1: Robot Classification

	Serial robot	Articulated	SCARA	Cartesian	Cylindrical	Parallel (general)	Parallel - Stewart	Parallel - Delta
Image	(general)			SP			platform	
Description							-base and platform -6 actuated struts -spherical joints	-base and platform -three parallelograms maintains end-effector orientation
Joint configuration		RRRRRR (5-6 DOF typically)	RRP (3-4 DOF)	PPP	RPP		6 prismatic links	-different configurations
Work envelope		hollow sphere Articulated Figure 50 lags	SCARA	Cartesian	Cyrindral St. Cy		N/A	Delta Robot
Pros	- easy forward kinematics - large workspace	-flexible -versatile	-fast -simple kinematics -cheap -high duty cycle (fast) -rigid in z-axis	-simplest kinematics -can be very stiff -can be very large		- greater structural rigidity -> greater accuracy -easy inverse kinematics -small position error (averages out) -max force = sum of all actuator forces -high rigidity		
Cons	- difficult inverse kinematics - low rigidity - accumulative position error	-complex kinematics -low rigidity -> links and joints must be made excessively strong to eliminate deflections -slow, heavy, massive -max force is limited by minimum actuator force		-typically slower		-small workspace -difficult forward kinematics		
Applications		-e.g. car spray painting	-pick and place	-e.g. 3D printers -e.g. storage and sorting systems			-radio telescope	-high speed pick and place

E.g.

 $\label{local_compliance} \mbox{Compliance = "the extent to which a robot end effector moves as a result of an applied force"}$

1: safety

Monday, 26 June 2023 10:54 AM

- I. 4024.33**01**-2017 Robots
 - a. Aimed at robot designer
- II. 4024.33**02**-2017 Robot systems and integration
 - a. Aimed at robot systems engineers, integrators and installers
- III. 4024.33**03**-2017 Collaborative robots
 - a. (robots where the human interacts directly with the robot)
 - b. Aimed at integrators of collaborative systems

2: Actuators

Saturday, 24 June 2023 7:27 pm

	Details	Pros	Cons			
Motors	Dc, stepper, ac					
Gears	Output torque $T_l = N T_m$ Output speed $\dot{\theta}_l = \frac{1}{N} \dot{\theta}_m$	-Better control, precision - higher compliance than hydraulics -clean -reliable -low maintenance -can be spark free -gears can reduce inertia on motors	-low stiffness -needs reduction gear -> backlash, cost, weight -needs brakes (for when no power)		Actuator Compariso	
Hydraulics	Output force: $F = p * A$ (linear)	- highest power to weight ratio	- May leak, dirty	Hydraulic	Electric	Pneumatic
(linear)	Flow rate: $Q = \frac{\Delta V}{\Delta}$	-stiff, high accuracy, good response -no gear reduction needed	-requires pump + reservoir -expensive, noisy	Highest power/weight ratio Stiff system, high accuracy, better response	+ Better control, precision + Higher compliance than hydraulics	+ Reliable components + No leaks or sparks
	$\Delta V = v * t * A$, A = area of cylinder	-wide range of speeds	- susceptible to dirt in the oil	+ no reduction needed	+ Reduction gears reduce inertia on motor	+ Simple and inexpensive
	piston		ion compliance	+ Wide range of speeds	+ Clean	+ Low pressure compared with hydraulics
Hydraulics	der	^	^	- May leak, dirty	+ Reliable, low maintenance	+ Good for pick and place
(Rotary)	Rotary vane			- Requires pump, reservoir etc.	+ Can be spark-free for explosive environments	+ Compliant
	← ○ ← Fluid out			- Expensive and noisy	- Low stiffness	- Noisy, low stiffness
	d: height of cylinder			- Susceptible to dirt in oil	 Needs reduction gears -backlash, cost, weight 	- Require pressurised air, filter
	Output torque: $T = \frac{1}{2}pd(r_2^2 - r_1^2)$			- Low compliance	 Need brakes for when power removed 	 Deform constantly under load, and inaccurate response
	Flow rate: $Q = \frac{\Delta V}{t} = \omega * (r_2^2 - r_1^2) * d/2$ $\Delta V = \theta * (r_2^2 - r_1^2) * d/2$ $\theta = \omega * t$					
Pneumatics	- Lower power - Better compliance (deformation) - Environmentally friendly - Useful for soft robots	-reliable components -no leaks or sparks -simple, inexpensive -low pressure compared to hydraulics -good for pick and place -compliant	-noisy -low stiffness -requires pressurised air + filter -deforms constantly under load -inaccurate response			
Piezoelectric	Controlled via voltage					
Magnetic	Controlled via external magnetic field					

Example 1: Hydraulic Rotary Cylinder

Example 1: Hydraulic Rotary Cylinder w=1 rad/s
The inner and outer radius of a rotary cylinder are 5cm and 10cm, respectively. The high of the cylinder is d=3cm. Calculate the bound flow rate (Q) to obtain a constant angular velocity of w=1 rad/s. $\Delta V=wt \left(19\times 10^{-2}\right)^2-\left(5\times 10^{-2}\right)^2$

