Lecture 18

SIMPLE HARMONIC MOTION DAMPED HARMONIC MOTION

Lecture 18

SIMPLE HARMONIC MOTION DAMPED HARMONIC MOTION

- Damped Oscillations
- Mathematical model
- Solution of the Damped Equation
- Analysis of Solution
- Energy and Q-factor

Energy is usually dissipated in most systems: resistance

Energy is usually dissipated in most systems: resistance
Amplitude of initial SHM

Energy is usually dissipated in most systems: resistance
Amplitude of initial SHM dies down.

Energy is usually dissipated in most systems: resistance
Amplitude of initial SHM dies down.

Energy is usually dissipated in most systems: resistance
Amplitude of initial SHM dies down.

Viscous resistance: $f \propto -\dot{x}$

Energy is usually dissipated in most systems: resistance
Amplitude of initial SHM dies down.

Viscous resistance: $f \propto -\dot{x}$

- Viscous drag thru a fluid
- Resistance in an electrical oscillator

$$f = -b\dot{x},$$

$$f = -b\dot{x}$$
, total force is $F = -kx - b\dot{x}$

$$f = -b\dot{x}$$
, total force is $F = -kx - b\dot{x}$

$$\therefore m\ddot{x} + kx + b\dot{x} = 0$$

$$f = -b\dot{x}$$
, total force is $F = -kx - b\dot{x}$

$$\therefore m\ddot{x} + kx + b\dot{x} = 0$$

Or,
$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = 0$$
 where $\gamma = \frac{b}{m}$, damping constant.

$$f = -b\dot{x}$$
, total force is $F = -kx - b\dot{x}$

$$\therefore m\ddot{x} + kx + b\dot{x} = 0$$

Or,
$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = 0$$
 where $\gamma = \frac{b}{m}$, damping constant.

Solution: Is it still oscillatory? Depends on the relative values of γ and ω_0 ! Let's use complex exponentials.

Simple Harmonic Motion Mathematical model 2/1

$$\ddot{z} + \gamma \dot{z} + \omega_0^2 z = 0.$$

$$\ddot{z} + \gamma \dot{z} + \omega_0^2 z = 0.$$

Since $f(t) = e^t$ has the property that $f = \dot{f} = \ddot{f}$...,

$$\ddot{z} + \gamma \dot{z} + \omega_0^2 z = 0.$$

Since $f(t)=e^t$ has the property that $f=\dot{f}=\ddot{f}...,$

Trial solution: $z = Ae^{\alpha t}$, where A, α , complex.

$$\ddot{z} + \gamma \dot{z} + \omega_0^2 z = 0.$$

Since $f(t)=e^t$ has the property that $f=\dot{f}=\ddot{f}...$,

Trial solution: $z = Ae^{\alpha t}$, where A, α , complex.

$$\implies \alpha^2 + \gamma \alpha + \omega_0^2 = 0,$$

$$\ddot{z} + \gamma \dot{z} + \omega_0^2 z = 0.$$

Since $f(t) = e^t$ has the property that $f = \dot{f} = \ddot{f}$...,

Trial solution: $z = Ae^{\alpha t}$, where A, α , complex.

$$\implies \alpha^2 + \gamma \alpha + \omega_0^2 = 0, \qquad \therefore \alpha = -\frac{\gamma}{2} \pm \frac{1}{2} \sqrt{\gamma^2 - 4\omega_0^2}.$$

$$\ddot{z} + \gamma \dot{z} + \omega_0^2 z = 0.$$

Since $f(t) = e^t$ has the property that $f = \dot{f} = \ddot{f}$...,

Trial solution: $z = Ae^{\alpha t}$, where A, α , complex.

$$\implies \alpha^2 + \gamma \alpha + \omega_0^2 = 0, \qquad \therefore \alpha = -\frac{\gamma}{2} \pm \frac{1}{2} \sqrt{\gamma^2 - 4\omega_0^2}.$$

$$\text{Let } \frac{1}{2} \sqrt{\gamma^2 - 4\omega_0^2} = \omega_0 \sqrt{\frac{\gamma^2}{4\omega_0^2} - 1} = \beta.$$

