Laboratorio di Fisica 1

R6: Misura dei calori specifici di materiali ignoti

Gruppo 17: Bergamaschi Riccardo, Graiani Elia, Moglia Simone

6/12/2023 - 13/12/2023

Sommario

Il gruppo di lavoro ha misurato il calore specifico di tre solidi distinti per risalirne alla natura; inoltre ha determinato l'adiabaticità del calorimetro.

0 Materiali e strumenti di misura utilizzati

Strumento di misura	Soglia	Portata	Sensibilità
Termometro digitale	0.2 °C	N./A.	0.2 °C
Barometro	1 hPa?	$14000\mathrm{hPa}$	1 hPa
Cilindro graduato	$1\mathrm{mL}$	$100\mathrm{mL}$	$1\mathrm{mL}$
Bilancia di precisione	$0.50\mathrm{g}$	4100.00 g	$0.01{ m g}$
Altro	Descrizione/Note		
Calorimetro	Isolato termicamente, quasi adiabatico.		

1 Misurazione della massa equivalente

1.1 Esperienza e procedimento di misura

Fornelletto e pentolino

Tre campioni solidi

1. Versiamo in un cilindro graduato $100\,\mathrm{mL}$ di acqua distillata ($c=4186\,\mathrm{J/kg\,K}$) e, dopo averne misurato la massa con la bilancia di precisione, la scaldiamo in un pentolino.

Per scaldare acqua e campioni.

Li chiameremo A, $B \in C$.

2. Ripetiamo il passaggio precedente, ma, invece di scaldarla, questa volta versiamo l'acqua a temperatura ambiente nel calorimetro.

Osservazione. È meglio che le masse d'acqua si equivalgano, e che la loro somma sia uguale a quella che utilizzeremo nella seconda parte dell'esperimento, in modo che il calorimetro si bagni allo stesso modo.

3. Quando l'acqua raggiunge lo stato di ebollizione, che corrisponde a 100 °C, salvo correzioni dovute alla pressione diversa da 1 atm, la versiamo nel calorimetro e mescoliamo lentamente per evitare che l'acqua calda resti in alto. Il termometro digitale ci darà il valore della temperatura in funzione del tempo.

1.2 Analisi dei dati raccolti e conclusioni

Per le leggi della termodinamica noi sappiamo che:

$$m_{\rm calda}c_{\rm acqua}(T_{\rm calda}-T_{\rm eq})=(m_{\rm fredda}c_{\rm acqua}+C_{\rm calorimetro})(T_{\rm eq}-T_{\rm fredda})$$

Invece che misurare $C_{\text{calorimetro}}$ in J/K, possiamo considerare a quanta acqua equivale il calorimetro dal punto di vista termico, ovvero la quantità di acqua che assorbirebbe lo stesso calore del calorimetro. Quindi:

$$m_{\text{calda}}(T_{\text{calda}} - T_{\text{eq}}) = (m_{\text{fredda}} + m_{\text{equiv}})(T_{\text{eq}} - T_{\text{fredda}})$$

Osservazione. La massa equivalente (m_{equiv}) ci dà anche un idea di quanto il calorimetro disturbi la misura.

Eseguendo una regressione lineare sui dati raccolti dal termometro digitale, rappresentati nel seguente grafico, abbiamo trovato che $T_{\rm eq}=55.0\,^{\circ}{\rm C}$. Dunque:

$$m_{
m equiv} = rac{m_{
m calda}(T_{
m calda} - T_{
m eq})}{(T_{
m eq} - T_{
m fredda})} - m_{
m fredda}$$

ovvero $m_{\rm equiv} = (24.61116505 \pm 3)$ g?. Ora che abbiamo ottenuto questo valore, possiamo calcolare i calori specifici dei metalli di cui sono composti i campioni.

