Assignment-2

Software Systems Lab

Shashank P

IIT Dharwad
https://www.iitdh.ac.in/

August 11, 2021

Dynamic Programming

- Characteristics of Dynamic Programming
 - Overlapping Sub-problems

1

Subproblems are smaller versions of the original problem. Any problem has overlapping sub-problems if finding its solution involves solving the same subproblem multiple times.

2 Optimal Substructure

2

Any problem has optimal substructure property if its overall optimal solution can be constructed from the optimal solutions of its subproblems.

DP Methods

• Top-down with Memoization

1

In this approach, we try to solve the bigger problem by recursively finding the solution to smaller sub-problems. Whenever we solve a sub-problem, we cache its result so that we don't end up solving it repeatedly if it's called multiple times. Instead, we can just return the saved result.

DP Methods

• Top-down with Memoization

1

In this approach, we try to solve the bigger problem by recursively finding the solution to smaller sub-problems. Whenever we solve a sub-problem, we cache its result so that we don't end up solving it repeatedly if it's called multiple times. Instead, we can just return the saved result.

• Bottom-up with Tabulation

2

Tabulation is the opposite of the top-down approach and avoids recursion. In this approach, we solve the problem "bottom-up" (i.e. by solving all the related sub-problems first).

Algorithms

- Divide and conquer
- Greedy Algorithm
- Dynamic Programming

Algorithms

- Divide and conquer
- Greedy Algorithm
- Dynamic Programming

Algorithms

- Divide and conquer
- Greedy Algorithm
- Dynamic Programming

Divide and Conquer

Example:

Quick-Sort: The average case run time of quick sort is $O(n*log\,n)$. This case happens when we don't exactly get evenly balanced partitions.

Divide and Conquer

Example:

Merge-Sort: The time complexity of Merge Sort is O(n * log n). Merge Sort is useful for sorting linked lists in O(n * log n) time.

Hyperlinks

- Divide and Conquer
- Greedy Algorithm
- Dynamic Programming

- Primitive
- Non-Primitive
 - Linear
 - Static
 - O Array
 - Dynamic
 - Limked List
 - O Stad
 - O Queue
 - Non-Linear
 - Tree
 - Graph

- Primitive
- Non-Primitive
 - Linear
 - Static
 - (i) Array
 - Dynamic
 - O Linked List

 - O Queue
 - Non-Linear
 - Tree
 - Graph

- Primitive
- Non-Primitive
 - Linear
 - Static
 - Arra;
 - Dynamic
 - Linked List
 - Sta
 - Queue
 - Non-Linear
 - Tree
 - Graph

- Primitive
- Non-Primitive
 - Linear
 - Static
 - Array
 - Dynamic
 - Linked List
 - 2 Stack
 - Queue
 - Non-Linear
 - Tree
 - Graph

- Primitive
- Non-Primitive
 - Linear
 - Static
 - 4 Array
 - Dynamic
 - Linked List
 - 2 Stack
 - Queue
 - Non-Linear
 - Troo
 - Graph

- Primitive
- Non-Primitive
 - Linear
 - Static
 - Array
 - Dynamic
 - Linked List
 - 2 Stack
 - Queue
 - Non-Linear
 - 1 Tree
 - @ Graph

Data Structures

Figure: 1

Algorithm	Best Case	Average Case	Worst Case
Linear Search	O(1)	O(n)	O(n)
Binary Search	O(1)	$O(\log n)$	$O(\log n)$
Bubble sort	O(n)	$O(n^2)$	$O(n^2)$
Selection sort	$O(n^2)$	$O(n^2)$	$O(n^2)$

Table: 1

Theorem (Trigonometric Identity)

$$Sin^2\theta + Cos^2\theta = 1$$

Theorem

Let a, b, c be lengths of right angled triangle.

By definition

$$sin\theta = b/c \left(\frac{oppositeside}{hypotenuse} \right)$$

$$cos\theta = a/c \left(\frac{adjacentside}{hypotenuse} \right)$$

$$\sin^2\theta + \cos^2\theta = \frac{b^2}{c^2} + \frac{a^2}{c^2} = \frac{a^2 + b^2}{c^2}$$

From Pythagoras theorem

$$c^2 = a^2 + b^2$$

$$\frac{a^2+b^2}{c^2}=1 \implies sin^2\theta+cos^2\theta=1$$

Hence Proved.

Multi-line equations

$$f(x) = x^{6} + 7x^{3}y + 50x^{3}y^{2} + 12x^{2}y^{4}$$

$$- 19x^{5}y^{4} - 10x^{7}y^{6} + 7y^{6} - m^{3}n^{3}$$

$$\rho \Delta x \Delta y \Delta z \Delta \tau \partial_{t} c_{i}(t, x, \tau) = \rho \Delta x \Delta y \Delta z \Delta \tau (p_{i} - d_{i})$$

$$- \rho \Delta y, \Delta z \Delta \tau [q_{i,x}(t, x + \Delta x/2, y, z, \tau) - q_{i,x}(t, x - \Delta x/2, y, z, \tau)]$$

$$- \rho \Delta x, \Delta z \Delta \tau [q_{i,y}(t, x, y + \Delta y/2, y, z, \tau) - q_{i,y}(t, x, y - \Delta y/2, z, z, \tau)]$$

$$- \rho \Delta x \Delta y \Delta \tau [q_{i,z}(t, x, y, z + \Delta z/2, \tau) - q_{i,z}(t, x, y, z - \Delta z/2, \tau)]$$