Exame de Métodos Numéricos

 2^a chamada, 28 de Junho de 2006 (3 horas)

Licenciatura em Engenharia Civil

Universidade do Minho, Escola de Engenharia, Departamento de Produção e Sistemas

Apresente todos os cálculos que tiver de efectuar

1. Um ventilador tem uma curva característica de diferencial de pressão dada por:

$$H_v(x) = -6x^4 + 10x^3 - 5x^2 + 1$$

em função do caudal x de ar $(x > 0, H_v \ge 0)$. O aparelho debita o ar para uma instalação cuja curva de resistência ao escoamento é dada por

$$H_i(x) = 0.7x^2 - 0.05x + 0.02.$$

Sabendo que o ponto de funcionamento é o da intersecção das curvas referidas, determine o caudal x sabendo que é um valor próximo de 1. Utilize um método que recorre ao cálculo de derivadas, usando no critério de paragem $\varepsilon_1 = \varepsilon_2 = 10^{-2}$, ou no máximo 3 iterações.

2. Seja C_{GS} a matriz de iteração do método iterativo de Gauss-Seidel:

$$C_{GS} = \left(\begin{array}{cc} 0 & -k \\ 0 & k^2 \end{array}\right).$$

Para valores de k reais, tais que 0 < k < 1, o que podíamos concluir sobre a convergência do método iterativo de Gauss-Seidel na resolução do sistema (analise apenas a condição suficiente baseada na matriz C_{GS})? Justifique.

3. Considere os seguintes valores de f da tabela:

x_i	2	10	17	27
f_i	95	75	64	49
$\frac{1}{f_i}$	0.0105	0.0133	0.0156	0.0204

Suponha que pretendia ajustar os modelos

$$M_1(x) = a + bx$$
 e $M_2(x) = \frac{1}{c + dx}$

aos valores de f da tabela no sentido dos mínimos quadrados, em que a e b são os parâmetros do modelo M_1 , e c e d os parâmetros do modelo M_2 . O modelo M_2 proposto é não linear mas pode ser transformado num modelo linear e polinomial de grau 1 usando a função inversa.

- a) Calcule os modelos M_1 e M_2 usando cinco casas decimais nos cálculos.
- b) Avalie os modelos, identificando o que melhor aproxima a função f tabelada. Justifique.

4. Um corpo P desliza, sem atrito, ao longo de uma barra rectilínea de massa desprezível, à medida que a barra gira com velocidade angular constante $w = \frac{\pi}{4}$ s⁻¹ em redor do seu ponto médio, conforme a figura:

Duas forças actuam no corpo: a da gravidade e a centrífuga $m\omega^2 x$, agindo ao longo da barra e tentando afastar o corpo da origem, sendo ωt o ângulo descrito pela barra na sua rotação. O movimento do corpo pode ser descrito pela seguinte equação diferencial em que x representa a distância do corpo ao ponto O, no instante de tempo t:

$$\frac{d^2x}{dt^2} - \omega^2 x = -g \operatorname{sen}(\omega t).$$

Calcule a posição e a velocidade do corpo ao fim de 2 s, considerando h=1 s, g=9.81 m s⁻², x(0)=0 e $\frac{dx(0)}{dt}=3$ ms⁻¹. Comente os resultados.

5. Pretende-se calcular a pressão, P, que suporta um semicírculo de raio r, submerso verticalmente em água, de tal forma que o seu diâmetro coincide com a superfície livre da água, como mostra a figura

Para calcular a pressão do líquido, usa-se a lei de Pascal. Assim a pressão total é definida por

$$P = 2\gamma \int_0^r h \sqrt{r^2 - h^2} \, dh$$

em que γ é o peso específico da água. Considere $\gamma=1$ e r=7.

- a) Calcule a pressão, usando seis pontos igualmente espaçados no intervalo [0,5] e cinco pontos igualmente espaçados no intervalo [5,7].
- b) Estime o erro de truncatura cometido na alínea anterior apenas para o intervalo [0,5].

FIM