可测函数用连续函数来逼近

luojunxun

2023 年 4 月 24 日

Theorem 3.3.1: $\{f_n\}_{n=1}^{\infty}$ 定义在 F $\overset{compact}{\subset}$ $R^n, f_n \in C(F)$,若 f_n 一致收敛到 f,那么 $f \in C(F)$ Theorem 3.3.2(Egoroff):f 和 f_n 都是测度有限的集合 D 上的几乎处处有限 (f_n) 有限是说 $\forall x, f(x) < \infty$) 的可测函数, 若 f_n 在 D 上几乎处处收敛到 f_n 则 $\forall \epsilon > 0, \exists F \overset{closed}{\subset} D, s.t.$ m(D-1)F) $< \epsilon$ 且, f_n 在 F 上一致收敛到 f

有限: 有界一定有限, 有限不一定有界, 例如 f(x) = 1/x, 在 (0,1) 有限但无界

Lemma 3.3.1:
$$F \stackrel{closed}{\subset} R, f \in C(F)$$
,则 f 可开拓成 $f^* \in C(R)$ & $\sup_{x \in R} |f^*(x)| = \sup_{x \in R} |f(x)|$

$$f(x) = \int_{x \in R} |f(x)| = \int_{x \in R} |f$$

 $f^* \in C(R)$ 是 f 的开拓

Lemma 3.3.2: 设 f 是可测集 D 上的简单函数,则 $\forall \epsilon > 0, \exists f^* \in C(D), s.t.m(\{f \neq f^*\}) < \epsilon$ Theorem 3.3.3(Lusin): 设 f 是可测集 D 上几乎处处有限的可测函数, 则 $\forall \epsilon > 0, \exists f^* \in \mathbb{R}$ $C(D), s.t.m(\{f \neq f^*\}) < \epsilon \ \& \ \sup_{x \in D} |f^*(x)| \le \sup_{x \in D} |f + (x)|$

推论: 设 f 是可测集 D=[a,b] 上几乎处处有限的可测函数, 则 $\forall \epsilon > 0, \exists f^* \in C(D)$ $s.t.m(\{f \neq f^*\}) < \epsilon \ \& \ \max_{x \in D} |f^*(x)| \le \sup_{x \in D} |f(x)|$