

Elementy elektroniczne

dr inż. Piotr Ptak

Politechnika Rzeszowska Wydział Elektrotechniki i Informatyki Katedra Podstaw Elektroniki

A-303, pptak@prz.edu.pl, tel. 178651113 konsultacje: pn. – cz. 11-12

Plan wykładu

Tranzystory unipolarne

- Podział i budowa
- Charakterystyki statyczne
- Układy polaryzacji
- Obliczanie punktu pracy

Elementy elektroniczne I

Tranzystory unipolarne

Tranzystor unipolarny (polowy) – transport tylko jednego rodzaju nośników (większościowych) – stąd nazwa unipolarny.

Sterowanie odbywa się za pomocą poprzecznego pola elektrycznego (dlatego polowy) – z ang. FET (Field Effect Transistor).

Zasada działania:

tranzystor polowy jest sterowany napięciem, a dokładnie jest sterowany dzięki tzw. efektowi polowemu – czyli zmianie konduktywności ciała stałego wskutek oddziaływania pola elektrycznego.

Elementy elektroniczne I – tranzystory unipolarne

2

Tranzystory unipolarne - podział

Elementy elektroniczne I - tranzystory unipolarne

Tranzystor złączowy PNFET (JFET)

Elementy elektroniczne I – tranzystor złączowy PNFET

5

Tranzystor złączowy PNFET

Tranzystor ze złączem p-n – oznaczanie prądów i napięć

Tranzystor z kanałem typu **n**

 $I_G \approx 0$ $I_D \approx I_S$

 $U_{GS} < 0$ $U_{DS} > 0$

$$U_{GS} > 0$$

$$U_{DS} < 0$$

W stanie ustalonym prąd bramki jest, praktycznie biorąc, równy zeru.

Elementy elektroniczne I – tranzystor złączowy PNFET

Tranzystor złączowy PNFET - polaryzacja

Tranzystor pracuje tylko przy zaporowej polaryzacji złącza bramka-kanał –

- jeden sposób polaryzacji tranzystora.

Elementy elektroniczne I – tranzystor złączowy PNFET

_

Tranzystor PNFET – ch-ki statyczne

Charakterystyki statyczne – kanał typu n

Stany pracy tranzystora

- nieprzewodzenia (zatkania): $\left|U_{GS}\right|>\left|U_{P}\right|,\;\;U_{DS}$ dowolne nienasycenia: $\left|U_{GS}\right|<\left|U_{P}\right|\;\mathrm{i}\;\;\left|U_{DS}\right|\leq\left|U_{Dsat}\right|$
 - nasycenia: $\left|U_{\it GS}\right| < \left|U_{\it P}\right|$ i $\left|U_{\it DS}\right| > \left|U_{\it Dsat}\right|$

Elementy elektroniczne I – tranzystor złączowy PNFET

Tranzystor PNFET – ch-ki statyczne

Charakterystyki statyczne – kanał typu **p**

Stany pracy tranzystora

– nieprzewodzenia (zatkania): $\left|U_{\mathit{GS}}\right| > \left|U_{\mathit{P}}\right|, \;\; U_{\mathit{DS}}$ – dowolne

– nienasycenia: $\left|U_{\mathit{GS}}\right| < \left|U_{\mathit{P}}\right|$ i $\left|U_{\mathit{DS}}\right| \le \left|U_{\mathit{Dsat}}\right|$

– nasycenia: $\left|U_{\mathit{GS}}\right| < \left|U_{\mathit{P}}\right|$ i $\left|U_{\mathit{DS}}\right| > \left|U_{\mathit{Dsat}}\right|$

Elementy elektroniczne I – tranzystor złączowy PNFET

a

Tranzystor PNFET – ch-ki statyczne

Równania charakterystyk statycznych – kanał typu ${\bf n}$: $I_{\scriptscriptstyle D}=I_{\scriptscriptstyle DSS}={\rm const}$ (analogicznie dla kanału typu ${\bf p}$)

Stan nienasycenia: (zakres liniowy)

$$I_D = G_0 \Biggl(1 - \sqrt{\frac{U_{GS}}{U_P}} \Biggr) U_{DS} \qquad \qquad G_0 = \frac{qaW\mu_{\scriptscriptstyle n}N_{\scriptscriptstyle d}}{L}$$
dla $U_{DS} < U_{GS} - U_P$ — konduktancja kanału

Elementy elektroniczne I – tranzystor złączowy PNFET

Punkt pracy tranzystora – wzmacniacz WS

Obliczenie punktu pracy tranzystora (I_{D} , U_{DS}) – w stanie nasycenia

Elementy elektroniczne I – tranzystor złączowy PNFET

1

Tranzystory z izolowaną bramką IGFET

Kanał – obszar przypowierzchniowy pod warstwą dielektryka, przez który płynie prąd od S do D.

