Worksheet 10

Name: Emmalee Gomez UID: U76971767

Topics

• Singular Value Decomposition

Feature Extraction

SVD finds features that are orthogonal. The Singular Values correspond to the importance of the feature or how much variance in the data it captures.

```
import numpy as np
import matplotlib.pyplot as plt

n_samples = 500
C = np.array([[0.1, 0.6], [2., .6]])
X = np.random.randn(n_samples, 2) @ C + np.array([-6, 3])
plt.scatter(X[:, 0], X[:, 1], s=10, alpha=0.8)
plt.title("Raw Data")
plt.show()
```

Raw Data


```
X = X - np.mean(X, axis=0)
plt.scatter(X[:, 0], X[:, 1], s=10, alpha=0.8)
plt.title("Mean-centered Data")
plt.show()
```

Mean-centered Data


```
u,s,vt=np.linalg.svd(X, full_matrices=False)
plt.plot(s) # only 2 singular values
plt.title("Singular Values")
plt.show()
```

Singular Values


```
scopy0 = s.copy()
scopy1 = s.copy()
scopy0[1:] = 0.0
scopy1[:1] = 0.0
approx0 = u.dot(np.diag(scopy0)).dot(vt)
approx1 = u.dot(np.diag(scopy1)).dot(vt)
plt.scatter(X[:, 0], X[:, 1], s=10, alpha=0.8)
sv1 = np.array([[-5],[5]]) @ vt[[0],:]
sv2 = np.array([[-2],[2]]) @ vt[[1],:]
plt.plot(sv1[:,0], sv1[:,1], 'g-', label="1st sing vector")
plt.plot(sv2[:,0], sv2[:,1], 'g--', label="2nd sing vector")
plt.scatter(approx0[:, 0] , approx0[:, 1], s=10, alpha=0.8,
color="red", label="data projected on 1st SV")
plt.scatter(approx1[:, 0], approx1[:, 1], s=10, alpha=0.8,
color="yellow", label="data projected on 2nd SV")
plt.axis('equal')
plt.legend()
plt.title("Mean-centered Data")
plt.show()
```

Mean-centered Data


```
# show ouput from svd is the same
orthonormal_X = u
shifted_X = u.dot(np.diag(s))
plt.axis('equal')
plt.scatter(shifted_X[:,0], shifted_X[:,1])
plt.scatter(orthonormal_X[:,0], orthonormal_X[:,1])
plt.xlabel("1st singular vector")
plt.ylabel("2nd singular vector")
plt.title("data in the new feature space")
plt.show()
```

data in the new feature space


```
import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt

boat = np.loadtxt('./boat.dat')
plt.figure()
plt.imshow(boat, cmap = cm.Greys_r)

<matplotlib.image.AxesImage at 0x7fa7d02ce8e0>
```


a) Plot the singular values of the image above (note: a gray scale image is just a matrix).

```
u,s,vt=np.linalg.svd(boat,full_matrices=False)
plt.plot(s) # only 2 singular values
plt.title("Singular Values")
plt.show()
```


Notice you can get the image back by multiplying the matrices back together:

```
boat_copy = u.dot(np.diag(s)).dot(vt)
plt.figure()
plt.imshow(boat_copy, cmap = cm.Greys_r)
<matplotlib.image.AxesImage at 0x7fa7e0f53a00>
```


b) Create a new matrix scopy which is a copy of s with all but the first singular value set to 0.

```
scopy = s.copy()
scopy[1:] = 0.0
```

c) Create an approximation of the boat image by multiplying u, scopy, and v transpose. Plot them side by side.

```
boat_app = u.dot(np.diag(scopy)).dot(vt)

plt.figure(figsize=(9,6))
plt.subplot(1,2,1)
plt.imshow(boat_app, cmap = cm.Greys_r)
plt.title('Rank 1 Boat')
plt.subplot(1,2,2)
plt.imshow(boat, cmap = cm.Greys_r)
plt.title('Rank 512 Boat')
_ = plt.subplots_adjust(wspace=0.5)
plt.show()
```


d) Repeat c) with 40 singular values instead of just 1.

```
scopy = s.copy()
scopy[40:] = 0.0

boat_app = u.dot(np.diag(s)).dot(vt)

plt.figure(figsize=(9,6))
plt.subplot(1,2,1)
plt.imshow(boat_app, cmap = cm.Greys_r)
plt.title('Rank 1 Boat')
plt.subplot(1,2,2)
plt.imshow(boat, cmap = cm.Greys_r)
plt.title('Rank 512 Boat')
_ = plt.subplots_adjust(wspace=0.5)
plt.show()
```


Why you should care

- a) By using an approximation of the data, you can improve the performance of classification tasks since:
 - 1. there is less noise interfering with classification
 - 2. no relationship between features after SVD
 - 3. the algorithm is sped up when reducing the dimension of the dataset

