

CENTRO UNIVERSITARIO UAEM ZUMPANGO

INGENIERO EN COMPUTACION

TEMA: "DETERMINANTES"

ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO

FECHA: MARZO DE 2017

UNIDAD DE APRENDIZAJE

"ALGEBRA LINEAL"

UNIDAD DE COMPETENCIA II:

DETERMINANTES

- 2.1 Definición de determinante de orden 2x2 y 3x3
 - 2.2 Regla de Sarrus
 - 2.3 Definición de matriz menor
 - 2.4 Definición de cofactor
 - 2.5 Definición de determinante de orden nxn
 - 2.6 Propiedades de los determinantes
 - 2.7 Matriz inversa utilizando la matriz Adjunta
- 2.8 Solución de sistemas de ecuaciones por Regla de Cramer

OBJETIVOS

OBJETIVOS

General:

Calcular determinantes hasta de orden 4x4 aplicando las propiedades fundamentales

- DETERMINANTE. La suma de los n productos formados por n-factores que se obtienen al multiplicar n-elementos de la matriz de tal forma que cada producto contenga un sólo elemento de cada fila y columna de A.
- DETERMINANTE DE LA MATRIZ DE 1x1. Sea A una matriz de orden n, si n=1. Entonces, se tiene: $A=[a_{11}]$, det $A=a_{11}$

Ejemplos:

A=[7], det A = 7

B=[15], det B = 15

C=[152], det C = 152

CONCEPTOS: Determinantes

• DETERMINANTE DE LA MATRIZ DE 2X2. Se llama determinante de la matriz A de orden 2 al número a₁₁.a₂₂-a₁₂.a₂₁ y escribimos:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
, Det $A = (a_{11} \times a_{22}) - (a_{21} \times a_{12})$

Ejemplos:

$$A = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
; Det $A = (3 \times 4) - (2 \times 5) = 12 - 10 = 2$

$$B = \begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix}$$
; Det B = $(3 \times -1) - (4 \times -2) = -3 + 8 = 5$

DETERMINANTES: USO

Los lados que tienen (1,1) como vértice común se pueden considerar como los vectores

$$a= (2,1) - (1,1) = (1,0) y$$

 $b=(2,3) - (1,1) = (1,2).$

Por tanto, el área del paralelogramo está dada por el determinante

$$\begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix} = (1)(2) - (0)(1) = 2$$

CONCEPTOS: Menores y Cofactores

MENORES. Si A es una matriz cuadrada, se llama menor Mij del elemento a_{ij} de la matriz A, al determinante de matriz de orden n-1 que resulta de suprimir en A la fila i y la columna j. Ejemplo:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \qquad M_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

COFACTORES. El cofactor Cij del elemento aij es el número real Cij = $(-1)^{i+j}$ M_{ij}. Ejemplo:

$$C_{12} = (-1)^{1+2}[(a_{11} \times a_{22}) - (a_{21} \times a_{12})]$$

MENORES Y COFACTORES. Ejemplo

Adjunto y menor complementario de un elemento

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} = \begin{pmatrix} 5 & -2 & 3 & 5 \\ 0 & -5 & 1 & 2 \\ 2 & 6 & -2 & 4 \\ 2 & 9 & 8 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} = \begin{pmatrix} 5 & -2 & 3 & 5 \\ 0 & -5 & 1 & 2 \\ 2 & 6 & -2 & 4 \\ 2 & 9 & 8 & 0 \end{pmatrix}$$

$$a_{23} = 1$$

$$\alpha_{23} = 1$$

$$\alpha_{11} & \alpha_{12} & \alpha_{14} \\ \alpha_{31} & \alpha_{32} & \alpha_{34} \\ \alpha_{41} & \alpha_{42} & \alpha_{44} \end{pmatrix} = \begin{pmatrix} 5 & -2 & 5 \\ 2 & 6 & 4 \\ 2 & 9 & 0 \end{pmatrix} = -166$$

$$(menor)$$

$$A_{23} = (-1)^{2+3}\alpha_{23} = -(-166) = 166$$
(adjunto)

MENORES Y COFACTORES. Ejemplo

Sea
$$A = \begin{bmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & 0 & 1 \end{bmatrix}$$
, Calcular los menores y los cofactores.

