CS 484: Introduction to Machine Learning

Autumn 2020 Assignment 4

Question 1 and 2

In 2014, Allstate provided the data on Kaggle.com for the Allstate Purchase Prediction Challenge which is open. The data contain transaction history for customers that ended up purchasing a policy. For each Customer ID, you are given their quote history and the coverage options they purchased.

The data is available on the Blackboard as Purchase_Likelihood.csv.

- 1. It contains 665,249 observations on 97,009 unique Customer ID.
- 2. The nominal target variable is **insurance** that has these categories 0, 1, and 2
- 3. The nominal features are (categories are inside the parentheses):
 - a. group_size. How many people will be covered under the policy (1, 2, 3 or 4)?
 - b. **homeowner**. Whether the customer owns a home or not (0 = No, 1 = Yes)?
 - c. $married_couple$. Does the customer group contain a married couple (0 = No, 1 = Yes)?

Question 1 (35 points)

You will train a multinomial logistic model with the following model specifications.

- 1. Use all 665,249 observations for training the model
- 2. Enter the six effects to the model in the **following** order:
 - a. group size
 - b. homeowner
 - c. married_couple
 - d. group_size * homeowner
 - e. group_size * married_couple
 - f. homeowner * married_couple
- 3. Include the Intercept term in the model
- 4. Use the SWEEP Operator method to identify the non-aliased parameters
- 5. The optimization method is Newton
- 6. The maximum number of iterations is 100
- 7. The tolerance level is 1e-8.

Please answer the following questions based on your model.

a) (5 points) List the **aliased** columns that you have identified in your model matrix.

```
['group_size_4', 'homeowner_1', 'married_couple_1', 'group_size_1 * homeowner_1', 'group_size_2 * homeowner_1', 'group_size_3 * homeowner_1', 'group_size_4 * homeowner_0', 'group_size_4 * homeowner_1', 'group_size_1 * married_couple_1', 'group_size_2 * married_couple_1', 'group_size_3 * married_couple_1', 'group_size_4 * married_couple_0', 'group_size_4 * married_couple_1', 'homeowner_0 * married_couple_1', 'homeowner_1 * married_couple_0', 'homeowner_1 * married_couple_1']
```

- b) (5 points) How many degrees of freedom does your model have?24
- c) (20 points) After entering each effect into the current model, calculate the Deviance test statistic, its degrees of freedom, and its significance value between the current model and the previous model. List your Deviance test results by the model effects in a table.

Step	Effect Entered	# Free Parameter	Log-Likelihood	Deviance	Degrees of Freedom	Significance
0	Intercept	2	-595406.761884	Not Applicable		
1	group_size	8	-594912.973584	987.577	6	4.34787e-210
2	Homeowner	10	-591979.082834	6855.36	8	0

3	married_couple	12	-591936.793833	6939.94	10	0
4	group_size * homeowner	18	-591809.754770	7194.01	16	0
5	group_size * married_couple	24	-591118.483588	8576.56	22	0
6	homeowner * married_couple	26	-591105.493177	8602.54	24	0

d) (5 points) Calculate the Feature Importance Index as the negative base-10 logarithm of the significance value. If the significance value is zero, then assign Infinity to Importance. List your indices by the model effects.

Effect Entered	Importance
Intercept	Not Applicable
group_size	209.3617234108572
Homeowner	inf
married_couple	Inf
group_size * homeowner	Inf
group_size * married_couple	Inf
homeowner * married_couple	Inf

Question 2 (40 points)

You will train a Naïve Bayes model without any smoothing using all the observations in the **Purchase_Likelihood.csv**. In other words, the Laplace/Lidstone alpha is zero. Please answer the following questions based on your model.

a) (5 points) Show in a table the frequency counts and the Class Probabilities of the target variable.

insurance	0	1	2
Frequency Count	143691	426067	95491
Class Probability	0.216	0.64	0.144

b) (5 points) Show the crosstabulation table of the target variable by the feature **group_size**. The table contains the frequency counts.

group_size	insurance				
Broab_size	0	1	2		
1	115460	329552	74293		
2	25728	91065	19600		
3	2282	5069	1505		
4	221	381	93		

c) (5 points) Show the crosstabulation table of the target variable by the feature **homeowner**. The table contains the frequency counts.

homeowner	insurance			
nomeowner	0	1	2	
0	78659	183130	46734	
1	65034	242937	48757	

d) (5 points) Show the crosstabulation table of the target variable by the feature married_couple.
The table contains the frequency counts.

