EXERCICE

1. Pour tout u réel la dérivée de la fonction $h_u: v->h(u,v)$ est nulle : $\forall u \in \mathbb{R}$, $\exists K \in \mathbb{R}$, $h_u(v)=K$. On note alors h_1 la fonction u->K. On a bien $h(u,v)=h_1(u).h_1$ devant être C^1 car h l'est. La réciproque est évidente.

$$\left(h \in C^{1}(\mathbb{R}^{2}, \mathbb{R}) \text{ et } \frac{\partial h}{\partial v} = \widetilde{0}\right) \Longleftrightarrow \left(\exists h_{1} \in C^{1}(\mathbb{R}, \mathbb{R}), \forall (u, v) \in \mathbb{R}^{2}, h(x, y) = h_{1}(x)\right)$$

2.

1.

- Φ est de classe C^1 sur \mathbb{R}^2 , car ses fonctions coordonnées $(u,v) \mapsto ue^v$ et $(u,v) \mapsto e^{-v}$ sont de classe C^1 sur \mathbb{R}^2 , en tant que produit de fonctions de classe C^1 sur \mathbb{R}^2 .
- Φ est à valeurs dans Ω : pour tout couple (u, v) de réels ue^v est un réel et e^{-v} est un réel strictement positif.
- Φ est surjective : $\forall (x,y) \in \Omega, (x = ue^v, y = e^{-v}) \iff (v = -\ln y, u = xy)$. donc le couple (x,y) de Ω admet un unique antécédent $(u = xy, -\ln(y))$ dans \mathbb{R}^2
- 2. D'Après ce qui précède, on a: $\Phi^{-1}(x,y) = (xy, -\ln y)$ qui est de classe C^1 sur Ω , car ses fonctions coordonnées associées $\Phi_1^{-1}: (x,y) \mapsto xy$ et $\Phi_2: (x,y) \mapsto -\ln y$ sont de classe C^1 sur Ω , en tant que produit et composé de fonctions de classe C^1 sur Ω .

 Φ est un C^1 difféomorphisme de \mathbb{R}^2 sur Ω

3.

1. $f^* = f \circ \Phi$ est de classe C^1 sur \mathbb{R}^2 par composition de Φ qui est de classe C^1 sur \mathbb{R}^2 et f est de classe C^1 sur $\Phi(\mathbb{R}^2) = \Omega$. On a les relations suivantes:

$$\begin{split} \frac{\partial f^*}{\partial u}(u,v) &= \frac{\partial x}{\partial u}(u,v).\frac{\partial f}{\partial x}(ue^v,e^{-v}) + \frac{\partial y}{\partial u}(u,v).\frac{\partial f}{\partial y}(ue^v,e^{-v}) = e^v\frac{\partial f}{\partial x}(ue^v,e^{-v}) \\ \frac{\partial f^*}{\partial v}(u,v) &= \frac{\partial x}{\partial v}(u,v).\frac{\partial f}{\partial x}(ue^v,e^{-v}) + \frac{\partial y}{\partial v}(u,v).\frac{\partial f}{\partial y}(ue^v,e^{-v}) = ue^v\frac{\partial f}{\partial x}(ue^v,e^{-v}) - e^{-v}\frac{\partial f}{\partial y}(ue^v,e^{-v}) \end{split}$$

2. D'Après la question précédente, on a:

$$\frac{\partial f^*}{\partial v}(u,v) = ue^v \frac{\partial f}{\partial x}(ue^v, e^{-v}) - e^{-v} \frac{\partial f}{\partial u}(ue^v, e^{-v}) = x \frac{\partial f}{\partial x}(x,y) - y \frac{\partial f}{\partial u}(x,y) = 0,$$

donc l'équation équivaut à l'existence d'une fonction F C^1 sur \mathbb{R} telle que $\forall (u,v) \in \mathbb{R}^2 : f^*(u,v) = F(u)$ et par suite $f(x,y) = f \circ \Phi(u,v) = f^*(u,v) = F(u) = F(xy)$

$$\left[\left(\forall (x,y) \in \Omega, x \frac{\partial f}{\partial x}(x,y) - y \cdot \frac{\partial f}{\partial y}(x,y) = 0 \right) \Longleftrightarrow \left(\exists F \in C^1(\mathbb{R}, \mathbb{R}), \forall (x,y) \in \Omega, f(x,y) = F(xy) \right) \right]$$

4.

