20250 HWK 3

James Gillbrand

April 2024

Question 1

Proof. Let $v_1, ... v_n \in V$ be a sequence of vectors. Then,

$$\langle v_1, ... v_n \rangle = \{w : w = \sum a_i \cdot v_i\}$$

Hence, swapping the place of one vector with another does not affect the span since addition is commutative. In other words,

$$a_1v_1 + \dots + a_iv_i + \dots + a_iv_j + \dots + a_nv_n = a_1v_1 + \dots + a_iv_j + \dots + a_iv_i + \dots + a_nv_n$$

Now to examine scaling. Consider the scaled series of vectors $v_1, ...bv_i, ...v_n \in V$ where $b \in k$. Then, we can construct every vector w by scaling down the ith coefficient by the multiplicative inverse of b. Hence,

$$a_1v_1 + \dots + a_iv_i + \dots + a_nv_n = a_1v_1 + \dots + a_ib^{-1}(bv_i) + \dots + a_iv_i + \dots + a_nv_n$$

Thus scaling does not impact the span of the vectors.

Finally, to examine adding one vector to another, consider the set $v_1,...v_i + v_j,...v_j,...v_n \in V$. Then, if we use the same coefficients $a_1,...a_n$ as the original set but replace a_j with $a_j - a_i$, we have

$$\sum a_i v_i = a_1 v_1 + \dots + a_i (v_i + v_j) + \dots + (a_j - a_i) v_j + \dots + a_n v_n$$

$$= a_1 v_1 + \dots + a_i v_i + a_i v_j + \dots + a_j v_j - a_i v_j + \dots + a_n v_n$$

$$= a_1 v_1 + \dots + a_i v_i + \dots + a_j v_j + \dots + a_n v_n$$

Hence, this set spans the same vectors since the sum of vectors are identical when using the same coefficients. \Box

Proof. The vectors given by the question can be combined to form the following matrix,

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Reducing these vectors until we have them in echelon form will result in a basis for the span of these vectors. Doing so yields,

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Which is a basis for the subspace spanned by the given vectors as by question 1 doing these operations do not change the span and by reducing to echelon form ensures that the vectors are linearly independent. \Box

Question 3

Proof. Let V and W be finite dimensional vector spaces. It was shown in class that $\operatorname{Maps}(k^n,k^m)$ is isomorphic to the set of matrices with dimensions $m\times n$. Assume that $\dim V=n$ and $\dim W=m$. Hence, if we can find the dimension of the set of $m\times n$ matrices we can find the dimensionality of $\operatorname{Maps}(V,W)$. Hence, we need a set of $m\times n$ matrices that can be combined to create any other $m\times n$ matrix. Consider the set of matrices where there is a empty $m\times n$ matrix with 1 in one element for each element of an $m\times n$ matrix. Clearly this set spans the set of all matrices and is also linearly independent. Thus this set is a basis for the set of maps. Because there is a matrix for each element, there are $m\times n$ matrices and thus $\dim \operatorname{Maps}(k^n,k^m)=m\times n=\dim V\cdot\dim W$. \square

Proof. Consider the basis $f_1 = e_1$, $f_2 = e_1 + e_2$. We want to find f_1^{\vee} and f_2^{\vee} such that

$$f_1^{\vee}(f_1) = 1$$

 $f_2^{\vee}(f_2) = 1$

Define,

$$f_1^{\lor} = a - b = e_1^{\lor} - e_2^{\lor}$$

 $f_2^{\lor} = b = e_2^{\lor}$

Then,

$$f_1^{\vee}(f_1) = e_1^{\vee}(e_1) - e_2^{\vee}(0) = 1$$

$$f_1^{\vee}(f_2) = e_1^{\vee}(e_1) - e_2^{\vee}(e_2) = 1 - 1 = 0$$

$$f_2^{\vee}(f_1) = e_2^{\vee}(0) = 0$$

$$f_2^{\vee}(f_2) = e_2^{\vee}(e_2) = 1$$

Hence, f_1^{\vee} and f_2^{\vee} work as a dual basis.

