Feasibility Study of a FAARRS-SHARE Methodology for the U.S. Army Reserve

Patrick L. Brockett, John James Rousseau, and Yuying Wang

University of Texas at Austin

19970113 074

DERO CONTRACTOR TO A SECOND

United States Army Research Institute for the Behavioral and Social Sciences

June 1996

U.S. ARMY RESEARCH INSTITUTE FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON Director

Research accomplished under contract for the Department of the Army

University of Texas at Austin

Technical review by

Abraham Nelson

NOTICES

DISTRIBUTION: Primary distribution of this report has been made by ARI. Please address correspondence concerning distribution of reports to: U.S. Army Research Institute for the Behavioral and Social Sciences, ATTN: PERI-POX, 5001 Eisenhower Ave., Alexandria, Virginia 22333-5600.

FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

3. DATES COVERED (fromto) July 1993-January 1995 5a. CONTRACT OR GRANT NUMBER DAAL03-81-C-0034 5b. PROGRAM ELEMENT NUMBER 0605803A 5c. PROJECT NUMBER D730 5d. TASK NUMBER 1331 5e. WORK UNIT NUMBER
DAAL03-81-C-0034 5b. PROGRAM ELEMENT NUMBER 0605803A 5c. PROJECT NUMBER D730 5d. TASK NUMBER 1331
5b. PROGRAM ELEMENT NUMBER 0605803A 5c. PROJECT NUMBER D730 5d. TASK NUMBER 1331
0605803A 5c. PROJECT NUMBER D730 5d. TASK NUMBER 1331
D730 5d. TASK NUMBER 1331
5d. TASK NUMBER 1331
1331
C03
8. PERFORMING ORGANIZATION REPORT NUMBER
10. MONITOR ACRONYM
ARI
11. MONITOR REPORT NUMBER
Study Note 96-07
_

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

COR: Abraham Nelson

14. ABSTRACT (Maximum 200 words):

This report describes research into the feasibility of developing a Forecasting and Allocation of Army Recruiting Resources Study-Sequential Hierarchical Allocation of Resource Elements (FAARRS-SHARE) system for the U.S. Army Reserve. FAARRS-SHARE provides the Army's active component a means of analyzing the impact of recruiting resources on accessions and the ability to estimate the resources necessary to achieve specific accession levels. This study explores the feasibility of developing a Reserve FAARRS-SHARE system by examining the underlying models for the FAARRS-SHARE system and beginning an investigation of new, more appropriate methodologies. Building on new developments in sensitivity/stability analysis in Data Envelopment Analysis (DEA) formulations are developed for estimation of an approximate empirical production function for U.S. Army Reserve recruiting. Parameters of an empirical production function are estimated and reported.

15. SUBJECT TE FAARRS-SHAI Goal programm	RE Recruitin	ng resources	Data Envelopment	Analysis	Empirical production function
	URITY CLASSIFICA	TION OF	19. LIMITATION OF	20. NUMBER	21. RESPONSIBLE PERSON
16. REPORT Unclassified	17. ABSTRACT Unclassified	18. THIS PAGE Unclassified	ABSTRACT Unlimited	OF PAGES	(Name and Telephone Number)

Feasibility Study of a FAARRS-SHARE Methodology for the U.S. Army Reserve

Patrick L. Brockett, John James Rousseau, and Yuying Wang

University of Texas at Austin

Selection and Assignment Research Unit Michael G. Rumsey, Chief

U.S. Army Research Institute for the Behavioral and Social Sciences 5001 Eisenhower Avenue, Alexandria, Virginia 22333-5600

Office, Deputy Chief of Staff for Personnel Department of the Army

June 1996

Army Project Number 20465803D730

Personnel and Training Analysis Activities

The Forecasting and Allocation of Army Recruiting Resources Study-Sequential Hierarchical Allocation of Resource Elements (FAARRS-SHARE) system is used by U.S. Army Recruiting Command (USAREC) to facilitate the efficient allocation of active component recruiting resources. The Army also has a need to efficiently allocate the reserve component recruiting resources. This study explores the feasibility of using for the reserve component the FAARRS-SHARE methodologies developed for the active component. A reserve component FAARRS-SHARE system would provide USAREC with a means of analyzing the impact of recruiting resources on accessions, the ability to estimate the resources required to reach specific accession levels, as well as the ability to do analysis of the trade-off between recruiters and advertising.

The Selection and Assignment Research Unit of the U.S. Army Research Institute for the Behavioral and Social Sciences' Manpower and Personnel Research Division conducted this study under Task 1331, "Personnel Policy Analysis," as part of the Study and Analysis (6.6) program. The Directorate of Military Personnel Management requested this study. The findings of this study, which were provided to USAREC, will support the decision on the development of a reserve component version of the FAARRS-SHARE system.

ZITA M. SIMUTIS Deputy Director (Science and Technology)

EDGAR M. JOHNSON Director

FEASIBILITY STUDY OF A FAARRS-SHARE METHODOLOGY FOR THE U.S. ARMY RESERVE

EXECUTIVE SUMMARY

Research Requirements:

The Army's recruiting resources allocation decisions are critical in an era of diminishing resources. The Army s recruiting community needed tools to aid them in the efficient and effective allocation of their limited resources. A methodology is required for both the active and reserve components that forecasts high-quality contracts given resource levels, estimates the resources required to achieve a given level of accessions, and measures the effects and interactions of management decisions. The Forecasting and Allocation of Army Recruiting Resources Study-Sequential Hierarchical Allocation of Resource Elements (FAARRS-SHARE) system provides this capability for the active component. There is a need for a similar system for the reserve component. This system will provide the Army with information it needs to make critical decisions in an environment of diminishing recruiting resources.

Procedure:

A new data envelopment analysis (DEA) approach that provides simultaneously efficiency evaluations and sensitivity or robustness measures are described. Building on this DEA approach, new formulations that combine goal programming and discriminant function techniques for estimation of an approximate empirical production for U.S. Army Reserve recruiting are presented. Solution procedures are then described. A quarterly fiscal year 1993 database containing factors that effect the production of nonprior service and prior service reserve accessions is used in the DEA analyses. These data include the following input factors: the number of reserve recruiters, the reserve mission, unemployment rate, local expenditures, target population, and reserve gross rating points for television, cable, radio, and print. Estimation of empirical production function was performed for the aggregate year-based efficiency results.

Findings:

Estimation of the empirical production function produces an elasticity of .83 for mission and .14 for unemployment with all other factors having negligible impacts on the production of nonprior service and prior service reserve accessions. In excluding reserve mission as a factor in the model, the effects of unemployment, local expenditures, and national advertising are approximately .10 with the recruiter elasticity between .70 and .76. The estimation device employed here is sound. However, the accuracy of the estimation results depends on there being a sufficient number of observations. Improvement in estimation results can be achieved with increases in the number of observations.

Utilization of Results:

These results can be used as the foundation for building an empirical production function for Army reserve recruiting. In addition, the new methodologies presented can be utilized to improve the Army active component FAARRS-SHARE system.

FEASIBILITY STUDY OF A FAARRS-SHARE METHODOLOGY FOR THE U.S. ARMY RESERVE

CONTENTS

	Page
INTRODUCTION	1
BACKGROUND	2
POTENTIAL APPLICABILITY TO ARMY RESERVE	3
Appropriateness of FAARRS-SHARE Methodology	3
DEA ANALYSES	4
EMPIRICAL PRODUCTION FUNCTION ESTIMATION	6
Solution Procedure Refinements	8
DATA ISSUES	10
RESULTS	11
Efficiency results Production Function Estimation Results	11 17
SUMMARY AND RECOMMENDATIONS	21
REFERENCES	23
APPENDIX	25
LIST OF TABLES	
Table 1. Efficient Battalions FY 1993	12
2. Brigade Efficiency Success	13
3. NPS Summary Results FY 1993	14
4. PS Summary Results FY 1993	15

CONTENTS (Continued)

	Page
LIST OF TABLES (Continued)	
Table 5. NPS + PS Summary Results FY 1993	16
6. Efficient Battalions Comparison FY 1993	18
7. Battalion Alpha Value Comparison FY 1993	19
8. Battalion Efficiency Ranking Comparison FY 1993	20

FEASIBILITY STUDY OF A FAARRS-SHARE METHODOLOGY FOR THE U.S. ARMY RESERVE

Introduction

This report details research into a new methodology for the potential development of a Forecasting and Allocation of Army Recruiting Resources Study-Sequential Hierarchical Allocation of Resource Elements (FAARRS-SHARE) system for U.S. Army Reserve (USAR) use. The present work is motivated by the developments originally presented in Charnes, Golany, Pitaktong, and Rousseau (1991) and in enhanced form in Charnes, Kress, Golany, Pitaktong, and Rousseau, Semple, Song, and Zhou (1992) but differs from them in several significant respects. See also Thomas (1990).

The purpose of the original (FAARRS-SHARE) research was to develop a simple, rapid response methodology and accompanying software for forecasting, allocation and evaluation of annual Active Army recruiting resources at the aggregate headquarters Department of the Army (HQDA) level. Such a system was required in order to implement a multiyear program of desired accessions, or to quickly (within 72 hours) evaluate for congressional information the effects of suggested changes in accessions or in resource availabilities across such a multiyear program. Successful completion of the initial research and development of software was achieved in a six month period during fiscal year (FY) 1991, and the initial SHARE system has since been in practical use at both Office of Deputy chief of Staff of Personnel (ODCSPER) and U.S. Army Recruiting Command (USAREC).

As a result of this usage, additional features and capabilities, not previously requested by ODCSPER, were recognized as desirable and subsequently incorporated in the enhanced version. In addition, the methods and procedures developed in FAARRS-SHARE were viewed as potentially having wider applicability than just to the Active Component (AC).

The present research re-examines the underlying models of the FAARRS-SHARE system and begins investigation of a new, more appropriate methodology for developing such a system for Army Reserve use. The most recent developments in sensitivity/stability analysis in data envelopment analysis (DEA) are researched as the basic level of analysis. Building on this, other new and novel formulations are developed which combine goal programming and discriminant function techniques for estimation of an approximate empirical production function for U.S. Army Reserve recruiting.

The DEA-based micro analysis is a non-parametric methodology that requires no a priori model specification; the goal programming-discriminant function procedures involve analytical or parametric solutions -- hence we call this a "semi-parametric" method.

This report is organized as follows. The following two sections provide the necessary background on FAARRS-SHARE and a discussion of its applicability to the Army Reserve that

lead to the development of our new approach. The fundamental DEA analyses are discussed in the fourth section, followed by our new methods for empirical production function estimation. The sixth section discusses data issues associated with implementation of our procedures using FY 1993 data, and a seventh section presents our results. A final section summarizes our main findings and points towards some further avenues of research.

Background

As discussed in Charnes et al. (1991) and Charnes et al. (1992) the Army recruiting battalion is the "lowest" management element that has direct control over primary resource decisions that lead to "production" of contracts for Army service. Moreover, since the recent downsizing trend in Army strength coupled with drastic reductions in defense budgets required forecasting across much lower accession levels than in previous recruitment, better instruments needed to be developed that would be consistent with USAREC command and control recruitment management and not conflict with USAREC experience. Meeting these requirements made possible the new "multiplicative aggregation" method developed in Charnes et al. (1991) and Charnes et al. (1992) and Thomas (1990) for FAARRS-SHARE which permits one to go not only from battalion to total command but also from quarterly accessions to multiple quarters and to yearly accessions.

