

Credit Card Approval Prediction

DS105 – Final Project Presentation

Table of Content

- 1. Problem Statement & Goal
- 2. Dataset Overview
- 3. Machine Learning Approach & Challenges Anticipated
- 4. Sub-Goals
- 5. Machine Learning Process

Problem Statement & Goal

Problem Statement

Banks heavily rely on credit score to assess applicant creditworthiness that may lose it predictive power due to large economic fluctuation

Credit score's creditworthiness do not paint a complete picture of the applicant such as their personal information. Only rely on historical data such as payment history and credit utilization

Goal

To **build a Machine Learning Model** to predict "good" or "bad" credit card applicant **based on the collected personal information's** from the applicant with will not lose it predictive power.

Datasets

- 1. Application_record.csv
- 2. Credit_record.csv

https://www.kaggle.com/rikdifos/credit-card-approval-prediction

Description

- Datasets are connected by customer IDs.
- **Application_record.csv** contains applicant personal information, can be use as **features**. (Total 18 columns and 439k rows)
- **Credit_record.csv** records the applicant behaviours of credit card, can be use as **label**. (Total 3 columns and 1.05m rows)

Variable Types - Application_record.csv

No.	Feature name	Description	Variable Type	Data Type	Variable Category
_1	ID	Client number	-	Numeric	Continuous
2	CODE_GENDER	Gender	Predictor	Numeric	Categorical
3	FLAG_OWN_CAR	Is there a car	Predictor	Character	Categorical
4	FLAG_OWN_REALTY	Is there a property	Predictor	Character	Categorical
5	CNT_CHILDREN	Number of children	Predictor	Numeric	Continuous
6	AMT_INCOME_TOTAL	Annual income	Predictor	Numeric	Continuous
7	NAME_INCOME_TYPE	Income category	Predictor	Character	Categorical
8	NAME_EDUCATION_TYPE	Education level	Predictor	Character	Categorical
9	NAME_FAMILY_STATUS	Marital status	Predictor	Character	Categorical
10	NAME_HOUSING_TYPE	Way of living	Predictor	Character	Categorical
11	DAYS_BIRTH	Birthday count backwards from current day (0), -1 means yesterday	Predictor	Numeric	Continuous
12	DAYS_EMPLOYED	Start date of employment count backwards from current day(0). If positive, it means the person currently unemployed.	Predictor	Numeric	Continuous
13	FLAG_MOBIL	Is there a mobile phone	Predictor	Numeric	Categorical
14	flag_work_phone	Is there a work phone	Predictor	Numeric	Categorical
15	FLAG_PHONE	Is there a phone	Predictor	Numeric	Categorical
16	FLAG_EMAIL	Is there an email	Predictor	Numeric	Categorical
17	OCCUPATION_TYPE	Occupation	Predictor	Character	Categorical
18	CNT_FAM_MEMBERS	Family size	Predictor	Numeric	Continuous

Both datasets will be connected with Client Number

Variable Types - Credit_record.csv

No.	Feature name	Description	Variable Type	Data Type	Variable Category
1	ID	Client number	-	Numeric	Continuous
2	MONTHS_BALANCE	The month of the extracted data is the starting point, backwards, 0 is the current month, -1 is the previous month, and so on	Predictor	Numeric	Categorical
3	STATUS	Payment Status 0: 1-29 days past due 1: 30-59 days past due 2: 60-89 days overdue 3: 90-119 days overdue 4: 120-149 days overdue 5: Overdue or bad debts, write-offs for more than 150 days C: paid off that month X: No loan for the month	Target	Character	Categorical

Both datasets will be connected with Client Number

Label for credit card approval based on the acceptable past due range

Snapshots - Appication_record.csv

	ID	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL	NAME_INCOME_TYPE	NAME_EDUCATION_TYPE
0	5008804	М	Y	Υ	0	427500.0	Working	Higher education
1	5008805	М	Y	Υ	0	427500.0	Working	Higher education
2	5008806	М	Y	Y	0	112500.0	Working	Secondary / secondary special
3	5008808	F	N	Y	0	270000.0	Commercial associate	Secondary / secondary special
4	5008809	F	N	Y	0	270000.0	Commercial associate	Secondary / secondary special