L – długość kanału (~ kilka-kilkadziesiąt μ m)

Przewodność kanału jest sterowana poprzecznym polem elektrycznym (napięciem U_G), które działa poprzez warstwę dielektryka, izolującą kanał od bramki.

Tranzystory z izolowaną bramką MOSFET

Elementy elektroniczne I – tranzystory MOSFET

13

Charakterystyki przejściowe

Statyczne ch-ki przejściowe tranzystorów MOSFET w stanie nasycenia

Elementy elektroniczne I – tranzystory MOSFET

Charakterystyki wyjściowe

Elementy elektroniczne I – tranzystory MOSFET

15

Zakresy pracy tranzystorów polowych

Stan nienasycenia		Stan nasycenia		Stan odcięcia	
n	р	n	р	n	р
$U_{GS} > U_{P}$	$U_{\rm GS} < U_{\rm P}$	$U_{GS} > U_P$	$U_{GS} < U_P$	$U_{GS} < U_P$	$U_{GS} > U_P$
$U_{GD} > U_P$	$U_{GD} < U_P$	$U_{GD} < U_P$	$U_{GD} > U_P$		

Elementy elektroniczne I – tranzystory MOSFET

Układy polaryzacji tranzystorów polowych

Analityczne oszacowanie stałości p.p. jest utrudnione z dwóch powodów:

- równanie ch-ki przejściowej jest funkcją kwadratową złożone zależności na współczynniki stabilizacji,
- zależności I_{DSS} , K, U_P , $U_T = f(T)$ są złożone i w dużym stopniu zależą od właściwości materiałowych i technologicznych.

Ogólny układ polaryzacji -

dla <u>dowolnego tranzystora polowego</u> – można do niego sprowadzić wiele innych układów polaryzacji

Elementy elektroniczne I – układy polaryzacji tranzystorów polowych

17

Układy polaryzacji tranzystorów polowych

Układ z automatyczną polaryzacją bramki – JFET, DMOS

- ujemne prądowe sprzężenie zwrotne w obwodzie źródła punkt pracy w znacznym stopniu nie zależy od zmian parametrów tranzystora
- I_{D} nie zależy od U_{DD} i R_{D} zastosowanie jako źródło prądowe

Elementy elektroniczne I – układy polaryzacji tranzystorów polowych

Układy polaryzacji tranzystorów polowych

Układ z potencjometrycznym zasilaniem bramki - dowolny tranzystor

- układ posiada automatyczną polaryzację bramki,
- unika się sytuacji, w której wymagana jest duża wartość R_S (ze względu na stabilność punktu pracy), co powoduje duże U_{GS} ,
- $C_{\mathcal{S}}$ eliminuje sprzężenie zwrotne dla sygnału zmiennego.

Układ ze sprzężeniem drenowym

Nie ma konieczności stosowania dużych R_{S}

Elementy elektroniczne I – układy polaryzacji tranzystorów polowych

10

Układy polaryzacji tranzystorów polowych

Układ umożliwiający pełne wykorzystanie dużej $R_{\it WE}$ – tylko dla tr. DMOS

(nie wymaga wstępnej polaryzacji bramki: $U_{GS} = 0$)

 R_{G} – służy odprowadzaniu ładunków zbierających się elektrostatycznie w bramce (niebezpieczeństwo przebicia dielektryka)

