Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu nr 2, zadanie nr 11

Kamil Gabryjelski, Paweł Rybak, Paweł Walczak

Spis treści

1.	Opis	obiektu	2
2.	Pun	kt pracy	3
3.	Odpowiedzi skokowe		4
	3.1.	Tor sterowania	4
	3.2.	Charakterystyka statyczna toru sterowania	5
	3.3.	Tor zakłócenia	5
	3.4.	Charakterystyka statyczna toru zakłócenia	6
4.	Odp	owiedzi skokowe dla algorytmu DMC	8

1. Opis obiektu

Obiekt używany w projekcie jest symulacją obiektu, napisaną w języku MATLAB. Opisywany jest on wzorem

$$Y(k) = f(U(k-7), U(k-8), Z(k-3), Z(k-4), Y(k-1), Y(k-2))$$
(1.1)

gdzie kjest aktualną chwilą symulacji. Wartości sygnałów w punkcie pracy mają wartość u=y=z=0. Okres próbkowania wynosi $T_p=0,5s$

2. Punkt pracy

Celem zadania było sprawdzenie poprawności punktu pracy opisanego w sekcji 1. W celu weryfikacji zbadano odpowiedź obiektu na sygnał sterowania równy U=0 oraz sygnał zakłócenia równy Z=0. Zgodnie z oczekiwaniem, wyjście obiektu miało wartość Y=0. Stąd podany punkt pracy u=y=z=0 jest poprawny. Przebieg symulacji przedstawiony jest na wykresie 2.1.

Rys. 2.1. Przebiegi sygnałów $U(k),\,Z(k),\,Y(k)$ w punkcie pracy.

3. Odpowiedzi skokowe

3.1. Tor sterowania

W tym punkcie badane są odpowiedzi skokowe obiektu na różne wartości skoku sygnału sterowania. Założono, że w chwili początkowej obiekt znajduje się w punkcie pracy. W chwili k=9 wykonywany jest sterowania do zadanej wartości. Sygnał zakłócenia ma wartość Z=0. Wyniki badań przedstawia wykres 3.1.

Rys. 3.1. Odpowiedź Y(k) dla skoków sterowania U

3.2. Charakterystyka statyczna toru sterowania

Charakterystyka statyczna toru sterowania wyznaczona została poprzez sprawdzenie, na jakich wartościach stabilizuje się wyjście obiektu dla różnych wartości sygnału U. Liniowości charakterystki statycznej dowodzi wykres 3.2, który (w przybliżeniu) jest liniowy.

Wartość wzmocnienia statycznego można wyznaczyć normalizując odpowiedź skokową. Wynosi ona $s_u=1,1022.$

Rys. 3.2. Charakterystyka statyczna Y(U)

3.3. Tor zakłócenia

W tym punkcie badane są odpowiedzi skokowe obiektu na różne wartości skoku sygnału zakłócenia. Założono, że w chwili początkowej obiekt znajduje się w punkcie pracy. W chwili k=9 wykonywany jest sterowania do zadanej wartości. Sygnał sterowania ma wartość U=0. Wyniki badań przedstawia wykres 3.3.

Rys. 3.3. Odpowiedź Y(k) dla skoków zakłócenia Z

3.4. Charakterystyka statyczna toru zakłócenia

Charakterystyka statyczna toru zakłócenia wyznaczona została poprzez sprawdzenie, na jakich wartościach stabilizuje się wyjście obiektu dla różnych wartości sygnału Z. Liniowości charakterystki statycznej dowodzi wykres 3.4, który (w przybliżeniu) jest liniowy.

Wartość wzmocnienia statycznego można wyznaczyć normalizując odpowiedź skokową. Wynosi ona $s_z=0,501.\,$

Rys. 3.4. Charakterystyka statyczna ${\cal Y}(Z)$

4. Odpowiedzi skokowe dla algorytmu DMC

Do poprawnego działania algorytmu DMC wymagana jest znajomość odpowiedzi obiektu na skok jednostkowy. Często jednak dla niskich wartości sterowania odpowiedź jest zbyt zaszumiona, by można ją uznać za poprawną. W takich wypadkach stosuje się wyższą wartość sygnału sterowania, a otrzymaną odpowiedź normalizuje. Aby znormalizować odpowiedź skokową, należy od jej wartości odjąć punkt pracy obiektu, a otrzymany wynik podzielić przez wartość skoku sterowania (dla s_u) lub zakłócenia (dla s_z). Zależność tę określają wzory 4.1 i 4.2. Przebiegi znormalizowanych odpowiedzi skokowych przedstawia wykres 4.1.

$$s_u = \frac{Y - Y_{pp}}{dU} \tag{4.1}$$

$$s_z = \frac{Y - Y_{pp}}{dZ} \tag{4.2}$$

Rys. 4.1. Znormalizowane odpowiedzi skokowe na skoki sygnałów sterowania i zakłócenia