CSU22022 Computer Architecture I

Seventeenth Lecture - Control Unit

Michael Manzke

2023-2024

Trinity College Dublin

Control Unit

- The Control Unit:
 - Supplies all the control signals to the datapath
 - Responds appropriately to the datapath's status signals
 - e.g., C, V, Z, and N

Von Neumann Architecture (Processor)

- Input to the control unit:
 - A stream of instructions coming from memory M
 - This steam must be converted to a sequence of micro-operations for the datapath
- Control Unit uses:
 - Program counter PC to index in M the next executable instruction

Program counter PC and Memory M

Algorithmic State Machine (ASM)

- Data processing may be achieved through:
 - Sequencing Register transfer operations
 - May be specified as hardware algorithm
 - Consists of a finite number of procedural steps
- ASMs are used:
 - in the Control Unit

ASM Chart

- Algorithmic State Machine (ASM) Chart
 - Defines the hardware algorithm
 - Defines the relationship to time
 - Clock
- Three basic elements:
 - State Box
 - Decision Box
 - Conditional Output Box

State Box

- State Box contains:
 - Register transfer operation or output signals that are activated while the control unit is in this state
 - RUN is 1 for any box it appears and 0 for any box it does not appear

Decision Box

- Exit path is taken if input condition is:
 - True (1)
 - False (0)

Conditional Output Box entry path must pass through one or more decision boxes

ASM Box Example

ASM Block

Figure 1: This ASM block controls the Binary Multiplier. See lecture notes Sixteenth

Shift Register A and Signal Q_0

Timing Diagram

Figure 2: This vector and signals are driven by the ASM Block shown in figure 12

Control Unit Design

- Two contrasting approaches to control unit design have evolved:
 - Hard-wired
 - Micro-coded

Hard-wired Binary Multiplier Control

- The VHDL schematic below shows:
 - Datapath
 - Status signals Z and Q_0
 - External Input
 - **G** = **G**o
 - Output

Binary Multiplier ASM (Hard-wired)