Married couple	insurance			
marrieu_coupie	0	1	2	
0	117110	333272	75310	
1	26581	92795	20181	

e) (5 points) Calculate the Cramer's V statistics for the above three crosstabulations tables. Based on these Cramer's V statistics, which feature has the largest association with the target insurance?

Feature	Cramer's V
group_size	0.0271
homeowner	0.097
married_couple	0.0324

Homeowner has the largest Cramer's V, thus homeowner has the largest association with the target insurance.

f) (10 points) For each of the sixteen possible value combinations of the three features, calculate the predicted probabilities for insurance = 0, 1, 2 based on the Naïve Bayes model that includes features group_size, homeowner, and married_couple. List your answers in a table with proper labeling.

group_size	homeowner	married_couple	Prob(insurance = 0)	Prob(insurance = 1)	Prob(insurance = 2)
1	0	0	0.227	0.627	0.145
1	0	1	0.214	0.637	0.148
1	1	0	0.205	0.654	0.140
1	1	1	0.193	0.663	0.142
2	0	0	0.238	0.614	0.147
2	0	1	0.225	0.624	0.15
2	1	0	0.216	0.641	0.142
2	1	1	0.204	0.651	0.144
3	0	0	0.250	0.601	0.148
3	0	1	0.236	0.611	0.151
3	1	0	0.227	0.628	0.144
3	1	1	0.214	0.638	0.146
4	0	0	0.262	0.587	0.150
4	0	1	0.248	0.598	0.153
4	1	0	0.238	0.615	0.145
4	1	1	0.225	0.625	0.148

g) (5 points) Based on your model, what value combination of group_size, homeowner, and married_couple will yield the maximum odds value Prob(insurance = 1) / Prob(insurance = 0)? What is that maximum odd value?

The max is 3.422 from 1,1,1 (group_size = 1, homeowner = 1, married_couple = 1).

Question 3 (10 points)

You will calculate the Eta-squared statistic to measure the association between the interval target MPG_Highway and the categorical feature DriveTrain which has three categories: *All, Front,* and *Rear*. Instead of the original training data, you are given the following table of summary statistics.

DriveTrain	Count	Mean	Corrected Sum of Squares
All	92	22.4673913043478	1574.9021739130400
Front	226	29.5044247787611	7794.4955752212400
Rear	110	25.0363636363636	983.8545454545450
Total	428	26.8434579439252	14074.5116822429000

SSW = 1574.9 + 7794.5 + 983.9 = 10353.3

SST = 14074.511

SSG = SST - SSW = 14074.511 - 10353.3 = 3721.211

Eta-squared = SSG / SST = 3721.211 / 14074.511 = 0.264

Question 4 (15 points)

You live in the San Francisco Bay area where earthquakes are not uncommon. Your house has a security alarm system against burglary, and it can be set off occasionally by an earthquake. Historically, there is a 6% chance that your house will be burglarized and there is a 2% chance that an earthquake will occur in your area. You can assume that the occurrences of burglary and earthquake are statistically independent. Based on your experience, your alarm will sound if the following events have occurred.

Earthquake	True	True	False	False
Burglary	True	False	True	False
Probability that Alarm will sound	0.99	0.15	0.95	0.0001

Please calculate this quantity Prob(Burglary = True and Earthquake = False | Alarm Sounded = False), i.e., the conditional probability that your house has been burglarized but no earthquake has occurred provided the alarm has not sounded.

Prob(Burglary = True and Earthquake = False | Alarm Sounded = False)

= Prob(Burglary = True and Earthquake = False and Alarm Sounded = False) / Prob(Alarm Sounded = False)

Independent so:

= Prob(Burglary = True) * Prob(Earthquake = False) * Prob(Alarm Sounded = False) / Prob(Alarm Sounded = False)

= 0.06 * 0.98 * 0.05 / 0.05 = 0.0588??

Hmmm or

Pr(A|B) = (Pr(B|A) Pr(A)) / (Pr(B|A) P(A) + Pr(B|~A) P(~A))
(((0.06 * 0.98 * 0.05)/(0.06*0.98))*(0.06*0.98))/((((0.06 * 0.98 * 0.05)/(0.06*0.98))*(0.06*0.98))+(((0.94*0.02*0.85)/(0.94*0.02))*(0.94*0.02)))
= 0.155