The FAARRS-SHARE process employs a multiplicative Data Envelopment Analysis (DEA) model to:

- (a) approximate an empirical production function;
- (b) determine the most consistently best performing battalions (BNs); and
- (c) achieve therefrom, by a constrained weighted least absolute value method ('goal enhancement'), the relative rates of change ('elasticities') in optimal (so-called 'technically efficient') performance of recruiting resource and environmental elements.

This methodology overcomes several problems frequently associated with traditional statistical regression approaches to estimation. The problem of model mispecification (i.e., incorrect choice of inputs or outputs) is obviated here by more than fifteen years experience with USAREC data and recruiting activities. A second potential difficulty concerns the robustness of the objective function criterion. Here we use weighted least absolute value rather than the very sensitive least squares or maximum likelihood to ensure robustness. A third problem can be that of collinearity or lack of independence of inputs and of outputs. Here the absolute value criterion plus constraints to ensure valid specification minimized this problem compared to using least squares or maximum likelihood.

Potential Applicability To Army Reserve

We began initial investigations of what would likely be involved in extending the methodology to USAR recruiting. Here we sought to identify general data requirements, determine data availability and integrity, and familiarize ourselves with the special characteristics and nuances of USAR recruiting which could become problem areas. We can summarize our findings as follows.

Generally, the same kinds of core resources are required to secure quality Reserve recruits as are for AC recruits, but their differential effects may be quite different in the two cases. Moreover, we can expect additional factors, not so relevant in the AC case, to have an impact in the Reserve situation. For example, the role of potential differentials between civilian and military pay in the market will need to be examined closely, and the issue of market proximity to USAR centers will have to be explored.

Other issues further complicate matters. Several DEA analyses would likely be necessary in order to determine whether the AC (and perhaps the National Guard) should be treated as competition in Reserve recruiting. Competition from the other reserve components is also an important consideration, but what little information there is on competitive activity is of poor quality. For example, the presence and extent of competitive activity at the battalion level is unknown, and it is unclear whether the other service reserve components can provide that information.

Many of the dollar expenditures on automation, communications, the delay entry program (DEP), facilities, vehicles, advertising, etc. incurred by higher echelons of management also support the USAR, so developing an appropriate allocation of cost in each funding area will be a major factor.

In addition to such considerations, there is also the basic question of the continued validation of the mathematical procedures underlying FAARRS-SHARE. This is briefly discussed next.

Appropriateness of the FAARRS-SHARE Methodology

As innovative as the original FAARRS-SHARE models were, recent developments in DEA and related techniques for empirical production function estimation suggest that significant improvements to the methodology are now possible.

These improvements begin at the most fundamental level with superior techniques for conducting the basic DEA analyses and determining the most robustly efficient recruiting battalions which will drive estimation of the empirical production function. These new methods, which incorporate notions of sensitivity or stability in DEA efficiency classifications, are discussed in the next section.

Equally significant are the new formulations for production function estimation which combine in a novel way ideas from goal programming with those from the use of discriminant functions. These procedures are detailed below.

DEA Analyses

Data Envelopment Analysis (DEA) performed at the recruiting battalion level is the basic building block for our proposed methodology. However, unlike the previous FAARRS-SHARE research, the fundamental DEA analyses were here conducted using new formulations that provide *simultaneously* the required efficiency evaluations in addition to important measures of the sensitivity or robustness of the efficiency classifications (see references Charnes, Rousseau, and Semple (1995) and Rousseau and Semple (1995)).

A frequent criticism of the DEA results is that they present only a snapshot of a unit's situation, disregarding the effects of errors in the data, both real and induced, and the transitory nature of efficiencies in general. Lost, therefore, is any indication of whether the classification is fleeting or robust. Without this sensitivity information, therefore, findings can be distorted when marginally efficient or inefficient units are distinguished solely on the basis of their classification. To account for this additional factor without introducing distributional assumptions on the data, we employ the particular sensitivity analysis discussed in Charnes et al. (1995) and illustrated in Rousseau et al. (1995).

In this new sensitivity approach, the unit's observed input-output levels serve as the center of a ball (or cell) in the multi-dimensional input-output space. The largest ball for which the interior contains strictly classification preserving levels (with respect to the remaining unperturbed reference group) is then computed. We call the radius of this maximal ball the radius of classification preservation (RCP) and interpret it as a measure of the robustness of the DEA classification. Moreover, when either the l_1 or l-infinity (Tchebycheff) norm is used to describe the ball, the computations involve solving, at worst, a finite number of related linear programs.

It is important to realize that the values of these radii also answer a fundamental question: what is the minimum distance the analyzed unit must be moved to alter its classification? Therefore, like the efficiency score, which is based upon the principle of maximizing the separation between a unit and the reference points that dominate it, the radius of classification preservation is motivated by a particular extremal property. However, unlike the efficiency score, the radii can be used to discriminate among efficient units and reveal important differences among inefficient units.

The linear program (TR) (T for Tchebycheff, R for radius) below provides the necessary computations for efficient and inefficient units alike (with index k)

The superscripted index indicates that the associated column has been omitted from the matrices of observed outputs (Y) and inputs (X), without regard to, or prior knowledge of, the test unit's classification. The magnitude of the optimal value represents the minimum absolute change needed to place the test unit infinitesimally close to reclassification. The absolute value of the optimal value to (TR) is referred to as the unit's Tchebycheff radius of classification preservation.

An alternative approach is to compute the minimum relative change needed to effect reclassification. In this case, the vectors e_s and e_m are replaced by the vectors y_k and x_k , respectively in (TR). The ball is no longer associated with the Tchebycheff norm but rather a generalized Tchebycheff norm, which includes weights on the individual dimensions of the vector. If the test unit's inputs and outputs are used as the source of the weights, then the formulation which computes the percentage change needed simultaneously in all inputs and outputs to effect reclassification, for efficient and inefficient units alike, is given by the linear program (GTR).

Min
$$\alpha^{+} - \alpha^{-}$$

Subject to

$$Y(k)\lambda - s^{+} + \alpha^{+}y_{k} - \alpha^{-}y_{k} = y_{k}$$

$$X(k)\lambda - s^{+} + \alpha^{+}x_{k} - \alpha^{-}x_{k} = x_{k}$$

$$e^{t}\lambda = 1$$

$$\lambda_{+}, s^{+}, s^{-}, \alpha^{+}, \alpha^{-} \geq 0.$$
(GTR)

The absolute value of the optimal value to (GTR) will be referred to as the unit's generalized Tchebycheff radius of classification preservation.

At least one input or output dimension must be worsened by more than the computed RCP to achieve reclassification; worsening every input and output simultaneously by more than this value does bring about reclassification.

Our interest in (TR) and (GTR) is not limited to their obvious computational advantages. The optimal value to each provides a more comprehensive evaluation of the unit than a simple efficiency score. The sign of the optimal value indicates the classification of the test unit: a negative sign identifies inefficient units, a positive sign identifies efficient units. Therefore, (TR) and (GTR) are stand-alone DEA models with the advantage that efficiency classifications and sensitivity information are computed *simultaneously*.

Equally important is the magnitude of the optimal value since it addresses the robustness of the classification. If interest centers on the likelihood of a classification maintaining its current status in the future, then the magnitude of the optimal value becomes an important indicator.

The RCPs are further important since they can be used to distinguish among units with identical classifications. This will be particularly relevant in the research of the next section

where a satisfactory division of recruiting battalions into efficient and inefficient groups forms the basis for estimation of the empirical production function.

These new DEA formulations have several other advantages:

- There is no need to generate and then justify specific efficiency scores obtained from a particular DEA model.
- The programs can be implemented using any LP solver without recourse to any existing DEA code.
- Subsequent analysis of the RCPs may become important.
- Having programs (TR) and (GTR) as a point of departure may help suggest and motivate other applications of this type.

Much of classical single-output production theory is centered on fitting a production function to the observed data, otherwise known as the econometric-regression approach. After a function has been determined with a suitable fit, individual units are assessed by measuring the difference between their observed output and the value computed by the theoretical production function. This difference is the error or 'residual' for the unit and represents the distance separating observed from theoretically efficient production.

• In the more complicated multi-output case of DEA, the production function is replaced by an input-output correspondence, also determined by the sample data, which defines Pareto efficient production. Because the radius of classification preservation measures the distance separating each unit from reclassification, it constitutes a generalization of the residual encountered in the single output production case. The importance of these residuals for future research and analysis will be discussed further in our Summary.

Empirical Production Function Estimation

The ability to represent, even in approximate form, the recruiting input-output relations by means of a frontier function is an important step in using historical data (observed inputs and outputs) for current and future managerial planning. For example, resource allocation and reallocation across recruiting battalions can be based on the frontier function. Questions of priorities, relative importance of production factors and goal setting can all be addressed using this function.

This section adapts to the DEA context a goal programming model developed by Freed and Glover (1981) as a general purpose instrument for discriminating among specified groups of observations. For a complete discussion, see Golany and Yu (1995) and references therein. The data for the model include a vector of observed values for each entity (here a recruiting battalion) and its association with one of several groups. In the present case we consider only two groups:

efficient and inefficient battalions. To associate each evaluated battalion with either the efficient (E) or inefficient group, we apply the (TR) or (GTR) models of the previous section.

We then apply a variant of the model developed by Freed and Glover to estimate the parameters of the discriminant function. The original model considered A_j , j = 1, ..., n observations organized into groups G_k , k = 1, ..., g. A pair-wise (i.e., g = 2) variant of the model was formulated as:

Min
$$\sum h_j \alpha_j - \sum c_j \delta_j$$

subject to
 $A_j X - \alpha_j + \delta_j = b, \quad j \in G_1$
 $A_j X - \alpha_j + \delta_j = b, \quad j \in G_2$
 $\alpha_j, \delta_j \ge 0, X \ne 0$

where X represents a linear predictor (or a weighting scheme), b is a scalar breakpoint between the two groups, α_j are misclassification deviations that are minimized and δ_j are desired deviations which are maximized in the objective function which uses h_i and c_j as weights.

The model selects a separating hyperplane AX = b in a way that attempts not only to have all the units in one group above it and all units in the other group below it (by minimizing the α_j deviations) but also to 'push' the units in the respective groups as far away as possible from the hyperplane (by maximizing the δ_i deviations) so as to provide the sharpest possible distinction.

The input-output relations in DEA are characterized by a piece-wise concave empirical function, so the model above must be transformed to convert the concave relations assumed for DEA into a linear function. Here we use a Translog transformation which has the advantages of being general and allowing for synergy effects among the inputs to be formulated explicitly. Hence we define the observations A_i as follows:

$$A_{j} = \begin{cases} \log(Y_{rj}), & r = 1,...,s \\ -\log(X_{ij}), & i = 1,...,m \\ -\log(X_{ij})\log(X_{kj}), & i,k = 1,...,m \end{cases}$$

The groups are defined as

 $G_2 = E$ (the set of efficient battalions)

 $G_1 = I$ (the set of inefficient battalions)

and the linear predictor is given by

$$X = (\mu, \nu)$$
.