- 1. Les application linéaires de \mathbb{R}^2 vers \mathbb{R} s'écrivent sous la forme $g(x,y) = \alpha x + \beta y$, donc $x \frac{\partial g}{\partial x} y \frac{\partial g}{\partial y} = ax + by \Longleftrightarrow \alpha x \beta y = ax + by$, On peut donc prendre g(x,y) = ax by.
- 2. f est alors solution de l'équation $x\frac{\partial f}{\partial x}-y\frac{\partial f}{\partial y}=ax+by$ si et seulement si f-g est solution de $x\frac{\partial f}{\partial x}-y\frac{\partial f}{\partial y}=0$, Il existe donc $F\in C^1(\mathbb{R},\mathbb{R})$ telle que (f-g)(x,y)=F(xy)

$$\left(\forall (x,y) \in \Omega, x \frac{\partial f}{\partial x}(x,y) - y \cdot \frac{\partial f}{\partial y}(x,y) = ax + by\right) \Longleftrightarrow \left(\exists F \in C^1(\mathbb{R},\mathbb{R}), \forall (x,y) \in \Omega, f(x,y) = ax - by + F(xy)\right)$$

1.

1.

• La fonction est continue sur $]0, +\infty[$ positive si $b \ge a$, négative sinon..

• sur]0,1]: on sait que $e^t=_{t->0}1+t+o(t)$, donc $\lim_{t\to 0}\left(\frac{e^{-at}-e^{-bt}}{t}\right)=b-a$. La fonction se prolonge par continuité en 0. Elle est intégrable sur [0,1]

 $\bullet \ \text{Sur} \ [1,+\infty[\ . \ \text{comme} \ a>0 \ \text{et} \ b>0 \ \lim_{+\infty} \left\{ t^2 \left(\frac{e^{-at}-e^{-bt}}{t} \right) \right\} = 0 \ . \ \text{La fonction est donc intégrable sur} \ [1,+\infty[$

2.

• I(a,b) = -I(b,a) est évident.

• Si on fait le changement de variable : u = ta qui est C^1 bijectif de \mathbb{R}^+ sur lui même (car a > 0) on obtient ::

$$I(a,b) = \int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt = \int_0^{+\infty} \frac{e^{-u} - e^{-\frac{b}{a}u}}{u/a} \frac{du}{a} = I\left(1, \frac{b}{a}\right)$$

Si on pose pour $x \ge 1$ et t > 0: $f(x,t) = \frac{e^{-t} - e^{-xt}}{t}$ 3.

• $\forall t \in \mathbb{R}^+$, $x \mapsto \frac{e^{-t} - e^{-xt}}{t}$ est continue sur $[1, +\infty[$

• $\forall x \geq 1$, $t \mapsto \frac{e^{-t} - e^{-xt}}{t}$ est continue intégrable sur \mathbb{R}^{+*} . (c'est I(1,x))

• On a domination sur tout segment $[a, b] \subset [1, +\infty[::$

$$\forall x \in [a, b] \subset [1, +\infty[\forall t \in \mathbb{R}^{+*} \left| \frac{e^{-t} - e^{-xt}}{t} \right| = \frac{e^{-t} - e^{-xt}}{t} \le \frac{e^{-t} - e^{-bt}}{t}$$

qui est continue, intégrable sur $]0, +\infty[$,

 φ est continue sur $[1, +\infty]$

• On a déjà les hypothèses de continuité. • De plus $\forall t \in \mathbb{R}^+$, $x \mapsto \frac{e^{-t} - e^{-xt}}{t}$ est C^1 sur $[1, +\infty[$ et $\frac{\partial f}{\partial x}(x,t) = e^{-xt}]$

• $\forall x \geq 1$, $t \mapsto e^{-xt}$ est continue intégrable sur \mathbb{R}^+ donc sur \mathbb{R}^{+*} . (fonction de référence)

• On a domination sur tout segment $[a, b] \subset [1, +\infty[$:

$$\forall x \in [a, b] \subset [1, +\infty[\forall t \in \mathbb{R}^{+*} \left| \frac{\partial f}{\partial x}(x, t) \right| = e^{-xt} \le e^{-at}$$

continue, intégrable sur $[0, +\infty[$.

• Donc φ est de classe C^1 sur $[1, +\infty[$, avec $\varphi'(x) = \int_{1}^{+\infty} e^{-xt} dt = \frac{1}{x}$.

