Fast and Accurate Modeling of Parametric Array Loudspeakers in the Frequency Domain

184th ASA Meeting Chicago

JIAXIN ZHONG and YUN JING Jiaxin.Zhong@psu.edu

The Sound Innovation of Metamaterials and Biomedical Acoustics (SIMBA)

The Pennsylvania State University (PSU)

May 10, 2023

Outline

- Introduction
- Properties of sound fields generated by a PAL
- Computational models
- Conclusions and future work

(Evaluate my presentation for the Early Career Presenter Competition)

Parametric Array Loudspeaker (PAL)

- PAL: radiates only ultrasound!
- Mechanism: nonlinear interactions of intense ultrasonic waves (e.g., 130 dB)

$$f_1, f_2 \xrightarrow{\mathsf{second} \ \mathsf{order}} f_2 - f_1, f_1 + f_2, 2f_1, 2f_2$$

- $f_1 = 60 \, \text{kHz}, f_2 = 61 \, \text{kHz}, \frac{f_2 f_1}{1} = 1 \, \text{kHz}$
- Sharp directivity [1]

Fig 1. SPL distribution at 1 kHz: (left) a conventional loudspeaker; (right) a PAL with an aperture size of 0.1 m $(0.3\lambda_{\rm a})$

Applications of PALs (1/2)

- Communications with a high level privacy [1]
- Remotely attack on voice assistant systems (Siri, Google Assistant) [2]
- Wave field synthesis [3]

(a) Localized audio content in museums and art galleries [1]

(b) Audio hotspot attack [2]

(c) Virtual sound source [3]

Fig 2. Selected examples of applications of PALs

- 1 D. Ortega et al. In: EuroNoise 2021. Madeira, Portugal, 2021
- 2 R. lijima et al. In: IEEE Trans. Emerg. 9.4 (2019), pp. 2004–2018
- 3 Y. Ogami et al. In: J. Acoust. Soc. Am. 146.2 (2019), pp. 1314-1325

Applications of PALs (2/2)

Using PALs in active noise control (ANC) systems

- Spillover effect: the noise around the target (error) point is reduced (quiet zone), but the noise in the other areas is amplified!
- Reason: the **omni-directivity** of conventional loudspeakers
- Solution: using directional loudspeakers
- Single [1] and multi [2] channel ANC systems

Fig 3. Sound pressure level (SPL) distributions at 1 kHz. o: noise source; □: target point; ×: secondary source.

array loudspeaker

generated by a point source

loudspeaker

N. Tanaka et al. In: J. Acoust. Soc. Am. 127.6 (2010), pp. 3526–3537

² J. Zhong et al. In: J. Acoust. Soc. Am. 151.2 (2022), pp. 1235–1245

Motivation

Fast and accurate modeling of PALs in the frequency domain

- Complexity due to the nonlinear process
- Many terms
 - Near field, Westervelt far field, inverse-law far field
 - Local effects, cumulative effects, Lagrangian density
 - KZK equation, Westervelt equation, Kuznetsov equation
 - Paraxial approximation, quasilinear approximation
 -
- No versatile modeling methods for all applications
- Many papers published recently yet no review

Fig 4. Important published papers on the modeling methods for PALs.

Sound fields generated by a PAL

Sound fields on front side [1]

Back side

- Near field: second-order nonlinear or Kuznetsov equation (local effects are dominant)
- Westervelt far field: Westervelt equation (local effects are negligible)
- Inverse-law far field: $p_a \propto 1/r$

Westervel

far field

field

 Select appropriate methods in the region of interest Front side

Inverse-law

far field

 R_2

Kuznetsov equation

Westervelt equation

Simplification

Slow

Computational

SPL (dB) Kuznetsov Westervelt 20 ····· Inverse-law 0.0010.010.1Radial distance, r (m)

Accuracy

PAL

Fig 7. Axial audio SPL at 1 kHz

10

100

Governing equations and quasilinear approximation

Second-order nonlinear equation [1]

$$\left(\nabla^2 - \frac{1}{c_0^2} \frac{\partial^2}{\partial t^2}\right) p + \frac{\delta}{c_0^4} \frac{\partial^3 p}{\partial t^3} = -\frac{\beta}{\rho_0 c_0^4} \frac{\partial^2 p^2}{\partial t^2} - \left(\nabla^2 + \frac{1}{c_0^2} \frac{\partial^2}{\partial t^2}\right) \mathcal{L}$$
(1)