Thus our Translog function can be expressed as

$$\sum_{r} \log(Y_{rj}) \mu_{r} = \beta + \sum_{i} \log(X_{ij}) \nu_{i} + \sum_{i} \sum_{k} \log(X_{ij}) \log(X_{kj}) \nu_{ik}, j = 1,...n$$
 (TL).

Without loss of generality we normalize the ν variables to prevent an 'all-zero' solution. This results in the following general model (G):

$$\begin{aligned} &\textit{Min } \sum_{j \in I} h_{ij} \alpha_{j} + \sum_{j \in E} h_{2j} \alpha_{j} - \sum_{j \in I} c_{1j} \delta_{j} - \sum_{j \in E} c_{2j} \delta_{j} \\ &\textit{Subject to} \\ &\sum_{r} \log(Y_{rj}) \mu_{r} - \sum_{i} \log(X_{ij}) \upsilon_{r} - \sum_{i} \sum_{k} \log((X_{ij}) \log(X_{kj}) \upsilon_{ik} - \alpha_{j} + \delta_{j} = \beta, \ j \in I \\ &\sum_{r} \log(Y_{rj}) \mu_{r} - \sum_{i} \log(X_{ij}) \upsilon_{r} - \sum_{i} \sum_{k} \log((X_{ij}) \log(X_{kj}) \upsilon_{ik} - \alpha_{j} + \delta_{j} = \beta, \ j \in E \\ &\sum_{i} \upsilon_{i} + \sum_{i} \sum_{k} \upsilon_{ik} = 1 \\ &\beta_{i}, \delta_{j} \geq 0, \forall j. \end{aligned}$$

Solution Procedure

Based on our development above we now propose the following procedure to identify the parameters of a Translog function which can serve as a surrogate for the empirical production function in recruiting.

Step 1. Solve (TR) or (GTR) and associate the recruiting battalions with the sets E and I.

Step 2. Solve the following variant of the general model (G) above.

Min z
$$Subject to$$

$$\sum_{r} \log(Y_{rj})\mu_{r} - \sum_{i} \log(X_{ij})\upsilon_{r} - \sum_{i} \sum_{k} \log((X_{ij})\log(X_{kj})\upsilon_{ik} \leq \beta \quad j \in I$$

$$\sum_{r} \log(Y_{rj})\mu_{r} - \sum_{i} \log(X_{ij})\upsilon_{r} - \sum_{i} \sum_{k} \log((X_{ij})\log(X_{kj})\upsilon_{ik} - \alpha_{j} + \delta_{j} = \beta, \quad j \in E$$

$$\alpha_{j} \leq z, \quad j \in E$$

$$\sum_{i} \upsilon_{i} + \sum_{i} \sum_{k} \upsilon_{ik} = 1$$

$$\alpha_{j}, \delta_{j} \geq 0, \forall j.$$

Drop from consideration all battalions in E with $z = \alpha_j^*$.

Repeat Step 2 until z=0 or $|E| \le \rho$, that is, until no further misclassification errors are observed for the battalions in E or until the number of remaining battalions in E has reached a prescribed minimal level ρ .

Step 3. Solve the following variant of the general model (G) above.

$$\begin{aligned} &\textit{Min } \sum_{\mathbf{j} \in \mathbb{E}} (\alpha_{j} + \delta_{j}) \\ &\textit{Subject to} \\ &\sum_{\mathbf{r}} \log(\mathbf{Y}_{\mathbf{r}j}) \mu_{r} - \sum_{\mathbf{i}} \log(\mathbf{X}_{\mathbf{i}j}) \upsilon_{r} - \sum_{i} \sum_{k} \log((\mathbf{X}_{\mathbf{i}j}) \log(\mathbf{X}_{\mathbf{k}j}) \upsilon_{ik} & \leq \beta \quad j \in \mathbb{E} \\ &\sum_{\mathbf{r}} \log(\mathbf{Y}_{\mathbf{r}j}) \mu_{r} - \sum_{\mathbf{i}} \log(\mathbf{X}_{\mathbf{i}j}) \upsilon_{r} - \sum_{i} \sum_{k} \log((\mathbf{X}_{\mathbf{i}j}) \log(\mathbf{X}_{\mathbf{k}j}) \upsilon_{ik} - \alpha_{j} + \delta_{j} = \beta, \ j \in \mathbb{E} \\ &\sum_{\mathbf{i}} \upsilon_{i} + \sum_{i} \sum_{k} \upsilon_{ik} = 1 \\ &\alpha_{j}, \delta_{j} \geq 0, \forall j. \end{aligned}$$

A key to understanding the procedure above is the realization that DEA, being a *relative* efficiency method, is more likely to misclassify as efficient battalions which actually are inefficient according to an *absolute* standard rather than the reverse case. When DEA identifies a unit as inefficient, this means that evidence has been found that other units dominate it. On the other hand, when DEA identifies a unit as efficient this means only that no such evidence of domination has been found in the observed data, but this does not imply that this unit is indeed necessarily efficient with respect to the unknown production function.

Thus the purpose of Step 2 above, which may be repeated several times, is to drop battalions in set E from further consideration if they are suspected of being misclassified into E. In Step 2 we identify in each iteration the battalions that are associated with the largest misclassification error and drop them from set E. This step is repeated until no further misclassification errors are observed for the battalions in E or until the number of remaining battalions in E has reached a prescribed minimal level p.

Step 3 continues to enforce the separation that was attained earlier (in particular, it allows no misclassification errors for battalions in I) while attempting to fit a hyperplane through the reduced set of efficient battalions. In that context, Step 3 can be viewed as a Minimum Absolute Deviation (MAD) regression applied to E with side constraints related to battalions in I.

Refinements

Our solution procedure can be refined by directly incorporating the sensitivity information provided by (TR) or (GTR).

The individual radii of classification preservation can be used to form the weights h_{1j} , h_{2j} , c_{1j} and c_{2j} in the objective function of the general model (GM). Thus the desirable deviations δ_j and the undesirable deviations α_j can be given weights that reflect the robustness of battalion j's classification as efficient or inefficient.

Alternatively, the radii of classification preservation can be used to partition the battalions into finer groupings. The efficient battalions might be partitioned into sets E^1 , E^2 , ...,

 E^e according to the magnitudes of the radii, for example, E^1 might contain the upper decile and E^e the lowest decile. Likewise, the inefficient battalions might be grouped into I^1 (upper ten percent), ..., I^i (lowest ten percent). The groupings in which we would have the most confidence are E^1 (most robustly efficient) and I^1 (most robustly inefficient). The potential for misclassification is greatest with sets E^e and I^i . Accordingly, these latter four groups of battalions might be singled out for special treatment (in different ways and for different reasons) in the model constraints. A variety of other possibilities are also available.

Data Issues

Following is a list of outputs and inputs used in our initial analyses. Data were available for each quarter of FY 1993. In that year there was a 42 battalion structure.

Outputs

Non-Prior Service (NPS) contracts - male plus female, all categories Prior Service (PS) contracts - male plus female, all categories

Inputs

Reserve Mission
Unemployment Rate
USAR Local Expenditures
Target Population
USAR Aggregate Advertising Gross Rating Points (GRPs)
TV
Cable
Radio
Print

Several other input factors were considered but could not be used due to lack of available or reliable data. Significant among these were measures of competitive activity (e.g., from the national guard) and the civilian/military wage differential. Regarding the latter, there are potential difficulties in its measurement. Determining the appropriate civilian occupational categories is one issue; combining or somehow averaging wage rates for different occupations is another; averaging the result across distinct regions in a battalion is yet another. Moreover, no data on wage rates were available to us.

Even for the inputs used, some issues are still unresolved. For example, it is not clear that the target population age group is precisely the same as that for which advertising GRPs are reported. The input actually used in the DEA is impressions (= GRPs x target population), so this potential mismatch may be detrimental to the analysis. In addition, an unemployment rate for the target population was not available to us and a general unemployment rate had to suffice as a surrogate.

In these preliminary efforts we are seeking to determine the appropriateness of our general procedures for evaluation of Reserve recruiting activities. Consequently, for the early DEA runs we chose to use aggregate advertising GRPs as an input rather than also attempt to unravel the media mix issues through having separate inputs for each medium.

Results

Efficiency Results

The DEA runs were carried out using (GTR) for each of the four quarters of FY 1993 and on aggregate data for the year as a whole. The efficiency results are summarized in Tables A1-A5 in the Appendix. Recall from the DEA Analyses section that the sign of a battalion's alpha value (column three of each table) indicates its efficiency classification: positive alpha indicates efficient, negative indicates inefficient.

Recall also that the absolute value of alpha represents the robustness of the classification. Accordingly, in quarter 1 of FY 1993 (see Table A1) Battalion 17 would have required across-the-board changes to inputs and outputs in excess of 22% in order to have been classified as inefficient, while Battalion 42 would have required changes of only 5%. Likewise, inefficient Battalion 18 was only marginally so, requiring simultaneous improvements in inputs and outputs of only 1% in order to effect reclassification. However, Battalion 39 would have needed improvements of 30% to have been reclassified as efficient.

Also shown in Tables A1-A5 are the "proportion of mission achieved" and "write rate" for each battalion and for the Reserve recruiting command as a whole, by quarter and annually. In each case, the figures are given for Non-Prior Service contracts and Prior Service contracts as well as in aggregate. These two factors may be viewed as measures of recruiting effectiveness, not to be confused with recruiting efficiency. We will return to this in more detail later.

Summary Table 1 indicates that there are both temporal and geographic differences in recruiting performance. In FY 1993 fifteen battalions were efficient in quarter 1, sixteen in quarter 2, twenty in quarter 3, eleven in quarter 4, and fourteen battalions were efficient over the aggregate year. Four battalions (Battalion 2, Battalion 14, Battalion 36, Battalion 38) were efficient in all four quarters and in aggregate for the year as a whole.

A further five battalions (Battalion 17, Battalion 22, Battalion 27, Battalion 35, Battalion 42) were efficient in three of the four quarters, but only the middle three were also efficient on an annual basis (although the classification of both Battalion 17 and Battalion 42 was indeterminate, i.e., with an annual alpha value of zero). Seven more battalions (Battalion 4,

Table 1

Efficient	Battalions	FV	1003
CHICICHI	Dattailons	ГΙ	177.7

BN	Dattant	Q1		Q3	04	FY
	1	Ų١	Q2	Ų3	Q4	FI
Battalion	1	v	v	v	v	v
Battalion	2	X	X	X	X	X
Battalion	3		v	v		37
Battalion	4		X	X	3.7	X
Battalion	5			37	X	37
Battalion	6			X	X	X
Battalion	7					
Battalion	8					
Battalion	9	X		X		X
Battalion	10	X		X	••	X
Battalion	11			X	X	X
Battalion	12					
Battalion	13	X	X			X
Battalion	14	X	X	X	X	X
Battalion	15	X				
Battalion	16				X	
Battalion	17	X	X	X		
Battalion	18			X		
Battalion	19			X	•	. <u></u> .
Battalion	20					
Battalion	21	X	X			
Battalion	22	X	X	X		X
Battalion	23		X			
Battalion	24					
Battalion	25					
Battalion	26					
Battalion	27	X	X	X		X
Battalion	28			X		
Battalion	29	X				
Battalion	30					
Battalion	31			X	X	
Battalion	32					
Battalion	33			X		
Battalion	34	X	X			
Battalion	35		X	X	X	X
Battalion	36	X	X	X	X	X
Battalion	37			X	X	X
Battalion	38	X	X	X	X	X
Battalion	39					
Battalion	40	X				
Battalion	41		X			
Battalion	42	X	X	X		
		15	16	20	11	14

Battalion 6, Battalion 9, Battalion 10, Battalion 11, Battalion 13 and Battalion 37) were efficient on an annual basis even though they were efficient in only two of the quarters. Twelve battalions were never efficient in any quarter.