$$M_{11} = \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} = -1 \quad M_{12} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix} = -5 \quad M_{13} = \begin{vmatrix} 3 & -1 \\ 4 & 0 \end{vmatrix} = 4$$

$$M_{21} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2 \quad M_{22} = \begin{vmatrix} 0 & 1 \\ 4 & 1 \end{vmatrix} = -4 \quad M_{23} = \begin{vmatrix} 0 & 2 \\ 4 & 0 \end{vmatrix} = -8$$

$$M_{31} = \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} = 5 \quad M_{32} = \begin{vmatrix} 0 & 1 \\ 3 & 2 \end{vmatrix} = -3 \quad M_{33} = \begin{vmatrix} 0 & 2 \\ 3 & -1 \end{vmatrix} = -6$$

$$C_{11} = \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} = -1 \qquad C_{12} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix} = 5 \qquad C_{13} = \begin{vmatrix} 3 & -1 \\ 4 & 0 \end{vmatrix} = 4$$

$$C_{21} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = -2 \qquad C_{22} = \begin{vmatrix} 0 & 1 \\ 4 & 1 \end{vmatrix} = -4 \qquad C_{23} = \begin{vmatrix} 0 & 2 \\ 4 & 0 \end{vmatrix} = 8$$

$$C = \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} = 5 \qquad C_{32} = \begin{vmatrix} 0 & 1 \\ 3 & 2 \end{vmatrix} = 3 \qquad C_{33} = \begin{vmatrix} 0 & 2 \\ 3 & -1 \end{vmatrix} = -6$$

MENORES Y COFACTORES. Ejercicio

Sea
$$A = \begin{bmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & -4 & 1 \end{bmatrix}$$
, Calcular los menores y los cofactores.

$$M_{11} = M_{12} = M_{13} = M_{21} = M_{21} = M_{22} = M_{23} = M_{31} = M_{32} = M_{33} = M$$

$$C_{11} = C_{12} = C_{13} = C_{21} = C_{21} = C_{23} = C_{31} = C_{32} = C_{33} = C$$

DETERMINANTE DE LA MATRIZ 3 × 3

Sea
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
; entonces det $A = \sum_{j=1}^{3} a_{1j} C_{1j}$

$$\det A = |A| = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Se denomina determinante por desarrollo o expansión de cofactores de la primera fila.

Sea
$$A = \begin{bmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & -4 & 1 \end{bmatrix}$$
;

$$\det A = |A| = 0 \begin{vmatrix} -1 & 2 \\ -4 & 1 \end{vmatrix} - 2 \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix} + 1 \begin{vmatrix} 3 & -1 \\ 4 & -4 \end{vmatrix} = 10 - 8 = 2$$

DETERMINANTE DE LA MATRIZ 3 × 3: Ejercicios

Sea $A = \begin{bmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & 0 & 1 \end{bmatrix}$; calcular el determinante por expansión de cofactores.

$$|A| = 0 \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} - 2 \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix} + \begin{vmatrix} 3 & -1 \\ 4 & 0 \end{vmatrix} = 0(-1) + 2(5) + 1(4) = 14$$

$$|A| = -3 \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} + (-1) \begin{vmatrix} 0 & 1 \\ 4 & 1 \end{vmatrix} - 2 \begin{vmatrix} 0 & 2 \\ 4 & 0 \end{vmatrix} =$$

$$|A| = 4 \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} - 0 \begin{vmatrix} 0 & 1 \\ 3 & 2 \end{vmatrix} + \begin{vmatrix} 0 & 2 \\ 3 & -1 \end{vmatrix} =$$

DETERMINANTE DE LA MATRIZ 3 × 3: Significado

El significado geométrico de la magnitud de un determinante de orden 3x3 es el volumen de un paralelepípedo.

DETERMINANTE

Si los vértices del paralelepípedo son el origen $\mathbf{0} = (0, 0, 0)$, $\mathbf{v}_1 = (a_1, b_1, c_1)$, $\mathbf{v}_2 = (a_2, b_2, c_2)$, y $\mathbf{v}_3 = (a_3, b_3, c_3)$, entonces su volumen es el valor absoluto del determinante de la matriz de coeficientes del sistema:

$$a_1x + b_1y + c_1z = 0$$

$$a_2x + b_2y + c_2z = 0$$

$$a_3x + b_3y + c_3z = 0$$

DETERMINANTE

El volumen de un paralelepípedo con vértices (0, 0, 0), (1, 2, 0), (2, 0, 1), (-1, 1, 3) es igual al valor absoluto de:

$$egin{array}{cccc} 1 & 2 & 0 \ 2 & 0 & 1 \ -1 & 1 & 3 \ \end{array}$$

0

REGLA DE SARRUS: Paso 1

1. Copie la primera y segunda columna(fila) de la matriz a su derecha(abajo)

Sea
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
,

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{vmatrix}$$

REGLA DE SARRUS: Paso 2

Multiplique como se indica en las gráficas.

