

## construction of a Brandt groupoid

Canonical name ConstructionOfABrandtGroupoid

Date of creation 2013-03-22 18:40:04 Last modified on 2013-03-22 18:40:04

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771)
Entry type Example
Classification msc 18B40
Classification msc 20L05

In the parent entry, we give an example of a Brandt groupoid. In the example, we started with a non-empty set I and a group G, and showed that  $I \times G \times I$  has the structure of a Brandt groupoid. In this entry, we show that every Brandt groupoid may be constructed this way.

**Proposition 1.** If B is a Brandt groupoid, then there is a non-empty set I, and a group G, such that B is isomorphic to  $I \times G \times I$ . In other words, there is a bijection  $\phi: B \to I \times G \times I$  such that ab is defined in B iff  $\phi(a)\phi(b)$  is defined in  $I \times G \times I$ , and  $\phi(ab) = \phi(a)\phi(b)$  whenever the multiplication is defined.

To prove this, let us observe the following series of facts: given a Brandt groupoid B, let I be the set of idempotents in B.

**Lemma 1.** Let H(e, f) be the set consisting of all isomorphisms with source e and target f. Then the set  $K = \{H(e, f) \mid e, f \in I\}$  partitions B.

*Proof.* This is clear from the previous discussion, as B can be thought of as a category. Another way to see this is to define a binary relation R on B so that aRb iff a, b have the same source and target. Then R is an equivalene relation, and its equivalence classes have the form H(e, f).

**Lemma 2.** The cardinality of H(e, f) is independent of e and f.

Proof. Define  $\phi: H(e,f) \to H(e',f')$ , by  $\phi(a) = uav$ , where  $u \in H(f,f')$  and  $v \in H(e',e)$ . Notice that u,v exist by condition 6 above. First,  $\phi$  is well-defined, because both ua and av are defined by condition 3, and hence uav = (ua)v = u(av) is defined. In addition,  $\phi$  is a bijection, whose inverse is the map  $b \mapsto u^{-1}bv^{-1}$ .

**Lemma 3.** H(e,e) is a group for every  $e \in I$ .

*Proof.* The multiplication on H(e,e) is just the multiplication on B restricted to H(e,e), which is total (defined for all of H(e,e)), and associative, with e its multiplicative identity. For  $a \in H(e,e)$ , its inverse is guaranteed by condition 5 above.

**Lemma 4.** H(e,e) is group isomorphic to H(f,f) for every  $e, f \in I$ .

Proof. The function  $\phi: H(e,e) \to H(f,f)$  given by  $\phi(a) = uau^{-1}$ , where  $u \in H(e,f)$ , is a well-defined bijection according to the proof of the first observation. Furthermore,  $\phi(ab) = u(ab)u^{-1} = u((ae)b)u^{-1} = u(a(u^{-1}u)b)u^{-1} = u(((au^{-1})u)b)u^{-1} = u((au^{-1})(ub))u^{-1} = (uau^{-1})(ubu^{-1}) = \phi(a)\phi(b)$ , hence  $\phi$  is a group isomorphism.

Set G = H(e, e) for some  $e \in I$ . We are now ready to prove the proposition. Notice that the proof involves the axiom of choice.

Proof of Proposition 1. By the axiom of choice, there is a function  $\alpha: I \to B$  such that  $\alpha(f) \in H(e, f)$  and  $\alpha(e) = e$ . For any  $a \in B$ , set

$$\overline{a} := \alpha(t(a))^{-1} a \alpha(s(a)) \in G.$$

If ab is defined, then s(a) = t(b), so that

$$\overline{ab} = \alpha(t(ab))^{-1}ab\alpha(s(ab))$$

$$= \alpha(t(a))^{-1}ab\alpha(s(b))$$

$$= \alpha(t(a))^{-1}a\alpha(s(a))\alpha(s(a))^{-1}b\alpha(s(b))$$

$$= \alpha(t(a))^{-1}a\alpha(s(a))\alpha(t(b))^{-1}b\alpha(s(b))$$

$$= \overline{ab}.$$

Now, define  $\phi: B \to I \times G \times I$  by

$$\phi(a) = (t(a), \overline{a}, s(a)).$$

This is clearly a well-defined function. In addition, it is one-to-one: if  $\phi(a) = \phi(b)$ , then s(a) = s(b) := f, t(a) = t(b) := g and  $\alpha(g)^{-1}a\alpha(f) = \overline{a} = \overline{b} = \alpha(g)^{-1}b\alpha(f)$ . As a result,  $a = \alpha(g)\overline{a}\alpha(f)^{-1} = \alpha(g)\overline{b}\alpha(f)^{-1} = b$ . It is also onto: given  $(g, c, f) \in I \times G \times I$ , then  $\phi(d) = c$ , where  $d = \alpha(g)c\alpha(f)^{-1}$ .

Finally, for  $a, b \in B$ , the multiplication ab is defined in B iff s(a) = t(b) iff the multiplication

$$\phi(a)\phi(b)$$
, or  $(t(a), \overline{a}, s(a))(t(b), \overline{b}, s(b))$ 

is defined in  $I \times G \times I$ , which is equal to

$$(t(a), \overline{ab}, s(b)) = (t(a), \overline{ab}, s(b)) = (t(ab), \overline{ab}, s(ab)) = \phi(ab),$$

showing that  $\phi$  preserves partial multiplications.