PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:	ĺ
C12Q 1/00, C07K 14/00, A61K 35/00,	A2
C12N 15/00	

(11) International Publicati n Number:

WO 98/41648

(43) International Publicati n Date: 24 September 1998 (24.09.98)

(21) International Application Number:

PCT/US98/05419

(22) International Filing Date:

19 March 1998 (19.03.98)

(30) Priority Data:

60/041,057

20 March 1997 (20.03.97)

US

(71) Applicant (for all designated States except US): VARIAGEN-ICS, INC. [US/US]; One Kendall Square, Building 400, Cambridge, MA 02139-1562 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): HOUSMAN, David [US/US]; 64 Homer Street, Newton, MA 02159 (US). LEDLEY, Fred, D. [US/US]; 433 Grove Street, Needham, MA 02192 (US). STANTON, Vincent, P., Jr. [US/US]; 32 Royal Road, Belmont, MA 02178 (US).
- (74) Agents: WARBURG, Richard, J. et al.; Lyon & Lyon LLP, Suite 4700, 633 West Fifth Street, Los Angeles, CA 90071-2066 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: TARGET GENES FOR ALLELE-SPECIFIC DRUGS

(57) Abstract

This disclosure concerns genetic targets which have been found to be useful for allele specific anti-tumor therapy. The strategy for such therapy involves the steps of: (1) identification of alternative alleles of genes coding for proteins essential for cell viability or cell growth and the loss of one of these alleles in cancer cells due to loss of heterozygosity (LOH) and (2) the development of inhibitors with high specificity for the single remaining alternative allele of the essential gene retained by the tumor cell after LOH. Particular categories of appropriate target genes are described, along with specific exemplary genes within those categories and methods of using such target genes.

BNSDOCID: <WO___9841648A2_!_>

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		•
Cυ	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

232/116

DESCRIPTION

TARGET GENES FOR ALLELE-SPECIFIC DRUGS

BACKGROUND OF THE INVENTION

This invention is concerned with the field of treatment of proliferative disorders, including malignant and nonmalignant diseases, and with transplantation. Specifically, this invention is concerned with target genes for drugs that are useful for treating such diseases by providing allele-specific inhibition of essential cell functions.

The following information is provided to assist the understanding of the reader, none of that information is admitted to be prior art to the present invention.

The treatment of cancer is one of the most heavily investigated areas in biomedical research today. Although many anticancer drugs have been and continue to be 10 discovered, there remains the immense problem of developing drugs that will be specifically toxic to cancer cells without killing normal cells and causing toxic, often permanent, damage to vital organs or even death. One common measure of the clinical usefulness of any anticancer drugs is its therapeutic index: the ratio of the median lethal dose (LD₅₀) to the median effective dose (ED₅0) of the drug. 15 With some cancer therapeutics this ratio is in the range of 4-6, or even 2-4, indicating a high risk of toxic side effects to the patient. Indeed, most anticancer drugs are associated with a high incidence of adverse drug events. The poor therapeutic index of most anticancer drugs not only limits the clinical efficacy of these drugs for the treatment of cancer, but limits their usefulness for treating 20 many non-malignant, proliferative disorders.

A strategy for the development of anticancer agents having a high therapeutic

index is described in Housman, International Application PCT/US/94 08473 and Housman, INHIBITORS OF ALTERNATIVE ALLELES OF GENES ENCODING PROTEINS VITAL FOR CELL VIABILITY OR CELL GROWTH AS A BASIS FOR CANCER THERAPEUTIC AGENTS, U.S. Patent 5,702,890, issued December 30, 1997, which are hereby incorporated by reference in their entireties. As further described below, the method involves the identification of genes essential to cell growth or viability which are present in two or more allelic forms in normal somatic cells of a cancer patient and which undergo loss of heterozygosity in a cancer. Treatment of a cancer in an individual who is 10 heterozygous with an allele specific inhibitor targeted to the single allele of an essential gene which is present in a cancer will inhibit the growth of the cancer cells. In contrast, the alternative allele present in non-cancerous cells (which have not undergone loss of heterozygosity) is able to express active product which supplies the essential gene function, so that the normal cells can survive and/or 15 grow.

Cancer cells from an individual almost invariably undergo a loss of genetic material (DNA) when compared to normal cells. Frequently, this deletion of genetic material includes the loss of one of the two alleles of genes for which the normal somatic cells of the same individual are heterozygous, meaning that there are differences in the sequence of the gene on each of the parental chromosomes. The loss of one allele in the cancer cells is referred to as "loss of heterozygosity" (LOH). Recognizing that almost all, if not all, varieties of cancer undergo LOH, and that regions of DNA loss are often quite extensive, the genetic content of deleted regions in cancer cells was evaluated and it was found that genes essential for cell viability or cell growth are frequently deleted, reducing the cancer cell to only one copy. In this context, the term "deleted" refers to the loss of one of two copies of a chromosome or sub-chromosomal segment. Further investigation demonstrated that the loss of genetic material from cancer cells sometimes results

20

15

20

25

3

232/116

in the selective loss of one of two alleles of a certain essential gene at a particular locus or loci on a particular chromosome.

Based on this analysis, a therapeutic strategy for the treatment of cancer was developed, which will produce agents characterized by a high therapeutic index.

The strategy includes: (1) identification of genes that are essential (or conditionally 5 essential) for cell survival or growth; (2) identification of common alternative alleles of these genes; (3) identification of the absence of one of these alleles in cancer cells due to LOH and (4) development of specific inhibitors of the single remaining allele of the essential gene retained by the cancer cell, but not the alternative allele.

SUMMARY OF THE INVENTION

The utilization of inhibitors of alternative alleles, such as in the strategy described in Housman, supra, requires the provision of suitable target genes in order to identify such inhibitors and to implement corresponding diagnostic or therapeutic methods. Thus, as described below, the present invention identifies useful groups of genes which provide suitable target genes and further provides exemplary genes within those groups.

Additionally, the present inventors determined that LOH occurs not only in cancers, but also in non-cancerous proliferative disorders, though the location and frequency of LOH differs in different diseases, and established a method by which such non-cancerous proliferative disorders can be treated. Noncancer proliferative disorders include, for example, atherosclerotic plaques, premalignant metaplastic or dysplastic lesions, benign tumors, endometriosis, and polycystic kidney disease. In each disease, the administration of such an inhibitor would have cytotoxic or antiproliferative effects on the abnormally proliferating cells that exhibited LOH and contained only the sensitive allele of the target gene, but would not be toxic to

232/116

normal cells that contain also the alternative allele.

In addition, it was found that specific inhibitors of alternative alleles of an essential gene would be useful in managing transplantation in instances where the alleles in a donor bone marrow differ from the alleles in the recipient. For example, administration of an inhibitor of an allele that was present in a donor bone marrow but not the recipient could be used to treat graft-versus-host disease, suppressing proliferation of the donor marrow without toxicity to the recipient. Alternatively, an inhibitor of an allele that is present in the recipient but not the donor bone marrow could be used to enhance engraftment by preferentially 10 creating space in the recipient bone marrow for the graft without inhibiting proliferation of the engrafted donor marrow.

In this context, a "gene" is a sequence of DNA present in a cell that directs the expression of a "biologically active" molecule or "gene product", most commonly by transcription to produce RNA ("RNA transcript") and translation to produce protein ("protein product"). Both RNA and protein may undergo secondary modifications such as those induced by reacting with other constituents of the cell which are also recognized as gene products. The gene product is most commonly a RNA molecule or protein, or a RNA or protein that is subsequently modified by reacting with, or combining with, other constituents of the cell. Such modifications may result, for example, in the modification of proteins to form glycoproteins, lipoproteins, and phosphoproteins, or other modifications known in the art. RNA may be modified by complexing with proteins, polyadenylation, or splicing. The term "gene product" refers to any product directly resulting from transcription of a gene. In particular this includes partial, precursor, and mature 25 transcription products (i.e., RNA), and translation products with or without further processing, such as lipidation, phosphorylation, glycosylation, or combinations of such processing (i.e., polypeptides).

15

10

The term "target gene" refers to a gene where the gene, its RNA transcript, or its protein product are specifically inhibited or potentially inhibited by a drug. In references herein to genes or alleles, the term "encoding" refers to the entire gene sequence, including both coding and non-coding sequences unless clearly indicated otherwise.

The term "allele" refers to one specific form of a gene within a cell or within a population, the specific form differing from other forms of the same gene in the sequence of at least one, and frequently more than one, variant sites within the sequence of the gene. The sequences at these variant sites that differ between different alleles are termed "variances", "polymorphisms", or "mutations". The term "alternative allele", "alternative form", or "allelic form" refers to an allele that can be distinguished from other alleles by having distinct variances at at least one, and frequently more than one, variant site within the gene sequence.

It is recognized in the art that variances occur in the human genome at
approximately one in every 100-500 bases. At most variant sites there are only
two alternative variances, wherein the variances involve the substitution of one
base for another or the insertion/deletion of a short gene sequence. Within a gene
there may be several variant sites. Alternative alleles can be distinguished by the
presence of alternative variances at a single variant site, or a combination of
several different variances at different sites. In this invention, inhibitors targeted
to a specific allelic form or subset of the allelic forms of a gene can be targeted to
a specific variance in a selected variant site, or to an allele comprised of a set of
variances at different sites. In most but not all cases, the target specificity is based
on a nucleotide or amino acid change at a single variance site.

25 The term "proliferative disorder" refers to various cancers and disorders characterized by abnormal growth of somatic cells leading to an abnormal mass of

. 232/116

tissue which exhibits abnormal proliferation, and consequently, the growth of which exceeds and is uncoordinated with that of the normal tissues. The abnormal mass of cells is referred to as a "tumor", where the term tumor can include both localized cell masses and dispersed cells, The term "cancer" refers to a neoplastic growth and is synonymous with the terms "malignancy", or "malignant tumor". The treatment of cancers and the identification of anticancer agents is the concern of particularly preferred embodiments of the aspects of the present invention. Other abnormal proliferative diseases include "nonmalignant tumors", and "dysplastic" conditions including, but not limited to, leiomyomas, endometriosis, benign prostate hypertrophy, atherosclerotic plagues, and dysplastic epithelium of lung, breast, cervix, or other tissues. Drugs used in treating cancer and other non-cancer proliferative disorders commonly aim to inhibit the proliferation of cells and are commonly referred to as antiproliferative agents.

"Loss of heterozygosity", "LOH", or "allele loss" refers to the loss of one of the alleles of a gene from a cell or cell lineage previously having two alleles of that gene. Normal cells contain two copies of each gene, one inherited from each parent. When these two genes differ in their gene sequence, the cell is said to be "heterozygous". The term heterozygous indicates that a cell contains two different allelic forms of a particular gene and thus indicates that the allelic forms differ at at least one sequence variance site. When one allele is lost in a cell, that cell and its progeny cells, comprising its cell lineage, become "hemizygous" for that gene or "partially hemizygous" for a set of genes, and heterozygosity is lost. LOH occurs in all cancers and is a common characteristic of non-malignant, proliferative disorders. In general, many different genes will be affected by loss of heterozygosity in a cell which undergoes loss of heterozygosity. In many cancers 10-40% of all of the genes in the human genome (there are estimated to be 60,000-100,000 different genes in the genome) will exhibit LOH. In the context of this invention, these terms refer preferably to loss of heterozygosity of a gene

10

15

20

15

20

25

7

232/116

which has a particular sequence variance in normal somatic cells of an individual such that there is loss of heterozygosity with respect to that particular sequence variance. Also preferably, these terms refer to loss of heterozygosity of a particular sequence variance that is recognized by an inhibitor that will inhibit one allele of the gene present in normal cells of the individual, but not an alternative allele.

Preferably, loss of heterozygosity occurs before clonal or oligoclonal expansion of cells associated with a condition or disease, for example, cancer or non-cancer proliferative disorder. Cancer is a "clonal" disorder, meaning that all of the cells in the cancer or tumor are the progeny, or lineage, of a single cell which undergoes malignant transformation. Since cancer is clonal, any loss of heterozygosity or allele loss that occurs during the process of malignant transformation will be uniformly present throughout the lineage of the initial transformed cell. This results in the cancer cells uniformly and consistently having only one allelic form of the gene which is present in two allelic forms in normal cells.

Some of the non-malignant proliferative conditions that exhibit LOH are "oligoclonal", meaning that unlike cancers and most benign tumors, there are multiple, independently arising clonal populations, with discrete LOH events in each of the individual clones. The alleles subject to LOH may vary from one clone to another. Therefore treatment of these conditions preferably utilizes inhibitors of at least two allelic forms. Thus, methods relating to such disorders can utilize alternative alleles of one gene and/or allelic forms of additional genes. Certain noncancer, proliferative disorders are considered to be precursors for cancer. Such disorders progressively exhibit LOH until a single cell within the lesion caused by abnormal proliferation undergoes transformation and clonal expansion to form a cancer. Because LOH occurs in the precancerous condition,

the present invention provides a method for preventing cancer by administering drugs that are selectively toxic to cells in which LOH involving a gene that is essential for cell survival or proliferation creates a genetic difference between cancer cells and normal cells. Since certain cancers are predictably associated with a high frequency of LOH in certain locations, for example segments of chromosomes 7,8,10,11,13,16, and 18 in prostate cancer, administration of an allele-specific drug that inhibits one allele that is within such a region, in a patient who is heterozygous for alternative forms of the gene, would kill cells that undergo LOH before cancer occurs. Preferably, in the context of this invention, LOH refers to loss of an allelic form of an essential gene in cells that are involved in cancer or noncancer proliferative disorders, which has sequence variants in a population of interest, in an individual whose normal somatic cells are heterozygous for sequence variants of that gene.

8

As pointed out above, an important aspect of methods for treating cancer or noncancer proliferative disorders utilizing LOH of essential genes is the 15 identification of suitable essential genes for use as target genes. In accord with that requirement, this invention identifies certain useful groups or categories of essential genes, and provides, as examples, specific genes within those categories which are found to be suitable as targets for allele specific inhibitors, in particular for killing cancer cells or reducing the proliferation of cells in cancer or noncancer 20 proliferative disorders. Thus, the present invention provides suitable target genes and methods of utilizing those genes in allele specific or variance specific targeting. Such targets are essential genes, which can include conditionally essential genes. As further described below, suitable target genes include those 25 essential genes which encode gene products necessary for maintaining the level of a cellular constituent within the levels required for cell survival or proliferation, or which encode a gene product required for cell proliferation. If the level of activity of an essential gene product is reduced, the level of the corresponding cellular

constituent will not be properly maintained or the cell will be unable to perform the cellular functions required for cell proliferation. Confirmation that such a gene undergoes LOH in a neoplastic condition, e.g., a cancer, and that there are at least two alleles of the gene in the population that differ in one or more variant positions, indicates that the gene is a useful potential target gene in this invention for the identification of allele specific inhibitors and in other aspects of the invention.

Certain useful groups of target genes are described in which the essential genes have been grouped according to the type of essential cellular function in which the gene products are involved. Thus, the gene product of each of the individual 10 genes within each of the categories or subcategories is itself essential to the cell. In particular, the categories of genes, or cell functions shown in Table 1(in the Detailed Description below) provide appropriate target genes. Particular exemplary target genes are also identified in Tables 1 and 2 and the Examples (including a GenBank accession number (or other sequence identifier as 15 recognized by those skilled in the art) identifying the gene and providing a known sequence) which can be used for identifying allele specific inhibitors and for use in other aspects of this invention. Preferably the gene has the LOH frequency and at least one sequence variance in the gene has a heterozygosity rate in a population as indicated as preferable below, and occurs at only a single locus in the human 20 genome.

An "essential" gene or gene product is one which is crucial to cell growth or viability. The terms "essential", "vital for cell viability or growth", or "essential for cell survival and proliferation" have the same meaning. A gene is essential if inhibition of the function of such a gene or gene product will kill the cell or inhibit its growth as determined by methods known in the art. Growth inhibition can be monitored as a reduction or preferably a cessation of cell proliferation.

Essentially can be demonstrated in a variety of different ways known in the art. Examples include, among others, generation of growth conditional mutants and identification of the affected genes, replacement of active genes with inactive mutants, cell fusion gene complementation analysis (see, e.g., John Wasmuth, "Chinese Hamster Cell Protein Synthesis Mutants", Ch. 14 in Molecular Cell Genetics, Michael Gottesman, ed. Wiley, New York, 1985), and insertion of genetic suppressor elements leading to growth arrest (Pestov & Lau, 1994, Proc. Natl. Acad. Sci. USA 91:12549-12533). Other ways include the identification of conditionally lethal mutants, e.g., temperature sensitive mutants and determination of the affected gene, genetic disruption of the gene by homologous recombination 10 or other methods in organisms ranging from yeast to mice, inhibition of the gene by antisense oligonucleotides or ribozymes, and identification of the target of known cytotoxic drugs and other inhibitors. As further discussed below, the essentiality of a gene can depend on the conditions to which the cell is exposed. Thus, unless otherwise indicated, the term "essential gene" includes both 15 "generally essential genes" and "conditionally essential genes". "Generally essential genes" are those which are strictly essential for cell survival or growth, or which are essential under the conditions to which the cell is normally exposed. Typically such conditions are the normal in vivo conditions or in vitro conditions which approximately replicate those in vivo conditions. Thus, in the methods 20 described here utilizing essential genes, the method is carried out in conditions such that the gene product is required.

In connection with the determination of gene essentiality, it is generally recognized that the demonstration of essentiality of a gene in one organism is strongly suggestive that the homologous gene will be essential in another organism. This is especially true for genes which have relatively high levels of sequence conservation across a broad range of organisms. Thus, the identification of essential genes in prokaryotes or in lower eukaryotes such as yeast is indicative of

15

20

25

the identification of corresponding homologous essential genes or gene classes in higher eukaryotes such as humans. Therefore, studies of essential genes for non-human organisms provides useful information on likely human essential genes; an example is the Stanford Saccharomyces cerevisiae Database: http://genome-WWW Stanford.edu/cgr-bin/dbrun/SacchDB which provides a catalog of essential genes in yeast. It should be recognized, however, that not all essential genes from lower organisms will have recognized homologues in humans. It should also be recognized that the essential genes for a particular organism will generally not be restricted to those for which homology can be shown to essential genes in other organisms. Thus, genes may be essential in humans that are not essential in lower organisms.

In addition to generally essential genes, it is also recognized in the art that environmental factors can cause certain genes to be essential that are not essential under other conditions (including usual culture conditions). For example, certain genes involved in intermediary metabolism are not essential if the cell or organism is supplemented with high concentrations of a particular nutrient or chemical entity, but if that nutrient or chemical entity is absent or present at low levels, the gene product is essential. In another example, the administration of a drug that inhibits one or more functions within the cell can cause other functions to be essential that are not essential in the absence of the drug. In another example, subjecting a cell to harsh physical agents, such as radiation, can cause certain genes to be essential that are not essential under normal conditions. Such genes are essential under certain conditions associated with the therapy of cancer. The demonstration that such genes are present in the population in more than one allelic form and are subjected to loss of heterozygosity in cancer or noncancer proliferative disorders makes such genes targets for allele specific drugs for the treatment of such disorders.

WO 98/41648 PCT/US98/05419

12 232/116

Thus, a gene is said to be "conditionally essential" if it is essential for cell survival or proliferation in a specific environmental condition caused by the presence or absence of specific environmental constituents, pharmaceutical agents, including small molecules or biologicals, or physical factors such as radiation.

5 The term "cellular constituent" refers to chemical entities that comprise the substance of a living cell. In preferred embodiments, the cellular constituent is a protein or modified protein. Also, in preferred embodiments, the cellular constituent is an inorganic ion, an organic compound such as a lipid, carbohydrate, amino acid, organic acid, nucleoside, DNA, or RNA, or modified form of the preceding formed by the reaction of two constituents of the cell. In another embodiment, the constituent may comprise a structural element of the cell such as a membrane or cytoskeleton. In the preferred embodiment of this invention, cellular constituent refers to chemical entities, including compounds but also including simple ions, which are required for survival or proliferation of a human cell.

Certain cellular constituents of a cell are synthesized by the cell while others are not synthesized by the cell but are taken into the cell from its environment.

Within the cell, constituents engage in various reactions to form new constituents by intermediary metabolism, are modified to form new constituents, and are

preferentially compartmentalized in particular structures within the cell including, but not limited to, the nucleus, mitochondria, cytoplasm, or vesicles. Certain constituents are also specifically eliminated by the cell, or specific compartments within the cell, by degradation or excretion. In connection with cellular constituents, the term "maintaining the level" refers to maintaining the amount of the chemical entity normally associated with a specific cellular compartment or compartments and involves the action of various cellular processes, including synthesis, production, compartmentalization, transport, modification, combining

of two or more constituents, polymerization, elimination, degradation, and excretion. It is recognized in the art that the failure to maintain the level of certain cellular constituents within normal levels results in cell death, for example, cell death may result from inappropriate levels of proteins, DNA, or RNA, inappropriate levels of inorganic ions, inappropriate levels of organic compounds required for energy or other metabolic processes, or inappropriate intracellular structure. These examples are meant to be illustrative of the understanding of the

In addition to the useful functional groups of essential genes described above, the present invention also provides useful groups of essential genes which are advantageous for allele specific targeting due to the genes undergoing LOH at certain frequencies in a disorder or other conditions and/or by having at least two allelic forms of the gene which appear in the population at particularly useful frequencies.

meaning of the terms to those skilled in the art and not limiting.

- 15 Thus, it is found that essential genes which undergo LOH in at least 10% of cases of a human cancer, and which exist in at least two allelic forms in a human population are advantageous targets. Preferably, the gene undergoes LOH in at least 20% of cases of a disorder, more preferably in at least 30%, still more preferably in at least 40%, and most preferably in at least 50% of such cases.
- 20 The LOH frequencies for a large number of different genetic markers for particular proliferative disorders are known in the art, and are used as indicators of the LOH frequency for neighboring essential genes. A number of LOH markers are provided in Fig. 3 (Loss of Heterozygosity Table). In one aspect of this invention, those essential genes which are located within about 20 megabases, more preferably within about 10 megabases, and most preferably within about 5 megabases of an identified marker or tumor suppressor gene which undergoes

LOH in at least 10, 20, 30, 40, or 50% of cases of a proliferative disorder, are particularly useful as they will undergo LOH at similar frequencies as the marker gene.

The relative locations of a marker and an essential gene can also be described by genetic, rather than physical, map distances, therefore, in preferred embodiments, an essential gene of this invention is preferably within about 20 centimorgans, more preferably within about 15 centimorgans, still more preferably within about 10 centimorgans, and most preferably within about 5 centimorgans of such an LOH marker or tumor suppressor gene. In preferred embodiments, the target 10 gene is located near a reported marker which undergoes LOH at a frequency of at least 10, 20, 30, 40, or 50% for a proliferative disorder. A number of such markers and the associated chromosomal locations are provided in Fig. 3. Even more preferably, essential genes which map to a locus bracketed by two such markers are appropriate potential target genes, as the essential gene very probably will also undergo LOH at similar high frequencies. Preferably both markers 15 undergo LOH at frequencies of at least 10, 20, 30, 40, or 50% of cases of a cancer. Thus, confirmation that an essential gene, for example, a gene from one of the functional groups described above, or one of the particular exemplary genes, maps close to a marker as just described, indicates that the gene is an appropriate potential target. Identification of one or more sequence variances in 20 that gene and/or in the corresponding gene products allows screening or design of such inhibitors for potential treatment.

A useful way to determine the frequency of loss of heterozygosity for a tumor cell based on the physical position of the gene on chromosomes within the human genome has been described by Vogelstein et al., 1989, Science 244:207-211.

These authors describe a measure of allele loss termed Fractional Allele Loss (FAL) which quantifies the extent of LOH in cancer based on LOH determinations

over each informative chromosomal arm. FAL is determined by dividing the number of informative chromosomal arms which undergo LOH by the total number of informative chromosomal arms, *i.e.*, each chromosome/arm with at least one heterozygous locus in normal cells. Examples of such FAL determinations are provided by Vogelstein et al., 1989 (FAL= 0.20 in colon cancer), and Cliby et al., 1993, *Cancer Research* 53:2393-2398 (FAL= 0.17 for low grade ovarian cancers, 0.40 for high grade ovarian cancers, 0.35 for all ovarian cancers).

These data indicate that genes on the chromosomal segment or chromosomal arm that is commonly lost in a cancer or non-cancer proliferative 10 disorder are potential target genes. In preferred embodiments, the target gene is located on a chromosomal arm which is reported in the art or shown herein to contain a locus or loci which undergoes LOH at a frequency of at least 15, preferably at least 20%, still more preferably at least 25%, and most preferably at least 30, 40, or 50% in a proliferative disorder. As noted above, the frequency of 15 LOH for a chromosomal arm is often utilized in calculating an average fraction of allele loss (FAL). Thus, a high LOH frequency for an arm or portion of an arm indicates that particular genes in the relevant chromosomal region will also undergo LOH at a comparable frequency, and thus define useful target genes. Preferably the target genes are those which are located on particular chromosomal 20 arms which commonly undergo tumor-related LOH. In particular, these human chromosomal arms include 1p, 1q, 3p, 5q, 6p, 6q, 7q, 8p, 9p, 9q, 10q, 11p, 11q, 13q, 16q, 17p, 17q, 18p, 18q, and 22q. It is recognized that the LOH frequency is not uniform for all positions along an arm of a particular chromosome, however such LOH frequencies provide a strong indicator for LOH frequency at a potential 25 target gene. Thus, mapping of an essential gene to these chromosomal arms or to high frequency LOH regions on these arms indicates that the gene is a potential target. Confirmation of the LOH of the particular gene and of the presence of at

WO 98/41648 PCT/US98/05419

16 232/116

least one sequence variance, and therefore of individuals heterozygous for such variances, indicates that the gene can be used for the identification of inhibitors targeting allelic forms of the gene which have a particular variance or variances and in the other aspects of this invention.

The term "high frequency LOH chromosomal region" refers to a chromosomal region which undergoes LOH at a frequency as indicated above, and include high frequency LOH chromosomal arms (at least 15% FAL), regions within the genetic or physical map distances indicated above of a chromosomal marker or tumor suppressor gene which undergoes LOH at a frequency as indicated above (at least 10%).

In connection with the location of a potential target gene with respect to a marker or tumor suppressor gene, the term "proximity" means that the target gene is located within a genetic or physical map distance of the reference gene or marker as stated above.

15 The present invention is aimed, in part, at treating cancer or proliferative disorders of any type in which LOH of an essential gene occurs at a frequency as indicated above. For example, this includes but is not limited to cancers and noncancer proliferative disorders provided in Tables 2 and 3 and Figure 3, or otherwise described herein. Table 2 and Fig. 3 describe a number of cancers for which LOH at substantial frequencies has been described in the art. Therefore, identification of an essential gene which maps to the LOH regions for a particular proliferative disorder, as described by genetic or physical mapping or by residence on a chromosomal arm or smaller region of an arm which is shown to undergo LOH, at high frequency in a proliferative disorder, identifies a potential target gene. Identification of sequence variances in that gene, such that normal somatic cells of individuals in a population are heterozygous for a variance and thus

contain two different alleles, confirms that the gene is a potential target. The target gene, its RNA transcript or protein product can then be used as targets for allele-specific inhibitors for treating the proliferative disorder or other uses as described in the aspects of this invention.

- A further indication of useful target genes is provided by tumor-specific LOH of essential genes associated with tumor suppressor genes. LOH in certain cancers or noncancer proliferative disorders is frequently associated with specific chromosomal arms. This association is believed to be due, in many cases, to the presence of tumor suppressor genes located on those particular chromosomal arms, the loss of which eliminates the tumor suppressor function and contributes 10 to the transformation of the cell. Consequently, essential genes which map near such a tumor suppressor gene are potential target genes for this invention. Preferably, the essential gene maps within a physical or genetic map distance as described above for LOH markers. As for the above categorization aspect, the LOH for a particular gene preferably is at least 10, 20, 30, 40, or 50% for a 15 tumor, such as the cancers and types of cancers identified in Tables 2 and 3 and in Fig. 3. It should be noted that tumor suppressor genes themselves are rarely essential for cell survival or proliferation and not likely to be preferred targets for this invention.
- Another group of essential genes which are potentially useful as target genes are those which are present in the population in at least two alternative forms or alleles containing one or more sequence variations, where the alternate forms occur at frequencies such that at least 10% of a population is heterozygous (i.e., have two alternative forms of the gene), preferably so that at least 20%, more preferably at least 30%, and most preferably at least 40% are heterozygous. The term "heterozygote frequency" refers to the fraction of individuals in a population who have two alternative forms of a gene, or particular variances within a gene, in

their normal, somatic cells and are therefore heterozygous.

The term "allele frequency" refers to the fraction (or frequency of occurrence) of a specific allele as compared to all alleles in a population. It is recognized in the art that the heterozygote frequency and allele frequency are related and, for certain alleles, can be described by Hardy Weinberg equilibrium calculations. It will also be recognized that sequence variances that occur at high frequency in the population are commonly not deleterious to the health of the individuals who carry these genes and are commonly not disease genes or mutations that are associated with disease.

18

Methods for determining the heterozygote frequency or allele frequency or 10 determining the number of individuals who are heterozygous for specific variances are known in the art, including but not limited to methods such as restriction fragment length polymorphism, hybridization of sequence specific nucleic acid probes to DNA or RNA sequences which include a sequence variance site, DNA sequencing, or mass spectrometry of amplified sequence fragments containing a 15 sequence variance site. Methods that are useful for the discovery of genetic variances can also be used including, but not limited to, methods such as methods such as the SSCP technique (see Example 28), Enzymatic Mutation Detection technique (see Example 29), Denaturing Gradient Gel Electrophoresis, or sequencing. Identification of such genes which have sequence variances that are 20 common in the general population and for which 10%, 20%, 30%, or 50% of the population are heterozygous for that gene provides genes which are particularly likely to be useful target genes for allele specific inhibition in this invention. Confirmation that the gene undergoes LOH at a useful frequency in a proliferative disorder, preferably in at least 10, 20, 30, 40, or 50% of cases of such a disorder indicates that the gene is useful as a potential target for identifying allele specific inhibitors for the treatment of proliferative disorders and in other aspects of this

232/116

invention.

5

10

15

20

25

Exemplary genes described herein are shown to contain numerous sequence variances which are present in human populations. While some sequence variances and alleles are common throughout diverse human populations, it is recognized in the art that the allele frequency of different genes will vary in different populations. For example, allele frequencies have been shown to differ between populations comprised of individuals of different races, populations comprised of individuals from different countries, populations comprised of individuals from different regions, populations comprised of individuals with common ethnic background, and even populations comprised of individuals from different religions. Alleles that are common in one population, may be rare in another. While the allele frequency of any particular gene may vary in different populations, the genes that are described below are those that occur such that at least 1% or 5% of a population is heterozygous for the sequence variance, preferably so that at least 10% or 20%, more preferably at least 30%, and most preferably at least 40% are heterozygous in a specific population that may be treated with inhibitors to treat cancer or other proliferative disorder in that population. Once a specific variance is identified in a certain gene, the allele frequency in any specific population can be easily determined using methods known in the art including the use of allele-specific hybridization probes, sequencing, or specific PCR reactions.

In this regard, "population" refers to a geographically, ethnically, or culturally defined group of individuals, or a group of individuals with a particular disease or a group of individuals that have proliferative diseases that may be treated by the present invention. Thus, in most cases a population will preferably encompass at least ten thousand, one hundred thousand, one million, ten million, or more individuals, with the larger numbers being more preferable. In special

WO 98/41648 PCT/US98/05419

20 232/116

circumstances, diseases will occur with high frequency in specific geographical regions or within specific familial, racial, or cultural groups, and a relevant population may usefully be considered to be a smaller group.

In the context of this invention, an alternative allele, or other reference to an appropriate target for the inhibitors of this invention refers to a form of a gene which differs in base sequence from at least one other allele or allelic form of the same gene. Usually, though not necessarily, the allelic forms of a gene will differ by, at most, several bases and may have only a single base difference (i.e., a single sequence variance). The allelic forms, however, are ones which contain at least one sequence variance which appears in somatic cells of a population at an appreciable frequency, such that preferably at least 1%, more preferably at least 5%, still more preferably at least 10%, and most preferably at least 20% of the population are heterozygous for that specific sequence variance. This advantageously allows the convenient identification of potential patients, because an appreciable fraction of the population, and therefore also of the cancer patients will be heterozygous for sequence variances of the specific gene. In the context of this invention, different alleles need not result in different observable phenotypes under normal conditions. Preferably, a particular sequence variance produces no phenotypic effect on the physical condition of an individual having that variance until the variance is targeted by an allele specific inhibitor.

In connection with allele specific inhibitors and the methods of this invention, the terms "allelic form" or "alternative form of the target gene" or "sequence variance within the target gene" refer to either or both of the gene or a product of that gene including the RNA transcript or protein product. Thus, a particular inhibitor may act in an allele specific manner (which will often be variance specific) at any of those levels and preferably the inhibitor is targeted to a particular sequence variance of the specific allelic form.

10

15

20

10

15

As indicated above, two different allelic forms of a gene will have at least a one nucleotide difference in the nucleotide sequence of the gene. The difference can be of a variety of different types, including base substitution, single nucleotide insertion or deletion, multiple nucleotide insertion or deletion, and combinations of such differences. Thus, two allelic forms are sequence variants and will have at least one sequence variance, which refers to the sequence difference, between the allelic forms. However, there may also be more than one sequence variance between two allelic forms. The location of a sequence variance in a gene sequence is a "sequence variance site." This description applies to both the DNA and RNA sequences, and similarly applies to a polypeptide sequence encoded by the gene, differences in the amino acid sequence of the polypeptide, and the location in the polypeptide chain of the sequence differences. As a particular gene may have more than one sequence variance site, more than two allelic forms may exist in a population, for example, see Fig. 1 for exemplary target summaries showing multiple sequence variance sites.

Sequence variances can involve a difference in the sequence in which any of the four bases: adenine, guanine, thymidine (uracil in the context of RNA), or cytosine are substituted with another of the four bases or a change in the length of the sequence. Different classes of variances are recognized in the art.

- 20 "Deletions" are variances in which one or more bases are missing from the sequence. "Insertions" are variances in which one or more bases are inserted into the sequence. It will be evident that the terms deletion and insertion refer to the variance in one sequence relative to another. "Transitions" are variances that involve substitution of one purine for the other or one pyrimidine for the other.
- 25 "Transversions" are variances that involve substitution of a purine for a pyrimidine or a pyrimidine for a purine. Certain sequence variances can interfere with the normal function of the gene or its gene product and can be associated with disease; such variances are commonly referred to as mutations. Most

variances present in human populations are not associated with disease and are "normal" variants of the gene; such variances are commonly referred to as polymorphisms. In the present invention, specific variances are described from each of the classes described above in genes that are essential for cell survival or proliferation that can be the targets for allele-specific inhibitors for the treatment of cancer or noncancer proliferative disorders.

This invention provides inhibitors which are specific for at least one, but not all, allelic forms of a gene that encodes a gene product essential to cell growth or cell viability, for genes belonging to the specified categories of genes. The inhibitor may be active on the gene or gene product including the RNA transcript, protein product, or modifications thereof. Exposure to the inhibitor inhibits proliferation or kills cells which have undergone LOH of genes that are not inhibited by the drug and contain only an allelic form of the essential gene, its RNA transcript, or its protein product against which the inhibitor is targeted. Normal cells which contain two alternative alleles of the target genes, one of which is not inhibited by the specific inhibitor, are spared from the toxic effects of the inhibitor because the remaining activity of the allele which is not inhibited by the inhibitor is adequate to permit continued cell viability and growth. This differential effect of the inhibitor on cells with LOH of a targeted gene (e.g., a cancer cell) and normal cells accounts for the high therapeutic index of the inhibitors of this invention for the treatment of cancer or non-cancerous, proliferative disorders characterized by LOH. Toxicity of the inhibitor to normal cells is therefore low, compared to most currently available anticancer and antiproliferative agents.

Thus, in accord with the strategy and target genes indicated above and described in the Detailed Description of the Preferred Embodiments, in a first aspect the invention provides methods for identifying inhibitors potentially useful for treatment of a proliferative disorder, e.g., cancer. Such inhibitors are active on

15

specific allelic forms of target genes as identified herein. The method involves determining at least two allelic forms of such a gene encoding an essential gene product, and testing a potential allele specific inhibitor to determine whether the potential inhibitor is active on, e.g., inhibits expression of, at least one of the allelic forms, but not all of those forms. If the potential inhibitor inhibits only a subset of the allelic forms of the particular essential gene, then it is an allele specific inhibitor. Preferably the difference in activity of the inhibitor for different allelic forms is between allelic forms which have a sequence variance at a particular site.

In many, or even most, cases an allele specific inhibitor discriminates between two 10 allelic forms due to a particular single sequence variance between the allelic forms of the target gene. For example, ribozymes which target a single sequence variance site will preferentially cleave only one of the sequence variants for a particular single nucleotide variance. In this case, sequence variances at other sites will generally not affect the cleavage. In the Detailed Description of the 15 Invention specific examples of proteins, small molecules, and oligonucleotides providing allele specific inhibition based on single sequence variances are described. Thus, in preferred embodiments an allele specific inhibitor discriminates between two allelic forms by discriminating a single sequence variance. As previously indicated, inhibitors can be targeted to either the nucleic 20 acid or a polypeptide (where a nucleotide change results in an amino acid change). In particular embodiments, the allele specific inhibitor will recognize more than one linked sequence variances within a specific allele.

An "allele specific inhibitor" or "variance specific inhibitor" is a drug or inhibitor

25 that inhibits the activity of one alternative allele of a gene to a greater degree than at least one other alternative allele. The difference in activity is commonly determined by the dose or level of a drug required to achieve a quantitative degree

of inhibition. A commonly used measure of activity is the IC50 or concentration of the drug required to achieve a 50% reduction in the measured activity of the target gene. Preferably an allele specific inhibitor will have at least twice the activity on the target allelic form than on a non-target allelic form, more preferably at least 5 times, still more preferably at least 10 times, and still more preferably at least 50 times, and most preferably at least 100 times. This can also be expressed as the sensitivities of the different allelic forms to the inhibitor. Thus, for example, it is equivalent to state that the target allelic form is most preferably at least 100 times as sensitive to the inhibitor as a non-target allelic form. The activity of an inhibitor can be measured either in vitro or in vivo, in 10 assay systems that reconstitute the in vivo system, or in systems incorporating selected elements of the complete biological system. For use in inhibiting cells containing only the target allelic form rather than cells containing at least one nontargeted allelic form, the difference in activity is preferably sufficient to reduce the proliferation rate or survival rate of the cells having only the targeted allelic form 15 to no more than one half of the proliferation rate or survival rate of cells having at least one non-targeted allelic form. More preferably, the fraction is no more than 1/5 or 1/10, and still more preferably no more than 1/20, 1/50, 1/100, or even lower.

In a related aspect, the invention provides inhibitors potentially useful for tumor, e.g., cancer treatment, or treatment of other proliferative disorders. Such inhibitors are active on a specific allele of a gene which has at least two different alleles encoding an essential gene product in one of the target gene categories above. Such inhibitors can, for example, be identified by the above screening methods.

In a related aspect, the invention provides methods for producing inhibitors active on such specific allelic forms of belonging to one of the above categories genes by

identifying a gene encoding an essential gene product which has alternative allelic forms in a non-tumor cell and which undergoes LOH in a tumor cell, screening to identify an inhibitor which is active on at least one but less than all of the alleles of the gene, and synthesizing the inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a tumor in which tumor cells have only the allele on which the inhibitor is active.

In the context of this invention, the term "active on an allelic form" or "allele specific inhibitor" or "specific for an allelic form" indicates that the relevant inhibitor inhibits an allele having a particular sequence to a greater extent (preferably $\geq 2x$) than an allele having a sequence which differs in a particular 10 manner. Thus, for alleles for which a particular base position is identified, the inhibitor has a higher degree of inhibition when a certain base is in the specified position then when at least one different base is in that position. This means that for substitution at a particular base position, at least two of the possible allelic forms differ in sensitivity to an inhibitor. Usually, however, for a specific sequence variance site, the site will be occupied by one of only two bases. Further, if an inhibitor acts at the polypeptide level, and any of three bases may be present at a particular position in a coding sequence but only one of the substitutions results in an amino acid change, then the activity of the inhibitor would be expected to be the same for the two forms producing the same amino acid sequence but different for the form having the different amino acid sequence. Other types of examples can also occur.

The term "less active" indicates that the inhibitor will inhibit growth of or kill a cell containing only the allelic form of a gene on which the inhibitor is more active at concentrations at which it does not significantly inhibit the growth of or kill a cell containing only an allelic form on which the inhibitor is less active.

26 232/116

The term "drug" or "inhibitor" refers to a compound or molecule which, when brought into contact with a gene, its RNA transcript, or its gene product which the compound inhibits, reduces the rate of a cellular process, reduces the level of a cellular constituent, or reduces the level of activity of a cellular component or process. This description is meant to be illustrative of the understanding of the meaning of the term to those skilled in the art and not limiting. Thus, the term generally indicates that a compound has an inhibitory effect on a cell or process, as understood by those skilled in the art. Examples of inhibitory effects are a reduction in expression of a gene product, reduction in the rate of catalytic activity of an enzyme, and reduction in the rate of formation or the amount of an essential cellular component. The blocking or reduction need not be complete, in most cases, for the inhibitor to have useful activity. Thus, in the present invention, "inhibitors" are targeted to genes, their RNA transcript, or their protein product that are essential for cell viability or proliferation. Such inhibitors would have the effect of inhibiting essential functions, leading to loss of cell viability or inhibition of cell proliferation. In preferred embodiments, such inhibitors cause cell death or stop cell proliferation. In preferred embodiments of this invention, inhibitors specifically include a molecule or compound capable of inhibiting one or more, but not all, alleles of genes, their RNA transcript, or their protein product that are essential for cell survival or proliferation. The terms "inhibitor of a gene" or "inhibitor of an allele" as used herein include inhibitors acting on the level of the gene, its gene product, its RNA transcript, its protein product, or modifications thereof and is explicitly not limited to those inhibitors or drugs that work on the gene sequence itself.

25 Several types of inhibitors are generally recognized in the art. A "competitive" inhibitor is one that binds to the same site on the gene, its RNA transcript or gene product as a natural substrate or cofactor that is required for the action of the gene or gene product, and competitively prevents the binding of that substrate. An

10

15

"allosteric" inhibitor is one that binds to a gene or gene product and alters the activity of the gene or gene product without preventing binding of a substrate or cofactor. Inhibition can also involve reducing the amount of the gene, RNA transcript, or its protein product, and thus the total amount of activity from the gene in the cell. Such inhibition can occur by action at any of a large number of different process points, including for example by inhibiting transcription or translation, or by inducing the elimination of the gene, its RNA transcript, or its protein product where elimination may involve either degradation of the target or egress or export from the compartment in which it is active and the process of excretion or export. Inhibition can also be achieved by modifying the structure of the target, interfering with secondary modifications, or interfering with cofactors or other ancillary components which are required for its activity. Inhibitors can be comprised of small molecules or polymeric organic compounds including oligopeptides or oligonucleotides.

The term "active on a gene" or "targeted to a gene" indicates that an inhibitor exerts its inhibitory effect in a manner which is preferentially linked with the characteristic properties of a gene, its RNA transcript or its gene product. Such properties include, for example, the nucleotide sequence of the gene or transcribed RNA, the amino acid sequence or post-translational modifications of the protein product, the structural conformation of a protein, or the configuration of a protein or RNA with other cellular constituents (RNA, protein, cofactors, substrates, etc.) required for activity. Thus, in general these terms indicate that the inhibitor acts on the gene, its RNA transcript, its protein product, its gene product, or modifications thereof, or on a reaction or reaction pathway necessarily involving such a gene product to a greater extent than on genes or gene products generally.

A "reduction of the level of activity" of a gene product or allele product refers to a decrease in the functional activity provided by that product. This can be due to WO 98/41648 PCT/US98/05419

28 232/116

any of a variety of direct causes, including for example, a reduction in the amount of a biologically active molecule present, a change in the structure or modifications of normally active molecules to produce inactive or less active molecules, blockage of a reaction in which the product participates, and blockage of a reaction pathway in which the product necessarily participates.

In another related aspect the invention provides methods for treating a patient suffering from a proliferative disorder in which an essential gene from one of the above categories has undergone loss of heterozygosity. The method involves administering a therapeutic amount of an allele specific inhibitor of such an essential gene to a patient whose normal somatic cells are heterozygous for that gene but whose tumor cells contain only a single allelic form of the gene. The inhibitor is active on the specific allele of the gene present in the tumor cells.

A "therapeutic effect" results, to some extent, in a measurable response in the treated disease or condition. Thus, a therapeutic effect can include a cure, or a lessening of the growth rate or size of a lesion such as a tumor, or an increase in the survival time of treated patients compared to controls, among other possible effects.

The term "therapeutic amount" means an amount which, when administered to a mammal, e.g., a human, suffering from a disease or condition, produces a therapeutic effect.

In preferred embodiments of this treatment method, the method also involves determining whether the normal cells of the patient are heterozygous for the particular essential gene and determining whether tumor cells of the patient contain only a single allelic form of that gene. The determining may be performed on a variety of normal cells, such as blood or normal tissue, and on tumor cells.

20

25

15

20

Either or both of the normal cells and tumor cells may be cultured prior to the determination. The determination may also be carried out using cells retrieved from a frozen or preserved tissue specimen, e.g., from pathological specimens of a patient's tumor and/or normal tissue preserved in a pathology laboratory. Also, the determining may be performed using a variety of techniques, which may, for example include one of more of: hybridization with an allele specific oligonucleotide probe, hybridization to a gridded set of oligonucleotides, restriction fragment length polymorphism, denaturing gradient gel electrophoresis, heteroduplex analysis, single strand conformation polymorphism, ligase chain reaction, nucleotide sequencing, primer extension, dye quenching, sequence specific enzymatic or chemical cleavage, mass spectroscopy, and other methods known in the art.

In a related aspect, the invention provides a method for preventing the development of cancer. The method involves administering to a patient having a precancerous condition or an early stage cancer or cancers an allele specific inhibitor targeted to an allele of an essential gene for which the normal somatic cells of the patient are heterozygous and which has undergone LOH in cells involved in the precancerous condition. In a case where the cells of the precancerous condition are not clonal from a single cell, the method involves subsequently administering to the patient a second allele specific inhibitor in an amount sufficient to inhibit and preferably kill cells with LOH in which an allele not targeted by the first inhibitor is the only remaining allele of the gene. In most cases, the second allele specific inhibitor will target the alternative allele of the gene targeted by the first inhibitor. However, the second inhibitor can also target an allele of a second essential gene which has undergone LOH. The second gene may have undergone LOH in the same deletion that affected the first gene due to their proximity on a chromosome, though this is not essential. Additionally, in other cases, allele specific inhibition of one of the alleles of each of 3, 4, or even

more target genes can be utilized in a serial manner (where the patient is heterozygous for each targeted gene). In this case the different target genes need not be tightly linked so that LOH of the various genes does not necessarily occur together. By using the serial inhibition of an allele of each of the target genes, it is possible to inhibit and preferably kill the full population of precancerous cells in which LOH has occurred. Thus, the net effect is essentially the same as if allele specific inhibitors of each of the two alternative alleles of one essential gene had been used.

In the context of the administration of multiple allele specific inhibitors, the terms

"serial" or "subsequently" indicates that the administration of two or more
inhibitors is sufficiently temporally separated so that normal somatic cells remain
functional and are therefore able to survive and/or proliferate. Those skilled in
the art will recognize that the required time will depend on various factors, such
as clearance rate, type and extent of the effect of an inhibitor on normal cells, and
additive cellular toxicity, and that appropriate timing can be routinely determined
for particular selections of compounds.

In another related aspect, the invention provides a method for identifying a potential patient for treatment with an inhibitor active on a specific allele of an essential gene from one of the above categories. The method involves identifying a patient having a proliferative disorder characterized by LOH, e.g., a cancer, whose normal somatic cells are heterozygous for the essential gene and determining whether tumor cells in the patient contain only a single allele of the gene. Thus, if the patient is normally heterozygous and the neoplastic cells contain only a single allele of the gene, then the patient is a potential patient for treatment with the inhibitor.

With respect to identifying patients with precancerous or oligoclonal proliferative

20

diseases characterized by LOH, and selecting appropriate allele or variancespecific inhibitors for such patients, in some cases it may not be practical to obtain samples of all proliferative lesions for LOH assays.. For example, atherosclerotic plaques in the aorta cannot routinely be sampled by biopsy, and dysplastic lesions in the cervix, colon, or bronchus can be multifocal. Therefore, allele specific 5 inhibitors can be selected for such conditions based on previously established patterns of LOH for the condition, and on specific testing for heterozygosity in a given patient. Characteristic patterns of LOH involving specific chromosomes or chromosomal regions have been reported in the art (by Vogelstein's group and others) for premalignant changes in the colon, such as adenomatous polyps, polyps 10 with dysplasia and polyps with carcinoma in situ (pre-invasive cancer) (Fearon, E. and B. Vogelstein). These studies demonstrate LOH on chromosomes 5q, 17p, and 18q in the earliest lesions. Similar studies have been performed for other premalignant conditions. It will be evident to one skilled in the art that similar studies can be readily performed on other conditions characterized by LOH using 15 retrospective analysis of tissue from pathological specimens. The optimal regions for allele or variance specific targeting will be those which are affected by LOH in a high fraction of lesions and in a high fraction of patients. Preferably, at least 40% of lesions will have LOH for a specific target gene, more preferably 60, 80, or 90%, and most preferably 100%. However, it is not necessary that 100% of 20 lesions show LOH for a successful treatment by allele specific inhibitors because 2,3,4, or even more inhibitors can be used in a combined approach to target an ever higher fraction of lesions, and because substantial therapeutic benefit may be achieved by inhibiting the proliferation of less than 100% of lesions.

In a related aspect, the invention provides a method for treating a patient having a proliferative disorder, e.g., suffering from a cancer. The patient's normal somatic cells are heterozygous for an essential gene from one of the above categories, but the patient's cancer cells, or other abnormally proliferating cells,

WO 98/41648 PCT/US98/05419

32 232/116

have only a single allelic form of the gene. This method combines the identification and treatment methods described in the preceding aspects.

In another aspect, the invention provides a method for identifying a potential patient undergoing transplantation for treatment with an inhibitor active on a specific allele of an essential gene from one of the above categories. The method involves identifying a patient undergoing an allogenic transplantation in which the tissue of the donor contains at least one form of an essential gene that is different from those of the recipient. In a preferred aspect of this invention the donor or recipient is homozygous for an alternative form of an essential gene that differs from those present in the other. The term "homozygous" means that the two alleles of a gene present in somatic cells contain the same allele or alleles with identical sequence at at least one variant position that determines the activity of an allele specific drug. Such identification then allows methods of treating such patients by targeting the differing variances or allelic forms.

15 The term "allogenic" transplantation refers to transplantation of a tissue or cell fro the same species which contains different surface antigens than the recipient. In contrast, an "autologous" transplantation is one in which the patient receives their own tissues (commonly bone marrow) that contain identical surface antigens. The surface antigens are commonly those referred to as "histocompatibility" antigens or "HLA" antigens which allow the immune system to recognize the patient's own tissues from foreign tissue. In an allogenic transplant, the antigens on the donor tissue are different from those of the recipient. This can lead to an immune response in which the antigens on the transplanted tissue stimulate the patient's immune system to destroy or reject the transplanted tissue. Alternatively, in bone marrow transplantation, the antigens on the patient's normal tissue can stimulate the immune system constituted from the donor tissue to destroy the patient's normal tissues. This is termed "graft versus host disease" (GVH).

10

15

In a related aspect, the invention provides a method for treating graft versus host disease in allogenic transplantation in which an allele specific inhibitor is used to inhibit proliferation of donor cells, e.g., to inhibit stimulation of the donor immune system. In preferred embodiments, the allele specific inhibitor is selected by identifying alternative variances or allelic forms of an essential gene that are present in the donor tissues but not the recipient. Therapy with a variance or allele specific inhibitor or inhibitors that recognizes both alleles of the essential gene that are present in the donor, but not both alleles of the same gene that are present in the recipient, can be used to suppress the immune response against the patient's tissues (GVH) without toxicity to these tissues. Most commonly, the donor tissue would be homozygous for a variance in the essential gene and the recipient would be homozygous to an alternative nucleotide or amino acid at a specificity determining site of variance. However, alternative combinations can also be used which result in at least one allelic form being present in the recipient which is not present in the donor cells, for example the donor could be homozygous and the recipient could be heterozygous for different allelic forms. As in other aspects described, a plurality of target genes can also be utilized.

In another aspect, the invention provides a method for enhancing engraftment of an allogenic bone marrow transplant in which an allele specific inhibitor is used to kill or suppress the patient's own bone marrow, providing "space" for engraftment of the donor cells within the marrow cavity. In preferred embodiments, the allele specific inhibitor is selected by identifying alternative forms of an essential gene that are present in the recipient but not the donor marrow. Therapy with an allele specific (generally a variance specific) inhibitor that recognizes both forms of the essential gene that are present in the recipient, but not both forms of the same gene that are present in the recipient, can be used to suppress the patient's own marrow without toxicity to the transplanted cells. It will be recognized by those in the art that this method can be used to reduce the

WO 98/41648 PCT/US98/05419

34 232/116

frequency of chimerism and increase the rate of success in engrafting an allogenic marrow.

"Chimerism" refers to a transplantation that is incomplete, leading to the proliferation of bone marrow progenitor cells derived from both the donor and recipient. Chimerism is generally an undesirable outcome that commonly results in gradual elimination of the graft due to competition with the patient's own cells. Allele specific inhibitors can be used to treat or prevent chimerism by selectively killing or suppressing proliferation of the patient's own cells without toxicity to the donor cells.

In another aspect, the invention provides a method for treating cancer in a patient 10 receiving allogenic or autologous transplantation in which an allele specific inhibitor is used to kill or inhibit the growth of cancer cells without toxicity to the transplanted marrow. In one embodiment, in an autologous transplantation the allele specific inhibitor is selected to recognize one alternative allele of an essential 15 gene remaining in the cancer cell due to LOH in patients who are heterozygous with two different alternative forms of the essential gene in their normal cells and in the autologous bone marrow graft. Treatment with such a drug will enable continuing therapy of cancer without suppression of the transplanted marrow. In an alternative embodiment, in an allogenic transplantation, therapy with an allele 20 specific inhibitor that recognizes the one form of the essential gene that is present in cancer cells due to LOH in the recipient, but not an alternative form or forms of the same gene that are present in the recipient's normal cells and in the donor cells can be used to treat the cancer in the patient without toxicity to the transplanted cells. It will be recognized by those in the art that such therapy will enable more 25 effective cancer therapy during and after transplantation. Moreover, such therapy would preserve the function of the immune system which is an important element in effective cancer therapy.

In a related aspect, the invention can be used ex vivo during autologous transplantation to eliminate malignant cells from the transplanted marrow. The principle of autologous bone marrow transplantation is that bone marrow can be harvested from a patient prior to high dose radiation or chemotherapy that would normally be lethal to the bone marrow. Following such therapy, the patient can then be treated by reimplantation of their own marrow cells to reconstitute the bone marrow and hematopoietic functions. An important limitation of this procedure is that bone marrow harvested prior to such therapy often contains many malignant cells, and that implantation of the harvested bone marrow often results in reseeding of the patient's malignancy. Various techniques for "purging" 10 the bone marrow of such malignant cells have been described. These methods are focused on selecting "normal" bone marrow stem cells or progenitor cells that are within the harvested tissue for selective reimplantation. The present invention provides for an improved method for purging bone marrow of malignant cells using allele specific inhibitors of essential genes. The method involves identifying 15 an essential gene with only one variant form remaining in the cancer cells due to LOH in patients who are heterozygous with two different alternative forms of the essential gene in their normal cells (and in the autologous bone marrow). The patient's bone marrow is then cultivated ex vivo using methods known in the art in the presence of an allele specific inhibitor that inhibits the allele that is present in 20 the cancer cells, but not the alternative allele that is present in the heterozygous normal bone marrow. This treatment will result in killing of cancer cells within the graft, enabling selective reimplantation of normal cells. It will be recognized that one or more drugs could be used simultaneously or sequentially in this manner to achieve more efficient purging of cancer cells.

In another aspect, the present invention provides a method for sorting cells, for example for separating cancer cells from normal cells during an autologous bone marrow transplantation. The method utilizes a compound, preferably an antibody or

WO 98/41648 PCT/US98/05419

36 232/116

antibody fragment, which specifically binds to at least one but less than all the products of alleles which occur in a population of a particular gene which encodes a cell surface protein. Such a binding compound is used to bind with cells which express a targeted allele. If cancer cells from a patient who is heterozygous for that gene (having both a targeted allele and a non-targeted allele) have undergone LOH of the particular gene such that only the non-targeted allele is present in the cancer cells, then the binding compound can be used to bind to normal cells and to pull them out from a mixture of normal and cancer cells. This separation is possible because the binding compound will bind to the protein from the targeted allele of the gene expressed in the normal cells, but will not recognize and will not bind to the cancer cells as there is no product of the targeted allele present on those cells. Use of this method thus allows the isolation of normal cells, which can then be reintroduced to the marrow in an autologous transplant following anticancer treatment of the patient, thereby avoiding the problem of reintroduction of cancer cells. In this method, the targeted gene need not be an essential gene, or have any particular function. All that is needed is that the gene product be accessible or can be made accessible to the allele specific binding compound and that there be alternative allelic forms of the gene present such that the products can be distinguished by allele specific binding compounds and that the gene have undergone LOH between the normal cells and the cancer cells. However, it is also recognized that this method can also be used to separate any sets of cells which express different allelic forms of a gene where the gene products are accessible to allele specific binding compounds.

In preferred embodiments, the binding compound is immobilized, such as on a solid support, or can be caused to leave solution, such as by precipitation or by sandwich binding of the binding compound with a second binding compound, so that the bound cells are directly removed from the mixture. In other embodiments, the binding compound allows the recognition of the targeted cell, such that the cells can

5

15

be separated mechanically, for example using fluorescence activated cell sorting (FACS), or other cell sorting method as known to those skilled in the art. Also in preferred embodiments, the binding compound is an antibody or antibody fragment which retains allele specific binding. Such antibodies can be readily obtained by conventional methods as polyclonal or monoclonal antibodies after isolation of an appropriate antigen.

In another aspect, the invention provides a method for inhibiting growth of or killing a cell containing only one allelic form of a gene by contacting the cell with an inhibitor active on that allelic form. The gene has at least two sequence variants in a population, and belongs to one of the categories of essential genes described below. The inhibitor is less active on at least one other allelic form of the gene.

In preferred embodiments of the above aspects in which an allele specific inhibitor is used to inhibit a cell or to treat a patient, a plurality of different inhibitors may be used. Preferably different inhibitors target a plurality of different variances in 15 a single target gene, or target variances in different target genes, or both. In particular embodiments a plurality of inhibitors is used simultaneously, in others there is serial administration using different inhibitors or different sets of inhibitors in separate administrations, which may be performed as a single set of administrations in which each set of inhibitors is administered once, or in multiple 20 serial administrations in which each set of inhibitors is administered more than once. Such use of multiple inhibitors provides enhanced inhibition, which preferably includes killing, of the targeted cells. In addition, allele specific inhibitors as described can be used in conjunction with other treatments for diseases and conditions, including in conjunction with other chemotherapeutic agents such as other antineoplastic agents.

In a related aspect, an allele specific inhibitor can be used in conjunction with a conventional antiproliferative or chemotherapeutic agent or therapy, such therapies including radiation, immunotherapy, or surgery. In preferred embodiments the conventional therapy causes one or more genes within the cancer cell, or noncancer proliferative lesion, to be essential for cell survival that are would not be essential in the absence of said conventional therapy. For example, the treatment of cancer with radiation or alkylating agents makes efficient DNA repair essential for cell survival. In another example, depleting cancer cells of certain nutrients may make certain synthetic metabolic pathways essential. These examples are meant to be illustrative of the use of the present invention to those skilled in the art and not limiting. Further discussion and examples of the use of conditionally essential genes and their utilization in the methods of this invention are provided in the Detailed Description and the Examples.

In accord with the above aspects, in a further aspect the invention provides a pharmaceutical composition which includes at least one allele specific inhibitor. In preferred embodiments the composition includes at least one allele specific inhibitor and a pharmaceutically acceptable carrier. Such carriers are known in the art and some commonly used carriers are described in the Detailed Description below. Also in preferred embodiments the composition includes two, three, or more allele specific inhibitors, and may also include a pharmaceutically acceptable carrier. In other preferred embodiments, the composition includes at least one allele specific inhibitor and another antineoplastic agent, which need not be an allele specific inhibitor. The embodiments of this aspect may also optionally include diluents and /or other components as are commonly used in pharmaceutical compositions or formulations. In embodiments having a plurality of allele specific inhibitors, the inhibitors may target a plurality of different variances of a single target essential gene, or may target sequence variances of a plurality of different essential genes or combinations thereof.

15

20

15

20

In accord with the use of pharmaceutical compositions, the present invention also provides a packaged pharmaceutical composition comprising an allele specific inhibitor as described above, bearing a Food and Drug Administration use indication for administration to a patient suffering from a cancer or suffering from another proliferative disorder.

Determinations of essential gene heterozygosity and tumor cell LOH may be performed by a variety of methods, such as direct sequencing of known sequence variance sites and probe hybridization with variance specific probes. Thus, the invention also provides a nucleic acid probe at least 9, 12, 15 or 20 nucleotides in length, but preferably not more than 30 nucleotides, which will hybridize to a portion of a first allelic form of an essential gene in one of the above categories under specified hybridization conditions and not to a second allelic form under those hybridization conditions, the first and second allelic forms have a sequence variance within the complementary sequence. Preferably the probe is at least 12 nucleotides in length and is perfectly complementary to a portion of the first allelic form which includes a sequence variance site. The probe hybridizes under stringent hybridization conditions to the portion of the first allelic form and not to the corresponding portion of the second allelic form. This means that the probe does not bind to the second allelic form to an extent which prevents identification of the preferential specific binding to the first allelic form. The thermodynamics of the probe hybridization can be predicted to maximize the desired differential hybridization, providing optimization for probe length, sequence, structural modifications, and modifications to hybridization conditions.

The invention also provides nucleic acid probes or primers adjacent to the site of a

variance that can be used to amplify a sequence containing the variant position to
determine which variance is present at that position. Such probes or primers can
readily be designed based on the sequences provided in the corresponding database

sequence entry or otherwise determined. The method of determining the variance can involve allele specific hybridization, sequencing or analysis of the amplified fragment by mass spectroscopy, SSCP, gene sequence database analysis, capillary electrophoresis, bindase/resolvase systems, or other methods known in the art. In a preferred embodiment, the amplified sequence spans more than one variant position and the method used for determining the variances identifies which variances are present at each position and combinations of variances that are present on each allele.

In preferred embodiments of the above aspects, the specific target allelic form has 10 the characteristics as described above. Thus, for aspects in which the category of gene is specified, in preferred embodiments the gene belongs to a particular subcategory, for example, subcategories as specified in Table 1. Also in preferred embodiments, the gene is an identified target gene as listed in Table 1 or otherwise specified herein, including targeting utilizing the specified variances for exemplary genes described herein, singly or in combination in an allelic form. Also in 15 preferred embodiments, the target gene is an allelic form having characteristics as specified above, for example is a gene which has a high frequency of heterozygosity and/or occurs in a chromosomal region which undergoes LOH in a cancer at a frequency as specified above. For aspects in which the target gene has a specified LOH frequency, the LOH frequency may be provided by published 20 literature, inferred from the LOH of nearby genetic members, or independently determined, such as by the methods known in the art.

The use of conditionally essential genes for a number of applications is similar to the aspects above, but generally also involve an alteration of environment to make the gene essential and also provides additional aspects. For a conditionally essential gene, the essentiality may, but need not be absolute. Instead, in this context, the term "essential" means that the gene confers a significant advantage,

232/116

such that the growth or survival of the non-targeted cells is preferably at least 2x, more preferably 3x, 4x, 5x, 10x, or more as compared to the targeted cells.

Thus, similar to the above, the invention provides a method for identifying an inhibitor potentially useful for treatment of cancer or other proliferative disorder.

The inhibitor is active on a conditionally essential gene, and the gene is subject to loss of heterozygosity in a cancer. The method includes identifying at least two alleles of a said gene which differ at at least one sequence variance site and testing a potential allele specific inhibitor to determine whether the potential inhibitor is active on at least one but less than all of the identified alleles. If the potential inhibitor inhibits expression of at least one but less than all of the alleles or reduces the level of activity of a product of at least one but less than all of the alleles, this indicates that the potential allele specific inhibitor is, in fact such an allele-specific inhibitor inhibitor.

In preferred embodiments of this and the various aspects described below, the conditionally essential gene is one of the exemplary genes presented in the table of conditionally essential genes or in the examples.

Similar to other types of target genes described above, the invention provides inhibitors, methods for producing inhibitors, pharmaceutical compositions, methods for identifying potential patients, probes, and primers which target or recognize alleles of a conditionally essential gene or utilize inhibitors which target such genes.

The invention also provides methods for preventing the development of cancer, methods for treating a patient suffering from a cancer, and methods for inhibiting growth of a cells as described above except that the targeted cells are subjected to an altered condition such that the gene becomes essential.

15

10

15

20

25

In still another aspect, not requiring the use of allele specific inhibitors, but still utilizing information about sequence variance or allelic differences between normal somatic cells and cancer cells in a patient, the invention provides a method for selecting a patient for treatment with an antiproliferative treatment. The method includes the following steps: determining whether normal somatic cells in a potential patient are heterozygous for an essential or conditionally essential gene, where a first allelic form of the gene is more active than a second allelic form, and where a reduction in the activity of the gene in a cell increases the sensitivity of that cell to an antiproliferative treatment; and determining whether cancer cells from the patient have only the second allelic form of the gene. If the somatic cells are heterozygous and the cancer cells have only the second allelic form, this indicates that the patient is suitable for treatment with the antiproliferative treatment because the cancer cells will be more sensitive to the antiproliferative treatment. In preferred embodiments, the antiproliferative treatment is radiation or administration of a cytotoxic drug.

In a related aspect, the differences between the normal somatic cells and the cancer cells in a patient are used in a method for selecting an antiproliferative treatment for a patient suffering from a cancer. This method involves determining whether there will be a differential effect of the prospective treatment on the cancer cells as compared to the normal cells based on a differential response of the cancer cells due the presence in the cancer cells of only the less active form of a conditionally essential gene which is present in two alternative allelic forms with differing activities in the somatic cells. The method thus involves determining whether normal somatic cells in a potential patient are heterozygous for an essential or conditionally essential gene which reduces the sensitivity of cells to an antiproliferative treatment. As noted, a first allelic form of the gene is more active than a second allelic form, and a reduction in the activity of the gene in a cell increases the sensitivity of that cell to the prospective antiproliferative treatment;

and determining whether cancer cells of said patient have only the second, less active, allelic form of the gene. If these factors are present, this indicates that the proposed treatment is suitable for that patient.

In preferred embodiments of above aspects, a conventional therapy acts on a protein or other molecular target in the same pathway as the allele specific inhibitor. As an example, the antineoplastic drug hydroxyurea, which inhibits ribonucleotide reductase (RR), can be used in conjunction with an allele specific inhibitor of RR subunit M1 or M2 or another gene that encodes a product important in nucleotide synthesis. Similarly, the antiproliferative drug methotrexate inhibits the enzyme dihydrofolate reductase (DHFR), and can be used with allele specific inhibitors of 10 DHFR that would result in a differential methotrexate effect on cancer tissues compared to normal proliferating tissues. Alternatively, methotrexate can be used with allele specific inhibitors of other genes important in folate metabolism to achieve an enhanced cancer cell specificity for methotrexate. Similarly, the anticancer drug 5-fluorouracil and related compounds can be administered together 15 with an allele specific inhibitor of thymidylate synthase (TS) in a patient heterozygous for TS and with LOH at the TS gene in proliferating cells, e.g., cancer cells. Alternatively, an allele specific inhibitor of 5-FU degradation or metabolism can be administered with 5-FU. For example, the enzyme dihydropyrimidine dehydrogenase, which catalyzes the first and rate limiting step in 5-FU catabolism 20 would have the effect of potentiating 5-FU action in cancer cells due to their lesser ability to metabolically inactivate 5-FU. One skilled in the art will readily recognize that similar methods can be used with other conditionally essential genes, including specific genes listed in the table of conditionally essential genes.

25 Some conditionally essential genes occur in active and less active, or nearly inactive allelic forms. Further, some cancer patients are heterozygous for active and less active forms in their normal tissues, but due to LOH, their cancer cells contain only

232/116

the less active allelic form. As describe above, such patients can be identified by a diagnostic test of their normal cells and cancer cells. Such a test will identify which patients should be treated with a specific treatment, such as a particular drug or radiation treatment or other treatment. Such a therapy, which is not allele specific, would nonetheless have cancer specific effects due to the LOH-determined difference in the ability of the cancer cells to respond to the cytotoxic or cytostatic effects of therapy.

For example, patients with Ataxia Telangiectasia are homozygous for mutant alleles of the ATM gene. Such individuals are hypersensitive to radiation therapy or 10 radiomimetic drugs. Heterozygotes for normal and mutant ATM are normal and have been estimated to account for 0.5-1% of the North American population, but, due to an increased risk of caner, may account for up to 5% of some cancers, for example, breast cancer. The ATM gene maps to chromosome 11q23, a region frequently affected by LOH in breast and other cancers. In breast cancers arising in ATM heterozygotes in which the more active (normal) ATM allele is lost in cancer 15 tissue due to LOH, treatment with radiation or radiomimetic drugs would be differentially toxic to cancer cells. It has been shown that ATM heterozygotes are less sensitive to such treatments than ATM mutant (less active) homozygotes. Such use of an LOH diagnostic procedure to select appropriate antineoplastic therapy represents a change from the current procedures which are based solely on tissue 20 origin, grade, and stage of cancer.

In such an approach, preferably the difference in activity between more active and less active allelic forms is at least 2x, more preferably at least 3x, 4x, or 5x, and most preferably at least 6x, 10x, or even more.

25 Preferably a target conditionally essential gene is one such that at least 0.1%, 0.5%, 1% or 5%, or the higher rates as stated above, of a population is

10

15

45

232/116

heterozygous for a particular sequence variance

Additional specific genes within the categories or subcategories described which are potentially useful for allele specific therapy can be readily identified by those skilled in the art using the methods described herein and/or using information available to those familiar with cellular genetics and tumor biology. In particular such genes can be identified and/or obtained by identifying essential genes, determining whether the gene contains sequence variants in a population, determining whether the gene undergoes LOH in one or more tumors or other proliferative disorders. Genes having these characteristics can then be used for identifying allele specific inhibitors and evaluated for use in the other methods of this invention. Such procedures are routine, as is shown by the Detailed Description of the Preferred Embodiments below, including the Examples.

In preferred embodiments of the above methods and inhibitors involving particular target genes or classes or categories of genes, the inhibitor or potential inhibitor is a ribozyme which is designed to specifically cleave a particular target allelic form of a gene (i.e., a nucleotide sequence such as mRNA).

The ribozyme is designed to cleave the nucleotide (e.g., RNA) sequence at a position in the nucleotide chain of the target allelic form at or near the position of a sequence variance. Usually the ribozyme will have a binding sequence which is perfectly complementary to a target sequence surrounding the sequence variance site. Preferably, the ribozyme does not consist of only ribonucleotides, and therefore includes at least one nucleotide analog or modified linkage. In preferred embodiments the ribozyme has a hammerhead or hairpin motif, but may have other structural motifs as known to those skilled in the art..

25 The term "ribozyme" refers to a catalytic RNA molecule, including those

15

20

25

commonly referred to as hammerhead ribozymes and hairpin ribozymes, generally having an endonuclease activity, but includes catalytic RNA molecules, catalytic DNA molecules (DNAzymes), and derivatives of such molecules unless indicated to the contrary. In particular, as understood by those skilled in the art, ribozymes may incorporate a variety of nucleotide analogs, modified linkages, and other modifications.

In connection with ribozymes, "target sequence" refers to a nucleotide sequence which includes a binding site and a cleavage site for a ribozyme. For use in this invention, preferably a gene having a ribozyme target sequence exists in two allelic forms in normal somatic cells of a patient. The two allelic forms differ in nucleotide sequence within the target sequence, *i.e.*, have a sequence variance within the target sequence.

Also in connection with ribozymes, the term "specifically cleaves" means that a particular ribozyme will cleave a target sequence to a greater extent than it will cleave a different sequence. For allele specific ribozymes, this means that for two allelic forms having a sequence variance in the target sequence, preferably the ribozyme will cleave one of the allelic forms more efficiently than the other. Those skilled in the art will understand that the target discrimination can be provided by base differences within the ribozyme binding sequence of the substrate at or close to the cleavage site.

Similarly, in preferred embodiments the inhibitor or potential inhibitor is an oligonucleotide, e.g, an antisense oligonucleotide, preferably at least partially an oligodeoxyribonucleotide. The antisense oligonucleotide is complementary to a sequence which includes a sequence variance site. Usually, though not necessarily, the antisense oligonucleotide is perfectly complementary to a sequence of the target allelic form which includes a sequence variance site. The antisense

oligonucleotide preferably is at least twelve nucleotides, more preferably at least seventeen nucleotides in length. In some cases the antisense oligonucleotide may advantageously be longer, for example, at least 20, 25, or 30 nucleotides in length. Also in preferred embodiments, the oligonucleotide is no longer than 20, 25, 30, 35, 40, or 50 nucleotides The optimal length will depend on a number of factors, which may include the differences in binding free energy of the oligonucleotide to the target sequence as compared to binding to the non-target allelic form, i.e., the non-target sequence variant, or the kinetics of nucleic acid hybridization. The oligonucleotide preferably contains at least one nucleic acid analog or modified linkage. Such complementary oligonucleotides may function in various ways, and those skilled in the art will know how to design the oligonucleotide accordingly. Such functional mechanisms include, but are not limited to direct blocking of transcription of a gene by binding to DNA (e.g., high affinity antisense, including triple helix), direct blocking of translation by binding to mRNA, RNaseH mediated cleavage of RNA or other RNAsse mediated 15 cleavage, and binding-induced conformational changes which block transcription or translation or alter the half-life of mRNA. Triple-helix modes of action include the formation of a triple-helical structure between the two strands of genomic DNA and an antisense molecule, i.e., anti-gene strategy, or between an RNA molecule and an antisense oligonucleotide which loops back to contribute two of 20 the three strands of the triple helix, or between an RNA and an antisense where the RNA provides two of the three strands of the triple helix.

The term "oligonucleotide" refers to a chain molecule comprising a plurality of covalently linked nucleotides as recognized in the art. The oligonucleotide preferably has about 200 or fewer backbone units corresponding to nucleotide subunits, more preferably about 100 or fewer, still more preferably about 80 or fewer, and most preferably about 50 or fewer. An oligonucleotide may be modified to produce an oligonucleotide derivative. Unless indicted otherwise the

term "oligonucleotide" includes "oligonucleotide derivatives".

A large number of nucleic acid modifications are known in the art which may be used in the nucleic acid molecules of the present invention, thereby producing "nucleic acid derivatives" or "oligonucleotide derivatives". Such modifications can be used, for example, to enhance resistance to degradation by nucleases or to modify functional characteristics such as binding affinity. In preferred embodiments, the ribozyme, antisense oligonucleotide, or other nucleic acid molecule contains at least one modified linkage, including but not limited to phosphorothioate, phosphoramidate, methylphosphonate, morpholino-carbamate, and terminal 5'-5' or 3'-3' linkages. Also in preferred embodiments, the nucleic acid molecule contains at least one nucleotide analog. Such analogs include but are not limited to nucleotides modified at the 2' position of the ribose sugar, e.g., 2'-O-alkyl (e.g., 2'-O-methyl or 2'-methyoxyethoxy) or allyl, 2'-halo, and 2'amino substitutions, and/or on the base (e.g., C-5 propyne pyrimidines), and analogs which do not contain a purine or pyrimidine base, and includes the use of 15 nucleotide analogs at the terminal positions of a nucleic acid molecule. Preferably a 2'-O-alkyl analog is 2'-O-methyl; preferably a 2'-halo analog is 2'-F.

48

A specific embodiment of this invention is the use of hybrid oligonucleotides that contain within a linear sequence two different types of oligonucleotide modifications. In a particular embodiment, these modifications are used such that a segment of the oligonucleotide that hybridizes to the sequence variance is RNAase sensitive, but other segments are not RNAase sensitive.

Other modifications may also be used as are known in the art, such as those described in connection with antisense and triple helix in: Crooke & Bennett, 1996, Annual Rev. Pharm. and Toxicol. 36:107-129; Milligan et al., 1993, J. Med. Chem. 36:1923-1937; Reynolds et al., 1994, Proc. Nat. Acad. Sci. USA

232/116

91:12433-12437; and McShan et al., 1992, J. Biol. Chem. 267-5712-5721, which are hereby incorporated by reference. An additional modification useful for delivery of oligonucleotides is complexation of oligonucleotides with nanoparticles, as described in Schwab et al., 1994, Proc, Nat. Acad. Sci. USA 91:10460-10464. As described further below, oligonucleotides may be complexed with other components known in the art which provide protection and/or enhanced delivery for the oligonucleotides, and may be useful for either gene delivery or for delivery of non-coding oligonucleotides.

Thus, "derivatives of nucleic acid inhibitors" include modified nucleic acid molecules which may contain one or more of: one or more nucleotide analogs, including modifications in the sugar and/or the base, or modified linkages, base sequence modifications, and insertions or deletions, or combinations of the preceding. Other derivatives are also included as are known in the art.

Similarly, in preferred embodiments the inhibitor or potential inhibitor is an antibody, preferably a monoclonal antibody, which may be complexed or conjugated with one or more other components, or a fragment or derivative of such an antibody. It is recognized in the art that antibody fragments can be produced by cleavage or expression of nucleic acid sequences encoding shortened antibody molecule chains. Such fragments can be advantageously used due to their smaller size and/or by deletion of sites susceptible to cleavage. In addition, derivatives of antibodies can be produced by modification of the amino acid moieties by replacement or modification. Such modification can, for example, include addition or substitution or modification of a side chain or group. Many modifications and biological effects of such modifications are known to those skilled in the art, and may be used in derivatives of antibodies in accord with those biological effects. Such effects can include, for example, increased resistance to peptidases, modified transport characteristics, and ability to carry a ligand or other

10

15

20

functional moiety. In preferred embodiments, the antibody is a humanized antibody from a non-human animal, e.g., a humanized mouse or rabbit antibody. Many instances of monoclonal antibodies that distinguish protein differing by a single amino acid are known in the art.

- An inhibitor may also be an oligopeptide or oligopeptide derivative. Such peptides may be natural or synthetic amino acid sequences, and may have modifications as described for antibodies above. In general, an oligopeptide will be between about 3 and 50 residues in length, preferably between about 4 and 30, more preferably between about 5 and 20 residues in length.
- 10 In other embodiments, the inhibitor is a small molecule, for example, a molecule of one of the structural types used for conventional anticancer chemotherapy.
 - By "small molecule" or "low molecular weight compound" is meant a molecule having a molecular weight of equal to or less than about 5000 daltons, and more preferably equal to or less than about 2000 daltons, and still more preferably equal to or less than about 1000 daltons, and most preferably equal to or less that about 600 daltons. In other highly preferred embodiments, the small molecule is still smaller, for example less than about 500, 400, or 300 daltons. As well known in the art, such compounds may be found in compound libraries, combinatorial libraries, natural products libraries, and other similar sources, and may further be obtained by chemical modification of compounds found in those libraries, such as by a process of medicinal chemistry as understood by those skilled in the art, which can be used to produce compounds having desired pharmacological properties.
- In connection with the gene sequences or subsequences of gene sequences or primer sequences as described herein, the sequences listed under the accession

15

number are believed to be correct. However, the genes can be readily identified and the invention practiced even if one or more of the specified sequences contain a small number of sequence errors. The correct sequence can be confirmed by any of a variety of methods. For example, the sequence information provided herein and/or published information can be used to design probes for identifying 5 and isolating a corresponding mRNA. The mRNA can be reverse transcribed to provide cDNA, which can be amplified by PCR. The PCR products can then by used for sequencing by standard methods. Alternatively, cDNA or genomic DNA libraries can be screened with probes based on the disclosed or published gene sequences to identify corresponding clones. The inserts can then be sequenced as 10 above. If complete sequence accuracy is desired, such accuracy can be provided by redundant sequencing of both DNA strands. Those skilled in the art will recognize that other strategies and variations can also be used to provide the sequence or subsequence for a particular gene.

Other features and advantages of the invention will be apparent from the following description of the preferred embodiments and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows seventeen gene-specific Target Gene Summary Tables which show variances detected in some of the exemplary genes described as examples in the specification. Those genes are:

Sodium, potassium ATPase
CTP synthetase
Ribonucleotide reductase M1 subunit
Thymidylate synthase

WO 98/41648 PCT/US98/05419

52 232/116

Alanyl tRNA synthetase

Cysteinyl tRNA synthetase

Glutamyl-prolyl tRNA synthetase

Glutaminyl tRNA synthetase

5 Lysyl tRNA synthetase

Threonyl tRNA synthetase

Ribosomal protein S14

Eukaryotic initiation factor 5A

Replication protein A, 70 kD subunit

10 Replication protein A, 32 kD subunit

RNA Polymerase II, 220 kD subunit

TATA associated factor IIH

Dihydropyrimidine dehydrogenase

These tables show, in the title, the name of each gene, its chromosome location and the Varia ID number. The horizontal section of the table displays, from left 15 to right, the name of the primers used to amplify the polymorphic segment, the number of the polymorphic nucleotide (the numbering corresponds to the GenBank accession number reported in the central box under 'Sequence from:') and the two alternative sequences at the variant site. Then, under columns 1 - 36, the genotypes of 36 lymphoblastoid cell lines are given, followed by the frequency of 20 heterozygotes ('het rate'), a 'Comments' section which describes any unusual aspects of the variances, a 'Location' section which reports the location of any variances and the inferred effect on amino acid sequence, if any, and a 'Race specific heterozygosity' section which reports frequency of heterozygotes in any racial groups with particularly high heteroxygosity levels. Below the 'Genotypes 25 of 36 unrelated individuals' section the racial or ethnic identity of the subjects is shown (see legend in box at right: 'Ethnic & racial groups surveyed'). The sequence surrounding the variances is shown in the box at bottom left, with the

WO 98/41648 PCT/US98/05419

53

232/116

location of the variant base marked in bold type.

Fig. 2 is a schematic showing the practical flow of the SSCP technique as used for exemplary target genes. This flow chart, in conjunction with the description of the SSCP technique in the Detailed Description, demonstrates how sequence variances of the exemplary genes were identified. In conjunction with published descriptions of the SSCP technique, one skilled in the art can thus readily use SSCP to identify sequence variances in other genes within the scope of this invention.

Fig. 3 is a table describing the extent and distribution of loss of heterozygosity throughout the genome for a number of cancers as reported in the literature. The 10 table is divided into 41 sections, one for each fo the chromosomal arms for which there is information about LOH frequency. (There is no information for the short arm [called the p arm] of chromosomes 13, 21 or 22, all of which are very short and contain mostly repetitive DNA.) In each of the 41 sections there is a list of polymorphic loci (sites) that have been tested for LOH in one or more cancer types. 15 The loci are ordered, to the extent that present information allows, from the telomeric end of the short arm of the chromosome to the centromere (p arm tables), or from the centromere to the telomeric end of the long arm of the chromosome (q arm tables). Many chromosomes have not yet been well studied for LOH, so the absence of data on LOH in a particular cancer type on a particular chromosome arm 20 should not be construed as indicating no LOH. It may simply indicate no good LOH studies have yet been published. The Loss of Heterozygosity Table is explained in detail below.

Column 1 Chromosomes, when stained with dyes such as giemsa, have alternating
 dark and light staining bands. These bands are the basis of chromosome
 nomenclature. Many of the markers used for LOH studies have been assigned to

specific chromosome bands, or can be inferred as likely to belong to specific bands based on other information. The 'unknown' notation in this column indicates that the paper from which the data was obtained (column 7) did not provide chromosome band information. In such cases other information has generally been used to order the data, however the order of some markers remains uncertain.

Column 2 LOH studies are performed with specific DNA markers or probes (for Southern blotting) or with DNA primers (if polymerase chain reaction was used) from a specific site, or locus, on a chromosome. The name of the marker, locus or probe used to perform each LOH assay is given in the second column of the Table, under 'Marker'. In the Table the markers are listed in their likeliest order along the chromosome, from the telomere of the p arm to the centromere for the p arm tables, and from the centromere to the telomere of the q arm for the q arm tables.

Columns 3, 4 & 5 The total number of cancers evaluable for LOH at the specific marker shown in column 2 (in the paper cited in column 7) are shown in column 3, 'Total'. This is generally the number of patients that were heterozygous for the marker in their normal DNA. Column 4, 'Cases w/LOH', shows the number of patients with LOH at the DNA marker. Column 5, 'LOH Freq', is the quotient of column 4 divided by column 3, giving the fraction of patients with LOH at the indicated marker.

20 Column 6 The type of cancer studied is indicated under the heading 'Tumor Type'.
In some cases more detailed clinical information on cancer subtype or clinical stage is available in the paper cited in column 7.

Column 7 The literature citation, or 'Reference', from which the data was drawn. The references are provided in a compact form consisting of journal abbreviation (see the list of journal abbreviations below), volume and page.

232/116

Note

Studies of allele loss in benign neoplasms or in non-neoplastic conditions are not included in this table.

Journal Abbreviations for Literature Cited in the Table

5 The abbreviations used in the Tables are as follows:

AJHG = American Journal of Human Genetics

AJP = American Journal of Pathology

B = Blood

BJC = British Journal of Cancer

10 C or CA = Cancer

CCG = Cancer Cytogenetics

CGC = Cell Genetics and Cytogenetics

CL = Cancer Letters

CR = Cancer Research

15 CSurv = Cancer Surveys

EJC = European Journal of Cancer

G or GE = Genomics

GCC = Genes, Chromosomes & Cancer

GO = Gynecological Oncology

20 HG = Human Genetics

HMG = Human Molecular Genetics

IJC = International Journal of Cancer

JAMA = Journal of the American Medical Association

JJCR = Japanese Journal of Cancer Research (Gann)

25 JNCI = Journal of the National Cancer Institute

JU = Journal of Urology

PCT/US98/05419 WO 98/41648

> 232/116 56

Lan = Lancet

LI = Laboratory Investigation

N = Nature

NEJM or NEJ = New England Journal of Medicine

5 O = Oncogene

PN or PNAS = Proceedings of the National Academy of Sciences

S = Science

This data base thus identifies sites and regions of LOH associated with the particular identified cancers, including high frequency LOH chromosomal arms as 10 well as the identified smaller regions associated with the particular markers. Both as indicated in the Summary and Detailed Description, LOH information such as this identifies essential genes mapping to those LOH regions as likely potential target genes because of the high probability that an essential gene in such a region undergoes LOH at frequencies similar to the marker. Such gene identification thus further identifies particular cancers which can potentially be treated with inhibitors targeting sequence variances in those essential genes.

The database provided shows information which is contained in published references dealing with cancer LOH. Those skilled in the art will recognize however that similar information can be readily obtained from the published literature in relation to other cancers and other neoplastic disorders. Thus this table demonstrates that one skilled in the art can readily identify regions of high frequency LOH for other such disorders and cancers, and can further readily identify essential genes which are potential targets for variance specific inhibition and the treatment of the corresponding condition and in other aspects of this 25 invention.

Fig. 4 is a table summarizing the results in Fig. 3 by chromosome arm. Data for

all loci on each chromosome arm has been summed in a single statistic for LOH frequency on that chromosome arm.

Fig. 5 is a Target Variances by Field Table, which summarizes information on DNA sequence variances in selected genes from the Target Gene Table (Table 1), and is organized into groups of related genes that parallel the fields in the Target Gene Table.

- The heading at the top of each category of essential genes shows a number and a subcategory name. The number indicates which of the six principal categories of essential genes the subcategory belongs to (e.g. genes required for cell proliferation is category 1, genes required to maintain inorganic ions at levels compatible with cell growth or survival is category 2, etc.).
- Below the heading is a sentence on 'Validation' which briefly refers to some
 of the data which shows that genes in the subcategory are essential.
 Summary information on target gene variances is then listed, with five
 columns of data.
- The first column gives the Variagenics gene ID number, which serves as a cross reference to the Target Variances Table (see below), where more detailed information on variances can be found.
- The second column lists gene names. (The GenBank accession number in column 5 may be a more reliable way to identify genes.)
- The third column lists the number of variances found. These variances were detected by a variety of experimental and informatics based procedures described in the examples. Many variances were detected by two independent methods (e.g. informatics based detection and T4 endonuclease VII detection). A molecular description of the variances is provided in the Target Variances Table (see below).
- The fourth column lists the chromosome location of the target gene, if known. Knowledge of the chromosome location permits assessment of the

5

10

15

20

cancers in which LOH would be expected to affect the target gene. (See the Loss of Heterozygosity Tables for a detailed listing of LOH by chromosome region.)

- The fifth column lists the GenBank accession number of the target gene.
 (Some of the genes specified in the Table do not yet have GenBank accession numbers. For example, genes encoding several human tRNA synthetases and ribosomal subunits have not yet been cloned, although their existence can be inferred from genetic and biochemical studies and from phylogeny.
- Fig. 6 is identical to Fig. 5, except that it concerns exemplary conditionally essential genes rather than generally essential genes.
 - Fig. 7 is a Target Variances Table shows molecular details of exemplary variances identified by Variagenics in exemplary target genes. There are six columns in the Table.
- The first column gives the Variagenics gene ID number, which serves as a
 cross reference to the Target Variances by Field Table (see above), where information on gene location and GenBank accession number are provided.
 After the ID number is a decimal point and then a list of one or more integers (on successive lines), which are the (arbitrary) numbers of the specific variances identified. Between one and 13 variances were identified per target gene. Information on different target genes is separated by dashed horizontal lines.
 - The second column lists the location of the variance specifically the number
 of the nucleotide at which variation was observed. The nucleotide number
 refers to a cDNA sequence of the target gene which can be retrieved using
 the GenBank accession number provided in the Target Variances by Field
 Table.
 - The third column lists the two variant sequences identified at the specified

nucleotide. The variant nucleotides are bracketed and in bold font separated by a slash. Ten nucleotides of flanking sequence are provided on either side of the variance to localize the variant site unambiguously. (In the event of a conflict between the nucleotide number specified in column 2 and the sequence specified in column 3 the latter would rule as the correct sequence.) These variances were detected by a variety of experimental and informatics based procedures described in the examples. Many variances were detected by two independent methods (e.g. informatics based detection and T4 endonuclease VII detection).

- The fourth and fifth columns (headed '# Varia 1' and '# Varia 2') provide the number of occurrences of variance 1 and 2, respectively, where variance 1 is the first and variance 2 the second of the bracketed nucleotides in column three. In both the fourth and fifth columns there are two numbers. The first number reports the number of occurrences of the variance.
- 'Occurrences' include ESTs identified during informatics based analysis, or variances identified experimentally by analysis of human cell lines, or both. The second number, inside parentheses, reports the number of individuals in whom the occurrences were detected. An 'individual' means either a cell line (analyzed experimentally) or a cDNA library created from one individual (but from which many ESTs for the target gene may have been sequenced). Thus if the first number is 15 and the second number is 11 then there were 15 occurrences of the variance (a combination of 15 ESTs and/or 15 experimentally identified alleles) in a total of 11 cDNA libraries and/or cell
- The fifth column provides annotation on the variances, particularly concerning the location of the variant site in the cDNA and the effect of the DNA sequence variance on the predicted amino acid sequence, if any. 5'

 UT = 5' untranslated region; 3' UT = 3' untranslated region; silent = variance lies in coding region by does not affect predicted amino acid

lines.

15

20

60 232/116

sequence; ND = analysis not done; Thr -> Asn = specific amino acid substitutions, inferred from the nucleotide sequence variance, are provided. Similar information can be readily obtained for additional genes using the methods described or as known to those skilled in the art.

5 Figures 9-15 correlate with Example 31.

Fig. 9 is a bar graph showing the number of T24 human bladder cancer cells surviving 72 hours after transfection with antisense oligonucleotides. Anti-ras is an oligonucleotide known to have antiproliferative effects against T24 cells. This oligonucleotide exhibits inhibition comparable to the anti-RPA70 oligonucleotide. Anti-herpes and an oligonucleotide with a scrambled sequence are shown as controls. This experiment demonstrates that RPA70 is an essential protein.

Cells were plated in six well dishes 24 hr prior to the experiment and transfected at approximately 50-70% confluency with various phosphorothioate oligomers at 400 nM. An oligomer:lipofectin ratio of 3 ug Lipofectin/ml Optimem/100 nM Phosphorothioate oligomer was used for all transfections. Prior to transfection the cells were washed once with room temp Optimum (BRL) and then Lipofectin diluted into Optimem was added to the cells. After addition of the lipofectin the antisense oligomers were immediately added. After a five hour incubation the medium was removed from the cells and replete medium added. The cells were allowed to recover, trypsinized, and cell number was determined at 72 hr by counting with a hemocytometer. Each bar represents two different determinations of cell number for each of three triplicate samples.

Fig. 10 is a Northern Blot demonstrating specific suppression of RPA70 mRNA levels in two cell lines with opposite genotypes. RPA70 in Mia Paca II cells matches the 13085 oligomer while RPA70 in T24 cells matches the 12781

oligomer. The 13706 oligomer is a random sequence control. Cells were plated in Pl00 dishes transfected as described in figure legend 11. Twenty-four hours after the addition of the indicated oligomers, RNA was recovered from the cells by the SDS-Lysis method (Peppel, K and Baglioni, C. *Biotechniques*, Vol. 9, No. 6, pp 711-7131, 1990). For Northern Blots 5-10 ug RNA per well was loaded onto a formaldehyde gel, electrophoresed and transferred to BioRad Zeta Probe GT. After baking (30 min at 80 C in a vac oven) the blot was probed for specific mRNA using a random primed 32P-labeled cDNA specific for RPA 70.

Fig. 11 is a Northern blot showing allele-specific Suppression of RPA 70 mRNA in T24 and Mia Paca II cells. Cells were plated in P100 dishes, transfected, and RPA 70 mRNA levels measured as previously described. T24 cells contain the genotype targeted by oligomer 12781. Mia Paca II cells are homozygous for the variance targeted by oligomer 13085. 12781 is a 20 nucleotide long phosphorothioate oligomer which targets RPA70 in T24 cells. 13085 is an 18 nucleotide long phosphorothioate oligomer which targets RPA70 in Mia Paca II cells. The lower half of the figure shows the EtBr stained gel of total RNA probed by Northern Blot.

Fig. 12 is two graphs showing that the proliferation of two cell lines homozygous for different variant forms of the RPA70 gene is inhibited to a greater degree by matched oligonucleotides than by oligomers having a single base mismatch. Cell proliferation was measured by BrdU incorporation in cellular DNA. Transfections were performed on consecutive days and BrdU incorporation measured 24 hours after the last transfection (see figure legend 9). Oligomer 12781 targets the variance contained in A549 cells and is mismatched relative to the genotype of Mia Paca II cells. Oligomer 13085 targets the variance contained in Mia Paca II cells and is mismatched relative to the genotype of A549 cells.

232/116 62

Fig. 13 is a graph showing Inhibition of BrdU incorporation in A549 cells by antisense oligonucleotides against the RPA 70 gene. Cells were transfected, as described previously, with a matched oligonucleotide (12781) or an oligonucleotide with one mismatch (13085). The oligonucleotide concentration was 400 nM with specific oligomer diluted with a random oligonucleotide. Cell proliferation was measured by BrdU incorporation after two transfections. Twenty-four hours after the first transfection the cells were transfected identically. Twelve hours after the second transfection BrdU was added to the cells and BrdU incorporation was assayed after a 12 hour incubation. BrdU incorporation was measured by ELISA (Boehringer Mannheim) with the following changes: Volumes 10 were increased to assay BrdU incorporation in 6 well dishes. 1000 μl of fix, 750 ul of antibody, and 1000 ul of substrate. A portion of the samples were transferred to a 96 well dish (in triplicate) and read at 405 nm on a plate reader.

- Fig. 14 is a graph showing antiproliferative/cytopathic effects of antisense oligonucleotides against the RPA70 gene in A549 cells. Cells were transfected on 15 three consecutive days with a matched oligonucleotide (12781) or an oligonucleotide containing a one base mismatch (13085). Following the last transfection the cells were allowed to recover three days. Cell number was quantified by Sulforhodamine B staining (Molecular Probes). Volumes were increased to accommodate the assay in 6 well dishes. Fixation 1.25 ml, stain 750 20 ul, solubilizer 1 ml. A portion of the samples were then transferred to a 96 well dish in triplicate and quantified by plate reader at 565 nm. All transfections were done with 400 nM oligomer by dilution of the specific oligomer with a random oligonucleotide to control for nonspecific oligonucleotide effects.
- Fig. 15 is a graph showing antiproliferative/cytopathic effects in Mia Paca II cells 25 by antisense oligonucleotides against the RPA70 gene. Cells were transfected with a matched oligonucleotide (13085) or an oligomer with a one base mismatch

(12781). Methods were identical to those described in figure legend 16.

Fig. 16 is a Northern blot showing suppression of Ribonucleotide Reductase (RR) mRNA by antisense oligomers. Mia Paca II cells were transfected and 24 hours later RR mRNA was measured by Northern Blot (for methods see figure legend
5 11). All oligomers have a phosphorothioate backbone throughout and are without modification. The lower half of each panel is a EtBr stained gel of the total RNA probed. Oligomer 13704 is a scrambled random control oligomer. RR2410GA targets the variance contained in Mia Paca II cells. Oligomer RR2410AG has two mismatches compared to the genotype of Mia Paca II cells. Oligomers RR1030 and RR1031 are negative control oligomers. They are targeted to a region of RR which is not effective for mRNA down-regulation.

Fig. 17 shows a Northern blot which is a performed similarly to the experiments in Fig. 16. MDA-MB 468 cells were transfected and the level of RR mRNA measured after 24 hours. 13706 is a scrambled random control oligomer.

2410AG targets the two variances contained in the MDA-MB 468 cells. Oligomer 2410GA contains two mismatches relative to the genotype of MDA-MB 468 cells. Both 2410AG and 2410GA are identical to RR2410AG and RR2410GA, respectively.

Fig. 18 shows specific suppression of EPRS mRNA using hybrid oligomers. The sequences at the top provide the structures of the oligonucleotides. The graph at the bottom shows the relative specificity of oligonucleotides.

Fig. 19 is two blots showing specific suppression of EPRS mRNA using hybrid oligomers. A549 cells were transfected with the indicated concentrations of the hybrid oligomers (for structure see text). 14977 targets the two variances contained in A549 cells. 14971 contains two mismatches relative to the genotype

64 232/116

of A549 cells.

Fig. 20 is a graph showing inhibition of mutant *ras* using antisense oligonucleotides specific for the mutant form, based on information available in Schwab et al., 1994, PNAS 91:10460-10464.

15

65

232/116

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. Introduction

All normal human cells have two copies of each autosomal chromosome (chromosomes 1 through 22); one copy is inherited from each parent. Each chromosome pair thus contains two alleles for any gene. If a single allele of any gene pair is defective or absent, the surviving allele will continue to produce the encoded gene product. Generally, one allele of a gene pair is sufficient to carry on the normal functions of the cell. (Dominant genetic disorders in which mutations in one allele are sufficient to cause disease are generally those in which the mutation, or gene product harboring the mutation, has a toxic effect on the cell.)

Because humans are genetically heterogeneous, many of the paired alleles of genes of the somatic cells of an individual differ from one another in their gene sequence. Typically both alleles are transcribed and ultimately translated into proteins used by the cell. In most cases, the sequence differences between two allelic forms of a gene in an individual are small, usually differing by only one or a few base differences in sequence. The sequence differences may occur at a single variance site, or may constitute more than one variance site, *i.e.*, two allelic forms in an individual may have more than one sequence variance distinguishing them.

When a cell is heterozygous, *i.e.*, has at least one sequence variance, within the transcribed sequence for a particular gene, each allele may encode a different mRNA, *i.e.*, the mRNAs differ in base sequence. For base changes which are located within coding sequences, the effect of the nucleotide difference depends on whether the base change changes the amino acid which is encoded by the relevant codon. Many base changes do not change the coding sequence because they lie in untranslated regions of the mRNA, outside of the mRNA in introns or intergenic sequences, or in a "wobble" position of a codon which changes the codon, but not

the amino acid it encodes. As a result, the mRNAs encoded by two alleles may translate into the same protein or into forms of the same protein differing by one or more amino acids. An important aspect of the present invention is that many sequence variances that are targets for cancer therapy by the methods described here are not mutations, are not functionally related to cancer, and may not, under normal environmental conditions, induce any function difference between the allelic forms of the gene or protein. Only in the circumstances described in this invention, namely genes that encode essential functions, the presence of variances with a sufficient population frequency, a sufficient frequency of LOH in cancers, do these genes, and the variant sequences within these genes, have utility for the therapy of cancer and other disorders through the discovery of variance-specific inhibitors.

Gene targets for a variance-specific inhibition strategy in this invention satisfy three criteria:

- 1. The target gene encodes a gene product, e.g., a RNA transcript or protein product essential for the growth or survival of cells.
 - 2. The target gene is located within a chromosome region frequently deleted in cancer cells or cells of a noncancer, proliferative disorder.
 - 3. The target gene exists in two alternative forms in the normal somatic cells of a patient having a cancer or noncancer proliferative disorder.
- The allele specific therapy strategy for cancer and noncancer proliferative disorders utilizes the genetic differences between normal cells and neoplastic cells. Thus, the first step in the therapeutic strategy is identifying genes which code for proteins or other factors essential to cell survival and growth that are lost through LOH in tumor cells. Since many genes have been mapped to specific chromosomal regions, this identification can be readily performed by identifying such essential genes which are located in the chromosomal regions characteristically or frequently deleted in

10

15

20

232/116

different forms of human cancer or other tumors. Table 2, from the review conducted by Lasko et al., 1991, Ann. Rev. Genetics 25:281-314, summarizes results of numerous studies determining loss of heterozygosity in tumors, identifying specific tumor types. A much larger summary of tumor-related LOH is provided in Fig. 5.

Once regions of LOH are identified in the chromosomes of a patient's tumor cells, genes which map to the deleted chromosomal segments and are known to code for gene products essential for cell growth or survival are tested for DNA sequence variances. The identification of a greater number of LOH sites affords a broader selection of target genes coding for essential proteins or other gene products and therefore of sequence variance sites for targeting.

Essential genes which have sequence variants in a population provide a set of target which are advantageous due to the presence of many patients heterozygous for a particular gene, so that the gene will provide a target in cases where the gene has undergone tumor-related LOH.

In accord with the description of target gene categories above, most advantageously a target gene is an essential gene which undergoes LOH in a tumor at a high frequency as described above and which has alternative allelic forms in a population at frequencies as described above. Such genes will provide many potentially treatable patients due to the conjunction of LOH and heterozygosity frequencies.

The most preferred target genes are those essential genes which have both a preferable rate of heterozygosity and a preferable frequency of LOH in a tumor or other proliferative condition in a population of interest. Also preferable is that the gene undergoes LOH in a plurality of different tumors or other conditions.

68 232/116

II. Essential Cellular Function and Essential Genes

As indicated in the Summary above, the invention targets specific allelic forms of essential genes, which are also termed genes essential for cell growth or viability. As used herein the term, "genes which code for a protein essential for the growth or survival or cells" or "genes which code for proteins or factors required for cell viability" or "essential genes" is meant to include those genes that express gene products (e.g., proteins) required for cell survival as well as those genes required for cell growth in actively dividing cell populations. These genes encode proteins which can be involved in any vital cell. An additional factor which applies to genes identified by any of the approaches described above is: a target gene or protein should be encoded by a single locus in man.

A large number of references have identified essential genes which constitute actual or potential targets for allele specific inhibition. The identification of essential genes can be approached in various ways.

- What are the essential functions each cell must perform to sustain life, and what are the proteins responsible for performing those functions? This is a top down approach for identifying candidate genes whose essential role is then proven experimentally (see below). This approach enables essential genes to be categorized according to the essential cellular process or function which the gene product provides or of which the gene product is a necessary part. Table 1 shows such categories of essential genes and gene functions. In addition, the chromosomal location, where known, and gene product of certain example genes is provided. Thus, the categories of functions shown provide potential targets for the methods of this invention.
- 25 2. What genes have been proven essential for cell survival by mutagenesis or gene disruption experiments in cells of other organisms, such as hamster cells, mice,

flies, yeast, bacteria or other organisms? The idea of determining the necessity of specific genes for survival of an organism is well established in simple organisms such as bacteria and yeast. The consequences of gene disruption are easier to assess in these microorganisms that have a haploid genome because the

- haploid organism contains only one form of a particular single copy gene. A particularly useful category of eukaryotic organisms are the yeasts, especially Saccharomyces cerevisae.
 - 3. What are the protein targets of proven mammalian cytostatic and cytotoxic agents such as chemotherapy drugs and poisons?
- 4. What can be learned from genomics about the genes required for cell survival? This analysis includes identification of the minimal gene set in simple prokaryotes, as well as sequence comparisons across widely divergent species.
 - 5. Experimental testing of gene essentiality. As an example, antisense oligonucleotides can be used to down regulate candidate essential genes (identified by the four approaches listed above) and assess the effects on cell proliferation and survival. Application of an antisense approach to the identification of essential genes was described by Pestov & Lau, supra.

Once a gene coding for a protein or factor essential to cell viability is identified, its genomic DNA and cDNA sequences, if not previously established, can be

20 ascertained and sequenced according to standard techniques known to those skilled in the art. See, for example, Sambrook, Fritsch and Maniatis, "Molecular Cloning, A Laboratory Manual," Cold Spring Harbor Press, Cold Spring Harbor, NY (1989).

Categories of essential genes

Many essential genes function by encoding a gene product which is necessary for maintaining the level of a cellular constituent within the levels required for cell survival or proliferation. The survival and proliferation of cells within the body requires maintaining a state of homeostasis among many different cellular

15

20

232/116

constituents. These may include, but are not limited to, specific proteins, nucleic acids, carbohydrates, lipids, organic ions, and inorganic ions, or cytoskeletal elements. The loss of homeostasis often results in cell death or apoptosis or inhibition of cell proliferation. Homeostasis in a living cell is dynamic, and programed changes in homeostasis are required through the life cycle of the cell. We have determined that those genes whose products are required for maintaining this homeostasis conducive to cell growth and survival are targets for anti-neoplastic e.g., anti-cancer, inhibitors as described in the methods herein. For example, many genes are involved in synthetic functions, allowing the cells to produce essential cellular constituents including proteins, nucleic acids, carbohydrates, lipids, or organic ions or their components. Other genes are involved in the transport of essential constituents such as proteins, nucleic acids, carbohydrates, lipids, organic ions, or inorganic ions, or their components into the cell or among its internal compartments. Still other genes are involved in the chemical modification of cellular constituents to form other constituents with specific activities. Still other genes are involved in the elimination of specific cellular constituents such as proteins, nucleic acids, carbohydrates, lipids, organic ions, inorganic ions, or their components by metabolic degradation or transport out of the cell. The analysis is preferably carried out using genes which have been shown to be essential in human cells or which are human homologs of genes which are essential in other organisms, preferably other eukaryotic organisms although useful essential data is also provided by prokaryotic essential genes.

A specific example are those genes that are involved in maintaining the amount and fidelity of DNA within a cell. This includes genes commonly considered to be involved in "replication" and other functions; comprising genes involved in the synthesis (polymerization) of DNA sequences from its component elements, creating specific modifications of DNA, ensuring the proper compartmentalization of DNA during cell division (within the nucleus), and eliminating damaged DNA.

232/116

This also includes those genes involved in maintaining the amount of nucleosides that are the component elements of DNA by synthesis, salvage, or transport.

71

Another example are those genes that are involved in maintaining the amount of RNAs within a cell. This includes genes commonly considered to be involved in transcription and other functions; comprising genes required for the synthesis (polymerization) of linear RNA sequences from its component elements, ensuring proper compartmentalization of RNA within the cell, creating specific modification of the linear RNA molecule, and eliminating RNA. This also includes those genes involved in maintaining the amount of nucleosides that are the component elements of RNA by synthesis, salvage, or transport.

Another example are those genes that are involved in maintaining the amount of proteins within a cell. This includes those genes commonly considered to be part of "translation" and other functions;/ comprising genes required for transporting or synthesizing amino acids that are the component elements of proteins, synthesizing specific linear protein sequences from these amino acid elements, creating specific modifications of proteins including by not limited to the addition of specific nucleic acids, carbohydrates, lipids, or inorganic ions to the protein structure, ensuring the proper compartmentalization of synthesized proteins in the cell, and ensuring the proper elimination of proteins from the cell.

Another example are those genes that are involved in maintaining the amount of organic ions within the cell, including but not limited to amino acids, organic acids, fatty acids, nucleosides, and vitamins. This includes those genes that are required for transporting, or synthesizing organic ions, ensuring their proper compartmentalization within the cell, and ensuring proper elimination or degradation of these ions.

10

72 232/116

Another example are those genes that are involved in maintaining the amount of inorganic ions within the cell. This includes those genes that are required for transporting inorganic ions, including but not limited to O, Na, K, Cl, Fe, P, S, Mn, Mg, Ca, H, PO4 and Zn, ensuring their proper compartmentalization within the cell by binding or transporting these ions, and ensuring proper elimination from the cell.

Another example are those genes that are involved in maintaining the structures and integrity of the cell as described in Example 6 below.

The above groups of genes are shown in Table 1 below, which also points out useful subcategories of genes and lists particular exemplary target genes. This

10 demonstrates that target genes can be grouped according to cellular function to provide classes of essential genes useful for allele specific targeting. Additional target genes can be identified by routing methods, such as those described herein.

Confirmation of the essentiality of an additional gene in a specified gene category, and of the occurrence in normal somatic cells of sequence variances of the gene, and

15 of the occurrence of LOH affecting the gene in a neoplastic disorder, establishes that the gene is a target gene potentially useful for identifying allele specific inhibitors and for other aspects of the invention. In addition, as described, target genes are useful in embodiments of certain aspects of the invention, e.g., transplantation and the use of essential or conditionally essential genes even in the absence of LOH.

20 Table 1

Gene Name

GenBank Accession #

1) Genes Required For Cell Proliferation

73 232/116

1.1 Genes that regulate cell division Cyclins, cyclin dependent kinases, regulators and	
effectors of cyclins and cyclin-dependent kinases	
14-3-3 Protein TAU	X56468
CCNA(G2/Mitotic-Specific Cyclin A)	X51688
CCNB1(G2/Mitotic-Specific Cyclin B1)	M25753
CCND1(G1/S-Specific Cyclin D1)	M73554
CCND2(G1/S-Specific Cyclin D2)	M90813
CCND3(G1/S-Specific Cyclin D3)	M90814
Cell division control protein 16	U18291
Cell division cycle 2, G1 to S and G2 to M	X05360
Cell division cycle 25A	M81933
Cell division cycle 25B	M81935
Cell division cycle 25C	M34065
Cell division cycle 27	U00001
Cell division-associated protein BIMB	D79987
Cyclin A1(G2/Mitotic-Specific Cyclin A1)	U66838
Cyclin C (G1/S-Specific Cyclin C)	M74091
Cyclin G1(G2/Mitotic-Specific Cyclin G)	X77794
Cyclin G2 (G2/Mitotic-Specific Cyclin G)	U47414
Cyclin H	U11791
Cyclin H Assembly	X87843
GSPT1(G1 to S phase transition 1)	X17644
Mitotic MAD2 Protein	U31278
MRNP7	X98263
RANBP1(RAN binding protein 1)	D38076
WEE1	X62048
Cell Division Protein Kinase 4	U79269
CDC28 protein kinase 1	X54941
CDC28 protein kinase 2	X54942
M-Phase inducer phosphatase 2	M81934
M-phase phosphoprotein, mpp6	X98260
PPP1ca(Protein phosphatase 1, catalytic subunit, alpha isoform)	
STM7-LSB	X92493
1.2 Genes that form structures of cell division including the	
centromere, kinetochore, kinesins, spindle pole body, chromatin assembly factors and their regulators	
CENP-F kinetochore protein	1110760
Centromere autoantigen C	U19769 M95724
·	171フン / 乙分

74	232/116
Centromere protein B (80kD)	X05299
Centromere protein E (312kD)	Z15005
CHC1(Chromosome condensation 1)	X12654
Chromatin assembly factor-in p150 subunit	U20979
Chromatin assembly factor-in p60 subunit	U20980
Chromosome segregation gene homolog CAS	U33286
HMG1(High-mobility group (nonhistone chromosomal) protein 1)	D63874
Minichromosome Maintenance (MCM7)	D28480
Mitotic centromere-associated kinesin	U63743
RMSA1(Regulator of mitotic spindle assembly 1)	L26953
SUPT5h(Chromatin structural protein homolog (SUPT5H))	Y12790

2) Genes Required to Maintain Inorganic Ions and Vitamins at Levels Compatible with Cell Growth or Survival

2.1 Transport of inorganic ions and vitamins across the plasma membrane and intracellular membranes

Active transporters

Uniporters

PMCA1 (Calcium Pump)	U15686
PMCA2 (Calcium Pump)	M97260
PMCA3 (Calcium Pump)	U15689
PMCA4 (Calcium Pump)	M83363
ATP2b1 (Calcium-Transporting ATPase Plasma Membrane)	J04027
ATP2b2 (Calcium-Transporting ATPase Plasma Membrane)	X63575
ATP2b4 (Calcium-Transporting ATPase Plasma Membrane)	M83363
ATP5b (ATP Synthase Beta Chain, Mitochondrial Precursor)	X03559
Chloride Conductance Regulatory Protein ICLN	X91788
H-Erg (Potassium Channel Protein EAG)	U04270
Nuclear Chloride Ion Channel Protein (NCC27)	U93205
SCN1b(Sodium Channel, Voltage-Gated, Type in, Beta Polypeptide)	L16242
Two P-Domain K+ Channel TWIK-1	U33632
VDAC2 (Voltage-Dependent Anion-Selective Channel Protein 2)	L06328

Coupled transporters

Symporters

ATP1b1 (Sodium/Potassium-Transporting X03747 ATPase Beta-1 Chain)

75	232/116
ATP1b2 (Sodium/Potassium-Transporting ATPase Beta-2 Chain)	M81181
Antiporters	
ATPase, Ca++ transporting, plasma membrane 4	M25874
ATPase, Ca++ transporting, plasma membrane 2	L20977
ATPase, Na+/K+ transporting, alpha 1 polypeptide	U16798
ATPase, Na+/K+ transporting, alpha 3 polypeptide	X12910
ATPase, Na+/K+ transporting, beta 1 polypeptide	U16799
ATPase, Na+/K+ transporting, beta 2 polypeptide	U45945
Na+,K+ ATPase, 1 Subunit	
Na+,K+ ATPase, 2 alpha	
Na+,K+ ATPase, 3 beta	U51478
SLC9a1(Solute carrier family 9 (sodium/hydrogen exchanger))	M81768
Solute carrier family 4, anion exchanger, member 1	M27819
Solute carrier family 4, anion exchanger, member 2	U62531
Solute carrier family 9 (sodium/hydrogen exchanger),	X76180
Passive transporters	
MaxiK Potassium Channel Beta Subunit	U25138
Chloride Channel 2	X83378
Chloride Channel Protein (CLCN7)	U88844
TRPC1 (Transient Receptor Potential Channel 1)	X89066
Potassium Channel Kv2.1	L02840
ATP5d(ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit)	X63422
ATP5f1(ATP synthase, H+ transporting, mitochondrial F0 complex, subunit b)	X60221
ATP5o(ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit)	X83218
ETFa(Electron-transfer-flavoprotein, alpha polypeptide (glutaric aciduria II))	J04058
ETFb(Electron-transfer-flavoprotein, beta polypeptide)	X71129
Nadh-ubiquinone oxidoreductase 13 kd-B subunit	U53468
Nadh-ubiquinone oxidoreductase 39 kD subunit precursor	L04490

76	232/116
NADH-Ubiquinone oxidoreductase 75 kD subunit precursor	X61100
NADH-Ubiquinone oxidoreductase MFWE subunit	X81900
NDUFV2(NADH dehydrogenase (ubiquinone) flavoprotein 2 (24kD))	M22538
Ubiquinol-cytochrome c reductase complex 11 kD	M36647
ATP Synthase Alpha Chain	D14710
NADH dehydrogenase-ubiquinone Fe-S protein 8, 23 kDa subunit	U65579
Vitamin transporters	
Ascorbic Acid (uncloned)	
Folate Binding Protein	AF000380
Folate receptor 1 (adult)	M28099
Nicotinamide (uncloned)	
Pantothenic Acid	X92762
Riboflavin (uncloned)	
SCL19A1 (Solute Carrier Family 19, Member1)	
Solute carrier family 19 (folate transporter), member 1	U19720
Thiamine, B6, B12 (uncloned)	
Metal transporters	
ATP7b (Copper-Transporting ATPase 2)	U03464
Ceruloplasmin (ferroxidase)	M13699
Ceruloplasmin receptor (Copper Transporter)	
Copper Transport Protein HAH!	U70660
Molybdenum, Selenium, other Transporters (uncloned)	
Tranferrin Receptor (Iron Transporter)	X01060
Zinc Transporter (uncloned)	
Soluble inorganic ion transporters	•
Insoluble inorganic ion transporters	
Transporters of other essential small molecules Mitochondrial Import Receptor Subunit TOM20	D13641
2.2 Regulators of transport	
Sensors of ion levels	
3) Genes Required to Maintain Organic Compounds at Levels Compatible with Cell Growth or Survival	
3.1 Transporters of organic compounds	
Carbohydrate Transport	
Sugar Transport	

Glucose Transport

77	232/116
CLUM	
GLUT1	GDB:120627
GLUT2	J03810
GLUT3 GLUT4	M20681
GLUT5	M20747
GLUT6	M55531
Solute carrier family 5	M95549
(sodium/glucose cotransporter)	M95549
Solute carrier family 2 (facilitated glucose transporter), member 2	J03810
Solute carrier family 2 (facilitated glucose transporter) member 5	M55531
Amino acid transport	
Solute carrier family 3 member 1	L11696
System b,(Na+ independent)	L11090
System y,(Na+ independent)	
ATRC1(Catioinc)	OMIM 104615
LEUT(Leucine Transporter)	OMIM 151310
SLC1A1(Solute Carrier Family 1, Member 1)	OMIM 133550
Lipid or lipoprotein transport	
Nucleoside transport	
Other organic compounds transport	
Solute carrier family 16 (monocarboxylic acid transporters)	L31801
3.2 Genes required for maintenance of organic compounds at levels required for cell growth or survival	
Carbohydrate metabolism, including anabolism and catabolism	
ACO1(Aconitase 1)	
ACO2(Aconitase 2, mitochondrial)	U80040
Acyl-Coenzyme A dehydrogenase, C-2 to C-3 short chain	M26393
Acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain	M16827
Acyl-Coenzyme A dehydrogenase, long chain	M74096
Acyl-Coenzyme A dehydrogenase, very long chain	D43682
aKGD (alpha ketoglutaratedehydrogenase)	
ALD-a (Aldolase)	M11560
ALD-b (Aldolase)	K01177
ALD-c (Aldolase)	M21191
CS (Citrate Synthetase)	OMIM 118950
Dihydrolipoamide S-succinyltransferase	L37418
DLAT(Dihydrolipoamide S-acetyltransferase (E2 component of pyruvate dehydrogenase complex))	AF001437
DLD(Dihydrolipoamide dehydrogenase (E3 component of pyruvate dehydrogenase complex, 2-oxo-glutarate complex, branched chain keto acid dehydrogenase complex))	J03490
E1k (Oxoglutarate dehydrogenase)	D10523

232/116

E2k (Dihydrolipoamide S-succinyltransferase)	D16373
E3 (Dihydrolipoyl Dehydrogenase)	SEG_HUMDHL
ENO1(Enolase 1,alpha)	M14328
ENO2(Enolase 2)	X51956
ENO3(Enolase 3)	X55976
Enolase 2, (gamma, neuronal)	M22349
Enolase 3, (beta, muscle)	X16504
FH(Fumarate hydratase)	M15502
G3PDH (Glyceraldehyde-3-Phosphate Dehydrogenase)	M17851
G6PD (Glucose-6-Phosphate Dehydrogenase)	
Glucose-6-phosphate dehydrogenase	X03674
HK1 (Hexokinase 1)	M75126
HK2 (Hexokinase 2)	S70035
HK3 (Hexokinase 3)	U51333
IDH1(Isocitrate dehydrogenase 1 (NADP+), soluble)	OMIM 147700
IDH2(Isocitrate dehydrogenase 2 (NADP+), mitochondrial)	X69433
MDH1(Malate dehydrogenase 1, NAD (soluble))	D55654
MDH2(Malate dehydrogenase 1, NAD (mitochondrial))	OMIM 154100
NAD(H)-specific isocitrate dehydrogenase alpha subunit	U07681
Oxoglutarate dehydrogenase (lipoamide)	D10523
PDHB (Pyruvate Dehydrogenase)	J03576
PDHB(Pyruvate dehydrogenase (lipoamide) beta)	M34479
PDK4 (Pyruvate dehydrogenase kinase, isoenzyme 4)	U54617
PFKL(Phosphofructokinase)	M10036
PGI (Phosphoglucoisomerase)	OMIM 172400
PGKa (Phosphoglyceromutase)	Y00572
PGKb (Phosphoglyceromutase)	K03201
PGM1 (Phosphoglyceromutase)	M83088
PGM2 (Phosphoglyceromutase)	OMIM 172000
PGM3 (Phosphoglyceromutase)	OMIM 172100
PGM4 (Phosphoglyceromutase)	OMIM 172110
Phosphofructokinase, muscle	U24183
Phosphoglucomutase 1	M83088
Phosphoglycerate kinase 1	V00572
PK1 (Pyruvate Kinase)	M15465
PK2 (Pyruvate Kinase)	OMIM 179040
PK3 (Pyruvate Kinase)	M23725
Pyruvate dehydrogenase kinase isoenzyme 2 (PDK2)	L42451
Pyruvate kinase, liver	D10326
Pyruvate kinase, muscle	M23725
SDH1(Succinate dehydrogenase, iron sulphur (Ip) subunit)	D10245
SDH2(Succinate dehydrogenase 2, flavoprotein (Fp) subunit)	D30648
TKT(Transketolase (Wernicke-Korsakoff syndrome))	L12711
TPI (Trisephosphate Isomerase)	M10036

79	232/116
Amelina Autolitica de la compansión de l	
Amino Acid biosynthesis and processing	
Asparagine Synthetase	SEG_HUMASN
Aminoacylase-1	L07548
Aminoacylase-2	S67156
Fatty acid biosynthesis and processing	
ACAC (Acetyl CoA Carboxylase Beta)	U19822
ACAC (Acetyl CoA Carboxylase)	U12778
ACADSB(Acyl-coA dehydrogenase)	U12778
Mevalonate kinase	M88468
Phosphomevalonate kinase	L77213
Alcohol biosynthesis and processing	
Other organic compounds biosynthesis and processing	
Aspartoacylase	S67156
Ornithine decarboxylase 1	M16650
3.3 Genes required for catabolism, degradation and elimination of or	ganic compounds
Carbonydrate and Sugar Catabolism	- •
Amino acid Degradation	•
Lipid or lipoprotein Degradation	
Short-acyl-CoA dehydrogenase	M26393
Medium acyl-CoA dehydrogenase	S75214
Long acyl-CoA dehydrogenase	M74096
Isovalveryl CoA dehydrogenase	M34192
2-methyl branched chain	
Nucleoside Degradation	
Adenosine Deaminase	K00509
Purine-nucleoside phosphorylase	K02574
Guanine Deaminase	
Xanthine Oxidase	D11456
Degradation of other organic compounds	
3.4 Genes Required to Modify Polypeptides, Lipids or Sugars by	
Addition, Removal or Modification of Chemical Groups to Form	
Compounds Necessary for Cell Growth or Survival	
Addition, removal or modification of sugar groups	
Glycosyltransferases	
Glycosylases	
ITM1 (Integral Transmembrane Protein)	L38961
GFPT (Glutamine-Fructose-6-Phosphate Transaminase)	M90516
Heparan	U36601
Polypeptide N-Acetyltransferase	U41514
Addition, removal or modification of methyl or other alkylgroups	
Acetyltransferase	
ACAA(Acetyl-Coenzyme A acyltransferase)	X12966
Lysophosphatidic acid acyltransferase-alpha	U56417

80	232/116
Lysophosphatidic acid acyltransferase-l	peta U56418
Farnesyltransferase	
FNTa (Farnesyltransferase Alpha Subu	nit) L00634
FNTb (Farnesyltransferase Beta Subuni	it) L0063 ⁵ 5
Myristoylation	
NMT1 (N-myristoyltransferase)	
Addition, removal or modification of sulfhyd	ryl groups
Addition, removal or modification of phospha	ate groups
Calcineurin A	S46622
Calcineurin B	M30773
Calreticulin Precursor	M84739
Phosphatase 2b	M29551
PPP3ca(Protein phosphatase 3, catalyti	ic subunit) J05480
SNK Interacting 2-28(Calcineurin B Su	
Protein Kinase C	,
PRKCA(Protein kinase C, alpha)	X52479
PRKCB1(Protein kinase C, beta 1)	X06318
PRKCD(Protein kinase C, delta)	L07861
PRKCM(Protein kinase C, mu)	X75756
PRKCQ(Protein kinase C-theta)	L01087
PRKCSH(Protein kinase C substrate 80	OK-H) J03075
Addition, removal or modification of lipid gr	roups
Geranylgeranyl	
Geranylgeranyltransferase (Type I Beta	a) L25441
GGTB (Geranylgeranyltransferase)	Y08201
Geranylgeranyltransferase (Type II Ber	ta-Subunit) X98001
3.5 Genes required for regulation of levels of organ	nic ions
Gdp Dissociation Inhibitors	
GDI Alpha (RAB GDP Dissociation In	hibitor Alpha) D45021
Rab Gdp (RAB GDP Dissociation Inhi	bitor Alpha) D13988
4) Genes Required to Maintain Cellular Proteins at Leve with Cell Growth or Survival	els Compatible
Polypeptide precursor biosynthesis	
Amino acid biosynthesis and modification	1
GOT(Glutamic-oxaloacetic transamina	se 2) M22632
GOT1(Glutamic-oxaloacetic transamir	nase 1) M37400
PYCS(Pyrroline-5-carboxylate synthet	ase) X94453
Tyrosine aminotransferase	X52520
Polypeptide precursor elimination	
Synthesis of components for polypeptide polymerizat	ion
AARS	D32050
CARS	L06845
DARS	

	81 232/116
EPRS	VC1007
FARS	X54326
GARS	*****
HARS	U09510
IARS	X05345
KARS	D28473
LARS	OMIM 601421
MARS	OMIM 151350
NARS	X94754
QARS	M27396
RARS	X54326
SARS	S80343
TARS	M62100
VARS	M63180
WRS	X59303
YARS	M61715
Polypeptide polymerization	•
Ribosome Subunits	
Ribosomal Protein L11	X79234
Ribosomal Protein L12	L06505
Ribosomal Protein L17	X52839
Ribosomal Protein L18	L11566
Ribosomal Protein L18a	X80822
. Ribosomal Protein L19	X63527
Ribosomal Protein L21	U14967
Ribosomal Protein L22	L21756
Ribosomal Protein L23	X53777
Ribosomal Protein L23a	U43701
Ribosomal Protein L25	
Ribosomal Protein L26	
Ribosomal Protein L27	L19527
Ribosomal Protein L27a	U14968
Ribosomal Protein L28	U14969
Ribosomal Protein L29	U10248
Ribosomal Protein L30	OMIM 180467
Ribosomal Protein L31	
Ribosomal Protein L32	X03342
Ribosomal Protein L35	U12465
Ribosomal Protein L35a	X52966
Ribosomal Protein L36a	OMIM 180469
Ribosomal Protein L39	U57846
Ribosomal Protein L4	L20868
Ribosomal Protein L41	
Ribosomal Protein L44	

82	232/116
Ribosomal Protein L6	X69391
Ribosomal Protein L7	L16558
Ribosomal Protein L7a	X52138
Ribosomal Protein L8	Z28407
Ribosomal Protein L9	U09953
Ribosomal Protein P1	M17886
Ribosomal Protein S10	U14972
Ribosomal Protein S11	X06617
Ribosomal Protein S13	L01124
Ribosomal Protein S14	
Ribosomal Protein S15	J02984
Ribosomal Protein S15A	X84407
Ribosomal Protein S16	M60854
Ribosomal Protein S17	M13932
Ribosomal Protein S17A	OMIM 180461
Ribosomal Protein S17B	OMIM 180462
Ribosomal Protein S18	L06432
Ribosomal Protein S20	
Ribosomal Protein S20A	OMIM 180463
Ribosomal Protein S20B	OMIM 180464
Ribosomal Protein S21	L04483
Ribosomal Protein S23	D14530
Ribosomal Protein S25	M64716
Ribosomal Protein S26	X69654
Ribosomal Protein S28	U58682
Ribosomal Protein S29	L31610
Ribosomal Protein S3	U14990
Ribosomal Protein S3A	OMIM 180478
Ribosomal Protein S4	
Ribosomal Protein S4X	M58458
Ribosomal Protein S4Y	M58459
Ribosomal Protein S5	U14970
Ribosomal Protein S6	J03537
Ribosomal Protein S7	M77233
Ribosomal Protein S8	OMIM 600357
Ribosomal Protein S9	U14971
Initiation of polypeptide polymerization	
eIF-2 (Eukaryotic initiation factor)	L19161
eIF-2-associated p67(Eukaryotic initiation factor)	U13261
eIF-2A(Eukaryotic initiation factor)	J02645
eIF-2Alpha(Eukaryotic initiation factor)	U26032
eIF-2B(Eukaryotic initiation factor)	U23028
eIF-2B-Gamma(Eukaryotic initiation factor)	L40395
eIF-2Beta(Eukaryotic initiation factor)	M29536

83	232/116
eIF-3 p110(Eukaryotic initiation factor)	U46025
eIF-3 p36(Eukaryotic initiation factor)	U39067
eIF-4A(Eukaryotic initiation factor)	D21853
eIF-4C(Eukaryotic initiation factor)	L18960
eIF-4E(Eukaryotic initiation factor)	M15353
eIF-4Gamma(Eukaryotic initiation factor)	Z34918
eIF-5(Eukaryotic initiation factor)	U49436
eIF-5A	042430
Polypeptide elongation	
Eukaryotic peptide chain release factor subunit 1	X81625
P97(Eukaryotic initiation factor)	U73824
eEF1A2(Eukaryotic elongation factor)	X70940
eEF1D(Eukaryotic elongation factor)	Z21507
eEF2(Eukaryotic elongation factor)	X54166
eIF4A2 (Eukaryotic initiation factor)	D30655
KIAA0031(Elongation factor 2)	D21163
KIAA0219(Putative translational activator C18G6.05C)	D86973
Factor 1-Alpha 2(Eukaryotic translation elongation factor 1 alpha 2)	D30655
Termination of polypeptide polymerization	
Polypeptide folding	
Cis-Trans Isomerase	M80254
DNAj Protein Homolog 1	X62421
DNAj Protein Homolog 2	D13388
DNAJ Protein homolog HSJ1	X63368
Chaperone proteins	1100000
T-Complex	
Aspartylglucosaminidase	X55330
T-Complex 1, Alpha	S70154
T-Complex 1, Epsilon	D43950
T-Complex 1, Gamma	X74801
T-Complex 1, Theta	D13627
T-Complex 1, Zeta	M94083
Polypeptide Degradation	
Proteasome components and proteinases	
26S Protease regulatory subunit 4	L02426
Alpha-2-Macroglobulin	M11313
Calpain 1, Large	X04366
CLPP(ATP-Dependent CLP protease proteolytic subunit)	Z50853
KIAA0123 (Mitochondrial processing peptidase alpha subunit)	D50913
MMP7	X07°19
Proteasome Beta 6	D29012
Proteasome Beta 7	D38048
Proteasome C13	U17496
	=

84	232/116
Proteasome C2	D00759
Proteasome C7-1	D26599
Proteasome inhibitor hPI31 subunit	D88378
Proteasome P112	D44466
Proteasome P27	AB003177
Proteasome P55	AB003103
Ubiquitin System	
Enzyme E2-17 Kd(Cyclin-selective ubiquitin carrier protein)	U73379
ISOT-3(Ubiquitin carboxyl-terminal hydrolase T)	U75362
ORF (Ubiquitin carboxyl-terminal hydrolase 14)	M68864
PGP(Ubiquitin carboxyl-terminal hydrolase isozyme L1)	X04741
UBA52(Ubiquitin A-52 residue ribosomal protein fusion product 1)	S79522
Ubiquitin carboxyl-terminal hydrolase 3	D80012
Ubiquitin carboxyl-terminal hydrolase isozyme L3	M30496
Ubiquitin carboxyl-terminal hydrolase T	X91349
Ubiquitin carrier protein (E2-EPF)	M91670
Ubiquitin fusion-degradation protein (UFD1L)	U64444
Ubiquitin Hydrolase	X98296
Ubiquitin-conjugating enzyme E2I	U45328
Polypeptide Transport	
SEC23(Protein transport protein SEC23)	X97065
SEC23A(Protein transport protein SEC23)	X97064
SEC7(Protein transport protein SEC7)	X99688
SEC61 (Beta Subunit)	L25085
Lipoprotein Transport	
LDLR (LDL receptor)	
5) Genes Required to maintain Cellular Nucleotides at Levels Compatible with Cell Growth or Survival	
Genes Required to Maintain Cellular DNA with Fidelity and at Levels Compatible with Cell Growth or Survival	
DNA Precursor Biosynthesis	
Adenylate Kinase-2	U39945
Adenylosuccinate synthetase	X66503
Adenylosuccinate Lyase	X65867
ADPRT (ADP-Ribosyltransferase)	M32721
ADSL (Adenylosuccinate lyase/AMP synthetase)	X65867
ADSS (Adenylosuccinate Synthetase)	X66503
CAD PROTEIN	D78586
CTP Synthetase	
CTPS(CTP synthetase)	X52142
Cytidine Triphosphate Synthetase	
GARS (Phosphoribosylglycinamide synthetase)	D32051

85	232/116
GART (Phosphoribosylglycinamide formyltransferase)	
GART(Phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetase, phosphoribosylaminoimidazole synthetase)	X54199
GMP Synthetase	U10860
IMP Cyclohydrolase	U37436
IMP dehydrogenase	L19709
IMPDH1(IMP (inosine monophosphate) dehydrogenase 1)	J05272
IMPDH2(IMP (inosine monophosphate) dehydrogenase 2)	J04208
Phosphoribosyl diphosphotransferase	
Phosphoribosylaminoimidazolecarboxamide formyltransferase	:
Phosphoribosylformylglycinamide synthetase	M32082
Phosphoribosylglycinamide carboxylase	
Phosphoribosylglycinamide-succinocarboxamide synthetase	
PPAT (Amidophoribosyltransferase)	
PPAT(Phosphoribosyl pyrophosphate amidotransferase)	U00238
Ribonucleoside-diphosphate reductase M1 chain	X59543
Ribonucleoside-diphosphate reductase M2 chain	X59618
Thymidine Kinase	K02581
Thymidylate Synthase	X02308
UMK(Uridine kinase)	D78335
UMPK (Uridine monophosphate kinase)	OMIM 191710
UMPS(Uridine monophosphate synthetase (orotate	J03626
phosphoribosyl transferase and orotidine-5'-decarboxylase)) Uridine Phosphorylase	
DNA Precursor Elimination	X90858
DNA Replication	
Origin Recognition	
Origin Recognition Complex	
ORC1	
ORC2	U40152
ORC3	U27459
ORC4	
ORC5	
ORC6	OMIM 602331
ORC Regulators	
CDC6	
CDC7	AA830372
CDC18	AFO15592
DNA Polymerization	AF022109
DNA Polymerases	
Adprt (NAD(+) ADP- Ribosyltransferase)	1410110
DNA Polymerase Alpha-Subunit	M18112
DNA Polymerase Delta	X06745
• • • • • • • • • • • • • • • • • • • •	U21090

. 86	232/116			
POLa(DNA Polymerase Alpha/Primase Associated Subunit)	L24559			
POLb(DNA Polymerase Beta Subunit)	D29013			
POLd1(Polymerase (DNA directed), Delta 1, Catalytic Subunit)	M81735			
POLd2(Polymerase (DNA directed), Delta 2)	U21090			
POLE(Polymerase (DNA directed))	OMIM 174762			
POLg (DNA Polymerase Gamma Subunit)	X98093			
Terminal Transferase (DNA Nucleotidylexotransferase)	M11722			
Accessory factors for DNA Polymerization				
Activator 1 36 Kd	L07540			
CDC46 (DNA Replication Licensing Factor)	X74795			
CDC47 (DNA Replication Licensing Factor CDC47)	D55716			
DNA Topoisomerase III	U43431			
DRAP1 (DNA Replication Licensing Factor MCM3)	U41843			
KIAA0030 Gene (Cell Division Control Protein 19)	X67334			
KIAA0083 Gene (DNA Replication Helicase DNA2)	D42046			
MCM3 (DNA Replication Licensing Factor MCM3)	D38073			
PCNA (Proliferating Cell Nuclear Antigen)	J04718			
PRIM1 (DNA Primase 49 kD Subunit)	X74330			
PRIM2 (DNA Primase)	X74331			
PRIM2a (DNA Primase 58 kD Subunit)	X74331			
PRIM2b (DNA Primase)	OMIM 600741			
RECa (Replication Protein A 14 kD Subunit)	L07493			
RFC1 (Replication Factor C (activator 1) 1)	L14922			
RFC2 (Replication Factor C 2)	M87338			
RFC3 (Replication Factor C (activator 1) 3)	L07541			
RFC4 (Replication Factor C, 37-kD subunit)	M87339			
RFC5 (Replication Factor C)	OMIM 600407			
RPA1 (Replication protein A1 (70kD))	M63488			
RPA2 (Replication protein A2 (32kD))	J05249			
RPA3 (Replication protein A3 (14kD))	L07493			
TOP1 (DNA Topoisomerase I)	J03250			
TOP2a (Topoisomerase (DNA) II Alpha (170kD))	J04088			
TOP2b (Topoisomerase (DNA) II Beta (180kD))	U54831			
DNA Helicases				
CHL1(CHL1-Related Helicase)	U33833			
DNA Helicase II	M30938			
Mi-2(Chromodomain-Helicase- DNA-Binding Protein CHD-1)				
RECQL (ATP-Dependent DNA Helicase Q1)	L36140			
Smbp2 (DNA-Binding Protein SMUBP-2)	L14754			
DNA Packaging Proteins				
Histones	¥02.472			
H1(0) (Histone H5A)	X03473			
Histone H1d	X57129			
Histone H1x	D64142			

87	232/116
Histone H2a.1	U90551
Histone H2a.2	L19779
Histone H2b.1	M60756
Histone H4	
SLBP (Histone Hairpin-Binding Protein)	X60486
DNA Degradation	Z71188
DNA Repair	
Genes Required to Maintain Cellular RNA at Levels Compatible with Cell Growth or Survival	
RNA Precursor Biosynthesis	
RNA Precursor Elimination	
RNA Polymerization	
Initiation of polymerization	
TATA-binding Complex	
Small Nuclear RNA-Activating Complex, Polypeptide 1, 43KD (SNAPC1)	Z47542
Small Nuclear RNA-Activating Complex, Polypeptide 2, (SNAPC2)	
Small Nuclear RNA_Activating Complex, Polypeptide 3, 50KD (SNAPC3)	U71300
TAF2D(TBP-associated factor)	U78525
TAFII100(TBP-associated factor)	X95525
TAFII130(TBP-associated factor)	U75308
TAFII20(TBP-associated factor)	X84002
TAFII250(TBP-associated factor)	D90359
TAFII28(TBP-associated factor)	X83928
TAFII30(TBP-associated factor)	U13991
TAFII32(TBP-associated factor)	U21858
TAFII40(TBP-associated factor)	
TAFII55(TBP-associated factor)	U18062
TAFII80(TBP-associated factor)	U31659
TBP(TATA Binding Protein)	M55654
TMF1 (TATA Element Modulatory Factor 1)	
Polymerization	
RPB 7.0	U52427
RPB 7.6	
RPB 17	
RPB 14.4	
RNA Polymerase I subunits	
RNA polymerase I subunit hRPA39	AF008442
RNA Polymerase II subunits	000174
12.6 V d Dolomont L. (Days D)	L37127
POLR2C(RNA polymerase II, polypeptide C (33kD))	105448

88	232/116
Polypeptide A (220kd)	X63564
RNA Polymerase II 23k	J04965
RNA polymerase II holoenzyme component (SRB7)	U46837
RNA polymerase II subunit (hsRPB10)	U37690
RNA polymerase II subunit (hsRPB8)	U37689
RNA polymerase II subunit (iisid Bb)	U85510
RNA polymerase II subunit hsRPB7	U20659
RNA Polymerase II Subunit(DNA- Directed RNA Polymerases I, II, and III 7.3 kD polypeptide)	Z47727
TCEB1L(Transcription elongation factor B (SIII), polypeptide 1-like)	Z47087
RNA Polymerase III subunits	
RNA polymerase III subunit (RPC39)	U93869
RNA polymerase III subunit (RPC62)	U93867
RNA Elongation	
Elongation Factor 1-Beta	X60489
Elongation Factor S-II	M81601
Elongation	
TCEA (110kD)	OMIM 601425
TCEB1	L34587
TCEB (18kD)	
TCEBIL	
TCEB3	L47345
TCEC (15kDa)	
TFIIS (Transcription Elongation Factor IIS)	601425
E2F1 (E2F Transcription Factor)	M96577
TFAP2A (Transcription Factor A2 Alpha)	X95694
TFCP2 (Transcription Factor CP2)	U01965
TFC12 (Transcription Factor 12)	M65209
PRKDC (Protein Kinase, DNA activated catalytic subunit)	U47077
Termination of RNA polymerization	
Factors that regulate RNA polymerization	
General factors	1146601
SUPT6H	U46691
TFIIA gamma subunit	U14193
TFIIA delta	1175076
TFIIB related factor hBRF (HBRF)	U75276
TFIIE Alpha Subunit	X63468
TFIIE Beta Subunit	X63469
TFIIF, Beta Subunit	X16901
GTF2F1 (TFHF)	X64037
GTF2F2 (TFIIF)	X16901 U20272
General Transcription Factor IIIA	Y07595
TFIIH(52 kD subunit of transcription factor)	10/333

89 232/116 TFIIH(p89) TFIIH(p80) TFIIH(p62) U07595 TFIIH(p44) OMIM 601748 TFIIH(p34) OMIM 601750 Transcription Factor IIf(General transcription factor IIF, X64037 polypeptide 1 (74kD subunit)) Specific factors required for polymerization of essential genes BTF 62 kDSubunit (Basic transcription factor 62 kD subunit) M95809 CAMP-dependent transcription factor ATF-4 M86842 CCAAT box-binding transcription factor 1 X92857 CRM1(Negative regulator CRM1) Y08614 Cyclic-AMP-dependent transcription factor ATF-1 X55544 GABPA(GA-binding protein transcription factor, alpha subunit U13044 (60kD)ISGF-3(Signal transducer and activator of transcription 1-M97935 alpha/beta) NFIX(Nuclear factor I/X (CCAAT-binding transcription factor)) L31881 NFYA(Nuclear transcription factor Y, alpha) M59079 NTF97(Nuclear factor p97) L38951 Nuclear factor I-B2 (NFIB2) U85193 Nuclear factor NF45 U10323 Nuclear factor NF90 U10324 POU2F1(POU domain, class 2, transcription factor 1) X13403 Sp2 transcription factor M97190 TCF12(Transcription factor 12 (HTF4, helix-loop-helix M83233 transcription factors 4)) TCF3(Transcription factor 3 (E2A immunoglobulin enhancer M31523 binding factors E12/E47)) TCF6L1(Transcription factor 6-like 1) M62810 TF P65(Transcription factor p65) L19067 TFCOUP2(Transcription factor COUP 2 (a.k.a. ARP1)) X91504 Transcription factor IL-4 Stat U16031 Transcription Factor S-II (Transcription factor S-II-related D50495 protein) Transcription factor Stat5b U48730 Transcription Factor L06633 Transcription factor (CBFB) L20298 **RNA Processing Factors** RNA splicing and other processing factors 9G8 Splicing Factor (Pre-mRNA Splicing factor SRP20) L22253 CC1.3(Splicing factor (CC1.3)) L10910 HnRNP F protein L28010 HNRPA2B1(Heterogeneous nuclear ribonucleoproteins A2/B1) M29065 HNRPG(Heterogeneous nuclear ribonucleoprotein G) Z23064

90	232/116
HNRPK(Heterogeneous nuclear ribonucleoprotein K)	S74678
Pre-mRNA splicing factor helicase	D50487
Pre-mRNA splicing factor SF2, P33 subunit	M69040
Pre-mRNA splicing factor SRP20	L10838
Pre-mRNA splicing factor SRP75	L14076
PRP4(Serine/threonine-protein kinase PRP4)	U48736
PTB-Associated Splicing Factor	X16850
Ribonucleoprotein A'	X06347
Ribonucleoprotein A1	X13482
Ribonucleoprotein C1/C2	M15841
RNP Protein, L (Heterogeneous nuclear ribonucleoprotein L)	X16135
RNP-Specific C(U1 small nuclear ribonucleoprotein C)	X12517
SAP 145(Spliceosome associated protein)	U41371
SAP 61(Splicesomal protein)	U08815
SC35(Splicing factor)	L37368
SF3a120	X85237
SFRS2(Splicing factor, arginine/serine-rich 2)	M90104
SFRS5(Splicing factor, arginine/serine-rich 5)	AF020307
SFRS7(Splicing factor, arginine/serine-rich 7)	L41887
Small nuclear ribonucleoprotein SM D1	J03798
SnRNP core protein Sm D2	U15008
SnRNP core protein Sm D3	U15009
SNRP70(U1 snRNP 70K protein)	M22636
SNRPB(Small nuclear ribonucleoprotein polypeptides B and B1)	J04564
SNRPE(Small nuclear ribonucleoprotein polypeptide E)	M37716
SNRPN(Small nuclear ribonucleoprotein polypeptide N)	U41303
Splicing factor SF3a120	X85238
Splicing factor U2AF 35 kD subunit	M96982
Splicing factor U2AF 65 kD subunit	X64044
SRP30C(Pre-mRNA splicing factor SF2, p33 subunit)	U30825
SRP55-2(Pre-mRNA splicing factor SRP75)	U30828
Transcription factor BTEB	D31716
Transcription initiation factor TFIID 250 kD subunit	D90359
RNA polyadenylation and cleavage	1127012
Cleavage and polyadenylation specificity factor	U37012
Cleavage stimulation factor, 3' pre-RNA, subunit 1, 50kD	L02547
Cleavage stimulation factor, 3' pre-RNA, subunit 3, 77kD	U15782
HNRNP Methyltransferase	D66904
PABPL1(Poly(A)-binding protein-like 1)	Y00345
Pap mRNA(Poly(A) Polymerase)	X76770
RNA unwinding	
RNA Helicase	

91 232/116 GU Protein (ATP-Dependent RNA helicase dead) U41387 KIAA0224 Gene(Putative ATP-dependent RNA helicase) D86977 RNA Helicase A L13848 RNA Helicase Pl10 U50553 Ste13(Nuclear RNA Helicase) U90426 **RNA** Degradation RNA modification **RNA Transport** 6) Genes Required to Maintain Integrity and Function of Cellular and Subcellular Structures 6.1 Genes Required to Move Proteins, Small Particles, and Other Ligands Across Membranes to Maintain their Concentration at Levels Compatible with Cell Growth or Survival Genes required to form coated pits and vesicles Clathrins AP47(Clathrin Coat Assembly AP47) D38293 AP50(Clathrin Coat Assembly Protein AP50) U36188 Cell Surface Protein (Clathrin Heavy Polypeptide-Like Protein) X83545 Cltb(Clathrin Light Chain B) M20470 Cltc (Clathrin Heavy Chain) U41763 6.2 Genes Required to Transmit Signals within Cells at Levels Compatible with Cell Growth or Survival Genes required to transmit signals from membranes Adenylate Cyclase Adenylate Cyclase D63481 Adenylate Cyclase, II X74210 Adenylate Cyclase, IV D25538 Genes required to transmit signals within cellular compartments 6.3 Genes Required to Maintain Cellular Energy Stores at Levels Compatible with Cell Growth or Survival Genes required to Produce ATP from catabolism of sugar Genes required for glycolysis (anaerobic and aerobic) Genes required for oxidative phosphorylation Complex I MTND1 (Subunit ND1) **OMIM 51600** MTND2 (Subunit ND2) OMIM 51601 MTND3 (Subunit ND3) OMIM 51602 MTND4 (Subunit ND4) OMIM 51603 MTND4L (Subunit ND4L) OMIM 51604 MTND5 (Subunit ND5) OMIM 51605 MTND6 (Subunit ND6) **OMIM 51606** Complex II Complex III Cytochrome b subunit Complex IV

92 232/116 OMIM 516030 CO1 (Cytochrome c Oxidase Subunit I) CO2 (Cytochrome c Oxidase Subunit 2) AF035429 CO3 (Cytochrome c Oxidase Subunit 3) Complex V ATP Synthase Subunit ATPase 6 OMIM 516060 6.4 Genes Required to Transport or Dock Vesicles, Polypeptides or Other Solutes Moving Between Cellular Compartments at Rates and Levels Compatible with Cell Growth or Survival Transport to, from or within the cytoplasm **Kinesins** X65873 Kinesin Heavy Chain Kinesin Light Chain L04733 **Syntaxin** Syntaxin 1a L37792 Syntaxin 1b U07158 Syntaxin 3 U32315 Syntaxin 5a U26648 Syntaxin 7 U77942 Transport to, from or within the endoplasmic reticulum M94859 CANX (Calnexin) ER Lumen Protein 1 M88458 ER Lumen Protein 2 X55885 Y00281 Ribophorin I Ribophorin II Y00282 X06272 Signal recognition particle receptor U20998 **SRP Protein** TIM17 preprotein translocase X97544 Transport to, from or within the Golgi apparatus Golgin-245 U31906 TGN46 (Trans-Golgi Network Integral Membrane Protein X94333 TGN38 Precursor) Transport to, from or within the other membrane bound compartments Beta-Cop X82103 Coatomer Beta' Subunit X70476 Coatomer Delta Subunit X81198 Gp36b Glycoprotein (Vesicular integral-membrane protein U10362 VIP36 precursor) Homologue of yeast sec7 M85169 Protein transport protein SEC13 (Chromosome 3p25) L09260 SEC14 (S. Cerevisiae) D67029 Synaptic vesicle membrane protein VAT-1 U18009 Synaptobrevin-3 U64520 Synaptotagmin I M55047 X92098 Transmembrane(COP-coated vesicle membrane protein p24 precursor)

93 232/116

Vacuolar-Type (Clathrin-coated vesicle/synaptic vesicle proton pump 116 kd subunit)	Z71460
Transport to, from or within the nucleus	
Nuclear membrane constituents	
140 kD Nucleolar phosphoprotein	D21262
Autoantigen p542	L38696
Export protein Rae1 (RAE1)	U84720
Heterogeneous nuclear ribonucleoprotein Al	X79536
Nuclear pore complex protein hnup153	Z25535
Nuclear pore complex protein NUP214	D14689
Nuclear pore glycoprotein p62	X58521
Nuclear Transport Factor 2	X07315
Nucleoporin 98 (NUP98)	U41815
NUP88	Y08612
Ribonucleoprotein A	M29063
Ribonucleoprotein B"	U23803
Nuclear envelope & pore constituents	0_000
Karyopherin	
Importin Alpha Subunit	D89618
TRN (Transportin)	U70322
6.5 Genes Required to Maintain Cell Shape and Motility at Levels Compatible with Cell Growth or Survival	
Cell structure genes (Cytoskeleton)	
Actin	X04098
Beta-Centractin	X82207
Capping Protein Alpha	U03851
CFL1 (Cofilin, Non-Muscle Isoform)	X95404
Desmin	J03191
Dystrophin	U26743
Gelsolin	X04412
hOGG1(Myosin Light Chain Kinase)	AB000410
IC Heavy Chain	U31089
Itga2 (Integrin, Alpha 2 (CD49B, alpha 2 Subunit of VLA-2 receptor))	X17033
Itga3 (Integrin Alpha-3 Precursor)	M59911
Keratin 19	Y00503
Keratin, Type II	J00269
Lamin A	M13451
LBR(Lamin B Receptor)	L25931
Light Chain Alkali	M22920
MacMarcks mRNA	X70326
MAP1a (Microtubule-Associated Protein 1A)	U14577
MAP2(Microtubule-Associated Protein 2)	U01828
MEG1(Protein-Tyrosine Phosphatase MEG1)	X79510
	A17310

94	232/116
Microtubule-Associated Protein TAU	J03778
Suppressor Of Tubulin STU2	X92474
TUBg (Tubulin Gamma Chain)	M61764
Tubulin Alpha-4 Chain	X06956
USH1b (Myosin II Heavy Chain)	U39226
Villin	X12901
Villin 2 (Ezrin)	J05021
Genes required for cell motility	
Actin genes	
Actin Depolymerizing	S65738
Capping (Actin Filament)	M94345
Myosin genes	
MYH9(Myosin, Heavy Polypeptide 9, Non-Muscle)	M31013
MYL5(Myosin Regulatory Light Chain 2)	L03785
Myosin Heavy Chain 95F	U90236
Myosin Heavy Chain IB	D63476
Myosin IB	U14391
Sh3p17(Myosin IC Heavy Chain)	U61166
Sh3p18(Myosin IC Heavy Chain)	U61167
KIAA0059(Dematin:Actin-Bundling Protein)	D31883
TTN (Titin:Myosin Light Chain Kinase)	X69490
6.6 Genes Required to Eliminate, Transform, Sequester or Otherwise Regulate Levels of Endogenous Cellular Toxins or Waste Substances at Levels Compatible with Cell Growth or Survival	
Organelles that transform or sequester toxic or waste substances	
Vacuoles	
ATP6c(Vacuolar H+ ATPase proton channel subunit)	M62762
Lysosomes	
ATP6a1 (ATPase, H+ Transporting, Lysosomal (Vacuolar Proton Pump), Alpha Polypeptide, 70kD)	L09235
ATP6b1(ATPase, H+ transporting, lysosomal (vacuolar proton pump), beta polypeptide, 56/58kD)	M25809
ATP6d(ATPase, H+ transporting, lysosomal (vacuolar proton pump) 42kD)	X69151
ATP6e(ATPase, H+ transporting, lysosomal (vacuolar proton pump) 31kD)	X71490
ATPase, H+ transporting, lysosomal (vacuolar proton pump) 31kD	X76228
Free radical inactivation	
Superoxide Dismutase	X02317
Maintenance of cellular redox potential at levels compatible with cell survival	

232/116

Conditionally essential genes

As indicated in the Summary, some genes are conditionally essential, meaning that they are essential for cell survival or proliferation only in certain circumstances. Most commonly such circumstances are related to changes in the environment, 5 such as changes in the concentration of specific constituents such as nutrients, administration of pharmaceuticals (drugs), or physical elements affecting the cell. In many cases the changes in the environment may be induced as part of a treatment regiment for cancer such as the administration of drugs or ionizing radiation. In the presence of such specific environmental changes or therapies, 10 genes with are not normally essential for cell survival or proliferation become essential and, consequently, targets for therapy under the present invention. Therapy with inhibitors of conditionally essential genes involves administration of the inhibitor together with a chemical or physical elements that causes the target gene to be essential for cell survival or proliferation. The use of allele specific inhibitors in the current invention allows specific killing of cancer cells with such 15 chemical or physical agent since the gene function that is essential for the survival of cells (in the presence of the chemical or physical agent) is inhibited in the cancer cell but not in the normal cell.

This strategy begins with the identification of heterozygous alleles of genes coding for proteins that are conditionally essential for cell viability or growth due to change in the chemical or physical environment. In one aspect of this invention, the gene targets of this application are responsible for mediating cell response to changes in the environment. Such environmental alterations include, for example, changes in the concentration of naturally occurring constituents such as amino acids, sugars, lipids and inorganic and organic ions, as well as larger molecules such as hormones or antibodies, or changes in the partial pressure of oxygen or other gasses. The absence of a specific constituent in the environment makes the genes that are involved in synthesizing that nutrient within the cell essential,

96 232/116

whereas if the constituent were present in the environment in sufficient quantities, such genes would not be essential. Alternatively, high concentrations of a specific constituent in the environment may make genes that are responsible for eliminating or detoxifying that constituent within the cell essential, wheras, if the constituent were absent or present in normal concentrations, such genes would not be essential. Changes thus may involve either an increase or a decrease in specific constituents of the environments including nutrients, inorganic, or organic materials.

In another aspect of this invention, the gene targets of this application are responsible for maintaining cell survival or proliferation in the presence of a drug or biological material. For example, a drug that inhibits one pathway for maintaining the level of a cellular constituent within levels required for cell survival or proliferation may make alternative pathways essential. In a specific embodiment, the inhibition of a synthetic pathway for a cellular constituent may make alternative synthetic pathways essential for cell survival or proliferation. Alternatively, a drug that is toxic to the cell will make genes that are involved in the elimination, degradation, or excretion of the drug from the cell essential for continued survival or proliferation. It will be evident to those skilled in the art that anything which inhibits the ability of a cell to survive in the presence of a specific drug that is designed to be cytostatic or cytotoxic, will sensitize that cell to the effects of the drug. A "chemosensitizing" agent is one that inhibits a function in the cell that is conditionally essential due to the administration of a chemotherapeutic drug.

In another aspect of this invention, the gene targets of this application are responsible for maintaining cell survival or proliferation in response to external physical forces including, but not limited to, electromagnetic radiation of various amplitudes and wavelengths, including ionizing and nonionizing radiation and heating or cooling. In the presence of ionizing radiation, for example, genes that are

10

15

97 232/116

involved in DNA repair may be essential that are not essential in the absence of the external physical force. An agent that inhibits functions in the cell that are essential due to the administration of ionizing radition would be termed a "radiosensitizing" agent.

- In each instance, treatment of cancer or noncancer proliferative diseases may be achieved by identifying genes that are conditionally essential in the presence of specific environmental, pharmacological, or physical factors, determining whether such genes are subject to loss of heterozygosity, identifying alternative alleles in these genes and developing allele specific inhibitors of alternative forms of the gene.
- The administration of such an inhibitor to a patient who has two alternative forms of the gene in normal cells but only one in the cancer cell due to LOH, together with the environmental, pharmacological or physical factors will result in an antiproliferative effect or killing of the cancer cell.

Different environmental, pharmacological, and physical changes in the environment that result in homeostatic or compensatory responses in which genes that are not normally essential for cell survival or proliferation become essential are known in the art. These are described in the following Table 2.

Table 2

	1	Changes in the concentration of constituent in the environment		
20		□ Char	nge in nutritional environment	
		□ Char	nge in hormonal environment	
		□ Cha	nge in the immunological environment	
		□ Pres	sence or accumulation of toxic materials	
		□ Chai	nge in partial pressure of oxygen	
25		□ Cha	nge in partial pressure of carbon dioxide.	
		□ Chai	nge in partial pressure of other gasses including nitrous oxide	
	2.	Administration of pharmaceuticals including small molecules, biologicals		

98 232/116

- 3. Physical changes
 - Electromagnetic radiation
 - □ Ionizing radiation including Alpha particles, Beta particles, Gamma radiation

Non-ionizing radiation including infrared radiation, microwave radiation, other wavelengths

□ Temperature

When LOH results in a difference in normal cell genotype vs. cancer cell genotype that affects a locus encoding a product affecting the cells' ability to survive in the presence of an environmental change, a pharmaceutical or biological agent, or a 10 physical factor, there is an opportunity to exploit a therapeutic window between cancer cells and normal cells. Below we describe specific examples of genes that (1) affect cell responses to altered environments, (2) are located on chromosomes that undergo LOH in cancer and (3) exist in two or more variant forms. These examples 15 have been selected to illustrate how the therapeutic strategy described in this application would work with a variety of different alterations in chemical or physical environment. Example 43 describes a gene (Dihydropyrimidine Dehydrogenase) that mediates response to an altered chemical environment (presence of the toxic chemical 5-floxuridine) by specifically transforming the chemical to an inactive 20 metabolite. Example 39 describes a gene (Methylguanine methyltransferase) that mediates response to an altered chemical environment (presence of toxic chemicals such as nitrosourea or other alkylating agents) by removing methyl or alkyl adducts to DNA, the principal toxic lesion of these agents. Example 44 describes a set of genes (Fanconi Anemia genes A,B,C,D,E,F,G and H) which mediate response to an 25 altered chemical environment (presence of chemicals which cause DNA crosslinking, such as diepoxybutane, mitomycin C and cisplatinum) by repairing the crosslinks. Example 48 describes a set of genes (the DNA Dependent Protein Kinase Complex, including the DNA Dependent Protein Kinase catalytic subunit (DNA-PKcs), the DNA binding component (called Ku), made up of Ku-70 and 30 Ku-86 kDa subunits, and the Ku-86 related protein Karp-1) that mediates repair of

232/116

double stranded DNA breaks, such as occurs after x-irradiation. Example 45 describes a gene (asparagine synthase) that mediates response to an altered nutritional environment (absence of extracellular asparagine) which can be produced by an enzyme such as asparaginase, which hydrolyzes serum asparagine. Example 49 describes the Ataxia Telangiectasia gene, which is involved in response to ionizing radiation and radiomimetic chemicals. Other detailed examples include methionine synthase (Ex. 46) and methylthioadenosine phosphorylase (Ex. 47). Other examples include Poly (ADP) Ribose Polymerase (PARP), Glutathione-S-Transferase pi (GST-pi), NF-kappa B, Abl Kinase, 3-alkaylguanine alkyltransferase, N-methylpurine DNA glycosylase (hydrolyzes the deoxyribose N-glycosidic bond to excise 3-methyladenine and 7-methylguanine from alkylating agent-damaged DNA polymers), OGG-1, MDR-1.

The table below presents exemplary categories and exemplary specific genes along with the type of conditions which render the gene essential.

15 Table 3: Categories of Conditionally Essential Genes

Genes and proteins vital for cell survival or proliferation in the presence of an altered chemical or physical environment

I. Genes required for adaptation to changes in the chemical environment

- 1. Adaptation to altered concentration of a naturally occuring small molecule
 - A. Increased concentration of a naturally occuring small molecule
- i. Increased levels of amino acids
 - 1. Targets: amino acid degradation pathways

100 232/116

Increased intracellular levels of amino acids can damage cells. One cause of such increased levels is failure to properly degrade amino acids into simpler compounds. Therefore an amino acid catabolizing enzyme can be a conditionally essential gene, particularly in the presence of elevated levels of the twenty amino acids commonly used in protein synthesis. Amino acid catabolic pathways are well described in textbooks and in the scientific literature.

- ii. Increased levels of sugars or starches
 - 2. Targets: mono, di and polysaccharide metabolic pathways
 Galactose-1-phosphate uridyltransferase
 Galactose kinase

UDPgalactose-4-epimerase

Increased intracellular levels of sugars or starches can damage cells. One cause of increased levels is failure to properly degrade starches into simple compounds, as exemplified by diseases of impaired polysaccharide metabolism. Therefore a polysaccharide catabolizing enzyme can be a conditionally essential gene, specifically in the presence of elevated levels of particular polysaccharides. A second mechanism of damage arises in the context of impaired sugar metabolism. Thus enzymes that degrade sugars or starches to simpler compounds may be conditionally essential for cell health and consequently cell proliferation. An example is the enzymes of the Leloir pathway of galactose metabolism. Mutant copies of these proteins make cells conditionally sensitive to elevated concentrations of galactose. Thus enzymes that degrade sugars or starches to simpler compounds may be conditionally essential for cell proliferation.

10

- iii. Increased levels of vitamins
- B. Decreased concentration of a naturally occuring small molecule

232/116

i. Decreased levels of amino acids

1. Targets: amino acid transporters

Decreased intracellular levels of amino acids can impair protein synthesis and thereby slow or arrest cell division. One cause of such decreased levels is impairment of cellular uptake of amino acids, particularly amino acids that the cell is not actively synthesizing, whether essential (e.g. methionine) or nonessential (e.g. asparagine; see examples). Cells have a variety of mechanisms for amino acid uptake, including membrane anchored transporters. In the presence of decreased extracellular levels of amino acids the protein and other constituents of these transporters become conditionally more essential.

5

- 2. Targets: amino acid biosynthetic machinery
 - a. Essential amino acids

Methionine Synthase, essential for responding to decreased extracellular methionine. (GenBank U73338)

b. Non-essential amino acid biosynthesis

extracellular glutamine. (GenBank Y00387)

Asparagine Synthase, essential for responding to decreased extracellular asparagine. (GenBank M27396)
Glutamine Synthetase, essential for responding to decreased

15

102 232/116

Decreased intracellular levels of amino acids can impair protein synthesis and thereby slow or arrest cell division. One cause of such decreased levels is impairment of amino acid biosynthesis, particularly amino acids that the cell is not actively synthesizing, whether essential (e.g. methionine) or nonessential (e.g. asparagine; see examples). Cells have a variety of well described biochemical pathways for biosynthesis of the 20 amino acids commonly used in proteins. These biosynthetic enzymes can be conditionally essential in the absence of adequate intracellular levels of amino acids. Specific examples of such conditionally essential genes are described in the Examples. However, other enzymes which catalyze reactions important for maintaining levels of amino acids adequate for protein synthesis in the presence of decreased extracellular concentrations are also useful.

3. Targets: transaminases

In the presence of decreased extracellular levels of amino acids cells must increase intracellular mechanisms for amino acid biosynthesis. One such mechanism is transfer of amino groups from nonessential to essential amino acids to compensate for insufficient quantities of essential amino acids. These reactions are catalyzed by transamin-ases, which therefore can become conditionally essential in environments characterized by decreased levels of extracellular amino acids.

5

ii. Decreased levels of sugars

1. Targets: sugar transporters

10

2. Targets: sugar metabolism machinery

232/116

Increased intracellular levels of sugars or starches can damage cells. One cause of such increased levels is failure to properly degrade starches into simple compounds, as exemplified by diseases of impaired polysaccharide metabolism. Therefore a sugar or poly-saccharide catabolizing enzyme can be a conditionally essential gene in the presence of elevated levels of particular sugars or polysaccharides.

- 2. Adaptation to presence of non-naturally occuring molecules
- 5 A. Elimination of non-naturally occuring molecules
 - i. Elimination by export

Multidrug resistance gene/P glycoprotein (MDR1) (GenBank AF016535) Multidrug resistance associated proteins 1-5 (MRPs) (GenBank L05628)

Cells have evolved specific mechanisms to export a variety of chemicals, including nonnatural chemicals such as cytotoxic drugs. MDR1 and MRP are exemplary ATP-dependent transmembrane drug-exporting pumps. Deficiency of these pumps is associated with increased sensitivity to a variety of cytotoxic drugs in vitro and in vivo. For example, mice lacking functional MRP are hypersensitive to the drug etoposide. Thus these pumps are important for cell survival in the presence of a variety of toxic drugs. Polymorphisms have been reported in MDR1 at amino acids 893 and 999. MDR also maps to a region of chromosome 7 which is frequently affected by LOH in prostate, ovarian breast and other cancers.

15

10

Multispecific organic anion transporters (MOATs) Other drug export proteins

- ii. Elimination by metabolic transformation
 - 1. Specific metabolic transformation of drugs

104 232/116

a. Inactivation of bleomycin

Bleomycin hydrolase (GenBank U14426)

5

Bleomycin hydrolase was discovered through its abililty to detoxify the anticancer glycopeptide bleomycin. Cells lacking bleomycin hydrolase are highly susceptible to bleomycin toxicty (for example pulmonary fibrosis) thus the gene is conditionally essential for cell growth and survival in the presence of bleomycin. Bleomycin hydrolase is a member of the cysteine protease papain superfamily. The protein is expresed in all tissues surveyed. The crystal structure of the closely related yeast bleomycin hydrolase has been determined. A common A/G polymorphism has been described at nucleotide 1450 of the bleomycin hydrolase gene. It results in an isoleucine-valine variance at amino acid 443, part of the oligomerization domain of the homotetrameric enzyme. The Bleomycin hydrolase gene has been mapped to the proximal long arm of chromsome 17 (17q11.2), a site of frequent LOH in commonly occurring epithelial cancers such as breast and ovarian cancer.

b. Inactivation of pyrimidine analogs including 5-fluorouracil (5-FU) and 5-fluorouridine.

10

Dihydropyrimidine Dehydrogenase (DPD)

β - ureidopropionase

β - alanine synthetase

DPD is described in the examples. The other two enzymes are responsible for the further metabolism of dihydro-5-fluorouracil, the metabolic product of DPD. In the absense of these enzymes toxic metabolites of 5-FU accumulate in cells.

15

c. Inactivation of of pyrimidine analogs including cytosine arabinoside and 5-azacytidine.

232/116

Cytidine deaminase

Cytidine deaminase (CDA) catalyzes hydrolytic deamination of cytidine or deoxycytidine. It can also deaminate cytotoxic cytosine nucleotide analogs such as cytosine arabinoside, rendering them nontoxic. Resistance to the cytotoxic effects of these drugs has been reported associated with increased expression of the CDA gene. Thus CDA is a conditionally essential gene in the presence of cytotoxic cytosine nucleotide analogs.

5

d. Inactivation of thiopurine drugs, including 6-mercaptopurine, 6thioguanine and azathioprine.

Thiopurine methyltransferase (GenBank U12387)

10

e. Inactivation or transformation of other drugs including, but not limited to, purine analogs, folate analogs, topoisomerase inhibitors and tubulin acting drugs via specific enzymatic modification.

15

2. General metabolic transformation of drugs

25

30

a. Cytochrome P450 system.

CYP1

CYP2

```
20
```

CYP1A1 (GenBank K03191) **CYP1A2** (GenBank M55053)

CYP2A6 (GenBank U33317)

CYP2A7 CYP2B6 CYP2B7

CYP2C8 CYP2C9 (OMIM 601130)

CYP2C17 CYP2C18

CYP2C19 (OMIM 124020) CYP2D6 (OMIM 124030)

CYP2E1 (OMIM 124040)

CYP2F1

CYP3

35

CYP3A3 CYP3A4 (GenBank D00003)

CYP3A5

CYP3A7

WO 98/41648

106

232/116

PCT/US98/05419

CYP4

CYP4B1

CYP7

CYP11

CYP17

CYP19

CYP21

CYP27

The cytochrome P450s are a large gene family whose members metabolically transform and inactivate a wide variety of drugs, including cytotoxic drugs. Wide variation in P450 protein expression has been described, including null alleles. For example cytochrome P450 2D6 may be involved in the metabolism of ~25% of all drugs. Between 5 and 10% of all caucasians are homozygous for completely inactive alleles of P450 2D6. In the presence of a toxic drug the P450 enzyme responsible for metabolizing the drug may be conditionally essential. For example, acute liver faillure has been reported in a patient treated with cyclophosphamide who was homozygous for the deficient CYP 2D6B allele. Liver failure was due to accumulations of a hepatotoxic 4-hydroxylated cyclophosphamide metabolite.

10

5

- b. N-acetyltransferases
- c. Glucuronyltransferases

15

d. Glutathione transferases

Glutathione transferase alpha (GenBank AF020919) Glutathione transferase theta (OMIM 600436 & 600437) Glutathione transferase mu (OMIM 138350, 138380,

138380, 138333 & 138385)

Glutathione transferase pi (GenBank X65032)

A large number of drugs are are biotransformed into electrophilic intermediary compounds which are potentially harmful to cell constituents unless rendered harmless by conjugation with glutathione. Thus proteins of the GST system are conditionally essential for cell survival.

- B. Repair or prevention of damage by non-naturally occuring molecules
 - i. Repair or prevention of damage by molecules that react with nucleic acids
 - 1. Molecules that add alkyl or other groups to DNA
 - a. Targets: genes & gene products involved in repair of alkylating agent damage

Methylguanine Methyltransferase (MGMT) (GenBank M29971)

3-alkylguanine alkyltransferase

3-methyladenine DNA glycosylase (GenBank M74905)

MGMT is described in the examples. hOGG1 is a DNA glycosylase with associated lyase activity that excises this adduct and introduces a strand break. Cells lacking this protein are deficient in repair of oxidative damage and have high mutation rates. In conditions of high oxidative damage, including cellular aerobic metabolism, ionizing radiation and some chemotherapy drugs the hOGG1 gene would be conditionally essential for DNA repair. The human OGG1 gene maps to chromosome 3p25, a region of high frequency LOH in lung, kidney, head and neck and other cancers. Homozygous mutant mouse cells lacking 3-methyladenine DNA glycosylase have increased sensitivity to alkylation induced chromosome damage and cell killing.

- 2. Molecules that induce single or double stranded DNA breaks (also relevant to survival in the presence of ionizing radiation; see below)
 - a. Targets: genes & gene products involved in repair of double stranded DNA breaks

DNA Dependent Protein Kinase (DNA-PK) and subunits Catalytic subunit of DNA-PK (GenBank U47077) DNA binding subunit of DNA-PK (Ku subunit) Ku-70 subunit (GenBank J04611)

15

10

5

20

PCT/US98/05419 WO 98/41648

108

232/116

Ku-86 subunit (OMIM 194364/GenBank AF039597) KARP-1

Poly (ADP-ribose) polymerase (PARP) (GenBank M32721)

-1 mose) horyme	erase (I ARI) (Gelibalik Wi52/21)		
5	b. Targets: genes & gene products that repair DNA cross- links induced by molecules such as Mitomycin C or		
	diepoxybutane		
	Fanconi Anemia genes		
10	Fanconi Anemia A gene (GenBank X99226)		
	Fanconi Anemia B gene		
	Fanconi Anemia C gene (GenBank X66894)		
	Fanconi Anemia D gene		
	Fanconi Anemia E gene		
15	Fanconi Anemia F gene		
	Fanconi Anemia G gene		
	Fanconi Anemia H gene		
	4. Targets: genes & gene products required for repair of DNA		
20	damage caused by drugs such as, for example, 4-nitroquinoline		
	-1-oxide, bromobenz(a)anthracene, benz(a)anthracene epoxide,		
	1-nitorpyridine-1-oxide, acetylaminofluorine and aromatic		
	amides, benz(a)pyrene.		
25	a. Nucleotide excision repair system		
	ERCC-1 (GenBank M13194)		
	ERCC2/XPD (GenBank X52222)		
	ERCC3/XPB (GenBank M31899)		
	ERCC4 (OMIM 133520)		
30	ERCC5 (GenBank L20046)		
	ERCC6 (GenBank L04791)		
	b. Other DNA repair genes		
	XPA (GenBank D14533)		
35	XPC (GenBank D21090)		
	XPE (GenBank U18300)		
	HHR23A (GenBank U21235)		
	HHR23B (GenBank D21090)		
40	Uracil glycosylase (GenBank X52486)		
40	3-methyladenine DNA glycosylase (GenBank M74905)		

- ii. Repair of damage by chemicals that interact with proteins
- iii. Repair of damage by chemicals that interact with membranes

232/116

1. Free radical damage

iv. Adaptation to molecules that alter the cellular redox state (such as pyrrolidinedithiocarbamate)

- 3. Adaptation to change in nutritional environment
 - A. Decreased levels of nutrients.

10

5

- B. Increased levels of nutrients.
- 4. Change in hormonal environment
- 15 A. Decreased levels of hormones.
 - B. Increased levels of hormones.
 - 5. Change in the immunological environment

20

- A. Introduction of new immune molecules (antibodies or antibody fragments)
- B. Introduction of immune regulatory molecules

25

Fanconi anemia C NF-kappa B (GenBank M58603)

Cells lacking the Fanconi anemia C gene have been shown hypersensitive to interferon gamma in vitro. Cells lacking the RelA/p65 subunit of NF kappa B are essential for preventing Tumor Necrosis Factor alpha induced cell death. Other Fanconi anemia genes or other proteins of the NF-Kappa B system and its regulators, for example I kappa B, may also mediate sensitivity to immune system molecules, for example interferons, interleukins or TNF.

30

II. Changes in physical environment

1. Repair of damage caused by electromagnetic radiation

110 232/116

A. Repair of damage caused by ionizing radiation (Alpha particles, Beta particles, Gamma radiation)

- i. DNA-PK constitutents (see above)
- ii. Other proteins that repair DNA damage created by DNA-PK

XRCC4 (GenBank U40622)

XRCC5/Ku80 (OMIM 194364)

XRCC6

XRCC7 (GenBank L27425)

iii. Other proteins that repair or protect from DNA damage Glutathione-S-transferase (alpha, theta, mu and pi proteins)

Transfection of an exogenous Glutathione-S-transferase pi (GST-pi) gene is partially protective of cells treated with ionizing radiation. Thus GST activity is conditionally essential for cells exposed to ionizing radiation. Similarly, any protein that is essential for the repair of radiation induced damage or for protection of cells from radiation induced damage is a conditionally essential gene. GST activity can also affect radiation sensitivity in the presence of electron affinic drugs such as the nitroimidazoles.

I-kappa B alpha (GenBank M69043)

Increased expression of exogenous I kappa B-alpha, an inhibitor of NF-kappa B, increases cell sensitivity to ionizing radiation. Thus is conditionally essential for cells exposed to ionizing radiation. Other proteins of the NF kappa B pathway that affect radiosensitivity are likewise conditionally essential in the presence of ionizing radiation.

- B. Non-ionizing radiation
 - i. infrared radiation
 - ii. ultra high frequency electromagnetic radiation (UHF)

Glutathione S transferase system (see genes listed above)

15

20

10

232/116

UHF electromagnetic radiation of 434 Mhz will change resonance of the glutathione cycle resulting in thiol depletion which increases radiosensivity. UHF is therefore a radiosensitizing treatment, contingent on the status of the glutathione system.

iii. Other wavelenths of electromagnetic radiation

- 5 2. Temperature
 - A. Heating
 - 1. Heat shock proteins

HSP70 (OMIM 138120)

10

HSP27 (GenBank X54079)

- B. Cooling
 - 2. Cold sensitive proteins
- 15 3. Change in redox environment, including change in partial pressure of gasses
 - A. Change in partial pressure of oxygen
 - i. Repair of damage from reactive oxygen species

8-oxoguanine DNA glycosylase (hOGG1) (GenBank U96710)

20

The major mutagenic lesion caused by exposure to reactive oxygen species is 8-oxoguanine. hOGG1 is a DNA glycosylase with associated lyase activity that excises this adduct and introduces a strand break. Cells lacking this protein are deficient in repair of oxidative damage and have high mutation rates. In conditions of high oxidative damage, including cellular aerobic metabolism, ionizing radiation and some chemotherapy drugs the hOGG1 gene would be conditionally essential for DNA repair. The human OGG1 gene maps to chromosome 3p25, a region of high frequency LOH in lung, kidney, head and neck and other cancers.

Fanconi anemia genes (see above for list of 8 FA complementation groups; FA genes also mediate sensitivity to oxygen)

112 232/116

- B. Change in partial pressure of carbon dioxide.
- C. Change in partial pressure of other gases.

5

10

15

In addition to being hypersensitive to ionizing radiation Ataxia-Telangiectasia cells are hypersensitive to the nitric oxide donor S-nitrosoglutathione (GSNO), as are cells from some radiosensitive individuals without ataxia. GSNO induces dose-dependent DNA strand breakage; cell killing appears to be associated with formation of nitrite as the ultimate oxidation product of nitric oxide. Any protein important for response to damage induced by a dissolved gas is a conditionally essential gene in this category.

III. Identification of variances and alternative alleles.

A target gene of this invention must occur as alternative alleles in the population; that is, the DNA sequence variance should either affect the gene sequence, RNA sequence, or protein sequence of the gene or its gene products, which would facilitate the design of inhibitors of the protein product, or be a base difference anywhere within the genomic DNA sequence, including the promoter or intron regions. Such DNA sequence variance can be exploited to design inhibitors of transcription or translation which distinguish between two allelic forms of the targeted gene. Sequence variants that do not alter protein sequence can be targeted, for example, with antisense oligonucleotides or ribozymes.

The most elementary genetic variant, which is common in mammalian genomes, is the single nucleotide substitution. It has been estimated that the comparison of haploid genomes will reveal this type of variant every 300 to 500 nucleotides (Cooper, et al., Human Genetics, 69:201:205 (1985)).

Sequence variances are identified by testing DNA from multiple individuals from

the population(s) to determine whether the DNA sequence for the target gene differs in different individuals. Many different methods for identifying gene sequence variances are known in the art, several of which are described in detail in the Examples noted below. These include, but are not limited to: (1) sequencing using methods such as Sanger sequencing which is commonly performed using automated methods (Example 37); (2) Single Strand Conformation Polymorphism (Example 28); (3) DGGE (Example 36); (4) Computational methods (Example 30); (5) Chemical cleavage, (6) HPLC; (7) Enzymatic Mutation Detection, (Example 29); (8) Hybridization; (9) Hybridization arrays; and (10) Mass spectroscopy.

Often combinations of these methods are used. For example, methods such as 10 SSCP, DGGE, or HPLC are useful in identifying whether amplified gene segments from two individuals are identical or contain a variance. These methods do not identify the location of the variant site within the linear sequence of the amplified gene segment, nor do these methods identify the specific nature of the variance, namely the alternative bases within the variant site. Methods such as Enzymatic 15 Mutation Detection determines where the variant site is located within the sequence, but not the specific variance. Methods such as mass spectroscopy identify the specific variance, but not it location within the segment. Methods such as sequencing, computational analysis, and hybridization arrays can determine the location of the variance and specific sequence of the variance within the segment. 20 In addition, methods such as SSCP, DGGE, EMD, and chemical cleavage are useful for determining alleles containing more than one variant site, if such sites occur within a single amplified gene segment. For the purpose of this invention, methods have been used to identify novel variant sites within genes that are essential for cell survival or proliferation. With the above methods, the presence and type of 25 variance are preferably confirmed, such as by sequencing PCR amplification products extending through the identified variance site.

114 232/116

IV. Loss of Hertozygosity

Essential genes which are located in chromosomal regions which frequently undergo LOH in a tumor or other disease or condition provide advantageous targets, as the LOH of the chromosomal region indicates that the particular gene will also undergo LOH at similar high frequency. Also, essential genes which undergo LOH at high frequencies in a particular tumor, or in a range of tumor types provide advantageous targets, as a large number of patients will be potentially treatable due to the LOH of a particular essential gene.

Cancer cells, or more broadly cells associated with certain other proliferative 10 conditions, are generally genetically different from normal somatic cells as a result of partial or complete chromosome loss, called loss of heterozygosity (LOH), which occurs at the earliest stages of these disorders. In cancer, as a result of such early chromosome loss, all the tumor cells in an individual exhibit the same pattern of LOH since the cancer results from clonal expansion of the progenitor cell with 15 LOH. Losses of genes in LOH range from less than 5% of a chromosome, to loss of a chromosome arm, to loss of an entire chromosome. Generally only one chromosome copy is lost, making cancer cells partially hemizygous - i.e., they have only one allele of many genes. As a result of such allele loss, only the single remaining allele will be available to be expressed. Such loss of heterozygosity and 20 other losses of genetic material in cancers is described in a variety of references, for example in Mitelman, F., Catalog of Chromosome Aberrations in Cancer, New York: Liss (1988); and Seizinger, et al., "Report of the committee on chromosome and gene loss in neoplasia," Cytogenet. Cell Genetics, 58:1080-1096 (1991). A review of many published studies of LOH in cancer cells is provided in Lasko, 25 Cavenee, and Nordenskjold, "Loss of Constitutional Heterozygosity in Human Cancer," Ann. Rev. Genetics, 25:281-314 (1991).

There is considered to be a causal relationship between LOH and the origin of

cancer or other proliferative disorders. Loss of heterozygosity commonly involves chromosomes and chromosome segment that contain at least one tumor suppressor gene in addition to many other genes that may not have any function associated with cancer but are coincidentally located in the same region of the chromosome, measured in physical distance or genetic distance, as the tumor suppressor gene. Tumor suppressor genes generally regulate cell proliferation or are involved in initiating programmed cell death when threshold level of damage occurs to the cell. The loss of tumor suppressor gene function is believed to confer a growth advantage to cells undergoing LOH, because it allows them to evade these negative growth regulatory events. It is the loss of tumor suppressor genes, and the 10 proliferative advantage associated with loss of tumor suppressor functions, that drives allele loss or loss of heterozygosity. Loss of tumor suppressor gene function requires inactivation of both gene copies. Inactivation is usually due to the presence of mutations on one gene copy and partial or complete loss of the chromosome, or chromosome region, containing the other gene copy. (Lasko et al., 1991, Annu. 15 Rev. Genet. 25:281-314)

Several tumor suppressor genes have been cloned. They include, for example, TP53 on chromosome arm 17p, BRCA1 on 17q, RB and BRCA2 on 13q, APC on 5q, DCC on 18q, VHL on 3p, and p16^{INK4}/MTS1 on 9p. Many other, as yet uncloned, tumor suppressor genes are believed to exist based on LOH data; research groups are currently working to identify new tumor suppressor genes at more than a dozen genomic regions characterized by high LOH in cancer cells, including generating detailed LOH maps which provide LOH information useful for this invention due to the ability to identify essential genes which map to these regions of LOH. While there is an extensive literature considering tumor suppressor genes as potential targets for anti-cancer therapy, these genes are, in general, not candidates for antiproliferative therapy under the present invention because most tumor suppressor genes are not essential for cell proliferation or survival. To the contrary,

116 232/116

it is the loss of tumor suppressor genes that enables the abnormal proliferation and survival of cancer cells.

The pattern of LOH for a particular cancer or tumor or other proliferative disorder is not merely random. Often, there is a characteristic pattern for each major cancer type. Certain regions, including segments of chromosomes 3, 9, 11, 13, and 17, are frequently lost in most major cancer types. Other regions, such as on chromosomes 1, 3, 5, 6, 7, 8, 9, 11, 13, 16, 17, 18, and 22, exhibit high frequency LOH in selected cancers. It is believed that the characteristic LOH patterns of different cancers reflects the location(s) of tumor suppressor genes related to the development of the particular cancer or cancer type. Thus, essential genes located in regions which are characteristically associated with LOH for a particular cancer, or other tumor are particularly advantageous targets for inhibitors useful for treatment of that cancer or tumor because such genes will also characteristically undergo LOH at high frequency. The fact that certain cancers predictably undergo LOH in specific regions of the genome, and that LOH occurs before the clonal expansion of cancers in precancerous, abnormally proliferating tissue is potentially useful for preventing cancer with allele specific inhibitors of essential genes.

The treatment method described herein is applicable to proliferative disorders in which clonal proliferation occurs and in which the proliferating cells commonly undergo LOH. Another example of a disorder which has been characterized as a proliferative disorder is inflammatory pannus in arthritic joints. The demonstration of LOH associated with such a disorder will indicate that the allele specific treatment would be appropriate for the disorder. For the application of the general allele specific inhibition strategy to such conditions (e.g., selection of target gene and variance, identification of inhibitors, selection of composition and administration method appropriate for the condition and the inhibitor), the cells associated with the condition correspond with the tumor, e.g., cancer cells, for the

10

15

20

232/116

methods described in the Summary above.

LOH has been described for such polyclonal or oligoclonal disease conditions, in particular for atherosclerosis (arteriosclerosis), for example in Hatzistamou et al., 1996, Biochem. Biophys. Res. Comm. 225:186-190. Using a limited set of markers located on 18 chromosomal arms (one marker per arm), it was found that 23% of atherosclerotic plaques exhibited LOH for at least one marker. This does not necessarily represent the maximum fraction of plaques which could potentially be treated with allele specific inhibitors because the study did not attempt to determine the sites of maximum LOH on each arm. LOH which is partial arm LOH not affecting the particular marker for that arm was not detected. In general, fine scale LOH studies (using closely spaced markers) have revealed more sites of high frequency LOH than coarser scale studies.

The LOH for alleles of essential genes in cancers forms the basis for the anticancer therapeutic strategy described in Housman, *supra*. When one allele of the essential gene is lost from the patient's cancer cells, the retained allele can be targeted with an allele specific inhibitor. Such an inhibitor will kill, or reduce or prevent the growth of cancer cells by abolishing the function of an essential gene. Normal cells, which retain both uninhibited and inhibited alleles, will survive or grow due to the expression of the uninhibited allele. This is clearly indicated because tumor cells having only one allelic form (after LOH) thrive, thus, normal cells will also function normally with one of two allelic forms inhibited.

A large number of high frequency LOH regions are identified in Fig. 5. If not previously known, this correlation can be determined routinely for one or more tumor types by mapping of essential genes to chromosomal regions which have been identified as having high frequency LOH, or by identifying essential genes which map to locations near markers which have been identified as undergoing high

15

118 232/116

frequency LOH in a tumor. As previously described, the LOH of a marker near an essential gene, or the bracketing of an essential gene by two markers which undergo LOH, is strongly indicative that the essential gene also undergoes LOH at a similar frequency.

5 TABLE 4
Loss of Heterozygosity in Human Solid Tumors By Chromosome Arm

	Chro	mosome Region Tumor Type	Chro Type	mosome Region Tumor
-	1p	Breast carcinoma		
10		Cutaneous melanoma	2	Uveal melanoma
	(meta	stastic)		
		Medullary thyroid carcinoma:		
		MEN2A		
		Neuroblastoma		
1\$		Pheochromocytoma: MEN2A		
- 1		sporadic		
ı	1q	Breast carcinoma		
	_	Gastric adenocarcinoma		

Γ		12	4q	Hepatocellular carcinoma
	3p Bı	reast carcinoma	•	•
20	Ce	ervical carcinoma		
	Lı	ing cancer:		
		small carcinoma		
		non-small cell		
	carcinoma	carcinoma		
25		large cell carcinoma		
		squamous cell		
- 1	carcinoma			
		adenocarcinoma		
		Ovarian carcinoma		·
30	Re	Renal cell carcinoma: familial		
		sporadic		
L	Te	esticular carcinoma		

232/116

	5q	Colorectal carcinoma Hepatocellular carcinoma	6q tumor	Ovarian carcinoma Primitive neuroectodermal Renal cell carcinoma
L	· · · · · · · · · · · · · · · · · · ·			Testicular teratocarcinoma
Γ	9p	Glioma	10	Glioblastoma multiforme
	9q	Bladder carcinoma	10q	Hepatocellular carcinoma Prostate cancer
₹	11p	Adrenal adenoma	12q	Gastric adenocarcinoma
		Adrenocortical carcinoma	124	Castric adenocaremonia
		Bladder carcinoma		
		Breast carcinoma		
	113	Embryonal		
10	rnaoc	lomyosarcoma		·
		Hepatoblastoma Hepatocellular carcinoma		·
		Lung cancer:		
		squamous cell		
15	carcir		*	
		large cell carcinoma		
ŀ		adenocarcinoma		
		Ovarian carcinoma		
		Pancreatic cancer		
20	Parathyroid tumors			
	Pheochromocytoma			
		Skin cancer		
	squamous cell		l	
25	carcinoma			}
21		basal cell carcinoma Testicular cancer	ł	
		Wilms tumor		ľ
	11q	Insulinoma		
	114	Parathyroid tumors		
<u> </u>		1 and 191010 tulliois	<u> </u>	

120 232/116

5	13q	Adrenocortical adenoma Breast carcinoma Gastric carcinoma Hepatocellular carcinoma Lung cancer: small cell carcinoma Neuroblastoma Osteosarcoma Retinoblastoma	14 14q	Colorectal carcinoma Neuroblastoma
10	16 16q tumor	Breast carcinoma Breast carcinoma Hepatocellular carcinoma Primitive neuroectodermal Prostate cancer	17p carcino	Adrenocortical adenoma Astrocytoma Bladder carcinoma Breast carcinoma Colorectal carcinoma Lung cancer: small cell carcinoma squamous cell oma adenocarcinoma Medulloblastoma Neurofibrosarcoma: NF1 Osteosarcoma Ovarian carcinoma Primitive neuroectodermal
	18	Renal cell carcinoma	tumor 17q 22q	Rhabdomyosarcoma Breast carcinoma Neurofibroma: NF1 Acoustic neurinoma Colorectal carcinoma
	18q	Breast carcinoma Colorectal carcinoma		Ependymoma Meningioma Neurofibroma

V. Use of variance-specific inhibitors of essential genes to tr at non-malignant,proliferative conditions.

It was found in the present invention that noncancer proliferative disorders could also be targeted using such an allele specific strategy. Such conditions include, but are not limited to atherosclerotic plaques, abnormal tissue in arthritic joints, including pannus, benign tumors such as leiomyomas and meningiomas, and hyperplastic conditions such as benign prostatic hyperplasia. For most of these conditions there is evidence of a mono- or oligoclonal origin and evidence of LOH. Such evidence includes the following:

A recent study (Hatzistamou, J., Kiaris, H., Ergazaki, M., et al. (1996) Loss of heteroxygosity and microsatellite instability in human atherosclerotic 10 plaques. Biochemical and Biophysical Research Communications 225: 186-190.) demonstrated that allele loss occurs in atheromatous plaques, which have long been viewed as benign neoplastic proliferations by some investigators (Benditt, E.P. and J.M. Benditt (1973) Evidence for a monoclonal origin of human atherosclerotic plaque. Proc. Natl. Acad. 15 Sci. U. S. A. 70: 1753-7). Each atheromatous plaque constitutes a separate independently arising primary lesion. Consequently, allele loss in individual atherosclerotic plaques will differ, with, for example, allele A of a hypothetical essential gene lost in some plaques and allele A' in others. An inhibitor of allele A would be expected to kill (or arrest 20 growth of) only about half of all the plaques with allele loss at the hypothetical locus - those plaques hemizygous for A. To kill the other half of the plaques with allele loss at the target locus would require an inhibitor of A'. Simultaneous use of inhibitors of A and A' would be highly toxic to diploid normal cells. However serial use of an inhibitor 25 directed to allele A followed by an inhibitor directed to A' (perhaps repeating treatment for several cycles, or even indefinitely) would alternately abolish essential gene function in one half of all haploid plaque cells and then the other half, leading eventually to death or sustained inhibition of proliferation of all plaque cells. Normal cells would retain

122 232/116

50% gene function in the presence of inhibitor (either from allele A or allele A'). This therapeutic approach is applicable to the eradication of any clonal proliferation of cells in which allele loss has rendered the cells partially haploid.

- LOH has been described in a wide variety of premalignant conditions such as metaplasia and dysplasia of colonic epithelium, breast epithelium, lung epithelium and cervical epithelium. Most studies have focused on metaplastic or dysplastic epithelium adjacent to cancer tissue, and have shown patterns of LOH similar to those in the adjacent malignant epithelium. Prophylactic ablation of such premalignant tissues could prevent the subsequent development of cancer.
- In benign tumors such as leiomyomas and parathyroidomas, which frequently must be surgically removed, LOH has been well described. As with atherosclerotic plaques, these tumors are frequently multifocal and therefore the approach of serial inhibition of allele A followed by inhibition of allele A' would alternately abolish essential gene function in one half of all haploid tumor cells and then the other half, leading eventually to death or sustained inhibition of proliferation of all tumor cells.
- LOH has been described in endometriosis, a proliferative condition associated with pain and infertility and frequently requiring surgical removel of endometrial tissue growing outside the uterine cavity. As with atherosclerotic plaques, there is only one study published to date and the frequency of LOH is low (15-18%), however the study examined only six chromosome arms; additional studies may lead to identification of regions of higher frequency LOH
 - LOH is apparently the necessary event in the development of cyts in some, and possibly all, forms of autosomal dominant polycystic kidney disease (ADPKD). (There are three forms, with ADPKD1 accounting for about

15

20

.85% of cases and ADPKD2 about 15% of cases.) LOH has been demonstrated by genetic analysis of the cells lining cyst walls in kidneys of ADPKD1 patients: the cells have undergone LOH for markers flanking the ADPKD1 gene. As a result the cyst cells lack functional ADPKD1. 5 (Patients with ADPKD inherit one defective copy of an ADPKD gene from their parents.) Only about 20% of cysts were shown to have LOH when studied with a few markers, but this likely reflects, at least to some extent, technical difficulties in obtaining pure populations of cyst cells for analysis. The extent of loss of heterozygosity in cyst cells has not been well studied; only several polymorphic markers in the vicinity of the ADPKD1 gene on chromosome 16p were tested in one study (Qian, F., Watnick, T.J., et al. The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87:979-987, 1996.) Another study found one case of LOH on chromosome 3p, distant from the ADPKD gene. Future LOH studies may reveal more extensive LOH in ADPKD. Also, it is worth noting that, unlike malignancy where it is desirable to eradicate all disease cells, eradication of a fraction of the cysts in ADPKD would be expected to have a significant beneficial effect. This is evident from the disparate clinical presentation of ADPKD, with varying numbers of cyts being associated with varying degrees of impairment of kidney function.

- Other conditions in which LOH has been demonstrated include hamartomas in tuberous sclerosis patients, odontogenic keratocysts and pterygia (benign lesions of the corneoconjunctival limbus).
- 25 Other conditions in which there is evidence of clonal proliferation include inflammatory pannus in arthritic joints, benign prostatic hypertrophy, and hereditary hemorrhagic telangiectasia. (Qian, F. and G.G. Germino. "Mistakes Happen": Somatic Mutation and Disease. Am. J. Hum. Genet. 61: 1000-1005, 1997.)

124 232/116

Thus, consistent with the Summary above, it was found that LOH occurs in many non-malignant neoplasias or tumors with subsequent clonal growth of cells which contain only one allelic form in individuals whose normal somatic cells are heterozygous for the particular essential gene. The essential gene can therefore be inhibited by an allele specific inhibitor, *i.e.*, a variance specific inhibitor. In some conditions, however, multiple, independently arising lesions in an individual are subjected to LOH in a disease or condition, *e.g.*, in the development of atherosclerotic plaques. For that example, in individuals heterozygous for a particular essential gene which undergoes LOH, this results in some atherosclerotic plaques in which cells have one of the allelic forms of an essential gene, and other plaques in which cells have the alternative form of the gene.

It was determined that such conditions can be treated using allele specific inhibitors despite the presence of both alleles in cells related to the condition. 15 There are two strategies for such therapy. The first is to serially administer different inhibitors targeted to the different allelic forms of the target gene. This can be accomplished by using inhibitors which target the alternative sequence variants of one sequence variance site. Simultaneous administration of inhibitors of both allelic forms of an essential gene would inhibit the cells which have 20 undergone LOH at that gene, but would also inhibit the normal heterozygous cells of the individual. This treatment would inhibit essential functions in normal cells as well as cancer cells and have no advantage over the administration of conventional antiproliferative drugs, many of which are inhibitors of known essential functions. In contrast, administration of the first inhibitor targets the 25 subset of cells which have only the first allelic form of an essential gene. As described for the general strategy, this inhibitor will not significantly affect the growth or survival of the normal heterozygous somatic cells. This first administration is followed by administration of a second inhibitor; the second

125 232/116

inhibitor targets the cells which contain only the second allelic form of the gene, and again does not significantly affect the normal somatic cells. This process of alternating administration can be repeated as needed to achieve a desired therapeutic effect. In some cases many rounds of alternating administrations will be useful. Similarly, recurring, or even indefinitely continued alternating administrations will provide useful treatment. Likewise, these methods can incorporate the use of inhibitors targeted to specific alleles of a plurality, e.g., 2, 3, 4, or more different target genes.

In certain instances, even though the lesions in non-malignant diseases are not clonal, there may be systematic loss of one parental chromosome allowing effective therapy with only one variance-specific inhibitor. This would occur, for example, if there were an inherited or early embryonic mutation within a tumor suppressor gene on one parental chromosome, in which case any event which was associated with the elimination of the corresponding normal tumor suppressor gene on the other parental chromosome would lead to abnormal proliferation. In such cases a variance-specific inhibitor of an essential gene that was closely linked to the normal tumor suppressor gene would preferentially kill cells in the proliferating lesion.

VI. Characteristics of allele-specific inhibitors

As indicated above "allele specific inhibitors" or " allele specific anti-neoplastic agents" represent a new approach to tumor therapy because they are lethal or significantly inhibit the growth only of tumor cells. The advantages of this approach include, first, lack of toxicity to the normal cells of the patient resulting in a therapeutic index greater than that of conventional tumor, e.g., cancer chemotherapy drugs, and second, it is not necessary that the inhibitors be targeted specifically to the tumor cells, as they can be administered systemically. As also described above, usually an allele specific inhibitor is specific for a single

126 232/116

sequence variance of an essential gene, though in some cases the inhibitor utilizes the joint effects of two or more sequence variances on a particular allele.

It is not necessary for the allele specific inhibitor to have absolute specificity. Normal cells expressing equal amounts of two allelic forms of a gene product encoded by the essential gene will often show a reduction in gene activity when they take up the inhibitors of this invention, but should remain viable due to the activity of the protein encoded by the uninhibited allele. On the other hand, tumor cells expressing only one allele due to LOH, will respond to the inhibitors of this invention which are specifically directed to the remaining allele, with a greater reduction in gene activity. Growth of tumor cells exposed to the inhibitors of this invention will be inhibited due to the suppression of either the synthesis or the biological activity of the essential gene product.

Also, while a single gene has only two allelic forms in any given individual, the gene can have more than two allelic forms in a human population. Accordingly, inhibitors can be targeted to any of the alleles in the population. A particular inhibitor will generally be targeted to a subset of the allelic forms; the members of the subset will have a particular sequence variance which provides the specific targeting. In some cases, however, the inhibitor will jointly target two, or possibly more sequence variances.

Once two or more alleles are identified for a target essential gene, inhibitors of high specificity for an allele can be designed or identified empirically. Inhibitors that can be used in the present invention will depend on whether allelic variation at a target locus affects the amino acid sequence, the mRNA sequence, or the DNA in intron and promoter regions. If there is variation at the protein level, then classes of inhibitors would include low molecular weight drugs, oligopeptides and their derivatives, and antibodies, including modified or partial

5

10

antibody fragments or derivatives. For mRNA or DNA sequence variance the main class of inhibitors are complementary oligonucleotides and their derivatives and catalytic RNA molecules such as ribozymes, including modified ribozymes. The generation of inhibitors of this invention can be accomplished by a number of methods. The preferred method for the generation of specific inhibitors of the targeted allelic gene product uses computer modeling of both the target protein and the specific inhibitor. Other methods include screening compound libraries or microorganism broths, empirical screening of libraries of peptides displayed on bacteriophage, and various immunological approaches.

Further, in the treatment of cancer patients, a therapeutic strategy includes using more than one inhibitor of this invention to inhibit more than one target. In this manner, inhibitors directed to different proteins essential to cell growth can be targeted and inhibited simultaneously. The advantage of this approach is to increase the specificity of the inhibition of proliferation of cancer cells, while at the same time maintaining a low incidence of side effects.

A. Targeted Drug Design.

Computer-based molecular modeling of target proteins encoded by the various alleles can be used to predict their three-dimensional structures using computer visualization techniques. On the basis of the differences between the three-dimensional structure of the alternate allelic forms of the proteins, determinants can be identified which distinguish the allelic forms. Novel low molecular weight inhibitors or oligopeptides can then be designed for selective binding to these determinants and consequent allele-specific inhibition. Descriptions of targeted drug design can be found, for example, in I. Kuntz, "Structure-Based Strategies for Drug Design and Discovery," *Science* 257:1078-1082 (1992) and J. Dixon, "Computer-Aided Drug Design: Getting the Best Results," *Trends in Biotechnology* 10:357-363 (1992). Specific applications of the binding of

molecules to receptors using computer modeling have been described in Piper et al., "Studies Aided by Molecular Graphics of Effects of Structural Modifications on the Binding of Antifolate Inhibitors to Human Dihydrofolate Reductase," Proc Am. Assoc. Cancer Res. Annual Meeting 33:412 (1992); Hibert et al., "Receptor 3D-Models and Drug Design," Therapie (Paris) 46:445-451 (1991)(serotonin receptor recognition sites). Computer programs that can be used to conduct three-dimensional molecular modeling are described in G. Klopman, "Multicase 1: A Hierarchical Computer Automated Structure Evaluation Program," Quantitative Structure-Activity Relationships, 11:176-184 (1992); Pastor et al., 10 "The Edisdar Programs Rational Drug Series Design," Quantitative Structure-Activity Relationships, 10:350-358 (1991); Bolis et al., "A Machine Learning Approach to Computer-Aided Molecular Design," J. Computer Aided Molecular Desig, 5:617-628 (1991); and Lawrence and Davis, "CLIX: A Search Algorithm for Finding Novel Ligands Capable of Binding Proteins of Known Three-Dimensional Structure," Proteins Structure Functional Genetics 12:31-41 (1992). 15

Low molecular weight inhibitors specific for each allelic protein form can be predicted by molecular modeling and synthesized by standard organic chemistry techniques. Computer modeling can identify oligopeptides which block the activity of the product of the target gene. Techniques for producing the identified oligopeptides are well known and can proceed by organic synthesis of oligopeptides or by genetic engineering techniques. R. Silverman, The Organic Chemistry of Drug Design and Drug Action, Academic Press (1992).

The inhibitors of this invention can be identified by selecting those compounds that selectively inhibit the growth of cells expressing one allelic form of a gene, but do not inhibit the activity of the A allelic form.

B. Small Molecule Inhibitors

20

232/116

Low molecular weight inhibitors can be identified and generated by at least one of the following methods; (1) screening of small organic molecules present in microorganism fermentation broth for allele-specific activity; or (2) screening of compound libraries. Once a compound is identified which exhibits allele specific activity, derivatives of that compound can be obtained or produced in order to obtain compounds having superior properties, such as greater activity, greater specificity, or better administration related properties (e.g., solubility, toxicity, and others).

A small molecule for allele specific targeting, *i.e.*, variance specific targeting, to a polypeptide or protein target will generally have the following characteristics:

- Differential binding affinity for protein domains altered by the amino acid variance or uniform binding to the protein with differential effects due to subsequent interactions with variant residues.
- Inhibition of protein function following differential binding. Several mechanisms of inhibition are possible including:

competitive inhibition of active sites or critical allosteric sites, allosteric inhibition of protein function, altering compartmentalization or stability, and inhibition of quaternary associations.

Favorable pharmaceutical properties, such as safety, stability, and kinetics.

In view of the art relating to identification of compounds that interact with particular features of a polypeptide or protein or protein complex, There are clear precedents for developing drugs, *i.e.*, inhibitors, that are variance-specific including drugs that are allosteric inhibitors of protein functions. Several lines of experimental evidence demonstrate that small molecule variance specific

25

10

15

130 232/116

inhibitors can be designed and constructed for particular targets. Specifically:

- Several essential gene targets have been identified that contain variances within domains comprising the active site.
- ☐ It is possible to screen for ligands that recognize variant surface features.

 Combinatorial methods using antibodies, peptides, or nucleic acids suggest that specific ligands can be selected for large fractions of the surface of

any protein.

- There are many literature reports of single amino acid substitutions, within the active site as well as elsewhere within a protein, altering ligand specificity and drug action.
- Allosteric (noncompetitive) inhibition of protein function may be induced by binding ligands to many different surfaces of a protein. Ligands can cause allosteric inhibition by disturbing secondary, tertiary or quaternary (subunit-subunit) interactions of a protein. There is ample evidence that such effects can e induced by binding to sequences outside the active site and even in regions that are uninvolved in the normal catalytic or regulatory activity of a protein.

Each of these points is discussed in more detail below.

Variances located within domains comprising the active site.

- 20 Crystal structures are available for several of the exemplary targets or for homologous proteins that can allow prediction of tertiary structure. As noted, the protein variance in Replication Protein A occurs within the domain that is involved in binding DNA. The protein variance in CARS occurs within the domain involved in tRNA binding.
- The proximity of the active site to these variances may be exploited by several different strategies:

232/116

- Competitive inhibitors can exert variance-specific effects by exhibiting differential affinities for variant active sites, thereby interfering with binding of the substrate or critical allosteric effectors.
- Competitive inhibitors may bind with equal affinity for the active site but exerting different effects on the structure or function of the variant domain.
 - Allosteric inhibitors can exert variance-specific effects by binding differentially to variant forms of the active domain and distorting the structure or function of the active site.

10

Screening for ligands that recognize variant surface features.

Combinatorial libraries of antibodies, peptides, nucleic acids, or carbohydrates have been used to demonstrate that ligands can be identified that will bind to large fractions of the surface of any protein.

15 A library of 6.5 X 10¹⁰ antibody-bearing phage was screened for binding to various targets and contained antibodies against all targets tested.

Selex and Aptamer technologies involve selection of random oligonucleotides that bind to specific targets. Reports indicate that ligands with high affinity and specificity can be selected for diverse targets despite the limited chemical diversity of the nucleic acid-based ligands.

These studies demonstrate the ability to identify ligands for unique surface features using several different chemistries. Similarly, small molecule protein surface interaction can be screened; two broad approaches for identifying small molecule ligands can be distinguished:

Combinatorial approaches coupled with methods for high-throughput screening provide a similar scope of opportunities as combinatorial methods focused on nucleic acids, peptides, or carbohydrates.

132 232/116

Rational design or focused combinatorial approaches based on biochemical, biophysical, and structural data about the target protein may be optimal when the crystal structure of the protein is known. When the crystal structure of the target protein or its homologues are known it will often be possible to model the topology and surface chemistry of the target in detail. These data are useful in optimizing the binding specificity or allosteric inhibitory function of the product through a series of iterative steps once a prototype binding ligand is identified. Structural modeling of the target can be particularly useful in optimizing the variance specificity of a ligand that binds to the target sequence.

Examples of single amino acid substitutions altering sensitivity to small molecules Many amino acid substitutions have been described in proteins that alter the specificity or function of small-molecule ligands. These substitutions are useful models for variance-specific interactions (e.g. interactions that are altered by the amino acid substitutions that distinguish variant forms of a protein.)

There are clear precedents for variance-specific drug effects in humans.

Variance-specific interactions are observed in a wide variety of structurally and functionally heterogeneous proteins. Among these are variances in human proteins including:

- N-acetyl transferase 2 variances affect acetylation of drugs including caffeine and arylamines;
 - CYP2C19 variances affect the hydroxylation of mephenytoin and related compounds;
- CYP2D6 variances affect hydroxylation of debrisoquine and related compounds;
 - glucose-6-phosphate dehydrogenase variances account for sensitivity to primaquine and other drugs.

10

15

There are numerous examples of variance-specific drug effects in targets for antiviral and antimicrobial drugs. The most extensively characterized are those in HIV Reverse Transcriptase and β -lactamase. These data indicate that many different amino acid substitutions can alter drug effects. Moreover, while amino acid substitutions are classically distinguished as "conservative" or "non-conservative," it is evident from these data that many seemingly "conservative" substitutions can have significant effects. For each of the types of amino acid substitution identified within the exemplary target genes, examples of the same amino acid substitution altering the interaction of small molecule drugs on a target protein is shown in one or more of the model systems.

Sites of allosteric inhibition

Most drug development focuses on *competitive* inhibitors of protein action rather than noncompetitive, *allosteric* inhibitors. There is no *a priori* advantage to a competitive versus allosteric inhibitor except for the fact that medicinal chemistry often begins with candidate molecules derived from natural substrates or cofactors. There are, in fact, conceptual advantages to allosteric inhibitors since each protein may contain multiple allosteric sites, and allosteric inhibitors may be effective at lower concentrations (*e.g.* those equivalent to the substrate) since there is no need to compete with the substrate for binding.

Detailed crystallographic and other structural studies of a variety of enzymes show that the mechanism of allosteric inhibition commonly involves conformational changes (e.g. domain movements) far from the site of contact with the allosteric regulator. These data illustrate the cooperativity of protein structure, demonstrating how a small change in one region of a protein is amplified throughout the structure. Such cooperativity allows small molecules binding to various regions of a protein to have significant structural and

134 232/116

functional effects.

One way to assess the probability of achieving allosteric effects from a variant sequence is to examine the distribution and nature of mutations that affect drug action in several well-characterized proteins. Another is to examine the distribution of epitopes for antibodies that bind to the surface of a protein and inhibit its function. Analyses of these types show that allosteric sites are widely dispersed within proteins and may comprise the majority of the protein's surface.

For example:

HIV-1 reverse transcriptase (RT) is a heterodimer with p66 and p51 subunits.

The p66 subunit is 560 amino acids, and p51 is a 440 amino acid subfragment of p66. The three dimensional structure of HIV-1 RT has been solved by x-ray crystallography. Three HIV-1 RT structures have been published, including complexes with double stranded DNA at 3.0 Å resolution and with the non-nucleoside inhibitors nevirapine (at 3.5Å) and -APA (at 2.8Å).

Two classes of HIV-1 RT inhibitors have been developed. The first class comprises nucleoside analogues including AZT, ddI and ddC. The second class comprises non-nucleoside analogues belonging to several chemical groups, including TIBO, BHAP, HEPT, -APA, dipyridodiazepinone, pyridinone, and inophyllum derivatives, all of which bind the same hydrophobic pocket in HIV RT. Many amino acid substitutions have been described that produce resistance to these drugs. Table 5 shows the location of selected mutations within HIV-1 RT that cause resistance to nucleoside analogues as well as the mechanism of inhibition postulated from physical-chemical experiments and structural data; the list is not comprehensive.

25 Table 4

10

15

Location and postulated mechanism of amino acid substitutions which confer resistance to nucleoside analog inhibitors. trp266X - multiple substitutions.

Potential resistance mechanism

Mutation	Location of	Mutation	Direct	Indirect	Indirec
	mutation	creates	effect on	effects via	effect by
		resistance	dNTP	interactions	
		to drug(s)	binding	with dNTP	
1				binding	
				site	
met41leu	a4	AZT		X	
lys65arg	3- 4	ddC,ddI,			Х
		3TC			
asp67asn	3- 4 loop	AZT			X
thr69asp	3- 4 loop	ddC			X
lys70arg	3- 4 loop	AZT			X
leu74val	4	ddI			X
val75thr		ddI,ddA			
glu89gly	5a	ddI,ddA			X
ile135thr	7- 8 loop	ddI		X	
met184val	9- 10 turn	ddI, ddC	Х		X
thr215tyr	11a	AZT		X	X
thr215phe	11a	AZT		X	X
lys219gln	11b	AZT	Х	X	X
trp266X	-thumb	AZT			

These data demonstrate that nucleoside analog resistance arises from mutations in multiple domains. Many of the mutations are located far from the dNTP binding sites. These changes inhibit drug function by altering the conformation of the target protein in a manner analogous to those conformational changes that may be induced by an allosteric inhibitor.

Table 5 summarizes the mutations that alter the function of non-nucleoside inhibitor drugs

Table 5
Location and postulated mechanism of amino acid substitutions which confer resistance to non-nucleoside analog inhibitors.

	Mutation	Mutation location	Effect of mutation	Mutation confers resistance to:
	ala98gly	5b- 6 loop	flexibility	Pyridinone L-697661, Nevirapine
	leu100ile	5b- 6 loop	-branch	Pyridinone L-697661, Nevirapine, TIBO R82913
	lys101glu	5b- 6 loop	charge	Pyridinone L-697661, Pyridinone L-697639,
10	lys103asn	5b- 6 loop	charge loss	Pyridinone L-697661, BHAP U- 87201,Nevirapine TIBO R82913
	val106ala	6	less bulky	Nevirapine, TIBO R82913
	val108ile	6	bulkier	Pyridinone L-697661, Nevirapine
	glu138lys	7- 8 loop	charge	TIBO R82913
	val179asp	9	charge	Pyridinone L-697661
15	val179glu	9	charge	Pyridinone L-697661
	tyr181cys	9	less bulky	Pyridinone L-697661, BHAP U-87201, Nevirapine, TIBO R82913
	tyr188cys	10	less bulky	Nevirapine
	tyr188his	10	less bulky	TIBO R82913, BHAP U-87201
	gly190glu	10	charge	Nevirapine
20	leu228phe	12	bulkier	BHAP U-90152
	glu233val	13	charge	BHAP U-87201
	pro236leu	13- 14 loop	flexibility	BHAP U-87201
	lys238thr	14	charge	BHAP U-87201
	trp266X	-thumb		TIBO R82913

137 232/116

It is evident from these examples that the substitutions which inhibit drug functions are distributed across several domains. Different inhibitory mechanisms have been postulated in domains throughout the protein, based on the three-dimensional structure of the protein. Most involve conformational disruption of the protein secondary and tertiary structure.

Thyrotropin receptor Naturally occurring antibodies against the thyrotropin receptor can cause activation of thyroid function (Grave's disease) or inhibition of thyroid function (Hashimoto's disease). The sites within the thyrotropin receptor that are targeted by these natural antibodies have been mapped in detail and have been tested with monoclonal antibodies. Most of the inhibitory antibodies do not interfere with binding of thyrotropin to its receptor, and thus, are allosteric rather than competitive inhibitors. Several independent classes of inhibitory antibodies have been identified that bind to epitopes within different domains of the receptor. At least one of these epitopes is in a domain that is entirely unimportant for receptor activity and can be deleted by site-directed mutagenesis without disrupting the function of the receptor. These experiments provide an explicit precedent for achieving allosteric inhibitory effects from ligands that target widely dispersed sequences within the protein.

Thermus aquaticus DNA polymerase The inhibitory activity of 24 monoclonal antibodies to Thermus aquaticus DNA polymerase has been investigated. The antibodies recognized 13 non-overlapping epitopes. Antibody binding to eight epitopes was inhibitory. Inhibitory antibodies mapped to several distinct domains, including the 5' nuclease domain, the polymerase domain and the boundary region between the 5' nuclease and polymerase domains. Some antibodies recognized epitopes overlapping the DNA binding groove of the polymerase. Significantly, the inhibitory antibodies recognized epitopes constituting as much as 50% of the Taq polymerase surface, and the non-inhibitory antibodies a further ~25%.

5

10

15

20

β-lactamase The β-lactamases are a diverse family of enzymes which catalyze the hydrolysis of the β-lactam ring of penicillin and cephalosporin antibiotics.
Interactions of these proteins with various small molecule drugs have been characterized in detail as the pharmaceutical industry has worked to develop
chemically modified penicillins and cephalosporins to elude inactivation by β-lactamases. In addition, a β-lactamase inhibitor (clavulanic acid) has also been introduced into clinical use.

As each new drug has been introduced into wide use, mutant β -lactamases have emerged that are resistant to the drug. Over 190 β -lactamases have been described with differential specificity for the various penicillins and cephalosporins. Many of these differ by only a few amino acids. Many different amino acid substitutions at various sites within the protein can change the substrate specificity of the enzyme.

kat G (Isoniazid resistance) The kat G protein of M. tuberculosis encodes a catalase-peroxidase enzyme that is one of two mycobacterial genes frequently altered in isoniazid resistant strains (the other is inhA). There are a wide variety of amino acid substitutions in katG associated with drug resistance distributed evenly across the 740 amino acids of the protein. The mechanism by which some of these substitutions inhibit katG function can be inferred from the structure of the homologous yeast and E. coli enzymes and knowledge of the catalytic function of the enzyme. For example, insertion of an Ile between positions 125 and 126 affects a conserved interhelical loop near the active site residues; substitutions at amino acid 275 and 315 are likely to affect the ligand access channel; substitutions at amino acid 463 may affect a N-terminal substrate binding site. Other substitutions occur in regions that are not directly related to the functional sites of the protein.

25 The examples described above demonstrate that small molecules can discriminate in activity between polypeptides or proteins which have one a single amino acid

15

20

25

difference in sequence, i.e., a single amino acid sequence variance.

The application of small molecule inhibitor identification is specifically discussed in Example 39 below in connection with the methylguanine methyltransferase gene.

5 C. Antibody Inhibition.

Once an essential gene is identified and is determined to exist in two or more allelic forms which encode different proteins, antibodies can be raised against both allelic forms of the protein. The techniques for using a specific protein or an oligopeptide as an antigen to elicit antibodies which specifically recognize epitopes on the peptide or protein are well known. Preferably monoclonal antibodies (MABs) are used.

In one embodiment, the DNA sequence of the desired allelic form of the target gene can be cloned by insertion into an appropriate expression vector and translated into protein in a prokaryotic or eukaryotic host cell. The protein can be recovered and used as an antigen to elicit the production of specific antibodies. In another embodiment, the DNA of the desired allelic form of the target gene is amplified by PCR technology and is subsequently translated *in vitro* into protein to be used as the antigen to elicit the production of specific antibodies. A third embodiment is to use the DNA sequence of the alternative alleles as a basis for the generation of synthetic peptides representing the amino acid sequence of the alleles for use as antigen to elicit the production of specific antibodies.

Antibodies can be generated either by standard monoclonal antibody techniques or generated through recombinant based expression systems. See generally, Abbas, Lichtman, and Pober, <u>Cellular and Molecular Immunology</u>, W.B. Saunders Co. (1991). The term "antibodies" is meant to include intact antibody molecules of the

140 232/116

IgD isotype as well as antibody fragments or derivatives, such as Fab and F(ab')2, which are capable of specifically binding to antigen. The antibodies so produced will preferentially bind only the protein produced in the allelic form which was used as an antigen to create the antibody. If the targeted protein is expressed on the cell surface, the antibody or antibody derivative can be tested as a therapeutic. Antibody inhibitors are most effective when they are directed against cell surface proteins or receptors. If the essential protein produced by the targeted allele is not a cell surface protein or receptor, the development of antibody inhibitors may also require the use of a special antibody-delivery system to facilitate entry of the antibody into the tumor cells. The plasma membrane that surrounds all cells is designed to limit the entrance of most compounds. Entry is generally restricted to small, non-charged molecules (absence of charge allows them to slip through the fatty membrane) or to those factors that can penetrate the cell using existing, specialized import mechanisms. The introduction into cells of much larger molecules, such as specific antibodies, other proteins, or peptides, requires appropriate delivery systems such as are known in the art. Alternatively, the structure of the variable region of allele specific antibodies can be used as the basis for design of smaller allele specific inhibitory molecules.

D. Oligopeptides

Oligopeptides can be demonstrated to have a very high degree of specificity in their interaction with functional polypeptides such as cellular enzymes, receptors or other polypeptides essential for cell viability. Methods for screening peptide sequences which have high specificity for binding to, and functional inhibition of, a specific polypeptide target have been well described previously. Scott, J.K. and Smith G.P., "Searching for Peptide Ligands with an Epitope Library," Science 249:386-390 (1990). These methods include the screening of M13 libraries by "phage display" of polypeptide sequences as well as direct screening of peptides or mixtures of synthetic peptides for binding to or inhibition of the target functional polypeptide.

The oligopeptides of this invention can be synthesized chemically or through an appropriate gene expression system. Synthetic peptides can include both naturally occurring amino acids and laboratory synthesized, modified amino acids.

Also provided herein are functional derivatives of a polypeptide or protein. By

"functional derivative" is meant a "chemical derivative," "fragment," "variant,"

"chimera," or "hybrid" of the polypeptide or protein, which terms are defined below. A functional derivative retains at least a portion of the function of the protein, for example reactivity with a specific antibody, enzymatic activity or binding activity mediated through noncatalytic domains, which permits its utility in accordance with the present invention.

A "chemical derivative" of the complex contains additional chemical moieties not normally a part of the protein. Such moieties may improve the molecule's solubility, absorption, biological half life, and the like. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, and the like. Moieties capable of mediating such effects are disclosed in Remington's Pharmaceutical Sciences (1980). Procedures for coupling such moieties to a molecule are well known in the art. Covalent modifications of the protein or peptides are included within the scope of this invention. Such modifications may be introduced into the molecule by reacting targeted amino acid residues of the peptide with an organic derivatizing agent that is capable of reacting with selected side chains or terminal residues, as described below.

Cysteinyl residues most commonly are reacted with alpha-haloacetates (and corresponding amines), such as chloroacetic acid or chloroacetamide, to give carboxymethyl or carboxyamidomethyl derivatives. Cysteinyl residues also are derivatized by reaction with bromotrifluoroacetone, chloroacetyl phosphate, N-

15

142 232/116

alkylmaleimides, 3-nitro-2-pyridyl disulfide, methyl 2-pyridyl disulfide, p-chloro-mercuribenzoate, 2-chloromercuri-4-nitrophenol, or chloro-7-nitrobenzo-2-oxa-1,3-diazole.

Histidyl residues are derivatized by reaction with diethylprocarbonate at pH 5.5-7.0 because this agent is relatively specific for the histidyl side chain. Parabromophenacyl bromide also is useful; the reaction is preferably performed in 0.1 M sodium cacodylate at pH 6.0.

Lysinyl and amino terminal residues are reacted with succinic or other carboxylic acid anhydrides. Derivatization with these agents has the effect or reversing the charge of the lysinyl residues. Other suitable reagents for derivatizing primary amine containing residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; O-methylisourea; 2,4 pentanedione; and transaminase-catalyzed reaction with glyoxylate.

15 Arginyl residues are modified by reaction with one or several conventional reagents, among them phenylglyoxal, 2,3-butanedione, 1,2-cyclohexanedione, and ninhydrin. Derivatization of arginine residues requires that the reaction be performed in alkaline conditions because of the high pK_a of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine 20 as well as the arginine alpha-amino group.

Tyrosyl residues are well-known targets of modification for introduction of spectral labels by reaction with aromatic diazonium compounds or tetranitromethane. Most commonly, N-acetylimidizol and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively.

Carboxyl side groups (aspartyl or glutamyl) are selectively modified by reaction carbodiimide (R'-N-C-N-R') such as 1-cyclohexyl-3-(2-morpholinyl(4-ethyl) carbodiimide or 1-ethyl-3-(4-azonia-4,4-dimethylpentyl) carbodiimide. Furthermore, aspartyl and glutamyl residue are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.

Glutaminyl and asparaginyl residues are frequently deamidated to the corresponding glutamyl and aspartyl residues. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues falls within the scope of this invention.

- Derivatization with bifunctional agents is useful, for example, for cross-linking component peptides to each other or the complex to a water-insoluble support matrix or to other macromolecular carriers. Commonly used cross-linking agents include, for example, 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobi-functional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), and bifunctional maleimides such as bis-N-maleimido-1,8-octane. Derivatizing agents such as methyl-3-[p-azidophenyl) dithiolpropioimidate yield photoactivatable intermediates that are capable of forming crosslinks in the presence of light. Alternatively, reactive water-insoluble matrices such as cyanogen bromide-activated carbohydrates and the reactive substrates described in U.S. Patent Nos. 3,969,287; 3,691,016; 4,195,128;
- Other modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the alpha-amino groups of lysine, arginine, and histidine side chains (Creighton, T.E., Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, pp. 79-86

4,247,642; 4,229,537; and 4,330,440 are employed for protein immobilization.

144 232/116

(1983)), acetylation of the Nterminal amine, and, in some instances, amidation of the C-terminal carboxyl groups.

Such derivatized moieties may improve the stability, solubility, absorption, biological half life, and the like. The moieties may alternatively eliminate or attenuate any undesirable side effect of the protein complex and the like. Moieties capable of mediating such effects are disclosed, for example, in Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing Co., Easton, PA (1990).

The term "fragment" is used to indicate a polypeptide derived from the amino acid sequence of the protein or polypeptide having a length less than the full-length polypeptide from which it has been derived. Such a fragment may, for example, be produced by proteolytic cleavage of the full-length protein. Preferably, the fragment is obtained recombinantly by appropriately modifying the DNA sequence encoding the proteins to delete one or more amino acids at one or more sites of the C-terminus, N-terminus, and/or within the native sequence.

15 Another functional derivative intended to be within the scope of the present invention is a "variant" polypeptide which either lack one or more amino acids or contain additional or substituted amino acids relative to the native polypeptide. The variant may be derived from a naturally occurring polypeptide by appropriately modifying the protein DNA coding sequence to add, remove, and/or to modify codons for one or more amino acids at one or more sites of the C-terminus, N-terminus, and/or within the native sequence.

A functional derivative of a protein or polypeptide with deleted, inserted and/or substituted amino acid residues may be prepared using standard techniques well-known to those of ordinary skill in the art. For example, the modified components of the functional derivatives may be produced using site-directed mutagenesis

232/116

techniques (as exemplified by Adelman et al., 1983, *DNA* 2:183) wherein nucleotides in the DNA coding the sequence are modified such that a modified coding sequence is modified, and thereafter expressing this recombinant DNA in a prokaryotic or eukaryotic host cell, using techniques such as those described above.

5 Alternatively, components of functional derivatives of complexes with amino acid deletions, insertions and/or substitutions may be conveniently prepared by direct chemical synthesis, using methods well-known in the art.

E. Complementary Oligonucleotides and Ribozymes

Oligonucleotides or oligonucleotide analogs which interact with complementary sequences of cellular target DNA or RNA can be synthesized and used to inhibit or control gene expression at the levels of transcription or translation. The oligonucleotides of this invention can be either oligodeoxyribonucleotides or oligoribonucleotides, or derivatives thereof, which are complementary to the allelic forms of the targeted essential gene or they can act enzymatically, such as ribozymes. Both antisense RNA and DNA can be used in this capacity as chemotherapeutic agents for inhibiting gene transcription or translation. Trojan, J., et al., "Treatment and prevention of rat glioblastoma by immunogenic C6 cells expressing antisense insulin-like growth factor I RNA," Science 259:94-97 (1993). Inhibitory complementary oligonucleotides may be used as inhibitors for cancer therapeutics because of their high specificity and lack of toxicity.

Included in the scope of the invention are oligoribonucleotides, including antisense RNA and DNA molecules and ribozymes that function to inhibit expression of an essential gene in an allele specific manner. Anti-sense RNA and DNA molecules act to directly block the translation of mRNA by binding to targeted mRNA and preventing protein translation or directing RNase mediated degradation of the mRNA. With respect to antisense DNA, oligodeoxyribonucleotides derived from the translation initiation site, *e.g.*, between -10 and +10 regions of the relevant

146 232/116

nucleotide sequence, are preferred.

Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. The mechanism of ribozyme action involves sequence specific interaction of the ribozyme molecule to complementary target RNA, followed by a endonucleolytic cleavage. Within the scope of the invention are engineered hammerhead, hairpin, and other motif ribozyme molecules that catalyze sequence specific endonucleolytic cleavage of RNA sequences encoding a gene product essential for cell survival, growth, or vitality.

Specific ribozyme cleavage sites within any potential RNA target can initially be identified by scanning the target molecule for ribozyme cleavage sites, such as sites which include the following sequences, GUA, GUU and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target gene containing the cleavage site may be evaluated for predicted structural features, such as secondary structure, that may render the oligonucleotide sequence unsuitable. The suitability of candidate targets may also be evaluated by testing their accessibility to hybridization with complementary oligonucleotides, using ribonuclease protection assays. See, for example, Draper PCT WO 93/23569. For the present invention, the target site will generally include a sequence variance site as described above.

Both anti-sense RNA and DNA molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of RNA and DNA molecules. See, for example, Draper, supra. hereby incorporated by reference herein. These include techniques for chemically synthesizing oligodeoxyribonucleotides well known in the art such as, for example, solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding the

antisense or ribozyme RNA molecule. Such DNA sequences may be incorporated into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense or ribozyme cDNA constructs that synthesize antisense or ribozymes RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.

Various modifications to the DNA molecules may be introduced as a means of increasing intracellular stability and half-life. Possible modifications include but are not limited to the addition of flanking sequences of ribo- or deoxy- nucleotides to the 5' and/or 3' ends of the molecule or the use of phosphorothioate or methyl phosphonate rather than phosphodiesterase linkages within the oligodeoxyribonucleotide backbone. Modifications may also be made on the nucleotidic sugar or purine or pyrimidine base, such as 2'-O-alkyl (e.g., 2'-O-methyl), 2'-O-allyl, 2'-amino, or 2'-halo (e.g., 2'-F). A variety of other substitutions are also known in the art and may be used in the present invention. More than one type of nucleotide modification may be used in a single modified oligonucleotide.

A specific application of generating inhibitors which are either complementary oligonucleotides or inhibitory oligopeptides is described in Holzmayer, Pestov, and Roninson, "Isolation of dominant negative mutants and inhibitory antisense RNA sequences by expression selection of random DNA fragments," *Nucleic Acids Research* 20:711-717 (1992). In this study, genetic suppressor elements (GSEs) are identified by random DNA fragmentation and cloning in expression plasmids.

Preferred oligonucleotide inhibitors include oligonucleotide analogues which are resistant to degradation or hydrolysis by nucleases. These analogues include neutral, or nonionic, methylphosphonate analogues, which retain the ability to

interact strongly with complementary nucleic acids. Miller and Ts'O, Anti-Cancer Drug Des. 2:11-128 (1987). Further oligonucleotide analogues include those containing a sulfur atom in place of the 3'-oxygen in the phosphate backbone, and oligonucleotides having one or more nucleotides which have modified bases and/or modified sugars. Particularly useful modifications include phosphorothioate linkages and 2'-modification (e.g., 2'-O-methyl, 2'-F, 2'-amino).

F. Gene Therapy

Nucleic acid molecules encoding oligonucleotide or polypeptide inhibitors will also be useful in gene therapy (reviewed in Miller, *Nature* 357:455-460, (1992). Miller indicates that advances have resulted in practical approaches to human gene therapy that have demonstrated positive initial results. An *in vivo* model of gene therapy for human severe combined immunodeficiency is described in Ferrari, et al., *Science* 251:1363-1366, (1991). The basic science of gene therapy is described in Mulligan, *Science* 260:926-931, (1993).

- 15 Some methods of delivery that may be used include:
 - a. complexation with lipids,
 - b. transduction by retroviral vectors,
 - c. localization to nuclear compartment utilizing nuclear targeting site found on most nuclear proteins,
- 20 d. transfection of cells *ex vivo* with subsequent reimplantation or administration of the transfected cells,
 - e. a DNA transporter system.

A nucleic acid sequence encoding an inhibitor may be administered utilizing an ex vivo approach

25 whereby cells are removed from an animal, transduced with the nucleic acid sequence and reimplanted into the animal. The liver can be accessed by an ex vivo

15

approach by removing hepatocytes from an animal, transducing the hepatocytes in vitro with the nucleic acid sequence and reimplanting them into the animal (e.g., as described for rabbits by Chowdhury et al, Science 254: 1802-1805, 1991, or in humans by Wilson, Hum. Gene Ther. 3: 179-222, 1992) incorporated herein by reference.

Many nonviral techniques for the delivery of a nucleic acid sequence encoding an inhibitor into a cell can be used, including direct naked DNA uptake (e.g., Wolff et al., Science 247: 1465-1468, 1990), receptor-mediated DNA uptake, e.g., using DNA coupled to asialoorosomucoid which is taken up by the asialoglycoprotein receptor in the liver (Wu and Wu, J. Biol. Chem. 262: 4429-4432, 1987; Wu et al., 10 J. Biol. Chem. 266: 14338-14342, 1991), and liposome-mediated delivery (e.g., Kaneda et al., Expt. Cell Res. 173: 56-69, 1987; Kaneda et al., Science 243: 375-378, 1989; Zhu et al., Science 261: 209-211, 1993). Many of these physical methods can be combined with one another and with viral techniques; enhancement of receptor-mediated DNA uptake can be effected, for example, by combining its use with adenovirus (Curiel et al., Proc. Natl. Acad. Sci. USA 88: 8850-8854, 1991; Cristiano et al., Proc. Natl. Acad. Sci. USA 90: 2122-2126, 1993).

In one preferred embodiment, an expression vector containing a sequence encoding a ribozyme or an antisense oligonucleotideis inserted into cells, the cells are grown in vitro and then infused in large numbers into patients. 20

The gene therapy may involve the use of an adenovirus containing a sequence encoding a ribozyme or an antisense oligonucleotide targeted to a tumor.

Expression vectors derived from viruses such as retroviruses, vaccinia virus, adenovirus, adeno-associated virus, herpes viruses, several RNA viruses, or bovine 25 papilloma virus, may be used for delivery of nucleotide sequences into the targeted cell population (e.g., tumor cells). Methods which are well known to those skilled in the art can be used to construct recombinant viral vectors containing coding sequences. See, for example, the techniques described in Maniatis et. al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, N.Y. (1989), and in Ausubel et. al., Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, N.Y. (1989). Alternatively, recombinant nucleic acid molecules encoding protein sequences can be used as naked DNA or in reconstituted system e.g., liposomes or other lipid systems for delivery to target cells (See e.g., Felgner et. al., Nature 337:387-8, 1989). Several other methods for the direct transfer of plasmid DNA into cells exist for use in human gene therapy and involve targeting the DNA to receptors on cells by complexing the plasmid DNA to proteins. See, Miller, supra.

In its simplest form, gene transfer can be performed by simply injecting minute amounts of DNA (e.g., a plasmid vector encoding an inhibitor) into the nucleus of a cell, through a process of microinjection. Capecchi MR, Cell 22:479-88 (1980). 15 The DNA can be part of a formulation which protects the DNA from degradation or prolongs the bioavailability or the DNA, for example by complexing the DNA with a compound such as polyvinylpyrrolidone. Once recombinant genes are introduced into a cell, they can be recognized by the cells normal mechanisms for transcription 20 and translation, and a gene product will be expressed. Other methods have also been used for introducing DNA into larger numbers of cells. These methods include: transfection, wherein DNA is precipitated with CaPO₄ and taken into cells by pinocytosis (Chen C. and Okayama H, Mol. Cell Biol. 7:2745-52 (1987)); electroporation, wherein cells are exposed to large voltage pulses to introduce holes into the membrane (Chu G. et al., Nucleic Acids Res., 15:1311-26 (1987)); lipofection/liposome fusion, wherein DNA is packaged into lipophilic vesicles which fuse with a target cell (Felgner PL., et al., Proc. Natl. Acad. Sci. USA. 84:7413-7 (1987)); and particle bombardment using DNA bound to small

projectiles (Yang NS. et al., *Proc. Natl. Acad. Sci.* 87:9568-72 (1990)). Another method for introducing DNA into cells is to couple the DNA to chemically modified proteins.

It has also been shown that adenovirus proteins are capable of destabilizing endosomes and enhancing the uptake of DNA into cells. The admixture of adenovirus to solutions containing DNA complexes, or the binding of DNA to polylysine covalently attached to adenovirus using protein crosslinking agents substantially improves the uptake and expression of the recombinant gene. Curiel DT et al., Am. J. Respir. Cell. Mol. Biol., 6:247-52 (1992).

- As used herein "gene transfer" means the process of introducing a foreign nucleic acid molecule into a cell. Gene transfer is commonly performed to enable the expression of a particular product encoded by the gene. The product may include a protein, polypeptide, anti-sense DNA or RNA, or enzymatically active RNA. Gene transfer can be performed in cultured cells or by direct administration into animals.
- Generally gene transfer involves the process of nucleic acid contact with a target cell by non-specific or receptor mediated interactions, uptake of nucleic acid into the cell through the membrane or by endocytosis, and release of nucleic acid into the cytoplasm from the plasma membrane or endosome. Expression may require, in addition, movement of the nucleic acid into the nucleus of the cell and binding to appropriate nuclear factors for transcription.

As used herein "gene therapy" is a form of gene transfer and is included within the definition of gene transfer as used herein and specifically refers to gene transfer to express a therapeutic product from a cell *in vivo* or *in vitro*. Gene transfer can be performed *ex vivo* on cells which are then transplanted into a patient, or can be performed by direct administration of the nucleic acid or nucleic acid-protein complex into the patient.

152 232/116

In another preferred embodiment, a vector having nucleic acid sequences encoding an allele specific inhibitor is provided in which the nucleic acid sequence is expressed only in specific tissue. Examples or methods of achieving tissue-specific gene expression are described in International Publication No. WO 93/09236, published May 13, 1993.

VII. Utility of allele-specific inhibitors of essential genes

A. Conditions susceptible to therapy.

The fraction of all cancers could be treated with allele specific inhibitors directed against allele specific essential gene targets is a function of the frequency of the target allele and the frequency of LOH. The ideal target would be deleted in 100% 10 of all major cancers and would exist in two allelic forms, each with an allele frequency of 0.5 so that half the population would be heterozygous. An inhibitor of one allele of such an ideal target would be a useful agent for 25% of all cancer patients. An inhibitor of the other allele of the same ideal target would be therapeutic for an additional 25% of all patients, making 50% of all patients 15 treatable. The ideal target has so far not been identified, but we have identified many essential gene sequence variance targets which are deleted in 30-70% of several major cancers, and which are heterozygous in 25-50% of North Americans. Allele specific inhibitors of both alleles of such targets would be expected to 20 address $0.4 \times 0.5 = 0.2$ or 20% of the relevant cancer population. The relevant cancer population often includes breast, colon and lung cancer, which sum to ~500,000 new cases per year in the United States. Thus a total available market of 100,000 patients is not unusual, and many targets would be expected to address markets of at least 50,000 patients.

The targets of this invention are suitable for treatment of many different cancers, which includes cancers of different types, as well as non-malignant proliferative

153

232/116

disorders, as well as being suitable for use in other applications involving targeting alternative allelic forms of a gene. The classification and nomenclature for a variety of benign and malignant tumors relevant to the present invention is shown in the following table (Table 6-1 from Robbins et al., <u>Pathologic Basis of Disease</u>, 3rd ed. (1984), however, the invention is not limited to these cancers or classifications.

Table 6

	Tissue of Origin I. Composed of one parenchymal	Benign	Malignant
10	cell type A. Tumors of mesenchymal origin	•	Sarcomas
	(1) Connective tissue and derivatives		
15	fibrous tissue myxomatous tissue fatty tisssue cartilage	fibroma myxoma lipoma chondroma	fibrosarcoma myxocarmo liposarcoma chondrasarcoma
	bone (2) Endothelial & related	osteoma	osteosarcoma osteogenic sarcoma
20	tissues		
	blood vessels	hemangioma capillary cavernous sclerosing	angiosarcoma
		hemangioendothelioma	endotheliosarcoma, Kaposi's sarcoma
	lymph vessels synovia	lymphoangioma	lymphangiosarcoma synovioma (synoviosarcoma)
	mesothelium		mesothelioma (mesotheliosarcoma)
25	brain coverings	meningioma	•
	glomus	glomus tumor	

154 232/116

	?endothelial or		Ewing's tumor
	mesenchymal cells		
	(3) Blood cells & related cells		
5	hematopoietic cells		myelogenous leukemia
3	-		monocytic leukemia
	lymphoid tissue		malignant lymphomas lymphocytic leukemia plastocytoma (multiple myeloma)
	monocyte-macrophage	•	histiocytosis X
	Langerhans' cells		?histiocytic lymphoma
	(4) Muscle		?Hodgkin's disease
10	smooth muscle	leiomyoma	leiomyosarcoma
	striated muscle	rhabdomyoma	rhabdomyosarcoma
	•		
	B. Tumors of epithelial origin		Carcinomas
	stratified squamous	squamous cell	squamous cell or
		papilloma	epidermoid carcinoma
	basal cells of skin or adnexia		basal cell carcinoma
15	skin adnexal glands		
	sweat glands	sweat gland adenoma	sweat gland carcinoma
	sebaceous gland	sebaceous gland	sebaceous gland
		adenoma	carcinoma
	epithelial lining		
	glands or ducts -well	adenoma	adenocarcinoma
20	differentiated	papillary adenoma	papillary
	group	cystadenoma	adenocarcinoma cystadenocarcinoma
	poorly differentiated group		medullary carcinoma
			undifferentiated
			carcinoma (simplex)
	respiratory tract		bronckogenic
			carcinoma
			bronchial "adenoma"
	neuroectoderm	nevus	melanoma (melanosama)
05		1 4.41	(melanocarcinoma)
25	renal epithelium	renal tubular adenoma	renal cell carcinoma (hypernephroma)

		155	232/116
	liver cells	liver cell adenoma	hepatocellular carcinoma
	bile duct	bile duct adenoma	bile duct carcinoma (cholangiocarcinoma)
	urinary tract epithelium (transitional)	transitional cell papilloma	papillary carcinoma transitional cell carcinoma squamous cell carcinoma
5	placental eptithelium testicular epithelium (germ cells)	hydatiform mole	choriocarcinoma seminoma embryonal carcinoma
10	II. More than one neoplastic cell type mixed tumorsusually derived		
	from one germ layer salivary glands	mixed tumor of salivary gland origin (pleiomorphic adenoma)	malignant mixed tumor of salivary gland origin
	renal anlage	,	Wilms' tumor
15	III. More than one neoplastic cell type derived from more than one germ		
20	layerteratogenous totipotential cells in gonads or in embryonic rests	teratoma, dermoid cyst	malignant teratoma and teratocarcinoma

Allele specific therapy can be targeted to essential genes which undergo LOH in many different tumor types, including the tumors and tumor types described in the tables above, and in Figure 3.

For the treatment of patients suffering from a tumor using an allele specific inhibitor,

156 232/116

the preferred method of preparation or administration will generally vary depending on the type of inhibitor to be used. Thus, those skilled in the art will understand that administration methods as known in the art will also be appropriate for the inhibitors of this invention.

B. Pharmaceutical Formulations and Modes of Administration

The particular compound, antibody, antisense or ribozyme molecule that exhibits allele specific inhibitor activity can be administered to a patient either by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s). In treating a patient exhibiting a disorder of interest, a therapeutically effective amount of a agent or agents such as these is administered. A therapeutically effective dose refers to that amount of the compound that results in amelioration of one or more symptoms or a prolongation of survival in a patient.

Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD₅₀/ED₅₀. Compounds which exhibit large therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.

For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. For example, a dose can be formulated in animal models to achieve a circulating plasma concentration range that

157 232/116

includes the IC_{50} as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by HPLC.

The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See e.g. Fingl et. al., in The Pharmacological Basis of Therapeutics, 1975, Ch. 1 p.1). It should be noted that the attending physician would know how to and when to terminate, interrupt, or adjust administration due to toxicity, or to organ dysfunctions. Conversely, the attending physician would also know to adjust treatment to higher levels if the clinical response were not adequate (precluding toxicity). The magnitude of an administrated dose in the management of the oncogenic disorder of interest will vary with the severity of the condition to be treated and to the route of administration. The severity of the condition may, for example, be evaluated, in part, by standard prognostic evaluation methods. Further, the dose and perhaps dose frequency, will also vary according to the age, body weight, and response of the individual patient. A program comparable to that discussed above may be used in veterinary medicine.

Depending on the specific conditions being treated, such agents may be formulated and administered systemically or locally. Techniques for formulation and administration may be found in Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing Co., 20 Easton, PA (1990). Suitable routes may include oral, rectal, transdermal, vaginal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections, just to name a few.

For injection, the agents of the invention may be formulated in aqueous solutions, 25 preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For such transmucosal administration,

10

158 232/116

penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

Use of pharmaceutically acceptable carriers to formulate the compounds herein disclosed for the practice of the invention into dosages suitable for systemic administration is within the scope of the invention. With proper choice of carrier and suitable manufacturing practice, the compositions of the present invention, in particular, those formulated as solutions, may be administered parenterally, such as by intravenous injection. The compounds can be formulated readily using pharmaceutically acceptable carriers well known in the art into dosages suitable for oral administration. Such carriers enable the compounds of the invention to be formulated as tablets, pills, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated.

Agents intended to be administered intracellularly may be administered using techniques well known to those of ordinary skill in the art. For example, such agents may be encapsulated into liposomes, then administered as described above. Liposomes are spherical lipid bilayers with aqueous interiors. All molecules present in an aqueous solution at the time of liposome formation are incorporated into the aqueous interior. The liposomal contents are both protected from the external microenvironment and, because liposomes fuse with cell membranes, are efficiently delivered into the cell cytoplasm. Additionally, due to their hydrophobicity, small organic molecules may be directly administered intracellularly.

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. Determination of the effective amounts is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. In addition to the active ingredients, these pharmaceutical

10

15

20

15

20

25

232/116

compositions may contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. The preparations formulated for oral administration may be in the form of tablets, dragees, capsules, or solutions. The pharmaceutical compositions of the present invention may be manufactured in a manner that is itself known, *e.g.*, by means of conventional mixing, dissolving, granulating, dragee-making, levitating, emulsifying, encapsulating, entrapping or lyophilizing processes.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.

Pharmaceutical preparations for oral use can be obtained by combining the active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable

160 232/116

coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added.

Factors specific for the delivery of antisense and ribozyme nucleic acids are known in the art, for example as discussed in Couture et al., WO 94/02595, which is hereby incorporated herein by reference. This reference also describes the synthesis of nucleic acid molecules having a variety of 2' modified nucleotides.

The references cited herein are incorporated by reference to the same extent as if each had been individually incorporated by reference. The invention is illustrated further by the following examples, which are not to be taken as limiting in any way. The examples, individually, and together, further demonstrate that one skilled in the art would be able to practice each of the steps in developing useful pharmaceutical products as described in the invention. Generally, the development of such a product involves the following steps:

- 1. Select candidate target gene essential for cell survival or proliferation.
- 25 2. Determine chromosome location and LOH frequency.
 - 3. Identify common variance in the normal population.

10

15

232/116

- 4. Demonstrate antiproliferative effects from inhibition of candidate gene.
- 5. Design variance-specific inhibitor.
- 6. Achieve variance-specific antiproliferative effects in cancer cells.

EXAMPLES

Example 1. Genes required for Cell Proliferation

Many genes are involved in the process of cell proliferation and are potential targets for anti-proliferative drugs in this invention. Dividing cells progress through a repeating cycle of four stages, each of which is critical to the proliferation process. During the first phase, G1, cells ready the proteins they need to replicate their DNA, which occurs during S phase. Following S phase, cells enter G2, in which they prepare to divide into two daughter cells, each of which will contain the DNA content of the original cell. The final stage of the cell cycle is M phase, in which cells undergo mitosis. During mitosis, the cell nucleus disappears and the two sets of replicated chromosomes are separated to opposite sides of the cell. The cell then divides into two cells, the nucleus reforms in each new cell, and the cycle begins again. Cell proliferation is exceedingly complex and requires the precise coordination of many processes, including DNA synthesis, chromosome condensation and separation, and cell fission. In eukaryotic cells such as yeast, many of the proteins involved in cell division are encoded by essential genes, including those contributing to the duplication of the nucleus and the functions of microtubules, spindle pole bodies the centromere and the kinetochore.

A number of proteins are essential for cell proliferation. Proteins that are critical to this process can be divided into two classes: (i) proteins that regulate cell division; (ii) proteins that form structures involved in cell division. Proteins that regulate cell division include, but are not limited to, proteins involved in the regulation of particular

25

5

10

15

232/116

steps in the division process, such as nuclear breakdown and the transition between the different stages of mitosis, as well as proteins regulating the initiation of mitosis, such as the cylins, cyclin-dependent kinases (CDKs), and the kinases and phosphatases that regulate CDKs. Cyclin B, the cyclin-dependent kinase cdc2, and the cdc25C phosphatase are examples of proteins that regulate the initiation of mitosis. Deletion of yeast homologs of these genes is lethal, verifying their critical role in regulating the entry into mitosis. (It has been established that many human genes which encode proteins involved in highly conserved cellular processes can substitute for their yeast counterparts, and vice versa. For example such conservation has been demonstrated for components of the transcriptional apparatus, as well as components of the translational apparatus.)

Proteins that form structures involved in cell division include, but are not limited to, those involved in the processes of chromosome condensation and separation. Examples are tubulin and kinesin, which participate in the separation of chromosomes, and KIAA0165 and CDC37, involved in the spindle pole. Deletion of the yeast homolog of CDC37 is lethal.

Inhibiting the ability of a cell to divide induces, by definition, a cytostatic response, often followed by cell death. Colchicine and nocodazole are examples of drugs that inhibit microtubule function *in vitro*, thereby preventing chromosome separation and leading to cell cycle arrest during mitosis. Vinblastine and vincristine, which also inhibit microtubule function and therefore cell proliferation, have been used widely in the treatment of cancer.

Examples of genes that are involved in the process of cell proliferation, and are thus essential for cell survival or proliferation are shown in the accompanying table. Each of these genes has been disrupted in Saccharomyces cerevisiae and the mutant yeast shown to be nonviable.

25

20

5

10

163

232/116

Table: Genes Essential for Cell Proliferation in Yeast

Gene Name	Function of Gene Product	
APC1	Component of the anaphase promoting complex.	
CAK1	cdk activating kinase, activates cdc28p	
CBF2, CBF3B,	Essential constituents of the kinetochore protein complex	
CSE1 CBF5,	Cbf3 (subunits a-d), a structural component of centromeres to	
CTF13, SKP1	which microtubules attach.	
CDC14	Protein tyrosine phosphatase that performs a function late in	
	the cell cycle.	
CDC15	Essential for late nuclear division	
CDC16, CDC23,	Part of anaphase promoting complex, required for Clb2	
CDC27	degradation and metaphase-anaphase transition.	
CDC28	Essential for mitosis	
CDC31	Calcium binding protein of spindle pole body (SPB), involve	
CDC37	in SPB duplication	
CDC37	Required for spindle pole duplication and passage throug	
	START.	
CDC5	Protein kinase required for exit from mitosis, and operation of	
	mitotic spindle.	
CKS1	Associated with cdc28p kinase	
CRM1	Chromosome region maintenance protein.	
CSE1	Probable kinetochore protein, interacts with cetromeri	
	element CDEII.	
CSE4	Required for chromosome segregation.	
DBF4	Regulatory subunit for cdc7p protein kinase, required fo	
	G1/S transition.	
DIS3	Involved in mitotic control.	
DNA43		
DPB11	Required for S-phase initiation or completion. Involved in DNA replication and an S-phase checkpoint.	
ESP1, KAR1	Required for regulation of spindle body pole duplication.	
IPL1	Protein kinase involved in chromosome segregation.	
KRR1	Essential for cell division.	
MEC1	Checkpoint protein required for mitotic growth, DNA repair	
	<u> </u>	
MIF2	and recombination.	
W11 Γ ∠	Centromere protein required for chromosome segregation and	
	spindle integrity	

5

10

15

20

It will be evident to one skilled in the art that many genes that express essential metabolic and homeostatic functions of the cell will also be essential proliferation.

Example 2. Genes required to maintain inorganic ions at levels compatible with cell growth or survival.

Inorganic Ions are Essential for Cellular Life

Inorganic ions are required for virtually all cellular processes: they are important for maintenance of cell shape and osmolality; they are prosthetic groups of a wide variety of enzymes; they are required for ATP production coupled to ion diffusion; they mediate signal transduction both from intracellular and extracellular signals. Hence maintenance of inorganic ions at physiological concentrations is essential for cell

10

15

20

25

10

15

20

25

proliferation and cell survival. The importance of maintaining physiological ion concentrations is further demonstrated by the observation that deviation from normal levels leads to cytostatic or cytotoxic effects, as demonstrated by the effects of selectively poisoning ion channels or placing cells in hypotonic or hypertonic extracellular fluid.

Inorganic Ions Must be Transported Across Membranes

Maintenance of ion concentrations at optimal concentrations within cells is complicated by the presence of membranes which, because of their hydrophobic interior, form a highly impermeable barrier to most polar molecules, including inorganic ions. Important cell membranes include the plasma membrane as well as the nuclear membrane, mitochondrial membranes, the endoplasmic reticulum and Golgi apparatus, lysosomes and vesicles of various types, all of which are essential for cell proliferation or survival. Therefore maintaining the concentration of essential polar molecules, including both organic and inorganic ions, at levels compatible with cell growth or survival requires specialized mechanisms for moving such ions across the plasma membrane and the various intracellular membrane bound compartments.

Vital components of the apparatus for maintaining ion concentrations at levels essential for cell survival include regulatory molecules that sense the concentration of ions in different cellular compartments and produce signals to increase or decrease the concentration of said ions to levels compatible with cell survival; proteins that actively or passively transport ions across membranes; and proteins that modify ions so they can be transported across membranes.

Membrane transport proteins can be divided into several categories depending on whether they require energy (provided either by ATP hydrolysis or by co-transport of ions such as sodium or protons down their electrochemical gradients), produce energy

232/116

(ATP synthetases, which are usually coupled to proton diffusion) or are energy neutral. Other categories of transporters include those that transport one or more solutes (one or more of which may be ions), gated vs. non-gated - i.e. open only transiently (ligand gated and voltage gated channels) or open continuously, allowing ions to move down their concentration and electrochemical gradients. Specific types of essential membrane transporters include uniports, which simply transport one solute from one side of the membrane to the other, and cotransports, in which the transport of one solute is dependent on the simultaneous or sequential transport of a second solute in the same direction (symport) or in the opposite direction (antiport).

10

15

20

5

Other inorganic ions, such as iron, are transported bound to carrier proteins (transferrin in the case of iron). Transport of the iron carrier protein involves a complex cycle that begins with binding of iron to transferrin, binding of the iron-transferrin complex to transferrin receptor, formation of coated pits, endocytosis of the transferrin-iron complex via the coated pits, release of iron from transferrin in endosomes upon acidification to pH 5, and then recycling of the transferrin receptor-apotransferrin complex to the surface of the cell where, at neutral pH, the apotransferrin is released from transferrin receptor into the extracellular fluid to bind more iron and participate in another cycle. Thus in the case of transferrin-mediated iron transfer there are a variety of specialized proteins which must interact in a coordinated manner for transport to occur effectively.

25

Some of the specific inorganic ions which must be transported across the both the plasma membrane and intracellular membranes are sodium, potassium, chloride, calcium, hydrogen, magnesium, manganese, phosphate, selenium, molybdenum, iron, copper, zinc, fluorine, iodine, chromium, silicon, tin and arsenic. Specific transporters have been identified for many of these solutes including sodium, potassium, chloride, protons, copper and iron among others.

232/116

Regulation of ion concentrations at appropriate levels is often an energy-dependent process; intracellular and extracellular concentrations may differ by 10 fold or more (see Table).

Ion Concetrations Inside and Outside a Typical Mammalian Cell

Ion	Intracellular concentration	Extracellular concentration
	(mM)	(mM)
Cations	· · · · · · · · · · · · · · · · · · ·	
Na+	5-15	145
K+	140	5
Mg++	30	1-2
Ca++	1-2	2.5-5
Anions		
Cl -	4	110

Inhibitors of Ion Transporting Proteins are Cytostatic or Cytotoxic

Blocking import of essential cell nutrients, including inorganic ions, prevents cell growth and can lead to cell death. A well studied example is blockade of iron transport by inhibition of transferrin receptor. Dividing cells require iron, and transferrin receptor-mediated uptake of iron-transferrin complexes is the principal route for iron aquisition. Iron uptake requires multiple steps, including receptor binding, endocytosis via coated pits, acidification of endosomes and consequent release of iron from transferrin, followed by recycling of transferrin receptor-apotransferrin to the cell surface for another round of binding. Each step requires the coordinated function of a variety of proteins. Anti-transferrin receptor antibodies arrest cell growth by blocking iron uptake; antitumor effects have been demonstrated *in vitro* and *in vivo* with such antibodies.

Ion pumps are another class of proteins for which cytotoxic inhibitors have been

30

25

5

10

15

232/116

identified. All animal cells contain a Na+, K+ pump which operates as an antiport, actively pumping Na⁺ out of the cell and K⁺ in against their concentration gradients. In coupling the hydrolysis of ATP to the active transport of 3 Na⁺ out and 2 K⁺ into the cell the pump is electrogenic. The electrochemical gradients generated and maintained by the Na⁺.K⁺ pump are essential for regulation of cell volume and for the secondary, sodium-coupled active transport of a variety of organic and inorganic molecules including glucose, amino acids and Ca++. Hence the sodium potassium pump plays an essential role in cellular physiology. More than one third of a typical animal cells energy requirement is expended in fueling this pump. (Alberts et al. Molecular Biology of the Cell, Garland Publishing, New York, 1983, p.291.) Ouabain is an inhibitor of the Na⁺, K⁺ ATPase. It binds to the catalytic alpha 1 subunit of sodium potassium ATPase and is a potent cytotoxic drug. Cells treated with ouabain swell and eventually burst as they are unable to maintain a balance of osmotic forces because they can no longer pump out Na+. See Example 11 for a more detailed description of the essential properties of the Na⁺, K⁺ ATPase. Amiloride is another cytotoxic drug; it blocks the sodium-proton antiporter. Thus inhibition of proteins essential for maintaining physiologial levels of inorganic ions is toxic to cells.

Ion Transporting Proteins are Evolutionarily Conserved and Essential in Other Species

Many of the proteins required to maintain inorganic ions at physiologic levels are widely conserved in eukaryotes, reflecting an ancient and vital role. A number of gene disruption experiments in non-human cells demonstrate the importance of ion transponting proteins for cell growth and survival. For example in the yeast Saccharomyces Cerevisiae the gene encoding CDC1 protein, involved in maintaining ion homeostasis, has been disrupted resulting in non-viable yeast. Another essential yeast gene is PMA1, which encodes a H+ transporting P-type ATPase of the plasma membrane; activity of the encoded protien is rate limiting for growth at low pH.

5

10

15

20

232/116

As a result of the essential functions provided by proteins required for maintenance of inorganic ions at levels required for cell growth or survival, those genes which undergo LOH in a neoplastic disorder and which have sequence variants (nucleic acid or amino acid sequences) in a population as described above, are appropriate potential targets for allele specific inhibition, and thus can be used in the methods for identifying allele specific inhibitors and in other aspects of this invention. The provision of the exemplary ion transport genes, including sodium-potassium ATPase alphal subunit as well as the other genes listed in the Target Genes Table, indicates that other genes within this category or related subcategories will also be appropriate potential targets. Such a gene can be identified as an essential gene by reference to the art, or by the essential gene identification methods known in the art, examples of which are referenced herein. The LOH and sequence variance characteristics can then be readily determined by the described methods, thereby demonstrating that the gene is an appropriate potential target gene for allele specific inhibition.

15

10

5

Example 3. Genes required to maintain organic compounds at levels compatible with cell growth or survival.

20

Organic Compounds are Essential for Cellular Life

25

Organic compounds include the amino acids, carbohydrates, lipids, nucleosides and nucleotides, ions such as bicarbonate, vitamins such as ascorbic acid, pantothenic acid, riboflavin, nicotinamide, thiamine, vitamin B6, vitamin B12, and folate, essential nutrients such as linoleic acid and a wide variety of metabolic intermediates. Organic compounds are required for virtually all vital cellular processes: they are the building blocks of all cellular macromolecules including larger organic comounds such as proteins, starches, polynucleotides and complex lipids as well as glycolipids.

170 232/116

glycoproteins, lipoproteins, etc.; they are constituents of all cell structural molecules including proteins and membranes; they constitute all the metabolic intermediates in such vital cell processes as glycolysis, the Krebs cycle, oxidative phosphorylation, gluconeogenesis, the urea cycle, nucleotide biosynthesis, amino acid biosynthesis, etc. Maintaining organic compounds at levels compatible with cell growth or survival constitutes a large fraction of the work of the cell. Deviation from normal levels of organic compounds will generally have cytotoxic or cytostatic effects on cells (if the appropriate homeostatic cellular machinery for maintaining organic compounds at levels compatible with cell growth or survival is not operating to bring levels back to normal), as demonstrated by the effects of preventing transport of organic ions such as essential amino acids, vitamins or ions such as bicarbonate or blocking such processes as glycolysis or amino acid biosynthesis or transport of proteins into mitochondria, or required post-translational processing of proteins, lipids or carbohydrates.

Maintaining Organic Compounds at Levels Compatible with Cell Growth or Survival Requires Membrane Transport, Biosynthesis, Energy Extraction, Energy Production, Degradation and Excretion Pathways

Maintenance of organic compounds at optimal concentrations within cells is complicated by the presence of membranes which, because of their hydrophobic interior, form a highly impermeable barrier to most polar or charged molecules or molecules over 100 Daltons, including many organic compounds. Important cell membranes include the plasma membrane as well as the nuclear membrane, mitochondrial membranes, the endoplasmic reticulum and Golgi apparatus, lysosomes and vesicles of various types, all of which are essential for cell proliferation or survival. Therefore maintaining the concentration of essential organic compounds at levels compatible with cell growth or survival requires specialized mechanisms for moving such compounds across the plasma membrane and the various intracellular membrane bound compartments.

5

10

15

20

232/116

Vital components of the apparatus for maintaining organic compounds concentrations at levels essential for cell survival include regulatory molecules that sense the concentration of ions in different cellular compartments and produce signals to increase or decrease the concentration of said compounds to levels compatible with cell survival; proteins that actively or passively transport organic compounds across membranes; and proteins that modify or bind to organic compounds so they can be transported across membranes.

10

5

Some of the specific inorganic ions which must be transported across the both the plasma membrane and intracellular membranes are sodium, potassium, chloride, calcium, hydrogen, magnesium, manganese, phosphate, selenium, molybdenum, iron, copper, zinc, fluorine, iodine, chromium, silicon, tin and arsenic. Specific transporters have been identified for many of these solutes including sodium, potassium, chloride, protons, copper and iron among others.

15

20

The number of essential membrane proteins is not known. A crude estimate can be derived by adding up the proteins which perform essential functions enumerated above. There are many presently known organic compounds which must be transported across the cell membrane, including small molecules such as essential amino acids, lipids, sugars, the vitamins pantothenic acid, folic acid, riboflavin, nicotinamide, thiamine, vitamin B_6 , vitamin B_{12} and ascorbic acid as well as larger molecules such as proteins. (It is important to note that some essential functions are performed by families of transporters with overlapping tissue expression. In such cases it may be that no one protein is essential despite the fact that the protein family collectively carries out an essential cell function. Conversely, there are likely to be a number of essential membrane proteins not yet identified.)

25

Examples of Genes Essential to Maintain Organic Compounds at Levels Compatible with Cell Growth or Survival, From Yeast

10

15

20

25

The yeast Saccharomyces Cerevisiae is a eukaryote which shares many genes in common with humans. Approximately 70% of the essential genes in yeast have human homologs. Many human genes can be exchanged with their yeast counterparts with minimal effects on growth in yeast or human cells. The study of essential genes in yeast is much further advanced than in mammalian systems: over half of the ~6,000 genes of Saccharomyces Cerevisiae have been disrupted and the phenotype of the resulting strains tested on minimal growth media. Over 20% of disrupted yeast genes are essential, and a significant fraction of their human counterparts are likely to be essential for cell survival. Among the yeast genes disrupted are a variety of genes that encode proteins required to maintain organic compounds at levels compatible with cell growth or survival. Many of these genes are essential for cell survival. Many of the disrupted essential yeast proteins have closely related human homologs, and it is likely that the human homologs are also essential. Specific examples of yeast genes that are essential are listed below. (This is a partial list; see the web site _______proteome.com for an up to date list.)

The yeast ACC1 gene encodes acetyl co-A carboxylase and, like the human enzyme, is the first and rate limiting step in fatty acid biosynthesis.

The yeast DYS1 gene encodes deoxyhypusine synthase which catalyzes the first step in biosynthesis of the polyamine deoxyhypusine.

The yeast FBA gene encodes fructose-bisphosphate aldolase II, the sixth step in glycolysis, while the essential yeast genes GND1, ENO2, GPM1 and PYK1 encode 6-phosphogluconate dehydrogenase, enolase 2, phosphoglycerate mutase and pyruvate kinase (the last step of glycolysis).

The yeast ERG10 gene encodes acetyl-CoA-acetyltranserase, the first step in the mevalonate/sterol pathway. The essential ERG1 gene encodes squalene

monooxygenase, an later enzyme of the sterol biosynthesis pathway. ERG7, ERG8, ERG9, ERG11, ERG20, ERG24 and ERG25 encode enzymes on the same or related pathways.

5

The yeast ALG1 and ALG2 genes encode mannosyltransferases required for N-glycosylation, and the ALG7, DPM1 and NMT1 genes encode transferases for UDP-N-acetyl-glucosamine-1-P, mannose and myristate, respectively. RAM2 encodes a protein that is a subunit of both farnesyltransferases and (with BET2) geranylgeranyltransferases.

10

The yeast LCB1 gene encodes serine C-palmitoyltransferase which catalyzes the first step in the pathway for synthesis of the long chain base component of shingolipids, while the yeast AUR1 gene encodes a phosphoinositol transferase also essential for shingolipid synthesis.

15

The yeast PRO1 and PRO2 genes encode the three enzymes of proline biosynthesis. THR1 catalyzes the first step of threonine biosynthesis.

20

Example 4. Genes required to maintain cellular proteins at levels compatible with cell growth or survival.

25

Proteins carry out a host of essential enzymatic and structural functions required for cell proliferation and cell survival. Consequently, complete inhibition of protein synthesis is eventually lethal to all cells. The requirement of dividing cells (including cancer cells) for high level protein synthesis makes them more sensitive than quiescent cells to the cytostatic and cytotoxic effects of protein synthesis inhibitors. Because the basic scheme of protein synthesis remains the same in all living organisms there are many attractive schemes for screening human targets in heterologous organisms.

174 232/116

Polypeptide Synthesis Occurs in Several Steps and Requires Over 100 Proteins

The machinery of polypeptide synthesis includes:

Aminoacyl tRNA synthetases, which covalently couple amino acids to their cognate tRNAs. Eukaryotic cells have two sets of tRNA synthetases, one for aminoacylation of cytoplasmic tRNAs and one for aminoacylation of mitochondrial tRNAs. Both types of tRNA synthetases are encoded in the nuclear genome.

Ribosomes, which translate mRNA into protein and integrate the action of the other components of the polypeptide polymerization machinery.

Initiation factors, which mediate the steps before the first peptide bond is formed, including formation of an initiation complex consisting of a ribosome, an mRNA and the first aminoacyl tRNA. Initiation is generally the rate limiting step in polypeptide synthesis.

Elongation factors, which function in all the reactions between synthesis of the first peptide bond and addition of the last amino acid.

Termination factors, which perform the reactions required to release completed polypeptide chains from ribosomes.

Polypeptide chaperonins and other folding factors such as isomerases, which are necessary for the proper folding (and hence function) of proteins.

Polypeptide degradation machinery, including the ubiquitin system for tagging proteins for degradation and the proteasome and its constituents for cleaving proteins targeted for degradation. As cells grow and respond to changing circumstances there is a continual need to new protein synthesis. However, without some mechanism for eliminating existing unneeded or damaged proteins cells are not able to survive or proliferate.

There are approximately 20 cytoplasmic and 20 mitochondrial tRNA synthetases, approximately 80 ribosomal proteins, and over 20 protein constituents of initiation

10

5

15

20

232/116

factors, elongation factors and termination factors. The available evidence suggests that virtually all of these proteins are encoded by single copy genes. Thus at least 150 genes and their encoded proteins are potential candidates for allele specific targeting. (Conversely, the RNA constituents of the translational apparatus - transfer RNAs and ribosomal RNAs - are encoded by multicopy genes and do not constitute targets for allele specific targeting).

Inhibitors Have Been Identified for Most Steps of Peptide polymerization and processing

10

5

Well over 100 protein synthesis inhibitors with a wide variety of structures and mechanisms of action of have been characterized in both prokaryotes and eukaryotes. Specific inhibitors have been identified for each step of translation described above. See Table from Vasquez (ref. 1) for a summary of translation inhibitors.

Inhibition of aminoacyl tRNA synthetases has been accomplished by at least

15

three different mechanisms: amino acid analogs such as borrelidin and histidinol result in arrest of cell division by competing with natural amino acids for aminoacylation by tRNA synthetases. Inhibition of prokaryotic cell growth has also been demonstrated with RNA minihelices which mimic the acceptor stems of tRNAs. The minihelices compete with authentic tRNAs for aminoacylation by cognate tRNA synthetases. A third class of synthetase inhibitor is represented by pseudomonic acid A, a species specific inhibitor of gram positive isoleucyl tRNA synthetase produced by a gram negative

25

20

Peptide polymerization and processing inhibitors that act on ribosomes include agents which bind the protein components and agents which bind or cleave the RNA components of ribosomes. An example of the former is the small

organism. Pseudomonic acid A does not mimic amino acids or tRNAs, but

binds to isoleucyl tRNA synthetase to inhibit peptide polymerization and

processing.

176

232/116

molecule drug emetine, which binds to ribosomal protein S14 and inhibits peptide polymerization and processing.

Peptide polymerization and processing Inhibitors are Cytostatic or Cytotoxic Drugs

5

Some of the most potent cytotoxic agents known are protein synthesis inhibitors. For example, a single molecule of ricin or diphtheria toxin is sufficient to kill a cell.

10

The largest class of protein synthesis inhibitors act on the elongation step of translation, with many inhibitors known for both prokaryotes and eukaryotes. Among the best studied prokaryotic elongation inhibitors are molecules belonging to the major antibiotic groups: the tetracyclines, streptomycin and other aminoglycosides, lincomycin and related compounds, erythromycin and related macrolide antibiotics and puromycin. Among the better characterized eukaryotic elongation inhibitors are toxins such as ricin and diphtheria toxin.

15

Cancer Chemotherapy by Inhibition of Peptide polymerization and processing

20

25

The best studied chemotherapeutic agent that acts solely by inhibiting protein synthesis is the enzyme L-asparaginase, used frequently in the treatment of acute lymphoblastic leukemia and occasionally in the treatment of other cancers. The therapeutic effect of L-asparaginase treatment is hydrolysis of serum L-asparagine to L-aspartate, with a rapidly ensuing drop in serum asparagine levels. While asparagine is not an essential amino acid, leukemia cells generally do not express asparagine synthase and are therefore reliant on importation of asparagine from serum via amino acid transporters in the plasma membrane. The effect of sudden asparagine starvation on rapidly dividing leukemia cells is to induce apoptotic death. Subsequent retreatment with L-asparaginase is generally not as effective as the initial treatment because the leukemia cells which survived the initial treatment have had time to induce expression of

232/116

asparagine synthase and are no longer dependent on external asparagine.

Examples of Genes Essential to Maintain Cellular Proteins at Levels Compatible with Cell Growth or Survival, From Yeast

5

The yeast Saccharomyces Cerevisiae is a eukaryote which shares many genes in common with humans. Approximately 70% of the essential genes in yeast have human homologs. Many human genes can be exchanged with their yeast counterparts with minimal effects on growth in yeast or human cells. The study of essential genes in yeast is much further advanced than in mammalian systems: over half of the ~6,000 genes of Saccharomyces Cerevisiae have been disrupted and the phenotype of the resulting strains tested on minimal growth media. Over 20% of disrupted yeast genes are essential, and a significant fraction of their human counterparts are likely to be essential for cell survival. Among the yeast genes disrupted are a variety of genes that encode proteins required to maintain proteins at levels compatible with cell growth or survival. Many of these genes are essential for cell survival. Many of the disrupted essential yeast genes have closely related human homologs, and it is likely that the human homologs are also essential. Specific examples of yeast genes that are essential are listed below. All of these genes have human homologs. (This is a partial list because the Saccharomyces gene disruption project is only halfway done; see the web site http//quest7.proteome.com for an up to date list.)

15

10

20

GRC5, NHP2, NIP1, RPL1, RPL25, RPL27, RPL32, RPL35, RPL7, and URP2 are yeast ribosomal proteins that have been disrupted and found to be essential.

25

CDC33, GCD1, GCD10, GCD11, GCD2, GCD6, GCD7, PRT1, SIS1, SUI1, SUI2, SUI3, TIF11, TIF34, and TIF5 are essential translation factors, mostly translation initiation factors that initiate translation at ATG.

178

232/116

EFB1 and YEF3 are translation elongation factors that have been disrupted and found essential.

SUP35 and SUP45 are essential translation termination factors.

5

ALA1, HTS1, DED81, THS1, VAS1, WRS1 and KRS1 are essential yeast cytoplasmic tRNA synthetases.

References

10

- 1. Vazquez, D. (1979) Molecular Biology and Biophysics, vol. 30, Inhibitors of Protein Synthesis. Springer-Verlag, Berlin.
- 2. Lim-Sylianco, C.Y. (1990) Toxins that alter the expression of genetic information: genotoxins and inhibitors of RNA or protein synthesis, pp. 338-421 *in* Shier, W.T. and D. Mebs, eds., <u>Handbook of Toxinology</u>, Marcel Dekker, New York.

15

Example 5. Genes required to maintain cellular nucleic acids at levels compatible with cell growth or survival.

20

Cellular nucleic acids including deoxyribonucleic acids and ribonucleic acids are essential elements for cell survival and proliferation. Many different genes are involved in maintaining these constituents at levels required for cell growth and proliferation including genes encoding enzymes for nucleotide synthesis, nucleotide degradation and salvage, polymerization of DNA (replication), polymerization of RNA (transcription), modifications of DNA including methylation, modifications of RNA including polyadenylation and capping, and processing or DNA and RNA. Many of these genes and their gene products are targets for conventional antiproliferative drugs.

25

RNA and DNA precursor Biosynthesis is Essential for Cell Proliferation

232/116

Nucleotides, the building blocks for both RNA and DNA, are essential for cell survival. Eukaryotic cells have several pathways for the production of nucleotides: de novo purine and pyrimidine biosynthesis, salvage pathways and membrane transport.

5

Over 50 Proteins Participate in RNA and DNA precursor Biosynthesis

The principal enzyme groups involved in RNA and DNA precursor biosynthesis are the 14 enzymes of de novo purine biosynthesis, 5 enzymes of de novo pyrimidine biosynthesis (encoded in two polypeptides) and the enzymes of the nucleotide salvage pathways, which number at least 10.

10

Inhibitors of RNA and DNA precursor Biosynthesis are Cytostatic or Cytotoxic Drugs Useful in Cancer Chemotherapy Many of the most clinically effective antineoplastic agents block steps in RNA and DNA precursor biosynthesis. Examples include agents which block enzymes of de novo purine and pyrimidine biosynthesis or interfere with salvage pathways. For example, hydroxyurea blocks production of deoxyribonucleotides by ribonucleotide diphosphate reductase.

15

Purine Biosynthesis is essential for cell proliferation

20

Pharmacologic inhibitors of purine biosynthesis are cytotoxic. These include drugs like azaserine and 6-diazo-5-oxo-L-norleucine (DON), glutamine analogs which inhibit three steps in purine synthesis, the most important being inhibition of the enzyme formylglycinamide ribonucleotide amidotransferase. 8-azaguanine and mycophenolic acid interfere with guanylate biosynthesis. (See Kornberg, A., DNA Replication, W.H. Freeman and Company, San Francisco, 1980, for a review of drugs that inhibit purine and pyrimidine biosynthesis.) There is also evidence of the essentiality of purine biosynthesis from yeast. For example, the saccharomyces cerevisiae PUR5 gene encodes inosine 5'-monophosphate dehydrogenase, which converts inosine 5'-phosphate and NADH, the first reaction unique

WO 98/41648 PCT/US98/05419

180

232/116

to GMP biosynthesis. Disruption of PUR5 is lethal.

Pyrimidine Biosynthesis is essential for cell proliferation

Pharmacologic inhibitors of pyrimidine biosynthesis are cytotoxic. These include drugs like phosphonacetyl-L-aspartate (PALA) which inhibits aspartate transcarbamylase, a key enzyme in de nove pyrimidine synthesis. Also, there is evidence of the essentiality of pyrimidine biosynthesis from yeast. For example, the saccharomyces cerevisiae CDC8 gene encodes thymidylate kinase, required for synthesis of dTTP. Disruption of CDC8 is lethal.

10

15

5

DNA synthesis and polymerization.

Cell division clearly requires DNA polymerization to replicate the chromosomes so that each daughter cell has the same genetic makeup as the parent cell. Much of the basic machinery of DNA replication is conserved in prokaryotic and eukaryotic cells (1). Disruption of genes that encode proteins of DNA replication in yeast - including Polymerases I and III (the counterparts of human polymerases a and d), and accessory factors such as Replication Protein A and Replication Factor C - is lethal in S. cerevisiae (2). Nucleotide analogs that are incorporated into DNA are cytotoxic drugs. Examples of such analogs are the antineoplastic drug 6-mercaptopurine and arabinosyl NTPs, which interfere with DNA polymerization. Since inability to replicate DNA is lethal for growing cells, mutants in DNA replication must be obtained as conditional lethals in both prokaryotes and eukaryotes.

25

20

Second strand DNA polymerization on takes place in three main steps, each requiring different protein machinery: (1) At the start of replication an initiation complex is formed at chromosome structures called origins of replication. The parental DNA strands are transiently separated, a replication fork is formed and DNA synthesis is primed. (2) The elongation phase of replication is thought to take place in two

complexes, one moving forward on the leading strand and the other moving iteratively in the opposite direction to form the lagging strand. Elongation, then, requires replicative DNA polymerases and associated factors for unwinding and transiently stabilizing single stranded DNA, proofreading the newly synthesized template and, on the lagging strand, removing RNA primers and covalently linking adjacent newly synthesized lagging strands (Okazaki fragments). (3) During the final phase of DNA synthesis replication is terminated and the newly synthesized strands are separated.

Origin recognition complexes are formed by at least 6 origin recognition complex proteins (ORC 1 through 6) along with other factors, including "licensing" proteins such as the MCM family as well as "regulating" factors. The two principal nuclear replicative polymerases are DNA polymerase a, which is responsible for priming synthesis and for synthesis of the lagging strand, and DNA Polymerase d, which synthesizes the leading strand. Both are multisubunit proteins, which function in multiprotein assemblies that include Replication Protein A, Replication Factor C, Proliferating Cell Nuclear Antigen and other proteins.

DNA Polmerases b and e are believed to principally carry out nuclear repair synthesis, while Polymerase g is the mitochondrial replicative enzyme. These polymerases are also multiprotein complexes.

Proteins such as topoisomerases I and II and other DNA helicases are also required during replication to maintain DNA topology.

The biochemistry of replication termination is not well characterized however the proteins which carry out this final step of replication are likely to be essential.

Inhibitors Have Been Identified for Several Steps of DNA Replication

In addition to lethal disruptions of genes encoding proteins required for replication, a variety of cytotoxic inhibitors of DNA replication have been identified. They include

5

10

15

20

232/116

agents which act on production of DNA precursors as well as inhibitors of DNA polymerases.

DNA Replication Inhibitors are Cytostatic or Cytotoxic Drugs

5

10

15

There are several chemotherapy drugs that arrest DNA replication and poison cells by inhibiting production of deoxynucleotides, the precursors of DNA. These drugs include hydroxyurea, which inhibits ribonucleotide reductase, and 5-fluorouracil, which inhibits thymidylate synthase. Other inhibitors of replication appear to act, at least in part, by blocking DNA polymerases. These include nucleotide analogs that block DNA polymerases, such as 2',3' dideoxy NTPs and 3' deoxy ATP (cordycepin) as well as the chemotherapy drugs cytarabine (cytosine arabinoside), fludarabine phosphate and 2-chlorodeoxyadenosine. Cytarabine, after metabolism to the di- and trinucleotide phosphate forms, is incorporated into DNA and inhibits chain elongation leading to cell death, apparently by inducing apoptosis. Fludarabine, after metabolism to the triphosphate derivative, inhibits DNA polymerase, DNA primase and ribonucleotide reductase and is incorporated into DNA and RNA (3).

20

DNA polymerization is essential for cell proliferation

25

The essentiality of the function of DNA polymerization is clear, as such polymerization is needed for cell division, and therefore for tissue or tumor growth. As indicated for other categories, confirmation of the essentiality of a particular gene and the presence of a single locus, along with the determination of appropriate LOH and sequence variance heterozygosity characteristics identifies or confirms a gene in this category as an appropriate gene for potential allele specific targeting.

References

10

15

20

25

- 1. O'Donnell, M., Onrust, R., Dean, F.B., Chen, M. and J. Hurwitz (1993) Homology in accessory proteins of replicative polymerases E. coli to humans. *Nucleic Acids Research* 21:1-3.
- 2. Stillman, B. (1996) Cell Cycle Control of DNA Replication. Science 274: 1659-1664.
- 3. Gandhi, V., Huang, P. and W. Plunkett (1994) Fludarabine inhibits DNA replication: a rationale for its use in the treatment of acute leukemias. *Leukemia and Lymphoma* 14 Suppl. 2: 3-9.

Maintaining RNA at levels required for cell growth or survival

Gene transcription is necessary for the production of messenger RNAs, the precursors of all cellular proteins. Transcription is also required for the production of ribosomal RNA, essential to formation of ribosomes, and for the production of transfer RNA, required for formation of aminoacyl tRNAs, the building blocks of protein synthesis. Turning off transcription - which can be accomplished with drugs that act on DNA templates or RNA polymerase - leads to rapid arrest of cell growth and subsequent cell death. Beyond gene transcription lie a series of essential RNA processing steps, including, but not necessarily limited to, mRNA splicing, capping, polyadenylation and export to the cytoplasm. Interference with any of these steps prevents the production of mature mRNA competent for translation, and therefore has the same cytotoxic effects as blocking transcription.

Gene Transcription and RNA Processing Require Many Proteins

Transcription of eukaryotic genes is carried out by three different RNA polymerases, each of which works with a different set of accessory factors. RNA Polymerase I is responsible for transcription of ribosomal RNAs, RNA Polymerase II transcribes protein coding genes and RNA Polymerase III transcribes transfer RNAs and other small RNAs. All three polymerases are multiprotein complexes. Several protein subunits are common components of all three polymerases, but each polymerase also

has unique subunits and accessory factors, not all of which have yet been identified or characterized. Some of the key proteins identified so far are:

RNA Polymerase I subunits and accessory factors including UBF1 and SL1. (SL1 has been shown to consist of TATA binding protein and three TATA associated factors.)

RNA Polymerase III subunits and accessory factors including TFIIIA, TFIIIB and TFIIIC.

RNA Polymerase II and its accessory factors are by far the most extensively characterized and most complex system. The large multisubunit protein complex that transcribes protein coding genes has recently come to be called the RNA Pol II holoenzyme (reviewed by Berk, ref. 1). The holoenzyme consists of more than 50 proteins, among which are:

RNA polymerase, the catalytic complex at the core of the holoenzyme. It consists of 14 subunits, many of which can complement their yeast counterparts in vivo.

The general transcription factors. These are proteins which either make direct contact with DNA, like TATA binding protein and associated factors, or interact with other transcription factors and/or transcriptional regulators. The general transcription factors, including TFII A, TFII B, TFII D, TFII E, TFII F, TFII H and TFII I, are multimeric protein complexes with >30 protein constituents (2,3). For example, there are 8-13 proteins which associate with TATA binding protein (called TATA associated factors, or TAFs) to collectively make up TFII D. Some of these factors (e.g. TFII250) have already been proven essential for cell proliferation.

Accessory proteins such as elongation factors, termination factors, activator and mediator proteins, srb (suppressor of RNA Polymerase B; see ref. 1 and references therein) proteins, RNA methylases and a variety of other processing factors.

RNA helicases, which are required for proper folding of RNAs,

10

15

20

10

15

20

25

Once transcribed, genes are spliced by multiprotein assemblies termed spliceosomes (4), which are made up of pre-mRNA, small nuclear ribonucleoproteins including (snRNPs) U1, U2, U4/6 and U5 and other proteins including SF2/ASF, U2AF and SC35. Recently progress has been made in cloning cDNAs for several splicing factors, however many of the proteins which process mRNAs have not yet been well characterized. After splicing, mRNAs are polyadenylated and exported to the cytoplasm (5). Several of the proteins of polyadenylation have been purified and cloned. The export of mRNAs is less well studied but is clearly a specific process requiring protein machinery. Several essential yeast genes required for mRNA transport have been identified.

Inhibitors Have Been Identified for Several Steps of Gene Transcription

The best studied inhibitors of gene transcription are small molecules that inhibit RNA polymerase or interact with DNA to block transcription. Inhibitors of RNA polymerase include actinomycin D, which intercalates into double stranded DNA and blocks the movement of RNA polymerase and rifampicin, an antibiotic which binds the b subunit of *E. Coli* RNA polymerase and blocks initiation of transcription. The best studied specific inhibitor of eukaryotic RNA Polymerase II is the potent mushroom toxin a-amanitin, a cyclic octapeptide which binds to the polymerase with high affinity (Kd ~10-9 M). Several mutations conferring resistance to alpha-amanitin have been characterized and they all map to the RNA Polymerase II protein coding sequence.

Examples of essential yeast genes (disruption shown to be lethal) required to maintain cellular nucleic acids at levels compatible with cell growth or survival

A number of yeast genes involved in DNA (including nuclear DNA and mt DNA) and RNA (including mRNA, tRNA and rRNA) metabolism have been disrupted and shown

essential for yeast cell viability. Many of these genes are conserved in all eukaryotes. Human homologs of these yeast genes are likely to be essential for human cell growth or survival. Specific examples:

5

The yeast DNA2 gene encodes a DNA helicase required for DNA replication. DNA2 is essential to the function of TOP2 (topoisomerase) which is also an essential gene.

10

POL1, POL2, POL3 and POL12 encode DNA polymerases. The disruption of any one of these genes is lethal. Knockout of polymerase associated genes DBP2 and POB3 is also lethal. These genes are essential for the synthesis of DNA.

ORC1, ORC2, ORC3, ORC4, ORC5, ORC6, CDC7, CDC46 and CDC54 are essential in yeast. These genes encode origin recognition complex proteins responsible for the initiation of DNA synthesis. There are direct human homologs of the ORC genes.

15

General replication factors RFA1, RFA2, RFA3, RFC1, RFC2, RFC3, RFC4 and RFC5 are all essential yeast genes. These genes encode replication protein A and replication factor C which are essential for DNA replication and have direct human homologs.

20

TBF1, TEL2 and CDC13 are essential yeast genes that encode proteins that responsible for the synthesis and maintenance of telomeres.

25

RNR1 (Ribonucleotide Reductase 1), RNR2 (Ribonucleotide Reductase 2) CDC8 (Thymidylate Kinase) and PUR5 (Inosine-5'-monophosphate dehydrogenase) are essential yeast genes involve in the purine/pyrimidine biosynthesis pathways and in the conversion of ribonucleotides to deoxyribonucleotides.

ROX3, RPA135, RPA190, RPA43, RPB10, RPB11, RPB2, RPB3, RPB5, RPB6,

RPB7, RPB8, RPC10, RPC128, RPC19, RPC25, RPC31, RPC34, RPC40, RPC53, and RPC82 are subunits of RNA polymerases I, II and III. These genes have been disrupted and shown to be essential. RNA polymerase I, II, and II are responsible for the synthesis of rRNA, mRNA, and tRNA respectively and have human homologs.

5

BRR2, DBP5, DBP6, DED1, HCA4, MAK5, and ROK1 are RNA helicases that are essential for processes such as pre-mRNA splicing and ribosomal RNA splicing.

10

Yeast TATA binding proteins TAF145, TAF17, TAF19, TAF25, TAF40, TAF47, TAF47, TAF60, TAF61, TAF67, and TAF90 are required for mRNA transcription by the RNA Polymerase II holoenzyme.

Transcription elongation factors RPO21 and RPO31 are essential.

15

General transcription factors SPT15, SSL1, SSL2, SUA7, TFA1, TFA2, TFB1, TFB2, TFB4, TFC2, TFC3, TFC4, TFC5, TFG1, TFG2, TOA1, and TOA2 have been disrupted and proven to be essential. These genes encode proteins that constitute the general machinery of RNA transcription.

20

Specific transcription factors BBP1, BRF1, BUR6, CDC39, HSF1, KIN28, MET30, RAP1, and REB1 are essential yeast genes. These genes encode proteins that are involved in the transcription of specific genes.

25

CUS1, GIN10, MSL5, PRP19, PRP31, SLU7, SME1, SNP2, USS1, and YHC1 are essential genes responsible for normal RNA splicing.

ESS1, FIP1, NAB2, NAB3, NAB4, PAP1, RNA14, RNA15, and YTH1 are essential genes required for RNA modification. The encoded proteins perform functions such as cleavage and polyadenylation of 3' ends of RNAs to produce mature mRNA

PCT/US98/05419

188 232/116

molecules.

References

5

10

20

25

- 1. Berk, A.J. (1995) Biochemistry meets genetics in the holoenzyme. *Proc. Natl. Acad. Sci. U.S.A.* 92: 11952-11954.
 - 2. Buratowski, S.(1994) The basics of basal transcription by RNA polymerase II. *Cell* 77: 1-3.
 - 3. Tjian, R. and T. Maniatis (1994) Transcriptional activation: a complex puzzle with few easy pieces. *Cell* 77: 5-8.
 - 4. Green, M.R. (1991) Annual Review of Cell Biology 7: 559.
 - 5. Proudfoot, N. (1991) Poly(A) signals. Cell 64: 671-674.
- Example 6. Genes required to maintain integrity and function of cellular and subcellular structures compatible with cell growth or survival.

In order to survive and grow cells must be able to maintain their shape and internal architecture, including the structural integrity of a wide variety of subcellular organelles including the nucleus, mitochondria, endoplasmic reticulum and Golgi vesicles and a variety of lysosomes, peroxisomes vesicles and vacuoles. These structures perform essential functions such as:

(i) Movement of proteins and other macromolecules across membranes to maintain their concentration at levels compatible with cell growth or survival. Newly synthesized proteins are transported to the endoplasmic reticulum by specialized transport apparatus which assists in protein folding and posttranslational modification. From the ER, proteins may be transported to distant cellular sites via vesicles which are comprised of specialized proteins. Some proteins synthesized in the cytoplasm must be transported into the mitochondia for proper mitochondrial function. There

10

15

20

25

also exist specialized apparatus for transport of mRNA from the nucleus.

- (ii) Fusion or fission of various membrane bound cytoplasmic or nuclear organelles requires the specialized function of molecules that affect membrane properties to allow joining or separating and that provide a scaffold for moving membrane bound structures together or apart. The relationship of the ER and Golgi vesicles involves a continuous process of fission, while various classes of vacuoles or vesicles may fuse. (iii) There must be effective coordination of the function of all cellular compartments.
- (III) There must be effective coordination of the function of all cellular compartments. Coordination is accomplished by the transmission of signals from membrane to nucleus, from cytosol to mitochondria, from nucleus to cytoplasm, etc. Signals are transmitted by enzymes such as adenylate cyclases, protein kinases and protein phosphatases.
- (iv) Maintenance of the integrity of cellular and subcellular structures also requires processes and structures for eliminating, transforming, sequestering or otherwise regulating levels of endogenous cellular toxins or waste substances. This may be accomplished by transfer of waste molecules to organelles such as vacuoles, lysosomes or peroxisomes, by inactivation of toxic byproducts of oxygen metabolism such as free radicals or by export of molecules that have reached excessive levels in the cell.
- (v) The structure of the cytoplasm is maintained by the cytoskeleton, while different organelles in some cases are made up of specialized structural molecules. For example, the nucleus, bound by a double layered nuclear envelope, contains the nuclear matrix, consisting of over 100 unique proteins, as well as the histones and other proteins which form chromatin and the proteins which form subnuclear structures such as nucleoli, nuclear pores and the protein structures which convey mRNA out of the nucleus. (Darnell, J. et al., Molecular Cell Biology, Scientific American Books, 1990.)

The fibrous proteins of the cytoplasm are collectively referred to as the cytoskeleton. Among the important cytoskeletal proteins are microfilaments made up of actin molecules, microtubules made up of tubulin molecules, and intermediate filaments, made up of one of a variety of subunit types. The cytoskeleton is important not only

10

15

20

25

for maintenance of cell shape, strength and rigidity but also for providing a frame for movement of other structures. Microtubules, for example, are critical for chromosome movement during cell division, while actin microfilaments and intermediate filaments affect the organization and mobility of surface membrane proteins. Actins and other cytoskeletal proteins are vital for processes such as endocytosis, which is the only route of essential nutrients such as transferrin-bound iron. Cells also contain a variety of proteins essential for anchoring organelles to the cytoskeleton, or anchoring the plasma membrane to adjacent structures such as basement membranes and adjacent cells.

A variety of yeast structural proteins required to maintain integrity and function of cellular and subcellular structures have been disrupted and shown essential for cell survival. Since most structural proteins are highly conserved in eukaryotes it is likely that the human counterparts of these yeast genes are also essential. Specific examples:

The genes encoding yeast nuclear pore proteins (nucleoporin) NIC96, NSP1, NUP49, NUP57, NUP82, NUP145 and NUP159 are lethal when disrupted, as is the pore trafficking protein GSP1. NNF1 is an essential protein of the nuclear envelope required for proper nuclear morphology.

The yeast nucleolar protein NOP2, homologous to human proliferation associated nucleolar antigen p120, is essential. NOP4 encodes another essential yeast nucleolar protein.

Knockout of the yeast ACT1 gene, which encodes actin, is lethal, as is knockout of the actin related proteins ARP100, ARP2, ARP3 and ARP4. The actin binding and severing protein cofilin, encoded by the yeast COF1 gene, is also essential, as is profilin (PFY1), which can complex with actin monomers and prevent actin polymerization. PAN1 is an essential protein involved in normal regulation of the actin cytoskeleton.

The RET1, RET2, RET3, SEC1, SEC4, SEC5, SEC6, SEC7, SEC8, SEC10, SEC11, SEC14, SEC16, SEC17, SEC18, SEC20, SEC26, SEC27, SEC31, SEC61, SEC62, SEC63, SFT1, SLY1, BET1, BET3, UFE1, USO1, VTI1, TIP20, KAR2 and BOS1 genes are all essential in yeast. These genes encode proteins which are vital for the function of the endoplasmic reticulum and Golgi vesicles, including processes such as protein transport across the ER, membrane fusion and formation of vesicles.

10

5

The essential yeast histone-like protein CSE4 is required for chromosome segregation. STH1, RSC6 and RSC8 are components of the essential abundant chromatin remodeling complex, while SPT5 and SPT6 influence gene expression through effects on chromatin structure.

15

The essential yeast intermediate filament protein MDM1 is involved in organelle inheritance and mitochondrial morphology.

20

The essential yeast mitochondrial proteins MGE1 and SSC1 participate in folding of proteins during mitochondrial import. TIM17, TIM22 and TIM23 are essential mitochondrial inner membrane proteins involved in import and translocation of proteins. ATM1 is an ATP binding mitochondrial inner membrane protein.

The RAT1, MTR2 and MTR3 genes encode proteins essential for mRNA transport from the nucleus to the cytoplasm.

DBF8 is an essential yeast protein involved in protein transport.

25

APS2 is an essential clathrin associated protein, involved in membrane transport.

The yeast PKC1 gene encodes the essential protein kinase C, which regulates the MAP kinase cascade; CDC15 is an essential component of the MAP kinase kinase kinase

WO 98/41648 PCT/US98/05419

192 232/116

family of signaling proteins.

CYR1 is an essential adenylate cyclase which generates cAMP in response to signals including ras activation. GDI1 is an essential GDP dissociation inhibitor.

5

10

Example 8: Validation of Target Gene Essentiality

To investigate whether specific target genes are essential for cell proliferation and/or survival, a method was developed to use antisense oligonucleotides to inhibit gene expression. Phosphorothioate antisense oligonucleotides targeting polymorphic sites were transfected into human cell lines, and mRNA down-regulation was assessed by northern blotting. mRNA down-regulation was achieved for 19 of the 35 polymorphisms targeted (54.2%). Oligonucleotides targeting each polymorphic allele were (separately) transfected to assess the allele-specificity of the mRNA down-regulation. In 15 of the 19 sites accessible to oligos, the oligonucleotide targeting the allele found in the cell down-regulated mRNA to a level significantly lower than did the mismatched oligonucleotide. In 6 of these 15 cases, striking allele-specificity was observed.

15

OOSCI VCC.

20

25

The consequence of down-regulating the mRNA of an essential gene should be cell death. Allele-specific cell death was indeed observed in these experiments, both upon transfecting cells daily for three days with the phosphorothioate oligos described above (followed by a recovery period during which control-treated cells continued to divide while essential gene inhibition prevented division) or upon extended (5-10 days) daily transfections with less toxic oligonucleotide chemistries. In an experiment targeting either RNA polymerase II or the glutamyl-prolyl tRNA synthetase (EPRS), cells were transfected for five consecutive days with oligos either targeting the allele found in the cell (match) or carrying a 1 bp mismatch, targeting the other allele (mismatch). One day after the fifth transfection, cells remaining on the plate were quantitated by staining

10

15

20

25

193

232/116

with sulforhodamine B. The matched oligonucleotide was significantly more cytotoxic than the mismatched oligonucleotide.

Example 9: Aminoacyl tRNA Synthetases are Essential for Cell Survival

Each aminoacyl-tRNA synthetase performs an analogous role in protein synthesis, and each represents a target for the present invention.

Aminoacyl-tRNA synthetases perform a basic cell function

Aminoacyl-tRNA synthetases are present in all living cells (1). (A recent paper entitled "A minimal gene set for cellular life derived by comparison of complete bacterial genomes" [ref. 2] concludes that as few as 256 genes may be required for prokaryotic cell life; all 20 tRNA synthetases are included in this minimal gene set.) Each tRNA synthetase catalyzes ATP dependent covalent attachment of a specific amino acid to its cognate tRNA. It is the specificity of each synthetase for a single amino acid and transfer RNA that establishes the universal rules of the genetic code. The aminoacyl-tRNAs produced by tRNA synthetases constitute the precursors for protein assembly by ribosomes - thus tRNA synthetases are vital for peptide polymerization and processing. Blockade of peptide polymerization and processing at any one of multiple different steps (see above) results in arrest of cell growth and eventually cell death in a variety of organisms and cell types.

Aminoacyl-tRNA synthetases have been shown essential in all tested organisms

It has been demonstrated by mutagenesis experiments that tRNA synthetases are essential for prokaryotic, yeast and mammalian cell survival (ref. 1-5). The most relevant data concerns mammalian cells: mutagenesis of Chinese hamster ovary (CHO)

232/116

PCT/US98/05419

194

and Chinese hamster lung cells followed by "suicide" selection at 39oC for temperature sensitive (ts), conditionally lethal protein synthesis mutants has led to isolation of cell lines with mutant tRNA synthetases (reviewed in ref. 5). (The "suicide" of dividing cells is accomplished by adding thialysine or tritiated [3H] amino acids to cell growth media. Only cells that incorporate these amino acid analogs into protein die - thus cells that are protein synthesis deficient at 39oC survive the selection.) The fraction of cells surviving a single round of suicide selection ranges from one in 105 to one in 108. Biochemical and genetic characterization of surviving cells has led to identification of specific ts aminoacyl-tRNA synthetase mutants. Cell lines with mutant leucyl- or asparaginyl-tRNA synthetases have been isolated repeatedly because the genes for leu and asn tRNA synthetases are haploid in the CHO cell line used for selection, and therefore require only one mutation. Less frequently, mutant alanyl-, arginyl-, glutaminyl-, histidyl-, lysyl-, methionyl-, tryptophanyl- and valyl-tRNA synthetases have been isolated. The properties of these mutant cell lines are similar: when shifted to 39oC, the non-permissive temperature, the rate of protein synthesis drops, in some cases to almost undetectable levels. Soon thereafter the cells stop replicating DNA and within a few days cell death ensues. These experiments constitute proof of the essential role of tRNA synthetases in mammalian cells. Arrest of protein synthesis and consequent cell death can be prevented in some cases by supplementing cell media with the amino acid substrate of the defective tRNA synthetase (thereby driving the aminoacylation reaction), or by fusing the mutant cell line with a normal cell line, or a cell line mutant for a different tRNA synthetase (thereby complementing the mutant synthetase). The cell fusion experiments show that the aminoacyl-tRNA synthetase mutations are recessive at the cellular level. The chromosomal map positions of a number of human tRNA synthetases were first determined by analysis of (human) X (ts mutant CHO cell) hybrids. Human chromosomes are progressively lost in such hybrids, but one human chromosome - the one which contains the human synthetase complementary to the mutant hamster synthetase - is consistently retained. Such experiments provided the first evidence that

WO 98/41648

5

10

15

20

human tRNA synthetases are single copy genes in man (or at least confined to a single chromosome; refs. 6, 7). Subsequently Southern blotting and fluorescence *in situ* hybridization analyses have confirmed and extended these observations for thirteen synthetases (8-14). These Southern blotting and *in situ* hybridization mapping studies established beyond doubt that each of the human tRNA synthetase genes investigated is encoded at a single locus. The table below summarizes the chromosomal location of tRNA synthetases mapped to date.

Chromosome Location of tRNA Synthetases

10

15

5

tRNA synthase	Chromosome	tRNA Synthetase	Chromosome
Ala	16q22	Trp	14q21-32
Arg, Leu, His, Thr	5	Asp	2
Asn	18	Gln	3p
Cys	11p15.5	Gly	7
Glu/Pro	1q32-42	Ile (mitochondrial)	2
Gly	7p15	Lys	16q21
Ile	9q21	Ser	1p12
Lys	16q23-24	Tyr	1p31
Met	12	Val	6p21.3 9

Classification of tRNA synthetases

25

20

The twenty tRNA synthetases are divided into two groups based on structural features and functional properties that are conserved throughout evolution. There are ten class I synthetases, all of which contain two short conserved amino acid segments which fold together to form an ATP binding pocket called the Rossman fold, in the amino

WO 98/41648 PCT/US98/05419

196

232/116

terminal half of the proteins. The C-terminal end of the Class I synthetases contains the tRNA binding fold. Class II synthetases, of which there are also ten, share up to three short conserved amino acid motifs.

5 References

10

15

20

- 1. Schimmel, P., Giege, R., Moras, D. and S. Yokoyama (1993) An operational RNA code for amino acids and possible relationship to genetic code. *Proc. Natl. Acad. Sci. U.S.A.* 90:8763-8768.
- 2. Mushegian, A.R. and E.V. Koonin (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. *Proc. Natl. Acad. Sci. U.S.A.* 93:10268-10273.
- 3. Schmitt, E. and P. Schimmel (1994) Dominant lethality by expression of a catalytically inactive class I tRNA synthetase. *Proc. Natl. Acad. Sci. U.S.A.* 90:6919-6923.
- 4. Ripmaster, T.L., Shiba, K. and P. Schimmel (1995) Wide cross-species aminoacyltRNA synthetase replacement in vivo: Yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. *Proc. Natl. Acad. Sci. U.S.A.* 92:4932-4936.
- 5. Wasmuth, J.J., Chinese Hamster Cell Protein Synthesis Mutants, pp. 375-421 in Gottesman, M., editor, Molecular Cell Genetics, John Wiley & Sons, New York, 1985. 6. Kunze, N., Bittler, E., Fett, R., Schray, B., Hameister, H., Wiedorn, K.-H. and R. Knippers (1990) The human QARS locus: assignment of the human gene for glutaminyl-tRNA synthetase to chromosome 1q32-42. *Human Genetics* 85:527-530. (This gene was later shown to be glutamyl-prolyl tRNA synthetase [abbreviated
- EPRS]).
- 12. Cirullo, R.E., Arredondo-Vega, F.X., Smith, M. and J.J. Wasmuth (1983) Isolation and characterization of interspecific heat-resistant hybrids between a temperature-sensitive Chinese hamster cell asparaginyl-tRNA synthetase mutant and normal human leukocytes: assignment of human asnS gene to chromosome 18. *Somatic Cell Genetics*

232/116

9:215-233.

13. Nichols, R.C., Pai, S.I., Ge, Q., Targoff, I.N., Plotz, P.H. and P. Liu (1995) Localization of two human autoantigen genes by PCR screening and *in situ* hybridization - glycyl tRNA synthetase locates to 7p15 and alanyl-tRNA synthetase locates to 16q22. *Genomics* 30:131-132.

14. Nichols, R.C., Blinder, J., Pai, S.I. et al. (1996) Assignment of two human autoantigen genes: isoleucyl tRNA synthetase locates to 9q21 and lysysl-tRNA synthetase locates to 16q23-24. *Genomics*: 210-213.

10

5

Example 11: Sodium Potassium ATPase, 1 subunit (ATP1A1) - Target Gene VARIA125

Sodium Potassium ATPase is essential for cell survival

15

20

The plasma membranes of virtually all eukaryotic cells contain a Na+, K+ pump that operates as an antiport, pumping Na+ out of the cell and K+ in against their concentration gradients. In coupling the hydrolysis of ATP to the active transport of 3 Na+ out and 2 K+ into the cell the pump is electrogenic. The electrochemical gradients generated and maintained by the Na+,K+ pump are essential for the regulation of cell volume, and for the secondary, sodium-coupled active transport of a variety of organic and inorganic molecules including glucose, amino acids and Ca++. Hence the sodium potassium pump plays an essential role in cellular physiology (1).

25

Sodium Potassium ATPase is a heterodimer composed of a ~100 kDa catalytic subunit and a ~55 kDa glycoprotein subunit of unknown function. Biochemical studies and gene cloning have demonstrated the existence of three isoforms and two -like isoforms of the catalytic subunit, each encoded by a separate gene and with a characteristic expression pattern (reviewed in refs. 2 and 3). Of these, only the 1 gene

WO 98/41648 PCT/US98/05419

198

232/116

(ATP1A1) is ubiquitously expressed; the other subunits have restricted tissue distribution.

Sodium Potassium ATPase is the target of the cardiac glycoside drugs, including digoxin and the poison ouabain. Ouabain binds to the extracellular face of the 1 subunit and inhibits Na+,K+ exchange, leading to cell death. The 1 subunit from primates is sensitive to nanomolar concentrations of ouabain while the rodent 1 subunit is resistant to ~1000 fold higher concentrations, enabling precise definition of the ouabain binding site. Study of human-rat chimeric 1 subunits combined with site directed mutagenesis has localized the ouabain interacting domain in the aminoterminal portion of the 1 subunit (4,5). Other structure-function studies have contributed to an understanding of 1 subunit cation binding and ATPase functions, while electron microscopy and low resolution (20-30) diffraction analyses of membrane preparations have elucidated the geometry of the protein in the membrane (1).

The 1 subunit of Sodium Potassium ATPase has sequence variants

The cDNA sequence of the human 1 subunit of sodium-potassium ATPase has been published by four groups (6-9). We undertook a systematic search for DNA sequence variance by analyzing the 1 cDNA from 36 unrelated individuals using the single strand conformation polymorphism technique. Primers were designed using the sequence of Kawakami et al. (GENBANK accession D00099; see ref. 6). SSCP analysis revealed 7 sequence variances, and subsequent DNA sequence analysis confirmed that nucleotides 1059 (A vs. C), 1428 (G vs. A), 2538 (T vs. C), 3324 (C vs. T), 3375 (G vs. A), 3397 (G vs. A) and 3408 (C vs. A) vary as shown in the Target Summary Table. The first five sequence variances are in the coding sequence while the latter two are in the 3' untranslated region.

5

10

15

20

10

15

20

25

The frequency of heterozygotes for the seven sequence variants ranged from 3-11% among the 36 individuals tested. Some of the sequence variances appear to occur more commonly in certain racial or ethnic groups. For example, heterozygotes for four sequence variances (at nucleotides 1059, 1428, 3324 and 3375) were detected solely or predominantly in North American Blacks, with heterozygote frequencies of 1/4 or 2/4. The nucleotide 2538 variance was detected solely in North American Whites (4/16) and results in an amino acid exchange (see below). The nucleotide 3397 sequence variance was detected solely in one Japanese individual (of four tested). The nucleotide 2538 sequence variant results in an aspartic acid vs. glutamic acid substitution at amino acid 740 of the 1024 amino acid protein. This residue lies in the cytoplasmic loop of the 1 subunit.

The alpha1 subunit of Sodium Potassium ATPase maps to chromosome 1p13-p11

The gene for the 1 subunit of sodium-potassium ATPase has been mapped to chromosome band 1p13-p11 by several techniques. Yang-Feng et al. (10) assigned the ATP1A1 gene to 1p21-cen by Southern analysis of DNA from panels of rodent/human somatic cell hybrid lines. This localization was confirmed and refined by Chehab et al., who showed that the gene for the ATP1A1 subunit is on 1p13-p11 using hybridization to flow-sorted chromosomes and *in situ* hybridization (9).

Chromosome band 1p13-p11 is a site of frequent loss of heterozygosity

The short arm of chromosome 1 is comparatively well investigated for allele loss, especially in breast and colon cancers, however most of these studies are principally concerned with the 1p36 region, and there is comparatively little data on 1p13-p11. The best studies of proximal 1p allele loss are in breast and testicular cancers. These studies show LOH occurs in approximately 15-35% of breast cancers (11,12) and 15-25% of testicular cancers (13). Data from more distal loci on 1p show >25% LOH in

232/116

glioma, colon cancer, stomach cancer, ovarian cancer, and liver cancer (14). The LOH observed in this region indicates that other essential genes mapping to the 1p chromosomal arm, and especially to the 1p11 region, which have LOH and for which sequence variances, and therefore heterozygotes for a sequence variance, exist in normal somatic cells of individuals in a population are potential target genes

References

10

5

- 1. Jorgensen, P.L. Na, K-ATPase, structure and transport mechanism. In De Pont, ed. Molecular Aspects of Transport Proteins, Elsevier Science Publishers, The Netherlands, 1992, pp. 1-26..
- 2. Sweadner, K.J. (1989) Biochimica et Biophysica Acta 1154: 185-220.
- 3. Lingrel, J.B., Orlowski, J., Shull, M.M. and E.M. Price (1989) *Prog. Nucleic Acid Research and Mol. Biol.* 38: 37-89.

15

4. Price, E.M. and J.B. Lingrel (1988) Structure-function relationships in the Na, K-ATPase a subunit: site directed mutagenesis of glutamine-111 to arginine and asparagine 122 to aspartic acid generates a ouabain-resistant enzyme. *Biochemistry* 27: 8400-8408.

20

5. Emanuel, J.R., Graw, S., Housman, D. and R. Levenson (1989) Identification of a region within the Na, K-ATPase a subunit that contributes to differential ouabain sensitivity. *Molecular and Cellular Biology* 9: 3744-3749.

6. Kawakami, K., Ohta, T., Nojima, H., Nagano, K. (1986) Primary structure of the alpha-subunit of human Na,K-ATPase deduced from cDNA sequence. *J. Biochem.* 100: 389-397.

- 7. Ovchinnikov, Y. A., Monastyrskaya, G. S., Broude, N. E., et al. (1987) The family of human Na+,K+-ATPase genes: a partial nucleotide sequence related to the alphasubunit. *FEBS Lett.* 213: 73-80.
- 8. Shull, M. M. and J.B. Lingrel (1987) Multiple genes encode the human Na+,K+-ATPase catalytic subunit. *Proc. Nat. Acad. Sci. U.S.A.* 84: 4039-4043.

- 9. Chehab, F. F., Kan, Y. W., Law, M. L., Hartz, J., Kao, F.-T. and R. Blostein (1987) Human placental Na+,K+-ATPase alpha subunit: cDNA cloning, tissue expression, DNA polymorphism, and chromosomal localization. *Proc. Nat. Acad. Sci. U.S.A.* 84: 7901-7905.
- 10. Yang-Feng, T.L., Schneider, J.W., Lindgren, V., Shull, M.M., Benz, E.J., Jr., Lingrel, J.B. and U. Francke (1988) Chromosomal localization of human Na+,K+-ATPase alpha- and beta-subunit genes. *Genomics* 2: 128-138.
 - 11. Bieche, I., Champeme, M.H., Matifas, F., Cropp, C.S., Callahan, R. and R. Lidereau (1993) Two distinct regions involved in 1p deletion in human primary breast cancer. *Cancer Res.* 53:1990-4.
 - 12. Nagai H, Negrini M, Carter SL, et al. (1995) Detection and cloning of a common region of loss of heterozygosity at chromosome 1p in breast cancer. Cancer Res. 55:1752-7.
 - 13. Mathew S., Murty V.V., Bosl G.J., Chaganti R.S.K. (1994) Loss of heterozygosity identifies multiple sites of allelic deletions on chromosome 1 in human male germ cell tumors. *Cancer Res.* 54:6265-9.
 - 14. Yeh S.H., Chen P.J., Chen H.L., Lai M.Y., Wang C.C. and D.S. Chen (1994) Frequent genetic alterations at the distal region of chromosome 1p in human hepatocellular carcinomas. *Cancer Res.* 54:4188-92.

Example 12: Ribonucleotide Reductase, M1 subunit (RRM1) - Target Gene VARIA200

25 Ribonucleotide Reductase is essential for cell growth

Human ribonucleotide reductase (also called ribonucleoside diphosphate reductase) is essential in dividing cells for the production of deoxyribonucleotides prior to DNA synthesis in S phase. Ribonucleotide reductase catalyzes the reduction of all four

10

15

WO 98/41648 PCT/US98/05419

202 232/116

ribonucleoside diphosphates to the corresponding deoxyribonucleoside diphosphates by replacing the 2' hydroxyl moiety of ribose with a hydride ion to form deoxyribose; these reactions constitute the first committed steps in the creation of DNA precursors (deoxyribonucleotides), and are therefore tightly regulated by allosteric nucleotide binding sites on the M1 subunit (2,3). The enzyme is an 2 2 tetramer apparently conserved in all prokaryotes and eukaryotes (1). The two subunits, M1 and M2, are both required for enzyme activity. The RRM2 subunit contains the catalytic site, while the RRM1 subunit provides an indispensable allosteric function. (See pages 758-763 of Biochemistry by C.K. Mathews and K.E. van Holde, Benjamin/Cummings Publishing Biochemistry, Company, Redwood City, 1990 for a fuller account of ribonucleotide reductase function.)

Both ribonucleotide reductase subunits are expressed in all proliferating cells but are generally nondetectable in quiescent cells. Ribonucleotide reductase subunit M2 is the target of several antineoplastic compounds, including hydroxyurea. Hydroxyurea is used in the chemotherapy of a variety of myeloproliferative disorders (4). It acts by reversibly destroying a tyrosyl free radical in the catalytic site of the M2 subunit (3). Hydroxyurea and other ribonucleotide reductase poisons are specific for the S phase of the cell cycle, resulting in growth arrest at the G1-S boundary and apoptotic death in tumor cells (5). Exposure of cell cultures to hydroxyurea results in selection of cells expressing high levels ribonucleotide reductase, demonstrating that ribonucleotide reductase is required for these cells to grow (6).

The human ribonucleotide reductase gene has sequence variances

The cDNA sequence of the human ribonucleotide reductase M1 subunit has been published by two groups (7,8). We undertook a systematic search for DNA sequence variance in the cDNA of the M1 subunit by analysing 36 unrelated individuals using the single strand conformation polymorphism technique. Primers were designed using

5

10

15

20

232/116

the sequence of Parker et al. (GENBANK accession X59543; see ref. 7). SSCP analysis revealed 4 sequence variances, and subsequent DNA sequence analysis confirmed that nucleotides 1037 (C vs. A), 2410 (A vs. G), 2419 (A vs. G) and 2717 (T vs. A) vary as shown in the Target Summary Table. (The sequence variance at nt 1037 was previously noted by Parker et al., ref. 7.) Also, DNA sequencing revealed an insertion/deletion sequence variance: the 9 consecutive T nucleotides between positions 2724 and 2732 (numbering from ref. 7) were augmented in some cDNAs by a tenth T. (This sequence variance is designated T9 vs. T10 in the Target Summary Table.)

10

5

Both alleles at nt 1037 were detected in North American Whites, Hispanics, Chinese, Japanese, Arabs and Indians. Similarly, both alleles of the sequence variance at nt 2410 were detected in virtually all tested populations: North American White, North American Black, Hispanic, Chinese, Arab and Indian. In contrast, the sequence variances at nt 2419 and 2717 were prevalent in North American Blacks, Hispanics, Chinese, and Japanese, but not North American Whites. The insertion/deletion sequence variance at nt 2724 was only studied in four individuals so no firm conclusions can be drawn regarding population distribution, however it appears to be in linkage disequilibrium with the 2419 and 2724 sequence variances.

20

15

The human ribonucleotide reductase gene maps to chromosome 11p15.5

25

The gene for human ribonucleotide reductase has been mapped to band 11p15.5 by several techniques. Initially the gene was localized by Southern hybridization analysis of human X rodent somatic cell hybrids and by chromosomal *in situ* hybridization (9). Subsequently RRM1 has been placed on a yeast artificial chromosome (YAC) physical map of chromosome 11p15 (10). The precise physical localization of the RRM1 gene facilitates interpretation of LOH results at adjacent polymorphic markers (see below).

Chromosome band 11p15.5 is a site of frequent loss of heterozygosity

The short arm of chromosome 11 is the site of several tumor suppressor genes, including the WT1 gene and the Beckwith-Weidemann syndrome gene. As a result there are many studies of LOH in 11p15.5, particularly focusing on breast, cervix, kidney, liver, lung, ovarian, stomach and testicular cancers. These studies show that the 11p15.5 band of chromosome 11 is frequently reduced to one copy (11-28). For example, LOH occurs in approximately 13-33% of breast cancers (11-13), 14-42% of cervical cancers (14), 0-50% of liver cancers (16), 0-80% of lung cancers (17-19), 18-54% of ovarian cancers (20,21), 0-71% of stomach cancers (22) and 0-50% of testicular cancers (23,24). Other studies show that 11p15.5 LOH may also be frequent in bladder cancer (25), esophageal cancer (26), some leukemias (27) and sarcomas (28). Many deletions in the 11p15.5 region span relatively short chromosomal segments (2 - 10 megabases; see ref. 17).

15

20

25

5

10

References

- 1. Caras, I.W., Levinson, B.B., Fabry, M., et al. (1985) Cloned mouse ribonucleotide reductase subunit M1 cDNA reveals amino acid sequence homology with Escherichia Coli and herpesvirus ribonucleotide reductases. *J. Biol. Chem.* 260: 7015-7022.
- 2. Thelander, L., and P. Reichard, (1979) Reduction of Ribonucleotides. *Annu. Rev. Biochem.* 48:133-158.
- 3. Reichard, P. and A Ehrenberg (1983) Ribonucleotide reductase: a radical enzyme. *Science* 221: 514-9.
- 4. Donehower, R.C. (1992) An Overview of the clinical experience with hydroxyurea. Seminars in Oncology 19:11-19, 1992.
- 5. Wright, P.S., Cross-Doersen, D., Thong, J.P., et al. (1996) A ribonucleotide reductase inhibitor, MDL 101,731, induces apoptosis and elevates TRPM-2 mRNA levels in human prostate tumor xenografts. *Experimental Cell Research* 22: 54-60.

15

- 6. Cocking, J.M., Tonin, P.N., Stokoe, et al. (1987) Gene for M1 subunit of ribonucleotide reductase is amplified in hydroxyurea-resistant hamster cells. *Somat. Cell. Mol. Genet.* 13:221-33.
- 7. Parker, N.J., Begley, C.G. and R.M. Fox. (1991) The Human M1 Subunit of Ribonucleotide Reductase: cDNA Sequence and Expression in Stimulated Lymphocytes. *Nucleic Acids research* 9:3741.
- 8. Pavloff, N., Rivard, D., Masson, S., Shen, S.H. and A.M. Mes-Masson. (1992) Sequence Analysis of the Large and Small Subunits of Human Ribonucleotide Reductase. *DNA Sequence* 2:227.
- 9. Brissenden, J.E., Caras, I., Thelander, L. and Francke, U. (1988) The structural gene for the M1 subunit of ribonucleotide reductase maps to chromosome 11, band p15, in human and to chromosome 7 in mouse. *Exp. Cell. Res.* 174:302-8.
 - 10. See: http://shows.med.buffalo.edu/home.html
 - 11. Ali, I., Lidereau, R., Theilley, C. and R. Callahan (1987) Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. *Science* 238:185-8.
 - 12. Winqvist, R., Mannermaa, A., Alavaikko, et al. (1993) Refinement of regional loss of heterozygosity for chromosome 11p15.5 in human breast tumors. *Cancer Research* 53: 4486-4488.
- 20 13. Carter, S.L., Negrini, M., Baffa, R., et al. (1994) Loss of heterozygosity at 11q22-q23 in breast cancer. *Cancer Research* 54:6270-4.
 - 14. Mitra, A.B., Murty, V.V.V.S., Li, R.G., et al. (1994) Allelotype analysis of cervical carcinoma. *Cancer Research* 54:4481.
 - 15. Fujimori, M., Tokino, T., Hino, O., et al. (1991) Allelotype study of primary heptocellular carcinoma. *Cancer Research* 51: 89-93.
 - 16. Wang, H.P. & C.E. Rogler (1988) Deletions in human chromosomes 11p and 13q in primary hepatocellular carcinomas. *Cytogenetics and Cell Genetics* 48:72-78.
 - 17. Bepler, G. and Garcia-Blanco, M.A. (1994) Three Tumor Suppressor Regions on Chromosome 11p Identified by High Resolution Deletion Mapping in Human Non-

10

15

20

25

206 232/116

Small Cell Lung Cancer. Proc. Natl. Acad. Sci. U.S.A. 91:5513-7.

- 18. Iizuka, M., Sugiyama, Y., Shiraishi, M., et al. (1995) Allelic losses in human chromosome 11 in lung cancers. *Genes, Chromosomes & Cancer* 13:40-46.
- 19. Weston, A., Willey, J.C., Modali, R., et al. (1989) Differential DNA sequence deletions from chromosomes 3, 11, 13 and 17 in squamous cell carcinoma, large-cell carcinoma and adenocarcinoma of the human lung. *Proc. Natl. Acad. Sci. U.S.A.* 86:5099-5103.
- 20. Kiechle-Schwartz, M., Bauknecht, T., Wienker, T., et al. (1993) Loss of Constitutional Heterozygosity on Chromosome 11p in Human Ovarian Cancer. *Cancer* 72:2423-32.
- 21. Viel, A., Giannini, F., Tumiotti, L., Sopracordevole, F., Visentin, M.C. and M. Boiocchi (1992) Chromosomal localization of two putative 11p oncosuppressor genes involved in human ovarian tumors *British Journal of Cancer* 66: 1030-1036.
- 22. Baffa, R., Negrini, M., Mandes, B., et al. (1996) Loss of heterozygosity for chromosome 11 in adenocarcinoma of the stomach. *Cancer Research* 56: 268-72.
- 23. Lothe, R.A., Hastie, N., Heimdal, K., et al. (1993) Frequent loss of 1p13 and 11p15 loci in male germ cell tumors. *Genes, Chromosomes & Cancer* 7:96-101.
- 24 Smith, R.C., and Rukstalis, D.B. (1995) Frequent Loss of Heterozygosity at 11p Loci in Testicular Cancer. *The Journal of Urology* 153:1684-7.
- 25. Shaw, M.E. and Knowles, M.A. (1995) Deletion Mapping of Chromosome 11 in Carcinoma of the Bladder. *Genes, Chromosomes & Cancer* 13:1-8.
- 26. Shibagaki, I., Shimada, Y., Wagata, T., et al. (1994) Allelotype analysis of esophageal squamous cell carcinoma. *Cancer Research* 54: 2996-3000.
- 27. Ahuja, H.G., Foti, A., Zhou, D.J. and M.J. Cline (1990) Analysis of proto-oncogenes in acute myeloid leukemia: loss of heterozygosity for the Ha-ras gene. *Blood* 75: 819-822.
- 28. Yamaguchi, T., Toguchida, J., Yamamuro, T., et al. (1992) Allelotype analysis in osteosarcoma: frequent allele loss on 3q, 13q, 17p and 18q. Cancer Res. 52: 2419.

10

15

20

207

232/116

Example 13: Thymidylate Synthase (TS) - Target Gene VARIA250

Thymidylate Synthase is essential for cell growth

Human thymidylate synthase (TS) catalyzes the formation of thymidine monophosphate (dTMP) from deoxyuridine monophosphate (dUMP) by transfer of a methyl group from N5,N10-methylenetetrahydrofolate to carbon 5 of dUMP. This is the sole *de novo* pathway to dTMP, an essential precursor for DNA synthesis. TS also plays an important role in balancing the four nucleotide precursors for DNA polymer synthesis (1). Thus TS is an attractive target for antiproliferative drugs. (*See Biochemistry* by C.K. Mathews and K.E. van Holde, Benjamin/Cummings Publishing Company, Redwood City, 1990, pages 763-768, for a fuller account of thymidylate synthase function.)

Like some other growth associated genes involved in DNA synthesis, thymidylate synthase is expressed in proliferating cells at 20-40 fold higher levels than in quiescent cells. Increased expression occurs at the G1-S transition of the cell cycle when quiescent cells are stimulated with serum. Levels of thymidylate synthase are finely controlled by autoregulatory feedback loops wherein TS protein regulates the transcription, stability and translational efficiency of TS mRNA (2). Transcription increases by only 2-4 fold, so posttranscriptional events constitute the predominant regulatory mechanisms (3). One mechanism of 5-FU resistance is increased expression of TS Mrna.

Thymidylate synthase is the target of 5-fluorouracil (5-FU), a potent antineoplastic compound. Once inside cells 5-FU is ribosylated and phosphorylated to 5-fluoro-2'-deoxyuridine 5'-monophosphate (F-dUMP), which acts as an inhibitory transition state analog of TS when bound in the presence of the enzyme's second substrate, N5,N10-methylenetetrahydrofolate. (5-FU is also incorporated into both DNA and RNA,

WO 98/41648 PCT/US98/05419

208

232/116

augmenting its toxicity.) 5-FU induces partial responses in 10-30% of patients with a variety of cancers, including metastatic breast and gastrointestinal tract cancers (4). While 5-FU is a potent antiproliferative agent in tissue culture cells, as with most antineoplastic drugs, its clinical utility is limited by lack of discrimination between normal cells and tumor cells: common toxic effects include stomatitis, diarrhea, bone marrow suppression, hair loss and occasionally cardiac and neurologic symptoms.

The human thymidylate synthase gene has sequence variances

The sequence of a human thymidylate synthase cDNA was determined by Takeishi et al. (5), who later determined the genomic sequence as well (6). We undertook a systematic search for DNA sequence variance by analysing 36 unrelated individuals using the single strand conformation polymorphism. Primers were designed using the sequence of Takeishi et al. (5). SSCP analysis revealed 3 DNA fragments having sequence variances, and subsequent DNA sequence analysis showed that nucleotides 1066 (C vs. T), 1136 (A vs. G) and 1497 (A vs. T) vary among normal individuals as shown in the Target Summary Table. All three sequence variances are in the 3' untranslated region of the gene. The nucleotide 1066 and 1497 sequence variances are in complete linkage disequilibrium in the 36 individuals examined. Both alleles of all three sequence variances were detected in North American Whites, North American Blacks, Chinese, Japanese, Arabs and Indians.

Another TS sequence variance has been described by Berger and colleagues (7-9). They detected a T to C change at nucleotide 276 of the TS gene, resulting in the substitution of histidine for an evolutionarily conserved tyrosine at residue 33 of TS protein. So far the histidine allele has been detected in only one cell line, HCT116 (7). The rare his-33 form of the protein is 3-4 fold more resistant to FdUrd than the tyr-33 form, due to an 8 fold lower catalytic efficiency (kcat), suggesting that histidine at residue 33 perturbs the structure of the TS active site (9)

5

10

15

20

209

232/116

The human thymidylate synthase gene maps to chromosome 18p11.32

The gene for human thymidylate synthase was initially mapped to the long arm of chromosome 18 (18q21.31-qter) by somatic cell hybrid analysis (10), however two subsequent reports place the gene in band 18p11.32 using fluorescence in situ hybridization (11,12).