Below is some code to perform facial recognition on a dataset. Notice that, applied blindly, it does not perform well:

```
import numpy as np
from PIL import Image
import seaborn as sns
from sklearn.svm import SVC
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.pipeline import make pipeline
from sklearn.metrics import confusion matrix, accuracy score
from sklearn.datasets import fetch lfw people
from sklearn.ensemble import BaggingClassifier
from sklearn.model selection import GridSearchCV, train test split
sns.set()
# Get face data
faces = fetch lfw people(min faces per person=60)
# plot face data
fig, ax = plt.subplots(3, 5)
for i, axi in enumerate(ax.flat):
    axi.imshow(faces.images[i], cmap='bone')
```

```
axi.set(xticks=[], yticks=[],
            xlabel=faces.target names[faces.target[i]])
plt.show()
# split train test set
Xtrain, Xtest, ytrain, ytest = train test split(faces.data,
faces.target, random state=42)
# blindly fit svm
svc = SVC(kernel='rbf', class weight='balanced', C=5, gamma=0.001)
# fit model
model = svc.fit(Xtrain, ytrain)
yfit = model.predict(Xtest)
fig, ax = plt.subplots(6, 6)
for i, axi in enumerate(ax.flat):
    axi.imshow(Xtest[i].reshape(62, 47), cmap='bone')
    axi.set(xticks=[], yticks=[])
    axi.set ylabel(faces.target names[yfit[i]].split()[-1],
                   color='black' if yfit[i] == ytest[i] else 'red')
fig.suptitle('Predicted Names; Incorrect Labels in Red', size=14)
plt.show()
mat = confusion matrix(ytest, yfit)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False,
            xticklabels=faces.target names,
            yticklabels=faces.target names)
plt.xlabel('true label')
plt.ylabel('predicted label')
plt.show()
print("Accuracy = ", accuracy_score(ytest, yfit))
```


eorge W Blushichiro Koiz Gienorge W BushTony Blair Ariel Sharon

eorge W Blackhald Rums Gedorge W Bushorge W Bushorge W Bus

Predicted Names; Incorrect Labels in Red

Accuracy = 0.37388724035608306

By performing SVD before applying the classification tool, we can reduce the dimension of the dataset.

```
# look at singular values
_, s, _ = np.linalg.svd(Xtrain, full_matrices=False)
plt.plot(range(1,len(s)+1),s)
plt.title("Singular Values")
plt.show()

# extract principal components
pca = PCA(n_components=..., whiten=True)
svc = SVC(kernel='rbf', class_weight='balanced', C=5, gamma=0.001)
svcpca = make_pipeline(pca, svc)
model = svcpca.fit(Xtrain, ytrain)
```

```
vfit = model.predict(Xtest)
fig, ax = plt.subplots(6, 6)
for i, axi in enumerate(ax.flat):
    axi.imshow(Xtest[i].reshape(62, 47), cmap='bone')
    axi.set(xticks=[], yticks=[])
    axi.set ylabel(faces.target names[yfit[i]].split()[-1],
                   color='black' if yfit[i] == ytest[i] else 'red')
fig.suptitle('Predicted Names; Incorrect Labels in Red', size=14)
plt.show()
mat = confusion matrix(ytest, yfit)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False,
            xticklabels=faces.target_names,
            yticklabels=faces.target names)
plt.xlabel('true label')
plt.ylabel('predicted label')
plt.show()
print("Accuracy = ", accuracy_score(ytest, yfit))
```

Similar to finding k in K-means, we're trying to find the point of diminishing returns when picking the number of singular vectors (also called principal components).

b) SVD can be used for anomaly detection.

The data below consists of the number of 'Likes' during a six month period, for each of 9000 users across the 210 content categories that Facebook assigns to pages.

```
data = np.loadtxt('data/spatial_data.txt')
FBSpatial = data[:,1:]
FBSnorm = np.linalg.norm(FBSpatial,axis=1,ord=1)
plt.plot(FBSnorm)
plt.title('Number of Likes Per User')
_ = plt.xlabel('Users')
plt.show()
```


How users distribute likes across categories follows a general pattern that most users follow. This behavior can be captured using few singular vectors. And anomalous users can be easily identified.

```
u,s,vt = np.linalg.svd(FBSpatial,full matrices=False)
plt.plot(s)
= plt.title('Singular Values of Spatial Like Matrix')
plt.show()
RANK = ...
scopy = s.copy()
scopy[RANK:] = 0.
N = u @ np.diag(scopy) @ vt
0 = FBSpatial - N
Onorm = np.linalg.norm(0, axis=1)
anomSet = np.argsort(Onorm)[-30:]
# plt.plot(Onorm)
# plt.plot(anomSet, Onorm[anomSet], 'ro')
# = plt.title('Norm of Residual (rows of 0)')
# plt.show()
plt.plot(FBSnorm)
```

```
plt.plot(anomSet, FBSnorm[anomSet],'ro')
_ = plt.title('Top 30 Anomalous Users - Total Number of Likes')
plt.show()
# anomalous users
plt.figure(figsize=(9,6))
for i in range(1,10):
    ax = plt.subplot(3,3,i)
    plt.plot(FBSpatial[anomSet[i-1],:])
    plt.xlabel('FB Content Categories')
plt.subplots adjust(wspace=0.25,hspace=0.45)
= plt.suptitle('Nine Example Anomalous Users', size=20)
plt.show()
# normal users
set = np.argsort(Onorm)[0:7000]
# that have high overall volume
max = np.argsort(FBSnorm[set])[::-1]
plt.figure(figsize=(9,6))
for i in range(1,10):
    ax = plt.subplot(3,3,i)
    plt.plot(FBSpatial[set[max[i-1]],:])
    plt.xlabel('FB Content Categories')
plt.subplots adjust(wspace=0.25,hspace=0.45)
= plt.suptitle('Nine Example Normal Users', size=20)
plt.show()
```