3 December 2020

Transformation

$\underline{\text{Transformation on } x}$

We simply use the natural logarithm transformation of X_j if the ratio of the largest observed value of X_j to the smallest observed of X_j is greater than 10.

Outlier & Influential observation

Outlier

The i^{th} observation is an outlier if $|t_i| > |t_{\frac{\alpha}{2n}}|$

Influential observation

Name in SAS output	Expression	Cutoff point
Student Residual	$r_i = \frac{\hat{e}_i}{\hat{\sigma}\sqrt{1 - h_{ii}}}$	$ r_i > 2$
Rstudent	$t_i = \frac{\hat{e}_i}{\hat{\sigma}_{-i}\sqrt{1 - h_{ii}}}$	$ t_i > t_{\alpha/(2n)}$
Hat Diag H	$h_{ii} = \boldsymbol{x_i}^T (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{x_i}$	$h_{ii} > 2p'/n$
Cook's D	$D_i = \left(\frac{t_i^2}{p'}\right) \left(\frac{h_{ii}}{1 - h_{ii}}\right)$	$D_i >> 1$
Dffits	$(\text{DFFITS})_i = \frac{\hat{y}_i - \hat{y}_{i,-i}}{\hat{\sigma}_{-i} \sqrt{h_{ii}}} = (\text{Rstudent})_i \left(\frac{h_{ii}}{1 - h_{ii}}\right)^{1/2}$	$>2\sqrt{p'/n}$
$(DFBETAS)_{j,i}$	$(DFBETAS)_{j,i} = \frac{\hat{\beta}_j - \hat{\beta}_{j,-i}}{\hat{\sigma}_{-i}\sqrt{c_{jj}}} = \frac{r_{j,i}}{\sqrt{r'_j r_j}} \frac{(R - \text{student})_i}{\sqrt{1 - h_{ii}}}$	$> 2/\sqrt{n}$
Cov Ratio	$(\text{COVRATIO})_i = \frac{(\hat{\sigma}_{-i})^{2p'}}{\hat{\sigma}^{2p'}} \left(\frac{1}{1 - h_{ii}}\right)$	> 1 + 3p'/n or $< 1 - 3p'/n$

$\underline{\text{Remarks}}$

- 1. If the i^{th} observation is suspected to be an influential point, fit models of y on x_1, \ldots, x_p with and without i^{th} observations. If the estimates of β_j for $j=0,1,\ldots,p$ from these two models are different significantly, then the i^{th} observation is an influential point.
- 2. If the i^{th} observation is an outlier and a high leverage point, it will be an influential point.

Multicollinearity

1. If VIF (variance inflation factor) for the j^{th} independent variable is (extremely) large, delete this variable.