAT	GGAAGCCGGT	CTTGTCGATC	AGGATGATCT	GGACGAAGAG	CATCAGGGGC	2880
	TCGCGCCAGC	CGAACTGTTC	GCCAGGCTCA	AGGCGCGCAT	GCCCGACGGC	GAGGATCTCG	2940
	TCGTGACCCA	TGGCGATGCC	TGCTTGCCGA	ATATCATGGT	GGAAAATGGC	CGCTTTTCTG	3000
	GATTCATCGA	CTGTGGCCGG	CTGGGTGTGG	CGGACCGCTA	TCAGGACATA	GCGTTGGCTA	3060
	CCCGTGATAT	TGCTGAAGAG	CTTGGCGGCG	AATGGGCTGA	CCGCTTCCTC	GTGCTTTACG	3120
	GTATCGCCGC	TCCCGATTCG	CAGCGCATCG	CCTTCTATCG	CCTTCTTGAC	GAGTTCTTCT	3180
	GAGCGGGACT	CTGGGGTTCG	AAATGACCGA	CCAAGCGACG	CCCAACCTGC	CATCACGAGA	3240
	TTTCGATTCC	ACCGCCGCCT	TCTATGAAAG	GTTGGGCTTC	GGAATCGTTT	TCCGGGACGC	3300
	CGGCTGGATG	ATCCTCCAGC	GCGGGGATCT	CATGCTGGAG	TTCTTCGCCC	ACCCCAACTT	3360
•	GTTTATTGCA	GCTTATAATG	GTTACAAATA	AAGCAATAGC	ATCACAAATT	TCACAAATAA	3420
	AGCATTTTTT	TCACTGCATT	CTAGTTGTGG	TTTGTCCAAA	CTCATCAATG	TATCTTATCA	3480
,	TGTCTGGATC	GCGGCCGCGA	TCCCGTCGAG	AGCTTGGCGT	AATCATGGTC	ATAGCTGTTT	3540
(CCTGTGTGAA	ATTGTTATCC	GCTCACAATT	CCACACAACA	TACGAGCCGG	AAGCATAAAG	3600
r	TGTAAAGCCT	GGGGTGCCTA	ATGAGTGAGC	TAACTCACAT	TAATTGCGTT	GCGCTCACTG	3660
(CCCGCTTTCC	AGTCGGGAAA	CCTGTCGTGC	CAGCTGCATT	AATGAATCGG	CCAACGCGCG	3720
(GGGAGAGGCG	GTTTGCGTAT	TGGGCGCTCT	TCCGCTTCCT	CGCTCACTGA	CTCGCTGCGC	3780

