Occupation of a set time of random walks

Jan Janoušek

09/04/2021

Supervised by: doc. RNDr. Daniel Hlubinka, Ph.D.

Overview

- Introduction
 - Motivation
 - Definition of a random walk
- 2 Basic properties of random walk
 - Probability of position at time
 - Probability of no return to origin
 - Arcsine law for last visits
 - Arcsine law for sojourn times
- Multi dimensional random walk
 - Type I random walk
 - Type II random walk
- 4 Coclusion

Motivation

• How long can you profit if you buy *n* independent stocks

Motivation

- How long can you profit if you buy *n* independent stocks
- Gambler's ruin

Motivation

- How long can you profit if you buy *n* independent stocks
- Gambler's ruin
- Arcsine laws

• Random walk with parameter $p: (\{S_n\}_{\in \mathbb{N}_0}, p)$

- Random walk with parameter $p: (\{S_n\}_{\in \mathbb{N}_0}, p)$
- Return to the origin: $S_{2n} = 0$

- Random walk with parameter $p: (\{S_n\}_{\in \mathbb{N}_0}, p)$
- Return to the origin: $S_{2n} = 0$
- Probability of return to origin: $u_{2n} := P(S_{2n} = 0)$

- Random walk with parameter $p: (\{S_n\}_{\in \mathbb{N}_0}, p)$
- Return to the origin: $S_{2n} = 0$
- Probability of return to origin: $u_{2n} := P(S_{2n} = 0)$
- First return to the origin: $S_1, S_2, \dots, S_{2n-1} \neq 0, S_{2n} = 0$

- Random walk with parameter $p: (\{S_n\}_{\in \mathbb{N}_0}, p)$
- Return to the origin: $S_{2n} = 0$
- Probability of return to origin: $u_{2n} := P(S_{2n} = 0)$
- First return to the origin: $S_1, S_2, \ldots, S_{2n-1} \neq 0, S_{2n} = 0$
- Probability of the first return to the origin $f_n := P(S_1, S_2, \dots, S_{2n-1} \neq 0, S_{2n} = 0)$

- Random walk with parameter $p: (\{S_n\}_{\in \mathbb{N}_0}, p)$
- Return to the origin: $S_{2n} = 0$
- Probability of return to origin: $u_{2n} := P(S_{2n} = 0)$
- First return to the origin: $S_1, S_2, \ldots, S_{2n-1} \neq 0, S_{2n} = 0$
- Probability of the first return to the origin $f_n := P(S_1, S_2, \dots, S_{2n-1} \neq 0, S_{2n} = 0)$
- Probability of last return to origin at time k: $\beta_n(k)$

Definition

Let $\{X_n\}_{n=0}^{+\infty}$ be a sequence of independent and identically distributed $\{-1,1\}$ -valued random variables, that for some $p\in(0,1)$ and for $n\in\mathbb{N}$ satisfy $\mathsf{P}\,(X_n=1)=p$ and $\mathsf{P}\,(X_n=-1)=1-p=:q$.

Let
$$S_0 = 0$$
 and $S_n = \sum_{i=1}^n X_i$. We call the pair $(\{S_n\}_{n=0}^{+\infty}, p)$

Simple random walk in \mathbb{Z} .

Definition

Let $\{X_n\}_{n=0}^{+\infty}$ be a sequence of independent and identically distributed $\{-1,1\}$ -valued random variables, that for some $p\in(0,1)$ and for $n\in\mathbb{N}$ satisfy $\mathrm{P}(X_n=1)=p$ and $\mathrm{P}(X_n=-1)=1-p=:q$. Let $S_0=0$ and $S_n=\sum\limits_{i=1}^n X_i$. We call the pair $(\{S_n\}_{n=0}^{+\infty},p)$ Simple random walk in \mathbb{Z} .

• Three possible outcomes:

Definition

Let $\{X_n\}_{n=0}^{+\infty}$ be a sequence of independent and identically distributed $\{-1,1\}$ -valued random variables, that for some $p \in (0,1)$ and for $n \in \mathbb{N}$ satisfy $P(X_n=1)=p$ and $P(X_n=-1)=1-p=:q$.

Let $S_0 = 0$ and $S_n = \sum_{i=1}^n X_i$. We call the pair $(\{S_n\}_{n=0}^{+\infty}, p)$

Simple random walk in \mathbb{Z} .

- Three possible outcomes:

Definition

Let $\{X_n\}_{n=0}^{+\infty}$ be a sequence of independent and identically distributed $\{-1,1\}$ -valued random variables, that for some $p \in (0,1)$ and for $n \in \mathbb{N}$ satisfy $P(X_n=1)=p$ and $P(X_n=-1)=1-p=:q$.

Let $S_0 = 0$ and $S_n = \sum_{i=1}^n X_i$. We call the pair $(\{S_n\}_{n=0}^{+\infty}, p)$

Simple random walk in \mathbb{Z} .