The 42 recruiting battalions are grouped regionally into four Brigades: Brigade A has 13 battalions, Brigade B has 8, Brigade C has 10, and Brigade D contains 11 battalions. We can think of a given battalion in a specified quarter as one opportunity for the battalion's associated Brigade to excel. Forming the ratio of such efficiency successes to the Brigade's number of opportunities provides a measure of Brigade "efficiency success" for each quarter and annually. For example, in quarter 1 Brigade C had three efficient battalions out of its ten. Hence its efficiency success rating in quarter 1 is 0.30. On an annual basis five of its battalions were efficient so its annual efficiency rating is 0.50. The Table 2 summarizes this information.

Table 2

Brigade Efficiency Success

		***************************************	***************************************		6000000000000000000000000000000000000	***********************
	Q1	Q2	Q3	Q4	Mean	FY 93
Brigade A	.62	.462	.462	.231	.404	.308
Brigade B	.50	.625	.625	.50	.563	.50
Brigade C	.30	.20	.50	.30	.325	.50
Brigade D	.182	.273	.364	.091	.227	.091
Command	.357	.381	.476	.262	.369	.333

Brigade B is consistently best by this efficiency success measure, in every quarter and annually. In contrast Brigade D is consistently the worst (except for quarter 2 when it is second to last by this measure).

It is instructive to compare the aforementioned measures of effectiveness (viz., proportion of mission achieved and write rate) to the efficiency classifications obtained from the DEA to discern any patterns that may be present. Tables 3-5 provide summary results for NPS, PS and total contracts.

In each case, although inefficient battalions can and do achieve mission and have respectable write rates, this tends to be more evident among efficient battalions. Likewise, low write rates and low proportions of mission achieved are far more common among inefficient battalions. The general conclusion drawn is that efficiency is positively related to but not equivalent to effectiveness.

Table 3

NPS Summary Rresults FY

1993

1. 10 mg

< 3.0 0 0 0 0 4.00 - 4.99 3.00 - 3.99 3.64 Quarterly Write Rate 6 17 2 = - c ကတ 4.04 1 16 4.44 മ 4 9 > 5.00 11 18 5.17 N ကက 3 2 0 5 4 ε Proportion Mission Achieved 0.75 - 0.99 6 13 0.86 6 8 0.97 2 1 — ო > 1.00 13 19 1.12 10 27 1.28 1 10 **~** 8 20 Efficient BNs 22 Inefficient BNs 31 Inefficient BNs 27 Inefficient BNs Command 26 Inefficient BNs Quarter 2 16 Efficient BNs 15 Efficient BNs 11 Efficient BNs Command Command Command Quarter 3 Quarter 4 Quarter 1

	Proportion A	roportion Mission Achieved			Annual \	Annual Write Rate	
	≥ 1.00	0.75 - 0.99	≤ 0.74	> 20.00	≥ 20.00 16.00 - 19.99 12.00 - 15.99 <	12.00 - 15.99	< 12.0
FY 1993							
14 Efficient BNs	12	-	_	2	9	က	
28 Inefficient BNs	15	=	7	4	15	7	2
Command	1.04				17.27		

PS Summary Results FY 1993

	Proportion Mis	Proportion Mission Achieved			Quarterly Write Rate		
	≥1.00	0.75 - 0.99	≤ 0.74	>5.00	4.00 - 4.99	3.00 - 3.99	< 3.0
Quarter 1							
15 Efficient BNs	13	2		2	5	വ	
27 Inefficient BNs	18	6		2	æ	10	4
Command	Ξ:				4.03		
Oliarter 2							
16 Efficient BNs	7	4	4	7	4	Ŋ	
26 Inefficient BNs	6	12	5	က	12	o.	2
Command		0.93			4.18		
Quarter 3							
20 Efficient BNs	15	4	-	10	သ	2	
22 Inefficient BNs	7	10	5		1	7	4
Command		0.94			4.07		
Quarter 4							
11 Efficient BNs	80	2	-	2		Ŋ	_
31 Inefficient BNs	19	7	2	œ	12	ω	က
Command		0.99			4.5		

	Proportion Mi	roportion Mission Achieved			Annual Write		
	≥1.00	$0.75 - 0.99 \le 0.74 \ge 20.00$	≤ 0.74	> 20.00	Rate 16.00 - 19.99	12.00- 5.99 < 12.0	< 12.0
FY 1993							
14 Efficient BNs	12	5		7	2	Ŋ	
28 Inefficient BNs	14	10	4	4	O	13	8
Command		0.99			16.76		

NPS + PS Summary Results FY 1993

Table 5

					Quarieny write hate	/rice Hate	
	≥ 1.00	0.75 - 0.99	≤ 0.74	> 10.00	8.00 - 9.99	6.00 - 7.99	< 6.0
Quarter 1							•
15 Efficient BNs	=	4		က	7	2	
27 Inefficient BNs	13	12	7		=	14	7
Command		0.97				7.67	
Oliarter 2							
16 Efficient BNs	15	_	-	თ	7		
26 Inefficient BNs	15	10	_	9	16	4	
Command	1.03				9.35		
Oustor 3							
20 Efficient BNs	17	က		ဗ	16		-
22 Inefficient BNs	10	8	4		10	-	-
Command		96.0			8.11		
7							
Qualler 4							
11 Efficient BNs	=			ଔ	7	7	
31 Inefficient BNs	24	7			23	7	-
Command	1.12				8.94		

	Proportio	Proportion Mission Achieved			Annual V	Annual Write Rate	
	≥ 1.00	0.75 - 0.99	≤ 0.74	≥ 40.00	< 0.74 \geq 40.00 32.00 - 39.99 24.00 - 31.99 <24.0	24.00 - 31.99	<24.(
FY 1993							
14 Efficient BNs	14			က	10	-	
28 Inefficient BNs	17	10	-	7	16	6	_
Command	1.02				34.03		

For comparison purposes, an efficiency analysis was also conducted, based on annual figures, using a single output, the sum of NPS and PS contracts. This reduction in the number of input-output dimensions plus the increased discriminatory power of the new DEA models halves the number of efficient battalions from 14 to 7. Table 6 shows a comparison of the efficient battalions using two outputs and a single output.

As already discussed in the DEA Analyses section, the efficiency (sensitivity/stability) alpha values provide a natural means for ranking the battalions (recall positive alpha indicates efficient, negative indicates inefficient). A comparison of battalion alpha values and efficiency rankings under two outputs and a single output is shown in Table 7. Although the absolute values of the alphas can be expected to differ between the two cases (as seen here), an inspection of the two rankings shows them to be very similar. This is particularly evident for the robustly efficient and robustly inefficient battalions. This conclusion is further illustrated by the individual battalion-by-battalion comparisons shown in Table 8.

Production Function Estimation Results

Our intent here is to investigate the potential of one method (described in detail in the Empirical Production Function Estimation section for estimating an empirical efficient production function for Reserve recruiting and thereby obtain estimates of "rates of change" or elasticities for the various recruiting resources and environmental factors in technically efficient recruiting.

As anticipated (and confirmed in our applications) the increased discriminatory power of our new (TR) and (GTR) DEA models allows us to go directly to Step 3 of the solution procedure discussed in the Empirical Production Function Estimation section of this paper. Estimation of the empirical efficient production function was performed for the aggregate year based on the efficiency results of Table A5. Fourteen battalions were efficient. This limited number of observations made it necessary to curtail the estimation to include only the direct input effects (ignoring the interactive effects). Even so, difficulties with non-uniqueness can still be expected since there are eight parameters to be estimated - one for each input and output plus a multiplicative constant (see the Empirical Production Function Estimation section).

To illustrate the point, the basic version of our goal program (i.e., without additional restrictions applied to the elasticities) almost fully accounted for efficient production by assigning an elasticity of 0.83 to the input mission. In this run the elasticity for unemployment rate at 0.14 was the only other influential factor. The recruiter effects appear to have been completely subsumed by the effect of the mission. This can be explained by observing that the efficient battalions as a group achieved or exceeded mission so that relating production directly to mission was straightforward.

This situation can be remedied by applying additional considerations, for example, to bound elasticities away from zero and to constrain elasticities to fall within fairly broad ranges reflecting recruiting experience. However, this also raises the question of whether mission should be considered a valid input in this process. In separate runs excluding mission as a factor,

Table 6

Efficient Battalions Comparison FY 1993

BN		Two Outputs	One Output
		1 WO Outputs	One Output
Battalion	1	,	,
Battalion	2	X	Х
Battalion	3		
Battalion	4	X	
Battalion	5		
Battalion	6	X	
Battalion	7		
Battalion	8		
Battalion	9	Х	
Battalion	10	Х	
Battalion	11	X	Х
Battalion	12		
Battalion	13	X	Х
Battalion	14	Х	X
Battalion	15		
Battalion	16		
Battalion	17		
Battalion	18		
Battalion	19	· :	
Battalion -	20		
Battalion	21	15° 4 ,	
Battalion	22	Х	
Battalion	23		
Battalion	24		
Battalion	25	:	
Battalion	26		
Battalion	27	Х	
Battalion	28		
Battalion	29		
Battalion	30		
Battalion	31		
Battalion	32		
Battalion	33		
Battalion	34	.,	
Battalion	35	X	
Battalion	36	X	X
Battalion	37	X	X
Battalion	38	Х	Х
Battalion	39		
Battalion	40		
Battalion	41		
Battalion	42		

Total Efficient 14 7

Table 7

Battallion Alpha Value Comparison FY 1993

Two Outputs

One Output

BN		Alpha	Rank
Battalion	11	0.31	1
Battalion	38	0.29	2
Battalion	2	0.21	2 3 4 5 7 7 9 9
Battalion	14	0.11	4
Battalion	13	0.03	5
Battalion	27	0.03	5
Battalion	9	0.02	7
Battalion	37	0.02	7
Battalion	4	0.01	9
Battalion	6	0.01	9
Battalion	10	0.01	9
Battalion	22	0.01	9
Battalion	35	0.01	9
Battalion	36	0.01	9
Battalion	17	0.00	15
Battalion	42	0.00	15
Battalion	15	-0.01	17
Battalion	16	-0.01	17
Battalion	18	-0.01	17
Battalion	19	-0.01	17
Battalion	29	-0.01	17
Battalion	8	-0.02	22
Battalion	23	-0.02	22
Battalion	31	-0.03	24
Battalion	33	-0.03	24
Battalion	30	-0.05	26
Battalion	40	-0.05	26
Battalion	20	-0.06	28
Battalion	41	-0.06	28
Battalion	5	-0.07	30
Battalion	24	-0.07	30
Battalion	28	-0.07	30
Battalion	1	-0.08	33
Battalion	12	-0.09	34
Battalion	21	-0.09	34
Battalion	34	-0.09	34
Battalion	3	-0.11	37
Battalion	25	-0.11	37
Battalion	26	-0.11	37
Battalion	7	-0.13	40
Battalion	32	-0.16	41
Battalion	39	-0.24	42