NAME_FAMILY_STATUS	NAME_HOUSING_TYPE	DAYS_BIRTH	DAYS_EMPLOYED	FLAG_MOBIL	FLAG_WORK_PHONE	FLAG_PHONE	FLAG_EMAIL
Civil marriage	Rented apartment	-12005	-4542	1	1	0	0
Civil marriage	Rented apartment	-12005	-4542	1	1	0	0
Married	House / apartment	-21474	-1134	1	0	0	0
Single / not married	House / apartment	-19110	-3051	1	0	1	1
Single / not married	House / apartment	-19110	-3051	1	0	1	1

Snapshots - Creidt_record.csv

	ID	MONTHS_BALANCE	STATUS
0	5001711	0	Х
1	5001711	-1	0
2	5001711	-2	0
3	5001711	-3	0
4	5001712	0	С

Machine Learning Approach & Challenges Anticipated

<u>Challenges</u>

- Null values treatment
- Duplicate records
- Joining of datasets
- Relationship between variables
- Create Label
- Create new meaningful features
- Reduce unused features
- Data unbalance.
- Encode categorical features
- Scale overall dataset

- Choose the best
 Classification ML model
 based on different
 evaluation method
- Choose the best hyper parameter

Machine Learning Approach & Challenges Anticipated

Classification Models Selection

Evaluation Methods

- Accuracy
- F1-Score
- ROC / AUC

Sub-Goals

- 1. Method of creating label from credit_record.csv?
- 2. Clear segregation between the "good" and "bad" credit card applicants?
- 3. The best classification machine learning model for prediction?
- 4. The best hyper-parameters to give the best prediction result?
- 5. The feature that give the major contribution to the prediction?

1. Data Preparation	2. Data Exploration	3. Features Engineering	4. Model Selection	5. Hyper- Parameter Tuning
 1.1 Checking Of Null Values 1.2 Checking Of Duplicate Records 1.3 Joining Datasets 	 2.1 Continuous Features 2.2 Categorical Features 2.3 Continuous Vs Continuous Features 2.4 Categorical Vs Categorical Features 2.5 Categorical Vis Continuous Features 	 3.1 Creating Label 3.2 Change	4.1 Logistic Regression4.2 SVM4.3 Random Forest4.4 XG boost4.5 Result Comparison	 5.1 Tune XGBoost with XGB.cv 5.2 Tune Random Forest with RandomSearch.cv & GridSearch.cv 5.3 Conclusion

2. Data Exploration

3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

1.1 Checking Of Null Values

credit record = Credit record.csv

app_record = Application_record.csv

- 30.6% null value in "OCCUPATION_TYPE" column
- <50%, hence, Fillna with cat "OTHER"

1. Data Preparation

2. Data Exploration 3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

1.2 Checking Of Duplicate Records

app_record

Columns	:43855	7 - Uniqu	eID:438510	= 47				
	ID	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL	NAME_INCOME_TYPE	NAME_EDUCATION_TYPE
426818	7022197	М	Υ	Υ	3	135000.0	Working	Secondary / secondary specia
425023	7022197	F	N	Y	0	450000.0	Commercial associate	Higher education
431545	7022327	F	N	Y	0	135000.0	Commercial associate	Secondary / secondary special
431911	7022327	М	Υ	Υ	0	256500.0	Commercial associate	Higher education
94 rows	s × 18 co	lumns						

- app_record['ID''].duplicated found duplicate records (47 x 2 = 94 rows)
- Different data in each features, hence, might be issue when assigning IDs to new applicant
- Decided to drop every 2nd record by app_record.drop_duplicates()

credit_record

Columns:1048575 - UniqueID:45985 = 1002590

	ID	MONTHS_BALANCE	STATUS
0	5001711	0	X
1	5001711	-1	0
2	5001711	-2	0
3	5001711	-3	0
4	5001712	0	С

Remove multiple monthly entries and only keep the latest record.