TCGGTCGTTC GGCTGCGGCG	AGCGGTATCA	GCTCACTCAA	AGGCGGTAAT	ACGGTTATCC	3840
ACAGAATCAG GGGATAACGC	AGGAAAGAAC	ATGTGAGCAA	AAGGCCAGCA	AAAGGCCAGG	3900
AACCGTAAAA AGGCCGCGTT	GCTGGCGTTT	TTCCATAGGC	TCCGCCCCCC	TGACGAGCAT	3960
CACAAAAATC GACGCTCAAG	TCAGAGGTGG	CGAAACCCGA	CAGGACTATA	AAGATACCAG	4020
GCGTTTCCCC CTGGAAGCTC	CCTCGTGCGC	TCTCCTGTTC	CGACCCTGCC	GCTTACCGGA	4080
TACCTGTCCG CCTTTCTCCC	TTCGGGAAGC	GTGGCGCTTT	CTCAATGCTC	ACGCTGTAGG	4140
TATCTCAGTT CGGTGTAGGT	CGTTCGCTCC	AAGCTGGGCT	GTGTGCACGA	ACCCCCGTT	4200
CAGCCCGACC GCTGCGCCTT	ATCCGGTAAC	TATCGTCTTG	AGTCCAACCC	GGTAAGACAC	4260
GACTTATCGC CACTGGCAGC	AGCCACTGGT	AACAGGATTA	GCAGAGCGAG	GTATGTAGGC	4320
GGTGCTACAG AGTTCTTGAA	GTGGTGGCCT	AACTACGGCT	ACACTAGAAG	GACAGTATTT	4380
GGTATCTGCG CTCTGCTGAA	GCCAGTTACC	TTCGGAAAAA	GAGTTGGTAG	CTCTTGATCC	4440
GGCAAACAAA CCACCGCTGG	TAGCGGTGGT	TTTTTTGTTT	GCAAGCAGCA	GATTACGCGC	4500
AGAAAAAAA GATCTCAAGA	AGATCCTTTG	ATCTTTTCTA	CGGGGTCTGA	CGCTCAGTGG	4560
AACGAAAACT CACGTTAAGG	GATTTTGGTC	ATGAGATTAT	CAAAAAGGAT	CTTCACCTAG	4620
ATCCTTTTAA ATTAAAAATG	AAGTTTTAAA	TCAATCTAAA	GTATATATGA	GTAAACTTGG	4680
TCTGACAGTT ACCAATGCTT	AATCAGTGAG	GCACCTATCT	CAGCGATCTG	TCTATTTCGT	4740
TCATCCATAG TTGCCTGACT	CCCCGTCGTG	TAGATAACTA	CGATACGGGA	GGGCTTACCA	4800
TCTGGCCCCA GTGCTGCAAT	GATACCGCGA	GACCCACGCT	CACCGGCTCC	AGATTTATCA	4860
GCAATAAACC AGCCAGCCGG	AAGGGCCGAG	CGCAGAAGTG	GTCCTGCAAC	TTTATCCGCC	4920
TCCATCCAGT CTATTAATTG	TTGCCGGGAA	GCTAGAGTAA	GTAGTTCGCC	AGTTAATAGT	4980
TTGCGCAACG TTGTTGCCAT	TGCTACAGGC	ATCGTGGTGT	CACGCTCGTC	GTTTGGTATG	5040
GCTTCATTCA GCTCCGGTTC	CCAACGATCA	AGGCGAGTTA	CATGATCCCC	CATGTTGTGC	5100
AAAAAAGCGG TTAGCTCCTT	CGGTCCTCCG	ATCGTTGTCA	GAAGTAAGTT	GGCCGCAGTG	5160
TTATCACTCA TGGTTATGGC	AGCACTGCAT	AATTCTCTTA	CTGTCATGCC	ATCCGTAAGA	5220
TGCTTTTCTG TGACTGGTGA	GTACTCAACC	AAGTCATTCT	GAGAATAGTG	TATGCGGCGA	5280
CCGAGTTGCT CTTGCCCGGC	GTCAATACGG	GATAATACCG	CGCCACATAG	CAGAACTTTA	5340
AAAGTGCTCA TCATTGGAAA	ACGTTCTTCG	GGGCGAAAAC	TCTCAAGGAT	CTTACCGCTG	5400
TTGAGATCCA GTTCGATGTA	ACCCACTCGT	GCACCCAACT	GATCTTCAGC	ATCTTTTACT	5460
TTCACCAGCG TTTCTGGGTG	AGCAAAAACA	GGAAGGCAAA	ATGCCGCAAA	AAAGGGAATA	5520
AGGGCGACAC GGAAATGTTG	AATACTCATA	CTCTTCCTTT	TTCAATATTA	TTGAAGCATT	5580
TATCAGGGTT ATTGTCTCAT	GAGCGGATAC	ATATTTGAAT	GTATTTAGAA	АААТАААСАА	5640
ATAGGGGTTC CGCGCACATT	TCCCCGAAAA	GTGCCACCT			5679