Chromosome band 18p11.32 is a site of loss of heterozygosity

The long arm of chromosome 18 contains the DCC (deleted in colon cancer) candidate tumor suppressor gene and has been well studied in a variety of tumors. The short arm (18p), where TS apparently resides, has not been studied as extensively. The available data suggests there is LOH in approximately 45% of colon cancers (13) and 25-30% of cervical (14), head and neck (15), lung (16) and ovarian (17) cancers and sarcomas.

LOH has also been described in breast, brain, esophagus, kidney and prostate cancers (0-15%). 18p has not been studied for allele loss in several other major cancers, including bladder, leukemia, lymphoma, liver, pancreas, stomach and testicular cancers.

20 References

- 1. Chu, E., Koeller, D.M., Casey, J.L., et al. (1991) Autoregulation of human thymidylate synthase messenger RNA translation by thymidyate synthase. *Proc. Natl. Acad. Sci. U.S.A.* 88: 8977-81.
- 2. Seno, T., Ayusawa, D., Shimizu, K., et al. (1985) in de Serres, F.J. (ed.) Genetic Consequences of Nucleotide Pool Imbalance, Plenum Publishing Company, New York, pp. 241-263.
 - 3. Johnson, L.F. (1994) Posttranscriptional regulation of thymidylate synthase gene expression. *Journal of Cellular Biochemistry* 54: 387-392.

10

15

20

- 4. Calabresi, P. and B. Chabner (1996) in Hardman, J.G., Limbird, L.E., et al. (eds.) Goodman and Gilman's The Pharmacological Basis of Therapeutics, McGraw Hill, New York, pp. 1247-1251.
- 5. Takeishi, K., Kaneda, S., Aysawa, D., Shimizu, K., Gotoh, O. and T. Seno (1985) Nucleotide sequence of a functional cDNA for human thymidylate synthase. *Nucleic Acids Research* 13: 2035-2043.
- 6. Kaneda, S., Nalbantoglu, K., Takeishi, K., et al. (1990) Structural and functional analysis of the human thymidylate synthase gene. *Journal of Biological Chemistry* 265: 20277-84.
- 7. Barbour, K.W., Berger, S.H. and S.G. Berger (1990) Single amino acid substitution defines a naturally occurring genetic variant of human thymidylate synthase. *Molecular Pharmacology* 37: 515-518.
- 8. Barbour, K.W., Hoganson, D.K., Berger, S.H. and F.G. Berger (1992) A naturally occurring tyrosine to histidine replacement at residue 33 of human thymidylate synthase confers resistance to 5-fluoro-2'-deoxoyuridine in mammalian and bacterial cells. *Molecular Pharmacology* 42: 242-248
- 9. Hughey, C.T., Barbour, K.W., Berger, F.G. and S.H. Berger (1993) Functional effects of a naturally occurring amino acid substitution in human thymidylate synthase. *Molecular Pharmacology* 44: 316-323.
- 10. Nussbaum, R.L., McCarrick-Walmsley, R., Lesko, J.G., et al. (1985) Thymidylate synthase deficient Chinese hamster cells: a selection system for human chromosome 18 and experimental system for the study of thymidylate synthase regulation and fragile X expression. *American Journal of Human Genetics* 37: 1192-1205.
- 11. Hori, T., Takahashi, E., Ayusawa, D., et al. (1990) Regional assignment of the human thymidylate synthase gene to chromosome band 18p11.32 by nonisotopic *in situ* hybridization. *Human Genetics* 85: 576-580.
- 12. Silverman, G.A., Kuo, W.-L., Taillon-Miller, P. and J.W. Gray (1993) Chromosomal reassignment: YACs containing both YES1 and thymidylate synthase map to the short arm of chromosome 18. *Genomics* 15: 442-445.

10

15

- 13. Vogelstein, B., Fearon, E.R., Kern, S.E., et al. (1989) Allelotype of colorectal carcinomas. *Science* 244: 207-211.
- 14. Mullokandov, M.R., Kholodilov, N.G., Atkin, N.B., et al. (1996) Genomic Alterations in cervical carcinoma: losses of chromosome heterozygosity and human papilloma virus tumor status. *Cancer Research* 56: 197-205.
- 15. Nawroz, H., van der Riet, P., Hruban, R.H., et al. (1994) Allelotype of head and neck squamous cell carcinoma. *Cancer Research* 54: 1152-55.
- 16. Allelotype of non-small cell lung carcinoma comparison between loss of heterozy-gosity in squamous cell carcinoma and adenocarcinoma. *Cancer Research*: 52: 2478-81.
- 17. Abeln, E.C.A., Kuipers-Dijkshoorn, N.J., Berns, E.M.J.J., et al. (1995) Molecular genetic evidence for unifocal origin of advanced epithelial ovarian cancer and for minor clonal divergence. *British Journal of Cancer* 72: 1330-1336.

Example 14: Cytidine Triphosphate Synthetase (CTPS) - Target Gene VARIA260

Cytidine Triphosphate Synthetase is essential for cell growth

Human cytidine triphosphate synthetase catalyzes the glutamination of UTP to form CTP. The reaction is: UTP + ATP + glutamine --> CTP + ADP + Pi + glutamate. This is the rate limiting step in the synthesis of cytidine nucleotides from both the *de novo* and uridine salvage synthesis routes (see ref. 1 and references therein). CTPS also plays a vital regulatory function in balancing nucleotide pools for DNA polymer synthesis; it is allosterically regulated by CTP (negatively) and GTP (positively).

There is compelling evidence that CTPS is essential for cell survival:

CTPS is evolutionarily conserved in yeast and bacteria, with a high degree of amino acid identity in regions mediating allosteric regulation and catalysis (1-

WO 98/41648 PCT/US98/05419

212 232/116

3). (Another example: the human and hamster enzymes are identical in length and 98% amino acid identical over 591 amino acids.)

Mutant hamster cells lacking functional CTPS need exogenous cytidine to survive (3).

There is no known human deficiency disease of CTPS.

CTPS function is increased in proliferating cells (4).

Thus CTPS is an attractive target for antiproliferative drugs. Cyclopentyl cytosine (CPE-C) is a synthetic cytidine analog in which a cyclopentyl group replaces the furan ring of the ribose sugar. CPE-C has antineoplastic and antiviral effects in animal models (5). The drug is kinased intracellularly to the triphosphorylated nucleotide form (CPE-CTP). Exposure of cells to CPE-C leads to rapid depletion of CTP pools, as a result of inhibition of CTPS by CPE-CTP (6,7). Upregulation of CTP synthetase, or loss of negative allosteric modulation by CTP is associated with resistance to the cancer chemotherapy drugs arabinosyl cytosine (ara-C), 5-fluorouracil and other cytotoxic nucleoside analogs as well as alkylating agents (3).

The human cytidine triphosphate synthetase gene has sequence variances

The sequence of a human cytidine triphosphate synthetase cDNA was determined by Yamauchi et al. (1), who later determined the genomic sequence as well (2). We undertook a systematic search for DNA sequence variance by analysing 36 unrelated individuals using the single strand conformation polymorphism technique. Primers were designed using the sequence of Yamauchi et al. (1). SSCP analysis revealed 3 DNA fragments having sequence variances, and subsequent DNA sequence analysis showed that nucleotides 576 (A vs. G), 2093 (C vs. T) and 2135 (G vs. A) vary among normal individuals as shown in the Target Summary Table. The nucleotide 576 sequence variance is a silent substitution in the coding region, while the latter two sequence variances are in the 3' untranslated region of the cDNA. All three sequence

5

10

15

20

232/116

variances were detected at low frequency in the panel of 36 individuals (3-8%), however all but one of the heterozygotes is Asian, and it seems likely that a larger survey of Asian populations would show higher allele frequencies in Chinese and other groups. For example among the four Chinese in the panel two (50%) are heterozygous for the residue 2135 sequence variance, and one (25%) is heterozygous for the nt 576 sequence variance. Also, the one Cambodian in the panel is heterozygous for both the 2093 and 2135 sequence variances.

The human cytidine triphosphate synthetase gene maps to chromosome 1p34.1

10

5

The gene for human cytidine triphosphate synthetase has been mapped to 1p34.1 by somatic cell hybrid analysis (2).

Chromosome band 1p34.1 is a site of frequent loss of heterozygosity

15

The short arm of chromosome 1 is comparatively well investigated for allele loss, especially in breast and colon cancers. The 1p35-32 and 1p22-13 regions flank 1p34.1 and are the best available markers for LOH on 1p. Studies of these regions show 30-50% LOH frequency in breast cancer (8-12), 41-75% in glioma (a brain cancer subtype) (13), 20-40% in colon cancer (14,15), ~50% in stomach cancer (16), ~20% in lung cancer (17) and 20-30% in ovarian cancer (18). High frequency LOH has been detected in several uncommon cancers such as pheochromocytoma (50-86%) and neuroblastoma (~50%). Most other common cancers have not been adequately investigated to assess LOH frequency in this region.

25

20

References

1. Yamauchi, M., Yamauchi, N. and M. Meuth (1990) Molecular cloning of the human CTP synthetase gene by functional complementation with purified human metaphase

10

15

20

- chromosomes. EMBO Journal 9: 2095-2099.
- 2. Yamauchi, M., Yamauchi, N., Phear, G., et al. (1991) Genomic organization and chromo-somal localization of the human CTP synthetase gene(CTPS). *Genomics* 11: 1088-96.
- 3. Whelan, J., Phear, G., Yamauchi, M. and M. Meuth (1993) Clustered base substitutions in CTP synthetase conferring drug resistance in Chinese hamster ovary cells. *Nature Genetics* 3: 317-322.
 - 4. van den Berg, A., van Lenthe, H., Busch, S., et al. (1993) Evidence for transformation related increase in CTP synthetase activity *in situ* in human lymphoblastic leukemia. *European Journal of Biochemistry* 216: 161-167.
 - 5. Marquez, V.E., Lim, M.-I., Treanor, S.P., et al. (1988) Cyclopentylcytosine: a carbocyclic nucleoside with antitumor and antiviral properties. *Journal of Medical Chemistry* 31: 1687-94.
 - 6. Kang, G.J., Cooney, D.A., Moyer, J.D., et al. (1989) Cyclopentenyl triphosphate: formation and inhibition of CTP synthetase. *Journal of Biological Chemistry* 264: 713-718.
 - 7. Glazer, R.I., Knode, M.C. Lim, M.-I., and V.E. Marquez (1985) Cyclopentyl cytidine analogue: an inhibitor of cytidine triphosphate synthesis in human colon carcinoma cells. *Biochemical Pharmacology* 34: 2535-2539.
 - 8. Bieche I, Champeme MH, Matifas F, Cropp CS, Callahan R, Lidereau R. (1993) Two distinct regions involved in 1p deletion in human primary breast cancer. *Cancer Res.* 53:1990-4.
 - 9. Borg A, Zhang QX, Olsson H, Wenngren E. (1992) Chromosome 1 alterations in breast cancer: allelic loss on 1p and 1q is related to lymphogenic metastases and poor prognosis. *Genes Chromosomes & Cancer*. 5:311-20.
 - 10. Sato T, Tanigami A, Yamakawa K, et al. (1990) Allelotype of breast cancer: cumulative allele losses promote tumor progression in primary breast cancer. *Cancer Res.* 50:7184-9.
 - 11. Devilee P, van Vliet M, Bardoel A, et al. (1991) Frequent somatic imbalance of

10

15

20

marker alleles for chromosome 1 in human primary breast carcinoma. *Cancer Res.* 51:1020-5.

- 12. Loupart ML, Armour J, Walker R, Adams S, Brammar W, Varley J. (1995) Allelic imbalance on chromosome 1 in human breast cancer. I. Minisatellite and RFLP analysis. *Genes Chromosomes & Cancer*. 12:16-23.
- 13. Reifenberger, J., Reifenberger, G., Liu, L., et al. (1994) Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. American Journal of Pathology 145: 1175-1190.
- 14 Meling GI, Lothe RA, Borresen AL, et al. (1991) Genetic alterations within the retinoblastoma locus in colorectal carcinomas. Relation to DNA ploidy pattern studied by flow cytometric analysis. *Br J Cancer*. 64:475-80.
- 15. Lothe RA, Nakamura Y, Woodward S, Gedde DT, Jr., White R. (1988) VNTR (variable number of tandem repeats) markers show loss of chromosome 17p sequences in human colorectal carcinomas. *Cytogenet Cell Genet*. 48:167-9.
- 16. Ezaki, T., Yanagisawa, A., Ohta, K., et al. ((1996) Deletion mapping on chromosome 1p in well-differentiated gastric cancer. *British Journal of Cancer* 73: 424-428.
 - 17. Hiyama K, Ishioka S, Shirotani Y, et al. (1995) Alterations in telomeric repeat length in lung cancer are associated with loss of heterozygosity in p53 and Rb. *Oncogene*. 10:937-44.
 - 18. Yang-Feng TL, Han H, Chen KC, et al. (1993) Allelic loss in ovarian cancer. *Int J Cancer*. 54:546-51.

Example 15: Cysteinyl tRNA Synthetase (CARS) - Target Gene VARIA301

The human cysteinyl tRNA synthetase gene is essential for cell survival

Cysteinyl-tRNA synthetase (CARS) catalyzes ATP dependent covalent attachment of

232/116

cysteine to its cognate tRNA to form cysteinyl-tRNA. In the absence of cysteinyl-tRNA, protein synthesis is blocked. Since Cysteinyl-tRNA synthetase is a single copy gene in man, inhibition of its function is expected to be cell lethal. This has been shown for other tRNA synthetases (summarized above).

5

The human cysteinyl-tRNA synthetase gene and mRNA have sequences variances

10

15

20

25

A human cDNA encoding cysteinyl tRNA synthetase (CARS) was cloned based on the similarity of a human expressed sequence tag (EST) to E. coli cysteinyl tRNA synthetase (1). The published human CARS cDNA is 2048 nucleotides in length and includes a 30 nucleotide 5' untranslated region followed by an open reading frame of 1914 nucleotides and a 3' untranslated region of 134 nucleotides (1). An EMBL/ GENBANK submission (accession # L06845) by the authors of ref. 1 includes a 3' untranslated region 423 nucleotides longer than the published sequence, but lacks 19 consecutive A nucleotides after position 2029 (making a net increase of: 423 - 19 = 404 nucleotides, and a composite cDNA of: 2048 + 404 = 2452 nucleotides in length. We have confirmed the existence of 2452 nt transcripts by PCR amplification of reverse transcribed mRNA.) We designed primers as shown on the annotated cDNA sequence and screened the composite 2452 nt cDNA for sequence variance in 36 unrelated individuals by the single strand conformation polymorphism (SSCP) technique. Two sequence variances were identified. One of the sequence variances, located in the 5' untranslated region, was below the desired level of 20% heterozygosity. The other sequence variance is a C vs. T transition near the 3' end of the coding sequence at nucleotide 1739 (see annotated sequence).

The human cysteinyl tRNA synthetase protein has sequence variances

The deduced amino acid sequence of the human CARS gene encodes a protein of 638 amino acids which probably functions as a monomer, by analogy to related synthetases. The deduced protein contains two sequence motifs, HIGH (residues 64-

232/116

67) and KMSKS (residues 406-410), which define Class I synthetases (see ref. 2 for background information on tRNA synthetases). These two conserved motifs form an ATP binding fold (the Rossman fold) in the amino terminal half of the protein. Cytosine at nucleotide 1739 encodes proline at residue 622 of the protein, while thymine at nucleotide 1739 encodes leucine. The pro/leu amino acid sequence variance is a mere 16 residues from the C terminus of the protein. The C-terminal portion of CARS, by analogy to other class I synthetases, contains the tRNA binding site.

10 Frequency of CARS heterozygotes

The frequency of heterozygotes for the nucleotide 1739 sequence variance is ~45-50% in all major racial groups surveyed (see accompanying table), including North American Whites (8/15=53%), North American Blacks (2/4=50%), Chinese (2/4=50%), Swedish (127/344=37%) and Japanese (1/4=25%). The wide population distribution of both alleles suggests that other population groups will also have a high frequency of heterozygotes.

Gene Mapping of CARS to 11p15.5

20

25

15

5

Human CARS cDNA has been mapped to chromosome 11p15.5 by screening human X Chinese hamster somatic cell hybrids informative for all human chromosomes, and by fluorescence *in situ* hybridization (3). Both mapping techniques were conclusive in showing only one locus for human CARS. Detailed physical maps of 11p15.5 have subsequently allowed precise localization of the CARS gene relative to other DNA markers (4).

LOH at 11p15.5 is well documented in many cancer types

The short arm of chromosome 11, and particularly the 11p15.5 region, is deleted in a

WO 98/41648 PCT/US98/05419

218

232/116

variety of human cancers, including (but not limited to) ovarian (18 - 50% LOH), non-small cell lung (22 - 71%), breast (12 - 33%), bladder (40 -50%), esophageal (18 - 40%) and testicular cancers (18 - 66%) (refs. 5-12). Many deletions in the 11p15.5 region span relatively short chromosomal segments (2 - 10 megabases; see ref. 8). Using the specific variances identified in the CARS gene as markers for heterozygosity, we have determined that LOH occurs in 10/20 ovarian cancers (50%) and 10/52 non-small cell lung cancers (19%).

Assays for human CARS inhibitors

10

15

20

5

There is no published work on the protein encoded by the putative human CARS cDNA, nor on any other eukaryotic CARS protein, however the extensive characterization of other Class I synthetases from both prokaryotes and eukaryotes provides a template for modeling the structure of human CARS. (For an example of how this can be done see ref. 14, in which the three dimensional structure of human alanyl-tRNA synthetase has been modeled up to amino 249 by neural net software and multiple alignments of partial and complete human AARS sequences with heterologous prokaryotic class II synthetases for which crystal structures exist.) With respect to the C-terminal location of the variant amino acid residue in human CARS, it is worth noting that single amino acid substitutions in the C-terminal region of alanyl tRNA synthetase can have greater than 100 fold effects on catalytic activity (15).

References

- 1. Wasmuth, J.J. Cruzen, M. E. and S.M. Arfin (1994) Nucleotide and deduced amino acid sequence of human cysteinyl-tRNA synthetase. *DNA Sequence* 4:243-248.
- 2. Moras, D. (1992) Structural and functional relationships between aminoacyl-tRNA synthetases. *Trends in Biochemical Sciences* 17: 159-164.
- 3. Cruzen, M.E., Bengtsson, U., McMahon, J., Wasmuth, J.J. and S.M. Arfin (1993)

15

Assignment of the cysteinyl-tRNA synthetase gene (CARS) to 11p15.5. *Genomics* 15: 692-693.

- 5. Winqvist, R., Mannermaa, A., Alavaikko, M., Blanco, G., Taskinen, P.J., Kiviniemi, H., Newsham, I. and W. Cavenee (1993) Refinement of regional loss of heterozygosity for chromosome 11p15.5 in human breast tumors. *Cancer Research* 53: 4486-4488.
- 6. Kiechle-Schwartz, M., Bauknecht, T., Wienker, T., et al. (1993) Loss of Constitutional Heterozygosity on Chromosome 11p in Human Ovarian Cancer. Cancer 72:2423-32.
- 7. Viel, A., Giannini, F., Tumiotti, L., Sopracordevole, F., Visentin, M.C. and M. Boiocchi (1992) Chromosomal localisation of two putative 11p oncosuppressor genes involved in human ovarian tumors *British Journal of Cancer* 66: 1030-1036.
 - 8. Bepler, G. and Garcia-Blanco, M.A. (1994) Three Tumor Suppressor Regions on Chromosome 11p Identified by High Resolution Deletion Mapping in Human Non-Small Cell Lung Cancer. *Proc. Natl. Acad. Sci. U.S.A.* 91:5513-7.
 - 9. Iizuka, M., Sugiyama, Y., Shiraishi, M., Jones, C. and T. Sekiya (1995) Allelic losses in human chromosome 11 in lung cancers. *Genes, Chromosomes & Cancer* 13:40-46. 10. Shaw, M.E. and Knowles, M.A. (1995) Deletion Mapping of Chromosome 11 in Carcinoma of the Bladder. *Genes, Chromosomes & Cancer* 13:1-8.
- 20 11. Smith, R.C., and Rukstalis, D.B. Frequent Loss of Heterozygosity at 11p Loci in Testicular Cancer. *The Journal of Urology* 153:1684-7, 1995.
 - 12. Shibagaki, I., Shimada, Y., Wagata, T., Ikenaga, M., Imamura, M. and K. Ishizaki (1994) Allelotype analysis of esophageal squamous cell carcinoma. *Cancer Research* 54: 2996-3000.
- 13. Shiba, K., Suzuki, N., Shigesada, K., Namba, Y., Schimmel, P. and T. Noda (1994) Human cytoplasmic isoleudyl-tRNA synthetase: selective divergence of the anticodon-binding domain and acquisition of a new structural unit. *Proc. Natl. Acad. Sci. U.S.A.* 91:7435-7439.
 - 14. Shiba, K., Ripmaster, T., Suzuki, N., Nichols, R., Plotz, P., Noda, T. and P.

10

15

20

25

Schimmel (1995) Human alanyl-tRNA synthetase: conservation in evolution of catalytic core and microhelix recognition. Biochemistry 34: 10340-10349.

15. Wu, M.-X., Filley, S.J., Xiong, J., Lee, J.J. and K.A.W. Hill (1994) A cysteine in the C-terminal region of alanyl-tRNA synthetase is important for aminoacylation activity. *Biochemistry* 33: 12260-12266.

Example 16: Glutamyl-Prolyl tRNA Synthetase (EPRS): - Target Gene VARIA300

The human glutamyl-prolyl tRNA synthetase gene is essential for cell survival

Glutamyl-prolyl-tRNA synthetase (EPRS) catalyzes ATP dependent covalent attachment of glutamine and proline to their cognate tRNAs to form glutamyl-tRNA and prolyl-tRNA. In the absence of glutamyl-tRNA or prolyl-tRNA, protein synthesis is blocked. Since glutamyl-prolyl-tRNA synthetase is a single copy gene in man, inhibition of its function is expected to be cell lethal. This has been shown for other tRNA synthetases (summarized above).

The human glutamyl-prolyl tRNA synthetase gene, mRNA and protein have sequence variances

A human cDNA encoding glutamyl-prolyl tRNA synthetase (EPRS) was initially misidentified as glutaminyl-tRNA synthetase (1) based on misleading sequence alignments with bacterial and yeast glutaminyl-tRNA synthetase (2). Subsequently, biochemical studies of the protein encoded by a *D. melanogaster* gene ~70% identical to the human gene demonstrated glutamyl (not glutaminyl) tRNA synthetase activity, and also showed that a single gene encodes both glutamyl- and prolyl-tRNA synthetases in the fly (3). These observations eventually led to the realization that

human EPRS is also a single polypeptide containing two synthetases (2). The aminoacyl tRNA synthetases are divided into two classes (see *Background on tRNA Synthetases*, above). Glutamyl-tRNA synthetase belongs to Class I while Prolyl-tRNA synthetase belongs to class II. Thus the two halves of EPRS evolved independently and likely represent an evolutionarily recent fusion. The published human EPRS cDNA is 4,586 nt long and includes a 5' untranslated region of 58 nt followed by an open reading frame of 4320 nt and a 3' untranslated sequence of 208 nt (1). The gene encodes a polypeptide of 1440 amino acids. The glutamyl-tRNA synthetase activity is encoded by an imprecisely defined segment at 5' end of the gene probably spanning at least amino acids 105-426, while the prolyl-tRNA synthetase activity is encoded by a segment likely including residues 942-1369 at the 3' end of the gene (2). The two synthetase moieties are connected by a central domain of unknown function. It has been speculated that the central domain may attach the enzyme to the cytoskeleton or to other aminoacyl-tRNA synthetases in a multienzyme complex (2, 3).

15

20

25

10

5

The human glutamyl-prolyl-tRNA synthetase gene and mRNA have sequence variances. We designed primers and screened the 4586 nt cDNA for sequence variance in 36 unrelated individuals by the single strand conformation polymorphism technique. Seven sequence variances were identified, four located in the coding sequence and three located in the 3' untranslated region. As shown on the Annotated Glutamyl-Prolyl tRNA Synthetase cDNA Sequence and in the Target Summary Page, the sequence variance nucleotides are 2520 (C vs. A), 2944 (G vs. A), 2963 (C vs. T), 2969 (A vs. G), 3247 (A vs. G), 4459 (G vs. A) and 4506 (G vs. A). The sequences flanking the alternate allelic forms and their frequencies of occurrence are shown on the Target Summary Page. Less than 10% of individuals surveyed are heterozygous for sequence variances at 2520, 2944 and 2963. Heterozygotes for the other 4 sequence variances occur more frequently and appear to be widely distributed in the surveyed populations (see below).

232/116

The human glutamyl-prolyl tRNA synthetase protein has sequence variances. Three nucleotide sequence variances, at 2520, 2963 and 2969, alter the amino acid coding sequence of EPRS at residues 821 (pro/his), 969 (his/tyr) and 971 (ile/val). The residue 821 his and 969 tyr alleles are relatively rare, with fewer than 10% heterozygotes in the surveyed populations. The more common residue 971 sequence variance lies in the PRS domain of the protein, near one of the widely conserved defining motifs for class II tRNA synthetases.

EPRS heterozygotes are frequent in non-Asian populations. While the overall frequency of residue 971 heterozygotes is 8/36 (24%), the frequency of heterozygotes varies among different populations. For example, there are no heterozygotes among 10 Asians surveyed (Chinese, Japanese, Filipino and Korean), while 8/26 (31%) of non-Asians, including North American Whites, Blacks and Hispanics, are heterozygotes.

15

20

5

10

The EPRS Gene Maps to 1q41-q42

Human EPRS cDNA has been mapped to chromosome 1q41-42 by screening human X Chinese hamster somatic cell hybrids informative for all human chromosomes, and by fluorescence *in situ* hybridization (3). Both mapping techniques were conclusive in showing only one locus for human EPRS.

25

Loss of heterozygosity at 1q41-42 is documented in several cancer types. 17-25% of breast cancers have allele loss in the 1q41-q42 region (4, 5), 29-46% of colon cancers (6, 7) and 17-26% of cervical cancers (8). One report describes 27% LOH in stomach cancer (9). One or two studies of brain, esophageal, kidney, liver and ovarian cancers also report LOH. No studies of LOH in the 1q41-q42 region have been reported in bladder, endocrine, head and neck, lung, or pancreas cancers or in leukemia or lymphoma.

Antisense considerations The sequence variances at 2963 and 2969 are close enough that a 20-mer antisense oligonucleotide could easily span them. Such an oligonucleotide should afford greater allele discrimination than is possible with a single nucleotide difference. However, the 2963 sequence variance is fairly rare (<10% heterozygotes) and not in linkage disequilibrium with the 2963 sequence variance, so there are more than two haplotypes in the populations tested.

References

10

5

- 1. Fett, R. and R. Knippers (1991) The primary structure of human glutaminyl tRNA synthetase. *Journal of Biological Chemistry* 266: 1448-1455.
- 2. Cerini, C., Kerjan, P., Astier, M., Gratecos, D., Mirande, M. and M. Semeriva (1991) A component of the multisynthetase complex is a multifunctional aminoacyltRNA synthetase. *The EMBO Journal* 10: 4267-4277.

15

- 3. Kaiser, E., Hu, B., Becher, S., Eberhard, D., et al. (1994) The human EPRS locus (formerly the QARS locus): a gene encoding a class I and a class II aminoacyl-tRNA synthetase. *Genomics* 19: 280-290.
- 4. Journal of The National Cancer Institute 84: 506.
- 5. Cancer Research 51: 1020.

20

- 6. International Journal of Cancer 53: 382.
- 7. Genes, Chromosomes & Cancer 12: 16.
- 8. Cancer Research 56: 197.
- 9. Cancer Research 52: 3099.
- Shiba, K., Ripmaster, T., Suzuki, N., Nichols, R., Plotz, P., Noda, T. and P.
 Schimmel (1995) Human alanyl-tRNA synthetase: conservation in evolution of catalytic core and microhelix recognition. Biochemistry 34: 10340-10349.

Example 17: Alanyl-tRNA Synthetase (AARS) - Target Gene VARIA304

WO 98/41648 PCT/US98/05419

224 232/116

The human glutamyl-prolyl tRNA synthetase gene is essential for cell survival

Alanyl-tRNA synthetase (AARS) catalyzes ATP dependent covalent attachment of alanine to its cognate tRNA to form alanyl-tRNA. In the absence of alanyl-tRNA, protein synthesis is blocked. Since alanyl-tRNA synthetase is a single copy gene in man (see below) inhibition of its function is expected to be cell lethal. This has been shown for other tRNA synthetases (summarized above).

The human alanyl-tRNA synthetase gene and mRNA have sequence variances

10

5

A human cDNA encoding alanyl tRNA synthetase (AARS) was cloned by Shiba et al. (1) using cross species PCR: AARS sequences from four evolutionarily distant species were compared and primers were designed to conserved regions specific to AARS. The cloned human cDNA is 3344 nt in length and includes a 110 nt 5' untranslated region, an open reading frame of 2904 nt encoding a 968 residue polypeptide, and a 3' untranslated region of 330 nt (ref. 1; Genbank accession D32050).

15

20

We designed primers. The 3344 nt cDNA was screened for sequence variance in 36 unrelated individuals by the single strand conformation polymorphism (SSCP) technique. One sequence variance was identified, a C vs. T transition at nucleotide 1013, within the coding sequence. The published nucleotide at position 1013 is T (1).

25

The frequency of AARS heterozygotes is 25-50% in all populations surveyed. The frequency of heterozygotes for the nucleotide 1013 sequence variance is 57% in the 36 individuals tested. Both alleles are present in all major racial groups surveyed (see Target Gene Summary Table), including North American Whites (9/15=60% heterozygotes), North American Blacks (3/4=75%), Chinese (2/4=50%), Japanese (1/4=25%) and Hispanic (1/2). The wide population distribution of both alleles suggests that other population groups will also have a high frequency of heterozygotes.

10

15

20

25

225

232/116

The AARS gene maps to 16q22

The human AARS cDNA has been mapped to chromosome 16q22 by us and by Nichols et al. (ref. 2). We designed primers to the 3' untranslated region of AARS and used PCR to analyze the National Institute of General Medical Sciences (NIGMS) Human/Rodent Somatic Cell Hybrid Mapping Panel #2 (see page 704 of the NIGMS 1994/1995 Catalog of Cell Lines, available from the Coriell Cell Repository, Camden, NJ). The panel consists of 24 hybrid cell lines, each monochromosomal for one human chromosome. The AARS PCR product mapped to the hybrid containing human chromosome 16. Subsequently we screened the Radiation Hybrid Mapping Panel created at Stanford University (rhserver@shgc.stanford.edu) and distributed by Research Genetics (RH01). The AARS PCR product mapped near D16S496 with a lod score>10. D16S496 is a polymorphic DNA marker at 16q22. The AARS PCR product mapped near D16S496 with a LOD score >10. DH16S496 is a polymorphic DNA marker at 16q22. (See, ref. 29 for a full explanation of modification hybrid Similar results were obtained by Nichols et al., who mapped AARS by analysis of the same NIGMS hybrid mapping panel, by PCR mapping in a chromosome 16 regional mapping panel and by fluorescence in situ hybridization to metaphase chromosomes. All mapping techniques were conclusive in showing only one locus for human AARS.

LOH at 16q22 is well documented in many cancer types. Loss of heterozygosity studies of chromosome 16q have principally focused on breast and liver cancers. In six detailed studies of breast cancer in the 16q22 region LOH frequencies of 40-60% have been reported (refs 3-8). 16q22 LOH has ben reported in 25-90% of liver cancers (9-13), with the average around 45%. Less extensive studies of other cancer types report 16q22 LOH in 19% of bladder cancers, 20% of colon cancers (14), 19-27% of esophageal cancers (15), 25% of small cell lung cancers (16), 16-37% of ovarian cancers (17-19) and 22% of uterine cancers (20), and 31-50% of prostate cancers (21-

226 232/116

22).

5

10

15

20

25

References

- 1. Shiba, K., Ripmaster, T., Suzuki, N., Nichols, R., Plotz, P., Noda, T. and P. Schimmel (1995) Human alanyl-tRNA synthetase: conservation in evolution of catalytic core and microhelix recognition. Biochemistry 34: 10340-10349.
- 2. Nichols, R.C., Pai, S.I., Ge, Q., Targoff, I.N., Plotz, P.H. and P. Liu (1995) Localization of two human autoantigen genes by PCR screening and *in situ* hybridization glycyl tRNA synthetase locates to 7p15 and alanyl-tRNA synthetase locates to 16q22. *Genomics* 30:131-132.
- 3. Cleton-Jansen AM, Moerland EW, Kuipers-Dijkshoorn NJ, et al. (1994) At least two different regions are involved in allelic imbalance on chromosome arm 16q in breast cancer. *Genes Chromosom Cancer*. 9:101-7.
- 4. Dorion-Bonnet F, Mautalen S, Hostein I, Longy M. (1995) Allelic imbalance study of 16q in human primary breast carcinomas using microsatellite markers. *Genes Chromosomes Cancer.* 14:171-81.
- 5. Kashiwaba M, Tamura G, Suzuki Y, et al. (1995) Epithelial-cadherin gene is not mutated in ductal carcinomas of the breast. *Jpn J Cancer Res.* 86:1054-9.
- 6. O'Connell P, Pekkel V, Fuqua S, Osborne CK, Allred DC. (1994) Molecular genetic studies of early breast cancer evolution. *Breast Cancer Res Treat*. 32:5-12.
- 7. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9.
- 8. Tsuda H, Callen DF, Fukutomi T, Nakamura Y, Hirohashi S. (1994) Allele loss on chromosome 16q24.2-qter occurs frequently in breast cancers irrespectively of differences in phenotype and extent of spread. *Cancer Res.* 54:513-7.
- 9. Fujimori M, Tokino T, Hino O, et al. (1991) Allelotype study of primary hepatocellular carcinoma. *Cancer Res.* 51:89-93.
- 10. Fujimoto Y, Hampton LL, Wirth PJ, Wang NJ, Xie JP, Thorgeirsson SS. (1994) Alterations of tumor suppressor genes and allelic losses in human hepatocellular

10

20

25

carcinomas in China [see comments]. Cancer Res. 54:281-5.

- 11. Tsuda H, Zhang WD, Shimosato Y, et al. (1990) Allele loss on chromosome 16 associated with progression of human hepatocellular carcinoma. *Proc Natl Acad Sci USA*. 87:6791-4.
- 12. Tsuda H, Oda T, Sakamoto M, Hirohashi S. (1992) Different pattern of chromosomal allele loss in multiple hepatocellular carcinomas as evidence of their multifocal origin. *Cancer Res.* 52:1504-9.
- 13. Zhang WD, Hirohashi S, Tsuda H, et al. (1990) Frequent loss of heterozygosity on chromosomes 16 and 4 in human hepatocellular carcinoma. *Jpn J Cancer Res.* 81:108-11.
- 14. Ookawa K, Sakamoto M, Hirohashi S, et al. (1993) Concordant p53 and DCC alterations and allelic losses on chromosomes 13q and 14q associated with liver metastases of colorectal carcinoma. *Int J Cancer*. 53:382-7.
- 15. Genes, Chromosomes & Cancer 10: 177.
- 16. Yokota J, Wada M, Shimosato Y, Terada M, Sugimura T. (1987) Loss of heterozygosity on chromosomes 3, 13, and 17 in small-cell carcinoma and on chromosome 3 in adenocarcinoma of the lung. *Proc Natl Acad Sci U S A*. 84:9252-6. 17. Cancer Research 51: 5118.
 - 18. Osborne RJ, Leech V. (1994) Polymerase chain reaction allelotyping of human ovarian cancer. *Br J Cancer*. 69:429-38.
 - 19. Yang-Feng TL, Han H, Chen KC, et al. (1993) Allelic loss in ovarian cancer. *Int J Cancer*. 54:546-51.
 - 20. Okamoto A, Sameshima Y, Yamada Y, et al. (1991) Allelic loss on chromosome 17p and p53 mutations in human endometrial carcinoma of the uterus. *Cancer Res.* 51:5632-5.
 - 21. Carter, B.S., Ewing, C.M., Ward, S.W., et al. (1990) Allelic loss of chromosomes 16q and 10q in human prostate cancer. *Proc Natl Acad Sci USA*. 87: 8751-8755.
 - 22. Bergerheim, U.S.R., Kunimi, K., Collins, V.P. and P. Ekman (1991) Deletion mapping of chromosomes 8, 10, and 16 in human prostatic carcinoma. *Genes*,

WO 98/41648 PCT/US98/05419

228 232/116

Chromosomes & Cancer 3: 215-220.

23. Boehnke, M., Lange, K. and D.R. Cox (1991) Statistical methods for multipoint radiation hybrid mapping. *Am. J. Hum. Genet.* 49: 1174-88.

5

Example 18: Threonyl-tRNA Synthetase (TARS) - Target Gene VARIA302

The human threonyl-tRNA synthetase gene is essential for cell survival

10

Threonyl-tRNA synthetase (TARS) catalyzes ATP dependent covalent attachment of threonine to its cognate tRNA to form threonyl-tRNA. In the absence of threonyl-tRNA, protein synthesis is blocked. Threonyl-tRNA synthetase is a single copy gene in man (see below) and inhibition of TARS is cell lethal. This has been shown using the specific TARS inhibitor borrelidin, a threonine analog. Borrelidin resistant CHO cell lines have been isolated; the most resistant lines contain ~60-100 fold more immunologically reactive protein and 10-20 fold higher TARS activity than non-selected CHO cells (1-3).

15

selected CHO cells (1-3).

20

The human TARS enzyme is a homodimeric member of the class II tRNA synthetases. The human protein is 53% amino acid identical to *S. cerevisiae* cytoplasmic TARS, 40% amino acid identical to *E. coli* TARS and 39% amino acid identical to yeast mitochondrial TARS. The degree of evolutionary conservation is 52-64% when conservative substitutions are allowed.

25

The human Threonyl-tRNA synthetase gene and mRNA have sequence variances. A human cDNA encoding threonyl tRNA synthetase was cloned by Cruzen and Arfin (GENBANK accession M63180; ref. 2) using anti-TARS antibodies to screen a lgt11 expression library. The cDNA is 2644 nt in length and includes a 138 nt 5' untranslated region, an open reading frame of 2136 nt encoding a 712 residue polypeptide, and a 3'

232/116

untranslated region of 370 nt.

We designed primers for amplification. The 2644 nt cDNA was screened for sequence variance in 36 unrelated individuals by the single strand conformation polymorphism (SSCP) technique. Three sequence variances were identified: G vs. A transitions at nucleotides 1608 and 1755 within the coding sequence, and a C vs. T transition at nucleotide 2395 of the 3' untranslated region. None of the sequence variances alters the sense of the coding strand. The published sequence shows G, G and T at the three sequence variance sites

10

5

The frequency of TARS heterozygotes is 25-45% in all populations surveyed. The nucleotide 1608 sequence variance was genotyped only in North American Whites, 45% of whom were heterozygotes. The nucleotide 1608 and 1755 sequence variances were both genotyped in 36 individuals, with overall heterozygosity rates of 31% and 25%, respectively. Both sequence variances were detected in North American Whites, North American Blacks, Hispanics and Chinese. Of 14 North American Whites genotyped at all 3 sequence variance nucleotides, 11 (79%) were heterozygous for a least one polymor-phism (see threonyl tRNA synthetase summary table).

20

15

The TARS gene maps to 5p13-CEN. The human TARS cDNA has been mapped to chromosome 5p13-CEN by analysis of TARS isoelectric focusing patterns in human/Chinese hamster hybrids (). The mapping studies were consistent with one human TARS locus.

25

LOH at 5p13-CEN is documented in several cancer types. The best data on 5p LOH is in cervical cancer where 9 markers have been tested in 3 different studies. The frequency of LOH ranges from 12-57%, averaging ~45%. Other cancers that have been studied are breast (10-24% LOH), head and neck (20% LOH), adenocarcinoma of the lung (40% LOH, but only 5 cancers were studied), melanoma (40%) and ovary (15-

230 232/116

21%).

5

10

15

20

25

Assays for human TARS inhibitors. Human TARS protein is a homodimeric class II synthetase. Antibodies to rat TARS were used to clone the human protein. The high degree of amino acid conservation throughout the protein suggests that it may be possible to create yeast and/or bacterial strains with human CARS.

References

- 1. Gantt, J.S., Bennett, C.A. and S.M. Arfin (1981) Increased levels of threonyl tRNA synthetase in a borrelidin-resistant Chinese hamster ovary cell line. *Proc. Natl. Acad. Sci. U. S. A.* 92: 5367-5370.
- 2. Gerken, S.C. and S.M. Arfin (1984) Chinese hamster ovary cells resistant to borrelidin overproduce threonyl-tRNA synthetase. *The Journal of Biological Chemistry* 259: 9202-9206.
- 3. Kontis, K.J. and S.M. Arfin (1989) Isolation of a cDNA clone for human threonyl tRNA synthetase: amplification of the structural gene in borrelidin resistant cell lines. *Molecular and Cellular Biology* 9: 1832-1838.
- 4. Cruzen, M.E. and S.M. Arfin (1991) Nucleotide and deduced amino acid sequence of human threonyl-tRNA synthetase reveals extensive homology to the Escherichia coli and yeast enzymes. *The Journal of Biological Chemistry* 266: 9919-9923.
- 5. Gerken, S.C., Wasmuth, J.J. and S.M. Arfin (1986) Threonyl-tRNA synthesis gene maps close to leucyl-tRNA synthesis gene on human chromosome 5. *Somatic Cell and Molecular Genetics* 12: 519-522.
- 6. Mitra AB, Murty VV, Singh V, et al. (1995) Genetic alterations at 5p15: a potential marker for progression of precancerous lesions of the uterine cervix. *J Natl Cancer Inst.* 87:742-5.
- 7. Mitra AB, Murty VV, Li RG, Pratap M, Luthra UK, Chaganti RS. (1994) Allelotype analysis of cervical carcinoma. *Cancer Res.* 54:4481-7.
- 8. Mullokandov MR, Kholodilov NG, Atkin NB, Burk RD, Johnson AB, Klinger HP.

10

- (1996) Genomic alterations in cervical carcinoma: losses of chromosome heterozygosity and human papilloma virus tumor status. *Cancer Res.* 56:197-205.
- 9. Larsson C, Bystrom C, Skoog L, Rotstein S, Nordenskjold M. (1990) Genomic alterations in human breast carcinomas. *Genes Chromosomes Cancer*. 2:191-7.
- 10. Cancer Research 54:1152
- 11. Wieland I, Bohm M, Arden KC, et al. (1996) Allelic deletion mapping on chromosome 5 in human carcinomas. *Oncogene*. 12:97-102.
- 12. Dracopoli NC, Houghton AN, Old LJ. (1985) Loss of polymorphic restriction fragments in malignant melanoma: implications for tumor heterogeneity. *Proc Natl Acad Sci USA*. 82:1470-4.
- 13. Osborne RJ, Leech V. (1994) Polymerase chain reaction allelotyping of human ovarian cancer. *Br J Cancer*. 69:429-38.

Example 19: Glutaminyl-tRNA Synthetase (QARS) - Target Gene VARIA305

The human glutaminyl-tRNA synthetase gene is essential for cell survival

of glutaminyl-tRNA synthetase (QARS) catalyzes ATP dependent covalent attachment of glutamine to its cognate tRNA to form glutaminyl-tRNA. In the absence of glutaminyl-tRNA, protein synthesis is blocked in eucaryotic cells. Glutaminyl-tRNA synthetase is a single copy gene in man. Inhibition of its function is expected to be cell lethal, as shown for other tRNA synthetases (summarized above).

The human Glutaminyl-tRNA synthetase gene and mRNA have sequence variances.

A human cDNA encoding glutaminyl tRNA synthetase (QARS) was cloned by Lamour et al. (1) who expressed the cDNA in *E. coli* and demonstrated glutaminyl tRNA synthetase activity in bacterial extracts. The cloned human cDNA

WO 98/41648 PCT/US98/05419

232 232/116

(Genbank/EMBL accession number X76013) is 2437 nt in length and includes a 5' untranslated region of 5 nucleotides, an open reading frame of 2325 nucleotides encoding a 775 amino acid polypeptide, and a 3' untranslated region of 107 nt including 8 terminal nt of poly A.

5

We designed primers for amplification. The QARS cDNA was screened for sequence variance in 36 unrelated individuals using the single strand conformation polymorphism (SSCP) technique. One sequence variance was identified, a C vs. T transition at nucleotide 404, within the coding sequence. The published nucleotide at position 404 is C. The sequence variance does not affect the protein encoded.

10

The frequency of heterozygotes for the nucleotide 404 sequence variance is 11% in the 36 individuals tested (4/36). However three of 16 North American Whites are heterozygotes (19%), and one of four Japanese (25%) (see Target Gene Summary Table).

15

The QARS gene maps to 3p

20

25

QARS probe to a panel of 25 human/rodent somatic cell hybrids (1). One somatic cell hybrid, not known to contain human chromosome 3, was positive for both the QARS probe and an ACY1 probe. ACY1 maps to human 3p21, suggesting QARS may also map in this area. We independently mapped QARS to chromosome 3 using primers from the 3' untranslated region to analyze the National Institute of General Medical Sciences (NIGMS) Human/Rodent Somatic Cell Hybrid Mapping Panel #2 by PCR (see page 704 of the NIGMS 1994/1995 Catalog of Cell Lines, available from the Coriell Cell Repository, Camden, NJ). The panel consists of 24 hybrid cell lines, each monochromosomal for one human chromosome. The QARS PCR product mapped to the hybrid containing human chromosome 3. All mapping techniques were conclusive

The human OARS cDNA has been mapped to chromosome 3 by hybridization of a

in showing only one locus for human QARS.

Chromosome band 3p21 is a site of frequent loss of heterozygosity. The short arm of chromosome 3 has been well studied in breast, cervical, esophageal, kidney, and lung cancers. These studies report frequent allele loss at 3p21, varying up to 100% in some studies of small cell lung cancer. Among other cancers LOH occurs in approximately 20-30% of breast cancers (2,3), 30-60% of cervical cancers (4,5), 10-40% of esophageal cancers (6,7), 45-80% of kidney cancers (8-10), 50-100% of nasopharyngeal cancers (11), 0-75% of squamous cell head and neck cancers (12), 30-60% of melanomas (13), 30-100% of non-small cell lung cancers (14-16) and 80-100% in small cell lung cancer (17-19). Other for which there are reports of LOH in at least 20% of cases include leukemia, pancreas cancer, sarcoma, testis cancer and ovarian cancer. Other cancer types, including bladder and lymphoma, have not been studied for LOH at 3p21.

15

20

25

10

5

References

- 1. Nomura, N., Nagase, T., Miyajima, N., et al. (1994) Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1. *DNA Research* 1:225-229.
- 2. Nichols, R.C., Blinder, J., Pai, S.I. et al. (1996) Assignment of two human autoantigen genes: isoleucyl tRNA synthetase locates to 9q21 and lysysl-tRNA synthetase locates to 16q23-24. *Genomics*: 210-213.
- 3. Cleton-Jansen AM, Moerland EW, Kuipers-Dijkshoom NJ, et al. (1994) At least two different regions are involved in allelic imbalance on chromosome arm 16q in breast cancer. Genes Chromosom Cancer. 9:101-7.
- 4. Dorion-Bonnet F, Mautalen S, Hostein I, Longy M. (1995) Allelic imbalance study of 16q in human primary breast carcinomas using microsatellite markers. *Genes Chromosomes Cancer*. 14:171-81.

10

15

20

- 5. Kashiwaba M, Tamura G, Suzuki Y, et al. (1995) Epithelial-cadherin gene is not mutated in ductal carcinomas of the breast. *Jpn J Cancer Res.* 86:1054-9.
- 6. O'Connell P, Pekkel V, Fuqua S, Osborne CK, Allred DC. (1994) Molecular genetic studies of early breast cancer evolution. *Breast Cancer Res Treat*. 32:5-12.
- 7. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9.
- 8. Tsuda H, Callen DF, Fukutomi T, Nakamura Y, Hirohashi S. (1994) Allele loss on chromosome 16q24.2-qter occurs frequently in breast cancers irrespectively of differences in phenotype and extent of spread. *Cancer Res.* 54:513-7.
- 9. Fujimori M, Tokino T, Hino O, et al. (1991) Allelotype study of primary hepatocellular carcinoma. *Cancer Res.* 51:89-93.
- 10. Fujimoto Y, Hampton LL, Wirth PJ, Wang NJ, Xie JP, Thorgeirsson SS. (1994) Alterations of tumor suppressor genes and allelic losses in human hepatocellular carcinomas in China [see comments]. *Cancer Res.* 54:281-5.
- 11. Tsuda H, Zhang WD, et al. (1990) Allele loss on chromosome 16 associated with progression of human hepatocellula carcinoma. *Proc Natl Acad Sci USA*. 87:6791-4.
- 12. Tsuda H, Oda T, Sakamoto M, Hirohashi S. (1992) Different pattern of chromosomal allele loss in multiple hepatocellular carcinomas as evidence of their multifocal origin. *Cancer Res.* 52:1504-9.
- 13. Zhang WD, Hirohashi S, Tsuda H, et al. (1990) Frequent loss of heterozygosity on chromosomes 16 and 4 in human hepatocellular carcinoma. *Jpn J Cancer Res.* 81:108-11.
- 14. Ookawa K, Sakamoto M, Hirohashi S, et al. (1993) Concordant p53 and DCC alterations and allelic losses on chromosomes 13q and 14q associated with liver metastases of colorectal carcinoma. *Int J Cancer*. 53:382-7.
- 15. Genes, Chromosomes & Cancer 10: 177.
- 16. Cancer Research 54: 2996.
- 17. Gallion H.H., Powell D.E., Morrow J.K., et al. (1992) Molecular genetic changes in human epithelial ovarian malignancies [see comments]. *Gynecol Oncol.* 47:137-42.

- 18. Osborne RJ, Leech V. (1994) Polymerase chain reaction allelotyping of human ovarian cancer. *Br J Cancer*. 69:429-38.
- 19. Yang-Feng TL, Han H, Chen KC, et al. (1993) Allelic loss in ovarian cancer. *Int J Cancer*. 54:546-51.
- 20. British Journal of Urology 73: 390.
- 21. Okamoto A, Sameshima Y, Yamada Y, et al. (1991) Allelic loss on chromosome 17p and p53 mutations in endometrial carcinoma of the uterus. *Cancer Res.* 51:5632-5.

5

Example 20: Lysyl-tRNA Synthetase (KARS) - Target Gene VARIA303

Human Lysyl t-RNA synthase gene is essential

15

Lysyl-tRNA synthetase (KARS) catalyzes ATP dependent covalent attachment of lysine to its cognate tRNA to form lysyl-tRNA. In the absence of lysyl-tRNA, protein synthesis is blocked. Since lysyl-tRNA synthetase is a single copy gene in man, inhibition of its function is expected to be cell lethal. This has been shown for other tRNA synthetases (summarized above).

20

The human Lysyl-tRNA synthetase gene and mRNA have sequence variances

25

A human cDNA encoding a sequence similar to bacterial lysyl tRNA synthetases was cloned by Nomura et al. (GenBank/DDBJ submission D31890; see ref. 1) while sequencing random cDNAs. No biochemical studies of the protein encoded by this sequence have been reported. The 5' end of the sequence apparently begins in the coding region and the open reading frame continues for 1805 nucleotides, encoding 601 residues of a polypeptide (the full length of which has not been established), followed by a 3' untranslated region of 165 nucleotides.

WO 98/41648 PCT/US98/05419

236

232/116

We designed primers for amplification. The reported partial cDNA was screened for sequence variance in 36 unrelated individuals using the single strand conformation polymorphism (SSCP) technique as described in the methods section. Two sequence variances were identified, an A vs. G transition at nucleotide 89 and a G vs. C transversion at nucleotide 1798, both within the coding sequence. The published nucleotides are A and G, respectively. The nucleotide 1798 sequence variance alters the sense of the 599th codon (the third codon from the end of the coding sequence) to serine vs. threonine.

The frequency of KARS heterozygotes varies among the populations surveyed. The frequency of heterozygotes for the nucleotide 89 sequence variance is 19% in the 36 individuals tested. However all heterozygous individuals were either North American Whites (4/16; 25% heterozygotes), North American Blacks (1/4; 25%), or Hispanics (1/3; 33% heterozygotes). The frequency of heterozygotes for the nucleotide 1798 sequence variance is 6% in the 36 individuals tested. However all heterozygous individuals were North American Blacks (2/4; 50%) (see Target Gene Summary Table). Further study of these and other population groups will better establish the frequency of heterozygotes for these two sequence variances.

The KARS gene maps to 16q23-q24

The human KARS cDNA has been mapped to chromosome 16q22 by Nichols et al. (ref. 2) and by us. We designed primers to the 3' untranslated region of KARS and used PCR to analyze the National Institute of General Medical Sciences (NIGMS) Human/Rodent Somatic Cell Hybrid Mapping Panel #2 (see page 704 of the NIGMS 1994/1995 Catalog of Cell Lines, available from the Coriell Cell Repository, Camden, NJ). The panel consists of 24 hybrid cell lines, each monochromosomal for one human chromosome. The KARS PCR product mapped to the hybrid containing human chromosome 16. Similar results were obtained by Nichols et al., who mapped KARS

5

10

15

20

by analysis of the same NIGMS hybrid mapping panel, by PCR mapping in a chromosome 16 regional mapping panel and by fluorescence *in situ* hybridization to metaphase chromosomes. The *in situ* hybridization showed KARS maps to 16q23-q24. All mapping techniques were conclusive in showing only one locus for human KARS.

Loss of heterozygosity occurs frequently at 16q23-q24 in many cancer types. Loss of

heterozygosity studies of chromosome 16q have principally focused on breast and liver

cancers. In six detailed studies of breast cancer in the 16q23-q24 region LOH

frequencies of 30-60% have been reported (refs 3-8). 16q22 LOH has ben reported in

35-65% of liver cancers (9-13), with the average around 45%. Studies of other cancer

types report 16q22 LOH in 19% of colon cancers (14), 17-27% of esophageal cancers

(15,16), 37% of ovarian cancers (new ref) (17-19), 18% of prostate cancers (20) and 23% of uterine cancers (21). Cancer types not yet investigated for LOH include

kidney, leukemia and lymphoma, lung, melanoma, neuroblastoma, stomach and testis.

10

5

15

References

- 20
- 1. Nomura, N., Nagase, T., Miyajima, N., et al. (1994) Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1. *DNA Research* 1:225-229.
- 25
- 2. Nichols, R.C., Blinder, J., Pai, S.I. et al. (1996) Assignment of two human autoantigen genes: isoleucyl tRNA synthetase locates to 9q21 and lysysl-tRNA synthetase locates to 16q23-24. *Genomics*: 210-213.
- 3. Cleton-Jansen AM, Moerland EW, Kuipers-Dijkshoorn NJ, et al. (1994) At least two different regions are involved in allelic imbalance on chromosome arm 16q in breast cancer. Genes Chromosom Cancer. 9:101-7.
- 4. Dorion-Bonnet F, Mautalen S, Hostein I, Longy M. (1995) Allelic imbalance study

10

15

20

- of 16q in human primary breast carcinomas using microsatellite markers. *Genes Chromosomes Cancer*. 14:171-81.
- 5. Kashiwaba M, Tamura G, Suzuki Y, et al. (1995) Epithelial-cadherin gene is not mutated in ductal carcinomas of the breast. *Jpn J Cancer Res.* 86:1054-9.
- 6. O'Connell P, Pekkel V, Fuqua S, Osborne CK, Allred DC. (1994) Molecular genetic studies of early breast cancer evolution. *Breast Cancer Res Treat*. 32:5-12.
- 7. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9.
- 8. Tsuda H, Callen DF, Fukutomi T, Nakamura Y, Hirohashi S. (1994) Allele loss on chromosome 16q24.2-qter occurs frequently in breast cancers irrespectively of differences in phenotype and extent of spread. *Cancer Res.* 54:513-7.
- 9. Fujimori M, Tokino T, Hino O, et al. (1991) Allelotype study of primary hepatocellular carcinoma. *Cancer Res.* 51:89-93.
- 10. Fujimoto Y, Hampton LL, Wirth PJ, Wang NJ, Xie JP, Thorgeirsson SS. (1994) Alterations of tumor suppressor genes and allelic losses in human hepatocellular carcinomas in China [see comments]. *Cancer Res.* 54:281-5.
- 11. Tsuda H, Zhang WD, Shimosato Y, et al. (1990) Allele loss on chromosome 16 associated with progression of human hepatocellular carcinoma. *Proc Natl Acad Sci U S A*. 87:6791-4.
- 12. Tsuda H, Oda T, Sakamoto M, Hirohashi S. (1992) Different pattern of chromosomal allele loss in multiple hepatocellular carcinomas as evidence of their multifocal origin. *Cancer Res.* 52:1504-9.
- 13. Zhang WD, Hirohashi S, Tsuda H, et al. (1990) Frequent loss of heterozygosity on chromosomes 16 and 4 in human hepatocellular carcinoma. *Jpn J Cancer Res.* 81:108-11.
- 14. Ookawa K, Sakamoto M, Hirohashi S, et al. (1993) Concordant p53 and DCC alterations and allelic losses on chromosomes 13q and 14q associated with liver metastases of colorectal carcinoma. *Int J Cancer*. 53:3°2-7.
- 15. Genes, Chromosomes & Cancer 10: 177-

15

20

25

- 16. Cancer Research 54: 2996-
- 17. Gallion HH, Powell DE, Morrow JK, et al. (1992) Molecular genetic changes in human epithelial ovarian malignancies [see comments]. *Gynecol Oncol*. 47:137-42.
- 18. Osborne RJ, Leech V. (1994) Polymerase chain reaction allelotyping of human ovarian cancer. *Br J Cancer*. 69:429-38.
- 19. Yang-Feng TL, Han H, Chen KC, et al. (1993) Allelic loss in ovarian cancer. *Int J Cancer*. 54:546-51.
- 20. British Journal of Urology 73: 390-.
- 21. Okamoto A, Sameshima Y, Yamada Y, et al. (1991) Allelic loss on chromosome
 10 17p and p53 mutations in human endometrial carcinoma of the uterus. Cancer
 Res. 51:5632-5.

Example 21: Ribosomal Protein S14 (RPS14) - Target Gene VARIA326

Ribosomal protein S14 is essential for cell growth

Human ribosomal protein S14 (RPS14) is one of ~80 unique protein constituents of the mammalian ribosome. Many of the protein subunits of ribosomes, the protein making machines of all cells, are highly conserved throughout prokaryotic and eukaryotic evolution (1). For example, human RPS14 protein is 100% amino acid identical to hamster S14 protein, 72% identical to yeast rp59 protein and 43% identical to E. Coli ribosomal protein S11 (2,3). Mammalian S14 and yeast rp59 are components of the 40S ribosomal subunit while E. coli S11 is part of the corresponding bacterial S30 subunit. Thus human RPS14 is a ribosomal component fixed early in evolution.

There are many antibiotics and eukaryotic cell poisons that act by inhibiting ribosome function (reviewed in ref. 4). One such drug is emetine, which inhibits protein translation by interacting with the eukaryotic RPS14 subunit to prevent elongation

WO 98/41648 PCT/US98/05419

240 232/116

factor dependent translocation of peptidyl-tRNAs bound to eukaryotic ribosomes in vitro (4).

Chinese hamster ovary (CHO) cell lines resistant to emetine have been shown to contain mutant RPS14 loci (also referred to as the EMTB locus) (5). Such lines have been used to investigate the effects of mutant RPS14 on ribosome function (5-8). Human-CHO cell hybrids are emetine-sensitive, indicating that the EMTB/RPS14 mutation is recessive in CHO cells. This is apparently because arrest of protein synthesis in half of ribosomes blocks translation of all polysomic mRNAs by blocking any functional ribosomes upstream of frozen mutant ribosomes. RPS14 appears to contribute to the structural integrity of the 40S subunit: 40S subunits containing mutant S14 protein are more easily dissociable in high ionic strength wash buffers (9). Ribosomal subunit genes are coordinately expressed in all cells and ribosomal proteins constitute a large fraction of the cell mass in all cell types.

The human RPS14 gene has sequence variances

Rhoads et al. reported the sequence of the human RPS14 gene and cDNA (3). The cDNA contains a 33 nucleotide 5' untranslated region, a 453 nt coding region and a 60 nt 3' untranslated region (including 12 nt of polyA). We undertook a systematic search for DNA sequence variance in the cDNA of RPS14 by analysing 36 unrelated individuals using the single strand conformation polymorphism technique. Primers were designed using the sequence of Rhoads et al. (GENBANK accession M13934, M13641; see ref. 3). SSCP analysis revealed 1 sequence variance, and subsequent DNA sequence analysis confirmed an A vs. G transition at nucleotide 183 of the coding sequence. (This change was noted as a difference between the cDNA and genomic sequences in ref. 3.)

As shown in the Target Summary Table, both alleles were detected in all major

5

10

15

20

232/116

populations surveyed, including North American Whites, North American Blacks, Hispanics, Chinese and Japanese.

The human RPS14 gene maps to chromosome 5q23-q33

5

Dana and Wasmuth (11) used Chinese hamster/human somatic cell hybrids to map the RPS14 gene (designated EMTB) to 5q23-5q35. Later Nakamichi et al. (12) placed the RPS14 gene on the segment 5q23-q33 using similar techniques.

10

15

Chromosome band 5q23-q33 is a site of frequent loss of heterozygosity. There have been many studies of LOH on 5q, particularly the 5q21-q22 region where the Adenomatous Polyposis Coli (APC) tumor suppressor gene lies. The most extensively studied cancers are those of the gastrointestinal tract, lung and ovary. The available data on the 5q23-q33 region just distal to APC (where RPS14 lies), suggests that LOH occurs in this region at a frequency of ~30% in cervical cancer (13), 20-40% in colon cancer (14,15), 30-50% in ovarian cancer (16,17), 38% in stomach cancer (18) and 23% in testicular cancer (19). There is also evidence for LOH in head and neck, lung, and liver cancers.

20

25

References

- 1. Chambliss, G., Craven, G.R., Davies, J., et al., editors, <u>Ribosomes: Structure</u>, <u>Function and Genetics</u>, University Park Press, Baltimore, 1980.
- 2. Chen, I.-T., Dixit, A., |Rhoads, D.D. and D.J. Roufa (1986) Homologous ribosomal proteins in bacteria, yeast and humans. *Proc. Natl. Acad. Sci. U.S.A.* 83: 6907-6911.
- 3. Rhoads, D. D.; Dixit, A.; Roufa, D. J. (1986) Primary structure of human ribosomal protein S14 and the gene that encodes it. *Molec. Cell. Biol.* 6: 2774-2783.
- 4. Vazquez, D. (1979) Molecular Biology and Biophysics, vol. 30, Inhibitors of Protein Synthesis. Springer-Verlag, Berlin.

10

15

20

- Wasmuth, J.J. (1985) Chinese hamster cell protein synthesis mutants. In Gottesman,
 M., ed. Molecular Cell Genetics, pp. 397-421.
- 6. Rhoads, D.D. and D.J. Roufa (1985) Emetine resistance in Chinese hamster cells: structures of wild-type and mutant ribosomal protein AS14 mRNAs. Mol. Cell Biol. 5: 1655-1659.
- 7. Madjar, J.J., Nielsen-Smith, K., Frahm, M. and D. Roufa (1982) Emetine resistance in Chinese hamster ovary cells is associated with an altered ribosomal protein S14 mRNA. *Proc. Natl. Acad. Sci. U.S.A.* 79: 1003-1007.
- 8. Dana, S. L., Chang, S. and J.J. Wasmuth (1985) Synthesis and incorporation of human ribosomal protein S14 into functional ribosomes in human-Chinese hamster cell hybrids containing human chromosome 5: human RPS14 gene is the structural gene for ribosomal protein S14. Somat. Cell Molec. Genet. 11: 625-631.
- 9. Madjar, J.-J., Frahm, M., McGill, S. and D.J. Roufa (1983) *Molec. Cell. Biol.* 3: 190-197.
- 10. Mount, S. (1982) A catalogue of splice junction sequences. *Nucleic Acids Research* 19: 459-472.
- 11. Dana, S. and J.J. Wasmuth (1982) Selective linkage disruption in human-Chinese hamster cell hybrids: deletion mapping of the leuS, hexB, emtB, and chr genes on human chromosome 5. *Molec. Cell. Biol.* 2: 1220-1228.
- 12. Nakamichi, N. N.; Kao, F.-T.; Wasmuth, J.; Roufa, D. J. (1986) Ribosomal protein gene sequences map to human chromosomes 5, 8 and 17. *Somat. Cell. Molec. Genet.* 12: 225-236.
 - 13. Mitra AB, Murty VV, Li RG, Pratap M, Luthra UK, Chaganti RS. (1994) Allelotype analysis of cervical carcinoma. *Cancer Res.* 54:4481-7.
 - 14. Japanese Journal of Cancer Research 82: 1003.
 - 15. Cunningham C, Dunlop MG, Wyllie AH, Bird CC. (1993) Deletion mapping in colorectal cancer of a putative tumor suppressor gene in 8p22-p21.3. *Oncogene*. 8:1391-6.
 - 16. British Journal of Cancer 69: 429.

232/116

- 17. Weitzel J.N., Patel J., Smith D.M., Goodman A., Safaii H., Ball H.G. (1994) Molecular genetic changes associated with ovarian cancer. *Gynecol. Oncol.* 55:245-52.
- 18. Genes, Chromosomes and Cancer 3: 468
- 19. Murty VV, Bosl GJ, Houldsworth J, et al. (1994) Allelic loss and somatic differentiation in human male germ cell tumors. *Oncogene*. 9:2245-51.

Example 22: Eukaryotic Initiation Factor 5A (eIF-5A) - Target Gene VARIA351

Initiation Factor 5A is essential for cell growth

Human Initiation Factor 5A (eIF-5A), formerly named Initiation Factor 4D, is an 18-kD protein which promotes formation of the first peptide bond in *in vitro* translation systems - hence the name 'initiation factor' (1,2); however, the full physiological role of eIF-5A is not understood. Inhibition of eIF 5A formation blocks proliferation in all tested cell types (3); the presence of functional eIF 5A has been shown to correlate with the onset of DNA replication (4) - perhaps due to eIF 5A dependent translation of mRNAs encoding proteins necessary for DNA replication (3), and eIF-5A is an essential co-factor for HIV-1 Rev protein (5).

20

25

15

5

10

eIF 5A is an unusual protein: one of its lysine residues (amino acid 50) is modified by transfer and hydroxylation of the butylamino-group from the polyamine spermidine to form hypusine, a post translational modification unique to eIF 5A. All of the biological activities of eIF 5A are abrogated in the absence of the hypusine modification, as demonstrated by pharmacological inhibition of hypusine formation in human cell lines (3) and by site directed mutagenesis of the modified lysine residue in the yeast enzyme (6). There are two enzymes responsible for hypusine formation, one of which, deoxyhypusyl hydroxylase, can be inhibited with the drug mimosine (3), providing a convenient pharmacological inhibitor of eFI 5A formation.

WO 98/41648 PCT/US98/05419

244

232/116

The genome of the yeast Saccharomyces cerevisiae encodes two eIF 5A genes. Disruption of one (form A) slows growth, disruption of the other (form B) arrests growth and strains with both forms disrupted are non-viable (6). The yeast A form substitutes for human eIF 5A in the mammalian methionyl-puromycin synthesis assay (6), while the human gene complements eIF 5A disrupted yeast (7). eIF 5A is a highly conserved protein, with counterparts in archeae, bacteria and eukaryotes. The yeast proteins are ~63% identical to the human protein (6).

The human eIF 5A gene and mRNA have sequence variances

10

15

5

Smit-McBride, et al. reported the sequence of a human cDNA encoding eIF-5A (8) and Koettnitz et al. (8) later reported the sequence of the active eIF 5A gene, which contains three introns (GenBank accession U17969). A composite sequence made from the cDNA and genomic versions is 1309 nucleotides long and contains a 5' untranslated region of 145 nucleotides, a 462 nt coding region and a 702 nt 3' untranslated region (see annotated sequence). We undertook a systematic search for DNA sequence variance in the cDNA of eIF 5A by analysing 36 unrelated individuals using the single strand conformation polymorphism technique. Primers were designed for amplification. SSCP analysis revealed 2 sequence variances, and subsequent DNA sequence analysis confirmed an A vs. G transition at nucleotide 623 and a T vs. C transition at nucleotide 1012, both in the 3' untranslated sequence.

20

25

Neither sequence variance affects the protein coding sequence, however nucleotide 623 is one nucleotide away from a splice acceptor site at position 622, and could therefore be targeted by an oligonucleotide intended to abrogate splicing in an allele specific manner. The second exonic nucleotide (+2 position) of a splice acceptor site is not highly conserved, nonetheless the A vs. G transition at nucleotide 623 may affect the mechanics of splicing.

10

15

20

As shown in the Target Summary Table, both alleles were detected in all major populations surveyed, including North American Whites, North American Blacks, Hispanics, Arabs, Indians and Japanese, except only the nucleotide 1012 variance was detected in the four Chinese surveyed. The overall frequency of heterozygotes was 37% for the nucleotide 623 sequence variance and 52% for the nucleotide 1012 sequence variance.

The human eIF 5A gene maps to chromosome 17p13-p12

Steinkasserer et al. (1995) mapped the eIF 5A gene to 17p13-p12 by fluorescence *in situ* hybridization (9). Three eIF 5A pseudogenes were mapped to 10q23, 17q25 and 19q13.

Chromosome band 17p13-p12 is a site of frequent loss of heterozygosity. There have been many studies of LOH on 17p, particularly the 17p13 region where the p53 tumor suppressor gene maps. Virtually all cancer types have been surveyed for LOH in this area, with particularly extensive studies of breast, colon, ovarian, and stomach cancers. These studies report LOH in approximately 40-60% of breast cancers (10-18), 50-70% of colon cancers (19-25), 25-75% of ovarian cancers (26-30), 20-60% of stomach cancers (31-34), 20-50% of brain cancers (35,36), 45-70% of esophageal cancers (37), 35-65% of non-small cell lung cancers (38,39) and 100% of small cell lung cancers, 15-50% of cervical cancers, 30-80% of head and neck cancers, 20-60% of liver cancers, over 50% of sarcomas and 10-30% of a variety of other cancer types.

25 References

- 1. Wolff, E.C., Park, M.H. and J.E. Folk (1990) Journal of Biological Chemistry 265: 4793-4799.
- 2. Park, M.H., Wolff, E.C. and J.E. Folk (1993) Hypusine: its post-translational formation in eukaryotic translation factor 5A and its potential role in cellular

232/116

5

10

15

20

25

regulation. Biofactors 4: 95-104.

- 3. Hanauske-Abel, H.M., Park, M.-H., Hanauske, A.-R., et al. (1994) Inhibition of the G1-S transition of the cell cycle by inhibitors of deoxyhypusine hydroxylation. *Biochimica et Biophysica Acta* 1221: 115-124.
- 4. Hanauske-Abel, H.M., Slowinska, B., Zagulska, S., et al. (1995) Detection of a subset of polysomal mRNAs associated with modulation of hypusine formation at the G1-S boundary. Proposal of a role for eIF 5A in onset of DNA replication. *FEBS Lett.* 366: 92-98.
- 5. Ruhl, M., Himmelspach, M., Bahr, G.M., et al. (1993) Eukaryotic initiation factor 5A is a cellular target of the HIV-1 Rev activation domain mediating trans-activation. J. Cell Biol. 123:1309-1320.
- 6. Schnier, J., Schwelberger, H.G., Smit-McBride, Z, et al. (1991) Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces Cerevisiae. *Molecular and Cellular Biology* 11: 3105-3114.
- 7. Koettnitz, K., Wohl, T., Kappel, B., Lottspeich, F., Hauber, J. and D. Bevec (1995) Identification of a new member of the human eIF-5A gene family. *Gene* 159: 283-284.
 - 8. Smit-McBride, Z., Dever, T.E., Hershey, J.W.B., et al. (1989) Sequence determination and cDNA cloning of eukaryotic initiation factor 4D, the hypusine containing protein. Journal of Biological Chemistry 264: 1578-1583.
 - 9. Steinkasserer, A.; Jones, T.; Sheer, D.; Koettnitz, K.; Hauber, J. and D. Bevec (1995) The eukaryotic cofactor for the human immunodeficiency virus type 1 (HIV-1) rev protein, eIF-5A, maps to chromosome 17p12-p13: three eIF-5A pseudogenes map to 10q23.3, 17q25, and 19q13.2. *Genomics* 25: 749-752.
 - 10. Cornelis RS, van Vliet M, Vos CB, et al. (1994) Evidence for a gene on 17p13.3, distal to TP53, as a target for allele loss in breast tumors without p53 mutations. *Cancer Res.* 54:4200-6.
 - 11. Lindblom A, Skoog L, Rotstein S, Werelius B, Larsson C, Nordenskjold M. (1993) Loss of heterozygosity in familial breast carcinomas. *Cancer Res.* 53:4356-61.

15

20

- 12. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9.
- 13. Singh S, Simon M, Meybohm I, et al. (1993) Human breast cancer: frequent p53 allele loss and protein overexpression. *Hum Genet*. 90:635-40.
- 14. Thorlacius S, Borresen AL, et al. (1993) Somatic p53 mutations in human breast carcinomas in an Icelandic population: a prognostic factor. *Cancer Res.* 53:1637-41.
- 15. Tsuda H, Hirohashi S. (1994) Association among p53 gene mutation, nuclear accumulation of the p53 protein and aggressive phenotypes in breast cancer. *Int J Cancer*. 57:498-503.
- 16. Watatani M, Nagayama K, Imanishi Y, et al. (1993) Genetic alterations on chromosome 17 in human breast cancer: relationships to clinical features and DNA ploidy. *Breast Cancer Res Treat*. 28:231-9.
 - 17. Chen LC, Neubauer A, Kurisu W, et al. (1991) Loss of heterozygosity on the short arm of chromosome 17 is associated with high proliferative capacity and DNA aneuploidy in primary human breast cancer. *Proc Natl Acad Sci USA*. 88:3847-51.
 - 18. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9.
 - 19. Burmer GC, Rabinovitch PS, Haggitt RC, et al. (1992) Neoplastic progression in ulcerative colitis: histology, DNA content, and loss of a p53 allele [see comments]. *Gastroenterology*. 103:1602-10.
 - 20. Cunningham C, Dunlop MG, Wyllie AH, Bird CC. (1993) Deletion mapping in colorectal cancer of a putative tumor suppressor gene in 8p22-p21. *Oncogene*. 8:1391-6
 - 21. Kikuchi-Yanoshita R, Konishi M, Ito S, et al. (1992) Genetic changes of both p53 alleles associated with the conversion from colorectal adenoma to early carcinoma in familial adenomatous polyposis and non-familial adenomatous polyposis patients. *Cancer Res.* 52:3965-71.
 - 22. Yin J, Harpaz N, Tong Y, et al. (1993) p53 point mutations in dysplastic and cancerous ulcerative colitis lesions. *Gastroenterology*. 104:1633-9.

10

15

20

- 23. Iacopetta B, DiGrandi S, Dix B, et al. (1994) Loss of heterozygosity of tumor suppressor gene loci in human colorectal carcinoma. *Eur J Cancer*. 5:664-70.
- 24. Law DJ, Olschwang S, Monpezat JP, et al. (1988) Concerted nonsyntenic allelic loss in human colorectal carcinoma. *Science*. 241:961-5.
- 25. Lothe RA, Nakamura Y, Woodward S, Gedde DT, Jr., White R. (1988) VNTR (variable number of tandem repeats) markers show loss of chromosome 17p sequences in human colorectal carcinomas. *Cytogenet Cell Genet*. 48:167-9.
- 26. Foulkes WD, Stamp GW, Afzal S, et al. (1995) MDM2 overexpression is rare in ovarian carcinoma irrespective of TP53 mutation status. *Br J Cancer*. 72:883-8.
- 27. Phillips NJ, Ziegler MR, Radford DM, et al. (1996) Allelic deletion on chromosome 17p13.3 in early ovarian cancer. *Cancer Res.* 56:606-11.
- 28. Foulkes WD, Black DM, Stamp GW, Solomon E, Trowsdale J. (1993) Very frequent loss of heterozygosity throughout chromosome 17 in sporadic ovarian carcinoma. *Int J Cancer*. 54:220-5.
- 29. Gallion HH, Powell DE, Morrow JK, et al. (1992) Molecular genetic changes in human epithelial ovarian malignancies [see comments]. *Gynecol Oncol.* 47:137-42. 30. Phillips N, Ziegler M, Saha B, Xynos F. (1993) Allelic loss on chromosome 17 in human ovarian cancer. *Int J Cancer.* 54:85-91.
- 31. Seruca R, David L, Castedo S, Veiga I, Borresen AL, Sobrinho-Simoes M. (1994) p53 alterations in gastric carcinoma: a study of 56 primary tumors and 204 nodal metastases. *Cancer Genet Cytogenet*. 75:45-50.
- 32. Kim CJ, Kim WH, Kim CW, Lee JB, Lee CK, Kim YL. (1995) Detection of 17p loss in gastric carcinoma using polymerase chain reaction. *Lab Invest.* 72:232-6.
- 33. Ranzani GN, Renault B, Pellegata NS, et al. (1993) Loss of heterozygosity and K-ras gene mutations in gastric cancer. *Hum Genet*. 92:244-9.
- 34. Sano T, Tsujino T, Yoshida K, et al. (1991) Frequent loss of heterozygosity on chromosomes 1q, 5q, and 17p in human gastric carcinomas. *Cancer Res.* 51:2926-31.
- 35. Frankel RH, Bayona W, Koslow M, Newcomb EW. (1992) p53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation

20

25

frequency. Cancer Res. 52:1427-33.

- 36. Hermanson M, Funa K, Koopmann J, et al. (1996) Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas. *Cancer Res.* 56:164-71.
- 37. Aoki T, Mori T, Du X, Nisihira T, Matsubara T, Nakamura Y. (1994) Allelotype study of esophageal carcinoma. *Genes Chromosomes Cancer*. 10:177-82.
 - 38. Tsuchiya E, Nakamura Y, Weng SY, et al. (1992) Allelotype of non-small cell lung carcinoma--comparison between loss of heterozygosity in squamous cell carcinoma and adenocarcinoma. *Cancer Res.* 52:2478-81.
- 39. Hiyama K, Ishioka S, Shirotani Y, et al. (1995) Alterations in telomeric repeat length in lung cancer are associated with loss of heterozygosity in p53 and Rb. Oncogene. 10:937-44.

Example 23: Replication Protein A, 32 kDa Subunit (RPA32) - Target Gene VARIA402

The human RPA32 gene encodes a protein essential for cell survival

Replication Protein A (RPA; also known as Replication Factor A, Activator 1, Single Strand Binding Protein or SSB) is a heterotrimeric protein which participates in DNA replication, homologous recombination and nucleotide excision repair (1-3). The evidence that RPA is an essential protein comes from *in vitro* and *in vivo* data.

DNA replication is essential for cell proliferation, as discussed above for RPA70.

The best studied function of RPA32 is in DNA replication. Because of the complexity of DNA replication in higher eukaryotic genomes, the small genome of the papovavirus SV40 has been used as a model system to study DNA replication in human cell extracts. In the 1980s several research groups

developed cell free systems to study DNA replication using SV40 chromosomes as templates (4-8). An effort to identify the minimal set of factors required for DNA replication led to the discovery of RPA. Subsequent work proved that each of the three subunits of RPA is essential for DNA replication (9,10). This was proved in several ways, including by using antibodies to various constituents of the replication complex. Anti-RPA32 antibodies inhibit DNA replication, providing clear *in vitro* evidence for the essential function of this subunit of RPA in human DNA replication (10). The yeast *S. cerevisiae* has a trimeric replication protein A which is structurally and functionally homologous to the human protein. It consists of three subunits similar in size to the human subunits. All three yeast subunits have

The human RPA32 gene and mRNA are polymorphic.

15

20

25

5

10

The published cDNA for the 32 kD subunit of Replication Protein A is 1512 nucleotides long and includes a 5' untranslated segment of 77 nucleotides, followed by a protein coding region of 810 nucleotides and a 3' untranslated region of 625 nucleotides (10). We undertook a systematic search for DNA polymorphism by analysing the RPA32 cDNA from 36 unrelated individuals using the single strand conformation polymorphism technique (described in the methods section). Primers were designed using the sequence of Erdile et al. (GenBank accession J05249; see ref. 10). SSCP analysis revealed 2 variances, one of which was sequenced. Sequencing revealed a G vs. A transition at nucleotide 40 of the 5' untranslated region. Four of 36 individuals were heterozygotes, all of them Caucasians. Thus the allele frequency is 25% (4/16) in North American Whites, while no heterozygosity was detected in other populations (see Target Summary sheet).

been disrupted and each disruption produces non-viable yeast (9).

The RPA32 gene maps to chromosome 1p35

The gene for RPA32 was mapped to chromosome band 1p35 by *in situ* hybridization, somatic cell hybrid analysis and yeast artificial chromosome mapping (11,12). Only one locus was detected by all methods.

5

Chromosome band 1p35 is a site of frequent loss of heterozygosity. The short arm of chromosome 1 is comparatively well investigated for allele loss, especially in breast and colon cancers. Studies of the 1p35 region show LOH in 15-40% of breast cancers (13,14), ~50% of gliomas (a brain cancer subtype) (15), 20-70% of colon cancers (16,17), ~50% of stomach cancers (18), ~20% of lung cancers (19) and 10-30% of ovarian cancers. High frequency LOH has been detected in several uncommon cancers such as pheochromocytoma (50-80%) and neuroblastoma (~50%).

References

15

10

1. Erdile, L. F., et al. Characterization of a cDNA encoding the 70-kDa single-stranded DNA-binding subunit of human replication protein A and the role of the protein in DNA replication. [published erratum appears in *J. Biol. Chem.* 1993 Jan 25;268(3):2268]. *J. Biol. Chem.* 266.18 (1991): 12090-8.

20

2. Jones, K. A., et al. A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. *Cell* 48.1 (1987): 79-89.

3. He, Z., et al. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. *Nature* 374.6522 (1995): 566-9.

- 4. Challberg, M. D., and T. J. Kelly. Eukaryotic DNA replication: viral and plasmid model systems. *Annu Rev Biochem* 51 (1982): 901-34.
- 5. Wold, M. S., et al. Identification of cellular proteins required for simian virus 40 DNA replication. *Journal Biological Chemistry* 264.5 (1989): 2801-9.
- 6. Kelly, T. J. DNA replication in mammalian cells: insights from the SV40 model system. *Harvey Lecture* 85 (1989): 173-88.

10

15

- 7. Hurwitz, J., Dean, F.B., Kwong, A.D and S.-H. Lee (1990) Journal of Biological Chemistry 265: 18043-18046.
- 8. Stillman, B. (1992) Initiation of chromosome replication in eukaryotic cells. *Harvey Lecture* 88: 115-40.
- 9. Brill, S.J. and B. Stillman (1991) Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. *Genes and Development* 5: 589-1600.
- 10. Erdile, L. F., M. S. Wold, and T. J. Kelly. The primary structure of the 32-kDa subunit of human replication protein A. <u>J Biol Chem</u> 265.6 (1990): 3177-82.
- 11. Ozawa, K., Dean, F., et al. (1993) Mapping of the 70 kDa 34kDa and 11kDa subunit genes of the human multimeric single-stranded DNA binding protein (hSSB/RPA) to chromosome bands 17p13, 1p35-p36.1 and 7p21-p22. *Cell Struct Funct* 18: 221-230.
- 12. Umbricht, C. B., et al. High-resolution genomic mapping of the three human replication protein A genes (RPA1, RPA2, and RPA3). Genomics 20.2 (1994): 249-57.
- 13. Bieche I, Champeme MH, Matifas F, Cropp CS, et al. (1993) Two distinct regions involved in 1p deletion in human primary breast cancer. *Cancer Res.* 53:1990-4.
- 14. Borg A, Zhang QX, Olsson H, Wenngren E. (1992) Chromosome 1 alterations in breast cancer: allelic loss on 1p and 1q is related to lymphogenic metastases and poor prognosis. *Genes Chromosomes & Cancer*. 5:311-20.
- 15. Reifenberger, J., Reifenberger, G., Liu, L., et al. (1994) Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. American Journal of Pathology 145: 1175-1190.
- 25 16. (1990) Cancer Research 50: 7232.
 - 17.Lothe RA, Nakamura Y, Woodward S, Gedde DT, Jr., White R. (1988) VNTR (variable number of tandem repeats) markers show loss of chromosome 17p sequences in human colorectal carcinomas. *Cytogenet Cell Genet*. 48:167-9.
 - 18. Ezaki, T., Yanagisawa, A., Ohta, K., et al. (1996) Deletion mapping on

232/116

chromosome 1p in well-differentiated gastric cancer. British Journal of Cancer 73: 424-428.

19. Hiyama K, Ishioka S, et al. (1995) Alterations in telomeric repeat length in lung cancer are associated with loss of heterozygosity in p53 and Rb. Oncogene. 10:937-44.

5

Example 24: Replication Protein A, 70 kD subunit (RPA70) - Target Gene VARIA401

10

The human RPA70 gene encodes a protein essential for cell survival

15

Replication Protein A (also known as Replication Factor A, Activator or Single Strand Binding protein [SSB]) is a heterotrimeric protein which participates in DNA replication, homologous recombination and nucleotide excision repair (1-3). The evidence that RPA is an essential protein comes from *in vitro*, *in vivo* and evolutionary data.

20

-

25

DNA replication is essential for cell proliferation, and a variety of antiproliferative drugs act, at least in part, by inhibiting DNA replication. Such drugs include nucleotide analogs that block DNA polymerases, such as 2',3' dideoxy NTPs and 3' deoxy ATP (cordycepin); inhibitors that bind to or modify DNA such as intercalating agents, DNA crosslinking drugs or alkylating agents, and inhibitors that bind to polymerases and replication proteins such as topoisomerase inhibitors like the epipodophyllotoxins, which prevent DNA unwinding necessary for replication (and transcription) and antibiotics which bind to polymerases such as arylhydrazino-pyrimidines. The best studied function of RPA70 is in DNA replication. Because of the

complexity of DNA replication in higher eukaryotic genomes, the small genome of the papovavirus SV40 has been used as a model system to study DNA replication in human cell extracts. In the 1980s several research groups

developed cell free systems to study DNA replication using SV40

chromosomes as templates (4-8). These studies, in seeking to identify the minimal set of factors required for DNA replication, led to the discovery of replication protein A. Subsequent work proved that each of the three subunits of RPA is essential for DNA replications. This was proved in several ways, including by using antibodies to various constituents of the replication complex. These antibodies are effectively inhibitors of RPA70. Anti-RPA70 antibody mediated abrogation of DNA replication provides clear *in vitro* evidence for the essential function of RPA70 in human DNA replication (10). The yeast *S. cerevisiae* has a trimeric replication protein A which is structurally and functionally homologous to the human protein. It consists of three subunits similar in size to the human subunits. The yeast 70 kDa subunit is 31% identical and 75% similar (including conserved amino acids) to its human counterpart (1). All three yeast subunits have been disrupted and each disruption produces non-viable yeast. The yeast 70 kD protein is also a single

Single stranded DNA binding proteins (SSBs) are required for DNA replication in a wide variety of organisms, including bacteriophage, bacteria and some DNA viruses of higher eukaryotes. Recently the crystal structure of the DNA binding domain of human RPA was solved and found to be remarkably similar in three dimensional shape to the bacteriophage single stranded DNA binding proteins Pf3 and gene V from f1 phage.

The human RPA70 gene, mRNA and protein have sequence variances

stranded DNA binding protein.

25

5

10

15

20

The published cDNA for the 70 kD subunit of Replication Protein A is 2393 nucleotides long and includes a 5' untranslated segment of 69 nucleotides, followed by a protein coding region of 1848 nucleotides and a 3' untranslated region of 476 nucleotides (1). We undertook a systematic search for DNA polymorphism by

10

15

20

25

analyzing the RPA70 cDNA from 36 unrelated individuals using the single strand conformation polymorphism technique (described in the methods section). Primers were designed using the sequence of Erdile et al. (GenBank accession M63488; see ref. 1). SSCP analysis revealed 5 variances, and subsequent DNA sequence analysis of those variances led to identification of four additional variances. SSCP revealed the variances at nucleotides 81 (G vs. A), 1120 (A vs. G), 1674 (T vs. C), 2050 (T vs. C) and 2297, where an insertion/deletion variance of one C nucleotide was observed (8 vs. 9 C's in a row). In the course of sequencing around the nucleotide 2297 polymorphism an additional variance was detected at nucleotide 2341 (A vs. G). Also, while sequencing additional Swedish individuals around nucleotide 1120 two new variances were observed at nucleotides 1124 and 125 (both C vs. T). Finally, in three individuals sequenced for the 2050 variance we noted a difference from the published sequence at nucleotide 2046: we detect 3 T's while the published clone shows just two. This difference may represent another insertion/deletion polymorphism. Five of the nine detected variances are in the coding sequence while four are in the 3' untranslated region.

The frequency of heterozygotes for the five SSCP positive variances ranged from 25-42% among the 36 individuals tested. The small number of individuals genotyped for the other four variances precludes definitive assessment of heterozygosity rates. Some of the polymorphisms appear to occur more commonly in certain racial or ethnic groups (see Target Summary sheet for details). For example, only one of the variances (nt 1674) was detected in Japanese individuals. In general, higher levels of polymorphism were detected in North American Whites than in other groups. The nucleotide 1120 polymorphism, for instance, was heterozygous in 9/36 individuals overall (25%), but in 8/16 North American Whites (50%).

The RPA70 cDNA encodes a 616 amino acid protein. The nucleotide 1120 and 1124 variances result in amino acid substitutions at residues 351 and 352, the former an alanine-threonine exchange (approximately 50% of caucasians are heterozygotes) and

the latter a serine-phenylalanine exchange (rare in the populations tested). In the recently published crystal structure of the DNA binding segment of RPA70 (amino acids 181-422) it is possible to place residue 351 in the second of two tandemly arrayed DNA binding domains (domain B; see ref. 10). Domain B extends from residue I305 to N402, thus the variant residue 351 is in the middle. The published structure is a cocrystal of RPA70 amino acids 181-422 complexed to octadeoxycytosine. Several RPA70 residues contact the oligonucleotide (Figure 4 of ref. 11), including amino acids K343 and T359, which lie 8 residues away from the polymorphism in either direction. Modeling the two variant forms of the protein using the atomic coordinates deposited in the Protein Data Bank (1JMC) should clarify the structural consequences of the alanine-threonine variance. Residue 351 lies in the center of a 50 amino acid segment of the protein that is relatively poorly conserved between yeast and man: 11 of the 50 residues are identical and 25 more are conservative substitutions. Towards the C terminus there is strong conservation: starting 25 residues C-terminal of the polymorphism, 27 of the next 37 residues are identical between yeast and man. Towards the N terminus there is ~30% conservation. Both yeast and human 70 kD RPA subunits contain putative C4-type zinc finger motifs at positions ~480-500.

The RPA70 gene maps to chromosome 17p13.3

20

5

10

15

The gene for RPA70 has been mapped to chromosome band 17p13.3 by in situ hybridization (12). Only one locus was detected.

25

Chromosome band 17p13.3 is a site of frequent loss of heterozygosity. RPA70 lies just telomeric to the TP53 tumor suppressor gene which is located in cytogenetic band 17p13.1. This region of chromosome 17 is extremely well investigated for allele loss. In general, studies report LOH in approximately 40-60% of breast cancers (13-21), 50-70% of colon cancers (22-28), 25-75% of ovarian cancers (29-33), 20-60% of stomach cancers (34-37), 20-50% of brain cancers (38,39), 45-70% of esophageal cancers (40),

232/116

35-65% of non-small cell lung cancers (41,42) and 100% of small cell lung cancers, 15-50% of cervical cancers, 30-80% of head and neck cancers, 20-60% of liver cancers, over 50% of sarcomas and 10-30% of a variety of other cancer types.

Assays developed for RPA: Protein and DNA contacts

Human cDNAs encoding all 3 subunits (70, 34 and 11 kD) of RPA have been cloned and expressed in *E. coli* and in insect cells via baculovirus vectors. The bacterially expressed 70 kDa protein is indistinguishable from its purified human counterpart immunologically and in several functional assays (see Table below). There is good evidence that the 70 kD subunit of RPA interacts with a number of different molecules. A partial list would include the 34 and 11 kD subunits of RPA, DNA, the xeroderma pigmentosum damage recognition and endonuclease proteins XPA and XPG, and DNA polymerase a-primase. These experimentally proven contacts (and almost certainly others) may constrain the topology of the protein in ways that have implications for inhibitor design. In summary a broad array of assays exists to screen for small molecule inhibitors of RPA (possibly including modified nucleotides), that act via competitive, allosteric or protein-protein blocking mechanisms.

Table 4

20

15

5

10

Assays and reagents available for RPA inhibitor screening

RPA 70 kD, Assay Systems
Purified Purified Bacterial or
Human Protein Baculovirus
Protein

ASSAY

Immunoreactivity
Single stranded DNA binding
DNA Polymerase alpha
primase

X	X
X	X
X	Х

30

PCT/US98/05419

WO 98/41648

258

232/116

DNA strand exchange		
Nucleotide excision repair		
Support SV40 Replication		

X	X
X	X
X	X

5 References

10

15

20

- 1. Erdile, L. F., et al. Characterization of a cDNA encoding the 70-kDa single-stranded DNA-binding subunit of human replication protein A and the role of the protein in DNA replication. [published erratum appears in *J. Biol. Chem.* 1993 Jan 25;268(3):2268]. *J. Biol. Chem.* 266.18 (1991): 12090-8.
- 2. Jones, K. A., et al. A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. *Cell* 48.1 (1987): 79-89.
- 3. He, Z., et al. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. *Nature* 374.6522 (1995): 566-9.
- 4. Challberg, M. D., and T. J. Kelly. Eukaryotic DNA replication: viral and plasmid model systems. *Annu Rev Biochem* 51 (1982): 901-34.
- 5. Wold, M. S., et al. Identification of cellular proteins required for simian virus 40 DNA replication. *Journal Biological Chemistry* 264.5 (1989): 2801-9.
- 6. Kelly, T. J. DNA replication in mammalian cells: insights from the SV40 model system. *Harvey Lecture* 85 (1989): 173-88.
- 7. Hurwitz, J., Dean, F.B., Kwong, A.D and S.-H. Lee (1990) *Journal of Biological Chemistry* 265: 18043-18046.
- 8. Stillman, B. (1992) Initiation of chromosome replication in eukaryotic cells. *Harvey Lecture* 88: 115-40.
- 9. Heyer, W. D., et al. An essential Saccharomyces cerevisiae single-stranded DNA binding protein is homologous to the large subunit of human RP-A. *EMBO Journal* 9.7 (1990): 2321-9.
 - 10. Erdile, L. F., M. S. Wold, and T. J. Kelly. The primary structure of the 32-kDa subunit of human replication protein A. <u>J Biol Chem</u> 265.6 (1990): 3177-82.
 - 11. Bochkarev, A., Pfuetzner, R.A., Edwards, A.M. and L. Frappier (1997) Structure

10

- of the single stranded DNA binding domain of replication protein A bound to DNA. *Nature* 385: 176-181.
- 12. Umbricht, C. B., et al. High-resolution genomic mapping of the three human replication protein A genes (RPA1, RPA2, and RPA3). Genomics 20.2 (1994): 249-57.
- 13. Cornelis RS, van Vliet M, Vos CB, et al. (1994) Evidence for a gene on 17p13.3, distal to TP53, as a target for allele loss in breast tumors without p53 mutations. *Cancer Res.* 54:4200-6.
- 14. Lindblom A, Skoog L, Rotstein S, Werelius B, Larsson C, Nordenskjold M. (1993) Loss of heterozygosity in familial breast carcinomas. *Cancer Res.* 53:4356-61.
- 15. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9. 16. Singh S, Simon M, Meybohm I, et al. (1993) Human breast cancer: frequent p53 allele loss and protein over expression. *Hum Genet.* 90:635-40.
- 17. Thorlacius S, Borresen AL, et al. (1993) Somatic p53 mutations in human breast carcinomas in an Icelandic population: a prognostic factor. Cancer Res. 53:1637-41.

 18. Tsuda H, Hirohashi S. (1994) Association among p53 gene mutation, nuclear accumulation of the p53 protein and aggressive phenotypes in breast cancer. Int J Cancer. 57:498-503.
- 19. Watatani M, Nagayama K, Imanishi Y, et al. (1993) Genetic alterations on chromosome 17 in human breast cancer: relationships to clinical features and DNA ploidy. *Breast Cancer Res Treat*. 28:231-9.
 - 20. Chen LC, Neubauer A, Kurisu W, et al. (1991) Loss of heterozygosity on the short arm of chromosome 17 is associated with high proliferative capacity and DNA aneuploidy in primary human breast cancer. *Proc Natl Acad Sci U S A*. 88:3847-51.
 - 21. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9. 22. Burmer GC, Rabinovitch PS, Haggitt RC, et al. (1992) Neoplastic progression in ulcerative colitis: histology, DNA content, and loss of a p53 allele [see comments].

10

15

20

25

Gastroenterology. 103:1602-10.

- 23. Cunningham C, Dunlop MG, Wyllie AH, Bird CC. (1993) Deletion mapping in colorectal cancer of a putative tumor suppressor gene in 8p22-p21.3. *Oncogene*.8:1391-6
- 24. Kikuchi-Yanoshita R, Konishi M, Ito S, et al. (1992) Genetic changes of both p53 alleles associated with the conversion from colorectal adenoma to early carcinoma in familial adenomatous polyposis and non-familial adenomatous polyposis patients. *Cancer Res.* 52:3965-71.
- 25. Yin J, Harpaz N, Tong Y, et al. (1993) p53 point mutations in dysplastic and cancerous ulcerative colitis lesions. *Gastroenterology*. 104:1633-9.
- 26. Iacopetta B, DiGrandi S, Dix B, et al. (1994) Loss of heterozygosity of tumour suppressor gene loci in human colorectal carcinoma. *Eur J Cancer*. 5:664-70.
- 27. Law DJ, Olschwang S, Monpezat JP, et al. (1988) Concerted nonsyntenic allelic loss in human colorectal carcinoma. *Science*. 241:961-5.
- 28. Lothe RA, Nakamura Y, Woodward S, Gedde DT, Jr., White R. (1988) VNTR (variable number of tandem repeats) markers show loss of chromosome 17p sequences in human colorectal carcinomas. *Cytogenet Cell Genet*. 48:167-9.
- 29. Foulkes WD, Stamp GW, Afzal S, et al. (1995) MDM2 over expression is rare in ovarian carcinoma irrespective of TP53 mutation status. *Br J Cancer*. 72:883-8.
- 30. Phillips NJ, Ziegler MR, Radford DM, et al. (1996) Allelic deletion on chromosome 17p13.3 in early ovarian cancer. *Cancer Res.* 56:606-11.
- 31. Foulkes WD, Black DM, Stamp GW, Solomon E, Trowsdale J. (1993) Very frequent loss of heterozygosity throughout chromosome 17 in sporadic ovarian carcinoma. *Int J Cancer*. 54:220-5.
- 32. Gallion HH, Powell DE, Morrow JK, et al. (1992) Molecular genetic changes in human epithelial ovarian malignancies [see comments]. *Gynecol Oncol.* 47:137-42.
- 33. Phillips N, Ziegler M, Saha B, Xynos F. (1993) Allelic loss on chromosome 17 in human ovarian cancer. *Int J Cancer*. 54:85-91.
- 34. Seruca R, David L, Castedo S, Veiga I, Borresen AL, Sobrinho-Simoes M. (1994)

10

15

25

- p53 alterations in gastric carcinoma: a study of 56 primary tumors and 204 nodal metastases. *Cancer Genet Cytogenet*. 75:45-50.
- 35. Kim CJ, Kim WH, Kim CW, Lee JB, Lee CK, Kim YL. (1995) Detection of 17p loss in gastric carcinoma using polymerase chain reaction. *Lab Invest.* 72:232-6.
- 36. Ranzani GN, Renault B, Pellegata NS, et al. (1993) Loss of heterozygosity and K-ras gene mutations in gastric cancer. *Hum Genet*. 92:244-9.
- 37. Sano T, Tsujino T, Yoshida K, et al. (1991) Frequent loss of heterozygosity on chromosomes 1q, 5q, and 17p in human gastric carcinomas. *Cancer Res.* 51:2926-31.
- 38. Frankel RH, Bayona W, Koslow M, Newcomb EW. (1992) p53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation frequency. *Cancer Res.* 52:1427-33.
- 39. Hermanson M, Funa K, Koopmann J, et al. (1996) Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas. *Cancer Res.* 56:164-71.
- 40. Aoki T, Mori T, Du X, Nisihira T, Matsubara T, Nakamura Y. (1994) Allelotype study of esophageal carcinoma. *Genes Chromosomes Cancer*. 10:177-82.
- 41. Tsuchiya E, Nakamura Y, Weng SY, et al. (1992) Allelotype of non-small cell lung carcinoma--comparison between loss of heterozygosity in squamous cell carcinoma and adenocarcinoma. *Cancer Res.* 52:2478-81.
- 42. Hiyama K, Ishioka S, et al. (1995) Alterations in telomeric repeat length in lung cancer are associated with loss of heterozygosity in p53 and Rb. Oncogene. 10:937-44.

Example 25: RNA Polymerase II, 220-kD subunit (RPOL2A) - Target Gene VARIA500

The human RPOL2A gene encodes a protein essential for cell survival

DNA-dependent RNA polymerase II (also known as RPB1 or POLR2A), a complex

WO 98/41648 PCT/US98/05419

262 232/116

multisubunit enzyme, is responsible for the transcription of mRNA from all protein coding genes.

RNA polymerases are found in all cellular organisms. The subunit structure of RNA polymerases is highly conserved in eukaryotes. RNA polymerase acts in concert with as many as 50 other proteins in gene transcription (reviewed in ref. 1). See refs. 2 and 3 for a review of basal transcription by RNA polymerase II and recent progress in identifying and purifying transcription factors and cloning the genes that encode them.

Several subunits of S. cerevisiae RPOL2A have been disrupted, always resulting in non-viable yeast.

A variety of inhibitors of RNA polymerase are cytotoxic drugs, such as actinomycin D, which intercalates into double stranded DNA and blocks the movement of RNA polymerase; rifampicin binds the b subunit of *E. coli* RNA polymerase and blocks initiation of transcription. The best studied specific inhibitor of eukaryotic RPOL2A, however, is the potent mushroom toxin - amanitin, a cyclic octapeptide which binds with high affinity (Kd ~10-9 M) to RPOL2A. Several mutations conferring resistance to a-amanitin have been characterized and they all map to the RPOL2A protein coding sequence. Recently a-amanitin binding has been shown to trigger specific degradation of RPOL2A (4).

Damage to actively transcribed DNA is preferentially repaired by the transcription-coupled repair (TCR) system. TCR requires RNA pol II, but the mechanism by which repair enzymes preferentially recognize and repair DNA lesions on PolB II-transcribed genes is incompletely understood.

The human RPOL2A gene and mRNA have sequence variances

Wintzerith et al. and later Mita et al. cloned and sequenced the complete human gene

5

10

15

20

10

15

20

for RPOL2A (5, 6); the deduced amino acid sequences are identical. The RPOL2A gene contains 29 exons and spans about 32 kb of DNA. The cDNA sequence we evaluated is 6732 nucleotides long (see Annotated RPOL2A Sequence) and contains a 5' untranslated region of 386 nucleotides, a 5910 nucleotide coding region specifying 1970 amino acids, and a 436 nucleotide 3' untranslated region (see annotated sequence). We undertook a systematic search for DNA sequence variance in the cDNA of RPOL2A by analyzing 36 unrelated individuals using the single strand conformation polymorphism technique. Primers were designed for amplification. SSCP analysis revealed 10 sequence variances, and subsequent DNA sequence analysis confirmed a G vs. A transition at nucleotide 857, a C vs. T transition at nucleotide 1260, a C vs. T transition at nucleotide 1346, a C vs. T transition at nucleotide 1544, a C vs. T transition at nucleotide 1847, a C vs. T transition at nucleotide 2678, a C vs. T transition at nucleotide 3059, a C vs. T transition at nucleotide 3827, a T vs. C transition at nucleotide 6466 and a T vs. C transition at nucleotide 6557. The former seven sequence variances are in coding sequence and the latter two are in the 3' untranslated sequence. Only one of the ten sequence variances alters the protein coding sequence: the nucleotide 1260 alleles encode arginine (common) or cysteine (rare) at amino acid 292. Only 2/36 individuals surveyed are heterozygotes (6%), however both are North American Whites (2/16 = 12.5%) so further investigation of this population is required. The prevalence of heterozygotes for the other sequence variances varies from 3% to 50%, with 6 sequence variances above 22% (see RPOL2A Target Summary Sheet). The 6 common sequence variances are widely prevalent among all or nearly all the tested populations.

The human RPOL2A gene maps to chromosome 17p13.105

The human RPOL2A gene was initially assigned to the distal portion of the short arm of chromosome 17 (17pter-p12) by *in situ* hybridization and Southern analysis of DNA from human/rodent somatic cell hybrids (7, 8). Subsequent somatic cell hybrid studies narrowed the assignment to 17p13.105-p12 [vanTuinen and Ledbetter (1987)], which

264 232/116

was later confirmed by in situ hybridization to 17p13 (9).

Chromosome band 17p13.1 is a site of frequent loss of heterozygosity There have been many studies of LOH on 17p, particularly the 17p13.1 region where the p53 tumor suppressor gene maps. Virtually all cancer types have been surveyed for LOH in this area, with particularly extensive studies of breast, colon, ovarian, and stomach cancers. These studies report LOH in approximately 40-60% of breast cancers (10-18), 50-70% of colon cancers (19-25), 25-75% of ovarian cancers (26-30), 20-60% of stomach cancers (31-34), 20-50% of brain cancers (35,36), 45-70% of esophageal cancers (37), 35-65% of non-small cell lung cancers (38,39) and 100% of small cell lung cancers, 15-50% of cervical cancers, 30-80% of head and neck cancers, 20-60% of liver cancers, over 50% of sarcomas and 10-30% of a variety of other cancer types.

15 References

5

10

20

- 1. Acker, J.; Mattei, M.-G.; Wintzerith, M.; Roeckel, N.; Depetris, D.; Vigneron, M.; Kedinger, C. (1994) Chromosomal localization of human RNA polymerase II subunit genes. *Genomics* 20: 496-499.
- 4. Buratowski, S. (1994) The basics of basal transcription by RNA polymerase II. *Cell* 77:1-3.
- 5. Cannizzaro, L. A., Emanuel, B. S., Cho, K. W. Y. and R. Weinmann (1986) The gene encoding the large subunit of human RNA polymerase II is located on the short arm of chromosome 17. Am. J. Hum. Genet. 38: 812-818.
- 8. Mita, K.; Tsuji, H.; Morimyo, M.; Takahashi, E.; Nenoi, M.; Ichimura, S.; Yamauchi, M.; Hongo, E., Hayashi, A. (1995) The human gene encoding the largest subunit of RNA polymerase II. *Gene* 159: 285-286.
- 9. Pravtcheva, D.; Rabin, M.; Bartolomei, M.; Corden, J.; Ruddle, F. H. (1986) Chromosomal assignment of gene encoding the largest subunit of RNA polymerase II

10

15

20

25

in the mouse. Somat. Cell Molec. Genet. 12: 523-528.

- 13. Wintzerith, M., Acker, J., Vicaire, S., Vigneron, M. and C. Kedinger (1992) Complete sequence of the human RNA polymerase II largest subunit. *Nucleic Acids Res.* 20: 910.
- 10. Cornelis RS, van Vliet M, Vos CB, et al. (1994) Evidence for a gene on 17p13.3, distal to TP53, as a target for allele loss in breast tumors without p53 mutations. *Cancer Res.* 54:4200-6.
- 11. Lindblom A, Skoog L, Rotstein S, Werelius B, Larsson C, Nordenskjold M. (1993) Loss of heterozygosity in familial breast carcinomas. *Cancer Res.* 53:4356-61.
- 12. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9. 13. Singh S, Simon M, Meybohm I, et al. (1993) Human breast cancer: frequent p53
- allele loss and protein over expression. Hum Genet. 90:635-40.
- 14. Thorlacius S, Borresen AL, et al. (1993) Somatic p53 mutations in human breast carcinomas in an Icelandic population: a prognostic factor. *Cancer Res.* 53:1637-41.
- 15. Tsuda H, Hirohashi S. (1994) Association among p53 gene mutation, nuclear accumulation of the p53 protein and aggressive phenotypes in breast cancer. *Int J Cancer*. 57:498-503.
- 16. Watatani M, Nagayama K, Imanishi Y, et al. (1993) Genetic alterations on chromosome 17 in human breast cancer: relationships to clinical features and DNA ploidy. *Breast Cancer Res Treat*. 28:231-9.
- 17. Chen LC, Neubauer A, Kurisu W, et al. (1991) Loss of heterozygosity on the short arm of chromosome 17 is associated with high proliferative capacity and DNA aneuploidy in primary human breast cancer. *Proc Natl Acad Sci USA*. 88:3847-51.
- 18. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9. 19. Burmer GC, Rabinovitch PS, Haggitt RC, et al. (1992) Neoplastic progression in ulcerative colitis: histology, DNA content, and loss of a p53 allele [see comments]. *Gastroenterology*. 103:1602-10.

PCT/US98/05419

266 232/116

- 20. Cunningham C, Dunlop MG, Wyllie AH, Bird CC. (1993) Deletion mapping in colorectal cancer of a putative tumour suppressor gene in 8p22-p21.3. Oncogene. 8:1391-6
- 21. Kikuchi-Yanoshita R, Konishi M, Ito S, et al. (1992) Genetic changes of both p53 alleles associated with the conversion from colorectal adenoma to early carcinoma in familial adenomatous polyposis and non-familial adenomatous polyposis patients. Cancer Res. 52:3965-71.
- 22. Yin J, Harpaz N, Tong Y, et al. (1993) p53 point mutations in dysplastic and cancerous ulcerative colitis lesions. Gastroenterology. 104:1633-9.
- 23. Iacopetta B, DiGrandi S, Dix B, et al. (1994) Loss of heterozygosity of tumour suppressor gene loci in human colorectal carcinoma. Eur J Cancer. 5:664-70.
- 24. Law DJ, Olschwang S, Monpezat JP, et al. (1988) Concerted nonsyntenic allelic loss in human colorectal carcinoma. Science. 241:961-5.
- 25. Lothe RA, Nakamura Y, Woodward S, Gedde DT, Jr., White R. (1988) VNTR (variable number of tandem repeats) markers show loss of chromosome 17p sequences in human colorectal carcinomas. Cytogenet Cell Genet. 48:167-9.
- 26. Foulkes WD, Stamp GW, Afzal S, et al. (1995) MDM2 over expression is rare in ovarian carcinoma irrespective of TP53 mutation status. Br J Cancer. 72:883-8.
- 27. Phillips NJ, Ziegler MR, Radford DM, et al. (1996) Allelic deletion on chromosome 17p13.3 in early ovarian cancer. Cancer Res. 56:606-11.
- 28. Foulkes WD, Black DM, Stamp GW, Solomon E, Trowsdale J. (1993) Very frequent loss of heterozygosity throughout chromosome 17 in sporadic ovarian carcinoma. Int J Cancer. 54:220-5.
- 29. Gallion HH, Powell DE, Morrow JK, et al. (1992) Molecular genetic changes in human epithelial ovarian malignancies [see comments]. Gynecol Oncol. 47:137-42.
- 30. Phillips N, Ziegler M, Saha B, Xynos F. (1993) Allelic loss on chromosome 17 in human ovarian cancer. Int J Cancer. 54:85-91.
- 31. Seruca R, David L, Castedo S, Veiga I, Borresen AL, Sobrinho-Simoes M. (1994) p53 alterations in gastric carcinoma: a study of 56 primary tumors and 204 nodal

5

10

15

20

5 .

10

15

20

25

metastases. Cancer Genet Cytogenet. 75:45-50.

- 32. Kim CJ, Kim WH, Kim CW, Lee JB, Lee CK, Kim YL. (1995) Detection of 17p loss in gastric carcinoma using polymerase chain reaction. *Lab Invest.* 72:232-6.
- 33. Ranzani GN, Renault B, Pellegata NS, et al. (1993) Loss of heterozygosity and K-ras gene mutations in gastric cancer. *Hum Genet*. 92:244-9.
- 34. Sano T, Tsujino T, Yoshida K, et al. (1991) Frequent loss of heterozygosity on chromosomes 1q, 5q, and 17p in human gastric carcinomas. *Cancer Res.* 51:2926-31.
- 35. Frankel RH, Bayona W, Koslow M, Newcomb EW. (1992) p53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation frequency. *Cancer Res.* 52:1427-33.
- 36. Hermanson M, Funa K, Koopmann J, et al. (1996) Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas. *Cancer Res.* 56:164-71.
- 37. Aoki T, Mori T, Du X, Nisihira T, Matsubara T, Nakamura Y. (1994) Allelotype study of esophageal carcinoma. *Genes Chromosomes Cancer*. 10:177-82.
- 38. Tsuchiya E, Nakamura Y, Weng SY, et al. (1992) Allelotype of non-small cell lung carcinoma--comparison between loss of heterozygosity in squamous cell carcinoma and adenocarcinoma. *Cancer Res.* 52:2478-81.
- 39. Hiyama K, Ishioka S, Shirotani Y, et al. (1995) Alterations in telomeric repeat length in lung cancer are associated with loss of heterozygosity in p53 and Rb. *Oncogene*. 10:937-44.

Example 26: TATA Associated Factor 30 kD subunit (TAF2H) - Target Gene VARIA 520

The human TAF2H gene encodes a component of the transcriptional apparatus

Transcription initiation by RNA polymerase II requires the assembly of a complex of

WO 98/41648 PCT/US98/05419

268 232/116

basic transcription factors which include TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIG/TFIIJ and TFIIH/BTF2 into a preinitiation complex (1,2). TFIID is the first factor to contact the promotor, and subsequent assembly of the transcription complex is dependent on TFIID binding. TFIID is a 700-750 kD multiprotein complex which includes TATA binding protein (TBP) and between eight and 13 TBP-associated factors (TAFs) ranging from 250 to 17 kDa. The TAFs have been shown necessary to reconstitute activation of transcription in vitro, leading to the hypothesis that some TAFs link transcription activation domains to the basal transcription complex. The TFIID complex also supports transcription from TATA-less promoters, while TBP fails to do so. Therefore TAFs may also contribute to formation of stable initiation complexes by interacting directly with DNA (2). Conditional temperature sensitive Chinese hamster mutants of another TAF, TAFII250, were detected because, at the non-permissive temperature, DNA synthesis was inhibited leading to arrest of cell division at the G1 phase (3,4). Transfection of a human TAFII250 gene relieved the block at the non-permissive temperature. Thus an essential role has been proven for TAFs in mammalian cells.

A gene (TAF2H) encoding the 30 kDa human TAF protein (TAFII30) was cloned and its functional properties examined by Jacq, et al. (5). The protein was shown to be present in a subset of TFIID complexes and to mediate transcriptional activation by a specific region of the estrogen receptor. Estrogen mediated transcriptional activation could be abrogated by adding an antibody against TAFII30. TAFII30 was not required for basal transcription or for transcription activation by VP-16. It is likely that TAFII30 is required for transcriptional activation by a variety of other transactivating proteins, and is therefore essential for cell proliferation or cell survival.

The human TAF2H gene and mRNA have sequence variants

A human TAF2H cDNA has been cloned and sequenced (5). It encodes a cDNA of 756 nucleotides including a 5' untranslated region of 17 nucleotides, a 657 nucleotide

5

10

15

20

1 6 - 3

5

10

15

20

25

coding region specifying 218 amino acids, and an 82 nucleotide 3' untranslated region (GenBank accession U13991; see annotated TAF2H cDNA sequence). (Note that the numbering of the sequence in ref. 5 differs slightly from that in the GenBank accession.) We undertook a systematic search for DNA variance in the cDNA of TAF2H by analysing 36 unrelated individuals using the single strand conformation polymorphism technique Primers were designed for amplification. SSCP analysis revealed 1 polymorphism, and subsequent DNA sequence analysis confirmed a G vs. A transition at nucleotide 554 (nt 556 of the sequence in ref. 3) of the coding sequence. This variance does not alter the protein coding sequence. Eight of 36 individuals surveyed are heterozygotes (22%). The variance occurs in North American Whites (3/16 = 19%), North American Blacks (2/4) and Hispanics (3/3).

The human TAF2H gene maps to chromosome 11p15.5-p15.2 The human TAF2H cDNA has been mapped to 11p15.5-p15.2 by fluorescent in situ hybridization (6). There appears to be a single TAF2H locus. Chromosome band 11p15-p14 is a site of frequent loss of heterozygosity

There have been many studies of LOH on 11p, particularly the 11p15 and 11p13 segments where the Beckwith-Weidemann syndrome and WT1 genes reside. As a result there are many studies of LOH in 11p15.5, particularly focusing on breast, cervix, kidney, liver, lung, ovarian, stomach and testicular cancers. These studies show that the 11p15.5 band of chromosome 11 is frequently reduced to one copy (7-24). For example, LOH occurs in approximately 13-33% of breast cancers (7-9), 14-42% of cervical cancers (10), 0-50% of liver cancers (11,12), 0-80% of lung cancers (13-15), 18-54% of ovarian cancers (14,15), 0-71% of stomach cancers (18) and 0-50% of testicular cancers (19,20). Other studies show that 11p15.5 LOH may also be frequent in bladder cancer (21), esophageal cancer (22), some leukemias (23) and sarcomas (24). Many deletions in the 11p15.5 region span relatively short chromosomal segments (2 - 10 megabases; see ref. 13).

10

15

20

25

270 232/116

References

- 1. Buratowski, S.(1994) The basics of basal transcription by RNA polymerase II. *Cell* 77: 1-3.
- 2. Tjian, R. and T. Maniatis (1994) Transcriptional activation: a complex puzzle with few easy pieces. *Cell* 77: 5-8.
- 3. Sekiguchi, T., Miyata, T. and T. Nishimoto (1988) Molecular cloning of the cDNA of human X chromosomal gene (CCG1) which complements the temperature sensitive G(1) mutants, tsBN462 and ts13, of the BHK cell line. *EMBO Journal* 7: 1683-1687.
- 4. Hisatake, K., Hasegawa, S., Takada, R., et al. (1993) The p250 subunit of native TATA box-binding factor TFIID is the cell -cycle regulatory protein CCG1. *Nature* 362: 172-181.
- 5. Jacq, X., Brou, C., Lutz, Y., Davidson, I., Chambon, P. and L. Tora (1994) Human TAFII30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor. *Cell* 79: 107-117.
- 6. Scheer, E., Mattei, M.G., Jacq, X., Chambon, P. and L. Tora (1995) Organization and chromosomal localization of the gene (TAF2H) encoding the human TBP-associated factor II 30 (TAFII30). *Genomics* 29: 269-272.
- 7. Ali, I., Lidereau, R., Theilley, C. and R. Callahan (1987) Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. *Science* 238:185-8.
- 8. Winqvist, R., Mannermaa, A., Alavaikko, M., Blanco, G., Taskinen, P.J., Kiviniemi, H., Newsham, I. and W. Cavenee (1993) Refinement of regional loss of heterozygosity for chromosome 11p15.5 in human breast tumors. *Cancer Research* 53: 4486-4488.
- 9. Carter, S.L., Negrini, M., Baffa, R., et al. (1994) Loss of heterozygosity at 11q22-q23 in breast cancer. *Cancer Research* 54:6270-4.
- 10. Mitra, A.B., Murty, V.V.V.S., Li, R.G., et al. (1994) Allelotype analysis of cervical carcinoma. *Cancer Research* 54:4481.

10

15

20

- 11. Fujimori, M., Tokino, T., Hino, O., et al. (1991) Allelotype study of primary heptocellular carcinoma. *Cancer Research* 51: 89-93.
- 12. Wang, H.P. and C.E. Rogler (1988) Deletions in human chromosome arms 11p and 13q in primary hepatocellular carcinomas. *Cytogenetics and Cell Genetics* 48:72-78.
- 13. Bepler, G. and Garcia-Blanco, M.A. (1994) Three Tumor Suppressor Regions on Chromosome 11p Identified by High Resolution Deletion Mapping in Human Non-Small Cell Lung Cancer. *Proc. Natl. Acad. Sci. U.S.A.* 91:5513-7.
- 14. Iizuka, M., Sugiyama, Y., Shiraishi, M., Jones, C. and T. Sekiya (1995) Allelic losses in human chromosome 11 in lung cancers. *Genes, Chromosomes & Cancer* 13:40-46.
- 15. Weston, A., Willey, J.C., Modali, R., et al. (1989) Differential DNA sequence deletions from chromosomes 3, 11, 13 and 17 in squamous cell carcinoma, large-cell carcinoma and adenocarcinoma of the human lung. *Proc. Natl. Acad. Sci. U.S.A.* 86:5099-5103.
- 16. Kiechle-Schwartz, M., Bauknecht, T., Wienker, T., et al. (1993) Loss of Constitutional Heterozygosity on Chromosome 11p in Human Ovarian Cancer. Cancer 72:2423-32.
- 17. Viel, A., Giannini, F., Tumiotti, L., Sopracordevole, F., Visentin, M.C. and M. Boiocchi (1992) Chromosomal localization of two putative 11p oncosuppressor genes involved in human ovarian tumors *British Journal of Cancer* 66: 1030-1036.
- 18. Baffa, R., Negrini, M., Mandes, B., et al. (1996) Loss of heterozygosity for chromosome 11 in adenocarcinoma of the stomach. *Cancer Research* 56: 268-72.
- 19. Lothe, R.A., Hastie, N., Heimdal, K., et al. (1993) Frequent loss of 1p13 and 11p15 loci in male germ cell tumors. Genes, Chromosomes & Cancer 7: 96-101.
- 20. Smith, R.C., and Rukstalis, D.B. (1995) Frequent Loss of Heterozygosity at 11p Loci in Testicular Cancer. *The Journal of Urology* 153: 1684-7.
- 21. Shaw, M.E. and Knowles, M.A. (1995) Deletion Mapping of Chromosome 11 in Carcinoma of the Bladder. *Genes, Chromosomes & Cancer* 13: 1-8.

WO 98/41648 PCT/US98/05419

272 232/116

22. Shibagaki, I., Shimada, Y., Wagata, T., Ikenaga, M., Imamura, M. and K. Ishizaki (1994) Allelotype analysis of esophageal squamous cell carcinoma. *Cancer Research* 54: 2996-3000.

23. Ahuja, H.G., Foti, A., Zhou, D.J. and M.J. Cline (1990) Analysis of proto-oncogenes in acute myeloid leukemia: loss of heterozygosity for the Ha-ras gene. *Blood* 75: 819-822.

Example 27 - cDNA synthesis

10

15

20

25

5

In order to analyze an essential gene for sequence variances, it is generally useful to have a cDNA(s) containing the coding sequence for further sequencing or amplification purposes. cDNAs for some genes are available, however, in some cases it is useful to synthesize the cDNA de novo. Methods for obtaining cDNA are known to those skilled in the art, as are methods for sequencing or amplifying the cDNA or portions thereof. An example of a useful cDNA production protocol is provided below, however, as recognized by those skilled in the art, other specific protocols can also be used.

cDNA Production

- ** Make sure that all tubes and pipette tips are RNase-free. (Bake them overnight at 100oC in the vacuum oven to make them RNase-free.)
- 1 Add the following to a RNase-free 0.2 ml micro-amp tube and mix gently:
 - 24 ul water (DEPC treated)
 - 12 ul RNA (lug/ul)
 - 12 ul random hexamers(50 ng/ul)
- 2 Heat the mixture to 70oC for ten minutes.
- 3 Incubate on ice for 1 minute.

232/116

4 Add the following:

16 ul 5 X Synthesis Buffer

8 ul 0.1 M DTT

4 ul 10 mM dNTP mix (10 mM each dNTP)

4 ul SuperScript RT II enzyme

Pipette gently to mix.

- 5 Incubate at 42oC for 50 minutes.
- 6 Heat to 70oC for ten minutes to kill the enzyme, then place it on ice.
- Add 160 ul of water to the reaction so that the final volume is 240 ul.
- 8 Use PCR to check the quality of the cDNA. Use primer pairs that will give a

~800 base pair long piece. See "PCR Optimization" for the PCR protocol.

The following chart shows the reagent amounts for a 20 ul reaction, a 80 ul reaction, and a batch of 39 (which makes enough mix for 36) reactions:

	20 ul X 1 tube	80 ul X 1 tube	80ul X 39 tubes	
water	6 ul	24 ul	936	water
RNA	3 ul	12 ul		RNA
random hexamers	3 ul	12 ul	468	random hexamers
synthesis buffer	4 ul	16 ul	624	synthesis buffer
0.1 M DTT	2 ul	8 ul	312	0.1 M DTT
10mM dNTP	1 ul	4 ul	156	10mM dNTP
SSRT	1 ul	4 ul	156	SSRT

30

5

10

15

20

Example 28 - Variance detection by SSCP

274 232/116

PCT/US98/05419

This example describes the SSCP technique as used for the identification of sequence variances of the exemplary genes, which were then sequenced to confirm the specific base variances. One common technique currently employed in the identification of such single nucleotide differences is the single strand conformation polymorphism (SSCP) method. (originally described in Orita, et al., "Rapid and Sensitive Detection of Point Mutations and DNA Polymorphisms Using the Polymerase Chain Reaction, Genomics, 5:874-879 (1989)) Also employed are restriction fragment length polymorphism (RFLP), heteroduplex analysis, ligase chain reaction (LCR), denaturing gradient gel electrophoresis (DGGE) (Myers, Maniatis, and Lerman, Methods Enzymol., 155:501-527 (1987)) or direct nucleotide sequencing. A review of polymorphism detection techniques, including SSCP, is provided in Grompe, 1993, Nature Genetics 5:111-117, which includes a comparison of the commonly used methods.

The SSCP method reveals the presence of sequence variation between individuals as shifts in electrophoretic mobility, but does not show the sequence itself. Direct sequencing of DNAs with altered mobility in the SSCP assay identifies the precise nucleic acid sequence differences among the various alleles. From the nucleic acid sequence data, the amino acid sequence can be determined. One example of the use of this technique is in Pelletier et al., Cell, 67:437-447 (1991). The single strand conformation polymorphism methodology is effective for scanning essential genes for sequence variants. It remains the standard technique in human genetics for variance detection, with numerous studies of its efficacy (>90%) and schemes for improved throughput. The SSCP method has been shown to be quite sensitive in the detection of single base changes, for example as shown in Ravnik-Glava et al., 1994, Human Mol. Genet. 3:801-807 (human cystic fibrosis gene) and Glava & Dean, 1993, Human Mutation 2:404-414 (mouse -globin gene).

A flow chart of the SSCP method as used to identify essential gene sequence variants is shown in Fig. 2 (SSCP OVERVIEW). The method involves the steps of 1) PCR

WO 98/41648

5

10

15

20

10

15

20

25

amplifying a portion of an essential gene cDNA of known sequence (labeled products), 2) selecting restriction enzymes which will produce fragments approximately 100-400 bases in length for 3 independent digestions of the PCR products, 3) heat denaturing the digestion products, 4) running single strand digestion products on non-denaturing gels, 5) identifying bands having different mobilities when compared between individuals, thereby identifying potential sequence variants, 6) sequence at least the region around the potential sequence variance, that region being identified by comparison of the expected fragment sizes resulting from the digestions, 7) record the specific location and base identity of the confirmed sequence variant, 8) calculate the percent occurrence of each sequence variance for the gene as found for the sample of the population. The method is further described in Example 2.

Single strand conformation polymorphism screening is a widely used technique for identifying an discriminating DNA fragments which differ from each other by as little as a single nucleotide. As originally developed by Orita (supra), the technique was used on genomic DNA, however the same group showed that the technique works very well on PCR amplified DNA as well. In the last 8 years the technique has been used in hundreds of published papers, and the modifications of the technique have been described in dozens of papers. The enduring popularity of the technique is due to (1) a high degree of sensitivity to single base differences (>90%) (2) a high degree of selectivity, measured as a low frequency of false positives, and (3) technical ease. SSCP is almost always used together with DNA sequencing because SSCP does not directly provide the sequence basis of differential fragment mobility. The basic steps of the SSCP procedure are described below and summarized in Fig. 2 in flow chart form.

Because the intent of our SSCP screening was to identify as many target gene variances as practically possible, we developed a protocol designed to look at a relatively large number of individuals (36) with a high degree of redundancy, so as to minimize both the false negative and false positive rates.

276 232/116

PCT/US98/05419

The 36 individuals examined are reasonably representative of most of the worlds major populations. The racial or geographic origin of the 36 cell lines is detailed in the Target Summary Tables (Figure 5). All cell lines are EBV immortalized lyphoblastoid cells obtained from the Coriell Cell Repository (Camden, NJ), which includes the racial/ethnic/geographic background of cell line donors in its catalog. The cell lines were also selected for their rapid growth rates. In several cases a panel of cDNAs isolated from French Canadians was used instead, or in addition to, the Coriell panel.

10

5

WO 98/41648

15

20

25

SSCP was used to analyze cDNAs (rather than genomic DNAs) because in many cases the full genomic sequence of the target gene is not available, however, the technique is also applicable to genomic sequences. To produce cDNA requires RNA. Therefore each of the 36 cell lines was grown to mass culture and RNA was isolated using the acid/phenol protocol, sold in kit form as TRIAZOLTM by Life Technologies (Gaithersberg, MD). The unfractionated RNA was used to produce cDNA by the action of a modified Maloney Murine Leukemia Virus Reverse Transcriptase, purchased in kit form from Life Technologies (SUPERSCRIPT IITM kit). The reverse transcriptase was primed with random hexamer primers to initiate cDNA synthesis along the whole length of the RNAs. This proved useful later in obtaining good PCR products from the 5' ends of some genes.

Material for SSCP analysis was prepared by PCR amplification of the cDNA in the presence of one ³²P labeled dNTP (usually ³²P dCTP). Usually the concentration of nonradioactive dCTP was dropped from 200 uM (the standard concentration for all four dNTPs) to about 100 uM, and ³²P dCTP was added to a concentration of about 0.1-0.3 uM. This involved adding a 0.3-1 ul (3-10 uCi) of ³²P cCTP to a 10 ul PCR reaction. All radioactivity was purchased from DuPont/New England Nuclear.

The customary practice is to amplify about 200 base pair PCR products for SSCP, however, we found that it was preferable to amplify about 0.8-1.4 kb fragments and

then use several cocktails of restriction endonucleases to digest those into smaller fragments of about 0.1-0.4kb, aiming to have as many fragments as possible between .15 and .3 kb. The digestion strategy had the advantage that less PCR was required, reducing both time and costs. Also, we routinely performed three different digests on each sample (for all 36 cDNAs), and then ran each of the digests separately on SSCP gels. This had the effect of increasing the redundancy of our method, lessening both the false negative and false positive rates. For example: a site of variance might lie within 2 bases of the end of a fragment in one digest, and as a result not affect the conformation of that strand; the same variance, in a second or third digest, would likely lie in a location more prone to affect strand folding, and therefore be detected by SSCP.

After digestion, the radiolabeled PCR products were diluted 1:5 by adding formamide load buffer (80% formamide, 1X SSCP gel buffer) and then denatured by heating to 90%C for 10 minutes, and then allowed to renature by quickly chilling on ice. This procedure (both the dilution and the quick chilling) promotes intra- (rather than inter-) strand association and secondary structure formation. The secondary structure of the single strands influences their mobility on nondenaturing gels, presumably by influencing the number of collisions between the molecule and the gel matrix (i.e., gel sieving). Even single base differences consistently produce changes in intrastrand folding sufficient to register as mobility differences on SSCP.

The single strands were then resolved on two gels, one a 5.5% acrylamide, 0.5X TBE gel, the other an 8% acrylamide, 10% glycerol, 1X TTE gel. The use of two gels provides a greater opportunity to recognize mobility differences. Both glycerol and acrylamide concentration have been shown to influence SSCP performance. The gel apparatus we use (from Owl Scientific, MA) allows 108 samples to be loaded per gel. Since all 36 samples are routinely digested with three different endonuclease mixes there are 108 samples to be analyzed for each PCR product. By routinely analyzing three different digests under two gel conditions (effectively 6 conditions), and by

25

5

10

15

WO 98/41648 PCT/US98/05419

278

232/116

looking at both strands under all 6 conditions, we achieve a 12-fold sampling of each base pair of cDNA.

5

All of the sequence variances described in this disclosure were determined by DNA cycle sequencing of ³²P labeled PCR products using the femtomole DNA cycle sequencing kit from Promega (WI) and the instructions provided with the kit. Fragments were selected for DNA sequencing based on their behavior in the SSCP assay.

10

Example 29 - Variance detection by using T4 endonuclease VII mismatch cleavage method

15

The enzyme T4 endonuclease VII is derived from the bacteriophage T4. T4 endonuclease VII is used by the bacteriophage to cleave branched DNA intermediates which form during replication so the DNA can be processed and packaged. T4 endonuclease can also recognize and cleave heteroduplex DNA containing single base mismatches as well as deletions and insertions. This activity of the T4 endonuclease VII enzyme can be exploited to detect sequence variances present in the general population.

20

The following are the major steps involved in identifying sequence variations in a candidate gene by T4 endonuclease VII mismatch cleavage:

- 1. Amplification by the polymerase chain reaction (PCR) of 400-600 bp regions of the candidate gene from a panel of DNA samples. The DNA samples can either be cDNA or genomic DNA and will represent some cross section of the world population.
- 2. Mixing of a fluorescently labeled probe DNA with the sample DNA. Heating

232/116

and cooling the mixtures causing heteroduplex formation between the probe DNA and the sample DNA.

- Addition of T4 endonuclease VII to the heteroduplex DNA samples. T4
 endonuclease will recognize and cleave at sequence variance mismatches
 formed in the heteroduplex DNA.
- 4. Electrophoresis of the cleaved fragments on an ABI sequencer to determine the site of cleavage.
- 5. Sequencing of a subset of PCR fragments identified by T4 endonuclease VI to contain variances to establish the specific base variation at that location.

A more detailed description of the procedure is as follows:

A candidate gene sequence is downloaded from an appropriate database. Primers for PCR amplification are designed which will result in the target sequence being divided into amplification products of between 400 and 600 bp. There will be a minimum of a 50 bp of overlap not including the primer sequences between the 5' and 3' ends of adjacent fragments to ensure the detection of variances which are located close to one of the primers.

Optimal PCR conditions for each of the primer pairs is determined experimentally. Parameters including but not limited to annealing temperature, pH, MgCl₂ concentration, and KCl concentration will be varied until conditions for optimal PCR amplification are established. The PCR conditions derived for each primer pair is then used to amplify a panel of DNA samples (cDNA or genomic DNA) which is chosen to best represent the various ethnic backgrounds of the world population or some designated subset of that population.

One of the DNA samples is chosen to be used as a probe. The same PCR conditions used to amplify the panel are used to amplify the probe DNA. However, a

10

5

15

20

10

15

20

25

280

232/116

flourescently labeled nucleotide is included in the deoxy-nucleotide mix so that a percentage of the incorporated nucleotides will be fluorescently labeled.

The labeled probe is mixed with the corresponding PCR products from each of the DNA samples and then heated and cooled rapidly. This allows the formation of heteroduplexes between the probe and the PCR fragments from each of the DNA samples. T4 endonuclease VII is added directly to these reactions and allowed to incubate for 30 min. at 37 C. 10 ul of the Formamide loading buffer is added directly to each of the samples and then denatured by heating and cooling. A portion of each of these samples is electrophoresed on an ABI 377 sequencer. If there is a sequence variance between the probe DNA and the sample DNA a mismatch will be present in the heteroduplex fragment formed. The enzyme T4 endonuclease VII will recognize the mismatch and cleave at the site of the mismatch. This will result in the appearance of two peaks corresponding to the two cleavage products when run on the ABI 377 sequencer.

Fragments identified as containing sequencing variances are subsequently sequenced using conventional methods to establish the exact location and sequence variance.

Example 30 - Identification of Sequence Variances by Informatics-based analysis of gene-sequence databases

In addition to and/or in conjunction with the molecular biology based approaches for identifying sequence variances in genes, particularly in essential genes, such sequence variances can be identified by analysis of public and/or private genetic sequence databases. Such information can be either genomic or cDNA sequence information.

The data base analysis process includes the following major steps:

232/116

281

1.

 capture of homologous sequences of a particular gene from data bases. It is preferable to obtain a large number of independent sequences of a particular gene

5

analysis of collected sequences of a particular gene to identify authentic sequence variances. This step involves the discrimination of authentic sequence variances, which are sequence variances which actually exist in the population, from sequencing errors and artifacts. It is expected that about 0.1-0.3% of the bases will occur as true variances, while the frequency of sequencing artifacts is expected to be 1-3%. This discrimination utilizes the expected frequencies of occurrence of specific types of nucleotide sequence changes. Such information includes the characteristic frequency of specific transitions and transversions and of the characteristic frequency of deletions and insertions in authentic variations. It uses the frequency of occurrence of known types of sequencing artifacts such as single base insertions or deletions adjacent to repeated C or G nucleotides. Additional information for such discrimination is provided if particular putative authentic variations are observed in multiple independently derived sequences of the gene.

15

10

An implementation of this sequence variance identification process utilizes a reference sequence of an essential gene. Preferably, the reference sequence is a high quality sequence, meaning that there is a low frequency of occurrence of sequencing errors or artifacts. The second step is the retrieval of allelic sequences of that essential gene from available databases such as the BLAST server, the UNIGENE database, or other such sequence database. Such allelic sequences need not be complete, but are preferably long enough to ensure that they are in fact allelic sequences. The third step involves alignment analysis to identify and tabulate sequence differences between the

different available sequences. An algorithm for such analysis is the Smith-Waterman

local alignment algorithm. Use of an algorithm of this type involves a series of pair-

25

WO 98/41648 PCT/US98/05419

282 232/116

wise alignments of each retrieved sequence with the reference sequence. The fourth step involves analysis of the observed sequence differences and assignment of a probability that each sequence difference represents an authentic variance. This analysis utilizes program filters which are combined in a weighted fashion to determine a final probability. Such program filters include comparison of the observed difference with common mutational changes and sequencing errors, a weighting of the reliability of a particular retrieved sequence based on the total number of differences observed, a weighting based on the location within a retrieved sequence where a change was observed and a significant weighting based on the observance of a particular difference in multiple independently derived retrieved sequences.

Using such an implementation, a database analysis with respect to a particular reference sequence produces a list of putative authentic sequence variances and a probability for each of those variances that the sequence difference is an authentic variance. As described above, the probability is obtained through the use of a series of weighted program filters and thus these filters are modified to produce optimal authentic variance discrimination.

Example 31 - Antiproliferative effects of variance specific inhibition of RPA70

This example describes experiments showing the practicality and utility of variance-specific inhibition of essential genes for cancer therapy. Specifically, this example describes in *vitro* experiments showing the design and production of variance-specific oligonucleotides for antisense inhibition of variant alleles of the essential Replication Protein A, 70 kDa subunit (RPA70) for inhibition of RPA70 mRNA, and the use of these oligonucleotides to inhibit cell proliferation and to reduce the number of cells in a variance-specific manner.

Variance-specific inhibition and cell killing with antisense oligonucleotides against

5

10

15

20

283 232/116

RPA70

5

10

15

20

25

These experiments with RPA70 illustrate the feasibility of each of the steps for development of a variance specific inhibitor:

Select candidate target gene essential for cell survival or proliferation. As described above, RPA is essential for replication in prokaryotic and eukaryotic cells, mitochondria, phage, viruses and in *in vitro* (SV40) replication systems. The protein is a heterotrimer required for loading DNA polymerase onto the DNA template during cell replication. The 70 kDa subunit, RPA70, is a single strand binding protein that mediates the interaction of RPA with DNA. Without this protein, the replication complex does not associate with DNA and the replication of DNA does not occur.

Confirm chromosome location and LOH frequency. RPA70 is encoded by a single gene locus on chromosome 17pl3.3, immediately adjacent to the p53 gene at 17p13.1. LOH involving chromosome band 17pl3.3 has been documented in 50-70% of colon, lung, breast, and ovarian cancers. LOH at this locus also occurs in other cancers. The inventor as confirmed LOH involving RPA 70 in breast, colon, lung and other cancers.

Identify common variances in the normal population. We have identified five common variances in the RPA70 gene (Figure 8). The most common occurs in 42% of the normal population. One variance alters the amino acid sequence and is present in 25% of the normal population (44% of Caucasians). This variance occurs within the active DNA binding domain (discussed below). These variances are described in the description above and in Fig. 1.

Demonstrate antiproliferative effects due to inhibition of candidate gene. The inventor has shown that inhibition of RPA70 in T24 bladder carcinoma cells with an antisense oligonucleotide reduces cell number. This effect is comparable to treatment of these cells with antisense oligonucleotide against *ras*, previously shown to have antitumor

WO 98/41648 PCT/US98/05419

284 232/116

effects in vitro and in vivo (Figure 9).

Design variance-specific inhibitor. Variance specific antisense oligonucleotides were designed to differentially inhibit the two variant forms of RPA70. Experiments were performed using tumor cell lines that are homozygous for each form of the target gene. Figure 10 shows inhibition of mRNA levels in Mia Paca II cells by the 13085 oligonucleotide which matches the variance in these cells. In contrast, in T24 cells (and A549 cells, see below) the 12781 oligonucleotide matches the target gene and inhibits mRNA levels. In both cell lines neither the control oligonucleotide differing by one base (13085 in T24 cells and 12781 in Mia Paca II cells) nor a random-sequence oligonucleotide control (13706) inhibit mRNA levels to the same extent as the matched oligonucleotide.

Figure 10 demonstrates that the RPA 70 mRNA can be specifically down regulated in an allele-specific manner. However, the 13085 oligomer used also has a small effect on the level of the unmatched RNA. In order to increase the discrimination we altered the structure of the targeting oligomer, 13085. The results are shown in Figure 11. By shortening the oligomer we retain its ability to down-regulate its matched target RNA (Mia Paca II cells, right half of Figure 11). Strikingly, however, this alteration dramatically altered the ability of this oligomer to down-regulate the mismatched variant RNA T24 cells, left half of Figure 11. The reciprocal regulation by oligomer 12781 was augmented by altering transfection conditions. These data suggest that even simple changes to the rudimentary "first generation" chemistry and transfection techniques can have significant effects in enhancing the ability of the oligomers to recognize and down regulate specific mRNAs.

Achieve variance-specific antiproliferative effects in cancer cells. Cell proliferation in each cell line, determined by BrdU incorporation, was suppressed to a greater degree by the matched oligonucleotide than by the controls differing by one base (Figure 12).

5

10

15

20

232/116

Cell proliferation in A549 cells was inhibited by oligomer 12781 to a greater degree than by oligomer 13085. Cell proliferation in Mia Paca 11 cells was inhibited more by oligomer 13085.

5

Additional studies were performed to characterize the antiproliferative effect in A549 cells (12781 genotype). A dose response curve demonstrates inhibition of BrdU incorporation by the matched oligonucleotide (12781) at concentrations 8-fold lower than the oligonucleotide with one base mismatch (13085) (Figure 13).

10

Cell survival was measured by staining cells with Sulforhodamine B dye 72 hours after treatment with oligonucleotides. Dose dependent reductions in cell number were observed in cells treated with the matched oligonucleotide (12781) but not with an oligonucleotide containing the one base mismatch (13085) (Figure 14). In contrast, in Mia Paca II cells, more cell killing was observed with the 13085 oligonucleotide than with the 12781 oligonucleotide (Figure 15). The oligonucleotides used in these studies have not been optimized for achieving allele-specific effects. Oligonucleotides using advanced chemistries can be utilized to optimize the potency and provide greater discrimination between variant targets at lower levels.

20

15

Example 32 - variance specific inhibition of essential genes

25

This example describes experiments showing the practicality and utility of variance-specific inhibition of essential genes for cancer therapy including RNA Pol II, and ribonucleotide reductase. Specifically, this example describes in vitro experiments showing the design and production of variance-specific oligonucleotides for antisense inhibition of variant alleles of the essential Ribonuclotide Reductase (RR), the design and production of variance-specific oligonucleotides against RR, and the use of these oligonucleotides to inhibit RR mRNA in a variance-specific manner.

WO 98/41648 PCT/US98/05419

286

232/116

Variance-specific inhibition of Ribonucleotide Reductase.

Ribonucleotide Reductase (RR) is an essential gene of nucleoside metabolism. Inhibitors of this function are known to be cell lethal. Two variances were discovered at position 2410 and 2419. Oligonucleotides were synthesized to a sequence spanning these two variations. In one case the oligomer targeted the GnnnnnnnnA variation (oligomer Varia 2410GA or RR2410GA) and in the other case the oligomer targeted the AnnnnnnnG variant (oligomer Varia 2410AG or RR2410AG). In Mia Paca II cells which contain the GnnnnnnnA variance, the RR2410GA antisense oligomer dramatically knocked down the level of RR mRNA. However, the oligomer targeting the other variance, oligomer Varia 2410AG, had little to no effect on the level of mRNA (Figure 16). The reciprocal regulation was demonstrated in MDA-MB 468 cells which express the other variance, AnnnnnnnnG (Figure 17). In these cells Varia 2410AG dramatically lowered the level of RR mRNA. In contrast, Varia 2410GA had no effect on the level of mRNA. These data taken together, are another example of allele-specific targeting of gene expression. We are also determining the effect of down regulating RR gene expression on cellular growth.

Example 33 - variance specific inhibition of essential genes using advanced oligonucleotide chemistries.

This example describes experiments showing the practicality and utility of variance-specific inhibition of essential genes for cancer therapy. Specifically, this example describes in vitro experiments showing the design and production of variance-specific oligonucleotides for antisense inhibition of variant alleles of the essential Glutamyl/prolyl tRNA Synthetase (EPRS), the design and production of variance-specific oligonucleotides against EPRS, and the use of these oligonucleotides to inhibit EPRS mRNA in a variance-specific manner.

5

10

15

20

Glutamyl-prolyl-tRNA synthetase (EPRS) is an essential gene, required for the synthesis of both glutamic acid tRNA and proline tRNA. Without EPRS protein synthesis is blocked. Two variances were discovered in this gene at positions 2963 and 2969 in the cDNA. We have demonstrated variance-specific inhibition of this gene with antisense oligonucleotides exploiting several different types of chemistry.

The experiments described above with RPA70 and RR utilized phophorothioate chemistry. This chemistry was developed to achieve greater stability in vivo, and this compound ha been used in several successful clinical trials. Phosphorothioates, however have low affinity for the RNA target, and, consequently, relatively lower specificity. We have achieved improved variance-specific inhibition using alternative chemistries. Specifically, we have synthesized hybrid oligonucleotides that contain both phosphorothioate and nucleotides with higher affinities. These hybrids contain "wings" consisting of six nucleotides with a 2' sugar modification (ethoxy-methoxy radical at the 2' position) and either a phosphorothioate or phosphodiester backbone. Between the "wings" is a 8 nucleotide sequence of phosphorothioates that overlaps the variance. (In these constructs the 5' position of cytosine has been methylated.) As shown in Figure 18, variance specific inhibition is observed with the conventional phorphorothioates. Greater inhibition of target mRNA is observed using the hybrid chemistries at lower doses. Inhibition by the matched hybrid oligomer, 14977, occurs at approximately 50-100 nM. The effect is extremely oligomer-specific. The mismatched oligomer, 14971, has no effect on mRNA levels at concentrations as high as 400 nM (Figure 19).

25

20

5

10

15

Example 34 - in vivo cancer therapy using oligonucleotides

This example describes reported in vitro and in vivo data on the treatment of cancer in animal models using antisense oligonucleotides against c-raf, showing the expected

288

232/116

correlation between *in vitro* suppression of mRNA and cell proliferation with oligonucleotides, and *in vivo* anticancer activity.

In vitro evidence for inhibition of mRNA by antisense oligonucleotides and inhibition of cell proliferation is commonly used to predict *in vivo* effects on tumors. This is exemplified by the publication by Monia et al (Nature Medicine, Volume 2 Number 6, June 1996) who demonstrated anticancer effects using oligonucleotides against C-raf kinase. In vitro treatment of human tumor cells with appropriate phosphorothioate antisense oligomers led to specific inhibition of C-raf kinase gene expression and subsequent decrease in cellular proliferation, IC50=50-100nM. Administration of C-raf antisense oligomers to nude mice having a tumor burden derived from these cells significantly inhibited tumor growth *in vivo*, IC50= 0.06-0.6 mg/kg. Remarkably, the investigators were able to show that the anti-C-raf oligomers down-regulated the level of C-raf kinase mRNA *in vivo* by assaying mRNA levels in cells removed from the tumor.

Example 35 - in vivo cancer therapy by oligonucleotide inhibition of ras

This example describes reported in vivo data showing an anticancer effect using an allele-specific inhibitor for suppression of mutant H-ras. Schwab et al (Proc. Nat. Acad. Sci. USA 91:10460-464, Oct 1994) demonstrated antitumor effects of an antisense oligonucleotide specific for the mutant ras in animal models. In these experiments HBLl00 cells were transformed with the RAS oncogene. In vitro studies demonstrated that the RAS mRNA could be specifically down-regulated by a nanoparticle conjugated phosphodiester antisense oligomer. Only the transforming RAS mRNA was targeted by the oligomer. The normal cellular RAS mRNA, differing by a single base, was not affected by the antisense oligomer. The decrease in RAS expression was associated with a decrease in the growth rate of the cells. The

5

10

15

20

10

15

20

25

232/116

transformed HBL100 cells were injected into nude mice to form tumors; following subcutaneous injection of nanoparticle-conjugated phosphodiester antisense oligomers, Schwab et al measured both a decrease in targeted tumor weight and volume. Specificity for tumor cell growth correlated well with the *in vitro* data having a 5-fold differential between antisense and control groups.

The authors of this paper are proceeding with clinical trial of these oligonucleotides for the treatment of cancer, demonstrating the potential clinical utility of these methods.

Example 36. Variance detection by DGGE

This example describes denaturing gradient gel electrophoresis (DGGE), a technique used for the identification of DNA sequence variances in genomic DNA, cDNA or in PCR products amplified from genomic DNA or cDNA. The DGGE method was originally described by Fischer and Lerman (Two Dimensional Electrophoretic Separation of Restriction Enzyme Fragments of DNA. Methods in Enzymology, vol. 68: 183-191, 1979; DNA Fragments Differing by Single Base-Pair Substitutions are Separated in Denaturing Gradient Gels: Correspondence with Melting Theory. Proc. Natl. Acad. Sci. U.S.A. 80:1579, 1983) and has been improved since then by many investigators. See, for example: Myers, et al., Mutation Detection by PCR, GC-Clamps, and Denaturing Gradient Gel Electrophoresis, pp. 71-88 in Erlich, H.A., editor: PCR Technology: Principles and Applications for DNA Amplification, Stockton Press, New York, 1989; Myers, et al., Detecting Changes in DNA: Ribonuclease Cleavage and Denaturing Gradient Gel Electrophoresis, in Davies, K.E., editor: Genomic Analysis: A Practical Approach, IRL Press Ltd., Oxford, 1988, pp. 95-139; E.S. Abrams and V.P. Stanton Jr., Use of Denaturing Gradient Gel Electrophoresis, pp. 71-104 in Lilley, D.M.J. and Dahlberg, J.E., editors: DNA Structures, Part B: Chemical and Electrophoretic Analysis of DNA, Methods in

290 232/116

Enzymology, volume 212, Academic Press, 1992; .) Descriptions of current applications of the technique can be found in

The basic principal of DGGE involves the creation of a gradient of denaturant in a gel, which is then used to resolve double stranded DNA (or RNA) fragments on the basis of conformational differences associated with strand melting. The denaturant can be chemical (as in DGGE, where a gradient of formamide and urea is typically used) or thermal (as in a related technique called thermal gradient gel electrophoresis, or TGGE, where a gradient of heat is used). To obtain conditions where double stranded DNA is close to melting, DGGE gels are immersed in a heated bath of electrophoresis buffer, while TGGE gels have a fixed concentration of chemical denaturant.

As a double stranded DNA molecule migrates through a DGGE gel from a low concetration of denaturant at the origin to higher concentrations of denaturant toward the end of the gel it eventually reaches a level of denaturant that will cause partial melting. (Some design of DNA molecules is often necessary to assure that the partial melting will occur as desired; see below.) The concentration of denaturant required to melt a given DNA segment is highly sensitive to sequence differences in the DNA, including changes as subtle as a single nucleotide substitution. Partially melted DNA fragments move through gels at a much slower rates than their fully duplex counterparts. Thus two DNA fragments differing at a single nucleotide can be distinguished on the basis of their gel position after an appropriate period of electrophoresis: the fragment with the more stable structure (resulting from, for example, a G:C base pair in place of an A:T pair) will travel further in the gel than its less stable counterpart, because it will encounter the concentration of gradient required to melt it (and consequently dramatically retard or nearly stop its movement) at a point further along in the gel.

The DGGE method reveals the presence of sequence variation between individuals as

5

10

15

20

291 232/116

shifts in electrophoretic mobility, but does not show the sequence itself. Direct sequencing of DNA fragments (from different individuals) with altered mobility in the DGGE assay will reveal the precise sequence differences among them (see example 37, Variance Detection by DNA Sequencing). From the nucleic acid sequence data, the amino acid sequence can be determined and any amino acid differences can be identified.

The DGGE method is suitable for analysis of restriction enzyme digested genomic DNAs, as initially described by Lerman and co-workers (supra) and later extended (Gray, M. Detection of DNA Sequence Polymorphisms in Human Genomic DNA by Denaturing Gradient Blots, American Journal of Human Genetics, 50: 331-346, 1992). DGGE is equally suitable for analysis of cloned DNA fragments or DNA fragments produced by PCR. The analysis of cloned fragments or PCR fragments has the advantage that non-natural sequences, rich in G and C nucleotides can easily be added to the 5' ends (either flanking the cloning site or at the 5' ends of PCR primers). Such DNA fragments have very stable double stranded segments, called GC clamps, at one or both ends. The GC clamps alter the melting properties of the fragments, and can be designed so as to insure melting of the inter-primer segment of the PCR product at a lower temperature than the clamps, thereby optimizing the detection of sequence differences (see Myers et alia, supra and Myers et alia, Nearly All Single Base Substitutions in DNA Fragments Joined to a GC Clamp Can be Detected by Denaturing Gradient Gel Electrophoresis. Nucleic Acids Research 13: 3131, 1985). GC clamps can be rationally designed for any specific DNA fragment of known sequence by use of a computer program (MELT87, written by L. Lerman) that accurately predicts melting behavior based on analysis of primary sequence. When GC clamps are used correctly, the DGGE method is highly efficient at detecting DNA sequence differences. Not only are nearly 100% of differences detected, but the false positive rate is essentially zero. (Abrams, E.S., et alia, Comprehensive Detection of Single Base Changes in Human Genomic DNA Using Denaturing Gradient Gel

5

10

15

20

232/116

Electrophoresis and a GC Clamp. Genomics 7: 463-475, 1990.) Recently methods for increasing the throughput of DGGE have been developed, based on multiplex PCR.

The steps in carrying out DGGE with GC clamps are:

5

10

15

20

- 1. Design DNA fragments with optimal melting behavior. Select oligonucleotide primers, using GC clamps as necessary, to produce a single melting domain over the length of the sequence to be analyzed. (It may be necessary to divide the sequence into overlapping fragments to achieve this goal.) Design of primers and simulated analysis of fragments can be performed with the computer program described by Lerman. (Lerman, L.S. and Silverstein, K. Computational Simulation of DNA Melting and its Application to Denaturing Gradient Gel Electrophoresis. Methods in Enzymology 155: 482-501, 1987.) The output of the program is the melting map of the fragment, from which it will also be possible to determine the optimal range of denaturant in the gradient and the approximate electrophoresis time for fragments to reach the point of melting in the gradient.
- 2. Amplify the fragment by PCR. Procedures for optimizing PCR are briefly described in other examples and are well known in the art. Template DNA samples can either be cDNA or genomic DNA and will typically be drawn from a panel of unrelated individuals.
- 3. Pour a denaturing gradient gel. Briefly, make up two gel solutions containing the desired beginning and end concentrations of denaturant. The gel solutions are generally made up by mixing "0%" and "100%" denaturant stock solutions, where the 0% stock consists of 7% acrylamide in Tris-acetate EDTA (TAE) electrophoresis buffer, and the 100% stock is also 7% acrylamide in TAE, plus 40% formamide by volume and 7 molar urea. Equal volumes of the two solutions (e.g. twelve milliliters of each solution) are poured into the two chambers of a gradient maker (usually between 20 and 40% denaturant in the upstream chamber and 60 to 80% in the lower

15

20

25

one) immediately after addition of ammonium persulfate and TEMED for acrylamide polymerization. Open the stopcock of the gradient maker and pour the gradient gel. Usually gels are .75 to 1 mm in thickness, and gel combs that form 10-30 wells are used. With commercially available apparatus multiple gradient gels can be poured simultaneously. Suitable apparatus is sold by several vendors, including the BioRad (Hercules, CA) Dcode system and the C.B.S. Scientific DGGE system.

4. Place the gel in a heated bath of electrophoresis buffer. Gels are electrophoresed at elevated temperature which, together with the denaturant, brings the DNA fragments to their melting point. Gels are often run at 60°C in 1X TAE buffer, with constant recirculation of buffer to the upper buffer chamber. Once the gel has been placed in the heated tank and allowed to equilibrate it can be loaded. Multiple gels can be run simultaneously in the same tank with the apparatus listed above.

- 5. Load and run gel. Usually enough PCR product from each sample is loaded on the gel so that samples can be detected by a simple DNA staining procedure; use of radioactivity, dyes or hybridization procedures can thereby be avoided. At least 100 mg of each sample should be loaded, but preferably over 200 ng. Gel running conditions can be estimated from the output of the MELT87 program, however empirical adjustment will often be necessary. Usually a voltage of ~80 to 200V is applied for periods of 5-20 hours, depending on the characteristics of the fragments being analyzed.
- 6. Stain and analyze gel. After electrophoresis gels are stained with ethidium bromide, SYBR Green, silver or some other procedure. The location of PCR products produced with the same primer pairs should be compared. Altered location, and usually the appearance of two or more bands instead of one, signify the presence of DNA sequence differences. (The reason for more than two bands from a diploid sample is that during the terminal cycle of heating and cooling of the PCR

294

232/116

step heteroduplexes are formed between the maternally and paternally inherited alleles. If those alleles differ in sequence, the heteroduplexes will have mispaired nucleotides at the sites of difference. As a result the heteroduplexes will be less stable than either of the homoduplex species, and will consequently melt and be retarded in the gel at a lower concentration of denaturant. Altogether one may see four bands in such samples: two reciprocol heteroduplexes and two homoduplexes.) The specific pattern of fragments in each lane constitutes a signature for a specific nucleotide change.

10

5

7. Sequence DNA fragments with altered mobility. Examples of all different signatures should next be analyzed by DNA sequencing to identify the base difference(s) accounting for altered mobility in the gradient gel. See example 37 for a description of this procedure and the subsequent steps of recording the sequence variances and analyzing their frequency and structural and functional consequences.

15

Example 37: Variance detection by sequencing.

20

Sequencing by the Sanger dideoxy method or the Maxim Gilbert chemical cleavage method is widely used to determine the nucleotide sequence of genes. Presently, a worldwide effort is being put forward to sequence the entire human genome. The Human Genome Project as it is called has already resulted in the identification and sequencing of many new human genes. Sequencing can not only be used to identify new genes, but can also be used to identify variations between individuals in the sequence of those genes.

25

The following are the major steps involved in identifying sequence variations in a candidate gene by sequencing:

.

- 1. Amplification by the polymerase chain reaction (PCR) of 400-700 bp regions of the candidate gene from a panel of DNA samples. The DNA samples can either be cDNA or genomic DNA and will represent some cross section of the world population.
- Sequencing of the resulting PCR fragments using the Sanger dideoxy method.
 Sequencing reactions are performed using flourescently labeled dideoxy terminators and electrophoresedon an ABI 377 sequencer or its equivalent.
- Analysis of the resulting data from the ABI 377 sequencer using software programs designed to identify sequence variations between the different samples analyzed.

A more detailed description of the procedure is as follows:

A candidate gene sequence is downloaded from an appropriate database. Primers for PCR amplification are designed which will result in the target sequence being divided into amplification products of between 400 and 700 bp. There will be a minimum of a 50 bp of overlap not including the primer sequences between the 5' and 3' ends of adjacent fragments to ensure the detection of variances which are located close to one of the primers.

Optimal PCR conditions for each of the primer pairs is determined experimentally. Parameters including but not limited to annealing temperature, pH, MgCl₂ concentration, and KCl concentration will be varied until conditions for optimal PCR amplification are established. The PCR conditions derived for each primer pair is then used to amplify a panel of DNA samples (cDNA or genomic DNA) which is chosen to best represent the various ethnic backgrounds of the world population or some designated subset of that population.

PCR reactions are purified using the QIAquick 8 PCR purification kit (Qiagen cat#

5

10

15

20

296 232/116

PCT/US98/05419

28142) to remove nucleotides, proteins and buffers. The PCR reactions are mixed with 5 volumes of Buffer PB and applied to the wells of the QIAquick strips. The liquid is pulled through the strips by applying a vacuum. The wells are then washed two times with 1 ml of buffer PE and allowed to dry for 5 minutes under vacuum. The PCR products are eluted from the strips using 60 ul of elution buffer.

The purified PCR fragments are sequenced in both directions using the Perkin Elmer ABI PrismTM Big DyeTM terminator Cycle Sequencing Ready Reaction Kit (Cat# 4303150). The following sequencing reaction is set up: 8.0 ul Terminator Ready Reaction Mix, 6.0 ul of purified PCR fragment, 20 picomoles of primer, deionized water to 20 ul. The reactions are run through the following cycles 25 times: 96°C for 10 second, annealing temperature for that particular PCR product for 5 seconds, 60°C for 4 minutes.

The above sequencing reactions are ethanol precipitated directly in the PCR plate, washed with 70% ethanol, and brought up in a volume of 6 ul of formamide dye. The reactions are heated to 90°C for 2 minutes and then quickly cooled to 4°C. 1 ul of each sequencing reaction is then loaded and run on an ABI 377 sequencer.

The output for the ABI sequencer appears as a series of peaks where each of the different nucleotides, A, C, G, and T appear as a different color. The nucleotide at each position in the sequence is determined by the most prominent peak at each location. Comparison of each of the sequencing outputs for each sample can be examined using software programs to determine the presence of a variance in the sequence. One example of heterozygote detection using sequencing with dye labeled terminators is described in Pui-Yan Kwok et. al. (Pui-Yan Kwok, Christopher Carlson, Thomas D. Yager, Wendy Ankener, and Deborah A. Nickerson, Genomics 23, 138-144 (1994)). The software compares each of the normalized peaks between all the samples base by base and looks for a 40% decrease in peak height and the concomitant

WO 98/41648

5

10

15

20

232/116

appearance of a new peak underneath. Possible variances flagged by the software are further analyzed visually to confirm their validity

5

Example 38. Loss of heterozygosity.

10

15

20

25

Loss of chromosomes or segments of chromosomes in disease cells results in loss of alleles in the disease cells compared to normal diploid cells. Such allele losses are a common occurrence in cancer, where they have been documented in over 1,500 publications in the past 14 years. More recent work has documented the occurrence of allele loss in other proliferative diseases. Several cytogenetic and molecular techniques have been developed to measure chromosome losses. The molecular techniques are preferable for identification of allele loss because they also show which allele is lost, and are therefore best suited to provide the information needed to implement the present invention.

In order to measure chromosome loss using molecular techniques it is necessary to be able to distinguish the paternally and maternally inherited copies of a given chromosome. DNA variances allow the two copies of a given chromosome to be distinguished because different alleles can be resolved electrophoretically. The standard method for analyzing allele loss in cancer is to compare tumor cell DNA with normal cell DNA, either in a Southern blot or using PCR based techniques. A patient's tumor DNA is said to be "informative" for allele loss only at loci where the patient's normal cells are heterozygous. When such heterozygous loci are examined in tumor cells often only one allele is detected. Such tumor cells have lost the heterozygous state which characterizes all normal somatic cells of the patient, hence the term loss of heterozygosity (LOH).

298 232/116

PCT/US98/05419

Several effective molecular procedures have been developed to measure LOH. These procedures have been applied most extensively to cancer tissues, however the same methods are effective in the study of nonmalignant diseases such as atherosclerotic plaques and endometriosis. The main steps are:

1. Identify DNA variances at or near the locus to be investigated for LOH.

LOH usually affects large segments of DNA, ranging from several megabases to an entire chromosome. As a result, accurate estimation of LOH at a specific locus can be obtained by measuring the frequency of LOH at neighboring polymorphic markers on the same chromosome, or more preferably on the same chromosome arm, or most preferably within several 10-20 megabases of the locus. However, to precisely measure LOH at a specific locus requires a variance at the locus. Different types of variances have been used to study LOH, including single nucleotide polymorphisms (SNPs), specifically SNPs that alter restriction endonuclease cleavage sites, called RFLPs. (For details of this approach see Vogelstein, B., et al., Allelotype of colorectal carcinomas. *Science* 244: 207-211, 1989). Also short tandem repeat polymorphisms (STRPs), including di-, tri- and tetranucleotide repeat polymorphisms have been used to measure LOH. (For details of this procedure see Jones and Nakamura, Deletion Mapping of Chromosome 3p in Female Genital Tract Malignancies Using Microsatellite Polymorphisms. Oncogene 7: 1631-1634, 1992.) Procedures for identifying variances are described in Examples 28, 29, 30 and 36.

2. Prepare DNA from paired normal and disease tissue samples from patients being studied.

Before preparing genomic DNA from tumor tissue it is important to assess tumor cell purity and viability, using microscopic examination of frozen sections if necessary. If embedded pathological specimens are being analyzed tumor cell purity can be

WO 98/41648

5

10

15

20

10

15

20

25

assessed by examining histologic sections before selecting areas for cell isolation and DNA purification. (See Johnson, et al., Direct Molecular Analysis of Archival Tumor Tissue for Loss of Heterozygosity, BioTechniques 19:190-191, 1995, and references therein for description of techniques for purifying tumor cell DNA from archival pathology samples.) Areas of necrosis and extensive admixture of normal and tumor tissue should be avoided. For Southern blotting ~5-10 ug of genomic DNA is required for each sample being analyzed. For PCR based methods as little as 5 to 10 ng of genomic DNA is sufficient; much less will suffice if two successive rounds of PCR amplification are used.

3. Determine genotype in the normal and disease tissues using a quantitative or semiquantitative procedure that allows the amount of each allele to be measured. Compare the ratio of alleles in the normal tissue to the ratio in the tumor tissue

In order to show LOH at a given locus it is necessary to establish that the patient is constitutionally heterozygous at the locus. Thus DNA from normal tissue must be tested, either before or in parallel with tumor tissue DNA. A variety of methods can be used for quantitation of signal from the two alleles. If the alleles are compared on a Southern blot then signal in the bands corresponding to the two alleles can be counted by radioactive or nonradioactive techniques (see Ausubel, et al., Current Protocols in Molecular Biology, John Wiley & Sons). One method employs phosphor technology using a Molecular Dynamics PhosphorImager with ImageQuant software to measure signals. If the alleles are compared after PCR amplification then DNA sequencing can provide accurate quantitation of allele ratios. See, for example, Goldsborough and Kornberg, Allele-Specific Quantification of Drosophila Engrailed and Invected Transcripts, Proc. Natl. Acad. Sci. U.S.A. 91:12696-12700, 1994.

Using highly variable markers distributed across the genome a comprehensive map of LOH can be assembled for a specific cancer type. Such data sets have been termed allelotypes. Separate studies are necessary for different cancer (or other disease) types

300 232/116

as the patterns of LOH differ significantly in different diseases.

Other techniques that have been used to detect allele loss in cancer include Comparative Genomic Hybridization (CGH) and Representation Difference Analysis (RDA) however these methods are more complex than the Southern blot or PCR based techniques. Chromosome loss can also be detected cytogenetically. Mitelman (Catalog of Chromosome Aberrations in Cancer. Wiley-Liss, New York, 1995.) has compiled a catalog of over 10,000 published karyotypes of cancer cells which documents chromosome deletions as well as other changes.

10

5

Example 39. Small molecule inhibitors of variant sequences:

Methylguanine Methyltransferase (MGMT)

Gene VARIA 1534

15

The methylguanine methyltransferase gene is essential for cell growth or survival in the presence of alkylating agents

20

25

Methylguanine methyltransferase (MGMT) is a nuclear protein that repairs alkylating agent damage, specifically alkylation of the O6 position of guanine bases in genomic DNA. MGMT acts as a suicide protein in removing methyl or alkyl groups from guanine and covalently binding them to cysteine 145 of MGMT. The protein is subsequently degraded; it does not act as an enzyme. O6-benzylguanine is an inhibitor of MGMT that mimics the natural substrate, alkylated DNA; transfer of the benzyl group to cysteine 145 of MGMT inactivates the protein. Concurrent administration of O6-benzylguanine and an alkylating agent such as carmustine (BCNU) or lomustine (CCNU) renders tumor cells more sensitive to the toxic effects of the nitrosoureas by inactivataing MGMT and thereby inhibiting the tumor cells ability to repair alkylated

232/116

DNA. MGMT is thus a conditionally essential gene in the presence of nitrosoureas and other alkylating agents. The conditional essentiality of MGMT has been demonstrated in mice. Animals homozygous for disrupted MGMT genes are more than ten times as sensitive to alkylating agents as normal mice. The relative sensitivity has been measured as the LD50, the dose required to kill 50% of treated animals. (Tsuzuki, T., et al. Targeted disruption of the DNA repair methyltransferase gene renders mice hypersensitive to alkylating agent. *Carcinogenesis* 17: 1215-1220, 1996.) O6-benzylguanine is being developed as a chemosensitizing agent (with alkylating agents) for treatment of human cancer. This treatment regimen is not specific for cancer cells.

10

15

5

In a cancer patient with two alternative functional MGMT alleles in normal tissues and LOH at 10q23 resulting in only one copy of MGMT in cancer cells, an allele specific inhibitor of MGMT could be used to specifically sensitize cancer cells to the action of alkylating agents. Treatment would consist of the administration of the appropriate allele specific inhibitor (directed to the one allele remaining in cancer cells) plus an alkylating agent. The tumor cells would be unable to effectively repair the alkylating agent induced DNA damage, while the uninhibited allele in normal cells would be able to function. Thus normal cells, including sensitive normal cell populations such as bone marrow stem cells, would be able to tolerate higher doses of alkylating agents than cancer cells.

20

The MGMT gene and encoded protein are polymorphic

25

Four variances in human MGMT have been discovered by the inventors or reported in the literature, including three variances that affect the protein sequence. There is a C/T variance at nucleotide 255 (11% heterozygotes among 36 individuals surveyed) which does not affect the encoded protein. There is a second C/T variance at nt. 346 which results in a L84F amino acid variance (5% heterozygotes among 36 individuals surveyed). There is an A/G variance at nt. 523 which results in a I143V amino acid

302 232/116

variance (24% heterozygotes among 36 individuals surveyed). This variance occurs only two residues from the active site cysteine at 145. A fourth variance, G/A has been reported in the Japanese population at codon 160, GGA vs. AGA, resulting in a glycine vs. arginine amino acid variance. Fifteen percent of 40 Japanese individuals studied were heterozygotes for this variance. (Imai, Y., et al. A polymorphism at codon 160 of human O6-methylguanine-DNA methyltransferase gene in young patients with adult type cancers and functional assay. *Carcinogenesis* [London] 16:2441-24445, 1995.)

Allele specific inhibitors of MGMT

10

15

20

5

Two of the amino acid variances in MGMT, at residues 143 and 160, are near the active site of the protein. Substantial work has already been done to characterize the functional consequences of the residue 160 glycine/arginine variance. Studies of MGMT kinetics and activity have shown that the 160arginine allele is at least 20 fold more resistant to O6 benzylguanine inactivation, measured as an increase in the ED50 and or as a reduction in the production of guanine from O6-benzyl[8-3H] guanine. The 160gly and 160arg forms of MGMT were nearly equal in alkyltransferase activity in an assay that measured repair of O6-methylguanine in methylated DNA. These results demonstrate variance-specific effects of a small molecule, O6-benzylguanine, on normal (non-mutant) alleles of the conditionally essential MGMT gene. (Edara, S., et al. Resistance of the human O6-alkylguanine-DNA alkyltransferase containing arginine at codon 160 to inactivation by O6-benzylguanine. Cancer Research 56: 5571-5575, 1996)

25

Administration of O6-benzylguanine to patients who are heterozygous for the variance in their normal cells, and contain only the alternative form of the gene with a glycine residue at position 160 in their cancer cells, together with methylating or chloroethylating agents, will specifically sensitize cancer cells to the cytotoxic effects of the alkylating agents without increasing toxicity to normal cells which, since they

303 232/116

contain the O6-benzylguanine resistant 160arginine form of the protein, will continue to repair alkylated DNA.

There is no published data concerning the residue 143 variance, however the proximity of this variance to the active site - both in the primary sequence and upon inspection of the three dimensional structure of the bacterial AGT protein, a functional and structural homolog of human MGMT - suggests that allele specific drugs could be discovered for this variance.

The structural difference between 143isoleucine and 143valine is a hydrophobic methyl group. It is well known that most small molecule protein inhibitors interact via hydrophobic interactions. Favorable Van der Waals distances between hydrophobic groups of a substrate and a ligand are vital for high affinity interaction. One possible mechanism of allele specific inhibition would be to exploit the greater bulk of the isoleucine by finding a small molecule that fits into the active site pocket of the valine allele but has a very unfavorable Van der Waals interaction the methyl group of the isoleucine. Other schemes based on the different size and geometry of isoleucine and valine could also be effective.

One approach to identification of such inhibitors would be to make small molecule libraries in which various positions of guanine are substituted with moities of appropriate size and structure. Such libraries could then be tested in various screens of MGMT activity. The two alleles (143isoleucine and 143valine, or any of the other allele pairs of MGMT described above) would be assayed in parallel. Identification of molecules with allele specific inhibitory activity could be the basis for synthesis of additional libraries in which the moities that are best correlated with differential activity are further varied. Methods for the iterative design of high affinity or highly discriminating small molecule inhibitors are known in the art.

5

10

15

20

304 232/116

Libraries of restricted size can be screened for allele specific inhibitors using a combinatorial strategy based on known inhibitors of MGMT such as O6-benzylguanine. A library or libraries can be constructed in which substitutions are indroduced at positions C6 and N9 which have previouly been found to affect inactivation of MGMT, or at positions C2 and N8 which can be easily substituted. For example a series of 4(6)-(benzyloxy)-2,6(4)-diamino-5-(nitro or nitroso)pyrimidine derivatives and analogs in which 4(6)-benzyloxy groups were replaced with (2-, 3-, or 4 fluorobenzyl)oxy or (2-, 3-, or 4-pyridylmethyl)oxy groups have been synthesized and tested for MGMT inhibition. (Terashima I., and K. Kohda. Inhibition of human O6-alkylguanine-DNA alkyltransferase and potentiation of the cytotoxicity of chloroethylnitrosourea by 4(6)-(Benzyloxy)-2,6(4)-diamino-5-(nitro or nitroso)pyrimidine derivatives and analogues. *J Med Chem* 41: 503-508, 1998.) Substitutions at N7 have been found to be detrimental in general (Moschel, R.C. et al & Pegg, A. E., *J. Med. Chem.* 35: 4486-4491, 1992).

15

10

5

Combinatorial libraries can be constructed according to a published procedure (Norman, T. C. et al., A Structure-Based Library Approach to Kinase Inhibitors. *J. Am. Chem.Soc.* 118: 7430-7431, 1996) where guanine based libraries were made by anchoring a chemically modified guanine (at C6, C2, or C8) to solid supports at C2 via a glycinamide linkage or at N9 via a hydroxyethyl linkage. Chemical reactions can be carried out to introduce a library of hydrophobic substituents of different size at positions C6, C2, or C8. Hydrophobic substituents of various bulkiness and orientation can be indroduced through derivatives of O6-benzyl and O6-phenyl groups, O6-alkyl groups, N9-alkyl groups, and C2-amino-alkyl groups.

25

20

Libraries constructed as above can be screened for MGMT activity in several types of assays. Methods for bacterial expression and purification of human MGMT protein have been described (see Edara, et al., cited above). Both allelic forms of MGMT could be screened for repair of alkylated or methylated DNA by measuring transfer of tritium from a tritium labelled (methylated) DNA substrate in the

10

15

20

25

305

232/116

presence of various concentrations of library compounds for various times. Alternatively, library compounds could be tritiated and MGMT proteins could be screened for the rate at which they interact with (either via association or cleavage of a moiety from the compound). Other assays for MGMT activity are known in the art.

Example 41. Clinical use of variance specific inhibitors for treating cancer

Inhibitors that are the object of the present invention are designed to be administered to patients who are heterozygous for the target gene, meaning that their cells normally contain two alternative copies of the gene, one that is sensitive to inhibition by said inhibitors, and one that is not sensitive to said inhibitors. It is apparent that several such inhibitors may be developed according to this invention targeted to alternative alleles of a single target gene or to several different target genes. The inventors propose that a series of such inhibitors will be developed according to this invention.

The clinical use of this invention involves the steps of:

- (a) testing normal cells from a patient to identify target genes that are heterozygous, present in two alternative forms.
- (b) testing biopsy tissue from a tumor or proliferative lesion to determine whether one of the two alternative forms is eliminated due to LOH.
- (c) selecting a drug for inhibition based on the presence of the sensitive allele in the tumor and the presence of an insensitive allele in normal cells
- (d) administering said drug to the patient in an appropriate dose to inhibit the essential function in the cancer cell.

Testing of normal cells to identify heterozygosity of the target gene is performed

PCT/US98/05419

232/116

using conventional diagnostic methods that are known in the art. Normal cells are commonly derived from a blood sample, hair sample, or buccal smear.

Alternatively normal cells may be obtained by cultivating primary cells such as lymphoblasts or fibroblasts in vitro. The presence of two alternative alleles may be determined by methods including allele-specific hybridization with oligonucleotides containing the variant sequences and a number of non-variant nucleotides to allow differential binding to the alternative forms of the gene or other methods known in the art using purified DNA or RNA or amplified DNA or cDNA sequences. Testing of biopsy tissue is performed by separating tumor cells or cells of the proliferative lesion to isolate a sample of cells characteristic of the proliferative lesion for analysis. This is performed by a variety of methods known in the art including manual dissection or laser assisted methods for eliminating normal cells or selecting abnormal cells. Samples of abnormal tissue, and samples of normal tissue as a control, are analyzed to identify the presence or absence of alternative forms of the target gene. The presence of two altrnative alleles may be determined by methods including allele-specific hybridization with oligonucleotides containing the variant sequences and a number of non-variant nucleotides to allow differential binding to the alternative forms of the gene or other methods known in the art using purified DNA or RNA or amplified DNA or cDNA sequences.

20

25

5

10

15

WO 98/41648

Selection of a drug for administration will be based on clinical trial data indicating that the drug is effective in eliminating abnormally proliferating cells and causing an improvement in the patient's clinical condition for patients who have the sensitive allele of the target gene in their pathological lesion. In one aspect of this invention, the product label will describe that the drug is indicated in patients who have only a specific allele of the target gene in their lesion and an alternative allele in their normal cells. Any such drug will be indicated only for a fraction of patients having two alternative alleles of the target gene in their normal cells and LOH. The fraction of patients who may be treated with any one drug may be determined by

multiplying the number of patients with a given cancer times the fraction of tumors exhibiting LOH of the target gene locus times the fraction of patients who will be heterozygous. For a target gene exhibiting 50% heterozygosity in the population and a 70% fraction of LOH in a specific cancer (several such examples are shown), a single inhibitor will treat ~17% of such cancers. A second compound directed against the alternative allele would treat another 17% of said cancer. In the preferred use of this invention, a panel of such drugs will be available enabling therapy with at least one such drug in most patients.

10

5

Administration of the drug to the patient ration to the patient will involve conventional means such as parenteral, oral, or intratumoral administration. The route of administration will be determined separately for each inhibitor and will be based on the bioavailability of the compound to the lesion. The compound may be administered in one or more doses as a single agent or in combination with other allele specific agents or conventional antiproliferative drugs or agents commonly used for the treatment of cancer or support of cancer patients.

15

Example 42.Cell Division Cycle 25C (CDC25C) - Gene VARIA10

20

Cdc25C is essential for cell growth

25

A vital regulator of cell proliferation is the protein kinase Cdc2, whose activation at the end of G2 of the cell cycle initiates mitosis. Gene disruption experiments in yeast confirm the importance of this protein, as cells lacking Cdc2 fail to progress through the cell cycle. As would be expected for such an important protein, Cdc2 activity is tightly regulated. Its activity depends on complex formation with Cyclin B, a protein that accumulates through the cell cycle and is then abruptly degraded during mitosis. Phosphorylation of Cdc2 on Tyr-15 and Thr-14 by the Wee1/Mik1

308

232/116

kinases maintains the Cdc2/Cyclin B complex in an inactive state until the end of G2. The dual-specificity phosphatase Cdc25C is then stimulated to dephosphorylate Cdc2 on both residues, resulting in activation of the complex. Just as Cdc2 is essential for cell growth, the regulation of its activity is essential. The best evidence for this is that the individual disruption of cdc2, cyclin B, wee 1 and cdc25 in the yeast *S. pombe* are lethal events. When cdc25 is deleted from these cells they display a phenotype consistent with their function; they grow without dividing, becoming dramatically elongated.

The human CDC25C gene and protein have variances

The CDC25C cDNA was cloned by Sadhu *et al.* (1) (Genbank accession number M34065, GI number 181075). To determine whether CDC25 is polymorphic, VARIAGENICS scanned cDNA from 32 unrelated individuals using the T4 Endonuclease VII method, which involves the cleavage of DNA heteroduplexes followed by DNA sequencing of polymorphic regions (see description of method in examples). A transversion at nucleotide 1099 (G or C) was identified (nucleotide numbering is from reference 1). This results in an amino acid difference at residue 297, with G encoding glycine and C encoding arginine. Overall, 9.4% of individuals analyzed are heterozygous. The rate of heterozygosity increases to 33.3% in Caucasians.

The human CDC25C gene maps to chromosome 5q31, a site of frequent loss of heterozygosity

Sartor *et al.* (2) mapped the human CDC25 gene to 5q31 by fluorescence in situ hybridization using the cDNA cloned by Sadhu *et al.* This mapping location was confirmed by Taviaux and Demaille (3), also using fluorescence in situ hybridization. There have been many studies of LOH on 5q, particularly the 5q21-

20

5

10

10

15

20

25

309

232/116

q22 region where the Adenomatous Polyposis Coli (APC) tumor suppressor gene lies. The most extensively studied cancers are those of the gastrointestinal tract, lung and ovary. There have been fewer studies of the 5q23-q33 region just distal to APC (where CDC25C lies), however the available data suggests that LOH occurs in this region at a frequency of ~30% in cervical cancer (4), 20-40% in colon cancer (5,6), 30-50% in ovarian cancer (7,8), up to 38% in stomach cancer (9), and 23% in testicular cancer (10). There is also evidence for LOH in head and neck, lung and liver cancers. In most of these studies only one or two markers were used. Definitive assessment of LOH frequency at the CDC25C locus will require direct analysis of the polymorphisms identified in various tumor types.

References

- 1) Sadhu, K., Reed, S.I., Richardson, H., Russell, P. (1990) Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G(2). *Proc. Natl. Acad. Sci. U.S.A.* 87: 5139-5143.
- 2) Sartor, H., Ehlert, F., Grzeschik, K.-H., Muller, R., Adolph, S. (1992) Assignment of two human cell cycle genes, CDC25C and CCNB1, to 5q31 and 5q12, respectively. *Genomics* 13: 911-912.
- 3) Taviaux, S.A., Demaille, J.G. (1993) Localization of human cell cycle regulatory genes CDC25C to 5q31 and WEE1 to 11p15.3-11p15.1 by fluorescence in situ hybridization. *Genomics* 15: 194-196.
- 4) Mitra, A.B., Murty, V.V., Li, R.G., Pratap, M., Luthra, U.K., Chaganti, R.S.
- (1994) Allelotype analysis of cervical carcinoma. Cancer Res. 54: 4481-7.
- 5) Japanese Journal of Cancer Research 82:1003.
- 6) Cunningham, C., Dunlop, M.G., Wyllie, A.H., Bird, C.C. (1993) Deletion mapping in colorectal cancer of a putative tumour suppressor gene in 8p22-p21.3. Oncogene 8: 1391-6.
 - 7) British Journal of Cancer 69: 429.
 - 8) Weitzel, J.N., Patel, J., Smith, D.M., Goodman, A., Safaii, H., Ball, H.G. (1994)

WO 98/41648

310

232/116

Molecular genetic changes associated with ovarian cancer. *Gynecol. Oncol.* 55: 245-52.

9) Genes, Chromosomes and Cancer 3: 468.

10) Murty, V.V., Bosl, G.J., Houldsworth, J., et al. (1994) Allelic loss and somatic differentiation in human male germ cell tumors. *Oncogene* 9: 2245-51.

Example 43. Dihydropyrimidine Dehydrogenase (DPD)

DPD is conditionally essential

Dihydropyrimidine Dehydrogenase is essential for cell survival in the presence of pyrimidine nucleotide analogs such as 5-FU and fluorodeoxyuridine. 5-fluorouracil (5-FU) and related compounds are antineoplastic drugs used in the treatment of breast, gastrointestinal, head and neck and other cancers. These drugs have widely varying clinical effects in cancer patients, ranging from induction of complete response (tumor disappearance) in some patients to severe toxicity in others. There is currently no reliable basis for predicting individual patient responses, and therefore patients receiving 5-FU must be monitored carefully for toxic reactions.

20

25

5

10

15

There are a variety of anabolic and catabolic pathways that affect the action of 5-FU (reviewed in Goodman and Gilman, The Pharmacological Basis of Therapeutics, 8th edition). For example, in order to exert its antiproliferative effects the pyrimidine analog 5-FU must be converted enzymatically to the nucleotide level (fluorodeoxyuridine) by phosphorylation and ribosylation; fluorodeoxyuridine is sometimes given directly because it bypasses most of these steps, and simply requires phosphorylation by thymidine kinase. The 5-fluoronucleotide is an irreversible inhibitor of thymidylate synthase, the enzyme which converts dUMP to dTMP and is required for de novo synthesis of thymidine, and hence for DNA

232/116

synthesis.

5

10

15

20

There is a three step pathway for catabolism of pyrimidines (thymine and uracil) to beta alanine. Pyrimidine analogs such as 5-FU are catabolized by the same pathway. The first and rate limiting step in this pathway is catalyzed by dihydropyrimidine dehyrogenase (DPD). DPD accounts for catabolism of as much as 90% of a 5-FU dose in normal individuals, and the half life of 5-FU in normals is ~8-20 minutes. Patients homozygous for mutant DPD alleles have been identified, a condition variously called DPD Deficiency, Hereditary Thymine-Uraciluria or Familial Pyrimidinemia. In such patients ~90% of 5-FU is excreted unchanged in the urine, and the drug has a half life longer that 2.5 hours. As a result of the drastically reduced catabolism of 5-FU the toxic effects of the drug are magnified and patients are subject to severe toxic reactions. There are reports of deaths in patients with DPD deficiency after treatment with 5-FU. Thus cell (and organism) survival in the presence of 5-FU depends on presence of functional DPD protein to transform 5-FU to the inactive dihydroxy metabolite.

This principal has also been demonstrated in cancer cells both in vitro and in vivo: cancer cells with lower DPD levels are more susceptible to the toxic effects of 5-FU. It has been suggested that measuring DPD levels would be useful for calibration of 5-FU dosage.

The DPD gene exhibits variances

We have identified four common sites of variance in DPD mRNA by screening cDNA from 36 unrelated individuals. The variant nucleotides are 166, 577, 3925 and 3937 (see DPD Variance Table; numbering is from Yokota, et al. cDNA Cloning and Chromosome Mapping of Human Dlhydropyrimidine Dehydrogenase, an Enzyme Associated with 5-fluorouracil Toxicity and Congenital Thymine

WO 98/41648

312 232/116

PCT/US98/05419

Uraciluria. Journal of Biological Chemistry. 269: 23192-23196, 1994). Two of the variances in nucleotide sequence alter the amino acid coding sequence: amino acid 29 is usually cysteine but arginine alleles were also detected; cys/arg heterozygotes were found at a frequency of 11%. Residue 166 of DPD is reported to be methionine but valine is present at 166 in some alleles; 9% of the population surveyed are met/val heterozygotes. One double heterozygote was identified out of 36 patients. Both these amino acid polymorphisms are located in the N-terminal NAD/FAD binding domain of DPD. Residue 166 is located in a highly conserved domain of DPD. Two other polymorphisms are located in the 3' untranslated region of DPD, only 11 nucleotides apart.

The DPD gene maps to chromosome 1p22, a region frequently subject to LOH in different cancers

The DPD gene has been mapped to chromosome 1p22 by fluorescense in situ hybridization. LOH at 1p22 has been reported in colon, breast, and other cancers.

Allele specific inhibition of DPD to potentiate 5-FU action in cancer cells with LOH at the DPD locus

The DPD gene is polymorphic and conditionally essential in the presence of 5-FU. These properties can be exploited in a therapeutic strategy for cancer patients with LOH at the DPD locus. Specifically, in a patient with two alternative alleles for DPD in normal cells and one allele in cancer cells due to LOH, an allele specific drug can be used to sensitize cancer cells to the action of 5-FU by inhibiting its catabolism. Cancer cells (but not normal cells) would be poisoned by high levels of 5-FU due to low clearance. Normal cells, containing an uninhibited allele, would be able to catabolize DPD at close to normal levels.

Alternatively, patients heterozygous for functional and defective copies of DPD,

5

10

15

20

10

15

20

25

313

232/116

and in whom LOH resulted in loss of the functional allele, could be treated by 5-FU without the necessity for an allele specific inhibitor. Identification of such patients would require a test for heterozygosity at DPD and a test for LOH which could show which allele is deleted in cancer cells. Such an approach would be expected to identify patients likely to respond well to 5-FU even though they might have cancers not traditionally treated with pyrimidine analogs.

Example 44. Fanconi Anemia genes A, B, C, D, E, F, G and H (FAA, FAB, FAC, FAD, FAE, FAF, FAG, FAH)

The Fanconi Anemia genes are conditionally essential.

The Fanconi Anemia genes are essential for cell growth or survival in the presence of DNA cross linking agents. In order for cells to survive or proliferate in an abnormal environment characterized by the presence of DNA cross linking molecules such as Mitomycin C and diepoxybutane it is necessary that the cells are capable of efficiently repairing damage caused by these agents. Cells contain proteins necessary for such repair. One way such repair proteins can be identified is by absence of function in specific patients who, as a consequence, are particularly susceptible to the toxic effects of cross linking agents.

Fanconi Anemia (FA) is a hereditary disease, autosomal recessive in transmission, characterized by progressive bone marrow failure, birth defects and predisposition to malignancies. FA patients are hypersensitive to the toxicity of DNA cross linking agents. This hypersensitivity can be measured in cultured FA cells, which is one method used to establish the diagnosis of FA.

Patients heterozygous for defective FA genes are generally not hypersensitive to

232/116

DNA crosslinking agents in contrast to those that are homozygous. This suggests that treating heterozygous cancer patients with an inhibitor specific for one allele of the FA gene (and thereby reducing levels of FA protein function by up to 50% in normal cells) would be well tolerated. Inhibition of the FA allele present in cancer cells but not the alternative form present only in normal cells would make cancer cells selectively sensitive to crosslinking agents, leading to a cytotoxic antiproliferative effect. Normal cells would be able to repair damage caused by such agents, by analogy to the clinical data from patients heterozygous for defective FA genes.

10

5

The FA genes and gene products are polymorphic

15

Seven FA genes have been identified by complementation studies. The genes for FAA and FAC have been cloned. DNA variances have been reported in both genes. For example, Savino et al. report three variances in FAA, all of which alter the protein coding sequence. (Savino, M., et al. Mutations in the Fanconi Anemia Group A Gene (FAA) in Italian Patients. American Journal of Human Genetics 61:1246-1253, 1997.) The location of these variances is shown in the Table below, reproduced from the paper by Savino.

20

Variances in the FAA Gene

25

Polymorphic	Alternate	Affected amino	Alternate	Frequency of
nucleotide	bases	acid residue	amino acids	rare allele
796	A, G	266	Thr, Ala	.29
1501	G, A	501	Gly, Ser	.40
2426	G, A	809	Gly, Asp	.30

FA genes map to chromosomes that are frequently subject to LOH in different cancers

The FAC gene maps to chromosome 9q22.3, (as do three other FA complementation

232/116

groups according to Strathdee, C.A., et al. Evidence for at least four Fanconi anaemia genes including FACC on chromosome 9. Nature Genetics 1: 196-198, 1992). The FAA gene maps to chromosome 16q24.3. FAD maps to 3p26-p22. All FA genes mapped so far lie in regions subject to frequent LOH. LOH affecting chromosome 9 is well documented in many cancers. For example, loss of the 9q arm is well documented in cancers such as bladder, esophagus, ovary, testis and uterus. LOH frequencies in these cancers range from 20% to 62%. LOH affecting chromosome arm 16q, particularly the 16q24 region is well documented, particularly in breast, prostate and liver cancers. For example, in six detailed studies of breast cancer in the 16q22-q24 region LOH frequencies of 40-60% have been reported. Further, 16q22 LOH has been reported in 25-90% of liver cancers, with the average around 45%. Less extensive studies of other cancer types report 16q22 LOH in 19% of bladder cancers, 20% of colon cancers, 19-27% of esophageal cancers, 25% of small cell lung cancers, 16-37% of ovarian cancers 22% of uterine cancers, and 31-50% of prostate cancers. Loss of chromosome 3p26-21 is common in lung cancer, kidney cancer, head and neck cancer and breast cancer among other cancers. Reports of >50% LOH are common in these cancer types.

Other genes conditionally essential for response to DNA cross linking agents

20

25

5

10

15

In a related aspect, other genes which, when defective, sensitize cells to toxic effects of DNA crosslinking agents would be amenable to the therapeutic strategy outlined above for the FA genes. Specifically, in a patient with two alternative alleles for such a gene and LOH at the relevant locus, an allele specific drug could be used to sensitize cancer cells to the action of cross linking agents. Such drugs could then be used to treat cancer patients constitutionally heterozygous for two normal alleles at the relevant locus, in whom LOH had rendered cancer cells hemizygous or homozygous for one allele. Treatment would consist in the administration of the appropriate allele specific inhibitor plus a cross linking agent or treatment to induce damage in all cells. Cancer

232/116

cells (but not normal cells) would be rendered unable to respond by inhibition of expression of the relevant repair gene. Examples of such genes are the excision repair cross complementing (ERCC) genes, twelve of which have been identified (see Target Gene Table). Defects in these genes are associated with Xeroderma Pigmentosum and Cockayne Syndrome. (Scriver, C. R. et al., The Metabolic and Molecular Bases of Inherited Disease, 7th edition, McGraw Hill, New York, 1995.)

Alternatively, patients heterozygous for functional and defective copies of such genes, and in whom LOH resulted in loss of the functional allele, could be treated by a cross-link inducing procedure without the necessity for an allele specific inhibitor. Identification of such patients would require a test for heterozygosity at the target locus and a test for LOH which could show which allele is deleted in cancer cells. Such an approach would be expected to identify patients likely to respond well to cross linking agents or procedures even though they might have cancers not traditionally treated with such agents.

Example 45.	Asparagine	Synthetase	(AS).
Variagenics 7	Γarget Gene		

Asparagine Synthase is conditionally essential

Cells require a continuous supply of amino acids for protein biosynthesis. Cells can import amino acids from serum via amino acid transporters (the only source besides protein catabolism for the ten essential amino acids), or amino acids cells can be synthesized *de novo* by cells (only an option for the ten nonessential amino acids). The essential amino acids are isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, valine and histidine. Alterations in the nutritional environment of growing cells that result in a decreased extracellular concentration of essential amino

5

15

20

10

15

20

25

317

232/116

acids cause arrested cell growth and may result in cell death.

Even a nonessential amino acid can become essential in a cell where (i) at least one enzyme required for its biosynthesis is not expressed (perhaps due to downregulation in response to an abundant extracellular supply of the amino acid), or (ii) the biosythetic pathway is blocked by an inhibitor.

Asparagine is a nonessential amino acid which is, however, essential for survival of rapidly dividing cells that are not expressing asparagine synthetase, the terminal enzyme in asparagine biosynthesis. Asparagine synthetase, considered to be a housekeeping gene, catalyzes the ATP dependent conversion of aspartic acid to asparagine in mammalian cells. A number of different cancer types do not usually express asparagine synthetase, including childhood acute leukemias. One common therapeutic used in the treatment of childhood acute lymphocytic leukemia is the enzyme L-asparaginase (purified from E. coli or Erwinia carotovora) which, upon injection, rapidly depletes serum asparagine (by hydrolysis to aspartate), thereby lowering blood levels of asparagine to undetectable levels within hours of injection. (Ohnuma, T. et al. Biochemical and Pharmacological Studies with L-Asparaginase in Man. Cancer Research 30: 2297-2305, 1970.) Leukemic cells have high rates of protein synthesis but do not express asparagine synthetase and are therefore highly vulnerable to the rapid loss of asparagine and consequent shutdown of protein synthesis. Cell death after L-asparaginase induced asparagine starvation has been shown to be apoptotic. (Bussolati, O. Characterization of Apoptotic Phenomena Induced by Treatment with L-Asparaginase in NIH3T3 Cells. Experimental Cell Research 220: 283-291, 1995.) After one or more doses leukemic cells often become resistant to L-asparaginase due to induction of asparagine synthetase activity and consequent autonomy for asparagine.

In a patient with two alternative alleles for asparagine synthetase and LOH at 7q, an

WO 98/41648

5

10

15

20

25

318

232/116

allele specific drug could be used to sensitize cancer cells to the action of L-asparaginase. Such drugs could then be used to treat cancer patients constitutionally heterozygous for two normal alleles at the asparagine synthetase locus, in whom LOH had rendered cancer cells hemizygous or homozygous for one allele. Treatment would consist in the administration of the appropriate allele specific inhibitor plus L-asparaginase to deplete the concentration of this amino acid in serum while rendering cancer cells (but not normal cells) unable to respond by upregulating asparagine synthetase.

The Asparagine Synthetase gene maps to chromosome 7q21.3, a region frequently subject to LOH in different cancers

The asparagine synthetase gene has been mapped to chromosome 7q21.3 by fluorescence in situ hybridization, following localization to 7q by analysis of somatic cell hybrids. The q21 region of chromosome 7 is subject to frequent LOH, particularly in colon, breast and prostate cancers. 7q21.3 LOH is detected in up to 50% of colon cancers, up to 37% of prostate cancers (83% of prostate cancers have LOH in the adjacent chromosome band, 7q31) and in 10-55% of breast cancers, where again, there is even more frequent LOH in 7q31. LOH at 7q21 has also been reported in uterine cancer and head and neck cancer. Several other cancer types have not yet been well studied for LOH affecting this region.

Example 46. Methionine Synthase (MS).

Variagenics Target Gene

Methionine Synthase is conditionally essential in dividing cells

Cells require a continuous supply of amino acids for protein biosynthesis. L-

methionine is one of ten essential amino acids. Consequently dividing cells must obtain their methionine from serum via amino acid transporter (the only source besides protein catabolism for the ten essential amino acids). Alterations in the nutritional environment of growing cells that result in a decreased extracellular concentration of essential amino acids such as methionine cause arrested cell growth and may result in cell death. Cancer cells are particularly sensitive to methionine deprivation. (Tan, Y., et al., Anticancer Efficacy of Methioninase in vivo. *Anticancer Research* 16: 3931-3936.)

10

5

The cellular requirement for methionine can be bypassed: if L-homocysteine is provided to cells it can be methylated to form methionine by the enzyme methionine synthase (MS). In this reaction the methyl group is provided by 5-methyltetrahydrofolate and MS-bound methylcobalamin serves as an intermediate methyl carrier. A second enzyme may be required for reductive activation of methionine synthase, based on complementation studies.

15

20

25

It occured to the inventors that the apparent antineoplastic effects of methionine deprivation could be enhanced and made tumor cell specific by preventing cells from converting endogenous homocysteine to methionine by allele specific inhibition of methionine synthase (or other enzymes required for the conversion of homocysteine to methionine; see: Scriver, C., et al., editors, The Metabolic and Molecular Basis of Inherited Disease. McGraw Hill, New York, pp. 3111-3128 and 3129-3149). This strategy would be useful in cancer patients that are heterozygous for methionine synthase (or another enzyme required for conversion of homocysteine to methionine) and who have LOH at the methionine synthase (or other) gene locus. In such patients an allele specific inhibitor of MS directed to the sole allele present in cancer cells, coupled with methionine starvation or methioninase treatment, would selectively prevent tumor cells from responding to methionine deprivation. The provision of supplemental homocysteine, which could only be converted to methionine by the

320 232/116

PCT/US98/05419

normal cells, would provide a way to amplify the differential toxicity to cancer cells. Also, the methionine analog ethionine has been shown to potentiate the effects of methionine starvation. (Poirson-Bichat, F., et al., Growth of methionine-dependent human prostate cancer (PC-3) is inhibited by ethionine combined with methionine starvation. Br. J. Cancer 75: 1605-1612.) Ethionine or similar agents could be used in conjunction with an allele specific inhibitor of methionine synthesis.

An alternative approach to allele specific therapy of cancer cells with LOH would be to target the amino acid transport system for methionine in patients heterozygous for this protein and in whom only one allele is present in cancer tissue as a result of LOH. This would result in selective methionine starvation for cancer cells. Allele specific transport inhibition could be combined with methionine starvation or methioninase treatment to enhance the cytotoxic effect.

The Methionine Synthase gene maps to chromosome 1q43, a region subject to LOH in several cancers

The MS gene has been mapped to chromosome 1q43 by fluoresence in situ hybridization. The q43 region of chromosome 1 is subject to frequent LOH particularly in colon, head and neck, ovarian and liver cancers, where LOH frequencies vary from 11 to 39%. LOH at 1q43 has also been reported in cervix, pancreas, stomach and testis cancers. Several other cancer types have not yet been well studied for LOH in this region.

Other amino acid biosynthetic enzymes are candidates for allele specific inhibition

It will be evident to one skilled in the art that strategies similar to those described above for asparagine (an essential amino acid) and methionine (a non-essential amino acid) could be undertaken for other amino acid biosynthetic enzymes. For example,

WO 98/41648

5

10

15

20

321

232/116

L-glutaminase has also been shown to have antiproliferative effects on mammalian cell growth. Allele specific blockade of glutamine synthesis in heterozygous patients with LOH for genes essential for glutamine synthesis could be the basis of a cancer specific therapy.

5

Example 47. Methylthioadenosine phosphorylase (MTAP).

Variagenics	Target Ge	ne
-------------	-----------	----

10

Methylthioadenosine phosphorylase can convert methylthioadenosine to methionine, an essential amino acid

Cells require a continuous supply of amino acids for protein biosynthesis. L-

15

methionine is one of ten essential amino acids. Consequently dividing cells must obtain methionine from serum via amino acid transporter (the only source besides protein catabolism or conversion of L-homocysteine). Alterations in the nutritional environment of growing cells that result in a decreased extracellular concentration of essential amino acids such as methionine cause arrested cell growth and may result in cell death. Cancer cells are particularly sensitive to methionine deprivation. (Tan, Y., et al., Anticancer Efficacy of Methioninase in vivo. *Anticancer Research* 16: 3931-3936.)

25

20

The cellular requirement for methionine can be bypassed by conversion of L-homocysteine to methionine as discussed above. An alternative pathway for methionine synthesis is conversion of 5'-methylthioadenosine (5'-MTA) via the action of 5'-MTA phosphorylase (MTAP). (Tisdale, M.J., Methionine Synthesis from 5'-methylthioadenosine by Tumor Cells. *Biochemical Pharmacology* 32: 2915-2920.) In tissue culture experiments low concentrations of 5'-MTA can substitute for

322 232/116

methionine in some cell lines. Thus 5'-MTA can rescue cells from methionine deprivation.

It occured to the inventors that allele specific inhibition of MTAP in cancer patients heterozygous for MTAP and whose cancer cells have only one allele of MTAP as a consequence of LOH, in combination with methionine deprivation (methionine starvation or L-methioninase treatment) and dietary supplementation with 5'-methylthioadenosine would provide a source of convertible methionine substrate selectively useful to normal cells. Tumor cells would have no source of methionine, being unable to convert the 5'-methylthioadenosine, and hence would be selectively poisoned. This therapeutic strategy would not necessarily require an allele specific inhibitor as *all copies* of MTAP are deleted in some cancers. Such cancers should be differentially poisoned vis a vis normal cells by methionine deprivation in the presence of 5'-methylthioadenosine.

The MTAP gene maps to 9p21, a region frequently subject to LOH in many cancers

The MTAP gene has been mapped to chromosome 9p21 by physical techniques (pulsed field gel electrophoresis and yeast artificial chromosome mapping). The gene lies near the cyclin dependent kinase inhibitors p16 and p15 which are frequently reduced to one or zero copies in cancer cells. (Nobori, et al., Genomic cloning of methylthioadenosine phosphorylase: a purine metabolic enzyme deficient in multiple different cancers. *Proc. Natl. Acad. Sci. U.S.A.* 93: 6203-6208.) The p21 region of chromosome 9 is subject to frequent LOH particularly in cancers of the bladder, breast, esophagus, head and neck, kidney, lung, melanoma and ovary. The frequency of LOH in these cancers ranges from 20% to nearly 100%.

5

10

15

20

232/116

Example 48. DNA dependent protein kinase (DNA-PK) and associated factors.

Variagenics Target Genes

DNA dependent protein kinase is conditionally essential

5

Cells exposed to ionizing radiation, such as gamma radiation, are damaged by base modifications and DNA strand breaks. Double strand DNA breaks are among the most lethal form of radiation damage; one such break, if unrepaired, can be cell lethal. Four complementation groups of mammalian cell mutants that are defective in repair of double strand (ds) breaks have been identified. All four complementation groups are hypersensitive to ionizing radiation. The loci for three of these groups have been shown to encode components of DNA-dependent protein kinase (DNA-PK). The fourth group is deficient in the gene encoding XRCC4, a factor that associates with and stimulates DNA Ligase IV. Ligation of ds breaks by DNA ligase IV in a cell free system in increased 7-8 fold by co-expression of XRCC4.

15

20

10

DNA-PK is a multiprotein complex with a DNA binding regulatory subunit, the Ku heterodimer [Ku70 (XRCC6) and Ku80, also referred to as Ku86 (XRCC5)], and a catalytic subunit, DNA-PKcs (probably XRCC7), that is activated by the regulatory subunit upon binding to DNA ds ends, with consequent expression of serine/threonine kinase activity resulting in phosphorylation of a variety of DNA binding proteins. A fourth protein called KARP-1 is expressed from the Ku80/86 locus and is also implicated in DNA-PK function.

25

Cells lacking any of the components of DNA-PK are exquisitely sensitive to gamma irradation. This has been demonstrated directly in mice with targeted disruption of the Ku80/86 and DNA-PKcs genes. The Ku80/86 deficient mice were also sensitive to methyl methane sulfonate, a DNA alkylating agent that induces single strand breaks and to etoposide, a topoisomerase II inhibitor. Thus the components of DNA-PK can

WO 98/41648 PCT/US98/05419

324 232/116

also be important for repair of a variety of chemically induced DNA lesions as well as ionizing radiation.

In a cancer patient with two alternative alleles for a component of DNA-PK and LOH at the heterozygous locus, an allele specific inhibitory drug could be used to sensitize cancer cells to the action of ds break inducing treatments. Such a drug could be used to treat cancer patients constitutionally heterozygous for two normal alleles at any of the DNA-PK loci in whom LOH had rendered cancer cells hemizygous or homozygous for one allele. Treatment would consist in the administration of the appropriate allele specific inhibitor plus a ds break inducing agent or procedure. The tumor cells would be unable to effectively repair ds breaks, while the uninhibited allele in normal cells would be able to function. Alternatively, patients heterozygous for functional and defective copies of genes required for repair of strand breaks, and in whom LOH resulted in loss of the functional allele, could be treated by a strand break inducing procedure without the necessity for an allele specific inhibitor. Identification of such patients would require a test for heterozygosity at the target locus and a test for LOH which could show which allele is deleted in cancer cells. Such an approach would be expected to identify patients likely to respond well to strand breaking agents or procedures (exposure to ionizing radiation) even though they might have cancers not traditionally treated with such measures.

The genes encoding constituents of DNA-PK map to chromosomes frequently subject to LOH in different cancers

The DNA-PKcs gene has been mapped to 8q11, the Ku80/86 gene to 2q11-q13 and the Ku70 gene to 22q11-q13. All three regions are subject to LOH in different cancers. LOH on 2q has been reported in lung ovary and cervical cancers at frequencies ranging from 11% to 39%. LOH for 8q has been reported in cervix, head and neck, kidney, lung, ovary, prostate and testis cancers at frequencies ranging from 20% to 50% of

5

10

15

10

15

20

25

325

232/116

cancers. LOH on 22q has been reported in brain, breast colon, head and neck, lung, ovary, pediatric and stomach cancers at frequencies ranging from 10 to 76%. Several other cancer types have not yet been well studied for LOH affecting either region.

Other proteins required for repair of DNA strand breaks are also candidates for allele specific therapy of cancer

It will be evident to one skilled in the art that strategies similar to those described above for DNA-PK could be undertaken for other proteins required for repair of DNA strand breaks. For a recent review of such proteins see: Zdzienicka, M.Z., Mammalian mutants defective in the response to ionizing radiation-induced DNA damage. Mutation Research 336: 203-213, 1995; Thompson, L.H. and P.A. Jeggo. Nomenclature of human genes involved in ionizing radiation sensitivity. Mutation Research 337: 131-134, 1995; Thacker, J. and R.E. Wilkinson, The gentic basis of cellular recovery from radiation damage: response of the radiosensitive irs lines to lowdose rate irradiation. Radiation Research 144: 294-300, 1995. Two other syndromes with hypersensitivity to X-rays are Diamond-Blackfan anemia and aplastic anemia (Diemen, P.C., X-ray-sensitivity of lymphocytes of aplastic- and Diamond-Blackfananemia patients as detected by conventional cytogentic and chromosome painting techniques. Mutation Resarch 373: 225-235, 1997). Recently evidence of several other genes responsible for DNA double strand break repair has been described. (Nicolas, N., Finnie, N.J., et al., Eur. J. Immunol. 26:1118-1122, 1996.) The above genes which, when defective, sensitize cells to toxic effects of DNA strand breaking agents would be amenable to the therapeutic strategy outlined above for the DNA-PK genes. Specifically, in a patient with two alternative alleles for such a gene and LOH at the relevant locus, an allele specific drug could be used to sensitize cancer cells to the action of strand breaking agents. Such drugs could then be used to treat cancer patients constitutionally heterozygous for two normal alleles at the relevant locus, in whom LOH had rendered cancer cells hemizygous or homozygous for one allele.

232/116

Treatment would consist in the administration of the appropriate allele specific inhibitor plus a strand breaking agent or treatment to induce damage in all cells. Cancer cells (but not normal cells) would be rendered unable to respond by inhibition of expression of the relevant repair gene.

5

Alternatively, patients heterozygous for functional and defective copies of genes required for repair of strand breaks, and in whom LOH resulted in loss of the functional allele, could be treated by a strand break inducing procedure without the necessity for an allele specific inhibitor. Identification of such patients would require a test for heterozygosity at the target locus and a test for LOH which could show which allele is deleted in cancer cells. Such an approach would be expected to identify patients likely to respond well to strand breaking agents or procedures (exposure to ionizing radiation) even though they might have cancers not traditionally treated with such measures.

15

10

Example 49. Ataxia Telangiectasia Mutated (ATM) and c-Abl Variagenics Target Gene

20

The Ataxia Telangiectasia gene is essential for cell growth or survival in the presence of ionizing radiation or DNA damaging molecules

25

In order for cells to survive or proliferate in the presence of ionizing radiation (IR) or radiomimetic chemicals it is necessary that they are capable of efficiently repairing IR induced damage. Cells contain proteins necessary for such repair. One way such proteins can be identified is by their absence in specific patients who are particularly susceptible to the toxic effects of IR.

PCT/US98/05419

327 232/116

Ataxia Telangiectasia (AT) is a genetically transmitted autosomal recessive disorder characterized by variable degrees of immunodeficiency, telagiectasia (small blood vessels growing near the surface of the skin or eye), cerebellar ataxia (loss of balance due to abnormal development of the cerebellum) and increased sensitivity to both ionizing radiation and radiomimetic drugs, including bleomycin; AT cells are killed by lower doses of ionizing radiation or radiomimetic drugs than normal cells. Further, heterozygotes for mutant and normal AT alleles have radiation sensitivity close to that of homozygous normals. Therefore cancer cells from individuals heterozygous for null alleles of the AT gene (called ATM) should be highly susceptible to radiation therapy when only the deficient AT allele remains in cancer cells due to LOH, compared to normal cells from the same patients. Such patients could be treated by a DNA damage inducing procedure without the necessity for an allele specific inhibitor. Identification of such patients would require a test for heterozygosity at the target locus and a test for LOH which could show which allele is deleted in cancer cells. Such an approach would be expected to identify patients likely to respond well to strand breaking agents or procedures (such as exposure to ionizing radiation) even though they might have cancers not traditionally treated with such measures. In a related aspect, this approach is applicable to heterozygotes for other genes associated with ATM-mediated radiosensitivity. One such protein is the c-Abl protein tyrosine kinase, which binds to the ATM protein and regulates its function. c-Abl is known to be important in the stress response to ionizing radiation. One of its functions is activation of stress activated protein kinases (SAPKs) after irradiation or exposure to alkylating agents such as cis-platinum or mitomycin C, a response that is defective in ATM cells. Correction of the SAPK activation defect in ATM cells by non-mutant ATM cDNA suggests that the ATM - c-Abl interaction is necessary for the DNA damage response. (Kharbanda, S., et al. *Nature* 376: 785-788, 1995.)

In a cancer patient with two alternative functional alleles for a component of ATM and LOH at the ATM locus, an allele specific inhibitory drug could be used to sensitize

WO 98/41648

5

10

15

20

10

15

20

25

328

232/116

cancer cells to the action of DNA damage inducing treatments such as ionizing radiation or radiomimetic drugs. Such an allele specific drug could be used to treat cancer patients constitutionally heterozygous for two normal ATM alleles in whom LOH had rendered cancer cells hemizygous or homozygous for one allele. Treatment would consist of the administration of the appropriate allele specific inhibitor plus a DNA damage inducing treatment or procedure. The tumor cells would be unable to effectively the DNA damage, while the uninhibited allele in normal cells would be able to function. A similar approach could be taken to

The ATM gene is polymorphic

The ATM cDNA is 9.58 kb. Several likely polymorphisms have been identified, although population studies have not yet been performed to determine allele frequencies. One of the reported polymorphisms, an ATG to ATA change in codon 847, results in a methionine vs. isoleucine difference. Thus ATM is potentially targetable at the DNA, RNA and protein levels. It is likely that additional variances will be identified with broader population surveys and computational variance detection.

The ATM gene maps to chromosome 11q23 and the c-Abl gene maps to 9q34.1, two regions of high frequency LOH in different cancer types

Chromosome 9q34 is lost in a high fraction of bladder, esophagus, ovary, head & neck and testis cancers (17 - 76%) and in a lesser fraction of breast, liver and prostate cancers and leukemias. Chromosome 11q23 is lost in brain, cervix, esophagus, breast, kidney, colon, stomach, head & neck and lung cancers at frequencies ranging from 16% to 100%.

Other proteins required for repair of DNA damage are also candidates for allele specific therapy of cancer

WO 98/41648 PCT/US98/05419

329 232/116

It will be evident to one skilled in the art that strategies similar to those described above for ATM and c-Abl could be undertaken for other proteins required for the stress response to DNA damaging agents, such as other stress activated protein kinases or downstream effector proteins.

10

15

20

25

330

232/116

Methylguanine Methyltransferase (MGMT) Gene VARIA 1534

The methylguanine methyltransferase gene is essential for cell growth or survival in the presence of alkylating agents

Methylguanine methyltransferase (MGMT) is a suicide protein that repairs alkylating agent damage, specifically alkylation of the ⁶O position of guanine. Alkyl groups are covalently bound to an active site cysteine (residue 145) of MGMT, thereby irreversibly inactivating the protein. ⁶O-benzylguanine is an analog inhibitor of MGMT that, by inactivating MGMT, renders tumor cells more sensitive to the toxic effects of methylating and chloroethylating agents. MGMT is thus a conditionally essential gene in the presence of such drugs. ⁶O-benzylguanine is being developed as a chemosensitizing agent.

In a cancer patient with two alternative functional MGMT alleles an allele specific inhibitory drug could be used to sensitize cancer cells to the action of alkylating agents. Such an allele specific drug could be used to treat cancer patients constitutionally heterozygous for two normal MGMT alleles in whom LOH had rendered cancer cells hemizygous or homozygous for one allele. Treatment would consist of the administration of the appropriate allele specific inhibitor plus an alkylating agent. The tumor cells would be unable to effectively repair the alkylating agent induced DNA damage, while the uninhibited allele in normal cells would be able to function.

The MGMT gene is polymorphic

Several variances have been reported in human MGMT, or discovered by Variagenics, including three protein polymorphisms. There is a silent C/T variance at position 255 (11% heterozygotes among 36 individuals surveyed), another C/T variance at nt. 346

232/116

which results in a L84F amino acid variance (5% heterozygotes), an A/G variance at nt. 523 which results in a I143V amino acid variance (24% heterozygotes). A variance has been reported in Japanese at codon 160, GGA vs. AGA, converting glycine to arginine. 15% of the population studied were heterozygotes.

5

The alteration of glycine 160 to arginine reduced the inactivation by O6-benzylguanine with an approximately 20 fold increase in the IC50 concentration. These results demonstrate variance-specific effects of a small molecule, O6-benzylguanine, on normal (non-mutant) alleles of the conditionally essential MGMT gene.

10

Administration of O6 benzylguanine to patients who are heterozygous for the residue 160 gly/arg variance in their normal cells, and contain only the form of the gene with a glycine residue at position 160 in their cancer cells, together with methylating or chloroethylating agents for chemotherapy, will be specifically toxic to cancer cells without increasing toxicity to normal cells.

15

References

1. Imai, Y, Carcinogenesis (1995), 16:2441-24445

2. Edara, S. (1996) Resistance of the human O6-alkylguanine-DNA alkyltransferase containing arginine at codon 160 to inactivation by O6-benzylguanine. *Cancer*

containing arginine at codon 160 to inactivation by O6-benzylguanine. Cancer Research 56, 5571-5575.

25

All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the invention pertains. All references cited in this disclosure are incorporated by reference to the same extent as if each reference had been incorporated by reference in its entirety individually.

One skilled in the art would readily appreciate that the present invention is well

WO 98/41648 PCT/US98/05419

332 232/116

adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The groups of genes and the particular genes described herein as presently representative of preferred embodiments are exemplary and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art, which are encompassed within the spirit of the invention, are defined by the scope of the claims.

It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention. For example, those skilled in the art will readily recognize that the methods and inhibitors can utilize a variety of different target genes within the groups described. Thus, such additional embodiments are within the scope of the present invention and the following claims.

The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. Thus, for example, in each instance herein any of the terms "comprising", "consisting essentially of" and "consisting of" may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims.

5

10

15

20

WO 98/41648 PCT/US98/05419

333 232/116

In addition, where features or aspects of the invention are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.

Thus, additional embodiments are within the scope of the invention and within the following claims.

232/116

CLAIMS

What we claim is:

5

1. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a gene vital for cell growth or viability, and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:

10

- (a) determining at least two alleles of a said gene, wherein said gene encodes a product required for cell proliferation;
- (b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles;

wherein inhibition of expression of at least one but less than all of said alleles or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

15

2. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a gene vital for cell growth or viability, and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:

20

(a) determining at least two alleles of a said gene, wherein said gene encodes a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival;

25

(b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles;

wherein inhibition of expression of at least one but less than all of said alleles or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

- 3. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a gene vital for cell growth or viability, and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:
- (a) determining at least two alleles of a said gene, wherein said gene encodes a product required to maintain organic compounds at levels compatible with cell growth or survival;
- (b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles;

wherein inhibition of expression of at least one but less than all of said alleles or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

- 4. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a gene vital for cell growth or viability, and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:
- (a) determining at least two alleles of a said gene, wherein said gene encodes a product required to maintain cellular proteins at levels compatible with cell growth or survival:
- (b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles;

wherein inhibition of expression of at least one but less than all of said alleles

10

5

15

20

WO 98/41648

336 232/116

or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

5

5. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a gene vital for cell growth or viability, and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:

10

- (a) determining at least two alleles of a said gene, wherein said gene encodes a product required to maintain cellular nucleotides at levels compatible with cell growth or survival;
- (b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles;

15

wherein inhibition of expression of at least one but less than all of said alleles or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

20

6. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a gene vital for cell growth or viability, and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:

- (a) determining at least two alleles of a said gene, wherein said gene encodes a product required to maintain the integrity and function of cellular and subcellular structures;
- (b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles:

wherein inhibition of expression of at least one but less than all of said alleles or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

5

7. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a gene vital for cell growth or viability, and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:

10

- (a) determining at least two alleles of a said gene, wherein said gene is located on a high frequency LOH chromosomal region;
- (b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles;

15

wherein inhibition of expression of at least one but less than all of said alleles or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

20

8. The method of claim 7, wherein said gene is located on a chromosomal arm which has a frequency of allele loss of at least 15% in a cancer.

- 9. The method of claim 7, wherein said gene is located in proximity to a chromosomal marker which undergoes LOH at a frequency of at least 10% in a cancer.
- 10. The method of claim 7, wherein said gene is located in proximity to a tumor suppressor gene which undergoes LOH at a frequency of at least 10% in a cancer.

PCT/US98/05419

232/116

11. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a gene vital for cell growth or viability, and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:

5

WO 98/41648

(a) determining at least two alleles of a said gene, wherein said gene has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene;

10

(b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles;

wherein inhibition of expression of at least one but less than all of said alleles or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

15

12. The method of claim 11, wherein said gene is located on a high frequency LOH chromosomal region.

20

13. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a gene vital for cell viability or cell growth, wherein said gene encodes a product required for cell proliferation, said gene has at least two alternative alleles in a population, and

wherein said inhibitor targets at least one but less than all of said alternative

alleles.

25

14. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a gene vital for cell viability or cell growth, wherein said gene encodes a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival, said gene has at least two alternative

232/116

alleles in a population, and

wherein said inhibitor targets at least one but less than all of said alternative alleles.

5

15. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a gene vital for cell viability or cell growth, wherein said gene encodes a product required to maintain organic compounds at levels compatible with cell growth or survival, said gene has at least two alternative alleles in a population, and

wherein said inhibitor targets at least one but less than all of said alternative alleles.

15

10

16. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a gene vital for cell viability or cell growth, wherein said gene encodes a product required to maintain cellular proteins at levels compatible with cell growth or survival, said gene has at least two alternative alleles in a population, and

20

wherein said inhibitor targets at least one but less than all of said alternative alleles.

25

17. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a gene vital for cell viability or cell growth, wherein said gene encodes a product required to maintain cellular nucleotides at levels compatible with cell growth or survival, said gene has at least two alternative alleles in a population, and

wherein said inhibitor targets at least one but less than all of said alternative alleles.

18. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a gene vital for cell viability or cell growth, wherein said gene encodes a product required to maintain the integrity and function of cellular and subcellular structures, said gene has at least two alternative alleles in a population, and

wherein said inhibitor targets at least one but less than all of said alternative alleles.

19. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a gene vital for cell viability or cell growth, wherein said gene is located on a high frequency LOH chromosomal arm region, said gene has at least two alternative alleles in a population, and

wherein said inhibitor targets at least one but less than all of said alternative alleles.

20. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a gene vital for cell viability or cell growth, wherein said gene has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene, said gene has at least two alternative alleles in a population, and

wherein said inhibitor targets at least one but less than all of said alternative alleles.

21. A pharmaceutical composition, comprising

at least one allele specific inhibitor targeting at least one but less than all allelic forms of an essential gene in a population, wherein said gene encodes a product required for cell proliferation; and

a pharmaceutically acceptable carrier or excipient.

5

15

PCT/US98/05419

232/116

22. A pharmaceutical composition, comprising

at least one allele specific inhibitor targeting at least one but less than all allelic forms of an essential gene in a population, wherein said gene encodes a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival; and

341

a pharmaceutically acceptable carrier or excipient.

10

15

5

23. A pharmaceutical composition, comprising

at least one allele specific inhibitor targeting at least one but less than all allelic forms of an essential gene in a population, wherein said gene encodes a product required to maintain organic compounds at levels compatible with cell growth or survival; and

a pharmaceutically acceptable carrier or excipient.

24. A pharmaceutical composition, comprising

at least one allele specific inhibitor targeting at least one but less than all allelic forms of an essential gene in a population, wherein said gene encodes a product required to maintain cellular proteins at levels compatible with cell growth or survival; and

a pharmaceutically acceptable carrier or excipient.

25. A pharmaceutical composition, comprising

25

20

at least one allele specific inhibitor targeting at least one but less than all allelic forms of an essential gene in a population, wherein said gene encodes a product required to maintain cellular nucleotides at levels compatible with cell growth or survival; and

a pharmaceutically acceptable carrier or excipient.

26. A pharmaceutical composition, comprising

at least one allele specific inhibitor targeting at least one but less than all allelic forms of an essential gene in a population, wherein said gene encodes a product required to maintain the integrity and function of cellular and subcellular structures; and

a pharmaceutically acceptable carrier or excipient.

10

5

27. A pharmaceutical composition, comprising

at least one allele specific inhibitor targeting at least one but less than all allelic forms of an essential gene in a population, wherein said gene is located on a high frequency LOH chromosomal arm region; and

a pharmaceutically acceptable carrier or excipient.

15

20

25

28. A pharmaceutical composition, comprising

at least one allele specific inhibitor targeting at least one but less than all allelic forms of an essential gene in a population, wherein said gene has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene; and

a pharmaceutically acceptable carrier or excipient.

- 29. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a gene having at least two alternative alleles, comprising the steps of:
- (a) identifying a gene vital to cell viability or cell growth that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell, and wherein said gene encodes a product required for cell proliferation;

- (b) screening to identify an inhibitor which inhibits said at least one but less than all of said at least two alternative alleles; and
- (c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in which cancerous cells have only the allele of said gene inhibited by said inhibitor and in whom normal cells are heterozygous for said gene.
- 30. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a gene having at least two alternative alleles, comprising the steps of:
- (a) identifying a gene vital to cell viability or cell growth that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell, and wherein said gene encodes a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival;
- (b) screening to identify an inhibitor which inhibits said at least one but less than all of said at least two alternative alleles; and
- (c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in which cancerous cells have only the allele of said gene inhibited by said inhibitor and in whom normal cells are heterozygous for said gene.
- 31. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a gene having at least two alternative alleles, comprising the steps of:
- (a) identifying a gene vital to cell viability or cell growth that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell, and wherein said gene encodes a product required to maintain organic compounds at levels compatible with cell growth or survival;

5

15

20

232/116

- (b) screening to identify an inhibitor which inhibits said at least one but less than all of said at least two alternative alleles; and
- (c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in which cancerous cells have only the allele of said gene inhibited by said inhibitor and in whom normal cells are heterozygous for said gene.
- 32. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a gene having at least two alternative alleles, comprising the steps of:
- (a) identifying a gene vital to cell viability or cell growth that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell, and wherein said gene encodes a product required to maintain cellular proteins at levels compatible with cell growth or survival;
- (b) screening to identify an inhibitor which inhibits said at least one but less than all of said at least two alternative alleles; and
- (c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in which cancerous cells have only the allele of said gene inhibited by said inhibitor and in whom normal cells are heterozygous for said gene.
- 33. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a gene having at least two alternative alleles, comprising the steps of:
- (a) identifying a gene vital to cell viability or cell growth that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell, and wherein said gene encodes a product required to maintain cellular nucleotides at levels compatible with cell growth or survival:
 - (b) screening to identify an inhibitor which inhibits said at least one but less

10

5

15

20

than all of said at least two alternative alleles; and

- (c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in which cancerous cells have only the allele of said gene inhibited by said inhibitor and in whom normal cells are heterozygous for said gene.
- 34. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a gene having at least two alternative alleles, comprising the steps of:
- (a) identifying a gene vital to cell viability or cell growth that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell, and wherein said gene encodes a product required to maintain the integrity and function of cellular and subcellular structures;
- (b) screening to identify an inhibitor which inhibits said at least one but less than all of said at least two alternative alleles; and
- (c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in which cancerous cells have only the allele of said gene inhibited by said inhibitor and in whom normal cells are heterozygous for said gene.
- 35. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a gene having at least two alternative alleles, comprising the steps of:
- (a) identifying a gene vital to cell viability or cell growth that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell, and wherein said gene is located on a high frequency LOH chromosomal arm region;
- (b) screening to identify an inhibitor which inhibits said at least one but less than all of said at least two alternative alleles; and

10

5

15

20

232/116

(c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in which cancerous cells have only the allele of said gene inhibited by said inhibitor and in whom normal cells are heterozygous for said gene.

5

36. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a gene having at least two alternative alleles, comprising the steps of:

10

(a) identifying a gene vital to cell viability or cell growth that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell, and wherein said gene has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene;

(b) screening to identify an inhibitor which inhibits said at least one but less

15

(c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in which cancerous cells have only the allele of said gene inhibited by said inhibitor and in whom normal

than all of said at least two alternative alleles; and

cells are heterozygous for said gene.

20

37. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:

25

a. administering to said patient a therapeutic amount of a first allele specific inhibitor targeted to an allele of a first essential gene present in cells of said precancerous condition, wherein the normal somatic cells of said patient are heterozygous for said first gene, said inhibitor is active on at least one but less than all allelic forms of said gene present in a population and targets only one allelic form present in said normal somatic cells, and said first gene encodes a product required for cell proliferation; and

232/116

wherein cells of said precancerous condition have undergone LOH of said first gene.

38. The method of claim 37, wherein the cells of said precancerous condition are not clonal from a single cell, further comprising the step of:

b. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different essential gene, and wherein said patient is heterozygous for each targeted essential gene and each targeted essential gene has undergone LOH in cells of said precancerous condition.

15

10

5

39. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:

a. administering to said patient a therapeutic amount of a first allele specific

20

25

precancerous condition, wherein the normal somatic cells of said patient are heterozygous for said first gene, said inhibitor is active on at least one but less than

inhibitor targeted to an allele of a first essential gene present in cells of said

all allelic forms of said gene present in a population and targets only one allelic form

present in said normal somatic cells, and said first gene encodes a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or

survival; and

wherein cells of said precancerous condition have undergone LOH of said first gene.

40. The method of claim 39, wherein the cells of said precancerous condition are

WO 98/41648 PCT/US98/05419

348 232/116

not clonal from a single cell, further comprising the step of:

b. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different essential gene, and wherein said patient is heterozygous for each targeted essential gene and each targeted essential gene has undergone LOH in cells of said precancerous condition.

41. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:

a. administering to said patient a therapeutic amount of a first allele specific inhibitor targeted to an allele of a first essential gene present in cells of said precancerous condition, wherein the normal somatic cells of said patient are heterozygous for said first gene, said inhibitor is active on at least one but less than all allelic forms of said gene present in a population and targets only one allelic form present in said normal somatic cells, and said first gene encodes a product required to maintain organic compounds at levels compatible with cell growth or survival; and

wherein cells of said precancerous condition have undergone LOH of said first gene.

42. The method of claim 41, wherein the cells of said precancerous condition are not clonal from a single cell, further comprising the step of:

b. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different essential gene, and wherein said patient is heterozygous for each targeted essential gene and each targeted essential gene has undergone LOH in

5

10

15

20

cells of said precancerous condition.

43. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:

inhibitor targeted to an allele of a first essential gene present in cells of said

precancerous condition, wherein the normal somatic cells of said patient are heterozygous for said first gene, said inhibitor is active on at least one but less than

all allelic forms of said gene present in a population and targets only one allelic form

present in said normal somatic cells, and said first gene encodes a product required

to maintain cellular proteins at levels compatible with cell growth or survival; and

a. administering to said patient a therapeutic amount of a first allele specific

5

10

wherein cells of said precancerous condition have undergone LOH of said first gene.

15

44. The method of claim 43, wherein the cells of said precancerous condition are not clonal from a single cell, further comprising the step of:

20

b. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different essential gene, and wherein said patient is heterozygous for each targeted essential gene and each targeted essential gene has undergone LOH in cells of said precancerous condition.

- 45. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:
- a. administering to said patient a therapeutic amount of a first allele specific inhibitor targeted to an allele of a first essential gene present in cells of said precancerous condition, wherein the normal somatic cells of said patient are

232/116

heterozygous for said first gene, said inhibitor is active on at least one but less than all allelic forms of said gene present in a population and targets only one allelic form present in said normal somatic cells, and said first gene encodes a product required to maintain cellular nucleotides at levels compatible with cell growth or survival; and

wherein cells of said precancerous condition have undergone LOH of said first gene.

- 46. The method of claim 45, wherein the cells of said precancerous condition are not clonal from a single cell, further comprising the step of:
- b. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different essential gene, and wherein said patient is heterozygous for each targeted essential gene and each targeted essential gene has undergone LOH in cells of said precancerous condition.
- 47. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:
- a. administering to said patient a therapeutic amount of a first allele specific inhibitor targeted to an allele of a first essential gene present in cells of said precancerous condition, wherein the normal somatic cells of said patient are heterozygous for said first gene, said inhibitor is active on at least one but less than all allelic forms of said gene present in a population and targets only one allelic form present in said normal somatic cells, and said first gene encodes a product required to maintain the integrity and function of cellular and subcellular structures; and

wherein cells of said precancerous condition have undergone LOH of said first gene.

10

5

15

20

232/116

48. The method of claim 47, wherein the cells of said precancerous condition are not clonal from a single cell, further comprising the step of:

b. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different essential gene, and wherein said patient is heterozygous for each targeted essential gene and each targeted essential gene has undergone LOH in cells of said precancerous condition.

10

5

- 49. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:
- a. administering to said patient a therapeutic amount of a first allele specific inhibitor targeted to an allele of a first essential gene present in cells of said precancerous condition, wherein the normal somatic cells of said patient are heterozygous for said first gene, said inhibitor is active on at least one but less than all allelic forms of said gene present in a population and targets only one allelic form present in said normal somatic cells, and said first gene is located on a high frequency LOH chromosomal arm region; and

20

15

wherein cells of said precancerous condition have undergone LOH of said first gene.

50. The method of claim 49, wherein the cells of said precancerous condition are not clonal from a single cell, further comprising the step of:

25

b. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different essential gene, and wherein said patient is heterozygous for

10

15

20

25

each targeted essential gene and each targeted essential gene has undergone LOH in cells of said precancerous condition.

51. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:

a. administering to said patient a therapeutic amount of a first allele specific inhibitor targeted to an allele of a first essential gene present in cells of said precancerous condition, wherein the normal somatic cells of said patient are heterozygous for said first gene, said inhibitor is active on at least one but less than all allelic forms of said gene present in a population and targets only one allelic form present in said normal somatic cells, and said first gene has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene; and

wherein cells of said precancerous condition have undergone LOH of said first gene.

- 52. The method of claim 51, wherein the cells of said precancerous condition are not clonal from a single cell, further comprising the step of:
- b. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different essential gene, and wherein said patient is heterozygous for each targeted essential gene and each targeted essential gene has undergone LOH in cells of said precancerous condition.
- 53. A method for treating a patient suffering from a cancer, wherein said patient is heterozygous for a gene vital for cell growth or viability, comprising the step of: administering a therapeutic amount of an allele specific inhibitor active on at

least one but less than all allelic forms of said gene present in a population,

wherein said gene encodes a product required for cell proliferation, said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said patient.

5

10

15

- 54. The method of claim 53, further comprising the steps of:
- (a) determining whether non-cancerous cells of said patient are heterozygous for a particular gene essential for cell growth or viability; or
- (b) determining whether cancerous cells of said patient have only one allele of said particular gene; or
 - (c) both (a) and (b).
- 55. A method for treating a patient suffering from a cancer, wherein said patient is heterozygous for a gene vital for cell growth or viability, comprising the step of:

administering a therapeutic amount of an allele specific inhibitor active on at least one but less than all allelic forms of said gene present in a population.

wherein said gene encodes a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival, said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said patient.

20

- 56. The method of claim 55, further comprising the steps of:
- (a) determining whether non-cancerous cells of said patient are heterozygous for a particular gene essential for cell growth or viability; or
- (b) determining whether cancerous cells of said patient have only one allele of said particular gene; or
 - (c) both (a) and (b).
- 57. A method for treating a patient suffering from a cancer, wherein said patient

is heterozygous for a gene vital for cell growth or viability, comprising the step of:
administering a therapeutic amount of an allele specific inhibitor active on at
least one but less than all allelic forms of said gene present in a population,

wherein said gene encodes a product required to maintain organic compounds at levels compatible with cell growth or survival, said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said patient.

- 58. The method of claim 57, further comprising the steps of:
- (a) determining whether non-cancerous cells of said patient are heterozygous for a particular gene essential for cell growth or viability; or
- (b) determining whether cancerous cells of said patient have only one allele of said particular gene; or
 - (c) both (a) and (b).

15

5

10

20

25

59. A method for treating a patient suffering from a cancer, wherein said patient is heterozygous for a gene vital for cell growth or viability, comprising the step of: administering a therapeutic amount of an allele specific inhibitor active on at

least one but less than all allelic forms of said gene present in a population,

wherein said gene encodes a product required to maintain cellular proteins at levels compatible with cell growth or survival, said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said patient.

- 60. The method of claim 59, further comprising the steps of:
- (a) determining whether non-cancerous cells of said patient are heterozygous for a particular gene essential for cell growth or viability; or
- (b) determining whether cancerous cells of said patient have only one allele of said particular gene; or

- (c) both (a) and (b).
- 61. A method for treating a patient suffering from a cancer, wherein said patient is heterozygous for a gene vital for cell growth or viability, comprising the step of:

administering a therapeutic amount of an allele specific inhibitor active on at least one but less than all allelic forms of said gene present in a population,

wherein said gene encodes a product required to maintain cellular nucleotides at levels compatible with cell growth or survival, said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said patient.

- 62. The method of claim 61, further comprising the steps of:
- (a) determining whether non-cancerous cells of said patient are heterozygous for a particular gene essential for cell growth or viability; or
- (b) determining whether cancerous cells of said patient have only one allele of said particular gene; or
 - (c) both (a) and (b).
- 63. A method for treating a patient suffering from a cancer, wherein said patient is heterozygous for a gene vital for cell growth or viability, comprising the step of:

administering a therapeutic amount of an allele specific inhibitor active on at least one but less than all allelic forms of said gene present in a population,

wherein said gene encodes a product required to maintain the integrity and function of cellular and subcellular structures, said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said patient.

- 64. The method of claim 63, further comprising the steps of:
 - (a) determining whether non-cancerous cells of said patient are

5

10

15

20

heterozygous for a particular gene essential for cell growth or viability; or

- (b) determining whether cancerous cells of said patient have only one allele of said particular gene; or
 - (c) both (a) and (b).

5

65. A method for treating a patient suffering from a cancer, wherein said patient is heterozygous for a gene vital for cell growth or viability, comprising the step of: administering a therapeutic amount of an allele specific inhibitor active on at least one but less than all allelic forms of said gene present in a population,

10

wherein said gene is located on a high frequency LOH chromosomal arm region, said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said patient.

15

- 66. The method of claim 65, further comprising the steps of:
- (a) determining whether non-cancerous cells of said patient are heterozygous for a particular gene essential for cell growth or viability; or
- (b) determining whether cancerous cells of said patient have only one allele of said particular gene; or
 - (c) both (a) and (b).

20

25

67. A method for treating a patient suffering from a cancer, wherein said patient is heterozygous for a gene vital for cell growth or viability, comprising the step of:

administering a therapeutic amount of an allele specific inhibitor active on at least one but less than all allelic forms of said gene present in a population,

wherein said gene has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene, said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said

232/116

patient.

- 68. The method of claim 67, further comprising the steps of:
- (a) determining whether non-cancerous cells of said patient are heterozygous for a particular gene essential for cell growth or viability; or
- (b) determining whether cancerous cells of said patient have only one allele of said particular gene; or
 - (c) both (a) and (b).

10 69. A method of inhibiting growth of a cell comprising the step of:

administering at least one inhibitor active on an allele of a gene vital for cell viability or growth,

wherein said gene encodes a product required for cell proliferation, and wherein said inhibitor is less active on at least one other allele of said gene.

70. A method of inhibiting growth of a cell comprising the step of:

administering at least one inhibitor active on an allele of a gene vital for cell viability or growth,

wherein said gene encodes a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival, and wherein said inhibitor is less active on at least one other allele of said gene.

71. A method of inhibiting growth of a cell comprising the step of:

administering at least one inhibitor active on an allele of a gene vital for cell viability or growth,

wherein said gene encodes a product required to maintain organic compounds at levels compatible with cell growth or survival, and wherein said inhibitor is less active on at least one other allele of said gene.

10

5

15

20

10

15

20

25

72. A method of inhibiting growth of a cell comprising the step of: administering at least one inhibitor active on an allele of a gene vital for cell

viability or growth,

wherein said gene encodes a product required to maintain cellular proteins at levels compatible with cell growth or survival, and wherein said inhibitor is less active on at least one other allele of said gene.

73. A method of inhibiting growth of a cell comprising the step of:

administering at least one inhibitor active on an allele of a gene vital for cell viability or growth,

wherein said gene encodes a product required to maintain cellular nucleotides at levels compatible with cell growth or survival, and wherein said inhibitor is less active on at least one other allele of said gene.

74. A method of inhibiting growth of a cell comprising the step of:

administering at least one inhibitor active on an allele of a gene vital for cell viability or growth,

wherein said gene encodes a product required to maintain the integrity and function of cellular and subcellular structures, and wherein said inhibitor is less active on at least one other allele of said gene.

75. A method of inhibiting growth of a cell comprising the step of:

administering at least one inhibitor active on an allele of a gene vital for cell viability or growth,

wherein said gene is located on a high frequency LOH chromosomal arm region, and wherein said inhibitor is less active on at least one other allele of said gene.

76. A method of inhibiting growth of a cell comprising the step of:

administering at least one inhibitor active on an allele of a gene vital for cell viability or growth,

wherein said gene has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene, and wherein said inhibitor is less active on at least one other allele of said gene.

77. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

identifying a patient heterozygous for a said gene encoding a product required for cell proliferation,

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

78. The method of claim 77, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

79. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

determining whether cancer cells in said patient have undergone LOH of a said gene encoding a product required for cell proliferation,

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

15

10

5

20

80. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

5

identifying a patient heterozygous for a said gene encoding a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival,

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

10

81. The method of claim 80, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

15

A method of identifying a potential patient for treatment with an inhibitor 82. active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

20

determining whether cancer cells in said patient have undergone LOH of a said gene encoding a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival,

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

25

A method of identifying a potential patient for treatment with an inhibitor 83. active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the steps of:

232/116

identifying a patient heterozygous for a said gene encoding a product required to maintain organic compounds at levels compatible with cell growth or survival;

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

5

84. The method of claim 83, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

10

85. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

15

determining whether cancer cells in said patient have undergone LOH of a said gene encoding a product required to maintain organic compounds at levels compatible with cell growth or survival,

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

20

86. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the steps of:

25

identifying a patient heterozygous for a said gene encoding a product required to maintain cellular proteins at levels compatible with cell growth or survival;

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

87. The method of claim 86, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

88.

A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

10

5

determining whether cancer cells in said patient have undergone LOH of a said gene encoding a product required to maintain cellular proteins at levels compatible with cell growth or survival.

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

15

89. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the steps of:

20

identifying a patient heterozygous for a said gene encoding a product required to maintain cellular nucleotides at levels compatible with cell growth or survival;

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

25

90. The method of claim 89, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

363 232/116

91. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

5

determining whether cancer cells in said patient have undergone LOH of a said gene encoding a product required to maintain cellular nucleotides at levels compatible with cell growth or survival,

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

10

92. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the steps of:

15

identifying a patient heterozygous for a said gene encoding a product required to maintain the integrity and function of cellular and subcellular structures;

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

20

93. The method of claim 91, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

25

94. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

determining whether cancer cells in said patient have undergone LOH of a

said gene encoding a product required to maintain the integrity and function of cellular and subcellular structures,

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

5

95. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the steps of:

10

identifying a patient heterozygous for a said gene located on a high frequency LOH chromosomal arm region;

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

15

96. The method of claim 95, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

20

97. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

25

determining whether cancer cells in said patient have undergone LOH of a said gene located on a high frequency LOH chromosomal arm region,

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

98. A method of identifying a potential patient for treatment with an inhibitor

10

15

20

25

active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the steps of:

identifying a patient heterozygous for a said gene which has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene;

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

99. The method of claim 98, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

100. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

determining whether cancer cells in said patient have undergone LOH of a said gene which has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene,

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

101. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a gene vital for cell growth or viability,

wherein said gene encodes a product required for cell proliferation, wherein said portion comprises a sequence variance site, and wherein said probe

232/116

hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

5

102. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a gene vital for cell growth or viability,

10

wherein said gene encodes a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival, wherein said portion comprises a sequence variance site, and wherein said probe hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

15

103. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a gene vital for cell growth or viability,

20

wherein said gene encodes a product required to maintain organic compounds at levels compatible with cell growth or survival, wherein said portion comprises a sequence variance site, and wherein said probe hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

25

104. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a gene vital for cell growth or viability,

wherein said gene encodes a product required to maintain cellular

10

15

20

25

proteins at levels compatible with cell growth or survival, wherein said portion comprises a sequence variance site, and wherein said probe hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

105. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a gene vital for cell growth or viability,

wherein said gene encodes a product required to maintain cellular nucleotides at levels compatible with cell growth or survival, wherein said portion comprises a sequence variance site, and wherein said probe hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

106. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a gene vital for cell growth or viability,

wherein said gene encodes a product required to maintain the integrity and function of cellular and subcellular structures, wherein said portion comprises a sequence variance site, and wherein said probe hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

107. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a gene vital for cell growth or

368 232/116

viability,

wherein said gene is located on a high frequency LOH chromosomal arm region, wherein said portion comprises a sequence variance site, and wherein said probe hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

108. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a gene vital for cell growth or viability,

wherein said gene has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene, wherein said portion comprises a sequence variance site, and wherein said probe hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

109. The method ,inhibitor, pharmaceutical composition, or nucleic acid probe of any of claims 1, 13, 21, 29, 37, 53, 69, 77, and 101, wherein said gene is selected from the group consisting of 14-3-3 Protein TAU, CCNA(G2/Mitotic-Specific Cyclin A), CCNB1(G2/Mitotic-Specific Cyclin B1), CCND1(G1/S-Specific Cyclin D1), CCND2(G1/S-Specific Cyclin D2), CCND3(G1/S-Specific Cyclin D3), Cell division control protein 16, Cell division cycle 2, G1 to S and G2 to M, Cell division cycle 25A, Cell division cycle 25B, Cell division cycle 25C, Cell division cycle 27, Cell division-associated protein BIMB, Cyclin A1(G2/Mitotic-Specific Cyclin A1), Cyclin C (G1/S-Specific Cyclin C), Cyclin G1(G2/Mitotic-Specific Cyclin G), Cyclin G2 (G2/Mitotic-Specific Cyclin G), Cyclin H, Cyclin H Assembly, GSPT1(G1 to S phase transition 1), Mitotic MAD2 Protein, MRNP7, RANBP1(RAN binding protein 1), WEE1, Cell Division Protein Kinase 4, CDC28 protein kinase 1, CDC28 protein

10

5

15

20

kinase 2, M-Phase inducer phosphatase 2, M-phase phosphoprotein, mpp6, PPP1ca(Protein phosphatase 1, catalytic subunit, alpha isoform), STM7-LSB, CENP-F kinetochore protein, Centromere autoantigen C, Centromere protein B (80kD), Centromere protein E (312kD), CHC1(Chromosome condensation 1), Chromatin assembly factor-I p150 subunit, Chromatin assembly factor-I p60 subunit, Chromosome segregation gene homolog CAS, HMG1(High-mobility group (nonhistone chromosomal) protein 1), Minichromosome Maintenance (MCM7), Mitotic centromere-associated kinesin, RMSA1(Regulator of mitotic spindle assembly 1), and SUPT5h(Chromatin structural protein homolog (SUPT5H)).

10

15

20

25

5

The method, inhibitor, pharmaceutical composition, or nucleic acid probe of 110. any of claims 2, 14, 22, 30, 39, 55, 70, 80, and 102, wherein said gene is selected from the group consisting of PMCA1 (Calcium Pump), PMCA2 (Calcium Pump), PMCA3 (Calcium Pump), PMCA4 (Calcium Pump), ATP2b1 (Calcium-Transporting ATPase Plasma Membrane), ATP2b2 (Calcium-Transporting ATPase Plasma Membrane), ATP2b4 (Calcium-Transporting ATPase Plasma Membrane), ATP5b (ATP Synthase Beta Chain, Mitochondrial Precursor), Chloride Conductance Regulatory Protein ICLN, H-Erg (Potassium Channel Protein EAG), Nuclear Chloride Ion Channel Protein (NCC27), SCN1b(Sodium Channel, Voltage-Gated, Type I, Beta Polypeptide), Two P-Domain K+ Channel TWIK-1, VDAC2 (Voltage-Dependent Anion-Selective Channel Protein 2), ATP1b1 (Sodium/Potassium-Transporting ATPase Beta-1 Chain), ATP1b2 (Sodium/Potassium-Transporting ATPase Beta-2 Chain), ATPase, Ca++ transporting, plasma membrane 4, ATPase, Ca++ transporting, plasma membrane 2, ATPase, Na+/K+ transporting, alpha 1 polypeptide, ATPase, Na+/K+ transporting, alpha 3 polypeptide, ATPase, Na+/K+ transporting, beta 1 polypeptide, ATPase, Na+/K+ transporting, beta 2 polypeptide, Na+,K+ ATPase, 1 Subunit, Na+,K+ ATPase, 2 alpha, Na+,K+ ATPase, 3 beta, SLC9a1(Solute carrier family 9 (sodium/hydrogen exchanger)), Solute carrier family 4, anion exchanger, member 1, Solute carrier family 4, anion

PCT/US98/05419

232/116

5

10

15

20

25

370

exchanger, member 2, Solute carrier family 9 (sodium/hydrogen exchanger), Passive transporters, MaxiK Potassium Channel Beta Subunit, Chloride Channel 2, Chloride Channel Protein (CLCN7), TRPC1 (Transient Receptor Potential Channel 1), Potassium Channel Kv2.1, ATP5d(ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit), ATP5f1(ATP synthase, H+ transporting, mitochondrial F0 complex, subunit b), ATP50(ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit), ETFa(Electron-transfer-flavoprotein, alpha polypeptide (glutaric aciduria II)), ETFb(Electron-transfer-flavoprotein, beta polypeptide), Nadhubiquinone oxidoreductase 13 kd-B subunit, Nadh-ubiquinone oxidoreductase 39 kD subunit precursor, NADH-Ubiquinone oxidoreductase 75 kD subunit precursor, MFWE subunit. NDUFV2(NADH NADH-Ubiquinone oxidoreductase dehydrogenase (ubiquinone) flavoprotein 2 (24kD)), Ubiquinol-cytochrome c reductase complex 11 kD, ATP Synthase Alpha Chain, NADH dehydrogenaseubiquinone Fe-S protein 8, 23 kDa subunit, Ascorbic Acid (transporter), Folate Binding Protein, Folate receptor 1 (adult), Nicotinamide (transporter), Pantothenic Acid transporter, Riboflavin (transporter), SCL19A1 (Solute Carrier Family 19, Member 1), Solute carrier family 19 (folate transporter), member 1, Thiamine, B6, B12 (transporter), ATP7b (Copper-Transporting ATPase 2), Ceruloplasmin (ferroxidase), Ceruloplasmin receptor (Copper Transporter), Copper Transport Protein HAH1, Molybdenum, Selenium, Tranferrin Receptor (Iron Transporter), Zinc Transporter, and mitochondrial import receptor subunit TOM20.

111. The method ,inhibitor, pharmaceutical composition, or nucleic acid probe of 3, 25, 23, 31, 41, 57, 71, 83, and 103, wherein said gene is selected from the group consisting of GLUT1, GLUT2, GLUT3, GLUT4, GLUT5, GLUT6, Solute carrier family 5 (sodium/glucose cotransporter), Solute carrier family 2 (facilitated glucose transporter), member 2, Solute carrier family 2 (facilitated glucose transporter) member 5, Solute carrier family 3 member 1, System b,(Na+ independent), System y,(Na+ independent), ATRC1(Catioinc), LEUT(Leucine Transporter),

SLC1A1(Solute Carrier Family 1, Member 1), Solute carrier family 16 (monocarboxylic acid transporters), ACO1(Aconitase 1), ACO2(Aconitase 2, mitochondrial), Acyl-Coenzyme A dehydrogenase, C-2 to C-3 short chain, Acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain, Acyl-Coenzyme A 5 dehydrogenase, long chain, Acyl-Coenzyme A dehydrogenase, very long chain, aKGD (alpha ketoglutaratedehydrogenase), ALD-a (Aldolase), ALD-b (Aldolase), ALD-c (Aldolase), CS (Citrate Synthetase), Dihydrolipoamide S-succinyltransferase, DLAT(Dihydrolipoamide S-acetyltransferase (E2 component of pyruvate dehydrogenase complex)), DLD(Dihydrolipoamide dehydrogenase (E3 component of pyruvate dehydrogenase complex, 2-oxo-glutarate complex, branched chain keto 10 acid dehydrogenase complex)), E1k (Oxoglutarate dehydrogenase), E2k (Dihydrolipoamide S-succinyltransferase), E3 (Dihydrolipoyl Dehydrogenase), ENO1(Enolase 1, alpha), ENO2(Enolase 2), ENO3(Enolase 3), Enolase 2, (gamma, neuronal), Enolase 3, (beta, muscle), FH(Fumarate hydratase), G3PDH (Glyceraldehyde-3-Phosphate Dehydrogenase), G6PD (Glucose-6-Phosphate Dehydrogenase), Glucose-6-phosphate dehydrogenase, HK1 (Hexokinase 1), HK2 (Hexokinase 2), HK3 (Hexokinase 3), IDH1(Isocitrate dehydrogenase 1 (NADP+), soluble), IDH2(Isocitrate dehydrogenase 2 (NADP+),mitochondrial). MDH1(Malate dehydrogenase 1, NAD (soluble)), MDH2(Malate dehydrogenase 1, 20 NAD (mitochondrial)), NAD(H)-specific isocitrate dehydrogenase alpha subunit, Oxoglutarate dehydrogenase (lipoamide), PDHB (Pyruvate Dehydrogenase), PDHB(Pyruvate dehydrogenase (lipoamide) beta), PDK4 (Pyruvate dehydrogenase kinase, isoenzyme 4), PFKL(Phosphofructokinase), PGI (Phosphoglucoisomerase), **PGKa** (Phosphoglyceromutase), **PGKb** (Phosphoglyceromutase), PGM1 (Phosphoglyceromutase). PGM2 (Phosphoglyceromutase). PGM3 (Phosphoglyceromutase), PGM4 (Phosphoglyceromutase), Phosphofructokinase, muscle, Phosphoglucomutase 1, Phosphoglycerate kinase 1, PK1 (Pyruvate Kinase), PK2 (Pyruvate Kinase), PK3 (Pyruvate Kinase), Pyruvate dehydrogenase kinase

isoenzyme 2 (PDK2), Pyruvate kinase, liver, Pyruvate kinase, muscle,

15

232/116

SDH1(Succinate dehydrogenase, iron sulphur (Ip) subunit), SDH2(Succinate dehydrogenase 2, flavoprotein (Fp) subunit), TKT(Transketolase (Wernicke-Korsakoff syndrome)), TPI (Trisephosphate Isomerase), Asparagine Synthetase, Aminoacylase-1, Aminoacylase-2, ACAC (Acetyl CoA Carboxylase Beta), ACAC (Acetyl CoA Carboxylase), ACADSB(Acyl-coA dehydrogenase), Mevalonate kinase, Phosphomevalonate kinase, Aspartoacylase, Ornithine decarboxylase 1, Short-acyl-CoA dehydrogenase, Medium acyl-CoA dehydrogenase, Long acyl-CoA dehydrogenase, Isovalveryl CoA dehydrogenase, 2-methyl branched chain, Adenosine Deaminase, Purine-nucleoside phosphorylase, Guanine Deaminase, Xanthine Oxidase, ITM1 (Integral Transmembrane Protein), GFPT (Glutamine-Fructose-6-Phosphate Transaminase), Heparan, Polypeptide N-Acetyltransferase, ACAA(Acetyl-Coenzyme A acyltransferase), Lysophosphatidic acid acyltransferasealpha, Lysophosphatidic acid acyltransferase-beta, FNTa (Farnesyltransferase Alpha Subunit), FNTb (Farnesyltransferase Beta Subunit), NMT1 (N-myristoyltransferase), Calcineurin A, Calcineurin B, Calreticulin Precursor, Phosphatase PPP3ca(Protein phosphatase 3, catalytic subunit), SNK Interacting 2-28(Calcineurin B Subunit), Protein Kinase C, PRKCA(Protein kinase C, alpha), PRKCB1(Protein kinase C, beta 1), PRKCD(Protein kinase C, delta), PRKCM(Protein kinase C, mu), PRKCQ(Protein kinase C-theta), PRKCSH(Protein kinase C substrate 80K-H), Geranylgeranyl, Geranylgeranyltransferase (Type Beta), **GGTB** (Geranylgeranyltransferase), Geranylgeranyltransferase (Type II Beta-Subunit), Gdp Dissociation Inhibitors, GDI Alpha (RAB GDP Dissociation Inhibitor Alpha), and Rab Gdp (RAB GDP Dissociation Inhibitor Alpha).

25

20

5

10

15

112. The method, inhibitor, pharmaceutical composition, or nucleic acid probe of any of claims 4, 16, 24, 32, 43, 59, 72, 86, and 104, wherein said gene is selected from the group consisting of GOT(Glutamic-oxaloacetic transaminase 2), GOT1(Glutamic-oxaloacetic transaminase 1), PYCS(Pyrroline-5-carboxylate synthetase), Tyrosine aminotransferase, AARS, CARS, DARS, EPRS, FARS,

GARS, HARS, IARS, KARS, LARS, MARS, NARS, QARS, RARS, SARS, TARS, VARS, WRS, YARS, Ribosomal Protein L11, Ribosomal Protein L12, 5 10 15 20 25

Ribosomal Protein L17, Ribosomal Protein L18, Ribosomal Protein L18a, Ribosomal Protein L19, Ribosomal Protein L21, Ribosomal Protein L22, Ribosomal Protein L23, Ribosomal Protein L23a, Ribosomal Protein L25, Ribosomal Protein L26, Ribosomal Protein L27, Ribosomal Protein L27a, Ribosomal Protein L28, Ribosomal Protein L29, Ribosomal Protein L30, Ribosomal Protein L31, Ribosomal Protein L32, Ribosomal Protein L35, Ribosomal Protein L35a, Ribosomal Protein L36a, Ribosomal Protein L39, Ribosomal Protein L41, Ribosomal Protein L41, Ribosomal Protein L44, Ribosomal Protein L6, Ribosomal Protein L7, Ribosomal Protein L7a, Ribosomal Protein L8, Ribosomal Protein L9, Ribosomal Protein P1, Ribosomal Protein S10, Ribosomal Protein S11, Ribosomal Protein S13, Ribosomal Protein S14, Ribosomal Protein S15, Ribosomal Protein S15A, Ribosomal Protein S16, Ribosomal Protein S17, Ribosomal Protein S17A, Ribosomal Protein S17B, Ribosomal Protein S18, Ribosomal Protein S20, Ribosomal Protein S20A, Ribosomal Protein S20B, Ribosomal Protein S21, Ribosomal Protein S23, Ribosomal Protein S25, Ribosomal Protein S26, Ribosomal Protein S28, Ribosomal Protein S29, Ribosomal Protein S3, Ribosomal Protein S4, Ribosomal Protein S4X, Ribosomal Protein S4Y, Ribosomal Protein S5, Ribosomal Protein S6, Ribosomal Protein S7, Ribosomal Protein S8, Ribosomal Protein S9, Initiation of polypeptide polymerization, eIF-2 (Eukaryotic initiation factor), eIF-2associated p67(Eukaryotic initiation factor), eIF-2A(Eukaryotic initiation factor), eIF-2Alpha(Eukaryotic initiation factor), eIF-2B(Eukaryotic initiation factor), eIF-2B-Gamma(Eukaryotic initiation factor), eIF-2Beta(Eukaryotic initiation factor), eIF-3 p110(Eukaryotic initiation factor), eIF-3 p36(Eukaryotic initiation factor), eIF-4A(Eukaryotic initiation factor), eIF-4C(Eukaryotic initiation factor), eIF-4E(Eukaryotic initiation factor), eIF-4Gamma(Eukaryotic initiation factor), eIF-5(Eukaryotic initiation factor), eIF-5A, Eukaryotic peptide chain release factor subunit 1, P97(Eukaryotic initiation factor), eEF1A2(Eukaryotic elongation factor),

232/116

eEF1D(Eukaryotic elongation factor), eEF2(Eukaryotic elongation factor), eIF4A2 (Eukaryotic initiation factor), KIAA0031(Elongation factor 2), KIAA0219(Putative translational activator C18G6.05C), Factor 1-Alpha 2(Eukaryotic translation elongation factor 1 alpha 2), Cis-Trans Isomerase, DNAj Protein Homolog 1, DNAj Protein Homolog 2, DNAJ Protein homolog HSJ1. T-Complex, Aspartylglucosaminidase, T-Complex 1, Alpha, T-Complex 1, Epsilon, T-Complex 1, Gamma, T-Complex 1, Theta, T-Complex 1, Zeta, 26S Protease regulatory subunit 4, Alpha-2-Macroglobulin, Calpain 1, Large, CLPP(ATP-Dependent CLP protease proteolytic subunit), KIAA0123 (Mitochondrial processing peptidase alpha subunit). MMP7. Proteasome Beta 6. Proteasome Beta 7. Proteasome C13. Proteasome C2, Proteasome C7-1, Proteasome inhibitor hPI31 subunit, Proteasome P112, Proteasome P27, Proteasome P55, Enzyme E2-17 Kd(Cyclin-selective ubiquitin carrier protein), ISOT-3(Ubiquitin carboxyl-terminal hydrolase T), ORF (Ubiquitin carboxyl-terminal hydrolase 14), PGP(Ubiquitin carboxyl-terminal hydrolase isozyme L1), UBA52(Ubiquitin A-52 residue ribosomal protein fusion product 1). Ubiquitin carboxyl-terminal hydrolase 3, Ubiquitin carboxyl-terminal hydrolase isozyme L3, Ubiquitin carboxyl-terminal hydrolase T, Ubiquitin carrier protein (E2-EPF), Ubiquitin fusion-degradation protein (UFD1L), Ubiquitin Hydrolase. Ubiquitin-conjugating enzyme E2I, SEC23(Protein transport protein SEC23), SEC23A(Protein transport protein SEC23), SEC7(Protein transport protein SEC7), SEC61 (Beta Subunit), and LDLR (LDL receptor).

25

5

10

15

20

113. The method, inhibitor, pharmaceutical composition, or nucleic acid probe of any of claims 5, 17, 25, 33, 45, 73, 89, and 105, wherein said gene is selected from the group consisting of Adenylate Kinase-2, Adenylosuccinate synthetase, Adenylosuccinate Lyase, DPRT (ADP-Ribosyltransferase), ADSL (Adenylosuccinate lyase/AMP synthetase), ADSS (Adenylosuccinate Synthetase), CAD PROTEIN, CTP Synthetase, CTPS(CTP synthetase), Cytidine Triphosphate Synthetase, GARS (Phosphoribosylglycinamide synthetase), GART (Phosphoribosylglycinamide

formyltransferase), GART(Phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetase, phosphoribosylaminoimidazole synthetase), GMP Synthetase, IMP Cyclohydrolase, IMP dehydrogenase, IMPDH1(IMP (inosine monophosphate) dehydrogenase 1), IMPDH2(IMP (inosine monophosphate) 5 dehydrogenase 2), Phosphoribosyl diphosphotransferase. Phosphoribosylaminoimidazolecarboxamide formyltransferase. Phosphoribosylformylglycinamide synthetase, Phosphoribosylglycinamide carboxylase, Phosphoribosylglycinamide-succinocarboxamide synthetase, PPAT (Amidophoribosyltransferase), PPAT(Phosphoribosyl pyrophosphate 10 amidotransferase), Ribonucleoside-diphosphate reductase M1 chain, Ribonucleosidediphosphate reductase M2 chain, Thymidine Kinase, Thymidylate Synthase, UMK(Uridine kinase), UMPK (Uridine monophosphate kinase), UMPS(Uridine monophosphate synthetase (orotate phosphoribosyl transferase and orotidine-5'decarboxylase)), Uridine Phosphorylase, DNA Origin Recognition Complex, ORC1, ORC2, ORC3, ORC4, ORC5, ORC6, ORC Regulators, CDC6, CDC7, CDC1, 15 DNA Polymerization, DNA Polymerases, Adprt (NAD(+)ADP-Ribosyltransferase), DNA Polymerase Alpha-Subunit, DNA Polymerase Delta, POLa(DNA Polymerase Alpha/Primase Associated Subunit), POLb(DNA Polymerase Beta Subunit), POLd1(Polymerase (DNA directed), Delta 1, Catalytic 20 Subunit), POLd2(Polymerase (DNA directed), Delta 2), POLE(Polymerase (DNA directed)), POLg (DNA Polymerase Gamma Subunit), Terminal Transferase (DNA Nucleotidylexotransferase), Activator 1 36 Kd, CDC46 (DNA Replication Licensing Factor), CDC47 (DNA Replication Licensing Factor CDC47), DNA Topoisomerase III, DRAP1 (DNA Replication Licensing Factor MCM3), KIAA0030 Gene (Cell 25 Division Control Protein 19), KIAA0083 Gene (DNA Replication Helicase DNA2), MCM3 (DNA Replication Licensing Factor MCM3), PCNA (Proliferating Cell Nuclear Antigen), PRIM1 (DNA Primase 49 kD Subunit), PRIM2 (DNA Primase), PRIM2a (DNA Primase 58 kD Subunit), PRIM2b (DNA Primase), RECa (Replication Protein A 14 kD Subunit), RFC1 (Replication Factor C (activator 1) 1),

376 232/116

PCT/US98/05419

RFC2 (Replication Factor C 2), RFC3 (Replication Factor C (activator 1) 3), RFC4 (Replication Factor C, 37-kD subunit), RFC5 (Replication Factor C), RPA1 (Replication protein A1 (70kD)), RPA2 (Replication protein A2 (32kD)), RPA3 (Replication protein A3 (14kD)), TOP1 (DNA Topoisomerase I), TOP2a (Topoisomerase (DNA) II Alpha (170kD)), TOP2b (Topoisomerase (DNA) II Beta (180kD)), CHL1(CHL1-Related Helicase), DNA Helicase II, Mi-2(Chromodomain-Helicase- DNA-Binding Protein CHD-1), RECQL (ATP-Dependent DNA Helicase Q1), Smbp2 (DNA-Binding Protein SMUBP-2), H1(0) (Histone H5A), Histone H1d, Histone H1x, Histone H2a.1, Histone H2a.2, Histone H2b.1, Histone H4, SLBP (Histone Hairpin-Binding Protein), TATA-binding Complex, Small Nuclear RNA-Activating Complex, Polypeptide 1, 43KD (SNAPC1), Small Nuclear RNA-Activating Complex, Polypeptide 2, (SNAPC2), Small Nuclear RNA Activating Complex, Polypeptide 3, 50KD (SNAPC3), TAF2D(TBP-associated factor), TAFII100(TBP-associated factor), TAFII130(TBP-associated factor), TAFII20(TBPassociated factor), TAFII250(TBP-associated factor), TAFII28(TBP-associated TAFII30(TBP-associated factor), TAFII32(TBP-associated factor), TAFII40(TBP-associated factor), TAFII55(TBP-associated factor), TAFII80(TBPassociated factor), TBP(TATA Binding Protein), TMF1 (TATA Element Modulatory Factor 1), RPB 7.0, RPB 7.6, RPB 17, RPB 14.4, RNA polymerase I subunit hRPA39, 13.6 Kd Polypeptide (DNA-Directed RNA Polymerase II 13.6 kD Polypeptide), POLR2C(RNA polymerase II, polypeptide C (33kD)), Polypeptide A (220kd), RNA Polymerase II 23k, RNA polymerase II holoenzyme component (SRB7), RNA polymerase II subunit (hsRPB10), RNA polymerase II subunit (hsRPB8), RNA polymerase II subunit hsRPB4, RNA polymerase II subunit hsRPB7, RNA Polymerase II Subunit(DNA- Directed RNA Polymerases I, II, and III 7.3 kD polypeptide), TCEB1L(Transcription elongation factor B (SIII), polypeptide 1-like), RNA polymerase III subunit (RPC39), RNA polymerase III subunit (RPC62), Elongation Factor 1-Beta, Elongation Factor S-II, TCEA (110kD), TCEB1, TCEB (18kD), TCEB1L, TCEB3, TCEC (15kDa), TFIIS (Transcription

WO 98/41648

5

10

15

20

10

15

20

25

232/116

Elongation Factor IIS), E2F1 (E2F Transcription Factor), TFAP2A (Transcription Factor A2 Alpha), TFCP2 (Transcription Factor CP2), TFC12 (Transcription Factor 12), PRKDC (Protein Kinase, DNA activated catalytic subunit), SUPT6H, TFIIA gamma subunit, TFIIA delta, TFIIB related factor hBRF (HBRF), TFIIE Alpha Subunit, TFIIE Beta Subunit, TFIIF, Beta Subunit, GTF2F1 (TFIIF), GTF2F2 (TFIIF), General Transcription Factor IIIA, TFIIH(52 kD subunit of transcription factor), TFIIH(p89). TFIIH(p80), TFIIH(p62), TFIIH(p44), TFIIH(p34), Transcription Factor IIf(General transcription factor IIF, polypeptide 1 (74kD subunit))Transcription Factor IIf(General transcription factor IIF, polypeptide 1 (74kD subunit)), BTF 62 kDSubunit (Basic transcription factor 62 kD subunit). CAMP-dependent transcription factor ATF-4, CCAAT box-binding transcription factor 1, CRM1(Negative regulator CRM1), Cyclic-AMP-dependent transcription factor ATF-1, GABPA(GA-binding protein transcription factor, alpha subunit (60kD)), ISGF-3(Signal transducer and activator of transcription 1-alpha/beta), NFIX(Nuclear factor I/X (CCAAT-binding transcription factor)), NFYA(Nuclear transcription factor Y, alpha), NTF97(Nuclear factor p97), Nuclear factor I-B2 (NFIB2), Nuclear factor NF45, Nuclear factor NF90, POU2F1(POU domain, class 2, transcription factor 1), Sp2 transcription factor, TCF12(Transcription factor 12 (HTF4, helix-loop-helix transcription factors 4)), TCF3(Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)), TCF6L1(Transcription factor 6-like 1), TF P65(Transcription factor p65), TFCOUP2(Transcription factor COUP 2 (a.k.a. ARP1)), Transcription factor IL-4 Stat, Transcription Factor S-II (Transcription factor S-II-related protein), Transcription factor Stat5b, Transcription Factor, Transcription factor (CBFB), 9G8 Splicing Factor (Pre-mRNA Splicing SRP20), CC1.3(Splicing factor (CC1.3)),HnRNP F protein, HNRPA2B1(Heterogeneous nuclear ribonucleoproteins A2/B1), HNRPG(Heterogeneous nuclear ribonucleoprotein G), HNRPK(Heterogeneous nuclear ribonucleoprotein K), Pre-mRNA splicing factor helicase, Pre-mRNA splicing factor SF2, P33 subunit, Pre-mRNA splicing factor SRP20, Pre-mRNA

splicing factor SRP75, PRP4(Serine/threonine-protein kinase PRP4), PTB-Associated Splicing Factor, Ribonucleoprotein A', Ribonucleoprotein A1, Ribonucleoprotein C1/C2, RNP Protein, L (Heterogeneous nuclear ribonucleoprotein L), RNP-Specific C(U1 small nuclear ribonucleoprotein C), SAP 145(Spliceosome associated protein), SAP 61(Splicesomal protein), SC35(Splicing factor), SF3a120, SFRS2(Splicing factor, arginine/serine-rich 2), SFRS5(Splicing factor, arginine/serine-rich 5), SFRS7(Splicing factor, arginine/serine-rich 7), Small nuclear ribonucleoprotein SM D1, SnRNP core protein Sm D2, SnRNP core protein Sm D3, SNRP70(U1 snRNP 70K protein), SNRPB(Small nuclear ribonucleoprotein polypeptides B and B1). SNRPE(Small nuclear ribonucleoprotein polypeptide E), SNRPN(Small nuclear ribonucleoprotein polypeptide N), Splicing factor SF3a120, Splicing factor U2AF 35 kD subunit, Splicing factor U2AF 65 kD subunit, SRP30C(Pre-mRNA splicing factor SF2, p33 subunit), SRP55-2(Pre-mRNA splicing factor SRP75), Transcription factor BTEB, Transcription initiation factor TFIID 250 kD subunit, Cleavage and polyadenylation specificity factor, Cleavage stimulation factor, 3' pre-RNA, subunit 1, 50kD, Cleavage stimulation factor, 3' pre-RNA, subunit 3, 77kD, HNRNP Methyltransferase, PABPL1(Poly(A)-binding protein-like 1), Pap mRNA(Poly(A) Polymerase), RNA unwinding, RNA Helicase, GU Protein (ATP-Dependent RNA helicase dead), KIAA0224 Gene(Putative ATP-dependent RNA helicase), RNA Helicase A, RNA Helicase Pl10, and Ste13(Nuclear RNA Helicase).

25

5

10

15

20

The method, inhibitor, pharmaceutical composition, or nucleic acid probe of any of claims 6, 18, 26, 34, 47, 63, 92, and 106, wherein said gene is selected from the group consisting of AP47(Clathrin Coat Assembly AP47), AP50(Clathrin Coat Assembly Protein AP50), Cell Surface Protein (Clathrin Heavy Polypeptide-Like Protein), Cltb(Clathrin Light Chain B), Cltc (Clathrin Heavy Chain), Adenylate Cyclase, Adenylate Cyclase, Adenylate Cyclase, II, Adenylate Cyclase, IV, Complex I, MTND1 (Subunit ND1), MTND2 (Subunit ND2), MTND3 (Subunit ND3), MTND4 (Subunit ND4), MTND4L (Subunit ND4L), MTND5 (Subunit ND5).

10

15

20

25

232/116

MTND6 (Subunit ND6), Complex II, Complex III, Cytochrome b subunit, Complex IV, CO1 (Cytochrome c Oxidase Subunit I), CO2 (Cytochrome c Oxidase Subunit 2), CO3 (Cytochrome c Oxidase Subunit 3), Complex V, ATP Synthase Subunit ATPase 6, Kinesin Heavy Chain, Kinesin Light Chain, Syntaxin 1a, Syntaxin 1b, Syntaxin 3, Syntaxin 5a, Syntaxin 7, CANX (Calnexin), ER Lumen Protein 1, ER Lumen Protein 2, Ribophorin I, Ribophorin II, Signal recognition particle receptor, SRP Protein, TIM17 preprotein translocase, Golgin-245, TGN46 (Trans-Golgi Network Integral Membrane Protein TGN38 Precursor), Beta-Cop, Coatomer Beta' Subunit, Coatomer Delta Subunit, Gp36b Glycoprotein (Vesicular integral-membrane protein VIP36 precursor), Homologue of yeast sec7, Protein transport protein SEC13 (Chromosome 3p25), SEC14 (S. Cerevisiae), Synaptic vesicle membrane protein VAT-1, Synaptobrevin-3, Synaptotagmin I, Transmembrane(COP-coated vesicle membrane protein p24 precursor), Vacuolar-Type (Clathrin-coated vesicle/synaptic vesicle proton pump 116 kd subunit), 140 kD Nucleolar phosphoprotein, Autoantigen p542, Export protein Rae1 (RAE1), Heterogeneous nuclear ribonucleoprotein A1, Nuclear pore complex protein hnup153, Nuclear pore complex protein NUP214, Nuclear pore glycoprotein p62, Nuclear Transport Factor 2, Nucleoporin 98 (NUP98), NUP88, Ribonucleoprotein A, Ribonucleoprotein B". Karyopherin, Importin Alpha Subunit, TRN (Transportin), Actin, Beta-Centractin, Capping Protein Alpha, CFL1 (Cofilin, Non-Muscle Isoform), Desmin, Dystrophin, Gelsolin, hOGG1(Myosin Light Chain Kinase), IC Heavy Chain, Itga2 (Integrin, Alpha 2 (CD49B, alpha 2 Subunit of VLA-2 receptor)), Itga3 (Integrin Alpha-3 Precursor), Keratin 19, Keratin, Type II, Lamin A, LBR(Lamin B Receptor), Light Chain Alkali, MacMarcks mRNA, MAP1a (Microtubule-Associated Protein 1A). MAP2(Microtubule-Associated Protein 2), MEG1(Protein-Tyrosine Phosphatase MEG1), Microtubule-Associated Protein TAU, Suppressor Of Tubulin STU2, TUBe (Tubulin Gamma Chain), Tubulin Alpha-4 Chain, USH1b (Myosin II Heavy Chain). Villin, Villin 2 (Ezrin), Actin Depolymerizing, Capping (Actin Filament). MYH9(Myosin, Heavy Polypeptide 9, Non-Muscle), MYL5(Myosin Regulatory

10

15

20

25

Light Chain 2), Myosin Heavy Chain 95F, Myosin Heavy Chain IB, Myosin IB, Sh3p17(Myosin IC Heavy Chain), Sh3p18(Myosin IC Heavy Chain), KIAA0059(Dematin:Actin-Bundling Protein), TTN (Titin:Myosin Light Chain Kinase), ATP6c(Vacuolar H+ ATPase proton channel subunit), ATP6a1 (ATPase, H+ Transporting, Lysosomal (Vacuolar Proton Pump), Alpha Polypeptide, 70kD), ATP6b1(ATPase, H+ transporting, lysosomal (vacuolar proton pump), beta polypeptide, 56/58kD), ATP6d(ATPase, H+ transporting, lysosomal (vacuolar proton pump) 42kD), ATP6e(ATPase, H+ transporting, lysosomal (vacuolar proton pump) 31kD), ATPase, H+ transporting, lysosomal (vacuolar proton pump) 31kD, and Superoxide Dismutase.

- 115. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a conditionally essential gene, and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:
 - (a) determining at least two alleles of a said gene;
- (b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles;

wherein inhibition of expression of at least one but less than all of said alleles or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

116. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a conditionally essential gene, said gene has at least two alternative alleles in a population, and

wherein said inhibitor targets at least one but less than all of said alternative alleles.

117. A pharmaceutical composition, comprising

at least one allele specific inhibitor targeting at least one but less than all allelic forms of a conditionally essential gene in a population; and

a pharmaceutically acceptable carrier or excipient.

5

118. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a conditionally essential gene having at least two alternative alleles, comprising the steps of:

10

(a) identifying a conditionally essential gene that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell;

15

(b) screening to identify an inhibitor which inhibits said at least one but less than all of said at least two alternative alleles; and

(c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in whom cancerous cells have only an allele of said gene inhibited by said inhibitor and in whom normal cells are heterozygous for said gene and contain an allelic form not inhibited by said inhibitor.

20

- 119. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:
- a. subjecting cells of said precancerous condition to an altered condition such that a first conditionally essential becomes essential;

25

b. administering to said patient a therapeutic amount of a first allele specific inhibitor targeted to an allele of said first conditionally essential gene present in cells of said precancerous condition, wherein the normal somatic cells of said patient are heterozygous for said first gene, said inhibitor is active on at least one but less than all allelic forms of said gene present in a population and targets only one allelic form present in said normal somatic cells; and

232/116

wherein cells of said precancerous condition have undergone LOH of said first gene.

120. The method of claim 119, wherein the cells of said precancerous condition are not clonal from a single cell, further comprising the step of:

c. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of a conditionally essential gene or an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different gene, and wherein said patient is heterozygous for each targeted gene and each targeted gene has undergone LOH in cells of said precancerous condition.

- 121. A method for treating a patient suffering from a cancer, wherein said patient is heterozygous for a conditionally essential gene, comprising the steps of:
- a) subjecting cells of said cancer to altered conditions such that said gene is essential; and

administering a therapeutic amount of an allele specific inhibitor active on at least one but less than all allelic forms of said gene present in a population,

wherein said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said patient.

- 122. The method of claim 121, further comprising the steps of:
- (a) determining whether non-cancerous cells of said patient are heterozygous for a particular conditionally essential gene; or
- (b) determining whether cancerous cells of said patient have only one allele of said particular gene; or
 - (c) both (a) and (b).

5

10

15

20

WO 98/41648 PCT/US98/05419

383 232/116

123. A method of inhibiting growth of a cell comprising the steps of:

- a) subjecting said cell to conditions such that said gene is essential; and
- b) administering at least one inhibitor active on an allele of said conditionally essential gene,

wherein said inhibitor is less active on at least one other allele of said gene.

124. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a conditionally essential gene, wherein said patient is suffering from a cancer, said method comprising the step of:

identifying a patient heterozygous for a said gene,

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

125. The method of claim 124, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

126. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a conditionally essential gene, wherein said patient is suffering from a cancer, said method comprising the step of:

determining whether cancer cells in said patient have undergone LOH of a said gene,

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

126. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a conditionally essential gene, wherein said portion comprises a sequence variance site, and wherein

15

20

said probe hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

5

- 127. A method for selecting a patient for treatment with an antiproliferative treatment, comprising the steps of:
- a) determining whether normal somatic cells in a potential patient are heterozygous for an essential or conditionally essential gene, wherein a first allelic form of said gene is more active than a second allelic form, and wherein a reduction in the activity of said gene in a cell increases the sensitivity of said cell to a said antiproliferative treatment; and
- b) determining whether cancer cells of said patient have only said second allelic form of said gene,

wherein if said somatic cells are heterozygous and said cancer cells have only said second allelic form, it is indicative that said patient is suitable for treatment with said antiproliferative treatment.

15

10

128. A method for selecting an antiproliferative treatment for a patient suffering from a cancer, comprising the steps of:

20

a) determining whether normal somatic cells in a potential patient are heterozygous for an essential or conditionally essential gene which reduces the sensitivity of cells to an antiproliferative treatment, wherein a first allelic form of said gene is more active than a second allelic form, and wherein a reduction in the activity of said gene in a cell increases the sensitivity of said cell to a said antiproliferative treatment; and

25

b) determining whether cancer cells of said patient have only said second allelic form of said gene,

wherein if said somatic cells are heterozygous for said gene and said cancer cells have only said second allelic form, it is indicative that said antiproliferative WO 98/41648 PCT/US98/05419

385 232/116

treatment is suitable for said patient.

129. The method of any of claims 115-129, wherein said gene is selected from the group consisting of:

5

10

15

20

25

galactose-1-phosphate uridyltransferase, galactose kinase, UDP galactose-4epimerase, methionine synthase, asparagine synthase, glutamine synthetase, multidrug resistance gne/Pglycoprotein, multidrug resistance associated proteins 1-5, bleomycin hydrolase, dihydropyrimidine dehydrogenase, β-ureidopropoinase, β-alanine synthetase, cytidine deaminase, thiopurine methyltransferase, CYP1A1, CYP1A2, CYP2A6, CYP2A7, CYP2B6, CYP2B7, CYP2C8, CYP2C9, CYP2C17, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2F1, CYP3A3, CYP3A4, CYP3A5, CYP3A7, CYP4B1, CYP7, CYP11, CYP17, CYP19, CYP21, CYP27, glutathione transferase alpha, glutathione transferase theta, glutathione transferae mu, glutathione transferase pi, methylguanine methyltransferase, 3-alkylguanine alkyltransferase, 3-methyladenine DNA glucosylase, DNA dependent protein kinase, catalytic subunit of DNA-PK, DNA binding subunit of DNA-PK Ku-70 or Ku-80 subunit, KARP-1, Poly(ADP-ribose) polymerase, Fanconi Anemia genes A, B, C, D, E, F, G, and H, ERCC-1, ERCC2/XPD, ERCC3/XPB, ERCC4, ERCC5, ERCC6, XPA, XPC, XPE, HHR23A, HHR23B, uracil glycosylase, 3-methyl adenine DNA glycosylase, NF-kappa B, XRCC4, XRCC5/Ku80, XRCC6, XRCC7, glutathione-X-transferase, I-kappa B alpha, HSP70, HSP27, and 9-oxoguanine DNA glycosylase.

131. A method for identifying a potential patient undergoing transplantation for treatment with an inhibitor active on at least one but less than all alleles of an essential gene, comprising the step of:

identifying a patient undergoing an allogenic bone marrow transplantation in which the donor tissue contains at least one alternative allele of an essential gene different from the alleles in somatic cells of said patient.

10

15

20

25

- 132. The method of claim 131, wherein said donor or said recipient is homozygous for an alternative allelic form of an essential gene that is not present in the other of said donor or said recipient.
- 133. A method for treating graft versus host disease in a patient receiving allogenic bone marrow transplantation, said method comprising the step of

administering to said patient at least one allele specific inhibitor specific for at least one but less than all of the allelic forms of an essential gene in a population, wherein said inhibitor inhibits stimulation of the donor immune system, and cells of the said patient comprise an allelic form of said gene not present in the donor bone marrow.

134. The method of claim 133, wherein said allele specific inhibitor is selected by identifying at least one alternative alleles of an essential gene present in the donor tissues but absent in the normal somatic cells of said patient; and

selecting a said inhibitor active on a said alternative allele of an essential gene present in said donor tissues but absent in the normal somatic cells of said patient.

- 135. The method of claim 134, wherein said at least one inhibitor recognizes both alleles of said essential gene that are present in said donor, but not both alleles of said gene that are present in said patient.
- 136. A method for enhancing engraftment of an allogenic bone marrow transplant, comprising the step of administering to a patient receiving said transplant an allele specific inhibitor which kills or suppresses the patient's bone marrow but not the donor bone marrow, thereby providing space for engraftment of the donor cells within the marrow cavity.
- 137. The method of claim 136, wherein the allele specific inhibitor is selected by

WO 98/41648 PCT/US98/05419

387 232/116

identifying alternative alleles of an essential gene that are present in the recipient but not the donor marrow.

- 138. The method of claim 137, wherein said allele specific inhibitor recognizes both allelic forms of the essential gene that are present in the recipient, but not both allelic forms of the same gene that are present in the recipient.
- 139. A method for treating or preventing chimerism in allogenic bone marrow transplantation, comprising

selectively killing or suppressing proliferation of the patient's own cells without toxicity to the donor cells by

administering to a patient receiving said transplantation at least one allele specific inhibitor active on at least one but less than all alternative alleles of a gene vital for cell growth or viability, wherein said inhibitor targets the allelic form or forms of a gene in bone marrow of said patient but does not target at least one allelic form of said gene in the donor bone marrow.

140. A method for treating cancer in a patient receiving allogenic or autologous transplantation, comprising the step of

administering to said patient at least one allele specific inhibitor which kills or inhibits the growth of cancer cells without toxicity to the transplanted marrow.

141. The method of claim 141, wherein said transplantation is autologous transplantation and said at least one allele specific inhibitor is selected to be active on the allele of an essential gene remaining in the cancer cells due to LOH in patients whose normal somatic cells are heterozygous for said essential gene, but not on the alternative allele of said gene present in said normal somatic cells,

whereby said administration enables continuing therapy of cancer without suppression of the transplanted marrow.

10

5

15

142. The method of claim 140, wherein said transplantation is allogenic transplantation and said allele specific inhibitor recognizes both alleles of said essential gene that are present in the recipient, but not both forms of the said gene that are present in said patient.

5

143. A method for eliminating malignant cells from transplanted marrow during autologous transplantation of a patient heterozygous for an essential gene, comprising

10

contacting cells from harvested autologous bone marrow ex vivo with at least one allele specific inhibitor active on at least one but less than all alternative alleles of said essential gene, wherein said inhibitor targets an allelic form of said gene present in cancer cells of said patient but does not target an alternative allele of said gene present in normal cells from said autologous bone marrow,

wherein said gene has undergone LOH in cancer cells of said patient.

15

144. The method of claim 143, wherein said autologous bone marrow is harvested from said patient prior to high dose radiation or chemotherapy.

20

- 145. The method of claim 143, further comprising the steps of:
- a. identifying one alternative allele of an essential gene remaining in the cancer cell due to LOH in patients who are heterologous with two different alternative forms of the essential gene in normal cells of the autologous bone marrow;

- b. cultivating said autologous bone marrow ex vivo in the presence of an allele specific inhibitor that inhibits the allele that is present in the cancer cells, but not the heterologous allele that is present in the normal bone marrow.
- 146. The method of claim 143, wherein said autologous bone marrow is contacted with a plurality of said allele specific inhibitors.

WO 98/41648 PCT/US98/05419

389 232/116

147. A method for separating a first cell from a mixture of cells, comprising the steps of:

- a) providing an allele specific binding compound which binds to at least one but less than all alleles of a gene, wherein a said allele of said gene expressed in said first cell is not expressed in other cells of said mixure of cells or is expressed in other cells in said mixture of cells and not in said first cell;
- b) contacting said mixture of cells with said binding compound under conditions such that said binding compound binds to said allele and not to non-target alleles; and
 - c) separating bound cells from unbound cells.
- 148. The method of claim 147, wherein said mixture of cells comprises normal somatic cells and cancer cells from a patient, said first cells are said normal somatic cells, and said first cells express a said allele deleted in said cancer cells due to LOH of said gene, comprising

separating said normal somatic cells from said cancer cells.

- 149. The method of claim 147, wherein said allele specific binding compound is an antibody or antibody fragment.
- 150. The method of claim 147, wherein said binding compound is attached to a solid support.

10

5

15

7.6

Target Gene Summary Table
Dihydr_pyrimidine Dehydrogenase
Chromosome 1p22-1q21
VARIA950

heterozygosity					50 % in blacks and chinese					-						700		_		
Protein		Cys/Arg	Met/val				ygosity		s outre year.							not determ			enotyped:	
_	Comments			These are			56% = Locus Haterozygostty		enninc o racial Groups surveyed. a=Asian (other)	ar≂Arab esh≃Ashkenazi	* 5	ıban	rek panic	an Ian	j⊨Japanese pr≃Puerto Rican	w=White			Other populations genotyped:	
1	34 35 36 Hel%	1 1 2 8	9% V	35%	TC 38%				B=Asi	ar-Arab ash-Ash	b=Black	cu≕Cuban	h=Hspanic	l≓Indian It≃Italian	⊐Japanese pr≖Puerto F	wa White			Other	
Ì	2	1 2	*		E		3	_												
Γ	2	TT TT TT	AG AA AA	GG AA AA GG	7. 2	\dashv	3	ļ							With					
Γ	2	TT TT	Ş.	\$	С Т		3						Ë	McBride, O.W., Podschun, B., Schnackertz, K.D., and Gonzalez,	Dilydropydnidine Delydrogenase, an Enzyma Associated With	196 196			ļ	-
I	<u>2</u>	1	AA AA AA	୍ଦ	8	_	3	1	*				Sequence nomenclature and numbering from: Yokota H., Femandez-Sakuero P., Funya H., Lin K.,	McBride,O.W., Podschun,B., Schnackertz,K.D., and Gonzal	(ssoc	3-reproduced toward and Congental Infinite Oraciums. Journal of Biological Chemistry, 269 (37) 23192-23196				
F	12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		Ş	Š	ડ કુ		3		I Łi				Sequence nomenclature and numbering fro Yokota H., Fernandez-Sakuero P., Funya H., Un.K.,	D. 9	em/	231				
ŀ	2	F	¥	GG AM AM NG NG	E				18-1				umb Eva	Z, Z	E E	(3)				
Į	2	F	AN AN AN	2	۲ ع		3		:: ::				를 급	nacke	. B. B.	269 269				
솱	2	딈	X	8			3		Other SSCP polymorphisms:				re al	Sch.	ena	alsta L				
	2	E	Ý	Ş	8		<u> </u>		nor T				Safe	9 () 5 ()					l	
	12	티	AA AA AA AG AA	AA GG AG	S		•	ŀ	<u>5</u>				menc	odsch		Jeal			ŝ	
	20 2	Į.	AA A	2	F		+		3					2 5	퉏				Validation Status:	
5	8 19	E	\$		α π α τ		1 9 3 3		3				enc.	9,0	opyr		_		틡	
2	딝	E	AA AA	5	્ર ક		-;						Seque	AcBri	, je		(1994)		E	
s S	5 16	<u> </u>	\$	\$			-									-	<u>~</u> _			
Genotypes of 36 unrelated individuals	릚	불	AA AA AA	AG AA AA AA	क्ट क्य व्ट	Н	•													
5	Ξ	E	\$	2	₹		-	ſ							. 7			_		
ŀ	릠	E	\$		ည	-	6.50			ы				E	٤,	,				
t	10 11	F.	\$	₹	8 33		- B		hish	CTTC	Ĭ	ည်	ည	PG.	PG PG	rgAC	GAC			
-	9		2	**	ည ည		1	-	o o	5	S	TAT	TAT	ည	GC	TCT	TCT			
ł	7	mmmcmmcmm	AA AA AA AA AA AA AA	Ź	<u>ਨ</u>				Sequence around polymorphism*	TGCAACTCTGTGTTCCA	TGCAACTCTGCGTTCCACTTC	ATTCAAAGCAATGAGTAI	ATTCAAAGCAGTGAGTATCCC	cccactctttectgcacat	CCCACTCTTTACTGTGCACAT	TGTGCACATACGGGCTC1	TGTGCACATATGGGCTCI			8
ļ	9	2	2	GG NS AN AN AG AN	30 30 30 30 30 30 30 30 30 30 30 30 30 3		07		E	GTG	၅၁၅	AAT	GT	TGC	TAC	SCG	TG			<u>ت</u> <u>د</u>
-	2	F R	<u> </u>	3	E	H			arog	į	Ę	\GC	ည	TIT	TTT	AT.	AT.			orph
t	3	F	₹	2	8		<u>a</u>		2	AC	AC.	AA	A.	TC	TC	CAC	1 8			E P
-	1 2	무	2	8	8		2		anba	ည္ဟ	229	TTC	TTC	Š	Š	GTG	GTG			e e
1	Basse	T,C T	A.G		5 5	П	Ħ		Ø	Ľ	1	A	٨	ឋ	ರ	Ţ	Ţ			bold nucleolide is the polymorphic base
					ı	i i			e e	F	ပ	٧	၅	ပ	٧	၁	1			nucleo
	Location	bp 168	775 dd	<u>۾</u>	bp 3937				Allele	8	166	211	577	3925	3925	3937	3937			poq.
	Primer Pair	DPO1a-DP02b	DPD10-DPD2a	DPD9a-DPD10b	DPD9a-DPD10b				#	VARIA500.2.1	VARIA500.2.2	VARIA500.3.1	VARIA500.3.2	VARIA500.1.1	VARIA500.1.2	VARIA500.4.1	VARIA500.4.2			
- 1	Ē	ੀ ਨੂ	₹	l z	Z				₿	IIA5	IIAS	IIAS	AS	IAS	IAS	IASC	IASG			

10/30/96

Target Gene Summary Table Thymidylate Synthase Chromosome 18p11.32 VARIA250

Race Specific	ופוסר לאספול	wide distribution	wide distribution	wide distribution	Probably rare					-									
Protein		3"UT	3.01	3.UT	tyr33hls	tygosity		oulveyeu.							not determine		enotyped		
	Comments	on complete frempo do-		In complete limitage de-	So far delected enty in one call line; see tird	= Locus Heterozygosity		etinic e nacial oroups our regeu a=Asian (other)	ar≃Arab ash≃Ashkenazi	. %	E -x	anic	. 5	FJapanese pr=Puerto Rican	w=White *empty box = genotype not determined		Other populations genotyped None		
	35 36 Het%	53%	AG 42%	_		28%	i	a≃Asiar	ar=Arab ash=Ast	b=Black c=Chinese	cu=Cuban g=Greek	h=Hispanic	II=Italian	pr=Puerto R	w≃White empty b		Other		
Genotypes of 36 unrelated individuals	5 26 27 28 29 30 31 32 33 34	31 31 31 31 11 33 33 33 11 34 34 35 33 33 34 34 34 11 34 34 34 34 34 34 34 34 34 34 34 34 34	NE M M M NO	## ## ## ## ## ## ## ## ## ## ## ## ##		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		Other SSCP polymorphisms: # %				Sequence from: GenBank accession # D00596 (This accession has the	genomic sequence, including intron/exon boundaries.)	Kaneda, S., Takeishi, K., Shimizu, K., Goton, O. and T. Seno, Ayusawa, D., (1990) Structural and Functional	Analysis of the Human Thymidylate Synthase Gene. J.	Biological Cnemistry 203: 2021 1-20264.	Validation: The eviologic drug 5-fluorouraell acts by specifically	inhibiting thymidylate synthase.	
9	Base 1 2 3 4 5 6 7 8 9 10 11 12 13				A COLUMN TO THE	on B		Sequence around polymorphism*	CAAAGGAGCTCGAAGGATATT	CAAAGGAGCTTGAAGGATATT	TCTAAAAGAAAAGGAACTAG	TCTAAAAGAAGAAGGAACTAG	ATGAACTTTAAAGTTATAGTT	ATGAACTTTATAGTTATAGTT	GGAGCTGCAGTACCTGGGGCA	GGAGCTGCAGCACCTGGGGCA		*bold nucleotide is the polymorphic base	
	Location	1140		2 .	278			Allele	1140 C	1140 T	1210 A	1210 G	1571 A	1571 T	276 T	276 C			
	Primer Pair	Tech Teks	7 100	801-0201	1536-105			*	VARIA250.1.1	VARIA250.1.2	VARIA250.2.1	VARIA250.2.2	VARIA250.3.1	VARIA250.3.2	VARIA250.4.1	VARIA250.4.2			

Target Gene Summary Table Threonyl-tRNA Synthetase Chromos me 5p13-cen VARIA302

Beatalan Race Specific	ents Protein Heterozygosity	silent	silent 50% in Chinese	3° UT 50% in Chinese		= Locus Heterozygosity	Ethnic & Racial Groups Surveyed: a=Aslan (other)	-						v=VVhite			Other populations genotyped:	
	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Het% Comments	45% tested	31%	%:		47% = Loc	Ethnic & Racial a=Asian (other)	ar⇔Arab ash≃Ashkenazi	b=Black	cu=Cuban	g≕Greek h≖Hispanic	⊨Indian It=Italian	⊨Japanese pr≕Puerto Rican	w=White	V		er popul	
_	H H	AG 4E	GG 31	10 10 11 11 11 11 11 11 11 11 11 11 11 1		4	5 n	ara	1 4	8 3	<u> </u>	<u> </u>	<u> </u>	<u> </u>]	ů O	2
	35 3		9	_ ←	_													
	34	30	95 25	E		1	F			1					_	3		
	2	99 99 98 99	ष्ठ	Ŧ			1						ē			1		_
	32	ဗ္ဗ	აც აც	71								ਰੂ	는 는 는	hem				i șe
	٦	99 99 99	5	្តម		1	2 %					Cruzen, M.E. & S.M. Arfin (1991) Nucleotide and	deduced amino acid sequence of human threonyl- IRNA synthetase reveals extensive homology to the	Escherichia coli and yeast enzymes. J. Biol. Chem.			Validation:	ă
ł	9 30	25	ිජි ්ජ	C		3						oţid	들으	Bio				96
	28 2	ยย	္လ	. L			## ~					rce TCe		3				9
	27	99	€	۳.		3						ž	خ. خ. ق	nes.			1	
ĺ	26	99	- 3	2		1	ឌ្ន				0	991	8 5	ızyn				200
읆	25	AG	કુ	7.7		3	Other SSCP polymorphisms:				Sequence from: GenBank accession # M63180	<u>ت</u>	6 Kg	ž ē		1		
Genotypes of 36 unrelated individuals	3 24	_	5	∞ 2		ž	Ē				2	\$	seq eak	/eas				mulupie outer unity synu essential for cell survival
를	2 2	_	ණි පු	T T		-	Ĕ				9	Σ	용을	É		l	4	ا چ ک
=	21/2	\vdash	20 20 20 20	<u> </u>		$+\exists$	2				E CO	S	ase as	E S	266: 9919-9923	i	9	5 =
ate	20		뜅	11		1-1	망				Sequence from:	шį	프 라 타	ک ر م	กั			
E	19	Ш	ဗ္ဗ	TT			SS				ance and	Σ	ed a	퉏	991	ł	Validation:	10 0
18	=			TT		۳	Ę				que	ī Ā	ş≨	흉.	 		를	5 E
5	617		99	3			ō		لـــــا		တီ င	5 5	<u> 흥 또</u>	S S	92	J	<u>s</u>	988
ès	5.1	\vdash	• 5	F														
l S	=	-	3	∞¢														
ĕ	13		છ	11		1-1									_	_	Т	
	12		ဗ	11		-											ĺ	
	트		99	TT TT TT TT		8	ms	႘	ပ္ပ	GT	GT	ξ,	ည္					
	Ħ	—	8	Ę		6	를	Ę	Ę	ပ္ပ	5	ဗ္ဗ	ဗ္ဗ		l	1		
	٦	್ರಾಭ	9 9		-	+#	I OE	3	3	39	ဗ္ဗ	ITA	TA					
	۲	≈ ≵	ි ජ	CC 77			l S	A	Æ	TT	TŢ	A	3				1	Sast
	9		ខ	F		8	þ	99	AG.	GA	8	T.	9					윤
	2		99 99	E			100	ខ្ព	ខ្ព	160	ည်	TC	J.					or or
	۲		8	E	 		ie	ဗ္ဗ	ပ္ပ	GA.	SA	AAC.	\$		l			E
	2 3	-	99 99 99 99	TT TT TT TT TT	$\vdash \vdash$		Sequence around polymorphism*	CTACTCGCCCGGAAAAATTCC	CTACTCGCCCAGAAAAATTCC	TTAAAGATGCGATTGGGCGGT	TTAAAGATGCAATTGGGCGGT	TGGCAAAGTCTGAAATAGGTC	TGGCAAAGTCCGAAATAGGTC					ğ.
	-	မ္မ	<u> </u>	+		2	edn	T.	TA	TA	'TA	55,	Ü					<u>¥</u>
F	8		_			+7	اق	٥	0	-	1	H	H		l			0 25
	Base	Ş	y V	강	Ш										L			eotid
	Location	bp 1608	bp1755	bp 2395			Allele	1608 G	1608 A	1755 G	1755 A	2395 T	2395 C					"bold nucleotide is the polymorphic base
	Primer Pair	Thr3b-Thr4	THRS-THR4	TARS5d-6a			#01	VARIA302.1.1	VARIA302.1.2	VARIA302.2.1	VARIA302.2.2	VARIA302.3.1	VARIA302.3.2					

Target Gene Summary Table TATA Associated Factor 2H Chromosome 11p15.2-15.5 VARIA520

Race Specific	Location heterozygosity	50% of Blacks, all Hispanics			Ī								_				7	Γ		
	Location					eyed:										determined			ypeu.	
	Comments			w w w w Z2%=Locus Helerazygosity		Ethnic & Racial Groups Surveyed: a≃Asian (other)									=	empty box = genotype not determined		Jones Junit	Outer populations genotypeu.	
	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Het%	22%		72%=Loc		Ethnic & Racial a≖Asian (other)		asn=Asnkenazı b=Rlack	28	<u>د</u> ع	윤		_	j≂Japanese Turata Dise		E XOQ		1	indod	
	36	GG GG GG GG GG GG GG GG GG AA GA GA GA G	#	3		hnic 4 :Asiar	ar=Arab	asn=Asn b=Rlack	c=Chinese	cu≕Cuban a≕Greek	h=Hispanic	=Indian	t≂Italian	=Japanese	pr≃ruenc w≃White	apty.		1	Jack Committee	
	34 3	5	+		Ĺ	<u></u>	<u></u>	<u> </u>		<u> </u>	<u>, </u>	<u>.u</u>	<u>=</u> .	11	<u>1 3</u>			٤	_	
	33	8	\downarrow	3								٥.					\neg	Γ		\neg
	31 32	99	+	3								Jacq, X., Brou, C., Lutz, Y., Davidson, I., Chambon, P.	⊒.		otor.	ۇ ئارى	, d		E .	
	30	99				*			ļ			amp	and L. Tora (1994) Human TAFII30 is present in a		transcriptional activation by the estrogen receptor.	Cell 79: 107-117. (Note: the numbering in the GenBank	accession and the Cer (9:10/-11) paper directly the uncodones. (Inchinociphism is at nucleotide SSR usion the numbarion in the name?		Validation: Other TATA associated factors (TAFs) have been	-
	8 29	3 GG	4	3		•			١			ਹੈਂ	pres	ō	en r	e Ge	4		have	
	27 2	33	\dashv	- 3		#!			-			Ĕ.	o is	distinct TFIID complex and is required for	trog	5.5	Paring		Fs)	1
	56	99		3								idso	副	ğ	9	bering		-	Ŧ	اہ
쑱	1 25	ĞĀ	\perp	3.		ms:					991	á	٦	is	Š	ם מתו	9	1	tors	proven essential for cell growth
를	23	€ 5	+	<u>k</u>		phis					<u>2</u>	۲	mar	and	ă	ie: th	S		f fac	<u>5</u>
Genotypes of 36 unrelated individuals	22	ष्ठ	士	3		Other SSCP polymorphisms:			ĺ		GenBank accession # U13991	Ξ	ヹ	plex	vatic	2	2 abia		iatec	2
fed	21	8	1			<u> </u>				ΙË	SSio	ပ	994)	E	acti	117			SSOC	1 E
le la	100	9	\dashv	+-		4			Ì	Sequence from:	800	Ĭoŭ.	2 (1	≘	na Ta	107		- 1.	ä Vo	ě
5	Ē	8	\dashv	٠,		28(15	ķ	×	٥	##	뼕	79:	hism hism		TAT	88
200	=	છ	\Box	۳		ther				ĕ	en Br	8	둳	stinc	IUSC	₹	diom's		Validation: Other TATA	9
S	2	99	+	-		0				Š	Ō	-5	ā	. ë	Ë	Ö	2 2	13	<u> </u>	ă
Ş	Ξ	8	+	+-																
Gen	Ξ	ន		 					350											
	112	5	-	<u> </u>		٦			ji D											
	100	GA GG GB	+	4 P. D.		norphism		4	polymorphic base											
	6	-		fi]	ĕ	200	TEAAGGGCACAGCCTCCGGCA	polyr											
	100	GA GG				톳	띩		ŧ											
	6 7	99	+	9	1	Sequence around polyn	TGAAGGGCACGGCCTCC	8	Bold nucleotide is the											
	<u></u>	GG			1	a a	8	3	igo g											
	E	ß			1	ie i	8	8	Ž											
	2 3	≸	-	+	1	nenc	₽ B	髾	ğ											
	-	99		3	1	Seq														
	88				_															
	Location	554				Allele	554	554												
	Primer Pair	TAF6-TAF2				#0	VARIA520.1.1	VARIA520.1.2												

Target Gene Summary Table Ribonucleotide Reductase, M1 Subunit Chromosome 11p15.5 VARIA200

		Gen	Genotypes of 36 unrelated Individuals		Race S	Race Specific
Primer Pair	Location	Base 1 2 3 4 5 6 7 8 9 10 11 12 13	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Hel%	15 36 Het% Comments	$\overline{}$	Heterozygosity
PR16-PR2	bp 1037	CC CC CC CC CC	CC CC CC CC 9	33%	silent	
RRSb-RR6c	bp 2410	AA AG AG AG	M M M A AG M GG M A AG AG AG AG M M AG AG GC AN GG AN	GG AG 40% polymorphisms	slient 50% in	50% in Blacks
RRSb-RR6c	bp2419	A.G M.	AG AN AG AN GG AG AG AS AN	A AA 20% 8 bases	silent 50% in	50% in Aslans
Resource	bp2717	TT TT TT TT TT AT TT TT TT TT AT AT	TT AT TT AT TT AN AT AT TT	TT	3. UT 50% In	50% in Asians
RRSc-RRB	bp 2724	19, 710	64 014 014 64 014 64	are separated by 5 bases	3. UT	
			M M M M M M M M M M M M M M M M M M M	w wa 58% = Locus Heterozygosity	Josify	
1D number	Allele	Sequence around polymorphism*	Other SSCP polymorphisms: # %	Ethnic & Racial Groups Surveyed: a=Asian (other)	Surveyed:	
VARIA200.1.1	1037 C	CAACACAGCTCGATATGTGGA		ar≖Arab ash≃Ashkenazi		
VARIA200.1.2	1037 A	CAACACAGCTAGATATGTGGA		bs Black		
VARIA200.2.1	2410 A	ATTTAAGGACAAGACCAGCAG		cu=Cuban		
VARIA200.2.2	2410 G	ATTTAAGGACGAGACCAGCAG	Sequence from: GenBank accession # X59543	g=Greek h=Hispanic		
VARIA200.3.1	2419 A	CAAGACCAGCAGCTAATCCAA		latalian It≃Italian		
VARIA200.3.2	2419 G	CAAGACCAGCGCTAATCCAA	Parker, N.J., Begley, C.G. and R.M. Fox (1991) Human M1 Subunit of Riobonucleotide Reductase: cDNA	j=Japanese pr≖Puerto Rican		-
VARIA200.4.1	2717 T	GTTAATGATGTTAATGATTTT	Sequence and Expression in Stimulated Lymphocytes.	w=VMille *empty box = genotype not determined	not determined	
VARIA200.4.2	2717 A	GTTAATGATGATAATGATTTT	Nucleic Acids Res. 19: 3741-3741.			
VARIA200.5.1	2724 T9	ATGATAATGA (T) 9 AAACTCATAT+				<u> </u>
VARIA200.5.2 2724	2724 T10	T10 ATGATAATGA (T) 10AAACTCATAT+	Validation: Hydrovemas is a cyclovic dem which specifically	Other populations genotyped:	notyped:	
		*bold nucleotide is the polymorphic base	binds and inhibits ribonucleotide reductase.			
+Numbe	er after par	+Number after parends indicates length of homopolymeric repeat				

_

Target Gene Summary Table Ribos mal Pr tein S14 Chromosome 5q23-q33 VARIA326

- 1		Genotypes of 36 unrelated individuals	Sc. 16 Hell Comments	Protein	Race Specific heterozygosity
Base 1 2 3 4 5	6 7 8 9 10 11 12 13	12 13 14 15 16 17 18 19 20 21 22 22 24 25 26 27 22 82 25 JU 31 32 33 33 33 33 33 33 33 33 33 33 33 33	_	Silent	50% in Whites
		# # # # # # # # # # # # # # # # # # #	w w w w k 44 % = Locus Heterazygosily	ozygosiły	
Sequenc	Sequence around polymorphism*	Other SSCP polymorphisms: # %	Ethnic & Racial Groups Surveyed a=Astan (other)	ps Surveyed:	
TTTC	TTTCTGGCAAGGAAACCATCT		ar=Arab ash=Ashkenazi		
TTTC	TTTCTGGCAAAGAACCATCT		b≂Black c≖Chinese		
			cu=Cuban		
		Sequence from: 8's M13934 &M13641 (cenomic and	g≕Greek h≈Hispanic		-
	-	cDNA sequences)	i=indian it=italian		
		Rhoads, D.D., Dixit.A. and D.J. Roufa (1986)	j≃Japanese pr≕Puerto Rican		
		Primary Structure of Human Ribosomal Protein S14	w≃White empty box = genotype not determined	se not determi	peu
		and the Gene That Encodes It. Molecular and Cellular Biology 6: 2774-2783.			
		Validation: The poison emetine inhibits ribosome function by	Other populations genotyped:	genotypea:	
nu ploq.	*bold nucleotide is the polymorphic base	specifically interacting with RPS14.			