3. On a: $\varphi'(x) = \frac{1}{x}$ continue sur $[1, +\infty[$, donc $\varphi(x) = \ln x + K$, or $\varphi(1) = 0$, d'où K = 0 et donc $\forall x \ge 1$, $\varphi(x) = \ln x$

4. Soit $(a,b) \in (\mathbb{R}^{+*})^2$

• Si $b \ge a$, alors $x = \frac{b}{a} \ge 1$, donc $I(a,b) = I(1,\frac{b}{a}) = \varphi\left(\frac{b}{a}\right) = \ln\left(\frac{b}{a}\right)$.

• Si $b \le a$, alors $x = \frac{a}{b} \ge 1$, donc:

$$I(a,b) = -I(b,a) = -I(1,\frac{a}{b}) = -\varphi\left(\frac{a}{b}\right) = -\ln\left(\frac{a}{b}\right) = \ln\left(\frac{b}{a}\right).$$

• Conclusion:

$$\forall (a,b) \in (\mathbb{R}^{+*})^2, I(a,b) = \ln\left(\frac{b}{a}\right)$$

2.

1. La fonction $t \mapsto \frac{\ln(1+t)}{t}$ est continue positive sur]0,1] et se prolonge par continuité en 0 donc

$$t\mapsto \frac{\ln(1+t)}{t}$$
 est intégrable sur $]0,1]$

- 2. On cherche à intégrer $\sum_{0}^{+\infty} (-x)^n = \frac{1}{1+x}$
 - Si $x \in [0,1[$, les deux théorèmes d'intégration termes à termes sur un segment s'appliquent. Mais pas si x=1 il n'y a pas CVN ni convergence de $\sum \int_0^1 |f_n|$
 - $\bullet\,$ Si x=1 les 5/2 peuvent s'en sortir avec le bon théorème de continuité des séries entières
 - démonstration générale : On intègre $\sum_{k=0}^{n} (-x)^k = \frac{1-(-x)^{n+1}}{1+x}$:

$$\sum_{k=0}^{n} \frac{(-1)^k x^{k+1}}{k+1} = \ln(1+x) + (-1)^n \int_0^x \frac{t^{n+1}}{1+t} dt$$

Or sur [0,1] $0 \le \frac{1}{t+1} \le 1$ et donc $0 \le \int_0^x \frac{t^{n+1}}{1+t} dt \le \frac{x^{n+2}}{(n+2)} \le \frac{1}{n+2}$, et donc par encadrement $\lim \left(\int_0^x \frac{t^{n+1}}{1+t} dt\right) = 0$. La somme partielle tend vers l'intégrale.

$$\forall x \in [0,1], \sum_{k=0}^{+\infty} \frac{(-1)^k x^{k+1}}{k+1} = \ln(1+x)$$

- 3. On veut intégrer termes à termes la séries $\sum_{k=0}^{+\infty} \frac{(-1)^k x^k}{k+1} = \frac{\ln(1+x)}{x}$ sur l'intervalle]0,1]. On pose pour $x \in]0,1]$ et $n \in \mathbb{N}$, $f_k(x) = \frac{(-1)^k x^k}{k+1}$ et $f(x) = \frac{\ln(1+x)}{x}$
 - \bullet Les fonctions f_k sont continues sur le segment [0,1] donc y sont intégrables , ainsi que sur]0,1]
 - $\sum_{k=0}^{+\infty} f_k$ converge simplement sur]0,1] vers f qui continue (et même intégrable) sur]0,1]
 - $\sum_{k=0}^{\infty} \int_{0}^{1} |f_{k}| = \sum_{k=0}^{\infty} \int_{0}^{1} \frac{x^{k} dx}{k+1} = \sum_{k=0}^{\infty} \frac{1}{(k+1)^{2}}$ est bien une série convergente.
 - donc

$$I = \int_0^1 \frac{\ln(1+x)}{x} dx = \sum_{k=0}^{+\infty} (-1)^k \int_{\grave{a}}^1 \frac{x^k dx}{k+1} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(k+1)^2} = \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{(k)^2}$$

• Or $\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$. On fait la différence des expressions pour garder les termes pairs:

$$\frac{\pi^2}{6} - I = 2\sum_{\text{k pair}} \frac{1}{k^2} = \frac{1}{2} \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{12} \text{ en posant } n = 2k$$

d'où:

$$\int_0^1 \frac{\ln(1+x)}{x} dx = \frac{\pi^2}{12}$$

1.

