§1 Isomorphisms

Definition 1.1. (G, \cdot) and (H, \circ) are isomorphic if there exists a bijection $\phi : G \to H$ such that $\phi(a \cdot b) = \phi(a) \circ \phi(b)$ for all $a, b \in G$.

Then ϕ is an isomorphism and we write $G \equiv \sim H$

Example 1.2
$$\phi: \mathbb{Z}_4 o U_5$$

$$0 o 1 \\ 1 o 2 \\ 2 o 4 \\ 3 o 3$$

$$\phi(3+2) = \phi(1) = 2 = \phi(3) \cdot \phi(2) = 3 \cdot 4 = 2 \checkmark$$

$$\frac{\circ \begin{vmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 & 3 \end{vmatrix}}{0 & 0 & 1 & 2 & 3}$$

$$(\mathbb{Z}_4, +): \quad 1 \quad 1 \quad 2 \quad 3 \quad 0 \\ 2 \quad 2 \quad 3 \quad 0 \quad 1 \\ 3 \quad 3 \quad 0 \quad 1 \quad 2$$

$$\frac{\circ \begin{vmatrix} 1 & 2 & 4 & 3 \\ 1 & 1 & 2 & 4 & 3 \\ 1 & 1 & 2 & 4 & 3 \\ 4 \quad 4 \quad 3 \quad 1 \quad 2 \\ 3 \quad 3 \quad 1 \quad 2 \quad 4 \end{vmatrix}$$

Note 1.3. G and H are isomorphic if by "reordering the elements of H", they have the same caylety table - the only difference is notation.

"bijection between groups extends to a bijection between multiplication tables. Multiplication tables are the same, the difference being notation. A different language"

Example 1.4

$$\phi: \mathbb{Z}_4 \to \{\pm 1, \pm i\} \subset \mathbb{C}^*$$

$$0 \to 1$$
$$1 \to i$$
$$2 \to -1$$
$$3 \to -i$$

$$\phi(n) = i^n$$

$$\phi(a+b) = i^{a+b} = i^a \cdot i^b = \phi(a) \cdot \phi(b)$$

Example 1.5

 $\phi: \mathbb{Z}_4 \to \mathbb{Z}_4$

$$0 \to 0$$

$$1 \rightarrow 3$$

$$2 \rightarrow 2$$

$$3 \rightarrow 1$$

This is an isomorphism.

Theorem 1.6

G is abelian if and only if the map $\phi:G\to G$ given by $\phi(a)=a^{-1}$ for all $a\in G$ is an isomorphism.

Proof. .

$$(\Leftarrow)$$

$$ba = (a^{-1}b^{-1})^{-1} = \phi(a^{-1}b^{-1}) = \phi(a^{-1})\phi(b^{-1}) = (a^{-1})^{-1}(b^{-1})^{-1} = ab$$

 (\Rightarrow)

$$\phi(a \cdot b) = (ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1} = \phi(a) \cdot \phi(b)$$

Example 1.7

$$Q_8 \equiv \sim \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \pm \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \right\}$$
$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$$

These two representations of the quaternions are isomorphic to one another.

Example 1.8

$$D_3 \equiv \sim S_3$$

$$0 \to ()$$

$$\frac{2\pi}{3} \to \{1 \ 3 \ 2\}$$

$$\frac{4\pi}{3} \to \{1 \ 2 \ 3\}$$

$$\alpha \to \{2 \ 3\}$$

$$\beta \to \{1 \ 2\}$$

$$\gamma \to \{1 \ 3\}$$

There are many isomorphisms from D_3 to S_3 .

Theorem 1.9

If $\phi:G\to H$ is an isomorphism, then $\phi^{-1}:H\to G$ is an isomorphism.

Proof. phi^{-1} is a bijection since ϕ is $(\phi^{-1}$ exists because ϕ is a bijection) $\phi^{-1}(a \cdot b) = \phi^{-1}\Big(\phi(\phi^{-1}(a))\phi(\phi^{-1}(b))\Big) = \phi^{-1}\Big(\phi(\phi^{-1}(a)\phi^{-1}(b))\Big) = \phi^{-1}(a)\phi^{-1}(b)$

Theorem 1.10

Any "property" of G is a "property" of H.

Example 1.11

$$|G| = |H|$$

G is abelian $\Leftrightarrow H$ is abelian G is cyclic \Leftrightarrow H is cyclic $G = \langle g \rangle \Leftrightarrow H = \langle \phi(g) \rangle$

$$G = \langle g \rangle \Leftrightarrow H = \langle \phi(g) \rangle$$

Theorem 1.12

If G is cyclic and $|G| = \infty$ the $G \equiv \sim \mathbb{Z}$

If G is cyclic and |G| = n the $G \equiv \sim \mathbb{Z}_n$

Proof. Let $G = \langle g \rangle$. Consider map $\phi : \mathbb{Z} \to G$ given by $\phi(i) = g^i$

Claim that ϕ is a bijection.

Surjective because each $x \in G$ is $g = g^i$ for some i so $\phi(i) = x$ where x is arbitrary.

Injective because $\phi(i) = \phi(j) \Rightarrow g^i = g^j \Rightarrow g^i g^{-j} = e \Rightarrow g^{i-j} = e \Rightarrow i = j = 0 \Rightarrow g^{i-j} = e \Rightarrow i = j = 0 \Rightarrow g^{i-j} = e \Rightarrow i = j = 0 \Rightarrow g^{i-j} = e \Rightarrow i = j = 0 \Rightarrow g^{i-j} = e \Rightarrow i = j = 0 \Rightarrow g^{i-j} = e \Rightarrow i = j = 0 \Rightarrow g^{i-j} = e \Rightarrow i = j = 0 \Rightarrow g^{i-j} = e \Rightarrow i = j = 0 \Rightarrow g^{i-j} = e \Rightarrow i = j = 0 \Rightarrow g^{i-j} = e \Rightarrow i = j = 0 \Rightarrow g^{i-j} = e \Rightarrow g^{i-j} = e \Rightarrow i = j = 0 \Rightarrow g^{i-j} = e \Rightarrow g^{$

Therefore ϕ is an isomorphism because $\phi(i+j)=g^{i+j}=g^ig^j=\phi(i)\phi(j)$