2 Misurazione del calore specifico dei materiali ignoti

2.1 Esperienza e procedimento di misura

- 1. Versiamo nel pentolino una quantità d'acqua tale da permettere l'immersione completa dei campioni in essa e la scaldiamo. Per fare ciò più velocemente e assicurarci di essere in stato di ebollizione, regoliamo la temperatura della piastra a $T>100\,^{\circ}\mathrm{C}$.
- Misuriamo 200 mL di acqua, distillata ed a temperatura ambiente, e la versiamo nel calorimetro.
- 3. Per ogni solido $(A, B \in C)$:
 - (a) Ne misuriamo la massa con la bilancia di precisione.
 - (b) Una volta che l'acqua nel pentolino si trova in corrispondenza della transizione di fase, lo immergiamo in essa in modo che raggiunga la T del sistema.

(c) Quando anch'esso raggiunge la temperatura di $100\,^{\circ}$ C, lo spostiamo nel calorimetro e mescoliamo nuovamente. Come prima, sarà il termometro digitale a darci il valore di T in funzione del tempo.

2.2 Analisi dei dati raccolti e conclusioni

Grazie alle leggi della termodinamica sappiamo che:

$$m_{\text{met}}c_{\text{met}}(T_{\text{met}} - T_{\text{eq}}) = (c_{\text{acqua}}m_{\text{acqua}} + C_{\text{calorimetro}})(T_{\text{eq}} - T_{\text{acqua}})$$

Conoscendo il valore di $m_{\rm equiv}$, possiamo scrivere:

$$m_{\text{met}}c_{\text{met}}(T_{\text{met}} - T_{\text{eq}}) = (m_{\text{acqua}} + m_{\text{equiv}})c_{\text{acqua}}(T_{\text{eq}} - T_{\text{acqua}})$$

Eseguendo una regressione lineare sui dati raccolti dal termometro digitale, rappresentati nel seguente grafico, abbiamo trovato calcolato il valore di $T_{\rm eq}$ per ogni solido. Dunque:

$$c_{\rm met} = \frac{(m_{\rm acqua} + m_{\rm equiv})c_{\rm acqua}(T_{\rm eq} - T_{\rm acqua})}{m_{\rm met}(T_{\rm met} - T_{\rm eq})}$$

Nella seguente tabella riportiamo i valori ottenuti per ogni solido con le relative incertezze, che abbiamo calcolato con la propagazione standard degli errori in quanto piccole, sistematiche e indipendenti.

Campione	m(g)	$T_{\rm eq}$ (°C)	$c \left(J \mathrm{kg}^{-1} \mathrm{K}^{-1} \right)$
A	12.43 ± 0.01	25.2 ± 0.2	500.9617709 ± 0
B	28.73 ± 0.01	25.9 ± 0.2	345.7664279 ± 0
C	44.86 ± 0.01	26.0 ± 0.2	110.4618573 ± 0

3 Misurazione del tempo caratteristico (del calorimetro?)

3.1 Esperienza e procedimento di misura

- 1. Misuriamo 200 mL di acqua distillata e la scaldiamo con nel pentolino.
- 2. Nel calorimetro, in partenza vuoto, versiamo l'acqua e la lasciamo raffreddare per circa un'ora registrandone la temperatura.

3.2 Analisi dei dati raccolti e conclusioni

L'ultima cosa che analizzeremo è la discesa esponenziale della temperatura dell'acqua dentro al calorimetro. La legge che segue questa discesa è:

$$(T - T_{\text{amb.}}) = (T_0 - T_{\text{amb.}})e^{-t/\tau}$$

Ne calcoleremo, in particolare, il tempo caratteristico, ovvero la quantità di tempo τ che impiega l'acqua all'interno del calorimetro ad abbassare la sua temperatura di $(T_0-T_{\rm amb})e$ volte.

 ${\it Notazione.}$ Indicheremo con T_0 la temperatura dell'acqua scaldata.

Osservazione. Il parametro τ descrive quanto bene il calorimetro trattenga il calore (quindi sia adiabatico).

L'equazione della regressione lineare che abbiamo utilizzato è:

$$\ln(T - T_{\text{amb.}}) = \ln(T_0 - T_{\text{amb.}}) - \frac{1}{\tau}t$$