Sarrus

REGLA DE SARRUS: Ejercicios

Sea
$$A = \begin{bmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & -4 & 1 \end{bmatrix}$$
; Calcule el determinante.

Sea B=
$$\begin{bmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & 0 & 1 \end{bmatrix}$$
; Calcule el determinante.

DETERMINANTE DE LA MATRIZ n×n

Sea A una matriz de n×n. Entonces el determinante de A, denotado por det A o |A|, esta dado por

$$|A| = \sum_{j=1}^{n} a_{1j} C_{1j} = a_{11} C_{11} + a_{12} C_{12} + \dots + a_{1n} C_{1n}$$

Que se denomina desarrollo por los cofactores o expansión por cofactores de la primera fila.

EJEMPLO, Sea
$$A = \begin{bmatrix} 1 & 3 & 5 & 2 \\ 0 & -1 & 3 & 4 \\ 2 & 1 & 9 & 6 \\ 3 & 2 & 4 & 8 \end{bmatrix}$$
, $|A| = \sum_{j=1}^{4} a_{1j} C_{1j}$

$$|A| = 1 \begin{vmatrix} -1 & 3 & 4 \\ 1 & 9 & 6 \\ 2 & 4 & 8 \end{vmatrix} - 3 \begin{vmatrix} 0 & 3 & 4 \\ 2 & 9 & 6 \\ 3 & 4 & 8 \end{vmatrix} + 5 \begin{vmatrix} 0 & -1 & 4 \\ 2 & 1 & 6 \\ 3 & 2 & 8 \end{vmatrix} - 2 \begin{vmatrix} 0 & -1 & 3 \\ 2 & 1 & 9 \\ 3 & 2 & 4 \end{vmatrix}$$

$$= 1(-92) - 3(-70) + 5(2) - 2(-16) = 160$$

DETERMINANTE DE LA MATRIZ n×n

Expansión por cofactores de la primera fila.

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

Expansión por cofactores de la segunda fila.

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = -a_2 \begin{vmatrix} b_1 & c_1 \\ b_3 & c_3 \end{vmatrix} + b_2 \begin{vmatrix} a_1 & c_1 \\ a_3 & c_3 \end{vmatrix} - c_2 \begin{vmatrix} a_1 & b_1 \\ a_3 & b_3 \end{vmatrix}$$

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} - \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

DETERMINANTE DE LA MATRIZ n×n

$$A = \begin{bmatrix} -1 & 3 & 2 \\ 0 & -2 & 1 \\ 1 & 0 & -2 \end{bmatrix}$$

$$C = \begin{bmatrix} 4 & 1 & 2 \\ 6 & 0 & 3 \\ 7 & 1 & 2 \end{bmatrix}$$

$$C = \begin{bmatrix} -2 & 1 & -\begin{vmatrix} 0 & 1 & | 0 & -2 \\ 0 & -2 & -\begin{vmatrix} 1 & -2 & | 1 & 0 \\ 1 & -2 & -\begin{vmatrix} -1 & 3 & | 1 & 0 \\ 0 & -2 & | & 1 & -2 & -\begin{vmatrix} -1 & 3 & | 1 & 0 \\ 1 & 0 & | & 1 & 0 & -2 \end{bmatrix} \\ \begin{vmatrix} 3 & 2 & -\begin{vmatrix} -1 & 2 & | & -1 & 3 \\ -2 & 1 & -\begin{vmatrix} 0 & 1 & | & 0 & -2 \end{bmatrix} \end{bmatrix}$$

Expansión por Fila 1
$$|A| = (-1)(4) + (3)(1) + (2)(2) = 3$$

Expansión por fila
$$2|A| = (0)(6) + (-2)(0) + (1)(3) = 3$$

Expansión por Fila 3
$$|A| = (1)(7) + (0)(1) + (-2)(2) = 3$$

MATRIZ ADJUNTA

Sea A una matriz de nxn y sea C, la matriz de sus cofactores. Entonces, la adjunta de A, denotada por Adj (A) es la transpuesta de la matriz C de los cofactores.

