Computer Vision and Artificial Intelligence for robots by Carbon Robotics

ROBOTICS

M. EN C. RUBÉN ALVAREZ

Código QR

https://github.com/bioruben/TalentLand2019

– Richard Feynmann

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP LEARNING

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

Frank Rosenblatt (1928-1971) Mark 1 Perceptron in 1960

¿Porqué se necesitan grandes cantidades de datos para el entrenamiento?

Aplicaciones

Aplicaciones

Aplicaciones

Ejemplo

Video

model: overfits on training data

world: new data

model:

¿Por qué?

Redes Neuronales Convolucionales (CNN)

Redes Neuronales Convolucionales (CNN)

¿Qué es la convolución?

¿Qué es la convolución?

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\eta)g(t - \eta) d\eta$$

Arquitectura de una CNN

- Convolutional Layer
- Pooling Layer
- ► Flatten Layer
- Activation Layer
- ► Fully Connected Layer

...

Activation Map CNN

Pooling Layer

Fully Connected Layer

Deep Learning

¿Y cómo se aplica la convolución dentro de una CNN?

$$C_p^1(i,j) = \sigma \left(\sum_{u=-2}^2 \sum_{v=-2}^2 I(i-u,j-v) k_{1,p}^1(u,v) + b_p^1 \right)$$

¿Cuántas veces se repetirá este proceso?

CNN

Ejercicio

Setup Yolo

Y Reinforcement Learning

The Bellman Equation

$$V(s) = \max_{a} \left(R(s, a) + \gamma \sum_{s'} P(s, a, s') V(s') \right)$$

Entonces...

Accuracy

Accuracy

		Predicción del Modelo:
	Positivo	Negativo
Verdad: Positivo	TP	FN
Verdad: Negativo	FP	TN

Accuracy

$$ext{Precision} = rac{tp}{tp+fp}$$

$$ext{Accuracy} = rac{tp+tn}{tp+tn+fp+fn}$$

$$ext{Recall} = rac{tp}{tp+fn}$$

$$F1 = 2 * \frac{\text{precision} * \text{recall}}{\text{precision} + \text{recall}}$$

¿Cuál es la base de todos los sistemas de Machine Learning?

Ejercicio

Clasificación

Cross Validation

Cross Validation

¿Es infalible?

(a) Original Image

(b) Explaining Electric guitar (c) Explaining Acoustic guitar

(d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google's Inception neural network. The top 3 classes predicted are "Electric Guitar" (p = 0.32), "Acoustic guitar" (p = 0.24) and "Labrador" (p = 0.21)

(b) Explanation

Figure 11: Raw data and explanation of a bad model's prediction in the "Husky vs Wolf" task.

Some say Loki is best MCU villian till date

Some say its Ultron

But deep down we all know that

deep learning won't lead us to AGI

Entonces... ¿Las ventajas?...

En mi opinión personal

- 1. Percepción y reconstrucción 3D.
- 2. Procesamiento de imágenes.
- 3. Machine-Deep Learning en Computer Vision

¿Qué necesito saber?

- Signal Processing
- Image Processing
- Óptica Geométrica
- Óptica Electromagnética
- Background matemático
- Data Science
- ...

Y Modelos 3D

"Those who can imagine anything, can create the impossible."

-Alan Turing

¿Preguntas?

https://carbon.ai/talentland/

¡Gracias por su atención!

- M. en C. Rodolfo Rubén Alvarez González
- bio.rubenalvarez@gmail.com