- Lagrangian density: $\mathcal{L} = \rho_0 \mathbf{v} \cdot \mathbf{v}/2 p^2/(2\rho_0 c_0^2)$
- Westervelt equation: $\mathcal{L} = 0$
- Quasilinear approximation: nonlinear equation ⇒ two coupled linear equations
 - ullet Condition: ultrasound $< 130~{
 m dB}$
 - When $\mathcal{L} = 0$ in the frequency domain

$$\begin{cases} \left(\boldsymbol{\nabla}^2 + k_{\mathbf{u}}^2\right) p_{\mathbf{u}} = 0, & \mathbf{u} = 1, 2, \quad \text{(Ultrasound)} \\ \left(\boldsymbol{\nabla}^2 + k_{\mathbf{a}}^2\right) p_{\mathbf{a}} = \beta k_{\mathbf{a}}^2 \frac{p_1^* p_2}{\rho_0 c_0^2}, \quad \text{(Audio sound)} \end{cases}$$
(2)

• When $\mathcal{L} \neq 0$ [2]

$$\tilde{p}_{a} = p_{a} - \left[\frac{\rho_{0}}{2} \mathbf{v}_{1}^{*}(\mathbf{r}) \cdot \mathbf{v}_{2}(\mathbf{r}) - \left(\frac{\omega_{1}}{\omega_{2}} + \frac{\omega_{2}}{\omega_{1}} - 1 \right) \frac{p_{1}^{*}(\mathbf{r}) p_{2}(\mathbf{r})}{2\rho_{0} c_{0}^{2}} \right]$$
(3)

- S. I. Aanonsen et al. In: J. Acoust. Soc. Am. 75.3 (1984), pp. 749-768
- M. Červenka et al. In: J. Acoust. Soc. Am. 151.6 (2022), pp. 4046–4052

Direct Integration Method (DIM)

2D model:

- ullet $u_{
 m u}(y)$ Source profile; $H_0(k_{
 m u}
 ho)$ Hankel function; * Convolution
- Complexity: 3-fold integral (convolution)

Ultrasound:
$$p_{\rm u}(\mathbf{\rho}) \propto u_{\rm u}(y) * H_0(k_{\rm u}\sqrt{x^2+y^2})$$
 (4)

Audio:
$$p_{\rm a}(\mathbf{p}) \propto (p_1^* p_2)(\mathbf{p}) * *H_0(k_{\rm a} \sqrt{x^2 + y^2})$$
 (5)

3D model:

- $h_0(k_u r) = e^{ik_u r}/(ik_u r)$ Spherical Hankel function
- Complexity: 5-fold integral (convolution) (Time-consuming!)

Ultrasound:
$$p_{\rm u}({\bf r}) \propto u_i(x,y) * *h_0(k_{\rm u}\sqrt{x^2 + y^2 + z^2})$$
 (6)

Audio:
$$p_a(\mathbf{r}) \propto (p_1^* p_2) * * * h_0(k_a \sqrt{x^2 + y^2 + z^2})$$
 (7)

Fig 8. Sketch of (left) 2D and (right) 3D models

Finite Element Method (FEM)

Development

- First FEM model for modeling PALs [1]
- COMSOL Multiphysics [2-3]

Pros

- Valid in the near field and Westervelt far field
- Accurate and versatile

Cons

- Require large memory
 - Wavelength of the ultrasound frequency: 5.7 mm to 8.58 mm (40 kHz to 60 kHz)
 - Dimensions of region of interests: 100 to 1000 wavelengths (1 m to 5 m)
- Very time-consuming
- Almost impossible for 3D problems
- 1 Y. Kagawa et al. In: J. Sound Vib. 154.1 (1992), pp. 125-145
- M. Červenka et al. In: J. Acoust. Soc. Am. 146.4 (2019), pp. 2163–2169
- M. Červenka et al. In: J. Acoust. Soc. Am. 149.6 (2021), pp. 4534–4542

Fig 9. Above, a gradient-index phononic crystal (PC); bottom, sketch of a PAL lensed by a PC [3]

Spherical Wave Expansion (SWE) Method

Decomposing 3D Green's functions into spherical harmonics

$$h_0(k_{\rm u}R) = \frac{e^{ik_{\rm i}R}}{ik_{\rm u}R} = 4\pi \sum_{\ell=0}^{\infty} j_{\ell}(k_{\rm u}r_{\rm s,<})h_{\ell}(k_{\rm u}r_{\rm s,>}) \sum_{m=-\ell}^{\ell} Y_{\ell}^m(\theta,\varphi) Y_{\ell}^{m,*}(\theta_{\rm s},\varphi_{\rm s}),$$
(8)

- Circular piston source, linear radiation [1–2]
- Circular piston source, Westervelt far field [3]
- Circular piston source, near field [4]
- Circular source with an **arbitrary profile** (e.g., steerable PALs), near field [5]

Pros:

- Valid in the full field
- 100–500 times faster than the DIM without loss of accuracy

Cons:

- Inefficient for rectangular sources
- T. D. Mast et al. In: J. Acoust. Soc. Am. 118.6 (2005), pp. 3457–3464
- 2 J. Zhong et al. In: J. Theor. Comp. Acoust. 28 (2020), p. 2050026
- 3 J. Zhong et al. In: J. Acoust. Soc. Am. 147.5 (2020), pp. 3502-3510
- 4 J. Zhong et al. In: J. Acoust. Soc. Am. 149.3 (2021), pp. 1524–1535
- **5** J. Zhong et al. In: J. Acoust. Soc. Am. 152.4 (2022), pp. 2296–2308

Cylindrical Wave Expansion (CWE) Method

Decomposing 2D Green's functions into cylindrical harmonics [1]

$$H_0(k_{\mathbf{u}}|\mathbf{\rho} - \mathbf{\rho}_{\mathbf{s}}|) = \sum_{m=-\infty}^{\infty} J_m(k_{\mathbf{u}}\rho_{\mathbf{s},<}) H_m(k_{\mathbf{u}}\rho_{\mathbf{s},>}) e^{\mathrm{i}m(\varphi - \varphi_{\mathbf{s}})}$$
(9)

Pros:

- Valid in the full field
- Faster than the 2D DIM without loss of accuracy

J. Zhong et al. In: J. Acoust. Soc. Am. 150.5 (2021), pp. 3797–3806

Arbitrary profile (e.g., steerable PALs)

Cons:

Applicable only to 2D physical problems

Fig 10. Audio SPL generated by a PAL with a (left) uniform profile and a (right) steerable profile

Gaussian Beam Expansion (GBE) Method

Paraxial approximation and decomposing source profiles into Gaussian functions

- Circular piston source, linear radiation [1]
- Circular piston source, PAL [2]
- Rectangular piston source, PAL [3]
- Rectangular steerable source, steerable PAL [4]

Pros:

Faster than DIM and SWE

Cons:

- Valid in the paraxial region of Westervelt far field
- Inaccurate at low audio frequencies, small aperture sizes
- ① J. J. Wen et al. In: J. Acoust. Soc. Am. 83.5 (1988), pp. 1752–1756
- M. Červenka et al. In: J. Acoust. Soc. Am. 134.2 (2013), pp. 933–938
- J. Yang et al. In: IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 52.4 (2005), pp. 610-618
- 4 T. Zhuang et al. In: J. Acoust. Soc. Am. 153.1 (2023), pp. 124–136

Fig 11. Audio SPL obtained by (top) exact solution and (bottom) GBE at 500 Hz

Convolution Directivity Method (CDM)

CDM: Audio sound directivity = **convolution** of ultrasound directivities and Westervelt directivity

Westervelt directivity [1]

$$\mathcal{D}_{W}(\varphi) = \frac{1}{1 - ik_a\alpha_u^{-1}\sin^2(\varphi/2)}$$
 (10)

• 2D problem: linear convolution (\mathcal{D}_1 and \mathcal{D}_2 are ultrasound directivities) [2]

$$\mathcal{D}_{a}(\varphi) = (\mathcal{D}_{1}^{*}\mathcal{D}_{2} * \mathcal{D}_{W})(\varphi)$$
 (11)

• 3D problem: spherical convolution [3]

$$\mathcal{D}_{a}(\theta,\varphi) = (\mathcal{D}_{1}^{*}\mathcal{D}_{2} \circledast \mathcal{D}_{W})(\theta,\varphi)$$
 (12)

Pros: Very fast

Cons: Applicable only in the inverse-law far field

Fig 12. Directivity obtained using (solid) exaction solution, (dashed) modified CDM, (dash-dotted) direct CDM, and (dotted) Westervelt directivity at 400 Hz, 1 kHz, and 4 kHz [3]

Summary of existing computational models

Select appropriate computational models for a specific problem

Model	Valid region	Computational speed
FEM (Finite Element Method)	Near field Westervelt far field	Very slow
DIM (Direct Integration Method)	Full field	Slow
SWE (Spherical Wave Expansion)	Full field	Fast
CWE (Cylindrical Wave Expansion)	Full 2D field	Fast
GBE (Gaussian Beam Expansion)	Paraxial region in Westervelt far field	Very fast
CDM (Convolution Directivity Method)	Inverse-law far field	Very fast

Table 1: Summary of existing computational models

Conclusions and Future Work

Conclusions

- Modeling of the PAL is complicated due to the nonlinear process
- Near field, Westervelt far field, inverse-law far field
- Existing models: DIM, SWE, CWE, GBE, FEM, CDM

Future work

- Modeling a rectangular PAL with an arbitrary profile
- Modeling in the time domain
 - Wide band signals
 - Distortion
- Intense ultrasound (quasilinear approximation is invalid, e.g., >130 dB)
- PAL array processing (total sound field of the array ≠ superposition of the audio sound by each array element)
 - Binaural audio
 - Sound field reproduction
 - Wave field synthesis

Thank you! Any Questions?

Scan to evaluate my presentation