BN		Alpha	Rank
Battalion	11	0.31	1
Battalion	38	0.25	2
Battalion	2	0.16	3
Battalion	13	0.02	4
Battalion	14	0.01	5
Battalion	36	0.01	5
Battalion	37	0.01	5
Battalion	6	0.00	8
Battalion	18	-0.01	9
Battalion	27	-0.01	9
Battalion	15	-0.02	11
Battalion	22	-0.02	11
Battalion	8	-0.03	13
Battalion	9	-0.03	13
Battalion	16	-0.03	13
Battalion	29	-0.03	13
Battalion	19	-0.04	17
Battalion	31	-0.04	17
Battalion	10	-0.05	19
Battalion	17	-0.05	19
Battalion	4	-0.06	21
Battalion	35	-0.06	21
Battalion	41	-0.06	21
Battalion	20	-0.07	24
Battalion	24	-0.07	24
Battalion	28	-0.07	24
Battalion	30	-0.07	24
Battalion	40	-0.07	24
Battalion	23	-0.08	29
Battalion	33	-0.08	29
Battalion	21	-0.09	31
Battalion	12	-0.1	32
Battalion	34	-0.1	32
Battalion	25	-0.11	34
Battalion	26	-0.11	34
Battalion	42	-0.11	34
Battalion	5 1 7	-0.13	37
Battalion	7	-0.14	38
Battalion		-0.16	39
Battalion	3	-0.19	40
Battalion	32	-0.19	40
Battalion	39	-0.25	42

Table 8

Battalion Efficiency Ranking Comparison FY 1993

Two Outputs

One Outputs

BN		Alpha	Rank	
Battalion	1	-0.08	33	
Battalion	2	0.21	3	
Battalion	3	-0.11	37	
Battalion	4	0.01	9	
Battalion	5	-0.07	30	
Battalion	6	0.01	9	
Battalion	7	-0.13	40	
Battalion	8	-0.02	22	
Battalion	9	0.02	7	
Battalion	10	0.01	9	
Battalion	11	0.31	1	
Battalion	12	-0.09	34	
Battalion	13	0.03	5	
Battalion	14	0.11	4	
Battalion	15	-0.01	17	
Battalion	16	0	17	
Battalion	17	0	15	
Battalion	18	-0.01	17	
Battalion	19	-0.01	17	
Battalion	20	-0.06	28	
Battalion	21	-0.09	34	
Battalion	22	0.01	9	
Battalion	23	-0.02	22	
Battalion	24	-0.07	30	
Battalion	25	-0.11	37	
Battalion	26	-0.11	37	
Battalion	27	0.03	5	
Battalion	28	-0.07	30	
Battalion	29	-0.01	17	
Battalion	30	-0.05	26	
Battalion	31	-0.03	24	
Battalion	32	-0.16	41	
Battalion	33	-0.03	24	
Battalion	34	-0.09	34	
Battalion	35	0.01	9	
Battalion	36	0.01	9 7 2 42	
Battalion	37	0.02	7	
Battalion	38	0.29	2	
Battalion	39	-0.24		
Battalion	40	-0.05	26	
Battalion	41	-0.06	28	
Battalion	42	0	15	

BN		Alpha	Rank
Battalion	1	-0.14	38
Battalion	2	0.16	3
Battalion	3	-0.19	40
Battalion	3 4	-0.06	21
Battalion	5	-0.13	37
Battalion	6	0	8
Battalion	7	-0.16	39
Battalion	8	-0.03	13
Battalion	9	-0.03	13
Battalion	10	-0.05	19
Battalion	11	0.31	1
Battalion	12	-0.1	32
Battalion	13	0.02	4
Battalion	14	0.01	5
Battalion	15	-0.02	11
Battalion	16	-0.03	13
Battalion	17	' -0.05	19
Battalion	18	-0.01	9
Battalion	19	-0.04	17
Battalion	20	-0.07	24
Battalion	21	-0.09	31
Battalion	22	-0.02	11
Battalion	23	-0.08	29
Battalion	24	-0.07	24
Battalion	25	-0.11	34
Battalion	26	-0.11	34
Battalion	27	-0.01	9
Battalion	28	-0.07	24
Battalion	29	-0.03	13
Battalion	30	-0.07	24
Battalion	31	-0.04	17
Battalion	32	-0.19	40
Battalion	33	-0.08	29
Battalion	34	-0.1	32
Battalion	35	-0.06	21
Battalion	36	0.01	5
Battalion	37	0.01	5
Battalion	38	0.25	2
Battalion	39	-0.25	42
Battalion	40	-0.07	24
Battalion	41	-0.06	21
Battalion	42	-0.11	34

the recruiter and local advertising effects quickly became apparent. Here the recruiter elasticity ranged from 0.70 to 0.76, and it would appear that now the mission effects are subsumed in the recruiter activity. Effects of unemployment, local advertising and national advertising are comparable at approximately 0.10.

The constrained goal programming method is a sound estimation device. However, its accuracy (as with traditional statistical regressions) will hinge on there being a sufficient number of observations to alleviate the problem of non-uniqueness. It is expected that a much improved estimation can be achieved by moving to the recruiting company level of analysis provided adequate data are available.

SUMMARY AND RECOMMENDATIONS

New techniques and procedures presented here provide significant improvement over the original DEA and goal programming estimation models used in the FAARRS-SHARE system. This tends to confirm that our new methodology is an appropriate way in which to model Reserve recruiting, although several important data issues would have to be resolved for a full scale application. It also strongly suggests that modeling efforts of Active Army recruiting would also be enhanced by our new approach.

The sensitivity technique discussed in DEA Analyses section has been demonstrated here and in other situations to be an important supplemental tool when analyzing performances using DEA. Not only are individual classifications more thoroughly investigated, but entire groups within the data can be analyzed through properties of their DEA residuals, bringing out information in the data that was undetectable before.

Multiple observations (e.g., quarterly) of battalions provide additional rewards. Since the residual (radius of classification preservation) for a battalion can be viewed as a random variable (a function of partially random data), the computed value is merely a single realization of this random quantity. Multiple observations translate into multiple realizations, and considerable statistical explorations are subsequently possible, not least of which concerns the expected value of an individual battalion's residual. One-sided tests of hypotheses about the expected value of the residual (i.e., < 0 or > 0) would then address the nature of a battalion's expected performance. When drawing statistical inferences about efficiency based upon distributional properties of the residual, one should not overlook the simplification brought about by using a univariate random variable. An abundance of powerful statistical tests and procedures are therefore available.

The DEA also provides additional important information not immediately relevant to the current research focus. This detailed information is readily available as required for routine battalion management including resource allocation and missioning, and we recommend quarterly or semi-annual applications of DEA for such purposes.

As data become more standardized and available on a more finely disaggregated basis, we recommend that the recruiting company (rather than the battalion) be considered as the new basic unit of analysis. In particular, this is likely to improve our estimation procedures for

production function elasticities. In future research it would also be desirable to investigate other flexible function forms for the production function estimation as well as alternative means for model validation.

References

- Charnes, A. Golany, B., Kress, M., Pitaktong, U., Rousseau, J. J., Semple, J. H., Song, T., & Zhou, L. (1992). <u>Final report: Enhanced FAARRS-SHARE system</u> (Research Report CCS 683). Austin, TX: Center for Cybernetic Studies, The University of Texas as Austin.
- Charnes, A., Golany, B., Kress, M., Rousseau, J. J., & Semple, J. H. (1995). Sensitivity and stability of efficiency classifications in data envelopment analysis. <u>Journal of Productivity Analysis</u>.
- Charnes, A., Golany, B., Pitaktong, U., Rousseau, J. J., Semple, J. H., Song, T., & Zhou, L. (1991). <u>Final report: FAARRS-SHARE system</u> (Research Report CCS 671). Austin, TX: Center for Cybernetic Studies, The University of Texas as Austin.
- Freed, N., & Glover, F. F. (1981). Simple but powerful goal programming model for discriminant problems. <u>European Journal of Operational Research</u>, 7, 44-60.
- Golany, B., & Yu, G. (1995). A goal programming-discriminant function approach to the estimation of an empirical production function based on DEA results. <u>Journal of Productivity Analysis</u>, 6, 171-186.
- Rousseau, J. J., & Semple, J. H. (1995). Radii of classification preservation in data envelopment analysis: A case study of "program follow-through". <u>Journal of Operational Research Society</u>, 46(1).
- Thomas, D. A. (1990). <u>Data envelopment analysis methods in the management of personnel recruitment under competition in the context of U.S. Army recruiting.</u> Unpublished doctoral dissertation, Graduate School of Business, The University of Texas at Austin.