$$Adj (A) = C' = \begin{bmatrix} c_{11} & c_{21} & \dots & c_{n1} \\ c_{12} & c_{22} & \dots & c_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1n} & c_{2n} & \dots & c_{nn} \end{bmatrix}$$

Ejemplo:

$$A = \begin{bmatrix} -1 & 3 & 2 \\ 0 & -2 & 1 \\ 1 & 0 & -2 \end{bmatrix} \qquad C = \begin{bmatrix} 4 & 1 & 2 \\ 6 & 0 & 3 \\ 7 & 1 & 2 \end{bmatrix} \qquad Adj \ A = \begin{bmatrix} 4 & 6 & 7 \\ 1 & 0 & 1 \\ 2 & 3 & 2 \end{bmatrix}$$

$$C = \begin{bmatrix} 4 & 1 & 2 \\ 6 & 0 & 3 \\ 7 & 1 & 2 \end{bmatrix}$$

$$Adj \ A = \begin{bmatrix} 4 & 6 & 7 \\ 1 & 0 & 1 \\ 2 & 3 & 2 \end{bmatrix}$$

orcicios

MATRIZ ADJUNTA: Ejercicios

Sea
$$A = \begin{bmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & 0 & 1 \end{bmatrix}$$
, Entonces $C = \begin{bmatrix} -1 & 5 & 4 \\ -2 & -4 & 8 \\ 5 & 3 & -6 \end{bmatrix}$,
$$Adj (A) = \begin{bmatrix} -1 & -2 & 5 \\ 5 & -4 & 3 \\ 4 & 8 & -6 \end{bmatrix}$$

Calcular la adjunta de las siguientes matrices.

$$\mathsf{B} = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & -1 \\ 3 & 5 & 7 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & -4 & 1 \end{bmatrix}$$

1. Determinante de la transpuesta

Si A es cualquier matriz cuadrada, entonces:

$$det(A) = det(A^{t})$$

Sea
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & 4 \\ 0 & -2 & 5 \end{pmatrix}$$
. Entonces $A^{T} = \begin{pmatrix} 1 & 3 & 0 \\ -1 & 1 & -2 \\ 2 & 4 & 5 \end{pmatrix}$
$$|A| = |A^{T}| = 16.$$

2. Si B se obtiene INTERCAMBIANDO dos filas de A, entonces el determinante cambia de signo:

 $\det B = - \det A$

(OPERACIÓN ELEMENTAL 1)

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1h} \\ a_{21} & a_{22} & \cdots & a_{2h} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ih} \\ a_{i+1,1} & a_{i+1,2} & \cdots & a_{i+1,h} \\ \vdots & \vdots & & \vdots \\ a_{h1} & a_{h2} & \cdots & a_{hh} \end{pmatrix} \quad B = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1h} \\ a_{21} & a_{22} & \cdots & a_{2h} \\ \vdots & \vdots & & \vdots \\ a_{i+1,1} & a_{i+1,2} & \cdots & a_{i+1,h} \\ a_{i1} & a_{i2} & \cdots & a_{ih} \\ \vdots & \vdots & & \vdots \\ a_{h1} & a_{h2} & \cdots & a_{hh} \end{pmatrix}$$

3. Si B se obtiene MULTIPLICANDO una fila de A por el escalar c, entonces el determinante queda multiplicado por c. $\det B = c \pmod{A}$

(OPERACIÓN ELEMENTAL 2)

$$|B| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1h} \\ a_{21} & a_{22} & \cdots & a_{2h} \\ \vdots & \vdots & & \vdots \\ ca_{i1} & ca_{i2} & \cdots & ca_{ih} \\ \vdots & \vdots & & \vdots \\ a_{h1} & a_{h2} & \cdots & a_{hh} \end{vmatrix} = c \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1h} \\ a_{21} & a_{22} & \cdots & a_{2h} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ih} \\ \vdots & \vdots & & \vdots \\ a_{h1} & a_{h2} & \cdots & a_{hh} \end{vmatrix} = c |A|$$

4. Si B se obtiene sumando a una fila de A un múltiplo de otra fila de A, entonces el determinante no se altera det B = det A

(OPERACIÓN ELEMENTAL 3)

Sea
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & 4 \\ 0 & -2 & 5 \end{pmatrix}$$
. $B = \begin{pmatrix} 0 & -2 & 5 \\ 3 & 1 & 4 \\ 1 & -1 & 2 \end{pmatrix}$. $C = \begin{pmatrix} -1 & 1 & 2 \\ 1 & 3 & 4 \\ -2 & 0 & 5 \end{pmatrix}$.