Target Gene Summary Table Replication Protein A, 70 kDa Subunit Chromosome 17p13.3 VARIA401

Race Specific	Heterozygosity	31% in Caucasians	ala351thr 44% in Caucasians		21% in Swedes	50% in Blacks 44% in Aslans		75% in Blacks 50% in Caucadens	75% in Blacks 50% in Caucardens			_					_			-			-			-	_	
	Protein	silent	ala351thr	ser352phe	silent	silent	3'UT	3.07	3.01	3.01	gostly	Γ	_				_			_]	Γ			7	
	Comments	opy Oth		rare			within 4 bases of 2050	within 4 bases of 2048			E Locus Heterozygosity	è	, , , , , , , , , , , , , , , , , , , ,									a genotype not determined		/bed:	nt 1124 - very rare allele in Swedes	Sepens ui sr		
	Het%	26%	25%			31%		42%	33%		78% = (Ethele & Dated Granes Curests &	(10	76	i					5	=	genotype no		Other populations genotyped	rare allele in	neterozygo		
	Ξ	2	₹ ¥			TT.		ះ	9, 98,		#: #:	100	a=Asian (other)	ar=Arab ash=Ashkenazi		82 EX	<u></u>		E	=Japanese n=Puerto Dirao		ĕ		opula	- very	K -		
	-	95 GG	AG AA	-		CT TT	_	S S	g 8, 8 9,		*	1	-Asia	ar=Arab ash=Ashi	b=Black	caChmese cu=Cuban	g=Greek	h≃Hispanic i=Indian	t=!talian	=Japanese 	w=White	emply box		herp	127	2		
	-	မ	AG			T		S	6, 9		*	- 19				<u></u>	<u> 6</u>	<u>= .u</u>	<u>=</u>	<u> 2</u>	<u>₹</u> ₹	۰	J	ō	= 1		_!	
	1	20 00	AC AC	-		CT TT		်ပြ သ			W W							91	-je		Ĕ.			Γ	Į	-	-	
	-	99	AA AA AG AN AA AA AC			TT		CT.	9, 8 8, 6	S.	*							Erdile, L.F., Heyer, W.D., Kolodner, R. and T.J. Kelly (1991)	Characterization of a cDNA encoding the 70-kDa single-	5	protein A and the role of the protein in DNA replication.				RPA has been proven essential for yeast viability and for			
	-	GG AG	₹ Ş	-	_	דד דד	£,1	<u>د</u> ا	6	_	*	2	4					Ž.	Š		repi							
	Ξ	GG GG	Ψ <u></u>			ГT	3, 2, 3, 3, 3	빙	9, e		>	ا.	ы					L.T	2	stranded DNA-binding subunit of human replication	Š				st via			
als	•	भेटिक	₹	-		CT CT	3, 33, 3	CT CC	9.9,9,9,9,9,9,90,69,9	Æ	*	Š	3					. an	ing #		E.	mi.	l		yeas			
36 unrelated individuals	•	NG.	AA AA			E		သ	9, 3	ď	Ä						0	ner,A	Dog Tog	9	prote	266: 12090-12098.			<u>=</u>	mammatian DNA replication in vitro		
Indi	-	છ	*			TT TT	_	သသ	9,9		er 1	į	į			Sequence Irom: ConBook accossion # M63499	Š	Polo O	Ϋ́	Paris	ŝ	99-1			Sent	on fr	ļ	
ted	Ξ	AA AA	¥			ಕ	_		9, 9		-	į				3	Ě	9	9	ns fi	0	72			9	ficat		
rela	-	SG AA	AA AA AA AA			TT TT		ا دد دد	9, 9			Other CSCP Bolymorphisms		ł	1,	<u>.</u> .	2	ν.	90	ja	9 2	2 66:			¥0,	9		
5	-	₹	¥	\dashv		<u>ا</u> ئ		ctler		_	• 3	6					2	Hey	ation	Ž.	<u> </u>				en g	Š		
136	11	AG	\$			1		S	9,9		٦	18	}			֓֞֝֞֜֜֝֞֜֜֜֝֓֓֓֓֓֓֓֓֓֓֓֟֜֜֟֓֓֓֓֓֓֓֓֓֟֜֜֓֓֓֓֡֓֜֜֜֜֓֡֓֜֜֜֡֓֡֓֡֡֜֜֡֡֓֜֜֡֡֡֓֜֜֡֡֡֡֓֜֡֡֡֡֜֜֡֡֜֜֜֡֡֜֜֜֜֡֜֜֜֡֡֜֜֜֡֡֜֜	Ĭ	<u>.</u>	cterb	8	¥ ;	ຮີ		ŝ	as	alian	l	
Genotypes of	-	GG AA	AG AA AA AA AA	\dashv	_	TTCT		သသ	9, 49, 49, 49, 48, 48, 9,		-					Sequence from: Googlank accoss		rdile.	hara	rand .		J. Biol. Chem.		Validation:	Æ	amme		
otyp	•	₹	\$			СT	_	8	•		ű		<u>'</u> —		15	, (_ш	<u>0</u>	<u>v</u>	<u> </u>	<u> </u>)	<u> ></u>	<u>«</u>	<u>E</u>	J	
Sen	1	96 GG	≥		_	TTT)) (1)				۲-	_	1	_	_	_				_		_			_		
	•	Š	A5			E		cc	. 6 . 6 9, 6 9, 6 8, 6 9, 5		wash haugh																* bold nucleotide is the polymorphic base	Hent
	9 6	GG AA	AG AA	\dashv	_	דד דד		ττcc	.6		£	hien	8	ि	\$	\$	≰	ı≼	GACTAAGCAA (1)2 CCTCCCTCGT+	GACTAAGCAA (T)3 CCTCCCTCGT+	ပ္ထ	ပ္သ	5	510	ė	t		meric segment.
	8	100	2	_		TT		8		હ	30		ATG GTOGGCAGCTGAGCGAGG	ATG GTCGCCAACTGAGCGAGG	CTTGATGGACACATCCGGGAA	CTTGATGGACGCATCCGGGAA	TCCAGGAGTCTGCTGAAGCTA	TCCAGGAGTCCGCTGAAGCTA	ğ	팅	AAGCAATTCCTCCCTCGTGCG	AAGCAATTCCCCCCTCGTGCG	CCCCTC	GTGGTGACCA (C) ATCCCCGCTC	TCAGCGGGCAAGCTGAGAG+	TCAGCGGGGGAGCTGAGAAG+	ě	Te L
	6 7	<u>8</u>	¥.	\Box		Ţ		S	9,6	કુ	4	major pantage addentes		B	18	18	ă	δ	5	5	ğ	뜅	GTGGTGACCA (C) ATCC	8	200	210	8	8
	5	GG GG AA	KG AA AA AA AA AA AA	\dashv		TTCT		CT CT CT CC	٠ د	H	8 W.9 b	[5	18	8	Š	Š	ğ	ğ	22	30		8	(C)	CB	₹ Ø	8	ş	2
	4	8	\$			CT TT		E	Š		Φ		18	18	ğ	ğ	AGT	AGT.	₹	¥	티	8	ζ¥.	χ¥	မြ	8	흋	9
	2 3	₹	3			 F:		<u> </u>		_	РЬ			15	S.	GAT	Š	86	8	8	إ	ჴ	TGAC	ĪĞΑ	8	8	<u>6</u>	P.
	-	કુ	<u> </u>			13 13		5			•		9	176	등	등	8	ឱ	S	Ş	8	\$	50	166	5	2	호	å
	Base	GA	ĄG	C, T	C, T	T,C	T2, T3	T,C	C& C& C& C & C & C & C & C & C & C & C	A.G		Ü]						õ	ΰ			Ö	Ö			8	hdicate
	Location	81	1120	1124	1125	1674	2046	2050	2297	2341		-	81 G	81 A	1120 A	1120 G	1674 T	1674 C	2046 12	2046 T3	2050 T	2050 C	2297 CB	2297 C9	2341 A	2341 G		the parends
	Primer Pair	RPA70.1-RPA70.2e	RPA7014-RP704	RPA7014-RP704f	RPA7014-RP704f	RP703aa-RP704c	RP703c-RP704s	RP703c-RP704a	RP703e-RP70	RP703e-RP70		30	VARIA401.1.1	VARIA401.1.2	VARIA401.2.1	VARIA401.2.2	VARIA401.3.1	VARIA401.3.2	\neg	Ť	VARIA401.5.1	VARIA401.5.2	VARIA401.6.1	VARIA401.6.2	VARIA401.7.1	VARIA401.7.2		+ The number after the parends indicates the length of the homopoly

90

Target Gene Summary Table Replication Protein A, 32 kDa Subunit Chromosome 1p35 VARIA402

Location Race Specific Heterozygosity	5'UT 25% in Caucasians			/goslty	Surveyed:							not determined		lenotyped:	
35 36 Het% Comments	66 66 11%			" 11% = Locus Helerozygosliy	Ethnic & Racial Groups Surveyed: a=Asian (other)	ar≂Arab ash≕Ashkenazi	b=Black c=Chinese	cu=Cuban	h=Hispanic	It=Italian	⊫Japanese pr=Puerto Rican	w=White *empty box = genotype not determined		Other populations genotyped:	
Genotypes of 36 unrelated individuals	30 30 30 30 30 30 30 30 30 30 30 30 30 3			3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Other SSCP polymorphisms: # 24				Sequence from: GenBank accession # J05249		Erdile, L.F., Wold, M.S. & T.J. Kelly (1990). The primary structure of the 32-kDa subunit of human	replication protein A. J. Biol. Chem. 265: 3177-	3182.	Validation: RPA has baen proven essential for mammalian DNA	replication in vitro and for yeast viability.
	GA ACC CAC CAC CAC CAC CAC CAC CAC CAC C			L State A Company	Sequence around polymorphism*	CCCCAGACCCGCACCTTCTCG	CCCCAGACCCACACCTTCTCG								*bold nucleotide is the polymorphic base
	Location bn 40				Allele	40 G	40 A								
	Primer Pair	7 70 11 1			# <u>0</u>	VARIA402.1.1	VARIA402.1.2								

Target Gene Summary Table RNA Polymerase II, 220 kDa Subunit Chromosome 17p13 VARIA500

Race Specific	Heterozygosity	38% in Ceucasians	13% in Caucasians	50% in Caucastans		50% in Blacks	50% in Chinese	75% in Chinese	36% in Ceucasian	70% Aslan,75% Black			yed:								-		termined.		-						ped:			
Protein	changes	silent	arg292cys	sllent	silent	sllent	silent	silent	silent	3, 17	5.6	rozygosity	oups Surve										hoe pet d								s genoty			
	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Het% Comments											w w.t 83% = Locus Heterozygosity	Ethnic & Racial Groups Surveyed:	ar-Arab	ash=Ashkenazi	¥ 8	3 2	¥	anic	- 5	ese	pr-Puerto Rican	wayniig *empty box a genotype not determined								Other populations genotyped:			
L	Het%	22%	%9	39%	3%	31%	11%	31%	22%	20%	%9	83% =	Ethnic	ar=Arab	ash⊐As	b=Black	cu=Cuban	g=Greek	h=Hispanic - cdic=	it=Italian	Japanese	praPue:	w≃vvnite *emotv b								Other		None	
	35 36	CAN GG GA GA	သ	G.	သသ	23 23	22	ည	၁၁ ၁၁	77 77	TT TT	w.ft											·				_		j		<u>.</u>		<u>~</u>	-
ļ	34	છ	ည	כב ככ כ	သ	ဗ	ខ	Į,	႘	2	F	3					1		Γ		_			_					1		_			
	32 3:	ક	ည	Ct Ct	သ	3	ည ည		<u>ဗ</u>	# 24	म म	3											Wintzerith, M., Acker, J., Vicaire, S., Vigneron, M. and C.	Redinger (1992) Complete Sequence of the Human DNA Delymorace III arract Suburit Allegia Acida	3							<u>~</u>		
	31	ဗ္ဗ	သသ	5	ငင	၁၁	S	ប	သ	10	F	1	8									:	Z	Redinger (1992) Complete Sequence of the Hum DNA Dalamorana III amont Subumit Almahaia Allam	Ž							α-amanitin is a potent cytotoxin which specifically		
	29 30	30	သ	cr cr	သ	<u> ၂</u> ၁၁	သ	သ	ည	न्न क्	77 77	3	'										5	5								spec	₹	
	28	ঠ	ည	ਠ	ည	زن	ည	cc	t	2	11	*	##.1									:	g i	80 ≥ E	₹ .:							흕	binds the 220 kDa subunit and inhibits RNA	
	26 27	25	20 20 20 20 20 20 20 20 20 20 20	သ သ	دد دد	သ၂၁၁	ည	cr cc	ည	te m	ग्र ग	3									**	•	S.		<u> </u>							<u>₹</u>	Ξ	
<u>~</u>	52	ಕ	8	Si	α	ప	8		t	2	111	3	Other SSCP polymorphisms:								GenBank accession # X63564	•		95 1	ء م							otoxi	a	
ng Ng	3 24	્ડ	22	သ သ သ	သသ	101	သ	ည	ŗ	ž	11	à	d d								9X #		> 1		i A							중	<u>ק</u>	
톁	22 2	30	ဗ	Ė	S	သသ	သသ	8	င	77 77	स स	H	Ĕ						l		g	_	e de	3	£	į						oten	a Su	
led	0 21	g GG	S	cc cc m	S	သ	သ	ည	ပ္ပ	2	ш	彐	9						통		Ses	•	¥ }	387	20: 910 20: 910	į						e c	<mark>오</mark> .	
ie E	19 2	93	S	S	သသ	သသ	သ သ	သသ	ငင္ ပင	te m	म म		SSC						ce (돚	;	2, ; E ;		<u> </u>				1		.: ::	: <u>=</u>	, 2	ase
Genotypes of 36 unrelated individuals	1 18	ဗ္ဗ	ខ	S S	႘	ည	t	্চ	ઇ	ន	11	J	her						Sequence from:		Ba	į			Research						Validation:	man	유	Polymerase II
0	16 1	25	ည	S P	ည	CT.	င်္က	ငင္ ဇင		κ	rr rr	۰	ō						တ္တ		<u>ගී</u>	:	<u> </u>	2 6	ď					į	Val	8 -9	<u>ב</u>	Po Po
ypes	15	ည္	<u>ဗ</u>	៦	α	ដ	દ	ខ	8	Ł	Ŧ	٠																						
enot	13 14	99	သ	ည ပ	သ	သ သ	သ သ	ಿ <u>ಕ</u> ಬ	သ	κ	म फ	-		_			-		_	_	_													_
ပ	12	8	႘	ಿ	પ્ર	cc		8	႘	Ħ	π	-	-	1	'													. !	:					is the polymorphic base
	0	8	ည	ც ნ	ည	သ သ	ည	3 (3	ည	TT	E	4 0.0	E	lg	8	×	×	ည	ပ္	<u>, , </u>	F	ည	ပ	ĭ	ĭ	ြ	ای	ပ	ဖြ	C	()	_	_	rphic
	9	99	ည	S	S	ပ္	دد دد	သ	ငင် ငင	ग्न ग	म म		polymorphism	GAGGAGATGG	GAGGAGATGG	34G	¥G	ညွှင	AGCTGCCTG	ğ	ACATGACCT	Σ	ACI	ACTTCAAGT	ACTTCAAGI	8	용	B	Š	спетспе	спетспе	GAAGATCCT	GAAGATCCT	уmo
	7 8	3	빙	ខ	S	b	ខ	ដ	t	77	T	1	Ĕ	8	g	₩	AATC	$\tilde{\mathbf{x}}$	3CT	×	ATC	Š	X C	ΉC	Ě	{ 5	δĮ	g	S	TGT	TGT	ğ	Ą	교
	9	20 20	သသ	ນ	၁၁ ၁၁	၁၄ ၁၄	cc cc	ग्न एड	ည	သ	rr m	9			ğ	ည္ဟ	ည	Š	ğ	ğ	IAA	Š	CIC		Μĸ	8	မွ	ន្ត	ည	딛	Σ.			e is
	5	છ	ខ	ខ	S	8	ខ	t	ខ	သ	म म	0.a	5	18	8	ဗ္ဗ	ဗ္ဗ	Š	₹	<u>છ</u>	IGC	AGC	AGI	Ϋ́	Ϋ́	TAC	Σ	Š	31	ঠ	ğ	₹	&	Je of je
	3	છ	သသ	೧೯	ယ္	द्भ दक्ष	နည် သ	ငင္ ငင	T CC	e E	7	4	93	18	8	STG	CTG	ð	₩	ည	3	E E	5	TAC	TAC	ğ	ខ្ល	ă	ğ	છુ	ပွဲ	ပ္ပဲ	ပ္ပ	* bold nucleotide
į	2	99 99	ည	ည	S	B	8	ಚ	ខ		7	4	Sequence around	GCGAGGGTGGG	GCGAGGGTGGA	TCAGCTGCGGCGCAATGAGCA	TCAGCTGCGGTGCAATGAGCA	TGGTGGACAACGAGCTGCCTG	TGGTGGACAATC	CCATTGCTGCCAACATGACCT	CCATTGCTGCT/	TGAATCTTAGCGTGACAACTC	TGAATCTTAGTGTGACAACTC	CTGAATACAACA	CTGAATACAATA	AGCTGCGCTACGGCGAAGACG	AGCTGCGCTATGGCGAAGACG	TGGGCCAGTCCGCTCGAGATG	TGGCCCAGTCTGCTCGAGATG	CTGATGCAGAT	CTGATGCAGACI	TGTCCCCAAATI	TGTCCCCAAACT	å.
_	Se 1				S	ငင	သ	ဗ	ပ္ပ	17	E	3:	Seq	۵	٥		۲	ĭ	ĭ	Ø	ပ	۲	7	ပ	ប	¥	¥	۲	۲	ଧ	ប	ឧ	ភ	
	n Base	G,A	ប	C,	C,	ςT	C,T	CT	Ω	T,C	T,C		-	_				Н									_			\Box	_		_	
	Location	857	1260	1346	1544	1847	2678	3059	3827	6466	6557		Allele	857 G	857 A	1260 C	1260 T	1348 C	1346 T	1544 C	1544 T	1847 C	1847 T	2678 C	2678 T	3059 C	3059 T	3827 C	3827 T	6466 T	6466 C	6557 T	6557 C	
	Primer Patr	POL2 F3-R3	POL2 F5-R5	POL2 F5-R5	POL2 F6-R6	POL2 F7-R7	POL2 F12-R12	POL2 F13-R13	POL2 F17-R17	POL2 F30-R30	POL2 F30-R30		<u>\$</u>	VARIA500.1.1	VARIA500.1.2	VARIA500.2.1	VARIA500.2.2	VARIA500.3.1	VARIA500.3.2	VARIA500.4.1	VARIA500.4.2	VARIA500.5.1	VARIA500.5.2	VARIA500.6.1	VAR1A500.6.2	VARIA500.7.1	VARIA500.7.2	VARIA500.8.1	VARIA500.8.2	VARIA500.9.1	VARIA500.9.2	VARIA500.10.1	VARIA500.10.2	
			۵		_	ď	8	8	8	ğ	ğ			\ <u>\$</u>	Š	Ϋ́	\A	Ϋ́	٧A	Α	VA	Ϋ́	VAF	VA	VAF	Α×	Ϋ́	VAR	Ϋ́Α	YA.	VAR	VAR	-	Y AK

Target Gene Summary Tabl Glutaminyl-tRNA Synth tas Chromosome 3p21 VARIA305

	0 31 32 33 34 35 36 Het% Comments change heterozygosity	c cc cc cc cc cc cc cc https://whites			wwwww was 11% = Locus Heterozygosity	o. Ethnia & Bookel Ground Streamed.	3x a=Asian (other)		b=Black c≠Chinese	cu=Cuban			ne .	oc. Natl. w=White oc. Natl. ** empty box = genotype not determined		Other populations genotyped:	
Genotypes of 36 unrelated Individuals	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Het%						Other SSCP polymorphisms: #				Sequence from: GenBank accession # X76013	Lamour,V., Quevillon,S., Diriong,S., N'Guyen,V.C.,	Gix-tRNA synthetase family: The glutaminyl enzyme	as a case of horizontal gene transfer. Proc. Natl. Acad Sci 1/54 91: 8670-8674.	ŀ	Validation: Multiple tRNA synthetases have been proven	lessential for cell survival.
Gen	Base 1 2 3 4 5 6 7 8	C.T effected ected ected					Sequence around polymorphism*	TTAACAGGCACCGCCCAGC	TTAACAGGCATCGGCCCCAGC								
	Location	404					Allele	404 C	404 T					-			
	Primer Patr	Gh1-Gh2					#QI	VARIA305.1.1	VARIA305.1.2								

Target Gene Summary Table S dium, Potassium ATPase, α1 Subunit Chromosome 1p13-p11 VARIA125

Race Specific	Heterozygosity	50% of Blacks		25% of Whites		50% of Blacks																		Γ			1
Protein	Change	silent	silent	Asp740Glu	silent	silent	3 UTR	3 UTR	YBosity		eyed:										letermined			voed:	į		
	Comments								a Locus Helerozygosity		Ethnic & Racial Groups Surveyed a=Asian (other)	• .	Z								empty box = genotype not determined			Other populations denotyped:			
	35 36 Het%	AC AA A	%9	13%	3%	8	%	3%	w will 28%		Ethnic & Racial n=Asian (other)	ع	ash≃Ashkenaz b≖Black	929	pan	<u>.</u> ا		E	1059	pr≕r-uento rucan w≃White	рох			ngog			
	35	₹ 5	SG GG	‡	8 8	99	99 99	8	3		thinic =Asia	ar≖Arab	ash≃Ash h-Black	c=Chinese	ситСuban	g=Greek h-Vienerie	Findian	t=Italian	⊨Japanese	pr=r-uent w=Wfhite	E P			į			
	33 34	\$	છ	T	8	98	99	သ သ သ	3		<u> </u>		<u> </u>	3 8		50 4	= 11	=	<u></u>	5. }	•			0	<u>-</u>		!
	32 33	AAA	GG GG	חד דו	22 22 22 22 22 22	8	8	8	*															Г			
		A A	GG	11	ပ္ပ	93 93	કુ કુ	22 22 22	3	Į									2 2	(1900). rilling second of the appraisabling of human Na.K-ATPase deduced from cDNA sequence.					Ouabain is a potent cytotoxic drug which inhibits Na,		
ļ	30	\$	છ	ដ	8	8	8	8	3		প্ৰ			ļ				j		anbe					hibit	انځ	
	12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	¥	SG A	E	8	99 99	GG	CC CC CS CC	3									3	Nawakami, N., Onta, I., Nojima, n., and N. Nagano (1085) Drimany etrichina of the ainha-sultimit of	a A A) ;				는 드	K-ATPase by interactions with the a1 subunit.	
	27 2	AA	35 GB	21	20 22 22 22	8	ष्ठ	망			#1							1	E 4						ξ	£	
	26	¥.	ဗ	TT	ខ	8	ષ્ઠ	8	B								_	1	<u>.</u> و						<u> </u>	<u>۽</u>	
lais	4 25	AA	25 25	7 77	8	93 93	8	22	ž	l	Other SSCP polymorphisms:						GenBank Accession #: D00099			5 60	7.				Ş	ŧ	
viđu	23 2	¥	93	TT	8	8	8	ည ည			Phis						8	ż	2 6		66-6				toto	Į.	
Genotypes of 36 unrelated Individuals	22	≨	GG	ŢŢ	22 22 22 22 22 22	ဗ္ဗ	છુ	8	*		Ē						#	F .	- t	8	J. Biochem. 100: 389-397.				ر و	actic	
ited	0 21	AA	29 25	T TT	8	ව ල ල ල	8	သ သ သ သ သ	_		S S					Ë	essi(Š	֓֞֞֓֓֓֞֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	TPa	8				ğ	Inter	
rek	19 2	AA	ິນ	TT T	2	g	9	빙	-	1	9			ĺ		Sequence from:	Ğ	2	2 2	X	_			ا	. e	à	
9	18	Ş	GG	тт	႘	ષ્ઠ	છ	ខ	٥]	SS					ence	ank	1		. E	cher			Validation:	ië	938	l
9	6 17	A AA	වුට වුව	T TT	გ გ	GG GG GG	9	႘			흝					edn	enB	-	awa ose	S E	Bi.			alida	nap	ATF	
pes	151	A.	9	77 77	22	9	99	8	-	ł	0					S	<u> </u>		2 5	<u>ة</u> ر				2	0	¥	I
õ	14	AA	20 22 22 22	77	၁၁ ၁၁	99 99		သသ	٥																		
ෂී	2 13	AAA	999	T TT	၁၁ ၁၁	99	GG GG GG	သ																		ase	
	11	A A	99	Ţ	8	99 99	9	8	d de de	}	E															olymorphic base	
	10	\$	ဗ္ဗ	14	င	99	99	8	-	1	=	2	<u>1</u>	迃	<u>5</u>	ည္တ	ည္တ	3AA	¥	4CT	ACT	႘ၟ	႘	\TC	710	臣	
	6	A AA AA	<u>ც</u>	T TT TT	8	GG GG GG	3 GG	8	- 1]	Ę	этстс	этстс	స్ట	SCA	CCAAGC	CCAAGC	CAC	TCAGAA	CCT	CT/	CAC	CAC	AGCATC	8	Ĕ	
	-	¥¢.	99	E	၁၁ ၁၁	4	ઝ	2	-	-	등	E	E	Š	Š	010	GIC	AGI	AGI	ğ	≸	CTG	CTG	ğ	ð	8	
	۰		8	77 TT TT TT TT TT TT TT	8	8	25 25 25 25 25 25 25 25 25 25 25 25	သ သ သ သ သ သ သ သ သ သ သ ၁၁	D'M	1	Sequence around polymorphism	TCTTTTCAACAAATT	TCTTTCAACCAATT	TGGGGTCCACGTCCACCATCT	TGGGGTCCACATCCACCATCT	CTGGCTCAGATGTGT	CTGGCTCAGACGTGT	TCGTATATGACGAAGTCAGAA	TCGTATATGATGAAG	GGGTGGAGAAGGAAACCTACT	GGGTGGAGAAGAACCTACT	TTAGCCCCCCGTCCTGCACGC	TTAGCCCCCCATCCTGCACGC	TCCTGCACGCCGTGG	TCCTGCACGCAGTGGAGCATC	bold nucleotide is the pr	
	3	AA AA AA	SG 68 GG GG GG	E	၁၁ ၁၁ ၁၁ အခု ၁၁ ၁၁	8	99	8	_	4	1 2	¥	¥	ğ	ğ	ğ	Ą	IGA	TGA	ğ	ĕ	ည္တ	ပ္ပ	မ္တ	ဗ္ဗ	8	
	7	8	8	E	8	<u>ئ</u> بى	95	8	٥	1	Sea	E	E	5	SE SE	5	ညြ	4TA	4TA	8	8	ပ္လ	ပ္လ	ğ	న్ల	9	
	~	ပ္	#5	늗	2	9	8	2	-	1	l en	뜮	틍	8	8	18	18	ğ	ĬĢĮ,	30	Ž	ğ	ষ্	ğ	ង្ក	15	
٠	Ξ	AA	ខ្ល	Ē	ខ	8	ष्ठ	ĕ	3	1	Sequ	٦	٦	۲	۲	ပ	ပ	×	2	୪	စြ	F	F	۲	2	몽	
	Ваѕе	A.C	Ą̈́	J,	C,T	G,A	G.A	C.A		-																	
	Location	1059	1428	2538	3324	3375	3397	3408			Allele	1059	1059	1428	1428	2538	2538	3324	3324	3375	3375	3397	3397	3408	3408		
	Primer Pair	F21-R19	F10-R20	F27-R26	F16-R12	F28-R27	F28-R27	F28-R27			**	VARIA 125.1.1	VARIA 125.1.2	VARIA 125.2.1	VARIA 125.2.2	VARIA 125.3.1	VARIA 125.3.2	VARIA 125.4.1	VARIA 125.4.2	VARIA 125.5.1	VARIA 125.5.2	VARIA 125.6.1	VARIA 125.8.2	VARIA 125.7.1	VARIA 125.7.2		

4/8B

Target Gene Summary Table Lysyl-tRNA Synth tase Chromosome 16q23-24 VARIA303

Primer Pair Location Base 1 2 1 5 6 1 1 1 1 1 1 1 1 1				L	İ	ı						5	5	Genotypes of 36 unrelated individuals	ō	2	į						,										1			200
1788 GC CC CC CC CC CC CC	Primer Pair	Location	Bass	E	-	_	\vdash	-	-	10	Ξ	12	Ē	<u> </u>	19	18	19	20 2	1 22	23	242	5 26	5 27	2.0	29 3	31	32	33	34	5 36	F 181		4	8	Patter	SE
1798 GC CC CC CC CC CC CC C	2 1 142	08	2		1	4		1		4	ូម	1 4	\$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*	¥	1		1 2	¥	¥	A A	\$	\$	A A	A A	₹	্ব	9	Ą	19%			3	1% in W	Whites
Allele Sequence around polymorphism* 89 A ACCTGAAGACGCCTGAAAG 1789 G ACACTTGCCACTTCTCTCTAG 1789 C ACACTTGCCACTTCTCTCTAG Sequence from: GenBank accession # D31890 Norman, Myajima N. Sauda, T. Tanstad, Kowarabysahit', Nagasa T. Indiaduction of the colling sequence of the modelling human general transfer of the polymorphic base 1780 C ACAGTTGCCACTTCTGTCTAG Sequence from: GenBank accession # D31890 Norman, Myajima N. Sauda, T. Tanstad, Kowarabysahit', Nagasa T. Indiaduction of the colling sequences of the modelling sequences of the polymorphic base Tool and a sequence around polymorphisms Sequence from: GenBank accession # D31890 Norman, Myajima N. Sauda, T. Tanstad, Kowarabysahit', Nagasa T. Indiaduce of the polymorphic base Tool and a sequence from: Multiple office is the polymorphic base Sequence from: GenBank accession # D31890 Norman, Myajima N. Sauda, T. Tanstad, Kowarabysahit', Nagasa T. Indiaduce of the polymorphic base Tool and a sequence from: Multiple office is the polymorphic base Policia is the polymorphic base Tool and a survival. Maldaton:	36/3-16/3	300	8		Ī		1 8	1		[٤	٤	١	٤	1 5	1	E	<u>ک</u> بر	8	ğ	<u>و</u> ب	8	8	8	8		8	8	l S	S			ser,t		.0% in 80	Blacks
Allele Sequence around polymorphism* 89 A AGCTGAAGAGCCCTGAAAG 1789 G ACAGTTGGCACTTCTCTCTAG 1789 C ACAGTTGGCACTTCTCTCTAG Sequence from: GenBank accession # D31890 Normula N. Ninyiman, Sauka T. Tanaka, Kasambayahi, Negsat., Intravence of unideritied human immature of uniderities is the polymorphic base Page A AGCTGAAGAGCCTGAAAG Sequence around polymorphisms* AGCTGAAGAGAGCCTGAAAG Sequence from: GenBank accession # D31890 Normula N. Ninyiman, Sauka T. Tanaka, Kasambayahit', Negsat., Intravence of unideritied and united sequences of signers deduced by analysis of sanders deduced by analysi	Lyso-Lysa	9671	3	3	3	5	3	ŝ		3	3	-	3												\vdash	\vdash			\vdash							
Allele Sequence around polymorphism* 89 A AGCTGAAGAGGCCTGAAAG 89 G AGCTGAAGAGGCCTGAAAG 1789 G ACAGTTGCCAGTTCTGTCTAG 1789 C ACAGTTGCCAGTTCTGTCTAG Sequence from: GenBank accession # D31890 Norman, Mysimah, Seatura, Tanaka, Kawarbayaait, Nagarat, Intervent (1993) Prediction of the coding sequences by analysis of sandoring and numan immature mysbid cell line NO1. Unputsitived Validation: Multiple other RNA synthetases have been proven essential for cell survival.							\vdash		\vdash			\vdash			$\vdash \vdash$			\vdash			\vdash		\Box						-	7						
Allele Sequence around polymorphism* 89 A AGCTGAAGAGGCCCTGAAAG 1789 G ACACTTGCCAGTTCTCTCTAG 1789 C ACACTTGCCACTTCTCTAG Sequence from: GenBank accession # D31890 Namua N. Miyajima M. Sauka T. Tanaka A. Kawanaya att Y. Nagasa T. this and a sequence of an analysis and a sequence of an analysis and a sequence of						\dashv						\dashv			\dashv	コ		\dashv			\dashv	\dashv	\Box	\exists	-	-		_	\dashv	\dashv	_				١	
Allele Sequence around polymorphism* 89 A AGCTGAAGACGCCTGAAAG 89 G AGCTGAAGACGCCTGAAAG 1789 G ACAGTTGGCAGTTCTGTCTAG 1789 C ACAGTTGGCAGTTCTGTCTAG Sequence from: GenBank accession # D31890 Nomura, Myajiman, SazukaT, TanakaA, Kawarbayasht NagasaT, IshawaA, Self. 18 of Stabat Island sequences of the spent sequences o				-	4		2	_	_	-	8		_					긬	-	Ξ.		_		_		_	3			*	25%	= Locus Hat	erozygosíty			
### AGCTGAAGACGCCTGAAAG ### B9 G											1	İ			0	ther	SS	8	200	DE DE	Phis	ms:	1	724		'	৯				Ethni	ic & Racial Gn	oups Surve	eyed:		
89 A AGCTGAAGACCCTGAAAG 1789 G ACAGTTGGCAGTTCTGTCTAG Sequence from: GenBank accession # D31890 Nomura N. Miyajina N. Sazuka T. Tanaka A. Kawarabayashi Y. Nagasa T. Ishizawa K. Seki T. & S. Tabab (1963) Prediction of the coding sequence of of unidentified cell share growth sampled cDNA clones from human immature myebid cell line KG1. Unpublished *bold nucleotide is the polymorphic base Walldation: Multiple other tRNA synthetases have been proven essential for cell survival.	<u></u>	Allele		Sedu	ence	a 2	2	100			Ë													7			3%				a=As	ian (other)				
Sequence from: 1789 G ACACTTGGCAGTTCTGTCTAG Sequence from: GenBank accession # D31890 Nomura.N. Miyajima.N. SarukaT., Tanaka.A. Kawarabayashi.Y. NagasaT., Ishkawa,K., Sarl. B. Seduences of 35 genes deduced by analysis of randomly sampled coNA clones from human immature myskid cell line KG1. Unpublished Walldation: Walldation: Multiple other TRNA synthetases have been proven essential for cell survival.	VARIA303.1.1	89 A		AGC	TGA	AGA	ğ	မ္ဟု	CTG	N.	ပ္က	1																			ash=/	rab Ashkenazi				
Sequence from: GenBank accession # D31890 Nomira.N. Miyajima.N. Sauka.T. Tanaka.A. Kawanbayasht.Y. Nagasa.T. Ishkawa.K. Sekit. & S. Tabab (1963) Prediction of the coding sequences of unidentified nimms general. The coding sequences of unidentified nimms general. The coding sequences of unidentified nimms general. The coding sequences of unidentified nimms general. The coding sequences of unidentified and universal of the coding sequences of unidentified and universal of the coding sequences of unidentified and universal of the coding sequences of unidentified and universal of the coding sequences of unidentified universal of the coding sequences of unidentified and universal of the coding sequences of unidentified and universal of the coding sequences of unidentified and unid	ARIA303.1.2	9 68		AGC	TGA	AGA)GG(ပ္ပ	CTG	AA	Ş					İ			- 1	l	Ì	ļ			- [\neg	~	급	ack Inese				
Sequence from: GenBank accession # D31890 NormuaN, Miyajina N. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa, K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa, K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa, K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa, K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa, K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa, K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa, K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa, K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa, K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa, K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa, K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa, K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa, K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa, K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa, K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa, K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa, K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T., Ishikawa K. Sauka T. Tanaka A. Kawanbayashi Y. Nagasa T. Ishikawa K. Sauka T.	VARIA303.2.1	1789 G		ACA(GTT	255	AG	TT	TGI	CI	ည				ì	ļ					- 1		1	l	Í			I	ŗ		<u>7</u> =35	uban				
Nomura.N., Miyajima.N., Saruka.T., Tanaka.A., Kawarabayashi.Y., Nagase.T., Ishaawa.K., Seli.T. 8. Tabab. (1983) Prediction of the coding sequences of unidentified nationary sampled CDNA clones from human immature mysbid cet line KG1. Unpublished Validation: Multiple other tRNA synthetases have been proven essential for cell survival.	ARIA303.2.2	1789 C		ACA	GIT	မ္မ	Ş	T.	TGT	Ę	ပ္အ		 ,		σŌ	equi	and and a	2000	E.Sio	Ē	23	189C	_								라마	spanic				
Nomura, N. Mayama, N., Sakut, L., 1 aneas, N. Kawarashant, 1. Magaset., Ishkawa, K., Sekut, R. S. Tababa (1893) Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 35 genes deduced by analysis of randomly sampled cONA clones from human immature mysbid cell line KG1. Unpublished Validation: Multiple other tRNA synthetases have been proven essential for cell survival.																				•			:			?		,		-	it=Ita	lian				
Validation: Multiple other tRNA synthetases have been proven essential for cell survival.								l							ž ž ž	ilkawa Ilkawa Inde	, χ', ξ ξ', β', ξ',			Tabat T	ءِ ڪ ۽	23. F	7, Y 2, K 2, K	Zvara dion o	1 the 2	2 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 5 6 E	Se, F., Jence	_ M _		j=Jap pr=Pu	anese Jerto Rican				
Validation: Multiple other tRNA synthetases have been proven essential for cell survival.			L				ļ								É	and bide	ysis o	Find	£ 5	d dist	88	ŏ ≸	8 5	For	humar	in the second	attre e			-	w=Wl	hite ty box = geno	type not d	letermine	2	
Validation: Multiple other tRNA synthetases have been proven essential for cell survival.							1		1																											$\overline{\neg}$
Valldation: Multiple other tRNA synthetases have been proven essential for cell survival.																													. 1	,						
															<u>≥ ≥</u>	all de	ittor.	بر	NA.) d	nthe	as at	ĝ	9/6	bee	٥	0.00	_			Othe None	r population	ns genoty	yped:		
		*bold nuck	eotide	is the	log of	УПО	rphic	bas	Q						9	Sen	fia	Ö	S	<u>}</u>	je.								 1							$\overline{}$

Target Gene Summary Table Glutamyl Prolyl-tRNA Synthetase Chromosome 1q32-q42 VARIA300

뺭	osity	acks				unese	ans	ans		_							_								_
Race Specific	Heterozygosity	25% in Blacks				esaueder uj 1605	70% in Asians	70% in Asians										peului							
Protein	changes	pro821his	silent	his969tyr	ile971val	silent	3.UT	3.UT	a Locus Heterozygostty	Ethnic & Racial Groups Surveyed:								waWhite empty box = genotype not determined					4040	Outer populations genotyped: None	
	ents	totaí	4.6 87.0	total	total	total	total	total	S Hete	I Group							_	enotyp							
	Comments	3/40 total	6/48 total (46 are lumor Enec)	1/12 total	10/42 total	17/41	21/41 total	21/41 total	- Loci	Ethnic & Racial a=Asian (other)		IKenazi	98 28	٠. ١	읃	. 9	pr≂Puerto Rican	oox = g					, de la constant de l	pindo	
	Het%	7%	13%		24%	41%	61%	61%	%19	Ethnic a	araArab	asn=Astikenazi b=Black	c=Chinese cu=Cuban	g=Greek	n≃Hispanic i≕Indian	t≖Italian Elananese	r-Puer	w=White 'empty b					4	None	
	33 34 35 36 Het%	ည			AG AA AA AA AA AA AA AA			AG AA GG AA AG AA AA	3								<u></u>	> • -				j	E) <u>Z</u>	
	3	2000			₹ 	AG AA AG AA AG AA AA	AG AA GG AA AG AA AA	y y	3						Ι		- 6		_]	Γ		\neg
	32 3	သ သ သ			AA A	AG A	GG	GGA	3								truch	56		ck.M.	(ii			Ve.	
	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	သသ			A AA	₹ .	\$	\$	3	শ							Fett, R. and R. Knippers (1991) The Primary Structure	of Glutaminyl-tRNA Synthetase. <i>J. Biol. Chem.</i> 266: 1448-1455 :		Note: See Kaiser, E., Hu, B., Becher, S., Eberhard, D., Schray, B., Baack, M., Hameister, H., and R. Knippers (1984) Genoralca 19: 280-290 for the	correct name of the gene. (The Fett and Knippers paper is mistaken.)			Multiple other tRNA synthetases have been proven	
İ	29	ည			¥	AG	99	9	3	#1							Prim	Ö Ö		Schray, 7: 280-	aper ts			beer	
	27 28	သ သ သ	-	_	S S	A AG	4	A	3								Ŧ			rd,D.:	sed stood			have	
	26	ซี			AA AA	GG AA AA AG	AG AA	S.	2	iš S						126	991)	180.		Eberh:	A S S			Ses	ļ
uals	24 25	သ သ သ	_	_	AG AA AG	99	AG AG AG AG AG AA GG	AG AG AG AG AG AA GG AG AA	\$ &	Other SSCP polymorphisms:						sequence from: GenBank accession # X54326	3 (1	de ta		her,S.,	e B			theta	_
Genotypes of 36 unrelated Individuals	23	8			<u>\$</u>	Æ	2	Ş	-	E E						#±	ipper	N Syn		B. Bec	Ě			\ syn	essential for cell survival
n n	21 22	כב כב כב כב		\dashv	AA AA AA	AG AG	e Ac	9	2	S S						JIII: Ossio	₹	Š Š		표 등	gene.			tr.	18 SI
elate	9 20	S			AA	AG AG		Ą	彐	ပ္သင္ပ					ŀ	Sequence mom: GenBank access	pue.	יה אל היא		Kaiser,	g g		ا	ther	5
E	181	ည		\dashv	AA AA	SG AG	Y SY	9		er S						uenc Bank	2	of Glutaminyl 1448-1455 •		Star, H.			Validation:	9 ed	nga Tga
of 36	6 17	သ သ			AA AA	GG	₹	¥	-	통						Sed Gen	Fett	of G 144	· •	*Note: Hamei	correc		Valle	Multi	esse
pes	151	သသ		\dashv	A.	AA GG	3G AG	GG AG AA AG	-																
lot	314	၁၁ ၁၁ ၁၁			AA/	GG AA	9	00 NG	=		,														
ලී	121	သ		_	AA AA AA AA	AA AA	AG GG AG GG AG AA	90 90		<u> </u>															
	11	ઇ			AG	Ä	2	9	2 2 4	E	TA	Ψ	βA	GA	AG.	β	ភ	១	ଧି	ည်	E	E	E	E	Н
	9 10	သသ	-		o AG	ଉଟ ନୟ	e S	92	-	를	IGGTTTA	GGTTTA	AAT	AAT	ATA	ATA	ည္ဟ	ည္တ	,AG	,AG/	ATGATT	ATGATT	MTTATT	ΠA	٦
	•	ပင			AA	\$	99	99		<u> </u>	ств		4GA	4GA	3AC	3AC	GTC	GTG	ÇA	CAC	ITAI		CA.	SAA.	ese pas
	6 7	သသ	\dashv	\dashv	2	₹	8	8	9	8 9	STG	4TG	310	ATC,	;AT(IATC	\TA	ĭ₹	77	TC	31	H	3GA	IGA	погр
	2	ၓ			A.G AA AG AA AA AA AG AA AA AG	AG GG AG AA GG AG AA AA	AG GG AG GG AG AC GG GG AA	AG GG AG GG AG AG GG AA AG AG	- A	Sequence around polymorphism	AATTCTGAACCTGC	AATTCTGAACATGC 1	TCATCACAAAGTCAGAAATGA	TCATCACAAATCAGAAATGA	GATTGAATACCATGACATAAG	GATTGAATACTATGACATAAG	ATACCATGACATAAGTGGCTG	ATACCATGACGTAAGTGGCTG	AATGGGTACAATCACACAGAG	AATGGGTACAGTCACACAGAG	GATACAGACCGTTT	GATACAGACCATTT	AAGTCACACAGGAC/	AAGTCACACAAGACAATTATT	Bold nucleotide is the polymorphic
	3 4	သသ	-	_	*	₹ 9	8	8	4	ea	JTG,	J.	AC/	AC/	¥€	¥¥	ATC	ATC	ž	3GT	,AG	,AG	AC.	ACA	s th
	1 2	သဗာ	ون ۷و		BG.	99	9	8	4	- de	£	Ę	ATC	ATC	TI,	TT	Ą	Ä	5	166	TAC	TAC	GTC	GTC	gg
\vdash	8	CA CC	- 1	_	3			- F		Se	₹	₹	ĭ	7	Ø	Ó	F	F	₹	₹	Ö	Ò	₹	₹	
	Base	Ç	Ş	C,T	Y.	A.G	ď	ďΥ				Щ													Bold
	Location	2520	2944	2963	2969	3247	4459	4506		Allele	2520 C	2520 A	2944 G	2944 A	2963 C	2963 T	2969 A	2969 G	3247 A	3247 G	4459 G	4459 A	4506 G	4506 A	
	Primer Pair	OP5a-QP6d	QP5-QP6b	QP5f-QP6b	apsr-apeb	aP5d-aP6	OP7e-OP8	QP7e-QP8		#01	VARIA300.1.1	VARIA300.1.2	VARIA300.7.1	VARIA300.7.2	VARIA300.2.1	VARIA300.2.2	VARIA300.3.1	VARIA300.3.2	VARIA300.4.1	VARIA300.4.2	VARIA300.5.1	VARIA300.5.2	VARIA300.6.1	VARIA300.6.2	

4/88

Target Gene Summary Table Initiati n Factor elF-5A Chromosome 17p13-p12 VARIA351

Race Specific	30 31 32 33 34 35 36 Het% Comments Heterozygosity	GG RG GG GG GG 37% from titles sceiber 3'UT 44% Caucasian	CC TC TC TC TC CC TC CC 52% 3'UT present is at graups	w w w w 63 % = Locus Heterozygostty	Ethnic & Racial Groups Surveyed: a=Asian (other)	ar≐Arab ash≃Ashkanazi	b=Black c=Chinese	cu=Cuban				nember of the empty box = genotype not determined		Other populations genotyped:	
Genotypes of 36 unrelated individuals	26 27 28 29 30 31	GG GG GG GG GG GG MG NG NG GG AKG NG NG NG NG NG GG GG GG GG GG	3 <u>1</u> 22	R	Other SSCP polymorphisms: # %			Sequence from:	GenBank accession # U17969 (This accession contains the fearments contained with the horaton of intron-error boundaries indicated.	See Variagents annotated cDNA sequence for sequence numbering used in this 1able)	Kachmits K Wahl T Kannal B Latters F Hauther	and D. Bevec (1995) Identification of a new member of the	numan ell-5A family. Gene 139: 263-264.	Validation: This is the only human protein which contains hypusine.	Inhibition of hypusine formation is cytostatic.
Geno	Base 1 2 3 4 5 6 7 8 9 10 11 12 13 1	AA GG GG AA GG GG AG AG	2		Sequence around polymorphism*	GGCTCCCAGGATGGCGGTGGT	GGCTCCCAGGGTGGCGGTGGT	CCCTGTTGCCCATAGCCCTTT	CCCTGTTGCCTATAGCCCTTT						*boid nucleotide is the polymorphic base
	l ocation B		┪-	٦.	Allele	623 A	623 G	1012 C	1012 T			<u></u>			
	Primor Pair	_	AIE11E.4		 #01	VARIA351.1.1	VARIA351.1.2	VARIA351.2.1 1012 C	VARIA351.2.2 1012 T						

Target Gene Summary Table
Cytidine Triph sphate Synthetas
Chrom some 1p34.1
VARIA259

Race Specific	heterozygosity	1/4 Chinese	1/1 Cambodian	2/4 Chinese																Per	_	-			
	Location		3 UTR	3 UR						urveyed:										ot determin		-	notyped.		
	Comments	Low frequency	Low frequency	Low frequency				w w w will 11% alocus Helerozygoshy		Ethnic & Racial Groups Surveyed: a≃Asian (other)	-	enazi				•		j≂Japanese pr⊏Punda Dinan	Medil	empty box = genotype not determined			Other populations genotyped:		
	32 33 34 35 36 Het%	%9	3%	8%		Ī		1%=Lo		Ethnic & Kacial a≃Aslan (other)	ar≕Arab	asn¤Ashkenazi h=Riark	c=Chinese	cu=Cuban	g≕Greek haHkaanin	ir-inspaliir ⊨Indian	t≕ltailan	≂Japanese p⊏Bunda E	w≃White	og Ac			og Ja	<u>.</u>	
	36	\$	8	ष्ठ	\Box			3	[<u>a</u>	as H	၂	<u> </u>	B 1	=	重	2 2	1 ×	E B			Ę		İ
	35	AG AA AA	8	<u>ფ</u>	\dashv	-	_		г				_	r									_		_
	2	SK S	읽	S S	\dashv	-	-											ā	į						
		ş	ĕ	SG GG GG	_	_	\exists	-					Ì	- 1				Jecu	-a				1	c c	
	三	ş	ខ	ဗ္ဗ	\Box			3		%			-					ž	fion					ocifi	
	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	AA AA AA AA AA AA AA AA AA AG AA AA AA A	သ သ သ သ သ သ သ သ သ သ သ သ သ သ သ သ သ သ သ	93	\dashv	_	_	-		-			Į					Yamauchi, M. Yamauchi, N. and M. Meuth (1990). Molecular	cloning of the human CTP sythetase gene by functional	complementation with purified human metaphase				Cells are polsoned by cyclopentenylcytosine, a specific	
	2 8	3	ان ان	SG GG GG	-	-	\dashv	3	- }	* !				- 1				5	ģ	tap				9	ı
	27	Ž	8	છ	+	-								-				Meut	gen	Ĕ	99	l		ytos	
	97	¥	ပ္ပ	ဗ္ဗ				3 3	- 1	3:				١				×	tase	E S	9: 2095-2099	l		Ş	
SE SE	25	¥	S	SG GG GG	\Box			*		Other SSCP polymorphisms:				ı		:	42	and	ef.	5	203	l		ži e	
P	3 24	<u>{</u>	8	8	-	_	_	-									(27	z	٦	ŧ,				뎡	
Genotypes of 36 unrelated Individuals	22 2	5	S	98	\dashv	\dashv		-		Ĕ						•	GenBank Accession # X52142	auct	S	Ę,	chromosomes, EMBO J.			ž	
P E	21	¥.	ध	8	\exists				1	2					Sequence from:	•	SSIO	Хад	Ē	¥ .	EMB			pe	္မ
late	20	A.	ပ္ပ	ପ୍ରକ୍ଷ ସର ସର				=		ပ္က					ë		9	Σ	ĝ	ıtati	188.		٤	: 8 : 8	Inhibitor of CTPS
Jun 1	5	₹	ដ	-6				-		š			i		enc		ž		90	E	DSO	l	15	9	٥
36	Ę	AAC	သ	্য হ	\dashv	4		-	- 1	g				ı	edn	•	en Bi	i de	in o	Ē	Ē		Validation.	캶	藚丨
ō	9	A A	2	99 99	\dashv	-			L	<u>-</u>				ŧ	<u>n</u>		<u>ა</u>		- 5	8	U	l	2	3	<u>=</u>
Se l	15	A.	8	છ		_		-																	
Ş	1	Ş	သသ	GA				۰																	
흥	13	1 AA	2	99	Ц																				
	1 1	AA	၁၁ ၁၁	99 99	\vdash	_		- 5	- }	-														ase	
	101	A A	8	ဗ္ဗ	H		H	- 3		띃	5	క	ပ္ပ	ပ္ပ	E S	31								ادِ.	
	٥	\$	8	99				4 CO.0		norphism	Σ	36	≸	≸	Ę	Ę								norphic base	
	8	I						-		Ĕ	¥	¥	စ္တ	g	ğ	ğ					l			Ē	
	1	1	8	3 66	Ц		L		ŀ	8	E	Ę	GA1	8	GI	티								8	
	5 6	K	ğ	9	Н		\vdash	8 × 8	İ	Pun	8	SAG	စ္က	Σ	5	TCA.								Ē	
	Ŧ	AA AA AA AA AA AA AA	32 32 32 33 33 36 32 32 32 32	20 30 30 30 30 30 30	H		\vdash	-	- 1	Sequence around polym	GTCAGTTCCAATTCAAGGTCA	GTCAGTTCCAGTTCAAGGTCA	CAGAACATCGCGATGGGAACC	CAGAACATCGTGATGGGAACC	TGTCCCCATCGGTCACCTTGT	TGTCCCCATCAGTCACCTTGT								*bold nucleotide is the polym	
	3	\$	8	8						nce	YG.	¥G.	¥	X	ၓၟ	ၓၟ႞								Bott	
	2	\$	သသသ	ષ્ટ			匚			due	ЭТС	STC	¥9	8	161	ত								힐	
\vdash	1				Щ		<u> </u>			S			ľ	ا ا										ᅙ	
	Base	Ϋ́G	5	ð	Ш		L																	۵	,
	Location	576	2093	2135						Affele	576	576	2093	2093	2135	2135									
	Primer Pair	F3-R3	F11-R11	F11-R11						#QI	VARIA259.1.1	VARIA259.1.2	VARIA259.2.1	VARIA259.2.2	VARIA259.3.1	VARIA259.3.2									

44/08

Target Gen Summary Table Cysteinyl-tRNA Synthetase Chromosome 11p15.5 VARIA301

Race Specific	Heterozygosity	53% White 50% Black	50% Chinese												peuli			ed: (98/267)		
Protein	change	pro622leu					ozygosiły	ps Surveyed:							v≈White empty box ≃ genotype not determined			₩.		
	Comments						44% = Locus Heterozygosity	Ethnic & Racial Groups Surveyed	ar=Arab ash=Ashkenazi	ck nese	lban Sk	panic		⊨Japanese pr≕Puerto Rican	ilte y box = genot)			Other populations genot) Swedes: 37% heterozygosity		
	33 34 35 36 Het%	44%				\downarrow		Ethnic a=Asi	ar=Arab ash=Ash	b=Black c=Chinese	cu=Cuban	h=Hispanic	#=Italian	FJapanese pr=Puerto R	**************************************			Swede		
	35 3	t				\perp	A A				_									
	33 34	្ន			\dashv	\dashv	3	ea	5				ъ <u>5</u>		ş					
		ಿರ			\exists		3	area	•				te an stein	60	bank It facks	Affin.		rove		
	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	್ರ				+	3	% 8	R				Cruzen, M.E. and S.M. Arfin (1994) Nucleotide and Deduced Amino Acid Sequence of Human Cysteinyl	4: 243-248	*The Ouzen and Artin paper is the source for nt 1-2048. Genbank acceptor at 105445 combins a britine 423 nt at the 3" end. but jacks the	19 consecutive A residues after 2029 reported in Gruzen and Arlin.		Validation: Multiple other tRNA synthetases have been proven		
	29	t					3	'		1				t: 24	1-2048 he 3' e	Cruze		e be		
	27 28	ŧ			-	\dashv	*	## ·	-			and	994) F	90	for nt	rted th		s hav		
	26					寸	3	ms:			1	sequence from: GenBank accession # L06845, and	in (1)	IRNA Sequence. DNA Sequence	ource (oder 6		tases		
uals	24 25	t	_		\dashv	\dashv	*	Shq				99	. Art	Seq	the s	r 202		inthe	펺	
PA	23					コ	彐	OEL/				# 6	S.M.	D A	aper k	es afte		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ĬĞ.	
트	21 22	-	<u> </u>	\vdash		\dashv	-	Other SSCP polymorphisms:				OIII:	and	9	Arfin p	residu		Ž,	essential for cell survival.	
sate	2	ಿಕ				二	彐	SCP		1		Sequence from: GenBank access	M E	daeu	and,	dive A		officer	ē	
I	18	ಿಕ					-	er S				luen. Banl	zen,	A Se	Piza d	nsecu		Validation: Multiple off	igi	
136	E							O E				9 <u>9</u>	Sign	Z Z	Ę.	19 co		Valk	esse	
Genotypes of 36 unrelated Individuals	5 16	្រ	-			_	-;				_						-			
Ş		ឹប					<u> </u>	_	т—									,		
190	2 13	ŧ	<u> </u>				=		ניי	ניז									base	
		- t					4 R. C. C. C. C. C. C. C. C. C. C. C. C. C.	sm.*	188	ဗြိမ္မ		ļ '							ŠĖ	
	110	F					£	l dr	I E	FF									mor	
	-	\vdash	$oxed{\Box}$				2	Ě	ပြွ	မြ									poly	
	[9	L					4	8	5	TG									the	
	<u></u>	+	\vdash		\vdash		9	logo.		ည်				1					de is	
	-	3332					_	Sequence around polymorphism*	ACATCCTGCCGAGCTTGGGG	ACATCCTGCCTGAGCTTGGGG									bold nucleotide is the polymorphic base	
	ļ.	1			-		а а а	l den	길	티									1 III	
\vdash	F	**					*) š	AC.	12		1		}					Poc.	
	Baca	5	_		_						_									
	I ocation Base	11 1730 CT CT						Allefe	1739 C	1739 T										
	Drimer Pole	1						10 number	VARIA301.1.1 1739 C	VARIA301.1.2 1739 T										

3/4/98

Target Gene Summary Table Alanyi-tRNA Synthetase Chrom s me 16q22 VARIA304

Herozygostry						-							96			
Protein	Silent			ygostty	s Surveyed:								not determin		enotyped:	
Comments				57% = Locus Helerozygostty	Ethnic & Racial Groups Surveyed: e=Asian (other)	areArab	The same of the sa	20 21	고월	6	je Japanese	lo Mean	'emply box ¤ genalype nol delermined		Other populations genotyped	
34 35 36 Het%	57%			22%	thnic	are Arab	b=Black	or-Cninese cu≕Cuban	g≕Greek h≕Hispanic	irindian t≃ltallan	HJapanese	wa White	Ade		Other p	
36	8			-	<u> </u>	<u> </u>	_ م	<u> </u>	<u> </u>	मङ	т.	1 ≩ .	<u></u>	J {	0 2	
35	<u> </u>	$ \Box$	工		_			1			·					
1	8		-							٠.	«	⁶ 수				
32 CF	E	+		+-				1		Genbank accession # USZUOU, described in: Shiba,K., Ripmaster, T., Suzuki,N., Nichols,R., Plotz,P.,	Noda, T. and P. Schimmel (1995) Human alanyl-tRNA	synnerase, conservation in evolution of catalytic core and microhelix recognition. Biochemistry 34: 10340-			Ę	[
30 31	≋ 5			3						윤	<u></u>	34. 34:			Validation: Multiple other fRNA synthetases have been proven	
30	t	\Box		3	শ				Sequence from:	ي مخ	ala	ָ כפוני			Š	
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	ं ड			3	***					를 찾	man	synn retase, conservation in evolution of ca and microhelix recognition. <i>Biochemistry</i>	•		å	1
27 2		-	 -		"					翠兰	Ŧ ;	19 M			200	
26	ti ti	- - 	\dashv	3	;;			l	ן כ	ב ה ה	6	ioct.			T va	;
2 2	8				E				}	ξŞ	<u>ت</u>	9 6) 5			tac.	
2	t			Ł	를				2	ვ თ	ine.	5 5			d de	-i
2 2	1	\Box		13	Ď				7	= <u>-</u> -	長	ğ			3	` ≧
12	<u> </u>			-	ᅙ			l	l _E 1	aste	3	2 B			Ž	<u>ਡ</u>
202	TT CT TT CT TT	+-		+=	Other SSCP polymorphisms:				Sequence from:	E E	age of	3 쓸			<u> </u>	essential for cell survival.
1	8	1-1	\dashv		880				<u>و</u> ع	# 22 € .3	. a	io de			<u>ë</u>	를
3 🖹	8		工厂		Ē					ž Ž		Ę	349.		Validation: Multiple oth	픭
[13] 14 15 16 17 18 19 20 21 22 23 24 2	સ સ	\Box		·	ਠ				Sec	S 2	ž	and	10349			ess
	8			4=											=	ٽ
	<u>ु</u>															
	E	++	+	-						_		_	1			
12	11		+	1		Æ	A					l				
国	티			20.00	'E	rcggacca	rcggacca									
_	ಶ	\Box			뚩	3	8									
6	8		_	1 =	9	ဗ္ဗ	ပ္ပ			1						
1	8	++			톩	ដ	탕									82
9	8	\dashv		0 0 0	1 2	TG	ဗ္ဗ									اق ا
5	11 12 12 12 12 12 12 12 12 12 12 12 12 1			1:1	Sequence around polymorphism*	CTGGCTGACCATGCT	CTGGCTGACCACGC				l					튑
	E				- E	N.	;AC							l		E
	E	$ \parallel$ \perp \parallel		A A B	틸	K	ŢŢ									<u>a</u>
1 2			_	11	퓿	ၓ္တ	36								İ	홀
-				+-	ő	Ĕ	Ţ							ı	Ì	2.
Base	Ω.	+			Ш	J						_				leotide
Location	bp 1013				Allele	1013 T	1013 C									*bold nucleotide is the polymorphic base
Pak	Afa2	+	\top	1										-		
Primer Pair	Ala1a-Ala2				₫	VARIA304.1.1	VARIA304.1.2									

4/07

Fig. 3 Chromosome 1 - p Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
36	0172	110	24	022	Breast	(december)
36	D1Z2	37	15	0.41	Breast	AJHG 45:73
36	0122	18	9	0.5	Endocrine	
36	D1Z2	20	1	0.05	Endocrine	CR 52:770
36	0172	7	7	1	Neuroblascom	CR 55 5366
					a .	
36	D1S243	43	10	0.23	Breast	CR 55:1752
36	019243	20	- 6	0.3	Endocrine	Unknown
36	D1S243	14	14	1	Neuroblastom	CR 55:5366
36	019243	36	g		а	
	213243	36	3	025	Neuroblastom:	CK =20 = 368 E
36	D1S243	8	7	0.88	Neuroblastom	GCC 10:275
			•	0.00	a	000 10.275
36-35	01980	- 9	Ū	0	Brain	(#1805) (#1805) (#1
36-35	D1S80	14	1	0.07	Brain	CR 54:1397
36-35	D1580	34	15	0.47	Ereanin	100000000000000000000000000000000000000
36-35	D1S80	17	4	0.24	Breast	GCC 12:16
Unknown	D1980	7.6	22	0.3	Breast	
36-35	D1S80	63	20	0.32	Breast	CR 54:4274
36+35	D1S80	40	8	0.2	Endocrine	Cerebia (A.)
36-35	D1S80	13	10	0.77	Neuroblastom	GCC 10:275
36-35	DISEC	38	q	0.24	a Neuroblastom	
		30		U.24	a	CX
Unknown	D1S80	19	· 2	0.11	Testis	CR 54:6265
Unknown	D1580	17	2	0.12	Testis	0.9:2245
36.3-35	D1S76	34	16	0.47	Brain	AJP 145:1175
36.3-35	D1576	41	4	0.1	Breast	OR 53 4356
36.3-35	D1S76	19	3	0.16	Breast	GCC 12:16
36.3-35	D1576	38	13	0.34	Breast	CR 54-4274
36.3-35	D1576	17	15	0.88	Neuroblastom	GCC 10:275
			774470777800000000000000000000000000000	M*************************************	а	
finknown	D1577	21	10	0.48	Brain	AUP 145-1175
Unknown	D1S77	19	3	0.16	Breast	GCC 12:16
Unknown	01977	18	A	0.22	<u>Esophageal</u>	500 000 277
Unknown	D1S77	6	2	0.33	Stomach	BJC 73:424
- On known	019253	17	3	G.18	Leukemra	CR 55:5377
36	D1S47	32	3	0.09	Breast	CR 51:1020
36	D1947	15	1	0:07	Colon	CR 52-285
36	D1S47	17	12	0.71	Colon	CR 50:7232
36	DIS47	23		0,29	Melanoma	FNAS 86:4614
36	D1S47	31	7	0.23	Neuroblastom	GCC 10:30
36					a	
36	019214	43		0.19	***************************************	CR 55-1732
٥٥	D1S214	11	10	0.91	Neuroblastom	GCC 10:275

BNSDOCID: <WO___9841648A2_I_>

36	D1S214	13	Q.	C C	Stomach J	Treatie (CA)
Unknown	D1S160	17	9	0.53	Brain A	AJP 11145:11
Unknown	01.91.60	21	5	0.24	Liver	R 0521 (2008)
Unknown	D1S160	34	8	0.24	Neuroblastom C	CR 55:5681
Unknown	D1S160	41	22	0.54	Ovarv	(F) (###################################
Unknown	D1S244	36	9	0.25	Neuroblastom (CR 55:5681
36	D19450	37	8	0.22	Breast	ere standing
Unknown	NPPA	1	0	0	Testis (GCC 13:249
Unknown	PGD	10			Fig. 1 Sec.	elejessate RAZE: 200
36	D1S228	40	5	0.12	Breast (CR 55:1752
36	D15228	7	5	0.71	Neuroblasion (
36	D1S228	31	7	0.23	Neuroblastom (
3.6	D15229	8	1	0,12	Stomatch	
Unknown	D1S170	19	5	0.26	Liver	CR 54:4188
Unknown	D19170	36	7	0.19	Negrobleston:	
Unknown	D1S170	33	16	0.48	Ovary	BJC 75:1105
Unknown	D1S94	19	12	0.63	Collere	010151000755750
Unknown	D1S94	8	4	0.5	Neuroblastom a	
Unknown	D1S94	36	9	0.25	Neuroblastom: a	GCC_10130.
35	D1S199	50	9	0.18		CR 55:1752
35	D19199	30	4	0.13	Cervix	CR 56:197
35	D1S199	14	13	0.93	Neuroblastom a	CR 55:5366
35	018199	4	2	0.5	Menroblasion a	GCC::10::27 5
35	D1S199	9	0	0	Stomach	BJC 73:424
36_1-p34	ALPL	17	2	0.12	0.02400	CR 52 - 285
36.1-p34	ALPL	2	1	0.5	Endocrine	CR 52:770
36 l-p34	ALPL	17		9.24	***************************************	PMAS, 86:4614
36.11	D1S112	1	1	1	Neuroblastom a	CR 55:5366
is Unigrown	015112	20		0.05	Neuroblastom: 8	0.763161
Unknown	FUCA1	15	5	0.33	Brain	AJP 1145:117
Unknown	FUCAT	13	6	0.46	Мейанопа	CTIVE SAME OF A COMM
Unknown	FUCA1	14	0	0	Testis	GCC 13:249
Grknown	D19234	10	8	0.8	Neuroblestom 2	G00-116-7-15
36.2-36.1 36.36.1	FGR FGR	12	2	0.17 fi	Brain Brain	CR 54:1397
36.2-36.1	FGR	4	2	0.5	End crine	CR 52:770
36, 2-36, 1	FGR	14	6	0.43	Overs	

Unknown	D1S63	39	4	0.1	Testis	CR 54:6265
Unknown	015247	2	1	0.5	Neuroblaston	Gerendel V
36.2-34	D1S95-96	74	20	0.27	Breast	CR 53:1990
Unknown	D1S96	17	11	0.65	Colon	
36.2-36.12	D1S95	19	2	0.11	Neuroblastom a	
Unknown	D1S96	1.6.		0	Neuroblastom	
32	D1S7	105	43	0.41	Breast	CR 54:4274
32	D197	46		0.28	Breast	(element)
32	D1S7	28	26	0.93	Colon	CR 50:7232
32	D1S7	14		0.5	Ondoording.	11 = 7 1
32	D1S7	13	1	0.08	Liver	BJC 64:1083
32	DIS7	50	15	0.3	Liver	0.000 000 0000
32	D1S7	6	6	1	Neuroblastom a	CR 55:5366
32	D1S7	14		0.36	Panciess	6:10 : 00:00
32	D1S7	31	3	0.1	Stomach	HG 92:244
32	D1\$7	45	14	0.31	Stomach	W. S. S. V.E.Y.
32	D1S7	31	3	0.1	Stomach	BJC 73:424
32	<u>p197</u>	30	1	0.03	Testic	(66-3)
Unknown	D1S233	19	5	0.26	Head&Neck	CR 54:1152
Unknown	D1S233	4	2	0.5	Neuroblastom a	GCT_10:275
Unknown	D1S241	4	3	0.75	Neuroblastom a	GCC 10:275
Unknown	015201	35	- 6	Û	Head&Neck	CR 54:4756
Unknown	D1S201	19	1	0.05	Head&Neck	CR 54:4756
Unkaowa	D15203	- 6	3	0.38	Neuroblastom	CCC 10 275
Unknown	D1S201	12	3	0.25	Stomach	BJC 73:424
35-32	01957	15	1	0.07	Brain	CR-5(0.5784
32	D1S57	26	12	0.46	Brain	AJP 1145:117
35-32	p1557	- 11	0		Brain	60.00 X L X (5.72)
35-32	D1S57	18	1	0.06	Breast	GCC 2:191
<u>- 85-32</u>	01857	73	15	0.21	Breast	(FACTOR SEE
35-32	D1S57	43	4	0.09	Breast	CR 50:7184
35-32	D1557	81	36	0.44	STREET, SECTION	(cite 12) (12) 288 (cite
35-32	D1S57	3	2	0.67	Breast	CR 53:3804
35-32	D1S57	4.4	- 6	0.14	Breast	(0.20)
35-32	D1S57	19	6	0.32	Breast	CR 51:6194
35-32	D1857	23	•	0,22	Breast	G G G
32 32	D1S57	74	23	0.31	Breast	CR 53:1990
35-32	D1857	5	1		Cervix	CR SA CARL
35-32 35-32	D1S57 D1S57	6	0	0	Cervix	GCC 9:119
35-32		180	40	0.22	Colon	EUC 64:476
33-32	D1S57	22	2	0.09	Colon	CCG 48:167

22 / 214

35-12	101015	16		0.39	67.010	\$\$\$\$(\$\inj\)
35-32	D1S57	12	0	0	Colon	ท 331:273
32	101 (5.57)	16		0.016	Kanada ahija d	TOTAL YALAM IN TOTAL
32	D1S57	12	8	0.67	Endocrine	CR 52:770
35=32	D1857	15	6			(12 4 (************************************
32	D1S57	27	8	0.3	Esophageal	CR 54:2996
32	657	14	1	0.07	(6161767)	5.79(6.24)
35-32	D1S57	22	1	0.05	Liver	CR 51:89
35-32	01957	28-	-	0.18	Anting .	
32	D1S57	2	2	1	Neuroblaston a	m CR 55:5366
32	01357	14	1	0.097	100 F 100 F	
35-32	D1S57	18	7	0.39	Ovary	0 7:1059
35-32	(P.18557)	4	0			
35-32	D1S57	20	2	0.1	Sarcoma	CR 52:2419
37	60.557				ASSESSED FOR	100 500 000 000 000
35-32	D1S57	17	0	0	Testis	G 5:134
12				100	70 e e - 1 e - 1	
32	D1S57	37	2	0.05	Testis	CR 54:6265
33-12	DIST	G		1	Uterus	(Fig. 2) (\$40.15)
32	D1S57	11	1	0.09	Uterus	CR 51:5632
Gaknown	D19255	14		0.6	Neutro Di a 910	e Gozali i
Unknown	D1S255	5	4	0.8	Stomach	BJC 73:424
Unknown	D19186	25	7	0.28	Liver	CR 54, A188
32	MYCL1	74	26	0.35	Breast	CR 53:1990
32	WYKELL	611	36	0.774	Breast	FIGURE 12/128
32	MYCL1	152	55	0.36	Breast	HG 85:101
32	38(6)			019	Breast	CR_54.4.14
32	MYCL1	17	2	0.12	Breast	AJHG 45:73
32	002001		100	0.62	Colon	
32	MYCL1	20	2	0.1	Colon	CR 52:285
32	BY61		5	0.25	Colon	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
32	MYCL1	9	1	0.11	Endocrine	CR 52:770
	1017/01/9	20	4		District or production	(C) (C) (C) (C)
32	MYCL1	12	8	0.67	Endocrine	CR 52:770
- 2	21,120,11				6800773088	
32	MYCL1	18	2	0.11	Liver	JJCR 81:108
	\$85 CV000	777				
32	MYCL1	5	0	0	Lung	CR 54:5643
2	MYCLI	11		0.09	3 0111	
32	MYCL1	57	12	0.21	Lung	0 10:937
	97/01/2	20				1000
32	MYCL1	2	1	0.5	Lung	CR 54:5643
Unknown	RICEL	9		0.522	Application and the	Sing SER WAS TRANS
32	MYCL1	41	9	0.22	Ovary	BJC 75:1105

37	MYCLI	13		0.30	£vzesy	o conte
32	MYCL1	17	4	0.24	Ovary	GO 55:245
12	NY at l	7-7		6.11	0.00	
32	MYCL1	9	0	0	Sarcoma	CR 52:2419
37	S. Carrie		6		Te de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	
32	MYCL1	1	0	0	Testis	CCG 52:72
572	Estate in		6		Testis	766
32	MYCL1	20	1	0.05	Uterus	CR 54:4294
Unknown	CLUTT	23	3	0.13	Testie	4 626
34.2-32.2	D1S190	23	3	0.13	Cervix	CR 56:197
38.2-32.2	DISTRO			G 33	Neuroblasion.	
					a	
Unknown	D1S193	7	2	0.29	Neuroblastom	GCC 10:275
				•	а	
	DISZLI	42	6	0.14	Breast	
Unknown	D1S211	5	3	0.6	Neuroblastom	GCC 10:275
SER PROPERTY.	DISIO				а	
ACILITIES.	U4C19:	12	7	0.58	Neuroblastom	ejerment (s.e.)
Unknown	D1S197	16	5	0.31	Stomach	220.22.404
77	DLS6Z	74	10	00000000000000000000000000000000000000	Breas	BJC 73:424
32	D1S62	15	0	0	Colon	CCG 48:167
32	D1562	2	2	Ū	Stomach	CCG 48:167
Unknown	D1S162	0	5	0	Breast	*******************
Unknown	D1S162	19	5	0.26	Liver	Unknown
Unknown	D1S200	12	7	0.58	Neuroblastom	***************************************
			•	0.30	Wedtobiascom	GCC 10:275
Unknown	D15200	33		0.15	Neuroblastom	ATO ELECTION
					а	
Unknown	D1S15	74	22	0.3	Breast	CR 53:1990
Unknown	D1515			0.25	Endocrine	
Unknown	D1S15	24	6	0.25	Testis	CR 54:6266
prer-22	D1521	18	9		Brann	7. N. F. S. S. S. S. S. S. S. S. S. S. S. S. S.
pt r-22	D1S21	74	20	0.27	Breast	CR 53:1990
	D1571	10			Breast	
31-pter	D1S21	12	1	0.08	Endocrine	CR 52:770
(0.5084)	D1521			07.75	(Mada a series	
31-pter	D1S17	19	8	0.42	Brain	AJP 1145:117
201-pter	DIE	8			PASSESSES AND ADDRESSES	
31-pter	D1S17	5	0	0	Breast	CR 51:1020
opter-22	01517	7.0	2.2	0.6	Birdales	46T. (\$456)(\$90)
pter-22	D1S17	4	3	0.75	Endocrine	CR 52:770
pter-22	0.00	9	7	0.79	Since Conference of Conference	
31-pter	D1S17	13	2	0.15	End crine	GCC 13:9
pgez+22	0.00		4	0.21	Nedatoona	(P)(EXC.)(E); (E)
pter-22	D1S18	74	20	0.27	Breast	CR 53:1990
*Dtar-55	0.000	6	4	0.67	Daniel Colored	(0):00:00

Unknown	D1S203	14	6	0.43	Neuroblastom a	GCC 10:275
Un known	D15246			0	Sizona Gire	\$:\${\\@in_a\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Unknown	D1S209	15	7	0.47	Neuroblastom a	GCC 10:275
Linknown	DIS159			0.19	Live	## (#E.YKY ## E.
Unknown	D1S219	8	0	0	Stomach	BJC 73:424
31	015464	44	13	0.25	Breas	
21	D1S216	14	13	0.93	Neuroblastom a	
2.	-015216	8	4	0.5	Neuroblastom 8	
pter-31	D1S2	12	7	0.58	Brain	AJP 145:1175
preredi	D192			0	Breset	Google
pter-31	D1S2	74	19	0.26	Breast	CR 53:1990
pter=31	PLSZ	16		0.19	Melanoma	
31	D1S500	33	8	0.24	Breast	CR 55:1752
31	015430	39	11	0.28	Breast	600 10 075
Unknown	D1\$207	15	8	0.53	Neuroblastom a	
Unknown	015207	14		0.14	Steement	
pter-22	D1S16	74	22	0.3	Breast	CR 53:1990
pter-22	DISLE	111		2.22	Cervix	GD 50.770
pter-22	D1S16	6 24	2	0.33	Endocrine Melanoma	CR 52:770
pter-22	D1516	*********	-	~~~~		CR 54:6266
pter-22	D1S16	13	5 ?	0.38 0.19	Testis Breast	CR 54.0200
31	DIS225	36 9	1	0.11	Liver	CR 54:4188
Unknown	D1S167	10	1	0.11	Breast	AUGG SS/SS
Unknown Unknown	AF3	26	6	0.23	Testis	CR 54:6265
Unknown	D15236	11	3	0.45		0.000
	District	•				
22-13	D1S10	74	19	0.26	Breast	CR 53:1990
-Unknown	AMZIA	3.7			76	0.04(0.07)07/2740000
21	AMY2B	16	5	0.31	Liver	CR 54:4188
71	AMY28	16		0.45	COVER OF STREET	
21	AMY2B	12	0	0	Uterus	CR 54:4294
77,=1	0.000		77.	1.07	Exercise *	
22-13	D1S14	18	. 3	0.17	Endocrine	GCC 13:9
77.	99.55	7.5		0.17		(C) (C) (C) (C)
21-13	D1S73	13	6	0.46	Brain	AJP 145:1175
	01878	74			Byrea.st	
21-13	D1S73	22	6	0.27	Breast	GCC 12:16
	D1.577			0.26	Testia	67.5
22-13	D1S9	8	6	0.75	Brain	AJP 145:1175
7/2=16	1016	7/4	7.5	0.31	Overet	67 FA 606F
22-13	D1S9	25	0	0	Testis	CR 54:6265
	RAPIA	18	i.	0,00	Calon	

13	D1S418	39	8	0.21	Breast	CR 55:1752
2 13	NRAS	7.4	21	0.28	Breast	
13	NRAS	10	5	0.5	Endocrine	CR 52:770
13	NRAS	- 6		0.17	See Course	Self-orange Anna Anna Anna Anna Anna Anna Anna Ann
13	NGFB	32	13	0.41	Brain	AJP 145:1175
13	NGFB	6				(e(9:0 * // 2:23)
13	NGFB	13	2	0.15	Breast	AJHG 45:73
13	NGEE	1.3	9	0.69		Market State (Colored
13	NGFB	18	3	0.17	Colon	IJC 53:382
13	NGFB	5		0.2		* • • · · · · · · · · · · · · · · · · ·
13	NGFB	16	0	00	Testis	CR 54:6266
13	AGPE		0		61(35)	Welsier was stand with
13	NGFB	3	0	0	Testis	CCG 52:72
13	NGFB	6				((6 (6));;((3));(
22-13	D1S11	74	19	0.26	Breast	CR 53:1990
21=Nov	01336	7				(September 1997)
22-13	D1S13	74	16	0.22	Breast	CR 53:1990
	Disks	7				(% 6:6: 5-2-2-7)
22-13	D1S13	7	66	0.86	Endocrine	CR 52:770
222.1-13	D1864	18		0.835		64.64.00 (Capital)
31-pter	Unknown	36	1	0.03	Breast	JNCI 84:506
32	D18100-101	7.4	20	0.27		//efce.upsed82200///
Unknown	D1S33	9	4	0.44	Breast	CR 51:1020
3.35	COKROWN	37	6	9.016	66.00	m(:n(=m, c) ///////////////////////////////////
Unknown	Unknown	14	0	0	Colon	CCG 48:167
Unknown	D15166	23	- 1	0.17	Endorrine	Geo. 13.9
Unknown	D1S19	4	2	0.5	Endocrine	CR 52:770
Unknown	PND	3		0.67	Option where the	MINTER SYSTEM
Unknown	D1S252	19	3	0.16	Head&Neck	CR 54:1152
Grknown	DISS/HGPE	21	4		a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	
Unknown	D1S243-D1S228	22	1	0.05	Kidney	PNAS 92:2854
Unknown	DLS243-DLS228	- 6			(Control of the control 11 (1 (1 () () () () () () () (
Unknown	D1S:243-228	33	3	0.09	Kidney	CR 55:6189
<u> </u>	Unknown	14	2	0.00		\$18:010x (TP7x; \$61000)
Unknown	D1S187	19	4	0.21	Liver	CR 54:4188
Unknown	MITSO1	777	5			
Unknown	ISO2	13	4	0.31	Liver	CR 54:4188
SER known	D1519			0.25		20.000000000000000000000000000000000000
Unknown	D1S:214-201-255	20	1	0.05	Melanoma	CR 56:589
<u> Vuknovn</u>	PND			0.000		
Unknown	D1S220	20	10	0.5	Neuroblaston	n GCC 10:275
			****		а	
Unknown	D15232	11.		0.64	Neuroblasion	-Scc 10,275
Unknown	D1\$252		•			
CHAHOWH	D19595	8	2	0.25	Neuroblastor	n GCC 10:275

BNSDOCID: <WO___9841648A2_I_>

Unknown	D1997	18	Q	0	Neuroblast	are G 7:1185
Unknown	GGAT2A07	28	3	0.11	Neuroblast	om CR 55:5681
Опклоип	D1S60	18		0.06	Ovard	500 500 46
Unknown	D1S:162-175	14	1	0.07	Ovary	BJC 72:1330
Unknown	13-441	2/5	6	0.24	Overy	CF::53::2393
Unknown	MTHFR	28	16	. 0.57	Ovary	BJC 75:1105
13-36	PARE-DRISZ-AGRE	11	0	0	Prostate	G 11:530
3.35	Unknown	9	3	0.33	Stomach	BJC 59:750
STRM		7135	1886	0.26		

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
United Chin	71.5305	30	7	0,23	Cervix	CTC STC SECTION
CENTR	D1S305	14	1	0.07	Neuroblaston a	n CR 55:5366
Unknown	D1567.	30	1	0.03	Brain	
21	D1S67	74	7	0.09	Breast	CR 53:1990
Unknown	09/5/67/	15	2	0.13	Breast	0.00
Unknown	D1S67	7	2	0.29	Cervix	GCC 9:119
Unknown	DIS67	26		0.12	Esophageal	Coleman Control
Unknown	D1S67	14	1	0.07	Kidney	CR 51:820
Unknown	D1567			0.17	Liung	946: 5959291
Unknown	D1S67	3	3	1	Lung	CR 52:2478
Unknown	D1S67	1		1	Loung	7 - SPARA 16
Unknown	D1S67	17	5	0.29	Lung	CR 52:2478
Unknown	01967	14	4	0.25	0.000	
21	D1S67	23	2	0.09	Ovary	IJC 54:546
Unknown	D1667	26		0.07	Tes es	
Unknown	D1S67	22	4	0.18	Uterus	GCC 9:119
21-23	MUCI	74		0.12	85.6038	
21-23	MUC1	7	0	0	Breast	CR 53:3804
21-23	MUCI	4.4	16	0.3	Breast	
21-23	MUC1	43	7	0.16	Breast	CR 51:1020
21-23	MUCI	21		0.33	Head&Neck_	
21-23	MUC1	16	4	0.25	Stomach	CR 51:2926
21-23	MUCI	25	2	0.08	Testis	C(C(C) 1837/7/19
21	PEM-pMUC10	89	14	0.16	Breast	GCC 5:311
21	SPTAL	74	9	0.12	Breagt	00 50 000
21	SPTA1	6	2	0.33	Breast	GCC 12:16
21	SPTA1	6	2	0.33	Breast	EN 85-7204
21	SPTA1	22	2	0.09	Colon	CR 52:285
21	SPTAL	29		0.1	Colon	08/52/285
Unknown	D1S176	17	. 1	0.06	Liver	CR 54:4188
22-25	ATPIBL	74	g	0.12	Breast	53-1-1-1-1
21-23	APOA2	6	0	O	Breast	GCC 2:191
21-23	APOA2	13		0.22	Overy	Barr 692429
21-23	APOA2	5	0	0	Testis	GCC 13:249
21-23	APOA2	- 6		0.08	(A) (Danker over	
21-31	D1S61	74	10	0.14	Breast	CR 53:1990
22 31	01961	52	12	0.23	Areast	61:05103020
21-31	D1S61	39	8	0.21	Breast	GCC 12:16
21-31	DISBL	21		0.1	Endocring	GCC 12 3
Unknown	D1S75	14	0	0	Brain	AJP 145:1175
Unknown	01.97	18		0.06	Pestin	010000000000000000000000000000000000000
Unknown	D1S66	14	4	0.29	Esophageal	CR 54:2996
Unknown	D1566	11	C		Sarcoma	(5)
23-25	AT3	19	0	0	Brain	CR 54:1397
23:25	ETI		0		Brain	0.00

PCT/US98/05419

28 / 214

23-25	AT3	14	1	0.07	Breast	AJHG 45:73
73-25	ATE	2	6		Green and the second	Co. (46-47/2005)
23-25	AT3	14	0	0	Colon	CR 52:285
23-25	ATS	4			Liver	ORES (SUM
23-25	AT3	22	1	0.05	Ovary	IJC 54:546
23-25.1	ATI		0		Overv	G10-311 (27/24)
23-25	ETA	27	0	0	Testis	CR 54:6265
23-25	AT3	8		0.25	Testis	CREATE STATES
Unknown	D1S238	22	4	0.18	Cervix	CR 56:197
31-32-1	E13B	9	0	0	Brain	CR 5 (1397
31-32.1	F13B F13B	15 12	0	0.08	Brain	CR 54:1397
31-32.1	F13B	13	0 ·	0	Codossine Uterus	CR 54:4294
Unknown	D1S65	18	0.	0	Brain	CR 54:4254
Unknown	D1S65	18	5	0.28	Breast	GCC 12:16
Unknown	D1965	6	0	0.20	000000000000000000000000000000000000000	000 12:10
Unknown	D1 S 65	16	2	0.12	Head&Neck	CR 52:1494
Unknown	D1S65	15	3	0.2	Pestis	(G) (G) (G) (G)
32 or 42	REN	11	0	0	Brain	AJP 145:1175
32 or 42	REN	1.2	3	0.25	Breast	000000000000000000000000000000000000000
32	REN	21	7	0.33	Breast	GCC 12:16
37 00 42	PEN	6		0.0	Dread.	e:eskalepji
32 or 42	REN	12	2	0.17	Cervix	CR 49:3598
32	REN	1.6	1	0.06	Colon	CRC52/285
32 or 42	REN	19	7	0.37	Colon	IJC 53:382
32 or 62	PEN	8	G	0	Liver	PNAS 86:8852
32 or 42	REN	14	0	0	Liver	JJCR 81:108
32.or 42	REN	4	0	0	Repropraece	m CR 49:1095
32 or 42	REN	21	1	0.05	Ovary	IJC 54:546
3/2 (07)	REN	8	0	G	Prostate	6 10 5 0
32 or 42	REN	15	4	0.27	Stomach	CR 52:3099
32 or 42	REN	11		0.27	Teste Ve	911 5 (FEF) (FE
32 or 42	REN	6	0	0	Uterus	CR 51:5632
.2.32	D15249	- 12.			Neuroblast	
Unknown	LAMB2	13	1	0.08	Testis	CR 54:6265
Daknova	01956	24		0.46		2/3
Unknown	D1S58	27	7	0.26	Cervix	CR 54:4481
Unknown	D1558	15	0	3		Silver Child (Time)
Unknown	D1S58	21	4	0.19	Testis	CR 54:6265
Unikaciokin	01558	23	5	0?	(Sesterio	0.000
Unknown	D1S81	32	0	0	Brain	AJP 145:1175
Unkoown	DLS81	39	12	0.51	Breat	(1.00 per 1.00 per 1.00 per 1.00 per 1.00 per 1.00 per 1.00 per 1.00 per 1.00 per 1.00 per 1.00 per 1.00 per 1
Unknown	D1S81	41	5	0.12	Breast	CR 53:4356
Unknown	01591	20		0.03	Liver	
Unknown	D1S213	30	6	0.2	Cervix	CR 56:197

Unknown D1574	Green way	F) (5/25)					a a a a a a a a a a a a a a a a a a a
Unknown D1874 39 7 0.18 Cervix CR 54:4481 Unknown D1874 39 7 0.18 Cervix CR 54:4481 Unknown D1874 50 3 0.06 Testis CR 54:3983 Unknown D1874 50 3 0.06 Testis CR 54:3983 Unknown D1874 51 0.06 Testis CR 54:3983 Unknown D1874 51 0.06 Testis CR 54:3983 Unknown D188 31 2 0.06 Testis CR 54:3983 Unknown D188 31 2 0.06 Testis CR 54:3983 Unknown D188 31 2 0.06 Testis CR 54:3983 Unknown D188 31 2 0.06 Testis CR 54:3983 Unknown D188 31 2 0.06 Testis CR 54:3983 Unknown D188 31 2 0.06 Testis CR 54:3983 Unknown D188 31 2 0.06 Testis CR 54:3983 Unknown D188 31 2 0.06 Testis CR 54:3983 Unknown D189 43 6 0.14 Breast JJC 61:1 Unknown D189 43 6 0.14 Breast JJC 61:1 Unknown D189 J2 J2 Unknown D189 J2 J2 Unknown D189 J2 J2 Unknown D189 J2 J3 Unknown D189 J3 J3 Unknown D189 J3 J3 Unknown D189 J3 J3 Unknown D189 J3 J3 Unknown D189 J3 J3 Unknown D189 J3 J3 Unknown Unknown B J3 O.38 Liver BJC 64:1083 Unknown Unknown Unknown J3 J3 Unknown Unknown J3 J3 Unknown Unknown J3 J3 Unknown Unknown J3 J3 Unknown Unknown J3 J3 Unknown Unknown J3 J3 Unknown Unknown J3 J3 Unknown Unknown J3 J3 Unknown Unknown J3 J3 Unknown Unknown J4 Unknown J3 Unknown Unknown J4 Unknown J4 Unknown Unknown J4 Unknown J4 Unknown Unknown J4 Unknown Unknown J4 Unknown Unknown J4 Unknown J4 Unknown Unknown J4 Unknown J4 Unknown Unknown J4 Unknown J5 Unknown J6 Unknown J7 Unknown J7 Unknown J8 Unknown Unknown J8 Unknown J8 Unknown Unknown J8 Unknown Unknown J8 Unknown Unknown J8 Unknown Unknown J8 Unknown Unknown Unknown Unknown Unknown Unknown Unknown Un	Unknown	D1S74	11	4	0.36		
Unknown DIS74 39 7	Unknown	PHEE	57		(1,72)	SAME SAME	
Section Sect	Unknown	D1\$74	39	7	0.18	Cervix	
District	Unknown	Q158.			6	National States	***************************************
Unknown	32-44	D1S103	18	2	0.11	Ovary	BJC 69:429
Unknown DISS 31 2 0.06 Testis GCC 13:249 Unknown DISS 31 2 0.06 Testis GCC 13:249 Unknown DISS 31 2 0.06 Testis GCC 13:249 Unknown DISS 31 2 0.06 Testis GCC 13:249 Unknown 70 18 0.26 Breast JNCI 84:506 JL/43 Unknown 75 15 0.2 Breast JNCI 84:506 JL/43 Unknown DF3 43 6 0.14 Breast JJC 61:1 43/23 Unknown 34 4 0.2 Colon SIJ 59:750 Unknown DISJ 102 1 0.08 Enderline GK 17:2 Unknown DISJ 102 1 0.08 Enderline GK 17:2 Unknown DISJ 102 1 0.08 Enderline GK 17:2 Unknown DISJ 59: 750 Unknown DISJ 59: 750 Unknown DISJ 59: 750 Unknown DISJ 59: 750 Unknown DISJ 59: 750 Unknown DISJ 59: 750 Unknown DISJ 59: 750 Unknown DISJ 59: 750 Unknown DISJ 59: 750 Unknown DISJ 59: 750 Unknown DISJ 59: 750 Unknown DISJ 59: 750 Unknown DISJ 59: 750 Unknown DISJ 59: 750 Unknown DISJ 59: 750 Unknown DISJ 59: 750 Unknown DISJ 59: 750 Unknown DISJ 59: 750 Unknown Unknown B	Unknown_	EDIE /4			0	7.00	
Unknown DISS 31 2 0.06 Testis GCC 13:249 Unknown DISS 31 3 0.05 Testis GCC 13:249 Unknown DISS 31 3 0.05 Testis GCC 13:249 Unknown 70 18 0.26 Breast JNCI 84:506 ZI-34 Unknown 75 16 0.71 Breast JNCI 84:506 ZI-34 Unknown DIS		77000770077740000000000000000000000000	50	3	0.06	Testis	CR 54:3983
Unknown DISS 31 2 U.06 Refine GCC 15:249		DJS74			0.06	STATE OF THE STATE	7761 (*p772657 %)
21-23	200000000000000000000000000000000000000	00779700000000000000000000000000000000		2	0.06	Testis	GCC 13:249
Charlest Charlest	***************************************	D158	31		0.06	A CONTRACTOR	
Unknown DF3	*****************		***************************************	18	0.26	Breast	JNCI 84:506
Unknown Unknown 4 1 0.25 Liver BJC 64:1083 Unknown	***************************************	***************************************	75				6.00
2.14	***************************************	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	************	6	0.14	Breast	IJC 61:1
Unknown	***************************************		************		6 19 2		
Unknown DIS215 11 2 0.18 Endocrine CR 56:599 Dikknown DIS304-212 43 6 0.14 Head&Neck CR 54:4756 Dikknown DIS304-212 1 2 0.12 Bead&Neck CR 54:4756 Dikknown DIS304-212 1 2 0.12 Bead&Neck CR 54:4756 Dikknown Unknown 8 3 0.38 Liver BJC 64:1083 Dikknown Unknown 4 1 0.25 Liver BJC 64:1083 Dikknown Unknown 4 1 0.25 Liver BJC 64:1083 Dikknown DIS2337-212 27 2 0.97 Beal&Nome DIS268 Dikknown DIS268 Dikknown DIS268 Dikknown	***************************************	***************************************		3		Colon	BJC 59:750
Unknown D1S304-212 43 6 0.14 HeadsNeck CR 54:4756 Unknown D1S304-212 43 6 0.14 HeadsNeck CR 54:4756 Unknown Unknown 8 3 0.38 Liver BJC 64:1083 42-43 Unknown Unknown 4 1 0.25 Liver BJC 64:1083 Unknown Unknown 4 1 0.25 Liver BJC 64:1083 Unknown D1S:237-212 27 2 0.07 Malanoma CR 56:589 Unknown APOA2-D1S:158-103 14 0 0 0 Ovary BJC 72:1330 Unknown REN-DISB1 23 9 0.39 Ovary Unknown Unknown 13 2 0.15 Pancreas BJC 65:809 31-44 Unknown Unknown 6 1 0.17 Stomach BJC 59:750 4.2-3 Unknown 6 1 0.17 Stomach BJC 59:750 Unknown AGT 52 3 0.06 Testis CR 54:3983 Unknown CR2 21 3 0.14 Testis CR 54:3983 Unknown D1S:80 50 7 0.14 Testis CR 54:3983 Unknown D1S:80 50 7 0.14 Testis CR 54:3983 Unknown D1S:80 50 7 0.14 Testis CR 54:3983	***************************************		***************************************		0.00	863,616,633,675	(**)************
Unknown D1S304-212 43 6 0.14 Head&Neck CR 54:4756 Unknown D1S3U4 212 17 2 0.12 Head&Neck CR 54:4756 Unknown Unknown 8 3 0.38 Liver BJC 64:1083 42243 Unknown 4 1 0.25 Liver BJC 64:1083 Unknown Unknown 4 1 0.25 Liver BJC 64:1083 Unknown DDS(237-212 27 2 0.07 Malanoma CR 54:588 Unknown APOA2-DIS:158-103 14 0 0 Ovary BJC 72:1330 Unknown REN-DIS8: 23 3 0 33 0 Unknown BEN-DIS8: 23 3 0 0 Ovary BJC 72:1330 Unknown Unknown 13 2 0.15 Pancreas BJC 65:809 3:2-44 Unknown 6 1 0.17 Stomach BJC 59:750 <	***************************************	***************************************					***************************************
Discount Dissipative Dispitative Dispitative Dissipative Dissipative Dis	*******************************		*****	***********************		Sittle of sittle of the	Control of the law of
Unknown Unknown 8 3 0.38 Liver BJC 64:1083 42-44 Unknown 13 3 U.3 Liver BJC 64:1083 Unknown Unknown 4 1 0.25 Liver BJC 64:1083 Unknown DIS:237-212 27 2 0.07 Melanoma CF 66:589 Unknown APOA2-DIS:158-103 14 0 0 0 Ovary BJC 72:1330 Unknown REN-DISR3 23 9 0.19 Unary GE 12:1330 Unknown Unknown 13 2 0.15 Pancreas BJC 65:809 32-44 Unknown 6 1 0.17 Stomach BJC 59:750 4.23 Unknown 6 1 0.17 Stomach BJC 59:750 Unknown AGT 52 3 0.06 Testis CR 54:3983 Unknown AGT 52 3 0.06 Testis CR 54:6265 Unk	***************************************	?\$\$\$?\$\$?\$\$?\$\$\$?\$					
13 3 1 14 15 15 16 16 16 16 16 16	**************************************		******	**************	******************************	HeadeNeck	
Unknown Unknown 4 1 0.25 Liver BJC 64:1083 Unknown D1S:23/22/2 27 2 0.07 Maismona CR 56.583 Unknown APOA2-D1S:158-103 14 0 0 Ovary BJC 72:1330 Unknown REN-D1881 3 9 0.39 Ovary BJC 65:809 Jerst Dnknown 13 2 0.15 Pancreas BJC 65:809 Jerst Dnknown J 0 0 Pancreas BJC 65:809 Jerst Dnknown J 0 0 Pancreas BJC 65:809 Jerst Dnknown J 0 0 Pancreas BJC 65:809 Jerst Jerst Dnknown J 0 0 Pancreas BJC 65:809 Jerst Jerst <td< td=""><td>*****************</td><td></td><td></td><td></td><td></td><td></td><td>***************************************</td></td<>	*****************						***************************************
Unknown DIS:233-212 27 2 0.07 Majority CR56-58.9 Unknown APOA2-DIS:158-103 14 0 0 Overy BJC 72:1330 Unknown REN-DISE 23 3 0.39 Overy CR53-233 Unknown Unknown 13 2 0.15 Pancreas BJC 65:809 3:-44 Unknown 6 1 0.17 Stomach BJC 59:760 4.23 Unknown 6 1 0.17 Stomach BJC 59:750 21-4 Unknown AGT 52 3 0.06 Testis CR 54:3983 Unknown AGT 52 3 0.06 Testis CR 54:3983 Unknown AGT 5 3 0.14 Testis CR 54:6265 Usknown DIS180 3 0.14 Testis CR 54:3983 Unknown DIS180 50 7 0.14 Testis CR 54:3983 Unknown	***************************************		***************************************			Litver	######################################
Unknown APOA2-DIS:158-103 14 0 0 Ovary BJC 72:1330 Unknown REN-DISES 33 9 0.39 Grary CR 3.2333 Unknown Unknown 13 2 0.15 Pancreas BJC 65:809 32-44 Unknown 6 1 0.17 Stomach BJC 59:750 4.23 Unknown 6 1 0.17 Stomach BJC 59:750 2.4.4 Unknown 10 3 0.06 Testis CR 54:3983 Unknown AGT 52 3 0.06 Testis CR 54:3983 Unknown AGT 4 0 0 Testis CR 54:6265 Unknown DIS180 50 7 0.14 Testis CR 54:3983 Unknown DIS235 39 4 0.1 Testis CR 54:3983	\$7777799999999999999999999	***************************************			17957877787798888857708888898888888888888	000000000000000000000000000000000000000	00000000000000000000000000000000000000
Unknown REN-DISE1 23 9 0.39 Overv GR 212193	***************************************		••••••••	***************************************	*****************************	***************************************	***************************************
Unknown Unknown 13 2 0.15 Pancreas BJC 65:809 32:44 Unknown 6 0 Fancreas CE 42:61 4.23 Unknown 6 1 0.17 Stomach BJC 59:750 2.1-3 Unknown 10 5 3:0mach BJC 59:750 Unknown AGT 52 3 0.06 Testis CR 54:3983 Unknown AGT 1 0 0 Testis CR 54:6265 Unknown CR2 21 3 0.14 Testis CR 54:6265 Usknown B1S180 3 0 1 Testis CR 54:3983 Unknown D1S180 50 7 0.14 Testis CR 54:3983 Unknown D1S235 39 4 0.1 Testis CR 54:3983	277977890799897989999999999	227107700000000000000000000000000000000			***************************************	****************************	************************************
3 - 44	***************************************		***************************************	~~~~			1093880800000000000000000000000000000000
4.23 Unknown 6 1 0.17 Stomach BJC 59:750 2.1-4 Unknown 10 5 0.06 Testis CR 54:3983 Unknown AGT 52 3 0.06 Testis CR 54:3983 Unknown AGT 4 0 0 Testis CR 54:6265 Unknown CR2 21 3 0.14 Testis CR 54:6265 Unknown D1S180 50 7 0.14 Testis CR 54:3983 Unknown D1S235 39 4 0.1 Testis CR 54:3983	*************************	\$5550505050505050500000000000000000000			**************************************	7709788C9090897779940004444444	
Act Unknown 10 5 One of the control			*******	***************************************	***************************************	***************************************	
Unknown AGT 52 3 0.06 Testis CR 54:3983 Unknown AGT 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1	>>>>>>			1	******************************		
Unknown CR2 21 3 0.06 Testis CR 54:5983 Unknown CR2 21 3 0.14 Testis CR 54:6265 Unknown DIS180 3 0 0 Fr88:1 TR 54:3983 Unknown D1S180 50 7 0.14 Testis CR 54:3983 Unknown D1S235 39 4 0.1 Testis CR 54:3983	************************	***************************************	**************	3		*****************************	
Unknown CR2 21 3 0.14 Testis CR 54:6265 Usknown DISIRO 3 0 Testis CR 54:6265 Unknown DISIRO 50 7 0.14 Testis CR 54:3983 Unknown DISIRO 0 1 Testis CR 54:3983 Unknown DISIRO 39 4 0.1 Testis CR 54:3983	#290998080999999999999999	Andrones-Andreas-Andre	*****************	N799149469999999999999999999999999	10900000000000000000000000000000000000	**************	
Unknown DISSING 1 0 Testis CR 54:8265 Unknown D1S180 50 7 0.14 Testis CR 54:3983 Unknown D1S235 0 Testis CR 54:3983 Unknown D1S235 39 4 0.1 Testis CR 54:3983	***************************************	*************************************	***************		AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	***************************************	***************************************
Unknown D1S180 50 7 0.14 Testis CR 54:3983 Unknown D1S235 0 0 Testis CR 54:3983 Unknown D1S235 39 4 0.1 Testis CR 54:3983	270100010000000000000000000000000000000	***************************************			*************************		
Unknown D1S235 39 4 0.1 Testis CR 54:3983	***************************************		***********		***********************	***********************	
Unknown D1S235 39 4 0.1 Testis CR 54:3983	*****	\$5000000000000000000000000000000000000	30				
0.1 Testis CR 54:3983	***************************************		30	***************************************	***********		
	Chil	220200	2869	4.17	0.1	Testis	CR 54:3983

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D2S44	7	1	0.14	Uterus	GCC 9:119
Unknown	Unknown	11	1	0.09	Brain	CR 50:5784
Unknown	D2S44	7	1	9.14	Breast	CR 53:3804
Unknown	D2S44	74	6	0.08	Breast	CR 53:4356
Unknown	D2547	23	Ü	O	Breast	CR 50:7184
23-15	D2S6	27	3	0.11	Breast	GCC 2:191
23-15	D256	22	2	0.09	Breast	JNC1 84:506
23-15	D2S6	42	5	0.12	Breast	CR 53:4356
23-PTER	TPO	50	21	0.42	Breast	BCRT 32:5
Unknown	D2S139	27	4	0.15	Cervix	CR 56:197
Onknown	D29177	18	2	0.11	Cervix	CR 56:197
Unknown	D2S44	7	0	0	Cervix	GCC 9:119
Unknown	D2544	48	- 6	0.12	Cervix	CR 54:4481
Unknown	D2S48	26	3	0.12	Cervix	CR 54:4481
Onknown	APOB	7			Colon	CCG 48:167
Unknown	D2S44	236	37	0.16	Colon	BJC 64:475
Unknown	02845	14	0	0	Colon	CCG 48:167
Unknown	D2S155	11	2	0.18	Endocrine	CR 56:599
Unknown	D2S44	60	10	0.17	Esophageal	GCC 10:177
Unknown	D2S44	20	4	0.2	Esophageal	CR 54:2996
Unknown	D2S47	41	10:	0.24	Esophageal	GCC 10:177
Unknown	D2S47	30	2	0.07	Esophageal	CR 54:2996
Unknown	D2S162	21	4	0.19	Head&Neck	CR 54:1152
Unknown	D2S166-149	15	0	0	Head&Neck	CR 54:4756
Unknown	D2S166-149	20	1	0.05	Head&Neck	CR 54:4756
Unknown	D2S207-D2S131	21	0	0	Kidney	PNAS 92:2854
Onknown	025207-028131	6	0	0	Kidney	PNAS 92:2854
Unknown	D2S47	11	2	0.18	Kidney	CR 51:820
Unknown	025:207-131	32	0	0	Kidney	CR 55:6189
Unknown	D2S48	9	0	0	Liver	CR 51:89
13	TGFA	5	0	0	Liver	PNAS:86:8852
Unknown	Unknown	27	. 6	0.22	Lung	CR 54:2322
Unknown	D2544	7	2	0.29	Lung	CR 54:5643
Unknown	D2S44	4	2	0.5	Lung	CR 54:5643
Onknown	D2544	2 2	11	0.5	Lung	CR 54:5643
Unknown	D2S47	19	1	0.05	Lung	CR 522478
12	CDBA	20	3	0.15	Owary	BJC 69:429
Unknown	D2S44	23	9	0.39	Ovary	CR 53:2393
Unknown	D2947	11	0	0	Ovary	CR 51:5118
23-15	D2S6	31	7	0.23	Ovary	IJC 54:546
23-PTER	TPO	14	2	0.14	Ovary	BJC 69:429
Unknown	D2S1	14	1	0.07	Prostate	G 11:530
Unknown	D253-D296	6	0	0	Prostate	G.11:530
Unknown	D2S47	10	2	0.2	Sarcoma	CR 52:2419
Unknown	D2S123	13	1	0.08	Stomach	CR 55:1933
Unknown	D2S44	45	12	0.27	Testis	O 9:2245

Unknown	D2548	31	5	0.16	Testis	O 9:2245
24	MYCN	· 2	0	0	Testis	CCG 52:72
24	MYCN	2	0	0	Testis	CCG 52:72
24	MYCN	2	0	0	Testis	CCG 52:72
13	D25101	21	0	0	Dterus	CR 54:4294
Unknown	D2S44	7	1	0.14	Uterus	GCC 9:119
SUM		1272	191	0.15		

10

15

20

110

A. Repair of damage caused by ionizing radiation (Alpha particles, Beta particles, Gamma radiation)

- i. DNA-PK constitutents (see above)
- ii. Other proteins that repair DNA damage created by DNA-PK

XRCC4 (GenBank U40622)

XRCC5/Ku80 (OMIM 194364)

XRCC6

XRCC7 (GenBank L27425)

iii. Other proteins that repair or protect from DNA damage
Glutathione-S-transferase (alpha, theta, mu and pi
proteins)

Transfection of an exogenous Glutathione-S-transferase pi (GST-pi) gene is partially protective of cells treated with ionizing radiation. Thus GST activity is conditionally essential for cells exposed to ionizing radiation. Similarly, any protein that is essential for the repair of radiation induced damage or for protection of cells from radiation induced damage is a conditionally essential gene. GST activity can also affect radiation sensitivity in the presence of electron affinic drugs such as the nitroimidazoles.

I-kappa B alpha (GenBank M69043)

Increased expression of exogenous I kappa B-alpha, an inhibitor of NF-kappa B, increases cell sensitivity to ionizing radiation. Thus is conditionally essential for cells exposed to ionizing radiation. Other proteins of the NF kappa B pathway that affect radiosensitivity are likewise conditionally essential in the presence of ionizing radiation.

- B. Non-ionizing radiation
 - i. infrared radiation
 - ii. ultra high frequency electromagnetic radiation (UHF)

Glutathione S transferase system (see genes listed above)

SUBSTITUTE SHEET (RULE 26)

1.	Free	radical	damage

iv. Adaptation to molecules that alter the cellular redox state (such as pyrrolidinedithiocarbamate)

- 3. Adaptation to change in nutritional environment
 - A. Decreased levels of nutrients.

10

5

- B. Increased levels of nutrients.
- 4. Change in hormonal environment
- 15 A. Decreased levels of hormones.
 - B. Increased levels of hormones.
 - 5. Change in the immunological environment

20

- A. Introduction of new immune molecules (antibodies or antibody fragments)
- B. Introduction of immune regulatory molecules

25

Fanconi anemia C NF-kappa B (GenBank M58603)

Cells lacking the Fanconi anemia C gene have been shown hypersensitive to interferon gamma in vitro. Cells lacking the RelA/p65 subunit of NF kappa B are essential for preventing Tumor Necrosis Factor alpha induced cell death. Other Fanconi anemia genes or other proteins of the NF-Kappa B system and its regulators, for example I kappa B, may also mediate sensitivity to immune system molecules, for example interferons, interleukins or TNF.

30

II. Changes in physical environment

1. Repair of damage caused by electromagnetic radiation

Ku-86 subunit (OMIM 194364/GenBank AF039597) KARP-1

Poly (ADP-ribose) polymerase (PARP) (GenBank M32721)

5	b. Targets: genes & gene products that repair DNA cross- links induced by molecules such as Mitomycin C or diepoxybutane
	Fanconi Anemia genes
10	Fanconi Anemia A gene (GenBank X99226)
10	Fanconi Anemia B gene
	Fanconi Anemia C gene (GenBank X66894)
	Fanconi Anemia D gene
	Fanconi Anemia E gene
15	Fanconi Anemia F gene
	Fanconi Anemia G gene
	Fanconi Anemia H gene
20	4. Targets: genes & gene products required for repair of DNA damage caused by drugs such as, for example, 4-nitroquinoline -1-oxide, bromobenz(a)anthracene, benz(a)anthracene epoxide, 1-nitorpyridine-1-oxide, acetylaminofluorine and aromatic amides, benz(a)pyrene.
25	a. Nucleotide excision repair system
	ERCC-1 (GenBank M13194)
	ERCC2/XPD (GenBank X52222)
	ERCC3/XPB (GenBank M31899)
20	ERCC4 (OMIM 133520) ERCC5 (GenBank L20046)
30	ERCC5 (GenBank L20040) ERCC6 (GenBank L04791)
	ERCCO (GCIDAIR DO 1771)
	b. Other DNA repair genes
	XPA (GenBank D14533)
35	XPC (GenBank D21090)
	XPE (GenBank U18300)
	HHR23A (GenBank U21235)
	HHR23B (GenBank D21090)
	Uracil glycosylase (GenBank X52486)
40	3-methyladenine DNA glycosylase (GenBank M74905)

- ii. Repair of damage by chemicals that interact with proteins
- iii. Repair of damage by chemicals that interact with membranes

- B. Repair or prevention of damage by non-naturally occuring molecules
 - i. Repair or prevention of damage by molecules that react with nucleic acids
 - 1. Molecules that add alkyl or other groups to DNA
 - a. Targets: genes & gene products involved in repair of alkylating agent damage

Methylguanine Methyltransferase (MGMT) (GenBank M29971)

3-alkylguanine alkyltransferase

3-methyladenine DNA glycosylase (GenBank M74905)

MGMT is described in the examples. hOGG1 is a DNA glycosylase with associated lyase activity that excises this adduct and introduces a strand break. Cells lacking this protein are deficient in repair of oxidative damage and have high mutation rates. In conditions of high oxidative damage, including cellular aerobic metabolism, ionizing radiation and some chemotherapy drugs the hOGG1 gene would be conditionally essential for DNA repair. The human OGG1 gene maps to chromosome 3p25, a region of high frequency LOH in lung, kidney, head and neck and other cancers. Homozygous mutant mouse cells lacking 3-methyladenine DNA glycosylase have increased sensitivity to alkylation induced chromosome damage and cell killing.

- 2. Molecules that induce single or double stranded DNA breaks (also relevant to survival in the presence of ionizing radiation; see below)
 - a. Targets: genes & gene products involved in repair of double stranded DNA breaks

DNA Dependent Protein Kinase (DNA-PK) and subunits Catalytic subunit of DNA-PK (GenBank U47077) DNA binding subunit of DNA-PK (Ku subunit) Ku-70 subunit (GenBank J04611)

15

5

10

20

25

106

CYP4

CYP4B1

CYP7 CYP11

CYP17

CYP19

CYP21

CYP27

The cytochrome P450s are a large gene family whose members metabolically transform and inactivate a wide variety of drugs, including cytotoxic drugs. Wide variation in P450 protein expression has been described, including null alleles. For example cytochrome P450 2D6 may be involved in the metabolism of ~25% of all drugs. Between 5 and 10% of all caucasians are homozygous for completely inactive alleles of P450 2D6. In the presence of a toxic drug the P450 enzyme responsible for metabolizing the drug may be conditionally essential. For example, acute liver faillure has been reported in a patient treated with cyclophosphamide who was homozygous for the deficient CYP 2D6B allele. Liver failure was due to accumulations of a hepatotoxic 4-hydroxylated cyclophosphamide metabolite.

10

b. N-acetyltransferases

c. Glucuronyltransferases

15

d. Glutathione transferases

Glutathione transferase alpha (GenBank AF020919)
Glutathione transferase theta (OMIM 600436 & 600437)
Glutathione transferase my (OMIM 138350, 138380)

Glutathione transferase mu (OMIM 138350, 138380,

138380, 138333 & 138385)

Glutathione transferase pi (GenBank X65032)

A large number of drugs are are biotransformed into electrophilic intermediary compounds which are potentially harmful to cell constituents unless rendered harmless by conjugation with glutathione. Thus proteins of the GST system are conditionally essential for cell survival.

20

Cytidine deaminase

Cytidine deaminase (CDA) catalyzes hydrolytic deamination of cytidine or deoxycytidine. It can also deaminate cytotoxic cytosine nucleotide analogs such as cytosine arabinoside, rendering them nontoxic. Resistance to the cytotoxic effects of these drugs has been reported associated with increased expression of the CDA gene. Thus CDA is a conditionally essential gene in the presence of cytotoxic cytosine nucleotide analogs.

5

d. Inactivation of thiopurine drugs, including 6-mercaptopurine, 6thioguanine and azathioprine.

Thiopurine methyltransferase (GenBank U12387)

10

e. Inactivation or transformation of other drugs including, but not limited to, purine analogs, folate analogs, topoisomerase inhibitors and tubulin acting drugs via specific enzymatic modification.

2. General metabolic transformation of drugs

15

a. Cytochrome P450 system.

CYP1

CYP1A1 (GenBank K03191) CYP1A2 (GenBank M55053)

20

CYP2

CYP2A6 (GenBank U33317)

CYP2A7 CYP2B6

25

30

CYP2B7

CYP2C8

CYP2C9 (OMIM 601130)

CYP2C17

CYP2C18

CYP2C19 (OMIM 124020)

CYP2D6 (OMIM 124030)

(OMIM 124040) CYP2E1

CYP2F1

CYP3

CYP3A3

35

CYP3A4 (GenBank D00003)

CYP3A5

CYP3A7

a. Inactivation of bleomycin

Bleomycin hydrolase (GenBank U14426)

5

Bleomycin hydrolase was discovered through its abililty to detoxify the anticancer glycopeptide bleomycin. Cells lacking bleomycin hydrolase are highly susceptible to bleomycin toxicty (for example pulmonary fibrosis) thus the gene is conditionally essential for cell growth and survival in the presence of bleomycin. Bleomycin hydrolase is a member of the cysteine protease papain superfamily. The protein is expresed in all tissues surveyed. 'The crystal structure of the closely related yeast bleomycin hydrolase has been determined. A common A/G polymorphism has been described at nucleotide 1450 of the bleomycin hydrolase gene. It results in an isoleucine-valine variance at amino acid 443, part of the oligomerization domain of the homotetrameric enzyme. The Bleomycin hydrolase gene has been mapped to the proximal long arm of chromsome 17 (17q11.2), a site of frequent LOH in commonly occuring epithelial cancers such as breast and ovarian cancer.

10

b. Inactivation of pyrimidine analogs including 5-fluorouracil (5-FU) and 5-fluorouridine.

Dihydropyrimidine Dehydrogenase (DPD)

 β _- ureidopropionase

β - alanine synthetase

DPD is described in the examples. The other two enzymes are responsible for the further metabolism of dihydro-5-fluorouracil, the metabolic product of DPD. In the absense of these enzymes toxic metabolites of 5-FU accumulate in cells.

15

c. Inactivation of of pyrimidine analogs including cytosine arabinoside and 5-azacytidine.

WO 98/41648 PCT/US98/05419

103

Increased intracellular levels of sugars or starches can damage cells. One cause of such increased levels is failure to properly degrade starches into simple compounds, as exemplified by diseases of impaired polysaccharide metabolism. Therefore a sugar or poly-saccharide catabolizing enzyme can be a conditionally essential gene in the presence of elevated levels of particular sugars or polysaccharides.

- 2. Adaptation to presence of non-naturally occuring molecules
- 5 A. Elimination of non-naturally occuring molecules
 - i. Elimination by export

Multidrug resistance gene/P glycoprotein (MDR1) (GenBank AF016535) Multidrug resistance associated proteins 1-5 (MRPs) (GenBank L05628)

Cells have evolved specific mechanisms to export a variety of chemicals, including nonnatural chemicals such as cytotoxic drugs. MDR1 and MRP are exemplary ATP-dependent transmembrane drug-exporting pumps. Deficiency of these pumps is associated with increased sensitivity to a variety of cytotoxic drugs in vitro and in vivo. For example, mice lacking functional MRP are hypersensitive to the drug etoposide. Thus these pumps are important for cell survival in the presence of a variety of toxic drugs. Polymorphisms have been reported in MDR1 at amino acids 893 and 999. MDR also maps to a region of chromosome 7 which is frequently affected by LOH in prostate, ovarian breast and other cancers.

15

10

Multispecific organic anion transporters (MOATs)
Other drug export proteins

- ii. Elimination by metabolic transformation
- 20

1. Specific metabolic transformation of drugs

Decreased intracellular levels of amino acids can impair protein synthesis and thereby slow or arrest cell division. One cause of such decreased levels is impairment of amino acid biosynthesis, particularly amino acids that the cell is not actively synthesizing, whether essential (e.g. methionine) or nonessential (e.g. asparagine; see examples). Cells have a variety of well described biochemical pathways for biosynthesis of the 20 amino acids commonly used in proteins. These biosynthetic enzymes can be conditionally essential in the absence of adequate intracellular levels of amino acids. Specific examples of such conditionally essential genes are described in the Examples. However, other enzymes which catalyze reactions important for maintaining levels of amino acids adequate for protein synthesis in the presence of decreased extracellular concentrations are also useful.

3. Targets: transaminases

In the presence of decreased extracellular levels of amino acids cells must increase intracellular mechanisms for amino acid biosynthesis. One such mechanism is transfer of amino groups from nonessential to essential amino acids to compensate for insufficient quantities of essential amino acids. These reactions are catalyzed by transamin-ases, which therefore can become conditionally essential in environments characterized by decreased levels of extracellular amino acids.

5

ii. Decreased levels of sugars

1. Targets: sugar transporters

10

2. Targets: sugar metabolism machinery

WO 98/41648 PCT/US98/05419

101

i. Decreased levels of amino acids

1. Targets: amino acid transporters

Decreased intracellular levels of amino acids can impair protein synthesis and thereby slow or arrest cell division. One cause of such decreased levels is impairment of cellular uptake of amino acids, particularly amino acids that the cell is not actively synthesizing, whether essential (e.g. methionine) or nonessential (e.g. asparagine; see examples). Cells have a variety of mechanisms for amino acid uptake, including membrane anchored transporters. In the presence of decreased extracellular levels of amino acids the protein and other constituents of these transporters become conditionally more essential.

5

- 2. Targets: amino acid biosynthetic machinery
 - a. Essential amino acids

Methionine Synthase, essential for responding to decreased extracellular methionine. (GenBank U73338)

b. Non-essential amino acid biosynthesis

Asparagine Synthase, essential for responding to decreased extracellular asparagine. (GenBank M27396)

Glutamine Synthetase, essential for responding to decreased extracellular glutamine. (GenBank Y00387)

10

15

100

Increased intracellular levels of amino acids can damage cells. One cause of such increased levels is failure to properly degrade amino acids into simpler compounds. Therefore an amino acid catabolizing enzyme can be a conditionally essential gene, particularly in the presence of elevated levels of the twenty amino acids commonly used in protein synthesis. Amino acid catabolic pathways are well described in textbooks and in the scientific literature.

- ii. Increased levels of sugars or starches
 - 2. Targets: mono, di and polysaccharide metabolic pathways

Galactose-1-phosphate uridyltransferase Galactose kinase UDPgalactose-4-epimerase

Increased intracellular levels of sugars or starches can damage cells. One cause of increased levels is failure to properly degrade starches into simple compounds, as exemplified by diseases of impaired polysaccharide metabolism. Therefore a polysaccharide catabolizing enzyme can be a conditionally essential gene, specifically in the presence of elevated levels of particular polysaccharides. A second mechanism of damage arises in the context of impaired sugar metabolism. Thus enzymes that degrade sugars or starches to simpler compounds may be conditionally essential for cell health and consequently cell proliferation. An example is the enzymes of the Leloir pathway of galactose metabolism. Mutant copies of these proteins make cells conditionally sensitive to elevated concentrations of galactose. Thus enzymes that degrade sugars or starches to simpler compounds may be conditionally essential for cell proliferation.

- iii. Increased levels of vitamins
- B. Decreased concentration of a naturally occuring small molecule

99

double stranded DNA breaks, such as occurs after x-irradiation. Example 45 describes a gene (asparagine synthase) that mediates response to an altered nutritional environment (absence of extracellular asparagine) which can be produced by an enzyme such as asparaginase, which hydrolyzes serum asparagine. Example 49 describes the Ataxia Telangiectasia gene, which is involved in response to ionizing radiation and radiomimetic chemicals. Other detailed examples include methionine synthase (Ex. 46) and methylthioadenosine phosphorylase (Ex. 47). Other examples include Poly (ADP) Ribose Polymerase (PARP), Glutathione-S-Transferase pi (GST-pi), NF-kappa B, Abl Kinase, 3-alkaylguanine alkyltransferase, N-methylpurine DNA glycosylase (hydrolyzes the deoxyribose N-glycosidic bond to excise 3-methyladenine and 7-methylguanine from alkylating agent-damaged DNA polymers), OGG-1, MDR-1.

The table below presents exemplary categories and exemplary specific genes along with the type of conditions which render the gene essential.

15 Table 3: Categories of Conditionally Essential Genes

Genes and proteins vital for cell survival or proliferation in the presence of an altered chemical or physical environment

I. Genes required for adaptation to changes in the chemical environment

- 1. Adaptation to altered concentration of a naturally occuring small molecule
 - A. Increased concentration of a naturally occurring small molecule
- i. Increased levels of amino acids
 - 1. Targets: amino acid degradation pathways

10

15

20

25

- 3. Physical changes
 - □ Electromagnetic radiation
 - Ionizing radiation including Alpha particles, Beta particles, Gamma radiation

Non-ionizing radiation including infrared radiation, microwave radiation, other wavelengths

□ Temperature

When LOH results in a difference in normal cell genotype vs. cancer cell genotype that affects a locus encoding a product affecting the cells' ability to survive in the presence of an environmental change, a pharmaceutical or biological agent, or a physical factor, there is an opportunity to exploit a therapeutic window between cancer cells and normal cells. Below we describe specific examples of genes that (1) affect cell responses to altered environments, (2) are located on chromosomes that undergo LOH in cancer and (3) exist in two or more variant forms. These examples have been selected to illustrate how the therapeutic strategy described in this application would work with a variety of different alterations in chemical or physical environment. Example 43 describes a gene (Dihydropyrimidine Dehydrogenase) that mediates response to an altered chemical environment (presence of the toxic chemical 5-floxuridine) by specifically transforming the chemical to an inactive metabolite. Example 39 describes a gene (Methylguanine methyltransferase) that mediates response to an altered chemical environment (presence of toxic chemicals such as nitrosourea or other alkylating agents) by removing methyl or alkyl adducts to DNA, the principal toxic lesion of these agents. Example 44 describes a set of genes (Fanconi Anemia genes A,B,C,D,E,F,G and H) which mediate response to an altered chemical environment (presence of chemicals which cause DNA crosslinking, such as diepoxybutane, mitomycin C and cisplatinum) by repairing the crosslinks. Example 48 describes a set of genes (the DNA Dependent Protein Kinase Complex, including the DNA Dependent Protein Kinase catalytic subunit (DNA-PKcs), the DNA binding component (called Ku), made up of Ku-70 and Ku-86 kDa subunits, and the Ku-86 related protein Karp-1) that mediates repair of

97

involved in DNA repair may be essential that are not essential in the absence of the external physical force. An agent that inhibits functions in the cell that are essential due to the administration of ionizing radition would be termed a "radiosensitizing" agent.

- In each instance, treatment of cancer or noncancer proliferative diseases may be achieved by identifying genes that are conditionally essential in the presence of specific environmental, pharmacological, or physical factors, determining whether such genes are subject to loss of heterozygosity, identifying alternative alleles in these genes and developing allele specific inhibitors of alternative forms of the gene.
- The administration of such an inhibitor to a patient who has two alternative forms of the gene in normal cells but only one in the cancer cell due to LOH, together with the environmental, pharmacological or physical factors will result in an antiproliferative effect or killing of the cancer cell.

Different environmental, pharmacological, and physical changes in the environment that result in homeostatic or compensatory responses in which genes that are not normally essential for cell survival or proliferation become essential are known in the art. These are described in the following Table 2.

Table 2

1 Changes in the concentration of constituent in the environment 20 Change in nutritional environment Change in hormonal environment Change in the immunological environment Presence or accumulation of toxic materials Change in partial pressure of oxygen 25 Change in partial pressure of carbon dioxide. Change in partial pressure of other gasses including nitrous oxide 2. Administration of pharmaceuticals including small molecules, biologicals, nucleic acids, or antibodies.

whereas if the constituent were present in the environment in sufficient quantities, such genes would not be essential. Alternatively, high concentrations of a specific constituent in the environment may make genes that are responsible for eliminating or detoxifying that constituent within the cell essential, wheras, if the constituent were absent or present in normal concentrations, such genes would not be essential. Changes thus may involve either an increase or a decrease in specific constituents of the environments including nutrients, inorganic, or organic materials.

In another aspect of this invention, the gene targets of this application are responsible for maintaining cell survival or proliferation in the presence of a drug or biological material. For example, a drug that inhibits one pathway for maintaining the level of a cellular constituent within levels required for cell survival or proliferation may make alternative pathways essential. In a specific embodiment, the inhibition of a synthetic pathway for a cellular constituent may make alternative synthetic pathways essential for cell survival or proliferation. Alternatively, a drug that is toxic to the cell will make genes that are involved in the elimination, degradation, or excretion of the drug from the cell essential for continued survival or proliferation. It will be evident to those skilled in the art that anything which inhibits the ability of a cell to survive in the presence of a specific drug that is designed to be cytostatic or cytotoxic, will sensitize that cell to the effects of the drug. A "chemosensitizing" agent is one that inhibits a function in the cell that is conditionally essential due to the administration of a chemotherapeutic drug.

In another aspect of this invention, the gene targets of this application are responsible for maintaining cell survival or proliferation in response to external physical forces including, but not limited to, electromagnetic radiation of various amplitudes and wavelengths, including ionizing and nonionizing radiation and heating or cooling. In the presence of ionizing radiation, for example, genes that are

95

Conditionally essential genes

As indicated in the Summary, some genes are conditionally essential, meaning that they are essential for cell survival or proliferation only in certain circumstances. Most commonly such circumstances are related to changes in the environment, such as changes in the concentration of specific constituents such as nutrients, administration of pharmaceuticals (drugs), or physical elements affecting the cell. In many cases the changes in the environment may be induced as part of a treatment regiment for cancer such as the administration of drugs or ionizing radiation. In the presence of such specific environmental changes or therapies, genes with are not normally essential for cell survival or proliferation become essential and, consequently, targets for therapy under the present invention. Therapy with inhibitors of conditionally essential genes involves administration of the inhibitor together with a chemical or physical elements that causes the target gene to be essential for cell survival or proliferation. The use of allele specific inhibitors in the current invention allows specific killing of cancer cells with such chemical or physical agent since the gene function that is essential for the survival of cells (in the presence of the chemical or physical agent) is inhibited in the cancer cell but not in the normal cell.

This strategy begins with the identification of heterozygous alleles of genes coding for proteins that are conditionally essential for cell viability or growth due to change in the chemical or physical environment. In one aspect of this invention, the gene targets of this application are responsible for mediating cell response to changes in the environment. Such environmental alterations include, for example, changes in the concentration of naturally occurring constituents such as amino acids, sugars, lipids and inorganic and organic ions, as well as larger molecules such as hormones or antibodies, or changes in the partial pressure of oxygen or other gasses. The absence of a specific constituent in the environment makes the genes that are involved in synthesizing that nutrient within the cell essential,

Microtubule-Associated Protein TAU	J03778
	X92474
• •	M61764
Tubulin Alpha-4 Chain	X06956
USH1b (Myosin II Heavy Chain)	U39226
Villin	X12901
Villin 2 (Ezrin)	J05021
Genes required for cell motility	
Actin genes	
Actin Depolymerizing	S65738
Capping (Actin Filament)	M94345
Myosin genes	
MYH9(Myosin, Heavy Polypeptide 9, Non-Muscle)	M31013
MYL5(Myosin Regulatory Light Chain 2)	L03785
Myosin Heavy Chain 95F	U90236
Myosin Heavy Chain IB	D63476
Myosin IB	U14391
Sh3p17(Myosin IC Heavy Chain)	U61166
Sh3p18(Myosin IC Heavy Chain)	U61167
KIAA0059(Dematin: Actin-Bundling Protein)	D31883
TTN (Titin:Myosin Light Chain Kinase)	X69490
6.6 Genes Required to Eliminate, Transform, Sequester or Otherwise Regulate Levels of Endogenous Cellular Toxins or Waste Substances at Levels Compatible with Cell Growth or Survival	
Organelles that transform or sequester toxic or waste substances	
Vacuoles	
ATP6c(Vacuolar H+ ATPase proton channel subunit)	M62762
Lysosomes	
ATP6a1 (ATPase, H+ Transporting, Lysosomal (Vacuolar Proton Pump), Alpha Polypeptide, 70kD)	L09235
ATP6b1(ATPase, H+ transporting, lysosomal (vacuolar proton pump), beta polypeptide, 56/58kD)	M25809
ATP6d(ATPase, H+ transporting, lysosomal (vacuolar proton pump) 42kD)	X69151
ATP6e(ATPase, H+ transporting, lysosomal (vacuolar proton pump) 31kD)	X71490
ATPase, H+ transporting, lysosomal (vacuolar proton pump) 31kD	X76228
Free radical inactivation	
Superoxide Dismutase	X02317
Maintenance of cellular redox potential at levels compatible with cell survival	

V p	acuolar-Type (Clathrin-coated vesicle/synaptic vesicle proton ump 116 kd subunit)	Z71460
Transport to,	from or within the nucleus	
	embrane constituents	
1-	40 kD Nucleolar phosphoprotein	D21262
Α	autoantigen p542	L38696
E	xport protein Rae1 (RAE1)	U84720
Н	leterogeneous nuclear ribonucleoprotein A1	X79536
N	fuclear pore complex protein hnup153	Z25535
	luclear pore complex protein NUP214	D14689
N	luclear pore glycoprotein p62	X58521
	fuclear Transport Factor 2	X07315
	Jucleoporin 98 (NUP98)	U41815
N	TUP88	Y08612
R	ibonucleoprotein A	M29063
	ibonucleoprotein B"	U23803
Nuclear	envelope & pore constituents	
	opherin .	
In	nportin Alpha Subunit	D89618
	RN (Transportin)	U70322
	red to Maintain Cell Shape and Motility at Levels Cell Growth or Survival	
Cell structure	genes (Cytoskeleton)	
A	ctin	X04098
В	eta-Centractin	X82207
C	apping Protein Alpha	U03851
C	FL1 (Cofilin, Non-Muscle Isoform)	X95404
D	esmin	J03191
D	ystrophin	U26743
G	elsolin	X04412
hC	OGG1(Myosin Light Chain Kinase)	AB000410
IC	C Heavy Chain	U31089
	ga2 (Integrin, Alpha 2 (CD49B, alpha 2 Subunit of VLA-2 ceptor))	X17033
Itg	ga3 (Integrin Alpha-3 Precursor)	M59911
	eratin 19	Y00503
Ke	eratin, Type II	J00269
La	amin A	M13451
LI	BR(Lamin B Receptor)	L25931
	ght Chain Alkali	M22920
	acMarcks mRNA	X70326
· M	AP1a (Microtubule-Associated Protein 1A)	U14577
	AP2(Microtubule-Associated Protein 2)	U01828
	EG1(Protein-Tyrosine Phosphatase MEG1)	X79510
	- · · · · · · · · · · · · · · · · · · ·	

CO1 (Cytochrom	e c Oxidase Subunit I)	OMIM 516030
· ·	e c Oxidase Subunit 2)	AF035429
CO3 (Cytochrom	e c Oxidase Subunit 3)	
Complex V		
ATP Synthase Su	bunit ATPase 6	OMIM 516060
or Other Solutes Moving	nsport or Dock Vesicles, Polypeptides Between Cellular Compartments at Rates ith Cell Growth or Survival	
Transport to, from or w	rithin the cytoplasm	
Kinesins		
Kinesin He	avy Chain	X65873
Kinesin Lig	ght Chain	L04733
Syntaxin		
Syntaxin 1a	a	L37792
Syntaxin 11	b	U07158
Syntaxin 3		U32315
Syntaxin 5a	a	U26648
Syntaxin 7		U77942
Transport to, from or w	ithin the endoplasmic reticulum	•
CANX (Ca	lnexin)	M94859
ER Lumen	Protein 1	M88458
ER Lumen	Protein 2	X55885
Ribophorin	ıI	Y00281
Ribophorin	ı II	Y00282
Signal reco	gnition particle receptor	X06272
SRP Protei	n	U20998
TIM17 pre	protein translocase	X97544
Transport to, from or w	vithin the Golgi apparatus	
Golgin-245	5	U31906
TGN46 (Tr TGN38 Pre	rans-Golgi Network Integral Membrane Protein ecursor)	X94333
Transport to, from or v	vithin the other membrane bound compartments	
Beta-Cop		X82103
Coatomer 1	Beta' Subunit	X70476
Coatomer 1	Delta Subunit	X81198
Gp36b Gly VIP36 pred	coprotein (Vesicular integral-membrane protein cursor)	U10362
Homologu	e of yeast sec7	M85169
_	nsport protein SEC13 (Chromosome 3p25)	L09260
SEC14 (S.	Cerevisiae)	D67029
	esicle membrane protein VAT-1	U18009
Synaptobro		U64520
Synaptotag		M55047
	brane(COP-coated vesicle membrane protein p24	X92098

91

GU Protein (ATP-Dependent RNA helicase dead)	U41387
KIAA0224 Gene(Putative ATP-dependent RNA helicase)	D86977
RNA Helicase A	L13848
RNA Helicase Pl10	U50553
Ste13(Nuclear RNA Helicase)	U90426
RNA Degradation	
RNA modification	
RNA Transport	

6) Genes Required to Maintain Integrity and Function of Cellular and Subcellular Structures

6.1 Genes Required to Move Proteins, Small Particles, and Other Ligands Across Membranes to Maintain their Concentration at Levels Compatible with Cell Growth or Survival

Genes required to form coated pits and vesicles

Clathrins

AP47(Clathrin Coat Assembly AP47)

AP50(Clathrin Coat Assembly Protein AP50)

Cell Surface Protein (Clathrin Heavy Polypeptide-Like Protein) X83545

Cltb(Clathrin Light Chain B)

M20470

Cltc (Clathrin Heavy Chain)

U41763

6.2 Genes Required to Transmit Signals within Cells at Levels

Compatible with Cell Growth or Survival

Genes required to transmit signals from membranes

Adenylate Cyclase

Adenylate Cyclase	D63481
Adenylate Cyclase, II	X74210
Adenylate Cyclase,IV	D25538

Genes required to transmit signals within cellular compartments

6.3 Genes Required to Maintain Cellular Energy Stores at Levels Compatible with Cell Growth or Survival

Genes required to Produce ATP from catabolism of sugar

Genes required for glycolysis (anaerobic and aerobic)

Genes required for oxidative phosphorylation

Complex I

MTND1 (Subunit ND1)	OMIM 51600
MTND2 (Subunit ND2)	OMIM 51601
MTND3 (Subunit ND3)	OMIM 51602
MTND4 (Subunit ND4)	OMIM 51603
MTND4L (Subunit ND4L)	OMIM 51604
MTND5 (Subunit ND5)	OMIM 51605
MTND6 (Subunit ND6)	OMIM 51606

Complex III

Cytochrome b subunit

Complex IV

	HNRPK(Heterogeneous nuclear ribonucleoprotein K)	S74678
	Pre-mRNA splicing factor helicase	D50487
	Pre-mRNA splicing factor SF2, P33 subunit	M69040
	Pre-mRNA splicing factor SRP20	L10838
	Pre-mRNA splicing factor SRP75	L14076
	PRP4(Serine/threonine-protein kinase PRP4)	U48736
	PTB-Associated Splicing Factor	X16850
	Ribonucleoprotein A'	X06347
	Ribonucleoprotein A1	X13482
	Ribonucleoprotein C1/C2	M15841
	RNP Protein, L (Heterogeneous nuclear ribonucleoprotein L)	X16135
	RNP-Specific C(U1 small nuclear ribonucleoprotein C)	X12517
	SAP 145(Spliceosome associated protein)	U41371
	SAP 61(Splicesomal protein)	U08815
	SC35(Splicing factor)	L37368
	SF3a120	X85237
	SFRS2(Splicing factor, arginine/serine-rich 2)	M90104
	SFRS5(Splicing factor, arginine/serine-rich 5)	AF020307
	SFRS7(Splicing factor, arginine/serine-rich 7)	L41887
	Small nuclear ribonucleoprotein SM D1	J03798
	SnRNP core protein Sm D2	U15008
	SnRNP core protein Sm D3	U15009
	SNRP70(U1 snRNP 70K protein)	M22636
	SNRPB(Small nuclear ribonucleoprotein polypeptides B and B1)	J04564
	SNRPE(Small nuclear ribonucleoprotein polypeptide E)	M37716
	SNRPN(Small nuclear ribonucleoprotein polypeptide N)	U41303
	Splicing factor SF3a120	X85238
	Splicing factor U2AF 35 kD subunit	M96982
	Splicing factor U2AF 65 kD subunit	X64044
	SRP30C(Pre-mRNA splicing factor SF2, p33 subunit)	U30825
	SRP55-2(Pre-mRNA splicing factor SRP75)	U30828
	Transcription factor BTEB	D31716
	Transcription initiation factor TFIID 250 kD subunit	D90359
RNA polyadenylation and cleavage		
	Cleavage and polyadenylation specificity factor	U37012
	Cleavage stimulation factor, 3' pre-RNA, subunit 1, 50kD	L02547
	Cleavage stimulation factor, 3' pre-RNA, subunit 3, 77kD	U15782
	HNRNP Methyltransferase	D66904
	PABPL1(Poly(A)-binding protein-like 1)	Y00345
	Pap mRNA(Poly(A) Polymerase)	X76770
RNA unw	inding .	

RNA unwinding

RNA Helicase

ТҒІІН(р89)	
TFIIH(p80)	
TFIIH(p62)	U07595
TFIIH(p44)	OMIM 601748
TFIIH(p34)	OMIM 601750
Transcription Factor IIf(General transcription factor IIF, polypeptide 1 (74kD subunit))	X64037
Specific factors required for polymerization of essential genes	
	M95809
	M86842
	X92857
	Y08614
	X55544
	U13044
ISGF-3(Signal transducer and activator of transcription 1-alpha/beta)	M97935
NFIX(Nuclear factor I/X (CCAAT-binding transcription factor))	L31881
NFYA(Nuclear transcription factor Y, alpha)	M59079
NTF97(Nuclear factor p97)	L38951
Nuclear factor I-B2 (NFIB2)	U85193
Nuclear factor NF45	U10323
Nuclear factor NF90	U10324
POU2F1(POU domain, class 2, transcription factor 1)	X13403
Sp2 transcription factor	M97190
TCF12(Transcription factor 12 (HTF4, helix-loop-helix transcription factors 4))	M83233
TCF3(Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47))	M31523
TCF6L1(Transcription factor 6-like 1)	M62810
TF P65(Transcription factor p65)	L19067
TFCOUP2(Transcription factor COUP 2 (a.k.a. ARP1))	X91504
Transcription factor IL-4 Stat	U16031
Transcription Factor S-II (Transcription factor S-II-related protein)	D50495
Transcription factor Stat5b	U48730
Transcription Factor	L06633
Transcription factor (CBFB)	L20298
RNA Processing Factors	
RNA splicing and other processing factors	
9G8 Splicing Factor (Pre-mRNA Splicing factor SRP20)	L22253
CC1.3(Splicing factor (CC1.3))	L10910
HnRNP F protein	L28010
HNRPA2B1(Heterogeneous nuclear ribonucleoproteins A2/B1)	
HNRPG(Heterogeneous nuclear ribonucleoprotein G)	Z23064

		W(25/4
	Polypeptide A (220kd)	X63564
	RNA Polymerase II 23k	J04965
	RNA polymerase II holoenzyme component (SRB7)	U46837
	RNA polymerase II subunit (hsRPB10)	U37690
	RNA polymerase II subunit (hsRPB8)	U37689
	RNA polymerase II subunit hsRPB4	U85510
	RNA polymerase II subunit hsRPB7	U20659
	RNA Polymerase II Subunit(DNA- Directed RNA Polymerases I, II, and III 7.3 kD polypeptide)	Z47727
	TCEB1L(Transcription elongation factor B (SIII), polypeptide 1-like)	Z47087
	Polymerase III subunits	
	RNA polymerase III subunit (RPC39)	U93869
	RNA polymerase III subunit (RPC62)	U93867
	Elongation	
	Elongation Factor 1-Beta	X60489
	Elongation Factor S-II	M81601
Elong	•	
_	TCEA (110kD)	OMIM 601425
	TCEB1	L34587
	TCEB (18kD)	
	TCEBIL	
	TCEB3	L47345
	TCEC (15kDa)	
	TFIIS (Transcription Elongation Factor IIS)	601425
	E2F1 (E2F Transcription Factor)	M96577
	TFAP2A (Transcription Factor A2 Alpha)	X95694
	TFCP2 (Transcription Factor CP2)	U01965
	TFC12 (Transcription Factor 12)	M65209
	PRKDC (Protein Kinase, DNA activated catalytic subunit)	U47077
	n of RNA polymerization	
	gulate RNA polymerization	
General fac	- · · · · · · · · · · · · · · · · · · ·	
	SUPT6H	U46691
	TFIIA gamma subunit	U14193
	TFIIA delta	
	TFIIB related factor hBRF (HBRF)	U75276
	TFIIE Alpha Subunit	X63468
	TFIIE Beta Subunit	X63469
	TFIIF, Beta Subunit	X16901
	GTF2F1 (TFIIF)	X64037
	GTF2F2 (TFIIF)	X16901
	General Transcription Factor IIIA	U20272
	TFIIH(52 kD subunit of transcription factor)	Y07595
	•	

Histone H2a.1	U90551
Histone H2a.2	L19779
Histone H2b.1	M60756
Histone H4	X60486
SLBP (Histone Hairpin-Binding Protein)	Z71188
DNA Degradation	
DNA Repair	
Divir Kepun	
Genes Required to Maintain Cellular RNA at Levels Compatible with Cell Growth or Survival	
RNA Precursor Biosynthesis	
RNA Precursor Elimination	
RNA Polymerization	
Initiation of polymerization	
TATA-binding Complex	
Small Nuclear RNA-Activating Complex, Polypeptide 1, 43KD (SNAPC1)	Z47542
Small Nuclear RNA-Activating Complex, Polypeptide 2, (SNAPC2)	
Small Nuclear RNA_Activating Complex, Polypeptide 3, 50KD (SNAPC3)	U71300
TAF2D(TBP-associated factor)	U78525
TAFII100(TBP-associated factor)	X95525
TAFII130(TBP-associated factor)	U75308
TAFII20(TBP-associated factor)	X84002
TAFII250(TBP-associated factor)	D90359
TAFII28(TBP-associated factor)	X83928
TAFII30(TBP-associated factor)	U13991
TAFII32(TBP-associated factor)	U21858
TAFII40(TBP-associated factor)	
TAFII55(TBP-associated factor)	U18062
TAFII80(TBP-associated factor)	U31659
TBP(TATA Binding Protein)	M55654
TMF1 (TATA Element Modulatory Factor 1)	
Polymerization	
RPB 7.0	U52427
RPB 7.6	
RPB 17	
RPB 14.4	
RNA Polymerase I subunits	
RNA polymerase I subunit hRPA39	AF008442
RNA Polymerase II subunits	
13.6 Kd Polypeptide (DNA-Directed RNA Polymerase II 13.6 kD Polypeptide)	L37127
POLR2C(RNA polymerase II, polypeptide C (33kD))	J05448

	POLa(DNA Polymerase Alpha/Primase Associated Subunit)	L24559
	POLb(DNA Polymerase Beta Subunit)	D29013
	POLd1(Polymerase (DNA directed), Delta 1, Catalytic Subunit)	M81735
	POLd2(Polymerase (DNA directed), Delta 2)	U21090
	POLE(Polymerase (DNA directed))	OMIM 174762
	POLg (DNA Polymerase Gamma Subunit)	X98093
	Terminal Transferase (DNA Nucleotidylexotransferase)	M11722
Accessory	factors for DNA Polymerization	
-	Activator 1 36 Kd	L07540
	CDC46 (DNA Replication Licensing Factor)	X74795
	CDC47 (DNA Replication Licensing Factor CDC47)	D55716
	DNA Topoisomerase III	U43431
	DRAP1 (DNA Replication Licensing Factor MCM3)	U41843
	KIAA0030 Gene (Cell Division Control Protein 19)	X67334
	KIAA0083 Gene (DNA Replication Helicase DNA2)	D42046
	MCM3 (DNA Replication Licensing Factor MCM3)	D38073
	PCNA (Proliferating Cell Nuclear Antigen)	J04718
	PRIM1 (DNA Primase 49 kD Subunit)	X74330
	PRIM2 (DNA Primase)	X74331
	PRIM2a (DNA Primase 58 kD Subunit)	X74331
	PRIM2b (DNA Primase)	OMIM 600741
	RECa (Replication Protein A 14 kD Subunit)	L07493
	RFC1 (Replication Factor C (activator 1) 1)	L14922
	RFC2 (Replication Factor C 2)	M87338
	RFC3 (Replication Factor C (activator 1) 3)	L07541
	RFC4 (Replication Factor C, 37-kD subunit)	M87339
	RFC5 (Replication Factor C)	OMIM 600407
	RPA1 (Replication protein A1 (70kD))	M63488
	RPA2 (Replication protein A2 (32kD))	J05249
	RPA3 (Replication protein A3 (14kD))	L07493
	TOP1 (DNA Topoisomerase I)	J03250
	TOP2a (Topoisomerase (DNA) II Alpha (170kD))	J04088
	TOP2b (Topoisomerase (DNA) II Beta (180kD))	U54831
DNA Helio	cases	
	CHL1(CHL1-Related Helicase)	U33833
	DNA Helicase II	M30938
	Mi-2(Chromodomain-Helicase- DNA-Binding Protein CHD-1)	X86691
	RECQL (ATP-Dependent DNA Helicase Q1)	L36140
	Smbp2 (DNA-Binding Protein SMUBP-2)	L14754
DNA Pack	aging Proteins	
Histo		
	H1(0) (Histone H5A)	X03473
	Histone H1d	X57129
	Histone H1x	D64142

	GART (Phosphoribosylglycinamide formyltransferase)	
	GART(Phosphoribosylglycinamide formyltransferase,	X54199
	phosphoribosylglycinamide synthetase,	
	phosphoribosylaminoimidazole synthetase)	1110000
	GMP Synthetase	U10860
	IMP Cyclohydrolase	U37436
	IMP dehydrogenase	L19709
	IMPDH1(IMP (inosine monophosphate) dehydrogenase 1)	J05272
	IMPDH2(IMP (inosine monophosphate) dehydrogenase 2)	J04208
	Phosphoribosyl diphosphotransferase	
	Phosphoribosylaminoimidazolecarboxamide formyltransferase	
	Phosphoribosylformylglycinamide synthetase	M32082
	Phosphoribosylglycinamide carboxylase	
	Phosphoribosylglycinamide-succinocarboxamide synthetase	
	PPAT (Amidophoribosyltransferase)	
	PPAT(Phosphoribosyl pyrophosphate amidotransferase)	U00238
	Ribonucleoside-diphosphate reductase M1 chain	X59543
	Ribonucleoside-diphosphate reductase M2 chain	X59618
	Thymidine Kinase	K02581
	Thymidylate Synthase	X02308
	UMK(Uridine kinase)	D78335
	UMPK (Uridine monophosphate kinase)	OMIM 191710
	UMPS(Uridine monophosphate synthetase (orotate phosphoribosyl transferase and orotidine-5'-decarboxylase))	J03626
	Uridine Phosphorylase	X90858
DNA Precurs	or Elimination	
DNA Replicatio	n	
Origin Recog	nition	
Origin Red	cognition Complex	
-	ORC1	U40152
	ORC2	U27459
	ORC3	
	ORC4	
	ORC5	OMIM 602331
	ORC6	
ORC Regi	ulators	
_	CDC6	AA830372
	CDC7	AFO15592
	CDC18	AF022109
DNA Polyme	erization	
DNA Poly		
	Adprt (NAD(+) ADP- Ribosyltransferase)	M18112
	DNA Polymerase Alpha-Subunit	X06745
	DNA Polymerase Delta	U21090
	•	

Proteasome C2	D00759
Proteasome C7-1	D26599
Proteasome inhibitor hPI31 subunit	D88378
Proteasome P112	D44466
Proteasome P27	AB003177
Proteasome P55	AB003103
Ubiquitin System	ier protein) U73379
Enzyme E2-17 Kd(Cyclin-selective ubiquitin carr	, , , , , , , , , , , , , , , , , , ,
ISOT-3(Ubiquitin carboxyl-terminal hydrolase T)	,
ORF (Ubiquitin carboxyl-terminal hydrolase 14)	M68864
PGP(Ubiquitin carboxyl-terminal hydrolase isozyt	
UBA52(Ubiquitin A-52 residue ribosomal protein product 1)	fusion S79522
Ubiquitin carboxyl-terminal hydrolase 3	D80012
Ubiquitin carboxyl-terminal hydrolase isozyme L.	3 M30496
Ubiquitin carboxyl-terminal hydrolase T	X91349
Ubiquitin carrier protein (E2-EPF)	M91670
Ubiquitin fusion-degradation protein (UFD1L)	U64444
Ubiquitin Hydrolase	X98296
Ubiquitin-conjugating enzyme E2I	U45328
Polypeptide Transport	
SEC23(Protein transport protein SEC23)	X97065
SEC23A(Protein transport protein SEC23)	X97064
SEC7(Protein transport protein SEC7)	X99688
SEC61 (Beta Subunit)	L25085
Lipoprotein Transport	
LDLR (LDL receptor)	

5) Genes Required to maintain Cellular Nucleotides at Levels Compatible with Cell Growth or Survival

Genes Required to Maintain Cellular DNA with Fidelity and at Levels Compatible with Cell Growth or Survival

DNA Precursor Biosynthesis

·,	
Adenylate Kinase-2	U39945
Adenylosuccinate synthetase	X66503
Adenylosuccinate Lyase	X65867
ADPRT (ADP-Ribosyltransferase)	M32721
ADSL (Adenylosuccinate lyase/AMP synthetase)	X65867
ADSS (Adenylosuccinate Synthetase)	X66503
CAD PROTEIN	D78586
CTP Synthetase	
CTPS(CTP synthetase)	X52142
Cytidine Triphosphate Synthetase	
GARS (Phosphoribosylglycinamide synthetase)	D32051

	eIF-3 pl 10(Eukaryotic initiation factor)	U46025
	eIF-3 p36(Eukaryotic initiation factor)	U39067
	eIF-4A(Eukaryotic initiation factor)	D21853
	eIF-4C(Eukaryotic initiation factor)	L18960
	eIF-4E(Eukaryotic initiation factor)	M15353
	eIF-4Gamma(Eukaryotic initiation factor)	Z34918
	eIF-5(Eukaryotic initiation factor)	U49436
	eIF-5A	
Polypeptide el	ongation	
	Eukaryotic peptide chain release factor subunit 1	X81625
	P97(Eukaryotic initiation factor)	U73824
	eEF1A2(Eukaryotic elongation factor)	X70940
	eEF1D(Eukaryotic elongation factor)	Z21507
	eEF2(Eukaryotic elongation factor)	X54166
	eIF4A2 (Eukaryotic initiation factor)	D30655
	KIAA0031(Elongation factor 2)	D21163
	KIAA0219(Putative translational activator C18G6.05C)	D86973
	Factor 1-Alpha 2(Eukaryotic translation elongation factor 1 alpha 2)	D30655
Termination o	of polypeptide polymerization	
Polypeptide fo		
	Cis-Trans Isomerase	M80254
	DNAj Protein Homolog 1	X62421
	DNAj Protein Homolog 2	D13388
	DNAJ Protein homolog HSJ1	X63368
Chaperone	proteins	
-	-Complex	
	Aspartylglucosaminidase	X55330
	T-Complex 1, Alpha	S70154
	T-Complex 1, Epsilon	D43950
	T-Complex 1, Gamma	X74801
	T-Complex 1, Theta	D13627
	T-Complex 1, Zeta	M94083
Polypeptid	e Degradation	
	easome components and proteinases	
	26S Protease regulatory subunit 4	L02426
	Alpha-2-Macroglobulin	M11313
	Calpain 1, Large	X04366
	CLPP(ATP-Dependent CLP protease proteolytic subunit)	Z50853
	KIAA0123 (Mitochondrial processing peptidase alpha subunit)	D50913
	MMP7	X07819
	Proteasome Beta 6	D29012
	Proteasome Beta 7	D38048
	Proteasome C13	U17496

	Ribosomal Protein L6	X69391
	Ribosomal Protein L7	L16558
	Ribosomal Protein L7a	X52138
	Ribosomal Protein L8	Z28407
	Ribosomal Protein L9	U09953
	Ribosomal Protein P1	M17886
	Ribosomal Protein S10	U14972
	Ribosomal Protein S11	X06617
	Ribosomal Protein S13	L01124
	Ribosomal Protein S14	
	Ribosomal Protein S15	J02984
	Ribosomal Protein S15A	X84407
	Ribosomal Protein S16	M60854
	Ribosomal Protein S17	M13932
	Ribosomal Protein S17A	OMIM 180461
	Ribosomal Protein S17B	OMIM 180462
	Ribosomal Protein S18	L06432
	Ribosomal Protein S20	
	Ribosomal Protein S20A	OMIM 180463
	Ribosomal Protein S20B	OMIM 180464
	Ribosomal Protein S21	L04483
	Ribosomal Protein S23	D14530
	Ribosomal Protein S25	M64716
	Ribosomal Protein S26	X69654
	Ribosomal Protein S28	U58682
•	Ribosomal Protein S29	L31610
	Ribosomal Protein S3	U14990
	Ribosomal Protein S3A	OMIM 180478
	Ribosomal Protein S4	
	Ribosomal Protein S4X	M58458
	Ribosomal Protein S4Y	M58459
	Ribosomal Protein S5	U14970
	Ribosomal Protein S6	J03537
	Ribosomal Protein S7	M77233
	Ribosomal Protein S8	OMIM 600357
	Ribosomal Protein S9	U14971
Initiation of	polypeptide polymerization	
_	eIF-2 (Eukaryotic initiation factor)	L19161
	eIF-2-associated p67(Eukaryotic initiation factor)	U13261
	eIF-2A(Eukaryotic initiation factor)	J02645
	eIF-2Alpha(Eukaryotic initiation factor)	U26032
	eIF-2B(Eukaryotic initiation factor)	U23028
	eIF-2B-Gamma(Eukaryotic initiation factor)	L40395
	eIF-2Beta(Eukaryotic initiation factor)	M29536

EPRS	X54326
FARS	
GARS	U09510
HARS	X05345
IARS	D28473
KARS	OMIM 601421
LARS	OMIM 151350
MARS	X94754
NARS	M27396
QARS	X54326
RARS	S80343
SARS	
TARS	M63180
VARS	X59303
WRS	M61715
YARS	
Polypeptide polymerization	
Ribosome Subunits	
Ribosomal Protein L11	X79234
Ribosomal Protein L12	L06505
Ribosomal Protein L17	X52839
Ribosomal Protein L18	L11566
Ribosomal Protein L18a	X80822
Ribosomal Protein L19	X63527
Ribosomal Protein L21	U14967
Ribosomal Protein L22	L21756
Ribosomal Protein L23	X53777
Ribosomal Protein L23a	U43701
Ribosomal Protein L25	
Ribosomal Protein L26	
Ribosomal Protein L27	L19527
Ribosomal Protein L27a	U14968
Ribosomal Protein L28	U1 496 9
Ribosomal Protein L29	U10248
Ribosomal Protein L30	OMIM 180467
Ribosomal Protein L31	
Ribosomal Protein L32	X03342
Ribosomal Protein L35	U12465
Ribosomal Protein L35a	X52966
Ribosomal Protein L36a	OMIM 180469
Ribosomal Protein L39	U57846
Ribosomal Protein L4	L20868
Ribosomal Protein L41	
Ribosomal Protein L44	

Lysophosphatidic acid acyltransferase-beta

80

U56418

Lysophosphatidic acid acylifansierase-oeta	030418
Farnesyltransferase	
FNTa (Farnesyltransferase Alpha Subunit)	L00634
FNTb (Farnesyltransferase Beta Subunit)	L00635
Myristoylation	
NMT1 (N-myristoyltransferase)	
Addition, removal or modification of sulfhydryl groups	
Addition, removal or modification of phosphate groups	
Calcineurin A	S46622
Calcineurin B	M30773
Calreticulin Precursor	M84739
Phosphatase 2b	M29551
PPP3ca(Protein phosphatase 3, catalytic subunit)	J05480
SNK Interacting 2-28(Calcineurin B Subunit)	U83236
Protein Kinase C	
PRKCA(Protein kinase C, alpha)	X52479
PRKCB1(Protein kinase C, beta 1)	X06318
PRKCD(Protein kinase C, delta)	L07861
PRKCM(Protein kinase C, mu)	X75756
PRKCQ(Protein kinase C-theta)	L01087
PRKCSH(Protein kinase C substrate 80K-H)	J03075
Addition, removal or modification of lipid groups	
Geranylgeranyl	
Geranylgeranyltransferase (Type I Beta)	L25441
GGTB (Geranylgeranyltransferase)	Y08201
Geranylgeranyltransferase (Type II Beta-Subunit)	X98001
3.5 Genes required for regulation of levels of organic ions	
Gdp Dissociation Inhibitors	
GDI Alpha (RAB GDP Dissociation Inhibitor Alpha)	D45021
Rab Gdp (RAB GDP Dissociation Inhibitor Alpha)	D13988
4) Genes Required to Maintain Cellular Proteins at Levels Compatible with Cell Growth or Survival	
Polypeptide precursor biosynthesis	
Amino acid biosynthesis and modification	
GOT(Glutamic-oxaloacetic transaminase 2)	M22632
GOT1(Glutamic-oxaloacetic transaminase 1)	M37400
PYCS(Pyrroline-5-carboxylate synthetase)	X94453
Tyrosine aminotransferase	X52520
Polypeptide precursor elimination	A32320
Synthesis of components for polypeptide polymerization	
AARS	D32050
CARS	L06845
DARS	L00043
DING	

Amino Acid biosynthesis and processing	
Asparagine Synthetase	SEG_HUMASN
Aminoacylase-1	L07548
Aminoacylase-2	S67156
Fatty acid biosynthesis and processing	
ACAC (Acetyl CoA Carboxylase Beta)	U19822
ACAC (Acetyl CoA Carboxylase)	U12778
ACADSB(Acyl-coA dehydrogenase)	U12778
Mevalonate kinase	M88468
Phosphomevalonate kinase	L77213
Alcohol biosynthesis and processing	
Other organic compounds biosynthesis and processing	
Aspartoacylase	S67156
Ornithine decarboxylase 1	M16650
3.3 Genes required for catabolism, degradation and elimination of organ	ic compounds
Carbohydrate and Sugar Catabolism	
Amino acid Degradation	
Lipid or lipoprotein Degradation	
Short-acyl-CoA dehydrogenase	M26393
Medium acyl-CoA dehydrogenase	S75214
Long acyl-CoA dehydrogenase	M74096
Isovalveryl CoA dehydrogenase	M34192
2-methyl branched chain	
Nucleoside Degradation	
Adenosine Deaminase	K00509
Purine-nucleoside phosphorylase	K02574
Guanine Deaminase	
Xanthine Oxidase	D11456
Degradation of other organic compounds	
3.4 Genes Required to Modify Polypeptides, Lipids or Sugars by Addition, Removal or Modification of Chemical Groups to Form Compounds Necessary for Cell Growth or Survival	
Addition, removal or modification of sugar groups	
Glycosyltransferases	
Glycosylases	
ITM1 (Integral Transmembrane Protein)	L38961
GFPT (Glutamine-Fructose-6-Phosphate Transaminase)	M90516
Heparan	U36601
Polypeptide N-Acetyltransferase	U41514
Addition, removal or modification of methyl or other alkylgroups	
Acetyltransferase	
ACAA(Acetyl-Coenzyme A acyltransferase)	X12966
Lysophosphatidic acid acyltransferase-alpha	U56417

E2k (Dihydrolipoamide S-succinyltransferase)	D16373
E3 (Dihydrolipoyl Dehydrogenase)	SEG_HUMDHL
ENO1(Enolase 1,alpha)	M14328
ENO2(Enolase 2)	X51956
ENO3(Enolase 3)	X55976
Enolase 2, (gamma, neuronal)	M22349
Enolase 3, (beta, muscle)	X16504
FH(Fumarate hydratase)	M15502
G3PDH (Glyceraldehyde-3-Phosphate Dehydrogenase)	M17851
G6PD (Glucose-6-Phosphate Dehydrogenase)	
Glucose-6-phosphate dehydrogenase	X03674
HK1 (Hexokinase 1)	M75126
HK2 (Hexokinase 2)	S70035
HK3 (Hexokinase 3)	U51333
IDH1(Isocitrate dehydrogenase 1 (NADP+), soluble)	OMIM 147700
IDH2(Isocitrate dehydrogenase 2 (NADP+), mitochondrial)	X69433
MDH1(Malate dehydrogenase 1, NAD (soluble))	D55654
MDH2(Malate dehydrogenase 1, NAD (mitochondrial))	OMIM 154100
NAD(H)-specific isocitrate dehydrogenase alpha subunit	U07681
Oxoglutarate dehydrogenase (lipoamide)	D10523
PDHB (Pyruvate Dehydrogenase)	J03576
PDHB(Pyruvate dehydrogenase (lipoamide) beta)	M34479
PDK4 (Pyruvate dehydrogenase kinase, isoenzyme 4)	U54617
PFKL(Phosphofructokinase)	M10036
PGI (Phosphoglucoisomerase)	OMIM 172400
PGKa (Phosphoglyceromutase)	Y00572
PGKb (Phosphoglyceromutase)	K03201
PGM1 (Phosphoglyceromutase)	M83088
PGM2 (Phosphoglyceromutase)	OMIM 172000
PGM3 (Phosphoglyceromutase)	OMIM 172100
PGM4 (Phosphoglyceromutase)	OMIM 172110
Phosphofructokinase, muscle	U24183
Phosphoglucomutase 1	M83088
Phosphoglycerate kinase 1	V00572
PK1 (Pyruvate Kinase)	M15465
PK2 (Pyruvate Kinase)	OMIM 179040
PK3 (Pyruvate Kinase)	M23725
Pyruvate dehydrogenase kinase isoenzyme 2 (PDK2)	L42451
Pyruvate kinase, liver	D10326
Pyruvate kinase, muscle	M23725
SDH1(Succinate dehydrogenase, iron sulphur (Ip) subunit)	D10245
SDH2(Succinate dehydrogenase 2, flavoprotein (Fp) subunit)	D30648
TKT(Transketolase (Wernicke-Korsakoff syndrome))	L12711
TPI (Trisephosphate Isomerase)	M10036
\	-

GLUT1	GDB:120627
GLUT2	J03810
GLUT3	M20681
GLUT4	M20747
GLUT5	M55531
	M95549
Solute carrier family 5	M95549
(sodium/glucose cotransporter)	
Solute carrier family 2	J03810
(facilitated glucose transporter), member 2	
Solute carrier family 2	M55531
(facilitated glucose transporter) member 5	
Amino acid transport	
Solute carrier family 3 member 1	L11696
System b,(Na+ independent)	
System y,(Na+ independent)	
ATRC1(Catioinc)	OMIM 104615
LEUT(Leucine Transporter)	OMIM 151310
SLC1A1(Solute Carrier Family 1, Member 1)	OMIM 133550
Lipid or lipoprotein transport	
Nucleoside transport	
Other organic compounds transport	
Solute carrier family 16	L31801
(monocarboxylic acid transporters)	
3.2 Genes required for maintenance of organic compounds at	
levels required for cell growth or survival	
Carbohydrate metabolism, including anabolism and catabolism	
ACO1(Aconitase 1)	U80040
ACO2(Aconitase 2, mitochondrial)	M26393
Acyl-Coenzyme A dehydrogenase, C-2 to C-3 short chain	M16827
Acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain	
Acyl-Coenzyme A dehydrogenase, long chain	M74096
Acyl-Coenzyme A dehydrogenase, very long chain	D43682
aKGD (alpha ketoglutaratedehydrogenase)	N411560
ALD-a (Aldolase)	M11560
ALD-b (Aldolase)	K01177
ALD-c (Aldolase)	M21191
CS (Citrate Synthetase)	OMIM 118950
Dihydrolipoamide S-succinyltransferase	L37418
DLAT(Dihydrolipoamide S-acetyltransferase (E2 component of	AF001437
pyruvate dehydrogenase complex))	102400
DLD(Dihydrolipoamide dehydrogenase (E3 component of pyruvate dehydrogenase complex, 2-oxo-glutarate complex,	J03490
branched chain keto acid dehydrogenase complex))	
Elk (Oxoglutarate dehydrogenase)	D10523
Div (Overland and and and and and and and and and	

	NADH-Ubiquinone oxidoreductase 75 kD subunit precursor	X61100
	NADH-Ubiquinone oxidoreductase MFWE subunit	X81900
	NDUFV2(NADH dehydrogenase (ubiquinone) flavoprotein 2 (24kD))	M22538
	Ubiquinol-cytochrome c reductase complex 11 kD	M36647
	ATP Synthase Alpha Chain	D14710
	NADH dehydrogenase-ubiquinone Fe-S protein 8, 23 kDa subunit	U65579
Vitamin tr	ansporters	
	Ascorbic Acid (uncloned)	
	Folate Binding Protein	AF000380
	Folate receptor 1 (adult)	M28099
	Nicotinamide (uncloned)	
	Pantothenic Acid	X92762
	Riboflavin (uncloned)	
	SCL19A1 (Solute Carrier Family 19, Member1)	
	Solute carrier family 19 (folate transporter), member 1	U19720
	Thiamine, B6, B12 (uncloned)	•
Metal tran	sporters	
	ATP7b (Copper-Transporting ATPase 2)	U03464
	Ceruloplasmin (ferroxidase)	M13699
	Ceruloplasmin receptor (Copper Transporter)	
	Copper Transport Protein HAH1	U70660
	Molybdenum, Selenium, other Transporters (uncloned)	
	Tranferrin Receptor (Iron Transporter)	X01060
	Zinc Transporter (uncloned)	
Soluble ir	organic ion transporters	
Insoluble	inorganic ion transporters	
Transport	ers of other essential small molecules	
	Mitochondrial Import Receptor Subunit TOM20	D13641
_	rs of transport	
	f ion levels	
enes Requi	red to Maintain Organic Compounds at Levels	

3) G Compatible with Cell Growth or Survival

3.1 Transporters of organic compounds

Carbohydrate Transport

Sugar Transport

Glucose Transport

	ATP1b2 (Sodium/Potassium-Transporting ATPase Beta-2 Chain)	M81181
Anti	porters	
	ATPase, Ca++ transporting, plasma membrane 4	M25874
	ATPase, Ca++ transporting, plasma membrane 2	L20977
	ATPase, Na+/K+ transporting, alpha 1 polypeptide	U16798
	ATPase, Na+/K+ transporting, alpha 3 polypeptide	X12910
	ATPase, Na+/K+ transporting, beta 1 polypeptide	U16799
	ATPase, Na+/K+ transporting, beta 2 polypeptide	U45945
	Na+,K+ ATPase, 1 Subunit	
	Na+,K+ ATPase, 2 alpha	
	Na+,K+ ATPase, 3 beta	U51478
	SLC9a1(Solute carrier family 9 (sodium/hydrogen exchanger))	M81768
	Solute carrier family 4, anion exchanger, member 1	M27819
	Solute carrier family 4, anion exchanger, member 2	U62531
	Solute carrier family 9 (sodium/hydrogen exchanger),	X76180
Passive transp	porters	
	MaxiK Potassium Channel Beta Subunit	U25138
	Chloride Channel 2	X83378
	Chloride Channel Protein (CLCN7)	U88844
	TRPC1 (Transient Receptor Potential Channel 1)	X89066
	Potassium Channel Kv2.1	L02840
	ATP5d(ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit)	X63422
	ATP5f1(ATP synthase, H+ transporting, mitochondrial F0 complex, subunit b)	X60221
	ATP5o(ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit)	X83218
	ETFa(Electron-transfer-flavoprotein, alpha polypeptide (glutaric aciduria II))	J04058
	ETFb(Electron-transfer-flavoprotein, beta polypeptide)	X71129
	Nadh-ubiquinone oxidoreductase 13 kd-B subunit	U53468
	Nadh-ubiquinone oxidoreductase 39 kD subunit precursor	L04490

Centromere protein B (80kD)	X05299
Centromere protein E (312kD)	Z15005
CHC1(Chromosome condensation 1)	X12654
Chromatin assembly factor-in p150 subunit	U20979
Chromatin assembly factor-in p60 subunit	U20980
Chromosome segregation gene homolog CAS	U33286
HMG1(High-mobility group (nonhistone chromosomal) protein 1)	D63874
Minichromosome Maintenance (MCM7)	D28480
Mitotic centromere-associated kinesin	U63743
RMSA1(Regulator of mitotic spindle assembly 1)	L26953
SUPT5h(Chromatin structural protein homolog (SUPT5H))	Y12790

2) Genes Required to Maintain Inorganic Ions and Vitamins at Levels Compatible with Cell Growth or Survival

2.1 Transport of inorganic ions and vitamins across the plasma membrane and intracellular membranes

Active transporters

Uniporters

PMCA1 (Calcium Pump)	U15686
PMCA2 (Calcium Pump)	M97260
PMCA3 (Calcium Pump)	U15689
PMCA4 (Calcium Pump)	M83363
ATP2b1 (Calcium-Transporting ATPase Plasma Membrane)	J04027
ATP2b2 (Calcium-Transporting ATPase Plasma Membrane)	X63575
ATP2b4 (Calcium-Transporting ATPase Plasma Membrane)	M83363
ATP5b (ATP Synthase Beta Chain, Mitochondrial Precursor)	X03559
Chloride Conductance Regulatory Protein ICLN	X91788
H-Erg (Potassium Channel Protein EAG)	U04270
Nuclear Chloride Ion Channel Protein (NCC27)	U93205
SCN1b(Sodium Channel, Voltage-Gated, Type in, Beta Polypeptide)	L16242
Two P-Domain K+ Channel TWIK-1	U33632
VDAC2 (Voltage-Dependent Anion-Selective Channel Protein 2)	L06328

Coupled transporters

Symporters

ATP1b1 (Sodium/Potassium-Transporting	X03747
ATPase Beta-1 Chain)	

73

1.1 Genes that regulate cell division

Cyclins, cyclin dependent kinases, regulators and effectors of cyclins and cyclin-dependent kinases

14-3-3 Protein TAU	X56468
CCNA(G2/Mitotic-Specific Cyclin A)	X51688
CCNB1(G2/Mitotic-Specific Cyclin B1)	M25753
CCND1(G1/S-Specific Cyclin D1)	M73554
CCND2(G1/S-Specific Cyclin D2)	M90813
CCND3(G1/S-Specific Cyclin D3)	M90814
Cell division control protein 16	U18291
Cell division cycle 2, G1 to S and G2 to M	X05360
Cell division cycle 25A	M81933
Cell division cycle 25B	M81935
Cell division cycle 25C	M34065
Cell division cycle 27	U00001
Cell division-associated protein BIMB	D79987
Cyclin A1(G2/Mitotic-Specific Cyclin A1)	U66838
Cyclin C (G1/S-Specific Cyclin C)	M74091
Cyclin G1(G2/Mitotic-Specific Cyclin G)	X77794
Cyclin G2 (G2/Mitotic-Specific Cyclin G)	U47414
Cyclin H	U11791
Cyclin H Assembly	X87843
GSPT1(G1 to S phase transition 1)	X17644
Mitotic MAD2 Protein	U31278
MRNP7	X98263
RANBP1(RAN binding protein 1)	D38076
WEE1	X62048
Cell Division Protein Kinase 4	U79269
CDC28 protein kinase 1	X54941
CDC28 protein kinase 2	X54942
M-Phase inducer phosphatase 2	M81934
M-phase phosphoprotein, mpp6	X98260
PPP1ca(Protein phosphatase 1, catalytic subunit, alpha isoform)	M63960
STM7-LSB	X92493

1.2 Genes that form structures of cell division including the centromere, kinetochore, kinesins, spindle pole body, chromatin assembly factors and their regulators

CENP-F kinetochore protein U19769
Centromere autoantigen C M95724

Another example are those genes that are involved in maintaining the amount of inorganic ions within the cell. This includes those genes that are required for transporting inorganic ions, including but not limited to O, Na, K, Cl, Fe, P, S, Mn, Mg, Ca, H, PO4 and Zn, ensuring their proper compartmentalization within the cell by binding or transporting these ions, and ensuring proper elimination from the cell.

Another example are those genes that are involved in maintaining the structures and integrity of the cell as described in Example 6 below.

The above groups of genes are shown in Table 1 below, which also points out useful subcategories of genes and lists particular exemplary target genes. This demonstrates that target genes can be grouped according to cellular function to provide classes of essential genes useful for allele specific targeting. Additional target genes can be identified by routing methods, such as those described herein. Confirmation of the essentiality of an additional gene in a specified gene category, and of the occurrence in normal somatic cells of sequence variances of the gene, and of the occurrence of LOH affecting the gene in a neoplastic disorder, establishes that the gene is a target gene potentially useful for identifying allele specific inhibitors and for other aspects of the invention. In addition, as described, target genes are useful in embodiments of certain aspects of the invention, e.g., transplantation and the use of essential or conditionally essential genes even in the absence of LOH.

20

10

15

Table 1

Gene Name

GenBank Accession #

1) Genes Required F r Cell Proliferation

71

This also includes those genes involved in maintaining the amount of nucleosides that are the component elements of DNA by synthesis, salvage, or transport.

Another example are those genes that are involved in maintaining the amount of RNAs within a cell. This includes genes commonly considered to be involved in transcription and other functions; comprising genes required for the synthesis (polymerization) of linear RNA sequences from its component elements, ensuring proper compartmentalization of RNA within the cell, creating specific modification of the linear RNA molecule, and eliminating-RNA. This also includes those genes involved in maintaining the amount of nucleosides that are the component elements of RNA by synthesis, salvage, or transport.

Another example are those genes that are involved in maintaining the amount of proteins within a cell. This includes those genes commonly considered to be part of "translation" and other functions;/ comprising genes required for transporting or synthesizing amino acids that are the component elements of proteins, synthesizing specific linear protein sequences from these amino acid elements, creating specific modifications of proteins including by not limited to the addition of specific nucleic acids, carbohydrates, lipids, or inorganic ions to the protein structure, ensuring the proper compartmentalization of synthesized proteins in the cell, and ensuring the proper elimination of proteins from the cell.

Another example are those genes that are involved in maintaining the amount of organic ions within the cell, including but not limited to amino acids, organic acids, fatty acids, nucleosides, and vitamins. This includes those genes that are required for transporting, or synthesizing organic ions, ensuring their proper compartmentalization within the cell, and ensuring proper elimination or degradation of these ions.

15

20

25

constituents. These may include, but are not limited to, specific proteins, nucleic acids, carbohydrates, lipids, organic ions, and inorganic ions, or cytoskeletal elements. The loss of homeostasis often results in cell death or apoptosis or inhibition of cell proliferation. Homeostasis in a living cell is dynamic, and programed changes in homeostasis are required through the life cycle of the cell. We have determined that those genes whose products are required for maintaining this homeostasis conducive to cell growth and survival are targets for anti-neoplastic e.g., anti-cancer, inhibitors as described in the methods herein. For example, many genes are involved in synthetic functions, allowing the cells to produce essential cellular constituents including proteins, nucleic acids, carbohydrates, lipids, or organic ions or their components. Other genes are involved in the transport of essential constituents such as proteins, nucleic acids, carbohydrates, lipids, organic ions, or inorganic ions, or their components into the cell or among its internal compartments. Still other genes are involved in the chemical modification of cellular constituents to form other constituents with specific activities. Still other genes are involved in the elimination of specific cellular constituents such as proteins, nucleic acids, carbohydrates, lipids, organic ions, inorganic ions, or their components by metabolic degradation or transport out of the cell. The analysis is preferably carried out using genes which have been shown to be essential in human cells or which are human homologs of genes which are essential in other organisms, preferably other eukaryotic organisms although useful essential data is also provided by prokaryotic essential genes.

A specific example are those genes that are involved in maintaining the amount and fidelity of DNA within a cell. This includes genes commonly considered to be involved in "replication" and other functions; comprising genes involved in the synthesis (polymerization) of DNA sequences from its component elements, creating specific modifications of DNA, ensuring the proper compartmentalization of DNA during cell division (within the nucleus), and eliminating damaged DNA.

flies, yeast, bacteria or other organisms? The idea of determining the necessity of specific genes for survival of an organism is well established in simple organisms such as bacteria and yeast. The consequences of gene disruption are easier to assess in these microorganisms that have a haploid genome because the haploid organism contains only one form of a particular single copy gene. A particularly useful category of eukaryotic organisms are the yeasts, especially

- 3. What are the protein targets of proven mammalian cytostatic and cytotoxic agents such as chemotherapy drugs and poisons?
- 4. What can be learned from genomics about the genes required for cell survival? This analysis includes identification of the minimal gene set in simple prokaryotes, as well as sequence comparisons across widely divergent species.
- Experimental testing of gene essentiality. As an example, antisense oligonucleotides can be used to down regulate candidate essential genes
 (identified by the four approaches listed above) and assess the effects on cell proliferation and survival. Application of an antisense approach to the identification of essential genes was described by Pestov & Lau, supra.

Once a gene coding for a protein or factor essential to cell viability is identified, its genomic DNA and cDNA sequences, if not previously established, can be

20 ascertained and sequenced according to standard techniques known to those skilled in the art. See, for example, Sambrook, Fritsch and Maniatis, "Molecular Cloning, A Laboratory Manual," Cold Spring Harbor Press, Cold Spring Harbor, NY (1989).

Categories of essential genes

Saccharomyces cerevisae.

Many essential genes function by encoding a gene product which is necessary for maintaining the level of a cellular constituent within the levels required for cell survival or proliferation. The survival and proliferation of cells within the body requires maintaining a state of homeostasis among many different cellular

II. Essential Cellular Function and Essential Genes

As indicated in the Summary above, the invention targets specific allelic forms of essential genes, which are also termed genes essential for cell growth or viability. As used herein the term, "genes which code for a protein essential for the growth or survival or cells" or "genes which code for proteins or factors required for cell viability" or "essential genes" is meant to include those genes that express gene products (e.g., proteins) required for cell survival as well as those genes required for cell growth in actively dividing cell populations. These genes encode proteins which can be involved in any vital cell. An additional factor which applies to genes identified by any of the approaches described above is: a target gene or protein should be encoded by a single locus in man.

A large number of references have identified essential genes which constitute actual or potential targets for allele specific inhibition. The identification of essential genes can be approached in various ways.

- What are the essential functions each cell must perform to sustain life, and what are the proteins responsible for performing those functions? This is a top down approach for identifying candidate genes whose essential role is then proven experimentally (see below). This approach enables essential genes to be categorized according to the essential cellular process or function which the gene product provides or of which the gene product is a necessary part. Table 1 shows such categories of essential genes and gene functions. In addition, the chromosomal location, where known, and gene product of certain example genes is provided. Thus, the categories of functions shown provide potential targets for the methods of this invention.
- 25 2. What genes have been proven essential for cell survival by mutagenesis or gene disruption experiments in cells of other organisms, such as hamster cells, mice,

10

15

20

different forms of human cancer or other tumors. Table 2, from the review conducted by Lasko et al., 1991, Ann. Rev. Genetics 25:281-314, summarizes results of numerous studies determining loss of heterozygosity in tumors, identifying specific tumor types. A much larger summary of tumor-related LOH is provided in Fig. 5.

Once regions of LOH are identified in the chromosomes of a patient's tumor cells, genes which map to the deleted chromosomal segments and are known to code for gene products essential for cell growth or survival are tested for DNA sequence variances. The identification of a greater number of LOH sites affords a broader selection of target genes coding for essential proteins or other gene products and therefore of sequence variance sites for targeting.

Essential genes which have sequence variants in a population provide a set of target which are advantageous due to the presence of many patients heterozygous for a particular gene, so that the gene will provide a target in cases where the gene has undergone tumor-related LOH.

In accord with the description of target gene categories above, most advantageously a target gene is an essential gene which undergoes LOH in a tumor at a high frequency as described above and which has alternative allelic forms in a population at frequencies as described above. Such genes will provide many potentially treatable patients due to the conjunction of LOH and heterozygosity frequencies.

The most preferred target genes are those essential genes which have both a preferable rate of heterozygosity and a preferable frequency of LOH in a tumor or other proliferative condition in a population of interest. Also preferable is that the gene undergoes LOH in a plurality of different tumors or other conditions.

15

the amino acid it encodes. As a result, the mRNAs encoded by two alleles may translate into the same protein or into forms of the same protein differing by one or more amino acids. An important aspect of the present invention is that many sequence variances that are targets for cancer therapy by the methods described here are not mutations, are not functionally related to cancer, and may not, under normal environmental conditions, induce any function difference between the allelic forms of the gene or protein. Only in the circumstances described in this invention, namely genes that encode essential functions, the presence of variances with a sufficient population frequency, a sufficient frequency of LOH in cancers, do these genes, and the variant sequences within these genes, have utility for the therapy of cancer and other disorders through the discovery of variance-specific inhibitors.

Gene targets for a variance-specific inhibition strategy in this invention satisfy three criteria:

- 1. The target gene encodes a gene product, e.g., a RNA transcript or protein product essential for the growth or survival of cells.
- 2. The target gene is located within a chromosome region frequently deleted in cancer cells or cells of a noncancer, proliferative disorder.
- 3. The target gene exists in two alternative forms in the normal somatic cells of a patient having a cancer or noncancer proliferative disorder.
- The allele specific therapy strategy for cancer and noncancer proliferative disorders utilizes the genetic differences between normal cells and neoplastic cells. Thus, the first step in the therapeutic strategy is identifying genes which code for proteins or other factors essential to cell survival and growth that are lost through LOH in tumor cells. Since many genes have been mapped to specific chromosomal regions, this identification can be readily performed by identifying such essential genes which are located in the chromosomal regions characteristically or frequently deleted in

65

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. Introduction

5

10

15

All normal human cells have two copies of each autosomal chromosome (chromosomes 1 through 22); one copy is inherited from each parent. Each chromosome pair thus contains two alleles for any gene. If a single allele of any gene pair is defective or absent, the surviving allele will continue to produce the encoded gene product. Generally, one allele of a gene pair is sufficient to carry on the normal functions of the cell. (Dominant genetic disorders in which mutations in one allele are sufficient to cause disease are generally those in which the mutation, or gene product harboring the mutation, has a toxic effect on the cell.)

Because humans are genetically heterogeneous, many of the paired alleles of genes of the somatic cells of an individual differ from one another in their gene sequence. Typically both alleles are transcribed and ultimately translated into proteins used by the cell. In most cases, the sequence differences between two allelic forms of a gene in an individual are small, usually differing by only one or a few base differences in sequence. The sequence differences may occur at a single variance site, or may constitute more than one variance site, *i.e.*, two allelic forms in an individual may have more than one sequence variance distinguishing them.

When a cell is heterozygous, *i.e.*, has at least one sequence variance, within the transcribed sequence for a particular gene, each allele may encode a different mRNA, *i.e.*, the mRNAs differ in base sequence. For base changes which are located within coding sequences, the effect of the nucleotide difference depends on whether the base change changes the amino acid which is encoded by the relevant codon. Many base changes do not change the coding sequence because they lie in untranslated regions of the mRNA, outside of the mRNA in introns or intergenic sequences, or in a "wobble" position of a codon which changes the codon, but not

of A549 cells.

Fig. 20 is a graph showing inhibition of mutant *ras* using antisense oligonucleotides specific for the mutant form, based on information available in Schwab et al., 1994, PNAS 91:10460-10464.

(12781). Methods were identical to those described in figure legend 16.

Fig. 16 is a Northern blot showing suppression of Ribonucleotide Reductase (RR) mRNA by antisense oligomers. Mia Paca II cells were transfected and 24 hours later RR mRNA was measured by Northern Blot (for methods see figure legend 11). All oligomers have a phosphorothioate backbone throughout and are without modification. The lower half of each panel is a EtBr stained gel of the total RNA probed. Oligomer 13704 is a scrambled random control oligomer. RR2410GA targets the variance contained in Mia Paca II cells. Oligomer RR2410AG has two mismatches compared to the genotype of Mia Paca II cells. Oligomers RR1030 and RR1031 are negative control oligomers. They are targeted to a region of RR which is not effective for mRNA down-regulation.

Fig. 17 shows a Northern blot which is a performed similarly to the experiments in Fig. 16. MDA-MB 468 cells were transfected and the level of RR mRNA measured after 24 hours. 13706 is a scrambled random control oligomer.

2410AG targets the two variances contained in the MDA-MB 468 cells. Oligomer 2410GA contains two mismatches relative to the genotype of MDA-MB 468 cells. Both 2410AG and 2410GA are identical to RR2410AG and RR2410GA, respectively.

Fig. 18 shows specific suppression of EPRS mRNA using hybrid oligomers. The sequences at the top provide the structures of the oligonucleotides. The graph at the bottom shows the relative specificity of oligonucleotides.

Fig. 19 is two blots showing specific suppression of EPRS mRNA using hybrid oligomers. A549 cells were transfected with the indicated concentrations of the hybrid oligomers (for structure see text). 14977 targets the two variances contained in A549 cells. 14971 contains two mismatches relative to the genotype

WO 98/41648 PCT/US98/05419

62

Fig. 13 is a graph showing Inhibition of BrdU incorporation in A549 cells by antisense oligonucleotides against the RPA 70 gene. Cells were transfected, as described previously, with a matched oligonucleotide (12781) or an oligonucleotide with one mismatch (13085). The oligonucleotide concentration was 400 nM with specific oligomer diluted with a random oligonucleotide. Cell proliferation was measured by BrdU incorporation after two transfections. Twenty-four hours after the first transfection the cells were transfected identically. Twelve hours after the second transfection BrdU was added to the cells and BrdU incorporation was assayed after a 12 hour incubation. BrdU incorporation was measured by ELISA (Boehringer Mannheim) with the following changes: Volumes were increased to assay BrdU incorporation in 6 well dishes. 1000 μ l of fix, 750 ul of antibody, and 1000 ul of substrate. A portion of the samples were transferred to a 96 well dish (in triplicate) and read at 405 nm on a plate reader.

- Fig. 14 is a graph showing antiproliferative/cytopathic effects of antisense

 15 oligonucleotides against the RPA70 gene in A549 cells. Cells were transfected on three consecutive days with a matched oligonucleotide (12781) or an oligonucleotide containing a one base mismatch (13085). Following the last transfection the cells were allowed to recover three days. Cell number was quantified by Sulforhodamine B staining (Molecular Probes). Volumes were

 20 increased to accommodate the assay in 6 well dishes. Fixation 1.25 ml, stain 750 ul, solubilizer 1 ml. A portion of the samples were then transferred to a 96 well dish in triplicate and quantified by plate reader at 565 nm. All transfections were done with 400 nM oligomer by dilution of the specific oligomer with a random oligonucleotide to control for nonspecific oligonucleotide effects.
- 25 Fig. 15 is a graph showing antiproliferative/cytopathic effects in Mia Paca Π cells by antisense oligonucleotides against the RPA70 gene. Cells were transfected with a matched oligonucleotide (13085) or an oligomer with a one base mismatch

oligomer. The 13706 oligomer is a random sequence control. Cells were plated in Pl00 dishes transfected as described in figure legend 11. Twenty-four hours after the addition of the indicated oligomers, RNA was recovered from the cells by the SDS-Lysis method (Peppel, K and Baglioni, C. *Biotechniques*, Vol. 9, No. 6, pp 711-7131, 1990). For Northern Blots 5-10 ug RNA per well was loaded onto a formaldehyde gel, electrophoresed and transferred to BioRad Zeta Probe GT. After baking (30 min at 80 C in a vac oven) the blot was probed for specific mRNA using a random primed 32P-labeled cDNA specific for RPA 70.

Fig. 11 is a Northern blot showing allele-specific Suppression of RPA 70 mRNA in T24 and Mia Paca II cells. Cells were plated in P100 dishes, transfected, and RPA 70 mRNA levels measured as previously described. T24 cells contain the genotype targeted by oligomer 12781. Mia Paca II cells are homozygous for the variance targeted by oligomer 13085. 12781 is a 20 nucleotide long phosphorothioate oligomer which targets RPA70 in T24 cells. 13085 is an 18 nucleotide long phosphorothioate oligomer which targets RPA70 in Mia Paca II cells. The lower half of the figure shows the EtBr stained gel of total RNA probed by Northern Blot.

Fig. 12 is two graphs showing that the proliferation of two cell lines homozygous for different variant forms of the RPA70 gene is inhibited to a greater degree by matched oligonucleotides than by oligomers having a single base mismatch. Cell proliferation was measured by BrdU incorporation in cellular DNA. Transfections were performed on consecutive days and BrdU incorporation measured 24 hours after the last transfection (see figure legend 9). Oligomer 12781 targets the variance contained in A549 cells and is mismatched relative to the genotype of Mia Paca II cells. Oligomer 13085 targets the variance contained in Mia Paca II cells and is mismatched relative to the genotype of A549 cells.

sequence; ND = analysis not done; Thr -> Asn = specific amino acid substitutions, inferred from the nucleotide sequence variance, are provided. Similar information can be readily obtained for additional genes using the methods described or as known to those skilled in the art.

5 Figures 9-15 correlate with Example 31.

Fig. 9 is a bar graph showing the number of T24 human bladder cancer cells surviving 72 hours after transfection with antisense oligonucleotides. Anti-ras is an oligonucleotide known to have antiproliferative effects against T24 cells. This oligonucleotide exhibits inhibition comparable to the anti-RPA70 oligonucleotide. Anti-herpes and an oligonucleotide with a scrambled sequence are shown as controls. This experiment demonstrates that RPA70 is an essential protein.

Cells were plated in six well dishes 24 hr prior to the experiment and transfected at approximately 50-70% confluency with various phosphorothioate oligomers at 400 nM. An oligomer:lipofectin ratio of 3 ug Lipofectin/ml Optimem/100 nM

15 Phosphorothioate oligomer was used for all transfections. Prior to transfection the cells were washed once with room temp Optimum (BRL) and then Lipofectin diluted into Optimem was added to the cells. After addition of the lipofectin the antisense oligomers were immediately added. After a five hour incubation the medium was removed from the cells and replete medium added. The cells were allowed to recover, trypsinized, and cell number was determined at 72 hr by counting with a hemocytometer. Each bar represents two different determinations of cell number for each of three triplicate samples.

Fig. 10 is a Northern Blot demonstrating specific suppression of RPA70 mRNA levels in two cell lines with opposite genotypes. RPA70 in Mia Paca II cells matches the 13085 oligomer while RPA70 in T24 cells matches the 12781

nucleotide. The variant nucleotides are bracketed and in bold font separated by a slash. Ten nucleotides of flanking sequence are provided on either side of the variance to localize the variant site unambiguously. (In the event of a conflict between the nucleotide number specified in column 2 and the sequence specified in column 3 the latter would rule as the correct sequence.) These variances were detected by a variety of experimental and informatics based procedures described in the examples. Many variances were detected by two independent methods (e.g. informatics based detection and T4 endonuclease VII detection).

- The fourth and fifth columns (headed '# Varia 1' and '# Varia 2') provide the number of occurrences of variance 1 and 2, respectively, where variance 1 is the first and variance 2 the second of the bracketed nucleotides in column three. In both the fourth and fifth columns there are two numbers. The first number reports the number of occurrences of the variance.
- 'Occurrences' include ESTs identified during informatics based analysis, or variances identified experimentally by analysis of human cell lines, or both. The second number, inside parentheses, reports the number of individuals in whom the occurrences were detected. An 'individual' means either a cell line (analyzed experimentally) or a cDNA library created from one individual (but from which many ESTs for the target gene may have been sequenced). Thus if the first number is 15 and the second number is 11 then there were 15 occurrences of the variance (a combination of 15 ESTs and/or 15 experimentally identified alleles) in a total of 11 cDNA libraries and/or cell
- The fifth column provides annotation on the variances, particularly concerning the location of the variant site in the cDNA and the effect of the DNA sequence variance on the predicted amino acid sequence, if any. 5'

 UT = 5' untranslated region; 3' UT = 3' untranslated region; silent = variance lies in coding region by does not affect predicted amino acid

lines.

cancers in which LOH would be expected to affect the target gene. (See the Loss of Heterozygosity Tables for a detailed listing of LOH by chromosome region.)

- The fifth column lists the GenBank accession number of the target gene.
 (Some of the genes specified in the Table do not yet have GenBank accession numbers. For example, genes encoding several human tRNA synthetases and ribosomal subunits have not yet been cloned, although their existence can be inferred from genetic and biochemical studies and from phylogeny.
- Fig. 6 is identical to Fig. 5, except that it concerns exemplary conditionally essential genes rather than generally essential genes.
 - Fig. 7 is a Target Variances Table shows molecular details of exemplary variances identified by Variagenics in exemplary target genes. There are six columns in the Table.
- The first column gives the Variagenics gene ID number, which serves as a cross reference to the Target Variances by Field Table (see above), where information on gene location and GenBank accession number are provided.

 After the ID number is a decimal point and then a list of one or more integers (on successive lines), which are the (arbitrary) numbers of the specific variances identified. Between one and 13 variances were identified per target gene. Information on different target genes is separated by dashed horizontal lines.
 - The second column lists the location of the variance specifically the number
 of the nucleotide at which variation was observed. The nucleotide number
 refers to a cDNA sequence of the target gene which can be retrieved using
 the GenBank accession number provided in the Target Variances by Field
 Table.
 - The third column lists the two variant sequences identified at the specified

15

20

25

all loci on each chromosome arm has been summed in a single statistic for LOH frequency on that chromosome arm.

Fig. 5 is a Target Variances by Field Table, which summarizes information on DNA sequence variances in selected genes from the Target Gene Table (Table 1), and is organized into groups of related genes that parallel the fields in the Target Gene Table.

- The heading at the top of each category of essential genes shows a number and a subcategory name. The number indicates which of the six principal categories of essential genes the subcategory belongs to (e.g. genes required for cell proliferation is category 1, genes required to maintain inorganic ions at levels compatible with cell growth or survival is category 2, etc.).
- Below the heading is a sentence on 'Validation' which briefly refers to some
 of the data which shows that genes in the subcategory are essential.
 Summary information on target gene variances is then listed, with five
 columns of data.
- The first column gives the Variagenics gene ID number, which serves as a cross reference to the Target Variances Table (see below), where more detailed information on variances can be found.
- The second column lists gene names. (The GenBank accession number in column 5 may be a more reliable way to identify genes.)
 - The third column lists the number of variances found. These variances were
 detected by a variety of experimental and informatics based procedures
 described in the examples. Many variances were detected by two
 independent methods (e.g. informatics based detection and T4 endonuclease
 VII detection). A molecular description of the variances is provided in the
 Target Variances Table (see below).
 - The fourth column lists the chromosome location of the target gene, if known. Knowledge of the chromosome location permits assessment of the

Lan = Lancet

LI = Laboratory Investigation

N = Nature

NEJM or NEJ = New England Journal of Medicine

5 O = Oncogene

PN or PNAS = Proceedings of the National Academy of Sciences

S = Science

10

15

20

25

This data base thus identifies sites and regions of LOH associated with the particular identified cancers, including high frequency LOH chromosomal arms as well as the identified smaller regions associated with the particular markers. Both as indicated in the Summary and Detailed Description, LOH information such as this identifies essential genes mapping to those LOH regions as likely potential target genes because of the high probability that an essential gene in such a region undergoes LOH at frequencies similar to the marker. Such gene identification thus further identifies particular cancers which can potentially be treated with inhibitors targeting sequence variances in those essential genes.

The database provided shows information which is contained in published references dealing with cancer LOH. Those skilled in the art will recognize however that similar information can be readily obtained from the published literature in relation to other cancers and other neoplastic disorders. Thus this table demonstrates that one skilled in the art can readily identify regions of high frequency LOH for other such disorders and cancers, and can further readily identify essential genes which are potential targets for variance specific inhibition and the treatment of the corresponding condition and in other aspects of this invention.

Fig. 4 is a table summarizing the results in Fig. 3 by chromosome arm. Data for

Note

Studies of allele loss in benign neoplasms or in non-neoplastic conditions are not included in this table.

Journal Abbreviations for Literature Cited in the Table

5 The abbreviations used in the Tables are as follows:

AJHG = American Journal of Human Genetics

AJP = American Journal of Pathology

B = Blood

BJC = British Journal of Cancer

10 C or CA = Cancer

CCG = Cancer Cytogenetics

CGC = Cell Genetics and Cytogenetics

CL = Cancer Letters

CR = Cancer Research

15 CSurv = Cancer Surveys

EJC = European Journal of Cancer

G or GE = Genomics

GCC = Genes, Chromosomes & Cancer

GO = Gynecological Oncology

20 HG = Human Genetics

HMG = Human Molecular Genetics

IJC = International Journal of Cancer

JAMA = Journal of the American Medical Association

JJCR = Japanese Journal of Cancer Research (Gann)

25 JNCI = Journal of the National Cancer Institute

JU = Journal of Urology

15

specific chromosome bands, or can be inferred as likely to belong to specific bands based on other information. The 'unknown' notation in this column indicates that the paper from which the data was obtained (column 7) did not provide chromosome band information. In such cases other information has generally been used to order the data, however the order of some markers remains uncertain.

Column 2 LOH studies are performed with specific DNA markers or probes (for Southern blotting) or with DNA primers (if polymerase chain reaction was used) from a specific site, or locus, on a chromosome. The name of the marker, locus or probe used to perform each LOH assay is given in the second column of the Table, under 'Marker'. In the Table the markers are listed in their likeliest order along the chromosome, from the telomere of the p arm to the centromere for the p arm tables, and from the centromere to the telomere of the q arm for the q arm tables.

Columns 3, 4 & 5 The total number of cancers evaluable for LOH at the specific marker shown in column 2 (in the paper cited in column 7) are shown in column 3, 'Total'. This is generally the number of patients that were heterozygous for the marker in their normal DNA. Column 4, 'Cases w/LOH', shows the number of patients with LOH at the DNA marker. Column 5, 'LOH Freq', is the quotient of column 4 divided by column 3, giving the fraction of patients with LOH at the indicated marker.

20 Column 6 The type of cancer studied is indicated under the heading 'Tumor Type'.

In some cases more detailed clinical information on cancer subtype or clinical stage is available in the paper cited in column 7.

Column 7 The literature citation, or 'Reference', from which the data was drawn. The references are provided in a compact form consisting of journal abbreviation (see the list of journal abbreviations below), volume and page.

location of the variant base marked in bold type.

Fig. 2 is a schematic showing the practical flow of the SSCP technique as used for exemplary target genes. This flow chart, in conjunction with the description of the SSCP technique in the Detailed Description, demonstrates how sequence variances of the exemplary genes were identified. In conjunction with published descriptions of the SSCP technique, one skilled in the art can thus readily use SSCP to identify sequence variances in other genes within the scope of this invention.

Fig. 3 is a table describing the extent and distribution of loss of heterozygosity throughout the genome for a number of cancers as reported in the literature. The 10 table is divided into 41 sections, one for each fo the chromosomal arms for which there is information about LOH frequency. (There is no information for the short arm [called the p arm] of chromosomes 13, 21 or 22, all of which are very short and contain mostly repetitive DNA.) In each of the 41 sections there is a list of polymorphic loci (sites) that have been tested for LOH in one or more cancer types. The loci are ordered, to the extent that present information allows, from the telomeric end of the short arm of the chromosome to the centromere (p arm tables), or from the centromere to the telomeric end of the long arm of the chromosome (q arm tables). Many chromosomes have not yet been well studied for LOH, so the absence of data on LOH in a particular cancer type on a particular chromosome arm should not be construed as indicating no LOH. It may simply indicate no good LOH studies have yet been published. The Loss of Heterozygosity Table is explained in detail below.

Column 1 Chromosomes, when stained with dyes such as giemsa, have alternating dark and light staining bands. These bands are the basis of chromosome 25 nomenclature. Many of the markers used for LOH studies have been assigned to

Alanyl tRNA synthetase
Cysteinyl tRNA synthetase
Glutamyl-prolyl tRNA synthetase
Glutaminyl tRNA synthetase
5 Lysyl tRNA synthetase
Threonyl tRNA synthetase
Ribosomal protein S14
Eukaryotic initiation factor 5A
Replication protein A, 70 kD subunit
10 Replication protein A, 32 kD subunit
RNA Polymerase II, 220 kD subunit
TATA associated factor IIH
Dihydropyrimidine dehydrogenase

These tables show, in the title, the name of each gene, its chromosome location and the Varia ID number. The horizontal section of the table displays, from left 15 to right, the name of the primers used to amplify the polymorphic segment, the number of the polymorphic nucleotide (the numbering corresponds to the GenBank accession number reported in the central box under 'Sequence from:') and the two alternative sequences at the variant site. Then, under columns 1 - 36, the genotypes of 36 lymphoblastoid cell lines are given, followed by the frequency of 20 heterozygotes ('het rate'), a 'Comments' section which describes any unusual aspects of the variances, a 'Location' section which reports the location of any variances and the inferred effect on amino acid sequence, if any, and a 'Race specific heterozygosity' section which reports frequency of heterozygotes in any racial groups with particularly high heteroxygosity levels. Below the 'Genotypes 25 of 36 unrelated individuals' section the racial or ethnic identity of the subjects is shown (see legend in box at right: 'Ethnic & racial groups surveyed'). The sequence surrounding the variances is shown in the box at bottom left, with the

number are believed to be correct. However, the genes can be readily identified and the invention practiced even if one or more of the specified sequences contain a small number of sequence errors. The correct sequence can be confirmed by any of a variety of methods. For example, the sequence information provided berein and/or published information can be used to design probes for identifying and isolating a corresponding mRNA. The mRNA can be reverse transcribed to provide cDNA, which can be amplified by PCR. The PCR products can then by used for sequencing by standard methods. Alternatively, cDNA or genomic DNA libraries can be screened with probes based on the disclosed or published gene sequences to identify corresponding clones. The inserts can then be sequenced as above. If complete sequence accuracy is desired, such accuracy can be provided by redundant sequencing of both DNA strands. Those skilled in the art will recognize that other strategies and variations can also be used to provide the sequence or subsequence for a particular gene.

Other features and advantages of the invention will be apparent from the following description of the preferred embodiments and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows seventeen gene-specific Target Gene Summary Tables which show variances detected in some of the exemplary genes described as examples in the specification. Those genes are:

Sodium, potassium ATPase
CTP synthetase
Ribonucleotide reductase M1 subunit
Thymidylate synthase

functional moiety. In preferred embodiments, the antibody is a humanized antibody from a non-human animal, e.g., a humanized mouse or rabbit antibody. Many instances of monoclonal antibodies that distinguish protein differing by a single amino acid are known in the art.

- An inhibitor may also be an oligopeptide or oligopeptide derivative. Such peptides may be natural or synthetic amino acid sequences, and may have modifications as described for antibodies above. In general, an oligopeptide will be between about 3 and 50 residues in length, preferably between about 4 and 30, more preferably between about 5 and 20 residues in length.
- 10 In other embodiments, the inhibitor is a small molecule, for example, a molecule of one of the structural types used for conventional anticancer chemotherapy.
 - By "small molecule" or "low molecular weight compound" is meant a molecule having a molecular weight of equal to or less than about 5000 daltons, and more preferably equal to or less than about 2000 daltons, and still more preferably equal to or less than about 1000 daltons, and most preferably equal to or less that about 600 daltons. In other highly preferred embodiments, the small molecule is still smaller, for example less than about 500, 400, or 300 daltons. As well known in the art, such compounds may be found in compound libraries, combinatorial libraries, natural products libraries, and other similar sources, and may further be obtained by chemical modification of compounds found in those libraries, such as by a process of medicinal chemistry as understood by those skilled in the art, which can be used to produce compounds having desired pharmacological properties.
- In connection with the gene sequences or subsequences of gene sequences or primer sequences as described herein, the sequences listed under the accession

WO 98/41648 PCT/US98/05419

49

91:12433-12437; and McShan et al., 1992, J. Biol. Chem. 267-5712-5721, which are hereby incorporated by reference. An additional modification useful for delivery of oligonucleotides is complexation of oligonucleotides with nanoparticles, as described in Schwab et al., 1994, Proc, Nat. Acad. Sci. USA 91:10460-10464. As described further below, oligonucleotides may be complexed with other components known in the art which provide protection and/or enhanced delivery for the oligonucleotides, and may be useful for either gene delivery or for delivery of non-coding oligonucleotides.

Thus, "derivatives of nucleic acid inhibitors" include modified nucleic acid molecules which may contain one or more of: one or more nucleotide analogs, including modifications in the sugar and/or the base, or modified linkages, base sequence modifications, and insertions or deletions, or combinations of the preceding. Other derivatives are also included as are known in the art.

Similarly, in preferred embodiments the inhibitor or potential inhibitor is an antibody, preferably a monoclonal antibody, which may be complexed or conjugated with one or more other components, or a fragment or derivative of such an antibody. It is recognized in the art that antibody fragments can be produced by cleavage or expression of nucleic acid sequences encoding shortened antibody molecule chains. Such fragments can be advantageously used due to their smaller size and/or by deletion of sites susceptible to cleavage. In addition, derivatives of antibodies can be produced by modification of the amino acid moieties by replacement or modification. Such modification can, for example, include addition or substitution or modification of a side chain or group. Many modifications and biological effects of such modifications are known to those skilled in the art, and may be used in derivatives of antibodies in accord with those biological effects. Such effects can include, for example, increased resistance to peptidases, modified transport characteristics, and ability to carry a ligand or other

10

15

term "oligonucleotide" includes "oligonucleotide derivatives".

A large number of nucleic acid modifications are known in the art which may be used in the nucleic acid molecules of the present invention, thereby producing "nucleic acid derivatives" or "oligonucleotide derivatives". Such modifications can be used, for example, to enhance resistance to degradation by nucleases or to modify functional characteristics such as binding affinity. In preferred embodiments, the ribozyme, antisense oligonucleotide, or other nucleic acid molecule contains at least one modified linkage, including but not limited to phosphorothioate, phosphoramidate, methylphosphonate, morpholino-carbamate, and terminal 5'-5' or 3'-3' linkages. Also in preferred embodiments, the nucleic acid molecule contains at least one nucleotide analog. Such analogs include but are not limited to nucleotides modified at the 2' position of the ribose sugar, e.g., 2'-O-alkyl (e.g., 2'-O-methyl or 2'-methyoxyethoxy) or allyl, 2'-halo, and 2'amino substitutions, and/or on the base (e.g., C-5 propyne pyrimidines), and analogs which do not contain a purine or pyrimidine base, and includes the use of nucleotide analogs at the terminal positions of a nucleic acid molecule. Preferably a 2'-O-alkyl analog is 2'-O-methyl; preferably a 2'-halo analog is 2'-F.

A specific embodiment of this invention is the use of hybrid oligonucleotides that contain within a linear sequence two different types of oligonucleotide modifications. In a particular embodiment, these modifications are used such that a segment of the oligonucleotide that hybridizes to the sequence variance is RNAase sensitive, but other segments are not RNAase sensitive.

Other modifications may also be used as are known in the art, such as those described in connection with antisense and triple helix in: Crooke & Bennett, 1996, Annual Rev. Pharm. and Toxicol. 36:107-129; Milligan et al., 1993, J. Med. Chem. 36:1923-1937; Reynolds et al., 1994, Proc. Nat. Acad. Sci. USA

oligonucleotide preferably is at least twelve nucleotides, more preferably at least seventeen nucleotides in length. In some cases the antisense oligonucleotide may advantageously be longer, for example, at least 20, 25, or 30 nucleotides in length. Also in preferred embodiments, the oligonucleotide is no longer than 20, 5 25, 30, 35, 40, or 50 nucleotides The optimal length will depend on a number of factors, which may include the differences in binding free energy of the oligonucleotide to the target sequence as compared to binding to the non-target allelic form, i.e., the non-target sequence variant, or the kinetics of nucleic acid hybridization. The oligonucleotide preferably contains at least one nucleic acid analog or modified linkage. Such complementary oligonucleotides may function 10 in various ways, and those skilled in the art will know how to design the oligonucleotide accordingly. Such functional mechanisms include, but are not limited to direct blocking of transcription of a gene by binding to DNA (e.g., high affinity antisense, including triple helix), direct blocking of translation by binding to mRNA, RNaseH mediated cleavage of RNA or other RNAase mediated 15 cleavage, and binding-induced conformational changes which block transcription or translation or alter the half-life of mRNA. Triple-helix modes of action include the formation of a triple-helical structure between the two strands of genomic DNA and an antisense molecule, i.e., anti-gene strategy, or between an RNA molecule and an antisense oligonucleotide which loops back to contribute two of 20 the three strands of the triple helix, or between an RNA and an antisense where the RNA provides two of the three strands of the triple helix.

The term "oligonucleotide" refers to a chain molecule comprising a plurality of covalently linked nucleotides as recognized in the art. The oligonucleotide preferably has about 200 or fewer backbone units corresponding to nucleotide subunits, more preferably about 100 or fewer, still more preferably about 80 or fewer, and most preferably about 50 or fewer. An oligonucleotide may be modified to produce an oligonucleotide derivative. Unless indicted otherwise the

15

20

commonly referred to as hammerhead ribozymes and hairpin ribozymes, generally having an endonuclease activity, but includes catalytic RNA molecules, catalytic DNA molecules (DNAzymes), and derivatives of such molecules unless indicated to the contrary. In particular, as understood by those skilled in the art, ribozymes may incorporate a variety of nucleotide analogs, modified linkages, and other modifications.

In connection with ribozymes, "target sequence" refers to a nucleotide sequence which includes a binding site and a cleavage site for a ribozyme. For use in this invention, preferably a gene having a ribozyme target sequence exists in two allelic forms in normal somatic cells of a patient. The two allelic forms differ in nucleotide sequence within the target sequence, *i.e.*, have a sequence variance within the target sequence.

Also in connection with ribozymes, the term "specifically cleaves" means that a particular ribozyme will cleave a target sequence to a greater extent than it will cleave a different sequence. For allele specific ribozymes, this means that for two allelic forms having a sequence variance in the target sequence, preferably the ribozyme will cleave one of the allelic forms more efficiently than the other. Those skilled in the art will understand that the target discrimination can be provided by base differences within the ribozyme binding sequence of the substrate at or close to the cleavage site.

Similarly, in preferred embodiments the inhibitor or potential inhibitor is an oligonucleotide, e.g, an antisense oligonucleotide, preferably at least partially an oligodeoxyribonucleotide. The antisense oligonucleotide is complementary to a sequence which includes a sequence variance site. Usually, though not necessarily, the antisense oligonucleotide is perfectly complementary to a sequence of the target allelic form which includes a sequence variance site. The antisense

WO 98/41648 PCT/US98/05419

45

heterozygous for a particular sequence variance

Additional specific genes within the categories or subcategories described which are potentially useful for allele specific therapy can be readily identified by those skilled in the art using the methods described herein and/or using information available to those familiar with cellular genetics and tumor biology. In particular such genes can be identified and/or obtained by identifying essential genes, determining whether the gene contains sequence variants in a population, determining whether the gene undergoes LOH in one or more tumors or other proliferative disorders. Genes having these characteristics can then be used for identifying allele specific inhibitors and evaluated for use in the other methods of this invention. Such procedures are routine, as is shown by the Detailed Description of the Preferred Embodiments below, including the Examples.

In preferred embodiments of the above methods and inhibitors involving particular target genes or classes or categories of genes, the inhibitor or potential inhibitor is a ribozyme which is designed to specifically cleave a particular target allelic form of a gene (i.e., a nucleotide sequence such as mRNA).

The ribozyme is designed to cleave the nucleotide (e.g., RNA) sequence at a position in the nucleotide chain of the target allelic form at or near the position of a sequence variance. Usually the ribozyme will have a binding sequence which is perfectly complementary to a target sequence surrounding the sequence variance site. Preferably, the ribozyme does not consist of only ribonucleotides, and therefore includes at least one nucleotide analog or modified linkage. In preferred embodiments the ribozyme has a hammerhead or hairpin motif, but may have other structural motifs as known to those skilled in the art..

25 The term "ribozyme" refers to a catalytic RNA molecule, including those

the less active allelic form. As describe above, such patients can be identified by a diagnostic test of their normal cells and cancer cells. Such a test will identify which patients should be treated with a specific treatment, such as a particular drug or radiation treatment or other treatment. Such a therapy, which is not allele specific, would nonetheless have cancer specific effects due to the LOH-determined difference in the ability of the cancer cells to respond to the cytotoxic or cytostatic effects of therapy.

For example, patients with Ataxia Telangiectasia are homozygous for mutant alleles of the ATM gene. Such individuals are hypersensitive to radiation therapy or radiomimetic drugs. Heterozygotes for normal and mutant ATM are normal and have been estimated to account for 0.5-1% of the North American population, but, due to an increased risk of caner, may account for up to 5% of some cancers, for example, breast cancer. The ATM gene maps to chromosome 11q23, a region frequently affected by LOH in breast and other cancers. In breast cancers arising in ATM heterozygotes in which the more active (normal) ATM allele is lost in cancer tissue due to LOH, treatment with radiation or radiomimetic drugs would be differentially toxic to cancer cells. It has been shown that ATM heterozygotes are less sensitive to such treatments than ATM mutant (less active) homozygotes. Such use of an LOH diagnostic procedure to select appropriate antineoplastic therapy represents a change from the current procedures which are based solely on tissue origin, grade, and stage of cancer.

In such an approach, preferably the difference in activity between more active and less active allelic forms is at least 2x, more preferably at least 3x, 4x, or 5x, and most preferably at least 6x, 10x, or even more.

Preferably a target conditionally essential gene is one such that at least 0.1%, 0.5%, 1% or 5%, or the higher rates as stated above, of a population is

WO 98/41648 PCT/US98/05419

43

and determining whether cancer cells of said patient have only the second, less active, allelic form of the gene. If these factors are present, this indicates that the proposed treatment is suitable for that patient.

In preferred embodiments of above aspects, a conventional therapy acts on a protein or other molecular target in the same pathway as the allele specific inhibitor. As an example, the antineoplastic drug hydroxyurea, which inhibits ribonucleotide reductase (RR), can be used in conjunction with an allele specific inhibitor of RR subunit M1 or M2 or another gene that encodes a product important in nucleotide synthesis. Similarly, the antiproliferative drug methotrexate inhibits the enzyme dihydrofolate reductase (DHFR), and can be used with allele specific inhibitors of 10 DHFR that would result in a differential methotrexate effect on cancer tissues compared to normal proliferating tissues. Alternatively, methotrexate can be used with allele specific inhibitors of other genes important in folate metabolism to achieve an enhanced cancer cell specificity for methotrexate. Similarly, the anticancer drug 5-fluorouracil and related compounds can be administered together 15 with an allele specific inhibitor of thymidylate synthase (TS) in a patient heterozygous for TS and with LOH at the TS gene in proliferating cells, e.g., cancer cells. Alternatively, an allele specific inhibitor of 5-FU degradation or metabolism can be administered with 5-FU. For example, the enzyme dihydropyrimidine dehydrogenase, which catalyzes the first and rate limiting step in 5-FU catabolism 20 would have the effect of potentiating 5-FU action in cancer cells due to their lesser ability to metabolically inactivate 5-FU. One skilled in the art will readily recognize that similar methods can be used with other conditionally essential genes, including specific genes listed in the table of conditionally essential genes.

25 Some conditionally essential genes occur in active and less active, or nearly inactive allelic forms. Further, some cancer patients are heterozygous for active and less active forms in their normal tissues, but due to LOH, their cancer cells contain only

20

25

In still another aspect, not requiring the use of allele specific inhibitors, but still utilizing information about sequence variance or allelic differences between normal somatic cells and cancer cells in a patient, the invention provides a method for selecting a patient for treatment with an antiproliferative treatment. The method includes the following steps: determining whether normal somatic cells in a potential patient are heterozygous for an essential or conditionally essential gene, where a first allelic form of the gene is more active than a second allelic form, and where a reduction in the activity of the gene in a cell increases the sensitivity of that cell to an antiproliferative treatment; and determining whether cancer cells from the patient have only the second allelic form of the gene. If the somatic cells are 10 heterozygous and the cancer cells have only the second allelic form, this indicates that the patient is suitable for treatment with the antiproliferative treatment because the cancer cells will be more sensitive to the antiproliferative treatment. In preferred embodiments, the antiproliferative treatment is radiation or administration of a cytotoxic drug.

In a related aspect, the differences between the normal somatic cells and the cancer cells in a patient are used in a method for selecting an antiproliferative treatment for a patient suffering from a cancer. This method involves determining whether there will be a differential effect of the prospective treatment on the cancer cells as compared to the normal cells based on a differential response of the cancer cells due the presence in the cancer cells of only the less active form of a conditionally essential gene which is present in two alternative allelic forms with differing activities in the somatic cells. The method thus involves determining whether normal somatic cells in a potential patient are heterozygous for an essential or conditionally essential gene which reduces the sensitivity of cells to an antiproliferative treatment. As noted, a first allelic form of the gene is more active than a second allelic form, and a reduction in the activity of the gene in a cell increases the sensitivity of that cell to the prospective antiproliferative treatment;

WO 98/41648 PCT/US98/05419

41

such that the growth or survival of the non-targeted cells is preferably at least 2x, more preferably 3x, 4x, 5x, 10x, or more as compared to the targeted cells.

Thus, similar to the above, the invention provides a method for identifying an inhibitor potentially useful for treatment of cancer or other proliferative disorder.

The inhibitor is active on a conditionally essential gene, and the gene is subject to loss of heterozygosity in a cancer. The method includes identifying at least two alleles of a said gene which differ at at least one sequence variance site and testing a potential allele specific inhibitor to determine whether the potential inhibitor is active on at least one but less than all of the identified alleles. If the potential inhibitor inhibits expression of at least one but less than all of the alleles or reduces the level of activity of a product of at least one but less than all of the alleles, this indicates that the potential allele specific inhibitor is, in fact such an allele-specific inhibitor inhibitor.

In preferred embodiments of this and the various aspects described below, the conditionally essential gene is one of the exemplary genes presented in the table of conditionally essential genes or in the examples.

Similar to other types of target genes described above, the invention provides inhibitors, methods for producing inhibitors, pharmaceutical compositions, methods for identifying potential patients, probes, and primers which target or recognize alleles of a conditionally essential gene or utilize inhibitors which target such genes.

The invention also provides methods for preventing the development of cancer, methods for treating a patient suffering from a cancer, and methods for inhibiting growth of a cells as described above except that the targeted cells are subjected to an altered condition such that the gene becomes essential.

5

10

15

20

25

sequence entry or otherwise determined. The method of determining the variance can involve allele specific hybridization, sequencing or analysis of the amplified fragment by mass spectroscopy, SSCP, gene sequence database analysis, capillary electrophoresis, bindase/resolvase systems, or other methods known in the art. In a preferred embodiment, the amplified sequence spans more than one variant position and the method used for determining the variances identifies which variances are present at each position and combinations of variances that are present on each allele.

In preferred embodiments of the above aspects, the specific target allelic form has the characteristics as described above. Thus, for aspects in which the category of gene is specified, in preferred embodiments the gene belongs to a particular subcategory, for example, subcategories as specified in Table 1. Also in preferred embodiments, the gene is an identified target gene as listed in Table 1 or otherwise specified herein, including targeting utilizing the specified variances for exemplary genes described herein, singly or in combination in an allelic form. Also in preferred embodiments, the target gene is an allelic form having characteristics as specified above, for example is a gene which has a high frequency of heterozygosity and/or occurs in a chromosomal region which undergoes LOH in a cancer at a frequency as specified above. For aspects in which the target gene has a specified LOH frequency, the LOH frequency may be provided by published literature, inferred from the LOH of nearby genetic members, or independently determined, such as by the methods known in the art.

The use of conditionally essential genes for a number of applications is similar to the aspects above, but generally also involve an alteration of environment to make the gene essential and also provides additional aspects. For a conditionally essential gene, the essentiality may, but need not be absolute. Instead, in this context, the term "essential" means that the gene confers a significant advantage,

10

15

20

In accord with the use of pharmaceutical compositions, the present invention also provides a packaged pharmaceutical composition comprising an allele specific inhibitor as described above, bearing a Food and Drug Administration use indication for administration to a patient suffering from a cancer or suffering from another proliferative disorder.

Determinations of essential gene heterozygosity and tumor cell LOH may be performed by a variety of methods, such as direct sequencing of known sequence variance sites and probe hybridization with variance specific probes. Thus, the invention also provides a nucleic acid probe at least 9, 12, 15 or 20 nucleotides in length, but preferably not more than 30 nucleotides, which will hybridize to a portion of a first allelic form of an essential gene in one of the above categories under specified hybridization conditions and not to a second allelic form under those hybridization conditions, the first and second allelic forms have a sequence variance within the complementary sequence. Preferably the probe is at least 12 nucleotides in length and is perfectly complementary to a portion of the first allelic form which includes a sequence variance site. The probe hybridizes under stringent hybridization conditions to the portion of the first allelic form and not to the corresponding portion of the second allelic form. This means that the probe does not bind to the second allelic form to an extent which prevents identification of the preferential specific binding to the first allelic form. The thermodynamics of the probe hybridization can be predicted to maximize the desired differential hybridization, providing optimization for probe length, sequence, structural modifications, and modifications to hybridization conditions.

The invention also provides nucleic acid probes or primers adjacent to the site of a variance that can be used to amplify a sequence containing the variant position to determine which variance is present at that position. Such probes or primers can readily be designed based on the sequences provided in the corresponding database

In a related aspect, an allele specific inhibitor can be used in conjunction with a conventional antiproliferative or chemotherapeutic agent or therapy, such therapies including radiation, immunotherapy, or surgery. In preferred embodiments the conventional therapy causes one or more genes within the cancer cell, or 5 noncancer proliferative lesion, to be essential for cell survival that are would not be essential in the absence of said conventional therapy. For example, the treatment of cancer with radiation or alkylating agents makes efficient DNA repair essential for cell survival. In another example, depleting cancer cells of certain nutrients may make certain synthetic metabolic pathways essential. These examples are meant to be illustrative of the use of the present invention to those 10 skilled in the art and not limiting. Further discussion and examples of the use of conditionally essential genes and their utilization in the methods of this invention are provided in the Detailed Description and the Examples.

In accord with the above aspects, in a further aspect the invention provides a pharmaceutical composition which includes at least one allele specific inhibitor. In preferred embodiments the composition includes at least one allele specific inhibitor and a pharmaceutically acceptable carrier. Such carriers are known in the art and some commonly used carriers are described in the Detailed Description below. Also in preferred embodiments the composition includes two, three, or more allele specific inhibitors, and may also include a pharmaceutically acceptable 20 carrier. In other preferred embodiments, the composition includes at least one allele specific inhibitor and another antineoplastic agent, which need not be an allele specific inhibitor. The embodiments of this aspect may also optionally include diluents and /or other components as are commonly used in pharmaceutical compositions or formulations. In embodiments having a plurality of allele specific inhibitors, the inhibitors may target a plurality of different variances of a single target essential gene, or may target sequence variances of a plurality of different essential genes or combinations thereof.

be separated mechanically, for example using fluorescence activated cell sorting (FACS), or other cell sorting method as known to those skilled in the art. Also in preferred embodiments, the binding compound is an antibody or antibody fragment which retains allele specific binding. Such antibodies can be readily obtained by conventional methods as polyclonal or monoclonal antibodies after isolation of an appropriate antigen.

In another aspect, the invention provides a method for inhibiting growth of or killing a cell containing only one allelic form of a gene by contacting the cell with an inhibitor active on that allelic form. The gene has at least two sequence variants in a population, and belongs to one of the categories of essential genes described below. The inhibitor is less active on at least one other allelic form of the gene.

In preferred embodiments of the above aspects in which an allele specific inhibitor is used to inhibit a cell or to treat a patient, a plurality of different inhibitors may be used. Preferably different inhibitors target a plurality of different variances in a single target gene, or target variances in different target genes, or both. In particular embodiments a plurality of inhibitors is used simultaneously, in others there is serial administration using different inhibitors or different sets of inhibitors in separate administrations, which may be performed as a single set of administrations in which each set of inhibitors is administered once, or in multiple serial administrations in which each set of inhibitors is administered more than once. Such use of multiple inhibitors provides enhanced inhibition, which preferably includes killing, of the targeted cells. In addition, allele specific inhibitors as described can be used in conjunction with other treatments for diseases and conditions, including in conjunction with other chemotherapeutic agents such as other antineoplastic agents.

20

10

15

20

antibody fragment, which specifically binds to at least one but less than all the products of alleles which occur in a population of a particular gene which encodes a cell surface protein. Such a binding compound is used to bind with cells which express a targeted allele. If cancer cells from a patient who is heterozygous for that gene (having both a targeted allele and a non-targeted allele) have undergone LOH of the particular gene such that only the non-targeted allele is present in the cancer cells, then the binding compound can be used to bind to normal cells and to pull them out from a mixture of normal and cancer cells. This separation is possible because the binding compound will bind to the protein from the targeted allele of the gene expressed in the normal cells, but will not recognize and will not bind to the cancer cells as there is no product of the targeted allele present on those cells. Use of this method thus allows the isolation of normal cells, which can then be reintroduced to the marrow in an autologous transplant following anticancer treatment of the patient, thereby avoiding the problem of reintroduction of cancer cells. In this method, the targeted gene need not be an essential gene, or have any particular function. All that is needed is that the gene product be accessible or can be made accessible to the allele specific binding compound and that there be alternative allelic forms of the gene present such that the products can be distinguished by allele specific binding compounds and that the gene have undergone LOH between the normal cells and the cancer cells. However, it is also recognized that this method can also be used to separate any sets of cells which express different allelic forms of a gene where the gene products are accessible to allele specific binding compounds.

In preferred embodiments, the binding compound is immobilized, such as on a solid support, or can be caused to leave solution, such as by precipitation or by sandwich binding of the binding compound with a second binding compound, so that the bound cells are directly removed from the mixture. In other embodiments, the binding compound allows the recognition of the targeted cell, such that the cells can

15

20

25

In a related aspect, the invention can be used ex vivo during autologous transplantation to eliminate malignant cells from the transplanted marrow. The principle of autologous bone marrow transplantation is that bone marrow can be harvested from a patient prior to high dose radiation or chemotherapy that would normally be lethal to the bone marrow. Following such therapy, the patient can then be treated by reimplantation of their own marrow cells to reconstitute the bone marrow and hematopoietic functions. An important limitation of this procedure is that bone marrow harvested prior to such therapy often contains many malignant cells, and that implantation of the harvested bone marrow often results in reseeding of the patient's malignancy. Various techniques for "purging" the bone marrow of such malignant cells have been described. These methods are focused on selecting "normal" bone marrow stem cells or progenitor cells that are within the harvested tissue for selective reimplantation. The present invention provides for an improved method for purging bone marrow of malignant cells using allele specific inhibitors of essential genes. The method involves identifying an essential gene with only one variant form remaining in the cancer cells due to LOH in patients who are heterozygous with two different alternative forms of the essential gene in their normal cells (and in the autologous bone marrow). The patient's bone marrow is then cultivated ex vivo using methods known in the art in the presence of an allele specific inhibitor that inhibits the allele that is present in the cancer cells, but not the alternative allele that is present in the heterozygous normal bone marrow. This treatment will result in killing of cancer cells within the graft, enabling selective reimplantation of normal cells. It will be recognized that one or more drugs could be used simultaneously or sequentially in this manner to achieve more efficient purging of cancer cells.

In another aspect, the present invention provides a method for sorting cells, for example for separating cancer cells from normal cells during an autologous bone marrow transplantation. The method utilizes a compound, preferably an antibody or

frequency of chimerism and increase the rate of success in engrafting an allogenic marrow.

"Chimerism" refers to a transplantation that is incomplete, leading to the proliferation of bone marrow progenitor cells derived from both the donor and recipient. Chimerism is generally an undesirable outcome that commonly results in gradual elimination of the graft due to competition with the patient's own cells. Allele specific inhibitors can be used to treat or prevent chimerism by selectively killing or suppressing proliferation of the patient's own cells without toxicity to the donor cells.

In another aspect, the invention provides a method for treating cancer in a patient 10 receiving allogenic or autologous transplantation in which an allele specific inhibitor is used to kill or inhibit the growth of cancer cells without toxicity to the transplanted marrow. In one embodiment, in an autologous transplantation the allele specific inhibitor is selected to recognize one alternative allele of an essential gene remaining in the cancer cell due to LOH in patients who are heterozygous with two different alternative forms of the essential gene in their normal cells and in the autologous bone marrow graft. Treatment with such a drug will enable continuing therapy of cancer without suppression of the transplanted marrow. In an alternative embodiment, in an allogenic transplantation, therapy with an allele specific inhibitor that recognizes the one form of the essential gene that is present 20 in cancer cells due to LOH in the recipient, but not an alternative form or forms of the same gene that are present in the recipient's normal cells and in the donor cells can be used to treat the cancer in the patient without toxicity to the transplanted cells. It will be recognized by those in the art that such therapy will enable more effective cancer therapy during and after transplantation. Moreover, such therapy would preserve the function of the immune system which is an important element in effective cancer therapy.

15

20

In a related aspect, the invention provides a method for treating graft versus host. disease in allogenic transplantation in which an allele specific inhibitor is used to inhibit proliferation of donor cells, e.g., to inhibit stimulation of the donor immune system. In preferred embodiments, the allele specific inhibitor is selected by identifying alternative variances or allelic forms of an essential gene that are present in the donor tissues but not the recipient. Therapy with a variance or allele specific inhibitor or inhibitors that recognizes both alleles of the essential gene that are present in the donor, but not both alleles of the same gene that are present in the recipient, can be used to suppress the immune response against the patient's tissues (GVH) without toxicity to these tissues. Most commonly, the donor tissue would be homozygous for a variance in the essential gene and the recipient would be homozygous to an alternative nucleotide or amino acid at a specificity determining site of variance. However, alternative combinations can also be used which result in at least one allelic form being present in the recipient which is not present in the donor cells, for example the donor could be homozygous and the recipient could be heterozygous for different allelic forms. As in other aspects described, a plurality of target genes can also be utilized.

In another aspect, the invention provides a method for enhancing engraftment of an allogenic bone marrow transplant in which an allele specific inhibitor is used to kill or suppress the patient's own bone marrow, providing "space" for engraftment of the donor cells within the marrow cavity. In preferred embodiments, the allele specific inhibitor is selected by identifying alternative forms of an essential gene that are present in the recipient but not the donor marrow. Therapy with an allele specific (generally a variance specific) inhibitor that recognizes both forms of the essential gene that are present in the recipient, but not both forms of the same gene that are present in the recipient, can be used to suppress the patient's own marrow without toxicity to the transplanted cells. It will be recognized by those in the art that this method can be used to reduce the

have only a single allelic form of the gene. This method combines the identification and treatment methods described in the preceding aspects.

In another aspect, the invention provides a method for identifying a potential patient undergoing transplantation for treatment with an inhibitor active on a specific allele of an essential gene from one of the above categories. The method involves identifying a patient undergoing an allogenic transplantation in which the tissue of the donor contains at least one form of an essential gene that is different from those of the recipient. In a preferred aspect of this invention the donor or recipient is homozygous for an alternative form of an essential gene that differs from those present in the other. The term "homozygous" means that the two alleles of a gene present in somatic cells contain the same allele or alleles with identical sequence at at least one variant position that determines the activity of an allele specific drug. Such identification then allows methods of treating such patients by targeting the differing variances or allelic forms.

The term "allogenic" transplantation refers to transplantation of a tissue or cell fro the same species which contains different surface antigens than the recipient. In contrast, an "autologous" transplantation is one in which the patient receives their own tissues (commonly bone marrow) that contain identical surface antigens. The surface antigens are commonly those referred to as "histocompatibility" antigens or "HLA" antigens which allow the immune system to recognize the patient's own tissues from foreign tissue. In an allogenic transplant, the antigens on the donor tissue are different from those of the recipient. This can lead to an immune response in which the antigens on the transplanted tissue stimulate the patient's immune system to destroy or reject the transplanted tissue. Alternatively, in bone marrow transplantation, the antigens on the patient's normal tissue can stimulate the immune system constituted from the donor tissue to destroy the patient's normal tissues. This is termed "graft versus host disease" (GVH).

diseases characterized by LOH, and selecting appropriate allele or variancespecific inhibitors for such patients, in some cases it may not be practical to obtain samples of all proliferative lesions for LOH assays.. For example, atherosclerotic plaques in the aorta cannot routinely be sampled by biopsy, and dysplastic lesions 5 in the cervix, colon, or bronchus can be multifocal. Therefore, allele specific inhibitors can be selected for such conditions based on previously established patterns of LOH for the condition, and on specific testing for heterozygosity in a given patient. Characteristic patterns of LOH involving specific chromosomes or chromosomal regions have been reported in the art (by Vogelstein's group and others) for premalignant changes in the colon, such as adenomatous polyps, polyps with dysplasia and polyps with carcinoma in situ (pre-invasive cancer) (Fearon, E. and B. Vogelstein). These studies demonstrate LOH on chromosomes 5q, 17p, and 18q in the earliest lesions. Similar studies have been performed for other premalignant conditions. It will be evident to one skilled in the art that similar studies can be readily performed on other conditions characterized by LOH using retrospective analysis of tissue from pathological specimens. The optimal regions for allele or variance specific targeting will be those which are affected by LOH in a high fraction of lesions and in a high fraction of patients. Preferably, at least 40% of lesions will have LOH for a specific target gene, more preferably 60, 80, or 90%, and most preferably 100%. However, it is not necessary that 100% of lesions show LOH for a successful treatment by allele specific inhibitors because 2,3,4, or even more inhibitors can be used in a combined approach to target an ever higher fraction of lesions, and because substantial therapeutic benefit may be achieved by inhibiting the proliferation of less than 100% of lesions.

25 In a related aspect, the invention provides a method for treating a patient having a proliferative disorder, e.g., suffering from a cancer. The patient's normal somatic cells are heterozygous for an essential gene from one of the above categories, but the patient's cancer cells, or other abnormally proliferating cells,

15

more target genes can be utilized in a serial manner (where the patient is heterozygous for each targeted gene). In this case the different target genes need not be tightly linked so that LOH of the various genes does not necessarily occur together. By using the serial inhibition of an allele of each of the target genes, it is possible to inhibit and preferably kill the full population of precancerous cells in which LOH has occurred. Thus, the net effect is essentially the same as if allele specific inhibitors of each of the two alternative alleles of one essential gene had been used.

In the context of the administration of multiple allele specific inhibitors, the terms "serial" or "subsequently" indicates that the administration of two or more inhibitors is sufficiently temporally separated so that normal somatic cells remain functional and are therefore able to survive and/or proliferate. Those skilled in the art will recognize that the required time will depend on various factors, such as clearance rate, type and extent of the effect of an inhibitor on normal cells, and additive cellular toxicity, and that appropriate timing can be routinely determined for particular selections of compounds.

In another related aspect, the invention provides a method for identifying a potential patient for treatment with an inhibitor active on a specific allele of an essential gene from one of the above categories. The method involves identifying a patient having a proliferative disorder characterized by LOH, e.g., a cancer, whose normal somatic cells are heterozygous for the essential gene and determining whether tumor cells in the patient contain only a single allele of the gene. Thus, if the patient is normally heterozygous and the neoplastic cells contain only a single allele of the gene, then the patient is a potential patient for treatment with the inhibitor.

With respect to identifying patients with precancerous or oligoclonal proliferative

20

15

20

25

29

Either or both of the normal cells and tumor cells may be cultured prior to the determination. The determination may also be carried out using cells retrieved from a frozen or preserved tissue specimen, e.g., from pathological specimens of a patient's tumor and/or normal tissue preserved in a pathology laboratory. Also, the determining may be performed using a variety of techniques, which may, for example include one of more of: hybridization with an allele specific oligonucleotide probe, hybridization to a gridded set of oligonucleotides, restriction fragment length polymorphism, denaturing gradient gel electrophoresis, heteroduplex analysis, single strand conformation polymorphism, ligase chain reaction, nucleotide sequencing, primer extension, dye quenching, sequence specific enzymatic or chemical cleavage, mass spectroscopy, and other methods known in the art.

In a related aspect, the invention provides a method for preventing the development of cancer. The method involves administering to a patient having a precancerous condition or an early stage cancer or cancers an allele specific inhibitor targeted to an allele of an essential gene for which the normal somatic cells of the patient are heterozygous and which has undergone LOH in cells involved in the precancerous condition. In a case where the cells of the precancerous condition are not clonal from a single cell, the method involves subsequently administering to the patient a second allele specific inhibitor in an amount sufficient to inhibit and preferably kill cells with LOH in which an allele not targeted by the first inhibitor is the only remaining allele of the gene. In most cases, the second allele specific inhibitor will target the alternative allele of the gene targeted by the first inhibitor. However, the second inhibitor can also target an allele of a second essential gene which has undergone LOH. The second gene may have undergone LOH in the same deletion that affected the first gene due to their proximity on a chromosome, though this is not essential. Additionally, in other cases, allele specific inhibition of one of the alleles of each of 3, 4, or even

20

25

any of a variety of direct causes, including for example, a reduction in the amount of a biologically active molecule present, a change in the structure or modifications of normally active molecules to produce inactive or less active molecules, blockage of a reaction in which the product participates, and blockage of a reaction pathway in which the product necessarily participates.

In another related aspect the invention provides methods for treating a patient suffering from a proliferative disorder in which an essential gene from one of the above categories has undergone loss of heterozygosity. The method involves administering a therapeutic amount of an allele specific inhibitor of such an essential gene to a patient whose normal somatic cells are heterozygous for that gene but whose tumor cells contain only a single allelic form of the gene. The inhibitor is active on the specific allele of the gene present in the tumor cells.

A "therapeutic effect" results, to some extent, in a measurable response in the treated disease or condition. Thus, a therapeutic effect can include a cure, or a lessening of the growth rate or size of a lesion such as a tumor, or an increase in the survival time of treated patients compared to controls, among other possible effects.

The term "therapeutic amount" means an amount which, when administered to a mammal, e.g., a human, suffering from a disease or condition, produces a therapeutic effect.

In preferred embodiments of this treatment method, the method also involves determining whether the normal cells of the patient are heterozygous for the particular essential gene and determining whether tumor cells of the patient contain only a single allelic form of that gene. The determining may be performed on a variety of normal cells, such as blood or normal tissue, and on tumor cells.

"allosteric" inhibitor is one that binds to a gene or gene product and alters the activity of the gene or gene product without preventing binding of a substrate or cofactor. Inhibition can also involve reducing the amount of the gene, RNA transcript, or its protein product, and thus the total amount of activity from the gene in the cell. Such inhibition can occur by action at any of a large number of different process points, including for example by inhibiting transcription or translation, or by inducing the elimination of the gene, its RNA transcript, or its protein product where elimination may involve either degradation of the target or egress or export from the compartment in which it is active and the process of excretion or export. Inhibition can also be achieved by modifying the structure of the target, interfering with secondary modifications, or interfering with cofactors or other ancillary components which are required for its activity. Inhibitors can be comprised of small molecules or polymeric organic compounds including oligopeptides or oligonucleotides.

15 The term "active on a gene" or "targeted to a gene" indicates that an inhibitor exerts its inhibitory effect in a manner which is preferentially linked with the characteristic properties of a gene, its RNA transcript or its gene product. Such properties include, for example, the nucleotide sequence of the gene or transcribed RNA, the amino acid sequence or post-translational modifications of the protein product, the structural conformation of a protein, or the configuration of a protein or RNA with other cellular constituents (RNA, protein, cofactors, substrates, etc.) required for activity. Thus, in general these terms indicate that the inhibitor acts on the gene, its RNA transcript, its protein product, its gene product, or modifications thereof, or on a reaction or reaction pathway necessarily involving such a gene product to a greater extent than on genes or gene products generally.

A "reduction of the level of activity" of a gene product or allele product refers to a decrease in the functional activity provided by that product. This can be due to

10

20

The term "drug" or "inhibitor" refers to a compound or molecule which, when brought into contact with a gene, its RNA transcript, or its gene product which the compound inhibits, reduces the rate of a cellular process, reduces the level of a cellular constituent, or reduces the level of activity of a cellular component or process. This description is meant to be illustrative of the understanding of the meaning of the term to those skilled in the art and not limiting. Thus, the term generally indicates that a compound has an inhibitory effect on a cell or process, as understood by those skilled in the art. Examples of inhibitory effects are a reduction in expression of a gene product, reduction in the rate of catalytic activity of an enzyme, and reduction in the rate of formation or the amount of an essential cellular component. The blocking or reduction need not be complete, in most cases, for the inhibitor to have useful activity. Thus, in the present invention, "inhibitors" are targeted to genes, their RNA transcript, or their protein product that are essential for cell viability or proliferation. Such inhibitors would have the effect of inhibiting essential functions, leading to loss of cell viability or inhibition of cell proliferation. In preferred embodiments, such inhibitors cause cell death or stop cell proliferation. In preferred embodiments of this invention, inhibitors specifically include a molecule or compound capable of inhibiting one or more, but not all, alleles of genes, their RNA transcript, or their protein product that are essential for cell survival or proliferation. The terms "inhibitor of a gene" or "inhibitor of an allele" as used herein include inhibitors acting on the level of the gene, its gene product, its RNA transcript, its protein product, or modifications thereof and is explicitly not limited to those inhibitors or drugs that work on the gene sequence itself.

25 Several types of inhibitors are generally recognized in the art. A "competitive" inhibitor is one that binds to the same site on the gene, its RNA transcript or gene product as a natural substrate or cofactor that is required for the action of the gene or gene product, and competitively prevents the binding of that substrate. An

15

20

25

identifying a gene encoding an essential gene product which has alternative allelic forms in a non-tumor cell and which undergoes LOH in a tumor cell, screening to identify an inhibitor which is active on at least one but less than all of the alleles of the gene, and synthesizing the inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a tumor in which tumor cells have only the allele on which the inhibitor is active.

In the context of this invention, the term "active on an allelic form" or "allele specific inhibitor" or "specific for an allelic form" indicates that the relevant inhibitor inhibits an allele having a particular sequence to a greater extent (preferably $\geq 2x$) than an allele having a sequence which differs in a particular manner. Thus, for alleles for which a particular base position is identified, the inhibitor has a higher degree of inhibition when a certain base is in the specified position then when at least one different base is in that position. This means that for substitution at a particular base position, at least two of the possible allelic forms differ in sensitivity to an inhibitor. Usually, however, for a specific sequence variance site, the site will be occupied by one of only two bases. Further, if an inhibitor acts at the polypeptide level, and any of three bases may be present at a particular position in a coding sequence but only one of the substitutions results in an amino acid change, then the activity of the inhibitor would be expected to be the same for the two forms producing the same amino acid sequence but different for the form having the different amino acid sequence. Other types of examples can also occur.

The term "less active" indicates that the inhibitor will inhibit growth of or kill a cell containing only the allelic form of a gene on which the inhibitor is more active at concentrations at which it does not significantly inhibit the growth of or kill a cell containing only an allelic form on which the inhibitor is less active.

of inhibition. A commonly used measure of activity is the IC50 or concentration of the drug required to achieve a 50% reduction in the measured activity of the target gene. Preferably an allele specific inhibitor will have at least twice the activity on the target allelic form than on a non-target allelic form, more preferably at least 5 times, still more preferably at least 10 times, and still more preferably at least 50 times, and most preferably at least 100 times. This can also be expressed as the sensitivities of the different allelic forms to the inhibitor. Thus, for example, it is equivalent to state that the target allelic form is most preferably at least 100 times as sensitive to the inhibitor as a non-target allelic form. The activity of an inhibitor can be measured either in vitro or in vivo, in 10 assay systems that reconstitute the in vivo system, or in systems incorporating selected elements of the complete biological system. For use in inhibiting cells containing only the target allelic form rather than cells containing at least one nontargeted allelic form, the difference in activity is preferably sufficient to reduce the proliferation rate or survival rate of the cells having only the targeted allelic form 15 to no more than one half of the proliferation rate or survival rate of cells having at least one non-targeted allelic form. More preferably, the fraction is no more than 1/5 or 1/10, and still more preferably no more than 1/20, 1/50, 1/100, or even lower.

In a related aspect, the invention provides inhibitors potentially useful for tumor, e.g., cancer treatment, or treatment of other proliferative disorders. Such inhibitors are active on a specific allele of a gene which has at least two different alleles encoding an essential gene product in one of the target gene categories above. Such inhibitors can, for example, be identified by the above screening methods.

In a related aspect, the invention provides methods for producing inhibitors active on such specific allelic forms of belonging to one of the above categories genes by

FEB 2 2 2002 6

23

specific allelic forms of target genes as identified herein. The method involves determining at least two allelic forms of such a gene encoding an essential gene product, and testing a potential allele specific inhibitor to determine whether the potential inhibitor is active on, e.g., inhibits expression of, at least one of the allelic forms, but not all of those forms. If the potential inhibitor inhibits only a subset of the allelic forms of the particular essential gene, then it is an allele specific inhibitor. Preferably the difference in activity of the inhibitor for different allelic forms is between allelic forms which have a sequence variance at a particular site.

10 In many, or even most, cases an allele specific inhibitor discriminates between two allelic forms due to a particular single sequence variance between the allelic forms of the target gene. For example, ribozymes which target a single sequence variance site will preferentially cleave only one of the sequence variants for a particular single nucleotide variance. In this case, sequence variances at other sites will generally not affect the cleavage. In the Detailed Description of the 15 Invention specific examples of proteins, small molecules, and oligonucleotides providing allele specific inhibition based on single sequence variances are described. Thus, in preferred embodiments an allele specific inhibitor discriminates between two allelic forms by discriminating a single sequence variance. As previously indicated, inhibitors can be targeted to either the nucleic acid or a polypeptide (where a nucleotide change results in an amino acid change). In particular embodiments, the allele specific inhibitor will recognize more than one linked sequence variances within a specific allele.

An "allele specific inhibitor" or "variance specific inhibitor" is a drug or inhibitor

25 that inhibits the activity of one alternative allele of a gene to a greater degree than
at least one other alternative allele. The difference in activity is commonly
determined by the dose or level of a drug required to achieve a quantitative degree

20

25

variances present in human populations are not associated with disease and are "normal" variants of the gene; such variances are commonly referred to as polymorphisms. In the present invention, specific variances are described from each of the classes described above in genes that are essential for cell survival or proliferation that can be the targets for allele-specific inhibitors for the treatment of cancer or noncancer proliferative disorders.

This invention provides inhibitors which are specific for at least one, but not all, allelic forms of a gene that encodes a gene product essential to cell growth or cell viability, for genes belonging to the specified categories of genes. The inhibitor may be active on the gene or gene product including the RNA transcript, protein product, or modifications thereof. Exposure to the inhibitor inhibits proliferation or kills cells which have undergone LOH of genes that are not inhibited by the drug and contain only an allelic form of the essential gene, its RNA transcript, or its protein product against which the inhibitor is targeted. Normal cells which contain two alternative alleles of the target genes, one of which is not inhibited by the specific inhibitor, are spared from the toxic effects of the inhibitor because the remaining activity of the allele which is not inhibited by the inhibitor is adequate to permit continued cell viability and growth. This differential effect of the inhibitor on cells with LOH of a targeted gene (e.g., a cancer cell) and normal cells accounts for the high therapeutic index of the inhibitors of this invention for the treatment of cancer or non-cancerous, proliferative disorders characterized by LOH. Toxicity of the inhibitor to normal cells is therefore low, compared to most currently available anticancer and antiproliferative agents.

Thus, in accord with the strategy and target genes indicated above and described in the Detailed Description of the Preferred Embodiments, in a first aspect the invention provides methods for identifying inhibitors potentially useful for treatment of a proliferative disorder, e.g., cancer. Such inhibitors are active on

As indicated above, two different allelic forms of a gene will have at least a one nucleotide difference in the nucleotide sequence of the gene. The difference can be of a variety of different types, including base substitution, single nucleotide insertion or deletion, multiple nucleotide insertion or deletion, and combinations 5 of such differences. Thus, two allelic forms are sequence variants and will have at least one sequence variance, which refers to the sequence difference, between the allelic forms. However, there may also be more than one sequence variance between two allelic forms. The location of a sequence variance in a gene sequence is a "sequence variance site." This description applies to both the DNA and RNA 10 sequences, and similarly applies to a polypeptide sequence encoded by the gene. differences in the amino acid sequence of the polypeptide, and the location in the polypeptide chain of the sequence differences. As a particular gene may have more than one sequence variance site, more than two allelic forms may exist in a population, for example, see Fig. 1 for exemplary target summaries showing multiple sequence variance sites.

Sequence variances can involve a difference in the sequence in which any of the four bases: adenine, guanine, thymidine (uracil in the context of RNA), or cytosine are substituted with another of the four bases or a change in the length of the sequence. Different classes of variances are recognized in the art.

- 20 "Deletions" are variances in which one or more bases are missing from the sequence. "Insertions" are variances in which one or more bases are inserted into the sequence. It will be evident that the terms deletion and insertion refer to the variance in one sequence relative to another. "Transitions" are variances that involve substitution of one purine for the other or one pyrimidine for the other.
- "Transversions" are variances that involve substitution of a purine for a pyrimidine or a pyrimidine for a purine. Certain sequence variances can interfere with the normal function of the gene or its gene product and can be associated with disease; such variances are commonly referred to as mutations. Most

15

20

circumstances, diseases will occur with high frequency in specific geographical regions or within specific familial, racial, or cultural groups, and a relevant population may usefully be considered to be a smaller group.

In the context of this invention, an alternative allele, or other reference to an appropriate target for the inhibitors of this invention refers to a form of a gene which differs in base sequence from at least one other allele or allelic form of the same gene. Usually, though not necessarily, the allelic forms of a gene will differ by, at most, several bases and may have only a single base difference (i.e., a single sequence variance). The allelic forms, however, are ones which contain at least one sequence variance which appears in somatic cells of a population at an appreciable frequency, such that preferably at least 1%, more preferably at least 5%, still more preferably at least 10%, and most preferably at least 20% of the population are heterozygous for that specific sequence variance. This advantageously allows the convenient identification of potential patients, because an appreciable fraction of the population, and therefore also of the cancer patients will be heterozygous for sequence variances of the specific gene. In the context of this invention, different alleles need not result in different observable phenotypes under normal conditions. Preferably, a particular sequence variance produces no phenotypic effect on the physical condition of an individual having that variance until the variance is targeted by an allele specific inhibitor.

In connection with allele specific inhibitors and the methods of this invention, the terms "allelic form" or "alternative form of the target gene" or "sequence variance within the target gene" refer to either or both of the gene or a product of that gene including the RNA transcript or protein product. Thus, a particular inhibitor may act in an allele specific manner (which will often be variance specific) at any of those levels and preferably the inhibitor is targeted to a particular sequence variance of the specific allelic form.

15

20

19

invention.

Exemplary genes described herein are shown to contain numerous sequence variances which are present in human populations. While some sequence variances and alleles are common throughout diverse human populations, it is 5 recognized in the art that the allele frequency of different genes will vary in different populations. For example, allele frequencies have been shown to differ between populations comprised of individuals of different races, populations comprised of individuals from different countries, populations comprised of individuals from different regions, populations comprised of individuals with common ethnic background, and even populations comprised of individuals from different religions. Alleles that are common in one population, may be rare in another. While the allele frequency of any particular gene may vary in different populations, the genes that are described below are those that occur such that at least 1% or 5% of a population is heterozygous for the sequence variance, preferably so that at least 10% or 20%, more preferably at least 30%, and most preferably at least 40% are heterozygous in a specific population that may be treated with inhibitors to treat cancer or other proliferative disorder in that population. Once a specific variance is identified in a certain gene, the allele frequency in any specific population can be easily determined using methods known in the art including the use of allele-specific hybridization probes, sequencing, or specific PCR reactions.

In this regard, "population" refers to a geographically, ethnically, or culturally defined group of individuals, or a group of individuals with a particular disease or a group of individuals that have proliferative diseases that may be treated by the present invention. Thus, in most cases a population will preferably encompass at least ten thousand, one hundred thousand, one million, ten million, or more individuals, with the larger numbers being more preferable. In special

their normal, somatic cells and are therefore heterozygous.

The term "allele frequency" refers to the fraction (or frequency of occurrence) of a specific allele as compared to all alleles in a population. It is recognized in the art that the heterozygote frequency and allele frequency are related and, for certain alleles, can be described by Hardy Weinberg equilibrium calculations. It will also be recognized that sequence variances that occur at high frequency in the population are commonly not deleterious to the health of the individuals who carry these genes and are commonly not disease genes or mutations that are associated with disease.

Methods for determining the heterozygote frequency or allele frequency or 10 determining the number of individuals who are heterozygous for specific variances are known in the art, including but not limited to methods such as restriction fragment length polymorphism, hybridization of sequence specific nucleic acid probes to DNA or RNA sequences which include a sequence variance site, DNA sequencing, or mass spectrometry of amplified sequence fragments containing a 15 sequence variance site. Methods that are useful for the discovery of genetic variances can also be used including, but not limited to, methods such as methods such as the SSCP technique (see Example 28), Enzymatic Mutation Detection technique (see Example 29), Denaturing Gradient Gel Electrophoresis, or sequencing. Identification of such genes which have sequence variances that are 20 common in the general population and for which 10%, 20%, 30%, or 50% of the population are heterozygous for that gene provides genes which are particularly likely to be useful target genes for allele specific inhibition in this invention. Confirmation that the gene undergoes LOH at a useful frequency in a proliferative disorder, preferably in at least 10, 20, 30, 40, or 50% of cases of such a disorder indicates that the gene is useful as a potential target for identifying allele specific inhibitors for the treatment of proliferative disorders and in other aspects of this

WO 98/41648 PCT/US98/05419

17

contain two different alleles, confirms that the gene is a potential target. The target gene, its RNA transcript or protein product can then be used as targets for allele-specific inhibitors for treating the proliferative disorder or other uses as described in the aspects of this invention.

- A further indication of useful target genes is provided by tumor-specific LOH of essential genes associated with tumor suppressor genes. LOH in certain cancers or noncancer proliferative disorders is frequently associated with specific chromosomal arms. This association is believed to be due, in many cases, to the presence of tumor suppressor genes located on those particular chromosomal 10 arms, the loss of which eliminates the tumor suppressor function and contributes to the transformation of the cell. Consequently, essential genes which map near such a tumor suppressor gene are potential target genes for this invention. Preferably, the essential gene maps within a physical or genetic map distance as described above for LOH markers. As for the above categorization aspect, the LOH for a particular gene preferably is at least 10, 20, 30, 40, or 50% for a 15 tumor, such as the cancers and types of cancers identified in Tables 2 and 3 and in Fig. 3. It should be noted that tumor suppressor genes themselves are rarely essential for cell survival or proliferation and not likely to be preferred targets for this invention.
- Another group of essential genes which are potentially useful as target genes are those which are present in the population in at least two alternative forms or alleles containing one or more sequence variations, where the alternate forms occur at frequencies such that at least 10% of a population is heterozygous (i.e., have two alternative forms of the gene), preferably so that at least 20%, more preferably at least 30%, and most preferably at least 40% are heterozygous. The term "heterozygote frequency" refers to the fraction of individuals in a population who have two alternative forms of a gene, or particular variances within a gene, in

least one sequence variance, and therefore of individuals heterozygous for such variances, indicates that the gene can be used for the identification of inhibitors targeting allelic forms of the gene which have a particular variance or variances and in the other aspects of this invention.

The term "high frequency LOH chromosomal region" refers to a chromosomal region which undergoes LOH at a frequency as indicated above, and include high frequency LOH chromosomal arms (at least 15% FAL), regions within the genetic or physical map distances indicated above of a chromosomal marker or tumor suppressor gene which undergoes LOH at a frequency as indicated above (at least 10%).

In connection with the location of a potential target gene with respect to a marker or tumor suppressor gene, the term "proximity" means that the target gene is located within a genetic or physical map distance of the reference gene or marker as stated above.

The present invention is aimed, in part, at treating cancer or proliferative disorders of any type in which LOH of an essential gene occurs at a frequency as indicated above. For example, this includes but is not limited to cancers and noncancer proliferative disorders provided in Tables 2 and 3 and Figure 3, or otherwise described herein. Table 2 and Fig. 3 describe a number of cancers for which LOH at substantial frequencies has been described in the art. Therefore, identification of an essential gene which maps to the LOH regions for a particular proliferative disorder, as described by genetic or physical mapping or by residence on a chromosomal arm or smaller region of an arm which is shown to undergo LOH, at high frequency in a proliferative disorder, identifies a potential target gene. Identification of sequence variances in that gene, such that normal somatic cells of individuals in a population are heterozygous for a variance and thus

WO 98/41648 PCT/US98/05419

15

over each informative chromosomal arm. FAL is determined by dividing the number of informative chromosomal arms which undergo LOH by the total number of informative chromosomal arms, *i.e.*, each chromosome/arm with at least one heterozygous locus in normal cells. Examples of such FAL determinations are provided by Vogelstein et al., 1989 (FAL= 0.20 in colon cancer), and Cliby et al., 1993, *Cancer Research* 53:2393-2398 (FAL= 0.17 for low grade ovarian cancers, 0.40 for high grade ovarian cancers, 0.35 for all ovarian cancers).

These data indicate that genes on the chromosomal segment or

chromosomal arm that is commonly lost in a cancer or non-cancer proliferative 10 disorder are potential target genes. In preferred embodiments, the target gene is located on a chromosomal arm which is reported in the art or shown herein to contain a locus or loci which undergoes LOH at a frequency of at least 15, preferably at least 20%, still more preferably at least 25%, and most preferably at least 30, 40, or 50% in a proliferative disorder. As noted above, the frequency of 15 LOH for a chromosomal arm is often utilized in calculating an average fraction of allele loss (FAL). Thus, a high LOH frequency for an arm or portion of an arm indicates that particular genes in the relevant chromosomal region will also undergo LOH at a comparable frequency, and thus define useful target genes. 20 Preferably the target genes are those which are located on particular chromosomal arms which commonly undergo tumor-related LOH. In particular, these human chromosomal arms include 1p, 1q, 3p, 5q, 6p, 6q, 7q, 8p, 9p, 9q, 10q, 11p, 11q, 13q, 16q, 17p, 17q, 18p, 18q, and 22q. It is recognized that the LOH frequency is not uniform for all positions along an arm of a particular chromosome, however such LOH frequencies provide a strong indicator for LOH frequency at a potential 25 target gene. Thus, mapping of an essential gene to these chromosomal arms or to high frequency LOH regions on these arms indicates that the gene is a potential target. Confirmation of the LOH of the particular gene and of the presence of at

LOH in at least 10, 20, 30, 40, or 50% of cases of a proliferative disorder, are particularly useful as they will undergo LOH at similar frequencies as the marker gene.

The relative locations of a marker and an essential gene can also be described by genetic, rather than physical, map distances, therefore, in preferred embodiments, an essential gene of this invention is preferably within about 20 centimorgans, more preferably within about 15 centimorgans, still more preferably within about 10 centimorgans, and most preferably within about 5 centimorgans of such an LOH marker or tumor suppressor gene. In preferred embodiments, the target gene is located near a reported marker which undergoes LOH at a frequency of at 10 least 10, 20, 30, 40, or 50% for a proliferative disorder. A number of such markers and the associated chromosomal locations are provided in Fig. 3. Even more preferably, essential genes which map to a locus bracketed by two such markers are appropriate potential target genes, as the essential gene very probably will also undergo LOH at similar high frequencies. Preferably both markers 15 undergo LOH at frequencies of at least 10, 20, 30, 40, or 50% of cases of a cancer. Thus, confirmation that an essential gene, for example, a gene from one of the functional groups described above, or one of the particular exemplary genes, maps close to a marker as just described, indicates that the gene is an 20 appropriate potential target. Identification of one or more sequence variances in that gene and/or in the corresponding gene products allows screening or design of such inhibitors for potential treatment.

A useful way to determine the frequency of loss of heterozygosity for a tumor cell based on the physical position of the gene on chromosomes within the human genome has been described by Vogelstein et al., 1989, *Science* 244:207-211. These authors describe a measure of allele loss termed Fractional Allele Loss (FAL) which quantifies the extent of LOH in cancer based on LOH determinations

of two or more constituents, polymerization, elimination, degradation, and excretion. It is recognized in the art that the failure to maintain the level of certain cellular constituents within normal levels results in cell death, for example, cell death may result from inappropriate levels of proteins, DNA, or RNA,

- inappropriate levels of inorganic ions, inappropriate levels of organic compounds required for energy or other metabolic processes, or inappropriate intracellular structure. These examples are meant to be illustrative of the understanding of the meaning of the terms to those skilled in the art and not limiting.
- In addition to the useful functional groups of essential genes described above, the
 present invention also provides useful groups of essential genes which are
 advantageous for allele specific targeting due to the genes undergoing LOH at
 certain frequencies in a disorder or other conditions and/or by having at least two
 allelic forms of the gene which appear in the population at particularly useful
 frequencies.
- 15 Thus, it is found that essential genes which undergo LOH in at least 10% of cases of a human cancer, and which exist in at least two allelic forms in a human population are advantageous targets. Preferably, the gene undergoes LOH in at least 20% of cases of a disorder, more preferably in at least 30%, still more preferably in at least 40%, and most preferably in at least 50% of such cases.
- The LOH frequencies for a large number of different genetic markers for particular proliferative disorders are known in the art, and are used as indicators of the LOH frequency for neighboring essential genes. A number of LOH markers are provided in Fig. 3 (Loss of Heterozygosity Table). In one aspect of this invention, those essential genes which are located within about 20 megabases,
- 25 more preferably within about 10 megabases, and most preferably within about 5 megabases of an identified marker or tumor suppressor gene which undergoes

Thus, a gene is said to be "conditionally essential" if it is essential for cell survival or proliferation in a specific environmental condition caused by the presence or absence of specific environmental constituents, pharmaceutical agents, including small molecules or biologicals, or physical factors such as radiation.

5 The term "cellular constituent" refers to chemical entities that comprise the substance of a living cell. In preferred embodiments, the cellular constituent is a protein or modified protein. Also, in preferred embodiments, the cellular constituent is an inorganic ion, an organic compound such as a lipid, carbohydrate, amino acid, organic acid, nucleoside, DNA, or RNA, or modified form of the preceding formed by the reaction of two constituents of the cell. In another embodiment, the constituent may comprise a structural element of the cell such as a membrane or cytoskeleton. In the preferred embodiment of this invention, cellular constituent refers to chemical entities, including compounds but also including simple ions, which are required for survival or proliferation of a human cell.

Certain cellular constituents of a cell are synthesized by the cell while others are not synthesized by the cell but are taken into the cell from its environment. Within the cell, constituents engage in various reactions to form new constituents by intermediary metabolism, are modified to form new constituents, and are preferentially compartmentalized in particular structures within the cell including, but not limited to, the nucleus, mitochondria, cytoplasm, or vesicles. Certain constituents are also specifically eliminated by the cell, or specific compartments within the cell, by degradation or excretion. In connection with cellular constituents, the term "maintaining the level" refers to maintaining the amount of the chemical entity normally associated with a specific cellular compartment or compartments and involves the action of various cellular processes, including synthesis, production, compartmentalization, transport, modification, combining

20

WO 98/41648 PCT/US98/05419

11

the identification of corresponding homologous essential genes or gene classes in higher eukaryotes such as humans. Therefore, studies of essential genes for non-human organisms provides useful information on likely human essential genes; an example is the Stanford Saccharomyces cerevisiae Database: http://genome-WWW Stanford.edu/cgr-bin/dbrun/SacchDB which provides a catalog of essential genes in yeast. It should be recognized, however, that not all essential genes from lower organisms will have recognized homologues in humans. It should also be recognized that the essential genes for a particular organism will generally not be restricted to those for which homology can be shown to essential genes in other organisms. Thus, genes may be essential in humans that are not essential in lower organisms.

In addition to generally essential genes, it is also recognized in the art that environmental factors can cause certain genes to be essential that are not essential under other conditions (including usual culture conditions). For example, certain genes involved in intermediary metabolism are not essential if the cell or organism is supplemented with high concentrations of a particular nutrient or chemical entity, but if that nutrient or chemical entity is absent or present at low levels, the gene product is essential. In another example, the administration of a drug that inhibits one or more functions within the cell can cause other functions to be essential that are not essential in the absence of the drug. In another example, subjecting a cell to harsh physical agents, such as radiation, can cause certain genes to be essential that are not essential under normal conditions. Such genes are essential under certain conditions associated with the therapy of cancer. The demonstration that such genes are present in the population in more than one allelic form and are subjected to loss of heterozygosity in cancer or noncancer proliferative disorders makes such genes targets for allele specific drugs for the treatment of such disorders.

15

20

10

Essentially can be demonstrated in a variety of different ways known in the art. Examples include, among others, generation of growth conditional mutants and identification of the affected genes, replacement of active genes with inactive mutants, cell fusion gene complementation analysis (see, e.g., John Wasmuth, "Chinese Hamster Cell Protein Synthesis Mutants", Ch. 14 in Molecular Cell Genetics, Michael Gottesman, ed. Wiley, New York, 1985), and insertion of genetic suppressor elements leading to growth arrest (Pestov & Lau, 1994, Proc. Natl. Acad. Sci. USA 91:12549-12533). Other ways include the identification of conditionally lethal mutants, e.g., temperature sensitive mutants and determination of the affected gene, genetic disruption of the gene by homologous recombination or other methods in organisms ranging from yeast to mice, inhibition of the gene by antisense oligonucleotides or ribozymes, and identification of the target of known cytotoxic drugs and other inhibitors. As further discussed below, the essentiality of a gene can depend on the conditions to which the cell is exposed. Thus, unless otherwise indicated, the term "essential gene" includes both 15 "generally essential genes" and "conditionally essential genes". "Generally essential genes" are those which are strictly essential for cell survival or growth, or which are essential under the conditions to which the cell is normally exposed. Typically such conditions are the normal in vivo conditions or in vitro conditions which approximately replicate those in vivo conditions. Thus, in the methods 20 described here utilizing essential genes, the method is carried out in conditions

In connection with the determination of gene essentiality, it is generally recognized that the demonstration of essentiality of a gene in one organism is strongly suggestive that the homologous gene will be essential in another organism. This is especially true for genes which have relatively high levels of sequence conservation across a broad range of organisms. Thus, the identification of essential genes in prokaryotes or in lower eukaryotes such as yeast is indicative of

such that the gene product is required.

constituent will not be properly maintained or the cell will be unable to perform the cellular functions required for cell proliferation. Confirmation that such a gene undergoes LOH in a neoplastic condition, e.g., a cancer, and that there are at least two alleles of the gene in the population that differ in one or more variant positions, indicates that the gene is a useful potential target gene in this invention for the identification of allele specific inhibitors and in other aspects of the invention.

Certain useful groups of target genes are described in which the essential genes have been grouped according to the type of essential cellular function in which the 10 gene products are involved. Thus, the gene product of each of the individual genes within each of the categories or subcategories is itself essential to the cell. In particular, the categories of genes, or cell functions shown in Table 1(in the Detailed Description below) provide appropriate target genes. Particular exemplary target genes are also identified in Tables 1 and 2 and the Examples 15 (including a GenBank accession number (or other sequence identifier as recognized by those skilled in the art) identifying the gene and providing a known sequence) which can be used for identifying allele specific inhibitors and for use in other aspects of this invention. Preferably the gene has the LOH frequency and at least one sequence variance in the gene has a heterozygosity rate in a population as 20 indicated as preferable below, and occurs at only a single locus in the human genome.

An "essential" gene or gene product is one which is crucial to cell growth or viability. The terms "essential", "vital for cell viability or growth", or "essential for cell survival and proliferation" have the same meaning. A gene is essential if inhibition of the function of such a gene or gene product will kill the cell or inhibit its growth as determined by methods known in the art. Growth inhibition can be monitored as a reduction or preferably a cessation of cell proliferation.

the present invention provides a method for preventing cancer by administering drugs that are selectively toxic to cells in which LOH involving a gene that is essential for cell survival or proliferation creates a genetic difference between cancer cells and normal cells. Since certain cancers are predictably associated with a high frequency of LOH in certain locations, for example segments of chromosomes 7,8,10,11,13,16, and 18 in prostate cancer, administration of an allele-specific drug that inhibits one allele that is within such a region, in a patient who is heterozygous for alternative forms of the gene, would kill cells that undergo LOH before cancer occurs. Preferably, in the context of this invention, 10 LOH refers to loss of an allelic form of an essential gene in cells that are involved in cancer or noncancer proliferative disorders, which has sequence variants in a population of interest, in an individual whose normal somatic cells are heterozygous for sequence variants of that gene.

As pointed out above, an important aspect of methods for treating cancer or noncancer proliferative disorders utilizing LOH of essential genes is the identification of suitable essential genes for use as target genes. In accord with that requirement, this invention identifies certain useful groups or categories of essential genes, and provides, as examples, specific genes within those categories which are found to be suitable as targets for allele specific inhibitors, in particular for killing cancer cells or reducing the proliferation of cells in cancer or noncancer 20 proliferative disorders. Thus, the present invention provides suitable target genes and methods of utilizing those genes in allele specific or variance specific targeting. Such targets are essential genes, which can include conditionally essential genes. As further described below, suitable target genes include those essential genes which encode gene products necessary for maintaining the level of 25 a cellular constituent within the levels required for cell survival or proliferation, or which encode a gene product required for cell proliferation. If the level of activity of an essential gene product is reduced, the level of the corresponding cellular

WO 98/41648 PCT/US98/05419

7

which has a particular sequence variance in normal somatic cells of an individual such that there is loss of heterozygosity with respect to that particular sequence variance. Also preferably, these terms refer to loss of heterozygosity of a particular sequence variance that is recognized by an inhibitor that will inhibit one allele of the gene present in normal cells of the individual, but not an alternative allele.

Preferably, loss of heterozygosity occurs before clonal or oligoclonal expansion of cells associated with a condition or disease, for example, cancer or non-cancer proliferative disorder. Cancer is a "clonal" disorder, meaning that all of the cells in the cancer or tumor are the progeny, or lineage, of a single cell which undergoes malignant transformation. Since cancer is clonal, any loss of heterozygosity or allele loss that occurs during the process of malignant transformation will be uniformly present throughout the lineage of the initial transformed cell. This results in the cancer cells uniformly and consistently having only one allelic form of the gene which is present in two allelic forms in normal cells.

Some of the non-malignant proliferative conditions that exhibit LOH are "oligoclonal", meaning that unlike cancers and most benign tumors, there are multiple, independently arising clonal populations, with discrete LOH events in each of the individual clones. The alleles subject to LOH may vary from one clone to another. Therefore treatment of these conditions preferably utilizes inhibitors of at least two allelic forms. Thus, methods relating to such disorders can utilize alternative alleles of one gene and/or allelic forms of additional genes. Certain noncancer, proliferative disorders are considered to be precursors for 25 cancer. Such disorders progressively exhibit LOH until a single cell within the lesion caused by abnormal proliferation undergoes transformation and clonal expansion to form a cancer. Because LOH occurs in the precancerous condition,

10

tissue which exhibits abnormal proliferation, and consequently, the growth of which exceeds and is uncoordinated with that of the normal tissues. The abnormal mass of cells is referred to as a "tumor", where the term tumor can include both localized cell masses and dispersed cells, The term "cancer" refers to a neoplastic growth and is synonymous with the terms "malignancy", or "malignant tumor". The treatment of cancers and the identification of anticancer agents is the concern of particularly preferred embodiments of the aspects of the present invention. Other abnormal proliferative diseases include "nonmalignant tumors", and "dysplastic" conditions including, but not limited to, leiomyomas, endometriosis, benign prostate hypertrophy, atherosclerotic plagues, and dysplastic epithelium of lung, breast, cervix, or other tissues. Drugs used in treating cancer and other non-cancer proliferative disorders commonly aim to inhibit the proliferation of cells and are commonly referred to as antiproliferative agents.

"Loss of heterozygosity", "LOH", or "allele loss" refers to the loss of one of the alleles of a gene from a cell or cell lineage previously having two alleles of that gene. Normal cells contain two copies of each gene, one inherited from each parent. When these two genes differ in their gene sequence, the cell is said to be "heterozygous". The term heterozygous indicates that a cell contains two different allelic forms of a particular gene and thus indicates that the allelic forms differ at at least one sequence variance site. When one allele is lost in a cell, that cell and its progeny cells, comprising its cell lineage, become "hemizygous" for that gene or "partially hemizygous" for a set of genes, and heterozygosity is lost. LOH occurs in all cancers and is a common characteristic of non-malignant, proliferative disorders. In general, many different genes will be affected by loss of heterozygosity in a cell which undergoes loss of heterozygosity. In many cancers 10-40% of all of the genes in the human genome (there are estimated to be 60,000-100,000 different genes in the genome) will exhibit LOH. In the context of this invention, these terms refer preferably to loss of heterozygosity of a gene

10

15

20

10

15

20

The term "target gene" refers to a gene where the gene, its RNA transcript, or its protein product are specifically inhibited or potentially inhibited by a drug. In references herein to genes or alleles, the term "encoding" refers to the entire gene sequence, including both coding and non-coding sequences unless clearly indicated otherwise.

The term "allele" refers to one specific form of a gene within a cell or within a population, the specific form differing from other forms of the same gene in the sequence of at least one, and frequently more than one, variant sites within the sequence of the gene. The sequences at these variant sites that differ between different alleles are termed "variances", "polymorphisms", or "mutations". The term "alternative allele", "alternative form", or "allelic form" refers to an allele that can be distinguished from other alleles by having distinct variances at at least one, and frequently more than one, variant site within the gene sequence.

It is recognized in the art that variances occur in the human genome at approximately one in every 100-500 bases. At most variant sites there are only two alternative variances, wherein the variances involve the substitution of one base for another or the insertion/deletion of a short gene sequence. Within a gene there may be several variant sites. Alternative alleles can be distinguished by the presence of alternative variances at a single variant site, or a combination of several different variances at different sites. In this invention, inhibitors targeted to a specific allelic form or subset of the allelic forms of a gene can be targeted to a specific variance in a selected variant site, or to an allele comprised of a set of variances at different sites. In most but not all cases, the target specificity is based on a nucleotide or amino acid change at a single variance site.

25 The term "proliferative disorder" refers to various cancers and disorders characterized by abnormal growth of somatic cells leading to an abnormal mass of

WO 98/41648 PCT/US98/05419

4

normal cells that contain also the alternative allele.

In addition, it was found that specific inhibitors of alternative alleles of an essential gene would be useful in managing transplantation in instances where the alleles in a donor bone marrow differ from the alleles in the recipient. For example, administration of an inhibitor of an allele that was present in a donor bone marrow but not the recipient could be used to treat graft-versus-host disease, suppressing proliferation of the donor marrow without toxicity to the recipient. Alternatively, an inhibitor of an allele that is present in the recipient but not the donor bone marrow could be used to enhance engraftment by preferentially creating space in the recipient bone marrow for the graft without inhibiting proliferation of the engrafted donor marrow.

In this context, a "gene" is a sequence of DNA present in a cell that directs the expression of a "biologically active" molecule or "gene product", most commonly by transcription to produce RNA ("RNA transcript") and translation to produce protein ("protein product"). Both RNA and protein may undergo secondary modifications such as those induced by reacting with other constituents of the cell which are also recognized as gene products. The gene product is most commonly a RNA molecule or protein, or a RNA or protein that is subsequently modified by reacting with, or combining with, other constituents of the cell. Such modifications may result, for example, in the modification of proteins to form glycoproteins, lipoproteins, and phosphoproteins, or other modifications known in the art. RNA may be modified by complexing with proteins, polyadenylation, or splicing. The term "gene product" refers to any product directly resulting from transcription of a gene. In particular this includes partial, precursor, and mature transcription products (i.e., RNA), and translation products with or without further processing, such as lipidation, phosphorylation, glycosylation, or combinations of such processing (i.e., polypeptides).

15

in the selective loss of one of two alleles of a certain essential gene at a particular locus or loci on a particular chromosome.

Based on this analysis, a therapeutic strategy for the treatment of cancer was developed, which will produce agents characterized by a high therapeutic index.

The strategy includes: (1) identification of genes that are essential (or conditionally essential) for cell survival or growth; (2) identification of common alternative alleles of these genes; (3) identification of the absence of one of these alleles in cancer cells due to LOH and (4) development of specific inhibitors of the single remaining allele of the essential gene retained by the cancer cell, but not the 10 alternative allele.

SUMMARY OF THE INVENTION

The utilization of inhibitors of alternative alleles, such as in the strategy described in Housman, supra, requires the provision of suitable target genes in order to identify such inhibitors and to implement corresponding diagnostic or therapeutic methods. Thus, as described below, the present invention identifies useful groups of genes which provide suitable target genes and further provides exemplary genes within those groups.

Additionally, the present inventors determined that LOH occurs not only in cancers, but also in non-cancerous proliferative disorders, though the location and 20 frequency of LOH differs in different diseases, and established a method by which such non-cancerous proliferative disorders can be treated. Noncancer proliferative disorders include, for example, atherosclerotic plaques, premalignant metaplastic or dysplastic lesions, benign tumors, endometriosis, and polycystic kidney disease. In each disease, the administration of such an inhibitor would have cytotoxic or antiproliferative effects on the abnormally proliferating cells that exhibited LOH and contained only the sensitive allele of the target gene, but would not be toxic to

15

WO 98/41648 PCT/US98/05419

2

index is described in Housman, International Application PCT/US/94 08473 and Housman, INHIBITORS OF ALTERNATIVE ALLELES OF GENES ENCODING PROTEINS VITAL FOR CELL VIABILITY OR CELL GROWTH AS A BASIS FOR CANCER THERAPEUTIC AGENTS, U.S. Patent 5,702,890, issued December 30, 1997, which are hereby incorporated by reference in their entireties. As further described below, the method involves the identification of genes essential to cell growth or viability which are present in two or more allelic forms in normal somatic cells of a cancer patient and which undergo loss of heterozygosity in a cancer. Treatment of a cancer in an individual who is heterozygous with an allele specific inhibitor targeted to the single allele of an 10 essential gene which is present in a cancer will inhibit the growth of the cancer cells. In contrast, the alternative allele present in non-cancerous cells (which have not undergone loss of heterozygosity) is able to express active product which supplies the essential gene function, so that the normal cells can survive and/or grow.

Cancer cells from an individual almost invariably undergo a loss of genetic material (DNA) when compared to normal cells. Frequently, this deletion of genetic material includes the loss of one of the two alleles of genes for which the normal somatic cells of the same individual are heterozygous, meaning that there are differences in the sequence of the gene on each of the parental chromosomes. The loss of one allele in the cancer cells is referred to as "loss of heterozygosity" (LOH). Recognizing that almost all, if not all, varieties of cancer undergo LOH, and that regions of DNA loss are often quite extensive, the genetic content of deleted regions in cancer cells was evaluated and it was found that genes essential for cell viability or cell growth are frequently deleted, reducing the cancer cell to only one copy. In this context, the term "deleted" refers to the loss of one of two copies of a chromosome or sub-chromosomal segment. Further investigation demonstrated that the loss of genetic material from cancer cells sometimes results

15

1

DESCRIPTION

TARGET GENES FOR ALLELE-SPECIFIC DRUGS

BACKGROUND OF THE INVENTION

This invention is concerned with the field of treatment of proliferative disorders, including malignant and nonmalignant diseases, and with transplantation.

Specifically, this invention is concerned with target genes for drugs that are useful for treating such diseases by providing allele-specific inhibition of essential cell functions.

The following information is provided to assist the understanding of the reader, none of that information is admitted to be prior art to the present invention.

The treatment of cancer is one of the most heavily investigated areas in biomedical research today. Although many anticancer drugs have been and continue to be discovered, there remains the immense problem of developing drugs that will be 10 specifically toxic to cancer cells without killing normal cells and causing toxic, often permanent, damage to vital organs or even death. One common measure of the clinical usefulness of any anticancer drugs is its therapeutic index: the ratio of the median lethal dose (LD₅₀) to the median effective dose (ED₅0) of the drug. With some cancer therapeutics this ratio is in the range of 4-6, or even 2-4, 15 indicating a high risk of toxic side effects to the patient. Indeed, most anticancer drugs are associated with a high incidence of adverse drug events. The poor therapeutic index of most anticancer drugs not only limits the clinical efficacy of these drugs for the treatment of cancer, but limits their usefulness for treating many non-malignant, proliferative disorders. 20

A strategy for the development of anticancer agents having a high therapeutic

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12Q 1/00, C07K 14/00, A61K 35/00, C12N 15/00

A2

(11) International Publication Number:

WO 98/41648

(43) International Publication Date: 24 September 1998 (24.09.98)

(21) International Application Number:

PCT/US98/05419

(22) International Filing Date:

19 March 1998 (19.03.98)

(30) Priority Data:

60/041,057

20 March 1997 (20.03.97)

US

(71) Applicant (for all designated States except US): VARIAGEN-ICS, INC. [US/US]; One Kendall Square, Building 400, Cambridge, MA 02139-1562 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HOUSMAN, David [US/US]; 64 Homer Street, Newton, MA 02159 (US). LEDLEY, Fred, D. [US/US]; 433 Grove Street, Needham, MA 02192 (US). STANTON, Vincent, P., Jr. [US/US]; 32 Royal Road, Belmont, MA 02178 (US).

(74) Agents: WARBURG, Richard, J. et al.; Lyon & Lyon LLP, Suite 4700, 633 West Fifth Street, Los Angeles, CA 90071-2066 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: TARGET GENES FOR ALLELE-SPECIFIC DRUGS

(57) Abstract

This disclosure concerns genetic targets which have been found to be useful for allele specific anti-tumor therapy. The strategy for such therapy involves the steps of: (1) identification of alternative alleles of genes coding for proteins essential for cell viability or cell growth and the loss of one of these alleles in cancer cells due to loss of heterozygosity (LOH) and (2) the development of inhibitors with high specificity for the single remaining alternative allele of the essential gene retained by the tumor cell after LOH. Particular categories of appropriate target genes are described, along with specific exemplary genes within those categories and methods of using such target genes.

			.3-	٠,
				•
				•
		•		
	·	·		
	•			

Example: Allele-Specific Inhibition of Ras

Schwab et al., 1994

Effect of Antisense Oligomers on Glutamylprolyl-tRNA Synthetase (EPRS) mRNA levels (duplicates)

14977 (100% matched)

conc 0 50 100 200 300 400

14971 (2 mismatches)

0 50 100 200 300 400 nM

*circled samples were switched when loaded on to the gel

Fig. 19

Research Collaboration

A	ACAGCCACTTATGTCATGGT
В	ACAGCCACTTATGTCATGGT
C	<u>ACAGCC</u> ACTTATGT <u>CATGGT</u>
D	CACTTATGTCATGGTATTCA
E	CACTTATGTCATGGTATTCA
판	C A CETTA TICTICA TICCITA TETRA

Improved Allele-Specificity with Advanced Chemistry

MDA-MB 468 Cells

3706

2410AG

Oligo:

Northern

match

RNA

Fig. 17

F18.16

F18.15

absorbance

F18.14

Variance Specific Cell Kill by Oligonucleotides Against RPA1 ling of A549 Cells

F13, 13

BrdU incorporation

Proliferation by Oligonucleotides Against RPA /ariance Specific Inhibition of A549 Cell

	T2	4 C	ells	Mia Paca II Cel					
Oligo:	ISIS 13706	ISIS 12781	Varia 13085		ISIS 13706	ISIS 12781	Varia 13085		
Northern		match					match		

RNA

F15, 11

f13.10

Variance Specific Inhibition of mRNA levels by Oligonucleotides Against RPA1

oligo cell

13706 13085 MiaPaca II 12781 13706 13085 12781

Fig. 9

202 / 214

Target ID	Loc'n	Sequence around [polymorphism]	#	Varia (Lib)	1	#	Varia 2 (Lib)	Protein Change		
1613.2	350	AGTGGCCATG [G/A] TTGGGT	CAC	 3C	10	(7)	3 (3)	Val ->	Ile
.11	842	TGATCATCAT [T/C] TCCTTG	CGC	GA.	3	(3)	6 (4)	3' UT	
1614.5	1343	CCTATCTGGA [T/C] ACATTT	GG	.c	2	(2)	3 (3)	Silent	
.13	3 1841	CGGCGGTGGA [G/A] GCTGAG	CG	CC	10	(9)	2 (2)	Ser ->	Glu
.23	2158	AAAAAA [A/T] TTTTTTTTT	GAZ	AA	7	(7)	8 (5)	3' UT	
.28	2261	CTGAAGTCTA [G/A] GATATT	TT.	rc	5	(5)	2 (2)	3' UT	
1615.29	2113	CCTGGCCATC [T/C] TGGGCA	GT	 3T	16	C	 11)	7 (5)	Silent	

201 / 214

.06	2174 2129	CCTCTCCCAG [C/T] GGCCTCCCCC TTTGCAAGGA.[A/G] GGCCTAATCA	71 (36) 66 (36)	1(1) 6(6)	Silent Silent
1611.20	1388	AACACTGGTGCCAACCAA [G/A] AC	3 (3)	3 (3)	3 ! !!!!

Target	Loc'n	Sequence around	# Varia 1	# Varia 2	Protein	
ID		[polymorphism]	(Lib)	(Lib)	Change	
.1				(6)	3 (2)	Silent
.1				(5) (5)	2 (2)	Val -> Leu
.1				(6)	4 (3)	3' UT 3' UT
. 2				(7)	2 (2)	3' UT
. 2	5 272			(5)	3 (3)	זיט ינ
1579.1				(12)	2 (2)	Silent
.1				(12)	5 (5)	Ser -> Glu
.2	6 201	O GAATACTCCC[G/C]	CCAGGGCCT 12	(10)	17 (10)	זט ינ
1581.2	189	7 CCGCTAAAAT [G/A]A	GANTARGOT 3			
.5				(3)	5 (4)	Met -> Ile 3' UT
						3. 01
1583.7	148	2 AAGACACAGA[A/T]	GAGGGCCCA 5	(5)	3 (2)	Glu -> Asp
.1	1 177	2 GCTTTTAATA (G/C) T	GTCATAAAG 3	(3)	2 (2)	3' UT
1504 1						
1584.1				(2)	2 (2)	Silent
.3				(3)	2 (2)	Ala -> Val
.5			-	(3)	2 (2)	3' UT
.5				(2)	6 (6) 6 (6)	3' UT 3' UT
						3. 01
1587.1	1 133	O GCCTGCGTGG [G/C] #	ACTCATGCA 7	(2)	11 (10)	Glu -> Gln
.1	2 135	6 TCCAGAACCC [C/T] C	ACTTCCCAC 18	(14)	2 (2)	Silent
1588.2	6 195	6 TTGTACACAA [T/C] (TCATTTCAT 7	(6)	4 (3)	3' UT
1590.2	17	2 TGCACGCAGC [C/A] A	TOTOTO ON E			
.7				(3)	2 (2)	Silent
. 9				(2)	2 (2)	Silent Silent
. 3	3 213			(9)	4 (4)	3' UT
1594.1				(5)	2 (2)	3' עד
.1				(5)	9 (6)	3' עד
.1	4 198	5 CGGTGGCCCC [A/G] A	CAGGTCTTC 6	(5)	9 (6)	3' UT
1596.3	177	3 TGATGTGGTA[C/T]	יייייייייייייייייייייייייייייייייייייי	(7)	3 (2)	
. 6				(8)	4 (3)	דטינ זטינ
.1				(12)	3 (3)	זטינ
.1	2 190			(12)	2 (2)	3' UT
.1	6 194	9 AGAGGACCTG [C/T]	GGCTTAGAT 24	(16)	2 (1)	3' טד
1500.3				~		
1598.3	204	2 ATGCCTAAGA [C/A]	AACTGCGTT 2	(2)	3 (1)	זט ינ
1603.5	59	2 TCTGTGGCAC [T/C] C	משמת משמת איני		2 (2)	
.1				(2) (12)	2 (2) 2 (2)	5' UT
.1				(11)	3 (3)	Arg -> Ser Silent
. 2	8 295			(18)	2 (1)	3' UT
1605.1				(2)	2 (1)	Leu -> Pro
. 3				(2)	6 (6)	3' עד
1607.1		4				
	3 235	4 CTTTCTCTGG (C/T)	CIGTCCATG 9	(8)	2 (2)	זט ינ
1608.3	212	0 CAGCCGCCAT [T/C]	GCAAGGAAG ?	(2)		
.1				(9)	2 (2) 4 (3)	ז' עד ז'ע ינ
.1				(11)	3 (3)	3' UT
.0				(36)	7(7)	3'UT
.0		O CAGCCGCCAT [T/C]	GCAAGGAAG 25	(18)	47(40)	זטי 3
.0				(19)	46 (29)	זטי 3
.0	5 96	9 AACCTAGTGC[G/A]	CCAAGGGAA 69	(36)	3 (3)	Silent

Target ID	Loc'n	Sequence around [polymorphism]		aria Lib)	1	#	Varia (Lib)			otein ange		
1547.1	7 976	TGCTTTAAAG [G/A] GCC	TGCCTGG		13	(1	0)		2	(2)	3' UT	•
1548.3	1209	CATTATTGGC [C/T] TC	TCAAACC		3	(31			·		
. 4	1286	TGAAAGGTGT (A/G) AAT	CAAGTTAC			(-			(1)	Leu ->	
.8	1904	ATAACTAAGA [C/T] TTO	TGTGCAT			ì				(2)	Silent	
							-,		,	(3)	מטינ עד	
1550.7	· 797	TGGACGCCTT [T/C] CC	AATCTGA		2	(2)	!	5 ((2)	Silent	
1551.12	2215	CGAGACCATC [T/C] TGG	CCCCTCC		3	(1 \					
.14	2242		AGCTTGA			Ċ	_ •			(9) (8)	3' UT	
.19	2341	ACTGGGTCTC [G/A] CTC	CGAGTGG			(-			8)	3' UT	
.16	2372	GGAGGGAGGG [T/A] CAG	GGGGAGG		-	Ò	•		-	8)	3' UT 3' UT	
							-, 	. 	·	. 0,	3. 01	
1554.12			TGCTTCC		6	(!	5)	:	. (1)	Ile ->	Mon
. 14			GCTAAAG			(-		-	1)	Silent	
. 23	1539	ATCTGGCTGC [T/C] GAT	CTGCTAT			(-		-	4)	3' UT	
1555.5	424		ACCACAA		17	(1	3)	3	. (1)	Lys ->	Ser
.9	515		GGAGCTG	:	17	(:	7)			3)	Ser ->	
.30	1088	TCCTCGGCTG [C/A] GTT	CAGTCCT		2	(:	2)			5)	3' UT	1111
1556.7	2037	TGATCTTTGC (C/T) CCT	GGTATGC		 5	(5	 5)			3)	3' UT	
1560.7	2335	GCATTCAAGA (C/T) GGA	TACAGAG		 5	(5	. 5)			1)	Thr ->	Man
												Mec
1561.1	90	0101001000[0/1]000	TCCCCCA		2	(2	2)	2	. (2)	Silent	
.5	373		AGTTCTG		2	(3	.)	2		2)	Met ->	Val
.22		(1,0)	CTCAAAG		8	(7	')	4	-	4)	יטי צ	• • • • • • • • • • • • • • • • • • • •
.23	1251	GTTTCCTTTT [G/T] GGC	TCAAAGC		7	(6	;)	4	(4)	זטי3	
1562.14												
.30		ATTGTCGCAC [C/T] TCC	TACACCT	- 1	21	(9	()	2	(1)	Silent	
.50	799	AGCCATGAGT [G/T] GGG	CTGGGCC	1	14	(7	')	3	(3)	Gly ->	Trp
1563.10	3076	ACTCCCCTTC [A/G] TGA	 aaccaga									-
					- 	(1	.,	2	(2)	Met ->	Val
1564.7	339	CTTTGGAAAG (T/C) GTG	AAAGCTG	1	15	(10)	2	(1)	Silent	
1566.2	53	GCAGGCACAG [T/C] GTC										
.4	175	TCCTGGCGGC [G/A] CCT	ACCITCG			(1	-		-	2)	5' UT	
.10	791	GCATGAATCC [C/T] GGC	CONCOCC		3		-	4		4)	Arg ->	His
.23	1741	TGCACTCTGT [G/C] CTC	CAGGCG			(1	-	4	-	4)	Silent	
.24	1742	GCACTCTGTG [C/G] TCC	CCCNAC		3			3	-	2)	Cys ->	
			3CCCAAG		3	(2	,	3	(2)	Cys ->	Trp
1567.2	1083	GGAATACTGG [G/A] AGAI	ATCTTCG		5	(3)	2	(1)	Ser ->	Lys
1571.4	1480	AGAGAAAATT [G/A] GGGA				·	 `					
.14	2087	TCTGTCTGGT [G/A] TGG	TATCA AT		4 (3	-	-	3' UT	
			INIGANI					4			3' UT	
1576.13	1777	CGCCCCTCCC[C/T]CCTC			3 (
.16		AATTGTACATTC [C/T] CT	GCATCC		3 (2)		
					J (. 4				2)	3' UT	
1577.10	3022	TGCCGGCCGG [A/G] ACC		-	2 (. ـ ـ ـ .			3	•
.15	3229	CACACCACCG [T/C] CCTC	CTCGCT		2 (5)	Asn ->	Asp
.33	3859	GGTAGCCACC [G/A] CCGC	GGCACT		8 (4)	3' UT	
.38	3980	CTGATGCATC [G/A] TTTT	CTTTGC		8 (3)	3' UT	
.47	4049	GCCAGGCCAT [G/T] GCCA	AGGGGC		7 (3)	3' UT	
.50	4055	CCATGGCCAA [G/A] GGGC	CAGCTG		5 (3)	3' UT	
								. .		5)	3' UT	
1578.5	178	TACTTCGACC [G/A] CAAA	AGACGA		7 (7)					u.
.12	451	CTTCCACCAC [C/T] AGTG	TTCCAG		8 (6		3	ì	2)	Arg -> 1	nis Tau
					- '	•	•		`	~ /	Pro -> :	rea

Target	Loc'n	Sequence around	# Varie	a 1 #	Varia	2 Protein	
ID		[polymorphism]	(Lib))	(Lib)	Change	
1521.6	851	AGACTCTGAG [G/C] CCT	GGTGTGA	7 (6)	2 (2)	Arg -> Ser
.10		TTGGGAATGG [A/G] TAT		15 (4 (1)	3' UT
.15		TCACCTATAC (A/G) TTA		20 (4 (1)	
						- · · ·	3' UT
.17	1236	Gaaaactgtg [c/a] aat	TGTGTGC	7 (4)	3 (1)	3' UT
	·						
1523.7	417	CACCACGGTG [C/T] TGG	AATTGTT	9 (8)	3 (3)	Silent
1524.13	2996	AAAATGACAT [T/G] AGT		3 (2)	3 (2)	זטינ
.22	3384	AACAGCTTTT [A/T] GGG	CAAGCTG	20 (9)	4 (4)	זטינ
.23	3385	ACAGCTTTTA [G/A] GCC		16 (7)	6 (5)	זטינ
.25	3397	CCAAGCTGGC [C/T] TG		25 (4 (3)	3' UT
.26	3398	CAAGCTGGCC[T/G]GAG		25 (3 (2)	3' UT
				,		J (2)	2 01
1526.6	2476	TGGAGGTGCA [T/C] AAC	CALLY CALALLY	2 /	11	2 (1)	0/3
.7	2715	- · ·		2 (2 (1)	Silent
	2/15	GTGAAAGGGG (A/C) CGT	GTACTCT	2 (2)	3 (1)	Asp -> Ala
1528.6	770				2)	2 (2)	Val -> Met
.10				1 (1)	4 (4)	Val -> Phe
.26		TTCAAGTGAA [G/C] ATC	CTGAAAG	12 (8)	7 (6)	Asp -> His
.32	2 3598	TATAATTAGT [T/C] ATG	BACAGCCA	19 (16)	2 (1)	3' עד
1530.8	427	ATCCGCCCC [A/G] CG/	CGTCCCC	4 (3)	2 (1)	Thr -> Ala
.13	894	TGCTGAACGA [G/A] CCC	CCTGGGG		5)	2 (1)	Ser -> Glu
.30	1579				3)	7 (6)	3' UT
1532.6	496	TCGTGCGCAA [C/T] GTC	CCCTCCC	A /	2)	6 (3)	Silent
.10							
		CIGGCCTIAI (G/I) CCC	AGGCCIG	0 (4)	2 (2)	Cys -> Phe
1533.12	2000						
1555.12	2 2092	GTATCCCAGG [A/G] CAG	CACAGGAA) د	(3)	2 (2)	Asp -> Ala
1534.4	264	CCGTGCCGGC (A/T) CT	CACCATC	2 ((1)	5 (4)	Silent
1536.22		TTAGATATAT [A/G] TA	TCATTCT	3 ((3)	4 (3)	3' UT
. 24	4 6779	ATTTTTATTG [G/A] GC	CAAAAAC	2 ((2)	11 (8)	3' עד
.28	B 7097	AGTGGAATGT (T/A) TA	AAAAAAA	4 ((3)	4 (3)	3' UT
1537.5	871	AGGGCAGTGC (C/A) AT	rgatagga	7 ((6)	3 (3)	Silent
.10	1466			7		3 (3)	3' UT
1538.23	1 938	CCTCCACCTT [T/C] GA	CCTCCCC	14	(7)	3 (2)	Silont
			20010000	17	. ,,	3 (2)	Silent
1539.1	67	moooccom to to com					
.3	304				(3)	2 (1)	5' UT
					(4)	4 (3)	Silent
.9	1075				(2)	3 (2)	Arg -> Ser
.16						4 (2)	מטינ
.23	1 2718	GCCTAACATAA (A/G) A	AAAAAAA	8	(8)	3 (3)	זיטינ
1541.1	4123	TGGCGAGGGG (G/C) CT	TGACGGCG	2	(1)	2 (2)	3' UT
1543.4	319	GCACCGGAAG [G/A] AG	GCGCTGAC	6	(5)		
		GCACCGGAAG [G/A] AG			·	- (-,	DCI -> Dys
1544.3							
					(2)	7 (4)	Asn -> Lys Silent
	543				(4)		
.8			AAGATGGC			3 (3)	Ser -> Thr
.13	2 728	GCTGCCCAGG [C/G] TG	TGCAGCGC		(11)	4 (1)	זטינ ד
.2:		AACATCCCCT[C/T]CC		5		4 (2)	3' UT
.23	2 986	CTGCCTGGCC[C/T]CT	CGCCTGTG	5	(4)	2 (2)	3' עד
1545.4	1470	CGGTGAGACC [G/A] TT	GCCCGCTG	2	(1)	2 (2)	Val -> Ile
						- , -,	
1546.1	172	CTCTGAAGAC (A/T) TG					
-	_,_	515151516 (A) 2) 1G		-	/	- \ -,	> <u>neu</u>

Target ID	Loc'n	Sequence around [polymorphism]	# Varia 1 (Lib)	#	(Lib)	Change		
	3 1824	GTGGGGGTAC [C/T] ATCTC	ACTG	7 (13 (9)	3' UT	
1491.2								
.3:		TGTAAGGTTT [C/T] CATTTA	CTTT 2		8)	2 (2)	Ser ->	Asp
		· · · · · · · · · · · · · · · · · · ·	GIII Z	8 (16)	3 (1)	3' UT	
1495.3	391	CAAAAACCCC [G/A] CCCGCT	CCAA	3 (2)	3 (2)	Silent	
1496.5	3017	AATAATAACC [A/G] AGACTT	TTCA	 5 (4)	2 (2)		
.15	5 3932	CTGCCTGGCC (C/T) TTTTTT	CTTC	-	1)	6 (5)	3' UT	
							3' UT	
1497.13			GGGC :	3 (2)	5 (5)	Silent	
.14			CACG :	3 (2)	5 (5)	Val ->	Ala
.16			CGAG	8 (4)	2 (2)	Ala ->	
.23			AGCC	5 (4)	5 (3)	Silent	
.39			GACA (5 (3)	3 (2)	Silent	
.43			GGGA :		2)	6 (5)	3' UT	
.44					10)	2 (1)	3' UT	
		TTTCAAAAAA [T/A] TTTTTT	TAAA	2 (2)	11 (9)	3' UT	
1498.5	167	GGCGTGCTGA [G/C] TGCCCT	GGGA (3 (4)	3 (3)	Ser ->	Thr
1500.16	2206	GAAGGAAACA [G/A] TGCAAC	AGCA 14	:	 13)			
.18	2310	GTTGTTAAGA [G/T] TGGGGG	AGAG 25		18)	2 (2) 2 (1)	3' UT	
.23	2426	TGCCAAGCTG [G/A] ACGGCA	CGAG 10	-	7)	4 (4)	3' UT	
						- (-) 	3' UT	
1501.5			CGTC 2	2 (2)	2 (2)	Silent	
.16			CTGA 8	3 (8)	2 (2)	3' UT	
1505.9	3934		CACC 6		 4)	4 (4)	3' UT	
1507.2								
	130	CCCCGAGGCG [A/T] TCGTGG	AGGA 3	(3)	3 (2)	Ile ->	Phe
1508.19	5111				 10)	3 (2)	N/D	
							N/U	
1510.6	1066	- CONTRACTOR	ratt 2	(2)	5 (5)	3' UT	
. 8	1136			- (2)	2 (1)	3' UT	
1511.10	222	CTACAATATT [C/G] AAAAGG		:	 L1)	2 (1)	Gln ->	c1
1514.6								GIU
1514.6	103	CGGGGCTGCG [G/A] CCGCCCC			5)	4 (4)	5' טד	
.24 .35		GGCATCGTCA [G/A] AAGGAAC	GGA 13	(5)	6 (5)	3' UT	
.38		GCTGTAAAAT [T/C] ATAAAC			L2)	2 (1)	3' UT	
.39		TCCCCAGGG [G/C] CGAGTTC	CTC 25	(1		3 (2)	3' UT	
.43		CCCCAGGGG [C/G] GAGTTCC AGACCCCAGG [G/T] CAGCATC	TTCG 20			3 (3)	3' UT	
		AGACCCCAGG [G/T] CAGCAT(rrcg 21	(9)	5 (4)	3' UT	
1515.6	175	CATGCTAGCA [T/G] GGCCTA	TCA					
.28	855	CTGGAGAGCT (T/G) GGCTTC	11GA 3			9 (8)	Trp -> (Gly
.30	858	GAGAGCTTGG [C/G] TTCCGCG	CTT 6		_ :	4 (4)	Silent	
.38	1146	ATAATAAAAG [T/A] TTCATT				7 (5) 3 (14)	Ala -> (Gly
					-, 2	3 (14)	זטינ	
1517.9	742	AATCATAATG (G/C) TTCTCCC	CTT 6	(3)	2 (2)	Val -> 2	7.7 ~
.16	1424	AAGTTATTGG [C/T] AAACGAG	GTT 11	Ċ			Ala -> 1	
1518.8		AGAGCTGAGC [G/A] AGTTCAC	CAC 5	1	4)	 2 (2)		
1510		~~~~~~~~~~~~~~~~~~~						_y s
				(2)	6 (5)	Silent	
1520.12	6696	CAGCCTCATC [G/A] ATCCCAA	AAC 5			3 (1)		
.13	6806	TGCGCGGGAG (C/A) AAACTGC	TCT 2			3 (1)	Ser -> 1	Arg Arg

Target ID	Loc'n	Sequence around [polymorphism]	# Varia (Lib)	1	# Varia (Lib)	2 Protein Change		
.4	130	GCAGACTTAT (A/G) AGG	TGACCT	3	(1)	11 (7)	Lys ->	Ser
.5	132	2 AGACTTATAA [G/A] GTT	ACCTTA	3	(1)	10 (7)	Silent	
1465.4	891				(2)	3 (3)	Silent	
.5		• • • • • • • • • • • • • • • • • • • •			(4)	2 (2)	Silent	
.1:					(8)	3 (3)	Silent	
.3		• • •			(17)	6 (6)	Tyr ->	Phe
.3					(15)	9 (9)	Silent	
.3					(20)	6 (6)	Val ->	Ile
.4					(20)	5 (5)	Silent	
.4:					(20)	5 (5)	3' UT	
. 4					(20) (20)	8 (7) 7 (6)	3' UT	
					(20)	. / (0 /	מטינ	
1467.9	229	7 CATGGAGGCA [G/A] CCA	GCCCGT	4	(4)	2 (2)	Ser ->	Aen
.1		• • • • •			(3)	2 (2)	Tyr ->	

1471.4	304	2 CACCCAACCT [G/A] TCC	PTACTCA	2	(2)	3 (1)	3' UT	
1473.9					(11)	5 (3)	Silent	
.1	0 39	9 CCATTCTCAA [G/A] GCC	CAAGTGG	11	(8)	3 (3)	Silent	
1474.1		8 TCT [G/A] AACGGAGAGC			(10)			
.2		9 CT (A/T) ACGGAGAGCGT			(10)	4 (3)	5' UT	
.9					(11) (14)	3 (3) 2 (1)	זטי 5	
.2					(15)	3 (2)	Ser -> Leu ->	
.2					(14)	2 (1)	3' UT	FIIC
					·			
1476.6	23	0 CACAAGTGCC[C/T]TTC	GAGCAGA	12	(9)	2 (2)	Silent	
1477.2	0 147	O ATTTGATGGA [G/C] GCT	SCGCCGG	31	(12)	6 (4)	Ser ->	Asp
. 2	4 148	O GGCTGCGCCG [G/C] AGT	GAAGAGG	34	(14)	2 (2)	Ser ->	•
. 2	8 164	7 TTCCTGTTGA [A/T] AAA	АААААА	9	(6)	3 (2)	מטינ	
				:				
1478.1					(11)	2 (2)	Ala ->	Thr
.2					(18)	2 (1)	מטינ	
.3	0 109	5 AATAAACTCTTAAAGA [G	A) CCTT	2	(2)	24 (16)	3' UT	
1480.1	7 91	3 AAGAGGCACT [G/T] TAG	CACCTCC	17	(32)	2 / 2)	17-1	•
.1					(13) (13)	2 (2) 2 (2)	Val -> Silent	Leu
.1					(12)	4 (4)	Silent	
.2		• • • • • • •			(10)	4 (4)	Arg ->	Pro
.2					(13)	2 (2)	Silent	110
1483.1	2 196	9 ACTTCTCCAT [C/T] CGG	rccctag	2	(1)	2 (2)	Silent	
1484.2	14	0 ATTACGATGA [G/A] GAG	GAAGAGC	3	(2)	12 (8)	Ser ->	G] 11
.7		8 CTGTGGCTTG [G/A] AGC	ATCCTTC		(7)	2 (2)	Ser ->	
.1		4 AGCACTTTGT [G/C] CTG		3	(3)	2 (2)	Silent	-1-
								
1486.2		7 GCATTAACTA [A/T] AAA	АААААА	5	(5)	7 (5)	3' UT	
1487.1		6 GCGCCAAGCC [C/A] AGC			·			
.2		3 AGCCACGGGC (G/T) TCC			(3)	3 (1) 3 (3)	Pro ->	
.2		4 CTGGGGAAGC [T/C] CCT						
					(10)	2 (2)	Leu ->	Pro
1489.1	4 141	9 ACTCAACTCA [C/A] GGT	ACAAGAC	7	(5)	3 (3)	3' UT	
7.000								
1490.6	44	3 AGGCTGCTCG (T/C) GTT	GCTATTG	2		2 (2)	Val ->	Ala
. 3	171	0 CTCGTGATGC (A/G) TCT	ACAGTTA	11	(7)	19 (12)	מטינ	