- Three possible outcomes:
 - lacktriangledown p = q the walk stays approximately around origin (symmetric)
 - 2 p > q the walk shifts rightwards/upwards for $n \to +\infty$

Definition

Let $\{X_n\}_{n=0}^{+\infty}$ be a sequence of independent and identically distributed $\{-1,1\}$ -valued random variables, that for some $p \in (0,1)$ and for $n \in \mathbb{N}$ satisfy $P(X_n = 1) = p$ and $P(X_n = -1) = 1 - p =: q$.

Let $S_0 = 0$ and $S_n = \sum_{i=1}^n X_i$. We call the pair $(\{S_n\}_{n=0}^{+\infty}, p)$ Simple random walk in \mathbb{Z} .

- Three possible outcomes:

 - 2 p > q the walk shifts rightwards/upwards for $n \to +\infty$
 - **3** p < q the walk shifts leftwards/downwards for $n \to +\infty$

Probability of position at time

Theorem

Let $(\{S_n\}_{n=0}^{+\infty}, p)$ be a random walk.

$$P(S_n = x) = \begin{cases} \binom{n}{\frac{n+x}{2}} p^{\frac{n+x}{2}} q^{\frac{n-x}{2}} & \text{for } x \in A_n, \\ 0, & \text{for } x \notin A_n, \end{cases}$$

where
$$A_n = \{z \in \mathbb{Z}; |z| \le n, \frac{z+n}{2} \in \mathbb{Z}\}$$

Probability of return to origin

Theorem

Let $(\{S_n\}_{n=0}^{+\infty}, p)$ be a random walk.

$$P(S_n = 0) = \begin{cases} \binom{n}{2} p^{\frac{n}{2}} q^{\frac{n}{2}} & \text{for } n \text{ even }, \\ 0, & \text{for } n \text{ odd,} \end{cases}$$

Probability of no return to origin

Theorem

Let $\{S_n\}_{n=0}^{+\infty}$ be a symmetric random walk.

$$P(S_n = 0) = P(S_1, S_2, ..., S_{2n} \neq 0) =$$

$$= 2P(S_1, S_2, ..., S_{2n} > 0) = P(S_1, S_2, ..., S_{2n} \geq 0)$$

Arcsine law for last visits

Theorem

•

Let $\{S_n\}_{n=0}^{+\infty}$ be a symmetric random walk. Then the probability that the last return to the origin up to time 2n happened at time 2k is

$$\alpha_{2n}(2k) = P(S_{2k} = 0) P(S_{2n-2k} = 0).$$

$$P(S_{2k} = 0) = {2k \choose k} 2^{-2k} = \frac{(2k)!}{(k!)^2} 2^{-2k} \sim \frac{\left(\frac{2k}{e}\right)^{2k} \sqrt{4\pi k}}{\left(\left(\frac{k}{e}\right)^k \sqrt{2\pi k}\right)^2} 2^{-2k}$$

Arcsine law for last visits

Theorem

•

•

Let $\{S_n\}_{n=0}^{+\infty}$ be a symmetric random walk. Then the probability that the last return to the origin up to time 2n happened at time 2k is

$$\alpha_{2n}(2k) = P(S_{2k} = 0) P(S_{2n-2k} = 0).$$

$$P(S_{2k} = 0) = {2k \choose k} 2^{-2k} = \frac{(2k)!}{(k!)^2} 2^{-2k} \sim \frac{\left(\frac{2k}{e}\right)^{2k} \sqrt{4\pi k}}{\left(\left(\frac{k}{e}\right)^k \sqrt{2\pi k}\right)^2} 2^{-2k}$$

$$= \frac{\left(\frac{k}{e}\right)^{2k} 2^{2k} 2\sqrt{\pi k}}{\left(\frac{k}{e}\right)^{2k} 2\pi k} 2^{-2k} = \frac{1}{\sqrt{\pi k}}$$

Arcsine law for last visits-continuing

• following same procedure we get that

$$P(S_{2n-2k}=0) \sim \frac{1}{\sqrt{\pi(n-k)}}$$

Arcsine law for last visits-continuing

• following same procedure we get that

$$P(S_{2n-2k}=0) \sim \frac{1}{\sqrt{\pi(n-k)}}$$

• therefore
$$\beta_{2n}\left(2k\right) = \frac{1}{\pi\sqrt{k(n-k)}} = \frac{1}{\pi\sqrt{\frac{k}{n}\left(1-\frac{k}{n}\right)}}$$

Arcsine law for last visits-continuing

• following same procedure we get that

$$P(S_{2n-2k}=0) \sim \frac{1}{\sqrt{\pi(n-k)}}$$

- therefore $\beta_{2n}\left(2k\right)=\frac{1}{\pi\sqrt{k(n-k)}}=\frac{1}{\pi\sqrt{\frac{k}{n}\left(1-\frac{k}{n}\right)}}$
- therefore we get the distribution function:

$$F(nx) = P(X \le nx) = \int_0^{nx} \frac{1}{\pi \sqrt{y(n-y)}} dy = \frac{2}{\pi} \arcsin \sqrt{x}$$