: Q= 112×10 6 m3/5

= 0.112 L/s

2: Sensors

Saturday, 24 June 2023 8:20 PM

Position sensors:		Application
Potentiometer	$\theta_{wiper} = \frac{V_{out}}{2} = \frac{V_{32}}{2} = \frac{R_{wiper}}{2}$	-non-continuous rotation motors -small, inexpensive
Encoders - Grey Code Disk	## One Custo Disc. One Custo Disc. Positive C	-motors -gives position without a reference position
Encoders - rotary	-counts pulses to get distance -differentiate to get velocity (number of pulses / time)	-requires a reference (original position)
Acceleration sensors:		
Capacitive sensing	-e.g. accelerometers $ -C = \frac{\epsilon d}{d}, \epsilon = permittivity\ constant, A = area, d = dist.\ between\ plates $ -force causes plates to move -> capacitance change is detected and distance change is calculated -> force can be calculated -> acceleration can be calculated since we know the mass of the moving plate (F=ma) $ \text{Amplifier circuit:} \\ V_{out} = \frac{V_p(C_{Sens} - C_{Ref})}{C_F} $	-acceleration sensing -tactile force sensing
Piezoresistive	see example -when material bends, resistance changes	-tactile force sensing
sensing		
(extension) optical	R_ int is given by manufacturer, R_gain is chosen see example -force/pressure deflects the light	3D force measurement, an array of sensors

lecimal	binary	graycode
0	0	0
1	1	1
2	10	11
3	11	10
4	100	110
5	101	111
6	110	101
7	111	100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Example 4 - Capacitive tactile sensors

The distance between the two parallel electrodes of a capacitive tactile sensors is d = 1mm. Under a touching force of 1N, this distance changes to d1 =0.99mm. Assuming that F and ΔC has a linear relationship, calculate the touching force if $\Delta C/C = 0.5\%$.

Answer: $C = \frac{cA}{d} \qquad \Delta C_1 = cA(\frac{1}{d_1} - \frac{1}{d_2})$ Under 1N force $\frac{\Delta C_1}{C} - \frac{c(\frac{1}{2\sqrt{99}} - 1/4)}{1/4} \approx 1\%$ As the relationship between applied force and capacitance change is linear, $\frac{F_2}{F_1} - \frac{\Delta C_2}{\Delta C_1} - \frac{0.5\%}{4} = 0.5$

Example 5 – Piezoresistive tactile sensors

A robotic tactile sensor is connected to a Wheatstone bridge, where R1 = R2 = R3 = Rs = $500 \, \Omega$. Applying a force of 1M changes the sensor resistance (Rs) to $501 \, \Omega$. Assume that the relationship between the applied forces and the output voltage is 1 mM. Is linear calculate a gripping force if the output voltage is 1 mM. If an instrumental amplifier AD623 with an internal resistance of $100 k\Omega$ and a gain resistance of $Rg = 200 \Omega$ is used, calculated the output voltage.

an instrumental ampliner Alobes with an internal resistance of Tokist and a gain resistance of RgM-2005 used, calculated the output violating. Answer:
$$A_{\rm EF} = 1N, \qquad V_{\rm Out,1N} = \frac{1}{4} \frac{\Delta R}{R} V_{\rm S} = \frac{1}{4} \times \frac{501 - 500}{500} \times 1$$

$$V_{\rm Out,1N} = 0.0005 \ (V) = 0.5 (mV)$$
 As the relationship between F and Vout is linear, the gripping force is
$$F = 1(N) \times \frac{V_{\rm out,1}P}{V_{\rm Out,1}N} = 1(N) \times \frac{1}{0.5 (mV)} = 2(N)$$

$$Gain = 1 + R/Rg = 1 + 100.000/200 = 501$$

Output voltage from the Opamp = Gain $\times 1(mV) = 501(mV)$

Under IN
$$\frac{\Delta C}{C} = \frac{EA}{dI} - \frac{EA}{do} = \frac{EA}{do} = \frac{EA}{(0.99 \times 10^{2} - 1 \times 10^{2})} = 0.010101 \dots \stackrel{?}{=} 1\%$$

For $f = ?$, $\frac{\Delta C}{C} = .5\%$. Assume $F = a \Delta C \implies \frac{F_{1}}{F_{2}} = \frac{\Delta C_{1}}{\Delta C_{2}} = \frac{\Delta C_{1} \times 10^{2}}{\Delta C_{2} \times 10^{2}}$
 $= > \frac{F}{1N} = \frac{0.5\%}{1\%} \implies F D F N$