										_
Target ID	Loc'n	Sequence around	# Varia (Lib)	1	#	Varia (Lib)	_	rotein hange		
.1	7 2127	TGATTAGAAC [G/T] GGTAGC			- - -		· 			-
.18		AATATTGATA [G/T] AAAAAT	CAGT NNN			1)		(4)	3' UT	
			~~~~			1)	5	(4)	3' UT	
1437.16	2825	AGTTTAAGAT [G/C] ACTTGAG	CCCC	5	1	4)		(2)	21 777	-
.19	3129		CTTA			5)		(2)	3' UT 3' UT	
					· <b>-</b> -	·		· 2/	3. 01	_
1440.5	940		STTG	2	(	1)	3	(3)	Silen	- E
.6	1327		CCGC	2	(	1)		(2)	Silen	
.9	1906	101210010	<b>GATA</b>			1)	2	(2)	Ala -:	> Val
.14	2282	TCTTAGAGGC [C/T] TTTCTTC	STAT	2	(	2)	3	(3)	זט יצ	
1443.4	1943	CTTCGTGCGA [G/A] AACCTG								-
			IGAA		(	2)	2	(1)	Glu -:	> Lys
1444.31	. 1905	CCAACAGCCT [C/T] CAAAGAT	rggg	٦	′	2)	20	 /20\		•
				<b>-</b> -	` 		25	(20)	3' UT	
1445.4	425	CCAGGCTTGC [C/A] AGCCGAA	ACG	8	(	5)	2	(2)	Pro -:	
.25	1281	AACAAAGAAA (A/T) AAAAAAA	AAA	5	-	-		(4)	3' UT	GIII
										_
1446.3	1227	AGGTGTGGAA [C/T] ACCCTCA		2	(	1)	2	(2)	Silent	;
.17	3090	TTATTTATAT [T/C] TTTAACA	ATAA	10	(	7) .	2	(2)	זט יצ	
1447.8	2681	GGCANTACO (A /G) morrogo		· <del></del> -		<b></b>				
		GGCAATAGCA [A/G] TCTTGGC	TGA	3	(	3)	3	(2)	3' UT	
1448.2	521	AGAAGACCAC [A/G] ATGCGAG	מדכ							
.3	587	GTCATGCTCT [T/C] GCACTTT	'ACA	3 4				(1)	Silent	
					` 			(1)	Silent	
1449.20		TGCGTAATGC [G/A] GCCGAAG	AGC	4	(	3)	21	(13)	Silent	
.28		CTGAGAGCCC [C/G] AGGCGTC	CGC	21				(1)	ינ נ	
.31		TTGCAGATTG [A/C] ATAAAAA	AAA	8	(	6)		(4)	3' עד	
.32		TGCAGATTGA [A/T] TAAAAAA	AAA	11	(	7)	3	(3)	3' UT	
	1654	GCAGATTGAA [T/A] AAAAAAA	AAA	6	(	6)	4	(4)	3' UT	
1450.2	156	CCCCATGGCG [G/A] CCGCCAA				 ^\	·			
				11		9) 		(2)	Ala ->	Thr
1451.13	200	GATGAGCGTG [A/T] TTCCTCT	CGA	3	,	 21	21	(20)	3	*** 7
.14	201	ATGAGCGTGA [T/A] TCCTCTC	GAT	3				(20)	Asp ->	
.18	417	AAGTTCACAT [C/G] AACCTCA	TGG	2	•	_		(18)	3'UT	GIU
1452.12	1659	GTACCAGAGG [C/T] ATGCCTA		4			2	(1)	Ala ->	Val
.18 .19	2410 2419	ATTTAAGGAC [G/A] AGACCAG	CAG	3		-		(5)	Silent	
.23	2717	CGAGACCAGC [A/G] GCTAATC		9				(1)	Silent	
		GTTAATGATG [T/A] TAATGAT		17	(13	3)		(3)	3' טד	
1454.3	338	AGGGCTTTGC [C/T] TTCGTTC	ACT			·				
.7	1211	CATGCTCACT [G/T] TTCTCCCC		9					Silent	
.8	1391	GTTTTAAAAAA [A/T] AAAA		3				(1) (3)	3' UT 3' UT	
						·		<i>,</i>		
1455.6	294	CCAGGCCTTT [G/T] TCATCTT(	CAA	9 (	8	1)	2	(2)	Val ->	Phe
.22	911	CAGCTCGCGA [T/A] GCCCTGC	AGG :	13 (	12	2)	3	(3)	Val -> Asp ->	Glu
.23	912	AGCTCGCGAT [G/T] CCCTGCAC	GGG	8 (	8	1)	4	(4)	Ala ->	Ser
1460.1										
	5 <i>47</i>	AATTC [C/G] CAGAGCAACATGC	CCC	5 (	5	)			דט יכ	
		GTTCTGCTTC [A/C] CCAGGAGA	erc 2	25 (	17	7)	5	(3)		
1461.5	154	TCCCCGGGGG [G/C] CTTTGGAT	rca	۰		`				
.32	1463	GTGTTACTGC [A/G] TTTTGTAC	ZAA 1	4 1	/ و	,				
							11 		ינטינ	
1463.3	761	CAGCGTGGGG [G/T] TGGCCACT	cc	2 (	1	)	2	(2)	3' UT	
1464.3	21	GCCTGCAGGC [C/T] TCCCGAGG	AG	6 (	3	)	2	(2)	Silent	

______

Target	Loc'n	Sequence around		 Varia	1 :	 # Va	 ria 2	Prot	 ein		
ID		[polymorphism]		(Lib)			ib)	Chan			
.11	L 2248	CCTATCGGCT[C/C	3) TTTGCAGTG	G	3	( 2)		3 (	3) 1	Leu ->	Val
1363.22	2 2874	CCGGAATCCA[A/C	) agtgctctg	C	2	(2)		7 (	5)	3' UT	
1366.3 .6	61! 72:					(7) (2)		2 ( 8 (	-	Asp -> Silent	Asn
1367.18						( 2)  ( 4)		4 (		orus	
1368.5	2964					(3)		2 (		3' UT	
1372.1	27					(3)		2 (		Ile ->	Val
1373.13	3 385				4 <b></b>	( 4) 		2 (	2)	3' UT 	
1378.12	2 415	7 TGCTGGGGCA[T/C	2) GGCGGGATC	c 	2 	( 2) 		2 (	1)	3' UT	
1383.14	4 183	2 ATCACCACCA [C/1	r] gtgagtggt	A 	12 	( 6)		4 (	3)	Silent	
1385.1	7 345	4 CAGTGCTAAT [G/	A] TGTGCAAGC	A	7	( 5) 		4 (	3)	3' UT	
1386.3	1 47	GGGTGACGGG [C/C	] CCATGGGGC	G 	5 	( 5)	<b>-</b>	3 (	3)	3' UT	
1387.5	138	5 TCGGTGCAGT[T/0	] TCCACTCTT	G	2	(2)		2 (	2)	יט י נ	
.7	167	B CAGGCTCATC [C/	] TGGGAGCTT	T	3	(3)		5 (	3)	ינ ינ	
. 8	190				4	(4)		2 (	2)	3' UT	
.1:	1 196	7 GCCCCTGGG [G/1	A] AGTTGGGGA	A	17	(13)		2 (	2)	דט ינ	
.19	5 207	ATTTCTTCCT (G/1	r) GTGGCATTA	G	18	(14)		3 (	3)	יט י 3	
.1	7 208		-		22	(15)		2 (	2)	דטי נ	
. 2			-			(10)		6 (		ינ ינ	
1388.1	7 279	9 CACAGAAGCA (G/C	C] CTAAACCAA	G 	15 	(11)		4 (	1)	יטינ	
1395.4	32	7 CAATGTGTTA (T/C	] GTAGTGCTT	A	35	(17)		2 (	1)	ייט ינ	
1396.1	0 188	7 GGCACGAGCC [C/1	r) TCCTTCTAT	A	3	(3)		3 (	1)	יט י צ	
.1:	2 192		-			(3)		5 (		ידטי צ	
.2:	1 240	· · · · · · · · · · · · · · · · · · ·	•			(2)		3 (	•	זט יצ	
. 20						(7)		3 (	•	3 ' UT	
			.,	 		· · ·					
1397.2	3 623	2 TATTCAGAGT[G/1	r) ggctgggcc	c 	3 	(3)		2 (	2) :	3' UT	
1399.2	17	7 CCCCCGAGGG [G/J	A] ATGCCAAGA	T	3	(3)		2 (	2)	Asp ->	Asn
.10	0 113	6 AGGGGACAGT [A/C	atagccagc	A	3	(3)		4 (	4)	Silent	
.10	6 127	9 CTGCTGTAAA [G/]	A) GCTGCAGCC	T	8	(8)		2 (		יט י נ	
1401.3	7:	1 CCAAGAATCT [G/	A] CTGCGCATG	A	2	(2)		3 (	3)	Silent	
.1	7 87	4 TTATGTTTAT (G/)	A] TTTATTATG	T	8	(6)		6 (		3י דטי 3	
.19	9 91	7 TTGGAATCAA [G/2	A) TGTCATAAG	A	8	(7)		5 (	4)	דט ינ	
.2	1 108	1 TCTACTTTCA (A/C	C) AAAAAAAA [C	A	2	(2)		7 (		זט ינ	
.2:	3 108		-			(2)		3 (		יטי נ	
1404.1		- · · · · · ·						2 (		3' UT	
1405.1		3 GTCCACATGC [A/C			4			2 (1		3' UT	
1406.5								6 (	4)	 3' UT	
1407.5	40	5 CCCAGGGGGG [G/G	] AGCTCCCAT	T	5	(4)		2 (	2)	Ser ->	Gln
. 9	71:					(7)				Silent	

Target	Loc'n	•	# Varia	1	# Varia	2 Protein		
ID		[polymorphism]	(Lib)		(Lip)	Change		
1337.1	2 420	GCAGTCATGC [C/G] GGGTG	ATCGT	32	(15)	3 ( 3)		
				32 	(15)	3 ( 2)	3' UT	
1339.1	7 2972	TATTAGTCCA [A/G] TGAGA	TTTCC	12	(9)	7 (4)	זטינ	
.2	0 3146	GTCGGACAGT [G/T] GCTCA	TAGAG	6	(6)	5 (4)	3' UT	
1341.3	630			4	(4)	6 (3)	Silent	
.1	633 7 896				(9)	4 (2)	Silent	
.2					(14)	2 (1)	Silent	
.3:					·( B)	2 (1)	Silent	
		ATACCCAMAN (G/N) GCTCT	TTTCA	. 7	(5)	5 (3)	זטינ	
1342.5	142	GCGCCAAAGC [G/A] AAATC	CCGCT	11	(9)		043	
.7	227				(4)	3 ( 2) 5 ( 4)	Silent Val ->	n
. 8	271				(11)	4 (2)	Val -> Silent	Pne
.10	314				(8)	2 ( 2)	Asp ->	Asn
1343.11	7 514	GAACTCAAAA [G/A]GCTCT	TTTCA	7	(7)	4 (4)	3' UT	
		***************************************						
1344.2	149	GAGCGCATCG [C/G] GGGAG	AGGCT	2	(2)	2 (2)	Ala ->	Gly
1345.3	360	CCCCCCCCCCC [a [a] cmax.						
1345.5	360	GGCGCGGTGG [G/C] GTCAA	GCGCA	3	(3)	3 (1)	Gly ->	Ala
1346.1	2269	CAGACTGGTG [A/G] ACGAA	 Tarana		·			
.2	2407				(2)	2 ( 2)	Asn ->	-
.10					(3)	3 (3) 2 (2)	Met ->	Leu
						2 ( 2)	3' UT	
1347.3	107	GAAGCCGAGA [C/G] GGAAA	ATGTC	12	(8)	4 ( 3)	Arg ->	Glv
.5	109		GTCAT		(2)	3 (3)	Silent	
.6	111			16	(12)	2 (1)	Lys ->	Arq
.37				16	(11).	3 (3)	זטינ	
38	996	TTCTTGTTTG [G/T] GCACA	GCACA	17	(11)	4 (4)	3' UT	
1349.4	351	NTCCCCN TOO (m /s ) or or m						
.9	1136		CCAGT		(1)	9 (5)	Val ->	Ser
.10					(13) (6)	3 (3)	3' UT	
.11					(12)	11 (7)	3' UT	
					,	2 ( 2)	זטינ	
1350.4	188	CCAAGCGCTC [T/C] AGGGGG	CTTTG	4	(4)	12 ( 7)	Silent	
. 5	275				(10)	2 (1)	Silent	
.10				9	(8)	3 (2)	Silent	
.12	770	ATGGATTTGG [C/T] AATGAT	rggaa	5	(5)	2 (2)	Ala ->	Val
1351 25	3605							
1351.25	1695	GTGTGGAGAA [G/A] CCACAC	GCCT	10	(7)	10 (8)	3' UT	
1354.23	2233	CAACAATTTT [C/T] TATGTT						
		CARCARITIT (C/I) TAIGIT	AGTT	. 7		3 ( 1)	3' UT	
1355.7	4296	AGCCTTCAGG [C/T] TCGGGC	GGCT		 ( 2)			
.8	4778	GCGCTGATAA [C/G] GTTCAT	GGAA	3	(3)	2 ( 1) 3 ( 3)	A1a ->	vaı
.10	4785	TAACGTTCAT [G/A] GAACGO	GTTG	5	(5)	2 (1)	3' UT	
							3 01	
1358.8	2515	CAGGGCGAGT [G/C] GCATGT	CTGC	7	(7)	2 (2)	3' עד	
.17	2629	CTTGGCATGT [G/A] ATGGCA	GCTC	20	(17)	2 ( 2)	3' UT	
1359.3	<b>297</b>	ATAAATACAA [G/A] AACATT	GGAG	3	(2)	2 (2)	Silent	
1360.12	248	TGTAAGCTGA (G/C) CCTGGT				2 (1)	3' UT	
		CTGTCሞሞՐርር ( à /ሬ) ምምምምም	CATG		 / 0)			
		CTGTCTTTCC (A/G) TTTTT	CAIG	 14	( 9) 	2 (1)	זטינ	
1362.9	1832	CCGCCAGGCG [G/A] ATTTTG	TTCA	2		2 / 21		
				-	. 21	2 ( 2)	Silent	

Target	Loc'n	Sequence around	# Varia	1		aria 2		teir	1	
ID		[polymorphism]	(Lip)		()	Lib)	Cha	nge		
					( 5	 \		1)	Ala ->	7. ~~~
1301.13					(7	-		2)	Ala ->	_
.3					(6			2)	Ala ->	
	1 1053	AAGGICIAIG (C/G) IGACG				, 				
1302.7	759	ACAGGCCACA [T/G] CTGGA	CCATC	2	( 2	)	5 (	5)	Ser ->	Ala
.8				2	( 2	)	4 (	4)	Silent	
.10	0 866	TTCGAAGAGT [T/C] ATTGC	CAAGA	4	(4	)	2 (	2)	Silent	
.1	7 2000	GAATTTAATA [G/T] GTACA	GAAGT		(5	-		4)	3' UT	
. 1	9 2158	ACTTCTAAAG [C/A] AAGAG	GATAA	8	(7	)	9 (	9)	3' UT	
					( 5	`		2)	Ile ->	17-1
1303.5		- · · ·			(5	-		3)	3' UT	441
.1					(6			3)	3' UT	
.2					(1		14		3' UT	
.2				2	(1	)	16	(9)	זט יצ	
1305.1	2 1434	AATAAACTATAGTAGTGTT [	T/A] T	8	(8	)	5 (	(4)	מטינ	
										17- 7
1306.1		- ·			(2			(4) (3)	Ala -> 3' UT	vai
. 2	1 102	L TTTTTTGCA [A/T] AAAAC	TAAAT			, 	•			
1309.4	460	GCGGGCCGCC [T/C] GCTCT	TGGAG	5	( 5	)	2	(1)	Leu ->	Pro
.5					( 3		3	(3)	Silent	
1312.1	0 49	ACCCCTGGGG [G/A] AGTGC	ATCAT	7	( 6	)	3	(3)	Ser ->	Lys
1315.1					(10			(2) (3)	Thr ->	гув
. 2	2 76	TCCTTTTTA (A/G) AAAAA	AAAAA		(7	, 				
1317.4	108	GATAGATTAT [G/A] TATTC	TTCCA	3	( 3	)	4	(3)	N/D	
1318.2	18:	GGGAGCCTGC [C/A] AGGGT	CCGCT	12	(11	.)	3	(3)	Silent	
										m\
1322.1	.2 87	TGACTCCACA (G/A) CCTCA	GCCGA	23	(14	.)	5	(5)	Ala ->	Thr
1326.5	13:	9 GGCCTGGAAA [C/T] TTGCA	CAGTC	5	( 5	:)	3	(1)	Leu ->	Phe
.1					( 2			(3)	Val ->	
.1						2)		(3)	Silent	
.1				4	( 4	1)	4	(2)	Asp ->	Val
1328.5	296	B CCTAAAAGTG [T/G] TTTTT	ATTTC	6	( 4	<b>L)</b>	4	(4)	דט ינ	
			COMAM				2	 / 1)	3' UT	
1330.1	.3 152	6 TTGATCATGA (G/A) ACATA	GGIAI	6		, ,		·	3. 01	
1331.1	5 166	6 ACAAGCACAC [C/G] TTAGA	GGCTT	2	( 2	2)	10	(4)	3' UT	
	4 200	9 CTGCTGATGC [C/T] GTACC	CTCAC	13	( 7	7)		(2)		
1332.5	61	8 AGCTGAACCC [G/C] GAGTC	CTCCC	2	( )	L)	2	(1)		
										<b>&gt;</b>
	8			7			2	(2)	Ala ->	_
		9 CCGTGCAGGC [C/A] ATGAA		_	( 5	-		(5) (6)		
.2		6 TGACCCCCGA [C/A] CCAGC			( 6		, 	, 0/ 		
1335.1							2	( 2)		
	. 33		GCATC	7	( 6	5)		(1)		Phe
		8 GGAAAAGGGA [G/A] AAACT	GAGCG	6	( 6	5)				
1336.6								(5)		
		9 GGTCCTCTCA [G/A] TCTT		21				(2)		
. 1	L5 99	O TTGGCAACGG [C/T] CGTCG	TCATG	17	(1:	LJ	2	(1)	3' UT	

Target ID	Loc'n	Sequence around [polymorphism]	# Varia (Lib)	1	#	Varia 2 (Lib)		rotein nange		
1267.11	1 1776	GGCTAGAGGA [T/C] GCACGG		2	(	2)	7	(5)	3' U	 T
1268.10	6529			10	(	6)	2	(2)	Thr	 -> Ile
1269.19 .20			TGCA TATA	12 12		-		(3)	יטי3 יטי3	_
1270.11	331	TTGTCCTCAG (T/C) ACCTCT	CCGT	11				(2)		
1271.14	949	GGGTGTATTA (T/C) CCAGGT	ACTC	18	(1	1)	5	(1)	3 ' U'.	r r
1272.10	2678	TGTTAAGGAA [C/T] GCTAGC	AGGG	3	(	1)	3	(1)	3 ' U'	r r
1273.13	3127	AAAGGAAGTT [T/C] TCCTTT	rgaa	7	(	2)	10	(3)	3 י ט	r
1274.16	2696	ATATTTTTTC (A/G) TAATCT	ATAT	7	(	6)	3	(2)	ט ינ	r
1278.7	864	AGTGTGACCC [G/A] GACTGC	CTCC	3	(	1)	2	(2)	Cilor	· <del>-</del>
.32	3897		TTA		ì	-			Siler	
.33	3898	CAGAACACGG [C/G] TCACGCT	TAC	4		-		(3)	מיינ	
.34	4013	TGTTGTGTGT (A/G) TCGAGAG	GCC	10	-	-		(4) (2)	נטינ נטינ	
1280.5	1648	TTAAGAGGAC [G/A] TAATGGG	GTC	14	,					· <b>-</b>
.15	1957	TAAAGATGATTGTGG [G/A] AA	TTC	2		•		(3)	ינטינ זיטינ	
1282.1	2155	TTTGGTGGGC (C/T) TACTTGG	TGC	7	, .	<u>-</u> -				-
. 2	2283	GTGTGGCGTA [G/C] GCAGTGG						(1)	זטינ	
. 9	2799	TTACATCACC [G/A] CCACTAC	erc GIC	13				(2)	זט יצ	•
.10		CAGTGCCCAC (T/A) CCACTAC	TGC	6			2	(2)	זטינ עד	•
.15		CAGTGCCCAG [T/C] GGCCGCA TGGTTTTGTT [G/C] CCTGACA		4 11				(3) (1)	3' UT 3' UT	
1284.1	249	CTGTCGACGA[T/C]CCCTACG			:					-
. 6	522	GGGGCAGTGC [G/C] GTCATCT	CCA	7				(3)	Silen	t
. 7	523	GGGCAGTGCG [G/T] TCATCTC		5				(4)	Silen	t
.10	608	GCCCTTCCCC (g /m) TTCCCC	CCT	7			4	(1)	Val -	> Phe
.20	651	GCCCTTGGGG [G/T] TTGCAGG	CTG	8		•	2	(1)	3' UT	
		GGGCTGGGGG [G/A] ATCCCAG	CAG	8	( 8	3)	2	(2)	3' UT	
1286.20	5366 	GGCCATTGCC [G/A] CAGTCGC		12	(11	.)	2 (	(2)	3' UT	_
1287.10	864 	AGGGATGTTAGACGGAATT[C/		2	( 2	:)	4 (	( 3 )	3' UT	_
1289.15	885	ATCATGTGGA [G/A] GGGCCAG	AGG :	13	( 9		2 (	1)	3' UT	
.22 	1006	GGCATTCCAG [C/G] TGAGACA	CTG :	21	(10	-		2)	3' UT	
1290.7	929	CCCTCACCCC[A/G]TCACGCC	rcg	3 (	1	)	2 (	2)	3' UT	-
1291.5	1060	TCAACAAAA [G/A] GGACAGG	rac	2 4						•
. 8	2168	TAAGTACCAC [G/A] AGCAGCTO		2 (			( (	1)	Silent	Ē.
.12	4517	GCTGACAGAG [G/A] AGGAGGAC					2 (	1)	Ser -:	> Lys
.13	5114	CCAGCCTCCA [G/A] TGTACAAC		5 ( 4 (				1) 1)	Ser -: 3' UT	> Lys
							- '	_, 		-
	3547		CAT	7 (	3	) :	5 1	3)	3' UT	
.20	3888	TGTGTGTGTG [T/G] GCTGTCG(	TT 1	.1 (	9	)	-	3)	3' UT	
.21	3889	GTGTGTGTGT (G/T) CTGTCGCT	TG 1	.1 (	9			3)	3' UT	
1293.10	2480	Catecorers (a /a) amage				<del></del>				•
.11	2400	CATGCCTGTG [C/G] GTGCGCTT	.cc	2 (	2	) 3	(	2)	3י עד	
		ATGCCTGTGC [G/C] TGCGCTTC	CT	4 (	4	) 2	: (	1)	3' UT	
1298.20			AG 1	2 (	8	) 2	(	1)		
1300.7	566	AAGTGTACCT[T/G]GAATTCTT	TG					2)	N/D	

Target ID	Loc'n	Sequence around [polymorphism]	# Varia (Lib)	1	#	Varia 2 (Lib)		otein inge		
1241.1	3 1802	AATTAAAGTTTTTCTTC[C/T]	ATG	10	(	7)	2	( 2)	3' UT	
1242.1	.8 3296	TCCTGTCACA [T/C] GTGCAG	TAGG	12	(1	11		·		
.2					(			(2) (3)	3' UT 3' UT	
			· ·		` 				3. 01	
1243.5	134	GAACGCAGTG [G/A] ATGCCTT	TTCG	4	(	4)	3	(3)	Asp ->	Agn
.6	184				i	•		(2)	Silent	
.7	185				i	•		(2)	Val ->	Phe
. 2	4 1528	CGGTGGAGCA [G/A] CCCCTGG	GCT	10	į	8)		(2)	3' UT	
. 3	1 1789	TACACGTGTT [G/A] CTTCGT(	CCAG	14	(	9)	2	(2)	3' UT	
.3	2 1790	ACACGTGTTG [C/A] TTCGTC	CAGT	16	(	9)	8	(7)	3' UT	
1246.6	1512	ATCCCGGAGG [G/T] TCACTC	rgaa	2	(	2)	2	( 1)	Val ->	Dho
.9					ì	-		(6)	3' UT	Pne
1247.6	517	GCGGACAGTA [C/T] ATTGCC	ATTG	2	(	2)	2	( 2)	Silent	
1248.4	164	TGATGTCCCC [C/T] TTCGACC			- <del>-</del> -				0:1	
.5					(			(2) (3)	Silent Pro ->	C1-
.1					ì	-		(2)	Silent	GIII
1249.1	50	ACCGCCTGCG [G/A] AGTAACT	rgca	4	(	3)	2 (	( 2)	יט יכ	
. 2	6 1800	TTGTAAAAGG [G/T] TTACTC	CAT	26	(1	6)		1)	3' UT	
1250.1	353	GCCCCGCCAG [G/A] ATTAACA	CAG	3	(	2) 	2 (	2)	Silent	
1251.1	1 1070	CCGCCAACGG [C/A] AACATCG	ACC	2	(	1)	4 (	(2)	Ala ->	Glu
.1	8 1974				i			2)	3' UT	
1253.7				2	(	2)	2 (	1)	Silent	
.1				2	(	2)		1)	Ala ->	Asp
.1					(	-		1)	Silent	
.1 .2					(	-		1)	Silent	
	1 3848	GACCCCGCTG [C/T] CACCCGC	rrr	2	(	2)	2 (	1)	3' UT	
1255.1	1 895	TCAAATGAAT [C/G] AACCACO	TGG	2	(	 ว\	2 (	1)	Gln ->	G3 v
.2					ì	-	17 (		3' UT	GIU
.2					ì	-	17 (		3' UT	
.2	7 1801				Ċ	-		3)	3י עד	
1257.1				9	(	6)	2 (	1)	Silent	
.1				21	(1	4)	3 (	2)	3' UT	
.2	0 955	TGAGAGAACG [A/C] AATCTCT	ATC	19	(1	4)	3 (	2)	3' UT	
1258.1	1 329	ATCACACCAA (A (G) ACACAC	mmo							_
.1				22	-	•		1)	Lys ->	Arg
.1				24 25				3) 1)	Silent Ser ->	Pho
.2				27		-		1)	Ser ->	
.3				17			2 (		3' UT	
1261.6	425	CTGGCATCAT [C/T] GCCATCT	'ACG	9			2 (	1)	Silent	
.2				8			3 (		3' UT	
						•	<i></i>	•		
1265.1	46	ACTCGAGCCT [G/A] CTGTTCA			(		2 (		יטי פ	
.1					(	-	20 (		3' UT	
1266.1			CAA	2	( :	2)	3 (	2)	Glu ->	Lys
.7				7	(	6)	4 (	3)	3' UT	
. 9				10				3)	זט יצ	
.10	6 B65	GTAGAGCACA [G/A] GGGTTTC	CCC	25	(1:	2)	2 (	2)	3' UT	

.14 1292 TTTCCTCTAA [T/C] CCTGGAAATT 16 (7) 2" (*2) 3" "UT

Target ID	Loc'n	Sequence around [polymorphism]	# Varia (Lib)	1	#	Varia (Lib)	2	Protein Change		
1189.1 .1				11 14				3 (2)	3' UT 3' UT	
1190.5	1010	GGGGTTGGGC [G/T] GGTTCCT	TTTG	2	(	 2)		3 ( 3)	3' UT	
1193.1	79	CTCTCCCCTC [C/G] AATCCTA	ATCC	5	(	5)		2 ( 2)	5' UT	
1196.2	3 2123	TATGTTTTCC (T/C) ATGCAAT	TAGT	19	(1	4)		2 ( 2)	3' UT	
1198.2				20	(1	5) 		4 ( 2)	3' UT	
1199.3	1012 3 1460	• , •			(			2 ( 2) 2 ( 2)	Silent 3' UT	
1202.7	671	ACCATAACTT [T/C] TTTTTAA	AGGA	13	(	7)	1	.1 ( 6)	3' UT	
1205.1	942	GGAGAAAATT [G/A] AAGAATA	ATCT	13	(	6) 		2 ( 1)	Glu ->	Lys
1206.3					(			2 ( 1)	Silent	
1208.3		• • • • • • • • • • • • • • • • • • • •			(			2 ( 2) .5 ( 6)	Silent 3' UT	
1214.9	1566	GCATCCTGGA [C/T] AGCAACA	AAGA	5	(	3)		2 ( 2)	Silent	
1216.8	202	***************************************		5 	(	4) 	· 	3 ( 2)	Silent	
1217.3	2545 2686			5 12	(			2 ( 1) 3 ( 3)	Silent 3' UT	
1218.1					(			2 (1)	Silent	
.0:		• • • • • • • • • • • • • • • • • • • •		71	-	-		1(1)	Gly->Se	er
				71				1(1)	Silent	
.0:	3 3385	TTGCCTGGAC [G/A] TTGGCCT	GCG	71 (	(36	)		1(1)	Silent	
1221.2	0 1893	TGGAGCCTTC[G/T]GCTGGAA	GTC	9	(	7) 		3 ( 2)	3' UT	
1222.3	0 2797 	CACAAACCCA [A/G] TTGTAAA	TAA	14	(1	1) 		2 ( 1)	3' UT	
1223.3	2813			13	(1	0)		2 ( 1)	N/D	
. 9	3662	GGACCGCAGT [C/T] CAGCATT	TGT	2	(	2)		2 ( 1)	N/D	
.10	0 3727	TAAACTGAAG [T/A] GTGTTT1	TCC	4	(	4)		3 (2)	N/D	
.1			CAC	24	(1	9)		2 (2)	N/D	
.10		• • •	<b>IGAA</b>	20	(1	7)		2 (2)	N/D	
.20				21	(1	7) 	- <b></b> -	2 ( 2)	N/D	
1224.13					(			2 (2)	3' UT	
.1'		· · · · · · · · · · · · · · · · · · ·				2)		8 (7)	3' UT	
. 2:		- · · · · · · · · · · · · · · · · · · ·		15			1	7 (13)	דטינ	
. 23	2 2079	AGCTCTGCGG [A/G]GTCATCA	CGC	15	(1	1)	1	7 (13)	3' UT	
1227.9	_			9				4 (3)	Asn ->	-
.10				20				2 (2)	Ala ->	Pro
1229.1		ACTCCGTGCG (C/T) AATGCCG		4				2 ( 1)	Silent	
1235.1	1 1194	TAGCCGCCAG [G/A] ATTGCCA	TGA	18	(1	2) 		2 ( 2)	Asp ->	Asn
1238.14	4 1133	AGAACCTGAA [G/A] GCTGCGC	AGG	6	(	4)		2 ( 2)	Silent	
.17						6)		2 ( 2)	3' UT	,
1239.13	3 1289	ACTTTTCCTC [T/C] AATCCTG	GAA	11	(	5)		7 (4)	זט ינ	

1184.14		GCCTAAATGT [G/T] TGAAGTGCGA	30 (18)		3' UT
1186.7	1337	GGGAGAGGTG [A/G] CCCTGAGGGA	2 (1)	4 (3)	3' UT
1188.7		AGTCATCTGA [G/A] GTTATGCTTT		2 ( 1)	

		·						
ID	Loc'n	Sequence around [polymorphism]	# Varia (Lib)	1	# Varia 2 (Lib)	Protein Change		
.3	9 477	TAGTAATAAA [T/C] TTTCA	TATGC	21	(15)	2 ( 2)	3' UT	
1155.6	64	TATTCTCCGA [G/C] CTTCG	CAATG	29	(19)	3 (3)	5' UT	
.7	69	ATTCTCCGAG [C/G] TTCGC	AATGC	25	(17)	3 (3)	יט יכ	
1157.3					(11)	3 (3)	Silent	
.1	2 290	GTCTGTCACA [A/G] TCTGC	rcctt	28	(12)	11 ( 7)	מט יצ	
1158.4	59	CGAAAATTCG [G/A] CCAGGG		26	(20)		21	3
1150.4	J.	CGAAAATTCG [G/K] CCAGG	311C1 		(20)	2 ( 1)	Ala ->	Asp
1159.2	68	AGCACCAGCG [G/T] TGGCAG	GAGAC	24	(14)	2 (1)	Val ->	Leu
.7	199				(10)	5 (3)	Gly ->	Glu
1160.1					(18)	2 (1)	Glu ->	
.1					(17)	2 ( 2)	Glu ->	-
.1	7 229	TCCAAGTCCG [C/G] CTAGT	ACGCG	2	(2)	29 (19)	b∟o ->	Ala
1161.8	263	AAGGCAACGC [C/T] CTGCT	GCGGC	30	(16)	2 ( 2)	Silent	
. 9					(14)	9 (9)	Silent	
.1	1 283	CGGCTGGTCC [G/C] ATTGG	GGTG	13	(9)	4 (4)	Arg ->	Pro
1163.8	1522	GTACTTCCTC [G/T] TCCTC	ATGCC	2	(2)	5 ( 1)	Arg ->	Leu
1165.1	91	CCACGACCGT [G/C] GCTAT	CTGGT		(3)	2 ( 2)	Ala ->	Ara
.4	180				(3)	4 (2)	Silent	Arg
.7					(7)	4 (3)	Ala ->	Glu
. 8	274			20	(12)	3 (2)	Ile ->	Phe
.1					(7)	5 (4)	Silent	
.1					(5)	8 (5)	Leu ->	Phe
.3					(10)	4 (3)	3' UT	
.3					(5) (2)	4 (4) 7 (6)	זיטינ זיטינ	
					·			
1170.2	410	ATTGCGAATC [G/C] TTAGA	TATCC	2	(2)	2 ( 2)	Val ->	Leu
1171.2	7 2823	AAGAGATGAA [A/T] AAAAA	AAAAA	8	(6)	4 (4)	3' UT	
1172.1	5 1519	CTCTAGTGTT [G/C] AGGGA	rctac		(7)	2 ( 1)	3' UT	
.1					(3)	2 ( 2)	3' UT	
. 2					(6)	5 (4)	זטי3	
				- <b>-</b> -				
1173.1			AGGTA	,6	(6)	2 (1)	זטינ	
.0						48 (30)	Silent	
.0					(36)	1(1) 1(1)	Silent	
.0		4 bp deletion	LACCI	11	(36)	1(1)	Silent	
.0		_	ICTCA	71 (	(36)	1(1)	3'UT	
.0	6 2888				(36)	9 (9)	3'UT	
1174.2	4 3200 7 3302	- • •				2 ( 2)	3' UT	
	, 3302 		AAAAA		(3)	3 (2)	3' UT	
1176.1	3 2571	GAGGCTTTGC [C/T] TTGCC				3 ( 3)	3' UT	
1177.1		CTCTTCCCCC [T/C] AAAAA				3 ( 3)	3' UT	
		GTTAGCTTTA [A/G] AAAAA				3 (3)	3' UT	
				<b></b> -				
		TACCAAAGCA [G/A] GGGTT						Lys
		CTTCCTGCTC[G/A]ACTGA				2 ( 1)	21 177	
	1 1799	TGGCTTTCAG [G/C] CCTGG	CCTTT			5 (4)	3 ' UT	
					-			

Target	Loc'n	Sequence around	# Varia	1	# Varia 2	Protein	
ID		[polymorphism]	(Lib)		(Lib)	Change	
1117							
1137.1	3				(2)	3 (2)	5' UT
.1!					(12)	4 (2)	Silent
.2.					·( 9)	3 (2)	Leu -> Val
. 2:		TAAAAACTGC [C/A] ATC	GGCATC	8	(8)	4 (4)	3' עד
1138.8	78	AGGAGGAGCT [G/T] CTGA	22020		·		
.14					(17)	2 ( 2)	Silent
.24					(15)	2 ( 2)	Ala -> Thr
			AGCGGC		(16)	2 (2)	Silent
1139.2	L 334	TTCCGAAGCA [A/G] TCTT	CCTCCT		(20)	2 ( 1)	
					(20) 	3 ( 1)	Asn -> Ser
1140.3	17	CCGCTGCTCG [C/A] CATO	TCTTCT	22	(15)	3 ( 2)	5' UT
.20	341				(16)	2 ( 2)	3' UT
						2 ( 2 <i>)</i>	3 01
1141.5	201	ATCAGACTAG [A/T] GCTG	AGTCTT	2	(1)	11 (5)	Arg -> Ser
.7	346	GCGCCGTTGG [C/A] ATCG	TAGAGT		(3)	3 (2)	His -> Asn
.18	3 1071				(4)	6 (3)	Silent
.23	L 1376	TGTTATACAGGCAGTGA [G	/A] AAA	14	(10)	5 (4)	3' UT
1142.13	556	CTTGTGACTG [A/G] CCTC	TGGTCC	8	(7)	3 (3)	Asp -> Ala
1143.17	7 470	ATCTACAAGC [G/T] TGGT	TATGGC	32	(20)	2 (2)	Arg -> Leu
1144.1	211				(5)	4 (4)	Silent
.5	286				(9)	5 (4)	Ala -> Glu
.6 .17	287				(13)	4 (3)	Ile -> Phe
.26					(8)	2 (2)	Pro -> Ser
.20	700	ACCAGCACAT [C/T] GGCA	AGCCCT	24	(18)	2 (2)	Silent
1145.18	395	GTGAAAAATA [C/T] ATCC	CCACCC		·		
.20	-				(14)	7 (7)	Silent
		CATCCGCAGG (G) 1) 11CG	GAIGAG	21	(20)	2 (2)	Val -> Phe
1146.16	276	TGTTTGCAAA [G/T] GCCC	TGGCCA	16	(12)	3 (3)	7
.18					(10)	5 (5)	Lys -> Asn Silent
. 22	340		TGGTGC		(12)	3 (3)	Ala -> Pro
. 23	341				(12)	3 (3)	Ala -> Glu
. 25	343		TGCTGC		(12)	2 (2)	Ala -> Thr
						- , -,	
1147.22	324	GAGACTGGCA [G/A] GCCT	CGGCCT	7	(5)	3 (3)	Arg -> Lys
1148.29	390	TCGGTGACAT [C/T] GTCA	CAGTGG	33	(17)	3 (2)	Silent
1149.14				14	(12)	3 (2)	Leu -> Val
.22	414	CGTAAAGCAT [G/T] GCCG	GCCCGG	23	(20)	4 (3)	Ala -> Cys
1150 20	252						
1150.20 .34					(19)	2 (1)	Leu -> Pro
		CCTCATGGAC [T/A] AAAA		7	( 6)	4 (3)	3' UT
1151.13							
.14		TCCAAAGCCC (T/C) GGTG CCAAAGCCCT (G/T) GTGG			(16)	6 (1)	Leu -> Pro
.16					(16)	6 (1)	Silent
.22					(16)	2 (1) 6 (4)	Silent
.25					(14) (15)		Ala -> Val
						3 ( 1)	3' UT
1152.15	131	GCGCGTGTGC [G/A] AGGA			(18)	3 ( 2)	
.19					(18)	6 (4)	Ser -> Lys
.20					(16)	5 ( 3)	Lys -> Asn Leu -> Val
.24		TAGCAGGTTA (C/T) GTCA				22 (15)	Silent
.31					(23)	2 ( 2)	Silent
						_ \ &/ 	
1154.8	119	GGGCACAGCC[C/T]TAAA	GGCCAA	17	(9)	3 (2)	Silent
						-	

_	Loc'n	<del>-</del>	# Vari		Varia		
ID		[polymorphism]	(Lib	)	(Lib)	Change	
.5					7)	14 ( 4)	Val -> A
.1				11 (		2 (1)	Leu -> P
.1	6 73:	CAAGAAGGGG [A/C] CC	AGGCTTGG	12 (	. 7)	4 ( 2)	Thr -> P
		0001000000(=/1101					
1116.2					1)	4 ( 4)	Silent
.3	17:	CCGGGGAATG [A/C] AG	JCCACAGA	2 (	1)	5 ( 5)	Lys -> G
1117.1	1:	CCTGCAGCCC (T/C) GG	CCTTCCCC	10 (	' 7\	4 ( 3)	5' UT
.2				10 (		4 (3)	5' UT
.5				10		2 (2)	5' UT
.1				12		8 (4)	Leu -> P
. 0		- • •		65 (3		7(7)	Ser->Val
.0				70 (3		2(2)	מטינ
1118.5	168	GACATGGTTG [G/A] TT	ATGCACAA	6 (	(5)	2 ( 1)	Val -> A
.2	8 294	5 ATGATTAAGG [A/G] CC	AGAGGATC	7 (	(6)	7 (5)	זט יצ
1119.1	1 107	5 TCACAAATTA (G/A) GC	CACGGCCC	3 (	(3)	3 (3)	3' UT
1121.1					(3)	2 (2)	Silent
.2					(6)	3 (3)	Ala -> P
.2	7 190	2 GACAGACTGG [G/A] AA	AATATTGA	2	(2)	20 (17)	Gly -> G
1123.9	248	5 CCTGATATGA [A/C] TG				4 / 4	
.1					(5) (3)	4 (4) 3 (3)	Asn -> T 3' UT
 		/ IIGACAIAAC[I/C]AI	CITITIOA			3 ( 3)	3. 01
1124.2	11	9 TCTTATCGGA[G/A]CT	TGTATGTG	2	( 1)	3 ( 3)	5' UT
.7					(1)	5 (3)	Ala -> S
					·		
1127.2		4 TGCAAAA [G/A] CGCAG	GATCAAGG	13	(8)	2 (1)	Ala -> T
.1	.5 7	5 TCAACATCTG[T/C]GT	TGGGGAGA	22	(14)	2 (1)	Silent
.3	4 33	9 AGGAACACAT [T/C] GA	TCTGGGTA	2	(2)	31 (16)	Silent
1128.9			-		(3)	4 (3)	3' UT
.1	.0 48	4 AAATAAAAAAAAA (A/	T] AAACCC	4	(3)	4 (3)	3' UT
					. <b></b>		
1130.7				25		9 (4)	Val -> L
.1				26		2 ( 1)	Asp -> I
.1				15		3 (2)	Met -> I
.1				16	-	4 (3)	Arg -> A Silent
• • • • • •		1 IGGAGGAGAI (C/I)GC	GGICAGCA	12	· //	2 ( 1)	Silent
1131.1	.2 50	2 TGGCTGACCA [G/A] GC	TGAGGCCC	18	(13)	2 ( 2)	Silent
					, ,	- \ 2/	
1133.2	0 27	9 CTGAGTCTGC [C/T] AT	GAAGAAGA	41	(18)	2 ( 1)	Silent
.3	5 51			19		4 ( 2)	3' UT
1135.2		1 AAAACAAGAC [T/G] GG	GGCTGCTC	38	(20)	8 (4)	Silent
. 2					(18)	4 (2)	Silent
. 3	2 43	8 AAGAGTGTTG [ <b>G/A</b> ] GG	GGGCCTGT	32	(18)	2 (2)	Gly -> S
1136.1					(9)	10 (6)	יט יכ
.1					(21)	5 (4)	Ala -> 1
.1					(23)	5 ( 5)	Silent
.1					(16)	8 ( 5)	Ala -> 0
. 2		* * *			(20)	5 ( 5)	Lys -> A
. 2					(20)	5 ( 5)	Pro -> A
	25 24		CCACCTCC		(22)	6 (3)	Pro -> L
.2		3					
. 2				26		5 ( 5)	
	0 28	4 AACAAGAATG [C/G] TO	GCGCCACG	26	(18) (18) (22)	5 ( 5) 5 ( 5) 2 ( 2)	Ala -> F Ala -> V Arg -> C

.03	GGCCGGAGGC [A/G] TTCACTCCAG	30 (20)	42 (32)	Silent
1115.2	ACTGCCGCAG [G/A] AATGCCGTCT		4 ( 1)	Silent

Target ID	Loc'n	Sequence around # {polymorphism}	Varia 1 (Lib)	#	Varia	2 P	rotein hange	
.23	1035	TGGAGCCCAG [C/G] TGGCGCAT	'AT	3 (	3)	3	(2)	Leu -> V
1093.2	258	CTCTCACAGA [C/T] GAGATCAA				<u>-</u>		
.3	330		CT :		2)		(1)	Silent
.4	339	CTGTGGTGCT [G/A] TCCATGGA	GI .		2)		(2)	Silent
.6	420	TTGCTCAGAG [A/G] AGCCGGGC	CA .		2)		(2)	Silent
.22		GCGTTGGAGG [T/C] GGCTTCAG	TG .		2)		(2)	Silent
.23			77 63		2)		(1)	Val -> A
.24		GTTCCAGCAG [T/C] GGCAGAGO	CA		2)		(1)	Silent
.27		GGCAGAGCCA [T/C] TGGGGGTG	CA .	, (	2)		(1)	Silent
.28		GGAAGAGCTA (T/C) AAGCACTA	77	(	•		(1)	Ile -> Th
.44			TT 13		2)		(1)	Silent
.45		GCTGGGGATG [A/G] ATGCTTAG			2)		(1) (1)	3' UT
.49	1579		10 1.		3)		(2)	3' UT
.50	1582	GCTCTTCACT [C/G] TTTGCAAT			3)		(3)	3' UT
						• • • • •	( 3/	3' UT
1094.24	3103	TGCTTTTGCT [C/G]GCTTTGGC	CA 15	. (	9)	4	(2)	זט יצ
.25	3104				2)		(2)	3' UT
					_, 		\	2. UI
1095.17	2885		AA 18	(1	L1)	2	(2)	Silent
.25	2994	GTGGACTCCT [G/T] GGAGCTCC	TG 14		10)		(3)	3' UT
.31	3246	GGGGATGAAA [C/A] CCCAAGGG			7)		(11)	3' UT
							·,	
1098.10			GA 8	(	7)	3	(3)	Ala -> Pr
.13		CACGTATGAG [G/C] ACATCCAG	AC 2	(	1)		(10)	Asp -> Hi
.21			AT 11	. (	6)	2	(2)	3' UT
.25	-	(-, -, 00100110	CC 21	(1	3)	2	(2)	3' UT
.29			3G 16	()	1)		(,5)	זט יצ
.35	2029	CCAAGGAGCG [C/A] GCTCCACG	CG 13	()	.0)	2	(2)	3' UT
1099.36	7590	MCCOMMON ON LO LOS ADDRESSES						
.37	7591	TGGTTTGAGA [G/C] CTGGCGCT.	AC 12		.1)		(4)	זט ינ
.44			CC 9		8)		(4)	3' UT
.01	215	ATTCCTCAGT [C/T] CCTGTCAG	JA 13		.2)	9	(8)	זטינ
.02		Nucleotide repeat		(36			9 (9)	Ile->Val
		_	o 	6 (3	5)		6 (5)	3'UT
1100.16	3865				3)		/ 2\	
.17	3904		. A.		2)		(3)	3' UT
.19	3994	GGTGGAGTTC [T/C] TCCATGCA	3G 6	ì			(5)	3' UT
.22	4046	TATCCGAGGT [G/T] CTGCCGGGG	3C 6	ì	6)		(5)	3' UT 3' UT
								3 01
1102.29	1967	TAACTTGGGT [T/G] TGAAAAAA	AT 2	(	1)	25	(20)	3' UT
.30		AAAAATAAAA [T/G] TCCTAAAT	TT 2	Ò	1)		(20)	3' UT
.31	1991	AAAAATAAAATTCCTAAAT [T/C]	T 2				(17)	3' UT
1105.15	2038	GGGCCTGCCT [G/C] TGAGTGGTC	FC 3	(	3)	6	(6)	זטינ
1109.4	884	AGCTTGCCTG [C/T] TTCAGCAA		(	4)	2	(1)	3' UT
1110.11		CTGATGCAGA [T/C] TCTTGTCTT				5	(5)	3' UT
	704							
1111.8	794	AAGACGGCTA [T/C] GAGTTCTT	. G 2	(	1)	7	(6)	Silent
.15	1087		.C 8	(	5)	4	(4)	3' UT
.16	1110			(		18	(17)	3' עד
.17	1146	GAGCCTTGGT [G/T] TATTTTTCT		(1			(4)	3' עד
 1114 10		7.0000 0000 ( a ( a ) a a a a a a a a a a						
.20	540	ATGCTACCTA [C/T] CGGGAAGGC			6)		(2)	Silent
.20	585 586	TCACTGCCAA (T/A) GCTCTCGCT			5)		(4)	Asn -> Ly
.21	586 704	CACTGCCAAT [G/T] CTCTCGCTT			2)		(4)	Ala -> Se
. 4 /		CCCAAATTCG [C/T] CGTTGCCAC		(1	4)	3	(3)	Ala -> Va
01	177	C						
.01 .02	177 328	GAACAACCAC (T/C) GGGTCCTAC ACTGAATGAG (C/G) CTCCACTGG		(36 (36			(2) (1)	Silent Pro->Ala

Target ID	Loc'n	Sequence around [polymorphism]		aria (Lib)	1	# Vari		Protei Change		
.19						(14)		3 (3)		
.2	7 147	4 GGGAGGCCTG [G/A] G	3C1GGGCCC	<b>.</b>	12	(11)		2 (2)	Gly ->	Arg
1063.2	1 70	E CCCA CATCCC (C/T) C	ACCTCCACC			(7)		8 (7)	Silent	
.2:						(14)		2 (2)		T.e.11
.3						(2)		2 (2)		Deu
1068.3	0 275	GCGCCGCGGT[G/C]G	CTACCGCC	<b>.</b>	21	(15)	. <b></b>	2 ( 2)	Ala ->	Arg
1069.1	0 119 	9 GGGCGCCAGC [C/G] G	AGTGCTTA:	r 	17	(13)		2 ( 2)	Arg ->	Glu
1070.3	30	3 AAGAGGATGG [G/T] C	AGGAGTAT	3	3	(2)		6 (6)	Gly ->	Val
.7	61	5 ACATTGGAGA [T/C] G	ATGATGAA	3	6	(6)		2 (1)	) Silent	
.1	2 109	2 GAAGTCTGCA [G/T] T	TGAAGAAA	A.	5	(5)		3 (3)	ינ (	
1072.2						(10)		2 ( 2)		
.2	1 131	0 CACGAGATTT[G/T]C	CAGGGGCA'	Г	4	(3)		5 ( 5)	דטינ (	
1073.2	6	5 GGCCCAGAGG [G/A] A	ATGGACCC	c	2	(1)		2 ( 2	) Silent	
1074.1						(4)		2 ( 2		
.2						(6)		3 (3)		
	2 165	2 GTCTTTTAGA[C/A]A	ACTAGAII			(5)		3 ( 3	, 3.01	
1077.1	9 127	5 TATAATAATT [G/T] T	ATGGTACC	T	3	(2)		3 ( 3	טינ (	
.2						(5)		3 (1	•	
.3						(3)	1	0 ( 9		
.3	4 246	0 GAATTGGCCC[G/A]C	TGGTACCA	A	5	(4)	3	6 (14	יטינ (	
						- <b>-</b>				
1079.1	.1 203	5 CTGCTGTAGT[T/C]G	CTCCATTC	A	19	(14)		2 ( 1	) Silent	
.1	.8 234	7 GCAACATCAC [A/G] 1	GGGCTGAT	G	25	(17)		2 ( 2	) Silent	
1080.2	236	7 TGCCTGAGGA [A/C]	GGCAGGGC	c 	1 	(1)		5 ( 4	) 3' UT	
1081.1	.7 80	5 GATTGATAGA [G/A] A	GAAACTGC	G	13	(8)		2 ( 1	) Ser ->	Lys
.3	6 117	8 ATGCATATTGTAAAAT	AAA (A/G)	A	2	(2)	1	10 ( 9		_
1082.1	.9 76	7 TTCGGGGCCT[C/T]	CCCGGCAC	C	7	(5)		2 ( 2	) Ser ->	Phe
.2	27 92				3	(3)		3 (3	-	Glu
.4	10 133	GTCTACAGAT [G/T]	SGCTGTGGC	C:C	4	(4)		5 ( 5	3' UT	
										•
1088.1						(16)		7 ( 5		
	12 14					(18)		5 ( 4	_	
		AGCGCTACTG [C/G] 1 26 GACCACGCTG [A/G] 1				(16) (16)		5 ( 4 18 (11		· IIp
_						(19)		3 ( 3		
		BB ACCCACCCAC [C/A] ( TGAGCGTCCT [A/G] (				(18)		9 ( 6		
		BB GTGTGTATCC [C/G]				(15)		2 ( 2		
									-	-
1090.3	18 41	53 GTGTAAAATA (T/C)	CTGCTTGG	;A	13	(12)		2 ( 2	יטינ (י	
.:	21 42	15 CTCACAGTAA [T/C]				(16)		2 ( 1	יצטינ (ב	
										-
1091.3	3 7:	93 AGGATCCCCC [A/G]	CCGCCTATC	G	2	( 1)		5 ( 2	) Silent	<b>:</b>
. 9	9 9	62 CTTTCTTGTG [C/T]	CCCTTCTG	AG	4	(3)		5 ( 2		
•:	14 20	78 AAGAGGTGCA [A/G]	IGTGATCT(	SA.	6	(5)		11 (8		
1092.		42 CCTGGAGGCG [G/C]				( 8 )		4 ( 1		
	10 4					(6)		11 ( 5		
		03 AGATCGACAA [C/T]				L ( 6)		6 ( 5		
• :	22 10	34 TTGGAGCCCA [G/C]	CTGGCGCA!	ΓA	4	(4)		3 ( 2	2) Gln -	> Hls

.11	418 640	GCCCCTTTTG [C/T] AGCCCACGGC CAACTAACCA [G/A] ACAACTGGGA	6 (5) 15 ( 7)	5 (3) 7 ( 6)	N/D N/D
1026.2	47	GTCTGGACGC [G/A] ACGGCGGCGG	2 (2)	3 (2)	5י עד
.9	262	CCCACCCTT [G/A] GAGCACAAGA	28 (13)	4 (1)	Silent
.19	602	Ataaagtatagcgg [a/g] agagan	5 (5)	11 ( 8)	3' UT
1027.2	405 942	TGGAAGAGAT (T/C) ATTGATGACA	2 ( 2)	2 ( 2)	Silent
.6 .16	1361	GGACAAAAAG [A/G] TATGACTCCA CAGGAAGGCA [C/A] CCCTGAGGGG	8 ( 8) 13 (11)	4 (4)	Silent
.10		CAGGAAGGCA (C/A) CCCIGAGGGG	13 (11)	3 (3)	Thr -> Asn
1031.31	2990	CCTTCGCCCA [G/A] CTGCGCCTCG	9 (7)	2 (2)	Silent
.32	2991	CTTCGCCCAG [C/G] TGCGCCTCGG	4 (4)	4 (4)	Leu -> Val
		• • • • • • • • • • • • • • • • • • • •			
1032.1	3	AGTCGCCG [G/A] GGAGGACGGTCT	5 (4)	3 (3)	יס יכ
.2	4	GTCGCCG [G/A] GAGGACGGTCTGC	5 ( 5)	3 (2)	5' UT
.3 .10	69	CCGCCGCGC [G/A] AAGATGGCCT	5 ( 5)	2 ( 2)	יטי 5
.10	312	AAAAAGATTG [T/C] CGCTATGCTT	8 (8)	3 ( 3)	Silent
1037.20	2919	TGGTTATGGG [G/C] GTGCCAGAGG	15 (13)	2 ( 2)	3' UT
1038.5	723	CAGGTCCTGG [G/C] CCCCAAGCCT	7 (7)	3 (3)	Silent
.10	862	ACTCCAGCCC [C/A] TTTGCCCTTG	5 (5)	13 (10)	Silent
.13	1053	CCTCAGGGCC [G/A] TGAGAGTCCC	13 (10)	8 (7)	Arg -> His
1039.19	1665	ACCAMOTOTO ( A / C) COMMA MONTO	2 ( 2)		
.23	1748	ACCATGTCTC [A/G] GTTTATTTTT TATTTGAGTA [G/A] AAAATCACTT	2 ( 2) 3 ( 3)	6 (5) 2 (2)	3' UT 3' UT
			3 ( 3 <i>)</i>	2 ( 2)	3. 01
1040.7	2056	GCTGAAGAAG [T/C] CTTCGAGGCT	20 (16)	2 ( 2)	3' UT
1043.1	351	ACTTGAAGGA [T/C] GAAAGTGGCT	2 ( 2)	3 (3)	Silent
. 2	372	TCAAAGATCC [C/T] TCCAGCGACT	2 ( 2)	3 (3)	Silent
1048.3	341	GCTACGCGAA [G/A] CTCTTTGCTG	2 ( 2)	2 ( 2)	Silent
1049.10	2648	CCTGAAACCC [T/A] GAAGCTGATG	5 (4)	3 (1)	3' טד
.12	2768	CAGTGGTAGC [G/A] ATGGAAAAA	8 (6)	2 ( 1)	3' UT
1050.11	2381	CAGGAAGAAG [A/G] TATTCCAGGA	4 (2)	2 (2)	<pre>Ile -&gt; Val</pre>
.13	2750	TTTTGCCAGC [G/A] TAGTGCTCCT	2 ( 2)	2 ( 1)	Val -> Ile
.14	3034	GAGTCCAGAG [T/C] GCTGCCAGGA	2 ( 2)	2 ( 1)	3' UT
1051.10	260	AGCTGGCAAG [C/T] TACTTTTCAG	15 (10)	3 ( 1)	3' UT
.18	409	TTTGCTTCTT [G/A] AGTAGAGCCA	17 (12)	3 (1)	3' UT
1052.7	428	TGTACAAATC [T/C] TTCATCCATA	7 (6)	2 ( 2)	3' UT
1053.24	4113	AGGAGAAGAC (C/T) TACCGGCGGC	8 ( 7)	8 (8)	Silent
1055.17	3122	CACCETCACC [C/X] ACCTCACCCT	A / A\		2 1 TPP
.23	3450	CAGCGTCAGC [C/A] AGCTCAGCCT TGAGAAGGGC [T/C] TGGGACAAGA	4 ( 4) 26 (12)	4 ( 4) 3 ( 3)	3' UT 3' UT
.25	3568	TCAAAAAACC[T/C]TTTTTTCTG	26 (12)	2 ( 2)	3' UT
.01	2061	AGGCTGGTCG [C/T] GAACTCCTGA	61 (34)	11(9)	זטי 3
.02	2419	TTAAAAGATA [C/A] GCATGTCTTC	59 (33)	13 (10)	זטי 3
.03	3047	TAAGTCTTTT [G/T] AGTGTCATCA	71 (36)	1(1)	מטי צ
.04	2960	TATTACTCAC [G/A] TATACCCCAT	71 (36)	1(1)	זטי צ
.05	3450	TGAGAAGGGC [T/C] TGGGACAAGA	60 (33)	12(9)	3 יטי
.06	3296	CTGCAAAGAG [T/C] GTACTGTGCT	60 (33)	12(9)	דטי צ
1056.12	407	CAAGAGCACC [G/C] GTGGGGCCCC	13 ( 9)	2 ( 2)	Val -> Arg
1057.20			7 (5)	3 (3)	3' טי
1059.11	1130			2 ( 2)	Asp -> Ala

Fig. 7

		F 19.	<u> </u>		
Target ID	Loc'n	Sequence around [polymorphism]	# Varia 1 (Lib)	# Varia 2 (Lib)	Protein Change
1.01	472	CGGCCATGTA [C/T] GTGGCCATCC	71 (26)	1 (1)	043
.02	250	ACGAGGCCCA [G/A] AGCAAGCGTG	71 (36) 71 (36)	1 (1)	Silent
.03	1003	CGGGCATTGC [C/T] GACAGGATGC		1 (1)	Silent
.04	801	ACGAGCTGCC [C/T] GATGGCCAGG	66 (35) 71 (36)	6 (5)	Silent
.05	1201	AATGCTTCTA [A/G] ACGGACTCAG	• - • •	1 (1)	Silent
.06	991		71 (36)	1 (1)	Silent
.07	1099	CCACCATGTA [C/T] CCGGGCATTG	17 (17)	56 (35)	Silent
.08	499	TGTGGATCGG [T/C] GGCTCCATCC	71 (36)	1 (1)	Silent
	477	GTGCTGTCCCT [C/G] TACGCCTCT	65 (65)	7 (7)	Silent
4.01	2168	CCGCCAGTAG [C/T] ATCAGCTTTA			
.02	388	TGGAAAGCCA [C/T] GGGGAGCCGA	61 (34)	11(9)	3 'UT
.03	491	AGAGGAGAGA (T/C) GAGAGAAAGA	62 (29)	10(7)	Thr->Met
.04	1171	AAAACTAATT [T/C] GGATAGAAAG	68 (36)	4 (4)	Silent
.05	336	TCGGGATGCC[C/T]TGCAGAAGGA	68 (36)	4 (4)	Leu->Ala
		TCGGGATGCC[C/T]TGCAGAAGGA	71 (36)	1(1)	Silent
5.01	421	ACGTCCCAAC [G/A] AAGAGACCAC	66 (36)	6(6)	Silent
8.01	1570	CTCCGTCCA [T/C] TGTACTATCTG	70 (36)	2(2)	Silent
.02	778	TCCACGTCCT [C/G] GTGCTGATGC	71 (36)	1(1)	Silent
.03	158	GGACACACTT [T/C] TGAAGCTTCT	71 (36)	1(1)	Silent
9.01	 1929				
		CCATGCACCA (C/A) GAGGACTTTA	71(36) 	1(1)	His->Gln
10.01	1099 	AACCGTGTCAGGGAAACACCA	69 (36)	3 (3)	Gly->Arg
14.01	911	CAATTCAATC [G/A] CCGCCCTAAA	69 (36)	3 (3)	Arg->His
.02	1174	CAAACAGTAA [G/A] TGAAAATGGT	71 (36)	1(1)	·
20.01	1627	CCCAGCACAT [C/T] ACCTATGTGC	44 (30)	28(21)	Silent
.02	2041	GCCGAAGTGT [C/G] CGGTTCTCTG	71 (36)	1(1)	Asp->Glu
.03	1393	cagccatcca[c/t]gaggtcatgg	71 (36)	1(1)	Silent
22.01	4008	CAACAAAAAC (A/C) AAATTCACAA	71 (36)	. 1(1)	Silent
.02	4446	AGCCATCCAC [T/G] TCTGATGATT	71 (36)	1(1)	Silent
					Silent
24.01	1101	GCCACTGGCA [G/A] TAAAGGATAT	71 (36)	1(1)	Val->Ile
28.01	5009	TGCCACGCCC[G/C]TGTTTGGGCA	70 (36)	2(2)	Val->Leu
.02	2023	AGAAATCACC[C/T]AGGATAACCC	71 (36)	1(1)	Silent
.03	2041	CCCCTCCAGC [G/A] GCAAAGCCAG	71 (36)	1(1)	
29.01	1768				Silent
.02	2781	CCCTGCCACT [A/C] GAGTCCGGCC	67 (36)	5 (5)	Silent
.02	2/61	AGGAGCATCC [G/A] TCTAAAACTA	70 (36)	2(2)	Silent
.03		2 bp deletion			דטי 3
32.01	1171	77777777777777777777777777777777777777			
.02	1171	AAAACTAATT [T/C] GGATAGAAAG	70 (36)	2(2)	
.02	388 2168	TGGAAAGCCA [C/T] GGGGAGCCGA	59 (33)	13 (10)	
		CCGCCAGTAGCATCAGCTTTA	60(34)	12(10)	Silent
33.01	2397	GGCTAGATGG [T/C] CTGGCCAAAA	47 (33)	25(12)	Silent
.02	3708	AGGTCGGGGT [C/T] GATGTCAACC	63 (35)	9 (8)	Silent
.03	3795 	GGACCCACCT [C/A] CTGAAGATCC	62 (35)	10(9)	Silent
524.01	1598	CACAAGTTGA [G/A] GAGGGCGATA	68 (36)	4 (4	
.02	2548	CTTATATTTC[T] 10GATGTCAACC	71 (36)	1(1)	
.03	3158	AAAATTGTCT (GTTT) GTTTTCTCAT	50 (34)	22 (20	דטינ (
525.01	255	CTGCCCTTCT [C/T] CACCCCATA			
.02	346	CTGCGGTTCT[C/T]GAGGGCGATA CGTGCCGGCT[C/T]TTCACCATCC	54 (34)	18 (16	
.03	523	CCCCATCCTC [A/G] TCCCGTGCCA	71 (36)	1(1)	
			63 (36)	9(9)	Ile->Val
1025.01	1051	CAACTAACCA [G/A] ACAACTGGGA	24 (20)	48 (44)	3 ' <b>UT</b>

F18,6

# Target Variances by Field Table for Conditionally Essential Genes

### **Conditionally Essential Biosynthetic Enzymes**

Validation: Conditionally Essential

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1536	5-methyltetrahydrofolate-homocys methyltransferase	teine	3		U75 <b>74</b> 3
1539	Glutamate-ammonia ligase (glutam synthase)	nine	5	1q31	X59834

### Proteins that Repair Radiation Induced DNA Damage

Validation: Conditionally Essential

ID	Name		Variances Identified	Chromosome	Genbank Sequence	
1541	Fanconi anemia	complementation	group C	1	9q22.3	X66894

### **Proteins of DNA Repair**

Validation: Conditionally Essential

ID	Name	Variances Identified	Chromos	ome Genbank Sequence	
1528	DNA excision repair protein ERCC	:5	4	13q33	D16305
1530	HHR23A protein		3	_ 9	D21235
1532	DNA EXCISION REPAIR PROTEIN ERCC	!-1	2	19q13.2-q13.3	M13194
1533	DNA repair helicase ERCC3		1	2a21	M31899
1537	URACIL-DNA GLYCOSYLASE 1 PRECURS	OR	2	. 8	X15653
1526	Damage-specific DNA binding prot (127 kD)	ein 1	2	11, 15	AJ002955

### Proteins that repair chemically induced DNA damage

Validation: Conditionally Essential

ID	Name	Variances	Chromosome	Genbank	
1534	0-6-methylguanine-DNA	methyltransferase	4	10q26	M60761

1306 Dolichol monophosphate mannose synthase (DPM1)	2	20	L39068 AF007875
1318 ESS1 PROTEIN  1332 Glucose phosphate isomerase  1333 Guanylate kinase (GUK1)  1359 Heat shock 60 kD protein 1 (chaperonin)  1367 PERIODIC TRYPTOPHAN PROTEIN 1  1372 IPP isomerase  1396 N-acetylglucosaminyltransferase I  1399 Mannose phosphate isomerase  1414 Nip1  1415 GLYCYLPEPTIDE N-TETRADECANOYLTRANSFERASE	1 1 3 1 1 4 3 1 2 10 2	19 19q13.1 19q13.1 9 12 10 5q31.2-q31.3 15q22-qter 5 17 17 8 2	U49070 K03515 L76200 M34664 L07758 X17025 M55621 X76057 U15172 M86707 L36151 U53346 U27460

BNSDOCID: <WO___9841648A2_I_>

175 / 214

Validation: Deletion of SED5(Syntaxin), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1186	syntaxin 1A		1	21q22.1	L37792
1188	syntaxin 3		1	11	<b>U32315</b>
1189	Syntaxin 5A		2	11	U26648
1190	syntaxin 7		1	6	U77942

### 6) Vacuolar Protein

Validation: Deletion of PPA1(Vacuolar H-ATPase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Chromosome Identified	Genbank Sequence
1261	Vacuolar H+ ATPase proton channe subunit	1 2	6 M62762

### 6) Vesicle Proteins

Validation: Deletion of SAR1(COP II), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromoson	e Genbank Sequence	
1025	Human (chromosome 3p25) membrane protein mRNA		3	3,18	L09260
24	COATOMER BETA SUBUNIT		1	3	X70476
1055	COATOMER DELTA SUBUNIT		8	11	X81198
1082	Human GP36b glycoprotein mRNA, complete cds		3	5	U10362
1173	SEC14 (S. cerevisiae)-like		7 17	/q25.1-q25.2	D67029
1174	Human homologue of yeast sec7 mR complete cds	NA,	2 17	/q25.1-q25.2	M85169
1184	Human chromosome 17q21 mRNA clon	e LF113	1	17	U18009
1217	<pre>H.sapiens mRNA for vacuolar-type H(+)-ATPase 115 kDa subunit</pre>		2	17	271460

### 99) Direct Essential Yeast Homolog

Validation: Deletion of the S. cerevisiae homologue of this gene is lethal.

ID	Name .	Variances Identified	Chromosome	Genbank Sequence	
1238	Aldolase A		2	16q22-q24	M11560
1239	Aldolase B, fructose-bisphosphat	:e	2	9q22	X02747
1241	S-adenosylmethionine decarboxyla	ise 1	1	6q21-q22	M21154
1271	Calmodulin 1 (phosphorylase kina delta)	use,	1	14q24-q31	D45887
1300	DED81		1	18	U79254

ID	Name	Variances Identified	Chromoso	eme Genbank Sequence	
1265	ATPase, H+ transporting, lysosom (vacuolar proton pump) 31kD	al	2	22pter-q11.2	X76228

### 6) MITOCHONDRIAL IMPORT

Validation: Genes required to maintain inorganic ions at levels compatible with cell growth or survival.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1578	MITOCHONDRIAL IMPORT RECEPT TOM20	OR SUBUNIT	8	1	D13641

### 6) Nuclear Pore Complex

Validation: Deletion of GSP1(Nuclear Pore Trafficking), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
28	Nuclear Pore Complex NUP214				
29	Nucleoporin 98		3	9	D14689
1266			3	11p15	U41815
1200	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN C		4	20	L38696
1350	Heterogeneous nuclear ribonucleoprotein A1		4	12q13.1	X79536
1355	Nuclear pore complex protein has	m1 E2	-		
1425	NUCLEAR PORE GLYCOPROTEIN P62	APIJJ	3	6	Z25535
1449			1	11	X58521
1454	Export protein Rael		5	20	U84720
1424	HETEROGENEOUS NUCLEAR		3	12	M29063
	RIBONUCLEOPROTEINS C1/C2		_	12	M29063
1524	140 KD NUCLEOLAR PHOSPHOPROTEIN		5	10	D21262

### 6) Protein Transport

Validation: Deletion of BET3(v-SNARE associated), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
8	Integral Transmembrane Protein		3		
1467	Sec23A isoform		-	11q23-24	L38961
1608			2	14	X97064
1000	Signal recognition particle recognition particle recognition	eptor	8	11q23-q24	X06272
1613	TIM17 preprotein translocase		2	1	X97544

1386	MYOSIN LIGHT CHAIN ALKALI, NON-MUSCLE ISOFORM	1	12,17	M22920
1404	MYOSIN HEAVY CHAIN 95F	1	4p16.3	U90236
1405	MYOSIN HEAVY CHAIN IB	1	13	D63476
1406	Myosin-IC	1	13	U14391
1486	SUPPRESSOR OF TUBULIN STU2	1	11	X92474
1495	MICROTUBULE-ASSOCIATED PROTEIN TAU	1	17	J03778
1507	Tubulin, gamma polypeptide	1	17	M61764
1508	TUBULIN ALPHA-4 CHAIN	1	17	X06956
1520	Myosin VIIA (USH1B)	2	17	<b>U39226</b>

#### 6) ER Protein

Validation: Deletion of BET1(v-SNARE), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosom	Sequence	
1272	Calnexin		1	5q35	M94859
1317	ER LUMEN PROTEIN RETAINING RECEI	PTOR 2	1 .	19	M88458
1614	Ribophorin I		4	3q	Y00281
1615	Ribophorin II		1	20q12-q13.1	Y00282

#### 6) Integrin

Validation: Deletion of MYO2(Myosin Heavy Chain), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1378	Integrin alpha-3 subunit		1	5q23-q31	M59911

#### 6) Karyopherin

Validation: Deletion of KAP121(Karyopherin), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1091	karyopherin alpha 3		3	13	D89618
1214	transportin (TRN)		1	13	U70322

#### 6) Lysosomal Proteins

Validation: Essential for sequestering and degrading aged or defective organelles and polymers that can interfere with cell survival, proliferation as seen by human diseases such as Tay-Sachs disease.

	ATF-4 (CREB2)			
1274	Transcription Factor (CBFB)	1	•	
1292	CRM1 protein	3	2	L20298
1368		_	2	Y08614
1373	SIGNAL TRANSPIRED AND A COLOR	1	21q21-q22.1	U16031
	TRANSCRIPTION 1-ALPHA/BETA	1	21q21-q22.1	M97935
1411	Nuclear Factor I-B2 (NFIB2)	1	19	*****
1483		•		<b>U85193</b>
1496	Transcription factor 12 (HTF4,	1	17	<b>U487</b> 30
	helix-loop-helix transcription factors 4)	2	15q21	M83233
1497	Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)	8	19p13.3	M31523
1498		1	<b>7</b> p	M62810
1500	TRANSCRIPTION FACTOR P65	3	••	
1501		_	11	L19067
	ARP1)	2	15q26.1-q26.2	X91504

### 6) Clathrin

Validation: Deletion of RET1(Alpha-Cop), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1242	CLATHRIN COAT ASSEMBLY PROTEIN	AP47	2	8	
1243	CLATHRIN COAT ASSEMBLY PROTEIN	APSO	6	-	D38293
1282	cell surface protein	50	-	3	U36188
1290	Clathrin light		5	22	X83545
	Clathrin, light polypeptide (Le Clathrin heavy chain	:b)	1	4q2-q3	M20470
	craciii neavy chain		4	17q11-qter	<b>U41763</b>

# 6) Cytoskeleton

Validation: Deletion of MHP1(Microtubule Interacting), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name .	Variances Identified	Chr	omosome	Genbank Sequence		
1	Actin, gamma Subunit		8	1	7p11-qter		X04098
1032	Sh3p17(Myosin IC Heavy Chain) Actin depolymerizing factor [hum fetal brain, mRNA, 1452 nt]	an,	4	1	20	21	U61166 S65738
1038	Capping protein (actin filament) gelsolin-like	•	3		2cen-q24		M94345
1039	Human capping protein alpha mRNA partial cds	,	2		7		U03851
1056	Desmin		,		2-25		700.00
1080	Gelsolin (amyloidosis, Finnish t	me)	•		2q35		J03191
1092	Keratin 19	ype/	_		9 <b>q</b> 34		X04412
1093	KERATIN, TYPE II CYTOSKELETAL 6D		5				Y00503
1267	BETA-CENTRACTIN		13		5,12		J00269
1284			1		2		X82207
	z (mon-muscle)		5		11q13		X95404
1383	LAMIN A		1		20		M13451
1385	Lamin B receptor		1		lq42.1		L25931

WO 98/41648

171 / 214

1455	U1 SMALL NUCLEAR RIBONUCLEOPROTEIN A	3	9q21.32-q21.33	X06347
1460	U1 small nuclear RNP-specific C	2	15	X12517
1473	SnRNP core protein Sm D3	2	22	U15009
1474	SnRNP core protein Sm D2	5	22	U15008
1477	Ul snRNP 70K protein	3	19q13.3	M22636
1478	Small nuclear ribonucleoprotein polypeptides B and B1	3	20	J04564
1480	Small nuclear ribonucleoprotein polypeptide N	5	15q12	U41303

_____

#### 5) TATA-Binding Proteins

Validation: Deletion of TAF145(TAFII Complex), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1193	H.sapiens mRNA for transcription factor TFIID subunit TAFII28	1	1	6	X83928
1196	Human TFIID subunit TAFII55 (TAF mRNA, complete cds	PIISS)	1	5	U18062
1199	TATA box binding protein		2	6q27	M55654
1361	TBP-associated factor (hTAFII130	))	1	20	U75308

### 5) Transcription Elongation Factors

Validation: Deletion of RPO21(RNA pol Subunit), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name		Variances Identified	Chromosome	Genbank Sequence	
1077	TRANSCRIPTION ELONGATION	FACTOR	S-II	4	8	M81601
4	TRANSCRIPTION ELONGATION	FACTOR	B3	5	5q31	L34587
32	Elongin TCEB1			3	1p36.1	L47345

#### 5) Transcription Factors

Validation: Deletion of BBP1(BFR1p binding), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
33	SUPT6H		3	17g11.2	U46691
1202	Human TFIIA gamma subunit mRNA, complete cds		1	15	U14193
1205	General transcription factor TFD beta subunit, 34 kD	TIE	1	8p21-p12	X63469
1206	TRANSCRIPTION INITIATION FACTOR BETA SUBUNIT	IIF,	1	8p21-p12	X16901
1247	CYCLIC-AMP-DEPENDENT TRANSCRIPT: FACTOR ATF-1	ION	1	19p13.3	X55544
1248	CAMP-dependent transcription fac	ctor	3	2	M86842

# 5) RNA Polymerase II Components

Validation: Deletion of RPA135(RNA pol Subunit), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1026	polymerase II mRNA, complete cds		3	19	L37127
1088	Human RNA polymerase II subunit (hsRPB10) mRNA, complete cds		7	19	<b>U37690</b>
1109	P1c 11, polypeptide (	(33kD)	3	16q13-qq21	J05448
1110	Polymerase (RNA) II (DNA directe polypeptide A (220kD)	d)	1	17p13.1	X63564
1165		3 KD	9	17p13.1	J04965
1360	RNA polymerase II subunit hsRPB7		1	11	U20659

# 5) RNA Polymerase III

Validation: Deletion of RPA135(RNA pol Subunit), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1170	Human RNA polymerase III subunit (RPC62) mRNA, complete cds		1	11	U93867

# 5) RNA Splicing/Processing

Validation: Deletion of CUS1(U2 snRNP protein), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosom	Genbank Sequence	
1171	(SAP 145) mRNA, complete cds		1	2	U41371
1172	Human splicesomal protein (SAP 6 mRNA, complete cds	1)	3	2	U08815
1176	H.sapiens mRNA for splicing fact SF3a120	or	1	22	X85237
1177 1181	-F ractor, arginine/serine	-rich 2 A,	2 1	4,17 6	M90104 U30825
1183 1216 1224	SPLICING FACTOR U2AF 65 KD SUBUN. Human (clone E5.1) RNA-binding p. mRNA, complete cds	IT rotein	2 1 4	1 1 1	L14076 X64044 L37368
1322 1354			1 1 9q21	1 .32-q21.33	X56597 S74678

1053	Human cleavage and polyadenylation specificity factor mRNA, complete cds	1	11	U37012
1349	HNRNP METHYLTRANSFERASE	4	14	D66904
1426	Poly(A)-binding protein-like 1	2	14	Y00345

### 5) Purine/Pyrimidine Biosynthesis

Validation: Deletion of CDC8(Thymidylate Kinase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1235	ADENYLOSUCCINATE LYASE		1	1	X65867
1268	CAD PROTEIN		1	2	D78586
1293	CTP synthetase		2	1p34.1	X52142
1326	Phosphoribosylglycinamide formyltransferase,		4	21q22.1	X54199
	phosphoribosylglycinamide synthe phosphoribosylaminoimidazole syn	tase, thetase			
1437	Phosphoribosyl pyrophosphate amidotransferase		2	4q12	U00238
1510	Thymidylate synthase		2	18p11.32	X02308
1517	Uridine monophosphate synthetase (orotate phosphoribosyl transfer and orotidine-5'-decarboxylase)	ase	2	3q13	J03626
1518	Uridine Phosphorylase		1	7	X90858

#### 5) Ribonucleotide Reductase

Validation: Deletion of RNR1(Ribonucleotide Reductase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Génbank Sequence	
1452	RIBONUCLEOSIDE-DIPHOSPHATE M1 CHAIN	REDUCTASE	4	11	X59543

### 5) RNA Helicase

Validation: Deletion of BRR2(RNA Helicase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1100	Human mRNA for KIAA0224 gene, cds	complete	4	16	D86977
1163	DEAD/H (Asp-Glu-Ala-Asp/His) b polypeptide 9 (RNA helicase A)	ox	1	1	L13848
1484	PUTATIVE ATP-DEPENDENT RNA HEL STE13		3	19	U90426

Validation: Deletion of POL2(DNA pol epsilon), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1059	Human DNA polymerase delta small subunit mRNA, complete cds		3	12	U21090
1105	DNA polymerase alpha subunit		1	X,11	L24559

#### 5) DNA Replication

Validation: Deletion of CDC45(Chromosomal DNA Replication), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosom	e Genbank Sequence	
1048	DNA REPLICATION LICENSING FACTOR HOMOLOG	CDC47	1	4	D55716
1094	Human mRNA for KIAA0030 gene, pa	rtial	2	3	X67334
1124	Replication factor C (activator (145kD)	1) 1	2	4p14-p13	L14922
1208	DNA topoisomerase I		2	20q12-q13.1	J03250
22	Topoisomerase II		2	17g21-g22	J04088
1222	Minichromosome maintenance defic (S. cerevisiae) 3	eient	1	17q21-q22	D38073
1461	Replication protein A2 (32kD)		2	1p35	J05249

#### 5) Histone

Validation: Deletion of CSE4(Similar Histone H3), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Chromosome Identified	Genbank Sequence	
1335	Histone H1(0)	3	22	X03473
1336	Histone Hlx	3	22	D64142
1341	HISTONE HID	5	6	X57129
1342	HISTONE H2A.1	4	6	U90551
1343	Histone H2A.2	1	6	L19779
1344	Histone H2B.1	1	1	M60756
1345	H4 histone	1	1	X60486

#### 5) Polyadenylation and 3' Cl avag

Validation: Deletion of FIP1(Polyadenylation Factor), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances	Chromosome	Genbank
		Identified		Sequence

Validation: Deletion of ALA1(Alanyl-tRNA synthetase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1031	Alanyl-tRNA synthetase		2	16-22	77777
1040	Cysteinyl-tRNA synthetase		•	16q22	D32050
1079	Classel and synthetase		1	11p15.5	L06845
	Glycyl-tRNA synthetase		2	7p15	U09510
1090	Isoleucine-tRNA synthetase		2	9g21	D28473
1102	ASPARAGINE SYNTHETASE		3	2427	M27396
1121	Arginyl-tRNA synthetase		3	F=====================================	
1198	Threonyl-tRNA synthetase		-	5pter-q11	S80343
1218			1	5p13-cen	M63180
	VALYL-TRNA SYNTHETASE		4	· 9	X59303
1221	TRYPTOPHANYL-TRNA SYNTHETASE	•	1	14	M61715

# 4) Ubiquitin and Ubiquitin Associated

Validation: Deletion of UFD1(Ubiquitin Fusion), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosom	e Genbank Sequence	
1309	Ubiquitin carrier protein (E2-EP	 F)	2		
1315	Cyclin-selective ubiquitin carri	- , ~~	_	17	M91670
	protein	er	2	17	<b>U73379</b>
1362	UBIQUITIN CARBOXYL-TERMINAL HYDR	OLASE 3	2	14	D80012
1363	UBIQUITIN CARBOXYL-TERMINAL HYDR	OLASE T	-		
1420	UBIQUITIN CARBOXYL-TERMINAL HYDR	OLACE 14	1	12	X91349
1431	INTOUTETN CARROWS MERCATION	OLASE 14	4	13	M68864
1131	UBIQUITIN CARBOXYL-TERMINAL HYDR ISOZYME L1	OLASE	2	4	X04741
1511	Ubiquitin A-52 residue ribosomal protein fusion product 1		1 :	19p13.1-p12	S79522
1514	Ubiquitin-conjugating enzyme E2I		6	16-12-2	1145222
1515	Ubiquitin fusion-degradation pro		_	16p13.3	U45328
	(UFD1L)	tein	4	18	U64444

#### 5) DNA Helicases

Validation: Deletion of DNA2(DNA Helicase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1050	Human CHL1 potential helicase (complete cds	CHLR1),	3	18	U33833
1057	ATP-DEPENDENT DNA HELICASE II, SUBUNIT	86 KD	1	2	M30938
1123	RecQ protein-like (DNA helicase	Q1-like)	2	12p12-p11	L36140
1397	218kD Mi-2 protein		1	12	X86691

#### 5) DNA Polymeras

166 / 214

1490	T-COMPLEX	PROTEIN	ı,	EPSILON SUBUNIT	3	5	D43950
1491	T-COMPLEX	PROTEIN	1,	GAMMA SUBUNIT	2	1	X74801

#### 4) Translation Elongation

Validation: Deletion of CDC33(eIF4e), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1063	Eukaryotic translation elongation factor 1 delta	on	3	7	Z21507
1073	Eukaryotic translation initiation factor 4A (eIF-4A) isoform 2	on	1	18p11.2	D30655
1095	Human mRNA for KIAA0031 gene, co	omplete	3	17,2	D21163
1099	Human mRNA for KIAA0219 gene, pa cds	artial	3	12	D86973

#### 4) Translation Factor

Validation: Deletion of CDC33(eIF4e), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name		Variances Identified	Chromosome	Genbank Sequence	
1049	PEPTIDE CHAIN REL	EASE FACTOR		2	12	X81625

### 4) Translation Initiation Factors

Validation: Deletion of CDC33(eIF4e), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1068		tor	1	16	U46025
1069	eIF-3 pll0 subunit gene EUKARYOTIC INITIATION FACTOR 4A- NUK-34	LIKE	1	17	D21853
1070	Eukaryotic translation initiation	on	3	1,X	L18960
1072		on	2	14	J02645
1074		on	3	14	M15353
1312			1	12	<b>U</b> 39067
1312	(eIF-3) p36 subunit		1	12	039067

#### 4) tRNA Synthetases

		<b></b>		
1287	PEPTIDYL-PROLYL CIS-TRANS ISOMERASE, MITOCHONDRIAL PRECURSOR	1	10	M80254
1305 1358	DNAJ PROTEIN HOMOLOG 2 DNAJ PROTEIN HOMOLOG HSJ1	1 2	9,2 9,2	D13388 X63368

### 4) Ribosomal Subunit

Validation: Deletion of GRC5(Ribosome), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1127	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	tein L11	3	9,2	X79234
1128			2	17,4	X52839
1130	60S RIBOSOMAL PROTEIN L18A		5	3	X80822
	Ribosomal protein L19		1	17q11	X63527
1133			2	17,18	U43701
1135	complete cds		3	6,11	U14968
1136	complete cds	•	11	19	U14969
1137			4	20	X03342
1138	Human ribosomal protein L35 mRNA	.,	3	20	U12465
	complete cds				022103
1139	process		1	3q29-qter	X52966
1140	Human mRNA for ribosomal protein complete cds	L39,	2	3q29-qter	U57846
1141	Ribosomal protein L4		4	3,6	L20868
1142			i	12	X69391
1143	Ribosomal protein L7		1	12	L16558
5			1	19g33-g34	M36072
1144			5	12	Z28407
1145			2	12	U09953
1146			5	15,22	M17886
1147			1	20	U14972
	complete cds	•	_	20	014572
1148	manage process bit		1	19g	X06617
1149	40S RIBOSOMAL PROTEIN S15		2	19q	J02984
1150	40S RIBOSOMAL PROTEIN S15A		2	19q	X84407
1151			_ 5	19	M60854
1152	Ribosomal protein S17			llpter-pl3	M13932
1154			2	5	D14530
1155			2	11q23.3	M64716
1157			2	19	U58682
1158			1	19	L31610
1159			2	19	U14970
1160			3	19	M77233
1161			3	19	W14971
1223	Ribosomal protein L7a		6	9q34	X52138
~			-	2423	AJ413.0

### 4) T-Complex

Validation: Deletion of CCT2(T-Complex), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Identified	chromosome	Genbank Sequence	
	T-COMPLEX PROTEIN 1, ALPHA SU		1	6	S70154

	long chain			
1584	Dihydrolipoamide S-succinyltransferase	5	14g24.3	L37418
1588	Acyl-Coenzyme A dehydrogenase, C-4 to	1	1p31	M16827
	C-12 straight chain		•	
1590	Pyruvate kinase, muscle	4	15q22	M23725
1596	Phosphoglucomutase 1	5	1p31	M83088
1603	Phosphofructokinase, muscle	4	12q13.3	U24183
1611	Enolase 3, (beta, muscle)	1	17pter-p12	X16504

#### 3) Sugar Transport

Validation: Genes required to maintain organic compounds at levels required for cell growth or survival.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1594	Solute carrier family 2 (facility glucose transporter), member 5	ated	3	1p31	M55531
1598		member 2	1	16	M95549

# 4) Protein Degradation

Validation: Deletion of CDC48(Ubiquitin proteolysis), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1027	26S PROTEASE REGULATORY SUBUNIT	Δ	3		
1037		•	3	14	L02426
1098			1	11	X04366
1036	Human mRNA for KIAA0123 gene, pa cds	ırtial	6	9,19	D50913
1114	Proteasome (prosome, macropain) subunit, beta type, 6		7	9,19	D29012
1115		tz,	4	9	D38048
1116	COMPONENT CIS PRECURS	OR	2	9	U17496
1117	Human mRNA for proteasome subuni HsC7-I, complete cds	.t	6	1	D26599
1118		.t	2	2	D44466
1119	Human mRNA for proteasome subuni complete cds	t p27,	1	2	AB003177
1289	ATP-DEPENDENT CLP PROTEASE PROTE SUBUNIT	COLYTIC	2	19	Z50853

# 4) Protein Folding

Validation: Deletion of HSP10(Chaperonin), a S. cerevisiae gene in the same biochemical family, is lethal.

ID Name Variances Chromosome Genbank Identified Sequence

#### 3) Protein Post-modification

Validation: Deletion of BET2(Geranylgeranyltransferase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1081	geranylgeranyl transferase type beta-subunit	II	2	1	X98001
		•			

# 3) Sugar Biosynthesis and Processing

Validation: Deletion of PGI1(Glucose-6-phosphate Isomerase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chron	nosome	Genbank Sequence	
14	PIP 5 Kinase beta		2		9 <b>q</b> 13	X92493
1229			1	22q11	.21-q13.3	U80040
1249	MITOCHONDRIAL PRECURSOR		2		18	D14710
1257	ATP synthase, H+ transporting, mitochondrial F0 complex, subunisoform 1	it b,	<b>3</b>		18	X60221
1258	ATP synthase, H+ transporting, mitochondrial F1 complex, O subtooling (oligomycin sensitivity conferring protein)	ing	5	21q2	2.1-q22.2	X83218
1302	Dihydrolipoamide S-acetyltransfe (E2 component of pyruvate dehydrogenase complex)	erase	5		11	AF001437
1303	Dihydrolipoamide dehydrogenase component of pyruvate dehydrogen complex, 2-oxo-glutarate complex branched chain keto acid dehydro complex)	nase x,	5	,	7q31-q32	J03490
1346	Hexokinase 1		3		10q22	M75126
1366	Isocitrate dehydrogenase 2 (NAD) mitochondrial	P+),	2		15q26.1	X69433
1395			1		2p16	X81900
1421	NADH:ubiquinone oxidoreductase : B13	subunit	4	18p11	.31-p11.2	U53468
1422	NADH dehydrogenase-ubiquinone Fe protein 8, 23 kDa subunit precur (NDUFS8)		1	18p11	.31-p11.2	<b>U65579</b>
1424	NADH-UBIQUINONE OXIDOREDUCTASE 'SUBUNIT PRECURSOR	75 KD	3		2	X61100
1427	Pyruvate dehydrogenase (lipoamic	de) beta	9		3p13-q23	M34479
1430	Phosphofructokinase		1		21q22.3	M10036
1451	UBIQUINOL-CYTOCHROME C REDUCTAS: COMPLEX 11 KD PROTEIN PRECURSOR		3		1,3	M36647
1464	Succinate dehydrogenase, iron su (Ip) subunit	ulphur	3	1p	22.1-qter	D10245
1465	Succinate dehydrogenase 2, flavoprotein (Fp) subunit		10		5p15	D30648
1576			2		1q21	D10326
1577		oamide)	6		7p14-p13	D10523
1579	Acyl-Coenzyme A dehydrogenase,		3	17p11	.2-p11.13	D43682

-----

### 3) Lactate Transport

Validation: Genes required to maintain organic compounds at levels required for cell growth or survival.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1583	Solute carrier family 16 (monocarboxylic acid transporter member 1	rs),	2	1p13.2-p12	L31801

### 3) Polyamine Biosynthesis

Validation: Inhibition of polyamine biosynthesis has antiproliferative effects as demonstrated by inhibitors of polyamine metabolism.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1587	Ornithine decarboxylase 1		2	2p25	M16650

### 3) Protein Glycosylation

Validation: Deletion of DPM1(Dolichol-phosphate mannosyltransferase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1328	Glutamine-fructose-6-phosphate transaminase		1	2p13	M90516
1339	Heparan Heparan Heparan N-deacetylase/N-sulfotransferase	-2	2	10	U36601
1434	UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferas		3	18	U41514

### 3) Protein Kinase C

Validation: Deletion of PKC1(Protein Kinase C), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1440 1443 1444	Protein kinase C-theta		4 1 1	16p11.2 10p15 7	X06318 L01087 J03075

161 / 214

Validation: Deletion of PRO1(Glutamate 5-Kinase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
	@1			405 1	W27400
1330	Glutamic-oxaloacetic transaminas soluble (aspartate aminotransfer		1 10d2	4.1-q25.1	M37400
1331	Glutamic-oxaloacetic transaminas mitochondrial (aspartate aminotransferase 2)	e 2,	2	16q21	M22632
1447	Pyrroline-5-carboxylate syntheta (glutamate gamma-semialdehyde synthetase)	se	1	10q24.3	X94453

#### 3) Amino Acid Transport

Validation: There are ten essential amino acids in man, which must be transported across the plasma membrane for use in protein synthesis.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1581	Solute carrier family 3 (cystine dibasic and neutral amino acid transporters, activator of cystidibasic and neutral amino acid transport), member 1	-	2	2p16.3	L11696

### 3) Addition, removal, or modification of phosphate groups

Validation: Deletion of CMD1(Calmodulin), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1269	Calcineurin A catalytic subunit		2	8	S46622
1270			1	10q21-q22	M30773
1351	CALRETICULIN PRECURSOR		1	10q21-q22	M84739
1432	SERINE/THREONINE PROTEIN PHOSPH 2B CATALYTIC SUBUNIT, BETA ISOF		2	10	M29551
1476	Snk interacting protein 2-28		1		U83236

#### 3) GDP Dissociation Inhibitors

Validation: Deletion of GDI1(GDP dissociation Factor), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	 Genbank Sequence	
1448	RAB GDP DISSOCIATION		 14g23-g24	D13988

Validation: Deletion of SAT2(Osmotolerance), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromoson	ne Ge <u>nbank</u> Sequence	
1253	ATPase, Ca++ transporting, plasm membrane 2	a	5	3p26-p25	X63575
1255	ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide		4	12p13-qter	X03559
1286	Putative Chloride Channel	•	1 13	3q14.3-q21.1	X83378
1337	Copper Transport Protein HAH1		1	5	U70660
1407		tein	4	20	U93205
1463	Sodium channel, voltage-gated, t beta polypeptide	ype I,	1	19q13.1	L16242
1505		nnel 1	7	3	*****
1521	Voltage-dependent anion channel	······		3	X89066
	and all and an an an an an an an an an an an an an	4	4		L06328
		_			

### 2) Antiporters

Validation: Proven essential in mammalian cells by tritium suicide selection experiments.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1471	Solute carrier family 9 (sodium/hydrogen exchanger)		1	1p36.1-p35	M81768
1250		a 1	1	1q22-q25	X03747
1251	ATPase, Na+/K+ transporting, bet polypeptide	a 2	2	17p	M81181
1605	exchanger, member 2 (erythrocyte	:	2	7q35-q36	U62531
	membrane protein band 3-like 1)				

#### 3) Acyltransferase

Validation: Essential for metabolic processes such as biosynthetic reactions and energy metabolism. The S. cerevisiae histone acetyltransferase PAT1 and the N-alpha acetyltransferase which acetylates the N-termini of proteins are essential for growth.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1227	Acetyl-Coenzyme A acyltransferase (peroxisomal 3-oxoacyl-Coenzyme A thiolase)	3 A	2	3p23-p22	X12966
1387	Lysophosphatidic acid acyltransferase-alpha		7	6	U56417

# 3) Amino Acid Biogenesis

159 / 214

1) Cyclins

Validation: Deletion of CDC23(Anaphase Promoting), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromoson	se Genbank Sequence	
9	CDC-25A		1	3p21	U54831
10	CDC-25C		1	5q31	M34065
524	Wee1		3 :	lp15.3-p15.1	X62048
1043	CDC16Hs		2	13	U18291
1278	Cyclin D1		4	11q13	M73554
1280	Cyclin D3		2	6p21	M90814
1298	Cyclin H Assembly Factor		1	4	X87843
1445	Cyclin-Dependent Protein Kinase		2	12	<b>U7926</b> 9
1450	RAN binding protein 1		1	22	D38076
1523	14-3-3 PROTEIN TAU		1	10	X56468

### 1) Cyclin dependent kinases/phosphatases

Validation: Deletion of CDC28 (Cyclin Dependent Protein Kinase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1051	CDC20 mmakain bi 1		2	17	X54941
1051			_	<del>-</del> ·	
1052	CDC28 protein kinase 2		1	9	X54942
1111	Protein phosphatase 1, catalytic subunit, alpha isoform	:	4	11	M63960
1388	M-PHASE INDUCER PHOSPHATASE 2		1	20	M81934
1401	M-phase phosphoprotein, mpp6		5	7	X98263

### 1) Cell Division Structural Proteins

Validation: Deletion of CBF2 (Kinetochore Protein), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
20	MCM7 (Minichromosome Maintainenc	e	3 7q	21.3-q22.1	U20980
1246	Chromatin assembly factor-I p60	subunit	2	21	U20980
1273	Chromosome segregation gene homo	log CAS	1	20	<b>U33286</b>
1347	High-mobility group (nonhistone chromosomal) protein 1		5	13q12	D63874
1487	Chromatin structural protein hom (SUPT5H)	olog	3	7	Y12790
1607	Centromere protein B (80kD)		1	20p13	X05299

### 2) Uniporters

Chromosome	Arm	LOH Freq.
1	р	0.26
1	q	0.15
2	P	0.15
2		
3	q	0.12
3	<u>P</u>	
	q P	0.18
4		0.15
5	ď	0.22
5	P	0.19
***************************************	q	0.27
6	P	• 74
***************************************	đ	0.25
2	Ρ	0.12
7	q	0.22
	9	0.00
8	q	0.14
9	•	0.20
9	q	0.47
10	P	0.18
10	q	0.23
22	P	0.23
11	d	0.26
17	P	0.15
12	q	0.13
13	q	6 29
14	P	0.08
14	q	0.22
15	p	0.11
15	g	0.17
16	p	0.17
16	g	0.36
17	p	0.44
17	q	0.31
18	р	0.12
18	q	0.29
19	P	0.13
19	ď	0.3
20	P	0.11
20		0.07
21	đ	0.13
22	q	0.13
	****	

157 / 214

Unknown	D22S257	20	10	0.5	Pediatric	GCC 15:10
Unknown	D229258	23	18	0.78	Pediatric	GCC_15:10
Unknown	D22S264	26	9	0.35	Pediatric	GCC 15:10
Unknown	D225273	21	19	0.67	Pediatrio_	GCC 15:10
Unknown	D22S273	26	16	0.62	Pediatric	GCC 15:10
Unknown	D225274	14	10	0.71	Pediatric	GCC 15:10
Unknown	D225275	17	13	0.76	Pediatric	GCC 15:10
Unknown	D22S280	25	17	0.68	Pediatric	GCC 15:10
Unknown	D22S281	20	12	0.6	Pediatric	GCC 15:10
Unknown	0229283	29	18	0,62	Pedlatric	GCC 15:10
Unknown	D22S301	20	14	0.7	Pediatric	GCC 15:10
Unknown	D228303	21	12	0.57	Pediatric	GCC 15:00
Unknown	D22S315	26	18	0.69	Pediatric	GCC 15:10
Unknown	IGLV	10	0		Rediatric	CR 50:9279
12.3-13.1	PDGFB	7	1	0.14	Prostate	G 11:530
11.2-12	D22S1	2).	8	0.38	Sarcoma	CR 52:2409
Unknown	D22S9	6	2	0.33	Sarcoma	CGC 53:45
11,2-12	02251	17	0		Stomach	CR 48:2988
Unknown	IGLC	7	2	0.29	Stomach	CR 52:3099
11.1-11.2	D22510	26	6	0.23	Testis	0.9:2245
12.3-13.1	PDGFB	3	0	. 0	Testis	CCG 52:72
12.3-13.1	PDGFB	2	0	0	Testis	CCG 52:72
12.3-13.1	PDGFB	1	0	0	Testis	CCG 52:72
Unknown	D22S113	1.6	3	0.19	Oterus	GCC 9:119
11.2-13.1	TOPIP2	15	1	0.07	Uterus	CR 54:4294
SUM		1594	472	0:3		

Chromosome 22 - q Arm

Unknown	D2299	20	10			
Unknown	D22S9	3		0.5	Colon	CR:50:7166
Unknown	D22S9	17	1 3	0.33	Colon	0 9:991
Unknown	IGLC	30	15	0.18	Colon	N 331:273
Unknown	IGLC	17	**************************************	0.5	Colon	CR 50:7166
Unknown	IGLC	10		0.18	Colon	N 331:273
Unknown	IGLV	4	0	0	Colon	S 241:961
Unknown	IGLV	27		0	Colon	S 241:961
Unknown	IGLV	30	9	0.33	Colon	CR 50:7166
12.3-13.1	PDGFB	10	6	0.2	Colon	N 331,273
Unknown	SIS	4	0	0	Colon	S 241:961
Unknown	D22S264	***************************************	1		Colon	N 331-273
Unknown	D225351	16 19	0 1	0	Endocrine	GCC 13:9
11.2-12	D22S1	*************		0:05	Endacrine	CR 56:599
Unknown	D22532	21 13	2	0.1	Esophageal	CR 54:2996
Unknown	D22S79	***************************************	_	0.08	Esophageal	GCC 10-177
Unknown	D225283	18	3	0.17	Esophageal	CR 51:2113
Unknown	D22S283	25	2	0:08	Read&Neck	CR 54:4756
13	IL2RB	22	2	0.09	Head&Neck	CR 54:4756
Unknown	D22S113	24		0.29	HeadsNeck	CR 54:1152
12	D22S113	10	2	0.2	Kidney	CR 51:820
Unknown		39	1	0.03	Kidney	BJC 69:230
Unknown	D22S280-D22S282	22	0	0	Kidney	PNAS 92:2854
Unknown	DZ2S280-DZ2S282	6	0	0	Kidney	PNAS 92:2854
Unknown	D22S283	6	0	0	Kidney	PNAS 92:2854
11.2-12	D22S283	16	0	0	Kidney	PNA5 92:2854
Unknown	D22S1	10	0	0	Liver	JJCR 81:108
Unknown	D225113	- 4	0	0	Liver	CR 51-89
Unknown	IGLC	28	9	0.32	Liver	JJCR 84:893
11.2-12	IGLC	7	0	0	Liver	CCG 48:72
11.2-12	D22S1	7	2	0.29	Lung	CR 54:5643
11.2-12	D22S1	22	11	0.5	Lung	CR 54:5643
C2000000000000000000000000000000000000	D22S1	3	2	0.67	Lung	CR 54:5643
Unknown	DZ2S113	16	3	0.19	Lung	CR 52:2478
Unknown	D225283	35	2	0.06	Melanoma	CR 56:589
11.1-11.2	D22510	13	3	0.23	Ovary	IJC 54:546
Unknown	D22S113	10	2	0.2	Ovary	CR 51:5118
Unknown	D22S156	10		0.3	Ovary	BJC 69:429
Unknown	D225430-D225282-	32	23	0.72	Ovary	BJC 70:905
Unknown	D22S283-D22S274			***************************************		
Unknown	D2299	14	10	0.71	Ovary	CR 53:2393
OHAHOWH	IL-2RB-CYP2D- D22S156	14	4	0.29	Ovary	BJC 72:1330
12.3-13.1	PDGFB	-			-	
Unknown	SIS	5	1	0.2	Ovary	CB 50:2724
11.2-13.1	TOPIP2	6 12	0	0	Ovary	CR 49:1220
Unknown	D22S113	***************************************	5	0.42	Ovary	BJC 69:429
Unknown	DZ25113 DZ25156	4	0	0	Pancreas	CR 54:2761
		26	20	0.77	Pediatric	GCC 15:10

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
11.2-13.1	TOPIP2	15	1	0.07	Uterus	CR 54:4294
Unknown	BCR	2	0	0	Brain	CGC 53:271
Unknown	CRYB	7	1	0.14	Brain	CR 50:6783
Unknown	CYP2D	6	4	0.67	Brain	CR 53:2386
Unknown	CYP2D	6	6	1	Brain	CR 53:2386
11.2-12	D22S1	4	0	0	Brain	CR 50:6783
11.2-12	D2291	7	2	0.29	Brain	CGC 53:271
11.1-11.2	D22S10	5	1	0.2	Brain	CGC 53:271
Unknown	D22S156	4	2	0.5	Brain	CR 53:2386
Unknown	D22S156	4	1	0.25	Brain	CR 53:2386
13.3	D22S171	2	0	O	Brain	CGC 66:117
11.2	D22S20	2	0	0	Brain	CGC 66:117
Unknown	D22523	9	3	0.38	Brain	CR 50:6783
Unknown	D22524	1	0	0	Brain	CR 50:6783
Daknown	D22S258	18	2	0.11	Brain	CR 54:1397
Unknown	D22S258	16	1	0.06	Brain	CR 54:1397
Unknown	D22S28	4	3	0.75	Brain	CR 50:6783
Unknown	D22S29	3	2	0.67	Brain	CR 50:6783
Unknown	022532	2	0	0	Brain	CGC 66:117
Unknown	D22S32	14	1	.0.07	Brain	CR 49:6572
Unknown	D22532	14	1	0:07	Brain	CR 50:5784
13.1	D22580	4	0	0	Brain	CGC 66:117
Unknown	D2299	8	2	0.25	Brain	CGC 53:271
Unknown	D22S9	1	0	0	Brain	CGC 66:117
Unknown	IGLV	2	0	0	Brain	CGC 66:117
Unknown	IGLV	1	0	0	Brain	CR 50:6783
13	IL2RB	18	4	0.22	Brain	CR 54:1397
13	IL2RB	15	0	0	Brain	CR 54:1397
11.1-11.2	LAMBDALC	4	1	0.25	Brain	CGC 53:271
12.3	MB	5	0	0	Brain	CGC 66:117
12.3	MB	1	1	1	Brain	CGC 53:271
12.3-13.1	PDGFB	1	1	1	Brain	CGC 53:271
11	Onknown	26	10	0.38	Breast	JNCI 84:506
Unknown	D22S10	16	4	0.25	Breast	GCC 2:191
Unknown	D22S113	9	1	0.11	Breast	CR 50:7184
Unknown	D22S9	24-	4	0.17	Breast	GCC 2:191
12.3	MB	42	8	0.19	Breast	CR 53:4356
11.1-11.2	D22S10	27	2	0.07	Cervix	CR 54:4481
Unknown	D225113	- 8	1	0.12	Cervix	GCC 9:119
Unknown	D22S280	20	3	0.15	Cervix	CR 56:197
Unknown	D225284	30	4	0.13	Cervix	CR 56:197
11.2-12	D22S1	11	1	0.09	Colon	N 331:273
11.2-12	D2251	12	4	0.33	Colon	IUC 53:382
11.1-11.2	D22S10	12	0	0	Colon	S 241:961
11.1-11.2	D22910	13	7	0.54	Colon	IJC 53:382
Unknown	D22S10	29	11	0.38	Colon	CR 50:7166

WO 98/41648

PCT/US98/05419

154 / 214

Chromosome 21 - q Arm

SUM

692

90

0.13

11.1	Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Refer
Unknown	11.1	D21S52	13	1	0.08		
December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December   December	Unknown	Unknown	14	0	0	******************************	***************************************
Unknown   D2151	22.3	D21S113	5	0	Û	7777977997997000	790077930000000000000000000000000000000
Unknown   D21S112   29   4   0.14   Breast   CR 53   CR 54   0.115   CR 54   CR 54   CR 55   CR 54   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55   CR 55	Unknown	BCEI	15	2	0.13		***************************************
Unknown   D21S112   29   4   0.14   Breast   CR 53   22.3   D21S113   3   0   0   Cervix   GCC 9   22.3   D21S113   3   3   0   0   Cervix   GCC 9   22.3   D21S113   19   7   D111   Cervix   CR 56   Unknown   D21S212   26   2   0.08   Cervix   CR 56   Unknown   D21S265   22   0   0   0   Cervix   CR 56   Unknown   D21S265   22   0   0   0   Cervix   CR 56   Unknown   D21S267   14   1   0.07   Cervix   CR 56   Unknown   D21S267   14   1   0.07   Cervix   CR 56   Unknown   D21S156   16   0   0   Endocrine   CR 56   Unknown   D21S156   16   0   0   Endocrine   CR 56   Unknown   D21S156   16   0   0   Endocrine   CR 56   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR 54   CR	Unknown	D2151	21	-1	0.05	PO07998841198444444444444444444444444444444	200200000000000000000000000000000000000
22.3   D21S113   3	Unknown	D21S112	29	4	0.14	*******************	
22.3   D21S113   3   0   0   Cervix   GCC 9	22.3	D215113	26	4	**************************************		
22.3	22.3	D21S113	3	0	0		***************************************
Unknown         D21S212         26         2         0.08         Cervix         CR 56           Unknown         D21S265         23         0         0         Cervix         CR 56           Unknown         D21S267         14         1         0.07         Cervix         CR 56           Unknown         D21S156         16         0         0         Edocrine         CR 56           Unknown         D21S133         30         11         0.37         Esophageal         GCC 1           22.3         D21S113         20         5         0.75         Faophageal         GCC 1           22.3         D21S113         20         5         0.75         Faophageal         GCC 1           22.3         D21S133         20         5         0.75         Faophageal         GCC 1           Unknown         D21S262         18         0         0         HeadsNeck         CR 54           Unknown         D21S262         19         5         0.26         HeadsNeck         CR 54           Unknown         D21S262         6         0         0         Kidney         PNS           Unknown         D21S265         D21S266	22.3	0215113	19	7		**************************************	
Unknown         D21S265         23         0         0         CSTVAX         CR75E           Unknown         D21S267         14         1         0.07         Cervix         CR 56           Unknown         D21S156         16         0         0         Editoria         CR 56           Unknown         D21S113         5         2         0.22         Eachphageal         CR 56           22.3         D21S113         30         11         0.37         Esophageal         GCC 11           22.3         D21S113         20         5         0.25         Esophageal         GCC 11           22.3         D21S113         20         5         0.25         Esophageal         GCC 11           Unknown         D21S262         18         0         0         NeadsNeck         CR 54           Unknown         D21S269         17         3         0.16         HeadsNeck         CR 55           Unknown         D21S262         6         0         0         Kidney         PNAS           Unknown         D21S262         6         0         0         Kidney         PNAS           Unknown         D21S267-D21S265-D21S263         19	Unknown	D21S212	26	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Unknown   D21S267   14	Unknown	D21S265	23			40504000000000000000000000000000000000	
Unknown	Unknown	***************************************	***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************	***************************************	***************************************
Unknown   D215156   16   0   0   Endocrine   CR 56   22 3   D215113   30 11   0.37   Esophageal   CR 57   CR 57   CR 57   CR 57   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR 58   CR	Unknown	U21S11				#99899778889799999990048899900889970 <del>0</del>	200000200000000000000000000000000000000
22.3   D215113   30   11   0.37   Esophageal   CR 51	Unknown		16	0	0	***************************************	ACCORDING CONTRACTOR CONTRACTOR
22.3         D21S113         30         11         0.37         Escphageal         GCC 1           22.3         D21S113         20         5         0.72         PSOPDAGEAR         URK76           Unknown         D21S262         18         0         0         Head&Neck         CR 54           Unknown         D21S262         17         3         0.18         Head&Neck         CR 54           Unknown         D21S59         19         5         0.26         Head&Neck         CR 54           22.3         D21S113         19         3         0.16         Kidney         PNAS           Unknown         D21S262         6         0         0         Kidney         PNAS           Unknown         D21S265-D21S265-D21S263         19         1         0.05         Kidney         PNAS           Unknown         D21S267-D21S265-D21S263         19         1         0.05         Kidney         PNAS           22.3         D21S133         15         1         0.07         Liver         CR 51           21.2-TER         D21S13         15         1         0.07         Liver         DCG           21.1.1         D21S262         23 <td>22.3</td> <td>D21S113</td> <td></td> <td></td> <td></td> <td></td> <td></td>	22.3	D21S113					
The color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the	22.3	D21S113	30	11	~~~~~		
Unknown   D21S262	22.3	D215113	20	5	7799999999 <del>0000000000000000000000000000</del>	? <del>????????????????????????????????????</del>	
Unknown         D218262         17         3         0.18         ReadsNeck         CR_55           Unknown         D21559         19         5         0.26         HeadsNeck         CR_54           22.3         D21513         19         3         0.16         Ridney         CR_54           22.3         D215262         6         0         0         Kidney         PNAS           Unknown         D215267-D215265-D215263         16         0         0         Ridney         PNAS           Unknown         D215267-D215265-D215263         6         2         0.33         Kidney         PNAS           Unknown         D215267-D215265-D215263         6         2         0.33         Kidney         PNAS           Unknown         D215133         15         1         0.07         Liver         CR_51           22.3         D21513         14         0         0         Liver         CG           11.1         D21552         4         1         0.25         Liver         JJCR           22.3         D21513         28         5         0.18         Lung         CR_52           22.3         D21513         6         0 </td <td>Unknown</td> <td></td> <td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td>***************************************</td> <td>******************************</td> <td></td> <td>***************************************</td>	Unknown		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************	******************************		***************************************
Unknown   D21559   19   5   0.26   Head&Neck   CR 54   22.3   D215113   19   3   0.16   Kidney   CR 51   Unknown   D215262   6   0   0   0   Kidney   PNAS   Unknown   D215262   16   0   0   0   Kidney   PNAS   Unknown   D215265   D215263   19   1   0.05   Kidney   PNAS   Unknown   D215267-D215265   D215263   6   2   0.33   Kidney   PNAS   Unknown   D215267-D215265   D215263   6   2   0.33   Kidney   PNAS   Unknown   D215267-D215265   D215263   6   2   0.33   Kidney   PNAS   D215213   15   1   0.07   Liver   CR 51   D215267   D21523   D21533   14   0   0   Unknown   D21533   D215313   28   5   0.18   Lung   Unknown   D215262   23   1   0.04   Melanoma   CR 56   D2153   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313   D215313	Unknown		******************		·····	*******************************	**************
Description	Unknown		**************		******************************	***************************************	*******************************
Unknown         D21S262         6         0         0         Kidney         PNAS           Unknown         D21S267-D21S265-D21S263         19         1         0.05         Kidney         PNAS           Unknown         D21S267-D21S268-D21S263         6         2         0.833         Kidney         PNAS           Unknown         D21S267-D21S268-D21S263         6         2         0.833         Kidney         PNAS           22.3         D21S113         15         1         0.07         Liver         CR 51           21.2-TER         D21S19         14         0         0         Liver         CGG           11.1         D21S52         4         1         0.25         Liver         JJCR           22.3         D21S113         28         5         0.38         Lung         URS 22           Unknown         D21S262         23         1         0.04         Melanoma         CR 56           22.3         D2IS133         12         0         0         Ovary         CR 51           22.3         D2IS113         12         0         0         Ovary         CR 51           22.3         D21S113         12         4<	22.3		~~~		~~~~	UV7779744444444444444444444444	
Unknown         D21S262         16         0         0         Ridney         PNAS           Unknown         D21S267-D21S265-D21S263         19         1         0.05         Kidney         PNAS           Unknown         D21S267-D21S265-D21S263         6         2         0.33         Kidney         PNAS           22.3         D21S113         15         1         0.07         Liver         CR 51           21.2-TER         D21S19         14         0         0         Liver         CGG           11.1         D21S52         4         1         0.25         Liver         JJCR           22.3         D21S113         28         5         0.18         Gung         CR 52           Unknown         D21S262         23         1         0.04         Melanoma         CR 56           22.3         D21S113         12         0         0         Ovary         OSi2           22.3         D21S113         12         0         0         Ovary         CR 52           22.3         D21S113         12         4         0.33         Ovary         CR 53           Unknown         D21S120         12         4         0	***************************************		**************	~~~~~	***************************************	******************************	
Unknown         D215267-D215265-D215263         19         1         0.05         Kidney         PNAS           Unknown         D215267-D215265-D215263         6         2         0.33         Kidney         PNAS           22.3         D215113         15         1         0.07         Liver         CR 51           21.2-TER         D21513         14         0         0         Liver         CGG           11.1         D21552         4         1         0.25         Liver         JJCR           22.3         D215113         26         5         0.18         Lung         CR 52           Unknown         D215262         23         1         0.04         Melanoma         CR 56           22.3         D215113         12         0         0         Ovary         CR 51           22.3         D215113         12         0         0         Ovary         CR 51           22.3         D215113         12         0         0         Ovary         CR 51           22.3         D215113-11         28         10         0.36         Ovary         CR 54           Unknown         D215167         13         7 <td< td=""><td>Unknown</td><td>***************************************</td><td></td><td></td><td></td><td>2788277768888777688887877</td><td></td></td<>	Unknown	***************************************				2788277768888777688887877	
Unknown         D215/267-D215/65-D215/65         6         2         0.33         ridney         PNRS           22.3         D215113         15         1         0.07         Liver         CR 51           21.2-TER         D21519         14         0         0         Liver         CCG           11.1         D21552         4         1         0.25         Liver         JJCR           22.3         D21513         28         5         0.18         Ling         GR 52           Unknown         D215262         23         1         0.04         Melanoma         CR 56           22.3         D218133         6         0         0         Ovary         CR 51           22.3         D218113         12         0         0         Ovary         CR 51           22.3         D218113         25         2         0.08         Ovary         CR 51           22.3         D218113-1         28         10         0.36         Ovary         CR 53           Unknown         D21813-1         28         10         0.36         Ovary         BJC 6           22.3         D218167         13         7         0.54	***************************************		*************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	******************************	***************************************	***************************************
22.3         D21S113         15         1         0.07         Liver         CR 51           21.2-TER         D21S13         14         0         0         Liver         CCG           11.1         D21S52         4         1         0.25         Liver         JJCR           22.3         D21S113         28         5         0.18         Lung         CR 52           Unknown         D21S262         23         1         0.04         Melanoma         CR 56           22.3         D21S133         6         0         0         Ovary         OS 52           22.3         D21S113         12         0         0         Ovary         CR 51           22.3         D21S113         12         0         0         Ovary         CR 51           Unknown         D21S113         25         2         0.08         Ovary         CR 53           11.2         D21S120         12         4         0.33         Ovary         BJC 6           22.3         D21S167         13         7         0.54         Ovary         BJC 6           22.3-QTER         D21S13         3         0         0         Pancreas	0.0000000000000000000000000000000000000				***************************************	***************************************	99709999999
21.2-TER	***************************************		***********	•••••	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************	***************************************
11.1         D21S52         4         1         0.25         Liver         JJCR           22.3         D21S113         28         5         0.18         Lung         GR 52           Unknown         D21S262         23         1         0.04         Melanoma         CR 56           22.3         D21S113         6         0         0         Ovary         CR 51           22.3         D21S113         12         0         0         Ovary         CR 51           22.3         D21S113         25         2         0.08         Ovary         CR 51           Unknown         D21S113-11         28         10         0.36         Ovary         CR 53           11.2         D21S120         12         4         0.33         Ovary         BJC 6           22.3         D21S167         13         7         0.54         Ovary         BJC 6           22.3         D21S171         13         3         0.23         Ovary         BJC 6           22.3         D21S13         3         0         0         Prostate         GL3           Unknown         D21S9*D21S17         10         0         0         Prostate<			00000000000000000000000000000000000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		***************************************	************************
Description					***************************************	***************************************	***************************************
Unknown         D215262         23         1         0.04         Melanoma         CR 56           22.3         D215113         6         0         0         Ovary         0.5:2           22.3         D215113         12         0         0         Ovary         CR 51           22.3         D215113         25         2         0.08         Ovary         CR 51           Unknown         D215113-11         28         10         0.36         Ovary         CR 53           13.2         D218120         12         4         0.33         Ovary         BJC 6           22.3         D215167         13         7         0.54         Ovary         BJC 6           22.3-QTER         D215171         13         3         0.23         Ovary         BJC 6           22.3         D21513         3         0         0         Pancreas         CR 54           Unknown         D2198-D21537         10         0         0         Prostate         G.11           Unknown         Unknown         6         2         0.33         Sarcoma         CGC 5           22.3         D21513         15         1         0.07	22.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			******	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO	***************************************
22.3         B2ISII3         6         0         0         Ovary         0.552           22.3         D2ISII3         12         0         0         Ovary         CR 52           22.3         D2ISII3         25         2         0.08         Ovary         TJC 5           Unknown         D2ISII3-11         28         10         0.36         Ovary         CR 53           11.2         D2ISI20         12         4         0.33         Ovary         BJC 6           22.3         D2ISI67         13         7         0.54         Ovary         BJC 6           22.3-OTER         D2ISI71         13         3         0.23         Ovary         BJC 6           22.3         D2ISI13         3         0         0         Pancreas         CR 54           Unknown         D2ISH2517         10         0         0         Prostate         G.II.           Unknown         Unknown         6         2         0.33         Sarcoma         CG 5           22.3         D2ISH3         15         1         0.07         Barcoma         CR 52           22.3         D2ISH3         5         1         0.17         U	200000000000000000000000000000000000000		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	************
22.3         D215113         12         0         0         Ovary         CR 51           22.3         D215133         25         2         0.08         Ovary         TJC 5           Unknown         D215113-11         28         10         0.36         Ovary         CR 53           11.2         D215120         12         4         0.33         Ovary         BJC 6           22.3         D215167         13         7         0.54         Ovary         BJC 6           22.3         D21513         3         0         0         Pancreas         CR 54           Unknown         D21513         3         0         0         Prostate         G.11:           Unknown         D2188-D21517         10         0         0         Prostate         G.11:           Unknown         Unknown         6         2         0.33         Sarcoma         CG 5           22:3         D21513         15         1         0.07         Sarcoma         CG 5           22:3         D21513         21         3         0.14         Testis         0 9:2           22:3         D215167         20         0         0         U	~~~		<del></del>			\$5050000000000000000000000000000000000	
22.3         D215113         25         Z         0.08         Ovary         INC 5           Unknown         D215113-11         28         10         0.36         Ovary         CR 53           11.2         D215120         12         4         0.33         Ovary         BJC 6           22.3         D215167         13         7         0.54         Ovary         BJC 6           22.3-OTER         D215171         13         3         0.23         Ovary         BJC 6           22.3         D215113         3         0         0         Pancreas         CR 54           Unknown         D2188-D21517         10         0         0         Prostate         G11:           Unknown         Unknown         6         2         0.33         Sarcoma         CGC 5           22:3         D21513         15         1         0.07         Sarcoma         CR 52           22:3         D21513         21         3         0.14         Testis         0 9:2           22:3         D215167         20         0         0         Uterus         CR 54	***************************************		<del>~~~~~~~</del>	***************************************	***************************************	***************************************	******************
Unknown         D21S113-11         28         10         0.36         Ovary         CR 53           11.2         B21S120         12         4         0.33         Ovary         BJC 6           22.3         D21S167         13         7         0.54         Ovary         BJC 6           22.3-OTER         D21S171         13         3         0.23         Ovary         BJC 6           22.3         D21S113         3         0         0         Pancreas         CR 54           Unknown         D21S8-D21S17         10         0         0         Prostate         G11:           Unknown         Unknown         6         2         0.33         Sarcoma         CGC 5           22.3         D21S113         15         1         0.07         Sarcoma         CR 52           22.3         D21S113         21         3         0.14         Testis         0 9:2           22.3         D21S123         6         1         0.17         Oterus         CR 54           22.3         D21S167         20         0         0         Uterus         CR 54	22.3			·····	00000 0000000 <del></del>	**************************************	
11.2   D21S120   12   4   0.33   Ovary   BJC 6					***************************************	<del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del>	
22.3         D21S167         13         7         0.54         Ovary         BJC 6           22.3-OTER         D21S171         13         3         0.23         Ovary         BJC 6           22.3         D21S113         3         0         0         Pancreas         CR 54           Unknown         D21S8-D21S17         10         0         0         Prostate         G11:           Unknown         Unknown         6         2         0.33         Sarcoma         CGC 5           22.3         D21S113         15         1         0.07         Sarcoma         CR 52           22.3         D21S113         21         3         0.14         Testis         0 9:2           22.3         D21S123         6         1         0.17         Oterus         CR 54           22.3         D21S167         20         0         0         Uterus         CR 54	11.2			***************************************		<del>1722-1723   1722-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-1723   1723-</del>	***************************************
22.3—QTER         D215171         13         3         0.23         Ovary         BJC 6           22.3         D21S113         3         0         0         Pancreas         CR 54           Unknown         D21S9-D21S17         10         0         0         Prostate         G211.           Unknown         Unknown         6         2         0.33         Sarcoma         CGC 5           22.3         D21S113         15         1         0.07         Sarcoma         CR 52           22.3         D21S113         21         3         0.14         Testis         0 9:2           22.3         D21S123         6         1         0.17         Oterus         GCC 9           22.3         D21S167         20         0         0         Uterus         CR 54	***************************************			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************	*************************************	***************************************
22.3         D21S113         3         0         0         Pancreas         CR 54           Unknown         D21S8+D21S17         10         0         0         Prostate         G11.           Unknown         Unknown         6         2         0.33         Sarcoma         CGC 5           22.3         D21S113         15         1         0.07         Sarcoma         CR 52           22.3         D21S113         21         3         0.14         Testis         0 9:2           22.3         D21S123         6         1         0.17         Oterus         GCC 9           22.3         D21S167         20         0         0         Uterus         CR 54	22.3-OTER		****************				***************************************
Unknown         D21S8*D21S17         10         0         0         Prostate         G 11           Unknown         Unknown         6         2         0.33         Sarcoma         CGC 5           22.3         D21S113         15         1         0.07         Sarcoma         CR 52           22.3         D21S113         21         3         0.14         Testis         0 9:2           22.3         D21S113         6         1         0.17         Dterus         GCC 9           22.3         D21S167         20         0         0         Uterus         CR 54	***************************************		******************	····	•••••••	······	***********
Unknown         Unknown         6         2         0.33         Sarcoma         CGC 5           22.3         D21S113         15         1         0.07         Sarcoma         CR 52           22.3         D21S113         21         3         0.14         Testis         0 9:2           22.3         D21S113         6         1         0.17         Oterus         GCC 9           22.3         D21S167         20         0         0         Uterus         CR 54	Unknown				********************************		*****************
22.3         D215113         15         1         0.07         Sercoma         CR 52           22.3         D215113         21         3         0.14         Testis         0 9:2           22.3         D215113         6         1         0.17         Oterus         GCC 9           22.3         D215167         20         0         0         Oterus         CR 54	***************************************		***************************************	····	***************************************	***************************************	***************************************
22.3         D21S113         21         3         0.14         Testis         0 9:2           22.3         D21S113         6         1         0.17         Dterus         GCC 9           22.3         D21S167         20         0         0         Uterus         CR 54	22.3					***************************************	10979777799691040977
22.3         D21S113         6         1         0.17         Dterus         GCC 9           22.3         D21S167         20         0         0         Uterus         CR 54	~~~~~~~		***************************************		·····	***************************************	~~~~~
22.3 D21S167 20 0 O Uterus CR 54			******************			******************************	10000007977979797979797
20 0 Otelas Casa	***************************************		~~~~~~		***************************************	***************************************	***************************************
	***************************************			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		V-7494944-10770-10770-10770-10770-10770-10770-10770-10770-10770-10770-10770-10770-10770-10770-10770-10770-107	***************************************

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
13.3	CSPT1	2.0	1	0:05	Uterus	CR 54:4294
Unknown	Unknown	20	0	0	Brain	CR 50:5784
13:2	D20S4	15	2	0.13	Breast	GCC 2:191
Unknown	D20S119	26	3	0.12	Cervix	CR 56:197
13.2	D2094	23		0.09	Cervix	CR 54:4481 -
Unknown	D20S25	25	0	0	Endocrine	CR 56:599
Unknown	D20919-	19		0.16	Esophageal	CR 54:2996
Unknown	D20S100	18	1	0.06	Head&Neck	CR 54:4756
Unknown	D205100	21		0.1	Head&Neck	CR 54:4756
Unknown	D20S110	16	1	0.06	Head&Neck	CR 54:1152
Unkacwn	D206119	11		0.09	Head&Neck	CR 54:1152
Unknown	D20S100	16	0	0	Kidney	PNAS 92:2854
Unknown	D209100			0	Kidnev	PNAS 92:2854
Unknown	Unknown	5	1	0.2	Liver	BJC 64:1083
13.2	02054	157	. 0	0	Liver	JJCR 81:108
13.2	D20S4	4	0	0	Liver	CCG 48:72
13.2	D2094	10		0.1	Lung	PN 84:9252
13.2	D2054	10	4	0.4	Lung	PN 86:5099
13.2	D2054	2	2	1	Lung	PN 86:5099
13.2	D20S4	6	2	0.33	Lung	PN 86:5099
Unknown	D209100	30	0	0	Melanoma	CR 56:589
Unknown	D20S19	33	0	0	Ovarv	IJC 54:546
13.2	D2054	19	3	0.16	Ovary	CR ₈ 53:2393
Unknown	D20S46	14	3	0.21	Ovary	BJC 69:429
Unknown	D20654	14	1	9.07	Ovary	BJC 69:429
13.2	D20S4	8	0	0	Prostate	G 11:530
13.2	D2054	11	0	Ū	Stomach	CR 48:2988
Unknown	D20S19	31	0	0	Testis	O 9:2245
Unknown	D20526	25	1	0.04	Testis	GCC 13:249
13.2	D20S4	36	4	0.11	Testis	0 9:2245
13.3	CSPT1	20	1	0:05	Uterus	CR 54:4294
SUM		509	38	0.07		

Chromosome 20 - p Arm

Band	Marker	Total	Cases with LOH	LOH Frequency	Tumor Type	Reference
12	D2056	4	1	0.25	rice in the	CR 51:5632
Unknown	Unknown	12	1	0.08	Brain	CR 50:5784
12	02056	8	.0	0	Brain	CR 49:6572
Unknown	D20S19	6	0	0	Breast	CR 53:3804
Unknown	D20819	37	2	0.05	Areast	CR 50-7184
12	D2056	20	3	0.15	Breast	GCC 2:191
Unknown	0209118	31	0	0	Cervix	CR 56:197
Unknown	D20S19	3	0	0	Cervix	GCC 9:119
12	D2056	2	0	C	Cervix	CR 49-3598
12	D20S6	28	6	0.21	Cervix	CR 54:4481
Unknown	020598	16	7	0.12	Cervix	CR 56:197
Unknown	D20S95	16	0	0	Endocrine	CR 56:599
Unknown	D20919	5,5	7	0.12	exophagea).	(e)(xxx (e) (e) (e) (e) (e) (e) (e) (e) (e) (e)
Unknown	D20S72	20	2	0.1	Esophageal	CR 54:2996
Unknown	0209104	1.2	O	C.	HeadKNeck	CR.54-4756
Unknown	D20S104	23	2	0.09	Head&Neck	CR 54:4756
Unknown	D20595	20	6	0.3	ReadENeck	CR 54:1152
Unknown	D20S104	17	1	0.06	Kidney	PNAS 92:2854
Unknown	0205104		0	0	Kidney	PNAS 92:2854
Unknown	D20S117	5	0	0	Kidney	PNAS 92:2854
Unknown	D205117	21	0	G	Kidney	PNAS 92:2854
Unknown	D20S19	29	1	0.03	Kidney	CR 51:820
Unknown	D20519	39	O	0	Liver	CR 51:89
Unknown	D20S19	40	8	0.2	Lung	CR 52:2478
Unknown	D205104	23	2	0.09	Melanoma	CR 56:589
12	D20S6	2	0	0	Neuroblastom	CR 49:1095
		******************************			a	
Unknown	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	16	0	G	Ovary	CR 53:2393
Unknown	D20S19	32	4	0.12	Ovary	CR 51:5118
12	D20S27	14	3	0.21	Ovary	BJC 69:429
12	D20S6	27	4	0.15	Ovary	IJC 54:546
Unknown	D20819	5	0	О	Pancreas	CR 54:2761
12	D20S5	2	0	0	Pancreas	CR 54:2761
Unknown	D2055	6	O	0	Prostate	G 11:530
Unknown	D20S19	8	2	0.25	Sarcoma	CR 52:2419
12	D20S5_	13	4	0.31	Sarcoma	CR 52:2419
Unknown	D20S19	15	3	0.2	Stomach	CR 52:3099
12	D2056_	22	g	0.41	Testis	0.9:2245
Unknown	D20S19	2	0	0	Uterus	GCC 9:119
12	D20527	26	C C	O	Oterus	CR 54:4294
12	D20S6	4	1	0.25	Uterus	CR 51:5632
MUE		6.84	73	0,11		

Unknown	D198210-D198224	6	Λ	Đ.	Kidney	
Unknown	D19S210-D19S224	19	0	0		PNAS 92:2854
13.4	D19922	14	3	0.21	Kidney	PNAS 92:2854
Unknown	D19S225	3	0	0	Kidney	CR 51:020
Unknews	D199225	17		0.06	Kidney	PNAS 92:2854
13.4	D19S22	24	11		Kidney	PNA9 92;2854
13.4	D19922	3		0.46	Lung	CR 52:2478
13.4	D19S22	•••••	2	0.67	Lung	CR 52:2478
13.4	**********************************	1	1	1	Lung	CR 52:2478
***************************************	D19522	9	9		Lung	CR 52:2478
Unknown	D19S225	22	0	0	Melanoma	CR 56:589
12	D1987	3	0	0	Neuroblasto	R CB 49:1095
Unknown	CVDI				a	
509000000000000000000000000000000000000	CYP1	7	1	0.14	Ovary	CR 50:2724
13.4	D19822	16	A	0.25	Ovary	CR 51-5118
12-13.1	D19S49	13	3	0.23	Ovary	BJC 69:429
13.2	D1998	23	5	0.22	Ovary	100 54:546
Unknown	D19S8-CYP2A	23	4	0.17	Ovary	CR 53:2393
13.2	D1958	.12	0	9	Prostate	G 11:530
13.4	D19S22	9	3	0.33	Sarcoma	CR 52:2419
12	D1957	16		0.06	Stomach	CR 48:2988
12	D19S7	19	2	0.11	Testis	0 9:2245
13.2	APOC2	11	0	0	Uterus	CR 54:4294
SUM		1066	323	0 3		

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
13.2	APOC2	11	0	0	Uterus	CR 54:4294
13.2	APOC2	33	19	0.58	Brain	AJP 145:1175
13.2	APOC2	22	8	0.36	Brain	CR 54:1397-
13.2	APOC2	15	1	0.07	Brain	CR 54:1397
13.1-13.2	BCL3	5	A	0.8	Brain	CR 54:1397
13.1-13.2	BCL3	6	11	0.17	Brain	CR 54:1397
13.3	CIGMM	34	19	0.56	Brain	AJP 145.1175
13.2	CYP2	24	13	0.54	Brain	AJP 145:1175
13.2	D195178	12	1	0.08	Brain	CR 54:1097
13.2	D19S178	18	5	0.28	Brain	CR 54:1397
13.4	D199180	21	9	0.43	Brain	CR 54:1397
13.4	D19S180	11	2	0.18	Brain	CR 54:1397
13.1	D195191	23	- 6	0.26	Brain	CR 54:1397
13.1	D19S191	12	·2	0.17	Brain	CR 54:1397
13.4	D19522	18	1	0.06	Brain	CR 50.5764
13.4	D19522	37	18	0.49	Brain	AJP 145:1175
12-13.1	D19930	15	7	0.47	Brain	AJP 145:1175
12-13.1	D19S31	. 6	4	0.67	Brain	AJP 145:1175
13.1	D19532	21	10	0.48	Brain	AGE 145:1175
13.1-13.2	D19S47	18	4	0.22	Brain	CR 54:1397
13.1-13.2	D19847	11		0.18	Brain	CR 54:1397
12-13.1	D19S49	22	5	0.23	Brain	CR 54:1397
12-13.1	D19849	12	1	0.08	Brain	CR 54:1397
13.3	D19S51	12	7	0.58	Brain	AJP 145:1175
13.3	D19862	12	7	0.58	Brain	AJP 145:1175
13.3	D19S63	24	15	0.62	Brain	AJP 145:1175
12	D1997	21	10	0.48	Brain	AJP 145:1175
11-CEN	D19574	7	4	0.57	Brain	AJP 145:1175
12-13.1	D19975	11	1	0.09	Brain	CR 54:1397
12-13.1	D19S75	19	3	0.16	Brain	CR 54:1397
13.2	D1998	21	14	0.67	Brain	AJP 145:1175
Unknown	D19S9	6	2	0.33	Brain	AJP 145:1175
13.3	ERCC1	32	18	0.56	Brain	AJP 145:1175
13.3	ERCC2	16	7	0.44	Brain	AJP 145:1175
13.2	APOC2	25	2	0.08	Breast	GCC 2:191
13.4	D19S22	19	3	0.16	Breast	CR 50:7184
13.2	APOC2	29	3	0.1	Cervix	CR 56:197
Unknown	D19S223	24	3	0.12	Cervix	CR 56:197
Unknown	01999	1	0	0	Cervix	CR 49:3598
13.2	APOC2	17	1	0.06	Colon	CCG 48:167
12	D1957	21	16	0.76	Colon	IJC 53:382
Unknown	D19S210	18	1	0.06	Endocrine	CR 56:599
13.4	D19S22	23	7	0.3	Esophageal	CR 54:2996
Unknown	D19S210	22	7	0.32	Head&Neck	CR 54:1152
Unknown	D19S255	10	0	0	Head&Neck	CR 54: 6756
Unknown	D19S255	10	0	. 0	Head&Neck	CR 54:4756

13.2-CEN	D19S11	3	0	0	Prostate	G 11:530
Unknown	D19S20	21	5	0.24	Sarcoma	CR 52:2419
Unknown	D1987	3	I	0.33	Sarcoma	CR 52:2419
13.2-CEN	D19S11	46	2	0.04	Testis	0 9:2245
Unknown	_D19620	20	1	0.05	Testis	LL 73:606
Unknown	D19S20	20	1	0.05	Testis	G 5:134
13.3-13.2	INSR	2	0		Testis	CCG 52:72
13.3-13.2	INSR	3	0	0	Testis	CCG 52:72
13.3-13.2	INSR	. 1	0	0	Testis :	CCG 52:72
Unknown	D19S20	14	0	0	Uterus	. GCC 9:119
Unknown	LIPE	21	0	0	Uterus	CR 54:4294
SUM		1099	143	0.13		

Band	Marker	Total	Cases w/LOH	LOH Freg.	Tumor Type	Reference
Unknown	LIPE	21	ŋ	0	Uterus	CR 54:4294
13.2-CEN	D19S11	36	2	0.06	Brain	AJP 145:1175
Unknown	D19520	12	0	0	Brain	CR 50:5784
Unknown	D19520	35	1	0.03	Brain	AJP 145:1175
Unknown	019920	- 8	0	ů.	Brain	CR 49:6572
13.2	D19S24	15	0	0	Brain	AJP 145:1175
12-13.2	D19576	14	O	0	Brain	CR 54:1397
12-13.2	D19S76	11	1	0.09	Brain	CR 54:1397
13.2-13.1	LOLR	3	1	0.33	Brain	CR 54:1397
13.2-13.1	LDLR	11	0	0	Brain	CR 54:1397
13.2-CEN	D19611	26	7	0.27	Breast	CR 53 4356
Unknown	D19520	36	7	0.19	Breast	CR 50:7184
13.32	D19922	35		0.03	Breast	CR 53:4356
13.2-CEN 13.3	D19S11	45 <b>27</b>	1 4	0.02	Cervix	CR 54:4481
Unknown	D19S20	8	0	<b>0.15</b> 0	Cervix	CR 56:197
Unknown	D195221	29	7	0.24	Cervix	GCC 9:119
Unknown	D1957	26	4	0.15	Cervix	CR 56:197
Unknown	D199216	*********	1	0.05	Cervix Endocrine	CR 54:4481 CR 56:599
Unknown	D19S20	22	6	0.27	Esophageal	CR 54:2996
Unknown	D19920	25	2	0.27	Esophageal	GCC 10:177
13.32	D19S22	34	11	0.32	Esophageal	GCC 10:177
13.3	D199177	*****	4	0.25	HeadsNeck	CR 54:1152
Unknown	D19S216	15	0	0	Head&Neck	CR 54:4756
Unknown	D195216	19	1	0.05	Head&Neck	CR 54:4756
Unknown	D19S221	19	6	0.32	Head&Neck	CR 54:1152
13.3	Unknown	48	7	0.15	Kidney	CR 51:5817
Unknown	D19S20	40	8	0.2	Kidney	CR 51:5817
Unknown	D19920	25	9	0.32	Kidney	CR 51:820
13.3	D19S21	30	3	0.1	Kidney	CR 51:5817
Unknown	D19S216	3	0	0	Kidney	PNAS 92:2854
Unknown	D19S216	17	1	0.06	Kidney	PNAS 92:2854
13.2-TER	C3	3	0	0	Liver	CCG 48:72
13.32	D19S22	28	1	0.04	Liver	CR 51:89
Unknown	D1997	11	<u> </u>	0	Liver	JJCR 81:108
Unknown	D19S20 D19S7	26 17	3 <b>0</b>	0.12	Lung	CR 52:2478
Unknown Unknown	******************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************	0	Lung	PN:84:9252
Unknown	D19S216	25 19	2 5	0.08	Melanoma	CR 56:589
13.2-CEN	Unknown D19S11	16	3	0.26	Ovary	CR 51:5118
13.2-CEN	D19511 D19511	13	2	0.19	Ovary	IJC 54:546
13.3	D19S177	11	5	0.15 0.45	Ovary	CR 53:2393 BJC 69:429
Unknown	D195177	************	5	0.45 0.38	Ovary *Ovarv	GO 55:198
Unknown	D19S20	24	8	0.33	Ovary	CR 51:5118
13:3-13.2		21	5	0.24	Ovary	IJC 54:546
13.32	D19S22	6	0	0	Pancreas	CR 54:2761
				-		

Unknown	Unknown	1	O	0	Pancreas	CR 54:2761
Unknown	Unknown	6 ·	0	0	Pancreas	BJC 65:809
23	Unknown	2	2		Prostate	JU 151:1073
Unknown	D18S31	19	2	0.11	Testis	GCC 13:249
Unknown	JOSH4.4	20	5	0.25	Testis	0 9:2245
SUM		2301	659	0.29		***************************************

21.3-qter	D1895	21	2	0.1	Cervix	CR 54:4481
12	D18S5	7	0	0	Cervix	CR 49:3598
21.3-qter	D1855	- 6	2	0.33	Colon	0 9:991
21.3-qter	D18S5	21	16	0.76	Colon	IJC 53:382
12	D1895	19	12	0.63	Colon	CR 50:7166
12	D18S5	29	11	0.38	Esophageal	GCC 10:177
12	D1855	19	1	0.05	Kidney	CR 51:1544
12	D18S5	18	1	0.06	Liver	JJCR 81:108
12	D1895	28	3	0.11	Lung	PN 84:9252
12	D18\$5	7	0	0	Neuroblaston a	m CR 49:1095
21.3-qter	D1895	16	4	0.25	Owary	IJC 54:546
21.3-gter	D18S5	15	9	0.6	Ovary	0 7:1059
21.3-qter	D1855	21	12	0.57	Prostate	JU 151:1073
21.3-qter	D18S5	16	4	0.25	Prostate	GCC 11:119
12	D1895	13	G C	0	Stomach	CR 48:2988
21.3-gter	D18S5	15	10	0.67	Stomach	CR 52:3099
21.3-qter	D1855	14	1	0.07	Testin	GCC 13:249
12	D18S5	42	16	0.38	Testis	0 9:2245
12	D1895	9	2	0.22	Uterns	CR 51:5632
Unknown	D18S58-D18S61	6	1	0.17	Kidney	PNAS 92:2854
Unknown	D18958-D18961	22	D	0	Kidney	PNAS 92:2854
23	D18S11	67	17	0.25	Breast	PNAS 87:7737
23	D18511	8	3	0:38	Colon	GCC 3:468
23	D18S11	25	8	0.32	Ovary	IJC 54:546
23	D18911	. 35	21	0.6	Ovary	0.7:1059
23	D18S11	5	0	0	Pancreas	GCC 3:468
23	D18511	13	2	0.15	Prostate	GCC:11:119
23	D18S11	13	2	0.15	Stomach	GCC 3:468
Unknown	D18970	41	O	0	Head&Neck	CR 54:4756
Unknown	D18S70	43	3 0	0.07	Head&Neck	CR 54:4756
Unknown	D18570	21	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	Kidney	PNAS 92: 2854
Unknown	D18S70	6 23	1 5	0.17	Kidney	PNAS 92:2854
Unknown	D18970	~~~~~~~~		0.22	Melanoma	CR 56:589
Unknown 12.1-21.1	D18S70	23 18	5 4	0.22	Melanoma	CR 56:589
23	Unknown Unknown	11	4	0.22 0.36	Bladder	BJC 70:697 BJC 70:697
Unknown	D18S22	12	9	0.36 C	Bladder Brain	CR:49:6572
Unknown	D18546	17	1	0.06	Endocrine	CR 56:599
Unknown	D18534	26	6	0.08	BeadsNeck	CR 54:1152
Unknown	D18S:58-67	23	4	0.17	Leukemia	CR 55:5377
Unknown	Unknown	23	0	0.17 G	Liver	BJC 67:1007_
Unknown	Unknown	5	0	0	Liver	BJC 64:1083
Unknown	DCC-D18S34	28	12	0.43	Ovary	CR 53:2393
Unknown	MBP- D18S:34-35	15	6	0.4	Ovary	BJC 72:1330
Unknown	PLIANH2	7	2	0.29	Ovary	0.7:1059
Unknown	Unknown	6	4	0.67	Pancreas	CR 54:2761
		-	•	5.07		J

21.3	DCC	15	8	0.53	Bladder	BJC 70:697
21.3	DCC	26	2	0.08	Breast	CR 53:4356
21.3	DCC	16	5	0.31	Breast	BJC 68:64
21	DCC	5	1	0.2	Cervix	BJC 67:71
21.3	DCC	12	3	0.25	Cervix	BJC 67-71
21.3	DCC	48	18	0.38	Colon	EJC 30A:664
21.3	DCC	25	13	0.52	Colon	CR 54:3979
21.3	DCC	4	1	0.25	Colon	0 9:991
21.3	DCC	41	29	0.71	Colon	S 247:49
21.3	DCC	19	0	0	Endocrine	GCC 13:9
21.3	DCC	44	10	0.23	Esophageal	CR 54:3007
21.3	DCC	50	12	0.24	Esophageal	CR 52:6525
21.3	DCC	5	1	0.2	Kidnev	GCC 12:76
21.3	DCC	19	11	0.58	Leukemia	B 83:3449
21.3	DCC	26	- 8	0.31	Leukemia	8 82:927
21.3	DCC	9	3	0.33	Leukemia	В 82:927
21.3	DCC	11	1	0.09	Liver	CR 51:89
21.3	DCC	. 6	2	0.33	Ovary	BJC 71:462
21.3	DCC	34	15	0.44	Ovary	0.7:1059
21.3	DCC	7	3 .	0.43	Ovary	0 7:1059
21.3	DCC	2	2	1	Pancreas	CR 54:2761
21	DCC	12	2	0.17	Prostate	PNAS 87:8751
21.3	DCC	11	-5	0.45	Prostate	CR 53:2723
21.3	DCC	13	5	0.38	Prostate	GCC 11:119
21.3	DCC	12	2	0.17	Prostate	CSurveys 11:1
21	DCC	7	5	0.71	Stomach	CR 52:3099
21.3	DCC	18	5	0.28	Stomach	LI 74:835
21.3	DCC	10	5	0.5	Stomach	CR 52:3099
21.3	DCC	51	17	0.33	Uterns	CR 54:4294
21.3	DCC	8	1	0.12	Uterus	CR 51:5632
21.3	DCC	5	1	0_2	Uterus	CR 51:5633
21.2-21.3	D18S35	22	0	0	Uterus	CR 54:4294
21.3	BCL2	14	1	0.07	Breast	PNAS 87:7737
21.3	BCL2	10	6	0.6	Colon	JJCR 85:584
21.3	BCL2	20	10	0.5	Ovary	0.7:1059
21.3	BCL2	7	2	0.29	Prostate	GCC 11:119
21.3	BCL2	17	4	0.24	Stomach	JJCR 857584
Unknown	D18568	23	8	0.35	Cervix	CR 56:197
Unknown	D18919	22	9	0.41	Breast	PNAS 87,7737
Unknown	D18S19	8	3	0.38	Prostate	GCC 11:119
21.3-qter	D1855	9	4	0.44	Bladder	BJC 70:697
12	D18S5	17	4	0.24	Bladder	CR 51:5405
21.3-qter	D1855	70	11	0.16	Breast	JUCR 8471159
12	D18S5	5	1	0.2	Breast	GCC 2:191
21.3-gter	D1895	43	6	0.14	Breast	AJP 140:215
21.3-qter	D18S5	16	11	0.69	Breast	PNAS 87:7737

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
31.21-PTER	018540	25		0.12	Oterus	CB 54:4294
Unknown	Unknown	12	1	0.08	Brain	CR 50:5784
Unknown	D18816	22	0	0	Breast	CR 53:4356
11.3	D1853	9	1	0.11	Breast	CR 50:7184
Unknown	018953		8	0.26	Corvix	CR 56:197
Unknown	D18S59	20	1	0.05	Endocrine	
Unknown	D16521	2.0	2	0.0	Esophageal	CR 56:599
Unknown	D18521	15	1	0.07	Esophageal	CR554.2996
Unknown	D1853	18			997537778789998999999999999999999999	CR 51:2113
11.21-PTER	D18540	22	6	0.27	Esophageal Head&Neck	OCC 10:177
Unknown	D18559	13	0	0.27	***************************************	CR 54:1152
Unknown	D18S59	18	3	0.17	Mead&Neck	CR054:4756
11.3	D1853	12	O.	0.17	Head&Neck	CR 54:4756
Unknown	D18S59	21	0	0	Kadney	CR: 51.820
Unknown	D16559			72.75.767.762.262.262.262.262.262.262.262.262	Kidney	PNAS 92:2854
Unknown	D18S54	19	1	0-17	Kidney	ENAS 9232854
11.3	D1853	16	4	0.05	Leukemia	CR 55:5377
Unknown	D18S59	33	***************************************	0.25	Ling	CR 52:2479
11.3	01853	6	4	0.12	Melanoma	CR 56:589
11.21-PTER	D18S40	15	2	0	Ovary	CR 51:5118
Unknown	D1836	10	4	0.27	Ovary	BJC 72:1330
11.3	D1853	15	1	0.1	Ovary	CR 53:2393
Unknown	D18521	<del>2202000000000000000000000000000000000</del>	0	0	Prostate	G 11:530
11.21-PTER	D18540	10	2	0.2	Sarcoma	CR 52:2419
SUM	D10540	25	3	0.12	Uterus	CR 54:4294
300		388	45	0.12		

142 / 214

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
13.2-12.1	TTR	18	9	0.5	Colon	100 53:382
11.1-11.2	D18S7	5	2	0.4	Breast	CR 53:3804
11:1-11.2	01897	7	22.5	0.29	Colon	§ 241:961
11.1-11.2	D18S7	9	2	0.22	Stomach	HG 92:244
11.1-11.2	D1857	17	9	0.47	Stomach.	CR:5Z:3099%
Unknown	D18S1	7	1	0.14	Breast	GCC 2:191
Unknown	D1891	- 8		0.5	Colon	IJC 53:382
Unknown	D18S1	11	0	0	Colon	N 331:273
Unknown	D1851	16		0.25	Colon	CR:50:7166
Unknown	D1851	1	1	1	Lung	PNAS 86:5099
Unknown	D1891	5	2	0.4	Lung	PNAS 86:5099
Unknown	D18S1	4	1	0.25	Lung	PNAS 86:5099
Jaknown	D1851	9		0.00	Ovacy	0:7:1059
Unknown	D18S1	15	7	0.47	Sarcoma	CR 52:2419
Unknown	01891	- 6		(i) = \$1	0.00767015	CR 51:5632
11	D1856	8	2	0.25	Bladder	BJC 70:697
7 11	D1856	1.2	2	0.19	Breast	PNAS 87:7737
11-pter	D18S6	24	5	0.21	Breast	JNCI 84:506
11	D1896	16	- 6	058	Cervix	CR 54:4481
11	D18S6	19	9	0.47	Colon	CR 50:7166
11	D1856	6	0	ū	Colon	CCG 48:167
11	D1856	17	3	0.18	Ovary	IJC 54:546
11	01896	1	0	0	Prostate	JU 151:1073
11	D18S6	15	4	0.27	Testis	0 9:2245
11	D1856	5	1	0.2	Testis	GCC 13:249
Unknown	D18S57	33	10	0.3	Cervix	CR 56:197
Unknown	D18522	14	2	0.14	Brain	CR:50:5784
Unknown	D18522	17	3	0.18	Breast	GCC 2:191
Unknown	D18922	29	11	0.38	Esophageal	CR 54;2996
Unknown	D18S22	11	7	0.64	Sarcoma	CR 52:2419
21.3	D1898	7	3	0.43	Breast	CR 53:3804
21.3	D18S8	27	9	0.33	Colon	S 241:961
21.3	D1858	7	- 5	0.71	Stomach	CR 52:3099
21.3	D1858	14	6	0.43	Stomach	HG 92:244
Unknown	D18524	13	- 1	0.08	Breast	CR 50:7184
Unknown	D18S24	6	0	0	Cervix	GCC 9:119
Unknown	D18924	4	0	0	Kidney	CR, 51:820
Unknown	D18524	17	4	0.24	Lung	CR 52:2478
Unknown	D18S24	- 8	O	0	Ovarv	CR 51-5118
Unknown	D18S24	3	0	0	Uterus	GCC 9:119
11.2-12.1	PALB	18	9	0.5	Colon	CR 50.7166
11.2-12.1	PALB	11	2	0.18	Colon	GCC 3:468
11.2-12.1	PALE	6	O	Ō	Pancreas	GCC 3-468
11.2-12.1	PALB	8	2	0.25	Stomach	GCC 3:468
11.2-12.1	PALB	3	0	0	Oterus	CR 51.5632
21.3	DCC	28	8	0.29	Bladder	CR 55:5213

22-23	NME1-D17S74-GH- D17S40-D17S4- D17S75	1	1	1	Ovary	AJHG 55:666
22-23	NME1-D17874-GB- D17840-D1784- D17875	1.4	14	Į.	Ovacy	AJHG 55:666
Unknown	D17S1323	12	3	0.25	Prostate	0 11:1241
Unknown	01791327	15	2	0.13	Prostate	0 11:1241
12.0-21	D17S588	19	2	0.11	Prostate	CR 55:1002
12,0-21	D17S588	19	2	0.11	Prostate	0 11:1241
21.3	D17S752	14	1	0.07	Prostate	GCC 13:278
21	D17S776	12	5	0.42	Prostate	O 11:1241
21	D17S846	19	2	0.11	Prostate	0 11:1241
21	D178855	18	8	0.44	Prostate	0 11:1241
21	D17S855	18	8	0.44	Prostate	CR 55:1002
21	D173856	15	5	0.33	Prostate	0 11.1241
21	D17S856	15	6	0.4	Prostate	CR 55:1002
21	D178857	20	2	0.1	Prostate	0 11:1241
21	D17S859	18	1	0.06	Prostate	0 11:1241
Unknown	KR11-9	18	2	0.11	Prostate	0 11:1241
Unknown	D17S32	10	1	0.1	Sarcoma	CR 49:6247
Onknown	D17832	14	2	0.14	Sarcoma	CR 52/2419
Unknown	D17S293	19	0	0	Uterus	CR 54:4294
Unknown	PROHIB	2	i i	0.5	Oterus	GCC 9:119
SUM		9605	3006	0.31		

140 / 214

25.3	Unknown	8	3	0.38	Ovary	CR 53:3382
25.3	Doknowa	8	4	0.5	Ovary	CR:53:3382
22	Unknown	5	4	0.8	Ovary	CR 53:3382
25.3	Unknown	6	0	0	Ovary	CR 53;3382
22	Unknown	1	0	0	Ovary	CR 53:3382
23	Unknown	3	<u>0</u>	0	Ovary	CR 53:3382
23	Unknown	5	5	1	Ovary	CR 53:3382
25.1	Unknown	11	6	0.55	Overy	CR 53:3382
25.1	Unknown	10	1	0.1	Ovary	CR 53:3382
23	Unknown	2	0	0	Ovary	CR 53:3382
23	Unknown	8	3	0.38	Ovary	CR 53:3382
Unknown	46E6-HOX2B-	18	10	0.56	Ovary	BJC 72:1330
	D17S:250-588-579					
Unknown	D17S136	6	5	0.83	Ovary	IJC 54:220
Unknown	D17S174	10	- 8	0.8	Overy	IJC 541220
Unknown	D17S180	6	4	0.67	Ovary	IJC 54:220
Bakaowa	D179250-579-588- NM23-GH	120	64	0.53	Ovary	CR-53:1218
12.0-21	D17S250-THRA1-	3	2	0.67	Ovary	AJHG 55:666
12.0 21	D17S846-D17S856-	•	-			
	D17S855-D17S183-					
	D17S579-D17S588	Accessore 00000000		***************************************		
12.0-21	D17S250-THRA1-	14	12	0.86	Ovary	AJHG 55:666
	D17S846-D17S856- D17S855-D17S183-					
	D173579-D173588					
12.0-21	D17S250-THRA1-	11	8	0.73	Ovary	AJHG 55:666
12.0 51	D17S846-D17S856-		·			
	D17S855-D17S183-					
	D17S579-D17S588	**********				
12.0-21	D17S250-THRA1-	1	1	1	Ovary	AJHG 55:666
	D173846-D173856- D178855-D17S183-					
	D173579-D17S588					
Unknown	D17S293	11	9	0.82	Ovary	IJC 54:220
Unknown	D17S293	18	14	0.78	Ovary	AJOG 172:908
Unknown	D175308	17	14	0.82	Ovary	IJC 54:220
Unknown	D17S587	2	0	Ð	Ovary	HG 294:231
12.0-21	D17S588	11	6	0.55	Ovary	BJC 69:429
12:0-21	D17S588	20	14	0.7	Ovary	AJOG 172:908
12.0-21	D17S588	2	0	0	Ovarv	HG 94:231
Unknown	D17S73-41-4-77	37	28	0.76	Overy	CR.53;2393
22-23	NME1-D17S74-GH-	11	11	1	Ovary	AJHG 55:666
	D17S40-D17S4-		<del></del>	_		
	D17S75					
22-23	NME1-017574-GH-	3	3	1	Ovary	AJHG:55:666
	D17S40-D17S4-					
	D17875					

Unknown	D1795-D17S1-	75	18	0.24	Breast	CR 53:3707
	D17S31=D17S509-				213001	G. G. J. J. J. J. J. J. J. J. J. J. J. J. J.
	D17974-D17S4					
Unknown	D17S587	6	1	0.17	Breast	HG 94:231
12.0-21	D178588	9	2	0.22	Breast	0 8:781
12.0-21	D17S588	6	1	0.17	Breast	HG 94:231
12.0-21	D17S588	17	8	0.47	Breast	AJOG 172:908
21	D17S648	39	7	0.18	Breast	***************************************
Unknown	D17S68	23	16	*****************************	· Breast	CR 54:2549
21	D175702	92	21	0.23		CR 54:4200
Unknown	D175702	80	24		Breast	CR 54:2549
Unknown	D178733	65	18	0.3	Breast	GCC 11:58
21	D175746	36	***************************************	0.28	Breast	GCC 11:58
21	D178750	~~~~~~~	10	0.28	Breast	CR 54:2549
23-ater	D17577	59	14	0.24	Breast	CR 54:2549
Unknown		30	11	0.37	Breast	CR 53:5617
21	D17S773	9	2	0.22	Breast	CR 53:5617
***************************************		10	Б	0.6	Breast	CR 54:6069
21 21	D17S776	70	17	0.24	Breast	GCC 11:58
***************************************	D175776	63	19	0.3	Breast	CR 54:2549
21	D17S846	74	24	0.32	Breast	CR 54:2549
21	D175855	30	9	0.27	Breast	CR 54:2549
21	D17S855	86	21	0.24	Breast	GCC 11:58
21	D17S855	10	8	0.8	Breast	CR 54:6069
21	D17S856	53	10	0.19	Breast	CR 54:2549
21	D175857	68	17	0.25	Breast	CR 54:2549
21	D17S859	17	2	0.12	Breast	CR 54:2549
21	D17S870	441	173	0.39	***************************************	
21	D17S870-CI17-730	289	98	******************	Breast	BJC 71:438
Unknown	EDH178-HSD-A3T	19	7	0.34	Breast	C 74:2281
Unknown	EDH17B-HSD-DEL	20	9	0.37	Breast	GCC 11:58
Unknown	EPB3	15	6	0.45	Breast	GCC 11:58
21	GAS	50		0.4	Breast	CR 53:5617
Onknown	PROHIB	6	13	0.26	Breast	CR 54:2549
Unknown	D17S791	*****************	<u>.</u>	0.17	Cervix	GCC 9:119
25.3	*************	22	1	0.05	Endocrine	CR 56:599
22	***************************************	40	11	0.28	Esophageal	CR 54:1638
25.1	Unknown	33	16	0.48	Esophageal	CR 54:1638
***************************************	Unknown	26	14	0.54	Esophageal	CR 54:1638
Unknown	D17S874	35	20	0.57	Esophageal	GCC 10:177
Unknown	GPBA	15	6	0.4	Read&Neck	0 9:2077
12.0-21	D17S588	34	2	0.06	Kidney	BJC 69:230
Chknown	D175:802-805-809	22	5	0.23	Leukemia	CR 55:5377
Unknown	D17s32	13	0	0	Liver	CR 53:368
25.3	Unknown	7	3	0.43	Overy	CR 53:3382
22	Unknown	3	1	0.33	Ovary	CR 53:3382
25.1	Unknown	7	0	0.33	Ovary	CR 53:3382
25.1	Unknown	17	6	0.35	***************************************	***************************************
22	Unknown	3	Û	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Ovary	CR 53:3382
***************************************			V	0	Ovary	CR 53:3382

PCT/US98/05419

23-25	D1794	11	ū	O.	Prostate	GCC 11:119
23-25	D17S4	9	2	0.22	Sarcoma	CR 52:2419
23-25.5	D1754	12	9	0.75	Sarcoma	CR 52:2419
23-25.3	D17S4	14	3	0.21	Sarcoma	CR 49:6247
23-25	D1794	7	0	0	Stomach	CR 51:2926
23-25.5	D17S4	42	17	0.4	Testis	0 9:2245
23:3-25.3	TKl	21	1	0.05	Breast	CR 53:5617
23-gter	D17S77	31	2	0.06	Brain	AJP 145:1175
Z3-qter	D17577	30	11	0.37	Breast	CR 53:5617
Unknown	D17S26	9	0	0	Breast	CR 53:5617
Unknown	D17S26	16	5	0.31	Ovary	CR 50:2724
23-25	D17S75	71	23	0.32	Breast	CR 51:5794
23-25.3	D17524	23	ū	0	Brain	AJP 145:1175
Unknown	D17S24	34	12	0.35	Breast	GCC 4:113
Unknown	D17524	59	27	0.46	Breast	CR 53:5617
Unknown	D17S24	59	20	0.34	Breast	0 8:781
23-25.3	D17524	40	17	0:42	Breast	CR 54:4200
23-25	D17S24	42	10	0.24	Breast	CR 51:5794
23-25.3	D17S24	40	17	0.42	Breast	CR 54:4200
23-25.3	D17S24	20	8	0.4	Breast	GCC 2:191
23-25.3	D17524	4	2	0.5	Breast	CR 53:3804
Unknown	D17S24	21	2	0.1	Colon	JNCI 84:1100
23-25.3	D17S24	18	.11	0.61	Ovary	IJC 54:85
Unknown	D17S24	16	8	0.5	Ovary	IJC 54:546
23-25.3	D17524	18	11	0.61	Ovary	IJC 54:85
23-25	D17S24	3	0	0	Ovary	CR 51:5118
Onknown	D17S24	9	1	0.11	Prostate	G 11:530
23-25	D17S27	17	6	0.35	Breast	CR 51:5794
Unknown	D17579	9	2	0.22	Breast	CR 53:5617
Unknown	D17579	9	2	0.22	Breast	CR 53:5617
Unknown	D175587	1	0	0	Bladder	HG-94:231
12.0-21	D17S588	1	0	0	Bladder	HG 94:231
Unknown	Unknown	28	3	0.11	Brain	CR 50:5784
25.1	Unknown	31	9	0.29	Breast	CR 53:3382
23	Unknown	31	10	0.32	Breast	CR 53:3382
22	Unknown	41	14	0.34	Breast	CR 53:3382
25.3	Unknown	45	13	0.29	Breast	CR 53:3382
21	D173700	54	10	0.19	Breast	CR 54:2549
21	D17S1184	11	2	0.18	Breast	CR 54:6069
21	D17S1322	11	10	0.91	Breast	CR 54:6069
21	D1751325	11	11	1	Breast	CR 54:6069
21	D1751328	6	5	0.83	Breast	CR 54:6069
21	D175183	36	8	0.22	Breast	CR:54:2549
Unknown	D17S2	4	0	0	Breast	GCC 2:191
Unknown	D17S293	15	3	0.2	Breast	AJOG 172:908
Unknown	D17S308	23	9	0.39	Breast	0 8:781

Unknown	D17540	18	4	0.22	Overy	LJC 54:546
23-cter	D17S21	15	0	0	Brain	AJP 145:1175
23-qter	D17S21	20	7	0.35	Breast	CR 53:5617
23-gter	D17S21	25	13	0.52	Ovary	IJC 54:546
Unknown	D175515	32	6	0.19	Read&Neck	0 9:2077
Unknown	D17S801	32	4	0.12	Cervix	CR 56:197
Onknown	D178785	37	1	0.03	Head&Neck	CR 54:4756
Unknown	D17S785	37	16	0.43	Head&Neck	CR 54:4756
Unknown	D17S785	6	3	0.5	Kidnev	GCC 12:76
Unknown	D17S785	27	1	0.04	Melanoma	CR 56:589
Unknown	CACNLBI	19	2	0.11	Prostate	0 11 1241
Unknown	D17S20	72	5	0.07	Breast	CR 53:5617
23-25.5	D1754	9	Ö	0	Brain	CR 49:6572
23-25.5	D17S4	14	3	0.21	Brain	CR 49:6572
23-25.5	D1754	34	1	0.03	Brain	AJP 145:1175
23-25.5	D17S4	47	6	0.13	Breast	HG 91:6
23-25.4	D1794	42	18	0.43	Breast	BJC 69.754
23-25.3	D17S4	51	21	0.41	Breast	CR 54:4200
23-25.3	D1754	34	10	0.29	Breast	IJC 53:11
23-25.3	D17S4	104	28	0,27	Breast	CR 51:5794
23-25.3	D1754	63	24	0:38	Breast	CR 53:5617
23-25.3	D17S4	34	10	0.29	Breast	GCC 4:113
23-25.5	D1754	47	16	0.34	Breast	Lan 336:761
23-25.3	D17S4	36	7	0.19	Breast	ANYAS p.137
23-25.5	D1794	35	3	0.09	Cervix	CR 54:4481
23-25	D17S4	13	0	0	Cervix	BJC 67:71
23-25.3	D1754	20	3	0.15	Colon	JNCI 84:1100
23-25.3	D17S4	23	0	0	Colon	CCG 48:167
23-25.5	D1754	25	5	0.2	Colon	CR 50:7166
23-25.5	D17S4	14	1	0.07	Esophageal	CR 51:2113
23-25.3	D1784	23	7	0.3	Esophageal	CR 54:2996
23-25.5	D17S4	14	1	0.07	Kidnev	CR 51:1071
23-25.5	D1754	8	2	0.25	Liver	CR 53:368
23-25.3	D17S4	5	0	0	Liver	PNAS 86:8852
23-25-3	D1754	2	0	Ö	Lung	CR 49:5130
23-25.3	D17S4	16	11	0.69	Ovary	0 7:2069
23-25.3	D1754	16	2	0.12	Ovary	0 7:2069
23-25.3	D17S4	41	30	0.73	Ovary	0 7:2069
23-25.3	D1754	7	4	0.73	Ovary	Unknown
23-25.3	D17S4	29	11	0.38	Ovary	IJC 54:546
23-25.3	D1754	21	2	0.38	Ovary	CR 51:5118
23-25.3	D17S4	30	11	0.37	Ovary	IJC 52:575
23-25	D1754	15	10	0.37	Ovary	TJC 54:85
23-25.5	D1754	15	10 10	0.67	Ovary	IJC 54:85
23-25.3	D1754	19	12	00000000000000000000000000000000000000	Ovary	IJC 54:85
23-25	D1754	4	т <b>г</b>	0.63		***************************************
43-43	D1/54	4	U	0	Pancreas	CR 54:2761

12-21.1	C117-316	3				
21.3	CI17-477	32	0	0	Overy	CR 53:3382
21.3	CI17-28	32	22	0.69	Esophageal	CR 54:1638
21.3	CI17-28	26	3	0.43	<u>Esophageal</u>	CR 54:1638
21.3	C117-592	18	15	0.58	Esophageal	CR 54:1638
21.3	C117-592		8	0.44	Breast	CR: 53:9382
21.3	C117-592	17	6	0.35	Esophageal	CR 54:1638
21.3	C117-592	4	2	0.5	Ovary	CR 53:3382
21.3	C117-592	<u>1</u>	0	0	Ovary	CR 53:3382
21.3	C117-592	***************************************	2	0.67	Cvary	CR 53:3382
21.3	C117-392	1	0	0	Ovary	CR 53:3382
21.3	C117-701	138	48	0.35	Breast	CR 53:3382
21.3	C117=701	38	21	0.55	Esophageal	CR 54:1638
21.3		12	5	0.42	Ovary	CR 53:3382
21.3	C117-701	7	0	0	Ovary	CR 53:3382
21.3	***************************************	15	9	0.6	OVATY	CR 53:3382
21.3	C117-701	12	2	0.17	Ovary	CR 53:3382
21.3	C117-730	96	36	0.38	Breast	CR 53:3382
21.3	C117-730	35	20	0.57	Esophageal	CR 54:1638
21.3	C117-730	4	0	0	Ovary	CR 53:3382
21.3	C117-730	4	0	0	Ovary	CR 53:3382
*************************	C117-730	12	- 6	0.5	Ovary	CR:53:3382
21.3 21.3	C117-730	4	2	0.5	Ovary	CR 53:3382
***************************************	C117-507	25	7	0.28	Breast	CR 53:3382
21.3 21.3	C117-507	18	10	0.56	Esophageal	CR 54:1638
21.3	C117-507	3	1	0.33	Ovary	CR 53:3382
**************************************	C117-507	5	2	0.4	Ovary	CR 53:3382
21.3	C117-507	7	6	0.86	Ovary	CR 53:3382
21.3	C117-507	3	1	0.33	Ovary	CR 53:3382
***************************************	C117-533	93	25	0.27	Breast	CR 53:3382
21.3 21.3	C117-533	42	21	0.5	Esophageal	CR 54:1638
21.3	C117-533	9	4	0.44	Ovary	CR 53:3382
21.3	C117-533	9	3	0.33	Ovary	CR 53:3382
	C117-533	11	6	0.55	Ovary	CR 53:3382
21.3	C117-533	7	1	0.14	Ovary	CR 53:3382
21-23	D17578	14	0	0	Brain	AJP 145:1175
21-23	D17S78	25	5	0.2	Ovary	IJC 54:546
22-24	GH	39	13	0.33	Breast	0.8:781
22-24	GH	16	4	0.25	Breast	CR 52:2624
22-74	GH	59	13	0.22	Breast	CR:53:5617
22-24	GH	12	1	0.08	Lung	CR 49:5130
22-24	GH	14	7	0.5	Ovary	GO: 551245
22-24	GH	15	1	0.07	Uterus	CR 51:5632
Onknown	46 E6	11	4	0.36	Breast	0.8:781
23-24	D17S40	23	10	0.43	Breast	CR 53:5617
Unknown	D17540	14	5	0.36	Breast	0.8:781
23-24	D17S40	15	9	0.6	Ovary	IJC 54:85
				•••	y	100 34:03

Unknown	NAET.					100
Unknown	NME1	21	1	0.05	Prostate	JU 151:1073
Onknown	\$1852		<del></del>		TIOSCACE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO	00 151:10/3
Unknown	NME1	18	8	0.44	Testis	0 9:2245
Unknown	01/75774			( )	Section 2	0 9.2245
22	D17S74	.50	10	0.2	Breast	BCRT 28:231
22	91975			100	3540346	20.251
22	D17S74	67	13	0.19	Breast	HG 91:6
Unknown	01:31:51	977	7.	(6/6)	0.500	
22	D17S74	106	49	0.46	Breast	CR 54:4200
Unknown	D17574	0.10		0.00	735775755	
23	D17S74	49	12	0.24	Breast	CR 53:3382
Unknown	P1.0574	46	200	0.02	60 <b>.1</b> 20.111	
Unknown	D17S74	57	10	0.18	Breast	JJCR 84:1159
22	37.17	7.0	77.		MATERIAL CONTRACTORS	Q:Barrary Control
Unknown	D17S74	54	20	0.37	Esophageal	GCC 10:177
Uoknown	010574	229	00000000000000000000000000000000000000			1985 - 1987 A.S. (1987)
Unknown	D17S74	30	3	0.1	Kidney	CR 51:820
Unknown	D17574			9.1	313.07	Weight Control
Unknown	D17574	12	2	0.17	Liver	CR 53:368
27	D17874	7	7		Lung	0.00
22 <b>22</b>	D17S74	9	8	0.89	Lung	PN 86:5099
22	D17574	3		0.89%	Lung	PN 9159-51999
Unknown	D17S74	11	2	0.18	Lung	PN 86:5099
Unknown	D17574	39		0,21	Lung 1	(018-52-24-19)
Unknown	D17S74	24	10	0.42	Ovary	IJC 54:546
Unknown	D17574 D17574		16	0.7	Ovary	3.00 (5.00 (2.0)
23	D17574	26	10	0.38	Ovary	CR 51:5118
23	D17574	6		Ø	Cvery	CR 53:3382
22	D17574	8 10	1 2	0.12	Ovary	CR 53:3382
23	D17S74	17	*******************************	0.2	Ovary	1JC 52:575
23	D17574	10	6	0.35	Ovary	CR 53:3382
22	D17S74	17		0.2	Cvary	CR 5355192
Unknown	D17374	18	12	0.71	Ovary	IJC 54:85
Unknown	D17S74	22	4 3	0.22	Sarcoma	
Unknown	MPO	11	3	0.14	Sarcoma	CR 52:2419
Unknown	MPO	31	5	0.36	Breast	CB 52,72624
Unknown	MPO	- 20	3	0.16 0.05	Head&Neck	0 9:2077
Unknown	D17S86	44	9		Prostate	0 11:1241
21.1-21	C117-24	36	13	0.2	Breast	CR 53:5617
12-21.1	C117-316	37	11	0.36	Esophageal	CR 54:1638
12-21_1	C117-316	37	11	0.3	Breast	CR 53:3382
12-21.1	C117-316	13	6	0,28	Esophageal	CR 54:1638
17-21.1	C117-316	13	6	0.46	Ovary	CR 53:3382
12-21.1	C117-316	9	1	•••••	Ovari	CE 53:3382
	Jaz. 310	9	1	0.11	Ovary	CR 53:3382

21	51.55	7				CR 5, 6060
21	D17S579	34	7	0.21	Breast	O 8:781
21	0175570	85		226	Breast	GCC 111.58
21	D17S579	16	5	0.31	Breast	AJOG 172:908
	D178539	G A	12	0.13	Breast	AUGG 172:908
21	D17S579	4	1	0.25	Breast	HG 94:231
21	0.035500	100		0.4	Ereast	16 54.251 See 3.2
21	D17S579	14	4	0.29	Esophageal	CL 97:129
21	D170579	26	8	0.31	Readineck	
21	D17S579	17	13	0.76	Ovary	AJOG 172:908
21	D178529	2.3	9	0.39	Ovary	60 55 245
21	D17S579	2	0	0	Ovary	HG 94:231
.21	D178579	18	14	0.78	Cyary	57.00
21	D17S579	37	22	0.59	Ovary	CR 56:606
21	01/45509	13	14		OCT STORY	
21	D17S579	20	2	0.1	Prostate	CR 55:1002
21	DJ 28579	20			074-01-176	
21	D17S579	25	0	0	Uterus	CR 54:4294
Unknown Unknown	D178509	75	18	0.24	Breast	er serves
Unknown	D17S509	26	3	0.12	Breast	HG 91:6
21	D175509	11	5	0.45	Liver	CR 51:89
Unknown	HOX2	19	1	0.05	Prostate	0 11:1241
Unknown		20	5	U.25	Breast	CR 53 5617
21.3-22	D17S806	26	2	0.08	Cervix	CR 56:197
22	D17S41	24	10	0.42	Breast	0.8:781
12.0-24	D17541	43 20	21 8	0.49	Breast	CR 53:5617
22	D17S41	11	7	0.4	Breast	0.8:781
12.0-24	D17541	20	5	0.64 0.25	Ovary	IJC 54:85
12.0-24	D17S41	8	7	0.88	Ovary	LIC 54:546
21.3-22	NM23	23	6	0.88	Ovary	IJC 54:220
21.3-22	NM23	61	8	0.13	Breast	GCC 4:113
21.3-22	NM23	29	3	0.13 G.1	Breast Colon	ANYAS p.137
21.3-22	NM23	17	3	0.18	Colon	CR 54:3979 EJC 30A:664
21.3-22	NM2.3	7	0	0.10	Melanoma	GCC 7:169
21.3-22	NM23	20	13	0.65	Ovary	IJC 54:85
21.3-22	NM23	23		0.09	Stomach	JJCR 84:184
21.3-22	NM23	7	0	0	Uterus	C 73:1686
Unknown	NME1	55	25	0:45	Breast	CR 53:5617
Unknown	NME1	68	20	0.29	Breast	GCC 11:58
Unknown	NME1	17	5	0.29	Breast	CR 52 2624
Unknown	NME1	45	10	0,22	Breast	BCRT 28:231
Onknown	NME1	48	7	0.15	Breast	JJCR 84:1159
Unknown	NME1	18	1	0.06	Cervix	CR 54:4481
Unknown	NME1	27		0.07	Esophageal	
Unknown	NME1	27	2	0.07	Head&Neck	C 73:2472
						- ·

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	D-6
Unknown	0.17 (1.46			0.67	Ovary	Reference
11.2-12	D17S33	8	1	0.12	Brain	CR 49:6572
11.2-12	010055	9	-	0.22	Brain	CR 49:6572
11.2-12	D17S33	59	13	0.22	Breast	CR 51:5794
11.2.12	10191888	7			GUEST.	CR 51:5794
11.2-12	D17S33	7	2	0.29	Sarcoma	·CR 52:2419
11.2-12	160773365	9		0.22	Sercons	CR 32:2419
11.2-12	CRYB1	13	0	0	Brain	AJP 145:1175
11.2-12	03761	28	2	0.07	Breas	GCC 4 113
11.2-12	CRYB1	16	0	0	Colon	JNCI 84:1100
Unknewn	D178117	15	6	0.4	Breast	CR 53 5617
Unknown	D17S73	25	6	0.24	Breast	0 8:781
CEN-12	D17973	27	70	0.07	See as	
CEN-12	D17S73	7	3	0.43	Ovary	IJC 54:85
11 2-12	D175907	10				ere versioner
11.2-12	THRA1	37	10	0.27	Breast	CR 54:2549
11.2-12	THEAL	66	17	0.25	Freast	GGG 15 F3
11.2-12	THRA1	14	11	0.79	Breast	CR 52:2624
11,2-12	THRAL	17	7	0.41	Breast	AUTOG 172-908
11.2-12	THRA1	13	5	0.38	Esophageal	CL 97:129
11.2-12 11.2-12	THRAL	17	12	0.71	Ovary	AJ06 172 908
13.1	THRA1 TEFZ	20	1	0.05	Ovary	IJC 54:220
21.1	RARA	26	7	0.27	Head&Neck_	0.9:2077
11.2-12	D175256	11	6	0.55	Ovary	IJC 54:85
21	D17S250	~~~~~~~~~~~	0	0	Bladder	HG 94:231
21	D175250	5 <b>81</b>	1	0.2	Breast	CR 54:6069
21	D17S250	78	17	0.21	Breast	CR 54:2549
11.2-12	D175250	26	18 5	0.23	Breast	GCC 11:58
11.2-12	D17S250	6	***************************************	0.19	Breast	O 8:781
11,2-12	D175250	14	1 7	0.17	Breast	HG 94:231
21	D17S250	11	2	0.5	Breast	CR 52:2624
11.2-12	0179250	19	5	0.18 0.26	Esophageal	CL 97:129
11.2-12	D17S250	2	0	0	Head&Neck	CR:54:1152
11.2-12	D175250	22	14	0.64	Ovary Ovary	HG 94:231
11.2-12	D17S250	20	2	0.1	Prostate	BUC 69:429 O 11:1241
21	D175250	20	2	0.1	Prostate	CR 55:1002
21	PHB	4	3	0.75	Ovary	IJC 54:85
Unknown	PAB	9	9	0.75	Ovary	1JC 54 220
21	D17S800	1	0	0	Bladder	HG 94:231
21	D175800	7	6	0.86	Breast	CR 54 6069
21	D17S800	4	0	0	Breast	HG 94:231
.21	D17S902	37	10	0.27	Breast	CR 54:2549
21	D17S902	16	4		***************************************	***************************************
21	0173302	10	4	0.25	Prostate	GCC 13·278
21	D178579	16	0	0.25 0	Prostate Bladder	GCC 13:278 HG 94:231

Chromosome 17 - p Arm

13.1	Git Known		2	Ī	Colon	S-LERCE RA
Unknown	HF-12	12	,		-	3.98.377.277
13	D175513	32	6 20	0.5 0.52	Colon	JNCI 84:11
13	D17S513	32	20	0.62	<u>Emophageal</u>	
	D173513	32	20	0.62	Head&Neck Read&Neck	C 73:2472
13.2	CI17-732	35	1	0.03		
Unknown	D179849-D179796		0	0.03	Kidney Kidney	BJC 69:230
Unknown	D17S849-D17S796	21	1	0.05	Kidnev	PNA9-02-28
Unknown	D175.786-799	23		0.17	Leukemia	PNAS 92:28
Unknown	Unknown	30	28	0.93	Lung	CR 54:2322
13	lin known	19	10	0.53	Ovacy	B0606520
Unknown	D17S1-D17S28	15	2	0.13	Ovary	IJC 54:546
13.1	D179260	21	1.0	0.48	Course	CB 56/406
13.1-13.3	D17S34-D17S28-	7	7	1	Ovary	AJHG 55:66
	D17S5-D17S379-				_	
IS L-13 S	P53-D17S513		2			
	D1795-D176370-		4		Ovary	AJHG 55.66
	P53-0178513					
13.1-13.3	D17S34-D17S28-	12	12	1	Ovary	AJHG 55:66
	D17S5-D17S379-				•	
13.1-13.3	P53-D17S513 D17S34-D17928-	1	_			
	D1755-D175379-	1	1	1	Cvary	AJHG 55:66
	P53-D179513					
Unknown	D17S5-34-71-	36	29	0.81	Ovary	CR 53:2393
	MYH2	-				
13	D179513	36	16	0.44	Ovary	CR 56:606
13.3	D17S578	29	12	0.41	Ovary	CR 56:606
13.3 13.3	D17S654	27	17	0.63	Overy	CR 56:606
*******************************	D17S695	41	18	0.44	Ovary	CR 56:606
Unknown Unknown	D178:34-5-28-31	19	12	0.63	Ovary	CGC 85:43
Olikilowii	TP53-D17S:515- 520-513	18	9	0.5	Ovary	BJC 72:133
Unknown	D1791=D17928	7	Ō	G		G 112-590
12.0-13	D17S1149	15	4	0.27	Prostate Prostate	
Unknown	D17S1=D17S28	8	2	0.25	Stomach	GCC 13:278
Unknown	Unknown	19	2	0.11	Testis	G 5:134
Unknown	D179134	17	0	0.11	Testis	GCC 13:249
Unknown	D17S30-D17S787	24	2	0.08	Testis	LI 73:606
Unknown	1206	22	2	0.09	Uterus	CR 54:4294
SUM		10343	4539	0.44		

	100000000000000000000000000000000000000			•		
12-11.2	D17971			0.67	E-25	G 6 / 5 / 5 / 5 / 6 / 6
12-11.2	D17S71	18	15	0.83	Colon	***************************************
12-11-2	DIVIS	10	13	P0000000000000000000000000000000000000	004202033330000000000000000000000000000	IJC 53:382
***************************************				0.46	Liver	
12-11.2	D17S71	10	10	1	Lung	CR 49:5130
12-11.2	D17971	0.0		10.00		
12-11.2	D17S71	20	11	0.55	Ovary	GO 47:137
12-11-2	551/1571	10		0.00	Ovaly	
12-11.2	D17S71	*****************				M. (1.0.7.17.17)
222 028 220 200 200 200 200 200 200 200	79979787979799888889788888978888888888	9	5	0.56	Sarcoma	CR 52:2419
12-11.2	D17971	13	5	0.08		
13.1	D17S122	23	4	0.17	Brain	AJP 145:11
13.1	017612	2.5		0.76	- Jilondi Afrika	0.00
13.1	D17S122	12	7	0.58	Head&Neck	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Unknown	D17958		,	**************************************	<b>19795270700797979097990990000000000000000</b>	CR 54:1152
11.2-11.1	***************************************			0.12	Electronic Control	
***************************************	D17S58	21	7	0.33	Breast	GE 5:554
11/2-11/1	D1/658	5.63		99.50	20 (20 E)	2/00
Unknown	D17S58	35	14	0.4	Breast	0 8:781
11.2-11.1	F) 7,654	310		0.7	Cervisi	
11.2-11.1	D17S58	5	1	0.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	21.000	3		0.2	Colon	Science Ap
Unknown	D17958					1989:217
***************************************	***************************************	9	0	0	Head & Neck	CER 522.471578
11.2-11.1	D17S58	11	9	0.82	Ovary	IJC 54:85
Unknown	D17558	19	12	0.63	Ovasti	25.55.606
Unknown	D1721	27	1	0.04	Breast	GE 5:554
Unknown	D1721	27		0.04	Breast	GE 5-554
D17S5-D17S58	Unknown	21	8	0.38	Bladder	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Unknown	CHRNB1-TP53	30	1.5	28727772778978C98888888989997779C9808088888888	\$22222000402220000000000000000000000000	CR 51:5405
Unknown		************************		0.6	Bladder	CR_55,5213
500000000000000000000000000000000000000	Unknown	32	13	0.41	Brain	CR 50:5784
12-11.2	D175121	17	3	0.19	Brain	AUP 145:11
Unknown	D17S5:28-31	14	0	0	Brain	CGC 73:122
Unknown	D17S5:28-31	25	6	0.24	Brain	CGC 73/1/2
Unknown	D17S5:28-31	15	5	0.33	Brain	CGC 73:122
Unknown	D17966	15	2	WWW.77777000000000000000000000000000000	******************	00000000000000000000000000000000000000
13.3	Unknown		***************************************	0.13	Brain	AJP 145:11
077770709907090077070007707000700070007	***************************************	28	10	0.36	Breast	HMG 4:2047
1.3	Unknown	51	17	0.33	Breast	- Lan 336:76
13.3	Unknown	27	16	0.59	Breast	HMG 4:2047
13.3	Unknown	22	9	0.41	Breast	HMG 4:2047
13.1-13.3	Unknown	88	38	0.43	Breast	CR 51:5794
13.1	Unknown	16	6	97977702C00C0CCCC90C90C90C00T079777000478C079700448	#7579277777777727792900000000000000000000	000000000000000000000000000000000000000
13.3	Unknown	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	************************	0.38	Breast	CR 53:1637
***************************************	227075727777	21	7	0.33	Breast	HMG 4:2047
13.3	D1791174	7	3	0.43	Breast	HNG 4:2047
13	D17S513	17	6	0.35	Breast	CR 53:2947
Unknown	D17S66	7	7		Breast	CR 54:4200
13	Unknown	15	0	0	Cervix	BJC 67:71
13.3	Unknown*	1	i	1	000097770T1077007907777700000990	************
13.3	Unknown	***************************************		***************************************	Colon	S:April 36
13.3	77777779777777777777777777777777777777	3	3	· 1	Colon	S:April 16
***************************************	Unknown	1	1	1	Colon	52/30/20/20
13.3	Unknown	4	4	1	Colon	S:April 16

Unknown	TP53	28	3	0.11	114	<b></b> .
13.1	D17S786	27		0.11	Uterus Cervix	CR 54:4294
13.1	D17S786	2	0	0	Kidney	3K 3 (3)
12	D17S520	14		0.5	Brain	GCC 12:76
12	D17S520	20	13	0.65	Brain	62.51
13.1	0176570	SI	15	0.48	***************************************	CR 54:1397
12	D17S520	19	11	0.58	Ovary	BJC 69:429
13.1	D178520	26	2	0.08	Uterus	ER 51 294
13.1	MYH2	10	5	0.5	Brain	CR 49:6572
13.1	MYHZ	8		0.25	Brain	CR 49:6572
13.1	MYH2	14	1	0.07	Brain	AJP 145:11
13.1	MYB2	14	10	0.71	Colon	JJC 53:382
13.1	MYH2	5	2	0.4	Liver	CR 53:368
13.1	81012	10		0.2	Liver	CK 33.368
13.1	MYH2	10	10	1	Lung	CR 49:5130
13.1	7836	1.6		0.21	Ovacy	130.546546
13.1	MYH2	15	12	0.8	Sarcoma	CR 49:6247
13.1	MYH2	12	- 6	0.5	Sarcoma	CR 52.2419
13.1	MYH2	19	8	0.42	Stomach	CR 52:3099
	MX82	20	6	0.3	Uterns	CR 51/5632
12 12	D17S67	8	4	0.5	Brain	AJP 145:11
12	D17567	35	22	0.63	Breast	CR 5414200
12	D17S67	12	11	0.92	Breast	GE 5:554
	D17867	1	1	1	Colon	Science Ap
12	D17S67	22	10	0.45		1989:217
12	017867	16	10	***********************************	Ovary	IJC 54:546
13.1	EW505	3	2	0,44 0.67	Overa	CR 56:606
***************************************		J	2	0.67	Colon	Science Ap 1989:217
13.1	UC 10-41	4	3	0.75	Colon	Science Ap
13.1						1989:217
13.1	EW401	3	1	0.33	Colon	Science Ap
13.1	EW402	2				1989:217
	211402	- 4	1	0.5	Colon	Science Ap
13.1	EW405	3	1	0.33	Colon	1989:217
			•	0.55	COION	Science Ap 1989:217
13.1	D17829	15	1	0.07	Brain	CR 49:6572
13.1	D17S29	9	1	0.11	Brain	CR 49:6572
13.1	D17S29	2	0	O	Colon	SciencesAp
13.1						1989:217
13.1	CHRNB1	26	14	0.54	Head&Neck	0 9:2077
13.1	CHPNB1	22	8	0.36	BeadsNeck	CR 5491152
11.2-12	CHRNB1	28	14	0.5	Ovary	CR 56:606
11.2-12	D17S261 D17S261	6	2	0,33	Braio	CR 54:1397
11.2-12	D17S261	7 19	3 <b>B</b>	0.43	Brain	CR 54:1397
12-11.2	D17S71	*******************************		0.42	Lenkemia	B 83:3449
<b></b>	01/2/1	15	2	0.13	Brain	AJP 145:11

12 1						•
13.1	TP53	2	0	0	Kidney	GCC 12:76
12.1	TP53	10	6	0.6	Kudnev	IUC 649899
13.1	TP53	16	3	0.19	Kidney	CR 51:820
Unknown	1953	65	9	0.16	Leu Kemia	B 86 (4587
13.1	TP53	50	14	0.28	Liver	JJCR 84:89
13.1	70.0	7	5	0.86	Liver	CR 5124920
Unknown	TP53	4	1	0.25	Liver	CARC 17:14
13.1	TP53	64		0.58	Liver	C 73.45
Unknown	TP53	19	11	0.58	Liver	CR 54:281
13.1	TP53	5		0.2	Liver	0.9.2303
13.1	TP53	7	3	0.43	Liver	CR 51:89
13.1	TP53	24	717	0.71	Lung	CR 54 5643
13.1	TP53	57	21	0.37	Lung	0 10:937
13.1	22.5			0.71	Lust	98 54 5643
13.1	TP53	3	2	0.67	Lung	CR 54:5643
13.1	7958	3	0	9	Nekanoma	GCC 1169
Unknown	TP53	28	7	0.25	Melanoma	BJC 69:253
13.1	TP53	42	19	0.45	Overy	CR 561606
13.1	TP53	12	5	. 0.42	Ovarv	
13.1	TP53	18	10	0.56	Ovary	IJC 54:546
13.1	TP53	9	6	0.67	Ovary	BUC 65 40
13.1	TP53	9	2	0.22	Overy	IJC 54:85
13.1	TP53	23	18	0.78	Ovary	100 52,505
13.1	TP53	18	12	0.70	Ovary	IJC 54:220
13.1	TP53	12	3	0.25		BUC 69:429
13.1	TP53	20	16	0.23	Ovary	CR 51:5118
Unknown	TP53	35	2.6	0.74	Overy	CR 51:5171
13.1	TP53	7	20	0.74	Ovary	BJC 72:883
13.1	TP53	2	1	0.5	Ovary	0 7,2069
13.1	TP53	32	18	**********	Ovary	0 7:2069
13.1	TP53	13	3	0.56	Ovary	O 7:2069
13.1	TP53	73	5	0.23	Ovary	0 7:2069
13.1	TP53	27	3	0.71	Pancreas	GCC 15:157
13.1	TP53	8	3	0.11	Prostate	AJP 145:28
13.1	TP53	4	0	0.38	Prostate	JU_151:107
Unknown	TP53	5	······	0	Prostate	AJP 147:11
Unknown	TP53	***************************************	3	0.6	Sarcoma	CR 53:468
Doknown	TP53	4 7	1	0.25	Sarcoma	CR 53:468
Unknown	TP53	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		0.14	Sarcoma	CR 53:468
Unknown	***************************************	12	6	0.5	Sarcoma	CR 53:468
13.1	TP53	63	23	0,37	Stomach	LI 72:232
Onknown	TP53	16	5	0.31	Stomach	CGC 75:45
13.1	TP53	5	I	0.2	Testle	G0C 6:92
13.1	TP53	7	3	0.43	Testis	0 9:2245
13.1	TP53	9	2	0.22	Uterus	GCC 9:119
13.1	TP53	3	1	0.33	Uterus	CR 51:5632
1.5.1	TP53	4		0.25	Oterus	CR 51:5632

WO 98/41648 PCT/US98/05419

13.1	TP53	15	7	0.47	Brain	CR 54:1397
13.1	1953			0.39	Brain	CR 4976592
13.1	TP53	31	22	0.71	Breast	BJC 68:64
Unknown	7853	63	17	0727	Bresst	BCRT 28:23
13.1	TP53	61	14	0.23	Breast	CGC 76:106
Daknown	TP53	19	6	Ø0.32	Breast	CR/51/6194
13.1	TP53	44	28	0.64	Breast	HG 90:635
13.1	TP53	35	13.	0.37	Breast	100-50-528
13.1	TP53	70	26	0.37	Breast	CR 51:5794
13.1	7253	65	13	0.2	Breast	JJCR 84-11
Unknown	TP53	11	6	0.55	Breast	CR 52:2624
13.1	TP53	81	22	0.27	Breast	Lan 336 76
13.1	TP53	25	10	0.4	Breast	GCC 4:113
13.1	7953	36	10	0.28	Breast	BUC 690454
13.1	TP53	12	5	0.42	Breast	CR 53:2947
13.1	<b>TP53</b>	110	72	0.65	Breast	CR 54:4200
13.1	TP53	36	15	0.42	Breast	CR 53:1637
13.1	TP53	17	9	0.53	Breast	GC 4513
13.1	TP53	41	34	0.83	Breast	IJC 57:498
Unknown	TP53	16	0	0	Cervix	CGC 79.74
13.1	TP53	9	1	0.11	Cervix	BJC 67:71
Baknown	TP53	6	3	0.5	Cervix	GCC 9:119
13.1	TP53	21	5	0.24	Cervix	CR 54:4481
13.1	TP53	17	8	0.47	Colon	CR 52:741
13.1	TP53	6	5	0.83	Colon	GAST 107:3
Daknown	TP53	23	15	0.65	Colon	EJC 30A:26
Unknown	TP53	48	38	0.79	Colon	0 8:1391
Unknown	TP53	26	22	0.85	Colon	GAS 103:16
13.1	TP53	30	17	0.57	Colon	GAST 104:1
Unknown	TP53	-6	4	0.67	Colon	0.9:991
13.1	TP53	25	12	0.48	Colon	HP 25:1069
13.1	TP53	14	8	0.57	Colon	CR 50:7166
13.1	TP53	17	8	0.47	Colon	JNCI 84:11
13.1	TP53	17	7	0.41	Colon	JNC1 84:11
13.1	TP53	17	10	0.59	Colon	IJC 53:382
13.1	TP53	25	14	0.56	Colon	CR 52:3965
13.1	TP53	12	10	0.83	Colon	CR 51:4436
13.1	TP53	27	15	0.56	Esophageal	C 73:2472
13.1	TP53	14	10	0.71	Esophageal	C 71:1933
Unknown	TP53	4.7	27	0.57	Esophageal.	CR 52:6525
13.1	TP53	14	7	0.5	Head&Neck	CR 54:1152
Unknown	TP53	32	14	0.44	BeadsNeck	D 9:2077
13.1	TP53	27	15	0.56	Head&Neck	C 73:2472
13.1	TP53	39	21	0.54	HeadsNeck	0 10/1217
13.1	TP53	20	4	0.2	Kidney	CR 51:5817
Unknown	TP53	40	5	0.12	Kidney	BJC 69:230

WO 98/41648
127 / 214

13	D17S1	8	7	0.88	Sarcoma	CR 52:2419
13	11751	2			Sarcona	101000000000000000000000000000000000000
13	D17S1	13	12	0.92	Sarcoma	CR 49:6247
13	01781	5			Stomach	(4)(4)(4)(4)(4)
13	D17S1	10	0	0	Stomach	CR 48:2988
	10.751				(literus	E010 (510 (62))
Unknown	D17S796	17	0	. 0	Endocrine	CR 56:599
Unknown	69.76.761	43		0.34	Head&Neck	
Unknown	D175796	33	0	Ó	Head&Neck	CR 54:4756
Onknown	01/16/100		3	0.5	Kydney	
Unknown	D17S796	32	5	0.16	Melanoma	CR 56:589
12,0-13	0117559035	19		0.16	Eccepate	
13.1	D17S31	9	2	0.22	Brain	CR 49:6572
13.1	0.7531	13				
13.1	D17S31	. 8	4	0.5	Brain	CR 49:6572
13.1	0.789	23		698.6		
13.1	D17S31	54	24	0.44	Breast	Lan 336:76
13.1	D17531	34	22	0.65	Speart	
13.1	D17S31	87	37	0.43	Breast	CR 51:5794
13,1-11.2	01/531	25	14	0,44	Breast	100, 500,528
13.1	D17S31	2	1	0.5	Breast	CR 53:2947
13.1	D17531			0.09	Cervin	
13.1-11.2	D17S31	16	7	0.44	Colon	CR 50:7166
13.1	017531	- 6			Colon	590974006
13.1	D17S31	15	9	0.6	Esophageal	CR 54:2996
13.1	D17831	29		0.62	BeadWheor	(0) (10) (2)
13.1-11.2	D17S31	28	5	0.18	Kidney	CR 51:5817
13.1	017931	25	0	0	Kidney	30 0.50 0.29
13.1-11.2	D17S31	16	6	0.38	Liver	CR 51:89
13.1	D17531	21	12	0.57	Liver	CR 531368
13.1	D17S31	17	7	0.41	Ovary	IJC 54:546
13.1	017831	7	2	0.29	Ovary	EUC 54:05
13.1	D17S31	11	8	0.73	Ovary	IJC 54:220
13.1	D17531	7	4	0.57	Overy	BUC 65:40
13.1	D17S31	6	2	0.33	Ovary	CR 56:606
13.1	017531	3	i	0.33	Pancreas	08.54 2.75
13.1-11.2	D17S31	17	12	0.71	Sarcoma	CR 52:2419
13.1	D17531	15	15		Sarcoma	CR 49.5247
13.1	D17S31	12	9	0.75	Sarcoma	CR 52:2419
13.1	TP53	7	Ü	- 0	Bladder	HG 91/455
13.1	TP53	21	9	0.43	Brain	CR'54:1397
Daknown	TP53	1	0.	0	Brain	1072
13.1	TP53	45	6	0.13	Brain	0 6:1313
13.1	TP53	- 6	2	0,33	Brain	CR 49:6572
13.1	TP53	22	9	0.41	Brain	CGC 74:139
13.1	TP53	38	11	0.29	Brein	08-52,1427

13.3	D17S34-S5	6	2	0.33	Ovary	0.7.2060
13.3	01785	17	_	0.76	Ovary	0 7:2069 3JC 54:220
13.3	D17S5	28	12	0.43	Ovary	CR 51:5118
13.3	D1755	33	g	0.27	Ovary	LJC 54:546
13.3	D17S5	34	7	0.21	Ovary	IJC 52:575
13.3	01785	41	27	0.66	Ova	0 7:1055
13.3	D17S5	28	15	0.54	Ovarv	GO 47:137
13.3	D1755	. 5	Ū	C C	Fencies	600 3 468
13.3	D17S5	8	0	0	Pancreas	BJC 65:809
13.3	01/255	4	2	0.5	Panereas	CR 54 2761
13.3	D17S5	27 .	1	0.04	Pediatric	CR 50:3279
13.3	D1755	- 8	6	0.75	Sercona	CGC 53:45
13.3 13.3	D17S5	22	16	0.73	Sarcoma	CR 52:2419
COLUMN TO SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERV	01785;	68		0.65	Stermeren	
13.3	D17S5	38	19	0.5	Stomach	CR 51:2926
13.3	2170	16	2	0.14	Stomach	GCC 31/166
13.3	D17S5	24	9	0.38	Stomach	HG 92:244
13.3	D1785	3.0	6	9.2	Testis	0.9.2245
13.3	D17S5 D17S379	9	4	0.44	Uterus	CR 51:5632
13.3	ABR	22	15	0,68	Ovacy	CR 56:606
Daknown	D17865	29 1 <b>6</b>	6 10	0.21	Ovary	CR 56:606
13	D17S65	16	ACCOUNT OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR	0.62	Breast	CR 54:4200
13	D17565	2	11 <b>2</b>	0.69	Breast	GE 5:554
13	D17S1	15	3	1	Colon	SiApril 16
13	01751	15	2	0.2	Brain	AJP 145:11
13	D17S1	21	4	0.13	Brain	AJP 145/21
13	D1751	20	3	0.19 0.45	Breast	HG 91:6
13	D17S1	29	9	0.31	Breast	GCC 2 191
13	D1781	7	7	0.31	Breast Cervix	CR 53:4356
13	D17S1	14	6	0.43	Colon	CR 49: 1598
	D1751	9	Ö	0.43	*******************************	CR 50:7166 N 331:273
13	D17S1	2	2	1	Colon	S:April 16
13	D17S1	12	4	0.33	Colon	S 241:961
13	D17S1	30	13	0.43	Head&Neck	0 10:1217
13	D1751	7	1	0.14	Liver	JJCK 81:10
13	D17S1	11	2	0.18	Liver	CR 53:368
13	D17S1	3	1	0.33	Lung	PNAS /86150
13	D17S1	9	8	0.89	Lung	PNAS 86:50
13	D1751	17	8	0.47	Lung	PN 84c9252
13	D17S1	7	7	1	Lung	CR 49:5130
13	D1751	11	2	0.18	Lung	PNAS 86150
13	D17S1	4	0	0	Neuroblastom	
13	D1751	_			a	
13	D17S1	5	0	C .	Sarcoma	CR 53;468
13	D1751 D1751	3	1	0.33	Sarcoma	CR 53:468
	NT 12T	3	0	0	Sarcoma	CB 53/468

13.3	D17S5	11	6	0.55	D:-	GD 40 6570
13.3	Unknown	74	20	0.55 B.27	Brain Breast	CR 49:6572
13.3	D17S5	62	26	0.42	Breast	AJP 140; 71 JJCR 84:11
13.3	D1755	68	37	0.42	Bresst	0 8 781
13.3	D17S5	57	28	0.49	Breast	BCRT 28:23
13.3	01785	ď	20	0.43	Breast	CR 5393804
13.3	D17S5	29	16	0.55	Breast	GCC 2:191
13.3	D1755	50	8	0.16	Bresst	CR 53:4356
13.3	D17S5	465	224	0.48	Breast	BJC 71:438
13.3	01785	34	1.5	0.44	Breast	HMG 4:2047
13.3	D17S5	82	53	0.65	Breast	CR 54:4200
13.3	D1765	75		0.28	Breast	CGC 76:106
13.3	D17S5	354	174	0.49	Breast	C 74:2281
13.3	01785	39	1.8	0.46	Breast	10000000000
13.3	D17S5	42	25	0.6	Breast	IJC 50:528
13.3	D1765	40.9	22	0,55	Breast	GCC 4 (1113
13.3	D17S5	125	63	0.5	Breast	CR 51:5794
13.3	01785	61	26	0.43	Breast	HG 903535
13.3 13.3	D17S5	52	27	0.52	Breast	PNAS 88:38
13.3	D1765	15	4	0,27	Cervix	CGC 19:74
13.3	D17S5	12 <b>32</b>	1 5	0.08 0.1 <b>6</b>	Cervix	BJC 67:71
13.3	Unknown	3 <b>2</b> 7	6	0.86	Cervix Colon	CR 5424481
13.3	OTTATIONT	,	0	0.00	Colon	Science Ap 1989:217
13.3	01785	35.	24	0.69	Colon	BJC 59:750
13.3	D17S5	19	7	0.37	Colon	CCG 48:167
13.3	D1755	5	3	0.6	Colon	0 91991
13.3	D17S5	27	21	0.78	Colon	IJC 53:382
13.3	D1785	17		0.41	Colon	GCC 3;468
13.3	D17S5	26	10	0.38	Colon	5 241:961
13.3	D17934-S5	24	11	0.46	Esophageal	20/2/2/2010/00/00/00/00/00/2010/2010/20
13.3	D17S5	22	10	0.45	Esophageal	CR 51:2113
13.3	Unkoown	6		0.83	Bead&Neck	
13.3	D17S5	11	2 8	0.18	Head&Neck	CR 52:1494
13.3	D1755	48	***************************************	0.17	Kidney	CR 51:5817
13.3	D17S5	23 15	6 <b>5</b>	0.26	Kidney	JU 150:129
13.3	D17S5	13 31	<b></b>	<b>0.33</b> 0.16	Kidney	CR 51:820 CR 51:1544
13.3	D1755	15	1	0.16	Kidney Kidnev	CR 51:1544
13.3	D17S5	2	1	0.5	Kidney	CR 51:1544
13.3	D1733	20	1	0.5	Liver	O 8:491
13.3	D17S5	14	3	0.21	Liver	CR 51:4367
13.3	D1755	31	15	0.48	Liver	CR 53:368
13.3	D17S5	9	3	0.33	Liver	BJC 64:108
13.3	D17834-85	11	11	1	Long	CR 49:5130
13.3	D17S5	6	6	1	Lung	CR 55:28
13.3	D17534-S5	38	25	0:66	Ovary	0.7:2069
				The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		

13.3	D17S30		_			
13.3	D17530	14	9	0.64	Ovary	CR 50:2724
13.3	D17S30	21	1.8	0.86	Overy	JUC 54:83
13.3	D17530 D17530	46	37	0.8	Ovary	CR 56:606
13.3	D17S30	<u> </u>	27	0.66	Ovacy	0.711059
13.3	D17530 D17530	7	0	0	Prostate	GCC 11:119
13.3			0	0	Sarcona	CR 53:468
13.3	D17S30	6	4	0.67	Sarcoma	CR 53:468
13.3	D17530	3	0	0	Sarcoma	CR 53:468
13.3	D17S30	6	0	0	Sarcoma	CR 53:468
13.3	D17830	17	16	0.94	Sarcona	CR 49:5247
13.3	D17S30	15	3	0.2	Uterus	GCC 9:119
	017528	11	- 4	0,36	Brain	CR 49:6572
13.3 13.3	D17S28	22	3	0.14	Brain	AJP 145:11
	<u>D17528</u>	12	4	0.33	Szain	CR 49:6522
13.3	D17S28	27	11	0.41	Breast	CR 54:6270
13.3	017828	62		0.24	Breast	CGC 76-106
13.3	D17S28	37	26	0.7	Breast	CR 54:4200
13.3	D17528	11	4	0.36	Breast	HMG 4:2047
13.3	D17S28	23	12	0.52	Breast	CR 53:1637
13.3	D17S28	27	4	0.15	Cervix	CR 54 (4481
13.3	D17S28	14	1	0.07	Cervix	BJC 67:71
13.3	D17528	7	5	0.71	Colon	Science Ap
13.3	513000					1989:217
13.3	D17S28	13	8	0.62	Colon	GCC 3:468
	D17528	12	4	0.33	Colon	CCG 48:167
13.3	D17S28	2	0	0	Head&Neck	CR 52:4787
13.3	D17528	11	0	0	Kidney	JU 150:129
13.3	D17S28	3	1	0.33	Liver	CR 53:368
13.3	D17528	3	3		Long	CR 49:5130
13.3	D17S28	16	2	0.12	Ovary	IJC 52:575
13.3	D17528	8	6	0.75	Gvary	CR 50:2724
13.3	D17S28	23	15	0.65	Ovary	CR 56:606
13.3	D17528	6	4	0.67	Overy	IJC 54:85
13.3	D17S28	18	14	0.78	Ovary	IJC 54:220
13.3	D17S28	3	1			CR 54:2761
13.3				0.33	Pencreas	
	D17S28	3	0	0,33	Pancreas	GCC 3:468
13:3	D17528	3 10		A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR		***************************************
13.3 13.3	D17528 D17528	3 10 7	0 2 0	0	Pancreas	GCC 3:468 BJC 59:750
13:3 13:3 13:3	D17528 D17528 D17528	3 10	0 2	0 0,2	Pancreas Stomach	GCC 3:468 BJC 59:750 HG 89:445
13.3 13.3 13.3 13.3	D17528 D17528 D17528 D17528	3 10 7 29	0 2 0 12 1	0 <b>0,2</b> 0	Pancreas Stomach Stomach	GCC 3:468 BJC 59:750
13:3 13:3 13:3 13:3 Unknown	D17528 D17528 D17528 D17528 D17528 Unknown	3 10 7 29	0 <u>2</u> 0 12	0 0,2 0 0,41	Pancreas Stomach Stomach Testis	GCC 3:468 BJC 59:75D HG 89:445 O 9:2245
13:3 13:3 43:3 13:3 9nknown Unknown	D17528 D17528 D17528 D17528 D17528 Unknown	3 10 7 29 1 20 76	0 2 0 12 1 10 21	0 0,2 0 0,41 1	Pancreas Stomach Stomach Testis Uterus	GCC 3:468 BJC 59:750 HG 89:445 G 9:2245 CR 51:5632 JU 153:109
13.3 13.3 13.3 13.3 Unknown Unknown	D17528 D17528 D17528 D17528 D17528 Unknown	3 10 7 29 1	0 2 0 12 1	0 0,2 0 0,41 1 0,5	Pancreas Stomach Stomach Testis Uterus Bladder	GCC 3:468 BJC 59:750 HG 89:445 G 9:2245 CR 51:5632 JU 153:109 CR 56:164
13.3 13.3 13.3 13.3 Unknown Unknown 13.3 13.3	D17528 D17528 D17528 D17528 D17528 Unknown	3 10 7 29 1 20 76 13	0 2 0 12 1 10 21	0 0,2 0 0.41 1 0.5 0.28	Pancreas Stomach Stomach Testis Uterus Bladder Brain Brain	GCC 3:468 BJC 59:750 HG 89:445 O 9:2245 CR 51:5632 JU 153:109 CR 56:164 CR 54:1397
13.3 13.3 13.3 13.3 9nknown Unknown 13.3 13.3	D17528 D17528 D17528 D17528 Unknown Unknown D17534=55	3 10 7 29 1 20 76	0 2 0 12 1 1,9 21	0 0,2 0 0,41 1 0,5 0.28	Pancreas Stomach Stomach Testis Uterus Bladder Brain Brain Brain	GCC 3:468 BJC 59:750 HG 89:445 O 9:2245 CR 51:5632 JU 153:109 CR 56:164 CR 54:1397
13.3 13.3 13.3 13.3 9nknown Unknown 13.3 13.3 13.3	D17528 D17528 D17528 D17528 U17528 Unknown Unknown D17534=55 D17534-55 D1755	3 10 7 29 1 20 76 13	0 2 0 14 1 19 21 7 11 4	0 0,2 0 0,41 1 0,5 0.28 0.54	Pancreas Stomach Stomach Testis Uterus Bladder Brain Brain	GCC 3:468 BJC 59:450 HG 89:445 O 9:2245 CR 51:5632 JU 153:109 CR 56:164 CR 54:1397 CR 54:1397 AJP 145:11
13.3 13.3 13.3 13.3 9nknown Unknown 13.3 13.3	D17528 D17528 D17528 D17528 Unknown Unknown D17534-S5 D17534-S5	3 L0 7 29 1 20 76 13 20	0 2 0 12 1 19 21 7 11	0 0,2 0 0,41 1 0,5 0.28 0,54 0.55 0,18	Pancreas Stomach Stomach Testis Uterus Bladder Brain Brain Brain Brain	GCC 3:468 BJC 59:750 HG 89:445 O 9:2245 CR 51:5632 JU 153:109 CR 56:164 CR 54:1397 CR 54:1397

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D17534	35	5	0.14	Brain	AJP 145411
13.3	D17S34	82	29	0.35	Breast	AJP 140:21
13.3	D17934	. 77	52	0.68	Breast	CR 54:4200
13-TER	D17S34	72	30	0.42	Breast	CGC 76:106
Unknown	D17534	70	41	0.59	Breast	0 8:781
13.3	D17S34	44	33	0.75	Breast	GCC 4:113
13.3	D17934	36	22	0.61	Breast	CR 537/637
Unknown	D17S34	11	6	0.55	Cervix	CGC 79:74
13.3	D17834	68	34	0.5	Colon	P4C-8075-66
13.3	D17S34	6	5	0.83	Colon	Science Ap 1989:217
13.3	D17534	6	3	0.5	Bead&Neck	AJF 142-51
Unknown	D17S34	12	1	0.08	Head&Neck	CR 52:4787
13.3	D17934	20	. 2	0.1	Liver	0.6:4:1
13.3	D17S34	10	8	0.8	Liver	BJC 64:108
13.3	D17534	9	4	0:44	Liver	BJC 67:100
13.3	D17S34	23	12	0.52	Ovary	IJC 54:85
13.3	D17934	20	18	0.9	Ovary	IJC 54:220
Unknown	D17S34	43	18	0.42	Ovary	CR 56:606
13.3	D17534	11	0	O	Pancreas	CR 54:2761
13.3	D17S34	17	3	0.18	Prostate	CSurveys 1
13.3	D17934	18	3	0.17	Prostate	PNAS 87:87
13.3	D17S34	7	5	0.71	Sarcoma	CR 53:468
13.3	D17S34	9	0	O.	Sarcoma	CR 53:468
13.3	D17S34	10	4	0.4	Sarcoma	CR 53:468
13.3	D17934	4	2	0.5	Sarcoma	CR 53:468
13.3	D17S34	20	0	0	Testis	GCC 13:249
13.3	D179849	26	16	0.62	Breast	HMG 4:2047
13.3	D175926	12	7	0.58	Breast	HMG 4:2047
13.3	D17930	54	20	0.37	Breast	CR 53:1637
13.3	D17S30	98	57	0.58	Breast	Lan 336:76
13.3	D17530	59	30	0.51	Breast	JNC1 84:50
13.3	D17S30	52	27	0.52	Breast	PNAS 88:38
13.3	D17930	51	8	0.16	Breast	HG 91:6
13.3	D17S30	34	16	0.47	Breast	CR 50:7184
13.3	D17S30	33	17	0.52	Breagr	ANYAS p. 13
13.3	D17S30	3	0	. 0	Breast	CR 53:2947
13.3	D17930	6	3	0.5	Cervix	GCC 9:119
13.3	D17S30	39	27	0.69	Colon	CR 50:7166
13.3	D17530	60	38	0.63	Colon	EJC 200A: 66
13.3	D17S30	65	40	0.62	Esophageal	GCC 10:177
13.3	D179 <b>3</b> 0	51	36	0.71	Head&Neck	0.1051217
13.3	D17S30	5	2	0.4	Liver	BJC 67:100
13.3	D17530	26	14	0.54	Liver	CR 51:89
13.3	D17S30	37	23	0.62	Lung	CR 52:2478
13.3	D17930	16	4	0.25	Melanoma	GCC 7:169

Unknown	Unknown	3	0	G	Liver	BJC 67-1007
Unknown	Unknown	6	0	0	Liver	BJC 64:1083
Unknown D	169:422-419	21	0	0	Melanoma	GR 56:589
Unknown	Unknown	16	5	0.31	Prostate	CSurveys 11:
SUM		4382	1589	0.36		

23-24	D1657	138	59	0.43	Breast	CR 51:5794
Unknown	D1657	83	23	0.28	Breast	JJCR 84:1159
Unknown	D1697	35	1	0.03	Cervix	CR 54:4481
23-24	D16S7	7	2	0.29	Cervix	GCC 9:119
23-24	D1657	32	6	0.19	Celon	100 SS:382
23-24	D16S7	6	1	0.17	Esophageal	CR 51:2113
Unknown	D1697	15	4	0.27	Esophageal	CR 54:2996
24	D16S7	29	3	0.1	Kidney	CR 51:820
Unknown	D1657	33	12	0.36	Liver	CR 51:89
24	D16S7	53	24	0.45	Liver	PNAS 87:6791
23-24	D1697	25	11	0.44	Liver	CR 54 2231
24	D16S7	50	14	0.28	Liver	JJCR 84:893
2.4	D16S7	37	8	0.22	Lung	CR 52:2478
Unknown	D16S7	30	11	0.37	Ovary	CR 51:5118
24	D1697	3	1	0.33	Panczeas	CR 54:2761
24	D16S7	15	4	0.27	Prostate	PNAS 87:8751
Unknown	D16S7	17	3	0.18	Prostate	B70 757390
24	D16S7	32	9	0.28	Sarcoma	CR 52:2419
24	D1697	43	2	0.05	Testis	0 9:2245
Unknown	D16S7	16	0	0	Uterus	GCC 9:119
24.3	D165413	41	21	0.51	Breast	GCC 14:171
24.3	D16S413	22	0	0	Endocrine	CR 56:599
24.3	D16544	10	4	0.4	Breast	CR 54:513
24.3	D16S303	23	11	0.48	Breast	GCC 14:171
24.3	D165303	42	18	0.43	Breast	GCC 9:101
13	MT2	29	9	0.31	Breast	CR 54:513
13	MT2	8	4	0.5	Liver	CR 52:1504
13	MT2	8	4	0.5	Liver	CR 52:1504
Unknown	D16S10	31	7	0.23	Breast	GCC 9:101
Unknown	D16S260	28	8	0.29	Breast	GCC 9:101
Unknown	D16S266	53	18	0.34	Breast	GCC 9:101
12.1	D16S27	26	7	0.27	Breast	CR 54:513
12.1	D16S27	27	9	0:33	Breast	GCC 9:101
Unknown	D16S301	38	16	0.42	Breast	GCC 9:101
Unknown	D16S305	58	20	0.34	∘Breast	GCC 9:101
Unknown	D16S320	65	20	0.31	Breast	GCC 9:101
Unknown	D165398	56	16	0.29	Breast	GCC 9:101
Unknown	D16S5	29	11	0.38	Breast	GCC 9:101
22.1	E-cadherin	28	16	0.57	Breast	GCC*9:101
22.1	E-cadherin	41	27	0.66	Breast	EMBO 14:6107
Unknown	D165422	21	A	0.19	Read&Neck	CR 54:4756
Unknown	D16S422	20	0	0	Head&Neck	CR 54:4756
Unknown	SPN	22	3	0.14	HeadsNeck	CR 54:1152
Unknown	D16S413-D16S402	21	0	0	Kidney	PNAS 92:2854
Unknown	D169413-D169402	6	0	G	Kidney	PNAS 92:2854
Unknown	D16S:422-419	6	3	0.5	Kidney	GCC 12:76

22.1	HP	22	_			
22.1	HP	<u>20</u> 4	<u>5</u>			PN 84:9252
	ne	4	O	0		m CR 49:1095
Unknown	HP	24		0.08	a Ovary	
22.1	HР	22	5	0.23	Ovary	GO 47:137 IJC 54:546
22.1	HP	4		0.23	Prostate	G 11:530
Unknown	НP	11	1	0.09	Stomach	CR 52:3099
22.1	HP	10	0	0	Stomach	CR 48:2988
22.1	HP	2	0	0	Testis	CCG 52:72
22.1	HP	2	0	0	Testis	CCG 52 77
22.1	HP	2	0	0	Testis	CCG 52:72
27.1	HP	4	0	G.	Uterus	CR 51:5632
22.3-23.2	CTRB	34	9	0.26	Breast	CR 54:513
23.2	CTRB	4		0.15	Breast	CR-51-5794
23.2 22.3=23.2	CTRB	9	5	0.56	Liver	CR 52:1504
23.3-24.1	CTRB	38	17	0.45	Liver	ENAS 87 6791
23.3-24.1	D16S289	28	13	0.46	Breast	GCC 14:171
23.3-24.1	D16S289	<u> 57</u>	21	0.37	Breast	GCC 9:101
24.2	D165269	22	5	0.23	Uterus	CR 54:4294
22.1-24	D16S30	4 <b>5</b> 6	15	0.33	Breast	CR 54:513
Unknown	D16S511	32	3 15	0.5	Breast	CR 54:513
Unknown	D16S402	12	5	0.47	Breast	GCC 14:171
Unknown	D165402	38	20	0.42	Breast	JJCR 86:1054
Unknown	D16S402	13	2	0.15	Breast	GCC 14:171
24.2-24.3	D16S157	21	g	0.13	Head&Neck	CR 54:1152
22-23	D16S157	9	4	0.44	Breast Breast	CR 54:513
24.2-24.3	D16S43	20	8	0.4	Breast	CR 51:5794 CR 54:513
Unknown	D16S155	11	2	0.18	Breast	CR 54:513
23-24	D16S156	61	30	0.49	Breast	CR 51:5794
24	APRT	33	17	0.52	Breast	CR 54:513
24	APRT	25	3	0.12	Breast	CR 53:3707
24	APRT	25	3	0.12	Breast	CR 53:4356
24	APRT	19	10	0.53	Breast	GCC 2:191
24	APRT	12	7	0.58	Breast	GCC 9:101
24 24	APRT	10	6	0.6	Liver	CR 52:1504
Unknown	APRT	26	17	0.65	Liver	PNAS 87:6791
24	D1697	10	1	0.1	Brain	CR 49:6572
24	D16S7	21	3	0.14	Brain	CR 50:5784
24	D16S7	42	19	0.45	Breast	CR 50:7184
24	D1657	8	6	0.75	Breast	CR 53:3804
24	D1657	354	164	0.46	Breast	BJC 71:438
74	D1657	59 57	30 18	0.51	Breast	GCC 9:101
24	D16S7	57	18	0.32	Breast	CR 53:4356
24	D1697	269	120	0.32	Breast	CR 53:3707
24.3	D16S7	<b>6</b> 8	32	0.45	Breast	C 74:2281
		00	34	0.47	Breast	CR 54:513

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
16	D16S137	37	5	0.14	Breast	THE RESERVE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE
Unknown	D16S300	23	7	0.3	Breast	CR 54:513
Unknown	D165299	36		0.19-	Breast	GCC 14:171
12.1	D16S304	24	12	0.5		GCC 14 171
22.1	TAT	43	16	0.37	Breast	GCC 14:171
22.1	TAT	41	15	0.37	Breast	CR_54:513
22.1	TAT	8	13	0.57	Breast	GCC 9:101
22.1	TAT	10	9		Liver	CR 52:1504
22.1	TAT	23	13	0.9 0.57	Liver	CR 54:281
22.1	TAT	25	13	***************************************	Liver	PNAS: 87. 67.91
22.1	TAT	29	14	0.52	Liver	PNAS 87:6791
Unknown	D16S408	20	3	0.48	Liver	PNAS 87:6791
13	CET	36	S S	0.15	Breast	JJCR 86:1054
21	CET	44	20	0.25	Breast	CR 54:513
13-22.1	MTZ	36	<b>\$7,598,09700000</b> 000000000000000000000000000000	0.45	Liver	PNAS 87:6791
21	D16S151	43	15	0:42	Liver	PNAS 87:6791
21	D165151	18	16	0.37	Breast	CR 51:5794
21	D16S151	***************************************	6	0.33	Breast	CR 54:513
Unknown	D16S151	43 8	8	0.19	Esophageal	GCC 10:177
21	D16S265	***************	2	0.25	Liver	CR 51:89
21	D16S265	70	24	0.34	Breast	GCC 9:101
21		58	19	0.33	Breast	BCR1 32:5
22.1	D16S265	19	. 3	0.16	Ovary	BJC 69:429
21-22.1	D16538	35	14	0.4	Breast	CR 54:513
21-22.1	D16S186	28	15	0.54	Breast	GCC 14:171
	D16S186	33	13	0.39	Breast	GCC_9:101
21-22.1	D16S186	27	6	0.22	Uterus	CR 54:4294
22.1	D165318	33	13	0:39	Breast	GCC 9:101
22.1	D16S318	29	14	0.48	Breast	GCC 14:171
Unknown	D168421	12	2	0.17	Breast	JJCR 86:1054
Unknown	D16S421	27	14	0.52	Breast	GCC 14:171
22.1	D16S4	28	16	0.57	Breast	CR 54:513
22.1	D16S4	29	14	0.48	Breast	GCC 9:101
22.1	D16S4	31	12	0.39	Liver	PNAS 87:6791
22.1	D16S4	9	5	0.56	Liver	CR 52:1504
22.1	D1654	17	6	0.35	Cwary	CR 53:2393
22.1	D16S152	21	4	0.19	Breast	CR 54:513
22.1	HP	27	11	0.41	Breast	CR-54:513
22.1	HP	21	12	0.57	Breast	CR 51:5794
22.1	HP	29	15	0.52	Breast	GCC 9:101
22.1	HP	9	1	0.11	Cervix	CR 49:3598
22.1	нь	15	3	0.2	Colon	IJC 53:382
Unknown	HP	7	1	0.14	Liver	CR 51:89
Unknown	HP	10	4	0.4	Liver	CR 52:1504
22.1	HP	28	10	0.36	Liver	PNAS 87:6791
22.1	HP	14	8	0.57	Liver	JJCR 81:108
22.1	HP	13	7	0.54	Liver	JJCR 81:108

12.2	D16S23	36	5	0.14	Breast	GR
13.2	D16S34	3	1	0.33	Breast	CR
13.2	D16934	21	7	0.33	Breast	ČR
PTER-P13	D16S35	26	4	0.15	Breast	CR
PTER-P13	D16S35	20		0.2	Cervix	ČR
12-pter	Unknown	18	0	0	Colon	BJC
Unknown	D168418	72	- 0	0	Endocrine	CR
Unknown	D16S404	20	2	0.1	Head&Neck	CR
Unknown	D165404-D165403-D165414	22	0	- 0	Kidney	PNA
Unknown	D16S404-D16S403-D16S414	6	0	0	Kidney	PNA
13.2	D16534	20	9	0.45	Liver	PNA
13.2	D16S34	8	5	0.62	Liver	CR
13.2	D16S34	- 5	3	0.5	Liver	ĆR
PTER-P13	D16S35	7	4	0.57	Liver	CR
PTER-P13	D16535	24	9	0.38	Liver	PNA
pter-pl3	D16S37	2	0	0	Liver	JJC
13.2	D16534	27	4	0.25	Gwary	Tac
PTER-P13	D16S35	8	0	0	Prostate	PNA
PTER-P13	D16835	8	0	. 0	Prostate	CSu
12-pter	Unknown	5	0	0	Stomach	BJC
PTER-P13	D16S35	25	5	0.2	Testis	0.9
Unknown	D16S291	18	1	0.06	Uterus	CR
SUM		1231	213	0.17		

117 / 214

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Refe
13.3	HBZP1	6	0	0	Prostate	Gi
13.3	D16S85	7	0	0	Breast	CR
13.3	D16885	62	5	0.08	Breast	GCC
13.3	D16S85	8	0	0	Liver	BJC
13.3	D16985	11	0	0	Tract	BJC
13.3	D16S85	24	5	0.21	Ovarv	CR
13.3	D16S85	11	ĺ	0.09	Pancreas	BJC
13.3	D16S85	11	1	0.09	Stomach	HG
13.3	D16885	22	3	0.14	Testis	GCC
13.3	D16S83	27	8	0.3	Breast	GCC
13.3	D16583	31	5	0.19	Breast	CR
13.3	D16S83	16	· 2	0.12	Esophageal	CR
13.3	D16983	11	0		Esophageal	CR
13.3	D16S83	19	5	0.26	Liver	CR
13.3	D16583	16	1	0.06	Liver	CR
13.3	D16583	15	6	0.4	Sarcoma	CR
13	D16584	21	1	0.05	Breast	CR
13	D16S84	43	0	0	Breast	CR
pter-p13.3	D16584	5	0	0	Cervix	GCC
pter-pl3.3	D16S84	28	4	0.14	Esophageal	GCC
pter-p13.3	D16884	14	1	0.07	Kidney	CR
pter-p13.3	D16584	22	5	0.23	Lung	CR
pter-p13.3	D16584	21	7	0.33	Ovary	CR
pter-p13.3	D16S84	9	2	0.22	Uterus	GCC
13.3	RBAI	22	5	0.23	Breast	CR
13.3	HBAI	47	1	0.02	Breast	CR
13.3	HBAI	22	5	0.23	Breast	CR
13.3	HBAI	11	9	0.82	Liver	CR
13.3	HBAT	36	1.6	0:44	Liver	PNA
Unknown	D16S414	10	0	0	Head&Neck	CR
Unknown	D169414	19	3	0.16	Head&Neck	CR
Unknown	D16S414	6	3	0.5	Kidney	GCC
Unknown	D16S414	26	1	0.04	Melanoma	CR
13	D16S292	12	0	0	Ovary	BJC
pter-pl3	D16532	21	3	0.14	Breast	CR
pter-pl3	D16S32	26	8	0.31	Liver	PNA
pter-pl3	D16532	16	4	0.25	Liver	JJC
pter-pl3	D16S32	8	7	0.88	Liver	CR
13,1	MRP		5	0.38	Leukemia	LAN
13.11	D16S131	8	1	0.12	Breast	CR
13,11	D16S131	13	6	0.46	Liver	PNA
12.2	D16S159	. 34	6	0.18	Breast	CR
P11-P13	D168159	29	1	0.03	Breast	CR.
Unknown	D16S159	22	1	0.05	Liver	CR
Unknown	D16S159	22	1	0.05	liver	CR
Unknown	Unknown	18	2	0.11	Brain	CR

11-12.0	D15S11	13	1	0.08	Ovarv	IJC 54:546
Unknown	D1582	11	4	0.36	Ovary	CR 53:2393
pter-q13	D15S24	31	2	0.06	Ovary	IJC 54:546
Unknown	D15328	9	1	0.11	Ovary	CR 51:5118
26.1	FES	15	6	0.4	Ovary	BJC 69:429
pter-q13	015924	1	0	0	Pancreas	CR 54:2761
Unknown	D15S29-D15S1	9	0	0	Prostate	G 11:530
14-21	D1591	9	4	0.44	Sarcome	CR 52:2419
Unknown	D15S27	12	. 5	0.42	Sarcoma	CR 52:2419
14-21	D15S1	13	0	Ū	Stomach	CR 4812988
Unknown	D15S86	32	5	0.16	Stomach	HG 92:244
pter-q13	D15S24	46	4	0.09	Testis	C 9:2245
Unknown	D15S86	21	2	0.1	Testis	GCC 13:249
Unknown	CXP19	27	0	Ū	Uterus	CP 54:4294
14-21	D15S1	6	1	0.17	Uterus	CR 51:5632
26.1	FES	36	5	0.14	Oterus	CR 54:4294
SUM		1015	173	0.17		

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
26.1	FES	36	5	0.14	Uterus	CR 54:4294
Unknown	Unknown	18	3	0.17	Brain	CR 50:5784
Unknown	D15527	7	1	0.14	Brain	CR 49:6572
14-21	D15S1	28	1	0.04	Breast	GCC 2:191
11-12.0	015511	34	3	0.09	Breast	CR 53:4356
pter-q13	D15S24	2	1	0.5	Breast	CR 53:3804
Unknown	D15928	12	2	0.17	Breast	CR-50:7184
Unknown	D15S29	16	4	0.25	Breast	GCC 2:191
14-21	D15S1	- 6	0	0	Сегиіж	CR 49:3598
pter-q13	D15S24	23	0	0	Cervix	CR 54:4481
16-21	01551	- 6	1	0.17	Colon	N 331:273
Unknown	ACTC	36	6	0.17	Endocrine	CR 56:599
Unknown	CYP19	33	5	0.15	Endocrine	CR 56:599 mm;
14-21	D15S1	5	4	0.8	Endocrine	CR 56:599
Unknown	D159100	31	5	0.16	Endocrine	CR 56:599
Unknown	D15S107	8	6	0.75	Endocrine	CR 56:599
Unknown	D155108	8	3	0.38	Endocrine	CR 56:599
Unknown	D15S114	4	4	1	Endocrine	CR 56:599
Unknown	D158116	21	7	0.33	Endocrine	CR 56:599
Unknown	D15S118	16	5	0.31	Endocrine	CR 56:599
Unknown	D15S125	24	5	0.21	Endocrine	CR 56:599
Unknown	D15S127	10	7	0.7	Endocrine	CR 56:599
Unknown	D159144	9	7	0.78	Endocrine	CR 56:599
Unknown	D15S165	32	7	0.22	Endocrine	CR 56:599
Unknown	D15S87	20	7	0.35	Endocrine	CR 56:599
Unknown	D15S97	32	8	0.25	Endocrine	CR 56:599
Unknown	GABRB3	31	7	0.23	Endocrine	CR 56:599
Unknown	D15S27	17	2	0.12	Esophageal	GCC 10:177
Unknown	D15S27	27	2	0.07	Lsophageal	CR 54:2996
Unknown	D15S117	21	1	0.05	Head&Neck	CR 54:1152
Unknown	D159118	17	1	0.06	Head&Neck_	CR 5414756
Unknown	D15S118	15	0	0	Head&Neck	CR 54:4756
Unknown	D15S118	6	3	0.5	Kidney	GCC 12:76
Unknown	D15S120-D15S127	21	1	0.05	Kidney	PNAS 92:2854
Unknown	D15S120-D15S127	6	0	O.	Kidney	PNAS 92:2854
Unknown	D15S28	18	2	0.11	Kidney	CR 51:820
14-21	D15S1	10	1	0.1	Liver	JJCR 81:108
pter-q13	D15S24	26	3	0.12	Liver	CR 51:89
14-21	D1551	4	0	0	Lung	NEJ 317:1109
14-21	D15S1	8	0	0	Lung	PN 84:9252
14-21	D15S1	5	2	0.4	Lung	NEU 317:1109
14-21	D15S1	2	0	0	Lung	NEJ 317:1109
Unknown	D15S28	18	2	0.11	Lung	CR 52:2478
Unknown	D15S118	24	4	0.17	Melanoma	CR 56:589
14-21	D1551	. 7	0	0	Neuroblast	sm CR 49:1095
					a	

Band	Marker	Total	Cases w/LOH	LOH Freg.	Tumor Type	Reference
Unknown	D15S25	26	4	n 15		vererence
Unknown	D15S25	·····	0		**************************************	FR 24:533P
	D13323	<i>-</i>		U	Colon	CCG 48:167
OUMHOWIL	ntaasa	26	4	0.15	Esophageal	CR 54:2996
SUM		35	4	0.11		

32.32-32.33	D14S19	20	4.	0.2	Neuroblast	un 0 7:1185
32.1-32.32	D14S21	18	1	0.06	Neuroblast a	om 0 7:1185
11.2-13	мұн6	17	0	O	Neuroblast a	om U 7:1185
32.3233	D14S1	26	2	0,.08	Ovary	IJC 54:546
32	D14913	28	5	0.18	Overey	CR 51:5118
32	D14S16	15	7	0.47	Ovary	CR 53:2393
32.33	D14S20	9	3	0.33	Ovary	0.7:1059
Unknown	D14S34	13	7	0.54	Ovary	BJC 69:429
24.3-31	D14548	9	3	0.33	Ovary	BJC 69:429
Unknown	D14S49	20	5	0.25	Ovary	BJC 69:429
Unknown	D14S50	10	3	0.3	Ovary	BJC 169:429
Unknown	D14S51	17	4	0.24	Ovary	BJC 69:429
Unknown	Unknown	6	0	0	Pancreas	BUC 65:809
32	D14S13	4	0	0	Pancreas	CR 54:2761
32.3233	D1451	7	0	0	Prostate	6 11:530
32.3233	D14S1	7	0	0	Sarcoma	CR 52:2419
32	D14913	29	1	0.03	Sarcoma	CR 52:2419
32.3233	D14S1	16	1	0.06	Stomach	CR 48:2988
Unknown	D14544	32	5	0.16	Stomach	HG 92:244
32.33	D14S20	8	1	0.12	Testis	0 9:2245
Unknown	D14544	21	2	0.1	Testis	GCC 13:249
32.3233	D14S1	10	0	0	Uterus	CR 51:5632
Unknown	D1453	12	1	0.08	Uterus	GCC 9:119
24.3-31	D14576	28	3	0.11	Uterus	CR 54:4294
11.2-13	MYH6	18	2	0.11	Uterus	CR 54:4294
Unknown	TCRD	31	6	0.19	Uterus	CR 54:4294
SUM		2442	542	0.22		

32	D14816	14	7	0.5	Colon	
32	D14S16	37	18	0.49	Colon	IJC 53-382
32.3233	D14S17	12	5	0.42	Colon	O 8:671
32.3233	D14S17	20	7	0.35	Colon	0 8:671
32.1-32.32	D14S18	1	1	1	Colon	IJC 53:382
32.32-32.33	D14S19	39	22	0.56	Colon	0 8:671
32,33	D14819	14	-4	0.29	Colon	IJC 53:382
32.33	D14S20	20	10	0.5	Colon	0 8:671
32.1-32.32		2	2	1	Colon	LJC 53:382
32.1-32.32	D14S21	23	6	0.26	Colon	0 8:671
32.3233	D14523	23	9	0.39	Colon	IJC 53:382
32.3233	D14S23	42	21	0.5	Colon	0 8:671
32.3 32.1	LGH	47	26	0.55	Calon	0.8-671
***************************************	PI	6	0	0	Colon	0 8:671
Unknown 32.1-32.2	D145174	21	0	0	Endocrine	600 15.9
32.1-32.2	D14S45	23	0	0	Endocrine	CR 56:599
32	D14513 D14513	23	4	0.17	Esophageal	CR 51:2113
32	D14513	64 2 <b>6</b>	9	0.14	Esophageal	GCC 10:177
Unknown	D14S51	~~~~~	***************************************	0,15	Esophageal	CR 54:2996
Unknown	D14573	23 20	9	0.39	Head&Neck	CR 54:1152
Unknown	D14S73	18	1	0.05	Read&Neck	CR 54:4756
32	D14573	36	3	0.06	Head&Neck	CR 54:4756
Unknown	D14S65-D14S81	6	1	0.08 0.17	Kidney	CR 51:820
Unknown		000000000000000000000000000000000000000		***************************************	Kidney	PNAS 92:28
Unknown Unknown	D14S65-D14S81 Unknown	22	5	0.23	Kidney	ENAS 92:28
***************************************	D14S65-D14S81	2 <u>2</u> 10	5 0	<b>0.23</b> 0	Kidney Liver	PNAS 92:28 BJC 64:108
Unknown	D14S65-D14S81 Unknown	22 10 5	5 0 0	0.23 0 0	Kidney Liver Liver	PNAS 92:28 BJC 64:108 BJC 67:100
Unknown Unknown	D14S65-D14S81 Unknown Unknown	2 <u>2</u> 10	5 0 0	0.23 0 6 0	Kidney Liver Liver Liver	ENAS 92:28 BJC 64:108 BGC 67:100 CCG 48:72
Unknown Unknown 32.3233 32.32-33 32.32-33	D14S65-D14S81 Unknown Unknown D14S1	22 10 5 3	5 0 0	0 23 0 0 0 0 0*35	Kidney Liver Liver Liver Liver	PNAS 92 28 BJC 64:108 BJC 67:100 CCG 48:72 JJCR 81:10
Unknown Unknown 32.3233 32.3233 32 Unknown	D14S65-D14S81 Unknown Unknown D14S1 D14S1	22 10 5 3 17	5 0 0 0 6	0.23 0 6 0	Kidney Liver Liver Liver Liver Liver Liver	PNAS 92 28 BJC 64:108 BJC 67:100 CCG 48:72 JJER 81:10 CR 51:89
Unknown Unknown 32.3233 32.3233 32 Unknown 32.3233	D14S65-D14S81 Unknown Unknown D14S1 D14S1 D14S1	22 10 5 3 17 46 2	5 0 0 0 5 5	0 23 0 0 0 0 0°35 0.11	Kidney Liver Liver Liver Liver Liver Liver Liver Liver Liver	PNAS 92 28 BJC 64:108 BJC 67:100 CCG 48:72 JJER 81:10 CR 51:89 PNAS 86:88
Unknown Unknown 32.3233 32.3233 32.3233 32.3233	D14S65-D14S81 Unknown Unknown D14S1 D14S1 D14S13 D14S15	22 10 5 3 17 46 2	5 0 0 0 6 5	0.23 0 0 0 0 0:35 0.11	Kidney Liver Liver Liver Liver Liver Liver	PNAS 92 28 BJC 64:108 BJC 67:100 CCG 48:72 JJER 81:10 CR 51:89 PNAS 86:48 CR 54:5643
Unknown Unknown 32.3233 32.3233 32 Unknown 32.3233 32.3233 32.3233	D14S65-D14S81 Unknown Unknown D14S1 D14S1 D14S13 D14S15 D14S1 D14S1 D14S1	22 10 5 3 1,7 46 2 1 1,7 8	5 0 0 0 6 5 0 1	0 23 0 0 0 0 0 35 0.11 0	Kidney Liver Liver Liver Liver Liver Liver Liver Liver Liver Lung	PNAS 92 28 BJC 64:108 BJC 67:100 CCG 48:72 JJER 81:10 CR 51:89 PNAS 86:88
Unknown Unknown 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233	D14S65-D14S81 Unknown Unknown D14S1 D14S1 D14S13 D14S15 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1	22 10 5 3 17 46 2 1 17 8	5 0 0 0 6 5 0 1	0.23 0 0 0 0:35 0:11 0 1	Kidney Liver Liver Liver Liver Liver Liver Liver Liver Liver Lung Lung	BUC 64:108 BUC 67:100 CCG 48:72 DUCR 61:10 CR 51:89 PNAS 66:88 CR 54:5643 CR 54:5643
Unknown Unknown 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233	D14S65-D14S81 Unknown Unknown D14S1 D14S1 D14S13 D14S15 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1	22 10 5 3 17 46 2 1 1,7 8 23 50	5 0 0 0 6 5 9 1 7	0.23 0 0 0 0.35 0.11 0.12	Kidney Liver Liver Liver Liver Liver Liver Liver Liver Lung Lung Lung	BJC 64:108 BJC 67:100 CCG 48:72 DJCR 61:10 CR 51:89 PNAS 66.88 CR 54:5643 CR 54:5643
Unknown Unknown 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233	D14S65-D14S81 Unknown Unknown D14S1 D14S1 D14S13 D14S15 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1	22 10 5 3 17 46 2 1 17 8	5 0 0 0 5 5 9 1 7	0.23 0 0 0 0.35 0.11 0 1 0.41 0.12 0.09	Kidney Liver Liver Liver Liver Liver Liver Liver Liver Lung Lung Lung Lung Lung	PNAS 92 28 BJC 64:108 BJC 67:100 CCG 48:72 JJER B1:10 CR 51:89 PNAS 66:88 CR 54:5643 CR 54:5643 PN:84:9252 CR 52:2478
Unknown Unknown 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233	D14S65-D14S81 Unknown Unknown D14S1 D14S1 D14S13 D14S15 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1	22 10 5 3 17 46 2 1 1,7 8 23 50	5 0 0 0 6 5 9 1 7	0.23 0 0 0 0.0 0.35 0.11 0 1 0.41 0.12 0.09 0.12	Kidney Liver Liver Liver Liver Liver Liver Liver Lung Lung Lung Lung Lung Lung Lung Lung	PNAS 92 28 BJC 64:108 BJC 67:100 CCG 48:72 JJER B1:10 CR 51:89 PNAS 66:88 CR 54:5643 CR 54:5643 PN:84:9252 CR 52:2478
Unknown Unknown 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233	D14S65-D14S81 Unknown Unknown D14S1 D14S1 D14S13 D14S15 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1	22 10 5 3 17 46 2 1 17 8 23 50 22	5 0 0 0 6 5 9 1 7 1 2 6 7	0,23 0 6 0 0,35 0.11 6 1 0.43 0.12 0.09 0.12 0.32	Kidney Liver Liver Liver Liver Liver Liver Liver Liver Lung Lung Lung Lung Lung Neuroblastor a	PNAS 92 28 BJC 64:108 BJC 64:100 CCG 48:72 JJCR 81:10 CR 51:89 PNAS 96:88 CR 54:5643 CR 54:5643 PN 84:9252 CR 52:2478 m 0 7:2195
Unknown Unknown 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233	D14S65-D14S81 Unknown Unknown D14S1 D14S1 D14S1 D14S15 D14S15 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1	22 10 5 3 17 46 2 1 17 8 23 50 22	5 0 0 0 5 5 9 1 7 1 2 6	0.23 0 0 0 0:35 0.11 0 1 0.41 0.12 0.09 0.12 0.32	Kidney Liver Liver Liver Liver Liver Liver Liver Lung Lung Lung Lung Lung Neuroblastor	PNAS 92 28 BJC 64:108 BJC 64:100 CCG 48:72 JJCR 81:10 CR 51:89 PNAS 96:88 CR 54:5643 CR 54:5643 PN 84:9252 CR 52:2478 m 0 7:2195
Unknown Unknown 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233	D14S65-D14S81 Unknown Unknown D14S1 D14S1 D14S13 D14S15 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1	22 10 5 3 17 46 2 1 17 8 23 50 22	5 0 0 0 6 5 9 1 7 1 2 6 7	0,23 0 6 0 0,35 0.11 6 1 0.43 0.12 0.09 0.12 0.32	Kidney Liver Liver Liver Liver Liver Liver Liver Liver Liver Lung Lung Lung Lung Lung Neuroblastor a Neuroblastor a Neuroblastor a	PNAS 92:28 BJC 64:108 BJC 64:100 CCG 48:72 JJCP 81:10 CR 51:89 PNAS 86:88 CR 54:5643 CR 54:5643 PN 84:9252 CR 52:2478 R 0 7:2185
Unknown Unknown 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233	D14S65-D14S81 Unknown Unknown D14S1 D14S1 D14S1 D14S15 D14S15 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1	22 10 5 3 17 46 2 1 17 8 23 50 22 16	5 0 0 0 5 5 0 1 7 1 2 6 7	0.23 0 0 0 0:35 0.11 0 1 0.41 0.12 0.09 0.12 0.32 0.5	Kidney Liver Liver Liver Liver Liver Liver Liver Liver Liver Lung Lung Lung Lung Neuroblastor a Neuroblastor a Neuroblastor	PNAS 92 28 BJC 64:108 BJC 64:100 CCG 48:72 JJCP 81:10 CR 51:89 PNAS 86:88 CR 54:5643 CR 54:5643 PN 84:9252 CR 52:2478 n 0 7:1185
Unknown Unknown 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233 32.3233	D14S65=D14S81 Unknown Unknown D14S1 D14S1 D14S1 D14S15 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1 D14S1	22 10 5 3 17 46 2 1 17 8 23 50 22 16 19	5 0 0 0 5 5 9 1 7 1 2 6 7	0,23 0 0 0 0,35 0.11 6 1 0.43 0.12 0.09 0.12 0.32 0.5	Kidney Liver Liver Liver Liver Liver Liver Liver Liver Liver Lung Lung Lung Lung Lung Neuroblastor a Neuroblastor a Neuroblastor a	PNAS 92 28 BJC 64:108 BJC 64:100 CCG 48:72 JJCP 81:10 CR 51:89 PNAS 86:88 CR 54:5643 CR 54:5643 PN 84:9252 CR 52:2478 n 0 7:1185

WO 98/41648 111 / 214

Chromosome 14 - q Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	TCRD	31	6	0.19	Uterus	CR 54:4294
Unknown	D14S:267-268-51	30	21	0.7	Bladder	CR 55:5213
Unknown	Unknown	19	3	0.16	Brain	CR 50:5784
32	D14S13	14	1	0.07	Brain	CR 49:6572
32.1-32.2	D14513	26	<u> </u>	0.04	Brain	CR 55:4696
32.1-32.2	D14S13	26	1	0.04	Brain	CR 55:4696
32	D14516	26	1	0.04	Brain	CR 55:4696
32	D14S16	26	1	0.04	Brain	CR 55:4696
32,32-,33	D14923	25	0	0	Brain	CR 5584696
32.3233	D14S23	26	0	0	Brain	CR 55:4696
24.3	D14S43	2.6	5	0.19	Brain	CR 55:4696
24.3	D14S43	26	5 <b>1</b>	0.19	Brain	CR 55:4696
32.1-32.2	D14S45	26		0.04	Brain	CR 55:4696
32.1-32.2 24.3-31	D14S45 D14S48	26	1 8	0.04 0.31	Brain Brain	CR 55:4696
24.3-31	D14S48	<b>26</b> 26	<b></b> 8	0.31	Brain	CR 55:4696
32.1-32.2	D14551	26	3	0.31		CR 55:4696 CR 55:4696
32.1-32.2	D14S51	26	3	0.12	Brain Brain	CR 55:4696
12.0-13.0	D14554	26	2	0.08	Brain	CR 55:4696
12.0-13.0	D14S54	26	2	0.08	Brain	CR 55:4696
23-31	014859	26	10	0.38	Brain	CR 55:4696
23-31	D14S59	26	10	0.38	Brain	CR 55:4696
12.0-13.0	D14S70	26	8	0.31	Brain	CR 55;4696
12.0-13.0	D14S70	26	8	0.31	Brain	CR 55:4696
24.3-31	D14976	26	6	0.23	Brain	CR.55:4696
24.3-31	D14S76	26	6	0.23	Brain	CR 55:4696
12	D14580	26	7	0:27	Brain	CR 55:4696
12	D14S80	26	7	0.27	Brain	CR 55:4696
31	D14981	26	7	0:27	Brain	CR 55:4696
31	D14S81	26	7	0.27	Brain	CR 55:4696
32.3	IGH	26	9	0.35	Brain	CR 55:4696
32.3	IGH	26	9	0.35	Brain	CR 55:4696
32	D14913	60	7	0.12	Breast	CR 53:4356
32	D14S13	29	7	0.24	Breast	GCC 2:191
32	D14513	47	6	0.13	Breast	CR 50:7184
32 32.3	D14S16	17	2	0.12	Breast	GCC 2:191
***************************************	IGH	6	2	0.33	Breast	CR 53:3804
32.3233 <b>32.33</b>	D14S1	10	2	0.2	Cervix	CR 49:3598
***************************************	D14520	10	1	0.1	Cervix	CR 54:4481
Unknown 32.1	D1453 AACT	7 2 <b>6</b>	0 	0 0.23	Cervix	GCC 9:119 0 8:671
32.32-32.33	AKTI	2 <b>5</b>		0.23	Colon Colon	0 8:671
32.32-32.33	D1451	42	14	0.33	Colon	0.8:671
32.33	D1451	9. <b>4</b> 28	12	0.43	Colon	IJC 53:382
32	D14513	35	14	0.43	Colon	IJC 53:382
Unknown	D14S16	17	2	0.12	Colon	CCG 48:167
		-	-			200 .0.20

110 / 214

Band	Marker Total	Cases wi/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D14522 24	2	0.08	Esophageal	CR 54:2996
SUM	24	2	0.08		

109 / 214

33-qter	Unknown	9	4	0.44	Lung	PN 86:5099
Unknown	BRAC2 (D13S:263-	6	5	0.83	Ovary	CR 55:4830
	219-220-267-171-					
×	260-217)				***********	
Unknown	D1353-2-1-RB1	32	18	0.56	Ovary	CR 53:2393
Unknown	Unknown	7	0	0	Pancreas	BJC 65:809
Unknown	14.2	10	- 0	0	Pancreas	BJC 65:809
Unknown	Unknown	13	3	0.23	Prostate	CSurveys 11:
Unknown	BRAC2 [D135:263-	7	6	0.86	Prostate	CR 55:4830
	219-220-267-171-					
	260-217)					
Unknown	D13S3-D13S5	11	1	0.09	Prostate	G 11:530
Unknown	D135103	32	5	0.16	Stomach	HG 92:244
Unknown	D13S409	14	2	0.14	Stomach	CR 55:1933
Unknown	Unknown	15		0.2	Testis	G 5:134
Unknown	D13S103	9	1	0.11	Testis	GCC 13:249
Unknown	D13970	13	3	0.23	Testia	GCC 13:249
Unknown	D13S120	15	0	0	Uterus	CR 54:4294
Unknown	D13S122	18	2	0.11	Uterus	CR 54:4294
SUM		5208	1509	0.29		

Unknown	D13952	26	4	0.15	Liver	CR 51:89
Unknown	D13S52	2	1	0.5	Lung	CR 52:2478
Unkno₩n	D13552	9	5	0.56	Lung	CR 52:2478
Unknown	D13S52	26	5	0.19	Lung	CR 52:2478
Unknown	D13S52	1	1	1	Lung	CR 52:2478
Unknown	D13S52	27	6	0.22	Ovarv	CR 51:5118
34	F7	11	2	0.18	Ovary	IJC 54:546
34	F7	11	2	0.18	Ovary	IJC 54:546
Unknown	BRAC2 (D139:263-	1	1	1	Bladder	CR 55 4930
	219-220-267-171- 260-217)					
Unknown	D13S30	3	0	0	Bladder	CR 51:5405
Unknown	D139:133-170	30	15	0.5	Bladder	CR 55:5213
Unknown	Unknown	7	1	0.14	Brain	CR 49:6572
Unknown	Unknown	14	2	0.14	Brain	CR 50:5784
32	D13S193	13	2	0.15	Brain	CR 54:1397
32	D13S193	13	0	0	Brain	CR 54:1397
Unknown	RB1-D13S4-D13S63	7	0	0	Brain	CGC 73:122
Unknown	RB1-D13S4-D13S63	18	2	0.11	Brain	CGC 73:122
Unknown	RB1-D13S4-D13S63	10	0	0	Brain	CGC 73:122
Unknown	BRAC2 (D135:263-	1	1	1	Breast	CR 55:4830
	219-220-267-171- 260-2171					30.33.4030
Unknown	BRAC2 (D13S:263-	33	20	0.05	_	
	219-220-267-171- 260-217)	33	28	0.85	Breast	CR 55:4830
Unknown	D13S7	2	1	0.5	Breast	PNAS 84:2372
Unknown	BRAC2 (D13S:263- 219-220-267-171- 260-217)	1	1	1	Cervix	CR 55:4830
Unknown	,	6	0	O		
Unknown	BRAC2 (D135:263-	1	1	1	Colon	JNCI 84:1100
	219-220-267-171- 260-217)	•	1	1	Colon	CR 55:4830
Unknown	013510	5	0	0	Colon	CCG. 48:167
Unknown	D13537	21	1	0.05	Colon	CCG 48:167
Unknown	ESD	19	0	0	Colon	CCG 48:167
Unknown	D13S168	18	2	0.11	Endocrine	CR 56:599
Dakagwa	D13S174-D13S173	20	1	0.05	Kidney	PNAS 92:2854
Unknown	D13S174-D13S173	5	0	0	Kidney	PNAS 92:2854
Unknown	D135:156-158-164-	24	3	0.12	Leukemia	CR 55:5377
De les estates	217-221					
Unknown	Unknown	11	0	0	Liver	BJC 64:1083
Unknown Unknown	Unknown	5	0	0	Liver	BJC 67:1007
DII-gli	14.2	7	0	0	Liver	BJC 67:1007
	D13511	1	1	1	Liver	PNAS 86:8852
Unknown	Unknown	24	18	0.75	Lung	CR 54:2322
33-gter	Unknown	3	1	0.33	Lung	PN 86:5099
33-ater	Unknown	9	4	0.44	Lung	PN 86:5099

Chromosome 13 - q Arm

21						
21	D13971	•	2	0.13	Brain	CR 54:1397
32-34	D13S71 D13S128	7	0	0	Brain	CR 54:1397
34		34	12	0.35	Ovary	CR 54:605
34	D13S34	12	5	0.42	Ovary	IJC 52:575
34	D13934	15	7	0.47	Ovary	IJC 54:546
34	D13S32	28	11	0.39	Ovary	IJC 54:546
22-31	D13532	26	12	0.46	Cvary	IJC 52:575
077000000000000000000000000000000000000	D13S173	39	7	0.18	Breast	GCC 13:291
34	D1353	94	26	0.28	Bladder	0.6:2305
Unknown	D13S3	20	3	0.15	Breast	GCC 2:191
34	01393	26	4	0.15	Breast	GE 5:554
34	D13S3	7	2	. 0.29	Breast	PNAS 84:2372
33-34	01353	27	3	0.11	COLVIE	CR 54:4481
34	D13S3	18	4	0.22	Cervix	CR 49:3598
34	D1393	15	- 6	0.4	Colon	100 53:382
Unknown	D13S3	6	0	0	Colon	JNCI 84:1100
Unknown	01363	4	0	O	Liver	JJCR 81:108
33-34	D13S3	2	1	0.5	Liver	CCG 48:72
34	D1393	8	4	0.5	Liver	CR 51:4367
34	D13S3	9	4	0.44	Lung	PNAS 86:5099
Unknown	D1353	23	7	0.3	Lung	PN 84:9252
34	D13S3	11	10	0.91	Lung	CR 49:5130
34	D1393	24	9	0.38	Lung	PN-84:9252
34	D13S3	9	4	0.44	Lung	PNAS 86:5099
.34	D1353	7	1	0.14	Neuroblasto	m CR 49:1095
					ä	
34	D13S3	21	3	0.14	Ovary	IJC 52:575
34	D1353	19	4	0.21	Ovary	IJC 54:546
Unknown	D13S3	9	4	0.44	Sarcoma	CR 52:2419
34	D1393	5	0	0	Stomach	HG 89:445
34	D13S3	20	5	0.25	Stomach	G 2:180
33-34	D1353	9	1	0.11	Stomach	RG 97:244
Unknown	D13S3	19	5	0.26	Stomach	G 2:180
33-34	D1393	17	2.	0.12	Stomach	CR 48:2988
Unknown	D13S3	1	0	0	Testis	CCG 52:72
34	01353	20	8	0.4	Testis	0.9:2245
Unknown	D13S3	4	0	0	Testis	CCG 52:72
Unknown	D1393	2	0	0	Testis	CCG 52:72
34	D13S3	7	1	0.14	Uterus	CR 51:5632
34	D13535	17	2	0.12	Ovary	IJC 54:546
34	D13S35	18	2	0.11	Ovary	IJC 52:575
Unknown	D13S52	33	7	0:21	Breast	CR 50:7184
Unknown	D13S52	132	34	0.26	Breast	CR 51:5794
Unknown	D13952	53	23	0.43	Esophageal	GCC 10:177
Unknown	D13S52	16	3	0.19	Esophageal	CR 51:2113
Unknown	D13552	22	10	0.45	Esophageal	CR 54:2996
Unknown	D13S52	20	3	0.15	Kidney	CR 51:820

Unknown	D13S2	13	0	0	Liver	JJCR 81:108
22	D1352	21	12	0.57	Lung	PN 8419252
22	D13S2	12	2	0.17	Lung	JJCR 80:924
Unknown	01392	9	7	0.78	Lung	CR 49:5130
22	D13S2	7	1	0.14	Neuroblaston a	n CR 49:1095
Unknown	D1352	10	3	0.3	Ovary	IJC 54:546
22	D13S2	8	6	0.75	Sarcoma	CR ⁱ 52:2419
22	D1382	10	3	0.3	Stomach	CR 52:3099
22	D13S2	9	1	0.11	Stomach	HG 92:244
22	D1352	11	2	0.18	Stomach	CR 48:2988
22	D13S2	6	4	0.67	Stomach	G 2:180
Unknown	D13S2	7	1	0.14	Stomach	HG 89:445
Unknown	D13S2	14	4	0.29	Testis	0 9:2245
22	D1352	4	1	0.25	Oterus	CR 51, 5632
22-31	D13S170	47	11	0.23	Breast	GCC 13:291
22-31	D138170	29	11	0.38	Head&Net'k	CR 54:4756
22-31	D13S170	20	0	0	Head&Neck	CR 54:4756
31	DI384	1	1		Breast	GCC 2:19)
Unknown	D13S4	26	3	0.12	Breast	GE 5:554
Unknown	D13S4	5	2	0.4	Breaat	PNAS 84:2372
Unknown 31	D13S4	10	0	0	Cervix	CR 49:3598
111000011011011010101010100000000000000	D1354		0		Colon	JNCI 84:1100
Unknown Unknown	D13S4	1	0	0	Colon	CCG 48:167
Unknown	D1354	19	12	0,63	Colon	IJC 53:362
Unknown	D13S4	12	4	0.33	Esophageal	CR 54:2996
31	D1354		0	0	Liver	JJCR 81:108
31	D1354	19	10	0.53	Lung	PN 84:9252
Unknown	D13S4	16	3	0,19	Lung	JJCR 80:924
31	D1354	5 8	5 <b>0</b>	1	Lung	CR 49:5130
	51334	- 6	· · ·	O.	Nebrobiasio	n CR 49:1095
Unknown	D13S4	15	11	0.73	Sarcoma	CR 52:2419
31	D1354	14	3	0.21	Stomach	RG 92:244
Unknown	D13S4	11	2	0.18	Stomach	G 2:180
Unknown	D13S4	17	2	0.12	Stomach	CR 48:2988
Unknown	D13S4	12	0	0	Uterus	CR 51:5632
22-34	D1355	26	6	0.23	Breast	GE 5:554
21.3-32	D13S5	4	1	0.25	Breast	PNAS 84:2372
21.3-32	D1385	15	q	0.27	Colon	LJC 53:382
21.3-32	D13S5	4	0	0	Colon	CCG 48:167
22-34	D1385	1	0	0	Colon	JNCI 84:1100
22-34	D13S5	22	9	0.41	Ovary	IJC 54:546
21.3-32	D13S5	10	4	0.4	Stomach	G 2:180
22-34	D13S5	7	1	0.14	Stomach	G 2:180
21:3-32	D1355	5	0	0	Oterus	CR 51:5632
22-34	D13S5	3	0	0	Uterus	CR 51:5632

14	RB	9	1	0.11	Liver	CR 51:4367
14	RB	67	13	0.19	Lung	0 8:1913
14	RB	16	0	0	Lung	0 9:39
14	RB	7	2	0.29	Lung	CR 54:5643
14	RB	20	12	0.6	Lung	0 8:1913
14	RB_	8	0	0	Lung	5 241:353
14	RB	3	2	0.67	Lung	CL 71:67
14	RB	8	6	0.75	Lung	0.9:39
14	RB	76	28	0.37	Lung	0 8:1913
14	RB	27	14	0.52	Lung	CB 54-5643
14	RB	59	22	0.37	Lung	0 10:937
14	RE	5	4	0.8	Lung	CR 54:5643
14	RB	2	1	0.5	Lung	CL 71:67
14	RB	7	l	0.14	Cvary	GO 55-245
14	RB	13	8	0.62	Ovary	IJC 58:663
14	RE	31	23	0.74	Cvary	910 570 6510
14	RB	39	13	0.33	Ovary	IJC 54:546
14,1	RB	17	2	0.12	Ovary	CR 54:610
14	RB	33	9	0.27	Ovary	IJC 52:575
14	RE	48	25	0.52	Cvary	CR 54:610
14	RB	9	0	0	Pediatric	CR 50:3279
14	RB	13	3.3.3	0.23	Prostate	PNAS 87:8751
14.1	RB	9	6	0.67	Prostate	BJU 73:390
14	RE	19		0.37	Prostate	BUPATH 27:28
14	RB	40	24	0.6	Prostate	BJC 70:1252
14	RB_	7	5	0.71	Sarcoma	CR 52:2419
14	RB	13	4	0.31	Stomach	LI 74:835
1.4	RB	31	12	0.39		0.9;2245
Unknown	D13S155	6	3	0.5	Kidney	GCC 12:76
Unknown	D138155	32	3	0.09	Melanoma	CR 56:589
14.1 21.1-21.2	D13S118	21	7	0.33	Prostate	HUPATH 27:28
······································	D13S26	27	17	0.63	Conry	GO 47:137
21-qter	D13S12	7	1	0.14	Liver	PNAS 86:8852
21-qter 22	013512		q		Sarcoma	CGC 53:45
	D13S2	94	26	0.28	Bladder	0 6:2305
Unknown	D1352	6	1	0.17	Breast	GCC 2:191
22 22	D13S2	7	3	0.43	Breast	PNAS 84:2372
,	01352	2	0	Ö	Cervix	CR 49:3598
22 <b>22</b>	D13S2	4	1	0.25	Cervix	CR 54:4481
***************************************	01382	10	3	0.3	Colon	100 59:382
22 22	D13S2	8	0	0	Colon	CCG 48:167
	D1352	4	1	0.25	Colon	CCG 48:167
22	D13S2	17	7	0.41	Esophageal	CR 54:2996
22	DI352	6	2	0.33	Kidney	CR 51:1071
22	D13S2	6	4	0.67	Liver	CCG 48:72
22	D1352	13	3	0.23	Liver	CR (51:89

14.10						
14-12	D13S1	11	1	0.09	Testis	LI 73:606
13	D13S1	3	0	0	Testis	CCG 52:72
13	D13S1	3	1	0.33	Testis	CCG 52:72
13	D1381	1	0	0	Testis	CCG 52972
13	D13S1	8	1	0.12	Uterus	CR 51:5632
12	D138267	32	16	0.5	Breast	GCC 13:291
14	D13S218	140	33	0.24	Leukemia	CR 55:2044
12	D138263	65	20	0.44	Breast	GCC 13:291
14	D13S22	17	5	0.29	Breast	GE 5:554
14	D13922	11	3	0.27	Breast	GE 5.554
14	D13S22	12	0	0	Pediatric	CR 50:3279
14	D13822	- 6	7	0.86	Sarcoma	CGC 53:48%
14	D13S153	42	15	0.36	Breast	GCC 13:291
14.3	D138133	18	10	0.56	Head&Neck	CR 54:0152
14.3	D13S133	6	3	0.5	Kidnev	GCC 12:76
14,3	D13S133	140	5	0.04	Leokemla	CR 55:2044
14.3	D13S133	11	0	0	Ovarv	CR 54:605
14.3	D138133	1.8	11	0.61	Ovarv	CR 54:605
14.3	D13S133	21	7	0.33	Prostate	HUPATH 27:28
14.3-21.1	D13531	29	9	0.31	Ovary	IJC 52:575
14.3-21	D13S31	26	6	0.23	Ovary	IJC 54:546
14	RB	94	28	0.3	Bladder	0 6:2305
14	RB	9	4	0.44	Brain	O 6:445
10	RB	20	3	0.15	Breast	AJP 140:215
14	RB	38	6	0.16	Breast	CR 53:4356
14.1	RB	14	5	0.36	Breast	JNCI 84:506
14	RB	10	4	0.4	Breast	GCC 4:113
14	RB	32	12	0.38	Breast	GE 5:554
14	RB	37	12	0.32	Breast	GCC 4:113
14	P.B	90	23	0.26	Breast	CP 52:2991
14	RB	14	0	0	Cervix	BJC 67:71
14	RB	27	9	0.33	Colon	CR 52:741
14	RB	25	12	0.48	Colon	
14.1	PB	156	18	0.12	***************************************	IJC 53:382
14	RB	39	10	0.26	Colon Colon	BJC 64:475
10	RB	8	0	0.26	***************************************	GAST 104:163
14	RB	6	0	0	Colon	JNCI 84:1100
14	RB	42	Ö	Q.	Colon	JNCI 84:1100
14	RB	29	17		Endocrine	C 74:693
14	RB	40	19	0.59	Esophageal	C 73:2472
14	RB	8		0.47	Esophageal_	CR 51:5766
14	RB	16	1 5	0.12	Esophageal	CR 51:2113
14	RB	***************************************	ACCORDING TO SERVICE STATE	0.31	Esophagenl	CR 54:2996_
14	RE	50 <b>2</b> 9	24	0.48	Esophageal	CR 52:6525
14	RB		17	0.59	Bead&Neck	C 73:2472
14	RB	11 11	4	0.36	Liver	CR 54:281
·····	7.5	11	3	0.27	Liver	CR 51:4367

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
12	D13536	19	S S	0.26	Ovarv	IJC 54:546
12	D13S36	19	3	0.16	***************************************	***************************************
12.3	D13536	9	3	0.16	Ovary	IJC 52:575
V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*************	***************************************	***************************************	Ovazy	130 54:546
12.3	D13S11	6	5	0.83	Sarcoma	CGC 53:45
Unknown	D13S115	13	- 6	0.46	Head&Neck	CR 54:1152
Unknown	D13S115	16	2	0.12	Ovary	BJC 69:429
Unknown	D135221	28	7	0.25	Bladder	Onknown
Unknown	D13S221	39	17	0.44	Breast	GCC 13:291
12.3	D1396	4	2	0.5	Breast	PNAS 84:2372
12.3	D13S6	13	5 '	0.38	Colon	IJC 53:382
12.3	D1356	1	0	0	Colon	CCG 48:167
12.3	D13S6	8	2	0.25	Ovary	IJC 54:546
12.3	D1396	-9	0	0	Stomach	G 2:180%
12.3	D13S6	7	2	0.29	Uterus	CR 51:5632
Daknown	0135289	35	17	0:49	Breast	GCC 13:291
12	FLT1	7	0	0	Brain	CR 54:1397
12	FLT1	9	3	0.33	Brain	CR 56:1397
12	FLT1	18	6	0.33	Ovary	CR 54:605
12	FLT1	5	1	0.33	Ovary	BJC 69:429
12.3	D13S33	21	4	0.19	Ovary	IJC 54:546
12.3	D13533	23	6	~~~ <del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del>	<del>annon maria de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición dela composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición dela composición de la composición de la composición de la composición de la composición de la composición de la composición d</del>	IJC 52:575
12	D13S260	***************************************	•••••••	0.26	Ovary	***************************************
13		43	13	0.3	Breast	GCC 13:291
	D1351	94	26	0.28	Bladder	0.6:2305
14-12	D13S1	34	7	0.21	Breast	GE 5:554
13	D1351	В	3	0.38	Breast	PNAS 84:2372
13	D13S1	13	4	0.31	Breast	GCC 2:191
13	D1351	7		0.29	Cervix	CR 49:3598
14-12	D13S1	11	1	0.09	Colon	JNCI 84:1100
13	D13S1	15	7	0.47	Colon	IJC 53:382
12	D13S1	12	1	0.08	Colon	CCG 48:167
13	D13S1	14	4	0.29	Esophageal	CR 54:2996
13	D13S1	10	2	0.2	Kidney	CR 51:1071
13	D1351	25	5	0:2	Liver	JJCR 84:893
14-12	D13S1	15	5	0.33	Liver	CR 54:281
14-12	D1351	5	2	0.4	Liver	CCG 48:72
12	D1351	9	0	0	Liver	JJCR 81:108
14-12	D1351	9	6	0.67	Liver	CR 51:4367
13	D13S1	19	8	0.42	Lung	PN 84:9252
14-77	D1351	8	7	0.98	Lung	CR 49:5130
12	D13S1	1	. 0	0.00	Lung	PN 84:9252
13	D1351	5	G	0		m CR 49:1095
7.3	DIJAL	J	U	U	Neuroblasto	MICOR 45:10330
13	D13S1	15	2	0.13	Ovary	IJC 54:546
13	D13S1	12	9	0.75	Sarcoma	CR 52:2419
13	D13S1	6	0	0	Stomach	HG 89:445
14-12	D1351	10	1	0.1	Stomach	CR 48:2988
# # T# £	91391	10		U.L		- A - A - B - A - B - B - B - B - B - B

24.3-gter	D12S11	30	Q	O	Testie	
Unknown	D12S12	15	7	0.47	Testis	GCC 13:249
Unknown	D12914	19	3	0.16	Testis	0 9:2245
Unknown	D12S15	14	1	0.07		0.9:2245
Unknown	D12S17	26	-	0.27	Testis	0 9:2245
CEN-q14	D12S4	23	4	0.17	Testin	0.9:7245
Unknown	D12S6	17	-	0.41	Testis	0 9:2245
14-24.1	D12S7	6	1	0.17	Testis	0.9:2245
14-24.1	D1297	15	0	0.17	Testis	LI 73:606
Unknown	D12S7	1	0	0	Testis	GCC 13:249
Unknown	D1257	3	0	0	Testis	CCG 52:72
Unknown	D12S7	1	0	0	Testis	CCG 52:72
Unknown	D1257	19	В		Testis	CCG 52:72
14-qter	D12S8	8	1	0.42	Testia	0.9:7245
Unknown	D12917	23	4	0.12	Testis	0 9:2245
Unknown	D12S60	17	1	0.17	Uterus	GCC 9:119
Onknown	IGE1	11	1	0.06	Uterus	CR 54:4294
SUM		1096	147	0.09	Oterus	CR 54:4294
			14/	0.13		

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	IGF1	11	1	0.09	Uterus	CR 54:4294
Unknown	Unknown	14	1	0.07	Brain	CR 50:5784
Unknown	D12S17	19	1.	0.05	Breast	CR+50:7184
14-24.1	D12S7	35	2	0.06	Breast	GCC 2:191
Unknown	D12917	9	1	0.12	Cervix	GCC 9:119
Unknown	D12S7	31	1	0.03	Cervix	CR 54:4481
Unknown	D12578	31	6	0.19	Cervix	CR 56:197
Unknown	D12S83	22	1	0.05	Cervix	CR 56:197
Unknown	D12917	19	1	0.05	Colon	CCG 48:167
Unknown	D12S17	17	4	0.24	Colon	IJC 53:382
14-24.1	D1297	22	3	0.14	Colon	N 331:273
14-ater	D12S8	24	4	0.17	Colon	N 331:273
24.3-gter	D12911	13	Ø	0	Endocrine	N 328:524
Unknown	D12S392	16	1	0.06	Endocrine	CR 56:599
Unknown	D12S43	23	0	G	Endocrine	GCC 13:9
Unknown	D12S14	18	3	0.17	Esophageal	CR 54:2996
Unknown	D12917	9	1	0.11	Esophageal	CR 51:2113
Unknown	D12S17	34	3	0.09	Esophageal	GCC 10:177
Unknown	D12S17	23	2	0.09	Esophageal	CR 54:2996
Unknown	D12S60	24	6	0.25	Head&Neck	CR 54:1152
Unknown	D12986	24	4	0.17	Head&Neck	CR 54:4756
Unknown	D12S86	18	0	0	Head&Neck	CR 54:4756
Unknown	D12517	24	Ō	C C	Kidnev	CR 51:820
Unknown	D12S86	6	3	0.5	Kidnev	GCC 12:76
Unknown	D12597-D12986	19	0	0.3	Kidney	PNAS 92:2854
Unknown	D12S97-D12S86	6	0	0	Kidney	PNAS 92:2854
24.3-qter	Unknown	12	1	0.08	Liver	BJC 64:1083
24.3-qter	Unknown	7	0	0	Liver	BJC 67:1007
Unknown	D12917	14	1	0,07	Liver	CR 51:89
Unknown	D12517	15	1	0.07	Liver	JJCR 81:108
Unknown	D12517	29	4	0.14	Lung	CR 5232478
	***************************************	***************************************		0	Melanoma	CR 56:589
Unknown	D12S86	23 25	0 <b>6</b>	0,24	Ovary	CR 53:2393
Unknown	D12917		***************************************	0.33		CR 51:5118
Unknown	D12S17	15 15	5 <b>2</b>	0.33	Ovary	BJC 69:429
Unknown	D12560			***************************************	Ovary	***************************************
22-24.2	PAH	26	2	0.08	Ovary	IJC 54:546
24.3-gter	*******************************	13	0	***************************************	Pancreas	BJC 65:809
24.3-gter	Unknown	6	3	0.5	Pancreas	CR 54:2761
Unknown	D12S17	6	<u> </u>	0	Pancreas	CR 54:2761
14-24.1	D12S7	17	1	0.06	Prostate	G 11:530
Unknown	D12917	26	5	0.19	Sarcoma	CR 52:2419
CEN-q14	D12S4	5	1	0.2	Sarcoma	CR 52:2419
2.A-ter	Unknown	11	6	0.55	Stomach	BJC:59:750
24.3-gter	D12S11	32	5	0.16	Stomach	HG 92:244
Unknown	D12917	41	11	0.27	Stomach	CR 51:2926
12-13.2	COL2A1	11	0	0	Testis	GCC 13:249

WO 98/41648

PCT/US98/05419

100 / 214

Chromosome 12 - p Arm

SUM

959

141

0.15

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
12.1	KRAS2	3	0	0	Oterus	CR 51:5632
Unknown	D12S16	16	1	0.06	Brain	CR 50:5784
Unknown	D12916	12	2	0.17	Breast	CR 50:7184
Unknown	D12S16	23	2	0.09 ·	Breast	CR 53:4356
Onknown	01292	16	2	0.12	Cervix	CR 54:4481
Unknown	D12S87	24	2	0.08	Cervix	CR 56:197
Unknown	D12989	25	2	0.08	Cervix	CR 56:197
12.1	KRAS2	7	0	0	Colon	N 331:273
Onknown	D12577	18	2	0.11	Endocrine	CR 56:599
Unknown	D12S16	26	1	0.04	Esophageal	CR 54:2996
Unknown	D12916	7	2	0.29	Esophageal	GCC 10:177
Unknown	D12S62	28	5	0.18	Head&Neck	CR 54:1152
Onknown	D12S98	19	1	0.05	Head&Neck	CR 54:4756
Unknown	D12S98	17	0	0	Head&Neck	CR 54:4756
Unknown	D12S16	10	G	0	Kidnev	CR 51:820
Unknown	D12S94-D12S77	- 5	1	0.2	Kidney	PNAS 92:2854
Chknown	D12S94-D12577	20	0	Ø	Kidney	PNAS 92:2854
Unknown	D12S98	6	3	0.5	Kidney	GCC 12:76
Unknown	Unknown	43	8	0.19	Leukemia	B 86:3869
Unknown	Unknown	35	8	0.23	Leukemia	B 86:3869
Onknown	D12558	44	9	0.2	Lenkemia	B 86:3869
Unknown	D12S64	54	7	0.13	Leukemia	B 86:3869
Unknown	D12969	46	4	0.09	Leukemia	B 86:3869
Unknown	D12S89	82	21	0.26	Leukemia	B 87:3368
Onknown	D12589	50	11	0.22	Leukemia	B 86:3869
Unknown	D12S91	48	9	0.19	Leukemia	B 86:3869
Unknown	D12994-D12977	51	- 6	0.12	Leukemia	в 86:3869
Unknown	D125:89-91	50	13	0.26	Leukemia	CR 55:5377
Onknown	D12516	12	1	0.08	Liver	CR 51:89
12.1	KRAS2	4	0	0	Liver	CCG 48:72
Unknown	D12916	25	5	0.2	Lung	CR 52:2478
12.1	KRAS2	3	1	0.33	Lung	PN 84:9252
Onknown	D12598	19	0	O	Melanoma	CR 56:589
12.1	KRAS2	2	0	0	Neuroblasto	m CR 49:1095
		************	************		a	***************************************
13.3-12.3	A2M	10	1	0.1	Ovary	IJC 54:546
Unknown	D12S16	8	3	0.38	Ovary	CR 51:5118
12-PTER	FBVWF	16	1	0206	Ovary	BJC 69:429
12.1	KRAS2	7	0	0	Ovary	CR 50:2724
Onknown	PRB1	23	2	0:09	Cvary	CR 53:2393
Unknown	D12S16	9	1	0.11	Prostate	G 11:530
12.1	KRA52	4	1	0.25	Stomach	CR-48:2988
12.1	KRAS2	7	0	0	Testis	GCC 13:249
Onknown	PRB1-PRB4	11	2	0.18	Testis	L1 73:606
Unknown	D12S61	14	1	0.07	Uterus	CR 54:4294
12.1	KRA52	3	0	0	Uterus	CR 51:5632

Unknown	22.3-23	D119968	17	Ī	0.06		
13	Unknown	Unknown	16	*************************************			
Unknown   D115485   16   9   0.56   Cervix   NNC1 84:506   13   Unknown   7   0   0   0   Endocrine   N 328:524   Unknown   D115129   7   1   0.14   Endocrine   CR 51:1154   Unknown   D1151393   5   4   0.8   Endocrine   CR 56:599   Unknown   D115460   7   3   0.43   Endocrine   GCC 12:73   Unknown   D115476   2   1   0.5   Endocrine   GCC 12:73   Unknown   D115476   7   5   0.71   Endocrine   GCC 12:73   Unknown   D115476   4   0   0   Endocrine   GCC 12:73   Unknown   D1155476   4   0   0   Endocrine   GCC 12:73   Unknown   D115546   4   0   0   Endocrine   GCC 12:73   Unknown   D115546   4   0   0   Endocrine   GCC 12:73   Unknown   D115787   6   4   0.67   Endocrine   CR 56:599   Unknown   D115873   23   6   0.26   Endocrine   CR 56:599   Unknown   D115874   13   3   0.23   Endocrine   CR 56:599   Unknown   D115874   13   3   0.23   Endocrine   CR 56:599   Unknown   D115874   13   3   0.23   Endocrine   CR 56:599   Unknown   D115874   13   3   0.23   Endocrine   CR 56:599   Unknown   D115874   2   0   0   Uiver   BJC 64:1083   Unknown   D115874   2   0   0   Uiver   BJC 64:1083   Unknown   D115874   2   0   0   Uiver   BJC 64:1083   Unknown   D115874   2   0   0   Uiver   BJC 64:1083   Unknown   D115874   2   0   0   Uiver   BJC 64:1083   Unknown   D115874   2   0   0   Uiver   BJC 64:1083   Unknown   D115874   2   0   0   Uiver   BJC 64:1083   Unknown   D115874   2   0   0   Uiver   BJC 64:1083   Unknown   D115875   67   Ull   0.19   Uung   GCC 13:40   Unknown   D115876   67   21   0.31   Uung   GCC 13:40   Unknown   D115876   67   21   0.31   Uung   GCC 13:40   Unknown   D115876   67   21   0.31   Uung   GCC 13:40   Unknown   D115876   67   21   0.31   Uung   GCC 13:40   Unknown   D115876   67   21   0.31   Uung   GCC 13:40   Unknown   D115876   67   21   0.33   Uung   GCC 13:40   Unknown   D115876   67   21   0.33   Uung   GCC 13:40   Unknown   D115876   67   Unknown   D115876   67   Unknown   D115876   67   Unknown   D115876   67   Unknown   D115876   67   Unknown   D115876   67   Unknown   D115876	13	Unknown	***************************************	\$\$77577\$\$700000000000000000000000000000	CCTCC2CT49997770C9C9C9CCC9CCCGCCGCCGCCGCGCCCCCCCCCC	****	***************************************
13	Unknown	~~~~~~~~~~~	•				XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Unknown   D115129   7	13	Unknown	***************************************	***************************************	250 PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PERSON NAVO PROPERTY AND ADDRESS OF THE PE	~~~~	
Unknown   D1151383   5	Unknown		7				***************************************
Unknown   D115460   7   3   0.43   Endocrine   GCC 12:73	Unknown	D1191383	5	·····	***************************************	\$18975.05 T. CO. CO. CO. CO. CO. CO. CO. CO. CO. CO	***************************************
Unknown         D115476         2         1         0.75         Endocrane Endocrane         GCC 12:73           Unknown         D115527         7         5         0.71         Endocrane         CR 56:599           Unknown         D115546         4         0         0         Endocrane         CR 56:599           Unknown         D115614         22         5         0.23         Endocrane         CR 56:599           Unknown         D115873         23         6         0.26         Endocrane         CR 56:599           Unknown         D115874         13         3         0.23         Endocrane         CR 56:599           Unknown         D115874         13         3         0.23         Endocrane         CR 56:599           Unknown         D115874         13         3         0.23         Endocrane         CR 56:599           Unknown         D115874         13         0         0         1.1ver         BJC 67:1007           13         Unknown         10         0         0         1.1ver         BJC 64:1083           13-23         D1151240         53         12         0.23         Lung         GCC 13:40           13.1-13.4	***************************************	D11S460	***************************************				
Unknown D118527 7 5 0.71 Endocrine CR 56:599 Unknown D118614 22 5 0.23 Endocrine CR 56:599 Unknown D118787 6 1 0.65 Endocrine CR 56:599 Unknown D118873 23 6 0.26 Endocrine CR 56:599 Unknown D118873 23 6 0.26 Endocrine CR 56:599 Unknown D118874 13 5 0.23 Endocrine CR 56:599 Unknown D118490 19 9 0.47 Head6Neck CR 54:1152 13 Unknown D118490 19 9 0.47 Head6Neck CR 54:1152 13 Unknown D118490 10 0 0 Liver BUC 64:1083 13-23 D11844 2 0 0 Liver JJ 81:108 14-22.3 D1181240 53 12 0.23 Lung GCC 13:40 13.1-13.4 D1181255 67 21 0.31 Lung GCC 13:40 14-22.3 D1181260 20 8 0.4 Lung GCC 13:40 14-22.3 D1181261 39 11 0.28 Lung GCC 13:40 13.4-14 D1181261 39 11 0.28 Lung GCC 13:40 23.2-23.3 D1181263 65 11 0.17 Lung GCC 13:40 23.2-23.3 D1181268 30 10 0.33 Lung GCC 13:40 24.22.3 D1181268 30 10 0.33 Lung GCC 13:40 14-22.3 D1181268 30 10 0.33 Lung GCC 13:40 14-22.3 D1181268 30 10 0.33 Lung GCC 13:40 14-22.3 D1181268 30 10 0.33 Lung GCC 13:40 14-22.3 D1181268 30 10 0.33 Lung GCC 13:40 14-22.3 D1181268 30 10 0.33 Lung GCC 13:40 14-22.3 D1181268 30 10 0.33 Lung GCC 13:40 14-22.3 D1181268 30 10 0.33 Lung GCC 13:40 14-22.3 D1181268 30 10 0.33 Lung GCC 13:40 14-22.3 D1181268 30 10 0.33 Lung GCC 13:40 14-22.3 D1181268 30 10 0.33 Lung GCC 13:40 14-22.3 D1181268 30 10 0.33 Lung GCC 13:40 14-22.3 D1181268 30 10 0.33 Lung GCC 13:40 14-22.3 D1181268 30 10 0.33 Lung GCC 13:40 14-22.3 D1181268 30 10 0.35 Lung GCC 13:40 14-22.3 D1181268 30 10 0.35 Lung GCC 13:40 14-22.3 D1181268 30 10 0.35 Lung GCC 13:40 14-22.3 D1181268 30 10 0.35 Lung GCC 13:40 14-22.3 D1181268 30 10 0.35 Lung GCC 13:40 14-22.3 D1181268 30 10 0.35 Lung GCC 13:40 14-22.3 D1181268 30 10 0.35 Lung GCC 13:40 14-22.3 D1181268 30 10 0.56 Lung GCC 13:40 14-22.3 D1181268 30 10 0.56 Lung GCC 13:40 14-22.3 D1181268 30 10 0.56 Lung GCC 13:40 14-22.3 D1181268 30 10 0.57 Lung GCC 13:40 14-22.3 D1181268 30 10 0.58 Lung GCC 13:40 14-22.3 D1181268 30 10 0.58 Lung GCC 13:40 15-25 Lung GCC 13:40 15-25 Lung GCC 13:40 15-25 Lung GCC 13:40 15-25 Lung GCC 13:40 15-25 Lung GCC 13:40 15-25 Lung GCC 13:40 15-2	Unknown	D119476	2	·····	99900090000000000000000000000000000000	75.9552.052.9559595959595959595959	***************************************
Unknown         D13546         4         0         0         Endocrine GCC 12:738           Unknown         D118614         22         5         0.23         Endocrine CR 56:599           Onknown         D118787         6         4         0.67         Productine CR 56:599           Unknown         D118873         23         6         0.26         Endocrine CR 56:599           Unknown         D118874         13         3         0.23         Endocrine CR 56:599           Unknown         D1181490         19         9         0.47         HeadkNeck CR 54:1152           13         Unknown         10         0         0         Liver         BJC 67:1007           13         Unknown         10         0         0         Liver         BJC 67:1007           13         Unknown         10         0         0         Liver         BJC 67:1007           13-23         D1181240         53         12         0.23         Lung         GCC 13:40           14-22.3         D1181240         53         12         0.23         Lung         GCC 13:40           21-23.2         D1181255         67         21         0.31         Lung         GCC 13	Unknown	D11S527		***************************************			***************************************
Unknown   Dils614   22   5   D.23   Endocrine   CR 56:599	Unknown	D11S546	4	***************************************	***************************************	7.000 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20	***************************************
Onknown         D119787         6         4         0.67         Endocrine         CR 56.599           Unknown         D115873         23         6         0.26         Endocrine         CR 56.599           Unknown         D115894         13         3         0.23         Endocrine         CR 56.593           Unknown         D115490         19         9         0.47         Head&Neck         CR 54:1152           13         Unknown         10         0         0         Liver         BJC 64:1083           13-23         D11928         2         0         0         Liver         BJC 64:1083           13-23         D119124         2         0         0         Liver         BJC 64:1083           14-22.3         D1151240         53         12         0.23         Lung         GCC 13:40           13.1-13.4         D1151255         67         21         0.31         Lung         GCC 13:40           14-22.3         D1151260         20         8         0.4         Lung         GCC 13:40           14-22.3         D1151261         39         11         0.28         Lung         GCC 13:40           23.2-23.3         D1151263 <td>Unknown</td> <td>D11S614</td> <td>22</td> <td></td> <td>***************************************</td> <td>***************************************</td> <td></td>	Unknown	D11S614	22		***************************************	***************************************	
Unknown         D11S873         23         6         0.26         Endocrine         CR 56:599           Unknown         D11SB73         13         3         0.22         Endocrine         CR 56:599           Unknown         D11SB73         13         0.47         HeadsNeck         CR 54:1152           13         Unknown         10         0         0         Liver         BJC 67:1007           13         Unknown         10         0         0         Liver         BJC 64:1083           13-23         D11924         2         0         0         Liver         BJC 64:1083           13-23         D11924         2         0         0         Liver         BJC 64:1083           14-22.3         D11S1250         53         12         0.23         Lung         GCC 13:40           21-23.2         D11S1256         67         21         0.31         Lung         GCC 13:40           13-4-14         D11S1261         39         11         0.28         Lung         GCC 13:40           23.2-23.3         D11S1265         50         14         0.28         Lung         GCC 13:40           24-22.3         D11S1265         50	Unkacım	D119787	6	·····	9070778697979999990000000000000000000000	***************************************	77777777770077000000000000000000000000
Unknown         D11SB74         13         3         0.23         Encocrine         CR 56:599           Unknown         D11S490         19         9         0.47         Head&Neck         CR 56:599           13         Unknown         1         0         0         Liver         BUC 67:1000           13         Unknown         10         0         0         Liver         BUC 64:1083           13-23         D11928         2         0         0         Liver         JJ 81:08           14-22.3         D11S1240         53         12         0.23         Lung         GCC 13:40           13.1-13.4         D181256         67         21         0.31         Lung         GCC 13:40           21-23.2         D11S1266         20         6         0.4         Lung         GCC 13:40           13.4-14         D1S1261         39         11         0.28         Lung         GCC 13:40           23.2-23.3         D1S1263         65         11         0.17         Lung         GCC 13:40           14-22.3         D1S1268         30         10         0.32         Lung         GCC 13:40           13-23         D1S24         2	Unknown	D11S873	23	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Unknown         D11S490         19         9         0.47         Head&Neck         CR 54:1152           13         Unknown         1         0         0         Liver         BUC 62:1000           13         Unknown         10         0         0         Liver         BUC 62:1000           13-23         D11S124         2         0         0         Liver         JJ 81:108           14-22.3         D11S1240         53         12         0.23         Lung         GCC 13:40           21-23.2         D11S1253         67         13         0.39         Lung         GCC 13:40           21-23.2         D11S1266         67         21         0.31         Lung         GCC 13:40           14-22.3         D11S1261         39         11         0.28         Lung         GCC 13:40           13.4-14         D11S1263         65         11         0.17         Lung         GCC 13:40           23.2-23.3         D11S1265         50         14         0.28         Lung         GCC 13:40           13-23         D11S24         2         0         0         Lung         PN 84:9252           24         D11S488         17	Unknown	D115874	13		F0000000000000000000000000000000000000	************************	Manage and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
13	Unknown	D11S490	19	~~~~			
13	13	Utaknown	7			227 7 7 8 7 8 7 8 7 7 9 9 9 9 9 9 9 9 9 9	
13-23   D11924   2   0   0   Liver   J3 81:168     14-22.3   D1151240   53   12   0.23   Lung   GCC 13:40     13.1-13.4   D1161253   67   13   0.19   Lung   GCC 13:40     21-23.2   D1151256   67   21   0.31   Lung   GCC 13:40     14-22.3   D1151260   20   5   0.4   Lung   GCC 13:40     13.4-14   D1151261   39   11   0.28   Lung   GCC 13:40     23.2-23.3   D1151265   50   14   0.17   Lung   GCC 13:40     23.2-23.3   D1151265   50   14   0.28   Lung   GCC 13:40     23.2-23.3   D1151265   50   14   0.28   Lung   GCC 13:40     14-22.3   D1151268   30   10   0.33   Lung   GCC 13:40     14-23   D11524   2   0   0   Lung   PN 84:9252     24   D11948   17   5   0.29   Overy   GO 55:245     Unknown   D11585   15   5   0.33   Overy   CR 53:2393     13   FOLK1   14   1   0.07   Overy   BUC 67:268     13   Unknown   D1151818   38   11   0.29   Stomach   CR 56:268     13-23   D11524   2   0   0   Stomach   CR 56:268     13-23   D11524   2   0   0   Stomach   CR 56:268     13-23   D11524   2   0   0   O   Uterus   CR 54:4294     Unknown   D115420   19   0   O   Uterus   CR 54:4294     Unknown   D115420   19   0   O   Uterus   CR 54:4294     Unknown   D115420   19   0   O   Uterus   CR 54:4294     Unknown   D115420   19   0   O   Uterus   CR 54:4294     Unknown   D115420   19   0   O   Uterus   CR 54:4294     Unknown   D115420   19   0   O   Uterus   CR 54:4294     Unknown   D115420   19   0   O   Uterus   CR 54:4294     Unknown   D115420   19   0   O   Uterus   CR 54:4294     Unknown   D115420   19   O   O   Uterus   CR 54:4294     Unknown   D115420   19   O   O   Uterus   CR 54:4294     Unknown   D115420   19   O   O   Uterus   CR 54:4294     Unknown   D115420   19   O   O   Uterus   CR 54:4294     Unknown   D115420   19   O   O   Uterus   CR 54:4294     Unknown   D11540   19   O   O   Uterus   CR 54:4294     Unknown   D11540   19   O   O   Uterus   CR 54:4294     Unknown   D11540   19   O   O   Uterus   CR 54:4294     Unknown   D11540   19   O   O   Uterus   CR 54:4294     Unknown   D11540   19   O   O   Uterus   CR 54:4	13	Unknown	10	0		***************************************	***************************************
14-22.3   D11S1240   53   12   D.23   Lung   GCC 13:40	13-23	D11924	2	0	***************************************		
13 1-13 4   D1151253   67	14-22.3	D11S1240	53	12	***************************************		*******************************
21-23.2         D11S1256         67         21         0.31         Lung         GCC 13:40           14-22.3         D11S1260         20         8         0.4         Lung         GCC 13:40           13.4-14         D11S1261         39         11         0.28         Lung         GCC 13:40           23.2-23.3         D1S1263         65         11         0.17         Lung         GCC 13:40           23.2-23.3         D11S1265         50         14         0.28         Lung         GCC 13:40           23.2-23.3         D11S1268         30         10         0.31         Lung         GCC 13:40           14-22.3         D11S1268         30         10         0.33         Lung         GCC 13:40           13-23         D11S24         2         0         0         Lung         PN 84:9252           Unknown         D11S85         15         5         0.33         Ovary         GC 53:245           Unknown         D11S85         15         5         0.33         Ovary         CR 53:2393           13         Unknown         8         3         0.38         Pancreas         BJC 65:809           Unknown         D11S1818	13.1-13.4	D1161253	67	13	99790770070000000777700F0F0000000000000	7092929292989876555556669999	20702727-007-07-07-07-07-07-07-07-07-07-07-07-0
14-22.3         D1151260         20         8         0.4         Lung         GCC 13:40           13.4-14         D1151261         39         11         0.28         Lung         GCC 13:40           23.2-23.3         D1151263         65         11         0.17         Lung         GCC 13:40           23.2-23.3         D1151265         50         14         0.28         Lung         GCC 13:40           14-22.3         D1151268         30         10         0.33         Lung         GCC 13:40           13-23         D11524         2         0         0         Lung         PN 84:9252           24         D119488         17         5         0.29         Overy         GO 55:245           Unknown         D11585         15         5         0.33         Overy         CR 53:2393           13         FOLKI         14         1         0.07         Overy         BJC 67:268           13         Unknown         8         3         0.38         Pancreas         BJC 65:809           Unknown         D1151818         38         11         0.29         Stomach         CR 48:2988           13-23         D11524         2 <td>21-23.2</td> <td>D11S1256</td> <td>67</td> <td>21</td> <td>***************************************</td> <td></td> <td>***************************************</td>	21-23.2	D11S1256	67	21	***************************************		***************************************
13.4-14       D11S1261       39       11       0.28       Lung       GCC 13:40         23.2-23.3       D11S1263       65       11       0.17       Eung       GCC 13:40         23.2-23.3       D11S1265       50       14       0.28       Lung       GCC 13:40         14-22.3       D11S1268       30       10       0.33       Lung       GCC 13:40         13-23       D11S24       2       0       0       Lung       PN 84:9252         24       D11S488       17       5       0.29       Overy       GO 55:245         Unknown       D11S85       15       5       0.33       Overy       CR 53:2393         13       FOLN1       14       1       0.07       Overy       BJC 67:268         13       Unknown       8       3       0.38       Pancreas       BJC 65:809         Unknown       D11S1818       38       11       0.29       Stomach       CR 56:268         13-23       D11S24       2       0       0       Stomach       CR 48:2988         13-23       D11S240       1       0       0       Urbrus       CR 54:4294	***************************************	D11S1260	20	8	***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************
23.2-23.3 D11S1263 65 11 0.17 Eung GCC 13:40 23.2-23.3 D11S1265 50 14 0.28 Lung GCC 13:40 14-22.3 D11S1268 30 10 0.33 Lung GCC 13:40 13-23 D11S24 2 0 0 Lung PN 84:9252 24 D11S488 17 5 0.29 Overy GO 55:245 Unknown D11S85 15 5 0.33 Overy CR 53:2393 13 FOLK1 14 1 0.07 Overy BJC 67:268 13 Unknown B 3 0.38 Pancreas BJC 65:809 Unknown D11S1818 38 11 0.29 Stomach CR 56:268 13-23 D11S24 2 0 0 0 Stomach CR 48:2988 13-23 D11S24 1 0 0 Urbrus GR 51:5632 Unknown D11S420 19 0 0 Uterus CR 54:4294	13.4-14	D11S1261	39	11		***************************************	***************************************
23.2-23.3 D11S1265 50 14 0.28 Lung GCC 13:40 14-22.3 D11S126B 30 10 0.33 Lung GCC 13:40 13-23 D11S24 2 0 0 0 Lung PN 84:9252 24 D119488 17 5 0.29 Overy GO 55:245 Unknown D11S85 15 5 0.33 Overy CR 53:2393 13 FOLRI 14 1 0.07 Overy BJC 67:26B 13 Unknown 8 3 0.38 Pancreas BJC 65:809 Unknown D11S181B 3B 11 0.29 Stomach CR 56:26B 13-23 D11S24 2 0 0 Stomach CR 48:298B 13-23 D11S24 1 0 0 Uterus CR 54:4294	23.2-23.3	D1151263	65	11		20200222222222222222222222222222222222	***************************************
14-22.3         D1151268         30         10         6.33         Lung         GCC 13:40           13-23         D11524         2         0         0         Lung         PN 84:9252           24         D119468         17         5         0.29         Overy         GO 55:245           Unknown         D11585         15         5         0.33         Overy         CR 53:2393           13         FOLRI         14         1         0.07         Overy         BJC 67:268           13         Unknown         8         3         0.38         Pancreas         BJC 65:809           Unknown         D1151818         38         11         0.29         Stomach         CR 56:268           13-23         D11524         2         0         0         Stomach         CR 48:2988           13-23         D11524         1         0         0         Urerus         CR 51:5632           Unknown         D115420         19         0         0         Uterus         CR 54:4294	200000000000000000000000000000000000000	D11S1265	50	14		***************************************	***************************************
13-23 D11524 2 0 0 D Lung PN 84:9252  24 D119488 17 5 0.29 Overy GO 55:245  Unknown D11585 15 5 0.33 Overy CR 53:2393  13 FOLRI 14 1 0.07 Overy BJC 67:268  13 Unknown 8 3 0.38 Pancreas BJC 65:809  Unknown D1151818 38 II G.29 Stomach CR 56:268  13-23 D11524 2 0 0 Stomach CR 48:2988  13-23 D11524 I 0 Unknown D115420 19 0 Uterus CR 54:4294	14-22.3	D1151268	30	10	***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************
74         D119488         17         5         0.29         Ovary         G0 55:245           Unknown         D11885         15         5         0.33         Ovary         CR 53:2393           13         FOLR1         14         1         0.07         Ovary         BJC 67:268           13         Unknown         8         3         0.38         Pancreas         BJC 65:809           Unknown         D1151818         38         11         0.29         Stomach         CR 56:268           13-23         D11524         2         0         0         Stomach         CR 48:2988           13-23         D11524         1         0         0         Urerus         CR 51:5632           Unknown         D115420         19         0         0         Uterus         CR 54:4294	13-23	D11S24	2	0	***************************************	***************************************	
Unknown         D11S85         15         5         0.33         Ovary         CR 53:2393           13         FOLR1         14         1         0.07         Ovary         BUC 67:268           13         Unknown         8         3         0.38         Pancreas         BJC 65:809           Unknown         D11S1818         38         11         0.29         Stomach         CR 56:268           13-23         D11S24         2         0         0         Stomach         CR 48:2988           13-23         D11S24         1         0         0         Urerus         CR 51:5632           Unknown         D11S420         19         0         0         Uterus         CR 54:4294	24	D119488	17	5	0.29	***************************************	***************************************
13 Unknown 8 3 0.38 Pancreas BJC 67:268 Unknown D11S1818 38 11 0.29 Stomach CR 56:268 13-23 D11S24 2 0 0 Stomach CR 48:2988 13-23 D11S24 1 0 Urerus CR 51:5632 Unknown D11S420 19 0 0 Uterus CR 54:4294	200020000000000000000000000000000000000	D11S85	15	***************************************	***************************************		
13         Unknown         8         3         0.38         Pancreas         BJC 65:809           Unknown         D11S1818         38         11         0.29         Stomach         CR 56:268           13-23         D11S24         2         0         0         Stomach         CR 48:2988           13-23         D11S24         1         0         0         Uterus         CR 51:5632           Unknown         D11S420         19         0         0         Uterus         CR 54:4294	13	FOLKI	14	1	0.07	70770770707000000000000000000000000000	
Unknown         D1151818         38         11         0.29         Stomach         CR 56:268           13-23         D11524         2         0         0         Stomach         CR 48:2988           13-23         D11524         1         0         0         Urerus         CR 51:5632           Unknown         D115420         19         0         0         Uterus         CR 54:4294	***************************************	Unknown	8		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************	***************************************
13-23         D11S24         2         0         0         Stomach         CR 48:2988           13-23         D11924         1         0         0         Urerus         CR 51:5632           Unknown         D11S420         19         0         0         Uterus         CR 54:4294	***************************************	D1151818	38	11	777777777777777777777777777777777777777	***************************************	*************************************
13-23         D11524         1         0         0         Uterus         CR 51:5632           Unknown         D11S420         19         0         0         Uterus         CR 54:4294	X2222222222222222222222222222222222222	***************************************	2	0	***************************************	***************************************	***************************************
Unknown D11S420 19 0 0 Uterus CR 54:4294	***************************************	D11524	1	0	***************************************	***************************************	<del>757777</del> 77756809778076000000000000000000000000000000
	197000000000000000000000000000000000000	D11S420	19	0	0		***************************************
	SUM		2978	764	0:26		5111251

Chromosome 11 - q Arm

22-23	DRD2	68	23	0.34	Colon	BJC 70:395
Unknown	D11S1341	8	3	0.38	Stomach	CR 56:268
22.3-23.3	D115144	6	1	0.17	Brain	CR 49:6572
22.3-23.3	D11S144	19	13	0.68	Cervix	PNAS 91:6953
22.3-23.3	D119144	15	3	0.2	Esophageal	CR 54:2996
22.3-23.3	D11S144	17	5	0.29	Ovarv	BJC 67:268
22.3-23.3	D115144	4	2	0.5	Pancreas	CR 54:2761
22.3-23.3	D11S144	21	4	0.19	Sarcoma	CR 52:2419
22.3-23.3	D119144	4	0	0	Stomach	HG 89:445
23.3	D11S29	47	15	0.32	Breast	CR 54:6270
23.3	D11929	1	0	0	Breast	CR 53:3804
23.3	D11S29	25	25	1	Cervix	BJC 71:814
23.3	D11529	2	1	0.5	Colon	GCC 6:45
23.3	D11S29	12	7	0.58	Melanoma	GCC 7:169
23.3	D11929	15	7	0.47	Ovarv	BJC 67:268
23.3	D11S29	10	6	0.6	Stomach	CR 56:268
23	CD3	7	4	0.57	Colon	GCC 6:45
23.3	CD3	1	0	0	Lung	PN 91:5513
23.3	CD3	9	0	0	Lung	PN 91:5513
23.3	CD3	3	0	0	Lung	PN 91:5513
23.3	CD3	16	7	0.44	Cvary	BJC 67:268
23	CD3	4	2	0.5	Stomach	HG 89:445
23.3	CD3	36	-8	0.22	Stomach	CR 56:268
23	D11S528	42	16	0.38	Breast	CR 54:6270
23	D119528	44	7	0.16	Stomach	CR 56:268
22.3-23	THY1	33	14	0.42	Breast	CR 54:4591
22.3-23	THYL	6	1	0.17	Stomach	HG 89:445
23.3-qter	D11S147	12	8	0.67	Ovary	BJC 67:268
22-23.3	APOC3	35	12	0.34	Breast	CR 54:4586
22-23.3	APOC3	30	19	0.63	Cervix	PNAS 91:6953
22-23.3	APOCE	22	0	0	Pediatric	HG 97:163
Unknown	D11S836	17	6	0.35	Ovary	Unknown
Unknown	D119934	30	5	0.17	Cervix	CR 56:197
23	ETS1	5	3	0.6	Colon	GCC 6:45
23	ET91	1	O	0	Lung	PN 91:5513
23	ETS1	4	0	0	Lung	PN 91:5513
23	ET\$1	5	Û	0	Lung	PN 91:5513
23	ETS1	1	0	0	Testis	CCG 52:72
Unknown	D118910	22	3	0.14	Head&Neck_	CR 54:4756
Unknown	D11S910	31	0	0	Head&Neck	CR 54:4756
Unknown	D119910	6	3	0.5	Kidney	GCC, 12:76
Unknown	D11S910	30	5	0.17	Melanoma	CR 56:589
22.3-23	D115968	33	14	0.42	Breast	CR 54:4586
22.3-23	D11S968	25	14	0.56	Cervix	PNAS 91:6953
22.3-23	D119968	5	1	0.2	Kidney	PNAS 92:2854
22.3-23	D11S968	17	1	0.06	Kidney	PNAS 92:2854

13	INT2	9	Đ.	O		
13	INT2	13	6		Esophageal	
13	INT2	9	3	0.46	Head&Neck	CR 54:1152
13	INT2	9		0.33	Kidney	CR 51:820
13	INT2	4	3	0.33	Kidney	CR 51:5817
13		***************************************		0.25	Kidney	CR 51:1071
2022/2000000000000000000000000000000000	INT2	7	1	0.14	Liver	CR 51:4367
13	INT2	11	3	0.27	Lung	PNAS 86:5099
13	INT2	3	1	0.33	Lung	PNAS 86:5099
13	INT2	11	2	0.18	Lung	PNAS 86:5099
13	INT2	24	3	0.12	Lung	CR 52:2478
13	INT2	6	0	Ð	Ovary	CR 50:2724
13	INT2	21	0	0	Ovarv	IJC 54:546
13	INT2	19	1	0.05	Cvery	CR 51:5118
13	INT2	8	2	0.25	Stomach	HG 89:445
13	INT2	18	0		Stomach	CR 51:2926
13	INT2	11	1	0.09	Stomach	
13	INT2	27	4	0.15	Testis	CR 48:2988
13	INT2	4	2	0.5		0.9:7245
13	INT2	3	1	***************************************	Testis	0 9:2245
13	INT2	4		0.33	Testis	CCG:52:72
13	INT2	li	1	0.25	Testis	CCG 52:72
13	INT2		2	0.18	Oterus	GCC 9:119
13.2-22	***************************************	5	1	0.2	Uterus	CR 51:5632
	D115141	4	0	0	Stomach	HG 89:445
13	D11S534	23	6	0.26	Cervix	BJC 71:814
13	D119534	13	A	0.31	Ovary	Unknown
Unknown	D11S533	38	12	0.32	Cervix	PNAS 91:6953
Unknown	D118533	21	5	0.24	Endocrine	GCC 13:9
Unknown	D11S533	16	4	0.25	Ovary	GO 55:245
Unknown	D119911	23	3	0.13	Cervix	CR 56:197
23.3	D11S901	39	13	0.33	Breast	CR 54:4586
23.3	D115901	33	11	0.33	Cervix	PNAS 91:6953
23.3	D11S901	21	6	0.29	Stomach	CR 56:268
14-21	TYR	2	0	0	Lung	PN 91:5513
14-21	TYR	7	0	0	Lung	PN 91:5513
14-21	TYR	7	1	0.14	Lung	PN 91:5513
14-21	TYR	16	3	0.19		***************************************
14-21	TYR	3	2	0.19	Ovary	BJC 67:268
22-23	D11S923	36	2	0.06	Stomach	RG 89:445
22	D11935	28	7	***************************************	Esophageal	IJC 69:1
22	D11S35	34	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.25	Breast	CR 54:6270
22	D11535	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12	0.35	Breast	CR 54:4586
22		21	12	0.57	Cervix	PNAS 91:6953
22	D11S35	34	10	0.29	Stomach	CR 56:268
******************************	D11935	33	4	0.12	Uterus	CR 54:4294
22	STMY1	12	6	0.5	Colon	GCC 6:45
Z2	STMY1	11	- 6	0.55	Ovary	BJC 67:268
22	STMY1	7	2	0.29	Stomach	HG 89:445

WO 98/41648 PCT/US98/05419

Chromosome 11 - q Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
12:13.2	PYGM	12	5	0.42	Breast	CR 54:4586
12-13.3	PYGM-INT2	36	24	0.67	Breast	CR 55:467
12-13.2	PYGM	30	5	0.17	Cervix	PNAS 91:6953
12-13.2	PYGM	3	2	0.67	Endocrine	GCC 12:73
12-13.2	PYGM	16	6	0.38	Endocrine	CR 56:599
12-13.2	PYGM	4	2	0.5	Endocrine	CR 51:1154
12-13.2	PYGM	42		0.12	Esophageal	GCC 10:177
12-13.2	PYGM	15	2	0.13	Kidney	CR 51:5817
12-13.2	PAGN	13	ŋ	ū	Prostate	G 11:530
12-13.2	PYGM	7	2	0.29	Stomach	HG 89:445
12	CD26	12	3	0.25	Cvary	BJC 67:268
Unknown	PGA	11	0	0	Colon	CCG 48:167
Unknown	PGA	6	<u>1</u>	0.17	Endocrine	CR 51/1154
Unknown	PGA	15	2	0.13	Testis	GCC 7:96
Onknown 13	PGA	15		0.13	Testis	LI 73:606
13	FGF3	40	3	0.1	Breast	CR 54:6270
13	FGF3	16	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.19	Ovary	BJC 67:268
13.1	D11S913 D11S97	36 <b>25</b>	0 7	0	Esophageal	IJC 69:1
13.1	D11S97	23	4	0.28	Cervix	PNAS 91:6953
12-13.2	D115146	23 6	2	0.17	Testis	GCC 13:249
12-13.2	D115146	15	1	0.33 0.07	Endocrine	CR 51:1154
12-13.2	D113146	23	3	0.07	Kidney Liver	CR 51:5817 CR 51:89
12-13.2	D11S146	10	1	0.1	Ovary	BJC 67:268
13	WT-1	14	7	0.5	Bladder	HG 91:455
13	WT-1	13	4	0.31	Breast	CR 54:6270
13	WT-1	20	6	0.3	Cervix	PNAS 91:6953
13	WT-1	52	5	0.1	Lung	GCC 10:183
13	WY-1	21	4	0.19	Lung	CR 54:5643
13	WT-1	2	1	0.5	Lung	CR 54:5643
13	WF-1	4	0	0	Lung	PN:91:5513
13	WT-1	1	0	0	Luna	PN 91:5513
13	WT-1	- 6	0	ū	Lung	PN 91:5513
13	WT-1	4	1	0.25	Lung	CR 54:5643
13	INT2	22	8	0.36	Bladder	CR 55:5213
13	INT2	3	0	0	Breast	CR 53:3804
13	INT2	. 12	0	0	Breast	CR 50:7184
13	INT2	34	5	0.15	Breast	CR 53:4356
12	INT2	9	1	0.11	Cervix	GCC 9:119
13	INT2	22	1	0.05	Cervix	CR 54:4481
13	INT2	3	1	0.33	Cervix	CR 54:4481
13	INT2	15	0	0	Cervix	CR 49:3598
13	INT2	22	8	0.36	Cervix	PNAS 91:6953
13	INT2	22	7	0.32	Colon	GCC 6:45
13	INT2	5	2	0.4	Endocrine	GCC 12:73
13	INT2	11	3	0.27	Endocrine	CR 51:1154

WO 98/41648

94 / 214

PCT/US98/05419

Chromosome 11 - p Arm

SUM 4917 1151 0.23

15.5	JW1-51	16	4	0.25	Kidney	CR 51:1071
pter-pl3	<u>P11817</u>	- 6	0	0	Liver	CCG 48:72
13	D11S18	11	1	0.09	Liver	CCG 48:72
13	D11921	5	0		Liver	CCG 48:72
15	нввс	8	1	0.12	Liver	CCG 48:72
15.3-15.4	D1151243	57	14	0.25	Lung	GCC 13:40
14	D11S1246	57	17	0.3	Lung	GCC 13:40
15,2-15.3	D11S1250	50	1.7	0.34	Lung	GCC 13:40
15.4-15.5	D11S1251	66	21	0.32	Lung	GCC 13:40
11,2-12	D1151252	54	13	0.24	Lung	GCC 13:40
15.4-15.5	D11S1254	39	12	0.31	Lung	GCC 13:40
Unknown	HRAS-INS-HEG	3	1	1	Lung	CR 50:2303
Unknown	HRAS-INS-HBG	27	4	0.15	Lung	CR 50:2303
Unknown	BRAS-INS-HBG	1	0	0	Lung	CR 50:2303
Unknown	HRAS-INS-HBG	13	4	0.31	Lung	CR 50:2303
Unknown	HRAS-INS-HEG	3	Ō	G	Long	CR 50:2303
15.5	ST5	4	0	0	Lung	PN 91:5513
15.5	ST5	1	0	O	Lung	PN 91:5513
15.5	ST5	9	0	0	Lung	PN 91:5513
Unknown	D11S:922-904	32	4	0.12	Melanoma	CR 56:589
Unknown	Unknown	11	2 .	0.18	Ovarv	IJC 52:575
15	Onknown	5	ı	0.2	Ovary	0 5:219
15	Unknown	9	4	0.44	Ovary	0 5:219
Unknown	CALCA-HRAS1-INS-PTH	17	9	0.53	Overv	GO 55:198
pter-p13	D11S17	17	6	0.35	Ovary	BRJ 66:103
Unknown	D115:554-875-871	16	- 6	0.33	Ovarv	BJC 72:133
Unknown	RAS-CAT-D11S16	34	12	0.35	Ovary	CR 53:2393
15.5	Unknown	3	0	0	Pancreas	CR 54:2761
Unknown	D11S1323	7	2	0.29	Pediatric	HG 97:163
Gnknown	D11S1338	14	3	0.21	Pediatric	HG 97:163
Unknown	D11S937	10	1	0.1	Pediatric	HG 97:163
13	WT1	16	8	0.5	Pediatric	HG 97:163
Unknown	Unknown	11	0	0	Prostate	CSurveys 1
Unknown	Unknown	10	0	Ö	Prostate	PNAS 87:87
Unknown	CALCA-HRAS1-HBG2	15	0	0	Prostate	G 11:530
Unknown	D1182351	40	16	0.4	Stomech	CR 56:268
Unknown	D115324	8	3	0.38	Testis	GCC 9:153
Onknown	0115324	7	3	0.43	Testis	GCC 9:153
Unknown	D11S417	11	3	0.27	Testis	GCC 9:153
Unknown	D115417	5	3	0.6	Testis	GCC 9:153
Unknown	FSHB	4	0	0	Testis	GCC 9:153
Onknown	FSHE	В	3	0.38	Testis	GCC 9:153
Unknown	FSHB	7	2	0.29	Testis	GCC 7:96
13	WT1	10	5	0.5	Testis	GCC 7:96
Unknown	D11S740	8	1	0.12	Uterus	GCC 9:119
13	WTl	24	0	0	Uterus	CR 54:4294

13	CAT	2	1	٥٠	_	
13	CAT	7	D I	0.5	Lung	PN 91:5513
13	CAT	10	0	0	Lung	FN 9165513
13	CAT	24	6	0:25	Ovary	IJC 54:546
13	CAT	14	2	0.14	Ovary	BRJ 66;103
13	CAT	4	1	0.14	Pediatric Stomach	CR 50:3279
13	CAT	12	5	0.42	Testis	HG 89:445
13	CAT	1	Ö	0.42	Testis	JU 153:168
13	CAT	3	1	0.33	Testis	CCG 52:72
13	CAT	1	0	0.55	Testis	CCG 52:72 CCG 52:72
13	D11S325	3	0	0	Lung	PN 91:5513
13	D115325	5	0	Ö	Long	PN 91:5513
13	D11S325	6	2	0.33	Testis	GCC 9:153
13	D119325	6	1	0.17	Testis	GCC 9:153
13	D11S325	16	2	0.12	Testis	GCC 7:96
13	D4S414	15	5	0.33	Bladder	BG 91: 455
13	D4S414	2	1	0.5	Lung	CR 54:5643
13	D45414	4	1	0.25	Lung	CR 54:5643
13	D4S414	21	4	0.19	Lung	CR 54:5643
13	B-FSH	16	6	0.38	Bladder	BG 91:455
13	B-FSH	4	0	0	Cervix	BJC 67:71
13	B-FSH	4.6	9	0.2	Lung	GCC 10:183
13	B-FSH	24	7	0.29	Ovary	BRJ 66:103
13	B-FSB	14	5	0.36	Pediatric	
13	B-FSH	7	1	0.14	Stomach	HG 89:445
13	0118905	25	0	. 0	Esophageal	IJC 69:1
13	D11S905	18	4	0.22	Pediatric	HG 97:163
11.2-12	D113149	3	0	0	Endocrine	CR 51:1154
11.2-12	D11S149	7	1	0.14	Lung	PN 91:5513
11.2-12	D115149	1	O	0	Lung	PN 91:5513
11.2-12 12	D11S149	5	0	0	Lung	PN 91:5513
***************************************	D11S288	10	2	0.2	Cervix	PNAS 91:69
12	D11S1313	48	12	0.25	Lung	GCC 13:40
Unknown	D1151313	48	12	0.25	Lung	GCC 13:40
Unknown	D11S:907-929	28	15	0.54	Bladder	CR 55:5213
15	Unknown	14	3.	0.21	Brain	CR 50,5784
Unknown	Unknown	35	2	0.06	Breast	JNCI 84:50
Unknown	D11SS1318	18	6	0.33	Breast	HMG 4:1889
Unknown	D11SS1323	9	5	0.56	Breast	HMG 4:1889
Unknown	D115S1338	9	5	0.56	Breast	HMG 4:1889
unknown 11	D11SS1760	7	2	0.29	Breast	HMG 4:1889
Unknown	D11S554	22	5	0.23	Cervix	BUC 71:614
11	D11S740	5	0	0	Cervix	GCC 9:119
15.5	D115554	22	6	0.27	Endocrine	CR 56;599
Onknown	D11S576	25	0	0	Kidney	BJC 69:230
JIM LOWIT	D115:922-904	6	3	0.5	Kldney	GCC 12:76

15.4	CALCA	6	1	0.17	Lung	PN 91:5513
15.4	CALICA	6	2	0.33	Lung	EN 86:5099
15.4	CALCA	2	0	0	Lung	PN 86:5099
15.4	CALCA	3	1	0.33	Long	PN 9138513
15.4	CALCA	10	3	0.3	Ovary	C 72:2423
15.4	CALCA	15	6	6.4	Ovary	BRJ 66:103
15.4	CALCA	7	0	0	Stomach	HG 89:445
15.4	CALCA	6	3	0.5	Testis	GCC 7:96
Unknown	D11S929	33	3	0.09	Cervix	CR 56:197
Onknown	0115929	17	4	0.24	Rediatric	HG 97:163
13	D11S323	3	1	0.33	Lung	PN 91:5513
13	D113323	3	1	0.33	Long	PN 91:5513
13	D11S907	16	3	0.19	Endocrine	CR 56:599
13	0119907	14	1	0.07	Head&Neck	CR 54:3152
13	D11S907	1	0	0	Kidney	GCC 12:76
13	011516	17	4	0.24	Cervix	PNAS 91169
13	D11S16	30	. 4	0.13	Colon	IJC 53:382
13	D11S16	5	0	C	Kidney	CMB 38:59
13	D11S16	4	0	0	Kidney	CMB 38:59
13	D11916	6	0	Ū.	Liver	GCC 1:312
13	D11S16	7	2	0.29	Lung	PN 91:5513
13	D11316	ì	ī	1	Lung	PN 91:5513
13	D11S16	10	7	0.7	Lung	PN 91:5513
13	011916	25	2	0.08	Overv	IJC 54:546
13	D11S16	23	6	0.26	Ovary	BRJ 66:103
13	D11S16	7	G G	0.57	Testia	JU 153:168
13	D11S16	12	3	0.25	Testis	GCC 9:153
13	011916	12	5	0.42	Testis	GCC 7:96
13	D11S16	5	2	0.4	Testis	GCC 9:153
13	D11S16	13	1	0.08	Uterus	CR 51:5632
13	D11S151	4	0	0	Lung	PN 91:5513
13	D113151	1	o o	Ö	Long	PN 91:5513
13	D11S151	3	0	0	Lung	PN 91:5513
13	D118151	11	3	0.27	Pediatric	CR 50:3279
13	D11S151	1	0	0	Testis	GCC 9:153
13	D115151	4	Ö	Ö	Testis	GCC 9:153
13	CAT	18	13	0.72	Bladder	HG 91:455
13	CAT	10	0	0.72	Kidney	CMB 38:59
13	CAT	16	2	0.12	Kidney	CR 51:1071
13	CAT	6	1	0.12	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CMB 38:59
13	CAT	7	0	0	Kidney Liver	CCG 48:72
13	CAT	6	0	0	***************************************	GCC 1:312
13	CAT	8 8	3	0.38	Liver	PN 86:5099
13	CAT	ō	0	0.38 C	Lung	PN 86:5099
13	CAT	<i>4</i> 0	************		Lung	C
13	CAT	4 U	6	0.15	Lung	GCC 10:183
***************************************	1,411		<u> </u>	0,14	Lung	PN 8625099

16 5	2110020	_				
15.5 15.5	D11S932	5 9	0	0	Lung	PN 91:5513
15.5	D11S932		11	0.11	Lung	PN 91:5513
Unknown	D11S932 D11S569	1 <b>27</b>	0	0	Lung	PN 91:5513
Unknown	D11S569		13	0.48	Stomach	CR 56:268
pter-15.4	PTH	24	3	0.12	Uterus	CR 54:4294
pter-15.4	PTH	11	<u>l</u>	0.09	Bladder	HG 91:455
pter-15.4	PTH	15 <b>7</b>	1	0.07	Kidney	CR 51:1071
pter-15.4	PTH	*************	0	0	Liver	GCC 1:312
pter-15.4	PTH	8	1	0.12	Liver	CCG 48:72
pter-15.4	PTH	5		0,14	Lung	PN 91:5513
pter=15.4	PTH	29	1 9	0.2	Lung	PN 91:5513
pter-15.4	PTH	7		0.31	Overy	C 72:2423
pter-15.4	PTH	3	0 <b>2</b>	0	Testis	GCC 7:96
pter-15.4	PTH		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	0,67	Testis	CCG_52:72
pter=15.4	PTH	1 1	0	0	Testis	CCG 52:72
pter-15.4	PTH			0	Testis	CCG 52:72
13-15.1	D11S419	15	6	0.4	Testis	JU 153:168
Unknown	D115419 D115902	14	6	0.43	Ovary	BJC 69:429
14-qter	D115902 D115899	28 <b>23</b>	8	0.29	Cervix	PNAS 91:69
14-qter	D115899		4	0.17	Bead&Neck	CR 54:1152
15.5	***************************************	6	0	0	Kidney	GCC 12:76
15.5	D115861	21	5	0.24	Endocrine	CR 56:599
15.5	D11S861	1 9	0	0	Lung	PN 91:5513
15.5	D115861		.0	0	Lung	PN 91:5513
Unknown	D115861	7 27	0	0	Lung	PN 91:5513
15.5	D115860	AND 1 COMMAND TO SERVICE STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY	9	0.33	Breast	CR 53:4486
15.5	D11S860	36	10	0.28	Breast	Unknown
15.5	D115860	36	10	0.28	Breast	CR 54:6230
15.5	D11S860	7	0	0	Lung	PN 91:5513
15.5	D115860		0	0	Lung	PN 91:5513
15.5	D11S860	2	0	0	Lung	PN 91:5513
15.5	D118860	5	0	0	Long	PN 91:5513
15.5	D11S860	5 <b>2</b>	0	0	Lung	PN 91:5513
15.5	0118860	******************	0		Lung	PN 91:5513
15.5	D11S860	16	6	0.38	Pediatric	HG 97:163
15.4	D115860	44	16	0.36	Stomach	CR 56:268
15.4	CALCA	6	0	0	Bladder	HG 91:455
15.4	CALCA	17	1	0.06	Breast	GCC 2:191
***************************************	CALCA	22	0	0	Breast	GE 5:554
15.4	CALCA	10	3	0.3	Cervix	BJC 67:71
15.4	CALCA	5	0	0	Kidney	CMB 38:59
15.4	CALCA	4	0	9	Kidney	CME 38:59
15.4	CALCA	7	0	0	Liver	CCG 48:72
15.4	CALCA	10	1	0.1	Liver	CR 51:4367
15.4	CALCA	3	0	0	Liver	GCC 1:312
15.4	CALCA	6	0	0	Lung	PN: 86:5099

15.5	TH	10	0	0	Kidney	CMB 38:59
15.5	.78	P	0	1	Kidney	CME 38-58
15.5	TH	8	1	0.12	Lung	PN 91:5513
15.5	78	10	0	G.	Long	PN 915-5513
15.5	TH	2	0	0	Lung	PN 91:5513
15,5	TH	20		0.35	0.00	(C) 1.12 (7.41)
15.5	TH	23	9	0.39	Pediatric	HG 97:163
15.5	DRD4			0.14	Long	PK 915550
15.5	DRD4	3	0	0	Lung	PN 91:5513
Unknown	01.US454	13	6	0.45	Liver	610 001000
Unknown	D11S454	18	4	0.22	Lung	CR 52:2478
Unknown	D105454	11	0	0	Overy	61 51 55 10
15.5	D11S988	1	0	0	Lung	PN 91:5513
15.5	0115988	7	0	0	Lunc	
15.5	D11S988	17	6	0.35	Pediatric	HG 97:163
15.5	D165999	5.7	12	0.71	Stomach	0.0000000
15.5	D11S12	32	5	0.16	Breast	GE 5:554
15.5	D11_S17	3		0.33	Breast	600 2/101
15.5	D11S12	0	0	0	Cervix	CR 49:3598
15.5	011512	12	5	0.42	Cervix	67. 54.9481
15.5	D11S12	33	6	0.18	Esophageal	CR 54:2996
15.5	DIASIC	15		0.2	Kidney	CR 5121071
15.5	D11S12	11	8	0.73	Lung	PN 91:5513
15.5	011512			1	Long	PN 9135813
15.5	D11S12	4	2	0.5	Lung	PN 91:5513
15.5	DIIS12	4		0.5	Ovary	ERU 66,103
15.5	D11S12	3	1	0.33	Stomach	HG 89:445
15.5	D11812	ı			Testis	57.5
15.5	D11S12	20	6	0.3	Testis	0 9:2245
15.5	D11512		0		Test is	CCC 52.72
15.5	D11S12	8	3	0.38	Testis	JU 153:168
15.5	D11512	5	1	0.2	Oterus	CR 5 L 5632
15.5-15.4	RRM1	42	7	0.17	Lung	GCC 10:183
15.5	HBB	27	9	0.33	Breast	CR 53:4485
15	HBG	6	0	0	Liver	PNAS 86:88
15.5	HBB	ž	- 0	G G	Long	PN 91:5513
15.5	HBB	4	0	0	Lung	PN 91:5513
15.5	HBB	- 6	0	O.	Lung	PN 91:5513
15.5	HBG2	2	0	0	Lung	PN 86:5099
15.5	BBG2	8	4	0.5	Long	PN 86:5099
15.5	HBG2	5	4	0.8	Lung	PN 86:5099
15.5	888	21	7	0.33	Pediatric	HG 97:153
15	GLOBIN	30	4	0.13	Breast	GE 5:554
15	GLOBIN	16	4	0.25	Ovary	BRJ 66:103
Unknown	GLOBIN	14	5	0.36	Ovary	BRJ 66:103
Dnknown	GLOBIN	13	- 2	0.15	Ovary	BRJ 66:103

15.5	INS	3	0	0	Cervix	GD 40 DE
15.5	INS	3			Ceraix	CR 49:3598
15.5	INS	15	3	0.2	Colon	CR 49:3596
15.5	INS	15		0.2	Colon	IJC 53:382
15.5	INS	8	2	0.25	Endocrine	
15.5	INS	22		0.23	Kidnev	CR 51:1154
15.5	INS	7	0	0	Kidney	68.53.69.20
15.5	INS	21		0.14	Kidney	CMB 38:59
15.5	INS	7	0	0	Kidney	CR0510000
15.5	INS	22		0.23	Kidney	CMB 38:59
15.5	INS	6	0	0	Liver	GB 51 020
15.5	INS	6	1	0.17	Liver	GCC 1:312
15.5	INS	9	0	0	Liver	CR 51 (16)
15,5	INS	31	3	0.27	Liver	JJCR 81:10
15.5	INS	10	2	0.2	Liver	CR 51 09 CCG 48:72
15.5	INS	10	3	0.2	Long	CCG 48:72 PN 86-5899
15.5	INS	5	1	0.2	Lung	PN 86:5099
15.5	INS	14	7	0.5	Lung	PN 86:5099
15.5	INS	33	12	0.36	Lung	
15.5	INS	- 8	1	0.12	Lung	GCC 10:183 PN 91:5313
15.5	INS	2	0	0	Lung	PN 91:5513
15.5	INS		1	0.12	Lung	PN 91:5513
15.5	INS	12	3	0.25	Lung	PN 84:9252
15.5	INS	6	0			m CR 49:1095
15.5					4	
15.5	INS	5	0	0	Ovary	CR 50:2724
15.5	INS	13	7	0.54	Overy	GQ 55:245
15.5	INS	32	12	0.38	Ovary	C 72:2423
15.5	INS	27	7	0.26	Ovary	CR 51:5118
15.5	INS	20	7	0.35	Ovary	BRJ 66:103
15.5	INS	23	10	0.43	Pediatric	CR 50:3279
15.5	INS	9	0	0	Stomach	CR 48:2988
15.5	INS	5	0	0	Stomach	CR 52:3099
15.5	INS	15	4	0.27	Testis	GCC 7:96
15.5	INS	5		0.2	_Testis	CCG 52:72
15.5	INS	2	0	0	Testis	CCG 52:72
15.5	INS	5	2	0.4	Testia	CCG 52:72
15.5	INS INS	15	3	0.2	Testis	G 5:134
15.5		18		0.17	Testis	GCC 13:249
15.5	INS TH	3 <b>25</b>	0	0	Uterus	CR 51:5632
15.5				0.07	Braio.	CR 54:1397
15.5	TH TH	21	3	0.14	Brain	CR 54:1397
15.5		16	4	0.25	Breast	HMG 4:1889
15.5	TH TH	14	4	0.29	Breast	CR 54:6270
15.5	TH	41	11	0.27	Breast	CR 53:4486
15.5	TH	14	1	0.07	Cervix	BJC 67:71
		20	B	0.4	Cervix	PNAS 91:69

15.5	15.5	HRAS	11	2	0.18	Ovary	IJC 54:546
15.5 HRAS 10 5 0.5 Ovary CR 49:1220 15.5 BRAS 13 2 0.15 Ovary BJC 67:268 15.5 HRAS 19 9 0.47 Ovary BRJ 66:103 15.5 HRAS 5 2 0.4 Fancreas BJC 65:809 15.5 HRAS 20 7 0.35 Pediatric CR 50:3279 15.5 BRAS 15 5 0.33 Pediatric CR 50:3279 15.5 HRAS 9 0 0 0 Prostate GCC 11:119 15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419 15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419 15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419 15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419 15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419 15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419 15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419 15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419 15.5 HRAS 28 1 0.04 Stomach CR 51:2926 15.5 HRAS 28 1 0.04 Stomach CR 51:2926 15.5 HRAS 5 19 7 0.37 Stomach CR 51:2926 15.5 HRAS 6 0 0 0 Stomach HG 89:445 15.5 HRAS 5 2 0.4 Testis CCC 52:72 15.5 HRAS 5 2 0.4 Testis CCC 52:72 15.5 HRAS 13 5 0.38 Testis GC: 91:83 15.5 HRAS 13 5 0.38 Testis GC: 91:83 15.5 HRAS 15 0 0 Testis GCC 91:293 15.5 HRAS 15 0 0 Testis GCC 91:293 15.5 HRAS 15 0 0 Testis GCC 91:293 15.5 HRAS 15 0 0 Testis GCC 91:293 15.5 HRAS 15 0 0 Testis GCC 91:249 15.5 HRAS 15 0 0 Testis GCC 91:249 15.5 HRAS 15 0 0 Testis GCC 91:253 15.5 HRAS 15 0 0 Testis GC 13:249 15.5 HRAS 15 0 0 Testis GCC 91:253 15.5 HRAS 15 0 0 Testis GCC 91:253 15.5 HRAS 15 0 0 Testis GCC 91:253 15.5 HRAS 15 0 0 Testis GCC 91:253 15.5 HRAS 15 0 0 Testis GCC 91:253 15.5 HRAS 15 0 0 Testis GCC 91:253 15.5 HRAS 15 0 0 Testis GCC 91:253 15.5 HRAS 15 0 0 Testis GCC 91:253 15.5 HRAS 15 0 0 Testis GCC 91:253 15.5 HRAS 15 0 0 Testis GCC 91:253 15.5 HRAS 15 0 0 Testis GCC 91:253 15.5 HRAS 9 1 0.11 Uterus CR 51:5632 15.5 HRAS 9 1 0.11 Uterus CR 51:5632 15.5 HRAS 9 1 0.11 Uterus CR 51:5632 15.5 HRAS 9 1 0.11 Uterus CR 51:5632 15.5 HRAS 9 1 0.11 Uterus CR 51:5632 15.5 HRAS 9 1 0.11 Uterus CR 51:5632 15.5 HRAS 9 1 0.11 Uterus CR 51:5632 15.5 HRAS 9 1 0.11 Uterus CR 51:5632 15.5 HRAS 9 1 0.11 Uterus CR 51:5632 15.5 HRAS 9 1 0.11 Uterus CR 51:5632 15.5 HRAS 9 1 0.00 Testis GCC 91:2524 15.5 HRAS 9 1 0.00 Testis GCC 91:2525 15.5 HRAS 9 1 0 0.00 Testis GCC 91:2525 15.5 HRAS 9 1 0 0	15.5	HRAS	27	12	0.44	Ovary	C 72:2423
15.5 HRAS 19 9 0.47 Ovary BRJ 66:103 15.5 HRAS 20 7 0.35 Pediatric CR 50:3279 15.5 BRAS 15 9 0 7 0.35 Pediatric CR 50:3279 15.5 BRAS 15 9 0 0 Prostate GCC 11:119 15.5 HRAS 9 0 0 Prostate GCC 11:119 15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419 15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419 15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419 15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419 15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419 15.5 HRAS 28 1 0.04 Stomach CR 51:2926 15.5 HRAS 28 1 0.04 Stomach CR 51:2926 15.5 HRAS 6 0 0 Stomach HG 92:244 15.5 HRAS 6 0 0 Stomach HG 92:244 15.5 HRAS 5 2 0.4 Testis CCG 52:72 15.5 HRAS 15 7 0.47 Testis CCG 52:72 15.5 HRAS 15 0 0.37 Stomach HG 92:244 15.5 HRAS 15 0 0.4 Testis CCG 52:72 15.5 HRAS 17 3 0.47 Testis GCC 91:53 15.5 HRAS 17 3 0.38 Testis GC 91:53 15.5 HRAS 10 0 0 Testis CCG 52:72 15.5 HRAS 10 0 0 Testis CCG 52:72 15.5 HRAS 10 0 0 Testis GCC 91:53 15.5 HRAS 10 0 0 Testis GCC 91:53 15.5 HRAS 10 0 0 Testis GCC 91:53 15.5 HRAS 10 0 0 Testis GCC 91:53 15.5 HRAS 10 0 0 Testis GCC 91:249 15.5 HRAS 10 0 0 Testis GCC 91:249 15.5 HRAS 10 0 0 Testis GCC 91:249 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0.33 Testis CCG 52:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 0 Testis GCC 92:72 15.5 HRAS 10 0 0 0 Testi		HRAS			0.5	Ovary	
15.5 RRAS	15.5	BRAS	13	2	0.15		BJC 67:268
15.5	15.5	HRAS	19		0.47		BRJ 66:103
15.5 HRAS 20 7 0.35 Pediatric CR 50:3279  15.5 HRAS 9 0 0 0 Prostate GCC 11:119  15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419  15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419  15.5 HRAS 9 0 0 Stomach CR 48:2888  15.5 HRAS 28 1 0.04 Stomach CR 51:2926  15.5 HRAS 28 1 0.04 Stomach CR 51:2926  15.5 HRAS 19 7 0.31 Stomach HG 89:445  15.5 HRAS 6 0 0 Stomach HG 89:445  15.5 HRAS 5 2 0.4 Testis GCC 9:153  15.5 HRAS 5 2 0.4 Testis GCC 9:153  15.5 HRAS 13 5 0.38 Testis GCC 9:153  15.5 HRAS 13 5 0.38 Testis GCC 9:153  15.5 HRAS 13 5 0.38 Testis GCC 9:153  15.5 HRAS 13 5 0.38 Testis GCC 9:153  15.5 HRAS 15 0 0 Testis GCC 9:153  15.5 HRAS 15 0 0 Testis GCC 7:29  15.5 HRAS 1 0 0 Testis GCC 7:05  15.5 HRAS 1 0 0 Testis GCC 7:05  15.5 HRAS 1 0 0 Testis GCC 7:05  15.5 HRAS 1 0 0 Testis GCC 7:05  15.5 HRAS 1 0 0 Testis GCC 7:05  15.5 HRAS 1 0 0 Testis GCC 7:05  15.5 HRAS 1 0 0 Testis GCC 7:05  15.5 HRAS 1 0 0 Testis GCC 7:05  15.5 HRAS 1 0 0 Testis GCC 7:05  15.5 HRAS 1 0 0 Testis GCC 7:05  15.5 HRAS 1 0 0 Testis GCC 7:05  15.5 HRAS 1 0 0 Testis GCC 7:05  15.5 HRAS 1 0 0 Testis GCC 7:05  15.5 HRAS 9 1 0.11 Uterus CR 51:5632  15.5 HRAS 9 1 0.11 Uterus CR 51:5632  15.5 IGF2 1 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 Lung PN 91:5513  15.5 IGF2 9 6 0.67 Testis JU 153:168  15.5 HIP 14 2 0.14 Cervix 0 12:423	15.5	HRAS	5	7	0.4	************************************	
15.5	15.5	HRAS	20	7			
15.5 HRAS 9 0 0 Prostate GCC 11:119 15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419 15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419 15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419 15.5 HRAS 11 5 0.45 Sarcoma CR 52:2419 15.5 HRAS 9 0 0 0 Stomach CR 51:2926 15.5 HRAS 28 1 0.04 Stomach CR 51:2926 15.5 HRAS 9 7 0.37 Stomach HG 92:244 15.5 HRAS 6 0 0 Stomach HG 89:445 15.5 HRAS 6 0 0 Stomach HG 89:445 15.5 HRAS 5 2 0.4 Testis CCC 52:72 15.5 HRAS 12 3 0.25 Testis CCC 52:72 15.5 HRAS 12 3 0.25 Testis CCC 92:153 15.5 HRAS 13 5 0.38 Testis GC 92:153 15.5 HRAS 13 5 0.38 Testis GCC 13:249 15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 15 0 0 Testis CCC 52:72 15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 9 1 0.11 Uterus CR 51:5632 15.5 HRAS 9 1 0.11 Uterus CR 51:5632 15.5 TGF2 1 0 0 Testis GCC 13:243 15.5 TGF2 1 0 0 Lung PN 91:5513 15.5 TGF2 1 0 0 Lung PN 91:5513 15.5 TGF2 1 0 0 Lung PN 91:5513 15.5 TGF2 1 0 0 Lung PN 91:5513 15.5 TGF2 1 0 0 Lung PN 91:5513 15.5 TGF2 1 0 0 Lung PN 91:5513 15.5 TGF2 1 0 0 Lung PN 91:5513 15.5 TGF2 1 0 0 Lung PN 91:5513 15.5 TGF2 1 0 0 Lung PN 91:5513 15.5 TGF2 1 0 0 Lung PN 91:5513 15.5 TGF2 1 0 0 Lung PN 91:5513 15.5 TGF2 1 0 0 Lung PN 91:5513 15.5 TGF2 1 0 0 Lung PN 91:5513 15.5 TGF2 1 0 0 Lung PN 91:5513 15.5 TGF2 9 6 0.67 Testis JU 153:168 15.5 TGF2 9 6 0.67 Testis GCC 13:249 15.5 HIP9 14 2 0.14 Cervix 0 12:423	15.5	BRAS	15	5	0.33	Pediatric	
15.5	15.5	HRAS		0			The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
15.5 HRAS 9 0 0 0 Stomach CR 52:2419 15.5 HRAS 9 0 0 0 Stomach CR 46.2988 15.5 HRAS 28 1 0.04 Stomach CR 51:2926 15.5 HRAS 19 7 0.37 Stomach KG 52:244 15.5 HRAS 6 0 0 0 Stomach HG 89:445 15.5 HRAS 5 0 0 0 Stomach HG 89:445 15.5 HRAS 5 2 0.4 Testis CCG 52:72 15.5 HRAS 5 2 0.4 Testis CCG 52:72 15.5 HRAS 12 3 0.25 Testis CCG 52:72 15.5 HRAS 13 5 0.38 Testis GCC 9:153 15.5 HRAS 13 5 0.38 Testis GCC 9:153 15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 3 1 0.33 Testis CCG 52:72 15.5 HRAS 3 1 0.33 Testis CCG 52:72 15.5 HRAS 3 1 0.33 Testis CCG 52:72 15.5 HRAS 3 1 0.33 Testis CCG 52:72 15.5 HRAS 3 1 0.33 Testis CCG 52:72 15.5 HRAS 3 1 0.33 Testis CCG 52:72 15.5 HRAS 3 1 0.33 Testis CCG 52:72 15.5 HRAS 9 1 0.11 Uterus CR 51:5632 15.5 HRAS 9 1 0.11 Uterus CR 51:5632 15.5 HGF2 15 1 0.07 Breast GE 5:554 15.5 IGF2 1 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 9 6 0.67 Testis JU 153:168 15.5 IGF2 9 6 0.67 Testis JU 153:168 15.5 IGF2 9 6 0.67 Testis JU 153:168 15.5 IGF2 9 6 0.67 Testis JU 153:168	15.5	HRAS	31	5	0.45	27947C-200000CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
15.5	15.5	HRAS	11	5			***************************************
15.5 HRAS 28 1 0.04 Stomach CR 51:2926 15.9 HRAS 19 7 0.37 Stomach HG 92:244 15.5 HRAS 6 0 0 0 Stomach HG 92:244 15.5 HRAS 6 0 0 0 Stomach HG 92:244 15.5 HRAS 15 7 0.47 Testis GCC 93:15 15.5 HRAS 5 2 0.4 Testis GCC 93:15 15.5 HRAS 12 3 0.25 Testis GCC 93:15 15.5 HRAS 12 3 0.25 Testis GCC 93:15 15.5 HRAS 13 5 0.38 Testis GCC 93:15 15.5 HRAS 13 5 0.38 Testis GCC 93:15 15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 3 1 0.33 Testis CCG 52:72 15.5 HRAS 3 1 0.33 Testis CCG 52:72 15.5 HRAS 3 1 0.11 Uterus CR 51:5632 15.5 HRAS 9 1 0.11 Uterus CR 51:5632 15.5 HGP2 1 0 0.11 Uterus CR 51:5632 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 Testis JU 153:168 15.5 IGF2 1 0 Testis JU 153:168 15.5 IGF2 1 0 Testis JU 153:168 15.5 HIP9 14 2 0.14 Cervix 0 12:423	15.5	BRAS	9	0	O	***************************************	************
15.5	15.5	HRAS		(KECCOCECEONOMONICOMONOMONIONOM	0.04		
15.5		HRAS			************************************		
15.5	15.5	HRAS	6	0			
15.5 HRAS 5 2 0.4 Testis CCG 52:72  15.5 HRAS 12 3 0.25 Testis GCC 9:153  15.5 HRAS 13 5 0.38 Testis G 5:134  15.5 BRAS 17 3 0.10 Testis GC 13:249  15.5 HRAS 15 0 0 Testis GCC 13:249  15.5 HRAS 15 5 0.33 Testis GCC 7:65  15.5 HRAS 3 1 0.33 Testis GCC 7:65  15.5 HRAS 3 1 0.33 Testis CCG 52:72  15.5 HRAS 3 1 0.33 Testis CCG 52:72  15.5 HRAS 3 1 0.33 Testis CCG 52:72  15.5 HRAS 9 1 0.11 Uterus CR 51:5632  15.5 HRAS 9 1 0.11 Uterus CR 51:5632  15.5 IGF2 1 0 0.07 Breast GE 5:554  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 9 6 0.67 Testis JU 153:168  15.5 IGF2 9 6 0.67 Testis JU 153:168  15.5 MUC2 17 2 0.12 Testis GCC 13:249  15.5 H19 14 2 0.14 Cervix 0 12:423	15.5	BRAS				************	***************************************
15.5	15.5		*************	2	THE RESIDENCE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T		**********
15.5 HRAS 13 5 0.38 Testis G 5:134  13.5 BRAG 17 3 0.18 Testis GU 153:168  15.5 HRAS 15 0 0 Testis GCC 13:249  15.5 HRAS 15 5 0.33 Testis GCC 2:05  15.5 HRAS 3 1 0.33 Testis CCG 52:72  15.5 BRAS 3 1 0.33 Testis CCG 52:72  15.5 HRAS 9 1 0.11 Uterus CR 51:5632  15.5 HRAS 9 1 0.11 Uterus CR 51:5632  15.5 IGF2 7 2 0.29 Bladder HG 91:455  15.5 IGF2 15 1 0.07 Breast GE 5:554  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 3 0 0.43 Overy BRJ 66:103  15.5 IGF2 9 6 0.67 Testis JU 153:168  15.5 MUC2 17 2 0.12 Testis GCC 13:249  15.5 H19 14 2 0.14 Cervix 0 12:423	15.5	HRAS	12	3		~~~~~~~~~~~	
13.9   BRAS   17   3   0.18   Testis   IU 153:168	15.5	HRAS		***************************************			
15.5 HRAS 15 0 0 Testis GCC 13:249 15.5 HRAS 15 5 0.33 Festis GCC 7:85 15.5 HRAS 3 1 0.33 Festis CCG 52:72 15.5 BRAS 3 1 0.33 Festis CCG 52:72 15.5 HRAS 9 1 0.11 Uterus CR 51:5632 15.5 IGF2 7 2 0.29 Bladder HG 91:455 15.5 IGF2 15 1 0.07 Breast GE 5:554 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Faring PN 91:5513 15.5 IGF2 1 0 0 Testis JU 153:168 15.5 IGF2 9 6 0.67 Testis JU 153:168 15.5 H19 14 2 0.14 Cervix O 12:423	15.5	ERAS	17	3	***************************************	*************************	
15.5         HRAS         15         5         0.33         Testis         GCC 7:85           15.5         HRAS         3         1         0.33         Testis         CCG 52:72           15.5         BRAS         3         1         0.33         Testis         CCG 52:72           15.5         HRAS         9         1         0.11         Uterus         CR 51:5632           15.5         IGF2         7         2         0.29         Bladder         HG 91:455           15.5         IGF2         15         1         0.07         Breast         GE 5:554           15.5         IGF2         13         3         0.23         Cervix         0         12:423           15.5         IGF2         1         0         0         Lung         PN 91:5513           15.5         IGF2         7         0         0         Lung         PN 91:5513           15.5         IGF2         1         0         0         Lung         PN 91:5513           15.5         IGF2         1         0         0         Lung         PN 91:5513           15.5         IGF2         9         6         0.43         Ov	15.5	HRAS	BARRIER AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PER	0	THE RESERVOIR SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAP	*************	CAMPAGE CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CON
15.5 HRAS 3 1 0.33 Testis CCG 52:72  15.5 ERAS 3 1 0.33 Testis CCG 52:72  15.5 HRAS 9 1 0.11 Uterus CR 51:5632  15.5 IGF2 7 2 0.29 Bladder HG 91:455  15.5 IGF2 15 1 0.07 Breast GE 5:554  15.5 IGF2 13 3 0.23 Cervix 0.12:423  15.5 IGF2 1 0 0 Lung PN 91:5513  15.5 IGF2 7 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 0 Lung PN 91:5513  15.5 IGF2 1 0 0 Testis JU 153:168  15.5 IGF2 9 6 0.67 Testis JU 153:168  15.5 HI9 14 2 0.14 Cervix 0.12:423	15:5	HRAS	15	5	0_33	******************************	
15.5   BRAS   3   1   0.33   Festis   CCG 52.72     15.5   HRAS   9   1   0.11   Uterus   CR 51:5632     15.5   IGF2   7   2   0.29   Bladder   HG 91:455     15.5   IGF2   15   1   0.07   Breast   GE 5:554     15.5   IGF2   13   3   0.23   Cervix   0.12:423     15.5   IGF2   1   0   0   Lung   PN 91:5513     15.5   IGF2   7   0   0   Lung   PN 91:5513     15.5   IGF2   1   0   0   Lung   PN 91:5513     15.5   IGF2   1   0   0   Lung   PN 91:5513     15.5   IGF2   1   0   0   Lung   PN 91:5513     15.5   IGF2   1   0   0   Lung   PN 91:5513     15.5   IGF2   14   6   0.43   Overy   BRJ 66:103     15.5   IGF2   9   6   0.67   Testis   JU 153:168     15.5   MUC2   IT   2   0.12   Testis   GCC 13:249     15.5   H19   14   2   0.14   Cervix   0.12:423		***************************************	******	1	***************************************	***************************************	
15.5 HRAS 9 1 0.11 Uterus CR 51:5632 15.5 IGF2 7 2 0.29 Bladder HG 91:455 15.5 IGF2 15 1 0.07 Breast GE 5:554 15.5 IGF2 13 3 0.23 Cervix 0.12:423 15.5 IGF2 1 0 0 Lung PN 91:5513 15.5 IGF2 7 0 0 Lung PN 91:5513 15.5 IGF2 7 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 Tung PN 91:5513 15.5 IGF2 1 0 0 Tung PN 91:5513 15.5 IGF2 1 0 0 Tung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 1 0 0 0 Lung PN 91:5513 15.5 IGF2 9 6 0.67 Testis JU 153:168 15.5 HI9 14 2 0.14 Cervix 0.12:423	15.5	ERAS	3	1			************
15.5	15.5	HRAS		1			CR 51:5632
15.5	15.5	IGF2	7		***********************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
15.5         IGF2         13         3         0.23         Cervix         0.12:423           15.5         IGF2         1         0         0         Lung         PN 91:5513           15.5         IGF2         7         0         0         Lung         FN 91:5513           15.5         IGF2         1         0         0         Lung         PN 91:5513           15.5         IGF2         14         6         0.43         Overy         BRJ 66:103           15.5         IGF2         9         6         0.67         Testis         JU 153:168           15.5         MUC2         17         2         0.12         Testis         GCC 13:249           15.5         H19         14         2         0.14         Cervix         0 12:423	15.5	CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR			**************************************	***************************************	
15.5	15.5	IGF2	13		***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	**************
15.5         IGF2         7         0         0         Lung         PN 91:5513           15.5         IGF2         1         0         0         Lung         PN 91:5513           I5.5         IGF2         14         6         0.43         Ovary         BRJ 66:103           15.5         IGF2         9         6         0.67         Testis         JU 153:168           15.5         MUC2         17         2         0.12         Testis         GCC 13:249           15.5         H19         14         2         0.14         Cervix         0 12:423		IGF2	THE ASSESSMENT OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY	0	******************	***************	************
15.5 IGF2 1 0 0 Lung PN 91:5513  15.5 IGF2 14 6 0.43 Ovary BRJ 66:103  15.5 IGF2 9 6 0.67 Testis JU 153:168  15.5 MUCZ 17 2 0.12 Testis GCC 13:249  15.5 H19 14 2 0.14 Cervix 0 12:423	15.5	IGF2	7			******************************	
15.5         IGF2         14         6         0.43         Owary         BRJ 66:103           15.5         IGF2         9         6         0.67         Testis         JU 153:168           15.5         MUC2         17         2         0.12         Testis         GCC 13:249           15.5         H19         14         2         0.14         Cervix         O 12:423	15.5	IGF2	***************************************	***************************************		*******************************	***************************************
15.5 IGF2 9 6 0.67 Testis JU 153:168 15.5 MUC2 17 2 0.12 Testis GCC 13:249 15.5 H19 14 2 0.14 Cervix 0 12:423	15.5	IGE2		6	0.43	***********************	***************************************
19:5 MUC2 1/ 2 0.12 Testis GCC 13:249 15.5 H19 14 2 0.14 Cervix 0.12:423			9	6	***************************************		***************************************
15.5 H19 14 2 0.14 Cervix 0 12:423	15.5	MUC2	17	2		**********	
	15.5	н19	14	2	***************************************		93000000000000000000000000000000000000
Unknown D115922 46 8 0.17 BeadsNeck CR 54:/4756	Unknown	D118922	46	8	************************************	*****************	
Unknown D11S922 40 1 0.03 Head&Neck CR 54:4756	*************************	***************************************	***************************************			***************************************	***************************************
Onknown 0115922 6 1 0.17 Kidney PMAS 92:28	Onknown	D11S922	6	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Unknown D11S922 19 1 0.05 Kidney PNAS 92:28	Unknown	D11S922	19	1	0.05		PNAS 92:28
Unknown D115922 8 4 0.5 Pediatric HG 970263	Unknown		************				*****************************
Unknown D11S922 49 16 0.33 Stomach CR 56:268	Unknown		***************************************				CONTRACTOR AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P
Unknown D1151318 16 7 0.44 Pediatric HG 97:163	Unknown	***************************************	*************			*************	
Unknown D11S1318 15 9 0.6 Stomach CR 56:268				9	*****		***************************************
15.5 INS 31 3 0.1 Breast CR:50:7184	15.5					**********	
15.5 INS 23 4 0.17 Breast GCC 2:191	15.5				*******************	************	***********
15°5 INS 31 3 Q.1 Breast CR 50'77484	15.5	INS	31	3			

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	D-6
Gnknown	RRA51-D11912	17	7	0.41	Bladder	Reference
15.5	HRAS	7	2	0.29	Brain	CR:51:5405
15.5	HRAS	30		G.1	Breast	CR 49:6572
15.5	HRAS	24	3	0.12	Breast	GCC 4 113
15.5	HRAS	5	G	0.12	Breast	CR 53:4486
15.5	HRAS	68	21	0.31	Breast	GCC: 2:191
15.5	RRAS	30	8	0.27	Breast	GCC 12:304
15.5	HRAS	29	5	0.17	Breast	130 53 11
15.5	HRAS	7	1	0.14	Breast	JJCR 84:11 CR 53 804
15.5	HRAS	33	1	0.03	Breast	
15.5	RRAS	37	7	0.19	Breast	CR 53:4356
15.5	HRAS	6	0	0	Cervix	CR 49:3598
15.5	HRAS	18	6	0.33	Cervix	ENAC 9 69
15.5	HRAS	15	1	0.07	Cervix	BJC 67:71
15.5	RRAS	10	0	C	Colon	N 351 273
15.5	HRAS	16	0	0	Colon	CCG 48:167
15.5	HRAS	9	0	Q	Colon	N 3315273
15.5	HRAS	9	1	0.11	Esophageal	CR 51:2113
15.5	ARAS	21	4	0.19	Esophageal	GCC 10:177
15.5	HRAS	20	8	0.4	Esophageal	CR 54:2996
15.5	HRAS	12	1	0.08	Head&Neck	CR 52:1494
15.5	HRAS	3	0	0	Kidnev	CMB 38:59
15.5	APAS	14	1	0.07	Kidney	CR 51:1071
15.5	HRAS	5	0	0	Kidney	CMB 38:59
15.5	HRAS	13	4	0.31	Leukemia	8 75-819
15.5	HRAS	5	0	0	Liver	JJCR 81:10
15.5	HRAS	3	O	Ø	Liver	BJC 67:100
15.5	HRAS	13	0	0	Liver	GCC 1:312
15:5	HRAS	4	9	0	Liver	PNAS 86.68
15.5	HRAS	10	5	0.5	Liver	CCG 48:72
15.5	HRAS	5	0	G G	Liver	BJC 64:108
15.5	HRAS	47	7	0.15	Lung	GCC 10:183
15.5	HRAS	39	7	0.18	Lung	CR 54:1145
15.5	HRAS	13	5	0.38	Lung	PN 86:5099
15.5	ARAS	13	6	0.46	Lung	PN 91:5513
15.5	HRAS	2	1	0.5	Lung	PN 91:5513
15.5	HRAS	12	6	0.5	Lung	PN 86:5099
15.5	HRAS	7	1 .	0.14	Lung	NEJ 317:11
15.5	HRAS	5	2	0:4	Lung	PN 86:5099
15.5 15.5	HRAS	13	3	0.23	Lung	PN 84:9252
	HRAS	- 6	2	0233	Lung	PN 91:5513
15.5	HRAS	4	0	0	Neuroblastom	CR 49:1095
15.5	HRAS	25			a	
15.5	HRAS	************	10	0.4	Ovary	GG 47:137
15.5	HRAS	15 11	5	0.27	Ovary	GO 55:245
		11		0.45	Cvary	CR 50:2724

Unknown	D10526	20	0	0	Stomach	CR 51:2926
26	D10S25	34	9	0.26	Testis	0 9:2245
11.2	PTC	1	0	0	Testis	CCG 52:72
11.2	PTC	2	1	0.5	Testis	CCG 52:72
11.2	PTC	1	0	G.	Testis	CCG 52:72
Unknown	D10S173	16	1	0.06	Uterus	CR 54:4294
26	D10525	14	6	0.43	Uterns	GCC 9:119
11	D10530	12	3	0.25	Uterus	GCC 9:119
24-TER	PLAU	5	0	0	Dterus	CR 51:5632
SUM		1509	351	0.23		

26	D10S25	21				
22-25	D10S27	26	3	0.29	Kidney	CR 51:820
11	D10530	13	3	0.12	Kidney	CR 51:5817
26	D10S36	27	5	0.15	Kidney	CR:51:5817
Unknown	D105201	19		0.19	Kidney	CR 51:5817
Unknown	Unknown	16	0	0,05	Leukemia .	CR 55:5377
22-23	D1091	3	U	0	Liver	CR 51:89
26	D10S25	24	6	0.33	Liver	CCG: 48:72
Unknown	D10526	24	6	0.25	Liver	CR 51:89
24-TER	PLAU	20	0	0.25	Liver	CR 51:89
26	D10625	25	5	0	Liver	JJCR 81:108
Unknown	ATC	9	***************************************	0.2	Lung	CR 52:2478
**********************	CHLC.GGAA2F11	14	6	0.44	Melanoma	CR 54:3111
Unknown	D10S108	5		0.43	Melanoma	CR 54:3111
Unknown	DIOSILO	4	1	0.2	Melanoma	CR 54:3111
Unknown	D10S168	8		0.5	Melanoma	CR 54:3111
Unknown	D105168	8	5 1	0.62	Melanoma	CR 54:3111
Unknown	D10S185			0.12	Melanoma	CR 54:3111 (2)
Unknown	D103183	29 12	9	0.31	Melanoma	CR 56:589
21-22	D10S19	****	3	0.25	Melanoma	CR 54:3111
21-TER	D10519	8	3	0.38	Melanoma	GCC 8:178
Unknown	D10S221	4	3		Melanoma	GCC 8:178
26	***************************************	12	4	0.33	Melanoma	CR 54:3111
Unknown	D10636	9	4	0.44	Melanoma	GCC 8:178
200200200000000000000000000000000000000	D10S610	9	4	0.44	Melanoma	CR 54:3111
Unknown	U10588	6	3	0.44 0.5	Melanoma Melanoma	CR 54:3111 CR 54:3111
200200200000000000000000000000000000000	***************************************		****	000000000000000000000000000000000000000	Melanoma Neuroblasto	#9509777977000997000000777777790000000000
Unknown 24-TER	D10S88 PLAU	<b>6</b> 5	<b>3</b> 0	<b>0.5</b> 0	Melanoma Neuroblaston a	CR 54:3111 n CR 49:1095
Unknown	D10588 PLAU D1051-20	6 5 19	3 0 2	0.5 0 0:11	Melanoma Neuroblastor a Ovary	CR 54:3111 n CR 49:1095 CR 53:2393
Unknown 24-TER Unknown	D10588 PLAU D1051-20 D105173	6 5 19 16	3 0 2 3	0.5 0 0.11 0.19	Melanoma Neuroblastor a Ovary Ovary	CR 54:3111 n CR 49:1095 CR 53:2393 BJC 69:429
Unknown 24-TER Unknown Unknown	D10SA8 PLAU D10S1-20 D10S173 D10S25	6 5 19 16	3 0 2 3 4	0.5 0 0:11 0.19 0.12	Melanoma Neuroblastor a Ovary Ovary Ovary	CR 54:3111 n CR 49:1095 CR 53:2393 BJC 69:429 IJC 54:546
Unknown 24-TER Unknown Unknown 26	D10SA8 PLAU D10S1-20 D10S173 D10S25 D10S25	5 5 19 16 34 24	3 0 2 3 4 5	0.5 0 0.11 0.19 0.12 0.21	Melanoma Neuroblastor a Ovary Ovary Ovary Ovary Ovary	CR 54:3111 m CR 49:1095 CR 53:2393 BJC 69:429 IJC 54:546 CR 51:5118
Unknown 24-TER Unknown Unknown -26 26	D10S88 PLAU D10S1-20 D10S173 D10S25 D10S25	6 5 19 16 34 24	3 0 2 3 4 5	0.5 0 0.11 0.19 0.12 0.21	Melanoma Neuroblastor a Ovary Ovary Ovary Ovary Pancreas	CR 54:3111 m CR 49:1095 CR 53:2393 BJC 69:429 IJC 54:546 CR 51:5118 CR 54:2761
Unknown 24-TER Unknown Unknown -26 26 26 Unknown	D10S88 PLAU D10S1-20 D10S173 D10S25 D10S25 Unknown	5 5 19 16 34 24 4	3 0 2 3 4 5 0	0.5 0 0.11 0.19 0.12 0.21 0.21	Melanoma Neuroblastor a Ovary Ovary Ovary Ovary Pancreas Prostate	CR 54:3111 n CR 49:1095 CR 53:2393 BJC 69:429 IJC 54:546 CR 51:5118 CR 54:2761 CSurveys 11:15
Unknown 24-TER Unknown Unknown 26 26 26 Unknown 22523	D10588 PLAU  D1051-20 D105173 D10525 D10525 D10525 Unknown  D1051	6 5 19 16 34 24 4 24	3 0 2 3 4 5 0 7	0.5 0 0.11 0.19 0.12 0.21 0 0.29	Melanoma Neuroblastor a Ovary Ovary Ovary Pancreas Prostate Prostate	CR 54:3111 m CR 49:1095  CR 53:2393 BJC 69:429 IJC 54:546 CR 51:5118 CR 54:2761 CSurveys 11:15 GCC 3:215
Unknown 24-TER Unknown Unknown 26 26 26 Unknown 22=23 21-22	D10588 PLAU D1051-20 D105173 D10525 D10525 D10525 Unknown D1051 D10519	5 5 19 16 34 24 4 24 24 24	3 3 4 5 0 7 0	0.5 0 0.11 0.19 0.12 0.21 0 0.29 0	Melanoma Neuroblastor a Ovary Ovary Ovary Pancreas Prostate Prostate	CR 54:3111 m CR 49:1095  CR 53:2393 BJC 69:429 IJC 54:546 CR 51:5118 CR 54:2761 CSurveys 11:15 GCC 3:215
Unknown 24-TER  Unknown Unknown 26 26 26 Unknown 22-23 21-22 21-22	D10588 PLAU  D1051-20 D105173 D10525 D10525 Unknown D1051 D10519 D10519	5 5 19 16 34 24 4 24 24 2 8	3 0 2 3 4 5 0 7 0 0	0.5 0 0.11 0.19 0.12 0.21 0 0.29 0	Melanoma Neuroblastor a Ovary Ovary Ovary Pancreas Prostate Prostate Prostate	CR 54:31:1  n CR 49:1095  CR 53:2393  BJC 69:429  IJC 54:546  CR 51:5118  CR 54:2761  CSurveys 11:15  GCC 3:215  GCC 3:215  GCC 11:119
Unknown 24-TER  Unknown Unknown 26 26 26 Unknown 22-23 21-22 21-22 21-TER	D10588 PLAU  D1051-20 D105173 D10525 D10525 Unknown D1051 D10519 D10519 D10520	5 5 19 16 534 24 4 24 2 8	3 0 2 3 4 5 0 7 0 1 0	0.5 0 0.11 0.19 0.12 0.21 0.29 0.0 0.12 0	Melanoma Neuroblastor a Ovary Ovary Ovary Pancreas Prostate Prostate Prostate Prostate Prostate	CR 54:31:1  n CR 49:1095  CR 53:2393  BJC 69:429  IJC 54:546  CR 51:5118  CR 54:2761  CSurveys 11:15  GCC 3:215  GCC 3:215  GCC 3:215  GCC 3:215
Utknown 24-TER  Utknown Unknown 26 26 26 Unknown 22-23 21-22 21-TER 26	U10588 PLAU  U1051-20 D105173 D10525 D10525 U10525 Unknown D10519 D10519 D10520 D10525	5 5 19 16 34 24 4 24 2 8 7	3 0 2 3 4 5 0 7 0 1 0 2	0.5 0 0.11 0.19 0.12 0.21 8 0.29 0 0.12 0 0.25 0.38	Melanoma Neuroblastor a Ovary Ovary Ovary Pancreas Prostate Prostate Prostate Prostate Prostate Prostate Prostate	CR 54:31:1  n CR 49:1095  CR 53:2393  BJC 69:429  IJC 54:546  CR 51:5118  CR 54:2761  CSurveys 11:15  GCC 3:215  GCC 3:215  GCC 3:215  GCC 3:215
Unknown 24-TER  Unknown Unknown 26 26 26 Unknown 22-23 21-22 21-22 21-TER 26 26	U10588 PLAU  U1051-20 D105173 D10525 D10525 U10525 Unknown D10519 D10519 D10520 D10625 D10525	5 5 19 16 34 24 4 24 2 8 7 8	3 0 2 3 4 5 0 7 0 1 0 2 3 4	0.5 0 0.11 0.19 0.12 0.21 0 0.29 0 0.12 0 0.25 0.36	Melanoma Neuroblastor a Ovary Ovary Ovary Pancreas Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate	CR 54:31:1  n CR 49:1095  CR 53:2393  BJC 69:429  IJC 54:546  CR 51:5118  CR 54:2761  CSurveys 11:15  GCC 3:215  GCC 3:215  GCC 3:215  GCC 3:215  GCC 11:119  G 11:530
Unknown 24-TER  Unknown Unknown 26 26 26 Unknown 22-23 21-22 21-22 21-TER 26 26 26 26	U10588 PLAU  U1051-20 D105173 B10525 D10525 Unknown U1051 D10519 D10519 D10520 D10525 D10525 D10525	6 5 19 16 34 24 2 8 7 8 8 -8 13	3 0 2 3 4 5 0 7 0 0 1 0 2 3 4	0:5 0 0:11 0.19 0.12 0.21 0 0.29 0 0.12 0 0.25 0.38 0.31	Melanoma Neuroblastor a Ovary Ovary Ovary Pancreas Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate	CR 54:31:1 n CR 49:1095  CR 53:2393 BJC 69:429 IJC 54:546 CR 51:5118 CR 54:2761 CSurveys 11:15 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215
Unknown 24-TER  Unknown Unknown 26 26 26 Unknown 22-23 21-22 21-TER 26 26 26 Unknown	U10588 PLAU  U1051-20 D105173 B10525 D10525 Unknown U1051 D10519 D10519 D10520 D10525 D10525 D10525 D10525	5 5 19 16 34 24 4 24 2 8 7 8 8 13	3 0 2 3 4 5 0 7 0 1 0 2 3 4	0.5 0 0.11 0.19 6.12 0.21 0 0.29 0 0.12 0 0.25 0.38 0.31	Melanoma Neuroblastor a Ovary Ovary Ovary Pancreas Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate	CR 54:31:1 n CR 49:1095  CR 53:2393 BJC 69:429 IJC 54:546 CR 51:5118 CR 54:2761 CSurveys 11:15 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215
Unknown 24-TER  Unknown —26 —26 —26 ——26 —————————————————————	U10588 PLAU  U1051-20 D105173 B10525 D10525 Unknown U1051 D10519 D10519 D10520 D10525 D10525 U10525 D10525 D10525 D10525	6 5 19 16 34 24 24 22 8 7 8 9	3 0 2 3 4 5 0 7 0 1 0 2 3 4 4 2	0.5 0 0.11 0.19 6.12 0.21 0 0.29 0 0.12 0 0.25 0.38 0.31 0.31	Melanoma Neuroblastor a Ovary Ovary Ovary Pancreas Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate	CR 54:31:1 n CR 49:1095  CR 53:2393 BJC 69:429 IJC 54:546 CR 51:5118 CR 54:2761 CSurveys 11:15 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215
Unknown 24-TER  Unknown Unknown 26 26 26 Unknown 22-23 21-22 21-TER 26 26 Unknown 26 25 Unknown 26 26 26 26 26	D10588 PLAU  D1051-20 D105173 D10525 D10525 Unknown D1051 D10519 D10519 D10520 D10525 D10525 D10525 D10525 D10525 D10526 D1054	6 5 19 16 34 24 24 2 8 7 8 8 13 13 9	3 0 2 3 4 5 0 7 0 1 0 2 3 4 4 4 2	0:5 0 0:11 0.19 6.12 0.21 0 0.29 0 0.12 0 0.25 0.38 0.31 0.31 0.22 0.12	Melanoma Neuroblastor a Ovary Ovary Ovary Pancreas Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate	CR 54:31:1 n CR 49:1095  CR 53:2393 BJC 69:429 IJC 54:546 CR 51:5118 CR 54:2761 CSurveys 11:15 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215
Unknown 24-TER  Unknown Unknown 26 26 26 Unknown 22-23 21-22 21-TER 26 26 Unknown 22-23 26 26 Unknown	D10S88 PLAU  D10S1=20 D10S173 D10S25 D10S25 D10S25 Unknown D10S1 D10S19 D10S19 D10S20 D10S25 U10S25 D10S26 D10S26 D10S90 OAT	6 5 19 16 34 24 4 24 2 8 7 7 8 8 13 13 9 10 19	3 0 2 3 4 5 0 7 0 1 0 2 3 4 4 2 1 8	0.5 0 0.11 0.19 0.12 0.21 0 0.29 0 0.12 0 0.25 0.38 0.31 0.31 0.22 0.1	Melanoma Neuroblastor a Ovary Ovary Ovary Pancreas Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate	CR 54:31:1 n CR 49:1095  CR 53:2393 BJC 69:429 IJC 54:546 CR 51:5118 CR 54:2761 CSurveys 11:15 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215
Unknown 24-TER  Unknown Unknown 26 26 26 Unknown 22-23 21-22 21-TER 26 26 Unknown 22-23 26 26 26 26 26 26 26 26 26 26 26 26	D10S88 PLAU  D10S1=20 D10S173 D10S25 D10S25 D10S25 Unknown D10S19 D10S19 D10S20 D10S25 D10S25 D10S26 D19S4 D10S90 GAT PLAU	6 5 19 16 34 24 4 24 2 8 7 8 13 13 13 9 10 19	3 0 2 3 4 5 0 7 0 1 0 2 3 4 4 2 1 8 7	0.5 0 0.11 0.19 0.12 0.21 0 0.29 0 0.12 0 0.25 0.38 0.31 0.22 0.1	Melanoma Neuroblastor a Ovary Ovary Ovary Pancreas Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate	CR 54:31:1 n CR 49:1095 CR 53:2393 BJC 69:429 IJC 54:546 CR 51:5118 CR 54:2761 CSurveys 11:15 GCC 3:215 GCC 3:215 GCC 11:119 G 11:530 GCC 3:215 GCC 3:215
Unknown 24-TER  Unknown Unknown 26 26 26 Unknown 22-23 21-22 21-TER 26 26 Unknown 22-23 26 26 Unknown	D10S88 PLAU  D10S1=20 D10S173 D10S25 D10S25 D10S25 Unknown D10S1 D10S19 D10S19 D10S20 D10S25 U10S25 D10S26 D10S26 D10S90 OAT	6 5 19 16 34 24 4 24 2 8 7 7 8 8 13 13 9 10 19	3 0 2 3 4 5 0 7 0 1 0 2 3 4 4 2 1 8	0.5 0 0.11 0.19 0.12 0.21 0 0.29 0 0.12 0 0.25 0.38 0.31 0.31 0.22 0.1	Melanoma Neuroblastor a Ovary Ovary Ovary Pancreas Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate Prostate	CR 54:31:1 n CR 49:1095 CR 53:2393 BJC 69:429 IJC 54:546 CR 51:5118 CR 54:2761 CSurveys 11:15 GCC 3:215 GCC 3:215 GCC 3:215 GCC 11:119 G 11:530 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215 GCC 3:215

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
24-TER	PLAU	5	0	0	Uterus	CR 51:5632
Unknown	Unknown	37	14	0.38	Brain	CR 50:5784
12-gter	Onknown	12	0	0	Brain	CR: 54:1397
11.2	Unknown	12	0	0	Brain	CR 54:1397
11.2	Unknown	17	2	0.12	Brain	CR 54:1397
12-gter	Unknown	15	1	0.07	Brain	CR 54:1397
Unknown	D109:25-22-1	64	21	0.33	Brain	CR 56:164
22-23	D10S1	5	0	0 .	Brain	CR 48:5546
22-23	D10S1	4	0	0	Brain	CR 49:5546
22-23	D10S1	10	10	1	Brain	CR 48:5546
Unknown	0108169	7	0	0	Brain	CR 53:2386
Unknown	D10S169	5	2	0.4	Brain	CR 53:2386
22-23	D10S4	21	20	0.95	Brain	CR:48:5546
22-23	D10S4	6	0	0	Brain	CR 48:5546
22-23	D1054	11	0	G	Brain	CR 48:5546
24-TER	PLAU	10	0	0	Brain	CR 48:5546
24-TER	PLAU	5	0	0	Brain	CR 48:5545
24-TER	PLAU	14	14	1	Brain	CR 48:5546
22-23	D1051	18	2	0.11	Breast	CR 53:4356
26	D10S25	6	2	0.33	Breast	CR 53:3804
26	D10525	23	2	0.09	Breast	CR 50:7184
26	D10S25	30	5	0.17	Breast	GCC 2:191
22-23	D1054	18	4	0.22	Breast	GCC. 2:191
Unknown	D10S205	32	4	0.12	Cervix	CR 56:197
26	010525	32	9	0.28	Cervix	CR 54:4481
26	D10S25	8	2	0.25	Cervix	GCC 9:119
. 11	D10S30	8	2	0:25	Cervix	GCC 9:119
21.1	D10S5	17	1	0.06	Cervix	CR 54:4481
24-TER	PLAU	4	1	0.25	Cervix	CR 49:3598
24-TER	PLAU	6	0	0	Colon	IJC 53:382
Unknown	D105187	22	2	0:09	Endocrine	CR 56:599
26	D10S25	25	4	0.16	Esophageal	CR 54:2996
26	D10525	36	- 6	0.17	Esophageal	GCC 10:177
26	D10S25	17	0	0	Esophageal	CR 51:2113
Unknown	D105185	12		0.25	Head&Neck	CR 54;4756
Unknown	D10S185	21	0	0	Head&Neck	CR 54:4756
Unknown	D10S221	24	5	0.21	Head&Neck	CR 54:1152
22-25	D10S13	32	9	0.28	Kidney	CR 51:5817
21	D10S14	17	5	0.29	Kidney	CR 51:5817
Unknown	D10S185	6	3	0.5	Kidney	GCC 12:76
21-TER	D10520	25	6	0.32	Kidney	CR 51:5817
Unknown	D10S212-D10S190	19	1	0.05	Kidney	PNAS 92:2854
Unknown	D10S212-D10S190	5	Q	0	Kidney	PNAS 92:2854
21	D10S22	10	3	0.3	Kidney	CR 51:5817
21	D10523	15	3	0.2	Kidney	CR 51::5817
26	D10S25	30	10	0.33	Kidney	CR 51:5817

pTER-p13	D10S17	11	6	0.55	Prostate	G 11:530	
pter-pl2	D10S17	11	6	0.55	Prostate	GCC 3.215	
pTER-p13	D10S17	18	0	0	Prostate	PNAS 87:875	
13-12.2	D10S24	14		0.29	Prostate	GCC 3,215	
pter-pl2	D10S17	14	5	0.36	Sarcoma	CR 52:2419	
pter-q13	D10 S28	47		0.11	Testis	0 9:2245	
Unknown	D10S28	14	4	0.29	Uterus	GCC 9:119	
pter-pll.2	D10389	17	0	0	Uterus	CR 5414294	
SUM		980	172	0.18			

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
pter-pll.2	010889	17	O	0	Uterus	CR 54:4794
Unknown	Unknown	38	15	0.39	Brain	CR 50:5784
Unknown	D109109	7	0	0	Brain	CR 53:2386
Unknown	D10S109	6	2	0.33	Brain	CR 53:2386
11.2	D105111	9	G		Brain	CR 53:2386
11.2	D10S111	6	0	0	Brain	CR 53:2386
pter-pll.2	D10389	8	G.	0	Brain	CR 53:2386
pter-p11.2	D10S89	16	1	0.06	Brain	CR 54:1397
pter-pll.2	010989	6	1	0.17	Brain	CR 59:2386
pter-pll.2	D10S89	13	0	0	Brain	CR 54:1397
Unknown	FNRB- D10928	72	31	0.43	Brain	CR 55:164
pter-q13	D10 S28	32	4	0.12	Breast	CR 50:7184
Unknown	010815	15	0	O	Breast	GCC 2:191
pter-q13	D10 S28	42	9	0.21	Cervix	CR 54:4481
Unknown	0109191	37	1	0.03	Cervix	CR 56:1972
13-12.2	D10S24	4	0	0	Cervix	CR 54:4481
Unknown	010928	7	1	0.14	Cervix	GCC 9:119
Unknown	D10S249	14	1	0.07	Endocrine	CR 56:599
pter-pll.2	D10589	20	1	0.05	Endocrine	GCC 13:9
pTER-p13	D10S17	33	11	0.33	Esophageal	GCC 10:177
pTER-pl3	D10917	14	2	0.14	Esophageal	CR 54:2996
Unknown	D10S226	11	0	0	Head&Neck	CR 54:4756
Unknown	D109226	12	0	0	HeadLNeck	CR 54:4756
Unknown	D10S249	22	5	0.23	Head&Neck	CR 54:1152
pter-gl3	D10 S28	31	3	0.1	Kidney	CR 51:5817
pter-g13	D10 S28	34	3	0.09	Kidney	CR 51:820
pTER-pl3	D10517	11	1	0.09	Kidney	CR 51:5817
Unknown	D10S226	6	3	0.5	Kidney	GCC 12:76
Unknown	0109249-0109191	21	0	10.	Kidney	PNAS 92:285
Unknown	D10S249-D10S191	5	0	0	Kidney	PNAS 92:285
prer-q13	D10 S28	39	0	0	Liver	CR 51:89
pter-q13	D10 S28	35	5	0.14	Lung	CR 52:2478
1,1-23.0	D10914	8	4	0.5	Melanoma	GCC 8:178
Unknown	D10S15	5	3	0.6	Melanoma	GCC 8:178
Unknown	D109226	23	4	0.17	Melanoma	CR 56:589
Unknown	D10S28	14	5	0.36	Melanoma	GCC 8:178
Unknown	D10933	3	0	0	Melanoma	GCC 8:178
pter-pl1.2	D10S89	10	4	0.4	Melanoma	GCC 8:178
pter-ql3	D10 S28	27	3	0.11	Ovary	CR (51:5118
pter-q13	D10 S28	35	5	0.14	Ovary	IJC 54:546
Unknown	D10S13-28	33	4	0.12	Ovary	CR 53:2393
pter-ql3	D10 S28	7	3	0.43	Pancreas	CR 54:2761
pter-gl3	D10 528	19	4	0.21	Prostate	BJU 73:390
11-23.0	D10S14	11	3	0.27	Prostate	GCC 3:215
13-pter	D10S17	18	0	0	Prostate	CSurveys 11:

34	D9S7	13	2	0.15	Prostate	CSurveys 11:15
34	D957	11		0.10	Sarcoma	CR 52:2419
Unknown	D9S7	19	1	0.05	Testis	GCC 13:249
Unknown	0987	33	16	0248	Testis	0.9:2245
34	D9S7	5	1	0.2	Uterus	GCC 9:119
Unknown	09811	252	153	0.61	Bladder	CR 53:1230
34	D9S7- D9S11-D9S13	252	149	0.59	Bladder	0 8:1083
34	D987- D9811-D9813	252	149	0.59	Bladder	0 8:1083
Unknown	GSN- D9S:15-12	28	17	0.61	Bladder	CR 55:5213
Onknown	Unkoown	20	1	0.05	Brain	CR 50:5784
21.1-22.2	Unknown	14	1	0.07	Brain	CR 54:1397
21,1-22.2	Unknown	19	0	0	Brain	CR 54:1397
Unknown	D9S6	13	0	0	Colon	CCG 48:167
Onknown	D95146	9		0.11	Endocrine	CR 56:599
Unknown	D9S160-180	44	26	0.59	Head&Neck	CR 54:4756
Unknown	D9S160-180	39	2	0.05	HeadsNeck	CR 54:4756
Unknown	D9S:154-164-180	52	10	0.19	Leukemia	
Unknown	Unkaowa	33	16	0.46	Long	CR 55:5377
Unknown	D9S15-10	26	14	0.54		CR_54:2322
Unknown	Unknown	19	2	0.11	Ovary	CR 53:2393
SUM		6593	3076	0.47	Prostate	PNAS 87:8751

Unknown	D9S60	70	36	0.51	Bladder	0 11:1671
Onknown	09861	70	38	0.54	Bladder	0 11:1671
34-QTER	D9S64	17	8	0.47	Ovary	BJC 69:429
Unknown	D9564	18	10	0,56	Ovary	CR 55:2150
34.1	ABL	65	13	0.2	Bladder	CR 54:2848
34.1	ABL	70	37	0.53	Bladder	0 11:1671
34.1	ABL	33	15	0.45	Ovary	BJC 73:420
34.1	ABL	25	10	0.4	Ovary	CR 55:2150
34-qter	ASS	20	5	0.25	Bladder	CR 54:2848
34-qter	ASS	17	0	0	Brain	CR 54:1397
34-qter	ASS	12	0	0	Brain	CR 54:1397
34-qter	ASS	14	. 2	0.14	Lung	PN 84:9252
34-qter	ASS	34	13	0.38	Ovary	CR 55:2150
Bnknown	D95164	6	1	0.17	Kidney	PNAS 92:2854
Unknown	D9S164	. 20	3	0.15	Kidney	PNAS 92:2854
Unknown	D9510	252	154	0.61	Bladder	CR 53,1230
34.3	D9S10	41	13	0.32	Bladder	CR 54:2848
34.3	09810	15	8	0.53	Ovary	CR 55:2150
Unknown	D9S66	70	38	0.54	Bladder	0 11:1671
Unknown	D9514	252	151	0.6	Bladder	CR 53:1230
Unknown	D9S67	70	36	0.51	Bladder	0 11:1671
Unknown	09513	252	151	0.6	Bladder	CR 53:1230
34	D9S17	35	6 <b>16</b>	0.17	Breast	CR 50:7184
34	D9517	21	enertectory various mineral expension expensions	0.76	Esophageal_	GCC 10:177
34 <b>34</b>	D9S17	31	8 2	0.26	Lung	CR 52:2478
Unknown	D9S1.	20 252	155	0.1 0.62	Overy	CR 53:1230
34	0987	252 <b>6</b> 5	13	0.62	Bladder Bladder	CR 54:2848
34	D957	59 7	0	9- <i>4</i> 0	Brain	CR 49:6572
34	D957	21	2	0.1	Breast	GCC 2:191
Unknown	D9S7	44	6	0.14	Breast	CR 53:4356
34	D957	5	1	0.14	Breast	CR 53:3804
34	D9S7	3	2	0.67	Cervix	GCC 9:119
34	D957	33	5	0.15	Cervix	CR 54:4481
34	D9S7	20	1	0.05	Endocrine	GCC 13:9
Unknown	0987	9	Ō	0	Esophageal	CR 51:2113
34	D9S7	24	7	0.29	Esophageal	CR 54:2996
34	D957	10	1	0.1	Kidney	CR 51:820
34	D9S7	9	0	0	Liver	CR 51:89
34	D9S7	6	1	0.17	Liver	BUC 64:1083
34	D9S7	11	1	0.09	Liver	BJC 67:1007
Unknown	D957	32	6	0.19	Ovary	IJC 54:546
34	D9S7	6	1	0.17	Ovary	CR 55:2150
34	0957	2	Ō	Ō	Pancreas	CR 54:2761
34	D9S7	13	1	0.08	Pancreas	BJC 65:809
34	D957	12	Û	Ð	Prostate	G 11:530
		**************************************			The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa	

Unknown	D9S12	13	6	0.46	Ovary	CR 55:2150
Unknown	D9S119	70	38	0.54	Bladder	0 11:1671
Unknown	D9S197	6	3	0.5	Kidney	GCC 12:76
Unknown	D9S197	26	5	0.19	Melacoma	CR 56:589
Unknown	D9S22	252	154	0.61	Bladder	CR 53:1230
Unknown	D95176	70	38	0.54	Bladder	O 11.1671
Unknown	D9S176	6	1	0.17	Kidney	GCC 12:76
Unknown	D9529	4	1	0.25	Head&Neck	CL 79:67
Unknown	D9S29	19	11	0.58	Ovary	CR 55:2150
Doknown	D9S109	70	37	0.53	Bladder	0 11:1671
Unknown	D9S109	5	1	0.2	Kidnev	GCC 12:76
Unknown	D9S109	29	6	0.21	Ovary	CR 55:2150
Unknown	D9S127	70	36	0.51	Bladder	0 11:1671
Onknown	D95127	24	7	0.29	Dvary	CR 55:2150
Unknown	D9S127	33	18	0.55	Ovary	BJC 73:420
Unknown	D9553	70	38	0.54	Bladder	***************************************
Unknown	D9S53	19	3	0.16	Head&Neck	O 11/1671 CR 54:1152
Unknown	D9853	35	12	0.10	Overy	***************************************
Unknown	D9S53	33	19	0.58		CR_55-2150
Unknown	D9553	24	13	0.04	Ovary	BJC 73:420
Unknown	D9S58	70	37	0.53	Uteros Bladder	CR 54:4294
Unknown	09858	27	7	0.33	Overv	0 11:1671
Unknown	D9S105	70	37	0.53		CR:55:2150
Unknown	HXB	70	39	0.53	Bladder	0 11:1671
Unknown	нхв	33	17	0.52	Bladder	0.11:1671
Unknown	FXB	24	10	0.32	Ovary	BJC 73:420
Unknown	НХВ	19	1	0.42	Overy	CR 55:2150
Unknown	D9S155	33	15	***************************************	Uterus	CR 54:4294
Unknown	D9S16	12	6	0. <b>(5</b> 0.5	<u>Ovary</u>	BUC 73:420
Onknown	D9859	70	37	0.5 0.53	Ovary	CR 55:2150
Unknown	D9S59	33	18		Bladder	0 11:16/1
Unknown	D9859	30	10	0.55 <b>0.33</b>	Ovary	BJC 73:420
Unknown	D9S154	70	38		Ovary	CR 55:2150
Onknown	D9S154	34	5	0.54	Bladder	0 11:1671
Unknown	D9S302	36	4	0.15	Cervix	CR 56::197
Unknown	D98302	36	4	0.11 0.11	Brain	CR 55:4696
Unknown	D9S258	70	35		Brain	CR 55:4696
33	GSN	70	-39	0.5	Bladder	0 11:1671
33	GSN	17	3	0.56	Bladder	0.11:1671
33	GSN	5		0.18	Head&Neck	CR 54:1152
33	GSN		A A COLUMN TO THE PROPERTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T	0	Kidney	GCC 12:76
Onknown	GSN	18 33	8 16	0.44	Ovary	BJC 69:429
33	GSN	***************************************		D.48	Dvary	BJC:73:420
Unknown	D9549	15 <b>252</b>	7	0.47	Ovary	CR 55:2150
31-34		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	154	0.61	Bladder	CR 53:1230
31-34	D9S28 D9S28	39	5	0.13	Bladder	CR 54:2848
33	U3028	1	1	1	Head&Neck	CL 79167

77 / 214

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D9915	70	37	0.53	Bladder	0.11:1671
Unknown	D9S15	11	1	0.09	Breast	CR 50:7184
13-21.1	D9S15	6	3	0.5	Cervix	GCC 9:119
13-21.1	D9S15	14	1	0.07	Esophageal	CR 54:2996
Onknown	D9915	22	9	0.41	Esophageal	GCC 10:177
Unknown	D9S15	12	2	0.17	Kidney	CR 51:820
13-21.1	D9S15	6	1	0.17	Kidney	GCC 12:76
Unknown	D9S15	8	1	0.12	Lung	CR 52:2478
13-21.1	D9915	14	5	0.36	Ovary	BJC 69:429
Unknown	D9S15	4	0	0	Ovary	CR 51:5118
Unknown	D9S15	16	2	0.12	Ovary	CR 55:2150
Unknown	D9S15	33	15	0.45	Ovary	BJC 73:420
Onknown	D9915	10	3	0.3	Sarcoma	CR 52:2419
13-21.1	D9S15	10	2	0.2	Uterus	GCC 9:119
Unknown	D9S18	252	151	0.6	Bladder	CR 53:1230
Unknown	D9S18	7	0	0	Cervix	GCC 9:119
Onknown	D9918	28	10	0.36	Esophageal	CR 54:2996
Unknown	D9S18	13	4	0.31	Ovary	IJC 54:546
Unknown	D9518	16	1	0.06	Utexus	GCC 9:119
Unknown	D9S27	8	2	0.25	Testis	0 9:2245
Onknown	D9S103	70	36	0.51	Bladder	0 11:1671
Unknown	D9S103	33	16	0.48	Ovary	BJC 73:420
Unknown	D9S166	В	2	0.25	Ovary	0.11:1249
Unknown	D9S166	3	0	0	Ovary	0 11:1249
Onknown	ASSP3	252	155	0.62	Bladder	CR 53:1230
Unknown	ASSP3	8	0	0	Liver	CCG 48:72
11-22.0	ASSP3	19	7	0.37	Ovary	BJC 69:429
11-22.0	ASSP3	8	0	0	Stomach	CR 48:2988
Onknown	5153	70	37	0.53	Bladder	0.11:1671
pter-qll	D9S1	2	0	0	Cervix	CR 49:3598
pter-gll	D991	13	1	0.08	Colon	IJC 53:382
pter-qll	D9S1	7	0	0	Liver	JJCR 81:108
pter-gll	D9S1	5	. 0	0	Neuroblasto	om CR: 49:1095
					ā	
pter-qll	D9S1	1	0	0	Pancreas	CR 54:2761
pter-gl1	D9S1	14	1	0.07	Stomach	CR 52:3099
pter-q11	D9S1	6	0	0	Uterus	CR 51:5632
Unknown	D9S167	70	38	0.54	Bladder	0 11:1671
Unknown	D9S201	70	36	0.51	Bladder	0 11:1671
Unknown	D9S201	2.6	7	0.27	Ovary	CR 55:2150
Unknown	D9S201	33	13	0.39	Ovary	BJC 73:420
Unknown	D99283	70	37	0:53	Bladder	0 11:1671
Unknown	D9S283	33	13	0.39	Ovary	BJC 73:420
Unknown	D9S12	70	36	0.51	Bladder	0.11:1671
Unknown	D9S12	9	0	0	Colon	CCG 48:167
Unknown	D9S12	33	12	0.36	Ovary	BUC 73:420

21	S161	15	5	0.33	Esophageal	
21	S161	5	1	0.2	Kidney	CL 97:129
21	9161	10	2	0.2	Ovary	GCC 12:76
21	S161	14	0	0	Ovary	0 11:1249
Uuknown	D9S104	117	20	0.17	Breast	0 11:1249
Unknown	D9S104	63	27	0.43	Esophageal	IJC 64:378
Unknown	D95104	33	15	0.45	Ovary	IJC 69:1
Unknown	D9S104	19	4	0.21	Uterus	BJC 73:420
21-qter	D9852	12	5	0.42	Ovarv	CR 54:4294
Unknown	D9S165	4	0	0	Ovary	GO 55:245
Unknown	098165	8	0	G	Ovary	0 11:1249 0 11:1249
Unknown	D9S200	11	2	0.18	Esophageal	
Unknown	D9S200	25		0.52	Head&Neck	CL 97:129
Unknown	D9S200	33	13	0.39		CR 54:1152
Unknown	D98200	13	1	0.08	Ovary	BJC 73:420
Unknown	D9S200	13	4	0.31	Ovary	0.11:1249
12	09655	1.4		0.07	Brain	0 11:1249
12	D9S55	18	2	0.11	Brain	CR 54:1397
12	D9955	18	2	0.11	Brain	CR 54:1397
Unknown	D9S47	252	152	0.6	Bladder	CR 54:1397
Unknown	IENa- D9S:1751-	31	19	0.61	Bladder	CR 53:1230
	736-1747-1748-			0101	B.aurer	CR.3333213.
	1752-171					
Unknown	Unknown	12	0	0	Brain	CR 50:5784
Unknown	D9S18	30	17	0.57	Esophageal	GCC 10:177
Unknown	MTS1	5	5	1	Esophageal	0 9:3737
Unknown	D9S168-D9S166	5	2	0.4	Kidney	PNAS 92:2854
Unknown	D9S168-D9S166	19	3	0.16	Kidney	PNAS 92:2854
Unknown	D9S:168-171	50	20	0.4	Leukemia	CR 55:5377
Unknown	Unknown	33	17	0.52	Lung	CR 54:2322
Unknown	D95171-D95126-	29	17	0.59	Lung	JCRCO 121:291
Unknown	D95169	***************************************				
OTTATIONIT	D9S171-D9S126- D9S169	6	0	0	Lung	JCRCO 121:291
Unknown	D9S171-D9S126-	47	10			
	D9S169	4.7	10	0.21	Lung	JCRCO 121:291
Unknown	ovc	15	5	0.33	0	CD 53.3303
SUM		4921	1868	0.33	Ovary	CR 53:2393
~~~~				V.30		

