Anexă. Ecuațiile modelului Gerali et al. (2010)

Gospodării răbdătoare

$$U_P\left(c_t^P, h_t^P\right) = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta_P^t \left[\left(1 - a^P\right) \epsilon_t^z log\left(c_t^P - a^P c_{t-1}^P\right) + \epsilon_t^h log\left(h_t^P\right) - \frac{\left(l_t^P\right)^{1+\phi}}{1+\phi} \right]$$

Constrângere

$$c_t^P + q_t^h \left(h_t^P - (1 - \delta^h) h_{t-1}^P \right) + d_t = w_t^P l_t^P + \frac{1 + r_{t-1}^d}{\pi_t} d_{t-1} + T r_t^P$$

Gospodării nerăbdătoare

$$U_{I}\left(c_{t}^{I}, h_{t}^{I}\right) = \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta_{I}^{t} \left[\left(1 - a^{I}\right) \epsilon_{t}^{z} log\left(c_{t}^{I} - a^{I} c_{t-1}^{I}\right) + \epsilon_{t}^{h} log\left(h_{t}^{I}\right) - \frac{\left(l_{t}^{I}\right)^{1+\phi}}{1+\phi} \right]$$

Constrângeri

$$c_t^I + q_t^h h_t^I + \frac{1 + r_{t-1}^{bI}}{\pi_t} b_{t-1}^I = w_t^I l_t^I + b_t^I + q_t^h (1 - \delta^h) h_{t-1}^I$$

$$(1 + r_t^{bI}) b_t^I \le m^I E_t \left[\pi_{t+1} q_{t+1}^h (1 - \delta^h) h_t^I \right]$$

Antreprenorii

$$U_E\left(c_t^E\right) = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta_E^t log\left(c_t^E - a^E c_{t-1}^E\right)$$

Constrângeri

$$c_{t}^{E} + w_{t}^{P} l_{t}^{E,P} + w_{t}^{I} l_{t}^{E,I} + \frac{1 + r_{t-1}^{bE}}{\pi_{t}} b_{t-1}^{E} + q_{t}^{k} k_{t}^{E} = \frac{y_{t}}{x_{t}} + b_{t}^{E} + q_{t}^{k} k_{t-1}^{E} \left(1 - \delta^{k}\right) + J_{t}^{k}$$

$$\left(1 + r_{t}^{bE}\right) b_{t}^{E} \leq m^{E} E_{t} \left[\pi_{t+1} q_{t+1}^{k} \left(1 - \delta\right) k_{t}^{E}\right]$$

Formarea de produse

$$y_t = a_t^E \left(k_{t-1}^E \right)^\alpha \left(l_t^E \right)^{1-\alpha}$$

$$l_t^E = \left(l_t^{E,P}\right)^{\mu} \left(l_t^{E,I}\right)^{1-\mu}$$

Cererea de credite

$$b_t^I(j) = \left(\frac{r_t^{bI}(j)}{r_t^{bI}}\right)^{-\epsilon_t^{bI}} b_t^I, \qquad b_t^E(j) = \left(\frac{r_t^{bE}(j)}{r_t^{bE}}\right)^{-\epsilon_t^{bE}} b_t^E, \qquad d_t(j) = \left(\frac{r_t^d(j)}{r_t^d}\right)^{-\epsilon_t^d} D_t$$

Sucursala centrală

$$\max_{\{B_t, D_t\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \Lambda_{0,t}^P \left[\left(1 + R_t^b \right) B_t - B_{t+1} + D_{t+1} - \left(1 + R_t^d \right) D_t + \Delta k_{t+1}^b - \frac{\kappa_{kb}}{2} \left(\frac{k_t^b}{B_t} - \nu_t \right)^2 k_t^b \right]$$

Constrângere

$$B_t = D_t + k_t^b$$

Acumularea de capital bancar

$$k_t^b = (1 - \delta^b) \frac{k_{t-1}^b}{\pi_t} + (1 - \omega^b) \frac{J_{t-1}^b}{\pi_t} + \epsilon_t^k$$