Case 1: $F=IN_{A}R=I$ $P_{oud,IW} = \frac{1}{4} \cdot \frac{1}{500} \cdot (IV)$ Case 2: $= \frac{1}{2000}V$ $V_{out} = I_{IN}V = \frac{1}{4} \cdot \frac{AR}{R}V_{c}$ $V_{out} = I_{IN}V = \frac{1}{4} \cdot \frac{AR}{R}V_{c}$

$$V_{\text{sut}}, \text{ op Any} = V_{\text{out}} \left(1 + \frac{R_{\text{int}}}{R_{\text{gain}}} \right)$$

$$= \left(m V \left(1 + \frac{100 k}{200} \right) \right)$$

$$= 0.50 \mid V \quad \text{or} \quad 50 \mid mV$$

2: Computer Vision

Saturday, 24 June 2023 9:58 PI

Object detection via Colour masking:

```
% Read in the image from file
image = imread("TestImage.jpg");

% Colour mask: (select the third element of an image to specify R,G or B)
mask = (image(:,:,2) > MIN_GREEN) & (image(:,:,1) < MAX_RED);

% filtering: (remove small artifacts)
mask = bwareaopen(mask,MIN_PIXELS_FOR_AN_OBJECT);

% Fill gaps:
se = strel('disk', DISK_SIZE);

% Detect circles, and get their centers + radii
[centers,radii] = imfindcircles(mask,[MIN_RADIUS, MAX_RADIUS]);</pre>
```

Planar Homography & Perspective Transforms:

- requires 4 pairs of points to define the homography matrix

$$\begin{pmatrix} P1_X \\ P1_Y \\ 1 \end{pmatrix} = g. \begin{pmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & 1 \end{pmatrix} \begin{pmatrix} Q1_X \\ Q1_Y \\ 1 \end{pmatrix}$$

Here \mathbf{q} is a gain matrix and is a function of H_{31} and H_{32} .

In matlab:

```
%% Transform the image:
% Real world coordinates:
width = 650:
height = 450;
p1 = [0,0]; p2 = [0,height]; p3 = [width,0]; p4 = [width,height];
% (centers = location of the corresponding points on the image)
% Get homography matrix
tform = fitgeotrans(centers, [p3;p1;p2;p4], 'projective');
H_matrix= tform.T;
% Warp image and crop as required
image_flat = imwarp(image,tform,OutputView=imref2d([height, width]));
figure(4);
imshow(image_flat);
% (optional) Calculate a flat image coordinate from an original image point
p_image_orig = [10, 20]
p_image_flat = transformPointsForward(tform, p_image_orig)
% (optional) Calculate an original image coordinate from a flat image point
p_image_flat = [10, 20]
p_image_real = transformPointsInverse(tform, p_image_flat)
```

3: Coordinate frame transforms

Saturday, 24 June 2023 3:

To convert from one coordinate frame to another

To convert	from one coordinate frame	to another		
	Description	Example	Notes	Matlab https://www.peter corke.com/RTB/r9 /html/index.html
$A\xi_B$	Pose of frame B with respect to frame A			
Translatio n vector	d			
Rotation matrix	$R_{Y}(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$	$ \begin{aligned} & \text{2D:} \\ {}^{\land}R_{B} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \\ & \text{3D:} \\ & R_{zyx}(\phi,\theta,\psi) = R_{z}(\phi).R_{y}(\theta).R_{x}(\psi) \\ & = \begin{bmatrix} c_{\phi} & -s_{\phi} & 0 \\ s_{\phi} & c_{\phi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\psi} & -s_{\psi} \\ 0 & s_{\psi} & c_{\psi} \end{bmatrix} \\ & = \begin{bmatrix} c_{\phi}c_{\theta} & -s_{\phi}c_{\psi} + c_{\phi}s_{\theta}s_{\psi} & s_{\phi}s_{\psi} + c_{\phi}s_{\theta}c_{\psi} \\ s_{\phi}c_{\theta} & c_{\phi}c_{\psi} + s_{\phi}s_{\theta}s_{\psi} & -c_{\phi}s_{\psi} + s_{\phi}s_{\theta}c_{\psi} \\ -s_{\theta} & c_{\theta}s_{\psi} & c_{\theta}c_{\psi} \end{bmatrix} $	- Forms a special orthogonal group: $SO(n)$	-rotx(angle) -roty(angle) -rotz(angle) 2D: -rot2
Homogen eous Transform	$T = \begin{bmatrix} R & d \\ 0 & 0 & 1 \end{bmatrix}$ $AT_C = AT_B T_C$ $AT_C = AT_C T_C$ $AT_C = AT_C$ AT_C $AT_C = AT_C$ AT_C	$H = Rot_{x,\alpha} Trans_{x,b} Trans_{z,d} Rot_{z,\theta}$ $= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c\alpha & -s\alpha & 0 \\ 0 & s\alpha & c\alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & b \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\theta & -s\theta & 0 & 0 \\ s\theta & c\theta & 0 & 0 \\ 0 & 0 & 1 & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} A\mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} AR_B & A\mathbf{p}_{Bo} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} B\mathbf{p} \\ 1 \end{bmatrix}$ Homogeneous Transformation	-Forms a special euclidean group: $SE(n)$	-TR = rt2tr(R, d)
Pure rotation, $R(\theta)$	$Rot_{x,\alpha} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & cos\alpha & -sin\alpha & 0 \\ 0 & sin\alpha & cos\alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $Rot_{x,\theta} = \begin{bmatrix} cos\theta & -sin\theta & 0 & 0 \\ sin\theta & cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$			-trotx(theta) -troty(theta) -trotz(theta)
Pure translatio n , $Q(d)$	$Trans_{z,d} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$AT_B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ -translate 5 units along the y axis		-transl(x, y, z) -transl([x, y, z])