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1442 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GAATTCTGAG CACACAGGAC	CTCACCATGG	GATGGAGCTG	TATCATCCTC	TTCTTGGTAG	60
CAACAGCTAC AGGTGTCCAC	TCCGAGGTGC	AGCTGGTGGA	GTCTGGGGGA	GGCTTGGTAC	120
AGCCTGGGGG GTCCCTGAGA	CTCTCCTGCG	CAGCCTCTGG	AGTCTCCCTC	AGTGGATACA	180
AGATGAACTG GGTCCGCCAG	GCTCCAGGGA	AGGGGCTGGA	ATGGGTCTCT	TCCATTACTG	240
GTATGAGTAA TTACATACAC	TACTCAGACT	CAGTGAAGGG	CCGATTCACC	ATCTCCAGAG	300
ACAACGCCAT GAACTCACTG	TATCTGCAAA	TGAACAGCCT	GACAGCCGAG	GACACGGGTG	360
TTTATTATTG TGCGACACAA	CCGGGGGAGC	TGGCGCCTTT	TGACCATTGG	GGCCAGGGAA	420
CCCTGGTCAC CGTCTCCTCA	GCCTCCACCA	AGGGCCCATC	GGTCTTCCCC	CTGGCACCCT	480
CCTCCAAGAG CACCTCTGGG	GGCACAGCGG	CCCTGGGCTG	CCTGGTCAAG	GACTACTTCC	540
CCGAACCGGT GACGGTGTCG	TGGAACTCAG	GCGCCCTGAC	CAGCGGCGTG	CACACCTTCC	600
CGGCTGTCCT ACAGTCCTCA	GGACTCTACT	CCCTCAGCAG	CGTGGTGACC	GTGCCCTCCA	660
GCAGCTTGGG CACCCAGACC	TACATCTGCA	ACGTGAATCA	CAAGCCCAGC	AACACCAAGG	720
TGGACAAGAA AGTTGAGCCC	AAATCTTGTG	ACAAAACTCA	CACATGCCCA	CCGTGCCCAG	780
CACCTGAACT CCTGGGGGGA	CCGTCAGTCT	TCCTCTTCCC	CCCAAAACCC	AAGGACACCC	840
TCATGATCTC CCGGACCCCT	GAGGTCACAT	GCGTGGTGGT	GGACGTGAGC	CACGAAGACC	900
CTGAGGTCAA GTTCAACTGG	TACGTGGACG	GCGTGGAGGT	GCATAATGCC	AAGACAAAGC	960
CGCGGGAGGA GCAGTACAAC	AGCACGTACC	GGGTGGTCAG	CGTCCTCACC	GTCCTGCACC	1020
AGGACTGGCT GAATGGCAAG	GAGTACAAGT	GCAAGGTCTC	CAACAAAGCC	CTCCCAGCCC	1080
CCATCGAGAA AACCATCTCC	AAAGCCAAAG	GGCAGCCCCG	AGAACCACAG	GTGTACACCC	1140
TGCCCCCATC CCGGGATGAG	CTGACCAAGA	ACCAGGTCAG	CCTGACCTGC	CTGGTCAAAG	1200
GCTTCTATCC CAGCGACATC	GCCGTGGAGT	GGGAGAGCAA	TGGGCAGCCG	GAGAACAACT	1260
ACAAGACCAC GCCTCCCGTG	CTGGACTCCG	ACGGCTCCTT	CTTCCTCTAC	AGCAAGCTCA	1320
CCGTGGACAA GAGCAGGTGG	CAGCAGGGGA	ACGTCTTCTC	ATGCTCCGTG	ATGCATGAGG	1380
CTCTGCACAA CCACTACACG	CAGAAGAGCC	TCTCCCTGTC	TCCGGGTAAA	TGATAGATAT	1440

CT 1442

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 762 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16: GAATTCTGAG CACACAGGAC CTCACCATGG GATGGAGCTG TATCATCCTC TTCTTGGTAG 60 CAACAGCTAC AGGTGTCCAC TCCCAGTCTG TGTTGACGCA GCCGCCCTCA GTCTCTGCGG 120 CCCAGGACA GAAGGTCACC ATCTCCTGCA CTGGGAGCAG CTCCAACCTC GGGGCAGGTT 180 ATGATGTTCA CTGGTACCGG CAACTTCCAG GGACAGCCCC CAAACTCCTC ATCTATGATA 240 ACAACAATCG GCCCTCAGGG GTCCCTGACC GATTCTCTGG CTCCAAGTCT GGCCCCTCAG 300 CCTCCCTGGC CATCTCTGGG CTCCAGGCTG AGGATGAGGC TGATTATTAC TGCCAGTCCT 360 ATGACAGCAG CCTGAATGGT TATGTCTTCG GAACTGGGAC CCAGCTCACC GTCCTAGGTC 420 AGCCCAAGGC TGCCCCTCG GTCACTCTGT TCCCGCCCTC CTCTGAGGAG CTTCAAGCCA 480 540 ACAAGGCCAC ACTGGTGTGT CTCATAAGTG ACTTCTACCC GGGAGCCGTG ACAGTGGCCT GGAAGGCAAT TAGCAGCCCC GTCAAGGCGG GAGTGGAGAC CACCACACCC TCCAAACAAA 600 GCAACAACAA GTACGCGGCC AGCAGCTATC TGAGCCTGAC GCCTGAGCAG TGGAAGTCCC 660 ACAGAAGGTA CAGCTGCCAG GTCACGCATG AAGGGAGCAC CGTGGAGAAG ACAGTGGCCC 720 762 CTACAGAATG TTCATAGTTC TAGATCTACG TATGATCAGC CT
- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
 - Glu Val Gln Leu Leu Glu
 - .
- (2) INFORMATION FOR SEQ ID NO:18:

100	0/0240	J <i>4</i>						18									
	(i)	(E	A) L1 3) T3 C) S3	ENGTI YPE : PRANI	HARAG H: 6 amin DEDNI DGY:	amin no ao ESS:	no ac cid										
	(ii)) MOI	LECUI	LE T	YPE:	pept	tide										
	(xi)	SEÇ	QUEN	CE DI	ESCR:	IPTI	ON:	SEQ I	ID NO	0:18	:						
	Glu 1	ı Val	l Gli	n Let	ı Val	l Glı	ı										
(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	NO:19	9:									
	(i)	(I	A) L1 3) T3 C) S3	ENGTI YPE : TRANI		399 l leic ESS:	oase acio doul	pai: d	rs								
	(ii)) MOI	LECUI	LE T	YPE:	CDN	A										
	(ix)		A) NA	AME/I	KEY: ION:		.173	5									
	(xi)	SEÇ	QUEN	CE DI	ESCR	IPTI	ON:	SEQ :	ID NO):19	:						
GGG	GCAA <i>I</i>	ATA A						ATC (Ile 1 5								4	19
ACA Thr	ATC Ile	CTC Leu 15	ACT Thr	GCA Ala	GTC Val	ACA Thr	TTT Phe 20	TGT Cys	TTT Phe	GCT Ala	TCT Ser	GGT Gly 25	CAA Gln	AAC Asn	ATC Ile	9	7
								TGC Cys								14	15
CTT Leu 45	AGT Ser	GCT Ala	CTG Leu	AGA Arg	ACT Thr 50	GGT Gly	TGG Trp	TAT Tyr	ACC Thr	AGT Ser 55	GTT Val	ATA Ile	ACT Thr	ATA Ile	GAA Glu 60	19)3
								TGT Cys								24	ł 1
								AAA Lys 85								28	39

TTG CAG TTG CTC ATG CAA AGC ACA CCA CCA ACA AAC AAT CGA GCC AGA Leu Gln Leu Met Gln Ser Thr Pro Pro Thr Asn Asn Arg Ala Arg

105

100

95

337

WO 00/69462	19	PCT/US00/13694
-------------	----	----------------

\mathbf{WO} 0	VO 00/69462 19 PCT/US00/13694													
		Leu				ATG Met 115							385	
						AAG Lys							433	
						GCA Ala							481	
						GAA Glu							529	
						GTC Val							577	
						CTC Leu 195							625	
						AGC Ser							 673	
						AAC Asn							721	
						GTA Val							769	
						TCA Ser							817	
						TCC Ser 275							865	
						ATA Ile							913	
						GGT Gly							961	
						ACA Thr							1009	
						AGA Arg							1057	
						GCT Ala 355							1105	

		TGT Cys														1153
		AAT Asn														1201
		AAA Lys														1249
		TCA Ser 415														1297
		ATC Ile														1345
		ATG Met														1393
		GAA Glu														1441
		GAC Asp														1489
		GTC Val 495														1537
		GAA Glu														1585
		ATA Ile														1633
		GCT Ala														1681
		CTA Leu														1729
AGT Ser		TAAA	AAATA	r aa.	'AGC <i>A</i>	ATDD/	A TC	ATGI	TCTI	' ACA	ATGG	TTT	ACTA	TCTG	CT	1785
CATA	GACA	AC C	CATO	TGTC	TT A	GGAT	TTTC	TTA	LAAAT	CTG	AACT	TCAT	CG A	AACT	CTCAT	1845
CTAT	'AAAC	CA T	'CTCA	CTTA	.C AC	TTAT:	TAAG	TAG	ATTC	CTA	GTTT	ATAG	TT A	TAT		1899