Two distinct solutions: $z(t) = \mathcal{A}e^{-\gamma t/2}e^{\beta t}$ or $\mathcal{B}e^{-\gamma t/2}e^{-\beta t}$.

$$\ddot{z} + \gamma \dot{z} + \omega_0^2 z = 0.$$

Since $f(t) = e^t$ has the property that $f = \dot{f} = \ddot{f}$...,

Trial solution: $z = Ae^{\alpha t}$, where A, α , complex.

$$\implies \alpha^2 + \gamma \alpha + \omega_0^2 = 0, \qquad \therefore \alpha = -\frac{\gamma}{2} \pm \frac{1}{2} \sqrt{\gamma^2 - 4\omega_0^2}.$$

$$\text{Let } \frac{1}{2} \sqrt{\gamma^2 - 4\omega_0^2} = \omega_0 \sqrt{\frac{\gamma^2}{4\omega_0^2} - 1} = \beta.$$

Two distinct solutions: $z(t)=\mathcal{A}e^{-\gamma t/2}e^{\beta t}$ or $\mathcal{B}e^{-\gamma t/2}e^{-\beta t}$.

In general,
$$z(t) = e^{-\gamma t/2} (Ae^{\beta t + i\delta_1} + Be^{-\beta t + i\delta_2})$$
.

$$\ddot{z} + \gamma \dot{z} + \omega_0^2 z = 0.$$

Since $f(t) = e^t$ has the property that $f = \dot{f} = \ddot{f}$...,

Trial solution: $z = Ae^{\alpha t}$, where A, α , complex.

$$\implies \alpha^2 + \gamma \alpha + \omega_0^2 = 0, \qquad \therefore \alpha = -\frac{\gamma}{2} \pm \frac{1}{2} \sqrt{\gamma^2 - 4\omega_0^2}.$$

$$\text{Let } \frac{1}{2} \sqrt{\gamma^2 - 4\omega_0^2} = \omega_0 \sqrt{\frac{\gamma^2}{4\omega_0^2} - 1} = \beta.$$

Two distinct solutions: $z(t) = \mathcal{A}e^{-\gamma t/2}e^{\beta t}$ or $\mathcal{B}e^{-\gamma t/2}e^{-\beta t}$.

In general,
$$z(t) = e^{-\gamma t/2} (Ae^{\beta t + i\delta_1} + Be^{-\beta t + i\delta_2})$$
.

Three cases: β can be real or imaginary or zero.

Case 1: small $\gamma < 2\omega_0$. We expect oscillations to persist...

Case 1: small $\gamma < 2\omega_0$. We expect oscillations to persist...

$$eta$$
 imaginary, $=i\omega_0\sqrt{1-rac{\gamma^2}{4\omega_0^2}}=i\omega_1$ (Say)

Case 1: small $\gamma < 2\omega_0$. We expect oscillations to persist...

$$eta$$
 imaginary, $=i\omega_0\sqrt{1-rac{\gamma^2}{4\omega_0^2}}=i\omega_1$ (Say)

Oscillatory solutions: $z(t) = e^{-\frac{\gamma t}{2}} (Ae^{i(\omega_1 t + \phi)} + Be^{-i(\omega_1 t + \phi)}).$

Case 1: small $\gamma < 2\omega_0$. We expect oscillations to persist...

$$eta$$
 imaginary, $=i\omega_0\sqrt{1-rac{\gamma^2}{4\omega_0^2}}=i\omega_1$ (Say)

Oscillatory solutions: $z(t)=e^{-\frac{\gamma t}{2}}(Ae^{i(\omega_1 t+\phi)}+Be^{-i(\omega_1 t+\phi)}).$

$$x(t) = A\cos(\omega_1 t + \phi), \quad \omega_1^2 = \omega_0^2 - \frac{\gamma^2}{4}.$$

Case 1: small $\gamma < 2\omega_0$. We expect oscillations to persist...

$$eta$$
 imaginary, $=i\omega_0\sqrt{1-rac{\gamma^2}{4\omega_0^2}}=i\omega_1$ (Say)

Oscillatory solutions: $z(t) = e^{-\frac{\gamma t}{2}} (Ae^{i(\omega_1 t + \phi)} + Be^{-i(\omega_1 t + \phi)}).$

$$x(t) = A\cos(\omega_1 t + \phi), \quad \omega_1^2 = \omega_0^2 - \frac{\gamma^2}{4}.$$

 $A \& \phi$: arbitrary constants determined by initial conditions.

