Meta-Learning

Nikita Konodyuk

Higher School of Ecomonics

What is meta-learning

 Any technique applying machine learning to the process of learning

- Examples:
 - one/few-shot learning
 - algorithm selection based on dataset metadata
 - trainable optimizers
 - ...

What is meta-learning

- Any technique applying machine learning to the process of learning
- Examples:
 - · one/few-shot learning
 - algorithm selection based on dataset metadata
 - trainable optimizers
 - ..

Manually designed optimizers

- $w^{(t)} = w^{(t-1)} \eta_t \nabla_w L(w^{(t-1)})$
- $w^{(t)}=w^{(t-1)}-h_kig(w^{(t-1)}ig)$ where $h_k=lpha h_{k-1}+\eta_toldsymbol{
 abla}_wLig(w^{(t-1)}ig)$
- $w_j^{(t)} = w_j^{(t-1)} \frac{\eta_t}{\sqrt{G_{tj} + \varepsilon}} (\nabla_w L(w^{(t-1)}))_j$ where $G_{tj} = G_{t-1,j} + (\nabla_w L(w^{(t-1)}))_j^2$

Generic optimizer

$$w^{(t)} = w^{(t-1)} - g_t \left(\nabla_w L\left(w^{(t-1)}\right) \right)$$

Learning to learn by gradient descent by gradient descent

Optimizer's loss

- $\mathcal{L}(\cdot)$: optimizer's loss function
- ϕ : optimizer's parameters
- $L(\cdot)$: optimizee's loss function
- w^* : optimizee's final parameters

$$\mathcal{L}(\phi) = \mathbb{E}[L(w^*)]$$

Optimizer's loss

- $\mathcal{L}(\cdot)$: optimizer's loss function
- ϕ : optimizer's parameters
- $L(\cdot)$: optimizee's loss function
- w^* : optimizee's final parameters

$$\mathcal{L}(\phi) = \mathbb{E}[L(w^*)] \quad \mathcal{L}(\phi) = \mathbb{E}\left[\sum_{t=0}^T L(w^{(t)})\right]$$

Computational graph

Scaling issues

 Number of optimizer's parameters grows too fast if RNN is fully-connected

Scaling issues

- Number of optimizer's parameters grows too fast if RNN is fully-connected
- Need to reduce the growth speed

Scaling issues

 Number of optimizer's parameters grows too fast if RNN is fully-connected

- Need to reduce the growth speed
- Solution: use per-coordinate RNN

Coordinatewise LSTM

9

Benchmarks: MNIST

Benchmarks: CIFAR

Approach drawbacks

• Too many parameters

MAML/FOMAML/Reptile

- Do not increase the number of parameters
- Can be applied to any model optimized by gradient descent

MAML/FOMAML/Reptile

- Do not increase the number of parameters
- Can be applied to any model optimized by gradient descent
- Try to find an optimal initial point for gradient descent

MAML/FOMAML/Reptile

- Learning —optimizing the initial point
- Adaptation —gradient descent from the learned initial point for a particular task

Example: one/few-shot learning

• Dataset of tasks:

Parameter space

Task #1: birds

Task #2: wild animals

Meta-learning by gradient descent

Model-agnostic Meta Learning (MAML)

```
1: w \leftarrow \text{init}
2 \cdot \text{ for } batch \text{ of } tasks \text{ do}
           for task \in batch do
                  \mathcal{D}_{train}, \mathcal{D}_{test} \leftarrow \mathsf{sample}(task)
4:
                  w_{new} \leftarrow w - \nabla_w L(w, \mathcal{D}_{train})
5:
                  grad \leftarrow grad + \nabla_w L(w_{new}, \mathcal{D}_{test})
6:
           end for
7:
8:
           w \leftarrow w - \alpha \cdot qrad
9: end for
```

MAML: Intuition

MAML: 2nd derivative intuition

Why can't we just step by antigradient?

