

Листок 1. Свойства отображений и операций. Алгебраические системы

Обязательный минимум. Задачи 1, 6-8 должен решить каждый студент. Они являются необходимым условием для закрытия листка 1. Для будущей «тройки» достаточно решить их.

Залог успеха. Задачи 2-3, 9-11 служат залогом успеха в познании алгебры. Владение техникой решения этих задач говорит о хорошем уровне освоения материала и открывает двери к хорошей оценке за семестр.

Для mex, κmo хочет nomsнселее, добавлены задачи 4-5, 12-15. Тем, кто хочет закрыть алгебру на оценку «отлично», необходимо уметь решать такие чисто теоретические задачи.

- 1. Определите, является ли бинарное отношение φ отображением. Если да проверьте свойства (инъективность, сюръективность, биективность). Все ответы необходимо аргументировать.
 - (a) $\varphi \subset \mathbb{R} \times \mathbb{R}$, $\varphi = \{(x, y) \mid y = x^2\}$,
 - (b) $\varphi \subset [0; +\infty) \times (-\infty; +\infty), \quad \varphi = \{(x, y) \mid y = x^2\},\$
 - (c) $\varphi \subset [0; +\infty) \times [0; +\infty)$, $\varphi = \{(x, y) \mid y = x^2\}$,
 - (d) $\varphi \subset [0;1] \times [0;1], \quad \varphi = \{(x,y) \mid y = x^2\},\$
 - (e) $\varphi \subset [-1;1] \times [-1;0], \quad \varphi = \{(x,y) \mid x^2 + y^2 = 1\},$
 - $({\bf f}) \ \varphi \subset [-1;0] \times [-1;1], \quad \varphi = \{(x,y) \mid x^2 + y^2 = 1\},$
 - (g) $\varphi \subset [-1; 0] \times [-1; 0], \quad \varphi = \{(x, y) \mid x^2 + y^2 = 1\},\$
- 2. Пусть отображения $\varphi:A\to B$ и $f:B\to C$ инъективны. Докажите, что $f\varphi$ инъективно.
- 3. Пусть отображения $\varphi:A\to B$ и $f:B\to C$ сюръективны. Докажите, что $f\varphi$ сюръективно.
- 4. Пусть $\varphi:A\to B$ и $f:B\to C$ биективны. Докажите, что

$$(f\varphi)^{-1} = \varphi^{-1}f^{-1}.$$

- 5. Пусть $\varphi: A \to B, A_1, A_2 \subset A$. Докажите, что
 - (a) $\varphi(A_1 \cup A_2) = \varphi(A_1) \cup \varphi(A_2)$,
 - (b) $\varphi(A_1 \cap A_2) \subset \varphi(A_1) \cap \varphi(A_2)$.

Приведите пример, когда $\varphi(A_1 \cap A_2) \neq \varphi(A_1) \cap \varphi(A_2)$.

- 6. Укажите, какие из следующих операций на множестве всех векторов пространства являются алгебраическими:
 - (а) сложение векторов,
 - (b) умножение вектора на 3,
 - (с) скалярное произведение векторов.
- 7. Пусть на множестве \mathbb{R}^+ определено действие \circ . Какие из вариантов соответствуют алгебраическим операциям? Проверьте свойства (коммутативность, ассоциативность, существование нейтрального и обратного).
 - (a) $x \circ y = \frac{x+y}{2}$,
 - (b) $x \circ y = xy^2$,
 - (c) $x \circ y = x^y$,
 - (d) $x \circ y = \max\{x, y\}.$
- 8. Докажите, что $\langle \mathbb{N}; \circ \rangle$ является полугруппой, где $x \circ y = \text{HOД}(x,y)$ для любых $x,y \in \mathbb{N}$.
- 9. Булеаном множества A называется множество всех подмножеств множества A. Обозначается булеан A через $\mathcal{P}(A)$. Т.е.

$$\mathcal{P}(A) = \{X \mid X \subset A\}.$$

Является ли $\langle \mathcal{P}(A); \cap \rangle$ полугруппой? А моноидом? Группой?

10. Пусть X — множество, $X \neq \emptyset$. Через X_{φ} обозначим множество всех биективных отображений из X в X. Докажите, что $\langle X_{\varphi}; \circ \rangle$ является группой, где \circ — композиция отображений.

- 11. Пусть на плоскости выбрана точка O. Через D(O) обозначим множество всех поворотов плоскости вокруг точки O. Докажите, что $\langle D(O); \circ \rangle$ является группой, где \circ последовательное применение поворотов.
- 12. Докажите, что в любой группе существует единственный нейтральный элемент.
- 13. Докажите, что для каждого элемента группы существует единственный обратный элемент.
- 14. Пусть $\langle G;\circ \rangle$ группа. Докажите, что для любых $a,b\in G$ уравнение $a\circ x=b$ имеет единственный корень.
- 15. Докажите, что в группе $(G; \circ)$ операция \circ сократима.