Case 2: large $\gamma > 2\omega_0$: no oscillations since β is real.

Case 2: large $\gamma > 2\omega_0$: no oscillations since β is real.

$$x(t) = e^{-\gamma t/2} (Ae^{\beta t} + Be^{-\beta t}), \quad \beta^2 = \frac{\gamma^2}{4} - \omega_0^2.$$

Case 2: large $\gamma > 2\omega_0$: no oscillations since β is real.

$$x(t) = e^{-\gamma t/2} (Ae^{\beta t} + Be^{-\beta t}), \quad \beta^2 = \frac{\gamma^2}{4} - \omega_0^2.$$

Case 3: borderline $\gamma = 2\omega_0 \implies \beta = 0$.

$$z = Ae^{-\frac{\gamma}{2}t}.$$

Where is the second solution?

Case 2: large $\gamma > 2\omega_0$: no oscillations since β is real.

$$x(t) = e^{-\gamma t/2} (Ae^{\beta t} + Be^{-\beta t}), \quad \beta^2 = \frac{\gamma^2}{4} - \omega_0^2.$$

Case 3: borderline $\gamma = 2\omega_0 \implies \beta = 0$.

$$z = Ae^{-\frac{\gamma}{2}t}.$$

Where is the second solution?

Verify that $te^{-\frac{\gamma}{2}t}$ also satisfies the equation for this condition!

Case 2: large $\gamma > 2\omega_0$: no oscillations since β is real.

$$x(t) = e^{-\gamma t/2} (Ae^{\beta t} + Be^{-\beta t}), \quad \beta^2 = \frac{\gamma^2}{4} - \omega_0^2.$$

Case 3: borderline $\gamma = 2\omega_0 \implies \beta = 0$.

$$z = Ae^{-\frac{\gamma}{2}t}.$$

Where is the second solution?

Verify that $te^{-\frac{\gamma}{2}t}$ also satisfies the equation for this condition!

Critical damping solution:

$$x(t) = (A + Bt)e^{-\frac{\gamma}{2}t}.$$

Case 1: $\gamma < 2\omega_0$

Case 1:
$$\gamma < 2\omega_0$$

$$\omega_1=\sqrt{\omega_0^2-rac{\gamma^2}{4}}$$
, real:

Case 2: $\gamma>2\omega_0$

Case 2: $\gamma>2\omega_0$

 ω_1 imaginary

Case 2:
$$\gamma > 2\omega_0$$

$$\omega_1$$
 imaginary $=i\beta=i\sqrt{rac{\gamma^2}{4}-\omega_0^2}$

Case 2:
$$\gamma > 2\omega_0$$

$$\omega_1$$
 imaginary $=ieta=i\sqrt{rac{\gamma^2}{4}-\omega_0^2}$

$$x = Ae^{-(\gamma/2+\beta)t} + Be^{-(\gamma/2-\beta)t}.$$

Case 2:
$$\gamma > 2\omega_0$$

$$\omega_1$$
 imaginary $=ieta=i\sqrt{rac{\gamma^2}{4}-\omega_0^2}$

$$x = Ae^{-(\gamma/2+\beta)t} + Be^{-(\gamma/2-\beta)t}.$$

Case 2:
$$\gamma > 2\omega_0$$

$$\omega_1$$
 imaginary $=ieta=i\sqrt{rac{\gamma^2}{4}-\omega_0^2}$

$$x = Ae^{-(\gamma/2+\beta)t} + Be^{-(\gamma/2-\beta)t}.$$

If
$$x(0) = 0$$
,

Case 2: $\gamma > 2\omega_0$

$$\omega_1$$
 imaginary $=i\beta=i\sqrt{rac{\gamma^2}{4}-\omega_0^2}$

$$x = Ae^{-(\gamma/2+\beta)t} + Be^{-(\gamma/2-\beta)t}.$$

If
$$x(0) = 0$$
,

$$x(t) = \frac{A}{2}e^{-\gamma t/2}\sinh(\beta t/2)$$

Case 2: $\gamma > 2\omega_0$

$$\omega_1$$
 imaginary $=i\beta=i\sqrt{rac{\gamma^2}{4}-\omega_0^2}$

$$x = Ae^{-(\gamma/2+\beta)t} + Be^{-(\gamma/2-\beta)t}.$$

If
$$x(0) = A$$
,

Case 2: $\gamma > 2\omega_0$

$$\omega_1$$
 imaginary $=ieta=i\sqrt{rac{\gamma^2}{4}-\omega_0^2}$

$$x = Ae^{-(\gamma/2+\beta)t} + Be^{-(\gamma/2-\beta)t}.$$

If
$$x(0) = A$$
,

$$x(t) = \frac{A}{2}e^{-\gamma t/2}\cosh(\beta t/2)$$

Case 3:
$$\gamma=2\omega_0$$

Case 3:
$$\gamma=2\omega_0$$

$$\omega_1 = 0!$$

Case 3:
$$\gamma=2\omega_0$$

$$\omega_1 = 0!$$

$$x = (A + Bt)e^{-\gamma t/2}$$

Case 3:
$$\gamma = 2\omega_0$$

$$\omega_1 = 0!$$

$$x = (A + Bt)e^{-\gamma t/2}$$

Critically Damped

$$\omega_1 = 0!$$

$$x = (A + Bt)e^{-\gamma t/2}$$

Critically Damped

$$x(0) = A, \dot{x}(0) = B.$$

$$\omega_1 = 0!$$

$$x = (A + Bt)e^{-\gamma t/2}$$

Critically Damped

$$x(0) = A, \dot{x}(0) = B.$$

fastest return to equilibrium

Under-damped

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ り へ ○

Under-damped

< ロ ト 4 回 ト 4 重 ト 4 重 ト 9 Q (や)

Under-damped **Damped**

Under-damped

Damped

Critically damped

Under-damped
Damped
Critically damped
Over-damped

Amplitude falls as
$$A(t) = A_0 e^{-\gamma t/2}$$

$$\gamma \ll \omega_1$$
, and $\omega_1 \approx \omega_0$.

Amplitude falls as
$$A(t) = A_0 e^{-\gamma t/2}$$

$$\gamma \ll \omega_1$$
, and $\omega_1 \approx \omega_0$.

Amplitude falls as
$$A(t) = A_0 e^{-\gamma t/2}$$

Light damping: $\gamma \ll \omega_1$, and $\omega_1 \approx \omega_0$.

Simple Harmonic Motion

Amplitude falls as $A(t) = A_0 e^{-\gamma t/2}$

Light damping: $\gamma \ll \omega_1$, and $\omega_1 \approx \omega_0$.

$$E(t) = \frac{1}{2}kA(t)^2.$$

Exercise:

- Find the total energy of the lightly damped oscillator system and show that it can be written as $\frac{1}{2}kA^2e^{-\gamma t}$.
- Show that the energy loss rate $\frac{dE}{dt}$ is the rate of work done by the viscous force.

