109 Data Structure the 3rd Homework

11月	1	2	3	4	5	6	7	9
	8	9	10	11	12	13	14	10
	15	16	17)	18	19	20	21	11
	22	23	24	25	26	27	28	12
	29	30	1	2	3	4	5	13
WWW.7	6	7	8	9	10	11	12	14
12月	13	14	15	16	17	18	19	15
	20	21	22	23	24	25	26	16
	27	28	29	30	31			17

黑圈:HW3的開始與結束

藍圈:HW4的開始與結束

橘圈:第二次小考

紅圈:上機考 1/5:期末考

- There's a teaching assistant for a data structure course in a university.
- One day, the students told him that the homework he proposed is an algorithm-like homework. It's not a homework for a data structure course.
- He was depressed. Thus, he decides to propose a homework which is really associated to data structure.
- Finally, the TA I just talked about is not me.

- 1) What the students need to do is a really simple task, and they will obtain 20pts. after doing this job.
- The TA gives the students (Note: the TA is not me.) N integers, I₁, I₂, ..., I_n.
- Next, the TA gives the students several tuples of one command and two numbers, (c, x, y).
- If (c == 'M'), the students need to modify I_x to y.
- If (c == 'P'), the students need to print:
 - $\bullet \max(\mathrm{I}_{\mathrm{i}} + \mathrm{I}_{\mathrm{i+1}} + \ldots + \mathrm{I}_{\mathrm{j}}), x \leq i \leq j \leq y$

•Input:

- Line 1: An integer T, indicates how many times the task will be asked for.
- Line 2: An integer N, indicates the number of the integers TA will give.
- Line 3: N integers, I₁, I₂, ..., I_N, indicate the initial numbers.
- Line 4: An integer M.
- Next M lines: C x y tuples
- Output:
 - For each P x y tuple, you need to print
 - \bullet max(Ii + Ii+1 + ... + Ij)

• For example:

• output : $7 \ln 3 \ln 15 \ln 10 \ln (\ln : EOL)$

- For this problem:
- The times of the task might be asked for is T.
 - 1 <= T <= 5
- The number of integers given is N.
 - 1 <= N <= 50000
 - The given integers are [-10000, 10000]
- The number of command tuples given is M.
 - 1 <= M <= 50000
- Time limit: 2 second per data.

• Hint: You should make sure every command could work within time complexity O(log n).

- Of course, the task is so simple that every student makes it. The TA doesn't give up, and he quickly makes a second mission. (20pts.)
- There is no more 'M' command. However, the 'P' command becomes more complex:
- For a command C = x1 y1 x2 y2:
- You need to figure out
 - $\max(\text{Ii} + \text{Ii} + 1 + \dots + \text{Ij}),$
 - $x_1 \le i \le y_1$, $x_2 \le j \le y_2$, while $x_1 \le x_2$, $y_1 \le y_2$

•Input:

- line 1: An integer T, indicates how many times the task will be asked for.
- line 2: An integer N, indicates the number of the integers TA will give.
- line 3: N integers, I₁, I₂, ..., I_N, indicate the initial numbers.
- line 4: An integer M.
- next M lines: x1 y1 x2 y2 tuples.
- Output:
 - For each P x y tuples, print
 - \bullet max(Ii + Ii+1 + ... + Ij)

• For example:

• output : $5 \ln 1 \ln 10 \ln - 5 \ln (\ln : EOL)$

- For this problem:
- The task will be asked for T times.
 - 1 <= T <= 5
- The number of given integers is N.
 - 1 <= N <= 10000
 - The given integers are [-10000, 10000]
- The number of given command tuples is M.
 - $1 \le M \le 10000$
- Time limit: 2 second per data.

• Morse code is a method used to encode text characters as sequences of dots and dashes.

字元	代碼	字元	代碼	字元	代碼	字元	代碼
A	•-	Н	••••	O		V	•••
В		I	••	P		W	•
C		J		Q		X	
D		K		R		Y	
Е	•	L		S	•••	Z	
F	••-•	M		T	-		
G	,	N		U	••		

- You receive confidential documents. Your supervisor used Morse code to encode the contents.
- However, there are no spaces separating the letters in the documents.
- Therefore, there may be several interpretations of any single decoded sequence.
- For example:
- "-....-." could be: "DUC", "DUTETE", "BAC", "BANN", ...

- You try to decode the contents of the documents. Because there are too many documents, you decide to write a program to help you.
 - It's hard for a machine to recognize which interpretation is reasonable. Thus, you use a dictionary to support this task.

- 1) English dictionary to Morse code. (15%)
- Input:
 - line 1: An integer N, indicates the number of words in the dictionary.
 - next N lines: A word.
 - line N+2: An integer M.
 - next M lines: a sequence of dots and dashes.
- Output:
 - For each sequence, you need to print:
 - It is found in the dictionary.
 - It is not found in the dictionary.

- 2) Determine if two words have the same prefix. (15%)
- •Input:
 - line 1: A word w1.
 - line 2: An integer N.
 - next N lines: A word w2.
- Output:
 - For each w2, you need to determine:
 - After w1, w2 are both encoded into Morse code:
 - w2 is the same as w1.
 - w2 has the same prefix as w1.
 - w2 doesn't have the same prefix as w1.

• For example:

```
• CAT (w1) // -.-..-
• 3 (M)
• NDTT // -.-..-
• KIT // -.-..-
• RUT // --.--
```

- output:
 - "NDTT is the same as CAT."
 - "KIT has the same prefix as CAT."
 - "RUT doesn't have the same prefix as CAT."

• 3) With the dictionary and the program, you only need to check the part of the interpretations. (30%)

•Input:

- line 1: A Morse sequence with a maximum length L.
- line 2: An integer N indicates the number of words in the dictionary.
- next N lines: One word.

Output:

• The number of messages R, which are possible to generate with the Morse sequence and the dictionary.

• output: 2 (HELL+OWORLD, HELLO+WORLD)

- The Morse sequence has a maximum length L.
- $\bullet 0 < L < 100000$
- The number of words in the dictionary is N.
- $\bullet 0 < N < 100000$
- The words in the dictionary have a maximum length M.
- 0 < M < 20
- Time limit: 2 second per data.

Reminders

- For all of the question, please read test.txt as input and write output.txt as output.
- 對於所有問題,請都讀test.txt作為input、寫output.txt作為output
- If you can, please let me know how to change your I/O file name so that I can modify the path from test.txt to test1.txt, test2.txt, etc.
- 假如可以的話,讓我清楚知道從哪裡更改你I/O檔案的名稱,方便我可以從讀test.txt改成讀test1.txt, test2.txt, 會 改得比較快。
- 如果我看不懂,那我不會改你的code,一律讀test.txt。

Reminders

- Only accept C
- Deadline: 2020/12/07 23:59, please be on time.
- File name : [student ID]_[question No.(1or2)]-[sub question No.(1,2,3)].[file name extension]
- e.g. 7109056193_1-1.c
- If there are more than 1 file for 1 question, please give a readme.txt for me and let me know the meaning of each file.
- No need to give me the output, I'll execute your program.
- Zip all your files and hand in on the i-learning, the file name is [student ID]_homework3.
- Plagiarism is prohibited.
- Dev-C++ 5.11 is used for checking this homework.