 $\det A = 16 \text{ y } \det B = \det C = -16.$

5. Determinante de una matriz triangular

El determinante de una matriz triangular está dado por el producto de los elementos de su diagonal.

det	$\begin{bmatrix} a_{11} \\ 0 \\ 0 \end{bmatrix}$	$a_{12} \\ a_{22} \\ 0$	$a_{13} \ a_{23} \ a_{33}$	•••	a_{1n} a_{2n} a_{3n}
	· 0	· O	O	0	• • •

$$=a_{11}a_{22}a_{33}...a_{nn}$$

6. Determinante de la inversa

Si A es no singular, entonces $det(A) \neq 0$, y:

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

Es decir una matriz tiene inversa si su determinante es diferente de cero.

Si el determinante de una matriz es cero, la matriz no tiene inversa.

MATRIZ INVERSA CON DETERMINANTES

Fórmula de la inversa de una matriz invertible. Sea A una matriz de $n \times n$ con det $(A) \neq 0$. Entonces

$$A^{-1} = \frac{1}{\det A} adj (A)$$

Ejemplo:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}; \quad \det A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -2; \quad C = \begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}$$

$$Adj(A) = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \qquad A^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$$

MATRIZ INVERSA: Ejercicios

Encontrar las inversas de las siguientes matrices

$$B = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & -1 \\ 3 & 5 & 7 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & -1 \\ 3 & 5 & 7 \end{bmatrix} \qquad B^{-1} = \frac{1}{3} \begin{bmatrix} 12 & -13 & -7 \\ -3 & 5 & 2 \\ -3 & 2 & 2 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & -4 & 1 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \\ 4 & -4 & 1 \end{bmatrix} \qquad D^{-1} = \frac{1}{2} \begin{bmatrix} 7 & -6 & 5 \\ 5 & -4 & 3 \\ -8 & 8 & -6 \end{bmatrix}$$

REGLA DE CRAMER

Cada incógnita de un sistema de ecuaciones lineales puede expresarse como la razón de dos determinantes con denominador D y con numerador obtenido a partir de D, al reemplazar la columna de coeficientes de la incógnita en cuestión por las constantes independientes

$$b_1, b_2, ..., b_n$$
.
 $x_1 = \frac{\det(A_1)}{\det(A)}, \quad x_2 = \frac{\det(A_2)}{\det(A)}, ..., \quad x_n = \frac{\det(A_n)}{\det(A)}$

$$x_{1} = \frac{\begin{vmatrix} b_{1} & a_{12} & \dots & a_{1n} \\ b_{2} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n} & a_{n2} & \dots & a_{nn} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}}$$

REGLA DE CRAMER

Encontrar la solución del siguiente sistema de ecuaciones

$$8x+5y = 2$$

 $2x-4y = -10$

$$\begin{vmatrix} 8 & 5 \\ 2 & -4 \end{vmatrix} = -32 - 10 = -42$$

$$x = \frac{\begin{vmatrix} 2 & 5 \\ -10 & -4 \end{vmatrix}}{-42} = \frac{-8 - (-50)}{-42} = \frac{42}{-42} = -1$$

$$y = \frac{\begin{vmatrix} 8 & 2 \\ 2 & -10 \end{vmatrix}}{-42} = \frac{-80 - 4}{-42} = \frac{|-84|}{-42} = 2$$

BIBLIOGRAFIA

- David Poole (2004) Álgebra Lineal. Math Thomsom.
 Traducción. México
- Fernando Puerta Sales (1981) Álgebra Lineal. Universidad Pública de Barcelona. 1ª impresión. España
- Gareth Williams (2002) Álgebra Lineal. Mc Graw Hill.
 Traducción. México
- Jesús Rojo (2001) Álgebra Lineal. Mc Graw Hill. Primera edición. España
- Rafael Bru, Joan Josep Climent (2004) Álgebra Lineal.
 Alfaomega. Segunda edición. México
- Stanley I. Grossman (1996) Álgebra Lineal. Mc Graw Hill.
 Quinta edición. México
- Steven J. Leon (2006) Lineal Álgebra with Applicactions.
 Pearson Prentice Hall. Séptima edición. USA

FIN DE LA PRESENTACION