Simple Harmonic Motion Energy and Q-factor 11/

$$Quality = \frac{Energy \ stored}{Energy \ lost \ per \ radian}$$

$$\mbox{Quality} = \frac{\mbox{Energy stored}}{\mbox{Energy lost per radian}}$$

$$t_r = rac{T}{2\pi} = rac{1}{\omega_1}$$
 = time to oscillate thru 1 rad.

$$\mbox{Quality} = \frac{\mbox{Energy stored}}{\mbox{Energy lost per radian}}$$

$$t_r = rac{T}{2\pi} = rac{1}{\omega_1}$$
 = time to oscillate thru 1 rad.

$$\therefore$$
 Energy lost per rad $=t_r \frac{dE}{dt} = \frac{\gamma E}{\omega_1}$.

$$Quality = \frac{\text{Energy stored}}{\text{Energy lost per radian}}$$

$$t_r = rac{T}{2\pi} = rac{1}{\omega_1}$$
 = time to oscillate thru 1 rad.

$$\therefore$$
 Energy lost per rad $= t_r \frac{dE}{dt} = \frac{\gamma E}{\omega_1}$.

For light damping, $\omega_1 \approx \omega_0$,

$$Q = \frac{\omega_0}{\gamma}.$$

= radians thru which damped system oscillates as energy decays to E_0/e .

$$Quality = \frac{Energy \ stored}{Energy \ lost \ per \ radian}$$

$$t_r = rac{T}{2\pi} = rac{1}{\omega_1}$$
 = time to oscillate thru 1 rad.

 \therefore Energy lost per rad $= t_r \frac{dE}{dt} = \frac{\gamma E}{\omega_1}$.

For light damping, $\omega_1 \approx \omega_0$,

$$Q = \frac{\omega_0}{\gamma}.$$

= radians thru which damped system oscillates as energy decays to E_0/e .

 ${\it Q}$ is large for less energy loss: Quality of the oscillation.

A tuning fork of frequency 440 Hz is struck to produce sound. After 4 seconds, the intensity is found to decrease by a factor of 5.

A tuning fork of frequency 440 Hz is struck to produce sound. After 4 seconds, the intensity is found to decrease by a factor of 5.

$$\omega_0 = 2\pi \times 440 = 2765 \text{ rad/sec};$$

A tuning fork of frequency 440 Hz is struck to produce sound. After 4 seconds, the intensity is found to decrease by a factor of 5.

$$\omega_0 = 2\pi \times 440 = 2765 \text{ rad/sec}; \quad E_0 e^{-4\gamma} = \frac{E_0}{5}$$

Simple Harmonic Motion Energy and Q-factor 13/1

A tuning fork of frequency 440 Hz is struck to produce sound. After 4 seconds, the intensity is found to decrease by a factor of 5.

$$\omega_0 = 2\pi \times 440 = 2765 \text{ rad/sec}; \quad E_0 e^{-4\gamma} = \frac{E_0}{5}$$

$$\Longrightarrow \gamma = \frac{\ln 5}{4} = 0.4s^{-1}$$

A tuning fork of frequency 440 Hz is struck to produce sound. After 4 seconds, the intensity is found to decrease by a factor of 5.

$$\omega_0 = 2\pi \times 440 = 2765 \text{ rad/sec}; \quad E_0 e^{-4\gamma} = \frac{E_0}{5}$$

$$\Longrightarrow \gamma = \frac{\ln 5}{4} = 0.4 s^{-1}$$

$$\omega_1 = \sqrt{\omega_0^2 - \gamma^2/4} \sim \omega_0 \text{ (light damping)}$$

Simple Harmonic Motion Energy and Q-factor 13

A tuning fork of frequency 440 Hz is struck to produce sound. After 4 seconds, the intensity is found to decrease by a factor of 5.

$$\omega_0 = 2\pi \times 440 = 2765 \text{ rad/sec}; \quad E_0 e^{-4\gamma} = \frac{E_0}{5}$$

$$\Longrightarrow \gamma = \frac{\ln 5}{4} = 0.4 s^{-1}$$

$$\omega_1 = \sqrt{\omega_0^2 - \gamma^2/4} \sim \omega_0 \text{ (light damping)}$$

$$Q = \frac{\omega_1}{\gamma} = v \frac{2\pi \times 440}{0.4}$$

A tuning fork of frequency 440 Hz is struck to produce sound. After 4 seconds, the intensity is found to decrease by a factor of 5.

$$\omega_0 = 2\pi \times 440 = 2765 \text{ rad/sec}; \quad E_0 e^{-4\gamma} = \frac{E_0}{5}$$

$$\Longrightarrow \gamma = \frac{\ln 5}{4} = 0.4 s^{-1}$$

$$\omega_1 = \sqrt{\omega_0^2 - \gamma^2/4} \sim \omega_0 \text{ (light damping)}$$

$$Q = \frac{\omega_1}{\gamma} = v \frac{2\pi \times 440}{0.4} \approx 6912$$

Pretty good!