2. On a $\psi(f)(x) = \frac{g(x)}{x}$ pour x > 0, donc ψ est continue sur \mathbb{R}_+^* .

De plus $\psi(f)(x) = \frac{g(x)}{x} = \frac{g(x) - g(0)}{x - 0}$ tend vers $g'(0) = f(0) = \psi(f)(0)$ si x tend vers 0. donc $\psi(f)$ est continue sur \mathbb{R}^+ , autrement dit $\overline{\psi(f) \in E}$.

- 3. le résultat est évident si x=0 : on a toujours $0 \le \sqrt{f(0)} = \sqrt{f(0)}$
 - Et pour x > 0: $\sqrt{f} \ge 0$ donc $\psi(\sqrt{f})(x) = \frac{1}{x} \int_0^x \sqrt{f(t)} dt \ge 0$.

D'autre part: en utilisant l'inégalité de Cauchy-Schwarz pour 1 et \sqrt{f} , on aura:

$$\int_0^x \sqrt{f(t)}dt \le \sqrt{\int_0^x dt} \sqrt{\int_0^x f(t)dt} = \sqrt{x} \sqrt{\int_0^x f(t)dt}$$

d'où en divisant par x:

$$0 \le \psi(\sqrt{f}) \le \sqrt{\psi(f)}$$

• On aura égalité, s'il y a égalité dans l'inégalité de Cauchy-Schwarz pour 1 et \sqrt{f} , donc s'ils sont proportionnels, c'est à dire f est constante.

Réciproquement si f=C (constante) $\psi(f)=C$ et l'égalité est vérifiée

$$\psi(\sqrt{f}) = \sqrt{\psi(f)}$$
 si et seulement si f est constante

et $0 = \psi(\sqrt{f})$ si et seulement si f est nulle.

- 2.
- 1. Il est clair que $\psi(f + \lambda g) = \psi(f) + \lambda \psi(g)$, aussi bien pour $x \neq 0$ que pour x = 0, donc ψ est linéaire. D'autre part d'après II.1.b) $\forall f \in E$, $\psi(f) \in E$, donc ψ est un endomorphisme de E.
- 2.

$$f \in \text{Ker } (\psi) \Longrightarrow \forall x > 0, \int_0^x f(t)dt = 0 \Longrightarrow \forall x > 0, g'(x) = f(x) = 0,$$

Mais f est aussi continue en 0 donc f(0) = 0 et donc f = 0 (sur \mathbb{R}^+)

Donc

 ψ est injective

- 3. D'Après 1.1) on peut affirmer que $\psi(f)$ est de classe C^1 sur \mathbb{R}_+^* , donc toute fonction de E qui ne l'est pas ne peut pas être dans l'image, . F(x) = |x - a| est un exemple de fonction de E qui n'est pas dans l'image si a > 0

$$\psi$$
 n'est pas surjective

- 3.
- 1. Il s'agit d'une équation différentielle linéaire du premier ordre, les coefficients étant continues, et celui de f'(x)n'ayant pas de racine \mathbb{R}^{+*} . Donc la solution est: :

$$f(x) = Ke^{-\int_0^x \frac{\lambda - 1}{\lambda} t dt} = Ke^{\frac{1 - \lambda}{\lambda} \ln x} = Kx^{\frac{1 - \lambda}{\lambda}}.$$

- 2. f est prolongeable en 0^+ si et seulement si $\lim_{x\to} f(x)$ est finie c'est à dire si et seulement si $\frac{1-\lambda}{\lambda} \ge 0$ et donc si et seulement si $0 < \lambda \le 1$.
- 4.
- 1. 0 ne peut pas être une valeur propre de ψ car le noyau est réduit à $\widetilde{0}$

- 2. Soit $f \in E$ non nulle telle que $\psi(f) = \mu f$, donc $f = \frac{1}{\mu} \psi(f)$ car $\mu \neq 0$ De plus d'après II.1.1) on dire que f est de classe C^1 sur \mathbb{R}^*_+ , comme quotient (à dénominateur non nul) de fonctions C^1 donc f aussi.
- 3. Soit μ valeur propre de ψ et f vecteur propre associé, donc $\psi(f)(x) = \mu f(x)$, d'où $\int_0^x f(t)dt = \mu x f(x)$, en dérivant cette égalité (on sait que f est C^1) on obtient: $\mu x f'(x) + (\mu 1)f(x) = 0$, dont les solutions sont: $f(x) = Kx^{\frac{1-\mu}{\mu}}$, dérivables sur $]0, +\infty[$. Comme on cherche des éléments de E on doit avoir un prolongement par continuité en 0 et donc $\mu \in]0, 1]$.

