Section 7.1-7.2 pre-lecture comments

Lecture Outline

Given a subspace V, a **basis** is set of linearly independent vectors which spans V. The **dimension** of V is the number of vectors in any basis of V.

New terminology

- 1. basis
- 2. dimension

Recall lines and planes can be given as spans of vectors:

$$Ex: \vec{\mathbf{x}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} t \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad \frac{line}{3}$$

$$Ex: \mathbf{x} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} s + \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} t \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad plane$$

$$Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \qquad Span \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right$$

Basis Let V be a nontrivial subspace of \mathbb{R}^n . A **basis** for V is a set of linearly independent vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ such that $V = \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$.

there are infinitely many bases

Ex: Give a basis for
$$\mathbf{x} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} s + \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} t$$
.

Ex: Give a basis for \mathbb{R}^2 . How many bases for \mathbb{R}^2 are there?

Size of a basis All bases for a subspace V have the <u>same number of vectors k</u>. This number is referred to as the **dimension** of V, denoted $\dim(V)$. (Note: We define $\dim(\{0\})$) to be 0.)

Ex: What is the dimension of
$$\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} t$$
? $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

Ex: What is the dimension of
$$\hat{\mathbf{x}} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} s + \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} t$$
?

Ex: What is the dimension of
$$\mathbb{R}^n$$
? \mathbb{N} syan $\{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}$

Ex:
$$\vec{\chi} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} S$$
 dependent $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Thm. 7.2.1 (p335) If $B = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$ is a basis for V, then every vector $\dot{\mathbf{v}}$ in V can be written as a <u>unique</u> linear combination of vectors in B.

- ► Linear combination because & spane V

 ► Unique because B is linearly independent

Ex:
$$\mathbf{x} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} s + \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} t$$

Every vector in the plane can be written uniquely as $\begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$

for some al ER

Thm. 7.2.2 (p336) Suppose B is a set of vectors of a subspace V, but B is <u>not</u> a basis for V for either of the following reasons:

- ▶ B is linearly independent, but fails to span V. In this case, we can expand B using additional vectors from V to form a basis.
- ▶ B spans V, but is linearly dependent. In this case, we can remove vectors from B to form a basis.

Ex:
$$V$$
 is the plane $\mathbf{x} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} s + \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} t$.

1)
$$B = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$
 add $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$: $B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right\}$ could add $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ instead lin, indep.

$$2) B = \left\{ \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \right\}$$
 remove
$$\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$
 colld remove
$$\begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$$
 lin indep.