Case - Data Scientist Plusoft

Agenda:

1 - Contexto:

2 - Desafio:

3 - Desenvolvimento da Solução:

4 - Conclusão e Demonstração:

5 - Próximos passos:

1 - Contexto:

Elaborar estratégia de entrada de multinacional varejista do ramo de supermercados no mercado brasileiro, com base nos dados disponíveis.

2 - Desafio:

- Classificação dos municípios brasileiros em grupos.
- Classificar a entrada de um novo município entre os grupos já criados.
- Quais grupos de municípios devem ser a porta de entrada no país e porque.

3- Desenvolvimento da Solução:

Metodologia CRISP-DM

- 3.1: Análise preliminar da base de dados
- 3.2: Criação de features
- 3.3: Utilização de algoritmo de Machine Learning para identificação dos grupos
- 3.4: Análise exploratória dos dados
- 3.5: Preparação dos dados
- 3.6: Seleção de Features
- 3.7: Aplicação do algoritmo de ML
- 3.8: Deploy do Modelo

3.1 Análise preliminar da base de dados:

Características da base de dados:

- Quantidade de municípios: 5507
- 25 features relacionadas a:
 - Natalidade
 - Alfabetização
 - População
 - Desenvolvimento sócio-econômico

	Α	В	С	D	E	F
	Código	Município	Área (km²)	Densidade demográfica, 2000	Distância à capital (km)	Esperança de vida ao nascer, 2000
1						
2	355030 São P		1528,5	6808,1	0	,
3	330455 Rio de		1264,2		0	
4	292740 Salvad		709,5	3440,3	0	,
5	310620 Belo I		331,9	6718	0	70,52
6	230440 Fortal		313,8	6814	0	69,63
7	530010 Brasíli		5822,1	350,9	0	70,37
8	410690 Curitik		430,9	3682,8	0	71,57
9	261160 Recife		218,7	6501,8	0	68,62
10	130260 Manai		11458,5	122,5	0	67,65
11	431490 Porto	•	496,1	2741,2	0	71,48
12	150140 Belém	•	1070,1	1196	0	70,5
13	520870 Goiân		743		0	70,06
14	351880 Guaru		317,9	3369,9	14,11985556	69,27
15	350950 Camp		797,6	1213,5	83,5023372	
16	330350 Nova I	•	559,4	1636,3	29,58690144	67,99
17	330490 São G	-	251,3	3540,9	17,88699208	
18	211130 São L		831,7	1043,3	0	69,19
19	270430 Macei	-	512,8	1553,9	0	65,03
20	330170 Duque		465,7	1655,3	16,80624065	
21	221100 Teresi	ina	1679,8	425,2	0	69,06
22	240810 Natal)d- d- C	169,9	4175,5	17.70404004	68,78
23	354870 Sa0 B	Bernardo do Campo	407,1	1720,5	17,76101981	69,93

3.2 Criação de Features:

Criação de 4 Features:

- Receita da população disponível pra gasto com mercado: gasto médio mensal do brasileiro com itens adquiridos em supermercados: 21,81%
- <u>Latitude e Longitude dos municípios(1</u>
 <u>coluna para cada)</u>: para ver impactos
 com relação a posição geográfica
- <u>Crescimento Populacional de 1991 a 200</u>: para avaliar em quais aspectos um alto crescimento ou um baixo crescimento podem afetar

TABELA 1

Evolução do índice de peso no consumo final das famílias, por setor (Em %)

2000	2005	2009
7,29	7,73	7,56
12,40	13,19	12,85
6,62	6,06	6,40
5,44	5,45	5,24
2,41	2,67	2,64
2,12	2,13	2,22
	7,29 12,40 6,62 5,44 2,41	7,29 7,73 12,40 13,19 6,62 6,06 5,44 5,45 2,41 2,67

Alimentos in natura: 7,29% + Alimentos industrializados: 12,40% + Sabões e artigos de limpeza: 2,12 = 21,81% df2['receita_pop_mercado_2000'] = (df2['População total, 2000'] * df2['Renda per Capita, 2000']) * 0.22

df2['cresc_popu_1991_2000'] = (df2['População total, 2000'] - df2['População total, 1991']) / df2['População total, 1991']

3.3 Algoritmo de ML para clusterização preliminar:

Algoritmo utilizado: KMeans

Métrica: Silhouette Score

Para K = 6 -> SS = 0.87.