credit_uniq = credit_record.groupby('ID').max().reset_index()

2. Data Exploration 3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

1.3 Joining Datasets

- Checking how many ID do two datasets share?
 36457 shared the same ID.
 len(set(app record['ID']).intersection(set(credit uniq['ID'])))
- Inner join both datasets together by ID.
 df = app_record.join(credit_uniq.set_index('ID'), on='ID', how='inner')

1. Data Preparation

2. Data Exploration

3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

2.1 Continuous Features (6 columns)

- "DAYS_EMPLOYED" have outliers of >30,0000days (82years) which is impossible.
- Other features have outliers that more then 1.5x IQ however, the values are still reasonable
- Drop all data in "DAYS_EMPLOYED" that > 30,0000days. df2 = df[df['DAYS_EMPLOYED'] < 300000]

2. Data Exploration

3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

2.2 Categorical Features (13 columns)

We can use frequency table to understand distribution of each category

CODE_GENDER							
		percent%					
F	19195	63.3					
М	11127	36.7					
==	===== F	LAG_OWN_CAR	======	=			
	count	percent%					
N	17766	58.59					
Υ	12556	41.41					
==	===== F	LAG_OWN_REA	LTY ====	====			
	count	percent%					
Υ	19786	65.25					
N	10536	34.75					
==	===== N	IAME INCOME	TYPE ===	====			
			count	percent%			
Wo	rking		18819	62.06			
	Commercial associate 8490 28.00						
State servant 2985 9.84							
Pensioner 17 0.06							
St	udent		11	0.04			

====== NAME_EDUCATI	ON_TYPE		
		count	percent%
Secondary / secondary	special	19867	65.52
Higher education		8858	29.21
Incomplete higher		1352	4.46
Lower secondary		214	0.71
Academic degree		31	0.10
====== NAME FAMILY	STATUS =		
		percent%	
Married	21137	69.71	
Single / not married		13.68	
Civil marriage	2575		
Separated	1758	5.80	
Widow	704	2.32	
NAME FAMILY	CTATUE		
====== NAME_FAMILY_			
		percent%	
Married	21137	69.71	
Single / not married			
Civil marriage	2575		
Separated		5.80	
Widow	704	2.32	
====== FLAG MOBIL =		7	
count percent%			
1 30322 100.0			
10322 103.0			

==		FLAG_WORK_F	PHONE	===
	count	percent%		
0	22100	72.88		
1	8222	27.12		
==	=====	FLAG_PHONE		===
	count	percent%		
0	21342	70.38		
1	8980	29.62		
==	=====	FLAG_EMAIL		===
	count	percent%		
0	27265	89.92		
1	3057	10.08		
==	===== S	TATUS =====		
	count	percent%		
Χ	16281	53.69		
C	9840	32.45		
0	3538	11.67		
		1.89		
		0.14		
		0.13		
3		0.02		
1	2	a a1		

====== OCCUPATION_TY	PE ====	===
	count	percent%
Laborers	6211	20.48
Others	5188	17.11
Core staff	3591	11.84
Sales staff	3485	11.49
Managers	3012	9.93
Drivers	2138	7.05
High skill tech staff	1383	4.56
Accountants	1241	4.09
Medicine staff	1207	3.98
Cooking staff	655	2.16
Security staff	592	1.95
Cleaning staff	551	1.82
Private service staff	344	1.13
Low-skill Laborers	175	0.58
Waiters/barmen staff	174	0.57
Secretaries	151	0.50
HR staff	85	0.28
Realty agents	79	0.26
IT staff	60	0.20

- All of features are important since there is very fine classification in each column.
- Their effectiveness cannot be judged at this moment.
- Will drop "FLAG_MOBIL" as it 100% count 1 which no point to include into the model later on.
 df3 = df2.drop(["FLAG_MOBIL"],axis='columns')