Special Orthogonal Group: SO(n)

- if a matrix is square and its transpose is equal to its inverse matrix, it is orthogonal
 - Hence, R is orthogonal
- to be part of the special group $(R \in SO(n))$, R must have
 - The columns (and rows) of *R* are mutually orthogonal
 - \circ Each column (and row) of R is a unit vector
 - \circ det(R) = 1, hence the length of the vector is unchanged

Special Euclidean group: SE(n)

$$T = \left[\frac{R}{0 \ 0 \ 0 \ 1} \right]$$

where

- $d \in \mathbb{R}^3$ is translation operator
- $R \in SO(3)$ is rotation operator

so, (d,R) forms the Special Euclidean Group SE(3)

$SE(3) = \mathbb{R}^3 \times SO(3)$

Compounding Rotation Matrices:

$$R_{zyx}(\phi,\theta,\psi)=R_z(\phi).R_y(\theta).R_x(\psi)$$

$$\begin{split} &= \left[\begin{array}{ccc} c_{\phi} & -s_{\phi} & 0 \\ s_{\phi} & c_{\phi} & 0 \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{ccc} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{array} \right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & c_{\psi} & -s_{\psi} \\ 0 & s_{\psi} & c_{\psi} \end{array} \right] \\ &= \left[\begin{array}{ccc} c_{\phi}c_{\theta} & -s_{\phi}c_{\psi} + c_{\phi}s_{\theta}s_{\psi} & s_{\phi}s_{\psi} + c_{\phi}s_{\theta}c_{\psi} \\ s_{\phi}c_{\theta} & c_{\phi}c_{\psi} + s_{\phi}s_{\theta}s_{\psi} & -c_{\phi}s_{\psi} + s_{\phi}s_{\theta}c_{\psi} \\ -s_{\theta} & c_{\theta}s_{\psi} & c_{\theta}c_{\psi} \end{array} \right] \end{split}$$

- ("c" represents cos, "s" represents sin)
- Compounding: (rotate about z, then y, then x)
- if rotating about current axes, add subsequent rotations to the right
 - rotation order will read left to right

$${}^{0}R_{3}=R_{x\alpha}.R_{y\beta}.R_{z\gamma}$$

- if rotating about fixed axes, add subsequent rotations to the left

o rotation order will read right to left

$$\circ \quad {}_{0}R_{3} = R_{z}(\psi). \ R_{y}(\theta). \ R_{x}(\phi)$$

Compounding using T:

$${}^{A}T_{C} = {}^{A}T_{B}{}^{B}T_{C}$$

-

3: Angle transform representations

Monday, 26 June 2023 3:02 PM

Euler angles:

Roll-pitch-yaw representation:

- ZYX and XYZ conventions
- (rotations about current axes)

ZYZ: Classic euler angles

$$R_{ZYZ} = R_{z,\phi} R_{y,\theta} R_{z,\psi}$$

- rotations are about "current" axes

Axis angle representation:

- k = axis of rotation
- theta = angle of rotation about axis k

given $R \in SO(3)$,

$$R = \left[\begin{array}{ccc} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{array} \right]$$

$$\theta = \cos^{-1}\left(\frac{r_{11} + r_{22} + r_{33} - 1}{2}\right)$$

$$k = \frac{1}{2\sin\theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$

e.g.

4: DH convention

Saturday, 24 June 2023 12:28 PM

DH Table:

i-1 is	i-1 is a revolute joint				i-1 is a prismatic joint				
Link	Joint angle (degree)	Link offset (cm)	Link length (cm)	Link twist (degree)	Link	Joint angle (degree)	Link offset (cm)	Link length (cm)	Link twist (degree)
i	$\theta_i + \theta_i^*$	d_i^*	a_i	α_i	i	$ heta_i^*$	$d_i + d_i^*$	a_l	α_i

- for each link (joint)
- (prismatic joint is a linear actuator)

transform from frame {i-1} to {i} has four steps:

- 1. rotate by joint angle (θ_i) about joint axle axis (z_{i-1})
- 2. translate by link offset (d_i) along joint axle axis (z_{i-1})
- 3. translate by link length (a_i) along x_i (towards new joint's origin)
- 4. rotate by link twist (α_i) about x_i (to align the z_i axis)