Como para k = 6, ainda temos uma alta acurácia, utilizaremos esse valor para a separação dos grupos.

3.3 Algoritmo de ML para clusterização preliminar:

Análise dos cluster: Silhouette Score

- Um dos grupos possui uma grande quantidade de municípios (cluster verde)
- Pelo 'Average Silhouette Score', também podemos observar que nesse cluster é aonde temos elementos dos grupos mais definidos.
- Mesmo para os grupos pequenos, podemos observar que alguns pontos ainda não foram completamente isolados dos outros grupos (retângulo azul).

3.4 Análise exploratória dos dados (EDA):

<u>Teste de Hipóteses</u>:

- H1: A renda per Capita é bem distribuída pela população total.
- <u>H1 Falso</u>: a Renda per Capita está muito concentrada em uma pequena parcela da população.

3.4 Análise exploratória dos dados (EDA):

<u>Teste de Hipóteses</u>:

- H2: Municípios com maior crescimento populacional (1991-2000), apresentam melhor Renda per Capita.
- H2 Falso: alguns municípios que apresentaram queda no crescimento(1991-2000), tem Renda per Capita maior do que municípios que obtiveram crescimento.

3.4 Análise exploratória dos dados (EDA):

Teste de Hipóteses:

- H3: Municípios mais distantes da capital possuem Renda per Capita menor.
- <u>H3 Verdadeiro</u>: quanto maior a distância em relação a capital, a Renda per Capita tende a ser menor.

3.5 Preparação dos dados:

- Ao utilizar técnicas de normalização (StandardScale, MinMaxScaler) a projeção dos dados após aplicar o algoritmo fica melhor, porém nas áreas de interseção dos grupos, não fica muito claro as premissas de separação.
- A padronização será aplicada na próxima rodada do CRISP-DM.
- O agrupamento dos clusters na imagem ao lado, só foi possível utilizando uma biblioteca de projeção de dados de alta dimensionalidade, chamada "umap".

3.6 Seleção de features:

 Foram retiradas as 5 features relacionadas a população. Elas apresentam forte correlação entre si (>= 0.98%), e a seção 3.2, já foi criada uma feature visando avaliar crescimento populacional.

- <u>Features retiradas</u>:

- 'População de 25 anos ou mais de idade, 1991',
- 'População de 25 anos ou mais de idade, 2000',
- 'População de 65 anos ou mais de idade, 1991',
- 'População de 65 anos ou mais de idade, 2000',
- 'População total, 1991'

3.7 Aplicação do Algoritmo de Machnie Learning:

- Algoritmo utilizado: KMeans
- Expectativa ao rodar um modelo de clusterização:

- Como desde a primeira rodada para achar o valor de K, a base de dados já estava limpa, o KMeans continua sendo uma boa opção.

Realidade:

3.8 Deploy do Modelo:

- O modelo foi disponibilizado em produção, via Heroku. Segue link de acesso:
- https://plusoft-app.herokuapp.com

Bem vindo ao case de Análise da Plusoft

Escolha abaixo os valores do novo município:

5.00 5.00

0 33.00

4.0 Conclusão e Demonstração

- A estratégia de entrada no mercado brasileiro deve seguir a seguinte ordem:

- 1° Grupo: 5

- 2° Grupo: 3

- 3° Grupo: 2

- 4° Grupo: 0

- 5° Grupo: 4

- 6° Grupo: 1

	cluster	numero_de_municipios	População total, 2000	perc_populacao, 2000	receita_pop_mercado_2000	IDHM_medio
0	0	67	18691596	11.008061	1.365543e+09	0.803343
1	1	5135	72808636	42.879265	2.562848e+09	0.692341
2	2	30	19118581	11.259526	1.631235e+09	0.818600
3	3	9	15307394	9.014999	1.680808e+09	0.830667
4	4	264	27580807	16.243193	1.714149e+09	0.789943
5	5	2	16292156	9.594956	2.169294e+09	0.841500

Premissas adotadas

Junção de 3 fatores:

- Atingir o máximo de pessoas em uma quantidade menor de municípios.
- Renda per Capita mais elevada, para maiores gastos em itens de supermercado.
- IDHM alto, visando manter o negócio no longo prazo.