APPENDIX

Table A1

3.64 4.03 7.67

1364

TOTAL 4962 5499 10461 5777 5015 10792 0.86 1.10 0.97

Table A2

9.35

4.18

5.17

1310

TOTAL

Table A3

P.S. 101 N.P.S 12 P.S. 104 N.P.S 12 P.S. 104 P.S. 104	Third Quarter FY93	_	PRO	PRODUCTION	NC FOT	2	MISSION	. -	PROP	PROP. ACHIEVED	VED	2	₩ G	WRITE RATE	<u> </u>
148 338 159 172 331 1.19 0.86 87 146 73 77 150 0.81 1.18 47 143 59 62 121 1.63 0.76 204 319 167 182 349 0.69 1.12 111 214 86 62 121 1.63 0.76 171 214 86 62 121 1.63 0.76 171 214 86 62 148 120 1.19 187 283 139 144 283 0.69 1.10 187 283 139 144 286 1.20 1.79 187 283 139 144 286 1.20 1.79 187 284 132 266 0.99 1.20 1.71 188 139 144 286 0.99 1.12 1.14 160 <	ALPHA 0.25		298 299	263	265	NPS 261	279	2 6	115 115	2 6 94	2 2	2 G	NPS 4.98	Z 4	9.37
87 146 73 77 150 0.81 1.13 118 224 91 100 191 1.16 1.18 47 143 59 62 121 163 0.76 204 319 167 182 349 0.69 1.12 111 214 86 62 148 2.06 1.10 97 237 112 114 226 1.20 1.13 161 294 134 132 266 0.99 1.20 42 77 36 20 56 0.90 1.22 45 136 144 283 0.69 1.20 46 294 144 283 0.69 1.20 161 294 144 283 0.69 1.13 174 286 20 296 1.13 1.22 161 294 144 283 1.04 1.03	0.22		190	148	338	159	172	331	1.19	0.86	1.02	8	4.75	3.70	8.45
118 224 91 100 191 1.16 1.18 47 143 59 62 121 1.63 0.76 204 319 167 182 129 0.69 1.10 111 214 86 62 148 1.20 1.79 97 237 112 114 226 1.29 1.10 161 294 134 132 266 0.99 1.20 42 77 36 20 56 0.97 2.10 85 136 144 283 0.69 1.20 140 294 132 266 0.99 1.22 161 47 49 96 1.13 1.32 164 291 144 283 0.69 1.21 169 147 49 96 1.13 1.21 164 291 144 284 1.20 1.21	0.18		26	87	146	73	11	150	0.81	1.13	26.0	27	2.19	3.22	5.41
47 143 59 62 121 1.63 0.76 204 319 167 182 349 0.69 1.12 88 198 198 167 182 349 0.69 1.12 111 214 86 62 148 1.30 1.10 187 237 112 114 226 0.69 1.12 187 237 134 132 266 0.97 2.10 42 77 36 20 56 0.97 2.10 85 136 71 49 120 0.72 1.73 140 294 147 49 160 0.72 1.73 140 291 144 283 0.69 1.12 140 120 149 120 0.72 1.73 140 291 149 120 0.72 1.73 144 283 204 0	0.16		106	118	224	91	<u>6</u>	191	1.16	1.18	1.17	g :	4.61	5.13	9.74
204 319 107 102 349 107 102 349 110 111 214 126 62 148 1.20 1.10 111 234 132 266 1.25 0.85 187 283 134 132 266 0.99 1.20 42 77 36 20 56 0.97 2.10 85 136 171 49 120 0.72 1.73 66 119 47 49 96 1.13 1.35 140 210 47 49 96 1.13 1.35 140 210 47 49 96 1.13 1.35 140 147 49 120 0.97 1.17 180 69 144 280 0.96 1.13 144 291 144 280 0.97 1.14 108 20 44 29	0.1		96	4 <u>5</u>	243	26	29	121	59.0	9.76	8	4 6	9.80	95.0	10.21
111 214 86 62 148 1.20 1.79 97 237 112 114 226 1.25 0.85 187 283 139 144 283 0.69 1.30 161 294 134 132 266 0.99 1.22 42 77 36 20 56 0.97 2.10 85 136 111 93 204 0.62 1.52 97 188 69 80 149 1.35 1.13 100 164 74 74 148 0.62 1.53 100 164 74 74 148 0.82 1.13 110 291 147 49 1.62 1.53 1.21 110 47 49 96 1.13 1.35 1.14 100 111 93 204 0.62 1.52 110 147 135 <td>60.0</td> <td></td> <td>1 2</td> <td>£ 88</td> <td>198</td> <td>) 6 2 3</td> <td>701 80</td> <td>159</td> <td>1.39</td> <td>1.1</td> <td>1.25</td> <td>8 8</td> <td>5.00</td> <td>4.00</td> <td>0.6 0.00</td>	60.0		1 2	£ 88	198) 6 2 3	701 80	159	1.39	1.1	1.25	8 8	5.00	4.00	0.6 0.00
97 237 112 114 226 1.25 0.85 187 283 139 144 283 0.69 1.30 42 77 36 20 56 0.97 2.10 85 136 134 132 266 0.99 1.22 66 119 47 49 96 1.13 1.35 141 210 111 93 204 0.62 1.52 170 164 74 74 148 0.86 1.35 1.21 170 164 74 74 148 0.86 1.35 1.14 174 290 147 135 282 1.09 1.09 174 291 147 135 282 1.09 1.09 174 291 147 148 0.80 1.09 1.09 174 292 147 148 0.80 1.12 1.14 <td>90.0</td> <td></td> <td>103</td> <td>=======================================</td> <td>214</td> <td>98</td> <td>62</td> <td>148</td> <td>1.20</td> <td>1.79</td> <td>1.45</td> <td>21</td> <td>4.90</td> <td>5.29</td> <td>10.19</td>	90.0		103	=======================================	214	98	62	148	1.20	1.79	1.45	21	4.90	5.29	10.19
187 283 139 144 283 0.69 1.30 42 77 36 20 56 0.97 2.10 85 136 71 49 120 0.72 1.73 66 119 47 49 96 1.13 1.35 141 210 111 93 204 0.62 1.52 97 188 69 80 149 1.32 1.21 100 164 74 49 96 1.13 1.35 100 164 74 49 96 1.13 1.35 100 164 74 49 96 1.13 1.35 100 164 74 49 96 1.13 1.21 100 164 27 74 148 0.82 1.14 0.93 118 240 121 130 251 1.14 0.93 1.14 0.93	0.05		140	26	237	112	114	226	1.25	0.85	1.05	52	5.60	3.88	9.48
161 294 134 132 266 0.99 1.22 42 77 36 20 56 0.97 2.10 85 136 71 49 120 0.72 1.73 66 119 47 49 96 1.13 1.35 141 210 111 93 204 0.62 1.52 97 188 69 80 149 1.32 1.21 100 164 74 74 148 0.62 1.52 100 164 74 74 148 0.86 1.35 1.21 100 164 74 74 148 0.86 1.35 1.14 0.93 118 240 121 130 259 0.93 1.14 0.93 118 254 121 130 259 1.21 0.90 1.12 108 274 147 26 0.92	0.05		96	187	283	139	144	283	69.0	1.30	1.00	32	2.74	5.34	8.09
42 77 36 20 56 0.97 2.10 85 136 71 49 120 0.72 1.73 66 119 47 49 96 1.13 1.35 141 210 111 93 204 0.62 1.52 97 188 69 80 149 1.32 1.21 100 164 74 74 148 0.62 1.52 100 164 74 74 148 0.86 1.35 1.21 100 164 74 74 148 0.86 1.35 1.21 108 245 153 166 319 0.90 0.90 1.14 118 345 121 130 254 1.25 0.91 1.17 118 254 121 130 254 1.18 1.17 146 252 121 130 254 1.18		•	133	161	594	134	132	566	66.0	1.22	===	8 8	4.75	5.75	10.50
85 136 71 49 120 0.72 1.73 66 119 47 49 96 1.13 1.35 141 210 111 93 204 0.62 1.52 97 188 69 80 149 1.32 1.21 100 164 74 74 148 0.62 1.52 100 164 74 74 148 0.86 1.32 1.21 100 164 74 74 148 0.86 1.35 1.21 100 164 291 147 135 282 0.93 1.14 108 245 153 166 349 1.24 1.09 1.14 118 345 121 130 254 1.14 0.93 1.14 0.93 118 254 121 130 254 1.18 1.14 0.93 118 133 <	_		35	42	77	36	50	26	0.97	2.10	1.38	80	4.38	5.25	9.63
66 119 47 49 96 1.13 1.35 141 210 111 93 204 0.62 1.52 97 188 69 80 149 1.32 1.21 100 164 74 74 148 0.62 1.52 100 164 74 74 148 0.86 1.32 1.21 100 164 74 135 267 1.09 1.09 1.09 154 290 147 135 282 0.93 1.14 108 245 153 166 349 1.14 0.93 215 404 217 236 453 0.87 0.91 145 254 121 236 453 0.87 0.91 145 254 121 236 453 0.87 0.91 148 254 121 236 453 0.87 0.91 <td>_</td> <td></td> <td>51</td> <td>82</td> <td>136</td> <td>71</td> <td>49</td> <td>120</td> <td>0.72</td> <td>1.73</td> <td>1.13</td> <td>15</td> <td>3.40</td> <td>2.67</td> <td>9.07</td>	_		51	82	136	71	49	120	0.72	1.73	1.13	15	3.40	2.67	9.07
141 210 111 93 204 0.62 1.52 97 188 69 80 149 1.32 1.21 100 164 74 74 148 0.86 1.35 100 164 74 74 148 0.86 1.32 1.21 100 164 291 133 134 267 1.09 1.09 154 290 147 135 282 0.93 1.14 108 245 153 166 38 1.35 1.14 215 404 217 236 453 0.93 1.14 215 404 217 236 453 0.87 0.91 145 254 121 236 453 0.87 0.93 148 254 160 1.15 0.90 1.12 1.06 92 184 160 1.18 0.10 1.11 0.90	0.02		53	99	119	47	49	96	1.13	1.35	1.24	12	4.45	5.50	9.95
97 188 69 80 149 1.32 1.21 100 164 74 74 148 0.86 1.35 100 164 291 133 134 267 1.09 1.09 154 290 147 135 282 0.93 1.14 108 245 153 166 319 0.90 0.65 57 122 48 50 98 1.35 1.14 0.93 215 404 217 236 453 0.87 0.91 188 345 121 236 453 0.87 0.91 145 254 121 236 1.75 0.90 1.12 198 171 180 92 197 1.18 1.17 89 174 76 84 160 1.15 0.90 1.10 108 162 174 174 0.89 0.90	0.02		69	141	210	Ξ	93	204	0.62	1.52	1.03	54	2.88	5.88	8.75
100 164 74 74 148 0.86 1.35 146 291 133 134 267 1.09 1.09 154 290 147 135 282 0.93 1.14 108 245 153 166 319 0.90 0.65 57 122 48 50 98 1.35 1.14 188 345 138 203 341 1.14 0.93 215 404 217 236 453 0.87 0.91 145 254 121 236 1.55 1.14 0.93 145 254 121 130 251 0.90 1.15 168 171 180 36 160 1.15 0.90 108 232 105 1.44 58 1.02 1.10 108 133 73 74 147 0.89 0.90 183	0.01		91	26	188	69	80	149	1.32	1.21	1.26	8	4.55	4.85	9.40
146 291 133 134 267 1.09 1.09 154 290 147 135 282 0.93 1.14 108 245 153 166 319 0.90 0.65 57 122 48 50 98 1.35 1.14 0.93 215 404 217 236 453 0.87 0.91 98 214 89 90 179 1.30 1.09 145 254 121 130 251 0.90 1.12 79 171 80 80 160 1.15 0.90 108 232 105 1.14 0.93 108 232 105 1.16 0.90 1.17 89 174 16 0.90 1.10 0.90 183 438 254 275 529 1.04 0.67 73 131 44 58 <t< td=""><td>0.01</td><td></td><td>64</td><td>100</td><td>164</td><td>74</td><td>74</td><td>148</td><td>98.0</td><td>1.35</td><td>===</td><td>14</td><td>3.76</td><td>5.88</td><td>9.65</td></t<>	0.01		64	100	164	74	74	148	98.0	1.35	===	14	3.76	5.88	9.65
154 290 147 135 282 0.93 1.14 108 245 153 166 319 0.90 0.65 57 122 48 50 98 1.35 1.14 188 345 138 203 341 1.14 0.93 215 404 217 236 453 0.87 0.91 145 254 121 130 251 0.90 1.12 145 254 121 130 251 0.90 1.12 168 232 105 80 160 1.15 0.90 108 232 105 84 160 1.15 0.90 108 174 176 84 160 1.12 1.06 92 18 105 1.14 0.93 1.10 1.11 80 105 1.14 0.90 1.10 1.11 0.90 183	0.01		145	146	291	133	134	267	1.09	1.09	1.09	35	4.53	4.56	60'6
