

What is claimed is:

1. A catadioptric optical system comprising:
 - a first imaging optical system for forming an intermediate image of a first plane surface;
 - 5 a second imaging optical system for forming a final image of said first plane surface onto a second plane surface which is substantially parallel to said first plane surface;
 - 10 a catadioptric type optical system disposed in the optical path from said first plane surface to said second plane surface and including a first reflecting surface which reflects light coming from through said first plane surface and a second reflecting surface for directing the light reflected by said first reflecting surface toward said second plane surface, at least one of said first and second reflecting surfaces being a concave reflecting surface; and
 - 15 all of the optical elements of said catadioptric optical system being disposed on a single linear optical axis.
- 20
2. A catadioptric optical system according to claim 1, wherein said first imaging optical system includes said catadioptric type optical system, and said second imaging optical system includes a refraction type optical system.
- 25
3. A catadioptric optical system according to claim

1, wherein said first imaging optical system includes
a lens group including at least one positive lens element
and said catadioptric type optical system, and said second
imaging optical system includes a refraction type optical
5 system and has an aperture diaphragm.

4. A catadioptric optical system according to claim
1, wherein an exit pupil of said catadioptric optical
system is substantially circular.

10 5. A catadioptric optical system according to claim
1, wherein the following condition is satisfied:

$$0.04 < |f_{M1}| / L < 0.4$$

15 wherein f_{M1} is a focal length of said concave reflecting
surface of said first or second reflecting surface, and
L is a distance along the optical axis from said first
surface to said second surface.

20 6. A catadioptric optical system according to claim
1, wherein the following condition is satisfied:

$$0.6 < |\beta_{M1}| < 20$$

wherein β_{M1} is a magnification of said concave
reflecting surface of said first or second reflecting
surface.

25 7. A catadioptric optical system according to claim
1, wherein the following condition is satisfied:

$$0.3 < |\beta_1| < 1.8$$

wherein β_1 is a magnification of said first imaging optical system.

5 8. A projection exposure apparatus comprising:
an illumination optical system for illuminating a mask
on which a predetermined pattern is formed; and
a catadioptric optical system according to claim 1 for
projecting said predetermined pattern of said mask
10 disposed on said first surface onto a photosensitive
substrate disposed on said second surface.

9. A projection exposure apparatus comprising:
an illumination optical system for illuminating a mask
15 on which a predetermined pattern is formed; and
a catadioptric optical system according to claim 2 for
projecting said predetermined pattern of said mask
disposed on said first surface onto a photosensitive
substrate disposed on said second surface.

20 10. A catadioptric optical system according to claim
2, wherein said first imaging optical system includes
a lens group including at least one positive lens element
and said catadioptric type optical system, and said second
25 imaging optical system includes a refraction type optical
system and has an aperture diaphragm.

11. A catadioptric optical system according to claim 10, wherein an exit pupil of said catadioptric optical system is substantially circular.

5 12. A catadioptric optical system according to claim 11, wherein the following condition is satisfied:

$$0.04 < |f_{M1}| / L < 0.4$$

wherein f_{M1} is a focal length of said concave reflecting surface of said first or second reflecting surface, and
10 L is a distance along the optical axis from said first surface to said second surface.

15 13. A catadioptric optical system according to claim 12, wherein the following condition is satisfied:

$$0.6 < |\beta_{M1}| < 20$$

wherein β_{M1} is a magnification of said concave reflecting surface of said first or second reflecting surface.

20 14. A catadioptric optical system according to claim 13, wherein the following condition is satisfied:

$$0.3 < |\beta_1| < 1.8$$

wherein β_1 is a magnification of said first imaging optical system.

25

15. A projection exposure apparatus comprising:
an illumination optical system for illuminating a mask

on which a predetermined pattern is formed; and
a catadioptric optical system according to claim 10 for
projecting said predetermined pattern of said mask
disposed on said first surface onto a photosensitive
5 substrate disposed on said second surface.

16. A projection exposure apparatus comprising:
an illumination optical system for illuminating a mask
on which a predetermined pattern is formed; and
10 a catadioptric optical system according to claim 11 for
projecting said predetermined pattern of said mask
disposed on said first surface onto a photosensitive
substrate disposed on said second surface.

Add C
Add 457