Lógica CC

nome: _	número	número						
	Grupo I							
(V) ou f -0,25 va	apo é constituído por 6 questões. Em cada questão, deve dizer se a afirmação indicada é falsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuída se alores ou 0 valores, consoante a resposta esteja certa, errada, ou não seja assinalad amente. A cotação total neste grupo é no mínimo 0 valores.	erá 1	valor					
		V	F					
1.	Para todo o tipo de linguagem com um símbolo de função binário f um símbolo de relação binário R, qualquer variável é substituível sem captura de variáveis por $f(x_2, x_3)$ em $\exists x_1 R(x_0, x_1)$.							
2.	Para todo o tipo de linguagem L que apenas contém uma constante e um símbolo de relação binário, o número de L -estruturas cujo domínio é $\{0,1\}$ é 16.							
3.	Para todo o tipo de linguagem L , para toda a L -fórmula φ tal que $\mathrm{LIV}(\varphi) = \emptyset$ e para toda a L -estrutura E , se $E \models \varphi[a]$ para alguma atribuição a em E , então φ é válida em E .							
4.	Para todo o tipo de linguagem L , para toda a L -fórmula φ e para toda a variável x , se φ é instância de alguma tautologia, então $\exists x \varphi$ é universalmente válida.							
5.	Para qualquer tipo de linguagem L e para quaisquer duas fórmulas atómicas φ e ψ tais que $x \notin \text{LIV}(\psi)$, $\exists x (\varphi \land \psi)$ é uma forma normal prenexa logicamente equivalente a $(\exists x \varphi) \land \psi$.							
6.	Para todo o tipo de linguagem com símbolos de relação unários R e Q , o conjunto $\{\exists x_0 R(x_0), \exists x_0 Q(x_0), \forall x_0 \neg (R(x_0) \land Q(x_0))\}$ é semanticamente inconsistente.							
	Grupo II							

Nas questões 1(a), 2(a), 2(b), 2(c), 2(d) e 4, apresente a sua resposta no espaço disponibilizado a seguir à questão.

- 1. Seja L um tipo de linguagem cujo único símbolo de função é f, sendo f um símbolo binário.
 - (a) Dê exemplo de um L-termo t_1 com três subtermos e de um L-termo t_2 com um subtermo tais que $(f(x_1, x_2)[t_1/x_1])[t_2/x_2] \neq (f(x_1, x_2)[t_2/x_2])[t_1/x_1]$. Justifique.

Resposta:

(b) Sejam t_1, t_2 L-termos tais que VAR $(t_1) = \emptyset$ e VAR $(t_2) = \emptyset$. Prove que, para quaisquer duas variáveis distintas $x, y, (t[t_1/x])[t_2/y] = (t[t_2/y])[t_1/x]$.

2. Considere o tipo de linguagem $L = (\{c, f\}, \{=, P\}, \mathcal{N})$, em que $\mathcal{N}(c) = 0$, $\mathcal{N}(f) = 2$, $\mathcal{N}(=) = 2$ e $\mathcal{N}(P) = 1$. Seja $E = (\mathbb{N}_0, \overline{})$ a L-estrutura tal que:

$$\overline{\mathsf{c}} = 2 \\ \overline{\mathsf{f}} : \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0 \text{ tal que } \overline{\mathsf{f}}(n_1, n_2) = n_1 \times n_2$$

$$\overline{\mathsf{P}} = \{ (n_1, n_2) \in \mathbb{N}_0^2 : n_1 = n_2 \}$$

Seja a a atribuição em E tal que $a(x_i) = i$, para todo $i \in \mathbb{N}_0$.

(a) Indique $f(c, f(x_1, x_3))[a]_E$. Justifique.

Resposta:

(b) Indique $(\forall x_2((P(x_3) \land x_3 = f(x_1, x_2)) \rightarrow (x_1 = x_3 \lor x_2 = x_3)))[a]_E$. Justifique. **Resposta:**

(c) Diga se a L-fórmula $(\forall x_2((P(x_3) \land x_3 = f(x_1, x_2)) \rightarrow (x_1 = x_3 \lor x_2 = x_3)))$ é válida em E. Justifique.

Resposta:

(d) Indique, sem justificar, uma L-fórmula válida em E que represente a afirmação: 2 é primo, mas é o único par que é primo.

Resposta:

- 3. Seja L um tipo de linguagem com uma constante c e com os símbolos de relação unários R e Q. Construa uma derivação em DN que mostre: $\forall x_0(R(x_0) \vee Q(x_0)), \neg R(c) \vdash Q(c)$.
- 4. Sejam L um tipo de linguagem, φ e ψ L-fórmulas e x uma variável tal que $x \notin LIV(\varphi)$. Prove que $\forall x(\psi \to \varphi) \models (\exists x\psi) \to \varphi$.

Resposta:

Cotações	I.	II.1.	II.2.	II.3.	II.4.
Cotações	6	$^{2+2}$	1,5+2+1,5+1,5	1,75	1,75