# Introduction to 2018 Statistics Methods Forum Data Challenge

Eric Polley

June 27th, 2018

#### Introduction

The focus this year is the estimation and evaluation of a prognostic risk score with a right censored outcome of interest.

The dataset is from a clinical trial in Non-Small Cell lung cancer with N=398 patients. The patients were randomly split into training (N=300) and a blinded test set (N=98).

Details for the Data Challenge are available on Github: https://github.com/ecpolley/Data\_Challenge\_2018

# Outline

The data challenge will use the next 2 Statistical Methods Forum meetings

- June 27th: Introduction to the data challenge
- ▶ July 25th: Group Discussion and Q&A
- ► August 20th 5:00pm local: Team submission deadline
- August 22nd: Final Results presentation

# Team Science

- Participants are encouraged to work in teams  $(N \in (1, 2, ..., 10))$
- Opportunity to learn from each other and work with people outside usual team
- ▶ Data is publicly available, so is available outside Mayo
- If you would like help forming a team, email Eric Polley or Kristin Mara
- ► Teams are responsible for creating a team name, and may submit up to 3 estimates, with the last submission being the official one
- ▶ If you are participating, please let us know in case we have any Data Challenge announcements

- ► Two datasets will be provided for the training and test sets
- Clinical dataset with baseline variables and outcome
- Each patient had a baseline Lung CT scan, single slice compiled in an (512, 512, N) Array

```
# link to data on GitHub page if not available
if(file.exists("Training_clinical.csv")) {
  dat <- read.csv("Training_clinical.csv")</pre>
} else {
  urlfile <- "https://raw.githubusercontent.com/ecpolley/</pre>
    Data Challenge 2018/master/Training clinical.csv"
  download.file(urlfile, destfile = "Training clinical.csv")
  dat <- read.csv("Data.csv")</pre>
dim(dat)
```

```
## [1] 300 12
```

# setup

```
library(arsenal)
library(survival)
library(survminer)
## Loading required package: ggplot2
## Loading required package: ggpubr
## Loading required package: magrittr
```

|                             | Overall (N=300) |
|-----------------------------|-----------------|
| age                         |                 |
| Mean (SD)                   | 68.261 (10.250) |
| Range                       | 33.685 - 91.704 |
| as.factor(Clinical.T.Stage) |                 |
| 1                           | 57 (19.0%)      |
| 2                           | 111 (37.0%)     |
| 3                           | 43 (14.3%)      |
| 4                           | 89 (29.7%)      |
| as.factor(Clinical.N.Stage) | ` '             |
| 0                           | 123 (41.0%)     |
| 1                           | 18 (6.0%)       |
| 2                           | 103 (34.3%)     |
| 3                           | 54 (18.0%)      |
| 4                           | 2 (0.7%)        |
| Clinical.M.Stage            | ,               |
| Mean (SD)                   | 0.000 (0.000)   |
| Range                       | 0.000 - 0.000   |
| Overall.Stage               |                 |
| ı                           | 60 (20.0%)      |
| II                          | 32 (10.7%)      |
| Illa                        | 84 (28.0%)      |
| IIIb                        | 124 (41.3%)     |
| Histology                   | , ,             |
| N-Miss                      | 24              |
| adenocarcinoma              | 36 (13.0%)      |
| large cell                  | 85 (30.8%)      |
| nos                         | 42 (15.2%)      |
| squamous cell carcinoma     | 113 (40.9%)     |
| gender                      | , ,             |
| female                      | 95 (31.7%)      |
| male                        | 205 (68.3%)     |



```
load("DataChallengeDataTrain_array.RData")
dim(IMAGES_array_train)
```

```
## [1] 512 512 300
```

```
image(IMAGES_array_train[, , 4])
```



#### Goal

- ▶ The primary goal is to develop a prognostic risk score
- ▶ How to evaluate on the held out set?

# **Evaluation**

# Primary goal:

- ► Each each patient in test set, provide predicted risk score
- Evaluate discrimination by estimating concordance with observed survival times
- Each team can email me (Polley.Eric@Mayo.edu) with text file including patient ID and predicted risk score

# **Evaluation**

# Secondary goal:

- Evaluate calibration of predicted probability of survival at specific time points
- ► For each patient in test set, provide predicted probability of survival at 1, 2, and 3 years post treatment
- ▶ 365, 730, and 1095 days
- ► For each time point, split test data into quintiles based on predicted probability. Compare to Kaplan-Meier estimate.

