Pseudorandom Repetition

I've been working on a program that needs lots of random numbers, so I wrote a Linear Congruential Generator to make them. A LCG is a kind of pseudorandom number generator where the next value n_{i+1} equals a times the previous n, n_i , plus c, mod m.

$$n_{i+1} = an_i + c \pmod{m}$$

I picked a LCG because it was simple, but LCGs eventually repeat themselves. Given the values a, c, m, and the initial seed n_i , where all four numbers are > 0 and $< 2^{63} - 1$, compute the period of the generator, as well as the first value to repeat.

Input Format

The input will consist of four integers, a, c, m, and n_i , representing the scalar, constant, modulus, and initial seed, respectively.

Output Format

Your output be the period, p of the given parameters as well as n_{i+x} , the first number to be repeated. Expect the inputs as well as the outputs to be quite large.

Sample Input

97

1

109

5

Sample Output

28

5