Réciproquement si $f(x) = Kx^{\frac{1-\lambda}{\lambda}}$ avec $\lambda \in]0,1[$ on vérifie que

$$\psi(f)(x) = \begin{cases} 0 = \lambda f(0) \text{ si } x = 0\\ \frac{1}{x} K \int_0^x K t^{\frac{1-\lambda}{\lambda}} dt = \frac{1}{1 + \frac{1-\lambda}{\lambda}} K x^{\frac{1-\lambda}{\lambda} + 1 - 1} \lambda f(x) \text{ si } x \neq 0 \end{cases}$$

idem si $\mu = 1$, seule la valeur en 0 change.

$$[Sp(\psi)=]0,1]$$
, et $\forall \lambda \in]0,1]$, $E_{\lambda}(\psi)$ est la droite $\mathrm{Vect}(x->x^{\frac{1-\lambda}{\lambda}})$

Troisième partie

- 1.
- 1. fg est continue sur \mathbb{R}^+ , et $|fg| \leq \frac{|f^2| + |g^2|}{2}$ assure l'intégrabilité de fg par majoration par une fonction intégrable (combinaison linéaire de deux fonctions intégrables)

 Donc

$$fg$$
 est intégrable sur \mathbb{R}^+

- 2. On a alors un sous espace vectoriel de ${\cal E}$:
 - ullet on a un sous ensemble de E
 - non vide : l'application nulle est de carré intégrable, donc appartient à E_2 ,
 - Si $(f,g) \in E_2$ et $\lambda \in \mathbb{R}$, alors: $(f + \lambda g)^2 = f^2 + 2\lambda fg + g^2$ est intégrable car f^2 , fg, g^2 sont toutes intégrables, donc $f + \lambda g \in E_2$ E_2 est un sous-espace vectoriel de E.

3.

- La fonction fg étant intégrable sur \mathbb{R}^+ , $\int_0^{+\infty} f(t)g(t)dt$ est bien un réel.
- Symétrie évidente : $(f,g) = \int_0^{+\infty} f(t)g(t)dt = \int_0^{+\infty} g(t)f(t)dt = (g,f).$
- linéarité à gauche : $(f + \lambda g, h) = (f, h) + \lambda(g, h)$, car l'intégrale est linéaire
- linéarité à droite par symétrie.
- définie positivité:

$$-> (f, f) = \int_0^{+\infty} f^2(t)dt \ge 0$$
 comme intégrale d'une fonction positive

$$->(f,f)=0 \Longrightarrow \int_0^{+\infty} f^2(t)dt=0 \Longrightarrow f^2=0$$
, car f^2 continue positive, donc $f=0$.

$$(f,g)$$
 - $> \int_0^{+\infty} f(t)g(t)dt$ est un produit scalaire sur E_2

- 2.
- 1. $\frac{g^2(t)}{t} = \frac{g(t)}{t}g(t)$ de limite f(0)g(0) = 0 d'après le **II.1.1** et la continuité de g .
- 2. $t- > \frac{g^2(t)}{t^2}$
 - \bullet est continue sur]0, b],

 \bullet intégrable sur [0,b] car prolongeable par continuité en 0

•
$$\int_0^b \psi(f)^2(t)dt = \int_0^b \frac{g^2(t)}{t^2}dt$$
, par définition de $\psi(f)$,

3. On fait une intégration par parties sur $[\varepsilon, b]$, avec $u = g^2(t)$, $v' = \frac{1}{t^2}$ fonctions C^1 sur l'intervalle:, avec u' = 2g'(t)g(t) et $v = -\frac{1}{t}$,:

$$\int_{\varepsilon}^{b} \frac{g^{2}(t)}{t^{2}} dt = \left[-\frac{g^{2}(t)}{t} \right]_{\varepsilon}^{b} + 2 \int_{\varepsilon}^{b} \frac{g'(t)g(t)}{t} dt$$
$$= \frac{g^{2}(\varepsilon)}{\varepsilon} - \frac{g^{2}(b)}{b} + 2 \int_{\varepsilon}^{b} \frac{g'(t)g(t)}{t} dt$$

