

Exercice 1 :(04.75 pts)

Partie I: (02,5 points)

Construisons un arbre pondère correspondant à cette épreuve.

1 Déterminons la valeur de α

$$P(A_2) = P(A_1) \times P_{A_1}(A_2) + P(B_1) \times P_{B_1}(A_2)$$

$$= \alpha \times 0, 2 + (1 - \alpha) \times 0, 8$$

$$= 0, 2\alpha + 0, 8 - 0, 8\alpha$$

$$= -0, 6\alpha + 0, 8$$

Si
$$P(A_1) = P(A_2) \implies \alpha = -0.6\alpha + 0.8$$

 $\implies 1.6\alpha = 0.8$
 $\alpha = \frac{0.8}{1.6}$
 $\alpha = 0.5$
(01 point)

2 Calculons la probabilité qu'un athlète se rende au même stade pendant les deux jours.

 A_1 : « l'athlète choisit le stade A le 1^{er} jour »

 B_1 : « l'athlète choisit le stade B le 1^{er} jour »

 A_2 : « l'athlète choisit le stade A le 2^{er} jour »

 B_2 : « l'athlète choisit le stade B le 2^{er} jour »

Un athlète se rende au même stade pendant les deux jours se traduit par: $A_1 \cap A_2$ ou $B_1 \cap B_2$

$$P((A_1 \cap A_2) \cup (B_1 \cap B_2)) = P(A_1 \cap A_2) + P(B_1 \cap B_2)$$

$$= P(A_1) \times P_{A_1}(A_2) + P(B_1) \times P_{B_1}(B_2)$$

$$= 0, 5 \times 0, 2 + 0, 5 \times 0, 2$$

$$= 0, 1 + 0, 1$$

$$= 0, 2$$

$$P((A_1 \cap A_2) \cup (B_1 \cap B_2)) = 0, 2$$
 (0,75 point)

3 Au deuxième jour, on aperçoit un athlète sortant du stade B. La probabilité qu'il se soit entraîné au même stade la veille

Se traduit par : entrer dans B deux jours successifs, c'est-à-dire : B_1 sachant B_2

$$P_{B_2}(B_1) = \frac{P(B_1 \cap B_2)}{P(B_2)}$$

$$= \frac{P(B_1) \times P_{B_1}(B_2)}{P(A_1) \times P_{A_1}(B_2) + P(B_1) \times P_{B_1}(B_2)}$$

$$= \frac{0, 5 \times 0, 2}{0, 5 \times 0, 8 + 0, 5 \times 0, 2}$$

$$= \frac{0, 1}{0, 4 + 0, 1}$$

$$= \frac{0, 1}{0, 5}$$

$$= 0, 2$$

$$P_{B_2}(B_1) = 0, 2$$
 (0,75 point)

Partie II: (02,25 points)

1 La probabilité qu'il y ait deux athlètes heureux

Il ne peut pas y avoir deux athlètes heureux car il ya au moins 3 athlètes donc l'un des stades sera occupé par au moins deux athlètes

La probabilité qu'il y ait deux athlètes heureux est nulle (0,5 point)

- Un athlète est heureux s'il est seul dans un stade. On note la probabilité que cela arrive parmi n athlètes : Pour un athlète donné, l'épreuve qui consiste à choisir un stade est une **épreuve de Bernoulli** dont la probabilité du succès (le stade A) est 0, 5.
 - a Cette épreuve étant effectuée n fois de suite (par les n athlètes) et de manière indépendante, on a un schéma de Bernoulli.

On a deux cas:

- Un athlète se présente dans le stade A et n-1 athlètes dans le stade B: 1 succès ;
- Un athlète se présente dans le stade B et n-1 athlètes dans le stade A:n-1 succès.

La probabilité qu'il y ait un athlète heureux parmi $\cos n$ athlètes est :

$$p_n = C_n^1(0.5)^1(1 - 0.5)^{n-1} + C_n^1(0.5)^{n-1}(1 - 0.5)^1 = 2n \cdot (0.5)^n = \frac{n}{2^{n-1}}$$

$$p_n = \frac{n}{2^{n-1}}$$
 (0,75 pt)

Autre Approche

Remarque : si on voulait le voir comme une variable aléatoire

On peut modéliser le choix de chaque athlète comme une variable aléatoire de Bernoulli :

- On note X le nombre d'athlètes qui choisissent le stade A,
- Chaque athlète a une probabilité $\frac{1}{2}$ de choisir A ou B,
- Donc $X \sim \mathcal{B}(n, \frac{1}{2})$, c'est-à-dire une loi binomiale.

Un athlète est heureux s'il est seul dans un stade, ce qui correspond à :

un seul athlète dans A ou un seul athlète dans B

Autrement dit:

$$p_n = \mathbb{P}(X=1) + \mathbb{P}(X=n-1)$$

Avec la loi binomiale:

$$\mathbb{P}(X=k) = \binom{n}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{n-k} = \binom{n}{k} \left(\frac{1}{2}\right)^n$$

Donc:

$$\mathbb{P}(X=k) = \binom{n}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{n-k} = \binom{n}{k} \left(\frac{1}{2}\right)^n$$
$$p_n = \left[\binom{n}{1} + \binom{n}{n-1}\right] \cdot \left(\frac{1}{2}\right)^n = 2n \cdot \left(\frac{1}{2}\right)^n = \frac{2n}{2^n}$$

Et comme:

$$2^n = 2 \cdot 2^{n-1} \Rightarrow \frac{2n}{2^n} = \frac{n}{2^{n-1}}$$

$$p_n = \frac{n}{2^{n-1}}$$
 (0,75 point)

b Étudions la variation de la suite $(p_n)_{n\geq 3}$.

