

Lecture 6

- Second-Order Circuits

Second-Order Circuits

- Two energy storage elements
- Analysis: Determine voltage or current as a function of time
- A second order circuit is characterized by a second order differential equation.
- Initial/final values of voltage/current, and their derivatives are needed

Source-Free Series RLC

$$\frac{d^2v}{d^2t} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = 0$$

$$s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$$

$$s = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

Initial and Final Conditions

Example

The switch has been closed for a long time. It is open at

t = 0. Find

- $i(0^+), v(0^+)$
- $di(0^+)/dt$, $dv(0^+)/dt$
- $i(\infty), v(\infty)$

Exercise

- Assume the circuit has reached steady state at $t=0^-$. Find
 - $i(0^+), v(0^+)$
 - $di(0^+)/dt$, $dv(0^+)/dt$
 - $i(\infty)$, $v(\infty)$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Source-Free Series RLC

$$\frac{d^2v}{d^2t} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = 0$$

$$s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$$

$$s = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

Case 1: Overdamped $(\alpha > \omega_0)$

$$\alpha = \frac{R}{2L} \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

An example

Another example

Case 2: Critically Damped ($\alpha = \omega_0$)

$$C \longrightarrow V_0$$

$$\frac{d^2v}{dt^2} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = 0 \qquad s = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

$$\alpha = \frac{R}{2L} \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

$$\alpha = \frac{R}{2L} \quad \omega_0 = \frac{1}{\sqrt{LC}} \qquad \quad S_1 = -\alpha + \sqrt{\alpha^2 - \omega_o^2} \qquad S_2 = -\alpha - \sqrt{\alpha^2 - \omega_o^2}$$

$$s_1 = s_2 = -\alpha = -\frac{R}{2L}$$

$$s_1 = s_2 = -\alpha = -\frac{R}{2L}$$
 $v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$

Case 2: Critically Damped ($\alpha = \omega_0$)

$$v(t) = (A_1t + A_2)e^{-\alpha t}$$

Case 2: Critically Damped ($\alpha = \omega_0$)

$$v(t) = (A_1t + A_2)e^{-\alpha t}$$

Case 3: Underdamped ($\alpha < \omega_0$)

$$s = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$s_{1} = -\alpha + \sqrt{\alpha^{2} - \omega_{0}^{2}} = -\alpha + \sqrt{-(\omega_{0}^{2} - \alpha^{2})} = -\alpha + j\omega_{d}$$

$$s_{2} = -\alpha - \sqrt{\alpha^{2} - \omega_{0}^{2}} = -\alpha - \sqrt{-(\omega_{0}^{2} - \alpha^{2})} = -\alpha - j\omega_{d}$$

where
$$j = \sqrt{-1}$$
 and $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$.

- ω_0 is often called the resonant frequency;
- ω_d is called the damping frequency.

The natural response

$$v(t) = A_1 e^{S_1 t} + A_2 e^{S_2 t}$$

becomes

$$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$

$$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$

- Exponential $e^{-\alpha t}$ * Sine/Cosine term
 - Exponentially damped, time constant = $1/\alpha$
 - •Oscillatory, period $T = \frac{2\pi}{\omega_d}$

T=?

Lecture 6 21

Properties of Series RLC Network

- · Behavior captured by damping
 - Gradual loss of the initial stored energy
 - α determines the rate of damping

-
$$\alpha > \omega_0$$
 (i.e., $R > 2\sqrt{\frac{L}{c}}$), overdamped
$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

-
$$\alpha = \omega_0$$
 (i.e., $R = 2\sqrt{\frac{L}{c}}$), critically damped $v(t) = (A_1t + A_2)e^{-\alpha t}$

-
$$\alpha < \omega_0$$
 (i.e., $R < 2\sqrt{\frac{L}{c}}$), underdamped
$$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$

Example

• Find v(t) & i(t) in the circuit below. Assume the circuit has reached steady state at $t=0^-$.

Lecture 6 24

Example

• Find v(t) & i(t) in the circuit below. Assume the circuit has

reached steady state at $t = 0^-$.

$$\alpha = \frac{R}{2L} = 9 \qquad \omega_0 = \frac{1}{\sqrt{LC}} = 10$$

$$s_{1,2} = -\alpha \mp \sqrt{\alpha^2 - \omega_0^2} = -9 \mp j4.359$$

Source-Free Parallel RLC Network

Lecture 6 26

Source-Free Parallel RLC Network

$$\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{1}{LC}v = 0$$

• The characteristic equation is:

$$s^2 + \frac{1}{RC}s + \frac{1}{LC} = 0$$

From this, we can find the roots of the characteristic equation to be:

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$\alpha = \frac{1}{2RC} \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

As in last time, there are three scenarios to consider.