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 574 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

275

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

	ζ.	Λ _ ,	250		טבט	CICLI	11014	. 51.	Q ID	140.	20.					
Met 1		Leu	Leu	Ile 5	Leu	Lys	Ala	Asn	Ala 10	Ile	Thr	Thr	Ile	Leu 15	Thr	
Ala	Val	Thr	Phe 20	Cys	Phe	Ala	Ser	Gly 25	Gln	Asn	Ile	Thr	Glu 30	Glu	Phe	
Tyr	Gln	Ser 35	Thr	Cys	Ser	Ala	Val 40	Ser	Lys	Gly	Tyr	Leu 45	Ser	Ala	Leu	
Arg	Thr 50	Gly	Trp	Tyr	Thr	Ser 55	Val	Ile	Thr	Ile	Glu 60	Leu	Ser	Asn	Ile	
Lys 65	Glu	Asn	Lys	Cys	Asn 70	Gly	Thr	Asp	Ala	Lys 75	Val	Lys	Leu	Ile	Lys 80	
Gln	Glu	Leu	Asp	Lys 85	Tyr	Lys	Asn	Ala	Val 90	Thr	Glu	Leu	Gln	Leu 95	Leu	
Met	Gln	Ser	Thr 100	Pro	Pro	Thr	Asn	Asn 105	Arg	Ala	Arg	Arg	Glu 110	Leu	Pro	
Arg	Phe	Met 115	Asn	Tyr	Thr	Leu	Asn 120	Asn	Ala	Lys	Lys	Thr 125	Asn	Val	Thr	
Leu	Ser 130	Lys	Lys	Arg	Lys	Arg 135	Arg	Phe	Leu	Gly	Phe 140	Leu	Leu	Gly	Val	
Gly 145	Ser	Ala	Ile	Ala	Ser 150	Gly	Val	Ala	Val	Ser 155	Lys	Val	Leu	His	Leu 160	
Glu	Gly	Glu	Val	Asn 165	Lys	Ile	Lys	Ser	Ala 170	Leu	Leu	Ser	Thr	Asn 175	Lys	
Ala	Val	Val	Ser 180	Leu	Ser	Asn	Gly	Val 185	Ser	Val	Leu	Thr	Ser 190	Lys	Val	
Leu	Asp	Leu 195	Lys	Asn	Tyr	Ile	Asp 200	Lys	Gln	Leu	Leu	Pro 205	Ile	Val	Asn	
Lys	Gln 210	Ser	Cys	Ser	Ile	Ser 215	Asn	Ile	Glu	Thr	Val 220	Ile	Glu	Phe	Gln	
Gln 225		Asn	Asn	Arg			Glu		Thr	_		Phe	Ser	Val	Asn 240	
Ala	Gly	Val	Thr	Thr 245	Pro	Val	Ser	Thr	Tyr 250	Met	Leu	Thr	Asn	Ser 255	Glu	
Leu	Leu	Ser	Leu 260	Ile	Asn	Asp	Met	Pro 265	Ile	Thr	Asn	Asp	Gln 270	Lys	Lys	
Leu	Met	Ser	Asn	Asn	Val	Gln	Ile	Val	Arg	Gln	Gln	Ser	Tyr	Ser	Ile	