Spreadul ratelor de dobândă

$$S_t^w \equiv R_t^b - r_t = -\kappa_{kb} \left(\frac{k_t^b}{B_t} - \nu_t \right) \left(\frac{k_t^b}{B_t} \right)^2$$

Sucursala pentru creditare

$$\begin{split} \max_{\{r_t^{bI}(j),\,r_t^{bE}(j),\,m_t^E,\,m_t^I\}} &\quad \mathbb{E}_0 \sum_{t=0}^\infty \Lambda_{0,\,t}^P \Bigg[[1 + r_t^{bI}(j)] b_t^I(j) + [1 + r_t^{bE}(j)] b_t^E(j) - (1 + R_t^b) B_t(j) \\ &\quad - \frac{\kappa_{bI}}{2} \left(\frac{r_t^{bI}(j)}{r_{t-1}^{bI}(j)} - 1 \right)^2 r_t^{bI} b_t^I - \frac{\kappa_{bE}}{2} \left(\frac{r_t^{bE}(j)}{r_{t-1}^{bE}(j)} - 1 \right)^2 r_t^{bE} b_t^E \Bigg] \end{split}$$

Constrângere

$$B_t(j) = b_t^E(j) + b_t^I(j)$$

Ecuația de stabilire a dobânzilor de creditare

$$\epsilon_{t}^{bs} \frac{1 + R_{t}^{b}}{r_{t}^{bs}} - \kappa_{bs} \Big(\frac{r_{t}^{bs}}{r_{t-1}^{bs}} - 1 \Big) \frac{r_{t}^{bs}}{r_{t-1}^{bs}} + \beta_{p} E_{t} \Big\{ \frac{\lambda_{t+1}^{P}}{\lambda_{t}^{P}} \kappa_{d} \Big(1 - \epsilon_{t}^{bs} - \frac{\epsilon_{t}^{bs}}{r_{t}^{bs}} \Big) + \kappa_{bs} \Big(\frac{r_{t+1}^{bs}}{r_{t}^{bs}} - 1 \Big) \Big(\frac{r_{t+1}^{bs}}{r_{t}^{bs}} \Big)^{2} \frac{b_{t+1}^{s}}{b_{t}^{s}} \Big\} = 0$$

Sucursala pentru depozite

$$\max_{\left\{r_t^d(j)\right\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \Lambda_{0,t}^P \left[r_t D_t(j) - r_t^d(j) d_t(j) - \frac{\kappa_d}{2} \left(\frac{r_t^d(j)}{r_{t-1}^d(j)} - 1 \right)^2 r_t^d d_t \right]$$

Constrângere

$$D_t(j) = d_t(j)$$

Ecuația de stabilire a dobânzilor de economisire

$$-1 + \epsilon_t^d - \epsilon_t^d \frac{r_t}{r_t^d} - \kappa_d \left(\frac{r_t^d}{r_{t-1}^d} - 1 \right) \frac{r_t^d}{r_{t-1}^d} + \beta_p E_t \left\{ \frac{\lambda_{t+1}^P}{\lambda_t^P} \kappa_d \left(\frac{r_{t+1}^d}{r_t^d} - 1 \right) \left(\frac{r_{t+1}^d}{r_t^d} \right)^2 \frac{d_{t+1}}{d_t} \right\} = 0$$

Regula de stabilire a politicii monetare

$$1 + r_t = (1+r)^{(1-\phi_r)} (1+r_{t-1})^{\phi_r} \left(\frac{\pi_t}{\pi}\right)^{\phi_\pi(1-\phi_r)} \left(\frac{y_t}{y_{t-1}}\right)^{\phi_y(1-\phi_r)} \exp(\epsilon_t^m)$$

