

DEPARTAMENTO DE ENGENHARIA INFORMÁTICA FACULDADE DE CIÊNCIAS E TECNOLOGIA DA UNIVERSIDADE DE COIMBRA

Research Methods

Milestone 2 - Pre-registration of hypotheses

Miguel de Oliveira Guerreiro Luís Espírito Santo André Carvalho dos Santos

December 20, 2021

1 Introduction

We have at our disposal 4 variables:

- the total number of exams, $n \in \{x \in \mathbb{N} : 5 \le x \le 18\}$;
- the probability pair of incompatibility for each pair of exams, $p \in [0, 1]$;
- the runtime for "Code 1", $t_1 \in [0, +\infty]$;
- the runtime for "Code 2", $t_2 \in [0, +\infty]$;

Hypothesis 1 (H1). For p = 0.75 and n = 15, we achieve similar runtimes by either using Code 1 or Code 2. We use the following

$$H_0: \mu_{t_1} - \mu_{t_2} = 0$$

$$H_1: \mu_{t_1} - \mu_{t_2} \neq 0$$

Hypothesis 2 (H2). For the same problem generated with p=0, Code 1 will take consistently longer time to solve than Code 2. Let $t_1^{(1)}$, $t_1^{(2)}$, $t_1^{(3)}$... $t_1^{(n)}$ be measurements for Code 1 and $t_2^{(1)}$, $t_2^{(2)}$, $t_2^{(3)}$... $t_2^{(n)}$ measurements for Code 2. Let $d_k = t_1^{(k)} - t_2^{(k)}$,

$$H_0: \mu_d \leq 0$$

$$H_1: \mu_d > 0$$

Hypothesis 3 (H3). The linear model we computed from previously collected data is a good model for predicting the runtime of Code 2 for p=1 and given n. Our model is y(n)=-21.89+1.92n. Let $t_1^{(1)}, t_1^{(2)}, t_1^{(3)} \dots t_1^{(m)}$ be measurements for Code 2 with $n^{(1)}, n^{(2)}, n^{(3)} \dots n^{(m)}$ exams. Let $e^k = t^k - y(n^k)$ be the model error, $e^k \sim N(\mu_e, \sigma_e^2)$:

$$H_0: \mu_e = 0$$

$$H_1: \mu_e \neq 0$$