COMBINATIONAL ICs

- REPRESENTATION OF BINARY VARIABLES AT THE PHYSICAL LEVEL
- BASIC SWITCH, STRUCTURE OF GATES AND THEIR OPERATION
- REALIZATION OF GATES USING CMOS CIRCUITS
- CHARACTERISTICS OF CIRCUITS: LOAD FACTORS AND FANOUT FACTORS, PROPAGATION DELAYS, TRANSITION TIMES, AND EFFECT OF LOAD
- THREE-STATE GATES (DRIVERS) AND BUSES
- NOISE AND NOISE MARGINS
- EVOLUTION OF ICs. VLSI CIRCUIT-LEVEL DESIGN STYLES
- PACKAGING LEVELS: CHIPS, BOARDS AND CABINETS.

- REPRESENTATION OF 0 AND 1 BY ELECTRICAL SIGNALS
 - VOLTAGES
 - CURRENTS
 - ELECTRICAL CHARGES
- REALIZATION OF CIRCUITS THAT OPERATE ON THESE SIGNALS TO IMPLEMENT DESIRED SWITCHING FUNCTIONS

TYPICAL VALUES FOR A 3.3V CMOS TECHNOLOGY

 V_{Hmax} 3.3V V_{Lmax} 0.8V

 V_{Hmin} 2.0V V_{Lmin} 0.0V

Figure 3.1: VOLTAGE REGIONS.

POSITIVE LOGIC

$$V_H \longleftrightarrow \mathbf{1}$$

$$V_L \longleftrightarrow 0$$

NEGATIVE LOGIC

$$V_H \longleftrightarrow \mathbf{0}$$

$$V_L \longleftrightarrow \mathbf{1}$$

Input		Output	Positive		Negative			
voltages		voltage	logic		logic			
\overline{x}	\overline{y}	z	x	\overline{y}	z	x	\overline{y}	z
V_L	V_L	V_L	0	0	0	1	1	1
V_L	V_H	V_L	0	1	0	1	0	1
V_H	V_L	V_L	1	0	0	0	1	1
V_H	V_H	V_H	1	1	1	0	0	0
			f	=	AND	f	=	OR

SWITCH AND MOS TRANSISTORS

N-TYPE:

OPEN (OFF) if $V_{CA} < V_{Tn}$ CLOSED (ON) if $V_{CA} > V_{Tn}$ V_{Tn} – THE THRESHOLD VOLTAGE FOR N-TYPE SWITCH

P-TYPE:

OPEN (OFF) if $V_{BC} < V_{Tp}$ closed (ON) if $V_{BC} > V_{Tp}$ V_{Tp} – THE THRESHOLD VOLTAGE FOR P-TYPE SWITCH

Figure 3.3: a) N-TYPE AND P-TYPE CONTROLLED SWITCHES. b) nmos AND pmos TRANSISTORS.

COMPLEMENTARY MOS CIRCUIT

Figure 3.4: CIRCUIT, I/O CHARACTERISTIC, AND SYMBOL

$$V_{BC} = V_{DD} - v_{in} \ (V_{DD} = V_{BC} + v_{in})$$

- 1. $v_{in} < V_{Tn} \implies V_{CA} < V_{Tn}$ \implies N-SWITCH OPEN
 If $V_{DD} > V_{Tn} + V_{Tp}$ then $V_{BC} > V_{Tp}$ \implies P-SWITCH CLOSED AND $v_{out} = V_{DD}$
- 2. $v_{in} > V_{DD} V_{Tp} \implies V_{BC} < V_{Tp}$ $\implies \text{ P-SWITCH IS OPEN}$ If $V_{DD} > V_{Tn} + V_{Tp}$ then $V_{CA} > V_{Tn}$ $\implies \text{ N-SWITCH IS CLOSED AND } v_{out} = 0$

CIRCUIT OPERATES AS NOT IF

$$V_{Lmax} < V_{Tn}, \quad V_{Hmin} > V_{DD} - V_{Tp}$$
$$V_{DD} > V_{Tn} + V_{Tp}$$

 $\ensuremath{\mathrm{Figure}}\xspace$ 3.5: CIRCUITS FOR NAND and NOR GATES.

		Circuit 1	Circuit 2
\boldsymbol{x}	y	z	z
0	0	1	1
0	1	1	0
1	0	1	0
1	1	0	0

Figure 3.6: CIRCUITS FOR AND and OR GATES.

AND-OR-INVERT (AOI)

OR-AND-INVERT (OAI)

Figure 3.7: COMPLEX GATES.

Figure 3.7: EXAMPLES OF COMPLEX GATES.

C	n-switch	p-switch	\boldsymbol{z}
\overline{O}	off	off	Z
1	on	on	$\boldsymbol{\mathcal{X}}$

Z - high impedance state

(a)

 $\label{eq:Figure 3.8: a) TRANSMISSION GATE}$

Figure 3.8: b) xor GATE

y	TG1	TG2	z
0	ON	OFF	x
1	OFF	ON	x'

Figure 3.8: c) 2-INPUT MUX.

$$z = \text{MUX}(x_1, x_0, s) = x_1 s + x_0 s'$$

$$\begin{vmatrix} s & TG1 & TG2 & z \\ 0 & \text{ON OFF} & x_0 \\ 1 & \text{OFF ON} & x_1 \end{vmatrix}$$

Figure 3.9: a) PROPAGATION DELAY. b) RISE AND FALL TIMES.