$$\begin{split} & ^{i-1}T_i = R_{(i-1)}(\theta_i).\,Q_{(i-1)}(d_i).\,Q_i(a_i).\,R_i(\alpha_i) \\ & \\ & ^{i-1}T_i = \begin{pmatrix} \cos\theta_i & -\sin\theta_i\cos\alpha_i & \sin\theta_i\sin\alpha_i & a_i\cos\theta_i \\ \sin\theta_i & \cos\theta_i\cos\alpha_i & -\cos\theta_i\sin\alpha_i & a_i\sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Example in MATLAB:

```
theta = deg2rad([10 50 65]); % radians
            10^-2*[32 0 0]; % length unit (e.g. m)
10^-2*[0 11 16]; % length unit (e.g. m)
alpha = deg2rad([90 0 0]); % radians
L(1) = Link('revolute', 'd', d(1), 'a', a(1), 'alpha', alpha(1), 'offset', 0);
L(2) = Link('revolute', 'd', d(2), 'a', a(2), 'alpha', alpha(2), 'offset', 0);
L(3) = Link('revolute', 'd', d(3), 'a', a(3), 'alpha', alpha(3), 'offset', 0);
robot = SerialLink(L, 'name', 'ArticulatedRobot'); % Will print DH table
% Calculate combined transformation matrix:
T_0_to_n = robot.fkine(theta')
% Transform vector from end-effector frame to base frame:
p_n = [1; 1; 1];
p_0 = T_0_{t_0} + p_n
% Calculate an individual transformation matrix:
T_{ind} = trotz(theta(i))*transl(0, 0, d(i))*transl(a(i), 0, 0)*trotx(alpha(i))
% Method 2:
frameTransformationMatrix(theta(i), d(i), a(i), alpha(i))
% Function to calculate the frame transformation matrix
 function T = frameTransformationMatrix(theta,d,a,alpha)
T = SE3([[cos(theta), -sin(theta)*cos(alpha), sin(theta)*sin(alpha), a*cos(theta)];
                           cos(theta)*cos(alpha), -cos(theta)*sin(alpha), a*sin(theta)];
          [ sin(theta),
                                                                                      d];
          [ 0,
                             sin(alpha),
                                                          cos(alpha),
          [ 0,
                                                                                      1]]);
                             0,
end
```

5: The Jacobian

Sunday, 2 July 2023

$$J_i = \begin{pmatrix} {}^{\mathbf{0}}\mathbf{z_{i-1}} \times ({}^{\mathbf{0}}\mathbf{o_n} - {}^{\mathbf{0}}\mathbf{o_{i-1}}) \\ {}^{\mathbf{0}}\mathbf{z_{i-1}} \end{pmatrix}$$
 if joint i is revolute;

Or

$$J_i = {0 \choose 0}^{\mathbf{Z_{i-1}}}$$
 if joint i is prismatic.

where

$${}^{0}T_{i} = \begin{pmatrix} {}^{0}R_{i} & {}^{0}\mathbf{o}_{i} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} r_{1,1} & r_{1,2} & r_{1,3} \\ r_{2,1} & r_{2,2} & r_{2,3} \\ r_{3,1} & r_{3,2} & 0 \end{pmatrix} \begin{pmatrix} r_{1,3} & r_{2,3} \\ r_{2,3} & r_{3,3} \\ 0 & 0 & 1 \end{pmatrix}$$

and

$$^{i\text{--}1}T_i = \begin{pmatrix} \cos\theta_i & -\sin\theta_i\cos\alpha_i & \sin\theta_i\sin\alpha_i & a_i\cos\theta_i \\ \sin\theta_i & \cos\theta_i\cos\alpha_i & -\cos\theta_i\sin\alpha_i & a_i\sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\dot{d} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \dot{\theta} \\ \dot{\phi} \end{pmatrix} = \begin{pmatrix} \frac{\delta f_1}{\delta q_1} & \frac{\delta f_1}{\delta q_2} & \dots & \frac{\delta f_1}{\delta q_n} \\ \frac{\delta f_2}{\delta q_1} & \frac{\delta f_2}{\delta q_2} & \dots & \frac{\delta f_2}{\delta q_n} \\ \frac{\delta f_3}{\delta q_1} & \frac{\delta f_3}{\delta q_2} & \dots & \frac{\delta f_3}{\delta q_n} \\ \frac{\delta f_4}{\delta q_1} & \frac{\delta f_4}{\delta q_2} & \dots & \frac{\delta f_4}{\delta q_n} \\ \frac{\delta f_5}{\delta q_1} & \frac{\delta f_5}{\delta q_2} & \frac{\delta f_5}{\delta q_n} \\ \frac{\delta f_6}{\delta q_1} & \frac{\delta f_6}{\delta q_2} & \frac{\delta f_6}{\delta q_n} \end{pmatrix} \begin{pmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \vdots \\ \vdots \\ \dot{q}_n \end{pmatrix}$$
Find J_v and J_ω from DH parameters

end_effector_velocity = J * joint_velocities;

5: Inverse Kinematics

Tuesday, 18 July 2023 5:44 PM

3 Methods:

1. kinematic decoupling

- a. requires 6 joints, and last 3 joints intersect at a single point (wrist centre)
- b. first solve q1,q2,q3 for the position of wrist center
- c. then solve q4,q5,q6 for orientation of wrist
- 2. Algebraic
 - a. e.g. 2 link manipulator
- 3. Numerical methods

Given a transform matrix

$${}^{0}T_{n} = \begin{pmatrix} R & \boldsymbol{p} \\ 0 & 1 \end{pmatrix}$$

Find the joint variables.

