ПРИНЦИПИ ЦИФРОВОГО ПРЕДСТАВЛЕННЯ ТА ОПРАЦЮВАННЯ СИГНАЛІВ

- 1. Переваги цифрового опрацювання сигналів та сфери його застосування.
- 2. Основні типи сигналів. Приклади та властивості дискретних сигналів.
- 3. Спектри аналогових і дискретних сигналів.
- 4. Зв'язок між аналоговими і дискретними сигналами. Відновлення аналогових сигналів.

Переваги цифрового опрацювання сигналів

- цифровим компонентам притаманна висока надійність, низьке енергоспоживання та матеріалоємність, а, відповідно, низька вартість;
- цифрові системи можуть базуватися на принципах програмування, а відповідно бути адаптивними і легко реконфігуруватися;
- цифрові пристрої мало чуттєві до параметрів навколишнього середовища;
- цифрові сигнали просто і компактно зберігати в незмінному вигляді протягом необмеженого часу;
- цифрові алгоритми легко переносяться з обладнання одного виробника на обладнання іншого.

Сфери застосування цифрового опрацювання сигналів

Телекомунікації	Військове застосування	Компьютерна електроніка	Автомобільна електроніка
МультиплексориТранскодери	◆Радіолокація◆Радіонавігація	◆Розпізнавання і синтез мови	◆Адаптивне керування двигуном
 Ехокомпенсатори Цифрові АТС Тональний набір Вокодери Сотовий зв'язок 	Секретний зв'язокКерування ракетамиПридушення завад	◆Звукові карти◆Сервоконтроль оптичних накопичувачів◆ЗD графіка	 ◆Активна підвіска ◆Контроль витрат палива ◆Глобальне супутникове позиціонування
Інструментальні засоби контролю	Промислова електроніка	Побутова електроніка	Біомедицина
 ◆Спектральний аналіз ◆Контроль положенн- ня і швидкості ◆Стиснення інформації 	 Робототехніка Розпізнавання образів Керування двигунами 	 ◆Цифрова аудіо- і відеоапаратура ◆Цифрове радіо і телебачення ◆Цифрові 	♦Ультразвукова діагностика•Карти електроенцефалограми мозку•Аналіз
		відеокамери і фотоапарати	електрокардіограм

Основні типи сигналів

Узагальнена структура системи ЦОС

Основні типи сигналів

Послідовність операцій аналогово-цифрового перетворення

Основні типи сигналів

Приклади дискретних сигналів

Спектри дискретних сигналів

$$X(e^{j\omega T}) = \Phi \left\{ x(nT) \right\} = \sum_{n=0}^{\infty} x(nT) e^{-j\omega nT};$$

$$x(nT) = \Phi^{-1} \left\{ X(e^{j\omega T}) \right\} = \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} X(e^{j\omega nT}) d\omega;$$

$$|X'(e^{j\omega T})|$$

$$|X'(e^{j\omega T})|$$

$$|X'(e^{j\omega T})|$$

$$|X''(e^{j\omega T})|$$

Зв'язок між аналоговими і дискретними сигналами

$$x_a(t) = \sum_{n=-\infty}^{\infty} x(nT) \frac{\sin \omega_0(t-nT)}{\omega_0(t-nT)},$$

$$X(e^{j\omega T}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_a(j(\omega + k\omega_{\pi}))$$