Three Damping Cases

$$\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{1}{LC}v = 0 \qquad \alpha = \frac{1}{2RC} \qquad \omega_0 = \frac{1}{\sqrt{LC}}$$

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$\alpha = \frac{1}{2RC} \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

For the overdamped case, the roots are real and negative,

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

For critically damped, the roots are real and equal

$$v(t) = (A_2 + A_1 t)e^{-\alpha t}$$

In the underdamped case, the roots are complex

$$v(t) = e^{-\alpha t} \left(A_1 \cos \omega_d t + A_2 \sin \omega_d t \right)$$

Series vs. Parallel (Source-Free RLC Network)

Series

$$v(t) = A_1 e^{S_1 t} + A_2 e^{S_2 t}$$

$$v(t) = (A_1t + A_2)e^{-\alpha t}$$

$$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$

Parallel

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

$$v(t) = (A_2 + A_1 t) e^{-\alpha t}$$

$$v(t) = e^{-\alpha t} (A_1 \cos \omega_d t + A_2 \sin \omega_d t)$$

Step Response of a Series RLC Circuit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display $t = 0 \qquad \qquad R \qquad \qquad L \qquad \qquad t \qquad$

The solution

$$v(t) = v_t(t) + v_{ss}(t)$$

The complete solutions for the three conditions of damping are:

$$v(t) = V_s + (A_1 e^{s_1 t} + A_2 e^{s_2 t})$$
 (Overdamped)

$$v(t) = V_s + (A_1 + A_2 t)e^{-\alpha t}$$
 (Critically Damped)

$$v(t) = V_s + (A_1 \cos \omega_d t + A_2 \sin \omega_d t)e^{-\alpha t}$$
 (Underdamped)

Example

- Find v(t) and i(t) for t > 0.
 Consider three cases:
 - $R = 5\Omega$
 - $R = 4\Omega$
 - $R = 1\Omega$

When $R = 5\Omega$,

• For t < 0, switch closed, capacitor open, inductor shorted.

$$i(0) = 4A = C \frac{dv(0)}{dt}, \ v(0) = 4V, \ \frac{dv(0)}{dt} = 16$$

• For t > 0, switch open, a series RLC network

$$lpha=rac{R}{2L}=$$
 2.5, $\omega_0=rac{1}{\sqrt{LC}}=$ 2, $s_{1,2}=-1,-4$ Overdamped.
$$v(t)=v_{ss}+(A_1e^{-t}+A_2e^{-4t})$$

When $R = 4\Omega$,

• For t < 0, switch closed, capacitor open, inductor shorted.

$$i(0) = 4.8A = C \frac{dv(0)}{dt}, \ v(0) = 4.8V, \ \frac{dv(0)}{dt} = 19.2$$

• For t > 0, switch open, a series RLC network

$$\alpha=\frac{R}{2L}=2,\ \omega_0=\frac{1}{\sqrt{LC}}=2,\ s_{1,2}=-2\quad \text{Critically damped}$$

$$v(t)=v_{ss}+(A_1+A_2t)e^{-2t}$$

Lecture 6 32

When $R = 1\Omega$,

• For t < 0, switch closed, capacitor open, inductor shorted.

$$i(0) = 12A = C \frac{dv(0)}{dt}, \ v(0) = 12V, \ \frac{dv(0)}{dt} = 48$$

• For t > 0, switch open, a series RLC network

$$\alpha = \frac{R}{2L} = 0.5$$
, $\omega_0 = \frac{1}{\sqrt{LC}} = 2$, $s_{1,2} = -0.5 \pm j1.936$ Underdamped
$$v(t) = v_{ss} + (A_1 \cos 1.936t + A_2 \sin 1.936t)e^{-0.5t}$$

Lecture 6 33

Step Response of a Parallel RLC Circuit

So we get

$$\frac{d^2i}{d^2t} + \frac{1}{RC}\frac{di}{dt} + \frac{i}{LC} = \frac{I_S}{LC}$$

Step Response of a Parallel RLC Circuit

$$\frac{d^2i}{d^2t} + \frac{1}{RC}\frac{di}{dt} + \frac{i}{LC} = \frac{I_S}{LC}$$

 As in the series RLC case, the response is a combination of transient and steady state responses:

$$i(t) = I_s + A_1 e^{s_1 t} + A_2 e^{s_2 t} \text{ (Overdamped)}$$

$$i(t) = I_s + (A_1 + A_2 t) e^{-\alpha t} \text{ (Critally Damped)}$$

$$i(t) = I_s + (A_1 \cos \omega_d t + A_2 \sin \omega_d t) e^{-\alpha t} \text{ (Underdamped)}$$

Here the variables A_1 and A_2 are obtained from the initial conditions, i(0) and di(0)/dt.

Example

• Find i(t) and $i_R(t)$ for t > 0.

Initial values
$$(t < 0)$$
: $i(0) = 4A$, $v(0) = \frac{20}{20+20} \times 30V = 15V = L\frac{di(0)}{dt}$
For $t > 0$, $\alpha = \frac{1}{2RC} = \frac{1}{2 \times 10 \times 8 \times 10^{-3}} = 6.25$, $\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{20 \times 8 \times 10^{-3}}} = 2.5$
 $s_{1,2} = -6.25 \pm 5.7282$
 $i(t) = I_S + A_1 e^{s_1 t} + A_2 e^{s_2 t}$

Lecture 6 37

Step response of RLC circuits for $t \geq 0$.