PCT/US98/05419

21	D9S157	5	1	0.2	Kidnev	GCC 12:76
Unknown	D9S168	120	17	0.14	Breast	IJC 64:378
Unknown	D96168	-33	15	0.45	Ovary	BJC 73:420
21	CDKN2	109	20	0.18	Bladder	JNCI 87:1524
21	p15-p16	50	28	0.56	Esophageal	HMG 4:1883
21	CDKN2	55	1	0.02	Kidnev	JJCR 86:795
21	CDKN2	34	7	0.21	Lung	GCC 14:164
21	CDKN2	50	24	0.48	Ovary	IJC 63:222
21	p15-p16	56	3	0.05	Sarcoma	CGC 86:136
21	MTS2	100	18	0.18	Bladder	JNCI 87:1524
21	D9S162	90	10	0.11	Breast	IJC 64:378
21	D9S162	9	3	0.33	Esophageal	CL 97:129
21	D9S162	33	4	0.12	Head&Neck	
21	D9S162	41	13	0.32	Head&Neck	CR 54:4756
21	D95162	4	0	G.	Kidney	GCC 12:76
21	D9S162	33	17	0.52	Ovarv	BJC 73:420
21	D9S162	12	1	0.08	Ovary	0 11:1249
21	D9S162	15	3	0.2	Ovary	0 11:1249
21	D95171	139	28	0.2	Breast	IJC 64:378
21	D9S171	60	19	0.32	Esophageal	IJC 69:1
21	D9S171	11	4	0.36	Esophageal	CL 97:129
21	D9S171	3	0	0	Kidney	GCC 12:76
21	D95171	12	3	0.25	Kidney	JJCR 86:795
Unknown	D9S:162-171	6	3	0.5	Kidney	GCC 12:76
21	D9S171	.24	4	0.17	Lung	GCC 14:164
21	D9S171	8	5	0.62	Lung	CR 54:2307
Unknown	D9S:162-171	35	16	0.46	Melanoma	CR 56:589
21	D9S171	9	3	0.33	Ovary	0 11:1249
21	D9S171	33	16	0.48	Ovary	BJC 73:420
21	D9S171	15	1	0.07	Ovary	0 11:1249
Unknown	D95126	252	152	0.6	Bladder	CR 53:1230
Unknown	D9S126	252	152	0.6	Bladder	CR 53:1230
Unknown	D9S126	80	15	0:19	Breast	IJC 64:378
Unknown	D9S126	16	3	0.19	Endocrine	CR 56:599
Unknown	IFN2a- D9S126	5	5	1	Lung	CR 55:513
Unknown	D9S126	9	0	0	Ovary	0 11:1249
Unknown	D9S126	11	1	0.09	Ovary	0 11:1249
Unknown	D9S126	51	17	0.33	Ovary	AJHG 55:143
Unknown	D9S126	30	3	0.1	Ovary	CR 55:2150
Unknown	D9S126	33	17	0.52	Ovary	BJC 73:420
Unknown	D9S736	33	18	0.55	Ovary	BJC 73:420
Unknown	D9S3	252	154	0.61	Bladder	CR 53:1230
21	D983	16	3	0.19	Bladder	CR 54:2849
21	D9S3	4	1	0.25	Breast	CR 53:3804
21	D9S169	22	4	0.18	Cervix	CR 56:197
21	D9S169	8	6	0.75	Lung	CR 54:2307

Band	Marker.	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Onknown	D95143	33	17	0.52	Ovary	BJC 73.420
Unknown	D9S129	33	18	0.55	Ovarv	BJC 73:420
22-24	D9554	61	11	0.18	Bladder	CR :54:2848
22-PTER	D9S54	10	3	0.3	Ovary	BJC 69:429
Unknown	D99132	5	1	0.2	Ovary	0 11:1249
Unknown	D9S132	3	0	0	Ovary	0 11:1249
Unknown	D9S199	21	15	0.71	HeadsNeck	CR 54:1152
Unknown	D9S199	10	0	0	Ovary	0 11:1249
Unknown	D95199	12	2	0.17	Ovary	0 11.1249
Unknown	D9S199	33	17	0.52	Ovary.	BJC 73:420
Unknown	D9S324	23	Ž	0.09	Ovazy	CR 55:2150
Unknown	D9S144	12	1	0.08	Ovary	0 11:1249
Unknown	D9S144	8	3	0.38	Ovary	0 11 1249
22	IFNA	40	26	0.65	Bladder	CR 54:2848
22	IFNA	12	1	0.08	Brain	CR 54:1397
22	IFNA	19	4	0.21	Brain	CR 54:1397
22	IFNA	89	21	0.24	Breast	LJC 64:378
Unknown	IFNA	13	4	0.31	Esophageal	CL 97:129
22	IFNA	2	0	0	Kidney	GCC 12:76
Unknown	IFNA	40	8	0.2	Kidney	JJCR 86:795
Onknown	IFNA	6	5	0.83	Lung	CR 55:28
Unknown	IFNA	15	8	0.53	Ovary	GO 55:245
Unknown	IFNA	28	3	0.11	Ovary	CR 55:2150
Unknown	IFNA	33	19	0.58	Ovary	BJC 73:420
22	IFNA	58	20	0.34	Ovary	AJHG 55:143
Unknown	IFNA	7	0	0	Ovary	0 11:1249
Unknown	IFNA	3	0	0	Ovary	0.11:1249
22	IFNA	19	5	0.26	Stomach	CR 55:1933
Onknown	IFMB	252	153	0.61	Bladder	CR 53:1230
22	I FNB1	252	153	0.61	Bladder	CR 53:1230
Unknown	IFNB	. 6	G	0	Breast	CR 53:4356
22	IFNB1	1	0	0	Breast	GCC 2:191
22	TFNB1	12	1	0.08	Cervix	CR 54:4481
22 22	I FNB1	42	5	0.12	Leukemia	AHEM 68:171
22	IFNB1	44	C	0	Leukemia	AHEM 68:171
22	I FNB1	6	0	0	Prostate	G 11:530
Unknown	TFNB1	7	5	0.71	Testis	0.9:2245
'0 00000000000000000000000000000000000	D9S156	126	30	0.24	Breast	IJC 64:378
Unknown Unknown	D9S156	11	4	0.36	Esophageal	CL 97:129
200000000000000000000000000000000000000	D9S156	18	13	0.72	Head&Neck	CR 54:1152
Onknown Unknown	D9S156	3	0	0	Ovary	0 11:1249
Unknown 21	D9S156	13	4	0.31	Ovary	0 11:1249
21	D9S157	133	30	0,23	Breast	IJC 64:378
21	D9S157	30	5	0.17	Cervix	CR 56:197
21	D99157	13	6	0.46	Esophageal	CL 97:129
21	D9S157	65	25	0.38	Esophageal	IJC 69:1

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D85260	28	7	0.25	Prostate	CR 54:6061
q22	D8S167	35	4	0.11	Prostate	CR 54:6061
Unknown	D8S257	16	O.	0	ReadtNeck	CR 54:4756
Unknown	D8S257	20	8	0.4	Head&Neck	CR 54:1152
Unknown	D89257	14	O	0	HeadsNeck	CR 54:4756
Unknown	D8S257	6	3	0.5	Kidney	GCC 12:76
Unknown	D8S257	26	2	0.08	Melanoma	CR.56:589
Unknown	D8S257	31	17	0.55	Prostate	CR 54:6061
Unknown	D89273	30	- 6	0.2	Cervix	CR 56:197
Unknown	D8S273	19	3	0.16	Head&Neck	CR 54:1152
Unknown	D85284	21	5	0.24	Cervix	CR 56:197
24	TG	2	0	0	Neuroblaston	*******************************
		-	•	•	а	
24	TG	14	4	0.29	Ovary	CR 53:2393
24	TG	9	0	0	Prostate	G 11:530
24	ŦG	Ð	0	0	Prostate	GCC 3:215
24	D8S39	14	1	0.07	Breast	CR 50:7184
24	D8939	14	0	0	Cervix	CR 54:4481
24	D8S39	5	0	0	Cervix	GCC 9:119
24	D8S39	9	0	Ō	Esophageal	CR 51:2113
24	D8S39	22	0	0	Esophageal	CR 54:2996
24	D8939	12	1	0.08	Kidney	CR 51:820
24	D8S39	20	4	0.2	Liver	CR 51:89
24	D8\$39	1	1	1	Lung	CR 52:2476
24	D8S39	3	1	0.33	Luna	CR 52:2478
24	D8939	8	1	0.12	Luna	CR 52:2478
24	D8539	1	1	1	Lung	CR 52:2478
24	D8539	16	5	0.31	Ovarv	CR 51:5118
24	D8S39	7	0	0	Prostate	GCC 3:215
24	D8539	17	2	0.12	Prostate	CR 53:3869
24	D8539	14	1	0.07	Sarcoma	CR 52:2419
24	D8S39	18	4	0.22	Testis	0 9:2245
24	D8539	8	0	0	Uterus	GCC 9:119
24	D8939	8	Đ	O	Oterus	GCC 9:119
Unknown	Unknown	25	0	0	Brain	CR 50:5784
22-23	Unknown	2	0	0	Cervix	BJC 67:71
Unknown	D8S272	15	0	0	Endocrine	CR 56:599
Unknown	D8S177	42	4	0.1	Esophageal	GCC 10:177
Unknown	D8S272-D8S284	6	0	0	Kidney	PNAS 92:2854
Unknown	D89272-D8S284	21	1	0.05	Kidney	PNA9 92:2854
Unknown	D8S:272-281	21	2	0.1	Leukemia	CR 55:5377
22-QTER	D8S161	19	5	0.26	Ovary	BJC 69:429
Unknown	D8S198	22	1	0.05	Uterus	CR 54:4294
Unknown	D8584	20	-0	0.03	Uterus	CR 54:4294
SUM		661	94	0.14		
2011		501	24	0.14		

p12	D8S87	20	5	0.25	Prostate	0 11:2171
p12	D8S87	18	4	0.22	Prostate	AJP 144:1
p12	08987	4	4	1	Sarcoma	AJP 14441
p12	D8S87	25	5	0.2	Uterus	CR 54:4294
Unknown	D89255	28	10	0.36	Prostate	CR 54:6061
Unknown	D8S255	10	1	0.1	Testis	LI 73:606
11.2	ANKL	78	18	0.23	Colon	BJC 70:18
11.2	ANK1	7	4	0.57	Prostate	AJP 144:1
11.2	ANKI	1	Ð	0	Sarcoma	AJP 144:1
11.2122	D8S194	40	6	0.15	Colon	CR 52:5368
11.2122	D85194	40	5.5	0.12	Colon	CR 53:1172
11.2122	D8S194	45	5	0.11	Liver	CR 52:5368
11.2122	D89194	45	5	0.11	Liver	GCC 7:152
11.2122	D8S194	26	3	0.12	Prostate	CR 53:3869
11.2223	D8S234	58	13	0.22	Calon	CR 53:1172
11.2223	D8S234	57	14	0.25	Liver	GCC 7:152
11.2223	D89234	13		0.23	Lung	GCC 7:85
11.2223	D8S234	15	2	0.13	Prostate	GCC 13:168
23.23	D8S140	33	6	0.18	Colon	CR 52:5368
23.23	D8S140	29	8	0.28	Colon	CR 53:1172
23:23		39	7	0.18	Liver	GCC 7:152
23.23	D8S140	39	7	0.18	Liver	CR 52:5368
23.23	D85140	38	4	0.11	Prostate	CR 53:3869
11.0-12	POLB	15	0	0	Colon	GCC 10:1
12-11.2	PLAT	7	2	0.29	Prostate	GCC 3:215
12-11.2	PLAT	18	0	0	Prostate	0 11:2121
11.23	D8\$223	24	0	0	Colon	CR 53:1172
11.23	D8S223	37	0	0	Liver	GCC 7:152
11.23	D89223	37	0	0.	Liver	GCC 7:152
Unknown	D8S:262-261	26	17	0.65	Bladder	CR 55:5213
Unknown	D852	5	2	0.4	Breast	CR 53:3804
Unknown	D8S26	27	1	0.04	Breast	CR 53:4356
Unknown	D85349	18	10	0.56	Breast	CR 55:4995
Unknown	D8S264-D8S265- D8S560	22	4	0.18	Kidney	PNAS 92:2854
Unknown	D8S264-D8S265-	6	1	0.17	Kidney	PNAS 92:2854
	D8S560					
Unknown	D8S238	37	7	0.19	Liver	CR 52:5368
21	ARDRA3	19	5	0.26	Ovary	IJC 54:546
Unknown	D8S339	28	10	0.36	Prostate	CR 54:6061
22-21.3	D8S360	11	- 5	0.45	Prostate	0 11:2121
Unknown	D8S18	18	0	0	Testis	G 5:134
SUM		5603	1838	0.33		

21.3-22	D89334	19	B	0.42	Lung	GCC 10.7
21.3	D8S334	6	2 .	0.33	Lung	GCC 7:85
21.3	D8S334	16	9	0.56	Prostate	GCC 13:168
21-23	EGR3	28	14	0.5	Colon	CR 53:1172
21-23	EGR3	33	12	0.36	Liver	GCC 7:157
21.23	CI8-586	25	7	0.28	Colon	CR 53:1172
21:23	CI8-586	20	9	0.45	Liver	GCC 7:152
21	D8S133	10	5	0.5	Prostate	GCC 11:119
21	D89133	27	7	0.26	Prostate	·0 11:2171
21	D8S133	29	16	0.55	Prostate	CR 54:6061
21.23	D85220	50	18	0.36	Colon	CR 53:1172
21.23	D8S220	35	13	0.37	Colon	CR 52:5368
21.23	D89220	43	16	0.37	Liver	CR 52:5368
21.23	D8S220	50	17	0.34	Liver	GCC 7:152
21.23	D85220	17	4	0.24	Lung	GCC 7:85
21.23	D8S220	18	6	0.33	Prostate	GCC 13:168
21.2-:3	D89220	27	16	0.59	Prostate	CR 53:3869
Unknown	SFTP2	40	11	0.28	Colon	GCC 10:1
Onknown	D8S136	20	7	0.35	Breast	CR 55:4995
Unknown	D8S136	11	6	0.55	Colon	GCC 11:195
Unknown	D89136	1	ï	1	Prostate	AJP 144:1
Unknown	D8S136	28	16	0.57	Prostate	CR 54:6061
21.12	D86221	53	14	0.26	Calon	CR 53:1172
21.12	D8S221	41	10	0.24	Liver	GCC 7:152
21.12	D89221	10	0	0	Lung	GCC: 7:85
21	NEFL	15	1	0.07	Brain	CR 50:5784
21	NEFL	2	1	0.5	Breast	CR 53:3804
21	NEFL	22	3	0.14	Cervix	CR 54:4481
21	NEFL	35	11	0.31	Colon	GCC 10:1
21	NEFL	8 ,	4	0.5	Colon	GCC 11:195
21	NEFL	50	22	0.44	Colon	CR 53:1172
21	NEFL	47	19	0.4	Liver	GCC 7:152
21	NEFL	14	5	0.36	Lung	GCC 7:85
21	NEFL	6	2	0.33	Prostate	CR 53:3869
21	NEFL	8	7	0.88	Prostate	GCC 3:215
21	NEFL	19	8	0.42	Prostate	GCC 13:168
21	NEFL	- 21	9	0.43	Prostate	0 11:2171
21	NEFL	19	3	0.16	Testis	0 9:2245
Onknown	D8S137	16	10	0.62	Breast	CR 55:4995
Unknown	D8S137	85	29	0.34	Colon	BJC 70:18
Unknown	D8S137	1	1	1	Prostate	AJP 144:1
Unknown	D8S137	23	16	0.7	Prostate	CR 54:6061
Onknown	D8S137	2	. 2	1	9arcoma .	AJP:0144:1
Unknown	D8S283	28	11	0.39	Prostate	CR 54:6061
P12	D8587	14	2	0.14	Colon	AJP 144:1
p12	D8S87	24	9	0.38	Prostate	CR 54:6061

21.3-22	Unknown	42	19	0.45	Colon	
21.3-22	Unknown	33	10	0.3	Liver	GCC 10:7 GCC 10:7
21.3-22	Unknown	21	10	0.48	paud	GCC 10:7
21.3-22	Unknown	15	8	0.53	Prostate	GCC 13:168
21.3-22	Unknown	48	14	0.29	Colon	GCC 13:168
21.3-22	Unknown	39	9	0.23	Liver	GCC 10:7
21.3-22	Unknown	22	7	0.32	Lung	GCC 10:7
21.3-22	Unknown	15	8	0.53	Prostate	GCC 13:168
21.3-22	Unknown	49	22	0.45	Colon	GCC 10:7
21.3-22	Unknown	40	9	0.23	Liver	GCC 10:7
21.3-22	Unknown	23	7	0.3	Lung	GCC 10:7
21.3-22	Unknown	15	8	0.53	Prostate	GCC 13:168
21.3-22	Unknown	51	31	0.61	Colen	GCC 10:7
21.3-22	Unknown	54	16	0.3	Liver	GCC 10:7
21.3-22	Unknown	24	5	0.21	Lung	GCC 10:7
21.3-22 21.3-22	Unknown	20	8	0.4	Colon	GCC 10:7
21.3-22	Unknown	25	7	0.28	Liver	GCC 10:7
21.3-22	Unknown	17	4	0.24	Lung	GCC 10:7
22	Unknown	1	0	0	Pancreas	CR 54:2761
22	LPL BPL	10 13	4 .2	0.4	Colon	GCC 11:195
22	LPL	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.15	Colon	AJP 144:1
22	LPL	32 2 1	3	0.12	Colon	GCC 10:1
22	LPL	47	•••	0.14	Colon	CR:53:1172
22	LPL	17	10	0.21	Colon	BJC 70:18
22	LPL	38	19	0.24	Leukemia	B.83:3449
22	LPL	- 5	4	0.5 0.67	Liver	GCC 7:152
22	LPL	7	3	***************************************	Lung	CR 55:28
22	LPL	19	8	0.43 0.42	Lung	GCC 8:75
22	LPL	13	5	0.38	Prostate Prostate	AJP 144:1 GCC 13:278
22	LPL	7	6	0.86	Prostate	GCC 13:278
22	LPL	32	15	0.47	Prostate	CR 53:3869
22	LPL	24	11	0.46	Prostate	0.11:2121
p22	LPL-G214-15	29	14	0.48	Prostate	CR 54:6061
22	LPL	2	Ð	0	Sarcoma	AJP 144:1
22	LPL	19	2	0.11	Uterus	CR 54:4294
Unknown	D89258	16	3	0.19	Breast	CR:55:4995
Unknown	D8S282	27	13	0.48	Prostate	CR 54:6061
Unknown	D85298	30	18	0.6	Prostate	CR 54::6061
21.3	D8S232	59	17	0.29	Colon	CR 53:1172
21.3	D89232	40	13	0.33	Liver	GCC 7:152
21.3	D8S232	19	7	0.37	Lung	GCC 7:85
21.3	D8S334	47	16	0.34	Colon	CR 53:1172
21.3-22	D8S334	49	18	0.37	Colon	GCC 10:7
21.3-22	D89334	37	8	0.22	Liver	GCC 10:7
21.3	D8S334	39	15	0.38	Liver	GCC 7:152

Chromosome 8 - p Arm

Unknown	D89261	24	3	0.12	Melanoma	CR 56:589
Unknown	D8S261	31	17	0.55	Prostate	CR 54:6061
22-pter	D8S163	44	19	0.43	Calon	CR 53:1172
22-pter	D8S163	31	14	0.45	Liver	GCC 7:152
22-pter	D89163	14	3	0.21	Lung	GCC 8:75
22-pter	D8S163	1	0	0	Pancreas	CR 54:2761
22-pter	D8S163	23	14	0.61	Prostate	CR 53:3869
22-pTER	D8S163	18	9	0.5	Prostate	GCC 13:168
21.3-22	CI8-1344	71	25	0.35	Calon	GCC 10:7
21.3-22	CI8-I344	40	10	0.25	Liver	GCC 10:7
21.3-22	CI8-1344	30	8	0.27	Lung	GCC 10:7
21.3-22	CI8-2195	35	15	0.43	Colon	GCC 10:7
21.3-22	CI8-2195	32	7	0.22	Liver	GCC 10:7
21.3-22	CI8-2195	20	6	0.3	Lung	GCC 10:7
21,3-22	C18-2014	24	7	0.29	Colon	GCC 10:7
21.3-22	CI8-2014	6	2	0.33	Liver	GCC 10:7
21.3-22	CI8-2014	17	7	0.41	Lung	GCC 10-7
21.3-22	CI8-2014	8	3	0.38	Prostate	GCC 13:168
21.3-22	D8S233	21	10	0.48	Calon	GCC 10:7
21.3-22	D8S233	24	11	0.46	Colon	CR 53:1172
21.3-22	D89233	28	12	0.43	Liver	GCC 7:152
21.3-22	D8S233	14	. 5	0.36	Liver	GCC 10:7
21.3-22	D86233	9	2	0.22	Lung	GCC 8:75
21.3-22	D8S233	7	3	0.43	Lung	GCC 10:7
Unknown	MSR	56	5	0.09	Breast	CR: 52:5368
21.3-22	MSR	74	27	0.36	Colon	GCC 10:7
Unknown	MSR	26	12	0.46	Colon	CR 52:5368
22	MSR	74	28	0.38	Colon	CR 53:1172
Unknown	MSR	27	2	0.07	Kidney	CR 52:5368
Unknown	MSR	33	14	0.42	Liver	JJCR 84:893
22	MSR	87	37	0.43	Liver	GCC 7:152
21.3-22	MSR	54	10	0.19	Liver	GCC 10:7
Unknown	MSR	35	14	0.4	Lung	CR 52:5368
Unknown	MSR	21	9	0.43	Lung	GCC 8:75
21.3-22	MSR	38	16	0.42	Lung	GCC 10:7
Unknown	MSR	12	4	0.33	Ovary	CR 52:5368
21.3-22	MSR	29	18	0.62	Prostate	GCC 13:168
22	MSR	29	20	0.69	Prostate	CR 53:3869
Onknown	MSR	18	4	0.22	Stomach	CP 52:5368
21.3-22	Unknown	33	16	0.48	Colon	GCC 10:7
21.3-22	Unknown	9	3	0.33	Liver	GCC 10:7
21.3-22	Unknown	20	12	0.6	Lung	GCC 10:7
21.3-22	Unknown	18	11	0.61	Prostate	GCC 13:168
21.3-22	Unknown	21	9	0.43	Colon	GCC 10:7
21.3-22	Unknown	6	2	0.33	Liver	GCC 10:7
21.3-22	Unknown	22	15	0.68	Lung	GCC 10:7

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
21	08317	21	7	0.33	Breast	CR 53:4356
21	D8S17	3	1	0.33	Breast	CR 53:3804
21	D8S17	9	1	0.11	Ovary	IJC::54:546
Unknown	D8S264	30	6	0.2	Cervix	CR 56:197
Unknown	D85252	5	2	0.4	Kidney	GCC 12:76
Unknown	D8S262	15	2	0.13	Leukemia	CR 55:5377
Unknown	D8S262	18	9	0.5	Prostate	CR 54:6061
23	D8S201	9	5	0.56	Colon	AJP 144:1
23	D86201	28	6	0.21	Prostate	0.11:2121
23	D8S201	15	8	0.53	Prostate	AJP 144:1
23	D89201	22	3	0.14	Prostate	CR 53:3869
23	D8S201	3	1	0.33	Sarcoma	AJP 144:1
23	D857	11	5	0:45	Calon	GCC 10:1
23	D8S7	18	6	0.33	Esophageal	CR 54:2996
23	0897	10	6	0.4	Ovary	CR 53:2393
23	D8S7	8	3	0.38	Prostate	GCC 3:215
23	D857	6	-	0.5	Prostate	G 11:530
23	D8S7	10	1 .	0.1	Sarcoma	CR 52:2419
Unknown	D85277	18	0	0	Endocrine	CR 56:599
Unknown	D8S277	26	11	0.42	Prostate	CR 54:6061
23.12	D85337	18	5	0.28	Colon	CR 53:1172
23.12	D8S337	15	7	0.47	Liver	GCC 7:152
23,12	D88337	3	0	0	Lung	GCC 8:75
23.12	D8S337	14	6	0.43	Prostate	GCC 13:168
23.12	D8S336	39	10	0.26	Colon	CR 53:1172
23.12	D8S336	48	18	0.38	Liver	GCC 7:152
23.12	D89336	7	3	0.43	Lung	GCC 8:75
21.3-22	D8S335	53	18	0.34	Colon	CR 53:1172
21.3-22	D85335	30	15	0.5	Colon	GCC 10:7
21.3-22 21.3- 2 2	D8S335	46	17	0.37	Liver	GCC 7:152
21.3-22	D89335	18	4	0:22	Liver	GCC:10:7
21.3-22	D8S335	27	12	0.44	Lung	GCC 10:7
Unknown	D8S335	5	1	0.2	Lung	GCC 7:85
Unknown	D8S265	22	5	0.23	Cervix	CR 56:197
22	D89265	22	11	0.5	Prostate	CR 54:6061
22	CTSB	33	14	0.42	Colon	CR 53:1172
11.212	CTSB	23	7	0.3	Liver	GCC 7:152
11.212	Unknown	33	10	0.3	Colon	CR 52:5368
11.212	Onknown:	34	8	0.24	Colon	CR 53:1172
11.212	Unknown Unknown	34	0	0	Liver	GCC 7:152
Unknown	D8S254	12	O	0	Lung	GCC 7:85
Unknown	D89261	13	1	0.31	Breast	CR 55:4995
Unknown	D8S261	16	*******************************	0:06	<u>Head&Neck</u>	CR 54:4756
Onknown	D85261	18	1	0.06	Head&Neck	CR 54:4756
Unknown	D8S261	20	8	0.4	Read&Neck	CR 54:1152
	003201	6	3	0.5	Kidney	GCC 12:76

67 / 214

Chromosome 7 - p Arm

SUM 747 87 0.12

Unknown	D7S498	8	0	0	Head&Neck	CR 55:1347
Unknown	D7S498	4	- 6	0	Prostate	CR 54:6370
Unknown	D7S483	19	1	0.05	Breast	PNAS 91:12155
Unknown	p79505	111	0	0	Breast	PNAS 91:12155
Unknown	D7S396	5	0	0	Brain	CR 49:6572
Unknown	D7S396	22	- 6	0.27	Breast	PNAS 91:12155
Unknown	D7S396	20	3	0.15	Breast	CR 50:7184
Unknown	D75396	17	1	0.06	Esophageal	CR 54:2996
Unknown	D7S396	44	5	0.11	Esophageal	GCC 10:177
Unknown	D78396	23	5	0.26	Kidney	CR 51:820
Unknown	D7S396	28	3	0.11	Liver	CR 51:89
Unknown	D75396	34	5	0.15	Lung	CR 52:2479
Unknown	D7S396	19	4	0.21	Ovary	CR 51:5118
Unknown	075396	18		0	Sarcoma	CR 52:2419
36 36	D7S550 D7S550	6 28	0	0	Colon	CR 55:1347
36	***************************************	€5 6		0.11	<u>Esophageal</u>	IJC 69:1
36	D7S550	8	0	0	Head&Neck	CR 55:1347
36	D7S550 D7S550	8		0.12	Prostate	CR 54:6370
Unknown	Unknown	31	1	0.12	Prostate	CR 54:6370
Unknown	ABP1	6 6	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN	0	Erain	CR_50:5784
32-qter	D7S228	18	2	0.33	Breast	PNAS 91:12155
Unknown	D7S96	10	3	0.11	Cervis	CR 54:4481
3.3-ter	Unknown	32	0	0.3	Cervix	GCC 9:119
Unknown	D7S368	21	0	0	Colon Colon	BUC 59:750
Unknown	D7522	11	G	0	***********************	CCG 48:167 N 328:524
Unknown	Unknown	10	0	0	Endocrine Liver	BJC 64:1083
36	Unknown	12	O.	Ö	Liver	BUC 67:1007
31.3-qter	Unknown	7	1	0.14	Pancreas	BJC 65:809
36	Unknown	4	0	0	Panczeas	CR 54:2761
31.3-qter	Unknown	19	2	0.11	Prostate	CSurveys 11:15
Unknown	Unknown	19	2	0.11	Prostate	PNAS 87:8751
3.3-ter	Unknown	9	0	0	Stomach	BJC 59:750
Unknown	D7522	47	11	0.23	Stomach	IJC 59:597
Unknown	D7S22	41	10	0.24	Stomach	CR 51:2926
Unknown	07563	35	8	0.23	Stomach	IJC 59:597
Unknown	D7S64	16	0	0	Stomach	IJC 59:597
Unknown	D7595	30	13	0.43	Stomach	TJC 59:597
Unknown	D7S22	22	2	0.09	Testis	GCC 13:249
32-qter	D7\$228	23	2	0.09	Testis	0.9:2245
Unknown	TCBR	3	0	0	Testis	CCG 52:72
Unknown	TCBR	3	0	0	Pestia	CCG 52:72
Unknown	TCBR	2	0	0	Testis	CCG 52:72
11,23	D79440	19	1	0.05	Ocerus	CR 54:4294
Unknown	D 7 S96	16	3	0.19	Uterus	GCC 9:119
SUM		2325	517	0.22		

31	MET	14	1	0.07	Sarcoma	CR 52:2419
31	MET	35	7	0.2	Stomach	IJC 59:597
31	MET	1	0 -	0	Testis	CCG 52:72
31	MET	1	0	0	Test1s	CCG 52:70
31	MET	1	0	0	Testis	CCG 52:72
Unknown	078633	7	4	0.57	Colon	CR 55:1347
Unknown	D75633	6	2	0.33	Head&Neck	CR 55:1347
Unknown	D78633	7	3	0.43	Prostate	CR 54:6370
Unknown	D7S677	9	6	0.67	Colon	CR 55:1347
Unknown	D7S677	10	q	0.4	Head&Neck	CR 55:1347
Unknown	D7S677	8	5	0.62	Prostate	CR 54:6370
Unknown	D75655	8	4	0.5	Colon	CR 5501341
Unknown	D7S655	7	3	0.43	Head&Neck	CR 55:1347
Unknown	078655	34	6	0,43	Prograte	CR 54:6370
Unknown	D7S522	11	9	0.82	Breast	PNAS 91:12155
Unknown	D79522	10	8	0.8	Colon	CR 55-1341
Unknown	D7S522	15	8	0.53	Head&Neck	CR 55:1347
Unknown	D78522	- 6		0.83	Prostate	CR 54:6370
Unknown	D7S480	21	9	0.43	Breast	PNAS 91:12155
Unknown	D75480	27	4	0.15	Cervix	CR 56:197
Unknown	D7S480	16	7	0.44	Colon	CR 55:1347
Unknown	D7S480	10	9	9.4	Head&Neck_	CR 55:1347
Unknown	D7S480	11	3	0.27	Prostate	CR 54:6370
Unknown	D75487	15	4	0.27	Breast	PNAS 91:12155
Unknown	D7S487	8	2	0.25	Colon	CR 55:1347
Unknown	D7S487	10	0	0	Head&Neck	CR 55:1347
Unknown	D7S487	19	1 1	0.05	Leukemia	CR 55:5377
Unknown	D75487		**************	0.12	Prostate	CR 54:6370
31	CFTR	9	2	0.22	Ovary	BJC 69:429
Unknown	D75490	14	5	0,36	Breast	PNAS 91:12155
Unknown	D7S490	10	4	0.4	Colon	CR 55:1347
Unknown	D75490	12		0.33	Bead&Neck	CR 55:1347
Unknown	D7S490	6 12	1 5	0.17	Prostate	CR 54:6370
31-32	078125		************	0.42	Breast	PNAS 91:12155
31-32	D7S125	15 22	2 6	0.13	Ovary	IJC 54:546 PNAS 91:12155
Unknown	D79504			0.27	_ Breast	
Unknown	D7S514	10 19	1 3	0.1	Breast	PNAS 91:12155 PNAS 91:12155
Unknown	D7\$500	******************	***************************************	0.16	Breast	STATE OF THE PARTY
Unknown	D7S500	31	9	0.29	Cervix	CR 56:197
Unknown	D75495	18	0	0	Breast	PNAS 91:12155
Unknown	D7S495	17	0	0	Head&Neck	CR 54:4756
Unknown	075495	20	1	0.05	Head&Neck	CR. 5494756
Unknown	D7S495	24	7	0.29	Head&Neck	CR 54:1152
Unknown	D78495	26	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.04	Melanoma	CR 56:589
Unknown	D7S498	18 9	2	0.11	Breast	PNAS 91:12155
Unknown	D7S498	9	<u> </u>	0.22	Colon	CR 55:1347

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
21.3-22.1	COLYAZ	29	1	0.03	Breast	GCC 2:191
21.3-22.1	COLIA2	6	0	0	Cervix	CR 49:3598
21.3-22.1	COLIA2	12	0	0	Colon	N 331:273
21.3-22.1	COLIA2	15	1	0.07	Liver	JJCR 81:108
21.3-22.1	COLIA2	11	0	0	Liver	CCG #48:72
21.3-22.1	COLIA2	5	0	0		m CR 49:1095
		***************************************			a	CK 43.1033
21.3-22.1		10	2	0.2	Stomach	CR 52:3099
21.3-22.1	COLIA2	6	0	0	Uterus	CR 51:5632
Unknown	D76527	21	4	0.19	Breast	PNAS 91:12155
Unknown	D7S527	8	1	0.12	Colon	CR 55:1347
Unknown	079527	9	2	0,22	Head&Neck	CR 55:1347
Unknown	D7S527	8	1	0.12	Prostate	CR 54:6370
Unknown	D75479	12	1	0.08	Breast	PNAS: 91:12155
Unknown	D7S479	17	0	0	Endocrine	CR 56:599
Unknown Unknown	D79518	27	6	0.22	Breast	PNAS 91:12155
Unknown	D7S518	8	0	0	Colon	CR 55:1347
Unknown	D7S518	13	2	0.15	Head&Neck_	CR 55:1347
Unknown	D7S518 D7S515	11	3	0.27	Prostate	CR 54:6370
Unknown	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	13	3	0.23	Breast	PNAS 91:12155
Unknown	D7S496	17	8	0.47	Breast	PNAS 91:12155
Unknown	D75496	13	4	0:31	Colon	CR 55:1347
Unknown	D7S496	10	1	0.1	Head&Neck	CR 55:1347
22.3-31.2	D7S496	8	3	0.38	Prostate	CR 54:6370
Unknown	D7S13 D7S523	21	4	0.19	Breast	PNAS 91:12155
Unknown	D7S523	22	12	0.55	Breast	PNAS 91:12155
Unknown	D7S523	9	4	0.44	Colon	CR 55:1347
Unknown	D7S523	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	0.38	HeadsNeck	CR:55:1347
Unknown	D73323 D7918	7	2	0.29	Prostate	CR 54:6370
Unknown	D7S486	***************************************	3	0.43	Breast	PNAS 91:12155
Unknown	D73486	15 18	5	0.33	Breast	PNAS 91:12155
Unknown	D7S486	*******	9	0.5	Colon	CR:55:1347
Unknown	D75486	10 6	3 2	0.3	Head&Neck	CR 55:1347
Unknown	D7S23	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	************************************	0.33	Prostate	CR 54:6370
Unknown	D7S23	18	7	0.39	Breast	PNAS 91:12155
Unknown	D7S23	11	1	02.09	Cvary	BJC 69:429
Unknown	D7923	15 20	2	0.13	Ovary	CR 53:2393
31	MET	31		0.15	Oterus	CR:54:4294
31	MET	121	1 49	0.03	Breast	CR 53:4356
31	MET	± ∠ 1 221	***************************************	0.4	Breast	L.339:140
31	MET	18	84	0.38	Breast	GCC 12:304
31	MET	24	9	0.44	Breast	PNAS 91 12155
31	MET	24 15	2	0.08	Breast	GCC 2:191
31	MDR1-MET	12	•••••	0	.Colon	CCG 48:167
31	MET	9	0	0	Prostate	G 11:530
	****		3	0.33	Prostate	GCC 11:119

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
22	D7821	36	5	0.14	Stomach	CR 51:2926
22	D7S21	19	1	0.05	Stomach	HG 92:244
22	D7521	26	1	0.04	Testle	GCC 13-249
Unknown	D7S517	6	0	0	Kidney	PNAS 92:2854
Unknown	D75517	21	Ø		Kidney	PNAS 92:2854
Unknown	D7S370	18	3	0.17	Brain	CR 50:5784
Unknown	079370	. 8	1	0.12	Breast	CR 50:7184
Unknown	D7S370	24	2	0.08	Cervix	CR 54:4481
Unknown	D75370	24	5	0.21	Esophageal	CR 54 2996
Unknown	D7S370	10	2	0.2	Kidney	CR 51:820
Unknown	078370	10	O .		Liver	GE 51:89
Unknown	D7S370	18	5	0.28	Lung	CR 52:2478
Unknown	D7S370	26	4	0.15	Ovary	TJC 54 546 CR 54:2761
Unknown	D75370	2 23	2	0.04	Pancreas Testis	0 9:2245
Unknown Unknown	D7S370	20	2	0.1	Esophageal	GCC 10:177
Unknown	D75370	10	1	0.1	Esophageal	CR 51 2113
Unknown	D7S370	7	3	0.43	Ovary	CR 51:5118
Unknown	075370	17	2	0.12	Sarcoma	OR 52-2419
Unknown	D7S371	21	1	0.05	Breast	CR 53:4356
Unknown	D75371	2	-	Ü	Overy	CR 51:5116
13.0-12	EGFR	8	1	0.12	Cervix	CR 49:3598
13.0-12	EGFR	4	ũ	0	Liver	PNAS 86:8852
11.2-12	EGFR	18	3	0.17	Ovary	BJC 69:429
11.2-12	EGFR	14	0	Ü	CVALY	CR 49:1220
13.0-12	EGFR	5	1	0.2	Ovary	CR 50:2724
Unknown	EGFR	11	i i	0	Overy	CR 50:2724
13.0-12	EGFR	13	1	0.08	Prostate	G 11:530
Unknown	EGFR	10	0	<u>0</u>	Uterus	CR 51:5632
13.0-12	EGFR	16	2	0.12	Uterus	CR 54:4294
13.0-12	EGFR	16	2	0.12	Oterus	CR 54:4294
Unknown	D7S372	12	0	0	Brain	CR 49:6572
Unknown	D7S493	32	2	0,06	Cervix	CR 56:197
Unknown	D7S507	25	1	0.04	Cervix	CR 56:197
2.2-ter	Unknown		16	0.03	Colon Colon	BJC 59:750 CR 56:145
Unknown	D7S481	22 20	1.0	0.73	Endocrine	CR 56:599
Unknown Unknown	D7S507 D7S481	21	0	0	Head&Neck	CR 54:4756
Unknown	D75481	22	4	0.16	Head&Neck	CR 54:4756
Unknown	D7S507	26	6	0.23	Head&Neck	CR 54:1152
pter-q22	************	****************	3	0.23	Liver	BUC 64:1083
pter-q22	Unknown	~~~~~~	1	0.08	Liver	BJC 67:1007
Unknown	D75461		i	0.03	Melanoma	CR 56:589
Unknown	D7S135	11	4	0.36	Ovary	CR 53:2393
pter-q22		**********	ñ	Ū	Pancreas	BUC 65:809
2.2-ter	Unknown	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	0	Stomach	BJC 59:750

Unknown	Unknown	7.7	2	8:09		
27	D6S193	29	8	0.28	Brain	CR 50:5784
25.2-27	D6S220	19	5	0.26	Breast	BJC 71:290
14-15	D6S330	12	6	0.5	Breast	B3C/71-290
23.3-25.2		24	4	0.5	Breast	BJC 71:290
21-23.3	D6S357	20	2		Breast	BUC 17, 250
21-23.3	D6S359	37	8	0.1	Breast	BJC 71:290
14-16	D6S39	1	1	0.77	Breast	B10 / 200/250
16-21	D6S48	3	1	0.33	Breast	CR 53:3804
25.1	ER	47	9		Breast	CR 53-3804
24	D6S135	9	5	0.19	Breast	BJC 71:448
21	D6S154	15	3	0.56	Kidney	GR 51 5851
27	D69156	27	3	0.2	Kidney	CR 51:5817
23	D6S164	11		0.26	Kidney	CR 51.581
Onknown	D69281-D69341-	22	1	0.09	Kidney	CR 51:5817
	D59278	- 44	4	0.18	Kidney	PNAS 92-2854
Unknown	D6S281-D6S311-	6	1	0.17	Kidney	PNAS 92:2854
***	D6S278	*************				
Unknown	Unknown	20	15	0.75	4616	CR 54 5522
12.0-21	CGA	13	3	0.23	Melanoma	CR 51:5449
Unknown	D6929	4	O.	0	Melanoma	CR 51/5449
27	Unknown	130	4	0.03	Ovary	IJC 52:575
Uaknown	Unknown	23	1	0.04	Ovary	J3C 52:575
13	ACTBP2	21	7	0.33	Ovary	GO 55:245
Unknown	D6S125	17	4	0.24	Ovary	BJC 67:551
27	D6S193	10	1	0.1	Ovary	CR 52:5815
27	D69193	11	1	0.09	Ovary	CR 52-5815
27	D6S193	23	11	0.48	Ovary	CR 52:5815
Onknown	D63225	26	- 0	- 0	Overy	CR 55:2169
Unknown	D6S225	13	2	0.15	Ovary	CR 55:2169
23.3-25.2	D69355	6	- 0	0	Ovarv	CR 55:2169
Unknown	D6S366	14	2	0.14	Ovary	CR 55:2169
Unknown	D6S366	19	1	0.05	Ovary	CR 55:2169
Unknown	D6S86	22	13	0.59	Ovary	BJC 67:551
Unknown	HCG-A	8	4	0.5	Ovary	BUC 67:551
Unknown	IGF2R-D6S:251-249	17	3	0.18	Ovary	BJC 72:1330
Onknown	MYB-DMDL-SOD2-	37	21	0.57	Overv	CR 53.2393
	D6S44					
27	Unknown	3	0	0	Pancreas	CR 54:2761
21.3	TNFB	13	2	0.15	Oterus	CR 54:4294
SUM		3960	978	0.25		

		•	5	0.42	Endocrine	CR 56:599
Unknown	D69264 D6S264	<u>12</u> 15	5 5	0.33	Head&Neck	CR 54:1152
Unknown Onknown	D65264	3	1	0.33	Kidnev	666 2-76
Unknown	D6S264	34	12	0.35	Ovarv	GCC 15:223
Unknown	D69503	34	14	0.41	Colon	CR 56:145
21-ater	D6S2	8	3	0.38	Colon	GCC 3:468
21-qter	D6S2	19	4	0.21	Ovary	IJC 527575
21-gter	D6S2	5	3	0.6	Ovary	0 5:219
21-ater	D692	- 21	1	0.05	Ovary	TUC 549546
21-qter	D6S2	1	1	1	Pancreas	GCC 3:468
21-qter	D6S2	- 6	ũ	0	Stomach	GCC 3:469
Unknown	D6\$133	22	14	0.64	Ovary	BJC 67:551
Unknown	D69193	56	9	0.16	Esophageal	GCC 10:177
Unknown	D6S193	38	23	0.61	Ovary	GCC 15:223
27	D65297	19	4	0.21	Breast	BJC 71:290
Unknown	D6S297	27	14	0.52	Ovary	GCC 15:223
Unknown	TCP10	17	12	0.71	Ovary	BUC 67:551
27	D6S44	56	4	0.07	Breast	CR 53:4356
27	D6944	12	A	0.33	Breast	GCC 2:191
27	D6S44	29	4	0.14	Ovary	IJC 54:546
27	D6S44	18	0	0	Testis	LI 13:606
Unknown	D6S149	19	6	0.32	Ovary	GCC 15:223
Onknown	D6S149	8	2	0.25	Ovary	CR 52:5815
Unknown	D6S149	9	1	0.11	Ovary	CR 52:5815
Unknown	D69149	22	10	0.45	Ovaxy	CR 52:5815
Unknown	D6S37	4	1	0.25	Breast	CR :53:3804
Onknown	D6937	23	2	0.09	Breast	CR 50:7184 CR 54:4481
Unknown	D6S37	20	4	0.2	Cervix	GCC 9:119
Unknown	D6S37	5	2	0.4 0.8	Cervix Endocrine	CR 56:599
Unknown	D6S37	5 13	4 2	0.15	Esophageal	CR 54:2996
Unknown	D6937	13 13	************	0.13	Kidney	CR 51:820
Unknown Unknown	D6S37	25	9	0.31	Kidney	CR 51:5817
Unknown	D6S37	29	1	0.03	Lung	CR 52:2478
Unknown	D6937	10	4	0.4	Melanoma	CR 51:5449
Unknown	D6S37	13	8	0.62	Ovary	BJC 67:551
Unknown	D6537	29	5	0.17	Ovary	CR 51:5118
Unknown	D6S37	14	3	0.21	Sarcoma	CR 52:2419
Unknown	D6S37	30	11	0.37	Stomach	GCC 14:28
Unknown	D6S37	29	2	0.07	Testis	0 9:2245
Unknown	D6537	11	i	0.09	Uterus	GCC 9:119
27	D6S446	24	11	0.46	Ovary	GCC 15:223
Onknown	D6S132	15	11	0.73	Ovary	BJC 67:551
27	D6S281	27	5	0.19	Breast	BJC 71:290
27	D69281	39	13	0.33	Ovary	GCC 15:223
27	D6S281	39	13	0.33	Ovary	GCC 15:223

24-27						
24-27	ESR ESR	23	- 6	0.25	Ovary	CR 55:2169
24-27 24-27	PSR PSR	6	1	0.17	Ovary	CR 55:2169
24-27	ESR ESR	13	2	0.15	Ovary	GO 47:137
24=27	ESR	14 22	9	0.64	Ovary	CR 50:2724
24-27	ESR		1	0.05	Ovary	IUC 54:546#
24-27	DGB.	15 18	10	0.67	Ovary	BJC 67:551
24-27	ESR	18	10	0.56	Overy	GCC 15:223
24-27	ESR	6	1	1	Pancreas	GCC 3:468
24-27	ESR	16	0	0	Stomach	GCC 3.466
24-27	ESR	5	1	0	Stomach	CR 51:2926
Unknown	D6S415	22	9	0.17	Oterus	CR 51:5632
25.2	D69255	9	3	0.41	Ovary	GCC 15:223
25.2	D6S255	23	2	0.33	Breast	BUC 73:144
25.2	D65255	7	3	0.09	Head&Neck	CR 54:1152
25.2	D6S255	11	2	0.43	Ovary	CR 55:2169/
Unknown	D69305	29	4	0.18	Ovary	CR 55:2169
Unknown	D6S305	40	16		Cervix	CR 56:197
Unknown	D6\$305	15	2	0.4	Colon	CR 56:145
Unknown	D6S305	29	9	0.31	Endocrine	
Unknown	D69305	35	13	0.37	Melanoma	CR 56:589
Unknown	IGF2R	16	11	0.69	Ovary Liver	GCC 15:223
Unknown	IGF2R	2	0	0.03	Ovary	0 10:1725
Unknown	IGF2R	4	1	0.25	Ovary	CR 55:2169
Unknown	IGF2R	18	5		Ovary	CR 55:2169 GCC 15:223
Unknown	IGF2R	11	3	0.27	Ovary	CR 55:2169
Onknown	IGF2P	7	0	0	Ovary	CR 55:2169
Unknown	IGF2R	18	2	0.11	Stomach	GCC 14:28
Unknown	IGF2R	10	2	0.2	Uterus	CR 54:4294
26-27	PLG	2	0	0	Liver	PNAS 86:8852
Unknown	D6S195	14	5	0.36	Ovary	CR 52:5815
Unknown	D6S195	2	0	0	Ovary	CR 52:5815
Unknown Unknown	D69195		0	0	Ovarv	CR 52:5815
0°000000000000000000000000000000000000	D6S191	16	3	0.19	Ovary	CR 52:5815
Unknown Unknown	D6S191	5	0	0	Ovary	CR 52:5815
26	D6S191	8	0	0	Ovary	CR 52:5815
26	D69186	25	5	0.2	Breast	BJC 71:290
26	D65186	34	7	0.21	Kidney	CR 51:5817
26	D6S186	19	8	0.47	Ovary	CR 52:5815
26	D6S186	19	8	0.42	Ovary	GCC 15:223
26	D69186	6	1	0.17	Ovary	CR 52:5815
Unknown	D6S186	5	0	0	Ovary	CR 52:5815
Unknown	50D2	11	3	0.27	Melanoma	CR 51:5449
Unknown	SOD2	8	4	0.5	Ovary	BJC 67:551
Unknown	D6S264	23	5	0.22	Srowach	GCC 14:28
JJW11	003204	32	13	0.41	Colon	CR 56:145

16.3-21	D69283	10	2	0.2	Stomach	GCC 14:28
Unknown	D6S268	4	1	0.25	Kidney	GCC 12:76
Unknown	D6S268	9	1	0.11	Stomach	GCC 14:28
16.3-21	D6S302	30	13	0.43	Breast	BJC 73:144
21-23.3	D69261	34	7	0.21	Breast	BJC 71:290
21-23	D6S261	25	5	0.2	Breast	BJC 73:144
21-23	D6S287	33	4	0.12	Breast	BJC 73:144
21-23	D6S287	22	4	0.18	Endocrine	CR 56:599
Unknown	D69267	18	5	0.28	Ovary	GCC 15:223
22.3-23.1	ARG	12	2	0.17	Breast	BJC 73:144
22.3-23.1	ARG	15	0	0	Stomach	GCC 14:28
22.3-23.1	D6S262	28	10	0.36	Breast	BJC 73:144
Unknown	D69262	35	12	0.34	Colon	CR 56:145
Unknown	D6S262	17	1	0.06	Head&Neck	CR 54:4756
Unknown	D6S252	21	3	0.14	Read&Neck	CR 54:4756
Unknown	D6S32	18	9	0.5	Stomach	GCC 14:28
23.1	D6S87	17	- 6	0.35	Ovary	BUC 69:429
23.1	D6S87	18	3	0.17	Ovary	CR 55:2169
23.1	D6587	7	2	0.29	Ovary	CR 55:2169
23.1	D6S87	20	1	0.05	Uterus	CR 54:4294
22-23	MYB	10	0	Q	Cervix	CR 49:3598
22-23	MYB	11	2	0.18	Colon	พ 331:273
22-23	MYB	20	2	0.1	Calon	1JC 53:382
22-23	MYB	13	0	0	Liver	JJCR 81:108
22-23	MYB	18	3	0.17	Lung	PN 84:9252
22-23	MYB	7	3	0.43	Melanoma	CR 51:5449
22-23	MYB	5	0	0	Neuroblasto	m CR 49:1095
					a	
22-23	MYB	9	6	0.67	Ovary	BJC 67:551
22-23	MYB	4	1	0.25	Ovary	GO 55:245
22-23	MYB	8	1	0.12	Ovary	CR 50:2724
22-23	MAB	7	0	0	Prostate	G 11:530
22-23	MYB	20	6	0.3	Sarcoma	CR 52:2419
22-23	MYB	12	1	0.08	Stomach	GCC 14:28
22-23	MYB	13	0	0	Stomach	CR 48:2988
22-23	MYB	12	2	6.17	Stomach	CR:52:3099
22-23	MYB	7	1	0.14	Uterus	CR 51:5632
Unknown	D6S250	24	1	0.04	Ovary	CR 55:2169
Unknown	D6S250	10	3	0.3	Ovary	CR 55:2169
Unknown	D69136	16	2	0.12	Kidney	CR 51:5817
Unknown	D6S136	3	0	0	Ovary	CR 52:5815
Onknown	D6S136	9	<u>o</u>	0	Ovary	CR 52:5815
Unknown	D6S441	11	1	0.09	Endocrine	CR 56:599
Unknown	D69441	30	13	0.43	Ovary	gcc 15:223
24-27	ESR	16	O.	0	Cervix	CGC 79:74
24-27	ESR	8	3	0.38	Colon	GCC 3:468
24-27	ESR	8	4	0.5	Melanoma	CR 51:5449

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Onknown	D6Z1	- 8	2	0.25	Ovary	BJC 67:551
Unknown	D6Z1	22	0	0	Stomach	GCC 14:28
13	D69313	30	3	0.1	Breast	BUC 71:290
13	D6S254	5	0	0	Breast	BJC 73:144
13	D65280	20	- 8	0.4	Breast	BJC 71:290
14-15	D6S284	26	5	0.19	Breast	BJC 71:290
14-15	D99284		1	0.2	Breast	BJC:73:144
16.3-21	D6S286	27	8	0.3	Breast	BJC 71:290
14-15	D65286	11	4	0.36	Breast	BJC 73:144
16.3-21	D6S286	17	1	0.06	Endocrine	CR 56:599
14-15	D69286	17	8	0.47	Ovarv	GCC 15:223
Unknown	EDDR1	14	4	0.29	Ovary	GCC 15:223
22.3-23.1	D66270	5	1	0.2	Breast	BJC373:144
22.3-23.1	D6S270	22	7	0.32	Ovary	GCC 15:223
Unknown	D69310	23		0.53	Endocrine	CR-56:599
Unknown	D6S310	33	10	0.3	Ovary	GCC 15:223
Onknown	D65311	27	- 5	0.19	Cervix	CR 56:197
Unknown	D6S311	6	4	0.67	Endocrine	CR 56:599
Unknown	D69311	32	10	0.31	Ovary	GCC:15:223
Unknown	D6S194	4	0	0	Ovary	CR 52:5815
Onknown	D65194	16	5	0.31	Ovary	GCC 15:223
Unknown	D6S194	16	4	0.25	Ovary	CR 52:5815
Unknewn	D69142	30	8	0.27	Kidney	CR.51:5817
Unknown	D6S142	6	0	0	Ovary	CR 52:5815
Unknown	D6S142	12	7	0.58	Ovary	CR 52:5815
Unknown	D65142	6	0	0	Ovary	CR 52:5815
Unknown	D6S161	27	- 6	0.22	Kidney	CR 51:5817
Unknown	D6S161	11	0	0	Ovary	CR 52:5815
Onknown	D65161	17	7	0.41	Ovary	CR:52:5815
Unknown	D6S161	· 5	1	0.2	Ovary	CR 52:5815
Unknown	D69251	67	16	0.24	Breast	BJC 73:144
Unknown	D6S251	36	13	0.36	Colon	CR 56:145
Onknown	D65251	5	0	. 0	Ovary	CR 55:2169
Unknown	D6S251	28	0	0	Ovary	CR 55:2169
13 13	D69239	27	9	0.33	Breast	BUC 71:290
13	D6S239	10	3	0.3	Ovary	CR 55:2169
14-16.2	D65239	27	1	0.04	Ovary	CR 55:2169
14-16.2	D6S252	48	11	0.23	Breast	BJC 73:144
14-16.2	D69252	27	2	0.07	Stomach	GCC 14:28
14	D6S300	32	11	0.34	Breast	BJC 71:290
16.3	D6S300	17	3	0.18	Endocrine	CR:56:599
Unknown	D6S246	27	9	0.33	Breast	BJC 71:290
Unknown	D6S246	16	1	0.06	Ovary	CR 55:2169
16.3-21	D6S246	9	2	0.22	Ovary	CR 55:2169
16.3-21	D6S249 D6S283	28	9	0.32	Breast	BUC 73:144
10.5-21	D02283	30	5	0.17	Breast	BJC 71:290

Unknown	D65257	42	13	0.31	Colon	CR 56:145
Unknown	Unknown	14	1	0.07	Brain	CR 50:5783
Unknown	D6840	24	2	0.08	Brain	CR 49:6572
Unknown	D6S40	28	5	0.18	Breast	CR 50:7184
Unknown	D6S40	3	1	0.33	Cervix	GCC 9:119
Unknown	D6S344	22	0	0	Endocrine	CR 56:599
Unknown	D6S139	.49	12	0:24	Esophageal	GCC 10:1177
Unknown	D6540	23	7	0.3	Esophageal	CR 54:2996
Unknown	D6S40	14	1	0.07	Esophageal	***************************************
Unknown	D6S265	19	8	0.42	Head&Neck	CR 54:1152
Unknown	TCTE	14	7	0.14	HeadsNeck	CR 54:1152
21.3	D6S138	34	6	0.18	Kidnev	CR 51:5817
21.2	D68160	23	5	0.22	Kidney	CR 51:5817
Unknown	D6S4-C2-D6S1	19	5	0.26	Kidnev	CR 49:5087
Unknown	D6540	14	3	0.21	Kidney	CR 51:820
Unknown	Unknown	20	15	0.75	Lung	CR 54:2322
Unknown	D694-C2-D691	1	1		Lung	CR 49.5087
Unknown	D6S40	22	4	0.18	Lung	CR 52:2478
24-27	Onknown	7	2	0.29	Ovarv	0.5:219
Unknown	D6S114E	3	0	0	Ovarv	BJC 67:551
Unknown	D6S40	7	4	0.57	Ovary	0.5:219
Unknown	F13A1- D6S249	17	4	0.24	Ovary	BJC 72:1330
12-21.3	FTHPl	14	5	0.36	Ovarv	BJC 69:429
12-21.2	FTHP1	10	2	0.2	Ovary	BJC 67:551
Unknown	PIM-HLA-D6S91-	34	21	0.62	Ovary	CR 53:2393
*1-1	D6541					
Unknown	D6S4-C2-D6S1	2	1	0.5	Sarcoma	CR 49:5087
Unknown	D6S40	13	7	0.54	Sarcoma	CR 52:2419
21.3	HLA-DXA	2	0	0	Testis	CCG 52:72
21.3	ALA-DXA	2	0	0	Testis	CCG 52:72
21.3	HLA-DXA	1	0	0	Testis	CCG 52:72
Unknown	D6S40	5	0	O	Oterus	GCC 9:119
SUM		1383	328	0.24		

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D6S477	33	15	0.45	Colon	CR 56:145
24-25	F13A1	18	5	0.28	Ovary	GO 55:245
24-25	F13A1	18	4	0.22	Ovary	BJC 69:429
Unknown	D6S309	18	1	0.06	Kidney	PNAS 92:2854
Unknown	D65309	4	1	0.25	Kidney	PNAS 92:2854
pter-p25	D6F21S1	12	4	0.33	Ovary	BJC 67:551
Unknown	D6S89	14	1	0.07	Ovary	BJC 67:551
Unknown	D6S289	36	13	0.36	Colon	CR 56:145
Unknown	D69260	32	14	0.44	Cervar.	CR 56:197
21.3-24	D6S109	17	3	0.18	Ovary	BJC 69:429
21.3-24	D65109	16	2	0.12	Oterus	CR 54,4294
Unknown	D6S276	20	10	0.5	Cervix	CR 56:197
Unknown	D6S299	21	1	0.65	HeadsNeck	CR 54-4/56
Unknown	D6S299	20	0	0	Head&Neck	CR 54:4756
Unknown	D69299	26	2	0.08	Melanoma	08 56 589
Unknown	D6S105	27	2	0.07	Esophageal	IJC 69:1
Unknown	D6S105	19	4	0.21	HeadsNeck	CR 54:1152
Unknown	D6S105	26	2	0.08	Uterus	CR 54:4294
Unknown	D63258	33	15	0.45	Colon	CR 56:145
Unknown	D6S10	35	4	0.11	Breast	GCC 2:191
Unknown	D6810	32	9	0.28	Cervix	CR 54:4481
Unknown	D6S10	2	0	0	Pancreas	CR 54:2761
Unknown	D6S10	1.3	0	0	Prostate	G 11:580
Unknown	D6S10	32	4	0.12	Testis	0 9:2245
21.3	ALA-DRB	21	3	0.14	Ovary	BJC 67:551
21.3	HLA-DQA	18	4	0.22	Ovary	BJC 67:551
21.3	HLA-DQA	3	0	0	Testis	CCG 52:72
21.3	HLA-DQA	1	0	0	Testis	CCG 52:72
21.3	BLA-DQA	4	0	0	Testis	CCG 52:72
Unknown	TNFa	33	14	0.42	Colon	CR 56:145
Unknown	D65291	12	1	0.08	Brain	CR 55:4696
Unknown	D6S291	12	1	0.08	Brain	CR 55:4696
Unknown	D6529	17	0	0	Colon	CCG-48:167
Unknown	D6S29	22	3	0.14	Kidney	CR 51:5817
Unknown	D6S29	13	1	0.08	Liver	CR 51:89
Unknown	D6S29	12	6	0.5	Ovary	CR 51:5118
Unknown	D6529	19	4	0.21	Ovary	IJC 54:546
Unknown	D6S29	9	0	0	Ovary	CR 50:2724
Unknown	D6S29	16	3	0.19	Stomach	GCC 14:28
Unknown	D6S271	44	17	0.39	Colon	CR 56:145
Unknown	D6S282	32		0.19	Cervix	CR 56:197
Unknown	D6S282	22	0	.0	Endocrine	CR 56:599
12.0-11	KRAS P1	8	1	0.12	Ovary	BUC 67:551
12.0-11	KRAS P1	2	0	0	Uterus	CR 51:5632
11.2	D6S294	37	11	0.3	Ovary	GCC 15:273
Unknown	D6S257	42	13	0.31	Colon	CR 56:145

Chromosome 5 - q Arm

21	D5S141	7	ū	0	Liver	BJC 67:100
21-21-34-qter	D5S43-D5S81	45	14	0.31	Liver	JJCR 84:89
21	ECB27	8		0.12	Liver	BJC 64:108
Unknown	FMS	2	0	0	Lung	PN 84:9252
13-12	del-27	15		0.73	Lung	0 12:97
13-12	del-27	8	3	0.38	Lung	0 12:97
13-12	de1-27		4	0.57	Lung	CR 54:1772
21	D5S122	11	5	0.45	Ovary	GO 55:245
Unknown	D5S6-D59107-APC		16	0.43	Ovary	CR 53:2393
21-22	IRF-1	15	6	0.4	Ovary	BJC 69:429
15-21	Unknown	5	O	0	Pancreas	BUC 65:809
15-21	D5S98	13	3	0.23	Stomach	HG 92:244
21-22	IRF-1	22	6	0.27	Stomach	CR 56:612
15-21	D5S98	7	1	0.14	Testis	GCC 13:249
Unknown	FMS	21	1	0.05	<u> Uterus</u>	CR 54:4794
SUM		2866	763	0.27		

Unknown	D5S429	3	0	0	Kidney	PNAS 92:28
Unknown	D5S429	19	1	0.05	Kidney	PNAS 92:28
35-qter	D5843	17	1	0.06	Colon	CR 50:7166
35-gter	D5S43	5	2	0.4	Colon	BJC 67:100
35-qter	D5943	31	9	0.29	Calon	BJC 59:750
35-gter	D5S43	10	0	0	Endocrine	N 328:524
35-gter	D5S43	10	-3	0.3	Liver	BJC 67:100
35-gter	D5S43	10	5	0.5	Liver	BJC 64:108
35-gter	D5943	7	0	0	Pancreas	CR 54:2761
35-gter	D5S43	11	0	0	Pancreas	BJC 65:809
35-gter	D5S43	10	1	0.1	Stomach	BUC 59:750
35-qter	D5S43	34	8	0.24	Stomach	CR 51:2926
35-gter	D5943	25	5	0.2	Testis	GCC 13:249
35-qter	D5S43	25	5	0.2	Testis	GCC 13:249
Unknown	Unknown	12	2	0.17	Brain	CR 50:5784
15-21	Unknown	6	0	0	Cervix	BJC 67:71
21	Unknown		0.	0	Cervix	BJC 67:71
Unknown	Unknown	2	1	0.5	Cervix	BJC 67:71
Unknown	Unknown	11	2	0.18	Cervix	BJC 67:71
Unknown	Unknown	23	8	0.35	Colon	JJCR 82:10
Unknown	Unknown	2	1	0:5	Colon	JJCR 82:10
Unknown	Unknown	19	7	0.37	Colon	JJCR 82:10
Unknown	Unknown	1	1	1	Colon	JJCR 82:10
Unknown	Unknown	17	1	0.06	Colon	JJCR 82:10
Unknown	Unknown	10	5	0.5	Colon	JJCR 82:10
Unknown	Unknown	17	6	0.35	Colon	JJCR 82:10
Unknown	Unknown	3	0	0	Colon	JJCR 82:10
15-21	Unknown	1	1	1	Colon	BJC 67:100
21	Unknown	4	3	0.75	Colon	BJC 67:100
21	C11p11	3	1	0.33	Colon	N 331:273
Unknown	CRI-11265	16	1	0.06	Colon	S 241:961
Unknown	CRI-L45	21	2	0.1	Colon	S 241:961
33	CSFIR	11	4	0.36	Calon	CR 50:7166
21	D5S141	3	2	0.67	Colon	BJC 67:100
Unknown	ems	9	2	0.22	Colon	N 331:273
21-22	LS5.34	5	3	0.6	Colon	CR 50:7166
21	D5S141	35	13	0.37	Esophageal	GCC 10:177
Unknown	D5S410	31	1	0.03	Head&Neck	CR 54:4756
Unknown	D59410	35	4	0.11	Head&Neck	CR 54:4756
21	D5S133	6	1	0.17	Kidney	CR 51:5817
21	D5S140	16	3	0.19	Kidney	CR 51:5817
21	D5S141	26	8	0.31	Kidney	CR 51:5817
Unknown	D5S89	15.	5	0.33	Leukemia	B 83:199
Unknown	Unknown	10	1	0.1	Liver	CR 51:89
21	Unknown	- 6	0	0	Liver	BJC 67:100
15-21	Unknown	5	0	0	Liver	BJC 67:100

Chromosome 5 - q Arm

21	APC	12	ū	Ö	Stomach	CR 54:41
21	APC	14	12	0.86	Stomach	JJCR 84:10
21-22	D59346	18	0	0	Endocrine	GCC 13:9
21-22	D5S346	46	1	0.02	Kidney	BJC 69:230
21-22	D5S346	15	6	0.4	Overy	BJC 69:429
21-22	D5S346	18	2	0.11	Stomach	CR 56:612
21-22	D59346	22	i	0.05	Uterus	CR 54:4294
Unknown	Unknown	19	3	0.16	Colon	JJCR 82:10
Unknown	Unknown	10	2	0.2	Kidney	CR 51:5817
21-22	D5S84	11	2	0.18	Breast	CR 50:7184
21-22	D5S84	21	1	0.05	Breast	CR 53:4356
21-22	D5S84	3	1	0.33	Cervix	GCC 9:119
21-22	D5984	8	0	0	Cervix	BJC 67:71
21-22	D5S84	5	2	0.4	Kidney	CR 51:5817
21+22	D5884	5	2	0.4	Kidney	GR 51 820
21-22	D5S84	9	4	0.44	Liver	CR 51:89
21-22	D5984	15	0	0	Ovary	GR 51:5118
21-22	D5S84	13	1	0.08	Uterus	GCC 9:119
21-22	D5S86	6	2	0.33	Colon	GCC 4:468
21-22	D5S86	4	1	0.25	Pancreas	GCC 3:468
21-22	D5986	8	3	0.38	Stomach	GCC 3:468
31-33	D5S804	19	6	0.32	Ovary	GO 55:245
21-22	FBN2	15	6	0.4	Ovary	BUC 69:429
21-22	FBN2	15	4	0.27	Stomach	CR 56:612
33-35	D5970	24	9	0.38	Cervix	CR 54:4481
33-35	D5S70	3	0	0	Colon	GCC 3:468
33-35	D5S70	3	0	0	Pancreas	GCC 3:468
33-35	· D5S70	13	5	0.38	Stomach	GCC 3:468
33-35	D5970	13	3	0.23	Testis	0.9:2245
21-22	D5S178	15	6	0.4	Ovary	BJC 69:429
21-22	D55178	19	2	0.11	Stomach	CR 56:612
31-32	GRL	8	0	0	Ovary	CR 50:2724
21-22	D5S210	15	6	0.4	Oyary	BJC 69:429
21-22	D5S210	19	5	0.26	Stomach	CR 56:612
21-22	D59209	15	6	0.4	Ovary	BJC 69:429
21-22	D5S209	23	2	0.09	Stomach	CR 56:612
34-gter	D5922	18	0	0	Prostate	G 11:530
34-qter	D5S2	3	1	0.33	Cervix	CR 49:3598
34-qter	D592	2	0	0	Colon	N 331:273
34-qter	D5S2	8	0	0	Liver	JJCR 81:10
34-gter	D5S2	11	1	0.09	Lung	PN 84:9252
Unknown	D5S2	11	1	0.09	Lung	PNAS 84:92
Unknown	D592	5		0,2	Stomach	CR 52:3099
34-qter	D5S2	2	0	0	Stomach	CR 48:2988
34-gter	D5S2	1	O.	0	Uterus	CR 51:5632
Unknown	D5S400	32	5	0.16	Cervix	CR 56:197

21-22	D5981	6	1	0.17	•	
21-22	D5S81	4	0	0	Liver	BJC 64:108
21-22	D5581	5	1	0.2	Liver	BJC 67:100
21-22	D5S81	12	5	0.42	Pancreas	BUC 651809
Unknown	D5981	9	2	0.42	Stomach	HG 92:244
Unknown	L5.71	13	5	0.38	Testis	GCC_13:249
Unknown	MCC	13	5	0.38	Colon	JJCR 82:10
21	MCC	4	1	0.25	Colon	JJCR 82:10
21	MCC	31	9	0.25	Colon	0 9:991
21	MCC	34	12	0.35	Colon	CR_52:741
21	MCC	35	22	0.33	Colon	EJC 30A:66
Unknown	L5.71	2	2		Esophageal	(((((((((((((((((((
Unknown	L5.71	16	4	0.25	Lung	CR 52:2478
Unknown	L5.71	1	1	1	Lung	CR 52:2478
Unknown	15.71	4	Ō	0	Lung	CR 52:2478
Unknown	MCC	2	2	1	Lung	CR 52:2478
21	MCC	41	9	0.22	Lung	CR 52:2478
Unknown	MCC	1	1	1	Lung	CR. 55-220
Unknown	MCC	16	4	0.25	Lung	CR 52:2478
Unknown	MCC	4	0	0	Liang	CR 52:2478
21	MCC	7	7	1	Lung	CR 52:2478
21	MCC	36	4	0.11	Stomach Stomach	JJCR 84:10
21	MCC	8	0	0.11	Stomach	CL 96:169
21	MCC-APC	25	7	0.28	Breast	CR 54:41
21	MCC-APC	6	Ū	0.20	Cervix	BJC 68:64
21	MCC-APC	45	16	0.36	Colon	GCC 9:119
21	MCC-APC	56	37	0.66	Colon	GAST 104:1 O 8:1391
21	MCC-APC	26	20	0.77	Esophageal	***************************************
21	MCC-APC	- 6	4	0.67	Lung	PNAS 89:33 CR 55:513
21	MCC-APC	5	2	0.4	Lung	CR 52:1996
21	MCC-APC	7	0	0	Uterus	GCC 9:119
21	APC	21	7	0.33	Colon	CR 52:741
Unknown	APC	37	3	0:08	Colon	EJC 30A:66
Unknown	APC	33	6	0.18	Colon	EJC 30A:66
21	APC	21	5	0.24	Esophageal	GCC 10:177
21	APC	36	24	0.67	Esophageal	CR 52:6525
21	APC	19	1	0.05	Liver	CR 54:281
21	APC	20	14	0.7	Lung	0 12:97
21	APC	53	17	0.32	Lung	CR 55:220
21	APC	7	5	0.71	Lung	CR 54:1772
21	APC	8	3	0.38	Lung	0 12:97
Unknown	APC	18	9	0.5	Ovary	GO 55:245
Unknown	APC	15	3	0.2	Prostate	JU 151:107
21	APC	7	3	0.43	Prostate	BJU 73:390
Unknown	APC	13	4	0.31	Stomach	LI 74:835
Unknown	APC	35	3	0.09	Stomach	CL 96:169

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
15-21	D59491	1	0	0	Lung	0 12:97
15-21	D5S491	8	3	0.38	Lung	0 12:97
Unknown	D5S427	22	4	0.18	Cervix	CR 56:197
11.2-13.3	D5S6	30	1	0.03	Breast	GE 5:554
11.2-13.3	D596	4	2	0.5	Colon	0 9:991
11.2-13.3	D5S6	32	9	0.28	Colon	CR 50:7166
11.2-13.3	D5S6	17	1	0:06	Pediatric	CR 50:3279
15-21	D5S637	5	1	0.2	Lung	0 12:97
15-21	D59637	9	6	0.67	Lung	0 12:97
15-21	D5S626	4	1	0.25	Lung	0 12:97
15-21	D5S626	17	9	0.53	Lung	0.12:97
Unknown	D5S107	19	2	0.11	Leukemia	B 83:3449
Unknown	059107	****************	2	0.06	Stomach	CR 56:612
Unknown	D5S107	30	1	0.03	Uterus	CR 54:4294 CR 56:612
Unknown	D5S428	20	-	0.35	Stomach	0 9:991
Unknown	D5S37	2	0 6	0 0.55	Colon	CR 50:7166
Unknown	D5537	11	6 7	0.25	Colon Esophageal	CR 54:2996
Unknown	D5S37	28 3	0	0.25	Liver	CCG 48:72
Unknown	05937	*******************************	u 5	0.42	Sarcoma	CR 52:2419
Unknown	D5S37 D5S37	12 18	4	0.22	Testis	GCC 13:249
Unknown 15-21	D5S644	9	3	0.33	Lung	0 12:97
15-21	D5S644	22	12	0.55	Lung	0 12:97
14-21	D5S71	10	1	0.1	Colon	S 241:961
14-21	D5571	6	3	0.5	Colon	CR 50:7166
14-21	D5S71	8	3	0.38	Colon	GCC 3:468
14-21	05971	4	0	0	Colon	CCG 48:167
14-21	D5S71	21	1	0.05	Ovary	IJC 54:546
14-21	D5871	1	1	1	Pancreas	GCC 3:468
14-21	D5S71	6	0	0	Stomach	GCC 3:468
14-21	D5971	6	2	0.33	Testis	GCC 13:249
14-21	D5S71	1	0	0	Uterus	CR 51:5632
Unknown	D58409	17	1	0.06	Endocrine	CR 56:599
Unknown	D5S409	17	6	0.35	Stomach	CR 56:612
Unknown	D5S409	9	6	0.67	Stomach	CR 55:1933
14-21	D5S82	15	4	0.27	Colon	JJCR 82:10
Unknown	D5582	16	1	0.06	Stomach	CR 54:41
21	D5S421	25	5	0.2	Bladder	CR 55:5213
21	D55421	20	5	0.25	Head&Neck	CR 54:1152
21	D5S421	5	0	0	Kidney	GCC 12:76
21-22	D5S81	13	3	0.23	Cervix	CR 50:7166
Unknown	D5S81	31	19	0.61	Colon	BJC 67:100
21-22	D5S81	5	4	0.8	Colon Colon	JJCR 82:10
21-22	D5S81	18	<u>4</u> 5	0.22 0.18	Kidney	CR 51:5817
Unknown	D5581	28	3	0.23	Kidney	CR 51:820
21-22	D5S81	13	3	0.23	Kraney	0 02.020

Chromosome 5 - p Arm

Unknown U	nknown 29	1.	0.03 9	AST12 FFF 13-240
SUM	722	135	0.19	GCC 13: 245

49 / 214

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D5S392	34	9	0.24	Cervix	JNC1 87:742
Unknown	D5S392	19	0	0	Endocrine	CR 56:599
Unknown	059392	26	5	0.19	Head&Neck	CR 54:1152
Unknown	D5S392	19	0	0	Kidney	PNAS 92:2854
Unknown	D5S392	5	0	ū	Kidney	PNA9 92:2854
Unknown	D5S13	21	1	0.05	Breast	CR 53:4356
Unknown	D5S13	17	4	0.24	Breast	GCC 2:191
pter-p15	D5S4	10	1	0.1	Breast	GCC 2:191
pter-p15	D594	17	2	0.12	Colon	TUC 53:362
pter-p15	D5S4	11	0	0	Colon	CCG 48:167
pter-p15	D564	29	1	0.03	Colon	CR_50:7166
pter-p15	D5S4	19	4	0.21	Ovary	CR 53:2393
pter-pl5	D554	3	0	. 0	Testis	CCG 52:72
pter-p15	D5S4	1	0	0	Testis	CCG 52:72
pter-p15	D5S4	1	Ū	0	Testis	CCC 52:32
15.1-15.2	D5S406	25	12	0.48	Cervix	JNCI 87:742
15.2-15.1	D5512	12	1	0,08	Brain	CR 50:5784
15.2-15.1	D5S12	13	5	0.38	Cervix	CR 54:4481
15.2-15.1	D5S12	9	0	0	Ovary	0.5:219
15.2-15.1	D5S12	17	0	0	Prostate	G 11:530
15.2-15.1	D5512	26	11	0.42	Testis	0 9:2245
15.1-15.3	D5S208	20	10	0.5	Cervix	JNCI 87:742
15-21	D59630	5	2	C.4	Lung	0.12:97
15-21	D5S630	13	3	0.23	Lung	0 12:97
14	D5S432	29	8	0.28	Cervix	JNCI 87:742
15.1-15.3	D5S117	25	8	0.32	Cervix	JNCI 87:742
15.1-15.3	055117	13	2	0.15	Ovary	BJC 69:429
15.1-15.3	D5S117	22	1	0.05	Uterus	CR 54:4294
Unknown	D5S268	14	3	0.21	Ovary	BJC 69:429
Unknown	D5S419	26	3	0.12	Cervix	CR 56:197
Unknown	D55419	28	0	0	Head&Neck	CR 54:4756
Unknown	D5S419	16	3	0.19	Head&Neck	CR 54:4756
14	D5519	23	1.3	0.57	Cervix	CR 54:4481
Unknown	D5S395	28	6	0.21	Cervix	CR 56:197
13	D5S20	·····	1	0.05	Ovary	IUC 54:546
11.0-13	D5S21	9	5	0.56	Cervix	CR 54:4481
11.0-13	D5S21	9	5	0.56	Cervix	CR 54:4481
Unknown	Unknowr		0	0	Brain	CR 49:6572
Unknown	D551	5	1	0.2	Breast	GCC 2:191
Unknown	Unknow	~~~~~~~~~~~	0	0	Colon	BJC 67:1007
Unknown	D5S1	3	0	Đ.	Colon	CCG 48:167
Unknown	D5S1	28	7	0.25	Esophageal	
Unknown	Unknow	. 4	Û	0	Liver	BJC 67:1007
Unknown	Unknow		3	0.38	Liver	BJC 64:1083
Unknown	Onknow	1 3	0	0	Pancreas	CR 54:2761
Unknown	Unknow	n 7	0	0	Pancreas	BJC 65:809

21-23	ADH3	24	0	0	Testis	0 9+2245
33-35	D4S171	23	0	0	Uterus	CR 54:4294
p11-q21	MT2P1	4	0	Ō	Uterus	CR 51:5632
SUM		952	209	0.22		

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
p11-g21	MT2P1	4	Ú	O	Oterus	CR 51:5632
33-35	D4S171	29	15	0.52	Bladder	CR 55:5213
25-34	D49243	29	15	0.52	Bladder	CR 55:5213
Unknown	Unknown	20	2	0.1	Brain	CR 50:5784
Unknown	DAS125	34	2	0.06	Breast	CR 50:7184
25-34	D4S192	54	13	0.24	Breast	BCRT 32:5
28	FGA	19	4	0.21	Breast	GCC 2:191
28	FGA	18	0	0	Breast	CR 53:4356
p11-g21	MT2P1	17	0	O	Breaut	JNCI-84:506
21-23	ADH3	22	12	0.55	Cervix	CR 54:4481
21-25	ADH5	24	11	0.46	Cervix	CR 54:4481
Unknown	D4S163	41	12	0.29	Cervix	CR 54:4481
Unknown	D45402	28	8	0.29	Cerylx	CR_56:197
Unknown	D4S415	26	8	0.31	Cervix	CR 56:197
g11-g13	ALB	11	<u>O</u>	0	Colon	CCG:48:167
Unknown	D4S415	19	1	0.05	Endocrine	CR 56:599
Unknown	D45163	21	2	0.1	Esophageal	CR 54:2996
Unknown	D4S163	35	9	0.26	Esophageal	GCC 10:177
Onknown	D49402	16		0.19	HeadWheck	CR 54:4756
Unknown	D4S402	20	1	0.05	Head&Neck	CR 54:4756
Unknown	D4S430	24	9	0.38	BeadsNeck	CR 54:1152
Unknown	D4S163	23	2	0.09	Kidney	CR 51:820
***************************************	D45426-D45415	20	1	0.05	Kidney	PNAS 92:2854
0.0000000000000000000000000000000000000	D4S426-D4S415 D4S:408-429	5 23	0	0.17	Kidney	PNAS 92:2854
Unknown	************	**********	4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Leukemia	CR 55:5377
Unknown	Unknown	8 4	0 6	0	Liver	BJC 64:1083
21-23 21-23	ADH3	***************************************		0	Liver	JJCR 81:108
q11-q13	ADH3 ALB	6 5	1 5	0.17 1	Liver	CR 51:4367
Unknown	D4S16	5	***************************************	0.4	Liver Liver	PNAS 86:8852 JJCR 81:108
Gnknown	D49163	20	2	0.4	Liver	CR 51:89
p11-g21	MT2P1	16	8	0.5	Liver	JJCR 81:108
p11-g21	MT2PI	21	9	0.43	Liver	JJCR 84:893
p11-q21	MT2P1	19	4	0.21	Liver	CR 54:281
Unknown	D49163	31	8	0.21	Lung	CR 54:261
21-23	ADH3	18	1	0.06	Ovary	IJC 54:546
11.0-15	D481540	20	3	0.15	Ovary	BJC 69:429
11.0-15	D4S1607	20	3	0.15	Ovarv	BJC 69:429
Onknown	D49163	16	1	0.15	Ovary	CR 51:5118
33-35	D4S171	12	4	0.33	Ovary	BJC 69:429
25-34	D45175	20	7	0.35	Ovary	BJC 69:429
Unknown	D4S27	29	10	0.34	Ovarv	CR 53:2393
p11-g21	MEZPI	21	2	0.34	Ovary	IJC 54:546
35	Unknown	6	1	0.17	Pancreas	CR 54:2761
28	FGA	9	Ō	0.17	Prostate	G 11:530
Unknown	D4S163	17	3	0.18	Sarcoma	CR 52:2419
3		• •	5	0.10	24200	U. U. U. Z. Z. Z. Z. Z. Z. Z. Z. Z. Z. Z. Z. Z.

WO 98/41648

PCT/US98/05419

46 / 214

Chromosome 4 - p Arm

SUM

729 93 0.13

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
16.1	RAF1P1	7	G	0	Uterus	CR 51:5632
Unknown	D4S1546	25	8	0.32	Bladder	CR 55:5213
Onknown	D45124	16	0	0	Brain	CR 50:5784
16	D4S10	31	0	0	Breast	GE 5:554
pter-16.3	D4S125	- 6	1	0.17	Breast	CR 50:7184
16	D4S95	33	4	0.12	Breast	CR 53:4356
pter-16.3	D45125	9	0	O	Cervix	CR 54:4481
Unknown	D4S125	2	0	0	Cervix	GCC 9:119
Unknown	D4S391	25	9	0.36	Cervix	CR 56:197
Unknown	D4S405	30	4	0.13	Cervix	CR 56:197
16	D4S10	11	O	0	Colon	CCG 48:167
pter-16.3	D4S125	8	0	0	Colon	CCG 48:167
11.0-15	D4S174	21	O	O	Endocrine	GCC 13:9
Unknown	D4S2397	18	1	0.06	Endocrine	CR 56:599
Onknown	D45124	21	2	0.1	Esophageal	CR 54:2996
Unknown	D4S125	40	7	0.17	Esophageal	GCC 10:177
pter-16.3	D4S125	9	0	0	Esophageal	CR 51:2113
Unknown	D4S394	15	1 0	0.07	Head&Neck	CR 54:4756
Onknown	D48394	18	*******************************	0	Head&Neck	CR 54:4756
Unknown	D4S404	21	8	0.38	Head&Neck	CR 54:1152
pter=16.3	D4S125	7	0	0	Kidney	CR 51:820
Unknown	D4S431	28	2 1	0.07	Kidney	PNAS 92:2854
16.3	D4S10	5		0.2	Liver Liver	CCG 48:72 CR 51:4367
16 pter-16.3	D4S10 D4S125	6 4	2 ()	0.33	Liver	CR 51:4367
***************************************	***************************************	·····	***************************************	······································	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PNAS 86:8852
Unknown 16.1	D4S125	6 13	0 2	0 0.15	Liver Liver	JUCK 81:108
pter-16.3	RAF1P1 D4S125	28	2	0.07	Lung	CR 52:2478
pter=16.3	D45125	24	10	0.07	Dvarv	CR 51:5118
Unknown	D4S125-D4S124	29	10	0.34	Ovary	CR 53:2393
15.1-11	D4S16	19	2	0.34	Ovary	IJC 54:546
11.0-15	D4S174	20	3	0.15	Ovary	BJC 69:429
16.2-15.1	D4S49	20	5	0.25	Ovary	IJC 54:546
12.0-13	GABRB1	16	2	0.12	Ovary	BJC 69:429
pter-16.3	D4S125	3	0	C	Pancreas	CR 54:2761
12.0-13	GABRB1	13	0	0	Prostate	G 11:530
Utiknown	D4S124	13	1	0.08	Sarcoma	CR 52:2419
Unknown	D4S125	17	3	0.18	Testis	0 9:2245
pter-16.3	D45125	9	0	0	Testis	LI 73:606
Unknown	D4S129	10	1	0.1	Testis	GCC 13:249
pter-16.3	D4S125	2	<u>-</u>	0	Uterus	GCC 9:119
11.0-15	D4S174	21	1	0.05	Uterus	CR 54:4294
16					00000000000000000000000000000000000000	
	D4543	25	Ī	0.04	Oterus	CR 54:4294
12.0-13	D4S43 GABRB1	25 25	1 0 0	0.84 0 0	Uterus Uterus	CR 54:4294 CR 54:4294

Unknown	D3S46	7	0	0	Liver	GD 54
Unknown	D3S46	40.			Lung	CR 51
Unknown	D3S46	18	1	0.06	Ovary	
Unknown	03(53)6	18		0.06	Overv	CR 51
Unknown	D3S46	3	0	0	Pancreas	
Unionovia a	0.846	3.2	9	0.75	Sarcoma	CR 54
Unknown	D3S46	12	9	0.75	Sarcoma	
Unknown	Grancour	13	0		Brain	CR 52
21-qter	D3S5	1	0	0	Brain	CCG 5
Unknown	NOX	1	0		Brain	CCG 5
Unknown	D3S47	21	0	0	Endocrine	GCC 1
Unknown -	GLUTZ	23	0		Endocrine	***************************************
Unknown	D3S1271	14	1	0.07	Esophageal	CR 54
Unknown	0.551233	20			HeadsReck	CR 54
Unknown	D3S1-MOX2-D3S5	24	2	0.08	Kidney	
<u>. Илкоомп</u>	23831	14	0		Codings	G 11:
26.2-qTER	D3S45	20	3	0.15	Kidney	CR 51
PLL	4 parter	32	13	0.41	Lung	CK 31
12-q13	MOX1	15	7	0.47	Lung	GCC 1
12-913	MOX1	6		0.33	Lung	GCC 1
12-q13	MOX1	1	1	1	Lung	GCC 1
12-q13	MOX1		1	1	Lung	GCC 1
all	4 markers	46	8	0.17	Ovary	CR 53
21-PTER	ACCP	13	4	0.31	Overv	BUC 6
Unknown	D3S1232-GLUT2	14	2	0.14	Ovary	BJC 7
Unknown	03831	L3	Ű.	0	Prostate	G 11:
SUM		1050	191	0.18		

11.0-12.0 GPX1 6	Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Refere
11 0-12.0 GPX1	11.0-12.0	GPX1	1.9	17	0.89	Kidney	Cr,15
12	11.0-12.0	GPX1		6	1	Lung	Cr 15
12	11.0-12.0	GPX1			1	Lung	CT 15
12	12	D3S1	7			Head&Neck	CGC 5
17	12	D952	9			Kidney	CGC_3
12 D3S1 1 0 0 Lung N 329 12 D3S1 9 2 U.22 Lung N 329 12 D3S1 1 0 0 0 Lung N 329 12 D3S1 16 2 0.11 Ovary LUCS LUNG N 329 12 D3S1 8 1 0.12 Testis GCC 1 Unknown D3S196 31 3 0.1 Esophageal BJC 7 Unknown D3S196 10 3 Q.47 Esophageal BJC 7 Unknown D3S196 10 3 Q.47 Esophageal BJC 7 Unknown D3S196 19 5 0.26 Ovary BJC 6 Unknown D3S196 7 1 0.14 Lung N 329 Unknown CP 7 1 0.14 Lung N 329 Unknown CP 7 1 0.14 Lung N 329 Unknown D3S196 2 2 2 0.09 Uknrus CR 54 Unknown CP 1 0 0 Lung N 329 Unknown CP 1 0 0 Lung N 329 Unknown D3S1268 34 2 0.08 Head&Neck CR 54 Unknown D3S1268 34 2 0.08 Head&Neck CR 54 Unknown D3S1268 34 0 0 Head&Neck CR 54 Unknown D3S1268 35 5 0.14 Melanoma CR 56 Unknown D3S1268 35 5 0.14 Melanoma CR 56 Unknown D3S1268 35 5 0.14 Melanoma CR 56 Unknown D3S1268 35 5 0.14 Melanoma CR 56 Unknown D3S1268 35 5 0.14 Melanoma CR 56 Unknown D3S1262 16 1 0.66 Esophageal CR 54 Unknown D3S1262 37 8 0.22 Cervix CR 49 28 SST 6 0 0 Lung N 329 28 SST 17 0 0 Lung N 329 28 SST 17 0 0 Lung N 329 28 SST 17 0 0 Lung N 329 28 SST 17 0 0 Lung N 329 28 SST 17 0 0 Lung N 329 28 SST 17 0 0 Lung N 329 28 SST 1 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 32		*******************************				0.00.00000000000000000000000000000000	100720000000000000000000000000000000000
T2	12	D3S1	4	\$4555 ,4666 56666666	***************************************		******************
12 D351 1 0 0 Lung N 329 17 D351 15 2 D.11 Ownery LUCS 12 D351 8 1 0.12 Testis GCC Onknown D351764 24 1 0.04 Esaphageal BJC 7 Unknown D35196 31 3 0.1 Esophageal BJC 7 Unknown D35196 31 3 0.1 Esophageal BJC 7 Unknown D35196 19 5 0.26 Ovary BJC 6 Owary		*************					
12	12	D351	9	0.000	***************************************		***************************************
12				0		*****************************	
Unknown D3S1764 24 1 0.04 Bachageal BJC 7 Unknown D3S196 31 3 0.1 Esophageal BJC 7 Unknown D3S196 19 5 0.26 Ovary BJC 6 Unknown D3S196 12 2 0.09 Ukrus CR_54 Unknown CP 7 1 0.14 Lung N_329 Unknown CP 1 0 0 Lung N_329 Unknown CP 1 0 0 Lung N_329 Unknown D3S1268 24 2 0.08 Head6Neck CR_54 Unknown D3S1268 34 2 0.08 Head6Neck CR_54 Unknown D3S1268 34 2 0.08 Head6Neck CR_54 Unknown D3S1268 35 5 0.14 Melad6Neck CR_54 Unknown D3S1262 13 0 0.0	***************************************	***************************************	**********	2	***************************************	***************************************	
Unknown D3S196 31 3 0.1 Esophageal BJC 7 Unknown D3S196 19 5 0.26 Cvary BJC 6 Orknown D3S196 22 2 0.05 Urarus CR-54 Unknown CP 7 1 0.14 Lung N 329 Unknown CP 1 0 0 Lung N 329 Unknown CP 1 0 0 Lung N 329 Unknown CP 1 0 0 Lung N 329 Unknown D3S1268 24 2 0.08 Head\$Neck CR-54 Unknown D3S1268 34 0 0 Head\$Neck CR-54 Unknown D3S1268 35 5 0.14 Melanoma CR-56 Unknown D3S1262 37 8 0.22 Cervix CR-56 Unknown D3S1262 37 8 0.22 Cervix CR-56 Unknown D3S1262 37 8 0.22 Cervix CR-56 Unknown D3S1262 18 3 0.06 Esophageal CR-54 28 SST 6 0 0 Liver CCC 28 SST 5 0 0 Liver CCC 28 SST 5 0 0 Liver CCC 28 SST 12 0 0 Liver CCC 28 SST 12 0 0 Liver CCC 28 SST 17 0 0 Liver CCC 28 SST 17 0 0 Liver CCC 28 SST 17 0 0 Liver CCC 28 SST 17 0 0 Liver CCC 28 SST 17 0 0 Liver CCC 29 SST 17 0 0 Liver CCC 28 SST 17 0 0 Liver CCC 49 28 SST 10 0 Liver CCC 49 28 SST 10 0 Liver CCC 49 28 SST 10 0 Cr-12 Lung N 329 28 SST 10 0 Cr-12 Lung N 329 28 SST 10 0 Cr-12 Lung N 329 28 SST 10 0 Cr-12 Lung N 329 CR-43		######################################			***************************************	NESSTANDS-PROFESSORS-100902-100902-10097-1007-2	
Unknown D36196 19 5 0.26 Ovary BC 6	***************************************	***************************************	****************	(A44444400444455577.69846644	######################################	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************
Unknown D3S196 19 5 0.26 Ovary BJC 6 Unknown D3B196 22 2 0.09 Urerus CR64 Unknown CP 7 1 0.14 Lung N 329 Unknown CP 1 0 0 Lung N 329 Unknown D3S1268 24 2 0.08 Head\$Neck CR 54 Unknown D3S1268 34 0 0 Head\$Neck CR 54 Unknown D3S1268 34 0 0 Head\$Neck CR 54 Unknown D3S1268 34 0 0 Head\$Neck CR 54 Unknown D3S1262 37 8 0.22 Cervix CR 56 Unknown D3S1262 18 1 0.05 Esophageal CR 54 28 SST 6 0 0 Liver CCg 28 SST 1 0 0 Lung	277777002704704707777777777777777777777	************	***************************************		AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		977997999999999999
Ohknown DBI156 72 Z 0.09 Uterux CR 54 Unknown CP 7 1 0.14 Lung N 329 Unknown CP 1 0 0 Lung N 329 Unknown CP 1 0 0 Lung N 329 Unknown D351268 34 0 0 Head6Neck CR 54 Unknown D351268 34 0 0 Head6Neck CR 54 Unknown D351262 37 8 0.22 Cervix CR 56 Unknown D351262 37 8 0.22 Cervix CR 56 Unknown D351262 18 1 0.05 Esophageal CR 54 28 SST 6 0 0 Liver CCGC 28 SST 9 2 0.22 Lung N 329 28 SST 1 0 0 Lung N 329	***************************************	******************************	*************	40.00000000000000000000000000000000000	***************************************	***************************************	***************************************
Unknown CP 7 1 0.14 Lung N 329 Unknown CP 1 0 0 Lung N.329 Unknown DSS1268 24 2 0.08 Head&Neck CR.54 Unknown D3S1268 34 0 0 Head&Neck CR.54 Unknown D3S1268 35 5 0.14 Melanoma CR.56 Unknown D3S1262 37 8 0.22 Cervix CR.56 Unknown D3S1262 18 1 0.06 Ecochatgeal CR.54 28 SST 6 0 0 Cervix CR.56 28 SST 5 0 0 Lung N.329 28 SST 1 0 0 Lung N.329 28 SST 1 0 0 Lung N.329 28 SST 1 0 0 Lung N.329	V-09020007740774077407740774077407	*******************************					*****************
Unknown CE 1 0 0 Lung N/329 Unknown CP 1 0 0 Lung N/329 Unknown D3S1268 24 2 0.08 HeadtMeck CR 54 Unknown D3S1268 34 0 0 HeadtMeck CR 54 Unknown D3S1268 35 5 0.14 Melantma CR 55 Unknown D3S1262 37 8 0.22 Cervix CR 56 Unknown D3S1262 18 1 0.06 Heechengeal CR 56 Unknown D3S1262 18 1 0.06 Liver CR 49 28 SST 6 0 0 Cervix CR 49 28 SST 12 0 0 Lung N 329 28 SST 1 0 0 Lung N 329 28 SST 1 0 0 Melantma CR 49 </td <td>······································</td> <td>***************************************</td> <td></td> <td></td> <td>***************************************</td> <td>•••••</td> <td>***************************************</td>	······································	***************************************			***************************************	•••••	***************************************
Unknown CP 1 0 0 Lung N 329 Unknown D3S1268 24 2 0.08 Head&Neck CR 54 Unknown D3S1268 34 0 0 Head&Neck CR 54 Unknown D3S1262 37 8 0.22 Cervix CR 56 Unknown D3S1262 18 1 0.06 Esophageal CR 54 28 SST 6 0 0 Cervix CR 49 28 SST 6 0 0 Liver CCG 28 SST 9 2 0.22 Lung N 329 28 SST 12 0 0 Liver CCG 28 SST 1 0 0 Lung N 329 28 SST 1 0 0 Lung N 329 28 SST 1 0 0 Melanoma N 329	200000000000000000000000000000000000000				******************	an an an an an an an an an an an an an a	
Unknown D3S1268 24 2	//////////////////////////////////////	••••••	***************************************	***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	······	************
Unknown D3S1268 34 0 0 Head&Neck CR 54 Unknown D3S1268 35 5 0.14 Melanoma CR 56 Unknown D3S1262 37 8 0.22 Cervix CR 56 Unknown D3S1262 18 1 0.06 Esophageal CR 54 28 SST 6 0 0 Cervix CR 49 28 SST 6 0 0 Liver CCG 28 SST 9 2 0.22 Lung N 329 28 SST 12 0 0 Lung N 329 28 SST 1 0 0 Lung N 329 28 SST 1 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 329 28 SST 3 0 0 Melanoma N 329	**************************************						~~~~
Unknown 0381268 35 5 0.14 Melanoma CR 56 Unknown D381262 37 8 0.22 Cervix CR 56 Unknown D381262 18 1 0.06 Beophageal CR 54 28 SST 6 0 0 Cervix CR 49 28 SST 9 2 0.22 Lung N 329 28 SST 12 0 Uning PNAS 28 SST 1 0 0 Lung N 329 28 SST 1 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 329 28 SST	2.0.00000000000000000000000000000000000	********************	***************************************	***************************************	~~ ~~~	Marana Marana Marana Marana Marana Marana Marana Marana Marana Marana Marana Marana Marana Marana Marana Maran	
Unknown D3S1262 37 8 0.22 Cervix CR 56 Unknown D3S1262 18 1 0.06 Esophageal CR 54 28 SST 6 0 0 Cervix CR 49 28 SST 6 0 0 Liver GCG 28 SST 12 0 0 Liung N 329 28 SST 1 0 0 Lung N 329 28 SST 1 0 0 Lung N 329 28 SST 1 0 0 Lung N 329 28 SST 1 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 329 28 SST 3 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 329 Unknown D	27/2000/00/00/00/00/00/00/00/00/00/00/00/0	COMPANY OF THE PROPERTY OF THE				***************	
Unknown D351262 18 1	***************************************	······································	***************************************	***************************************	***************************************	·	CR 56
28 SST 6 0 0 Cervix CR 49 28 SST 6 0 0 Liver CUG 28 SST 9 2 0.22 Lung N 329 28 SST 12 0 0 Lung PNAS 28 SST 1 0 0 Lung N 329 28 SST 1 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 329 28 SST 3 0 0 Melanoma N 329 28 SST 3 0 0 Melanoma N 329 Unknown D3S1314 26 1 0.04 Kidney PNAS Unknown D3S42 4 1 0.25 Breast CR 53 Unknown D3S4	0.0000000000000000000000000000000000000			1	0.06	Esophageal	CR 54
28 SST 9 2 0.22 Lung N 329 28 SST 12 0 0 long PNAS 28 SST 1 0 0 Lung N 329 28 SST 7 0 0 Melanoma N 329 28 SST 1 0 0 Melanoma N 329 28 SST 3 0 0 Melanoma N 329 28 SST 3 0 0 Melanoma N 329 Unknown D3S1314 26 1 0.04 Kidney PNAS Unknown D3S42 4 1 0.25 Breast GR 53 Unknown D3S42 26 3 0.12 Breast GCC 4 Unknown D3S42 12 0 0 Stomach HG 92 Unknown D3S42 12 0 0 Testis Unknown <t< td=""><td>***************************************</td><td>***************************************</td><td></td><td>0</td><td>0</td><td>Cervix</td><td></td></t<>	***************************************	***************************************		0	0	Cervix	
28 SST 9 2 0.22 Lung N 329 28 SST 12 0 0 Imag PNAS 28 SST 1 0 0 Lung N 329 28 SST 7 0 0 Lung CR 49 28 SST 1 0 0 Melanoma N 329 28 SST 3 0 0 Melanoma N 329 Unknown D3S1314 26 1 0.04 Kidney PNAS Unknown D3S42 4 1 0.25 Breast GR 53 Unknown D3S42 26 3 0.12 Breast GC 4 Unknown	28	SST	6	0	0	Liver	CCG
28 SST 1 0 0 Lung N 329 28 SST 7 0 0 Jung CR 49 28 SST 1 0 0 Melanoma N 329 28 SST 3 0 0 Neirchleston CR 69 28 DST3114 26 1 0.04 Kidney PNAS Unknown D3542 4 1 0.25 Breast CR 63 Unknown D3542 26 3 0.12 Breast GCC 4 Unknown D3542 12 0 0 Stomach HG 92 Unknown D3542 34 9 0.26 Testis LI 73 <t< td=""><td>***************************************</td><td>SST</td><td></td><td>2</td><td>0.22</td><td>Lung</td><td>N 329</td></t<>	***************************************	SST		2	0.22	Lung	N 329
28 35T 7 0 0 Lunq CR 49 28 SST 1 0 0 Melanoma N 329 28 SST 3 0 Neurobiastom CR 49 28 SST 3 0 Neurobiastom CR 49 28 SST 3 0 Neurobiastom CR 49 Unknown D3S1314 26 1 0.04 Kidney PNAS Unknown D3S42 4 1 0.04 Kidney PNAS Unknown D3S42 26 3 0.12 Breast CR 53 Unknown D3S42 26 3 0.12 Breast GCC 4 Unknown D3S42 28 9 0.32 Cervix GE 54 Unknown D3S42 12 0 0 0 Stomach HG 92 Unknown D3S42 34 9 0.26 Testis LI 73 Unknown D3S44 35 </td <td>28</td> <td>SST</td> <td>12</td> <td>0</td> <td>0</td> <td>Lung</td> <td>***************************************</td>	28	SST	12	0	0	Lung	***************************************
28 SST 1 0 0 Melanoma N 329 28 SST 3 0 0 Neuroblastom CR 49 Unknown D3S1314 26 1 0.04 Kidney PNAS Unknown D3S42 4 1 0.25 Breast CR 53 Unknown D3S42 26 3 0.12 Breast GCC 4 Unknown D3S42 28 9 0.37 Cervix GR 54 Unknown D3S42 12 0 0 Stomach HG 92 Unknown D3S42 34 9 0.25 Testis 0.95 Unknown D3S42 16 0 0 Testis LI 73 Unknown D3S44 35 6 0.17 Ovary CR 53 Unknown D3S46 19 5 0.26 Esophageal CR 54 Unknown D3S46 0 3 0 Esophageal <th< td=""><td></td><td>SST</td><td>1</td><td></td><td></td><td>Lung</td><td>M997400000000000000000000000000000000000</td></th<>		SST	1			Lung	M997400000000000000000000000000000000000
28 SST 3 0 0 Neuroblastom A CR 49 A Unknown D3S1314 26 1 0.04 Kidney PNAS Unknown D3S42 4 1 0.25 Breast CR 53 Unknown D3S42 26 3 0.12 Breast GCC 4 Unknown D3S42 28 9 0.32 Carvix GR 54 Unknown D3S42 12 0 0 Stomach HG 92 Unknown D3S42 34 9 0.26 Testis 0.39:2 Unknown D3S42 16 0 0 Testis LI 73 Unknown D3S44 35 6 0.17 Ovary CR 53 Unknown D3S46 19 5 0.26 Esophageal CR 54 Unknown D3S46 0 3 0 Esophageal Unknown Unknown D3S46 44 13 0.3	28	95T	7	0	***************************************	***************************************	
Unknown D3S1314 26 1 0.04 Kidney PNAS Unknown D3S42 4 1 0.25 Breast CR 53 Unknown D3S42 26 3 0.12 Breast GCC 4 Unknown D3S42 28 9 0.32 Carvix GR 54 Unknown D3S42 12 0 0 Stomach HG 92 Unknown D3S42 12 0 0 Stomach HG 92 Unknown D3S42 34 9 0.26 Testis 0.9:2 Unknown D3S42 16 0 0 Testis LI 73 Unknown D3S44 35 6 0.17 Overy CR 53 Unknown D3S46 19 5 0.26 Esophageal CR 54 Unknown D3S46 0 3 0 Esophageal CR 54 Unknown D3S46 44 13 0.3 Esophageal GCC 1	***************************************	**********************					*********************
Unknown D3S42 4 1 U.25 Breast CR 53 Unknown D3S42 26 3 0.12 Breast GCC 4 Unknown D3S42 28 9 0.32 Carvix GR 54 Unknown D3S42 12 0 0 Stomach HG 92 Unknown D3S42 34 9 0.26 Testis 0.39:2 Unknown D3S42 16 0 0 Testis LI 73 Unknown D3S44 35 6 0.17 Ovary CR 53 Unknown D3S46 19 5 0.26 Esophageal CR 54 Unknown D3S46 0 3 0 Esophageal Unknown Unknown D3S46 44 13 0.3 Esophageal GCC 1	28	SST	3	0	0	Neuroblast	om CR 49
Unknown D3S42 4 1 U.25 Breast CR 53 Unknown D3S42 26 3 0.12 Breast GCC 4 Unknown D3S42 28 9 0.32 Carvix GR 54 Unknown D3S42 12 0 0 Stomach HG 92 Unknown D3S42 34 9 0.26 Testis 0.39:2 Unknown D3S42 16 0 0 Testis LI 73 Unknown D3S44 35 6 0.17 Ovary CR 53 Unknown D3S46 19 5 0.26 Esophageal CR 54 Unknown D3S46 0 3 0 Esophageal Unknown Unknown D3S46 44 13 0.3 Esophageal GCC 1	£1 - \	5201214			0.04	d	DNAS
Unknown D3S42 26 3 0.12 Breast GCC 4 Unknown D3S42 28 9 0.37 Cervix GR 54 Unknown D3S42 12 0 0 Stomach HG 92 Unknown D3S42 34 9 0.26 Testis 0.932 Unknown D3S42 16 0 0 Testis LI 73 Unknown D3S44 35 6 0.17 Ovary CR 53 Unknown D3S46 19 5 0.26 Esophageal CR 54 Unknown D3S46 0 3 0 Esophageal Unknown Unknown D3S46 44 13 0.3 Esophageal GCC 1	60000000000000000000000000000000000000	NA COLOR COMPANY CONTRACTOR CONTR	2700E2700000000000000000000000000000000		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Unknown D3S42 28 9 0.32 Cervix GR 54 Unknown D3S42 12 0 0 Stomach HG 92 Unknown D3S42 34 9 0.26 Testis 0.9:2 Unknown D3S42 16 0 0 Testis LI 73 Unknown D3S44 35 6 0.17 Ovary CR 53 Unknown D3S46 19 5 0.26 Esophageal CR 54 Unknown D3S46 0 3 0 Esophageal Unknown Unknown D3S46 44 13 0.3 Esophageal GCC 1	***************************************	***************************************	*********		***************************************	······	***************************************
Unknown D3S42 12 0 0 Stomach HG 92 Unknown D3S42 34 9 0.25 Testis 0.912 Unknown D3S42 16 0 0 Testis LI 73 Unknown D3S44 35 6 0.17 Ovary CR 53 Unknown D3S46 19 5 0.26 Esophageal CR 54 Unknown D3S46 0 3 0 Esophageal Unknown Unknown D3S46 44 13 0.3 Esophageal GCC 1	27.000000000000000000000000000000000000	######################################	000000000000000000000000000000000000000				ACCOMPANIES AND ACCOUNT OF THE PARTY OF THE
Unknown D3S42 34 9 0.25 Testis 0.9:2 Unknown D3S42 16 0 0 Testis LI 73 Unknown D3S44 35 6 0.17 Overy CR 53 Unknown D3S46 19 5 0.26 Esophageal CR 54 Unknown D3S46 0 3 0 Esophageal Unknown Unknown D3S46 44 13 0.3 Esophageal GCC 1	***************************************	**********************	******************		***************************************	,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~~~~~
Unknown D3S42 16 0 0 Testis LI 73 Unknown D3S44 35 6 0.17 Ovary CR 53 Unknown D3S46 19 5 0.26 Esophageal CR 54 Unknown D3S46 0 3 0 Eeophageal Unknown Unknown D3S46 44 13 0.3 Esophageal GCC 1	*****************************	**************	***************************************				
Unknown D3544 35 6 0.17 Ovary CR 53 Unknown D3546 19 5 0.26 Esophageal CR 54 Unknown D3546 0 3 0 Esophageal Unknown Unknown D3546 44 13 0.3 Esophageal GCC 1		······································	~~~~~~~~~~~~	***************************************	***************************************	***************************************	***************************************
Unknown D3S46 19 5 0.26 Esophageal CR 54 Unknown D3S46 0 3 0 Esophageal Unknown Unknown D3S46 44 13 0.3 Esophageal GCC 1	***************************************	**********************************					CR 53
Unknown D3S46 0 3 0 Eeophegeal Unkno Unknown D3S46 44 13 0.3 Esophageal GCC 1	,,,,	***************************************	***************************************	***************************************	***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Unknown D3S46 44 13 0.3 Esophageal GCC 1	***************************************					<u>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</u>	
	***************************************	***************************************	***************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************	***************************************	
CIPE CONTROL DESCRIPTION OF THE CONTROL DESCRIPT	Unknown	D3546	16		0.19	Kidney	CR 51

Unknown	ITIHI-D3S-1339- 1007	7		1	Lung	CR 65:5103
Unknown	RAF1-DNF15S2	4	4	1	Lung	GCC 5:119
Unknown	RAF1-DNE1592	6	3	0.5	Lung	PNAS 86:509
Unknown	RAF1-DNF15S2	5	3	0.6	Lung	PNAS 86:509
Unknown	PAFI-DNF1582	17		6.75	Lung	GCC 31358
25-24	D3S1252	5	1	0.2	Melanoma	GCC 15:102
all	7 locis	4.6	11	0.24	Ovary	CR 53 4456
21	D3S2-D3S86	23	0	0	Ovary	CR 53:2393
Unknown	D39:1270-11	14	-	0.14	Ovary	***************************************
Unknown	Unknown	19	2	0.11	Testis	BJC 72:1330 G 5:134
21.1-14.2	D3S1067	25		0.12	Oteros	C0000000000000000000000000000000000000
Unknown	D3S663	10	2			CR 54:4294
STEM		*******************	۷	0.2	Uterus	GCC 9:119
		5933	2353	0.4		

Unknown	RAF1-DNF15S2	25	12	0.48	Bladder	CB 51:5405
24-26	Unknown	28	13	0.46	Breast	JNCI 84:506
Unknown	D392-H3H2	37	12	0.32	Breast	CR 54:3021
Unknown	DNF15S2	4	1	0.25	Breast	CR 53:3804
24	EABND	67	26	0.39	Areast	CR 54:499
Unknown	RAF1-DNF15S2	15	7	0.47	Breast	GE 5:554
Unknown	D3S663	5	3	0.5	Cervix	GCC 9-119
21.1-14.2	D3S1067	20	7	0.35	Esophageal	CR 54:6484
Unknown	D3S1110	17	7	0.41	Esophageal	CR 54:6484
Unknown	D3S1111	11	1	0.09	Esophageal	CR 54:6484
Unknown	D3S192	34	6	0.24	Editor District Confession	ESIC 75 866
Unknown	D3S656	19	8	0.42	Esophageal	CR 54:6484
Coknown	D35663	22	2	0.09	Esophageal	CR 54,6484
Unknown	D3S966	38	· 9	0.24	Esophageal	BJC 73:366
- Unknown	D3S966	1.9	5	0.26	Esophageal	CR 54:6484
21.1-14.2	D3S1067	41	20	0.49	Kidney	BJC 69:230
25-26	D3S1085	3		1	Karabay	CB 51:4707
Unknown	D3S1110	15	11	0.73	Kidney	BJC 69:230
Unknown	D391263-D391307-	22	9	0.41	Kidney	PNAS: 92:285
	D3S1297					
Unknown	D3S1263-D3S1307- D3S1297	6	0	0	Kidney	PNAS 92:285
Unknown	D3S22	9	7	0.78	Kidney	CR 51:1071
25	D3S649	11	7	0.64	Kidney	CR 51:4707
Unknown	D3S654	13	4	0.31	Kidnev	CR 51-4707
Unknown	D3S656	7	4	0.57	Kidney	CR 51:4707
25	035689	1	0	0	Kidney	CR 51:4707
25-26	D3S858	11	5	0.45	Kidney	CR 51:4707
21.1-21.2	D35898	8	7	0.88	Kidney	CR 51:4707
14.1-14.2	D3S907	6	2	0.33	Kidney	CR 51:4707
12	D35960	2	2	1	Kidney	CR 51:4707
Unknown	D3S:1263-1307-	33	10	0.3	Kidney	CR 55:6189
	1297					
Unknown	DNF1592	28	25	0.89	Kidney	CR 51:1071
Unknown	DNF15S2	19	9	0.47	Kidney	CR 51:1544
Unknown	ERBA-B	18	17	0.94	Kidney	CR 51:1071
Unknown	ERBA-B	2	0	0	Kidney	CR 51:1071
Unknown	RAFI-DNF15S2	13	7	0.54	Kidney	CR 51:949
25-26	VHL	19	16	0.84	Kidney	CR 54:2852
Unknown	Doknown	27	25	0.93	Lung	CR 54:2322
21.3	D3S1339	12	11	0.92	Lung	IJC 64:371
21	D3S48	5	5	1	Lung	GCC 51119
Unknown	D3S654	9	7	0.78	Lung	CR 52:873
Unknown	***************************************	22	8	0.36	Lung	CR 52:873
Unknown	DNF15S2	5	. 1	0.2	Lung	NEJ 317:110
Unknown	DNE1592	2	1	0.5	Lung	NEJ 317:110
Unknown	DNF15S2	5	5	1	Lung	NEJ 317:110

Unknown	0.35659	14.	1	0.07		
13	D3S693	6	0		Uterus	CR 54.4294
13	U3S693	1	0	0	Breast	CR 51:5794
14	D3S6	32	11	0	Lung	CR 52:676
14	D386	5	2	0.34	Breast	CR 54:499
14	D3S6	3	***************************************		Kidney	OF 4950 390
	D356	3	0	0	Kidney	PNAS 85:157
14	D3S6		_	0.33	Kidney	G*10 - 509
14	D356	8 6	7	0.88	Lung	GCC 1:95
14	D3S6		2	0.33	Lung	George 9
21.3	ITIHI-HS	4 66	2	0.5	Lung	GCC 11:15
Unknown	*****************************		55	0_83	Lung	0.00 (CT) (O)
13	D3S30	37	15	0.41	Breast	CR 54:3021
Unknown		18	0.	0	Breast	
Unknown	D3S30	17	6	0.35	Cervix	IJC 58:787
13	<u> AMERU</u>	19	6	0.32	Leophagesi	
Daknowa	D3S30	32	12	0.38	Esophageal	BJC 73:366
13	D3530	16	8	0.5	Kidney	O CONTRACTOR OF THE
Unknown	D3S30	18	9	0.5	Kidney	CR 51:820
13	03830	12	3	0.25	Lung	CR 52.9873
Unknown	D3S30	7	1	0.14	Lung	GCC 11:15
13	D3S30	11		1	Linete	08 57 978
***************************************	D3S30	7	7	1	Lung	GCC 1:240
Unknown	D3530	11	8	0.73	Melanoma	GCC 15:102
13 13	D3S30	14	1	0.07	Ovary	CR 51:5118
v	D3S30	14	1	0.07	Ovary	CR 51;5118
Unknown 13	D3S30	12	1	0.08	Ovary	BJC 69:429
***************************************	D3530	18	0	0	Testis	G 5:134
13-14	D3S1284	19	12	0.63	Head&Neck	CR 54:1152
13-14	D3S1284	3	0	0	Kidney	GCC 12:76
Unknown	D3S738	3	3	1	Lung	GCC 5:119
Unknown	D3S625	2	2	1	Lung	GCC 5:119
Unknown	D3S742	4	3	0.75	Lung	GCC 5:119
Unknown	D35739	5	3	0.6	Lung	GCC 5:119
Unknown	D3S740	5	4	0.8	Lung	GCC 5:119
Unknown	D3S216	1	1	1	Lung	GCC 5:119
Unknown	D3S733	3	3	1	Lung	GCC 5:119
13	D354	15	7	0.44	Kidney	CR 51:949
13	D3S4	17	4	0.24	Kidney	CR 51:1071
13	D3S4	14	8	0.57	Kidney	CR 49-1390
13	D3S4	6	5	0.83	Lung	GCC 1:240
Ünknown	D39743	5	4	0.8	Lung	GCC 5:119
Unknown	D3S759	7	6	0.86	Lung	GCC 5:119
Unknown	D3S640	5	3	0.6	Lung	GCC 5:119
Unknown	D3S1090	2	2	1	Lung	GCC 5:119
Unknown	D3S1090	2	2	1	Lung	GCC 5:119
Unknown	D3S:1067-1228	29	9	0.31	Bladder	CR 55:5213

Chromosome 3 - p Arm

21.2	D35660	33	6	0.18	Breast	CR 51:5794
Unknown	D3S660	6	2	0.33	Kidney	CR 51:4707
Unknown	D3S660	12	5	0.42	Lung	GE 52-875
Unknown	D3S660	8	8	1	Lung	CR 52:873
Unknown	D35717	6.	3	0.5	Kidney	CR 51:4707
Unknown	D3S717	4	2	0.5	Lung	CR 52:873
Unknown	035717	4	4		Ettete	(93, 92, 949, 69, 70
Unknown	D3S936	11	4	0.36	Kidney	CR 51:4708
Unknown	038936	12	5	0.42	Lung	0.000
Unknown	D3S936	4	4	1	Lung	CR 52:873
14.2-21.1	0391313	54	11	0.2	Suophageal	96(6) (3) 35
14.2-21.1	D3S1300	53	19	0.36	Esophageal	IJC 69:1
14.2-14.3	038626	50	19	0.38	Breast	08.51.5194
14.2-14.3	D3S678	10	7	0.7	Kidney	CR 51:4707
Unknown	DSS667	225		0.32	Breast	GRUGILESTOR
Unknown	D3S687	13	8	0.62	Kidney	CR 51:4707
Unknown	D39687	4.	4	1	+ Liung	CR 572873
Unknown	D3S687	15	3	0.2	Lung	CR 52:873
Unknown	D391228	31	4	0.413	Esophageal	BJC/73:366
25	D3S1228	18	8	0.44	Esophageal	CR 54:6484
25	D351228	26	12	0.46	Kidney	BJC 69:230
25	D3S1228	6	4	0.67	Lung	JAMA 273:55
25	0391228	1	1	1	Lung	JAMA 273155
14.1-14.2	D3S1285	47	18	0.38	Esophageal	IJC 69:1
14.1-14.2	D3S1285	10		0.7	Melanoma	GCC 15:102
Unknown	D3S714	24	1	0.04	Breast	CR 51:5794
Unknown	D3S714	9	3	0.33	Lung	CR 52:873
14-13	D3S1217	28	18	0.64	Esophageal	C 73:2472
14-13	D3S1217	28	16	0.64	Head&Neck_	CA 73:2472
Unknown	D3S1079	25	4	0.16	Esophageal	BJC 73:366
Unknown	0391079	11	4	0.36	Esophageal	CR 54:6484
Unknown	D3S1261	20	8	0.4	Cervix	CR 56:197 FG 89:445
Unknown	D3S13	2	0	0	Stomach	/////////////////////////////////////
12-14.2	D3S1296	57	17	0.3	Esophageal	IJC 69:1
Unknown	D3S659	54	23	0.43	Breast	GCC 9:119
Unknown	D3S659	7	6	0.86	Cervix	GCC 9:119
Unknown	D38659	28	10	0.36	Esophageal	BJC 73:366
Unknown	D3S659	36	6	0.17	Esophageal	ER 54:6484
Unknown	D3S659	17		0241	Esophageal	CR 51:4707
Unknown	D3S659	11 40	8 18	0.73 0.45	Kidney Kidney	BJC 69:230
Unknown Unknown	D3S659	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************	***************************************	······································	CR 52:873
Unknown	D3S659	17 10	5 9	0.29 0:9	Lung	CR 52:873
×	D3S659	************************	***************************************	······	Lung	CR 51:5118
Unknown	D3S659	6 6	0	0	Ovary Ovary	CR 51:5118
Unknown	D35659	******************	***************************************			GCC 9:119
Unknown	D3S659	11	5	0.45	Uterus	666 3:113

21	D3F1592		C	O O	Cervix	CR 49:3598
21	D3F15S2	5	3	0.6	Cervix	IJC 58:787
21	0992552	21	17	0.81	Esophageal -	EJC 308:248
21	D3F15S2	12	9	0.75	Head&Neck	C 72:881
21	0.613163.62	4	2	0.5	Head&Neck	CGC 54-91
21	D3F15S2	3	3	1	Kidney	CGC 32:281
21	D3F1552	3	0	0	Kidney	CGC 32.281
21	D3F15S2	24	14	0.58	Kidney	G 11:537
21	D3F1592	7	1	0.14	Kadney	0 11.007
21	D3F15S2	13	10	0.77	Kidnev	CR 49:1390
21	03F15S2	21	16	0.76	Kidney	PNAS 85:157
21	D3F15S2	9	9	1	Kidnev	N 327:721
21	D3F1592		1	0.5	Kidney	CR 51.949
21	D3F15S2	16	12	0.75	Kidney	
7.1	03F155Z			0		N 3299451
21	D3F15S2	9	9	1	Lung	N 329:451
21	D3F1592	7	3	0.43	Lung	GCC TIL 15
21	D3F15S2	1	0	0	Lung	N 329:451
21	D3F15S2	7	2	0.29	Lung	CL 51:133
21	D3F15S2	8	3	0.38	Lung	PNAS 86:509
21	D3F1592	8	2	0.25	Lung	GCC 3:358
21	D3F15S2	6	3	0.5	Lung	PNAS 86:509
21	D3F15S2	2	Ø	0	Lung	PNAS 86:509
21	D3F15S2	2	0	0	Lung	CL 51:133
***************************************	D3F1592	5	4	0.8	Lung	0 4:451
21	D3F15S2	1	0	0	Lung	GCC 1:95
21	D3F15S2	5	3	0.6	Lung	NEJ 317:110
21	D3F15S2	7	4	0.57	Lung	GCC 1:95
21	D3F1592	1	0	O	Liung	GCC 1:95
21	D3F15S2	2	2	1	Lung	CR 49:5130
21	D3F15S2	16	11	0.69	Lung	GCC 1:95
21	D3F15S2	12	7	0.58	Melanoma	GCC 15:102
21	D3F1592	8	1	0.12	Ovary	0 5:219
21	D3F15S2	22	4	0.18	Ovary	IJC 52:575
21	D3F15S2	22	4	0.18	Owary	IJC 54:546
21	D3F15S2	12	2	0.17	Ovary	BJC 69:429
21	D3F1592	3	O	0	Testis	CCG 52:72
21	D3F15S2	1	0	0	Testis	CCG 52:72
21	<u>D3F15S2</u>	2	-0	0	Testis.	CCG 52:72
21	D3F15S2	18	2	0.11	Testis	GCC 13:249
Unknown	D3F1552	2	0	0	Oterus	CR 51:5632
Unknown	D3S1076	29	2	0.07	Esophageal	BJC 73:366
Unknown	D391076	14	4	0.29	_Esophageal	CR 54:6484
Unknown	D3S1076	22	13	0.59	Kidney	BJC 69:230
Unknown	D38965	4	0	O	Lung	CR 52:833.
OHAHOW!!	D3S965	1	1	1	Lung	CR 52:873

WO 98/41648 PCT/US98/05419

Chromosome 3 - p Arm

14:2	D353	9	6	0.67	Liung	N 329.451
14.2	D3S3	3	3	1	Lung	GCC 1:95
14.2	D393.		-0	0	Lung	N 329-451
14.2	D3S3	2	1	0.5	Lung	NEJ 317:110
14.2	-D383	4	_	0.75	Euros.	Night Court 17 (6)
14.2	D3S3	4	0	0	Lung	GCC 11:15
14.2	D3S3	7			Euro	CCC 1505
21.2-14.2	D3S32	8	0	0	Brain	CR 49:6572
21.2-14.2	D3S32	18	2		Brain	CR 50 5784
21.2-14.2	D3S32	16	3	0.19	Breast	CR 50:7184
21.2-14.2	D3532	44	9	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	Breast	GR 51-15794
21.2-14.2	D3S32	30	12	0.4	Cervix	CR 54:4481
14.2-71.2	U3S32	30	12	0.4	Cervix	GCC 9, 119
	***************************************	17	7	0.41	Cervix	IJC 58:787
21.2-14.2	D3S32 .	4	1	0.41	Cervix	B3C 67-71
2472-21	***************************************		8	0.42	Esophageal	CR 54:2996
14.2-21.2	D3S32	19	*******************************	0.42	Esophageal	B. 10 3 166
2172-14.2	D3S32	28	10	000000.00000000000000000000000000000000	Head&Neck	C 72:881
21.2-14.2	D3S32	7	0	0		CR 51:820
21.2-14.2	03832	15	8.	0.53	Kidney	.00000000000000000000000000000000000000
14.2-21.2	D3S32	15	9	0.6	Kidney	CR 51:4707
14,2-21.2	U3S32	21	17	0.81	Kidney	CR 51:1071
21.2-14.2	D3S32	18	8	0.44	Kidney	CR 51:949
21.2-14.2	D3532	20	2	0.1	Liver	CR 51:89
21.2-14.2	D3S32	11	6	0.55	Lung	GCC 3:358
21.2-14.2	D3S32	17	11	0.65	Lung	CR 57:873
21.2-14.2	D3S32	6	6	1	Lung	0 4:451
21.2-14.2	03632	. 5	1	0.2	Lung	GCC 11:15
21.2-14.2	D3S32	4	4	1	Lung	CR 52:873
21.2-14.2	D3S32	17	10	0.59	Melanoma	GCC 15:102
21.2-14.2	D3S32	13	2	0.15	Ovary	IJC 54:546
21.2-14.2	D3532	17	3	0.18	Ovary	CR 51:5118
21.2-14.2	D3S32	17	3	0.18	Ovary	CR 51:5118
21.2-14.2	D3S32	3	1	0.33	Panczess	CR 54:2761
21.2-14.2	D3532	10	1	0.1	Prostate	PNAS 87:875
21.2-14.2	D3532	10	1	0.1	Prostate	CSurveys 11
21.2-14.2	D3S32	33	15	0.45	Testis	0 9:2245
21.2-14.2	D3532	4	2	0.5	Oterus	GCC 9:119
21.2-21.1	D3S1289	15	5	0.33	Melanoma	GCC 15:102
21.32-21.33	D3S643	14	4	0.29	Breast	CR 51:5794
21.32-21.33	D3S643	19	0	0	Esophageal	CR 54:6484
21.32-21.33	D3S643	3	3	1	Kidney	CR:51:4707
21.32-21.33	D3S643	17	4	0.24	Leukemia	В 83:3449
*******************************		6	3.	0.24	Leukemia	CR 52:873
21.32-21.33	D3S643	~~~~~~~~~	~~~~~~~	***************************************	***************************************	CR 52:873
21.32-21.33	D3S643	3 15	3 7	1	Lung	GE 5:554
21	D3F1592	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	0.47	Breast	CR 53:4356
21	D3F15S2	33	5	0.15	Breast	CK 33:4330

Chromosome 3 - p Arm

Unknown	D352	4	1	0.25		
21	D3S2	15	12	0.8	Leukemia	CGC_61(42
21	D3S2	ī	0	0.8	Lung	PNAS 84:925
21	D3\$2	5	1	0.2	Lung Lung	PNAS 84 925
21	0352	5	2		***************************************	GCC 11:15
Unknown	D3S2	1	0	0	Lung Lung	GCC_1,95%
21	D392	1	Ġ	0	Lung	N 329:451
21	D3S2	7	7	1		PNAS. 84:025
21	0352	8	6	0.75	Lung Lung	PNAS 84:925
Unknown	D3S2	9	8	0.89	Lung	PRAS 86 500
Unknown	D3S2	1	Ġ	0.05	Lung	N 329:451 N 329:451
21	D3S2	6	6	1	Lung	
21	D357	6	5	0.93	Lung	GCC 1:240 PNAS: 84:925
Unknown	D3\$2	20	8	0.4	Lung	JJCR 80:924
Unknown	D392	- 6	5	0.83	Lang	NEW 37 57 10
Unknown	D3S2	4	3	0.75	Lung	NEJ 317:110
Unknown	0352	2	1	T 5	Lung	NEG 317:110
Unknown	D3S2	12	0	0	Lung	PNAS 84:925
21	D392	9	4	0.44	Lung	PNAS 86 509
21	D3S2	12	8	0.67	Lung	JJCR 80:924
21	D352	3	1	0.33	Lung	GCC 1:95
21	D3S2	11	8	0.73	Luna	GCC 1:95
21	D3S2	8	8	1	Lung	CR 49:5130
14-21	D3S2	5	5	1	Lung	GCC 5:119
21:3	D39686	6	6	1	Lung	CR:521873
21.3	D3S686	11	7	0.64	Lung	CR 52:873
Unkhown	D392	11	6	0.55	Melanoma	GCC 15:102
Unknown	D3S2	6	0	0	Neuroblasto	
21					a	
***************************************	D3S2	16	1	0.06	Ovary	IJC 54:546
21 21	D3S2	6	4	0.67	Sarcoma	CGC 53:45
***************************************	D357	12	4	0:33	Sarcome	CR 57:2419
Unknown Unknown	D3S2	10	0	0	Stomach	CR 48:2988
21	D3S2	19	1	0.05	Testis	0.9:2245
Unknown	D3S2	12	4	0.33	Testis	G 5:134
14.2	D352	5	0	0.	Dterus	CR 51:5632
14.2	D3S3	1	0	0	Breast	GCC 2:191
14.2	D393	9	9	1	HeadsNeck	CGC 54:91
14.2	D3S3	4	3	0.75	Kidney	CR 51:1071
14.2	0353	1	1	1	Kidney	CR 49:1390
14.2	D3S3	9	0	0	Kidney	PNAS 85:157
14.2	D3S3	2	1	0.5	Kidney	N 327:721
16.2	D3S3	3	1	0.33	Kidney	G 11:537
14.2	D353	5	3	0.6	Lung	GCC 1:95
14.2	D3S3	1	1	1	Lung	GCC 1:95
14.2	D3S3 D3S3	4	4	1	Lung	GCC 1:240
. 41.4	دودر	1	0	0	Lung	N 329:451

Unknown	D35685	6		0.5	Cerviz	GCC 9:119
21.3-22	D3S1007	17	9	0.53	Esophageal	CR 54:6484
21.3-22	0391007	33	- 6	0.18	Esophageal	BJC 73:366
Unknown	D3S685	47	15	0.32	Esophageal	GCC 10:177
21.3-22	D3S1007	-3	0	G	Kidney	GCC 12 76
Unknown	D3S685	27	18	0.67	Kidnev	CR 51:4707
21.3-22	D351007	50	37	0.74	Lung	IJC 645371
Unknown	D3S685	31	14	0.45	Lung	CR 52:873
Unknown	D35685	10	10		Lung	CB 52 873
13	D3S685	1	1	1	Lung	CR 52:2478
13	D3S685	7	7	1	Lung	CR 52:2478
13	D3S685	3	3	1	Lung	CR 52:2478
13	D35685	26	9	0.35	Limg	CR 52 2478
13	D3S685	18	3	0.17	Ovarv	CR 51:5118
Unknown	D3S685	18	3	0.17	Ovarv	CR 51:5118
Unknown	D3S685	11	2	0.18	Uterus	GCC 9:119
22-74.2	D3S1260	63	25	0.10	Esophageal	IJC 69:1
22-24.2	D3S1260	3	0	0	Melanoma	GCC 15:102
21	D3511	16	G.	9	Endocrine	CR 56:599
21	D3S11	7	4	0.57	Kidney	***************************************
21	D3S2-93	í	1	0.57	Breast	CR 49:1390
21	D3S2-S3	20	1	0.05	Breast	GCC 2:191
21	D392-53	1	G C	0.05	****************	GCC 2:191
21	D3S2-S3	2	0	0	Breast	PN 84:2372
21	D3S2-93	3	0	0	Breast	PN 84:2372
21.3	D3S686	34	2	0.06	Breast	PN 84:2372
21	D35080	22	4	0.06	Breast	CR 51:5794
Unknown	D3S2	16	6	***************************************	Cervix	CR 54:4481
21	D352	1.0	9	0.38	Cervix	IJC 58:787
21	D3S2	16	······	1	Cervix	CR 49:3598
21	D352	#2222222222222222222222222222222222222	3 Q	0.19	Colon	IJC 53:382
Unknown	D3S2	9	······	0	Colon	N:331:273
21	D352	12 22	0 8	0.36	Endocrine	GCC 13:9
Unknown	D3S2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	<u>Esophageal</u>	CR 54:2996
21.3	D3S686	10 38	1 11	0.1	Esophageal	CR 51:2113
21	***************************************	***************************************		0.29	Esophageal	BJC 73:366
21	D3S2	4	3	0.75	Head&Neck	CGC 54:91
***************************************	D352	. 14	6	0.43	Kidney	CR 51:949
Unknown	D3S2	2	0	0	Kidney	CR 51:1544
Unknown	D3S2	23	18	0.78	Kidney	CR:51:1071
Unknown	D3S2	2	1	0.5	Kidney	CGC 32:281
Unknown	D352	11	2	0.18	Kidney	PNAS 85:157
21	D3S2	14	8	0.57	Kidney	G 11:537
Unknown	D3S2	20	9	0.45	Kidney	CR 51:1544
14-21	D3S2	8	7	0.88	Kidney	CR 49:1390
21	D352	8	7	0.98	Kidney	N 327:721
21.3	D3S686	10	6	0.6	Kidney	CR 51:4707

Unknown	THRE	54	15			
21-PTER	THRB	30	<u> 15</u>	0.28	Breast	GCC_17:128
22-24.1	THRB	73	32	0.13 0.45	Breast	AJP 140:215
Unknown	THRB	24	9	0.38	Breast	CR 5(:3021
22-24.1	THRE		3	0.38	Cervix	IJC 58:787
24	THRB	9	1	0.11	Cervix Colon	CR 49:3598
24	THRB	44	10	0.23	Esophageal	IJC 53:382
· 24	THRB	9	3	0.33	Head&Neck	BJC 73:366
22-24.1	THRB	23	6	0.26	Head&Neck	C 72:881 CR 54:1152
22-24.1	THRB	3	0	0	Head&Neck	CGC 54:91
22-24.1	THRB	5	5		Kidney	CR 51:949
24	THRB	34	18	0.53	Kidney	G 11:537
22-24.1	THRE	11	11		Lung	CR 4925130
21-PTER	THRB	1	0	0	Lung	GCC 1:95
24	THRB	7	3	0.43	Lung	GCC 3:358
22-24.1	THRB	2	2	1	Lung	GCC 1:95
22-24.1	THRB	3	1	0.33	Lung	GCC 1.95
22-24.1	THRB	5	3	0.6	Lung	GCC 1:95
24	THRB	- 6	5	0.83	Lung	0 4:451
22-24.1 22-24.1	THRB	10	2	0.2	Lung	GCC 11:15
***************************************	THRB	22	17	0.77	Lung	GCC 1:95
Unknown 24	THRB	38	22	0.58	Melanoma	GCC 15:102
22-24.1	THRB	22	5	0.23	Ovary	IJC 52:575
Unknown	THRB THRB	7	4	0.57	Ovary	0 5:219
22-24.1	THRB	22	6	0.27	Ovary	IJC 54:546
Unknown	THRB	17	5	0.29	Ovary	BJC 69:429
24	THRB	16	0	0	Pediatric	GR 50:3279
Unknown	THRB	11 2	0 • 0	0	Prostate	GCC 11:119
24	THRB	4	***************************************	0	Dterus	CR 51:5632
24	RARB	5	1	0.25	Uterus	CR 51:5632
24.2-25	D3S1266	52	15	0.6 0.29	Kidney	G 11:537
23	D39647	24	2	0.29	Esophageal Breast	IJC 69:1
23	D3S647	21	8	0.38	Esophageal	CR 51:5794
23	D3S647	30	4	0.13	Esophageal	CR 54:6484 BJC 73:366
23	D3S647	22	8	0.36	Kidnev	BJC 69:230
23	D3S647	11	5	0.45	Kidney	CR 51:4707
pter-21	D3S12	5	0	0	Stomach	HG 89:445
22-24.2	D391211	17	4	0.24	Esophageal	IJC 69:1
21.3	D3S1029	23	4	0.17	Esophageal	CR 54:6484
21.3	D3S1029	1	1	1	Luna	JAMA 273:55
21.3	D3S1029	6	5	0.83	Lung	JAMA 273:55
Unknown	D3S867	18	5	0.28	Lung	CR 52:873
Unknown	D3S867	7	7	1	Lung	CR 52:873
Unknown	D351298	24	8	0.33	Cervin	CR 56:197
13	D3S685	54	6	0.11	Breast	CR 51:5794

Chromosome 3 - p Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
26	03917	12	10	0.83	Kidney	CR 51:1071
26	D3S17	7	. 7	1	Lung	GCC 1:240
Unknown	D3S1307	36	2	0.06	Esophageal	BJC 73:366
Unknown	D3S1317	31	10	0.32	Kidney	BJC 69:230
Unknown	0391317	12	3	0.25	Stomach	CR: 55:1933
25	D3S18	19	9	0.47	Kidney	CR 51:1071
25	D3S18	1	1	1	Lung	GCC, 1:240
14	D3S1038	21	6	0.29	Esophageal	CR 54:6484
14	D3S1038	37	5	0.14	Esophageal	BUC 73:366
14	D3S1038	5	0	0	Kidney	GCC 12:76
14	D351038	40	19	0.47	Kidney	BJC 69:230
14	D3S1038	6	5	0.83	Lung	JAMA 273:55
***************************************	0391038	1	1	1.	Lang	JAMA 273:55
14	D3S1038	25	3	0.12	Uterus	CR 54:4294
Unknown	D3S1263	22	7	0.32	Corvix	CR 56:197
Unknown	D3S651	6	4	0.67	Kidney	CR 51:4707
Unknown Unknown	D3S651	18	3	0.17	Lung	CR 52:873
24-25	D3S651	8 4	8 1	1	Lung	CR 52:873
24-25	RAF1 RAF1	*************	***************************************	0.25	Breast	CR 53:3804
24-25	RAFI	3 10	10	0.33	Cervix	CR 49:3598
25	RAF1		~~~~~	1	HeadsNeck	CGC 54:91
25	RAFI	1 22	0 20	0 0.91	Kidney	CR 51:4707
25	RAF1	12	9		Kidney	CR 51:1071
25	RAF1	2	2	0.75	Kidney	CR 51:1544
25	RAF1	22	10	0.45	Kidney Kidney	CR 51:1071
24-25	RAFI	17	9	0.43	Kidney	G 11:537 CR 49:1390
24-25	RAF1	4	2	0.5	Lung	GCC 1:95
24-25	RAFI	15	14	0.93	Lung	GCC 1:95
25	RAF1	1	1	1	Lung	CR 49:5130
24-25	RAFI	ī	0	Ü	Lung	GCC 1:95
25	RAF1	5	5	1	Lung	0 4:451
25	RAE1	12	2	0.17	Prostate	G 11:530
25	RAF1	1	1	1	Uterus	CR 51:5632
24.2-26	D3S1286	37	12	0.32	Esophageal	× IJC 69:1
Unknown	D3S1293	33	5	0.15	Esophageal	BJC 73:366
Unknown	D391293	40	2	0.05	HeadsNeck	CR 54:4756
Unknown	D3S1293	39	10	0.26	Head&Neck	CR 54:4756
Unknown	D3S1020	5	5	1	Lung	CR 52:873
Unknown	D3S1020	7	3	0.43	Lung	CR 52:873
Unknown	D391002	5	5	1	Lung	CR. 52:873
Unknown	D3S1002	12	3	0.25	Lung	CR 52:873
25.1	D39669	22	3	0.14	Breast	CR 51:5794
25.1	D3S669	10	7	0.7	Kidney	CR 51:4707
Unknown	D3S669	5	5	1	Lung	CR 52:873
Unknown	D3S669	12	2	0.17	Lung	CR 52:873

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
13	ILIA	20	-0	0	Uterus	CR 54:4294
Unknown	D2S44	17	0	0	Brain	CR 49:6572
Unknown	D2644	17	0	0	Brain	CR 50:5784
Unknown	CRYG	8	1	0.12	Breast	GCC 2:191
Unknown	D2944	51 .	7	0.14	Breast	GCC 4:113
Unknown	D2S44	31	3	0.1	Breast	GCC 2:191
Unknown	D2S44	49	5	0.1	Breast	CR:50:7184
Unknown	CRYG	9	1	0.11	Cervix	CR 49:3598
Unknown	D25122	28	4	0.14	Cervix	CK 36-3397
Unknown	D2S172	29	7	0.24	Cervix	CR 56:197
Unknown	CRYG	21	0	0	Colon	N 331:273
35-37	D2S3	16	0	0	Colon	CCG 48:167
Unknown	D2944	32	1	0.03	Colon	ecs (99-167)
Unknown	D2S54	8	0	0	Colon	CCG 48:167
Unknown	D29125	20	2	0.1	Endocrine	CR 56.599
Unknown	D2S44	14	1	0.07	Esophageal	CR 51:2113
Unknown	D2955	13	0	0	Esophageal	CR 54:2996
Unknown	D2S111	20	3	0.15	Head&Neck	CR 54:1152
Unknown	D2S163	10	0	0	Head&Neck	CR 54:4756
Unknown	D2S163	20	4	0.2	Head&Neck	CR 54:4756
Unknown	D25125	28	1	0.04	Kidney	PNAS 92:2854
Unknown	D2S44	39	5	0.13	Kidney	CR 51:820
33-35	CRYP1	1	0	0	Liver	CR 51:89
Unknown	D2S44	18	0	0	Liver	CR 51:89
Unknown	D2944	4	0	0	Liver	PNAS 86:8852
p16-15	D2S5	4	0	0	Liver	CCG 48:72
Unknown	D2544	4 D	11	0.28	Lung	CR 522478
p16-15	D2S5	1	0	0	Neuroblasto	CR 49:1095
Unknown	0253		_		ma	
Unknown	D2S44	23	9	0.39	Ovary	CR:53:2393
p16-15	D2S5	29	4 1	0.14	Ovary	CR 51:5118
Unknown	***************************************	5	***************************************	0.2	Ovary	CR 50:2724
Unknown	D2S50 D2S55	10 19	0 2	0	Ovary	CR 50:2724
Unknown	D2572	*************	***************************************	0.11	Ovary	IJC 54:546
Unknown	D2S44	16	6 0	0.38	Ovary	BJC 69:429
Unknown	******************************	4	***************************************	0	Pancreas	CR 54:2761
Unknown	D2S44	26	7	0.27	Sarcoma	CR 52:2419
Unknown	D2S44	18	***************************************	0.06	Stomach	RG 92:244
Unknown 13	D2S44	27	0	0	Testis	LI 73:606
SUM	ILIA	20	***************************************	0	Uterus	CR 54:4294
JUPI		744	86	0.12		

- B. Change in partial pressure of carbon dioxide.
- C. Change in partial pressure of other gases.

5

10

20

In addition to being hypersensitive to ionizing radiation Ataxia-Telangiectasia cells are hypersensitive to the nitric oxide donor S-nitrosoglutathione (GSNO), as are cells from some radiosensitive individuals without ataxia. GSNO induces dose-dependent DNA strand breakage; cell killing appears to be associated with formation of nitrite as the ultimate oxidation product of nitric oxide. Any protein important for response to damage induced by a dissolved gas is a conditionally essential gene in this category.

III. Identification of variances and alternative alleles.

A target gene of this invention must occur as alternative alleles in the population; that is, the DNA sequence variance should either affect the gene sequence, RNA sequence, or protein sequence of the gene or its gene products, which would facilitate the design of inhibitors of the protein product, or be a base difference anywhere within the genomic DNA sequence, including the promoter or intron regions. Such DNA sequence variance can be exploited to design inhibitors of transcription or translation which distinguish between two allelic forms of the targeted gene. Sequence variants that do not alter protein sequence can be targeted, for example, with antisense oligonucleotides or ribozymes.

The most elementary genetic variant, which is common in mammalian genomes, is the single nucleotide substitution. It has been estimated that the comparison of haploid genomes will reveal this type of variant every 300 to 500 nucleotides (Cooper, et al., Human Genetics, 69:201:205 (1985)).

Sequence variances are identified by testing DNA from multiple individuals from

PCT/US98/05419

111

UHF electromagnetic radiation of 434 Mhz will change resonance of the glutathione cycle resulting in thiol depletion which increases radiosensivity. UHF is therefore a radiosensitizing treatment, contingent on the status of the glutathione system.

iii. Other wavelenths of electromagnetic radiation

- 5 2. Temperature
 - A. Heating
 - 1. Heat shock proteins
 HSP70 (OMIM 138120)
 HSP27 (GenBank X54079)
 - B. Cooling

10

20

- 2. Cold sensitive proteins
- 15 3. Change in redox environment, including change in partial pressure of gasses
 - A. Change in partial pressure of oxygen
 - i. Repair of damage from reactive oxygen species
 8-oxoguanine DNA glycosylase (hOGG1) (GenBank
 U96710)

The major mutagenic lesion caused by exposure to reactive oxygen species is 8-oxoguanine. hOGG1 is a DNA glycosylase with associated lyase activity that excises this adduct and introduces a strand break. Cells lacking this protein are deficient in repair of oxidative damage and have high mutation rates. In conditions of high oxidative damage, including cellular aerobic metabolism, ionizing radiation and some chemotherapy drugs the hOGG1 gene would be conditionally essential for DNA repair. The human OGG1 gene maps to chromosome 3p25, a region of high frequency LOH in lung, kidney, head and neck and other cancers.

Fanconi anemia genes (see above for list of 8 FA complementation groups; FA genes also mediate sensitivity to oxygen)

25

the population(s) to determine whether the DNA sequence for the target gene differs in different individuals. Many different methods for identifying gene sequence variances are known in the art, several of which are described in detail in the Examples noted below. These include, but are not limited to: (1) sequencing using methods such as Sanger sequencing which is commonly performed using automated methods (Example 37); (2) Single Strand Conformation Polymorphism (Example 28); (3) DGGE (Example 36); (4) Computational methods (Example 30); (5) Chemical cleavage, (6) HPLC; (7) Enzymatic Mutation Detection, (Example 29); (8) Hybridization; (9) Hybridization arrays; and (10) Mass spectroscopy.

Often combinations of these methods are used. For example, methods such as 10 SSCP, DGGE, or HPLC are useful in identifying whether amplified gene segments from two individuals are identical or contain a variance. These methods do not identify the location of the variant site within the linear sequence of the amplified gene segment, nor do these methods identify the specific nature of the variance, namely the alternative bases within the variant site. Methods such as Enzymatic Mutation Detection determines where the variant site is located within the sequence, but not the specific variance. Methods such as mass spectroscopy identify the specific variance, but not it location within the segment. Methods such as sequencing, computational analysis, and hybridization arrays can determine the location of the variance and specific sequence of the variance within the segment. 20 In addition, methods such as SSCP, DGGE, EMD, and chemical cleavage are useful for determining alleles containing more than one variant site, if such sites occur within a single amplified gene segment. For the purpose of this invention, methods have been used to identify novel variant sites within genes that are essential for cell survival or proliferation. With the above methods, the presence and type of 25 variance are preferably confirmed, such as by sequencing PCR amplification products extending through the identified variance site.

114

IV. Loss of Hertozygosity

Essential genes which are located in chromosomal regions which frequently undergo LOH in a tumor or other disease or condition provide advantageous targets, as the LOH of the chromosomal region indicates that the particular gene will also undergo LOH at similar high frequency. Also, essential genes which undergo LOH at high frequencies in a particular tumor, or in a range of tumor types provide advantageous targets, as a large number of patients will be potentially treatable due to the LOH of a particular essential gene.

Cancer cells, or more broadly cells associated with certain other proliferative 10 conditions, are generally genetically different from normal somatic cells as a result of partial or complete chromosome loss, called loss of heterozygosity (LOH), which occurs at the earliest stages of these disorders. In cancer, as a result of such early chromosome loss, all the tumor cells in an individual exhibit the same pattern of LOH since the cancer results from clonal expansion of the progenitor cell with LOH. Losses of genes in LOH range from less than 5% of a chromosome, to loss 15 of a chromosome arm, to loss of an entire chromosome. Generally only one chromosome copy is lost, making cancer cells partially hemizygous - i.e., they have only one allele of many genes. As a result of such allele loss, only the single remaining allele will be available to be expressed. Such loss of heterozygosity and 20 other losses of genetic material in cancers is described in a variety of references, for example in Mitelman, F., Catalog of Chromosome Aberrations in Cancer, New York: Liss (1988); and Seizinger, et al., "Report of the committee on chromosome and gene loss in neoplasia," Cytogenet. Cell Genetics, 58:1080-1096 (1991). A review of many published studies of LOH in cancer cells is provided in Lasko, 25 Cavenee, and Nordenskjold, "Loss of Constitutional Heterozygosity in Human Cancer," Ann. Rev. Genetics, 25:281-314 (1991).

There is considered to be a causal relationship between LOH and the origin of

cancer or other proliferative disorders. Loss of heterozygosity commonly involves chromosomes and chromosome segment that contain at least one tumor suppressor gene in addition to many other genes that may not have any function associated with cancer but are coincidentally located in the same region of the chromosome, measured in physical distance or genetic distance, as the tumor suppressor gene. Tumor suppressor genes generally regulate cell proliferation or are involved in initiating programmed cell death when threshold level of damage occurs to the cell. The loss of tumor suppressor gene function is believed to confer a growth advantage to cells undergoing LOH, because it allows them to evade these negative growth regulatory events. It is the loss of tumor suppressor genes, and the 10 proliferative advantage associated with loss of tumor suppressor functions, that drives allele loss or loss of heterozygosity. Loss of tumor suppressor gene function requires inactivation of both gene copies. Inactivation is usually due to the presence of mutations on one gene copy and partial or complete loss of the chromosome, or chromosome region, containing the other gene copy. (Lasko et al., 1991, Annu. 15 Rev. Genet. 25:281-314)

Several tumor suppressor genes have been cloned. They include, for example, TP53 on chromosome arm 17p, BRCA1 on 17q, RB and BRCA2 on 13q, APC on 5q, DCC on 18q, VHL on 3p, and p16^{INK4}/MTS1 on 9p. Many other, as yet uncloned, tumor suppressor genes are believed to exist based on LOH data; research groups are currently working to identify new tumor suppressor genes at more than a dozen genomic regions characterized by high LOH in cancer cells, including generating detailed LOH maps which provide LOH information useful for this invention due to the ability to identify essential genes which map to these regions of LOH. While there is an extensive literature considering tumor suppressor genes as potential targets for anti-cancer therapy, these genes are, in general, not candidates for antiproliferative therapy under the present invention because most tumor suppressor genes are not essential for cell proliferation or survival. To the contrary,

116

it is the loss of tumor suppressor genes that enables the abnormal proliferation and survival of cancer cells.

The pattern of LOH for a particular cancer or tumor or other proliferative disorder is not merely random. Often, there is a characteristic pattern for each major cancer type. Certain regions, including segments of chromosomes 3, 9, 11, 13, and 17, are frequently lost in most major cancer types. Other regions, such as on chromosomes 1, 3, 5, 6, 7, 8, 9, 11, 13, 16, 17, 18, and 22, exhibit high frequency LOH in selected cancers. It is believed that the characteristic LOH patterns of different cancers reflects the location(s) of tumor suppressor genes related to the development of the 10 particular cancer or cancer type. Thus, essential genes located in regions which are characteristically associated with LOH for a particular cancer, or other tumor are particularly advantageous targets for inhibitors useful for treatment of that cancer or tumor because such genes will also characteristically undergo LOH at high frequency. The fact that certain cancers predictably undergo LOH in specific 15 regions of the genome, and that LOH occurs before the clonal expansion of cancers in precancerous, abnormally proliferating tissue is potentially useful for preventing cancer with allele specific inhibitors of essential genes.

The treatment method described herein is applicable to proliferative disorders in which clonal proliferation occurs and in which the proliferating cells commonly undergo LOH. Another example of a disorder which has been characterized as a proliferative disorder is inflammatory pannus in arthritic joints. The demonstration of LOH associated with such a disorder will indicate that the allele specific treatment would be appropriate for the disorder. For the application of the general allele specific inhibition strategy to such conditions (e.g., selection of target gene and variance, identification of inhibitors, selection of composition and administration method appropriate for the condition and the inhibitor), the cells associated with the condition correspond with the tumor, e.g., cancer cells, for the

methods described in the Summary above.

LOH has been described for such polyclonal or oligoclonal disease conditions, in particular for atherosclerosis (arteriosclerosis), for example in Hatzistamou et al., 1996, Biochem. Biophys. Res. Comm. 225:186-190. Using a limited set of markers located on 18 chromosomal arms (one marker per arm), it was found that 23% of atherosclerotic plaques exhibited LOH for at least one marker. This does not necessarily represent the maximum fraction of plaques which could potentially be treated with allele specific inhibitors because the study did not attempt to determine the sites of maximum LOH on each arm. LOH which is partial arm LOH not affecting the particular marker for that arm was not detected. In general, fine scale LOH studies (using closely spaced markers) have revealed more sites of high frequency LOH than coarser scale studies.

The LOH for alleles of essential genes in cancers forms the basis for the anticancer therapeutic strategy described in Housman, *supra*. When one allele of the essential gene is lost from the patient's cancer cells, the retained allele can be targeted with an allele specific inhibitor. Such an inhibitor will kill, or reduce or prevent the growth of cancer cells by abolishing the function of an essential gene. Normal cells, which retain both uninhibited and inhibited alleles, will survive or grow due to the expression of the uninhibited allele. This is clearly indicated because tumor cells having only one allelic form (after LOH) thrive, thus, normal cells will also function normally with one of two allelic forms inhibited.

A large number of high frequency LOH regions are identified in Fig. 5. If not previously known, this correlation can be determined routinely for one or more tumor types by mapping of essential genes to chromosomal regions which have been identified as having high frequency LOH, or by identifying essential genes which map to locations near markers which have been identified as undergoing high

15

frequency LOH in a tumor. As previously described, the LOH of a marker near an essential gene, or the bracketing of an essential gene by two markers which undergo LOH, is strongly indicative that the essential gene also undergoes LOH at a similar frequency.

5 TABLE 4 Loss of Heterozygosity in Human Solid Tumors By Chromosome Arm

	Chron	nosome Region Tumor Type	Chron Type	mosome Region Tumor
ı	1p	Breast carcinoma	-	
10		Cutaneous melanoma	2	Uveal melanoma
	(metas	stastic)		
		Medullary thyroid carcinoma:		
		MEN2A		
		Neuroblastoma		
15		Pheochromocytoma: MEN2A		
		sporadic		
	1q	Breast carcinoma		
		Gastric adenocarcinoma		

Γ			4q	Hepatocellular carcinoma
	3p	Breast carcinoma		
20		Cervical carcinoma		
		Lung cancer:		
		small carcinoma		
		non-small cell		
1	carci	noma		
2\$		large cell carcinoma		
- 1		squamous cell		
	carci			
		adenocarcinoma		
		Ovarian carcinoma		
30		Renal cell carcinoma: familial		
ı		sporadic		
		Testicular carcinoma	L	

			1	
	5q	Colorectal carcinoma	6q	Ovarian carcinoma
1		Hepatocellular carcinoma		Primitive neuroectodermal
			tumor	
1			1	Renal cell carcinoma
İ			1	Testicular teratocarcinoma
	9p	Glioma	10	Glioblastoma multiforme
	9q	Bladder carcinoma	10q	Hepatocellular carcinoma
			<u> </u>	Prostate cancer
\$	11p	Adrenal adenoma	12q	Gastric adenocarcinoma
		Adrenocortical carcinoma	ŀ	
		Bladder carcinoma	1	
		Breast carcinoma		
		Embryonal		
1 þ	rhabdo	omyosarcoma		
		Hepatoblastoma		
		Hepatocellular carcinoma	İ	
		Lung cancer:	1	
		squamous cell	ł	·
1\$	carcino	oma	1	
		large cell carcinoma	1	
-		adenocarcinoma	1	
		Ovarian carcinoma	Į	
ı		Pancreatic cancer	ł	
2 0		Parathyroid tumors	1	
		Pheochromocytoma	ł	
İ		Skin cancer	1	
1		squamous cell	ĺ	
	carcino	oma	İ	
2\$		basal cell carcinoma	İ	
		Testicular cancer		
		Wilms tumor		
	11q	Insulinoma		
-	-	Parathyroid tumors		

19	13q	Adrenocortical adenoma Breast carcinoma Gastric carcinoma Hepatocellular carcinoma Lung cancer: small cell carcinoma Neuroblastoma Osteosarcoma Retinoblastoma	14 14q	Colorectal carcinoma Neuroblastoma
15	16 16q turnor	Breast carcinoma Breast carcinoma Hepatocellular carcinoma Primitive neuroectodermal Prostate cancer	tumor	Adrenocortical adenoma Astrocytoma Bladder carcinoma Breast carcinoma Colorectal carcinoma Lung cancer: small cell carcinoma squamous cell oma adenocarcinoma Medulloblastoma Neurofibrosarcoma: NF1 Osteosarcoma Ovarian carcinoma Primitive neuroectodermal Rhabdomyosarcoma Breast carcinoma Neurofibroma: NF1
	18 18q	Renal cell carcinoma Breast carcinoma Colorectal carcinoma	22q	Acoustic neurinoma Colorectal carcinoma Ependymoma Meningioma Neurofibroma

- V. Use of variance-specific inhibitors of essential genes to treat non-malignant,
- 20 proliferative conditions.

It was found in the present invention that noncancer proliferative disorders could also be targeted using such an allele specific strategy. Such conditions include, but are not limited to atherosclerotic plaques, abnormal tissue in arthritic joints, including pannus, benign tumors such as leiomyomas and meningiomas, and

- hyperplastic conditions such as benign prostatic hyperplasia. For most of these conditions there is evidence of a mono- or oligoclonal origin and evidence of LOH. Such evidence includes the following:
- A recent study (Hatzistamou, J., Kiaris, H., Ergazaki, M., et al. (1996) Loss of heteroxygosity and microsatellite instability in human atherosclerotic plaques. Biochemical and Biophysical Research Communications 225: 186-10 190.) demonstrated that allele loss occurs in atheromatous plaques, which have long been viewed as benign neoplastic proliferations by some investigators (Benditt, E.P. and J.M. Benditt (1973) Evidence for a monoclonal origin of human atherosclerotic plaque. Proc. Natl. Acad. Sci. U. S. A. 70: 1753-7). Each atheromatous plaque constitutes a 15 separate independently arising primary lesion. Consequently, allele loss in individual atherosclerotic plaques will differ, with, for example, allele A of a hypothetical essential gene lost in some plaques and allele A' in others. An inhibitor of allele A would be expected to kill (or arrest growth of) only about half of all the plaques with allele loss at the 20 hypothetical locus - those plaques hemizygous for A. To kill the other half of the plaques with allele loss at the target locus would require an inhibitor of A'. Simultaneous use of inhibitors of A and A' would be highly toxic to diploid normal cells. However serial use of an inhibitor directed to allele A followed by an inhibitor directed to A' (perhaps 25 repeating treatment for several cycles, or even indefinitely) would alternately abolish essential gene function in one half of all haploid plaque cells and then the other half, leading eventually to death or sustained

inhibition of proliferation of all plaque cells. Normal cells would retain

50% gene function in the presence of inhibitor (either from allele A or allele A'). This therapeutic approach is applicable to the eradication of any clonal proliferation of cells in which allele loss has rendered the cells partially haploid.

- LOH has been described in a wide variety of premalignant conditions such as metaplasia and dysplasia of colonic epithelium, breast epithelium, lung epithelium and cervical epithelium. Most studies have focused on metaplastic or dysplastic epithelium adjacent to cancer tissue, and have shown patterns of LOH similar to those in the adjacent malignant epithelium. Prophylactic ablation of such premalignant tissues could prevent the subsequent development of cancer.
- In benign tumors such as leiomyomas and parathyroidomas, which frequently must be surgically removed, LOH has been well described. As with atherosclerotic plaques, these tumors are frequently multifocal and therefore the approach of serial inhibition of allele A followed by inhibition of allele A' would alternately abolish essential gene function in one half of all haploid tumor cells and then the other half, leading eventually to death or sustained inhibition of proliferation of all tumor cells.
- LOH has been described in endometriosis, a proliferative condition associated with pain and infertility and frequently requiring surgical removel of endometrial tissue growing outside the uterine cavity. As with atherosclerotic plaques, there is only one study published to date and the frequency of LOH is low (15-18%), however the study examined only six chromosome arms; additional studies may lead to identification of regions of higher frequency LOH
 - LOH is apparently the necessary event in the development of cyts in some, and possibly all, forms of autosomal dominant polycystic kidney disease (ADPKD). (There are three forms, with ADPKD1 accounting for about

10

15

20

85% of cases and ADPKD2 about 15% of cases.) LOH has been demonstrated by genetic analysis of the cells lining cyst walls in kidneys of ADPKD1 patients: the cells have undergone LOH for markers flanking the ADPKD1 gene. As a result the cyst cells lack functional ADPKD1. (Patients with ADPKD inherit one defective copy of an ADPKD gene from their parents.) Only about 20% of cysts were shown to have LOH when studied with a few markers, but this likely reflects, at least to some extent, technical difficulties in obtaining pure populations of cyst cells for analysis. The extent of loss of heterozygosity in cyst cells has not been well studied; only several polymorphic markers in the vicinity of the ADPKD1 gene on chromosome 16p were tested in one study (Qian, F., Watnick, T.J., et al. The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87:979-987, 1996.) Another study found one case of LOH on chromosome 3p, distant from the ADPKD gene. Future LOH studies may reveal more extensive LOH in ADPKD. Also, it is worth noting that, unlike malignancy where it is desirable to eradicate all disease cells, eradication of a fraction of the cysts in ADPKD would be expected to have a significant beneficial effect. This is evident from the disparate clinical presentation of ADPKD, with varying numbers of cyts being associated with varying degrees of impairment of kidney function.

- Other conditions in which LOH has been demonstrated include hamartomas in tuberous sclerosis patients, odontogenic keratocysts and pterygia (benign lesions of the corneoconjunctival limbus).
- Other conditions in which there is evidence of clonal proliferation include inflammatory pannus in arthritic joints, benign prostatic hypertrophy, and hereditary hemorrhagic telangiectasia. (Qian, F. and G.G. Germino. "Mistakes Happen": Somatic Mutation and Disease. Am. J. Hum. Genet. 61: 1000-1005, 1997.)

124

Thus, consistent with the Summary above, it was found that LOH occurs in many non-malignant neoplasias or tumors with subsequent clonal growth of cells which contain only one allelic form in individuals whose normal somatic cells are heterozygous for the particular essential gene. The essential gene can therefore 5 be inhibited by an allele specific inhibitor, *i.e.*, a variance specific inhibitor. In some conditions, however, multiple, independently arising lesions in an individual are subjected to LOH in a disease or condition, *e.g.*, in the development of atherosclerotic plaques. For that example, in individuals heterozygous for a particular essential gene which undergoes LOH, this results in some atherosclerotic plaques in which cells have one of the allelic forms of an essential gene, and other plaques in which cells have the alternative form of the gene.

It was determined that such conditions can be treated using allele specific inhibitors despite the presence of both alleles in cells related to the condition. 15 There are two strategies for such therapy. The first is to serially administer different inhibitors targeted to the different allelic forms of the target gene. This can be accomplished by using inhibitors which target the alternative sequence variants of one sequence variance site. Simultaneous administration of inhibitors of both allelic forms of an essential gene would inhibit the cells which have 20 undergone LOH at that gene, but would also inhibit the normal heterozygous cells of the individual. This treatment would inhibit essential functions in normal cells as well as cancer cells and have no advantage over the administration of conventional antiproliferative drugs, many of which are inhibitors of known essential functions. In contrast, administration of the first inhibitor targets the subset of cells which have only the first allelic form of an essential gene. As 25 described for the general strategy, this inhibitor will not significantly affect the growth or survival of the normal heterozygous somatic cells. This first administration is followed by administration of a second inhibitor; the second

inhibitor targets the cells which contain only the second allelic form of the gene, and again does not significantly affect the normal somatic cells. This process of alternating administration can be repeated as needed to achieve a desired therapeutic effect. In some cases many rounds of alternating administrations will be useful. Similarly, recurring, or even indefinitely continued alternating administrations will provide useful treatment. Likewise, these methods can incorporate the use of inhibitors targeted to specific alleles of a plurality, e.g., 2, 3, 4, or more different target genes.

In certain instances, even though the lesions in non-malignant diseases are not clonal, there may be systematic loss of one parental chromosome allowing effective therapy with only one variance-specific inhibitor. This would occur, for example, if there were an inherited or early embryonic mutation within a tumor suppressor gene on one parental chromosome, in which case any event which was associated with the elimination of the corresponding normal tumor suppressor gene on the other parental chromosome would lead to abnormal proliferation. In such cases a variance-specific inhibitor of an essential gene that was closely linked to the normal tumor suppressor gene would preferentially kill cells in the proliferating lesion.

VI. Characteristics of allele-specific inhibitors

As indicated above "allele specific inhibitors" or "allele specific anti-neoplastic agents" represent a new approach to tumor therapy because they are lethal or significantly inhibit the growth only of tumor cells. The advantages of this approach include, first, lack of toxicity to the normal cells of the patient resulting in a therapeutic index greater than that of conventional tumor, e.g., cancer chemotherapy drugs, and second, it is not necessary that the inhibitors be targeted specifically to the tumor cells, as they can be administered systemically. As also described above, usually an allele specific inhibitor is specific for a single

126

sequence variance of an essential gene, though in some cases the inhibitor utilizes the joint effects of two or more sequence variances on a particular allele.

It is not necessary for the allele specific inhibitor to have absolute specificity. Normal cells expressing equal amounts of two allelic forms of a gene product encoded by the essential gene will often show a reduction in gene activity when they take up the inhibitors of this invention, but should remain viable due to the activity of the protein encoded by the uninhibited allele. On the other hand, tumor cells expressing only one allele due to LOH, will respond to the inhibitors of this invention which are specifically directed to the remaining allele, with a greater reduction in gene activity. Growth of tumor cells exposed to the inhibitors of this invention will be inhibited due to the suppression of either the synthesis or the biological activity of the essential gene product.

Also, while a single gene has only two allelic forms in any given individual, the gene can have more than two allelic forms in a human population. Accordingly, inhibitors can be targeted to any of the alleles in the population. A particular inhibitor will generally be targeted to a subset of the allelic forms; the members of the subset will have a particular sequence variance which provides the specific targeting. In some cases, however, the inhibitor will jointly target two, or possibly more sequence variances.

Once two or more alleles are identified for a target essential gene, inhibitors of high specificity for an allele can be designed or identified empirically. Inhibitors that can be used in the present invention will depend on whether allelic variation at a target locus affects the amino acid sequence, the mRNA sequence, or the DNA in intron and promoter regions. If there is variation at the protein level, then classes of inhibitors would include low molecular weight drugs, oligopeptides and their derivatives, and antibodies, including modified or partial

10

antibody fragments or derivatives. For mRNA or DNA sequence variance the main class of inhibitors are complementary oligonucleotides and their derivatives and catalytic RNA molecules such as ribozymes, including modified ribozymes. The generation of inhibitors of this invention can be accomplished by a number of methods. The preferred method for the generation of specific inhibitors of the targeted allelic gene product uses computer modeling of both the target protein and the specific inhibitor. Other methods include screening compound libraries or microorganism broths, empirical screening of libraries of peptides displayed on bacteriophage, and various immunological approaches.

10 Further, in the treatment of cancer patients, a therapeutic strategy includes using more than one inhibitor of this invention to inhibit more than one target. In this manner, inhibitors directed to different proteins essential to cell growth can be targeted and inhibited simultaneously. The advantage of this approach is to increase the specificity of the inhibition of proliferation of cancer cells, while at the same time maintaining a low incidence of side effects.

A. Targeted Drug Design.

Computer-based molecular modeling of target proteins encoded by the various alleles can be used to predict their three-dimensional structures using computer visualization techniques. On the basis of the differences between the three-dimensional structure of the alternate allelic forms of the proteins, determinants can be identified which distinguish the allelic forms. Novel low molecular weight inhibitors or oligopeptides can then be designed for selective binding to these determinants and consequent allele-specific inhibition. Descriptions of targeted drug design can be found, for example, in I. Kuntz, "Structure-Based Strategies for Drug Design and Discovery," *Science* 257:1078-1082 (1992) and J. Dixon, "Computer-Aided Drug Design: Getting the Best Results," *Trends in Biotechnology* 10:357-363 (1992). Specific applications of the binding of

128

molecules to receptors using computer modeling have been described in Piper et al., "Studies Aided by Molecular Graphics of Effects of Structural Modifications on the Binding of Antifolate Inhibitors to Human Dihydrofolate Reductase," Proc Am. Assoc. Cancer Res. Annual Meeting 33:412 (1992); Hibert et al., "Receptor 3D-Models and Drug Design," Therapie (Paris) 46:445-451 (1991)(serotonin receptor recognition sites). Computer programs that can be used to conduct three-dimensional molecular modeling are described in G. Klopman, "Multicase 1: A Hierarchical Computer Automated Structure Evaluation Program,"

Quantitative Structure-Activity Relationships, 11:176-184 (1992); Pastor et al., "The Edisdar Programs Rational Drug Series Design," Quantitative Structure-Activity Relationships, 10:350-358 (1991); Bolis et al., "A Machine Learning Approach to Computer-Aided Molecular Design," J. Computer Aided Molecular Desig, 5:617-628 (1991); and Lawrence and Davis, "CLIX: A Search Algorithm for Finding Novel Ligands Capable of Binding Proteins of Known Three-Dimensional Structure," Proteins Structure Functional Genetics 12:31-41 (1992).

Low molecular weight inhibitors specific for each allelic protein form can be predicted by molecular modeling and synthesized by standard organic chemistry techniques. Computer modeling can identify oligopeptides which block the activity of the product of the target gene. Techniques for producing the identified oligopeptides are well known and can proceed by organic synthesis of oligopeptides or by genetic engineering techniques. R. Silverman, The Organic Chemistry of Drug Design and Drug Action, Academic Press (1992).

The inhibitors of this invention can be identified by selecting those compounds that selectively inhibit the growth of cells expressing one allelic form of a gene, but do not inhibit the activity of the A allelic form.

B. Small Molecule Inhibitors

10

15

20

Low molecular weight inhibitors can be identified and generated by at least one of the following methods; (1) screening of small organic molecules present in microorganism fermentation broth for allele-specific activity; or (2) screening of compound libraries. Once a compound is identified which exhibits allele specific activity, derivatives of that compound can be obtained or produced in order to obtain compounds having superior properties, such as greater activity, greater specificity, or better administration related properties (e.g., solubility, toxicity, and others).

A small molecule for allele specific targeting, i.e., variance specific targeting, to a polypeptide or protein target will generally have the following characteristics:

- Differential binding affinity for protein domains altered by the amino acid variance or uniform binding to the protein with differential effects due to subsequent interactions with variant residues.
- Inhibition of protein function following differential binding. Several mechanisms of inhibition are possible including:

competitive inhibition of active sites or critical allosteric sites, allosteric inhibition of protein function, altering compartmentalization or stability, and inhibition of quaternary associations.

Favorable pharmaceutical properties, such as safety, stability, and kinetics.

In view of the art relating to identification of compounds that interact with particular features of a polypeptide or protein or protein complex, There are clear precedents for developing drugs, *i.e.*, inhibitors, that are variance-specific including drugs that are allosteric inhibitors of protein functions. Several lines of experimental evidence demonstrate that small molecule variance specific

inhibitors can be designed and constructed for particular targets. Specifically:

- Several essential gene targets have been identified that contain variances within domains comprising the active site.
- ☐ It is possible to screen for ligands that recognize variant surface features.
- Combinatorial methods using antibodies, peptides, or nucleic acids suggest that specific ligands can be selected for large fractions of the surface of any protein.
- There are many literature reports of single amino acid substitutions, within the active site as well as elsewhere within a protein, altering ligand specificity and drug action.
 - Allosteric (noncompetitive) inhibition of protein function may be induced by binding ligands to many different surfaces of a protein. Ligands can cause allosteric inhibition by disturbing secondary, tertiary or quaternary (subunit-subunit) interactions of a protein. There is ample evidence that such effects can e induced by binding to sequences outside the active site and even in regions that are uninvolved in the normal catalytic or regulatory activity of a protein.

Each of these points is discussed in more detail below.

Variances located within domains comprising the active site.

- 20 Crystal structures are available for several of the exemplary targets or for homologous proteins that can allow prediction of tertiary structure. As noted, the protein variance in Replication Protein A occurs within the domain that is involved in binding DNA. The protein variance in CARS occurs within the domain involved in tRNA binding.
- The proximity of the active site to these variances may be exploited by several different strategies:

- Competitive inhibitors can exert variance-specific effects by exhibiting differential affinities for variant active sites, thereby interfering with binding of the substrate or critical allosteric effectors.
- Competitive inhibitors may bind with equal affinity for the active site but exerting different effects on the structure or function of the variant domain.
 - Allosteric inhibitors can exert variance-specific effects by binding differentially to variant forms of the active domain and distorting the structure or function of the active site.

20

Screening for ligands that recognize variant surface features.

Combinatorial libraries of antibodies, peptides, nucleic acids, or carbohydrates have been used to demonstrate that ligands can be identified that will bind to large fractions of the surface of any protein.

15 A library of 6.5 X 10¹⁰ antibody-bearing phage was screened for binding to various targets and contained antibodies against all targets tested.

Selex and Aptamer technologies involve selection of random oligonucleotides that bind to specific targets. Reports indicate that ligands with high affinity and specificity can be selected for diverse targets despite the limited chemical diversity of the nucleic acid-based ligands.

These studies demonstrate the ability to identify ligands for unique surface features using several different chemistries. Similarly, small molecule protein surface interaction can be screened; two broad approaches for identifying small molecule ligands can be distinguished:

Combinatorial approaches coupled with methods for high-throughput screening provide a similar scope of opportunities as combinatorial methods focused on nucleic acids, peptides, or carbohydrates.

PCT/US98/05419

132

Rational design or focused combinatorial approaches based on biochemical, biophysical, and structural data about the target protein may be optimal when the crystal structure of the protein is known. When the crystal structure of the target protein or its homologues are known it will often be possible to model the topology and surface chemistry of the target in detail. These data are useful in optimizing the binding specificity or allosteric inhibitory function of the product through a series of iterative steps once a prototype binding ligand is identified. Structural modeling of the target can be particularly useful in optimizing the variance specificity of a ligand that binds to the target sequence.

Examples of single amino acid substitutions altering sensitivity to small molecules Many amino acid substitutions have been described in proteins that alter the specificity or function of small-molecule ligands. These substitutions are useful models for variance-specific interactions (e.g. interactions that are altered by the amino acid substitutions that distinguish variant forms of a protein.)

There are clear precedents for variance-specific drug effects in humans.

Variance-specific interactions are observed in a wide variety of structurally and functionally heterogeneous proteins. Among these are variances in human proteins including:

- N-acetyl transferase 2 variances affect acetylation of drugs including caffeine and arylamines;
 - CYP2C19 variances affect the hydroxylation of mephenytoin and related compounds;
- CYP2D6 variances affect hydroxylation of debrisoquine and related compounds;
 - glucose-6-phosphate dehydrogenase variances account for sensitivity to primaquine and other drugs.

WO 98/41648

15

There are numerous examples of variance-specific drug effects in targets for antiviral and antimicrobial drugs. The most extensively characterized are those in HIV Reverse Transcriptase and β -lactamase. These data indicate that many different amino acid substitutions can alter drug effects. Moreover, while amino acid substitutions are classically distinguished as "conservative" or "non-conservative," it is evident from these data that many seemingly "conservative" substitutions can have significant effects. For each of the types of amino acid substitution identified within the exemplary target genes, examples of the same amino acid substitution altering the interaction of small molecule drugs on a target protein is shown in one or more of the model systems.

Sites of allosteric inhibition

Most drug development focuses on *competitive* inhibitors of protein action rather than noncompetitive, *allosteric* inhibitors. There is no *a priori* advantage to a competitive versus allosteric inhibitor except for the fact that medicinal chemistry often begins with candidate molecules derived from natural substrates or cofactors. There are, in fact, conceptual advantages to allosteric inhibitors since each protein may contain multiple allosteric sites, and allosteric inhibitors may be effective at lower concentrations (*e.g.* those equivalent to the substrate) since there is no need to compete with the substrate for binding.

Detailed crystallographic and other structural studies of a variety of enzymes show that the mechanism of allosteric inhibition commonly involves conformational changes (e.g. domain movements) far from the site of contact with the allosteric regulator. These data illustrate the cooperativity of protein structure, demonstrating how a small change in one region of a protein is amplified throughout the structure. Such cooperativity allows small molecules binding to various regions of a protein to have significant structural and

functional effects.

One way to assess the probability of achieving allosteric effects from a variant sequence is to examine the distribution and nature of mutations that affect drug action in several well-characterized proteins. Another is to examine the distribution of epitopes for antibodies that bind to the surface of a protein and inhibit its function. Analyses of these types show that allosteric sites are widely dispersed within proteins and may comprise the majority of the protein's surface.

For example:

HIV-1 reverse transcriptase (RT) is a heterodimer with p66 and p51 subunits.

The p66 subunit is 560 amino acids, and p51 is a 440 amino acid subfragment of p66. The three dimensional structure of HIV-1 RT has been solved by x-ray crystallography. Three HIV-1 RT structures have been published, including complexes with double stranded DNA at 3.0 Å resolution and with the non-nucleoside inhibitors nevirapine (at 3.5Å) and -APA (at 2.8Å).

Two classes of HIV-1 RT inhibitors have been developed. The first class comprises nucleoside analogues including AZT, ddI and ddC. The second class comprises non-nucleoside analogues belonging to several chemical groups, including TIBO, BHAP, HEPT, -APA, dipyridodiazepinone, pyridinone, and inophyllum derivatives, all of which bind the same hydrophobic pocket in HIV RT. Many amino acid substitutions have been described that produce resistance to these drugs. Table 5 shows the location of selected mutations within HIV-1 RT that cause resistance to nucleoside analogues as well as the mechanism of inhibition postulated from physical-chemical experiments and structural data; the list is not comprehensive.

25 Table 4

135

Location and postulated mechanism of amino acid substitutions which confer resistance to nucleoside analog inhibitors. trp266X - multiple substitutions.

Potential resistance mechanism

	Mutation	Location of	Mutation	Direct	Indirect	Indirect
ļ		mutation	creates	effect on	effects via	effect by
			resistance	dNTP	interactions	
			to drug(s)	binding	with dNTP	
					binding	
					site	
5	met41leu	a4	AZT		Х	
	lys65arg	3- 4	ddC,ddI,		.	X
			3TC			
	asp67asn	3- 4 loop	AZT			X
	thr69asp	3- 4 loop	ddC			X
	lys70arg	3- 4 loop	AZT			X
10	leu74val	4	ddI			X
	val75thr		ddI,ddA			
	glu89gly	5a	ddI,ddA			X
	ile135thr	7- 8 loop	ddI		X	
	met184val	9- 10 turn	ddI, ddC	X		X
15	thr215tyr	11a	AZT		X	X
	thr215phe	11a	AZT		X	X
	lys219gln	11b	AZT	X	X	X
	trp266X	-thumb	AZT			

These data demonstrate that nucleoside analog resistance arises from mutations in multiple domains. Many of the mutations are located far from the dNTP binding sites. These changes inhibit drug function by altering the conformation of the target protein in a manner analogous to those conformational changes that may be induced by an allosteric inhibitor.

Table 5 summarizes the mutations that alter the function of non-nucleoside inhibitor drugs

Table 5
Location and postulated mechanism of amino acid substitutions which confer resistance to non-nucleoside analog inhibitors.

	Mutation	Mutation location	Effect of mutation	Mutation confers resistance to:
	ala98gly	5b- 6 loop	flexibility	Pyridinone L-697661, Nevirapine
	leu100ile	5b- 6 loop	-branch	Pyridinone L-697661, Nevirapine, TIBO R82913
	lys101glu	5b- 6 loop	charge	Pyridinone L-697661, Pyridinone L-697639,
10	lys103asn	5b- 6 loop	charge loss	Pyridinone L-697661, BHAP U- 87201,Nevirapine TIBO R82913
	val106ala	6	less bulky	Nevirapine, TIBO R82913
	val108ile	6	bulkier	Pyridinone L-697661, Nevirapine
	glu138lys	7- 8 loop	charge	TIBO R82913
	val179asp	9	charge	Pyridinone L-697661
15	val179glu	9	charge	Pyridinone L-697661
	tyr181cys	9	less bulky	Pyridinone L-697661, BHAP U-87201, Nevirapine, TIBO R82913
	tyr188cys	10	less bulky	Nevirapine
	tyr188his	10	less bulky	TIBO R82913, BHAP U-87201
	gly190glu	10	charge	Nevirapine
20	leu228phe	12	bulkier	BHAP U-90152
	glu233val	13	charge	BHAP U-87201
	pro236leu	13- 14 loop	flexibility	BHAP U-87201
	lys238thr	14	charge	BHAP U-87201
	trp266X	-thumb		TIBO R82913

15

It is evident from these examples that the substitutions which inhibit drug functions are distributed across several domains. Different inhibitory mechanisms have been postulated in domains throughout the protein, based on the three-dimensional structure of the protein. Most involve conformational disruption of the protein secondary and tertiary structure.

Thyrotropin receptor Naturally occurring antibodies against the thyrotropin receptor can cause activation of thyroid function (Grave's disease) or inhibition of thyroid function (Hashimoto's disease). The sites within the thyrotropin receptor that are targeted by these natural antibodies have been mapped in detail and have been tested with monoclonal antibodies. Most of the inhibitory antibodies do not interfere with binding of thyrotropin to its receptor, and thus, are allosteric rather than competitive inhibitors. Several independent classes of inhibitory antibodies have been identified that bind to epitopes within different domains of the receptor. At least one of these epitopes is in a domain that is entirely unimportant for receptor activity and can be deleted by site-directed mutagenesis without disrupting the function of the receptor. These experiments provide an explicit precedent for achieving allosteric inhibitory effects from ligands that target widely dispersed sequences within the protein.

Thermus aquaticus DNA polymerase The inhibitory activity of 24 monoclonal antibodies to Thermus aquaticus DNA polymerase has been investigated. The antibodies recognized 13 non-overlapping epitopes. Antibody binding to eight epitopes was inhibitory. Inhibitory antibodies mapped to several distinct domains, including the 5' nuclease domain, the polymerase domain and the boundary region between the 5' nuclease and polymerase domains. Some antibodies recognized epitopes overlapping the DNA binding groove of the polymerase. Significantly, the inhibitory antibodies recognized epitopes constituting as much as 50% of the Taq polymerase surface, and the non-inhibitory antibodies a further ~25%.

138

 β -lactamase The β -lactamases are a diverse family of enzymes which catalyze the hydrolysis of the β -lactam ring of penicillin and cephalosporin antibiotics. Interactions of these proteins with various small molecule drugs have been characterized in detail as the pharmaceutical industry has worked to develop chemically modified penicillins and cephalosporins to elude inactivation by β -lactamases. In addition, a β -lactamase inhibitor (clavulanic acid) has also been introduced into clinical use.

As each new drug has been introduced into wide use, mutant β -lactamases have emerged that are resistant to the drug. Over 190 β -lactamases have been described with differential specificity for the various penicillins and cephalosporins. Many of these differ by only a few amino acids. Many different amino acid substitutions at various sites within the protein can change the substrate specificity of the enzyme.

kat G (Isoniazid resistance) The kat G protein of M. tuberculosis encodes a catalase-peroxidase enzyme that is one of two mycobacterial genes frequently altered in isoniazid resistant strains (the other is inhA). There are a wide variety of amino acid substitutions in katG associated with drug resistance distributed evenly across the 740 amino acids of the protein. The mechanism by which some of these substitutions inhibit katG function can be inferred from the structure of the homologous yeast and E. coli enzymes and knowledge of the catalytic function of the enzyme. For example, insertion of an Ile between positions 125 and 126 affects a conserved interhelical loop near the active site residues; substitutions at amino acid 275 and 315 are likely to affect the ligand access channel; substitutions at amino acid 463 may affect a N-terminal substrate binding site. Other substitutions occur in regions that are not directly related to the functional sites of the protein.

25 The examples described above demonstrate that small molecules can discriminate in activity between polypeptides or proteins which have one a single amino acid

difference in sequence, i.e., a single amino acid sequence variance.

The application of small molecule inhibitor identification is specifically discussed in Example 39 below in connection with the methylguanine methyltransferase gene.

5 C. Antibody Inhibition.

Once an essential gene is identified and is determined to exist in two or more allelic forms which encode different proteins, antibodies can be raised against both allelic forms of the protein. The techniques for using a specific protein or an oligopeptide as an antigen to elicit antibodies which specifically recognize epitopes on the peptide or protein are well known. Preferably monoclonal antibodies (MABs) are used.

In one embodiment, the DNA sequence of the desired allelic form of the target gene can be cloned by insertion into an appropriate expression vector and translated into protein in a prokaryotic or eukaryotic host cell. The protein can be recovered and used as an antigen to elicit the production of specific antibodies. In another embodiment, the DNA of the desired allelic form of the target gene is amplified by PCR technology and is subsequently translated *in vitro* into protein to be used as the antigen to elicit the production of specific antibodies. A third embodiment is to use the DNA sequence of the alternative alleles as a basis for the generation of synthetic peptides representing the amino acid sequence of the alleles for use as antigen to elicit the production of specific antibodies.

Antibodies can be generated either by standard monoclonal antibody techniques or generated through recombinant based expression systems. See generally, Abbas, Lichtman, and Pober, Cellular and Molecular Immunology, W.B. Saunders Co. (1991). The term "antibodies" is meant to include intact antibody molecules of the

15

140

IgD isotype as well as antibody fragments or derivatives, such as Fab and F(ab')2, which are capable of specifically binding to antigen. The antibodies so produced will preferentially bind only the protein produced in the allelic form which was used as an antigen to create the antibody. If the targeted protein is expressed on the cell surface, the antibody or antibody derivative can be tested as a therapeutic. Antibody inhibitors are most effective when they are directed against cell surface proteins or receptors. If the essential protein produced by the targeted allele is not a cell surface protein or receptor, the development of antibody inhibitors may also require the use of a special antibody-delivery system to facilitate entry of the antibody into the tumor cells. The plasma membrane that surrounds all cells is designed to limit the entrance of most compounds. Entry is generally restricted to small, non-charged molecules (absence of charge allows them to slip through the fatty membrane) or to those factors that can penetrate the cell using existing, specialized import mechanisms. The introduction into cells of much larger molecules, such as specific antibodies, other proteins, or peptides, requires appropriate delivery systems such as are known in the art. Alternatively, the structure of the variable region of allele specific antibodies can be used as the basis for design of smaller allele specific inhibitory molecules.

D. Oligopeptides

Oligopeptides can be demonstrated to have a very high degree of specificity in their interaction with functional polypeptides such as cellular enzymes, receptors or other polypeptides essential for cell viability. Methods for screening peptide sequences which have high specificity for binding to, and functional inhibition of, a specific polypeptide target have been well described previously. Scott, J.K. and Smith G.P., "Searching for Peptide Ligands with an Epitope Library," Science 249:386-390 (1990). These methods include the screening of M13 libraries by "phage display" of polypeptide sequences as well as direct screening of peptides or mixtures of synthetic peptides for binding to or inhibition of the target functional polypeptide.

10

The oligopeptides of this invention can be synthesized chemically or through an appropriate gene expression system. Synthetic peptides can include both naturally occurring amino acids and laboratory synthesized, modified amino acids.

Also provided herein are functional derivatives of a polypeptide or protein. By

"functional derivative" is meant a "chemical derivative," "fragment," "variant,"

"chimera," or "hybrid" of the polypeptide or protein, which terms are defined

below. A functional derivative retains at least a portion of the function of the

protein, for example reactivity with a specific antibody, enzymatic activity or

binding activity mediated through noncatalytic domains, which permits its utility in

accordance with the present invention.

A "chemical derivative" of the complex contains additional chemical moieties not normally a part of the protein. Such moieties may improve the molecule's solubility, absorption, biological half life, and the like. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, and the like. Moieties capable of mediating such effects are disclosed in Remington's Pharmaceutical Sciences (1980). Procedures for coupling such moieties to a molecule are well known in the art. Covalent modifications of the protein or peptides are included within the scope of this invention. Such modifications may be introduced into the molecule by reacting targeted amino acid residues of the peptide with an organic derivatizing agent that is capable of reacting with selected side chains or terminal residues, as described below.

Cysteinyl residues most commonly are reacted with alpha-haloacetates (and corresponding amines), such as chloroacetic acid or chloroacetamide, to give carboxymethyl or carboxyamidomethyl derivatives. Cysteinyl residues also are derivatized by reaction with bromotrifluoroacetone, chloroacetyl phosphate, N-

15

20

PCT/US98/05419

10

alkylmaleimides, 3-nitro-2-pyridyl disulfide, methyl 2-pyridyl disulfide, p-chloro-mercuribenzoate, 2-chloromercuri-4-nitrophenol, or chloro-7-nitrobenzo-2-oxa-1,3-diazole.

Histidyl residues are derivatized by reaction with diethylprocarbonate at pH 5.5-7.0 because this agent is relatively specific for the histidyl side chain. Parabromophenacyl bromide also is useful; the reaction is preferably performed in 0.1 M sodium cacodylate at pH 6.0.

Lysinyl and amino terminal residues are reacted with succinic or other carboxylic acid anhydrides. Derivatization with these agents has the effect or reversing the charge of the lysinyl residues. Other suitable reagents for derivatizing primary amine containing residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; O-methylisourea; 2,4 pentanedione; and transaminase-catalyzed reaction with glyoxylate.

15 Arginyl residues are modified by reaction with one or several conventional reagents, among them phenylglyoxal, 2,3-butanedione, 1,2-cyclohexanedione, and ninhydrin. Derivatization of arginine residues requires that the reaction be performed in alkaline conditions because of the high pK_a of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine 20 as well as the arginine alpha-amino group.

Tyrosyl residues are well-known targets of modification for introduction of spectral labels by reaction with aromatic diazonium compounds or tetranitromethane. Most commonly, N-acetylimidizol and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively.

Carboxyl side groups (aspartyl or glutamyl) are selectively modified by reaction carbodiimide (R'-N-C-N-R') such as 1-cyclohexyl-3-(2-morpholinyl(4-ethyl) carbodiimide or 1-ethyl-3-(4-azonia-4,4-dimethylpentyl) carbodiimide.

Furthermore, aspartyl and glutamyl residue are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.

Glutaminyl and asparaginyl residues are frequently deamidated to the corresponding glutamyl and aspartyl residues. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues falls within the scope of this invention.

- Derivatization with bifunctional agents is useful, for example, for cross-linking 10 component peptides to each other or the complex to a water-insoluble support matrix or to other macromolecular carriers. Commonly used cross-linking agents include, for example, 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, Nhydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-15 dithiobis(succinimidylpropionate), and bifunctional maleimides such as bis-Nmaleimido-1,8-octane. Derivatizing agents such as methyl-3-[p-azidophenyl) dithiolpropioimidate yield photoactivatable intermediates that are capable of forming crosslinks in the presence of light. Alternatively, reactive water-insoluble matrices such as cyanogen bromide-activated carbohydrates and the reactive 20 substrates described in U.S. Patent Nos. 3,969,287; 3,691,016; 4,195,128; 4,247,642; 4,229,537; and 4,330,440 are employed for protein immobilization.
- Other modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the alpha-amino groups of lysine, arginine, and histidine side chains (Creighton, T.E., Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, pp. 79-86

144

(1983)), acetylation of the Nterminal amine, and, in some instances, amidation of the C-terminal carboxyl groups.

Such derivatized moieties may improve the stability, solubility, absorption, biological half life, and the like. The moieties may alternatively eliminate or attenuate any undesirable side effect of the protein complex and the like. Moieties capable of mediating such effects are disclosed, for example, in Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing Co., Easton, PA (1990).

The term "fragment" is used to indicate a polypeptide derived from the amino acid sequence of the protein or polypeptide having a length less than the full-length polypeptide from which it has been derived. Such a fragment may, for example, be produced by proteolytic cleavage of the full-length protein. Preferably, the fragment is obtained recombinantly by appropriately modifying the DNA sequence encoding the proteins to delete one or more amino acids at one or more sites of the C-terminus, N-terminus, and/or within the native sequence.

15 Another functional derivative intended to be within the scope of the present invention is a "variant" polypeptide which either lack one or more amino acids or contain additional or substituted amino acids relative to the native polypeptide. The variant may be derived from a naturally occurring polypeptide by appropriately modifying the protein DNA coding sequence to add, remove, and/or to modify codons for one or more amino acids at one or more sites of the C-terminus, N-terminus, and/or within the native sequence.

A functional derivative of a protein or polypeptide with deleted, inserted and/or substituted amino acid residues may be prepared using standard techniques well-known to those of ordinary skill in the art. For example, the modified components of the functional derivatives may be produced using site-directed mutagenesis

15

20

techniques (as exemplified by Adelman et al., 1983, *DNA* 2:183) wherein nucleotides in the DNA coding the sequence are modified such that a modified coding sequence is modified, and thereafter expressing this recombinant DNA in a prokaryotic or eukaryotic host cell, using techniques such as those described above.

Alternatively, components of functional derivatives of complexes with amino acid

Alternatively, components of functional derivatives of complexes with amino acid deletions, insertions and/or substitutions may be conveniently prepared by direct chemical synthesis, using methods well-known in the art.

E. Complementary Oligonucleotides and Ribozymes

Oligonucleotides or oligonucleotide analogs which interact with complementary sequences of cellular target DNA or RNA can be synthesized and used to inhibit or control gene expression at the levels of transcription or translation. The oligonucleotides of this invention can be either oligodeoxyribonucleotides or oligoribonucleotides, or derivatives thereof, which are complementary to the allelic forms of the targeted essential gene or they can act enzymatically, such as ribozymes. Both antisense RNA and DNA can be used in this capacity as chemotherapeutic agents for inhibiting gene transcription or translation. Trojan, J., et al., "Treatment and prevention of rat glioblastoma by immunogenic C6 cells expressing antisense insulin-like growth factor I RNA," Science 259:94-97 (1993). Inhibitory complementary oligonucleotides may be used as inhibitors for cancer therapeutics because of their high specificity and lack of toxicity.

Included in the scope of the invention are oligoribonucleotides, including antisense RNA and DNA molecules and ribozymes that function to inhibit expression of an essential gene in an allele specific manner. Anti-sense RNA and DNA molecules act to directly block the translation of mRNA by binding to targeted mRNA and preventing protein translation or directing RNase mediated degradation of the mRNA. With respect to antisense DNA, oligodeoxyribonucleotides derived from the translation initiation site, *e.g.*, between -10 and +10 regions of the relevant

nucleotide sequence, are preferred.

Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. The mechanism of ribozyme action involves sequence specific interaction of the ribozyme molecule to complementary target RNA, followed by a endonucleolytic cleavage. Within the scope of the invention are engineered hammerhead, hairpin, and other motif ribozyme molecules that catalyze sequence specific endonucleolytic cleavage of RNA sequences encoding a gene product essential for cell survival, growth, or vitality.

Specific ribozyme cleavage sites within any potential RNA target can initially be identified by scanning the target molecule for ribozyme cleavage sites, such as sites which include the following sequences, GUA, GUU and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target gene containing the cleavage site may be evaluated for predicted structural features, such as secondary structure, that may render the oligonucleotide sequence unsuitable. The suitability of candidate targets may also be evaluated by testing their accessibility to hybridization with complementary oligonucleotides, using ribonuclease protection assays. See, for example, Draper PCT WO 93/23569. For the present invention, the target site will generally include a sequence variance site as described above.

20 Both anti-sense RNA and DNA molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of RNA and DNA molecules. See, for example, Draper, supra. hereby incorporated by reference herein. These include techniques for chemically synthesizing oligodeoxyribonucleotides well known in the art such as, for example, solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding the

antisense or ribozyme RNA molecule. Such DNA sequences may be incorporated into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense or ribozyme cDNA constructs that synthesize antisense or ribozymes RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.

Various modifications to the DNA molecules may be introduced as a means of increasing intracellular stability and half-life. Possible modifications include but are not limited to the addition of flanking sequences of ribo- or deoxy- nucleotides to the 5' and/or 3' ends of the molecule or the use of phosphorothioate or methyl phosphonate rather than phosphodiesterase linkages within the oligodeoxyribonucleotide backbone. Modifications may also be made on the nucleotidic sugar or purine or pyrimidine base, such as 2'-O-alkyl (e.g., 2'-O-methyl), 2'-O-allyl, 2'-amino, or 2'-halo (e.g., 2'-F). A variety of other substitutions are also known in the art and may be used in the present invention. More than one type of nucleotide modification may be used in a single modified oligonucleotide.

A specific application of generating inhibitors which are either complementary oligonucleotides or inhibitory oligopeptides is described in Holzmayer, Pestov, and Roninson, "Isolation of dominant negative mutants and inhibitory antisense RNA sequences by expression selection of random DNA fragments," *Nucleic Acids Research* 20:711-717 (1992). In this study, genetic suppressor elements (GSEs) are identified by random DNA fragmentation and cloning in expression plasmids.

Preferred oligonucleotide inhibitors include oligonucleotide analogues which are resistant to degradation or hydrolysis by nucleases. These analogues include neutral, or nonionic, methylphosphonate analogues, which retain the ability to

interact strongly with complementary nucleic acids. Miller and Ts'O, Anti-Cancer Drug Des. 2:11-128 (1987). Further oligonucleotide analogues include those containing a sulfur atom in place of the 3'-oxygen in the phosphate backbone, and oligonucleotides having one or more nucleotides which have modified bases and/or modified sugars. Particularly useful modifications include phosphorothioate linkages and 2'-modification (e.g., 2'-O-methyl, 2'-F, 2'-amino).

F. Gene Therapy

Nucleic acid molecules encoding oligonucleotide or polypeptide inhibitors will also be useful in gene therapy (reviewed in Miller, *Nature* 357:455-460, (1992). Miller indicates that advances have resulted in practical approaches to human gene therapy that have demonstrated positive initial results. An *in vivo* model of gene therapy for human severe combined immunodeficiency is described in Ferrari, et al., *Science* 251:1363-1366, (1991). The basic science of gene therapy is described in Mulligan, *Science* 260:926-931, (1993).

- 15 Some methods of delivery that may be used include:
 - a. complexation with lipids,
 - b. transduction by retroviral vectors,
 - c. localization to nuclear compartment utilizing nuclear targeting site found on most nuclear proteins,
- 20 d. transfection of cells *ex vivo* with subsequent reimplantation or administration of the transfected cells,
 - e. a DNA transporter system.

A nucleic acid sequence encoding an inhibitor may be administered utilizing an ex vivo approach

whereby cells are removed from an animal, transduced with the nucleic acid sequence and reimplanted into the animal. The liver can be accessed by an ex vivo

approach by removing hepatocytes from an animal, transducing the hepatocytes in vitro with the nucleic acid sequence and reimplanting them into the animal (e.g., as described for rabbits by Chowdhury et al, Science 254: 1802-1805, 1991, or in humans by Wilson, Hum. Gene Ther. 3: 179-222, 1992) incorporated herein by reference.

Many nonviral techniques for the delivery of a nucleic acid sequence encoding an inhibitor into a cell can be used, including direct naked DNA uptake (e.g., Wolff et al., Science 247: 1465-1468, 1990), receptor-mediated DNA uptake, e.g., using DNA coupled to asialoorosomucoid which is taken up by the asialoglycoprotein receptor in the liver (Wu and Wu, J. Biol. Chem. 262: 4429-4432, 1987; Wu et al., J. Biol. Chem. 266: 14338-14342, 1991), and liposome-mediated delivery (e.g., Kaneda et al., Expt. Cell Res. 173: 56-69, 1987; Kaneda et al., Science 243: 375-378, 1989; Zhu et al., Science 261: 209-211, 1993). Many of these physical methods can be combined with one another and with viral techniques; enhancement of receptor-mediated DNA uptake can be effected, for example, by combining its use with adenovirus (Curiel et al., Proc. Natl. Acad. Sci. USA 88: 8850-8854, 1991; Cristiano et al., Proc. Natl. Acad. Sci. USA 90: 2122-2126, 1993).

In one preferred embodiment, an expression vector containing a sequence encoding a ribozyme or an antisense oligonucleotideis inserted into cells, the cells are grown in vitro and then infused in large numbers into patients.

The gene therapy may involve the use of an adenovirus containing a sequence encoding a ribozyme or an antisense oligonucleotide targeted to a tumor.

Expression vectors derived from viruses such as retroviruses, vaccinia virus, adenovirus, adeno-associated virus, herpes viruses, several RNA viruses, or bovine papilloma virus, may be used for delivery of nucleotide sequences into the targeted

20

cell population (e.g., tumor cells). Methods which are well known to those skilled in the art can be used to construct recombinant viral vectors containing coding sequences. See, for example, the techniques described in Maniatis et. al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, N.Y. (1989), and in Ausubel et. al., Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, N.Y. (1989). Alternatively, recombinant nucleic acid molecules encoding protein sequences can be used as naked DNA or in reconstituted system e.g., liposomes or other lipid systems for delivery to target cells (See e.g., Felgner et. al., Nature 337:387-8, 1989). Several other methods for the direct transfer of plasmid DNA into cells exist for use in human gene therapy and involve targeting the DNA to receptors on cells by complexing the plasmid DNA to proteins. See, Miller, supra.

In its simplest form, gene transfer can be performed by simply injecting minute amounts of DNA (e.g., a plasmid vector encoding an inhibitor) into the nucleus of a cell, through a process of microinjection. Capecchi MR, Cell 22:479-88 (1980). The DNA can be part of a formulation which protects the DNA from degradation or prolongs the bioavailability or the DNA, for example by complexing the DNA with a compound such as polyvinylpyrrolidone. Once recombinant genes are introduced into a cell, they can be recognized by the cells normal mechanisms for transcription and translation, and a gene product will be expressed. Other methods have also been used for introducing DNA into larger numbers of cells. These methods include: transfection, wherein DNA is precipitated with CaPO₄ and taken into cells by pinocytosis (Chen C. and Okayama H, Mol. Cell Biol. 7:2745-52 (1987)); electroporation, wherein cells are exposed to large voltage pulses to introduce holes into the membrane (Chu G. et al., Nucleic Acids Res., 15:1311-26 (1987)); lipofection/liposome fusion, wherein DNA is packaged into lipophilic vesicles which fuse with a target cell (Felgner PL., et al., Proc. Natl. Acad. Sci. USA. 84:7413-7 (1987)); and particle bombardment using DNA bound to small

projectiles (Yang NS. et al., *Proc. Natl. Acad. Sci.* 87:9568-72 (1990)). Another method for introducing DNA into cells is to couple the DNA to chemically modified proteins.

It has also been shown that adenovirus proteins are capable of destabilizing endosomes and enhancing the uptake of DNA into cells. The admixture of adenovirus to solutions containing DNA complexes, or the binding of DNA to polylysine covalently attached to adenovirus using protein crosslinking agents substantially improves the uptake and expression of the recombinant gene. Curiel DT et al., Am. J. Respir. Cell. Mol. Biol., 6:247-52 (1992).

- As used herein "gene transfer" means the process of introducing a foreign nucleic acid molecule into a cell. Gene transfer is commonly performed to enable the expression of a particular product encoded by the gene. The product may include a protein, polypeptide, anti-sense DNA or RNA, or enzymatically active RNA. Gene transfer can be performed in cultured cells or by direct administration into animals.
- 15 Generally gene transfer involves the process of nucleic acid contact with a target cell by non-specific or receptor mediated interactions, uptake of nucleic acid into the cell through the membrane or by endocytosis, and release of nucleic acid into the cytoplasm from the plasma membrane or endosome. Expression may require, in addition, movement of the nucleic acid into the nucleus of the cell and binding to appropriate nuclear factors for transcription.

As used herein "gene therapy" is a form of gene transfer and is included within the definition of gene transfer as used herein and specifically refers to gene transfer to express a therapeutic product from a cell *in vivo* or *in vitro*. Gene transfer can be performed *ex vivo* on cells which are then transplanted into a patient, or can be performed by direct administration of the nucleic acid or nucleic acid-protein complex into the patient.

In another preferred embodiment, a vector having nucleic acid sequences encoding an allele specific inhibitor is provided in which the nucleic acid sequence is expressed only in specific tissue. Examples or methods of achieving tissue-specific gene expression are described in International Publication No. WO 93/09236, published May 13, 1993.

VII. Utility of allele-specific inhibitors of essential genes

A. Conditions susceptible to therapy.

The fraction of all cancers could be treated with allele specific inhibitors directed against allele specific essential gene targets is a function of the frequency of the target allele and the frequency of LOH. The ideal target would be deleted in 100% 10 of all major cancers and would exist in two allelic forms, each with an allele frequency of 0.5 so that half the population would be heterozygous. An inhibitor of one allele of such an ideal target would be a useful agent for 25% of all cancer patients. An inhibitor of the other allele of the same ideal target would be therapeutic for an additional 25% of all patients, making 50% of all patients 15 treatable. The ideal target has so far not been identified, but we have identified many essential gene sequence variance targets which are deleted in 30-70% of several major cancers, and which are heterozygous in 25-50% of North Americans. Allele specific inhibitors of both alleles of such targets would be expected to address $0.4 \times 0.5 = 0.2$ or 20% of the relevant cancer population. The relevant 20 cancer population often includes breast, colon and lung cancer, which sum to ~500,000 new cases per year in the United States. Thus a total available market of 100,000 patients is not unusual, and many targets would be expected to address markets of at least 50,000 patients.

The targets of this invention are suitable for treatment of many different cancers, which includes cancers of different types, as well as non-malignant proliferative

disorders, as well as being suitable for use in other applications involving targeting alternative allelic forms of a gene. The classification and nomenclature for a variety of benign and malignant tumors relevant to the present invention is shown in the following table (Table 6-1 from Robbins et al., <u>Pathologic Basis of Disease</u>, 3rd ed.

5 (1984), however, the invention is not limited to these cancers or classifications.

Table 6

	Tissue of Origin	Benign	Malignant
	I. Composed of one parenchymal		
	cell type		Sarcomas
10	A. Tumors of mesenchymal		
	origin		
	(1) Connective tissue and		
	derivatives		~1
	fibrous tissue	fibroma	fibrosarcoma
15	myxomatous tissue	myxoma	myxocarmo
	fatty tisssue	lipoma	liposarcoma
	cartilage	chondroma	chondrasarcoma
	bone	osteoma	osteosarcoma
			osteogenic sarcoma
	(2) Endothelial & related		
20	tissues		
	blood vessels	hemangioma	angiosarcoma
	•	capillary	
		cavernous sclerosing	
		hemangioendothelioma	endotheliosarcoma,
		nemangioendomenoma	Kaposi's sarcoma
	lymph vessels	lymphoangioma	lymphangiosarcoma
	synovia		synovioma
	•		(synoviosarcoma)
	mesothelium		mesothelioma
			(mesotheliosarcoma)
25	brain coverings	meningioma	
	glomus	glomus tumor	
	<u> </u>		

PCT/US98/05419

	?endothelial or		Ewing's tumor
	mesenchymal cells		
_	(3) Blood cells & related cells		
5	hematopoietic cells		myelogenous leukemia monocytic leukemia
	lymphoid tissue		malignant lymphomas
	lymphola tissue		lymphocytic leukemia
			plastocytoma (multiple
			myeloma)
	monocyte-macrophage		histiocytosis X
	Langerhans' cells		?histiocytic lymphoma
	(4) Muscle		?Hodgkin's disease
10	smooth muscle	leiomyoma	leiomyosarcoma
	striated muscle	rhabdomyoma	rhabdomyosarcoma
	B. Tumors of epithelial origin		Carcinomas
	stratified squamous	squamous cell	squamous cell or
		papilloma	epidermoid carcinoma
	basal cells of skin or adnexia		basal cell carcinoma
15	skin adnexal glands		
	sweat glands	sweat gland adenoma	sweat gland carcinoma
	sebaceous gland	sebaceous gland	sebaceous gland
		adenoma	carcinoma
	epithelial lining	1	
20	glands or ducts -well differentiated	adenoma papillary adenoma	adenocarcinoma papillary
20	group	cystadenoma	adenocarcinoma
	8P	-,	cystadenocarcinoma
	poorly differentiated group		medullary carcinoma
			undifferentiated
			carcinoma (simplex)
	respiratory tract		bronckogenic
			carcinoma bronchial "adenoma"
	neuroectoderm	nevus	melanoma
	Hemoectodellii	ne vus	(melanocarcinoma)
25	renal epithelium	renal tubular adenoma	renal cell carcinoma
			(hypernephroma)

	liver cells	liver cell adenoma	hepatocellular carcinoma
	bile duct	bile duct adenoma	bile duct carcinoma (cholangiocarcinoma)
	urinary tract epithelium (transitional)	transitional cell papilloma	papillary carcinoma transitional cell carcinoma squamous cell carcinoma
5	placental eptithelium testicular epithelium (germ cells)	hydatiform mole	choriocarcinoma seminoma embryonal carcinoma
10	II. More than one neoplastic cell type mixed tumorsusually derived from one germ layer salivary glands renal anlage	mixed tumor of salivary gland origin (pleiomorphic adenoma)	malignant mixed tumor of salivary gland origin Wilms' tumor
15	III. More than one neoplastic cell type derived from more than one germ		
20	layerteratogenous totipotential cells in gonads or in embryonic rests	teratoma, dermoid cyst	malignant teratoma and teratocarcinoma

Allele specific therapy can be targeted to essential genes which undergo LOH in many different tumor types, including the tumors and tumor types described in the tables above, and in Figure 3.

For the treatment of patients suffering from a tumor using an allele specific inhibitor,

156

the preferred method of preparation or administration will generally vary depending on the type of inhibitor to be used. Thus, those skilled in the art will understand that administration methods as known in the art will also be appropriate for the inhibitors of this invention.

B. Pharmaceutical Formulations and Modes of Administration

The particular compound, antibody, antisense or ribozyme molecule that exhibits allele specific inhibitor activity can be administered to a patient either by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s). In treating a patient exhibiting a disorder of interest, a therapeutically effective amount of a agent or agents such as these is administered. A therapeutically effective dose refers to that amount of the compound that results in amelioration of one or more symptoms or a prolongation of survival in a patient.

Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD₅₀/ED₅₀. Compounds which exhibit large therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.

For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. For example, a dose can be formulated in animal models to achieve a circulating plasma concentration range that

5

10

15

includes the IC₅₀ as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by HPLC.

The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See e.g. Fingl et. al., in The Pharmacological Basis of Therapeutics, 1975, Ch. 1 p.1). It should be noted that the attending physician would know how to and when to terminate, interrupt, or adjust administration due to toxicity, or to organ dysfunctions. Conversely, the attending physician would also know to adjust treatment to higher levels if the clinical response were not adequate (precluding toxicity). The magnitude of an administrated dose in the management of the oncogenic disorder of interest will vary with the severity of the condition to be treated and to the route of administration. The severity of the condition may, for example, be evaluated, in part, by standard prognostic evaluation methods. Further, the dose and perhaps dose frequency, will also vary according to the age, body weight, and response of the individual patient. A program comparable to that discussed above may be used in veterinary medicine.

Depending on the specific conditions being treated, such agents may be formulated and administered systemically or locally. Techniques for formulation and administration may be found in Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing Co., Easton, PA (1990). Suitable routes may include oral, rectal, transdermal, vaginal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections, just to name a few.

For injection, the agents of the invention may be formulated in aqueous solutions, 25 preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For such transmucosal administration,

158

penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

Use of pharmaceutically acceptable carriers to formulate the compounds herein disclosed for the practice of the invention into dosages suitable for systemic administration is within the scope of the invention. With proper choice of carrier and suitable manufacturing practice, the compositions of the present invention, in particular, those formulated as solutions, may be administered parenterally, such as by intravenous injection. The compounds can be formulated readily using pharmaceutically acceptable carriers well known in the art into dosages suitable for oral administration. Such carriers enable the compounds of the invention to be formulated as tablets, pills, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated.

Agents intended to be administered intracellularly may be administered using techniques well known to those of ordinary skill in the art. For example, such agents may be encapsulated into liposomes, then administered as described above. Liposomes are spherical lipid bilayers with aqueous interiors. All molecules present in an aqueous solution at the time of liposome formation are incorporated into the aqueous interior. The liposomal contents are both protected from the external microenvironment and, because liposomes fuse with cell membranes, are efficiently delivered into the cell cytoplasm. Additionally, due to their hydrophobicity, small organic molecules may be directly administered intracellularly.

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. Determination of the effective amounts is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. In addition to the active ingredients, these pharmaceutical

10

15

20

15

20

compositions may contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. The preparations formulated for oral administration may be in the form of tablets, dragees, capsules, or solutions. The pharmaceutical compositions of the present invention may be manufactured in a manner that is itself known, *e.g.*, by means of conventional mixing, dissolving, granulating, dragee-making, levitating, emulsifying, encapsulating, entrapping or lyophilizing processes.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.

Pharmaceutical preparations for oral use can be obtained by combining the active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable

160

coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added.

Factors specific for the delivery of antisense and ribozyme nucleic acids are known in the art, for example as discussed in Couture et al., WO 94/02595, which is hereby incorporated herein by reference. This reference also describes the synthesis of nucleic acid molecules having a variety of 2' modified nucleotides.

The references cited herein are incorporated by reference to the same extent as if each had been individually incorporated by reference. The invention is illustrated further by the following examples, which are not to be taken as limiting in any way. The examples, individually, and together, further demonstrate that one skilled in the art would be able to practice each of the steps in developing useful pharmaceutical products as described in the invention. Generally, the development of such a product involves the following steps:

- 1. Select candidate target gene essential for cell survival or proliferation.
- 25 2. Determine chromosome location and LOH frequency.
 - 3. Identify common variance in the normal population.

5

10

15

10

15

20

25

- 4. Demonstrate antiproliferative effects from inhibition of candidate gene.
- 5. Design variance-specific inhibitor.
- 6. Achieve variance-specific antiproliferative effects in cancer cells.

EXAMPLES

Example 1. Genes required for Cell Proliferation

Many genes are involved in the process of cell proliferation and are potential targets for anti-proliferative drugs in this invention. Dividing cells progress through a repeating cycle of four stages, each of which is critical to the proliferation process. During the first phase, G1, cells ready the proteins they need to replicate their DNA, which occurs during S phase. Following S phase, cells enter G2, in which they prepare to divide into two daughter cells, each of which will contain the DNA content of the original cell. The final stage of the cell cycle is M phase, in which cells undergo mitosis. During mitosis, the cell nucleus disappears and the two sets of replicated chromosomes are separated to opposite sides of the cell. The cell then divides into two cells, the nucleus reforms in each new cell, and the cycle begins again. Cell proliferation is exceedingly complex and requires the precise coordination of many processes, including DNA synthesis, chromosome condensation and separation, and cell fission. In eukaryotic cells such as yeast, many of the proteins involved in cell division are encoded by essential genes, including those contributing to the duplication of the nucleus and the functions of microtubules, spindle pole bodies the centromere and the kinetochore.

A number of proteins are essential for cell proliferation. Proteins that are critical to this process can be divided into two classes: (i) proteins that regulate cell division; (ii) proteins that form structures involved in cell division. Proteins that regulate cell division include, but are not limited to, proteins involved in the regulation of particular

10

15

20

25

steps in the division process, such as nuclear breakdown and the transition between the different stages of mitosis, as well as proteins regulating the initiation of mitosis, such as the cylins, cyclin-dependent kinases (CDKs), and the kinases and phosphatases that regulate CDKs. Cyclin B, the cyclin-dependent kinase cdc2, and the cdc25C phosphatase are examples of proteins that regulate the initiation of mitosis. Deletion of yeast homologs of these genes is lethal, verifying their critical role in regulating the entry into mitosis. (It has been established that many human genes which encode proteins involved in highly conserved cellular processes can substitute for their yeast counterparts, and vice versa. For example such conservation has been demonstrated for components of the transcriptional apparatus, as well as components of the translational apparatus.)

Proteins that form structures involved in cell division include, but are not limited to, those involved in the processes of chromosome condensation and separation. Examples are tubulin and kinesin, which participate in the separation of chromosomes, and KIAA0165 and CDC37, involved in the spindle pole. Deletion of the yeast homolog of CDC37 is lethal.

Inhibiting the ability of a cell to divide induces, by definition, a cytostatic response, often followed by cell death. Colchicine and nocodazole are examples of drugs that inhibit microtubule function *in vitro*, thereby preventing chromosome separation and leading to cell cycle arrest during mitosis. Vinblastine and vincristine, which also inhibit microtubule function and therefore cell proliferation, have been used widely in the treatment of cancer.

Examples of genes that are involved in the process of cell proliferation, and are thus essential for cell survival or proliferation are shown in the accompanying table. Each of these genes has been disrupted in Saccharomyces cerevisiae and the mutant yeast shown to be nonviable.

10

15

20

163

Table: Genes Essential for Cell Proliferation in Yeast

Gene Name	Function of Gene Product	
APC1 ·	Component of the anaphase promoting complex.	
CAK1	cdk activating kinase, activates cdc28p	
CBF2, CBF3B,	Essential constituents of the kinetochore protein complex	
CSE1 CBF5,	Cbf3 (subunits a-d), a structural component of centromeres to	
CTF13, SKP1	which microtubules attach.	
CDC14	Protein tyrosine phosphatase that performs a function late in	
	the cell cycle.	
CDC15	Essential for late nuclear division	
CDC16, CDC23,	Part of anaphase promoting complex, required for Clb2p	
CDC27	degradation and metaphase-anaphase transition.	
CDC28	Essential for mitosis	
CDC31	Calcium binding protein of spindle pole body (SPB), involved	
	in SPB duplication	
CDC37	Required for spindle pole duplication and passage through	
	START.	
CDC5	Protein kinase required for exit from mitosis, and operation of	
OV.01	mitotic spindle. Associated with cdc28p kinase	
CKS1	Chromosome region maintenance protein.	
CRM1	Probable kinetochore protein, interacts with cetromeric	
CSE1	element CDEII.	
CSE4	Required for chromosome segregation.	
DBF4	Regulatory subunit for cdc7p protein kinase, required for	
DDI 4		
	G1/S transition.	
DIS3	Involved in mitotic control.	
DNA43	Required for S-phase initiation or completion.	
DPB11	Involved in DNA replication and an S-phase checkpoint.	
ESP1, KAR1	Required for regulation of spindle body pole duplication.	
IPL1	Protein kinase involved in chromosome segregation.	
KRR1	Essential for cell division.	
MEC1	Checkpoint protein required for mitotic growth, DNA repair	
	and recombination.	
MIF2	Centromere protein required for chromosome segregation and	
	spindle integrity	

MOB1	Required for normal cell cycle progression
MPS1	Protein kinase involved in spindle body pole duplication; also
	mitotic checkpoint
NDC1	Required for spindle body pole duplication; nuclear envelope
	component
NNF1	Nuclear envelope protein required for nuclear migration
	during mitosis.
NRK1	Protein kinase that interacts with cdc31p
NUF2	Component of spindle body pole required for nuclear division.
RFT1	Involved in nuclear division.
SMC1, SMC2,	Coiled coil proteins involved in chromosome condensation
SMC3	and segregation; required for nuclear division.
SPC42, SPC97,	Components of spindle pole body. The latter 3 interact with
SPC98, SPI6	microtubules, gamma tubulin & stu2p, respectively.
SPK1	Protein kinase with a checkpoint function in S and G2
	<u> </u>
STU1	Required for mitotic spindle assembly.
TEM1	Involved in termination of M-phase.

It will be evident to one skilled in the art that many genes that express essential metabolic and homeostatic functions of the cell will also be essential for cell proliferation.

20

5

10

15

Example 2. Genes required to maintain inorganic ions at levels compatible with cell growth or survival.

Inorganic Ions are Essential for Cellular Life

25

Inorganic ions are required for virtually all cellular processes: they are important for maintenance of cell shape and osmolality; they are prosthetic groups of a wide variety of enzymes; they are required for ATP production coupled to ion diffusion; they mediate signal transduction both from intracellular and extracellular signals. Hence maintenance of inorganic ions at physiological concentrations is essential for cell

10

15

20

25

proliferation and cell survival. The importance of maintaining physiological ion concentrations is further demonstrated by the observation that deviation from normal levels leads to cytostatic or cytotoxic effects, as demonstrated by the effects of selectively poisoning ion channels or placing cells in hypotonic or hypertonic extracellular fluid.

Inorganic Ions Must be Transported Across Membranes

Maintenance of ion concentrations at optimal concentrations within cells is complicated by the presence of membranes which, because of their hydrophobic interior, form a highly impermeable barrier to most polar molecules, including inorganic ions. Important cell membranes include the plasma membrane as well as the nuclear membrane, mitochondrial membranes, the endoplasmic reticulum and Golgi apparatus, lysosomes and vesicles of various types, all of which are essential for cell proliferation or survival. Therefore maintaining the concentration of essential polar molecules, including both organic and inorganic ions, at levels compatible with cell growth or survival requires specialized mechanisms for moving such ions across the plasma membrane and the various intracellular membrane bound compartments.

Vital components of the apparatus for maintaining ion concentrations at levels essential for cell survival include regulatory molecules that sense the concentration of ions in different cellular compartments and produce signals to increase or decrease the concentration of said ions to levels compatible with cell survival; proteins that actively or passively transport ions across membranes; and proteins that modify ions so they can be transported across membranes.

Membrane transport proteins can be divided into several categories depending on whether they require energy (provided either by ATP hydrolysis or by co-transport of ions such as sodium or protons down their electrochemical gradients), produce energy (ATP synthetases, which are usually coupled to proton diffusion) or are energy neutral. Other categories of transporters include those that transport one or more solutes (one or more of which may be ions), gated vs. non-gated - i.e. open only transiently (ligand gated and voltage gated channels) or open continuously, allowing ions to move down their concentration and electrochemical gradients. Specific types of essential membrane transporters include uniports, which simply transport one solute from one side of the membrane to the other, and cotransports, in which the transport of one solute is dependent on the simultaneous or sequential transport of a second solute in the same direction (symport) or in the opposite direction (antiport).

10

15

5

Other inorganic ions, such as iron, are transported bound to carrier proteins (transferrin in the case of iron). Transport of the iron carrier protein involves a complex cycle that begins with binding of iron to transferrin, binding of the iron-transferrin complex to transferrin receptor, formation of coated pits, endocytosis of the transferrin-iron complex via the coated pits, release of iron from transferrin in endosomes upon acidification to pH 5, and then recycling of the transferrin receptor-apotransferrin complex to the surface of the cell where, at neutral pH, the apotransferrin is released from transferrin receptor into the extracellular fluid to bind more iron and participate in another cycle. Thus in the case of transferrin-mediated iron transfer there are a variety of specialized proteins which must interact in a coordinated manner for transport to occur effectively.

20

25

Some of the specific inorganic ions which must be transported across the both the plasma membrane and intracellular membranes are sodium, potassium, chloride, calcium, hydrogen, magnesium, manganese, phosphate, selenium, molybdenum, iron, copper, zinc, fluorine, iodine, chromium, silicon, tin and arsenic. Specific transporters have been identified for many of these solutes including sodium, potassium, chloride, protons, copper and iron among others.

10

15

20

25

167

Regulation of ion concentrations at appropriate levels is often an energy-dependent process; intracellular and extracellular concentrations may differ by 10 fold or more (see Table).

Ion Concetrations Inside and Outside a Typical Mammalian Cell

Ion	Intracellular concentration (mM)	Extracellular concentration (mM)
Cations		
Na+	5-15	145
K+	140	5
Mg++	30	1-2
Ca++	1-2	2.5-5
Anions		
Cl -	4	110

Inhibitors of Ion Transporting Proteins are Cytostatic or Cytotoxic

Blocking import of essential cell nutrients, including inorganic ions, prevents cell growth and can lead to cell death. A well studied example is blockade of iron transport by inhibition of transferrin receptor. Dividing cells require iron, and transferrin receptor-mediated uptake of iron-transferrin complexes is the principal route for iron aquisition. Iron uptake requires multiple steps, including receptor binding, endocytosis via coated pits, acidification of endosomes and consequent release of iron from transferrin, followed by recycling of transferrin receptor-apotransferrin to the cell surface for another round of binding. Each step requires the coordinated function of a variety of proteins. Anti-transferrin receptor antibodies arrest cell growth by blocking iron uptake; antitumor effects have been demonstrated *in vitro* and *in vivo* with such antibodies.

Ion pumps are another class of proteins for which cytotoxic inhibitors have been

10

15

20

25

identified. All animal cells contain a Na+, K+ pump which operates as an antiport, actively pumping Na⁺ out of the cell and K⁺ in against their concentration gradients. In coupling the hydrolysis of ATP to the active transport of 3 Na⁺ out and 2 K⁺ into the cell the pump is electrogenic. The electrochemical gradients generated and maintained by the Na+,K+ pump are essential for regulation of cell volume and for the secondary, sodium-coupled active transport of a variety of organic and inorganic molecules including glucose, amino acids and Ca++. Hence the sodium potassium pump plays an essential role in cellular physiology. More than one third of a typical animal cells energy requirement is expended in fueling this pump. (Alberts et al. Molecular Biology of the Cell, Garland Publishing, New York, 1983, p.291.) Ouabain is an inhibitor of the Na+, K+ ATPase. It binds to the catalytic alpha 1 subunit of sodium potassium ATPase and is a potent cytotoxic drug. Cells treated with ouabain swell and eventually burst as they are unable to maintain a balance of osmotic forces because they can no longer pump out Na+. See Example 11 for a more detailed description of the essential properties of the Na⁺, K⁺ ATPase. Amiloride is another cytotoxic drug; it blocks the sodium-proton antiporter. Thus inhibition of proteins essential for maintaining physiologial levels of inorganic ions is toxic to cells.

Ion Transporting Proteins are Evolutionarily Conserved and Essential in Other Species

Many of the proteins required to maintain inorganic ions at physiologic levels are widely conserved in eukaryotes, reflecting an ancient and vital role. A number of gene disruption experiments in non-human cells demonstrate the importance of ion transponting proteins for cell growth and survival. For example in the yeast Saccharomyces Cerevisiae the gene encoding CDC1 protein, involved in maintaining ion homeostasis, has been disrupted resulting in non-viable yeast. Another essential yeast gene is PMA1, which encodes a H+ transporting P-type ATPase of the plasma membrane; activity of the encoded protien is rate limiting for growth at low pH.

As a result of the essential functions provided by proteins required for maintenance of inorganic ions at levels required for cell growth or survival, those genes which undergo LOH in a neoplastic disorder and which have sequence variants (nucleic acid or amino acid sequences) in a population as described above, are appropriate potential targets for allele specific inhibition, and thus can be used in the methods for identifying allele specific inhibitors and in other aspects of this invention. The provision of the exemplary ion transport genes, including sodium-potassium ATPase alpha1 subunit as well as the other genes listed in the Target Genes Table, indicates that other genes within this category or related subcategories will also be appropriate potential targets. Such a gene can be identified as an essential gene by reference to the art, or by the essential gene identification methods known in the art, examples of which are referenced herein. The LOH and sequence variance characteristics can then be readily determined by the described methods, thereby demonstrating that the gene is an appropriate potential target gene for allele specific inhibition.

15

5

10

Example 3. Genes required to maintain organic compounds at levels compatible with cell growth or survival.

20

Organic Compounds are Essential for Cellular Life

25

Organic compounds include the amino acids, carbohydrates, lipids, nucleosides and nucleotides, ions such as bicarbonate, vitamins such as ascorbic acid, pantothenic acid, riboflavin, nicotinamide, thiamine, vitamin B6, vitamin B12, and folate, essential nutrients such as linoleic acid and a wide variety of metabolic intermediates. Organic compounds are required for virtually all vital cellular processes: they are the building blocks of all cellular macromolecules including larger organic comounds such as proteins, starches, polynucleotides and complex lipids as well as glycolipids,

glycoproteins, lipoproteins, etc.; they are constituents of all cell structural molecules including proteins and membranes; they constitute all the metabolic intermediates in such vital cell processes as glycolysis, the Krebs cycle, oxidative phosphorylation, gluconeogenesis, the urea cycle, nucleotide biosynthesis, amino acid biosynthesis, etc. Maintaining organic compounds at levels compatible with cell growth or survival constitutes a large fraction of the work of the cell. Deviation from normal levels of organic compounds will generally have cytotoxic or cytostatic effects on cells (if the appropriate homeostatic cellular machinery for maintaining organic compounds at levels compatible with cell growth or survival is not operating to bring levels back to normal), as demonstrated by the effects of preventing transport of organic ions such as essential amino acids, vitamins or ions such as bicarbonate or blocking such processes as glycolysis or amino acid biosynthesis or transport of proteins into mitochondria, or required post-translational processing of proteins, lipids or carbohydrates.

Maintaining Organic Compounds at Levels Compatible with Cell Growth or Survival Requires Membrane Transport, Biosynthesis, Energy Extraction, Energy Production, Degradation and Excretion Pathways

Maintenance of organic compounds at optimal concentrations within cells is complicated by the presence of membranes which, because of their hydrophobic interior, form a highly impermeable barrier to most polar or charged molecules or molecules over 100 Daltons, including many organic compounds. Important cell membranes include the plasma membrane as well as the nuclear membrane, mitochondrial membranes, the endoplasmic reticulum and Golgi apparatus, lysosomes and vesicles of various types, all of which are essential for cell proliferation or survival. Therefore maintaining the concentration of essential organic compounds at levels compatible with cell growth or survival requires specialized mechanisms for moving such compounds across the plasma membrane and the various intracellular membrane bound compartments.

5

10

15

20

Vital components of the apparatus for maintaining organic compounds concentrations at levels essential for cell survival include regulatory molecules that sense the concentration of ions in different cellular compartments and produce signals to increase or decrease the concentration of said compounds to levels compatible with cell survival; proteins that actively or passively transport organic compounds across membranes; and proteins that modify or bind to organic compounds so they can be transported across membranes.

Some of the specific inorganic ions which must be transported across the both the plasma membrane and intracellular membranes are sodium, potassium, chloride, calcium, hydrogen, magnesium, manganese, phosphate, selenium, molybdenum, iron, copper, zinc, fluorine, iodine, chromium, silicon, tin and arsenic. Specific transporters have been identified for many of these solutes including sodium, potassium, chloride, protons, copper and iron among others.

15

20

5

10

The number of essential membrane proteins is not known. A crude estimate can be derived by adding up the proteins which perform essential functions enumerated above. There are many presently known organic compounds which must be transported across the cell membrane, including small molecules such as essential amino acids, lipids, sugars, the vitamins pantothenic acid, folic acid, riboflavin, nicotinamide, thiamine, vitamin B₆, vitamin B₁₂ and ascorbic acid as well as larger molecules such as proteins. (It is important to note that some essential functions are performed by families of transporters with overlapping tissue expression. In such cases it may be that no one protein is essential despite the fact that the protein family collectively carries out an essential cell function. Conversely, there are likely to be a number of essential membrane proteins not yet identified.)

25

Examples of Genes Essential to Maintain Organic Compounds at Levels Compatible with Cell Growth or Survival, From Yeast

172

The yeast Saccharomyces Cerevisiae is a eukaryote which shares many genes in common with humans. Approximately 70% of the essential genes in yeast have human homologs. Many human genes can be exchanged with their yeast counterparts with minimal effects on growth in yeast or human cells. The study of essential genes in yeast is much further advanced than in mammalian systems: over half of the ~6,000 genes of Saccharomyces Cerevisiae have been disrupted and the phenotype of the resulting strains tested on minimal growth media. Over 20% of disrupted yeast genes are essential, and a significant fraction of their human counterparts are likely to be essential for cell survival. Among the yeast genes disrupted are a variety of genes that encode proteins required to maintain organic compounds at levels compatible with cell growth or survival. Many of these genes are essential for cell survival. Many of the disrupted essential yeast proteins have closely related human homologs, and it is likely that the human homologs are also essential. Specific examples of yeast genes that are essential are listed below. (This is a partial list; see the web site _____.proteome.com for an up to date list.)

The yeast ACC1 gene encodes acetyl co-A carboxylase and, like the human enzyme, is the first and rate limiting step in fatty acid biosynthesis.

The yeast DYS1 gene encodes deoxyhypusine synthase which catalyzes the first step in biosynthesis of the polyamine deoxyhypusine.

The yeast FBA gene encodes fructose-bisphosphate aldolase II, the sixth step in glycolysis, while the essential yeast genes GND1, ENO2, GPM1 and PYK1 encode 6-phosphogluconate dehydrogenase, enclase 2, phosphoglycerate mutase and pyruvate kinase (the last step of glycolysis).

The yeast ERG10 gene encodes acetyl-CoA-acetyltranferase, the first step in the mevalonate/sterol pathway. The essential ERG1 gene encodes squalene

5

10

15

20

monooxygenase, an later enzyme of the sterol biosynthesis pathway. ERG7, ERG8, ERG9, ERG11, ERG20, ERG24 and ERG25 encode enzymes on the same or related pathways.

5

The yeast ALG1 and ALG2 genes encode mannosyltransferases required for N-glycosylation, and the ALG7, DPM1 and NMT1 genes encode transferases for UDP-N-acetyl-glucosamine-1-P, mannose and myristate, respectively. RAM2 encodes a protein that is a subunit of both farnesyltransferases and (with BET2) geranylgeranyltransferases.

10

The yeast LCB1 gene encodes serine C-palmitoyltransferase which catalyzes the first step in the pathway for synthesis of the long chain base component of shingolipids, while the yeast AUR1 gene encodes a phosphoinositol transferase also essential for shingolipid synthesis.

15

The yeast PRO1 and PRO2 genes encode the three enzymes of proline biosynthesis.

THR1 catalyzes the first step of threonine biosynthesis.

20

Example 4. Genes required to maintain cellular proteins at levels compatible with cell growth or survival.

25

Proteins carry out a host of essential enzymatic and structural functions required for cell proliferation and cell survival. Consequently, complete inhibition of protein synthesis is eventually lethal to all cells. The requirement of dividing cells (including cancer cells) for high level protein synthesis makes them more sensitive than quiescent cells to the cytostatic and cytotoxic effects of protein synthesis inhibitors. Because the basic scheme of protein synthesis remains the same in all living organisms there are many attractive schemes for screening human targets in heterologous organisms.

174

Polypeptide Synthesis Occurs in Several Steps and Requires Over 100 Proteins

The machinery of polypeptide synthesis includes:

Aminoacyl tRNA synthetases, which covalently couple amino acids to their cognate tRNAs. Eukaryotic cells have two sets of tRNA synthetases, one for aminoacylation of cytoplasmic tRNAs and one for aminoacylation of mitochondrial tRNAs. Both types of tRNA synthetases are encoded in the nuclear genome.

Ribosomes, which translate mRNA into protein and integrate the action of the other components of the polypeptide polymerization machinery.

Initiation factors, which mediate the steps before the first peptide bond is formed, including formation of an initiation complex consisting of a ribosome, an mRNA and the first aminoacyl tRNA. Initiation is generally the rate limiting step in polypeptide synthesis.

Elongation factors, which function in all the reactions between synthesis of the first peptide bond and addition of the last amino acid.

Termination factors, which perform the reactions required to release completed polypeptide chains from ribosomes.

Polypeptide chaperonins and other folding factors such as isomerases, which are necessary for the proper folding (and hence function) of proteins.

Polypeptide degradation machinery, including the ubiquitin system for tagging proteins for degradation and the proteasome and its constituents for cleaving proteins targeted for degradation. As cells grow and respond to changing circumstances there is a continual need to new protein synthesis. However, without some mechanism for eliminating existing unneeded or damaged proteins cells are not able to survive or proliferate.

There are approximately 20 cytoplasmic and 20 mitochondrial tRNA synthetases, approximately 80 ribosomal proteins, and over 20 protein constituents of initiation

10

5

15

20

factors, elongation factors and termination factors. The available evidence suggests that virtually all of these proteins are encoded by single copy genes. Thus at least 150 genes and their encoded proteins are potential candidates for allele specific targeting. (Conversely, the RNA constituents of the translational apparatus - transfer RNAs and ribosomal RNAs - are encoded by multicopy genes and do not constitute targets for allele specific targeting).

Inhibitors Have Been Identified for Most Steps of Peptide polymerization and processing

10

5

Well over 100 protein synthesis inhibitors with a wide variety of structures and mechanisms of action of have been characterized in both prokaryotes and eukaryotes. Specific inhibitors have been identified for each step of translation described above. See Table from Vasquez (ref. 1) for a summary of translation inhibitors.

15

Inhibition of aminoacyl tRNA synthetases has been accomplished by at least three different mechanisms: amino acid analogs such as borrelidin and histidinol result in arrest of cell division by competing with natural amino acids for aminoacylation by tRNA synthetases. Inhibition of prokaryotic cell growth has also been demonstrated with RNA minihelices which mimic the acceptor stems of tRNAs. The minihelices compete with authentic tRNAs for aminoacylation by cognate tRNA synthetases. A third class of synthetase inhibitor is represented by pseudomonic acid A, a species specific inhibitor of gram positive isoleucyl tRNA synthetase produced by a gram negative organism. Pseudomonic acid A does not mimic amino acids or tRNAs, but binds to isoleucyl tRNA synthetase to inhibit peptide polymerization and

25

processing.

20

Peptide polymerization and processing inhibitors that act on ribosomes include agents which bind the protein components and agents which bind or cleave the RNA components of ribosomes. An example of the former is the small

176

molecule drug emetine, which binds to ribosomal protein S14 and inhibits peptide polymerization and processing.

Peptide polymerization and processing Inhibitors are Cytostatic or Cytotoxic Drugs

5

Some of the most potent cytotoxic agents known are protein synthesis inhibitors. For example, a single molecule of ricin or diphtheria toxin is sufficient to kill a cell.

10

The largest class of protein synthesis inhibitors act on the elongation step of translation, with many inhibitors known for both prokaryotes and eukaryotes. Among the best studied prokaryotic elongation inhibitors are molecules belonging to the major antibiotic groups: the tetracyclines, streptomycin and other aminoglycosides, lincomycin and related compounds, erythromycin and related macrolide antibiotics and puromycin. Among the better characterized eukaryotic elongation inhibitors are toxins such as ricin and diphtheria toxin.

15

Cancer Chemotherapy by Inhibition of Peptide polymerization and processing

20

25

The best studied chemotherapeutic agent that acts solely by inhibiting protein synthesis is the enzyme L-asparaginase, used frequently in the treatment of acute lymphoblastic leukemia and occasionally in the treatment of other cancers. The therapeutic effect of L-asparaginase treatment is hydrolysis of serum L-asparagine to L-aspartate, with a rapidly ensuing drop in serum asparagine levels. While asparagine is not an essential amino acid, leukemia cells generally do not express asparagine synthase and are therefore reliant on importation of asparagine from serum via amino acid transporters in the plasma membrane. The effect of sudden asparagine starvation on rapidly dividing leukemia cells is to induce apoptotic death. Subsequent retreatment with L-asparaginase is generally not as effective as the initial treatment because the leukemia cells which survived the initial treatment have had time to induce expression of

asparagine synthase and are no longer dependent on external asparagine.

Examples of Genes Essential to Maintain Cellular Proteins at Levels Compatible with Cell Growth or Survival, From Yeast

The yeast Saccharomyces Cerevisiae is a eukaryote which shares many genes in

5

10

common with humans. Approximately 70% of the essential genes in yeast have human homologs. Many human genes can be exchanged with their yeast counterparts with minimal effects on growth in yeast or human cells. The study of essential genes in yeast is much further advanced than in mammalian systems: over half of the ~6,000 genes of Saccharomyces Cerevisiae have been disrupted and the phenotype of the resulting strains tested on minimal growth media. Over 20% of disrupted yeast genes are essential, and a significant fraction of their human counterparts are likely to be essential for cell survival. Among the yeast genes disrupted are a variety of genes that encode proteins required to maintain proteins at levels compatible with cell growth or survival. Many of these genes are essential for cell survival. Many of the disrupted essential yeast genes have closely related human homologs, and it is likely that the human homologs are also essential. Specific examples of yeast genes that are essential

15

20

__

GRC5, NHP2, NIP1, RPL1, RPL25, RPL27, RPL32, RPL35, RPL7, and URP2 are yeast ribosomal proteins that have been disrupted and found to be essential.

site http//quest7.proteome.com for an up to date list.)

are listed below. All of these genes have human homologs. (This is a partial list because the Saccharomyces gene disruption project is only halfway done; see the web

25

CDC33, GCD1, GCD10, GCD11, GCD2, GCD6, GCD7, PRT1, SIS1, SUI1, SUI2, SUI3, TIF11, TIF34, and TIF5 are essential translation factors, mostly translation initiation factors that initiate translation at ATG.

178

EFB1 and YEF3 are translation elongation factors that have been disrupted and found essential.

SUP35 and SUP45 are essential translation termination factors.

5

ALA1, HTS1, DED81, THS1, VAS1, WRS1 and KRS1 are essential yeast cytoplasmic tRNA synthetases.

References

10

- 1. Vazquez, D. (1979) Molecular Biology and Biophysics, vol. 30, Inhibitors of Protein Synthesis. Springer-Verlag, Berlin.
- 2. Lim-Sylianco, C.Y. (1990) Toxins that alter the expression of genetic information: genotoxins and inhibitors of RNA or protein synthesis, pp. 338-421 *in* Shier, W.T. and D. Mebs, eds., <u>Handbook of Toxinology</u>, Marcel Dekker, New York.

15

Example 5. Genes required to maintain cellular nucleic acids at levels compatible with cell growth or survival.

20

25

Cellular nucleic acids including deoxyribonucleic acids and ribonucleic acids are essential elements for cell survival and proliferation. Many different genes are involved in maintaining these constituents at levels required for cell growth and proliferation including genes encoding enzymes for nucleotide synthesis, nucleotide degradation and salvage, polymerization of DNA (replication), polymerization of RNA (transcription), modifications of DNA including methylation, modifications of RNA including polyadenylation and capping, and processing or DNA and RNA. Many of these genes and their gene products are targets for conventional antiproliferative drugs.

RNA and DNA precursor Biosynthesis is Essential for Cell Proliferation

Nucleotides, the building blocks for both RNA and DNA, are essential for cell survival. Eukaryotic cells have several pathways for the production of nucleotides: de novo purine and pyrimidine biosynthesis, salvage pathways and membrane transport.

5

Over 50 Proteins Participate in RNA and DNA precursor Biosynthesis

The principal enzyme groups involved in RNA and DNA precursor biosynthesis are the 14 enzymes of de novo purine biosynthesis, 5 enzymes of de novo pyrimidine biosynthesis (encoded in two polypeptides) and the enzymes of the nucleotide salvage pathways, which number at least 10.

10

Inhibitors of RNA and DNA precursor Biosynthesis are Cytostatic or Cytotoxic Drugs Useful in Cancer Chemotherapy Many of the most clinically effective antineoplastic agents block steps in RNA and DNA precursor biosynthesis. Examples include agents which block enzymes of de novo purine and pyrimidine biosynthesis or interfere with salvage pathways. For example, hydroxyurea blocks production of deoxyribonucleotides by ribonucleotide diphosphate reductase.

15

Purine Biosynthesis is essential for cell proliferation

20

Pharmacologic inhibitors of purine biosynthesis are cytotoxic. These include drugs like azaserine and 6-diazo-5-oxo-L-norleucine (DON), glutamine analogs which inhibit three steps in purine synthesis, the most important being inhibition of the enzyme formylglycinamide ribonucleotide amidotransferase. 8-azaguanine and mycophenolic acid interfere with guanylate biosynthesis. (See Kornberg, A., DNA Replication, W.H. Freeman and Company, San Francisco, 1980, for a review of drugs that inhibit purine and pyrimidine biosynthesis.) There is also evidence of the essentiality of purine biosynthesis from yeast. For example, the saccharomyces cerevisiae PUR5 gene encodes inosine 5'-monophosphate dehydrogenase, which converts inosine 5'-phosphate and NAD to xanthosine 5'-phosphate and NADH, the first reaction unique

10

15

20

to GMP biosynthesis. Disruption of PUR5 is lethal.

Pyrimidine Biosynthesis is essential for cell proliferation

Pharmacologic inhibitors of pyrimidine biosynthesis are cytotoxic. These include drugs like phosphonacetyl-L-aspartate (PALA) which inhibits aspartate transcarbamylase, a key enzyme in de nove pyrimidine synthesis. Also, there is evidence of the essentiality of pyrimidine biosynthesis from yeast. For example, the saccharomyces cerevisiae CDC8 gene encodes thymidylate kinase, required for synthesis of dTTP. Disruption of CDC8 is lethal.

DNA synthesis and polymerization.

Cell division clearly requires DNA polymerization to replicate the chromosomes so that each daughter cell has the same genetic makeup as the parent cell. Much of the basic machinery of DNA replication is conserved in prokaryotic and eukaryotic cells (1). Disruption of genes that encode proteins of DNA replication in yeast - including Polymerases I and III (the counterparts of human polymerases a and d), and accessory factors such as Replication Protein A and Replication Factor C - is lethal in S. cerevisiae (2). Nucleotide analogs that are incorporated into DNA are cytotoxic drugs. Examples of such analogs are the antineoplastic drug 6-mercaptopurine and arabinosyl NTPs, which interfere with DNA polymerization. Since inability to replicate DNA is lethal for growing cells, mutants in DNA replication must be obtained as conditional lethals in both prokaryotes and eukaryotes.

Second strand DNA polymerization on takes place in three main steps, each requiring different protein machinery: (1) At the start of replication an initiation complex is formed at chromosome structures called origins of replication. The parental DNA strands are transiently separated, a replication fork is formed and DNA synthesis is primed. (2) The elongation phase of replication is thought to take place in two

complexes, one moving forward on the leading strand and the other moving iteratively in the opposite direction to form the lagging strand. Elongation, then, requires replicative DNA polymerases and associated factors for unwinding and transiently stabilizing single stranded DNA, proofreading the newly synthesized template and, on the lagging strand, removing RNA primers and covalently linking adjacent newly synthesized lagging strands (Okazaki fragments). (3) During the final phase of DNA synthesis replication is terminated and the newly synthesized strands are separated.

Origin recognition complexes are formed by at least 6 origin recognition complex proteins (ORC 1 through 6) along with other factors, including "licensing" proteins such as the MCM family as well as "regulating" factors. The two principal nuclear replicative polymerases are DNA polymerase a, which is responsible for priming synthesis and for synthesis of the lagging strand, and DNA Polymerase d, which synthesizes the leading strand. Both are multisubunit proteins, which function in multiprotein assemblies that include Replication Protein A, Replication Factor C, Proliferating Cell Nuclear Antigen and other proteins.

DNA Polmerases b and e are believed to principally carry out nuclear repair synthesis, while Polymerase g is the mitochondrial replicative enzyme. These polymerases are also multiprotein complexes.

Proteins such as topoisomerases I and II and other DNA helicases are also required during replication to maintain DNA topology.

The biochemistry of replication termination is not well characterized however the proteins which carry out this final step of replication are likely to be essential.

Inhibitors Have Been Identified for Several Steps of DNA Replication

In addition to lethal disruptions of genes encoding proteins required for replication, a variety of cytotoxic inhibitors of DNA replication have been identified. They include

BNSDOCID: <WO___9841648A2_IA>

25

20

5

10

182

agents which act on production of DNA precursors as well as inhibitors of DNA polymerases.

DNA Replication Inhibitors are Cytostatic or Cytotoxic Drugs

5

10

15

There are several chemotherapy drugs that arrest DNA replication and poison cells by inhibiting production of deoxynucleotides, the precursors of DNA. These drugs include hydroxyurea, which inhibits ribonucleotide reductase, and 5-fluorouracil, which inhibits thymidylate synthase. Other inhibitors of replication appear to act, at least in part, by blocking DNA polymerases. These include nucleotide analogs that block DNA polymerases, such as 2',3' dideoxy NTPs and 3' deoxy ATP (cordycepin) as well as the chemotherapy drugs cytarabine (cytosine arabinoside), fludarabine phosphate and 2-chlorodeoxyadenosine. Cytarabine, after metabolism to the di- and trinucleotide phosphate forms, is incorporated into DNA and inhibits chain elongation leading to cell death, apparently by inducing apoptosis. Fludarabine, after metabolism to the triphosphate derivative, inhibits DNA polymerase, DNA primase and ribonucleotide reductase and is incorporated into DNA and RNA (3).

DNA polymerization is essential for cell proliferation

20

25

The essentiality of the function of DNA polymerization is clear, as such polymerization is needed for cell division, and therefore for tissue or tumor growth. As indicated for other categories, confirmation of the essentiality of a particular gene and the presence of a single locus, along with the determination of appropriate LOH and sequence variance heterozygosity characteristics identifies or confirms a gene in this category as an appropriate gene for potential allele specific targeting.

References

10

15

20

25

- 1. O'Donnell, M., Onrust, R., Dean, F.B., Chen, M. and J. Hurwitz (1993) Homology in accessory proteins of replicative polymerases E. coli to humans. *Nucleic Acids Research* 21:1-3.
- 2. Stillman, B. (1996) Cell Cycle Control of DNA Replication. Science 274: 1659-1664.
- 3. Gandhi, V., Huang, P. and W. Plunkett (1994) Fludarabine inhibits DNA replication: a rationale for its use in the treatment of acute leukemias. *Leukemia and Lymphoma* 14 Suppl. 2: 3-9.

Maintaining RNA at levels required for cell growth or survival

Gene transcription is necessary for the production of messenger RNAs, the precursors of all cellular proteins. Transcription is also required for the production of ribosomal RNA, essential to formation of ribosomes, and for the production of transfer RNA, required for formation of aminoacyl tRNAs, the building blocks of protein synthesis. Turning off transcription - which can be accomplished with drugs that act on DNA templates or RNA polymerase - leads to rapid arrest of cell growth and subsequent cell death. Beyond gene transcription lie a series of essential RNA processing steps, including, but not necessarily limited to, mRNA splicing, capping, polyadenylation and export to the cytoplasm. Interference with any of these steps prevents the production of mature mRNA competent for translation, and therefore has the same cytotoxic effects as blocking transcription.

Gene Transcription and RNA Processing Require Many Proteins

Transcription of eukaryotic genes is carried out by three different RNA polymerases, each of which works with a different set of accessory factors. RNA Polymerase I is responsible for transcription of ribosomal RNAs, RNA Polymerase II transcribes protein coding genes and RNA Polymerase III transcribes transfer RNAs and other small RNAs. All three polymerases are multiprotein complexes. Several protein subunits are common components of all three polymerases, but each polymerase also

184

has unique subunits and accessory factors, not all of which have yet been identified or characterized. Some of the key proteins identified so far are:

RNA Polymerase I subunits and accessory factors including UBF1 and SL1. (SL1 has been shown to consist of TATA binding protein and three TATA associated factors.)

RNA Polymerase III subunits and accessory factors including TFIIIA, TFIIIB and TFIIIC.

RNA Polymerase II and its accessory factors are by far the most extensively characterized and most complex system. The large multisubunit protein complex that transcribes protein coding genes has recently come to be called the RNA Pol II holoenzyme (reviewed by Berk, ref. 1). The holoenzyme consists of more than 50 proteins, among which are:

RNA polymerase, the catalytic complex at the core of the holoenzyme. It consists of 14 subunits, many of which can complement their yeast counterparts *in vivo*.

The general transcription factors. These are proteins which either make direct contact with DNA, like TATA binding protein and associated factors, or interact with other transcription factors and/or transcriptional regulators. The general transcription factors, including TFII A, TFII B, TFII D, TFII E, TFII F, TFII H and TFII I, are multimeric protein complexes with >30 protein constituents (2,3). For example, there are 8-13 proteins which associate with TATA binding protein (called TATA associated factors, or TAFs) to collectively make up TFII D. Some of these factors (e.g. TFII250) have already been proven essential for cell proliferation.

Accessory proteins such as elongation factors, termination factors, activator and mediator proteins, srb (suppressor of RNA Polymerase B; see ref. 1 and references therein) proteins, RNA methylases and a variety of other processing factors.

RNA helicases, which are required for proper folding of RNAs,

10

5

15

20

10

15

20

25

Once transcribed, genes are spliced by multiprotein assemblies termed spliceosomes (4), which are made up of pre-mRNA, small nuclear ribonucleoproteins including (snRNPs) U1, U2, U4/6 and U5 and other proteins including SF2/ASF, U2AF and SC35. Recently progress has been made in cloning cDNAs for several splicing factors, however many of the proteins which process mRNAs have not yet been well characterized. After splicing, mRNAs are polyadenylated and exported to the cytoplasm (5). Several of the proteins of polyadenylation have been purified and cloned. The export of mRNAs is less well studied but is clearly a specific process requiring protein machinery. Several essential yeast genes required for mRNA transport have been identified.

Inhibitors Have Been Identified for Several Steps of Gene Transcription

The best studied inhibitors of gene transcription are small molecules that inhibit RNA polymerase or interact with DNA to block transcription. Inhibitors of RNA polymerase include actinomycin D, which intercalates into double stranded DNA and blocks the movement of RNA polymerase and rifampicin, an antibiotic which binds the b subunit of *E. Coli* RNA polymerase and blocks initiation of transcription. The best studied specific inhibitor of eukaryotic RNA Polymerase II is the potent mushroom toxin a-amanitin, a cyclic octapeptide which binds to the polymerase with high affinity (Kd~10-9 M). Several mutations conferring resistance to alpha-amanitin have been characterized and they all map to the RNA Polymerase II protein coding sequence.

Examples of essential yeast genes (disruption shown to be lethal) required to maintain cellular nucleic acids at levels compatible with cell growth or survival

A number of yeast genes involved in DNA (including nuclear DNA and mt DNA) and RNA (including mRNA, tRNA and rRNA) metabolism have been disrupted and shown

186

essential for yeast cell viability. Many of these genes are conserved in all eukaryotes. Human homologs of these yeast genes are likely to be essential for human cell growth or survival. Specific examples:

5

The yeast DNA2 gene encodes a DNA helicase required for DNA replication. DNA2 is essential to the function of TOP2 (topoisomerase) which is also an essential gene.

10

POL1, POL2, POL3 and POL12 encode DNA polymerases. The disruption of any one of these genes is lethal. Knockout of polymerase associated genes DBP2 and POB3 is also lethal. These genes are essential for the synthesis of DNA.

•

ORC1, ORC2, ORC3, ORC4, ORC5, ORC6, CDC7, CDC46 and CDC54 are essential in yeast. These genes encode origin recognition complex proteins responsible for the initiation of DNA synthesis. There are direct human homologs of the ORC genes.

15

General replication factors RFA1, RFA2, RFA3, RFC1, RFC2, RFC3, RFC4 and RFC5 are all essential yeast genes. These genes encode replication protein A and replication factor C which are essential for DNA replication and have direct human homologs.

20

TBF1, TEL2 and CDC13 are essential yeast genes that encode proteins that responsible for the synthesis and maintenance of telomeres.

25

RNR1 (Ribonucleotide Reductase 1), RNR2 (Ribonucleotide Reductase 2) CDC8 (Thymidylate Kinase) and PUR5 (Inosine-5'-monophosphate dehydrogenase) are essential yeast genes involve in the purine/pyrimidine biosynthesis pathways and in the conversion of ribonucleotides to deoxyribonucleotides.

ROX3, RPA135, RPA190, RPA43, RPB10, RPB11, RPB2, RPB3, RPB5, RPB6,

RPB7, RPB8, RPC10, RPC128, RPC19, RPC25, RPC31, RPC34, RPC40, RPC53, and RPC82 are subunits of RNA polymerases I, II and III. These genes have been disrupted and shown to be essential. RNA polymerase I, II, and II are responsible for the synthesis of rRNA, mRNA, and tRNA respectively and have human homologs.

5

BRR2, DBP5, DBP6, DED1, HCA4, MAK5, and ROK1 are RNA helicases that are essential for processes such as pre-mRNA splicing and ribosomal RNA splicing.

10

Yeast TATA binding proteins TAF145, TAF17, TAF19, TAF25, TAF40, TAF47, TAF47, TAF60, TAF61, TAF67, and TAF90 are required for mRNA transcription by the RNA Polymerase II holoenzyme.

Transcription elongation factors RPO21 and RPO31 are essential.

15

General transcription factors SPT15, SSL1, SSL2, SUA7, TFA1, TFA2, TFB1, TFB2, TFB4, TFC2, TFC3, TFC4, TFC5, TFG1, TFG2, TOA1, and TOA2 have been disrupted and proven to be essential. These genes encode proteins that constitute the general machinery of RNA transcription.

20

Specific transcription factors BBP1, BRF1, BUR6, CDC39, HSF1, KIN28, MET30, RAP1, and REB1 are essential yeast genes. These genes encode proteins that are involved in the transcription of specific genes.

25

CUS1, GIN10, MSL5, PRP19, PRP31, SLU7, SME1, SNP2, USS1, and YHC1 are essential genes responsible for normal RNA splicing.

ESS1, FIP1, NAB2, NAB3, NAB4, PAP1, RNA14, RNA15, and YTH1 are essential genes required for RNA modification. The encoded proteins perform functions such as cleavage and polyadenylation of 3' ends of RNAs to produce mature mRNA

188

molecules.

References

5

10

20

- 1. Berk, A.J. (1995) Biochemistry meets genetics in the holoenzyme. *Proc. Natl. Acad. Sci. U.S.A.* 92: 11952-11954.
- 2. Buratowski, S.(1994) The basics of basal transcription by RNA polymerase II. *Cell* 77: 1-3.
- 3. Tjian, R. and T. Maniatis (1994) Transcriptional activation: a complex puzzle with few easy pieces. *Cell* 77: 5-8.
 - 4. Green, M.R. (1991) Annual Review of Cell Biology 7: 559.
 - 5. Proudfoot, N. (1991) Poly(A) signals. Cell 64: 671-674.

Example 6. Genes required to maintain integrity and function of cellular and subcellular structures compatible with cell growth or survival.

In order to survive and grow cells must be able to maintain their shape and internal architecture, including the structural integrity of a wide variety of subcellular organelles including the nucleus, mitochondria, endoplasmic reticulum and Golgi vesicles and a variety of lysosomes, peroxisomes vesicles and vacuoles. These structures perform essential functions such as:

(i) Movement of proteins and other macromolecules across membranes to maintain

synthesized proteins are transported to the endoplasmic reticulum by specialized transport apparatus which assists in protein folding and posttranslational modification. From the ER, proteins may be transported to distant cellular sites via vesicles which are comprised of specialized proteins. Some proteins synthesized in the cytoplasm

must be transported into the mitochondia for proper mitochondrial function. There

also exist specialized apparatus for transport of mRNA from the nucleus.

(ii) Fusion or fission of various membrane bound cytoplasmic or nuclear organelles requires the specialized function of molecules that affect membrane properties to allow joining or separating and that provide a scaffold for moving membrane bound structures together or apart. The relationship of the ER and Golgi vesicles involves a continuous process of fission, while various classes of vacuoles or vesicles may fuse. (iii) There must be effective coordination of the function of all cellular compartments. Coordination is accomplished by the transmission of signals from membrane to nucleus, from cytosol to mitochondria, from nucleus to cytoplasm, etc. Signals are transmitted by enzymes such as adenylate cyclases, protein kinases and protein phosphatases.

(iv) Maintenance of the integrity of cellular and subcellular structures also requires processes and structures for eliminating, transforming, sequestering or otherwise regulating levels of endogenous cellular toxins or waste substances. This may be accomplished by transfer of waste molecules to organelles such as vacuoles, lysosomes or peroxisomes, by inactivation of toxic byproducts of oxygen metabolism such as free radicals or by export of molecules that have reached excessive levels in the cell.

(v) The structure of the cytoplasm is maintained by the cytoskeleton, while different organelles in some cases are made up of specialized structural molecules. For example, the nucleus, bound by a double layered nuclear envelope, contains the nuclear matrix, consisting of over 100 unique proteins, as well as the histones and other proteins which form chromatin and the proteins which form subnuclear structures such as nucleoli, nuclear pores and the protein structures which convey mRNA out of the nucleus. (Darnell, J. et al., Molecular Cell Biology, Scientific American Books, 1990.)

The fibrous proteins of the cytoplasm are collectively referred to as the cytoskeleton. Among the important cytoskeletal proteins are microfilaments made up of actin molecules, microtubules made up of tubulin molecules, and intermediate filaments, made up of one of a variety of subunit types. The cytoskeleton is important not only

25

5

10

15

190

for maintenance of cell shape, strength and rigidity but also for providing a frame for movement of other structures. Microtubules, for example, are critical for chromosome movement during cell division, while actin microfilaments and intermediate filaments affect the organization and mobility of surface membrane proteins. Actins and other cytoskeletal proteins are vital for processes such as endocytosis, which is the only route of essential nutrients such as transferrin-bound iron. Cells also contain a variety of proteins essential for anchoring organelles to the cytoskeleton, or anchoring the plasma membrane to adjacent structures such as basement membranes and adjacent cells.

A variety of yeast structural proteins required to maintain integrity and function of cellular and subcellular structures have been disrupted and shown essential for cell survival. Since most structural proteins are highly conserved in eukaryotes it is likely that the human counterparts of these yeast genes are also essential. Specific examples:

The genes encoding yeast nuclear pore proteins (nucleoporin) NIC96, NSP1, NUP49, NUP57, NUP82, NUP145 and NUP159 are lethal when disrupted, as is the pore trafficking protein GSP1. NNF1 is an essential protein of the nuclear envelope required for proper nuclear morphology.

The yeast nucleolar protein NOP2, homologous to human proliferation associated nucleolar antigen p120, is essential. NOP4 encodes another essential yeast nucleolar protein.

Knockout of the yeast ACT1 gene, which encodes actin, is lethal, as is knockout of the actin related proteins ARP100, ARP2, ARP3 and ARP4. The actin binding and severing protein cofilin, encoded by the yeast COF1 gene, is also essential, as is profilin (PFY1), which can complex with actin monomers and prevent actin polymerization. PAN1 is an essential protein involved in normal regulation of the actin cytoskeleton.

5

10

15

20

The RET1, RET2, RET3, SEC1, SEC4, SEC5, SEC6, SEC7, SEC8, SEC10, SEC11, SEC14, SEC16, SEC17, SEC18, SEC20, SEC26, SEC27, SEC31, SEC61, SEC62, SEC63, SFT1, SLY1, BET1, BET3, UFE1, USO1, VTI1, TIP20, KAR2 and BOS1 genes are all essential in yeast. These genes encode proteins which are vital for the function of the endoplasmic reticulum and Golgi vesicles, including processes such as protein transport across the ER, membrane fusion and formation of vesicles.

The essential yeast histone-like protein CSE4 is required for chromosome segregation. STH1, RSC6 and RSC8 are components of the essential abundant chromatin remodeling complex, while SPT5 and SPT6 influence gene expression through effects on chromatin structure.

The essential yeast intermediate filament protein MDM1 is involved in organelle inheritance and mitochondrial morphology.

The essential yeast mitochondrial proteins MGE1 and SSC1 participate in folding of proteins during mitochondrial import. TIM17, TIM22 and TIM23 are essential mitochondrial inner membrane proteins involved in import and translocation of proteins. ATM1 is an ATP binding mitochondrial inner membrane protein.

The RAT1, MTR2 and MTR3 genes encode proteins essential for mRNA transport from the nucleus to the cytoplasm.

DBF8 is an essential yeast protein involved in protein transport.

APS2 is an essential clathrin associated protein, involved in membrane transport.

The yeast PKC1 gene encodes the essential protein kinase C, which regulates the MAP kinase cascade; CDC15 is an essential component of the MAP kinase kinase kinase

15

5

10

20

192

family of signaling proteins.

CYR1 is an essential adenylate cyclase which generates cAMP in response to signals including ras activation. GDI1 is an essential GDP dissociation inhibitor.

5

Example 8: Validation of Target Gene Essentiality

10

15

20

25

To investigate whether specific target genes are essential for cell proliferation and/or survival, a method was developed to use antisense oligonucleotides to inhibit gene expression. Phosphorothioate antisense oligonucleotides targeting polymorphic sites were transfected into human cell lines, and mRNA down-regulation was assessed by northern blotting. mRNA down-regulation was achieved for 19 of the 35 polymorphisms targeted (54.2%). Oligonucleotides targeting each polymorphic allele were (separately) transfected to assess the allele-specificity of the mRNA down-regulation. In 15 of the 19 sites accessible to oligos, the oligonucleotide targeting the allele found in the cell down-regulated mRNA to a level significantly lower than did the mismatched oligonucleotide. In 6 of these 15 cases, striking allele-specificity was observed.

The consequence of down-regulating the mRNA of an essential gene should be cell death. Allele-specific cell death was indeed observed in these experiments, both upon transfecting cells daily for three days with the phosphorothioate oligos described above (followed by a recovery period during which control-treated cells continued to divide while essential gene inhibition prevented division) or upon extended (5-10 days) daily transfections with less toxic oligonucleotide chemistries. In an experiment targeting either RNA polymerase II or the glutamyl-prolyl tRNA synthetase (EPRS), cells were transfected for five consecutive days with oligos either targeting the allele found in the cell (match) or carrying a 1 bp mismatch, targeting the other allele (mismatch). One day after the fifth transfection, cells remaining on the plate were quantitated by staining

10

15

20

25

193

with sulforhodamine B. The matched oligonucleotide was significantly more cytotoxic than the mismatched oligonucleotide.

Example 9: Aminoacyl tRNA Synthetases are Essential for Cell Survival

Each aminoacyl-tRNA synthetase performs an analogous role in protein synthesis, and each represents a target for the present invention.

Aminoacyl-tRNA synthetases perform a basic cell function

Aminoacyl-tRNA synthetases are present in all living cells (1). (A recent paper entitled "A minimal gene set for cellular life derived by comparison of complete bacterial genomes" [ref. 2] concludes that as few as 256 genes may be required for prokaryotic cell life; all 20 tRNA synthetases are included in this minimal gene set.) Each tRNA synthetase catalyzes ATP dependent covalent attachment of a specific amino acid to its cognate tRNA. It is the specificity of each synthetase for a single amino acid and transfer RNA that establishes the universal rules of the genetic code. The aminoacyl-tRNAs produced by tRNA synthetases constitute the precursors for protein assembly by ribosomes - thus tRNA synthetases are vital for peptide polymerization and processing. Blockade of peptide polymerization and processing at any one of multiple different steps (see above) results in arrest of cell growth and eventually cell death in a variety of organisms and cell types.

Aminoacyl-tRNA synthetases have been shown essential in all tested organisms

It has been demonstrated by mutagenesis experiments that tRNA synthetases are essential for prokaryotic, yeast and mammalian cell survival (ref. 1-5). The most relevant data concerns mammalian cells: mutagenesis of Chinese hamster ovary (CHO)

10

15

20

25

and Chinese hamster lung cells followed by "suicide" selection at 39oC for temperature sensitive (ts), conditionally lethal protein synthesis mutants has led to isolation of cell lines with mutant tRNA synthetases (reviewed in ref. 5). (The "suicide" of dividing cells is accomplished by adding thialysine or tritiated [3H] amino acids to cell growth media. Only cells that incorporate these amino acid analogs into protein die - thus cells that are protein synthesis deficient at 39oC survive the selection.) The fraction of cells surviving a single round of suicide selection ranges from one in 105 to one in 108. Biochemical and genetic characterization of surviving cells has led to identification of specific ts aminoacyl-tRNA synthetase mutants. Cell lines with mutant leucyl- or asparaginyl-tRNA synthetases have been isolated repeatedly because the genes for leu and asn tRNA synthetases are haploid in the CHO cell line used for selection, and therefore require only one mutation. Less frequently, mutant alanyl-, arginyl-, glutaminyl-, histidyl-, lysyl-, methionyl-, tryptophanyl- and valyl-tRNA synthetases have been isolated. The properties of these mutant cell lines are similar: when shifted to 39oC, the non-permissive temperature, the rate of protein synthesis drops, in some cases to almost undetectable levels. Soon thereafter the cells stop replicating DNA and within a few days cell death ensues. These experiments constitute proof of the essential role of tRNA synthetases in mammalian cells. Arrest of protein synthesis and consequent cell death can be prevented in some cases by supplementing cell media with the amino acid substrate of the defective tRNA synthetase (thereby driving the aminoacylation reaction), or by fusing the mutant cell line with a normal cell line, or a cell line mutant for a different tRNA synthetase (thereby complementing the mutant synthetase). The cell fusion experiments show that the aminoacyl-tRNA synthetase mutations are recessive at the cellular level. The chromosomal map positions of a number of human tRNA synthetases were first determined by analysis of (human) X (ts mutant CHO cell) hybrids. Human chromosomes are progressively lost in such hybrids, but one human chromosome - the one which contains the human synthetase complementary to the mutant hamster synthetase - is consistently retained. Such experiments provided the first evidence that

human tRNA synthetases are single copy genes in man (or at least confined to a single chromosome; refs. 6, 7). Subsequently Southern blotting and fluorescence *in situ* hybridization analyses have confirmed and extended these observations for thirteen synthetases (8-14). These Southern blotting and *in situ* hybridization mapping studies established beyond doubt that each of the human tRNA synthetase genes investigated is encoded at a single locus. The table below summarizes the chromosomal location of tRNA synthetases mapped to date.

Chromosome Location of tRNA Synthetases

10

5

	tRNA synthase	Chromosome	tRNA Synthetase	Chromosome
	Ala	16q22	Trp	14q21-32
	Arg, Leu, His, Thr	5	Asp	2
15	Asn	18	Gln	3p
	Cys	11p15.5	Gly	7
	Glu/Pro	1q32-42	Ile (mitochondrial)	2
	Gly	7p15	Lys	16q21
	Ile	9q21	Ser	· 1p12
20	Lys	16q23-24	Tyr	1p31
	Met	12	Val	6p21.3 9

Classification of tRNA synthetases

25

The twenty tRNA synthetases are divided into two groups based on structural features and functional properties that are conserved throughout evolution. There are ten class I synthetases, all of which contain two short conserved amino acid segments which fold together to form an ATP binding pocket called the Rossman fold, in the amino

terminal half of the proteins. The C-terminal end of the Class I synthetases contains the tRNA binding fold. Class II synthetases, of which there are also ten, share up to three short conserved amino acid motifs.

5 References

10

15

20

25

EPRS1).

- 1. Schimmel, P., Giege, R., Moras, D. and S. Yokoyama (1993) An operational RNA code for amino acids and possible relationship to genetic code. *Proc. Natl. Acad. Sci. U.S.A.* 90:8763-8768.
- 2. Mushegian, A.R. and E.V. Koonin (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. *Proc. Natl. Acad. Sci. U.S.A.* 93:10268-10273.
 - 3. Schmitt, E. and P. Schimmel (1994) Dominant lethality by expression of a catalytically inactive class I tRNA synthetase. *Proc. Natl. Acad. Sci. U.S.A.* 90:6919-6923.
 - 4. Ripmaster, T.L., Shiba, K. and P. Schimmel (1995) Wide cross-species aminoacyltRNA synthetase replacement in vivo: Yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. *Proc. Natl. Acad. Sci. U.S.A.* 92:4932-4936.
- 5. Wasmuth, J.J., Chinese Hamster Cell Protein Synthesis Mutants, pp. 375-421 *in* Gottesman, M., editor, Molecular Cell Genetics, John Wiley & Sons, New York, 1985.
 6. Kunze, N., Bittler, E., Fett, R., Schray, B., Hameister, H., Wiedorn, K.-H. and R. Knippers (1990) The human QARS locus: assignment of the human gene for glutaminyl-tRNA synthetase to chromosome 1q32-42. *Human Genetics* 85:527-530. (This gene was later shown to be glutamyl-prolyl tRNA synthetase [abbreviated
- 12. Cirullo, R.E., Arredondo-Vega, F.X., Smith, M. and J.J. Wasmuth (1983) Isolation and characterization of interspecific heat-resistant hybrids between a temperature-sensitive Chinese hamster cell asparaginyl-tRNA synthetase mutant and normal human leukocytes: assignment of human asnS gene to chromosome 18. *Somatic Cell Genetics*

9:215-233.

13. Nichols, R.C., Pai, S.I., Ge, Q., Targoff, I.N., Plotz, P.H. and P. Liu (1995) Localization of two human autoantigen genes by PCR screening and *in situ* hybridization - glycyl tRNA synthetase locates to 7p15 and alanyl-tRNA synthetase locates to 16q22. *Genomics* 30:131-132.

14. Nichols, R.C., Blinder, J., Pai, S.I. et al. (1996) Assignment of two human autoantigen genes: isoleucyl tRNA synthetase locates to 9q21 and lysysl-tRNA synthetase locates to 16q23-24. *Genomics*: 210-213.

10

5

Example 11: Sodium Potassium ATPase, 1 subunit (ATP1A1) - Target Gene VARIA125

Sodium Potassium ATPase is essential for cell survival

15

20

The plasma membranes of virtually all eukaryotic cells contain a Na+, K+ pump that operates as an antiport, pumping Na+ out of the cell and K+ in against their concentration gradients. In coupling the hydrolysis of ATP to the active transport of 3 Na+ out and 2 K+ into the cell the pump is electrogenic. The electrochemical gradients generated and maintained by the Na+,K+ pump are essential for the regulation of cell volume, and for the secondary, sodium-coupled active transport of a variety of organic and inorganic molecules including glucose, amino acids and Ca++. Hence the sodium potassium pump plays an essential role in cellular physiology (1).

25

Sodium Potassium ATPase is a heterodimer composed of a ~100 kDa catalytic subunit and a ~55 kDa glycoprotein subunit of unknown function. Biochemical studies and gene cloning have demonstrated the existence of three isoforms and two -like isoforms of the catalytic subunit, each encoded by a separate gene and with a characteristic expression pattern (reviewed in refs. 2 and 3). Of these, only the 1 gene

198

1

(ATP1A1) is ubiquitously expressed; the other subunits have restricted tissue distribution.

Sodium Potassium ATPase is the target of the cardiac glycoside drugs, including digoxin and the poison ouabain. Ouabain binds to the extracellular face of the 1 subunit and inhibits Na+,K+ exchange, leading to cell death. The 1 subunit from primates is sensitive to nanomolar concentrations of ouabain while the rodent 1 subunit is resistant to ~1000 fold higher concentrations, enabling precise definition of the ouabain binding site. Study of human-rat chimeric 1 subunits combined with site directed mutagenesis has localized the ouabain interacting domain in the aminoterminal portion of the 1 subunit (4,5). Other structure-function studies have contributed to an understanding of 1 subunit cation binding and ATPase functions, while electron microscopy and low resolution (20-30) diffraction analyses of membrane preparations have elucidated the geometry of the protein in the membrane (1).

The 1 subunit of Sodium Potassium ATPase has sequence variants

The cDNA sequence of the human 1 subunit of sodium-potassium ATPase has been published by four groups (6-9). We undertook a systematic search for DNA sequence variance by analyzing the 1 cDNA from 36 unrelated individuals using the single strand conformation polymorphism technique. Primers were designed using the sequence of Kawakami et al. (GENBANK accession D00099; see ref. 6). SSCP analysis revealed 7 sequence variances, and subsequent DNA sequence analysis confirmed that nucleotides 1059 (A vs. C), 1428 (G vs. A), 2538 (T vs. C), 3324 (C vs. T), 3375 (G vs. A), 3397 (G vs. A) and 3408 (C vs. A) vary as shown in the Target Summary Table. The first five sequence variances are in the coding sequence while the latter two are in the 3' untranslated region.

5

10

15

20

10

15

20

25

The frequency of heterozygotes for the seven sequence variants ranged from 3-11% among the 36 individuals tested. Some of the sequence variances appear to occur more commonly in certain racial or ethnic groups. For example, heterozygotes for four sequence variances (at nucleotides 1059, 1428, 3324 and 3375) were detected solely or predominantly in North American Blacks, with heterozygote frequencies of 1/4 or 2/4. The nucleotide 2538 variance was detected solely in North American Whites (4/16) and results in an amino acid exchange (see below). The nucleotide 3397 sequence variance was detected solely in one Japanese individual (of four tested). The nucleotide 2538 sequence variant results in an aspartic acid vs. glutamic acid substitution at amino acid 740 of the 1024 amino acid protein. This residue lies in the cytoplasmic loop of the 1 subunit.

The alpha1 subunit of Sodium Potassium ATPase maps to chromosome 1p13-p11

The gene for the 1 subunit of sodium-potassium ATPase has been mapped to chromosome band 1p13-p11 by several techniques. Yang-Feng et al. (10) assigned the ATP1A1 gene to 1p21-cen by Southern analysis of DNA from panels of rodent/human somatic cell hybrid lines. This localization was confirmed and refined by Chehab et al., who showed that the gene for the ATP1A1 subunit is on 1p13-p11 using hybridization to flow-sorted chromosomes and *in situ* hybridization (9).

Chromosome band 1p13-p11 is a site of frequent loss of heterozygosity

The short arm of chromosome 1 is comparatively well investigated for allele loss, especially in breast and colon cancers, however most of these studies are principally concerned with the 1p36 region, and there is comparatively little data on 1p13-p11. The best studies of proximal 1p allele loss are in breast and testicular cancers. These studies show LOH occurs in approximately 15-35% of breast cancers (11,12) and 15-25% of testicular cancers (13). Data from more distal loci on 1p show >25% LOH in

20

glioma, colon cancer, stomach cancer, ovarian cancer, and liver cancer (14). The LOH observed in this region indicates that other essential genes mapping to the 1p chromosomal arm, and especially to the 1p11 region, which have LOH and for which sequence variances, and therefore heterozygotes for a sequence variance, exist in normal somatic cells of individuals in a population are potential target genes

References

- Jorgensen, P.L. Na, K-ATPase, structure and transport mechanism. In De Pont, ed.
 Molecular Aspects of Transport Proteins, Elsevier Science Publishers, The Netherlands, 1992, pp. 1-26..
 - 2. Sweadner, K.J. (1989) Biochimica et Biophysica Acta 1154: 185-220.
 - 3. Lingrel, J.B., Orlowski, J., Shull, M.M. and E.M. Price (1989) *Prog. Nucleic Acid Research and Mol. Biol.* 38: 37-89.
- 4. Price, E.M. and J.B. Lingrel (1988) Structure-function relationships in the Na, K-ATPase a subunit: site directed mutagenesis of glutamine-111 to arginine and asparagine 122 to aspartic acid generates a ouabain-resistant enzyme. *Biochemistry* 27: 8400-8408.
 - 5. Emanuel, J.R., Graw, S., Housman, D. and R. Levenson (1989) Identification of a region within the Na, K-ATPase a subunit that contributes to differential ouabain sensitivity. *Molecular and Cellular Biology* 9: 3744-3749.
 - 6. Kawakami, K., Ohta, T., Nojima, H., Nagano, K. (1986) Primary structure of the alpha-subunit of human Na,K-ATPase deduced from cDNA sequence. *J. Biochem.* 100: 389-397.
- 7. Ovchinnikov, Y. A., Monastyrskaya, G. S., Broude, N. E., et al. (1987) The family of human Na+,K+-ATPase genes: a partial nucleotide sequence related to the alphasubunit. *FEBS Lett.* 213: 73-80.
 - 8. Shull, M. M. and J.B. Lingrel (1987) Multiple genes encode the human Na+,K+-ATPase catalytic subunit. *Proc. Nat. Acad. Sci. U.S.A.* 84: 4039-4043.

10

15

20

- 9. Chehab, F. F., Kan, Y. W., Law, M. L., Hartz, J., Kao, F.-T. and R. Blostein (1987) Human placental Na+,K+-ATPase alpha subunit: cDNA cloning, tissue expression, DNA polymorphism, and chromosomal localization. *Proc. Nat. Acad. Sci. U.S.A.* 84: 7901-7905.
- 10. Yang-Feng, T.L., Schneider, J.W., Lindgren, V., Shull, M.M., Benz, E.J., Jr., Lingrel, J.B. and U. Francke (1988) Chromosomal localization of human Na+,K+-ATPase alpha- and beta-subunit genes. *Genomics* 2: 128-138.
 - 11. Bieche, I., Champeme, M.H., Matifas, F., Cropp, C.S., Callahan, R. and R. Lidereau (1993) Two distinct regions involved in 1p deletion in human primary breast cancer. *Cancer Res.* 53:1990-4.
 - 12. Nagai H, Negrini M, Carter SL, et al. (1995) Detection and cloning of a common region of loss of heterozygosity at chromosome 1p in breast cancer. *Cancer Res.* 55:1752-7.
 - 13. Mathew S., Murty V.V., Bosl G.J., Chaganti R.S.K. (1994) Loss of heterozygosity identifies multiple sites of allelic deletions on chromosome 1 in human male germ cell tumors. *Cancer Res.* 54:6265-9.
 - 14. Yeh S.H., Chen P.J., Chen H.L., Lai M.Y., Wang C.C. and D.S. Chen (1994) Frequent genetic alterations at the distal region of chromosome 1p in human hepatocellular carcinomas. *Cancer Res.* 54:4188-92.

Example 12: Ribonucleotide Reductase, M1 subunit (RRM1) - Target Gene VARIA200

25 Ribonucleotide Reductase is essential for cell growth

Human ribonucleotide reductase (also called ribonucleoside diphosphate reductase) is essential in dividing cells for the production of deoxyribonucleotides prior to DNA synthesis in S phase. Ribonucleotide reductase catalyzes the reduction of all four

10

15

20

25

ribonucleoside diphosphates to the corresponding deoxyribonucleoside diphosphates by replacing the 2' hydroxyl moiety of ribose with a hydride ion to form deoxyribose; these reactions constitute the first committed steps in the creation of DNA precursors (deoxyribonucleotides), and are therefore tightly regulated by allosteric nucleotide binding sites on the M1 subunit (2,3). The enzyme is an 2 2 tetramer apparently conserved in all prokaryotes and eukaryotes (1). The two subunits, M1 and M2, are both required for enzyme activity. The RRM2 subunit contains the catalytic site, while the RRM1 subunit provides an indispensable allosteric function. (See pages 758-763 of Biochemistry by C.K. Mathews and K.E. van Holde, Benjamin/Cummings Publishing Biochemistry, Company, Redwood City, 1990 for a fuller account of ribonucleotide reductase function.)

Both ribonucleotide reductase subunits are expressed in all proliferating cells but are generally nondetectable in quiescent cells. Ribonucleotide reductase subunit M2 is the target of several antineoplastic compounds, including hydroxyurea. Hydroxyurea is used in the chemotherapy of a variety of myeloproliferative disorders (4). It acts by reversibly destroying a tyrosyl free radical in the catalytic site of the M2 subunit (3). Hydroxyurea and other ribonucleotide reductase poisons are specific for the S phase of the cell cycle, resulting in growth arrest at the G1-S boundary and apoptotic death in tumor cells (5). Exposure of cell cultures to hydroxyurea results in selection of cells expressing high levels ribonucleotide reductase, demonstrating that ribonucleotide reductase is required for these cells to grow (6).

The human ribonucleotide reductase gene has sequence variances

The cDNA sequence of the human ribonucleotide reductase M1 subunit has been published by two groups (7,8). We undertook a systematic search for DNA sequence variance in the cDNA of the M1 subunit by analysing 36 unrelated individuals using the single strand conformation polymorphism technique. Primers were designed using

the sequence of Parker et al. (GENBANK accession X59543; see ref. 7). SSCP analysis revealed 4 sequence variances, and subsequent DNA sequence analysis confirmed that nucleotides 1037 (C vs. A), 2410 (A vs. G), 2419 (A vs. G) and 2717 (T vs. A) vary as shown in the Target Summary Table. (The sequence variance at nt 1037 was previously noted by Parker et al., ref. 7.) Also, DNA sequencing revealed an insertion/deletion sequence variance: the 9 consecutive T nucleotides between positions 2724 and 2732 (numbering from ref. 7) were augmented in some cDNAs by a tenth T. (This sequence variance is designated T9 vs. T10 in the Target Summary Table.)

10

15

5

Both alleles at nt 1037 were detected in North American Whites, Hispanics, Chinese, Japanese, Arabs and Indians. Similarly, both alleles of the sequence variance at nt 2410 were detected in virtually all tested populations: North American White, North American Black, Hispanic, Chinese, Arab and Indian. In contrast, the sequence variances at nt 2419 and 2717 were prevalent in North American Blacks, Hispanics, Chinese, and Japanese, but not North American Whites. The insertion/deletion sequence variance at nt 2724 was only studied in four individuals so no firm conclusions can be drawn regarding population distribution, however it appears to be in linkage disequilibrium with the 2419 and 2724 sequence variances.

20

The human ribonucleotide reductase gene maps to chromosome 11p15.5

25

The gene for human ribonucleotide reductase has been mapped to band 11p15.5 by several techniques. Initially the gene was localized by Southern hybridization analysis of human X rodent somatic cell hybrids and by chromosomal *in situ* hybridization (9). Subsequently RRM1 has been placed on a yeast artificial chromosome (YAC) physical map of chromosome 11p15 (10). The precise physical localization of the RRM1 gene facilitates interpretation of LOH results at adjacent polymorphic markers (see below).

Chromosome band 11p15.5 is a site of frequent loss of heterozygosity

The short arm of chromosome 11 is the site of several tumor suppressor genes, including the WT1 gene and the Beckwith-Weidemann syndrome gene. As a result there are many studies of LOH in 11p15.5, particularly focusing on breast, cervix, kidney, liver, lung, ovarian, stomach and testicular cancers. These studies show that the 11p15.5 band of chromosome 11 is frequently reduced to one copy (11-28). For example, LOH occurs in approximately 13-33% of breast cancers (11-13), 14-42% of cervical cancers (14), 0-50% of liver cancers (16), 0-80% of lung cancers (17-19), 18-54% of ovarian cancers (20,21), 0-71% of stomach cancers (22) and 0-50% of testicular cancers (23,24). Other studies show that 11p15.5 LOH may also be frequent in bladder cancer (25), esophageal cancer (26), some leukemias (27) and sarcomas (28). Many deletions in the 11p15.5 region span relatively short chromosomal segments (2 - 10 megabases; see ref. 17).

15

20

25

10

5

References

- 1. Caras, I.W., Levinson, B.B., Fabry, M., et al. (1985) Cloned mouse ribonucleotide reductase subunit M1 cDNA reveals amino acid sequence homology with Escherichia Coli and herpesvirus ribonucleotide reductases. *J. Biol. Chem.* 260: 7015-7022.
- 2. Thelander, L., and P. Reichard, (1979) Reduction of Ribonucleotides. *Annu. Rev. Biochem.* 48:133-158.
- 3. Reichard, P. and A Ehrenberg (1983) Ribonucleotide reductase: a radical enzyme. *Science* 221: 514-9.
- 4. Donehower, R.C. (1992) An Overview of the clinical experience with hydroxyurea. Seminars in Oncology 19:11-19, 1992.
- 5. Wright, P.S., Cross-Doersen, D., Thong, J.P., et al. (1996) A ribonucleotide reductase inhibitor, MDL 101,731, induces apoptosis and elevates TRPM-2 mRNA levels in human prostate tumor xenografts. *Experimental Cell Research* 22: 54-60.

15

- 6. Cocking, J.M., Tonin, P.N., Stokoe, et al. (1987) Gene for M1 subunit of ribonucleotide reductase is amplified in hydroxyurea-resistant hamster cells. *Somat. Cell. Mol. Genet.* 13:221-33.
- 7. Parker, N.J., Begley, C.G. and R.M. Fox. (1991) The Human M1 Subunit of Ribonucleotide Reductase: cDNA Sequence and Expression in Stimulated Lymphocytes. *Nucleic Acids research* 9:3741.
- 8. Pavloff, N., Rivard, D., Masson, S., Shen, S.H. and A.M. Mes-Masson. (1992) Sequence Analysis of the Large and Small Subunits of Human Ribonucleotide Reductase. *DNA Sequence* 2:227.
- 9. Brissenden, J.E., Caras, I., Thelander, L. and Francke, U. (1988) The structural gene for the M1 subunit of ribonucleotide reductase maps to chromosome 11, band p15, in human and to chromosome 7 in mouse. *Exp. Cell. Res.* 174:302-8.
 - 10. See: http://shows.med.buffalo.edu/home.html
 - 11. Ali, I., Lidereau, R., Theilley, C. and R. Callahan (1987) Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. *Science* 238:185-8.
 - 12. Winqvist, R., Mannermaa, A., Alavaikko, et al. (1993) Refinement of regional loss of heterozygosity for chromosome 11p15.5 in human breast tumors. *Cancer Research* 53: 4486-4488.
- 20 13. Carter, S.L., Negrini, M., Baffa, R., et al. (1994) Loss of heterozygosity at 11q22q23 in breast cancer. *Cancer Research* 54:6270-4.
 - 14. Mitra, A.B., Murty, V.V.V.S., Li, R.G., et al. (1994) Allelotype analysis of cervical carcinoma. *Cancer Research* 54:4481.
 - 15. Fujimori, M., Tokino, T., Hino, O., et al. (1991) Allelotype study of primary heptocellular carcinoma. *Cancer Research* 51: 89-93.
 - 16. Wang, H.P. & C.E. Rogler (1988) Deletions in human chromosomes 11p and 13q in primary hepatocellular carcinomas. Cytogenetics and Cell Genetics 48:72-78.
 - 17. Bepler, G. and Garcia-Blanco, M.A. (1994) Three Tumor Suppressor Regions on Chromosome 11p Identified by High Resolution Deletion Mapping in Human Non-

10

15

20

- Small Cell Lung Cancer. Proc. Natl. Acad. Sci. U.S.A. 91:5513-7.
- 18. Iizuka, M., Sugiyama, Y., Shiraishi, M., et al. (1995) Allelic losses in human chromosome 11 in lung cancers. *Genes, Chromosomes & Cancer* 13:40-46.
- 19. Weston, A., Willey, J.C., Modali, R., et al. (1989) Differential DNA sequence deletions from chromosomes 3, 11, 13 and 17 in squamous cell carcinoma, large-cell carcinoma and adenocarcinoma of the human lung. *Proc. Natl. Acad. Sci. U.S.A.* 86:5099-5103.
- 20. Kiechle-Schwartz, M., Bauknecht, T., Wienker, T., et al. (1993) Loss of Constitutional Heterozygosity on Chromosome 11p in Human Ovarian Cancer. *Cancer* 72:2423-32.
- 21. Viel, A., Giannini, F., Tumiotti, L., Sopracordevole, F., Visentin, M.C. and M. Boiocchi (1992) Chromosomal localization of two putative 11p oncosuppressor genes involved in human ovarian tumors *British Journal of Cancer* 66: 1030-1036.
- 22. Baffa, R., Negrini, M., Mandes, B., et al. (1996) Loss of heterozygosity for chromosome 11 in adenocarcinoma of the stomach. *Cancer Research* 56: 268-72.
- 23. Lothe, R.A., Hastie, N., Heimdal, K., et al. (1993) Frequent loss of 1p13 and 11p15 loci in male germ cell tumors. *Genes, Chromosomes & Cancer* 7:96-101.
- 24 Smith, R.C., and Rukstalis, D.B. (1995) Frequent Loss of Heterozygosity at 11p Loci in Testicular Cancer. *The Journal of Urology* 153:1684-7.
- 25. Shaw, M.E. and Knowles, M.A. (1995) Deletion Mapping of Chromosome 11 in Carcinoma of the Bladder. *Genes, Chromosomes & Cancer* 13:1-8.
 - 26. Shibagaki, I., Shimada, Y., Wagata, T., et al. (1994) Allelotype analysis of esophageal squamous cell carcinoma. *Cancer Research* 54: 2996-3000.
 - 27. Ahuja, H.G., Foti, A., Zhou, D.J. and M.J. Cline (1990) Analysis of proto-oncogenes in acute myeloid leukemia: loss of heterozygosity for the Ha-ras gene. *Blood* 75: 819-822.
 - 28. Yamaguchi, T., Toguchida, J., Yamamuro, T., et al. (1992) Allelotype analysis in osteosarcoma: frequent allele loss on 3q, 13q, 17p and 18q. *Cancer Res.* 52: 2419.

207

Example 13: Thymidylate Synthase (TS) - Target Gene VARIA250

Thymidylate Synthase is essential for cell growth

Human thymidylate synthase (TS) catalyzes the formation of thymidine monophosphate (dTMP) from deoxyuridine monophosphate (dUMP) by transfer of a methyl group from N5,N10-methylenetetrahydrofolate to carbon 5 of dUMP. This is the sole *de novo* pathway to dTMP, an essential precursor for DNA synthesis. TS also plays an important role in balancing the four nucleotide precursors for DNA polymer synthesis (1). Thus TS is an attractive target for antiproliferative drugs. (*See* Biochemistry by C.K. Mathews and K.E. van Holde, Benjamin/Cummings Publishing Company, Redwood City, 1990, pages 763-768, for a fuller account of thymidylate synthase function.)

Like some other growth associated genes involved in DNA synthesis, thymidylate synthase is expressed in proliferating cells at 20-40 fold higher levels than in quiescent cells. Increased expression occurs at the G1-S transition of the cell cycle when quiescent cells are stimulated with serum. Levels of thymidylate synthase are finely controlled by autoregulatory feedback loops wherein TS protein regulates the transcription, stability and translational efficiency of TS mRNA (2). Transcription increases by only 2-4 fold, so posttranscriptional events constitute the predominant regulatory mechanisms (3). One mechanism of 5-FU resistance is increased expression of TS Mrna.

Thymidylate synthase is the target of 5-fluorouracil (5-FU), a potent antineoplastic compound. Once inside cells 5-FU is ribosylated and phosphorylated to 5-fluoro-2'-deoxyuridine 5'-monophosphate (F-dUMP), which acts as an inhibitory transition state analog of TS when bound in the presence of the enzyme's second substrate, N5,N10-methylenetetrahydrofolate. (5-FU is also incorporated into both DNA and RNA,

5

10

15

augmenting its toxicity.) 5-FU induces partial responses in 10-30% of patients with a variety of cancers, including metastatic breast and gastrointestinal tract cancers (4). While 5-FU is a potent antiproliferative agent in tissue culture cells, as with most antineoplastic drugs, its clinical utility is limited by lack of discrimination between normal cells and tumor cells: common toxic effects include stomatitis, diarrhea, bone marrow suppression, hair loss and occasionally cardiac and neurologic symptoms.

The human thymidylate synthase gene has sequence variances

The sequence of a human thymidylate synthase cDNA was determined by Takeishi et al. (5), who later determined the genomic sequence as well (6). We undertook a systematic search for DNA sequence variance by analysing 36 unrelated individuals using the single strand conformation polymorphism. Primers were designed using the sequence of Takeishi et al. (5). SSCP analysis revealed 3 DNA fragments having sequence variances, and subsequent DNA sequence analysis showed that nucleotides 1066 (C vs. T), 1136 (A vs. G) and 1497 (A vs. T) vary among normal individuals as shown in the Target Summary Table. All three sequence variances are in the 3' untranslated region of the gene. The nucleotide 1066 and 1497 sequence variances are in complete linkage disequilibrium in the 36 individuals examined. Both alleles of all three sequence variances were detected in North American Whites, North American Blacks, Chinese, Japanese, Arabs and Indians.

Another TS sequence variance has been described by Berger and colleagues (7-9). They detected a T to C change at nucleotide 276 of the TS gene, resulting in the substitution of histidine for an evolutionarily conserved tyrosine at residue 33 of TS protein. So far the histidine allele has been detected in only one cell line, HCT116 (7). The rare his-33 form of the protein is 3-4 fold more resistant to FdUrd than the tyr-33 form, due to an 8 fold lower catalytic efficiency (kcat), suggesting that histidine at residue 33 perturbs the structure of the TS active site (9)

5

10

15

20

209

The human thymidylate synthase gene maps to chromosome 18p11.32

The gene for human thymidylate synthase was initially mapped to the long arm of chromosome 18 (18q21.31-qter) by somatic cell hybrid analysis (10), however two subsequent reports place the gene in band 18p11.32 using fluorescence in situ hybridization (11,12).

Chromosome band 18p11.32 is a site of loss of heterozygosity

The long arm of chromosome 18 contains the DCC (deleted in colon cancer) candidate tumor suppressor gene and has been well studied in a variety of tumors. The short arm (18p), where TS apparently resides, has not been studied as extensively. The available data suggests there is LOH in approximately 45% of colon cancers (13) and 25-30% of cervical (14), head and neck (15), lung (16) and ovarian (17) cancers and sarcomas.

LOH has also been described in breast, brain, esophagus, kidney and prostate cancers (0-15%). 18p has not been studied for allele loss in several other major cancers, including bladder, leukemia, lymphoma, liver, pancreas, stomach and testicular cancers.

20 References

- 1. Chu, E., Koeller, D.M., Casey, J.L., et al. (1991) Autoregulation of human thymidylate synthase messenger RNA translation by thymidyate synthase. *Proc. Natl. Acad. Sci. U.S.A.* 88: 8977-81.
- 2. Seno, T., Ayusawa, D., Shimizu, K., et al. (1985) in de Serres, F.J. (ed.) Genetic Consequences of Nucleotide Pool Imbalance, Plenum Publishing Company, New York, pp. 241-263.
 - 3. Johnson, L.F. (1994) Posttranscriptional regulation of thymidylate synthase gene expression. *Journal of Cellular Biochemistry* 54: 387-392.

210

- 4. Calabresi, P. and B. Chabner (1996) in Hardman, J.G., Limbird, L.E., et al. (eds.) Goodman and Gilman's The Pharmacological Basis of Therapeutics, McGraw Hill, New York, pp. 1247-1251.
- 5. Takeishi, K., Kaneda, S., Aysawa, D., Shimizu, K., Gotoh, O. and T. Seno (1985) Nucleotide sequence of a functional cDNA for human thymidylate synthase. *Nucleic Acids Research* 13: 2035-2043.
- 6. Kaneda, S., Nalbantoglu, K., Takeishi, K., et al. (1990) Structural and functional analysis of the human thymidylate synthase gene. *Journal of Biological Chemistry* 265: 20277-84.
- 7. Barbour, K.W., Berger, S.H. and S.G. Berger (1990) Single amino acid substitution defines a naturally occurring genetic variant of human thymidylate synthase. *Molecular Pharmacology* 37: 515-518.
 - 8. Barbour, K.W., Hoganson, D.K., Berger, S.H. and F.G. Berger (1992) A naturally occurring tyrosine to histidine replacement at residue 33 of human thymidylate synthase confers resistance to 5-fluoro-2'-deoxoyuridine in mammalian and bacterial cells. *Molecular Pharmacology* 42: 242-248
 - 9. Hughey, C.T., Barbour, K.W., Berger, F.G. and S.H. Berger (1993) Functional effects of a naturally occurring amino acid substitution in human thymidylate synthase. *Molecular Pharmacology* 44: 316-323.
- 10. Nussbaum, R.L., McCarrick-Walmsley, R., Lesko, J.G., et al. (1985) Thymidylate synthase deficient Chinese hamster cells: a selection system for human chromosome 18 and experimental system for the study of thymidylate synthase regulation and fragile X expression. *American Journal of Human Genetics* 37: 1192-1205.
 - 11. Hori, T., Takahashi, E., Ayusawa, D., et al. (1990) Regional assignment of the human thymidylate synthase gene to chromosome band 18p11.32 by nonisotopic *in situ* hybridization. *Human Genetics* 85: 576-580.
 - 12. Silverman, G.A., Kuo, W.-L., Taillon-Miller, P. and J.W. Gray (1993) Chromosomal reassignment: YACs containing both YES1 and thymidylate synthase map to the short arm of chromosome 18. *Genomics* 15: 442-445.

5

15

10

15

- 13. Vogelstein, B., Fearon, E.R., Kern, S.E., et al. (1989) Allelotype of colorectal carcinomas. *Science* 244: 207-211.
- 14. Mullokandov, M.R., Kholodilov, N.G., Atkin, N.B., et al. (1996) Genomic Alterations in cervical carcinoma: losses of chromosome heterozygosity and human papilloma virus tumor status. *Cancer Research* 56: 197-205.
- 15. Nawroz, H., van der Riet, P., Hruban, R.H., et al. (1994) Allelotype of head and neck squamous cell carcinoma. *Cancer Research* 54: 1152-55.
- 16. Allelotype of non-small cell lung carcinoma comparison between loss of heterozy-gosity in squamous cell carcinoma and adenocarcinoma. *Cancer Research*: 52: 2478-81.
- 17. Abeln, E.C.A., Kuipers-Dijkshoorn, N.J., Berns, E.M.J.J., et al. (1995) Molecular genetic evidence for unifocal origin of advanced epithelial ovarian cancer and for minor clonal divergence. *British Journal of Cancer* 72: 1330-1336.

Example 14: Cytidine Triphosphate Synthetase (CTPS) - Target Gene VARIA260

Cytidine Triphosphate Synthetase is essential for cell growth

Human cytidine triphosphate synthetase catalyzes the glutamination of UTP to form CTP. The reaction is: UTP + ATP + glutamine --> CTP + ADP + Pi + glutamate. This is the rate limiting step in the synthesis of cytidine nucleotides from both the *de novo* and uridine salvage synthesis routes (see ref. 1 and references therein). CTPS also plays a vital regulatory function in balancing nucleotide pools for DNA polymer synthesis; it is allosterically regulated by CTP (negatively) and GTP (positively).