2. Data Exploration

3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

2.3 Continuous Vs Continuous Features

We can use standard Pearson coefficient (df.corr) to understand correlation between each continuous variables

- -1: perfect negative linear correlation
- +1:perfect positive linear correlation and
- 0: No correlation

- "CNT_CHILDREN" & "CNT_FAM_MEMBERS" are more correlated to each other.
- The no. of children is within the count of family members.
- Others are close to no correlation

1. Data Preparation

2. Data Exploration

3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

2.4 Categorical Vs Categorical Features

We will use "Cramer's V" to find degree of association between categorical variables

- 0: The variables are not associated
- 1: The variables are perfectly associated
- 0.25: The variables are weakly associated
- 0.75: The variables are moderately associated
- Most are weakly associated (<0.25) between columns.
- The highest (0.51) is between Gender & Occupation type
- The next highest are between Gender & Own a car
- Both association lower than moderate (<0.75)

1. Data Preparation

2. Data Exploration

3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

Continuous Features (6 columns)

2.5 Categorical Vis Continuous Features

We will use strip plot to understand the distribution of each continuous to categorical variables.

Categorical Features (13 columns)

1. Data Preparation

2. Data Exploration

3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

3.1 Creating Label

- We will be creating binary label. (1 : Bad Customer, 0 : Good Customer)
- Refer to distribution table of 'STATUS". Almost 98% users have not more than 29 days overdue (only 2% for >29 days overdue), which is too common, thus, it's inappropriate to be our standard.
- Whereas if we use >89 days overdue (in most bank standard), its only 0.17%. If we use that, we will left out many bad customers from our analysis.
- Hence, we will define that overdue >1day will be the bad customer

<u>Payment Status :</u>
X : No loan for the month
C: paid off that month
0 : 1-29 days past due
1 : 30-59 days past due
2 : 60-89 days overdue
3:90-119 days overdue
4:120-149 days overdue
5. >150 days

	==	S	TATUS ===	
		count	percent%	
	Χ	16281	53.69	
	C	9840	32.45	98%
	0	3538	11.67	
	1	574	1.89	
20/	2	38	0.13	
2%	3	7	0.02	
	4	2	0.01	0.2%
	5	42	0.14	

2. Data Exploration

3. Features Engineering

4. Model Selection 5. Hyper-Parameter Tuning

3.2 Change Categorical Data to Frequency

We will use frequency encoder as the categorical data are all nominal type.

	ID	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL	NAME_INCOME_TYPE	NAME_EDUCATION_TYPE
0	5008804	0.366961	0.414089	0.65253	0	427500.0	0.620638	0.292131
1	5008805	0.366961	0.414089	0.65253	0	427500.0	0.620638	0.292131
2	5008806	0.366961	0.414089	0.65253	0	112500.0	0.620638	0.655201
3	5008808	0.633039	0.585911	0.65253	0	270000.0	0.279995	0.655201
4	5008809	0.633039	0.585911	0.65253	0	270000.0	0.279995	0.655201
434808	5149828	0.366961	0.414089	0.65253	0	315000.0	0.620638	0.655201
434809	5149834	0.633039	0.585911	0.65253	0	157500.0	0.279995	0.292131
434810	5149838	0.633039	0.585911	0.65253	0	157500.0	0.000561	0.292131
434811	5150049	0.633039	0.585911	0.65253	0	283500.0	0.620638	0.655201
434812	5150337	0.366961	0.585911	0.65253	0	112500.0	0.620638	0.655201

1. Data Preparation

2. Data Exploration

3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

3.3 Check Data Unbalance

- The dataset is imbalanced.
- Classification model will give a false accuracy rate as the prediction uses the most common class without performing any analysis of the features.

