Supraleitung in Ferekristallen

Die Forschung der Arbeitsgruppe Neue Materialien!

Heutzutage versuchen wir in der Forschung zu verstehen, wie **Supraleitung bei höheren Temperaturen** erzeugt werden kann. Um dieses Phänomen besser zu verstehen, wird an künstlich hergestellten Materialien geforscht.

Was sind Ferekristalle?

Ferekristalle bestehen aus atomar dünnen Schichten, welche abwechselnd supraleitend und nicht-supraleitend sind.

Die Anzahl der Schichten variiert die Eigenschaften der Supraleitung.

Ferekristall (von oben gesehen)

Wir wollen verstehen:

- wann einzelne Schichten oder der gesamte Schichtstapel supraleitend wird.
- wie der Strom in diesen Schichten fließt.

Wenn Schichten nur die Dicke Wenn Schichten nur die Dicke eines Atoms haben, spricht man eines Atoms haben, spricht man von 2-dimensionalen Materialien!

das ist 1 Millimeter, was so dick ist wie 10 Seiten Papier aufgestapelt

Absoluter Nullpunkt

1°C = 1K

... bezeichnet die kühlste Temperatur, die es gibt. Die entspricht -273°C (= 0 Kelvin).

Es ist die Temperatur, bei der Teilchen ihre Bewegungsenergie verlieren. Je kälter es wird, desto langsamer werden sie, bis sie irgendwann still werden. Bewegungsenergie von Teilchen nehmen wir als Wärme war.

Warum Ferekristalle?

Ferekristalle sind Materialien, die als Modell genutzt werden, um zu verstehen welche Mechanismen bei der 2D-Supraleitung (= Supraleitung in einer einzelnen Schicht) eine wichtige Rolle spielen.

Bei den Materialien, die heutzutage bei höheren Temperaturen Supraleitung aufweisen, spielen diese 2D-Effekte eine essenzielle Rolle.

Sie zu verstehen, kann uns dabei helfen wie wir Supraleiter herstellen, die bei höheren Temperaturen funktionieren.