There is compelling evidence that CTPS is essential for cell survival:

CTPS is evolutionarily conserved in yeast and bacteria, with a high degree of amino acid identity in regions mediating allosteric regulation and catalysis (1-

10

15

20

25

3). (Another example: the human and hamster enzymes are identical in length and 98% amino acid identical over 591 amino acids.)

Mutant hamster cells lacking functional CTPS need exogenous cytidine to survive (3).

There is no known human deficiency disease of CTPS.

CTPS function is increased in proliferating cells (4).

Thus CTPS is an attractive target for antiproliferative drugs. Cyclopentyl cytosine (CPE-C) is a synthetic cytidine analog in which a cyclopentyl group replaces the furan ring of the ribose sugar. CPE-C has antineoplastic and antiviral effects in animal models (5). The drug is kinased intracellularly to the triphosphorylated nucleotide form (CPE-CTP). Exposure of cells to CPE-C leads to rapid depletion of CTP pools, as a result of inhibition of CTPS by CPE-CTP (6,7). Upregulation of CTP synthetase, or loss of negative allosteric modulation by CTP is associated with resistance to the cancer chemotherapy drugs arabinosyl cytosine (ara-C), 5-fluorouracil and other cytotoxic nucleoside analogs as well as alkylating agents (3).

The human cytidine triphosphate synthetase gene has sequence variances

The sequence of a human cytidine triphosphate synthetase cDNA was determined by Yamauchi et al. (1), who later determined the genomic sequence as well (2). We undertook a systematic search for DNA sequence variance by analysing 36 unrelated individuals using the single strand conformation polymorphism technique. Primers were designed using the sequence of Yamauchi et al. (1). SSCP analysis revealed 3 DNA fragments having sequence variances, and subsequent DNA sequence analysis showed that nucleotides 576 (A vs. G), 2093 (C vs. T) and 2135 (G vs. A) vary among normal individuals as shown in the Target Summary Table. The nucleotide 576 sequence variance is a silent substitution in the coding region, while the latter two sequence variances are in the 3' untranslated region of the cDNA. All three sequence

variances were detected at low frequency in the panel of 36 individuals (3-8%), however all but one of the heterozygotes is Asian, and it seems likely that a larger survey of Asian populations would show higher allele frequencies in Chinese and other groups. For example among the four Chinese in the panel two (50%) are heterozygous for the residue 2135 sequence variance, and one (25%) is heterozygous for the nt 576 sequence variance. Also, the one Cambodian in the panel is heterozygous for both the 2093 and 2135 sequence variances.

The human cytidine triphosphate synthetase gene maps to chromosome 1p34.1

10

5

The gene for human cytidine triphosphate synthetase has been mapped to 1p34.1 by somatic cell hybrid analysis (2).

Chromosome band 1p34.1 is a site of frequent loss of heterozygosity

15

The short arm of chromosome 1 is comparatively well investigated for allele loss, especially in breast and colon cancers. The 1p35-32 and 1p22-13 regions flank 1p34.1 and are the best available markers for LOH on 1p. Studies of these regions show 30-50% LOH frequency in breast cancer (8-12), 41-75% in glioma (a brain cancer subtype) (13), 20-40% in colon cancer (14,15), ~50% in stomach cancer (16), ~20% in lung cancer (17) and 20-30% in ovarian cancer (18). High frequency LOH has been detected in several uncommon cancers such as pheochromocytoma (50-86%) and neuroblastoma (~50%). Most other common cancers have not been adequately investigated to assess LOH frequency in this region.

25

20

References

1. Yamauchi, M., Yamauchi, N. and M. Meuth (1990) Molecular cloning of the human CTP synthetase gene by functional complementation with purified human metaphase

chromosomes. EMBO Journal 9: 2095-2099.

- 2. Yamauchi, M., Yamauchi, N., Phear, G., et al. (1991) Genomic organization and chromo-somal localization of the human CTP synthetase gene(CTPS). *Genomics* 11: 1088-96.
- 3. Whelan, J., Phear, G., Yamauchi, M. and M. Meuth (1993) Clustered base substitutions in CTP synthetase conferring drug resistance in Chinese hamster ovary cells. *Nature Genetics* 3: 317-322.
 - 4. van den Berg, A., van Lenthe, H., Busch, S., et al. (1993) Evidence for transformation related increase in CTP synthetase activity *in situ* in human lymphoblastic leukemia. *European Journal of Biochemistry* 216: 161-167.
 - 5. Marquez, V.E., Lim, M.-I., Treanor, S.P., et al. (1988) Cyclopentylcytosine: a carbocyclic nucleoside with antitumor and antiviral properties. *Journal of Medical Chemistry* 31: 1687-94.
 - 6. Kang, G.J., Cooney, D.A., Moyer, J.D., et al. (1989) Cyclopentenyl triphosphate: formation and inhibition of CTP synthetase. *Journal of Biological Chemistry* 264: 713-718.
 - 7. Glazer, R.I., Knode, M.C. Lim, M.-I., and V.E. Marquez (1985) Cyclopentyl cytidine analogue: an inhibitor of cytidine triphosphate synthesis in human colon carcinoma cells. *Biochemical Pharmacology* 34: 2535-2539.
- 8. Bieche I, Champeme MH, Matifas F, Cropp CS, Callahan R, Lidereau R. (1993)
 Two distinct regions involved in 1p deletion in human primary breast cancer. *Cancer Res.* 53:1990-4.
 - 9. Borg A, Zhang QX, Olsson H, Wenngren E. (1992) Chromosome 1 alterations in breast cancer: allelic loss on 1p and 1q is related to lymphogenic metastases and poor prognosis. *Genes Chromosomes & Cancer*. 5:311-20.
 - 10. Sato T, Tanigami A, Yamakawa K, et al. (1990) Allelotype of breast cancer: cumulative allele losses promote tumor progression in primary breast cancer. *Cancer Res.* 50:7184-9.
 - 11. Devilee P, van Vliet M, Bardoel A, et al. (1991) Frequent somatic imbalance of

5

10

15

10

15

20

marker alleles for chromosome 1 in human primary breast carcinoma. Cancer Res. 51:1020-5.

- 12. Loupart ML, Armour J, Walker R, Adams S, Brammar W, Varley J. (1995) Allelic imbalance on chromosome 1 in human breast cancer. I. Minisatellite and RFLP analysis. *Genes Chromosomes & Cancer*. 12:16-23.
- 13. Reifenberger, J., Reifenberger, G., Liu, L., et al. (1994) Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. American Journal of Pathology 145: 1175-1190.
- 14 Meling GI, Lothe RA, Borresen AL, et al. (1991) Genetic alterations within the retinoblastoma locus in colorectal carcinomas. Relation to DNA ploidy pattern studied by flow cytometric analysis. *Br J Cancer*. 64:475-80.
- 15. Lothe RA, Nakamura Y, Woodward S, Gedde DT, Jr., White R. (1988) VNTR (variable number of tandem repeats) markers show loss of chromosome 17p sequences in human colorectal carcinomas. *Cytogenet Cell Genet*. 48:167-9.
- 16. Ezaki, T., Yanagisawa, A., Ohta, K., et al. ((1996) Deletion mapping on chromosome 1p in well-differentiated gastric cancer. *British Journal of Cancer* 73: 424-428.
 - 17. Hiyama K, Ishioka S, Shirotani Y, et al. (1995) Alterations in telomeric repeat length in lung cancer are associated with loss of heterozygosity in p53 and Rb. *Oncogene*. 10:937-44.
 - 18. Yang-Feng TL, Han H, Chen KC, et al. (1993) Allelic loss in ovarian cancer. *Int J Cancer*. 54:546-51.

25 Example 15: Cysteinyl tRNA Synthetase (CARS) - Target Gene VARIA301

The human cysteinyl tRNA synthetase gene is essential for cell survival

Cysteinyl-tRNA synthetase (CARS) catalyzes ATP dependent covalent attachment of

216

cysteine to its cognate tRNA to form cysteinyl-tRNA. In the absence of cysteinyl-tRNA, protein synthesis is blocked. Since Cysteinyl-tRNA synthesis is a single copy gene in man, inhibition of its function is expected to be cell lethal. This has been shown for other tRNA synthesises (summarized above).

5

The human cysteinyl-tRNA synthetase gene and mRNA have sequences variances

10

15

20

25

A human cDNA encoding cysteinyl tRNA synthetase (CARS) was cloned based on the similarity of a human expressed sequence tag (EST) to E. coli cysteinyl tRNA synthetase (1). The published human CARS cDNA is 2048 nucleotides in length and includes a 30 nucleotide 5' untranslated region followed by an open reading frame of 1914 nucleotides and a 3' untranslated region of 134 nucleotides (1). An EMBL/ GENBANK submission (accession # L06845) by the authors of ref. 1 includes a 3' untranslated region 423 nucleotides longer than the published sequence, but lacks 19 consecutive A nucleotides after position 2029 (making a net increase of: 423 - 19 = 404 nucleotides, and a composite cDNA of: 2048 + 404 = 2452 nucleotides in length. We have confirmed the existence of 2452 nt transcripts by PCR amplification of reverse transcribed mRNA.) We designed primers as shown on the annotated cDNA sequence and screened the composite 2452 nt cDNA for sequence variance in 36 unrelated individuals by the single strand conformation polymorphism (SSCP) technique. Two sequence variances were identified. One of the sequence variances, located in the 5' untranslated region, was below the desired level of 20% heterozygosity. The other sequence variance is a C vs. T transition near the 3' end of the coding sequence at nucleotide 1739 (see annotated sequence).

The human cysteinyl tRNA synthetase protein has sequence variances

The deduced amino acid sequence of the human CARS gene encodes a protein of 638 amino acids which probably functions as a monomer, by analogy to related synthetases. The deduced protein contains two sequence motifs, HIGH (residues 64-

67) and KMSKS (residues 406-410), which define Class I synthetases (see ref. 2 for background information on tRNA synthetases). These two conserved motifs form an ATP binding fold (the Rossman fold) in the amino terminal half of the protein. Cytosine at nucleotide 1739 encodes proline at residue 622 of the protein, while thymine at nucleotide 1739 encodes leucine. The pro/leu amino acid sequence variance is a mere 16 residues from the C terminus of the protein. The C-terminal portion of CARS, by analogy to other class I synthetases, contains the tRNA binding site.

Frequency of CARS heterozygotes

The frequency of heterozygotes for the nucleotide 1739 sequence variance is ~45-50% in all major racial groups surveyed (see accompanying table), including North American Whites (8/15=53%), North American Blacks (2/4=50%), Chinese (2/4=50%), Swedish (127/344=37%) and Japanese (1/4=25%). The wide population distribution of both alleles suggests that other population groups will also have a high frequency of heterozygotes.

Gene Mapping of CARS to 11p15.5

20

25

5

10

15

Human CARS cDNA has been mapped to chromosome 11p15.5 by screening human X Chinese hamster somatic cell hybrids informative for all human chromosomes, and by fluorescence *in situ* hybridization (3). Both mapping techniques were conclusive in showing only one locus for human CARS. Detailed physical maps of 11p15.5 have subsequently allowed precise localization of the CARS gene relative to other DNA markers (4).

LOH at 11p15.5 is well documented in many cancer types

The short arm of chromosome 11, and particularly the 11p15.5 region, is deleted in a

variety of human cancers, including (but not limited to) ovarian (18 - 50% LOH), non-small cell lung (22 - 71%), breast (12 - 33%), bladder (40 -50%), esophageal (18 - 40%) and testicular cancers (18 - 66%) (refs. 5-12). Many deletions in the 11p15.5 region span relatively short chromosomal segments (2 - 10 megabases; see ref. 8). Using the specific variances identified in the CARS gene as markers for heterozygosity, we have determined that LOH occurs in 10/20 ovarian cancers (50%) and 10/52 non-small cell lung cancers (19%).

Assays for human CARS inhibitors

10

15

20

5

There is no published work on the protein encoded by the putative human CARS cDNA, nor on any other eukaryotic CARS protein, however the extensive characterization of other Class I synthetases from both prokaryotes and eukaryotes provides a template for modeling the structure of human CARS. (For an example of how this can be done see ref. 14, in which the three dimensional structure of human alanyl-tRNA synthetase has been modeled up to amino 249 by neural net software and multiple alignments of partial and complete human AARS sequences with heterologous prokaryotic class II synthetases for which crystal structures exist.) With respect to the C-terminal location of the variant amino acid residue in human CARS, it is worth noting that single amino acid substitutions in the C-terminal region of alanyl tRNA synthetase can have greater than 100 fold effects on catalytic activity (15).

References

- 1. Wasmuth, J.J. Cruzen, M. E. and S.M. Arfin (1994) Nucleotide and deduced amino acid sequence of human cysteinyl-tRNA synthetase. *DNA Sequence* 4:243-248.
- 2. Moras, D. (1992) Structural and functional relationships between aminoacyl-tRNA synthetases. *Trends in Biochemical Sciences* 17: 159-164.
- 3. Cruzen, M.E., Bengtsson, U., McMahon, J., Wasmuth, J.J. and S.M. Arfin (1993)

15

Assignment of the cysteinyl-tRNA synthetase gene (CARS) to 11p15.5. *Genomics* 15: 692-693.

- 5. Winqvist, R., Mannermaa, A., Alavaikko, M., Blanco, G., Taskinen, P.J., Kiviniemi, H., Newsham, I. and W. Cavenee (1993) Refinement of regional loss of heterozygosity for chromosome 11p15.5 in human breast tumors. *Cancer Research* 53: 4486-4488.
- 6. Kiechle-Schwartz, M., Bauknecht, T., Wienker, T., et al. (1993) Loss of Constitutional Heterozygosity on Chromosome 11p in Human Ovarian Cancer. *Cancer* 72:2423-32.
- 7. Viel, A., Giannini, F., Tumiotti, L., Sopracordevole, F., Visentin, M.C. and M. Boiocchi (1992) Chromosomal localisation of two putative 11p oncosuppressor genes involved in human ovarian tumors *British Journal of Cancer* 66: 1030-1036.
 - 8. Bepler, G. and Garcia-Blanco, M.A. (1994) Three Tumor Suppressor Regions on Chromosome 11p Identified by High Resolution Deletion Mapping in Human Non-Small Cell Lung Cancer. *Proc. Natl. Acad. Sci. U.S.A.* 91:5513-7.
 - 9. Iizuka, M., Sugiyama, Y., Shiraishi, M., Jones, C. and T. Sekiya (1995) Allelic losses in human chromosome 11 in lung cancers. *Genes, Chromosomes & Cancer* 13:40-46. 10. Shaw, M.E. and Knowles, M.A. (1995) Deletion Mapping of Chromosome 11 in Carcinoma of the Bladder. *Genes, Chromosomes & Cancer* 13:1-8.
- 20 11. Smith, R.C., and Rukstalis, D.B. Frequent Loss of Heterozygosity at 11p Loci in Testicular Cancer. *The Journal of Urology* 153:1684-7, 1995.
 - 12. Shibagaki, I., Shimada, Y., Wagata, T., Ikenaga, M., Imamura, M. and K. Ishizaki (1994) Allelotype analysis of esophageal squamous cell carcinoma. *Cancer Research* 54: 2996-3000.
- 13. Shiba, K., Suzuki, N., Shigesada, K., Namba, Y., Schimmel, P. and T. Noda (1994) Human cytoplasmic isoleudyl-tRNA synthetase: selective divergence of the anticodon-binding domain and acquisition of a new structural unit. *Proc. Natl. Acad. Sci. U.S.A.* 91:7435-7439.
 - 14. Shiba, K., Ripmaster, T., Suzuki, N., Nichols, R., Plotz, P., Noda, T. and P.

Schimmel (1995) Human alanyl-tRNA synthetase: conservation in evolution of catalytic core and microhelix recognition. Biochemistry 34: 10340-10349.

15. Wu, M.-X., Filley, S.J., Xiong, J., Lee, J.J. and K.A.W. Hill (1994) A cysteine in the C-terminal region of alanyl-tRNA synthetase is important for aminoacylation activity. *Biochemistry* 33: 12260-12266.

Example 16: Glutamyl-Prolyl tRNA Synthetase (EPRS): - Target Gene VARIA300

10

15

20

25

5

The human glutamyl-prolyl tRNA synthetase gene is essential for cell survival

Glutamyl-prolyl-tRNA synthetase (EPRS) catalyzes ATP dependent covalent attachment of glutamine and proline to their cognate tRNAs to form glutamyl-tRNA and prolyl-tRNA. In the absence of glutamyl-tRNA or prolyl-tRNA, protein synthesis is blocked. Since glutamyl-prolyl-tRNA synthetase is a single copy gene in man, inhibition of its function is expected to be cell lethal. This has been shown for other tRNA synthetases (summarized above).

The human glutamyl-prolyl tRNA synthetase gene, mRNA and protein have sequence variances

A human cDNA encoding glutamyl-prolyl tRNA synthetase (EPRS) was initially misidentified as glutaminyl-tRNA synthetase (1) based on misleading sequence alignments with bacterial and yeast glutaminyl-tRNA synthetase (2). Subsequently, biochemical studies of the protein encoded by a *D. melanogaster* gene ~70% identical to the human gene demonstrated glutamyl (not glutaminyl) tRNA synthetase activity, and also showed that a single gene encodes both glutamyl- and prolyl-tRNA synthetases in the fly (3). These observations eventually led to the realization that

human EPRS is also a single polypeptide containing two synthetases (2). The aminoacyl tRNA synthetases are divided into two classes (see *Background on tRNA Synthetases*, above). Glutamyl-tRNA synthetase belongs to Class I while Prolyl-tRNA synthetase belongs to class II. Thus the two halves of EPRS evolved independently and likely represent an evolutionarily recent fusion. The published human EPRS cDNA is 4,586 nt long and includes a 5' untranslated region of 58 nt followed by an open reading frame of 4320 nt and a 3' untranslated sequence of 208 nt (1). The gene encodes a polypeptide of 1440 amino acids. The glutamyl-tRNA synthetase activity is encoded by an imprecisely defined segment at 5' end of the gene probably spanning at least amino acids 105-426, while the prolyl-tRNA synthetase activity is encoded by a segment likely including residues 942-1369 at the 3' end of the gene (2). The two synthetase moieties are connected by a central domain of unknown function. It has been speculated that the central domain may attach the enzyme to the cytoskeleton or to other aminoacyl-tRNA synthetases in a multienzyme complex (2, 3).

15

20

25

10

5

The human glutamyl-prolyl-tRNA synthetase gene and mRNA have sequence variances. We designed primers and screened the 4586 nt cDNA for sequence variance in 36 unrelated individuals by the single strand conformation polymorphism technique. Seven sequence variances were identified, four located in the coding sequence and three located in the 3' untranslated region. As shown on the Annotated Glutamyl-Prolyl tRNA Synthetase cDNA Sequence and in the Target Summary Page, the sequence variance nucleotides are 2520 (C vs. A), 2944 (G vs. A), 2963 (C vs. T), 2969 (A vs. G), 3247 (A vs. G), 4459 (G vs. A) and 4506 (G vs. A). The sequences flanking the alternate allelic forms and their frequencies of occurrence are shown on the Target Summary Page. Less than 10% of individuals surveyed are heterozygous for sequence variances at 2520, 2944 and 2963. Heterozygotes for the other 4 sequence variances occur more frequently and appear to be widely distributed in the surveyed populations (see below).

The human glutamyl-prolyl tRNA synthetase protein has sequence variances. Three nucleotide sequence variances, at 2520, 2963 and 2969, alter the amino acid coding sequence of EPRS at residues 821 (pro/his), 969 (his/tyr) and 971 (ile/val). The residue 821 his and 969 tyr alleles are relatively rare, with fewer than 10% heterozygotes in the surveyed populations. The more common residue 971 sequence variance lies in the PRS domain of the protein, near one of the widely conserved defining motifs for class II tRNA synthetases.

EPRS heterozygotes are frequent in non-Asian populations. While the overall frequency of residue 971 heterozygotes is 8/36 (24%), the frequency of heterozygotes varies among different populations. For example, there are no heterozygotes among 10 Asians surveyed (Chinese, Japanese, Filipino and Korean), while 8/26 (31%) of non-Asians, including North American Whites, Blacks and Hispanics, are heterozygotes.

15

20

10

5

The EPRS Gene Maps to 1q41-q42

Human EPRS cDNA has been mapped to chromosome 1q41-42 by screening human X Chinese hamster somatic cell hybrids informative for all human chromosomes, and by fluorescence *in situ* hybridization (3). Both mapping techniques were conclusive in showing only one locus for human EPRS.

25

Loss of heterozygosity at 1q41-42 is documented in several cancer types. 17-25% of breast cancers have allele loss in the 1q41-q42 region (4, 5), 29-46% of colon cancers (6, 7) and 17-26% of cervical cancers (8). One report describes 27% LOH in stomach cancer (9). One or two studies of brain, esophageal, kidney, liver and ovarian cancers also report LOH. No studies of LOH in the 1q41-q42 region have been reported in bladder, endocrine, head and neck, lung, or pancreas cancers or in leukemia or lymphoma.

Antisense considerations The sequence variances at 2963 and 2969 are close enough that a 20-mer antisense oligonucleotide could easily span them. Such an oligonucleotide should afford greater allele discrimination than is possible with a single nucleotide difference. However, the 2963 sequence variance is fairly rare (<10% heterozygotes) and not in linkage disequilibrium with the 2963 sequence variance, so there are more than two haplotypes in the populations tested.

References

- 1. Fett, R. and R. Knippers (1991) The primary structure of human glutaminyl tRNA synthetase. *Journal of Biological Chemistry* 266: 1448-1455.
 - 2. Cerini, C., Kerjan, P., Astier, M., Gratecos, D., Mirande, M. and M. Semeriva (1991) A component of the multisynthetase complex is a multifunctional aminoacyltRNA synthetase. *The EMBO Journal* 10: 4267-4277.
- 3. Kaiser, E., Hu, B., Becher, S., Eberhard, D., et al. (1994) The human EPRS locus (formerly the QARS locus): a gene encoding a class I and a class II aminoacyl-tRNA synthetase. *Genomics* 19: 280-290.
 - 4. Journal of The National Cancer Institute 84: 506.
 - 5. Cancer Research 51: 1020.
- 20 6. International Journal of Cancer 53: 382.
 - 7. Genes, Chromosomes & Cancer 12: 16.
 - 8. Cancer Research 56: 197.
 - 9. Cancer Research 52: 3099.
- 10. Shiba, K., Ripmaster, T., Suzuki, N., Nichols, R., Plotz, P., Noda, T. and P. Schimmel (1995) Human alanyl-tRNA synthetase: conservation in evolution of catalytic core and microhelix recognition. Biochemistry 34: 10340-10349.

Example 17: Alanyl-tRNA Synthetase (AARS) - Target Gene VARIA304

The human glutamyl-prolyl tRNA synthetase gene is essential for cell survival

Alanyl-tRNA synthetase (AARS) catalyzes ATP dependent covalent attachment of alanine to its cognate tRNA to form alanyl-tRNA. In the absence of alanyl-tRNA, protein synthesis is blocked. Since alanyl-tRNA synthetase is a single copy gene in man (see below) inhibition of its function is expected to be cell lethal. This has been shown for other tRNA synthetases (summarized above).

The human alanyl-tRNA synthetase gene and mRNA have sequence variances

10

5

A human cDNA encoding alanyl tRNA synthetase (AARS) was cloned by Shiba et al. (1) using cross species PCR: AARS sequences from four evolutionarily distant species were compared and primers were designed to conserved regions specific to AARS. The cloned human cDNA is 3344 nt in length and includes a 110 nt 5' untranslated region, an open reading frame of 2904 nt encoding a 968 residue polypeptide, and a 3' untranslated region of 330 nt (ref. 1; Genbank accession D32050).

15

We designed primers. The 3344 nt cDNA was screened for sequence variance in 36 unrelated individuals by the single strand conformation polymorphism (SSCP) technique. One sequence variance was identified, a C vs. T transition at nucleotide 1013, within the coding sequence. The published nucleotide at position 1013 is T (1).

25

20

The frequency of AARS heterozygotes is 25-50% in all populations surveyed. The frequency of heterozygotes for the nucleotide 1013 sequence variance is 57% in the 36 individuals tested. Both alleles are present in all major racial groups surveyed (see Target Gene Summary Table), including North American Whites (9/15=60% heterozygotes), North American Blacks (3/4=75%), Chinese (2/4=50%), Japanese (1/4=25%) and Hispanic (1/2). The wide population distribution of both alleles suggests that other population groups will also have a high frequency of heterozygotes.

10

15

20

25

225

The AARS gene maps to 16q22

The human AARS cDNA has been mapped to chromosome 16q22 by us and by Nichols et al. (ref. 2). We designed primers to the 3' untranslated region of AARS and used PCR to analyze the National Institute of General Medical Sciences (NIGMS) Human/Rodent Somatic Cell Hybrid Mapping Panel #2 (see page 704 of the NIGMS 1994/1995 Catalog of Cell Lines, available from the Coriell Cell Repository, Camden, NJ). The panel consists of 24 hybrid cell lines, each monochromosomal for one human chromosome. The AARS PCR product mapped to the hybrid containing human chromosome 16. Subsequently we screened the Radiation Hybrid Mapping Panel created at Stanford University (rhserver@shgc.stanford.edu) and distributed by Research Genetics (RH01). The AARS PCR product mapped near D16S496 with a lod score>10. D16S496 is a polymorphic DNA marker at 16q22. The AARS PCR product mapped near D16S496 with a LOD score >10. DH16S496 is a polymorphic DNA marker at 16q22. (See, ref. 29 for a full explanation of modification hybrid mapping.) Similar results were obtained by Nichols et al., who mapped AARS by analysis of the same NIGMS hybrid mapping panel, by PCR mapping in a chromosome 16 regional mapping panel and by fluorescence in situ hybridization to metaphase chromosomes. All mapping techniques were conclusive in showing only one locus for human AARS.

LOH at 16q22 is well documented in many cancer types. Loss of heterozygosity studies of chromosome 16q have principally focused on breast and liver cancers. In six detailed studies of breast cancer in the 16q22 region LOH frequencies of 40-60% have been reported (refs 3-8). 16q22 LOH has ben reported in 25-90% of liver cancers (9-13), with the average around 45%. Less extensive studies of other cancer types report 16q22 LOH in 19% of bladder cancers, 20% of colon cancers (14), 19-27% of esophageal cancers (15), 25% of small cell lung cancers (16), 16-37% of ovarian

cancers (17-19) and 22% of uterine cancers (20), and 31-50% of prostate cancers (21-

22).

5

10

15

20

25

References

- 1. Shiba, K., Ripmaster, T., Suzuki, N., Nichols, R., Plotz, P., Noda, T. and P. Schimmel (1995) Human alanyl-tRNA synthetase: conservation in evolution of catalytic core and microhelix recognition. Biochemistry 34: 10340-10349.
- 2. Nichols, R.C., Pai, S.I., Ge, Q., Targoff, I.N., Plotz, P.H. and P. Liu (1995) Localization of two human autoantigen genes by PCR screening and *in situ* hybridization glycyl tRNA synthetase locates to 7p15 and alanyl-tRNA synthetase locates to 16q22. *Genomics* 30:131-132.
- 3. Cleton-Jansen AM, Moerland EW, Kuipers-Dijkshoorn NJ, et al. (1994) At least two different regions are involved in allelic imbalance on chromosome arm 16q in breast cancer. Genes Chromosom Cancer. 9:101-7.
- 4. Dorion-Bonnet F, Mautalen S, Hostein I, Longy M. (1995) Allelic imbalance study of 16q in human primary breast carcinomas using microsatellite markers. *Genes Chromosomes Cancer*. 14:171-81.
- 5. Kashiwaba M, Tamura G, Suzuki Y, et al. (1995) Epithelial-cadherin gene is not mutated in ductal carcinomas of the breast. *Jpn J Cancer Res.* 86:1054-9.
- 6. O'Connell P, Pekkel V, Fuqua S, Osborne CK, Allred DC. (1994) Molecular genetic studies of early breast cancer evolution. *Breast Cancer Res Treat*. 32:5-12.
- 7. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9.
- 8. Tsuda H, Callen DF, Fukutomi T, Nakamura Y, Hirohashi S. (1994) Allele loss on chromosome 16q24.2-qter occurs frequently in breast cancers irrespectively of differences in phenotype and extent of spread. *Cancer Res.* 54:513-7.
- 9. Fujimori M, Tokino T, Hino O, et al. (1991) Allelotype study of primary hepatocellular carcinoma. *Cancer Res.* 51:89-93.
- 10. Fujimoto Y, Hampton LL, Wirth PJ, Wang NJ, Xie JP, Thorgeirsson SS. (1994) Alterations of tumor suppressor genes and allelic losses in human hepatocellular

10

20

25

carcinomas in China [see comments]. Cancer Res. 54:281-5.

- 11. Tsuda H, Zhang WD, Shimosato Y, et al. (1990) Allele loss on chromosome 16 associated with progression of human hepatocellular carcinoma. *Proc Natl Acad Sci USA*. 87:6791-4.
- 12. Tsuda H, Oda T, Sakamoto M, Hirohashi S. (1992) Different pattern of chromosomal allele loss in multiple hepatocellular carcinomas as evidence of their multifocal origin. *Cancer Res.* 52:1504-9.
 - 13. Zhang WD, Hirohashi S, Tsuda H, et al. (1990) Frequent loss of heterozygosity on chromosomes 16 and 4 in human hepatocellular carcinoma. *Jpn J Cancer Res.* 81:108-11.
 - 14. Ookawa K, Sakamoto M, Hirohashi S, et al. (1993) Concordant p53 and DCC alterations and allelic losses on chromosomes 13q and 14q associated with liver metastases of colorectal carcinoma. *Int J Cancer*. 53:382-7.
 - 15. Genes, Chromosomes & Cancer 10: 177.
- 16. Yokota J, Wada M, Shimosato Y, Terada M, Sugimura T. (1987) Loss of heterozygosity on chromosomes 3, 13, and 17 in small-cell carcinoma and on chromosome 3 in adenocarcinoma of the lung. Proc Natl Acad Sci USA. 84:9252-6.
 17. Cancer Research 51: 5118.
 - 18. Osborne RJ, Leech V. (1994) Polymerase chain reaction allelotyping of human ovarian cancer. *Br J Cancer*. 69:429-38.
 - 19. Yang-Feng TL, Han H, Chen KC, et al. (1993) Allelic loss in ovarian cancer. *Int J Cancer*. 54:546-51.
 - 20. Okamoto A, Sameshima Y, Yamada Y, et al. (1991) Allelic loss on chromosome 17p and p53 mutations in human endometrial carcinoma of the uterus. *Cancer Res.* 51:5632-5.
 - 21. Carter, B.S., Ewing, C.M., Ward, S.W., et al. (1990) Allelic loss of chromosomes 16q and 10q in human prostate cancer. *Proc Natl Acad Sci U S A*. 87: 8751-8755.
 - 22. Bergerheim, U.S.R., Kunimi, K., Collins, V.P. and P. Ekman (1991) Deletion mapping of chromosomes 8, 10, and 16 in human prostatic carcinoma. *Genes*,

PCT/US98/05419

228

Chromosomes & Cancer 3: 215-220.

23. Boehnke, M., Lange, K. and D.R. Cox (1991) Statistical methods for multipoint radiation hybrid mapping. Am. J. Hum. Genet. 49: 1174-88.

5

Example 18: Threonyl-tRNA Synthetase (TARS) - Target Gene VARIA302

The human threonyl-tRNA synthetase gene is essential for cell survival

10

Threonyl-tRNA synthetase (TARS) catalyzes ATP dependent covalent attachment of threonine to its cognate tRNA to form threonyl-tRNA. In the absence of threonyl-tRNA, protein synthesis is blocked. Threonyl-tRNA synthetase is a single copy gene in man (see below) and inhibition of TARS is cell lethal. This has been shown using the specific TARS inhibitor borrelidin, a threonine analog. Borrelidin resistant CHO cell lines have been isolated; the most resistant lines contain ~60-100 fold more immunologically reactive protein and 10-20 fold higher TARS activity than non-selected CHO cells (1-3).

15

20

The human TARS enzyme is a homodimeric member of the class II tRNA synthetases. The human protein is 53% amino acid identical to *S. cerevisiae* cytoplasmic TARS, 40% amino acid identical to *E. coli* TARS and 39% amino acid identical to yeast mitochondrial TARS. The degree of evolutionary conservation is 52-64% when conservative substitutions are allowed.

25

The human Threonyl-tRNA synthetase gene and mRNA have sequence variances. A human cDNA encoding threonyl tRNA synthetase was cloned by Cruzen and Arfin (GENBANK accession M63180; ref. 2) using anti-TARS antibodies to screen a lgt11 expression library. The cDNA is 2644 nt in length and includes a 138 nt 5' untranslated region, an open reading frame of 2136 nt encoding a 712 residue polypeptide, and a 3'

untranslated region of 370 nt.

We designed primers for amplification. The 2644 nt cDNA was screened for sequence variance in 36 unrelated individuals by the single strand conformation polymorphism (SSCP) technique. Three sequence variances were identified: G vs. A transitions at nucleotides 1608 and 1755 within the coding sequence, and a C vs. T transition at nucleotide 2395 of the 3' untranslated region. None of the sequence variances alters the sense of the coding strand. The published sequence shows G, G and T at the three sequence variance sites

10

15

5

The frequency of TARS heterozygotes is 25-45% in all populations surveyed. The nucleotide 1608 sequence variance was genotyped only in North American Whites, 45% of whom were heterozygotes. The nucleotide 1608 and 1755 sequence variances were both genotyped in 36 individuals, with overall heterozygosity rates of 31% and 25%, respectively. Both sequence variances were detected in North American Whites, North American Blacks, Hispanics and Chinese. Of 14 North American Whites genotyped at all 3 sequence variance nucleotides, 11 (79%) were heterozygous for a least one polymor-phism (see threonyl tRNA synthetase summary table).

20

The TARS gene maps to 5p13-CEN. The human TARS cDNA has been mapped to chromosome 5p13-CEN by analysis of TARS isoelectric focusing patterns in human/Chinese hamster hybrids (). The mapping studies were consistent with one human TARS locus.

25

LOH at 5p13-CEN is documented in several cancer types. The best data on 5p LOH is in cervical cancer where 9 markers have been tested in 3 different studies. The frequency of LOH ranges from 12-57%, averaging ~45%. Other cancers that have been studied are breast (10-24% LOH), head and neck (20% LOH), adenocarcinoma of the lung (40% LOH, but only 5 cancers were studied), melanoma (40%) and ovary (15-

21%).

5

10

15

20

25

Assays for human TARS inhibitors. Human TARS protein is a homodimeric class II synthetase. Antibodies to rat TARS were used to clone the human protein. The high degree of amino acid conservation throughout the protein suggests that it may be possible to create yeast and/or bacterial strains with human CARS.

References

- 1. Gantt, J.S., Bennett, C.A. and S.M. Arfin (1981) Increased levels of threonyl tRNA synthetase in a borrelidin-resistant Chinese hamster ovary cell line. *Proc. Natl. Acad. Sci. U. S. A.* 92: 5367-5370.
- 2. Gerken, S.C. and S.M. Arfin (1984) Chinese hamster ovary cells resistant to borrelidin overproduce threonyl-tRNA synthetase. *The Journal of Biological Chemistry* 259: 9202-9206.
- 3. Kontis, K.J. and S.M. Arfin (1989) Isolation of a cDNA clone for human threonyl tRNA synthetase: amplification of the structural gene in borrelidin resistant cell lines. *Molecular and Cellular Biology* 9: 1832-1838.
- 4. Cruzen, M.E. and S.M. Arfin (1991) Nucleotide and deduced amino acid sequence of human threonyl-tRNA synthetase reveals extensive homology to the Escherichia coli and yeast enzymes. *The Journal of Biological Chemistry* 266: 9919-9923.
- 5. Gerken, S.C., Wasmuth, J.J. and S.M. Arfin (1986) Threonyl-tRNA synthesis gene maps close to leucyl-tRNA synthetase gene on human chromosome 5. *Somatic Cell and Molecular Genetics* 12: 519-522.
- 6. Mitra AB, Murty VV, Singh V, et al. (1995) Genetic alterations at 5p15: a potential marker for progression of precancerous lesions of the uterine cervix. *J Natl Cancer Inst.* 87:742-5.
- 7. Mitra AB, Murty VV, Li RG, Pratap M, Luthra UK, Chaganti RS. (1994) Allelotype analysis of cervical carcinoma. *Cancer Res.* 54:4481-7.
- 8. Mullokandov MR, Kholodilov NG, Atkin NB, Burk RD, Johnson AB, Klinger HP.

10

15

20

25

- (1996) Genomic alterations in cervical carcinoma: losses of chromosome heterozygosity and human papilloma virus tumor status. *Cancer Res.* 56:197-205.
- 9. Larsson C, Bystrom C, Skoog L, Rotstein S, Nordenskjold M. (1990) Genomic alterations in human breast carcinomas. *Genes Chromosomes Cancer*. 2:191-7.
- 10. Cancer Research 54:1152
- 11. Wieland I, Bohm M, Arden KC, et al. (1996) Allelic deletion mapping on chromosome 5 in human carcinomas. *Oncogene*. 12:97-102.
- 12. Dracopoli NC, Houghton AN, Old LJ. (1985) Loss of polymorphic restriction fragments in malignant melanoma: implications for tumor heterogeneity. *Proc Natl Acad Sci USA*. 82:1470-4.
- 13. Osborne RJ, Leech V. (1994) Polymerase chain reaction allelotyping of human ovarian cancer. *Br J Cancer*. 69:429-38.

Example 19: Glutaminyl-tRNA Synthetase (QARS) - Target Gene VARIA305

The human glutaminyl-tRNA synthetase gene is essential for cell survival

Glutaminyl-tRNA synthetase (QARS) catalyzes ATP dependent covalent attachment of glutamine to its cognate tRNA to form glutaminyl-tRNA. In the absence of glutaminyl-tRNA, protein synthesis is blocked in eucaryotic cells. Glutaminyl-tRNA synthetase is a single copy gene in man . Inhibition of its function is expected to be cell lethal, as shown for other tRNA synthetases (summarized above).

The human Glutaminyl-tRNA synthetase gene and mRNA have sequence variances.

A human cDNA encoding glutaminyl tRNA synthetase (QARS) was cloned by Lamour et al. (1) who expressed the cDNA in *E. coli* and demonstrated glutaminyl tRNA synthetase activity in bacterial extracts. The cloned human cDNA

WO 98/41648 PCT/US98/05419

232

(Genbank/EMBL accession number X76013) is 2437 nt in length and includes a 5' untranslated region of 5 nucleotides, an open reading frame of 2325 nucleotides encoding a 775 amino acid polypeptide, and a 3' untranslated region of 107 nt including 8 terminal nt of poly A.

5

We designed primers for amplification. The QARS cDNA was screened for sequence variance in 36 unrelated individuals using the single strand conformation polymorphism (SSCP) technique. One sequence variance was identified, a C vs. T transition at nucleotide 404, within the coding sequence. The published nucleotide at position 404 is C. The sequence variance does not affect the protein encoded.

10

The frequency of heterozygotes for the nucleotide 404 sequence variance is 11% in the 36 individuals tested (4/36). However three of 16 North American Whites are heterozygotes (19%), and one of four Japanese (25%) (see Target Gene Summary Table).

15

The QARS gene maps to 3p

20

25

The human QARS cDNA has been mapped to chromosome 3 by hybridization of a QARS probe to a panel of 25 human/rodent somatic cell hybrids (1). One somatic cell hybrid, not known to contain human chromosome 3, was positive for both the OARS probe and an ACY1 probe. ACY1 maps to human 3p21, suggesting QARS may also map in this area. We independently mapped QARS to chromosome 3 using primers from the 3' untranslated region to analyze the National Institute of General Medical Sciences (NIGMS) Human/Rodent Somatic Cell Hybrid Mapping Panel #2 by PCR (see page 704 of the NIGMS 1994/1995 Catalog of Cell Lines, available from the Coriell Cell Repository, Camden, NJ). The panel consists of 24 hybrid cell lines, each monochromosomal for one human chromosome. The OARS PCR product mapped to the hybrid containing human chromosome 3. All mapping techniques were conclusive

in showing only one locus for human QARS.

Chromosome band 3p21 is a site of frequent loss of heterozygosity. The short arm of chromosome 3 has been well studied in breast, cervical, esophageal, kidney, and lung cancers. These studies report frequent allele loss at 3p21, varying up to 100% in some studies of small cell lung cancer. Among other cancers LOH occurs in approximately 20-30% of breast cancers (2,3), 30-60% of cervical cancers (4,5), 10-40% of esophageal cancers (6,7), 45-80% of kidney cancers (8-10), 50-100% of nasopharyngeal cancers (11), 0-75% of squamous cell head and neck cancers (12), 30-60% of melanomas (13), 30-100% of non-small cell lung cancers (14-16) and 80-100% in small cell lung cancer (17-19). Other for which there are reports of LOH in at least 20% of cases include leukemia, pancreas cancer, sarcoma, testis cancer and ovarian cancer. Other cancer types, including bladder and lymphoma, have not been studied for LOH at 3p21.

15

20

25

10

5

References

- 1. Nomura, N., Nagase, T., Miyajima, N., et al. (1994) Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1. *DNA Research* 1:225-229.
- 2. Nichols, R.C., Blinder, J., Pai, S.I. et al. (1996) Assignment of two human autoantigen genes: isoleucyl tRNA synthetase locates to 9q21 and lysysl-tRNA synthetase locates to 16q23-24. *Genomics*: 210-213.
- 3. Cleton-Jansen AM, Moerland EW, Kuipers-Dijkshoom NJ, et al. (1994) At least two different regions are involved in allelic imbalance on chromosome arm 16q in breast cancer. *Genes Chromosom Cancer*. 9:101-7.
- 4. Dorion-Bonnet F, Mautalen S, Hostein I, Longy M. (1995) Allelic imbalance study of 16q in human primary breast carcinomas using microsatellite markers. *Genes Chromosomes Cancer*. 14:171-81.

- 5. Kashiwaba M, Tamura G, Suzuki Y, et al. (1995) Epithelial-cadherin gene is not mutated in ductal carcinomas of the breast. *Jpn J Cancer Res.* 86:1054-9.
- 6. O'Connell P, Pekkel V, Fuqua S, Osborne CK, Allred DC. (1994) Molecular genetic studies of early breast cancer evolution. *Breast Cancer Res Treat*. 32:5-12.
- 7. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9.
- 8. Tsuda H, Callen DF, Fukutomi T, Nakamura Y, Hirohashi S. (1994) Allele loss on chromosome 16q24.2-qter occurs frequently in breast cancers irrespectively of differences in phenotype and extent of spread. *Cancer Res.* 54:513-7.
- 9. Fujimori M, Tokino T, Hino O, et al. (1991) Allelotype study of primary hepatocellular carcinoma. *Cancer Res.* 51:89-93.
- 10. Fujimoto Y, Hampton LL, Wirth PJ, Wang NJ, Xie JP, Thorgeirsson SS. (1994) Alterations of tumor suppressor genes and allelic losses in human hepatocellular carcinomas in China [see comments]. *Cancer Res.* 54:281-5.
- 11. Tsuda H, Zhang WD, et al. (1990) Allele loss on chromosome 16 associated with progression of human hepatocellula carcinoma. *Proc Natl Acad Sci USA*. 87:6791-4.
- 12. Tsuda H, Oda T, Sakamoto M, Hirohashi S. (1992) Different pattern of chromosomal allele loss in multiple hepatocellular carcinomas as evidence of their multifocal origin. *Cancer Res.* 52:1504-9.
- 13. Zhang WD, Hirohashi S, Tsuda H, et al. (1990) Frequent loss of heterozygosity on chromosomes 16 and 4 in human hepatocellular carcinoma. *Jpn J Cancer Res.* 81:108-11.
 - 14. Ookawa K, Sakamoto M, Hirohashi S, et al. (1993) Concordant p53 and DCC alterations and allelic losses on chromosomes 13q and 14q associated with liver metastases of colorectal carcinoma. *Int J Cancer*. 53:382-7.
 - 15. Genes, Chromosomes & Cancer 10: 177.
 - 16. Cancer Research 54: 2996.
 - 17. Gallion H.H., Powell D.E., Morrow J.K., et al. (1992) Molecular genetic changes in human epithelial ovarian malignancies [see comments]. *Gynecol Oncol.* 47:137-42.

10

15

20

- 18. Osborne RJ, Leech V. (1994) Polymerase chain reaction allelotyping of human ovarian cancer. *Br J Cancer*. 69:429-38.
- 19. Yang-Feng TL, Han H, Chen KC, et al. (1993) Allelic loss in ovarian cancer. *Int J Cancer*. 54:546-51.
- 20. British Journal of Urology 73: 390.
- 21. Okamoto A, Sameshima Y, Yamada Y, et al. (1991) Allelic loss on chromosome 17p and p53 mutations in endometrial carcinoma of the uterus. *Cancer Res.* 51:5632-5.

5

Example 20: Lysyl-tRNA Synthetase (KARS) - Target Gene VARIA303

Human Lysyl t-RNA synthase gene is essential

15

Lysyl-tRNA synthetase (KARS) catalyzes ATP dependent covalent attachment of lysine to its cognate tRNA to form lysyl-tRNA. In the absence of lysyl-tRNA, protein synthesis is blocked. Since lysyl-tRNA synthetase is a single copy gene in man, inhibition of its function is expected to be cell lethal. This has been shown for other tRNA synthetases (summarized above).

20

The human Lysyl-tRNA synthetase gene and mRNA have sequence variances

25

A human cDNA encoding a sequence similar to bacterial lysyl tRNA synthetases was cloned by Nomura et al. (GenBank/DDBJ submission D31890; see ref. 1) while sequencing random cDNAs. No biochemical studies of the protein encoded by this sequence have been reported. The 5' end of the sequence apparently begins in the coding region and the open reading frame continues for 1805 nucleotides, encoding 601 residues of a polypeptide (the full length of which has not been established), followed by a 3' untranslated region of 165 nucleotides.

10

15

20

25

We designed primers for amplification. The reported partial cDNA was screened for sequence variance in 36 unrelated individuals using the single strand conformation polymorphism (SSCP) technique as described in the methods section. Two sequence variances were identified, an A vs. G transition at nucleotide 89 and a G vs. C transversion at nucleotide 1798, both within the coding sequence. The published nucleotides are A and G, respectively. The nucleotide 1798 sequence variance alters the sense of the 599th codon (the third codon from the end of the coding sequence) to serine vs. threonine.

The frequency of KARS heterozygotes varies among the populations surveyed. The frequency of heterozygotes for the nucleotide 89 sequence variance is 19% in the 36 individuals tested. However all heterozygous individuals were either North American Whites (4/16; 25% heterozygotes), North American Blacks (1/4; 25%), or Hispanics (1/3; 33% heterozygotes). The frequency of heterozygotes for the nucleotide 1798 sequence variance is 6% in the 36 individuals tested. However all heterozygous individuals were North American Blacks (2/4; 50%) (see Target Gene Summary Table). Further study of these and other population groups will better establish the frequency of heterozygotes for these two sequence variances.

The KARS gene maps to 16q23-q24

The human KARS cDNA has been mapped to chromosome 16q22 by Nichols et al. (ref. 2) and by us. We designed primers to the 3' untranslated region of KARS and used PCR to analyze the National Institute of General Medical Sciences (NIGMS) Human/Rodent Somatic Cell Hybrid Mapping Panel #2 (see page 704 of the NIGMS 1994/1995 Catalog of Cell Lines, available from the Coriell Cell Repository, Camden, NJ). The panel consists of 24 hybrid cell lines, each monochromosomal for one human chromosome. The KARS PCR product mapped to the hybrid containing human chromosome 16. Similar results were obtained by Nichols et al., who mapped KARS

10

15

20

25

by analysis of the same NIGMS hybrid mapping panel, by PCR mapping in a chromosome 16 regional mapping panel and by fluorescence *in situ* hybridization to metaphase chromosomes. The *in situ* hybridization showed KARS maps to 16q23-q24. All mapping techniques were conclusive in showing only one locus for human KARS.

Loss of heterozygosity occurs frequently at 16q23-q24 in many cancer types. Loss of heterozygosity studies of chromosome 16q have principally focused on breast and liver cancers. In six detailed studies of breast cancer in the 16q23-q24 region LOH frequencies of 30-60% have been reported (refs 3-8). 16q22 LOH has ben reported in 35-65% of liver cancers (9-13), with the average around 45%. Studies of other cancer types report 16q22 LOH in 19% of colon cancers (14), 17-27% of esophageal cancers (15,16), 37% of ovarian cancers (new ref) (17-19), 18% of prostate cancers (20) and 23% of uterine cancers (21). Cancer types not yet investigated for LOH include kidney, leukemia and lymphoma, lung, melanoma, neuroblastoma, stomach and testis.

References

- 1. Nomura, N., Nagase, T., Miyajima, N., et al. (1994) Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1. *DNA Research* 1:225-229.
- 2. Nichols, R.C., Blinder, J., Pai, S.I. et al. (1996) Assignment of two human autoantigen genes: isoleucyl tRNA synthetase locates to 9q21 and lysysl-tRNA synthetase locates to 16q23-24. *Genomics*: 210-213.
- 3. Cleton-Jansen AM, Moerland EW, Kuipers-Dijkshoom NJ, et al. (1994) At least two different regions are involved in allelic imbalance on chromosome arm 16q in breast cancer. Genes Chromosom Cancer. 9:101-7.
- 4. Dorion-Bonnet F, Mautalen S, Hostein I, Longy M. (1995) Allelic imbalance study

10

15

20

- of 16q in human primary breast carcinomas using microsatellite markers. Genes Chromosomes Cancer. 14:171-81.
- 5. Kashiwaba M, Tamura G, Suzuki Y, et al. (1995) Epithelial-cadherin gene is not mutated in ductal carcinomas of the breast. *Jpn J Cancer Res.* 86:1054-9.
- 6. O'Connell P, Pekkel V, Fuqua S, Osborne CK, Allred DC. (1994) Molecular genetic studies of early breast cancer evolution. *Breast Cancer Res Treat*. 32:5-12.
- 7. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9.
- 8. Tsuda H, Callen DF, Fukutomi T, Nakamura Y, Hirohashi S. (1994) Allele loss on chromosome 16q24.2-qter occurs frequently in breast cancers irrespectively of differences in phenotype and extent of spread. *Cancer Res.* 54:513-7.
- 9. Fujimori M, Tokino T, Hino O, et al. (1991) Allelotype study of primary hepatocellular carcinoma. *Cancer Res.* 51:89-93.
- 10. Fujimoto Y, Hampton LL, Wirth PJ, Wang NJ, Xie JP, Thorgeirsson SS. (1994) Alterations of tumor suppressor genes and allelic losses in human hepatocellular carcinomas in China [see comments]. *Cancer Res.* 54:281-5.
- 11. Tsuda H, Zhang WD, Shimosato Y, et al. (1990) Allele loss on chromosome 16 associated with progression of human hepatocellular carcinoma. *Proc Natl Acad Sci USA*. 87:6791-4.
- 12. Tsuda H, Oda T, Sakamoto M, Hirohashi S. (1992) Different pattern of chromosomal allele loss in multiple hepatocellular carcinomas as evidence of their multifocal origin. *Cancer Res.* 52:1504-9.
 - 13. Zhang WD, Hirohashi S, Tsuda H, et al. (1990) Frequent loss of heterozygosity on chromosomes 16 and 4 in human hepatocellular carcinoma. *Jpn J Cancer Res.* 81:108-11.
 - 14. Ookawa K, Sakamoto M, Hirohashi S, et al. (1993) Concordant p53 and DCC alterations and allelic losses on chromosomes 13q and 14q associated with liver metastases of colorectal carcinoma. *Int J Cancer*. 53:382-7.
 - 15. Genes, Chromosomes & Cancer 10: 177-

10

15

20

25

- 16. Cancer Research 54: 2996-
- 17. Gallion HH, Powell DE, Morrow JK, et al. (1992) Molecular genetic changes in human epithelial ovarian malignancies [see comments]. *Gynecol Oncol.* 47:137-42.
- 18. Osborne RJ, Leech V. (1994) Polymerase chain reaction allelotyping of human ovarian cancer. *Br J Cancer*. 69:429-38.
- 19. Yang-Feng TL, Han H, Chen KC, et al. (1993) Allelic loss in ovarian cancer. *Int J Cancer*. 54:546-51.
- 20. British Journal of Urology 73: 390-.
- 21. Okamoto A, Sameshima Y, Yamada Y, et al. (1991) Allelic loss on chromosome 17p and p53 mutations in human endometrial carcinoma of the uterus. *Cancer Res.* 51:5632-5.

Example 21: Ribosomal Protein S14 (RPS14) - Target Gene VARIA326

Ribosomal protein S14 is essential for cell growth

Human ribosomal protein S14 (RPS14) is one of ~80 unique protein constituents of the mammalian ribosome. Many of the protein subunits of ribosomes, the protein making machines of all cells, are highly conserved throughout prokaryotic and eukaryotic evolution (1). For example, human RPS14 protein is 100% amino acid identical to hamster S14 protein, 72% identical to yeast rp59 protein and 43% identical to E. Coli ribosomal protein S11 (2,3). Mammalian S14 and yeast rp59 are components of the 40S ribosomal subunit while E. coli S11 is part of the corresponding bacterial S30 subunit. Thus human RPS14 is a ribosomal component fixed early in evolution.

There are many antibiotics and eukaryotic cell poisons that act by inhibiting ribosome function (reviewed in ref. 4). One such drug is emetine, which inhibits protein translation by interacting with the eukaryotic RPS14 subunit to prevent elongation

10

15

20

25

240

factor dependent translocation of peptidyl-tRNAs bound to eukaryotic ribosomes in vitro (4).

Chinese hamster ovary (CHO) cell lines resistant to emetine have been shown to contain mutant RPS14 loci (also referred to as the EMTB locus) (5). Such lines have been used to investigate the effects of mutant RPS14 on ribosome function (5-8). Human-CHO cell hybrids are emetine-sensitive, indicating that the EMTB/RPS14 mutation is recessive in CHO cells. This is apparently because arrest of protein synthesis in half of ribosomes blocks translation of all polysomic mRNAs by blocking any functional ribosomes upstream of frozen mutant ribosomes. RPS14 appears to contribute to the structural integrity of the 40S subunit: 40S subunits containing mutant S14 protein are more easily dissociable in high ionic strength wash buffers (9). Ribosomal subunit genes are coordinately expressed in all cells and ribosomal proteins constitute a large fraction of the cell mass in all cell types.

The human RPS14 gene has sequence variances

Rhoads et al. reported the sequence of the human RPS14 gene and cDNA (3). The cDNA contains a 33 nucleotide 5' untranslated region, a 453 nt coding region and a 60 nt 3' untranslated region (including 12 nt of polyA). We undertook a systematic search for DNA sequence variance in the cDNA of RPS14 by analysing 36 unrelated individuals using the single strand conformation polymorphism technique. Primers were designed using the sequence of Rhoads et al. (GENBANK accession M13934, M13641; see ref. 3). SSCP analysis revealed 1 sequence variance, and subsequent DNA sequence analysis confirmed an A vs. G transition at nucleotide 183 of the coding sequence. (This change was noted as a difference between the cDNA and genomic sequences in ref. 3.)

As shown in the Target Summary Table, both alleles were detected in all major

populations surveyed, including North American Whites, North American Blacks, Hispanics, Chinese and Japanese.

The human RPS14 gene maps to chromosome 5q23-q33

5

Dana and Wasmuth (11) used Chinese hamster/human somatic cell hybrids to map the RPS14 gene (designated EMTB) to 5q23-5q35. Later Nakamichi et al. (12) placed the RPS14 gene on the segment 5q23-q33 using similar techniques.

10

Chromosome band 5q23-q33 is a site of frequent loss of heterozygosity. There have been many studies of LOH on 5q, particularly the 5q21-q22 region where the Adenomatous Polyposis Coli (APC) tumor suppressor gene lies. The most extensively studied cancers are those of the gastrointestinal tract, lung and ovary. The available data on the 5q23-q33 region just distal to APC (where RPS14 lies), suggests that LOH occurs in this region at a frequency of ~30% in cervical cancer (13), 20-40% in colon cancer (14,15), 30-50% in ovarian cancer (16,17), 38% in stomach cancer (18) and 23% in testicular cancer (19). There is also evidence for LOH in head and neck, lung, and liver cancers.

15

References

20

1. Chambliss, G., Craven, G.R., Davies, J., et al., editors, <u>Ribosomes: Structure</u>, <u>Function and Genetics</u>, University Park Press, Baltimore, 1980.

- 2. Chen, I.-T., Dixit, A., |Rhoads, D.D. and D.J. Roufa (1986) Homologous ribosomal proteins in bacteria, yeast and humans. *Proc. Natl. Acad. Sci. U.S.A.* 83: 6907-6911.
- 3. Rhoads, D. D.; Dixit, A.; Roufa, D. J. (1986) Primary structure of human ribosomal protein S14 and the gene that encodes it. *Molec. Cell. Biol.* 6: 2774-2783.
- 4. Vazquez, D. (1979) Molecular Biology and Biophysics, vol. 30, Inhibitors of Protein Synthesis. Springer-Verlag, Berlin.

10

- 5. Wasmuth, J.J. (1985) Chinese hamster cell protein synthesis mutants. In Gottesman, M., ed. Molecular Cell Genetics, pp. 397-421.
- 6. Rhoads, D.D. and D.J. Roufa (1985) Emetine resistance in Chinese hamster cells: structures of wild-type and mutant ribosomal protein AS14 mRNAs. Mol. Cell Biol. 5: 1655-1659.
- 7. Madjar, J.J., Nielsen-Smith, K., Frahm, M. and D. Roufa (1982) Emetine resistance in Chinese hamster ovary cells is associated with an altered ribosomal protein S14 mRNA. *Proc. Natl. Acad. Sci. U.S.A.* 79: 1003-1007.
- 8. Dana, S. L., Chang, S. and J.J. Wasmuth (1985) Synthesis and incorporation of human ribosomal protein S14 into functional ribosomes in human-Chinese hamster cell hybrids containing human chromosome 5: human RPS14 gene is the structural gene for ribosomal protein S14. *Somat. Cell Molec. Genet.* 11: 625-631.
- 9. Madjar, J.-J., Frahm, M., McGill, S. and D.J. Roufa (1983) *Molec. Cell. Biol.* 3: 190-197.
- 10. Mount, S. (1982) A catalogue of splice junction sequences. *Nucleic Acids Research* 19: 459-472.
 - 11. Dana, S. and J.J. Wasmuth (1982) Selective linkage disruption in human-Chinese hamster cell hybrids: deletion mapping of the leuS, hexB, emtB, and chr genes on human chromosome 5. *Molec. Cell. Biol.* 2: 1220-1228.
- 12. Nakamichi, N. N.; Kao, F.-T.; Wasmuth, J.; Roufa, D. J. (1986) Ribosomal protein gene sequences map to human chromosomes 5, 8 and 17. *Somat. Cell. Molec. Genet.* 12: 225-236.
 - 13. Mitra AB, Murty VV, Li RG, Pratap M, Luthra UK, Chaganti RS. (1994) Allelotype analysis of cervical carcinoma. *Cancer Res.* 54:4481-7.
- 25 14. Japanese Journal of Cancer Research 82: 1003.
 - 15. Cunningham C, Dunlop MG, Wyllie AH, Bird CC. (1993) Deletion mapping in colorectal cancer of a putative tumor suppressor gene in 8p22-p21.3. *Oncogene*. 8:1391-6.
 - 16. British Journal of Cancer 69: 429.

17. Weitzel J.N., Patel J., Smith D.M., Goodman A., Safaii H., Ball H.G. (1994) Molecular genetic changes associated with ovarian cancer. *Gynecol. Oncol.* 55:245-52.

18. Genes, Chromosomes and Cancer 3: 468

19. Murty VV, Bosl GJ, Houldsworth J, et al. (1994) Allelic loss and somatic differentiation in human male germ cell tumors. Oncogene. 9:2245-51.

Example 22: Eukaryotic Initiation Factor 5A (eIF-5A) - Target Gene VARIA351

Initiation Factor 5A is essential for cell growth

Human Initiation Factor 5A (eIF-5A), formerly named Initiation Factor 4D, is an 18-kD protein which promotes formation of the first peptide bond in *in vitro* translation systems - hence the name 'initiation factor' (1,2); however, the full physiological role of eIF-5A is not understood. Inhibition of eIF 5A formation blocks proliferation in all tested cell types (3); the presence of functional eIF 5A has been shown to correlate with the onset of DNA replication (4) - perhaps due to eIF 5A dependent translation of mRNAs encoding proteins necessary for DNA replication (3), and eIF-5A is an essential co-factor for HIV-1 Rev protein (5).

20

25

15

5

10

eIF 5A is an unusual protein: one of its lysine residues (amino acid 50) is modified by transfer and hydroxylation of the butylamino-group from the polyamine spermidine to form hypusine, a post translational modification unique to eIF 5A. All of the biological activities of eIF 5A are abrogated in the absence of the hypusine modification, as demonstrated by pharmacological inhibition of hypusine formation in human cell lines (3) and by site directed mutagenesis of the modified lysine residue in the yeast enzyme (6). There are two enzymes responsible for hypusine formation, one of which, deoxyhypusyl hydroxylase, can be inhibited with the drug mimosine (3), providing a convenient pharmacological inhibitor of eFI 5A formation.

The genome of the yeast Saccharomyces cerevisiae encodes two eIF 5A genes. Disruption of one (form A) slows growth, disruption of the other (form B) arrests growth and strains with both forms disrupted are non-viable (6). The yeast A form substitutes for human eIF 5A in the mammalian methionyl-puromycin synthesis assay (6), while the human gene complements eIF 5A disrupted yeast (7). eIF 5A is a highly conserved protein, with counterparts in archeae, bacteria and eukaryotes. The yeast proteins are ~63% identical to the human protein (6).

The human eIF 5A gene and mRNA have sequence variances

10

5

Smit-McBride, et al. reported the sequence of a human cDNA encoding eIF-5A (8) and Koettnitz et al. (8) later reported the sequence of the active eIF 5A gene, which contains three introns (GenBank accession U17969). A composite sequence made from the cDNA and genomic versions is 1309 nucleotides long and contains a 5' untranslated region of 145 nucleotides, a 462 nt coding region and a 702 nt 3' untranslated region (see annotated sequence). We undertook a systematic search for DNA sequence variance in the cDNA of eIF 5A by analysing 36 unrelated individuals using the single strand conformation polymorphism technique. Primers were designed for amplification. SSCP analysis revealed 2 sequence variances, and subsequent DNA sequence analysis confirmed an A vs. G transition at nucleotide 623 and a T vs. C transition at nucleotide 1012, both in the 3' untranslated sequence.

20

25

15

Neither sequence variance affects the protein coding sequence, however nucleotide 623 is one nucleotide away from a splice acceptor site at position 622, and could therefore be targeted by an oligonucleotide intended to abrogate splicing in an allele specific manner. The second exonic nucleotide (+2 position) of a splice acceptor site is not highly conserved, nonetheless the A vs. G transition at nucleotide 623 may affect the mechanics of splicing.

10

15

20

As shown in the Target Summary Table, both alleles were detected in all major populations surveyed, including North American Whites, North American Blacks, Hispanics, Arabs, Indians and Japanese, except only the nucleotide 1012 variance was detected in the four Chinese surveyed. The overall frequency of heterozygotes was 37% for the nucleotide 623 sequence variance and 52% for the nucleotide 1012 sequence variance.

The human eIF 5A gene maps to chromosome 17p13-p12

Steinkasserer et al. (1995) mapped the eIF 5A gene to 17p13-p12 by fluorescence in situ hybridization (9). Three eIF 5A pseudogenes were mapped to 10q23, 17q25 and 19q13.

Chromosome band 17p13-p12 is a site of frequent loss of heterozygosity. There have been many studies of LOH on 17p, particularly the 17p13 region where the p53 tumor suppressor gene maps. Virtually all cancer types have been surveyed for LOH in this area, with particularly extensive studies of breast, colon, ovarian, and stomach cancers. These studies report LOH in approximately 40-60% of breast cancers (10-18), 50-70% of colon cancers (19-25), 25-75% of ovarian cancers (26-30), 20-60% of stomach cancers (31-34), 20-50% of brain cancers (35,36), 45-70% of esophageal cancers (37), 35-65% of non-small cell lung cancers (38,39) and 100% of small cell lung cancers, 15-50% of cervical cancers, 30-80% of head and neck cancers, 20-60% of liver cancers, over 50% of sarcomas and 10-30% of a variety of other cancer types.

25 References

- 1. Wolff, E.C., Park, M.H. and J.E. Folk (1990) Journal of Biological Chemistry 265: 4793-4799.
- 2. Park, M.H., Wolff, E.C. and J.E. Folk (1993) Hypusine: its post-translational formation in eukaryotic translation factor 5A and its potential role in cellular

10

15

20

regulation. Biofactors 4: 95-104.

- 3. Hanauske-Abel, H.M., Park, M.-H., Hanauske, A.-R., et al. (1994) Inhibition of the G1-S transition of the cell cycle by inhibitors of deoxyhypusine hydroxylation. *Biochimica et Biophysica Acta* 1221: 115-124.
- 4. Hanauske-Abel, H.M., Slowinska, B., Zagulska, S., et al. (1995) Detection of a subset of polysomal mRNAs associated with modulation of hypusine formation at the G1-S boundary. Proposal of a role for eIF 5A in onset of DNA replication. *FEBS Lett.* 366: 92-98.
- 5. Ruhl, M., Himmelspach, M., Bahr, G.M., et al. (1993) Eukaryotic initiation factor 5A is a cellular target of the HIV-1 Rev activation domain mediating trans-activation. J. Cell Biol. 123:1309-1320.
- 6. Schnier, J., Schwelberger, H.G., Smit-McBride, Z, et al. (1991) Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces Cerevisiae. *Molecular and Cellular Biology* 11: 3105-3114.
- 7. Koettnitz, K., Wohl, T., Kappel, B., Lottspeich, F., Hauber, J. and D. Bevec (1995) Identification of a new member of the human eIF-5A gene family. *Gene* 159: 283-284.
 - 8. Smit-McBride, Z., Dever, T.E., Hershey, J.W.B., et al. (1989) Sequence determination and cDNA cloning of eukaryotic initiation factor 4D, the hypusine containing protein. Journal of Biological Chemistry 264: 1578-1583.
 - 9. Steinkasserer, A.; Jones, T.; Sheer, D.; Koettnitz, K.; Hauber, J. and D. Bevec (1995) The eukaryotic cofactor for the human immunodeficiency virus type 1 (HIV-1) rev protein, eIF-5A, maps to chromosome 17p12-p13: three eIF-5A pseudogenes map to 10q23.3, 17q25, and 19q13.2. *Genomics* 25: 749-752.
- 10. Cornelis RS, van Vliet M, Vos CB, et al. (1994) Evidence for a gene on 17p13.3, distal to TP53, as a target for allele loss in breast tumors without p53 mutations.

 *Cancer Res. 54:4200-6.
 - 11. Lindblom A, Skoog L, Rotstein S, Werelius B, Larsson C, Nordenskjold M. (1993) Loss of heterozygosity in familial breast carcinomas. *Cancer Res.* 53:4356-61.

10

15

20

- 12. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9.

 13. Singh S, Simon M, Meybohm I, et al. (1993) Human breast cancer: frequent p53
- allele loss and protein overexpression. Hum Genet. 90:635-40.
- 14. Thorlacius S, Borresen AL, et al. (1993) Somatic p53 mutations in human breast carcinomas in an Icelandic population: a prognostic factor. *Cancer Res.* 53:1637-41.
- 15. Tsuda H, Hirohashi S. (1994) Association among p53 gene mutation, nuclear accumulation of the p53 protein and aggressive phenotypes in breast cancer. *Int J Cancer*. 57:498-503.
- 16. Watatani M, Nagayama K, Imanishi Y, et al. (1993) Genetic alterations on chromosome 17 in human breast cancer: relationships to clinical features and DNA ploidy. *Breast Cancer Res Treat*. 28:231-9.
- 17. Chen LC, Neubauer A, Kurisu W, et al. (1991) Loss of heterozygosity on the short arm of chromosome 17 is associated with high proliferative capacity and DNA aneuploidy in primary human breast cancer. *Proc Natl Acad Sci U S A*. 88:3847-51.
- 18. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9. 19. Burmer GC, Rabinovitch PS, Haggitt RC, et al. (1992) Neoplastic progression in ulcerative colitis: histology, DNA content, and loss of a p53 allele [see comments].
- Gastroenterology. 103:1602-10.
- 20. Cunningham C, Dunlop MG, Wyllie AH, Bird CC. (1993) Deletion mapping in colorectal cancer of a putative tumor suppressor gene in 8p22-p21. *Oncogene*. 8:1391-6
- 21. Kikuchi-Yanoshita R, Konishi M, Ito S, et al. (1992) Genetic changes of both p53 alleles associated with the conversion from colorectal adenoma to early carcinoma in familial adenomatous polyposis and non-familial adenomatous polyposis patients. *Cancer Res.* 52:3965-71.
- 22. Yin J, Harpaz N, Tong Y, et al. (1993) p53 point mutations in dysplastic and cancerous ulcerative colitis lesions. *Gastroenterology*. 104:1633-9.

- 23. Iacopetta B, DiGrandi S, Dix B, et al. (1994) Loss of heterozygosity of tumor suppressor gene loci in human colorectal carcinoma. *Eur J Cancer*. 5:664-70.
- 24. Law DJ, Olschwang S, Monpezat JP, et al. (1988) Concerted nonsyntenic allelic loss in human colorectal carcinoma. *Science*. 241:961-5.
- 25. Lothe RA, Nakamura Y, Woodward S, Gedde DT, Jr., White R. (1988) VNTR (variable number of tandem repeats) markers show loss of chromosome 17p sequences in human colorectal carcinomas. *Cytogenet Cell Genet*. 48:167-9.
- 26. Foulkes WD, Stamp GW, Afzal S, et al. (1995) MDM2 overexpression is rare in ovarian carcinoma irrespective of TP53 mutation status. *Br J Cancer*. 72:883-8.
- 27. Phillips NJ, Ziegler MR, Radford DM, et al. (1996) Allelic deletion on chromosome 17p13.3 in early ovarian cancer. *Cancer Res.* 56:606-11.
 - 28. Foulkes WD, Black DM, Stamp GW, Solomon E, Trowsdale J. (1993) Very frequent loss of heterozygosity throughout chromosome 17 in sporadic ovarian carcinoma. *Int J Cancer.* 54:220-5.
 - 29. Gallion HH, Powell DE, Morrow JK, et al. (1992) Molecular genetic changes in human epithelial ovarian malignancies [see comments]. *Gynecol Oncol*. 47:137-42.
 - 30. Phillips N, Ziegler M, Saha B, Xynos F. (1993) Allelic loss on chromosome 17 in human ovarian cancer. *Int J Cancer*. 54:85-91.
 - 31. Seruca R, David L, Castedo S, Veiga I, Borresen AL, Sobrinho-Simoes M. (1994) p53 alterations in gastric carcinoma: a study of 56 primary tumors and 204 nodal metastases. *Cancer Genet Cytogenet*. 75:45-50.
 - 32. Kim CJ, Kim WH, Kim CW, Lee JB, Lee CK, Kim YL. (1995) Detection of 17p loss in gastric carcinoma using polymerase chain reaction. *Lab Invest*. 72:232-6.
 - 33. Ranzani GN, Renault B, Pellegata NS, et al. (1993) Loss of heterozygosity and K-ras gene mutations in gastric cancer. *Hum Genet*. 92:244-9.
 - 34. Sano T, Tsujino T, Yoshida K, et al. (1991) Frequent loss of heterozygosity on chromosomes 1q, 5q, and 17p in human gastric carcinomas. *Cancer Res.* 51:2926-31.
 - 35. Frankel RH, Bayona W, Koslow M, Newcomb EW. (1992) p53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation

15

20

20

25

frequency. Cancer Res. 52:1427-33.

- 36. Hermanson M, Funa K, Koopmann J, et al. (1996) Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas. *Cancer Res.* 56:164-71.
- 37. Aoki T, Mori T, Du X, Nisihira T, Matsubara T, Nakamura Y. (1994) Allelotype study of esophageal carcinoma. *Genes Chromosomes Cancer*. 10:177-82.
 - 38. Tsuchiya E, Nakamura Y, Weng SY, et al. (1992) Allelotype of non-small cell lung carcinoma--comparison between loss of heterozygosity in squamous cell carcinoma and adenocarcinoma. *Cancer Res.* 52:2478-81.
- 39. Hiyama K, Ishioka S, Shirotani Y, et al. (1995) Alterations in telomeric repeat length in lung cancer are associated with loss of heterozygosity in p53 and Rb. Oncogene. 10:937-44.

Example 23: Replication Protein A, 32 kDa Subunit (RPA32) - Target Gene VARIA402

The human RPA32 gene encodes a protein essential for cell survival

Replication Protein A (RPA; also known as Replication Factor A, Activator 1, Single Strand Binding Protein or SSB) is a heterotrimeric protein which participates in DNA replication, homologous recombination and nucleotide excision repair (1-3). The evidence that RPA is an essential protein comes from *in vitro* and *in vivo* data.

DNA replication is essential for cell proliferation, as discussed above for RPA70.

The best studied function of RPA32 is in DNA replication. Because of the complexity of DNA replication in higher eukaryotic genomes, the small genome of the papovavirus SV40 has been used as a model system to study DNA replication in human cell extracts. In the 1980s several research groups

developed cell free systems to study DNA replication using SV40 chromosomes as templates (4-8). An effort to identify the minimal set of factors required for DNA replication led to the discovery of RPA. Subsequent work proved that each of the three subunits of RPA is essential for DNA replication (9,10). This was proved in several ways, including by using antibodies to various constituents of the replication complex. Anti-RPA32 antibodies inhibit DNA replication, providing clear *in vitro* evidence for the essential function of this subunit of RPA in human DNA replication (10).

The yeast *S. cerevisiae* has a trimeric replication protein A which is structurally and functionally homologous to the human protein. It consists of three subunits similar in size to the human subunits. All three yeast subunits have been disrupted and each disruption produces non-viable yeast (9).

The human RPA32 gene and mRNA are polymorphic.

15

20

25

10

5

The published cDNA for the 32 kD subunit of Replication Protein A is 1512 nucleotides long and includes a 5' untranslated segment of 77 nucleotides, followed by a protein coding region of 810 nucleotides and a 3' untranslated region of 625 nucleotides (10). We undertook a systematic search for DNA polymorphism by analysing the RPA32 cDNA from 36 unrelated individuals using the single strand conformation polymorphism technique (described in the methods section). Primers were designed using the sequence of Erdile et al. (GenBank accession J05249; see ref. 10). SSCP analysis revealed 2 variances, one of which was sequenced. Sequencing revealed a G vs. A transition at nucleotide 40 of the 5' untranslated region. Four of 36 individuals were heterozygotes, all of them Caucasians. Thus the allele frequency is 25% (4/16) in North American Whites, while no heterozygosity was detected in other populations (see Target Summary sheet).

The RPA32 gene maps to chromosome 1p35

The gene for RPA32 was mapped to chromosome band 1p35 by *in situ* hybridization, somatic cell hybrid analysis and yeast artificial chromosome mapping (11,12). Only one locus was detected by all methods.

5

Chromosome band 1p35 is a site of frequent loss of heterozygosity. The short arm of chromosome 1 is comparatively well investigated for allele loss, especially in breast and colon cancers. Studies of the 1p35 region show LOH in 15-40% of breast cancers (13,14), ~50% of gliomas (a brain cancer subtype) (15), 20-70% of colon cancers (16,17), ~50% of stomach cancers (18), ~20% of lung cancers (19) and 10-30% of ovarian cancers. High frequency LOH has been detected in several uncommon cancers such as pheochromocytoma (50-80%) and neuroblastoma (~50%).

References

15

10

1. Erdile, L. F., et al. Characterization of a cDNA encoding the 70-kDa single-stranded DNA-binding subunit of human replication protein A and the role of the protein in DNA replication. [published erratum appears in *J. Biol. Chem.* 1993 Jan 25;268(3):2268]. *J. Biol. Chem.* 266.18 (1991): 12090-8.

20

2. Jones, K. A., et al. A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. *Cell* 48.1 (1987): 79-89.

3. He, Z., et al. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. *Nature* 374.6522 (1995): 566-9.

٠.

4. Challberg, M. D., and T. J. Kelly. Eukaryotic DNA replication: viral and plasmid model systems. *Annu Rev Biochem* 51 (1982): 901-34.

- 5. Wold, M. S., et al. Identification of cellular proteins required for simian virus 40 DNA replication. *Journal Biological Chemistry* 264.5 (1989): 2801-9.
- 6. Kelly, T. J. DNA replication in mammalian cells: insights from the SV40 model system. *Harvey Lecture* 85 (1989): 173-88.

- 7. Hurwitz, J., Dean, F.B., Kwong, A.D and S.-H. Lee (1990) Journal of Biological Chemistry 265: 18043-18046.
- 8. Stillman, B. (1992) Initiation of chromosome replication in eukaryotic cells. *Harvey Lecture* 88: 115-40.
- 9. Brill, S.J. and B. Stillman (1991) Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. *Genes and Development* 5: 589-1600.
 - 10. Erdile, L. F., M. S. Wold, and T. J. Kelly. The primary structure of the 32-kDa subunit of human replication protein A. <u>J Biol Chem</u> 265.6 (1990): 3177-82.
- 11. Ozawa, K., Dean, F., et al. (1993) Mapping of the 70 kDa 34kDa and 11kDa subunit genes of the human multimeric single-stranded DNA binding protein (hSSB/RPA) to chromosome bands 17p13, 1p35-p36.1 and 7p21-p22. Cell Struct Funct 18: 221-230.
 - 12. Umbricht, C. B., et al. High-resolution genomic mapping of the three human replication protein A genes (RPA1, RPA2, and RPA3). Genomics 20.2 (1994): 249-57.
 - 13. Bieche I, Champeme MH, Matifas F, Cropp CS, et al. (1993) Two distinct regions involved in 1p deletion in human primary breast cancer. *Cancer Res.* 53:1990-4.
 - 14. Borg A, Zhang QX, Olsson H, Wenngren E. (1992) Chromosome 1 alterations in breast cancer: allelic loss on 1p and 1q is related to lymphogenic metastases and poor prognosis. *Genes Chromosomes & Cancer*. 5:311-20.
 - 15. Reifenberger, J., Reifenberger, G., Liu, L., et al. (1994) Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. American Journal of Pathology 145: 1175-1190.
- 25 16. (1990) Cancer Research 50: 7232.
 - 17.Lothe RA, Nakamura Y, Woodward S, Gedde DT, Jr., White R. (1988) VNTR (variable number of tandem repeats) markers show loss of chromosome 17p sequences in human colorectal carcinomas. *Cytogenet Cell Genet*. 48:167-9.
 - 18. Ezaki, T., Yanagisawa, A., Ohta, K., et al. (1996) Deletion mapping on

PCT/US98/05419

253

chromosome 1p in well-differentiated gastric cancer. British Journal of Cancer 73: 424-428.

19. Hiyama K, Ishioka S, et al. (1995) Alterations in telomeric repeat length in lung cancer are associated with loss of heterozygosity in p53 and Rb. Oncogene. 10:937-44.

5

Example 24: Replication Protein A, 70 kD subunit (RPA70) - Target Gene VARIA401

10

The human RPA70 gene encodes a protein essential for cell survival

15

Binding protein [SSB]) is a heterotrimeric protein which participates in DNA replication, homologous recombination and nucleotide excision repair (1-3). The evidence that RPA is an essential protein comes from *in vitro*, *in vivo* and evolutionary data.

Replication Protein A (also known as Replication Factor A, Activator or Single Strand

20

25

DNA replication is essential for cell proliferation, and a variety of antiproliferative drugs act, at least in part, by inhibiting DNA replication. Such drugs include nucleotide analogs that block DNA polymerases, such as 2',3' dideoxy NTPs and 3' deoxy ATP (cordycepin); inhibitors that bind to or modify DNA such as intercalating agents, DNA crosslinking drugs or alkylating agents, and inhibitors that bind to polymerases and replication proteins such as topoisomerase inhibitors like the epipodophyllotoxins, which prevent DNA unwinding necessary for replication (and transcription) and antibiotics which bind to polymerases such as arylhydrazino-pyrimidines.

The best studied function of RPA70 is in DNA replication. Because of the complexity of DNA replication in higher eukaryotic genomes, the small

genome of the papovavirus SV40 has been used as a model system to study

DNA replication in human cell extracts. In the 1980s several research groups

developed cell free systems to study DNA replication using SV40 chromosomes as templates (4-8). These studies, in seeking to identify the minimal set of factors required for DNA replication, led to the discovery of replication protein A. Subsequent work proved that each of the three subunits of RPA is essential for DNA replications. This was proved in several ways, including by using antibodies to various constituents of the replication complex. These antibodies are effectively inhibitors of RPA70. Anti-RPA70 antibody mediated abrogation of DNA replication provides clear in vitro evidence for the essential function of RPA70 in human DNA replication (10). The yeast S. cerevisiae has a trimeric replication protein A which is structurally and functionally homologous to the human protein. It consists of three subunits similar in size to the human subunits. The yeast 70 kDa subunit is 31% identical and 75% similar (including conserved amino acids) to its human counterpart (1). All three yeast subunits have been disrupted and each disruption produces non-viable yeast. The yeast 70 kD protein is also a single stranded DNA binding protein.

Single stranded DNA binding proteins (SSBs) are required for DNA replication in a wide variety of organisms, including bacteriophage, bacteria and some DNA viruses of higher eukaryotes. Recently the crystal structure of the DNA binding domain of human RPA was solved and found to be remarkably similar in three dimensional shape to the bacteriophage single stranded DNA binding proteins Pf3 and gene V from f1 phage.

The human RPA70 gene, mRNA and protein have sequence variances

25

5

10

15

20

The published cDNA for the 70 kD subunit of Replication Protein A is 2393 nucleotides long and includes a 5' untranslated segment of 69 nucleotides, followed by a protein coding region of 1848 nucleotides and a 3' untranslated region of 476 nucleotides (1). We undertook a systematic search for DNA polymorphism by

10

15

20

25

analyzing the RPA70 cDNA from 36 unrelated individuals using the single strand conformation polymorphism technique (described in the methods section). Primers were designed using the sequence of Erdile et al. (GenBank accession M63488; see ref. 1). SSCP analysis revealed 5 variances, and subsequent DNA sequence analysis of those variances led to identification of four additional variances. SSCP revealed the variances at nucleotides 81 (G vs. A), 1120 (A vs. G), 1674 (T vs. C), 2050 (T vs. C) and 2297, where an insertion/deletion variance of one C nucleotide was observed (8 vs. 9 C's in a row). In the course of sequencing around the nucleotide 2297 polymorphism an additional variance was detected at nucleotide 2341 (A vs. G). Also, while sequencing additional Swedish individuals around nucleotide 1120 two new variances were observed at nucleotides 1124 and 125 (both C vs. T). Finally, in three individuals sequenced for the 2050 variance we noted a difference from the published sequence at nucleotide 2046: we detect 3 T's while the published clone shows just two. This difference may represent another insertion/deletion polymorphism. Five of the nine detected variances are in the coding sequence while four are in the 3' untranslated region.

The frequency of heterozygotes for the five SSCP positive variances ranged from 25-42% among the 36 individuals tested. The small number of individuals genotyped for the other four variances precludes definitive assessment of heterozygosity rates. Some of the polymorphisms appear to occur more commonly in certain racial or ethnic groups (see Target Summary sheet for details). For example, only one of the variances (nt 1674) was detected in Japanese individuals. In general, higher levels of polymorphism were detected in North American Whites than in other groups. The nucleotide 1120 polymorphism, for instance, was heterozygous in 9/36 individuals overall (25%), but in 8/16 North American Whites (50%).

The RPA70 cDNA encodes a 616 amino acid protein. The nucleotide 1120 and 1124 variances result in amino acid substitutions at residues 351 and 352, the former an alanine-threonine exchange (approximately 50% of caucasians are heterozygotes) and

the latter a serine-phenylalanine exchange (rare in the populations tested). In the recently published crystal structure of the DNA binding segment of RPA70 (amino acids 181-422) it is possible to place residue 351 in the second of two tandemly arrayed DNA binding domains (domain B; see ref. 10). Domain B extends from residue I305 to N402, thus the variant residue 351 is in the middle. The published structure is a cocrystal of RPA70 amino acids 181-422 complexed to octadeoxycytosine. Several RPA70 residues contact the oligonucleotide (Figure 4 of ref. 11), including amino acids K343 and T359, which lie 8 residues away from the polymorphism in either direction. Modeling the two variant forms of the protein using the atomic coordinates deposited in the Protein Data Bank (1JMC) should clarify the structural consequences of the alanine-threonine variance. Residue 351 lies in the center of a 50 amino acid segment of the protein that is relatively poorly conserved between yeast and man: 11 of the 50 residues are identical and 25 more are conservative substitutions. Towards the C terminus there is strong conservation: starting 25 residues C-terminal of the polymorphism, 27 of the next 37 residues are identical between yeast and man. Towards the N terminus there is ~30% conservation. Both yeast and human 70 kD RPA subunits contain putative C4-type zinc finger motifs at positions ~480-500.

The RPA70 gene maps to chromosome 17p13.3

20

5

10

15

The gene for RPA70 has been mapped to chromosome band 17p13.3 by in situ hybridization (12). Only one locus was detected.

25

Chromosome band 17p13.3 is a site of frequent loss of heterozygosity. RPA70 lies just telomeric to the TP53 tumor suppressor gene which is located in cytogenetic band 17p13.1. This region of chromosome 17 is extremely well investigated for allele loss. In general, studies report LOH in approximately 40-60% of breast cancers (13-21), 50-70% of colon cancers (22-28), 25-75% of ovarian cancers (29-33), 20-60% of stomach cancers (34-37), 20-50% of brain cancers (38,39), 45-70% of esophageal cancers (40),

35-65% of non-small cell lung cancers (41,42) and 100% of small cell lung cancers, 15-50% of cervical cancers, 30-80% of head and neck cancers, 20-60% of liver cancers, over 50% of sarcomas and 10-30% of a variety of other cancer types.

Assays developed for RPA: Protein and DNA contacts

Human cDNAs encoding all 3 subunits (70, 34 and 11 kD) of RPA have been cloned and expressed in *E. coli* and in insect cells via baculovirus vectors. The bacterially expressed 70 kDa protein is indistinguishable from its purified human counterpart immunologically and in several functional assays (see Table below). There is good evidence that the 70 kD subunit of RPA interacts with a number of different molecules. A partial list would include the 34 and 11 kD subunits of RPA, DNA, the xeroderma pigmentosum damage recognition and endonuclease proteins XPA and XPG, and DNA polymerase a-primase. These experimentally proven contacts (and almost certainly others) may constrain the topology of the protein in ways that have implications for inhibitor design. In summary a broad array of assays exists to screen for small molecule inhibitors of RPA (possibly including modified nucleotides), that act via competitive, allosteric or protein-protein blocking mechanisms.

Table 4

20

5

10

15

Assays and reagents available for RPA inhibitor screening

RPA 70 kD,	Assay Systems	
Purified Purifi	ed Bacterial or	
Human Protein	Baculovirus	
	Protein	

25

30

ASSAY

Immunoreactivity	X	X
Single stranded DNA binding DNA Polymerase alpha	X	X
	X	X
primase		

WO 98/41648 PCT/US98/05419

258

DNA strand exchange

Nucleotide excision repair

Support SV40 Replication

X

X	X
X	X
X	X

5 References

10

- 1. Erdile, L. F., et al. Characterization of a cDNA encoding the 70-kDa single-stranded DNA-binding subunit of human replication protein A and the role of the protein in DNA replication. [published erratum appears in *J. Biol. Chem.* 1993 Jan 25;268(3):2268]. *J. Biol. Chem.* 266.18 (1991): 12090-8.
- 2. Jones, K. A., et al. A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. *Cell* 48.1 (1987): 79-89.
- 3. He, Z., et al. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. *Nature* 374.6522 (1995): 566-9.
- 4. Challberg, M. D., and T. J. Kelly. Eukaryotic DNA replication: viral and plasmid model systems. *Annu Rev Biochem* 51 (1982): 901-34.
 - 5. Wold, M. S., et al. Identification of cellular proteins required for simian virus 40 DNA replication. *Journal Biological Chemistry* 264.5 (1989): 2801-9.
 - 6. Kelly, T. J. DNA replication in mammalian cells: insights from the SV40 model system. *Harvey Lecture* 85 (1989): 173-88.
 - 7. Hurwitz, J., Dean, F.B., Kwong, A.D and S.-H. Lee (1990) Journal of Biological Chemistry 265: 18043-18046.
 - 8. Stillman, B. (1992) Initiation of chromosome replication in eukaryotic cells. *Harvey Lecture* 88: 115-40.
- 9. Heyer, W. D., et al. An essential Saccharomyces cerevisiae single-stranded DNA binding protein is homologous to the large subunit of human RP-A. *EMBO Journal* 9.7 (1990): 2321-9.
 - 10. Erdile, L. F., M. S. Wold, and T. J. Kelly. The primary structure of the 32-kDa subunit of human replication protein A. <u>J Biol Chem</u> 265.6 (1990): 3177-82.
- 30 11. Bochkarev, A., Pfuetzner, R.A., Edwards, A.M. and L. Frappier (1997) Structure

10

15

20

25

of the single stranded DNA binding domain of replication protein A bound to DNA.

Nature 385: 176-181.

- 12. Umbricht, C. B., et al. High-resolution genomic mapping of the three human replication protein A genes (RPA1, RPA2, and RPA3). Genomics 20.2 (1994): 249-57.
- 13. Cornelis RS, van Vliet M, Vos CB, et al. (1994) Evidence for a gene on 17p13.3, distal to TP53, as a target for allele loss in breast tumors without p53 mutations. *Cancer Res.* 54:4200-6.
- 14. Lindblom A, Skoog L, Rotstein S, Werelius B, Larsson C, Nordenskjold M. (1993) Loss of heterozygosity in familial breast carcinomas. *Cancer Res.* 53:4356-61.
- 15. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9.

 16. Singh S, Simon M, Meybohm I, et al. (1993) Human breast cancer: frequent p53 allele loss and protein over expression. *Hum Genet.* 90:635-40.
- 17. Thorlacius S, Borresen AL, et al. (1993) Somatic p53 mutations in human breast carcinomas in an Icelandic population: a prognostic factor. *Cancer Res.* 53:1637-41.

 18. Tsuda H, Hirohashi S. (1994) Association among p53 gene mutation, nuclear accumulation of the p53 protein and aggressive phenotypes in breast cancer. *Int J Cancer.* 57:498-503.
- 19. Watatani M, Nagayama K, Imanishi Y, et al. (1993) Genetic alterations on chromosome 17 in human breast cancer: relationships to clinical features and DNA ploidy. *Breast Cancer Res Treat*. 28:231-9.
 - 20. Chen LC, Neubauer A, Kurisu W, et al. (1991) Loss of heterozygosity on the short arm of chromosome 17 is associated with high proliferative capacity and DNA aneuploidy in primary human breast cancer. *Proc Natl Acad Sci U S A*. 88:3847-51.

 21. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9.
 - 22. Burmer GC, Rabinovitch PS, Haggitt RC, et al. (1992) Neoplastic progression in ulcerative colitis: histology, DNA content, and loss of a p53 allele [see comments].

Gastroenterology. 103:1602-10.

- 23. Cunningham C, Dunlop MG, Wyllie AH, Bird CC. (1993) Deletion mapping in colorectal cancer of a putative tumor suppressor gene in 8p22-p21.3. *Oncogene*.8:1391-
- 24. Kikuchi-Yanoshita R, Konishi M, Ito S, et al. (1992) Genetic changes of both p53 alleles associated with the conversion from colorectal adenoma to early carcinoma in familial adenomatous polyposis and non-familial adenomatous polyposis patients.

 Cancer Res. 52:3965-71.
 - 25. Yin J, Harpaz N, Tong Y, et al. (1993) p53 point mutations in dysplastic and cancerous ulcerative colitis lesions. *Gastroenterology*. 104:1633-9.
 - 26. Iacopetta B, DiGrandi S, Dix B, et al. (1994) Loss of heterozygosity of tumour suppressor gene loci in human colorectal carcinoma. *Eur J Cancer*. 5:664-70.
 - 27. Law DJ, Olschwang S, Monpezat JP, et al. (1988) Concerted nonsyntenic allelic loss in human colorectal carcinoma. *Science*. 241:961-5.
 - 28. Lothe RA, Nakamura Y, Woodward S, Gedde DT, Jr., White R. (1988) VNTR (variable number of tandem repeats) markers show loss of chromosome 17p sequences in human colorectal carcinomas. *Cytogenet Cell Genet*. 48:167-9.
 - 29. Foulkes WD, Stamp GW, Afzal S, et al. (1995) MDM2 over expression is rare in ovarian carcinoma irrespective of TP53 mutation status. *Br J Cancer*. 72:883-8.
 - 30. Phillips NJ, Ziegler MR, Radford DM, et al. (1996) Allelic deletion on chromosome 17p13.3 in early ovarian cancer. *Cancer Res.* 56:606-11.
 - 31. Foulkes WD, Black DM, Stamp GW, Solomon E, Trowsdale J. (1993) Very frequent loss of heterozygosity throughout chromosome 17 in sporadic ovarian carcinoma. *Int J Cancer*. 54:220-5.
- 32. Gallion HH, Powell DE, Morrow JK, et al. (1992) Molecular genetic changes in human epithelial ovarian malignancies [see comments]. *Gynecol Oncol*. 47:137-42.
 - 33. Phillips N, Ziegler M, Saha B, Xynos F. (1993) Allelic loss on chromosome 17 in human ovarian cancer. *Int J Cancer*. 54:85-91.
 - 34. Seruca R, David L, Castedo S, Veiga I, Borresen AL, Sobrinho-Simoes M. (1994)

5

10

15

10

15

20

25

- p53 alterations in gastric carcinoma: a study of 56 primary tumors and 204 nodal metastases. Cancer Genet Cytogenet. 75:45-50.
- 35. Kim CJ, Kim WH, Kim CW, Lee JB, Lee CK, Kim YL. (1995) Detection of 17p loss in gastric carcinoma using polymerase chain reaction. *Lab Invest*. 72:232-6.
- 36. Ranzani GN, Renault B, Pellegata NS, et al. (1993) Loss of heterozygosity and K-ras gene mutations in gastric cancer. *Hum Genet*. 92:244-9.
- 37. Sano T, Tsujino T, Yoshida K, et al. (1991) Frequent loss of heterozygosity on chromosomes 1q, 5q, and 17p in human gastric carcinomas. *Cancer Res.* 51:2926-31.
- 38. Frankel RH, Bayona W, Koslow M, Newcomb EW. (1992) p53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation frequency. *Cancer Res.* 52:1427-33.
- 39. Hermanson M, Funa K, Koopmann J, et al. (1996) Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas. *Cancer Res.* 56:164-71.
- 40. Aoki T, Mori T, Du X, Nisihira T, Matsubara T, Nakamura Y. (1994) Allelotype study of esophageal carcinoma. *Genes Chromosomes Cancer*. 10:177-82.
 - 41. Tsuchiya E, Nakamura Y, Weng SY, et al. (1992) Allelotype of non-small cell lung carcinoma--comparison between loss of heterozygosity in squamous cell carcinoma and adenocarcinoma. *Cancer Res.* 52:2478-81.
- 42. Hiyama K, Ishioka S, et al. (1995) Alterations in telomeric repeat length in lung cancer are associated with loss of heterozygosity in p53 and Rb. *Oncogene*. 10:937-44.

Example 25: RNA Polymerase II, 220-kD subunit (RPOL2A) - Target Gene VARIA500

The human RPOL2A gene encodes a protein essential for cell survival

DNA-dependent RNA polymerase II (also known as RPB1 or POLR2A), a complex

WO 98/41648 PCT/US98/05419

262

multisubunit enzyme, is responsible for the transcription of mRNA from all protein coding genes.

5

RNA polymerases are found in all cellular organisms. The subunit structure of RNA polymerases is highly conserved in eukaryotes. RNA polymerase acts in concert with as many as 50 other proteins in gene transcription (reviewed in ref. 1). See refs. 2 and 3 for a review of basal transcription by RNA polymerase II and recent progress in identifying and purifying transcription factors and cloning the genes that encode them.

10

Several subunits of *S. cerevisiae* RPOL2A have been disrupted, always resulting in non-viable yeast.

15

A variety of inhibitors of RNA polymerase are cytotoxic drugs, such as actinomycin D, which intercalates into double stranded DNA and blocks the movement of RNA polymerase; rifampicin binds the b subunit of *E. coli* RNA polymerase and blocks initiation of transcription. The best studied specific inhibitor of eukaryotic RPOL2A, however, is the potent mushroom toxin - amanitin, a cyclic octapeptide which binds with high affinity (Kd ~10-9 M) to RPOL2A. Several mutations conferring resistance to a-amanitin have been characterized and they all map to the RPOL2A protein coding sequence. Recently a-amanitin binding has been shown to trigger specific degradation of RPOL2A (4).

20

Damage to actively transcribed DNA is preferentially repaired by the transcription-coupled repair (TCR) system. TCR requires RNA pol II, but the mechanism by which repair enzymes preferentially recognize and repair DNA lesions on PolB II-transcribed genes is incompletely understood.

25

The human RPOL2A gene and mRNA have sequence variances

Wintzerith et al. and later Mita et al. cloned and sequenced the complete human gene

10

15

20

25

for RPOL2A (5, 6); the deduced amino acid sequences are identical. The RPOL2A gene contains 29 exons and spans about 32 kb of DNA. The cDNA sequence we evaluated is 6732 nucleotides long (see Annotated RPOL2A Sequence) and contains a 5' untranslated region of 386 nucleotides, a 5910 nucleotide coding region specifying 1970 amino acids, and a 436 nucleotide 3' untranslated region (see annotated sequence). We undertook a systematic search for DNA sequence variance in the cDNA of RPOL2A by analyzing 36 unrelated individuals using the single strand conformation polymorphism technique. Primers were designed for amplification. SSCP analysis revealed 10 sequence variances, and subsequent DNA sequence analysis confirmed a G vs. A transition at nucleotide 857, a C vs. T transition at nucleotide 1260, a C vs. T transition at nucleotide 1346, a C vs. T transition at nucleotide 1544, a C vs. T transition at nucleotide 1847, a C vs. T transition at nucleotide 2678, a C vs. T transition at nucleotide 3059, a C vs. T transition at nucleotide 3827, a T vs. C transition at nucleotide 6466 and a T vs. C transition at nucleotide 6557. The former seven sequence variances are in coding sequence and the latter two are in the 3' untranslated sequence. Only one of the ten sequence variances alters the protein coding sequence: the nucleotide 1260 alleles encode arginine (common) or cysteine (rare) at amino acid 292. Only 2/36 individuals surveyed are heterozygotes (6%), however both are North American Whites (2/16 = 12.5%) so further investigation of this population is required. The prevalence of heterozygotes for the other sequence variances varies from 3% to 50%, with 6 sequence variances above 22% (see RPOL2A Target Summary Sheet). The 6 common sequence variances are widely prevalent among all or nearly all the tested populations.

The human RPOL2A gene maps to chromosome 17p13.105

The human RPOL2A gene was initially assigned to the distal portion of the short arm of chromosome 17 (17pter-p12) by in situ hybridization and Southern analysis of DNA from human/rodent somatic cell hybrids (7, 8). Subsequent somatic cell hybrid studies narrowed the assignment to 17p13.105-p12 [vanTuinen and Ledbetter (1987)], which

was later confirmed by in situ hybridization to 17p13 (9).

Chromosome band 17p13.1 is a site of frequent loss of heterozygosity There have been many studies of LOH on 17p, particularly the 17p13.1 region where the p53 tumor suppressor gene maps. Virtually all cancer types have been surveyed for LOH in this area, with particularly extensive studies of breast, colon, ovarian, and stomach cancers. These studies report LOH in approximately 40-60% of breast cancers (10-18), 50-70% of colon cancers (19-25), 25-75% of ovarian cancers (26-30), 20-60% of stomach cancers (31-34), 20-50% of brain cancers (35,36), 45-70% of esophageal cancers (37), 35-65% of non-small cell lung cancers (38,39) and 100% of small cell lung cancers, 15-50% of cervical cancers, 30-80% of head and neck cancers, 20-60% of liver cancers, over 50% of sarcomas and 10-30% of a variety of other cancer types.

15 References

5

- 1. Acker, J.; Mattei, M.-G.; Wintzerith, M.; Roeckel, N.; Depetris, D.; Vigneron, M.; Kedinger, C. (1994) Chromosomal localization of human RNA polymerase II subunit genes. *Genomics* 20: 496-499.
- 4. Buratowski, S. (1994) The basics of basal transcription by RNA polymerase II. *Cell* 77:1-3.
 - 5. Cannizzaro, L. A., Emanuel, B. S., Cho, K. W. Y. and R. Weinmann (1986) The gene encoding the large subunit of human RNA polymerase II is located on the short arm of chromosome 17. Am. J. Hum. Genet. 38: 812-818.
- 8. Mita, K.; Tsuji, H.; Morimyo, M.; Takahashi, E.; Nenoi, M.; Ichimura, S.; Yamauchi, M.; Hongo, E., Hayashi, A. (1995) The human gene encoding the largest subunit of RNA polymerase II. *Gene* 159: 285-286.
 - 9. Pravtcheva, D.; Rabin, M.; Bartolomei, M.; Corden, J.; Ruddle, F. H. (1986) Chromosomal assignment of gene encoding the largest subunit of RNA polymerase II

15

20

25

in the mouse. Somat. Cell Molec. Genet. 12: 523-528.

- 13. Wintzerith, M., Acker, J., Vicaire, S., Vigneron, M. and C. Kedinger (1992) Complete sequence of the human RNA polymerase II largest subunit. *Nucleic Acids Res.* 20: 910.
- 10. Cornelis RS, van Vliet M, Vos CB, et al. (1994) Evidence for a gene on 17p13.3, distal to TP53, as a target for allele loss in breast tumors without p53 mutations. *Cancer Res.* 54:4200-6.
- 11. Lindblom A, Skoog L, Rotstein S, Werelius B, Larsson C, Nordenskjold M. (1993) Loss of heterozygosity in familial breast carcinomas. *Cancer Res.* 53:4356-61.
- 12. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9.
 - 13. Singh S, Simon M, Meybohm I, et al. (1993) Human breast cancer: frequent p53 allele loss and protein over expression. *Hum Genet*. 90:635-40.
 - 14. Thorlacius S, Borresen AL, et al. (1993) Somatic p53 mutations in human breast carcinomas in an Icelandic population: a prognostic factor. *Cancer Res.* 53:1637-41.
 - 15. Tsuda H, Hirohashi S. (1994) Association among p53 gene mutation, nuclear accumulation of the p53 protein and aggressive phenotypes in breast cancer. *Int J Cancer*, 57:498-503.
 - 16. Watatani M, Nagayama K, Imanishi Y, et al. (1993) Genetic alterations on chromosome 17 in human breast cancer: relationships to clinical features and DNA ploidy. *Breast Cancer Res Treat*. 28:231-9.
 - 17. Chen LC, Neubauer A, Kurisu W, et al. (1991) Loss of heterozygosity on the short arm of chromosome 17 is associated with high proliferative capacity and DNA aneuploidy in primary human breast cancer. *Proc Natl Acad Sci USA*. 88:3847-51.
 - 18. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y. (1991) Accumulation of genetic alterations and progression of primary breast cancer. *Cancer Res.* 51:5794-9. 19. Burmer GC, Rabinovitch PS, Haggitt RC, et al. (1992) Neoplastic progression in ulcerative colitis: histology, DNA content, and loss of a p53 allele [see comments]. *Gastroenterology*. 103:1602-10.

10

15

20

- 20. Cunningham C, Dunlop MG, Wyllie AH, Bird CC. (1993) Deletion mapping in colorectal cancer of a putative tumour suppressor gene in 8p22-p21.3. *Oncogene*. 8:1391-6
- 21. Kikuchi-Yanoshita R, Konishi M, Ito S, et al. (1992) Genetic changes of both p53 alleles associated with the conversion from colorectal adenoma to early carcinoma in familial adenomatous polyposis and non-familial adenomatous polyposis patients. *Cancer Res.* 52:3965-71.
- 22. Yin J, Harpaz N, Tong Y, et al. (1993) p53 point mutations in dysplastic and cancerous ulcerative colitis lesions. *Gastroenterology*. 104:1633-9.
- 23. Iacopetta B, DiGrandi S, Dix B, et al. (1994) Loss of heterozygosity of tumour suppressor gene loci in human colorectal carcinoma. *Eur J Cancer*. 5:664-70.
- 24. Law DJ, Olschwang S, Monpezat JP, et al. (1988) Concerted nonsyntenic allelic loss in human colorectal carcinoma. *Science*. 241:961-5.
- 25. Lothe RA, Nakamura Y, Woodward S, Gedde DT, Jr., White R. (1988) VNTR (variable number of tandem repeats) markers show loss of chromosome 17p sequences in human colorectal carcinomas. *Cytogenet Cell Genet*. 48:167-9.
- 26. Foulkes WD, Stamp GW, Afzal S, et al. (1995) MDM2 over expression is rare in ovarian carcinoma irrespective of TP53 mutation status. *Br J Cancer*. 72:883-8.
- 27. Phillips NJ, Ziegler MR, Radford DM, et al. (1996) Allelic deletion on chromosome 17p13.3 in early ovarian cancer. *Cancer Res.* 56:606-11.
- 28. Foulkes WD, Black DM, Stamp GW, Solomon E, Trowsdale J. (1993) Very frequent loss of heterozygosity throughout chromosome 17 in sporadic ovarian carcinoma. *Int J Cancer*. 54:220-5.
- 29. Gallion HH, Powell DE, Morrow JK, et al. (1992) Molecular genetic changes in human epithelial ovarian malignancies [see comments]. *Gynecol Oncol*. 47:137-42. 30. Phillips N, Ziegler M, Saha B, Xynos F. (1993) Allelic loss on chromosome 17 in human ovarian cancer. *Int J Cancer*. 54:85-91.
- 31. Seruca R, David L, Castedo S, Veiga I, Borresen AL, Sobrinho-Simoes M. (1994) p53 alterations in gastric carcinoma: a study of 56 primary tumors and 204 nodal

10

15

20

25

metastases. Cancer Genet Cytogenet. 75:45-50.

- 32. Kim CJ, Kim WH, Kim CW, Lee JB, Lee CK, Kim YL. (1995) Detection of 17p loss in gastric carcinoma using polymerase chain reaction. *Lab Invest*. 72:232-6.
- 33. Ranzani GN, Renault B, Pellegata NS, et al. (1993) Loss of heterozygosity and K-ras gene mutations in gastric cancer. *Hum Genet*. 92:244-9.
- 34. Sano T, Tsujino T, Yoshida K, et al. (1991) Frequent loss of heterozygosity on chromosomes 1q, 5q, and 17p in human gastric carcinomas. Cancer Res. 51:2926-31.
- 35. Frankel RH, Bayona W, Koslow M, Newcomb EW. (1992) p53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation frequency. *Cancer Res.* 52:1427-33.
- 36. Hermanson M, Funa K, Koopmann J, et al. (1996) Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas. *Cancer Res.* 56:164-71.
- 37. Aoki T, Mori T, Du X, Nisihira T, Matsubara T, Nakamura Y. (1994) Allelotype study of esophageal carcinoma. *Genes Chromosomes Cancer*. 10:177-82.
- 38. Tsuchiya E, Nakamura Y, Weng SY, et al. (1992) Allelotype of non-small cell lung carcinoma--comparison between loss of heterozygosity in squamous cell carcinoma and adenocarcinoma. *Cancer Res.* 52:2478-81.
- 39. Hiyama K, Ishioka S, Shirotani Y, et al. (1995) Alterations in telomeric repeat length in lung cancer are associated with loss of heterozygosity in p53 and Rb. Oncogene. 10:937-44.

Example 26: TATA Associated Factor 30 kD subunit (TAF2H) - Target Gene VARIA 520

The human TAF2H gene encodes a component of the transcriptional apparatus

Transcription initiation by RNA polymerase II requires the assembly of a complex of

basic transcription factors which include TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIG/TFIIJ and TFIIH/BTF2 into a preinitiation complex (1,2). TFIID is the first factor to contact the promotor, and subsequent assembly of the transcription complex is dependent on TFIID binding. TFIID is a 700-750 kD multiprotein complex which includes TATA binding protein (TBP) and between eight and 13 TBP-associated factors (TAFs) ranging from 250 to 17 kDa. The TAFs have been shown necessary to reconstitute activation of transcription in vitro, leading to the hypothesis that some TAFs link transcription activation domains to the basal transcription complex. The TFIID complex also supports transcription from TATA-less promoters, while TBP fails to do so. Therefore TAFs may also contribute to formation of stable initiation complexes by interacting directly with DNA (2). Conditional temperature sensitive Chinese hamster mutants of another TAF, TAFII250, were detected because, at the non-permissive temperature, DNA synthesis was inhibited leading to arrest of cell division at the G1 phase (3,4). Transfection of a human TAFII250 gene relieved the block at the non-permissive temperature. Thus an essential role has been proven for TAFs in mammalian cells.

A gene (TAF2H) encoding the 30 kDa human TAF protein (TAFII30) was cloned and its functional properties examined by Jacq, et al. (5). The protein was shown to be present in a subset of TFIID complexes and to mediate transcriptional activation by a specific region of the estrogen receptor. Estrogen mediated transcriptional activation could be abrogated by adding an antibody against TAFII30. TAFII30 was not required for basal transcription or for transcription activation by VP-16. It is likely that TAFII30 is required for transcriptional activation by a variety of other transactivating proteins, and is therefore essential for cell proliferation or cell survival.

The human TAF2H gene and mRNA have sequence variants

A human TAF2H cDNA has been cloned and sequenced (5). It encodes a cDNA of 756 nucleotides including a 5' untranslated region of 17 nucleotides, a 657 nucleotide

5

10

15

20

10

15

20

25

coding region specifying 218 amino acids, and an 82 nucleotide 3' untranslated region (GenBank accession U13991; see annotated TAF2H cDNA sequence). (Note that the numbering of the sequence in ref. 5 differs slightly from that in the GenBank accession.) We undertook a systematic search for DNA variance in the cDNA of TAF2H by analysing 36 unrelated individuals using the single strand conformation polymorphism technique Primers were designed for amplification. SSCP analysis revealed 1 polymorphism, and subsequent DNA sequence analysis confirmed a G vs. A transition at nucleotide 554 (nt 556 of the sequence in ref. 3) of the coding sequence. This variance does not alter the protein coding sequence. Eight of 36 individuals surveyed are heterozygotes (22%). The variance occurs in North American Whites (3/16 = 19%), North American Blacks (2/4) and Hispanics (3/3).

The human TAF2H gene maps to chromosome 11p15.5-p15.2 The human TAF2H cDNA has been mapped to 11p15.5-p15.2 by fluorescent in situ hybridization (6). There appears to be a single TAF2H locus. Chromosome band 11p15-p14 is a site of frequent loss of heterozygosity

There have been many studies of LOH on 11p, particularly the 11p15 and 11p13 segments where the Beckwith-Weidemann syndrome and WT1 genes reside. As a result there are many studies of LOH in 11p15.5, particularly focusing on breast, cervix, kidney, liver, lung, ovarian, stomach and testicular cancers. These studies show that the 11p15.5 band of chromosome 11 is frequently reduced to one copy (7-24). For example, LOH occurs in approximately 13-33% of breast cancers (7-9), 14-42% of cervical cancers (10), 0-50% of liver cancers (11,12), 0-80% of lung cancers (13-15), 18-54% of ovarian cancers (14,15), 0-71% of stomach cancers (18) and 0-50% of testicular cancers (19,20). Other studies show that 11p15.5 LOH may also be frequent in bladder cancer (21), esophageal cancer (22), some leukemias (23) and sarcomas (24). Many deletions in the 11p15.5 region span relatively short chromosomal segments (2 - 10 megabases; see ref. 13).

15

20

25

References

- 1. Buratowski, S.(1994) The basics of basal transcription by RNA polymerase II. *Cell* 77: 1-3.
- 2. Tjian, R. and T. Maniatis (1994) Transcriptional activation: a complex puzzle with few easy pieces. *Cell* 77: 5-8.
 - 3. Sekiguchi, T., Miyata, T. and T. Nishimoto (1988) Molecular cloning of the cDNA of human X chromosomal gene (CCG1) which complements the temperature sensitive G(1) mutants, tsBN462 and ts13, of the BHK cell line. *EMBO Journal* 7: 1683-1687.
 - 4. Hisatake, K., Hasegawa, S., Takada, R., et al. (1993) The p250 subunit of native TATA box-binding factor TFIID is the cell -cycle regulatory protein CCG1. *Nature* 362: 172-181.
 - 5. Jacq, X., Brou, C., Lutz, Y., Davidson, I., Chambon, P. and L. Tora (1994) Human TAFII30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor. *Cell* 79: 107-117.
 - 6. Scheer, E., Mattei, M.G., Jacq, X., Chambon, P. and L. Tora (1995) Organization and chromosomal localization of the gene (TAF2H) encoding the human TBP-associated factor II 30 (TAFII30). *Genomics* 29: 269-272.
 - 7. Ali, I., Lidereau, R., Theilley, C. and R. Callahan (1987) Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. *Science* 238:185-8.
 - 8. Winqvist, R., Mannermaa, A., Alavaikko, M., Blanco, G., Taskinen, P.J., Kiviniemi, H., Newsham, I. and W. Cavenee (1993) Refinement of regional loss of heterozygosity for chromosome 11p15.5 in human breast tumors. *Cancer Research* 53: 4486-4488.
 - 9. Carter, S.L., Negrini, M., Baffa, R., et al. (1994) Loss of heterozygosity at 11q22-q23 in breast cancer. Cancer Research 54:6270-4.
 - 10. Mitra, A.B., Murty, V.V.S., Li, R.G., et al. (1994) Allelotype analysis of cervical carcinoma. *Cancer Research* 54:4481.

10

15

20

- 11. Fujimori, M., Tokino, T., Hino, O., et al. (1991) Allelotype study of primary heptocellular carcinoma. *Cancer Research* 51: 89-93.
- 12. Wang, H.P. and C.E. Rogler (1988) Deletions in human chromosome arms 11p and 13q in primary hepatocellular carcinomas. *Cytogenetics and Cell Genetics* 48:72-78.
- 13. Bepler, G. and Garcia-Blanco, M.A. (1994) Three Tumor Suppressor Regions on Chromosome 11p Identified by High Resolution Deletion Mapping in Human Non-Small Cell Lung Cancer. *Proc. Natl. Acad. Sci. U.S.A.* 91:5513-7.
- 14. Iizuka, M., Sugiyama, Y., Shiraishi, M., Jones, C. and T. Sekiya (1995) Allelic losses in human chromosome 11 in lung cancers. *Genes, Chromosomes & Cancer* 13:40-46.
- 15. Weston, A., Willey, J.C., Modali, R., et al. (1989) Differential DNA sequence deletions from chromosomes 3, 11, 13 and 17 in squamous cell carcinoma, large-cell carcinoma and adenocarcinoma of the human lung. *Proc. Natl. Acad. Sci. U.S.A.* 86:5099-5103.
- 16. Kiechle-Schwartz, M., Bauknecht, T., Wienker, T., et al. (1993) Loss of Constitutional Heterozygosity on Chromosome 11p in Human Ovarian Cancer. Cancer 72:2423-32.
- 17. Viel, A., Giannini, F., Tumiotti, L., Sopracordevole, F., Visentin, M.C. and M. Boiocchi (1992) Chromosomal localization of two putative 11p oncosuppressor genes involved in human ovarian tumors *British Journal of Cancer* 66: 1030-1036.
- 18. Baffa, R., Negrini, M., Mandes, B., et al. (1996) Loss of heterozygosity for chromosome 11 in adenocarcinoma of the stomach. *Cancer Research* 56: 268-72.
- 19. Lothe, R.A., Hastie, N., Heimdal, K., et al. (1993) Frequent loss of 1p13 and 11p15 loci in male germ cell tumors. *Genes, Chromosomes & Cancer* 7: 96-101.
- 20. Smith, R.C., and Rukstalis, D.B. (1995) Frequent Loss of Heterozygosity at 11p Loci in Testicular Cancer. *The Journal of Urology* 153: 1684-7.
- 21. Shaw, M.E. and Knowles, M.A. (1995) Deletion Mapping of Chromosome 11 in Carcinoma of the Bladder. *Genes, Chromosomes & Cancer* 13: 1-8.

WO 98/41648 PCT/US98/05419

272

22. Shibagaki, I., Shimada, Y., Wagata, T., Ikenaga, M., Imamura, M. and K. Ishizaki (1994) Allelotype analysis of esophageal squamous cell carcinoma. *Cancer Research* 54: 2996-3000.

23. Ahuja, H.G., Foti, A., Zhou, D.J. and M.J. Cline (1990) Analysis of protooncogenes in acute myeloid leukemia: loss of heterozygosity for the Ha-ras gene. *Blood* 75: 819-822.

Example 27 - cDNA synthesis

10

15

25

5

In order to analyze an essential gene for sequence variances, it is generally useful to have a cDNA(s) containing the coding sequence for further sequencing or amplification purposes. cDNAs for some genes are available, however, in some cases it is useful to synthesize the cDNA de novo. Methods for obtaining cDNA are known to those skilled in the art, as are methods for sequencing or amplifying the cDNA or portions thereof. An example of a useful cDNA production protocol is provided below, however, as recognized by those skilled in the art, other specific protocols can also be used.

20 <u>cDNA Production</u>

- ** Make sure that all tubes and pipette tips are RNase-free. (Bake them overnight at 100oC in the vacuum oven to make them RNase-free.)
- 1 Add the following to a RNase-free 0.2 ml micro-amp tube and mix gently:
 - 24 ul water (DEPC treated)
 - 12 ul RNA (lug/ul)
 - 12 ul random hexamers(50 ng/ul)
- 2 Heat the mixture to 70oC for ten minutes.
- 3 Incubate on ice for 1 minute.

water

RNA random hexamers

synthesis buffer 0.1 M DTT

10mM dNTP

SSRT

156

5

10

15

20

25

273

4 Add the following:

16 ul 5 X Synthesis Buffer

8 ul 0.1 M DTT

4 ul 10 mM dNTP mix (10 mM each dNTP)

4 ul SuperScript RT II enzyme

Pipette gently to mix.

- 5 Incubate at 42oC for 50 minutes.
- 6 Heat to 70oC for ten minutes to kill the enzyme, then place it on ice.
- Add 160 ul of water to the reaction so that the final volume is 240 ul.
- 8 Use PCR to check the quality of the cDNA. Use primer pairs that will give a
- ~800 base pair long piece. See "PCR Optimization" for the PCR protocol.

The following chart shows the reagent amounts for a 20 ul reaction, a 80 ul reaction, and a batch of 39 (which makes enough mix for 36) reactions:

4 ul

	20 ul X 1 tube	80 ul X 1 tube	80ul X 39 tubes
water	6 ul	24 ul	936
RNA	3 ul	12 ul	
random hexamers	3 ul	12 ul	468
synthesis buffer	4 ul	16 ul	624
0.1 M DTT	2 ul	8 ul	312
10mM dNTP	1 ul	4 ul	156

1 ul

30

Example 28 - Variance detection by SSCP

SSRT

This example describes the SSCP technique as used for the identification of sequence variances of the exemplary genes, which were then sequenced to confirm the specific base variances. One common technique currently employed in the identification of such single nucleotide differences is the single strand conformation polymorphism (SSCP) method. (originally described in Orita, et al., "Rapid and Sensitive Detection of Point Mutations and DNA Polymorphisms Using the Polymerase Chain Reaction, Genomics, 5:874-879 (1989)) Also employed are restriction fragment length polymorphism (RFLP), heteroduplex analysis, ligase chain reaction (LCR), denaturing gradient gel electrophoresis (DGGE) (Myers, Maniatis, and Lerman, Methods Enzymol., 155:501-527 (1987)) or direct nucleotide sequencing. A review of polymorphism detection techniques, including SSCP, is provided in Grompe, 1993, Nature Genetics 5:111-117, which includes a comparison of the commonly used methods.

The SSCP method reveals the presence of sequence variation between individuals as shifts in electrophoretic mobility, but does not show the sequence itself. Direct sequencing of DNAs with altered mobility in the SSCP assay identifies the precise nucleic acid sequence differences among the various alleles. From the nucleic acid sequence data, the amino acid sequence can be determined. One example of the use of this technique is in Pelletier et al., Cell, 67:437-447 (1991). The single strand conformation polymorphism methodology is effective for scanning essential genes for sequence variants. It remains the standard technique in human genetics for variance detection, with numerous studies of its efficacy (>90%) and schemes for improved throughput. The SSCP method has been shown to be quite sensitive in the detection of single base changes, for example as shown in Ravnik-Glava et al., 1994, Human Mol. Genet. 3:801-807 (human cystic fibrosis gene) and Glava & Dean, 1993, Human Mutation 2:404-414 (mouse -globin gene).

A flow chart of the SSCP method as used to identify essential gene sequence variants is shown in Fig. 2 (SSCP OVERVIEW). The method involves the steps of 1) PCR

5

10

15

20

10

15

20

25

275

amplifying a portion of an essential gene cDNA of known sequence (labeled products), 2) selecting restriction enzymes which will produce fragments approximately 100-400 bases in length for 3 independent digestions of the PCR products, 3) heat denaturing the digestion products, 4) running single strand digestion products on non-denaturing gels, 5) identifying bands having different mobilities when compared between individuals, thereby identifying potential sequence variants, 6) sequence at least the region around the potential sequence variance, that region being identified by comparison of the expected fragment sizes resulting from the digestions, 7) record the specific location and base identity of the confirmed sequence variant, 8) calculate the percent occurrence of each sequence variance for the gene as found for the sample of the population. The method is further described in Example 2.

Single strand conformation polymorphism screening is a widely used technique for identifying an discriminating DNA fragments which differ from each other by as little as a single nucleotide. As originally developed by Orita (supra), the technique was used on genomic DNA, however the same group showed that the technique works very well on PCR amplified DNA as well. In the last 8 years the technique has been used in hundreds of published papers, and the modifications of the technique have been described in dozens of papers. The enduring popularity of the technique is due to (1) a high degree of sensitivity to single base differences (>90%) (2) a high degree of selectivity, measured as a low frequency of false positives, and (3) technical ease. SSCP is almost always used together with DNA sequencing because SSCP does not directly provide the sequence basis of differential fragment mobility. The basic steps of the SSCP procedure are described below and summarized in Fig. 2 in flow chart form.

Because the intent of our SSCP screening was to identify as many target gene variances as practically possible, we developed a protocol designed to look at a relatively large number of individuals (36) with a high degree of redundancy, so as to minimize both the false negative and false positive rates.

The 36 individuals examined are reasonably representative of most of the worlds major populations. The racial or geographic origin of the 36 cell lines is detailed in the Target Summary Tables (Figure 5). All cell lines are EBV immortalized lyphoblastoid cells obtained from the Coriell Cell Repository (Camden, NJ), which includes the racial/ethnic/geographic background of cell line donors in its catalog. The cell lines were also selected for their rapid growth rates. In several cases a panel of cDNAs isolated from French Canadians was used instead, or in addition to, the Coriell panel.

10

5

SSCP was used to analyze cDNAs (rather than genomic DNAs) because in many cases the full genomic sequence of the target gene is not available, however, the technique is also applicable to genomic sequences. To produce cDNA requires RNA. Therefore each of the 36 cell lines was grown to mass culture and RNA was isolated using the acid/phenol protocol, sold in kit form as TRIAZOLTM by Life Technologies (Gaithersberg, MD). The unfractionated RNA was used to produce cDNA by the action of a modified Maloney Murine Leukemia Virus Reverse Transcriptase, purchased in kit form from Life Technologies (SUPERSCRIPT IITM kit). The reverse transcriptase was primed with random hexamer primers to initiate cDNA synthesis along the whole length of the RNAs. This proved useful later in obtaining good PCR products from the 5' ends of some genes.

20

15

Material for SSCP analysis was prepared by PCR amplification of the cDNA in the presence of one ³²P labeled dNTP (usually ³²P dCTP). Usually the concentration of nonradioactive dCTP was dropped from 200 uM (the standard concentration for all four dNTPs) to about 100 uM, and ³²P dCTP was added to a concentration of about 0.1-0.3 uM. This involved adding a 0.3-1 ul (3-10 uCi) of ³²P cCTP to a 10 ul PCR reaction. All radioactivity was purchased from DuPont/New England Nuclear.

25

The customary practice is to amplify about 200 base pair PCR products for SSCP, however, we found that it was preferable to amplify about 0.8-1.4 kb fragments and

then use several cocktails of restriction endonucleases to digest those into smaller fragments of about 0.1-0.4kb, aiming to have as many fragments as possible between .15 and .3 kb. The digestion strategy had the advantage that less PCR was required, reducing both time and costs. Also, we routinely performed three different digests on each sample (for all 36 cDNAs), and then ran each of the digests separately on SSCP gels. This had the effect of increasing the redundancy of our method, lessening both the false negative and false positive rates. For example: a site of variance might lie within 2 bases of the end of a fragment in one digest, and as a result not affect the conformation of that strand; the same variance, in a second or third digest, would likely lie in a location more prone to affect strand folding, and therefore be detected by SSCP.

After digestion, the radiolabeled PCR products were diluted 1:5 by adding formamide load buffer (80% formamide, 1X SSCP gel buffer) and then denatured by heating to 90%C for 10 minutes, and then allowed to renature by quickly chilling on ice. This procedure (both the dilution and the quick chilling) promotes intra- (rather than inter-) strand association and secondary structure formation. The secondary structure of the single strands influences their mobility on nondenaturing gels, presumably by influencing the number of collisions between the molecule and the gel matrix (i.e., gel sieving). Even single base differences consistently produce changes in intrastrand folding sufficient to register as mobility differences on SSCP.

The single strands were then resolved on two gels, one a 5.5% acrylamide, 0.5X TBE gel, the other an 8% acrylamide, 10% glycerol, 1X TTE gel. The use of two gels provides a greater opportunity to recognize mobility differences. Both glycerol and acrylamide concentration have been shown to influence SSCP performance. The gel apparatus we use (from Owl Scientific, MA) allows 108 samples to be loaded per gel. Since all 36 samples are routinely digested with three different endonuclease mixes there are 108 samples to be analyzed for each PCR product. By routinely analyzing three different digests under two gel conditions (effectively 6 conditions), and by

10

5

15

20

looking at both strands under all 6 conditions, we achieve a 12-fold sampling of each base pair of cDNA.

All of the sequence variances described in this disclosure were determined by DNA cycle sequencing of ³²P labeled PCR products using the femtomole DNA cycle sequencing kit from Promega (WI) and the instructions provided with the kit. Fragments were selected for DNA sequencing based on their behavior in the SSCP assay.

10

15

5

Example 29 - Variance detection by using T4 endonuclease VII mismatch cleavage method

The enzyme T4 endonuclease VII is derived from the bacteriophage T4. T4 endonuclease VII is used by the bacteriophage to cleave branched DNA intermediates which form during replication so the DNA can be processed and packaged. T4 endonuclease can also recognize and cleave heteroduplex DNA containing single base mismatches as well as deletions and insertions. This activity of the T4 endonuclease VII enzyme can be exploited to detect sequence variances present in the general population.

20 p

The following are the major steps involved in identifying sequence variations in a candidate gene by T4 endonuclease VII mismatch cleavage:

- 25
- Amplification by the polymerase chain reaction (PCR) of 400-600 bp regions
 of the candidate gene from a panel of DNA samples. The DNA samples can
 either be cDNA or genomic DNA and will represent some cross section of the
 world population.
- 2. Mixing of a fluorescently labeled probe DNA with the sample DNA. Heating

10

15

20

25

- and cooling the mixtures causing heteroduplex formation between the probe DNA and the sample DNA.
- 3. Addition of T4 endonuclease VII to the heteroduplex DNA samples. T4 endonuclease will recognize and cleave at sequence variance mismatches formed in the heteroduplex DNA.
- 4. Electrophoresis of the cleaved fragments on an ABI sequencer to determine the site of cleavage.
- 5. Sequencing of a subset of PCR fragments identified by T4 endonuclease VI to contain variances to establish the specific base variation at that location.

A more detailed description of the procedure is as follows:

A candidate gene sequence is downloaded from an appropriate database. Primers for PCR amplification are designed which will result in the target sequence being divided into amplification products of between 400 and 600 bp. There will be a minimum of a 50 bp of overlap not including the primer sequences between the 5' and 3' ends of adjacent fragments to ensure the detection of variances which are located close to one of the primers.

Optimal PCR conditions for each of the primer pairs is determined experimentally. Parameters including but not limited to annealing temperature, pH, MgCl₂ concentration, and KCl concentration will be varied until conditions for optimal PCR amplification are established. The PCR conditions derived for each primer pair is then used to amplify a panel of DNA samples (cDNA or genomic DNA) which is chosen to best represent the various ethnic backgrounds of the world population or some designated subset of that population.

One of the DNA samples is chosen to be used as a probe. The same PCR conditions used to amplify the panel are used to amplify the probe DNA. However, a

WO 98/41648 PCT/US98/05419

280

flourescently labeled nucleotide is included in the deoxy-nucleotide mix so that a percentage of the incorporated nucleotides will be fluorescently labeled.

The labeled probe is mixed with the corresponding PCR products from each of the DNA samples and then heated and cooled rapidly. This allows the formation of heteroduplexes between the probe and the PCR fragments from each of the DNA samples. T4 endonuclease VII is added directly to these reactions and allowed to incubate for 30 min. at 37 C. 10 ul of the Formamide loading buffer is added directly to each of the samples and then denatured by heating and cooling. A portion of each of these samples is electrophoresed on an ABI 377 sequencer. If there is a sequence variance between the probe DNA and the sample DNA a mismatch will be present in the heteroduplex fragment formed. The enzyme T4 endonuclease VII will recognize the mismatch and cleave at the site of the mismatch. This will result in the appearance of two peaks corresponding to the two cleavage products when run on the ABI 377 sequencer.

Fragments identified as containing sequencing variances are subsequently sequenced using conventional methods to establish the exact location and sequence variance.

Example 30 - Identification of Sequence Variances by Informatics-based analysis of gene-sequence databases

In addition to and/or in conjunction with the molecular biology based approaches for identifying sequence variances in genes, particularly in essential genes, such sequence variances can be identified by analysis of public and/or private genetic sequence databases. Such information can be either genomic or cDNA sequence information.

The data base analysis process includes the following major steps:

5

10

15

20

1.

2.

1. capture of homologous sequences of a particular gene from data bases. It is preferable to obtain a large number of independent sequences of a particular gene

5

analysis of collected sequences of a particular gene to identify authentic sequence variances. This step involves the discrimination of authentic sequence variances, which are sequence variances which actually exist in the population, from sequencing errors and artifacts. It is expected that about 0.1-0.3% of the bases will occur as true variances, while the frequency of sequencing artifacts is expected to be 1-3%. This discrimination utilizes the expected frequencies of occurrence of specific types of nucleotide sequence changes. Such information includes the characteristic frequency of specific transitions and transversions and of the characteristic frequency of deletions and insertions in authentic variations. It uses the frequency of occurrence of known types of sequencing artifacts such as single base insertions or deletions adjacent to repeated C or G nucleotides. Additional information for such discrimination is provided if particular putative authentic variations are

15

10

observed in multiple independently derived sequences of the gene.

An implementation of this sequence variance identification process utilizes a reference

20

sequence of an essential gene. Preferably, the reference sequence is a high quality sequence, meaning that there is a low frequency of occurrence of sequencing errors or artifacts. The second step is the retrieval of allelic sequences of that essential gene from available databases such as the BLAST server, the UNIGENE database, or other such sequence database. Such allelic sequences need not be complete, but are preferably long enough to ensure that they are in fact allelic sequences. The third step involves alignment analysis to identify and tabulate sequence differences between the

25

different available sequences. An algorithm for such analysis is the Smith-Waterman local alignment algorithm. Use of an algorithm of this type involves a series of pair-

WO 98/41648 PCT/US98/05419

282

wise alignments of each retrieved sequence with the reference sequence. The fourth step involves analysis of the observed sequence differences and assignment of a probability that each sequence difference represents an authentic variance. This analysis utilizes program filters which are combined in a weighted fashion to determine a final probability. Such program filters include comparison of the observed difference with common mutational changes and sequencing errors, a weighting of the reliability of a particular retrieved sequence based on the total number of differences observed, a weighting based on the location within a retrieved sequence where a change was observed and a significant weighting based on the observance of a particular difference in multiple independently derived retrieved sequences.

Using such an implementation, a database analysis with respect to a particular reference sequence produces a list of putative authentic sequence variances and a probability for each of those variances that the sequence difference is an authentic variance. As described above, the probability is obtained through the use of a series of weighted program filters and thus these filters are modified to produce optimal authentic variance discrimination.

Example 31 - Antiproliferative effects of variance specific inhibition of RPA70

This example describes experiments showing the practicality and utility of variance-specific inhibition of essential genes for cancer therapy. Specifically, this example describes in *vitro* experiments showing the design and production of variance-specific oligonucleotides for antisense inhibition of variant alleles of the essential Replication Protein A, 70 kDa subunit (RPA70) for inhibition of RPA70 mRNA, and the use of these oligonucleotides to inhibit cell proliferation and to reduce the number of cells in a variance-specific manner.

Variance-specific inhibition and cell killing with antisense oligonucleotides against

5

10

15

20

RPA70

These experiments with RPA70 illustrate the feasibility of each of the steps for development of a variance specific inhibitor:

Select candidate target gene essential for cell survival or proliferation. As described above, RPA is essential for replication in prokaryotic and eukaryotic cells, mitochondria, phage, viruses and in *in vitro* (SV40) replication systems. The protein is a heterotrimer required for loading DNA polymerase onto the DNA template during cell replication. The 70 kDa subunit, RPA70, is a single strand binding protein that mediates the interaction of RPA with DNA. Without this protein, the replication complex does not associate with DNA and the replication of DNA does not occur.

Confirm chromosome location and LOH frequency. RPA70 is encoded by a single gene locus on chromosome 17pl3.3, immediately adjacent to the p53 gene at 17pl3.1. LOH involving chromosome band 17pl3.3 has been documented in 50-70% of colon, lung, breast, and ovarian cancers. LOH at this locus also occurs in other cancers. The inventor as confirmed LOH involving RPA 70 in breast, colon, lung and other cancers.

Identify common variances in the normal population. We have identified five common variances in the RPA70 gene (Figure 8). The most common occurs in 42% of the normal population. One variance alters the amino acid sequence and is present in 25% of the normal population (44% of Caucasians). This variance occurs within the active DNA binding domain (discussed below). These variances are described in the description above and in Fig. 1.

Demonstrate antiproliferative effects due to inhibition of candidate gene. The inventor has shown that inhibition of RPA70 in T24 bladder carcinoma cells with an antisense oligonucleotide reduces cell number. This effect is comparable to treatment of these cells with antisense oligonucleotide against *ras*, previously shown to have antitumor

25

5

10

15

effects in vitro and in vivo (Figure 9).

Design variance-specific inhibitor. Variance specific antisense oligonucleotides were designed to differentially inhibit the two variant forms of RPA70. Experiments were performed using tumor cell lines that are homozygous for each form of the target gene. Figure 10 shows inhibition of mRNA levels in Mia Paca II cells by the 13085 oligonucleotide which matches the variance in these cells. In contrast, in T24 cells (and A549 cells, see below) the 12781 oligonucleotide matches the target gene and inhibits rnRNA levels. In both cell lines neither the control oligonucleotide differing by one base (13085 in T24 cells and 12781 in Mia Paca II cells) nor a random-sequence oligonucleotide control (13706) inhibit mRNA levels to the same extent as the matched oligonucleotide.

Figure 10 demonstrates that the RPA 70 mRNA can be specifically down regulated in an allele-specific manner. However, the 13085 oligomer used also has a small effect on the level of the unmatched RNA. In order to increase the discrimination we altered the structure of the targeting oligomer, 13085. The results are shown in Figure 11. By shortening the oligomer we retain its ability to down-regulate its matched target RNA (Mia Paca II cells, right half of Figure 11). Strikingly, however, this alteration dramatically altered the ability of this oligomer to down-regulate the mismatched variant RNA T24 cells, left half of Figure 11. The reciprocal regulation by oligomer 12781 was augmented by altering transfection conditions. These data suggest that even simple changes to the rudimentary "first generation" chemistry and transfection techniques can have significant effects in enhancing the ability of the oligomers to recognize and down regulate specific mRNAs.

Achieve variance-specific antiproliferative effects in cancer cells. Cell proliferation in each cell line, determined by BrdU incorporation, was suppressed to a greater degree by the matched oligonucleotide than by the controls differing by one base (Figure 12).

5

10

15

20

Cell proliferation in A549 cells was inhibited by oligomer 12781 to a greater degree than by oligomer 13085. Cell proliferation in Mia Paca 11 cells was inhibited more by oligomer 13085.

Additional studies were performed to characterize the antiproliferative effect in A549 cells (12781 genotype). A dose response curve demonstrates inhibition of BrdU incorporation by the matched oligonucleotide (12781) at concentrations 8-fold lower than the oligonucleotide with one base mismatch (13085) (Figure 13).

Cell survival was measured by staining cells with Sulforhodamine B dye 72 hours after treatment with oligonucleotides. Dose dependent reductions in cell number were observed in cells treated with the matched oligonucleotide (12781) but not with an oligonucleotide containing the one base mismatch (13085) (Figure 14). In contrast, in Mia Paca II cells, more cell killing was observed with the 13085 oligonucleotide than with the 12781 oligonucleotide (Figure 15). The oligonucleotides used in these studies have not been optimized for achieving allele-specific effects. Oligonucleotides using advanced chemistries can be utilized to optimize the potency and provide greater discrimination between variant targets at lower levels.

20

25

5

10

15

Example 32 - variance specific inhibition of essential genes

This example describes experiments showing the practicality and utility of variance-specific inhibition of essential genes for cancer therapy including RNA Pol II, and ribonucleotide reductase. Specifically, this example describes in vitro experiments showing the design and production of variance-specific oligonucleotides for antisense inhibition of variant alleles of the essential Ribonuclotide Reductase (RR), the design and production of variance-specific oligonucleotides against RR, and the use of these oligonucleotides to inhibit RR mRNA in a variance-specific manner.

10

15

20

25

286

Variance-specific inhibition of Ribonucleotide Reductase.

Ribonucleotide Reductase (RR) is an essential gene of nucleoside metabolism. Inhibitors of this function are known to be cell lethal. Two variances were discovered at position 2410 and 2419. Oligonucleotides were synthesized to a sequence spanning these two variations. In one case the oligomer targeted the GnnnnnnnA variation (oligomer Varia 2410GA or RR2410GA) and in the other case the oligomer targeted the AnnnnnnnG variant (oligomer Varia 2410AG or RR2410AG). In Mia Paca II cells which contain the GnnnnnnnA variance, the RR2410GA antisense oligomer dramatically knocked down the level of RR mRNA. However, the oligomer targeting the other variance, oligomer Varia 2410AG, had little to no effect on the level of mRNA (Figure 16). The reciprocal regulation was demonstrated in MDA-MB 468 cells which express the other variance, AnnnnnnnnG (Figure 17). In these cells Varia 2410AG dramatically lowered the level of RR mRNA. In contrast, Varia 2410GA had no effect on the level of mRNA. These data taken together, are another example of allele-specific targeting of gene expression. We are also determining the effect of down regulating RR gene expression on cellular growth.

Example 33 - variance specific inhibition of essential genes using advanced oligonucleotide chemistries.

This example describes experiments showing the practicality and utility of variance-specific inhibition of essential genes for cancer therapy. Specifically, this example describes in vitro experiments showing the design and production of variance-specific oligonucleotides for antisense inhibition of variant alleles of the essential Glutamyl/prolyl tRNA Synthetase (EPRS), the design and production of variance-specific oligonucleotides against EPRS, and the use of these oligonucleotides to inhibit EPRS mRNA in a variance-specific manner.

Glutamyl-prolyl-tRNA synthetase (EPRS) is an essential gene, required for the synthesis of both glutamic acid tRNA and proline tRNA. Without EPRS protein synthesis is blocked. Two variances were discovered in this gene at positions 2963 and 2969 in the cDNA. We have demonstrated variance-specific inhibition of this gene with antisense oligonucleotides exploiting several different types of chemistry.

10

5

15

20

25

The experiments described above with RPA70 and RR utilized phophorothioate chemistry. This chemistry was developed to achieve greater stability in vivo, and this compound ha been used in several successful clinical trials. Phosphorothioates, however have low affinity for the RNA target, and, consequently, relatively lower specificity. We have achieved improved variance-specific inhibition using alternative chemistries. Specifically, we have synthesized hybrid oligonucleotides that contain both phosphorothioate and nucleotides with higher affinities. These hybrids contain "wings" consisting of six nucleotides with a 2' sugar modification (ethoxy-methoxy radical at the 2' position) and either a phosphorothioate or phosphodiester backbone. Between the "wings" is a 8 nucleotide sequence of phosphorothioates that overlaps the variance. (In these constructs the 5' position of cytosine has been methylated.) As shown in Figure 18, variance specific inhibition is observed with the conventional phorphorothioates. Greater inhibition of target mRNA is observed using the hybrid chemistries at lower doses. Inhibition by the matched hybrid oligomer, 14977, occurs at approximately 50-100 nM. The effect is extremely oligomer-specific. The mismatched oligomer, 14971, has no effect on mRNA levels at concentrations as high as 400 nM (Figure 19).

Example 34 - in vivo cancer therapy using oligonucleotides

This example describes reported in vitro and in vivo data on the treatment of cancer in animal models using antisense oligonucleotides against c-raf, showing the expected

correlation between *in vitro* suppression of mRNA and cell proliferation with oligonucleotides, and *in vivo* anticancer activity.

In vitro evidence for inhibition of mRNA by antisense oligonucleotides and inhibition of cell proliferation is commonly used to predict *in vivo* effects on tumors. This is exemplified by the publication by Monia et al (Nature Medicine, Volume 2 Number 6, June 1996) who demonstrated anticancer effects using oligonucleotides against C-raf kinase. In vitro treatment of human tumor cells with appropriate phosphorothioate antisense oligomers led to specific inhibition of C-raf kinase gene expression and subsequent decrease in cellular proliferation, IC50=50-100nM. Administration of C-raf antisense oligomers to nude mice having a tumor burden derived from these cells significantly inhibited tumor growth *in vivo*, IC50= 0.06-0.6 mg/kg. Remarkably, the investigators were able to show that the anti-C-raf oligomers down-regulated the level of C-raf kinase mRNA *in vivo* by assaying mRNA levels in cells removed from the tumor.

Example 35 - in vivo cancer therapy by oligonucleotide inhibition of ras

This example describes reported in vivo data showing an anticancer effect using an allele-specific inhibitor for suppression of mutant H-ras. Schwab et al (Proc. Nat. Acad. Sci. USA 91:10460-464, Oct 1994) demonstrated antitumor effects of an antisense oligonucleotide specific for the mutant ras in animal models. In these experiments HBLl00 cells were transformed with the RAS oncogene. In vitro studies demonstrated that the RAS mRNA could be specifically down-regulated by a nanoparticle conjugated phosphodiester antisense oligomer. Only the transforming RAS mRNA was targeted by the oligomer. The normal cellular RAS mRNA, differing by a single base, was not affected by the antisense oligomer. The decrease in RAS expression was associated with a decrease in the growth rate of the cells. The

5

10

15

20

WO 98/41648 PCT/US98/05419

289

transformed HBL100 cells were injected into nude mice to form tumors; following subcutaneous injection of nanoparticle-conjugated phosphodiester antisense oligomers, Schwab et al measured both a decrease in targeted tumor weight and volume. Specificity for tumor cell growth correlated well with the *in vitro* data having a 5-fold differential between antisense and control groups.

The authors of this paper are proceeding with clinical trial of these oligonucleotides for the treatment of cancer, demonstrating the potential clinical utility of these methods.

Example 36. Variance detection by DGGE

This example describes denaturing gradient gel electrophoresis (DGGE), a technique used for the identification of DNA sequence variances in genomic DNA, cDNA or in PCR products amplified from genomic DNA or cDNA. The DGGE method was originally described by Fischer and Lerman (Two Dimensional Electrophoretic Separation of Restriction Enzyme Fragments of DNA. Methods in Enzymology, vol. 68: 183-191, 1979; DNA Fragments Differing by Single Base-Pair Substitutions are Separated in Denaturing Gradient Gels: Correspondence with Melting Theory. Proc. Natl. Acad. Sci. U.S.A. 80:1579, 1983) and has been improved since then by many investigators. See, for example: Myers, et al., Mutation Detection by PCR, GC-Clamps, and Denaturing Gradient Gel Electrophoresis, pp. 71-88 in Erlich, H.A., editor: PCR Technology: Principles and Applications for DNA Amplification, Stockton Press, New York, 1989; Myers, et al., Detecting Changes in DNA: Ribonuclease Cleavage and Denaturing Gradient Gel Electrophoresis, in Davies, K.E., editor: Genomic Analysis: A Practical Approach, IRL Press Ltd., Oxford, 1988, pp. 95-139; E.S. Abrams and V.P. Stanton Jr., Use of Denaturing Gradient Gel Electrophoresis, pp. 71-104 in Lilley, D.M.J. and Dahlberg, J.E., editors: DNA Structures, Part B: Chemical and Electrophoretic Analysis of DNA, Methods in

5

10

15

20

10

15

20

25

290

Enzymology, volume 212, Academic Press, 1992; .) Descriptions of current applications of the technique can be found in

The basic principal of DGGE involves the creation of a gradient of denaturant in a gel, which is then used to resolve double stranded DNA (or RNA) fragments on the basis of conformational differences associated with strand melting. The denaturant can be chemical (as in DGGE, where a gradient of formamide and urea is typically used) or thermal (as in a related technique called thermal gradient gel electrophoresis, or TGGE, where a gradient of heat is used). To obtain conditions where double stranded DNA is close to melting, DGGE gels are immersed in a heated bath of electrophoresis buffer, while TGGE gels have a fixed concentration of chemical denaturant.

As a double stranded DNA molecule migrates through a DGGE gel from a low concetration of denaturant at the origin to higher concentrations of denaturant toward the end of the gel it eventually reaches a level of denaturant that will cause partial melting. (Some design of DNA molecules is often necessary to assure that the partial melting will occur as desired; see below.) The concentration of denaturant required to melt a given DNA segment is highly sensitive to sequence differences in the DNA, including changes as subtle as a single nucleotide substitution. Partially melted DNA fragments move through gels at a much slower rates than their fully duplex counterparts. Thus two DNA fragments differing at a single nucleotide can be distinguished on the basis of their gel position after an appropriate period of electrophoresis: the fragment with the more stable structure (resulting from, for example, a G:C base pair in place of an A:T pair) will travel further in the gel than its less stable counterpart, because it will encounter the concentration of gradient required to melt it (and consequently dramatically retard or nearly stop its movement) at a point further along in the gel.

The DGGE method reveals the presence of sequence variation between individuals as

shifts in electrophoretic mobility, but does not show the sequence itself. Direct sequencing of DNA fragments (from different individuals) with altered mobility in the DGGE assay will reveal the precise sequence differences among them (see example 37, Variance Detection by DNA Sequencing). From the nucleic acid sequence data, the amino acid sequence can be determined and any amino acid differences can be identified.

10

5

15

20

25

The DGGE method is suitable for analysis of restriction enzyme digested genomic DNAs, as initially described by Lerman and co-workers (supra) and later extended (Gray, M. Detection of DNA Sequence Polymorphisms in Human Genomic DNA by Denaturing Gradient Blots, American Journal of Human Genetics, 50: 331-346, 1992). DGGE is equally suitable for analysis of cloned DNA fragments or DNA fragments produced by PCR. The analysis of cloned fragments or PCR fragments has the advantage that non-natural sequences, rich in G and C nucleotides can easily be added to the 5' ends (either flanking the cloning site or at the 5' ends of PCR primers). Such DNA fragments have very stable double stranded segments, called GC clamps, at one or both ends. The GC clamps alter the melting properties of the fragments, and can be designed so as to insure melting of the inter-primer segment of the PCR product at a lower temperature than the clamps, thereby optimizing the detection of sequence differences (see Myers et alia, supra and Myers et alia, Nearly All Single Base Substitutions in DNA Fragments Joined to a GC Clamp Can be Detected by Denaturing Gradient Gel Electrophoresis. Nucleic Acids Research 13: 3131, 1985). GC clamps can be rationally designed for any specific DNA fragment of known sequence by use of a computer program (MELT87, written by L. Lerman) that accurately predicts melting behavior based on analysis of primary sequence. When GC clamps are used correctly, the DGGE method is highly efficient at detecting DNA sequence differences. Not only are nearly 100% of differences detected, but the false positive rate is essentially zero. (Abrams, E.S., et alia, Comprehensive Detection of Single Base Changes in Human Genomic DNA Using Denaturing Gradient Gel

Electrophoresis and a GC Clamp. Genomics 7: 463-475, 1990.) Recently methods for increasing the throughput of DGGE have been developed, based on multiplex PCR.

The steps in carrying out DGGE with GC clamps are:

5

1. Design DNA fragments with optimal melting behavior. Select oligonucleotide primers, using GC clamps as necessary, to produce a single melting domain over the length of the sequence to be analyzed. (It may be necessary to divide the sequence into overlapping fragments to achieve this goal.) Design of primers and simulated analysis of fragments can be performed with the computer program described by Lerman. (Lerman, L.S. and Silverstein, K. Computational Simulation of DNA Melting and its Application to Denaturing Gradient Gel Electrophoresis. Methods in Enzymology 155: 482-501, 1987.) The output of the program is the melting map of the fragment, from which it will also be possible to determine the optimal range of denaturant in the gradient and the approximate electrophoresis time for fragments to reach the point of melting in the gradient.

15

10

2. Amplify the fragment by PCR. Procedures for optimizing PCR are briefly described in other examples and are well known in the art. Template DNA samples can either be cDNA or genomic DNA and will typically be drawn from a panel of unrelated individuals.

20

25

3. Pour a denaturing gradient gel. Briefly, make up two gel solutions containing the desired beginning and end concentrations of denaturant. The gel solutions are generally made up by mixing "0%" and "100%" denaturant stock solutions, where the 0% stock consists of 7% acrylamide in Tris-acetate EDTA (TAE) electrophoresis buffer, and the 100% stock is also 7% acrylamide in TAE, plus 40% formamide by volume and 7 molar urea. Equal volumes of the two solutions (e.g. twelve milliliters of each solution) are poured into the two chambers of a gradient maker (usually between 20 and 40% denaturant in the upstream chamber and 60 to 80% in the lower

g & -- 0

5

10

15

20

25

293

one) immediately after addition of ammonium persulfate and TEMED for acrylamide polymerization. Open the stopcock of the gradient maker and pour the gradient gel. Usually gels are .75 to 1 mm in thickness, and gel combs that form 10-30 wells are used. With commercially available apparatus multiple gradient gels can be poured simultaneously. Suitable apparatus is sold by several vendors, including the BioRad (Hercules, CA) Dcode system and the C.B.S. Scientific DGGE system.

4. Place the gel in a heated bath of electrophoresis buffer. Gels are electrophoresed at elevated temperature which, together with the denaturant, brings the DNA fragments to their melting point. Gels are often run at 60°C in 1X TAE buffer, with constant recirculation of buffer to the upper buffer chamber. Once the gel has been placed in the heated tank and allowed to equilibrate it can be loaded. Multiple gels can be run simultaneously in the same tank with the apparatus listed above.

5. Load and run gel. Usually enough PCR product from each sample is loaded on the gel so that samples can be detected by a simple DNA staining procedure; use of radioactivity, dyes or hybridization procedures can thereby be avoided. At least 100 mg of each sample should be loaded, but preferably over 200 ng. Gel running conditions can be estimated from the output of the MELT87 program, however empirical adjustment will often be necessary. Usually a voltage of ~80 to 200V is applied for periods of 5-20 hours, depending on the characteristics of the fragments being analyzed.

6. Stain and analyze gel. After electrophoresis gels are stained with ethidium bromide, SYBR Green, silver or some other procedure. The location of PCR products produced with the same primer pairs should be compared. Altered location, and usually the appearance of two or more bands instead of one, signify the presence of DNA sequence differences. (The reason for more than two bands from a diploid sample is that during the terminal cycle of heating and cooling of the PCR

step heteroduplexes are formed between the maternally and paternally inherited alleles. If those alleles differ in sequence, the heteroduplexes will have mispaired nucleotides at the sites of difference. As a result the heteroduplexes will be less stable than either of the homoduplex species, and will consequently melt and be retarded in the gel at a lower concentration of denaturant. Altogether one may see four bands in such samples: two reciprocol heteroduplexes and two homoduplexes.) The specific pattern of fragments in each lane constitutes a signature for a specific nucleotide change.

10

5

7. Sequence DNA fragments with altered mobility. Examples of all different signatures should next be analyzed by DNA sequencing to identify the base difference(s) accounting for altered mobility in the gradient gel. See example 37 for a description of this procedure and the subsequent steps of recording the sequence variances and analyzing their frequency and structural and functional consequences.

15

Example 37: Variance detection by sequencing.

20

Sequencing by the Sanger dideoxy method or the Maxim Gilbert chemical cleavage method is widely used to determine the nucleotide sequence of genes. Presently, a worldwide effort is being put forward to sequence the entire human genome. The Human Genome Project as it is called has already resulted in the identification and sequencing of many new human genes. Sequencing can not only be used to identify new genes, but can also be used to identify variations between individuals in the sequence of those genes.

25

The following are the major steps involved in identifying sequence variations in a candidate gene by sequencing:

- 1. Amplification by the polymerase chain reaction (PCR) of 400-700 bp regions of the candidate gene from a panel of DNA samples. The DNA samples can either be cDNA or genomic DNA and will represent some cross section of the world population.
- 2. Sequencing of the resulting PCR fragments using the Sanger dideoxy method. Sequencing reactions are performed using flourescently labeled dideoxy terminators and electrophoresedon an ABI 377 sequencer or its equivalent.
- 3. Analysis of the resulting data from the ABI 377 sequencer using software programs designed to identify sequence variations between the different samples analyzed.

A more detailed description of the procedure is as follows:

A candidate gene sequence is downloaded from an appropriate database. Primers for PCR amplification are designed which will result in the target sequence being divided into amplification products of between 400 and 700 bp. There will be a minimum of a 50 bp of overlap not including the primer sequences between the 5' and 3' ends of adjacent fragments to ensure the detection of variances which are located close to one of the primers.

20

25

5

10

15

Optimal PCR conditions for each of the primer pairs is determined experimentally. Parameters including but not limited to annealing temperature, pH, MgCl₂ concentration, and KCl concentration will be varied until conditions for optimal PCR amplification are established. The PCR conditions derived for each primer pair is then used to amplify a panel of DNA samples (cDNA or genomic DNA) which is chosen to best represent the various ethnic backgrounds of the world population or some designated subset of that population.

PCR reactions are purified using the QIAquick 8 PCR purification kit (Qiagen cat#

10

15

20

25

28142) to remove nucleotides, proteins and buffers. The PCR reactions are mixed with 5 volumes of Buffer PB and applied to the wells of the QIAquick strips. The liquid is pulled through the strips by applying a vacuum. The wells are then washed two times with 1 ml of buffer PE and allowed to dry for 5 minutes under vacuum. The PCR products are eluted from the strips using 60 ul of elution buffer.

The purified PCR fragments are sequenced in both directions using the Perkin Elmer ABI PrismTM Big DyeTM terminator Cycle Sequencing Ready Reaction Kit (Cat# 4303150). The following sequencing reaction is set up: 8.0 ul Terminator Ready Reaction Mix, 6.0 ul of purified PCR fragment, 20 picomoles of primer, deionized water to 20 ul. The reactions are run through the following cycles 25 times: 96°C for 10 second, annealing temperature for that particular PCR product for 5 seconds, 60°C for 4 minutes.

The above sequencing reactions are ethanol precipitated directly in the PCR plate, washed with 70% ethanol, and brought up in a volume of 6 ul of formamide dye. The reactions are heated to 90°C for 2 minutes and then quickly cooled to 4°C. 1 ul of each sequencing reaction is then loaded and run on an ABI 377 sequencer.

The output for the ABI sequencer appears as a series of peaks where each of the different nucleotides, A, C, G, and T appear as a different color. The nucleotide at each position in the sequence is determined by the most prominent peak at each location. Comparison of each of the sequencing outputs for each sample can be examined using software programs to determine the presence of a variance in the sequence. One example of heterozygote detection using sequencing with dye labeled terminators is described in Pui-Yan Kwok et. al. (Pui-Yan Kwok, Christopher Carlson, Thomas D. Yager, Wendy Ankener, and Deborah A. Nickerson, Genomics 23, 138-144 (1994)). The software compares each of the normalized peaks between all the samples base by base and looks for a 40% decrease in peak height and the concomitant

appearance of a new peak underneath. Possible variances flagged by the software are further analyzed visually to confirm their validity

5

Example 38. Loss of heterozygosity.

10

15

20

25

Loss of chromosomes or segments of chromosomes in disease cells results in loss of alleles in the disease cells compared to normal diploid cells. Such allele losses are a common occurrence in cancer, where they have been documented in over 1,500 publications in the past 14 years. More recent work has documented the occurrence of allele loss in other proliferative diseases. Several cytogenetic and molecular techniques have been developed to measure chromosome losses. The molecular techniques are preferable for identification of allele loss because they also show which allele is lost, and are therefore best suited to provide the information needed to implement the present invention.

In order to measure chromosome loss using molecular techniques it is necessary to be able to distinguish the paternally and maternally inherited copies of a given chromosome. DNA variances allow the two copies of a given chromosome to be distinguished because different alleles can be resolved electrophoretically. The standard method for analyzing allele loss in cancer is to compare tumor cell DNA with normal cell DNA, either in a Southern blot or using PCR based techniques. A patient's tumor DNA is said to be "informative" for allele loss only at loci where the patient's normal cells are heterozygous. When such heterozygous loci are examined in tumor cells often only one allele is detected. Such tumor cells have lost the heterozygous state which characterizes all normal somatic cells of the patient, hence the term loss of heterozygosity (LOH).

WO 98/41648 PCT/US98/05419

298

Several effective molecular procedures have been developed to measure LOH. These procedures have been applied most extensively to cancer tissues, however the same methods are effective in the study of nonmalignant diseases such as atherosclerotic plaques and endometriosis. The main steps are:

LOH usually affects large segments of DNA, ranging from several megabases to an

5

1. Identify DNA variances at or near the locus to be investigated for LOH.

10

15

20

25

entire chromosome. As a result, accurate estimation of LOH at a specific locus can be obtained by measuring the frequency of LOH at neighboring polymorphic markers on the same chromosome, or more preferably on the same chromosome arm, or most preferably within several 10-20 megabases of the locus. However, to precisely measure LOH at a specific locus requires a variance at the locus. Different types of variances have been used to study LOH, including single nucleotide polymorphisms (SNPs), specifically SNPs that alter restriction endonuclease cleavage sites, called RFLPs. (For details of this approach see Vogelstein, B., et al., Allelotype of colorectal carcinomas. *Science* 244: 207-211, 1989). Also short tandem repeat polymorphisms (STRPs), including di-, tri- and tetranucleotide repeat polymorphisms have been used to measure LOH. (For details of this procedure see Jones and Nakamura, Deletion Mapping of Chromosome 3p in Female Genital Tract Malignancies Using Microsatellite Polymorphisms. Oncogene 7: 1631-1634, 1992.) Procedures for identifying variances are described in Examples 28, 29, 30 and 36.

2. Prepare DNA from paired normal and disease tissue samples from patients being studied.

Before preparing genomic DNA from tumor tissue it is important to assess tumor cell purity and viability, using microscopic examination of frozen sections if necessary. If embedded pathological specimens are being analyzed tumor cell purity can be

10

15

20

25

assessed by examining histologic sections before selecting areas for cell isolation and DNA purification. (See Johnson, et al., Direct Molecular Analysis of Archival Tumor Tissue for Loss of Heterozygosity, BioTechniques 19:190-191, 1995, and references therein for description of techniques for purifying tumor cell DNA from archival pathology samples.) Areas of necrosis and extensive admixture of normal and tumor tissue should be avoided. For Southern blotting ~5-10 ug of genomic DNA is required for each sample being analyzed. For PCR based methods as little as 5 to 10 ng of genomic DNA is sufficient; much less will suffice if two successive rounds of PCR amplification are used.

3. Determine genotype in the normal and disease tissues using a quantitative or semiquantitative procedure that allows the amount of each allele to be measured. Compare the ratio of alleles in the normal tissue to the ratio in the tumor tissue

In order to show LOH at a given locus it is necessary to establish that the patient is constitutionally heterozygous at the locus. Thus DNA from normal tissue must be tested, either before or in parallel with tumor tissue DNA. A variety of methods can be used for quantitation of signal from the two alleles. If the alleles are compared on a Southern blot then signal in the bands corresponding to the two alleles can be counted by radioactive or nonradioactive techniques (see Ausubel, et al., Current Protocols in Molecular Biology, John Wiley & Sons). One method employs phosphor technology using a Molecular Dynamics PhosphorImager with ImageQuant software to measure signals. If the alleles are compared after PCR amplification then DNA sequencing can provide accurate quantitation of allele ratios. See, for example, Goldsborough and Kornberg, Allele-Specific Quantification of Drosophila Engrailed and Invected Transcripts, Proc. Natl. Acad. Sci. U.S.A. 91:12696-12700, 1994.

Using highly variable markers distributed across the genome a comprehensive map of LOH can be assembled for a specific cancer type. Such data sets have been termed allelotypes. Separate studies are necessary for different cancer (or other disease) types

WO 98/41648 PCT/US98/05419

300

as the patterns of LOH differ significantly in different diseases.

Other techniques that have been used to detect allele loss in cancer include Comparative Genomic Hybridization (CGH) and Representation Difference Analysis (RDA) however these methods are more complex than the Southern blot or PCR based techniques. Chromosome loss can also be detected cytogenetically. Mitelman (Catalog of Chromosome Aberrations in Cancer. Wiley-Liss, New York, 1995.) has compiled a catalog of over 10,000 published karyotypes of cancer cells which documents chromosome deletions as well as other changes.

10

5

Example 39. Small molecule inhibitors of variant sequences:

Methylguanine Methyltransferase (MGMT)

Gene VARIA 1534

15

The methylguanine methyltransferase gene is essential for cell growth or survival in the presence of alkylating agents

20

25

Methylguanine methyltransferase (MGMT) is a nuclear protein that repairs alkylating agent damage, specifically alkylation of the O6 position of guanine bases in genomic DNA. MGMT acts as a suicide protein in removing methyl or alkyl groups from guanine and covalently binding them to cysteine 145 of MGMT. The protein is subsequently degraded; it does not act as an enzyme. O6-benzylguanine is an inhibitor of MGMT that mimics the natural substrate, alkylated DNA; transfer of the benzyl group to cysteine 145 of MGMT inactivates the protein. Concurrent administration of O6-benzylguanine and an alkylating agent such as carmustine (BCNU) or lomustine (CCNU) renders tumor cells more sensitive to the toxic effects of the nitrosoureas by inactivataing MGMT and thereby inhibiting the tumor cells ability to repair alkylated

DNA. MGMT is thus a conditionally essential gene in the presence of nitrosoureas and other alkylating agents. The conditional essentiality of MGMT has been demonstrated in mice. Animals homozygous for disrupted MGMT genes are more than ten times as sensitive to alkylating agents as normal mice. The relative sensitivity has been measured as the LD50, the dose required to kill 50% of treated animals. (Tsuzuki, T., et al. Targeted disruption of the DNA repair methyltransferase gene renders mice hypersensitive to alkylating agent. *Carcinogenesis* 17: 1215-1220, 1996.) O6-benzylguanine is being developed as a chemosensitizing agent (with alkylating agents) for treatment of human cancer. This treatment regimen is not specific for cancer cells.

10

15

5

In a cancer patient with two alternative functional MGMT alleles in normal tissues and LOH at 10q23 resulting in only one copy of MGMT in cancer cells, an allele specific inhibitor of MGMT could be used to specifically sensitize cancer cells to the action of alkylating agents. Treatment would consist of the administration of the appropriate allele specific inhibitor (directed to the one allele remaining in cancer cells) plus an alkylating agent. The tumor cells would be unable to effectively repair the alkylating agent induced DNA damage, while the uninhibited allele in normal cells would be able to function. Thus normal cells, including sensitive normal cell populations such as bone marrow stem cells, would be able to tolerate higher doses of alkylating agents than cancer cells.

20

The MGMT gene and encoded protein are polymorphic

25

Four variances in human MGMT have been discovered by the inventors or reported in the literature, including three variances that affect the protein sequence. There is a C/T variance at nucleotide 255 (11% heterozygotes among 36 individuals surveyed) which does not affect the encoded protein. There is a second C/T variance at nt. 346 which results in a L84F amino acid variance (5% heterozygotes among 36 individuals surveyed). There is an A/G variance at nt. 523 which results in a I143V amino acid

variance (24% heterozygotes among 36 individuals surveyed). This variance occurs only two residues from the active site cysteine at 145. A fourth variance, G/A has been reported in the Japanese population at codon 160, GGA vs. AGA, resulting in a glycine vs. arginine amino acid variance. Fifteen percent of 40 Japanese individuals studied were heterozygotes for this variance. (Imai, Y., et al. A polymorphism at codon 160 of human O6-methylguanine-DNA methyltransferase gene in young patients with adult type cancers and functional assay. *Carcinogenesis* [London] 16:2441-24445, 1995.)

Allele specific inhibitors of MGMT

10

15

20

5

Two of the amino acid variances in MGMT, at residues 143 and 160, are near the active site of the protein. Substantial work has already been done to characterize the functional consequences of the residue 160 glycine/arginine variance. Studies of MGMT kinetics and activity have shown that the 160arginine allele is at least 20 fold more resistant to O6 benzylguanine inactivation, measured as an increase in the ED50 and or as a reduction in the production of guanine from O6-benzyl[8-3H] guanine. The 160gly and 160arg forms of MGMT were nearly equal in alkyltransferase activity in an assay that measured repair of O6-methylguanine in methylated DNA. These results demonstrate variance-specific effects of a small molecule, O6-benzylguanine, on normal (non-mutant) alleles of the conditionally essential MGMT gene. (Edara, S., et al. Resistance of the human O6-alkylguanine-DNA alkyltransferase containing arginine at codon 160 to inactivation by O6-benzylguanine. Cancer Research 56: 5571-5575, 1996)

25

Administration of O6-benzylguanine to patients who are heterozygous for the variance in their normal cells, and contain only the alternative form of the gene with a glycine residue at position 160 in their cancer cells, together with methylating or chloroethylating agents, will specifically sensitize cancer cells to the cytotoxic effects of the alkylating agents without increasing toxicity to normal cells which, since they

contain the O6-benzylguanine resistant 160arginine form of the protein, will continue to repair alkylated DNA.

5

There is no published data concerning the residue 143 variance, however the proximity of this variance to the active site - both in the primary sequence and upon inspection of the three dimensional structure of the bacterial AGT protein, a functional and structural homolog of human MGMT - suggests that allele specific drugs could be discovered for this variance.

10

The structural difference between 143isoleucine and 143valine is a hydrophobic methyl group. It is well known that most small molecule protein inhibitors interact via hydrophobic interactions. Favorable Van der Waals distances between hydrophobic groups of a substrate and a ligand are vital for high affinity interaction. One possible mechanism of allele specific inhibition would be to exploit the greater bulk of the isoleucine by finding a small molecule that fits into the active site pocket of the valine allele but has a very unfavorable Van der Waals interaction the methyl group of the isoleucine. Other schemes based on the different size and geometry of isoleucine and valine could also be effective.

15

geometry of isoleucine and varine could also be effective.

20

One approach to identification of such inhibitors would be to make small molecule libraries in which various positions of guanine are substituted with moities of appropriate size and structure. Such libraries could then be tested in various screens of MGMT activity. The two alleles (143isoleucine and 143valine, or any of the other allele pairs of MGMT described above) would be assayed in parallel. Identification of molecules with allele specific inhibitory activity could be the basis for synthesis of additional libraries in which the moities that are best correlated with differential activity are further varied. Methods for the iterative design of high

affinity or highly discriminating small molecule inhibitors are known in the art.

25

Libraries of restricted size can be screened for allele specific inhibitors using a combinatorial strategy based on known inhibitors of MGMT such as O6-benzylguanine. A library or libraries can be constructed in which substitutions are indroduced at positions C6 and N9 which have previouly been found to affect inactivation of MGMT, or at positions C2 and N8 which can be easily substituted. For example a series of 4(6)-(benzyloxy)-2,6(4)-diamino-5-(nitro or nitroso)pyrimidine derivatives and analogs in which 4(6)-benzyloxy groups were replaced with (2-, 3-, or 4 fluorobenzyl)oxy or (2-, 3-, or 4-pyridylmethyl)oxy groups have been synthesized and tested for MGMT inhibition. (Terashima I., and K. Kohda. Inhibition of human O6-alkylguanine-DNA alkyltransferase and potentiation of the cytotoxicity of chloroethylnitrosourea by 4(6)-(Benzyloxy)-2,6(4)-diamino-5-(nitro or nitroso)pyrimidine derivatives and analogues. *J Med Chem* 41: 503-508, 1998.) Substitutions at N7 have been found to be detrimental in general (Moschel, R.C. et al & Pegg, A. E., *J. Med. Chem.* 35: 4486-4491, 1992).

15

20

5

10

Combinatorial libraries can be constructed according to a published procedure (Norman, T. C. et al., A Structure-Based Library Approach to Kinase Inhibitors. *J. Am. Chem.Soc.* 118: 7430-7431, 1996) where guanine based libraries were made by anchoring a chemically modified guanine (at C6, C2, or C8) to solid supports at C2 via a glycinamide linkage or at N9 via a hydroxyethyl linkage. Chemical reactions can be carried out to introduce a library of hydrophobic substituents of different size at positions C6, C2, or C8. Hydrophobic substituents of various bulkiness and orientation can be indroduced through derivatives of O6-benzyl and O6-phenyl groups, O6-alkyl groups, N9-alkyl groups, and C2-amino-alkyl groups.

25

Libraries constructed as above can be screened for MGMT activity in several types of assays. Methods for bacterial expression and purification of human MGMT protein have been described (see Edara, et al., cited above). Both allelic forms of MGMT could be screened for repair of alkylated or methylated DNA by measuring transfer of tritium from a tritium labelled (methylated) DNA substrate in the

30

10

15

20

25

305

presence of various concentrations of library compounds for various times.

Alternatively, library compounds could be tritiated and MGMT proteins could be screened for the rate at which they interact with (either via association or cleavage of a moiety from the compound). Other assays for MGMT activity are known in the art.

Example 41. Clinical use of variance specific inhibitors for treating cancer

Inhibitors that are the object of the present invention are designed to be administered to patients who are heterozygous for the target gene, meaning that their cells normally contain two alternative copies of the gene, one that is sensitive to inhibition by said inhibitors, and one that is not sensitive to said inhibitors. It is apparent that several such inhibitors may be developed according to this invention targeted to alternative alleles of a single target gene or to several different target genes. The inventors propose that a series of such inhibitors will be developed according to this invention.

The clinical use of this invention involves the steps of:

- (a) testing normal cells from a patient to identify target genes that are heterozygous, present in two alternative forms.
- (b) testing biopsy tissue from a tumor or proliferative lesion to determine whether one of the two alternative forms is eliminated due to LOH.
- (c) selecting a drug for inhibition based on the presence of the sensitive allele in the tumor and the presence of an insensitive allele in normal cells
- (d) administering said drug to the patient in an appropriate dose to inhibit the essential function in the cancer cell.

Testing of normal cells to identify heterozygosity of the target gene is performed

WO 98/41648 PCT/US98/05419

306

using conventional diagnostic methods that are known in the art. Normal cells are commonly derived from a blood sample, hair sample, or buccal smear.

Alternatively normal cells may be obtained by cultivating primary cells such as lymphoblasts or fibroblasts in vitro. The presence of two alternative alleles may be determined by methods including allele-specific hybridization with oligonucleotides containing the variant sequences and a number of non-variant nucleotides to allow differential binding to the alternative forms of the gene or other methods known in the art using purified DNA or RNA or amplified DNA or cDNA sequences. Testing of biopsy tissue is performed by separating tumor cells or cells of the proliferative lesion to isolate a sample of cells characteristic of the proliferative lesion for analysis. This is performed by a variety of methods known in the art including manual dissection or laser assisted methods for eliminating normal cells or selecting abnormal cells. Samples of abnormal tissue, and samples of normal tissue as a control, are analyzed to identify the presence or absence of alternative forms of the target gene. The presence of two altrnative alleles may be determined by methods including allele-specific hybridization with oligonucleotides containing the variant sequences and a number of non-variant nucleotides to allow differential binding to the alternative forms of the gene or other methods known in the art using

20

25

5

10

15

Selection of a drug for administration will be based on clinical trial data indicating that the drug is effective in eliminating abnormally proliferating cells and causing an improvement in the patient's clinical condition for patients who have the sensitive allele of the target gene in their pathological lesion. In one aspect of this invention, the product label will describe that the drug is indicated in patients who have only a specific allele of the target gene in their lesion and an alternative allele in their normal cells. Any such drug will be indicated only for a fraction of patients having two alternative alleles of the target gene in their normal cells and LOH. The fraction of patients who may be treated with any one drug may be determined by

purified DNA or RNA or amplified DNA or cDNA sequences.

10

15

20

25

multiplying the number of patients with a given cancer times the fraction of tumors exhibiting LOH of the target gene locus times the fraction of patients who will be heterozygous. For a target gene exhibiting 50% heterozygosity in the population and a 70% fraction of LOH in a specific cancer (several such examples are shown), a single inhibitor will treat ~17% of such cancers. A second compound directed against the alternative allele would treat another 17% of said cancer. In the preferred use of this invention, a panel of such drugs will be available enabling therapy with at least one such drug in most patients.

Administration of the drug to the patient ration to the patient will involve conventional means such as parenteral, oral, or intratumoral administration. The route of administration will be determined separately for each inhibitor and will be based on the bioavailability of the compound to the lesion. The compound may be administered in one or more doses as a single agent or in combination with other allele specific agents or conventional antiproliferative drugs or agents commonly used for the treatment of cancer or support of cancer patients.

Example 42.Cell Division Cycle 25C (CDC25C) - Gene VARIA10

Cdc25C is essential for cell growth

A vital regulator of cell proliferation is the protein kinase Cdc2, whose activation at the end of G2 of the cell cycle initiates mitosis. Gene disruption experiments in yeast confirm the importance of this protein, as cells lacking Cdc2 fail to progress through the cell cycle. As would be expected for such an important protein, Cdc2 activity is tightly regulated. Its activity depends on complex formation with Cyclin B, a protein that accumulates through the cell cycle and is then abruptly degraded during mitosis. Phosphorylation of Cdc2 on Tyr-15 and Thr-14 by the Wee1/Mik1

kinases maintains the Cdc2/Cyclin B complex in an inactive state until the end of G2. The dual-specificity phosphatase Cdc25C is then stimulated to dephosphorylate Cdc2 on both residues, resulting in activation of the complex. Just as Cdc2 is essential for cell growth, the regulation of its activity is essential. The best evidence for this is that the individual disruption of cdc2, cyclin B, wee 1 and cdc25 in the yeast *S. pombe* are lethal events. When cdc25 is deleted from these cells they display a phenotype consistent with their function; they grow without dividing, becoming dramatically elongated.

The human CDC25C gene and protein have variances

The CDC25C cDNA was cloned by Sadhu et al. (1) (Genbank accession number M34065, GI number 181075). To determine whether CDC25 is polymorphic, VARIAGENICS scanned cDNA from 32 unrelated individuals using the T4 Endonuclease VII method, which involves the cleavage of DNA heteroduplexes followed by DNA sequencing of polymorphic regions (see description of method in examples). A transversion at nucleotide 1099 (G or C) was identified (nucleotide numbering is from reference 1). This results in an amino acid difference at residue 297, with G encoding glycine and C encoding arginine. Overall, 9.4% of individuals analyzed are heterozygous. The rate of heterozygosity increases to 33.3% in Caucasians.

The human CDC25C gene maps to chromosome 5q31, a site of frequent loss of heterozygosity

Sartor et al. (2) mapped the human CDC25 gene to 5q31 by fluorescence in situ hybridization using the cDNA cloned by Sadhu et al. This mapping location was confirmed by Taviaux and Demaille (3), also using fluorescence in situ hybridization. There have been many studies of LOH on 5q, particularly the 5q21-

25

5

10

15

20

10

15

20

q22 region where the Adenomatous Polyposis Coli (APC) tumor suppressor gene lies. The most extensively studied cancers are those of the gastrointestinal tract, lung and ovary. There have been fewer studies of the 5q23-q33 region just distal to APC (where CDC25C lies), however the available data suggests that LOH occurs in this region at a frequency of ~30% in cervical cancer (4), 20-40% in colon cancer (5,6), 30-50% in ovarian cancer (7,8), up to 38% in stomach cancer (9), and 23% in testicular cancer (10). There is also evidence for LOH in head and neck, lung and liver cancers. In most of these studies only one or two markers were used. Definitive assessment of LOH frequency at the CDC25C locus will require direct analysis of the polymorphisms identified in various tumor types.

References

- 1) Sadhu, K., Reed, S.I., Richardson, H., Russell, P. (1990) Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G(2). *Proc. Natl. Acad. Sci. U.S.A.* 87: 5139-5143.
- 2) Sartor, H., Ehlert, F., Grzeschik, K.-H., Muller, R., Adolph, S. (1992) Assignment of two human cell cycle genes, CDC25C and CCNB1, to 5q31 and 5q12, respectively. *Genomics* 13: 911-912.
- 3) Taviaux, S.A., Demaille, J.G. (1993) Localization of human cell cycle regulatory genes CDC25C to 5q31 and WEE1 to 11p15.3-11p15.1 by fluorescence in situ hybridization. *Genomics* 15: 194-196.
- 4) Mitra, A.B., Murty, V.V., Li, R.G., Pratap, M., Luthra, U.K., Chaganti, R.S. (1994) Allelotype analysis of cervical carcinoma. *Cancer Res.* 54: 4481-7.
- 5) Japanese Journal of Cancer Research 82:1003.
- 6) Cunningham, C., Dunlop, M.G., Wyllie, A.H., Bird, C.C. (1993) Deletion mapping in colorectal cancer of a putative tumour suppressor gene in 8p22-p21.3.

 Oncogene 8: 1391-6.
 - 7) British Journal of Cancer 69: 429.
 - 8) Weitzel, J.N., Patel, J., Smith, D.M., Goodman, A., Safaii, H., Ball, H.G. (1994)

WO 98/41648 PCT/US98/05419

310

Molecular genetic changes associated with ovarian cancer. *Gynecol. Oncol.* 55: 245-52.

- 9) Genes, Chromosomes and Cancer 3: 468.
- 10) Murty, V.V., Bosl, G.J., Houldsworth, J., et al. (1994) Allelic loss and somatic differentiation in human male germ cell tumors. *Oncogene* 9: 2245-51.

Example 43. Dihydropyrimidine Dehydrogenase (DPD)

10 DPD is conditionally essential

Dihydropyrimidine Dehydrogenase is essential for cell survival in the presence of pyrimidine nucleotide analogs such as 5-FU and fluorodeoxyuridine. 5-fluorouracil (5-FU) and related compounds are antineoplastic drugs used in the treatment of breast, gastrointestinal, head and neck and other cancers. These drugs have widely varying clinical effects in cancer patients, ranging from induction of complete response (tumor disappearance) in some patients to severe toxicity in others. There is currently no reliable basis for predicting individual patient responses, and therefore patients receiving 5-FU must be monitored carefully for toxic reactions.

20

15

5

There are a variety of anabolic and catabolic pathways that affect the action of 5-FU (reviewed in Goodman and Gilman, The Pharmacological Basis of Therapeutics, 8th edition). For example, in order to exert its antiproliferative effects the pyrimidine analog 5-FU must be converted enzymatically to the nucleotide level (fluorodeoxyuridine) by phosphorylation and ribosylation; fluorodeoxyuridine is sometimes given directly because it bypasses most of these steps, and simply requires phosphorylation by thymidine kinase. The 5-fluoronucleotide is an irreversible inhibitor of thymidylate synthase, the enzyme which converts dUMP to dTMP and is required for de novo synthesis of thymidine, and hence for DNA

25

10

15

20

311

synthesis.

There is a three step pathway for catabolism of pyrimidines (thymine and uracil) to beta alanine. Pyrimidine analogs such as 5-FU are catabolized by the same pathway. The first and rate limiting step in this pathway is catalyzed by dihydropyrimidine dehyrogenase (DPD). DPD accounts for catabolism of as much as 90% of a 5-FU dose in normal individuals, and the half life of 5-FU in normals is ~8-20 minutes. Patients homozygous for mutant DPD alleles have been identified, a condition variously called DPD Deficiency, Hereditary Thymine-Uraciluria or Familial Pyrimidinemia. In such patients ~90% of 5-FU is excreted unchanged in the urine, and the drug has a half life longer that 2.5 hours. As a result of the drastically reduced catabolism of 5-FU the toxic effects of the drug are magnified and patients are subject to severe toxic reactions. There are reports of deaths in patients with DPD deficiency after treatment with 5-FU. Thus cell (and organism) survival in the presence of 5-FU depends on presence of functional DPD protein to transform 5-FU to the inactive dihydroxy metabolite.

This principal has also been demonstrated in cancer cells both in vitro and in vivo: cancer cells with lower DPD levels are more susceptible to the toxic effects of 5-FU. It has been suggested that measuring DPD levels would be useful for calibration of 5-FU dosage.

The DPD gene exhibits variances

We have identified four common sites of variance in DPD mRNA by screening cDNA from 36 unrelated individuals. The variant nucleotides are 166, 577, 3925 and 3937 (see DPD Variance Table; numbering is from Yokota, et al. cDNA Cloning and Chromosome Mapping of Human DIhydropyrimidine Dehydrogenase, an Enzyme Associated with 5-fluorouracil Toxicity and Congenital Thymine

10

15

20

25

Uraciluria. Journal of Biological Chemistry. 269: 23192-23196, 1994). Two of the variances in nucleotide sequence alter the amino acid coding sequence: amino acid 29 is usually cysteine but arginine alleles were also detected; cys/arg heterozygotes were found at a frequency of 11%. Residue 166 of DPD is reported to be methionine but valine is present at 166 in some alleles; 9% of the population surveyed are met/val heterozygotes. One double heterozygote was identified out of 36 patients. Both these amino acid polymorphisms are located in the N-terminal NAD/FAD binding domain of DPD. Residue 166 is located in a highly conserved domain of DPD. Two other polymorphisms are located in the 3' untranslated region of DPD, only 11 nucleotides apart.

The DPD gene maps to chromosome 1p22, a region frequently subject to LOH in different cancers

The DPD gene has been mapped to chromosome 1p22 by fluorescense in situ hybridization. LOH at 1p22 has been reported in colon, breast, and other cancers.

Allele specific inhibition of DPD to potentiate 5-FU action in cancer cells with LOH at the DPD locus

The DPD gene is polymorphic and conditionally essential in the presence of 5-FU. These properties can be exploited in a therapeutic strategy for cancer patients with LOH at the DPD locus. Specifically, in a patient with two alternative alleles for DPD in normal cells and one allele in cancer cells due to LOH, an allele specific drug can be used to sensitize cancer cells to the action of 5-FU by inhibiting its catabolism. Cancer cells (but not normal cells) would be poisoned by high levels of 5-FU due to low clearance. Normal cells, containing an uninhibited allele, would be able to catabolize DPD at close to normal levels.

Alternatively, patients heterozygous for functional and defective copies of DPD,

10

15

20

25

and in whom LOH resulted in loss of the functional allele, could be treated by 5-FU without the necessity for an allele specific inhibitor. Identification of such patients would require a test for heterozygosity at DPD and a test for LOH which could show which allele is deleted in cancer cells. Such an approach would be expected to identify patients likely to respond well to 5-FU even though they might have cancers not traditionally treated with pyrimidine analogs.

Example 44. Fanconi Anemia genes A, B, C, D, E, F, G and H (FAA, FAB, FAC, FAD, FAE, FAF, FAG, FAH)

The Fanconi Anemia genes are conditionally essential.

The Fanconi Anemia genes are essential for cell growth or survival in the presence of DNA cross linking agents. In order for cells to survive or proliferate in an abnormal environment characterized by the presence of DNA cross linking molecules such as Mitomycin C and diepoxybutane it is necessary that the cells are capable of efficiently repairing damage caused by these agents. Cells contain proteins necessary for such repair. One way such repair proteins can be identified is by absence of function in specific patients who, as a consequence, are particularly susceptible to the toxic effects of cross linking agents.

Fanconi Anemia (FA) is a hereditary disease, autosomal recessive in transmission, characterized by progressive bone marrow failure, birth defects and predisposition to malignancies. FA patients are hypersensitive to the toxicity of DNA cross linking agents. This hypersensitivity can be measured in cultured FA cells, which is one method used to establish the diagnosis of FA.

Patients heterozygous for defective FA genes are generally not hypersensitive to

DNA crosslinking agents in contrast to those that are homozygous. This suggests that treating heterozygous cancer patients with an inhibitor specific for one allele of the FA gene (and thereby reducing levels of FA protein function by up to 50% in normal cells) would be well tolerated. Inhibition of the FA allele present in cancer cells but not the alternative form present only in normal cells would make cancer cells selectively sensitive to crosslinking agents, leading to a cytotoxic antiproliferative effect. Normal cells would be able to repair damage caused by such agents, by analogy to the clinical data from patients heterozygous for defective FA genes.

10

15

5

The FA genes and gene products are polymorphic

Seven FA genes have been identified by complementation studies. The genes for FAA and FAC have been cloned. DNA variances have been reported in both genes. For example, Savino et al. report three variances in FAA, all of which alter the protein coding sequence. (Savino, M., et al. Mutations in the Fanconi Anemia Group A Gene (FAA) in Italian Patients. American Journal of Human Genetics 61:1246-1253, 1997.) The location of these variances is shown in the Table below, reproduced from the paper by Savino.

20

Variances in the FAA Gene

Polymorphic	Alternate	Affected amino	Alternate	Frequency of
nucleotide	bases	acid residue	amino acids	rare allele
796	A, G	266	Thr, Ala	.29
1501	G, A	501	Gly, Ser	.40
2426	G, A	809	Gly, Asp	.30

25

FA genes map to chromosomes that are frequently subject to LOH in different cancers

The FAC gene maps to chromosome 9q22.3, (as do three other FA complementation

groups according to Strathdee, C.A., et al. Evidence for at least four Fanconi anaemia genes including FACC on chromosome 9. Nature Genetics 1: 196-198, 1992). The FAA gene maps to chromosome 16q24.3. FAD maps to 3p26-p22. All FA genes mapped so far lie in regions subject to frequent LOH. LOH affecting chromosome 9 is well documented in many cancers. For example, loss of the 9q arm is well documented in cancers such as bladder, esophagus, ovary, testis and uterus. LOH frequencies in these cancers range from 20% to 62%. LOH affecting chromosome arm 16q, particularly the 16q24 region is well documented, particularly in breast, prostate and liver cancers. For example, in six detailed studies of breast cancer in the 16q22-q24 region LOH frequencies of 40-60% have been reported. Further, 16q22 LOH has been reported in 25-90% of liver cancers, with the average around 45%. Less extensive studies of other cancer types report 16q22 LOH in 19% of bladder cancers, 20% of colon cancers, 19-27% of esophageal cancers, 25% of small cell lung cancers, 16-37% of ovarian cancers 22% of uterine cancers, and 31-50% of prostate cancers. Loss of chromosome 3p26-21 is common in lung cancer, kidney cancer, head and neck cancer and breast cancer among other cancers. Reports of >50% LOH are common in these cancer types.

Other genes conditionally essential for response to DNA cross linking agents

20

25

5

10

15

In a related aspect, other genes which, when defective, sensitize cells to toxic effects of DNA crosslinking agents would be amenable to the therapeutic strategy outlined above for the FA genes. Specifically, in a patient with two alternative alleles for such a gene and LOH at the relevant locus, an allele specific drug could be used to sensitize cancer cells to the action of cross linking agents. Such drugs could then be used to treat cancer patients constitutionally heterozygous for two normal alleles at the relevant locus, in whom LOH had rendered cancer cells hemizygous or homozygous for one allele. Treatment would consist in the administration of the appropriate allele specific inhibitor plus a cross linking agent or treatment to induce damage in all cells. Cancer

10

15

20

25

cells (but not normal cells) would be rendered unable to respond by inhibition of expression of the relevant repair gene. Examples of such genes are the excision repair cross complementing (ERCC) genes, twelve of which have been identified (see Target Gene Table). Defects in these genes are associated with Xeroderma Pigmentosum and Cockayne Syndrome. (Scriver, C. R. et al., The Metabolic and Molecular Bases of Inherited Disease, 7th edition, McGraw Hill, New York, 1995.)

Alternatively, patients heterozygous for functional and defective copies of such genes, and in whom LOH resulted in loss of the functional allele, could be treated by a cross-link inducing procedure without the necessity for an allele specific inhibitor. Identification of such patients would require a test for heterozygosity at the target locus and a test for LOH which could show which allele is deleted in cancer cells. Such an approach would be expected to identify patients likely to respond well to cross linking agents or procedures even though they might have cancers not traditionally treated with such agents.

Example 45. Asparagine Synthetase (AS). Variagenics Target Gene

Asparagine Synthase is conditionally essential

Cells require a continuous supply of amino acids for protein biosynthesis. Cells can import amino acids from serum via amino acid transporters (the only source besides protein catabolism for the ten essential amino acids), or amino acids cells can be synthesized *de novo* by cells (only an option for the ten nonessential amino acids). The essential amino acids are isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, valine and histidine. Alterations in the nutritional environment of growing cells that result in a decreased extracellular concentration of essential amino

10

15

20

25

acids cause arrested cell growth and may result in cell death.

Even a nonessential amino acid can become essential in a cell where (i) at least one enzyme required for its biosynthesis is not expressed (perhaps due to downregulation in response to an abundant extracellular supply of the amino acid), or (ii) the biosythetic pathway is blocked by an inhibitor.

Asparagine is a nonessential amino acid which is, however, essential for survival of rapidly dividing cells that are not expressing asparagine synthetase, the terminal enzyme in asparagine biosynthesis. Asparagine synthetase, considered to be a housekeeping gene, catalyzes the ATP dependent conversion of aspartic acid to asparagine in mammalian cells. A number of different cancer types do not usually express asparagine synthetase, including childhood acute leukemias. One common therapeutic used in the treatment of childhood acute lymphocytic leukemia is the enzyme L-asparaginase (purified from E. coli or Erwinia carotovora) which, upon injection, rapidly depletes serum asparagine (by hydrolysis to aspartate), thereby lowering blood levels of asparagine to undetectable levels within hours of injection. (Ohnuma, T. et al. Biochemical and Pharmacological Studies with L-Asparaginase in Man. Cancer Research 30: 2297-2305, 1970.) Leukemic cells have high rates of protein synthesis but do not express asparagine synthetase and are therefore highly vulnerable to the rapid loss of asparagine and consequent shutdown of protein synthesis. Cell death after L-asparaginase induced asparagine starvation has been shown to be apoptotic. (Bussolati, O. Characterization of Apoptotic Phenomena Induced by Treatment with L-Asparaginase in NIH3T3 Cells. Experimental Cell Research 220: 283-291, 1995.) After one or more doses leukemic cells often become resistant to L-asparaginase due to induction of asparagine synthetase activity and consequent autonomy for asparagine.

In a patient with two alternative alleles for asparagine synthetase and LOH at 7q, an

10

15

20

25

allele specific drug could be used to sensitize cancer cells to the action of L-asparaginase. Such drugs could then be used to treat cancer patients constitutionally heterozygous for two normal alleles at the asparagine synthetase locus, in whom LOH had rendered cancer cells hemizygous or homozygous for one allele. Treatment would consist in the administration of the appropriate allele specific inhibitor plus L-asparaginase to deplete the concentration of this amino acid in serum while rendering cancer cells (but not normal cells) unable to respond by upregulating asparagine synthetase.

The Asparagine Synthetase gene maps to chromosome 7q21.3, a region frequently subject to LOH in different cancers

The asparagine synthetase gene has been mapped to chromosome 7q21.3 by fluorescence in situ hybridization, following localization to 7q by analysis of somatic cell hybrids. The q21 region of chromosome 7 is subject to frequent LOH, particularly in colon, breast and prostate cancers. 7q21.3 LOH is detected in up to 50% of colon cancers, up to 37% of prostate cancers (83% of prostate cancers have LOH in the adjacent chromosome band, 7q31) and in 10-55% of breast cancers, where again, there is even more frequent LOH in 7q31. LOH at 7q21 has also been reported in uterine cancer and head and neck cancer. Several other cancer types have not yet been well studied for LOH affecting this region.

Example 46. Methionine Synthase (MS).

Variagenics Target Gene

Methionine Synthase is conditionally essential in dividing cells

Cells require a continuous supply of amino acids for protein biosynthesis. L-

methionine is one of ten essential amino acids. Consequently dividing cells must obtain their methionine from serum via amino acid transporter (the only source besides protein catabolism for the ten essential amino acids). Alterations in the nutritional environment of growing cells that result in a decreased extracellular concentration of essential amino acids such as methionine cause arrested cell growth and may result in cell death. Cancer cells are particularly sensitive to methionine deprivation. (Tan, Y., et al., Anticancer Efficacy of Methioninase in vivo. *Anticancer Research* 16: 3931-3936.)

10

5

The cellular requirement for methionine can be bypassed: if L-homocysteine is provided to cells it can be methylated to form methionine by the enzyme methionine synthase (MS). In this reaction the methyl group is provided by 5-methyltetrahydrofolate and MS-bound methylcobalamin serves as an intermediate methyl carrier. A second enzyme may be required for reductive activation of methionine synthase, based on complementation studies.

15

20

25

It occured to the inventors that the apparent antineoplastic effects of methionine deprivation could be enhanced and made tumor cell specific by preventing cells from converting endogenous homocysteine to methionine by allele specific inhibition of methionine synthase (or other enzymes required for the conversion of homocysteine to methionine; see: Scriver, C., et al., editors, The Metabolic and Molecular Basis of Inherited Disease. McGraw Hill, New York, pp. 3111-3128 and 3129-3149). This strategy would be useful in cancer patients that are heterozygous for methionine synthase (or another enzyme required for conversion of homocysteine to methionine) and who have LOH at the methionine synthase (or other) gene locus. In such patients an allele specific inhibitor of MS directed to the sole allele present in cancer cells, coupled with methionine starvation or methioninase treatment, would selectively prevent tumor cells from responding to methionine deprivation. The provision of supplemental homocysteine, which could only be converted to methionine by the

10

15

20

25

normal cells, would provide a way to amplify the differential toxicity to cancer cells. Also, the methionine analog ethionine has been shown to potentiate the effects of methionine starvation. (Poirson-Bichat, F., et al., Growth of methionine-dependent human prostate cancer (PC-3) is inhibited by ethionine combined with methionine starvation. Br. J. Cancer 75: 1605-1612.) Ethionine or similar agents could be used in conjunction with an allele specific inhibitor of methionine synthesis.

An alternative approach to allele specific therapy of cancer cells with LOH would be to target the amino acid transport system for methionine in patients heterozygous for this protein and in whom only one allele is present in cancer tissue as a result of LOH. This would result in selective methionine starvation for cancer cells. Allele specific transport inhibition could be combined with methionine starvation or methioninase treatment to enhance the cytotoxic effect.

The Methionine Synthase gene maps to chromosome 1q43, a region subject to LOH in several cancers

The MS gene has been mapped to chromosome 1q43 by fluoresence in situ hybridization. The q43 region of chromosome 1 is subject to frequent LOH particularly in colon, head and neck, ovarian and liver cancers, where LOH frequencies vary from 11 to 39%. LOH at 1q43 has also been reported in cervix, pancreas, stomach and testis cancers. Several other cancer types have not yet been well studied for LOH in this region.

Other amino acid biosynthetic enzymes are candidates for allele specific inhibition

It will be evident to one skilled in the art that strategies similar to those described above for asparagine (an essential amino acid) and methionine (a non-essential amino acid) could be undertaken for other amino acid biosynthetic enzymes. For example,

L-glutaminase has also been shown to have antiproliferative effects on mammalian cell growth. Allele specific blockade of glutamine synthesis in heterozygous patients with LOH for genes essential for glutamine synthesis could be the basis of a cancer specific therapy.

5

Example 47. Methylthioadenosine phosphorylase (MTAP).

Variagenics Target Gene

10

Methylthioadenosine phosphorylase can convert methylthioadenosine to methionine, an essential amino acid

Cells require a continuous supply of amino acids for protein biosynthesis. L-

methionine is one of ten essential amino acids. Consequently dividing cells must

obtain methionine from serum via amino acid transporter (the only source besides

protein catabolism or conversion of L-homocysteine). Alterations in the nutritional

environment of growing cells that result in a decreased extracellular concentration of essential amino acids such as methionine cause arrested cell growth and may result in

cell death. Cancer cells are particularly sensitive to methionine deprivation. (Tan, Y.,

et al., Anticancer Efficacy of Methioninase in vivo. Anticancer Research 16: 3931-

15

20

25

3936.)

The cellular requirement for methionine can be bypassed by conversion of L-homocysteine to methionine as discussed above. An alternative pathway for methionine synthesis is conversion of 5'-methylthioadenosine (5'-MTA) via the action of 5'-MTA phosphorylase (MTAP). (Tisdale, M.J., Methionine Synthesis from 5'-methylthioadenosine by Tumor Cells. *Biochemical Pharmacology* 32: 2915-2920.) In tissue culture experiments low concentrations of 5'-MTA can substitute for

10

15

20

25

methionine in some cell lines. Thus 5'-MTA can rescue cells from methionine deprivation.

It occured to the inventors that allele specific inhibition of MTAP in cancer patients heterozygous for MTAP and whose cancer cells have only one allele of MTAP as a consequence of LOH, in combination with methionine deprivation (methionine starvation or L-methioninase treatment) and dietary supplementation with 5'-methylthioadenosine would provide a source of convertible methionine substrate selectively useful to normal cells. Tumor cells would have no source of methionine, being unable to convert the 5'-methylthioadenosine, and hence would be selectively poisoned. This therapeutic strategy would not necessarily require an allele specific inhibitor as *all copies* of MTAP are deleted in some cancers. Such cancers should be differentially poisoned vis a vis normal cells by methionine deprivation in the presence of 5'-methylthioadenosine.

The MTAP gene maps to 9p21, a region frequently subject to LOH in many cancers

The MTAP gene has been mapped to chromosome 9p21 by physical techniques (pulsed field gel electrophoresis and yeast artificial chromosome mapping). The gene lies near the cyclin dependent kinase inhibitors p16 and p15 which are frequently reduced to one or zero copies in cancer cells. (Nobori, et al., Genomic cloning of methylthioadenosine phosphorylase: a purine metabolic enzyme deficient in multiple different cancers. *Proc. Natl. Acad. Sci. U.S.A.* 93: 6203-6208.) The p21 region of chromosome 9 is subject to frequent LOH particularly in cancers of the bladder, breast, esophagus, head and neck, kidney, lung, melanoma and ovary. The frequency of LOH in these cancers ranges from 20% to nearly 100%.

WO 98/41648 PCT/US98/05419

323

Example 48.	DNA depend	ent protein	kinase (I)NA-PK)	and	associated	factors.
Variagenics 7	Target Genes						

DNA dependent protein kinase is conditionally essential

5

Cells exposed to ionizing radiation, such as gamma radiation, are damaged by base modifications and DNA strand breaks. Double strand DNA breaks are among the most lethal form of radiation damage; one such break, if unrepaired, can be cell lethal. Four complementation groups of mammalian cell mutants that are defective in repair of double strand (ds) breaks have been identified. All four complementation groups are hypersensitive to ionizing radiation. The loci for three of these groups have been shown to encode components of DNA-dependent protein kinase (DNA-PK). The fourth group is deficient in the gene encoding XRCC4, a factor that associates with and stimulates DNA Ligase IV. Ligation of ds breaks by DNA ligase IV in a cell free system in increased 7-8 fold by co-expression of XRCC4.

15

20

10

DNA-PK is a multiprotein complex with a DNA binding regulatory subunit, the Ku heterodimer [Ku70 (XRCC6) and Ku80, also referred to as Ku86 (XRCC5)], and a catalytic subunit, DNA-PKcs (probably XRCC7), that is activated by the regulatory subunit upon binding to DNA ds ends, with consequent expression of serine/threonine kinase activity resulting in phosphorylation of a variety of DNA binding proteins. A fourth protein called KARP-1 is expressed from the Ku80/86 locus and is also implicated in DNA-PK function.

25

Cells lacking any of the components of DNA-PK are exquisitely sensitive to gamma irradation. This has been demonstrated directly in mice with targeted disruption of the Ku80/86 and DNA-PKcs genes. The Ku80/86 deficient mice were also sensitive to methyl methane sulfonate, a DNA alkylating agent that induces single strand breaks and to etoposide, a topoisomerase II inhibitor. Thus the components of DNA-PK can

also be important for repair of a variety of chemically induced DNA lesions as well as ionizing radiation.

In a cancer patient with two alternative alleles for a component of DNA-PK and LOH at the heterozygous locus, an allele specific inhibitory drug could be used to sensitize cancer cells to the action of ds break inducing treatments. Such a drug could be used to treat cancer patients constitutionally heterozygous for two normal alleles at any of the DNA-PK loci in whom LOH had rendered cancer cells hemizygous or homozygous for one allele. Treatment would consist in the administration of the appropriate allele specific inhibitor plus a ds break inducing agent or procedure. The tumor cells would be unable to effectively repair ds breaks, while the uninhibited allele in normal cells would be able to function. Alternatively, patients heterozygous for functional and defective copies of genes required for repair of strand breaks, and in whom LOH resulted in loss of the functional allele, could be treated by a strand break inducing procedure without the necessity for an allele specific inhibitor. Identification of such patients would require a test for heterozygosity at the target locus and a test for LOH which could show which allele is deleted in cancer cells. Such an approach would be expected to identify patients likely to respond well to strand breaking agents or procedures (exposure to ionizing radiation) even though they might have cancers not traditionally treated with such measures.

The genes encoding constituents of DNA-PK map to chromosomes frequently subject to LOH in different cancers

The DNA-PKcs gene has been mapped to 8q11, the Ku80/86 gene to 2q11-q13 and the Ku70 gene to 22q11-q13. All three regions are subject to LOH in different cancers. LOH on 2q has been reported in lung ovary and cervical cancers at frequencies ranging from 11% to 39%. LOH for 8q has been reported in cervix, head and neck, kidney, lung, ovary, prostate and testis cancers at frequencies ranging from 20% to 50% of

5

10

15

20

WO 98/41648 PCT/US98/05419

325

cancers. LOH on 22q has been reported in brain, breast colon, head and neck, lung, ovary, pediatric and stomach cancers at frequencies ranging from 10 to 76%. Several other cancer types have not yet been well studied for LOH affecting either region.

Other proteins required for repair of DNA strand breaks are also candidates for allele specific therapy of cancer

It will be evident to one skilled in the art that strategies similar to those described above for DNA-PK could be undertaken for other proteins required for repair of DNA strand breaks. For a recent review of such proteins see: Zdzienicka, M.Z., Mammalian mutants defective in the response to ionizing radiation-induced DNA damage. Mutation Research 336: 203-213, 1995; Thompson, L.H. and P.A. Jeggo, Nomenclature of human genes involved in ionizing radiation sensitivity. Mutation Research 337: 131-134, 1995; Thacker, J. and R.E. Wilkinson, The gentic basis of cellular recovery from radiation damage: response of the radiosensitive irs lines to lowdose rate irradiation. Radiation Research 144: 294-300, 1995. Two other syndromes with hypersensitivity to X-rays are Diamond-Blackfan anemia and aplastic anemia (Diemen, P.C., X-ray-sensitivity of lymphocytes of aplastic- and Diamond-Blackfananemia patients as detected by conventional cytogentic and chromosome painting techniques. Mutation Resarch 373: 225-235, 1997). Recently evidence of several other genes responsible for DNA double strand break repair has been described. (Nicolas, N., Finnie, N.J., et al., Eur. J. Immunol. 26:1118-1122, 1996.) The above genes which, when defective, sensitize cells to toxic effects of DNA strand breaking agents would be amenable to the therapeutic strategy outlined above for the DNA-PK genes. Specifically, in a patient with two alternative alleles for such a gene and LOH at the relevant locus, an allele specific drug could be used to sensitize cancer cells to the action of strand breaking agents. Such drugs could then be used to treat cancer patients constitutionally heterozygous for two normal alleles at the relevant locus, in whom LOH had rendered cancer cells hemizygous or homozygous for one allele.

5

10

15

20

25

Treatment would consist in the administration of the appropriate allele specific inhibitor plus a strand breaking agent or treatment to induce damage in all cells. Cancer cells (but not normal cells) would be rendered unable to respond by inhibition of expression of the relevant repair gene.

5

Alternatively, patients heterozygous for functional and defective copies of genes required for repair of strand breaks, and in whom LOH resulted in loss of the functional allele, could be treated by a strand break inducing procedure without the necessity for an allele specific inhibitor. Identification of such patients would require a test for heterozygosity at the target locus and a test for LOH which could show which allele is deleted in cancer cells. Such an approach would be expected to identify patients likely to respond well to strand breaking agents or procedures (exposure to ionizing radiation) even though they might have cancers not traditionally treated with such measures.

15

10

Example 49. Ataxia Telangiectasia Mutated (ATM) and c-Abl Variagenics Target Gene

20

The Ataxia Telangiectasia gene is essential for cell growth or survival in the presence of ionizing radiation or DNA damaging molecules

25

In order for cells to survive or proliferate in the presence of ionizing radiation (IR) or radiomimetic chemicals it is necessary that they are capable of efficiently repairing IR induced damage. Cells contain proteins necessary for such repair. One way such proteins can be identified is by their absence in specific patients who are particularly susceptible to the toxic effects of IR.

Ataxia Telangiectasia (AT) is a genetically transmitted autosomal recessive disorder characterized by variable degrees of immunodeficiency, telagiectasia (small blood vessels growing near the surface of the skin or eye), cerebellar ataxia (loss of balance due to abnormal development of the cerebellum) and increased sensitivity to both ionizing radiation and radiomimetic drugs, including bleomycin; AT cells are killed by lower doses of ionizing radiation or radiomimetic drugs than normal cells. Further, heterozygotes for mutant and normal AT alleles have radiation sensitivity close to that of homozygous normals. Therefore cancer cells from individuals heterozygous for null alleles of the AT gene (called ATM) should be highly susceptible to radiation therapy when only the deficient AT allele remains in cancer cells due to LOH, compared to normal cells from the same patients. Such patients could be treated by a DNA damage inducing procedure without the necessity for an allele specific inhibitor. Identification of such patients would require a test for heterozygosity at the target locus and a test for LOH which could show which allele is deleted in cancer cells. Such an approach would be expected to identify patients likely to respond well to strand breaking agents or procedures (such as exposure to ionizing radiation) even though they might have cancers not traditionally treated with such measures. In a related aspect, this approach is applicable to heterozygotes for other genes associated with ATM-mediated radiosensitivity. One such protein is the c-Abl protein tyrosine kinase, which binds to the ATM protein and regulates its function. c-Abl is known to be important in the stress response to ionizing radiation. One of its functions is activation of stress activated protein kinases (SAPKs) after irradiation or exposure to alkylating agents such as cis-platinum or mitomycin C, a response that is defective in ATM cells. Correction of the SAPK activation defect in ATM cells by non-mutant ATM cDNA suggests that the ATM - c-Abl interaction is necesary for the DNA damage response. (Kharbanda, S., et al. *Nature* 376: 785-788, 1995.)

In a cancer patient with two alternative functional alleles for a component of ATM and LOH at the ATM locus, an allele specific inhibitory drug could be used to sensitize

5

10

15

20

25

10

15

20

25

cancer cells to the action of DNA damage inducing treatments such as ionizing radiation or radiomimetic drugs. Such an allele specific drug could be used to treat cancer patients constitutionally heterozygous for two normal ATM alleles in whom LOH had rendered cancer cells hemizygous or homozygous for one allele. Treatment would consist of the administration of the appropriate allele specific inhibitor plus a DNA damage inducing treatment or procedure. The tumor cells would be unable to effectively the DNA damage, while the uninhibited allele in normal cells would be able to function. A similar approach could be taken to

The ATM gene is polymorphic

The ATM cDNA is 9.58 kb. Several likely polymorphisms have been identified, although population studies have not yet been performed to determine allele frequencies. One of the reported polymorphisms, an ATG to ATA change in codon 847, results in a methionine vs. isoleucine difference. Thus ATM is potentially targetable at the DNA, RNA and protein levels. It is likely that additional variances will be identified with broader population surveys and computational variance detection.

The ATM gene maps to chromosome 11q23 and the c-Abl gene maps to 9q34.1, two regions of high frequency LOH in different cancer types

Chromosome 9q34 is lost in a high fraction of bladder, esophagus, ovary, head & neck and testis cancers (17 - 76%) and in a lesser fraction of breast, liver and prostate cancers and leukemias. Chromosome 11q23 is lost in brain, cervix, esophagus, breast, kidney, colon, stomach, head & neck and lung cancers at frequencies ranging from 16% to 100%.

Other proteins required for repair of DNA damage are also candidates for allele specific therapy of cancer

WO 98/41648 PCT/US98/05419

329

It will be evident to one skilled in the art that strategies similar to those described above for ATM and c-Abl could be undertaken for other proteins required for the stress response to DNA damaging agents, such as other stress activated protein kinases or downstream effector proteins.

Methylguanine Methyltransferase (MGMT) Gene VARIA 1534

The methylguanine methyltransferase gene is essential for cell growth or survival in the presence of alkylating agents

Methylguanine methyltransferase (MGMT) is a suicide protein that repairs alkylating agent damage, specifically alkylation of the ⁶O position of guanine. Alkyl groups are covalently bound to an active site cysteine (residue 145) of MGMT, thereby irreversibly inactivating the protein. ⁶O-benzylguanine is an analog inhibitor of MGMT that, by inactivating MGMT, renders tumor cells more sensitive to the toxic effects of methylating and chloroethylating agents. MGMT is thus a conditionally essential gene in the presence of such drugs. ⁶O-benzylguanine is being developed as a chemosensitizing agent.

15

20

5

10

In a cancer patient with two alternative functional MGMT alleles an allele specific inhibitory drug could be used to sensitize cancer cells to the action of alkylating agents. Such an allele specific drug could be used to treat cancer patients constitutionally heterozygous for two normal MGMT alleles in whom LOH had rendered cancer cells hemizygous or homozygous for one allele. Treatment would consist of the administration of the appropriate allele specific inhibitor plus an alkylating agent. The tumor cells would be unable to effectively repair the alkylating agent induced DNA damage, while the uninhibited allele in normal cells would be able to function.

25 The MGMT gene is polymorphic

Several variances have been reported in human MGMT, or discovered by Variagenics, including three protein polymorphisms. There is a silent C/T variance at position 255 (11% heterozygotes among 36 individuals surveyed), another C/T variance at nt. 346

which results in a L84F amino acid variance (5% heterozygotes), an A/G variance at nt. 523 which results in a I143V amino acid variance (24% heterozygotes). A variance has been reported in Japanese at codon 160, GGA vs. AGA, converting glycine to arginine. 15% of the population studied were heterozygotes.

5

The alteration of glycine 160 to arginine reduced the inactivation by O6-benzylguanine with an approximately 20 fold increase in the IC50 concentration. These results demonstrate variance-specific effects of a small molecule, O6-benzylguanine, on normal (non-mutant) alleles of the conditionally essential MGMT gene.

10

Administration of O6 benzylguanine to patients who are heterozygous for the residue 160 gly/arg variance in their normal cells, and contain only the form of the gene with a glycine residue at position 160 in their cancer cells, together with methylating or chloroethylating agents for chemotherapy, will be specifically toxic to cancer cells without increasing toxicity to normal cells.

15

References

1. Imai, Y, Carcinogenesis (1995), 16:2441-24445

20

2. Edara, S. (1996) Resistance of the human O6-alkylguanine-DNA alkyltransferase containing arginine at codon 160 to inactivation by O6-benzylguanine. *Cancer Research* 56, 5571-5575.

25

All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the invention pertains. All references cited in this disclosure are incorporated by reference to the same extent as if each reference had been incorporated by reference in its entirety individually.

One skilled in the art would readily appreciate that the present invention is well

10

15

20

25

adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The groups of genes and the particular genes described herein as presently representative of preferred embodiments are exemplary and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art, which are encompassed within the spirit of the invention, are defined by the scope of the claims.

It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention. For example, those skilled in the art will readily recognize that the methods and inhibitors can utilize a variety of different target genes within the groups described. Thus, such additional embodiments are within the scope of the present invention and the following claims.

The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. Thus, for example, in each instance herein any of the terms "comprising", "consisting essentially of" and "consisting of" may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims.

In addition, where features or aspects of the invention are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.

5

Thus, additional embodiments are within the scope of the invention and within the following claims.

PCT/US98/05419

334

CLAIMS

What we claim is:

5

1. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a gene vital for cell growth or viability, and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:

10

- (a) determining at least two alleles of a said gene, wherein said gene encodes a product required for cell proliferation;
- (b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles;

wherein inhibition of expression of at least one but less than all of said alleles or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

15

20

25

- 2. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a gene vital for cell growth or viability, and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:
- (a) determining at least two alleles of a said gene, wherein said gene encodes a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival;
- (b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles:

wherein inhibition of expression of at least one but less than all of said alleles or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

- 5
- 3. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a gene vital for cell growth or viability, and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:

10

(a) determining at least two alleles of a said gene, wherein said gene encodes a product required to maintain organic compounds at levels compatible with cell growth or survival;

(b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles;

wherein inhibition of expression of at least one but less than all of said alleles or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

20

15

4. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a gene vital for cell growth or viability, and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:

25

(a) determining at least two alleles of a said gene, wherein said gene encodes a product required to maintain cellular proteins at levels compatible with cell growth or survival;

25

(b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles;

wherein inhibition of expression of at least one but less than all of said alleles

or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

5

5. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a gene vital for cell growth or viability, and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:

10

- (a) determining at least two alleles of a said gene, wherein said gene encodes a product required to maintain cellular nucleotides at levels compatible with cell growth or survival;
- (b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles:

15

wherein inhibition of expression of at least one but less than all of said alleles or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

20

6. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a gene vital for cell growth or viability, and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:

- (a) determining at least two alleles of a said gene, wherein said gene encodes a product required to maintain the integrity and function of cellular and subcellular structures;
- (b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles;

wherein inhibition of expression of at least one but less than all of said alleles or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

5

7. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a gene vital for cell growth or viability, and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:

10

- (a) determining at least two alleles of a said gene, wherein said gene is located on a high frequency LOH chromosomal region;
- (b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles:

15

wherein inhibition of expression of at least one but less than all of said alleles or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

20

- 8. The method of claim 7, wherein said gene is located on a chromosomal arm which has a frequency of allele loss of at least 15% in a cancer.
- 9. The method of claim 7, wherein said gene is located in proximity to a chromosomal marker which undergoes LOH at a frequency of at least 10% in a cancer.
- 10. The method of claim 7, wherein said gene is located in proximity to a tumor suppressor gene which undergoes LOH at a frequency of at least 10% in a cancer.

WO 98/41648 PCT/US98/05419

338

11. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a gene vital for cell growth or viability. and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:

5

(a) determining at least two alleles of a said gene, wherein said gene has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene;

10

(b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles:

wherein inhibition of expression of at least one but less than all of said alleles or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

15

12. The method of claim 11, wherein said gene is located on a high frequency LOH chromosomal region.

20

13. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a gene vital for cell viability or cell growth, wherein said gene encodes a product required for cell proliferation, said gene has at least two alternative alleles in a population, and

wherein said inhibitor targets at least one but less than all of said alternative alleles.

25

14. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a gene vital for cell viability or cell growth, wherein said gene encodes a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival, said gene has at least two alternative

alleles in a population, and

wherein said inhibitor targets at least one but less than all of said alternative alleles.

5

10

15. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a gene vital for cell viability or cell growth, wherein said gene encodes a product required to maintain organic compounds at levels compatible with cell growth or survival, said gene has at least two alternative alleles in a population, and

wherein said inhibitor targets at least one but less than all of said alternative alleles.

15

16. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a gene vital for cell viability or cell growth, wherein said gene encodes a product required to maintain cellular proteins at levels compatible with cell growth or survival, said gene has at least two alternative alleles in a population, and

20

wherein said inhibitor targets at least one but less than all of said alternative alleles.

25

17. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a gene vital for cell viability or cell growth, wherein said gene encodes a product required to maintain cellular nucleotides at levels compatible with cell growth or survival, said gene has at least two alternative alleles in a population, and

wherein said inhibitor targets at least one but less than all of said alternative alleles.

18. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a gene vital for cell viability or cell growth, wherein said gene encodes a product required to maintain the integrity and function of cellular and subcellular structures, said gene has at least two alternative alleles in a population, and

wherein said inhibitor targets at least one but less than all of said alternative alleles.

19. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a gene vital for cell viability or cell growth, wherein said gene is located on a high frequency LOH chromosomal arm region, said gene has at least two alternative alleles in a population, and

wherein said inhibitor targets at least one but less than all of said alternative alleles.

20. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a gene vital for cell viability or cell growth, wherein said gene has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene, said gene has at least two alternative alleles in a population, and

wherein said inhibitor targets at least one but less than all of said alternative alleles.

21. A pharmaceutical composition, comprising

at least one allele specific inhibitor targeting at least one but less than all allelic forms of an essential gene in a population, wherein said gene encodes a product required for cell proliferation; and

a pharmaceutically acceptable carrier or excipient.

15

10

5

25

22. A pharmaceutical composition, comprising

at least one allele specific inhibitor targeting at least one but less than all allelic forms of an essential gene in a population, wherein said gene encodes a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival; and

a pharmaceutically acceptable carrier or excipient.

10

5

23. A pharmaceutical composition, comprising

at least one allele specific inhibitor targeting at least one but less than all allelic forms of an essential gene in a population, wherein said gene encodes a product required to maintain organic compounds at levels compatible with cell growth or survival; and

a pharmaceutically acceptable carrier or excipient.

15

20

24. A pharmaceutical composition, comprising

at least one allele specific inhibitor targeting at least one but less than all allelic forms of an essential gene in a population, wherein said gene encodes a product required to maintain cellular proteins at levels compatible with cell growth or survival; and

a pharmaceutically acceptable carrier or excipient.

25

25. A pharmaceutical composition, comprising

at least one allele specific inhibitor targeting at least one but less than all allelic forms of an essential gene in a population, wherein said gene encodes a product required to maintain cellular nucleotides at levels compatible with cell growth or survival; and

a pharmaceutically acceptable carrier or excipient.

WO 98/41648 PCT/US98/05419

342

26. A pharmaceutical composition, comprising

at least one allele specific inhibitor targeting at least one but less than all allelic forms of an essential gene in a population, wherein said gene encodes a product required to maintain the integrity and function of cellular and subcellular structures; and

a pharmaceutically acceptable carrier or excipient.

27. A pharmaceutical composition, comprising

at least one allele specific inhibitor targeting at least one but less than all allelic forms of an essential gene in a population, wherein said gene is located on a high frequency LOH chromosomal arm region; and

a pharmaceutically acceptable carrier or excipient.

15

20

25

10

5

28. A pharmaceutical composition, comprising

at least one allele specific inhibitor targeting at least one but less than all allelic forms of an essential gene in a population, wherein said gene has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene; and

a pharmaceutically acceptable carrier or excipient.

- 29. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a gene having at least two alternative alleles, comprising the steps of:
- (a) identifying a gene vital to cell viability or cell growth that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell, and wherein said gene encodes a product required for cell proliferation;

10

15

20

- (b) screening to identify an inhibitor which inhibits said at least one but less than all of said at least two alternative alleles; and
- (c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in which cancerous cells have only the allele of said gene inhibited by said inhibitor and in whom normal cells are heterozygous for said gene.
- 30. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a gene having at least two alternative alleles, comprising the steps of:
- (a) identifying a gene vital to cell viability or cell growth that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell, and wherein said gene encodes a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival;
- (b) screening to identify an inhibitor which inhibits said at least one but less than all of said at least two alternative alleles; and
- (c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in which cancerous cells have only the allele of said gene inhibited by said inhibitor and in whom normal cells are heterozygous for said gene.
- 31. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a gene having at least two alternative alleles, comprising the steps of:
- (a) identifying a gene vital to cell viability or cell growth that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell, and wherein said gene encodes a product required to maintain organic compounds at levels compatible with cell growth or survival;

- (b) screening to identify an inhibitor which inhibits said at least one but less than all of said at least two alternative alleles; and
- (c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in which cancerous cells have only the allele of said gene inhibited by said inhibitor and in whom normal cells are heterozygous for said gene.
- 32. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a gene having at least two alternative alleles, comprising the steps of:
- (a) identifying a gene vital to cell viability or cell growth that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell, and wherein said gene encodes a product required to maintain cellular proteins at levels compatible with cell growth or survival;
- (b) screening to identify an inhibitor which inhibits said at least one but less than all of said at least two alternative alleles; and
- (c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in which cancerous cells have only the allele of said gene inhibited by said inhibitor and in whom normal cells are heterozygous for said gene.
- 33. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a gene having at least two alternative alleles, comprising the steps of:
- (a) identifying a gene vital to cell viability or cell growth that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell, and wherein said gene encodes a product required to maintain cellular nucleotides at levels compatible with cell growth or survival;
 - (b) screening to identify an inhibitor which inhibits said at least one but less

5

15

20

than all of said at least two alternative alleles; and

- (c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in which cancerous cells have only the allele of said gene inhibited by said inhibitor and in whom normal cells are heterozygous for said gene.
- 34. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a gene having at least two alternative alleles, comprising the steps of:
- (a) identifying a gene vital to cell viability or cell growth that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell, and wherein said gene encodes a product required to maintain the integrity and function of cellular and subcellular structures;
- (b) screening to identify an inhibitor which inhibits said at least one but less than all of said at least two alternative alleles; and
- (c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in which cancerous cells have only the allele of said gene inhibited by said inhibitor and in whom normal cells are heterozygous for said gene.
- 35. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a gene having at least two alternative alleles, comprising the steps of:
- (a) identifying a gene vital to cell viability or cell growth that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell, and wherein said gene is located on a high frequency LOH chromosomal arm region;
- (b) screening to identify an inhibitor which inhibits said at least one but less than all of said at least two alternative alleles; and

10

5

15

20

WO 98/41648 PCT/US98/05419

346

(c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in which cancerous cells have only the allele of said gene inhibited by said inhibitor and in whom normal cells are heterozygous for said gene.

5

36. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a gene having at least two alternative alleles, comprising the steps of:

10

(a) identifying a gene vital to cell viability or cell growth that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell, and wherein said gene has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene;

(b) screening to identify an inhibitor which inhibits said at least one but less

15

(c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in which cancerous cells have only the allele of said gene inhibited by said inhibitor and in whom normal cells are heterozygous for said gene.

than all of said at least two alternative alleles; and

20

37. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:

25

a. administering to said patient a therapeutic amount of a first allele specific inhibitor targeted to an allele of a first essential gene present in cells of said precancerous condition, wherein the normal somatic cells of said patient are heterozygous for said first gene, said inhibitor is active on at least one but less than all allelic forms of said gene present in a population and targets only one allelic form present in said normal somatic cells, and said first gene encodes a product required for cell proliferation; and

wherein cells of said precancerous condition have undergone LOH of said first gene.

38. The method of claim 37, wherein the cells of said precancerous condition are not clonal from a single cell, further comprising the step of:

b. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different essential gene, and wherein said patient is heterozygous for each targeted essential gene and each targeted essential gene has undergone LOH in cells of said precancerous condition.

15

5

10

39. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:

a. administering to said patient a therapeutic amount of a first allele specific

20

25

survival; and

precancerous condition, wherein the normal somatic cells of said patient are heterozygous for said first gene, said inhibitor is active on at least one but less than all allelic forms of said gene present in a population and targets only one allelic form

present in said normal somatic cells, and said first gene encodes a product required

inhibitor targeted to an allele of a first essential gene present in cells of said

to maintain inorganic ions and vitamins at levels compatible with cell growth or

wherein cells of said precancerous condition have undergone LOH of said first gene.

40. The method of claim 39, wherein the cells of said precancerous condition are

WO 98/41648 PCT/US98/05419

348

not clonal from a single cell, further comprising the step of:

b. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different essential gene, and wherein said patient is heterozygous for each targeted essential gene and each targeted essential gene has undergone LOH in cells of said precancerous condition.

10

15

5

- 41. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:
- a. administering to said patient a therapeutic amount of a first allele specific inhibitor targeted to an allele of a first essential gene present in cells of said precancerous condition, wherein the normal somatic cells of said patient are heterozygous for said first gene, said inhibitor is active on at least one but less than all allelic forms of said gene present in a population and targets only one allelic form present in said normal somatic cells, and said first gene encodes a product required to maintain organic compounds at levels compatible with cell growth or survival; and

wherein cells of said precancerous condition have undergone LOH of said first gene.

20

42. The method of claim 41, wherein the cells of said precancerous condition are not clonal from a single cell, further comprising the step of:

25

b. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different essential gene, and wherein said patient is heterozygous for each targeted essential gene and each targeted essential gene has undergone LOH in

cells of said precancerous condition.

43. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:

5

a. administering to said patient a therapeutic amount of a first allele specific inhibitor targeted to an allele of a first essential gene present in cells of said precancerous condition, wherein the normal somatic cells of said patient are heterozygous for said first gene, said inhibitor is active on at least one but less than all allelic forms of said gene present in a population and targets only one allelic form present in said normal somatic cells, and said first gene encodes a product required to maintain cellular proteins at levels compatible with cell growth or survival; and

10

wherein cells of said precancerous condition have undergone LOH of said first gene.

15

44. The method of claim 43, wherein the cells of said precancerous condition are not clonal from a single cell, further comprising the step of:

20

b. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different essential gene, and wherein said patient is heterozygous for each targeted essential gene and each targeted essential gene has undergone LOH in cells of said precancerous condition.

- 45. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:
- a. administering to said patient a therapeutic amount of a first allele specific inhibitor targeted to an allele of a first essential gene present in cells of said precancerous condition, wherein the normal somatic cells of said patient are

heterozygous for said first gene, said inhibitor is active on at least one but less than all allelic forms of said gene present in a population and targets only one allelic form present in said normal somatic cells, and said first gene encodes a product required to maintain cellular nucleotides at levels compatible with cell growth or survival; and

wherein cells of said precancerous condition have undergone LOH of said first gene.

46. The method of claim 45, wherein the cells of said precancerous condition are not clonal from a single cell, further comprising the step of:

b. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different essential gene, and wherein said patient is heterozygous for each targeted essential gene and each targeted essential gene has undergone LOH in cells of said precancerous condition.

- 47. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:
- a. administering to said patient a therapeutic amount of a first allele specific inhibitor targeted to an allele of a first essential gene present in cells of said precancerous condition, wherein the normal somatic cells of said patient are heterozygous for said first gene, said inhibitor is active on at least one but less than all allelic forms of said gene present in a population and targets only one allelic form present in said normal somatic cells, and said first gene encodes a product required to maintain the integrity and function of cellular and subcellular structures; and

wherein cells of said precancerous condition have undergone LOH of said first gene.

10

5

15

20

- 48. The method of claim 47, wherein the cells of said precancerous condition are not clonal from a single cell, further comprising the step of:
- b. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different essential gene, and wherein said patient is heterozygous for each targeted essential gene and each targeted essential gene has undergone LOH in cells of said precancerous condition.

15

5

- 49. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:
- a. administering to said patient a therapeutic amount of a first allele specific inhibitor targeted to an allele of a first essential gene present in cells of said precancerous condition, wherein the normal somatic cells of said patient are heterozygous for said first gene, said inhibitor is active on at least one but less than all allelic forms of said gene present in a population and targets only one allelic form present in said normal somatic cells, and said first gene is located on a high frequency LOH chromosomal arm region; and

20

wherein cells of said precancerous condition have undergone LOH of said first gene.

50. The method of claim 49, wherein the cells of said precancerous condition are not clonal from a single cell, further comprising the step of:

25

b. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different essential gene, and wherein said patient is heterozygous for

10

15

20

25

each targeted essential gene and each targeted essential gene has undergone LOH in cells of said precancerous condition.

- 51. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:
- a. administering to said patient a therapeutic amount of a first allele specific inhibitor targeted to an allele of a first essential gene present in cells of said precancerous condition, wherein the normal somatic cells of said patient are heterozygous for said first gene, said inhibitor is active on at least one but less than all allelic forms of said gene present in a population and targets only one allelic form present in said normal somatic cells, and said first gene has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene; and

wherein cells of said precancerous condition have undergone LOH of said first gene.

- 52. The method of claim 51, wherein the cells of said precancerous condition are not clonal from a single cell, further comprising the step of:
- b. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different essential gene, and wherein said patient is heterozygous for each targeted essential gene and each targeted essential gene has undergone LOH in cells of said precancerous condition.
- 53. A method for treating a patient suffering from a cancer, wherein said patient is heterozygous for a gene vital for cell growth or viability, comprising the step of: administering a therapeutic amount of an allele specific inhibitor active on at

least one but less than all allelic forms of said gene present in a population,

wherein said gene encodes a product required for cell proliferation, said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said patient.

5

10

15

- 54. The method of claim 53, further comprising the steps of:
- (a) determining whether non-cancerous cells of said patient are heterozygous for a particular gene essential for cell growth or viability; or
- (b) determining whether cancerous cells of said patient have only one allele of said particular gene; or
 - (c) both (a) and (b).

55. A method for treating a patient suffering from a cancer, wherein said patient is heterozygous for a gene vital for cell growth or viability, comprising the step of: administering a therapeutic amount of an allele specific inhibitor active on at

least one but less than all allelic forms of said gene present in a population,

wherein said gene encodes a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival, said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said patient.

20

25

- 56. The method of claim 55, further comprising the steps of:
- (a) determining whether non-cancerous cells of said patient are heterozygous for a particular gene essential for cell growth or viability; or

(b) determining whether cancerous cells of said patient have only one allele of said particular gene; or

- (c) both (a) and (b).
- 57. A method for treating a patient suffering from a cancer, wherein said patient

is heterozygous for a gene vital for cell growth or viability, comprising the step of: administering a therapeutic amount of an allele specific inhibitor active on at least one but less than all allelic forms of said gene present in a population,

wherein said gene encodes a product required to maintain organic compounds at levels compatible with cell growth or survival, said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said patient.

- 58. The method of claim 57, further comprising the steps of:
- (a) determining whether non-cancerous cells of said patient are heterozygous for a particular gene essential for cell growth or viability; or
- (b) determining whether cancerous cells of said patient have only one allele of said particular gene; or
 - (c) both (a) and (b).

15

10

5

59. A method for treating a patient suffering from a cancer, wherein said patient is heterozygous for a gene vital for cell growth or viability, comprising the step of:

administering a therapeutic amount of an allele specific inhibitor active on at least one but less than all allelic forms of said gene present in a population,

20

wherein said gene encodes a product required to maintain cellular proteins at levels compatible with cell growth or survival, said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said patient.

- 60. The method of claim 59, further comprising the steps of:
- (a) determining whether non-cancerous cells of said patient are heterozygous for a particular gene essential for cell growth or viability; or
- (b) determining whether cancerous cells of said patient have only one allele of said particular gene; or

- (c) both (a) and (b).
- 61. A method for treating a patient suffering from a cancer, wherein said patient is heterozygous for a gene vital for cell growth or viability, comprising the step of:

administering a therapeutic amount of an allele specific inhibitor active on at least one but less than all allelic forms of said gene present in a population,

wherein said gene encodes a product required to maintain cellular nucleotides at levels compatible with cell growth or survival, said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said patient.

- 62. The method of claim 61, further comprising the steps of:
- (a) determining whether non-cancerous cells of said patient are heterozygous for a particular gene essential for cell growth or viability; or
- (b) determining whether cancerous cells of said patient have only one allele of said particular gene; or
 - (c) both (a) and (b).
- 63. A method for treating a patient suffering from a cancer, wherein said patient is heterozygous for a gene vital for cell growth or viability, comprising the step of:

administering a therapeutic amount of an allele specific inhibitor active on at least one but less than all allelic forms of said gene present in a population,

wherein said gene encodes a product required to maintain the integrity and function of cellular and subcellular structures, said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said patient.

- 64. The method of claim 63, further comprising the steps of:
 - (a) determining whether non-cancerous cells of said patient are

BNSDOCID: <WO___9841648A2_IA>

25

20

5

10

heterozygous for a particular gene essential for cell growth or viability; or

- (b) determining whether cancerous cells of said patient have only one allele of said particular gene; or
 - (c) both (a) and (b).

5

65. A method for treating a patient suffering from a cancer, wherein said patient is heterozygous for a gene vital for cell growth or viability, comprising the step of: administering a therapeutic amount of an allele specific inhibitor active on at least one but less than all allelic forms of said gene present in a population,

10

wherein said gene is located on a high frequency LOH chromosomal arm region, said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said patient.

15

- 66. The method of claim 65, further comprising the steps of:
- (a) determining whether non-cancerous cells of said patient are heterozygous for a particular gene essential for cell growth or viability; or
- (b) determining whether cancerous cells of said patient have only one allele of said particular gene; or
 - (c) both (a) and (b).

20

67. A method for treating a patient suffering from a cancer, wherein said patient is heterozygous for a gene vital for cell growth or viability, comprising the step of:

administering a therapeutic amount of an allele specific inhibitor active on at least one but less than all allelic forms of said gene present in a population,

25

wherein said gene has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene, said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said

10

15

20

25

patient.

- 68. The method of claim 67, further comprising the steps of:
- (a) determining whether non-cancerous cells of said patient are heterozygous for a particular gene essential for cell growth or viability; or
- (b) determining whether cancerous cells of said patient have only one allele of said particular gene; or
 - (c) both (a) and (b).

69. A method of inhibiting growth of a cell comprising the step of:

administering at least one inhibitor active on an allele of a gene vital for cell viability or growth,

wherein said gene encodes a product required for cell proliferation, and wherein said inhibitor is less active on at least one other allele of said gene.

70. A method of inhibiting growth of a cell comprising the step of:

administering at least one inhibitor active on an allele of a gene vital for cell viability or growth,

wherein said gene encodes a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival, and wherein said inhibitor is less active on at least one other allele of said gene.

71. A method of inhibiting growth of a cell comprising the step of:

administering at least one inhibitor active on an allele of a gene vital for cell viability or growth,

wherein said gene encodes a product required to maintain organic compounds at levels compatible with cell growth or survival, and wherein said inhibitor is less active on at least one other allele of said gene.

10

15

20

25

72. A method of inhibiting growth of a cell comprising the step of:

administering at least one inhibitor active on an allele of a gene vital for cell viability or growth,

wherein said gene encodes a product required to maintain cellular proteins at levels compatible with cell growth or survival, and wherein said inhibitor is less active on at least one other allele of said gene.

73. A method of inhibiting growth of a cell comprising the step of:

administering at least one inhibitor active on an allele of a gene vital for cell viability or growth,

wherein said gene encodes a product required to maintain cellular nucleotides at levels compatible with cell growth or survival, and wherein said inhibitor is less active on at least one other allele of said gene.

74. A method of inhibiting growth of a cell comprising the step of:

administering at least one inhibitor active on an allele of a gene vital for cell viability or growth,

wherein said gene encodes a product required to maintain the integrity and function of cellular and subcellular structures, and wherein said inhibitor is less active on at least one other allele of said gene.

75. A method of inhibiting growth of a cell comprising the step of:

administering at least one inhibitor active on an allele of a gene vital for cell viability or growth,

wherein said gene is located on a high frequency LOH chromosomal arm region, and wherein said inhibitor is less active on at least one other allele of said gene.

76. A method of inhibiting growth of a cell comprising the step of:

administering at least one inhibitor active on an allele of a gene vital for cell viability or growth,

wherein said gene has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene, and wherein said inhibitor is less active on at least one other allele of said gene.

77. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

identifying a patient heterozygous for a said gene encoding a product required for cell proliferation,

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

78. The method of claim 77, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

79. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

determining whether cancer cells in said patient have undergone LOH of a said gene encoding a product required for cell proliferation,

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

15

10

5

20

80. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

5

identifying a patient heterozygous for a said gene encoding a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival,

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

10

81. The method of claim 80, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

15

82. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

20

determining whether cancer cells in said patient have undergone LOH of a said gene encoding a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival,

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

25

83. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the steps of:

identifying a patient heterozygous for a said gene encoding a product required to maintain organic compounds at levels compatible with cell growth or survival;

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

5

84. The method of claim 83, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

10

85. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

15

determining whether cancer cells in said patient have undergone LOH of a said gene encoding a product required to maintain organic compounds at levels compatible with cell growth or survival,

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

20

86. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the steps of:

25

identifying a patient heterozygous for a said gene encoding a product required to maintain cellular proteins at levels compatible with cell growth or survival;

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

87. The method of claim 86, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

5

88. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

10

determining whether cancer cells in said patient have undergone LOH of a said gene encoding a product required to maintain cellular proteins at levels compatible with cell growth or survival,

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

15

89. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the steps of:

20

identifying a patient heterozygous for a said gene encoding a product required to maintain cellular nucleotides at levels compatible with cell growth or survival;

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

25

90. The method of claim 89, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

91. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

5

determining whether cancer cells in said patient have undergone LOH of a said gene encoding a product required to maintain cellular nucleotides at levels compatible with cell growth or survival,

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

10

92. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the steps of:

15

identifying a patient heterozygous for a said gene encoding a product required to maintain the integrity and function of cellular and subcellular structures;

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

20

93. The method of claim 91, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

25

94. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

determining whether cancer cells in said patient have undergone LOH of a

PCT/US98/05419

said gene encoding a product required to maintain the integrity and function of cellular and subcellular structures,

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

5

95. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the steps of:

10

identifying a patient heterozygous for a said gene located on a high frequency LOH chromosomal arm region ;

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

15

96. The method of claim 95, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

20

97. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

25

determining whether cancer cells in said patient have undergone LOH of a said gene located on a high frequency LOH chromosomal arm region,

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

98. A method of identifying a potential patient for treatment with an inhibitor

10

15

20

25

active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the steps of:

identifying a patient heterozygous for a said gene which has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene;

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

99. The method of claim 98, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

100. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a gene vital for cell growth or viability, wherein said patient is suffering from a cancer, said method comprising the step of:

determining whether cancer cells in said patient have undergone LOH of a said gene which has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene,

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

101. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a gene vital for cell growth or viability,

wherein said gene encodes a product required for cell proliferation, wherein said portion comprises a sequence variance site, and wherein said probe

hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

5

102. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a gene vital for cell growth or viability,

10

wherein said gene encodes a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival, wherein said portion comprises a sequence variance site, and wherein said probe hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

15

103. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a gene vital for cell growth or viability,

20

wherein said gene encodes a product required to maintain organic compounds at levels compatible with cell growth or survival, wherein said portion comprises a sequence variance site, and wherein said probe hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

25

104. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a gene vital for cell growth or viability,

wherein said gene encodes a product required to maintain cellular

proteins at levels compatible with cell growth or survival, wherein said portion comprises a sequence variance site, and wherein said probe hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

5

105. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a gene vital for cell growth or viability,

10

wherein said gene encodes a product required to maintain cellular nucleotides at levels compatible with cell growth or survival, wherein said portion comprises a sequence variance site, and wherein said probe hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

15

106. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a gene vital for cell growth or viability,

20

wherein said gene encodes a product required to maintain the integrity and function of cellular and subcellular structures, wherein said portion comprises a sequence variance site, and wherein said probe hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

25

107. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a gene vital for cell growth or

10

15

20

25

viability,

wherein said gene is located on a high frequency LOH chromosomal arm region, wherein said portion comprises a sequence variance site, and wherein said probe hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

108. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a gene vital for cell growth or viability,

wherein said gene has at least two sequence variances which occur at frequences such that at least 10% of a population is heterozygous for said gene, wherein said portion comprises a sequence variance site, and wherein said probe hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

109. The method ,inhibitor, pharmaceutical composition, or nucleic acid probe of any of claims 1, 13, 21, 29, 37, 53, 69, 77, and 101, wherein said gene is selected from the group consisting of 14-3-3 Protein TAU, CCNA(G2/Mitotic-Specific Cyclin A), CCNB1(G2/Mitotic-Specific Cyclin B1), CCND1(G1/S-Specific Cyclin D1), CCND2(G1/S-Specific Cyclin D2), CCND3(G1/S-Specific Cyclin D3), Cell division control protein 16, Cell division cycle 2, G1 to S and G2 to M, Cell division cycle 25A, Cell division cycle 25B, Cell division cycle 25C, Cell division cycle 27, Cell division-associated protein BIMB, Cyclin A1(G2/Mitotic-Specific Cyclin A1), Cyclin C (G1/S-Specific Cyclin C), Cyclin G1(G2/Mitotic-Specific Cyclin G), Cyclin G2 (G2/Mitotic-Specific Cyclin G), Cyclin H, Cyclin H Assembly, GSPT1(G1 to S phase transition 1), Mitotic MAD2 Protein, MRNP7, RANBP1(RAN binding protein 1), WEE1, Cell Division Protein Kinase 4, CDC28 protein kinase 1, CDC28 protein

kinase 2, M-Phase inducer phosphatase 2, M-phase phosphoprotein, mpp6, PPP1ca(Protein phosphatase 1, catalytic subunit, alpha isoform), STM7-LSB, CENP-F kinetochore protein, Centromere autoantigen C, Centromere protein B (80kD), Centromere protein E (312kD), CHC1(Chromosome condensation 1), Chromatin assembly factor-I p150 subunit, Chromatin assembly factor-I p60 subunit, Chromosome segregation gene homolog CAS, HMG1(High-mobility group (nonhistone chromosomal) protein 1), Minichromosome Maintenance (MCM7), Mitotic centromere-associated kinesin, RMSA1(Regulator of mitotic spindle assembly 1), and SUPT5h(Chromatin structural protein homolog (SUPT5H)).

10

15

20

25

5

The method inhibitor, pharmaceutical composition, or nucleic acid probe of 110. any of claims 2, 14, 22, 30, 39, 55, 70, 80, and 102, wherein said gene is selected from the group consisting of PMCA1 (Calcium Pump), PMCA2 (Calcium Pump), PMCA3 (Calcium Pump), PMCA4 (Calcium Pump), ATP2b1 (Calcium-Transporting ATPase Plasma Membrane), ATP2b2 (Calcium-Transporting ATPase Plasma Membrane), ATP2b4 (Calcium-Transporting ATPase Plasma Membrane), ATP5b (ATP Synthase Beta Chain, Mitochondrial Precursor), Chloride Conductance Regulatory Protein ICLN, H-Erg (Potassium Channel Protein EAG), Nuclear Chloride Ion Channel Protein (NCC27), SCN1b(Sodium Channel, Voltage-Gated, Type I, Beta Polypeptide), Two P-Domain K+ Channel TWIK-1, VDAC2 (Voltage-Dependent Anion-Selective Channel Protein 2), ATP1b1 (Sodium/Potassium-Transporting ATPase Beta-1 Chain), ATP1b2 (Sodium/Potassium-Transporting ATPase Beta-2 Chain), ATPase, Ca++ transporting, plasma membrane 4, ATPase, Ca++ transporting, plasma membrane 2, ATPase, Na+/K+ transporting, alpha 1 polypeptide, ATPase, Na+/K+ transporting, alpha 3 polypeptide, ATPase, Na+/K+ transporting, beta 1 polypeptide, ATPase, Na+/K+ transporting, beta 2 polypeptide, Na+,K+ ATPase, 1 Subunit, Na+,K+ ATPase, 2 alpha, Na+,K+ ATPase, 3 beta, SLC9a1(Solute carrier family 9 (sodium/hydrogen exchanger)), Solute carrier family 4, anion exchanger, member 1, Solute carrier family 4, anion

exchanger, member 2, Solute carrier family 9 (sodium/hydrogen exchanger), Passive transporters, MaxiK Potassium Channel Beta Subunit, Chloride Channel 2, Chloride Channel Protein (CLCN7), TRPC1 (Transient Receptor Potential Channel 1), Potassium Channel Kv2.1, ATP5d(ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit), ATP5f1(ATP synthase, H+ transporting, mitochondrial F0 complex, subunit b), ATP5o(ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit), ETFa(Electron-transfer-flavoprotein, alpha polypeptide (glutaric aciduria II)), ETFb(Electron-transfer-flavoprotein, beta polypeptide), Nadhubiquinone oxidoreductase 13 kd-B subunit, Nadh-ubiquinone oxidoreductase 39 kD subunit precursor, NADH-Ubiquinone oxidoreductase 75 kD subunit precursor, NDUFV2(NADH subunit. **MFWE** oxidoreductase NADH-Ubiquinone dehydrogenase (ubiquinone) flavoprotein 2 (24kD)), Ubiquinol-cytochrome c reductase complex 11 kD, ATP Synthase Alpha Chain, NADH dehydrogenaseubiquinone Fe-S protein 8, 23 kDa subunit, Ascorbic Acid (transporter), Folate Binding Protein, Folate receptor 1 (adult), Nicotinamide (transporter), Pantothenic Acid transporter, Riboflavin (transporter), SCL19A1 (Solute Carrier Family 19, Member1), Solute carrier family 19 (folate transporter), member 1, Thiamine, B6, B12 (transporter), ATP7b (Copper-Transporting ATPase 2), Ceruloplasmin (ferroxidase), Ceruloplasmin receptor (Copper Transporter), Copper Transport Protein HAH1, Molybdenum, Selenium, Tranferrin Receptor (Iron Transporter), Zinc Transporter, and mitochondrial import receptor subunit TOM20.

25

20

5

10

15

111. The method, inhibitor, pharmaceutical composition, or nucleic acid probe of 3, 25, 23, 31, 41, 57, 71, 83, and 103, wherein said gene is selected from the group consisting of GLUT1, GLUT2, GLUT3, GLUT4, GLUT5, GLUT6, Solute carrier family 5 (sodium/glucose cotransporter), Solute carrier family 2 (facilitated glucose transporter), member 2, Solute carrier family 2 (facilitated glucose transporter) member 5, Solute carrier family 3 member 1, System b, (Na+ independent), System y, (Na+ independent), ATRC1(Catioinc), LEUT(Leucine Transporter),

10

15

20

25

SLC1A1(Solute Carrier Family 1, Member 1), Solute carrier family 16 (monocarboxylic acid transporters), ACO1(Aconitase 1), ACO2(Aconitase 2, mitochondrial), Acyl-Coenzyme A dehydrogenase, C-2 to C-3 short chain, Acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain, Acyl-Coenzyme A dehydrogenase, long chain, Acyl-Coenzyme A dehydrogenase, very long chain, aKGD (alpha ketoglutaratedehydrogenase), ALD-a (Aldolase), ALD-b (Aldolase), ALD-c (Aldolase), CS (Citrate Synthetase), Dihydrolipoamide S-succinyltransferase, DLAT(Dihydrolipoamide S-acetyltransferase (E2 component of pyruvate dehydrogenase complex)), DLD(Dihydrolipoamide dehydrogenase (E3 component of pyruvate dehydrogenase complex, 2-oxo-glutarate complex, branched chain keto acid dehydrogenase complex)), E1k (Oxoglutarate dehydrogenase), E2k (Dihydrolipoamide S-succinyltransferase), E3 (Dihydrolipoyl Dehydrogenase), ENO1(Enolase 1,alpha), ENO2(Enolase 2), ENO3(Enolase 3), Enolase 2, (gamma, neuronal), Enolase 3, (beta, muscle), FH(Fumarate hydratase), G3PDH (Glyceraldehyde-3-Phosphate Dehydrogenase), (Glucose-6-Phosphate G6PD Dehydrogenase), Glucose-6-phosphate dehydrogenase, HK1 (Hexokinase 1), HK2 (Hexokinase 2), HK3 (Hexokinase 3), IDH1(Isocitrate dehydrogenase 1 (NADP+), mitochondrial), (NADP+),dehydrogenase 2 IDH2(Isocitrate soluble). MDH1(Malate dehydrogenase 1, NAD (soluble)), MDH2(Malate dehydrogenase 1, NAD (mitochondrial)), NAD(H)-specific isocitrate dehydrogenase alpha subunit, Oxoglutarate dehydrogenase (lipoamide), PDHB (Pyruvate Dehydrogenase), PDHB(Pyruvate dehydrogenase (lipoamide) beta), PDK4 (Pyruvate dehydrogenase kinase, isoenzyme 4), PFKL (Phosphofructokinase), PGI (Phosphoglucoisomerase), PGM1 **PGKb** (Phosphoglyceromutase), (Phosphoglyceromutase), **PGKa** (Phosphoglyceromutase), PGM3 PGM2 (Phosphoglyceromutase), (Phosphoglyceromutase), PGM4 (Phosphoglyceromutase), Phosphofructokinase, muscle, Phosphoglucomutase 1, Phosphoglycerate kinase 1, PK1 (Pyruvate Kinase), PK2 (Pyruvate Kinase), PK3 (Pyruvate Kinase), Pyruvate dehydrogenase kinase isoenzyme 2 (PDK2), Pyruvate kinase, liver, Pyruvate kinase, muscle,

SDH1(Succinate dehydrogenase, iron sulphur (Ip) subunit), SDH2(Succinate dehydrogenase 2, flavoprotein (Fp) subunit), TKT(Transketolase (Wernicke-Korsakoff syndrome)), TPI (Trisephosphate Isomerase), Asparagine Synthetase, Aminoacylase-1, Aminoacylase-2, ACAC (Acetyl CoA Carboxylase Beta), ACAC (Acetyl CoA Carboxylase), ACADSB(Acyl-coA dehydrogenase), Mevalonate kinase, Phosphomevalonate kinase, Aspartoacylase, Ornithine decarboxylase 1, Short-acyl-CoA dehydrogenase, Medium acyl-CoA dehydrogenase, Long acyl-CoA dehydrogenase, Isovalveryl CoA dehydrogenase, 2-methyl branched chain, Adenosine Deaminase, Purine-nucleoside phosphorylase, Guanine Deaminase, Xanthine Oxidase, ITM1 (Integral Transmembrane Protein), GFPT (Glutamine-Fructose-6-Phosphate Transaminase), Heparan, Polypeptide N-Acetyltransferase, ACAA(Acetyl-Coenzyme A acyltransferase), Lysophosphatidic acid acyltransferasealpha, Lysophosphatidic acid acyltransferase-beta, FNTa (Farnesyltransferase Alpha Subunit), FNTb (Farnesyltransferase Beta Subunit), NMT1 (N-myristoyltransferase), Calcineurin A, Calcineurin B, Calreticulin Precursor, Phosphatase 2b, PPP3ca(Protein phosphatase 3, catalytic subunit), SNK Interacting 2-28(Calcineurin B Subunit), Protein Kinase C, PRKCA(Protein kinase C, alpha), PRKCB1(Protein kinase C, beta 1), PRKCD(Protein kinase C, delta), PRKCM(Protein kinase C, mu), PRKCQ(Protein kinase C-theta), PRKCSH(Protein kinase C substrate 80K-H), Geranylgeranyl. Geranylgeranyltransferase (Type I Beta). GGTB (Geranylgeranyltransferase), Geranylgeranyltransferase (Type II Beta-Subunit), Gdp Dissociation Inhibitors, GDI Alpha (RAB GDP Dissociation Inhibitor Alpha), and Rab Gdp (RAB GDP Dissociation Inhibitor Alpha).

25

5

10

15

20

112. The method, inhibitor, pharmaceutical composition, or nucleic acid probe of any of claims 4, 16, 24, 32, 43, 59, 72, 86, and 104, wherein said gene is selected from the group consisting of GOT(Glutamic-oxaloacetic transaminase 2), GOT1(Glutamic-oxaloacetic transaminase 1), PYCS(Pyrroline-5-carboxylate synthetase), Tyrosine aminotransferase, AARS, CARS, DARS, EPRS, FARS,

10

15

20

25

GARS, HARS, IARS, KARS, LARS, MARS, NARS, QARS, RARS, SARS, TARS, VARS, WRS, YARS, Ribosomal Protein L11, Ribosomal Protein L12, Ribosomal Protein L17, Ribosomal Protein L18, Ribosomal Protein L18a, Ribosomal Protein L19, Ribosomal Protein L21, Ribosomal Protein L22, Ribosomal Protein L23, Ribosomal Protein L23a, Ribosomal Protein L25, Ribosomal Protein L26, Ribosomal Protein L27, Ribosomal Protein L27a, Ribosomal Protein L28, Ribosomal Protein L29, Ribosomal Protein L30, Ribosomal Protein L31, Ribosomal Protein L32, Ribosomal Protein L35, Ribosomal Protein L35a, Ribosomal Protein L36a, Ribosomal Protein L39, Ribosomal Protein L4, Ribosomal Protein L41, Ribosomal Protein L44, Ribosomal Protein L6, Ribosomal Protein L7, Ribosomal Protein L7a, Ribosomal Protein L8, Ribosomal Protein L9, Ribosomal Protein P1, Ribosomal Protein S10, Ribosomal Protein S11, Ribosomal Protein S13, Ribosomal Protein S14, Ribosomal Protein S15, Ribosomal Protein S15A, Ribosomal Protein S16, Ribosomal Protein S17, Ribosomal Protein S17A, Ribosomal Protein S17B, Ribosomal Protein S18, Ribosomal Protein S20, Ribosomal Protein S20A, Ribosomal Protein S20B, Ribosomal Protein S21, Ribosomal Protein S23, Ribosomal Protein S25, Ribosomal Protein S26, Ribosomal Protein S28, Ribosomal Protein S29, Ribosomal Protein S3, Ribosomal Protein S3A, Ribosomal Protein S4, Ribosomal Protein S4X, Ribosomal Protein S4Y, Ribosomal Protein S5, Ribosomal Protein S6, Ribosomal Protein S7, Ribosomal Protein S8, Ribosomal Protein S9, Initiation of polypeptide polymerization, eIF-2 (Eukaryotic initiation factor), eIF-2associated p67(Eukaryotic initiation factor), eIF-2A(Eukaryotic initiation factor), eIF-2Alpha(Eukaryotic initiation factor), eIF-2B(Eukaryotic initiation factor), eIF-2B-Gamma(Eukaryotic initiation factor), eIF-2Beta(Eukaryotic initiation factor), eIF-3 p110(Eukaryotic initiation factor), eIF-3 p36(Eukaryotic initiation factor), eIF-4A(Eukaryotic initiation factor), eIF-4C(Eukaryotic initiation factor), eIF-4E(Eukaryotic initiation factor), eIF-4Gamma(Eukaryotic initiation factor), eIF-5(Eukaryotic initiation factor), eIF-5A, Eukaryotic peptide chain release factor subunit 1, P97(Eukaryotic initiation factor), eEF1A2(Eukaryotic elongation factor),

eEF1D(Eukaryotic elongation factor), eEF2(Eukaryotic elongation factor), eIF4A2 (Eukaryotic initiation factor), KIAA0031(Elongation factor 2), KIAA0219(Putative translational activator C18G6.05C), Factor 1-Alpha 2(Eukaryotic translation elongation factor 1 alpha 2), Cis-Trans Isomerase, DNAj Protein Homolog 1, DNAj T-Complex, Protein homolog HSJ1, Protein Homolog 2, DNAJ Aspartylglucosaminidase, T-Complex 1, Alpha, T-Complex 1, Epsilon, T-Complex 1, Gamma, T-Complex 1, Theta, T-Complex 1, Zeta, 26S Protease regulatory subunit 4, Alpha-2-Macroglobulin, Calpain 1, Large, CLPP(ATP-Dependent CLP protease proteolytic subunit), KIAA0123 (Mitochondrial processing peptidase alpha subunit), MMP7, Proteasome Beta 6, Proteasome Beta 7, Proteasome C13, Proteasome C2, Proteasome C7-1, Proteasome inhibitor hPI31 subunit, Proteasome P112, Proteasome P27, Proteasome P55, Enzyme E2-17 Kd(Cyclin-selective ubiquitin carrier protein), ISOT-3(Ubiquitin carboxyl-terminal hydrolase T), ORF (Ubiquitin carboxyl-terminal hydrolase 14), PGP(Ubiquitin carboxyl-terminal hydrolase isozyme L1), UBA52(Ubiquitin A-52 residue ribosomal protein fusion product 1), Ubiquitin carboxyl-terminal hydrolase 3, Ubiquitin carboxyl-terminal hydrolase isozyme L3, Ubiquitin carboxyl-terminal hydrolase T, Ubiquitin carrier protein (E2-EPF), Ubiquitin fusion-degradation protein (UFD1L), Ubiquitin Hydrolase, Ubiquitin-conjugating enzyme E2I, SEC23(Protein transport protein SEC23), SEC23A(Protein transport protein SEC23), SEC7(Protein transport protein SEC7), SEC61 (Beta Subunit), and LDLR (LDL receptor).

25

20

5

10

15

113. The method, inhibitor, pharmaceutical composition, or nucleic acid probe of any of claims 5, 17, 25, 33, 45, 73, 89, and 105, wherein said gene is selected from the group consisting of Adenylate Kinase-2, Adenylosuccinate synthetase, Adenylosuccinate Lyase, DPRT (ADP-Ribosyltransferase), ADSL (Adenylosuccinate lyase/AMP synthetase), ADSS (Adenylosuccinate Synthetase), CAD PROTEIN, CTP Synthetase, CTPS(CTP synthetase), Cytidine Triphosphate Synthetase, GARS (Phosphoribosylglycinamide synthetase), GART (Phosphoribosylglycinamide

10

15

20

25

GART(Phosphoribosylglycinamide formyltransferase, formyltransferase), phosphoribosylglycinamide synthetase, phosphoribosylaminoimidazole synthetase), GMP Synthetase, IMP Cyclohydrolase, IMP dehydrogenase, IMPDH1(IMP (inosine monophosphate) dehydrogenase 1), IMPDH2(IMP (inosine monophosphate) Phosphoribosyl diphosphotransferase, dehydrogenase 2), formyltransferase, Phosphoribosylaminoimidazolecarboxamide Phosphoribosylformylglycinamide synthetase, Phosphoribosylglycinamide carboxylase, Phosphoribosylglycinamide-succinocarboxamide synthetase, PPAT (Amidophoribosyltransferase), PPAT(Phosphoribosyl pyrophosphate amidotransferase), Ribonucleoside-diphosphate reductase M1 chain, Ribonucleosidediphosphate reductase M2 chain, Thymidine Kinase, Thymidylate Synthase, UMK(Uridine kinase), UMPK (Uridine monophosphate kinase), UMPS(Uridine monophosphate synthetase (orotate phosphoribosyl transferase and orotidine-5'decarboxylase)), Uridine Phosphorylase, DNA Origin Recognition Complex, ORC1, ORC2, ORC3, ORC4, ORC5, ORC6, ORC Regulators, CDC6, CDC7, CDC1, **DNA** DNA Polymerases, Adprt (NAD(+)ADP-Polymerization, Ribosyltransferase), DNA Polymerase Alpha-Subunit, DNA Polymerase Delta, POLa(DNA Polymerase Alpha/Primase Associated Subunit), POLb(DNA Polymerase Beta Subunit), POLd1(Polymerase (DNA directed), Delta 1, Catalytic Subunit), POLd2(Polymerase (DNA directed), Delta 2), POLE(Polymerase (DNA directed)), POLg (DNA Polymerase Gamma Subunit), Terminal Transferase (DNA Nucleotidylexotransferase), Activator 1 36 Kd, CDC46 (DNA Replication Licensing Factor), CDC47 (DNA Replication Licensing Factor CDC47), DNA Topoisomerase III, DRAP1 (DNA Replication Licensing Factor MCM3), KIAA0030 Gene (Cell Division Control Protein 19), KIAA0083 Gene (DNA Replication Helicase DNA2), MCM3 (DNA Replication Licensing Factor MCM3), PCNA (Proliferating Cell Nuclear Antigen), PRIM1 (DNA Primase 49 kD Subunit), PRIM2 (DNA Primase), PRIM2a (DNA Primase 58 kD Subunit), PRIM2b (DNA Primase), RECa (Replication Protein A 14 kD Subunit), RFC1 (Replication Factor C (activator 1) 1),

10

15

20

25

RFC2 (Replication Factor C 2), RFC3 (Replication Factor C (activator 1) 3), RFC4 (Replication Factor C, 37-kD subunit), RFC5 (Replication Factor C), RPA1 (Replication protein A1 (70kD)), RPA2 (Replication protein A2 (32kD)), RPA3 (Replication protein A3 (14kD)), TOP1 (DNA Topoisomerase I), TOP2a (Topoisomerase (DNA) II Alpha (170kD)), TOP2b (Topoisomerase (DNA) II Beta (180kD)), CHL1(CHL1-Related Helicase), DNA Helicase II, Mi-2(Chromodomain-Helicase- DNA-Binding Protein CHD-1), RECQL (ATP-Dependent DNA Helicase Q1), Smbp2 (DNA-Binding Protein SMUBP-2), H1(0) (Histone H5A), Histone H1d, Histone H1x, Histone H2a.1, Histone H2a.2, Histone H2b.1, Histone H4, SLBP (Histone Hairpin-Binding Protein), TATA-binding Complex, Small Nuclear RNA-Activating Complex, Polypeptide 1, 43KD (SNAPC1), Small Nuclear RNA-Activating Complex, Polypeptide 2, (SNAPC2), Small Nuclear RNA_Activating Complex, Polypeptide 3, 50KD (SNAPC3), TAF2D(TBP-associated factor), TAFII100(TBP-associated factor), TAFII130(TBP-associated factor), TAFII20(TBPassociated factor), TAFII250(TBP-associated factor), TAFII28(TBP-associated TAFII30(TBP-associated factor), TAFII32(TBP-associated factor), factor). TAFII40(TBP-associated factor), TAFII55(TBP-associated factor), TAFII80(TBPassociated factor), TBP(TATA Binding Protein), TMF1 (TATA Element Modulatory Factor 1), RPB 7.0, RPB 7.6, RPB 17, RPB 14.4, RNA polymerase I subunit hRPA39, 13.6 Kd Polypeptide (DNA-Directed RNA Polymerase II 13.6 kD Polypeptide), POLR2C(RNA polymerase II, polypeptide C (33kD)), Polypeptide A (220kd), RNA Polymerase II 23k, RNA polymerase II holoenzyme component (SRB7), RNA polymerase II subunit (hsRPB10), RNA polymerase II subunit (hsRPB8), RNA polymerase II subunit hsRPB4, RNA polymerase II subunit hsRPB7, RNA Polymerase II Subunit(DNA- Directed RNA Polymerases I, II, and III 7.3 kD polypeptide), TCEB1L(Transcription elongation factor B (SIII), polypeptide 1-like), RNA polymerase III subunit (RPC39), RNA polymerase III subunit (RPC62), Elongation Factor 1-Beta, Elongation Factor S-II, TCEA (110kD), TCEB1, TCEB (18kD), TCEB1L, TCEB3, TCEC (15kDa), TFIIS (Transcription

10

15

20

25

Elongation Factor IIS), E2F1 (E2F Transcription Factor), TFAP2A (Transcription Factor A2 Alpha), TFCP2 (Transcription Factor CP2), TFC12 (Transcription Factor 12), PRKDC (Protein Kinase, DNA activated catalytic subunit), SUPT6H, TFIIA gamma subunit, TFIIA delta, TFIIB related factor hBRF (HBRF), TFIIE Alpha Subunit, TFIIE Beta Subunit, TFIIF, Beta Subunit, GTF2F1 (TFIIF), GTF2F2 (TFIIF), General Transcription Factor IIIA, TFIIH(52 kD subunit of transcription TFIIH(p80), TFIIH(p62), TFIIH(p44), TFIIH(p89), Transcription Factor IIf(General transcription factor IIF, polypeptide 1 (74kD subunit))Transcription Factor IIf(General transcription factor IIF, polypeptide 1 (74kD subunit)), BTF 62 kDSubunit (Basic transcription factor 62 kD subunit), CAMP-dependent transcription factor ATF-4, CCAAT box-binding transcription factor 1, CRM1(Negative regulator CRM1), Cyclic-AMP-dependent transcription factor ATF-1, GABPA(GA-binding protein transcription factor, alpha subunit (60kD)), ISGF-3(Signal transducer and activator of transcription 1-alpha/beta), NFIX(Nuclear factor I/X (CCAAT-binding transcription factor)), NFYA(Nuclear transcription factor Y, alpha), NTF97(Nuclear factor p97), Nuclear factor I-B2 (NFIB2), Nuclear factor NF45, Nuclear factor NF90, POU2F1(POU domain, class 2, transcription factor 1), Sp2 transcription factor, TCF12(Transcription factor 12 (HTF4, helix-loop-helix transcription factors 4)), TCF3(Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)), TCF6L1(Transcription factor 6-like 1), TF P65(Transcription factor p65), TFCOUP2(Transcription factor COUP 2 (a.k.a. ARP1)), Transcription factor IL-4 Stat, Transcription Factor S-II (Transcription factor S-II-related protein), Transcription factor Stat5b, Transcription Factor, Transcription factor (CBFB), 9G8 Splicing Factor (Pre-mRNA Splicing SRP20), CC1.3(Splicing factor (CC1.3)),**HnRNP** protein, HNRPA2B1(Heterogeneous nuclear ribonucleoproteins A2/B1), HNRPG(Heterogeneous nuclear ribonucleoprotein G), HNRPK(Heterogeneous nuclear ribonucleoprotein K), Pre-mRNA splicing factor helicase, Pre-mRNA splicing factor SF2, P33 subunit, Pre-mRNA splicing factor SRP20, Pre-mRNA

splicing factor SRP75, PRP4(Serine/threonine-protein kinase PRP4), PTB-Associated Splicing Factor, Ribonucleoprotein A', Ribonucleoprotein A1, Ribonucleoprotein C1/C2, RNP Protein, L (Heterogeneous nuclear ribonucleoprotein L), RNP-Specific C(U1 small nuclear ribonucleoprotein C), SAP 145(Spliceosome associated protein), SAP 61(Splicesomal protein), SC35(Splicing factor), SF3a120, SFRS2(Splicing factor, arginine/serine-rich 2), SFRS5(Splicing factor, arginine/serine-rich 5), SFRS7(Splicing factor, arginine/serine-rich 7), Small nuclear ribonucleoprotein SM D1, SnRNP core protein Sm D2, SnRNP core protein Sm D3, SNRP70(U1 snRNP 70K protein), SNRPB(Small nuclear ribonucleoprotein polypeptides B and B1), SNRPE(Small nuclear ribonucleoprotein polypeptide E), SNRPN(Small nuclear ribonucleoprotein polypeptide N), Splicing factor SF3a120, Splicing factor U2AF 35 kD subunit, Splicing factor U2AF 65 kD subunit, SRP30C(Pre-mRNA splicing factor SF2, p33 subunit), SRP55-2(Pre-mRNA splicing factor SRP75), Transcription factor BTEB, Transcription initiation factor TFIID 250 kD subunit, Cleavage and polyadenylation specificity factor, Cleavage stimulation factor, 3' pre-RNA, subunit 1, 50kD, Cleavage stimulation factor, 3' pre-RNA, subunit 3, 77kD, HNRNP Methyltransferase, PABPL1(Poly(A)-binding protein-like 1), Pap mRNA(Poly(A) Polymerase), RNA unwinding, RNA Helicase, GU Protein (ATP-Dependent RNA helicase dead), KIAA0224 Gene(Putative ATP-dependent RNA helicase), RNA Helicase A, RNA Helicase Pl10, and Ste13(Nuclear RNA Helicase).

25

20

5

10

15

114. The method, inhibitor, pharmaceutical composition, or nucleic acid probe of any of claims 6, 18, 26, 34, 47, 63, 92, and 106, wherein said gene is selected from the group consisting of AP47(Clathrin Coat Assembly AP47), AP50(Clathrin Coat Assembly Protein AP50), Cell Surface Protein (Clathrin Heavy Polypeptide-Like Protein), Cltb(Clathrin Light Chain B), Cltc (Clathrin Heavy Chain), Adenylate Cyclase, Adenylate Cyclase, Adenylate Cyclase, II, Adenylate Cyclase, IV, Complex I, MTND1 (Subunit ND1), MTND2 (Subunit ND2), MTND3 (Subunit ND3), MTND4 (Subunit ND4), MTND4L (Subunit ND4L), MTND5 (Subunit ND5),

10

15

20

25

MTND6 (Subunit ND6), Complex II, Complex III, Cytochrome b subunit, Complex IV, CO1 (Cytochrome c Oxidase Subunit I), CO2 (Cytochrome c Oxidase Subunit 2), CO3 (Cytochrome c Oxidase Subunit 3), Complex V, ATP Synthase Subunit ATPase 6, Kinesin Heavy Chain, Kinesin Light Chain, Syntaxin 1a, Syntaxin 1b, Syntaxin 3, Syntaxin 5a, Syntaxin 7, CANX (Calnexin), ER Lumen Protein 1, ER Lumen Protein 2, Ribophorin I, Ribophorin II, Signal recognition particle receptor, SRP Protein, TIM17 preprotein translocase, Golgin-245, TGN46 (Trans-Golgi Network Integral Membrane Protein TGN38 Precursor), Beta-Cop, Coatomer Beta' Subunit, Coatomer Delta Subunit, Gp36b Glycoprotein (Vesicular integral-membrane protein VIP36 precursor), Homologue of yeast sec7, Protein transport protein SEC13 (Chromosome 3p25), SEC14 (S. Cerevisiae), Synaptic vesicle membrane protein VAT-1, Synaptobrevin-3, Synaptotagmin I, Transmembrane(COP-coated vesicle membrane protein p24 precursor), Vacuolar-Type (Clathrin-coated vesicle/synaptic vesicle proton pump 116 kd subunit), 140 kD Nucleolar phosphoprotein, Autoantigen p542, Export protein Rae1 (RAE1), Heterogeneous nuclear ribonucleoprotein A1, Nuclear pore complex protein hnup153, Nuclear pore complex protein NUP214, Nuclear pore glycoprotein p62, Nuclear Transport Factor 2, Nucleoporin 98 (NUP98), NUP88, Ribonucleoprotein A, Ribonucleoprotein B", Karyopherin, Importin Alpha Subunit, TRN (Transportin), Actin, Beta-Centractin, Capping Protein Alpha, CFL1 (Cofilin, Non-Muscle Isoform), Desmin, Dystrophin, Gelsolin, hOGG1(Myosin Light Chain Kinase), IC Heavy Chain, Itga2 (Integrin, Alpha 2 (CD49B, alpha 2 Subunit of VLA-2 receptor)), Itga3 (Integrin Alpha-3 Precursor), Keratin 19, Keratin, Type II, Lamin A, LBR(Lamin B Receptor), Light Chain Alkali, MacMarcks mRNA, MAP1a (Microtubule-Associated Protein 1A), MAP2(Microtubule-Associated Protein 2), MEG1(Protein-Tyrosine Phosphatase MEG1), Microtubule-Associated Protein TAU, Suppressor Of Tubulin STU2, TUBg (Tubulin Gamma Chain), Tubulin Alpha-4 Chain, USH1b (Myosin II Heavy Chain), Villin, Villin 2 (Ezrin), Actin Depolymerizing, Capping (Actin Filament), MYH9(Myosin, Heavy Polypeptide 9, Non-Muscle), MYL5(Myosin Regulatory Light Chain 2), Myosin Heavy Chain 95F, Myosin Heavy Chain IB, Myosin IB, Sh3p17(Myosin IC Heavy Chain), Sh3p18(Myosin IC Heavy Chain), KIAA0059(Dematin:Actin-Bundling Protein), TTN (Titin:Myosin Light Chain Kinase), ATP6c(Vacuolar H+ ATPase proton channel subunit), ATP6a1 (ATPase, H+ Transporting, Lysosomal (Vacuolar Proton Pump), Alpha Polypeptide, 70kD), ATP6b1(ATPase, H+ transporting, lysosomal (vacuolar proton pump), beta polypeptide, 56/58kD), ATP6d(ATPase, H+ transporting, lysosomal (vacuolar proton pump) 42kD), ATP6e(ATPase, H+ transporting, lysosomal (vacuolar proton pump) 31kD), ATPase, H+ transporting, lysosomal (vacuolar proton pump) 31kD), ATPase, H+ transporting, lysosomal (vacuolar proton pump) 31kD, and Superoxide Dismutase.

- 115. A method for identifying an inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on a conditionally essential gene, and wherein said gene is subject to loss of heterozygosity in a cancer, said method comprising the steps of:
 - (a) determining at least two alleles of a said gene;
- (b) testing a potential allele specific inhibitor to determine whether said potential allele specific inhibitor is active on at least one but less than all of said alleles;

wherein inhibition of expression of at least one but less than all of said alleles or reduction of the level of activity of a product of at least one but less than all of said alleles in the presence of said potential allele specific inhibitor is indicative that said potential allele specific inhibitor is a said inhibitor.

116. An inhibitor potentially useful for treatment of cancer, wherein said inhibitor is active on an allelic form of a conditionally essential gene, said gene has at least two alternative alleles in a population, and

wherein said inhibitor targets at least one but less than all of said alternative alleles.

117. A pharmaceutical composition, comprising

5

10

15

20

25

at least one allele specific inhibitor targeting at least one but less than all allelic forms of a conditionally essential gene in a population; and

a pharmaceutically acceptable carrier or excipient.

5

118. A method for producing an inhibitor potentially useful for cancer treatment, wherein said inhibitor is active on at least one but less than all alternative alleles of a conditionally essential gene having at least two alternative alleles, comprising the steps of:

10

(a) identifying a conditionally essential gene that has alternative allelic forms in a noncancerous cell, wherein one of said alternative allelic forms is deleted in a cancer cell;

15

- (b) screening to identify an inhibitor which inhibits said at least one but less than all of said at least two alternative alleles; and
- (c) synthesizing said inhibitor in an amount sufficient to produce a therapeutic effect when administered to a patient suffering from a cancer in whom cancerous cells have only an allele of said gene inhibited by said inhibitor and in whom normal cells are heterozygous for said gene and contain an allelic form not inhibited by said inhibitor.

20

- 119. A method for preventing the development of cancer in a patient having a precancerous condition, comprising the steps of:
- a. subjecting cells of said precancerous condition to an altered condition such that a first conditionally essential becomes essential;

25

b. administering to said patient a therapeutic amount of a first allele specific inhibitor targeted to an allele of said first conditionally essential gene present in cells of said precancerous condition, wherein the normal somatic cells of said patient are heterozygous for said first gene, said inhibitor is active on at least one but less than all allelic forms of said gene present in a population and targets only one allelic form present in said normal somatic cells; and

wherein cells of said precancerous condition have undergone LOH of said first gene.

120. The method of claim 119, wherein the cells of said precancerous condition are not clonal from a single cell, further comprising the step of:

c. serially administering to said patient at least one additional allele specific inhibitor, wherein each of said at least one additional allele specific inhibitors targets a different allele of a conditionally essential gene or an essential gene than is targeted by said first allele specific inhibitor, wherein said different allele may be a different allele of said first gene or an allele of a different gene, and wherein said patient is heterozygous for each targeted gene and each targeted gene has undergone LOH in cells of said precancerous condition.

- 121. A method for treating a patient suffering from a cancer, wherein said patient is heterozygous for a conditionally essential gene, comprising the steps of:
- a) subjecting cells of said cancer to altered conditions such that said gene is essential; and

administering a therapeutic amount of an allele specific inhibitor active on at least one but less than all allelic forms of said gene present in a population,

wherein said allele specific inhibitor inhibits only one allelic form of said gene present in said patient, and said only one allelic form of said gene is present in cancer cells in said patient.

- 122. The method of claim 121, further comprising the steps of:
- (a) determining whether non-cancerous cells of said patient are heterozygous for a particular conditionally essential gene; or
- (b) determining whether cancerous cells of said patient have only one allele of said particular gene; or
 - (c) both (a) and (b).

5

10

15

20

25

5

10

15

20

25

- 123. A method of inhibiting growth of a cell comprising the steps of:
 - a) subjecting said cell to conditions such that said gene is essential; and
- b) administering at least one inhibitor active on an allele of said conditionally essential gene,

wherein said inhibitor is less active on at least one other allele of said gene.

124. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a conditionally essential gene, wherein said patient is suffering from a cancer, said method comprising the step of:

identifying a patient heterozygous for a said gene,

wherein if said patient is heterozygous for said gene, then said patient is a potential patient for said treatment.

125. The method of claim 124, further comprising the step of determining whether cancer cells in said patient contain only a single allele of said gene,

wherein if said cancer cells contain only a single allele of said gene, then said patient is a potential patient for said treatment.

126. A method of identifying a potential patient for treatment with an inhibitor active on at least one but less than all alleles of a conditionally essential gene, wherein said patient is suffering from a cancer, said method comprising the step of:

determining whether cancer cells in said patient have undergone LOH of a said gene,

wherein if said cells have undergone LOH of said gene, then said patient is a potential patient for said treatment.

126. A nucleic acid probe at least 12 nucleotides in length which is perfectly complementary to a portion of a first allelic form of a conditionally essential gene, wherein said portion comprises a sequence variance site, and wherein

antiproliferative treatment; and

said probe hybridizes under stringent hybridization conditions to said portion and not to a corresponding portion of a second allelic form having at least one different nucleotide at said sequence variance site.

5

127. A method for selecting a patient for treatment with an antiproliferative treatment, comprising the steps of:

10

a) determining whether normal somatic cells in a potential patient are heterozygous for an essential or conditionally essential gene, wherein a first allelic form of said gene is more active than a second allelic form, and wherein a reduction in the activity of said gene in a cell increases the sensitivity of said cell to a said

ıv

b) determining whether cancer cells of said patient have only said second allelic form of said gene,

15

wherein if said somatic cells are heterozygous and said cancer cells have only said second allelic form, it is indicative that said patient is suitable for treatment with said antiproliferative treatment.

20

128. A method for selecting an antiproliferative treatment for a patient suffering from a cancer, comprising the steps of:

a) determining whether normal somatic cells in a potential patient are heterozygous for an essential or conditionally essential gene which reduces the sensitivity of cells to an antiproliferative treatment, wherein a first allelic form of said gene is more active than a second allelic form, and wherein a reduction in the activity of said gene in a cell increases the sensitivity of said cell to a said antiproliferative treatment; and

25

b) determining whether cancer cells of said patient have only said second allelic form of said gene,

wherein if said somatic cells are heterozygous for said gene and said cancer cells have only said second allelic form, it is indicative that said antiproliferative treatment is suitable for said patient.

129. The method of any of claims 115-129, wherein said gene is selected from the group consisting of:

5

10

15

20

25

galactose-1-phosphate uridyltransferase, galactose kinase, UDP galactose-4epimerase, methionine synthase, asparagine synthase, glutamine synthetase, multidrug resistance gne/Pglycoprotein, multidrug resistance associated proteins 1-5, bleomycin hydrolase, dihydropyrimidine dehydrogenase, β -ureidopropoinase, β -alanine synthetase, cytidine deaminase, thiopurine methyltransferase, CYP1A1, CYP1A2, CYP2A6, CYP2A7, CYP2B6, CYP2B7, CYP2C8, CYP2C9, CYP2C17, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2F1, CYP3A3, CYP3A4, CYP3A5, CYP3A7, CYP4B1, CYP7, CYP11, CYP17, CYP19, CYP21, CYP27, glutathione transferase alpha, glutathione transferase theta, glutathione transferae mu, glutathione transferase pi, methylguanine methyltransferase, 3-alkylguanine alkyltransferase, 3-methyladenine DNA glucosylase, DNA dependent protein kinase, catalytic subunit of DNA-PK, DNA binding subunit of DNA-PK Ku-70 or Ku-80 subunit, KARP-1, Poly(ADP-ribose) polymerase, Fanconi Anemia genes A, B, C, D, E, F, G, and H, ERCC-1, ERCC2/XPD, ERCC3/XPB, ERCC4, ERCC5, ERCC6, XPA, XPC, XPE, HHR23A, HHR23B, uracil glycosylase, 3-methyl adenine DNA glycosylase, NF-kappa B, XRCC4, XRCC5/Ku80, XRCC6, XRCC7, glutathione-X-transferase, I-kappa B alpha, HSP70, HSP27, and 9-oxoguanine DNA glycosylase.

131. A method for identifying a potential patient undergoing transplantation for treatment with an inhibitor active on at least one but less than all alleles of an essential gene, comprising the step of:

identifying a patient undergoing an allogenic bone marrow transplantation in which the donor tissue contains at least one alternative allele of an essential gene different from the alleles in somatic cells of said patient.

132. The method of claim 131, wherein said donor or said recipient is homozygous for an alternative allelic form of an essential gene that is not present in the other of said donor or said recipient.

5

133. A method for treating graft versus host disease in a patient receiving allogenic bone marrow transplantation, said method comprising the step of

10

administering to said patient at least one allele specific inhibitor specific for at least one but less than all of the allelic forms of an essential gene in a population, wherein said inhibitor inhibits stimulation of the donor immune system, and cells of the said patient comprise an allelic form of said gene not present in the donor bone marrow.

15

134. The method of claim 133, wherein said allele specific inhibitor is selected by identifying at least one alternative alleles of an essential gene present in the donor tissues but absent in the normal somatic cells of said patient; and

selecting a said inhibitor active on a said alternative allele of an essential gene present in said donor tissues but absent in the normal somatic cells of said patient.

20

135. The method of claim 134, wherein said at least one inhibitor recognizes both alleles of said essential gene that are present in said donor, but not both alleles of said gene that are present in said patient.

25

- 136. A method for enhancing engraftment of an allogenic bone marrow transplant, comprising the step of administering to a patient receiving said transplant an allele specific inhibitor which kills or suppresses the patient's bone marrow but not the donor bone marrow, thereby providing space for engraftment of the donor cells within the marrow cavity.
- 137. The method of claim 136, wherein the allele specific inhibitor is selected by

10

15

20

25

identifying alternative alleles of an essential gene that are present in the recipient but not the donor marrow.

- 138. The method of claim 137, wherein said allele specific inhibitor recognizes both allelic forms of the essential gene that are present in the recipient, but not both allelic forms of the same gene that are present in the recipient.
- 139. A method for treating or preventing chimerism in allogenic bone marrow transplantation, comprising

selectively killing or suppressing proliferation of the patient's own cells without toxicity to the donor cells by

administering to a patient receiving said transplantation at least one allele specific inhibitor active on at least one but less than all alternative alleles of a gene vital for cell growth or viability, wherein said inhibitor targets the allelic form or forms of a gene in bone marrow of said patient but does not target at least one allelic form of said gene in the donor bone marrow.

140. A method for treating cancer in a patient receiving allogenic or autologous transplantation, comprising the step of

administering to said patient at least one allele specific inhibitor which kills or inhibits the growth of cancer cells without toxicity to the transplanted marrow.

141. The method of claim 141, wherein said transplantation is autologous transplantation and said at least one allele specific inhibitor is selected to be active on the allele of an essential gene remaining in the cancer cells due to LOH in patients whose normal somatic cells are heterozygous for said essential gene, but not on the alternative allele of said gene present in said normal somatic cells,

whereby said administration enables continuing therapy of cancer without suppression of the transplanted marrow.

. .

142. The method of claim 140, wherein said transplantation is allogenic transplantation and said allele specific inhibitor recognizes both alleles of said essential gene that are present in the recipient, but not both forms of the said gene that are present in said patient.

5

143. A method for eliminating malignant cells from transplanted marrow during autologous transplantation of a patient heterozygous for an essential gene, comprising

10

contacting cells from harvested autologous bone marrow ex vivo with at least one allele specific inhibitor active on at least one but less than all alternative alleles of said essential gene, wherein said inhibitor targets an allelic form of said gene present in cancer cells of said patient but does not target an alternative allele of said gene present in normal cells from said autologous bone marrow,

wherein said gene has undergone LOH in cancer cells of said patient.

15

- 144. The method of claim 143, wherein said autologous bone marrow is harvested from said patient prior to high dose radiation or chemotherapy.
- 145. The method of claim 143, further comprising the steps of:

20

a. identifying one alternative allele of an essential gene remaining in the cancer cell due to LOH in patients who are heterologous with two different alternative forms of the essential gene in normal cells of the autologous bone marrow;

25

- b. cultivating said autologous bone marrow ex vivo in the presence of an allele specific inhibitor that inhibits the allele that is present in the cancer cells, but not the heterologous allele that is present in the normal bone marrow.
- 146. The method of claim 143, wherein said autologous bone marrow is contacted with a plurality of said allele specific inhibitors.

10

15

20

- 147. A method for separating a first cell from a mixture of cells, comprising the steps of:
- a) providing an allele specific binding compound which binds to at least one but less than all alleles of a gene, wherein a said allele of said gene expressed in said first cell is not expressed in other cells of said mixure of cells or is expressed in other cells in said mixture of cells and not in said first cell;
- b) contacting said mixture of cells with said binding compound under conditions such that said binding compound binds to said allele and not to non-target alleles: and
 - c) separating bound cells from unbound cells.
- 148. The method of claim 147, wherein said mixture of cells comprises normal somatic cells and cancer cells from a patient, said first cells are said normal somatic cells, and said first cells express a said allele deleted in said cancer cells due to LOH of said gene, comprising

separating said normal somatic cells from said cancer cells.

- 149. The method of claim 147, wherein said allele specific binding compound is an antibody or antibody fragment.
- 150. The method of claim 147, wherein said binding compound is attached to a solid support.

Target Gene Summary Table Dihydropyrimidine Dehydrogenase Chromosome 1p22-1q21 VARIA950

Fig. 1

pecific	rgosity	Γ	Τ	T	9	Τ	1/2	49									 7		
Race Specific	helerozygosity				50 % in blacks and											þ			
;	Protein	Cys/Ard	Matival				Ygosthy	s Surveyed:								o nci celermir		genotyped:	
	Comments				to bases		66% - Locus Helerozygostty	Ethnic & Racial Groups Surveyed	are Arab	esh#Ashkenazi b#Black	nese Jban	ok Panic		frapanese	ille	emply box = gend'ype nc; celermined		Other populations genotyped	
_	35 36 Hel%	71 11%	8		1			Ethn	ar-Arab	ash Ash b-Black	o=Chinese cu=Cuban	g=Greek h=Hispanic	-indian	in Japanese	w-White	Ē		S P E	None
	35	77	W W W	ৃ	F		2				_						_		
	33	<u> </u>	*	8 W	8 ‡		3						. .	§					
	31 32	1 1	2	\$ 9	ક		3					Ë	onzak	cisted	:llurla. 3 196				
l	26 27 28 29 30 31 32 33 34	T T T T T T T	3	2	8		•	%				Sequence nomenclature and numbering from:	McBride, O.W., Podschun, B., Schnackertz, K.D., and Gonzalez,	F.J. CDNA Clothing and Chromosome Mapping of Human Dhydropyrinnidine Dehydrogenase, an Enzyme Associated With	5-Fluorouracii Toxicily and Congenital Thymhe Uraciluria." Journal of Biological Chemistry, 269 (37) 23192-23196				
ł	28 2	F	*	AG GG AA AA AG AG	ୂଥ		1	#1				bert	χ	Tappin nzyma	hym 23				
	16 27	1	2	3	17 TC 11		1 1					mon.	ckertz	E E	T telic (5) (3)				
ا ۽	2	TT TT TT TT	M M M M AG M M M M	8	F	コ	•	Other SSCP polymorphisms:				and:	Schna	omosk mase,	onger stry, 2				
	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	E	₹	S S	್ದ 2	\dashv	<u>x</u>	orph				ature	10 G		and C				
	22	E	्ट्	AA GG AC	ಚ ಬ	コ	•	of ym				Jenc!	dachu	ا الح	Keal C			lus:	
3	20 2	TT TT	<u> </u>	¥	E	\dashv	긬	CP p				non :	λ . P.	Tiding.	cil To. Biolog			Validation Status:	
delicities of so different illustrations	6	F	3		8	\dashv	3	ir SS				ience	(e) (O)	ropyrk	al of	÷		latlor	
3	티	E	2	2	ક	\exists		Othe				Sequ	McBri	Shy i	5-Flox Journ	(1994)		Valid	
į	21 16	TT TT	MMMM	3	8 ‡	\dashv	-				. '						,	·	
	訌	F	₹	MMMMM	Ľ		<u> </u>												
5	2	드	¥	₹	보	\dashv	3												
t	=	¥	2	ू १ १	8		8	Ē	ТC	TC	ည	ນ	ACAT	AT	ည္ရ	ပ္စ			
_	6	5 F	₹			\dashv	1	a ta	ACTTC	ACT.	4TC	ATC	CAC	CAC	CTG)	TG			
	-	E	¥		8	士) mo	TCC.	TCC	AGT.	AGT,	GTG	GTG	SCI	SCT			ايو
-	ر ا	8	\$	S KE AN AN ASS	~ 본	\dashv	-	Sequence around polymorphism*	TGCAACTCTGTGTTCCA	TGCAACTCTGCGTTCCACTTC	ATTCAAAGCAATGAGTATCCC	ATTCAAAGCAGTGAGTATCCC	CCCACTCTTTGCTGTGC	CCCACTCTTTACTGTGCACAT	TGTGCACATACGGGCTCTGAC	TGTGCACATATGGGCTCTGAC			c bas
	2	2 1 2 3	MMMM	3	12 22	\Box	•	l age	CTG	CTG	SCA.	GCA	TTT.	TTT	ATA	TA			ar de la la la la la la la la la la la la la
	<u>-1</u>	티	<u>₹</u>	≥ 2	왕	\dashv	•)Ce a	ACT	ACT	AA.	Š	TCT	TCT	SAC	(AC)			e y
-	<u> </u>		2	ષ્ઠ	ઇ ઇ	\dashv	-	due	GCA	GCA	LTC	LTC	CAC	CAC	3TG	3TG			ag ag
	7	튀		- 1	빙	\dashv		Š	Ñ	F	A	×	ပ	ខ	Ĕ	Ĕ			e is
	~ -	1 1 1			- 1														흥
	7	T.C 77	A,G	ş	5	_						ပ	ပ	∢	اد	1			(OU I
	base 1 2	5.	A,G	- 1		\dashv		9	-	ပ	4		- 1	1	- 1	-			Page
	~ -	T		bp 3925 GA	bp 3937 C,T			Allele	166 T	ე გ	577 A	577	- 1	1	- 1	3937			bold nucleotide is the polymorphic base
	Location Base 1 2	bp166 T.C	bp 577 A,G	bp 3925	bp 3937			Allele	2	3	577	577	3925	3925	3937	4.2 3937 1			*bold nucle
	Location Base 1 2	5.	A,G	- 1				ID# Allele	- 1	ľ	1		- 1	1	- 1	VARIA500.4.2 3937	-		bold nucle

Target Gene Summary Table Thymidylate Synthase Chromosome 18p11.32 VARIA250

	_						2/	249)											
Race Specific	Traceroz young	wide distribution	wide distribution	wide distribution	Probably rare						<u> </u>				ned ber					
Protein		3.UT	3.01	3.01	tyr33hls	rygostly		s Surveyed:							e not deferm			genotyped		
	_	* Carrest Page 6-			So har defected with in one cell line, see her!	= Locus Heterozygosity		Ethnic & Racial Groups Surveyed: a=Asian (other)	er=Arab ash=Ashkenazi	ck 500	. upau	h=Hispanic	e e e	≃Japanese pr≖Puerto Rican	v=VMite empty box = genotype not determined			Other populations genotyped		
	35 36 Hef%	63%	42%	63%		¥89		Ethinle n=Asi	areArab asheAsh	b=Black c=Chinese	cu=Cuban	h=Hispa	t-ttellan		w=White			S S		İ
П	36	¥	AG AA AG	<u> </u>		1														
	5	7	₽	***		,	ſ				ſ				~		[-
	32 33	00 TT 10 TC		AT AT AT A W AS AT TT A W W TT AS AT AT A SAT		3						Sequence from: GenBank accession # D00596 (This accession has the		Kaneda, S., Taketshi, K., Shimzu, K., Gotoh, U. and T. Seno, Ayusawa, D., (1990) Structural and Functional	Analysis of the Human Thymidylate Synthase Gene. J.			<u>₹</u>	.	1
		-E	<u>8</u>	£		•		~ es				n Fa	(F)	를 면	ဗီ	İ		eciji		
	2	8	2	3		·		'4 ''				cessk	mdari	žop.	thas	\$		S S	.	
	27 28 29 30 31	tc 11 cc cc	NG GG AN AN AN GG AN	E		3		## -			ļ	ž Š	genomic sequence, including intronfexon boundaries.)	ي آو	Syn	Z65: Z0Z/1-Z0Z84		Validation: The existoric drug S-fluorouracil acts by specifically		
	27	ૃ	2	ž		*				l		Ē	/exo	ᇍ	ylate	770		<u>c</u>	ايه	
	5 26	70 00 00 00 00 00 00 00 00 00 00 00 00 0	NO NO NO CC NG NO NO NO NA NE	<u></u> ₹	_	3		Other SSCP polymorphisms:			j	860	alto.) (S	E C	2		roura	inhibiting thymidylate synthase.	l
Genotypes of 36 unrelated Individuals	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	- S	<u>۲</u>	*		1				l		8	gilbi	7.5 39.5	ہتے ہ	- [į	Sy	
PA	2 23	2	S 80	*		1		Ē		1		ion #	inch inch	교	Ę.	stry		5	ylate	
Ē	21 2	<u>ဗ</u>		i k	-	-		8			-	Om:	euce.	Take ¥a,	포 · 물 .	Biological Chemistry		- 5	μř	
elate	20	E	8	E		国		SCP		ļ		Sequence from: GenBank access	nbea	S. S.	, o ;	e		on:	ē.	
Ē	181	. Ł	~ ⊚9	AT AT AT AT	_			er S				quen Bar	울	yeda γος	alysis	logic		Validation: The cytotox		
136	Ξ	୍ଷ୍ୟ) V	E		·		ਰੋ_				8 6	E	<u>s</u> <u>s</u>	₹ ;	8		<u>≥</u> ±	Ē	
se s	2 2	<u>မ</u>	3	NT.	-	-														
of S	Ξ	F	M AG M KG M M	E	l	•														
Se	2 13	E	- ¥	12 XX		-													morphic base	
	Ξ	<u>د</u>	Ş	ž		2 0		Ē	TT	Ţ	rag Fag	18	틾	STT	55	5			j.	
	9	8	2			_		phism*	AT.	AT	NC.	Ş	Ä	TA	Ö	Ö			TO III	
ì	-	ω μ μ ω	₹	1 2	-	3		ē	166	99	36.	36	F	E	티	ET C			*bold nucleotide is the poly	
	-	2	2	*				E E	GA	GA.	AA(¥	AG	, AG	ğ	Ž				
	5	8	2	2	-	7		punc	CTC	CIT	₹	Ag	3	IĀ	PG	AGC			9	
	₹	<u>1</u>	2	1		-		e an	AG(AG(AG.	AG.	Ţ	T	ည	29			leot	
	2 3	1 0	2	1		-		Jenc	99	4GG	A	A.	₩ W	A S	SCI	SCI		!	Ę	
	-	12 22	We ke we we	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		,		Sequence around polymon	CAAAGGAGCTCGAAGGATATT	CAAAGGAGCTTGAAGGATATT	TCTAAAAGAAAAAGGAACTAG	TCTAAAAGAAGAAGTAG	ATGAACTTTAAAGTTATAGTT	ATGAACTTTATAGTTATAGTT	GGAGCTGCAGTACCTGGGGCA	GGAGCTGCAGCACCTGGGGCA			jog.	
	Base	2			2				υ	U		Т		Y	9	9				
	Location	1140	1210	1571	278			Allele	1140 C	1140 T	1210 A	1210 G	1571 A	1571 T	276 T	276 C				
	-	_		-	-		<u> </u>				L .					4.2	<u></u>	-		-
	Primer Pair	153b-TS4a	TS3b-TS4a	[Cr-w]				#0	VARIA250.1.1	VARIA250.1.2	VARIA250.2.1	VARIA250.2.2	VARIA250.3.1	VARIA250.3.2	VARIA250.4.1	VARIA250.4.2				

Target Gene Summary Table Threonyl-tRNA Synthetase Chromosome 5p13-cen VARIA302

و	<u> </u>	_	<u> </u>	j .		3/24	9											
Race Specific	Heterotygosity	B/20 = 45% In Caucastans	40% in Caucasians 50% in Chinese	30% in Caucasians 50% in Chinese			ÿ							peujune			Sed:	
Protein		stlent	sitent	3 UT		- Locus Heterozygosity	oups Survey							type not det			ns genoty	
	36 Het % Comments	20 caucasians lested				1 1	Ethnic & Racial Groups Surveyed	are-Arab	*	ban Dan	ek vanic	c c	j∸Japanese pr≃Puerto Rican	w=White empty box = genotype not determined			Other populations genotyped:	
	Het%	797 DY	31%	TT TC TT TT TT TT 26%		47%	Ethnic	ar-Arab	V-Black	ar-Cuban	g=Greek h=Hispanic	Findan K-Italian	FJapanese pr-Puerto F	w=White			othe	
	36		8	E												•		
-	35	8	B	୍ଷଥ										_	1	1		
-	26 27 28 29 30 31 32 33 34 35	99 99 99 99 99	25	F	+	3							9				١.	_
f	32	છુ	22 22	ᆵ		-						و	deduced amino acid sequence of human threonyl- tRNA synthetase reveals extensive homology to the	Escherichia coli and yeast enzymes. J. Biol. Chem. 26: 0010.0023			Validation:	i i
	3	ၓၟ	୍ଷ	B			145	:				Cruzen,M.E. & S.M. Arfin (1991) Nucleotide and	deduced amino acid sequence of human threonyl- tRNA synthetase reveals extensive homology to th	Š			}	ā
-	9 30	50	. A	- E								otid	를 다 라이	Bio			}	
ł	2 8 2	95 94	ં ક	म स्टाम क्षेत्र म क्षे	+	,	## ~	1				nc _{la}	Ĕ Ē	٠ <u>٠</u>		l		
t	27	3	్త	्ध								Ž	of h sive	mes			4	<u> </u>
		95 95 95	୍ଷ	୍ବଧ			ns:				S	8	8 8	ועצעו			}	
1	ञ्	ğ	99	_E		1	Other SSCP polymorphisms:				Sequence from: GenBank accession # MG1180	اع ا	quei S e)	ıst e			3	2 -
1	즊		₩D ₩D	띪		-	orp				*	₹	× 80 ×	yea			8	essential for cell survival
ŀ	2	-	<u>. छ</u> ४	1	-+-		Ē					Σ	acid • re	and	,		2	Ins
ŗŀ	悥		ષ્ઠ	E			8				mo.	~ 5	S E	100	766		٩	9
	2		ည မ	77 77 77		=	ပ္တင္တ				Sequence from: GenBank access	H.	and a	ooto,oo22	<u> </u>		<u>ا</u> ا	2 2
	٥		ပ္ပ	Ę.			S		Ì		enc	J.	ced	ericl 8	8		att	<u>di</u>
: }	튀		99 99	3			Ę.				equ	Ž	Ş Ş Ş Ş	Esche 266:	ġ		Validation:	SSe
įŀ	핗		8	뒤	+	H	ات			ļ	8 C	, 0	0 =	<u>ш с</u>			<u>د ح</u>	<u> </u>
	12 13 14 15 16 17 18 19 20 21 22 23 24 25		්ජි	E E														
	Ξ		ಿತ	ည	\Box													
ŀ	즲		8	11	——										Ì			
		-	<u>ა</u>	F		2 3 4	· -	اں	ان	Ę	_	ں	اں					
ŀ	101	-	8	-	+		l se	TTCC	TTCC	CGGT	CGGT	GGTC	GGTC					
	-					•	orp	\A1	A1	ည	ည်	LAG	F					
	•	2	& & &	E		•	<u>E</u>	AA	₹	ŢĞ	Ţ	Ž	A	j				350
-	٦		్రత్	- 티			8	S.	S	AT	AT	5	5					i p
H	<u>~</u>		22 22 22 22 22	C,T TT TO TT TT CC TT TT	_	3	Sequence around polymorphism*	CTACTCGCCCGGAAAAA	CTACTCGCCCAGAAAAA	TTAAAGATGCGATTGGG	TTAAAGATGCAATTGGG	TGGCAAAGTCTGAAATA	TGGCAAAGTCCGAAATA					Į.
ł	7		છ	E	\dashv		are	ပ္ပ	ပ္ပ	AT(AT	λĠ	AG		1			X X
	_		ષ્ટ	2		-	100	TC	밁	AG	AG	إج	[X					9
	2		ક	=			due	IN	T.	Z	3	ၓၟ	띯					å,
+	긔	GG	- 8	티		·	ြီး	ပ	ن	Ė	Ŀ	ř	Ĕ					ē is
	Base	Ş	A.G	C.1	_													cleotid
	Location	bp 1608	bp1755	bp 2395			Allele	1608 G	1608 A	1755 G	1755 A	2395 T	2395 C					*bold nucleotide is the polymorphic base
+	Primer Pair	Thr3b-Thr4	THRS-THR4	TARS5d-6a			<u>#</u>	VARIA302 1 1	VARIA302 1 2	VARIA302 2 1	VARIA302 2 2	VARIA302 3.1	VARIA302 3 2					

Target Gene Summary Table
TATA Associated Factor 2H
Chromosome 11p15.2-15.5
VARIA520

	_				4/	2	49)		
Race Specific	heterozygostty	50% of Blacks.					_			
	Location				veyed:					t determined
	Comments			tus Heleratyposity	Ethnic & Racial Groups Surveyed:	í a	T.	ı		cu=Cuban g=Greek H=Hspenk =Hodian k=Italian b=Japanese p=Puerto Rican w=White -empty box = genotype not determined cup populations genotyped:
	35 36 Het%	Gh AA 22%			Ethnic & Rac	Janua (onier)	areArab asheAshkenazi	P-Black	c=Chinese	cu=Cuban g=Greek h=Hispanic Hindian k=Italian h=Japanesse p=Puerto Rican w=White -ampty box = g Other popula
Genotypes of 36 unrelated Individuals	10 11 12 13114 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Het%	22 M A CO CO CO CO CO CO CO CO CO CO CO CO CO		The state of the s	Other SSCP polymorphisms: # %				hic base	Sequence from: GenBank accession # U13991 Jacq, X., Brou, C., Lutz, Y., Davidson, I., Chambon, P. and L. Tora (1994) Human TAFII30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor. Cell 79: 107-117. (Nets: 6e numbering in the Centeurit eccession and the Cell 79: 107-117 paper differ by two nucleoddes; the constant and the Cell 79: 107-117 paper differ by two nucleoddes; the constant and the Cell 79: 107-117 paper differ the centeurit Oblidation: Other TATA associated factors (TAFs) have been proven essential for cell growth.
	0.1019		3	8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		Sequence around polymorphism	TGAAGGGCACGGCCTCCGGCA	TGAAGGGCACAGGCTDDGGCA	"Bold nucleotide is the polymorphic base	
	۲	=	*CC			Allele	554	554		·
		Pumar Pari	IAFEIAFZ			*	VARIA520.1 1	VARIA520.1.2		

Target Gene Summary Table Ribonucleotide Reductase, M1 Subunit Chromosome 11p15.5 VARIA200

	Heterozygoshy		50% in Blacks	50% in Asiens	50% in Asians											Pec				
	Location	sllent	silent	silent	3.51	3.01	zygosky	ps Surveyed:							•	pe not determi		genotyped:		
	Comments		These two polymorphisms		These two polymorphisms	are separated by 5 bases	58% = Locus Helerozygosky	Elimic & Racial Groups Surveyed:	(allo)	Bsh=Ashkenaz) b=Black	ban ban	senic	<u> </u>	FJapanese	•	emply box = genolype noi delemined		Other populations genotyped:		
L	28 29 30 31 32 33 34 35 36 Het%	33%	AG GG AA GG AA GG AG AG 40%	20%	19%			Ethnic	ar-Arab	b-Black	cu-Cuban	g-Groek h-Hispanic	I=Indlan	-Japanese	w=White	hdue -		Other		
	35 36	8	SV SV	*	71 71		2 2				,						•			,
	2 33 3	W W W W W	¥ 2	MA MA MA MA MA MA MA MA MA MA MA MA MA M	TT TT TT TT TT TT TT		2 2 2							nan	ytes.					
	0 31 3	20	₩	VVV	7 77 7			24						Parker, N.J., Begley, C.G. and R.M. Fox (1991) Human Ms Schmid of Bishorn clearing Bad calculated	Sequence and Expression in Stimulated Lymphocytes.				binds and inhibits ribonucleotide reductase.	
	8 29 3	¥ 24	<u>د</u>	4 44	1111		B	#E1						× (199	led Ly				binds and inhibits ribonucleotide reductase.	
	27		M M KG M GG M KG KG AG MG M KG	<u>۷</u>	TT TT TT		3					١.	_	M. Fo	limutal	3741.			le red	
S.	25 26	ୁଥ	2	2	E		3	Other SSCP polymorphisms:				1	Cerindalik docesskori # AUSO4G	and R	n in S	Nudelc Acids Res. 19: 3741-3741			cleotic	
Genotypes of 36 unrelated Individuals	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	ୁଥ	2	2	ᄪ	2.2	-	rorp.					< b	C.G.	ressio	€.			ribonu	
Pu P	21 22		*	₹ 2	AN AT AT TT TT	\dashv	-	Poly				Ë	O S S D	Segley Pinh	d Exp	Res.			ibits	
relate	19 20	2 2	ુ ક	ू १	ž	22	寻	SSCP				Sequence from:	ઇ ક	N.J.N	Ce au	Acids		on:	nd in	
36 un	18	Ž.	्र	2	E		\exists	ther				eduer		arker,	uan ba	ucleic		Validation:	nds a	İ
es of	3	8	2	2	T T	£Ê	-	<u>6</u> _	-			S C		<u>``</u> ≥	· ·	≥	}	> 3	ق _	
E S	=	8	2	2	E	\dashv	•													
Gen	2 13	8	₹	Ş	א א	\exists	-										+ L	T+	ase	peat
	=	8	3	M M M NG MG	E	\exists	8	, Els	GGA	GGA	CAG	CAG	CAA	CAA	TTT	TTT	ATA	ATA	polymorphic base	opolymeric repeat
	6	्र ५	GG NG NG	2	T T T T	\exists	1	orphi	TGT	TGT	CAG	CAG	ATC	ATC	GAT	GAT	CTC	СТС	ymon	lyme
	-		8			==	-	n Vol	ATA	ATA	GAC	GAC	CTA	CTA	AAT	AAT	AAA	AAA		dom
	9	ઇ ૪	8	5	E			pun	TCG	TAG	CAA	CGA	CAG	ອອວ	GTT	GAT	T) 9	T) 10	e is t	9
	三	8	Ş	3	Ē	_	3	e aro	AGC	AGC	GGA	GGA	CAG	CAG	GAT	GAT	GA (GA (leotid	ength
	2 3	8 8 2	AN AN NG NG GG	A A A A A A	TA TTTTT A		=	Sequence around polymorphism*	CAACACAGCTCGATATGTGGA	CAACACCTAGATATGTGGA	ATTTAAGGACAAGACCAGCAG	ATTTAAGGACGAGACCAGCAG	CAAGACCAGCAGCTAATCCAA	CAAGACCAGCGCTAATCCAA	GTTAATGATGTTAATGATTTT	GTTAATGATGATAATGATTTT	ATGATAATGA (T) . AAACTCATAT+	ATGATAATGA (T) 10AAACTCATAT+	bold nucleotide is the	ales
\vdash	- 8			2	F	2	*	Se	CAA	C₹	ATT	ATT	CA	CA	GTT	GTT	GAT	GAT	۹.	indic
	Basse	5	A,G	A.G	F	T9, T10											_	AT		rends
	Location	bp 1037	bp 2410	bp2419	bp2717	bp 2724		Allele	O C	4 4	4	O	4	O	-	4	19	T 10		ler pa
	\dashv	윱			à				1 1037	2 1037	1 2410	2410	2419	2419	1 2717	2 2717	1 2724	2724		+Number after parends indicates length of hom
	Primer Pat	RR10-PBC	RPSD-RPR6c	RRSb-RR6c	RESORRED	RESCARRED		ID number	VARIA200.1.1	VARIA200.1.2	VARIA200.2.1	VARIA200.2.2	VARIA200.3.1	VARIA200.3.2	VARIA200.4.1	VARIA200.4.2	VARIA200.5.1	VARIA200.5.2		+Nu
	Prij	Æ	8	8	8	8		9	VARIA	VARIA	VARIA	VARIA	VARIA	VARIA	VARIA	VARIA	VARIA	VARIA		

Target Gene Summary Table Ribosomal Protein S14 Chromosome 5q23-q33 VARIA326

_		-	γ	6/2	249								 		
n Raca Spacific		SO% in Whites		ĘĠ:								ermined	ë		
Protein	changes	Silent	erozygosky	ups Survey								lype nol det	s genotyp		
	Comments		w at % = Locus Helerozygosity	Ethnic & Racial Groups Surveyed:	er=Arab	17 au 17 i	9 5	ᆲ	. •	=Japanese		empty box = genotype nol determined	Other populations genotyped:		
	36 Het%	NG 44%	* **	Ethnic	ar=Arab	b=Black	C=Chinese Cu=Cuben	g=Greek h=Hispanic	Indian	= Japanese	w=White	A de	Other		
Genotypes of 36 unrelated individuals	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	AC AC CC CC CC AC CC CC CC CC CC AC AC A	P	Other SSCP polymorphisms: # %				Sequence from:	Contains accession was missed divisional (perome and double AbA).	Rhoade D.D. Divid A and D.J. Roufa (1986)	Primary Structure of Human Ribosomal Protein S14	and the Gene That Encodes It. Molecular and Cellular Biology 6: 2774-2783	Validation:	the purson emetine whols inosome turction by specifically interacting with RPS14.	
Gent	Bese 1 2 3 4 5 6 7 6 9 10 11 12 13 1	A.G GG GG GG NG MG AG AG AG GG GG GG AG AG		Sequence around polymorphism*	TTTCTGGCAAGGAAACCATCT	TTTCTGGCAAAGAAACCATCT								*bold nucleotide is the polymorphic base	
	Location	183		Affele	183 G	183 A									
	Primer Pair	тS1-тS2		#QI	VARIA326.1.1	VARIA326.1.2									

Target Gene Summary Table Replication Protein A, 70 kDa Subunit Chromosome 17p13.3 VARIA401

Race Specific	<u> </u>	+ ·	STA III COUCASIONS	aleccion 44% in Caucastans	-ta		f 44% in Blacks	_	75% by Blacks 60% by Caucadans	-	├																	-	
	Comments Protein	₩	T	T	rare ser352phe	sllent	silent	2050 3'UT	2016 3'UT	3.01	3.01	- Locus Heterozygosity	4								_	_	termined			s que	n Swedes		
	9 Het% C	Ac 26%		1			TT 31%	7	1 ×11	33%		78% = Locu	Ethnic & Racial Groups Surveyed	(other)	-		•	•	ă		3	Rican	**************************************		Other populations genotyped	nt 1124 - very rare affels in Swedes	nt 1125 - 21% heterozygous in Swedes		
	1 1 1	00 MG	AG BG BG				11 11 61 11		دى دد دى دى	0, 0 5, 0 5, 5 6, 0 9, 5 0,		3	Ethnic A	a=Asian (other)	ara Arab	A-Black	CaChhese	Pro-Pro-Pro-Pro-Pro-Pro-Pro-Pro-Pro-Pro-		Talledian		prePrento Rican	- Adme.		Other pe			<u> </u> - -	
	1111	30 AG 50 50	AN AN AN AG AN AN AN AG AG AG AG AN				ट्मां गांगा गांदिंग	3.3	CT CC CT CC	· · · · · · · · · · · · · · · · · · ·	ક	3	*	ł	i				Erdlie, L. F., Heyer, W.D., Kolodner, R. and T. J. Kelly (1991)	-kDa single-	offcation	/ replication.				sbility and for			
guars	-	AG AG GG GG GG AG GG	AA AA			300	5	3, 13, 13, 23	20202000	6.65.59.	\$) A A	101						or.R. and T.J	Characterization of a cDNA encoding the 70-kDa single-	stranded DNA-binding subunit of human replication	protein A and the role of the protein in DNA replication.	.098.			RPA has been proven essential for yeast viability and for	vitro		
delicityes of 36 unferated individuals	= = = = = = = = = = = = = = = = = = = =	GG AA AA GG	A AA AA A				11 CT 11 11 11		202 22 22	9, 59, 59, 59, 59, 60, 69, 59,			norphisms:					Gendank accession # M63488	W.D., Kolodo	f a cDNA en	ding subunit	role of the p	266: 12090-12098			ven essentia	mammallan DNA replication in vitro		
30 0116	-	AN NG AN GG A	AA AA AA AA AA AA AA			 }	11111		ដ	*** ***		0 0 0	Other SSCP Polymorphisms:				Sequence from:	Mank accession	L.F. Heyer	acterization o	ded DNA-bin	In A and the	J. Blol. Chem. 26		Validation;	has been pro	mailan DNA I		
circingues	-	AG GG AA GG A	A A				11 CT 11		20 22 22 22 22	\$ 10.15.15.			e e				Neg.	<u> </u>	Ed	Char	stran	Profe	Š S		New York	RPA	E	<u> </u>	
֓֝֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֓֡֓֡֓֡֓֓֡֓֡֓֡֓֡֡֡֡	- 6	GG AA AG	AG AG AN AN AG			F	11 11 11		20 21 21 21 21 21			n h aug h	rphism	CCAGC	COAGG	SGA SGA	3GA	SCTA	3CTA	CTCGT+	CTCGT+	939	900	CGCTC	2000	*AAG	*AG	ymorphic base	meric segment
	5 6 7 8	CC CC AA CC AC					11 (11		<u> </u>	2.63.6	8	w Q B.m.	Sequence around polymorphism'	ATG GTOGGCCAGCTGAGCGAGG	ATG GTOGGOCAACTGAGOGAGG	CTTGATGGACACATCCCGGGAA	CTTGATGGACGCATCCCGGAA	TCCAGGAGTCTGCTGAAGCTA	TOCAGGAGTOCGCTGAAGCTA	GACTAAGCAA (T)2 CCTCCCTCGT+	GACTAAGCAA (T) 1 CCTCCCTCGT+	A OCANTICCTCCCTCGTGCG	AAGCAATTCCCCCCTCGTGCG	GTGGTGACCA (C)# ATCCCCGCTC	GTGGTGACCA (C) ATCCCCGCTC	TCAGOGGGCAAGCTGAGAAG+	TCAGCGGGGGGAGCTGAGAAGA	b is the poly!	f the homopoly
-	1 2 3 4	8 8	AG AA AA AA AA AA AA	_					נו נו	ි. වී		w b b b	equence are	ATG GTOOG	17G GTCCC	CTTGATGG	CTTCATCC	TCCAGGAG	TOCAGGAG	ACTAAGCAA	ACTAAGCAA	AGCAATTC	AGCAATT	TGGTGACC	TGGTGACC	TCAGGGGG	TCAGCGGGC	 bold nucleotide is the pol 	os the length o
_	lon Base	Ş	0 AG	4 C. T	5 C. T). -	2	+	+	y C					V	g	-		12	T3 G/	1		8	_ව	V	ß	٠ •	ends indicate
	의	8	1120	1124	1125	┞	+-	2046	2050	2297	2341		Allele	81 G	81 A	1120 A	1120 G	1674 T	1674 C	2046	2046	2050 T	2050 C	2297	2297	2341	2341		er the par
	Primer Palr	RPA70.1-RPA70.2	RPA7014-RP704	RPA7014-RP7041	RPA7014-RP704	20100	KF/USBB-RF/U4C	KP /03C-KP /048	RP703c-RP704a	RP7030-1RP70	RP7036-IRP70		#QI	VARIA401.1.1	VARIA401.1.2	VARIA401.2.1	VARIA401.2.2	VARIA401.3.1	VARIA401.3.2	VARIA401.4.1	VARIA401.4.2	VARIA401.5.1	VARIA401.5.2	VARIA401.6.1	VARIA401.6.2	VARIA401.7.1	VARIA401.7.2		+ The number after the parends indicates the length of the homopolymeric segment

7/249

Target Gene Summary Table
Replication Protein A, 32 kDa Subunit
Chromosome 1p35
VARIA402

		हा			Т	- -		<u>. ——</u>											
Race Specific		25% in Caucasian						ÿ							peulmed		į	į	
Location		SUT					ozygostły	Ethnic & Racial Groups Surveyed a=Asian (other)	•						**************************************		Other monitolism manchemed	is genory	
	Comments						11% = Locus Heterozygosity	Racial Grot (other)	(enazi	•	_	<u>.</u>	;	Rican S Rican	ox = genot		Melingo		
		<u>×</u>	+	+	-			Ethnic & Racial s=Asian (other)	ar-Arab ash-Ashkenazi	P-Black C-Chinese	cu-Cuban	h-Hispanic	It-Italian	pre-Puerto Rican	d yadwe.			Such Such Such Such Such Such Such Such	
1	13 36	99 99					7 7			_	ſ					\neg	۲		_
	22 33	5 3			=								j	Eman Eman	3177-			n DNA	
-	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Hel%	00 00 00 00 00 00 00 00 00 00 00 00 00	+	+	\dashv	\dashv	3 2	শ					1000	" ⊆	265: 3177-			Validation: RPA has been proven essental for mammalian DNA	ability.
ļ	27 28	છ ઇ					3	##:I					2	. Keliy (Da subu	Chem.			alform.	reast via
	2 22 22	S	1	 	_	-	3 3	phisms				J05249		5. & 1.J he 32-k	J. Biol.			n essent	nd for
Individ	22 22	8	1				-	polymoi				om: ession		vold, M. ture of t	otein A.			n prover	vitro
Telate	19 20 2	99 99						Other SSCP polymorphisms:				Sequence from: GenBank accession # J05249		, L.F., V iry struc	replication protein A. J. Biol. Chem.			Validation: RPA has bee	replication in vitro and for yeast viability.
9 20 10	6 17 18	33 33 3				\dashv		Other				Sequ		Prima Prima	replica 3182			RPA	re pli
Genotypes of 36 Unferated Individuals	1 2 2	8					A 1 0 0 0 1							 -	•				
3	11 12 11	99	_				- Z	• E	5	9									lymorphic base
	-	8						norphis	TTCTCG	TTCT									olymor
	6 7 8	8					# 9 8m •	od polyr	GCAC	ACAC									is the
	\$ •	99 99					-	ce aroui	CCCCAGACCCGCACCT	CCCCAGACCCACACCTTCTCG									cleotide
	1 2 3	20 20 20 20 20 20 20					1 1	Sequence around polymorphism*	2222	5000									bold nucleotide is the pol
	Base	ďΥ							_		_								
	Location	bp 40	:					Allele	40 G	40 A									
į	Primer Patr	RPA32 1.RPA32 2						#0	VARIA402.1.1	VARIA402.1.2									

9/249

Target Gene Summary Table RNA Polymerase II, 220 kDa Subunit Chromosome 17p13 VARIA500

Protein Race Specific	changes Heterozygosity	Silent 38% in Caucasians	arg292cys 13% in Caucasians	sitent 50% in Caucasims	silent	silent 50% in Blacks	Silera 50% in Chinese	silent 75% in Chinese	Bilent 38% in Cercesian	3" UT 70% Auten,75% Black	3.UT	Zydosuy	ps Surveyed:			-							'pe not determined							s genotyped:			
	Comments	22%		39%	3%	31%	11%	CC 31%	cc 22%	60%	6%	was 83% a Locus Heterozygosny	Ethnic & Racial Groups Surveyed	a=Astan (other)	ash=Ashkenazi	G-Chinese	ou≖Cuban	g=Greek	# Indian	#=Italian	Pulapanese	w=While	*empty box = genotype not determined							Other populations genotyped:	4	2002	
Genotypes of 36 unrelated individuals	12 12 14 15 16 17 18 19 20 21 22 22 24 25 26 27 28 29 30 31 32 31 34 35 36 Het%	00 00 00 00 00 00 00 00 00 00 00 00 00	8		သ သ သ သ သ သ သ သ သ သ သ သ သ သ သ သ သ သ သ	ce cr cr cr cr cr cr cr	CC CT			**************************************			Other SSCP polymorphisms: # %						Sequence from:		Genbank accession # X63564	Wintzerith M. Acker J. Vicaire S. Vicineton M. and C.	Kedinger (1992) Complete Segmence of the Human	RNA Polymerase II Largest Subunit. Nucleic Acids	Research 20: 910.					Validation:	a-amanitin is a potent cytotoxin which specifically	bolivacion II	_
Ge	Base 1 2 3 4 5 6 7 8 9 10 11 12 13	G.A cc cc the cc cc cc cc cc cc cc cc cc cc cc cc			C.T cc cc cr cr cc cc cc cc cc cc cc cc cc	သမာဗ	ထု ထု ထု မွေ့ ထု ထု သ	ूर क्रिक्ट क्रिक्ट क्रिक्ट क्रिक्ट क्रिक्ट क्रिक्ट क्रि	ន	T.C THING NO CC CC CC THIN THIN THE	THTTT				GCCAGGGTGCAGAGGAGTGG	TCAGCTGCGGCGCAATGAGCA	TCAGCTGCGGTGCAATGAGCA	TGGTGGACAACGAGCTGCCTG	TGGTGGACAATGAGCTGCCTG		CCATTGCTGCTAACATGACCT		TGAATCTTAGTGTGACAACTC	CTGAATACAACATCAACT	ACTICOSTACOSTACAGA	AGCTGCGCTATGGCGAAGACG	TGGGCCAGTCCGCTCGAGATG	TGGCCAGTCTGCTCGAGATG	CTGATGCAGATTCTTGTCTTG	CTGATGCAGACTCTTGTCTTG	TGTCCCCAAATTGAAGATCCT	TGTCCCCAAACTGAAGATCCT	* bold nucleolide is the polymorphic base
	Location	857	1260	1346	1544	1847	2678	3059	3827	6466	6557		1711	857 G			1260 T	1346 C	1346 T	1544 C.	1544 T	1847 C	1847 T	2678 C	2678 T	3059	3827 C	3827 T	6466 T	6466 C	6557 T	6557 C	
	Primer Pair	POL2 F3-R3	POLZ F5-R5	POLZ F5-R5	POLZ F6-R6	POL2 F7-R7	POL2 F12-R12	POL2 F13-R13	POL2 F17-R17	POL2 F30-R30	POL2 F30-R30		1	T NOSTON	VARIA500.1.2	VARIA500 2.1	VARIA500.2.2	VARIA500.3.1	VAR1A500.3 2	VARIA500 4.1	VARIA500.4.2	VARIA500.5.1	VARIA500.5.2	VARIA500.6 1	VAR1A500.8.2	VARIASOD 7.1	VARIA500.8 1	VARIA500.8 2	VARIA500.9.1	VARIA500.9.2	VARIA500 10 1	VARIA500 10 2	

10/249

Target Gene Summary Table Glutaminyl-tRNA Synthetase Chromosome 3p21 VARIA305

Race specific heterozygosity	1	19% in Wales												nined		ë		
Protein change					ozygosíty	fre Conveyed								type not detern		ns genotyped	•	
Comments					w ## 11% = Locus Heterozygosity	Parama Current	a=Astan (other)	ash-Ashkenazi	7 CK	uban sek	h=Hispanic I=Indian	llan .	pr=Puerto Rican	«=White empty box = genotype not determined		Other populations genotyped:		
Half	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 34 35 34 35 36 36	1 %			= =	1	a=Astan	45	G Chinese	cu-Cuben g-Greek	h-Hispa Hindlan	R-Italian	1	**************************************		0	No.	
1,1		8	\Rightarrow			r			\neg	_					_	Г		7
1111	#	8		1	3							ပ ဦး (၁.၂၈	zyme					
1	1	8	1	#		:	8 ×	E E			;	yen,V ufion	inyt er	² roc. /			roven	
	2 0	ti	丰	#	3		# -	- 7			:	. Z Z Z Z Z	glutan	sfer.			peen p	
1	7 2 2	20		#			.: :				113	iong.S	T Pe	e tran:			have t	
uals	2	သာ သာ သာ သာ သာ သာ သာ သာ သာ သာ သာ သာ သာ သ		+	2	:	Other SSCP polymorphisms:				GenBank accession # X76013	Lamour,V., Quevillon,S., Diriong,S., N'Guyen,V.C., Lising M., and M. Mirande (1994) Evolution of the	Glx-tRNA synthetase family: The glutaminyl enzyme	as a case of horizontal gene transfer. Proc. Naft. Acad. Sci. USA 91: 8670-8674.			Multiple tRNA synthetases have been proven	vival
N N	52 23	8		+	+-		DE SE				ssion #	Villon. E v	etase	orizont 91			synthe	essential for cell survival
ated	2 2	<u>.</u>		1	13		g D			Coditonce from.	acce y	, O.	synt	as a case of ho Aced. Sci. USA		i.	trnA	l for c
Genotypes of 36 unrelated individuals	2	8		-	-		her SS				nBan)	mour,	x-tRN	a cas		Valldation:	ultiple	sentia
01 36	21	8 8			垣	Ĺ	<u> </u>			Ü	<u> </u>	<u> </u>	<u> </u>	& &		[≥	. ₹	<u>ة</u>
otypes	=	8			ů								 -	,				
.	12 13	8			8 8													
-	10 11	ខ					phism	CAGO	CAGC									
	8	8		$\frac{1}{1}$	1		ушог	ည	၁၁၁၅									base
	6 7	ည ည			9 0 m		9 Pu	ACCG	ATCG									orphic
	° →	8					e arou	JGGC	AGGC.									ровуп
	2 3	CT CC CC CC CC					Sequence around polymori	TTAACAGGCACCGGCCCCAGC	TTAACAGGCATCGGCCCCAGC				1					is the
Н	- 8	ੋਂ ਹੈ:	 _	-	•	j	Sec	TI	LI									bold nucleotide is the polymorphic base
	on Base		1	\vdash	\dashv		<u>a</u>	ပ	}			_	<u> </u>	-		-		nucle
	Location	404					Allele	404 C	404 T				<u> </u>					plod.
	Primer Pair	Gln1-Gln2					#0	VARIA305.1.1	VARIA305.1.2									
	퉏	듄					-	VAR	VARI									

11/249

Target Gene Summary Table Sodium, Potassium ATPase, α1 Subunit Chromosome 1p13-p11 VARIA125

Race Specific	Heterozygosíty	50% of Blacks		25% of Whites		50% of Backs				Г]				 7
Protein	Change	silent	silent	Asp740Ghu	silent	silent	3 UTR	ਤਾ ਪਾਲ	zygosły	veyed:										determined			than ed.	u) beg.		
	Comments								w w.n 28 % = Locus Heterozygosity	Ethnic & Racial Groups Surveyed:	Ē	=							5	empty box = genotype not determined			Other populations gandbad:			
	Hotx	11%	%9	11%	3%	%	3%	3%	28%	& Rad	a"Aslan (other)	ar=Arab ash=Ashkenazi		ng.	¥.	2	: 5	1938	pr=Puerto Rican w=White	×			900			
	33 34 35 36 Het%	AA AA AA AA AA AA	න න	E 2	cc cc cc cc cc cc	S S S S S S S S S S S S S S S S S S S	<u>છ</u>	ည		Ethnic	a"Asla	ar-Arab ash-Ash	b-Black caChinese	cu-Cuban	g-Greek	h-Hispanic Hindbo	ft=itallan	-Japanes	pr=Puerto	due			O. Per			
ļ	34	Y	œ		8	9	99	သ သ သ	3	_	_			 }				_			_	, }				_ ר
	32	٧٧	20 20	ग्रह गर गर महा	2	8	ා න න න	22	2									٥.	ع _	į				Š		
-	200	AA AA	99 99	2	8	99	95	ध	3	*								Kawakami, K., Ohta, I., Nojima, H., and K. Nagano	(1900). Fillingly soutcluid of the gipha-subunit of himan Na K-ATPasa deduced from cDNA sequence.	2				Ouabain is a potent cytotoxic drug which inhibits Na,	뱕	
ļ	23	3	છુ	E	S	ၓၟ	න ලෙ ලෙ ල	8 5	3								2	ב צ	A A	S				ch Tr	K-ATPase by interactions with the al subunit.	
	27 2	AN AN AN AN AC AN AN AN AN AN AN	SO SC SC SC SC SC SC SC SC SC SC SC SC SC	10	cc cc cc cc cc cc cc	8	છ	ე ც	3	31							1	and						Ž	2	
	2 26	4	ည	1	S	8	<u> </u>	빙	3	,,						æ		E T						P. P.	ے چ	
	242	¥	છ	1	<u>ن</u> ع	8	છ	22 22 22 22 22 22 22 22 22 22 22 22 22	ă.	Other SSCP polymorphisms:						GenBank Accession #: D00099		LION		397.				toxic	s wit	
F	2 23	Ž.	8	E	8	99 9	99 99	8	-	orph							+	-		389				S S	cţo	
	212	₹ ₹	8	£	3 3 3 3	9	၁ ၁၁ (၅	8	-	E A					۳,	ssion	į		Pace	100: 389-397				otent	ntera	
-	9 20	¥	8	1	သသ	25	GG ESA	잉		ام م					Sequence from:	Acce	2	¥ .	K-A	_				44 42	ē,	
l	18	<u>۲</u>	႘	E	ध	8	ક	8	•	SSC					tuce	ank /	: !		2 2	chen			nope	ain is	Pase C	
	6 17	2	8	E F	<u>႘</u>	25	95 95	8) the					ğ	SenB	Į	awa 1006		J. Biochem.			Validation:	Cap	C-AT	
	2	2	99 99 99	Ē	8	8	ල දෙ දෙ දෙ	ष्ठ	•	ت	_			I	<u>''</u>	<u> </u>		<u> </u>			نــ					ب
1	=	2	8	틛	ည ည	8	95	잃	-	Г	Т		<u> </u>								-				90	ļ
		31						퓝	_			1	1		1		. 1			ı 1	- 1			1	ĕ	ĺ
	12	AA AA AA AA AA AA	g	Ē	ខ	8	8	ध		\vdash											- 1	ı			c b	i
	10 11 12 1	A AA AA	g	11 11 11	20 20 20	GG GG GG	GG	8	8	F	III S	و او	2 2	CI	မွ	ည	¥¥.	¥	\CT	Ç	ပ္ပ	ည	ΙC	\TC	orphic b	
	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	AN AN AN AN AN	g	TT TT TT 1	20 20 20	5 GG GG GG	GG	8	8		morphism TCTTC	igne TGTG	CCATCT	CCATCT	CAAGC	CAAGC	TCAGAA	TCAGAA	CCTACT	CCTACT	CACGC	XACGC	4GCATC	4GCATC	olymorphic b	
	7 8 9 10 11 12 1	M M M	වල පල පල පල	** ** ** ** ** ** ** **	သသသသသ	(A) co co co co co co co co co co co	ය යෙ යෙ යෙ	သသသသ	4 Ge B		Solymorphism TOTOTO	ATTGTGTTG		CCACCATCT	TGTCCAAGC	TGTCCAAGC	AAGTCAGAA	AAGTCAGAA	SAAACCTACT	AAACCTACT		CCTGCACGC	TGGAGCATC	TGGAGCATC	he polymorphic base	
	6 7 8	AC AA AA AA AA	වල පල පල පල		သထထထသသသ		ය ය ය ය ය ය	သသသသ	4		und polymorphism			ACATCCACCATCT	*ATGTGTCCAAGC		ACGAAGTCAGAA	ATGAAGTCAGAA	AGGAAA CCTACT	MAGGAACCTACT		CATCCTGCACGC	CCGTGGAGCATC	CAGTGGAGCATC	_	
	1 8	AC AA AA AA AA	වල පල පල පල		သထထထသသသ		ය ය ය ය ය ය	သသသသ			around polymorphism			TCCACATCCACCATCT	TCAGATGTGTCCAAGC		ATGACGAAGTCAGAA	ATGATGAAGTCAGAA	SAGAAGGAAACCTACT	SAGAAAGAAACCTACT		SCCCCATCCTGCACGC	ACGCCGTGGAGCATC	ACGCAGTGGAGCATC	_	
	3 4 5 6 7 8	AN AN AN AC AN AN AN AN	වල පල පල පල		သထထထသသသ		ය ය ය ය ය ය	သသသသ			ence around polymory in sm			GGGTCCACATCCACCATCT	GECTCAGATGTGTCCAAGC		STATATGACGAAGTCAGAA	STATATGATGAAGTCAGAA	GTGGAGAAGGAAACCTACT	GTGGAGAAGAACCTACT		AGCCCCCCATCCTGCACGC	CTGCACGCGTGGAGCATC	CTGCACGCAGTGGAGCATC	_	
	4 5 6 7 8	AC CC AN AN AN AC AN AN AN AN	වල පල පල පල		သထထထသသသ		ය ය ය ය ය ය	သသသသ	4		sequence around polymorphism	TCTTTCAACCAATIGIGIIG		TGGGGTCCACATCCACCATCT	CTGGCTCAGATGTGTCCAAGC	CTGGCTCAGACGTGTCCAAGC	TCGTATATGACGAAGTCAGAA	TCGTATATGATGAAGTCAGAA	GGGTGGAGAAGGAAACCTACT			TTAGCCCCCCATCCTGCACGC	TCCTGCACGCGTGGAGCATC	TÇCTGCACGCAGTGGAGCATC	_	
	1 2 3 4 5 6 7 8	AN NG CC AN AN AN NG AN AN AN AN	GG GA GG GG GG GG GG GG GG GG GG	TT TT TT TT TT TT TT		उट उट इस उट उट उट इस	න න න න න න න න න න න	ω ω ω ω ω ω ω ω ω ω ω ω ω ω	4					TGGGGTCCACATCCACCATCT	CTGGCTCAGATGTGTCCAAGC		TCGTATATGACGAAGTCAGAA	TCGTATATGATGAAGTCAGAA	GGGTGGAGAAGGAAACCTACT	GGGTGGAGAAGGAACCTACT		TTAGCCCCCCATCCTGCACGC	TCCTGCACGCGTGGAGCATC	TÇCTGCACGCAGTGGAGCATC	*bold nucleotide is the polymorphic b	
	3 4 5 6 7 8	AC CC AN AN AN AC AN AN AN AN	වල පල පල පල		သထထထသသသ		ය ය ය ය ය ය	သသသသ	4		Sequence around polymorphism			TGGGGTCCACATCCACCATCT	CTGGCTCAGATGTGTCCAAGC		TCGTATATGACGAAGTCAGAA	TCGTATATGAAGTCAGAA	GGGTGGAGAAGCCTACT	GGGTGGAGAAACCTACT		TTAGCCCCCCATCCTGCACGC	TCCTGCACGCGTGGAGCATC	TÇCTGCACGCAGTGGAGCATC	_	
	Base 1 2 3 4 5 6 7 8	A.C MACCMMMMCMMMMM	G.A cc ch cc cc cc cc cc cc cc cc cc cc	T.C TT TT TT TT TT TT TT	C,T cc cc cr cc cc cc cc cc cc cc cc	G.A cc cc cc cc cc cc cc	GA cc cc cc cc cc cc cc	C.A cc cc cc cc cc cc cc cc cc cc cc cc	4	-	-	TCTTTCAACCAATT	TGGGGTCCACGTCC	TGGGGTCCACATCC	CTGGCTCAGATGTG	CTGGCTCAGACGTG					TTAGCCCCCCGGTCCT	TTAGCCCCCCATCCT	TCCTGCACGCGTG	TCTGCACGCAGTG	_	
	1 Base 1 2 3 4 5 6 7 8	AN NG CC AN AN AN NG AN AN AN AN	GG GA GG GG GG GG GG GG GG GG GG	TT TT TT TT TT TT TT		उट उट इस उट उट उट इस	න න න න න න න න න න න	ω ω ω ω ω ω ω ω ω ω ω ω ω ω	4	-	+		TGGGGTCCACGTCC	1428 TGGGGTCCACATCCACCATCT	2538 CTGGCTCAGATGTCCAAGC		3324 TCGTATATGACGAAGTCAGAA	3324 TCGTATATGATGAAGTCAGAA	3375 GGGTGGAGAAGCCTACT	3375 GGGTGGAGAAGAACCTACT	3397 TTAGCCCCCCGTCCT	3397 TTAGCCCCCCATCCT	3408 TCCTGCACGCGTGGAGCATC	3408 TCCTGCACGCAGCATC	_	
	Location Base 1 2 3 4 5 6 7 8	A.C MACCMMMMCMMMMM	G.A cc ch cc cc cc cc cc cc cc cc cc cc	T.C TT TT TT TT TT TT TT	C,T cc cc cr cc cc cc cc cc cc cc cc	G.A cc cc cc cc cc cc cc	GA cc cc cc cc cc cc cc	C.A cc cc cc cc cc cc cc cc cc cc cc cc	4		Allele	TCTTTCAACCAATT	1428 TGGGTCCACGTCC	TGGGGTCCACATCC	CTGGCTCAGATGTG	CTGGCTCAGACGTG			3375		TTAGCCCCCCGGTCCT	TTAGCCCCCCATCCT	TCCTGCACGCGTG	2 3408 TCCTGCACGCAGTG	eth si epidepundeolide is the	

12/249

Target Gene Summary Table Lysyl-tRNA Synthetase Chromosome 16q23-24 VARIA303

Charles Callering	31% in Whitee	ser,thr 50% in Blacks		sky	urveyed:								ot determined	nothing d	llotypea.	
35 36 Het% Comments C	19%			26% - Locus Heterozygosky	Ethnic & Racial Groups Surveyed:	ar=Asten (omer)	astr-Ashkenazi	C=Chinese	cu-Cuben g=Greek	h≖Hispanic i≖Indian	it-italian	prePuerto Rican	**************************************	Other productions of	None None	
24 25 26 27 28 29 30 31 32 33 36 37 28 29 30 31 32 33 36 35 36	AA AG AA AG AG			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Other SSCP polymorphisms: #					Sequence from: GenBank accession # D31890	. Leanne M. Marina M. Canina T. Managarah Y. Negasa T.	Ishkawa,K., Saki,T. & S. Tababa, (1963) Prediction of the coding sequences of the coding sequences of 35 genes deduced a unidentified by human peness. I. The coding sequences of 35 genes deduced	by analysis of randomly sampled cONA dones from human immature mysbid cell line KG1. Unpublished		Validation: Multiple other tRNA synthetases have been proven	essential for cell survival.
	6 10 17	30 CC CC CC CC CC CC CC CC CC CC CC CC CC				Sequence around polymorphism	AGCTGAAGAGACGCCTGAAAG	AGCTGAAGAGGCGCCTGAAAG	ACAGTTGGCAGTTCTGTCTAG	ACAGTTGGCACTTCTGTCTAG						told nucleotide is the polymorphic base
	Location	1798				Allele	89 A	. 89 G	1789 G	1789 C						on blod.
	Primer Pair	Lys1-Lys2 1 vs3-Lys4				#Q1	VARIA303.1.1	VARIA303.1 2	VARIA303 2 1	VARIA303 2.2						

13/249

Target Gene Summary Table Glutamyl Prolyl-tRNA Synthetase Chromosome 1q32-q42 VARIA300

Race Specific	Heterozygosity	25% in Blacks				50% in Jaconses	70% in Aslama	70% in Asians			,								}						
Protein		pro621hls		his969tyr	ile971val	-		╁	- Locus Heterozygosity	Ethnic & Racial Groups Surveyed:								w=White -empty box = genotype not determined						Omer populations genotyped: None	
	Comments	1	E 3	otal		total		total	cus Hele	lal Group	î.	TS.					E	Genoty						suone.	
			3.3	112	1	_	<u>. </u>			k & Rac	er-Arab	ash=Ashkenazi b=Black	Chinese	e e	h-Hispanic Findian	t-tallan	Pr-Puerto Rican	hre Y box -	<u>.</u>					er popu	
	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Het%	7		L	A 24%	41%	51%	GG AG AN GG AN AG AN AN 61%	" # 67%	E.	ar-Arab	ash-Ash b-Back	र्हे १	P-Greek	h-Hispa Findlan	ft-Italian		*****					1	None	
	150	8	\vdash	├	3	*	3	3	1																
	=	8			2	2	2	2							\rceil		95	 		_]	ſ		
	122	2 2 2	-	-	3	2	8	8									a Cct	8		4 5	E			VBN	
	<u>=</u>	8		_	NO AN AN AN AN AN AN AN AN AN	AG AA AG	GG AG AA AG AA AG	2	3 3	শ							Fett, R. and R. Knippers (1991) The Primary Structure	of Glutaminyl-tRNA Synthetase. J. Blol. Chem. 266:		*Note: See Kalan,E., Hu,B., Bechar,S., Eberhard,D., Schray,B., Baact,M., Hameister,H., and R. Krippers (1994) Genomics 19: 280-290 for the	correct name of the gene. (The Fett and Kribpers paper is mistaken.)			Multiple other tRNA synthetases have been proven	
	29 30	23 23 25	-	-	2	NG AC	8	8									dina	ار م		Spray 280	1	-		bee	
	128	8			Ş	2			3	#H							횥). Bk		E C	5	}		ave	
	15	20 20 49 20	-	-	3	AG NG GG AA AA	NG AG NG AN GG AG AN	2								y	<u> </u>	, S		Pertia Amond	<u>\$</u>		1	ses	
2	25	g			Ş	8	8	99		Other SSCP polymorphisms:						Sequence from: GenBank accession # X54326	5	je tas		N. E.	3		j	hetas	
Genotypes of 36 unrelated individuals	3 24	8			₹	8	₹ .55	B A	-	P. P.						×	Pers	Synt		45 E				synt	essential for cell survival
P S	222	20 20 20 20 20	\vdash		<u>≈</u> 2	2	200	97	-	Ě						i. Sion	<u>₹</u>	₹		HEB.	E .			₹	Sur
led I	21	g			¥	νc	N _G	2	国	P P						Sequence mom: GenBank access	ä	유		M 2 4	ě			er tf	8
rela	12 13 14 15 16 17 18 19 20	2	-		*	2	AG GG AG GG AG AA AG AG AG	V D		SSC						ج م م	a.	of Glutaminyl 1448-1455 ·	2	X.	Ę		Valldatton.	5 5	
E 6	18	8			*	8	9	Q	-	je.						ga de	ਸ਼ ਲ	Sut Sut	•	ie: Se	2		1	호	senti
00	6 17	8			¥	95 95	₹ 5	≱		ō						<u> </u>	œ.	ŏ -	<u> </u>	2 1	8		2	ž	98
Se S	15 1	20 00		_	¥	2	99	ં ⊀ ઝુ	\exists																
S S	E	ပ္ပ			¥	GG AA	Ş	2											, ,			,			
ပြီ	12 1	ည	-	_	AN AN AN AN AN AN AN	YC SY	8	9		-													!		\dashv
	10 11	8			9	Ħ	्र श	9	a a	E	₹	₹.	34	βA	g	ပ္ခ	<u>ნ</u>	១	g	စ္ခ	E	E	L	E	
	9 10	သ	١.,		א אס אס	9 9	3	GG AN ANG ANG ANG GG ANG IAN ANG ANG ANG ANG ANG GG ANG IAN	H 04.9 h	ymorphism	TGGTTTA	311	AT	₩.	MA	AT&	ည်	ပ္တ	AG	,AG	TATGATT	ITATGATI	TA	T	- 6
	•	သ		\exists	¥	99 YY	GG AA	99	*	E		Ϋ́G	GA	GA	AC,	AC.	GTG	GTG	Š	8		IA	₹ S	₩.	nic bass
	1	ဗ				٧	8		-			মূ	TCA	Z.	ATG	ATG	T.	₹	T.	2			GAK	GA	ПОГ
	5 6	ည		Н	* *	8	2	2	8 A) ž	ပ္စ	\$CA	₽	\$	CC	CT.	5	ပ္မွ	\$	SAG	ၓ	S	CAG	S	Į,
	₹	သသ			MAGMMMAGM	אפן פכן אפן איין פכן איים	NG GG NG GG NG NG GG	AR GG NO GG NG NO GG	•	Sequence around pol	AATTCTGAACCTGC	AATTCTGAACATGCTGGTTTA	TCATCACAAAGTCAGAAATGA	TCATCACAAATCAGAAATGA	GATTGAATACCATGACATAAG	GATTGAATACTATGACATAAG	ATACCATGACATAAGTGGCTG	ATACCATGACGTAAGTGGCTG	AATGGGTACAATCACACAGAG	AATGGGTACAGTCACACAGAG	GATACAGACCGTT	GATACAGACCATT	AAGTCACACAGGACAATTATT	AAGTCACACAAGACAATTATI	E S
1	2 3	Ω •	٥	_	2	9 ₹	3	2	•	ienc.		15	TC/	7	ŢĢ,	Ţ	S	힝	ğ	ğ	AC.	AC.	TC/	TC/	ep P
	-	K) CC	AG GG		≺	9	S S	9) sed	*	₩.	ICA	ICA	3AT	3AT	ATA	ATA	\$	A T	GAI	GAI	AAG	AG	ocleo
	838 8	Ϋ́	ď	C,T	A,G	A,G	₹9	۲g	_ _					_			_ `			,					Bold nucleotide is the polymorp
	Location	2520	2944	2963	2969	3247	4459	4506		Allele	2520 C	2520 A	2944 G	2944 A	2963 C	2963 T	2969 A	2969 G	3247 A	3247 G	4459 G	.4459 A	4506 G	4506 A	
	Primer Pair	aPSe.aP6d	aPS-aP6b	OPS/-OP6b	OPS/-OP6b	QP54.0P6	QP7e-QP8	0P7e-QP8		#01	VARIA300.1.1	VARIA300.1.2	VARIA300.7.1	VARIA300.7.2	VARIA300.2.1	VARIA300.2.2	VARIA300.3.1	VARIA300.3.2	VARIA300.4.1	VARIA300.4.2	VARIA300.5.1	VARIA300.5.2	VARIA300.8.1	VARIA300.6.2	

Target Gene Summary Table Initiation Factor elF-5A Chromosome 17p13-p12 VARIA351

- 13						
	0 0 0	10 11 12 12 14 14 15 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	Het%	Comments	T Te	Heterozygosity
<u> </u>	6 50 0 50 7 50	9 <u>8</u>	37%	1 authorities away Seas uplies security	3'UT 44	44% Ceuceslan
_1.	20 E		xc 62%	3	3'UT	present in all groups
_	22		63 % - Locu	63 % - Locus Heterozygosty	ĮĮ.	
	5 5 7 7 5 M C C C C C C C C C C C C C C C C C C		-		i	ſ
_	Sequence around polymorphism*	Other SSCP polymorphisms:	a-Aslan (other)	()	i de	
	GGCTCCCAGGATGGCGGTGGT		ash Ashkenazi	*5		
623 G	GGCTCCCAGGGTGGCGTGGT		G=Chinese			
VARIA351.2.1 1012 C	CCCTGTTGCCCATAGCCCTTT	Sequence from:	cu-Cuben g-Greek			
F	CCCTGTTGCCTATAGCCCTTT	GenBank accession # U17969 (This accession contains the opnomic sequence, with the location of intron-eron boundaries indicated.	h-Hispanic -Indian			
		See Variagenits annotated cDNA sequence for sequence numbering used in this table.)	it-Italian h-bonnese			
+		Light Hauber Control Control Control Control	pr-Puerto Rican	Ę		
+		and D. Berer (1995) Identification of a new member of the	-empty box	**************************************	t determined	
		Ruman eir CA laminy. Corre 105. kocket.				
_						
7		Validation: This is the only human protein which contains hypusine.	other pop	Other populations genotyped:	lotypea:	-
1	*bold nucleotide is the polymorphic base	inhibition of hypusine formation is cytostatic.				