Method 1:

Kinematic Decoupling

□ Step 1: find q_1, q_2, q_3 such that $p_c = \begin{pmatrix} x_c \\ y_c \\ z_c \end{pmatrix}$

Step 2: use q_1, q_2, q_3 to evaluate 0R_3 ${}^0T_3(q_1, q_2, q_3) = {}^0T_1{}^1T_2{}^2T_3 = \begin{pmatrix} {}^0R_3 & {}^0P_3 \\ 0 & 1 \end{pmatrix}$

 \square Step3: The orientation of the wrist center is a function of q_4 , q_5 and q_6 . Find a set of Euler angles corresponding to the rotation matrix:

$$R_6 = ({}^0R_3)^{-1}R = ({}^0R_3)^TR$$

Inverse Jacobian:

$$\dot{\boldsymbol{q}} = {}^{0}J_{n}^{-1} {}^{0}\dot{\boldsymbol{d}}_{n}$$

- convert joint linear velocity (d_dot) to joint angular velocity (q_dot)

7: Manipulability

Saturday, 29 July 2023

1:58 PM

$$\square m = |\det(J(\mathbf{q}))|$$

7: Trajectory Generation

Saturday, 29 July 2023 3:38 PM

8: Path Planning

Saturday, 29 July 2023 4:03 PM

Artificial Detential Field		con quiz 2 pron
Artificial Potential Field	$F_{\text{att},i}(q) = \begin{cases} -\zeta_i(o_i(q) - o_i(q_f)) & : o_i(q) - o_i(q_f) \le d \\ -d\zeta_i \frac{(o_i(q) - o_i(q_f))}{ o_i(q) - o_i(q_f) } & : o_i(q) - o_i(q_f) > d \end{cases}$	see quiz 2 prep
	$F_{\text{att},i}(q) = \left\{ \begin{array}{c} (o_i(q) - o_i(q_f)) \end{array} \right.$	
	$\left(-d\zeta_i \frac{1}{ o_i(q) - o_i(q_f) } : o_i(q) - o_i(q_f) > d \right)$	
	-(use parabolic well at short distances, conic well at large	
	distances)	
	$F_{rep,i}(q) = \eta_i \left(\frac{1}{\rho(o_i(q))} - \frac{1}{\rho_0} \right) \frac{1}{\rho^2(o_i(q))} \nabla \rho(o_i(q))$	
	-only for $\rho\left(o_i(q)\right) \leq \rho_0$ -else = 0	
	$U_{\text{reps}}(q) = \begin{cases} \frac{1}{2} \eta_1 \left(\frac{1}{\rho(\eta(q))} - \frac{1}{\rho_0} \right)^2 : & \rho(\alpha_1(q)) \leq \rho_0 \\ 0 & : & \rho(\alpha_1(q)) > \rho_0 \end{cases}$	
	$\begin{bmatrix} 0 & \vdots & \rho(o_i(q)) > \rho_0 \\ 0 & \vdots & \rho(o_i(q)) > \rho_0 \end{bmatrix}$	
	• η_i is a scaling factor	
	and $\rho\left(o_i(q)\right)=$ distance to obstacle , $\Delta\rho\left(o_i(q)\right)=\frac{o_i-o_{obst}}{\left \left o_i-o_{obst}\right \right }$	
Bug 2		bug = Bug2(config_space_binary'); % Note use of the transposed cost map, due to Matlab's ordering of
		indices % in the cost map array.
		% Generate the plan for every free point to the goal goal = [goal_cell_i, goal_cell_j];
		start= [start_cell_i, start_cell_j]; % Generate the path
		bug_path=bug.query(start,goal); axis xy
		bug.plot hold on
		plot(bug_path(:, 1), bug_path(:, 2),'LineWidth', 4, 'Color', 'g');
		see lecture 8 examples
D*		ds = Dstar(config_space_binary'); % Note use of the transposed cost map, due to Matlab's ordering of
		indices % in the cost map array.
		% Generate the plan for every free point to the goal ds.plan(goal_cell);
		% Generate the path ds_path = ds.query(start_cell);
		% Plot the costmap and the path in joint space c = ds.costmap();
		f2 = figure(2) %set(gcf, 'OuterPosition',[100 100 scrsz(3)/2-100 scrsz(4)/2]);
		imagesc(c) axis xy
		%ds.plot hold on
		plot(ds_path(:, 1), ds_path(:, 2)); ds.modify_cost([50,55; 80,99], 100);
		ds.plan(); ds_path1 = ds.query(start_cell);
		f3 = figure(3) %set(gcf, 'OuterPosition',[100 100 scrsz(3)/2-100 scrsz(4)/2]);
		imagesc(c) axis xy
		%ds.plot hold on
		plot(ds_path1(:, 1), ds_path1(:, 2));
Probabilistic Road Map (PRM)		% convert start and goal position to cell positions
		prm = PRM(config_space_binary', 'npoints', 200); %%% number of sampling points
		prm.plan(); prm_path = prm.query(start_cell, goal_cell);
		prm.plot(); hold on
		plot(prm_path(:, 1), prm_path(:, 2), 'LineWidth', 4, 'Color', 'g');
		% Convert path back to joint angles (from cells) prm_path_angles = zeros(size(prm_path));
		for i = 1:length(prm_path)
		angle_1 = cell2angle(prm_path(i, 1), min1, max1, n1); angle_2 = cell2angle(prm_path(i, 2), min2, max2, n2);
		prm_path_angles(i, :) = [angle_1, angle_2]; end