• or g' = f et $\frac{g(t)}{t} = \psi(f)(t)$ donc :

$$\int_{\varepsilon}^{b} \frac{g^{2}(t)}{t^{2}} dt = \frac{g^{2}(\varepsilon)}{\varepsilon} - b\psi(f)(b) + 2 \int_{\varepsilon}^{b} f(t)\psi(f)(t) dt$$

si ε tend vers 0, la première intégrale à une limite (fonction intégrable sur]0,b]) la seconde aussi $(f.\psi(f))$ est continue sur le segment [0,b]) et $\frac{g^2(\varepsilon)}{\varepsilon}$ tend vers 0.

$$\int_{0}^{b} \psi(f)^{2}(t)dt = -b \left(\psi(f)(b)\right)^{2} + 2 \int_{0}^{b} f(t)\psi(f)(t)dt$$

4. b étant positif $b(\psi(f)(b))^2$ est positif et donc :

$$\int_{0}^{b} \psi(f)^{2}(t)dt \leq 2 \int_{0}^{b} f(t)\psi(f)(t)dt \leq 2 \sqrt{\int_{0}^{b} f^{2}(t)dt} \sqrt{\int_{0}^{b} \psi(f)^{2}(t)dt}$$

en appliquant Cauchy Schwarz.

5.

- si $\forall b, \int_0^b \psi(f)^2(t)dt = 0$ alors $\int_0^b \psi(f)^2(t)dt$ admet une limite nulle en $+\infty$
- sinon $\exists b_1 \int_0^{b_1} \psi(f)^2(t)dt > 0$ et donc pour $b > b_1$ on a $\int_0^b \psi(f)^2(t)dt > 0$ et on peut diviser par $\sqrt{\int_0^b \psi(f)^2(t)dt}$. La fonction $b - b > \int_0^b \psi(f)^2(t)dt$ est croissante (primitive d'une fonction positive) majorée par $4\int_0^{+\infty} f^2(t)dt$ admet une limite finie si b tend vers b = b

Dans les deux cas $\psi(f)$ est intégrable sur \mathbb{R}^+ . et $\int_0^{+\infty} \psi(f)^2(t) dt \le 4 \int_0^{+\infty} f^2(t) dt$. En prenant les racines carrées: $\overline{\psi(f) \in E_2}$ et $\|\psi(f)\| \le 2 \|f\|$

6. ψ_2 est donc lipschitzienne (de rapport 2) donc continue.

3.

1. On a d'après III.2.2 :

$$2\int_{0}^{x} f(t)\psi(f)(t)dt - \int_{0}^{x} \psi(f)^{2}(t)dt = x (\psi(f)(x))^{2}$$

donc $x(\psi(f)(x))^2$ admet une limite finie : $2\int_0^{+\infty} f(t)\psi(f)(t)dt - \int_0^{+\infty} \psi(f)^2(t)dt$ (la première intégrale converge d'après III.1.1 car f est dans E_2 par hypothèse et $\psi(f)$ d'après III.2.4)

Si la limite l était non nulle on aurait $(\psi(f)(x))^2 \sim_{+\infty} \frac{l}{x}$, ce qui contredit l'intégrabilité de $\psi(f)^2$ sur \mathbb{R}^+

$$\lim_{t \to \infty} \left(\left(\psi(f)(x) \right)^2 \right) = 0$$

2. On améliore le passage à la limite précédent : comme l=0

$$2\int_0^{+\infty} f(t)\psi(f)(t)dt = \int_0^{+\infty} \psi(f)^2(t)dt$$

et donc avec la notation du produit scalaire :

$$\langle \psi(f), \psi(f) \rangle = 2 \langle f, \psi(f) \rangle$$

4. On a:

$$\begin{aligned} ||\psi(f) - 2f||^2 &= \langle \psi(f) - 2f, \psi(f) - 2f \rangle = ||\psi(f)||^2 - 4 \langle \psi(f), f \rangle + 4||f||^2 \\ &= ||\psi(f)||^2 - 4||f||^2 \text{ d'après le calcul précédent} \\ &= 0 \text{ par l'hypothèse de la question} \end{aligned}$$

La norme est nulle, donc la fonction est nulle: $\psi(f) - 2f = 0$,

Si on suppose que f est non nulle 2 est valeur propre de ψ , absurde le spectre de ψ est [0,1]. (cf II.4.3)

$$\|\psi(f)\| = 2\|f\| \Longrightarrow f = \widetilde{0}$$

5.