108 245 153 166 319 0.90 0.65 57 122 48 50 98 1.35 1.14 0.93 215 404 217 236 453 0.87 0.91 98 214 89 90 179 1.30 1.09 145 254 121 130 251 0.90 1.12 79 171 80 80 160 1.15 0.90 89 174 76 84 160 1.15 0.90 92 18 10 1.15 0.90 1.12 108 232 105 1.16 0.90 1.17 89 174 76 84 160 1.12 1.06 92 18 74 176 0.99 1.30 183 44 58 102 1.14 0.98 184 175 18 1.14 0.98 <td>0.01</td> <td></td> <td>136</td> <td>154</td> <td>290</td> <td>147</td> <td>135</td> <td>282</td> <td>0.93</td> <td>1.14</td> <td>1.03</td> <td>34</td> <td>4.00</td> <td>4.53</td> <td>8.53</td>	0.01		136	154	290	147	135	282	0.93	1.14	1.03	34	4.00	4.53	8.53
57 122 48 50 98 1.35 1.14 188 345 138 203 341 1.14 0.93 215 404 217 236 453 0.87 0.91 98 214 89 90 179 1.30 1.09 145 254 121 130 251 0.90 1.12 108 232 105 92 197 1.18 1.17 89 174 76 84 160 1.12 1.06 92 18 105 1.14 0.99 1.17 89 174 17 0.89 0.92 183 48 254 160 1.12 1.06 92 18 254 275 529 1.04 0.67 183 44 58 10 1.11 0.98 1.14 0.98 166 345 175 180 356<	0.01		137	108	245	153	166	319	06'0	0.65	0.77	58	4.89	3.86	8.75
188 345 138 203 341 1.14 0.93 215 404 217 236 453 0.87 0.91 98 214 89 90 179 1.30 1.09 145 254 121 130 251 0.90 1.12 79 171 80 80 160 1.15 0.90 1.17 89 174 76 84 160 1.12 1.06 92 186 105 71 176 0.90 1.30 68 133 73 74 147 0.89 0.92 183 448 254 275 529 1.04 0.67 7 107 44 58 10 1.11 0.98 166 345 175 180 355 1.04 0.67 57 150 79 44 58 10 1.11 0.98	00.00		65	22	122	48	20	86	1.35	1.14	1.24	1 3	2.00	4.38	9.38
215 404 217 236 453 0.87 0.91 98 214 89 90 179 1.30 1.09 145 254 121 130 251 0.90 1.12 79 171 80 80 160 1.15 0.90 1.12 108 232 105 92 197 1.18 1.17 89 174 76 84 160 1.12 1.06 92 186 105 71 176 0.90 1.30 68 133 73 74 147 0.89 0.92 183 448 254 275 529 1.04 0.67 73 131 64 58 102 1.11 0.98 166 345 175 180 355 1.04 0.67 57 150 79 83 162 1.18 0.69 72 <td>00.0</td> <td></td> <td>157</td> <td>188</td> <td>345</td> <td>138</td> <td>203</td> <td>341</td> <td>1.14</td> <td>0.93</td> <td>1.01</td> <td>33</td> <td>4.03</td> <td>4.82</td> <td>8.85</td>	00.0		157	188	345	138	203	341	1.14	0.93	1.01	33	4.03	4.82	8.85
98 214 89 90 179 1.30 1.09 145 254 121 130 251 0.90 1.12 79 171 80 80 160 1.15 0.90 1.12 108 232 105 92 197 1.18 1.17 89 174 76 84 160 1.12 1.06 92 186 105 71 176 0.90 1.30 68 133 73 74 147 0.89 0.92 183 448 254 275 529 1.04 0.67 73 131 64 58 10 1.11 0.98 166 345 175 180 355 1.04 0.67 57 150 79 83 162 1.18 0.69 72 147 84 87 171 0.89 0.80 72	-0.01		189	215	404	217	236	453	0.87	0.91	0.89	48	3.94	4.48	8.42
145 254 121 130 251 0.90 1.12 79 171 80 80 160 1.15 0.99 1.17 108 232 105 92 197 1.18 0.99 1.17 89 174 76 84 160 1.12 1.06 92 186 105 71 176 0.90 1.30 68 133 73 274 147 0.89 0.92 183 448 254 275 529 1.04 0.67 73 131 64 66 130 0.91 1.11 57 107 180 355 1.04 0.67 158 357 194 209 403 1.03 0.76 57 150 79 83 162 1.18 0.69 72 147 84 87 171 0.89 0.83 211 </td <td>-0.01</td> <td></td> <td>116</td> <td>86</td> <td>214</td> <td>68</td> <td>06</td> <td>179</td> <td>1.30</td> <td>1.09</td> <td>1.20</td> <td>54</td> <td>4.83</td> <td>4.08</td> <td>8.92</td>	-0.01		116	86	214	68	06	179	1.30	1.09	1.20	54	4.83	4.08	8.92
79 171 80 80 160 1.15 0.99 108 232 105 92 197 1.18 1.17 89 174 76 84 160 1.12 1.06 92 186 105 71 176 0.90 1.30 68 133 73 74 147 0.89 0.92 183 448 254 275 529 1.04 0.67 73 131 64 66 130 0.91 1.11 57 170 44 58 102 1.14 0.98 166 345 175 180 355 1.03 0.76 57 150 79 84 87 171 0.89 0.83 211 400 266 293 559 0.71 0.72 146 311 205 193 398 0.80 0.76 130	-0.01		109	145	524	121	130	251	06.0	1.12	1.0	9	3.52	4.68	8.19
108 232 105 92 197 1.18 1.17 89 174 76 84 160 1.12 1.06 92 186 105 71 176 0.90 1.30 68 133 73 74 147 0.89 0.92 183 448 254 275 529 1.04 0.67 73 131 64 66 130 0.91 1.11 57 107 44 58 102 1.14 0.98 166 345 175 180 355 1.02 0.92 158 357 194 209 403 1.03 0.76 57 147 84 87 171 0.89 0.83 211 400 266 293 559 0.71 0.72 146 311 205 193 398 0.80 0.76 130 314<	-0.01		92	79	171	80	80	160	1.15	0.99	1.07	18	5.11	4.39	9.50
89 174 76 84 160 1.12 1.06 92 186 105 71 176 0.90 1.30 68 133 73 74 147 0.89 0.92 183 448 254 275 529 1.04 0.67 73 131 64 66 130 0.91 1.11 57 107 44 58 102 1.14 0.98 166 345 175 180 355 1.02 0.92 158 357 194 209 403 1.03 0.76 57 150 79 83 162 1.18 0.69 72 147 84 87 171 0.89 0.80 72 147 84 87 171 0.89 0.80 146 311 205 193 398 0.80 0.76 130 314	-0.03		124	108	232	105	35	197	1.18	1.17	1.18	24	5.17	4.50	9.67
92 186 105 71 176 0.90 1.30 68 133 73 74 147 0.89 0.92 183 448 254 275 529 1.04 0.67 73 131 64 66 130 0.91 1.11 57 107 44 58 102 1.14 0.98 166 345 175 180 355 1.02 0.92 158 357 194 209 403 1.03 0.76 57 147 84 87 171 0.89 0.83 72 147 84 87 171 0.89 0.83 211 400 266 293 559 0.71 0.72 146 311 205 193 398 0.80 0.76 130 314 224 246 470 0.82 0.53 116 246	-0.04		85	83	174	9/	84	160	1.12	1.06	1.09	19	4.47	4.68	9.16
68 133 73 74 147 0.89 0.92 183 448 254 275 529 1.04 0.67 73 131 64 66 130 0.91 1.11 57 107 44 58 102 1.14 0.98 166 345 175 180 355 1.02 0.92 158 357 194 209 403 1.03 0.76 57 147 84 87 171 0.89 0.83 211 400 266 293 559 0.71 0.72 146 311 205 193 398 0.80 0.76 130 314 224 246 470 0.82 0.53 116 246 183 212 395 0.71 0.55 126 265 170 358 0.74 0.74 0.74	-0.05		94	35	186	105	71	176	0.30	1.30	1.06	54	3.92	3.83	7.75
183 448 254 275 529 1.04 0.67 73 131 64 66 130 0.91 1.11 57 107 44 58 102 1.14 0.98 166 345 175 180 355 1.02 0.92 158 357 194 209 403 1.03 0.76 57 147 84 87 171 0.89 0.83 211 400 266 293 559 0.71 0.72 146 311 205 193 398 0.80 0.76 130 314 224 246 470 0.82 0.53 116 246 183 212 395 0.71 0.55 126 265 170 358 0.74 0.74 0.74	90'0-		92	89	133	73	74	147	0.89	0.92	06.0	15	4.33	4.53	8.87
73 131 64 66 130 0.91 1.11 57 107 44 58 102 1.14 0.98 166 345 175 180 355 1.02 0.92 158 357 194 209 403 1.03 0.76 57 150 79 83 162 1.18 0.69 72 147 84 87 171 0.89 0.83 211 400 266 293 559 0.71 0.72 146 311 205 193 398 0.80 0.76 130 314 224 246 470 0.82 0.53 116 246 183 212 395 0.71 0.55 126 265 170 358 0.74 0.74 0.74	-0.07		265	183	448	254	275	529	1.04	29.0	0.85	28	4.57	3.16	7.72
57 107 44 58 102 1.14 0.98 166 345 175 180 355 1.02 0.92 158 357 194 209 403 1.03 0.76 57 150 79 83 162 1.18 0.69 72 147 84 87 171 0.89 0.83 211 400 266 293 559 0.71 0.72 146 311 205 193 398 0.80 0.76 130 314 224 246 470 0.82 0.53 116 246 183 212 395 0.71 0.55 126 265 188 170 358 0.74 0.74	-0.07		28	73	131	64	99	130	0.91	1.1	1.01	15	3.87	4.87	8.73
166 345 175 180 355 1.02 0.92 158 357 194 209 403 1.03 0.76 57 150 79 83 162 1.18 0.69 72 147 84 87 171 0.89 0.83 211 400 266 293 559 0.71 0.72 146 311 205 193 398 0.80 0.76 130 314 224 246 470 0.82 0.53 116 246 183 212 395 0.71 0.55 126 265 188 170 358 0.74 0.74	-0.07		20	23	107	44	28	102	1.14	96.0	1.05	4	3.57	4.07	7.64
158 357 194 209 403 1.03 0.76 57 150 79 83 162 1.18 0.69 72 147 84 87 171 0.89 0.83 211 400 266 293 559 0.71 0.72 146 311 205 193 398 0.80 0.76 130 314 224 246 470 0.82 0.53 116 246 183 212 395 0.71 0.55 126 265 188 170 358 0.74 0.74	-0.07		179	166	345	175	180	355	1.02	0.92	0.97	49	3.65	3.39	7.04
57 150 79 83 162 1.18 0.69 72 147 84 87 171 0.89 0.83 211 400 266 293 559 0.71 0.72 146 311 205 193 398 0.80 0.76 130 314 224 246 470 0.82 0.53 116 246 183 212 395 0.71 0.55 126 265 188 170 358 0.74 0.74	-0.08		199	158	357	194	508	403	1.03	0.76	0.89	48	4.15	3.29	7.44
72 147 84 87 171 0.89 0.83 211 400 266 293 559 0.71 0.72 146 311 205 193 398 0.80 0.76 130 314 224 246 470 0.82 0.53 116 246 183 212 395 0.71 0.55 126 265 188 170 358 0.74 0.74	-0.09		93	22	150	29	83	162	1.18	69.0	0.93	8	4.65	2.85	7.50
211 400 266 293 559 0.71 0.72 146 311 205 193 398 0.80 0.76 130 314 224 246 470 0.82 0.53 116 246 183 212 395 0.71 0.55 126 265 188 170 358 0.74 0.74	-0.12		75	72	147	84	87	171	0.89	0.83	98.0	8	3.75	3.60	7.35
146 311 205 193 398 0.80 0.76 130 314 224 246 470 0.82 0.53 116 246 183 212 395 0.71 0.65 126 265 188 170 358 0.74 0.74	-0.14		189	211	400	566	293	929	0.71	0.72	0.72	62	3.05	3.40	6.45
130 314 224 246 470 0.82 0.53 116 246 183 212 395 0.71 0.55 126 265 188 170 358 0.74 0.74 0.74	-0.15		165	146	311	205	193	398	0.80	0.76	0.78	47	3.51	3.11	6.62
116 246 183 212 395 0.71 0 126 265 188 170 358 0.74 0	-0.17		184	130	314	224	246	470	0.82	0.53	0.67	20	3.68	2.60	6.28
126 265 188 170 358 0.74	-0.21		130	116	246	183	212	395	0.71	0.55	0.62	6	3.25	2.90	6.15
	-0.21	_	139	126	265	188	170	358	0.74	0.74	0.74	47	2.96	2.68	5.64

