Uncertainty Estimation and Sampling for Materials Data

Toby Francis

Follow Along

https://github.com/holmgroup/GB Energy

What causes model uncertainty?

- Model Uncertainty: A consequence of statistics on finite datasets
 - $\gamma = f(\chi) | \chi \subseteq \mathbb{R}^n, \gamma \subseteq \mathbb{R}$
 - $\{x_i, y_i\} \in \{X, Y\} | X \subset \chi, Y \subset \gamma$
 - $h \in \mathcal{H}|h: \chi \to \gamma, h(X) = h(Y)$
 - $|X| = |Y| < \infty \Rightarrow |\mathcal{H}| > 1$
 - "All models are wrong"
- Machine Learning: Pick the right $h \in \mathcal{H}$ given $\{\mathrm{X},\mathrm{Y}\}$
 - Uncertainty: $|\hat{y}_n = \mathcal{H}(x_n)|$ (the number of possible outputs at x_n)

How can we use uncertainty?

- Model Criticism
 - Confidence Intervals
 - Hypothesis Testing
- Data selection
 - Active Learning

Active Learning with Uncertainty Sampling

- Central Concept:
 - Picking new points that the model is currently most uncertain about
- Practically:
 - Two cases
 - Finite pool of unlabeled points (e.g. images, possible configurations, etc.)
 - Bounded space to explore (e.g. crystallographic space)
 - Two different algorithms
 - Pools: evaluate uncertainty of all points in unlabeled pool, pick argmax
 - Bounded space: Many different algorithms
 - Draw i.i.d. samples and evaluate uncertainty
 - Monte Carlo search, Greedy optimization

How do we approximate model uncertainty?

- Backing-out Uncertainty
 - Ling et. al.
 - Committee Disagreement
 - Distance to Hyperplane (SVM)
 - Dropout Monte Carlo
 - Constant Learning-Rate SGD
- Building-in Uncertainty
 - Gaussian Processes

"Well-Calibrated Uncertainty Estimates"

For new points:

$$\sigma_i^2(\mathbf{x}) = \text{Cov}_j[n_{i,j}, t_j(\mathbf{x})]^2 + [\overline{t}_{-i}(\mathbf{x}) - \overline{t}(\mathbf{x})]^2 - \frac{ev}{T}$$
$$= \frac{ev}{T}$$

- The "jackknife-after-bootstrap" statistical work was to provide uncertainty estimates on points that were trained on
- Useful, but not necessary in the active setting

Committee Disagreement

- Basic idea:
 - If we have an ensemble, we can quantify the disagreement at a new point
- Mathematically (for classification)

$$D_{KL} = \frac{1}{|C|} \sum_{\theta \in C} \sum_{i} P_{\theta}(y_i|x) \log \frac{P_{\theta}(y_i|x)}{P_{C}(y_i|x)}$$

Pros:

 Committee Disagreement tends to be less "myopic" than uncertainty – models are "uncertain" about borders but "disagree" about large unlabeled regions

Uncertainty
Sampling
(entropy)

QBC using bagging (Soft Vote Entropy)

QBC using bagging (KL Divergence)

Gaussian Processes

- Why do we use them?
 - Provides a distribution over parameter-space, from which we can approximate the posterior distribution
- How do we build them?
 - Libraries: Edward, GPFlow, GPy
- What are the limitations?
 - Scalability

Gaussian Processes

- Given:
 - $\gamma = f(\chi) + \mathcal{N}(0, \sigma^2) | \chi \subset \mathbb{R}^n, \gamma \subset \mathbb{R}^n$
- "Formally, a Gaussian process generates data located throughout some domain such that any finite subset of the range follows a multivariate Gaussian distribution."

Gaussian Processes

• Infer:

$$p(y_*|X,Y,x_*) \sim \mathcal{N}(\Sigma_* \Sigma^{-1}Y, \Sigma_{**} - \Sigma_* \Sigma^{-1} \Sigma_*^{\mathrm{T}})$$

$$\Sigma_* = [k(x_*,x_1), k(x_*,x_2)...k(x_*,x_*)] \stackrel{\mathbb{R}}{=} 0$$

$$\Sigma_{**} = k(x_*,x_*)$$

$$\Sigma_{**} = k(x_*,x_*)$$

$$\theta_{MAP} = \underset{\theta}{\operatorname{argmax}}(y|x,\theta) = \underset{\theta}{\operatorname{argmax}}[-\frac{1}{2}y^{\mathsf{T}}K^{-1}y - \frac{1}{2}\log|K| - \frac{n}{2}log2\pi]$$

$$\theta = \{l, \sigma_f, \sigma_n\}$$

Questions?
Concerns?
Let's set you up with GPflow.