Control with Artificial Potential Fields: (converting force to torque) - τ : Vector of joint torques $\tau = J_v^T F$ F: workspace force at end effector

$$- \tau(q) = \sum_{i} J_{O_i}^T * F_i(q)$$

- $\tau(q) = \sum_{i} J_{0i}^{T} * F_{i}(q)$ - F = total artificial force (attraction + repulsion) o different F and J for each joint

- NOTE: the jacobians are transposed (truncate then transpose)

F is a column vector for each force
 this causes the final torque vector to be a column vector of the torques of the joints

```
% jacobian calculation:
startup_rvc;
L(1) = Link([0 0 1 0]);
L(2) = Link([0 0 0 0]);
robot = SerialLink(L)
J1 = jacob0(robot, [0, 0])
L(1) = Link([0 0 1 0]);
L(2) = Link([0 0 1 0]);
robot = SerialLink(L)
J2 = jacob0(robot, [0 pi/2])
J_O1_transpose = J1(1:2,:)'
J_O2_transpose = J2(1:2,:)'
% Torque calculation:
tau = J_O1_transpose * F_total(:,1) + J_O2_transpose * F_total(:,2) % in the form [tau_q1; tau_q2]
% (counter clockwise positive)
```

9: Euler-Lagrange

Sunday, 30 July 2023 10:40 AM

1 Dimension:

The Lagrangian: L = K - P

$$f = \frac{d}{dt} \frac{\delta L}{\delta \dot{q}} - \frac{\delta L}{\delta q}$$

Similar for torques:

3 Dimensions, with N links:

Kinetic Energy of a single link:

$$K_i = \frac{1}{2}(m_i \mathbf{v}_{ci}^T \mathbf{v}_{ci} + \boldsymbol{\omega}_t^T l_i \boldsymbol{\omega}_t)$$

$$v_{ci} = J_{vci}(q) \dot{q}$$

 $\omega_i = R_i^T(q)/\omega_i(q)\dot{q}$

- need to get the Jacobian matrix for each link's center of mass
 keep velocity and rotational velocity Jacobians separate

For n links:

$$K = \frac{1}{2} \sum_{i=1}^{n} (m_i V_{ci}^T v_{ci} + \omega_i^T I_i \omega_i)$$

$$K = \frac{1}{2} \dot{\mathbf{q}}^T \sum_{i=1}^{n} (m_i J_{vci}(\mathbf{q})^T J_{vci}(\mathbf{q}) + J_{out}(\mathbf{q})^T R_i(\mathbf{q}) I_i R_i^T (\mathbf{q}) J_{out}(\mathbf{q})) \dot{\mathbf{q}}$$

$$D(\mathbf{q}) - \text{inertia matrix with } n \times n \text{ terms.}$$

$$K = \frac{1}{2} \dot{\mathbf{q}}^T D(\mathbf{q}) \dot{\mathbf{q}}$$

- includes both linear and rotational kinetic energy
- later, the D matrix is described in terms of its elements as $"d_{ij}"$

Potential energy:

$$P(q) = \sum_{i=1}^{n} m_i \boldsymbol{g}^T \boldsymbol{r}_{ci}$$

Now to find euler-lagrange:

$$L = \frac{1}{2} \dot{\mathbf{q}}^T D(\mathbf{q}) \dot{\mathbf{q}} - P(\mathbf{q})$$

$$L = \frac{1}{2} \sum_{i,j}^{n} d_{ij}(\boldsymbol{q}) \dot{q}_{i} \dot{q}_{j} - P(\boldsymbol{q})$$

$$\frac{\partial L}{\partial \dot{q}_k} = \sum_j d_{kj}(q) \dot{q}_j$$

• take derivative wrt \dot{q}_i (k == i)
• one of them would have been squared and so 1/2 is lost

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} = \sum_{j} d_{kj}(\mathbf{q}) \ddot{q}_j + \sum_{j} \frac{\partial d_{kj}(\mathbf{q})}{\partial q_i} \dot{q}_i \dot{q}_j$$

$$K = 1, 2, \dots, n$$

doesn't denend on \dot{a}

$$= \frac{\partial L}{\partial q_k} = \frac{1}{2} \sum_{i,j}^n \frac{\partial d_{ij}(\boldsymbol{q})}{\partial q_k} \dot{q}_i \dot{q}_j - \frac{\partial P(\boldsymbol{q})}{\partial q_k}$$

$$\frac{\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_k} - \frac{\partial L}{\partial q_k} = \tau_k}{\frac{\partial L}{\partial q_k}} = \tau_k$$

$$\sum_{j} d_{kj}(\boldsymbol{q}) \ddot{q}_{j} + \sum_{ij} \left\{ \frac{\partial d_{kj}}{\partial q_{i}} - \frac{1}{2} \frac{\partial d_{ij}}{\partial q_{k}} \right\} q_{i} q_{j} + \frac{\partial P}{\partial q_{k}} = \tau_{k}$$