We will use Synthetic Minority Oversampling TEchnique (SMOTE) to make the dataset balance

oversample = SMOTE()
X_balanced, y_balanced = oversample.fit_resample(X_scaled, y_train)
X_test_balanced, y_test_balanced= oversample.fit_resample(X_test_scaled, y_test)

1. Data Preparation

2. Data Exploration 3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

3.4 Train-Test Split and MinMaxScalar

- Split the data for 70% training and 30% testing.
- Fit and transform the data into a scaler for accurate reading and results.

```
1 K_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.3)
2
3 mms = MinMaxScaler()
4 X_scaled = pd.DataFrame(mms.fit_transform(X_train), columns=X_train.columns)
5 X_test_scaled = pd.DataFrame(mms.transform(X_test), columns=X_test.columns)
```


2. Data Exploration

3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

4.1 Logistic Regression

Metrics	Result
Accuracy	0.53
Precision	0.53
Recall	0.55
F1-Score	0.54
AUC	0.53

Classifier is not able to distinguish between Positive and Negative

Both 0 & 1 close to overlapping each other.

1. Data Preparation

2. Data Exploration

3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

4.2 Support Vector Machine

Metrics	Result
Accuracy	0.54
Precision	0.53
Recall	0.63
F1-Score	0.58
AUC	0.53

Classifier is not able to distinguish between Positive and Negative

Both 0 & 1 close to overlapping each other.

2. Data Exploration

3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

4.3 Random Forest

Metrics	Result
Accuracy	0.85
Precision	0.91
Recall	0.78
F1-Score	0.84
AUC	0.91

2. Data Exploration

3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

4.4 XG Boost

Metrics	Result
Accuracy	0.89
Precision	0.96
Recall	0.82
F1-Score	0.88
AUC	0.93

1. Data Preparation

2. Data Exploration

3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

4.5 Result Comparison

- Random Forest and XG Boost has the close and best performance according to our classification metrics (Accuracy, F1-score and AUC).
- Next, we can further improved the both models by tuning hyper-parameters.

RESULT COMPARISON TABLE						
=======================================						
Test Method:	Log	SVM	RF	XGB		
Accuracy	0.527	0.535	0.851	0.891		
F1 Score	0.538	0.575	0.840	0.883		
AUC	0.531	0.531	0.915	0.929		

1. Data Preparation

2. Data Exploration

3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

5.1 Tune XG Boost with XGB.cv

Hyper-parameters to tune:

- Min_child_weight Defines the minimum sum of weights of all observations required in a child.
- Max_depth The maximum depth of a tree.
- **Subsample** Denotes the fraction of observations to be randomly samples for each tree.
- Colsample_bytree Denotes the fraction of columns to be randomly samples for each tree.
- **ETA** Parameter controls the learning rate. Makes the model more robust by shrinking the weights on each step.

- All features have contribution to our target.
- No need to remove any feature to improve the model

1. Data Preparation

2. Data Exploration

3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

5.2 Tune Random Forest with RandomSearch.cv & GridSearch.cv

We will use Randomsearch.cv to get the parameter range. Then, we will use Gridsearch.cv to further select the best parameter.

Hyper-parameters to tune:

- N_estimators Number of trees in random forest
- Max_features Number of features to consider at every split
- Max_depth Maximum number of levels in tree
- Min_samples_split Minimum number of samples required to split a node
- Min_samples_leaf Minimum number of samples required at each leaf node
- Bootstrap Method of selecting samples for training each tree

- All features have contribution to our target.
- No need to remove any feature to improve the model

1. Data Preparation

2. Data Exploration

3. Features Engineering

4. Model Selection

5. Hyper-Parameter Tuning

5.3 Conclusion

- The best model to identify good/bad applicant for credit card approval will be XG Boost model with test of ~89% accuracy.
- We will be using XG Boost to predict our values.
- For future work, we could look into:
 - Other value range for parameter tuning
 - We can also look into using ensemble of XG Boost and Random Forest to get a more accurate prediction.
 - Look into the feature importance for the top features
 - Do Cost Benefit Analysis to further enhance the practical use of the model

Test Method: RF XGB
Accuracy 0.854 0.891
F1 Score 0.843 0.886
AUC 0.905 0.935