 $p_n = \frac{n}{2^{n-1}}$

$$p_{n+1} - p_n = \frac{(n+1)}{2^n} - \frac{n}{2^{n-1}}$$

$$= \frac{n+1}{2^n} - \frac{n}{2^{n-1}}$$

$$= \frac{n+1}{2^n} - \frac{2n}{2^n}$$

$$= \frac{-n+1}{2^n}$$

Donc
$$p_{n+1} - p_n = \frac{-n+1}{2^n}$$

Comme
$$n \geq 3$$
 alors $-n+1 < 0$ donc $\frac{-n+1}{2^n} < 0$ d'où $\forall n \geq 3, p_n < 0$

Ainsi la suite (p_n) est décroissante

La convergence de la suite

$$p_{n} = \frac{n}{2^{n-1}} \implies p_{n} = \frac{2n}{2^{n}}$$

$$\implies p_{n} = \frac{2n}{e^{\ln(2^{n})}}$$

$$\implies p_{n} = \frac{2n}{e^{n \ln(2)}}$$

$$\implies p_{n} = \frac{2}{\ln(2)} \times \frac{n \ln(2)}{e^{n \ln(2)}}$$

$$\text{Donc } p_{n} = \frac{2}{\ln(2)} \times \frac{n \ln(2)}{e^{n \ln(2)}}$$

$$\lim_{n \to +\infty} p_{n} = \lim_{n \to +\infty} \frac{2}{\ln(2)} \times \frac{n \ln(2)}{e^{n \ln(2)}}$$

$$= \frac{2}{\ln(2)} \times \lim_{n \to +\infty} \frac{n \ln(2)}{e^{n \ln(2)}}$$

$$= \frac{2}{\ln(2)} \times 0$$

$$= 0$$

D'où $\lim_{n \to +\infty} p_n = 0$ donc la suite $(p_n)_{n \geq 3}$ converge vers 0

c Calculons p_{10}

$$p_n = \frac{n}{2^{n-1}}$$

$$p_{10} = \frac{10}{2^{10-1}}$$

$$= \frac{10}{2^9}$$

$$= \frac{5}{2^8}$$

(0,25 point)

Déterminons la plus grande valeur de n pour laquelle la probabilité d'avoir un athlète heureux est supérieur à 0,005. (0,25 point)

La suite (p_n) étant strictement décroissante, on va chercher la plus grande valeur de n supérieur à 10 telles que p_n reste supérieur à 0,005

$$p_n = \frac{n}{2^{n-1}}$$
Calculs:

$$p_{11} = \frac{11}{2^{10}} \approx 0,01 > 0,005$$

$$p_{12} = \frac{12}{2^{11}} \approx 0,0059 > 0,005$$

$$p_{13} = \frac{13}{2^{12}} \approx 0,0031 < 0,005$$

Conclusion : La plus grande valeur de n pour laquelle la probabilité d'avoir un athlète heureux soit supérieur à 0,005 est 12.

n = 12

Exercice 2 : (04,25 pts)

Soient (Δ_1) et (Δ_2) deux droites distinctes de l'espace. On note R_1 et R_2 les demi-tours d'axes respectifs (Δ_1) et (Δ_2) .

Le but de cet exercice est de déterminer une condition nécessaire et suffisante portant sur (Δ_1) et (Δ_2) pour que : $R_1 \circ R_2 = R_2 \circ R_1$.

1 On suppose que (Δ_1) et (Δ_2) sont perpendiculaires en un point noté O.

On adoptera les notations suivantes :

- Le plan contenant (Δ_1) et (Δ_2) est noté (P).
- La droite perpendiculaire en O au plan (P) est notée (Δ)
- Le plan contenant (Δ) et (Δ_1) est noté (P_1) .
- Le plan contenant (Δ) et (Δ_2) est noté (P_2) .
- Les réflexions par rapport aux plans $(P), (P_1), (P_2)$ sont respectivement notées S_P, S_{P_1}, S_{P_2} .
- a Faisons une figure en faisant apparaître clairement le point O, les plans $(P), (P_1), (P_2)$ ainsi que les droites $(\Delta), (\Delta_1), (\Delta_2)$. (0.75 point)La figure, voir ce qui suit
- **b** Déterminons $S_p \circ S_{p_1}$ et $S_{p_2} \circ S_p$ La transformation $S_p \circ S_{p_1}$ est la rotation d'axe $(P) \cap (P_1) = \Delta_1$ et d'angle $2 \times$ [l'angle formé par $(P) \text{ et } (P_1)] = 2 \times \frac{\pi}{2} = \pi$

C'est donc le demi-tour d'axe Δ_1 c'est à dire R_1 La transformation $S_{p_2} \circ S_p$ est la rotation d'axe $(P) \cap (P_2) = \Delta_2$ et d'angle $2 \times [$ l'angle formé par (P) et (P₂)] = $2 \times \frac{\pi}{2} = \pi$

C'est donc le demi-tour d'axe Δ_2 c'est à dire R_2

(0,5 point)

(0.5 point)

c En déduire que $R_2 \circ R_1$ est un demi-tour dont on précisera l'axe.

$$\begin{split} R_2 \circ R_1 &= (S_{p_2} \circ S_p) \circ (S_p \circ S_{p_1}) = S_{p_2} \circ S_{p_1} \\ \text{Or, } S_{p_2} \circ S_{p_1} \text{ est la rotation d'axe } (P_1) \cap (P_2) &= \Delta \\ \text{et d'angle } 2 \times \text{ [1'angle form\'e par } (P_1) \text{ et } (P_2) \text{] } = 2 \times \frac{\pi}{2} = \pi \end{split}$$

C'est donc le demi-tour d'axe Δ (0.5 point)