A tuning fork of frequency 440 Hz is struck to produce sound. After 4 seconds, the intensity is found to decrease by a factor of 5.

$$\omega_0 = 2\pi \times 440 = 2765 \text{ rad/sec}; \quad E_0 e^{-4\gamma} = \frac{E_0}{5}$$

$$\Longrightarrow \gamma = \frac{\ln 5}{4} = 0.4 s^{-1}$$

$$\omega_1 = \sqrt{\omega_0^2 - \gamma^2/4} \sim \omega_0 \text{ (light damping)}$$

$$Q = \frac{\omega_1}{\gamma} = v \frac{2\pi \times 440}{0.4} \approx 6912$$

If $E \to E/10$ in 2s?

Simple Harmonic Motion Energy and Q-factor 13/

A tuning fork of frequency 440 Hz is struck to produce sound. After 4 seconds, the intensity is found to decrease by a factor of 5.

$$\omega_0 = 2\pi \times 440 = 2765 \text{ rad/sec}; \quad E_0 e^{-4\gamma} = \frac{E_0}{5}$$

$$\Longrightarrow \gamma = \frac{\ln 5}{4} = 0.4 s^{-1}$$

$$\omega_1 = \sqrt{\omega_0^2 - \gamma^2/4} \sim \omega_0 \text{ (light damping)}$$

$$Q = \frac{\omega_1}{\gamma} = v \frac{2\pi \times 440}{0.4} \approx 6912$$

If $E \to E/10$ in 2s? $\gamma \sim 1...$

Simple Harmonic Motion Energy and Q-factor 13/

Voltage drop across each element:

Voltage drop across each element:

$$L\frac{dI}{dt} + RI + \frac{q}{C} = 0.$$

Voltage drop across each element:

$$L\frac{dI}{dt} + RI + \frac{q}{C} = 0.$$

$$\implies L\ddot{q} + R\dot{q} + \frac{1}{C}q = 0.$$

Voltage drop across each element:

$$L\frac{dI}{dt} + RI + \frac{q}{C} = 0.$$

$$\implies L\ddot{q} + R\dot{q} + \frac{1}{C}q = 0.$$

Voltage drop across each element:

$$L\frac{dI}{dt} + RI + \frac{q}{C} = 0.$$

$$\implies L\ddot{q} + R\dot{q} + \frac{1}{C}q = 0.$$

Damped SHM eqn for q.

Voltage drop across each element:

$$L\frac{dI}{dt} + RI + \frac{q}{C} = 0.$$

$$\implies L\ddot{q} + R\dot{q} + \frac{1}{C}q = 0.$$

- Charge oscillates with frequency

$$\omega_0 = \frac{1}{\sqrt{LC}},$$

Voltage drop across each element:

$$L\frac{dI}{dt} + RI + \frac{q}{C} = 0.$$

$$\implies L\ddot{q} + R\dot{q} + \frac{1}{C}q = 0.$$

- Charge oscillates with frequency $\omega_0 = \frac{1}{\sqrt{LC}},$
- $\bullet \ \ {\rm Damping\ constant}\ \gamma = \frac{R}{L}.$

Voltage drop across each element:

$$L\frac{dI}{dt} + RI + \frac{q}{C} = 0.$$

$$\implies L\ddot{q} + R\dot{q} + \frac{1}{C}q = 0.$$

- Charge oscillates with frequency $\omega_0 = \frac{1}{\sqrt{LC}}$,
- Damping constant $\gamma = \frac{R}{L}$.
- Quality $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$.