Лекция 05 от 03.10.2016 Перестановки рядов и произведения рядов

Основные теоремы о перестановках рядов

Напомним основное для этой лекции определение.

Определение 1. Пусть σ — биекция (перестановка) $\mathbb{N} \to \mathbb{N}$. Тогда говорят, что ряд $\sum_{n=1}^{\infty} a_{\sigma(n)}$ является перестановкой ряда $\sum_{n=1}^{\infty} a_n$.

Теорема 1 (Коши). Пусть ряд $\sum_{n=1}^{\infty} a_n$ абсолютно сходится, и его сумма равна A. Тогда любая его перестановка $\sum_{n=1}^{\infty} a_{\sigma(n)}$ также сходится абсолютно, и ее сумма равна A.

Доказательство.

Абсолютная сходимость:

Докажем, что $\sum_{n=1}^{\infty} a_{\sigma(n)}$ абсолютно сходится.

Обозначим $A_+ := \sum_{n=1}^{\infty} |a_n|$. Возьмём произвольное $N \in \mathbb{N}$ и покажем, что $\sum_{n=1}^{N} |a_{\sigma(n)}| \leqslant A_+$ (тогда возрастающая последовательность частичных сумм $\sum_{n=1}^{\infty} |a_{\sigma(n)}|$ ограничена и ряд сходится).

Определим $N:=\max\{\sigma(1),\sigma(2),\ldots,\sigma(N)\}$. Тогда очевидно, что $\sum\limits_{n=1}^N|a_{\sigma(n)}|\leqslant\sum\limits_{n=1}^M|a_n|$, так как правая сумма содержит в себе и все слагаемые левой суммы. Но из этого неизбежно следует и $\sum\limits_{n=1}^N|a_{\sigma(n)}|\leqslant A_+$, потому что любая частичная сумма $\sum\limits_{n=1}^M|a_n|$ неотрицательного ряда не больше всей его суммы.

Сходимость к тому же значению:

Докажем, что $\sum_{n=1}^{\infty} a_{\sigma(n)}$ сходится к A. Пусть есть некоторое $\varepsilon > 0$. Возьмём такое $N \in \mathbb{N}$, что

$$\sum_{n=N}^{\infty}|a_n|<rac{arepsilon}{2}.$$
 (Тогда $\left|\sum_{n=1}^{N}a_n-A
ight|=\left|\sum_{N+1}^{\infty}a_n
ight|\leqslant|\sum_{N+1}^{\infty}|a_n|<rac{arepsilon}{2}.$)

Обозначим $M := \max\{\sigma^{-1}(1), \sigma^{-1}(2) \dots \sigma^{-1}(N)\}.$

Тогда для любого $\tilde{M} > M$:

$$\left|\sum_{m=1}^{\tilde{M}} a_{\sigma(m)} - A\right| \leqslant \left|\sum_{m=1}^{\tilde{M}} a_{\sigma(m)} - \sum_{n=1}^{N} a_{n}\right| + \left|\sum_{n=1}^{N} a_{n} - A\right| <$$

$$< \left|\sum_{m=1...\tilde{M}, \ \sigma(m) > N}^{\tilde{M}} a_{\sigma(m)}\right| + \frac{\varepsilon}{2} \leqslant \sum_{m=1...\tilde{M}, \ \sigma(m) > N}^{\tilde{M}} |a_{\sigma(m)}| + \frac{\varepsilon}{2} \leqslant \sum_{m=N+1}^{max\{\sigma(1), \sigma(2)...\sigma(N)\}} |a_{n}| + \frac{\varepsilon}{2} < \varepsilon$$

Теперь пусть $\sum_{n=1}^{\infty} a_n$ сходится условно. В нём бесконечно много положительных слагаемых и бесконечно много отрицательных, так как иначе он сходился бы абсолютно. Через $\{p_n\}$ обозначим последовательность всех неотрицательных слагаемых, а через $\{q_n\}$, соответственно, отрицательных.

Раз $\sum_{n=1}^{\infty} a_n$ сходится, то $\{a_n\}$ — сходящаяся последовательность, а значит и $\{p_n\}$ и $\{q_n\}$ тоже сходятся. При этом $\sum_{n=1}^{\infty} p_n$ и $\sum_{n=1}^{\infty} q_n$ — расходятся.

Теорема 2 (Римана). Пусть ряд $\sum_{n=1}^{\infty} a_n$ сходится условно. Тогда:

- 1. для любого $A \in \mathbb{R}$ найдётся такая перестановка σ , что $\sum_{n=1}^{\infty} a_{\sigma(n)} = A$;
- 2. существует такая перестановка σ , что ряд $\sum_{n=1}^{\infty} a_{\sigma(n)}$ расходится $\kappa + \infty$;
- 3. существует такая перестановка σ , что ряд $\sum_{n=1}^{\infty} a_{\sigma(n)}$ расходится $\kappa \infty$;
- 4. существует такая перестановка σ , что для ряда $\sum_{n=1}^{\infty} a_{\sigma(n)}$ последовательность частичных сумм предела не имеет.

Доказательство.

1. Возмём произвольное $A \in \mathbb{R}$.

Найдём наименьшее $k_1 \in \mathbb{N}$ такое что $p_1 + p_2 + \cdots + p_{k_1} > A$.

