Lista 12

Zadanie 1 (* Nie liczy się do podstawy). Typem t permutacji $\sigma \in S_n$ nazywamy ciąg $t = (n_1, \ldots, n_n)$, gdzie n_i to liczba cykli długości i w rozkładzie σ na cykle rozłączne. Dla danego typu t oraz $H \leq S_n$ niech $|H|_t$ będzie liczbą permutacji typu t w H.

Pokaż, że dla dwóch permutacji σ, τ permutacja $\tau^{-1}\sigma\tau$ ma taki sam typ, jak permutacja σ .

Niech $H \leq G \leq S_n$. Załóżmy, że dla każdego typu permutacji t zachodzi $|H|_t \in \{0, |G|_t\}$, tj. podgrupa H albo nie ma permutacji typu t albo ma wszystkie permutacje typu t z G. Pokaż, że $H \leq G$.

Korzystając z tego faktu pokaż, że podgrupa $\{e, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\} \leq S_4$ jest podgrupą normalną (w S_4).

Wskazówka: Jak wygląda rozkład na cykle elementów w grupie sprzężonej?

Zadanie 2. Znajdź wszystkie podgrupy normalne w grupie obrotów i odbić kwadratu. Dla którejś z nietrywialnych podaj tabelę działań w grupie ilorazowej (tj. grupie warstw podgrupy normalne).

Zadanie 3. Załóżmy, że H jest podgrupą G, a N podgrupą normalną G. Pokaż, że wtedy

$$HN = \{hn : h \in H, n \in N\}$$

jest podgrupą G.

Załóżmy, że grupy N_1, N_2 są normalne w G. Pokaż, że N_1N_2 jest podgrupą normalną.

Zadanie 4. Wykonaj poniższe obliczenia modulo 3, 5, 15. Oznaczenie 62^{-1} oznacza element odwrotny do 62 mod m w odpowiednim \mathbb{Z}_m .

- $-(125 \cdot 18 + 32 \cdot 49)^{-1} \cdot (75 \cdot 27 16 \cdot 7) + (77 \cdot 22^{-1} 18 \cdot 255);$
- $15^7 343^{12} \cdot 241^4 + 175 \cdot 123 (176^{-1})^4 \cdot 121^2$.

Zadanie 5. Rozpatrz działanie algorytmu Euklidesa na dwóch kolejnych liczbach Fibonacciego. Jak wygląda para liczb trzymanych po k-tym kroku? Udowodnij, że dla pary liczb (F_{n+1}, F_{n+2}) algorytm wykonuje przynajmniej n kroków.

Pokaż, że algorytm Euklidesa (w którym zastępujemy a przez $a \mod b$, a nie a przez a-b) wykonuje $\mathcal{O}(\log(a) + \log(b))$ kroków.

Wskazówka: Pokaż, że w jednym kroku któraś z liczb zmniejsza się o połowę.

Zadanie 6. Uogólnij algorytm Euklidesa dla większej liczby liczb m_1, m_2, \ldots, m_k . Pokaż, że nwd $(m_1, \ldots, m_k) = \sum_{i=1}^k x_i m_i$ dla pewnych liczb całkowitych x_i .

bostébni qis $m_2 m_3 \dots m_k$.

zadanie 7. Pokaż, że dla dodatnich całkowitych liczb a, b istnieją dokładnie dwie pary liczb całkowitych (x, y), takich że:

- xa + yb = nwd(a, b) oraz
- $|x| < \frac{b}{\operatorname{nwd}(a,b)}, |y| < \frac{a}{\operatorname{nwd}(a,b)}.$

Pokaż ponadto, że w jednej z tych par x jest dodatnie, a y niedodatnie, zaś w drugiej odwrotnie.

Wskazowka: Wydziel najpierw przez nwd(a,b).

Zadanie 8. Oblicz nwd dla następujących par liczb. Przedstaw je jako kombinację liniową (o współczynnikach całkowitych) tych liczb.

$$\{743, 342\}, \{3812, 71\}, \{1234, 321\}.$$

Zadanie 9. Pokaż, że jeśli n, m są względnie pierwsze, to $\varphi(nm) = \varphi(n) \cdot \varphi(m)$.

Ile wynosi $\varphi(p^k)$, gdzie p jest liczbą pierwszą a $k \geq 1$? Określ, ile wynosi $\varphi(p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_k^{\alpha_k})$ dla p_1, p_2, \ldots, p_k —różnych liczb pierwszych.

гакіе ізіме.

Zadanie 10. Oblicz φ dla następujących liczb: 7, 9, 27, 77, 143, 105. Możesz skorzystać z Zadania 9.

Zadanie 11. Pokaż, że dla p-pierwszego oraz a-względnie pierwszego z p liczba a^{p-2} jest odwrotnością a w \mathbb{Z}_p . Skonstruuj wydajny (tj. wielomianowy od $\log p$ oraz $\log a$) algorytm obliczania tej liczby.

Wskazówka: Małe twierdzenie Fermat'a.