This can be simplified by splitting it into three terms:

This can be simplified by sp
$$g_k = \frac{\partial P}{\partial q_k}$$

$$c_{ijk} = \frac{1}{2} \left\{ \frac{\partial d_{kj}}{\partial q_i} + \frac{\partial d_{ki}}{\partial q_j} - \frac{\partial d_{ij}}{\partial q_k} \right\}$$

$$\sum_{j} d_{kj}(\boldsymbol{q}) \dot{q}_{j} + \sum_{l=1}^{n} \sum_{j=1}^{n} c_{ljk}(\boldsymbol{q}) \dot{q}_{l} \dot{q}_{j} + g_{k}(q) = \tau_{k}; k = 1, 2, \dots, n$$

M(q)q + C(q,q)q + g(q) =
$$\tau$$
;

Joint-space | Gravity loading coupling matrix | Gravity loading coupling coup

- D(q) == M(q)

Summary:

$$\begin{split} g_k &= \frac{\partial P}{\partial q_k} \\ c_{ijk} &= \frac{1}{2} \left\{ \frac{\partial d_{kj}}{\partial q_i} + \frac{\partial d_{ki}}{\partial q_j} - \frac{\partial d_{ij}}{\partial q_k} \right\} \end{split}$$

$$\sum_{j} d_{k,j}(\boldsymbol{q}) \ddot{q}_{j} + \sum_{l=1}^{n} \sum_{j=1}^{n} c_{ijk}(\boldsymbol{q}) \dot{q}_{l} \dot{q}_{j} + g_{k}(\boldsymbol{q}) = \tau_{k}; k = 1, 2, \dots, n$$

$$M(q)q + C(q,q)q + g(q) = \tau;$$
Joint-space inertia matrix
Coriolis and centripetal

- D(q) == M(q)

$$D(\mathbf{q}) = \mathbf{M}(\mathbf{q})$$

$$K = \frac{1}{2} \mathbf{q}^T \sum_{i=1}^{n} \left(\mathbf{m}_i J_{vci}(\mathbf{q})^T J_{vci}(\mathbf{q}) + J_{osi}(\mathbf{q})^T R_i(\mathbf{q}) I_i R_i^T(\mathbf{q}) J_{osi}(\mathbf{q}) \right) \mathbf{q}$$

$$K = \frac{1}{2} \dot{q}^T D(q) \dot{q}$$

where

$$P(q) = \sum_{i=1}^n m_i oldsymbol{g}^T oldsymbol{r}_{ci}$$
 - equals the amount of work required

- to displace the center of mass of link i from the origin of base frame to position r_{ci}
- i.e. $P(q_i) = m_i g h_i$

- 1D example summary:
- Step 1: Find the kinetic energy
- Step 2: Find potential energy
 Step 3: Obtain terms in the euler lagrange equation
- Step 4: sum together

n-dimension summary:

- n-dimension summary:

 1. Get P(q) (1x1) (potential energy equation in terms of q)

 a. Get vectors to the center of gravity for each link, from frame {0}

 b. $P_l = m_l[0\ 0\ 9.81]\begin{bmatrix}o_{c_l}(1)\\o_{c_l}(2)\end{bmatrix}$ or in matlab "P_i = m_i*g**o_ci"
- c. OR you can just sum them up frame by frame (i.e. for o_{ci} w.r.t frame {i-1})

 2. Get D matrix (nxn)
- - a. translational component:
 - i. find the linear velocity Jacobians of the center of mass of each link

 - b. rotational component: (not required for prismatic)
 i. find the angular velocity Jacobian (the same for c.o.m / joint)
 ii. find the moment of inertia of each link, about the center of mass
 - 1) $I_i = I_{zz} = \frac{1}{12} m (a^2 + b^2)$ assuming other axes are negligible
- 3. Get c_{ijk} elements
- 3. Get c_{ijk} eiernents a. (C matrix is (nxnxn) but can't easily sum elements to get torque) b. calculate each element individually 4. Get g vector (nx1) $\frac{\partial P}{\partial x}$
- a. $g_k(q) = \frac{\partial P}{\partial q_k}$ 5. Sum everything together

 $K = \frac{1}{2} \ q^{*} \sum_{i=1}^{n} \left(m_{i} f_{i \in i}(\mathbf{q})^{T} f_{i \in i}(\mathbf{q}) + f_{i \in i}(\mathbf{q})^{T} R_{i}(\mathbf{q}) l_{i} R_{i}^{T}(\mathbf{q}) l_{i \in i}(\mathbf{q}) \right) \mathbf{q}$ $D(\mathbf{q}) - \text{inertia matrix with } n \times n \text{ terms.}$ $K = \frac{1}{2} \ q^{T} D(\mathbf{q}) \mathbf{q}$