Target Gene Summary Table Cytidine Triphosphate Synthetase Chromosome 1p34.1 VARIA259

Race Specific	heterozygosity	1/4 Chinese	1/1 Cambodian	24 Chinese															-	!]			7
	Location		3 UTR	3 UTR					Surveyed:										not determin				enotypea.	
	Comments	Low frequency	Low frequency	Low frequency				w 11%-Locus Helenaryposky	Ethnic & Racial Groups Surveyed:		enazi				v		•	preroeno vican vetable	* ampty box * genotype not determined			H-0.14		
	34 35 36 Het%	8%	3%	8%				11840	Ethnic & Racial	er=Arab	ash=Ashkenazi	D-Black	cu-Cuban	g=Greek	heHispanic Ieloden	H-Italian	-Japanese		ă A	•				
	5 36	M M M M M M M M M KG M M M M M M M M M M	ន	S S S S S S S S S S S S S S S S S S S	\Box			*		-	\$	į	8	<u>E</u>	2 1	Ī	2]	Č	5	J
. }	÷	₹ 2	α α α α α α α	8	\dashv		-	-	_		_		}	_				_			1	Г		٦
ŀ	3	Z	8	છ	-	-	Н	•	1								į	į						
	32	\$	႘	હ		\Box		*									Yamauchi, M.: Yamauchi, N. and M. Meuth (1990). Molecular	7					Ę	1
	킑	3	8	25		_	Ц	•	*								2	ğ	•				ped:	١
-	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	3	ŭ	ğ	\dashv	-	\dashv	-									1990	cloning of the human CTP sythetase gene by functional	complementation with purified human metaphase		ĺ		Cells are polsoned by cyclopentenylcytosine, a specific inhibitor of CTPS	
ł	휥	쥘	8	25	-	ᅥ			₹±1								Ę	2	ie i				sine.	İ
ı	7	3	ઇ	8		╛		*									Ž	ě	5	chromosomes. EMBO J. 9: 2095-2099.			أتراه	
	26	2	cc	GG	\Box			•	SE.								Σ	ş	Ĕ	95-2	l		ite ny	ļ
음	٦	킬	읭	8	\dashv	-	_	3	his							142	6	ş	2	2			8	
릙	=	3	Ü Ç	8	\dashv	-	\dashv	-	Other SSCP polymorphisms:							GenBank Accession # X52142	2	Ē	Ž				ů Č	
헭	22	S S	8	8	+	ᅥ	-	•	E							Ē	an an	-	€	8			<u>ā</u>	I
恴	2	2	8	8				=	å					Sequence from:		essk	Ϋ́	Ę	ģ	E		1	PS S	ļ
Genotypes of 36 unrelated individuals	원	2	빙	89 88 89 88	\perp	\downarrow			SC					ce f		¥	Σ	ŝ	ate	Ĕ	ĺ	į	Cells are polsone Inhibitor of CTPS	1
	킈	2	Ü	6	4	4	4	-	2					Jen		¥ z	200	ō	Ě	930	l	Valldation.	i g	١
8	딉	<u> </u>	밁	8	+	\dashv	-	\exists	ŧ,					Seq		SenE	E E	호	Ë	hron:				ı
10	2	ই	ध	8	十	7	┪	•						•/		<u> </u>	-		<u> </u>		,	عا		J
اڠ	=	3	cc cc cc cc cr cc cc cc cc cc cc cc cc c	8		\Box		•																
2	크	2	8	8	\perp	_		•					_										_	
8	귀	즼	႘	<u>ა</u>	+	\dashv	-																•	
-	딉	중	8	8	\dashv	+	ᅱ		E												Ιi		pas	
Ì	릐	Z	ઇ	8	7	寸	┪	-	臺	S	გ.	S	ပ္	GT	GT								울	
	_	\$	S	8				- 4 80 00 4	ymorphism	ဖြွ	ଞ୍ଚ	}	₹	CT	E								2	
	-		빙	8	4	_	\dashv			Ş	ફ ફ	[2]	20	8	8							1	충	
-	-	2	딍	8	-	-	4	1 6.2	2	Ĕ	Ě	δ	3	15	1GT								اع	
}	긁	쥘	읝	99	+	┥	\dashv		ğ	3	Š	ဗ္ဗ	ပ္ပ	Ĭζ	5								S	
ı	-	AA AA AA AA AA AA AA	သသသသသသသ	છુ	_	1	\exists	-	Sequence around po	GTCAGTTCCAATTCAAGGTCA	GTCAGTTCCAGTTCAAGGTCA	CAGAACATCGCGATGGGAACC	CAGAACATCGTGATGGGAACC	TGTCCCCATCGGTCACCTTGT	TGTCCCCATCAGTCACCTTGT								릙	
	三	\$	ષ્ટ	છ				•	in C	¥G	XG.	₹	Ĭ	ည	ည								100	
-	~	3	8	8	\bot	_]	_	4	2	GIC	GI	3	ž	15	16								ž	
4	-	2		GA 66 66 66 66 66	4	4	4		တိ														Toold nucleotide is the polymorphic base	
	Base	٧G	C.	ઠ		_	_												L.	_	Ц		٩	
	Location	576	2093	2135					Allele	576	576	2093	2093	2135	2135									
	Primer Pair	F3-R3	F11-R11	F11-R11					#Q1	VARIA259.1 1	VARIA259.1.2	VARIA259.2.1	VARIA259.2.2	VARIA 259 3.1	VARIA250 3.2			_						

16/249

Target Gene Summary Table Cysteinyl-tRNA Synthetase Chromosome 11p15.5 VARIA301

Race Specific	Heterozygosky	53% White	50% Chinese												0007		(98/267)
Protein	change	pro622leti				rygosthy	s Surveyed:								• not detern	Sonotoneo	ygosky (9
	Comments					w was 44% in Locus Heterozygosity	Ethnic & Radal Groups Surveyed	ar-Arab	BSD**Ashkenazi b**Black	8 E	r Pric	· _ s	Fupenese pre-Predo Rican		empry box " genotype not determined	Other populations genotimed	Swedes: 37% heterozygosity
	35 36 Het%	44%				2×	Ethnic	ar-Arab	D-Black		g-Greek h-Hispanic	Hindlan Refrailen	F-Japanese	w=White		Office	Swede
ŀ	칅	t	\dashv	- -	+-												
ŀ	퀽	ซ	\dashv	+	+-	1	Г]							
	<u>ج</u>		土		工	3	<u></u>	5				5	Ē		accession #L0545 combins a further 423 nt at the 3" and, but lacts the 19 consecutive A restricts after 2029 reported in Cruzen and Arfin.		ē
F	32	ដ	\bot				area	.,				Cruzen, M.E. and S.M. Arfin (1994) Nucleotide and	Deduced Amino Acid Sequence of Human Cysteinyl tRNA Sequence. DNA Sequence 4: 243-248	ž	accession #1,05945 contains a further 423 nt at the 3' and, but tact 19 consecutive A residues after 2029 reported in Cruzen and Arfin.		Multiple other tRNA synthetases have been proven essential for cell survival.
-	28 29 30 31		\dashv	-	┼		શ્ર	*				otio	Deduced Amino Acid Sequence of Human Cysl (RNA Sequence. DNA Sequence 4: 243-248	*The Cruzen and Arfin paper is the source for nt 1-2048. Genbank	Z Z		en f
\vdash	딁	t t	\dashv	+	╀	,	104	_		li		ğ	™an 243	8	# 50 m		þě
H	<u>8</u>	t	+	\dashv	\vdash	-	****	_			Þ	Z	₹ 4	- 2	5 Q		ave
	2		工				1				Sequence from: GenBank accession # L06845, and	66	0 0	٥	a perc		E Sa
	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27		\Box	\perp		3 &	Other SSCP polymorphisms:				345		enc.	STS.	123 185		tasc
	2	t	4	+-	 		흫				390	Arf	9 9 9 9	2	\$ 62 Q		를 를
	計	\dashv	\dashv	-	-	<u> </u>	ē				*	₹.	ŠŠ		2 a a		Syr Zive
	計	\dashv	-	\dashv	╁	H	<u> </u>					S P	ğā	Z.	1 s		NA In
<u>.</u>	ᇍ	+	+	+-	-		8				mo Ses	鼯	9 9	¥,	8 5	'	문등
	2	t	_	\top		-	ည်				e g	A.	A P	2	5 4 6 9	ے ا	ş Ş
	2	ช	\perp				S				a k	Ę,	S S	S	8 8	읥	fiat fiat
	=	\dashv	4		<u> </u>	<u> </u>	ŧ.				Sequence from: GenBank access	Tuze.	ğ X	Ş.		Valldation:	Multiple other tRNA synt essential for cell survival.
;H	┇┼	+		+-	 	<u> </u>	0			į	øΰ	<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u>څ</u>	∑ ĕ
Constitution of the little of		-		+-	\vdash	• • • • • • • • • • • • • • • • • • • •											
十	<u> </u>	บ บ	_	+-	Н												
	<u> </u>	T	工	工		orf h cu.g h c						_					Se
<u>'</u>	7	t	T			-	1 =	36	၂၅		1						۾
1	3	ಕ	\bot	4_		8	norphism*	ğ	ဗ္ဗ								Ę
۲	#	\dashv	4	+	Ш	4	Ę	Ĕ	딜								JO.
-	+	+		+	$\vdash\vdash$		ĮĚ	ည်	ည္ကြု			1				İ) of
\perp	+	\dashv	+	+	1-		1 8	34(ĕ								9
	-+-	十	\dashv	\top	\vdash	0 m	2	ညျ	K								S
-	٩Į					•	2	ည္က	ပ္ကြု								- 8
	+	l_					6	Ĭ	ĭ								100
-	+	\exists	ᆚ.			•	ਵ	ည်	힏								5
	?	6	\pm	上			1 = 1	_				ŀ	1	i i	ıl		
1,1,1,1	2 2	5	+			_	Ž	A	- <u></u>]			ı	1 5
1 , 1 , 1 ,	c , ;	t	+			4	Sequence around polyn	ACATCCTGCCGAGCTTGGGG	ACATCCTGCCTGAGCTTGGGG								*bold nucleotide is the polymorphic base
1 , 1 , 1 ,	c , ;	t				_	Sedu	ACA	AC								plod.
1 , 1 , 1 ,	c , ;	t				_			-			_					ploq.
1 , 1 , 1 ,	c , ;	t				_			-								l ploq.
1,1,1,1	c , ;	nt 1739 CT GT CT CT				_	Aliele		-	-							l ploq.
Location Base 1 2 2 4 6	C 7 7 7 8000	nt 1739 C.T cr cr				_	Aliele		-								plod*
Location Base 1 2 2 4 6	C 7 7 7 8000	nt 1739 C.T cr cr				_	Aliele		-								l ploq.
1 2 1 5 1 5	C 7 7 7 8000	t				_		VARIA301.1.1 1739 C ACA									l ploq.

Target Gene Summary Table

Alanyl-tRNA Synthetase

Chromosome 16q22

VARIA304

17/249

Race Specific Herozygosity empty box = genotype not determined Ethnic & Ractal Groups Surveyed:

-- Aalan (other)

-- Aalan (other)

-- Aalan (other)

-- Aalan (other)

-- Aalan (other)

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

-- Chinese

--Other populations genotyped Protetn Silent 67% - Locus Heterozygosity Comments x=Puerto Rican 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 00 3 3 35 36 100% 67% 7 20 00 3 synthetase: conservation in evolution of catalytic core and microhelix recognition. Biochemistry 34: 10340-Noda, T. and P. Schimmel (1995) Human alanyl-IRNA Shiba, K., Ripmaster, T., Suzuki, N., Nichols, R., Plotz, P., t t 3 Multiple other IRNA synthetases have been proven শ GenBank accession # D32050, described in: t 3 3 * ट्याम मिलक्षित्र किल्लिस मिल मिल किल 3 Other SSCP polymorphisms: 3 Genotypes of 36 unrelated Individuals essential for cell survival. ¥ 3 Sequence from: = Validation: • ٠ • CTGGCTGACCATGCTCGGACCA CTGGCTGACCACGCTCGGACCA Sequence around polymorphism* F g bold nucleotide is the polymorphic base जलाम काक्रा Base C,T Location 1013 T 1013 C bp 1013 Allele /ARIA304.1.2 /ARIA304.1.1 Primer Pair Ala1a-Ala2 豊

19 of 249 Chromosome 1 - p Arm

			nosome i - h wi			
Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
36	0172	110	24	0.22	Breast	GCC 5:311
36	D1 Z2	37	15	0.41	Breast	AJHG 45:73
36	D172	18	9	0.5	Endocrine	CR 52:770
36	D1Z2	20	1	0.05	Endocrine	CR 52:770
36	D1 <i>Z</i> 2	7	7	1	Neuroblastoma	CR 55:5366
36	D1S243	43	10	0.23	Breast	CR 55:1752
36	D1 S24 3	20	6	0.3	Endocrine	Unknown
36	D1S243	14	14	1	Neuroblastoma	CR 55:5366
36	D1S243	36	9	0.25	Neuroblastomo	CR 55:5681
36	D1S243	8	7	0.88	Neuroblastoma	GCC 10:275
36-3 5	D1S80	9	0	0	Broin	CR 54:1397
36-3 5	D1S80	14	1	0.07	Brain	CR 54:1397
36-3 5	D1S80	34	16	0.47	Broin	AJP 145:1175
36-3 5	D1S80	17	4	0.24	Breast	GCC 12:16
Unknown	D1S80	74	22	0.3	Breast	CR 53:1990
36-3 5	D1S80	63	20	0.32	Breast	CR 54:4274
36-3 5	D1S80	40	8	0.2	Endocrine	GCC 13:9
36-3 5	D1S80	13	10	0.77	Neuroblastoma	GCC 10:275
36-3 5	D1S80	38	9	0.24	Neuroblastoma	CR 55:5681
Unknown	D1S80	19	2	0.11	Testis	CR 54:6265
Unknown	D1S80	17	2	0.12	Testis	0 9:2245
36.3-3 5	D1S76	34	16	0.47	Brain	AJP 145:1175
36.3-3 5	D1S76	41	4	0.1	Breast	CR 53:4356
36.3-3 5	D1S76	19	3	0.16	Breast	GCC 12:16
36.3-3 5	D1S76	38	13	0.34	Breast	CR 54:4274
36.3-3 5	D1S76	17	15	0.88	Neuroblastoma	GCC 10:275
Unknown	D1S77	21	10	0.48	Broin	AJP 145:1175
Unknown	D1S77	19	3	0.16	Breast	GCC 12:16
Unknown	D1S77	18	4	0.22	Esophageal	GCC 10:177
Unknown	D1S77	6	2	0.33	Stomach	BJC 73:424
Unknown	D1S253	17	3	0.18	Leukemio	CR 55:5377
36	D1S47	32	3	0.09	Breast	CR 51:1020
36	D1S47	15	1	0.07	Colon	CR 52:285
36	D1S47	17	12	0.71	Colon	CR 50:7232
3 6	D1S47	24	7	0.29	Melanoma	PNAS 86:4614
36	D1S47	31	7	0.23	Neuroblastoma:	GCC 10:30
36	D1S214	43	8	0.19	Breast	CR 55:1752
36	D1S214	11	10	0.91	Neuroblastoma	GCC 10:275
-36	D1S214	13	0	0	Stomach	BJC 73:424
Unknown	015160	17	9	0.53	Brain	AJP 11145:1175
Unknown	D1S160	21	5	0.24	Liver	CR 54:4188

		Chromo	some 1 - p A	rm		
Unknown	D1S160	34	8	0.24	Neuroblastoma	CR 55:5681
Unknown	D1S160	41	22	0.54	Ovary	BJC 75:1105
Unknown	D1S244	36	9	0.25	Neuroblastoma	CR 55:5681
36	D1S450	37	8	0.22	Breast	CR 55:1752
Unknown	NPPA	1	0	0	Testis	GCC 13:249
Unknown	PGD	10	1	0.1	Testis	GCC 13:249
36	D1S228	40	5	0.12	Breast	CR 55:1 7 52
36	D1S228	7	5	0.71	Neuroblastoma	GCC 10:275
36	D1S228	31	7	0.23	Neuroblastoma	CR 55:5681
36	D1S228	8	1	0.12	Stomach	BJC 73:424
Unknown	D1S170	19	5	0.26	Liver	CR 54:4188
Unknown	D1S170	36	7	0.19	Neuroblastoma	CR 55:5681
Unknown	D1S170	33	16	0.48	Ovary	BJC 75:1105
Unknown	D1S94	19	12	0.63	Colon	CR 50:7232
Unknown	D1S94	8	4	0.5	Neuroblastoma	0 7:1185
Unknown	D1S94	36	9	0.25	Neuroblastoma	GCC 10:30
35	D1S199	50	9	0.18	Breast	CR 55:1752
35	D1S199	30	4	0.13	Cervix	CR 56:197
35	D1S199	14	13	0.93	Neuroblastoma	CR 55:5366
35	D1S199	4	2	0.5	Neuroblastoma	GCC 10:275
3 5	D1S199	9	0	0	Stomach	BJC 73:424
36.1-p34	ALPL	17	2	0.12	Colon	CR 52:285
36.1-p34	ALPL	2	1	0.5	Endocrine	CR 52:770
36.1-p34	ALPL	17	4	0.24	Melanoma	PNAS 86:4614
36.11	D1S112	1	1	l ·	Neuroblastoma	CR 55:5366
Unknown	D1S112	20	1	0.05	Neuroblastoma	0 7:1185
Unknown	FUCAT	15	5	0.33	Brain	AJP 1145:1175
Unknown	FUCAT	13	6	0.46	Melanoma	PNAS 86:4614
Unknown	FUCAT	14	0	0	Testis	GCC 13:249
Unknown	D1S234	10	8	0.8	Neuroblastoma	GCC 10:275
36.2-36.1	FGR	12	2	0.17	Brain	CR 54:1397
36.2-36.1	FGR	7	0	0	Brain	CR 54:1397
36.2-36.1	FGR	4	2	0.5	Endocrine	CR 52:770
36.2-36.1	FGR	14	6	0.43	Ovary	BJC 75:1105
Unknown	D1S63	39	4	0.1	Test is	CR 54:6265
Unknown	D1S247	2	1	0.5	Neuroblastoma	GCC 10:275
36.2-34	D1S95-96	74	20	0.27	Breast	CR 53:1990
Unknown	D1S96	17	11	0.65	Colon	CR 50:7232
36.2-36.12	D1S95	19	2	0.11	Neuroblastoma	0 7:1185
Unknown	D1S96	18	0	0	Neuroblastoma	0 7:1185
32	D1S7	105	43	0.41	Breast	CR 54:4274
32	D 157	46	13	0.28	Breast	GCC 12:16

		Chron	21 of 249 nosome 1 - p A	F		
32	D1S7	28	26	0.93	Colon	C0 C0 7222
32	D157	14	7	0.73	Colon Endocrine	CR 50:7232 N 328:524
32	D157	13	, 1	0.08	Liver	
32	D1S7	50	15	0.08		BJC 64:1083 JJCR 84:893
32	D1S7	6	6	0.5	Liver Neuroblastoma	CR 55:5366
32	D157	14	5	0.36		
32	D1S7	31	3	0.36	Pancreas Stampsh	BJC 65:809 HG 92:244
32	D1S7	45	14	0.1	Stomach Stomach	CR 51:2926
32	D157	31	3	0.31	Stomach	BJC 73:424
32	D1S7	30	1	0.03	Johnach Testis	GCC 13:249
Unknown	D1S233	19	5	0.03	Head&Neck	CR 54:1152
Unknown	D15233	4	2	0.28	Neuroblastomo	GCC 10:275
Unknown	D1S241	4	3	0.75	Neuroblastoma	GCC 10:275
Unknown	D1S201	35	0	0.75	Head&Neck	· CR 54:4756
Unknown	D1S201	19	1	0.05	Heod&Neck	CR 54:4756
Unknown	D1S201	8	3	0.38	Neuroblastoma	GCC 10:275
Unknown	D1S201	12	3	0.25	Stomach	BJC 73:424
35-32	D1S57	15	1	0.23	Brain	CR 50:5784
32	D1S57	26	12	0.46	Brain	AJP 1145:1175
35-32	D1S57	11	0	0.40	Brain	CR 49:6572
35-32	D1S57	18	1	0.06	Breast	GCC 2:191
35-32	D1S57	73	15	0.21	Breast	GCC 5:311
35-32	D1S57	43	4	0.09	Breast	CR 50:7184
35-32	D1S57	81	36	0.44	Breast	CR 54:4274
35-32	D1S57	3	2	0.67	Breast	CR 53:3804
35-32	D1S57	44	6	0.14	Breast	CR 51:1020
35-32	D1S57	19	6	0.32	Breast	CR 51:6194
35-32	D1S57	23	5	0.22	Breast	GCC 12:16
32	D1S57	74	23	0.31	Breast	CR 53:1990
32	D1S57	52	1	0.02	Cervix	CR 54:4481
35-32	D1S57	6	0	0	Cervix	GCC 9:119
35-32	D1S57	180	40	0.22	Colon	BJC 64:475
35-32	D1S57	22	2	0.09	Colon	CCG 48:167
35-32	D1S57	16	6	0.38	Colon	IJC 53:382
35-32	D1S57	12	0	0	Colon	N 331:273
32	D1S57	16	1	0.06	Endocrine	CR 52:770
32	D1S57	12	8	0.67	Endocrine	CR 52:770
35-32	D1S57	15	6	0.4	Endocrine	GCC 13:9
32	D1S57	27	8	0.3	Esophogeal	CR 54:2996
32	D1S57	14	1	0.07	Kidney	CR 51:820
35-32	D1S57	22	1	0.05	Liver	CR 51:89
35-32	D1S57	28	5 .	0.18	Lung	CR 52:2478

22	of	249	
----	----	-----	--

			2 01 249 some 1 - p Ai	rm		
32	D1S57	2	2	1	Neuroblastoma	CR 55:5366
32	D1S57	14	1	0.07	Ovary	CR 51:5118
35-32	D1S57	18	7	0.39	Ovary	0 7:1059
35-32	D1S57	4	0	0	Pancreas	CR 54:2761
35-32	D1S57	20	2	0.1	Sarcoma	CR 52:2419
32	D1S57	5	3	0.6	Stomach	BJC 73:424
35-32	D1S57	17	0	0	Testis	G 5:134
32	D1S57	42	2	0.05	Testis	0 9:2245
32	D1S57	37	2	0.05	Testis	CR 54:6265
35-32	D1S57	8	2	0.25	Uterus	GCC 9:119
32	D1S57	11	1	0.09	Uterus	CR 51:5632
Unknown	D1S255	14	7	0.5	Neuroblastoma	GCC 10:275
Unknown	D1S255	5	4	0.8	Stomach	BJC 73:424
Unknown	D1S186	2 5	7	0.28	Liver	CR 54:4188
32	MYCL1	74	26	0.35	Brea st	CR 53:1990
32	MYCL1	81	36	0.44	Breast	GCC 12:128
32	MYCL1	152	5 5 ·	0.36	Breast	HG 85:101
32	MYCL1	59	23	0.39	Breast	CR 54:4274
32	MYCL1	17	2	0.12	Breast	AJHG 45:73
32	MYCL1	16	10	0.62	Colon	CR 50: 723 2
32	MYCL1	20	2	0.1	Colon	CR 52:285
32	MYCL1	20	5	0.25	Colon	IJC 53:382
32	MYCL1	9	1	0.11	Endocrine	CR 52:770
32	MYCL1	20	4	0.2	Endocrine	GCC 13:9
3 2	MYCL1	12	8	0.67	Endocrine	CR 52:770
3 2	MYCL1	11	0	0	Esophageal	CR 51:2113
3 2	MYCL1	18	2	0.11	Liver	JJCR 81:108
32	MYCL1	27	8	0.3	Liver	CR 54:4188
32	MYCL1	- 5	0	0	Lung	CR 54:5643
32	MYCL1	11	1	0.09	Lung	CR 54:5643
32	MYCL1	57	12	0.21	Lung	0 10:937
32	MYCL1	20	2	0.1	Lung	PNAS 84:9252
32	MYCL1	2	1	0.5	Lung	CR 54:5643
Unknown	MYCL1	9	2	0.22	Neuroblastoma	CR 49:1095
32	MYCL1	41	9	0.22	Ovary	BJC 75:1105
32	MYCL1	13	4	0.31	Ovary	0 7:1059
32	MYCL1	17	4	0.24	Ovary	GO 55:245
32	MYCL1	27	3	0.11	Ovary	IJC 54:546
32	MYCL1	9	0	0	Sarcoma	CR 52:2419
32	MYCL1	4	0	0	Testis	CCG 52:72
32	MYCL1	1	0	0	Testis	CCG 52:72
32	MYCL1	1	0	0	Testis	CCG 52:72

			23 of 249			
		Chron	nosome 1 - p	Arm		
32	WYCL1	20	1	0.05	Uterus	CR 54:4294
Unknown	GLUTI	23	3	0.13	Testis	CR 54:6265
34.2-32.2	D1S190	23	3	0.13	Cervix	CR 56:197
34.2-32.2	D1S190	3	1	0.33	Neuroblastoma	GCC 10:275
Unknown	D1S193	7	2	0.29	Neuroblastoma	GCC 10:275
32	D1S211	42	6	0.14	Breast	CR 55:1752
Unknown	D1S211	5	3	0.6	Neuroblastoma	GCC 10:275
Unknown	D1S197	12	7	0.58	Neuroblastoma	GCC 10:275
Unknown	D1S197	16	5	0.31	Stomach	BJC 73:424
32	D1S62	74	19	0.26	Breast	CR 53:1990
32	D1S62	15	0	0	Colon	CCG 48:167
32	D1S62	.2	2	1	Stomach	BJC 73:424
Unknown	D1S162	0	5	0	Breast	Unknown
Unknown	D1S162	19	5	0.26	Liver	CR 54:4188
Unknown	D1S200	12	7	0.58	Neuroblastoma	GCC 10:275
Unknown	D1S200	33	5	0.15	Neuroblastoma	CR 55:5681
Unknown	D1S15	74	22	0.3	Breast	CR 53:1990
Unknown	D1S15	4	1	0.25	Endocrine	CR 52:770
Unknown	D1S15	24	6	0.25	Testis	CR 54:6266
pter-22	D1S21	18	9	0.5	Brain	AJP 1145:1175
pter-22	D1S21	74	20	0.27	Breast	CR 53:1990
31-pter	D1S21	10	0	0	Breast	PN 86:7204
31-pter	D1S21	12	1	0.08	Endocrine	CR 52:770
31-pter	D1S21	7	3	0.43	Endocrine	CR 52:770
31-pter	DIS17	19	8	0.42	Brain	AJP 1145:1175
31-pter	D1S17	8	1	0.12	Breast	PN 86:7204
31-pter	D1S17	5	0	0	Breast	CR 51:1020
pter-22	D1S17	74	22	0.3	Breast	CR 53:1990
pter-22	D1S17	4	3	0.75	Endocrine	CR 52:770
pter-22	D1S17	9	2	0.22	Endocrine	CR 52:770
31-pter	D1S17	. 13	2	0.15	Endocrine	GCC 13:9
pter-22	D1S17	19	4	0.21	Melanoma	PNAS 86:4614
pter-22	D1S18	74	20	0.27	Breast	CR 53:1990
pter-22	D1S18	6	4	0.67	Endocrine	CR 52:770
Unknown	D1S203	14	6	0.43	Neuroblastoma	GCC 10:275
Unknown	D1S246	11	0	0	Stomach	BJC 73:424
Unknown	D1S209	15	7	0.47	Neuroblastoma	GCC 10:275
Unknown	D1S159	16	3	0.19	Liver	CR 54:4188
Unknown	D1S219	8	0	0	Stomach	BJC 73:424
31	D1S464	44	11	0.25	Breast	CR 55:1752
21	D1S216	14	13	0.93	Neuroblastoma	CR 55:5366
21	D1S216	8	4	0.5	Neuroblastoma	GCC 10:275

24 of	249		
	. 1	-	۸

	Chromosome 1 - p Arm						
pter-31	D1S2	12	7	0.58	Brain	AJP 145:1175	
pter-31	D1S2	1	0	0	Breast	GCC 2:191	
pter-31	D1S2	74	19	0.26	Breast	CR 53:1990	
pter-31	D1S2	16	3	0.19	Melanoma	PNAS 86:4614	
31	D1S500	33	8	0.24	Breast	CR 55:1752	
31	D1S430	39	11	0.28	Breast	CR 55:1752	
Unknown	D1S207	15	8	0.53	Neuroblastoma	GCC 10:275	
Unknown	D1S207	14	2	0.14	Stomach	BJC 73:424	
pter-22	D1S16	74	22	0.3	Breast	CR 53:1990	
pter-22	D1S16	11	0	0	Cervix	CR 54:4481	
pter-22	D1S16	6	2	0.33	Endocrine	CR 52:770	
pter-22	D1S16	24	4	0.17	Melanoma	PNAS 86:4614	
pter-22	D1S16	13	5	0.38	Testis	CR 54:6266	
31	D1S226	36	7	0.19	Breast	CR 55:1752	
Unknown	D1S167	9	1	0.11	Liver	CR 54:4188	
Unknown	AF3	10	0	0	Breast	AJHG 45:73	
Unknown	AF3	26	6	0.23	Testis	CR 54:6265	
Unknown	D1S236	11	5	0.45	Neuroblastoma	GCC 10:275	
22-13	D1S10	74	19	0.26	Breast	CR 53:1990	
Unknown	A IYMA	17	. 0	0	Testis	CR 54:6265	
21	AMY2B	16	5	0.31	Liver	CR 54:4188	
· 21	AMY2B	16	3	0.19	Ovary	BJC 69:429	
21	AMY2B	12	0	0	Uterus	CR 54:4294	
22-13	D1S14	74	24	0.32	Breast	CR 53:1990	
22-13	D1S14	18	3	0.17	Endocrine	GCC 13:9	
22-13	D1S14	23	4	0.17	Testis	CR 54:6265	
21-13	D1S73	13	6	0.46	Brain	AJP 145:1175	
21-13	D1S73	74	23	0.31	Breast	CR 53:1990	
21-13	D1S73	22	6	0.27	Breast	GCC 12:16	
21-13	D1S73	23	6	0.26	Testis	CR 54:6265	
22-13	D1S9	8	6	0.75	Brain	AJP 145:1175	
22-13	D1S9	74	23	0.31	Breast	CR 53:1990	
22-13	D1S9	2 5	0	0	Testis	CR 54:6265	
12	RAPIA	18	1	0.06	Colon	CR 52:285	
13	D1S418	39	8	0.21	Breast	CR 55:1752	
13	NRAS	74	21	0.28	Breast	CR 53:1990	
13	NRAS	10	5	0.5	Endocrine	CR 52:770	
13	NRAS	6	1	0.17	Endocrine	CR 52:770	
13	NGFB	32	13	0.41	Brain	AJP 145:1175	
13	NGFB	6	0	0	Breast	GCC 2:191	
13	NGFB	13	2	0.15	Breast	AJHG 45:73	
13	NGFB	13	9	0.69	Breast	CR 53:1990	

.....

WO 98/41648 PCT/US98/05419

25 of	249
-------	-----

		Chron	nosome 1 - p A	\rm		
13	NGFB	18	3	0.17	Colon	IJC 53:382
13	NGFB	5	1	0.2	Testis	CCG 52:72
13	NGFB	16	0	0	Test is	CR 54:6266
13	NGFB	1	0	0	Testis	CCG 52:72
13	NGFB	3	0	0	Testis	CCG 52:72
13	NGFB	6	0	0	Uterus	CR 51:5632
22-13	DISII	74	19	0.26	Breast	CR 53:1990
21-Nov	D1S36	17	2	0.12	Breast	PN 86:7204
22-13	D1S13	74	16	0.22	Breast	CR 53:1990
22-13	D1S13	7	6	0.86	Endocrine	CR 52:770
22-13	D1S13	7	6	0.86	Endocrine	CR 52:770
22.1-13	D1S64	18	10	0.56	Brain	AJP 145:1175
31-pter	Unknown	36	1	0.03	Breast	JNCI 84:506
32	D1S100-101	74	20	0.27	Breast	CR 53:1990
Unknown	D1S33	9	4	0.44	Breast	CR 51:1020
3.3 5	Unknown	37	6	0.16	Colon	BJC 59:750
Unknown	Unknown	14	0	0	Colon	CCG 48:167
Unknown	D1S188	23	4	0.17	Endocrine	GCC 13:9
Unknown	D1S19	4	2	0.5	Endocrine	CR 52:770
Unknown	PND	3	2	0.67	Endocrine	CR 52:770
Unknown	D1S252	19	3	0.16	Head&Neck	CR 54:1152
Unknown	D1S57-NGFB	21	4	0.19	Head&Neck	CR 52:1494
Unknown	D1S243-D1S228	22	1	0.05	Kidney	PNAS 92:2854
Unknown	D1S243-D1S228	6	0	0	Kidney	PNAS 92:2854
Unknown	D1S:243-228	33	3	0.09	Kidney	CR 55:6189
33-35	Unknown	14	2	0.14	Liver	BJC 67:1007
Unknown	D1S187	19	4	0.21	Liver	CR 54:4188
Unknown	ISO1	27	6	0.22	Liver	CR 54:4188
Unknown	ISO2	13	4	0.31	Liver	CR 54:4188
Unknown	D1S19	21	6	0.29	Melanoma	PNAS 86:4614
Unknown	D1S:214-201-255	20	1	0.05	Melanoma	CR 56:589
Unknown	PND	13	5	0.38	Melanoma	PNAS 86:4614
Unknown	D1S220	20	10	0.5	Neuroblastoma	GCC 10:275
Unknown	D1S232	11	7	0.64	Neuroblastoma	GCC 10:275
Unknown	D1S252	8	2	0.25	Neuroblastoma	GCC 10:275
Unknown	D1S97	18	0	0	Neuroblastoma	0 7:1185
Unknown	GGAT2A07	28	3	0.11	Neuroblastomo	CR 55:5681
Unknown	D1S60	18	1	0.06	Ovary	IJC 54:546
Unknown	D15:162-175	14	1	0.07	Ovary	BJC 72:1330
Unknown	F3-AMY	2 5	6	0.24	Ovary	CR 53:2393
Unknown	MTHFR	28	16	0.57	Ovary	BJC 75:1105
13-36	PND-D1S2-NGFB	11	0	0	Prostate	G 11:530

26 of 249 Chromosome 1 - p Arm

3.3-.5 Unknown 9 3 0.33 Stomach BJC 59:750 SUM 7135 1886 0.26

SHBSTITUTE SHEET (NILE 26)

27 of 249 Chromosome 1 - q Arm

			Cmomosome	i - q Arm		
Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D1 S30 5	30	7	0.23	Cervix	CR 56:197
CENTR	D1 S3 05	14	1	0.07	Neuroblastoma	CR 55:5366
Unknown	D1S67	30	1	0.03	Brain	AJP 145:1175
21	D1S67	74	7	0.09	Breast	CR 53:1990
Unknown	D1S67	15	2	0.13	Breast	CR 50:7184
Unknown	D1S67	7	2	0.29	Cervix	GCC 9:119
Unknown	D1S67	26	3	0.12	Esophageal	GCC 10:177
Unknown	D1S67	14	1	0.07	Kidney	CR 51:820
Unknown	D1S67	6	1	0.17	Lung	CR 52:2478
Unknown	D1S67	3	3	1	Lung	CR 52:2478
Unknown	D1S67	1	1	1	Lung	CR 52:2478
Unknown	D1S67	17	5	0.29	Lung	CR 52:2478
Unknown	D1S67	14	4	0.29	Ovary	CR 51:5118
21	D1S67	23	2	0.09	Ovary	IJC 54:546
Unknown	D1S67	26	3	0.12	Testis	CR 54:6265
Unknown	D1S67	22	4	0.18	Uterus	GCC 9:119
21-23	MUCT	74	9	0.12	Breast	CR 53:1990
21-23	MUCI	7	0	0	Breast	CR 53:3804
21-23	MUC1	44	13	0.3	Breast	GCC 12:16
21-23	MUC1	43	7	0.16	Breast	CR 51:1020
21-23	MUCI	21	7	0.33	Head&Neck	CR 52:1494
21-23	MUC1	16	4	0.25	Stomach	CR 51:2926
21-23	MUC1	25	2	0.08	Testis	GCC 13:249
21	PEM-pMUC10	89	14	0.16	Breast	GCC 5:311
21	SPTAI	74	9	0.12	Breast	CR 53:1990
21	SPTAI	6	2	0.33	Breast	GCC 12:16
21	SPTAI	6	2	0.33	Breast	PN 86:7204
21	SPTAI	22	2	0.09	Colon	CR 52:285
21	SPTAI	29	3	0.1	Colon	CR 52:285
Unknown	D1S176	17	1	0.06	Liver	CR 54:4188
22-25	ATP1B1	74	9	0.12	Breast	CR 53:1990
21-23	APOA2	6	0	0	Breast	GCC 2:191
21-23	APOA2	18	4	0.22	Ovary	BJC 69:429
21-23	APOA2	5	0	0	Testis	GCC 13:249
21-23	APOA2	26	2	0.08	Uterus	CR 54:4294
21-31	D1S61	74	10	0.14	Breast	CR 53:1990
21-31	D1S61	52	12	0.23	Breast	CR 51:1020
21-31	D1S61	39	8	0.21	Breast	GCC 12:16
21-31	D1S61	21	2	0.1	Endocrine	GCC 13:9
Unknown	D1S75	14	0	0	Brain	AJP 145:1175
Unknown	D1S75	18	1	0.06	Testis	CR 54:6265
Unknown	D1S66	14	SHEET (RULE	0.29	Esophageal	CR 54:2996
	SUB	SIIIUTE	SHEET (RULE)	26)	. 5	
			,	,		

28 of	249
-------	-----

			28 of			
			Chromosom	e I - q Arm		
Unknown	D1S66	11	0	0	Sarcoma	CR 52:2419
23-2 5	AT3	19	0	0	Brain	CR 54:1397
23-25	AT3	14	0	0	Bra in	CR 54:1397
23-25	AT3	14	1	0.07	Breast	AJHG 45:73
23-2 5	AT3	2	0	0	Breast	GCC 2:191
23-25	AT3	14	0	0	Colon	CR 52:285
23-25	AT3	4	0	0	Liver	CCG 48:72
23-25	AT3	22	1	0.05	Ovary	IJC 54:546
23-25.1	AT3	5	0	0	Ovary	CR 50:2724
23-25	AT3	27	0	0	Testis	CR 54:6265
23-25	AT3	8	2	0.25	Testis	GCC 13:249
Unknown	D1S238	22	4	0.18	Cervix	CR 56:197
31-32.1	F13B	9	0	0	Brain	CR 54:1397
31-32.1	F13B	15	0	0	Brain	CR 54:1397
31-32.1	F138	12	1	0.08	Endocrine	GCC 13:9
31-32.1	F138	13	0	0	Uterus	CR 54:4294
Unknown	D1S65	18	0	0	Brain	AJP 145:1175
Unknown	D1S65	18	5	0.28	Breast	GCC 12:16
Unknown	D1S65	6	0 .	0	Esophageal	CR 51:2113
Unknown	D1S65	16	2	0.12	Head&Neck	CR 52:1494
Unknown	D1S65	15	3	0.2	Test is	CR 54:6267
32 or 42	REN	11	0	0	Brain	AJP 145:1175
32 or 42	REN	12	3	0.25	Breast	CR 51:1020
3 2	REN	21	7	0.33	Breast	GCC 12:16
32 or 42	REN	6	1	0.17	Breast	CR 53:1990
32 or 42	REN	12	2	0.17	Cervix	CR 49:3598
3 2	REN	16	1	0.06	Colon	CR 52:285
32 or 42	REN	19	7	0.37	Colon	IJC 53:382
32 or 42	REN	8	0	0	Liver	PNAS 86:8852
32 or 42	REN	14	0	0	Liver	JJCR 81:108
32 or 42	REN	4	0	0	Neuroblastoma	CR 49:1095
32 or 42	REN	21	1	0.05	Ovary	IJC 54:546
3 2 or 4 2	REN	8	0	0	Prostate	G 11:530
32 or 42	REN	15	4	0.27	Stomach	CR 52:3099
32 or 42	REN	11	3	0.27	Testis	CR 54:6265
32 or 42	REN	6	0	0	Uterus	CR 51:5632
32	D1S249	12	0	0	Neuroblastoma	CR 55:5366
Unknown	LAMB2	13	1	0.08	Testis	CR 54:6265
Unknown	D1S58	24	11	0.46	Breast	GCC 12:16
Unknown	D1S58	27	7	0.26	Cervix	CR 54:4481
Unknown	D1S58	15	0	0	Colon	CCG 48:167
Unknown	D1S58	21	4	0.19	Testis	CR 54:6265
Unknown	D1S58	23	5	0.22	Testis	0 9:2245

29 of 249
Chromosome 1 - q Arm

			Chromosom	e 1 - q Arm		
Unknown	D1S81	32	0	0	Brain	AJP 145:1175
Unknown	D1S81	39	12	0.31	Breast	GCC 12:16
Unknown	D1S81	41	5	0.12	Breast	CR 53:4356
Unknown	D1S81	20	1	0.05	Liver	CR 51:89
Unknown	D1S213	30	6	0.2	Cervix	CR 56:197
Unknown	D1S251	31	1	0.03	Kidney	CR 55:6189
Unknown	D1S74	11	4	0.36	Breast	GCC 12:16
Unknown	D1S8	51	15	0.29	Breast	GCC 12:16
Unknown	D1S74	39	7	0.18	Cervix	CR 54:4481
Unknown	D1S8	9	0	0	Endocrine	N 328:524
32-44	D1S103	18	2 .	0.11	Ovary	BJC 69:429
Unknown	D1S74	4	0	0	Testis	CR 54:3983
Unknown	D1S74	50	3	0.06	Test is	CR 54:3983
Unknown	D1S74	54	3	0.06	Testis	0 9:2245
Unknown	D1S8	31	2	0.06	Testis	GCC 13:249
Unknown	D1S8	31	2	0.06	Testis	GCC 13:249
21-23	Unknown	70	18	0.26	Breast	JNCI 84:506
21-24	Unknown	7 5	16	0.21	Breast	AJP 140:215
Unknown	DF3	43	6	0.14	Breast	IJC 61:1
4.23	Unknown	34	4	0.12	Colon	BJC 59:750
2.14	Unknown	27	3	0.11	Colon	BJC 59:750
Unknown	D1S102	12	1	0.08	Endocrine	GCC 13:9
Unknown	D1S215	11	2	0.18	Endocrine	CR 56:599
Unknown	D1S259	22	5	0.23	Head&Neck	CR 54:1152
Unknown	D1S304-212	43	6	0.14	Head&Neck	CR 54:4756
Unknown	D1S304-212	17	2	0.12	Head&Neck	CR 54:4756
Unknown	Unknown	8	3	0.38	Liver	BJC 64:1083
42-43	Unknown	13	3	0.23	Liver	BJC 67:1007
Unknown	Unknown	4	1	0.25	Liver	BJC 64:1083
Unknown	D1S:237-212	27	2	0.07	Melanoma	CR 56:589
Unknown	APOA2-D1S:158-103	14	0	0	Ovary	BJC 72:1330
Unknown	REN-D1S81	23	9	0.39	Ovary	CR 53:2393
Unknown	Unknown	13	2	0.15	Pancreas	BJC 65:809
32-44	Unknown	7	0	0	Pancreas	CR 54:2761
4.23	Unknown	6	1	0.17	Stomach	BJC 59:750
2.14	Unknown	10	5	0.5	Stomach	BJC 59:750
Unknown	AGT	52	3	0.06	Testis	CR 54:3983
Unknown	AGT	4	0	0	Test is	CR 54:3983
Unknown	CR2	21	3	0.14	Test is	CR 54:6265
Unknown	D1S180	3	0	0	Testis	CR 54:3983
Unknown	D1S180	50	7	0.14	Test is	CR 54:3983
Unknown	D1S235	2	0	0	Testis	CR 54:3983
Unknown	D1S235	30	TT NIET (2)	0.1	Test is	CR 54:3983
	30	11116	ITE SHEET (RU	HE 26)		

30 of 249

Chromosome 1 - q Arm

SUM

2869

417

0.15

WO 98/41648

31 of 249 Chromosome 2 - p Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D2S44	7	1	0.14	Uterus	GCC 9:119
Unknown	Unknown	11	1	0.09	Brain	CR 50:5784
Unknown	D2S44	7	1	0.14	Breast	CR 53:3804
Unknown	D2S44	74	6	0.08	Breast	CR 53:4356
Unknown	D2S47	23	0	0	Breast	CR 50:7184
23 -15	D2S6	27	3	0.11	Breast	GCC 2:191
23-15	D2S6	22	2	0.09	Breast	JNCI 84:506
23-1 5	D2S6	42	5	0.12	Breast	CR 53:4356
23-PTER	TPO	50	21	0.42	Breast	BCRT 32:5
Unknown	D2S139	27	4	0.15	Cervix	CR 56:197
Unknown	D2S177	18	2	0.11	Cervix	CR 56:197
Unknown	D2S44	7	0	0 ·	Cervix	GCC 9:119
Unknown	D2S44	48	6	0.12	Cervix	CR 54:4481
Unknown	D2S48	26	3	0.12	Cervix	CR 54:4481
Unknown	APOB	7	0	0	Colon	CCG 48:167
Unknown	D2S44	236	37	0.16	Colon	BJC 64:475
Unknown	D2S45	14	0	0	Colon	CCG 48:167
Unknown	D2S155	11	2	0.18	Endocrine	CR 56:599
Unknown	D2S44	60	10	0.17	Esophageal	GCC 10:177
Unknown	D2S44	20	4	0.2	Esophageal	CR 54:2996
Unknown	D2S47	41	10	0.24	Esophageal	GCC 10:177
Unknown	D2S47	30	2	0.07	Esophageal	CR 54:2996
Unknown	D2S162	21	4	0.19	Head&Neck	CR 54:1152
Unknown	D2S166-149	15	0	0	Head&Neck	CR 54:4756
Unknown	D2S166-149	20	1	0.05	Head&Neck	CR 54:4756
Unknown	D2S207-D2S131	21	0	0	Kidney	PNAS 92:2854
Unknown	D2S207-D2S131	6	0	0	Kidney	PNAS 92:2854
Unknown	D2S47	11	2	0.18	Kidney	CR 51:820
Unknown	D2S:207-131	3 2	0	0	Kidney	CR 55:6189
Unknown	D2S48	9	0	0	Liver	CR 51:89
13	TGFA	5	0	0	Liver	PNAS 86:8852
Unknown	Unknown	27	6	0.22	Lung	CR 54:2322
Unknown	D2S44	7	2	0.29	Lung	CR 54:5643
Unknown	D2S44	4	2	0.5	Lung	CR 54:5643
Unknown	D2S44	22	11	0.5	Lung	CR 54:5643
Unknow n	D2S47	19	1	0.05	Lung	CR 522478
12	CD8A	20	3	0.15	Ovary	BJC 69:429
Unknown	D2S44	23	9	0.39	Ovary	CR 53:2393
Unknown	D2S47	11	0	0	Ovary	CR 51:5118
23-15	D2S6	31	7	0.23	Ovary	IJC 54:546
23-PTER	TPO	14	2	0.14	Ovary	BJC 69:429

32 of 249 Chromosome 2 - p Arm

			•	0.07	Durataka	G 11:530
Unknown	D2S1	14	ŀ	0.07	Prostate	
Unknown	D2S3-D2S6	6	0	0	Prostate	G 11:530
Unknown	D2S47	10	2	0.2	Sarcoma	CR 52:2419
Unknown	D2S123	13	1	0.08	Stomach	CR 55:1 93 3
Unknown	D2S44	4 5	12	0.27	Testis	0 9:2245
Unknown	D2S48	31	5	0.16	Testis	0 9:2245
24	MYCN	2	0	0	Testis	CCG 52:72
24	MYCN	2	0	0	Testis	CCG 52:72
24	MYCN	. 2	0	0	Testis	CCG 52:72
13	D2S101	21	0	0	Uterus	CR 54:4294
Unknown	D2S44	7	1	0.14	Uterus	GCC 9:119
SUM	22011	1272	191	0.15		

33 of 249 Chromosome 2 - q Arm

Bond	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
13	ILTA	20	0	0	Uterus	CR 54:4294
Unknown	D2S44	17	0	0	Brain	CR 49:6572
Unknown	D2S44	17	0	0	Brain	CR 50:5784
Unknown	CRYG	8	1	0.12	Breast	GCC 2:191
Unknown	D2S44	51	7	0.14	Breast	GCC 4:113
Unknown	D2S44	31	3	0.1	Breast	GCC 2:191
Unknown	D2S44	49	5	0.1	Breast	CR 50:7184
Unknown	CRYG	9	1	0.11	Cervix	CR 49:3598
Unknown	D2S122	28	4	0.14	Cervix	CR 56:197
Unknown	D2S172	29	7	0.24	Cervix	CR 56:197
Unknown	CRYG	21	0	0	Colon	N 331:273
35-37	D2S3	16	0	0	Colon	CCG 48:167
Unknown	D2S44	32	1	0.03	Colon	CCG 48:167
Unknown	D2S54	8	0	0	Colon	CCG 48:167
Unknown	D2S125	20	2	0.1	Endocrine	CR 56:599
Unknown	D2S44	14	1	0.07	Esophageal	CR 51:2113
Unknown	D2S55	13	0	0	Esophageal	CR 54:2996
Unknown	D2S111	20	3	0.15	Head&Neck	CR 54:1152
Unknown	D2S163	10	0	0	Head&Neck	CR 54:4756
Unknown	D2S163	20	4	0.2	Head&Neck	CR 54:4756
Unknown	D2S125	28	1	0.04	Kidney	PNAS 92:2854
Unknown	D2S44	38	5	0.13	Kidney	CR 51:820
33-3 5	CRYP1	1	0	0	Liver	CR 51:89
Unknown	D2S44	18	0	0	Liver	CR 51:89
Unknown	D2S44	4	0	0	Liver	PNAS 86:8852
p16-15	D2S5	4	0	0	Liver	CCG 48:72
Unknown	D2S44	40	11	0.28	Lung	CR 522478
p16-15	D2 S5	1	0	0	Neuroblastoma	
Unknown	D2S3	23	9	0.39	Ovary	CR 53:2393
Unknown	D2S44	29	4	0.14	Ovary	CR 51:5118
p16-15	D2S5	5	1	0.2	Ovary	CR 50:2724
Unknown	D2S50	10	0	0	Ovary	CR 50:2724
Unknown	D2S55	19	2	0.11	Ovary	IJC 54:546
Unknown	D2S72	16	6	0.38	Ovary	BJC 69:429
Unknown	D2S44	4	0	0	Pancreas	CR 54:2761
Unknown	D2S44	26	7	0.27	Sarcoma	CR 52:2419
Unknown	D2S44	18	1	0.06	Stomach	HG 92:244
Unknown	D2S44	27	0	0	Testis	LI 73:606
13	ILTA	20	0	0	Uterus	CR 54:4294
SUM		744	86	0.12	•	

34 of 249 Chromosome 3 - p Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
26	D3S17	12	10	0.83	Kidney	CR 51:1071
26	D3S17	7	7	1	Lung	GCC 1:240
Unknown	D3S1307	36	2	0.06	Esophageal	BJC 73:366
Unknown	D3S1317	31	10	0.32	Kidney	BJC 69:230
Unknown	D3S1317	12	3	0.25	Stomach	CR 55:1933
2 5	D3S18	19	9	0.47	Kidney	CR 51:1071
2 5	D3S18	1	1	1	Lung	GCC 1:240
14	D3S1038	21	6	0.29	Esophageal	CR 54:6484
14	D3S1038	37	5	0.14	Esophageal	BJC 73:366
14	D3S1038	5	0	0	Kidney	GCC 12:76
14	D3S1038	40	19	0.47	Kidney	BJC 69:230
14	D3S1038	6	5	0.83	Lung	JAMA 273:558
14	D3S1038	1	ì	ì	Lung	JAMA 273:558
14	D3S1038	2 5	3	0.12	Uterus	CR 54:4294
Unknown	D3S1263	22	7	0.32	Cervix	CR 56:197
Unknown	D3S651	6	4	0.67	Kidney	CR 51:4707
Unknown	D3S651	18	3	0.17	Lung	CR 52:873
Unknown	D3S651	8	8	1	Lung	CR 52:873
24 -25	RAF1	4	1	0.25	Breast	CR 53:3804
24-25	RAF1	3	1	0.33	Cervix	CR 49:3598
2 5	RAF1	10	10	1	Head&Neck	CGC 54:91
25	raf1	1	0	0	Kidney	CR 51:4707
2 5	RAF1	22	20	0.91	Kidney	CR 51:1071
2 5	RAF1	12	9	0.75	Kidney	CR 51:1544
2 5	RAF1	2	2	1	Kidney	CR 51:1071
25	RAF 1	22	10	0.45	Kidney	G 11:537
24-2 5	RAF1	17	9	0.53	Kidney	CR 49:1390
24-2 5	RAF1	4	2	0.5	Lung	GCC 1:95
24-2 5	RAF1	· 15	14	0.93	Lung	GCC 1:95
25	RAFI	1	1	1	Lung	CR 49:5130
24-25	RAF1	1	0	0	Lung	GCC 1:95
2 5	RAFI	5	5	1	Lung	0 4:451
25	RAF1	12	2	0.17	Prostate	G 11:530
25	RAF1	1	1	1	Uterus	CR 51:5632
24.2-26	D3S1286	37	12	0.32	Esophageal	IJC 69 :1
Unknown	D3S1293	33	5	0.15	Esophageal	BJC 73:366
Unknown	D3S1293	40	2	0.05	Head&Neck	CR 54:4756
Unknown	D3S1293	39	10	0.26	Head&Neck	CR 54:4756
Unknown	D3S1020	5	5	1	Lung	CR 52:873
Unknown	D3S1020	7	3	0.43	Lung	CR 52:873
Unknown	D3S1002	5	5	l	Lung	CR 52:873

35 of 249 Chromosome 3 - p Arm

Unknown	D3S1002	12	3	0.25	Lung	CR 52:873
25.1	D3S669	22	3	0.14	Breast	CR 51:5794
25 .1	D3S669	10	7	0.7	Kidney	CR 51:4707
Unknown	D3S669	5	. 5	1	Lung	CR 52:873
Unknown	D3S669	12	2	0.17	Lung	CR 52:873
Unknown	THRB	54	15	0.28	Breast	GCC 12:128
21-PTER	THRB	30	4	0.13	Breast	AJP 140:215
22-24.1	THRB	71	32	0.45	Breast	CR 54:3021
Unknown	THRB	24	9	0.38	Cervix	IJC 58:787
22-24.1	THRB	7	3	0.43	Cervix	CR 49:3598
24	THRB	9	1	0.11	Colon	IJC 53:382
24	THRB	44	10	0.23	Esophageal	BJC 73:366
24	THRB	9	3	0.33	Head&Neck	C 72:881
22-24.1	THRB	23	6	0.26	Head&Neck	CR 54:1152
22-24.1	THRB	3	0	0	Head&Neck	CGC 54:91
22-24.1	THRB	5	5	1	Kidney	CR 51:949
24	THRB	34	18	0.53	Kidney	G 11:537
22-24.1	THRB	11	11	1	Lung	CR 49:5130
21-PTER	THRB	1	0	0	Lung	GCC 1:95
24	THRB	7	3	0.43	Lung	GCC 3:358
22-24.1	THRB	2	2	1	Lung	GCC 1:95
22-24.1	THRB	3	1	0.33	Lung	GCC 1: 9 5
22-24.1	THRB	5	3	0.6	Lung	GCC 1:95
24	THRB	6	5	0.83	Lung	0 4:451
22-24.1	THRB	10	2	0.2	Lung	GCC 11:15
22-24 .1	THRB	22	17	0.77	Lung	GCC 1:95
Unknown	THRB	38	22	0.58	Melanoma	GCC 15:102
24	THRB	22	5	0.23	Ovary	IJC 52:575
22-24.1	THRB	7	4	0.57	Ovary	0 5:219
Unknown	THRB	22	6	0.27	Ovary	UC 54:546
22-24.1	THRB	17	5	0.29	Ovary	BJC 69:429
Unknown	THRB	16	0	0	Pediatric	CR 50:3279
24	THRB	11	0	0	Prostate	GCC 11:119
Unknown	THRB	2	0	0	Uterus	CR 51:5632
24	THRB	4	1	0.25	Uterus	CR 51:5632
24	RARB	5	3	0.6	Kidney	G 11:537
24.2-25	D3S1266	52	15	0.29	Esophageal	IJC 69:1
23	D3S647	24	2	0.08	Breast	CR 51:5794
23	D3S647	21	8	0.38	Esophageal	CR 54:6484
23	D3S647	30	4	0.13	Esophageal	BJC 73:366
23	D3S647	22	8	0.36	Kidney	BJC 69:230
23	D3S647	11	5	0.45	Kidney	CR 51:4707

SUBSTITUTE SMEET (NALE 26)

36 of 249 Chromosome 3 - p Arm

pter-21	D3S12	5	0	0	Stomach	HG 89:445
22-24.2	D3S1211	17	4	0.24	Esophageal	มC 69 :1
21.3	D3S1029	23	4	0.17	Esophageal	CR 54:6484
21.3	D3S1029	1	1	1	Lung	JAMA 273:558
21.3	D3S1029	6	5	0.83	Lung	JAMA 273:558
Unknown	D3S867	18	5	0.28	Lung	CR 52:873
Unknown	D3S867	7	7	1	Lung	CR 52:873
Unknown	D3S1298	24	8	0.33	Cervix	CR 56:197
13	D3S685	54	6	0.11	Breast	CR 51:5794
Unknown	D3S685	6	3	0.5	Cervix	GCC 9:119
21.3-22	D3S1007	17	9	0.53	Esophageal	CR 54:6484
21.3-22	D3S1007	33	6	0.18	Esophageal	BJC 73:366
Unknown	D3S685	47	. 15	0.32	Esophageal	GCC 10:177
21.3-22	D3S1007	3	0	0	Kidney	GCC 12:76
Unknown	D3S685	27	18	0.67	Kidney	CR 51:4707
21.3-22	D3S1007	50	37	0.74	Lung	IJC 64:371
Unknown	D3S685	31	14	0.45	Lung	CR 52:873
Unknown	D3S685	10	10	1	Lung	CR 52:873
13	D3S685	1	1	1	Lung	CR 52:2478
13	D3S685	7	7	1	Lung	CR 52:2478
13	D3S685	3	3	1	Lung	CR 52:2478
13	D3S685	26	9	0.35	Lung	CR 52:2478
13	D3S685	18	3	0.17	Ovary	CR 51:5118
Unknown	D3S685	18	3	0.17	Ovary	CR 51:5118
Unknown	D3S685	11	2	0.18	Uterus	GCC 9:119
22-24 .2	D3S1260	63	25	0.4	Esophageal	IJC 69:1
22-24.2	D3S1260	3	0	0	Melanoma	GCC 15:102
21	D3S11	16	0	0	Endocrine	CR 56:599
21	D3S11	7	4	0.57	Kidney	CR 49:1390
21	D3S2-S3	1	1	1	Breast	GCC 2:191
21	D3S2-S3	20	1	0.05	Breast	GCC 2:191
21	D3S2-S3	1	0	0	Breast	PN 84:2372
21	D3S2-S3	2	0	0	Breast	PN 84:2372
21	D3S2-S3	3	0	0	Breast	PN 84:2372
21.3	D3S686	34	2	0.06	Breast	CR 51:5794
21	D3S2	2 2	4	0.18	Cervix	CR 54:4481
Unknown	D3S2	16	6	0.38	Cervix	UC 58:787
21	D3S2	9	9	1	Cervix	CR 49:3598
21	D3S2	16	3	0.19	Colon	UC 53:382
21	D3S2	9	0	0	Colon	N 331:273
Unknown	D3S2	12	0	0	Endocrine	GCC 13:9
21	D3 S2	22	8	0.36	Esophageal	CR 54:2996

37 of 249 Chromosome 3 - p Arm

Unknown	D3S2	10	1	0.1	Esophageal	CR 51:2113
21.3	D3S686	38	11	0.29	Esophageal	BJC 73:366
21	D3S2	4	3	0.75	Head&Neck	CGC 54:91
21	D3S2	14	6	0.43	Kidney	CR 51:949
Unknown	D3S2	2	0	0	Kidney	CR 51:1544
Unknown	D3S2	23	18	0.78	Kidney	CR 51:1071
Unknown	D3S2	2	1	0.5	Kidney	CGC 32:281
Unknown	D3 S2	11	2	0.18	Kidney	PNAS 85:1571
21	D3 S2	14	8	0.57	Kidney	G 11:537
Unknown	D3S2	20	9	0.45	Kidney	CR 51:1544
14-21	D3S2	8	7	0.88	Kidney	CR 49:1390
21	D3S2	8	7	0.88	Kidney	N 327:721
21.3	D3S686	10	6	0.6	Kidney	CR 51:4707
Unknown	D3S2	4	1	0.25	Leukemia	CGC 61:42
21	D3S2	15	12	0.8	Lung	PNAS 84:9252
21	D3S2	1	0	0	Lung	PNAS 84:9252
21	D3 S2	5	1	0.2	Lung	GCC 11:15
21	D3S2	5	2	0.4	Lung	GCC 1:95
Unknown	D3S2	1	0	0	Lung	N 329:451
21	D3S2	1	0	0	Lung	PNAS 84:9252
21	D3 S2	7	7	1	Lung	PNAS 84:9252
21	D3S2	8	6	0.75	Lung	PNAS 86:5099
Unknown	D3S2	9	8	0.89	Lung	N 329:451
Unknown	D3S2	1	0	0	Lung	N 329:451
21	D3S2	6	6	1	Lung	GCC 1:240
21	D3S2	6	5	0.83	Lung	PNAS 84:9252
Unknown	D3S2	20	8	0.4	Lung	JJCR 80:924
Unknown	D3S2	6	5	0.83	Lung	NEJ 317:1109
Unknown	D3S2	4	3	0.75	Lung	NEJ 317:1109
Unknown	D3S2	2 -	1	0.5	Lung	NEJ 317:1109
Unknown	D3S2	12	0	0	Lung	PNAS 84:9252
21	D3 S2	9	4	0.44	Lung	PNAS 86:5099
21	D3S2	12	8	0.67	Lung	JJCR 80:924
21	D3S2	. 3	1	0.33	Lung	GCC 1:95
21	D3S2	11	8	0.73	Lung	GCC 1:95
21	D3S2	8	8	1	Lung	CR 49:5130 -
14-21	D3 S2	5	5	1	Lung	GCC 5:119
21.3	D3S686	6	6	1	Lung	CR 52:873
21.3	D3S686	11	7	0.64	Łung	CR 52:873
Unknown	D3S2	11	6	0.55	Melanoma	GCC 15:102
Unknown	D3 S2	6	0	0	Neuroblastoma	CR 49:1095
21	D3 S2	16	1	0.06	Ovary	IJC 54:546

38 of 249 Chromosome 3 - p Arm

21	D3S2	6	4	0.67	Sarcoma	CGC 53:45
21	D3S2	12	4	0.33	Sarcoma	CR 52:2419
Unknown	D3S2	10	0	0	Stomach	CR 48:2988
Unknown	D3S2	19	1	0.05	Testis	0 9:2245
21	D3S2	12	4	0.33	Testis	G 5:134
Unknown	D3S2	5	0	0	Uterus	CR 51:5632
14.2	D3S3	1	0	0	Breast	GCC 2:191
14.2	D3S3	9	9	1	Head&Neck	CGC 54:91
14.2	D3S3	4	3	0.75	Kidney	CR 51:1071
14.2	D3S3	1	1	1	Kidney	CR 49:1390
14.2	D3S3	9	0	0	Kidney	PNAS 85:1571
14.2	D3S3	2	1	0.5	Kidney	N 327:721
14.2	D3S3	3	1	0.33	Kidney	G 11:537
14.2	D3S3	5	3	0.6	Lung	GCC 1:95
14.2	D3S3	1	1	1	Lung	GCC 1:95
14.2	D3S3	4	4	1	Lung	GCC 1:240
14.2	D3S3	1	0	0	Lung	N 329:451
14.2	D3S3	9	6	0.67	Lung	N 329:451
14.2	D3S3	3	3	1	Lung	GCC 1:95
14.2	D3S3	1	0	0	Lung	N 329:451
14.2	D3S3	2	1	0.5	Lung	NEJ 317:1109
14.2	D3S3	4	3	0.75	Lung	NEJ 317:1109
14.2	D3S3	4	0	0	Lung	GCC 11:15
14.2	D3S3	1	1	1	Lung	GCC 1:95
21.2-14.2	D3S32	8	0	0	Brain	CR 49:6572
21.2-14.2	D3S32	18	2	0.11	Brain	CR 50:5784
21.2-14.2	D3S32	16	3	0.19	Breast	CR 50:7184
21.2-14.2	D3S32	44	9	0.2	Breast	CR 51:5794
21.2-14.2	D3S32	30	12	0.4	Cervix	CR 54:4481
14.2-21.2	D3S32	3	3	1	Cervix	GCC 9:119
21.2-14.2	D3S32	17	7	0.41	Cervix	IJC 58:787
14.2-21.2	D3S32	4	1	0.25	Cervix	BJC 67:71
14.2-21.2	D3S32	19	8	0.42	Esophageal	CR 54:2996
21.2-14.2	D3S32	28	10	0.36	Esophageal	BJC 73:366
21.2-14.2	D3S32	7	0	0	Head&Neck	C 72:881
21.2-14.2	D3S32	15	8	0.53	Kidney	CR 51:820
14.2-21.2	D3S32	15	9	0.6	Kidney	CR 51:4 7 07
14.2-21.2	D3S32	21	17	0.81	Kidney	CR 51:1071
21.2-14.2	D3S32	18	8	0.44	Kidney	CR 51:949
21.2-14.2	D3S32	20	2	0.1	Liver	CR 51:89
21.2-14.2	D3S32	11	6	0.55	Lung	GCC 3:358
21.2-14.2	D3S32	. 17	11	0.65	Lung	CR 52:873

39 of 249 Chromosome 3 - p Arm

21.2-14.2	D3S32	6	6	1	Lung	0 4:451
21.2-14.2	D3S32	5	1	0.2	Lung	GCC 11:15
21.2-14.2	D3S32	4	4	1	Lung	CR 52:873
21.2-14.2	D3S32	17	10	0.59	Melanoma	GCC 15:102
21.2-14.2	D3S32	13	2	0.15	Ovary	JJC 54:546
21.2-14.2	D3S32	17 .	3	0.18	Ovary	CR 51:5118
21.2-14.2	D3S32	17	3	0.18	Ovary	CR 51:5118
21.2-14.2	D3S32	3	1	0.33	Pancreas	CR 54:2761
21.2-14.2	D3S32	10	1	0.1	Prostate	PNAS 87:8751
21.2-14.2	D3S32	10	1	0.1	Prostate	CSurveys 11:15
21.2-14.2	D3S32	3 3	15	0.45	Testis	0 9:2245
21.2-14.2	D3S32	4	2	0.5	Uterus	GCC 9:119
21.2-21.1	D3S1289	15	5	0.33	Melanomo	GCC 15:102
21.32-21.33	D3S643	14	4	0.29	Breast	CR 51:5794
21.32-21.33	D3S643	19	0	0	Esophageal	CR 54:6484
21.32-21.33	D3S643	3	3	1	Kidney	CR:51:4707
21.32-21.33	D3S643	17	4	0.24	Leukemia	B 83:3449
21.32-21.33	D3S643	6	3	0.5	Lung	CR 52:873
21.32-21.33	D3S643	3	3	1	Lung	CR 52:873
21	D3F15S2	15	. 7	0.47	Breast	GE 5:554
21	D3F15S2	33	5	0.15	Breast	CR 53:4356
21	D3F15S2	2	0	0	Cervix	CR 49:3598
21	D3F15S2	5	3	0.6	Cervix	IJC 58:787
21	D3F15S2	21	17	0.81	Esophageal	EJC 30B:248
21	D3F15S2	12	9	0.75	Head&Neck	C 72:881
21	D3F15S2	4	2	0.5	Head&Neck	CGC 54:91
21	D3F15S2	3	3	1	Kidney	CGC 32:281
21	D3F15S2	3	0	0	Kidney	3
21	D3F15S2	24	14	0.58	Kidney	G 11:537
. 21	D3F15S2	7 .	1	0.14	Kidney	3
21	D3F15S2	13	10	0.77	Kidney	CR 49:1390
21	D3F15S2	21	16	0.76	Kidney	PNAS 85:1571
21	D3F15S2	9	9	1	Kidney	N 327:721
21	D3F15S2	2	1	0.5	, Kidney	CR 51:949
21	D3F15S2	16	12	0.75	Kidney	3
21	D3F15S2	1	0	0	Lung	N 329:451 -
21	D3F15S2	9	9	1	Lung	N 329:451
21	D3F15S2	7	3	0.43	Lung	GCC 11:15
21	D3F1 5S2	1	0	0	Lung	N 329:451
21	D3F1 5S2	7	2	0.29	Lung	CL 51:133
21	D3F1 5S2	8	3	0.38	Lung	PNAS 86:5099
21	D3F1 5S2	8	2	0.25	լույց Lang	GCC 3:358
	· · 		-	J.L.J	will	OCC 3:330

SUBSTRUTE SPEET (NELE 25),

WO 98/41648 PCT/US98/05419

40 of 249 Chromosome 3 - p Arm

21	D3F15S2	6	3	0.5	Lung	PNAS 86:5099
21	D3F15S2	2	0	0	Lung	PNAS 86:5099
21	D3F15S2	2	0	0	Lung	CL 51:133
21	D3F15S2	5	4	0.8	Lung	0 4:451
21	D3F15S2	1	0	0	Lung	GCC 1:95
21	D3F15S2	5	3	0.6	Lung	NEJ 317:1109
	D3F15S2	7	4	0.57	Lung	GCC 1:95
21 21	D3F15S2	1	0	0	Lung	GCC 1:95
	D3F15S2	2	2	1	Lung	CR 49:5130
21	D3F15S2	16	11	0.69	Lung	GCC 1:95
21 21	D3F15S2	12	7	0.58	Melanoma	GCC 15:102
21	D3F15S2	8	1	0.12	Ovary	0 5:219
21	D3F15S2	22	4	0.18	Ovary	IJC 52:575
21 21	D3F15S2	22	4	0.18	Ovary	IJC 54:546
21	D3F15S2	12	2	0.17	Ovary	BJC 69:429
21	D3F15S2	3	0	0	Testis	CCG 52:72
21	D3F15S2	1	0	0	Testis	CCG 52:72
21	D3F15S2	2	0	0	Testis	CCG 52:72
21	D3F15S2	18	2	0.11	Testis	GCC 13:249
21	D3F15S2	2	0	0	Uterus	CR 51:5632
Unknown	D3S1076	29	2	0.07	Esophageal	BJC 73:366
Unknown	D3S1076	14	4	0.29	Esophageal	CR 54:6484
Unknown	D3S1076	22	13	0.59	Kidney	BJC 69:230
Unknown	D3S965	4	0	0	Lung	CR 52:873
Unknown	D3S965	1	1	1	Lung	CR 52:873
21.2	D3S660	33	6	0.18	Breast	CR 51:5794
Unknown	D3S660	6	2	0.33	Kidney	CR 51:4707
Unknown	D3S660	12	5	0.42	Lung	CR 52:873
Unknown	D3S660	8	8	1	Lung	CR 52:873
Unknown	D3S717	6	3	0.5	Kidney	CR 51:4707
Unknown	D3S717	4	2	0.5	Lung	CR 52:873
Unknown	D3S717	4	4	1	Lung	CR 52:873
Unknown	D3S936	11	4	0.36	Kidney	CR 51:4708
Unknown	D3S936	12	5	0.42	Lung	CR 52:873
Unknown	D3S936	4	4	1	Lung	CR 52:873
14.2-21.1	D3S1313	54	11	0.2	Esophageal	IJC 69:1
14.2-21.1	D3S1300	53	19	0.36	Esophageal	UC 69:1
14.2-14.3	D3S678	50	19	0.38	Breast	CR 51:5794
14.2-14.3	D3S678	10	7	0.7	Kidney	CR 51:4707
Unknown	D3S687	25	8	0.32	Breast .	CR 51:5794
Unknown	. D3S687	13	8	0.62	Kidney	CR 51:4707
Unknown	D3S687	4	4	1	Lung	CR 52:873
UIMIUMII	22007	•	-		•	

41 of 249 Chromosome 3 - p Arm

Unknown	D3S687	15	3	0.2	Lung	CR 52:873
Unknown	D3S1228	31	4	0.13	Esophageal	BJC 73:366
25	D3S1228	18	8	0.44	Esophageal	CR 54:6484
25	D3S1228	26	12	0.46	Kidney	BJC 69:230
25	D3S1228	6	4	0.67	Lung	JAMA 273:558
25	D3S1228	1.	1	1	Lung	JAMA 273:558
14.1-14.2	D3S1285	47	18	0.38	Esophageal	IJC 69:1
14.1-14.2	D3S1285	10	7	0.7	Melanoma	GCC 15:102
Unknown	D3S714	24		0.04	Breast	CR 51:5794
Unknown	D3S714	9	3	0.33	Lung	CR 52:873
14-13	D3S1217	28	18	0.64	Esophageal	C 73:2472
14-13	D3S1217	28	18	0.64	Head&Neck	CA 73:2472
Unknown	D3S1079	25 .	4	0.16	. Esophageal	BJC 73:366
Unknown	D3S1079	11	4	0.36	Esophageal	CR 54:6484
Unknown	D3S1261	20	8	0.4	Cervix	CR 56:197
Unknown	D3S13	2	0	0	Stomach	HG 89:445
12-14.2	D3S1296	57	17	0.3	Esophageal	IJC 69 :1
Unknown	D3S659	54	23	0.43	Breast	CR 51:5794
Unknown	D3S659	7	6	0.86	Cervix	GCC 9:119
Unknown	D3S659	28	10	0.36	Esophageal	GCC 10:177
Unknown	D3S659	36	6	0.17	Esophageal	BJC 73:366
Unknown	D3S659	17	7	0.41	Esophageal	CR 54:6484
Unknown	D3S659	11	8	0.73	Kidney	CR 51:4707
Unknown	D3S659	40	18	0.45	Kidney	BJC 69:230
Unknown	D3S659	17	5	0.29	Lung	CR 52:873
Unknown	D3S659	10	9	0.9	Lung	CR 52:873
Unknown	D3S659	6	0	0	Ovary	CR 51:5118
Unknown	D3S659	6	0	0	Ovary	CR 51:5118
Unknown	D3S659	11	5	0.45	Uterus	GCC 9:119
Unknown	D3S659	14	1	0.07	Uterus	CR 54:4294
13	D3S693	6	0	0	Breast	CR 51:5794
13	D3S693	1	0	0	Lung	CR 52:873
14	D3S6	32	11	0.34	Breast	CR 54:499
14	D3S6	5	2	0.4	Kidney	CR 49:1390
14	D3S6	3	0	0	Kidney	PNAS 85:1571
14	D3S6	3	1	0.33	Kidney	G 11:537
14	D3S6	8	7	0.88	Lung	GCC 1:95
14	D3S6	6	2	0.33	Lung	GCC 1:95
14	D3S6	4	2	0.5	Lung	GCC 11:15
21.3	ITIH1-H3	66	55	0.83	Lung	UC 64:371
Unknown	D3S30	37	15	0.41	Breast	CR 54:3021
13	D3S30	18	0	0	Breast	CR 48:167

42 of 249 Chromosome 3 - p Arm

Unknown	D3S30	17	6	0.35	Cervix	UC 58: 7 87
Unknown Unknown	D3S30	17	6	0.32	Esophageal	CR 54:2996
13	D3S30	32	12	0.38	Esophageal	BJC 73:366
	D3S30	16	8	0.5	Kidney	CR 51:4707
Unknown 13	D3S30	18	9	0.5	Kidney	CR 51:820
	D3S30	12	3	0.25	Lung	CR 52:873
Unknown	D3S30	7	1	0.14	ւսոց Lung	GCC 11:15
13		, 11	11	1	Lung	CR 52:873
Unknown	D3S30 D3S30	7	7	1	Lung	GCC 1:240
13	D3S30	, 11	8	0.73	Melanoma	GCC 15:102
Unknown		14	1	0.73	Ovary	CR 51:5118
13	D3S30	14	1	0.07	Ovary	CR 51:5118
13	D3S30		1	0.07	Ovary	BJC 69:429
Unknown	D3S30	12	0	0.08	Testis	G 5:134
13	D3S30	18	12	0.63	Head&Neck	CR 54:1152
13-14	D3S1284	19	0	0.83	Kidney	GCC 12:76
13-14	D3S1284	3	3	1	Lung	GCC 5:119
Unknown	D3S738	3	2	. i	Lung	GCC 5:117
Unknown	D3S625	2	3	0.75	Lung	GCC 5:119
Unknown	D3S742	4	3	0.6	Lung	GCC 5:119
Unknown	D3S739	5 5	3 4	0.8	Lung	GCC 5:119
Unknown	D3S740		1	0.0	Lung	GCC 5:119
Unknown	D3S216	. 1 3	3	1	Lung	GCC 5:119
Unknown	D3S733		3 7	0.44	Kidney	CR 51: 94 9
13	D3S4	16 17	4	0.44	Kidney	CR 51:1071
13	D3S4		8	0.57	Kidney	CR 49:1390
13	D3S4	14	5	0.83	Lung	GCC 1:240
13	D3S4	6	4	0.8	Lung	GCC 5:119
Unknown	D3S743	5		0.86	Lung	GCC 5:119
Unknown	D3S759	7 r	6	0.6	Lung	GCC 5:119
Unknown	D3S640	5	3	0.6	Lung	GCC 5:119
Unknown	D3S1090	2	2	1	Lung	GCC 5:119
Unknown	D3S1090	2	2	0.31	Bladder	CR 55:5213
Unknown	D3S:1067-1228	29	9		Bladder	CR 51:5405
Unknown	RAF1-DNF15S2	25	12	0.48		JNCI 84:506
24-26	Unknown	28	13	0.46	Breast	CR 54:3021
Unknown	D3S2-H3H2	37	12	0.32	Breast	CR 53:3804
Unknown	DNF15S2	4	1	0.25	Breast	
24	EABMD	67	26	0.39	Breast	CR 54:499
Unknown	RAF1-DNF15S2	15	7	0.47	Breast	GE 5:554
Unknown	D3S663	6	3	0.5	Cervix	GCC 9:119
21.1-14.2	D3S1067	20	7	0.35	Esophageal	CR 54:6484
Unknown	D3S1110	17	7	0.41	Esophageal	CR 54:6484

43 of 249 Chromosome 3 - p Arm

Unknown	D3S1111	11	. 1	0.09	Esophageal	CR 54:6484
Unknown	D3S192	34	8	0.24	Esophageal	BJC 73:366
Unknown	D3S656	19	8	0.42	Esophageal	CR 54:6484
Unknown	D3S663	22	2	0.09	Esophageal	CR 54:6484
Unknown	D3S966	38	9	0.24	Esophageal	BJC 73:366
Unknown	D3S966	19	5	0.26	Esophageal	CR 54:6484
21.1-14.2	D3S1067	41	20	0.49	Kidney	BJC 69:230
25-26	D3S1085	3	3	1	Kidney	CR 51:4707
Unknown	D3S1110	15	11	0.73	Kidney	BJC 69:230
Unknown	D3S1263- D3S1307- D3S1297	22	9	0.41	Kidney	PNAS 92:2854
Unknown	D3S1263- D3S1307- D3S1297	6	0	. 0	Kidney	PNAS 92:2854
Unknown	D3S22	9	7	0.78	Kidney	CR 51:1071
2 5	D3S649	11	7	0.64	Kidney	CR 51:4707
Unknown	D3S654	13	4	0.31	Kidney	CR 51:4707
Unknown	D3S656	7	4	0.57	Kidney	CR 51:4707
2 5	D3S689	1	0	0	, Kidney	CR 51:4707
25-26	D3S858	11	5	0.45	Kidney	CR 51:4707
21.1-21.2	D3S898	8	. 7	0.88	Kidney	CR 51:4707
14.1-14.2	D3S907	6	2	0.33	Kidney	CR 51:4707
12	D3S960	2	2	1	Kidney	CR 51:4707
Unknown	D3S:1263-1307- 1297	3 3	10	0.3	Kidney	CR 55:6189
Unknown	DNF15S2	28	25	0.89	Kidney	CR 51:1071
Unknown	DNF15S2	19	9	0.47	Kidney	CR 51:1544
Unknown	ERBA-B	18	17	0.94	Kidney	CR 51:1071
Unknown	ERBA-B	2	0	0	Kidney	CR 51:1071
Unknown	RAF1-DNF15S2	13	7	0.54	Kidney	CR 51:949
25-26	VHL	19	16	0.84	Kidney	CR 54:2852
Unknown	Unknown	27	2 5	0.93	Lung	CR 54:2322
21.3	D3S1339	12	11	0.92	Lung	IJC 64:371
21	D3S48	5	5	1	Lung	GCC 5:119
Unknown	D3S654	9	7	0.78	Lung	CR 52:873
Unknown	D3S654	22	8	0.36	Lung	CR 52:873
Unknown	DNF1 5S2	5	1	0.2	Lung	NEJ 317:1109
Unknown	DNF15S2	2	1	0.5	Lung	NEJ 317:1109
Unknown	DNF15S2	5	5	1	Lung	NEJ 317:1109
Unknown	ITIH1-D3S:1339- 1007	7	7	ì	Lung	CR 55:5133

44 of 249 Chromosome 3 - p Arm

Unknown	RAF1-DNF15S2	4	4	1	Lung	GCC 5:119
Unknown	RAF1-DNF15S2	6	3	0.5	Lung	PNAS 86:5099
Unknown	RAF1-DNF15S2	5	3	0.6	Lung	PNAS 86:5099
Unknown	RAF1-DNF15S2	17	8	0.47	Lung	GCC 3:358
25-24	D3S1252	5	1	0.2	Melanoma	GCC 15:102
all	7 loci	46	11 .	0.24	Ovary	CR 53:4456
21	D3S2-D3S86	23	0	0	Ovary	CR 53:2393
Unknown	D3S:1270-11	14	2	0.14	Ovary	BJC 72:1330
Unknown	Unknown	19	2	0.11	Testis	6 5:134
21.1-14.2	D3S1067	25	3	0.12	Uterus	CR 54:4294
Unknown	D3S663	10	2	0.2	Uterus	GCC 9:119
SUM	203000	5933	2353	0.4		

WO 98/41648

45 of 249 Chromosome 3 - q Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
11.0-12.0	GPX1	19	17	0.89	Kidney	Cr 15:2769
11.0-12.0	GPX 1	6	6	1	Lung	Cr 15:2769
11.0-12.0	GPX1	3	3	1	Lung	Cr 15:2769
12	D3 S1	7	0	0	Head&Neck	CGC 54:91
12	D3S1	2	0	0	Kidney	CGC 32:281
12	D3 S1	4	0	0	Lung	NEJ 317:1109
12	D3S1	4	0	0	Lung	0 4:451
12	D3S1	1	0	0	Lung	N 329:451
12	D3S1	9	2	0.22	Lung	N 329:451
12	D3S1	1	0	0	Lung	N 329:451
12	D3S1	19	2	0.11	Ovary	IJC 54:546
12	D3 S1	8	1	0.12	Testis	GCC 13:249
Unknown	D3S1764	24	1	0.04	Esophageal	BJC 73:366
Unknown	D3S196	31	3	0.1	Esophageal	BJC 73:366
Unknown	D3S196	19	9	0.47	Head&Neck	CR 54:1152
Unknown	D3S196	19	5	0.26	Ovary	BJC 69:429
Unknown	D3S196	2 2	2	0.09	Uterus	CR 54:4294
Unknown	СР	7	1	0.14	Lung	N 329:451
Unknown	СР	1	0	0	Lung	N 329:451
Unknown	СР	1	0	0	Lung	N 329:451
Unknown	D3S1268	24	2	0.08	Head&Neck	CR 54:4756
Unknown	D3S1268	34	0	0	Head&Neck	CR 54:4756
Unknown	D3S1268	35	5	0.14	Melanoma	CR 56:589
Unknown	D3S1262	37	8	0.22	Cervix	CR 56:197
Unknown	D3S1262	18	1	0.06	Esophageal	CR 54:6484
28	SST	6	0	0	Cervix	CR 49:3598
28	SST	6	0	0	Liver	CCG 48:72
28	SST	9	2	0.22	Lung	N 329:451
28	SST	12	0	0	Lung	PNAS 84:9252
28	SST	1	0	0	Lung	N 329:451
28	SST	7	0	0	Lung	CR 49:5130
28	SST	1	0	0	Melanomo	N 329:451
28	SST	3	0	0	Neuroblastoma	CR 49:1095
Unknown	D3S1314	26	1	0.04	Kidney	PNAS 92:2854
Unknown	D3S42	4	1	0.25	Breast	CR 53:3804
Unknown	D3S42	26	3	0.12	Breast .	GCC 4:113
Unknown	D3S42	28	9	0.32	Cervix	CR 54:4481
Unknown	D3S42	12	0	0	Stomach	HG 92:244

46 of 249 Chromosome 3 - q Arm

Unknown	D3S42	34	9	0.26	Testis	0 9:2245
Unknown	D3S42	16	0	0	Testis	U 73:606
Unknown	D3S44	35	6 .	0.17	Ovary	CR 53:2393
Unknown	D3S46	19	5	0.26	Esophageal	CR 54:2996
Unknown	D3S46	0	3	0	Esophageal	Unknown
Unknown	D3S46	44	13	0.3	Esophageal	GCC 10:177
Unknown	D3S46	16	3	0.19	Kidney	CR 51:820
Unknown	D3S46	7	0	0	Liver	CR 51:89
Unknown	D3S46	4 0	6	0.15	Lung	CR 52:2478
Unknown	D3S46	18	1	0.06	Ovary	CR 51:5118
Unknown	D3S46	18	1	0.06	Ovary	CR 51:5118
Unknown	D3S46	3	0	0	Pancreas	CR 54:2761
Unknown	D3S46	12	9	0.75	Sarcoma	CR 52:2419
Unknown	D3S46	12	9	0.75	Sarcoma	CR 52:2419
Unknown	Unknown	13	0	0	Brain	CR 50:5784
21-qter	D3S5	1	0	0	Brain	CCG 57:157
Unknown	MOX2	1	0	0	Brain	CCG 57:157
Unknown	D3S47	21	0	0	Endocrine	GCC 13:9
Unknown	GLUT2	23	0	0 .	Endocrine	CR 56:599
Unknown	D3S1271	14	1	0.07	Esophageal	CR 54:6484
Unknown	D3S1238	20	7	0.35	Head&Neck	CR 54:1152
Unknown	D3S1-M0X2-D3S5	24	2	0.08	Kidney	G 11:537
Unknown	D3S31	14	0	0	Kidney	CR 49:1390
26.2-qTER	D3S45	20	3	0.15	Kidney	CR 51:1544
all	4 morkers	3 2	13	0.41	Lung	GCC 1:95
12-q13	FXOM	15	7	0.47	Lung	GCC 1:95
12-q13	MOX1	6	2	0.33	Lung	GCC 1:95
12-g13	MOX1	1	1	1	Lung	GCC 1:95
12-q13	MOX1	1	1	1	Lung	GCC 1:95
all	4 markers	46	8	0.17	Ovary	CR 53:4456
21-PTER	ACCP	13	4	0.31	Ovary	BJC 69:429
Unknown	D3S1232-GLUT2	14	2	0.14	Ovary	BJC 72:1330
Unknown	D3S31	13	0	0	Prostate	G 11:530
SUM		1050	191	0.18		

WO 98/41648

WO 98/41648

47 of 249 Chromosome 4 - p Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
16.1	RAF1 P1	7	0	0	Uterus	CR 51:5632
Unknown	D4S1546	25	8	0.32	Bladder	CR 55:5213
Unknown	D4S124	16	0	0	Brain	CR 50:5784
16	D4S10	31	0	0	Breast	GE 5:554
pter-16.3	D4S125	6	1	0.17	Breast	CR 50:7184
16	D4S9 5	33	4	0.12	Breast	CR 53:4356
pter-16.3	D4S125	9	0	0	Cervix	CR 54:4481
Unknown	D4S125	2	0	0	Cervix	GCC 9:119
Unknown	D4S391	25	9	0.36	Cervix	CR 56:197
Unknown	D4S405	30	4	0.13	Cervix	CR 56:197
16	D4S10	11	0	0	Colon	CCG 48:167
pter-16.3	D4S125	8	0	0	Colon	CCG 48:167
11.0-15	D4S174	21	0	0	Endocrine	GCC 13:9
Unknown	D4S2397	18	1	0.06	Endocrine	CR 56:599
Unknown	D4S124	21	2	0.1	Esophageal	CR 54:2996
Unknown	D4S125	40	7	0.17	Esophageal	GCC 10:177
pter-16.3	D4S125	9	0	0	Esophageal	CR 51:2113
Unknown	D4S394	15	1	0.07	Head&Neck	CR 54:4756
Unknown	D4S394	18	0	0	Heod&Neck	CR 54:4756
Unknown	D4S404	21	8	0.38	Head&Neck	CR 54:1152
pter-16.3	D4S125	7	0	0	Kidney	CR 51:820
Unknown	D4S431	28	2	0.07	Kidney	PNAS 92:2854
16.3	D4S10	5	1	0.2	Liver	CCG 48:72
16	D4S10	6	2	0.33	Liver	CR 51:4367
pter-16.3	D4S125	4	0	0	Liver	CR 51:89
Unknown	D4S125	6	0	0	Liver	PNAS 86:8852
16.1	RAFIPI	13	2	0.15	Liver	JJCR 81:108
pter-16.3	D4S125	28	2	0.07	Lung	CR 52:2478
pter-16.3	D4S125	24	10	0.42	Ovary	CR 51:5118
Unknown	D4S125-D4S124	29	10	0.34	Ovary	CR 53:2393
15.1-11	D4S16	19	2	0.11	Ovary	IJC 54:546
11.0-15	D4S174	20	3	0.15	Ovary	BJC 69:429
16.2-15.1	D4S49	20	5	0.25	Ovary	IJC 54:546
12.0-13	GABRB1	16	2	0.12	Ovary	BJC 69:429
pter-16.3	D4S125	3	0	0	Pancreas	CR 54:2761
12.0-13	GABRB1	13	0	0	Prostate	G 11:530
Unknown	D4S124	13	1	0.08	Sarcoma	CR 52:2419
Unknown	D4S125	17	3	0.18	Testis	0 9:2245
pter-16.3	D4S125	9	. 0	0	Testis	LI 73:606
Unknown	D4S129	10	1	0.1	Testis	GCC 13:249
pter-16.3	D4S125	2	0	0	Uterus	GCC 9:119

48 of 249
Chromosome 4 - p Arm

11.0-15	D4S174.	21	1	0.05	Uterus	CR 54:4294
16	D4S43	25	1	0.04	Uterus	CR 54:4294
12.0-13	GABRB1	25 25	0	0	Uterus	CR 54:4294
16.1	RAF1P1	7	0	0	Uterus	CR 51:5632
SUM		729	93	0.13		

49 of 249 Chromosome 4 - q Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
p11-q21	MT2P1	4	0	0	Uterus	CR 51:5632
33-35	D4S171	29	15	0.52	Bladder	CR 55:5213
25-34	D4S243	29	15	0.52	Bladder	CR 55:5213
Unknown	Unknown	20	2	0.1	Brain	CR 50:5784
Unknown	D4S125	34	2	0.06	Breast	CR 50:7184
25-34	D4S192	54	13	0.24	Breast	BCRT 32:5
28	FGA	19	4	0.21	Breast	GCC 2:191
28	FGA	18	0	0	Breast	CR 53:4356
p11-q21	MT2P1	17	0	0	Breast	JNCI 84:506
21-23	ADH3	22	12	0.55	Cervix	CR 54:4481
21-25	ADH5	24	11	0.46	Cervix	CR 54:4481
Unknown	D4S163	41	12	0.29	Cervix	CR 54:4481
Unknown	D4S402	28	8	0.29	Cervix	CR 56:197
Unknown	D4S415	26	8	0.31	Cervix	CR 56:197
q11-q13	ALB	11	0	0	Colon	CCG 48:167
Unknown	D4S415	19	1	0.05	Endocrine	CR 56:599
Unknown	D4S163	21	2	0.1	Esophageal	CR 54:2996
Unknown	D4S163	3 5	9	0.26	Esophageal	GCC 10:177
Unknown	D4S402	16	3	0.19	Head&Neck	CR 54:4756
Unknown	D4S402	20	1	0.05	Head&Neck	CR 54:4756
Unknown	D4S430	24	9	0.38	Head&Neck	CR 54:1152
Unknown	D4S163	23	2	0.09	Kidney	CR 51:820
Unknown	D4S426-D4S415	20	1	0.05	Kidney	PNAS 92:2854
Unknown	D4S426-D4S415	5	0	0	Kidney	PNAS 92:2854
Unknown	D4S:408-429	23	4	0.17	Leukemia	CR 55:5377
Unknown	Unknown	8	0	0	Liver	BJC 64:1083
21-23	ADH3	4	0	0	Liver	JJCR 81:108
21-23	ADH3	6	1	0.17	Liver	CR 51:4367
q11-q13	ALB	. 5	5	1	Liver	PNAS 86:8852
Unknown	D4S16	5	2	0.4	Liver	JJCR 81:108
Unknown	D4S163	20	3	0.15	Liver	CR 51:89
p11-q21	MT2P1	16	8	0.5	Liver	JJCR 81:108
p11-q21	MT2P1	21	9	0.43	Liver	JJCR 84:893
p11-q21	MT2P1	19	4	0.21	Liver	CR 54:281
Unknown	D4S163	31	8	0.26	Lung	CR 52:2478
21-23	ADH3	18	ì	0.06	Ovary	UC 54:546
11.0-15	D4S1540	20	3	0.15	Ovary	BJC 69:429
11.0-15	D4S1607	20	3	0.15	Ovary	BJC 69:429
Unknown	D4S163	16	1	0.06	Ovary	CR 51:5118
33-3 5	D4S171	12	4	0.33	Ovary	BJC 69:429
25-34	D4S175	20	7	0.35	Ovary	BJC 69:429

50 of 249 Chromosome 4 - q Arm

Unknown	D4S27	29	10	0.34	Ovary	CR 53:2393
p11-q21	MT2P1	21	2	0.1	Ovary	IJC 54:546
35	Unknown	6	1	0.17	Pancreas	CR 54:2761
28	FGA	9	0	0	Prostate	G 11:530
Unknown	D4S163	17	3	0.18	Sarcoma	CR 52:2419
21-23	ADH3	24	0	0	Testis	0 9:2245
33-35	D4S171	23	0	0	Uterus	CR 54:4294
p11-q21	MT2P1	4	0	0	Uterus	CR 51:5632
CIIM	M. Z. 1	952	209	0.22		

51 of 249 Chromosome 5 - p Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D5S392	34	8	0.24	Cervix	JNCI 87:742
Unknown	D5S392	19	.0	0	Endocrine	CR 56:599
Unknown	D5S392	26	5	0.19	Head&Neck	CR 54:1152
Unknown	D5S392	19	0	0	Kidney	PNAS 92:2854
Unknown	D5S392	5	0	0	Kidney	PNAS 92:2854
Unknown	D5S13	21	1	0.05	Breast	CR 53:4356
Unknown	D5S13	17	4	0.24	Breast	GCC 2:191
pter-p15	D5S4	10	1	0.1	Breast	GCC 2:191
pter-p15	D5S4	17	2	0.12	Colon	UC 53:382
pter-p15	D5S4	11	0	0	Colon	CCG 48:167
pter-p15	D5S4	29	1	0.03	Colon	CR 50:7166
pter-p15	D5S4	19	4	0.21	Ovary	CR 53:2393
pter-p15	D5S4	3	0	0	Testis	CCG 52:72
pter-p15	D5S4	1	0	. 0	Testis	CCG 52:72
pter-p15	DSS4	1	0	0	Testis	CCG 52:72
15.1-15.2	D5S406	25	12	0.48	Cervix	JNCI 87:742
15.2-15.1	D5S12	12	1	0.08	Brain	CR 50:5784
15.2-15.1	D5S12	13	5	0.38	Cervix	CR 54:4481
15.2-15 .1	D5S12	9	0	0	Ovary	0 5:219
15.2-15.1	D5S12	17	0	0	Prostate	G 11:530
15.2-15.1	D5S12	26	11	0.42	Testis	0 9:2245
15.1-15.3	D5S208	20	10	0.5	Cervix	JNCI 87:742
15-21	D5S630	5	2	0.4	Lung	0 12:97
15-21	D5S630	13	3	0.23	Lung	0 12:97
14	D5S432	29	8	0.28	Cervix	JNCI 87:742
15.1-15.3	D5S117	25	8	0.32	Cervix	JNCI 87:742
15.1-15.3	D5S117	13	2	0.15	Ovary	BJC 69:429
15.1-15.3	D5S117	22	1	0.05	Uterus	CR 54:4294
Unknown	D5S268	14	3	0.21	Ovary	BJC 69:429
Unknown	D5S419	26	3	0.12	Cervix	CR 56:197
Unknown	D5S419	28	0	0	Head&Neck	CR 54:4756
Unknown	D5S419	16	3	0.19	Head&Neck	CR 54:4756
14	D5S19	23	13	0.57	Cervix	CR 54:4481
Unknown	D5S395	28	6	0.21	Cervix	CR 56:197
13	D5S20	21	1	0.05	Ovary	UC 54:546
11.0-13	D5S21	9	5	0.56	Cervix	CR 54:4481
11.0-13	D5S21	9	5	0.56	Cervix	CR 54:4481
Unknown	Unknown	4	0	0	Brain	CR 49:6572
Unknown	D5S1	5	1	0.2	Breast	GCC 2:191
Unknown	Unknown	5	0	0	Colon	BJC 67:1007
Unknown	D5S1	3	0	0	Colon	CCG 48:167

52 of 249 Chromosome 5 - p Arm

Unknown	D5S1	28	7	0.25	Esophageal	CR 54:2996
Unknown	Unknown	4	0	. 0	Liver	BJC 67:1007
Unknown	Unknown	8	3	0.38	Liver	BJC 64:1083
Unknown	Unknown	3	0	0	Pancreas	CR 54:2761
Unknown	Unknown	7	0	0	Pancreas	BJC 65:809
Unknown	Unknown	29	1	0.03	Testis	GCC 13:249
SUM		722	135	0.19		

53 of 249 Chromosome 5 - q Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
15-21	D5S491	1	. 0	0	Lung	0 12:97
15-21	D5S491	8	3	0.38	Lung	0 12:97
Unknown	D5S427	22	4	0.18	Cervix	CR 56:197
11.2-13.3	D5S6	30	1	0.03	Breast	GE 5:554
11.2-13.3	D5S6	4	2	0.5	Colon	0 9:991
11.2-13.3	D5S6	32	9	0.28	Colon	CR 50:7166
11.2-13.3	D5S6	17	1	0.06	Pediatric	CR 50:3279
15-21	D5S637	5	1	0.2	Lung	0 12:97
15-21	D5S637	9	6	0.67	Lung	0 12:97
15-21	D5S 62 6	4	1	0.25	Lung	0 12:97
15-21	D5S626	17	9	0.53	Lung	0 12:97
Unknown	D5S10 7	19	2	0.11	Leukemio	B 83:3449
Unknown	D5S107	3 3	2	0.06	Stomach	CR 56:612
Unknown	D5S107	30	1	0.03	Uterus	CR 54:4294
Unknown	D5S428	20	7	0.35	Stomach	CR 56:612
Unknown	D5S37	2	0	0	Colon	0 9:991
Unknown	D5S37	11	6	0.55	Colon	CR 50:7166
Unknown	D5S37	28	7	0.25	Esophageal	CR 54:2996
Unknown	D5S37	3	0	0	Liver	CCG 48:72
Unknown	D5S37	12	5	0.42	Sarcoma	CR 52:2419
Unknown	D5S37	18	4	0.22	Testis	GCC 13:249
15-21	D5S644	9	3	0.33	Lung	0 12:97
15-21	D5S644	22	12	0.55	Lung	0 12:97
14-21	D5S71	10	1	0.1	Colon	S 241:961
14-21	D5S71	6	3	0.5	Colon	CR 50:7166
14-21	D5S71	8	3	0.38	Colon	GCC 3:468
14-21	D5S71	4	0	0	Colon	CCG 48:167
14-21	D5S71	21	1	0.05	Ovary	IJC 54:546
14-21	D5S71	.]	1	1	Pancreas	GCC 3:468
14-21	D5S71	6	0	0	Stomach	GCC 3:468
14-21	D5S71	6	2	0.33	Testis	GCC 13:249
14-21	D5S71	1	0	0	Uterus	CR 51:5632
Unknown	D5S409	17	1	0.06	Endocrine	CR 56:599
Unknown	D5S409	17	6	0.35	Stomach	CR 56:612
Unknown	D5S409	9	6	0.67	Stomach	CR 55:1933
14-21	D5S82	15	4	0.27	Colon	JJCR 82:1003
Unknown	D5S82	16	1	0.06	Stomach	CR 54:41
21	D5S421	25	5	0.2	Bladder	CR 55:5213
21	D5S421	20	5	0.25	Head&Neck	CR 54:1152
21	D5S421	5	0	0	Kidney	GCC 12:76
21-22	D5S81	13	3	0.23	Cervix	BJC 67:71
	JUBSTIT	UTE SHF	ET (RULE 26)			
		~ VIII	(orr ru)		•	

54 of 249 Chromosome 5 - q Arm

Halimoum	D5S81	31	19	0.61	Colon	CR 50:7166
Unknown	D5S81	5	4	0.8	Colon	BJC 67:1007
21-22	D5S81	18	4	0.22	Colon	JJCR 82:1003
21 <i>-</i> 22	D5S81	28	5	0.18	Kidney	CR 51:5817
Unknown	D5S81	13	3	0.23	Kidney	CR 51:820
21-22	D5S81	6	1	0.17	Liver	BJC 64:1083
21-22 21-22	D5S81	4	0	0	Liver	BJC 67:1007
21-22 21-22	D5S81	5	1	0.2	Poncreas	BJC 65:809
21-22 21-22	D5S81	12	5	0.42	Stomach	HG 92:244
21-22 Unknown	D5S81	9	2	0.22	Testis	GCC 13:249
Unknown	15.71	13	5	0.38	Colon	JJCR 82:1003
Unknown	MCC	13	5	0.38	Colon	JJCR 82:1003
21	WCC	4	. 1	0.25	Colon	0 9:991
21	WCC	31	9	0.29	Colon	CR 52:741
21	WCC	34	12	0.35	Colon	EJC 30A:664
21	WCC	35	22	0.63	Esophageal	CR 52:6525
Unknown	L5.71	2	2	, 1	Lung	CR 52:2478
Unknown	L5.71	16	4	0.25	Lung	CR 52:2478
Unknown	L5.71	1	1	1	Lung	CR 52:2478
Unknown	L5.71	4	0	0	Lung	CR 52:2478
Unknown	WCC	2	. 2	1	Lung	CR 52:2478
21	WCC	41	· 9	0.22	Lung	CR 55:220
Unknown	MCC	1	1	1	Lung	CR 52:2478
Unknown	WCC	16	4	0.25	Lung	CR 52:2478
Unknown	MCC	4	0	0	Lung	CR 52:2478
21	MCC	7	7	1	Stomach	JJCR 84:1015
21	MCC	36	4	0.11	Stomach	CL 96:169
21	MCC	8	0	0	Stomach	CR 54:41
21	MCC-APC	25	7	0.28	Breast	BJC 68:64
21	MCC-APC	6	0	0	Cervix	GCC 9:119
21	MCC-APC	45	16	0.36	Colon	GAST 104:1633
21	MCC-APC	56	37	0.66	Colon	0 8:1391
21	MCC-APC	26	20	0.77	Esophageal	PNAS 89:3385
21	MCC-APC	6	4	0.67	Lung	CR 55:513
21	MCC-APC	5	2	0.4	Lung	CR 52:1996
21	MCC-APC	7	0	0	Uterus	GCC 9:119
21	APC	21	7	0.33	Colon	CR 52:741
Unknown	APC	37	3	0.08	Colon	EJC 30A:664
Unknown	APC	33	6	0.18	Colon	EJC 30A:664
21	APC	21	5	0.24	Esophageal	GCC 10:177
21	APC	36	24	0.67	Esophageal	CR 52:6525
21	APC	19	1	0.05	Liver	CR 54:281
	SUB	SITUTE	SHEET (RAL	E 26)		

BNSDOCID: <WO___9841648A2_IA>

WO 98/41648

55 of 249 Chromosome 5 - q Arm

21	APC	20	14	0.7	Lung	0 12:97
21	APC	53	17	0.32	Lung	CR 55:220
21	APC	7	5	0.71	Lung	CR 54:1772
21	APC	8	3	0.38	Lung	0 12:97
Unknown	APC	18	9	0.5	Ovary	GO 55:245
Unknown	APC	15	3	0.2	Prostate	JU 151:1073
21	APC	7	3	0.43	Prostate	BJU 73:390
Unknown	APC	13	4	0.31	Stomach	Li 74:835
Unknown	APC	3 5	3	0.09	Stomach	CL 96:169
21	APC	12	0	0	Stomach	CR 54:41
21	APC	14	12	0.86	Stomach	JJCR 84:1015
21-22	D5S346	18	0	0	Endocrine	GCC 13:9
21-22	D5S346	46	1	0.02	Kidney	BJC 69:230
21-22	D5S346	15	6	0.4	Ovary	BJC 69:429
21-22	D5S346	18	2	0.11	Stomach	CR 56:612
21-22	D5S346	22	1	0.05	Uterus	CR 54:4294
Unknown	Unknown	19	3	0.16	Colon	JJCR 82:1003
Unknown	Unknown	10	2	0.2	Kidney	CR 51:5817
21-22	D5S84	11	2	0.18	Breast	CR 50:7184
21-22	D5S84	21	1	0.05	Breast	CR 53:4356
21-22	D5S84	3	1	0.33	Cervix	GCC 9:119
21-22	D5S84	8	0	0	Cervix	BJC 67:71
21-22	D5S84	5	2	0.4	Kidney	CR 51:5817
21-22	D5S84	5	2	0.4	Kidney	CR 51:820
21-22	D5S84	9	4	0.44	Liver	CR 51:89
. 21-22	D5S84	15	0	0	Ovary	CR 51:5118
21-22	D5S84	13	1	0.08	Uterus	GCC 9:119
21-22	D5S86	6	2	0.33	Colon	GCC 3:468
21-22	D5S86	4	1	0.25	Pancreas	GCC 3:468
21-22	D5S86	8	3	0.38	Stomach	GCC 3:468
31-33	D5S804	19	6	0.32	Ovary	GO 55:245
21-22	FBN2	15	6	0.4	Ovary	BJC 69:429
21-22	FBN2	15	4	0.27	Stomach	CR 56:612
33-3 5	D5 S70	24	9	0.38	Cervix	CR 54:4481
33-3 5	D5S70	3	0	0	Colon	GCC 3:468
33-3 5	D5S70	3	0	0	Pancreas	GCC 3:468
33-35	05S70	13	5	0.38	Stomach	GCC 3:468
33-35	D5S70	13	3	0.23	Testis	0 9:2245
21-22	D5S178	15	6	0.4	Ovary	BJC 69:429
21-22	D5S178	19	2	0.11	Stomach	CR 56:612
31-32	GRL	8	0	0	Ov ary	CR 50:2724
21-22	D5S210	15	6	0.4	Ovary	BJC 69:429

56 of 249 Chromosome 5 - q Arm

21-22	D5S210	19	5	0.26	Stomach	CR 56:612
21-22	D5S209	15	6	0.4	Ovary	BJC 69:429
21-22	D5S207	23	2	0.09	Stomach	CR 56:612
21-22 34-qter	D5S22	18	0	0	Prostate	G 11:530
34-qter 34-qter	D5S2	3	1	0.33	Cervix	CR 49:3598
34-qter	D5S2	2	0	0	Colon	N 331:273
34-qter	D5S2	8	0	0	Liver	JJCR 81:108
34-qter	D5S2	11	1	0.09	Lung	PN 84:9252
Unknown	D5S2	11	1	0.09	Lung	PNAS 84:9252
Unknown	D5S2	5	1	0.2	Stomach	CR 52:3099
34-qter	D5S2	2	0	. 0	Stomach	CR 48:2988
34-qter	D5S2	1	0	0	Uterus	CR 51:5632
54-yrer Unknown	D5S400	32	5	0.16	Cervix	CR 56:197
Unknown	D5S429	3	0	0	Kidney	PNAS 92:2854
Unknown	D5S429	19	1	0.05	, Kidney	PNAS 92:2854
35-qter	D5S43	17	1	0.06	Colon	CR 50:7166
35-qter	D5S43	5	2	0.4	Colon	BJC 67:1007
35-qter	D5S43	31	9	0.29	Colon	BJC 59:750
35-qter	D5S43	10	0	0	Endocrine	N 328:524
35-qter	D5S43	10	3	0.3	Liver	BJC 67:1007
35-qter	D5S43	10	5	0.5	Liver	BJC 64:1083
35-qter	D5S43	7	0	0	Pancreas	CR 54:2761
35-qter	D5S43	11	0	0	Pancreas	BJC 65:809
35-qter	D5S43	10	1	0.1	Stomach	BJC 59:750
35-qter	D5S43	34	8	0.24	Stomach	CR 51:2926
35-qter	D5S43	25	5	0.2	Testis	GCC 13:249
35-qter	D5S43	2 5	5	0.2	Testis	GCC 13:249
Unknown	Unknown	12	2	0.17	Brain	CR 50:5784
15-21	Unknown	6	. 0	0	Cervix	BJC 67:71
21	Unknown	2	0	0	Cervix	BJC 67:71
Unknown	Unknown	2	1	0.5	Cervix	BJC 67:71
Unknown	Unknown	11	2	0.18	Cervix	BJC 67:71
Unknown	Unknown	23	8	0.35	Colon	JJCR 82:1003
Unknown	Unknown	2	}	0.5	Colon	JJCR 82:1003
Unknown	Unknown	19	7	0.37	Colon	JJCR 82:1003
Unknown	Unknown	1	1	1	Colon	JJCR 82:1003
Unknown	Unknown	17	1	0.06	Colon	JJCR 82:1003
Unknown	Unknown	10	5	0.5	Colon	JJCR 82:1003
Unknown	Unknown	17	6	0.35	Colon	JJCR 82:1003
Unknown	Unknown	3	0	0	Colon	JJCR 82:1003
15-21	Unknown	1	1	1	Colon	BJC 67:1007
. 21	Unknown	4	3	0.75	Colon	BJC 67:1007

WO 98/41648

57 of 249 Chromosome 5 - q Arm

21	Cllpll	3	1	0.33	Colon	N 331:273
Unknown	CRI-L1265	16	1	0.06	Colon	S 241:961
Unknown	CRI-L45	21	2	0.1	Colon	S 241:961
33	CSFIR	11	4	0.36	Colon	CR 50:7166
21	D5S141	3	2	0.67	Colon	BJC 67:1007
Unknown	FMS	9	2	0.22	Colon	N 331:273
21-22	LS5.34	5	3	0.6	Colon	CR 50:7166
21	D5S141	35	13	0.37	Esophageal	GCC 10:177
Unknown	D5S410	31	1	0.03	Head&Neck	CR 54:4756
Unknown	D5S410	3 5	4	0.11	Head&Neck	CR 54:4756
21	D5S133	6	1	0.17	Kidney	CR 51:5817
21	D5S140	16	3	0.19	Kidney	CR 51:5817
21	D5S141	26	8	0.31	Kidney	CR 51:5817
Unknown	D5S89	15	5	0.33	Leukemio Leukemio	B 83:199
Unknown -	Unknown	10	1	0.1	Liver	CR 51:89
21	Unknown	6	0 .	0	Liver	BJC 67:1007
15-21	Unknown	5	0	0	Liver	BJC 67:1007
21	D5S141	7	0	0	Liver	BJC 67:1007
21-21-34-qter	D5S43-D5S81	45	14	0.31	Liver	JJCR 84:893
21	ECB27	8	1	0.12	Liver	BJC 64:1083
Unknown	FMS	2	0	0	Lung	PN 84:9252
13-12	del-27	15	11	0.73	Lung	0 12:97
13-12	del-27	8	3	0.38	Lung	0 12:97
13-12	del-27	7	4	0.57	Lung	CR 54:1772
21	D5S122	11	5	0.45	Ovary	60 55:245
Unknown	D5S6-D5S107- APC	37	16	0.43	Ovary	CR 53:2393
21-22	IRF-1	15	6	0.4	Ovary	BJC 69:429
15-21	Unknown	5	0	0	Poncreas	BJC 65:809
15-21	D5S98	13	3	0.23	Stomach	HG 92:244
21-22	IRF-1	22	6	0.27	Stomach	CR 56:612
15-21	D5S98	7	1	0.14	Testis	GCC 13:249
Unknown	FMS	21	1	0.05	Uterus	CR 54:4294
SUM		2866	763	0.27		

58 of 249 Chromosome 6 - p Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D6S477	3 3	15	0.45	Colon	CR 56:145
24-25	F13A1	18	5	0.28	Ovary	60 55:24 5
24-25	F13A1	18	4	0.22	Ovary	BJC 69:429
Unknown	D6S309	18	1	0.06	Kidney	PNAS 92:2854
Unknown	D6S309	4	1	0.25	Kidney	PNAS 92:2854
pter-p25	D6F21S1	12	4	0.33	Ovary	BJC 67:551
Unknown	D6S89	14	1	0.07	Ovary	BJC 67:551
Unknown	D6S289	36	13	0.36	Colon	CR 56:145
Unknown	D6S260	32	14	0.44	Cervix	CR 56:197
21.3-24	D6S109	17	3	0.18	Ovary	BJC 69:429
21.3-24	D6S109	16	2	0.12	Uterus	CR 54:4294
Unknown	D6S276	20	10	0.5	Cervix	CR 56:197
Unknown	D6S299	21	1	0.05	Head&Neck	CR 54:4756
Unknown	D6S299	20	0	0	Head&Neck	CR 54:4756
Unknown	D6S299	26	` 2	0.08	Melanoma	CR 56:589
Unknown	D6S105	27	2	0.07	Esophageal	IJC 69:1
Unknown	D6S105	19	4	0.21	Head&Neck	CR 54:1152
Unknown	D6S105	26	2	0.08	Uterus	CR 54:4294
Unknown	D6S258	33	15	0.45	Colon	CR 56:145
Unknown	D6S10	3 5	4	0.11	Breast	GCC 2:191
Unknown	D6S10	32	9	0.28	Cervix	CR 54:4481
Unknown	D6S10	2	0	0	Pancreas	CR 54:2761
Unknown	D6S10	13	0	0	Prostate	6 11:530
Unknown	D6S10	3 2	4	0.12	Testis	0 9:2245
21.3	HLA-DRB	21	3	0.14	Ovary	BJC 67:551
21.3	HLA-DQA	18	4	0.22	Ovary	BJC 67:551
21.3	HLA-DQA	3	0	0	Testis	CCG 52:72
21.3	HLA-DQA	1	0	0	Testis	CCG 52:72
21.3	HLA-DQA	4	0	0	Tes tis	CCG 52:72
Unknown	TNFa	3 3	14	0.42	Colon	CR 56:145
Unknown	D6S291	12	1	0.08	Brain	CR 55:4696
Unknown	D6S291	12	1	0.08	Brain	CR 55:4696
Unknown	D6S29	17	0	0	Colon	CCG 48:167
Unknown	D6S29	2 2	3	0.14	Kidney	CR 51:5817
Unknown	D6S29	13	1	0.08	Liver	CR 51:89
Unknown	D6S29	12	6	0.5	Ovary	CR 51:5118
Unknown	D6S29	19	4	0.21	Ovary	IJC 54:546
Unknown	D6S29	9	0	0	Ovary	CR 50:2724
Unknown	D6S29	16	3	0.19	Stomach	GCC 14:28
Unknown	06S271	44	17	0.39	Colon	CR 56:145
Unknown	D6S282	32	6	0.19	Cervix	CR 56:197

WO 98/41648

59 of 249 Chromosome 6 - p Arm

Unknown	D6S282	22	0	0	Endocrine	CR 56:599
12.0-11	KRAS P1	8	1	0.12	Ovary	BJC 67:551
12.0-11	KRAS P1	2	0	0	Uterus	CR 51:5632
11.2	D6S294	37	· 11	0.3	Ovary	GCC 15:223
Unknown	D6S257	42	13	0.31	Colon	CR 56:145
Unknown	D6S257	42	13	0.31	Colon	CR 56:145
Unknown	Unknown	14	1	0.07	Brain	CR 50:5783
Unknown	D6S40	24	2	0.08	Brain	CR 49:6572
Unknown	D6S40	28	5	0.18	Breast	CR 50:7184
Unknown	D6S40	3	1	0.33	Cervix	GCC 9:119
Unknown	D6S344	22	0	0	Endocrine	CR 56:599
Unknown	D6S139	49	12	0.24	Esophageal	GCC 10:177
Unknow n	D6S40	23	7	0.3	Esophageal	CR 54:2996
Unknown	D6S40	14	1	0.07	Esophageal	CR 51:2113
Unknown	D6S265	19	8	0.42	Head&Neck	CR 54:1152
Unknown	TCTE	14	2	0.14	Head&Neck	CR 54:1152
21.3	D6S138	34	6	0.18	Kidney	CR 51:5817
21.2	D6S160	23	5	0.22	Kidney	CR 51:5817
Unknown	D6S4-C2-D6S1	19	5	0.26	Kidney	CR 49:5087
Unknown	D6S40	14	3	0.21	Kidney	CR 51:820
Unknown	Unknown	20	15	0.75	Lung	CR 54:2322
Unknown	D6S4-C2-D6S1	1	1	1	Lung	CR 49:5087
Unknown	D6S40	22	4	0.18	Lung	CR 52:2478
24-27	Unknown	7	2	0.29	Ovary	0 5:219
Unknown	D6S114E	3	0	0	Ovary	BJC 67:551
Unknown	D6S40	7	4	0.57	Ovary	0 5:219
Unknown	F13A1- D6S249	17	4	0.24	Ovary	BJC 72:1330
12-21.3	FTHP1	14	5	0.36	Ovary	BJC 69:429
12-21.2	FTHP1	10	2	0.2	Ovary	BJC 67:551
Unknown	PIM-HLA-D6S91-D6S41	34	21	0.62	Ovary	CR 53:2393
Unknown	D6S4-C2-D6S1	2	1	0.5	Sarcoma	CR 49:5087
Unknown	D6S40	13	7	0.54	Sarcoma	CR 52:2419
21.3	HLA-DXA	2	0	0	Testis	CCG 52:72
21.3	HLA-DXA	2	0	0	Testis	CCG 52:72
21.3	HLA-DXA	1	0	0	Testis	CCG 52:72
Unknown	D6S40	5	0	0	Uterus	GCC 9:119
SUM		1383	328	0.24		
				· · - · ·		

PCT/US98/05419

60 of 249 Chromosome 6 - q Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D6Z1	8	2	0.25	Ovary	BJC 67:551
Unknown	D6Z1	22	0	0	Stornach	GCC 14:28
13	D6S313	30	3	0.1	Breast	BJC 71:290
13	D6S254	5	0	0	Breast	BJC 73:144
13	D6S280	20	8	0.4	Breast	BJC 71:290
14-15	D6S284	26	5	0.19	Breast	BJC 71:290
14-15	D9S284	5	1	0.2	Breast	BJC 73:144
16.3-21	D6S286	27	8	0.3	Breast	BJC 71:290
14-15	D6S286	11	4	0.36	Breast	BJC 73:144
16.3-21	D6S286	17	1	0.06	Endocrine	CR 56:599
14-15	D6S286	17	8	0.47	Ovary	GCC 15:223
Unknown	EDDR1	14	4	0.29	Ovary	GCC 15:223
22.3-23.1	D6S270	5	1	0.2	Breast	BJC 73:144
22.3-23.1	D6S270	22	7	0.32	Ovary	GCC 15:223
Unknown	D6S310	23	7	0.3	Endocrine	CR 56:599
Unknown	D6S310	33	10	0.3	Ovary	GCC 15:223
Unknown	D6S311	27	5	0.19	Cervix	CR 56:197
Unknown	D6S311	6	4	0.67	Endocrine	CR 56:599
Unknown	D6S311	32	10	0.31	Ovary	GCC 15:223
Unknown	D6S194	4	0	0	Ovary	CR 52:5815
Unknown	D6S194	16	5	0.31	Ovary	GCC 15:223
Unknown	D6S194	16	4	0.25	Ovary	CR 52:5815
Unknown	D6S142	30	8	0.27	Kidney	CR 51:5817
Unknown	D6S142	6	0	0	Ovary	CR 52:5815
Unknown	D6S142	12	7	0.58	Ovary	CR 52:5815
Unknown	D6S142	6	0	0	Ovary	CR 52:5815
Unknown	D6S161	27	6	0.22	Kidney	CR 51:5817
Unknown	D6S161	11	0	0	Ovary	CR 52:5815
Unknown	D6S161	17	7	0.41	Ovary	CR 52:5815
Unknown	D6S161	5	1	0.2	Ovary	CR 52:5815
Unknown	D6S251	67	16	0.24	Breast	BJC 73:144
Unknown	D6S251	36	13	0.36	Colon	CR 56:145
Unknown	D6S251	5	0	0	Ovary	CR 55:2169
Unknown	D6S251	28	0	0	Ovary	CR 55:2169
13	D6S239	27	9	0.33	Breast	BJC 71:290
13	D6S239	10	3	0.3	Ovary	CR 55:2169
13	D6S239	27	1	0.04	Ovary	CR 55:2169
14-16.2	D6S252	48	11	0.23	Breast	BJC 73:144
14-16.2	D6S252	27	2	0.07	Stomach	GCC 14:28
14	D6S300	32	11	0.34	Breast	BJC 71:290
14	D6S300	17	3	0.18	Endocrine	CR 56:599

61 of 249 Chromosome 6 - q Arm

1/2	D/C24/	07	0	0.00		015 77 000
16.3	D6S246	27	9	0.33	Breast	BJC 71:290
Unknown	D6S246	16	1	0.06	Ovary	CR 55:2169
Unknown	D6S246	9	2	0.22	Ovary	CR 55:2169
16.3-21	D6S249	28	9	0.32	Breast	BJC 73:144
16.3-21	D6S283	30	5	0.17	Breast	BJC 71:290
16.3-21	D6S283	10	2	0.2	Stomach	GCC 14:28
Unknown	D6S268	4	1	0.25	Kidney	GCC 12:76
Unknown	D6S268	9	, 1	0.11	Stomach	GCC 14:28
16.3-21	D6S302	30	13	0.43	Breast	BJC 73:144
21-23.3	D6S261	34	7	0.21	Breast	BJC 71:290
21-23	D6S261	25	5	0.2	Breast	BJC 73:144
21-23	D6S287	33	4	0.12	Breast	BJC 73:144
21-23	D6S287	22	4	0.18	Endocrine	CR 56:599
Unknown	D6S267	18	5	0.28	Ovary	GCC 15:223
22.3-23.1	ARG	12	2	0.17	Breast	BJC 73:144
22.3-23.1	ARG	15	0	0	Stomach	GCC 14:28
22.3-23.1	D6S262	28	10	0.36	Breast	BJC 73:144
Unknown	D6S262	35	. 12	0.34	Colon	CR 56:145
Unknown	D6S262	17	1	0.06	Head&Neck	CR 54:4756
Unknown	D6S262	21	3	0.14	Head&Neck	CR 54:4756
Unknown	D6S32	18	9	0.5	Stomach	GCC 14:28
23.1	D6S87	17	6	0.35	Ovary	BJC 69:429
23.1	D6S87	18	3	0.17	Ovary	CR 55:2169
23.1	D6S87	7	2	0.29	Ovary	CR 55:2169
23.1	D6S87	20	1	0.05	Uterus	CR 54:4294
22-23	MYB	10	0	0	Cervix	CR 49:3598
22-23	MYB	11	2	0.18	Colon	N 331:273
22-23	MYB	20	2	0.1	Colon	IJC 53:382
22-2 3	MYB	13	0	0	Liver	JJCR 81:108
22-23	MYB	18	3	0.17	Lung	PN 84:9252
22-2 3	MYB	7	3	0.43	Melanomo	CR 51:5449
22-2 3	MYB	5	0	0	Neuroblastoma	CR 49:1095
22-23	MYB	9	6	0.67	Ovary	BJC 67:551
22-23	MYB	4	1	0.25	Ovary	GO 55:245
22-23	MYB	8	1	0.12	Ovary	CR 50:2724
22-2 3	MYB	7	0	0	Prostate	G 11:530
22-23	MYB	20	6	0.3	Sarcoma	CR 52:2419
22-23	MYB	12	1	0.08	Stomach	GCC 14:28
22-23	MYB	13	0	0	Stomach	CR 48:2988
22-23	MYB	12	2	0.17	Stomach	CR 52:3099
22-23	MYB	7	1	0.14	Uterus	CR 51:5632
Unknown	D6S250	24	1	0.04	Ovary	CR 55:2169
	•		•		,	55.2107

62 of 249 Chromosome 6 - q Arm

Unknown	D6S250	10	3	0.3	Ovary	CR 55:2169
Unknown	D6S136	16	2	0.12	Kidney	CR 51:5817
Unknown	D6S136	3	0	0	Ovary	CR 52:5815
Unknown	D6S136	9	0	0	Ovary	CR 52:5815
Unknown	D6S441	11	1	0.09	Endocrine	CR 56:599
Unknown	D6S441	30	13	0.43	Ovary	GCC 15:223
24-27	ESR	16	0	0	Cervix	CGC 79:74
2 4- 27 24-27	ESR	8	3	0.38	Colon	GCC 3:468
24-27 24-27	ESR	8	4	0.5	Melanomo	CR 51:5449
24-27 24-27	ESR	23	6	0.26	Ovary	CR 55:2169
24-27 24-27	ESR	6	1	0.17	Ovary	CR 55:2169
24-27 24-27	ESR	13	2	0.15	Ovary	GO 47:137
24-27 24-27	ESR	14	9	0.64	Ovary	CR 50:2724
24-27 24-27	ESR	22	1	0.05	Ovary	IJC 54:546
24-27 24-27	ESR	15	10	0.67	Ovary	BJC 67:551
24-27 24-27	ESR	18	10	0.56	Ovary	GCC 15:223
24-27 24-27	ESR	10	1	1	Pancreas	GCC 3:468
24-27 24-27	ESR	6	0	0	Stomach	GCC 3:468
24-27	ESR	16	0	0	Stomach	CR 51:2926
24-27	ESR	6	1	0.17	Uterus	CR 51:5632
Unknown	D6S415	22	9	0.41	Ovary	GCC 15:223
25.2	D6S255	9	3	0.33	Breast	BJC 73:144
25.2	D6S255	23	2	0.09	Head&Neck	CR 54:1152
25.2	D6S255	7	3	0.43	Ovary	CR 55:2169
25.2	D6S255	11	2	0.18	Ovary	CR 55:2169
Unknown	D6S305	29	4	0.14	Cervix	CR 56:197
Unknown	D6S305	40	16	0.4	Colon	CR 56:145
Unknown	D6S305	15	2	0.13	Endocrine	CR 56:599
Unknown	D6S305	29	9	0.31	Melanoma	CR 56:589
Unknown	D6S305	3 5	13	0.37	Ovary	GCC 15:223
Unknown	IGF2R	16	11	0.69	Liver	0 10:1725
Unknown	IGF2R	2	0	0	Ovary	CR 55:2169
Unknown	IGF2R	4	1	0.25	Ovary	CR 55:2169
Unknown	IGF2R	18	5	0.28	Ovary	GCC 15:223
Unknown	IGF2R	11	3	0.27	Ovary	CR 55:2169
Unknown	IGF2R	7	0	0	Ovary	CR 55:2169
Unknown	IGF2R	18	2	0.11	Stomach	GCC 14:28
Unknown	IGF2R	10	2	0.2	Uterus	CR 54:4294
26-27	PLG	2	0	0	Liver	PNAS 86:8852
Unknown	D6S195	14	5	0.36	Ovary	CR 52:5815
Unknown	D6S195	2	0	0	Ovary	CR 52:5815
Unknown	DAS195	5	0	0	Ovary	CR 52:5815
OHOLOHII	\$	SUBSTITUT	TE SHEËT (RI	HE 26)	•	

WO 98/41648

63 of 249 Chromosome 6 - q Arm

Unknown D6S191 8 0 0 Ovary CR 26 D6S186 25 5 0.2 Breust BIG 26 D6S186 34 7 0.21 Kidney CR 26 D6S186 19 8 0.42 Ovary GC 26 D6S186 6 1 0.17 Ovary GC 26 D6S186 5 0 0 Ovary CR 26 D6S186 5 0 0 Ovary CR 26 D6S186 5 0 0 Ovary CR Unknown SOD2 8 4 0.5 Ovary BIG Unknown D6S264 32 13 0.41 Colon CR Unknown D6S264 12 5 0.42 Endocrine CR Unknown D6S264 15 5 0.33 HeadReck CR HeadReck <	Unknown	D6S191	16	3	0.19	Ovary	CR 52:5815
26 D65186 25 5 0.2 Breast BIT 26 D65186 34 7 0.21 Kidney CR 26 D65186 19 8 0.42 Ovary GC 26 D65186 6 1 0.17 Ovary CR 26 D65186 5 0 0 Ovary CR 26 D65186 5 0 0 Ovary CR 26 D65186 5 0 0 Ovary CR 26 D65186 5 0 0 Ovary CR Unknown S002 3 5 0.22 Stomach GC Unknown D65264 32 13 0.41 Colon CR Unknown D65264 12 5 0.42 Endocrine CR Unknown D65264 3 1 0.33 Kidney GC Unknown <td>Unknown</td> <td>D6S191</td> <td>5</td> <td>0</td> <td>0</td> <td>Ovary</td> <td>CR 52:5815</td>	Unknown	D6S191	5	0	0	Ovary	CR 52:5815
26 D65186 34 7 0.21 Kidney CR 26 D65186 19 8 0.42 Ovary CR 26 D65186 19 8 0.42 Ovary GC 26 D65186 5 0 0 Ovary CR 26 D65186 5 0 0 Ovary CR 26 D65186 5 0 0 Ovary CR 26 D65186 5 0 0 Ovary GR 26 D65186 5 0 0 Ovary GR Unknown S0D2 8 4 0.5 Ovary BDC Unknown D65264 32 13 0.41 Colon CC Unknown D65264 15 5 0.33 Head&Reck CR Unknown D65264 3 1 0.33 Kidney GC Unknown			8	0	0	Ovary	CR 52:5815
26 D65186 19 8 0.42 Ovary GC 26 D65186 19 8 0.42 Ovary GC 26 D65186 6 1 0.17 Ovary CR 26 D65186 5 0 0 Ovary CR Unknown S0D2 11 3 0.27 Melanoma CR Unknown S0D2 8 4 0.5 Ovary BL Unknown S0D2 23 5 0.22 Stomach GC Unknown D65264 32 13 0.41 Colon CR Unknown D65264 12 5 0.42 Endocrine CR Unknown D65264 15 5 0.33 Head&Neck CR Unknown D65264 34 12 0.35 Ovary GC Unknown D65264 34 12 0.35 Ovary GC <td></td> <td>D6S186</td> <td>25</td> <td>5</td> <td>0.2</td> <td>Breast</td> <td>BJC 71:290</td>		D6S186	25	5	0.2	Breast	BJC 71:290
26 D65186 19 8 0.42 Owny GCC 26 D65186 6 1 0.17 Ovary CR 26 D65186 5 0 0 Ovary CR 26 D65186 5 0 0 Ovary CR Unknown SOD2 11 3 0.27 Melanoma CR Unknown SOD2 23 5 0.22 Stormoch GC Unknown D65264 32 13 0.41 Colon CR Unknown D65264 12 5 0.42 Endocrine CR Unknown D65264 3 1 0.33 Kidney GC Unknown D65264 3 1 0.33 Kidney GC Unknown D65264 3 1 0.33 Kidney GC Unknown D65203 34 14 0.41 Out Colon <t< td=""><td>26</td><td>D6S186</td><td>34</td><td>7</td><td>0.21</td><td>Kidney</td><td>CR 51:5817</td></t<>	26	D6S186	34	7	0.21	Kidney	CR 51:5817
26 D65186 6 1 0.17 Ovary CR 26 D65186 5 0 0 Ovary CR Unknown SOD2 11 3 0.27 Melanoma CR Unknown SOD2 8 4 0.5 Ovary BIZ Unknown D65264 32 13 0.41 Colon CR Unknown D65264 12 5 0.42 Endocrine CR Unknown D65264 15 5 0.33 Head&Neck CR Unknown D65264 3 1 0.33 Kidney GCC Unknown D65264 3 1 0.33 Kidney GCC Unknown D65264 3 1 0.33 Kidney GCC Unknown D65264 3 1 0.41 Colon CR 21-qter D652 8 3 0.38 Colon CO	26	D6S186	19	8	0.42	Ovary	CR 52:5815
26 D65186 5 0 0 Ovary CR. Unknown SOD2 11 3 0.27 Melanoma CR. Unknown SOD2 8 4 0.5 Ovary BJC Unknown SOD2 23 5 0.22 Stormach GCC Unknown D65264 32 13 0.41 Colon CR. Unknown D65264 12 5 0.42 Endocrine CR. Unknown D65264 15 5 0.33 Head&Neck CR. Unknown D65264 3 1 0.33 Kidney GCC Unknown D65264 3 1 0.33 Kidney GCC Unknown D65264 3 1 0.41 Colon CR. 21-qter D6520 3 4 14 0.41 Colon CR. 21-qter D652 5 3 0.6 <td< td=""><td>26</td><td>D6S186</td><td>19</td><td>8</td><td>0.42</td><td>Ovary</td><td>GCC 15:223</td></td<>	26	D6S186	19	8	0.42	Ovary	GCC 15:223
Unknown SOD2 111 3 0.27 Melanoma CR. Unknown SOD2 8 4 0.5 Ovary BJC Unknown SOD2 23 5 0.22 Stomach GCC Unknown D65264 32 13 0.41 Colon CR. Unknown D65264 12 5 0.42 Endocrine CR. Unknown D65264 15 5 0.33 Head&Reck CR. Unknown D65264 3 1 0.33 Kidney GCC Unknown D65264 3 1 0.33 Kidney GCC Unknown D65264 3 1 0.33 Kidney GCC Unknown D65264 3 1 1 0.35 Ovary GCC Unknown D65503 34 14 0.41 Colon CR. 21-qter D652 8 3 0.38 Colon GCC 21-qter D652 19 4 0.21 Ovary UC. 21-qter D652 5 3 0.6 Ovary O5. 21-qter D652 1 1 0.05 Ovary UC. 21-qter D652 1 1 1 0.05 Ovary UC. 21-qter D652 1 1 1 0.05 Ovary UC. 21-qter D652 1 1 1 1 Pancreas GCC Unknown D65133 22 14 0.64 Ovary BJC Unknown D65193 56 9 0.16 Esophageal GCC Unknown D65193 38 23 0.61 Ovary GCC Unknown D65193 38 23 0.61 Ovary GCC Unknown D65193 38 23 0.61 Ovary GCC Unknown D65193 38 23 0.61 Ovary BJC Unknown D65297 19 4 0.21 Breast BJC Unknown D65297 27 14 0.52 Ovary GCC Unknown D65193 38 23 0.61 Ovary BJC Unknown TCP10 17 12 0.71 Ovary BJC 27 D6544 18 0 0 Testis U.73 Unknown D65149 19 6 0.32 Ovary GCC Unknown D65149 8 2 0.25 Ovary CR.5 Unknown D6537 23 2 0.09 Breast CR.5 Unknown D6537 23 2 0.09 Breast CR.5 Unknown D6537 20 4 0.2 Cervix CR.5	26	D6S186	6	1	0.17	Ovary	CR 52:5815
Unknown SOD2 8 4 0.5 Ovary BIG Unknown SOD2 23 5 0.22 Stomach GCC Unknown D6S264 32 13 0.41 Colon CR 1 Unknown D6S264 12 5 0.42 Endocrine CR 1 Unknown D6S264 15 5 0.33 Heod&Neck CR 1 Unknown D6S264 3 1 0.33 Kidney GCC Unknown D6S264 3 1 0.33 Kidney GCC Unknown D6S264 3 1 0.33 Colon CR 1 Unknown D6S264 3 1 0.33 Colon CR 1 Unknown D6S264 3 1 0.35 Ovary GCC Unknown D6S503 34 14 0.41 Colon CR 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26	D6S186	5	0	0	Ovary	CR 52:5815
Unknown SOD2 23 5 0.22 Stomach GCC Unknown D6S264 32 13 0.41 Colon CR.9 Unknown D6S264 12 5 0.42 Endocrine CR.9 Unknown D6S264 15 5 0.33 Head&Neck CR.9 Unknown D6S264 34 12 0.35 Ovary GCC Unknown D6S503 34 14 0.41 Colon CR.9 21-qter D6S2 8 3 0.38 Colon GCC 21-qter D6S2 8 3 0.38 Colon GCC 21-qter D6S2 19 4 0.21 Ovary UC.9 21-qter D6S2 5 3 0.6 Ovary US.2 21-qter D6S2 1 1 1 Pancreas GCC 21-qter D6S2 1 1 1 Pancreas	Unknown	SOD2	11	3	0.27	Melanoma	CR 51:5449
Unknown D65264 32 13 0.41 Colon CR. Unknown D65264 12 5 0.42 Endocrine CR. Unknown D65264 15 5 0.33 Head&Neck CR. Unknown D65264 3 1 0.33 Kidney GCC Unknown D65264 34 12 0.35 Ovary GCC Unknown D65264 34 12 0.35 Ovary GCC Unknown D65203 34 14 0.41 Colon CR. 21-qter D652 8 3 0.38 Colon GCC 21-qter D652 19 4 0.21 Ovary 0.52 21-qter D652 5 3 0.6 Ovary 0.52 21-qter D652 1 1 1 Pancreas GCC 21-qter D652 1 1 1 Pancreas	Unknown	SOD2	8	4	0.5	Ovary	BJC 67:551
Unknown D65264 12 5 0.42 Endocrine CR.5 Unknown D65264 15 5 0.33 Head&Neck CR.5 Unknown D65264 34 12 0.35 Ovary GCC Unknown D65264 34 12 0.35 Ovary GCC Unknown D65503 34 14 0.41 Colon CR.5 21-qter D652 8 3 0.38 Colon GCC 21-qter D652 19 4 0.21 Ovary U.5 21-qter D652 5 3 0.6 Ovary U.5 21-qter D652 1 1 1 Pancreas GCC 21-qter D652 1 1 1 Pancreas GCC 21-qter D652 1 1 1 Pancreas GCC 21-qter D652 1 1 1 Pancreas	Unknown	SOD2	23	5	0.22	Stomach	GCC 14:28
Unknown D65264 15 5 0.33 Heod&Neck CR 9 Unknown D65264 3 1 0.33 Kidney GCC Unknown D65264 34 12 0.35 Ovary GCC Unknown D65203 34 14 0.41 Colon GCC 21-qter D652 8 3 0.38 Colon GCC 21-qter D652 19 4 0.21 Ovary IJC 9 21-qter D652 5 3 0.6 Ovary IJC 9 21-qter D652 21 1 0.05 Ovary IJC 9 21-qter D652 1 1 1 Pancreas GCC 21-qter D652 6 0 0 Stomach GCC Unknown D65133 22 14 0.64 Ovary BIC Unknown D65193 38 23 0.61 Ovary	Unknown	D6S264	32	13	0.41	Colon	CR 56:145
Unknown D65264 3 1 0.33 Kidney GCC Unknown D65264 34 12 0.35 Ovary GCC Unknown D65503 34 14 0.41 Colon GCC 21-qter D652 8 3 0.38 Colon GCC 21-qter D652 19 4 0.21 Ovary UC 21-qter D652 5 3 0.6 Ovary UC 21-qter D652 21 1 0.05 Ovary UC 21-qter D652 1 1 1 Pancreas GCC 21-qter D652 6 0 0 Stomach GCC 21-qter D652 6 0 0 Stomach GCC Unknown D65133 22 14 0.64 Ovary BJC Unknown D65193 38 23 0.61 Ovary GCC	Unknown	D6S264	12	5	0.42	Endocrine	CR 56:599
Unknown D65264 34 12 0.35 Ovary GCC Unknown D65503 34 14 0.41 Colon CR 5 21-qter D652 8 3 0.38 Colon GCC 21-qter D652 19 4 0.21 Ovary UIC 21-qter D652 5 3 0.6 Ovary UIC 21-qter D652 5 3 0.6 Ovary UIC 21-qter D652 1 1 1 Pancreas GCC 21-qter D652 6 0 0 Stomach GCC 21-qter D652 6 0 0 Stomach GCC 21-qter D652 6 0 0 Stomach GCC 21-qter D652 6 0 0 Stomach GCC 21-qter D652 6 0 0 Stomach GCC	Unknown	D6S264	15	5	0.33	Head&Neck	CR 54:1152
Unknown D65503 34 14 0.41 Colon CR 5 21-qter D652 8 3 0.38 Colon GCC 21-qter D652 19 4 0.21 Ovary IUC 2 21-qter D652 5 3 0.6 Ovary UIC 2 21-qter D652 21 1 0.05 Ovary IUC 2 21-qter D652 1 1 1 Pancreas GCC 21-qter D652 6 0 0 Stomach GCC 21-qter D652 6 0 0 Stomach GCC 21-qter D652 6 0 0 Stomach GCC 21-qter D652 6 0 0 Stomach GCC 21-qter D652 6 0 0 Stomach GCC Unknown D65133 22 14 0.64 Ovary BC	Unknown	D6S264	3	1	0.33	Kidney	GCC 12:76
21-qter D6S2 8 3 0.38 Colon GCC 21-qter D6S2 19 4 0.21 Ovary IDC 21-qter D6S2 5 3 0.6 Ovary D5 21-qter D6S2 21 1 0.05 Ovary IDC 21-qter D6S2 1 1 1 Pancreas GCC 21-qter D6S2 6 0 0 Stomath GCC 21-qter D6S2 6 0 0 Stomath GCC 21-qter D6S2 6 0 0 Stomath GCC 21-qter D6S2 6 0 0 Stomath GCC 21-qter D6S2 6 0 0 Stomath GCC 21-qter D6S2 6 0 0 Stomath GCC Unknown D6S133 22 14 0.64 Ovary BIC <t< td=""><td>Unknown</td><td>D6S264</td><td>34</td><td>12</td><td>0.35</td><td>Ovary</td><td>GCC 15:223</td></t<>	Unknown	D6S264	34	12	0.35	Ovary	GCC 15:223
21-qter D6S2 19 4 0.21 Ovary IIC 9 21-qter D6S2 5 3 0.6 Ovary 0.52 21-qter D6S2 21 1 0.05 Ovary IIC 9 21-qter D6S2 1 1 1 Pancreas GCC 21-qter D6S2 6 0 0 Stomach GCC 21-qter D6S2 6 0 0 Stomach GCC 21-qter D6S2 6 0 0 Stomach GCC 21-qter D6S2 6 0 0 Stomach GCC Unknown D6S133 22 14 0.64 Ovary BIC Unknown D6S193 38 23 0.61 Ovary GCC Unknown D6S193 38 23 0.61 Ovary GCC Unknown D6S297 27 14 0.52 Ovary GCC </td <td>Unknown</td> <td>D6S503</td> <td>34</td> <td>14</td> <td>0.41</td> <td>Colon</td> <td>CR 56:145</td>	Unknown	D6S503	34	14	0.41	Colon	CR 56:145
21-qter D6S2 5 3 0.6 Ovary 0.5: 21-qter D6S2 21 1 0.05 Ovary IJC 5 21-qter D6S2 1 1 1 Pancreas GCC 21-qter D6S2 6 0 0 Stomach GCC Unknown D6S133 22 14 0.64 Ovary BIC Unknown D6S193 56 9 0.16 Esophageal GCC Unknown D6S193 38 23 0.61 Ovary GCC 27 D6S297 19 4 0.21 Breast BIJC 1 Unknown D6S297 27 14 0.52 Ovary GCC Unknown TCP10 17 12 0.71 Ovary BIJC 2 27 D6S44 56 4 0.07 Breast GCC 27 D6S44 12 4 0.33 Breast <	21-qter	D6S2	8	3	0.38	Colon	GCC 3:468
21-qter D6S2 21 1 0.05 Ovary IIC 5 21-qter D6S2 1 1 1 Pancreas GCC 21-qter D6S2 6 0 0 Stomach GCC Unknown D6S133 22 14 0.64 Ovary BJC Unknown D6S193 56 9 0.16 Esophageal GCC Unknown D6S193 38 23 0.61 Ovary GCC 27 D6S297 19 4 0.21 Breast BJC Unknown D6S297 27 14 0.52 Ovary GCC Unknown TCP10 17 12 0.71 Ovary BJC 27 D6S44 56 4 0.07 Breast CR 5 27 D6S44 12 4 0.33 Breast GCC 27 D6S44 18 0 0 Testis LI 73 </td <td>21-qter</td> <td>D6S2</td> <td>19</td> <td>4</td> <td>0.21</td> <td>Ovary</td> <td>IJC 52:575</td>	21-qter	D6S2	19	4	0.21	Ovary	IJC 52 :575
21-qter D652 1 1 1 Pancreas GCC 21-qter D652 6 0 0 Stomach GCC Unknown D65133 22 14 0.64 Ovary BIC Unknown D65193 56 9 0.16 Esophageal GCC Unknown D65193 38 23 0.61 Ovary GCC 27 D65297 19 4 0.21 Breast BIC Unknown D65297 27 14 0.52 Ovary GCC Unknown TCP10 17 12 0.71 Ovary BIC 27 D6544 56 4 0.07 Breast GCC 27 D6544 12 4 0.33 Breast GCC 27 D6544 12 4 0.14 Ovary UC 5 27 D6544 18 0 0 Testis UT 73	21-qter	D6S2	5	3	0.6	Ovary	0 5:219
21-qter D6S2 6 0 0 Stomach GCC Unknown D6S133 22 14 0.64 Ovary BJC Unknown D6S193 56 9 0.16 Esophageol GCC Unknown D6S193 38 23 0.61 Ovary GCC 27 D6S297 19 4 0.21 Breast BJC Unknown D6S297 27 14 0.52 Ovary GCC Unknown TCP10 17 12 0.71 Ovary BJC 27 D6S44 56 4 0.07 Breast GCC 27 D6S44 12 4 0.33 Breast GCC 27 D6S44 12 4 0.14 Ovary IJC 5 27 D6S44 18 0 0 Testis IJ 73 Unknown D6S149 19 6 0.32 Ovary GCC <td>21-qter</td> <td>D6S2</td> <td>21</td> <td>1</td> <td>0.05</td> <td>Ovary</td> <td>IJC 54:546</td>	21-qter	D6S2	21	1	0.05	Ovary	IJC 54:546
Unknown D6S133 22 14 0.64 Ovary BIC Unknown D6S193 56 9 0.16 Esophageal GCC Unknown D6S193 38 23 0.61 Ovary GCC 27 D6S297 19 4 0.21 Breast BIC Unknown D6S297 27 14 0.52 Ovary GCC Unknown TCP10 17 12 0.71 Ovary BIC 27 D6S44 56 4 0.07 Breast GCC 27 D6S44 12 4 0.33 Breast GCC 27 D6S44 29 4 0.14 Ovary IJC 5 27 D6S44 18 0 0 Testis IJ 73 Unknown D6S149 19 6 0.32 Ovary GCC Unknown D6S149 8 2 0.25 Ovary CR 5	21-qter	D6S2	1	1	1	Pancreas	GCC 3:468
Unknown D6S193 56 9 0.16 Esophageal GCC Unknown D6S193 38 23 0.61 Ovary GCC 27 D6S297 19 4 0.21 Breast BJC Unknown D6S297 27 14 0.52 Ovary GCC Unknown TCP10 17 12 0.71 Ovary BJC 27 D6S44 56 4 0.07 Breast GCC 27 D6S44 12 4 0.33 Breast GCC 27 D6S44 29 4 0.14 Ovary IJC 5 27 D6S44 29 4 0.14 Ovary IJC 5 27 D6S44 18 0 0 Testis LL 73 Unknown D6S149 19 6 0.32 Ovary GCC 1 Unknown D6S149 8 2 0.25 Ovary CR 55 </td <td>21-qter</td> <td>D6S2</td> <td>6</td> <td>0</td> <td>0</td> <td>Stomach</td> <td>GCC 3:468</td>	21-qter	D6S2	6	0	0	Stomach	GCC 3:468
Unknown D6S193 38 23 0.61 Ovary GCC 27 D6S297 19 4 0.21 Breast BJC Unknown D6S297 27 14 0.52 Ovary GCC Unknown TCP10 17 12 0.71 Ovary BJC 27 D6S44 56 4 0.07 Breast GCC 27 D6S44 12 4 0.33 Breast GCC 27 D6S44 29 4 0.14 Ovary UC 27 D6S44 18 0 0 Testis L173 Unknown D6S149 19 6 0.32 Ovary GCC Unknown D6S149 8 2 0.25 Ovary CR Unknown D6S149 9 1 0.11 Ovary CR Unknown D6S37 4 1 0.25 Breast CR	Unknown	D6S133	2 2	14	0.64	Ovary	BJC 67:551
27 D6S297 19 4 0.21 Breast BJC Unknown D6S297 27 14 0.52 Ovary GCC Unknown TCP10 17 12 0.71 Ovary BJC 27 D6S44 56 4 0.07 Breast GCC 27 D6S44 12 4 0.33 Breast GCC 27 D6S44 29 4 0.14 Ovary IJC 5 27 D6S44 18 0 0 Testis LL73 Unknown D6S149 19 6 0.32 Ovary GCC1 Unknown D6S149 8 2 0.25 Ovary CR 55 Unknown D6S149 9 1 0.11 Ovary CR 55 Unknown D6S37 4 1 0.25 Breast CR 55 Unknown D6S37 23 2 0.09 Breast CR 56 </td <td>Unknown</td> <td>D6S193</td> <td>56</td> <td>9</td> <td>0.16</td> <td>Esophageal</td> <td>GCC 10:177</td>	Unknown	D6S193	56	9	0.16	Esophageal	GCC 10:177
Unknown D6S297 27 14 0.52 Ovary GCC Unknown TCP10 17 12 0.71 Ovary BJC (2) 27 D6S44 56 4 0.07 Breast CR 5 27 D6S44 12 4 0.33 Breast GCC (2) 27 D6S44 29 4 0.14 Ovary IJC 5 27 D6S44 18 0 0 Testis LL 73 Unknown D6S149 19 6 0.32 Ovary GCC (2) Unknown D6S149 8 2 0.25 Ovary CR 50 Unknown D6S149 9 1 0.11 Ovary CR 50 Unknown D6S37 4 1 0.25 Breast CR 50 Unknown D6S37 23 2 0.09 Breast CR 50 Unknown D6S37 20 4 0.2 Cervix		D6S193	38	23	0.61	Ovary	GCC 15:223
Unknown TCP10 17 12 0.71 Ovary BIC 6 27 D6S44 56 4 0.07 Breast CR 5 27 D6S44 12 4 0.33 Breast GCC 2 27 D6S44 29 4 0.14 Ovary IJC 5 27 D6S44 18 0 0 Testis IL 73 Unknown D6S149 19 6 0.32 Ovary GCC 1 Unknown D6S149 8 2 0.25 Ovary CR 50 Unknown D6S149 9 1 0.11 Ovary CR 50 Unknown D6S149 22 10 0.45 Ovary CR 50 Unknown D6S37 4 1 0.25 Breast CR 50 Unknown D6S37 23 2 0.09 Breast CR 50 Unknown D6S37 20 4 0.2 Cervix	27	D6S297	19	4	0.21	Breast	BJC 71:290
27 D6S44 56 4 0.07 Breast CR 5 27 D6S44 12 4 0.33 Breast GCC 1 27 D6S44 29 4 0.14 Ovary IJC 5 27 D6S44 18 0 0 Testis IL 73 Unknown D6S149 19 6 0.32 Ovary GCC 1 Unknown D6S149 8 2 0.25 Ovary CR 50 Unknown D6S149 9 1 0.11 Ovary CR 50 Unknown D6S149 22 10 0.45 Ovary CR 50 Unknown D6S37 4 1 0.25 Breast CR 50 Unknown D6S37 23 2 0.09 Breast CR 50 Unknown D6S37 20 4 0.2 Cervix CR 50	Unknown	D6S297	27	14	0.52	Ovary	GCC 15:223
27 D6S44 12 4 0.33 Breast GCC 2 27 D6S44 29 4 0.14 Ovary IJC 5 27 D6S44 18 0 0 Testis LI 73 Unknown D6S149 19 6 0.32 Ovary GCC 1 Unknown D6S149 8 2 0.25 Ovary CR 50 Unknown D6S149 9 1 0.11 Ovary CR 50 Unknown D6S149 22 10 0.45 Ovary CR 50 Unknown D6S149 22 10 0.25 Breast CR 50 Unknown D6S37 4 1 0.25 Breast CR 50 Unknown D6S37 23 2 0.09 Breast CR 50 Unknown D6S37 20 4 0.2 Cervix CR 50	Unknown	TCP10	17	12	0.71	Ovary	BJC 67:551
27 D6S44 29 4 0.14 Ovary IJC 5 27 D6S44 18 0 0 Testis IL 73 Unknown D6S149 19 6 0.32 Ovary GCC 1 Unknown D6S149 8 2 0.25 Ovary CR 50 Unknown D6S149 9 1 0.11 Ovary CR 50 Unknown D6S149 22 10 0.45 Ovary CR 50 Unknown D6S37 4 1 0.25 Breast CR 50 Unknown D6S37 23 2 0.09 Breast CR 50 Unknown D6S37 20 4 0.2 Cervix CR 50	27	D6S44	56	4	0.07	Breast	CR 53:4356
27 D6S44 18 0 0 Testis L173 Unknown D6S149 19 6 0.32 Ovary GCC1 Unknown D6S149 8 2 0.25 Ovary CR 50 Unknown D6S149 9 1 0.11 Ovary CR 50 Unknown D6S149 22 10 0.45 Ovary CR 50 Unknown D6S37 4 1 0.25 Breast CR 50 Unknown D6S37 23 2 0.09 Breast CR 50 Unknown D6S37 20 4 0.2 Cervix CR 50	27	D6S44	12	4	0.33	Breast	GCC 2:191
Unknown D6S149 19 6 0.32 Ovary GCC1 Unknown D6S149 8 2 0.25 Ovary CR 52 Unknown D6S149 9 1 0.11 Ovary CR 52 Unknown D6S149 22 10 0.45 Ovary CR 52 Unknown D6S37 4 1 0.25 Breast CR 52 Unknown D6S37 23 2 0.09 Breast CR 52 Unknown D6S37 20 4 0.2 Cervix CR 54	27	D6S44	29	4	0.14	Ovary	IJC 54:546
Unknown D6S149 8 2 0.25 Ovary CR 52 Unknown D6S149 9 1 0.11 Ovary CR 52 Unknown D6S149 22 10 0.45 Ovary CR 52 Unknown D6S37 4 1 0.25 Breast CR 52 Unknown D6S37 23 2 0.09 Breast CR 50 Unknown D6S37 20 4 0.2 Cervix CR 50	27	D6S44	18	0	0	Testis	LI 73:606
Unknown D6S149 8 2 0.25 Ovary CR 55 Unknown D6S149 9 1 0.11 Ovary CR 55 Unknown D6S149 22 10 0.45 Ovary CR 55 Unknown D6S37 4 1 0.25 Breast CR 55 Unknown D6S37 23 2 0.09 Breast CR 56 Unknown D6S37 20 4 0.2 Cervix CR 56	Unknown	D6S149	19	6	0.32	Ovary	GCC 15:223
Unknown D6S149 9 1 0.11 Ovary CR 52 Unknown D6S149 22 10 0.45 Ovary CR 52 Unknown D6S37 4 1 0.25 Breast CR 52 Unknown D6S37 23 2 0.09 Breast CR 52 Unknown D6S37 20 4 0.2 Cervix CR 54	Unknown	D6S149	8	2	0.25	•	CR 52:5815
Unknown D6S149 22 10 0.45 Ovary CR 55 Unknown D6S37 4 1 0.25 Breast CR 55 Unknown D6S37 23 2 0.09 Breast CR 56 Unknown D6S37 20 4 0.2 Cervix CR 56	Unknown	D6S149	9	1	0.11	•	CR 52:5815
Unknown D6S37 4 1 0.25 Breast CR :5 Unknown D6S37 23 2 0.09 Breast CR 50 Unknown D6S37 20 4 0.2 Cervix CR 50	Unknown	D6S149	22	10	0.45	•	CR 52:5815
Unknown D6S37 23 2 0.09 Breast CR 56 Unknown D6S37 20 4 0.2 Cervix CR 56	Unknown	D6S37	4	1		•	CR :53:3804
Unknown D6S37 20 4 0.2 Cervix CR 54	Unknown	D6S37		2			CR 50:7184
	Unknown	D6S37	20				CR 54:4481
Unknown D6S37 5 2 0.4 Cervix GCC 9	Unknown	D6S37	5				GCC 9:119

64 of 249 Chromosome 6 - q Arm

	•					s= = 1 500
Unknown	D6S37	5	4	0.8	Endocrine	CR 56:599
Unknown	D6S37	13	2	0.15	Esophageal	CR 54:2996
Unknown	D6S37	13	4	0.31	Kidney	CR 51:820
Unknown	D6S37	25	9	0.36	Kidney	CR 51:5817
Unknown	D6S37	29	1	0.03	Lung	CR 52:2478
Unknown	D6S37	10	4	0.4	Melanoma	CR 51:5449
Unknown	D6S37	13	8	0.62	Ovary	BJC 67:551
Unknown	D6S37	29	5	0.17	Ovary	CR 51:5118
Unknown	D6S37	14	3	0.21	Sarcoma	CR 52:2419
Unknown	D6S37	30	11	0.37	Stomach	GCC 14:28
Unknown	D6S37	29	2	0.07	Testis	0 9:2245
Unknown	D6S37	11	l ·	0.09	Uterus	GCC 9:119
27	D6S446	24	11	0.46	Ovary	GCC 15:223
Unknown	D6S132	15	11	0.73	Ovary	BJC 67:551
27	D6S281	27	5	0.19	Breast	BJC 71:290
27	D6S281	39	13	0.33	Ovary	GCC 15:223
27	D6S281	39	13	0.33	Ovary	GCC 15:223
Unknown	Unknown	22	2	0.09	Brain	CR 50:5784
27	D6S193	29	8	0.28	Breast	BJC 71:290
25.2-27	D6S220	19	5	0.26	Breast	BJC 71:290
14-15	D6S330	12	6	0.5	Breast	BJC 71:290
23.3-25.2	D6S355	24	4	0.17	Breast	BJC 71:290
21-23.3	D6S357	20	2	0.1	Breast	BJC 71:290
21-23.3	D6S359	37	8	0.22	Breast	BJC 71:290
14-16	D6S39	1 .	1	1	Breast	CR 53:3804
16-21	D6S48	3	1	0.33	Breast	CR 53:3804
25.1	ER	47	9	0.19	Breast	BJC 71:448
24	D6S135	9	5	0.56	Kidney	CR 51:5817
21	D6S154	15	3	0.2	Kidney	CR 51:5817
27	D6S156	27	7	0.26	Kidney	CR 51:5817
23	D6S164	11	1	0.09	Kidney	CR 51:5817
Unknown	D6S281-	22	4	0.18	Kidney	PNAS 92:2854
2	D6S311-					
	D6S278				10.1	DMAC 02 20EA
Unknown	D6S281-	6	1	0.17	Kidney	PNAS 92:2854
	D6S311-					
	D6S278	00	15	0.75	Lung	CR 54:2322
Unknown	Unknown	20	15	0.73	Melanomo	CR 51:5449
12.0-21	CGA	13	3	0.23	Melanoma	CR 51:5449
Unknown	D6S29	4	0	0.03	Ovary	UC 52:575
27	Unknown	130	4	0.03	Ovary	UC 52:575
Unknown	Unknown	23	1	0.04	Ovuly	UC 32.373

65 of 249 Chromosome 6 - q Arm

13	ACTBP2	21	7	0.33	Ovary	GO 55:245
Unknown	D6S125	17	4	0.24	Ovary	BJC 67:551
27	D6S193	10	1	0.1	Ovary	CR 52:5815
27	D6S193	11	1	0.09	Ovary	CR 52:5815
27	D6S193	23	11	0.48	Ovary	CR 52:5815
Unknown	D6S225	26	0	0	Ovary	CR 55:2169
Unknown	D6S225	13	2	0.15	Ovary	CR 55:2169
23.3-25.2	D6S355	6	0	0	Ovary	CR 55:2169
Unknown	D6S366	14	2	0.14	Ovary	CR 55:2169
Unknown	D6S366	19	1	0.05	Ovary	CR 55:2169
Unknown	D6S86	22	13	0.59	Ovary	BJC 67:551
Unknown	HCG-A	8	4	0.5	Ovary	BJC 67:551
Unknown	IGF2R- D6S:251- 249	17	3	0.18	Ovary	BJC 72:1330
Unknown	MYB-DMDL- SOD2-D6S44	37	21	0.57	Ovary	CR 53:2393
27	Unknown	3	0	0	Pancreas	CR 54:2761
21.3	TNFB	13	2	0.15	Uterus	CR 54:4294
SUM		3960	978	0.25		

66 of 249 Chromosome 7 - p Arm

Band	Marker	Total	Coses w/LOH	LOH Freq.	Tumor Type	Reference
22	D7S21	36	5	0.14	Stomach	CR 51:2926
22	D7S21	19	1	0.05	Stomach	HG 92:244
22	D7S21	26	1	0.04	Testis	GCC 13:249
Unknown	D7S517	6	0	0	Kidney	PNAS 92:2854
Unknown	D 7 S517	21	0	0	Kidney	PNAS 92:2854
Unknown	D7S370	18	3	0.17	Brain	CR 50:5784
Unknown	D7S370	8	1	0.12	Breast	CR 50:7184
Unknown	D7S370	24	2	0.08	Cervix	CR 54:4481
Unknown	D7S370	24	5	0.21	Esophageal	CR 54:2996
Unknown	D7S370	10	2	0.2	Kidney	CR 51:820
Unknown	D7S370	10	0	0	Liver	CR 51:89
Unknown	D7S370	18	5	0.28	Lung	CR 52:2478
Unknown	D7S370	26	4	0.15	Ovary	IJC 54:546
Unknown	D7S370	2	2	1	Pancreas	CR 54:2761
Unknown	D7S370	23	1	0.04	Testis	0 9:2245
Unknown	D7S370	20	2	0.1	Esophageal	GCC 10:177
Unknown	D7S370	10	1	0.1	Esophageal	CR 51:2113
Unknown	D7S370	7	3	0.43	Ovary	CR 51:5118
Unknown	D7S370	17	2	0.12	Sarcoma	CR 52:2419
Unknown	D7S371	21	1	0.05	Breast	CR 53:4356
Unknown	D7S371	2	0	0	Ovary	CR 51:5118
13.0-12	EGFR	8	1	0.12	Cervix	CR 49:3598
13.0-12	EGFR	4	0	0	Liver	PNAS 86:8852
11.2-12	EGFR	18	3	0.17	Ovary	BJC 69:429
11.2-12	EGFR	14	0	0	Ovary	CR 49:1220
13.0-12	EGFR	5	1	0.2	Ovary	CR 50:2724
Unknown	EGFR	11	0	0	Ovary	CR 50:2724
13.0-12	EGFR	. 13	1	0.08	Prostate	G 11:530
Unkno wn	EGFR	10	0	0	Uterus	CR 51:5632
13.0-12	EGFR	16	2	0.12	Uterus	CR 54:4294
13.0-12	EGFR	16	2	0.12	Uterus	CR 54:4294
Unknown	D7S372	12	0	0	Brain	CR 49:6572
Unknown	D7S493	32	2	0.06	Cervix	CR 56:197
Unknown	D7S507	2 5	1	0.04	Cervix	CR 56:197
2.2-ter	Unknown	3 5	1	0.03	Colon	BJC 59:750
Unknown	D7S481	22	16	0.73	Colon	CR 56:145
Unknown	D7S507	20	1	0.05	Endocrine	CR 56:599
Unknown	D7S481	21	0	0	Head&Neck	CR 54:4756
Unknown	D7S481	22	4	0.18	Head&Neck	CR 54:4756
Unknown	D7S507	26	6	0.23	Head&Neck	CR 54:1152
pter-q22	Unknown	11	1	0.09	Liver	BJC 64:1083

WO 98/41648

67 of 249 Chromosome 7 - p Arm

PCT/US98/05419

pter-q22	Unknown	13	1	0.08	Liver	BJC 67:1007
Unknown	D7S481	30	1	0.03	Melanoma	CR 56:589
Unknown	D7S135	11	4	0.36	Ovary	CR 53:2393
pter-q22	Unknown	10	0	0	Pancreas	BJC 65:809
2.2-ter	Unknown	10	0	0	Stomach	BJC 59:750
SUM		747	87	0.12		

68 of 249 Chromosome 7 - q Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
21.3-22.1	COLIA2	29	1	0.03	Breast	GCC 2:191
21.3-22.1	COLIA2	6	0	0	Cervix	CR 49:3598
21.3-22.1	COLIA2	12	0	0	Colon	N 331:273
21.3-22.1	COLIA2	15	1	0.07	Liver	JJCR 81:108
21.3-22.1	COLIA2	11	0	0	Liver	CCG 48:72
21.3-22.1	COLIA2	5	0	0	Neuroblastoma	CR 49:1095
21.3-22.1	COLIA2	10	2	0.2	Stomach	CR 52:3099
21.3-22.1	COLIA2	6	0	0	Uterus	CR 51:5632
Unknown	D7S527	21	4	0.19	Breast	PNAS 91:12155
Unknown	D7S527	8	1	0.12	Colon	CR 55:1347
Unknown	D7S527	9	2	0.22	Head&Neck	CR 55:1347
Unknown	D7S527	8	1	0.12	Prostate	CR 54:6370
Unknown	D7S479	12	1	0.08	Breast	PNAS 91:12155
Unknown	D7S479	17	0	0	Endocrine	CR 56:599
Unknown	D7S518	27	6	0.22	Breast	PNAS 91:12155
Unknown	D7S518	8	0	0	Colon	CR 55:1347
Unknown	D7S518	13	2	0.15	Head&Neck	CR 55:1347
Unknown	D7S518	11	3	0.27	Prostate	CR 54:6370
Unknown	D7S515	13	3	0.23	Breast	PNAS 91:12155
Unknown	D7S496	17	8	0.47	Breast	PNAS 91:12155
Unknown	D7S496	13	4	0.31	Colon	CR 55:1347
Unknown	D7S496	10	1	0.1	Head&Neck	CR 55:1347
Unknown	D7S496	8	3	0.38	Prostate	CR 54:6370
22.3-31.2	D7S13	21	4	0.19	Breast	PNAS 91:12155
Unknown	D7S523	22	12	0.55	Breast	PNAS 91:12155
Unknown	D7S523	9	4	0.44	Colon	CR 55:1347
Unknown	D7S523	13	5	0.38	Head&Neck	CR 55:1347
Unknown	D7S523	7	2	0.29	Prostate	CR 54:6370
Unknown	D7S18	7	3	0.43	Breast	PNAS 91:12155
Unknown	D7S486	15	5	0.33	Breast	PNAS 91:12155
Unknown	D7S486	18	9	0.5	Colon	CR 55:1347
Unknown	D7S486	10	3	0.3	Head&Neck	CR 55:1347
Unknown	D7S486	6	2	0.33	Prostate	CR 54:6370
Unknown	D7S23	18	7	0.39	Breast	PNAS 91:12155
Unknown	D7S23	11	1	0.09	Ovary	BJC 69:429
Unknown	D7S23	15	2	0.13	Ovary	CR 53:2393
Unknown	D7S23	20	3	0.15	Uterus	CR 54:4294
31	WET	31	1	0.03	Breast	CR 53:4356
31	MET	121	49	0.4	Breast	L 339:140
31	MET	221	84	0.38	Breast	GCC 12:304
31	MET -	18	8	0.44	Breast	PNAS 91:12155

69 of 249 Chromosome 7 - q Arm

31	MET	24	2	0.08	Breast	GCC 2:191
31	MET	15	0	0	Colon	CCG 48:167
31	MDR1-MET	12	0	0	Prostate	G 11:530
31	MET	9	3	0.33	Prostate	GCC 11:119
31	MET	14	1	0.07	Sarcoma	CR 52:2419
31	MET	35	7	0.2	Stomach	IJC 59:597
31	MET	1	0	0	Testis	CCG 52:72
31	MET	1	0	0	Testis	CCG 52:72
31	MET]	0	0	Testis	CCG 52:72
Unknown	D7S633	7	4	0.57	Colon	CR 55:1347
Unknown	D7S633	6	2	0.33	Head&Neck	CR 55:1347
Unknown	D7S633	7	3	0.43	Prostate	CR 54:6370
Unknown	D7S677	9	6	0.67	Colon	CR 55:1347
Unknown	D7S677	10	4	0.4	Head&Neck	CR 55:1347
Unknown	D7S677	8	5	0.62	Prostate	CR 54:6370
Unknown	D7S655	8	4	0.5	Colon	CR 55:1347
Unknown	D7S655	7	3	0.43	Head&Neck	CR 55:1347
Unknown	D7S655	14	6	0.43	Prostate	CR 54:6370
Unknown	D7S522	11	9	0.82	Breast	PNAS 91:12155
Unknown	D7S522	10	8	0.8	Colon	CR 55:1347
Unknown	D7S522	15	8	0.53	Head&Neck	CR 55:1347
Unknown	D7S522	6	5	0.83	Prostate	CR 54:6370
Unknown	D7S480	21	9	0.43	Breast	PNAS 91:12155
Unknown	D7S480	27	4	0.15	Cervix	CR 56:197
Unknown	D7S480	16	7	0.44	Colon	CR 55:1347
Unknown	D7S480	10	4	0.4	Heod&Neck	CR 55:1347
Unknown	D7S480	11	3	0.27	Prostate	CR 54:6370
Unknown	D7S487	15	4	0.27	Breast	PNAS 91:12155
Unknown	D7S487	. 8	2	0.25	Colon	CR 55:1347
Unknown	D7S487	10	0	0	Head&Neck	CR 55:1347
Unknown	D7S487	19	ĭ	0.05	Leukemia	CR 55:5377
Unknown	D7S487	8	1	0.12	Prostate	CR 54:6370
31	CFTR	9	2	0.22	Ovary	BJC 69:429
Unknown	D7S490	14	5	0.36	Breast	PNAS 91:12155
Unknown	D7S490	10	4	0.4	Colon	CR 55:1347
Unknown	D7S490	12	4	0.33	Head&Neck	CR 55:1347
Unknown	D7S490	6	1	0.17	Prostate	CR 54:6370
31-32	D7S125	12	5	0.42	Breast	PNAS 91:12155
31-32	D7S12 5	15	2	0.13	Ovary	IJC 54:546
Unknown	D7S504	22	6	0.27	Breast	PNAS 91:12155
Unknown	D7S514	10	1	0.1	Breast	PNAS 91:12155
Unknown	D7S500-	19	3	0.16	Breast	PNAS 91:12155

70 of 249 Chromosome 7 - q Arm

	מזכנטט	31	9	0.29	Cervix	CR 56:197
Unknown	D7S500	31 18	0	0.27	Breast	PNAS 91:12155
Unknown	D7S495	10	0	0	Head&Neck	CR 54:4756
Unknown	D7S495	20	1	0.05	Head&Neck	CR 54:4756
Unknown	D7S495		7	0.29	Head&Neck	CR 54:1152
Unknown	D7S495	24	1	0.27	Melanoma	CR 56:589
Unknown	D7S495	26	2	0.04	Breast	PNAS 91:12155
Unknown	D7S498	18	2	0.11	Colon	CR 55:1347
Unknown	D7S498	9	0	0.22	Head&Neck	CR 55:1347
Unknown	D7S498	8		0	Prostate	CR 54:6370
Unknown	D7S498	4	0	0.05	Breast	PNAS 91:12155
Unknown	D7S483	19	1	0.03	Breast	PNAS 91:12155
Unknown	D7S505	11	0	0	Brain	CR 49:6572
Unknown	D7S396	5	0	0.27	Breast	PNAS 91:12155
Unknown	D7S396	22	6	0.27	Breast	CR 50:7184
Unknown	D7S396	20	3	0.15	Esophageal	CR 54:2996
Unknown	D7S396	17]		Esophageal	GCC 10:177
Unknown	D7S396	44	5	0.11 0.26	Kidney	CR 51:820
Unknown	D7S396	23	6		Liver	CR 51:89
Unknown	D7S396	28	3	0.11 0.15	Lung .	CR 52:2478
Unknown	D7S396	34	5	0.15	Ovary	CR 51:5118
Unknown	D7S396	19	4	0.21	Sarcomo	CR 52:2419
Unknown	D7S396	18	0	0	Colon	CR 55:1347
36	D7S550	6	0	0.11	Esophageal	IJC 69:1
36	D7S550	28	3	0.11	Head&Neck	CR 55:1347
36	D7S550	6	0	0.12	Prostate	CR 54:6370
36	D7S550	8	1		Prostate	CR 54:6370
36	D7S550	8	1	0.12 0	Brain	CR 50:5784
Unknown	Unknown	31	0		Breast	PNAS 91:12155
Unknown	ABP1	. 6	2	0.33		CR 54:4481
32-qter	D7S228	18	2	0.11	Cervix	GCC 9:119
Unknown	D7S96	10	3	0.3	Cervix	BJC 59:750
3.3-ter	Unknown	32	0	0	Colon	CCG 48:167
Unknown	D7S368	21	0	0	Colon	N 328:524
Unknown	D7S22	11	0	0	Endocrine	BJC 64:1083
Unknown	Unknown	10	0	0	Liver	
36	Unknown	12	0	0	Liver	BJC 67:1007
31.3-qter	Unknown	7	1	0.14	Pancreas	BJC 65:809
36	Unknown	4	0	0	Pancreas	CR 54:2761
31.3-qter	Unknown	19	2	0.11	Prostate	CSurveys 11:15
Unknown	Unknown	19	2	0.11	Prostate	PNAS 87:8751
3.3-ter	Unknown	9	0	0	Stomach	BJC 59:750
Unknown	D7S22	47	11	0.23	Stomach	IJC 59:597

71 of 249 Chromosome 7 - q Arm

Unknown	D7S22	41	10	0.24	Stomach	CR 51:2926
Unknown	D7S63	3 5	8	0.23	Stomach	IJC 59:597
Unknown	D7S64	16	0	0	Stomach	IJC 59:597
Unknown	D7S95	30	13	0.43	Stomach	IJC 59:597
Unknown	D7S22	22	2	0.09	Testis	GCC 13:249
32-qter	D7S228	23	2	0.09	Testis	0 9:2245
Unknown	TCBR	3	0	0	Testis	CCG 52:72
Unknown	TCBR	3	0	0	Testis	CCG 52:72
Unknown	TCBR	2	0	0	Testis	CCG 52:72
11.23	D7S440	19	1	0.05	Uterus	CR 54:4294
Unknown	D7S96	16	3	0.19	Uterus	GCC 9:119
SUM		2325	517	0.22		

72 of 249 Chromosome 8 - p Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
21	D8S17	21	7	0.33	Breast	CR 53:4356
21	D8S17	3	1	0.33	Breast	CR 53:3804
21	D8S17	9	ì	0.11	Ovary	IJC 54:546
	D8S264	30	6	0.2	Cervix	CR 56:197
Unknown	D8S262	5	2	0.4	Kidney	GCC 12:76
Unknown	D8S262	15	2	0.13	Leukemio	CR 55:5377
Unknown	D8S262	18	9	0.5	Prostate	CR 54:6061
Unknown	D8S201	9	5	0.56	Colon	AJP 144:1
23	D8S201	28	6	0.21	Prostate	0 11:2121
23	D8S201	15	8	0.53	Prostate	AJP 144:1
23	D8S201	22	3	0.14	Prostate	CR 53:3869
23	D8S201	3	1	0.33	Sarcoma	AJP 144:1
23	D8S7	11	5	0.45	Colon	GCC 10:1
23	D8S7	18	6	0.33	Esophageal	CR 54:2996
23	D8S7	10	4	0.4	Ovary	CR 53:2393
23	D8S7	8	3	0.38	Prostate .	GCC 3:215
23	D857	6	3	0.5	Prostate	6 11:530
23	D8S7	10	1	0.1	Sarcoma	CR 52:2419
23	D8S277	18	0	0	Endocrine	CR 56:599
Unknown	D8S277	26	11	0.42	Prostate	CR 54:6061
Unknown	D8S337	18	5	0.28	Colon	CR 53:1172
23.12	D8S337	15	7	0.47	Liver	GCC 7:152
23.12	D8S337	3	0	0	Lung	GCC 8:75
23.12 23.12	D8S337	14	6	0.43	Prostate	GCC 13:168
23.12 23.12	D8S336	39	10	0.26	Colon	CR 53:1172
23.12 23.12	D8S336	48	18	0.38	Liver	GCC 7:152
23.12 23.12	D8S336	7	3	0.43	Lung	GCC 8:75
23.12 21.3-22	D8S335	53	18	0.34	Colon	CR 53:1172
	D8S335	30	15	0.5	Colon	GCC 10:7
21.3-22	D8S335	46	17	0.37	Liver	GCC 7:152
21.3-22	D8S335	18	4	0.22	Liver	GCC 10:7
21.3-22	D8S335	27	12	0.44	Lung	GCC 10:7
21.3-22		5	·]	0.2	Lung	GCC 7:85
21.3-22	D8S335		5	0.23	Cervix	CR 56:197
Unknown	D8S265	22)]]	0.23	Prostate	CR 54:6061
Unknown	D8S265	22		0.3	Colon	CR 53:1172
22	CTSB	33	14	0.42	Liver	GCC 7:152
22	CTSB	23	7	0.3	Colon	CR 52:5368
11.212	Unknown	33	10	0.3 0.24	Colon	CR 53:1172
11.212	Unknown	34	8	0.24	Liver	GCC 7:152
11.212	Unknown	34	0		Lung	GCC 7:85
11.212	- new their	귀2 ·	. Q .	0	Lully	OCC 7.00

73 of 249 Chromosome 8 - p Arm

Unknown	D8S254	13	4	0.31	Breast	CR 55:4995
Unknown	D8S261	16	1	0.06	Head&Neck	CR 54:4756
Unknown	D8S261	18	1	0.06	Head&Neck	CR 54:4756
Unknown	D8S261	20	8	0.4	Head&Neck	CR 54:1152
Unknown	D8S261	6	3	0.5	Kidney	GCC 12:76
Unknown	D8S261	24	3	0.12	Melanoma	CR 56:589
Unknown	D8S261	31	17	0.55	Prostate	CR 54:6061
22-pter	D8S163	44	19	0.43	Colon	CR 53:1172
22-pter	D8S163	31	14	0.45	Liver	GCC 7:152
22-pter	D8S163	14	3	0.21	Lung	GCC 8:75
22-pter	D8S163	1	0	0	Pancreas	CR 54:2761
22-pter	D8S163	2 3	14	0.61	Prostate	CR 53:3869
22-pTER	D8S163	18	9	0.5	Prostate	GCC 13:168
21.3-22	C18-1344	71	2 5	0.35	Colon	GCC 10:7
21.3-22	CI8-1344	40	10	0.25	Liver	GCC 10:7
21.3-22	C18-1344	30	8	0.27	Lung	GCC 10:7
21.3-22	C18-2195	35	15	0.43	Colon	GCC 10:7
21.3-22	C18-2195	32	7	0.22	Liver	GCC 10:7
21.3-22	CI8-2195	20	6	0.3	Lung	GCC 10:7
21.3-22	CI8-2014	24	7	0.29	Colon	GCC 10:7
21.3-22	CI8-2014	6	2	0.33	Liver	GCC 10:7
21.3-22	C18-2014	17	7	0.41	Lung	GCC 10:7
21.3-22	C18-2014	8	3	0.38	Prostate	GCC 13:168
21.3-22	D8S233	21	10	0.48	Colon	GCC 10:7
21.3-22	D8S233	24	11	0.46	Colon	CR 53:1172
21.3-22	D8S233	28	12	0.43	Liver	GCC 7:152
21.3-22	D8S233	14	5	0.36	Liver	GCC 10:7
21.3-22	D8S233	9	2	0.22	Lung	GCC 8:75
21.3-22	D8S233	7	3	0.43	Lung	GCC 10:7
Unknown	MSR	56	5	0.09	Breast	CR 52:5368
21.3-22	MSR	74	27	0.36	Colon	GCC 10:7
Unknown	MSR	26	12	0.46	Colon	CR 52:5368
2 2	MSR	74	28	0.38	Colon	CR 53:1172
Unknown	MSR	27	2	0.07	Kidney	CR 52:5368
Unknow n	MSR	33	14	0.42	Liver	JJCR 84:893
22	MSR	87	37	0.43	Liver	GCC 7:152
21.3-22	MSR	54	10	0.19	Liver	GCC 10:7
Unknown	MSR	35	14	0.4	Lung	CR 52:5368
Unknown	MSR	21	9	0.43	Lung	GCC 8:75
21.3-22	MSR	38	16	0.42	Lung	GCC 10:7
Unknown	MSR	12	4	0.33	Ovary	CR 52:5368
21.3-22	· MSR	29	18	0.62	Prostate	GCC 13:168
	CHROTITI	FTF ALLEI	T /BIH F AAI			

PCT/US98/05419

74 of 249 Chromosome 8 - p Arm

22	MSR	29	20	0.69	Prostate	CR 53.3869
Unknown	MSR	18	4	0.22	Stomach	CR 52:5368
21.3-22	Unknown	33	16	0.48	Colon	GCC 10:7
21.3-22	Unknown	9	3	0.33	Liver	GCC 10:7
21.3-22	Unknown	20	12	0.6	Lung	GCC 10:7
21.3-22	Unknown	18	11	0.61	Prostate	GCC 13:168
21.3-22	Unknown	21	9	0.43	Colon	GCC 10:7
21.3-22	Unknown	6	2	0.33	Liver	GCC 10:7
21.3-22	Unknown	22	15	0.68	Lung	GCC 10:7
21.3-22	Unknown	42	19	0.45	Colon	GCC 10:7
21.3-22	Unknown	33	10	0.3	Liver	GCC 10:7
21.3-22	Unknown	21	10	0.48	Lung	GCC 10:7
21.3-22	Unknown	15	8	0.53	Prostate	GCC 13:168
21.3-22	Unknown	48	14	0.29	Colon	GCC 10:7
21.3-22	Unknown	39	9	0.23	Liver	GCC 10:7
21.3-22	Unknown	22	7	0.32	Lung	GCC 10:7
21.3-22	Unknown	15	8	0.53	Prostate	GCC 13:168
21.3-22	Unknown	49	22	0.45	Colon	GCC 10:7
21.3-22	Unknown	40	9	0.23	Liver	GCC 10:7
21.3-22	Unknown	23	7	0.3	Lung	GCC 10:7
21.3-22	Unknown	15	8	0.53	Prostate	GCC 13:168
21.3-22	Unknown	51	31	0.61	Colon	GCC 10:7
21.3-22	Unknown	54	16	0.3	Liver	GCC 10:7
21.3-22	Unknown	24	5	0.21	Lung	GCC 10:7
21.3-22	Unknown	20	8	0.4	Colon	GCC 10:7
21.3-22	Unknown	25	7	0.28	Liver	GCC 10:7
21.3-22	Unknown	17	4	0.24	Lung	GCC 10:7
21	Unknown	1	0	0	Pancreas	CR 54:2761
22	LPL	10	4	0.4	Colon	GCC 11:195
2 2	LPL	13	2	0.15	Colon	AJP 144:1
22	LPL	32	4	0.12	Colon	GCC 10:1
22	LPL	21	3	0.14	Colon	CR 53:1172
22	LPL	47	10	0.21	Colon	BJC 70:18
22	LPL	17	4	0.24	Leukemia	B 83:3449
22	LPL	38	19	0.5	Liver	GCC 7:152
22	LPL	6	4	0.67	Lung	CR 55:28
22	LPL	7	3	0.43	Lung	GCC 8:75
22	LPL	19	8	0.42	Prostate	AJP 144:1
22	LPL	13	5	0.38	Prostate	GCC 13:278
22	LPL	7	6	0.86	Prostate	GCC 3:215
22	LPL	32	15	0.47	Prostate	CR 53:3869
22 22				0.46	Prostate	0 11:2121
LL.	SÜBSTI	TUTE SHEE	11 T (RULE 26)			
			··· 20)			

75 of 249 Chromosome 8 - p Arm

ρ22	LPL-GZ14-15	29	14	0.48	Prostate	CR 54:6061
22	LPL	2	0	0	Sarcoma	AJP 144:1
22	LPL	19	2	0.11	Uterus	CR 54:4294
Unknown	D8S258	16	3	0.19	Breast	CR 55:4995
Unknown	D8S282	27	13	0.48	Prostate	CR 54:6061
Unknown	D8S298	30	18	0.6	Prostate	CR 54:6061
21.3	D8S232	59	17	0.29	Colon	CR 53:1172
21.3	D8S232	40	13	0.33	Liver	GCC 7:152
21.3	D8S232	19	7	0.37	Lung	GCC 7:85
21.3	D8S334	47	16	0.34	Colon	CR 53:1172
21.3-22	D8S334	49	18	0.37	Colon	GCC 10:7
21.3-22	D8S334	37	8	0.22	Liver	GCC 10:7
21.3	D8S334	39	15	0.38	Liver	GCC 7:152
21.3-22	D8S334	19	8 .	0.42	Lung	GCC 10:7
21.3	D8S334	6	2	0.33	Lung	GCC 7:85
21.3	D8S334	16	9	0.56	Prostate	GCC 13:168
21-23	EGR3	28	14	0.5	Colon	CR 53:1172
21-23	EGR3	33	12	0.36	Liver	GCC 7:152
21.23	CI8-586	25	7	0.28	Colon	CR 53:1172
21.23	C18-586	20	9	0.45	Liver	GCC 7:152
21	D8S133	10	5	0.5	Prostate	GCC 11:119
21	D8S133	27	7	0.26	Prostate	0 11:2121
21	D8S133	29	16	0.55	Prostate	CR 54:6061
21.23	D8S220	50	18	0.36	Colon	CR 53:1172
21.23	D8S220	3 5	13	0.37	Colon	CR 52:5368
21.23	D8S220	43	16	0.37	Liver	CR 52:5368
21.23	D8S220	50	17	0.34	Liver	GCC 7:152
21.23	D8S220	17	4	0.24	Lung	GCC 7:85
21.23	D8S220	18	6	0.33	Prostate	GCC 13:168
21.23	D8S220	27	16	0.59	Prostate	CR 53:3869
Unknown	SFTP2	40	11	0.28	Colon	GCC 10:1
Unknown	D8S136	20	7	0.35	Breast	CR 55:4995
Unknown	D8S136	11	6	0.55	Colon	GCC 11:195
Unknown	D8S136	1	1	1	Prostate	AJP 144:1
Unknown	D8S136	28	16	0.57	Prostate	CR 54:6061
21.12	D8S221	53	14	0.26	Colon	CR 53:1172
21.12	D8S221	41	10	0.24	Liver	GCC 7:152
21.12	D8S221	10	0	0	Lung	GCC 7:85
21	NEFL	15	1	0.07	Brain	CR 50:5784
21	NEFL	2	1	0.5	Breast	CR 53:3804
21	NEFL	22	3	0.14	Cervix	CR 54:4481
21	NEFL	35]]	0.31	Colon	GCC 10:1

76 of 249 Chromosome 8 - p Arm

Ž1	NEFL	8	4	0.5	Colon	GCC 11:195
21	NEFL	50	22 .	0.44	Colon	CR 53:1172
21	NEFL	47	19	0.4	Liver	GCC 7:152
21	NEFL	14	5	0.36	Lung	GCC 7:85
21	NEFL	6	2	0.33	Prostate	CR 53:3869
21	NEFL	8	7	0.88	Prostate	GCC 3:215
21	NEFL	19	8	0.42	Prostate	GCC 13:168
21	NEFL	21	9	0.43	Prostate	0 11:2121
21	NEFL	19	3	0.16	Testis	0 9:2245
Unknown	D8S137	16	10	0.62	Breast	CR 55:4995
Unknown	D8S137	85	29	0.34	Colon	BJC 70:18
Unknown	D8S137	1	1	1	Prostate	AJP 144:1
Unknown	D8S137	23	16	0.7	Prostate	CR 54:6061
Unknown	D8S137	2	2	1	Sarcoma	AJP 144:1
Unknown	D8S283	28	11	0.39	Prostate	CR 54:6061
p12	D8S87	14	2	0.14	Colon	AJP 144:1
p12	D8S87	24	9	- 0.38	Prostate	CR 54:6061
p12	D8S87	20	5	0.25	Prostate	0 11:2121
, р12	D8S87	18	4	0.22	Prostate	AJP 144:1
p12	D8S87	4	4	1	Sarcoma	AJP 144:1
p12	D8S87	25	5	0.2	Uterus	CR 54:4294
Unknown	D8S255	28	10	0.36	Prostate	CR 54:6061
Unknown	D8S255	10	1	0.1	Testis	LI 73:606
11.2	ANKI	78	18	0.23	Colon	BJC 70:18
11.2	ANK1	7	4	0.57	Prostate	AJP 144:1
11.2	ANK1	1	0	0	Sarcomo	AJP 144:1
11.2122	D8S194	40	6	0.15	Colon	CR 52:5368
11.2122	D8S194	40	5	0.12	Colon	CR 53:1172
11.2122	D8S194	4 5	5	0.11	Liver	CR 52:5368
11.2122	D8S194	45	5	0.11	Liver	GCC 7:152
11.2122	D8S194	26	3	0.12	Prostate	CR 53:3869
11.2223	D8S234	58	13	0.22	Colon	CR 53:1172
11.2223	D8S234	57	14	0.25	Liver	GCC 7:152
11.2223	D8S234	13	3	0.23	Lung	GCC 7:85
11.2223	D8S234	15	2	0.13	Prostate	GCC 13:168
23.23	D8S140	3 3	6	0.18	Colon	CR 52:5368
23 .23	D8S140	29	8	0.28	Colon	CR 53:1172
23.23	D8S140	39	7	0.18	Liver	GCC 7:152
23.23	D8S140	39	7	0.18	Liver	CR 52:5368
23.23	D8S140	38	4	0.11	Prostate	CR 53:3869
11.0-12	POLB	15	0	0	Colon	GCC 10:1
12-11.2	PLAT	7	2	0.29	Prostate	GCC 3:215

77 of 249 Chromosome 8 - p Arm

12-11.2	· PLAT	18	0	0	Prostate	0 11:2121
11.23	D8S223	24	0	0	Colon	CR 53:1172
11.23	D8S223	37	0	. 0	Liver	GCC 7:152
11.23	D8S223	37	0	0	Liver	GCC 7:152
Unknown	D8S:262-261	26	17	0.65	Bladder	CR 55:5213
Unknown	D8S2	5	2	0.4	Breast	CR 53:3804
Unknown	D8S26	27	1	0.04	Breast	CR 53:4356
Unknown	D8S349	18	10	0.56	Breast	CR 55:4995
Unknown	D8S264-D8S265- D8S560	22	4	0.18	Kidney	PNAS 92:2854
Unknown	D8S264-D8S265- D8S560	6	Ĭ	0.17	Kidney	PNAS 92:2854
Unknown	D8S238	37	7	0.19	Liver	CR 52:5368
21	ARDRA3	19	5	0.26	Ovary	IJC 54:546
Unknown	D8S339	28	10	0.36	Prostate	CR 54:6061
22-21.3	D8S360	11	5	0.45	Prostate	0 11:2121
Unknown	D8S18	18	0	0	Testis	G 5:134
SUM		5603	1838	0.33		

78 of 249 Chromosome 8 - q Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D8S260	28	7	0.25	Prostate	CR 54:6061
q22	D8S167	3 5	4	0.11	Prostate	CR 54:6061
Unknown	D8S257	16	0	0	Head&Neck	CR 54:4756
Unknown	D8S257	20	8	0.4	Head&Neck	CR 54:1152
Unknown	D8S257	14	0	0	Head&Neck	CR 54:4756
Unknown	D8S257	6	3	0.5	Kidney	GCC 12:76
Unknown	D8S257	26	2	0.08	Melanoma	CR 56:589
Unknown	D8S257	31	17	0.55	Prostate	CR 54:6061
Unknown	D8S273	30	6	0.2	Cervix	CR 56:197
Unknown	D8S273	19	3	0.16	Head&Neck	CR 54:1152
Unknown	D8S284	21	5	0.24	Cervix	CR 56:197
24	TG	2	0	0	Neuroblastoma	CR 49:1095
24	TG	14	4	0.29	Ovary	CR 53:2393
24	TG	9	0	0	Prostate	G 11:530
24	TG	8	0	0	Prostate	GCC 3:215
24	D8S39	14	1	0.07	Breast	CR 50:7184
24	D8S39	14	0	0	Cervix	CR 54:4481
24	D8S39	5	0	0	Cervix	GCC 9:119
24	D8S39	9	0	0	Esophageal	CR 51:2113
24	D8S39	22	0	0	Esophageal	CR 54:2996
24	D8S39	12	1	0.08	Kidney	CR 51:820
24	D8S39	20	4	0.2	Liver	CR 51:89
24	D8S39	1	1	1	Lung	CR 52:2478
24	D8S39	3	1	0.33	Lung	CR 52:2478
24	D8S39	8	1	0.12	Lung	CR 52:2478
24	D8S39	1	1	1	Lung	CR 52:2478
24	D8S39	16	5	0.31	Ovary	CR 51:5118
24	D8S39	7	0	0	Prostate	GCC 3:215
24	D8S39	17	2	0.12	Prostate	CR 53:3869
24	D8S39	14	1	0.07	Sarcoma	CR 52:2419
24	D8S39	18	4	0.22	Test is	0 9:2245
24	D8S39	8	0	0	Uterus	GCC 9:119
24	D8S39	8	0	0	Uterus	GCC 9:119
Unknown	Unknown	25	0	0	Brain	CR 50:5784
22-23	Unknown	2	0	0	Cervix	BJC 67:71
Unknown	D8S272	15	0	0	Endocrine	CR 56:599
Unknown	D8S177	42	4	0.1	Esophageal	GCC 10:177
Unknown	D8S272-D8S284	6	0	0	Kidney	PNAS 92:2854
Unknown	D8S272-D8S284	21	1	0.05	Kidney	PNAS 92:2854
Unknown	D8S:272-281	21	2	0.1	Leukemia	CR 55:5377
22-QTER	D8S161	19	5	0.26	Ovary	BJC 69:429

79 of 249 Chromosome 8 - q Arm

Unknown	D8S198	22	1	0.05	Uterus	CR 54:4294
Unknown	D8S84	20	0	0	Uterus	CR 54:4294
SUM		661	94	0.14		

80 of 249 Chromosome 9 - p Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D9S143	33	17	0.52	Ovary	BJC 73:420
Unknown	D9S129	33	18-	0.55	Ovary	BJC 73:420
22-24	D9S54	61	11	0.18	Bladder	CR 54:2848
22-PTER	D9S54	10	3	0.3	Ovary	BJC 69:429
Unknown	D9S132	5	1	0.2	Ovary	0 11:1249
Unknown	D9S132	3	0	0	Ovary	0 11:1249
Unknown	D9S199	21	15	0.71	Head&Neck	CR 54:1152
Unknown	D9S199	10	0	0	Ovary	0 11:1249
Unknown	D9S199	12	2	0.17	Ovary	0 11:1249
Unknown	D9S199	33	17	0.52	Ovary	BJC 73:420
Unknown	D9S324	23	2	0.09	Ovary	CR 55:2150
Unknown	D9S144	12	1	0.08	Ovary	0 11:1249
Unknown	D9S144	8	3	0.38	Ovary	0 11:1249
22	IFNA	40	26	0.65	Bladder	CR 54:2848
22	IFNA	12	1	0.08	Brain	CR 54:1397
22	IFNA	19	4	0.21	Brain	CR 54:1397
22	IFNA	89	21	0.24	Breast	IJC 64:378
Unknown	IFNA	13	4	0.31	Esophageal	CL 97:129
22	IFNA	2	0	0	Kidney	GCC 12:76
Unknown	IFNA	40	8	0.2	Kidney	JJCR 86:795
Unknown	IFNA	6	5	0.83	Lung	CR 55:28
Unknown	IFNA	15	8	0.53	Ovary	GO 55:245
Unknown	IFNA	28	3	0.11	Ovary	CR 55:2150
Unknown	IFNA	33	19	0.58	Ovary	BJC 73:420
22	IFNA	58	20	0.34	Ovary	AJHG 55:143
Unknown	IFNA	7	0	0	Ovary	0 11:1249
Unknown	IFNA	3	0	0	Ovary	0 11:1249
22	IFNA	19	5	0.26	Stomach	CR 55:1933
Unknown	IFNB	252	153	0.61	Bladder	CR 53:1230
22	IFNB1	252	153	0.61	Bladde r	CR 53:1230
Unknown	1FNB	6	0	0	Breast	CR 53:4356
22	IFNB1	1	0	0	Breast	GCC 2:191
22	IFNB1	12	1	0.08	Cervix	CR 54:4481
22	1FNB1	42	5	0.12	Leukemia	AHEM 68:171
22	IFNB1	44	0	0	Leukemia	AHEM 68:171
22	1FNB1	6	0	0	Prostate	G 11:530
22	IFNB1	7	5	0.71	Testis	0 9:2245
Unknown	D9S156	126	30	0.24	Breast	IJC 64:378
Unknown	D9S156	11	4	0.36	Esophageal	CL 97:129
Unknown	D9S156	18	13	0.72	Head&Neck	CR 54:1152
Unknown	D9S156	3	0	0	Ovary	0 11:1249

81 of 249 . Chromosome 9 - p Arm

Unknown	D9S156	13	4	0.31	Ovary	0 11:1249
21	D9S157	133	30	0.23	Breast	IJC 64:378
21	D9S157	30	5	0.17	Cervix	CR 56:197
21	D9S157	13	6	0.46	Esophageal	CL 97:129
21	D9S157	65	25	0.38	Esophageal	IJC 69:1
21	D9S157	. 5	1	0.2	Kidney	GCC 12:76
Unknown	D9S168	120	17	0.14	Breast	IJC 64:378
Unknown	D9S168	33 .	15	0.45	Ovary	BJC 73:420
21	CDKN2	109	20	0.18	Bladder	JNCI 87:1524
21	p15-p16	50	28	0.56	Esophageal	HMG 4:1883
- 21	CDKN2	55	1	0.02	Kidney	JJCR 86:795
21	CDKN2	34	7	0.21	Lung	GCC 14:164
21	CDKN2	50	24	0.48	Ovary	IJC 63:222
21	p15-p16	56	3	0.05	Sarcoma	CGC 86:136
21	MTS2	100	18	0.18	Bladder	JNCI 87:1524
21	D9S162	90	10	0.11	Breast	IJC 64:378
21	D9S162	9	3	0.33	Esophageal	CL 97:129
21	D9S162	33	4	0.12	Head&Neck	CR 54:4756
21	D9S162	41	13	0.32	Head&Neck	CR 54:4756
21	D9S162	4	0	0	Kidney	GCC 12:76
21	D9S162	33	17	0.52	Ovary	BJC 73:420
21	D9S162	12	1	0.08	Ovary	0 11:1249
21	D9S162	15	3	0.2	Ovary	0 11:1249
21	D9S171	139	28	0.2	Breast	IJC 64:378
21	D9S171	60	19	0.32	Esophageal	IJC 69:1
21	D9S171	11	4	0.36	Esophageal	CL 97:129
21	D9S171	3	0	0	Kidney	GCC 12:76
21	D9S171	12	3	0.25	Kidney	JJCR 86:795
Unknown	D9S:162-171	6	3	0.5	Kidney	GCC 12:76
21	D9S171	24	4	0.17	Lung	GCC 14:164
21	D9S171	8	5	0.62	Lung	CR 54:2307
Unknown	D9S:162-171	35	16	0.46	Melanoma	CR 56:589
21	D9S171	9	3	0.33	Ovary	0 11:1249
21	D9S171	33	16	0.48	Ovary	BJC 73:420
21	D9S171	15	1	0.07	Ovary	0 11:1249
Unknown	D9S126	252	152	0.6	Bladder	CR 53:1230
Unknown	D9S126	252	152	0.6	Bladder	CR 53:1230
Unknown	D9S126	80	15	0.19	Breast	IJC 64:378
Unknown	D9S126	16	3	0.19	Endocrine	CR 56:599
Unknown	IFN2o- D9S126	5	5	1	Lung	CR 55:513
Unknown	D9S126	9	0	0	Ovary	0 11:1249
			, .			

82 of 249 Chromosome 9 - p Arm

Unknown	D9S126	11	1	0.09	Ovary	0 11:1249
Unknown	D9S126	51	17	0.33	Ovary	AJHG 55:143
Unknown	D9S126	30	3	0.1	Ovary	CR 55:2150
Unknown	D9S126	33	17	0.52	Ovary	BJC 73:420
Unknown	D9S736	33	18	0.55	Ovary	BJC 73:420
Unknown	D9 S3	252	154	0.61	Bladder	CR 53:1230
21	D9 S3	16	3	0.19	Bladder	CR 54:2848
21	D9S3	4	1 .	0.25	Breast	CR 53:3804
21	D9S169	2 2	4	0.18	Cervix	CR 56:197
21	D9S169	8	6	0.75	Lung	CR 54:2307
21	\$161	15	5	0.33	Esophageal	CL 97:129
21	S161	5	1	0.2	Kidney	GCC 12:76
21	S161	10	2	0.2	Ovary	0 11:1249
21	\$161	14	0	0	Ovary	0 11:1249
Unknown	D9S104	117	20	0.17	Breast	IJC 64:378
Unknown	D9S104	63	27	0.43	Esophageal	IJC 69:1
Unknown	D9S104	33	15	0.45	Ovary	BJC 73:420
Unknown	D9S104	19	4	0.21	Uterus	CR 54:4294
21-qter	D9S52	12	5	0.42	Ovary	GO 55:245
Unknown	D9S165	4	0	0	Ovary	0 11:1249
Unknown	D9S165	8	0	0	Ovary	0 11:1249
Unknown	D9S200	11	2	0.18	Esophageal	CL 97:129
Unknown	D9S200	25	13	0.52	Head&Neck	CR 54:1152
Unknown	D9S200	33	13	0.39	Ovary	BJC 73:420
Unknown	D9S200	13	1	0.08	Ovary	0 11:1249
Unknown	D9S200	13	4	0.31	Ovary	0 11:1249
12	D9S55	14	1	0.07	Brain	CR 54:1397
12	D9S 55	18	2	0.11	Brain	CR 54:1397
12	D9S55	18	2	0.11	Brain	CR 54:1397
Unknown	D9S47	252	152	0.6	Bladder	CR 53:1230
Unknown	IFNa-	31	19	0.61	Bladder	CR 55:5213
	D9S:1751- 736-1747-					
	1748-1752-					
	171					
Unknown	Unknown	12	0	0	Brain	CR 50:5784
Unknown	D9S18	30	17	0.57	Esophageol	GCC 10:177
Unknown	MTS1	5	5	1	Esophageal	0 9:3737
Unknown	D9S168- D9S166	5	2	0.4	Kidney	PNAS 92:2854
Unknown	D9S168- D9S166	19	3	0.16	Kidney	PNAS 92:2854

83 of 249 Chromosome 9 - p Arm

Unknown	D9S:168-171	50	20	0.4	Leukemia	CR 55:5377
Unknown	Unknown	33	17	0.52	Lung	CR 54:2322
Unknown	D9S171- D9S126- D9S169	29	17	0.59	Lung	JCRCO 121:291
Unknown	D9S171- D9S126- D9S169	6	0	0	Lung	JCRCO 121:291
Unknown	D9S171- D9S126- D9S169	47	10	0.21	Lung	JCRCO 121:291
Unknown	OVC	15	5	0.33	Ovary	CR 53:2393
SUM		4921	1868	0.38		

	RADE	MARY				- •
Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D9S15	70	37	0.53	Bladder	0 11:1671
Unknown	D9S 15	11	1	0.09	Breast	CR 50:7184
13-21.1	D9S15	6	3	0.5	Cervix	GCC 9:119
13-21.1	D9S15	14	1	0.07	Esophageal	CR 54:2996
Unknown	D9S15	22	9	0.41	Esophageal	GCC 10:177
Unknown	D9S15	12	2	0.17	Kidney	CR 51:820
13-21.1	D9S15	6	1	0.17	Kidney	GCC 12:76
Unknown	D9S15	8	1	0.12	Lung	CR 52:2478
13-21.1	D9S15	14	5	0.36	Ovary	BJC 69:429
Unknown	D9S15	4	0	0	Ovary	CR 51:5118
Unknown	D9S15	16	2	0.12	Ovary	CR 55:2150
Unknown	D9S15	33	15	0.45	Ovary _.	BJC 73:420
Unknown	D9S15	10	3	0.3	Sarcoma	CR 52:2419
13-21.1	D9S15	10	2	0.2	Uterus	GCC 9:119
Unknown	D9S18	252,	151	0.6	Bladder	CR 53:1230
Unknown	D9S18	7	0	0	Cervix	GCC 9:119
Unknown	D9S18	28	10	0.36	Esophageal	CR 54:2996
Unknown	D9S18	13	4	0.31	Ovary	IJC 54:546
Unknown	D9S18	16	1	0.06	Uterus	GCC 9:119
Unknown	D9S27	8	2	0.25	Testis	0 9:2245
Unknown	D9S103	70	36	0.51	Bladder	0 11:1671
Unknown	09S103	33	16	0.48	Ovary	BJC 73:420
Unknown	D9S166	8	2	0.25	Ovary	0 11:1249
Unknown	D9S166	3	0 .	0	Ovary	0 11:1249
Unknown	ASSP3	252	155	0.62	Bladder	CR 53:1230
Unknown	ASSP3	8	0	0	Liver	CCG 48:72
11-22.0	ASSP3	19	7	0.37	Ovary	BJC 69:429
11-22.0	ASSP3	8	0	0	Stomach	CR 48:2988
Unknown	S153	70	37	0.53	Bladder	0 11:1671
pter-q11	D9S1	2	0	0	Cervix	CR 49:3598
pter-q11	D9S1	13	1	0.08	Colon	IJC 53:382
pter-q11	D9 S1	7	0	0	Liver	JJCR 81:108
pter-q11	D 9 S1	5	0	0	Neuroblastoma	CR 49:1095
pter-q11	D9 S1	1	0	0	Pancreas	CR 54:2761
pter-q11	D9 S1	14	1	0.07	Stomach	CR 52:3099
pter-q11	D9S1	6	0	0	Uterus	CR 51:5632
Unknown	D9S167	70	38	0.54	Bladder	011:1671
Unknown	D9S201	70	36	0.51	Bladder	0 11:1671
Unknown	D9S201	26	7	0.27	Ovary	CR 55:2150
Unknown	D75201	33	13	0.39	Ovary	BJC 73:420
Unknown	D75283	70	37	0.53	Bladder	0 11:1671
Ulliviottii	0/3200				•	

85 of 249 Chromosome 9 - q Arm

			• 1			
Unknown	D9S283	33	13	0.39	Ovary	BJC 73:420
Unknown	D9S12	70	36	0.51	Bladder	0 11:1671
Unknown	D9S12	9	0	0	Colon	CCG 48:167
Unknown	D9S12	33	12	0.36	Ovary	BJC 73:420
Unknown	D9S12	13	6	0.46	Ovary	CR 55:2150
Unknown	D9S119	70	38	0.54	Bladder	0 11:1671
Unknown	D9S197	6	3	0.5	Kidney	GCC 12:76
Unknown	D9S197	26	5	0.19	Melanoma	CR 56:589
Unknown	D9S22	252	154	0.61	Bladder	CR 53:1230
Unknown	D9S176	70	38	0.54	Bladder	0 11:1671
Unknown	D9S176	6	1	0.17	Kidney	GCC 12:76
Unknown	D9S29	4	1	0.25	Head&Neck	CL 79:67
Unknown	D9S29	19	- 11	0.58	Ovary	CR 55:2150
Unknown	D9S109	70	37	0.53	Bladder	0 11:1671
Unknown	D9S109	5	1	0.2	Kidney	GCC 12:76
Unknown	D9S109	29	6	0.21	Ovary -	CR 55:2150
Unknown	D9S127	70	36	0 .51	Bladder	0 11:1671
Unknown	D9S127	24	7	0.29	Ovary	CR 55:2150
Unknown	D9S127	33	18	0.55	Ovary	BJC 73:420
Unknown	D9S53	70	38	0.54	Bladder	0 11:1671
Unknown	D9S53	19	3	0.16	Head&Neck	CR 54:1152
Unknown	D9S53	35	12	0.34	Ovary	CR 55:2150
Unknown	D9S53	33	19	0.58	Ovary	BJC 73:420
Unknown	D9S53	24	1	0.04	Uterus	CR 54:4294
Unknown	D9S58	70	37	0.53	Bladder	0 11:1671
Unknown	D9S58	27	7	0.26	Ov ary	CR 55:2150
Unknown	D9S105	70	37	0.53	Bladder	0 11:1671
Unknown	HXB	70	39	0.56	Bladder	0 11:1671
Unknown	HXB	33	17	0.52	Ovary	BJC 73:420
Unknown	HXB	24	10	0.42	Ovary	CR 55:2150
Unknown	HXB	19	1	0.05	Uterus	CR 54:4294
Unknown	D9S155	33	15	0.45	Ovary	BJC 73:420
Unknown	D9S16	12	6	0.5	Ovary	CR 55:2150
Unknown	D9S59	70	37	0.53	Bladder	0 11:1671
Unknown	D9S59	33	18	0.55	Ovary	BJC 73:420
Unknown	D9S59	30	10	0.33	Ovary	CR 55:2150
Unknown	D9S154	70	38	0.54	Bladder	0 11:1671
Unknown	D9S154	34	5	0.15	Cervix	CR 56:197
Unknown	D9S302	36	4	0.11	Brain	CR 55:4696
Unknown	D9S302	36	4	0.11	Brain	CR 55:4696
Unknown	D9S258	70	35	0.5	Bladder	0 11:1671
3 3	GSN	70	39	0.56	Bladder	0 11:1671
	Cill	CTITIET	CHEET (DIE	r ani		

86 of 249 Chromosome 9 - q Arm

						CD C 4 11 CO
33	GSN	17	3	0.18	Head&Neck	CR 54:1152
3 3	GSN	5	0	0	Kidney	GCC 12:76
3 3	GSN	18	8	0.44	Ovary	BJC 69:429
Unknown	GSN	33	16	0.48	Ovary	BJC 73:420
3 3	GSN	15	7	0.47	Ovary	CR 55:2150
Unknown	D9S49	252	154	0.61	Bladder	CR 53:1230
31-34	D9S28	39	5	0.13	Bladder	CR 54:2848
31-34	D9S28	1	1	1	Heod&Neck	CL 79:67
Unknown	D9S60	70	36	0.51	Bladd er	0 11:1671
Unknown	D9S61	70	38	0.54	Bladder	0 11:1671
34-QTER	D9S64	17	8	0.47	Ovary	BJC 69:429
Unknown	D9S64	18	10	0.56	Ovary	CR 55:2150
34.1	ABL	65	13	0.2	Bladder	CR 54:2848
34.1	ABL	70	37	0.53	Bladder	0 11:1671
34.1	ABL	33	15	0.45	Ovary	BJC 73:420
34.1	ABL	25	10	0.4	Ovary	CR 55:2150
34-qter	ASS	20	5	0.25	Bladd er	CR 54:2848
34-qter	ASS	17	0	0	Brain	CR 54:1397
34-qter	ASS	12	0	0	Brain	CR 54:1397
34-qter	ASS	14	2	0.14	Lung	PN 84:9252
34-qter	ASS	34	13	0.38	Ovary	CR 55:2150
Unknown	D9S164	6	1	0.17	Kidney	PNAS 92:2854
Unknown	D9S164	20	3	0.15	Kidney	PNAS 92:2854
Unknown	D9S101	252	154	0.61	Bladder	CR 53:1230
34.3	D9S10	41	13	0.32	Bladder	CR 54:2848
34 .3	D9S10	15	8	0.53	Ovary	CR 55:2150
Unknown	D9S66	70	38	0.54	Bladder	0 11:1671
Unknown	D9S14	252	151	0.6	Bladder	CR 53:1230
Unknown	D9S67	70	36	0.51	Bladder	0 11:1671
Unknown	D9S13	2 52	151	0.6	Bladder	CR 53:1230
34	D9S17	35	6	0.17	Breast	CR 50:7184
	D9S17	21	16	0.76	Esophageal	GCC 10:177
34	D9S17	31	8	0.26	Lung	CR 52:2478
34		20	2	0.1	Ovary	CR 51:5118
34	D9S17		155	0.62	Bladder	CR 53:1230
Unknown	D9S7	252	133	0.2	Bladder	CR 54:2848
34	D9S7	65		0.2	Brain	CR 49:6572
34	D9S7	7	0	0.1	Breast	GCC 2:191
34	D9S7	21	2		Breast	CR 53:4356
Unknown	D9S7	44	6	0.14	Breast	CR 53:3804
34	D9S7	5	l	0.2		GCC 9:119
34	D9S7	3	2	0.67	Cervix	CR 54:4481
34	D9S7	Cliberti	ITE SH ĒET (F	0.15 MH E 36 \	Cervix	CN 34:4401
	(JIIIGANA	he outei (1	IULE ZO/		

87 of 249 Chromosome 9 - q Arm

34	D9S7	20	1	0.05	Endocrine	GCC 13:9
Unknown	D9S7	9	0	0	Esophageal	CR 51:2113
34	D9S7	24	7	0.29	Esophageal	CR 54:2996
34	D9S7	10	ì	0.1	Kidney	CR 51:820
34	D9S7	9	0	0	Liver	CR 51:89
34	D9 S7	6	1	0.17	Liver	BJC 64:1083
34	D9 S7	11	Ì	0.09	Liver	BJC 67:1007
Unknown	D9S7	32	6	0.19	Ovary	IJC 54:546
34	D9S7	6	. 1	0.17	Ovary	CR 55:2150
34	0957	2	0	0	Pancreas	CR 54:2761
34	D9S7	13	1	0.08	Pancreas	BJC 65:809
34	D9S7	12	0	0	Prostate	G 11:530
34	D9S7	13	2	0.15	Prostate	CSurveys 11:15
34	D9S7	11	2	0.18	Sarcoma	CR 52:2419
Unknown	D9S7	19	1	0.05	Test is	GCC 13:249
Unknown	D9S7	33	16	0.48	Testis	0 9:2245
34	D9S7	5	1	0.2	Uterus	GCC 9:119
Unknown	D9S11	252	153	0.61	Bladder	CR 53:1230
34	D9S7- D9S11- D9S13	2 52	149	0.59	Bladder	0 8:1083
34	D9S7- D9S11- D9S13	2 52	149	0.59	Bladder	0 8:1083
Unknown	GSN- D9S:15- 12	28	17	0.61	Bladder	CR 55:5213
Unknown	Unknown	20	1	0.05	Brain	CR 50:5784
21.1-22.2	Unknown	14	1 .	0.07	Brain	CR 54:1397
21.1-22.2	Unknown	19	0	0	Brain	CR 54:1397
Unknown	D9S6	13	0	0	Colon	CCG 48:167
Unknown	D9S146	9	1	0.11	Endocrine	CR 56:599
Unknown	D9S160-180	44	26	0.59	Head&Neck	CR 54:4756
Unknown	D9S160-180	39	2	0.05	Head&Neck	CR 54:4756
Unknown	D9S:154-164- 180	52	10	0.19	Leukemio	CR 55:5377
Unknown	Unknown	33	16	0.48	Lung	CR 54:2322
Unknown	D9S15-10	26	- 14	0.54	Ovary	CR 53:2393
Unknown	Unknown	19	2	0.11	Prostate	PNAS 87:8751
SUM		6593	3076	0.47		

88 of 249 Chromosome 10 - p Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
pter-p11.2	D10S89	17	0	0	Uteru s	CR 54:4294
Unknown	Unknown	38	15	0.39	Brain	CR 50:5784
Unknown	D10S109	7	0	0	Brain	CR 53:2386
Unknown	D10S109	6	2	0.33	Brain	CR 53:2386
11.2	D10S111	9	0	0	Brain	CR 53:2386
11.2	D10S111	6	0	0	Brain	CR 53:2386
pter-p11.2	D10S89	8	0	. 0	Brain	CR 53:2386
pter-p11.2	D10S89	16	1	0.06	Brain	CR 54:1397
pter-p11.2	D10S89	6	1	0.17	Brain	CR 53:2386
	D10S89	13	0	0	Brain	CR 54:1397
pter-p11.2	FNRB- D10S28	72	31	0.43	Brain	CR 56:164
Unknown	D10 S28	32	4	0.12	Breast	CR 50:7184
pter-q13	D10S15	15	0	0	Breast	GCC 2:191
Unknown	D10 S28	42	9	0.21	Cervix	CR 54:4481
pter-q13 Unknown	D10S191	32	1	0.03	Cervix	CR 56:197
13-12.2	D10S24	4	0	0	Cervix	CR 54:4481
	D10S28	7	1	0.14	Cervix	GCC 9:119
Unknown	D105249	14	1	0.07	Endocrine	CR 56:599
Unknown	D10589	20	1	0.05	Endocrine	GCC 13:9
pter-p11.2	D10307	33	11	0.33	Esophageal	GCC 10:177
pTER-p13	D10517	14	2	0.14	Esophageal	CR 54:2996
pTER-p13	D10S226	11	0	0	Head&Neck	CR 54:4756
Unknown	D105226	12	0	0	Head&Neck	CR 54:4756
Unknown	D10S249	22	5	0.23	Head&Neck	CR 54:1152
Unknown	D103247	31	3	0.1	Kidney	CR 51:5817
pter-q13	D10 S28	34	3	0.09	Kidney	CR 51:820
pter-q13	D10517	11	1	0.09	Kidney	CR 51:5817
pTER-p13	D10S226	6	3	0.5	Kidney	GCC 12:76
Unknown	D10S249-D10S191	21	0	0	Kidney	PNAS 92:2854
Unknown	D10S249-D10S191	5	0	0	Kidney	PNAS 92:2854
Unknown	D102249-D102171	39	0	0	Liver	CR 51:89
pter-q13		35	5	0.14	Lung	CR 52:2478
pter-q13	D10 S28		4	0.5	Melanomo	GCC 8:178
11-23.0	D10S14	8	3	0.6	Melanoma	GCC 8:178
Unknown	D10S15	5 20		0.17	Melanomo	CR 56:589
Unknown	D10S226	23	4	0.36	Melanoma	GCC 8:178
Unknown	D10S28	14	5	0.30	Melanoma	GCC 8:178
Unknown	D10S33	3	0	0.4	Melanoma	GCC 8:178
pter-p11.2	D10S89	10	4	0. 4 0.11	Ovary	CR 51:5118
pter-q13	D10 S28	27	3.	0.11	Ovary	IJC 54:546
pter-q13	D10 S28	35	5	U.14	Ovaty	

WO 98/41648

89 of 249 Chromosome 10 - p Arm

Unknown	D10S13-28	33	4	0.12	Ovary	CR 53:2393
pter-q13	D10 S28	7	3	0.43	Pancreos	CR 54:2761
pter-q13	D10 S28	19	4	0.21	Prostate	BJU 73:390
11-23.0	D10S14	11	3	0.27	Prostate	GCC 3:215
13-pter	D10S17	18	0	0	Prostate	CSurveys 11:15
pTER-p13	D10S17	11	6	0.55	Prostate	G 11:530
pter-p12	D10S17	11	6	0.55	Prostate	GCC 3:215
pTER-p13	D10S17	18	0	. 0	Prostate	PNAS 87:8751
13-12.2	D10S24	14	4	0.29	Prostate	GCC 3:215
pter-p12	D10S17	14	5	0.36	Sarcoma	CR 52:2419
pter-q13	D10 S28	47	5	0.11	Testis	0 9:2245
Unknown	D10S28	14	4	0.29	Uterus	GCC 9:119
pter-p11.2	D10S89	17	0	0	Uterus	CR 54:4294
SUM		980	172	0.18		

90 of 249 Chromosome 10 - q Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
24-TER	PLAU	5	0	0	Uterus	CR 51:5632
Unknown	Unknown	37	14	0.38	Brain	CR 50:5784
12-qter	Unknown	12	0	0	Brain	CR 54:1397
11.2	Unknown	12	0	0	Brain	CR 54:1397
11.2	Unknown	17	2	0.12	Brain	CR 54:1397
12-gter	Unknown	15	1	0.07	Brain	CR 54:1397
Unknown	D10S:25-22-1	64	21	0.33	Brain	CR 56:164
22-23	D10S1	5	0	0	Brain	CR 48:5546
22-23	D10S1	4	0	0	Brain	CR 48:5546
22-23	D10S1	10	10	1	Brain	CR 48:5546
Unknown	D10S169	7	0	0	Brain	CR 53:2386
Unknown-	D10S169	5	2	0.4	Brain	CR 53:2386
22-23	D10S4	21	20	0.95	Brain	CR 48:5546
22-23	D10S4	6	0	0	Brain	CR 48:5546
22-23	D10S4	11	0	0	Brain	CR 48:5546
24-TER	PLAU	10	0	0	Brain	CR 48:5546
24-TER	PLAU	5	0	0	Brain	CR 48:5546
24-TER	PLAU	14	14	1	Brain	CR 48:5546
22-23	D10S1	18	2	0.11	Breast	CR 53:4356
26	D10S25	6	2	0.33	Breast	CR 53:3804
26	D10S25	23	2	0.09	Breast	CR 50:7184
26	D10S25	30	5	0.17	Breast	GCC 2:191
22-23	D10S4	18	4	0.22	Breast	GCC 2:191
Unknown	D10S205	32	4	0.12	Cervix	CR 56:197
26	D10S25	32	9	0.28	Cervix	CR 54:4481
26	D10S25	8	2	0.25	Cervix	GCC 9:119
11	D10S30	8	2	0.25	Cervix	GCC 9:119
21.1	D10S5	17	1	0.06	Cervix	CR 54:4481
24-TER	PLAU	4	1	0.25	Cervix	CR 49:3598
24-TER	PLAU	6	0	0	Colon	IJC 53:382
Unknown	D10S187	22	2	0.09	Endocrine	CR 56:599
26	D10S25	25	4	0.16	Esophageal	CR 54:2996
26	D10S25	36	6	0.17	Esophageal	GCC 10:177
26	D10S25	17	0	0	Esophageal	CR 51:2113
Unknown	D10S185	12	3	0.25	Head&Neck	CR 54:4756
Unknown	D10S185	21	0	0	Head&Neck	CR 54:4756
Unknown	D10S221	24	5	0.21	Head&Neck	CR 54:1152
22-25	D10S13	32	9	0.28	Kidney	CR 51:5817
21	D10S14	17	5	0.29	Kidney	CR 51:5817
Unknown	D10S185	6	3	0.5	Kidney	GCC 12:76
21-TER	D10S20	25	8	0.32	Kidney	CR 51:5817

91 of 249 Chromosome 10 - q Arm

Unknown	D10S212- D10S190	19	1	0.05	Kidney	PNAS 92:2854
Unknown	D10S212- D10S190	5	0	0	Kidney	PNAS 92:2854
21	D10S22	10	3	0.3	Kidney	CR 51:5817
21	D10S23	15	3	0.2	, Kidney	CR 51:5817
26	D10S25	30	10	0.33	Kidney	CR 51:5817
26	D10S25	21	6	0.29	Kidney	CR 51:820
22-25	D10S27	26	3	0.12	Kidney	CR 51:5817
11	D10S30	13	2	0.15	Kidney	CR 51:5817
26	D10S36	27	5	0.19	Kidney	CR 51:5817
Unknown	D10S201	19	1	0.05	Leukemia	CR 55:5377
Unknown	Unknown	16	0	0	Liver	CR 51:89
22-23	D10S1	3	1	0.33	Liver	CCG 48:72
26	D10S25	24	6	0.25	Liver	CR 51:89
Unknown	D1 0 S26	24	6	0.25	Liver	CR 51:89
24-TER	PLAU	20	0	0	Liver	JJCR 81:108
26	D10S25	25	5	0.2	Lung	CR 52:2478
Unknown	ATC	9	4	0.44	Melanoma	CR 54:3111
Unknown	CHLC.GGAA2F11	14	6	0.43	Melanomo	CR 54:3111
Unknown	D10S108	5	1	0.2	Melanoma	CR 54:3111
Unknow n	D10S110	4	2	0.5	Melanoma	CR 54:3111
Unknown	D10S168	8	5	0.62	Melanoma	CR 54:3111
Unknown	D10S169	8	1	0.12	Melanoma	CR 54:3111
Unknown	D10S185	29	9	0.31	Melanoma	CR 56:589
Unknown	D10S187	12	3	0.25	Melanoma	CR 54:3111
21-22	D10S19	8	3	0.38	Melanoma	GCC 8:178
21-TER	D10S20	4	3	0.75	Melanoma	GCC 8:178
Unknown	D10S221	12	4	0.33	Melanoma	CR 54:3111
26	D1 0S36	9	4 .	0.44	Melanoma	GCC 8:178
Unknown	D10S610	9	4	0.44	Melanoma	CR 54:3111
Unknown	D10S88	6	3	0.5	Melanoma	CR 54:3111
24-TER	PLAU	5	0	0	Neuroblastomo	CR 49:1095
Unknown	D10S1-20	19	2	0.11	Ovary	CR 53:2393
Unknown	D10S173	16	3	0.19	Ovary	BJC 69:429
26	D10S25	34	4	0.12	Ovary	IJC 54:546
26	D10S25	24	5	0.21	Ovary	CR 51:5118
26	D10S25	4	0	0	Pancreas	CR 54:2761
Unknown	Unknown	24	7	0.29	Prostate	CSurveys 11:15
22-23	D10S1	2	0	0	Prostate	GCC 3:215
21-22	D10S19	8	1	0.12	Prostate	GCC 3:215
21-22	D10S19	7	0	0	Prostate	GCC 11:119

92 of 249 Chromosome 10 - q Arm

91 TCD	D10S20	8	2	0.25	Prostate	GCC 3:215
21-TER			3	0.23	Prostate	GCC 11:119
26	D10S25	8				
26	D10S25	13	4	0.31	Prostate	6 11:530
26	D1 OS25	13	4	0.31	Prostate	GCC 3:215
Unknown	D10S26	9	2	0.22	Prostate	GCC 3:215
22-23	D10S4	10	1	0.1	Prostate	GCC 3:215
26	D10S90	19	8	0.42	Prostate	BJU 73:390
26	OAT	25	7	0.28	Prostate	PNAS 87:8751
24-TER	PLAU	9	2	0.22	Prostate	GCC 3:215
26	D1 0S25	17	9	0.53	Sarcoma	CR 52:2419
Unknown	Unknown	2	0	0	Stomach	CR 48:2988
Unknown	D10S26	20	0	0	Stomach	CR 51:2926
26	D10S25	34	9	0.26	Testis	0 9:2245
11.2	PTC	1	0	0	Testis	CCG 52:72
11.2	PTC	2	1	0.5	Testis	CCG 52:72
11.2	PTC	1.	0	0	Testis	CCG 52:72
Unknown	D10S173	16	1	0.06	Uterus	CR 54:4294
26	D10S25	14	6	0.43	Uterus	GCC 9:119
11	D10S30	12	3	0.25	Uterus	GCC 9:119
24-TER	PLAU	5	0	0	Uterus	CR 51:5632
SUM		1509	351	0.23		

93 of 249 Chromosome 11 - p Arm

Band	Marker	Total	Cases w/LOH	LOH Freg.	Tumor Type	Reference
Unknown	HRAS1-D11S12	17	7	0.41	Bladder	CR 51:5405
15.5	HRAS	7	2	0.29	Brain	CR 49:6572
15.5	HRAS	30	3	0.1	Breast	GCC 4:113
15.5	HRAS	24	3	0.12	Breast	CR 53:4486
15.5	HRAS	5	0	0	Breast	GCC 2:191
15.5	HRAS	68	21	0.31	Breast	GCC 12:304
15.5	HRAS	30	8	0.27	Breast	IJC 53:11
15.5	HRAS	29	5	0.17	Breast	JJCR 84:1159
15.5	HRAS	-7	1	0.14	Breast	CR 53:3804
15. 5	HRAS	3 3	1	0.03	Breast	CR 53:4356
15.5	HRAS	37	7	0.19	Breast	GE 5:554
15.5	HRAS	6	0	0	Cervix	CR 49:3598
15.5	HRAS	18	6	0.33	Cervix	PNAS 91:6953
15.5	HRAS	15	1	0.07	Cervix	BJC 67:71
15.5	HRAS	10	0	0	Colon	N 331:273
15.5	HRAS	16	0	0	Colon	CCG 48:167
15.5	HRAS	9	0	0	Colon	N 331:273
15.5	HRAS	9	1	0.11	Esophageal	CR 51:2113
15.5	HRAS	21	4	0.19	Esophageal	GCC 10:177
15.5	HRAS	20	8	0.4	Esophageal	CR 54:2996
15.5	HRAS	12	1	0.08	Head&Neck	CR 52:1494
15.5	HRAS	3	0	0	Kidney	CMB 38:59
15.5	HRAS	14	1	0.07	Kidney	CR 51:1071
15.5	HRAS	5	0	0	Kidney	CMB 38:59
15.5	HRAS	13	4	0.31	Leukemia	B 75:819
15 .5	HRAS	5	0	0	Liver	JJCR 81:108
15.5	HRAS	3	0	0	Liver	BJC 67:1007
15.5	HRAS	13	0	0	Liver	GCC 1:312
15.5	HRAS	. 4	0	0	Liver	PNAS 86:8852
15.5	HRAS	10	5	0.5	Liver	CCG 48:72
15.5	HRAS	5	0	0	Liver	BJC 64:1083
15.5	HRAS	47	7	0.15	Lung	GCC 10:183
15.5	HRAS	39	7	0.18	Lung	CR 54:1145
15.5	HRAS	13	5	0.38	Lung	PN 86:5099
15.5	HRAS	13	6	0.46	Lung	PN 91:5513
15.5	HRAS	2	1	0.5	Lung	PN 91:5513
15.5	HRAS	12	6	0.5	Lung	PN 86:5099
15.5	HRAS	7	1	0.14	Lung	NEJ 317:1109
15.5	HRAS	5	2	0.4	Lung	PN 86:5099
15.5	HRAS	13	3	0.23	Lung	PN 84:9252
15.5	HRAS	6	2	0.33	Lung	PN 91:5513

94 of 249 Chromosome 11 - p Arm

16.6	HRAS	4	0	0	Neuroblastoma	CR 49:1095
15.5 15.5	HRAS	25	10	0.4	Ovary	GO 47:137
15.5	HRAS	15	4	0.27	Ovary	GO 55:245
15.5	HRAS	11	5	0.45	Ovary	CR 50:2724
15.5	HRAS	ii	2	0.18	Ovary	IJC 54:546
15.5	HRAS	27	12	0.44	Ovary	C 72:2423
15.5	HRAS	10	5	0.5	Ovary	CR 49:1220
. 15.5	HRAS	13	2	0.15	Ovary	BJC 67:268
15.5	HRAS	19	9	0.47	Ovary	BRJ 66:1030
15.5	HRAS	5	2	0.4	Pancreas	BJC 65:809
15.5	HRAS	20	7	0.35	Pediatric	CR 50:3279
15.5	HRAS	15	5	0.33	Pediatric	HG 97:163
15.5	HRAS	9	0	0	Prostate	GCC 11:119
15.5	HRAS	11	5	0.45	Sarcoma	CR 52:2419
15.5	HRAS	11	5	0.45	Sarcoma	CR 52:2419
15.5	HRAS	9	0	0	Stomach	CR 48:2988
15.5	HRAS	28	1	0.04	Stomach	CR 51:2926
15.5	HRAS	19	7	0.37	Stomach	HG 92:244
15.5	HRAS	6	0	0	Stomach	HG 89:445
15.5	HRAS	15	7	0.47	Testis	GCC 9:153
15.5	HRAS	5	2	0.4	Testis	CCG 52:72
15.5	HRAS	12	3	0.25	Testis	GCC 9:153
15.5	HRAS	13	5	0.38	Testis	G 5:134
15.5	HRAS	17	3	- 0.18	Testis	JU 153:1684
15.5	HRAS	15	0	0	Test is	GCC 13:249
15.5	HRAS	15	5	0.33	Testis	GCC 7:85
15.5	HRAS	3	1	0.33	Testis	CCG 52:72
15.5	HRAS	3	1	0.33	Testis	CCG 52:72
15.5	HRAS	9	1	0.11	Uterus	CR 51:5632
15.5	IGF2	7	2	0.29	Bladder	HG 91:455
15.5	IGF2	15	1	0.07	Breast	GE 5:554
15.5	IGF2	13	3	0.23	Cervix	0 12:423
15.5	IGF2	1	0	0	Lung	PN 91:5513
15.5	IGF2	7	0	0	Lung	PN 91:5513
15.5	IGF2	1	0	0	Lung	PN 91:5513
15.5	IGF2	14	6	0.43	Ovary	BRJ 66:1030
15.5	IGF2	9	6	0.67	Testis	JU 153:1684
15.5	MUC2	17	2	0.12	Testis	GCC 13:249
15.5	H19	14	2	0.14	Cervix	0 12:423
Unknown	D11S922	46	8	0.17	Head&Neck	CR 54:4756
Unknown	D11S922	40	1	0.03	Head&Neck	CR 54:4756
Unknown	D11S922	6	1	0.17	Kidney	PNAS 92:2854
J. III J. III		CHIDOTTIN				

WO 98/41648

95 of 249 Chromosome 11 - p Arm

Unknown	D11S922	19	1	0.05	Kidney	PNAS 92:2854
Unknown	D11S922	8	4	0.5	, Pediatric	HG 97:163
Unknown	D11S922	49	16	0.33	Stomach	CR 56:268
Unknown	D11S1318	16	7	0.44	Pediatric	HG 97:163
Unknown	D11S1318	15	9	0.6	Stomach	CR 56:268
15.5	INS	31	3	0.1	Breast	CR 50.7184
15.5	INS	23	4	0.17	Breast	GCC 2:191
15.5	INS	31	3	0.1	Breast	CR 50:7184
15.5	INS	3	0	0	Cervix	CR 49:3598
15.5	INS	3	0	0	Cervix	CR 49:3598
15.5	INS	15	3	0.2	Colon	IJC 53:382
15.5	INS .	15	3	0.2	Colon	IJC 53:382
15.5	INS	8	2	0.25	Endocrine	CR 51:1154
15.5	INS	22	5	0.23	Kidney ·	CR 51:820
15.5	INS	7	0	0	Kidney	CMB 38:59
15.5	INS	21	3	0.14	Kidney	CR 51:1071
15.5	INS	7	0	0	Kidney	CMB 38:59
15.5	INS	22	5	0.23	Kidney	CR 51:820
15.5	INS	6	0	0	Liver	GCC 1:312
15.5	INS	6	1	0.17	Liver	CR 51:4367
15.5	INS	9	0	0	Liver	JJCR 81:108
15.5	INS	11	3	0.27	Liver	CR 51:89
15.5	INS	10	2	0.2	Liver	CCG 48:72
15.5	INS	10	3	0.3	Lung	PN 86:5099
15.5	INS	5	1	0.2	Lung	PN 86:5099
15.5	INS	14	7	0.5	Լսոց	PN 86:5099
15.5	INS	33	12	0.36	Lung	GCC 10:183
15.5	INS	8	1	0.12	Lung	PN 91:5513
15.5	INS	2	0	0	Lung	PN 91:5513
15.5	INS	8	1	0.12	Lung	PN 91:5513
15.5	INS	12	3	0.25	Lung	PN 84:9252
15.5	INS	6	0	0	Neuroblastoma	CR 49:1095
15.5	INS	5	0	0	Ovary	CR 50:2724
15.5	INS	13	7	0.54	Ovary	GO 55:245
15.5	INS	32	12	0.38	Ovary	C 72:2423
15.5	INS	27	7	0.26	Ovary	CR 51:5118
15.5	INS	20	7	0.35	Ovary	BRJ 66:1030
15.5	INS	. 23	10	0.43	Pediatric	CR 50:3279
15.5	INS	9	0	0	Stomoch	CR 48:2988
15.5	INS	2	0	0	Stomach	CR 52:3099
15.5	INS	15	4	0.27	Testis	GCC 7:96
15.5	INS	5	1	0.2	Testis	CCG 52:72

96 of 249 Chromosome 11 - p Arm

15.5	INS	2	0	0	Testis	CCG 52:72
15.5	INS	5	2	0.4	Testis	CCG 52:72
15.5	INS	15	3	0.2	Testis	G 5:134
15 .5	INS	18	3	0.17	Testis	GCC 13:249
15.5	INS	3	0	0	Uterus	CR 51:5632
15.5	TH	15	1	0.07	Brain	CR 54:1397
15.5	TH	21	3	0.14	Brain	CR 54:1397
15.5	TH	16	4	0.25	Breast	HMG 4:1889
15.5	TH	14	4	0.29	Breast	CR 54:6270
15.5	TH	41	11	0.27	Breast	CR 53:4486
15.5	TH	14	1	0.07	Cervix	BJC 67:71
15.5	TH	20	8	0.4	Cervix	PNAS 91:6953
15.5	· TH	10	0	0	Kidney	CMB 38:59
15.5	TH	8	0	0	Kidney	CMB 38:59
15.5	TH	8	1	0.12	Lung	PN 91:5513
15.5	TH	10	0	0	Lung	PN 91:5513
15.5	TH	2	0	0	Lung	PN 91:5513
15.5	TH	20	7	0.35	Ovary	GO 55:245
15.5	TH	23	9	0.39	Pediatric	HG 97:163
15.5	DRD4	7	1	0.14	Lung	PN 91:5513
15.5	DRD4	3	0	0	Lung	PN 91:5513
Unknown	D11S454	13	6	0.46	Liver	CR 51:89
Unknown	D11S454	18	4	0.22	Lung	CR 52:2478
Unknown	D11S454	11	0	0	Ovary	CR 51:5118
15.5	D11S988	1	0	0	Lung	PN 91:5513
15.5	D115 98 8	2	0	0	Lung	PN 91:5513
15.5	D11S988	17	6	0.35	Pediatric	HG 97:163
15.5	D11S988	17	12	0.71	Stomach	CR 56:268
15.5	D11S12	32	5	0.16	Breast	GE 5:554
15.5	D11S12	3	1	0.33	Breast	GCC 2:191
15.5	D11S12	0	0	0	Cervix	CR 49:3598
15 .5	D11S12	12	5	0.42	Cervix	CR 54:4481
15 .5	D11S12	33	6	0.18	Esophageal	CR 54:2996
15.5	D11S12	15	3	0.2	Kidney	CR 51:1071
15.5	D11S12	11	8	0.73	Lung	PN 91:5513
15.5	D11S12	1	1	1	Lung	PN 91:5513
15.5	D11S12	٠ 4	2	0.5	Lung	PN 91:5513
15.5	D11S12	4	2	0.5	Ovary	BRJ 66:1030
15.5	D11S12	3	1	0.33	Stomach	HG 89:445
15.5	D11S12	1	1	1	Testis	CCG 52:72
15.5	D11S12	20	6	0.3	Testis	0 9:2245
15.5	D11S12	1	0	0	Testis	CCG 52:72
	Alla	MITTER ALE				

97 of 249 Chromosome 11 - p Arm

15.5	D11S12	8	3	0.38	Testis	JU 153:1684
15.5	D11S12	5	1	0.2	Uterus	CR 51:5632
15.5-15.4	RRM1	42	7	0.17	Lung	GCC 10:183
15.5	НВВ	27	<i>.</i> 9	0.33	Breast	CR 53:4486
15	HBG	6	0	0	Liver	PNAS 86:8852
15.5	HBB	2	0	0	Lung	PN 91:5513
15.5	НВВ	4	0	0	Lung	PN 91:5513
15.5	нвв	6	0	0	Lung	PN 91:5513
15.5	HBG2	2	0	0	Lung	PN 86:5099
15.5	HBG2	8	4	0.5	Lung	PN 86:5099
15.5	HBG2	5	4	0.8	Lung	PN 86:5099
15.5	HBB	21	7	0.33	Pediatric	HG 97:163
15	GLOBIN	30	4	0.13	Breast	GE 5:554
15	GLOBIN	16	4	0.25	Ovary	BRJ 66:1030
Unknown	GLOBIN	14	5	0.36	Ovary	BRJ 66:1030
Unknown	GLOBIN	13	2	0.15	Ovary	BRJ 66:1030
15.5	D11S932	5	0	. 0	Lung	PN 91:5513
15.5	D11S932	9	1	0.11	Lung	PN 91:5513
15.5	D11S 93 2	1	0	0	Lung	PN 91:5513
Unknown	D11S569	27	13	0.48	Stomach	CR 56:268
Unknown	D11S569	24	3	0.12	Uterus	CR 54:4294
pter-15.4	PTH	11	1	0.09	Bladder	HG 91:455
pter-15.4	PTH	15	1	0.07	Kidney	CR 51:1071
pter-15.4	PTH	7	0	0	Liver	GCC 1:312
pter-15.4	PTH	8	1	0.12	Liver	CCG 48:72
pter-15.4	PTH	7	1	0.14	Lung	PN 91:5513
pter-15.4	PTH	5	1	0.2	Lung	PN 91:5513
pter-15.4	PTH	29	9	0.31	Ovary	C 72:2423
pter-15.4	PTH	7	0	0	Testis	GCC 7:96
pter-15.4	PTH	3	2	0.67	Testis	CCG 52:72
pter-15.4	PTH	ì	0	0	Testis	CCG 52:72
pter-15.4	PTH	1	0	0	Testis	CCG 52:72
pter-15.4	PTH	15	6	0.4	Testis	JU 153:1684
13-15.1	D11S419	14	6	0.43	Ovary	BJC 69:429
Unknown	D11S902	28	8	0.29	Cervix	PNAS 91:6953
14-qter	D11S899	23	4	0.17	Head&Neck	CR 54:1152
14-qter	D11S899	6	0	0	Kidney	GCC 12:76
15.5	D11S861	21	5	0.24	Endocrine	CR 56:599
15.5	D11S861	1	0	0	Lung	PN 91:5513
15.5	D11S861	9	0	0	Lung	PN 91:5513
15.5	D11S861	7	0	0	Lung	PN 91:5513
Unknown	D11S860	27	9	0.33	Breast	CR 53:4486

98 of 249 Chromosome 11 - p Arm

15.5	D11S860	36	10	0.28	Breast	Unknown
15.5	D11S860	36	10	0.28	Breast	CR 54:6270
15.5	D11S860	7	0	0	Lung	PN 91:5513
15.5	D11S860	7	0	0	Lung	PN 91:5513
15.5	D11S860	2	0	0	Lung	PN 91:5513
15.5	D11S860	5	0	0	Լսոց	PN 91:5513
15.5	D11S860	5	0	0	Lung	PN 91:5513
15.5	D11S860	2	0	0	Lung	PN 91:5513
15.5	D11S860	16	6	0.38	Pediatric	HG 97:163
15.5	D11S860	44	16	0.36	Stomach	CR 56:268
15.4	CALCA	6	0	0	Bladder	HG 91:455
15.4	CALCA	17	1	0.06	Breast	GCC 2:191
15.4	CALCA	2 2	0	0	Breast	GE 5:554
15.4	CALCA	10	3	0.3	Cervix	BJC 67:71
15.4	CALCA	5	0	0	Kidney	CMB 38:59
15.4	CALCA	4	0	0	Kidney	CMB 38:59
15.4	CALCA	7	0	0	Liver	CCG 48:72
15.4	CALCA	10	1	0.1	Liver	CR 51:4367
15.4	CALCA	3	0	0	Liver	GCC 1:312
15.4	CALCA	6	0	0	Lung	PN 86:5099
15.4	CALCA	6	1	0.17	Lung	PN 91:5513
15.4	CALCA	6	2	0.33	Lung	PN 86:5099
15.4	CALCA	2	0	0	Lung	PN 86:5099
15.4	CALCA	3	1	0.33	Lung	PN 91:5513
15.4	CALCA	10	3	0.3	Ovary	C 72:2423
15.4	CALCA	15	6	0.4	Ovary	BRJ 66:1030
15.4	CALCA	7	0	0	Stomach	HG 89:445
15.4	CALCA	6	3	0.5	Testis	GCC 7:96
Unknown	D11S929	33	3	0.09	Cervix	CR 56:197
Unknown	D11S929	17	4	0.24	Pediatric	HG 97:163
13	D11S323	3	1	0.33	Lung	PN 91:5513
13	D11S323	3	1	0.33	Lung	PN 91:5513
13	D11S907	16	3	0.19	Endocrine	CR 56:599
13	D11S907	14	1	0.07	Head&Neck	CR 54:1152
13	D11S907	1	0	0	Kidney	GCC 12:76
13	D11S16	17	4	0.24	Cervix	PNAS 91:6953
13	D11S16	30	4	0.13	Colon	IJC 53:382
13	D11S16	5	0	0	Kidney	CMB 38:59
13	D11S16	4	0	0	Kidney	CMB 38:59
13	D11S16	6	0	0	Liver	GCC 1:312
13	D11S16	7	2	0.29	Lung	. PN 91:5513
13	D11S16	1	1	1	Lung	PN 91:5513

WO 98/41648

99 of 249 Chromosome 11 - p Arm

13	D11516	10	7	0.7	Lung	PN 91:5513
13	D11S16	25	2	0.08	Ovary	IJC 54:546
13	D11S16	23	6	0.26	Ovary	BRJ 66:1030
13	D11S16	7	4	0.57	Testis	JU 153:1684
13	D11S16	12	3	0.25	Testis	GCC 9:153
13	D11S16	12	5	0.42	Testis	GCC 7:96
13	D11S16	5	2	0.4	Testis	GCC 9:153
13	D11S16	13	1	0.08	Uterus	CR 51:5632
13	D11S151	4	0	0	Lung	PN 91:5513
13	D11S151	1	0	0	Lung	PN 91:5513
13	D11S151	3	0	0	Lung	PN 91:5513
13	D11S151	11	3	0.27	Pediatric	CR 50:3279
13	D11S151	1	0	0	Testis	GCC 9:153
13	D11S151	4	0	0	Testis	GCC 9:153
13	CAT	18	13	0.72	Bladder	HG 91:455
13	CAT	1	0	0	Kidney	CMB 38:59
13	CAT	16	2	0.12	Kidney	CR 51:1071
13	CAT	6	1	0.17	Kidney	CMB 38:59
13	CAT	7	0	0	Liver	CCG 48:72
13	CAT	6	0	0	Liver	GCC 1:312
13	CAT	8	3	0.38	Lung	PN 86:5099
13	CAT	2	0	0	Lung	PN 86:5099
13	CAT	40	6	0.15	Lung	GCC 10:183
13	CAT	7	1	0.14	Lung	PN 86:5099
13	CAT	2	1	0.5	Lung	PN 91:5513
13	CAT	7 .	0	0	Lung	PN 91:5513
13	CAT	10	0	0	Ovary	IJC 54:546
13	CAT	24	6	0.25	Ovary	BRJ 66:1030
13	CAT	14	2	0.14	Pediatric	CR 50:3279
13	CAT	4	}	0.25	Stomach	HG 89:445
13	CAT	12	5	0.42	Testis	JU 153:1684
13	CAT	1	0	0	Testis	CCG 52:72
13	CAT	3	1	0.33	Testis	CCG 52:72
13	CAT	1	0	0	Testis	CCG 52:72
13	D11S325	3	.0	0	Lung	PN 91:5513
13	D11S325	5	0	0	Lung	PN 91:5513
13	D11S325	6	2	0.33	Testis	GCC 9:153
13	D11S325	6	1	0.17	Testis	GCC 9:153
13	D11S325	16	2	0.12	Testis	GCC 7:156
13	D4S414	15	5	0.33	Bladder	HG 91:455
13.	D4S414	2	1	0.5	Lung	CR 54:5643
13	D4S414	4	1	0.25	Lung	CR 54:5643
-	2 10 11 1 ;	1		0.23	Long	いんりんじゃん カン

100 of 249 Chromosome 11 - p Arm

13	D4S414	21	4	0.19	Lung	CR 54:5643
13	B-FSH	16	6	0.38	Bladder	HG 91:455
13	B-FSH	4	0	0	Cervix	BJC 67:71
13	B-FSH	46	9	0.2	Lung	GCC 10:183
13	B-FSH	24	7	0.29	Ovary	BRJ 66:1030
13	B-FSH	14	5	0.36	Pediatric Pediatric	CR 50:3279
13	B-FSH	7	1	0.14	Stomach	HG 89:445
13	D11S905	, 25	0	0	Esophageal	IJC 69 :1
13	D115705	18	4	0.22	Pediatric Pediatric	HG 97:163
13 11. 2 -12	D115149	3	0	0	Endocrine	CR 51:1154
	D113147 D11S149	, 7	1	0.14	Lung	PN 91:5513
11.2-12	D11S149	1	0	0	Lung	PN 91:5513
11.2-12	D11S149	5	0	. 0	Lung .	PN 91:5513
11.2-12 12	D115288	10	2	0.2	Cervix	PNAS 91:6953
12	D1151313	48	12	0.25	Lung	GCC 13:40
12 12	D1151313	48	12	0.25	Lung	GCC 13:40
12 Unknown	D115:907-929	28	15	0.54	Bladder	CR 55:5213
Unknown	Unknown	14	3	0.21	Brain	CR 50:5784
15	Unknown	35	2	0.06	Breast	JNCI 84:506
unknown	D11SS1318	18	6	0.33	Breast	HMG 4:1889
Unknown	D11SS1323	9	5	0.56	Breast	HMG 4:1889
Unknown	D11551338	9	5	0.56	Breast	HMG 4:1889
Unknown	D11SS1760	, 7	2	0.29	Breast	HMG 4:1889
11	D11S554	22	5	0.23	Cervix	BJC 71:814
Unknown	D115740	5	0	0	Cervix	GCC 9:119
11	D11S554	22	6	0.27	Endocrine	CR 56:599
15.5	D11S576	25	0	0	Kidney	BJC 69:230
Unknown	D11S:922-904	6	3	0.5	Kidney	GCC 12:76
15.5	JW1-51	16	4	0.25	, Kidney	CR 51:1071
pter-p13	D11S17	6	0	0	Liver	CCG 48:72
13	D11517	11	1	0.09	Liver	CCG 48:72
13	D11578	5	0	0	Liver	CCG 48:72
15	HBBC	8	1	0.12	Liver	CCG 48:72
15.3-15.4	D11S1243	57	14	0.25	Lung	GCC 13:40
14	D1151246	57 57	17	0.3	Lung	GCC 13:40
15.2-15.3	D11S1250	50	17	0.34	Lung	GCC 13:40
15.4-15.5	D1151251	66	21	0.32	Lung	GCC 13:40
	D11S1252	54	13	0.24	Lung	GCC 13:40
11.2-12	D11S1254	39	12	0.24	Lung	GCC 13:40
15.4-15.5	HRAS-INS-HBG	37]]	1	Lung	CR 50:2303
Unknown	HRAS-INS-HBG	27	4	0.15	Lung	CR 50:2303
Unknown	HRAS-INS-HBG	1	0	0.15	Lung	CR 50:2303
Unknown	חמוו-כאוו-כאאו	' .	U		Long	

WO 98/41648

101 of 249 Chromosome 11 - p Arm

Unknown HRAS-INS-HBG 3 0 0 Lung CR 50:2303 15.5 ST5 4 0 0 Lung PN 91:5513 15.5 ST5 1 0 0 Lung PN 91:5513 15.5 ST5 9 0 0 Lung PN 91:5513 Unknown D11S:922-904 32 4 0.12 Melanomo CR 56:589 Unknown Unknown 11 2 0.18 Ovary UC 52:575 15 Unknown 5 1 0.2 Ovary 0 5:219 Unknown GALCA-HRAS1-INS-PTH 17 9 0.53 Ovary GO 55:198 pter-p13 D11S17 17 6 0.35 Ovary BRJ 66:1030 Unknown D11S:554-875-871 18 6 0.35 Ovary BRJ 672:1330 Unknown RAS-CAT-D11S16 34 12 0.35 Ovary CR 53:2393 15.5 Unknown	Unknown	HRAS-INS-HBG	13	4	0.31	Lung	CR 50:2303
15.5 ST5 5 1 0 0 Lung PN 91.5513 15.5 ST5 9 0 0 Lung PN 91.5513 15.5 ST5 9 0 0 Lung PN 91.5513 15.6 ST5 9 0 0 Lung PN 91.5513 15.6 ST5 9 0 0 Lung PN 91.5513 15.6 ST5 9 0 0 Lung PN 91.5513 15.6 Unknown D115.922-904 32 4 0.12 Melanomo CR 56.589 16.6.589 Unknown Unknown 11 2 0.18 Ovary UC 52.575 15 Unknown 5 1 0.2 Ovary 0.5:219 15 Unknown 9 4 0.44 Ovary 0.5:219 15 Unknown 9 4 0.44 Ovary 0.5:219 16 Unknown D11517 17 6 0.35 Ovary BRJ 66.1030 17 Unknown D115.754-875-871 18 6 0.33 Ovary BRJ 66.1030 18 Unknown D115.554-875-871 18 6 0.33 Ovary RAS-CAT-D11516 13 Unknown D1151323 7 2 0.29 Pediatric H6 97:163 15.5 Unknown D1151323 7 2 0.29 Pediatric H6 97:163 16 Unknown D1151338 14 3 0.21 Pediatric H6 97:163 13 WT1 16 8 0.5 Pediatric H6 97:163 13 WT1 16 8 0.5 Pediatric H6 97:163 14 Unknown Unknown 11 0 0 Prostate Csurveys 11:15 16 Unknown Unknown 10 0 O Prostate Csurveys 11:15 16 Unknown D115324 8 3 0.38 Testis GCC 9:153 16 Unknown D115324 8 3 0.38 Testis GCC 9:153 16 Unknown D115417 11 3 0.27 Testis GCC 9:153 16 Unknown D115417 11 3 0.27 Testis GCC 9:153 16 Unknown D115417 17 3 0.27 Testis GCC 9:153 16 Unknown D115417 10 5 0.5 Testis GCC 9:153 16 Unknown D115410 8 1 0.12 Uterus GCC 9:153 17 Unknown D11540 8 1 0.12 Uterus GCC 9:119 18 Unknown D115740 8 1 0.12 Uterus GCC 9:119 18 Unknown D115740 8 1 0.12 Uterus GCC 9:119 18 Unknown D115740 8 1 0.12 Uterus GCC 9:119 18 Unknown D115740 8 1 0.12 Uterus GCC 9:119 18 Unknown D115740 8 1 0.12 Uterus G	Unknown	HRAS-INS-HBG	3	0	0	-	
15.5 ST5 1 0 0 Lung PN 91.5513 15.5 ST5 9 0 0 Lung PN 91.5513 15.6 ST5 9 0 0 Lung PN 91.5513 15.6 ST5 9 0 0 Lung PN 91.5513 15.6 Unknown D11S.922-904 32 4 0.12 Melanoma CR 56.589 15.6 Unknown 11 2 0.18 Ovary Uc 52.575 15 Unknown 5 1 0.2 Ovary 0.5219 15 Unknown 9 4 0.44 Ovary 0.5219 15 Unknown 9 4 0.44 Ovary 0.5219 15 Unknown 9 4 0.44 Ovary 0.5219 16 Unknown D1S17 17 6 0.35 Ovary 0.055.198 17 18 6 0.33 Ovary BRJ 66.1030 18 Unknown D1S.554-875-871 18 6 0.33 Ovary BRJ 66.1030 15.5 Unknown 3 0 0 Paratrees CR 54.2761 10 Unknown D1S1323 7 2 0.29 Pediatric HG 97.163 15.5 Unknown D1S1323 7 2 0.29 Pediatric HG 97.163 10 Unknown D1S1338 14 3 0.21 Pediatric HG 97.163 13 WT1 16 8 0.5 Pediatric HG 97.163 13 WT1 16 8 0.5 Pediatric HG 97.163 10 Unknown Unknown 10 0 0 Prostate CSurveys 11:15 10 Unknown Unknown 10 0 O Prostate CSurveys 11:15 10 Unknown D1S2351 40 16 0.4 Stormach CR 56.268 10 Unknown D1S324 8 3 0.38 Testis GCC 9.153 10 Unknown D1S324 8 3 0.43 Testis GCC 9.153 10 Unknown D1S417 11 3 0.27 Testis GCC 9.153 10 Unknown D1S417 11 3 0.27 Testis GCC 9.153 10 Unknown ESHB 8 3 0.38 Testis GCC 9.153 10 Unknown ESHB 8 3 0.38 Testis GCC 9.153 10 Unknown D1S740 8 1 0.12 Uterus GCC 9.119 13 WT1 24 0 0 Uterus CR 54.4294 13 WT1 24 0 0 Uterus CR 54.4294 14 SUM	15.5	ST5	4	0	0	. •	
15.5 ST5 9 0 0 Lung PN 91:5513 Unknown D11S:922-904 32 4 0.12 Melanomo CR 56:589 Unknown Unknown 11 2 0.18 Ovary UC 52:575 15	15.5	ST5	1	0	0	•	
Unknown D11S:922-904 32 4 0.12 Melanomo CR 56:589 Unknown Unknown 11 2 0.18 Ovary UC 52:575 15 Unknown 5 1 0.2 Ovary 0.5:219 15 Unknown 9 4 0.44 Ovary 0.5:219 Unknown GALCA-HRASI-INS-PTH 17 9 0.53 Ovary BRJ 66:1030 Unknown D11S:554-875-871 18 6 0.33 Ovary BRJ 67:1330 Unknown D11S:554-875-871 18 6 0.33 Ovary BRJ 67:1330 Unknown RAS-CAT-D11S16 34 12 0.35 Ovary CR 53:2393 15.5 Unknown 3 0 0 Pancreas CR 54:2761 Unknown D11S1323 7 2 0.29 Pediatric H6 97:163 Unknown D11S1338 14 3 0.21 Pediatric H6 97:163 Unknown D11S937 10 1 0.1 Pediatric H6 97:163 Unknown Unknown 11 0 0 Prostate CSurveys 11:15 Unknown Unknown 11 0 0 Prostate CSurveys 11:15 Unknown Unknown 10 0 0 Prostate CSurveys 11:15 Unknown D11S2351 40 16 0.4 Stormach CR 56:268 Unknown D11S324 8 3 0.38 Testis GCC 9:153 Unknown D11S324 8 3 0.43 Testis GCC 9:153 Unknown D11S324 7 3 0.43 Testis GCC 9:153 Unknown D11S417 11 3 0.27 Testis GCC 9:153 Unknown D11S417 5 3 0.6 Testis GCC 9:153 Unknown ESHB 4 0 0 Testis GCC 9:153 Unknown ESHB 7 2 0.29 Testis GCC 9:153 Unknown ESHB 7 2 0.29 Testis GCC 9:153 Unknown D11S740 8 1 0.12 Uterus GCC 9:119 13 Unknown D11S740 8 1 0.12 Uterus GCC 9:119 13 Unknown D11S740 8 1 0.12 Uterus GCC 9:119 13 Uterus GCC 9:119 13 Unknown D11S740 8 1 0.12 Uterus GCC 9:119 13 Uterus GCC 9:119 13 Uterus GCC 9:119 13 Uterus GCC 9:119 13 Uterus GCC 9:119 13 Uterus GCC 9:119 13 Uterus GCC 9:119 13 Uterus GCC 9:119 13 Uterus GCC 9:119 13 Uterus GCC 9:119 13 Uterus GCC 9:119 13 Uterus GCC 9:119 13 Uterus GCC 9:119 13 Uterus GCC 9:119 13 Uterus GCC 9:119 13 Uterus GCC 9	15.5	ST 5	9	0	0	•	
Unknown	Unknown	D11S:922-904	32	4	0.12	•	
15	Unknown	Unknown	11	2	0.18	Ovary	
15	15	Unknown	5	1	0.2	•	
Unknown CALCA-HRAS1-INS-PTH 17 9 0.53 Ovary GO 55:198 pter-p13 D11S17 17 6 0.35 Ovary BRJ 66:1030 Unknown D11S:554-875-871 18 6 0.33 Ovary CR 53:2393 Unknown RAS-CAT-D11S16 34 12 0.35 Ovary CR 53:2393 15.5 Unknown 3 0 0 Pancreas CR 54:2761 Unknown D11S1323 7 2 0.29 Pediatric HG 97:163 Unknown D11S1338 14 3 0.21 Pediatric HG 97:163 Unknown D11S937 10 1 0.1 Pediatric HG 97:163 Unknown Unknown 11 0 0 Prostate CSurveys 11:15 Unknown Unknown 11 0 0 Prostate CSurveys 11:15 Unknown Unknown 10 0 0 Prostate CSurveys 11:15 <tr< th=""><td>15</td><td>Unknown</td><td>9</td><td>4</td><td></td><td>•</td><td></td></tr<>	15	Unknown	9	4		•	
D11517	Unknown	CALCA-HRAS1-INS-PTH	17	9	0.53	•	
Unknown D115:554-875-871 18 6 0.33 Ovary BIC 72:1330 Unknown RAS-CAT-D11S16 34 12 0.35 Ovary CR 53:2393 15.5 Unknown 3 0 0 Pancreas CR 54:2761 Unknown D11S1323 7 2 0.29 Pediatric HG 97:163 Unknown D11S1338 14 3 0.21 Pediatric HG 97:163 Unknown D11S937 10 1 0.1 Pediatric HG 97:163 Unknown Unknown 116 8 0.5 Pediatric HG 97:163 Unknown Unknown 11 0 0 Prostate CSurveys 11:15 Unknown Unknown 10 0 0 Prostate CSurveys 11:15 Unknown Unknown 10 0 0 Prostate CSurveys 11:15 Unknown D11S2351 40 16 0.4 Stomach CR 56:268	pter-p13	D11S17	17	6	0.35	•	
Unknown RAS-CAT-D11S16 34 12 0.35 Ovary CR 53:2393 15.5 Unknown 3 0 0 Poncreas CR 54:2761 Unknown D11S1323 7 2 0.29 Pediatric HG 97:163 Unknown D11S937 10 1 0.1 Pediatric HG 97:163 Unknown D11S937 10 1 0.1 Pediatric HG 97:163 13 WT1 16 8 0.5 Pediatric HG 97:163 Unknown Unknown 11 0 0 Prostate CSurveys 11:15 Unknown Unknown 10 0 0 Prostate CSurveys 11:15 Unknown Unknown 10 0 0 Prostate CSurveys 11:15 Unknown CALCA-HRAS1-HBG2 15 0 0 Prostate G11:530 Unknown D11S2351 40 16 0.4 Stormoch CR 56:268 Unknown	Unknown	D11S:554-875-871	18	6	0.33	•	
Unknown D11S1323 7 2 0.29 Pediatric HG 97:163 Unknown D11S1338 14 3 0.21 Pediatric HG 97:163 Unknown D11S937 10 1 0.1 Pediatric HG 97:163 13 WTI 16 8 0.5 Pediatric HG 97:163 Unknown Unknown 11 0 0 Prostate CSurveys 11:15 Unknown Unknown 10 0 0 Prostate CSurveys 11:15 Unknown Unknown 10 0 0 Prostate CSurveys 11:15 Unknown CALCA-HRAS1-HBG2 15 0 0 Prostate G11:530 Unknown D11S2351 40 16 0.4 Stomach CR 56:268 Unknown D11S324 8 3 0.38 Testis GCC 9:153 Unknown D11S417 11 3 0.27 Testis GCC 9:153 Unknown <td>Unknown</td> <td>RAS-CAT-D11S16</td> <td>34</td> <td>12</td> <td>0.35</td> <td>•</td> <td></td>	Unknown	RAS-CAT-D11S16	34	12	0.35	•	
Unknown D11S1338 14 3 0.21 Pediatric HG 97:163 Unknown D11S937 10 1 0.1 Pediatric HG 97:163 13 WT1 16 8 0.5 Pediatric HG 97:163 Unknown Unknown 11 0 0 Prostate CSurveys 11:15 Unknown Unknown 10 0 0 Prostate CSurveys 11:15 Unknown Unknown 10 0 0 Prostate CSurveys 11:15 Unknown Unknown 10 0 0 Prostate PNAS 87:8751 Unknown CALCA-HRAS1-HB62 15 0 0 Prostate G11:530 Unknown D11S2351 40 16 0.4 Stormoth CR 56:268 Unknown D11S324 8 3 0.38 Testis GCC 9:153 Unknown D11S417 11 3 0.27 Testis GCC 9:153 Unknown <td>15.5</td> <td>Unknown</td> <td>3</td> <td>0</td> <td>0</td> <td>Pancreas</td> <td>CR 54:2761</td>	15.5	Unknown	3	0	0	Pancreas	CR 54:2761
Unknown D11S937 10 1 0.1 Pediatric H6 97:163 13 WT1 16 8 0.5 Pediatric H6 97:163 Unknown Unknown 11 0 0 Prostate CSurveys 11:15 Unknown Unknown 10 0 0 Prostate PNAS 87:8751 Unknown CALCA-HRAS1-HBG2 15 0 0 Prostate G11:530 Unknown D11S2351 40 16 0.4 Stornach CR 56:268 Unknown D11S324 8 3 0.38 Testis GCC 9:153 Unknown D11S324 7 3 0.43 Testis GCC 9:153 Unknown D11S417 11 3 0.27 Testis GCC 9:153 Unknown D11S417 5 3 0.6 Testis GCC 9:153 Unknown FSHB 4 0 0 Testis GCC 9:153 Unknown FSHB <td>Unknown</td> <td>D11S1323</td> <td>7</td> <td>2</td> <td>0.29</td> <td>Pediatric</td> <td>HG 97:163</td>	Unknown	D11S1 3 23	7	2	0.29	Pediatric	HG 97:163
13 WT1 16 8 0.5 Pediatric His 97:163	Unknown	D11S1338	14	3	0.21	Pediatric	HG 97:163
Unknown Unknown 11 0 0 Prostote CSurveys 11:15 Unknown Unknown 10 0 0 Prostote PNAS 87:8751 Unknown CALCA-HRAS1-HBG2 15 0 0 Prostote G11:530 Unknown D11S2351 40 16 0.4 Stomach CR 56:268 Unknown D11S324 8 3 0.38 Testis GCC 9:153 Unknown D11S324 7 3 0.43 Testis GCC 9:153 Unknown D11S417 11 3 0.27 Testis GCC 9:153 Unknown D11S417 5 3 0.6 Testis GCC 9:153 Unknown FSHB 4 0 0 Testis GCC 9:153 Unknown FSHB 8 3 0.38 Testis GCC 9:153 Unknown FSHB 7 2 0.29 Testis GCC 7:96 Unknown D11S740		D11S937	10	1	0.1	Pediatric	HG 97:163
Unknown Unknown 10 0 0 Prostate PNAS 87:8751 Unknown CALCA-HRAS1-HBG2 15 0 0 Prostate G 11:530 Unknown D11S2351 40 16 0.4 Stomach CR 56:268 Unknown D11S324 8 3 0.38 Testis GCC 9:153 Unknown D11S324 7 3 0.43 Testis GCC 9:153 Unknown D11S417 11 3 0.27 Testis GCC 9:153 Unknown D11S417 5 3 0.6 Testis GCC 9:153 Unknown FSHB 4 0 0 Testis GCC 9:153 Unknown FSHB 8 3 0.38 Testis GCC 9:153 Unknown FSHB 7 2 0.29 Testis GCC 7:96 13 WTI 10 5 0.5 Testis GCC 9:119 13 WTI 24	13	WT1	16	8	0.5	Pediatric	HG 97:163
Unknown Unknown 10 0 0 Prostate PNAS 87:8751 Unknown CALCA-HRAS1-HBG2 15 0 0 Prostate G 11:530 Unknown D11S2351 40 16 0.4 Stomach CR 56:268 Unknown D11S324 8 3 0.38 Testis GCC 9:153 Unknown D11S324 7 3 0.43 Testis GCC 9:153 Unknown D11S417 11 3 0.27 Testis GCC 9:153 Unknown D11S417 5 3 0.6 Testis GCC 9:153 Unknown FSHB 4 0 0 Testis GCC 9:153 Unknown FSHB 8 3 0.38 Testis GCC 9:153 Unknown FSHB 7 2 0.29 Testis GCC 7:96 Unknown D11S740 8 1 0.12 Uterus GCC 9:119 13 WTI 2	Unknown	Unknown	11	0	0	Prostate	CSurveys 11:15
Unknown D11S2351 40 16 0.4 Stormoch CR 56:268 Unknown D11S324 8 3 0.38 Testis GCC 9:153 Unknown D11S324 7 3 0.43 Testis GCC 9:153 Unknown D11S417 11 3 0.27 Testis GCC 9:153 Unknown D11S417 5 3 0.6 Testis GCC 9:153 Unknown FSHB 4 0 0 Testis GCC 9:153 Unknown FSHB 8 3 0.38 Testis GCC 9:153 Unknown FSHB 7 2 0.29 Testis GCC 7:96 13 WTI 10 5 0.5 Testis GCC 7:96 Unknown D11S740 8 1 0.12 Uterus GC 9:119 13 WTI 24 0 0 Uterus CR 54:4294 SUM		Unknown	10	0	0	Prostate	
Unknown D11S324 8 3 0.38 Testis GCC 9:153 Unknown D11S324 7 3 0.43 Testis GCC 9:153 Unknown D11S417 11 3 0.27 Testis GCC 9:153 Unknown D11S417 5 3 0.6 Testis GCC 9:153 Unknown FSHB 4 0 0 Testis GCC 9:153 Unknown FSHB 8 3 0.38 Testis GCC 9:153 Unknown FSHB 7 2 0.29 Testis GCC 7:96 13 WTI 10 5 0.5 Testis GCC 7:96 Unknown D11S740 8 1 0.12 Uterus GCC 9:119 13 WTI 24 0 0 Uterus CR 54:4294 SUM 4917 1151 0.23		CALCA-HRAS1-HBG2	15	0	0	Prostate	G 11:530
Unknown D11S324 7 3 0.43 Testis GCC 9:153 Unknown D11S417 11 3 0.27 Testis GCC 9:153 Unknown D11S417 5 3 0.6 Testis GCC 9:153 Unknown FSHB 4 0 0 Testis GCC 9:153 Unknown FSHB 8 3 0.38 Testis GCC 9:153 Unknown FSHB 7 2 0.29 Testis GCC 7:96 13 WTI 10 5 0.5 Testis GCC 7:96 Unknown D11S740 8 1 0.12 Uterus GCC 9:119 13 WTI 24 0 0 Uterus CR 54:4294 SUM 4917 1151 0.23			40	16	0.4	Stomach	CR 56:268
Unknown D11S417 11 3 0.27 Testis GCC 9:153 Unknown D11S417 5 3 0.6 Testis GCC 9:153 Unknown FSHB 4 0 0 Testis GCC 9:153 Unknown FSHB 8 3 0.38 Testis GCC 9:153 Unknown FSHB 7 2 0.29 Testis GCC 7:96 13 WTI 10 5 0.5 Testis GCC 7:96 Unknown D11S740 8 1 0.12 Uterus GCC 9:119 13 WTI 24 0 0 Uterus CR 54:4294 SUM 4917 1151 0.23		D11S324	8	3	0.38	Testis	GCC 9:153
Unknown D11S417 5 3 0.6 Testis GCC 9:153 Unknown FSHB 4 0 0 Testis GCC 9:153 Unknown FSHB 8 3 0.38 Testis GCC 9:153 Unknown FSHB 7 2 0.29 Testis GCC 7:96 13 WTI 10 5 0.5 Testis GCC 7:96 Unknown D11S740 8 1 0.12 Uterus GCC 9:119 13 WTI 24 0 0 Uterus CR 54:4294 SUM 4917 1151 0.23		D11S324	7	3	0.43	Testis	GCC 9:153
Unknown FSHB 4 0 0 Testis GCC 9:153 Unknown FSHB 8 3 0.38 Testis GCC 9:153 Unknown FSHB 7 2 0.29 Testis GCC 7:96 13 WTI 10 5 0.5 Testis GCC 7:96 Unknown D11S740 8 1 0.12 Uterus GCC 9:119 13 WTI 24 0 0 Uterus CR 54:4294 SUM 4917 1151 0.23		D11S417	11	3	0.27	Testis	GCC 9:153
Unknown FSHB 8 3 0.38 Testis GCC 9:153 Unknown FSHB 7 2 0.29 Testis GCC 7:96 13 WTI 10 5 0.5 Testis GCC 7:96 Unknown D11S740 8 1 0.12 Uterus GCC 9:119 13 WTI 24 0 0 Uterus CR 54:4294 SUM 4917 1151 0.23			5	3	0.6	Testis	GCC 9:153
Unknown FSHB 7 2 0.29 Testis GCC 7:96 13 WT1 10 5 0.5 Testis GCC 7:96 Unknown D11S740 8 1 0.12 Uterus GCC 9:119 13 WT1 24 0 0 Uterus CR 54:4294 SUM 4917 1151 0.23			4	0	0	Testis	GCC 9:153
13 WT1 10 5 0.5 Testis GCC 7:96 Unknown D11S740 8 1 0.12 Uterus GCC 9:119 13 WT1 24 0 0 Uterus CR 54:4294 SUM 4917 1151 0.23			8	3	0.38	Testis	GCC 9:153
Unknown D11S740 8 1 0.12 Uterus GCC 9:119 13 WT1 24 0 0 Uterus CR 54:4294 SUM 4917 1151 0.23		FSHB	7	2	0.29	T es tis	GCC 7:96
13 WT1 24 0 0 Uterus CR 54:4294 SUM 4917 1151 0.23	13	WΠ	10	5	0.5	Testis	GCC 7:96
SUM 4917 1151 0.22			8	1	0.12	Uterus	GCC 9:119
SUM 4917 1151 0.23		WT1	24	0	0	Uterus	CR 54:4294
	SUM		4917	1151	0.23		

102 of 249 Chromosome 11 - q Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
12-13.2	PYGM	12	5	0.42	Breast	CR 54:4586
12-13.3	PYGM-INT2	36	24	0.67	Breast	CR 55:467
12-13.2	PYGM	30	5	0.17	Cervix	PNAS 91:6953
12-13.2	PYGM	3	2	0.67	Endocrine	GCC 12:73
12-13.2	PYGM	16	6	0.38	Endocrine	CR 56:599
12-13.2	PYGM	4	2	0.5	Endocrine	CR 51:1154
12-13.2	PYGM	42	5	0.12	Esophageal	GCC 10:177
12-13.2	PYGM	15	2	0.13	Kidney	CR 51:5817
12-13.2	PYGM	13	0	0	Prostate	G 11:530
12-13.2	PYGM	7	2	0.29	Stomach	HG 89:445
12	CD20	12	3	0.25	Ovary	BJC 67:268
Unknown	PGA	11	0	0	Colon	CCG 48:167
Unknown	PGA	6	1	0.17	Endocrine	CR 51:1154
Unknown	PGA	15	2	0.13	Testis	GCC 7:96
Unknown	PGA	15	2	0.13	Testis	LI 73:606
13	FGF3	40	4	0.1	Breast	CR 54:6270
13	FGF3	16	3	0.19	Ovary	BJC 67:268
13	D11S913	36	0	0	Esophageal	IJC 69:1
13.1	D11S97	25	7	0.28	Cervix	PNAS 91:6953
13.1	D11S97	23	4	0.17	Testis	GCC 13:249
12-13.2	D11S146	6	2	0.33	Endocrine	CR 51:1154
12-13.2	D11S146	15	1	0.07	Kidney	CR 51:5817
12-13.2	D11S146	23	3	0.13	Liver	CR 51:89
12-13.2	D11S146	10	1	0.1	Ovary	BJC 67:268
13	WT-1	14	7	0.5	Bladder	HG 91:455
13	WT-1	13	4	0.31	Breast	CR 54:6270
13	WT-1	20	6	0.3	Cervix	PNAS 91:6953
13	WT-1	52	5	0.1	Lung	GCC 10:183
13	WT-1	21	4	0.19	Lung	CR 54:5643
13	WT-1	2	1	0.5	Lung	CR 54:5643
13	WT-1	4	0	0	Lung	PN 91:5513
13	WT-1	1	0	0	Lung	PN 91:5513
13	WT-1	6	0	0	Lung	PN 91:5513
13	WT-1	4	1	0.25	Lung	CR 54:5643
13	INT2	22	8	0.36	Bladder	CR 55:5213
13	INT2	3	0	0	Breast	CR 53:3804
13	INT2	12	0	0	Breast	CR 50:7184
13	INT2	34	5	0.15	Breast	CR 53:4356
13	INT2	9	1	0.11	Cervix	GCC 9:119
13	INT2	22	1	0.05	Cervix	CR 54:4481
13	INT2	3	1	0.33	Cervix	CR 54:4481

WO 98/41648

103 of 249 Chromosome 11 - q Arm

13	INT2	15	0	0	Cervix	CR 49:3598
13	INT2	22	8	0.36	Cervix	PNAS 91:6953
13	INT2	22	7	0.32	Colon	GCC 6:45
13	INT2	5	2	0.4	Endocrine	GCC 12:73
13	INT2	11	3	0.27	Endocrine	CR 51:1154
13	INT2	9	0	0	Esophageal	CR 51:2113
13	INT2	13	6	0.46	Head&Neck	CR 54:1152
13	INT2	9	3	0.33	Kidney	CR 51:820
13	INT2	9	3	0.33	Kidney	CR 51:5817
13	INT2	4	1	0.25	Kidney	CR 51:1071
13	INT2	7	1	0.14	Liver	CR 51:4367
13	INT2	11	3	0.27	Lung	PNAS 86:5099
13	INT2	3	1	0.33	Lung	PNAS 86:5099
13	INT2	11	2	0.18	Lung	PNAS 86:5099
13	INT2	24	3	0.12	Lung	CR 52:2478
13	INT2	6	0	0	Ovary	CR 50:2724
13	INT2	21	0	0	Ovary	IJC 54:546
13	INT2	19	1	0.05	Ovary	CR 51:5118
13	INT2	8	2	0.25	Stomach	HG 89:445
13	INT2	18	0	0	Stomach	CR 51:2926
13	INT2	11	1	0.09	Stomach	CR 48:2988
13	INT2	27	4	0.15	Testis	0 9:2245
13	INT2	4	2	0.5	Testis	0 9:2245
13	INT2	3	1	0.33	T es tis	CCG 52:72
13	INT2	4	1	0.25	Testis	CCG 52:72
13	INT2	11	2	0.18	Uterus	GCC 9:119
13	INT2	5	1	0.2	Uterus	CR 51:5632
13.2-22	D11S141	4	0	0	Stomach	HG 89:445
13	D11S534	23	6	0.26	Cervix	BJC 71:814
13	D11S534	13	4	0.31	Ovary	Unknown
Unknown	D11S533	38	12	0.32	Cervix	PNAS 91:6953
Unknown	D11S533	21	5	0.24	Endocrine	GCC 13:9
Unknown	D11S533	16	4	0.25	Ovary	60 55:245
Unknown	D11S911	23	3	0.13	Cervix	CR 56:197
23.3	D11S901	39	13	0.33	Breast	CR 54:4586
23 .3	D11S901	33	11	0.33	Cervix	PNAS 91:6953
23.3	D11S901	21	6	0.29	Stomach	CR 56:268
14-21	TYR	2	0	0	Lung	PN 91:5513
14-21	TYR	7	0	0	Lung	PN 91:5513
14-21	TYR	7	1	0.14	Lung	PN 91:5513
14-21	TYR	16	3	0.19	Ovary	BJC 67:268
14-21	TYR .	3	2	0.67	Stomach	HG 89:445

104 of 249 Chromosome 11 - q Arm

22-23	D11S923	36	2	0.06	Esophageal	IJC 69:1
22	D11S35	28	7	0.25	Breast	CR 54:6270
22	D11S35	34	12	0.35	Breast	CR 54:4586
22	D11S35	21	12	0.57	Cervix	PNAS 91:6953
22	D11S35	34	10	0.29	Stomach	CR 56:268
22	D11S35	33	4	0.12	Uterus	CR 54:4294
22	STMYI	12	6	0.12	Colon	GCC 6:45
22	STMYI	11	6	0.55	Ovary	BJC 67:268
22	STMTI	7	2	0.29	Stomach	HG 89:445
22-23	DRD2	68	23	0.27	Colon	BJC 70:395
		8	3	0.34	Stomach	CR 56:268
Unknown	D11S1341		ა 1	0.36 0.17	Brain	CR 49:6572
22.3-23.3	D11S144	6 19	13			PNAS 91:6953
22.3-23.3	D11S144			0.68	Cervix	CR 54:2996
22.3-23.3	D11S144	15	3	0.2	Esophageal	BJC 67:268
22.3-23.3	D11S144	17	5	0.29	Ovary	CR 54:2761
22.3-23.3	D11S144	4	2	0.5	Pancreas	CR 54:2761
22.3-23.3	D11S144	21	4	0.19	Sarcoma	CK 52:2417 HG 89:445
22.3-23.3	D11S144	4	0	0	Stomach	
23.3	D11S29	47	15	0.32	Breast	CR 54:6270
23.3	D11S29]	0	0	Breast	CR 53:3804
23.3	D11S29	25	25	1	Cervix	BJC 71:814
23.3	D11S29	2	1	0.5	Colon	GCC 6:45
23.3	D11S29	12	7	0.58	Melanoma	GCC 7:169
23.3	D11S29	15	7	0.47	Ovary	BJC 67:268
23.3	D11S29	10	6	0.6	Stomach	CR 56:268
23	CD3	7	4	0.57	Colon	GCC 6:45
23.3	CD3	1	0	0	Lung	PN 91:5513
23.3	CD3	9	0	0	. Lung	PN 91:5513
23.3	CD3	3	0	0	Lung	PN 91:5513
23.3	CD3	16	·7	0.44	Ovary	BJC 67:268
23	CD3	4	2	0.5	Stomach	HG 89:445
23.3	CD3	36	8	0.22	Stomach	CR 56:268
23	D11S528	42	16	0.38	Breast	CR 54:6270
23	D11S528	44	7	0.16	Stomach	CR 56:268
22.3-23	THYI	33	14	0.42	Breast	CR 54:4591
22.3-23	THYI	6	1	0.17	Stomach	HG 89:445
23.3-qter	D11S147	12	8	0.67	Ovary	BJC 67:268
22-23.3	APOC3	3 5	12	0.34	Breast	CR 54:4586
22-23.3	APOC3	30	19	0.63	Cervix	PNAS 91:6953
22-23.3	APOC3	22	0	0	Pediatric	HG 97:163
Unknown	D11S836	17	6	0.35	Ovary	Unknown
Unknown	D11S934	30	5	0.17	Cervix	CR 56:197
	•					

105 of 249 Chromosome 11 - q Arm

23	ETS1	5	3	0.6	Colon	GCC 6:45
23 23	ETSI	1	0	0.0	Lung	PN 91:5513
23	हाडा -	4	0	. 0	Lung	PN 91:5513
23	ETS)	5	0	0	Lung	PN 91:5513
23	ETS1	1	0	0	Testis	CCG 52:72
Unknown	D11S910	22	3	0.14	Head&Neck	CR 54:4756
Unknown	D115910	31	0	0.14	Head&Neck	CR 54:4756
Unknown	D115910	6	3	0.5	Kidney	GCC 12:76
Unknown	D115910	30	5	0.17	Melanoma	CR 56:589
22.3-23	D115768	33	14	0.17	Breast	CR 54:4586
22.3-23	D115768	25	14	0.42	Cervix	PNAS 91:6953
22.3-23	D115968	5	1	0.2	Kidney	PNAS 92:2854
22.3-23	D115968	17	, 1	0.06	Kidney	PNAS 92:2854
22.3-23	D115968	17	1	0.06	Kidney	PNAS 92:2854
Unknown	Unknown	16	1	0.06	Brain	CR 50:5784
13	Unknown	25	i	0.04	Breast	JNCI 84:506
Unknown	D11S485	16	9	0.56	Cervix	PNAS 91:6953
13	Unknown	7	0	0	Endocrine	N 328:524
Unknown	D11S129	7	1	0.14	Endocrine	CR 51:1154
Unknown	D11S1383	5	4	0.8	Endocrine	CR 56:599
Unknown	D11S460	7	3	0.43	Endocrine	GCC 12:73
Unknown	D11S476	2	1	0.5	Endocrine	GCC 12:73
Unknown	D11S527	7	5	0.71	Endocrine	CR 56:599
Unknown	D11S546	4	0	0	Endocrine	GCC 12:73
Unknown	D11S614	22	5	0.23	Endocrine	CR 56:599
Unknown	D11S787	6	4	0.67	Endocrine	CR 56:599
Unknown	D11S873	23	6	0.26	Endocrine	CR 56:599
Unknown	D11S874	13	3	0.23	Endocrine	CR 56:599
Unknown	D11S490	19	9	0.47	Head&Neck	CR 54:1152
13	Unknown	7	0	0	Liver ,	BJC 67:1007
13	Unknown	10	0	0	Liver	BJC 64:1083
13-23	D11S24	2	0	0	Liver	JJ 81:108
14-22.3	D11S1240	53	12	0.23	Lung	GCC 13:40
13.1-13.4	D11S1253	67	13	0.19	Lung	GCC 13:40
21-23.2	D11S1256	67	21	0.31	Lung	GCC 13:40
14-22.3	D11S1260	20	8	0.4	Lung	GCC 13:40
13.4-14	D11S1261	39	11	0.28	Lung	GCC 13:40
23.2-23.3	D11S1263	65	11	0.17	Lung	GCC 13:40
23.2-23.3	D11S1265	50	14	0.28	Lung	GCC 13:40
14-22.3	D11S1268	30	10	0.33	Lung	GCC 13:40
13-23	D11S24	2	0	0	Lung	PN 84:9252
24	D11S488	17	5	0.29	Ovary	60 55:245

106 of 249 Chromosome 11 - q Arm

Unknown	D11S85	15	5	0.33	Ovary	CR 53:2393
13	FOLR1	14	1	0.07	Ovary	BJC 67: 26 8
13	Unknown	8	3	0.38	Pancreas	BJC 65:809
Unknown	D11S1818	38	11	0.29	Stomach	CR 56:268
13-23	D11S24	2	0	0	Stomach	CR 48:2988
13-23	D11S24	1	0	0	Uterus	CR 51:5632
Unknown	D11S420	19	0	0	· Uterus	CR 54:4294
SUM		2978	764	0.26		

107 of 249 Chromosome 12 - p Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
12.1	KRAS2	3	0	0	Uterus	CR 51:5632
Unknown	D12S16	16	1	0.06	Broin	CR 50:5784
Unknown	D12S16	12	2	0.17	Breast	CR 50:7184
Unknown	D12S16	23	2	0.09	Breast	CR 53:4356
Unknown	D12S2	16	2	0.12	Cervix	CR 54:4481
Unknown	D12S87	24	2	0.08	Cervix	CR 56:197
Unknown	D12S89	25	2	0.08	Cervix	CR 56:197
12.1	KRAS2	7	0	0	Colon	N 331:273
Unknown	D12S77	18	2	0.11	Endocrine	CR 56:599
Unknown	D12S16	26	1	0.04	Esophageal	CR 54:2996
Unknown	D12S16	7	2	0.29	Esophageal	GCC 10:177
Unknown	D12S62	28	5	0.18	Head&Neck	CR 54:1152
Unknown	D12S98	19	. 1	0.05	Head&Neck	CR 54:4756
Unknown	D12S98	17	0	0	Head&Neck	CR 54:4 7 56
Unknown	D12S16	10	0	0	Kidney	CR 51:820
Unknown	D12S94-D12S77	5	1	0.2	Kidney	PNAS 92:2854
Unknown	D12S94-D12S77	20 -	0	0	Kidney	PNAS 92:2854
Unknown	D12S98	6	3	0.5	Kidney	GCC 12:76
Unknown	Unknown	43	8	0.19	Leukemia	B 86:3869
Unknown	Unknown	3 5	8	0.23	Leukemio	B 86:3869
Unknown	D12S58	44	9	0.2	Leukemia	B 86:3869
Unknown	D12S64	54	7	0.13	Leukemia	B 86:3869
Unknown	D12S69	46	4	0.09	Leukemia	B 86:3869
Unknown	D12S89	82	21	0.26	Leukemio	B 87:3368
Unknown	D12S89	50	11	0.22	Leukemia	B 86:3869
Unknown	D12S91	48	9	0.19	Leukemia	B 86:3869
Unknown	D12S94-D12S77	51	6	0.12	Leukemia	B 86:3869
Unknown	D12S:89-91	50	13	0.26	Leukemia	CR 55:5377
Unknown	D12S16	12	1	0.08	Liver	CR 51:89
12.1	KRAS2	4	0	0	Liver	CCG 48:72
Unknown	D12S16	25	5	0.2	Lung	CR 52:2478
12.1	KRAS2	3	1	0.33	Lung	PN 84:9252
Unknown	D12S98	19	0	0	Melanoma	CR 56:589
12.1	KRAS2	2	0	0	Neuroblastoma	CR 49:1095
13.3-12.3	A2M	10	1	0.1	Ovary	IJC 54:546
Unknown	D12S16	8	3	0.38	Ovary	CR 51:5118
12-PTER	F8VWF	16	1	0.06	Ovary	BJC 69:429
12.1	KRAS2	7	0	0	Ovary	CR 50:2724
Unknown	PRB1	23	2	0.09	Ovary	CR 53:2393
Unknown	D12S16	9	1	0.11	Prostate	G 11:530
12.1	KRAS2	4 .	1	0.25	Stomach	CR 48:2988

108 of 249 Chromosome 12 - p Arm

12.1	KRAS2	7	0	0	Testis	GCC 13:249
Unknown	PRB1-PRB4	11	2	0.18	Testis	LI 73:606
Unknown	D12S61	14	1	0.07	Uterus	CR 54:4294
12.1	KRAS2	3	0	0	Uterus	CR 51:5632
SUM		9 59	141	0.15		

109 of 249 Chromosome 12 - q Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	IGF1	11	1	0.09	Uterus	CR 54:4294
Unknown	Unknown	14	1	0.07	Brain	CR 50:5784
Unknown	D12S17	19	1	0.05	Breast	CR 50:7184
14-24.1	D12S7	35	2	0.06	Breast	GCC 2:191
Unknown	D12S17	8	1	0.12	Cervix	GCC 9:119
Unknown	D12S7	31	1	0.03	Cervix	CR 54:4481
Unknown	D12S78	31	6	0.19	Cervix	CR 56:197
Unknown	D12S83	22	1	0.05	Cervix	CR 56:197
Unknown	D12S17	19	1	0.05	Colon	CCG 48:167
Unknown	D12S17	17	4	0.24	Colon	IJ€ 53:3 82
14-24.1	D12S7	22 ·	3	0.14	Colon	N 331:273
14-qter	D12S8	24	4	0.17	Colon	N 331:273
24.3-qter	D12S11	13	0	0	Endocrine	N 328:524
Unknown	D12S392	16	1	0.06	Endocrine	CR 56:599
Unknown	D12S43	23	0	0	Endocrine	GCC 13:9
Unknown	D12S14	18	3	0.17	Esophageal	CR 54:2996
Unknown	D12S17	9	1	0.11	Esophageal	CR 51:2113
Unknown	D12S17	34	3	0.09	Esophageal	GCC 10:177
Unknown	D12S17	23	2	0.09	Esophageol	CR 54:2996
Unknown	D12S60	24	6	0.25	Head&Neck	CR 54:1152
Unknown	D12S86	24	4	0.17	Head&Neck	CR 54:4756
Unknown	D12S86	18	0	0	Head&Neck	CR 54:4756
Unknown	D12S17	24	0	0	Kidney	CR 51:820
Unknown	D12S86	6	3	0.5	Kidney	GCC 12:76
Unknown	D12S97-D12S86	19	0	0	Kidney	PNAS 92:2854
Unknown	D12S97-D12S86	6	0	0	Kidney	PNAS 92:2854
24.3-qter	Unknown	12	1	0.08	Liver	BJC 64:1083
24.3-qter	Unknown	7	0	0	Liver	BJC 67:1007
Unknown	D12S17	14	1	0.07	Liver	CR 51:89
Unknown	D12S17	15	1	0.07	Liver	JJCR 81:108
Unknown	D12S17	29	4	0.14	Lung	CR 52:2478
Unknown	D12S86	23	0	0	Melanoma	CR 56:589
Unknown	D12S17	25	6	0.24	Ovary	CR 53:2393
Unknown	D12S17	15	5	0.33	Ovary	CR 51.5118
Unknown	D12S60	15	2	0.13	Ovary	BJC 69:429
22-24.2	PAH	26	2	0.08	· Ovary	IJC 54:546
24.3-qter	Unknown	13	0	0	Pancreas	BJC 65:809
24.3-qter	Unknown	6	3	0.5	Pancreas	CR 54:2761
Unknown	D12S17	6	0	0	Pancreas	CR 54:2761
14-24.1	D12S7	17	1	0.06	Prostate	G 11:530
Unknown	D12S17	26	5	0.19	Sarcomo	CR 52:2419

1 10 of 249 Chromosome 12 - q Arm

CEN-q14	D12S4	5	1	0.2	Sarcoma	CR 52:2419
2.4-ter	Unknown	11	6	0.55	Stomach	BJC 59:750
24.3-qter	D12S11	32	5	0.16	Stomach	HG 92:244
Unknown	D12S17	41	11	0.27	Stomach	CR 51:2926
12-13.2	COL2A1	11	0	0	Testis	GCC 13:249
24.3-qter	D12S11	30	0	0	Testis	GCC 13:249
Unknown	D12S12	15	7	0.47	Testis	0 9:2245
Unknown	D12S14	19	3	0.16	Testis	0 9:2245
Unknown	D12S15	14	1	0.07	Testis	0 9:2245
Unknown	D12S17	26	7	0.27	Testis	0 9:2245
CEN-q14	D12S4	23	4	0.17	Testis	0 9:2245
Unknown	D12S6	17	7	0.41	Testis	0 9:2245
14-24.1	D12S7	6	1	0.17	Testis	LI 73:606
14-24.1	D12S7	15	0	0	Testis	GCC 13:249
Unknown	D12S7	1	0	0	Testis	CCG 52:72
Unknown	D12S7	3	0	0	Testis	CCG 52:72
Unknown	D12S7	1	0	0	Testis	CCG 52:72
Unknown	D12S7	19	8	0.42	Testis	0 9:2245
14-qter	D12S8	8	1	0.12	Testis	0 9:2245
Unknown	D12S17	23	4	0.17	Uterus	GCC 9:119
Unknown	D12S60	17	1	0.06	Uterus	CR 54:4294
Unknown	IGF1	11	1	0.09	Uterus	CR 54:4294
SUM		1096	147	0.13		

l¹11 of 249 Chromosome 13 - q Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
12	D13S36	19	5	0.26	Ovary	UC 54:546
12	D13S36	19	3	0.16	Ovary	UC 52:575
12.3	D13S11	9	3	0.33	Ovary	IJC 54:546
12.3	D13S11	6	5	0.83	Sarcoma	CGC 53:45
Unknown	D13S115	13	6	0.46	Head&Neck	CR 54:1152
Unknown	D13S115	16	2	0.12	Ovary	BJC 69:429
Unknown	D13S221	28	7	0.25	Bladder	Unknown
Unknown	D13S221	39	17	0.44	Breast	GCC 13:291
12.3	D13S6	4	2	0.5	Breast	PNAS 84:2372
12.3	D13S6	13	5	0.38	Colon	UC 53:382
12.3	D13S6	1	0	0	Colon	CCG 48:167
12.3	D13S6	8	2	0.25	Ovary	IJC 54:546
12.3	D13S6	9	0	0	Stomach	G 2:180
12.3	D13S6	7	2	0.29	Uterus	CR 51: 563 2
Unknown	D13S289	35	17	0.49	Breast	GCC 13:291
12	FLT1	7	0	0	Broin	CR 54:1397
12	FLT1	9	3	0.33	Brain	CR 54:1397
12	FLT1	18	6	0.33	Ovary	CR 54:605
12	FLTT	5	1	0.2	Ovary	BJC 69:429
12.3	D13S33	21	4	0.19	Ovary	IJC 54:546
12.3	D13S33	23	6	0.26	Ovary	IJC 52: 57 5
12	D13S260	43	13	0.3	Breast	GCC 13:291
13	D13S1	94	26	0.28	Bladder	0 6:2305
14-12	D13 S1	34	7	0.21	Breast	GE 5:554
13	D13S1	8	3	0.38	Breast	PNAS 84:2372
13	D13S1	13	4	0.31	Breast	GCC 2:191
13	D13S1	7	2	0.29	Cervix	CR 49:3598
14-12	D13S1	11	1	0.09	Colon	JNCI 84:1100
13	D13S1	15	7	0.47	Colon	IJC 53:382
12	D13S1	12	1	0.08	Colon	CCG 48:167
13	D13 S1	14	4	0.29	Esophageal	CR 54:2996
13	D13S1	10	2	0.2	Kidney	CR 51:1071
13	D13S1	25	5	0.2	Liver	JJCR 84:893
14-12	· D13S1	15	5	0.33	Liver	CR 54:281
14-12	D13S1	5	2	0.4	Liver	CCG 48:72
12	01351	9	0	0	Liver	JJCR 81:108
14-12	D13S1	9	6	0.67	Liver	CR 51:4367
13	D13S1	19	8	0.42	Lung	PN 84:9252
14-12	01351	8	7	0.88	Lung	CR 49:5130
12	D13S1	1	0	0	Lung	PN 84:9252
13	D1.2S1.	5	0	0	Neuroblastoma	CR 49:1095

112 of 249 Chromosome 13 - q Arm

10	การตา	15	2	0.13	Ovary	IJC 54:546
13	D13S1	12	9	0.13 0.75	Sarcoma	CR 52:2419
13	D13S1		0	0.75	Stomach	HG 89:445
13	D13S1	6 10	1	0.1	Stomach	CR 48:2988
14-12	D13S1		1	0.09	Testis	11 73:606
14-12	D13S1	11	0	0.07	Testis	CCG 52:72
13	D13S1	3	1			CCG 52:72
13	D13S1	3	1	0.33	Testis	CCG 52:72
13	D13S1	1	0	0	Testis	CR 51:5632
13	D13S1	8	1	0.12	Uterus	
12	D13S267	32	16	0.5	Breast	GCC 13:291
14	D13S218	140	33	0.24	Leukemia	CR 55:2044
12	D13S263	45	20	0.44	Breast	GCC 13:291
14	D13S22	17	5	0.29	Breast	GE 5:554
. 14	D13S22	11	3	0.27	Breast	GE 5:554
14	D13S22	12	0	0	Pediatric	CR 50:3279
14	D13S22	8	7	0.88	Sarcoma	CGC 53:45
14	D13S153	42	15	0.36	Breast	GCC 13:291
14.3	D13S133	18	10	0.56	Head&Neck	CR 54:1152
14.3	D13S133	6	3	0.5	Kidney	GCC 12:76
14.3	D13S133	140	5	0.04	Leukemia	CR 55:2044
14.3	D13S133	11.	0	0	Ovary	CR 54:605
14.3	D13S133	18	11	0.61	Ovary	CR 54:605
14.3	D13S133	21	7	0.33	Prostate	HUPATH 27:28
14.3-21.1	D13S31	29	9	0.31	Ovary	IJC 52:575
14.3-21	D13S31	26	6	0.23	Ovary	IJC 54:546
14	RB	94	28	0.3	Bladder	0 6:2305
14	RB	9	4	0.44	Brain	0 6:445
14	RB	20	3	0.15	Breast	AJP 140:215
14	RB	. 38	6	0.16	Breast	CR 53:4356
14.1	RB	14	5	0.36	Breast	JNCI 84:506
14	RB	10	4	0.4	Breast	GCC 4:113
14	RB	32	12	0.38	Breast	GE 5:554
14	RB	37	12	0.32	Breast	GCC 4:113
14	RB	90	23	0.26	Breast	CR 52:2991
14	RB	14	0	0	Cervix	BJC 67:71
14	RB	27	9	0.33	Colon	CR 52:741
14	RB	25	12	0.48	Colon	IJC 53:382
14.1	RB	156	18	0.12	Colon	BJC 64:475
14	RB	39	10	0.26	Colon	GAST 104:1633
14	RB	8	0	0	Colon	JNCI 84:1100
14	RB	6	0	0	Colon	JNCI 84:1100
14	RB	42	0	0	Endocrine	C 74:693

113 of 249 Chromosome 13 - q Arm

14	RB	29	17	0.59	Esophageal	C 73:2472
14	RB	40	19	0.47	Esophageal	CR 51:5766
14	RB	8	1	0.12	Esophageal	CR 51:2113
14	RB	16	5	0.31	Esophageal	CR 54:2996
14	RB	50	24	0.48	Esophageal	CR 52:6525
14	RB	29	17	0.59	Head&Neck	C 73:2472
14	RB	11	4	0.36	Liver	CR 54:281
14	RB	11	3	0.27	Liver	CR 51:4367
14	RB	9	1	0.11	Liver	CR 51:4367
14	RB	67	13	0.19	Lung	0 8:1913
14	RB	16	0	0	Lung	0 9:39
14	RB	7	2	0.29	Lung	CR 54:5643
14	RB	20	12	0.6	Lung	0 8:1913
14	RB	8	0	0	Lung	S 241:353
14	RB	3	2	0.67	Lung	CL 71:67
14	RB	8	6	0.75	Lung	0 9:39
14	RB	76	28	0.37	Lung	0 8:1913
14	RB	27	14	0.52	Lung	CR 54:5643
14	RB	59	22	0.37	Lung	0 10:937
14	RB	5	4	0.8	Lung	CR 54:5643
14	RB	2	Ì	0.5	Lung	CL 71:67
14	RB	7	1	0.14	Ovary	GO 55:245
14	RB	13	8	0.62	Ovary	IJC 58:663
14	RB	31	23	0.74	Ovary	CR 54:610
14	RB	39	13	0.33	Ovary	IJC 54:546
14.1	RB	17	2	0.12	Ovary	CR 54:610
14	RB	3 3	9	0.27	Ovary	IJC 52:575
14	RB	48	2 5	0.52	Ovary	CR 54:610
14	RB	9	0	0	Pediatric	CR 50:3279
14	RB	13	3	0.23	Prostate	PNAS 87:8751
14.1	RB	9	6	0.67	Prostate	BJU 73:390
14	RB	19	7	0.37	Prostate	HUPATH 27:28
14	RB	40	24	0.6	Prostate	BJC 70:1252
14	RB	7	5	0.71	Sarcomo	CR 52:2419
14	RB	13	4	0.31	Stomach	LI 74:835
14	RB	31	12	0.39	Testis	0 9:2245
Unknown	D13S155	6	3	0.5	Kidney	GCC 12:76
Unknown	D13S155	32	3	0.09	Melanoma	CR 56:589
14.1	D13S118	21	7	0.33	Prostate	HUPATH 27:28
21.1-21.2	D13S26	27	17	0.63	Cvary	GO 47:137
21-qter	D13S12	7	1	0.14	Liver	PNAS 86:8852
21-qter	D13S12	4	4	1	Sarcomo	CGC 53:45
	*					

114 of 249 Chromosome 13 - q Arm

22	D13S2	94	26	0.28	Bladder	0 6:2305
ZZ Unknown	D13S2	6	1	0.17	Breast	GCC 2:191
22	D13S2	7	3	0.43	Breast	PNAS 84:2372
22	D13S2	2	0.	0	Cervix	CR 49:3598
22	D13S2	4	1	0.25	Cervix	CR 54:4481
22	D13S2	10	3	0.3	Colon	IJC 53:382
22	D13S2	8	0	0	Colon	CCG 48:167
22	D13S2	4	1	0.25	Colon	CCG 48:167
22	D13S2	17	7	0.41	Esophageal	CR 54:2996
22	D13S2	. 6	2	0.33	Kidney	CR 51:1071
22	D13S2	. 6	4	0.67	Liver	CCG 48:72
22	D13S2	13	3	0.23	Liver	CR 51:89
Unknown	D13S2	13	0	0	Liver	JJCR 81:108
22	D13S2	21	12	0.57	Lung	PN 84:9252
22	D13S2	12	2	0.17	Lung	JJCR 80:924
Unknown	D13S2	9	7	0.78	Lung	CR 49:5130
22	D13S2	7	1	0.14	Neuroblastoma	CR 49:1095
Unknown	D13S2	10	3	0.3	Ovary	IJC 54:546
22	D13S2	8	6	0.75	Sarcoma	CR 52:2419
22	D13S2	10	3	0.3	Stomach	CR 52:3099
22	D13S2	9	1	0.11	Stomach	HG 92:244
22	D13S2	11	2	0.18	Stomach	CR 48:2988
22	D13S2	6	4	0.67	Stomach	G 2:180
Unknown	D13S2	7	1	0.14	Stomach	HG 89:445
Unknown	D13S2	14	4	0.29	Testis	0 9:2245
22	D13S2	4	1	0.25	Uterus	CR 51:5632
22-31	D13S170	47	11	0.23	Breast	GCC 13:291
22-31	D13S170	29	11	0.38	Head&Neck	CR 54:4756
22-31	D13S170	20	0	0	Head&Neck (CR 54:4756
31	D13S4	1	1	1	Breast	GCC 2:191
Unknown	D13S4	26	3	0.12	Breast	GE 5:554
Unknown	D13S4	5	2	0.4	Breast	PNAS 84:2372
Unknown	D13S4	10	0	0	Cervix	CR 49:3598
31	D13S4	8	0	0	Colon	JNCI 84:1100
Unknown	D13S4	1	0	0	Colon	CCG 48:167
Unknown	D13S4	19	12	0.63	Colon	IJC 53:382
Unknown	D13S4	12	4	0.33	Esophageal	CR 54: 29 96
Unknown	D13S4	4	0	0	Liver	JJCR 81:108
31	D13S4	19	10	0.53	Lung	PN 84:9252
31	D13S4	16	3	0.19	Lung	JJCR 80:924
Unknown	· D13S4	5	5	1	Lung	CR 49:5130
31	D13S4	8	0	0	Neuroblastomo	CR 49:1095
		TITITE OF	EFT /DILL	T 001		

WO 98/41648

115 of 249 Chromosome 13 - q Arm

Unknown	D13S4	15	. 11	0.73	Sarcoma	CR 52:2419
31	D13S4	14	3	0.21	Stomach	HG 92:244
Unknown	D13S4	11	2	0.18	Stomach	G 2:180
Unknown	D13 S4	17	2	0.12	Stomach	CR 48:2988
Unknown	D13S4	12	0	0	Uterus	CR 51:5632
22-34	D13S5	26	6	0.23	Breast	GE 5:554
21.3-32	D13 S5	4	1	0.25	Breast	PNAS 84:2372
21.3-32	D13S5	15	4	0.27	Colon	IJC 53:382
21.3-32	D13S5	4	0	0	Colon	CCG 48:167
22-34	D13S5	1	0	0	Colon	JNCI 84:1100
22-34	D13S5	22	9	0.41	Ovary	IJC 54:546
21.3-32	D13S5	10	4	0.4	Stomach	- G 2:180
22-34	D13S5	7	1	0.14	Stomach	G 2:180
21.3-32	D13S5	5	0	0	Uterus	CR 51:5632
22-34	D13S5	3	0	0	Uterus	CR 51:5632
21	D13S71	15	2	0.13	Brain	CR 54:1397
21	D13S71	7	0	0	Brain	CR 54:1397
32-34	D13S128	34	12	0.35	Ovary	CR 54:605
34	D13S34	12	5	0.42	Ovary	IJC 52:575
34	D13S34	15	7	0.47	Ovary	IJC 54:546
34	D13S32	28	11 .	0.39	Ovary	IJC 54:546
34	D13S32	26	12	0.46	Ovary	IJC 52:575
22-31	D13S173	39	7	0.18	Breast	GCC 13:291
34	D13S3	94	26	0.28	Bladder	0 6:2305
Unknown	D13S3	20	3	0.15	Breast	GCC 2:191
34	D13S3	26	4	0.15	Breast	GE 5:554
34	D13S3	7	2	0.29	Breast	PNAS 84:2372
33-34	D13S3	27	3	0.11	Cervix	CR 54:4481
34	D13S3	18	4	0.22	Cervix	CR 49:3598
34	D13S3	15	6	0.4	Colon	IJC 53:382
Unknown	D13S3	6	0	0	Colon	JNCI 84:1100
Unknown	D13S3	4	0	0	Liver	JJCR 81:108
33-34	D13S3	2	1	0.5	Liver	CCG 48:72
34	D13S3	8	4	0.5	Liver	CR 51:4367
34	D13S3	9	4	0.44	Lung	PNAS 86:5099
Unknown	D13S3	23	7	0.3	Lung	PN 84:9252
34	D13S3	11	10	0.91	Lung	CR 49:5130
34	D13S3	24	9	0.38	Lung	PN 84:9252
34	D13S3	9	4	0.44	Lung	PNAS 86:5099
34	D13S3	7	1	0.14	Neuroblastoma	CR 49:1095
34	D13S3	21	3	0.14	· Ovary	IJC 52:575
34	D13S3	19	4	0.21	Ovary	IJC 54:546

116 of 249 Chromosome 13 - q Arm

Unknown	D13S3	9	4	0.44	Sarcoma	CR 52:2419
34	D13S3	5	0	0	Stomach	HG 89:445
34	D13S3	20	5	0.25	Stomach	G 2:180
33-34	D13S3	9	1	0.11	Stomach	HG 92:244
Unknown	D13S3	19	5	0.26	Stomach	G 2:180
33-34	D13S3	17	2	0.12	Stomach	CR 48:2988
Unknown	D13S3	1	0	0	Testis	CCG 52:72
34	D13S3	20	8	0.4	Testis	0 9:2245
Unknown	D13S3	4	0	0	Testis	CCG 52:72
Unknown	D13S3	2.	0	0	Tes tis	CCG 52:72
34	D13S3	7	1	0.14	Uterus	CR 51:5632
34	D13S35	17	2	0.12	Ovary	IJC 54:546
34	D13S35	18	2	0.11	Ovary .	IJC 52:575
Unknown	D13S52	33	7	0.21	Breast	CR 50:7184
Unknown	D13S52	132	34	0.26	Breast	CR 51:5794
Unknown	D13S52	53	23	0.43	Esophageal	GCC 10:177
Unknown	D13S52	16	3	0.19	Esoph <mark>ageal</mark>	CR 51:2113
Unknown	D13S52	22	10	0.45	Esophageal	CR 54:2996
Unknown	D13S52	20	3	0.15	Kidney	CR 51:820
Unknown	D13S52	26	4	0.15	Liver	CR 51:89
Unknown	D13S52	2	1	0.5	Lung	CR 52:2478
Unknown	D13S52	9	5	0.56	Lung	CR 52:2478
Unknown	D13S52	26	5	0.19	Lung	CR 52:2478
Unknown	D13S52	1	}	1	Lung	CR 52:2478
Unknown	D13S52	27	6	0.22	Ovary	CR 51:5118
34	F7	11	2	0.18	Ovary	IJC 54:546
34	F7	11	2	0.18	Ovary	IJC 54:546
Unknown	BRAC2 (D135:263-219-220- 267-171-260-217)	1	1	1	Bladder	CR 55:4830
Unknown	D13S30	3	0	0	Bladder	CR 51:5405
Unknown	D13S:133-170	30	15	0.5	Bladder	CR 55:5213
Unknown	Unknown	7	1	0.14	Brain	CR 49:6572
Unknown	Unknown	14	2	0.14	Brain	CR 50:5784
32	D13S193	13	2	0.15	Brain	CR 54:1397
32	D13S193	13	0	0	Brain	CR 54:1397
Unknown	RB1-D13S4-D13S63	7	0	0	Brain	CGC 73:122
Unknown	RB1-D13S4-D13S63	18	. 2	0.11	Brain	CGC 73:122
Unknown	RB1-D13S4-D13S63	10	0	0	Brain	CGC 73:122
Unknown	BRAC2 (D13S:263-219-220- 267-171-260-217)	1	1	1	Breast	CR 55:4830
Unknown	BRAC2 (D135:263-219-220- 267-171-260-217)	33	28	0.85	Breast	CR 55:4830