First-order MAML (FOMAML)

```
1: w \leftarrow \mathsf{init}
 2. for batch of tasks do
           for task \in batch do
                 \mathcal{D}_{train}, \mathcal{D}_{test} \leftarrow \mathsf{sample}(task)
 4:
 5:
                 w_{new} \leftarrow w
                 for i=1 \to K do
 6:
                       w_{new} \leftarrow w_{new} - \nabla_{w} L(w_{new}, \mathcal{D}_{train})
 7:
                 end for
 8:
                 grad \leftarrow grad + \nabla_w \quad L(w_{new}, \mathcal{D}_{test})
 9:
           end for
10:
          w \leftarrow w - \alpha \cdot qrad
11:
12: end for
```

Reptile

```
1: w \leftarrow \mathsf{init}
 2. for i=1 \rightarrow N do
           task \leftarrow \mathsf{choice}(tasks)
 3:
 4:
          w_{new} \leftarrow w
        for j = 1 \rightarrow K do
 5:
                 \mathcal{D} \leftarrow \mathsf{sample}(task)
 6:
                 w_{new} \leftarrow w_{new} - \nabla_w L(w, \mathcal{D})
 7:
           end for
 8:
           w \leftarrow w - \alpha \cdot (w_{new} - w)
 9:
10: end for
```

FOMAML vs Reptile

Benchmarks: MAML on Omniglot

	5-way Accuracy		20-way Accuracy	
Omniglot	1-shot	5-shot	1-shot	5-shot
MANN, no conv	82.8%	94.9%	_	_
MAML, no conv (ours)	$89.7 \pm 1.1\%$	$97.5 \pm 0.6\%$	-	_
Siamese nets	97.3%	98.4%	88.2%	97.0%
matching nets	98.1%	98.9%	93.8%	98.5%
neural statistician	98.1%	99.5%	93.2%	98.1%
memory mod.	98.4%	99.6%	95.0%	98.6%
MAML (ours)	$98.7 \pm 0.4\%$	$99.9 \pm 0.1\%$	$95.8 \pm 0.3\%$	$98.9 \pm 0.2\%$

MAML/FOMAML on MiniImagenet

	5-way Accuracy		
Minilmagenet	1-shot	5-shot	
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$	
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$	
matching nets	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$	
meta-learner LSTM	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$	
MAML, first order approx. (ours)	$48.07 \pm 1.75\%$	$63.15 \pm 0.91\%$	
MAML (ours)	${\bf 48.70 \pm 1.84\%}$	${\bf 63.11 \pm 0.92\%}$	

MAML/FOMAML/Reptile on Omniglot

Algorithm	1-shot 5-way	5-shot 5-way	1-shot 20-way	5-shot 20-way
MAML + Transduction	$98.7 \pm 0.4\%$	$99.9 \pm 0.1\%$	$95.8 \pm 0.3\%$	$98.9 \pm 0.2\%$
FOMAML + Transduction	$98.3 \pm 0.5\%$	$99.2 \pm 0.2\%$	$89.4 \pm 0.5\%$	$97.9 \pm 0.1\%$
Reptile	$95.39 \pm 0.09\%$	$98.90 \pm 0.10\%$	$88.14 \pm 0.15\%$	$96.65 \pm 0.33\%$
Reptile + Transduction	$97.68 \pm 0.04\%$	$99.48 \pm 0.06\%$	$89.43 \pm 0.14\%$	$97.12 \pm 0.32\%$

MAML/FOMAML/Reptile on MiniImagenet

Algorithm	1-shot 5-way	5-shot 5-way
MAML + Transduction	$48.70 \pm 1.84\%$	$63.11 \pm 0.92\%$
FOMAML + Transduction	$48.07 \pm 1.75\%$	$63.15 \pm 0.91\%$
Reptile	$47.07 \pm 0.26\%$	$62.74 \pm 0.37\%$
Reptile + Transduction	$49.97 \pm 0.32\%$	$65.99 \pm 0.58\%$

Further reading

- Reptile Playground
- Learning to learn by GD by GD
- MAML
- Reptile