## Assignment 2

## EE24BTECH11002 - Agamjot Singh

## SECTION - B JEE MAIN/AIEEE

20) Let a, b, c be such that  $b(a + c) \neq 0$  if

$$\begin{vmatrix} a & a+1 & a-1 \\ b & b+1 & b-1 \\ c & c-1 & c+1 \end{vmatrix} +$$

$$\begin{vmatrix} a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \\ (-1)^{n+2}a & (-1)^{n+1}b & (-1)^n c \end{vmatrix} = 0$$

, then the value of n is:

(2009)

- a) any even integer
- b) any odd integer
- c) any integer
- d) zero
- 21) The number of  $3 \times 3$  non-singular matrices with four entries as 1 and all other entries as 0, is
- (2010)

- a) 5
- b) 6
- c) atleast 7
- d) less than 4
- 22) Let **A** be a  $2 \times 2$  matrix with non-zero entries and let  $A^2 = I$ , where **I** is  $2 \times 2$  identity matrix. Define Tr(A)- sum of diagonal elements of **A** and

|A| - determinant of matrix A.

**Statement - 1:**  $Tr(\mathbf{A}) = 0$ .

**Statement - 2:** |A| = 1

(2010)

- a) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for Statement-1.
- b) Statement 1 is true, Statement 2 is false.
- c) Statement 1 is false, Statement 2 is true.
- d) Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for Statement-1.
- 23) Consider the system of linear equations;

$$x_1 + 2x_2 + x_3 = 3$$
$$2x_1 + 3x_2 + x_3 = 3$$
$$3x_1 + 5x_2 + 2x_3 = 1$$

(2010)

- a) exactly 3 solutions
- b) a unique solution
- c) no solution
- d) infinite number of solutions
- 24) The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non zero solution is (2011)
  - a) 2
  - b) 1
  - c) zero
  - d) 3
- 25) Let **A** and **B** be two symmetrix matrices of order 3.

**Statement - 1:** A (BA) and (AB) A are symmetric matrices.

Statement - 2: AB is symmetric matrix if matrix multiplication of A with B is commutative.

- a) Statement 1 is true, Statement 2 is true; Statement 2 is **not** a correct explanation for Statement-1.
- b) Statement 1 is true, Statement 2 is false.
- c) Statement 1 is false, Statement 2 is true.
- d) Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for Statement-1.
- 26) Let

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$$

If  $u_1$  and  $u_2$  are column matrices such that

$$\mathbf{Au_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

and

$$\mathbf{Au_2} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

, then  $\mathbf{u_1} + \mathbf{u_2}$  is equal to: (2012)

a)

 $\begin{pmatrix} -1\\1\\0 \end{pmatrix}$ 

b)

 $\begin{pmatrix} -1\\1\\-1 \end{pmatrix}$ 

c)

 $\begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$ 

d)

 $\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$ 

27) Let **P** and **Q** be  $3 \times 3$  matrices  $\mathbf{P} \neq \mathbf{Q}$ . If  $\mathbf{P}^3 = \mathbf{Q}^3$  and  $\mathbf{P}^2\mathbf{Q} = \mathbf{Q}^2\mathbf{P}$  then determinant of  $(\mathbf{P}^2 + \mathbf{Q}^2)$  is equal to (2012)

- a) -2
- b) 1
- c) 0
- d) -1
- 28) If

$$\mathbf{P} = \begin{pmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{pmatrix}$$

is the adjoint of a  $3 \times 3$  matrix **A** and  $|\mathbf{A}| = 4$ , then  $\alpha$  is equal to:

(JEEM2014)

- a) 4
- b) 11
- c) 5
- d) 0

29) If  $\alpha, \beta \neq 0$  and  $f(n) = \alpha^n + \beta^n$  and

$$\begin{vmatrix} 3 & 1+f(1) & 1+f(2) \\ 1+f(1) & 1+f(2) & 1+f(3) \\ 1+f(2) & 1+f(3) & 1+f(4) \end{vmatrix}$$

=  $K(1-\alpha)^2(1-\beta)^2(\alpha-\beta)^2$ , then K is equal to

(JEEM2014)

- a) 1
- b) -1
- c)  $\alpha\beta$
- d)  $\frac{1}{\alpha\beta}$
- 30) If **A** is a  $3 \times 3$  non-singular matrix such that  $\mathbf{A}\mathbf{A}' = \mathbf{A}'\mathbf{A}$  and  $\mathbf{B} = \mathbf{A}^{-1}\mathbf{A}'$ , then  $\mathbf{B}\mathbf{B}'$  equals: (*JEEM*2014)
  - a)  $B^{-1}$
  - b)  $(\mathbf{B}^{-1})'$
  - c)  $\hat{\mathbf{I}} + \hat{\mathbf{B}}$
  - d) I
- 31) The set of all values of  $\lambda$  for which the system of linear equations:

$$2x_1 - 2x_2 + x_3 = \lambda x_1$$
$$2x_1 - 3x_2 + 2x_3 = \lambda x_2$$
$$-x_1 + 2x_2 = \lambda x_3$$

has a non-trivial solution

(JEEM2015)

- a) contains two elements
- b) contains more than two elements
- c) is an empty set
- d) is a singleton
- 32) If

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{pmatrix}$$

is a matrix satisfying the equation  $\mathbf{A}\mathbf{A}^T = 9\mathbf{I}$ , where  $\mathbf{I}$  is  $3 \times 3$  identity matrix, then the ordered part (a,b) is equal to: (JEEM2015)

- a) (2, 1)
- b) (-2, -1)
- c) (2,-1)
- d) (-2, 1)
- 33) The system of linear equations

$$x + \lambda y - z = 0$$
$$\lambda x - y - z = 0$$
$$x + y - \lambda z = 0$$

has a non-trivial solution for:

(JEEM2016)

- a) exactly two values of  $\lambda$
- b) exactly three values of  $\lambda$
- c) inifinitely many values of  $\lambda$
- d) exactly one value of  $\lambda$
- 34) If

$$\mathbf{A} = \begin{pmatrix} 5a & -b \\ 3 & 2 \end{pmatrix}$$

and  $Aadj(A) = AA^T$ , then 5a + b is equal to:

(JEEM2016)

- a) 4
- b) 13
- c) -1
- d) 5
- 35) Let k be an integer such that triangle with vertices (k, -3k), (5, k), (-k, 2) has area 28 sq. units. Then the orthocentre of (JEEM2017)this triangle is at the point:
  - a)  $(2, \frac{1}{2})$
  - b)  $(2, \frac{-1}{2})$ c)  $(1, \frac{3}{4})$

  - d)  $\left(1, \frac{-3}{4}\right)$
- 36) Let  $\omega$  be a complex number such that  $2\omega + 1 = z$  where  $z = \sqrt{-3}$ . If

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} = 3k$$

(*JEEM*2017) , then k is equal to:

- (a) 1
- (b) −*z*
- (c) z
- (d) -1