Układ wymuszający stan nasycenia

$$R_2 = \infty \implies U_{GS} = U_{DS}$$

- tranzystor pracuje w stanie nasycenia

Elementy elektroniczne I – układy polaryzacji tranzystorów polowych

Obliczanie punktu pracy tr. polowych

Tranzystor w stanie nasycenia! (punkt pracy: I_D , U_{DS})

$$\begin{array}{c|cccc} U_P & U_{GS} & \hline \\ U_{GS} & U_{GG} - U_{GS} - I_D R_S - U_{SS} = 0 \\ & U_{GG} - U_{GS} - I_{DSS} \bigg(1 - \frac{U_{GS}}{U_P}\bigg)^2 R_S - U_{SS} = 0 \\ & - \text{równanie kwadratowe} \end{array}$$
 N,
$$U_{GS1} \vee U_{GS2}? & \rightarrow & I_D & \boxed{3} \end{array}$$

- 1) Założenie: tranzystor w st. N, $I_G=0,\,I_D=I_S$
 - $I_D = I_{DSS} \left(1 \frac{U_{GS}}{U_P} \right)^2$

$$(4) U_{DS}: \quad U_{DD} - I_D R_D - U_{DS} - I_D R_S - U_{SS} = 0$$

 $\begin{tabular}{ll} \hline (5) & Weryfikacja st. {\bf N}: & U_{GD} \begin{tabular}{ll} $>$ U_P$ \end{tabular} \begin{tabular}{ll} $>$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ & $<$ &$

Elementy elektroniczne I – układy polaryzacji tranzystorów polowych

Obliczanie punktu pracy tr. polowych

Założenie: tranzystor w st. N, $I_G = 0, I_D = I_S$

$$=0, I_D = I_S$$

$$I_D = I_{DSS} \left(1 - \frac{U_{GS}}{U_P} \right)^2$$

$$U_{GS} = 0$$

$$I_D = I_{DSS}$$

$$U_{DS} = U_{DD} - I_D R_D$$

$$U_{GD} \lesssim U_P$$
 ?

Obliczanie punktu pracy tr. polowych

Układ z automatyczną polaryzacją bramki

Założenie: tranzystor w st. N,

$$I_G = 0$$
, $I_D = I_S$

$$I_D = I_{DSS} \left(1 - \frac{U_{GS}}{U_P} \right)^2$$

$$U_{GS} = -I_D R$$

$$U_{GS} = -I_D R_S$$

$$U_{GS} = -I_{DSS} \left(1 - \frac{U_{GS}}{U_P} \right)^2 R_S$$

$$U_{GS1} \vee U_{GS2}$$
? $\rightarrow I_D$

$$U_{DS} = U_{DD} - I_D(R_D + R_S)$$

$$U_{GD} \lesssim U_P$$
 ?

Elementy elektroniczne I – układy polaryzacji tranzystorów polowych

Obliczanie punktu pracy tr. polowych

Układ z potencjometrycznym zasilaniem bramki

Założenie: tranzystor w st. N,

$$I_G = 0, I_D = I_S$$

$$I_D = K(U_{GS} - U_T)^2 \qquad K [A/V^2]$$

$$U_{DD} \frac{R_2}{R_1 + R_2} - U_{GS} - I_D R_S = 0$$

$$U_{DD} \frac{R_2}{R_1 + R_2} - U_{GS} - K(U_{GS} - U_T)^2 R_S = 0$$

$$U_{GS1} \vee U_{GS2}$$
? $\rightarrow I_D$

$$U_{DS} = U_{DD} - I_D(R_D + R_S)$$

$$U_{GD} \lessgtr U_P$$
 ?

Elementy elektroniczne I – układy polaryzacji tranzystorów polowych

Obliczanie punktu pracy tr. polowych

Założenie: tranzystor w st. N,

$$I_G=0,\,I_D=I_S$$

$$I_D = K(U_{GS} - U_T)^2 \qquad K [A/V^2]$$

$$U_{GS}=U_{DS},\quad U_{GD}=0$$

$$U_{DD} - I_D R_D - U_{GS} = 0$$

Układ wymuszający stan nasycenia

$$U_{DD} - K(U_{GS} - U_T)^2 R_D - U_{GS} = 0 \quad \vee$$

$$I_D = K(U_{DD} - I_D R_D - U_T)^2 \quad \rightarrow \quad I_{D1} \vee I_{D2}$$

Elementy elektroniczne I – układy polaryzacji tranzystorów polowych