Arcsine law for sojourn times

Theorem

Let $\{S_n\}_{n=0}^{+\infty}$ be a symmetric random walk. Then the probability that up to time 2n the walk spends 2k steps on the positive side is

$$\alpha_{2n}(2k) = P(S_{2n} = 0) P(S_{2n-2k} = 0).$$

Type I random walk-definition

Definition

Let $m \in \mathbb{N}$. Let e_i denote i-th vector of standard basis in \mathbb{R}^m . Let $\{X_n\}_{n=0}^{+\infty}$ be a sequence of independent and identically distributed random variables with values in $\{-e_1, +e_1, -e_2, +e_2, \dots, -e_m, +e_m\}$. That $\forall n \in \mathbb{N}$ satisfy the conditions $P(X_n = e_i) = p_i \in (0, 1), P(X_n = -e_i) = q_i \in (0, 1)$ and $\sum\limits_{i=1}^{m}p_{i}+\sum\limits_{i=1}^{m}q_{i}=1.$ Let $oldsymbol{p}=\left(p_{1},p_{2},\ldots,p_{m}
ight)^{T}$, ${m q} = (q_1, q_2, \dots, q_m)^T$ and $0 = (0, 0, \dots, 0)^T$. Let $S_0 = 0$ and $S_n = \sum X_i$. Then the triplet $(\{\boldsymbol{S_n}\}_{n=0}^{+\infty}, \boldsymbol{p}, \boldsymbol{q})$ is called *Type I* random walk in \mathbb{Z}^m .

Type II random walk-definition

Definition

Let $m \in \mathbb{N}$. $\forall n \in \mathbb{N}$, let $\mathbf{X}_n = \begin{pmatrix} x_n^1 & x_n^2 & \dots, x_n^m \end{pmatrix}^T$, where $\{x_n^i\}_{i=1}^m$ are $\forall n \in \mathbb{N}$ independent.

Let $\forall i \in \{1, 2, ..., m\}$ x_n^i be a $\{-1, +1\}$ -valued random variable with probabilities P $(x_n^i = +1) = p_i \in (0, 1)$ and

$$\mathsf{P}\left(x_n^i=-1\right)=1-p_i=:q_i\in (0,1)\,\forall n\in\mathbb{N}.$$

Let $\{X_n\}_{n=0}^{+\infty}$ be a sequence of independent and identically

distributed random vectors. Let
$$\mathbf{S}_0 = 0$$
 and $\forall n \in \mathbb{N} : \mathbf{S}_n = \sum_{i=1}^n \mathbf{X}_i$

and $\boldsymbol{p}=\left(p_1,p_2,\ldots,p_m\right)^T$. Then the pair $\left(\{\mathsf{S}_{\mathsf{n}}\}_{n=0}^{+\infty},\boldsymbol{p}\right)$ is called Type II random walk in \mathbb{Z}^m .

Type II random walk probability of position at time

Theorem

Let $m \in \mathbb{N}$ and $(\{\boldsymbol{S_n}\}_{n=0}^{+\infty}, \boldsymbol{p})$ be a Type II random walk in \mathbb{Z}^m . Let $\boldsymbol{y} = (y_1, y_2, \dots, y_m)^T \in \mathbb{Z}^m$. Then following equation stands:

$$P(S_n = \mathbf{y}) = \prod_{i=1}^m \binom{n}{\frac{y_i + n}{2}} p_i^{\frac{n + y_i}{2}} q_i^{\frac{n - y_i}{2}}$$

if $\forall i \in \{1, 2, \dots, m\} : y_i \in A_n, 0$ otherwise.

Type II random walk probability of position at time

Theorem

Let $\{S_n\}_{n=0}^{+\infty}$ be a Symmetric type II random walk in \mathbb{Z}^m . Let C be a closed orthant in Z^m .

$$P(\mathbf{S}_n \in C) = (P(S_{2n} = 0))^m = \left(2^{-2n} {2n \choose n}\right)^m.$$

Things I have done so far

• Understood (mainly symmetric) one dimensional random walk

Things I have done so far

- Understood (mainly symmetric) one dimensional random walk
- Defined and proven basic multidimensional theorems

Things I have done so far

- Understood (mainly symmetric) one dimensional random walk
- Defined and proven basic multidimensional theorems

Things I have done so far

- Understood (mainly symmetric) one dimensional random walk
- Defined and proven basic multidimensional theorems

My goals

- Find probabilites of occupation times of given sets in more dimensions
- Implement in R/Python for simulation study
- Statistical tests

Introduction
Basic properties of random walk
Multi dimensional random walk
Coclusion

Thank for your attention