280

Met	Ser 290		lle	. Lys	Glu	Glu 295		Leu	Ala	Tyr	Val 300		. Gln	. Leu	Pro
Leu 305		Gly	· Val	Ile	Asp 310	Thr	Pro	Cys	Trp	Lys 315		His	Thr	Ser	Pro 320
Leu	Cys	Thr	Thr	Asn 325	Thr	Lys	Glu	Gly	Ser 330		Ile	Cys	Leu	Thr 335	
Thr	Asp	Arg	Gly 340		Tyr	Cys	Asp	Asn 345	Ala	Gly	Ser	Val	Ser 350	Phe	Phe
Pro	Gln	Ala 355		Thr	Cys	Lys	Val 360		Ser	Asn	Arg	Val 365		Cys	Asp
Thr	Met 370	Asn	Ser	Leu	Thr	Leu 375	Pro	Ser	Glu	Ile	Asn 380	Leu	Cys	Asn	Val
Asp 385	Ile	Phe	Asn	Pro	Lys 390	Tyr	Asp	Cys	Lys	Ile 395	Met	Thr	Ser	Lys	Thr 400
Asp	Val	Ser	Ser	Ser 405	Val	Ile	Thr	Ser	Leu 410	Gly	Ala	Ile	Val	Ser 415	Cys
Tyr	Gly	Lys	Thr 420	Lys	Cys	Thr	Ala	Ser 425	Asn	Lys	Asn	Arg	Gly 430	Ile	Ile
Lys	Thr	Phe 435	Ser	Asn	Gly	Cys	Asp 440	Tyr	Val	Ser	Asn	Lys 445	Gly	Met	Asp
Thr	Val 450	Ser	Val	Gly	Asn	Thr 455	Leu	Tyr	Tyr	Val	Asn 460	Lys	Gln	Glu	Gly
Lys 465	Ser	Leu	Tyr	Val	Lys 470	Gly	Glu	Pro	Ile	Ile 475	Asn	Phe	Tyr	Asp	Pro 480
Leu	Val	Phe	Pro	Ser 485	Asp	Glu	Phe	Asp	Ala 490	Ser	Ile	Ser	Gln	Val 495	Asn
Glu	Lys	Ile	Asn 500	Gln	Ser	Leu	Ala	Phe 505	Ile	Arg	Lys	Ser	Asp 510	Glu	Leu
Leu	His	Asn 515	Val	Asn	Ala	Gly	Lys 520	Ser	Thr	Thr	Asn	Ile 525	Met	Ile	Thr
Thr	Ile 530	Ile	Ile	Val	Ile	Ile 535	Val	Ile	Leu	Leu	Ser 540	Leu	Ile	Ala	Val
Gly 545	Leu	Leu	Leu	Tyr	Cys 550	Lys	Ala	Arg	Ser	Thr 555	Pro	Val	Thr	Leu	Ser 560
Lys	Asp	Gln	Leu	Ser 565	Gly	Ile	Asn	Asn	Ile 570	Ala	Phe	Ser	Asn		

- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 15 amino acids

 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/13694

A. CLASSIFICATION OF SUBJECT MATTER IPC(7): A61K 39/395, 39/42; C12Q 1/00, 1/70; G01N 33/53 US CL: 424/130.1, 141.1, 147.1; 435/4, 5, 7.1 According to International Patent Classification (IPC) or to both national classification and IPC										
ed by classification symbols)										
ne extent that such documents are included	in the fields searched									
name of data base and, where practicabl	e, search terms used)									
Please See Extra Sheet.										
C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.										
ppropriate, of the relevant passages	Relevant to claim No.									
eptember 1998, cols. 12- 20.	1, 4, 10-15									
	2, 3									
X US 5,824,307 A (JOHNSON) 20 October 1998, cols. 4-6. 1, 4, 10-15										
Y 2, 3										
1999, cols. 6-10.	1, 4, 10-15									
	2, 3									
	2, 3									
1										
•										
C. See patent family annex.										
"T" later document published after the inte date and not in conflict with the appl the principle or theory underlying the	lication but cited to understand									
"X" document of particular relevance; the										
when the document is taken alone										
considered to involve an inventive combined with one or more other sucl	step when the document is h documents, such combination									
"&" document member of the same patent										
Date of mailing of the international sea	arch report									
05 SEP 2000										
Authorized officer	e Kaulgers									
BRETT NELSON (703) 208 1235	h									
	c. See patent family annex. The later document published after the interest and not in conflict with the app the principle or theory underlying the considered to involve an invested when the document is taken alone. The document of particular relevance, the considered to involve an invested when the document is taken alone. The document of particular relevance, the considered to involve an investive combined with one a person skilled in the document of the same paten. Date of mailing of the international see the considered to fine the same paten. Date of mailing of the international see the considered to fine the same paten. Authorized officer.									

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/13694

B. FIELDS SEARCHED Electronic data bases consulted (Name of	data base and where pro	acticable terms used):		
WEST, DIALOG, MEDLINE search terms: RSV, respiratory syncytial, immunization, therapy, treatment	, monoclonal, antibodies,	human, humanized,	F protein, diagnostics,	passive
				: