

NASA TECHNICAL
MEMORANDUM

N 70-37089

NASA TM X-2058

NASA TM X-2058

CASE FILE
COPY

A GENERAL TRANSIENT
HEAT-TRANSFER COMPUTER PROGRAM
FOR THERMALLY THICK WALLS

by L. Bernard Garrett and Joan I. Pitts

Langley Research Center
Hampton, Va. 23365

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • AUGUST 1970

1. Report No. NASA TM X-2058	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle A GENERAL TRANSIENT HEAT-TRANSFER COMPUTER PROGRAM FOR THERMALLY THICK WALLS		5. Report Date August 1970	
		6. Performing Organization Code	
7. Author(s) L. Bernard Garrett and Joan I. Pitts		8. Performing Organization Report No. L-6850	
		10. Work Unit No. 124-07-18-04	
9. Performing Organization Name and Address NASA Langley Research Center Hampton, Va. 23365		11. Contract or Grant No.	
		13. Type of Report and Period Covered Technical Memorandum	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546		14. Sponsoring Agency Code	
15. Supplementary Notes			
16. Abstract This program is a general heat-transfer program which employs a finite-difference method for the solution of temperature histories of one-dimensional, two-dimensional, or spherical systems. Options are available for heat input given in tabular form, computed from a trajectory, or computed from a temperature history given for a specific location. The types of heat exchange are: (1) conduction; (2) convection - with (a) given heat input, (b) heating due to skin friction with Van Driest equations, (c) stagnation heating with Sibulkin, Detra-Kemp-Riddell, and Cohen equations; (3) radiation-out; (4) air-conduction; and (5) joint conduction. The system configuration is specified by an arbitrary number of discrete elements and their interrelationships.			
17. Key Words (Suggested by Author(s)) Heat-transfer computer program Conduction heat transfer Aerodynamic heating computer program Transient heat flow		18. Distribution Statement Unclassified - Unlimited	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 152	22. Price* \$3.00

*For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151

CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1
SYMBOLS	2
MATHEMATICAL AND NUMERICAL PROBLEM DESCRIPTION	5
General Heat-Balance Equation	6
Convective Heat-Transfer Equations	8
Geometry Layout for the Physical Problem	25
Finite-Difference Solution	25
Thin Wall Option	28
Inverse Solution Option	28
PROGRAM DESCRIPTION, FLOW CHARTS, AND LISTINGS	30
Program Description	30
FORTRAN Variable Description	32
MAIN	39
VANDR	47
STAG	49
TRAJ	53
COND	55
RADOUT	59
AIRGAP	61
JOINT	63
COMPMTX	65
THINWAL	67
CONV	69
INVSOL	71
BLOCK DATA	73
PROGRAM USAGE AND RESTRICTIONS	89
PROGRAM INPUT FORMAT	91
ARRAYS	97
SAMPLE CASES	100
CONCLUDING REMARKS	134

APPENDIX A - LINEARIZATION OF THE RADIATION-OUT TERM	135
APPENDIX B - DEVELOPMENT OF SIBULKIN EQUATION FOR MACHINE COMPUTATION	137
APPENDIX C - LANGLEY LIBRARY SUBROUTINES	139
REFERENCES	149

**A GENERAL TRANSIENT HEAT-TRANSFER COMPUTER PROGRAM
FOR THERMALLY THICK WALLS**

By L. Bernard Garrett and Joan I. Pitts
Langley Research Center

SUMMARY

This program is a general heat-transfer program which employs a finite-difference method for the solution of temperature histories of one-dimensional, two-dimensional, or spherical systems. Options are available for heat input given in tabular form, computed from a trajectory, or computed from a temperature history given for a specific location. The types of heat exchange are: (1) conduction; (2) convection – with (a) given heat input, (b) heating due to skin friction with Van Driest equations, (c) stagnation heating with Sibulkin, Detra-Kemp-Riddell, and Cohen equations; (3) radiation-out; (4) air-conduction; and (5) joint conduction. The system configuration is specified by an arbitrary number of discrete elements and their interrelationships.

INTRODUCTION

This report describes a general transient conduction heat-transfer computer program (program D1244) developed at the Langley Research Center and provides the user with the information necessary to use the program. The program is particularly suited for the thermal design of launch vehicles and spacecraft that are subject to aerodynamic heating, and has been used extensively at the Langley Research Center for this purpose.

A finite-difference method is employed for the solution of the temperature histories (ref. 1) of one-dimensional, two-dimensional, or axisymmetric configuration systems. The thermal model is divided into a number of small volumes (blocks). The system can include 100 discrete blocks and 10 different materials with temperature-dependent properties.

Several options are available to consider the heating rates: (1) the heating input may be given in tabular form as a function of time, (2) the heating may be computed by using free-stream environmental conditions or from a velocity-altitude trajectory for entry velocities up to 41 000 ft/sec (12 497 m/sec), which utilizes the 1962 U.S. Standard Atmosphere tables (ref. 2), or (3) the heating rate may be computed from a temperature history given for a specified location within the material.

The types of heat exchange considered are:

(1) Convection

- (a) Given heat input
- (b) Flat-plate or cone heating with Van Driest (refs. 3 and 4) equations
- (c) Stagnation heating with Sibulkin (ref. 5), Detra-Kemp-Riddell (ref. 6), and Cohen (ref. 7) equations

(2) Conduction

- (3) Air-conduction (across an air gap)
- (4) Internal radiation (across an air gap)
- (5) Joint conduction
- (6) Radiation-out
 - (a) Nonlinearized
 - (b) Linearized

This program is written in FORTRAN IV language for the Control Data 6000 Series computer and operates with the scope 3.0 operating system. The equations are programmed in U.S. Customary units; some SI units are included in the text for the convenience of the reader.

SYMBOLS

a	speed of sound, ft/sec (m/s)
A	area, ft ² (m ²)
b	distance across air gap, ft (m)
c _f	local skin-friction coefficient
c _{f,0}	reference skin-friction coefficient evaluated at N _{Re} = 10 ⁶
c _p	specific heat at constant pressure, Btu/lb-°R (J/kg-°K)
D	diameter, ft (m)
d	width or length of blocks, ft (m)
G ₁ (i _d)	high-enthalpy correlation function (see eqs. (41))
g	acceleration due to gravity, 32.1741 ft/sec ² (9.80665 m/sec ²)

h	heat-transfer coefficient (Van Driest and Sibulkin equations, $\text{Btu}/\text{ft}^2\text{-sec}^{-0}\text{R}$ ($\text{W}/\text{m}^2\text{-}0\text{K}$); Detra-Kemp-Riddell- and Cohen equations, $\text{lbf}/\text{ft}^2\text{-sec}$ ($\text{kg}/\text{m}^2\text{-sec}$))
h_j	joint heat-transfer coefficient, $\text{Btu}/\text{ft}^2\text{-sec}^{-0}\text{R}$ ($\text{W}/\text{m}^2\text{-}0\text{K}$)
i	enthalpy, Btu/lb (J/kg)
i_d	dimensionless static enthalpy (see eq. (40))
i_r	recovery enthalpy, Btu/lb (J/kg)
i_w	wall enthalpy, Btu/lb (J/kg)
k	thermal conductivity, $\text{Btu}/\text{ft}\text{-sec}^{-0}\text{R}$ ($\text{W}/\text{m}\text{-}0\text{K}$)
k_{air}	thermal conductivity of air, $\text{Btu}/\text{ft}\text{-sec}^{-0}\text{R}$ ($\text{W}/\text{m}\text{-}0\text{K}$)
k_m	conductivity of material, $\text{Btu}/\text{ft}\text{-sec}^{-0}\text{R}$ ($\text{W}/\text{m}\text{-}0\text{K}$)
L	characteristic length used in Reynolds number, ft (m)
l_i	block length, ft (m)
M	Mach number
N_{Nu}	Nusselt number based on diameter, hD/k
N_{Pr}	Prandtl number, $c_p\mu/k$
N_{Re}	Reynolds number, $\rho VL/\mu$
N_{Re}/ft	Reynolds number per foot (per 0.3048 m), $\rho V/\mu$
N_{St}	Stanton number, $h/(c_p\rho V)$
p	pressure, lbf/ft^2 (N/m^2)
\dot{Q}	heating rate, Btu/sec (W)

\dot{q}	heating rate per unit area, Btu/ft ² -sec (W/m ²)
R	gas constant for air, 0.0686 Btu/lbm-°R (287 J/kg-°K)
r _n	nose radius, ft (m)
T	temperature, °R (°K)
t	time, sec
Δt	delta time or computing interval
V	velocity, ft/sec (m/s)
v	volume, ft ³ (m ³)
w _i	block width, ft (m)
Z	compressibility factor
α, δ, ξ, ψ	quantities defined by equations (22)
β	tangential velocity gradient
γ	ratio of specific heats
η	ratio of local to stagnation convective heating rate
θ	temperature ratio in viscosity relation for air $\mu = \frac{(2.27 \times 10^{-8})T^{1/2}}{1 + \theta}$ used in flat-plate or cone heating section, $\theta = 198 \text{ }^{\circ}\text{R}/T$ when μ has units of lb-sec/ft ²
ε	emissivity
μ	viscosity coefficient, lb-sec/ft ² (N-sec/m ²)
μ ₀	reference value of viscosity defined by equations (38), lb-sec/ft ² (N-sec/m ²)
ρ	density, slugs/ft ³ (kg/m ³)

ρ_m	material density, lb/ft ³ (kg/m ³)
σ	Stefan-Boltzmann constant, Btu/ft ² -sec- ⁰ R ⁴ (W/m ² - ⁰ K ⁴)
Λ	sweep angle measured from normal to free-stream velocity vector
Subscripts:	
cond conduction	
conv convection	
e	local flow conditions at edge of boundary layer
i	variable integer which refers to block upon which heat balance is being performed
j	variable integer which refers to any other block that affects the heat balance for block i
o	reference condition
Perfect	properties based on perfect gas relations
r	adiabatic or recovery conditions
rad	radiation
s	stagnation conditions behind a normal shock
w	wall conditions at beginning of computing interval
∞	free-stream conditions upstream of shock

A prime over a symbol indicates the value at the beginning of the time interval.

MATHEMATICAL AND NUMERICAL PROBLEM DESCRIPTION

The prediction of the thermal response of materials to the specified environmental conditions requires the solution of the governing heat-transfer equations subject to the

imposed boundary conditions. The basic procedure employed in this program requires that the engineer divide the specific configuration (body) of interest into a system of small volumes (blocks) and describe by the inputs, the size, orientation, material composition, and modes of heat transfer for each individual block and the interrelationships between the blocks. With these inputs the machine selects the appropriate finite-difference heat-balance equations for each block and solves the resulting matrix for the temperatures of the blocks as a function of time. In this section are described the thermal-balance equations for the individual blocks, the convective heat-transfer options, and the finite-difference algorithm for the solution of the governing equations. A specific example of the procedure for the finite-difference solution is included.

General Heat-Balance Equation

The following forms of the general heat-balance equation are given, each term being defined for use:

$$\dot{Q}_{\text{conv}} - \ddot{Q}_{\text{cond}} - \dot{Q}_{\text{air-cond}} - \dot{Q}_{\text{rad-in}} - \dot{Q}_{\text{joint}} - \dot{Q}_{\text{rad-out}} - \dot{Q}_{\text{stored}} = 0$$

For convection:

where

$$(\dot{Q}_{\text{conv}})_i = hA_i(T_r - T_w) \quad (\text{Van Driest (refs. 3 and 4) and Sibulkin (ref. 5)}) \quad (1)$$

or

$$(\dot{Q}_{\text{conv}})_i = hA_i(i_s - i_w) \quad (\text{Detra-Kemp-Riddell (ref. 6) and Cohen (ref. 7)}) \quad (2)$$

or

$$(\dot{Q}_{\text{conv}})_i = \dot{q}_i A_i \quad (\text{Heating rates given}) \quad (3)$$

or

$$(\dot{Q}_{\text{conv}})_i = h_i A_i (T_r - T_w) \quad (\text{Heat-transfer coefficient and recovery temperature input}) \quad (4)$$

For conduction:

$$(\dot{Q}_{\text{cond}})_i = (\Delta \dot{Q}_{\text{cond}})_{i,k} + (\Delta \dot{Q}_{\text{cond}})_{i,l} + \dots + (\Delta \dot{Q}_{\text{cond}})_{i,j} \quad (5)$$

where k , l , and j represent the designated numbers of the blocks which touch block i , and each term on the right-hand side of equation (5) takes the form of the following example:

$$(\Delta \dot{Q}_{\text{cond}})_{i,j} = \frac{2A_{i,j}(T_i - T_j)}{\frac{d_i}{k_{m,i}} + \frac{d_j}{k_{m,j}}} \quad (6)$$

The $(\Delta \dot{Q}_{\text{cond}})_{i,j}$ is the net rate of conductive heat exchange between block i and block j at a given time, $A_{i,j}$ is the area of block i which touches block j , and d_i and d_j are the dimensions (either length or width) of blocks i and j , respectively, in the direction of the conductive heating.

For air-conduction:

$$(\dot{Q}_{\text{air-cond}})_i = \frac{k_{\text{air}} A_{i,n}(T_i - T_n)}{b} \quad (7)$$

where k_{air} is the conductivity of air and n denotes the block number of the block opposite the air gap.

For radiation-in (infinite parallel plates) (ref. 8):

$$(\dot{Q}_{\text{rad-in}})_i = \frac{\sigma A_{i,n}(T'_i{}^4 - T'_n{}^4)}{\frac{1}{\epsilon_i} + \frac{1}{\epsilon_n} - 1.0} \quad (8)$$

where T' is the temperature at the beginning of the computing interval and n denotes the block number of the block opposite the air gap. This expression is strictly correct only for infinite parallel plates. It should be noted that $\dot{Q}_{\text{air-cond}}$ and $\dot{Q}_{\text{rad-in}}$ are always used together.

For the joint (interface between materials) (ref. 1):

$$(\dot{Q}_{\text{joint}})_i = \frac{2A_{i,n}(T_i - T_n)}{\frac{2}{h_j} + \frac{d_i}{k_{m,i}} + \frac{d_n}{k_{m,n}}} \quad (9)$$

where n denotes the block number of the block opposite the joint, and h_j is the joint coefficient.

For radiation-out:

$$(\dot{Q}_{\text{rad-out}})_i = \sigma \epsilon_i A_i T_i'^4 \quad (10)$$

It should be noted that the radiation-out term generally applies for external surfaces radiating to space whereas the radiation-in term represents a radiation exchange between two surfaces at different temperatures.

The radiation-out term may also be used in the following linear form (see appendix A):

$$(\dot{Q}_{\text{rad-out}})_i = \sigma \epsilon_i A_i (2T_i'^3 T_i - T_i'^4) \quad (11)$$

For heat stored:

$$(\dot{Q}_{\text{stored}})_i = \frac{c_{p,i} \rho_{m,i} v_i (T_i - T_i')}{\Delta t} \quad (12)$$

where $c_{p,i}$ and $\rho_{m,i}$ are the specific heat and density, respectively, of the material of block i , and Δt is the delta time or computing interval.

Convective Heat-Transfer Equations

To compute the free-stream conditions used in the convective heating options of the program, a trajectory consisting of altitude and velocity tables as functions of time are given. By using the altitude table, the values of ρ_∞ , p_∞ , T_∞ , and a_∞ are determined from the 1962 U.S. Standard Atmosphere (ref. 2). The viscosity μ_∞ is computed from the following relation (ref. 9):

$$\mu_\infty = \frac{(2.27 \times 10^{-8}) T_\infty^{1/2}}{1 + \theta}$$

where $\theta = \frac{198.6}{T_\infty}$ and μ_∞ has the units lb-sec/ft².

The convective heat-transfer equations for the flow over a flat plate or cone and for the stagnation region of blunt bodies are given.

Flat plate or cone. - The convective heating rates to a flat plate or cone are computed from the Van Driest equations (refs. 3 and 4) for either the laminar or turbulent flow of air as follows:

Laminar flow: $N_{Re,e} <$ input transition Reynolds number

$$N_{St} = K \left[\frac{f_1(M_e) + f_2(M_e) \frac{T_w}{T_e}}{\sqrt{N_{Re,e}}} \right] \quad (13)$$

where

$$\left. \begin{aligned} f_1(M_e) &= 0.416594 - 0.00246733M_e - 8.17489 \times 10^{-4} M_e^2 + 2.734033 \times 10^{-5} M_e^3 \\ f_2(M_e) &= -0.0134671 + 2.635807 \times 10^{-4} M_e + 5.818944 \times 10^{-5} M_e^2 - 2.173257 \times 10^{-6} M_e^3 \end{aligned} \right\} \quad (14)$$

$$\left. \begin{aligned} K &= 1 && (\text{Flat plate}) \\ K &= \sqrt{3} && (\text{Cone}) \end{aligned} \right\} \quad (15)$$

A Stanton number N_{St} is computed for each convective block, where the wall temperature T_w is taken to be the temperature of the individual block at the beginning of the computing interval T_i' . The subscript e refers to the local flow conditions at the edge of the boundary layer which are determined from input ratios of local to free-stream conditions.

The Stanton number expressions (eqs. (13) and (14)) were obtained from curve fits to the Van Driest heat-transfer results in air for the flat-plate laminar boundary layer (ref. 3) at $N_{Pr} = 0.75$, $\theta = \frac{198^{\circ}R}{T_e} = 0.505$. A comparison of the original results and the correlation is shown in figure 1. The correlation is accurate to within 3 percent over the range of $M_e = 0$ to 20 and $T_w/T_e = 0.25$ to $T_w/T_e = 6.0$.

The heat-transfer coefficient is determined from the relation:

$$h = N_{St} \rho_e (c_p)_{\text{Perfect}} V_{eg} \quad (16)$$

For laminar flow the recovery temperature T_r (ref. 10) is

$$T_r = (N_{Pr})^{1/2} (T_s - T_e) + T_e \quad (17)$$

where the laminar recovery factor is approximated by $N_{Pr}^{1/2}$.

Figure 1.- Comparisons of exact and correlation equation results for the laminar heat-transfer coefficient along a flat plate.

The specific heat c_p is that of low-temperature air ($\gamma = 1.4$); that is,

$$(c_p)_{\text{Perfect}} = 0.24 \text{ Btu/lb}^{-\circ}\text{R} \quad (1004 \text{ J/kg}^{-\circ}\text{K}) \quad (18)$$

and the stagnation temperature for $\gamma = 1.4$ (ref. 10) is

$$T_s = T_\infty (1.0 + 0.2 M_\infty^2) \quad (19)$$

Turbulent flow: $N_{Re,e} \geq$ Input transition Reynolds number.

The Stanton number is related to the local skin friction by a modified form of Reynolds analogy which for turbulent flow (ref. 4) is

$$N_{St} = 0.6 c_f \quad (20)$$

The Van Driest relation for the local skin-friction coefficient c_f (ref. 4) is expressed implicitly as

$$\frac{0.242}{c_f^{1/2} \left(\frac{\gamma - 1}{2} M_e^2 \right)^{1/2}} (\sin^{-1} \alpha + \sin^{-1} \delta) = 0.41 + \log_{10} N_{Re,e} c_f - 0.76 \log_{10} \frac{T_w}{T_e} \quad (21)$$

where

$$\left. \begin{aligned} \alpha &= \frac{2\xi^2 - \psi}{(\psi^2 + 4\xi^2)^{1/2}} \\ \delta &= \frac{\psi}{(\psi^2 + 4\xi^2)^{1/2}} \\ \xi^2 &= \frac{\frac{\gamma - 1}{2} M_e^2}{T_w/T_e} \\ \psi &= \frac{1 + \frac{\gamma - 1}{2} M_e^2}{T_w/T_e} - 1 \end{aligned} \right\} \quad (22)$$

The iteration of c_f is avoided by utilizing the curve fits for c_f developed by Lee and Faget (ref. 11). The Lee and Faget correlation equation is

$$c_f = \frac{c_{f,0}}{\left(K' \frac{N_{Re,e}}{10^6} \right)^N} \quad (23)$$

The reference skin-friction coefficient $c_{f,0}$ is evaluated at $N_{Re,e} = 10^6$ and is obtained from table I as a function of M_e and T_w/T_e .

$$N = C_1 + C_2 M_e \quad (24)$$

where

$$C_1 = \frac{668.12 + \left(-1826.3756 + 9737.6 \frac{T_w}{T_e} \right)^{0.5}}{4868.8} \quad (25)$$

$$C_2 = 0.0019 - 0.0001 \frac{T_w}{T_e}$$

$$\left. \begin{array}{l} K' = 1.0 \quad (\text{Flat plate}) \\ K' = 0.5 \quad (\text{Cone}) \end{array} \right\} \quad (26)$$

Comparisons of the flat-plate skin-friction results obtained from equation (21) and equation (23) are shown in figure 2 as functions of $N_{Re,e}$ for various values of T_w/T_e and M_e . Over the ranges of $N_{Re,e}$, M_e , and T_w/T_e shown in the figure, the correlation is accurate within 3 percent.

The recovery temperature for turbulent flow (ref. 10) is

$$T_r = N_{Pr}^{1/3} (T_s - T_e) + T_e \quad (27)$$

where the turbulent recovery factor is approximated by $N_{Pr}^{1/3}$. The heat-transfer coefficient, specific heat, and stagnation temperature expressions given in the laminar-flow section (eqs. (16), (18), and (19)) are the same for turbulent flow.

TABLE I.- REFERENCE SKIN-FRICTION COEFFICIENTS

$$\left[N_{Re,e} = 10^6 \right]$$

M_e	Reference skin-friction coefficient $c_{f,o}$ for T_w/T_e of -						
	0.2	0.6	1.0	2.0	3.0	4.0	6.0
0.5	0.005100	0.004170	0.003673	0.002990	0.002610	0.002350	0.002005
1.0	.004904	.004070	.003603	.002948	.002578	.002328	.002000
2.0	.004290	.003709	.003345	.002800	.002475	.002251	.001950
3.0	.003596	.003258	.003005	.002593	.002328	.002137	.001875
4.0	.002978	.002812	.002652	.002357	.002153	.002000	.001779
5.0	.002475	.002417	.002325	.002126	.001974	.001854	.001675
6.0	.002078	.002084	.002036	.001907	.001798	.001708	.001566
7.0	.001764	.001809	.001788	.001711	.001635	.001568	.001460
8.0	.001516	.001581	.001582	.001539	.001489	.001441	.001357
9.0	.001317	.001394	.001407	.001389	.001357	.001323	.001262
10.0	.001156	.001237	.001258	.001259	.001241	.001218	.001173
12.0	.000913	.000995	.001025	.001047	.001046	.001039	.001017
13.0	.0008208	.0009016	.0009322	.0009598	.0009652	.0009630	.0009500
14.0	.0007425	.0008209	.0008523	.0008838	.0008934	.0008950	.0008887
15.0	.0006755	.0007512	.0007828	.0008168	.0008295	.0008341	.0008331
16.0	.0006177	.0006905	.0007219	.0007576	.0007724	.0007793	.0007825
18.0	.0005236	.0005905	.0006208	.0006578	.0006755	.0006853	.0006944
20.0	.0004507	.0005121	.0005409	.0005777	.0005967	.0006082	.0006210

Some general comments are in order concerning the Van Driest equations as programmed. The final form of the programmed convective heat-transfer equations are restricted to air (that is, $\gamma = 1.4$, $\mu = f(\theta)$, where $\theta = \frac{198}{T_e}^{\circ R} = 0.505$, and $c_p = 0.24 \text{ Btu/lbm}^{-\circ R}$). Further, the local flow conditions must be within or near the region of the correlations and tables where $M_e \leq 20$ and $0.2 \leq T_w/T_e \leq 6.0$. For turbulent flow, the additional restriction is $10^5 \leq N_{Re,e} \leq 10^8$. Most of the flight aerodynamic heating cases will be within these local flow regions. However, the basic assumptions of Van Driest, namely, a perfect gas which has $c_p = \text{Constant}$, and $\gamma = 1.4$ introduce fundamental restrictions in the intermediate to high free-stream Mach number ranges (above about $M_\infty = 10$) where the real-gas effects become significant.

Figure 2.- Comparisons of exact and correlation equation results for the turbulent skin-friction coefficient along a flat plate.

$$(a) \frac{T_w}{T_e} = 0.25,$$

$$(b) \frac{T_w}{T_g} = 1.0.$$

Figure 2.- Continued.

Figure 2.- Continued.

$$(d) \frac{T_w}{T_e} = 4.0.$$

Figure 2.- Continued.

Figure 2.- Concluded.

The reference enthalpy methods of Eckhert (ref. 12) for laminar and turbulent flow are among the more widely accepted methods for computing heating rates in high temperature air. Since it is not advantageous to incorporate heating theories based on real-gas properties within this program because of the amount of time involved to compute heating rates at intervals of 0.1 or 0.2 second, it is recommended that for the high-temperature real-gas environment problem, the heating rates be generated from the appropriate theory by separate computations and then these rates input to this program to determine the thermal response of the skin.

Spherical or blunt-nose bodies stagnation region. - For spherical bodies several options are available:

- (1) Sibulkin (ref. 5) option where $V_\infty < 5000 \text{ ft/sec}$ (1524 m/sec) and

$$\dot{Q} = hA(T_s - T_w)$$

Sibulkin's expression for the stagnation-point heat-transfer coefficient is

$$h = 0.763 N_{Pr}^{0.4} k_{air,s} \left(\frac{\beta \rho}{\mu} \right)_s^{1/2} \quad (28)$$

where β is the tangential velocity gradient at the stagnation point. This relation is correlated in terms of free-stream conditions to yield a more tractable expression for machine computations. The resulting expression for local heating, in terms of the stagnation-point heating equation developed in appendix B, becomes

$$h = \frac{Bg\rho_\infty V_\infty (c_p)_{\text{Perfect}}}{(N_{Re,\infty}/ft r_n)^{1/2}} \eta \quad (29)$$

$$B = 0.80 + 0.541M_\infty - 0.00574M_\infty^2 \quad (30)$$

$$(c_p)_{\text{Perfect}} = 0.24 \text{ Btu/lb}^{-1}\text{R}$$

where h is in $\text{Btu}/\text{ft}^2\text{-sec}$, r_n is the nose radius in feet, and ρ_∞ is in slugs/ ft^3 . The ratio of the local heating to the stagnation heating is denoted by η . This relation is a required input for each convective element (block) when the stagnation-heating option is used. These ratios may be determined from Lees (ref. 13). The stagnation temperature is

$$T_s = T_\infty(1.0 + 0.2M_\infty^2) \quad (31)$$

(2) Detra-Kemp-Riddell (ref. 6) option where $5000 \leq V_{\infty} \leq 20000$ ft/sec
 $(1525 \text{ m/sec} \leq V_{\infty} \leq 6100 \text{ m/sec})$ and

$$\dot{Q} = hA(i_s - i_w)$$

$$h = \frac{(0.447 \times 10^{-8}) \rho_{\infty}^{0.5} V_{\infty}^{3.15}}{r_n^{1/2} (i_s - 130)} \eta \quad (32)$$

$$i_s = \frac{V_{\infty}^2}{50000} + 0.24 T_{\infty} \quad (33)$$

$$i_w = 0.0686 \left(Z \frac{i}{RT} \right)_w T_w \quad (34)$$

where h is in lbm/ft²-sec and i_s and i_w are in Btu/lbm. The temperature, T_w , is the temperature at the beginning of the computing interval and the term in parentheses $\left(Z \frac{i}{RT} \right)_w = f(p_s, T_w)$ is determined from Hansen's tables for air (ref. 14). The stagnation pressure p_s is determined from the AEDC tables (ref. 15); that is,

$$p_s = p_{\infty} \left(\frac{p_s}{p_{\infty}} \right)$$

where

$$\frac{p_s}{p_{\infty}} = f(\text{alt}, V_{\infty})$$

(3) Cohen (ref. 7) option where $V_{\infty} \geq 20000$ ft/sec (6100 m/sec) (The Cohen option may be used not only for velocities above 20000 ft/sec (6100 m/sec) but also for the entire range if specified) and

$$\dot{Q} = hA(i_s - i_w)$$

$$h = 0.767g(N_{Pr,w})_s^{-0.6} (\rho_e \mu_e)_s^{0.43} (\rho_w \mu_w)_s^{0.07} \left[\frac{2(p_s - p_{\infty})}{\rho_{e,s}} \right]^{0.25} \frac{G_1(i_d)}{r_n^{1/2}} \eta \quad (35)$$

where the double subscripts e,s and w,s refer to the conditions at the edge of the boundary layer along the stagnation line and the condition at the wall at the stagnation point, respectively,

$$i_s = \frac{V_\infty^2}{50\,000} + 0.24T_\infty \quad (36)$$

$$i_w = 0.0686 \left(Z \frac{i}{RT} \right)_w T_w \quad (37)$$

where h is in lbm/ft²-sec and i_s and i_w are in Btu/lbm. The quantities $\frac{T_{e,s}}{T_\infty}$, $\frac{p_s}{p_\infty}$, and $\frac{\rho_{e,s}}{\rho_\infty}$ are obtained from reference 15 as $f(\text{alt}, V_\infty)$ and

$$p_s = p_\infty \frac{p_s}{p_\infty}$$

$$T_{e,s} = T_\infty \frac{T_{e,s}}{T_\infty}$$

$$\rho_{e,s} = \rho_\infty \frac{\rho_{e,s}}{\rho_\infty}$$

$$\frac{\mu_{e,s}}{\mu_{o,s}} = f(T_{e,s}, p_s)$$

$$\frac{\mu_{w,s}}{\mu_{o,w}} = f(T_w, p_s)$$

The viscosity ratios are obtained from Hansen's tables (ref. 14) with linear interpolation on temperature and logarithmic on pressure. Then

$$\mu_{e,s} = \mu_{o,s} \frac{\mu_{e,s}}{\mu_{o,s}}$$

and

$$\mu_{w,s} = \mu_{o,w} \frac{\mu_{w,s}}{\mu_{o,w}}$$

where

$$\left. \begin{aligned} \mu_{o,s} &= \frac{(2.28 \times 10^{-8}) T_{e,s}^{3/2}}{T_{e,s} + 201.6} \text{ lb-sec/ft}^2 \\ \mu_{o,w} &= \frac{(2.28 \times 10^{-8}) T_w^{3/2}}{T'_w + 201.6} \text{ lb-sec/ft}^2 \end{aligned} \right\} \quad (38)$$

and

$$\rho_{w,s} = (5.825 \times 10^{-4}) \frac{p_s}{Z_w T_w} \text{ slugs/ft}^3 \quad (39)$$

where

$$\left. \begin{aligned} Z_w &= f(T_w, p_s) \\ (N_{Pr,w})_s &= f(T_w, p_s) \end{aligned} \right\} \text{ from Hansen's tables (ref. 14)}$$

$$i_d = \frac{\frac{8465}{V_\infty^2}}{50000} \quad (40)$$

where

$$\left. \begin{aligned} G_1(i_d) &= 1.0 & (i_d \geq 0.5) \\ G_1(i_d) &= 1.0 + 0.075 \left(\frac{1}{i_d} - 2 \right)^2 & (i_d < 0.5) \end{aligned} \right\} \quad (41)$$

(4) Cohen option over entire velocity range: Below a velocity of 5000 ft/sec (1525 m/sec), the following perfect gas relations apply for γ of 1.4 (ref. 9):

$$\frac{p_s}{p_\infty} = \left(\frac{6M_\infty^2}{5} \right)^{3.5} \left(\frac{6}{7M_\infty^2 - 1} \right)^{2.5} \quad (42)$$

$$\frac{T_{e,s}}{T_\infty} = 1 + 0.2M_\infty^2 \quad (43)$$

$$\frac{\rho_{e,s}}{\rho_\infty} = \frac{p_s}{p_\infty} \sqrt{\frac{T_{e,s}}{T_\infty}} \quad (44)$$

Comparisons of the heat-transfer coefficients predicted by the theories of Cohen, Sibulkin, and Detra, Kemp, and Riddell, are shown in figure 3 as a function of altitude for a range of velocities. It is noted that there is little difference between Cohen and Sibulkin theories at the lower velocities and between Cohen theory and the Detra, Kemp, and Riddell correlation of experimental data at the intermediate velocities.

Nonspherical blunt bodies will now be considered. The foregoing stagnation heating equations are applicable only for a sphere; however, the inputs can generally be manipulated to compute accurate heating rates to arbitrary axisymmetric bodies and to cylinders.

For instance, the proper stagnation heating rates to ellipsoids of body bluntness ratios greater than unity and to Apollo-type configurations can be obtained by replacing the body radius of curvature at the stagnation point with an "effective radius" input. Zoby and Sullivan (ref. 16) provided a method for obtaining the effective nose radius values for these configurations. However, if one is also interested in the heating-rate distributions around the blunt forebody away from the stagnation point, further flow-field details are required to generate the necessary inputs.

The stagnation heat flux to a cylinder can also be related to the stagnation heat flux on a sphere by changing the nose radius input. For instance, at low supersonic free-stream Mach numbers, the heating rate to the cylinder is approximately 0.92 times that of the sphere. (See ref. 13.) Since $\dot{q}_{\text{conv}} \propto r_n^{-1/2}$, the nose radius input to the program should be $(0.92)^{-2}$ or 1.18 times greater than the actual radius of the cylinder being studied. In the supersonic-hypersonic regimes, $M > 5$, the proper factor is more nearly

$$\dot{q}_{\text{cyl}} = \frac{0.57}{0.763} \dot{q}_{\text{sphere}} = 0.747 \dot{q}_{\text{sphere}} \quad (45)$$

(See Cohen (ref. 7) and Truitt (ref. 10).) Thus the nose radius input should be 1.79 times greater than the actual radius of the cylinder. No provision is included in the program for a change in the nose radius within a given computer run. However, one can generally establish within the constraints of the problem which heating-rate factor applies. For instance, for low velocity flights if M_∞ is about 2 to 5, then the 1.18 factor should be applied, particularly if the problem is one of thermal design. Whereas for hypersonic entry speeds, the primary heat pulse generally occurs at the higher velocities and thus the 1.79 factor should be used.

$$\frac{(\text{Btu}/\text{ft}^2 \cdot \text{sec})^{1/2}}{(\text{Btu/lbm})}, \quad \frac{W/m^2}{J/kg} m^{1/2}$$

Figure 3.- Comparison of the stagnation-point heat-transfer coefficients from Cohen, Sibulkin, and Detra, Kemp, and Riddell.
 $i_w = 200 \text{ Btu/lbm (465 kJ/kg)}$.

For swept cylinders, it is recommended in reference 17 that the heating factor on the stagnation line be used to compute the appropriate radius input as follows:

$$\dot{q}_{cyl, \Lambda \neq 0} = \dot{q}_{cyl, \Lambda = 0} (\cos \Lambda)^{1.5} \quad (46)$$

Geometry Layout for the Physical Problem

The configuration is divided into small volumes or blocks at the discretion of the user. (Present restrictions of storage areas allow a maximum of 100 divisions and is limited to only 30 for the case of calculating heating rates from known temperatures.) The geometry of these divisions and their heat relationships are then given as input to the program. The program computes the temperatures of these divisions or blocks at their centers. The program is also restricted to the use of only ten materials in one configuration at any one time.

Finite-Difference Solution

The implicit form (backward difference) of the heat-balance equations is used in this program, the finite-difference network coming from the division of the configuration being analyzed into small volumes called blocks. The mass of each block is considered to be concentrated at its center of gravity, and heat is assumed to flow from block to block over a distance equal to that between the centers of gravity and through an area equal to the touching surfaces.

The following example illustrates the procedure for the finite-difference solution. Consider the simplified case of a thermally thick skin in which the exterior surface is subjected to convective heating and the back wall is insulated. The exterior surface is permitted to radiate, and the remaining heat-transfer mode is the exchange of heat between blocks by conduction. The configuration is shown in sketch (a).

Sketch (a)

The heat-balance equation for each block is

$$\dot{Q}_{\text{conv}} - \dot{Q}_{\text{rad-out}} - \dot{Q}_{\text{cond}} = \dot{Q}_{\text{stored}} \quad (47)$$

By using this form of the general heat-balance equation and choosing block 2 as an example, the following equations arise. By considering each term separately,

$$(\dot{Q}_{\text{conv}})_2 = hA_2(T_r - T_2) \quad (48)$$

where A_2 is surface area of block 2

$$(\dot{Q}_{\text{rad-out}})_2 = \sigma\epsilon_2 A_2 (T'_2)^4 \quad (49)$$

and the conduction terms are

$$(\Delta\dot{Q}_{\text{cond}})_{2,1} = \frac{2A_{2,1}(T_2 - T_1)}{\frac{l_2}{k_{m,2}} + \frac{l_1}{k_{m,1}}} \quad (50)$$

$$(\Delta\dot{Q}_{\text{cond}})_{2,3} = \frac{2A_{2,3}(T_2 - T_3)}{\frac{l_2}{k_{m,2}} + \frac{l_3}{k_{m,3}}} \quad (51)$$

$$(\Delta\dot{Q}_{\text{cond}})_{2,5} = \frac{2A_{2,5}(T_2 - T_5)}{\frac{w_2}{k_{m,2}} + \frac{w_5}{k_{m,5}}} \quad (52)$$

where k_m is the conductivity of the material of the specified blocks.

$$(\dot{Q}_{\text{cond}})_2 = (\Delta\dot{Q}_{\text{cond}})_{2,1} + (\Delta\dot{Q}_{\text{cond}})_{2,3} + (\Delta\dot{Q}_{\text{cond}})_{2,5} \quad (53)$$

and finally

$$(\dot{Q}_{\text{stored}})_2 = (\rho_{m,2})v_2 c_{p,2} \frac{T_2 - T'_2}{\Delta t} \quad (54)$$

where T_2' is the previous temperature of block 2 and Δt is the specified time increment. The thermal properties c_p , k_m , and ϵ are based on T' for the specific block. Summation of these terms yields

$$(\rho_{m,2})v_2 c_{p,2} \frac{T_2 - T_2'}{\Delta t} = hA_2(T_r - T_2) - \sigma\epsilon_2 A_2 T_2'^4 - \frac{2A_{2,1}(T_2 - T_1)}{\frac{l_2}{k_{m,2}} + \frac{l_1}{k_{m,1}}} \\ - \frac{2A_{2,3}(T_2 - T_3)}{\frac{l_2}{k_{m,2}} + \frac{l_3}{k_{m,3}}} - \frac{2A_{2,5}(T_2 - T_5)}{\frac{w_2}{k_{m,2}} + \frac{w_5}{k_{m,5}}} \quad (55)$$

Let

$$\left. \begin{aligned} C_1 &= \frac{2A_{2,1}}{\frac{l_2}{k_{m,2}} + \frac{l_1}{k_{m,1}}} \\ C_3 &= \frac{2A_{2,3}}{\frac{l_2}{k_{m,2}} + \frac{l_3}{k_{m,3}}} \\ C_5 &= \frac{2A_{2,5}}{\frac{w_2}{k_{m,2}} + \frac{w_5}{k_{m,5}}} \end{aligned} \right\} \quad (56)$$

and

$$\left. \begin{aligned} C_{hs} &\equiv \frac{(\rho_{m,2})v c_{p,2}}{\Delta t} \\ C_{cv} &\equiv hA_2 \\ C_{ro} &\equiv \sigma\epsilon_2 A_2 (T_2')^4 \end{aligned} \right\} \quad (57)$$

Substituting equations (56) and (57) into equation (55) yields

$$C_{cv}(T_r - T_2) - C_{ro} - C_1(T_2 - T_1) - C_3(T_2 - T_3) - C_5(T_2 - T_5) = C_{hs}(T_2 - T'_2) \quad (58)$$

By collecting like terms, equation (58) becomes

$$T_2(-C_{cv} - C_1 - C_3 - C_5 - C_{hs}) + C_1 T_1 + C_3 T_3 + C_5 T_5 = C_{ro} - C_{cv} T_r - C_{hs} T'_2 \quad (59)$$

At any given time increment, the right-hand side of equation (59) may be evaluated as a constant with all parameters known. Thus, equation (59) now becomes

$$(-C_{cv} - C_1 - C_3 - C_5 - C_{hs})T_2 + C_1 T_1 + C_3 T_3 + C_5 T_5 = \text{Constant} \quad (60)$$

Therefore, energy balance equations can be written for each block in a configuration resulting in a set of simultaneous equations which are solved by a matrix subroutine at each time interval giving a temperature distribution through the blocks.

Thin Wall Option

A special option, subroutine THINWAL, is included in the program to compute the heating rate and temperature time histories for a thermally thin skin. The thickness of the single block of unit surface area is specified by the user. The inputs of width, length, volume, and the conduction, convection, and radiation areas are not required for this special case.

Inverse Solution Option

When the temperature of one of the block divisions is known and the heating rate is unknown, the inverse option may be used to calculate heating rates from the known temperature time history of the block as input. (See ref. 18.) The solution is restricted to one-dimensional cases.

This option uses the equation in which the convective heating term appears in the heat flux equation; and by a process of reordering the equations for each of the unknown temperatures, a new system of simultaneous linear equations is set up. This system is solved by a library subroutine SIMEQ (see appendix C) which solves the matrix equation $AX = B$ (where X denotes the unknown variables, A is a square coefficient matrix, and B is a vector of constants). The heating rate, rather than the known temperature, is evaluated by the subroutine.

If there are more temperature monitoring locations in the skin, the additional information can be incorporated into the solution for the convective heating-rate time history.

The program is written to accommodate as many as four known temperature time histories of the blocks. Basically, the procedure is to sum the temperatures recorded at the various locations (blocks) at a given time and then to replace one of the known temperatures in the finite-difference equations with the numerical sum of all the known temperatures minus the functional form for the monitored temperatures of the remaining blocks. Consider, for example, sketch (b) which illustrates the inverse solution procedure.

Sketch (b)

If the temperature histories of blocks 2, 4, and 6 are known, and if block 2 is chosen as the "pivotal" element, which means that everywhere T_2 appears in the governing equations, it is replaced by the numerical sum of $T_2 + T_4 + T_6 \equiv T$ less T_4 and T_6 (where T_4 and T_6 are now taken to be unknown a priori), then the finite-difference equations become

For block 1,

$$(\dot{Q}_{\text{conv}})_1 - \sigma \epsilon_1 A_1 (T'_1)^4 + \frac{2A_{1,2}[(T - T_4 - T_6) - T'_1]}{\frac{l_1}{k_{m,1}} + \frac{l_2}{k_{m,2}}} = \rho_{m,1} v_1 c_{p,1} \frac{T_1 - T'_1}{\Delta t}$$

where $k_{m,2}$ is evaluated at the previous temperature $T'_2 = T' - T'_4 - T'_6$.

For block 2,

$$\frac{2A_{2,1}[T_1 - (T - T_4 - T_6)]}{\frac{l_2}{k_{m,2}} + \frac{l_1}{k_{m,1}}} + \frac{2A_{2,3}[T_3 - (T - T_4 - T_6)]}{\frac{l_2}{k_{m,2}} + \frac{l_3}{k_{m,3}}} = \rho_{m,2} v_2 c_{p,2} \frac{(T - T_4 - T_6) - T'_2}{\Delta t}$$

For block 3,

$$\frac{2A_{3,2}[(T - T_4 - T_6) - T_3]}{\frac{l_3}{k_{m,3}} + \frac{l_2}{k_{m,2}}} + \frac{2A_{3,4}(T_4 - T_3)}{\frac{l_3}{k_{m,3}} + \frac{l_4}{k_{m,4}}} = \rho_{m,3} v_3 c_{p,3} \frac{T_3 - T'_3}{\Delta t}$$

et cetera.

In this example there are seven equations and seven unknowns, \dot{Q}_{conv} , T_1 , T_3 , T_4 , T_5 , T_6 , and T_7 . The solution is obtained from the SIMEQ subroutine. This method is based on the assumption that random errors in thermocouple readings will tend to balance out when summed, and although the sum of the known temperatures remains the same, the solution may not give temperatures of the known blocks which are equal to their individual input temperature-time histories. However, for reasonably accurate thermocouple data and material properties, the computed individual temperatures should be fairly close to the measured data.

Note that for multiple thermocouple data, the known block nearest the heat source (namely, the lowest numbered block for which the temperature is known) is used as the pivotal element for the heating-rate computation.

PROGRAM DESCRIPTION, FLOW CHARTS, AND LISTINGS

Program Description

In the following pages the program, its subroutines, and their functions are given. A graphical representation of the communication between the program and its subroutines follows. A brief description of each subroutine is followed by its flow diagram and listing.

Program	Description
MAIN	Reads and writes NAMELIST input, initializes program variables, and controls program flow
VANDR	Computes the heat-transfer coefficient using Van Driest equations
STAG	Computes the heat-transfer coefficient using Sibulkin, Detra-Kemp-Riddell, and Cohen equations
TRAJ	Computes local and free-stream conditions
COND	Computes conduction coefficient

RADOUT	Computes radiation-out coefficient
AIRGAP	Computes the coefficients for conduction and radiation across an air gap
JOINT	Computes the joint coefficient
COMPMTX	Solves the packed coefficient matrix for temperatures
THINWAL	Solves a simplified thin-wall case
CONV	Computes the final heating-rate coefficient
INVSOL	Solves the coefficient matrix when an inverse solution is desired

The directed flow diagram of program D1244 follows:

A detailed listing of FORTRAN variables used in the program and their descriptions is contained in the "FORTRAN Variable Description" section and within the listing of the MAIN program. These variables appear at the beginning of the listing as comments following the initial reference of each variable. Also, pertinent details as to internal control for specific options are included with these variables.

FORTRAN Variable Description

ACOND	conduction areas
ACRADI	storage for air-gap information
AIRK	average value for conductivity of air
AJOINT	storage for joint information
AKMTAB	table values for conductivity of air
AK1	conductivity of air for operating block
AK2	conductivity of air for block opposite air gap
ALPHA	$f_1(M_e)$ (eq. (14))
ALT	value of altitude from table values
ALTTAB	table values of altitude from input trajectory
ARRAY1	POP/P1 tables (pitot to free-stream pressure ratio)
ARRAY2	ROP/R1 tables (normal shock stagnation to free-stream density ratio)
ARRAY3	TOP/T1 tables (normal shock stagnation to free-stream temperature ratio)
ATAB	altitude table for normal shock-wave parameters
BETA	$f_2(M_e)$ (eq. (14))
CFMTAB	Mach number table for skin-friction coefficient
CFR	$c_{f,o}$
CFS	c_f
CFTAB	reference skin-friction-coefficient table

CFTTAB	temperature ratio table for skin-friction coefficients
CH	N_{St}
COEF	array of heat coefficients for matrix solution
COHEN	control for option to use Cohen equations
CONST	storage for constant part of block equations
CONVRO	storage for convection and radiation-out information
CPIDEAL	$(c_p)_{\text{Perfect}}$
CPTAB	tables of specific-heat values for materials
CPVAL	value of specific heat from table
CROAREA	convection and radiation-out areas
D1	width or length of operating block
D2	width or length of touching block
DELTAT	computing interval (delta time, Δt)
DELTEMP	change in temperature over time interval
EMS	storage for emissivity information
EMSS	value of emissivity in subroutine RADOUT
EMSVAL	value of emissivity in subroutine THINWAL
EM1	emissivity of operating block
EM2	emissivity of block across air gap
FPCONE	control for flat plate or cone
G	acceleration due to gravity
G1TE	$G_1(i_d)$ (eq. (41))
HIPTS	number of points in heat input tables
HITIME	table of times for given heat input

HSUBDIF	$i_s - i_w$
HSUBR	i_s
HSUBW	i_w
HTAB	table of values for h given as inputs
HVAL	h
ICONVQ	control for heating options
ICROBLK	convection and radiation-out block numbers
IDIFF	control for different heat input tables
IDIM	configuration control
IHORQ	control for program flow
IMAT	material number currently in use
INVBLK	inverse block number currently in use
INVBLKS	inverse block numbers
INVERSE	control for inverse option
INVRT	control for program flow
IORDER	order of interpolation
IPFCT	counter for print frequency
IPTS	storage for number of table values
IQORH	control for heating rates given as input
IROUTE	control for program flow
ITBLK	block number of touching block
JTBLK	block number of joint block
KMTAB	tables of conductivity values for materials
LEN	lengths of blocks

LINEAR	control for linearizing T^4
LOCH	location of h
LOCQ	location of \dot{Q}
MACTAB	Mach number ratio table
MAT	material numbers of blocks
MFS	free-stream Mach numbers, M_∞
MFSTAB	table of Mach numbers for ratio evaluations
MLOCL	local Mach number, M_e
MUFS	μ_∞
NACBLK	number of air conduction block
NAIRGAP	number of air gaps
NAKMPT	number of values in k_{AIR} tables
NAVPTS	number of values in trajectory input
NBLOCK	current block number
NCDCT	counter for conduction terms
NCPPTS	number of c_p table values
NHOR	number to determine matrix storage
NJOINT	number of joints
NKMPTS	number of k_m table values
NO	number of blocks
NOCONV	number of convection blocks
NOINV	number of inverse blocks
NOINVT	number of values in inverse temperature table
NPRS	number of values in table

NRADO	number of radiation-out terms
NRATAB	number of ratio table
NRATIO	control for ratio table number
NRATPT	number of points in ratio tables
NTOUCH	numbers of touching blocks
NUMCD	number of conduction terms for current block
PELOG	$\text{LOG}(p_s)$
PERCRNL	η or Reynolds number lengths
PESTAG	p_s
PFS	free-stream pressure, p_∞
POPP1	POP/P1 (pitot to free-stream pressure ratio)
PRESTB	pressure table (log)
PRFREQ	print frequency
PRNO	value of Prandtl number
PRNOTB	table of Prandtl number values
PRWSTG	$(N_{Pr,w})_s$
PR2TAB	table of $N_{Pr}^{1/2}$
PR3TAB	table of $N_{Pr}^{1/3}$
QCONV	value of \dot{q}
QTAB	table of \dot{q} values when given as input
QVAL	array in which computer values of heat-transfer coefficients are stored
RADIAT	radiation-out term in subroutine THINWAL
RADNOSE	nose radius, r_n
REYTAB	Reynolds number ratio table

RHO	density of material, $\rho_{m,i}$
RHOLOCL	local density, ρ_e
RHOSF3	ρ , slugs/ft ³
RHOSTAG	ρ_s
RHOTAB	density ratio table ρ_e/ρ_∞
RNEXP	N (eq. (24))
RNFS	free-stream Reynolds number, $N_{Re,\infty}$
RNLOCL	local Reynolds number, $N_{Re,e}$
RNPFL	local Reynolds number per foot, $N_{Re,e}/ft$
ROPR1	ROP/R1 (normal-shock stagnation to free-stream density ratio)
ROWSTAG	$\rho_{w,s}$
TAW	value of adiabatic wall temperature, T_r
TAWTAB	table of TAW values when H and TAW are given inputs
TCPTAB	table of temperatures for all c_p tables
TCUBED	T^3
TEMINV	inverse temperature table
TEMP	temperatures of blocks
TEMPINV	temperature of inverse block
TEMTAB	temperature ratio table
TESTAG	$T_{e,s}$
TFS	free-stream temperature, T_∞
TIME	current time
TIMEAV	time table for trajectory input
TIMSTOP	stopping time

TINV	table of times for given temperature inputs
TKMTAB	temperature tables for all k_m values
TLOCL	local temperature, T_e
TMPTAB	temperature table for viscosity and enthalpy
TOPT1	TOP/T1 (normal-shock stagnation to free-stream temperature ratio)
TPRTAB	temperature table for $N_{Pr}^{1/2}$ and $N_{Pr}^{1/3}$
TRANRN	transition Reynolds number
TRAT	temperature ratio, T_w/T_e
TREC	T_r
TSTAG	T_s
TSUBE	i_d
TTKTAB	table of temperatures for k_m values
TWDEPTH	thin-wall depth
T1P4	T_1^4
T2P4	T_2^4
UESTAG	$\mu_{e,s}$
UEUREF	μ_e/μ_o
UEURTAB	viscosity ratio table
UREFS	$\mu_{o,s}$
UREFW	$\mu_{o,w}$
UWSTAG	$\mu_{w,s}$
UWUREF	μ_w/μ_o
VALCP	value of c_p of material
VALK1	value of k_m of operating block

VALK2	value of k_m of touching block
VELTAB	table of velocities for input trajectory
VERTAB	velocity ratio table, V_e/V_∞
VFS	free-stream velocity, V_∞
VLOCL	local velocity, V_e
VOL	volume of blocks
VTAB	velocity table for normal shock-wave parameters
WD	widths of blocks
WVCP	$\rho v c_p$
ZHRT	dimensionless enthalpy, $Z \frac{i}{RT}$
ZHRTAB	table for dimensionless enthalpy
ZPRTEM	temperature tables for compressibility and Prandtl number
ZTAB	table for compressibility
ZW	value of compressibility from table, Z_w

MAIN

Program MAIN is the control program. It reads and writes NAMELIST input, initializes, and sets up controls for flow of program as designated by input values. This control program then calls the designated subroutines for solution, writes the output, and either updates and continues solution or terminates according to input specifications. The flow diagram of program MAIN follows:

The MAIN program listing follows:

```

PROGRAM D1244(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)          0001
COMMON TIME,DELTAT,TIMSTOP,PRFREQ,NO,IDIM,ICONVQ,G,        0002
1TEMP(100),CONST(100)                                     0003
*           TIME      =STARTING TIME                         0004
*           DELTAT    =DELTA TIME                           0005
*           TIMSTOP=STOPPING TIME                         0006
*           PRFREQ   =PRINT FREQUENCY                      0007
*           NO       =NO OF BLOCKS                        0008
*           IDIM, 0=THIN WALL                         0009
*               1=ONE-DIMENSIONAL                      0010
*               2=TWO-DIMENSIONAL (RECTANGULAR)        0011
*           ICONVQ, 0=INVERSE SOLUTION                 0012
*               1=HEATING RATES ARE GIVEN             0013
*               2=STAGNATION OPTION                  0014
*               3=VAN DRIEST OPTION                 0015
*               4=STAGNATION AND VAN DRIEST COMBINATION 0016
*           G        =GRAVITY                            0017
*           TEMP     =TEMPERATURES OF THE BLOCKS          0018
*           CONST    =STORAGE FOR CONSTANT PART OF BLOCK EQUATIONS 0019
COMMON /ALLCONV/, CONVRO(30,5),IDIFF,NOCONV,QCONV(30),      0020
1TAW(30)*IHORQ                                         0021
*           CONVRO- COL 1 =ICROBLK (CONVECTION AND RAD+OUT BLOCK NOS) 0022
*               COL 2 =CROAREA (CONVECTION AND RAD+OUT AREAS)    0023
*               COL 3 =PERCRNL (EITHER PERCENTS OR REY+NO LENGTHS) 0024
*               COL 4 =IQORH (WHEN HEATING RATES ARE GIVEN-THE CODE 0025
*                   IS 1 IF Q INPUTS AND 2 IF H AND TAW INPUTS) 0026
*               OR    =NRATAB(WHEN HEATING RATES ARE COMPUTED THE NO. 0027
*                   OF THE RATIO TABLE IS GIVEN-ALL ONES IF ONLY 0028
*                   ONE TABLE)                                0029
*               COL 5 =HIPTS(NO OF POINTS IN HEAT INPUT TABLES) 0030
*           IDIFF   =0 IF HEATING RATE TABLES ARE SAME FOR EACH CONV BLK 0031
*               =1 IF HEATING RATE TABLES ARE DIFF FOR EACH CONV BLK 0032
*           NOCONV  =NO OF CONVECTION BLOCKS                  0033
*           QCONV   =STORAGE FOR HEATING RATE IN PROGRAM        0034
*           TAW     =STORAGE FOR ADIABATIC WALL TEMPERATURE      0035
*           IHORQ   =TEST FOR OUTPUT HEADINGS(EITHER Q OR H-NOT INPUT) 0036
COMMON /TVDASTG/, ALT,VFS,PFS,TFS,MFS,RNFS,RHOSF3,VLOCL,MLOCL, 0037
1RNPFL,RNLOCL,TLOCL,RHOLOCL                               0038
*           ALT      =ALTITUDE FROM TABLE VALUES            0039
*           VFS      =FREE-STREAM VELOCITY                0040
*           PFS      =FREE-STREAM PRESSURE                0041
*           TFS      =FREE-STREAM TEMPERATURE              0042
*           MFS      =FREE-STREAM MACH NO                 0043
*           RNFS     =FREE-STREAM REYNOLDS NO             0044
*           RHOSF3  =FREE-STREAM DENSITY (SLUGS/CUBIC FT.) 0045
*           VLOCL   =LOCAL VELOCITY                     0046
*           MLOCL   =LOCAL MACH NO                      0047
*           RNPFL   =LOCAL REYNOLDS NO /FT.              0048
*           RNLOCL  =LOCAL REYNOLDS NO                 0049
*           TLOCL   =LOCAL TEMPERATURE                  0050
*           RHOLOCL =LOCAL DENSITY                      0051
COMMON /CVONLY/, HITIME(200),HTAB(200),TAWTAB(200),QTAB(200) 0052
*           HITIME  =TABLE OF TIMES FOR GIVEN HEAT INPUTS 0053
*           HTAB    =TABLE FOR H VALUES WHEN H AND TAW ARE GIVEN INPUTS 0054
*           TAWTAB  =TABLE OF TAWVALUES WHEN H AND TAW ARE GIVEN INPUTS 0055
*           QTAB    =TABLE OF Q VALUES WHEN Q IS GIVEN AS INPUT 0056
COMMON /ARRAYS/, ARRAY1(1800),ARRAY2(1800),ARRAY3(1800),ATAB(40), 0057
1VTAB(45)                                                 0058
*           TABLES FOR NORMAL SHOCK WAVE PARAMETERS IN IMPERFECT AIR 0059
*           ARRAY1  =POP/P1 (PITOT TO FREE-STREAM PRESSURE RATIO) 0060
*           ARRAY2  =ROP/R1 (NORMAL SHOCK STAGNATION DENSITY RATIO) 0061
*           ARRAY3  =TOP/T1 (NORMAL SHOCK STAGNATION TEMPERATURE RATIO) 0062
*           ATAB    =ALTITUDE TABLE (FOR ABOVE VALUES)            0063
*           VTAB    =VELOCITY TABLE (FOR ABOVE VALUES)           0064

```

COMMON /VDONLY/ TRANRN,FPCONE	0065
* TRANRN =TRANSITION REYNOLDS NUMBER	0066
* FPCONE =DESIGNATION OF FLAT PLATE OR CONE	0067
* FLAT PLATE = 1.	0068
* CONE = SQ.RT(3) OR 1.7320508	0069
COMMON /STGONLY/ COHEN,RADNOSE	0070
* COHEN =CODE IS 0 IF USE OF THESE EQ IS REQ. OVER 20000FT/S	0071
* CODE IS 1 IF USE OF THESE EQ. IS FOR ALL RANGES(STAG)	0072
* RADNOSE=RADIUS OF THE NOSE (STAGNATION OPTION)	0073
COMMON /TRAJO/ NAVPTS,TIMEAV(100),ALTTAB(100),VELTAB(100),NRATPT,	0074
1MFSTAB(25)*VERTAB(50),MACTAB(50),REYTAB(50),TEM TAB(50),RHOTAB(50)	0075
* NAVPTS =NO OF ALT AND VEL POINTS FOR GIVEN TRAJECTORY	0076
* TIMEAV =TIME TABLE FOR TRAJECTORY	0077
* ALTTAB =ALTITUDE TABLE FOR TRAJECTORY	0078
* VELTAB =VELOCITY TABLE FOR TRAJECTORY	0079
* NRATPT =NO OF POINTS FOR LOCAL/FREE-STREAM RATIO TABLES	0080
* MFSTAB =MACH NO TABLE FOR RATIO EVALUATIONS	0081
* VERTAB =VELOCITY RATIO TABLE	0082
* MACTAB =MACH NO RATIO TABLE	0083
* REYTAB =REYNOLDS NO RATIO TABLE	0084
* TEM TAB =TEMPERATURE RATIO TABLE	0085
* RHOTAB =DENSITY RATIO TABLE	0086
COMMON /CDGEOM/ NTOUCH(5,100),ACOND(300)	0087
* NTOUCH =ROW 1 OF THIS ARRAY DESIGNATES THE NO OF CONDUCTION	0088
* TERMS FOR EACH BLOCK(NO REPEATS) ROWS 2-5 ARE THE	0089
* BLOCK NUMBERS OF THESE COND. TERMS(-INDICATES WD)	0090
* ACOND =CONDUCTION AREAS CORRESPONDING TO NTOUCH VALUES	0091
COMMON /MATPROP/ MAT(100),EMS(40),RHO(10),NCPPTS(10),TCPTAB(100),	0092
1CPTAB(100),NKMPTS(10),TTKTAB(100),KMTAB(100)	0093
* MAT =MATERIAL NO OF EACH OF THE BLOCKS	0094
* EMS =EMMISSIVITY OF MATERIALS	0095
* RHO =DENSITIES OF MATERIALS	0096
* NCPPTS =NO OF POINTS IN EACH CP TABLE	0097
* TCPTAB =TEMPERATURE TABLES FOR ALL CP TABLES	0098
* CPTAB =SPECIFIC HEAT TABLES FOR MATERIALS	0099
* NKMPTS =NO OF POINTS IN EACH KM TABLE	0100
* TTKTAB =TEMPERATURE TABLES FOR ALL KM TABLES	0101
* KMTAB =CONDUCTIVITY TABLES FOR MATERIALS	0102
COMMON /BLKDIM/ WD(100),VOL(100),LEN(100),NHOR	0103
* WD =WIDTHS OF THE BLOCKS	0104
* VOL =VOLUMES OF THE BLOCKS	0105
* LEN =LENGTHS OF THE BLOCKS	0106
* NHOR =NO OF HORIZONTAL BLOCKS	0107
COMMON /RADONLY/NRADO,LINEAR	0108
* NRADO =NO OF RADIATION-OUT BLOCKS	0109
* LINEAR =IF 0- T**4 IS USED AS CONST. IF 1-T**4 IS LINEARIZED	0110
COMMON /AGONLY/ NAIRGAP,ACRADI(4,30)	0111
* NAIRGAP=NO OF AIR GAPS	0112
* ACRADI =ROW 1 = NO OF AIR GAP BLOCK	0113
* ROW 2 = NO OF BLK OPPOSITE AIR GAP (GT AIR GAP BLK)	0114
* ROW 3 = DISTANCE ACROSS AIR GAP	0115
* ROW 4 = AREA ON AIR GAP	0116
COMMON /JTONLY/ NJJOINT,AJOINT(4,20)	0117
* NJJOINT =NO OF JOINT TERMS	0118
* AJOINT =ROW 1 =NO OF JOINT BLOCK	0119
* ROW 2 =BLK NO OF CONNECTING JOINT BLK	0120
COMMON /THIN/ TWDEPTH	0121
* TWDEPTH=THIN WALL DEPTH	0122
COMMON /INVRS/ INVRS,INVBLK,TEMPINV,NOINV,INVBLKS(4),NOINVT,	0123

```

ITINV(200),TEMINV(400) 0124
* INVERSE=IF 0,NO INVERSE SOL REQUIRED,IF 1 ,INVERSE REQUIRED 0125
* INVBLK =INVERSE BLOCK NUMBER (USED INTERNALLY) 0126
* TEMPINV=TEMPERATURE OF INVERSE BLOCK 0127
* NOINV =NO OF INVERSE BLOCKS 0128
* INVBLKS=INVERSE BLOCK NUMBERS 0129
* NOINVT =NO OF TIME-TEMPERATURE POINTS AS INPUT 0130
* TINV =TABLE OF TIMES FOR GIVEN TEMPERATURE INPUTS 0131
* TEMINV =TEMPERATURE TABLE FOR INVERSE BLOCKS 0132
* COMMON /CVTRAJ/NRATIO 0133
DIMENSION COEF(100,20),TOTAL(30) 0134
DIMENSION ICROBLK(30),CROAREA(30),PERCRNL(30),IQORH(30),HIPTS(30), 0135
1KM1(10),KM2(10),KM3(10),KM4(10),KM5(10),KM6(10),KM7(10),KMB(10), 0136
2KM9(10),KM10(10),TKTAB1(10),TKTAB2(10),TKTAB3(10),TKTAB4(10), 0137
3TKTAB5(10),TKTAB6(10),TKTAB7(10),TKTAB8(10),TKTAB9(10),TKTAB10(10) 0138
4,CP1(10),CP2(10),CP3(10),CP4(10),CP5(10),CP6(10),CP7(10),CP8(10), 0139
5CP9(10),CP10(10),TCPTAB1(10),TCPTAB2(10),TCPTAB3(10),TCPTAB4(10), 0140
6TCPTAB5(10),TCPTAB6(10),TCPTAB7(10),TCPTAB8(10),TCPTAB9(10), 0141
7TCPTB10(10),EMS1(4),EMS2(4),EMS3(4),EMS4(4),EMS5(4),EMS6(4), 0142
8EMS7(4),EMS8(4),EMS9(4),EMS10(4),INDEX(30,2) 0143
DIMENSION NRATAB(30) 0144
DIMENSION TEMINV1(100),TEMINV2(100),TEMINV3(100),TEMINV4(100) 0145
REAL KMTAB,KM1,KM2,KM3,KM4,KM5,KM6,KM7,KMB,KM9,KM10 0146
REAL MFS,MLOCL,MFSTAB,MACTAB 0147
REAL LEN 0148
INTEGER COHEN 0149
INTEGER PRFREQ 0150
REAL ICROBLK,IQORH,NRATAB 0151
EQUIVALENCE (CONVRO(1,1),ICROBLK(1)),(CONVRO(1,2),CROAREA(1)), 0152
1(CONVRO(1,3),PERCRNL(1)),(CONVRO(1,4),IQORH(1)),(CONVRO(1,5), 0153
2HIPTS(1)) 0154
EQUIVALENCE (KMTAB(1),KM1(1)),(KMTAB(11),KM2(1)),(KMTAB(21), 0155
1KM3(1)),(KMTAB(31),KM4(1)),(KMTAB(41),KM5(1)),(KMTAB(51),KM6(1)), 0156
2(KMTAB(61),KM7(1)),(KMTAB(71),KM8(1)),(KMTAB(81),KM9(1)), 0157
3(KMTAB(91),KM10(1)),(TTKTAB(1),TKTAB1(1)),(TTKTAB(11),TKTAB2(1)), 0158
4(TTKTAB(21),TKTAB3(1)),(TTKTAB(31),TKTAB4(1)),(TTKTAB(41),TKTAB5 0159
5(1)),(TTKTAB(51),TKTAB6(1)),(TTKTAB(61),TKTAB7(1)),(TTKTAB(71), 0160
6TKTAB8(1)),(TTKTAB(81),TKTAB9(1)),(TTKTAB(91),TKTAB10(1)) 0161
EQUIVALENCE (CPTAB(1),CP1(1)),(CPTAB(11),CP2(1)),(CPTAB(21),CP3 0162
1(1)),(CPTAB(31),CP4(1)),(CPTAB(41),CP5(1)),(CPTAB(51),CP6(1)), 0163
2(CPTAB(61),CP7(1)),(CPTAB(71),CP8(1)),(CPTAB(81),CP9(1)),(CPTAB 0164
3(91),CP10(1)),(TCPTAB(1),TCPTAB1(1)),(TCPTAB(11),TCPTAB2(1)), 0165
4(TCPTAB(21),TCPTAB3(1)),(TCPTAB(31),TCPTAB4(1)),(TCPTAB(41), 0166
5TCPTAB5(1)),(TCPTAB(51),TCPTAB6(1)),(TCPTAB(61),TCPTAB7(1)), 0167
6(TCPTAB(71),TCPTAB8(1)),(TCPTAB(81),TCPTAB9(1)),(TCPTAB(91), 0168
7TCPTB10(1)) 0169
EQUIVALENCE (CONVRO(1,4),NRATAB(1)) 0170
DIMENSION VERTARI(25),VERTAB2(25),MACTAB1(25),MACTAB2(25), 0171
1REYTAB1(25),REYTAB2(25),TEMTAB1(25),TEMTAB2(25),RHOTAB1(25), 0172
2RHOTAB2(25) 0173
EQUIVALENCE (VERTAB1(1),VERTAB(1)),(VERTAB2(1)+VERTAB(26)), 0174
1(MACTAB1(1),MACTAB(1))+MACTAB2(1),MACTAB(26)+(REYTAB1(1), 0175
2REYTAB(1)),(REYTAB2(1),REYTAB(26)),(TEMTAB1(1),TEMTAB(1)), 0176
3(TEMTAB2(1),TEMTAB(26)),(RHOTAB1(1),RHOTAB(1)),(RHOTAB2(1), 0177
4RHOTAB(26)) 0178
EQUIVALENCE (TEMINV1(1),TEMINV(1)),(TEMINV2(1),TEMINV(101)), 0179
1(TEMINV3(1),TEMINV(201)),(TEMINV4(1)+TEMINV(301)) 0180
REAL MACTAB1,MACTAB2 0181
EQUIVALENCE (EMS(1),EMS1(1)),(EMS(5),EMS2(1)),(EMS(9),EMS3(1)), 0182
1(EMS(13),EMS4(1)),(EMS(17),EMS5(1)),(EMS(21),EMS6(1)),(EMS(25), 0183
2EMS7(1)),(EMS(29),EMS8(1)),(EMS(33),EMS9(1)),(EMS(37),EMS10(1)) 0184
NAMELIST /CASEINP/ NO,NHOR,NVER,NOCONV,NRADO,NJOINT,NAIRGAP, 0185
1IGEOM, IDIM,ICONVQ, IDIFF,LINEAR,INVERSE,COHEN,TIME,TIMSTOP,DELTAT, 0186
2PRFREQ,TEMP,MAT,EMS1,EMS2,EMS3,EMS4,EMS5,EMS6,EMS7,EMS8, 0187
3EMS9,EMS10,RHO,NKMPPTS,TKTAB1,KM1,TKTAB2,KM2,TKTAB3,KM3,TKTAB4,KM4, 0188
4TKTAB5,KM5,TKTAB6,KM6,TKTAB7,KM7,TKTAB8,KM8,TKTAB9,KM9,TKTAB10, 0189
5KM10,NCPPTS,TCPTAB1,CP1,TCPTAB2,CP2,TCPTAB3,CP3,TCPTAB4,CP4, 0190

```

```

6TCPTAB5,CP5,TCPTAB6,CP6,TCPTAB7,CP7,TCPTAB8,CP8,TCPTAB9,CP9,          0191
7TCPTB10,CP10,WD,RAD,LEN,THETA,VOL,TWDEPTH,ACOND,NTOUCH,ICROBLK,        0192
8CROAREA,PERCRNL,IQORH,HIPTS,TRANRN,FPCONE,RADNOSE,ACRADI,AJOINT,       0193
9HITIME,HTAB,TAWTAB,QTAB,NOINV,INVBLKS,NOINVT,TINV,TEMINV,              0194
XTEMINV1,TEMINV2,TEMINV3,TEMINV4,                                         0195
1NAVPTS,TIMEAV,ALTTAB,VELTAB,NRATPT,MFSTAB,VERTAB,MACTAB,REYTAB,        0196
2TEMTAB,RHOTAB,NRATAB,VERTAB1,VERTAB2,MACTAB1,MACTAB2,REYTAB1,          0197
3REYTAB2,TEMTAB1,TEMTAB2,RHOTAB1,RHOTAB2                                0198
                                         0199
*
5 READ (5,1000)                                                       0200
1000 FORMAT (80H1)                                                    0201
1
IF (EOF=5) 6,7                                                       0202
6 STOP                                                               0203
7 READ (5,CASEINP)                                                 0204
WRITE (6,1000)                                                       0205
G= 32.1741
IPFCT = 0
IF (IDIM.NE.0) GO TO 15
CALL THINWAL
GO TO 5
*
*
*
15 WRITE (6,CASEINP)
WRITE(6,1000)
*
IF (NAIRGAP.EQ.0.AND.NJOINT.EQ.0) 20,25
*
* NO AIRGAPS OR JOINTS (SET ROUTE)
*
20 IROUTE=1
GO TO 30
*
* EITHER AIRGAPS,JOINTS, OR BOTH (SET ROUTE)
*
25 IROUTE=2
*
30 IF (INVERSE.EQ.0) GO TO 35
INVRT=2
MDUMMY=NO
NDUMMY=NO
GO TO 40
*
35 INVRT=1
MDUMMY= NO
NDUMMY= NHOR+1
IF (IDIM.EQ.1) NDUMMY=2
*
* UPDATE TIME BY DELTA TIME TO BEGIN COMPUTATION
*
40 TIME = TIME + DELTAT
GO TO (50,42) INVRT
*
42 INVBLK= INVBLKS(1)
IF (NOINV.EQ.1) GO TO 45
J=1
TEMPINV=0.0
DO 44 I=1,NOINV
CALL FTLUP (TIME,SAVE+1,NOINVT,TINV(1),TEMINV(J))
J=J+100
44 TEMPINV= TEMPINV+SAVE
GO TO 50
45 CALL FTLUP(TIME,TEMPINV+1,NOINVT,TINV(1),TEMINV(1))
*

```

```

50 DO 60 I=1,100                                0256
   DO 55 J=1,20                                  0257
55 COEF(I,J)=0.0                                0258
60 CONST(I)=0.0                                 0259
   CALL COND (COEF,MDUMMY,NDUMMY)                0260
*
   CALL RADOUT (COEF,MDUMMY,NDUMMY)              0261
*
   GO TO (65,90),INVRT                          0262
*
65 CALL CONV (COEF,MDUMMY,NDUMMY)                0263
*
   GO TO (80,70), IROUTE                         0264
*
70 IF (NAIRGAP.EQ.0) GO TO 75                  0265
   CALL AIRGAP (COEF,MDUMMY,NDUMMY)              0266
*
   IF (NJOINT.EQ.0) GO TO 80                  0267
75 CALL JOINT (COEF,MDUMMY,NDUMMY)              0268
*
*SOLUTION OF THE COMPACT SYMMETRICAL MATRIX      0269
*
80 CALL COMPMTX(COEF,MDUMMY,NDUMMY)             0270
   GO TO 100                                     0271
*
90 CALL INVSOL(COEF,MDUMMY,INDEX)               0272
*
100 IPFCT= IPFCT+1                            0273
   IF (IPFCT.NE.PRFREQ) GO TO 40                0274
   IPFCT=0                                      0275
   IF (INVERSE.NE.0) GO TO 150                 0276
*
   WRITE (6,2000) TIME,DELTAT                  0277
2000 FORMAT(1X//6X6HTIME = F10.4,6X13HDELTA TIME = F6.4//) 0278
*
   IF (IHORQ.EQ.2) GO TO 120                 0279
*
   DO 110 I= 1,NOCONV                         0280
110 TOTAL(I)=QCONV(I)*(TAW(I)-TEMP(I))          0281
   J=NOCONV+1                                  0282
   WRITE (6,3000)                               0283
3000 FORMAT (1H ,6X9HBLOCK NO11X11HTEMPERATURE8X12HCONVECTION Q11X 0284
   18HH * AREA10X11HT(RECOVERY)//)            0285
*
   DO 125 I=1,NOCONV                         0286
125 WRITE (6,4000) I,TEMP(I),TOTAL(I),QCONV(I),TAW(I) 0287
4000 FORMAT (10X,I3,6X,4E20.8)                 0288
*
   DO 126 I=J,NO                           0289
126 WRITE (6,5000) I,TEMP(I)                   0290
5000 FORMAT (10X,I3,6X,E20.8)                  0291
*
   GO TO 150                                     0292
*
120 WRITE (6,6000)                               0293
6000 FORMAT (1H ,6X9HBLOCK NO11X11HTEMPERATURE8X12HCONVECTION Q//) 0294
   DO 130 I=1,NOCONV                         0295
130 WRITE (6,7000) I,TEMP(I),QCONV(I)          0296
7000 FORMAT (10X,I3,6X,2E20.8)                 0297
   J=NOCONV+1                                  0298
   DO 140 I=J,NO                           0299
140 WRITE (6,5000) I,TEMP(I)                   0300
*
   150 IF (TIME.LT.TIMSTOP) GO TO 40           0301
*
   GO TO 5                                       0302
*
   END                                         0303

```

VANDR

Subroutine VANDR computes the heat-transfer coefficient using the Van Driest equations with options for either turbulent or laminar flow based on transition Reynolds number. The flow diagram for subroutine VANDR follows.

The program listing for VANDR is

```

SUBROUTINE VANDR(I,HVAL,TREC) 0324
*
*          A SUBROUTINE TO CALCULATE HEATING RATES USING VAN DRIEST EQUATIONS 0325
*          THIS SUBROUTINE IS CALLED BY TWO SUBROUTINES - CONV AND THINWAL 0326
*          0327
*          0328
COMMON TIME,DELTAT,TIMSTOP,PRFREQ,NO, IDIM,ICONVQ,G, 0329
1TEMP(100),CONST(100)
COMMON /ALLCONV/ CONVRO(30+5),IDIFF,NOCONV,QCONV(30), 0330
1TAW(30),IHORG
COMMON /TVDASTG/ ALT,VFS,PFS,TFS,MFS,RNFS,RHOSF3,VLOCL,MLOCL, 0331
1RNPF3,RNLOCL,TLOCL,RHOLOCL
COMMON /ARRAYS/ ARRAY1(1800),ARRAY2(1800),ARRAY3(1800),ATAB(40), 0332
1VTAB(45)
COMMON /VDONLY/ TRANRN,FPCONE
DIMENSION CFMTAB(18),CFTTAB(8),CFTAB(144),TPRTAB(10),PR2TAB(10), 0333
1PR3TAB(10)
REAL MFS,MLOCL
DATA TPRTAB/400.,500.,600.,700.,800.,900.,1100.,1250.,2200.,3900. 0334
1/, PR3TAB/.900.,.8936,.8880,.8840,.8809,.8790,.8790,.8805,.8932,
2,.9018/, PR2TAB/.8555,.8448,.8367,.8310,.827,.825,.825,.827,.8437,
3,.8567/ 0335
0336
0337
0338
0339
0340
0341
0342
0343
0344

```

```

DATA CFMTAB/.5+1.0+2.0+3.0+4.0+5.0+6.0+7.0+8.0+9.0+10.0+12.0, 0345
113.0+14.0+15.0+16.0+18.0+20./, CFTTAB/.2+.4+.6+1.0+2.0+3.0+4.0+6./ 0346
DATA CFTAB/.0051+.004904+.00429+.003596+.002978+.002475+.002078, 0347
1.001764+.001516+.001317+.001156+.000913+.0008208+.0007425, 0348
2.0006755+.0006177+.0005236+.0004507+.004546+.004411+.00396, 0349
3.003416+.002901+.00246+.002097+.001804+.001565+.001371+.001211, 0350
4.0009676+.0008734+.0007931+.0007239+.000664+.0005657+.0004891, 0351
5.000417+.00407+.003709+.003258+.002812+.002417+.002084+.001809, 0352
6.001581+.001394+.001237+.000995+.0009016+.0008209+.007512, 0353
7.0006905+.0005905+.0005121+.003673+.003603+.003345+.003005, 0354
8.002652+.002325+.002035+.001788+.001582+.001407+.001258+.001025, 0355
9.0009322+.0008523+.0007828+.0007219+.0006208+.0005409+.002990, 0356
X.002948+.0028+.002593+.002357+.002126+.001907+.001711+.001539, 0357
1.001389+.001259+.001047+.0009598+.0008838+.0008168+.0007576, 0358
2.0006578+.0005777+.00261+.002578+.002475+.002328+.002153+.001974, 0359
3.001798+.001635+.001489+.001357+.001241+.001046+.0009652+.0008934, 0360
4.0008295+.0007724+.0006755+.0005967+.00235+.002328+.002251, 0361
5.002137+.002+.001854+.001708+.001568+.001441+.001323+.001218, 0362
6.001039+.000963+.000895+.0008341+.007793+.0006853+.0006082, 0363
7.0002005+.002+.00195+.001875+.001779+.001675+.001566+.00146, 0364
8.0001357+.001262+.001173+.001017+.00095+.0008887+.0008331+.0007825, 0365
9.0006944+.000621/ 0366
RNLOCL=RNPFL * CONVRO(I,3) 0367
TRAT= TEMP(I)/TLOCL 0368
IF (RNLOCL.GE.TRANRN) GO TO 150 0369
*
* LAMINAR FLOW 0370
*
CALL FTLUP(TEMP(I),PRNO,1+10,TPRTAB,PR2TAB) 0371
SAVE=SQRT(RNLOCL) 0372
*
ALPHA = .416594+MLOCL*(-.00246733+ MLOCL*(-8.17489E-4+ MLOCL* 0373
1 2.734033E-5)) 0374
*
BETA= TRAT*(-.0134671+ MLOCL*(2.635807E-4 +MLOCL*(5.818944E-5- 0375
1 MLOCL*2.173257E-6))) 0376
CH = FPCONE*(ALPHA+ BETA)/ SAVE 0377
*
GO TO 200 0378
*
* TURBULENT FLOW 0379
*
150 CALL FTLUP(TEMP(I),PRNO,1+10,TPRTAB,PR3TAB) 0380
*
CALL DISCOT(MLOCL,TRAT,CFMTAB,CFTAB,CFTTAB,11,144,8,CFR) 0381
*
SAVE= -1826.3756+9737.6*TRAT 0382
A=(668.12+ SQRT(SAVE))/4868.8 0383
B=.0019-.0001*TRAT 0384
RNEXP=A+B*MLOCL 0385
*
SAVE1=1.0 0386
IF (FPCONE.NE.1.0) SAVE1=.5 0387
*
CFS= CFR/((SAVE1*RNLOCL/1.E6)**RNEXP) 0388
CH = .6*CFS 0389
*
* TURBURLENT OR LAMINAR FLOW 0390
*
200 CPIDEAL=.24 0391
TSTAG=TFS*(1.0+.2*MFS**2) 0392
HVAL= CH* RHOLOCL*CPIDEAL*VLOCL*G 0393
TREC= PRNO*(TSTAG -TLOCL)+ TLOCL 0394
IHORQ=1 0395
*
300 RETURN 0396
END 0397

```

STAG

Subroutine STAG computes the stagnation heat-transfer coefficient by either the Sibulkin equations, the Detra-Kemp-Riddell equations, or the Cohen equations according to the value of the free-stream velocity. For locations not at the stagnation point, a ratio value designated in the input is used for the percentage of the stagnation value.

The program listing for subroutine STAG is

```

SUBROUTINE STAG(I,HVAL,TREC,HSUBDIF)          0412
*
* A SUBROUTINE TO CALCULATE HEATING RATES AT STAGNATION - IT USES 0413
* SIBULKIN DETRA-KEMP-RIDDELL, AND COHEN EQUATIONS 0414
* THIS SUBROUTINE IS CALLED BY TWO SUBROUTINES - CONV AND THINWAL 0415
* 0416
* 0417
COMMON TIME,DELTAT,TIMSTOP,PRFREQ,NO, IDIM,ICONVG,G,          0418
1TEMP(100),CONST(100)                                0419
COMMON /ALLCONV/ CONVR0(30,5),IDIFF,NOCONV,QCONV(30),      0420
1TAW(30),IHORG                                      0421
COMMON /STGONLY/ COHEN,RADNOSE                      0422
COMMON /TVDASTG/ ALT,VFS,PFS,TFS,MFS,RNFS,RHOSF3,VLOCL,MLOCL, 0423
1RNPFL,RNLOCL,TLOCL,RHOLOCL                      0424
COMMON /ARRAYS/ ARRAY1(1800),ARRAY2(1800),ARRAY3(1800),ATAB(40), 0425
1VTAB(45)                                         0426
INTEGER COHEN
REAL MFS,MLOCL                                     0427
DIMENSION TMPTAB(32),PRESTB(7),ZHRTTAB(224),ZPRTEM(12),ZTAB(84), 0428
1PRNOTB(84),UEURTAB(224)                           0429
DATA TMPTAB/0.0+800.,900.,1800.,2700.,3600.,4500.,5400.,6300., 0430
17200.,8100.,9000.,9900.,10800.,11700.,12600.,13500.,14400.,15300., 0431
216200.,17100.,18000.,18900.,19800.,20700.,21600.,22500.,23400., 0432
324300.,25200.,26100.,27000./, PRESTB/-6743202.,3256798,1,3256798, 0433
42,3256798,3,3256798,4,3256798,5,3256798/           0434
DATA ZHRTTAB/0.0+3.5,3.52,3.65+3.80, 0435
14.41,8.02,8.19,8.03,9.82,16.8,23.46,23.58,22.54,21.93,22.29,24.26, 0436
228.65,35.75,43.74,49.15,50.96,50.64,49.48,48.07,46.64,45.26,43.97, 0437
342.76,41.64,40.58,39.60,0.0,3.5,3.52,3.65,3.8,4.07,6.16,8.02,7.77, 0438
48.09,10.55,16.68,21.58,21.97,21.24,20.69,20.72,21.65,23.85,27.66, 0439
533.0,38.79,43.28,45.57,46.09,45.64,44.74,43.69,42.61,41.55,40.53, 0440
639.57,0.0,3.5,3.52,3.65,3.8,3.97,4.81,7.13,7.62,7.53,8.14,10.48, 0441
715.14,19.3,20.35,20.01,19.54,19.34,19.6,20.49,22.17,24.78,28.28, 0442
832.31,36.13,39.01,40.66,41.26,41.17,40.69,40.01,39.24,0.0+3.5, 0443
93.52,3.65,3.8,3.93,4.27,5.55,7.08,7.28,7.33,7.96,9.73,12.93,16.46, 0444
X18.34,18.66,18.43,18.17,18.09,18.29,18.85,19.84,21.31,23.28,25.69, 0445
128.36,30.99,33.27,34.97,36.02,36.53,0.0+3.5,3.52,3.65,3.8,3.92, 0446
24.09,4.61,5.75,6.74,6.98,7.1,7.58,8.7,10.64,13.2,15.48,16.73,17.09 0447
3.17,0.04,16.91,16.84,16.9,17.13,17.57,18.24,19.16,20.32,21.72,23.29, 0448
424.98,26.66,0.0,3.5,3.52,3.65,3.8,3.92,4.03,4.25,4.75,5.56,6.29, 0449
56.62,6.8,7.11,7.72,8.76,10.24,11.99,13.63,14.79,15.4,15.61,15.64, 0450
615.6,15.58,15.62,15.74,15.96,16.28,16.71,17.26,17.92,0.0,3.5,3.52, 0451
73.65,3.8,3.92,4.01,4.13,4.34,4.7,5.2,5.73,6.13,6.38,6.62,6.95, 0452
87.44,8.16,9.1,10.2,11.36,12.42,13.23,13.77,14.08,14.22,14.28,14.3, 0453
914.31,14.34,14.4,14.49/                         0454
DATA ZTAB/ 5*1.0,1.016,1.163,1.2,1.211,1.287,1.577,1.910, 0455
15 * 1.0,1.005,1.088,1.192,1.203,1.228,1.337,1.622, 0456
25 * 1.0,1.002,1.033,1.149,1.197,1.208,1.245,1.359, 0457
35 * 1.0,1.001,1.011,1.072,1.167,1.198,1.213,1.252, 0458
46 * 1.0,1.004,1.026,1.092,1.165,1.196,1.214, 0459

```

```

56 * 1.0,1.001,1.009,1.035,1.089,1.149,1.186,          0461
67 * 1.0,1.003,1.012,1.033,1.071,1.118/,          0462
7ZPRTEM/ 0.0,800.,900.,1800.,2700.,3600.,4500.,5400.,6300.,7200.,          0463
88100.,9000./, PRNOTB / .75.,.75.,.738.,.756.,.767.,.614.,.771.,.714,          0464
9.606.,.587.,.764.,.993.,.75.,.75.,.738.,.756.,.767.,.668.,.654.,.745.,.658,          0465
X.,.58.,.611.,.799.,.75.,.75.,.738.,.756.,.767.,.724.,.611.,.74.,.737.,.619.,.578,          0466
1.624.,.75.,.75.,.738.,.756.,.767.,.766.,.645.,.636.,.744.,.759.,.610.,.581,          0467
2.75.,.75.,.738.,.755.,.767.,.773.,.696.,.627.,.660.,.762.,.752.,.611,          0468
3.75.,.75.,.738.,.756.,.767.,.773.,.751.,.680.,.631.,.662.,.743.,.767,          0469
4.75.,.75.,.738.,.756.,.767.,.773.,.762.,.740.,.678.,.640.,.654.,.702/          0470
DATA UEURTAB/8*1.0,1.011,1.032,1.096,1.181,1.227,1.256,1.271,          0471
1.264,1.21,1.072,.826,.517,.261,.118,.055,.029,.018,.012,.009,          0472
2.008,.007,.007,.008,.008,          0473
38*1.0,1.01,1.024,1.055,1.128,1.209,1.257,1.286,1.303,1.307,1.280,          0474
41.207,1.068,.853,.595,.361,.2,.108,.063,.036,.024,.018,.015,.013,          0475
5.012, 8*1.0,1.01,1.022,1.038,1.074,1.146,1.228,1.276,1.317,1.337,          0476
61.347,1.343,1.314,1.251,1.143,.983,.782,.571,.387,.249,.158,.10,          0477
7.067,.042,.016, 8* 1.0,1.006,1.02,1.033,1.051,1.086,1.148,1.229,          0478
81.294,1.332,1.371,1.386,1.396,1.393,1.375,1.335,1.267,1.168,1.04,          0479
9.881,.711,.547,.408,.268,.212, 8* 1.0,1.003,1.016,1.029,1.043,          0480
X1.06,1.09,1.139,1.208,1.283,1.342,1.386,1.425,1.438,1.445,1.448,          0481
11.442,1.424,1.394,1.342,1.274,1.187,1.082,.94,.828,          0482
28* 1.0,1.001,1.008,1.022,1.036,1.052,1.067,1.09,1.124,1.175,1.238,          0483
31.307,1.368,1.418,1.458,1.496,1.501,1.511,1.52,1.516,1.508,1.492,          0484
41.468,1.415,1.387, 9 * 1.0,1.003,1.01,1.022,1.036,1.05,1.072,          0485
51.089,1.112,1.143,1.185,1.238,1.298,1.361,1.418,1.467,1.509,1.549,          0486
61.577,1.581,1.594,1.599,1.601,1.604/          0487
IF (COHEN.EQ.1) GO TO 50          0488
IF (VFS.GE.5000.) GO TO 50          0489
*
* SIBULKIN OPTION          0490
*
* B = .80 +.541*MFS -.00574* MFS**2          0491
*
* HVAL=B*G*RHOSF3*VFS*.24*CONVR0(I,3)/(SQRT(RNFS*RADNOSE))          0492
TREC= TFS*(1.0+.2*MFS**2)          0493
IHORQ=1          0494
RETURN          0495
*
50 IF (VFS.GT.5000.) GO TO 60          0500
SAVE1 = (1.2*MFS**2)**3.5          0501
SAVE2= (6. / (7.0*MFS**2-1.0))**2.5          0502
POPP1= SAVE1 *SAVE2          0503
GO TO 70          0504
60 CALL DISCOT(VFS,ALT,VTAB,ARRAY1,ATAB,11,1800,40,POPP1)          0505
70 PESTAG=POPP1*PFS          0506
PELOG = ALOG10(PESTAG)          0507
CALL DISCOT(TEMP(I),PELOG,TMPTAB,ZHRTTAB,PRESTB,11,224,7,ZHRT)          0508
HSUBW= .0686*ZHRT*TEMP(I)          0509
HSUBR=(VFS**2)/(50000.) +.24*TFS          0510
IF (COHEN.EQ.1) GO TO 100          0511
IF (VFS.GT.20000.) GO TO 100          0512
*          0513

```

```

* DETRA-KEMP-RIDDELL OPTION 0514
* HVAL=(.447E-8 *SQRT(RHOSF3)* VFS**3.15)/(SQRT(RADNOSE)*(HSUBR-0515
1130.))*CONVRO(1,3) 0516
GO TO 200 0517
* 0518
* COHEN OPTION 0519
* 0520
* 0521
100 IF (VFS.GT.5000.) GO TO 110 0522
TOPT1 = 1.0+.2*MFS**2 0523
TESTAG = TOPT1*TFS 0524
ROPR1=POPP1/TOPT1 0525
RHOSTAG=ROPR1*RHOSF3 0526
GO TO 120 0527
110 CALL DISCOT(VFS,ALT,VTAB,ARRAY2,ATAB,11,1800,40,ROPR1) 0528
RHOSTAG= ROPR1*RHOSF3 0529
CALL DISCOT(VFS,ALT,VTAB,ARRAY3,ATAB,11,1800,40,TOPT1) 0530
TESTAG= TOPT1*TFS 0531
120 CALL DISCOT(TEMP(I),PELOG,TMPTAB,UEURTAB,PRESTB,11,224,7,UWUREF) 0532
CALL DISCOT(TESTAG,PELOG,TMPTAB,UEURTAB,PRESTB,11,224,7,UEUREF) 0533
* 0534
UREFS=(2.28E-8*TESTAG**1.5)/(TESTAG + 201.6) 0535
UREFW=(2.28E-8*TEMP(I)**1.5)/(TEMP(I)+201.6) 0536
* 0537
UESTAG= UREFS* UEUREF 0538
UWSTAG= UREFW* UWUREF 0539
* 0540
CALL DISCOT(TEMP(I),PELOG ,ZPRTEM,ZTAB,PRESTB,11,84,7,ZW) 0541
CALL DISCOT(TEMP(I),PELOG ,ZPRTEM,PRNOTB,PRESTB,11,84,7,PRWSTG) 0542
* 0543
ROWSTAG = 5.825E-4* PESTAG/(ZW * TEMP(I)) 0544
* 0545
TSUBE=8465./(VFS**2/50000.) 0546
* 0547
IF (TSUBE.LT..5) GO TO 150 0548
G1TE=1.0 0549
GO TO 160 0550
150 G1TE= 1.0+ .075*(1.0/(TSUBE)-2.0)**2 0551
160 SAVE1= PRWSTG**(-.6) 0552
SAVE2=(RHOSTAG*UESTAG)**.43 0553
SAVE3=(ROWSTAG*UWSTAG)**.07 0554
SAVE4=(2.0*(PESTAG-PFS)/RHOSTAG)**.25 0555
* 0556
HVAL=.767*G*SAVE1*SAVE2*SAVE3*SAVE4*G1TE*CONVRO(I,3)/SQRT(RADNOSE) 0557
* 0558
200 HSUBDIF = HSUBR-HSUBW 0559
IHORG=2 0560
* 0561
RETURN 0562
END 0563

```

TRAJ

The subroutine TRAJ computes the free-stream and local conditions from a given trajectory of altitude and velocity as functions of time. The flow diagram for the subroutine TRAJ follows.

The program listing for subroutine TRAJ is

```

SUBROUTINE TRAJ          0564
*
*      A SUBROUTINE TO CALCULATE FREE-STREAM AND LOCAL CONDITIONS FROM A 0565
*      GIVEN TRAJ FOR USE IN VANDR AND STAG                         0566
*      THIS SUBROUTINE IS CALLED BY TWO SUBROUTINES - CONV AND THINWAL 0567
*
*      COMMON TIME,DELTAT,TIMSTOP,PRFREQ,NO, IDIM,ICONVQ,G,           0568
1 TEMP(100),CONST(100)                                         0569
      DIMENSION ANS(4)                                              0570
*
*      COMMON /TRAJO/ NAVPTS,TIMEAV(100),ALTTAB(100),VELTAB(100),NRATPT, 0571
1 MFSTAB(25),VERTAB(50),MACTAB(50),REYTAB(50),TEMTAB(50),RHOTAB(50) 0572
      COMMON /TVDASTG/ALT,VFS,PFS,TFS,MFS,RNFS,RHOSF3,VLOCL,MLOCL,RNPFL, 0573
1 RNLOCL,TLOCL,RHOLOCL
      COMMON /CVTRAJ/NRATIO
*
*      REAL MFSTAB,MACTAB,MFS,MLOCL,MUFS                           0574
*
*      CALL FTLUP(TIME,ALT+1,NAVPTS,TIMEAV,ALTTAB)                  0575
      CALL FTLUP(TIME,VFS+1,NAVPTS,TIMEAV,VELTAB)                  0576
      CALL AT62(ALT,ANS)                                           0577
      TFS=1.8 * ANS(3)                                            0578
      RHOSF3=ANS(1)                                              0579
      PFS =ANS(2)                                                 0580
      MFS = VFS /ANS(4)                                           0581
      MUFS= 2.27E-8 * TFS**(.3./2.)/(TFS+198.6)                 0582
      RNFS= RHOSF3 *ANS(4)* MFS/MUFS                            0583
*
*      IF (ICONVQ.NE.3) GO TO 10                                     0584
      J=1
*
*      LOCAL VALUES FOUND BY USING LOCAL TO FREE-STREAM RATIOS    0585
*
*      L=1
      IF (NRATPT.EQ.0) J=0                                         0586
      IF (IDIM.EQ.0) GO TO 5                                       0587
      IF (NRATIO.EQ.2) L=26                                       0588
5   CALL FTLUP (MFS,TABVAL,J,NRATPT,MFSTAB+VERTAB(L))          0589
      VLOCL = VFS * TABVAL                                       0590
      CALL FTLUP (MFS,TABVAL,J,NRATPT,MFSTAB+MACTAB(L))          0591
      MLOCL = MFS * TABVAL                                       0592
      CALL FTLUP (MFS,TABVAL,J,NRATPT,MFSTAB+REYTAB(L))          0593
      RNPFL = RNFS * TABVAL                                       0594
      CALL FTLUP (MFS,TABVAL,J,NRATPT,MFSTAB+TEMTAB(L))          0595
      TLOCL = TFS * TABVAL                                       0596
      CALL FTLUP (MFS,TABVAL,J,NRATPT,MFSTAB+RHOTAB(L))          0597
      RHOLOCL = RHOSF3 *TABVAL                                     0598
*
*      10 CONTINUE
      RETURN
      END

```

COND

Subroutine COND computes the conduction coefficient and stores it in the coefficient matrix for solution. The flow diagram for subroutine COND follows.

The program listing for subroutine COND is

```

SUBROUTINE COND (COEF,MDUMMY,NDUMMY) 0615
*
* A SUBROUTINE TO CALCULATE THE CONDUCTION TERMS 0616
* THIS SUBROUTINE IS CALLED BY THE MAIN PROGRAM 0617
*
*
* DIMENSION COEF(MDUMMY,NDUMMY) 0621
COMMON TIME,DELTAT,TIMSTOP,PRFREQ,NO, IDIM,ICONVQ,G, 0622
1TEMP(100),CONST(100) 0623
COMMON /CDGEOM/ NTOUCH(5,100),ACOND(300) 0624
COMMON /ALLCONV/ CONVR(30,5),IDIFF,NOCONV,QCONV(30), 0625
1TAW(30),IHORQ 0626
COMMON /MATPROP/ MAT(100),EMS(40),RHO(10),NCPPTS(10),TCPTAB(100), 0627
1CPTAB(100),NKMPTS(10),TTKTAB(100),KMTAB(100) 0628
COMMON /BLKDIM/ WD(100),VOL(100),LEN(100),NHOR,NVER 0629
COMMON /INVRSL/ INVERSE,INVBLK,TEMPINV,NOINV,INVBLKS(4),NOINV, 0630
1TINV(200),TEMINV(400) 0631
REAL LEN 0632
REAL KMTAB 0633
0634
* 1 IF (INVERSE.EQ.1) INVRT=1 0635
NCDCT = 1 0636
DO 60 NBLOCK=1,NO 0637
IORDER=1 0638
IMAT =MAT(NBLOCK) 0639
I=IMAT *10-9 0640
NPRS=NCPPTS(IMAT) 0641
IF (NPRS.EQ.0) IORDER=0 0642
CALL FTLUP (TEMP(NBLOCK),VALCP,IORDER,NPRS,TCPTAB(I),CPTAB(I)) 0643
WVCP = RHO(IMAT) * VOL(NBLOCK) * VALCP/ DELTAT 0644
0645
* NUMCD=NTOUCH(1,NBLOCK) 0646
IF (INVERSE.EQ.1) GO TO 2 0647
COEF(NBLOCK,1)=COEF(NBLOCK,1) -WVCP 0648
CONST(NBLOCK)=CONST(NBLOCK) - WVCP*TEMP(NBLOCK) 0649
IF (NUMCD.NE.0) GO TO 3 0650
GO TO 60 0651
2 IF (NUMCD.NE.0) GO TO 3 0652
IF (INVBLK.EQ.NO) GO TO 4 0653
COEF(NBLOCK,NBLOCK)=COEF(NBLOCK,NBLOCK)-WVCP 0654
CONST(NBLOCK)=CONST(NBLOCK)-WVCP*TEMP(NBLOCK) 0655
GO TO 60 0656
4 CONST(NBLOCK)=CONST(NBLOCK)+WVCP*(TEMPINV-TEMP(NBLOCK)) 0657
GO TO 60 0658
0659
* 3 IORDER=1 0660
*
NPRS=NKMPTS(IMAT) 0661
IF (NPRS.EQ.0) IORDER=0 0662
CALL FTLUP (TEMP(NBLOCK),VALK1,IORDER,NPRS,TTKTAB(I),KMTAB(I)) 0663
0664
* DO 50 J=1,NUMCD 0665
0666
* TEST TOUCHING BLOCK NOS AND FIND DISTANCES ACCORDING TO PROPER SIGN 0667
0668
* ITBLK=NTOUCH(J+1,NBLOCK) 0669
IF (ITBLK) 5, 51,10 0670
0671
* 0672

```

```

* SIGN WAS NEGATIVE USE WIDTHS OF BLOCKS 0673
* 0674
5 ITBLK= IABS(ITBLK) 0675
D1=WD(NBLOCK) 0676
D2=WD(ITBLK) 0677
GO TO 15 0678
*
* SIGN WAS POSITIVE USE LENGTHS OF BLOCKS 0679
* 0680
10 D1=LEN(NBLOCK) 0681
D2=LEN(ITBLK) 0682
*
* FIND NO OF MATERIAL AND KM VALUE FOR TOUCHING BLOCK 0683
* 0684
* 0685
15 IORDER=1 0686
IMAT =MAT(ITBLK) 0687
I=IMAT *10-9 0688
NPRS=NKMPTS(IMAT) 0689
IF (NPRS.EQ.0) IORDER=0 0690
CALL FTLUP (TEMP(ITBLK ),VALK2,IORDER,NPRS,TTKTAB(I),KMTAB(I)) 0691
*
* PICK UP NEXT CONDUCTION AREA IN ARRAY AND COMPUTE COEF. OF TEMPERATURE 0692
* DIFFERENCE 0693
* 0694
SAVE =2.0*ACOND(NCDCT)/((D1/VALK1)+D2/VALK2) 0695
NCDCT = NCDCT+1 0696
*
IF (INVERSE.EQ.1) GO TO 90 0697
*
COEF(NBLOCK+1)=COEF(NBLOCK+1) -SAVE 0698
ISAVE=ITBLK-NBLOCK+1 0699
COEF(NBLOCK,ISAVE)=SAVE 0700
COEF(ITBLK,1) =COEF(ITBLK,1) -SAVE 0701
*
GO TO 50 0702
*
* STORAGE OF CONDUCTION TERMS FOR INVERSE SOLUTION 0703
90 HOLD= TEMPINV*SAVE 0704
*
GO TO (100+200,300+400+500) INVRT 0705
*
100 COEF(INVBLK+2)=SAVE 0706
COEF(INVBLK,INVBLK)= CONVRO(1,2) 0707
IF (INVBLK.NE.1) GO TO 150 0708
*
* BLOCK NO 1 IS INVERSE BLOCK 0709
*
CONST(1)=CONST(1) + HOLD +WVCP*(TEMPINV-TEMP(1)) 0710
CONST(2)=-HOLD 0711
INVRT=5 0712
IF (NOINV.EQ.1) GO TO 550 0713
DO 105 L=2,NOINV 0714
INO=INVBLKS(L) 0715
COEF(1,INO) =COEF(1,INO)+SAVE+WVCP 0716
105 COEF (2,INO)=COEF(2,INO)-SAVE 0717
GO TO 550 0718
*
150 COEF (INVBLK,1)=COEF(INVBLK+1)-SAVE -WVCP 0719
COEF (1+1)=SAVE 0720
*
IF (INVBLK.EQ.2) GO TO 160 0721
COEF (1+2)= COEF(1,2)-SAVE 0722
CONST(INVBLK)=CONST(INVBLK)-WVCP*TEMP(NBLOCK) 0723
INVRT=3 0724
GO TO 50 0725
*

```

```

* BLOCK NO 2 IS INVERSE BLOCK 0739
*
160 CONST(2) = CONST(2) -HOLD-WVCP* TEMP(NBLOCK) 0740
    CONST(1) = HOLD 0741
    INVRT=2 0742
    IF (NOINV.EQ.1) GO TO 50 0743
    DO 165 L=2,NOINV 0744
    INO=INVBLKS(L) 0745
    COEF(1,INO) =COEF(1,INO)+SAVE 0746
165 COEF(2,INO)=COEF(2,INO)-SAVE 0747
    GO TO 50 0748
0749
*
200 COEF(1,3)=COEF(1,3)+SAVE 0750
    CONST(1)=CONST(1) + HOLD +WVCP*(TEMPINV-TEMP(2)) 0751
    CONST(3) =-HOLD 0752
    INVRT=5 0753
    IF (NOINV.EQ.1) GO TO 550 0754
    DO 205 L=2,NOINV 0755
    INO=INVBLKS(L) 0756
    COEF(1,INO) =COEF(1,INO)+SAVE+WVCP 0757
205 COEF(3,INO)=COEF(3,INO)-SAVE 0758
    GO TO 550 0759
300 IF (ITBLK.EQ.INVBLK) GO TO 350 0760
0761
*
    COEF(NBLOCK-1,ITBLK)=COEF(NBLOCK-1,ITBLK)+SAVE 0762
    COEF(NBLOCK,ITBLK)= COEF(NBLOCK+ITBLK)-SAVE 0763
    CONST(NBLOCK-1)=CONST(NBLOCK-1)-WVCP*TEMP(NBLOCK) 0764
    GO TO 360 0765
0766
*
350 INVRT=4 0767
    CONST(NBLOCK-1)=CONST(NBLOCK-1)-HOLD-WVCP*TEMP(NBLOCK) 0768
    CONST(NBLOCK)=CONST(NBLOCK)+HOLD 0769
    IF (NOINV.EQ.1) GO TO 360 0770
    DO 355 L=2,NOINV 0771
    INO=INVBLKS(L) 0772
    COEF(NBLOCK-1,INO) =COEF(NBLOCK-1,INO)-SAVE 0773
355 COEF(NBLOCK,INO) = COEF(NBLOCK,INO)+SAVE 0774
360 COEF(NBLOCK-1,NBLOCK)= COEF(NBLOCK-1,NBLOCK)-SAVE-WVCP 0775
    COEF(NBLOCK,NBLOCK)=COEF(NBLOCK+NBLOCK)+SAVE 0776
    GO TO 50 0777
0778
*
400 COEF(NBLOCK-1,ITBLK)=COEF(NBLOCK-1,ITBLK)+SAVE 0779
    CONST(NBLOCK-1)= CONST(NBLOCK-1)+HOLD+WVCP*(TEMPINV-TEMP(NBLOCK)) 0780
    CONST(ITBLK) =-HOLD 0781
    INVRT=5 0782
    IF (NOINV.EQ.1) GO TO 550 0783
    DO 450 L=2,NOINV 0784
    INO=INVBLKS(L) 0785
    COEF(NBLOCK-1,INO) =COEF(NBLOCK-1,INO)+SAVE+WVCP 0786
450 COEF(ITBLK,INO)= COEF(ITBLK,INO)-SAVE 0787
    GO TO 550 0788
0789
*
500 COEF(NBLOCK,ITBLK)=COEF(NBLOCK+ITBLK)+SAVE 0790
    COEF(NBLOCK,NBLOCK)=COEF(NBLOCK,NBLOCK)-SAVE-WVCP 0791
    COEF(ITBLK,NBLOCK)=COEF(ITBLK,NBLOCK)+SAVE 0792
    CONST(NBLOCK)=CONST(NBLOCK)-WVCP*TEMP(NBLOCK) 0793
550 COEF(ITBLK,ITBLK) = COEF(ITBLK+ITBLK)-SAVE 0794
0795
*
    50 CONTINUE 0796
    60 CONTINUE 0797
0798
*
    RETURN 0799
51 WRITE (6,52) NBLOCK 0800
52 FORMAT (4X35$ERROR - TOUCHING BLOCK=0 BLOCK NO=14) 0801
    STOP 0802
    END 0803
0804

```

RADOUT

Subroutine RADOUT computes the radiation-out term of the heat-balance equation and stores it in the constant vector for solution or it computes a linearized form and stores values in the coefficient matrix and in the constant vector for solution. The flow diagram for subroutine RADOUT follows.

The program listing for subroutine RADOUT is

```

SUBROUTINE RADOUT (COEF,MDUMMY,NDUMMY) 0805
*
* A SUBROUTINE TO CALCULATE THE RADIATION-OUT TERM EITHER LINEARIZED 0806
* OR NOT 0807
* THIS SUBROUTINE IS CALLED BY THE MAIN PROGRAM 0808
* 0809
* 0810
DIMENSION COEF(MDUMMY,NDUMMY) 0811
COMMON /TIME/DELTAT,TIMSTOP,PRFREQ,NO, IDIM,ICONVQ,G, 0812
ITEMP(100),CONST(100) 0813
COMMON /ALLCONV/ CONVRO(30,5),IDIFF,NOCONV,QCONV(30), 0814
ITAW(30),IHORG 0815
COMMON /MATPROP/ MAT(100),EMS(40),RHO(10),NCPPTS(10),TCPTAB(100), 0816
1CPTAB(100),NKMPPTS(10),TTKTAB(100),KMTAB(100) 0817
COMMON /INVR/ INVERSE,INVBLK,TEMPINV,NOINV,INVBLKS(4),NOINVT, 0818
1TINV(200),TEMINV(400) 0819
COMMON /RADONLY/NRADO,LINEAR 0820
REAL KMTAB 0821
*
IF(NRADO.EQ.0) RETURN 0822
DO 20 I=1,NRADO 0823
IBLK= CONVRO(I+1) 0824
TCUBED= TEMP(IBLK)**3 0825
M= MAT(IBLK) 0826
J= M**4-3 0827
*
EMSS=EMS(J)+TEMP(IBLK)*(EMS(J+1)+TEMP(IBLK)*(EMS(J+2)+ 0828
1TEMP(IBLK)*EMS(J+3))) 0829
*
HOLD = .4835E-12*EMSS* CONVRO(IBLK,2)* TCUBED 0830
HOLD1= HOLD*TEMP(IBLK) 0831
IF (LINEAR.EQ.0) GO TO 5 0832
*
* STORAGE FOR LINEAR EQ. (T**4) 0833
*
IF (INVERSE.EQ.0) GO TO 4 0834
COEF(INVBLK,1)= COEF(INVBLK,1) -HOLD*2.0 0835
CONST(INVBLK)= CONST(INVBLK)-HOLD1 0836
GO TO 20 0837
4 COEF(IBLK,1) = COEF(IBLK,1) -HOLD*2.0 0838
CONST(IBLK) = CONST(IBLK)-HOLD1 0839
GO TO 20 0840
*
5 IF (INVERSE.EQ.0) GO TO 10 0841
IF (IBLK.NE.1) GO TO 10 0842
*
6 CONST(INVBLK)=CONST(INVBLK)+HOLD1 0843
GO TO 20 0844
*
10 CONST(IBLK)=CONST(IBLK)+HOLD1 0845
*
20 CONTINUE 0846
RETURN 0847
END 0848

```

AIRGAP

Subroutine AIRGAP computes the air-conduction coefficient and stores it in the coefficient matrix and also computes the radiation term across an air gap and stores this term in the constant vector for solution. The flow diagram for subroutine AIRGAP follows.

The program listing for subroutine AIRGAP is

```

SUBROUTINE AIRGAP (COEF,MDUMMY,NDUMMY) 0859
*
* A SUBROUTINE TO CALCULATE THE AIR CONDUCTION AND THE RADIATION 0860
* ACROSS AN AIR GAP - CANNOT BE USED FOR INVERSE SOLUTION 0861
* THIS SUBROUTINE IS CALLED BY THE MAIN PROGRAM 0862
*
DIMENSION COEF(MDUMMY,NDUMMY) 0863
COMMON TIME,DELTAT,TIMSTOP,PRFREQ,NO, IDIM,ICONVQ,G, 0864
1TEMP(100),CONST(100) 0865
COMMON /AGONLY/ NAIRGAP,ACRADI(4,30) 0866
COMMON /MATPROP/ MAT(100),EMS(40),RHO(10),NCPPTS(10),TCPTAB(100), 0867
1CPTAB(100),NKMPTS(10),TTKTAB(100),KMTAB(100) 0868
REAL KMTAB 0869
DIMENSION ATTAB(9),AKMTAB(9) 0870
DATA NAKMPT,ATTAB,AKMTAB /9,400.,600.,800.,1000.,1200.,1400., 0871
11600.,1800.,2000.,3,18E-6,4,60E-6,5,87E-6,7,02E-6,8,07E-6, 0872
29,06E-6,9,94E-6,10,57E-6,10,87E-6 / 0873
*
DO 50 I=1,NAIRGAP 0874
NACBLK =ACRADI(1+I) 0875
CALL FTLUP(TEMP(NACBLK),AK1+1,NAKMPT,ATTAB,AKMTAB) 0876
IOBLK= ACRADI(2,I) 0877
CALL FTLUP (TEMP(IOBLK)+AK2+1,NAKMPT,ATTAB,AKMTAB) 0878
AIRK=(AK1+AK2)/2+0 0879
*
SAVE= AIRK * ACRADI(4+I)/ACRADI(3+I) 0880
*
COEF(NACBLK+1) =COEF(NACBLK+1)-SAVE 0881
INDEX= IOBLK-NACBLK+1 0882
IF (INDEX.GT.0) GO TO 5 0883
INDEX= NACBLK-IOBLK+1 0884
COEF( IOBLK,INDEX)=COEF( IOBLK,INDEX)+SAVE 0885
GO TO 10 0886
5 COEF(NACBLK,INDEX)=SAVE + COEF(NACBLK,INDEX) 0887
10 COEF( IOBLK+1) = COEF( IOBLK+1)- SAVE 0888
*
* COMPUTE RADIATION-IN ACROSS THE AIR GAP 0889
*
IMAT=MAT(NACBLK) 0890
J=IMAT*4-3 0891
EM1 =EMS(J)+TEMP(NACBLK)*(EMS(J+1)+TEMP(NACBLK)*(EMS(J+2)+ 0892
1TEMP(NACBLK)* EMS(J+3))) 0893
IMAT=MAT( IOBLK) 0894
J=IMAT*4-3 0895
EM2 =EMS(J)+TEMP( IOBLK)*(EMS(J+1)+TEMP( IOBLK)*(EMS(J+2)+ 0896
1TEMP( IOBLK)* EMS(J+3))) 0897
*
* STORAGE AS A CONSTANT PART OF THE EQUATION 0898
*
HOLD=.4B35E-12*ACRADI(4,I)    /(1.0/ EM1 +1.0/EM2 -1.0) 0899
T1P4= TEMP(NACBLK)**4 0900
T2P4= TEMP( IOBLK) **4 0901
CONST(NACBLK)= CONST(NACBLK)+HOLD*(T1P4-T2P4) 0902
CONST( IOBLK) = CONST( IOBLK)+HOLD*(T2P4-T1P4) 0903
50 CONTINUE 0904
RETURN 0905
END 0906

```

JOINT

Subroutine JOINT computes the joint conduction coefficient and stores it in the coefficient matrix. The flow diagram for subroutine JOINT follows.

The program listing for subroutine JOINT is

```

SUBROUTINE JOINT (COEF,MDUMMY,NDUMMY) 0916
*
* A SUBROUTINE TO CALCULATE THE JOINT CONDUCTION TERM 0917
* THIS SUBROUTINE IS CALLED BY THE MAIN PROGRAM 0918
*
DIMENSION COEF(MDUMMY,NDUMMY) 0919
COMMON TIME,DELTAT,TIMSTOP,PRFREQ,NO, IDIM,ICONVQ,G, 0920
1 TEMP(100),CONST(100) 0921
COMMON /MATPROP/ MAT(100),EMS(40),RHO(10),NCPPTS(10),TCPTAB(100), 0922
1 CPTAB(100),NKMPTS(10),TTKTAB(100),KMTAB(100) 0923
COMMON /BLKDIM/ WD(100),VOL(100),LEN(100),NHOR,NVER 0924
COMMON /JTONLY/ NJOINT,AJOINT(4,20) 0925
REAL KMTAB 0926
REAL LEN 0927
*
* SET UP LOOP TO DO MORE THAN ONE JOINT TERM 0928
*
DO 50 J=1,NJOINT 0929
*
NBLOCK = AJOINT(1,J) 0930
JTBLK= AJOINT(2,J) 0931
IF (JTBLK) 5,20,10 0932
*
* SIGN WAS NEGATIVE - USE WIDTHS 0933
*
5 JTBLK= IABS(JTBLK) 0934
D1=WD(NBLOCK) 0935
D2=WD(JTBLK) 0936
GO TO 15 0937
*
* SIGN WAS POSITIVE - USE LENGTHS 0938
*
10 D1=LEN(NBLOCK) 0939
D2=LEN(JTBLK) 0940
*
* FIND NO OF MATERIAL AND KM OF JOINT BLOCK 0941
*
* 15 IORDER=1 0942
IMAT = MAT(NBLOCK) 0943
I=IMAT*10-9 0944
NPRS=NKMPTS(IMAT) 0945
IF (NPRS.EQ.0) IORDER=0 0946
CALL FTLUP(TEMP(NBLOCK),VALK1,IORDER,NPRS,TTKTAB(I),KMTAB(I)) 0947
*
IORDER=1 0948
IMAT = MAT(JTBLK) 0949
I=IMAT*10-9 0950
NPRS=NKMPTS(IMAT) 0951
IF (NPRS.EQ.0) IORDER=0 0952
CALL FTLUP(TEMP(JTBLK),VALK2,IORDER,NPRS,TTKTAB(I),KMTAB(I)) 0953
*
* PICK UP NEXT AREA AND HJ AND COMPUTE COEF. OF TEMPERATURE DIFFERENCE 0954
*
HOLD= 2.0*AJOINT(4,J)/(2.0/AJOINT(3,J)+D1/VALK1+D2/VALK2) 0955
COEF(NBLOCK+1)=COEF(NBLOCK+1)-HOLD 0956
COEF(JTBLK+1)=COEF(JTBLK+1)-HOLD 0957
INDEX = JTBLK-NBLOCK+1 0958
COEF(NBLOCK,INDEX) = HOLD 0959
C 0960
50 CONTINUE 0961
RETURN 0962
*
* ERROR 0963
*
20 WRITE (6, 100) NBLOCK 0964
100 FORMAT(1H1,42H JOINT BLOCK NO SHOULD NOT BE ZERO,NBLOCK=16) 0965
CALL EXIT 0966
*
END 0967

```

COMPMTX

Subroutine COMPMTX solves the symmetric coefficient matrix for temperatures. The technique used for solution is a Gaussian elimination with a back substitution. The flow diagram for subroutine COMPMTX follows.

The program listing for subroutine COMPMTX is

```

SUBROUTINE COMPMTX(COEF,MDUMMY,NDUMMY)          0985
*
* A SUBROUTINE WHICH SOLVES THE SYSTEM OF SIMULTANEOUS EQS.USING 0986
* A GAUSSIAN ELIMINATION ON THE SYMMETRICAL COEF. MATRIX -- ONLY THE 0987
* UPPER PORTION OF THE MATRIX(ABOVE DIAGONAL) HAS BEEN STORED 0988
* THIS SUB. CANNOT BE USED FOR INVERSE AS IT IS NOT SYMMETRICAL 0989
* THIS SUBROUTINE IS CALLED BY THE MAIN PROGRAM 0990
*
DIMENSION COEF(MDUMMY,NDUMMY)                  0991
COMMON TIME,DELTAT,TIMSTOP,PRFREQ,NO,IDIM,ICONVQ,G,
1TEMP(100),CONST(100)                         0992
*
1STOP=NO-1                                     0993
IF (IDIM.EQ.1) GO TO 60                        0994
*
DO 30 I=1,ISTOP                                0995
*
DO 20 J=2,NDUMMY                               0996
*
II= I+J-1                                      0997
IF (COEF(I,J).EQ.0.) GO TO 20                 0998
M =1                                         0999
*
DO 10 K=J,NDUMMY                               1000
*
IF (COEF(I,K).EQ.0.) GO TO 10                 1001
COEF(II,M) =COEF(II,M) -COEF(I,K)*COEF(I,J)/COEF(I,1) 1002
10 M=M+1                                       1003
*
CONST(II)= CONST(II) - CONST(I)*COEF(I,J)/COEF(I,1) 1004
20 CONTINUE                                     1005
30 CONTINUE                                     1006
*
TEMP(NO)= CONST(NO)/COEF(NO,1)                1007
JSTOP= NDUMMY-1                                1008
*
DO 50 I=1,ISTOP                                1009
SUM =0.0                                         1010
M=NO-I                                         1011
*
DO 40 J=1,JSTOP                                1012
IF ((M+J).GT.NO) GO TO 40                      1013
SUM = SUM+ TEMP(M+J) * COEF(M,J+1)            1014
40 CONTINUE                                     1015
*
50 TEMP(M)= (CONST(M)-SUM)/COEF(M,1)           1016
GO TO 90                                         1017
*
* TRIANGULARIZATION AND SOLUTION OF ONE-DIMENSIONAL CONFIGURATION 1018
*
60 DO 70 I=2,NO                                 1019
*
II=I-1                                         1020
COEF(I,1)= COEF(I,1) - COEF(II,2)**2/COEF(II,1) 1021
70 CONST(I) = CONST(I)-CONST(II)* COEF(II,2) / COEF(II,1) 1022
*
TEMP(NO) = CONST(NO)/COEF(NO,1)                1023
*
DO 80 I=1,ISTOP                                1024
M= NO-I                                         1025
80 TEMP(M)=(CONST(M)- COEF(M,2)*TEMP(M+1))/COEF(M,1) 1026
*
90 RETURN                                         1027
END                                             1028

```

THINWAL

Subroutine THINWAL solves a simplified temperature equation by calling subroutine CONV for the convection term and subroutine RADOUT for the radiation-out term. The flow diagram for subroutine THINWAL follows.

The program listing for subroutine THINWAL is

```

SUBROUTINE THINWAL 1051
*
* A SUBROUTINE WHICH CALCULATES THIN WALL HEATING RATES AND TEMPS. 1052
* THIS SUBROUTINE IS CALLED BY THE MAIN PROGRAM 1053
*
*
COMMON TIME,DELTAT,TIMSTOP,PRFREQ,NO, IDIM,ICONVQ,G, 1054
1TEMP(100),CONST(100) 1055
COMMON /THIN/ TWDEPTH 1056
COMMON /MATPROP/ MAT(100),EMS(40),RHO(10),NCPPTS(10),TCPTAB(100), 1057
1CPTAB(100),NKMPPTS(10),TTKTAB(100),KMTAB(100) 1058
COMMON /ALLCONV/ CONVRO(30+5),IDIFF,NOCONV,QCONV(30), 1059
1TAW(30),IHORQ 1060
REAL KMTAB 1061
INTEGER PRFREQ 1062
*
I=1 1063
IPFCT=0 1064
5 TIME= TIME+DELTAT 1065
CALL TRAJ 1066
IF (ICONVQ.EQ.3) GO TO 15 1067
*
CALL STAG(1,HVAL,TREC,HSUBDIF) 1068
GO TO (20,10),IHORQ 1069
10 CONVG= HVAL *HSUBDIF 1070
GO TO 25 1071
15 CALL VANDR(I,HVAL,TREC) 1072
20 CONVG= HVAL * (TREC-TEMP(1)) 1073
*
25 IORDER=1 1074
IF (NCPPTS(1).EQ.0) IORDER=0 1075
*
CALL FTLUP (TEMP(1),CPVAL,IORDER,NCPPTS(1),TCPTAB(1),CPTAB(1)) 1076
SAVE = DELTAT/(RHO(1)* CPVAL*TWDEPTH) 1077
*
IF (EMS(2).EQ.0..AND.EMS(3).EQ.0..AND.EMS(4).EQ.0..) GO TO 30 1078
*
EMSVAL=EMS(1)+TEMP(1)*(EMS(2)+TEMP(1)*(EMS(3)+TEMP(1)*EMS(4))) 1079
GO TO 40 1080
*
30 EMSVAL= EMS(1) 1081
*
40 RADIAT= .4835E-12 *EMSVAL * TEMP**4 1082
*
DELTEMP= SAVE *(CONVG -RADIAT) 1083
*
TEMP(1)= TEMP(1)+ DELTEMP 1084
*
IPFCT=IPFCT +1 1085
IF (IPFCT.NE.PRFREQ) GO TO 50 1086
IPFCT = 0 1087
*
* PRINT ANSWERS 1088
WRITE (6,100) TIME,CONVG,RADIAT,DELTEMP,TEMP(1) 1089
100 FORMAT (2X5HTIME=F8.4 ,3X12HCONVECTION= E15.8,3X11HRADIATION= E15 1090
1.8,3X12HDELTA TEMP= E15.8,3X13HTEMPERATURE= F15.8) 1091
50 IF(TIME.LT.TIMSTOP) GO TO 5 1092
RETURN 1093
END 1094

```

CONV

Subroutine CONV computes the heating-rate coefficient from either tabular input values or from computed values obtained in either the VANDR subroutine or the STAG subroutine. The flow diagram for subroutine CONV follows.

The program listing for subroutine CONV is

```

SUBROUTINE CONV (COEF,MDUMMY,NDUMMY) 1110
*
* A SUBROUTINE TO CALCULATE THE CONVECTION TERMS USING GIVEN Q HEAT 1111
* RATES OR H AND TAW VALUE OR IT USES HEATING RATES CALCULATED 1112
* BY EITHER STAG OR VANDR SUBROUTINES 1113
* THIS SUBROUTINE IS CALLED BY TWO SUBROUTINES - CONV AND THINWAL 1114
*
* DIMENSION COEF(MDUMMY,NDUMMY) 1115
COMMON TIME,DELTAT,TIMSTOP,PRFREQ,NO, IDIM,ICONVQ,G, 1116
1TEMP(100),CONST(100) 1117
COMMON /ALLCONV/ CONVR0(30+5),IDIFF,NOCONV,QCONV(30)+ 1118
1TAW(30),IHORQ 1119
COMMON /CVONLY/ HITIME(200),HTAB(200),TAWTAB(200),QTAB(200) 1120
COMMON /CVTRAJ/NRATIO 1121
*
GO TO (5,10,10) ICONVQ 1122
*
5 LOCQ=1 1123
LOCH=1 1124
IORD=1 1125
*

```

```

* SET UP LOOP FOR MORE THAN ONE CONV. TERMS           1131
*                                                 1132
10 DO 100 I=1,NOCONV                         1133
    ICBLK = CONVRO(I+1)                         1134
    I=I                                         1135
*
* GO TO (20,50,50) ICONVQ                      1136
*                                                 1137
* GIVEN HEATING INPUT                          1138
*                                                 1139
20 IQH =CONVRO(I,4)                           1140
    IPTS=CONVRO(I,5)                           1141
    IF (IPTS.GT.1) GO TO 25                   1142
    IORD=0                                     1143
    IPTS=0                                     1144
    IPTS=0                                     1145
*
25 IF (IQH.EQ.1) GO TO 35                   1146
*
* H AND TAW TABLES                           1147
*                                                 1148
* CALL FTLUP(TIME,HVAL      ,IORD,IPTS,HITIME,HTAB(LOCH)) 1149
* CALL FTLUP(TIME,TREC      ,IORD,IPTS,HITIME,TAWTAB(LOCH)) 1150
*
* IF (IDIFF.EQ.0) GO TO 30                   1151
* IF (IPTS.EQ.0) IPTS=1                     1152
    LOCH=LOCH+IPTS                           1153
30 IORD=1                                    1154
    IHORQ = 1                                1155
    GO TO 80                                  1156
*
* Q TABLES                                 1157
*
35 CALL FTLUP(TIME,QCONV(1),IORD,IPTS,HITIME,QTAB(LOCQ)) 1158
    IHORQ = 2                                1159
*
* IF (IDIFF.EQ.0) GO TO 40                   1160
* IF (IPTS.EQ.0) IPTS=1                     1161
    LOCQ=LOCQ+IPTS                           1162
40 IORD=1                                    1163
    QCONV(1)=QCONV(1)*CONVRO(I,2)            1164
    CONST(ICBLK)=CONST(ICBLK)-QCONV(1)       1165
    GO TO 100                                1166
*
* STAG. AND VAN DRIEST HEATING             1167
*
50 NRATIO=CONVRO(I,4)                         1168
    CALL TRAJ                                1169
    GO TO (105,60,70) .ICONVQ                1170
60 CALL STAG(I,HVAL,TREC,HSUBDIF)           1171
*
* GO TO (80,90) IHORQ                      1172
*
70 CALL VANDR(I,HVAL,TREC)                  1173
*
80 QCONV(1)= HVAL*CONVRO(I+2)                1174
    TAW(I)= TREC                            1175
    COEF(ICBLK+1)=-QCONV(I)+COEF(ICBLK,1)  1176
    CONST(ICBLK)=CONST(ICBLK)-QCONV(I)*TREC 1177
*
* GO TO 100                                1178
*
90 QCONV(1)=HVAL*CONVRO(I+2)*HSUBDIF      1179
    CONST(ICBLK)=CONST(ICBLK)-QCONV(I)       1180
100 CONTINUE                               1181
    RETURN                                  1182
*
105 WRITE (6,110)                           1183
110 FORMAT (1H1,46H ERROR IN ICONVQ-SHOULD NOT BE 1 AT THIS POINT) 1184
    STOP                                     1185
    END                                     1186

```

INVSOL

Subroutine INVSOL solves the coefficient matrix by subroutine SIMEQ and then stores and writes out the computed values of the temperatures and the heating rates. The flow diagram for subroutine INVSOL follows.

The program listing for subroutine INVSOL is

```

SUBROUTINE INV$OL (COEF,MDUMMY) 1201
*
* A SUBROUTINE WHICH HANDLES SOLUTION AND STORAGE OF ANSWERS FOR THE 1202
* INVERSE SOLUTIONS - IT USES SIMEQ(A LIBRARY ROUTINE) FOR THE 1203
* SOLUTION OF THE SIMULTANEOUS EQUATIONS 1204
* THIS SUBROUTINE IS CALLED BY THE MAIN PROGRAM 1205
*
* DIMENSION COEF(MDUMMY,MDUMMY),IPIVOT(30) 1206
* COMMON TIME,DELTAT,TIMSTOP,PRFREQ,NO, IDIM,ICONVQ,G, 1207
* ITEMP(100),CONST(100) 1208
* COMMON /INVRSL/ INVERSE,INVBLK,TEMPINV,NOINV,INVBLKS(4),NOINVT, 1209
* ITINV(200),TEMINV(400) 1210
*
* CALL SIMEQ(COEF,MDUMMY,CONST,1+DUM,IPIVOT,MDUMMY,ISC) 1211
*
* QVAL= CONST(INVBLK) 1212
*
* DO 10 I=1+MDUMMY 1213
*
10 TEMP(I)=CONST(I) 1214
IF (NOINV.GT.1) GO TO 20 1215
TEMP(INVBLK)= TEMPINV 1216
GO TO 40 1217
*
20 SUM=0.0 1218
DO 30 J=2+NOINV 1219
L= INVBLKS(J) 1220
30 SUM= SUM + CONST(L) 1221
TEMP(INVBLK) = TEMPINV -SUM 1222
*
40 WRITE (6,50) TIME,DELTAT,QVAL 1223
50 FORMAT (1H0,6X7HTIME = F8.4,6X13HDELTA TIME = F8.5,6X4HQ = E16.8// 1224
19X8HBLOCK NO.13X11HTEMPERATURE/) 1225
*
WRITE (6,60) (I,TEMP(I),I=1,NO) 1226
60 FORMAT (12X13,12XE16.8) 1227
RETURN 1228
END 1229

```

BLOCK DATA

Subroutine BLOCK DATA contains the tables for normal-shock-wave parameters in imperfect air. The program listing for BLOCK DATA follows:

BLOCK DATA	1239
*	1240
* DATA STATEMENT INFORMATION	1241
TABLES FOR NORMAL SHOCK WAVE PARAMETERS IN IMPERFECT AIR	1242
*	1243
* ATAB = ALTITUDE TABLE (10000FT-400000FT)	1244
* VTAB = VELOCITY TABLE (6000-50000 FT/SEC)	1245
* ARRAY1 = POP/P1 , PITOT TO FREE-STREAM PRESSURE RATIOS	1246
* ARRAY2 = ROP/R1 , NORMAL SHOCK STAGNATION DENSITY RATIOS	1247
* ARRAY3 = TOP/T1 , NORMAL SHOCK STAGNATION TEMPERATURE RATIOS	1248
*	1249
COMMON /ARRAYS/ ARRAY1(1800),ARRAY2(1800),ARRAY3(1800)	1250
1,ATAB(40),VTAB(45)	1251
DATA ((ARRAY1(I), I= 1,90)=	1252
X40.829, 55.548, 72.670, 92.148, 114.038, 138.280, 164.896,	1253
X193.791, 224.864, 258.265, 293.908, 332.066, 372.598, 415.635,	1254
X461.145, 508.870, 558.998, 611.397, 666.274, 723.309, 782.746,	1255
X844.403, 908.371, 974.556, 1043.079, 1113.746, 1186.627, 1261.598,	1256
X1338.723,0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1257
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1258
X0.0, 0.0, 0.0,	1259
X44.034, 59.925, 78.415, 99.452, 123.093, 149.303, 178.025,	1260
X209.256, 242.816, 278.919, 317.404, 358.552, 402.476, 448.928,	1261
X498.001, 549.593, 603.781, 660.481, 719.679, 781.359, 845.530,	1262
X912.226, 981.238, 1052.855, 1126.818, 1203.137, 1281.751, 1362.677,	1263
X1445.974,0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1264
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1265
X0.0, 0.0, 0.0,	1266
DATA ((ARRAY1(I), I= 91,180)=	1267
X47.787, 65.054, 85.145, 108.006, 133.702, 162.244, 193.459,	1268
X227.358, 263.933, 303.082, 344.944, 389.806, 437.498, 487.986,	1269
X541.330, 597.555, 656.392, 718.058, 782.389, 849.449, 919.198,	1270
X991.700, 1066.742, 1144.459, 1224.906, 1307.860, 1393.343, 1481.233,	1271
X1571.628,0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1272
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1273
X0.0, 0.0, 0.0,	1274
X50.435, 68.672, 89.896, 114.047, 141.228, 171.420, 204.449,	1275
X240.248, 278.810, 320.187, 364.587, 411.791, 462.281, 515.684,	1276
X572.104, 631.419, 693.661, 758.842, 826.859, 897.682, 971.509,	1277
X1048.037,1127.402,1209.658,1294.578,1382.184,1472.453,1565.254,	1278
X1660.735,1759.011,0.0, 0.0, 0.0, 0.0, 0.0,	1279
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1280
X0.0, 0.0, 0.0,	1281
DATA ((ARRAY1(I), I= 181,270)=	1282
X50.437, 68.677, 89.911, 114.081, 141.332, 171.528, 204.551,	1283
X240.449, 279.033, 320.398, 364.700, 412.208, 462.634, 516.143,	1284
X572.582, 631.966, 694.372, 759.482, 827.592, 898.509, 972.303,	1285
X1049.014,1128.436,1210.732,1295.692,1383.363,1473.529,1566.326,	1286
X1661.780,1760.113,0.0, 0.0, 0.0, 0.0, 0.0,	1287
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1288
X0.0, 0.0, 0.0,	1289
X50.440, 68.682, 89.924, 114.124, 141.434, 171.635, 204.726,	1290
X240.645, 279.260, 320.637, 364.911, 412.412, 462.976, 516.619,	1291
X573.057, 632.499, 694.922, 760.266, 828.301, 899.295, 973.160,	1292
X1049.867,1129.443,1211.713,1296.792,1384.372,1474.581,1567.308,	1293
X1662.737,1761.119,1862.512,0.0, 0.0, 0.0, 0.0,	1294
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1295
X0.0, 0.0, 0.0)	1296

DATA ((ARRAY1(I), I= 271,360)=	1297
X50.152, 68.290, 89.420, 113.516, 140.698, 170.743, 203.720,	1298
X239.414, 277.779, 318.913, 363.117, 410.313, 460.617, 513.994,	1299
X570.257, 629.449, 691.475, 756.406, 824.290, 894.841, 968.341,	1300
X1044.678, 1123.803, 1205.705, 1290.241, 1377.356, 1466.981, 1559.135,	1301
X1654.045, 1751.944, 1852.888, 0.0, 0.0, 0.0, 0.0,	1302
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1303
X0.0, 0.0, 0.0,	1304
X49.474, 67.366, 88.220, 112.028, 138.843, 168.567, 201.085,	1305
X236.285, 274.113, 314.690, 358.361, 405.105, 454.747, 507.316,	1306
X562.929, 621.313, 682.594, 746.681, 813.608, 883.387, 955.876,	1307
X1031.237, 1109.353, 1190.166, 1273.543, 1359.447, 1447.754, 1538.632,	1308
X1632.322, 1728.973, 1828.673, 0.0, 0.0, 0.0, 0.0,	1309
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1310
X0.0, 0.0,	1311
DATA ((ARRAY1(I), I= 361,450)=	1312
X48.815, 66.469, 87.056, 110.596, 137.070, 166.455, 198.560,	1313
X233.326, 270.589, 310.666, 353.730, 399.816, 448.903, 500.871,	1314
X555.749, 613.479, 673.899, 737.182, 803.274, 872.124, 943.730,	1315
X1018.138, 1095.255, 1174.999, 1257.270, 1341.928, 1429.008, 1518.669,	1316
X1611.153, 1706.636, 1805.129, 1906.603, 0.0, 0.0, 0.0,	1317
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1318
X0.0, 0.0,	1319
X48.175, 65.596, 85.927, 109.200, 135.368, 164.349, 196.068,	1320
X230.331, 267.159, 306.673, 349.215, 394.784, 443.275, 494.668,	1321
X548.810, 605.734, 665.503, 727.947, 793.185, 861.172, 931.874,	1322
X1005.355, 1081.502, 1160.201, 1241.363, 1324.846, 1410.718, 1499.204,	1323
X1590.384, 1684.908, 1782.249, 1882.493, 1985.600, 0.0, 0.0,	1324
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1325
X0.0, 0.0,	1326
DATA ((ARRAY1(I), I= 451,540)=	1327
X47.061, 64.077, 83.953, 106.720, 132.313, 160.635, 191.616,	1328
X225.124, 261.051, 299.630, 341.310, 385.868, 433.261, 483.390,	1329
X536.348, 591.967, 650.382, 711.437, 775.199, 841.615, 910.721,	1330
X982.527, 1056.900, 1133.797, 1213.049, 1294.512, 1378.317, 1464.777,	1331
X1554.108, 1646.391, 1741.585, 1839.612, 1940.455, 2044.039, 0.0,	1332
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1333
X0.0, 0.0,	1334
X45.434, 61.859, 81.064, 103.071, 127.807, 155.176, 185.048,	1335
X217.418, 252.052, 289.329, 329.561, 372.613, 418.347, 466.819,	1336
X517.959, 571.721, 628.050, 687.037, 748.588, 812.760, 879.466,	1337
X948.807, 1020.637, 1094.816, 1171.253, 1249.807, 1330.637, 1414.137,	1338
X1500.484, 1589.654, 1681.638, 1776.385, 1873.788, 1973.874, 2076.634,	1339
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1340
X0.0, 0.0,	1341
DATA ((ARRAY1(I), I= 541,630)=	1342
X43.920, 59.794, 78.377, 99.670, 123.601, 150.053, 178.975,	1343
X210.198, 243.667, 279.731, 318.603, 360.252, 404.547, 451.417,	1344
X500.808, 552.825, 607.306, 664.258, 723.805, 785.817, 850.342,	1345
X917.355, 986.777, 1058.467, 1132.265, 1208.087, 1286.188, 1366.979,	1346
X1450.487, 1536.786, 1625.789, 1717.440, 1811.678, 1908.474, 2007.863,	1347
X2109.758, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1348
X0.0, 0.0,	1349
X42.505, 57.868, 75.869, 96.498, 119.664, 145.260, 173.280,	1350
X203.474, 235.812, 270.744, 308.393, 348.723, 391.613, 436.931,	1351
X484.826, 535.093, 587.851, 642.989, 700.602, 760.668, 823.080,	1352
X887.967, 955.124, 1024.473, 1095.803, 1169.103, 1244.670, 1322.879,	1353
X1403.816, 1487.403, 1573.615, 1662.382, 1753.611, 1847.367, 1943.577,	1354
X2042.239, 2143.208, 0.0, 0.0, 0.0, 0.0, 0.0,	1355
X0.0, 0.0,	1356

DATA ((ARRAY1(I), I= 631,720)=	1357
X41,182, 56,067, 73,526, 93,529, 115,974, 140,798, 167,908,	1358
X197,175, 228,431, 262,265, 298,849, 337,947, 379,482, 423,452,	1359
X469,795, 518,505, 569,599, 623,024, 678,877, 737,066, 797,591,	1360
X860,420, 925,464, 992,608, 1061,628,1132,570,1205,790,1281,624,	1361
X1360,101,1441,164,1524,752,1610,769,1699,224,1790,093,1883,347,	1362
X1978,953,2076,910,2177,210,0,0, 0,0, 0,0, 0,0,	1363
X0,0, 0,0, 0,0,	1364
X40,508, 55,155, 72,349, 92,037, 114,136, 138,567, 165,234,	1365
X193,990, 224,692, 258,017, 294,024, 332,515, 373,388, 416,677,	1366
X462,243, 510,228, 560,444, 613,059, 668,020, 725,218, 784,775,	1367
X846,600, 910,570, 976,585, 1044,412,1114,127,1186,181,1260,838,	1368
X1338,123,1417,921,1500,205,1584,854,1671,910,1761,329,1853,103,	1369
X1947,208,2043,580,2142,295,2243,314,0,0, 0,0, 0,0,	1370
X0,0, 0,0, 0,0)	1371
DATA ((ARRAY1(I), I= 721,810)=	1372
X40,509, 55,164, 72,378, 92,089, 114,216, 138,657, 165,342,	1373
X194,051, 224,765, 258,158, 294,181, 332,680, 373,616, 416,886,	1374
X462,506, 510,453, 560,766, 613,401, 668,435, 725,618, 785,168,	1375
X847,025, 910,996, 977,000, 1044,771,1114,468,1186,565,1261,317,	1376
X1338,687,1418,584,1500,907,1585,604,1672,730,1762,263,1854,105,	1377
X1948,258,2044,732,2143,525,2244,651,2348,002,2453,712,0,0,	1378
X0,0, 0,0, 0,0,	1379
X41,227, 56,155, 73,698, 93,788, 116,330, 141,218, 168,393,	1380
X197,594, 228,908, 262,914, 299,624, 338,837, 380,509, 424,560,	1381
X471,075, 519,893, 571,133, 624,733, 680,702, 738,983, 799,685,	1382
X862,667, 927,844, 994,985, 1063,924,1134,847,1208,308,1284,498,	1383
X1363,358,1444,776,1528,654,1614,961,1703,776,1794,990,1888,535,	1384
X1984,440,2082,754,2183,359,2286,311,2391,627,2499,293,2609,296,	1385
X0,0, 0,0, 0,0)	1386
DATA ((ARRAY1(I), I= 811,900)=	1387
X42,163, 57,445, 75,415, 95,995, 119,060, 144,535, 172,322,	1388
X202,178, 234,256, 269,074, 306,673, 346,780, 389,431, 434,567,	1389
X482,147, 532,133, 584,530, 639,412, 696,622, 756,354, 818,482,	1390
X882,945, 949,622, 1018,289,1088,766,1161,303,1236,541,1314,601,	1391
X1395,376,1478,744,1564,636,1653,070,1743,986,1837,308,1933,078,	1392
X2031,255,2131,840,2234,834,2340,210,2447,994,2558,148,2670,728,	1393
X2785,623,0,0, 0,0,	1394
X43,142, 58,797, 77,212, 98,304, 121,911, 147,990, 176,452,	1395
X206,986, 239,822, 275,517, 313,996, 355,094, 398,793, 445,027,	1396
X493,709, 544,913, 598,585, 654,716, 713,418, 774,584, 838,184,	1397
X904,161, 972,356, 1042,641,1114,735,1188,981,1266,097,1346,105,	1398
X1428,850,1514,249,1602,278,1692,847,1785,893,1881,504,1979,578,	1399
X2080,132,2183,172,2288,672,2396,623,2507,046,2619,874,2735,070,	1400
X2852,915,2973,257,3095,966)	1401
DATA ((ARRAY1(I), I= 901,990)=	1402
X45,015, 61,375, 80,622, 102,659, 127,320, 154,569, 184,294,	1403
X216,149, 250,386, 287,748, 327,910, 370,915, 416,560, 464,803,	1404
X515,679, 569,163, 625,248, 683,866, 745,192, 809,097, 875,452,	1405
X944,356, 1015,574,1088,963,1164,153,1241,701,1322,299,1405,916,	1406
X1492,355,1581,613,1673,567,1768,183,1865,387,1965,235,2067,749,	1407
X2172,843,2280,488,2390,730,2503,628,2618,919,2736,765,2857,223,	1408
X2980,348,3106,147,3234,352,	1409
X47,308, 64,533, 84,793, 107,978, 133,923, 162,610, 193,878,	1410
X227,384, 263,357, 302,707, 345,005, 390,259, 438,209, 488,986,	1411
X542,520, 598,818, 657,809, 719,506, 783,987, 851,204, 921,027,	1412
X993,556, 1068,484,1145,599,1224,570,1306,165,1391,041,1479,049,	1413
X1570,042,1664,018,1760,830,1860,376,1962,672,2067,792,2175,679,	1414
X2286,254,2399,531,2515,546,2634,238,2755,570,2879,559,3006,329,	1415
X3135,901,3268,127,3403,187)	1416

DATA ((ARRAY1(I), I= 991,1080)=	1417
X49.848, 68.031, 89.413, 113.869, 141.248, 171.510, 204.491,	1418
X239.794, 277.756, 319.289, 363.926, 411.631, 462.236, 515.831,	1419
X572.271, 631.673, 693.856, 758.960, 826.966, 897.815, 971.564,	1420
X1048.048, 1127.083, 1208.317, 1291.494, 1377.615, 1467.228, 1560.136,	1421
X1656.203, 1755.374, 1857.527, 1962.585, 2070.587, 2181.486, 2295.266,	1422
X2411.900, 2531.420, 2653.712, 2778.956, 2906.912, 3037.713, 3171.562,	1423
X3308.126, 3447.770, 3589.705,	1424
X52.679, 71.925, 94.565, 120.444, 149.424, 181.431, 216.318,	1425
X253.602, 293.820, 337.726, 385.001, 435.417, 489.022, 545.698,	1426
X605.442, 668.230, 734.043, 802.897, 874.879, 949.835, 1027.860,	1427
X1108.776, 1192.363, 1278.169, 1366.080, 1457.232, 1552.135, 1650.507,	1428
X1752.210, 1857.180, 1965.294, 2076.449, 2190.728, 2308.101, 2428.493,	1429
X2551.881, 2678.324, 2807.719, 2940.156, 3075.575, 3214.069, 3355.639,	1430
X3500.234, 3647.849, 3798.275)	1431
DATA ((ARRAY1(I), I= 1081,1170)=	1432
X55.852, 76.292, 100.342, 127.814, 158.586, 192.542, 229.555,	1433
X269.039, 311.799, 358.406, 408.631, 462.183, 519.052, 579.216,	1434
X642.616, 709.235, 779.080, 852.196, 928.578, 1008.186, 1090.988,	1435
X1176.855, 1265.520, 1356.474, 1449.667, 1546.508, 1647.336, 1751.821,	1436
X1859.858, 1971.301, 2086.094, 2204.115, 2325.433, 2450.014, 2577.821,	1437
X2708.773, 2843.012, 2980.386, 3120.949, 3264.751, 3411.804, 3562.189,	1438
X3715.611, 3872.297, 4032.001,	1439
X59.435, 81.221, 106.869, 136.137, 168.931, 205.105, 244.513,	1440
X286.483, 332.072, 381.839, 435.317, 492.372, 552.912, 617.080,	1441
X684.577, 755.563, 829.941, 907.817, 989.220, 1074.028, 1162.273,	1442
X1253.693, 1348.094, 1444.861, 1544.026, 1647.299, 1754.801, 1866.219,	1443
X1981.360, 2100.152, 2222.481, 2348.253, 2477.498, 2610.232, 2746.386,	1444
X2885.942, 3028.975, 3175.342, 3325.141, 3478.282, 3634.986, 3795.271,	1445
X3958.822, 4125.702, 4296.070)	1446
DATA ((ARRAY1(I), I= 1171,1260)=	1447
X60.385, 82.559, 108.664, 138.436, 171.767, 208.536, 248.601,	1448
X291.161, 337.580, 388.209, 442.599, 500.621, 562.224, 627.327,	1449
X696.029, 768.177, 843.864, 922.956, 1005.678, 1091.955, 1181.662,	1450
X1274.610, 1370.481, 1468.654, 1569.406, 1674.527, 1783.949, 1897.317,	1451
X2014.385, 2135.170, 2259.576, 2387.557, 2518.980, 2653.919, 2792.391,	1452
X2934.291, 3079.663, 3228.554, 3380.953, 3536.714, 3695.931, 3858.611,	1453
X4024.869, 4194.950, 4368.029,	1454
X60.389, 82.602, 108.752, 138.555, 171.905, 208.705, 248.753,	1455
X291.245, 337.779, 388.391, 442.851, 500.968, 562.594, 627.747,	1456
X696.401, 768.622, 844.387, 923.616, 1006.250, 1092.539, 1182.295,	1457
X1275.333, 1371.142, 1469.144, 1569.938, 1675.250, 1784.810, 1898.324,	1458
X2015.547, 2136.355, 2260.785, 2388.898, 2520.497, 2655.566, 2794.128,	1459
X2936.155, 3081.660, 3230.591, 3383.048, 3539.021, 3698.597, 3861.424,	1460
X4027.656, 4197.444, 4370.944)	1461
DATA ((ARRAY1(I), I= 1261,1350)=	1462
X60.394, 82.648, 108.823, 138.672, 172.023, 208.851, 248.876,	1463
X291.360, 337.951, 388.663, 443.177, 501.267, 562.927, 628.109,	1464
X696.814, 769.000, 844.802, 924.192, 1006.896, 1093.139, 1182.894,	1465
X1275.901, 1371.771, 1469.602, 1570.469, 1675.993, 1785.690, 1899.305,	1466
X2016.677, 2137.635, 2262.087, 2390.153, 2521.917, 2657.057, 2795.735,	1467
X2937.900, 3083.657, 3232.671, 3385.135, 3541.175, 3700.914, 3864.102,	1468
X4030.684, 4200.578, 4373.841,	1469
X59.003, 80.789, 106.387, 135.575, 168.142, 204.131, 243.185,	1470
X284.646, 330.221, 379.825, 433.041, 489.848, 550.116, 613.806,	1471
X680.912, 751.477, 825.425, 902.950, 983.926, 1068.228, 1155.892,	1472
X1246.673, 1340.330, 1435.641, 1534.287, 1637.561, 1744.875, 1855.945,	1473
X1970.661, 2088.925, 2210.640, 2335.731, 2464.398, 2596.428, 2731.933,	1474
X2870.793, 3013.211, 3159.073, 3308.197, 3460.457, 3616.430, 3775.875,	1475
X3938.951, 4105.511, 4274.803)	1476

DATA ((ARRAY1(I), I= 1351,1440)=	1477
X56.262, 77.076, 101.510, 129.330, 160.403, 194.677, 231.856,	1478
X271.342, 314.861, 362.186, 412.949, 467.120, 524.535, 585.303,	1479
X649.251, 716.476, 787.020, 860.802, 937.979, 1018.439, 1102.061,	1480
X1188.624, 1277.729, 1368.368, 1462.533, 1561.102, 1663.515, 1769.519,	1481
X1878.897, 1991.654, 2107.748, 2227.156, 2349.773, 2475.625, 2604.771,	1482
X2737.106, 2872.732, 3011.651, 3153.968, 3299.400, 3447.981, 3599.819,	1483
X3755.096, 3913.777, 4075.768,	1484
X53.772, 73.704, 97.078, 123.646, 153.311, 186.093, 221.531,	1485
X259.241, 300.868, 346.155, 394.689, 446.366, 501.297, 559.297,	1486
X620.472, 684.672, 752.032, 822.592, 896.233, 973.114, 1053.019,	1487
X1135.743, 1220.766, 1307.168, 1397.303, 1491.578, 1589.466, 1690.764,	1488
X1795.365, 1903.132, 2014.043, 2128.139, 2245.337, 2365.638, 2489.027,	1489
X2615.503, 2745.075, 2877.672, 3013.506, 3152.509, 3294.637, 3439.885,	1490
X3588.090, 3739.456, 3894.296)	1491
DATA ((ARRAY1(I), I= 1441,1530)=	1492
X51.223, 70.243, 92.513, 117.803, 146.094, 177.230, 210.927,	1493
X246.818, 286.545, 329.670, 375.864, 425.111, 477.329, 532.603,	1494
X590.864, 652.025, 716.111, 783.298, 853.463, 926.598, 1002.697,	1495
X1081.398, 1162.271, 1244.406, 1330.355, 1420.219, 1513.454, 1609.884,	1496
X1709.510, 1812.181, 1917.810, 2026.415, 2138.023, 2252.622, 2370.114,	1497
X2490.587, 2613.956, 2740.268, 2869.518, 3001.701, 3137.069, 3275.431,	1498
X3416.751, 3560.978, 3708.129,	1499
X47.870, 65.667, 86.475, 110.078, 136.464, 165.618, 196.952,	1500
X230.474, 267.664, 307.904, 351.077, 397.068, 445.831, 497.383,	1501
X551.750, 608.929, 668.765, 731.448, 796.985, 865.275, 936.327,	1502
X1009.763, 1085.156, 1161.770, 1242.134, 1326.127, 1413.244, 1503.291,	1503
X1596.302, 1692.191, 1790.864, 1892.261, 1996.481, 2103.480, 2213.191,	1504
X2325.659, 2440.907, 2558.979, 2679.698, 2803.154, 2929.320, 3058.489,	1505
X3190.531, 3325.316, 3462.808)	1506
DATA ((ARRAY1(I), I= 1531,1620)=	1507
X44.942, 61.663, 81.192, 103.329, 128.057, 155.370, 184.722,	1508
X216.200, 251.122, 288.874, 329.362, 372.484, 418.257, 466.591,	1509
X517.575, 571.239, 627.340, 686.101, 747.573, 811.622, 878.275,	1510
X947.126, 1017.712, 1089.515, 1164.999, 1243.843, 1325.608, 1410.088,	1511
X1497.266, 1587.243, 1679.790, 1774.955, 1872.691, 1973.017, 2075.948,	1512
X2181.401, 2289.512, 2400.236, 2513.529, 2629.373, 2747.739, 2868.734,	1513
X2992.617, 3119.063, 3248.136,	1514
X42.363, 58.135, 76.526, 97.396, 120.705, 146.350, 173.930,	1515
X203.620, 236.508, 272.069, 310.219, 350.839, 393.887, 439.431,	1516
X487.415, 537.917, 590.793, 646.123, 703.982, 764.311, 827.034,	1517
X891.869, 958.214, 1025.802, 1096.968, 1171.253, 1248.272, 1327.859,	1518
X1409.949, 1494.673, 1581.848, 1671.449, 1763.445, 1857.961, 1954.873,	1519
X2054.158, 2155.919, 2260.179, 2366.861, 2475.939, 2587.411, 2701.360,	1520
X2817.990, 2937.139, 3058.678)	1521
DATA ((ARRAY1(I), I= 1621,1710)=	1522
X38.178, 52.389, 68.932, 87.686, 108.623, 131.749, 156.429,	1523
X183.192, 212.777, 244.795, 279.076, 315.623, 354.338, 395.261,	1524
X438.415, 483.831, 531.383, 581.104, 633.185, 687.405, 743.779,	1525
X802.093, 861.629, 922.410, 986.496, 1053.336, 1122.628, 1194.207,	1526
X1268.055, 1344.197, 1422.625, 1503.210, 1585.974, 1670.928, 1758.089,	1527
X1847.382, 1939.852, 2032.581, 2128.539, 2226.634, 2326.928, 2429.400,	1528
X2534.259, 2641.410, 2750.733,	1529
X.000, .000, .000, .000, 98.341, 119.298, 141.545,	1530
X165.814, 192.609, 221.587, 252.582, 285.627, 320.680, 357.707,	1531
X396.732, 437.814, 480.784, 525.772, 572.856, 621.950, 672.968,	1532
X725.685, 779.457, 834.472, 892.517, 953.019, 1015.726, 1080.514,	1533
X1147.353, 1216.241, 1287.173, 1360.081, 1434.930, 1511.788, 1590.604,	1534
X1671.369, 1754.139, 1838.956, 1925.746, 2014.483, 2105.200, 2197.979,	1535
X2292.931, 2389.870, 2488.785)	1536

DATA ((ARRAY1(I), I= 1711+1800)=	1537
X.000, 0.0, 0.000, 0.000, 0.000, 108.989, 129.273,	1538
X151.476, 175.976, 202.424, 230.727, 260.910, 292.891, 326.704,	1539
X362.342, 399.801, 439.044, 480.164, 523.171, 567.977, 614.565,	1540
X662.658, 711.658, 761.929, 814.985, 870.265, 927.545, 986.709,	1541
X1047.757, 1110.697, 1175.446, 1241.962, 1310.312, 1380.457, 1452.399,	1542
X1526.171, 1601.811, 1679.252, 1758.451, 1839.460, 1922.361, 2007.264,	1543
X2094.014, 2182.461, 2272.705,	1544
X0.0, 0.0, 0.0, 0.000, 0.000, 0.000, 113.227,	1545
X132.383, 153.849, 177.10, 202.01, 228.541, 256.546, 286.134,	1546
X317.244, 350.088, 384.425, 420.452, 458.113, 497.384, 538.077,	1547
X580.172, 622.981, 667.059, 713.544, 761.968, 812.106, 863.919,	1548
X917.374, 972.465, 1029.105, 1087.340, 1147.173, 1208.581, 1271.583,	1549
X1336.203, 1402.472, 1470.266, 1539.601, 1610.492, 1683.113, 1757.460,	1550
X1833.418, 1910.861, 1989.757)	1551
DATA ((ARRAY2(I), I= 1,90)=	1552
X6.259, 6.737, 7.199, 7.678, 8.176, 8.662, 9.091,	1553
X9.440, 9.666, 9.822, 9.975, 10.181, 10.431, 10.710,	1554
X10.998, 11.276, 11.541, 11.785, 12.009, 12.204, 12.373,	1555
X12.511, 12.617, 12.690, 12.729, 12.730, 12.697, 12.631,	1556
X12.543, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1557
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1558
X0.0, 0.0, 0.0,	1559
X6.318, 6.788, 7.247, 7.733, 8.247, 8.751, 9.194,	1560
X9.545, 9.776, 9.929, 10.083, 10.296, 10.564, 10.855,	1561
X11.153, 11.443, 11.721, 11.976, 12.207, 12.410, 12.583,	1562
X12.726, 12.833, 12.906, 12.940, 12.935, 12.889, 12.807,	1563
X12.703, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1564
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1565
X0.0, 0.0, 0.0)	1566
DATA ((ARRAY2(I), I= 91,180)=	1567
X6.376, 6.837, 7.294, 7.789, 8.320, 8.846, 9.303,	1568
X9.652, 9.894, 10.038, 10.195, 10.423, 10.703, 11.008,	1569
X11.321, 11.627, 11.913, 12.179, 12.419, 12.629, 12.808,	1570
X12.955, 13.064, 13.135, 13.165, 13.151, 13.091, 12.992,	1571
X12.869, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1572
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1573
X0.0, 0.0, 0.0,	1574
X6.414, 6.869, 7.329, 7.839, 8.396, 8.947, 9.425,	1575
X9.782, 10.016, 10.153, 10.320, 10.558, 10.859, 11.184,	1576
X11.513, 11.833, 12.134, 12.413, 12.663, 12.882, 13.069,	1577
X13.219, 13.331, 13.401, 13.425, 13.398, 13.320, 13.199,	1578
X13.056, 12.918, 0.0, 0.0, 0.0, 0.0, 0.0,	1579
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1580
X0.0, 0.0, 0.0)	1581
DATA ((ARRAY2(I), I= 181,270)=	1582
X6.418, 6.876, 7.346, 7.881, 8.473, 9.052, 9.549,	1583
X9.918, 10.146, 10.272, 10.445, 10.712, 11.033, 11.381,	1584
X11.729, 12.067, 12.387, 12.677, 12.940, 13.169, 13.364,	1585
X13.520, 13.634, 13.701, 13.716, 13.673, 13.572, 13.424,	1586
X13.259, 13.111, 0.0, 0.0, 0.0, 0.0, 0.0,	1587
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1588
X0.0, 0.0, 0.0,	1589
X6.421, 6.881, 7.362, 7.927, 8.554, 9.161, 9.679,	1590
X10.055, 10.272, 10.389, 10.573, 10.861, 11.209, 11.581,	1591
X11.948, 12.304, 12.638, 12.946, 13.219, 13.459, 13.661,	1592
X13.822, 13.937, 14.000, 14.005, 13.943, 13.815, 13.640,	1593
X13.457, 13.304, 13.195, 0.0, 0.0, 0.0, 0.0,	1594
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1595
X0.0, 0.0, 0.0)	1596

DATA ((ARRAY2(I), I= 271,360)=	1597
X6.419, 6.882, 7.379, 7.975, 8.638, 9.273, 9.814,	1598
X10.193, 10.393, 10.500, 10.705, 11.017, 11.389, 11.783,	1599
X12.173, 12.547, 12.897, 13.217, 13.506, 13.754, 13.964,	1600
X14.130, 14.246, 14.303, 14.295, 14.210, 14.052, 13.849,	1601
X13.653, 13.501, 13.401, 0.0, 0.0, 0.0, 0.0,	1602
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1603
X0.0, 0.0, 0.0,	1604
X6.413, 6.880, 7.395, 8.027, 8.724, 9.391, 9.950,	1605
X10.330, 10.500, 10.609, 10.836, 11.180, 11.577, 11.991,	1606
X12.402, 12.794, 13.160, 13.495, 13.795, 14.056, 14.273,	1607
X14.443, 14.558, 14.609, 14.584, 14.472, 14.280, 14.051,	1608
X13.849, 13.704, 13.616, 0.0, 0.0, 0.0, 0.0,	1609
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1610
X0.0, 0.0, 0.0)	1611
DATA ((ARRAY2(I), I= 361,450)=	1612
X6.405, 6.878, 7.414, 8.085, 8.816, 9.513, 10.090,	1613
X10.469, 10.609, 10.719, 10.968, 11.338, 11.762, 12.200,	1614
X12.632, 13.043, 13.424, 13.773, 14.086, 14.356, 14.580,	1615
X14.754, 14.869, 14.911, 14.867, 14.723, 14.496, 14.247,	1616
X14.045, 13.911, 13.837, 13.804, 0.0, 0.0, 0.0,	1617
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1618
X0.0, 0.0, 0.0,	1619
X6.398, 6.876, 7.437, 8.146, 8.913, 9.636, 10.230,	1620
X10.602, 10.717, 10.825, 11.102, 11.502, 11.951, 12.413,	1621
X12.863, 13.290, 13.690, 14.052, 14.376, 14.657, 14.888,	1622
X15.066, 15.178, 15.210, 15.143, 14.964, 14.700, 14.437,	1623
X14.242, 14.123, 14.064, 14.045, 14.051, 0.0, 0.0,	1624
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1625
X0.0, 0.0, 0.0)	1626
DATA ((ARRAY2(I), I= 451,540)=	1627
X6.385, 6.871, 7.462, 8.211, 9.014, 9.763, 10.372,	1628
X10.736, 10.818, 10.931, 11.242, 11.671, 12.146, 12.627,	1629
X13.097, 13.543, 13.959, 14.336, 14.673, 14.963, 15.202,	1630
X15.383, 15.491, 15.511, 15.417, 15.196, 14.897, 14.628,	1631
X14.446, 14.345, 14.301, 14.296, 14.315, 14.349, 0.0,	1632
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1633
X0.0, 0.0, 0.0,	1634
X6.363, 6.862, 7.487, 8.278, 9.117, 9.892, 10.512,	1635
X10.865, 10.910, 11.039, 11.382, 11.841, 12.339, 12.844,	1636
X13.334, 13.799, 14.230, 14.622, 14.971, 15.271, 15.517,	1637
X15.700, 15.805, 15.809, 15.683, 15.417, 15.087, 14.819,	1638
X14.654, 14.572, 14.546, 14.556, 14.587, 14.631, 14.682,	1639
X0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1640
X0.0, 0.0, 0.0)	1641
DATA ((ARRAY2(I), I= 541,630)=	1642
X6.342, 6.854, 7.516, 8.347, 9.219, 10.019, 10.652,	1643
X10.984, 10.995, 11.145, 11.520, 12.007, 12.532, 13.058,	1644
X13.566, 14.049, 14.496, 14.901, 15.263, 15.573, 15.825,	1645
X16.010, 16.109, 16.096, 15.934, 15.620, 15.266, 15.088,	1646
X14.862, 14.800, 14.790, 14.814, 14.857, 14.912, 14.972,	1647
X15.034, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1648
X0.0, 0.0, 0.0,	1649
X6.322, 6.848, 7.548, 8.419, 9.322, 10.143, 10.788,	1650
X11.095, 11.073, 11.250, 11.658, 12.172, 12.721, 13.266,	1651
X13.795, 14.293, 14.755, 15.174, 15.547, 15.867, 16.126,	1652
X16.312, 16.405, 16.372, 16.170, 15.807, 15.439, 15.195,	1653
X15.070, 15.027, 15.034, 15.071, 15.126, 15.191, 15.261,	1654
X15.330, 15.397, 0.0, 0.0, 0.0, 0.0, 0.0,	1655
X0.0, 0.0, 0.0)	1656

DATA ((ARRAY2(I), I= 631,720)=	1657
X6.301, 6.845, 7.584, 8.492, 9.424, 10.268, 10.918,	1658
X11.199, 11.145, 11.351, 11.795, 12.336, 12.905, 13.472,	1659
X14.017, 14.531, 15.008, 15.440, 15.826, 16.155, 16.420,	1660
X16.607, 16.693, 16.637, 16.390, 15.981, 15.607, 15.381,	1661
X15.278, 15.253, 15.276, 15.326, 15.393, 15.468, 15.546,	1662
X15.624, 15.698, 15.768, 0.0, 0.0, 0.0, 0.0,	1663
X0.0, 0.0, 0.0,	1664
X6.291, 6.850, 7.626, 8.567, 9.525, 10.390, 11.046,	1665
X11.295, 11.215, 11.448, 11.927, 12.492, 13.082, 13.668,	1666
X14.229, 14.760, 15.249, 15.695, 16.091, 16.429, 16.699,	1667
X16.888, 16.964, 16.886, 16.592, 16.141, 15.768, 15.562,	1668
X15.480, 15.472, 15.509, 15.571, 15.648, 15.732, 15.819,	1669
X15.905, 15.985, 16.061, 16.130, 0.0, 0.0, 0.0,	1670
X0.0, 0.0, 0.0)	1671
DATA ((ARRAY2(I), I= 721,810)=	1672
X6.292, 6.864, 7.673, 8.645, 9.629, 10.511, 11.173,	1673
X11.385, 11.288, 11.550, 12.059, 12.646, 13.255, 13.857,	1674
X14.435, 14.979, 15.483, 15.942, 16.349, 16.694, 16.969,	1675
X17.158, 17.227, 17.122, 16.779, 16.292, 15.926, 15.741,	1676
X15.678, 15.686, 15.735, 15.809, 15.896, 15.990, 16.085,	1677
X16.178, 16.266, 16.348, 16.422, 16.487, 16.544, 0.0,	1678
X0.0, 0.0, 0.0,	1679
X6.304, 6.887, 7.726, 8.726, 9.733, 10.633, 11.300,	1680
X11.475, 11.366, 11.655, 12.190, 12.797, 13.424, 14.041,	1681
X14.636, 15.194, 15.712, 16.181, 16.597, 16.950, 17.232,	1682
X17.421, 17.481, 17.349, 16.954, 16.437, 16.083, 15.919,	1683
X15.873, 15.896, 15.959, 16.044, 16.141, 16.243, 16.346,	1684
X16.445, 16.540, 16.628, 16.707, 16.781, 16.838, 16.889,	1685
X0.0, 0.0, 0.0)	1686
DATA ((ARRAY2(I), I= 811,900)=	1687
X6.320, 6.914, 7.783, 8.812, 9.840, 10.759, 11.427,	1688
X11.561, 11.445, 11.765, 12.326, 12.951, 13.597, 14.232,	1689
X14.841, 15.414, 15.943, 16.425, 16.849, 17.212, 17.500,	1690
X17.689, 17.739, 17.575, 17.125, 16.583, 16.246, 16.103,	1691
X16.076, 16.114, 16.189, 16.285, 16.392, 16.502, 16.613,	1692
X16.719, 16.820, 16.914, 16.999, 17.075, 17.143, 17.194,	1693
X17.236, 0.0, 0.0,	1694
X6.336, 6.943, 7.844, 8.901, 9.951, 10.887, 11.559,	1695
X11.646, 11.526, 11.879, 12.464, 13.111, 13.775, 14.427,	1696
X15.051, 15.639, 16.182, 16.675, 17.112, 17.485, 17.776,	1697
X17.964, 18.002, 17.804, 17.293, 16.733, 16.417, 16.296,	1698
X16.287, 16.339, 16.427, 16.535, 16.651, 16.770, 16.889,	1699
X17.003, 17.111, 17.211, 17.302, 17.383, 17.453, 17.510,	1700
X17.558, 17.591, 17.610)	1701
DATA ((ARRAY2(I), I= 901,990)=	1702
X6.364, 6.982, 7.910, 8.994, 10.066, 11.020, 11.694,	1703
X11.732, 11.610, 11.996, 12.599, 13.272, 13.954, 14.622,	1704
X15.261, 15.864, 16.421, 16.925, 17.374, 17.754, 18.050,	1705
X18.237, 18.264, 18.028, 17.454, 16.884, 16.590, 16.490,	1706
X16.498, 16.565, 16.665, 16.783, 16.909, 17.036, 17.163,	1707
X17.285, 17.400, 17.507, 17.604, 17.690, 17.765, 17.827,	1708
X17.878, 17.921, 17.938,	1709
X6.396, 7.024, 7.982, 9.092, 10.187, 11.160, 11.835,	1710
X11.820, 11.702, 12.119, 12.744, 13.442, 14.140, 14.825,	1711
X15.480, 16.098, 16.669, 17.187, 17.646, 18.034, 18.335,	1712
X18.523, 18.536, 18.255, 17.615, 17.044, 16.775, 16.696,	1713
X16.721, 16.803, 16.915, 17.044, 17.180, 17.317, 17.452,	1714
X17.582, 17.703, 17.817, 17.920, 18.011, 18.091, 18.158,	1715
X18.213, 18.253, 18.280)	1716

DATA ((ARRAY2(I), I= 991+1080)=		1717
X6.428, 7.070, 8.058, 9.196, 10.315, 11.307, 11.982,		1718
X11.906, 11.800, 12.252, 12.901, 13.620, 14.337, 15.041,		1719
X15.713, 16.346, 16.931, 17.462, 17.933, 18.330, 18.639,		1720
X18.825, 18.822, 18.489, 17.780, 17.216, 16.973, 16.917,		1721
X16.960, 17.057, 17.183, 17.323, 17.469, 17.616, 17.760,		1722
X17.897, 18.026, 18.146, 18.255, 18.353, 18.438, 18.511,		1723
X18.569, 18.614, 18.641,		1724
X6.460, 7.118, 8.140, 9.307, 10.453, 11.464, 12.136,		1725
X11.990, 11.907, 12.391, 13.068, 13.804, 14.547, 15.269,		1726
X15.960, 16.609, 17.209, 17.754, 18.238, 18.646, 18.961,		1727
X19.146, 19.123, 18.728, 17.949, 17.401, 17.188, 17.156,		1728
X17.217, 17.330, 17.469, 17.620, 17.778, 17.935, 18.087,		1729
X18.233, 18.370, 18.497, 18.613, 18.717, 18.809, 18.887,		1730
X18.951, 18.999, 19.030)		1731
DATA ((ARRAY2(I), I= 1081+1170)=		1732
X6.494, 7.171, 8.229, 9.426, 10.599, 11.630, 12.297,		1733
X12.072, 12.020, 12.541, 13.247, 14.004, 14.772, 15.513,		1734
X16.222, 16.889, 17.505, 18.066, 18.562, 18.982, 19.304,		1735
X19.487, 19.442, 18.971, 18.125, 17.602, 17.420, 17.412,		1736
X17.494, 17.622, 17.775, 17.939, 18.108, 18.276, 18.438,		1737
X18.593, 18.739, 18.874, 18.997, 19.108, 19.206, 19.290,		1738
X19.359, 19.412, 19.447,		1739
X6.528, 7.227, 8.325, 9.554, 10.757, 11.809, 12.465,		1740
X12.155, 12.143, 12.705, 13.439, 14.220, 15.005, 15.775,		1741
X16.503, 17.188, 17.822, 18.398, 18.910, 19.341, 19.670,		1742
X19.851, 19.779, 19.219, 18.312, 17.822, 17.674, 17.691,		1743
X17.792, 17.937, 18.104, 18.282, 18.463, 18.641, 18.814,		1744
X18.979, 19.134, 19.278, 19.409, 19.527, 19.632, 19.723,		1745
X19.798, 19.855, 19.895)		1746
DATA ((ARRAY2(I), I= 1171+1260)=		1747
X6.540, 7.281, 8.428, 9.696, 10.931, 12.005, 12.641,		1748
X12.230, 12.280, 12.889, 13.657, 14.467, 15.278, 16.069,		1749
X16.824, 17.531, 18.187, 18.781, 19.308, 19.753, 20.090,		1750
X20.267, 20.159, 19.479, 18.522, 18.079, 17.969, 18.015,		1751
X18.138, 18.302, 18.486, 18.680, 18.875, 19.066, 19.251,		1752
X19.427, 19.593, 19.746, 19.888, 20.015, 20.127, 20.224,		1753
X20.305, 20.370, 20.414,		1754
X6.545, 7.337, 8.537, 9.844, 11.111, 12.207, 12.811,		1755
X12.301, 12.425, 13.079, 13.882, 14.724, 15.561, 16.374,		1756
X17.154, 17.886, 18.564, 19.179, 19.721, 20.179, 20.524,		1757
X20.698, 20.545, 19.725, 18.743, 18.352, 18.280, 18.354,		1758
X18.500, 18.683, 18.884, 19.093, 19.303, 19.508, 19.706,		1759
X19.894, 20.071, 20.234, 20.385, 20.522, 20.644, 20.749,		1760
X20.836, 20.906, 20.956)		1761
DATA ((ARRAY2(I), I= 1261+1350)=		1762
X6.552, 7.398, 8.647, 9.994, 11.292, 12.411, 12.971,		1763
X12.376, 12.575, 13.275, 14.112, 14.982, 15.846, 16.684,		1764
X17.484, 18.241, 18.941, 19.578, 20.138, 20.609, 20.961,		1765
X21.127, 20.926, 19.953, 18.973, 18.635, 18.599, 18.700,		1766
X18.868, 19.070, 19.288, 19.512, 19.736, 19.954, 20.165,		1767
X20.365, 20.554, 20.728, 20.888, 21.034, 21.165, 21.279,		1768
X21.375, 21.450, 21.505,		1769
X6.551, 7.462, 8.762, 10.149, 11.479, 12.618, 13.116,		1770
X12.450, 12.730, 13.478, 14.347, 15.248, 16.141, 17.005,		1771
X17.830, 18.607, 19.330, 19.989, 20.570, 21.057, 21.417,		1772
X21.573, 21.312, 20.168, 19.218, 18.936, 18.937, 19.065,		1773
X19.255, 19.477, 19.712, 19.951, 20.189, 20.421, 20.645,		1774
X20.857, 21.057, 21.244, 21.416, 21.570, 21.709, 21.831,		1775
X21.936, 22.020, 22.080)		1776

X6•542,	7•527,	8•878,	10•303,	11•666,	12•821,	13•234,	1777
X12•524,	12•888,	13•682,	14•586,	15•518,	16•437,	17•329,	1778
X18•178,	18•977,	19•721,	20•399,	21•001,	21•504,	21•873,	1779
X22•021,	21•684,	20•368,	19•472,	19•243,	19•280,	19•435,	1780
X19•647,	19•887,	20•140,	20•396,	20•649,	20•894,	21•130,	1781
X21•354,	21•565,	21•762,	21•945,	22•111,	22•258,	22•388,	1782
X22•499,	22•590,	22•658,					1783
X6•537,	7•593,	8•992,	10•452,	11•843,	13•015,	13•326,	1784
X12•600,	13•042,	13•880,	14•817,	15•774,	16•721,	17•637,	1785
X18•512,	19•333,	20•097,	20•794,	21•412,	21•932,	22•308,	1786
X22•447,	22•028,	20•553,	19•724,	19•544,	19•613,	19•792,	1787
X20•025,	20•283,	20•552,	20•822,	21•089,	21•348,	21•597,	1788
X21•833,	22•055,	22•262,	22•453,	22•629,	22•786,	22•925,	1789
X23•042,	23•138,	23•213)					1790
DATA ((ARRAY2(I), I= 1351,1440)=							1791
X6•535,	7•661,	9•103,	10•596,	12•019,	13•197,	13•390,	1792
X12•679,	13•195,	14•072,	15•038,	16•023,	16•994,	17•935,	1793
X18•834,	19•678,	20•461,	21•178,	21•813,	22•345,	22•731,	1794
X22•857,	22•344,	20•732,	19•975,	19•841,	19•940,	20•140,	1795
X20•392,	20•668,	20•952,	21•237,	21•517,	21•789,	22•050,	1796
X22•298,	22•531,	22•748,	22•949,	23•132,	23•298,	23•445,	1797
X23•571,	23•675,	23•753,					1798
X6•529,	7•727,	9•212,	10•736,	12•183,	13•376,	13•419,	1799
X12•758,	13•347,	14•260,	15•257,	16•269,	17•264,	18•228,	1800
X19•148,	20•017,	20•820,	21•554,	22•206,	22•751,	23•145,	1801
X23•258,	22•634,	20•909,	20•227,	20•137,	20•263,	20•486,	1802
X20•756,	21•048,	21•348,	21•646,	21•940,	22•224,	22•497,	1803
X22•756,	23•000,	23•228,	23•439,	23•632,	23•805,	23•959,	1804
X24•093,	24•203,	24•287)					1805
DATA ((ARRAY2(I), I= 1531,1620)=							1806
X6•530,	7•792,	9•315,	10•868,	12•338,	13•533,	13•428,	1807
X12•838,	13•490,	14•437,	15•462,	16•498,	17•517,	18•502,	1808
X19•444,	20•333,	21•155,	21•907,	22•575,	23•132,	23•531,	1809
X23•632,	22•888,	21•081,	20•469,	20•418,	20•571,	20•813,	1810
X21•099,	21•406,	21•720,	22•032,	22•338,	22•634,	22•917,	1811
X23•187,	23•441,	23•679,	23•899,	24•100,	24•282,	24•443,	1812
X24•584,	24•700,	24•790,					1813
X6•535,	7•856,	9•412,	10•995,	12•490,	13•681,	13•422,	1814
X12•918,	13•626,	14•604,	15•656,	16•715,	17•754,	18•760,	1815
X19•721,	20•629,	21•470,	22•239,	22•921,	23•491,	23•895,	1816
X23•981,	23•106,	21•248,	20•703,	20•686,	20•861,	21•122,	1817
X21•424,	21•745,	22•072,	22•397,	22•713,	23•021,	23•315,	1818
X23•593,	23•857,	24•104,	24•333,	24•542,	24•731,	24•899,	1819
X25•046,	25•169,	25•264)					1820
DATA ((ARRAY2(I), I= 1621,1710)=							1821
X6•529,	7•916,	9•507,	11•115,	12•629,	13•819,	13•370,	1822
X12•994,	13•760,	14•774,	15•851,	16•934,	17•995,	19•022,	1823
X20•003,	20•931,	21•791,	22•575,	23•275,	23•856,	24•264,	1824
X24•331,	23•294,	21•419,	20•943,	20•961,	21•161,	21•441,	1825
X21•758,	22•094,	22•435,	22•772,	23•101,	23•419,	23•724,	1826
X24•013,	24•286,	24•542,	24•779,	24•997,	25•195,	25•370,	1827
X25•524,	25•653,	25•753,					1828
X•000,	.000,	.000,	.000,	12•752,	13•932,	13•310,	1829
X13•065,	13•885,	14•928,	16•027,	17•132,	18•215,	19•260,	1830
X20•259,	21•205,	22•080,	22•880,	23•592,	24•187,	24•598,	1831
X24•644,	23•438,	21•578,	21•164,	21•214,	21•435,	21•732,	1832
X22•064,	22•413,	22•766,	23•114,	23•454,	23•782,	24•096,	1833
X24•394,	24•676,	24•941,	25•187,	25•412,	25•617,	25•800,	1834
X25•960,	26•095,	26•199)					1835
							1836

DATA ((ARRAY2(I), I= 1711,1800)=	1837
X ₀ .000, 0.0, 0.000, 0.000, 0.000, 14.023, 13.252,	1838
X ₁₃ .132, 13.999, 15.068, 16.188, 17.313, 18.413, 19.476,	1839
X ₂₀ .492, 21.451, 22.342, 23.158, 23.884, 24.487, 24.903,	1840
X ₂₄ .925, 23.547, 21.728, 21.368, 21.445, 21.685, 21.997,	1841
X ₂₂ .343, 22.704, 23.068, 23.426, 23.775, 24.112, 24.435,	1842
X ₂₄ .742, 25.033, 25.305, 25.558, 25.791, 26.002, 26.194,	1843
X ₂₆ .361, 26.499, 26.607,	1844
X ₀ .0, 0.0, 0.0, 0.000, 0.000, 0.000, 13.150,	1845
X ₁₃ .18, 14.38, 15.18, 16.32, 17.47, 18.612, 19.693,	1846
X ₂₀ .71, 21.699, 22.604, 23.437, 24.177, 24.790, 25.205,	1847
X ₂₅ .199, 23.614, 21.876, 21.574, 21.681, 21.940, 22.268,	1848
X ₂₂ .629, 23.002, 23.376, 23.744, 24.104, 24.451, 24.783,	1849
X ₂₅ .100, 25.401, 25.681, 25.941, 26.180, 26.400, 26.597,	1850
X ₂₆ .770, 26.914, 27.025)	1851
DATA ((ARRAY3(1), I= 1,90)=	1852
X ₆ .475, 8.179, 10.001, 11.835, 13.605, 15.299, 16.981,	1853
X ₁₈ .722, 20.647, 22.744, 24.879, 26.885, 28.708, 30.365,	1854
X ₃₁ .899, 33.343, 34.725, 36.068, 37.395, 38.719, 40.063,	1855
X ₄₁ .443, 42.883, 44.409, 46.052, 47.850, 49.839, 52.056,	1856
X ₅₄ .503, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1857
X ₀ .0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1858
X ₀ .0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1859
X ₆ .930, 8.774, 10.739, 12.700, 14.569, 16.343, 18.102,	1860
X ₁₉ .943, 21.979, 24.223, 26.500, 28.618, 30.525, 32.252,	1861
X ₃₃ .846, 35.346, 36.780, 38.177, 39.555, 40.937, 42.340,	1862
X ₄₃ .785, 45.298, 46.912, 48.660, 50.587, 52.745, 55.169,	1863
X ₅₇ .854, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1864
X ₀ .0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1865
X ₀ .0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1866
DATA ((ARRAY3(I), I= 91,180)=	1867
X ₇ .462, 9.470, 11.602, 13.706, 15.684, 17.548, 19.395,	1868
X ₂₁ .352, 23.517, 25.938, 28.380, 30.622, 32.624, 34.429,	1869
X ₃₆ .090, 37.651, 39.147, 40.604, 42.042, 43.487, 44.957,	1870
X ₄₆ .477, 48.076, 49.791, 51.664, 53.750, 56.111, 58.784,	1871
X ₆₁ .755, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1872
X ₀ .0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1873
X ₀ .0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1874
X ₇ .838, 9.961, 12.203, 14.384, 16.401, 18.286, 20.158,	1875
X ₂₂ .160, 24.412, 26.954, 29.491, 31.783, 33.808, 35.625,	1876
X ₃₇ .294, 38.864, 40.368, 41.832, 43.284, 44.741, 46.232,	1877
X ₄₇ .778, 49.415, 51.183, 53.135, 55.338, 57.858, 60.741,	1878
X ₆₃ .943, 67.322, 0.0, 0.0, 0.0, 0.0, 0.0,	1879
X ₀ .0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1880
X ₀ .0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1881
DATA ((ARRAY3(I), I= 181,270)=	1882
X ₇ .839, 9.961, 12.184, 14.305, 16.229, 18.016, 19.800,	1883
X ₂₁ .737, 23.963, 26.496, 28.979, 31.177, 33.097, 34.814,	1884
X ₃₆ .391, 37.872, 39.292, 40.680, 42.054, 43.443, 44.864,	1885
X ₄₆ .351, 47.933, 49.659, 51.587, 53.800, 56.370, 59.330,	1886
X ₆₂ .594, 65.974, 0.0, 0.0, 0.0, 0.0, 0.0,	1887
X ₀ .0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1888
X ₀ .0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1889
X ₇ .840, 9.959, 12.159, 14.213, 16.044, 17.737, 19.440,	1890
X ₂₁ .318, 23.531, 26.061, 28.485, 30.586, 32.406, 34.028,	1891
X ₃₅ .516, 36.915, 38.259, 39.571, 40.878, 42.198, 43.560,	1892
X ₄₄ .987, 46.522, 48.212, 50.129, 52.361, 54.993, 58.035,	1893
X ₆₁ .341, 64.684, 67.911, 0.0, 0.0, 0.0, 0.0,	1894
X ₀ .0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1895
X ₀ .0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	1896

DATA ((ARRAY3(I), I= 271,350)=								
X7.799,	9.903,	12.052,	14.029,	15.755,	17.349,	18.966,		1894
X20.784,	22.983,	25.499,	27.842,	29.833,	31.544,	33.065,		1899
X34.461,	35.776,	37.038,	38.275,	39.508,	40.760,	42.054,		1900
X43.422,	44.903,	46.556,	48.456,	50.709,	53.404,	56.507,		1901
X59.807,	63.060,	66.137,	0.0,	0.0,	0.0,	0.0,		1902
X0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,		1903
X0.0,	0.0,	0.0,						1904
X7.704,	9.773,	11.868,	13.729,	15.337,	16.827,	18.352,		1905
X20.107,	22.301,	24.768,	27.004,	28.869,	30.462,	31.877,		1906
X33.177,	34.400,	35.580,	36.737,	37.894,	39.071,	40.295,		1907
X41.596,	43.018,	44.624,	46.505,	48.776,	51.522,	54.649,		1908
X57.881,	60.984,	63.874,	0.0,	0.0,	0.0,	0.0,		1909
X0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,		1910
X0.0,	0.0,	0.0,						1911
DATA ((ARRAY3(I), I= 361,450)=								1912
X7.610,	9.646,	11.673,	13.427,	14.927,	16.320,	17.764,		1913
X19.466,	21.661,	24.083,	26.207,	27.950,	29.435,	30.754,		1914
X31.965,	33.108,	34.210,	35.295,	36.381,	37.492,	38.651,		1915
X39.892,	41.262,	42.830,	44.701,	47.003,	49.803,	52.932,		1916
X56.063,	58.999,	61.699,	64.190,	0.0,	0.0,	0.0,		1917
X0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,		1918
X0.0,	0.0,	0.0,						1919
X7.520,	9.521,	11.477,	13.127,	14.525,	15.828,	17.200,		1920
X18.860,	21.060,	23.436,	25.447,	27.077,	28.462,	29.692,		1921
X30.822,	31.891,	32.923,	33.941,	34.964,	36.012,	37.113,		1922
X38.301,	39.624,	41.162,	43.030,	45.376,	48.230,	51.331,		1923
X54.327,	57.093,	59.607,	61.915,	64.067,	0.0,	0.0,		1924
X0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,		1925
X0.0,	0.0,	0.0,						1926
DATA ((ARRAY3(I), I= 451,540)=								1927
X7.362,	9.307,	11.165,	12.694,	13.982,	15.192,	16.484,		1928
X18.096,	20.289,	22.581,	24.457,	25.961,	27.238,	28.373,		1929
X29.419,	30.408,	31.366,	32.311,	33.266,	34.246,	35.281,		1930
X36.406,	37.676,	39.172,	41.032,	43.409,	46.279,	49.287,		1931
X52.110,	54.661,	56.971,	59.087,	61.055,	62.906,	0.0,		1932
X0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,		1933
X0.0,	0.0,	0.0,						1934
X7.131,	8.995,	10.731,	12.126,	13.298,	14.409,	15.616,		1935
X17.173,	19.339,	21.511,	23.231,	24.602,	25.766,	26.803,		1936
X27.759,	28.665,	29.543,	30.413,	31.292,	32.201,	33.164,		1937
X34.220,	35.423,	36.871,	38.711,	41.098,	43.931,	46.783,		1938
X49.384,	51.707,	53.799,	55.714,	57.493,	59.168,	60.762,		1939
X0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,		1940
X0.0,	0.0,	0.0,						1941
DATA ((ARRAY3(I), I= 541,630)=								1942
X6.916,	8.703,	10.321,	11.595,	12.665,	13.690,	14.825,		1943
X16.339,	18.481,	20.528,	22.107,	23.361,	24.425,	25.374,		1944
X26.252,	27.085,	27.894,	28.696,	29.511,	30.355,	31.256,		1945
X32.249,	33.398,	34.803,	36.631,	39.034,	41.809,	44.490,		1946
X46.880,	48.994,	50.896,	52.634,	54.249,	55.770,	57.218,		1947
X58.610,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,		1948
X0.0,	0.0,	0.0,						1949
X6.715,	8.427,	9.932,	11.098,	12.079,	13.030,	14.101,		1950
X15.584,	17.701,	19.622,	21.072,	22.222,	23.199,	24.072,		1951
X24.881,	25.649,	26.397,	27.140,	27.896,	28.683,	29.527,		1952
X30.468,	31.566,	32.936,	34.765,	37.181,	39.875,	42.379,		1953
X44.573,	46.503,	48.234,	49.817,	51.288,	52.674,	53.993,		1954
X55.265,	56.496,	0.0,	0.0,	0.0,	0.0,	0.0,		1955
X0.0,	0.0,	0.0,						1956

DATA ((ARRAY3(I), I= 631+720)=	1957
X6.527, 8.166, 9.564, 10.633, 11.536, 12.421, 13.437,	1958
X14.900, 16.987, 18.784, 20.118, 21.175, 22.075, 22.880,	1959
X23.627, 24.339, 25.033, 25.724, 26.428, 27.164, 27.958,	1960
X28.849, 29.904, 31.247, 33.083, 35.507, 38.099, 40.428,	1961
X42.441, 44.206, 45.787, 47.234, 48.579, 49.846, 51.055,	1962
X52.218, 53.347, 54.449, 0.0, 0.0, 0.0, 0.0,	1963
X0.0, 0.0, 0.0,	1964
X6.431, 8.025, 9.346, 10.344, 11.194, 12.033, 13.016,	1965
X14.484, 16.565, 18.275, 19.519, 20.510, 21.356, 22.113,	1966
X22.817, 23.488, 24.144, 24.799, 25.467, 26.167, 26.928,	1967
X27.787, 28.818, 30.157, 32.030, 34.485, 36.998, 39.193,	1968
X41.073, 42.717, 44.190, 45.538, 46.791, 47.974, 49.102,	1969
X50.188, 51.242, 52.273, 53.288, 0.0, 0.0, 0.0,	1970
X0.0, 0.0, 0.0)	1971
DATA ((ARRAY3(I), I= 721+810)=	1972
X6.430, 8.006, 9.279, 10.233, 11.048, 11.860, 12.828,	1973
X14.329, 16.430, 18.084, 19.267, 20.215, 21.026, 21.752,	1974
X22.428, 23.074, 23.706, 24.337, 24.985, 25.665, 26.405,	1975
X27.250, 28.276, 29.637, 31.581, 34.092, 36.553, 38.656,	1976
X40.444, 42.006, 43.405, 44.686, 45.878, 47.004, 48.077,	1977
X49.112, 50.117, 51.100, 52.067, 53.026, 53.982, 0.0,	1978
X0.0, 0.0, 0.0,	1979
X6.531, 8.120, 9.371, 10.303, 11.102, 11.903, 12.877,	1980
X14.440, 16.591, 18.215, 19.368, 20.294, 21.087, 21.800,	1981
X22.462, 23.096, 23.716, 24.339, 24.977, 25.650, 26.386,	1982
X27.232, 28.273, 29.683, 31.738, 34.334, 36.777, 38.826,	1983
X40.561, 42.075, 43.432, 44.675, 45.833, 46.926, 47.970,	1984
X48.975, 49.953, 50.909, 51.851, 52.782, 53.717, 54.651,	1985
X0.0, 0.0, 0.0)	1986
DATA ((ARRAY3(I), I= 811+900)=	1987
X6.662, 8.271, 9.506, 10.421, 11.209, 12.004, 12.989,	1988
X14.630, 16.833, 18.433, 19.564, 20.473, 21.252, 21.954,	1989
X22.607, 23.233, 23.846, 24.461, 25.094, 25.764, 26.500,	1990
X27.351, 28.413, 29.886, 32.071, 34.753, 37.177, 39.180,	1991
X40.871, 42.346, 43.669, 44.881, 46.011, 47.078, 48.097,	1992
X49.080, 50.036, 50.971, 51.893, 52.807, 53.716, 54.636,	1993
X55.560, 0.0, 0.0,	1994
X6.800, 8.426, 9.645, 10.542, 11.319, 12.110, 13.109,	1995
X14.837, 17.085, 18.658, 19.766, 20.659, 21.426, 22.117,	1996
X22.762, 23.378, 23.984, 24.592, 25.220, 25.886, 26.622,	1997
X27.480, 28.567, 30.109, 32.438, 35.192, 37.586, 39.541,	1998
X41.188, 42.624, 43.914, 45.096, 46.198, 47.240, 48.236,	1999
X49.197, 50.131, 51.046, 51.948, 52.844, 53.738, 54.636,	2000
X55.543, 56.467, 57.412)	2001
DATA ((ARRAY3(I), I= 901+990)=	2002
X7.064, 8.744, 9.974, 10.876, 11.659, 12.462, 13.496,	2003
X15.352, 17.685, 19.264, 20.378, 21.270, 22.041, 22.736,	2004
X23.386, 24.008, 24.619, 25.234, 25.869, 26.546, 27.297,	2005
X28.181, 29.314, 30.964, 33.491, 36.356, 38.762, 40.4710,	2006
X42.348, 43.778, 45.062, 46.240, 47.339, 48.379, 49.373,	2007
X50.332, 51.266, 52.180, 53.082, 53.978, 54.873, 55.772,	2008
X56.682, 57.603, 58.559,	2009
X7.387, 9.134, 10.384, 11.295, 12.090, 12.912, 13.991,	2010
X16.002, 18.431, 20.025, 21.153, 22.049, 22.829, 23.533,	2011
X24.192, 24.824, 25.444, 26.070, 26.717, 27.409, 28.181,	2012
X29.097, 30.290, 32.076, 34.836, 37.817, 40.242, 42.193,	2013
X43.833, 45.264, 46.551, 47.733, 48.836, 49.880, 50.879,	2014
X51.843, 52.781, 53.701, 54.609, 55.510, 56.412, 57.318,	2015
X58.236, 59.172, 60.132)	2016

X7.744,	9.563,	10.831,	11.754,	12.563,	13.405,	14.535,	2017
X16.727,	19.251,	20.858,	21.997,	22.902,	23.692,	24.407,	2018
X25.074,	25.717,	26.349,	26.986,	27.647,	28.355,	29.150,	2019
X30.101,	31.365,	33.311,	36.330,	39.414,	41.855,	43.809,	2020
X45.450,	46.886,	48.176,	49.362,	50.471,	51.520,	52.524,	2021
X53.494,	54.438,	55.364,	56.279,	57.188,	58.096,	59.011,	2022
X59.939,	60.884,	61.856,					2023
X8.143,	10.037,	11.324,	12.259,	13.083,	13.948,	15.139,	2024
X17.540,	20.154,	21.775,	22.925,	23.846,	24.643,	25.368,	2025
X26.048,	26.701,	27.346,	27.996,	28.671,	29.398,	30.217,	2026
X31.209,	32.552,	34.690,	37.994,	41.169,	43.622,	45.578,	2027
X47.224,	48.663,	49.959,	51.151,	52.265,	53.321,	54.332,	2028
X55.308,	56.260,	57.193,	58.115,	59.032,	59.950,	60.875,	2029
X61.812,	62.770,	63.756)					2030
DATA ((ARRAY3(1), I= 991,1080)=							2031
X8.588,	10.562,	11.869,	12.818,	13.658,	14.549,	15.812,	2032
X18.456,	21.155,	22.791,	23.953,	24.890,	25.695,	26.434,	2033
X27.125,	27.791,	28.448,	29.114,	29.806,	30.553,	31.400,	2034
X32.437,	33.871,	36.244,	39.855,	43.105,	45.567,	47.527,	2035
X49.177,	50.623,	51.925,	53.125,	54.247,	55.310,	56.329,	2036
X57.314,	58.274,	59.216,	60.147,	61.074,	62.002,	62.938,	2037
X63.887,	64.859,	65.860,					2038
X9.091,	11.148,	12.475,	13.439,	14.298,	15.220,	16.568,	2039
X19.494,	22.271,	23.923,	25.099,	26.049,	26.873,	27.620,	2040
X28.326,	29.006,	29.678,	30.360,	31.071,	31.840,	32.719,	2041
X33.806,	35.349,	38.010,	41.942,	45.252,	47.721,	49.687,	2042
X51.344,	52.798,	54.109,	55.317,	56.449,	57.522,	58.550,	2043
X59.545,	60.515,	61.467,	62.409,	63.347,	64.287,	65.236,	2044
X66.199,	67.186,	68.205)					2045
DATA ((ARRAY3(1), I= 1171,1260)=							2046
X9.219,	11.236,	12.501,	13.426,	14.258,	15.166,	16.555,	2047
X19.665,	22.347,	23.919,	25.045,	25.959,	26.755,	27.476,	2048
X28.157,	28.816,	29.468,	30.130,	30.824,	31.579,	32.446,	2049
X33.535,	35.128,	38.015,	42.064,	45.234,	47.574,	49.439,	2050
X51.014,	52.398,	53.648,	54.802,	55.883,	56.909,	57.892,	2051
X58.844,	59.773,	60.686,	61.589,	62.489,	63.392,	64.304,	2052
X65.231,	66.183,	67.156,					2053
X9.211,	11.142,	12.323,	13.196,	13.990,	14.872,	16.293,	2054
X19.533,	22.058,	23.528,	24.587,	25.451,	26.206,	26.894,	2055
X27.539,	28.166,	28.789,	29.422,	30.087,	30.815,	31.658,	2056
X32.732,	34.359,	37.460,	41.500,	44.467,	46.645,	48.384,	2057
X49.856,	51.152,	52.325,	53.408,	54.424,	55.389,	56.315,	2058
X57.212,	58.087,	58.947,	59.799,	60.649,	61.502,	62.364,	2059
X63.242,	64.144,	65.079)					2060
DATA ((ARRAY3(1), I= 1261,1350)=							2061
X9.201,	11.041,	12.145,	12.970,	13.729,	14.587,	16.053,	2062
X19.401,	21.768,	23.144,	24.142,	24.959,	25.676,	26.331,	2063
X26.948,	27.543,	28.137,	28.744,	29.382,	30.084,	30.904,	2064
X31.966,	33.635,	36.966,	40.933,	43.703,	45.732,	47.356,	2065
X48.735,	49.951,	51.052,	52.071,	53.027,	53.936,	54.809,	2066
X55.654,	56.480,	57.292,	58.097,	58.900,	59.707,	60.524,	2067
X61.356,	62.213,	63.102,					2068
X8.992,	10.687,	11.691,	12.451,	13.160,	13.977,	15.475,	2069
X18.828,	20.978,	22.233,	23.150,	23.906,	24.569,	25.177,	2070
X25.751,	26.308,	26.859,	27.425,	28.025,	28.685,	29.464,	2071
X30.492,	32.177,	35.673,	39.419,	41.933,	43.777,	45.257,	2072
X46.517,	47.631,	48.642,	49.577,	50.455,	51.291,	52.094,	2073
X52.872,	53.633,	54.382,	55.124,	55.865,	56.610,	57.365,	2074
X58.136,	58.931,	59.757)					2075

X8.591,	10.099,	10.988,	11.672,	12.319,	13.082,	14.598,	2077
X17.838,	19.735,	20.852,	21.676,	22.358,	22.958,	23.509,	2078
X24.031,	24.537,	25.042,	25.557,	26.104,	26.713,	27.436,	2079
X28.408,	30.080,	33.641,	37.044,	39.270,	40.906,	42.226,	2080
X43.352,	44.349,	45.255,	46.095,	46.884,	47.635,	48.357,	2081
X49.057,	49.742,	50.416,	51.085,	51.754,	52.426,	53.109,	2082
X53.806,	54.526,	55.276,					2083
X8.222,	9.564,	10.356,	10.976,	11.570,	12.289,	13.836,	2084
X16.935,	18.617,	19.618,	20.363,	20.982,	21.528,	22.030,	2085
X22.506,	22.970,	23.432,	23.906,	24.409,	24.970,	25.645,	2086
X26.570,	28.239,	31.828,	34.905,	36.887,	38.350,	39.534,	2087
X40.547,	41.446,	42.263,	43.022,	43.735,	44.415,	45.068,	2088
X45.702,	46.323,	46.934,	47.541,	48.147,	48.758,	49.378,	2089
X50.013,	50.669,	51.354,					2090
							2091
DATA ((ARRAY3(I), I= 1351,1440)=							2092
X7.842,	9.029,	9.737,	10.299,	10.844,	11.520,	13.107,	2093
X16.027,	17.517,	18.414,	19.087,	19.649,	20.146,	20.604,	2094
X21.039,	21.462,	21.885,	22.320,	22.784,	23.301,	23.929,	2095
X24.806,	26.476,	30.040,	32.799,	34.564,	35.874,	36.937,	2096
X37.849,	38.659,	39.398,	40.083,	40.728,	41.343,	41.934,	2097
X42.508,	43.070,	43.624,	44.175,	44.725,	45.280,	45.843,	2098
X46.421,	47.019,	47.644,					2099
X7.355,	8.380,	9.000,	9.501,	9.994,	10.624,	12.237,	2100
X14.906,	16.201,	16.992,	17.591,	18.093,	18.538,	18.948,	2101
X19.339,	19.719,	20.100,	20.493,	20.913,	21.384,	21.958,	2102
X22.779,	24.431,	27.867,	30.289,	31.837,	32.991,	33.931,	2103
X34.740,	35.459,	36.116,	36.725,	37.300,	37.847,	38.374,	2104
X38.886,	39.388,	39.882,	40.374,	40.865,	41.361,	41.865,	2105
X42.383,	42.919,	43.481,					2106
DATA ((ARRAY3(I), I= 1441,1530)=							2107
X6.923,	7.814,	8.364,	8.815,	9.265,	9.855,	11.498,	2108
X13.926,	15.063,	15.768,	16.305,	16.757,	17.159,	17.530,	2109
X17.883,	18.229,	18.574,	18.931,	19.314,	19.746,	20.277,	2110
X21.047,	22.692,	25.979,	28.119,	29.490,	30.517,	31.356,	2111
X32.080,	32.724,	33.313,	33.860,	34.376,	34.868,	35.342,	2112
X35.803,	36.254,	36.699,	37.141,	37.584,	38.031,	38.486,	2113
X38.953,	39.438,	39.948,					2114
X6.537,	7.318,	7.810,	8.219,	8.632,	9.189,	10.860,	2115
X13.064,	14.071,	14.704,	15.189,	15.599,	15.965,	16.303,	2116
X16.625,	16.940,	17.256,	17.582,	17.933,	18.331,	18.824,	2117
X19.552,	21.201,	24.323,	26.227,	27.451,	28.372,	29.128,	2118
X29.780,	30.363,	30.895,	31.390,	31.857,	32.302,	32.732,	2119
X33.149,	33.558,	33.961,	34.363,	34.765,	35.171,	35.584,	2120
X36.009,	36.451,	36.916,					2121
DATA ((ARRAY3(I), I= 1521,1710)=							2122
X5.919,	6.561,	6.979,	7.333,	7.696,	8.206,	9.850,	2123
X11.728,	12.574,	13.116,	13.534,	13.890,	14.207,	14.501,	2124
X14.782,	15.056,	15.332,	15.618,	15.926,	16.277,	16.716,	2125
X17.378,	18.977,	21.782,	23.394,	24.437,	25.227,	25.877,	2126
X26.439,	26.942,	27.402,	27.830,	28.234,	28.619,	28.991,	2127
X29.353,	29.707,	30.057,	30.405,	30.754,	31.106,	31.466,	2128
X31.835,	32.220,	32.625,					2129
X.000,	.000,	.000,	.000,	6.915,	7.389,	8.995,	2130
X10.599,	11.320,	11.788,	12.153,	12.464,	12.742,	13.001,	2131
X13.247,	13.490,	13.733,	13.985,	14.258,	14.570,	14.964,	2132
X15.572,	17.130,	19.640,	21.021,	21.922,	22.607,	23.172,	2133
X23.663,	24.101,	24.503,	24.877,	25.230,	25.568,	25.893,	2134
X26.209,	26.520,	26.826,	27.131,	27.437,	27.747,	28.062,	2135
X28.387,	28.726,	29.083,					2136

```

DATA ((ARRAY3(I), I= 1711,1800)=
X.000,   0.0,    .000,    .000,    .000,    6.724,    8.292,    2137
X9.671,   10.295,  10.706,  11.028,  11.304,  11.551,  11.781,    2138
X12.001,  12.217,  12.435,  12.660,  12.905,  13.186,  13.543,    2139
X14.106,  15.634,  17.885,  19.086,  19.874,  20.477,  20.976,    2140
X21.409,  21.797,  22.153,  22.484,  22.797,  23.096,  23.385,    2141
X23.666,  23.941,  24.213,  24.484,  24.756,  25.031,  25.312,    2142
X25.602,  25.903,  26.222,    .000,    .000,    7.349,    2143
X0.0,     0.0,    .000,    .000,    .000,    7.349,    2144
X8.44,  8.97,  9.31,  9.59,  9.82,  10.032,  10.227,    2145
X10.42,  10.599,  10.785,  10.979,  11.189,  11.432,  11.743,    2146
X12.246,  13.695,  15.604,  16.600,  17.260,  17.767,  18.188,    2147
X18.554,  18.883,  19.184,  19.465,  19.730,  19.984,  20.229,    2148
X20.468,  20.702,  20.934,  21.164,  21.395,  21.630,  21.869,    2149
X22.116,  22.373,  22.645)                                     2150
180000.,90000.,100000.,110000.,120000.,130000.,140000.,150000., 2151
DATA (ATAB=10000.,20000.,30000.,40000.,50000.,60000.,70000., 2152
2160000.,170000.,180000.,190000.,200000.,210000.,220000.,230000., 2153
3240000.,250000.,260000.,270000.,280000.,290000.,300000.,310000., 2154
4320000.,330000.,340000.,350000.,360000.,370000.,380000.,390000., 2155
5400000.,(VTAB=6000.,7000.,8000.,9000.,10000.,11000.,12000., 2156
613000.,14000.,15000.,16000.,17000.,18000.,19000.,20000.,21000., 2157
722000.,23000.,24000.,25000.,26000.,27000.,28000.,29000.,30000., 2158
831000.,32000.,33000.,34000.,35000.,36000.,37000.,38000.,39000., 2159
940000.,41000.,42000.,43000.,44000.,45000.,46000.,47000.,48000., 2160
X49000.,50000.)                                     2161
END                                         2162
                                         2163

```

PROGRAM USAGE AND RESTRICTIONS

Program D1244 was written in FORTRAN IV language for the Control Data 6000 series computer using the scope 3.0 operating system. The program requires a field length of 130 000 octal locations for compilation and 70 000 octal locations for production running. (The additional 40 000 locations are required for compilation because the BLOCK DATA subprogram requires the entire 130 000 locations for compilation.) The computing time depends on the elapsed real time of the problem, the computing time interval, and the physical size of the system (number of blocks). For parametric studies it is suggested that the time interval and the number of blocks be varied to determine the most expeditious configuration.

A list of restrictions and limitations of the programmed equations follows:

(1) For any trajectory input, the free-stream thermodynamic properties are based on the 1962 U.S. Standard Atmosphere tables (ref. 2) and the stagnation conditions on the body are for air in chemical equilibrium (ref. 15).

(2) The aerodynamic heating computations are restricted to air or gases with the same thermodynamic and transport properties. Further restrictions in the aerodynamic heating options are: (a) the Van Driest option (refs. 3 and 4) is restricted to $\gamma = 1.4$, $c_p = 0.24 \text{ Btu/lbm}^{-0}\text{R}$, $\mu \propto \theta = \frac{198}{T_e}^{\circ}\text{R} = 0.505$, $0 \leq M_e \leq 20$, $0.2 \leq T_w/T_e \leq 6.0$ and for turbulent flow the additional restriction of $10^5 \leq N_{Re,e} \leq 10^8$; (b) the Sibulkin option (ref. 5) is limited to a perfect gas ($\gamma = 1.4$) and thus $V_\infty \leq 5000 \text{ ft/sec}$; (c) the Detra, Kemp, and Riddell option (ref. 6) is used in the velocity range $5000 \leq V_\infty \leq 20\,000 \text{ ft/sec}$, and (d) the Cohen option (ref. 7) is employed for velocities up to 41 000 ft/sec.

For local or free-stream conditions outside of the theoretical or correlation equation ranges or for gas mixtures other than air (such as in the entry into planetary atmospheres or wind-tunnel environments), it is recommended that the heating rates or the heat-transfer coefficients and recovery temperatures be generated by separate computations and then these results be put into the program to determine the thermal response of the skin.

Additional restrictions in the input data are:

(1) The number of blocks are 100 or less except for the inverse solution which are 30 or less.

(2) The product of the number of horizontal blocks times the total number of blocks cannot exceed 2000.

(3) All convective blocks must be numbered first (that is, ascending order beginning with the digit one) before nonconvective blocks are numbered.

(4) The number of materials is limited to 10 and these materials can have variable thermal properties.

Figure 4 shows the deck setup for D1244. For non-Langley users the Langley library subroutines described in appendix C should be included with program subroutines in the deck.

Figure 4.- D1244 deck configuration.

PROGRAM INPUT FORMAT

The first card of each case is an identification card and the remaining cards are loaded by the FORTRAN IV NAMELIST. The following is a description of how the cards should be set up for cases:

Card 1: Column 1 should have a 1 punch. The remainder of the card is used for identification of the case.

Card 2: Columns 2 to 9 - \$CASEINP

Card 3, . . . are data cards. Data begins in column 2 and each card must end with a comma.

Last card: Column 2 - \$

Input Data Cards

The following is a list of input parameters and their identifications. These cards must begin in column 2 and each card must end with a comma.

NO number of blocks

NHOR the greatest difference between the numbers of any two blocks which have a mutual heating term, either conduction, joint or air-conduction. Note that all convective blocks must be numbered before nonconvective blocks are numbered. NHOR*NO cannot exceed 2000.

Examples:

1	2	3	4
---	---	---	---

NHOR = 1

1	2	3	4
5	6	7	8

NHOR = 4

1	2	3	
4	5	6	7
8	9	10	

NHOR = 4

1	2	3	
4	5	6	7
			8
12	11	10	9

NHOR = 8

NAIRGAP = 3

NOCONV number of convection blocks
NRADO number of radiation-out blocks
NJOINT number of joints
NAIRGAP number of air gaps

Example:

1	2	3
4	5	6

NAIRGAP = 3

IDIM 0 – thin wall
 1 – one dimensional
 2 – two dimensional

ICONVQ 0 – inverse solution
 1 – heating rates are given
 2 – stagnation option
 3 – Van Driest option

IDIFF 0 – heating rate tables are same for each convection block
 1 – heating rate tables are different for each convection block

LINEAR 0 – use T^4 for radiation-out term
 1 – linearize T^4 term

INVERSE 0 – no inverse solution
 1 – inverse solution required

COHEN 0 – use Cohen above 20 000 ft/sec
 1 – use Cohen for all ranges

These controls have been specified to describe the kind of configuration and are used for the most part as routing controls for various options in the program. From this point on, only the necessary data pertinent to each particular configuration needs to be included, that is, if the configuration has no joint term, then any input relating to joints may be ignored. This statement also applies to any other option in the program.

TIME initial starting time, sec
TIMSTOP stopping time, sec

DELTAT	computing interval (delta time), sec	
PRFREQ	print frequency	
TEMP	initial temperatures of blocks, $^{\circ}\text{R}$	
MAT	material numbers of blocks (each material is given a number) (one per block)	
EMS1		
EMS2		
.		
EMS10		
}		emissivities of materials (four locations are saved for each material and the coefficients of a cubic polynomial are stored in these loca- tions beginning with the constant value)
RHO	densities of materials, lb/ft^3	
NKMPTS	number of table values for k_m of each material	
TKTAB1		
TKTAB2		
.		
TKTAB10		
}		independent temperature tables for each k_m table, $^{\circ}\text{R}$
KM1		
KM2		
.		
KM10		
}		k_m (conductivity of material) tables, $\text{Btu}/\text{ft}\cdot\text{sec}\cdot^{\circ}\text{R}$
NCPPTS	number of table values for c_p (specific heat) of each material	
TCPTAB1		
TCPTAB2		
.		
TCPTB10		
}		independent temperature tables for each c_p table, $^{\circ}\text{R}$

CP1	
CP2	
.	
.	
CP10	
	c_p (specific heat of material) tables, Btu/lbm-°R
WD	widths of blocks, ft
LEN	lengths of blocks, ft
VOL	volumes of blocks, ft ³
TWDEPTH	thin-wall depth, ft
ACOND	conduction areas (the areas are listed beginning with the first block – for example, if block 1 touches 2 and 5, the areas between 1 and 2 and between 1 and 5 are given in that order; then if block 2 touches 1, 3, and 6 only the areas of the blocks ahead of the operating block number are given, for example, only the areas between 2 and 3 and 2 and 6 are given. <u>No area is repeated.</u> There are no blanks left and the areas are listed consecutively.)
NTOUCH	conduction block information (see NTOUCH (m,n) explanation under section "Arrays")
ICROBLK	block numbers of convection and radiation-out terms
CROAREA	convection and radiation-out areas, ft ²
PERCRNL	Reynolds number lengths (if Van Driest), ft percents (if stagnation)
IQORH	\dot{q} , Btu/ft ² -sec, or h , Btu/ft ² -sec-°R, and T_r , °R, inputs 1 – if \dot{q} inputs 2 – if h and T_r input
HIPTS	number of values in each input table
TRANRN	transition Reynolds number
FPCONE	1.0 – flat plate $\sqrt{3}$ – cone } Van Driest option

RADNOSE	nose radius, ft
ACRADI	air gap information (see section "Arrays")
AJOINT	joint information (see section "Arrays")

If heating input is given, the following tables are required:

HITIME	table of times for heat input, sec
HTAB	h tables (heat-transfer coefficient), Btu/ft ² -sec-°R
TAWTAB	T_r tables (recovery temperature), °R
QTAB	\dot{q} tables, Btu/ft ² -sec

If an inverse solution is required, use the following information:

NOINV	number of inverse blocks (number of blocks with known temperature time histories)
INVBLKS	inverse block numbers
NOINVT	number of values in inverse temperature table
TINV	time table for inverse temperatures, sec
TEMINV	temperature table for inverse blocks, °R

If there is more than one inverse block, the tables are as follows:

TEMINV1	table 1
TEMINV2	table 2
TEMINV3	table 3
TEMINV4	table 4

The following information is given for a trajectory when the Van Driest or stagnation options are used:

NAVPTS	number of values in altitude and velocity tables
TIMEAV	time table, sec
ALTTAB	altitude table, ft
VELTAB	velocity table, ft/sec

The following information is required for the Van Driest option and is used to convert free-stream conditions to local conditions:

NRATPT	number of ratio table points
MFSTAB	independent free-stream Mach number values
VERTAB	local to free-stream velocity ratios
MACTAB	local to free-stream Mach number ratios
REYTAB	local to free-stream Reynolds number ratios
TEMTAB	local to free-stream temperature ratios
RHOTAB	local to free-stream density ratios

If the model is at an angle of attack and two blocks with convective heating require different tables, use the following notation:

VERTAB1
VERTAB2
MACTAB1
MACTAB2
REYTAB1
REYTAB2
TEMTAB1
TEMTAB2
RHOTAB1
RHOTAB2

NRATAB(1) a ratio table number for each convection block (If only one set of ratio tables is given, each convection block will be represented by a 1.)

ARRAYS

All (m,n) arrays when read into the machine are stored in consecutive locations, the m varying most rapidly.

NTOUCH(m,n).- NTOUCH(5,100) is a two-dimensional array where the n varies as the block number and m goes from 1 to 5 with:

- | | |
|-----|-----------------------------------|
| 1 | total number of conduction blocks |
| 2-5 | numbers of the conduction blocks |

If the conduction blocks require the width for the computation, the sign of the conduction block must be negative.

Example:

1	2	3
4	5	6

The NTOUCH array would be entered:

- NTOUCH(1,1) = 2,2, -4,
NTOUCH(1,2) = 2,3, -5,
NTOUCH(1,3) = 1, -6,
NTOUCH(1,4) = 1,5,
NTOUCH(1,5) = 1,6,
NTOUCH(1,6) = 0,

Another more simplified way of entering this same data would be:

NTOUCH = 2, 2, -4, 2*0, 2, 3, -5, 2*0, 1, -6, 3*0, 1, 5, 3*0, 1, 6, 4*0,

ACRADI(m,n).- ACRADI(4,20) is a two-dimensional array where the n array varies as the number of the joint and the m goes from 1 to 4 with

- | | |
|---|-----------------------------------|
| 1 | number of air gap block |
| 2 | block on opposite side of air gap |
| 3 | distance across air gap, ft |
| 4 | area on air gap, ft ² |

Example:

$$\text{ACRADI}(1,1) = 1, 2, b_1, A_1,$$

$$\text{ACRADI}(1,2) = 3, 4, b_2, A_2,$$

Another more simplified way of entering this same data would be:

$$\text{ACRADI} = 1, 2, b_1, A_1, 3, 4, b_2, A_2,$$

AJOINT(m,n). - AJOINT(4,20) is a two-dimensional array where the n array varies as the number of the joint and the m goes from 1 to 4 with

- 1 number of joint block
- 2 connecting block (other side of joint); block number is negative
if the direction of heating across joint is in a vertical
direction
- 3 h_j of joint, Btu/ $\text{ft}^2\text{-sec}^{-0}\text{R}$
- 4 area of joint, ft^2

Example:

Sketch (d)

AJOINT(1,1) = 1, 2, h_j, 1, A₁,

AJOINT(1,2) = 3, -4, h_j, 2, A₂,

Another more simplified way of entering this same data would be:

AJOINT = 1, 2, h_j, 1, A₁, 3, -4, h_j, 2, A₂,

SAMPLE CASES

Two sample input listings and results are given in this section.

Case I is a one-dimensional stagnation heating analysis of a 1-foot-diameter sphere, composed of an exterior shell of beryllium and an interior shell of teflon, separated by an air gap. Note that the input volumes and conduction areas for the blocks were calculated for a flat-face slab rather than for a sphere simply for ease of computation.

(a) Case I.

Figure 5.- Trajectory and configuration samples.

Case II is a two-dimensional analysis of a section of an 11° sharp cone composed of fiber glass, copper, and aluminum.

The geometry and trajectory are shown in figures 5(a) and 5(b) for cases I and II, respectively.

Listing of the input deck and the program results for the two sample cases follow.

(b) Case II.

Figure 5.- Concluded.

Case I

BERYLLIUM TEFILON HEAT SHIELD 1-D STAG. POINT THERMAL ANALYSIS

```

EMS5   = 0.0, 0.0, 0.0, 0.0,
EMS6   = 0.0, 0.0, 0.0, 0.0,
EMS7   = 0.0, 0.0, 0.0, 0.0,
EMS8   = 0.0, 0.0, 0.0, 0.0,
EMS9   = 0.0, 0.0, 0.0, 0.0,
EMS10  = 0.0, 0.0, 0.0, 0.0,
RHO    = 0.116E+03, 0.137E+03, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
          0.0,
NKMPPTS = 6, 2, 0, 0, 0, 0, 0, 0, 0,
TKTAB1 = 0.5E+03, 0.1E+04, 0.15E+04, 0.2E+04, 0.25E+04, 0.28E+04, 0.0,
          0.0, 0.0,
KM1    = 0.284E-01, 0.227E-01, 0.173E-01, 0.125E-01, 0.94E-02, 0.74E-02,
          0.0, 0.0, 0.0,
TKTAB2 = 0.5E+03, 0.15E+04, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
KM2    = 0.4E-04, 0.8E-04, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
TKTAB3 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
KM3    = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
TKTAB4 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
KM4    = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
TKTAB5 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
KM5    = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
TKTAB6 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
KM6    = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
TKTAB7 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
KM7    = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
TKTAB8 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
KM8    = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
TKTAB9 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
KM9    = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
TKTAB10 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
KM10   = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
NCPPTS = 4, 0, 0, 0, 0, 0, 0, 0, 0,
TCPTAB1 = 0.5E+03, 0.8E+03, 0.11E+04, 0.28E+04, 0.0, 0.0, 0.0, 0.0,
          0.0,
CP1    = 0.425E+00, 0.55E+00, 0.617E+00, 0.86E+00, 0.0, 0.0, 0.0, 0.0,
          0.0, 0.0,

```


\$END

BERYLLIUM TEFLON HEAT SHIELD 1-D STAG. POINT THERMAL ANALYSIS

TIME = 2.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	5.11780199E+02	9.40034716E+00
2	5.11365762E+02	
3	5.09491350E+02	
4	5.05847229E+02	
5	5.03276949E+02	
6	5.02670726E+02	
7	5.00001193E+02	
8	5.00000007E+02	
9	5.00000000E+02	
10	5.00000000E+02	

TIME = 4.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	5.21673386E+02	1.29076652E+01
2	5.21107218E+02	
3	5.18510074E+02	
4	5.13385437E+02	
5	5.09581996E+02	
6	5.08658671E+02	
7	5.00007892E+02	
8	5.0000091E+02	
9	5.0000001E+02	
10	5.0000000E+02	

TIME = 6.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	5.35321568E+02	1.81731806E+01
2	5.34520391E+02	
3	5.30851149E+02	
4	5.23652568E+02	
5	5.18336977E+02	
6	5.17048039E+02	
7	5.00023170E+02	
8	5.00000388E+02	
9	5.00000005E+02	
10	5.00000000E+02	

TIME = 8.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	5.55223117E+02	2.63706500E+01
2	5.54051797E+02	
3	5.48696798E+02	
4	5.38256656E+02	
5	5.30611226E+02	
6	5.28763464E+02	
7	5.00050513E+02	
8	5.00001092E+02	
9	5.0000019E+02	
10	5.0000000E+02	

TIME = 10.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	5.83945815E+02	3.82565228E+01
2	5.82227429E+02	
3	5.74382088E+02	
4	5.59146202E+02	
5	5.48044705E+02	
6	5.45367297E+02	
7	5.00095304E+02	
8	5.00002475E+02	
9	5.0000053E+02	
10	5.0000000E+02	

TIME = 12.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	6.25152117E+02	5.55400452E+01
2	6.22616990E+02	
3	6.11072052E+02	
4	5.88800374E+02	
5	5.72675364E+02	
6	5.68796108E+02	
7	5.00165768E+02	
8	5.00004933E+02	
9	5.00000124E+02	
10	5.00000001E+02	

TIME = 14.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	6.83559793E+02	7.99628188E+01
2	6.79823567E+02	
3	6.62863480E+02	
4	6.30391809E+02	
5	6.07051232E+02	
6	6.01453122E+02	
7	5.00274345E+02	
8	5.00009047E+02	
9	5.00000257E+02	
10	5.0000002E+02	

TIME = 16.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	7.62434318E+02	1.10941673E+02
2	7.57C76557E+02	
3	7.32834587E+02	
4	6.86688033E+02	
5	6.53678206E+C2	
6	6.45778923E+C2	
7	5.C0439433E+02	
8	5.00015680E+02	
9	5.0000C491E+02	
10	5.C0000005E+C2	

TIME = 18.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	8.66096689E+02	1.51137020E+02
2	8.58463319E+02	
3	8.24120091E+02	
4	7.59640101E+02	
5	7.14121347E+02	
6	7.03285488E+02	
7	5.00687029E+02	
8	5.00026098E+02	
9	5.00000885E+C2	
10	5.00000009E+C2	

TIME = 20.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	1.00148466E+03	2.01099182E+02
2	9.50677076E+C2	
3	9.42403625E+02	
4	8.52740917E+02	
5	7.90299554E+02	
6	7.75560394E+02	
7	5.01053912E+02	
8	5.00042130E+02	
9	5.00001525E+02	
10	5.00000017E+02	

TIME = 22.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	1.16823694E+03	2.55142325E+02
2	1.15340179E+C3	
3	1.08769559E+03	
4	9.67286853E+C2	
5	8.83975806E+C2	
6	8.64354199E+02	
7	5.C1593384E+02	
8	5.00066422E+02	
9	5.00002540E+02	
10	5.C0000030E+02	

TIME = 24.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	1.37575495E+03	3.20239032E+02
2	1.35506640E+03	
3	1.26496595E+03	
4	1.10423685E+03	
5	9.95706342E+02	
6	9.70388923E+02	
7	5.02382643E+02	
8	5.00102799E+02	
9	5.00004117E+02	
10	5.00000052E+02	

TIME = 26.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	1.63875754E+03	3.96175542E+02
2	1.60916522E+03	
3	1.48326229E+03	
4	1.26743914E+03	
5	1.12603677E+03	
6	1.09353344E+03	
7	5.03533195E+02	
8	5.00156801E+02	
9	5.00006530E+02	
10	5.00000087E+02	

TIME = 28.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	1.96732871E+03	4.81465142E+02
2	1.92355248E+03	
3	1.74541101E+03	
4	1.45663610E+03	
5	1.27513959E+03	
6	1.23407744E+03	
7	5.05206486E+02	
8	5.00236444E+02	
9	5.00010175E+02	
10	5.00000142E+02	

TIME = 30.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	2.40131030E+03	5.91120858E+02
2	2.33353971E+03	
3	2.06653335E+03	
4	1.67238067E+03	
5	1.44119507E+03	
6	1.39005884E+03	
7	5.07636314E+02	
8	5.00353387E+02	
9	5.00015630E+02	
10	5.00000226E+02	

TIME = 32.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	2.99948832E+03	7.31050211E+02
2	2.87620191E+03	
3	2.46416105E+03	
4	1.91895938E+03	
5	1.62251715E+03	
6	1.55919665E+03	
7	5.11142316E+02	
8	5.00524391E+02	
9	5.00C23734E+02	
10	5.00C00355E+02	

TIME = 34.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	4.16635882E+03	9.40792075E+02
2	3.79946068E+03	
3	2.92821333E+03	
4	2.18116858E+03	
5	1.81381590E+03	
6	1.73733320E+03	
7	5.16142873E+02	
8	5.00773057E+02	
9	5.00035694E+02	
10	5.00C00550E+02	

TIME = 36.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q
1	5.88421157E+03	1.21131504E+03
2	5.99047039E+03	
3	3.77938833E+03	
4	2.37514000E+03	
5	1.99587906E+03	
6	1.91165200E+03	
7	5.23091166E+02	
8	5.01131404E+02	
9	5.00053229E+02	
10	5.00000841E+02	

Case II

FIBERGLASS HEAT SHIELD 11 DEGREE CONE

```

EMS7 = 0.0, 0.0, 0.0, 0.0,
EMS8 = 0.0, 0.0, 0.0, 0.0,
EMS9 = 0.0, 0.0, 0.0, 0.0,
EMS10 = 0.0, 0.0, 0.0, 0.0,
RHO = 0.119E+03, 0.543E+03, 0.169E+03, 0.0, 0.0, 0.0, 0.0, 0.0,
      0.0, 0.0,
NKMPPTS = 7, 4, 5, 0, 0, 0, 0, 0, 0,
TKTAB1 = 0.565E+03, 0.8E+03, 0.9E+03, 0.1E+04, 0.11E+04, 0.12E+04,
      0.2E+04, 0.0, 0.0, 0.0,
KM1 = 0.1722E-04, 0.25E-04, 0.2639E-04, 0.25E-04, 0.1944E-04,
      0.1111E-04, 0.1111E-04, 0.0, 0.0, 0.0,
TKTAB2 = 0.5E+03, 0.1E+04, 0.15E+04, 0.2E+04, 0.0, 0.0, 0.0, 0.0,
      0.0, 0.0,
KM2 = 0.6167E-01, 0.575E-01, 0.5444E-01, 0.5222E-01, 0.0, 0.0, 0.0,
      0.0, 0.0, 0.0,
TKTAB3 = 0.52E+03, 0.8E+03, 0.1E+04, 0.12E+04, 0.13E+04, 0.0, 0.0,
      0.0, 0.0, 0.0,
KM3 = 0.286E-01, 0.308E-01, 0.303E-01, 0.286E-01, 0.275E-01, 0.0,
      0.0, 0.0, 0.0, 0.0,
TKTAB4 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
KM4 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
TKTAB5 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
KM5 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
TKTAB6 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
KM6 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
TKTAB7 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
KM7 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
TKTAB8 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
KM8 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
TKTAB9 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
KM9 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
TKTAB10 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
KM10 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
NCPPTS = 6, 4, 6, 0, 0, 0, 0, 0, 0,
TCPTAB1 = 0.55E+03, 0.7E+03, 0.9E+03, 0.11E+04, 0.12E+04, 0.13E+04, 0.0,
      0.0, 0.0,
CP1 = 0.218E+00, 0.255E+00, 0.296E+00, 0.325E+00, 0.337E+00,
      0.337E+00, 0.0, 0.0, 0.0, 0.0,
TCPTAB2 = 0.5E+03, 0.1E+04, 0.15E+04, 0.2E+04, 0.0, 0.0, 0.0, 0.0,
      0.0, 0.0,
CP2 = 0.92E-01, 0.99E-01, 0.107E+00, 0.115E+00, 0.0, 0.0, 0.0, 0.0,
      0.0, 0.0,

```


FWDEPTH = 0.0,


```

NRATPT = 10,
MFSTAB = 0.0, 0.1E+01, 0.105E+01, 0.12E+01, 0.2E+01, 0.3E+01, 0.4E+01,
0.5E+01, 0.6E+01, 0.7E+01, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
VERTAB = 0.1E+01, 0.1E+01, 0.9652E+00, 0.9727E+00, 0.9815E+00,
0.988E+00, 0.9903E+00, 0.9922E+00, 0.9933E+00, 0.9932E+00, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
MACTAB = 0.1E+01, 0.1E+01, 0.958E+00, 0.965E+00, 0.967E+00, 0.963E+00,
0.961E+00, 0.954E+00, 0.946E+00, 0.937E+00, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
REYTAB = 0.1E+01, 0.1E+01, 0.9906E+00, 0.995E+00, 0.1037E+01, 0.109E+01,
0.1181E+01, 0.1274E+01, 0.1386E+01, 0.1502E+01, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
TEMTAB = 0.1E+01, 0.1E+01, 0.1015E+01, 0.1016E+01, 0.103E+01,
0.1053E+01, 0.1062E+01, 0.1081E+01, 0.1102E+01, 0.1124E+01,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
RHOTAB = 0.1E+01, 0.1E+01, 0.1038E+01, 0.104E+01, 0.108E+01, 0.1147E+01,
0.1248E+01, 0.1363E+01, 0.1502E+01, 0.1653E+01, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
NRATAB = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
VERTAB1 = 0.1E+01, 0.1E+01, 0.9652E+00, 0.9727E+00, 0.9815E+00,
0.988E+00, 0.9903E+00, 0.9922E+00, 0.9933E+00, 0.9932E+00, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
VERTAB2 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
MACTAB1 = 0.1E+01, 0.1E+01, 0.958E+00, 0.965E+00, 0.967E+00, 0.963E+00,
0.961E+00, 0.954E+00, 0.946E+00, 0.937E+00, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
MACTAB2 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
REYTAB1 = 0.1E+01, 0.1E+01, 0.9906E+00, 0.995E+00, 0.1037E+01, 0.109E+01,
0.1181E+01, 0.1274E+01, 0.1386E+01, 0.1502E+01, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
REYTAB2 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

```

\$END

FIBERGLASS HEAT SHIELD 11 DEGREE CONE

TIME = 5.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q	H * AREA	T(RECOVERY)
1	5.20816634E+02	9.58868875E-02	3.89834461E-03	5.45413456E+02
2	5.20808338E+02	4.75939792E-02	1.93431095E-03	5.45413472E+02
3	5.20803056E+02	4.73714066E-02	1.92485109E-03	5.45413482E+02
4	5.20799215E+02	2.36047757E-02	9.58987258E-04	5.45413490E+02
5	5.20797421E+02	9.42710033E-03	3.82965269E-04	5.45413493E+02
6	5.20236045E+02	9.63516064E-03	3.82674981E-04	5.45414489E+02
7	5.20235851E+02	1.44361504E-02	5.73349128E-04	5.45414490E+02
8	5.20000107E+02			
9	5.20000104E+02			
10	5.20000101E+02			
11	5.20000099E+02			
12	5.20000316E+02			
13	5.200097500E+02			
14	5.20097521E+02			
15	5.20000000E+02			
16	5.20000000E+02			
17	5.20000000E+02			
18	5.19999999E+C2			
19	5.20000050E+02			
20	5.20031885E+02			
21	5.20032146E+02			
22	5.19999948E+02			
23	5.20000454E+02			
24	5.20004562E+02			
25	5.20012324E+02			
26	5.20014705E+02			
27	5.19999942E+02			
28	5.20000214E+02			
29	5.20002149E+02			
30	5.20004084E+02			
31	5.20005315E+02			

TIME = 10.0000 DELTA TIME = .2000

BLOCK	NO	TEMPERATURE	CONVECTION Q	H * AREA	T(RECOVERY)
1		5.39082606E+02	7.46835483E-01	5.84173630E-03	6.66927385E+02
2		5.38948365E+02	3.70940335E-01	2.89841432E-03	6.66928803E+02
3		5.38862792E+02	3.69360636E-01	2.88412222E-03	6.66929707E+02
4		5.38800484E+02	1.84105558E-01	1.43686669E-03	6.66930366E+02
5		5.38686105E+02	7.35890458E-02	5.73814126E-04	6.66931546E+02
6		5.23412262E+02	8.28549569E-02	5.76665038E-04	6.67091784E+02
7		5.23408111E+02	1.24140791E-01	8.63986457E-04	6.67091828E+02
8		5.20020097E+02			
9		5.20019944E+02			
10		5.20019846E+02			
11		5.20019783E+02			
12		5.20032033E+02			
13		5.21963883E+02			
14		5.21965115E+02			
15		5.20000013E+02			
16		5.20000012E+02			
17		5.20000027E+02			
18		5.20000143E+02			
19		5.20006277E+02			
20		5.21007115E+02			
21		5.21018889E+02			
22		5.20015106E+02			
23		5.20108842E+02			
24		5.20309272E+02			
25		5.20554383E+02			
26		5.20647155E+02			
27		5.20014812E+C2			
28		5.20099885E+02			
29		5.20235918E+02			
30		5.20332077E+02			
31		5.20401912E+02			

TIME = 15.0000 DELTA TIME = .2000

BLOCK	NO	TEMPERATURE	CONVECTION Q	H * AREA	T(RECOVERY)
1		6.05263040E+02	2.05336967E+00	5.42783841E-03	9.83566431E+02
2		6.04725993E+02	1.02020551E+00	2.69287949E-03	9.83579005E+02
3		6.04383309E+02	1.01607194E+00	2.67948832E-03	9.83587028E+02
4		6.04133285E+02	5.06532122E-01	1.33487762E-03	9.83592881E+02
5		6.03402164E+02	2.02722464E-01	5.33186052E-04	9.83611779E+02
6		5.33801208E+02	2.47405236E-01	5.47257217E-04	9.85883390E+02
7		5.33781291E+02	3.70683812E-01	8.19910551E-04	9.85884037E+02
8		5.20151604E+02			
9		5.20150565E+02			
10		5.20149902E+02			
11		5.20149505E+02			
12		5.20238728E+02			
13		5.29C88718E+02			
14		5.29095970E+02			
15		5.20000155E+02			
16		5.20000154E+02			
17		5.20000504E+02			
18		5.20002073E+02			
19		5.20055839E+02			
20		5.25481168E+02			
21		5.25547589E+02			
22		5.20208953E+02			
23		5.20967924E+02			
24		5.22148585E+02			
25		5.23410361E+02			
26		5.23916931E+02			
27		5.20207404E+02			
28		5.20922215E+C2			
29		5.21790719E+02			
30		5.22356715E+02			
31		5.22776174E+02			

TIME = 20.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q	H * AREA	T (RECOVERY)
1	7.19901152E+02	3.21041488E+00	3.77920930E-03	1.56939495E+03
2	7.18730652E+02	1.59491496E+00	1.87480330E-03	1.56944121E+03
3	7.17983316E+02	1.58835080E+00	1.86538374E-03	1.56947074E+03
4	7.17436333E+02	7.91789701E-01	9.29269537E-04	1.56949235E+03
5	7.15010487E+02	3.17343980E-01	3.71346627E-04	1.56958666E+03
6	5.50358105E+02	4.02957925E-01	3.91775469E-04	1.57890113E+03
7	5.50303022E+02	6.03744129E-01	5.86956012E-04	1.57890502E+03
8	5.20552478E+02			
9	5.20548877E+02			
10	5.20546582E+02			
11	5.20545344E+02			
12	5.20663240E+02			
13	5.42127392E+02			
14	5.42146416E+02			
15	5.20000804E+02			
16	5.20000800E+02			
17	5.20003418E+02			
18	5.2011568E+02			
19	5.29228489E+02			
20	5.35022358E+02			
21	5.35201158E+02			
22	5.21093061E+02			
23	5.23745059E+02			
24	5.27047987E+02			
25	5.30244960E+02			
26	5.31581050E+02			
27	5.21089332E+02			
28	5.23632895E+02			
29	5.26192056E+02			
30	5.27769267E+02			
31	5.28949074E+02			

TIME = 25.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q	H * AREA	T (RECOVERY)
1	8.39737644E+02	2.57686418E+00	1.76006039E-03	2.53107971E+03
2	8.37907291E+02	1.47819599E+00	8.72991046E-04	2.53116176E+03
3	8.36738498E+02	1.47167297E+00	8.68512313E-04	2.53121415E+03
4	8.35877811E+02	7.33469519E-01	4.32629689E-04	2.53125272E+03
5	8.30079765E+02	2.94288380E-01	1.72965450E-04	2.53150847E+03
6	5.63070798E+02	3.65777251E-01	1.83661656E-04	2.55465281E+03
7	5.62967860E+02	5.48031407E-01	2.75157815E-04	2.55466636E+03
8	5.21330847E+02			
9	5.21322456E+02			
10	5.21317117E+02			
11	5.21314599E+02			
12	5.22049830E+02			
13	5.54792559E+02			
14	5.54821944E+02			
15	5.20002619E+02			
16	5.20002604E+02			
17	5.20013535E+02			
18	5.20038452E+02			
19	5.20594461E+02			
20	5.46414434E+02			
21	5.46710834E+02			
22	5.23349354E+02			
23	5.28907488E+02			
24	5.34607038E+02			
25	5.39625288E+02			
26	5.41801133E+02			
27	5.23344250E+02			
28	5.28740280E+02			
29	5.33355589E+02			
30	5.36060849E+02			
31	5.38095677E+02			

TIME = 30.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q	H * AREA	T (RECOVERY)
1	9.19968463E+02	1.80797772E+00	7.55667458E-04	3.31252580E+03
2	9.17683078E+02	8.97441510E-01	3.74739226E-04	3.31252580E+03
3	9.16224612E+02	8.93270975E-01	3.72770743E-04	3.31252580E+03
4	9.15138280E+02	4.45124950E-01	1.85670838E-04	3.31252580E+03
5	9.04452283E+02	1.78779887E-01	7.42418724E-05	3.31252580E+03
6	5.66192595E+02	2.17860318E-01	7.83154690E-05	3.34802256E+03
7	5.66055597E+02	3.26410074E-01	1.17329632E-04	3.34804739E+03
8	5.22423563E+02			
9	5.22408833E+02			
10	5.22399472E+02			
11	5.22395820E+02			
12	5.23655717E+02			
13	5.60605882E+02			
14	5.60640179E+02			
15	5.20006304E+02			
16	5.20006272E+02			
17	5.20037480E+02			
18	5.20090594E+02			
19	5.21133501E+02			
20	5.53881156E+02			
21	5.54218007E+02			
22	5.27128936E+02			
23	5.35023185E+02			
24	5.41784438E+02			
25	5.47229090E+02			
26	5.49665635E+02			
27	5.27125132E+02			
28	5.34856006E+02			
29	5.40541333E+02			
30	5.43723256E+02			
31	5.46120278E+02			

TIME = 35.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q	H * AREA	T (RECOVERY)
1	9.55786095E+02	6.45478187E-01	2.76288996E-04	3.29202893E+03
2	9.53287414E+02	3.20441439E-01	1.37014474E-04	3.29202893E+03
3	9.51692595E+02	3.18977663E-01	1.36295651E-04	3.29202893E+03
4	9.50481632E+02	1.58960799E-01	6.78870759E-05	3.29202893E+03
5	9.33953819E+02	6.40682195E-02	2.71697111E-05	3.29202893E+03
6	5.62996163E+02	7.91046139E-02	2.86144944E-05	3.32749072E+03
7	5.62846067E+02	1.18520273E-01	4.28695674E-05	3.32751760E+03
8	5.23679154E+02			
9	5.23657608E+02			
10	5.23643990E+02			
11	5.23639943E+02			
12	5.25418856E+02			
13	5.60328907E+02			
14	5.60351612E+02			
15	5.20012324E+02			
16	5.20012272E+02			
17	5.20080339E+02			
18	5.20168048E+02			
19	5.21758317E+02			
20	5.56177741E+02			
21	5.56476228E+02			
22	5.31708032E+02			
23	5.40155656E+02			
24	5.46391563E+02			
25	5.51038254E+02			
26	5.53171325E+02			
27	5.31707429E+02			
28	5.40027209E+02			
29	5.45427725E+02			
30	5.48334685E+C2			
31	5.50522014E+02			

TIME = 40.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q	H * AREA	T (RECOVERY)
1	9.59446992E+02	1.35320671E-01	6.95421581E-05	2.90532665E+03
2	9.57265773E+02	6.61120525E-02	3.39373648E-05	2.90532665E+03
3	9.56007140E+02	6.51337731E-02	3.34135953E-05	2.90532665E+03
4	9.54715000E+02	3.22212355E-02	1.65185292E-05	2.90532665E+03
5	9.31937705E+02	1.29877646E-02	6.58145197E-06	2.90532665E+03
6	5.57980196E+02	1.60288580E-02	6.70340521E-06	2.94913178E+03
7	5.57824752E+02	2.39569927E-02	1.00182146E-05	2.94916829E+03
8	5.24976180E+02			
9	5.24948547E+02			
10	5.24931517E+02			
11	5.24927761E+02			
12	5.27141825E+02			
13	5.56968141E+02			
14	5.56978366E+02			
15	5.20020869E+02			
16	5.20020799E+02			
17	5.20143264E+02			
18	5.20264959E+02			
19	5.22386400E+02			
20	5.54876421E+02			
21	5.55096523E+02			
22	5.36093595E+02			
23	5.43463024E+02			
24	5.48245515E+02			
25	5.51562403E+02			
26	5.53118135E+02			
27	5.36096627E+02			
28	5.43384132E+02			
29	5.47631082E+02			
30	5.49E37804E+02			
31	5.51493284E+02			

TIME = 45.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q	H * AREA	T (RECOVERY)
1	9.58685312E+02	7.75914708E-02	4.39214468E-05	2.72528174E+03
2	9.56454328E+02	3.79133376E-02	2.14341645E-05	2.72528174E+03
3	9.55162019E+02	3.73554865E-02	2.11033673E-05	2.72528174E+03
4	9.53800674E+02	1.84815068E-02	1.04327595E-05	2.72528174E+03
5	9.24834535E+02	7.48634072E-03	4.15804513E-06	2.72528174E+03
6	5.55372303E+02	9.35533982E-03	4.23193097E-06	2.76602741E+03
7	5.55215041E+02	1.39827288E-02	6.32460474E-06	2.76606131E+03
8	5.26268989E+02			
9	5.26235217E+02			
10	5.26214948E+02			
11	5.26212025E+02			
12	5.28768127E+02			
13	5.54660164E+02			
14	5.54660474E+02			
15	5.20031963E+02			
16	5.20031881E+02			
17	5.20223896E+02			
18	5.20374314E+02			
19	5.22980070E+02			
20	5.53271570E+02			
21	5.53427295E+02			
22	5.39630907E+02			
23	5.45263895E+02			
24	5.48696438E+02			
25	5.51019208E+02			
26	5.52112566E+02			
27	5.39636542E+02			
28	5.45215099E+02			
29	5.48287549E+02			
30	5.49860522E+02			
31	5.51035862E+02			

TIME = 50.0000 DELTA TIME = .2000

BLOCK	NC	TEMPERATURE	CONVECTION Q	H * AREA	T (RECOVERY)
1		9.56475696E+02	4.60299639E-02	3.01076818E-05	2.48532020E+03
2		9.54227678E+02	2.24963031E-02	1.46929743E-05	2.48532020E+03
3		9.52922474E+02	2.21680723E-02	1.44662655E-05	2.48532020E+03
4		9.51494613E+02	1.09694394E-02	7.15168627E-06	2.48532020E+03
5		9.16493427E+02	4.47353455E-03	2.85151594E-06	2.48532020E+03
6		5.53669737E+02	5.71517421E-03	2.90326056E-06	2.52220618E+03
7		5.53512544E+02	8.54212277E-03	4.33891322E-06	2.52223659E+03
8		5.27551606E+02			
9		5.27511629E+02			
10		5.27488217E+02			
11		5.27486526E+02			
12		5.30310575E+C2			
13		5.53119991E+02			
14		5.53113798E+02			
15		5.20045591E+02			
16		5.20045508E+02			
17		5.20318490E+02			
18		5.20491823E+02			
19		5.23542214E+02			
20		5.52118039E+02			
21		5.52230842E+02			
22		5.42245956E+02			
23		5.46368978E+02			
24		5.48843742E+02			
25		5.50511034E+02			
26		5.51296108E+02			
27		5.42253298E+02			
28		5.46337602E+C2			
29		5.48555433E+02			
30		5.49687324E+02			
31		5.50532098E+02			

TIME = 55.0000 DELTA TIME = .2000

BLOCK	NO	TEMPERATURE	CONVECTION Q	H * AREA	T (RECOVERY)
1		9.53416522E+02	2.52341872E-02	2.05612942E-05	2.18068300E+03
2		9.51170875E+02	1.23372672E-02	1.00342785E-05	2.18068300E+03
3		9.49865099E+02	1.21598618E-02	9.87949700E-06	2.18068300E+03
4		9.48367795E+02	6.01883792E-03	4.88417077E-06	2.18068300E+03
5		9.07505764E+02	2.48059567E-03	1.94835063E-06	2.18068300E+03
6		5.52495256E+02	3.29534637E-03	1.98516685E-06	2.21247984E+03
7		5.52339272E+02	4.92542583E-03	2.96682656E-06	2.21250569E+03
8		5.28820965E+02			
9		5.287174784E+02			
10		5.28748387E+02			
11		5.28748192E+02			
12		5.31777611E+02			
13		5.52053661E+02			
14		5.52043056E+02			
15		5.20061731E+02			
16		5.20061663E+02			
17		5.20423704E+02			
18		5.20615472E+02			
19		5.24079051E+02			
20		5.513C7109E+02			
21		5.51390124E+02			
22		5.44131311E+02			
23		5.47126542E+02			
24		5.48924533E+02			
25		5.50137626E+02			
26		5.50708688E+02			
27		5.44139829E+02			
28		5.47106781E+02			
29		5.48717049E+02			
30		5.49539224E+02			
31		5.50152792E+02			

TIME = 60.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q	H * AREA	T (RECOVERY)
1	9.49861258E+C2	1.35467301E-02	1.48813255E-05	1.86017869E+03
2	9.47629523E+02	6.62731971E-03	7.26242479E-06	1.86017869E+03
3	9.46330504E+02	6.53441842E-03	7.15044194E-06	1.86017869E+03
4	9.44757685E+02	3.23604897E-03	3.53503900E-06	1.86017869E+03
5	8.98222504E+02	1.35736434E-03	1.41097620E-06	1.86022621E+03
6	5.51688435E+02	1.92125363E-03	1.43923995E-06	1.88659693E+03
7	5.51534572E+02	2.87168646E-03	2.15094152E-06	1.88661804E+03
8	5.3075230E+02			
9	5.30022889E+02			
10	5.29993704E+02			
11	5.29995139E+02			
12	5.33175511E+02			
13	5.51317975E+C2			
14	5.51304381E+C2			
15	5.20080356E+02			
16	5.20080318E+02			
17	5.20537013E+C2			
18	5.20744101E+02			
19	5.24595467E+02			
20	5.50745677E+02			
21	5.50807700E+02			
22	5.45484457E+C2			
23	5.47668693E+02			
24	5.48987602E+02			
25	5.49881218E+02			
26	5.50301582E+02			
27	5.45493794E+02			
28	5.47656991E+02			
29	5.48836299E+02			
30	5.49439587E+C2			
31	5.49889916E+02			

TIME = 65.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q	H * AREA	T (RECOVERY)
1	9.46063933E+02	7.78468397E-03	1.10183328E-05	1.65258498E+03
2	9.43852008E+02	3.81103471E-03	5.37725049E-06	1.65258498E+03
3	9.42563488E+02	3.75911458E-03	5.29436733E-06	1.65258498E+03
4	9.405C7180E+02	1.86279428E-03	2.61746859E-06	1.65258498E+03
5	8.88925718E+02	7.98653477E-04	1.04539191E-06	1.65290090E+03
6	5.51142888E+02	1.20046198E-03	1.06750902E-06	1.67568793E+03
7	5.50992936E+02	1.79435698E-03	1.59539108E-06	1.67570587E+03
8	5.31313433E+C2			
9	5.31255001E+02			
10	5.31223247E+C2			
11	5.31226326E+C2			
12	5.34508042E+02			
13	5.50820793E+02			
14	5.50805434E+02			
15	5.20101437E+02			
16	5.20101447E+02			
17	5.206565E5E+02			
18	5.20876930E+02			
19	5.25095145E+02			
20	5.50368219E+02			
21	5.5C415501E+02			
22	5.46457872E+02			
23	5.48C66235E+02			
24	5.49047438E+02			
25	5.49716682E+02			
26	5.50031117E+C2			
27	5.46467776E+C2			
28	5.48C60139E+02			
29	5.48935279E+C2			
30	5.49384364E+02			
31	5.49719735E+02			

TIME = 70.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q	H * AREA	T(RECOVERY)
1	9.42171222E+02	4.87552615E-03	8.84514682E-06	1.49338040E+03
2	9.39981759E+02	2.38885976E-03	4.31670692E-06	1.49338040E+03
3	9.38705422E+02	2.35747339E-03	4.25018878E-06	1.49338040E+03
4	9.36956861E+02	1.16919525E-03	2.10126848E-06	1.49338040E+03
5	8.79773454E+02	5.15700746E-04	8.39731228E-07	1.49389941E+03
6	5.50783710E+02	8.26391229E-04	8.58063812E-07	1.51387202E+03
7	5.50637859E+02	1.23524798E-03	1.28237579E-06	1.51388747E+03
8	5.32535173E+C2			
9	5.32470728E+02			
10	5.32436635E+02			
11	5.32441260E+02			
12	5.35779183E+02			
13	5.50494711E+02			
14	5.50478266E+C2			
15	5.20124941E+02			
16	5.20125018E+02			
17	5.20781111E+C2			
18	5.21013409E+02			
19	5.25580823E+02			
20	5.50124510E+02			
21	5.50161452E+02			
22	5.47162790E+02			
23	5.48365025E+02			
24	5.49109194E+02			
25	5.49621349E+02			
26	5.49861561E+02			
27	5.47173083E+C2			
28	5.48362823E+02			
29	5.49024267E+02			
30	5.49365149E+02			
31	5.49619866E+02			

TIME = 75.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q	H * AREA	T(RECOVERY)
1	9.38255716E+02	3.68889175E-03	7.56206659E-06	1.42607501E+03
2	9.36093700E+02	1.80829587E-03	3.69054048E-06	1.42607501E+03
3	9.34830159E+02	1.78502710E-03	3.63368103E-06	1.42607501E+03
4	9.32980424E+02	8.85841469E-04	1.79649400E-06	1.42607501E+03
5	8.70836806E+02	3.99359233E-04	7.18331817E-07	1.42679051E+03
6	5.50555984E+02	6.57119643E-04	7.34195725E-07	1.44557569E+03
7	5.50414297E+02	9.82236067E-04	1.09725511E-06	1.44558996E+03
8	5.33740344E+02			
9	5.33669970E+02			
10	5.33633774E+02			
11	5.33639740E+02			
12	5.36993138E+02			
13	5.50290144E+02			
14	5.502730E3E+C2			
15	5.20150837E+02			
16	5.20151001E+02			
17	5.20909655E+02			
18	5.21153143E+02			
19	5.26054519E+C2			
20	5.49976810E+02			
21	5.50006517E+02			
22	5.47678916E+C2			
23	5.48596084E+02			
24	5.49174447E+02			
25	5.49576902E+C2			
26	5.49765252E+02			
27	5.47689475E+C2			
28	5.48596581E+02			
29	5.49108436E+02			
30	5.49373638E+02			
31	5.49571948E+02			

TIME = 80.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q	H * AREA	T (RECOVERY)
1	9.34359996E+02	2.73789351E-03	6.43010219E-06	1.36015315E+03
2	9.32217739E+02	1.34291236E-03	3.13811924E-06	1.36015315E+03
3	9.30967180E+02	1.32609012E-03	3.08977974E-06	1.36015315E+03
4	9.29007613E+02	6.58622828E-04	1.52761137E-06	1.36015315E+03
5	8.62139864E+02	3.04912024E-04	6.11171405E-07	1.36103759E+03
6	5.50416560E+02	5.17531288E-04	6.24840661E-07	1.37867778E+03
7	5.50279027E+02	7.73591002E-04	9.33824108E-07	1.37869093E+03
8	5.34928998E+02			
9	5.34852780E+02			
10	5.34814718E+02			
11	5.34821724E+02			
12	5.38153499E+02			
13	5.50168987E+C2			
14	5.50151630E+02			
15	5.20179092E+02			
16	5.20179362E+02			
17	5.21041547E+02			
18	5.21295839E+02			
19	5.26517699E+02			
20	5.49896193E+02			
21	5.49920829E+02			
22	5.48062817E+02			
23	5.48780481E+02			
24	5.49242920E+02			
25	5.49568616E+02			
26	5.4972C688E+02			
27	5.48073554E+02			
28	5.48782853E+02			
29	5.49190118E+02			
30	5.49402400E+02			
31	5.49561272E+02			

TIME = 85.0000 DELTA TIME = .2000

BLOCK NO	TEMPERATURE	CONVECTION Q	H * AREA	T (RECOVERY)
1	9.30479055E+02	1.98481952E-03	5.43583921E-06	1.29561486E+03
2	9.28366715E+02	9.74287472E-04	2.65289715E-06	1.29561486E+03
3	9.27123219E+02	9.62514929E-04	2.61204007E-06	1.29561486E+03
4	9.25045625E+02	4.78565917E-04	1.29143456E-06	1.29561486E+03
5	8.53682513E+02	2.29007374E-04	5.16993415E-07	1.29664246E+03
6	5.50335989E+02	4.0331774E-04	5.28719453E-07	1.31318247E+03
7	5.50202554E+C2	6.02894219E-04	7.901711081E-07	1.31319456E+03
8	5.36101222E+C2			
9	5.36019247E+02			
10	5.35975558E+02			
11	5.35987215E+C2			
12	5.39263286E+C2			
13	5.50103414E+C2			
14	5.50085975E+C2			
15	5.202039673E+C2			
16	5.20210070E+C2			
17	5.21176310E+C2			
18	5.21441278E+C2			
19	5.26571396E+C2			
20	5.49E60389E+C2			
21	5.49881434E+C2			
22	5.48354200E+C2			
23	5.48931983E+C2			
24	5.49312820E+C2			
25	5.49584255E+C2			
26	5.49710712E+C2			
27	5.48365055E+C2			
28	5.48935677E+C2			
29	5.49265386E+C2			
30	5.49444388E+C2			
31	5.49575474E+C2			

CONCLUDING REMARKS

A general transient heat-transfer program (D1244) developed at the Langley Research Center is described. This program has been used frequently in the thermal design of space vehicles and spacecraft which are subject to aerodynamic heating.

The governing equations and finite-difference method for their numerical solution are given. Complete program listing and flow diagrams are included, and the program inputs are described in detail.

The input data and computer results from two sample heating examples are included as check cases for program D1244 users.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., April 17, 1970.

APPENDIX A

LINEARIZATION OF THE RADIATION-OUT TERM

For rapidly changing wall temperatures, particularly when the radiation-out heat flux is significant, the computations are more accurate if the fourth power of temperature used in the radiation-out term is included as an unknown in the solution for T_i' rather than using $(T_i')^4$ at the beginning of the time step. The computational procedure for the solution to the temperatures of the blocks is based on a system of linear equations; thus, the inclusion of a $T_i'^4$ term is not feasible. However, as a first approximation, the $(T_i')^4$ term can be updated in the radiation-out heat flux term.

Let $\dot{Q}_{\text{rad-out}} = \epsilon \sigma A \bar{T}_w^4$ where \bar{T}_w is an average temperature given by

$$\bar{T}_w \equiv \frac{T_i' + T_i}{2}$$

since $\Delta T_w = T_i - T_i'$; then

$$\bar{T}_w = T_i' + \frac{\Delta T_w}{2} = T_i' \left(1 + \frac{\Delta T_w}{2T_i'}\right)$$

and

$$\bar{T}_w^4 = (T_i')^4 \left(1 + \frac{\Delta T_w}{2T_i'}\right)^4 = (T_i')^4 (1 + X)^4$$

where $X \equiv \frac{\Delta T_w}{2T_i'}$. Expanding $(1 + X)^4$ in a series and neglecting terms higher than first order yields

$$\begin{aligned}\bar{T}_w^4 &= (T_i')^4 (1 + X)^4 \approx (T_i')^4 (1 + 4X) = (T_i')^4 \left(1 + \frac{2\Delta T_w}{T_i'}\right) \\ &= (T_i')^3 [T_i' + 2(T_i - T_i')] \\ &= 2(T_i')^3 T_i - (T_i')^4\end{aligned}$$

APPENDIX A – Concluded

and

$$\dot{Q}_{\text{rad-out}} \approx \epsilon \sigma A \left[2(T_i')^3 T_i - (T_i')^4 \right]$$

Since T_i is raised to the first power, it can be included in the linear solution of the equations.

APPENDIX B
DEVELOPMENT OF SIBULKIN EQUATION
FOR MACHINE COMPUTATION

Sibulkin's expression for the heat-transfer coefficient (ref. 5) is:

$$N_{Nu,D} = 0.763 N_{Pr}^{0.4} D \left(\frac{\beta \rho}{\mu} \right)^{0.5} \quad (B1)$$

At the stagnation point equation (B1) becomes

$$h = 0.763 N_{Pr}^{0.4} k_s \left(\frac{\beta \rho}{\mu} \right)_s^{0.5} \quad (B2)$$

By introducing free-stream conditions and assuming that N_{Pr} is a constant, equation (B2) becomes

$$h = \frac{0.763}{\sqrt{2} N_{Pr}^{0.6}} \left(\frac{\beta D}{V_\infty} \right)^{0.5} \left(\frac{\mu_s \rho_s}{\mu_\infty \rho_\infty} \right)^{0.5} \frac{g \rho_\infty V_\infty c_{p,s}}{\sqrt{r_n} \sqrt{N_{Re,\infty}/ft}} \quad (B3)$$

Upon assuming that

$$\mu \propto T^{0.76} \quad (B4)$$

and including the equation of state

$$\frac{\rho_s}{\rho_\infty} = \frac{p_s}{p_\infty} \frac{T_\infty}{T_s} \quad (B5)$$

equation (B3) becomes

$$h = \frac{0.763}{\sqrt{2} N_{Pr}^{0.6}} \left(\frac{\beta D}{V_\infty} \right)^{1/2} \left[\left(\frac{T_\infty}{T_s} \right)^{0.24} \frac{p_s}{p_\infty} \right]^{1/2} \frac{g \rho_\infty V_\infty c_{p,s}}{\sqrt{r_n} \sqrt{N_{Re,\infty}/ft}} \quad (B6)$$

From Van Driest (ref. 3) for Newtonian flow,

APPENDIX B – Concluded

$$\frac{\beta D}{V_\infty} = \left\{ \frac{8[(\gamma - 1)M_\infty^2 + 2]}{(\gamma + 1)M_\infty^2} \left[1 + \frac{\gamma - 1}{2} \frac{(\gamma - 1)M_\infty^2 + 2}{2\gamma M_\infty^2 - (\gamma - 1)} \right]^{-\frac{1}{\gamma-1}} \right\}^{1/2} \quad (B7)$$

Now

$$\frac{T_s}{T_\infty} = 1 + \frac{\gamma - 1}{2} M_\infty^2 \quad (B8)$$

and

$$\frac{p_s}{p_\infty} = \left[\frac{(\gamma + 1)M_\infty^2}{2} \right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma + 1}{2\gamma M_\infty^2 - (\gamma - 1)} \right]^{\frac{1}{\gamma-1}} \quad (B9)$$

For $\gamma = 1.4$ and $N_{Pr} = 0.72$, equation (B6) becomes

$$h = f(M_\infty) \frac{g \rho_\infty V_\infty c_{p,s}}{\sqrt{r_n} \sqrt{N_{Re,\infty}/ft}} \quad (B10)$$

where

$$f(M_\infty) = \frac{0.763}{\sqrt{2} N_{Pr}^{0.6}} \left(\frac{\beta D}{V_\infty} \right)^{1/2} \left[\left(\frac{T_\infty}{T_s} \right)^{0.24} \frac{p_s}{p_\infty} \right]^{1/2} \quad (B11)$$

Substituting equations (B7), (B8), and (B9) into equation (B11) and approximating the resulting expression by a second-order polynomial in M_∞ over the range $M_\infty = 0$ to $M_\infty = 5$ yields

$$f(M_\infty) \equiv B = 0.800 + 0.541M_\infty - 0.00574M_\infty^2 \quad (B12)$$

Thus,

$$h = \frac{Bg \rho_\infty V_\infty (c_p)_{\text{Perfect}}}{\sqrt{r_n} \sqrt{N_{Re,\infty}/ft}} \quad (B13)$$

where $c_{p,s}$ is replaced by $(c_p)_{\text{Perfect}}$.

APPENDIX C
LANGLEY LIBRARY SUBROUTINES
Subroutine DISCOT

Language: FORTRAN

Purpose: DISCOT performs single or double interpolation for continuous or discontinuous functions.

Given a table of some function y with two independent variables, x and z , this subroutine performs K_x th- and K_z th-order interpolation to calculate the dependent variable. In this subroutine all single-line functions are read in as two separate arrays and all multi-line functions are read in as three separate arrays; that is,

$$\begin{aligned}x_i &\quad (i = 1, 2, \dots, L) \\y_j &\quad (j = 1, 2, \dots, M) \\z_k &\quad (k = 1, 2, \dots, N)\end{aligned}$$

Use: CALL DISCOT (XA, ZA, TABX, TABY, TABZ, NC, NY, NZ, ANS)

- | | |
|------|--|
| XA | The x argument |
| ZA | The z argument (may be the same name as x on single lines) |
| TABX | A one-dimensional array of x values |
| TABY | A one-dimensional array of y values |
| TABZ | A one-dimensional array of z values |
| NC | A control word that consists of a sign (+ or -) and three digits. The control word is formed as follows:

(1) If $NX = NY$, the sign is negative. If $NX \neq NY$, then NX is computed by DISCOT as $NX = NY/NZ$, and the sign is positive and may be omitted if desired.
(2) A one in the hundreds position of the word indicates that no extrapolation occurs above z_{\max} . With a zero in this position, extrapolation occurs when $z > z_{\max}$. The zero may be omitted if desired.
(3) A digit (1 to 7) in the tens position of the word indicates the order of interpolation in the x -direction.
(4) A digit (1 to 7) in the units position of the word indicates the order of interpolation in the z -direction. |

APPENDIX C – Continued

NY	The number of points in y array
NZ	The number of points in z array
ANS	The dependent variable y

The following programs will illustrate various ways to use DISCOT:

Case I: Given $y = f(x)$

```
NY = 50
NX (number of points in x array) = NY
Extrapolation when z > zmax
Second-order interpolation in x-direction
No interpolation in z-direction
Control word = -020

DIMENSION TABX (50), TABY (50)
1 FORMAT (8E 9.5)
READ (5,1) TABX, TABY
READ (5,1) XA
CALL DISCOT (XA, XA, TABX, TABY, TABY, -020, 50, 0, ANS)
```

CASE II: Given $y = f(x,z)$

```
NY = 800
NZ = 10
NX = NY/NZ (computed by DISCOT)
Extrapolation when z > zmax
Linear interpolation in x-direction
Linear interpolation in z-direction
Control word = 11

DIMENSION TABX (800), TABY (800), TABZ (10)
1 FORMAT (8E 9.5)
READ (5,1) TABX, TABY, TABZ
READ (5,1) XA, ZA
CALL DISCOT (XA, ZA, TABX, TABY, TABZ, 11, 800, 10, ANS)
```

CASE III: Given $y = f(x,z)$

```
NY = 800
NZ = 10
NX = NY
Extrapolation when z > zmax
Seventh-order interpolation in x-direction
```

APPENDIX C - Continued

Third-order interpolation in z-direction

Control word = -73

DIMENSION TABX (800), TABY (800), TABZ (10)

1 FORMAT (8E 9.5)

READ (5,1) TABX, TABY, TABZ

READ (5,1) XA, ZA

CALL DISCOT (XA, ZA, TABX, TABY, TABZ, -73, 800, 10, ANS)

Case IV: Same as Case III with no extrapolation above z_{\max} . Control word = -173

CALL DISCOT (XA, ZA, TABX, TABY, TABZ, -173, 800, 10, ANS)

Restrictions: See rule (5c) of section "METHOD" for restrictions on tabulating arrays and discontinuous functions. The order of interpolation in the x- and z-directions may be from 1 to 7. The following subprograms are used by DISCOT: UNS, DISSER, LAGRAN.

Method: Lagrange's interpolation formula is used in both the x- and z-directions for interpolation. This method is explained in detail in reference (a) of this subroutine. For a search in either the x- or z-direction, the following rules are observed:

(1) If $x < x_1$, the routine chooses the following points for extrapolation:

$$x_1, x_2, \dots, x_{k+1} \text{ and } y_1, y_2, \dots, y_{k+1}$$

(2) If $x > x_n$, the routine chooses the following points for extrapolation:

$$x_{n-k}, x_{n-k+1}, \dots, x_n \text{ and } y_{n-k}, y_{n-k+1}, \dots, y_n$$

(3) If $x \leq x_n$ the routine chooses the following points for interpolation:

When k is odd,

$$x_{i-\frac{k+1}{2}}, x_{i-\frac{k+1}{2}+1}, \dots, x_{i-\frac{k+1}{2}+k}$$

and

$$y_{i-\frac{k+1}{2}}, y_{i-\frac{k+1}{2}+1}, \dots, y_{i-\frac{k+1}{2}+k}$$

APPENDIX C – Continued

When k is even,

$$x_{i-\frac{k}{2}}, x_{i-\frac{k}{2}+1}, \dots, x_{i-\frac{k}{2}+k}$$

and

$$y_{i-\frac{k}{2}}, y_{i-\frac{k}{2}+1}, \dots, y_{i-\frac{k}{2}+k}$$

- (4) If any of the subscripts in rule (3) become negative or greater than n (number of points), rules (1) and (2) apply. When discontinuous functions are tabulated, the independent variable at the point of discontinuity is repeated.
- (5) The subroutine will automatically examine the points selected before interpolation and if there is a discontinuity, the following rules apply. Let x_d and x_{d+1} be the point of discontinuity.
 - (a) If $x \leq x_d$, points previously chosen are modified for interpolation as shown:

$$x_{d-k}, x_{d-k+1}, \dots, x_d \text{ and } y_{d-k}, y_{d-k+1}, \dots, y_d$$
 - (b) If $x > x_d$, points previously chosen are modified for interpolation as shown:

$$x_{d+1}, x_{d+2}, \dots, x_{d+k} \text{ and } y_{d+1}, y_{d+2}, \dots, y_{d+k}$$
 - (c) When tabulating discontinuous functions, there must always be $k + 1$ points above and below the discontinuity in order to get proper interpolation.
- (6) When tabulating arrays for this subroutine, both independent variables must be in ascending order.
- (7) In some engineering programs with many tables, it is quite desirable to read in one array of x values that could be used for all lines of a multi-line function or different functions. Even though this situation is not always applicable, the subroutine has been written to handle it. This procedure not only saves much time in preparing tabular data, but also can save many locations previously used when every y coordinate had to have a corresponding x coordinate. Another additional feature that may be useful is the possibility of a multi-line function with no extrapolation above the top line.

APPENDIX C – Continued

Accuracy: A function of the order of interpolation used.

Reference: (a) Nielsen, Kaj L.: Methods in Numerical Analysis. The Macmillan Co., c.1956.

Storage: 555₈ locations

Subprograms used: UNS 40₈ locations

DISSER 110₈ locations

LAGRAN 55₈ locations

Subroutine date: August 1, 1968

APPENDIX C – Continued

Subroutine SIMEQ

Language: FORTRAN

Purpose: SIMEQ solves the matrix equation $AX = B$ where A is a square coefficient matrix and B is a matrix of constant vectors. The solution to a set of simultaneous equations and the determinant may be obtained. If the user wants the determinant only, use DETEV for savings in time and storage.

Use: CALL SIMEQ (A, N, B, M, DETERM, IPIVOT, NMAX, ISCALE)

A	A two-dimensional array of the coefficients
N	The order of A; $1 \leq N \leq NMAX$
B	A two-dimensional array of the constant vectors B. On return to calling program, X is stored in B
M	The number of column vectors in B
DETERM	Gives the value of the determinant by the following formula: $DET(A) = 10^{100} ISCALE(DETERM)$
IPIVOT	A one-dimensional array of temporary storage used by the routine
NMAX	The maximum order of A as stated in dimension statement of calling program
ISCALE	A scale factor computed by subroutine to keep results of computation within the floating-point word size of the computer

Restrictions: Arrays A, B, and IPIVOT are dimensioned with variable dimensions in the subroutine. The maximum size of these arrays must be specified in a DIMENSION statement of the calling program as: A (NMAX, NMAX), B (NMAX, M), IPIVOT (NMAX). The original matrices, A and B, are destroyed. They must be saved by the user if there is further need for them. The determinant is set to zero for a singular matrix.

Method: Jordan's method is used through a succession of elementary transformations: l_n, l_{n-1}, \dots, l_1 . If these transformations are applied to a matrix B of constant vectors, the result is X where $AX = B$. Each transformation is selected so that the largest element is used in the pivotal position.

Accuracy: Total pivotal strategy is used to minimize the rounding errors; however, the accuracy of the final results depends upon how well-conditioned the original matrix is.

APPENDIX C – Continued

Reference: (a) Fox, L.: An Introduction to Numerical Linear Algebra. Oxford Univ. Press, c.1965.

Storage: 4328 locations

Subroutine date: August 1, 1968

APPENDIX C – Continued

Subroutine FTLUP

Language: FORTRAN

Purpose: Computes $y = F(x)$ from a table of values using first- or second-order interpolation. An option to give y a constant value for any x is also provided.

Use: CALL FTLUP (X, Y, M, N, VARI, VARD)

X The name of the independent variable x.

Y The name of the dependent variable $y = F(x)$

M The order of interpolation (an integer)

M = 0 for y a constant. VARD(I) corresponds to VARI(I) for I = 1, 2, . . . , N. For M = 0 or $N \leq 1$, $y = F(VARI(1))$ for any value of x. The program extrapolates.

M = 1 or 2. First or second order if VARI is strictly increasing (not equal)

M = -1 or -2. First or second order if VARI is strictly decreasing (not equal)

N The number of points in the table (an integer).

VARI The name of a one-dimensional array which contains the N values of the independent variable.

VARD The name of a one-dimensional array which contains the N values of the dependent variable.

Restrictions: All the numbers must be floating point. The values of the independent variable x in the table must be strictly increasing or strictly decreasing. The following arrays must be dimensioned by the calling program as indicated: VARI(N), VARD(N).

Accuracy: A function of the order of interpolation used.

References: (a) Nielsen, Kaj L.: Methods in Numerical Analysis. The Macmillan Co., c.1956, pp. 87-91.

(b) Milne, William Edmund: Numerical Calculus. Princeton Univ. Press, c.1949, pp. 69-73.

Storage: 430₈ locations

APPENDIX C – Continued

Error condition: If the VARI values are not in order, the subroutine will print TABLE BELOW OUT OF ORDER FOR FTLUP AT POSITION xxx TABLE IS STORED IN LOCATION xxxxxx (absolute). It then prints the contents of VARI and VARD, and STOPS the program.

Subroutine date: September 12, 1969

APPENDIX C – Concluded

Subroutine AT62

Language: FORTRAN

Purpose: AT62 approximates the U.S. Standard Atmosphere, 1962 (ref. (a) of this subroutine). Computes density in slugs/ft³, pressure in lb/ft², temperature in degrees Kelvin, and the velocity of sound in ft/sec at any geometric altitude z in the range -16 500 feet \leq z \leq 2 320 000 feet.

Use: CALL AT62 (Z, ANS)

Z	Geometric altitude in feet
ANS	A one-dimensional array that contains the results.
ANS(1)	Density in slugs/ft ³
ANS(2)	Pressure in lb/ft ²
ANS(3)	Temperature in degrees Kelvin
ANS(4)	Velocity of sound in ft/sec

Restrictions: Range: For altitudes below -16 500 feet the values of density, pressure, temperature, and velocity of sound are not valid. The concept of the velocity of sound in the atmosphere becomes essentially meaningless at altitudes in excess of 300 000 feet. To point out this limitation, the velocity of sound at altitudes above 300 000 feet is set equal to the velocity of sound at 300 000 feet. For altitudes above 2 320 000 feet, density, pressure, and temperature are set equal to their respective values at 2 320 000 feet.

Method: The equations and techniques are identical to those used in computing the U.S. Standard Atmosphere, 1962 (ref. (a) of this subroutine)

Accuracy: The tables in the referenced publication were computed with an IBM 7094 using some double-precision arithmetic. In converting the routine for the CDC 6000 computers, all double-precision arithmetic was eliminated. Accordingly, there may be slight differences between the results of the converted subroutine and the tables.

Reference: (a) Anon.: U.S. Standard Atmosphere, 1962. NASA, U.S. Air Force, and U.S. Weather Bur., Dec. 1962.

Storage: 1654₈ locations

Subroutine date: August 1, 1968

REFERENCES

1. Arpacı, Vedat S.: Conduction Heat Transfer. Addison-Wesley Pub. Co., c.1966.
2. Anon.: U.S. Standard Atmosphere, 1962. NASA, U.S. Air Force and U.S. Weather Bur., Dec. 1962.
3. Van Driest, E. R.: Investigation of Laminar Boundary Layer in Compressible Fluids Using the Crocco Method. NACA TN 2597, 1952.
4. Van Driest, E. R.: The Problem of Aerodynamic Heating. Aeronaut. Eng. Rev., vol. 15, no. 10, Oct. 1956, pp. 26-41.
5. Sibulkin, M.: Heat Transfer Near the Forward Stagnation Point of a Body of Revolution. J. Aeron. Sci. (Readers' Forum), vol. 19, no. 8, Aug. 1952, pp. 570-571.
6. Detra, R. W.; Kemp, N. H.; and Riddell, F. R.: Addendum to "Heat Transfer to Satellite Vehicles Re-entering the Atmosphere." Jet Propulsion, vol. 27, no. 12, Dec. 1957, pp. 1256-1257.
7. Cohen, Nathaniel B.: Boundary-Layer Similar Solutions and Correlation Equations for Laminar Heat-Transfer Distribution in Equilibrium Air at Velocities Up to 41,100 Feet Per Second. NASA TR R-118, 1961.
8. Kreith, Frank: Principles of Heat Transfer. Int. Textbook Co. (Scranton, Pa.), c.1958.
9. Ames Research Staff: Equations, Tables, and Charts for Compressible Flow. NACA Rep. 1135, 1953. (Supersedes NACA TN 1428.)
10. Truitt, Robert Wesley: Fundamentals of Aerodynamic Heating. The Ronald Press Co., c.1960.
11. Lee, Dorothy B.; and Faget, Maxime A.: Charts Adapted From Van Driest's Turbulent Flat-Plate Theory for Determining Values of Turbulent Aerodynamic Friction and Heat-Transfer Coefficients. NACA TN 3811, 1956.
12. Eckhert, Ernst R. G.: Survey on Heat Transfer at High Speeds. ARL 189, U.S. Air Force, Dec. 1961.
13. Lees, Lester: Laminar Heat Transfer Over Blunt-Nosed Bodies at Hypersonic Flight Speeds. Jet Propulsion, vol. 26, no. 4, Apr. 1956, pp. 259-269, 274.
14. Hansen, C. Frederick: Approximations for the Thermodynamic and Transport Properties of High-Temperature Air. NASA TR R-50, 1959. (Supersedes NACA TN 4150.)
15. Lewis, Clark H.; and Burgess, E. G., III: Altitude-Velocity Tables and Charts for Imperfect Air. AEDC-TDR-64-214, U.S. Air Force, Jan. 1965. (Available from DDC as AD 454078.)

16. Zoby, Ernest V.; and Sullivan, Edward M.: Effects of Corner Radius on Stagnation-Point Velocity Gradients on Blunt Axisymmetric Bodies. NASA TM X-1067, 1965.
17. Eggers, A. J., Jr.; Hansen, C. Frederick; and Cunningham, Bernard E.: Stagnation-Point Heat Transfer to Blunt Shapes in Hypersonic Flight, Including Effects of Yaw. NACA TN 4229, 1958.
18. Howard, Floyd G.: Single-Thermocouple Method for Determining Heat Flux to a Thermally Thick Wall. NASA TN D-4737, 1968.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON, D. C. 20546

OFFICIAL BUSINESS

FIRST CLASS MAIL

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS
SPACE ADMINISTRATION

POSTMASTER: If Undeliverable (Section I
Postal Manual) Do Not Re-

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546