Question 5

Proof. Let $\alpha_1, ... \alpha_d \in k$ be distinct. To show that the deltas are linearly independent we must show that,

$$a_1\delta_1(\alpha_1) + \dots + a_i\delta_i(\alpha_i) + \dots + a_d\delta_d(\alpha_i) = 0$$

However, by the properties of these polynomials, for every i, this equation takes the form:

$$0 + \dots + a_i + \dots + 0 = 0$$

Hence, for each i, $a_i=0$ which means that every coefficient is 0. This means that only the trivial solution remains and hence the vectors are linearly independent. Also, $\delta_1,...\delta_d$ span $k[X]_{< d}$ as they are d independent vectors and hence their dimension is equal to that of the space. Thus they must span it. To show that $ev_{\alpha_1},...ev_{\alpha_d}$ is a dual basis for $\delta_1,...\delta_n$, we must show that,

$$ev_{\alpha_j}(\delta_i) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

By the construction of δ ,

$$\delta_i(\alpha_i) = 1$$

 $\delta_i(\alpha_j) = 0 \text{ for } j \neq i$

Hence, $ev_{\alpha_1}, ... ev_{\alpha_d}$ is a dual basis for $\delta_1, ... \delta_n$.

(i)

Proof. Because $Fun_c(X,k) \subset Fun(X,k)$, there exists and isomorphism between Fun(X,k) and $Fun_c(X,k)$. Similarly, there exists and isomorphism between $Fun_c(X,k)$ and $Fun_c(X,k)^{\vee}$. Hence, define,

$$\lambda_X : Fun(X,k) \to Fun_c(X,k) \to Fun_c(X,k)^{\vee}$$

Since, lambda is a composition of two isomorphic functions, lambda is an isomorphism. $\hfill\Box$

(ii)

Proof. Let $\phi: X \to Y$ be a function to another set. Consider,

$$\phi^* : Fun(Y,k) \to Fun(X,k) \qquad f \mapsto f \circ \phi$$

Construct a linear map $\phi_*: Fun_c(X,k) \to Fun_c(Y,k)$ with $\phi^* = (\lambda_X)^{-1} \circ (\phi_*)^{\vee} \circ \lambda_Y$. Thus, breaking down the composition,

$$(\phi_*)^{\vee} \circ \lambda_Y = (\phi_*)^{\vee} (Fun_c(Y, k)^{\vee})$$
(1)

And we need that,

$$(\lambda_X)^{-1} \circ (\phi_*)^{\vee} (Fun_c(Y,k)^{\vee}) = Fun(X,k)$$

Hence, $(\phi_*)^{\vee}$ should take $(Fun_c(Y,k))^{\vee} \to (Fun_c(X,k))^{\vee}$. Define ϕ_* with the following function,

$$\phi_*: Fun_c(X,k) \to Fun(X,k) \xrightarrow{\phi} Fun(Y,k) \xrightarrow{\lambda_Y} Fun_c(Y,k)^{\vee} \to Fun_c(Y,k)$$

Then, $(\phi_*)^{\vee}$ takes $(Fun_c(Y,k))^{\vee} \to (Fun_c(X,k))^{\vee}$. Consequently, the equality is satisfied.

Question 7

Proof. To prove that $\iota_{v^{\vee}}$ is injective, we want to show that $\ker(\iota_{v^{\vee}}) = 0$. In other words,

$$\iota_{v^{\vee}}(\xi) = 0$$
$$[\iota_{v}(\xi)](\iota_{v}(v)) = 0$$
$$\xi(v) = 0$$

Thus, $\xi = 0$ and hence $\ker(\iota_{v^{\vee}}) = 0$. Thus, $(\iota_{v^{\vee}}) : V^{\vee} \to ((V^{\vee})^{\vee})^{\vee}$ is injective.

Proof. To show that $\dim(im(\phi)) = \dim(im(\phi^{\vee}))$. I will show that $im(\phi)^{\vee}$ is isomorphic $im(\phi^{\vee})$. Define,

$$\phi^{\vee}: W^{\vee} \to im(\phi)^{\vee} \to V^{\vee}$$

Because the second part of the map is injective, $im(\phi^{\vee})$ is isomorphic to a subspace in V^{\vee} . Also, $im(\phi)^{\vee}$ is isomorphic to this same subspace since it is included into V^{\vee} as well. Because V and V^{\vee} are both finitely dimensional, they have the same dimension. Hence,

$$dim(im(\phi)) = dim(im(\phi)^{\vee}) = dim(im(\phi^{\vee}))$$