Mathe Hausaufgaben zum 27. und 28. Oktober 2016

Matz Radloff

25. Oktober 2016

Inhaltsverzeichnis

1																			1
	1.1	(a)																	1
	1.2	(b)																	1
		(b)																	
	1.4	(c)																	2
2																			2
3																			2
4																			2
5																			3
	5.1	(a)																	3
	5.2	(b)																	3
	5.3	(c)																	3
	5.4	(d)																	3
	5.5	(e)																	3

1

$$A := \{ n \in \mathbb{N} : n > 3 \} \tag{1}$$

$$B := \{ n \in \mathbb{N} : n \text{ ist durch 14 teilbar} \}$$
 (2)

$$C := \{ n \in \mathbb{N} : n > 5, \text{ ist durch 7 teilbar und ist gerade} \}$$
 (3)

1.1 (a) $A \subseteq B$

Bedingung: $\forall a \in A : a \in B$

$$a_1 = k + 3, k \in \mathbb{N} \tag{4}$$

$$b_1 = 14l, l \in \mathbb{N} \tag{5}$$

Beweis durch Kontraposition: k = 1 einsetzen, $a_1 = b_1$ setzen:

$$a_1 = 4 \tag{6}$$

$$l = \frac{2}{7} \tag{7}$$

$$\to \exists a \in A : a \not \in B$$

Folglich ist die Aussage $A \subseteq B$ widerlegt, da l keine natürliche Zahl ist. Es gibt also ein Element in A, dass nicht in B liegt.

1.2 (b) $B \subseteq A$

Bedingung: $\forall b \in B : b \in A$

$$b_1 = 14l, l \in \mathbb{N} \tag{8}$$

$$a_1 = k + 3, k \in \mathbb{N} \tag{9}$$

Induktionsbeweis

kleinstes l einsetzen:

$$l = 1, b_1 = a_1 \tag{10}$$

$$k = 11\sqrt{\tag{11}}$$

generischen Fall prüfen:

$$l = n + 1 \tag{12}$$

$$14n + 1 = k + 3 \tag{13}$$

$$k = 14n - 2\sqrt{\tag{14}}$$

Alle Elemente in B sind auch in A enthalten, also größer als 3.

1.3 (c) $C \subseteq A$

Bedingung: $\forall c \in C : c \in A$

Direktbeweis Die kleinstmögliche Zahl $c \in C$ ist 14. Da 14 > 3 und C außer 14 nur größere Zahlen enthält gilt $C \subseteq A$.

1.4 (c) B = C

Bedingung: $B \subseteq C \land C \subseteq B$

$$\forall c \in C : c = 7o \land c = 2p : o, p \in \mathbb{N}$$

Zusammengefasst ergibt sich, dass alle Elemente aus C - genau wie in B - durch 14 teilbar sein müssen. Wenn man nur das kleinstmögliche b (14) bildet und überprüft, dass es die verbleibende Bedingung c>5 (14 > 5 $\sqrt{}$) erfüllt, ist B=C bewiesen.

 $\mathbf{2}$

(a)
$$xor$$
 (b) \lor (c) xor (d) xor

3

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Äquivalente Aussageform: $\neg(a \land b) = \neg a \lor \neg b$

a	b	$a \wedge b$	$\neg(a \land b)$	$\neg a$	$\neg b$	$\neg a \lor \neg b$
0	0	0	1	0	1	1
0	1	0	1	0	0	1
1	0	0	1	1	1	1
1	1	1	0	1	0	0

Tabelle 1: Wahrheitstafel

Da die Spalten 4 und 7 die gleichen Werte enthalten, stimme die ursprüngliche Aussage.

4

$$M = \{a, b, c\} \tag{15}$$

$$\wp(M) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$$
(16)

5

5.1 (a)

Im ersten Diagramm müsste dem Element 2 ein Funktionswert zugeordnet werden, damit die dargestellte Zuordnung eine Funktion darstellt. Im zweiten Diagramm dürfte das Element 2 nur einem anstatt zwei Werten zugeordnet werden.

5.2 (b)

Um eine injektive Funktion darzustellen müsste zusätzlich zu den Bedingungen aus (a) jeweils folgende Zuordnungen geändert werden:

- Im ersten Diagramm müssten entweder 4 oder 5 einem anderen Element der Zielmenge zugeordnet werden, damit nicht beide auf e abgebildet werden.
- Im zweiten Diagramm müssten 3 oder 5 f zugeordnet werden.

5.3 (c)

Die Pfeile können nicht so abgeändert werden, dass surjektive Funktionen dargestellt werden, da B mehr Elemente als A enthält und somit die Bedingung, dass jedes Element der Zielmenge ein Urbild besitzt, nicht erfüllt werden kann.

$$f(4) = c \tag{17}$$

$$5.5$$
 (e)

$$f(4) = a \tag{18}$$