Figure 3.10: A GATE NETWORK

 $\label{eq:Figure 3.11: EQUIVALENT CIRCUIT FOR GATE INPUT.}$

Figure 3.12: EFFECT OF LOAD ON PROPAGATION DELAY.

Figure 3.13: OUTPUT LOAD OF GATE 1.

Figure 3.14: NOISE MARGINS.

NOISE MARGINS: EXAMPLE

LEVELS			NOISE MARGIN
HIGH	$V_{Hmin}({ m OUT})$	2.4 V	0.4 V
	$V_{Hmin}({ m IN})$		
LOW	$V_{Lmax}(ext{OUT})$	0.4 V	0.4 V
	$V_{Lmax}({ m IN})$	0.8 V	

 $\label{eq:figure 3.15} {\it Figure 3.15:} \ \ {\it GATE NETWORK FOR SELECTING A MODULE OUTPUT}.$

 $\operatorname{Figure}\ 3.16:\ c)$ EXAMPLE OF USE OF THREE-STATE DRIVERS

Figure 3.16: a) THREE-STATE GATE: SYMBOL AND FUNCTION. b) CIRCUIT AND OPERATION.

Table 3.2: Characteristics of a family of CMOS gates

Gate	Fan-	Propagation delays		Load factor	Size
type	in	t_{pLH}	t_{pHL}		
		[ns]	[ns]	[standard	[equiv.
				loads]	gates]
AND	2	0.15 + 0.037L	0.16 + 0.017L	1.0	2
AND	3	0.20 + 0.038L	0.18 + 0.018L	1.0	2
AND	4	0.28 + 0.039L	0.21 + 0.019L	1.0	3
OR	2	0.12 + 0.037L	0.20 + 0.019L	1.0	2
OR	3	0.12 + 0.038L	0.34 + 0.022L	1.0	2
OR	4	0.13 + 0.038L	0.45 + 0.025L	1.0	3
NOT		0.02 + 0.038L	0.05 + 0.017L	1.0	1
NAND	2	0.05 + 0.038L	0.08 + 0.027L	1.0	1
NAND	3	0.07 + 0.038L	0.09 + 0.039L	1.0	2
NAND	4	0.10 + 0.037L	0.12 + 0.051L	1.0	2
NAND		0.21 + 0.038L	0.34 + 0.019L	1.0	4
NAND	6	0.24 + 0.037L	0.36 + 0.019L	1.0	5
NAND		0.24 + 0.038L	0.42 + 0.019L	1.0	6
NOR	2	0.06 + 0.075L	0.07 + 0.016L	1.0	1
NOR	3	0.16 + 0.111L	0.08 + 0.017L	1.0	2
NOR	4	0.23 + 0.149L	0.08 + 0.017L	1.0	4
NOR	5	0.38 + 0.038L	0.23 + 0.018L	1.0	4
NOR	6	0.46 + 0.037L	0.24 + 0.018L	1.0	5
NOR		0.54 + 0.038L	0.23 + 0.018L	1.0	6
XOR	2*	0.30 + 0.036L	0.30 + 0.021L	1.1	3
		0.16 + 0.036L	0.15 + 0.020L	2.0	
XOR	3*	0.50 + 0.038L	0.49 + 0.027L	1.1	6
		0.28 + 0.039L	0.27 + 0.027L	2.4	
		0.19 + 0.036L	0.17 + 0.025L	2.1	
XNOR	2*	0.30 + 0.036L	0.30 + 0.021L	1.1	3
		0.16 + 0.036L	0.15 + 0.020L	2.0	
XNOR	3*	0.50 + 0.038L	0.49 + 0.027L	1.1	6
		0.28 + 0.039L	0.27 + 0.027L	2.3	
		0.19 + 0.036L	0.17 + 0.025L	1.3	
2-OR/NA	ND2 4	0.17 + 0.075L	0.10 + 0.028L	1.0	2
Introduction to Digital Systems 2-AND/No	OR2 4	0.17 + 0.075L	0.10 + 0.028L	1.0	2

LEVELS OF INTEGRATION

Level of	Technology	Number of	Typical functions
Integration		transistors	
SSI	bipolar	≈ 10	Individual gates, flip-flops
MSI	MOS, bipolar	10-100	Adders, counters, registers
LSI	MOS, bipolar	100-10,000	ROMs, PLAs, small memories
VLSI	MOS, bipolar	> 10,000	large memories, microprocessors,
			complex systems

FULL-CUSTOM SEMI-CUSTOM (standard cells) GATE-ARRAY

Figure 3.17: EXAMPLE OF GATE ARRAY.

Figure 3.18: SILICON WAFER, CHIP AND INTEGRATED CIRCUIT PACKAGE

Figure 3.19: PACKAGING LEVELS

IBM 3081 central processing unit:

Level of	Number of	Size
Packaging	Components	$[mm \times mm]$
Module	100–133 chips	90×90
PC Board	6-9 modules	600×700
Subsystem (processor)	3 boards	
System (CPU)	2 subsystems	