8.11

4.04 4.07

1249

96.0

0.94

TOTAL

Table A4

1,2*

<u>г</u> .	Fourth Quarter FY 93	PRC	PRODUCTION	NO	_	MISSION	-	PROP	PROP. ACHIEVED	VED	į	W	WRITE RATE	<u>்</u>
ALPHA		NPS	PS	101	NPS	PS	Į į	NPS	PS	101 5	RCRTS	NPS	PS	TOT
0.03		136	56	197	5 5	£ &	1 1	7 6	- 0 - 0	2 2	2 2	5.67	25.43	47.50 22.21
0.08		123	120	243	29	32	154	2.08	1.26	1.58		3.97	3.87	7.84
_		27	33	99	27	13	9	1:00	3.00	1.65	7	3.86	5.57	9.43
16 0.06		62	114	176	48	20	118	1.29	1.63	1.49	8	3.44	6.33	9.78
_		34	98	120	44	24	86	0.77	1.59	1.22	15	2.27	5.73	8.00
_		92	79	174	69	37	106	8	2.14	1.64	8	4.75	3.95	8.70
_	_	2	6	160	46	73	119	1.52	1.23	1.34	24	2.92	3.75	6.67
0.03		359	237	266	186	273	459	1.77	0.87	1.23	<u>6</u>	5.39	3.89	9.28
0.03	-	116	134	250	29	103	170	1.73	1.30	1.47	23	5.04	5.83	10.87
0.01	_	309	216	525	200	273	473	1.55	0.79	1.11	29	5.24	3.66	8.90
0.00		137	112	249	78	121	199	1.76	0.93	1.25	28	4.89	4.00	8.89
0.00		79	99	135	44	23	6	1.80	1.06	1.39	4	5.64	4.00	9.64
-0.01		23	22	114	35	46	78	1.84	1.20	1.46	12	4.92	4.58	9.50
-0.01		114	92	509	09	88	148	1.90	1.08	1.41	23	4.96	4.13	60.6
-0.02		207	139	346	113	173	286	1.83	0.80	1.21	33	5.31	3.56	8.87
23 -0.03	-	68	74	163	85	80	142	1.44	0.93	1.15	19	4.68	3.89	8.58
-0.04		26	49	105	34	44	78	1.65	1.11	1.35	Ξ	5.09	4.45	9.55
22 -0.04		108	160	268	85	122	214	1.17	1.31	1.25	53	3.72	5.52	9.24
28 -0.04		66	153	252	66	118	217	9.	1.30	1.16	28	3.54	5.46	9.00
	₩	124	26	221	75	86	173	1.65	0.99	1.28	52	4.96	3.88	8.84
•	4	23	150	508	82	124	206	0.72	1.21	1.01	56	2.27	5.77	8.04
_	2	135	211	346	142	178	320	0.95	1.19	1.08	38	3.55	5.52	9.11
	Ś	20	86	157	48	8	129	1.23	1.21	1.22	9	3.69	6.13	9.81
	2	149	218	367	132	203	335	1.13	1.07	1.10	33	3.82	5.59	9.41
	9	130	177	307	128	144	272	1.02	1.23	1.13	36	3.61	4.92	8.53
24 -0.06	9	54	64	88	ន	28	8	1.04	1.10	1.09	12	2.00	5.33	7.33
'	7	82	91	176	63	8	143	1.35	1.14	1.23	19	4.47	4.79	9.26
	7	107	5	208	102	2	172	1.05	1.44	1.21	55	4.86	4.59	9.45
	8	108	120	258	94	133	227	1.15	1.13	1.14	34	3.18	4.41	7.59
	o.	61	74	135	49	9	109	1.24	1.23	1.24	14	4.36	5.29	9.64
30 -0.09	6	79	73	152	63	92	128	1.25	1.12	1.19	48	4.39	4.06	8.44
•		202	154	329	142	215	357	1.44	0.72	1.01	43	4.77	3.58	8.35
	_	122	104	526	85	136	228	1.33	92.0	0.99	58	4.36	3.71	8.07
	O.	199	218	417	182	529	411	1.09	0.95	1.01	49	4.06	4.45	8.51
21 -0.12	N	73	75	148	22	74	129	1.33	1.01	1.15	17	4.29	4.41	8.71
•	60	210	128	338	180	236	416	1.17	0.54	0.81	48	4.38	2.67	7.04
	9	174	103	277	164	190	354	1.06	0.54	0.78	41	4.24	2.51	9.76
39 -0.17	7	126	164	290	104	205	309	1.21	0.80	0.94	45	2.80	3.64	6.44
	8	244	184	428	245	268	513	1.00	69.0	0.83	22	4.28	3.23	7.51
-0.19	o.	155	184	336	171	183	354	0.91	1.01	96.0	49	3.16	3.76	6.92
-0.23		152	136	288	168	185	353	0.90	0.74	0.82	49	3.10	2.78	5.88

8.94

4.44 4.50

1230

0.99 1.12

	-		PHODUCIION			MISSION		PRO L	PROP. ACHIEVED	<u>@</u>		≥	WRITE RATE	ш
ALPHA	4	NPS	S.	TOT	NPS	PS	TOT	NPS	PS	TOT	RCRTS	NPS	PS	TOT
0.31		733	830	1563	588	713	1301	1.25	1.16	1.20	21	35.33	40.00	75.33
0.29		327	409	736	319	308	627	1.03	1.33	1.17	27	12.00	15.01	27.01
0.21		1252	1013	2265	666	1069	2068	1.25	0.95	1.10	28	19.72	15.95	35.67
0.11		496	326	822	347	312	629	1.43	1.04	1.25	24	21.11	13.87	34.98
0.03		259	220	479	7	186	357	1.51	1.18	1.34	13	19.55	16.60	36.15
0.03	-	288	401	689	246	304	550	1.17	1.32	1.25	17	16.70	23.25	39.94
0.02		222	417	974	419	415	834	1.33	1.00	1.17	56	21.22	15.89	37.10
0.02		141	162	303	141	6	231	1.00	1.80	1.31	œ	18.19	20.90	39.10
9.0	-	845	553	1398	632	899	1300	1.34	0.83	1.08	4	20.86	13.65	34.52
0.01		440	482	922	388	363	751	1.13	1.33	1.23	ន	18.92	20.73	39.66
0.01		575	815	1390	658	734	. 1392	0.87	1.1	1.00	66	14.65	20.76	35.41
0.01	_	547	692	1239	482	575	1057	1.13	1.20	1.17	53	18.70	23.66	42.36
0.01		506	371	222	286	237	523	0.72	1.57	1.10	16	13.29	23.94	37.23
0.01	_	451	411	862	405	252	. 657	1.1	1.63	131	8	20.98	19.12	40.09
0		142	794	1335	581	529	1236	0.93	1.21	1.08	36	15.13	22.21	37.34
0		287	900	887	455	447	902	0.63	1.34	96.0	24	11.96	25.00	36.96
0	-0.01	482	396	878	320	399	.719	1.51	0.99	1.22	24	20.29	16.67	36.97
0	-0.01	310	401	711	274	321	595	1.13	1.25	1.19	19	16.10	20.83	36.94
0	-0.01	224	251	475	179	194	373	1.25	1.29	1.27	12	19.06	21.36	40.43
	0.01	320	234	554	224	251	475.	1.43	0.93	1.17	15	20.98	15.34	36.33
	-0.01	672	794	1466	298	807	1405	1.12	96.0	1.04	40	16.70	19.73	36.42
	-0.02	830	851	1681	868	900	1.798	0.92	0.95	0.93	5	16.27	16.69	32.96
	-0.02	400	263	693	324	303	627	1.23	0.87	1.06	8	19.75	12.99	32.74
	-0.03	265	206	1071	222	457	1012	1.02	1.1	1.06	35	16.14	14.46	30.60
	-0.03	248	470	1018	551	222	1,106	66.0	0.85	0.92	90	18.27	15.67	33.93
	-0.05	378	287	999	315	280	. 595	1.20	1.03	1.12	19	20.16	15.31	35.47
	-0.05	433	392	825	455	337	792	0.95	1.16	1.04	55	17.49	15.84	33.33
	90.0	505	284	1089	446	574	1020	1.13	1.02	1.07	33	15.42	17.83	33.25
	90.0	228	473	1001	482		. 883	1.10	1.18	1.13	52	21.12	18.92	40.04
	-0.07	1129	816	1945	974		2109	1.16	0.72	0.92	29	19.05	13.77	32.83
	.0.07	205	234	439	182	218		1.13	1.07	1.10	4	14.64	16.71	31.36
	-0.07	535	589	1124	581	480	1061	0.92	1.23	1.06	32	16.98	18.70	35.68
	-0.08	849	621	1470	818	817	1635	1.04	0.76	06.0	20	17.15	12.55	29.70
	60.0	361	349	710	337	329	969	1.07	0.97	1.02	20	17.83	17.23	35.06
	60.0	287	308	262	248	313	- 561	1.16	96.0	1.06	91	17.66	18.95	36.62
	60.0-	755	702	1457	895	929	1571	0.84	1.04	0.93	20	15.25	14.18	29.43
	0.11	956	594	1520	946	224	1923	96.0	0.61	0.79	22	16.39	10.51	26.90
	-0.11	699	753	1422	731	726	1457	0.92	1.04	96.0	49	13.65	15.37	29.02
	0.11	267	566	533	271	246	517	0.99	1.08	1.03	17	15.71	15.65	31.35
	0.13	884	880	1764	1094	1175	2269	0.81	0.75	0.78	59	14.92	14.85	29.77
	0.16	969	534	1229	277	846	1618	0.90	0.63	0.76	43	16.35	12.56	28.92
										•				

34.03

16.76

17.27

1288

1.02

0.99

1.04

21826 43156

21330

43840

21587

22253

TOTAL