117 of 249 Chromosome 13 - q Arm

Unknown	D13S7	2	1	0.5	Breast	PNAS 84:2372
Unknown	BRAC2 (D13S:263-219-220- 267-171-260-217)	1	1	1	Cervix	CR 55:4830
Unknown	•	6	. 0	0	Colon	JNCI 84:1100
Unknown	BRAC2 (D135:263-219-220- 267-171-260-217)	1	1	1	Colon	CR 55:4830
Unknown	D13S10	5	0	0	Colon	CCG 48:167
Unknown	D13S37	21	1	0.05	Colon	CCG 48:167
Unknown	ESD	19	0	0	Colon	CCG 48:167
Unknown	D13S168	18	2	0.11	Endocrine	CR 56:599
Unknown	D13S174-D13S173	20	1	0.05	Kidney	PNAS 92:2854
Unknown	D13S174-D13S173	5	0	0	Kidney	PNAS 92:2854
Unknown	D13S:156-158-164-217-221	24	3	0.12	Leukemia	CR 55:5377
Unknown	Unknown	11	0	0	Liver	BJC 64:1083
Unknown	Unknown	5	0	0	Liver	BJC 67:1007
Unknown	14.2	7	0	0	Liver	BJC 67:1007
p11-q11	D13S11	1	1	1	Liver	PNAS 86:8852
Unknown	Unknown	24	18	0.75	Lung	CR 54:2322
33-qter	Unknown	3	1	0.33	Lung	PN 86:5099
33-qter	Unknown	9	4	0.44	Lung	PN 86:5099
33-qter	Unknown	9	4	0.44	Lung	PN 86:5099
Unknown	BRAC2 (D13S:263-219-220- 267-171-260-217)	6	5	0.83	Ovary	CR 55:4830
Unknown	D13S3-2-1-RB1	32	18	0.56	Ovary	CR 53:2393
Unknown	Unknown	7	0	0	Pancreas	BJC 65:809
Unknown	14.2	10	0	0	Pancreas	BJC 65:809
Unknown	Unknown	13	3	0.23	Prostate	CSurveys 11:15
Unknown	BRAC2 (D13S:263-219-220- 267-171-260-217)	7	6	0.86	Prostate	CR 55:4830
Unknown	D13S3-D13S5	11	1	0.09	Prostate	G 11:530
Unknown	D13S103	32	5	0.16	Stomach	HG 92:244
Unknown	D13S409	14	2	0.14	Stomach	CR 55:1933
Unknown	Unknown	15	3	0.2	Testis	G 5:134
Unknown	D13S103	9	1	0.11	Testis	GCC 13:249
Unknown	D13S70	13	3	0.23	Testis	GCC 13:249
Unknown	D13S120	15	0	0	Uterus	CR 54:4294
Unknown	D13S122	18	2	0.11	Uterus	CR 54:4294
SUM		5208	1509	0.29		

118 of 249

Band	Morker	Total	Cases wi/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D14S22	24	2	0.08	Esophageal	CR 54:2996
SUM		24	2	0.08		

119 of 249 Chromosome 14 - q Arm

Unknown TCRD 31 6 0.19 Uterus CR 54-4294 Unknown D14S-267-268-51 30 21 0.7 Blodder CR 55-5213 Unknown Unknown 19 3 0.16 Broin CR 55-5213 32 D14S13 14 1 0.07 Brain CR 55-4696 32.1-32.2 D14S13 26 1 0.04 Broin CR 55-4696 32 D14S16 26 1 0.04 Broin CR 55-4696 32 D14S16 26 1 0.04 Broin CR 55-4696 32.32-33 D14S23 26 0 0 Broin CR 55-4696 32.32-33 D14S23 26 0 0 Broin CR 55-4696 24.3 D14S43 26 5 0.19 Broin CR 55-4696 32.1-32.2 D14S45 26 1 0.04 Broin CR 55-4696 32.1-32.2 D14S48 <th< th=""><th>Band</th><th>Marker</th><th>Total</th><th>Cases w/LOH</th><th>LOH Freq.</th><th>Tumor Type</th><th>Reference</th></th<>	Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown					•	• •	CR 54:4294
Unknown Unknown 19 3 0.16 Broin CR 50:5784 32 D14513 14 1 0.07 Brain CR 49:6572 32.1-32.2 D14513 26 1 0.04 Broin CR 55:4696 32.1-32.2 D14516 26 1 0.04 Broin CR 55:4696 32 D14516 26 1 0.04 Broin CR 55:4696 32.32-33 D14523 26 0 0 Broin CR 55:4696 32.32-33 D14523 26 0 0 Broin CR 55:4696 24.3 D14543 26 5 0.19 Broin CR 55:4696 32.1-32.2 D14543 26 5 0.19 Broin CR 55:4696 32.1-32.2 D14545 26 1 0.04 Broin CR 55:4696 32.1-32.2 D14548 26 8 0.31 Broin CR 55:4696 24.3-31 D14548			30	21	0.7	Bladder	CR 55:5213
32 D14S13 14 1 0.07 Brain CR 49:6572 32.1-32.2 D14S13 26 1 0.04 Brain CR 55:4696 32.1-32.2 D14S16 26 1 0.04 Brain CR 55:4696 32 D14S16 26 1 0.04 Brain CR 55:4696 32 D14S16 26 1 0.04 Brain CR 55:4696 32.32-33 D14S23 26 0 0 Brain CR 55:4696 32.32-33 D14S23 26 0 0 Brain CR 55:4696 32.32-33 D14S23 26 0 0 Brain CR 55:4696 32.32-33 D14S23 26 0 0 Brain CR 55:4696 32.32-33 D14S43 26 5 0.19 Brain CR 55:4696 32.1-32.2 D14S45 26 1 0.04 Brain CR 55:4696 32.1-32.2 D14S45 26 1 0.04 Brain CR 55:4696 32.1-32.2 D14S45 26 1 0.04 Brain CR 55:4696 32.1-32.2 D14S45 26 1 0.04 Brain CR 55:4696 32.1-32.2 D14S45 26 1 0.04 Brain CR 55:4696 32.1-32.2 D14S45 26 1 0.04 Brain CR 55:4696 32.1-32.2 D14S45 26 8 0.31 Brain CR 55:4696 32.1-32.2 D14S51 26 8 0.31 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 32.1-32.3 D14S54 26 2 0.08 Brain CR 55:4696 32.1-32.3 D14S59 26 10 0.38 Brain CR 55:4696 23-31 D14S59 26 10 0.38 Brain CR 55:4696 23-31 D14S59 26 10 0.38 Brain CR 55:4696 23-31 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 33.3 D14S76 26 6 0.23 Brain CR 55:4696 34.3-31 D14S81 26 7 0.27 Brain CR 55:4696 34.3-31 D14S81 26 7 0.27 Brain CR 55:4696 32.3-3			. 19	3	0.16	Brain	CR 50:5784
32.1-32.2 D14S13 26 1 0.04 Brain CR 55.4696 32.1-32.2 D14S16 26 1 0.04 Brain CR 55.4696 32 D14S16 26 1 0.04 Brain CR 55.4696 32 D14S16 26 1 0.04 Brain CR 55.4696 32.32-33 D14S23 26 0 0 Brain CR 55.4696 32.32-33 D14S23 26 0 0 Brain CR 55.4696 32.32-33 D14S23 26 0 0 Brain CR 55.4696 32.32-33 D14S23 26 0 0 Brain CR 55.4696 32.32-33 D14S23 26 5 0.19 Brain CR 55.4696 32.1-32.2 D14S45 26 1 0.04 Brain CR 55.4696 32.1-32.2 D14S45 26 1 0.04 Brain CR 55.4696 32.1-32.2 D14S45 26 1 0.04 Brain CR 55.4696 32.1-32.2 D14S45 26 1 0.04 Brain CR 55.4696 32.1-32.2 D14S45 26 8 0.31 Brain CR 55.4696 32.1-32.2 D14S45 26 8 0.31 Brain CR 55.4696 32.1-32.2 D14S45 26 8 0.31 Brain CR 55.4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55.4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55.4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55.4696 32.1-32.3 D14S54 26 2 0.08 Brain CR 55.4696 32.1-32.3 D14S54 26 2 0.08 Brain CR 55.4696 32.1-32.1 D14S54 26 2 0.08 Brain CR 55.4696 32.1-32.1 D14S54 26 2 0.08 Brain CR 55.4696 32.1-32.1 D14S54 26 2 0.08 Brain CR 55.4696 32.3-3 D14S59 26 10 0.38 Brain CR 55.4696 32.3-3 D14S70 26 8 0.31 Brain CR 55.4696 32.3-3 D14S70 26 8 0.31 Brain CR 55.4696 32.3-3 D14S70 26 8 0.31 Brain CR 55.4696 32.3-3 D14S70 26 8 0.31 Brain CR 55.4696 32.3-3 D14S70 26 8 0.31 Brain CR 55.4696 32.3-3 D14S70 26 8 0.31 Brain CR 55.4696 32.3-3 D14S70 26 8 0.31 Brain CR 55.4696 32.3-3 D14S70 26 8 0.31 Brain CR 55.4696 32.3-3 D14S80 26 7 0.27 Brain CR 55.4696 32.3-3 D14S81 26 7 0.27 Brain CR 55.4696 32.3-3 D14S81 26 7 0.27 Brain CR 55.4696 32.3-3 D14S81 26 7 0.27 Brain CR 55.4696 32.3-3 D14S81 26 7 0.27 Brain CR 55.4696 32.3-3 D14S81 26 7 0.27 Brain CR 55.4696 32.3-3 D14S81 26 7 0.27 Brain CR 55.4696 32.3-3 D14S81 26 7 0.27 Brain CR 55.4696 32.3-3 D14S81 26 7 0.27 Brain CR 55.4696 32.3-3 D14S81 26 7 0.27 Brain CR 55.4696 32.3-3 D14S81 26 7 0.27 Brain CR 55.4696 32.3-3 D14S81 26 7 0.27 Brain CR 55.4696 32.3-3 D14S81 26 7 0.27 Brain CR 55.4696 32.3-3 D14S81 26 7 0.27 Brain CR 55.4696 32.3-3 D14S81 26 7 0.27 Brain CR 55.4696 32.3-3 D14S81 26 7 0.27 Brain CR 55.			14	1	0.07	Brain	CR 49:6572
32.1-32.2 D14513 26 1 0.04 Brain CR 55:4696 32 D14516 26 1 0.04 Brain CR 55:4696 32 D14516 26 1 0.04 Brain CR 55:4696 32.32-33 D14523 26 0 0 Brain CR 55:4696 32.32-33 D14523 26 0 0 Brain CR 55:4696 24.3 D14543 26 5 0.19 Brain CR 55:4696 24.3 D14543 26 5 0.19 Brain CR 55:4696 32.1-32.2 D14545 26 1 0.04 Brain CR 55:4696 32.1-32.2 D14545 26 1 0.04 Brain CR 55:4696 24.3-31 D14548 26 8 0.31 Brain CR 55:4696 24.3-31 D14548 26 8 0.31 Brain CR 55:4696 32.1-32.2 D14551 26 3 0.12 Brain CR 55:4696 32.1-32.2 D14551 26 3 0.12 Brain CR 55:4696 32.1-32.2 D14551 26 3 0.12 Brain CR 55:4696 12.0-13.0 D14554 26 2 0.08 Brain CR 55:4696 12.0-13.0 D14554 26 2 0.08 Brain CR 55:4696 23-31 D14559 26 10 0.38 Brain CR 55:4696 23-31 D14559 26 10 0.38 Brain CR 55:4696 23-31 D14559 26 10 0.38 Brain CR 55:4696 23-31 D14559 26 10 0.38 Brain CR 55:4696 23-31 D14559 26 10 0.38 Brain CR 55:4696 23-31 D14570 26 8 0.31 Brain CR 55:4696 24.3-31 D14570 26 8 0.31 Brain CR 55:4696 32.1-32.2 D14581 26 7 0.27 Brain CR 55:4696 31 D14580 26 7 0.27 Brain CR 55:4696 32.3-31 D14580 26 7 0.27 Brain CR 55:4696 32.3-31 D14581 26 7 0.27 Brain CR 55:4696 32.3-31 B14513 47 6 0.13 Breast CR 50:7184 32 D14513 47 6 0.13 Breast CR 50:7184 32 D14513 47 6 0.13 Breast CR 50:7184			26	1	0.04	Brain	CR 55:4696
32 D14516 26 1 0.04 Brain CR 55:4696 32 D14516 26 1 0.04 Brain CR 55:4696 32.3233 D14523 26 0 0 Brain CR 55:4696 32.3233 D14523 26 0 0 Brain CR 55:4696 32.3233 D14523 26 0 0 Brain CR 55:4696 32.3233 D14523 26 0 0 Brain CR 55:4696 32.1-32 D14543 26 5 0.19 Brain CR 55:4696 32.1-32 D14545 26 1 0.04 Brain CR 55:4696 32.1-32 D14545 26 1 0.04 Brain CR 55:4696 32.1-32 D14545 26 1 0.04 Brain CR 55:4696 32.1-32 D14545 26 1 0.04 Brain CR 55:4696 32.1-32 D14545 26 1 0.04 Brain CR 55:4696 32.1-32 D14545 26 8 0.31 Brain CR 55:4696 32.1-32 D14551 26 3 0.12 Brain CR 55:4696 32.1-32 D14551 26 3 0.12 Brain CR 55:4696 32.1-32 D14551 26 3 0.12 Brain CR 55:4696 32.1-32 D14551 26 3 0.12 Brain CR 55:4696 32.1-32 D14551 26 3 0.12 Brain CR 55:4696 32.1-32 D14551 26 3 0.12 Brain CR 55:4696 32.1-31 D14559 26 10 0.38 Brain CR 55:4696 23-31 D14559 26 10 0.38 Brain CR 55:4696 23-31 D14570 26 8 0.31 Brain CR 55:4696 24.3-31 D14570 26 8 0.31 Brain CR 55:4696 32.1-32 D14580 26 7 0.27 Brain CR 55:4696 31 D14580 26 7 0.27 Brain CR 55:4696 31 D14580 26 7 0.27 Brain CR 55:4696 32 D14513 60 7 0.27 Brain CR 55:4696 32 D14513 60 7 0.27 Brain CR 55:4696 32 D14513 60 7 0.27 Brain CR 55:4696 32 D14513 60 7 0.27 Brain CR 55:4696 32 D14513 60 7 0.27 Brain CR 55:4696 32 D14513 60 7 0.27 Brain CR 55:4696 32 D14513 60 7 0.27 Brain CR 55:4696 32 D14513 60 7 0.27 Brain CR 55:4696 32 D14513 60 7 0.27 Brain CR 55:4696 32 D14513 29 7 0.24 Bracst CR 53:4356 32 D14513 47 6 0.13 Bracst CR 55:4696 32 D14513 47 6 0.13 Bracst CR 55:4696 32 D14513 47 6 0.13 Bracst CR 55:4696 32 D14513 47 6 0.13 Bracst CR 55:4696 32 D14513 47 6 0.13 Bracst CR 55:4696 32 D14513 47 6 0.13 Bracst CR 55:4696		D14S13	26	1	0.04	Brain	CR 55:4 6 96
32 D14S16 26 1 0.04 Brain CR 55:4696 32.32-33 D14S23 26 0 0 Brain CR 55:4696 32.32-33 D14S23 26 0 0 Brain CR 55:4696 24.3 D14S43 26 5 0.19 Brain CR 55:4696 24.3 D14S43 26 5 0.19 Brain CR 55:4696 32.1-32.2 D14S45 26 1 0.04 Brain CR 55:4696 32.1-32.2 D14S45 26 1 0.04 Brain CR 55:4696 24.3-31 D14S48 26 8 0.31 Brain CR 55:4696 32.1-32.2 D14S45 26 8 0.31 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 12.0-13.0 D145S4 26 2 0.08 Brain CR 55:4696 12.0-13.0 D14S54 26 2 0.08 Brain CR 55:4696 23-31 D14S59 26 10 0.38 Brain CR 55:4696 23-31 D14S59 26 10 0.38 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 13.0 D14580 26 7 0.27 Brain CR 55:4696 14.3-31 D14580 26 7 0.27 Brain CR 55:4696 15.4-3-31 D14581 26 7 0.27 Brain CR 55:4696 16 7 0.27 Brain CR 55:4696 17 0.27 Brain CR 55:4696 18 0.31 Brain CR 55:4696 19 D14581 26 7 0.27 Brain CR 55:4696 10 D14581 26 7 0.27 Brain CR 55:4696 11 D14581 26 7 0.27 Brain CR 55:4696 12 D14581 26 7 0.27 Brain CR 55:4696 13 D14581 26 7 0.27 Brain CR 55:4696 14 D14581 26 7 0.27 Brain CR 55:4696 15 D14581 26 7 0.27 Brain CR 55:4696 15 D14581 26 7 0.27 Brain CR 55:4696 15 D14581 26 7 0.27 Brain CR 55:4696 15 D14581 29 7 0.24 Brasst CR 50:7184 15 D14581 29 7 0.24 Brasst CR 50:7184 15 D14581 29 7 0			26	1	0.04	Brain	CR 55:4696
32.32-33 D14523 26 0 0 Broin CR 55:4696 32.32-33 D14523 26 0 0 Broin CR 55:4696 24.3 D14543 26 5 0.19 Broin CR 55:4696 24.3 D14543 26 5 0.19 Broin CR 55:4696 24.3 D14545 26 1 0.04 Broin CR 55:4696 32.1-32.2 D14545 26 1 0.04 Broin CR 55:4696 32.1-32.2 D14545 26 1 0.04 Broin CR 55:4696 32.1-32.2 D14548 26 8 0.31 Broin CR 55:4696 32.1-32.2 D14551 26 3 0.12 Broin CR 55:4696 32.1-32.2 D14551 26 3 0.12 Broin CR 55:4696 32.1-32.2 D14551 26 3 0.12 Broin CR 55:4696 32.1-32.2 D14551 26 3 0.12 Broin CR 55:4696 32.1-32.2 D14551 26 3 0.12 Broin CR 55:4696 32.1-32.2 D14551 26 3 0.12 Broin CR 55:4696 12.0-13.0 D14554 26 2 0.08 Broin CR 55:4696 12.0-13.0 D14559 26 10 0.38 Broin CR 55:4696 12.0-13.0 D14570 26 8 0.31 Broin CR 55:4696 12.0-13.0 D14570 26 8 0.31 Broin CR 55:4696 12.0-13.0 D14570 26 8 0.31 Broin CR 55:4696 12.0-13.0 D14570 26 8 0.31 Broin CR 55:4696 12.0-13.0 D14570 26 8 0.31 Broin CR 55:4696 12.0-13.0 D14570 26 8 0.31 Broin CR 55:4696 12.0-13.0 D14570 26 8 0.31 Broin CR 55:4696 12.0-13.0 D14570 26 8 0.31 Broin CR 55:4696 12.0-13.0 D14570 26 8 0.31 Broin CR 55:4696 12.0-13.0 D14570 26 8 0.31 Broin CR 55:4696 12.0-13.0 D14570 26 8 0.31 Broin CR 55:4696 12.0-13.0 D14570 26 8 0.31 Broin CR 55:4696 12.0-13.0 D14570 26 8 0.31 Broin CR 55:4696 12.0-13.0 D14570 26 8 0.31 Broin CR 55:4696 12.0-13.0 CR 55:4696 12.			26	1	0.04	Brain	CR 55:4696
32.32-33 D14S23 D14S43 D14S43 D14S43 D14S43 D14S43 D14S43 D14S43 D14S43 D14S43 D14S43 D14S43 D14S45		D14S23	26	0	0	Broin	CR 55:4 6 96
24.3 D14S43 26 5 0.19 Brain CR 55:4696 24.3 D14S43 26 5 0.19 Brain CR 55:4696 32.1-32.2 D14S45 26 1 0.04 Brain CR 55:4696 32.1-32.2 D14S45 26 1 0.04 Brain CR 55:4696 24.3-31 D14S48 26 8 0.31 Brain CR 55:4696 24.3-31 D14S48 26 8 0.31 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 32.1-32.2 D14S54 26 2 0.08 Brain CR 55:4696 32.1-32.2 D14S54 26 2 0.08 Brain CR 55:4696 32.1-32.2 D14S54 26 2 0.08 Brain CR 55:4696 12.0-13.0 D14S59 </td <td></td> <td>D14S23</td> <td>26</td> <td>0</td> <td>0</td> <td>Brain</td> <td>CR 55:4696</td>		D14S23	26	0	0	Brain	CR 55:4696
24.3 D14S43 26 5 0.19 Broin CR 55:4696 32.1-32.2 D14S45 26 1 0.04 Brain CR 55:4696 32.1-32.2 D14S45 26 1 0.04 Brain CR 55:4696 24.3-31 D14S48 26 8 0.31 Brain CR 55:4696 24.3-31 D14S48 26 8 0.31 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 32.1-32.2 D14S51 26 2 0.08 Brain CR 55:4696 12.0-13.0 D14S54 26 2 0.08 Brain CR 55:4696 23-31 D14S59 26 10 0.38 Brain CR 55:4696 23-31 D14S70 <td></td> <td>D14S43</td> <td>26</td> <td>5</td> <td>0.19</td> <td>Brain</td> <td>CR 55:4696</td>		D14S43	26	5	0.19	Brain	CR 55:4696
32.1-32.2 D14S45 26 1 0.04 Brain CR 55:4696 32.1-32.2 D14S45 26 1 0.04 Brain CR 55:4696 24.3-31 D14S48 26 8 0.31 Brain CR 55:4696 24.3-31 D14S48 26 8 0.31 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 12.0-13.0 D14S54 26 2 0.08 Brain CR 55:4696 12.0-13.0 D14S54 26 2 0.08 Brain CR 55:4696 23-31 D14S59 26 10 0.38 Brain CR 55:4696 23-31 D14S59 26 10 0.38 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 31 D14S80 26 7 0.27 Brain CR 55:4696 32.3 IGH 26 7 0.27 Brain CR 55:4696 31 D14S81 26 7 0.27 Brain CR 55:4696 31 D14S81 26 7 0.27 Brain CR 55:4696 32.3 IGH 26 9 0.35 Br		D14S43	26	5	0.19	Brain	CR 55:4696
32.1-32.2 D14S45 26 1 0.04 Brain CR 55:4696 24.3-31 D14S48 26 8 0.31 Brain CR 55:4696 24.3-31 D14S48 26 8 0.31 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 32.1-32.2 D14S51 26 3 0.12 Brain CR 55:4696 12.0-13.0 D14S54 26 2 0.08 Brain CR 55:4696 12.0-13.0 D14S54 26 2 0.08 Brain CR 55:4696 23-31 D14S59 26 10 0.38 Brain CR 55:4696 23-31 D14S59 26 10 0.38 Brain CR 55:4696 23-31 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 24.3-31 D14S76 <td></td> <td>D14S45</td> <td>26</td> <td>1</td> <td>0.04</td> <td>Brain</td> <td>CR 55:4696</td>		D14S45	26	1	0.04	Brain	CR 55:4696
24.3-31 D14548 26 8 0.31 Broin CR 55:4696 24.3-31 D14548 26 8 0.31 Broin CR 55:4696 32.1-32.2 D14551 26 3 0.12 Broin CR 55:4696 32.1-32.2 D14551 26 3 0.12 Broin CR 55:4696 12.0-13.0 D14554 26 2 0.08 Broin CR 55:4696 12.0-13.0 D14554 26 2 0.08 Broin CR 55:4696 23-31 D14559 26 10 0.38 Broin CR 55:4696 23-31 D14559 26 10 0.38 Broin CR 55:4696 23-31 D14570 26 8 0.31 Broin CR 55:4696 12.0-13.0 D14570 26 8 0.31 Broin CR 55:4696 12.0-13.0 D14570 26 8 0.31 Broin CR 55:4696 12.0-13.0 D14570 </td <td></td> <td>D14S45</td> <td>26</td> <td>1</td> <td>0.04</td> <td>Brain</td> <td>CR 55:4696</td>		D14S45	26	1	0.04	Brain	CR 55:4696
24,3-31 D14548 26 8 0.31 Brain CR 55:4696 32,1-32,2 D14551 26 3 0.12 Brain CR 55:4696 32,1-32,2 D14551 26 3 0.12 Brain CR 55:4696 12,0-13,0 D14554 26 2 0.08 Brain CR 55:4696 23-31 D14559 26 10 0.38 Brain CR 55:4696 23-31 D14559 26 10 0.38 Brain CR 55:4696 23-31 D14559 26 10 0.38 Brain CR 55:4696 23-31 D14570 26 8 0.31 Brain CR 55:4696 12,0-13,0 D14570 26 8 0.31 Brain CR 55:4696 12,0-13,0 D14570 26 8 0.31 Brain CR 55:4696 12,0-13,0 D14570 26 8 0.31 Brain CR 55:4696 24,3-31 D14576		D14S48	26	8	0.31	Brain	CR 55:4 6 96
32.1-32.2 D14SS1 26 3 0.12 Brain CR 55:4696 32.1-32.2 D14SS1 26 3 0.12 Broin CR 55:4696 12.0-13.0 D14SS4 26 2 0.08 Brain CR 55:4696 12.0-13.0 D14SS4 26 2 0.08 Brain CR 55:4696 23-31 D14SS9 26 10 0.38 Brain CR 55:4696 23-31 D14SS9 26 10 0.38 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 24.3-31 D14S76 26 6 0.23 Brain CR 55:4696 24.3-31 D14S76 26 6 0.23 Brain CR 55:4696 12 D14S80 26 7 0.27 Brain CR 55:4696 31 D14S81		D14S48	26	8	0.31	Brain	CR 55:4696
12.0-13.0 D14S54 26 2 0.08 Brain CR 55:4696 12.0-13.0 D14S54 26 2 0.08 Brain CR 55:4696 23-31 D14S59 26 10 0.38 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S76 26 6 0.23 Brain CR 55:4696 24.3-31 D14S76 26 6 0.23 Brain CR 55:4696 24.3-31 D14S80 26 7 0.27 Brain CR 55:4696 12 D14S80 26 7 0.27 Brain CR 55:4696 31 D14S81 26 7 0.27 Brain CR 55:4696 32.3 IGH <td< td=""><td></td><td>D14S51</td><td>26</td><td>3</td><td>0.12</td><td>Brain</td><td>CR 55:4696</td></td<>		D14S51	26	3	0.12	Brain	CR 55:4696
12.0-13.0 D14S54 26 2 0.08 Brain CR 55:4696 23-31 D14S59 26 10 0.38 Brain CR 55:4696 23-31 D14S59 26 10 0.38 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 24.3-31 D14S76 26 6 0.23 Brain CR 55:4696 24.3-31 D14S76 26 6 0.23 Brain CR 55:4696 24.3-31 D14S80 26 7 0.27 Brain CR 55:4696 12 D14S80 26 7 0.27 Brain CR 55:4696 31 D14S81 26 7 0.27 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32.3 IGH 26	32.1-32.2	D14S51	26	3	0.12	Brain	CR 55:4696
23-31 D14559 26 10 0.38 Brain CR 55:4696 23-31 D14559 26 10 0.38 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 24.3-31 D14576 26 6 0.23 Brain CR 55:4696 24.3-31 D14576 26 6 0.23 Brain CR 55:4696 12 D14580 26 7 0.27 Brain CR 55:4696 12 D14580 26 7 0.27 Brain CR 55:4696 31 D14581 26 7 0.27 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32.3 IGH 26 9 <td></td> <td>D14S54</td> <td>26</td> <td>2</td> <td>0.08</td> <td>Brain</td> <td>CR 55:4696</td>		D14S54	26	2	0.08	Brain	CR 55:4696
23-31 D14S59 26 10 0.38 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14S70 26 8 0.31 Brain CR 55:4696 24.3-31 D14S76 26 6 0.23 Brain CR 55:4696 24.3-31 D14S76 26 6 0.23 Brain CR 55:4696 12 D14S80 26 7 0.27 Brain CR 55:4696 12 D14S80 26 7 0.27 Brain CR 55:4696 31 D14S81 26 7 0.27 Brain CR 55:4696 31 D14S81 26 7 0.27 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32 D14S13 60 7	12.0-13.0	D14S54	26	2	0.08	Brain	CR 55:4696
12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 12.0-13.0 D14570 26 8 0.31 Brain CR 55:4696 24.3-31 D14576 26 6 0.23 Brain CR 55:4696 24.3-31 D14576 26 6 0.23 Brain CR 55:4696 12 D14580 26 7 0.27 Brain CR 55:4696 12 D14580 26 7 0.27 Brain CR 55:4696 31 D14581 26 7 0.27 Brain CR 55:4696 31 D14581 26 7 0.27 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32 D14513 60 7 0.12 Breast CR 50:7184 32 D14513 29 7	23-31	D14S59	26	10	0.38	Brain	CR 55:4696
12.0-13.0 D14S70 26 8 0.31 Broin CR 55:4696 24.3-31 D14S76 26 6 0.23 Broin CR 55:4696 24.3-31 D14S76 26 6 0.23 Broin CR 55:4696 12 D14S80 26 7 0.27 Broin CR 55:4696 12 D14S80 26 7 0.27 Broin CR 55:4696 31 D14S81 26 7 0.27 Broin CR 55:4696 31 D14S81 26 7 0.27 Broin CR 55:4696 32.3 IGH 26 9 0.35 Broin CR 55:4696 32.3 IGH 26 9 0.35 Broin CR 55:4696 32.3 IGH 26 9 0.35 Broin CR 55:4696 32 D14S13 60 7 0.12 Breast CR 53:4356 32 D14S13 29 7	23-31	D14S59	26	10	0.38	Brain	CR 55:4696
24.3-31 D14S76 26 6 0.23 Brain CR 55:4696 24.3-31 D14S76 26 6 0.23 Brain CR 55:4696 12 D14S80 26 7 0.27 Brain CR 55:4696 12 D14S81 26 7 0.27 Brain CR 55:4696 31 D14S81 26 7 0.27 Brain CR 55:4696 31 D14S81 26 7 0.27 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32 D14S13 60 7 0.12 Breast CR 53:4356 32 D14S13 29 7 0.24 Breast GCC 2:191 32 D14S13 47 6 0	12.0-13.0	D14S70	26	8	0.31	Brain	CR 55:4696
24.3-31 D14576 26 6 0.23 Brain CR 55:4696 12 D14580 26 7 0.27 Brain CR 55:4696 12 D14580 26 7 0.27 Brain CR 55:4696 31 D14581 26 7 0.27 Brain CR 55:4696 31 D14581 26 7 0.27 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32 D14S13 60 7 0.12 Breast CR 53:4356 32 D14S13 47 6 0.13 Breast CR 50:7184 32 D14S16 17 2 0.12 </td <td>12.0-13.0</td> <td>D14S70</td> <td>26</td> <td>8</td> <td>0.31</td> <td>Broin</td> <td>CR 55:4696</td>	12.0-13.0	D14S70	26	8	0.31	Broin	CR 55:4696
12 D14S80 26 7 0.27 Brain CR 55:4696 12 D14S80 26 7 0.27 Brain CR 55:4696 31 D14S81 26 7 0.27 Brain CR 55:4696 31 D14S81 26 7 0.27 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32 D14S13 60 7 0.12 Breast CR 53:4356 32 D14S13 29 7 0.24 Breast GCC 2:191 32 D14S13 47 6 0.13 Breast CR 50:7184 32 D14S16 17 2 0.12 Breast GCC 2:191	24.3-31	D14S76	26	6	0.23	Brain	CR 55:4 6 96
12 D14S80 26 7 O.27 Brain CR 55:4696 31 D14S81 26 7 O.27 Brain CR 55:4696 31 D14S81 26 7 O.27 Brain CR 55:4696 32.3 IGH 26 9 O.35 Brain CR 55:4696 32.3 IGH 26 9 O.35 Brain CR 55:4696 32 D14S13 60 7 O.12 Breast CR 53:4356 32 D14S13 29 7 O.24 Breast GCC 2:191 32 D14S13 47 6 O.13 Breast CR 50:7184 32 D14S16 17 2 O.12 Breast GCC 2:191	24.3-31	D14S76	26	6	0.23	Brain	CR 55:4696
31 D14S81 26 7 0.27 Brain CR 55:4696 31 D14S81 26 7 0.27 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32 D14S13 60 7 0.12 Breast CR 53:4356 32 D14S13 29 7 0.24 Breast GCC 2:191 32 D14S13 47 6 0.13 Breast CR 50:7184 32 D14S16 17 2 0.12 Breast GCC 2:191	12	D14S80	26	7	0.27	Brain	CR 55:4696
31 D14S81 26 7 0.27 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32 D14S13 60 7 0.12 Breast CR 53:4356 32 D14S13 29 7 0.24 Breast GCC 2:191 32 D14S13 47 6 0.13 Breast CR 50:7184 32 D14S16 17 2 0.12 Breast GCC 2:191	12	D14S80	26	7	0.27	Brain	CR 55:4696
32.3 IGH 26 9 0.35 Brain CR 55:4696 32.3 IGH 26 9 0.35 Brain CR 55:4696 32 D14S13 60 7 0.12 Breast CR 53:4356 32 D14S13 29 7 0.24 Breast GCC 2:191 32 D14S13 47 6 0.13 Breast CR 50:7184 32 D14S16 17 2 0.12 Breast GCC 2:191	31	D14S81	26	7	0.27	Brain	CR 55:4696
32.3 IGH 26 9 0.35 Brain CR 55:4696 32 D14S13 60 7 0.12 Breast CR 53:4356 32 D14S13 29 7 0.24 Breast GCC 2:191 32 D14S13 47 6 0.13 Breast CR 50:7184 32 D14S16 17 2 0.12 Breast GCC 2:191	31	D14S81	26	7	0.27	Brain	CR 55:4696
32 D14S13 60 7 0.12 Breast CR 53:4356 32 D14S13 29 7 0.24 Breast GCC 2:191 32 D14S13 47 6 0.13 Breast CR 50:7184 32 D14S16 17 2 0.12 Breast GCC 2:191	32 .3	IGH	26	9	0.35	Brain	CR 55:4696
32 D14S13 29 7 O.24 Breast GCC 2:191 32 D14S13 47 6 O.13 Breast CR 50:7184 32 D14S16 17 2 O.12 Breast GCC 2:191	32.3	IGH	26	9	0.35	Brain	CR 55:4696
32 D14S13 47 6 0.13 Breast CR 50:7184 32 D14S16 17 2 0.12 Breast GCC 2:191	32	D14S13	60	7	0.12	Breast	CR 53:4356
32 D14S16 17 2 0.12 Breast GCC 2:191	32	D14S13	29	7	0.24	Breast	GCC 2:191
	32	D14S13	47	6	0.13	Breast	CR 50:7184
	32	D14S16	17	2	0.12	Breast	GCC 2:191
OL.0 1011 U L 0.00 010031 CK 30.0001	32 .3	IGH	6	2	0.33	Breast	CR 53:3804
							CR 49:3598
	*						CR 54:4481
Unknown D14S3 7 0 0 Cervix GCC 9:119				0			GCC 9:119
32.1 AACT 26 6 0.23 Colon 0.8:671	32.1		26	6	0.23	Colon	0 8:671

1'20 of 249 Chromosome 14 - q Arm

32.32-32.33	AKTI	10	4	0.4	Colon	0 8:671
32.3233	D14S1	42	14	0.33	Colon	0 8:671
32.33	D14S1	28	12	0.43	Colon	IJC 53:382
32.33	D14S13	35	14	0.4	Colon	IJC 53:382
Unknown	D14516	17	2	0.12	Colon	CCG 48:167
32	D14S16	14	7	0.5	Colon	IJC 53:382
32 32	D14S16	37	18	0.49	Colon	0 8:671
32.3233	D14S17	12	5	0.42	Colon	IJC 53:382
32.3233	D14S17	20	7	0.35	Colon	0 8:671
32.3233 32.1-32.32	D14S18	1	1	1	Colon	IJC 53:382
32.32-32.33	D14S19	39	22	0.56	Colon	0 8:671
32.33	D14S19	14	4	0.29	Colon	IJC 53:382
32.33 32.33	D14S20	20	10	0.5	Colon	0 8:671
32.33 32.1-32.32	D14S21	2	2	1	Colon	IJC 53:382
32.1-32.32 32.1-32.32	D14S21	23	6	0.26	Colon	0 8:671
32.1-32.32 32.3233	D14S23	23	9	0.39	Colon	IJC 53:382
32.3233 32.3233	D14S23	42	21	0.5	Colon	0 8:671
32.3233	IGH	47	26	0.55	Colon	0 8:671
32.1	PI	6	0	0	Colon	0 8:671
Unknown	D14S174	21	0	0	Endocrine	GCC 13:9
32.1-32.2	D14S45	23	0	0	Endocrine	CR 56:599
32.1-32.2	D14S13	23	4	0.17	Esophageal	CR 51:2113
32	D14S13	64	9	0.14	Esophageal	GCC 10:177
32	D14S13	26	4	0.15	Esophageal	CR 54:2996
Unknown	D14S51	23	9	0.39	Head&Neck	CR 54:1152
Unknown	D14S73	20	1	0.05	Head&Neck	CR 54:4756
Unknown	D14S73	18	1	0.06	Head&Neck	CR 54:4756
32	D14S13	36	3	0.08	Kidney	CR 51:820
Unknown	D14S65-D14S81	6	1	0.17	Kidney	PNAS 92:2854
Unknown	D14S65-D14S81	22	5	0.23	Kidney	PNAS 92:2854
Unknown	Unknown	10	0	0	Liver	BJC 64:1083
Unknown	Unknown	5	0	0	Liver	BJC 67:1007
32.3233	D14S1	3	0	0	Liver	CCG 48:72
32.3233	D14S1	17	6	0.35	Liver	JJCR 81:108
32	D14S13	46	5	0.11	Liver	CR 51:89
Unknown	D14S15	2	0	0	Liver	PNAS 86:8852
32.3233	D14S1	1	1	1	Lung	CR 54:5643
32.3233	D14S1	17	7	0.41	Lung	CR 54:5643
32.3233	D14S1	8	1	0.12	Lung	CR 54:5643
32.3233	D14S1	23	2	0.09	Lung	PN 84:9252
32.3233	D14S13	50	6	0.12	Lung	CR 52:2478
32.33					Neuroblastoma	0 7:1185
U E.UV	SUBS	गाँग श	SHFFT /DIU	E 961		
			SHEET (RU	± 20)		

121 of 249 Chromosome 14 - q Arm

32.3233	D14S1	16	8	0.5	Neuroblastoma	CR 49:1095
32.3233	D14S1	19	4	0.21	Neuroblastomo	0 7:1185
32.1-32.2	D14S13	24	5	0.21	Neuroblastoma	0 7:1185
32	D14S16	13	8	0.62	Neuroblastoma	0 7:1185
32.3233	D14S17	18	1	0.06	Neuroblastoma	0 7:1185
32.32-32.33	D14S19	20	4	0.2	Neuroblastoma	0 7:1185
32.1-32.32	D14S21	18	1	0.06	Neuroblastoma	0 7:1185
11.2-13	MYH6	17	0	0	Neuroblastoma	0 7:1185
32.3233	D14S1	26	2	0.08	Ovary	IJC 54:546
32	D14S13	28	5	0.18	Ovary	CR 51:5118
32	D14S16	15	7	0.47	Ovary	CR 53:2393
32.33	D1 4S20	9	3	0.33	Ovary	0 7:1059
Unknown	D14S34	13	7	0.54	Ovary	BJC 69:429
24.3 -31	D14S48	9	3	0.33	Ovary	BJC 69:429
Unknown	D14S49	20	• 5	0.25	Ovary	BJC 69:429
Unknown	D14S50	10	3	0.3	Ovary	BJC 69:429
Unknown	D14S51	17	4	0.24	Ovary	BJC 69:429
Unknown	Unknown	6	0	0	Pancreas	BJC 65:809
32	D14S13	4	0	0	Pancreas	CR 54:2761
32.3233	D14S1	7	0	0	Prostate	G 11:530
32.3233	D14S1	7	0	0	Sarcoma	CR 52:2419
32	D14S13	29	1	0.03	Sarcoma	CR 52:2419
32.3233	D14S1	16	1	0.06	Stomach	CR 48:2988
U nknow n	D14S44	32	5	0.16	Stomach	HG 92:244
32.33	D14S20	8	1	0.12	Testis .	0 9:2245
Unknown	D14S44	21	2	0.1	Testis	GCC 13:249
32.3233	D14S1	10	0	0	Uterus	CR 51:5632
Unknown	D14S3	12	1	0.08	Uterus	GCC 9:119
24.3-31	D14S76	28	3	0.11	Uterus	CR 54:4294
11.2-13	MYH6	18	2	0.11	Uterus	CR 54:4294
Unknown	TCRD	31	6	0.19	Uterus	CR 54:4294
SUM		2442	542	0.22		

122 of 249 Chromosome 15 - p Arm

Band	Marker	Total	Cases w/LOH	LOH Freg.	Tumor Type	Reference
Unknown	D15S25	26	4	0.15	Esophageal	CR 54:2996
Unknown	D15S25	9	. 0	0	Colon	CCG 48:167
Unknown	D15S25	26	4	0.15	Esophageal	CR 54:2996
SUM		35	4	0.11		

123 of 249 Chromosome 15 - q Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
26.1	FES	36	5	0.14	Uterus	CR 54:4294
Unknown	Unknown	18	3	0.17	Brain	CR 50:5784
Unknown	D15S27	7	1	0.14	Brain	CR 49:6572
14-21	D15S1	28	1	0.04	Breast	GCC 2:191
11-12.0	D15S11	34	3	0.09	Breast	CR 53:4356
pter-q13	D15S24	2	1	0.5	Breast	CR 53:3804
Unknown	D15S28	12	2	0.17	Breast	CR 50:7184
Unknown	D15S29	16	4	0.25	Breast	GCC 2:191
14-21	D15S1	6	0	0	Cervix	CR 49:3598
pter-q13	D15S24	23	0	0	Cervix	CR 54:4481
14-21	D15S1	6	1.	0.17	Colon	N 331:273
Unknown	ACTC	36	6	0.17	Endocrine	CR 56:599
Unknown	CYP19	33	5	0.15	Endocrine	CR 56:599
14-21	D15S1	5	4	8.0	Endocrine	CR 56:599
Unknown	D15S100	31	5	0.16	Endocrine	CR 56:599
Unknown	D15S107	8	6	0.75	Endocrine	CR 56:599
Unknown	D15S108	8	3	0.38	Endocrine	CR 56:599
Unknown	D15S114	4	4	1	Endocrine	CR 56:599
Unknown	D15S116	21	7	0.33	Endocrine	CR 56:599
Unknown	D15S118	16	5	0.31	Endocrine	CR 56:599
Unknown	D15S125	24	5	0.21	Endocrine	CR 56:599
Unknown	D15S127	10	7	0.7	Endocrine	CR 56:599
Unknown	D15S144	9	7	0.78	Endocrine	CR 56:599
Unknown	D15S165	32	7	0.22	Endocrine	CR 56:599
Unknown	D15S87	20	7	0.35	Endocrine	CR 56:599
Unknown	D15S97	32	8	0.25	Endocrine	CR 56:599
Unknown	GABRB3	31	7	0.23	Endocrine	CR 56:599
Unknown	D15S27	17	2	0.12	Esophageal	GCC 10:177
Unknown	D15S27	27	2	0.07	Esophageal	CR 54:2996
Unknown	D15S117	21	1	0.05	Head&Neck	CR 54:1152
Unknown	D15S118	17	1	0.06	Head&Neck	CR 54:4756
Unknown	D15S118	15	0	0	Head&Neck	CR 54:4756
Unknown	D15S118	6	3	0.5	Kidney	GCC 12:76
Unknown	D15S12O-D15S127	21	1	0.05	Kidney	PNAS 92:2854
Unknown	D15S12O-D15S127	6	0	0	Kidney	PNAS 92:2854
Unknown	D15S28	18	2	0.11	Kidney	CR 51:820
14-21	D15S1	10	1	0.1	Liver	JJCR 81:108
pter-q13	D15S24	26	3	0.12	Liver	CR 51:89
14-21	D15S1	4	0	0	Lung	NEJ 317:1109
14-21	D15S1	8	0	0	Lung	PN 84:9252
14-21	01551	5	2	0.4	Lung	NEJ 317:1109

124 of 249 Chromosome 15 - q Arm

14-21	D15S1	2	0	0	Lung	NEJ 317:1109
Unknown	D15S28	18	2	0.11	Lung	CR 52:2478
Unknown	D15S118	24	4	0.17	Melanoma	CR 56:589
14-21	D15S1	7	0	0	Neuroblastoma	CR 49:1095
11-12.0	D15S11	13	1	0.08	Ovary	IJC 54:546
Unknown	D15S2	11	4	0.36	Ovary	CR 53:2393
pter-q13	D15S24	31	2	0.06	Ovary	IJC 54:546
Unknown	D15S28	9	1	0.11	Ovary	CR 51:5118
26.1	FES	15	6	0.4	Ovary	BJC 69:429
pter-q13	D15S24	1	0	0	Pancreas	CR 54:2761
Unknown	D15S29-D15S1	9	0	0	Prostate	G 11:530
14-21	D15S1	9	4	0.44	Sarcoma	CR 52:2419
Unknown	D15S27	12	5	0.42	Sarcoma	CR 52:2419
14-21	D15S1	13	0	0	Stomach	CR 48:2988
Unknown	D15S86	32	5	0.16	Stomach	HG 92:244
pter-q13	D15S24	46	4	0.09	Testis	0 9:2245
Unknown	D15S86	21	2	.0.1	Testis	GCC 13:249
Unknown	CYP19	27	0	0	Uterus	CR 54:4294
14-21	D15S1	6	1	0.17	Uterus	CR 51:5632
26.1	FES	36	5	0.14	Uterus	" CR 54:4294
SUM		1015	173	0.17		

125 of 249 Chromosome 16 - p Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
13.3	HBZP1	6	0	0	Prostate	G 11:530
13.3	D1 6S85	7	0	0	Breast	CR 53:3804
13.3	D16S85	62	5	0.08	Breast	GCC 9:101
13.3	D16S85	8	0	0	Liver	BJC 67:1007
13.3	D16S85	11	0	0	Liver	BJC 64:1083
13.3	D16S85	24	5	0.21	Ovary	CR 53:2393
13.3	D1 6S85	11	1	0.09	Pancreas	BJC 65:809
13.3	D1 6S85	11	1	0.09	Stomach	HG 92:244
13.3	D1 6S85	22	3	0.14	Testis	GCC 13:249
13.3	D1 6S83	27	8	0.3	Breast	GCC 2:191
13.3	D1 6S83	31	6	0.19	Breast	CR 54:513
13.3	D16S83	16	2	0.12	Esophageal	CR 54:2996
13.3	D1 6S83	11	0	0	Esophageal	CR 51:2113
13.3	D16S83	19	5	0.26	Liver	CR 54:281
13.3	D1 6S83	16	1	0.06	Liver	CR 51:89
13.3	D16S83	15	6	0.4	Sarcomo	CR 52:2419
13	D16S84	21	1	0.05	Breast	CR 50:7184
13	D16S84	43	0	0	Breast	CR 51:5794
pter-p13.3	D16S84	5	0	0	Cervix	GCC 9:119
pter-p13.3	D16S84	28	4	0.14	Esophageal	GCC 10:177
pter-p13.3	D16S84	14	1	0.07	Kidney	CR 51:820
pter-p13.3	D16S84	22	5	0.23	Lung	CR 52:2478
pter-p13.3	D16S84	21	7	0.33	Ovary	CR 51:5118
pter-p13.3	D16S84	9	2	0.22	Uterus	GCC 9:119
13.3	HBAI	22	5	0.23	Breast	CR 54:513
13.3	HBAI	47	1	0.02	Breast	CR 53:4356
13.3	HBAI	22	5	0.23	Breast	CR 54:513
13.3	HBAI	11	9	0.82	Liver	CR 52:1504
13.3	HBAI	36	16	0.44	Liver	PNAS 87:6791
Unknown	D16S414	10	0	0	Heod&Neck	CR 54:4756
Unknown	D16S414	19	3	0.16	Head&Neck	CR 54:4756
Unknown	D16S414	6	3	0.5	Kidney	GCC 12:76
Unknown	D16S414	26	1	0.04	Melanoma	CR 56:589
13	D16S292	12	0	0	Ovary	BJC 69:429
pter-p13	D16S32	21	3	0.14	Breast	CR 54:513
pter-p13	D16S32 -	26	8	0.31	Liver	PNAS 87:6791
pter-p13	D16S32	16	4	0.25	Liver	JJCR 81:108
pter-p13	D16S32	8	7	0.88	Liver	CR 52:1504
13.1	MRP	13	5	0.38	Leukemio	LAN 343:1531
13.11	D16S131	8	1	0.12	Breast	CR 54:513
13.11	D16S131	13	6	0.46	Liver	PNAS 87:6791

126 of 249 Chromosome 16 - p Arm

12.2	D16S159	34	6	0.18	Breast	CR 54:513
P11-P13	D16S159	29	1	0.03	Breast	CR 51:5794
Unknown	D16S159	22	1	0.05	Liver	CR 51:89
Unknown	D16S159	22	1	0.05	Liver	CR 51:89
Unknown	Unknown	18	2	0.11	Brain	CR 50:5784
12.2	D16S23	36	5	0.14	Breast	CR 54:513
13.2	D16S34	3	ì	0.33	Breast	CR 53:3804
13.2	D16S34	21	7	0.33	Breast	CR 54:513
PTER-P13	D16S35	26	4	0.15	Breast	CR 54:513
PTER-P13	D16S35	20	4	0.2	Cervix	CR 54:4481
12-pter	Unknown	18	0	0	Colon	BJC 59:750
Unknown	D16S418	22	0	0	Endocrine	CR 56:599
Unknown	D16S404	20	2	0.1	Head&Neck	CR 54:1152
Unknown	D16S404-D16S403-D16S414	22	0	0	Kidney	PNAS 92:2854
Unknown	D16S404-D16S403-D16S414	6	0	0	Kidney	PNAS 92:2854
13.2	D16S34	20	9	0.45	Liver	PNAS 87:6791
13.2	D16S34	8	5	0.62	Liver	CR 52:1504
13.2	D16S34	6	3	0.5	Liver	CR 54:281
PTER-P13	D1 6S35	7	4	0.57	Liver	CR 52:1504
PTER-P13	D16S35	24	9	0.38	Liver	PNAS 87:6791
pter-p13	D16S37	2	0	0	Liver	JJCR 81:108
13.2	D16S34	27	4 .	0.15	Ovary	IJC 54:546
PTER-P13	D16S35	8	0	0	Prostate	PNAS 87:8751
PTER-P13	D16S35	8	0	0	Prostate	CSurveys 11:15
12-pter	Unknown	5	0	0	Stomach	BJC 59:7 50
PTER-P13	D16S35	2 5	5	0.2	Testis	0 9:2245
Unknown	D16S291	18	1	0.06	Uterus	CR 54:4294
SUM		1231	213	0.17		

 $\begin{array}{c} 127 \text{ of } 249 \\ \text{Chromosome } 16 \text{ - } q \text{ Arm} \end{array}$

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
16	D16S137	37	5	0.14	Breast	CR 54:513
Unknown	D16S300	23	7	0.3	Breast	GCC 14:171
Unknown	D16S299	36	7	0.19	Breast	GCC 14:171
12.1	D16S304	24	12	0.5	Breast	GCC 14:171
22.1	TAT	43	16	0.37	Breast	CR 54:513
22.1	TAT	41	15	0.37	Breast	GCC 9:101
22.1	TAT	8	5	0.62	Liver	CR 52:1504
22.1	TAT	10	9	0.9	Liver	CR 54:281
22 .1	TAT	23	13	0.57	Liver	PNAS 87:6791
22 .1	TAT	25	13	0.52	Liver	PNAS 87:6791
22.1	TAT	29	14	0.48	Liver	PNAS 87:6791
Unknown	D16S408	20	3	0.15	Breast	JJCR 86:1054
13	CET	36	9	0.25	Breast	CR 54:513
21	Œ	44	20	0.45	Liver	PNAS 87:6791
13-22.1	MT2	36	15	0.42	Liver	PNAS 87:6791
21	D16S151	43	16	0.37	Breast	CR 51:5794
21	D16S151	18	6	0.33	Breast	CR 54:513
21	D16S151	43	8	0.19	Esophageal	GCC 10:177
Unknown	D16S151	8	2	0.25	Liver	CR 51:89
21	D16S265	70	24	0.34	Breast	GCC 9:101
21	D16S265	58	19	0.33	Breast	BCRT 32:5
21	D16S265	19	3	0.16	Ovary	BJC 69:429
22.1	D16S38	35	14	0.4	Breast	CR 54:513
21-22.1	D16S186	28	15	0.54	Breast	GCC 14:171
21-22.1	D16S186	33	13	0.39	Breast	GCC 9:101
21-22.1	D16S186	27	6	0.22	Uterus	CR 54:4294
22.1	D16S318	33	13	0.39	Breast	GCC 9:101
22.1	D16S318	29	14	0.48	Breast	GCC 14:171
Unknown	D16S421	12	2	0.17	Breast	JJCR 86:1054
Unknown	D16S421	27	14	0.52	Breast	GCC 14:171
22.1	D16S4	28	16	0.57	Breast	CR 54:513
22.1	D16S4	29	14	0.48	Breast	GCC 9:101
22.1	D16S4	31	12	0.39	Liver	PNAS 87:6791
22.1	D16S4	9	5	0.56	Liver	CR 52:1504
22.1	D16S4	17	6	0.35	Ovary	CR 53:2393
22 .1	D16S152	21	4	0.19	Breast	CR 54:513
22.1	HP	27	11	0.41	Breast	CR 54:513
22.1	НР	21	12	0.57	Breast	CR 51:5794
22.1	HP	29	15	0.52	Breast	GCC 9:101
22.1	HP	9	1	0.11	Cervix	CR 49:3598
22.1	, HP	15	3	0.2	Colon	IJC 53:382

l'28 of 249 Chromosome 16 - q Arm

Unknown	НР	7	3	0.14	Live	CD C1 00
Unknown	HP	. /	1	0.14	Liver	CR 51:89
22.1	HP		4	0.4	Liver	CR 52:1504
		28	10	0.36	Liver	PNAS 87:6791
22.1	НР	14	8	0.57	Liver	JJCR 81:108
22.1	HP	13	7	0.54	Liver	JJCR 81:108
22.1	HP	20	5	0.25	Lung	PN 84:9252
22.1	НР	4	0	0	Neuroblastoma	CR 49:1095
Unknown	HP	24	2	0.08	Ovary	GO 47:137
22.1	HP	22	5	0.23	Ovary	IJC 54:546
22.1	HP	4	0	0	Prostate	G 11:530
Unknown	НР	11 .	1	0.09	Stomach	CR 52:3099
22.1	НР	10	0	0	Stomach	CR 48:2988
22.1	НР	2	0	0	Testis -	CCG 52:72
22.1	НР	2	0	0	Testis -	CCG 52:72
22.1	HP	2	0	0	Testis	CCG 52:72
22.1	HP	4	0	0	Uterus	CR 51:5632
22.3-23.2	CTRB	34	9	0.26	Breast	CR 54:513
23.2	CTRB	4	2	0.5	Breast	CR 51:5794
23.2	CTRB	9	5	0.56	Liver	CR 52:1504
22.3-23.2	CTRB	38	17	0.45	Liver	PNAS 87:6791
23.3-24.1	D16S289	28	13	0.46	Breast	GCC 14:171
23.3-24.1	D1 6S289	57	21	0.37	Breast	GCC 9:101
23.3-24.1	D16S289	22	5	0.23	Uterus	CR 54:4294
24.2	D16S20	45	15	0.33	Breast	CR 54:513
22.1-24	D16S30	6	3	0.5	Breast	CR 54:513
Unknown	· D16S511	32	15	0.47	Breast	GCC 14:171
Unknown	D1 6S402	12	5	0.42	Breast	JJCR 86:1054
Unknown	D1 6S402	38	20	0.53	Breast	GCC 14:171
Unknown	D16S402	13	2	0.15	Head&Neck	CR 54:1152
24.2-24.3	D16S157	21	9	0.43	Breast	CR 54:513
22-23	D16S157	9	4	0.44	Breast	CR 51:5794
24.2-24.3	D16S43	20	8	0.4	Breast	CR 54:513
Unknown	D16S155	11	2	0.18	Breast	CR 54:513
23-24	D16S156	61	30	0.49	Breast	CR 51:5794
24	APRT	33	17	0.52	Breast	CR 54:513
24	APRT	25	3	0.12	Breast	CR 53:3707
24	APRT	25	3	0.12	Breast	CR 53:4356
24	APRT	19	10	0.53	Breast	GCC 2:191
24	APRT	12	7	0.58		GCC 9:101
24	APRT	10	6	0.6		CR 52:1504
24	APRT	26	17	0.65		PNAS 87:6791
Unknown	D16S7	10	1	0.1		CR 49:6572

129 of 249 Chromosome 16 - q Arm

24	D16S7	21	3	0.14	Brain	CR 50:5784
24	D16S7	42	19	0.45	Breast	CR 50:7184
24	D16S7	8	6	0.7 5	Breast	CR 53:3804
24	D16S7	354	164	0.46	Breast	BJC 71:438
24	D16S7	59	30	0.51	Breast	GCC 9:101
24	D16S7	57	18	0.32	Breast	CR 53:4356
24	D16S7	57	18	0.32	Breast	CR 53:3707
24	D16S7	269	120	0.45	Breast	C 74:2281
24.3	D16S7	68	32	0.47	Breast	CR 54:513
23-24	D16S7	138	59	0.43	Breast	CR 51:5794
Unknown	D16S7	83	23	0.28	Breast	JJCR 84:1159
Unknown	D16S7	3 5	1	0.03	Cervix	CR 54:4481
23-24	D16S7	7	2	0.29	Cervix	GCC 9:119
23-24	D16S7	32	6	0.19	Colon	IJC 53:382
23-24	D16S7	6	1	0.17	Esophageal	CR 51:2113
Unknown	D16S7	15	4	0.27	Esophageal	CR 54:2996
24	D16S7	29	3	0.1	Kidney	CR 51:820
Unknown	D16S7	33	12	0.36	Liver	CR 51:89
24	D1 6S7	53	24	0.45	Liver	PNAS 87:6791
23-24	D16S7	25	11	0.44	Liver	CR 54:281
24	D16S7	50	14	0.28	Liver	JJCR 84:893
24	D16S7	37	8	0.22	Lung	CR 52:2478
Unknown	D16S7	30	11	0.37	Ovary	CR 51:5118
24	D16S7	3	1	0.33	Pancreas	CR 54:2761
24	D16S7	15	4	0.27	Prostate	PNAS 87:8751
Unknown	D16S7	17	3	0.18	Prostate	BJU 73:390
24	D16S7	32	9	0.28	Sarcoma	CR 52:2419
24	D1 6S7	43	2	0.05	Testis	0 9:2245
Unknown	D1 6S7	16	0	0	Uterus	GCC 9:119
24.3	D16S413	41	21	0.51	Breast	GCC 14:171
24.3	D16S413	22	0	0	Endocrine	CR 56:599
24.3	D16S44	10	4	0.4	Breast	CR 54:513
24.3	D16S303	23	11	0.48	Breast	GCC 14:171
24.3	D16S303	42	18	0.43	Breast	GCC 9:101
13	MT2	29	9	0.31	Breast	CR 54:513
13	MT2	8	4	0.5	Liver	CR 52:1504
13	MT2	8	4	0.5	Liver	CR 52:1504
Unknown	D16S10	31	7	0.23	Breast	GCC 9:101
Unknown	D16S260	28	8	0.29	Breast	GCC 9:101
Unknown	D16S266	53	18	0.34	Breast	GCC 9:101
12.1	D16S27	26	7	0.27	Breast	CR 54:513
12.1	D16S27	27	9	0.33	Breast	GCC 9:101

130 of 249 Chromosome 16 - q Arm

Unknown	D1 6S301	38	16	0.42	Breast	GCC 9:101
Unknown	D16S305	58	20	0.34	Breast	GCC 9:101
Unknown	D16S320	65	20	0.31	Breast	GCC 9:101
Unknown	D16S398	56	16	0.29	Breast	GCC 9:101
Unknown	, D16S5	29	11	0.38	Breast	GCC 9:101
22.1	E-codherin	28	16	0.57	Breast	GCC 9:101
22.1	E-cadherin	41	27	0.66	Breast	EMBO 14:6107
Unknown	D16S422	21	4	0.19	Head&Neck	CR 54:4756
Unknown	D16S422	20	0	0	Head&Neck	CR 54:4756
Unknown	SPN	22	3	0.14	Head&Neck	CR 54:1152
Unknown	D16S413-D16S402	21	0	0	Kidney	PNAS 92:2854
Unknown	D16S413-D16S402	6	0	0	Kidney	PNAS 92:2854
Unknown	D16S:422-419	6	3 .	0.5	Kidney	GCC 12:76
Unknown	Unknown	3	0	0	Liver	BJC 67:1007
Unknown	Unknown	6	0	0	Liver	BJC 64:1083
Unknown	D16S:422-419	21	0	0	Melanoma	CR 56:589
Unknown	Unknown	16	5	0.31	Prostate	CSurveys 11:15
SUM		4382	1588	0.36		

131 of 249 Chromosome 17 - p Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D17S34	35	5	0.14	Brain	AJP 145:1175
13.3	D17S34	82	29	0.35	Breast	AJP 140:215
13.3	D17S34	77	52	0.68	Breast	CR 54:4200
13-TER	D17S34	72	30	0.42	Breast	CGC 76:106
Unknown	D17S34	70	41	0.59	Breast	0 8:781
13.3	D17S34	44	3 3	0.75	Breast	GCC 4:113
13.3	D17S34	36	22	0.61	Breast	CR 53:1637
Unknown	D17S34	11	6	0.55	Cervix	CGC 79:74
13.3	D17S34	68	34	0.5	Colon	EJC 30A:664
13.3	D17S34	6	5	0.83	Colon	Science April 16 1989:217
13.3	D17S34	6	3	0.5	Head&Neck	AJP 142:1131
Unknown	D17S34	12	1	0.08	Head&Neck	CR 52:4787
13.3	D17S34	20	2	0.1	Liver	0 8:491
13.3	D17S34	10	8	0.8	Liver	BJC 64:1083
13.3	D17S34	9	4	0.44	Liver	BJC 67:1007
13.3	D17S34	23	12	0.52	Ovary	IJC 54:85
13.3	D17S34	20	18	0.9	Ovary	IJC 54:220
Unknown	D17S34	43	18	0.42	Ovary	CR 56:606
13.3	D17S34	11	0	0	Pancreas	CR 54:2761
13.3	D17S34	17	3	0.18	Prostate	CSurveys 11:15
13.3	D17S34	18	3	0.17	Prostate	PNAS 87:8751
13.3	D17S34	7	5	0.71	Sarcoma	CR 53:468
13.3	D17S34	9	0	0	Sarcoma	CR 53:468
13.3	D17S34	10	4	0.4	Sarcoma	CR 53:468
13.3	D17S34	4	2	0.5	Sarcoma	CR 53:468
13.3	D17S34	20	0	0	Testis	GCC 13:249
13.3	D17S849	26	16	0.62	Breast	HMG 4:2047
13.3	D17S926	12	7	0.58	Breast	HMG 4:2047
13.3	D17S30	54	20	0.37	Breast	CR 53:1637
13.3	D17S30	98	57	0.58	Breast	Lan 336:761
13.3	D17S30	59	30	0.51	Breast	JNCI 84:506
13.3	D17S30	52	27	0.52	Breast	PNAS 88:3847
13.3	D17S30	51	8	0.16	Breast	HG 91:6
13.3	D17S30	34	16	0.47	Breast	CR 50:7184
13.3	D17S30	33	17	0.52	Breast	ANYAS p.137
13.3	D17S30	3	0	0	Breast	CR 53:2947
13.3	D17S30	6	3	0.5	Cervix	GCC 9:119
13.3	D17S30	39	27	0.69	Colon	CR 50:7166
13.3	D17S30	60	38	0.63	Colon	EJC 30A:664
13.3	D17S30	65	40	0.62	Esophageal	GCC 10:177
13.3	D1 7S30	·51	36	0.71	Head&Neck	0 10:1217

132 of 249 Chromosome 17 - p Arm

13.3	13.3	D17S30	5	2	0.4	Liver	BJC 67:1007
13.3 D17530 37 23 D.62 Lung CR 52:2478 13.3 D17530 16 4 D.25 Melanoma GCC 7:169 13.3 D17530 21 18 D.86 Ovary CR 50:2724 13.3 D17530 21 18 D.86 Ovary UC 54:85 13.3 D17530 46 37 D.8 Ovary CR 56:606 13.3 D17530 41 27 D.64 Ovary D7:1059 13.3 D17530 3 D.7530 3 D.7530 3 D.7530 D.75	13.3	D17S30	26	14	0.54		CR 51:89
13.3		D17S30	37	23		_	
13.3			16	4			
13.3		D17S30	14	9	0.64		
13.3				18		<u> </u>	
13.3			46			•	•
13.3 D17S30 7 0 0 Prostute GCC 11:119 13.3 D17S30 3 0 0 Sarcoma CR 53:468 13.3 D17S30 6 4 0.67 Sarcoma CR 53:468 13.3 D17S30 6 0 0 Sarcoma CR 53:468 13.3 D17S30 17 16 0.94 Sarcoma CR 49:6247 13.3 D17S30 15 3 0.2 Uterus GCC 9:119 13.3 D17S28 11 4 0.36 Brain CR 49:6572 13.3 D17S28 12 4 0.33 Brain CR 49:6572 13.3 D17S28 12 4 0.33 Brain CR 49:6572 13.3 D17S28 12 4 0.33 Brain CR 49:6572 13.3 D17S28 27 11 0.41 Breast CR 54:6270 13.3 D17S28 37 26			41	27		•	
13.3 D17530		D17S30	7	0		•	
13.3	13.3	D17S30	3	. 0	0		CR 53:468
13.3 D17530 3 0 0 Sarcoma CR 53.468 13.3 D17530 6 0 0 Sarcoma CR 53.468 13.3 D17530 17 16 0.94 Sarcoma CR 49.6247 13.3 D17528 11 4 0.36 Brain CR 49.6572 13.3 D17528 22 3 0.14 Brain Alp 145.1175 13.3 D17528 12 4 0.33 Brain CR 49.6572 13.3 D17528 27 11 0.41 Breast CR 54.6270 13.3 D17528 27 11 0.41 Breast CR 54.6270 13.3 D17528 37 26 0.7 Breast CR 54.4200 13.3 D17528 31 4 0.36 Breast CR 54.4200 13.3 D17528 37 26 0.7 Breast CR 54.4200 13.3 D17528 23 12 0.52 Breast CR 54.4201 13.3 D17528 23 12 0.52 Breast CR 53.1637 13.3 D17528 27 4 0.15 Cervix CR 54.4481 13.3 D17528 7 5 0.71 Colon Science April 16 1989:217 13.3 D17528 13 8 0.62 Colon CC 3.468 13.3 D17528 2 0 0 Head&Neck CR 52.4787 13.3 D17528 2 0 0 Head&Neck CR 52.4787 13.3 D17528 3 1 0.33 Civer CR 53.368 13.3 D17528 3 1 0.33 Civer CR 53.368 13.3 D17528 3 1 0.33 Civer CR 53.368 13.3 D17528 3 1 0.33 Civer CR 53.368 13.3 D17528 2 0 0 Head&Neck CR 52.4787 13.3 D17528 3 1 0.33 Civer CR 53.368 13.3 D17528 3 1 0.33 Civer CR 53.368 13.3 D17528 3 1 0.33 Civer CR 53.368 13.3 D17528 8 6 0.75 Ovary UC 52.575 13.3 D17528 8 6 0.75 Ovary UC 54.85 13.3 D17528 3 1 0.33 Pancreas CR 54.2761 13.3 D17528 3 1 0.33 Pancreas CR 54.2761 13.3 D17528 3 0 0 Pancreas CR 54.2761 13.3 D17528 3 0 0 Pancreas CR 54.2761 13.3 D17528 3 0 0 Pancreas CR 54.2761 13.3 D17528 7 0 0 Stomach BIC 59.750 13.3 D17528 7 0 0 Stomach BIC 59.750 13.3 D17528 7 0 0 Stomach BIC 59.750 13.3 D17528 7 0 0 Color Color Color Color Color	13 .3	D17S30	6	4	0.67		CR 53:468
13.3 D17S30 17 16 0.94 Sarcoma CR 49:6247 13.3 D17S30 15 3 0.2 Uterus GCC 9:119 13.3 D17S28 11 4 0.36 Brain CR 49:6572 13.3 D17S28 22 3 0.14 Brain AlP 145:1175 13.3 D17S28 12 4 0.33 Brain CR 49:6572 13.3 D17S28 27 11 0.41 Breast CR 54:6270 13.3 D17S28 62 15 0.24 Breast CR 54:6270 13.3 D17S28 37 26 0.7 Breast CR 54:4200 13.3 D17S28 11 4 0.36 Breast CR 54:4200 13.3 D17S28 23 12 0.52 Breast CR 54:420 13.3 D17S28 27 4 0.15 Cervix CR 54:4481 13.3 D17S28 13 <t< td=""><td>13.3</td><td>D17S30</td><td>3</td><td>0</td><td>0</td><td>Sarcoma</td><td>CR 53:468</td></t<>	13.3	D17S30	3	0	0	Sarcoma	CR 53:468
13.3 D17520 15 3 0.2 Uterus GCC 9:119 13.3 D17528 11 4 0.36 Brain CR 49:6572 13.3 D17528 22 3 0.14 Brain AIP 145:1175 13.3 D17528 12 4 0.33 Broin CR 49:6572 13.3 D17528 27 11 0.41 Breast CR 54:6270 13.3 D17528 62 15 0.24 Breast CGC 76:106 13.3 D17528 37 26 0.7 Breast CR 54:4200 13.3 D17528 11 4 0.36 Breost HMG 4:2047 13.3 D17528 23 12 0.52 Breast CR 54:420 13.3 D17528 27 4 0.15 Cervix CR 54:4481 13.3 D17528 7 5 0.71 Colon Science April 16 1989:217 13.3 D17528 13	13.3	D17S30	6	0	. 0	Sarcoma	CR-53:468
13.3 D17528 11 4 0.36 Brain CR 49:6572 13.3 D17528 22 3 0.14 Brain AJP 145:1175 13.3 D17528 12 4 0.33 Brain CR 49:6572 13.3 D17528 27 11 0.41 Breast CR 54:6270 13.3 D17528 62 15 0.24 Breast CE 76:106 13.3 D17528 37 26 0.7 Breast CR 54:4200 13.3 D17528 11 4 0.36 Breost HMG 4:2047 13.3 D17528 23 12 0.52 Breost CR 54:4481 13.3 D17528 27 4 0.15 Cervix CR 54:481 13.3 D17528 14 1 0.07 Cervix BIC 67:71 13.3 D17528 13 8 0.62 Colon GC 3:468 13.3 D17528 12 4 </td <td>13.3</td> <td>D17S30</td> <td>17</td> <td>16</td> <td>0.94</td> <td>Sarcoma</td> <td>CR 49:6247</td>	13.3	D17S30	17	16	0.94	Sarcoma	CR 49:6247
13.3 D17528 22 3 0.14 Brain AIP 145:1175 13.3 D17528 12 4 0.33 Broin CR 49:6572 13.3 D17528 27 11 0.41 Breast CR 54:6270 13.3 D17528 62 15 0.24 Breast CGC 76:106 13.3 D17528 37 26 0.7 Breast CR 54:4200 13.3 D17528 11 4 0.36 Breast CR 54:4200 13.3 D17528 23 12 0.52 Breast CR 53:1637 13.3 D17528 23 12 0.52 Breast CR 53:1637 13.3 D17528 27 4 0.15 Cervix CR 54:4481 13.3 D17528 14 1 0.07 Cervix BIC 67:71 13.3 D17528 13 8 0.62 Colon GCC 3:468 13.3 D17528 12 4 0.33 Colon CC6 48:167 13.3 D17528 1 <td>13.3</td> <td>D17S30</td> <td>15</td> <td>3</td> <td>0.2</td> <td>Uterus</td> <td>GCC 9:119</td>	13.3	D17S30	15	3	0.2	Uterus	GCC 9:119
13.3 D17528 12 4 0.33 Broin CR 49:6572 13.3 D17528 27 11 0.41 Breast CR 54:6270 13.3 D17528 62 15 0.24 Breast CG 76:106 13.3 D17528 37 26 0.7 Breast CR 54:4200 13.3 D17528 11 4 0.36 Breost HMG 4:2047 13.3 D17528 23 12 0.52 Breost CR 54:4481 13.3 D17528 27 4 0.15 Cervix CR 54:4481 13.3 D17528 14 1 0.07 Cervix BIC 67:71 13.3 D17528 7 5 0.71 Colon Science April 16 1989:217 13.3 D17528 13 8 0.62 Colon GCC 3:468 13.3 D17528 12 4 0.33 Colon CCG 48:167 13.3 D17528 11	13.3	D17S28	11	4	0.36	Brain	CR 49:6572
13.3 D17528 27 11 0.41 Breast CR 54:6270 13.3 D17528 62 15 0.24 Breast CGC 76:106 13.3 D17528 37 26 0.7 Breast CR 54:4200 13.3 D17528 11 4 0.36 Breast HMG 4:2047 13.3 D17528 23 12 0.52 Breast CR 53:1637 13.3 D17528 27 4 0.15 Cervix CR 54:4481 13.3 D17528 14 1 0.07 Cervix BIC 67:71 13.3 D17528 7 5 0.71 Colon Science April 16 1989:217 13.3 D17528 13 8 0.62 Colon GC 3:468 13.3 D17528 12 4 0.33 Colon CGG 48:167 13.3 D17528 11 0 0 Kidney JU 150:1298 13.3 D17528 3	13.3	D17S28	22	3	0.14	Brain	AJP 145:1175
13.3 D17528 62 15 0.24 Breast CGC 76:106 13.3 D17528 37 26 0.7 Breast CR 54:4200 13.3 D17528 11 4 0.36 Breast HMG 4:2047 13.3 D17528 23 12 0.52 Breast CR 53:1637 13.3 D17528 27 4 0.15 Cervix CR 54:4481 13.3 D17528 14 1 0.07 Cervix BJC 67:71 13.3 D17528 7 5 0.71 Colon Science April 16 1989:217 13.3 D17528 13 8 0.62 Colon GCC 3:468 13.3 D17528 12 4 0.33 Colon CG 48:167 13.3 D17528 1 0 0 Head&Neck CR 52:4787 13.3 D17528 1 0 0 Kidney JU 150:1298 13.3 D17528 3 1 0.33 Liver CR 53:368 13.3 D17528 3<	13.3	D17S28	12	4	0.33	Brain	CR 49:6572
13.3 D17528 37 26 0.7 Breast CR 54:4200 13.3 D17528 11 4 0.36 Breast HMG 4:2047 13.3 D17528 23 12 0.52 Breast CR 53:1637 13.3 D17528 27 4 0.15 Cervix CR 54:4481 13.3 D17528 14 1 0.07 Cervix BIC 67:71 13.3 D17528 7 5 0.71 Colon Science April 16 1989:217 13.3 D17528 13 8 0.62 Colon GCC 3:468 13.3 D17528 12 4 0.33 Colon CCG 48:167 13.3 D17528 1 0 0 Kidney JU 150:1298 13.3 D17528 3 1 0.33 Liver CR 53:368 13.3 D17528 3 3 1 Lung CR 49:5130 13.3 D17528 8 6<	13.3	D17S28	27	11	0.41	Breast	CR 54.6270
13.3 D17528 11 4 0.36 Breast HMG 4:2047 13.3 D17528 23 12 0.52 Breast CR 53:1637 13.3 D17528 27 4 0.15 Cervix CR 54:4481 13.3 D17528 14 1 0.07 Cervix BIC 67:71 13.3 D17528 7 5 0.71 Colon Science April 16 1989:217 13.3 D17528 13 8 0.62 Colon GCC 3:468 13.3 D17528 12 4 0.33 Colon CCG 48:167 13.3 D17528 12 4 0.33 Colon CCG 48:167 13.3 D17528 2 0 0 Kidney JU 150:1298 13.3 D17528 3 1 0.33 Liver CR 53:368 13.3 D17528 3 3 1 Lung CR 49:5130 13.3 D17528 8 6 </td <td>13.3</td> <td>D17S28</td> <td>62</td> <td>15</td> <td>0.24</td> <td>Breast</td> <td>CGC 76:106</td>	13.3	D17S28	62	15	0.24	Breast	CGC 76:106
13.3 D17528 23 12 0.52 Breast CR 53:1637 13.3 D17528 27 4 0.15 Cervix CR 54:4481 13.3 D17528 14 1 0.07 Cervix BJC 67:71 13.3 D17528 7 5 0.71 Colon Science April 16 1989:217 13.3 D17528 13 8 0.62 Colon GCC 3:468 13.3 D17528 12 4 0.33 Colon CCG 48:167 13.3 D17528 2 0 0 Head&Neck CR 52:4787 13.3 D17528 11 0 0 Kidney JU 150:1298 13.3 D17528 3 1 0.33 Liver CR 53:368 13.3 D17528 3 3 1 Lung CR 49:5130 13.3 D17528 3 3 1 Lung CR 54:275 13.3 D17528 8 6 0.75 Ovary US 54:255 13.3 D17528 18 <td< td=""><td>13.3</td><td>D17S28</td><td>37</td><td>26</td><td>0.7</td><td>Breast</td><td>CR 54:4200</td></td<>	13.3	D17S28	37	26	0.7	Breast	CR 54:4200
13.3 D17528 27 4 0.15 Cervix CR 54:4481 13.3 D17528 14 1 0.07 Cervix BJC 67:71 13.3 D17528 7 5 0.71 Colon Science April 16 1989:217 13.3 D17528 13 8 0.62 Colon GCC 3:468 13.3 D17528 12 4 0.33 Colon CCG 48:167 13.3 D17528 2 0 0 Head&Neck CR 52:4787 13.3 D17528 11 0 0 Kidney JU 150:1298 13.3 D17528 3 1 0.33 Liver CR 53:368 13.3 D17528 3 3 1 Lung CR 49:5130 13.3 D17528 3 3 1 Lung CR 50:2724 13.3 D17528 8 6 0.75 Ovary CR 56:606 13.3 D17528 6 4	13.3	D17S28	11	4	0.36	Breast	HMG 4:2047
13.3 D17S28 14 1 0.07 Cervix BJC 67:71 13.3 D17S28 7 5 0.71 Colon Science April 16 1989:217 13.3 D17S28 13 8 0.62 Colon GCC 3:468 13.3 D17S28 12 4 0.33 Colon CCG 48:167 13.3 D17S28 2 0 0 Head&Neck CR 52:4787 13.3 D17S28 11 0 0 Kidney JU 150:1298 13.3 D17S28 3 1 0.33 Liver CR 53:368 13.3 D17S28 3 3 1 Lung CR 49:5130 13.3 D17S28 16 2 0.12 Ovary IJC 52:575 13.3 D17S28 8 6 0.75 Ovary CR 56:606 13.3 D17S28 8 6 4 0.67 Ovary IJC 54:220 13.3 D17S28 18 14 0.78 Ovary IJC 54:220 13.3 D17S28 <	13.3	D17S28	23	12	0.52	Breast	CR 53:1637
13.3 D17528 7 5 0.71 Colon Science April 16 1989:217 13.3 D17528 13 8 0.62 Colon GCC 3:468 13.3 D17528 12 4 0.33 Colon CCG 48:167 13.3 D17528 2 0 0 Head&Neck CR 52:4787 13.3 D17528 11 0 0 Kidney JU 150:1298 13.3 D17528 3 1 0.33 Liver CR 53:368 13.3 D17528 3 1 Lung CR 49:5130 13.3 D17528 16 2 0.12 Ovary IJC 52:575 13.3 D17528 8 6 0.75 Ovary CR 50:2724 13.3 D17528 23 15 0.65 Ovary CR 56:606 13.3 D17528 6 4 0.67 Ovary IJC 54:85 13.3 D17528 3 1 0.33	13.3	D17S28	27	4	0.15	Cervix	CR 54:4481
13.3 D17S28 13 8 0.62 Colon GCC 3:468 13.3 D17S28 12 4 0.33 Colon CCG 48:167 13.3 D17S28 2 0 0 Head&Neck CR 52:4787 13.3 D17S28 11 0 0 Kidney JU 150:1298 13.3 D17S28 3 1 0.33 Liver CR 53:368 13.3 D17S28 3 3 1 Lung CR 49:5130 13.3 D17S28 16 2 0.12 Ovary IJC 52:575 13.3 D17S28 8 6 0.75 Ovary CR 50:2724 13.3 D17S28 23 15 0.65 Ovary CR 56:606 13.3 D17S28 6 4 0.67 Ovary IJC 54:85 13.3 D17S28 18 14 0.78 Ovary IJC 54:220 13.3 D17S28 3 1 0.33 Pancreas CR 54:2761 13.3 D17S28 3 0	13.3	D17S28	14	1	0.07	Cervix	BJC 67:71
13.3 D17528 12 4 0.33 Colon CCG 48:167 13.3 D17528 2 0 0 Head&Neck CR 52:4787 13.3 D17528 11 0 0 Kidney JU 150:1298 13.3 D17528 3 1 0.33 Liver CR 53:368 13.3 D17528 3 3 1 Lung CR 49:5130 13.3 D17528 16 2 0.12 Ovary IJC 52:575 13.3 D17528 8 6 0.75 Ovary CR 50:2724 13.3 D17528 23 15 0.65 Ovary CR 56:606 13.3 D17528 6 4 0.67 Ovary IJC 54:85 13.3 D17528 18 14 0.78 Ovary IJC 54:220 13.3 D17528 3 1 0.33 Pancreas CR 54:2761 13.3 D17528 3 0 0 Pancreas GCC 3:468 13.3 D17528 7 0	13.3	D17S28	7	5	0.71	Colon	Science April 16 1989:217
13.3 D17S28 2 0 0 Head&Neck CR 52:4787 13.3 D17S28 11 0 0 Kidney JU 150:1298 13.3 D17S28 3 1 0.33 Liver CR 53:368 13.3 D17S28 3 3 1 Lung CR 49:5130 13.3 D17S28 16 2 0.12 Ovary IJC 52:575 13.3 D17S28 8 6 0.75 Ovary CR 50:2724 13.3 D17S28 23 15 0.65 Ovary CR 56:606 13.3 D17S28 6 4 0.67 Ovary IJC 54:25 13.3 D17S28 18 14 0.78 Ovary IJC 54:220 13.3 D17S28 3 1 0.33 Pancreas CR 54:2761 13.3 D17S28 3 0 0 Pancreas GCC 3:468 13.3 D17S28 7 0 0 Stormach BJC 59:750 13.3 D17S28 7 0	13.3	D17S28	13	8	0.62	Colon	GCC 3:468
13.3 D17528 11 0 0 Kidney JU 150:1298 13.3 D17528 3 1 0.33 Liver CR 53:368 13.3 D17528 3 3 1 Lung CR 49:5130 13.3 D17528 16 2 0.12 Ovary IJC 52:575 13.3 D17528 8 6 0.75 Ovary CR 50:2724 13.3 D17528 23 15 0.65 Ovary CR 56:606 13.3 D17528 6 4 0.67 Ovary IJC 54:85 13.3 D17528 18 14 0.78 Ovary IJC 54:220 13.3 D17528 3 1 0.33 Pancreas CR 54:2761 13.3 D17528 3 0 0 Pancreas GCC 3:468 13.3 D17528 10 2 0.2 Stornach BJC 59:750 13.3 D17528 7 0 0 Stornach HG 89:445	13.3	D17S28	12	4	0.33	Colon	CCG 48:167
13.3 D17528 3 1 0.33 Liver CR 53:368 13.3 D17528 3 3 1 Lung CR 49:5130 13.3 D17528 16 2 0.12 Ovary IJC 52:575 13.3 D17528 8 6 0.75 Ovary CR 50:2724 13.3 D17528 23 15 0.65 Ovary CR 56:606 13.3 D17528 6 4 0.67 Ovary IJC 54:85 13.3 D17528 18 14 0.78 Ovary IJC 54:220 13.3 D17528 3 1 0.33 Pancreas CR 54:2761 13.3 D17528 3 0 0 Pancreas GCC 3:468 13.3 D17528 10 2 0.2 Stomach BJC 59:750 13.3 D17528 7 0 0 Stomach HG 89:445	13.3	D17S28	2.	0	0	Head&Neck	CR 52:4787
13.3 D17528 3 3 1 Lung CR 49:5130 13.3 D17528 16 2 0.12 Ovary IJC 52:575 13.3 D17528 8 6 0.75 Ovary CR 50:2724 13.3 D17528 23 15 0.65 Ovary CR 56:606 13.3 D17528 6 4 0.67 Ovary IJC 54:85 13.3 D17528 18 14 0.78 Ovary IJC 54:220 13.3 D17528 3 1 0.33 Pancreas CR 54:2761 13.3 D17528 3 0 0 Pancreas GCC 3:468 13.3 D17528 10 2 0.2 Stormach BJC 59:750 13.3 D17528 7 0 0 Stormach HG 89:445	13.3	D17S28	11	0	0	Kidney	JU 150:1298
13.3 D17528 16 2 0.12 Ovary IJC 52:575 13.3 D17528 8 6 0.75 Ovary CR 50:2724 13.3 D17528 23 15 0.65 Ovary CR 56:606 13.3 D17528 6 4 0.67 Ovary IJC 54:85 13.3 D17528 18 14 0.78 Ovary IJC 54:220 13.3 D17528 3 1 0.33 Pancreas CR 54:2761 13.3 D17528 3 0 0 Pancreas GCC 3:468 13.3 D17528 10 2 0.2 Stomach BJC 59:750 13.3 D17528 7 0 0 Stomach HG 89:445	13.3	D17S28	3	1	0.33	Liver	CR 53:368
13.3 D17S28 8 6 0.75 Overy CR 50:2724 13.3 D17S28 23 15 0.65 Overy CR 56:606 13.3 D17S28 6 4 0.67 Overy IJC 54:85 13.3 D17S28 18 14 0.78 Overy IJC 54:220 13.3 D17S28 3 1 0.33 Pancreas CR 54:2761 13.3 D17S28 3 0 0 Pancreas GCC 3:468 13.3 D17S28 10 2 0.2 Stomach BJC 59:750 13.3 D17S28 7 0 0 Stomach HG 89:445	13.3	D17S28	3	3	1	Lung	CR 49:5130
13.3 D17528 23 15 0.65 Ovary CR 56:606 13.3 D17528 6 4 0.67 Ovary IJC 54:85 13.3 D17528 18 14 0.78 Ovary IJC 54:220 13.3 D17528 3 1 0.33 Pancreas CR 54:2761 13.3 D17528 3 0 0 Pancreas GCC 3:468 13.3 D17528 10 2 0.2 Stomach BJC 59:750 13.3 D17528 7 0 0 Stomach HG 89:445	13.3	D17S28	16	2	0.12	Ovary	IJC 52:575
13.3 D17528 6 4 0.67 Ovary IJC 54:85 13.3 D17528 18 14 0.78 Ovary IJC 54:220 13.3 D17528 3 1 0.33 Pancreas CR 54:2761 13.3 D17528 3 0 0 Pancreas GCC 3:468 13.3 D17528 10 2 0.2 Stomach BJC 59:750 13.3 D17528 7 0 0 Stomach HG 89:445	13.3	D17S28	8	6	0.75	Ovary	CR 50:2724
13.3 D17S28 18 14 0.78 Ovary IJC 54:220 13.3 D17S28 3 1 0.33 Pancreas CR 54:2761 13.3 D17S28 3 0 0 Pancreas GCC 3:468 13.3 D17S28 10 2 0.2 Stomach BJC 59:750 13.3 D17S28 7 0 0 Stomach HG 89:445	13.3	D17S28	23	15	0.65	Ovary	CR 56:606
13.3 D17S28 3 1 0.33 Pancreas CR 54:2761 13.3 D17S28 3 0 0 Pancreas GCC 3:468 13.3 D17S28 10 2 0.2 Stomach BJC 59:750 13.3 D17S28 7 0 0 Stomach HG 89:445	13.3	D17S28	6	4	0.67	Ovary	IJC 54 :85
13.3 D17S28 3 0 0 Pancreas GCC 3:468 13.3 D17S28 10 2 0.2 Stomach BJC 59:750 13.3 D17S28 7 0 0 Stomach HG 89:445	13.3	D17S28	18	14	0.78	Ovary	IJC 54:220
13.3 D17S28 10 2 0.2 Stomach BJC 59:750 13.3 D17S28 7 0 0 Stomach HG 89:445	13.3	D17S28	3	1	0.33	Pancreas	CR 54:2761
13.3 D17S28 7 0 0 Stomach HG 89:445	13.3	D17S28	3	0	0	Pancreas	GCC 3:468
13.3 D17S28 7 O O Stomach HG 89:445	13.3	D17S28	10	2			
	13.3	D17S28	7	0			
	13.3	D17S28	- 29	12	0.41		

133 of 249 Chromosome 17 - p Arm

13.3	D17S28	1	1	1	Uterus	CR 51:5632
Unknown	Unknown	20	10	0.5	Bladder	JU 153:1097
Unknown	Unknown	76	21	0.28	Brain	CR 56:164
13.3	D17S34-S5	13	7	0.54	Brain	CR 54:1397
13.3	D17S34-S5	20	11	0.55	Brain	CR 54:1397
13.3	D17S5	22	4	0.18	Brain	AJP 145:1175
13.3	D17 S5	16	6	0.38	Brain	IJC 63:372
13.3	D17S5	13	6	0.46	Brain	CR 49:6572
13.3	D17S5	11	6	0.55	Brain	CR 49:6572
13.3	Unknown	74	20	0.27	Breast	AJP 140:215
13.3	D17 S5	62	26	0.42	Breast	JJCR 84:1159
13.3	D17S5	68	37	0.54	Breast	0 8:781
13.3	D17S5	57	28	0.49	Breast	BCRT 28:231
13.3	D17 S5	4	2	0.5	Breast	CR 53:3804
13.3	D1 7S5	29	16	0.55	Breast	GCC 2:191
13.3	D17S5	50	8	0.16	Breast	CR 53:4356
13.3	D17 S5	465	224	0.48	Breast	BJC 71:438
13.3	D17 S5	34	15	0.44	Breast	HMG 4:2047
13.3	D17S5	82	53	0.65	Breast	CR 54:4200
1 3 .3	D17S5	7 5	21	0.28	Breast	CGC 76:106
13.3	D17S5	354	174	0.49	Breast	C 74:2281
13.3	D17S5	39	18	0.46	Breast	IJC 53:11
13.3	D17S5	4 2	25	0.6	Breast	IJC 50:528
13.3	D1 7 S5	40	2 2	0.55	Breast	GCC 4:113
13.3	D17S5	125	63	0.5	Breast	CR 51:5794
13.3	D17 S5	61	26	0.43	Breast	HG 90:635
13.3	D17S5	52	27	0.52	Breast	PNAS 88:3847
13.3	D1 <i>7</i> S5	15	4	0.27	Cervix	CGC 79:74
13.3	D1 7S5	12	1	0.08	Cervix	BJC 67:71
13.3	D1 7 S5	32	5	0.16	Cervix	CR 54:4481
13.3	Unknown	7	6	0.86	Colon	Science April 16 1989:217
13.3	D17S5	35	24	0.69	Colon	BJC 59:750
13.3	D17S5	19	7	0.37	Colon	CCG 48:167
13.3	D17S5	5	3	0.6	Colon	0 9:991
13.3	D1 7 S5	27	21	0.78	Colon	JJC 53:382
13.3	D17 S5	17	7	0.41	Colon	GCC 3:468
13.3	D1 7S5	26	10	0.38	Colon	S 241:961
13.3	D17S34-S5	24	11	0.46	Esophageal	CR 52:6525
13.3	D17S5	22	10	0.45	Esophageal	CR 51:2113
13.3	Unknown	6	5	0.83	Head&Neck	AJP 142:1131
13.3	D17S5	11	2	0.18	Head&Neck	CR 52:1494
13.3	D17S5 _	48	8	0.17	Kidnev	CR 51:5817
	SUB	STITUTE	SHEET (NULE 26)	,	

BNSDOCID: <WO___9841648A2_IA>

134 of 249 Chromosome 17 - p Arm

13.3	D17S5	23	6	0.26	Kidney	JU 150:1298
13.3	D17S5	15	5	0.33	Kidney	CR 51:820
13.3	D17S5	31	5	0.16	Kidney	CR 51:1544
13.3	D17S 5	15	1	0.07	Kidney	CR 51:1071
13.3	D17S5	2	1	0.5	Kidney	CR 51:1544
13.3	D17S5	20	3	0.15	Liver	0 8:491
13.3	D17S5	14	3	0.21	Liver	CR 51:4367
13.3	D17S5	31	15	0.48	Liver	CR 53:368
13.3	D17S5	9	3	0.33	Liver	BJC 64:1083
13.3	D17S34-S5	11	11	1	Lung	CR 49:5130
13.3	D17S5	6	6	1	Lung	CR 55:28
13.3	D17S34-S5	38	25	0.66	Ovary	0 7:2069
13.3	D17S34-S5	6	2	0.33	Ovary	0 7:2069
13.3	D17S5	17	13	0.76	Ovary	IJC 54:220
13.3	D17S5	28	12	0.43	Ovary	CR 51:5118
13.3	D17S5	3 3	9	0.27	Ovary	IJC 54:546
13.3	D17S5	34	7	0.21	Ovary	IJC 52:575
13.3	D17S5	41	27	0.66	Ovary	0 7:1059
13.3	D17S5	28	15	0.54	Ovary	60 47:137
13.3	D17S5	5	0	0	Pancreas	GCC 3:468
13.3	D17S5	8	0	0	Pancreas	BJC 65:809
1 3 .3	D17S5	4	2	0.5	Pancreas	CR 54:2761
1 3 .3	D17 S5	27	1	0.04	Pediatric	CR 50:3279
13.3	D17S5	8	6	0.75	Sarcoma	CGC 53:45
13.3	D17 S5	22	16	0.73	Sarcoma	CR 52:2419
13 .3	D17S5	60	38	0.63	Stomach	LI 72:232
13.3	D17 S5	38	19	0.5	Stomach	CR 51:2926
1 3 .3	D17 S5	14	2	0.14	Stomach	GCC 3:468
13.3	D17S5	24	9	0.38	Stomach	HG 92:244
13 .3	D17S5	30	6	0.2	Testis	0 9:2245
13.3	D17S5	9	4	0.44	Uterus	CR 51:5632
13 .3	D17S379	22	15	0.68	Ovary	CR 56:606
13 .3	ABR	29	6	0.21	Ovary	CR 56:606
Unknown	D17S65	16	10	0.62	Breast	CR 54:4200
13	D17S65	16	11	0.69	Breast	GE 5:554
13	D17S65	2	2	1	Colon	S:April 16 1989:217
13	D17 S1	15	3	0.2	Brain	AJP 145:1175
13	D17 S1	15	2	0.13	Brain	AJP 145:1175
13	D17S1	21	4	0.19	Breast	HG 91:6
13	D17 S1	20	9	0.45	Breast	GCC 2:191
13	D17 S1	29	9	0.31	Breast	CR 53:4356
13	D17S1	7	2	0.29	Cervix	CR 49:3598
	20	R21111	E SHEET	(RUE 2	5)	
	•			•	•	

135 of 249 Chromosome 17 - p Arm

13	01751	14	6	0.43	Colon	CR 50:7166
13	D1751	9	0	0.45	Colon	N 331:273
13	D17S1	2	2	1	Colon	S:April 16 1989:217
13	D1751	12	4	0.33	Colon	S 241:961
13	D17S1	30	13	0.43	Head&Neck	0 10:1217
13	D17S1	7	1	0.43	Liver	JJCR 81:108
13	D17S1	11	2	0.14	Liver	CR 53:368
13	D1751	3	1	0.10	Lung	PNAS 86:5099
13	D17S1	9	8	0.89	Lung	PNAS 86:5099
13	D17S1	17	8	0.47	Lung	PN 84:9252
13	D17S1	7	7	1	Lung	CR 49:5130
13	D17S1	11	2	0.18	Lung	PNAS 86:5099
13	D17S1	4	0	0.10	Neuroblastoma	CR 49:1095
13	D17S1	5	0	0	Sarcoma	CR 53:468
13	D17S1	3	1	0.33	Sarcoma	CR 53:468
13	D17S1	3	0	0.00	Sarcoma	CR 53:468
13	D17S1	8	7	0.88	Sarcoma	CR 52:2419
13	D17S1	2	0	0	Sarcoma	CR 53:468
13	D17S1	13	12	0.92	Sarcoma	CR 49:6247
13	D17S1	5	1	0.2	Stomach	CR 52:3099
13	D17 S1	10	0	0	Stomach	CR 48:2988
13	D17S1	6	1	0.17	Uterus	CR 51:5632
Unknown	D17S796	17	0	0	Endocrine	CR 56:599
Unknown	D17S796	41	14	0.34	Head&Neck	CR 54:4756
Unknown	D17S796	33	0	. 0	Head&Neck	CR 54:4756
Unknown	D17S796	6	3	0.5	Kidney	GCC 12:76
Unknown	D17S796	32	5	0.16	Melanoma	CR 56:589
12.0-13	D17S906	19	3	0.16	Prostate	GCC 13:278
13.1	D17S31	9	2	0.22	Brain	CR 49:6572
13.1	D17S31	13	2	0 .15	Brain	AJP 145:1175
13.1	D17S31	8	4	0.5	Broin	CR 49:6572
13.1	D17S31	21	7	0.33	Breast	HG 91:6
13.1	D17S31	54	24	0.44	Breast	Lan 336:761
13.1	D17S31	34	22	0.65	Breast	CR 54:4200
13.1	D17S31	87	37	0.43	Breast	CR 51:5794
13.1-11.2	D17S31	2 5	11	0.44	Breast	IJC 50:528
13.1	D17S31	2	1	0.5	Breast	CR 53:2947
13.1	D1 7S31	11	1	0.09	Cervix	BJC 67:71
13.1-11.2	D17S31	16	7	0.44	Colon	CR 50:7166
13.1	D17S31	6	6	1	Colon	S:April 16 1989:217
13.1	D17S31	15	9	0.6	Esophageal	CR 54:2996
13.1	D17S31	29	18	0.62	Head&Neck	0 10:1217
	SUBS	HIUTE	SHEET (R	ULE 26)		

BNSDOCID: <WO__9841648A2_IA>

136 of 249 Chromosome 17 - p Arm

	01.7001		-	0.10	V·	CD C1 C017
13.1-11.2	D17S31	28	5	0.18	Kidney	CR 51:5817
13.1	D17S31	25	0	0	Kidney	JU 150:1298
13.1-11.2	D17S31	16	6	0.38	Liver	CR 51:89
13.1	D17S31	21	12	0.57	Liver	CR 53:368
13.1	D17S31	17	7	0.41	Ovary	IJC 54:546
13.1	017531	7	2	0.29	Ovary	IJC 54:85
13.1	D17S31	11	8	0.73	Ovary	IJC 54:220
13.1	D17S31	7	4	0.57	Ovary	BJC 65:40
13.1	D17S31	6	2	0.33	Ovary	CR 56:606
13.1	D17S31	3	1	0.33	Pancreas	CR 54:2761
13.1-11.2	D17S31	17	12	0.71	Sarcoma	CR 52:2419
13.1	D17S31	15	15	1	Sarcoma	CR 49:6247
13.1	D17S31	12	9	0.75	Sarcoma	CR 52:2419
13.1	TP53	7	0	0	Bladder	HG 91:455
13 .1	TP53	21	9	0.43	Brain	CR 54:1397
Unknown	TP53	1	0	0	Brain	AJP 145:1175
13.1	TP53	45	6	0.13	Brain	0 6:1313
13.1	TP53	6	2	0.33	Brain	CR 49:6572
13.1	TP53	22	9	0.41	Brain	CGC 74:139
13.1	TP53	38	11	0.29	Brain	CR 52:1427
13.1	TP53	15	7	0.47	Brain	CR 54:1397
13.1	TP53	6	2	0.33	Brain	CR 49:6572
13.1	TP53	31	22	0.71	Breast	BJC 68:64
Unknown	TP53	63	17	0.27	Breast	BCRT 28:231
13.1	TP53	61	14	0.23	Breast	CGC 76:106
Unknown	TP53	19	6	0.32	Breast	CR 51:6194
13.1	TP53	44	28	0.64	Breast	HG 90:635
13.1	TP53	3 5	13	0.37	Breast	IJC 50:528
13.1	TP53	70	26	0.37	Breast	CR 51:5794
13.1	TP53	65	13	0.2	Breast	JJCR 84:1159
Unknow n	TP53	11	6	0.55	Breast	CR 52:2624
13.1	TP53	81	22	0.27	Breast	Lan 336:761
13.1	TP53	2 5	10	0.4	Breast	GCC 4:113
13.1	TP53	36	10	0.28	Breast	BJC 69:754
13.1	TP53	12	5	0.42	Breast	CR 53:2947
13.1	TP53	110	72	0.65	Breast	CR 54:4200
13.1	TP53	36	15	0.42	Breast	CR 53:1637
13.1	TP53	17	9	0.53	Breast	GCC 4:113
13.1	TP53	41	34	0.83	Breast	IJC 57:498
Unknown	TP53	16	0	0.63	Cervix	CGC 79:74
13.1	1F53 TP53	9	U I	0.11	Cervix	BJC 67:71
13.1 Unknown			ا و	0.11		GCC 9:119
UIINIUWII	TP53	6	3	U.3	Cervix	OCC 7:117

WO 98/41648

137 of 249 Chromosome 17 - p Arm

13.1	TP53	21	5	0.24	Cervix	CR 54:4481
13.1	TP53	17	8	0.47	Colon	CR 52:741
13.1	TP53	. 6	5	0.83	Colon	GAST 107:369
Unknown	TP53	23	15	0.65	Colon	EJC 30A-264
Unknown	TP53	48	38	0.79	Colon	0 8:1391
Unknown	TP53	26	22	0.85	Colon	GAS 103:1602
13.1	TP53	30	17	0.57	Colon	GAST 104:1633
Unknown	TP53	6	4	0.67	Colon	0 9:991
13.1	TP53	25	12	0.48	Colon	HP 25:1069
13.1	TP53	14	8	0.57	Colon	CR 50:7166
13.1	TP53	17	8	0.47	Colon	JNCI 84:1100
13.1	TP53	17	7	0.41	Colon	JNCI 84:1100
13.1	TP53	17	10	0.59	Colon	UC 53:382
13.1	TP53	25	14	0.56	Colon	CR 52:3965
13.1	TP53	12	10	0.83	Colon	CR 51:4436
13.1	TP53	27	15	0.56	Esophageal	C 73:2472
13.1	TP53	14	10	0.71	Esophageal	C 71:1933
Unknown	TP53	47	27	0.57	Esophageal	CR 52:6525
13.1	TP53	14	7	0.5	Head&Neck	CR 54:1152
Unknown	TP53	32	14	0.44	Head&Neck	0 9:2077
13.1	TP53	27	15	0.56	Head&Neck	C 73:2472
13.1	TP53	39	21	0.54	Head&Neck	0 10:1217
13.1	TP53	20	4	0.2	Kidney	CR 51:5817
Unknown	TP53	40	5	0.12	Kidney	BJC 69:230
13.1	TP53	2	0	0	Kidney	GCC 12:76
13.1	TP53	10	6	0.6	Kidney	UC 64:399
13.1	TP53	16	3	0.19	Kidney	CR 51:820
Unknown	TP53	6 5	9	0.14	Leukemia	B 86:4587
13.1	TP53	50	14	0.28	Liver	JJCR 84:893
13.1	TP53	7	6	0.86	Liver	CR 51:5520
Unknown	TP53	4	1	0.25	Liver	CARC 17:145
13.1	TP53	64	37	0.58	Liver	C 73:42
Unknown	TP53	19	11	0.58	Liver	CR 54:281
13.1	TP53	5	1	0.2	Liver	0 8:2303
13.1	TP53	7	3	0.43	Liver	CR 51:89
13.1	TP53	24	17	0.71	Lung	CR 54:5643
13.1	TP53	57	21	0.37	Lung	0 10:937
13.1	TP53	7	5	0.71	Lung	CR 54:5643
13.1	TP53	3	2	0.67	Lung	CR 54:5643
13.1	TP53	3	0	0	Melanoma	GCC 7:169
Unknown	TP53	28	7	0.25	Melanoma	BJC 69:253
13.1	TP.53	42	19	0.45	Ovary	CR 56:606
	S	UBSTITU	TE SHEET	(FILE 2	5)	

138 of 249 Chromosome 17 - p Arm

13.1	TP53	12	5	0.42	Ovary	IJC 54:546
13.1	TP53	18	10	0.56	Ovary	BJC 65:40
13.1	TP53	9	6	0.67	Ovary	IJC 54:85
13.1	TP53	9	2	0.22	Ovary	IJC 52:575
13.1	TP53	23	18	0.78	Ovary	IJC 54:220
13.1	TP53	18	12	0.67	Ovary	BJC 69:429
13.1	TP53	12	3	0.25	Ovary	CR 51:5118
13.1	TP53	20	16	0.8	Ovary	CR 51:5171
Unknown	TP53	35	26	0.74	Ovary	BJC 72:88 3
13.1	TP53	7	. 1	0.14	Ovary	0 7:2069
13.1	TP53	2	1	0.5	Ovary	0 7:2069
13.1	TP53	32	18	0.56	Ovary	0 7:2069
13.1	TP53	13	3 ·	0.23	Ovary	0 7:2069
13.1	TP53	7	5	0.71	Pancreas	GCC 15:157
13.1	TP53	27	3	0.11	Prostate	AJP 145:287
13.1	TP53	8	3	0.38	Prostate	JU 151:1073
13.1	TP53	4	0	0	Prostate	AJP 147:1112
Unknown	TP53	5	3	0.6	Sarcoma	CR 53:468
Unknown	TP53	4	1	0.25	Sarcoma	CR 53:468
Unknown	TP53	7	1	0.14	Sarcoma	CR 53:468
Unknown	TP53	12	6	0.5	Sarcoma	CR 53:468
Unknown	TP53	63	23	0.37	Stomach	LI 72:232
13.1	TP53	16	5	0.31	Stomach	CGC 75:45
Unknown	TP53	5	1	0.2	Testis	GCC 6:92
13.1	TP53	7	3	0.43	Testis	0 9:2245
13.1	TP53	9	2	0.22	Uterus	GCC 9:119
13.1	TP53	3	1	0.33	Uterus	CR 51:5632
13.1	TP53	4	1	0.25	Uterus	CR 51:5632
Unknown	TP53	28	3	0.11	Uterus	CR 54:4294
13 .1	D17S786	27	4	0.15	Cervix	CR 56:197
13.1	D17S786	2	0	0	Kidney	GCC 12:76
12	D17S520	14	7	0.5	Brain	CR 54:1397
12	D17S520	20	13	0.65	Brain	CR 54:1397
13.1	D17S520	31	15	0.48	Head&Neck	0 9:2077
12	D17S520	19	11	0.58	Ovary	BJC 69:429
13.1	D17S520	26	2	0.08	Uterus	CR 54:4294
13.1	MYH2	10	5	0.5	Brain	CR 49:6572
13.1	MYH2	8	2	0.25	Brain	CR 49:6572
13.1	MYH2	14	1	0.07	Brain	AJP 145:1175
13.1	MYH2	14	10	0.71	Colon	IJC 53:382
13.1	MYH2	5	2	0.4	Liver	CR 53:368
13.1	WAR5	10	<u> 2</u>	0.2	Liver	CCG 48:72

139 of 249 Chromosome 17 - p Arm

13.1	MVU2	10	10	,	•	CD 40 5100
13.1	MYH2	10	10]	Lung	CR 49:5130
	MYH2	14	3	0.21	Ovary	UC 54:546
13.1	MYH2	15	12	0.8	Sarcoma	CR 49:6247
13.1	MYH2	12	6	0.5	Sarcoma	CR 52:2419
13.1	MYH2	19	8	0.42	Stomach	CR 52:3099
13.1	MYH2	20	6	0.3	Uterus	CR 51:5632
12	D17S67	8	• 4	0.5	Brain	AJP 145:1175
12	D17S67	35	22	0.63	Breast	CR 54:4200
12	D17S67	12	11	0.92	Breast	GE 5:554
12	D17S67	1	1	1	Colon	Science April 16 1989:217
12	D17S67	22	10	0.45	Ovary	IJC 54:546
12	D17S67	16	7	0.44	Ovary	CR 56:606
13.1	EW505	3	2	0.67	Colon	Science April 16 1989:217
13.1	UC 10-41	4	3	0.75	Colon	Science April 16 1989:217
13.1	EW401	3	1	0.33	Colon	Science April 16 1989:217
13.1	EW402	2	1	0.5	Colon	Science April 16 1989:217
13.1	EW405	3	1	0.33	Colon	Science April 16 1989:217
13.1	D17S29	15	1	0.07	Brain	CR 49:6572
13.1	D17S29	9	1	0.11	Brain	CR 49:6572
13.1	D17S29	2	0	0	Colon	Science April 16 1989:217
13.1	CHRNB1	26	14	0.54	Head&Neck	0 9:2077
13.1	CHRNB1	22	8	0.36	Head&Neck	CR 54:1152
13.1	CHRNB1	28	14	0.5	Ovary	CR 56:606
11.2-12	D17S261	6	2	0.33	Brain	CR 54:1397
11.2-12	D17S261	7	3	0.43	Brain	CR 54:1397
11.2-12	D17S261	19	8	0.42	Leukemia	B 83:3449
12-11.2	D17S71	15	2	0.13	Brain	AJP 145:1175
12-11.2	D17S71	3	2	0.67	Breast	GE 5:554
12-11.2	D17S71	18	15	0.83	Colon	IJC 53:382
12-11.2	D17571	3	1	0.33	Liver	CR 53:368
12-11.2	D1 <i>7</i> S71	10	10	1	Lung	CR 49:5130
12-11.2	D17S71	11	7	0.64	Ovary	GO 55:245
12-11.2	D17S71	20	11	0.55	Ovary	GO 47:137
12-11.2	D17S71	12	6	0.5	Sarcoma	CR 49:6247
12-11.2	D17S71	9	5	0.56	Sarcoma	CR 52:2419
12-11.2	D17 S71	13	5	0.38	Uterus	CR 51:5632
13.1	D17S122	23	4	0.17	Brain	AJP 145:1175
13.1	D17S122	29	11	0.38	Head&Neck	0 9:2077
13.1	D17S122	12	7	0.58	Head&Neck	CR 54:1152
Unknown	D17S58	17	2	0.12	Brain	AJP 145:1175
11.2-11.1	D17S58	21	7	0.33	Breast	GE 5:554
11.2-11.1	D17S58	63	35	0.56	Breast	CR 54:4200
	<u>Al</u>	IDOTTE	** ***		_	

140 of 249 Chromosome 17 - p Arm

Unknown	D17S58	35	14	0.4	Breast	0 8:781
11.2-11.1	D17S58	10	1	0.1	Cervix	BJC 67:71
11.2-11.1	D17S58	5	1	0.2	Colon	Science April 16 1989:217
Unknown	D17S58	9	0	0	Head&Neck	CR 52:4787
11.2-11.1	D17S58	11 .	9	0.82	Ovary	IJC 54:8 5
Unknown	D17S58	19	12	0.63	Ovary	CR 56:606
Unknown	D1 <i>7</i> Z1	27	1	0.04	Breast	GE 5:554
Unknown	D17Z1	27	1	0.04	Breast	GE 5:554
D17S5-D17S58	Unknown	21	8	0.38	Bladder	CR 51:5405
Unknown	CHRNB1-TP53	30	18	0.6	Bladder	CR 55:5213
Unknown	Unknown	32	13	0.41	Brain	CR 50:5784
12-11.2	D17S121	17	3	0.18	Brain	AJP 145:1175
Unknown	D17S5:28-31	14	0	. 0	Brain	CGC 73:122
Unknow n	D17S5:28-31	25	6	0.24	Brain	CGC 73:122
Unknown	D17S5:28-31	15	5	0.33	Brain	CGC 73:122
Unknown	D17S66	15	2	0.13	Brain	AJP 145:1175
13.3	Unknown	28	10	0.36	Breast	HMG 4:2047
13	Unknown	51	17	0.33	Breast	Lan 336:761
13.3	Unknown	27	16	0.59	Breast	HMG 4:2047
13.3	Unknown	22	9	0.41	Breast	HMG 4:2047
13.1-13.3	Unknown	88	38	0.43	Breast	CR 51:5794
13.1	Unknown	16	6	0.38	Breast	CR 53:1637
13.3	Unknown	21	7	0.33	Breast	HMG 4:2047
13.3	D17S1174	7	3 -	0.43	Breast	HMG 4:2047
13	D17S513	17	6	0.35	Breast	CR 53:2947
Unknown	D17S66	7	7	1	Breast	CR 54:4200
13	Unknown	15	0	0	Cervix	BJC 67:71
13.3	Unknown	1	1	l	Colon	S:April 16 1989:217
13.3	Unknown	3	3	1	Colon	S:April 16 1989:217
13.3	Unknown	1	1	1	Colon	S:April 16 1989:217
13.3	Unknown	4	4	1	Colon	S:April 16 1989:217
13.1	Unknown	2	2	1	Colon	Science April 16 1989:217
Unknown	HF-12	12	6	0.5	Colon	JNCI 84:1100
13	D17S513	32	20	0.62	Esophageal	C 73:2472
13	D17S513	32	20	0.62	Head&Neck	C 73:2472
13.3	D17S578	31	6	0.19	Head&Neck	0 9:2077
13.2	CI17-732	35	1	0.03	Kidney	BJC 69:230
Unknown	D17S849-D17S796	6	0	0	Kidney	PNAS 92:2854
Unknown	D17S849-D17S796	21	1	0.05	Kidney	PNAS 92:2854
Unknown	D17S:786-799	23	4	0.17	Leukemio	CR 55:5377
Unknown	Unknown	30	28	0.93	Lung	CR 54:2322
13	Unknown	19	10	0.53	Ovary	BJC 65:40

141 of 249 Chromosome 17 - p Arm

Unknown	D17S1-D17S28	15	2	0.13	Ovary	IJC 54:546
13.1	D17S260	21	10	0.48	Ovary	CR 56:606
13.1-13.3	D17S34-D17S28- D17S5-D17S379- P53-D17S513	7	7	1	Ovary	AJHG 55:666
13.1-13.3	D17S34-D17S28- D17S5-D17S379- P53-D17S513	2	2	1	Ovary	AJHG 55:666
13.1-13.3	D17S34-D17S28- D17S5-D17S379- P53-D17S513	12	12	1	Ovary	AJHG 55:666
13.1-13.3	D17S34-D17S28- D17S5-D17S379- P53-D17S513	1	1	1	Ovary	AJHG 55:666
Unknown	D17S5-34-71- MYH2	36	29	0.81	Ovary	CR 53:2393
13	D17S513	36	16	0.44	Ovary	CR 56:606
13.3	D17S578	29	12	0.41	Ovary	CR 56:606
13.3	D17S654	27	17	0.63	Ovary	CR 56:606
13.3	D17S695	41	18	0.44	Ovary	CR 56:606
Unknown	D17S:34-5-28-31	19	12	0.63	Ovary	CGC 85:43
Unknown	TP53-D17S:515- 520-513	18	9	0.5	Ovary	BJC 72:1330
Unknown	D17S1-D17S28	7	0	0	Prostate	G 11:530
12.0-1 3	D17S1149	15	4	0.27	Prostate	GCC 13:278
Unknown	D17S1-D17S28	8	2	0.25	Stomach	GCC 3:468
Unknown	Unknown	19	2	0.11	Testis	G 5:134
Unknown	D17S134	17	0	0	Testis	GCC 13:249
Unknown	D17S30-D17S787	24	2	0.08	Testis	LI 73:606
Unknown	12G6	22	2	0.09	Uterus	CR 54:4294
SUM		10343	4539	0.44		

142 of 249 Chromosome 17 - q Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
Unknown	D17S146	6	4	0.67	Ovary	IJC 54:220
11.2-12	D17S33	8	1	0.12	Brain	CR 49:6572
11.2-12	D17S33	9	0	0	Brain	CR 49:6572
11.2-12	D17S33	59	13	0.22	Breast	CR 51:5794
11.2-12	D17S33	7	1	0.14	Ovary	CR 51:5118
11.2-12	D17S33	7	2	0.29	Sarcoma	CR 52:2419
11.2-12	D17S33	9	2	0.22	Sarcoma	CR 49:6247
11.2-12	CRYB1	13	0	0	Brain	AJP 145:1175
11.2-12	CRYB1	28	2	0.07	Breast	GCC 4:113
11.2-12	CRYB1	16	0	0	Colon	JNCI 84:1100
Unknown	D17S117	15	6	0.4	Breast	CR 53:5617
Unknown	D1 7 S73	25	6 .	0.24	Breast	0 8:781
CEN-12	D17S73	27	10	0.37	Breast	CR 53:5617
CEN-12	D17S73	7	3	0.43	Ovary	IJC 54:85
11.2-12	D17S907	18	4	0.22	Prostate	GCC 13:278
11.2-12	THRAI	37	10	0.27	Breast	CR 54:2549
11.2-12	THRA1	66	17	0.26	Breast	GCC 11:58
11.2-12	THRA1	14	11	0.79	Breast	CR 52:2624
11.2-12	THRAI	17	7	0.41	Breast	AJOG 172:908
11.2-12	THRA1	13	5	0.38	Esophageal	CL 97:129
11.2-12	THRAI	17	12	0.71	Ovary	AJOG 172:908
11.2-12	THRAI	20	1	0.05	Ovary	IJC 54:220
13.1	TCF2	26	7	0.27	Head&Neck	0 9:2077
21.1	RARA	11	6	0.55	Ovary	IJC 54:85
11.2-12	D17S2 50	1	0	0	Bladder	HG 94:231
21	D17S250	5	1	0.2	Breast	CR 54:6069
21	D17S250	81	17	0.21	Breast	CR 54:2549
21	D17S250	78	18	0.23	Breast	GCC 11:58
11.2-12	D17S250	26	5	0.19	Breast	0 8:781
11.2-12	D17S250	6	1	0.17	Breast	HG 94:231
11.2-12	D17S250	14	7	0.5	Breast	CR 52:2624
21	D17S250	11	2	0.18	Esophageal	CL 97:129
11.2-12	D17S250	19	5	0.26	Head&Neck	CR 54:1152
11.2-12	D17S250	2	0	0	Ovary	HG 94:231
11.2-12	D17S250	22	14	0.64	Ovary	BJC 69:429
11.2-12	D17S250	20	2	0.1	Prostate	0 11:1241
21	D17S250	20	2	0.1	Prostate	CR 55:1002
21	PHB	4	3	0.75	Ovary	IJC 54:85
Unknown	PHB	9	9	1	Ovary	IJC 54:220
21	D17S800	1	0	0	Blodder	HG 94:231
21	D17S800	7	6	0.86	Breast	CR 54:6069
	CHDCTITUTE C	MITT IN				

143 of 249 Chromosome 17 - q Arm

21	D17S800	. 4	0	0	Breast	HG 94:231
21	D17S902	37	10	0.27	Breast	CR 54:2549
21	D17S902	16	4	0.25	Prostate	GCC 13:278
21	D17S579	1	. 0	0	Bladder	HG 94:231
21	D17S579	19	11	0.58	Breast	CR 52:2624
21	D17S579	7	5	0.71	Breast	CR 54:6069
21	D17S579	34	7	0.21	Breast	0 8:781
21	D17S579	85	20	0.24	Breast	GCC 11:58
21	D17S579	16	5	0.31	Breast	AJOG 172:908
21	D17S579	94	12	0.13	Breast	CR 54:2549
21	D17S579	4	1	0.25	Breast	HG 94:231
21	D17S579	52	21	0.4	Breast	BCRT 32:5
21	D17S579	14	4	0.29	Esophageal	CL 97:129
21	D17S579	26	8	0.31	Head&Neck	CR 54:1152
21	D17S579	17	13	0.76	Ovary	AJOG 172:908
21	D17S579	23	9	0.39	Ovary	GO 55:245
21	D17S579	2	0	0	Ovary	HG 94:231
21	D17S579	18	14	0.78	Ovary	IJC 54:220
21	D17S579	37	22	0.59	Ovary	CR 56:606
21	D17S579	19	14	0.74	Ovary .	IJC 54:85
21	D17S579	20	2	0.1	Prostate	CR 55:1002
21	D17S579	20	2	0.1	Prostate	0 11:1241
21	D17S579	25	0	0	Uterus	CR 54:4294
Unknown	D17S509	75	18	0.24	Breast	- CR 53:4356
Unknown	D17S509	26	3	0.12	Breast	HG 91:6
Unknown	D17S509	11	5	0.45	Liver	CR 51:89
21	HOX2	19	1	0.05	Prostate	0 11:1241
Unknown	PPY	20	5	0.25	Breast	CR 53:5617
Unknown	D17S806	26	2	0.08	Cervix	CR 56:197
21.3-22	COL1 A1	24	10	0.42	Breast	0 8:781
2 2	D17S41	43	21	0.49	Breast	CR 53:5617
12.0-24	D17S41	20	8	0.4	Breast	0 8:781
22	D17S41	11	7	0.64	Ovary	IJC 54 :85
12.0-24	D17S41	20	5	0.25	Ovary	IJC 54:546
12.0-24	D17S41	8	7	0.88	Ovary	IJC 54:220
21.3-22	NM23	23	6	0.26	Breast	GCC 4:113
21.3-22	NM23	61	8	0.13	Breast	ANYAS p.137
21.3-22	NM23	29	3	0.1	Colon	CR 54:3979
21.3-22	NM23	17	3	0.18	Colon	EJC 30A:664
21.3-22	NM23	7	0	0	Melanoma	GCC 7:169
21.3-22	NM23	20	13	0.65	Ovary	IJC 54:85
21.3-22				0.09	Stomach	JJCR 84:184
— 	SUBSTITUTE SI	HEET (RUL	E 26)			•
		•	•			

PCT/US98/05419

144 of 249 Chromosome 17 - q Arm

21.3-22	NM23	7	0	0	Uterus	C 73:1686
Unknown	NME1	55	25	0.45	Breast	CR 53:5617
Unknown	NMET	68	20	0.29	Breast	GCC 11:58
Unknown	NME1	17	5	0.29	Breast	CR 52:2624
Unknown	NMET	45	10	0.22	Breast	BCRT 28:231
Unknown	NME1	48	7	0 .15	Breast	JJCR 84:1159
Unknown	NMET	18	1	0.06	Cervix	CR 54:4481
Unknown	NMET	27	2	0.07	Esophageal	C 73:2472
Unknown	NMEI	27	2	0.07	Head&Neck	C 73:2472
Unknown	NMET	17	14	0.82	Ovary	IJC 54:220
Unknown	NME1	21	1	0.05	Prostate	JU 151:1073
Unknown	NME1	21	8	0.38	Testis	0 9:2245
Unknown	NMEI	18	8	0.44	Testis	0 9:2245
Unknown	D17S74	16	2	0.12	Breast	ANYAS p.137
22	D17S74	50	10	0.2	Breast	BCRT 28:231
22	D17S74	6	2	0.33	Breast	CR 53:3804
22	D17S74	67	13	0.19	Breast	HG 91:6
Unknown	D17S74	32	3	0.09	Breast	CR 50:7184
22	D17S74	106	49	0.46	Breast	CR 54:4200
Unknown	D17S74	9 3	29	0.31	Breast	CR 51:5794
23	D17S74	49	12	0.24	Breast	CR 53:3382
Unknown	D17S74	76	22	0.29	Breast	0 8:781
Unknown	D17S74	57	10	0.18	Breast	JJCR 84:1159
23	D17S74	54	20	0.37	Esophageal	CR 54:1638
Unknown	D17S74	54	20	0.37	Esophageal	GCC 10:177
Unknown	D17S74	29	5	0.17	Esophageal	CR 54:2996
Unknown	D17S74	30	3	0.1	Kidney	CR 51:820
Unknown	D17S74	21	2	0.1	Liver	CR 51:89
Unknown	D17S74	12	2	0.17	Liver	CR 53:368
22	D17S74	7	7	1	Lung	CR 49:5130
22	D17S74	9	8	0.89	Lung	PN 86:5099
22	D17S74	3	1	0.33	Lung	PN 86:5099
22	D17S74	11	2	0.18	Lung	PN 86:5099
Unknown	D17574	39	8	0.21	Lung	CR 52:2478
Unknown	D17S74	24	10	0.42	Ovary	IJC 54:546
Unknown	D17S74	23	16	0.7	Ovary	IJC 54:220
Unknown	D17S74	26	10	0.38	Ovary	CR 51:5118
23	D17S74	6	0	0	Ovary	CR 53:3382
23	D17S74	8	1	0.12	Ovary	CR 53:3382
2 2	D17S74	10	2	0.2	Ovary	IJC 52:575
23	D17S74	17	6	0.35	Ovary	CR 53:3382
23	D17574	10	2	0.2	Ovary	CR 53:3382

145 of 249 Chromosome 17 - q Arm

22	D17S74	17	12	0.71	Ovary	IJC 54 :85
Unknown	D17S74	18	4	0.22	Sarcoma	CR 49:6247
Unknown	D1 <i>7</i> S74	22	3	0.14	Sarcoma	CR 52:2419
Unknown	MPO	11	4	0.36	Breast	CR 52:2624
Unknown	MPO	31	5	0.16	Head&Neck	0 9:2077
Unknown	MPO	20	1	0.05	Prostate	0 11:1241
Unkn own	D17S86	44	9	0.2	Breast	CR 53:5617
21.1-21.2	C117-24	36	13	0.36	Esophageal	CR 54:1638
12-21.1	C117-316	37	11	0.3	Breast	CR 53:3382
12-21.1	C117-316	32	9	0.28	Esophageal	CR 54:1638
12-21.1	C117-316	13	6	0.46	Ovary	CR 53:3382
12-2 1.1	C117-316	1	0	0	Ovary	CR 53:3382
12-21.1	C117-316	9	1	0.11	Ovary	CR 53:3382
12-21.1	C117-316	3	0	0	Ovary	CR 53:3382
21.3	CI17-477	32	22	0.69	Esophageal	CR 54:1638
21.3	C117-28	7	3	0.43	Esophageal	CR 54:1638
21.3	C117-28	26	15	0.58	Esophageal	CR 54:1638
21.3	C117-592	18	8	0.44	Breast	CR 53:3382
21.3	(117-592	17	6	0.35	Esophageal	CR 54:1638
21.3	(117-592	4	2	0.5	Ovary	CR 53:3382
21.3	(117-592	1	0	0	Ovary	CR 53:3382
21.3	(117-592	3	2	0.67	Ovary	CR 53:3382
21.3	C117- 59 2	1	0	0	Ovary	CR 53:3382
21.3	C117-701	138	48	0.35	Breast	CR 53:3382
21.3	(117-701	38	21	0.55	Esophageal	CR 54:1638
21.3	C117-701	12	5	0.42	Ovary	CR 53:3382
21.3	(117-701	7	0	0	Ovary	CR 53:3382
21.3	C117-701	15	9	0.6	Ovary	CR 53:3382
21.3	C117-701	12	2	0.17	Ovary	CR 53:3382
21.3	C117- 73 0	96	36	0.38	Breast	CR 53:3382
21.3	C117-730	3 5	20	0.57	Esophageal	CR 54:1638
21.3	C117-730	4	0	0	Ovary	CR 53:3382
21.3	C117-730	4	0	0	Ovary	CR 53:3382
21.3	C117-730	12	6	0.5	Ovary	CR 53:3382
21.3	C117-730	4	2	0.5	Ovary	CR 53:3382
21.3	C117-507	25	7	0.28	Breast	CR 53:3382
21.3	C117-507	18	10	0.56	Esophageal	CR 54:1638
21.3	C117-507	3	1	0.33	Ovary	CR 53:3382
21.3	(117-507	5	2	0.4	Ovary	CR 53:3382
21.3	C117-507	7	6	0.86	Ovary	CR 53:3382
21.3	(117-507	3	1	0.33	Ovary	CR 53:3382
21.3	(117-533	93	25	0.27	Breast	CR 53:3382
	CHIPCTITITI	OUTTY /	en Pas			

146 of 249 Chromosome 17 - q Arm

01 0	C117 F00	40	01	0.5	- 1 1	CD C 4 1 / 20
21.3	C117-533	42	21	0.5	Esophageal	CR 54:1638
21.3	C117-533	9	4	0.44	Ovary	CR 53:3382
21.3	C117-533	9	3	0.33	Ovary	CR 53:3382
21.3	C117-533	11	6	0.55	Ovary	CR 53:3382
21.3	C117-533	7	1	0.14	Ovary	CR 53:3382
21-23	D17S78	14	0	0	Brain	AJP 145:1175
21-23	D17S78	25	5	0.2	Ovary	IJC 54:546
22-24	GH	39	13	0.33	Breast	0 8:781
22-24	GH	16	4	0.25	Breast	CR 52:2624
22-24	GH	59	13	0.22	Breast	CR 53:5617
22-24	GH	12	1	0.08	Lung	CR 49:5130
22-24	GH	14	7	0.5	Ovary	GO 55:245
22-24	GH	15	1	0.07	Uterus	CR 51:5632
Unknown	46 E6	11	4	0.36	Breast	0 8:781
23-24	D17S40	23	10	0.43	Breast	CR 53:5617
Unknown	D17S40	14	5	0.36	Breast	0 8:781
23-24	D17S40	15	9	0.6	Ovary	JJC 54:85
Unknown	D17S40	18	4	0.22	Ovary	IJC 54:546
23-qter	D17S21	15	0	0	Brain	AJP 145:1175
23-qter	D17S21	20	7	0.35	Breast	CR 53:5617
23-qter	D17S21	25	13	0.52	Ovary	IJC 54:546
Unknown	D17S515	32	6	0.19	Head&Neck	0 9:2077
Unknown	D17S801	32	4	0.12	Cervix	CR 56:197
Unknown	D17S785	37	1	0.03	Head&Neck	CR 54:4756
Unknow n	D17 S78 5	37	16	0.43	Head&Neck	CR 54:4756
Unknown	D17S785	6	3	0.5	Kidney	GCC 12:76
Unknown	D17S785	27	1	0.04	Melanoma	CR 56:589
Unknown	CACNLB1	19	2	0.11	Prostate	0 11:1241
Unknown	D17S20	72	5	0.07	Breast	CR 53:5617
23-25 .5	D17S4	9	0	0	Brain	CR 49:6572
23-25 .5	D17S4	14	3	0.21	Brain	CR 49:6572
23-25.5	D17S4	34	1	0.03	Brain	AJP 145:1175
23-25 .5	D17S4	47	6	0.13	Breast	HG 91:6
23-25.4	D17S4	42	18	0.43	Breast	BJC 69:754
23-25 .3	D17S4	51	21	0.41	Breast	CR 54:4200
23-2 5.3	D17S4	34	10	0.29	Breast	IJC 53:11
23-25.3	D17S4	104	28	0.27	Breast	CR 51:5794
23-2 5.3	D17S4	63	24	0.38	Breast	CR 53:5617
23-25 .3	D17S4	34	10	0.29	Breast	GCC 4:113
23-25 .5	D17S4	47	16	0.34	Breast	lan 336:761
23-25.3	D17S4	36	7	0.19	Breast	ANYAS p.137
23-25 .5	D17S4	35	3	0.09	Cervix	CR 54:4481
				2.2.		

147 of 249 Chromosome 17 - q Arm

23-25	D17S4	13	0	0	Cervix	BJC 67:71
23-25.3	D17S4	20	3	0.15	Colon	JNCI 84:1100
23-25.3	D17S4	23	0	0	Colon	CCG 48:167
23-25.5	D17S4	2 5	5	0.2	Colon	CR 50:7166
23-25 .5	D17S4	14	1	0.07	Esophageal	CR 51:2113
23-25.3	D17S4	23	7	0.3	Esophageal	CR 54:2996
23-25 .5	D17S4	14	l	0.07	Kidney	CR 51:1071
23-25.5	D17S4	8	2	0.25	Liver	CR 53:368
23-25 .3	D17S4	5	0	0	Liver	PNAS 86:8852
23-25 .3	D17S4	2	0	0	Lung	CR 49:5130
23-25.3	D17S4	16	11	0.69	Ovary	0 7:2069
23-2 5.3	D17S4	16	2	0.12	Ovary	0 7:2069
23-2 5.3	D17S4	41	30	0.73	Ovary	0 7:2069
23-25 .3	D17S4	7	4	0.57	Ovary	Unknown
23-25 .3	D17S4	29	11	0.38	Ovary	IJC 54:546
23-25 .3	D17S4	21	2	0.1	Ovary	CR 51:5118
23-25 .3	D17S4	30	11	0.37	Ovary	IJC 52:575
23-25	D17S4	15	10	0.67	Ovary	UC 54:85
23-2 5.5	D17S4	15	10	0.67	Ovary	IJC 54:85
23-25 .3	D17S4	19	12	0.63	Ovary	IJC 54:220
23-2 5	D17S4	4	0	0	Pancreas	CR 54:2761
23-2 5	D17S4	11	0	0	Prostate	GCC 11:119
23-2 5	D17S4	9	2	0.22	Sarcoma	CR 52:2419
23-25 .5	D17S4	12	9	0.75	Sarcoma	CR 52:2419
23-25 .3	D17S4	14	3	0.21	Sarcoma	CR 49:6247
23-2 5	D17S4	7	0	0	Stomach	CR 51:2926
23-25 .5	D17S4	42	17	0.4	Testis	0 9:2245
23.3-25.3	TK1	21	1	0.05	Breast	CR 53:5617
23-qter	D17S77	31	2	0.06	Brain	AJP 145:1175
23-qter	D17S77	30	11	0.37	Breast	CR 53:5617
Unknown	D17S26	9	0	0	Breast	CR 53:5617
Unknown	D17S26	16	5	0.31	Ovary	CR 50:2724
23-2 5	D17S75	71	23	0.32	Breast	CR 51:5794
23-2 5.3	D17S24	23	0	0	Brain	AJP 145:1175
Unknown	D17S24	34	12	0.35	Breast	GCC 4:113
Unknown	D17S24	59	27	0.46	Breast	CR 53:5617
Unknown	D17S24	59	20	0.34	Breast	0 8:781
23-25 .3	D17S24	40	17	0.42	Breast	CR 54:4200
23-2 5	D17S24	42	10	0.24	Breast	CR 51:5794
23-2 5.3	D17S24	40	17	0.42	Breast	CR 54:4200
23-25 .3	D17S24	20	8	0.4	Breast	GCC 2:191
23-25 .3	D17S24	4	2	0.5	Breast	CR 53:3804

148 of 249 Chromosome 17 - q Arm

Unknown	D17S24	21	2	0.1	Colon	JNCI 84:1100
23-25.3	D17S24	18	11	0.61	Ovary	IJC 54:8 5
Unknown	D17S24	16	8	0.5	Ovary	IJC 54:546
23-25.3	D17S24	18	11	0.61	Ovary	IJC 54:8 5
23-25	D17S24	3	0	0	Ovary	CR 51:5118
Unknown	D17S24	9	1	0.11	Prostate	G 11:530
23-25	D17S27	17	6	0.35	Breast	CR 51:5794
Unknown	D17S79	9	2	0.22	Breast	CR 53:5617
Unknown	D17S79	9	2	0.22	Breast	CR 53:5617
Unknown	D17S587	1	0	0	Bladder	HG 94:231
12.0-21	D17S588	1	0	0	Bladder	HG 94:231
Unknown	Unknown	28	3	0.11	Brain	CR 50:5784
25.1	Unknown	31	9	0.29	Breast	CR 53:3382
23	Unknown	31	10	0.32	Breast	CR 53:3382
22	Unknown	41	14	0.34	Breast	CR 53:3382
25.3	Unknown	45	13	0.29	Breast	CR 53:3382
21	D173700	54	10	0.19	Breast	CR 54:2549
21	D17S1184	11	2	0.18	Breast	CR 54:6069
21	D17S1322	11	10	0.91	Breast	CR 54:6069
21	D17S1325	11	11	1	Breast	CR 54:6069
21	D17S1328	6	5	0.83	Breast	CR 54:6069
21	D17S183	36	8	0.22	Breast	CR 54:2549
Unknown	D17S2	4	0	0	Breast	GCC 2:191
Unknown	D17S293	15	3	0.2	Breast	AIOG 172:908
Unknown	D17S308	23	9	0.39	Breast	0 8:781
Unknown	D17S5-D17S1-D17S31- D17S509-D17S74-D17S4	75	18	0.24	Breast	CR 53:3707
Unknown	D17S587	6	1	0.17	Breast	HG 94:231
12.0-21	D17S588	9	2	0.22	Breast	0 8:781
12.0-21	D17S588	6	1	0.17	Breast	HG 94:231
12.0-21	D17S588	17	8	0.47	Breast	AJOG 172:908
21	D17S648	39	7	0.18	Breast	CR 54:2549
Unknown	D17S68	23	16	0.7	Breast	CR 54:4200
21	D1 7S702	92	21	0.23	Breast	CR 54:2549
Unknown	D17S702	80	24	0.3	Breast	GCC 11:58
Unknown	D17S733	65	18	0.28	Breast	GCC 11:58
21	D17S746	36	10	0.28	Breast	CR 54:2549
21	D1 7S750	59	14	0.24	Breast	CR 54:2549
23-qter	D17S77	30	11	0.37	Breast	CR 53:5617
Unknown	D1 7S773	9	2	0.22	Breast	CR 53:5617
21	D17S776	10	6	0.6	Breast	CR 54:6069
21	D17S776	70	17	0.24	Breast	GCC 11:58

WO 98/41648

149 of 249 Chromosome 17 - q Arm

21	D17S776	63	19	0.3	Breast	CR 54:2549
21	D17S846	74	24	0.32	Breast	CR 54:2549
21	D17S855	30	8	0.27	Breast	CR 54:2549
21	D17S855	86	21	0.24	Breast	GCC 11:58
21	D17S855	10	8	0.8	Breast	CR 54:6069
21	D17S856	53	10	0.19	Breast	CR 54:2549
21	D17S857	68	17	0.25	Breast	CR 54:2549
21	D17S859	17	2	0.12	Breast	CR 54:2549
21	D17S870	441	173	0.39	Breast	BJC 71:438
21	D17S870-CI17-730	289	98	0.34	Breast	C 74:2281
Unknown	EDH17B-HSD-A3T	19	7	0.37	Breast	GCC 11:58
Unknown	EDH17B-HSD-DEL	20	9	0.45	Breast	GCC 11:58
Unknown	EPB3	15	6	0.4	Breast	CR 53:5617
21	GAS	50	13	0.26	Breast	CR 54:2549
Unknown	PROHIB	6	1	0.17	Cervix	GCC 9:119
Unknown	D17S791	22	1	0.05	Endocrine	CR 56:599
25.3	Unknown	40	11	0.28	Esophageal	CR 54:1638
22	Unknown	33	16	0.48	Esophageal	CR 54:1638
25.1	Unknown	26	14	0.54	Esophageoi	CR 54:1638
Unknown	D17S874	3 5	20	0.57	Esophageal	GCC 10:177
Unknown	GP3A	15	6	0.4	Head&Neck	0 9:2077
12.0-21	D17S588	34	2	0.06	Kidney	BJC 69:230
Unknown	D17S:802-805-809	22	5	0.23	Leukemio	CR 55:5377
Unknown	D17S32	13	0	0	Liver	CR 53:368
2 5.3	Unknown	7	3	0.43	Ovary	CR 53:3382
22	Unknown	3	1	0.33	Ovary	CR 53:3382
2 5.1	Unknown	7	0	0	Ovary	CR 53:3382
25.1	Unknown	17	6	0.35	Ovary	CR 53:3382
22	Unknown	3	0	0	Ovary	CR 53:3382
25.3	Unknown	8	3	0.38	Ovary	CR 53:3382
2 5.3	Unknown	8	4	0.5	Ovary	CR 53:3382
22	Unknown	5	4	0.8	Ovary	CR 53:3382
25.3	Unknown	6	0	0	Ovary	CR 53:3382
22	Unknown	1	0	0	Ovary	CR 53:3382
23	Unknown	3	0	0	Ovary	CR 53:3382
23	Unknown	5	5	1	Ovary	CR 53:3382
25.1	Unknown	11	6	0.55	Ovary	CR 53:3382
25.1	Unknown	10	1	0.1	Ovary	CR 53:3382
23	Unknown	2	0	0	Ovary	CR 53:3382
23	Unknown	8	3	0.38	Ovary	CR 53:3382
Unknown	46E6-HOX2B-D17S:250- 588-579	18	10	0.56	Ovary	BJC 72:1330

150 of 249 Chromosome 17 - q Arm

	,					
Unknown	D17S136	6	5	0.83	Ovary	IJC 54:220
Unknown	D17S174	10	8	0.8	Ovary	IJC 54:220
Unknown	D17S180 *	6	4	0.67	Ovary	UC 54:220
Unknown	D17S250-579-588-NM23- GH	120	64	0.53	Ovary	CR 53:1218
12.0-21	D17S250-THRA1-D17S846- D17S856-D17S855- D17S183-D17S579- D17S588	3	2	0.67	Ovary	AJHG 55:666
12.0-21	D17S250-THRA1-D17S846- D17S856-D17S855- D17S183-D17S579- D17S588	14	12	0.86	Ovary	AJHG 55:666
12.0-21	D17S250-THRA1-D17S846- D17S856-D17S855- D17S183-D17S579- D17S588	11	8	0.73	Ovary	AJHG 55:666
12.0-21	D17S250-THRA1-D17S846- D17S856-D17S855- D17S183-D17S579- D17S588	1	1	1 .	Ovary	AJHG 55:666
Unknown	D1 7S293	11	9	0.82	Ovary	IJC 54:220
Unknown	D17S293	18	14	0.78	Ovary	AJOG 172:908
Unknown	D17S308	17	14	0.82	Ovary	IJC 54:220
Unknown	D17S587	2	0 .	0	Ovary	HG 94:231
12.0-21	D17S588	11	6	0.55	Ovary	BJC 69:429
12.0-21	D17S588	20	14	0.7	Ovary	AJOG 172:908
12.0-21	D17S588	2	0	0	Ovary	HG 94:231
Unknown	D17S73-41-4-77	37	28	0.76	Ovary	CR 53:2393
22-23	NME1-D17S74-GH-D17S40- D17S4-D17S75	11	11	1	Ovary	AJHG 55:666
22-23	NME1-D17S74-GH-D17S40- D17S4-D17S75	3	3	1	Ovary	AJHG 55:666
22-23	NME1-D17S74-GH-D17S40- D17S4-D17S75	1	1	1	Ovary	AJHG 55:666
22-23	NME1-D17S74-GH-D17S40- D17S4-D17S75	14	14	1	Ovary	AJHG 55:666
Unknown	D17S1323	12	3	0.25	Prostate	0 11:1241
Unknown	D17S1327	15	2	0.13	Prostate	0 11:1241
12.0-21	D17S588	19	2	0.11	Prostate	CR 55:1002
12.0-21	D17S588	19	2	0.11	Prostate	0 11:1241
21.3	D17S752	14	1	0.07	Prostate	GCC 13:278
21	0175776	12	5	0.42	Prostate	0 11:1241
21	D175846	19	2	0.11	Prostate	0 11:1241
						•

151 of 249 Chromosome 17 - q Arm

21	D17S855	18	8	0.44	Prostate	0 11:1241
21	D17S855	18	8	0.44	Prostate	CR 55:1002
21	D17S856	15	5	0.33	Prostate	0 11:1241
21	D17S856	15	6	0.4	Prostate	CR 55:1002
21	D17S857	20	2	0.1	Prostate	0 11:1241
21	D17S859	18	1	0.06	Prostate	0 11:1241
Unknown	KRT9	18	2	0.11	Prostate	0 11:1241
Unknown	D17S32	10	1	0.1	Sarcoma	CR 49:6247
Unknown	D17S32	14	2	0.14	Sarcoma	CR 52:2419
Unknown	D17S293	19	0	0	Uterus	CR 54:4294
Unknown	PROHIB	2	1	0.5	Uterus	GCC 9:119
SUM		960 5	3006	0.31		

152 of 249 Chromosome 18 - p Arm

Bond	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
11.21-PTER	D18S40	25	3	0.12	Uterus	CR 54:4294
Unknown	Unknown	12	1	0.08	Brain	CR 50:5784
Unknown	D18S16	22	0	0	Breast	CR 53:4356
11.3	D18S3	9	1	0.11	Breast	CR 50:7184
Unknown	D18S53	31	8	0.26	Cervix	CR 56:197
Unknown	D18S59	20	1	0.05	Endocrine	CR 56:599
Unknown	D18S21	20	2	0.1	Esophageal	CR 54:2996
Unknown	D18S21	15	. 1	0.07	Esophageal	CR 51:2113
Unknown	D18S3	18	2	0.11	Esophageal	GCC 10:177
11.21-PTER	D18S40	22	6	0.27	Head&Neck	CR 54:1152
Unknown	D18S59	13	0	0	Head&Neck	CR 54:4756
Unknown	D18S59	18	3	0.17	Head&Neck	CR 54:4756
11.3	D18S3	12	0	0	Kidney	CR 51:820
Unknown	D18S59	21	0	0	Kidney	PNAS 92:2854
Unknown	D18S59	6	1	0.17	Kidney	PNAS 92:2854
Unknown	D18S54	19	1	0.05	Leukemio	CR 55:5377
11.3	D18S3	16	. 4	0.25	Lung	CR 52:2478
Unknown	D18S59	33	4	0.12	Melanoma	CR 56:589
11.3	D18S3	6	0	0	Ovary	CR 51:5118
11.21-PTER	D18S40	15	4	0.27	Ovary	BJC 72:1330
Unknown	D18S6	10	1	0.1	Ovary	CR 53:2393
11.3	D18S3	15	0	0	Prostate	6 11:5 3 0
Unknown	D18S21	10	2	0.2	Sarcomo	CR 52:2419
11.21-PTER	D18S40	25	3	0.12	Uterus	CR 54:4294
SUM		388	45	0.12		

153 of 249 Chromosome 18 - q Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
11.2-12.1	TTR	18	9	0.5	Colon	UC 53:382
11.1-11.2	D18S7	5	2	0.4	Breast	CR 53:3804
11.1-11.2	D1857	7	2	0.29	Colon	S 241:961
11.1-11.2	D18S7	9	2	0.22	Stomach	HG 92:244
11.1-11.2	D18S7	17	8	0.47	Stomach	CR 52:3099
Unknown	D18S1	7	1	0.14	Breast	GCC 2:191
Unknown	D18S1	8	4	0.5	Colon	IJC 53:382
Unknown	D18S1	11	0	0	Colon	N 331:273
Unknown	D18S1	16	4	0.25	Colon	CR 50:7166
Unknown	D18S1	1	1	1	Lung	PNAS 86:5099
Unknown	D18S1	5	2	0.4	Lung	PNAS 86:5099
Unknown	D18S1	4	1	0.25	Lung	PNAS 86:5099
Unknown	D18S1	9	3	0.33	Ovary	0 7:1059
Unknown	D18S1	15	7	0.47	Sarcoma	CR 52:2419
Unknown	D18S1	6	2	0.33	Uterus	CR 51:5632
11	D18S6	8	2	0.25	Bladder	BJC 70:697
11	D18S6	12	2	0.17	Breast	PNAS 87:7737
11-pter	D18S6	24	5	0.21	Breast	JNCI 84:506
11	D18S6	16	6	0.38	Cervix	CR 54:4481
11	D18S6	19	9	0.47	Colon	CR 50:7166
11	D18S6	6	0	0	Colon	CCG 48:167
11	D1 8 S6	17	3	0.18	Ovary	IJC 54:546
11	D18S6	1	0	0	Prostate	JU 151:1073
11	D18S6	15	4	0.27	Testis	0 9:2245
11	D1 8 S6	5	1	0.2	Testis	GCC 13:249
Unknown	D18S57	33	10	0.3	Cervix	CR 56:197
Unknown _.	D18S22	14	2	0.14	Brain	CR 50:5784
Unknown	D18S22	17	3	0.18	Breast	GCC 2:191
Unknown	D18S22	29	11	0.38	Esophageal	CR 54:2996
Unknown	D18S22	11	7	0.64	Sarcoma	CR 52:2419
21.3	D18S8	7	3	0.43	Breast	CR 53:3804
21.3	D18S8	27	9	0.33	Colon	S 241:961
21.3	D18S8	7	5	0.71	Stomach	CR 52:3099
21.3	D18S8	14	6	0.43	Stomach	HG 92:244
Unknown	D18S24	13	1	0.08	Breast	CR 50:7184
Unknown	D18S24	6	0	0	Cervix	GCC 9:119
Unknown	D18S24	4	0	0	Kidney	CR 51:820
Unknown	D18S24	17	4	0.24	Lung	CR 52:2478
Unknown	D18S24	8	0	0	Ovary	CR 51:5118
Unknow n	D18S24	3	0	0	Uterus	GCC 9:119
11.2-12.1	PALB	18	9	0.5	Colon	CR 50:7166

154 of 249 Chromosome 18 - q Arm

11.2-12.1	PALB	. 11	2	0.18	Colon	GCC 3:468
11.2-12.1	PALB	6	0	0.10	Pancreas	GCC 3:468
11.2-12.1	PALB	8	2	0.25	Stomach	GCC 3:468
11.2-12.1	PALB	3	0	0.23	Uterus	CR 51:5632
21.3	DCC	28	8	0.29	Bladder	CR 55:5213
21.3	DCC	15	8	0.53	Bladder	BJC 70:697
21.3	DCC	26	2	0.08	Breast	CR 53:4356
21.3	DCC	16	5	0.31	Breast	BJC 68:64
21.3	DCC	5	1	0.3	Cervix	. BJC 67:71
21.3	DCC	12	3	0.25	Cervix	BJC 67:71
21.3	DCC	48	18	0.38	Colon	EJC 30A:664
21.3	DCC	25	13	0.52	Colon	CR 54:3979
21.3	DCC	4	1	0.25	Colon	0 9:991
21.3	DCC	41	29	0.71	Colon	S 247:49
21.3	DCC	19	0	0	Endocrine	GCC 13:9
21.3	DCC	44	10	0.23	Esophageal	CR 54:3007
21.3	DCC	50	12	0.24	Esophageat	CR 52:6525
21.3	DCC	5	1	0.2	Kidney	GCC 12:76
21.3	DCC	19	11	0.58	Leukemia	B 83:3449
21.3	DCC	26	8	0.31	Leukemia	B 82:927
21.3	DCC	9	3	0.33	Leukemia	B 82:927
21.3	DCC	11	1	0.09	Liver	CR 51:89
21.3	DCC	6	2	0.33	Ovary	BJC 71:462
21.3	DCC	34	15	0.44	Ovary	0 7:1059
21.3	DCC	7	3	0.43	Ovary	0 7:1 0 59
21.3	DCC	2	2	1	Pancreas	CR 54:2761
21	DCC	12	2	0.17	Prostate	PNAS 87:8751
21.3	DCC	11	5	0.45	Prostate	CR 53:2723
21.3	DCC	13	5	0.38	Prostate	GCC 11:119
21.3	DCC	12	2	0.17	Prostate	CSurveys 11:15
21	DCC	. 7	5	0.71	Stomach	CR 52:3099
21.3	DCC	18	5	0.28	Stomach	LI 74:835
21.3	DCC	10	5	0.5	Stomach	CR 52:3099
21.3	DCC	51	17	0.33	Uterus	CR 54:4294
21.3	DCC	8	1	0.12	Uterus	CR 51:5632
21.3	DCC	5	1	0.2	Uterus	CR 51:5633
21.2-21.3	D18S35	22	0	0	Uterus	CR 54:4294
21.3	BCL2	14	1	0.07	Breast	PNAS 87:7737
21.3	BCL2	10	6	0.6	Colon	JJCR 85:584
21.3	BCL2	20	10	0.5	Ovary	0 7:1059
21.3	BCL2	7	2	0.29	Prostate	GCC 11:119
21.3	BCL2	17	4	0.24	Stomach	JJCR 85:584

155 of 249 Chromosome 18 - q Arm

Unknown	D18S68	23	8	0.35	Cervix	CR 56:197
Unknown	D18S19	22	9	0.41	Breast	PNAS 87:7737
Unknown	D18S19	8	3	0.38	Prostate	GCC 11:119
21.3-qter	D18S5	9	4	0.44	Bladder	BJC 70:697
12	D18S5	17	4	0.24	Bladder	CR 51:5405
21.3-qter	D18S5	70	11	0.16	Breast	JJCR 84:1159
12	D18S5	5	1	0.2	Breast	GCC 2:191
21.3-qter	D18S5	43	6	0.14	Breast	AJP 140:215
21.3-qter	D18S5	16	11	0.69	Breast	PNAS 87:7737
21.3-qter	D18S5	21	2	0.1	Cervix	CR 54:4481
12	D18S5	7	0	0	Cervix	CR 49:3598
21.3-qter	D18S5	6	2	0.33	Colon	0 9:991
21.3-qter	D18S5	21	16	0.76	Colon	IJC 53:382
12	D18S5	19	12	0.63	Colon	CR 50:7166
12	D18S5	29	11	0.38	Esophageal	GCC 10:177
12	D18S5	19	1	0.05	Kidney ·	CR 51:1544
12	D18S5	18	1	0.06	Liver	JJCR 81:108
12	D18S5	28	3	0.11	Lung	PN 84:9252
12	D18S5	7	0	. 0	Neuroblastoma	CR 49:1095
21.3-qter	D18S5	16	4	0.25	Ovary	IJC 54:546
21.3- qt er	D18S5	15	9	0.6	Ovary	0 7:1059
21.3-qter	D18S5	21	12	0.57	Prostate	JU 151:1073
21.3-qter	D18S5	16	4	0.25	Prostate	GCC 11:119
12	D18S5	13	0	0	Stomach	CR 48:2988
21.3-q ter	D18S5	15	10	0.67	Stomach	CR 52:3099
21.3-qter	D18S5	14	1	0.07	Testis	GCC 13:249
12	D18S5	42	16	0.38	Testis	0 9:2245
12	D18S5	9	2	0.22	Uterus	CR 51:5632
Unknown	D18S58-D18S61	6	1	0.17	Kidney	PNAS 92:2854
Unknown	D18S58-D18S61	22	0	0	Kidney	PNAS 92:2854
23	D18S11	67	17	0.25	Breast	PNAS 87:7737
23	D18S11	8	3	0.38	Colon	GCC 3:468
23	D18S11	25	8	0.32	Ovary	IJC 54:546
23	D18S11	35	21	0.6	Ovary	0 7:1059
23	D18S11	5	0	0	Pancreas	GCC 3:468
23	D18S11	13	2	0.15	Prostate	GCC 11:119
23	D18S11	13	2	0.15	Stomach	GCC 3:468
Unknown	D18S70	41	0	0	Head&Neck	CR 54:4756
Unknown	D18S70	43	3	0.07	Head&Neck	CR 54:4756
Unknown	D18S70	21	0	0	Kidney	PNAS 92:2854
Unknown	D18S70	6	1	0.17	Kidney	PNAS 92:2854
Unknown	D18570	23	5 ** 0:11=*** / I I	0.22	Melanoma	CR 56:589
	201		E SHEET (R	ULE ZO)		

BNSDOCID: <WO___9841648A2_IA>

156 of 249 Chromosome 18 - q Arm

Unknown	D18S70	23	5	0.22	Melanoma	CR 56:589
12.1-21.1	Unknown	18	4	0.22	Bladder	BJC 70:697
23	Unknown	11	4	0.36	Bladder	BJC 70:697
Unknown	D18S22	12	0	0	Brain	CR 49:6572
Unknown	D18S46	17	1	0.06	Endocrine	CR 56:599
Unknown	D18S34	26	6	0.23	Head&Neck	CR 54:1152
Unknown	D18S:58-67	23	4	[,] 0.17	Leukemia	CR 55:5377
Unknown	Unknown	2	0	0	Liver	BJC 67:1007
Unknown	Unknown	5	0	0	Liver	BJC 64:1083
Unknown	DCC-D18S34	28	12	0.43	Ovary	CR 53:2393
Unknown	MBP- D18S:34-35	15	6	0.4	Ovary	BJC 72:1330
Unknown	PLANH2	7	2	0.29	Ovary	0 7:1059
Unknown	Unknown	6	4	0.67	Pancreas	CR 54:2761
Unknown	Unknown	1	0	0	Pancreas	CR 54:2761
Unknown	Unknown	6	0	0	Pancreas	BJC 65:809
2 3	Unknown	2	2	1	Prostate	JU 151:1073
Unknown	D18S31	19	2	. 0.11	Testis	GCC 13:249
Unknown	JOSH4.4	20	5	0.25	Test is	0 9:2245
SUM		2301	659	0.29		

157 of 249 Chromosome 19 - p Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Turnor Type	Reference
Unknown	LIPE	21	0	0	Uterus	CR 54:4294
13.2-CEN	D19S11	36	2	0.06	Brain	AJP 145:1175
Unknown	D19S20	12	0	0	Brain	CR 50:5784
Unknown	D19S20	35	1	0.03	Brain	AJP 145:1175
Unknown	D19S20	8	0	0	Brain	CR 49:6572
13.2	D19S24	15	0	0	Brain	AJP 145:1175
12-13.2	D19S76	14	0	0	Brain	CR 54:1397
12-13.2	D19S76	11	1	0.09	Brain	CR 54:1397
13.2-13.1	LDLR	3	1	0.33	Brain	CR 54:1397
13.2-13.1	LDLR	11	0	0	Brain	CR 54:1397
13.2-CEN	D19S11	26	7	0.27	Breast	CR 53:4356
Unknown	D1 9 S20	36	7	0.19	Breast	CR 50:7184
13.32	D19S22	35	1	0.03	Breast	CR 53:4356
13.2-CEN	D1 9 S11	45	1	0.02	Cervix	CR 54:4481
13.3	D19S177	27	4	0.15	Cervix	CR 56:197
Unknown	D19S20	8	0	0	Cervix	GCC 9:119
Unknown	D19S221	29	7	0.24	Cervix	CR 56:197
Unknown	D1 9 S7	26	4	0.15	Cervix	CR 54:4481
Unknown	D19S216	22	1	0.05	Endocrine	CR 56:5 9 9
Unknown	D19S20	22	6	0.27	Esophageal	CR 54:2996
Unknown	D19S20	25	2	0.08	Esophageal	GCC 10:177
13.32	D19S22	34	11	0.32	Esophageal	GCC 10:177
13.3	D19S177	16	4	0.25	Head&Neck	CR 54:1152
Unknown	D19S216	15	0	0	Head&Neck	CR 54:4756
Unknown	D19S216	19	1	0.05	Head&Neck	CR 54:4756
Unknown	D19S221	19	6	0.32	Head&Neck	CR 54:1152
13.3	Unknown	48	7	0.15	Kidney	CR 51:5817
Unknown	D19S20	40	8	0.2	Kidney	CR 51:5817
Unknown	D19S20	· 25	8	0.32	Kidney	CR 51:820
13.3	D19S21	30	3	0.1	Kidney	CR 51:5817
Unknown	D19S216	3	0	0	Kidney	PNAS 92:2854
Unknown	D19S216	17	1	0.06	Kidney	PNAS 92:2854
13.2-TER	C3	3	0	0	Liver	CCG 48:72
13.32	D19S22	28	1	0.04	Liver	CR 51:89
Unknown	D19S7	11	0	0	Liver	JJCR 81:108
Unknown	D19S20	26	3	0.12	Lung	CR 52:2478
Unknown	D19S7	17	0	0	Lung	PN 84:9252
Unknown	D19S216	25	2	0.08	Melanoma	CR 56:589
Unknown	Unknown	19	5	0.26	Ovary	CR 51:5118
13.2-CEN	D19S11	16	3	0.19	Ovary	IJC 54:546
13.2-CEN	D19S11	13	2	0.15	Ovary	CR 53:2393

158 of 249 Chromosome 19 - p Arm

13.3	D19S177	11	5	0.45	Ovary	BJC 69:429
Unknown	D19S20	13	5	0.38	Ovary	60 55:198
			8	0.33	Ovary	CR 51:5118
Unknown	D19S20	24			•	
13.3-13.2	INSR	21	5	0.24	Ovary	IJC 54:546
13.32	D19S22	6	0	0	Pancreas	CR 54:2761
13.2-CEN	D19S11	3	0	0	Prostate	G 11:530
Unknown	D19S20	21	5	0.24	Sarcoma	CR 52:2419
Unknown	D19S7	3	1	0.33	Sarcoma	CR 52:2419
13.2-CEN	D19S11	46	2	0.04	Testis	0 9:2245
Unknown	D19S20	20	1	0.05	Testis	LI 73: 6 06
Unknown	D19S20	20	1	0.05	Testis	G 5:134
13.3-13.2	INSR	2	0	0	Testis	CCG 52:72
13.3-13.2	INSR	3	. 0	0	Testis	CCG 52:72
13.3-13.2	INSR	1	0	0	Testis	CCG 52:72
Unknown	D19S20	14	0	0	Uterus	GCC 9:119
Unknown	LIPE	21	0	0	Uterus	CR 54:4294
SUM		1099	143	. 0.13		

WO 98/41648

159 of 249 Chromosome 19 - q Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
13.2	APOC2	11	0	0	Uterus	CR 54:4294
13.2	APOC2	33	19	0.58	Brain	AJP 145:1175
13.2	APOC2	22	8	0.36	Brain	CR 54:1397
13.2	APOC2	15	1	0.07	Brain	CR 54:1397
13.1-13.2	BCL3	5	4	0.8	Brain	CR 54:1397
13.1-13.2	BCL3	6	1	0.17	Brain	CR 54:1397
13.3	CKWM	34	19	0.56	Brain	AJP 145:1175
13.2	CYP2	24	13	0.54	Brain	AJP 145:1175
13.2	D19S178	12	1	0.08	Brain	CR 54:1397
13.2	D19S178	18	5	0.28	Brain	CR 54:1397
13.4	D19S180	21	9	0.43	Brain	CR 54:1397
13.4	D19S180	11	2	0.18	Brain	CR 54:1397
13.1	D19S191	23	6	0.26	Broin	CR 54:1397
13.1	D19S191	12	2	0.17	Brain	CR 54:1397
13.4	D19S22	18	1	0.06	Brain	CR 50:5784
13.4	D19S22	37	18	0.49	Brain	AJP 145:1175
12-13.1	D19S30	15	· 7	0.47	Brain	AJP 145:1175
12-13.1	D19S31	6	4	0.67	Brain	AJP 145:1175
13.1	D19S32	21	10	0.48	Broin	AJP 145:1175
13.1-13.2	D19S47	18	4	0.22	Brain	CR 54:1397
13.1-13.2	D19S47	11	2	0.18	Brain	CR 54:1397
12-13.1	D19S49	22	5	0.23	Brain	CR 54:1397
. 12-13.1	D19S49	12	1	0.08	Brain	CR 54:1397
13.3	D19S51	12	7	0.58	Brain	AJP 145:1175
13.3	D19S62	12	7	0.58	Brain	AJP 145:1175
13.3	D19S63	24	15	0.62	Brain	AJP 145:1175
12	D19S7	21	10	0.48	Brain	AJP 145:1175
11-CEN	D19S74	7	4	0.57	Brain	AJP 145:1175
12-13.1	D19S75	11	1	0.09	Brain	CR 54:1397
12-13.1	D19S75	19	3	0.16	Brain	CR 54:1397
13.2	D19S8	21	14	0.67	Brain	AJP 145:1175
Unknown	D19S9	6	2	0.33	Brain	AJP 145:1175
13.3	ERCC1	32	18	0.56	Brain	AJP 145:1175
13.3	ERCC2	16	7	0.44	Brain	AJP 145:1175
13.2	APOC2	25	2	0.08	Breast	GCC 2:191
13.4	D19S22	19	3	0.16	Breast	CR 50:7184
13.2	APOC2	29	3 .	0.1	Cervix	CR 56:197
Unknown	D19S223	24	3	0.12	Cervix	CR 56:197
Unknown	D19S9	1	0	0	Cervix	CR 49:3598
13.2	APOC2	17	1	0.06	Colon	CCG 48:167
12	D19S7	21	16	0.76	Colon	IJC 53:382

160 of 249 Chromosome 19 - q Arm

Unknown	D19S210	18	1	0.06	Endocrine	CR 56:599
13.4	D19S22	23	7	0.3	Esophageal	CR 54:2996
Unknown	D19S210	22	7	0.32	Head&Neck	CR 54:1152
Unknown	D19S255	10	0	0	Head&Neck	CR 54:4756
Unknown	D19S255	10	0	0	Head&Neck	CR 54:4756
Unknown	D19S210- D19S224	6	0	0	Kidney	PNAS 92:2854
Unknown	D19S210- D19S224	19	0	0	Kidney	PNAS 92:2854
13.4	D19S22	14	3	0.21	Kidney	CR 51:820
Unknown	D19S225	3	0	0	Kidney	PNAS 92:2854
Unknown	D19S225	17	1	0.06	Kidney	PNAS 92:2854
13.4	D19S22	24	11	0.46	Lung	CR 52:2478
13.4	D19S22	3	2	0.67	Lung	CR 52:2478
13.4	D19S22	1	1	1	Lung	CR 52:2478
13.4	D19S22	9	9	1	Lung	CR 52:2478
Unknown	D19S225	22	0	0	Melanoma	CR 56:589
12	D19S7	3	0	0	Neuroblastoma	CR 49:1095
Unknown	CYP1	7	1	0.14	Ovary	CR 50:2724
13.4	D19S22	16	4	0.25	Ovary	CR 51:5118
12-13.1	D19S49	13	3	0.23	Ovary	BJC 69:429
13.2	D19S8	23	5	0.22	Ovary	IJC 54:546
Unknown	D19S8- CYP2A	23	4	0.17	Ovary	CR 53:2393
13.2	D19S8	12	0	0	Prostate	G 11:530
13.4	D19S22	9	3	0.33	Sarcoma	CR 52:2419
12	D19S7	. 16	1	0.06	Stomach	CR 48:2988
12	D1957	19	. 2	0.11	Testis	0 9:2245
13.2	APOC2	11	0	0	Uterus	CR 54:4294
SUM	•	1066	323	0.3		

161 of 249 Chromosome 20 - p Arm

and	Marker	Total	Cases with LOH	LOH Frequency	Tumor Type	Reference
12	D20S6	4	1	0.25	Uterus	CR 51:5632
Unknown	Unknown	12	1	0.08	Brain	CR 50:5784
12	D20S6	8	0	0	Brain	CR 49:6572
Unknown	D20S19	6	0	0	Breast	CR 53:3804
Unknown	D20S19	37	2	0.05	Breast	CR 50:7184
12	D20S6	20	3	0.15	Breast	GCC 2:191
Unknown	D20S118	31	0	0	Cervix	CR 56:197
Unknown	D20S19	3	0	0	Cervix	GCC 9:119
12	D20 S6	2	0	0	Cervix	CR 49:3598
12	D20S6	28	6	0.21	Cervix	CR 54:4481
Unknown	D20S98	16	2	0.12	Cervix	CR 56:197
Unknown	D20 S95	16	0	0	Endocrine	CR 56:599
Unknown	D20S19	59	7	0.12	Esophageal	GCC 10:177
Unknown	D20S72	20	2	0.1	Esophageal	CR 54:2996
Unknown	D20S104	12	0	0	Head&Neck	CR 54:4756
Unknown	D20S104	23	2	0.09	Head&Neck	CR 54:4756
Unknown	D20S95	20	6	0.3	Head&Neck	CR 54:1152
Unknown	D20S104	17	1	0.06	Kidney	PNAS 92:2854
Unknown	D20S104	3	0	0	Kidney	PNAS 92:2854
Unknown	D20S117	5	0	0	Кіdпеу	PNAS 92:2854
Unknown	D20S117	21	0	0	Kidney	PNAS 92:2854
Unknown	D20S19	29	1	0.03	Kidney	CR 51:820
Unknown	D20S19	39	0	0	Liver	CR 51:89
Unknown	D20S19	40	8	0.2	Lung	CR 52:2478
Unknown	D20S104	23	2	0.09	Melanoma	CR 56:589
12	D 20 S6	2	0	0	Neuroblastoma	CR 49:1095
Unknown	Unknown	16	0	0	Ovary	CR 53:2393
Unknown	D20S19	32	4	0.12	Ovary	CR 51:5118
12	D20S27	14	3	0.21	Ovary	BJC 69:429
12	D20S6	27	4	0.15	Ovary	IJC 54:546
Unknown	D20S19	5	0	0	Pancreas	CR 54:2761
12	D20S5	2	0	0	Pancreas	CR 54:2761
Unknown	D20 S5	6	0	0	Prostate	G 11:530
Unknown	D20S19	8	2	0.25	Sarcoma	CR 52:2419
12	D20 S5	13	4	0.31	Sarcoma	CR 52:2419
Unknown	D20S19	15	3	0.2	Stomach	CR 52:3099
12	D20S6	22	9	0.41	Testis	0 9:2245
Unknown	D20S19	2	0	0	Uterus	GCC 9:119
12	D20S27	26	0	0	Uterus	CR 54:4294
12	D20S6	4	1	0.25	Uterus	CR 51:5632
SUM		684	73	0.11		

162 of 249 Chromosome 20 - p Arm

163 of 249 Chromosome 21 - q Arm

Band	Marker	Total	Coses w/LOH	LOH Freq.	Tumor Type	Reference
11.1	D21S52	13	1	0.08	Uterus	CR 51:5632
Unknown	Unknown	14	0	0	Brain	CR 50:5784
22 .3	D21S113	5	0	0	Broin	CR 49:6572
Unknown	BCEI	15	2	0.13	Breast	CR 53:4356
Unknown	D21S1	21	1	0.05	Breast	GCC 2:191
Unknown	D21S112	29	4	0.14	Breast	CR 53:4356
22.3	D21S113	26	4	0.15	Breast	CR 50:7184
22.3	D21S113	3	0	0	Cervix	GCC 9:119
22.3	D21S113	19	2	0.11	Cervix	CR 54:4481
Unknown	D21S212	26	2	0.08	Cervix	CR 56:197
Unknown	D21S265	23	0	0	Cervix	CR 56:197
Unknown	D21S267	14	1	0.07	Cervix	CR 56:197
Unknown	D21S11	15	0	0	Colon	CCG 48:167
Unknown	D21S156	16	0	0	Endocrine	CR 56:599
22.3	D21S113	9	2	0.22	Esophageal	CR 51:2113
22.3	D21S113	30	11	0.37	Esophageal	GCC 10:177
22.3	D21S113	20	5	0.25	Esophageal	CR 54:2996
Unknown	D21S262	18	0	0	Head&Neck	CR 54:4756
Unknown	D21S262	17	3	0.18	Head&Neck	CR 54:4756
Unknown	D21S59	19	5	0.26	Head&Neck	CR 54:1152
22.3	D21S113	19	3	0.16	Kidney	CR 51:820
Unknown	D21S262	6	0	0	Kidney	PNAS 92:2854
Unknown	D21S262	16	0	0	Kidney	PNAS 92:2854
Unknown	D21S267-D21S265-D21S263	19	1	0.05	Kidney	PNAS 92:2854
Unknown	D21S267-D21S265-D21S263	6	2	0.33	Kidney	PNAS 92:2854
22.3	D21S113	15	1	0.07	Liver	CR 51:89
21.2-TER	D21S19	14	0	0	Liver	CCG 48:72
11.1	D21S52	4	1	0.25	Liver	JJCR 81:108
22.3	D21S113	28	5	0.18	Lung	CR 52:2478
Unknown	D21S262	23	1	0.04	Melanoma	CR 56:589
22 .3	D21S113	6	0	0	Ovary	0 5:219
22.3	D21S113	12	0	0	Ovary	CR 51:5118
22.3	D21S113	25	2	0.08	Ovary	IJC 54:546
Unknown	D21S113-11	28	10	0.36	Ovary	CR 53:2393
11.2	D21S12O	12	4	0.33	Ovary	BJC 69:429
22 .3	D21S167	13	7	0.54	Ovary	BJC 69:429
22.3-QTER	D21S171	13	3	0.23	Ovary	BJC 69:429
22 .3	D21S113	3	0	0	Pancreas	CR 54:2761
Unknown	D21S8-D21S17	10	0	0	Prostate	G 11:530
Unknown	Unknown	6	2	0.33	Sarcoma	CGC 53:45
22.3	D21S113	15	1	0.07	Sarcoma	CR 52:2419
	•					

164 of 249 Chromosome 21 - q Arm

22.3	D21S113	21	3	0.14	Testis	0 9:2245
22.3	D21S113	6	1	0.17	Uterus	GCC 9:119
22.3	D21S167	20	0	0	Uterus	CR 54:4294
11.1	D21S52	13	1	0.08	Uterus	CR 51:5632
SHAA		692	90	0.13		

WO 98/41648

165 of 249 Chromosome 22 - q Arm

Band	Marker	Total	Cases w/LOH	LOH Freq.	Tumor Type	Reference
11.2-13.1	TOPIP2	15	1	0.07	Uterus	CR 54:4294
Unknown	BCR	2	0	0	Brain	CGC 53:271
Unknown	CRYB	7	1	0.14	Brain	CR 50:6783
Unknown	CYP2D	6	4	0.67	Brain	CR 53:2386
Unknown	CYP2D	6	6	1	Broin	CR 53:2386
11.2-12	D22S1	4	0	0	Brain	CR 50:6783
11.2-12	D22S1	7	2	0.29	Brain	CGC 53:271
11.1-11.2	D22S10	5	1	0.2	Brain	CGC 53:271
Unknown	D22S156	4	2	0.5	Brain	CR 53:2386
Unknown	D22S156	4	1	0.25	Brain	CR 53:2386
13.3	D22S171	2	0	0	Brain	CGC 66:117
11.2	D22S20	2	0	0	Brain	CGC 66:117
Unknown	D22S23	8	3	0.38	Brain	CR 50:6783
Unknown	D22S24	1	0	0	Brain	CR 50:6783
Unknown	D22S258	18	2	0.11	Brain	CR 54:1397
Unknown	D22S258	16	1	0.06	Brain	CR 54:1397
Unknown	D22S28	4	3	0.75	Brain	CR 50:6783
Unknown	D22S29	3	2	0.67	Brain	CR 50:6783
Unknown	D22S32	2	0	0	Brain	CGC 66:117
Unknown	D22S32	14	1	0.07	Brain	CR 49:6572
Unknown	D22S32	14	1	0.07	Brain	CR 50:5784
13.1	D22S80	4	0	0	Broin	CGC 66:117
Unknown	D22S9	8	2	0.25	Brain	CGC 53:271
Unknown	D22S9	1	0	0	Brain	CGC 66:117
Unknown	IGLV	2	0	0	Brain	CGC 66:117
Unknown	. IGLV	1	0	0	Brain	CR 50:6783
13	1L2RB	18	4	0.22	Brain	CR 54:1397
13	IL2RB	15	0	0	Brain	CR 54:1397
11.1-11.2	LAMBDALC	4	1	0.25	Brain	CGC 53:271
12.3	MB	5	0	0	Brain	CGC 66:117
12.3	MB	1	1	1	Brain	CGC 53:271
12.3-13.1	PDGFB	1	1	1	Brain	CGC 53:271
11	Unknown	26	10	0.38	Breast	JNCI 84:506
Unknown	D22S10	16	4	0.25	Breast	GCC 2:191
Unknown	D22S113	9	1	0.11	Breast	CR 50:7184
Unknown	D22S9	24	4	0.17	Breast	GCC 2:191
12.3	MB	42	8	0.19	Breast	CR 53:4356
11.1-11.2	D22S10	27	2	0.07	Cervix	CR 54:4481
Unknown	D22S113	8	1	0.12	Cervix	GCC 9:119
Unknow n	D22S280	20	3	0.15	Cervix	CR 56:197
Unknown	D22S284	30	4	0.13	Cervix	CR 56:197

166 of 249 Chromosome 22 - q Arm

	50051	7.1	,	0.00	Calan	u 223 272
11.2-12	D22S1	11	1	0.09	Colon	N 331:273
11.2-12	D22S1	12	4	0.33	Colon	IJC 53:382
11.1-11.2	D22S10	12	0	0	Colon	S 241:961
11.1-11.2	D22S10	13	7	0.54	Colon	IJC 53:382
Unknown	D22S10	29	11	0.38	Colon	CR 50:7166
Unknown	D22S9	20	10	0.5	Colon	CR 50:7166
Unknown	D22S9	3	1	0.33	Colon	0 9:991
Unknown	D22S9	17	3	0.18	Colon	N 331:273
Unknown	IGLC	30	15	0.5	Colon	CR 50:7166
Unknown	IGLC	17	3	0.18	Colon	N 331:273
Unknown	IGLC	10	0	. 0	Colon	S 241:961
Unknown	IGLV	4	0	0	Colon	S 241:961
Unknown	IGLV	27	9	0.33	Colon	CR 50:7166
Unknown	IGLV	30	6	0.2	Colon	N 331:273
12.3-13.1	PDGFB	10	0	0	Colon	S 241:961
Unknown	SIS	4	1	0.25	Colon	N 331:273
Unknown	D22S264	16	0	0	Endocrine	GCC 13:9
Unknown	D22S351	19	1	0.05	Endocrine	CR 56:599
11.2-12	D22S1	21	2	0.1	Esophageal	CR 54:2996
Unknown	D22S32	13	1	0.08	Esophageal	GCC 10:177
Unknown	D22S79	18	3	0.17	Esophageal	CR 51:2113
Unknown	D22S283	25	2	0.08	Head&Neck	CR 54:4756
Unknown	D22S283	22	2	0.09	Head&Neck	CR 54:4756
13	IL2RB	24	7	0.29	Head&Neck	CR 54:1152
Unknown	D22S113	10	2	0.2	Kidney	CR 51:820
12	D22S268	39	1	0.03	Kidney	BJC 69:230
Unknown	D22S280-D22S282	22	0	0	Kidney	PNAS 92:2854
Unknown	D22S280-D22S282 `	6	0	0	Kidney	PNAS 92:2854
Unknown	D22S283	6	0	0	Kidney	PNAS 92:2854
Unknown	D22S283	16	0	0	Kidney	PNAS 92:2854
11.2-12	D22 S1	10	0	0	Liver	JJCR 81:108
Unknown	D22S113	4	0	0	Liver	CR 51:89
Unknown	IGLC	28	9	0.32	Liver	JJCR 84:893
Unknown	IGLC	7	0	0	Liver	CCG 48:72
11.2-12	D22S1	7	2	0.29	Lung	CR 54:5643
11.2-12	D22S1	22	11	0.5	Lung	CR 54:5643
11.2-12	D22S1	3	2	0.67	Lung	CR 54:5643
Unknown	D22S113	16	3	0.19	Lung	CR 52:2478
Unknown	D22S283	35	2	0.06	Melanoma	CR 56:589
11.1-11.2	D22S10	13	3	0.23	Ovary	IJC 54:546
Unknown	D22S113	10	2	0.2	Ovary	CR 51:5118
Unknown	D22S156	10	3	0.3	Ovary	BJC 69:429
			_			

WO 98/41648

167 of 249 Chromosome 22 - q Arm

Unknown	D22S430-D22S282- D22S283-D22S274	32	23	0.72	Ovary	BJC 70:905
Unknown	D22S9	14	10	0.71	Ovary	CR 53:2393
Unknown	IL-2RB-CYP2D-D22S156	14	4	0.29	Ovary	BJC 72:1330
12.3-13.1	PDGFB	5	1	0.2	Ovary	CR 50:2724
Unknown	SIS	6	0	0	Ovary	CR 49:1220
11.2-13.1	TOPIP2	12	5	0.42	Ovary	BJC 69:429
Unknown	D22S113	4	0	0	Pancreas .	CR 54:2761
Unknown	D22S156	26	20	0.77	Pediatric	GCC 15:10
Unknown	D22S257	20	10	0.5	Pediatric	GCC 15:10
Unknown	D22S258	23	18	0.78	Pediatric	GCC 15:10
Unknown	D22S264	26	9	0.35	Pediatric	GCC 15:10
Unknown	D22S273	21	14	0.67	Pediatric	GCC 15:10
Unknown	D22S273	26	16	0.62	Pediatric	GCC 15:10
Unknown	D22S274	14	10	0.71	Pediatric	GCC 15:10
Unknown	D22S275	17	13	0.76	Pediatric	GCC 15:10
Unknown	D22S280	25	17	0.68	Pediatric	GCC 15:10
Unknown	D22S281	20	12	0.6	Pediatric	GCC 15:10
Unknown	D22S283	29	18	0.62	Pediatric	GCC 15:10
Unknown	D22S301	20	14	0.7	Pediatric	GCC 15:10
Unknown	D22S303	21	12	0.57	Pediatric	GCC 15:10
Unknown	D22S315	26	18	0.69	Pediatric	GCC 15:10
Unknown	IGLV	10	0	0	Pediatric	CR 50:3279
12.3-13.1	PDGFB	7	1	0.14	Prostate	G 11:530
11.2-12	D22S1	21	8	0.38	Sarcomo	CR 52:2419
Unknown	D22 S9	6	2	0.33	Sarcoma	CGC 53:45
11.2-12	D22 S1	17	0	0	Stomach	CR 48:2988
Unknown	IGLC	7	2	0.29	Stomach	CR 52:3099
11.1-11.2	D22S10	26	6	0.23	Testis	0 9:2245
12.3-13.1	PDGFB	3	0	. 0	Testis	CCG 52:72
12.3-13.1	PDGFB	2	0	0	Testis	CCG 52:72
12.3-13.1	PDGFB	1	0	0	Testis	CCG 52:72
Unknown	D22S113	16	3	0.19	Uterus	GCC 9:119
11.2-13.1	TOPIP2	15	1	0.07	Uterus	CR 54:4294
SUM		1594	472	0.3		

Chromosome	Arm	LOH Freq
1	р	0.26
1	q	0.15
. 2	р	0.15
2	q	0.12
3	р	0.4
3	q	0.18
4	р	0.13
4	q	0.22
5	р	0.19
5	q	0.27
6	р	0.24
6	q	0.25
7	p	0.12
7	q	0.22
8	р	0.33
8	q	0.14
9	р	0.38
9	q	0.47
10	р	0.18
10	q	0.23
11	p	0.23
11	q	0.26
12	р	0.15
12	q	0.13
13	q	0.29
14	р	0.08
14	q	0.22
15	р	0.11
15	q	0.17
16	р	0.17
16	q	0.36
17	р	0.44
17	q	0.31
18	p	0.12
18	q	0.29
19	р	0.13
19	q	0.3
20	р	0.11
20	q	0.07
21	q	0.13
22	q	0.3

Fig. 4

169/249

Fig. 5

1) Cyclins

Validation: Deletion of CDC23(Anaphase Promoting), a S. cerevisiae gene in the same biochemical family, is lethal

ID		iances (Chromosom	ne Genbank Sequence	
9	CDC-25Å		1	3p21	U54831
10	CDC-25C		1	5 q 31	M34065
524	Weel		3 1p1	5.3-p15.1	X62048
1043	CDC16Hs		2	13	U18291
1278	Cyclin Dl		4	11q13	M73554
1280	Cyclin D3		2	6p21	M90814
1298	Cyclin H Assembly Factor		1	4	X87843
1445	Cyclin-Dependent Protein Kir	ase	2	12	U79269
1450	RAN binding protein 1		1	22	D38076
1523	14-3-3 PROTEIN TAU		1	10	X56468

1) Cyclin dependent kinases/phosphatases

Validation: Deletion of CDC28 (Cyclin Dependent Protein Kinase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1051	CDC28 protein kinase 1		2	17	X54941
1052	CDC28 protein kinase 2		1	9	X54942
1111	Protein phosphatase 1,	catalytic	4	11	M63960
	subunit, alpha isoform				
1388	M-PHASE INDUCER PHOSPHA	ATASE 2	1	20	M81934
1401	M-phase phosphoprotein	, mpp6	5	7	X98263

1) Cell Division Structural Proteins

Validation: Deletion of CBF2 (Kinetochore Protein), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name Varian	nces Chro	Chromosome Genbank	
	Identii	fied	Seque	nce
20	MCM7 (Minichromosome Maintaine	ence 3	7q21.3-q22.1	U20980
1246	Chromatin assembly factor-I pe	50 2	23	U20980
	subunit			
1273	Chromosome segregation gene	1	20	U33286
	homolog CAS			
1347	High-mobility group (nonhistor	ne 5	13q12	D63874
	chromosomal) protein 1			
1487	Chromatin structural protein	3	7	Y12790
	homolog (SUPT5H)			
1607	Centromere protein B (80kD)	1	20p13	x05299

2) Uniporters

Validation: Deletion of SAT2 (Osmotolerance), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances	Chrom	nosome Genbani	:
		Identified		Sequence	:
1253	ATPase, Ca++ transport	ing,	5	3p26-p25	X63575
	plasma membrane 2				
1255	ATP synthase, H+ trans	porting,	4	12p13-qter	x 03559
	mitochondrial F1 compl	ex, beta			
	polypeptide				
1286	Putative Chloride Chan	nel	1	13q14.3-q21.1	X83378
1337	Copper Transport Prote	in HAHl	1	5	บ70660
1407	Nuclear chloride ion c	hannel	4	20	บ93205
	protein (NCC27)				

1463	Sodium channel, voltage-gated,	1	19q13.1	L16242
	type I, beta polypeptide			
1505	Transient receptor potential	1	3	X89066
	channel 1			
1521	Voltage-dependent anion	4		L06328
	channel 2			

2) Antiporters

Validation: Proven essential in mammalian cells by tritium suicide selection experiments.

ID	Name	Variances	Chromosome	Genbank	
		Identified		Sequence	
1471	Solute carrier family	9	1	1p36.1-p35	M81768
	(sodium/hydrogen excha	nger)			
1250	ATPase, Na+/K+ transpo	rting,	1	1q22-q25	X03747
	beta 1 polypeptide				
1251	ATPase, Na+/K+ transpo	rting,	2	17p	M81181
	beta 2 polypeptide		•		
1605	Solute carrier family	4, anion	2	7q35-q36	U62531
	exchanger, member 2 (emembrane protein band	-			

3) Acyltransferase

Validation: Essential for metabolic processes such as biosynthetic reactions and energy metabolism. The S. cerevisiae histone acetyltransferase PAT1 and the N-alpha acetyltransferase which acetylates the N-termini of proteins are essential for growth.

ID	Name	Variances	Chromosome	Genbank	
		Identified		Sequence	
1227	Acetyl-Coenzyme A acyl	transferase	2	3p23-p22	X12966
	(peroxisomal 3-oxoacyl	-Coenzyme A			

172/249

	thiolase)				
1387	Lysophosphatidic acid		7	6	U56417
	acyltransferase-alpha				
				•	
•	nino Acid Biogenesis				
in th	dation: Deletion of PRO1 ne same biochemical fami	ly, is lethal		. cerevisi	ae gene
ID	Name		Chromosome	 Genbank	
		Identified		Sequence	
 1330	Glutamic-oxaloacetic t		1 10a24		M37400
	1, soluble (aspartate		1 1041	400	
	aminotransferase 1)				
1331		ransaminase	· 2	16 a 21	M22632
	2, mitochondrial (aspa	rtate	_	- · .•	
	aminotransferase 2)				
1447	Pyrroline-5-carboxylat	e synthetase	1	10q24.3	X94453
	(glutamate gamma-semia	_			
	synthetase)	_			
3) Am	ino Acid Transport				
	ation: There are ten es:				
trans	ported across the plasma	a membrane fo	r use in prot	ein synthe	esis.
ID	Name	Variances	Chromosome	Genbank	
		Identified		Sequence	
1581	Solute carrier family 3	3	2	2p16.3	L11696
	(cystine, dibasic and m	neutral			
	amino acid transporters	s, activator			
	of cystine, dibasic and	d neutral			
	amino acid transport),	member 1			

3) Addition, removal, or modification of phosphate groups Validation: Deletion of CMD1(Calmodulin), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances	Chromosome	Genbank	
		Identified		Sequence	
1269	Calcineurin A catalyti	c subunit	2	8	S46622
1270	Calcineurin B		1	10q21-q22	M30773
1351	CALRETICULIN PRECURSOR		1	10q21-q22	M84739
1432	SERINE/THREONINE PROTE	IN	2	10	M29551
	PHOSPHATASE 2B CATALYT	IC SUBUNIT,		-	
	BETA ISOFORM				
1476	Snk interacting proteing	n 2-28	1	•	U83236

3) GDP Dissociation Inhibitors

Validation: Deletion of GDI1(GDP dissociation Factor), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name		Variances Identified	Chromosome	Genbank Sequence	
1448	RAB GDP ALPHA	DISSOCIATION	INHIBITOR	2	14q23-q24	D13988

3) Lactate Transport

Validation: Genes required to maintain organic compounds at levels required for cell growth or survival.

ID	Name		Variand	ces	Chromosom	e	(Gen	bank	
			Identif:	ied			Se	equ	ence	
		_	 		_	_		_		

1583 Solute carrier family 16 2 lp13.2-p12 L31801 (monocarboxylic acid transporters), member 1

3) Polyamine Biosynthesis

Validation: Inhibition of polyamine biosynthesis has antiproliferative effects as demonstrated by inhibitors of polyamine metabolism.

ID	Name	Variances Identified	Chromosome	Genbank Sequence
1587	Ornithine decarboxylase	· 1	2	2p25 M16650

3) Protein Glycosylation

Validation: Deletion of DPM1(Dolichol-phosphate mannosyltransferase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances	Chromosome	Genbank	
		Identified		Sequence	
1328	Glutamine-fructose-6-p transaminase	hosphate	1	2p13	М90516
1339	Heparan Heparan Hepara N-deacetylase/N-sulfot	*	2	10	U36601
1434	UDP-GalNAc:polypeptide		3	18	U41514
				•	

3) Protein Kinase C

Validation: Deletion of PKC1(Protein Kinase C), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name			Variances Identified		e Genbank Sequence	
1440	Protein	kinase	C, beta	1	4	16p11.2	X06318
1443	Protein	kinase	C-theta		1	10p15	L01087
1444	Protein	kinase	C substr	ate 80K-H	1	7	J03075

3) Protein Post-modification

	dation: Deletion of BET2(G visiae gene in the same bi					
ID	Name	Variances	Chromo	osome	Genbank	:
	I	dentified			Sequence	
	geranylgeranyl transfera beta-subunit	se type II	2		1	X98001
	ugar Biosynthesis and Proc	-				c
	dation: Deletion of PGI1(G visiae gene in the same bi					
ID		Variances dentified			<u>-</u>	
14	PIP 5 Kinase beta		2		9q13	
1229	Aconitase 2, mitochondria	al	1	22q11.2	21-q13.3	U80040
1249	ATP SYNTHASE ALPHA CHAIN MITOCHONDRIAL PRECURSOR	,	2		18	D14710
1257	ATP synthase, H+ transpormitochondrial F0 complex isoform 1		3 b,		18	X60221
1258	ATP synthase, H+ transport mitochondrial F1 complex (oligomycin sensitivity oprotein)	, O subuni		21q22.	1-q22.2	X83218
1302	Dihydrolipoamide S- acetyltransferase (E2 cor pyruvate dehydrogenase co	_	5		. 11	AF001437
1303	Dihydrolipoamide dehydrog component of pyruvate del complex, 2-oxo-glutarate branched chain keto acid complex)	genase (E3 nydrogenase complex,	е	7	q31-q32	J03490

1346	Hexokinase 1	3	10q22	M75126
1366	Isocitrate dehydrogenase 2 (NADP+),	2	15q26.1	X69433
	mitochondrial			
1395	NADH dehydrogenase	1	2p16	X81900
1421	NADH: ubiquinone oxidoreductase	4	18p11.31-p11.2	U53468
	subunit B13			
1422	NADH dehydrogenase-ubiquinone	1	18p11.31-p11.2	U65579
	Fe-S protein 8, 23 kDa subunit			
	precursor (NDUFS8)			
1424	NADH-UBIQUINONE OXIDOREDUCTASE	3	2	X61100
	75 KD SUBUNIT PRECURSOR			
1427	Pyruvate dehydrogenase (lipoamide)	9	3p13-q23	M34479
	beta			
1430	Phosphofructokinase	1	21 q 22.3	M10036
1451	UBIQUINOL-CYTOCHROME C REDUCTASE	3	1,3	M36647
	COMPLEX 11 KD PROTEIN PRECURSOR			
1464	Succinate dehydrogenase, iron	3	1p22.1-qter	D10245
	sulphur (Ip) subunit			
1465	Succinate dehydrogenase 2,	10	5 p 15	D30648
	flavoprotein (Fp) subunit			
1576	Pyruvate kinase, liver	2	1q21	D10326
1577	Oxoglutarate dehydrogenase	6	7p14-p13	D10523
	(lipoamide)			
1579	Acyl-Coenzyme A dehydrogenase,	3	17p11.2-p11.13	D43682
	very long chain			
1584	Dihydrolipoamide S-	5	14q24.3	L37418
	succinyltransferase			6005
1588	Acyl-Coenzyme A dehydrogenase,	1	1p31	M16827
	C-4 to C-12 straight chain			
1590	Pyruvate kinase, muscle	4	15q22	
1596	Phosphoglucomutase 1	5	1p31	
1603	Phosphofructokinase, muscle	4	12q13.3	
1611	Enolase 3, (beta, muscle)	1	17pter-p12	X16504

177/249

3) Sugar Transport Validation: Genes required to maintain organic compounds at levels required for cell growth or survival. ID Name Variances Chromosome Genbank Identified Sequence ------1594 Solute carrier family 2 3 1p31 M55531 (facilitated glucose transporter), member 5 1598 Solute carrier family 5 1 16 M95549 (sodium/glucose cotransporter), member 2 4) Protein Degradation Validation: Deletion of CDC48(Ubiquitin proteolysis), a S. cerevisiae gene in the same biochemical family, is lethal. TD Name Variances Chromosome Genbank Identified Sequence ______ 1027 26S PROTEASE REGULATORY SUBUNIT 4 14 L02426 3 1037 CALPAIN 1, LARGE 11 X04366 1 1098 Human mRNA for KIAA0123 gene, 9,19 D50913 6 partial cds 1114 Proteasome (prosome, macropain) 9,19 D29012 7 subunit, beta type, 6 1115 Human mRNA for proteasome 9 D38048 4 subunit z, complete cds 1116 PROTEASOME COMPONENT C13 PRECURSOR 2 9 U17496 Human mRNA for proteasome subunit 6 1 D26599 HsC7-I, complete cds 1118 Human mRNA for proteasome subunit 2 D44466 p112, complete cds 1119 Human mRNA for proteasome subunit 2 B003177 p27, complete cds

SUBSTITUTE SHEET (RULE 26)

2

19 Z50853

1289 ATP-DEPENDENT CLP PROTEASE

PROTEOLYTIC SUBUNIT

4) Protein Folding

Validation: Deletion of HSP10(Chaperonin), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1287	PEPTIDYL-PROLYL CIS-TR ISOMERASE, MITOCHONDRIA PRECURSOR		1	10	M80254
1305 1358	DNAJ PROTEIN HOMOLOG 2 DNAJ PROTEIN HOMOLOG H		1 2	9,2	D13388 X63368

4) Ribosomal Subunit

Validation: Deletion of GRC5(Ribosome), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances	Chromosome	Genbank	
		Identified		Sequence	
1127	H.sapiens mRNA for ribo	somal	3	9,2	X79234
	protein L11				
1128	Ribosomal protein L17		2	17,4	X52839
1130	60S RIBOSOMAL PROTEIN L	18A	5	3	X80822
1131	Ribosomal protein L19		1	17q11	X63527
1133	60S RIBOSOMAL PROTEIN L	23A	2	17,18	U43701
1135	Human ribosomal protein	,	3	6,11	U14968
	L27a mRNA, complete cds				
1136	Human ribosomal protein		11	19	U14969
	L28 mRNA, complete cds				
1137	Ribosomal protein L32	•	4	20	X03342
1138	Human ribosomal protein		3	20	U12465
	L35 mRNA, complete cds				
1139	Ribosomal protein L35a		1	3q29-qter	X52966
1140	Human mRNA for ribosoma	l protein	2	3q29-qter	U57846
	L39, complete cds				
1141	Ribosomal protein L4		4	3,6	L20868
1142	Ribosomal protein L6		1	12	X69391

WO 98/41	648	PCT/US98/05419			
	179/249				
1143	Ribosomal protein L7	1	12	L16558	
5	Ribosomal protein L7A	1	19q33-q34	M36072	
1144	Ribosomal protein L8	5	12	Z28407	
1145	Ribosomal protein L9	2	12	U09953	
1146	Ribosomal protein, large, Pl	5	15,22	M17886	
1147	Human ribosomal protein S10 mRNA,	1	20	U14972	
	complete cds				
1148	Ribosomal protein S11	1	19q	X06617	
1149	40s RIBOSOMAL PROTEIN S15	2	19q	J02984	
1150	40s RIBOSOMAL PROTEIN S15A	2	19q	X84407	
1151	Ribosomal protein S16	5	19	M60854	
1152	Ribosomal protein S17	5	llpter-pl3	M13932	
1154	40S RIBOSOMAL PROTEIN S23	2	5	D14530	
1155	Ribosomal protein S25	2	11g23.3	M64716	
1157	Ribosomal protein S28	2	19	U58692	
1158	40S RIBOSOMAL PROTEIN S29	1	19	L31610	
1159	Ribosomal protein S5	2	19	U14970	
1160	40S RIBOSOMAL PROTEIN S7	3	19	M77233	
1161	Ribosomal protein S9	3	19	U14971	

4) T-Complex

1223 Ribosomal protein L7a

Validation: Deletion of CCT2(T-Complex), a S. cerevisiae gene in the same biochemical family, is lethal.

9q34 X52138

ID	Name		Variances Identified	Chromosome	Genbank Sequence	
1489	T-COMPLEX	PROTEIN 1,	ALPHA SUBUNIT	1	6 [.]	S70154
1490	T-COMPLEX	PROTEIN 1,	EPSILON SUBUNIT	3	5	D43950
1491	T-COMPLEX	PROTEIN 1,	GAMMA SUBUNIT	2	1	X74801
		. 				

4) Translation Elongation

Validation: Deletion of CDC33(eIF4e), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name Variances Identified	Chromosome	Genbank Sequence	
1063	Eukaryotic translation elongation factor 1 delta	3	7	Z 21507
1073	Eukaryotic translation initiation factor 4A (eIF-4A) isoform 2	1	18p11.2	D30655
1095	Human mRNA for KIAA0031 gene, complete cds	3	17,2	D21163
1099	Human mRNA for KIAA0219 gene, partial cds	3	12	D86973

4) Translation Factor

Validation: Deletion of CDC33(eIF4e), a S. cerevisiae gene in the same biochemical family, is lethal.

ID.	Name			Variances	Chromosome	Genbank	
				Identified		Sequence	
1049	PEPTIDE	CHAIN	RELEASE	FACTOR	2	12	X81625

4) Translation Initiation Factors

Validation: Deletion of CDC33(eIF4e), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name		Varia	nces	Chromosome	Genbar	ık
			Identi	fied		Sequenc	:e
1068	Human	translation	initiation	factor	1	16	U46025

eIF-3 pl10 subunit gene

	181/249			
1069	EUKARYOTIC INITIATION FACTOR	. 1	17	D21853
	4A-LIKE NUK-34			
1070	Eukaryotic translation initiation	3	1,X	L18960
	factor 4C (eIF-4C)			
1072	Eukaryotic translation initiation	2	14	J02645
	factor 2A			
1074	Eukaryotic translation initiation	3	14	M15353
	factor 4E			
1312	Translation initiation factor 3	1	12	บ39067
	(eIF-3) p36 subunit			

4) tRNA Synthetases

Validation: Deletion of ALA1(Alanyl-tRNA synthetase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances	Chromosome	e Genbank	
		Identified		Sequence	
1031	Alanyl-tRNA synthetase		2	16 ç 22	D32050
1040	Cysteinyl-tRNA syntheta	ase	1	11p15.5	L06845
1079	Glycyl-tRNA synthetase		2	7p15	U09510
1090	Isoleucine-tRNA synthet	tase	2	9 q 21	D28473
1102	ASPARAGINE SYNTHETASE		3		M27396
1121	Arginyl-tRNA synthetase	е	3	5pter-q11	\$80343
1198	Threonyl-tRNA synthetas	se	1	5p13-cen	M63180
1218	VALYL-TRNA SYNTHETASE		4	9	X59303
1221	TRYPTOPHANYL-TRNA SYNT	HETASE	1	14	M61715

4) Ubiquitin and Ubiquitin Associated

Validation: Deletion of UFD1 (Ubiquitin Fusion), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name		Va	riances	Chromosome	Genbank	
			Ide	entified		Sequence	
1309	Ubiquitin	carrier	protein	(E2-EPF)	2	17	M91670

	182/249						
1315	Cyclin-selective ubiquitin carrier	2	17	บ73379			
	protein						
1362	UBIQUITIN CARBOXYL-TERMINAL	2	14	D80012			
	HYDROLASE 3						
1363	UBIQUITIN CARBOXYL-TERMINAL	1	12	X91349			
	HYDROLASE T						
1420	UBIQUITIN CARBOXYL-TERMINAL	4	13	M68864			
	HYDROLASE 14						
1431	UBIQUITIN CARBOXYL-TERMINAL	2	4	X04741			
	HYDROLASE ISOZYME L1						
1511	Ubiquitin A-52 residue ribosomal	1	19p13.1-p12	s79522			
	protein fusion product 1						
1514	Ubiquitin-conjugating enzyme E2I	6	16p13.3	U45328			
1515	Ubiquitin fusion-degradation	4	18	U64444			

5) DNA Helicases

protein (UFD1L)

Validation: Deletion of DNA2(DNA Helicase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name Va	ariances	Chromosome	Genbank	
	Ide	entified		Sequence	
1050	Human CHL1 potential helic	case	3	18	U33833
	(CHLR1) complete cds				
1057	ATP-DEPENDENT DNA HELICASE	E II,	1	2	M30938
	86 KD SUBUNIT		•		
1123	RecQ protein-like		2	12p12-p11	L36140
	(DNA helicase Q1-like)				
1397	218kD Mi-2 protein		1	12	X86691

5) DNA Polymerase

Validation: Deletion of POL2(DNA pol epsilon), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1059	Human DNA polymerase d	elta	3	12	U21090
1105	small subunit mRNA, co DNA polymerase alpha s	-	1	X,11	L24559

5) DNA Replication

Validation: Deletion of CDC45(Chromosomal DNA Replication), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosom	e Genbank Sequence	
1048	DNA REPLICATION LICENSI	 NG	1	4	D55716
1094	FACTOR CDC47 HOMOLOG Human mRNA for KIAA0030	gene,	2	3	X67334
2031	partial cds	<i>y</i> ,	_		
1124	Replication factor C (ad 1 (145kD)	ctivator 1)	2	4p14-p13	L14922
1208	DNA topoisomerase I		2	20q12-q13.1	J03250
22	Topoisomerase II		2	17q21-q22	J04088
1222	Minichromosome maintenar	nce	1	17q21-q22	D38073
	deficient (S. cerevisiae	e) 3			
1461	Replication protein A2	(32kD)	2	1p35	J05249
		-			

184/249

5) Histone

Validation: Deletion of CSE4(Similar Histone H3), a S. cerevisiae gene in the same biochemical family, is lethal

ID	Name	Variances	Chromosome	Genbank	
		Identified		Sequence	
1335	Histone H1(0)		3	. 22	X03473
1336	Histone Hlx		3	22	D64142
1341	HISTONE H1D		5	6	X57129
1342	HISTONE H2A.1		4	6	U90551
1343	Histone H2A.2		1	6	L19779
1344	Histone H2B.1		1	1	M60756
1345	H4 histone		1	1	X60486

5) Polyadenylation and 3' Cleavage

Validation: Deletion of FIP1(Polyadenylation Factor), a S. cerevisiae gene in the same biochemical family, is lethal.

				•
ID	Name Variances	Chromosome	Genbank	
	Identified		Sequence	
				-
1053	Human cleavage and polyadenylation	1	11 U37012	2
	specificity factor mRNA,			
	complete cds			
1349	HNRNP METHYLTRANSFERASE	4	14 D66904	ŧ
1426	Poly(A)-binding protein-like	2	14 Y00345	,
	1			

5) Purine/Pyrimidine Biosynthesis

Validation: Deletion of CDC8 (Thymidylate Kinase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances	Chromosome	Genbank	•
		Identified		Sequence	
1235	ADENYLOSUCCINATE LYASE		1	1	X65867
1268	CAD PROTEIN		1	2	D78586
1293	CTP synthetase		2	1p34.1	X52142
1326	Phosphoribosylglycinam	ide	4	21q22.1	X54199
	formyltransferase,				
	phosphoribosylglycinam	ide syntheta:	se,		
	phosphoribosylaminoimi	dazole synthe	etase		
1437	Phosphoribosyl pyropho	sphate	2	4q12	U00238
	amidotransferase				
1510	Thymidylate synthase		2	18p11.32	X02308
1517	Uridine monophosphate	synthetase	2	3q13	J03626
	(orotate phosphoribosy	l transferase	2		
	and orotidine-5'-decar	ooxylase)			
1518	Uridine Phosphorylase		1	7	X90958

5) Ribonucleotide Reductase

Validation: Deletion of RNR1(Ribonucleotide Reductase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances	Chromosome	Genbank	
		Identified		Sequence	
1452	RIBONUCLEOSIDE-DIPHOSPI REDUCTASE M1 CHAIN	HATE	4	11	x59543

5) RNA Helicase

Validation: Deletion of BRR2(RNA Helicase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID		Variances Identified	Chromosome	Genbank	
	1	dentified		Sequence	
1100	Human mRNA for KIAA0224	gene,	4	16	D86977
	complete cds				
1163	DEAD/H (Asp-Glu-Ala-Asp/	His)	1 .	1	L13848
	box polypeptide 9 (RNA h	elicase A)			
1484	PUTATIVE ATP-DEPENDENT R	NA	3	19	U90426
	HELICASE STE13				

5) RNA Polymerase II Components

Validation: Deletion of RPA135(RNA pol Subunit), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name Va	riances	Chromosome	e Genbank	
	Ide	ntified		Sequence	
1026	Homo sapiens (clone mf.18)	RNA	3	19	L37127
	polymerase II mRNA, comple	te cds			
1088	Human RNA polymerase II su	bunit	7	19	U37690
	(hsRPB10) mRNA, complete co	ds			
1109	RNA polymerase II, polypep	tide C	3	16q13-qq21	J05448
	(33kd)				
1110	Polymerase (RNA) II (DNA d	irected)	1	17p13.1	X63564
	polypeptide A (220kD)				
1165	DNA-DIRECTED RNA POLYMERAS	E II	9	17p13.1	J04965
	23 KD POLYPEPTIDE				
1360	RNA polymerase II subunit b	hsRPB7	1	11	U20659

5) RNA Polymerase III

Validation: Deletion of RPA135(RNA pol Subunit), a S. cerevisiae gene in the same biochemical family, is lethal.

TD	Name	Variances	Chromosome	Genbank	

ID	Name	Variances	Chromosome	Genbank	
		Identified		Sequence	
1170	Human RNA polymerase I	III subunit	1	11	บ93867
	(RPC62) mRNA, complete	e cds			

5) RNA Splicing/Processing

Validation: Deletion of CUS1(U2 snRNP protein), cerevisiae gene in the same biochemical family, is lethal.

ID		ances (Chromosom	e Genbank Sequence	
1171	Human spliceosome associated protein (SAP 145) mRNA, complete cds		1	2	U41371
1172	-	AP 61)	3	2	U08815
1176	H.sapiens mRNA for splicing factor SF3al20		1	22	X85237
1177	<pre>Splicing factor, arginine/ serine-rich 2</pre>		2	4,17	M90104
1181	Human splicing factor SRp30c mRNA, complete cds		1	ΰ	U30825
1183	PRE-MRNA SPLICING FACTOR SRP7	'5	2	1	L14076
1216	SPLICING FACTOR U2AF 65 KD SUBUNIT		1	i	X64044
1224	Human (clone E5.1) RNA-binding protein mRNA, complete cds	g	4	1	L37368
1322	Fibrillarin		1	1	X56597
1354	Heterogeneous nuclear ribonucleoprotein K		1 9q2	1.32-q21.33	S74678

1455	U1 SMALL NUCLEAR	3	9q21.32-q21.33	X06347
	RIBONUCLEOPROTEIN A			
1460	U1 small nuclear RNP-specific C	2	15	X12517
1473	SnRNP core protein Sm D3	2	22	บ15009
1474	SnRNP core protein Sm D2	5	22	U15008
1477	Ul snRNP 70K protein	3	19q13.3	M22636
1478	Small nuclear ribonucleoprotein	3	20	J04564
	polypeptides B and B1			
1480	Small nuclear ribonucleoprotein	5	15q12	U41303
	polypeptide N			

5) TATA-Binding Proteins

Validation: Deletion of TAF145(TAFII Complex), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1193	H.sapiens mRNA for tra	nscription	1	 6	x83928
	factor TFIID subunit T	AFII28			
1196	Human TFIID subunit TA	FII55	1	5	U18062
	(TAFII55) mRNA, comple	te cds			
1199	TATA box binding prote	in	2	6q27	M55654
1361	TBP-associated factor	(hTAFII130)	1	. 20	บ75308

5) Transcription Elongation Factors

Validation: Deletion of RPO21(RNA pol Subunit), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances	Chromosome	Genbank	
		Identified		Sequence	

32	Elongin TCEB1			3	1p36.1	L47345
	В3					
4	TRANSCRIPTION	ELONGATION	FACTOR	5	5q31	L34587
	S-II					
1077	TRANSCRIPTION	ELONGATION	FACTOR	4	8	M81601

5) Transcription Factors

Validation: Deletion of BBP1(BFR1p binding), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	e Genbank Sequence	
33	SUPT6H		3	17q11.2	U46691
1202	Human TFIIA gamma subu	nit mRNA,	1	15	U14193
	complete cds				
1205	General transcription	factor	1	8p21-p12	X63469
	TFIIE beta subunit, 34	kD			
1206	TRANSCRIPTION INITIATION	ON FACTOR	1	8p21-p12	X16901
	IIF, BETA SUBUNIT				
1247	CYCLIC-AMP-DEPENDENT		1	19p13.3	X55544
	TRANSCRIPTION FACTOR A	TF-1			
1248	CAMP-dependent transcr	iption	3	2	M86842
	factor ATF-4 (CREB2)				
1274	Transcription Factor (CBFB)	1	2	L20298
1292	CRM1 protein		3	2	Y08614
1368	Transcription Factor I	L-4 Stat	1 2	1q21-q22.1	U16031

	•			
1373	SIGNAL TRANSDUCER AND ACTIVATOR	1	21q21-q22.1	M97935
	OF TRANSCRIPTION 1-ALPHA/BETA			
1411	Nuclear Factor I-B2 (NFIB2)	1	19	U85193
1483	Transcription Factor Stat5b	1	17	U48730
1496	Transcription factor 12	2	15q21	M83233
	(HTF4 helix-loop-helix transcription	n		
	factors 4)			
1497	Transcription factor 3	8	19p13.3	M31523
	(E2A immunoglobulin enhancer binding	3		
	factors E12/E47)			
1498	Transcription factor 6-like 1	1	7p	M62810
	(mitochondrial transcription factor			
	1-like)			
1500	TRANSCRIPTION FACTOR P65	3	11	L19067
1501	Transcription factor COUP 2	2	15q26.1-q26.2	X91504
	(a.k.a. ARP1)	•		

6) Clathrin

Validation: Deletion of RET1(Alpha-Cop), a S. cerevisiae gene in the same biochemical family, is lethal.

	Name	Variances Identified	Chromosome	Sequence	
1242	CLATHRIN COAT ASSEMBLY		2	8	D38293
1243	AP47 CLATHRIN COAT ASSEMBLY AP50	PROTEIN	6	3	U36188
1282	cell surface protein		5	22	X83545
1290	Clathrin, light polype	ptide (Lcb)	1	4q2-q3	M20470
1291	Clathrin heavy chain		4	17q11-qter	U41763

6) Cytoskeleton

Validation: Deletion of MHP1 (Microtubule Interacting), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name Variances Identified		ome Genbank Sequence	
1	Actin, gamma Subunit	8	17p11-qter	X04098
	Sh3p17(Myosin IC Heavy Chain)	1	21	U61166
1032	Actin depolymerizing factor	4	20	S65738
	[human fetal brain, mRNA, 1452 nt]			
1038	Capping protein (actin filament), gelsolin-like	3	2cen-q24	M94345
1039	Human capping protein alpha mRNA partial cds	2		U03851
1056	Desmin	1	2q35	J03191
1080	Gelsolin (amyloidosis, Finnish	1	9 q 34	X04412
	type)			
1092	Keratin 19	5		Y00503
1093	KERATIN, TYPE II	13	5,12	J00269
	CYTOSKELETAL 6D			
1267	BETA-CENTRACTIN	1	2	X82207
1284	Cofilin 1 (non-muscle)	5	11 q 13	X95404
1383	LAMIN A	1	20	M13451
1385	Lamin B receptor	1	1 q42. 1	L25931
1386	MYOSIN LIGHT CHAIN ALKALI,	1	12,17	M22920
	NON-MUSCLE ISOFORM			
1404	MYOSIN HEAVY CHAIN 95F	1	4p16.3	U90236
1405	MYOSIN HEAVY CHAIN IB	1	13	D63476
1406	Myosin-IC	1	13	U14391
1486	SUPPRESSOR OF TUBULIN STU2	1	11	X92474
1495	MICROTUBULE-ASSOCIATED PROTEIN TAU	1	17	J03778
1507	Tubulin, gamma polypeptide	1	17	M61764
1508	TUBULIN ALPHA-4 CHAIN	1	17	X06956
1520	Myosin VIIA (USH1B)	2 	17 	U39226

WO 98/41648 PCT/US98/05419

192/249

6) ER Protein

Validation: Deletion of BET1(v-SNARE), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances	Chromosom	e Genbank	
		Identified		Sequence	
1272	Calnexin		1	5q35	M94859
1317	ER LUMEN PROTEIN RETAI	NING	1	19	M88458
	RECEPTOR 2				
1614	Ribophorin I		4	3 q	Y00281
1615	Ribophorin II		1	20q12-q13.1	Y00282

6) Integrin

Validation: Deletion of MYO2 (Myosin Heavy Chain), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances	Chromosome	Genbank	
		Identified		Sequence	
1378	Integrin alpha-3	subunit	1	5q23-q31	м59911

6) Karyopherin

Validation: Deletion of KAP121(Karyopherin), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances	Chromosome	Genbank	
		Identified		Sequence	
1091	karyopherin alpha 3		3	13	D89618
1214	transportin (TRN)		1	13	U70322

6) Lysosomal Proteins

Validation: Essential for sequestering and degrading aged or defective organelles and polymers that can interfere with cell survival, proliferation as seen by human diseases such as Tay-Sachs disease.

ID	Name	Variances Identified	Chromoso	me Genbank Sequence	
1265	ATPase, H+ transporting (vacuolar proton pump)		2	22pter-q11.2	X76228

6) MITOCHONDRIAL IMPORT

Validation: Genes required to maintain inorganic ions at levels compatible with cell growth or survival.

ID Name Variances Chromosome Genbank Identified Sequence 1578 MITOCHONDRIAL IMPORT RECEPTOR 8 SUBUNIT TOM20

6) Nuclear Pore Complex

Validation: Deletion of GSP1(Nuclear Pore Trafficking), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
28	Nuclear Pore Complex	NUP214	3	9	D14689
29	Nucleoporin 98		3	11p15	U41815

HETEROGENEOUS NUCLEAR	4	20	L38696
RIBONUCLEOPROTEIN C			
Heterogeneous nuclear	4	12q13.1	X79536
ribonucleoprotein Al			
Nuclear pore complex protein	3	6	Z25535
hnup153			
NUCLEAR PORE GLYCOPROTEIN P62	1	11	X58521
Export protein Rael	5	20	U84720
HETEROGENEOUS NUCLEAR	3	12	M29063
RIBONUCLEOPROTEINS C1/C2			
140 KD NUCLEOLAR PHOSPHOPROTEIN	5	10	D21262
	RIBONUCLEOPROTEIN C Heterogeneous nuclear ribonucleoprotein A1 Nuclear pore complex protein hnup153 NUCLEAR PORE GLYCOPROTEIN P62 Export protein Rael HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEINS C1/C2	RIBONUCLEOPROTEIN C Heterogeneous nuclear 4 ribonucleoprotein A1 Nuclear pore complex protein 3 hnup153 NUCLEAR PORE GLYCOPROTEIN P62 1 Export protein Rael 5 HETEROGENEOUS NUCLEAR 3 RIBONUCLEOPROTEINS C1/C2	RIBONUCLEOPROTEIN C Heterogeneous nuclear 4 12q13.1 ribonucleoprotein A1 Nuclear pore complex protein 3 6 hnup153 NUCLEAR PORE GLYCOPROTEIN P62 1 11 Export protein Rael 5 20 HETEROGENEOUS NUCLEAR 3 12 RIBONUCLEOPROTEINS C1/C2

6) Protein Transport

Validation: Deletion of BET3 (v-SNARE associated), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
8	Integral Transmembrane	Protein	3	11q23-24	L38961
1467	Sec23A isoform		2	14	X97064
1608	Signal recognition part	icle	8	11q23-q24	X06272
	receptor ('docking prot	ein')			
161 3	TIM17 preprotein transl	ocase.	2	1	X97544

6) Syntaxin

Validation: Deletion of SED5(Syntaxin), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name		Variances Identified	Chromosome	Genbank Sequence	
1186	syntaxin	1A		1	21q22.1	L37792
1188	syntaxin	3		1	11	U32315
1189	Syntaxin	5A		2	11	U26648
1190	syntaxin	7		1	6	U77942

WO 98/41648 PCT/US98/05419

195/249

6) Vacuolar Protein

Validation: Deletion of PPA1(Vacuolar H-ATPase), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances Identified	Chromosome	Genbank Sequence	
1261	Vacuolar H+ ATPase pro channel subunit		2	6	M62762

6) Vesicle Proteins

Validation: Deletion of SAR1(COP II), a S. cerevisiae gene in the same biochemical family, is lethal.

ID	Name	Variances	Chromo	some Genbank	
		Identified		Sequence	
1025	Human (chromosome 3p25)	membrane	3	3,18	L09260
	protein mRNA				
24	COATOMER BETA SUBUNIT		1	3	X70476
1055	COATOMER DELTA SUBUNIT		8	11	X81198
1082	Human GP36b glycoprotei	n mRNA,	3	5	U10362
	complete cds				
1173	SEC14 (S. cerevisiae)-l	.ike	7	17q25.1-q25.2	D67029
1174	Human homologue of yeas	st	2	17q25.1-q25.2	M85169
	sec7 mRNA complete cds				
1184	Human chromosome 17q21		1	17	U18009
	mRNA clone LF113				
1217	H.sapiens mRNA for		2	17	Z71460
	vacuolar-type H(+)-ATPa	ise			
	115 kDa subunit				

WO 98/41648 PCT/US98/05419

196/249

99) Direct Essential Yeast Homolog Validation: Deletion of the S. cerevisiae homologue of this gene is lethal.

Aldolase A Aldolase B, fructose-bi				
		2	16q22-q24	M11560
	sphosphate	2	9 q 22	X02747
S-adenosylmethionine		1	6q21-q22	M21154
decarboxylase 1				
Calmodulin 1 (phosphory	lase	1	14q24-q31	D45887
kinase, delta)				
DED81		1	18	U79254
Deoxyhypusine synthase		3	19p13.11-p13.12	L39068
Dolichol monophosphate		2	20	AF007875
mannose synthase (DPM1)				
ESS1 PROTEIN		1	19	U49070
Slucose phosphate isome	rase	1	19 q13. 1	K03515
Guanylate kinase (GUK1)		3	19q13.1	L76200
leat shock 60 kD protei	n 1	1	9	M34664
(chaperonin)				
PERIODIC TRYPTOPHAN PROT	rein 1	1	12	L07758
PP isomerase		1	10	X17025
-acetylglucosaminyltra	nsferase I	4	5q31.2-q31.3	M55621
lannose phosphate isome	case	3	15q22-qter	X76057
lipl		1	5	U15172
LYCYLPEPTIDE		2	17	M86707
-TETRADECANOYLTRANSFERA	ASE			
HOSPHATIDYLINOSITOL		10	17	L36151
-KINASE ALPHA				
ERIODIC TRYPTOPHAN PROT	EIN 2	2	8	U53346
ridine diphosphoglucose	:	1	· 2	U27460
yrophosphorylase				
	Calmodulin 1 (phosphory cinase, delta) DED81 Deoxyhypusine synthase Dolichol monophosphate Dannose synthase (DPM1) DESS1 PROTEIN Decomposition of the synthase (DPM1) DESS1 PROTEIN Decomposition of the synthase (GUK1) Deat shock 60 kD protein chaperonin) DERIODIC TRYPTOPHAN PROTEIN DERIODIC TRYPTOPHAN PROTEIN DERIODIC TRYPTOPHAN PROTEIN DECOMPOSITOR DETETRADECANOYLTRANSFERM HOSPHATIDYLINOSITOL KINASE ALPHA DERIODIC TRYPTOPHAN PROTEIN DERIODIC TRY	decarboxylase 1 Calmodulin 1 (phosphorylase cinase, delta) DED81 Deoxyhypusine synthase Dolichol monophosphate Dannose synthase (DPM1) DESS1 PROTEIN Decare phosphate isomerase Decare	decarboxylase 1 Calmodulin 1 (phosphorylase 1 Calmodulin 1 (phosphorylase 1 Calmodulin 1 (phosphorylase 1 Calmodulin 1 (phosphorylase 1 Calmodulin 1 (phosphorylase 1 Calmose, delta) Ceb81 1 Ceoxyhypusine synthase 3 Colichol monophosphate 2 Calmose synthase (DPM1) CSS1 PROTEIN 1 Clucose phosphate isomerase 1 Calmose phosphate isomerase 1 Calmoylate kinase (GUK1) 3 Ceat shock 60 kD protein 1 1 Chaperonin) CERIODIC TRYPTOPHAN PROTEIN 1 1 CHAPPI isomerase 1 Calmodulin 1 1 Chaperonin 1	decarboxylase 1 Calmodulin 1 (phosphorylase 1 14q24-q31 cinase, delta) DED81 1 18 Deoxyhypusine synthase 3 19p13.11-p13.12 Dolichol monophosphate 2 20 Dannose synthase (DPM1) DESS1 PROTEIN 1 19913.1 19q13.1

Target Variances by Field Table for Conditionally Essential Genes

Conditionally	/ Essential	Biosynthetic	Enzymes
---------------	-------------	--------------	---------

Validation:	Conditionally	y Essential
-------------	---------------	-------------

ID	Name	Variances	Chromosome	Genban	ık
		Identified		Sequenc	:e
1536	5-methyltetrahydrofolate-	homocysteine	3		U75743
	methyltransferase				
1539	Glutamate-ammonia ligase		5	1q31	X59834
	(glutamine synthase)				
Destai	ne that Danair Radiation Induced DA	A Damago			

Proteins that Repair Radiation Induced DNA Damage

Validation: Conditionally Essential

ID	Name	Variances	Chromosome	Genban	k
•		Identified		Sequenc	e
1541	Fanconi anemia complementa group C	tion	1	9q22.3	X66894

Proteins of DNA Repair

Validation: Conditionally Essential

ID	Name	Variances	Chro	mosome	Genb	anl	k
		Identified			Seque	nce	9
1528	DNA excision repair protei	n ERCC5	4		13q3	3	D16305
1530	HHR23A protein		3			9	D21235
1532	DNA EXCISION REPAIR PROTEI	N ERCC-1	2	19q13.2	?-q13.	3	M13194
1533	DNA repair helicase ERCC3		1		2q2	1	M31899
1537	URACIL-DNA GLYCOSYLASE 1 P	RECURSOR	2			8	X15653
1526	Damage-specific DNA bindin	g protein	. 2	11,	15	Α	7002955
	1 (127 kD)						

Fig. 6

Proteins that repair chemically induced DNA damage Validation: Conditionally Essential

ID	Name	Variances	Chromosome	Genban	ık
		Identified		Sequenc	e
1524	O-6-methylguanine-DNA		4	10~26	M60761
1554	methyltransferase		4	10420	M00701

Fig. 7

Target ID	Locin	Sequence around [polymorphism]	# Varia 1 (Lib)	# Varia 2 (Lib)	Protein Change
1.01	472	CGGCCATGTA[C/T]GTGGCCATCC	71 (36)	1 (1)	Silent
.02	250	ACGAGGCCCA[G/A]AGCAAGCGTG	71 (36)	1 (1)	Silent
.03	1003	CGGGCATTGC[C/T]GACAGGATGC		6 (5)	Silent
.04	801	ACGAGCTGCC [C/T] GATGGCCAGG		1 (1)	Silent
.05	1201	AATGCTTCTA [A/G] ACGGACTCAG		1 (1)	Silent
.06	991	CCACCATGTA [C/T] CCGGGCATTG		56 (35)	Silent
.07	1099	TGTGGATCGG [T/C] GGCTCCATCC	71 (36)	1 (1)	Silent
.08	499 	GTGCTGTCCCT[C/G]TACGCCTCT	65 (65) 	7 (7) 	Silent
4.01	2168	CCGCCAGTAG [C/T] ATCAGCTTTA	61 (34)	11(9)	3'UT
.02	388	TGGAAAGCCA[C/T]GGGGAGCCGA	• •	10(7)	Thr->Met
.03	491	AGAGGAGAGA [T/C] GAGAGAAAGA	68 (36)	4 (4)	Silent
.04	1171	AAAACTAATT [T/C] GGATAGAAAG	68 (36)	4 (4)	Leu->Ala
.05	336 	TCGGGATGCC[C/T]TGCAGAAGGA	71 (36)	1(1)	Silent
5.01	421	ACGTCCCAAC [G/A] AAGAGACCAC	66(36)	6 (6)	Silent
8.01	1570	CTCCGTCCA[T/C]TGTACTATCTG	70 (36)	2 (2)	Silent
.02	778	TCCACGTCCT[C/G]GTGCTGATGC	71 (36)	1(1)	Silent
.03	158	GGACACACTT [T/C] TGAAGCTTCT	71 (36)	1(1)	Silent
9.01	1929	CCATGCACCA[C/A]GAGGACTTTA	71 (36)	1(1)	His->Gln
10.01	1099	AACCGTGTCAGGGAAACACCA	69 (36)	3 (3)	Gly->Arg
14.01	911	CAATTCAATC[G/A]CCGCCCTAAA	69 (36)	3(3)	Arg->His
.02	1174	CAAACAGTAA[G/A]TGAAAATGGT	71 (36)	1(1)	
20.01	1627	CCCAGCACAT [C/T] ACCTATGTGC	44 (30)	28 (21)	Silent
.02	2041	GCCGAAGTGT[C/G]CGGTTCTCTG	71 (36)	1(1)	Asp->Glu
.03	1393	cagccatcca[c/t]gaggtcatgg	71 (36)	1(1)	Silent
22.01	4008	CAACAAAAAC [A/C] AAATTCACAA	71 (36)	1(1)	Silent
.02	4446	AGCCATCCAC[T/G]TCTGATGATT	71 (36)	1(1)	Silent
24.01	1101	GCCACTGGCA[G/A]TAAAGGATAT	71 (36)	1(1)	Val->Ile
28.01	5009	TGCCACGCCC[G/C]TGTTTGGGCA	70 (36)	2(2)	Val->Leu
.02	2023	AGAAATCACC[C/T]AGGATAACCC	71 (36)	1(1)	Silent
.03	2041	CCCCTCCAGC[G/A]GCAAAGCCAG	71 (36)	1(1)	Silent
29.01	1768	CCCTGCCACT [A/C] GAGTCCGGCC	67 (36)	5 (5)	Silent
.02	2781	AGGAGCATCC [G/A] TCTAAAACTA	70 (36)	2(2)	Silent
.03		2 bp deletion		•	3'UT
32.01	1171	AAAACTAATT[T/C]GGATAGAAAG	70 (36)	2(2)	Leu->Ala
.02	388	TGGAAAGCCA[C/T]GGGGAGCCGA	59 (33)		Pro->Met
.03	2168	CCGCCAGTAGCATCAGCTTTA	60 (34)		Silent
			• •		

33.01	2397	GGCTAGATGG[T/C]CTGGCCAAAA	47 (33)	25(12)	Silent
.02	3708	AGGTCGGGGT[C/T]GATGTCAACC	63 (35)	9 (8)	Silent
.03	3795	GGACCCACCT[C/A]CTGAAGATCC	62 (35)	10(9)	Silent
524.01	1598	CACAAGTTGA [G/A] GAGGGCGATA	68 (36)	4(4)	 Silent
		CTTATATTTC[T] ¹⁰ GATGTCAACC	71 (36)	1(1)	3'UT
.02	2548 3158	AAAATTGTCT[GTTT]GTTTTCTCAT	50 (34)	22 (20)	3'UT
.03					
525.01	255	CTGCGGTTCT[C/T]GAGGGCGATA	54 (34)	18 (16)	Silent
.02	346	CGTGCCGGCT[C/T]TTCACCATCC	71 (36)	1(1)	Leu->Phe
.03	523	CCCCATCCTC [A/G] TCCCGTGCCA	63 (36)	9(9)	Ile->Val
				40 (44)	
1025.01	1051	CAACTAACCA[G/A]ACAACTGGGA	24 (20)	48 (44) 5 (3)	3'UT N/D
.11 .12	418 640	GCCCCTTTTG[C/T]AGCCCACGGC CAACTAACCA[G/A]ACAACTGGGA	6 (5) 15 (7)	7 (6)	N/D
.12		CAACTAACCA[6/A]ACAACTGGGA			
1026.2	47	GTCTGGACGC [G/A] ACGGCGGCGG	2 (2)	3 (2)	5' UT
.9	262	CCCACCCCTT[G/A]GAGCACAAGA	28 (13)	4 (1)	Silent
.19	602	ATAAAGTATAGCGG[A/G]AGAGAN	5 (5)	11 (8)	3' UT
1027.2	405	TGGAAGAGAT [T/C] ATTGATGACA	2 (2)	2 (2)	Silent Silent
.6	942 1361	GGACAAAAAG [A/G] TATGACTCCA CAGGAAGGCA [C/A] CCCTGAGGGG	8 (8) 13 (11)	4 (4) 3 (3)	Thr->Asn
.16	1201	CAGGAAGGCA (C/A) CCCTGAGGGG			
1031.31	2990	CCTTCGCCCA[G/A]CTGCGCCTCG	9 (7)	2 (2)	Silent
.32	2991	CTTCGCCCAG[C/G]TGCGCCTCGG	4 (4)	4 (4)	Leu->Val
1032.1	3	AGTCGCCG[G/A]GGAGGACGGTCT	5 (4)	3 (3)	5' UT
.2	4	GTCGCCG[G/A]GAGGACGGTCTGC	5 (5)	3 (2) 2 (2)	5' UT 5' UT
.3	69	CCGCCGCGC [G/A] AAGATGGCCT	5 (5) 8 (8)	2 (2) 3 (3)	Silent
.10	312	AAAAAGATTG[T/C]CGCTATGCTT			
1037.20	2919	TGGTTATGGG[G/C]GTGCCAGAGG	15 (13)	2 (2)	3' UT
					Silent
1038.5	723	CAGGTCCTGG [G/C] CCCCAAGCCT ACTCCAGCCC [C/A] TTTGCCCTTG	7 (7) 5 (5)	3 (3) 13 (10)	Silent
.10 .13	862 1053	CCTCAGGCCC[C/A]TTTGCCCTTG	13 (10)	8 (7)	Arg->His
.13	-				
1039.19	1665	ACCATGTCTC[A/G]GTTTATTTTT	2 (2)	6 (5)	3' UT
.23	1748	TATTTGAGTA [G/A] AAAATCACTT	3 (3)	2 (2)	3' UT
1040.7	2056	GCTGAAGAAG [T/C]CTTCGAGGCT	20 (16)	2 (2)	3' UT
1043.1	351	ACTTGAAGGA [T/C] GAAAGTGGCT	2 (2)	3 (3)	Silent
.2	372	TCAAAGATCC[C/T]TCCAGCGACT	2 (2)	3 (3)	Silent
1048.3	341	GCTACGCGAA[G/A]CTCTTTGCTG	2 (2)	2 (2)	Silent
1049.10	2648	CCTGAAACCC[T/A]GAAGCTGATG	5 (4)	3 (1)	3' UT
.12	2768	CAGTGGTAGC [G/A] ATGGAAAAA	8 (6)	2 (1)	3' UT
1050.11	2381	CAGGAAGAAG [A/G] TATTCCAGGA	4 (2)	2 (2)	Ile->Val
.13	2750	TTTTGCCAGC[G/A]TAGTGCTCCT	2 (2)	- •	Val->Ile
.14	3034	GAGTCCAGAG[T/C]GCTGCCAGGA	2 (2)	2 (1)	3' UT

1051.10	260 409	AGCTGGCAAG[C/T]TACTTTTCAG TTTGCTTCTT[G/A]AGTAGAGCCA	15 (10) 17 (12)	3 (1) 3 (1)	3' UT 3' UT
1052.7	428	TGTACAAATC[T/C]TTCATCCATA	7 (6)	2 (2)	3' UT
1053.24	4113	AGGAGAAGAC[C/T]TACCGGCGGC	8 (7)	8 (8)	Silent
1055.17 .23 .25 .01 .02 .03 .04 .05	3122 3450 3568 2061 2419 3047 2960 3450 3296	CAGCGTCAGC [C/A] AGCTCAGCCT TGAGAAGGGC [T/C] TGGGACAAGA TCAAAAAACC [T/C] TTTTTTTCTG AGGCTGGTCG [C/T] GAACTCCTGA TTAAAAGATA [C/A] GCATGTCTTC TAAGTCTTTT [G/T] AGTGTCATCA TATTACTCAC [G/A] TATACCCCAT TGAGAAGGGC [T/C] TGGGACAAGA CTGCAAAGAG [T/C] GTACTGTGCT	4 (4) 26 (12) 26 (12) 61 (34) 59 (33) 71 (36) 71 (36) 60 (33) 60 (33)	4 (4) 3 (3) 2 (2) 11(9) 13(10) 1(1) 1(1) 12(9) 12(9)	3' UT 3' UT 3' UT 3' UT 3' UT 3' UT 3' UT 3' UT 3' UT 3' UT
1056.12	407	CAAGAGCACC[G/C]GTGGGGCCCC	13 (9)	2 (2)	Val->Arg
1057.20	3067	TAACTTTTCG[G/A]TCTTTCCCAT	7 (5)	.3 (3)	3' UT
1059.11	1130	AACGTGAGTG[A/G]CATTTTCCGA	5 (5)	2 (2)	Asp->Ala

WO 98/41648 PCT/US98/05419

202/249

Target ID	Loc'n	Sequence around # [polymorphism]	Varia (Lib)	1 #	Varia 2 (Lib)	Protein Change
.19	1327 1474	AATCATCCGA [G/A] GTCCTGAGGA GGGAGGCCTG [G/A] GGCTGGGCCC		(14) (11)	3 (3) 2 (2)	Val->Ser Gly->Arg
1063.21	705 721 949	CGGACATGGC [C/T] CAGCTGGAGG GGAGGCCTGT [G/T] TGCGCTCTAT GCGTGCGTGA [G/A] GGCCCTGCCA	16	(7) (14) (2)	8 (7) 2 (2) 2 (2)	Silent Val->Leu 3' UT
1068.30	2756	GCGCCGCGGT[G/C]GCTACCGCCA	21	(15)	2 (2)	Ala->Arg
1069.10	1199	GGGCGCCAGC[C/G]GAGTGCTTAT	17	(13)	2 (2)	Arg->Glu
1070.3 .7 .12	303 615 1092	AAGAGGATGG [G/T]CAGGAGTATG ACATTGGAGA [T/C]GATGATGAAG GAAGTCTGCA [G/T]TTGAAGAAAA	3 6 5	(2) (6) (5)	6 (6) 2 (1) 3 (3)	Gly->Val Silent 3' UT
1072.20	1309 1310	TCACGAGATT[T/C]GCCAGGGGCA CACGAGATTT[G/T]CCAGGGGCAT	15 4	(10) (3)	2 (2) 5 (5)	3' UT 3' UT
1073.2	65	GGCCCAGAGG [G/A]AATGGACCCC	2	(1)	2 (2)	Silent
1074.18 .21 .22	1428 1650 1652	TTGTGTGATT[T/C]CCTAAACATA TTGTCTTTTA[G/A]ACAACTAGAT GTCTTTTAGA[C/A]AACTAGATTT	5 6 5	(4) (6) (5)	2 (2) 3 (3) 3 (3)	3' UT 3' UT 3' UT
1077.19 .22 .30	1275 1585 2336 2460	TATAATAATT [G/T] TATGGTACCT ATGTACATAA [T/A] TTTGAGGTAG TCAGGCACCC [A/G] TAGAAAGACC GAATTGGCCC [G/A] CTGGTACCAA	7 4	(2) (5) (3) (4)	3 (3) 3 (1) 10 (9) 16 (14)	3' UT 3' UT 3' UT 3' UT
1079.11	2035 2347	CTGCTGTAGT[T/C]GCTCCATTCA GCAACATCAC[A/G]TGGGCTGATG		(14) (17)	2 (1) 2 (2)	Silent Silent
1080.24	2367	TGCCTGAGGA[A/C]GGGCAGGGCC	1	(1)	5 (4)	3' UT
1081.17	805 1178	GATTGATAGA [G/A] AGAAACTGCG ATGCATATTGTAAAATAAA [A/G] A		(8)	2 (1) 10 (9)	Ser->Lys 3' UT
1082.19 .27 .40	767 924 1333	TTCGGGGCCT [C/T] CGCCGGCACC ACGTGGACGA [C/A] CCCACGGGGA GTCTACAGAT [G/T] GGCTGTGGCC	3	(5) (3) (4)	2 (2) 3 (3) 5 (5)	Ser->Phe Asp->Glu 3' UT
1088.11 .12 .13 .20 .21 .24	112 144 145 226 238 270 338	CCGAGGGGA [C/T] GCGCTGGATG AAGCGCTACT [G/C] CTGCCGCCGG AGCGCTACTG [C/G] TGCCGCCGGA GACCACGCTG [A/G] AACCCACCCA ACCCACCCAC [C/A] CGCTGTGCTG TGAGCGTCCT [A/G] CCCCGAATTC GTGTGTATCC [C/G] ATACCCCACT	24 21 23 31 29	(16) (18) (16) (16) (19) (18) (15)	7 (5) 5 (4) 5 (4) 18 (11) 3 (3) 9 (6) 2 (2)	Silent Cys->Ser Cys->Trp 3' UT 3' UT 3' UT 3' UT

WO 98/41648 PCT/US98/05419

203/249

		203/249				
	4153	GTGTAAAATA [T/C] GCTGCTTGG	n 13	(12)	2 (2)	3' UT
.21	4215			(16)		3' UT
	4215			(10)		
1091.3	793	AGGATCCCCC[A/G]CCGCCTATG	G 2	(1)	5 (2)	Silent
.9	962	CTTTCTTGTG[C/T]CCCTTCTGA		(3)	5 (2)	Pro->Ser
.14	2078					3' UT
1092.5	342	CCTGGAGGCG[G/C]CCAACGGCG	A 16	(8)	4 (1)	Ala->Pro
.10	401	GGCCTGGGCC[C/T]TCCCGCGAC		(6)	11 (5)	Silent
.11	503	AGATCGACAA[C/T]GCCCGTCTG		(6)	6 (5)	Silent
.22	1034	TTGGAGCCCA[G/C]CTGGCGCAT		(4)	3 (2)	Gln->His
Target	Loc'n		Varia	1 #	Varia 2	Protein
ID		[polymorphism]	(Lib)		(Lib)	Change
.23	1035	TGGAGCCCAG[C/G]TGGCGCATA	r 3	(3)	3 (2)	Leu->Val
1093.2	258	CTCTCACAGA [C/T] GAGATCAAC	r 3	(2)	2 (1)	Silent
.3	330	CAGACACATC[T/C]GTGGTGCTG		(2)	3 (2)	Silent
. 4	339	CTGTGGTGCT [G/A] TCCATGGAC		(2)	3 (2)	Silent
.6	420	TTGCTCAGAG [A/G] AGCCGGGCT		(2)	3 (2)	Silent
.22	954	GCGTTGGAGG [T/C] GGCTTCAGT		(2)	3 (1)	Val->Ala
.23	960	GAGGTGGCTT[C/T]AGTTCCAGC		(2)	3 (1)	Silent
.24	972	GTTCCAGCAG[T/C]GGCAGAGCCA		(2)	3 (1)	Silent
.27	983	GGCAGAGCCA[T/C]TGGGGGTGGG		(2)	3 (1)	Ile->Thr
.28	1065	GGAAGAGCTA[T/C]AAGCACTAAA		(3)	3 (1)	Silent
.44	1198	TAGAGCTGGG [G/T] ATGAATGCT		(2)	3 (1)	3' UT
.45	1202	GCTGGGGATG[A/G]ATGCTTAGT		(2)	4 (1)	3' UT
.49	1579	TGTGCTCTTC [A/G]CTCTTTGCA	14	(3)	5 (2)	3' UT
.50	1582	GCTCTTCACT[C/G]TTTGCAATTC		(3)	6 (3)	3' UT
1094.24	3103	TGCTTTTGCT [C/G]GCTTTGGCCA	15	(9)	4 (2)	3' UT
.25	3104	GCTTTTGCTC[G/C]CTTTGGCCA	5 2	(2)	4 (2)	3' UT
1095.17	2885	CGTAGGAAGG[G/C]CCTCAGTGAA		(11)	2 (2)	Silent
.25	2994	GTGGACTCCT[G/T]GGAGCTCCTC		(10)	3 (3)	3' UT
.31	3246	GGGGATGAAA[C/A]CCCAAGGGGG	10	(7)	12 (11)	3' UT
1098.10	1486	GGCAGTGGCC[G/C]CCCTGGGTGA		(7)	3 (3)	
.13	1522	CACGTATGAG [G/C] ACATCCAGAC		(1)	12 (10)	Asp->His
.21	1740	TGCATTCTTT [T/C] GGAACTCAAT		(6)	2 (2)	3' UT
.25	1850	GGAGGGCGGT[C/T]GGTGCTTCCC		(13)	2 (2)	3' UT
.29	1942	TGACCTATCA [A/G] AGCCTCCCGG		(11)	6 (5)	3' UT
.35	2029	CCAAGGAGCG[C/A]GCTCCACGCG	13	(10)	2 (2)	3' UT
1099.36	7500		10	/111		3' UT
.37	7590 7591	TGGTTTGAGA [G/C] CTGGCGCTAC		(11)	6 (4) 6 (4)	3' UT
.44	7705			(8) (12)	9 (8)	3' UT
.01	215	ATGGATCTGA [C/T] CCCTGTCAGA			9 (8)	Ile->Val
.02	213	ATTCCTCAGT[C/T]CTTCATGATG Nucleotide repeat		36) (35)		3'UT
.02		Nucleotide repeat.		(35) 	0(3)	J 01
1100.16	3865	ATTGGGTCCT[C/G]AGCCTTCTGG	Δ	(3)	4 (3)	3' UT
.17	3904	GGACAAAGCC[T/C]TTTCATCTGA		(2)	4 (3)	3' UT
.19	3994	GGTGGAGTTC [T/C]TTCATGCAGG		(6)	6 (5)	3' UT
.22	4046	TATCCGAGGT [G/T] CTGCCGGGGC		(6)	5 (5)	3' UT
•	1040	2.1.1000.1001 [071] 0100000000	U	(0)	5 (5)	

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1, 13, 21, 29, 37, 38, 53, 54, 69, 77-79, 101 and 109

Inhibitors (in particular nucleic acids) targeting at least one but less than all alleles of a gene vital for cell growth or viability and encoding a product required for cell proliferation wherein cells not targeted by the inhibitor have at least one alternative variant allele, methods for identifying, producing and using such inhibitors and pharmaceutical compositions comprising them.

2. Claims: 2, 14, 22, 30, 39, 40, 55, 56, 70, 80-82, 102 and110

Inhibitors (in particular nucleic acids) targeting at least one but less than all alleles of a gene vital for cell growth or viability and encoding a product required to maintain inorganic ions and vitamins at levels compatible with cell growth or survival wherein cells not targeted by the inhibitor have at least one alternative variant allele, methods for identifying, producing and using such inhibitors and pharmaceutical compositions comprising them.

3. Claims: 3, 15, 23, 31, 41, 42, 57, 58, 71, 83-85, 103 and 111

Inhibitors (in particular nucleic acids) targeting at least one but less than all alleles of a gene vital for cell growth or viability and encoding a product required to maintain organic compounds at levels compatible with cell growth or survival wherein cells not targeted by the inhibitor have at least one alternative variant allele, methods for identifying, producing and using such inhibitors and pharmaceutical compositions comprising them.

4. Claims: 4, 16, 24, 32, 43, 44, 59, 60, 72, 86-88, 104 and 112

Inhibitors (in particular nucleic acids) targeting at least one but less than all alleles of a gene vital for cell growth or viability and encoding a product required to maintain cellular proteins at levels compatible with cell growth or survival wherein cells not targeted by the inhibitor have at least one alternative variant allele, methods for identifying, producing and using such inhibitors

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 98/05419

Box I	Observati ns where certain claims were f und unsearchabl (Continuation f item 1 f first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 37, 53, 69 and 109 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
BxII	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	mational Searching Authority found multiple inventions in this international application, as follows:
se	e FURTHER INFORMATION sheet
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1,13,21,29,37,38,53,54,69,77-79,101 and 109
Remark (The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Intern. ial Application No PCT/US 98/05419

C (Continue	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	PC1/03 96		<u>. </u>
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.	<u>.</u>
P,X	WO 97 32024 A (TRINITY COLLEGE DUBLIN ;FARRAR GWENYTH JANE (IE); HUMPHRIES PETER) 4 September 1997		1,13,21, 29,37, 38,53, 54,69, 77-79, 101,109	
	see the whole document		101,109	
=				

INTERNATIONAL SEARCH REPORT

Intern. (al Application No PCT/US 98/05419

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12Q1/00 C07 C12N15/00 C07K14/00 A61K35/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C120 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO 95 03335 A (HOUSMAN DAVID E ; K O X 1,13,21, TECHNOLOGY INC (US)) 2 February 1995 29,37, cited in the application 38,53, 54,69, 77-79 101,109 see the whole document Α WO 97 04087 A (KRUPP GUIDO ; MARGET MATTHIAS (DE); WESTPHAL ECKHARD (DE); MUELLER) 6 February 1997 WO 94 11494 A (UNIV JEFFERSON ; PROCKOP Α DARWIN (US); COLIGE ALAIN (BE); BASERGA RE) 26 May 1994 US 5 491 064 A (LICHY JACK H ET AL) 13 Α February 1996 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents ; T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the "O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-ments, such combination being obvious to a person skilled other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 16. 03. 1999 9 December 1998 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, MOLINA GALAN E. Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL AM AT AU AZ BA BB BE BF BG BJ BR CA CF CG CH CI CM CN CU CZ DE DK EE	Albania Armenia Austria Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Denmark Estonia	ES FI FR GA GB GH GN GR HU IE IL IS IT JP KE KG KP LC LI LK LR	Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Kazakstan Saint Lucia Liechtenstein Sri Lanka Liberia	LS LT LU LV MC MD MG MK ML MN MR MW MX NE NL NO NZ PL PT RO RU SD SE SG	Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Singapore	SI SK SN SZ TD TG TJ TM TR TT UA UG US VN YU ZW	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkmenistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe	
---	--	--	---	---	---	---	---	--

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Numbe	er: WO 98/41648
C12Q 1/00, C07K 14/00, A61K 35/00, C12N 15/00	A3	(43) International Publication Date:	24 September 1998 (24.09.98)

(21) International Application Number:

PCT/US98/05419

(22) International Filing Date:

19 March 1998 (19.03.98)

(30) Priority Data:

60/041,057

20 March 1997 (20.03.97)

US

(71) Applicant (for all designated States except US): VARIAGENICS, INC. [US/US]; One Kendall Square, Building 400, Cambridge, MA 02139-1562 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): HOUSMAN, David [US/US]; 64 Homer Street, Newton, MA 02159 (US). LEDLEY, Fred, D. [US/US]; 433 Grove Street, Needham, MA 02192 (US). STANTON, Vincent, P., Jr. [US/US]; 32 Royal Road, Belmont, MA 02178 (US).
- (74) Agents: WARBURG, Richard, J. et al.; Lyon & Lyon LLP, Suite 4700, 633 West Fifth Street, Los Angeles, CA 90071-2066 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report:
29 April 1999 (29.04.99)

(54) Title: TARGET GENES FOR ALLELE-SPECIFIC DRUGS

(57) Abstract

This disclosure concerns genetic targets which have been found to be useful for allele specific anti-tumor therapy. The strategy for such therapy involves the steps of: (1) identification of alternative alleles of genes coding for proteins essential for cell viability or cell growth and the loss of one of these alleles in cancer cells due to loss of heterozygosity (LOH) and (2) the development of inhibitors with high specificity for the single remaining alternative allele of the essential gene retained by the tumor cell after LOH. Particular categories of appropriate target genes are described, along with specific exemplary genes within those categories and methods of using such target genes.

SUBSTITUTE SHEET (RULE 26)

Effect of Antisense Oligomers on Glutamylprolyl-tRNA Synthetase (EPRS) mRNA levels (duplicates)

14971

FIG. 19.

RESEARCH COLLABORATION

A	ACAGCCACTTATGTCATGGT
В	ACAGCCACTTATGTCATGGT
С	<u>ACAGCC</u> ACTTATGT <u>CATGGT</u>
D	CACTTATGTCATGGTATTCA
E	CACTTATGTCATGGTATTCA
F	CACTTATGTCATGGTATTCA

IMPROVED ALLELE-SPECIFICITY WITH ADVANCED CHEMISTRY

Fig. 18

FIG. 17.

MDA-MB 468 Cells

2410AG

2410GA

Oligo:

Northern

match

RNA

Suppression of Ribonucleotide
Reductase mRNA

RR1030 RR1031 RR2410ga RR2410ag

confidentia

sprotpsuce

SUBSTITUTE SHEET (RULE 26)

ţ

Variance Specific Cell Killing of A549 Cells by Oligonucleotides Against RPA1

Proliferation by Oligonucleotides Against RPA1 Variance Specific Inhibition of A549 Cell

BrdU incorporation

SUBSTITUTE SHEET (RULE 26)

FIG. 11.

	T24 Cells				Mi	a Pa	aca	II Ce	lls
Oligo:	ISIS 13706	ISIS 12781	Varia 13085			ISIS 13706	ISIS 12781	Varia 13085	
Northern		match					# (\$	match	

RNA

Variance Specific Inhibition of mRNA levels by Oligonucleotides Against RPA1 F1G. 10.

oligo cell

Target	Loc'n	Sequence around [polymorphism]	#	Varia (Lib)	1	#	Varia (Lib)	2	2	Protein Change
1613.2	350 842	AGTGGCCATG[G/A]TTGGGTC TGATCATCAT[T/C]TCCTTGC	AG GG	C 10 A 3	•	7) 3)		(3) 4)	Val->Ile 3' UT
1614.5 .13 .23	1343 1841 2158 2261	CCTATCTGGA [T/C] ACATTTC CGGCGGTGGA [G/A] GCTGAGC TTTTTTTTTT [T/A] AAAAAAC CTGAAGTCTA [G/A] GATATTT	GC AA	C 10 A 7	((2) 9) 7) 5)	2 8	(•	Ser->Glu 3' UT
1615 25	2113	CCTGGCCATC!T/C]TGGGCAG	TG	r 16	 (11)	7	(5)	Silent

1596.3	1773	TGATGTGGTA[C/T]GTCCCTCCAC	10 (7)	3 (2)	3' UT
. 6	1844	GTATTCACCA[A/C]GCATTTTAGG	10 (8)	4 (3)	3' UT
.11	1899	GCATTTACAA[G/A]GCACTGCCAA	17 (12)	3 (3)	3' UT
.12	1900	CATTTACAAG[G/T]CACTGCCAAA	19 (12)	2 (2)	3' UT
.16	1949	AGAGGACCTG[C/T]GGGCTTAGAT	24 (16)	2 (1)	3' UT
1598.3	2042	ATGCCTAAGA [C/A] CAACTGCGTT	2 (2)	3 (1)	3' UT
1603.5	592	TCTGTGGCAC [T/C] GATATGACCA	2 (2)	2 (2)	5' UT
.16	2566	TGAAACTGAG[G/C]CCCATCCTCA	17 (12)	2 (2)	Arg->Ser
.18	2662	CCGGGGAAGC[T/G]GCCGTCTAAA	13 (11)	3 (3)	Silent
.28	2953	TTAGAATTTT[C/T]CTAAAAATAA	26 (18)	2 (1)	3' UT
1605.14	2879	AACACGCCC[T/C]GCTGTCGCTG	2 (2)	2 (1)	Leu->Pro
.30	4011	AATTTAAAGT [A/C] TTCTCCTCCC	4 (2)	6 (6)	3' UT
1607.13	2354	CTTTCTCTGG[C/T]CCTGTCCATG	9 (8)	2 (2)	3' UT
1608.3	2120	CAGCCGCCAT [T/C] TGCAAGGAAG	2 (2)	2 (2)	3' UT
.11	2552	CAAAAGATGA[G/T]TCCTTGCTTC	16 (9)	4 (3)	3' UT
.17	2733	TCCTAAGCAG[T/C]CCTGGCTTTT	25 (11)	3 (3)	3' UT
.01	2091	CTCCTTCCAA[C/T]CCCACTCCCC	65 (36)	7(7)	3'UT
.02	2120	CAGCCGCCAT[T/C]TGCAAGGAAG	25(18)	47 (40)	3'UT
.04	2578	GAAATAAAAG[T/G]AGCCCAGCTG	26(19)	46(29)	3'UT
.05	969	AACCTAGTGC[G/A]ACCAAGGGAA	69 (36)	3 (3)	Silent
.06	2174	CCTCTCCCAG[C/T]GGCCTCCCCC	71 (36)	1(1)	Silent
.07	2129	TTTGCAAGGA [A/G] GGCCTAATCA	66 (36)	6(6)	Silent
1611.20	1388	AACACTGGTGCCAACCAA[G/A]AC	3 (3)	3 (3)	3' UT

Target	Loc'n	Sequence around [polymorphism]	#	Varia 1 (Lib)	L #	Varia (Lib)	2	Protein Change
.13	468	CCAGATGCTT[C/T]TGAC	TAAGCT	8	(6		-	
.15	501	TCAGAGAATT[G/C]TAAG	TGCTCA	. 5	(5		(2)	
.17	551	AAACAAATGT[C/T]AACA			(5) 4	(3)	
.19	630	GGGCAAATAT[G/C]CTTG			(6	-	(2)	
.20	683	CTTTGTGTAG[A/G]TCCA	TTTGTC	: 9	(7	_	(2)	
.25	2725	AGGTGAGAAC[A/G]AAAA	AACCCC	: 6	(5) 3	(3)	3' UT
1579.15	1735	GCTGCAGCGG[C/T]TGGC	AGACGG		(12		•	
.19	1881	GGATCCGAGA[G/A]GGCA	TGGCCG		(12)		(5)	
.26	2010	GAATACTCCC[G/C]GCCA	GGGCCT	12	(10	17	(10) 	3' UT
1581.2	1897	CCGCTAAAAT [G/A]AGAA			(3			
.5	2232	TGAATGTAAC[T/C]GCTT	TAAGAA	. 3	(3	5	(5)	3' UT
1583.7	1482	AAGACACAGA[A/T]GGAG	GGCCCA	5	(5	3	(2)	_
.11	1772	GCTTTTAATA[G/C]TGTC	ATAAAG	3	(3	2	(2)	3' UT
1584.18	 576	CGCCTCACA[G/A]CCTC	CTTCTG	2	(2			_
.34	1098	ATATGGATGG [C/T] GGTA			(3		(2)	
.46	1708	GAGAAACCCC[C/T]GGGG	ACCATG		(3	_	(2)	
.50	1848	GAGGGATTGA [G/A] CACA			(2		(6)	
.51	1857	AGCACAGGCA[C/A]AGAG	GTGCTG	: 2 	(2) 6 	(6) 	3' UT
1587.11	1330	GCCTGCGTGG[G/C]AACT			(2			
.12	1356	TCCAGAACCC[C/T]GACT	TCCCAC	18	(14) 2 	(2)	Silent
1588.26	1956	TTGTACACAA[T/C]CTCA	TTTCAT	7	(6	4	(3)	3' UT
1590.2	· 172	TGCACGCAGC[C/A]ATGG	CTGACA	. 6	(3		(2)	
.7	547	CGCTGGATAA[C/T]GCCT	ACATGG	; 8	(4		(2)	
. 9	850	TCATCCGCAA[G/A]GCAT			(2)		(2)	
.33	2139	AGCCGACTCT[G/T]GCCC	TGGCCC	14	(9) 4 	(4) 	3' UT
1594.10	1730	ACCCAGTGG[G/A]AACT	GTGCAA		(5		•	
.13	1975	GAAACTAACT[C/T]GGTG	GCCCCA	. 6	(5	,	(6)	
.14	1985	CGGTGGCCCC[A/G]ACAG	GTCTTC	: 6	(5) 9	(6)	3' UT

1567.2	1083	GGAATACTGG[G/A]AGAATCTTCG	5 (3)	2 (1)	Ser->Lys
1571.4	1480	AGAGAAAATT [G/A]GGGAAAAGGT	4 (4)	3 (2)	3' UT
	2087	TCTGTCTGGT [G/A]TGGTATGAAT	5 (5)	4 (2)	3' UT
1576.13	1777 2031	CGCCCTCCC[C/T]CCTCTGGCCC AATTGTACATTC[C/T]CTGCATCC	3 (2) 3 (2)	2 (2) 2 (2)	3' UT 3' UT
1577.10	3022	TGCCGGCCGG [A/G] ACCCAGCGGC CACACCACCG [T/C] CCTCCTCGCT GGTAGCCACC [G/A] CCGGGGCACT CTGATGCATC [G/A] TTTTCTTTGC GCCAGGCCAT [G/T] GCCAAGGGGC CCATGGCCAA [G/A] GGGCCAGCTG	2 (2)	6 (5)	Asn->Asp
.15	3229		2 (2)	5 (4)	3' UT
.33	3859		18 (13)	4 (3)	3' UT
.38	3980		18 (14)	4 (3)	3' UT
.47	4049		7 (6)	3 (3)	3' UT
.50	4055		5 (5)	5 (5)	3' UT
1578.5	178	TACTTCGACC[G/A]CAAAAGACGA	7 (7)	2 (2) 3 (2)	Arg->His
.12	451	CTTCCACCAC[C/T]AGTGTTCCAG	8 (6)		Pro->Leu

Target	Loc'n	Sequence around [polymorphism]	#	Varia (Lib)	 1	#	Varia (Lib)	2	Protein Change
1547.17	976	TGCTTTAAAG[G/A]	GCCTGCCTGG	13	 (10)	2	(2) 3' UT
1548.3	1209 1286	CATTATTGGC [C/T] TGAAAGGTGT [A/G]				3) 2)	3	(2) Silent
.8	1904	ATAACTAAGA[C/T]	TTCTGTGCAT	· 6	(3) 	5 	(3) 3' UT
1550.7	797	TGGACGCCTT[T/C]	CCAAATCTGA	2	(2)	5	(2) Silent
1551.12 .14 .15 .16	2215 2242 2341 2372	CGAGACCATC [T/C] TGCCTGAGCC [T/C] ACTGGGTCTC [G/A] GGAGGGAGGG [T/A]	AGGAGCTTGA CTCCGAGTGG	3	(((1)	9	(9 (8 (8) 3' UT) 3' UT
1554.12 .14 .23	834 999 1539	GGGACTTTAT [C/G] ACCCAGAGGT [C/G] ATCTGGCTGC [T/C]	GATTGCTTCC ACAGCTAAAG	; 6 ; 8	 ((,	2	 (1 (1 (4) Silent
1555.5 .9 .30	424 515 1088	TATGGATGCC[A/G] GCCAGCACCA[G/C] TCCTCGGCTG[C/A]	CCAGGAGCTG	17	(8) 7) 2)	3	(1 (3 (5) Ser->Thr
1556.7	2037	TGATCTTTGC [C/T]	CCTGGTATGC	5	(5)	5	(3) 3' UT
1560.7	2335	GCATTCAAGA[C/T]	GGATACAGAG	5 5	(5)	2	(1) Thr->Met
1561.1 .5 .22	90 373 1250 1251	CTGTGCTGCC [C/T] CCCTGACATC [A/G] TGTTTCCTTT [T/G] GTTTCCTTTT [G/T]	TGGAGTTCTG GGGCTCAAAG	; 2	(1)	2 4	(2 (2 (4 (4	Met->Val) 3' UT
1562.14	540 799	ATTGTCGCAC[C/T] AGCCATGAGT[G/T]			(9) 7)		(1 (3	•
1563.10	3076	ACTCCCCTTC[A/G]	TGAAACCAGA	2	(1)	2	(2) Met->Val
1564.7	339	CTTTGGAAAG[T/C]	GTGAAAGCTG	15	(10)	2	(1) Silent
1566.2 .4 .10 .23	53 175 791 1741 1742	GCAGGCACAG [T/C] TCCTGGCGGC [G/A] GCATGAATCC [C/T] TGCACTCTGT [G/C] GCACTCTGTG [C/G]	CCTCGTGTGC GGCCCAGGCG CTCCGCCCAA	; 3 ; 3	(1)	4 4 3	(2 (4 (4 (2 (2) Arg->His) Silent) Cys->Ser

1538.21	938	CCTCCACCTT[T/C]GACGCTGGGG	14 (7)	3 (2)	Silent
1539.1 .3 .9 .16	67 304 1075 2048 2718	TCGCGGCCTA[G/C]CTTTACCCGC TCGATGGCTC[T/C]AGTACTTTAC GTAGCGCCAG[A/C]CTACGCATTC CAAGGAAGTG[G/A]TTCTTAGATG GCCTAACATAA[A/G]AAAAAAAA	3 (3) 4 (4) 2 (2) 8 (7) 8 (8)	2 (1) 4 (3) 3 (2) 4 (2) 3 (3)	5' UT Silent Arg->Ser 3' UT 3' UT
1541.1	4123	TGGCGAGGGG[G/C]CTTGACGGCG	2 (1)	2 (2)	3' UT
1543.4	319	GCACCGGAAG[G/A]AGGCGCTGAC	6 (5)	2 (2)	Ser->Lys
1544.3 .4 .8 .12 .21	534 543 643 728 902 986	TTGAGCCCAA [C/G] TGCTTGGACG ACTGCTTGGA [C/T] GCCTTCCCAA ACCTGTGTTC [T/A] CAAAGATGGC GCTGCCCAGG [C/G] TGTGCAGCGC AACATCCCCT [C/T] CCATCATTAC CTGCCTGGCC [C/T] CTCGCCTGTG	2 (2) 4 (4) 12 (8) 12 (11) 5 (4) 5 (4)	7 (4) 7 (4) 3 (3) 4 (1) 4 (2) 2 (2)	Asn->Lys Silent Ser->Thr 3' UT 3' UT
1545.4	1470	CGGTGAGACC[G/A]TTGCCCGCTG	2 (1)	2 (2)	Val->Ile
1546.1	172	CTCTGAAGAC[A/T]TGGAGATACT	3 (1)	3 (3)	Met->Leu

Target ID	Loc'n	Sequence around [polymorphism]	- 	Varia (Lib)	1 #	Varia 2 (Lib)	Protein Change
1521.6 .10 .15	851 976 1165 1236	AGACTCTGAG [G/C] CCTG TTGGGAATGG [A/G] TATC TCACCTATAC [A/G] TTAT GAAAACTGTG [C/A] AATTG	AGAAGA ITAAAT	15 20	(6) (8) (8) (4)	2 (2) 4 (1) 4 (1) 3 (1)	3' UT 3' UT
1523.7	417	CACCACGGTG[C/T]TGGA	ATTGTT	9	(8)	3 (3)	Silent
1524.13 .22 .23 .25 .26	2996 3384 3385 3397 3398	AAAATGACAT [T/G] AGTT AACAGCTTTT [A/T] GGCCA ACAGCTTTTA [G/A] GCCAA CCAAGCTGGC [C/T] TGACC CAAGCTGGCC [T/G] GACGC	AAGCTG AGCTGG GGTATG	20 16 25	(2) (9) (7) (11) (11)	3 (2) 4 (4) 6 (5) 4 (3) 3 (2)	3' UT 3' UT 3' UT
1526.6	2476 2715	TGGAGGTGCA [T/C] AACC GTGAAAGGGG [A/C] CGTG			(1)	2 (1)	
1528.6 .10 .26 .32	770 2396 3317 3598	CCAAAAGGAA [G/A] TGAA GCAGTGCGCA [A/T] TCCTC TTCAAGTGAA [G/C] ATGCT TATAATTAGT [T/C] ATGAC	GGACCT GAAAG	1 12	(2) (1) (8) (16)	2 (2) 4 (4) 7 (6) 2 (1)	Val->Phe Asp->His
1530.8 .13 .30	427 894 1579	ATCCGCCCCC[A/G]CGACC TGCTGAACGA[G/A]CCCCC AGTCCTGAAA[G/A]GCCCA	CTGGGG	8	(3) (5) (3)	2 (1) 2 (1) 7 (6)	Ser->Glu
1532.6	496 963	TCGTGCGCAA[C/T]GTGCCCTGGCCTTAT[G/T]CCCAC			(2) (4)	6 (3) 2 (2)	Silent Cys->Phe
1533.12	2092	GTATCCCAGG[A/G]CACAC	CAGGAA	3	(3)	2 (2)	Asp->Ala
1534.4	264	CCGTGCCGGC[A/T]CTTCA	ACCATC	2 	(1)	5 (4)	Silent
1536.22 .24 .28	6641 6779 7097	TTAGATATAT [A/G] TATTO ATTTTTATTG [G/A] GCCCA AGTGGAATGT [T/A] TAAAA	AAAAC	2	(3) (2) (3)	4 (3) 11 (8) 4 (3)	3' UT 3' UT 3' UT
1537.5	871 1466	AGGGCAGTGC [C/A] ATTGA GCAGGCATGC [C/A] AGTCT			(6) (7)	3 (3)	Silent 3' UT

1515.6 .28 .30 .38	175 855 858 1146	CATGCTAGCA [T/G] GGCCTAATGA CTGGAGAGCT [T/G] GGCTTCCGCG GAGAGCTTGG [C/G] TTCCGCGCTT ATAATAAAAG [T/A] TTCATTTGCA	3 (2) 15 (11) 6 (6) 2 (2)	9 (8) 4 (4) 7 (5) 23 (14)	Trp->Gly Silent Ala->Gly 3' UT
1517.9 .16	742 1424.	AATCATAATG[G/C]TTCTCCCCTT AAGTTATTGG[C/T]AAACGAGGTT	6 (3) 11 (7)	2 (2) 3 (3)	Val->Ala Ala->Val
1518.8	947	AGAGCTGAGC [G/A] AGTTCACCAC	5 (4)	2 (2)	Ser->Lys
1519.15	1209	CCATCAAAAG[C/T]TTTGAGAATT	2 (2)	6 (5)	Silent
1520.12	6696 6806	CAGCCTCATC[G/A]ATCCCAAAAC TGCGCGGGAG[C/A]AAACTGCTCT	5 (2) 2 (1)	3 (1)	Asp->Asn Ser->Arg

Target ID	Loc'n	Sequence around [polymorphism]	#	Varia (Lib)	1	#	Varia 2 (Lib)	Protein Change
.33	1824	GTGGGGGTAC[C/T]ATCTC	AACTO	3 7	(4)	13 (9)	3' UT
1491.21	1488 1826	GCATATGGGA [G/C] CCATT TGTAAGGTTT [C/T] CATTT.			(1		2 (2)	
1495.3	391	CAAAAACCCC [G/A] CCCGC	TCCA	3	(2)	3 (2)	Silent
1496.5	3017 3932	AATAATAACC [A/G] AGACT CTGCCTGGCC [C/T] TTTTT				4) 1) 	2 (2) 6 (5)	
1497.13 .14 .16 .20	1332 1338 1508 1608 1713	GCCCCATGTC [G/A] CTGGG' TGTCGCTGGG [T/C] GGGCGG GCCACGGCGG [C/T] CGCCAC CCCCCCGGGC [C/G] CGGACG AGCGGCTGCG [G/T] GTCCG'	GCACO GCGAO CAGCO	3 8 8 6	(2) 2) 4) 4) 3)	5 (5) 5 (5) 2 (2) 5 (3) 3 (2)	Val->Ala Ala->Val Silent
.39 .43 .44	4022 4187 4254	GGCTTCCCCT [G/A] CGCCC AAACAGCAGT [T/C] CCTGG TTTCAAAAAA [T/A] TTTTTT	rggga gaacc	3 2 12	((1 (6 (5) 2 (1) 11 (9)	3' UT
1498.5	167	GGCGTGCTGA[G/C]TGCCC	rggga	. 8 ·	(4)	3 (3)	Ser->Thr
1500.16 .18 .23	2206 2310 2426	GAAGGAAACA [G/A] TGCAAG GTTGTTAAGA [G/T] TGGGGG TGCCAAGCTG [G/A] ACGGCA	GAGAG	25	(1 (1 (8)	2 (2) 2 (1) 4 (4)	3' UT
1501.5	388 1238	GCGCTGTGCG[G/T]TGTCCC CCCCGGGAGG[G/A]AGCTGA			(:		2 (2)	
1505.9	3934	TTAGTCATTC[T/C]AAAAA	ACACC	6	(4)	4 (4)	3' UT
1507.2	130	CCCCGAGGCG [A/T] TCGTG	GAGGA	3	(:	3)	3 (2)	Ile->Phe
1508.19	5111	CATCGCCGAG[G/C]CCTGGC	GCCG	12	(1	O)	3 (2)	N/D
1510.6	1066 1136	CAAAGGAGCT [T/C]GAAGGA TCTAAAAGAA [A/G]AAGGAA			(:		5 (5) 2 (1)	3' UT 3' UT
1511.10	222	CTACAATATT[C/G]AAAAGG	GAGTC	18	(1	L)	2 (1)	Gln->Glu
1514.6 .24 .35 .38 .39 .43	103 624 879 913 914 1069	CGGGGCTGCG [G/A] CCGCCC GGCATCGTCA [G/A] AAGGAA GCTGTAAAAT [T/C] ATAAAC TCCCCCAGGG [G/C] CGAGTT CCCCCAGGGG [C/G] GAGTTC AGACCCCAGG [G/T] CAGCAT	AGGGA CTTTT CCTC CCTCG	13 a 27 25 20	() (12 (11	5) 2) L) L)	4 (4) 6 (5) 2 (1) 3 (2) 3 (3) 5 (4)	3' UT

1483.12	1969	ACTTCTCCAT[C/T]CGGTCCCTAG	2	(1)	2 (2)	Silent
1484.2	140	ATTACGATGA [G/A] GAGGAAGAGC	3	(2)	12 (8)	Ser->Glu
.7	288	CTGTGGCTTG[G/A]AGCATCCTTC	8	(7)	2 (2)	Ser->Lys
.11	674	AGCACTTTGT[G/C]CTGGACGAGT	3	(3)	2 (2)	Silent
1486.24	6427	GCATTAACTA [A/T]AAAAAAAAA	5 	(5)	7 (5)	3' UT
1487.15	2896	GCGCCAAGCC[C/A]AGCAGGCTAC	3	(3)	3 (1)	Pro->Gln
.20	3303	AGCCACGGGC[G/T]TCCTACTGAG	8	(7)	3 (3)	Val->Phe
.22	3394	CTGGGGAAGC[T/C]CCTGGAAGCC	11	(10)	2 (2)	Leu->Pro
1489.14	1419	ACTCAACTCA[C/A]GGTACAAGAC	7	(5)	3 (3)	3' UT
1490.6	443	AGGCTGCTCG[T/C]GTTGCTATTG	2	(2)	2 (2)	Val->Ala
.31	1710	CTCGTGATGC[A/G]TCTACAGTTA	11 ((7)	19 (12)	3' UT

							Protein
Target ID	Loc'n	Sequence around [polymorphism]	#	Varia (Lib)	Т #	Varia 2 (Lib)	Change
	 -						
. 4	130	GCAGACTTAT [A/G]AG			(1)	11 (7)	-
.5	132	AGACTTATAA [G/A]GT	TGACCTTA	. 3	(1)	10 (7)	Silent
1465.4	897	AGTTCCACCC[T/C]AC	AGGCATAT	2	(2)	3 (3)	Silent
.5	1044	TGTCTCGGTC[C/G]AT	GACTCTGG	4	(4)	2 (2)	
.12	1758	GAGCAGAGGC[A/G]CG			(8)	3 (3)	
.30	1892	ACCCTGTCCT[A/T]TG			(17)	6 (6'	-
.34	1938	ATAGACCCGT [G/A] AT			(15)	9 (9)	
.37	1975	CTGTGCCACC[G/A]TC			(20)	6 (6)	
.38	1980	CCACCGTCCC[G/C]CC			(20)	5 (5)	Silent
.41	2014	AGACAAGATG[T/C]GG			(20)	5 (5)	3' UT
.42	2102	TTCTGCACTC[T/C]GG			(20)	8 (7)	3' UT
.45	2139	GATTGGCACC[T/C]AG	rggctggg	24	(20)	7 (6)	3' UT
1467.9	2297	CATGGAGGCA [G/A] CC	AGGCCCGT	4	(4)	2 (2,	Ser->Asn
.11	2353	TAATAATATG[T/C]ATG			(3)	2 (2	Tyr->His
1471.4	3042	CACCCAACCT[G/A]TC	CTTACTCA	2	(2)	3 (1)	3' UT
1473.9	390	GAAAAGCTGC[C/T]AT	CTCAAGG	1.3	(11)	5 (3)	Silent
.10	399	CCATTCTCAA [G/A] GCC			(8)	3 (3)	Silent
1474.1	8	TCT[G/A]AACGGAGAG	CTACTGA	 13	(10)	4 (3)	5' UT
.2	9	CT[A/T]ACGGAGAGCG		14	(11)	3 (3)	5' UT
.9	94	GCGAGAGGAG [G/T] AGO		27	(14)	2 (1)	Ser->***
.24	370	GCGGAACCCG[C/T]TCA		21	(15)	3 (2)	Leu->Phe
.26	392	AAGTAGGGGC [C/A] GCC		28	(14)	2 (1)	3' UT
1476.6	230	CACAAGTGCC[C/T]TTC	GAGCAGA	12	(9)	2 (2)	Silent
1477.20	1470	ATTTGATGGA [G/C] GCT	GCGCCGG	 31	(12)	6 (4)	Ser->Asp
.24	1480	GGCTGCGCCG[G/C]AGT		34	(14)	2 (2)	Ser->Gln
.28	1647	TTCCTGTTGA[A/T]AAA		9	(6)	3 (2)	3' UT
1478.19	838	TATGGAAGTA[G/A]CTC	CGCAGAG	 17	(11)	2 (2)	Ala->Thr
.29	1009	TCCTCAGCTC[C/T]CTC			(18)	2 (1)	3' UT
.30	1095	AATAAACTCTTAAAGA[G			(2)	24 (16)	3' UT
1480.17	913	AAGAGGCACT[G/T]TAG	CACCTCC	 17	(13)	2 (2)	 Val->Leu
.18	939	TTGCTGCGAC[T/C]GCC			(13)	2 (2)	
.10	939 979	CCCACCAGGA [C/A] GGG			(12)	4 (4)	
.20	980	CCACCAGGAC [G/C] GGG			(10)	4 (4)	
.29	1113	TAGGCATGCC [G/C] CCT			(13)	2 (2)	•
					/	_	

1454.3	338	AGGGCTTTGC [C/T] TTCGTTCAGT	3 (2)	6 (2)	Silent
.7	1211	CATGCTCACT [G/T] TTCTCCCCAT	9 (6)	2 (1)	3' UT
.8	1391	GTTTTTAAAAAAA [A/T] AAAAAA	3 (2)	3 (3)	3' UT
1455.6	294	CCAGGCCTTT[G/T]TCATCTTCAA CAGCTCGCGA[T/A]GCCCTGCAGG AGCTCGCGAT[G/T]CCCTGCAGGG	9 (8)	2 (2)	Val->Phe
.22	911		13 (12)	3 (3)	Asp->Glu
.23	912		8 (8)	4 (4)	Ala->Ser
1460.1	6	AATTC [C/G] CAGAGCAACATGCCC	5 (5)	3 (3)	5' UT
	547	GTTCTGCTTC [A/C] CCAGGAGATC	25 (17)	5 (3)	3' UT
1461.5	154	TCCCCGGGGG [G/C]CTTTGGATCG	8 (7)	2 (2)	Silent
	1463	GTGTTACTGC[A/G]TTTTGTACAA	14 (8)	11 (8)	3' UT
1463.3	761	CAGCGTGGGG [G/T] TGGCCACTCC	2 (1)	2 (2)	3' UT
1464.3	21	GCCTGCAGGC [C / T] TCCCGAGGAG	6 (3)	2 (2)	Silent

Target ID	Loc'n	Sequençe around [polymorphism]	#	Varia (Lib)	1	#	Varia 2 (Lib)	Protein Change
		TGATTAGAAC [G/T] GGTAGC	~ ~ ~ ~ ~		·	 1)	5 (4)	3' UT
.17 .18	2127 2154	AATATTGATA[G/T]AAAAAT			(5 (4)	-
1427 16	2825	AGTTTAAGAT [G/C] ACTTGA			- - -	 4)	3 (2)	3' UT
1437.16 .19	3129	CATGCGTAGC[C/T]TCTTGT					3 (2)	-
1440.5	940	AACTTCAGAA [G/A] GCCAGT	GTTG	· 2		1)	3 (3)	Silent
.6	1327	TGGCCCTGCC[T/C]GGGAAG			(1)	2 (2)	Silent
.9	1906	GACCTGAAGG[C/T]GAACGTG	GATA	. 2	(1)	2 (2)	Ala->Va
.14	2282	TCTTAGAGGC[C/T]TTTCTT	GTAI	2	(2)	3 (3)	3' UT
1443.4	1943	CTTCGTGCGA [G/A] AACCTG	AGAA	3	(2)	2 (1)	Glu->Lys
1444.31	1905	CCAACAGCCT [C/T] CAAAGA	rggg	3	(2)	28 (20)	3' UT
1445.4	425	CCAGGCTTGC [C/A] AGCCGA	AACG	8	(5)	2 (2)	Pro->Glr
.25	1281	AACAAAGAAA [A/T]AAAAAAA			(4)	4 (4)	3' UT
1446.3	1227	AGGTGTGGAA[C/T]ACCCTCA	AGCG	2	(1)	2 (2)	Silent
.17	3090	TTATTTATAT[T/C]TTTAACA			(7)	2 (2)	3' UT
1447.8	2681	GGCAATAGCA[A/G]TCTTGGC	CTGA	3	(3)	3 (2)	3' UT
1448.2	521	AGAAGACCAC[A/G]ATGCGAC			(2)	3 (1)	
.3	587	GTCATGCTCT[T/C]GCACTT	raca	4	(3)	3 (1)	Silent
1449.20	1261	TGCGTAATGC[G/A]GCCGAAG			-	3)	21 (13)	
.28	1447	CTGAGAGCCC[C/G]AGGCGTC				4)	2 (1)	
.31	1652	TTGCAGATTG[A/C]ATAAAA				6)	6 (4)	
.32	1653	TGCAGATTGA [A/T] TAAAAA			•	7)	3 (3)	
.33	1654	GCAGATTGAA[T/A]AAAAAA	AAA! 	. 6 	(. – –	6) 	4 (4)	3' UT
1450.2	156	CCCCATGGCG[G/A]CCGCCA	AGGA	11	(9)	2 (2)	Ala->Thr
1451.13	200	GATGAGCGTG[A/T]TTCCTC	rcga	. 3	-	2)	31 (20)	
.14	201	ATGAGCGTGA[T/A]TCCTCTC	CGAT	3		2)	31 (20)	
.18	417	AAGTTCACAT[C/G]AACCTCA	ATGG	2	(1)	28 (18)	3' UT
1452.12	1659	GTACCAGAGG [C/T] ATGCCTA	ATCA	. 4		4)	2 (1)	Ala->Val
.18	2410	ATTTAAGGAC [G/A] AGACCAC	GCAG	3	-	3)	9 (5)	
.19	2419	CGAGACCAGC[A/G]GCTAATO				8)	3 (1)	
.23	2717	GTTAATGATG [T/A]TAATGAT	TTTT	17	(1	.3)	5 (3)	3' UT

1431.2	79 296	GCCAGTGGCG[C/T]TTCGTGGACG TCACGCAGTG[G/C]CCAATAATCA	7 10	, -,	•	2) Silent 5) Ala->Pro
1432.8	2640 2695	AAGTTGCTTA[G/A]AGAGCCACCA GTTTTAATGC[A/C]AAGGAAATTT	8 12	,	- •	3' UT 3) 3' UT
1433.7	1695	AGCCGGGCTG[C/T]TACCTGCCCA	3	(3)	2 (2) Silent
.10	2052	CCCCTGGGTG[C/T]GGGGTGATCG	2	(2)	2 (2) Silent
.11	2160	ATGAGTCCAC[T/C]CTGGCCTTCC	2	(2)	2 (2) Silent
.23	2698	GGACCTTCGA[G/A]GGCCTCTGCC	4	(4)	3 (3) 3' UT
.28	2787	GTGGAGGAGA [G/A] GCCTGTGGCC	6	(6)	2 (2) 3'UT
.30	2844	GGTGGCGCAG[C/G]CTTGGTAACG	15	(13)	8 (6) 3' UT
.31	2848	GCGCAGCCTT[G/A]GTAACGCCAT	15	(13)	8 (6) 3' UT
.32	2857	TGGTAACGCC[A/G]TGGACTGCAG	16	(14)	8 (6) 3' UT
.33	2877	GCGACAATCA[A/G]TGGATGGTGC	16	(14)	8 (6) 3' UT
.34	2942	CCCTACCTGT [C/T] TTATTTCATA	17	(14)	14 (9) 3' UT
1434.15	2041	ACTGTACCTT[C/T]TATGGTTTGC	2	(1)	5 (4) 3' UT

	· 						
Target ID	Loc'n	Sequence around [polymorphism]		Varia (Lib)	1 #	Varia 2 (Lib)	Protein Change
.18	1053 1144	GGGCAGGGAA[T/C]CCTGGAG GTGGGGTGGG[G/A]TGAGTAG			(13) (2)	2 (2) 25 (14)	
1411.4	2009	GGCGTCAGAG [A/G] TGCTGG	GTGA	6	(4)	7 (5)	3' UT
1414.13	930	ACATACGAAC[C/T]GCCTCCT	TCC	16	(13)	3 (2)	3' UT
1415.24	1362 1442	GTGCGATTCT[A/G]GATAAAG GAGAATCCCT[G/A]GCAAAGG		7 10	(5) (8)	3 (3) 3 (3)	N/D N/D
1420.6 .8 .9	461 685 689 853	CAGCGGGAGC [G/T] TGAAGAA TGGTGGCAGT [G/T] TGGGCTC GGCAGTGTGG [G/C] CTCTCAG GCTGGCAGCT [G/T] TGAGGCT	CTCA SCCA	12 15	(2) (8) (12) (19)	2 (2) 2 (1) 2 (2) 2 (2)	Arg->Leu Val->Leu Silent Val->Leu
1421.8 .25 .26	169 1166 1167 1275	AAGTATACAG [A/G]ACAGATT GTTAGTTTTC [T/C]GGCCCGT TTAGTTTTCT [G/T]GCCCGTG TCTGGCATAC [C/G]GATAGGC	GGC GCC	20 4 4 6	(14) (3) (3) (5)	2 (1) 3 (2) 11 (7) 14 (11)	Silent 3' UT 3' UT 3' UT
1422.7	278	CCGGGAACCG[G/C]CCACCAT	'CAA	4	(3)	3 (3)	Ala->Pro
1 424. 3 .4 .7	1012 1021 1295	GGGAGGATGC[T/G]CTCTCTC CTCTCTCTCG[C/T]GTAGCTG GTTTAATGCA[T/A]GGATTCG	GAA		(2) (3) (2)	5 (3) 2 (1) 3 (2)	Silent Silent Trp->Arg
1425.3	274	GCACTGGAGG[G/T]TTTAATT	TTG	2	(2)	2 (2)	Gly->Val
1426.2	1364 2298	GATCACCAGA[T/C]ACCAGGG TCTCCAGAGT[C/T]ACTCCGT			(6) (4)	2 (1) 3 (3)	Tyr->His Ser->Leu
1427.3 .4 .6 .11 .23 .24 .31 .34	90 91 109 438 1172 1179 1323 1376 1433	CGCCGGCTGC [G/C] CTGCAGG GCCGGCTGCG [C/G] TGCAGGT GACAGTTCGT [G/A] ATGCTAT. TCTTCAGGGG [A/G] CCCAATG- CTATTCATAA [A/C] GGAAAAC. TAAAGGAAAA [C/T] GATTTCT. CAAATTATAT [C/A] ACATTTT. GCAGAGTCCT [G/C] ATGAAAG. GCATATAATA [C/T] ACATTTA.	GAC AAA GTG GAT AAA ATC ATG	8 12 7 10 21 8 13	(6) (6) (6) (2) (5) (10) (3) (7) (2)	3 (1) 3 (1) 2 (2) 2 (2) 12 (7) 2 (2) 13 (10) 5 (4) 9 (7)	Silent Leu->Val Asp->Asn Glu->Gly 3' UT 3' UT 3' UT 3' UT 3' UT
1430.3	682	TCTTTGGGGA[G/A]TCAGATG	AGC	7	(6)	2 (2)	Ser->Glu

1401.3 .17 .19 .21 .23	71 874 917 1081 1083	CCAAGAATCT [G/A]CTGCGCATGA TTATGTTTAT [G/A]TTTATTATGT TTGGAATCAA [G/A]TGTCATAAGA TCTACTTTCA [A/C]AAAAAAAAA TACTTTCAAA [A/T]AAAAAAAAA	2 (2) 8 (6) 8 (7) 2 (2) 2 (2)	3 (3) 6 (4) 5 (4) 7 (6) 3 (3)	Silent 3' UT 3' UT 3' UT 3' UT
1404.12	3921	TGTTGCACAC[T/C]AGCCTTACAG	3 (3)	2 (2)	3' UT
1405.15	4823	GTCCACATGC [A/G] CTGGGCGTCT	4 (4)	12 (10)	3' UT
1406.5	4618	TGCTTTCTAG [G/C]TCAGTCCCTG	5 (3)	6 (4)	3' UT
1407.5	405 713	CCCAGGGGGG [G/C] AGCTCCCATT TCTCTCAGAG [G/A] AAGTTTTTGG	5 (4) 10 (7)	2 (2) 2 (1)	Ser->Gln Silent

Target	Loc'n	Sequence around [polymorphism]		 Varia (Lib)	1 #	Varia 2 (Lib)	Protein Change
.11	-	CCTATCGGCT [C/G] TTTG	 CAGTGG	3	(2)	.3 (3)	Leu->Val
1363.22	2874	CCGGAATCCA[A/C]AGTG	CTCTGC	2	(2)	7 (5)	3' UT
1366.3	615 722	CGCCCATGGC [G/A] ACCA TGTACAACTT [T/C] CCCG			(7) (2)		
1367.18	1851	AAAAAGTAATTCCTTAAA [C/A]AT	4	(4)	4 (3)	3' UT
1368.5	2964	TCTGAGACAC[G/A]CCCC	AACATG	3	(3)	2 (2)	3' UT
1372.1	276	AGATGCTAAG[A/G]TTAC	CTTTCC	4 4	(3)	2 (2)	Ile->Val
1373.13	3855	AATATAATAT [C/T] GACA	CAGTGC	4	(4)	2 (2)	3' UT
1378.12	4157	TGCTGGGGCA[T/C]GGCG	GGATCC	2	(2)	2 (1)	3' UT
1383.14	1832	ATCACCACCA[C/T]GTGA	GTGGTA	12	(6)	4 (3)	Silent
1385.17	3454	CAGTGCTAAT [G/A]TGTG	CAAGCA	7 	(5)	4 (3)	3' UT
1386.31	470	GGGTGACGGG[C/G]CCAT	GGGGCG	5	(5)	3 (3)	3' UT
1387.5 .7 .8 .11 .15 .17	1385 1678 1900 1967 2075 2089 2234	TCGGTGCAGT [T/C]TCCA CAGGCTCATC [C/A]TGGG CAGCCCTGCT [G/A]ACCA GCCCCTGGG [G/A]AGTT ATTTCTTCCT [G/T]GTGG GCATTAGCCA [C/T]TCCC AAGAGAGAGAGAGA [A/G]AA	AGCTTT TCTCAC GGGGAA CATTAG TGCCTC	3 4 17 18 22	(·2) (3) (4) (13) (14) (15) (10)	5 (3) 2 (2) 2 (2) 3 (3) 2 (2)	3' UT 3' UT 3' UT 3' UT 3' UT
1388.17	2799	CACAGAAGCA[G/C]CTAA	accaag	15	(11)	4 (1)	3' UT
1395.4	327	CAATGTGTTA[T/C]GTAG	TGCTTA	35	(17)	2 (1)	3' UT
1396.10 .12 .21	2403	GGCACGAGCC [C/T] TCCT CCCCAGTGGG [G/A] ACTG TGACCAGGAC [G/C] CCTC AAAGGCTGAA [T/A] TGTC	AGTTAT TGGCCC	3 2	(3) (3) (2) (7)	5 (2) 3 (3)	3' UT 3' UT
1397.23	6232	TATTCAGAGT [G/T] GGCT	GGGCCC	3	(3)	2 (2)	3' UT
1399.2 .10 .16		CCCCGAGGG [G/A] ATGC AGGGGACAGT [A/G] ATAG CTGCTGTAAA [G/A] GCTG	CCAGCA	. 3	(3) (3) (8)	4 (4)	Silent

220/249

1359.3	297	ATAAATACAA [G/A] AACATTGGAG) Silent
1360.12	548	TGTAAGCTGA [G/C] CCTGGTGGCC	8 (6)	2 (1) 3' UT
1361.10	4077	CTGTCTTTCC [A/G]TTTTTTCATG	14 (9)	2 (1) 3' UT
1362.9	1832	CCGCCAGGCG [G/A]ATTTTGTTCA	2 (2)	2 (2) Silent

Target	Loc'n	Sequence around [polymorphism]	#	Varia (Lib)	1 #	Varia 2 (Lib)	Protein Change
1337.12	420	GCAGTCATGC[C/G]GGGT	GATCGT	32	(15)	3 (2)	3' UT
1339.17	2972 3146	TATTAGTCCA[A/G]TGAG GTCGGACAGT[G/T]GCTC			(9) (6)	7 (4) 5 (4)	
1341.3 .4 .17 .29	630 633 896 1107 1195	CTCGTAAGGC [G/T] TCCG GTAAGGCGTC [C/T] GGTC AAAAAGGCGG [G/C] CGGA AGGCTGTGAA [G/A] CCCA AAACCCAAAA [G/A] GCTC	CCCCGG ACCAAA AGGCCG	10 22 13	(4) (9) (14) (8) (5)	6 (3) 4 (2) 2 (1) 2 (1) 5 (3)	Silent Silent Silent
1342.5 .7 .8 .10	142 227 271 314	GCGCCAAAGC[G/A]AAAT CGCAGAGCGG[G/T]TTGG TGTTAGAGTA[C/T]CTGA CGCGGCTCGC[G/A]ACAA	GGCAGG CCGCCG	11	(9) (4) (11) (8)	3 (2) 5 (4) 4 (2) 2 (2)	Val->Phe Silent
1343.17	514	GAACTCAAAA[G/A]GCTC	TTTTCA	. 7 	(7)	4 (4)	3' UT
1344.2	149	GAGCGCATCG[C/G]GGGA	GAGGCT	2	(2)	2 (2)	Ala->Gly
1345.3	360	GGCGCGGTGG[G/C]GTCA	AGCGCA	. 3	(3)	3 (1)	Gly->Ala
1346.1 .2 .10	2269 2407 3265	CAGACTGGTG[A/G]ACGA CTCTGAGACG[A/C]TGAA TGCCGGGCCT[C/T]CCTC	GACCCG	2	(2) (2) (3)	2 (2) 3 (3) 2 (2)	Met->Leu
1347.3 .5 .6 .37	107 109 111 994 996	GAAGCCGAGA [C/G] GGAAA AGCCGAGACG [G/A] AAAA CCGAGACGGA [A/G] AATG GGTTCTTGTT [T/G] GGGCA TTCTTGTTTG [G/T] GCACA	TGTCAT TCATCA ACAGCA	2 16 16	(8) (2) (12) (11) (11)	4 (3) 3 (3) 2, (1) 3 (3) 4 (4)	Silent Lys->Arg 3' UT
1349.4 .9 .10 .11 1350.4 .5 .10	351 1136 1137 1150 188 275 473 770	ATCGGGATCG [T/A] GTGT GCCCTGCACG [A/G] GCCCA CCCTGCACGA [G/A] CCCA CAGGGGCTGA [G/A] CGTTC CCAAGCGCTC [T/C] AGGG ATGGAAGAGT [T/C] GTGGA GGGGCTTTGC [C/T] TTTGT ATGGATTTGG [C/T] AATGA	AGGGGC GGGGCT CCTAGG GCTTTG AACCAA TAACCT	19 10 20 4 15 9	(1) (13) (6) (12) (4) (10) (8) (5)	9 (5) 3 (3) 11 (7) 2 (2) 12 (7) 2 (1) 3 (2) 2 (2)	3' UT 3' UT 3' UT Silent Silent Silent
1351.25	1695	GTGTGGAGAA [G/A] CCACA	AGGCCT	10	(7)	10 (8)	3' UT
1354.23	2233	CAACAATTTT[C/T]TATG	TAGTT	7	(6)	3 (1)	3' UT
1355.7 .8 .10	4296 4778 4785	AGCCTTCAGG[C/T]TCGGG GCGCTGATAA[C/G]GTTCA TAACGTTCAT[G/A]GAACG	ATGGAA GCGTTG	3	(2) (3) (5)		Ala->Val 3' UT
1358.8	2515 2629	CAGGGCGAGT [G/C]GCATC	STCTGC		(7) (17)	2 (2) 2 (2)	3' UT

218/249

1333.4	89	GAGCACAGCG[G/A]CATCTTTGGC	7 (5)	2 (2)	Ala->Asp
.10	279	CCGTGCAGGC [C/A] ATGAACCGCA	5 (5)	6 (5)	Silent
.24	756	TGACCCCGA[C/A]CCAGCCTCGC	6 (6)	7 (6)	3' UT
1335.1	331	AGGGCTGGCC [C/T] TTGGAAGGCG	4 (4)	2 (2)	5' UT
.13	872	AGCCAAGCCG[G/T]TCAAGGCATC	7 (6)	2 (1)	Val->Phe
.28	2268	GGAAAAGGGA [G/A]AAACTGAGCG	6 (6)	2 (2)	3' UT
1336.6	851	GCCGCGAGGC [C/G] TGGTCTGAGC	5 (5)	11 (5)	3' UT
.7	889	GGTCCTCTCA [G/A] TCTTTCCCCT	21 (10)	2 (2)	3' UT
.15	990	TTGGCAACGG[C/T]CGTCGTCATG	17 (11)	2 (1)	3' UT

Target ID	Loc'n	Sequence around [polymorphism]	Vari (Lib		#	Varia 2 (Lib)	Protein Change
1301.12		CGCCCGGCTG [G/C] GCAAGGAGA		 9 (5)	3 (1) Ala->Arg
.30	1058	CAAGGTCTAT[G/C]CTGACGCCT		6 (7)	3 (2) Ala->Pro
.31	1059	AAGGTCTATG[C/G]TGACGCCTC	CC 1	3 (6)	3 (2) Ala->Val
1302.7	 759	ACAGGCCACA [T/G] CTGGACCAT	rc	 2 (2)	5 (5	Ser->Ala
.8	806	TATCAACTCC[C/T]GGACAACCC		2 (-	4 (4	Silent
.10	866	TTCGAAGAGT [T/C] ATTGCCAAG	SA .	4 (4)	2 (2) Silent
.17	2000	GAATTTAATA[G/T]GTACAGAAG	ST .	5 (5)	4 (4) 3' UT
.19	2158	ACTTCTAAAG[C/A]AAGAGGATA	AA :	В (7)	9 (9) 3' UT
1303.5	1226	TGCTGTGCAC [A/G] TTGACTACA	LA (5 (5)	2 (2)	lle->Val
.15	1624	GATTATATAT [T/A]TTTTTTCT	G '	7 (5)	3 (3)	
.21	1813	GTGCACTAAT[A/G]TGTAAGACA	A S	9 (6)	3 (3)	
.22	1920	TTAAATAGCT [C/T] TTTTCTCTC	SA 2	2 (1)	14 (8)	
.23	2079	TCTATAAACC[A/G]AACTGATGT	'A 2	2 (1)	16 (9)	3' UT
1305.12	1434	AATAAACTATAGTAGTGTT[T/A]	T 8	3 (8)	5 (4)	3' UT
1306.14	407	TTTGATATTG[C/T]CTCTGGAAC	T 2	2 (2)	4 (4)	Ala->Val
.21	1021	TTTTTTGCA[A/T]AAAACTAAA		2 (4 (3)	3' UT
1309.4	466	GCGGGCCGCC[T/C]GCTCTTGGA	.G :	- - -	 5)	2 (1)	Leu->Pro
.5	494	AGGAGTATGC[G/A]GCTCGGGCC		1 (3 (3)	
1312.10	492	ACCCTGGGG[G/A]AGTGCATCA	T	7 (6)	3 (3)	Ser->Lys
1315.13	339	AAGTTCCTCA [C/A] GCCCTGCTA	T 13	3 (10)	2 (2)	Thr->Lys
.22	766	TCCTTTTTTA [A/G] AAAAAAAAA		3 (7)	3 (3)	3' UT
1317.4	1083	GATAGATTAT [G/A] TATTCTTCC	A 3	3 (3)	4 (3)	N/D
1318.2	183	GGGAGCCTGC[C/A]AGGGTCCGC	T 12	? (11)	3 (3)	Silent
1322.12	876	TGACTCCACA[G/A]CCTCAGCCG	A 23	3 (14)	5 (5)	Ala->Thr
1326.5	139	GGCCTGGAAA[C/T]TTGCACAGT	C 5	5 (5)	3 (1)	
.12	1339	TAGGAAAGAC[G/A]TCGGCTTTC	G 5	(2)	3 (3)	
.17	2214	TCCCCAGGGT[T/C]TTCTCATGG	T 2	? (2)	5 (3)	
.19	2333	ATTCTGAGGG[A/G]TATCCAGCA	G 4	(4)	4 (2)	Asp->Val
1328.5	2968	CCTAAAAGTG[T/G]TTTTTATTT	C 6	(4)	4 (4)	3' UT
1330.13	1526	TTGATCATGA [G/A] ACATAGGTA	т 6	5 (3)	2 (1)	3' UT
1331.15	1666	ACAAGCACAC [C/G] TTAGAGGCT	T 2	: (2)	10 (4)	3' UT
.24	2009	CTGCTGATGC[C/T]GTACCCTCA		(2 (2)	
1332.5	618	AGCTGAACCC[G/C]GAGTCCTCC	C 2	: (1)	2 (1)	Silent

WO 98/41648		PCT/US98/05419					
		216/249					
.20	3888	AGGCAAATTC[A/G]ATTTGAACAT TGTGTGTGTG[T/G]GCTGTCGCTT	7 (3) 11 (9)	3 (3)	3' UT		
.21	3889 	GTGTGTGTGT[G/T]CTGTCGCTTG	11 (9) 	4 (3)	3' UT		
1293.10	2480 2481	CATGCCTGTG[C/G]GTGCGCTTCC ATGCCTGTGC[G/C]TGCGCTTCCT	2 (2) 4 (4)	- , ,	3' UT 3' UT		
1298.20	960	TTCAGTGGGC[T/C]TTTCTGGCAG	12 (8)	2 (1)	Leu->Pro		
1300.7	566	AAGTGTACCT[T/G]GAATTCTTTG	2 (2)	4 (2)	N/D		

Target	Loc'n	Sequence around [polymorphism]	#	Varia (Lib)	1	#	Varia 2 (Lib)	Protein Change
1267.11	1776	GGCTAGAGGA[T/C]GCACGGT	'GGC	2	(2)	7 (5)	3' UT
1268.10	6529	TTCATCCTCA[C/T]TCCCCAC	ATC	10	(6)	2 (2)	Thr->Ile
1269.19	1893 1941	CAACTTCAAC [C/G]TGGAGGT TAAAAAGGTG[A/G]CTGTTTT			-	-	3 (3) 4 (4)	
1270.11	331	TTGTCCTCAG[T/C]ACCTCTC	CGT	11	(9)	2 (2)	5' UT
1271.14	949	GGGTGTATTA[T/C]CCAGGTA	CTC	18	(1	1)	5 (1)	3' UT
1272.10	2678	TGTTAAGGAA[C/T]GCTAGCA	.GGG	3	(1)	3 (1)	3' UT
1273.13	3127	AAAGGAAGTT [T/C] TCCTTTI	'GAA	7	(2)	10 (3)	3' UT
1274.16	2696	ATATTTTTC[A/G]TAATCTA	TAT	7	(6)	3 (2)	3' UT
1278.7 .32 .33 .34	864 3897 3898 4013	AGTGTGACCC [G/A] GACTGCC CCAGAACACG [G/C] CTCACGC CAGAACACGG [C/G] TCACGCT TGTTGTGTGT [A/G] TCGAGAG	TTA TAC	5 4	(((3) 3)	2 (2) 3 (3) 4 (4) 3 (2)	
1280.5	1648 1957	TTAAGAGGAC [G/A] TAATGGG TAAAGATGATTGTGG [G/A] AA			(4 (3)	3' UT 3' UT
1282.1 .2 .9 .10	2155 2283 2799 2824 2937	TTTGGTGGGC [C/T] TACTTGG GTGTGGCGTA [G/C] GCAGTGG TTACATCACC [G/A] CCACTAC CAGTGCCCAG [T/C] GGCCGCA TGGTTTTGTT [G/C] CCTGACA	GTC TGC TGC	13 6 4	(3) 1) 3) 1) 4)	6 (1) 2 (2) 2 (2) 3 (3) 3 (1)	3' UT 3' UT 3' UT 3' UT 3' UT
1284.1 .6 .7 .10	249 522 523 608 651	CTGTCGACGA[T/C]CCCTACG GGGGCAGTGC[G/C]GTCATCT GGGCAGTGCG[G/T]TCATCTC GCCCTTGGGG[G/T]TTGCAGG GGGCTGGGGG[G/A]ATCCCAG	CCC CCT CTG	5 7 8	(1) 4) 7)	4 (3) 5 (4) 4 (1) 2 (1) 2 (2)	
1286.20	5366	GGCCATTGCC[G/A]CAGTCGC	AGC	12	(1	1)	2 (2)	3' UT
1287.10	864	AGGGATGTTAGACGGAATT[C/	G]C	2	(2)	4 (3)	3' UT
1289.15	885 1006	ATCATGTGGA [G/A] GGGCCAG GGCATTCCAG [C/G] TGAGACA					2 (1) 5 (2)	3' UT 3' UT
1290.7	929	CCCTCACCCC[A/G]TCACGCC	TCG	3	(1)	2 (2)	3' UT
1291.5 .8 .12	1060 2168 4517 5114	TCAACAAAAA [G/A] GGACAGG TAAGTACCAC [G/A] AGCAGCT GCTGACAGAG [G/A] AGGAGGA CCAGCCTCCA [G/A] TGTACAA	GGG CTA	2 5	(((1) 2)	2 (1) 2 (1) 2 (1) 2 (1)	Ser->Lys

214/249

1258.11 .15 .17 .20 .32	329 357 422 533 745	ATCACAGCAA [A/G] AGAGAGGTTC TCACTACCAA [C/T] CTGATCAATT TCTGCCTTTT [C/T] TACCATGATG AGCTTCCTAA [G/A] TCAAGGCCAA GCTTCCAGAA [C/G] AGATCAAAAA	22 (9) 24 (10) 25 (11) 27 (13) 17 (10)	4 (1) 6 (3) 2 (1) 2 (1) 2 (1)	Lys->Arg Silent Ser->Phe Ser->Asn 3' UT
1261.6	425 908	CTGGCATCAT[C/T]GCCATCTACG CGCCCCTCCA[G/A]GCCCCCGGCG	9 (3) 8 (3)	2 (1) 3 (3)	Silent 3' UT
1265.1	46 1023	ACTCGAGCCT [G/A] CTGTTCACCG GGAGGGGGCA [A/G] ATGGTGGTTG	3 (2) 2 (1)	2 (1) 20 (7)	5' UT 3' UT
1266.1 .7 .9	343 661 671 865	CGCTGCGGAC [G/A]AAAAGGCCAA AGCAGGTGAA [G/A]GGCATCGCTG GGGCATCGCT [G/T]CCCCAGGCCT GTAGAGCACA [G/A]GGGTTTCCCC	2 (2) 7 (6) 10 (9) 25 (12)	3 (2) 4 (3) 4 (3) 2 (2)	Glu->Lys 3' UT 3' UT

Target ID	Loc'n	Sequence around [polymorphism]	#	Varia (Lib)	1 #	Varia 2 (Lib)	Protein Change
1241.13	1802	AATTAAAGTTTTTCTTC[C/T]ATG	10	(7)	2 (2)	3' UT
1242.18	3296	TCCTGTCACA[T/C]GTGC			(11)	2 (2)	
.20	3328	AGCGGGCATC[G/T]CTGC	CGCCAT	7	(7)	3 (3)	3' UT
1243.5	134	GAACGCAGTG[G/A]ATGC			(4)	. 3 (3)	-
.6	184	TGCGCAGCCC[C/G]GTCF	ACCAACA	7	(7)	3 (2)	
.7	185	GCGCAGCCCC[G/T]TCAC	CAACAT	7	(7)	4 (2)	
.24	1528	CGGTGGAGCA[G/A]CCCC	CTGGGCT	10	(8)	3 (2)	
.31	1789	TACACGTGTT[G/A]CTTC			(9)	2 (2)	3' UT
.32	1790	ACACGTGTTG[C/A]TTCG			(9)	8 (7)	3' UT
1246.6	1512	ATCCCGGAGG[G/T]TCAC	TCTGAA	2	(2)	2 (1)	Val->Phe
.9	1958	ACGTTTTAAC[A/G]TAGT			(3)	6 (6)	3' UT
1247.6	517	GCGGACAGTA[C/T]ATTG	CCATTG	2	(2)	2 (2)	Silent
1248.4	164	TGATGTCCCC[C/T]TTCG	ACCCGT	4	(3)	2 (2)	Silent
.5	172	CCCTTCGACC[C/A]GTCG	GGTTTG	2	(1)	3 (3)	Pro->Gln
.11	815	AGCACAGCCC[C/T]TCTA			(7)	2 (2)	Silent
1249.1	50	ACCGCCTGCG[G/A]AGTA	ACTGCA	- -	(3)	2 (2)	5' UT
.26		TTGTAAAAGG [G/T]TTAC			(16)	2 (1)	3' UT
1250.1	353	GCCCGCCAG[G/A]ATTA	ACACAG	3	(2)	2 (2)	Silent
1251.11	1070	CCGCCAACGG[C/A]AACA	TCGACC	2	(1)	4 (2)	
.18	1974	CTGGGAAATG[C/A]GGGA	CTGGAA	2	(1)	2 (2)	3' UT
1253.7	67 3	GCCAGGTGGT [G/C] CAGA	TCCCTG	2	(2)	2 (1)	
.11	1620	GCCTATGTCG[G/A]CGAC	GTCCAC	2	(2)	2 (1)	Ala->Asp
.13	1672	ACACCAAGAC[C/T]ATGG		2	(2)	2 (1)	Silent
.16	3427	TCGACCACGC [G/A] GAGC		2	(2)	2 (1)	Silent
.21	3848	GACCCCGCTG[C/T]CACC		2	(2)	2 (1)	
1255.11	895	TCAAATGAAT[C/G]AACC	ACCTGG	2	(2)	2 (1)	Gln->Glu
.23	1729	TCATTTTTCT[A/G]TATA		2	(2)	17 (8)	
.24	1731	ATTTTCTAT [A/G] TAGG		2	(2)	17 (8)	
.27	1801	TTTCCAATAAAATC[G/A]		3	(2)	3 (3)	
1257.11	 674	AACAAGAACA[C/T]ATGA	TAAATT	 -	(6)	2 (1)	Silent
.19	954	GTGAGAGAAC[G/C]AAAT			(14)	3 (2)	
.20	955	TGAGAGAACG [A/C] AATC			(14)	3 (2)	
0	200					•	

212/249

				_	
1224.13 .17 .21 .22	1739 1936 2061 2079	GCAGAGCCAC [C/A] AGGGAAAAGT CCTCTTCTAA [T/C] CTCAAGGGTC GCGAGTGAGT [G/T] GAGAGCCAGC AGCTCTGCGG [A/G] GTCATCACGC	2 (2) 3 (2) 15 (11) 15 (11)	2 (2) 8 (7) 17 (13) 17 (13)	3' UT 3' UT 3' UT 3' UT
1227.9	1107 1207	AGAAGGTGAA[C/A]CCCCTGGGGG TGGGAAGAGG[G/C]CATACGGAGT	9 (6) 20 (14)	4 (3) 2 (2)	Asn->Lys Ala->Pro
1229.18	1919	ACTCCGTGCG[C/T]AATGCCGTCA	4 (3)	2 (1)	Silent
1235.11	1194	TAGCCGCCAG[G/A]ATTGCCATGA	18 (12)	2 (2)	Asp->Asn
1238.14	1133 1298	AGAACCTGAA [G/A]GCTGCGCAGG AACAACTCCA [G/A]GCCCTGCCCC	6 (4) 8 (6)	2 (2) 2 (1)	Silent 3' UT
1239.13	1289 1292	ACTTTTCCTC[T/C]AATCCTGGAA TTTCCTCTAA[T/C]CCTGGAAATT	11 (5) 16 (7)	7 (4) 2 (2)	3' UT 3' UT

Target ID	Loc'n	Sequence around [polymorphism]	#	Varia (Lib)	1 #	Varia 2 (Lib)	Protein Change
1189.13		CGGAAAGGAA[G/A]CGTTGG AGCCCCAGGG[A/G]CCAATT			(9) (12)	3 (2 2 2 (1	
1190.5	1010	GGGGTTGGGC[G/T]GGTTCC	rtte	2	(2)	3 (3)	3' UT
1193.1	79	CTCTCCCCTC[C/G]AATCCT	ATCC	5	(5)	2 (2)	5' UT
1196.23	2123	TATGTTTTCC[T/C]ATGCAA	ragt	19	(14)	2 (2)	3' UT
1198.29	2395	TGGCAAAGTC[T/C]GAAATAG	GGTC	20	(15)	4 (2)	3' UT
1199.3	1012 1460	AGATTCAGAA [C/T] ATGGTGC TGAGAACACC [G/C] CGCAGCC			(2)	2 (2) 2 (2)	
1202.7	671	ACCATAACTT[T/C]TTTTTAA	AGGA	13	(7)	11 (6)	3' UT
1205.1	942	GGAGAAAATT [G/A] AAGAATA	ATCT	13	(6)	2 (1)	Glu->L
1206.3	740	ACATCACAAA[A/G]CAACCTG	TGG	3	(3)	2 (1)	Silent
1208.3	1984 3163	TATTCCGTAC [G/A] TACAATC AATTTTTTTT [T/C] TTTTTAA			(1)	2 (2) 15 (6)	
1214.9	1566	GCATCCTGGA [C/T] AGCAACA	AGA	5	(3)	2 (2)	Silent
1216.8	202	AGCGGAGCGC [C/G] TCCCGGG	ACA	5	(4)	3 (2)	Silent
1217.3 .5	2545 2688	GCCTCTCGGC [C/T] TTTCTCC GCCGTGTGCC [C/A] ATGCTAC			(3)	2 (1) 3 (3)	Silent 3' UT
1218.10 .01 .02 .03	2757 1100 1287 3385	GCAGGCTGCC [C/T] TTTAGAG GATGTCAGTG [G/C] CCCCATG GCCATGCACT [C/G] ACCAACG TTGCCTGGAC [G/A] TTGGCCT	CCC CCA	71((2) 36) 36) 36)	2 (1) 1(1) 1(1) 1(1)	Silent Gly->Se Silent Silent
1221.20	1893	TGGAGCCTTC[G/T]GCTGGAA	GTC	9	(7)	3 (2)	3' UT
1222.30	2797	CACAAACCCA [A/G] TTGTAAA	TAA	14	(11)	2 (1)	3' UT
.10 .10 .15 .16	2813 3662 3727 3855 4110	AAGCAGGAGG [C/T] TAAGAAA GGACCGCAGT [C/T] CAGCATT TAAACTGAAG [T/A] GTGTTTT ACGTCCCAAC [G/A] AAGAGAC CACCTTGGTG [G/A] AGAACAA	TGT TCC CAC	2 4 24	(10) (2) (4) (19) (17)	2 (1) 2 (1) 3 (2) 2 (2) 2 (2)	N/D N/D N/D N/D N/D
.20	4110	CGACGTGGAT [C/T] CCATCGA			(17)	2 (2)	N/D

210/249

1174.24	3200 3302	TGTTGACAGG[G/C]TTTTTAAGAA TCTGCCCAAGC[A/C]AAAAAAAAA	10 (8) 5 (3)	2 (2) 3 (2)	3' UT 3' UT
1176.13	2571	GAGGCTTTGC [C/T] TTGCCTGCAT	6 (4)	3 (3)	3' UT
1177.18	1684 1864	CTCTTCCCCC[T/C]AAAAATGGTA GTTAGCTTTA[A/G]AAAAAAAAAA	13 (10) 5 (5)	3 (3) 3 (3)	3' UT 3' UT
1181.8	678	TACCAAAGCA [G/A] GGGTTCCCCA	10 (7)	2 (2)	Arg->Lys
1183.18	1719 1799	CTTCCTGCTC[G/A]ACTGAAAAAA TGGCTTTCAG[G/C]CCTGGCCTTT	14 (9) 15 (10)	2 (1) 5 (4)	3' UT 3' UT
1184.14	2292	GCCTAAATGT [G/T] TGAAGTGCGA	30 (18)	2 (2)	3' UT
1186.7	1337	GGGAGAGGTG[A/G]CCCTGAGGGA	2 (1)	4 (3)	3' UT
1188.7	1601	AGTCATCTGA [G/A] GTTATGCTTT	4 (3)	2 (1)	3' UT

Target ID	Loc'n	Sequence around # [polymorphism]	Varia (Lib)	1 #	Varia 2 (Lib)	Protein Change
.39	477	TAGTAATAAA [T/C]TTTCATATG	21	(15)	2 (2)	3' UT
1155.6	64	TATTCTCCGA[G/C]CTTCGCAAT		(19)	3 (3) 3 (3)	
.7	65 	ATTCTCCGAG[C/G]TTCGCAATG	25	(17) 	3 (3)	
1157.3	75	TGGGCAGGAC[C/G]GGTTCTCAG		(11)	3 (3)	
.12	290	GTCTGTCACA[A/G]TCTGCTCCT	г 28	(12)	11 (7)	3' UT
1158.4	55	CGAAAATTCG[G/A]CCAGGGTTC	r 36	(20)	2 (1)	Ala->Asp
1159.2	68	AGCACCAGCG[G/T]TGGCAGAGAG		(14)	2 (1)	
.7	199	ACAGTGCAGG[G/A]CGGTATGCC	3 16	(10)	5 (3)	Gly->Glu
1160.10	124	TCAGGGAGCT[G/A]AATATTACGG		(18)	2 (1)	_
.15	166	GTGGTGGTCG[G/A]AAAGCTATCA		(17)	2 (2)	
.17	229	TCCAAGTCCG[C/G]CTAGTACGC	3 2	(2)	29 (19) 	Pro->Ala
1161.8	263	AAGGCAACGC[C/T]CTGCTGCGGG		(16)	2 (2)	
.9	264	AGGCAACGCC[C/T]TGCTGCGGCC		(14)	9 (9)	Silent
.11	283	CGGCTGGTCC[G/C]ATTGGGGGTC	13	(9)	4 (4)	Arg->Pro
1163.8	1522	GTACTTCCTC[G/T]TCCTCATGCC	2	(2)	5 (1)	Arg->Leu
1165.1	- 97	CCACGACCGT [G/C] GCTATCTGGT	3	(3)	2 (2)	Ala->Arg
. 4	180	GTGAGGGGCG [G/T]CCGCGGCGCA		(3)	4 (2)	Silent
.7	273	CCAAGGTGGG [C/A] ATCAAGACCA		(7)	4 (3)	Ala->Glu
.8	274	CAAGGTGGGC [A/T] TCAAGACCAT		(12)	3 (2) 5 (4)	Ile->Phe Silent
.13	429 430	AGCAGGAGCT [G/C]CTCATCAACA GCAGGAGCTG [C/T]TCATCAACAT		(7) (5)	5 (4) 8 (5)	Leu->Phe
.29	901	CCCCAGAGG [G/A] AGGTCACCTG		(10)	4 (3)	3' UT
.35	1007	GCTTCCTCCT[G/T]GGCCCTCAAT		(5)	4 (4)	3' UT
.38	1189	GATGTTTTGA [C/G] GAAATAAATT		(2)	7 (6)	3' UT
1170.2	410	ATTGCGAATC[G/C]TTAGATATCC	2	(2)	2 (2)	Val->Leu
1171.27	2823	AAGAGATGAA[A/T]AAAAAAAAAA	. 8	(6)	4 (4)	3' UT
1172.15	1519	CTCTAGTGTT[G/C]AGGGATGTAG	7	(7)	2 (1)	3' UT
.19	1784	CAGGTCTTAA[T/C]GCCTCCATAC	3	(3)	2 (2)	3' UT
.25	2423	GAGAGACTGG[T/A]GGGTCTGTCT	7	(6)	5 (4)	3' UT
1173.12	4730	AGTAGGTAGG [G/T] CTAGTAGGTA	6	(6)	2 (1)	3' UT
.01	981	GCAGCCCAG[T/C]GCACCTGAGC		18)	48 (30)	Silent
.02	1041	ACATCAAGAG[A/G]TACCTGGGCG		36)	1(1)	Silent
.03	2400	AGCTGAGTGC[C/T]GCCACCACCT		36)	1(1)	Silent
.04		4 bp deletion				
.05	2567	CTAGATAGCA[A/G]ATAGCTCTCA			1(1)	3'UT
.06	2888	CCCAAGCTGC[C/T]TCATGGCCCG	63 (36)	9(9)	3'UT

208/249

1151.13	312	TCCAAAGCCC[T/C]GGTGGCCTAT	33 (16)	6 (1)	Leu->Pro
.14	313	CCAAAGCCCT[G/T]GTGGCCTATT	33 (16)	6 (1)	Silent
.16	346	TGGATGAGGC[T/C]TCCAAGAAGG	34 (16)	2 (1)	Silent
.22	439	AGTTTGGAGG[C/T]CCTGGTGCCC	20 (14)	6 (4)	Ala->Val
.25	517	TAATAAACAG[T/A]TTTTGAGGGA	23 (15)	3 (1)	3' UT
1152.15	131	GCGCGTGTGC [G/A] AGGAGATCGC	34 (18)	3 (2)	Ser->Lys
.19	160	CCAGCAAAAA [G/C]CTCCGCAACA	31 (18)	6 (4)	Lys->Asn
.20	161	CAGCAAAAAG[C/G]TCCGCAACAA	29 (16)	5 (3)	Leu->Val
.24	184	TAGCAGGTTA[C/T]GTCACGCATC	20 (9)	22 (15)	Silent
.31	379	CCAACCTTCA[G/A]GTCACTCAGC	36 (23)	2 (2)	Silent
1154.8	119	GGGCACAGCC [C/T] TAAAGGCCAA	17 (9)	3 (2)	Silent

Target ID	Loc'n	Sequence around [polymorphism]	#	Varia (Lib)	1 #	Varia 2 (Lib)	Protein Change
1137.1 .15 .23	3 331 419 488	CTTCCTTC [G/T] AGGAC GTGCCGAGAT [C/T] GC CAATGCCAGG [C/G] TGC TAAAAACTGC [C/A] ATC	rcacaatg Cgcagtga	22 13	(2) (12) (9) (8)	3 (2) 4 (2) 3 (2) 4 (4)	Silent Leu->Val
1138.8	78 127 354	AGGAGGAGCT [G/T]CTC GCTGCGCGTC [G/A]CCA AGCAGCAGCG [G/T]AAC	AAACAGC AAAGTGAC	30 31 28	(17) (15) (16)	2 (2) 2 (2) 2 (2)	Silent Ala->Thr
1139.21	334	TTCCGAAGCA [A/G] TC	TCCTGCT	33	(20)	3 (1)	Asn->Ser
1140.3	17 341	CCGCTGCTCG[C/A]CCT AATATGTAAG[G/A]CCT		22 32	(15) (16)	3 (2) 2 (2)	
1141.5 .7 .18	201 346 1071 1376	ATCAGACTAG [A/T] GCT GCGCCGTTGG [C/A] ATC GGATAAGGCA [G/A] CTC TGTTATACAGGCAGTGA [GTAGAGT CTGCAGC	4 5	(1) (3) (4) (10)	11 (5) 3 (2) 6 (3) 5 (4)	His->Asn Silent
1142.13	556	CTTGTGACTG[A/G]CCT	CTGGTCC	8	(7)	3 (3)	Asp->Ala
1143.17	470	ATCTACAAGC[G/T]TGG	TTATGGC	32	(20)	2 (2)	Arg->Leu
1144.1 .5 .6 .17 .26	211 286 287 494 700	GCCGCGGCGC[G/C]CCC CCGCCGAGGG[C/A]ATT CGCCGAGGGC[A/T]TTC TGTGAAGCTG[C/T]CCT ACCAGCACAT[C/T]GGC	CACACGG ACACGGG CCGGCTC	11 15 9	(5) (9) (13) (8) (18)	4 (4) 5 (4) 4 (3) 2 (2) 2 (2)	Silent Ala->Glu Ile->Phe Pro->Ser Silent
1145.18	395 405	GTGAAAAATA[C/T]ATC		21 27	(14) (20)	7 (7) 2 (2)	Silent Val->Phe
1146.16 .18 .22 .23 .25	276 285 340 341 343	TGTTTGCAAA [G/T] GCC AGGCCCTGGC [C/A] AAC ACCTGCTCCA [G/C] CAG CCTGCTCCAG [C/G] AGC TGCTCCAGCA [G/A] CTG	GTCAACA CTGGTGC TGGTGCT	13 16 15	(12) (10) (12) (12) (12)	3 (3) 5 (5) 3 (3) 3 (3) 2 (2)	
1147.22	324	GAGACTGGCA[G/A]GCC	TCGGCCT	7	(5)	3 (3)	Arg->Lys
1148.29	390	TCGGTGACAT[C/T]GTC	ACAGTGG	33	(17)	3 (2)	Silent
1149.14	174 414	GAACCGGGGC[C/G]TGC CGTAAAGCAT[G/T]GCC			(12) (20)	4 (3)	Ala->Cys
1150.20	257 435	CTCAAAGACC[T/C]GGA CCTCATGGAC[T/A]AAA			(19) (6)		

1136.1	13	CGCCGCTGCG[G/A]AGGGAGCCGC	9 (9)	10 (6)	5' UT
.16	190	GGAGCCGGCA [G/A] CCGACGGCAA	31 (21)	5 (4)	Ala->Thr
.18	197	GCAGCCGACG[G/C]CAAAGGTGTC	32 (23)	5 (5)	Silent
.19	198	CAGCCGACGG [C/A] AAAGGTGTCG	21 (16)	8 (5)	Ala->Glu
.23	243	GCCAGCGGAA[G/C]CCTGCCACCT	31 (20)	5 (5)	Lys->Asn
.24	244	CCAGCGGAAG[C/G]CTGCCACCTC	31 (20)	5 (5)	Pro->Ala
.25	245	CAGCGGAAGC [C/T] TGCCACCTCC	31 (22)	6 (3)	Pro->Leu
.29	283	CAACAAGAAT [G/C]CTCGCGCCAC	26 (18)	5 (5)	Ala->Pro
.30	284	AACAAGAATG[C/G]TCGCGCCACG	26 (18)	5 (5)	Ala->Val
.32	286	CAAGAATGCT[C/T]GCGCCACGCT	31 (22)	2 (2)	Arg->Cys
.41	387	TCCTGCGCAC[G/C]CAGAAGCCTG	2 (2)	19 (14)	Silent

Target ID	Loc'n	Sequence around [polymorphism]		Varia (Lib)	1	#	Vari (Lib		2	Protein Change
								, 		
.5	130	CTTCCAAAGG[T/C]CCGGAAAA	ACT	8	(7)	14	(4)	Val->Ala
.15	643	TTCAACGACC[T/C]GGGCTCCG	GA	11	(8)	2	(1)	Leu->Pro
.16	732	CAAGAAGGGG [A/C]CCAGGCTI	:GG	12	(7)	4	(2)	Thr->Pro
					·					0:1
1116.2	121 173	CGGACCGTCC[T/A]GACTACAG CCGGGGAATG[A/C]AGCCCACA		2		1) 1)		(Silent Lys->Gln
.3	1/3 	CCGGGGAATG (A/C) AGCCCACA	.GA		(\ 	J) 	TA2->GIU
1117.1	15	CCTGCAGCCC[T/C]GGCCTTCC	GC	10	(7)	4	(3)	5' UT
.2	16	CTGCAGCCCT[G/T]GCCTTCCG	CC	10	(7)	4	(3)	5' UT
.5	19	CAGCCCTGGC[C/T]TTCCGCCA	CC	10	(7)	2	(2)	5' UT
.19	401	TGGCAGCCTT[G/T]GCCAAGGC	:CC	12	(7)	8	(4)	Leu->Phe
.01	1287	GCCATGCACT[C/G]ACCAACGC		65	(36	5)		7	(7)	Ser->Val
.02	3385	TTGCCTGGAC [G/A] TTGGCCTG		70	(36	5)		2	(2)	3'UT
1118.5	1681	GACATGGTTG [G/A] TTATGCAC				5)	2			Val->Asp
.28	2945	ATGATTAAGG[A/G]CCAGAGGA	TC	7	(6)	7.	(:	5) 	3' UT
1119.11	1075	TCACAAATTA [G/A] GCCACGGC	CC	3	 (3)	3	(:	3)	3' UT
1121.17	1524	CATCCGTTGC [A/G] TATGGCTG	CA	3	(3)	2	(2	2)	Silent
.23	1669	TGCACGTCTG[G/C]CCAATATT	GA	6	(6)	3	(;	3)	Ala->Pro
.27	1902	GACAGACTGG[G/A]AAAATATT	GA	2	(2)	20	(1	7)	Gly->Glu
1123.9	2485	CCTGATATGA [A/C] TGTTACTA		- -5		5)	4	 / · /		Asn->Thr
.17	2807	TTGACATAAC[T/C]ATCTTTTT		4	-	3)		(:		3' UT
							. 			
1124.2	119	TCTTATCGGA[G/A]CTTGTATG	ТG	2	(1)	3	(3	3)	5' UT
.7	3616	TACTCCATAC[G/T]CACTTCAA	GC	2	(1)	5	(3	3)	Ala->Ser
1107.0				1.2				 , 1		Ala->Thr
1127.2	4	TGCAAAA [G/A] CGCAGGATCAA				8)		(]		Silent
.15	75	TCAACATCTG[T/C]GTTGGGGA				4)			L)	Silent
.34	339	AGGAACACAT[T/C]GATCTGGG	TA 	2	· – –	2)	31) 	
1128.9	483	AAATAAAAAAAAA [A/C]AAAAC	CC	4	(3)	4	(3	3)	3' UT
.10	484	AAATAAAAAAAAA [A/T]AAAC				3)	4	(3	3)	3' UT
1130.7	248	CCCCTGCGG[G/T]TGAAGAAC		25			9			Val->Leu
.11	320	GGAATACCGG[G/T]ACCTGACC		26			2		.)	Asp->Tyr
.13	364	ACCGAGACAT[G/T]GGTGCCCG		15			3		?)	Met->Ile
.16	377	TGCCCGGCAC[C/G]GCGCCCGA		16				(3		Arg->Ala
.19	421	TGGAGGAGAT [C/T]GCGGTCAG	CA	12	(7)	2	(1	.)	Silent
1131.12	502	TGGCTGACCA [G/A] GCTGAGGCC		18	/1	31	2			Silent
		100010ACCA[G/A]GC1GAGGC	-		·				. <u>.</u>	
1133.20	279	CTGAGTCTGC[C/T]ATGAAGAA	GA.	41	(1	8)	2	(1	.)	Silent
.35	517	CCTAATTCTG[A/G]ATATATAT		19			4	(2	:)	3' UT
4465			 -						. .	
1135.22	301	AAAACAAGAC[T/G]GGGGCTGC			(2			4		Silent
.23	343	CGGGCTACTA [C/T] AAAGTTCTC		40	(1		4			Silent
.32	438	AAGAGTGTTG[G/A]GGGGGCCTG	Ľ ی	32	(1	Ø)	2 (2	.)	Gly->Ser

1102.29 .30 .31	1967 1982 1991	TAACTTGGGT[T/G]TGAAAAAAAT AAAAATAAAA[T/G]TCCTAAATTT AAAAATAAAATTCCTAAAT[T/C]T	2 (1) 2 (1) 2 (1)	25 (20) 24 (20) 21 (17)	3' UT 3' UT 3' UT
1105.15	2038	GGGCCTGCCT[G/C]TGAGTGGTGC	3 (3)	6 (6)	3' UT
1109.4	884	AGCTTGCCTG[C/T]TTCAGCAAAA	4 (4)	2 (1)	3' UT
1110.11	6466	CTGATGCAGA[T/C]TCTTGTCTTG	5 (5)	5 (5)	3' UT
1111.8 .15 .16 .17	794 1087 1110 1146	AAGACGGCTA[T/C]GAGTTCTTTG CTGCCATGCT[G/T]GGGGGGGGTC CCCGACCCCT[A/C]AGGCCCACCT GAGCCTTGGT[G/T]TATTTTCTT	2 (1) 8 (5) 3 (1) 22 (18)	7 (6) 4 (4) 18 (17) 4 (4)	Silent 3' UT 3' UT 3' UT
1114.18 .20 .21 .27 .01 .02	540 585 586 704 177 328 328	ATGCTACCTA [C/T] CGGGAAGGCA TCACTGCCAA [T/A] GCTCTCGCTT CACTGCCAAT [G/T] CTCTCGCTTT CCCAAATTCG [C/T] CGTTGCCACT GAACAACCAC [T/C] GGGTCCTACA ACTGAATGAG [C/G] CTCCACTGGT GGCCGGAGGC [A/G] TTCACTCCAG	29 (16) 22 (15) 16 (12) 20 (14) 70 (36) 71 (36) 30 (20)	2 (2) 6 (4) 6 (4) 3 (3) 2(2) 1(1) 42(32)	Silent Asn->Lys Ala->Ser Ala->Val Silent Pro->Ala
1115.2	 77	ACTGCCGCAG[3/A]AATGCCGTCT	13 (9)	4 (1)	Silent