Assessment Schedule – 2012

Physics: Demonstrate understanding of electricity and electromagnetism (91173)

Assessment Criteria

Question	Achievement M			Merit			Excellence			
ONE (a)	When the v the lamp is power outp	12 V, the	SS							
(b)	The 18 W l brighter as power outp OR The brightr depends on output.	ut. ness of a lam	ter has a AND [The its po	The 18 W lamp will be brighter as it has a greater power output. AND [The brightness of a lamp depends on its power output. OR both get 12V.]						
(c)	$P = VI \rightarrow I$ $I_1 = 0.42 \text{ A}$ OR $I_2 = 18 / 12$		$I_2 = 1$ $I_{\text{total}} = 1$	$P = VI \rightarrow I_1 = 5 / 12 \rightarrow I_1 = 0.42 \text{ A}$ $I_2 = 18 / 12 \rightarrow I_2 = 1.5 \text{ A}$ $I_{\text{total}} = 1.92 \text{ A}$				$P = VI \rightarrow I_1 = 5 / 12 \rightarrow I_1 = 0.42 \text{ A}$ $I_2 = 18 / 12 \rightarrow I_2 = 1.5 \text{ A}$ $I_{\text{total}} = 1.92 \text{ A}$ $R_{\text{total}} = 12 / 1.92 = 6.25 \Omega$		
(d)		alculated using $E = 18 \times 3 \times 60$ value for time. $E = 18 \times 3 \times 60$								
NØ	N1	N2	A3	A4	M5		M6	E7	E8	
No evidence	1a	2a	3a	4a	1a + 2m	2	2a + 2m	2m + 1e	1a + 2m + 1e	
TWO (a)	Since the la connected i will have th through the OR Since the la identical, th the same re	in series, then he same current. Imps are hey will have	e have across OR Since power	Since the lamps are identical, they will have the same resistance, hence voltage across each one is the same.			Since the lamps are connected in series, they will have the same current through them. AND Since the lamps are identical, they will have the same resistance, hence voltage across each one is the same. AND Since P=VI, each will have the same power output and hence the same brightness.			
(b)	Resistance $\frac{12 \times 12}{5} = 2$		$\frac{12\times}{5}$ Effect	Resistance of each lamp = $\frac{12 \times 12}{5} = 28.8 \Omega$ Effective resistance $= 28.8 + (28.8^{-1} + 28.8^{-1})^{-1} = 43.2 \Omega$			Resistance of each lamp = $\frac{12 \times 12}{5} = 28.8 \Omega$ Effective resistance $= 28.8 + (28.8^{-1} + 28.8^{-1})^{-1} = 43.2 \Omega$ Circuit current $= I = \frac{V}{R} = \frac{12V}{43.2 \Omega} = 0.28 \text{ A}$			

(c)	Voltage across $V = IR \rightarrow V = 0$ $V = 8.064 \text{ V}$ Lamp A gets t current	0.28 × 28.8 V	Voltage across Lamp A = $V = IR \rightarrow V = 0.28 \times 28.8 \rightarrow V = 8.064 \text{ V}$ Voltage across lamps in parallel = $12 - 8.064 = 3.94 \text{ V}$ Lamp A gets twice the current because current splits / R the same			Voltage across Lamp A = $V = IR \rightarrow V = 0.28 \times 28.8 \rightarrow V = 8.064 \text{ V}$ Voltage across lamps in parallel = $12 - 8.064 = 3.94 \text{ V}$ Power output of Lamp A = $P = VI = 8.064 \times 0.28 = 2.25 \text{ W}$ Power output of parallel lamps = $P = VI = 3.94 \times (3.94 / 28.8) = 0.54 \text{ W}$ Hence lamp A has a greater power output and hence is brighter than Lamps B and C. Lamp A gets twice the current because / current splits / resistances the same and $P = I^2R$		
NØ	N1	N2	A3	A4	M5	M6	E7	E8
No evidence	1 point correct	1a	2a	3a	1a + 2m	3m	2m + 1e	1m + 2e
THREE (a)	The upper plat positive to pre negatively cha drop from fall OR Electric field i downwards, so electrons will upwards. The gravity fo force) should size and oppose	event the arged oil ing down. s directed to the be attracted arce(weight be equal in site in	prevent the n from falling of directed down will be attracted AND. The force of so the oil dro	ate has to be pegatively chardown OR elections and the deciration of the deciration	ged oil drop tric field is electrons ownwards, onary by an			
	direction to the force.	e electric						
(c)	$F_{\rm g} = mg = 2.54 \times 10^{-5} \text{ x}$ $9.8 = 2.4892 \times 10^{-4} \text{ N}$		$Fel = Fg = 2.4892 \times 10^{-4} \text{ N}$ $E = F / q = 2.4892 \times 10^{-4} / (3.6 \times 10^{-9})$ $= 69 144 \text{ N C}^{-1}$			$F_{g} = mg = 2.54 \times 10^{-5} \times 9.8$ $= 2.4892 \times 10^{-4} \text{ N}$ $F_{el} = F_{g} = 2.4892 \times 10^{-4} \text{ N}$ $E = F / q = 2.4892 \times 10^{-4} / (3.6 \times 10^{-9})$ $= 69 144 \text{ NC}^{-1}$ $E = V / d \rightarrow V = Ed \rightarrow$ $V = 69144 \times 4.8 \times 10^{-4} = 33.18$ $V = 33 \text{ V}$		
(d)	33		2sf Since the final answer cannot be any more accurate than the least number of sf in the question. OR The least number of sf in the question is 2.					
NØ	N1	N2	A3	A4	M5	M6	E7	E8
No evidence	1a	2a	3a	4a	1a + 2m	n $2a + 2m$ $2m + 1e$ $1a + 2m + 1e$		

FOUR (a)	The rod will n right.	nove to the	the current the the magnetic electrons in the force to the risto move. OR Power supply through the re	move to the rig rough the rod field will caus he rod to expe- ight causing the causes electro od. The electro is a magnetic fiem.	which is in the the rience a the rod itself tons to move tons are			
(b)	$I = V/R \rightarrow I = 12.0 / 35.4$ $\rightarrow 0.34 \text{ A}$		$I = V/R \rightarrow I = 12.0 / 35.4 \rightarrow 0.34 \text{ A}$ $F = BIL \rightarrow$ $F = 0.85 \times 10^{-3} \times .34 \times 18.5 \times 10^{-2}$ $OR = 0.85 \times 10^{-3} \times .34 \times 25 \times 10^{-2}$ $F = 7.2 \times 10^{-5} \text{ N}$			$I = V / R \rightarrow I = 12.0 / 35.4 \rightarrow 0.34 \text{ A}$ $F = BIL \rightarrow F$ $= 0.85 \times 10^{-3} \times .34 \times 18.5 \times 10^{-2}$ $F = 5.4 \times 10^{-5} \text{ N}$		
(c)	$V = BvL \rightarrow$ $V = 0.85 \times 10^{-3} \rightarrow$ $V = 5.3 \times 10^{-4}$							
(d)	The rod slows down and stops.		The rod slows down and stops because the induced current in the rod causes an electromagnetic force.			The rod slows down and stops because the induced current in the rod causes an electromagnetic force. This force is in the opposite direction to the movement, causing the rod to slow down and stop.		
NØ	N1	N2	A3	A4	M5	M6	E7	E8
No evidence	1a	2a	3a	4a	1a + 2m	2a + 2m	2m + 1e	1m + 2e

Judgement Statement

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence	
Score range	0 – 10	11 – 19	20 – 24	25 – 32	