	cluster	numero_de_municipios	População total, 2000	perc_populacao, 2000	receita_pop_mercado_2000	IDHM_medio
0	0	67	18691596	11.008061	1.365543e+09	0.803343
1	1	5135	72808636	42.879265	2.562848e+09	0.692341
2	2	30	19118581	11.259526	1.631235e+09	0.818600
3	3	9	15307394	9.014999	1.680808e+09	0.830667
4	4	264	27580807	16.243193	1.714149e+09	0.789943
5	5	2	16292156	9.594956	2.169294e+09	0.841500

1° Grupo de entrada: Grupo 5

- Municípios : São Paulo (SP) e Rio de Janeiro(RJ)
- Com a entrada apenas nesses 2 munícipios, atingimos um total de 9,59% da população total.
- A 2° maior receita/mês para compras disponível dos grupos.
- Maior IDHM médio dos grupos.

	cluster	numero_de_municipios	População total, 2000	perc_populacao, 2000	receita_pop_mercado_2000	IDHM_medio
0	0	67	18691596	11.008061	1.365543e+09	0.803343
1	1	5135	72808636	42.879265	2.562848e+09	0.692341
2	2	30	19118581	11.259526	1.631235e+09	0.818600
3	3	9	15307394	9.014999	1.680808e+09	0.830667
4	4	264	27580807	16.243193	1.714149e+09	0.789943
5	5	2	16292156	9.594956	2.169294e+09	0.841500

2° Grupo de entrada: Grupo 3

- Municípios : Com a entrada nesses 9 munícipios , atingimos um total de 9,01% da população total.
- Em média R\$186,576 milhões/mês por município de receita prevista para itens de supermercado.
- 2° maior IDHM médio dos grupos.

	cluster	numero_de_municipios	População total, 2000	perc_populacao, 2000	receita_pop_mercado_2000	IDHM_medio
0	0	67	18691596	11.008061	1.365543e+09	0.803343
1	1	5135	72808636	42.879265	2.562848e+09	0.692341
2	2	30	19118581	11.259526	1.631235e+09	0.818600
3	3	9	15307394	9.014999	1.680808e+09	0.830667
4	4	264	27580807	16.243193	1.714149e+09	0.789943
5	5	2	16292156	9.594956	2.169294e+09	0.841500

3° Grupo de entrada: Grupo 2

- Municípios : Com a entrada nesses 30 munícipios , atingimos um total de 11,25% da população total.
- Em média R\$54,374 milhões/mês por município de receita prevista para itens de supermercado.
- 3° maior IDHM médio dos grupos.

	cluster	numero_de_municipios	População total, 2000	perc_populacao, 2000	receita_pop_mercado_2000	IDHM_medio
0	0	67	18691596	11.008061	1.365543e+09	0.803343
1	1	5135	72808636	42.879265	2.562848e+09	0.692341
2	2	30	19118581	11.259526	1.631235e+09	0.818600
3	3	9	15307394	9.014999	1.680808e+09	0.830667
4	4	264	27580807	16.243193	1.714149e+09	0.789943
5	5	2	16292156	9.594956	2.169294e+09	0.841500

Para os demais grupos: 0, 1 e 4

- Como o número de municípios começa a aumentar muito, a estratégia será:
- Posicionar as lojas em municípios estratégicos, seguindo as premissas adotadas e não tão distantes da respectiva capital.

	cluster	numero_de_municipios	População total, 2000	perc_populacao, 2000	receita_pop_mercado_2000	IDHM_medio
0	0	67	18691596	11.008061	1.365543e+09	0.803343
1	1	5135	72808636	42.879265	2.562848e+09	0.692341
2	2	30	19118581	11.259526	1.631235e+09	0.818600
3	3	9	15307394	9.014999	1.680808e+09	0.830667
4	4	264	27580807	16.243193	1.714149e+09	0.789943
5	5	2	16292156	9.594956	2.169294e+09	0.841500

5 Próximos Passos:

- Estratégia de realocação das lojas dos grupos 0, 1 e 4.
- Padronização das features.
- Rodar algoritmo "Boruta" para melhor seleção de features.
- Tunagem-Fina de hiperparâmetros.

Obrigado!

Referências:

- http://repositorio.ipea.gov.br/bitstream/11058/6779/1/TD 2209.pdf
- https://servicodados.ibge.gov.br/api/docs/localidades