1. $f_a^2(x) = e^{-2ax}$ est évidement intégrable sur \mathbb{R}^+ car a > 0 et $||f_a||^2 = \int_0^{+\infty} e^{-2ax} dx = \frac{1}{2a}$.

2.

$$\psi(f)(x) = \begin{cases} 1 \text{ pour } x = 0\\ \frac{1}{x} \int_0^x e^{-at} dt = \frac{1 - e^{-ax}}{ax} \text{ pour } x \neq 0 \end{cases}$$

On a donc en utilisant I.1.4 pour le calcul de l'intégrale :

$$\langle f_a, \psi(f_a) \rangle = \int_0^{+\infty} f_a(x) \psi(f_a)(x) dx = \frac{1}{a} \qquad \int_0^{+\infty} \frac{e^{-ax} - e^{-2ax}}{x} dx = \frac{1}{a} I(a, 2a) = \frac{\ln(2)}{a}$$

et d'après III.3. 2

$$\|\psi(f_a)\|^2 = 2\langle f_a, \psi(f_a)\rangle = \frac{2\ln(2)}{a}$$

et donc $\|\psi(f_a)\| = \sqrt{\frac{2\ln(2)}{a}}$

6.

1.

$$\psi(f)(x) = \begin{cases} 1 \text{ si } x = 0\\ \frac{1}{x} \int_0^x \frac{1}{1+t} dt = \frac{\ln(1+x)}{x} \text{ si } x \neq 0 \end{cases}$$

2.

- f^2 est continue sur $[0, +\infty[$
- $t^2 f^2(t)$ admet une limite finie en $+\infty$.
- donc f^2 est intégrable sur \mathbb{R}^+ , et donc $f \in E_2$.

$$\langle f | \psi(f) \rangle = \int_0^{+\infty} \frac{\ln(1+t)}{t(1+t)} dt = \int_0^1 \frac{\ln(1+t)}{t(1+t)} dt + \int_1^{+\infty} \frac{\ln(1+t)}{t(1+t)} dt$$

dans la seconde intégrale on pose $u = \frac{1}{t}$ changement de variable C^1 bijectif:

$$\int_{1}^{+\infty} \frac{\ln(1+t)}{t(1+t)} dt = \int_{0}^{1} \frac{\ln\left(\frac{1+u}{u}\right)}{1+u} du$$

or

$$\frac{\ln(1+t)}{t(1+t)} + \frac{\ln\left(\frac{1+t}{t}\right)}{1+t} = \left(\frac{1}{t(t+1)} + \frac{1}{t+1}\right)\ln(t+1) - \frac{1}{t+1}\ln(t) = \frac{\ln(t+1)}{t} - \frac{\ln(t)}{t+1}$$

et donc

$$\left| \langle f | \psi(f) \rangle = \int_0^1 \left\{ \frac{\ln(t+1)}{t} - \frac{\ln(t)}{t+1} \right\} dt \right|$$

3. une primitive de $\frac{\ln(1+t)}{t} + \frac{\ln t}{1+t}$ est $\ln t \ln(1+t)$. D'où :

$$\int_0^1 \left(\frac{\ln(1+t)}{t} + \frac{\ln t}{1+t} \right) dt = \lim_{t \to 1} \left(\ln t \ln(1+t) \right) - \lim_{t \to 1} \left(\ln t \ln(1+t) \right)$$

or $\ln\left(1+t\right)\sim_0 t$ donc $\lim_{t\to 1}\left(\ln t\ln(1+t)\right)=0$ et de même $\lim_{t\to 1}\left(\ln t\ln(1+t)\right)=0$ et donc :

$$\int_0^1 \left(\frac{\ln(1+t)}{t} + \frac{\ln t}{1+t} \right) dt$$

On a donc d'après $\mathbf{I.2.3}$:

$$\langle f|\psi(f)\rangle = \int_0^1 \left\{ \frac{\ln(t+1)}{t} - \frac{\ln(t)}{t+1} \right\} dt = 2 \int_0^1 \frac{\ln(1+t)}{t} dt = \frac{\pi^2}{6}$$

 ${\rm et\ donc}$

$$\|\psi(f)\|^2 = 2\langle f, \psi(f) \rangle = \frac{\pi^2}{3}$$
$$\|\psi(f)\| = \frac{\pi}{\sqrt{3}}$$