General Second-Order Circuits

- The principles of the approach to solve the series and parallel forms of RLC circuits can be applied to general secondorder circuits, by taking the following six steps:
 - 1. First determine the <u>initial conditions</u>, x(0) and dx(0)/dt.
 - **2. Applying KVL and KCL**, to find the general second-order differential equation to describe x(t). 3. Depending on the roots of C.E., the form of the general solution (3 cases) of homogeneous equation can be determined.
 - 4. We obtain the **particular solution** by observation/calculation, **specially** for a DC/step response

$$x_{p.s.}(t)=x(\infty)$$

5. The total response = general solution + particular solution.

$$X(t) = x_{p.s.}(t) + x_{g.s.}(t)$$

Lecture 6

6. Using the initial conditions to determine the constants of X(t).

School of Information Science and Tech General solution for second-order circuits for $t \geq 0$.

x(t) = unknown variable (voltage or current)x'' + ax' + bx = cDifferential equation: Initial conditions: x(0) and x'(0) $x(\infty) = \frac{c}{b}$ $\alpha = \frac{a}{2} \qquad \omega_0 = \sqrt{b}$ Final condition: Overdamped Response $\alpha > \omega_0$ $x(t) = [A_1e^{s_1t} + A_2e^{s_2t} + x(\infty)]$ $s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$ $s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$ $A_1 = \frac{x'(0) - s_2[x(0) - x(\infty)]}{s_1 - s_2} \quad A_2 = -\left[\frac{x'(0) - s_1[x(0) - x(\infty)]}{s_1 - s_2}\right]$ Critically Damped $\alpha = \omega_0$ $x(t) = [(B_1 + B_2 t)e^{-\alpha t} + x(\infty)]$ Underdamped $\alpha < \omega_0$ $x(t) = [D_1 \cos \omega_{d}t + D_2 \sin \omega_{d}t]e^{-\alpha t} + x(\infty)$

x(t) = unknown variable (voltage or current)

Differential equation: x'' + ax' + bx = c

Initial conditions: x(0) and x'(0)

Final condition: $x(\infty) = \frac{c}{b}$

[Important]

- 1.This table works well when c is a constant, as $x(\infty)$ is actually a particular solution (特解) of the equation.
- 2. When c is a function of time (t), such as c=5t; $c=t^2+3$; you should also be able to solve the equation (Requirement of the course).

General RLC Circuits

- Find the complete response v for t > 0 in the circuit.
 - 1. Initial conditions

$$v(0^+) = v(0^-) = 12V, i(0^+) = i(0^-) = 0$$

$$\frac{dv(0^+)}{dt} = \frac{i_C(0^+)}{C} = \frac{-12/2}{0.5} = -12 V/s$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

General RLC Circuits

• Find the complete response v for t > 0 in the circuit.

1. Initial conditions

$$v(0^+) = v(0^-) = 12V, i(0^+) = i(0^-) = 0$$

$$\frac{dv(0^+)}{dt} = \frac{i_C(0^+)}{C} = \frac{-12/2}{0.5} = -12 V/s$$

2. KCL at node a: $i = \frac{v}{2} + 0.5 \frac{dv}{dt}$ KVL on left mesh: $4i + 1 \frac{di}{dt} + v = 12$

$$\Rightarrow \frac{d^2v}{dt^2} + 5\frac{dv}{dt} + 6v = 24 \Rightarrow \text{General Solution} \quad v_t(t) = A_1e^{-2t} + A_2e^{-3t}$$

3. Particular Solution : Steady-state response $v_{ss}(t) = 4V$

4. Put together: $v(t) = 4 + A_1 e^{-2t} - A_2 e^{-3t}$

5. Using initial conditions to determine A₁, A₂

Self-test-General RLC Circuit

 Find the complete response v for 0 < t < 1 in the circuit.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Example of 2nd-order op-amp circuits $C_2 = 100 \mu F$

• Find v_o for t > 0 when $v_s = 10u(t)mV$.

KCL at node 1:

$$\frac{v_s - v_1}{R_1} = C_2 \frac{dv_2}{dt} + \frac{v_1 - v_0}{R_2}$$

KCL at node 2:

$$C_1 \frac{dv_o}{dt} = \frac{v_1 - v_o}{R_2}$$

and we have $v_1 - v_2 = v_o$

Initial conditions:
$$v_o(0^+) = 0$$
, $C_1 \frac{dv_o(0^+)}{dt} = \frac{v_1(0^+) - v_o(0^+)}{R_2} = \frac{v_2(0^+)}{R_2} = 0$

Example---求Vsu(t) 状态下IL

Lecture 6 46

Example

$$i_{\rm L}(0) = i_{\rm L}(0^-) = 0, \quad i'_{\rm L}(0) = \frac{1}{L} \ \upsilon_{\rm L}(0) = 0.$$

$$\frac{R_3}{R_2} i_{\rm L} + \left(\frac{L}{R_2} + R_3 C\right) \frac{di_{\rm L}}{dt} + LC \frac{d^2 i_{\rm L}}{dt^2} = -\frac{V_{\rm s}}{R_1}$$