Найдём наименьшее $\tilde{k}_1 \in \mathbb{N}$ такое что $p_1 + p_2 + \cdots + p_{k_1} + q_1 + q_2 + \cdots + q_{\tilde{k}_1} < A$

Найдём наименьшее $k_2 \in \mathbb{N}$ такое что $p_1 + p_2 + \dots + p_{k_1} + q_1 + q_2 + \dots + q_{\tilde{k}_1} + p_{k_1 + 1} + \dots + p_{k_2} > A$ И так далее. В силу того, что $\{p_n\}$ и $\{q_n\}$ сходятся к нулю, построение выше и даст перестановку ряда, сумма которой равна A.

В остальных пунктах всё вполне аналогично.

2. Найдём наименьшее $k_1 \in \mathbb{N}$ такое что $p_1 + p_2 + \cdots + p_{k_1} > 1$.

Найдём наименьшее $k_2 \in \mathbb{N}$ такое что $p_1 + p_2 + \cdots + p_{k_1} + q_1 + p_{k_1+1} + \cdots + p_{k_2} > 2$

Найдём наименьшее $k_3 \in \mathbb{N}$ такое что $p_1+p_2+\cdots+p_{k_1}+q_1+p_{k_1+1}+\cdots+p_{k_2}+q_2+p_{k_2+1}+\cdots+p_{k_3}>3$

И так далее. Построение выше и даст перестановку ряда, расходящуюся к к $+\infty$.

- 3. Аналогично предыдущему.
- 4. Аналогично предыдущим, например, доводя сумму последовательно до 1, -1, 2, -2, 3, -3 и так далее.

Произведение числовых рядов

Произведение пары конечных сумм определено вполне естественным и понятным образом:

$$\sum_{n=1}^{N} a_n \cdot \sum_{m=1}^{M} b_m = (a_1 + \dots + a_n)(b_1 + \dots + b_m) = \sum_{n=1, m=1}^{N, M} a_n b_m$$

М. Дискин, А. Иовлева, Р. Хайдуров. Математический анализ-3

С бесконечными суммами всё менее понятно. Казалось бы,

$$\sum_{n=1}^{\infty} a_n \cdot \sum_{m=1}^{\infty} b_m = \sum_{n=1, m=1}^{\infty} a_n b_m,$$

однако объект в правой части равенства мы не определяли.

Рис. 1: Нумерация по квадратам

Но по крайней мере множество пар индексов (n, m) счетно, а значит и множество слагаемых в сумме счётно, то есть его можно занумеровать и таким образом превратить произведение рядов в обычный ряд. Вопрос лишь в том, как именно это сделать.

Теорема 3 (Коши о произведении абсолютно сходящихся рядов). Пусть ряд $\sum_{n=1}^{\infty} a_n = A$ $u\sum_{m=1}^{\infty} b_m = B$, причём оба ряда абсолютно сходятся. Тогда ряд из произведений $a_n b_m$, занумерованных в любом порядке, сходится абсолютно и его сумма равна $A \cdot B$.

Доказательство. По недавно доказанной теореме Коши о перестановках абсолютно сходящегося ряда нам достаточно доказать, что хотя бы при какой-то одной нумерации ряд из произведений абсолютно сходится к $A \cdot B$.

Будем использовать довольно очевидный способ нумерации, вполне достаточно описываемый картинкой слева, обычно называемый «нумерация по квадратам». Обозначим $A_+ := \sum_{n=1}^{\infty} |a_n|$,

 $B_+:=\sum_{m=1}^\infty |b_m|$, и $\sum_{k=1}^\infty c_k$ — ряд из произведений, занумерованный выбранным нами способом. Тогда последовательность частичных сумм ряда из модулей c_k ограничена

$$\sum_{k=1}^{K} |c_k| \leqslant \sum_{k=1}^{K^2} |c_k| = \left(\sum_{n=1}^{K} |a_n|\right) \left(\sum_{m=1}^{K} |b_m|\right) \leqslant A_+ \cdot B_+,$$

то есть ряд $\sum_{k=1}^{\infty} c_k$ сходится абсолютно. Сумму этого ряда посчитать теперь совсем несложно:

$$\sum_{k=1}^{\infty} c_k = \lim_{K \to \infty} \sum_{k=1}^{K} c_k = \lim_{K \to \infty} \sum_{k=1}^{K^2} c_k = \lim_{K \to \infty} \left(\sum_{n=1}^{K} a_n \right) \left(\sum_{m=1}^{K} b_m \right) = A \cdot B.$$

Если хоть один из рядов не сходится абсолютно, такое утверждение уже неверно. Так что для всех остальных случаев важно договориться о нумерации. Один из часто встречающихся удобных способов нумерации, который в дальнейшем будет подразумеваться по умолчанию — это так называемая «нумерация по треугольникам», или «произведение Коши».

Определение 2. Для рядов $\sum\limits_{n=1}^{\infty}a_n$ $u\sum\limits_{m=1}^{\infty}b_m$ ux произведением называется ряд $\sum\limits_{k=1}^{\infty}c_k$, где $c_k=\sum\limits_{i=1}^{k}a_kb_{k-j}$

Рис. 2: Нумерация по треугольникам

М. Дискин, А. Иовлева, Р. Хайдуров. Математический анализ-3

Теорема 4 (Мертенса). Пусть ряд $\sum_{n=1}^{\infty} a_n = A$ $u \sum_{m=1}^{\infty} b_m = B$, причём хотя бы один из рядов сходится абсолютно. Тогда $\sum_{k=1}^{\infty} \sum_{j=1}^{k} a_k b_{k-j} = AB$.

Доказательство этой теоремы опустим.