Stabilirea salariilor prin sindicatul muncitorilor

$$\max_{\left\{W_{t}^{s}(m)\right\}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta_{s}^{t} \left\{ U_{C_{t}^{s}(m)} \left[\frac{W_{t}^{s}(m)}{P_{t}} l_{t}^{s}(m) - \frac{\kappa_{w}}{2} \left(\frac{W_{t}^{s}(m)}{W_{t-1}^{s}(m)} - \pi_{t-1}^{\iota_{w}} \pi^{1-\iota_{w}} \right)^{2} \frac{W_{t}^{s}}{P_{t}} \right] - \frac{l_{t}^{s}(m)^{1+\phi}}{1-\phi} \right\}$$

Funcția de cerere a muncii

$$l_t^s(m) = \left(\frac{W_t^s(m)}{W_t^s}\right)^{-\epsilon_t^l} l_t^s$$

Curba Phillips:

$$\kappa_w \left(\pi_t^{ws} - \pi_{t-1}^{\iota_w} \pi^{1-\iota_w} \right) \pi_t^{wi} = \beta_s \frac{\lambda_{t+1}^s}{\lambda_t^s} \kappa_w \left(\pi_{t+1}^{ws} - \pi_t^{\iota_w} \pi^{1-\iota_w} \right) \frac{\left(\pi_{t+1}^{ws} \right)^2}{\pi_{t+1}} + \left(1 - \epsilon_t^l \right) l_t^s + \epsilon_t^l \frac{\left(l_t^s \right)^{(1+\phi)}}{w_t^s \lambda_t^s}$$

Retaileri de bunuri finale

$$J_t^R = \frac{1}{P_t} \left[P_t y_t - P_t^W y_t - P_t y_t \frac{\kappa_p}{2} \left(\frac{P_t}{P_{t-1}} - \pi_{t-1}^{\iota_p} \pi^{(1-\iota_p)} \right)^2 \right]$$

Producătorii de capital

$$\max_{\left\{q_{t}^{k}, I_{t}^{k}\right\}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \Lambda_{0, t}^{E} P_{t} \left[q_{t}^{k} k_{t} - q_{t}^{k} \left(1 - \delta^{k}\right) k_{t-1} - I_{t}^{k}\right]$$

Constrângere

$$k_t^E = (1 - \delta^k) k_{t-1}^E + \left(1 - \frac{\kappa_{ik}}{2} \left(\frac{\epsilon_t^{ik} I_t^k}{I_{t-1}^k} - 1\right)^2\right) I_t^k$$

Producătorii de bunuri imobiliare

$$\max_{\left\{q_t^h,I_t^h\right\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \Lambda_{0,t}^P P_t \left[q_t^h h_t - q_t^h \left(1 - \delta^h\right) h_{t-1} - I_t^h \right]$$

Constrângere

$$h_t = \left(1 - \delta^h\right) h_{t-1} + \left(1 - \frac{\kappa_{ih}}{2} \left(\frac{\epsilon_t^{ih} I_t^h}{I_{t-1}^h} - 1\right)^2\right) I_t^h$$

Condiția de echilibru al piețelor

$$y_t - \delta^b \frac{k_{t-1}^b}{\pi_t} - Adj_t^R - Adj_t^b = c_t + I_t^h + I_t^k$$

Unde

$$Adj_t^R = \frac{\kappa_p}{2} y_t \left(\pi_t - \pi_{t-1}^{\iota_p} \pi^{(1-\iota_p)} \right)^2$$

$$\begin{split} Adj_t^b &= \frac{\kappa_{kb}}{2} \left(\frac{k_{t-1}^b}{B_{t-1}} - \nu_{t-1} \right)^2 k_{t-1}^b \\ &+ \frac{\kappa_{bI}}{2} \left(\frac{r_t^{bI}}{r_{t-1}^{bI}} - 1 \right)^2 r_t^{bI} b_t^I - \frac{\kappa_{bE}}{2} \left(\frac{r_t^{bE}}{r_{t-1}^{bE}} - 1 \right)^2 r_t^{bE} b_t^E - \frac{\kappa_d}{2} \left(\frac{r_t^d}{r_{t-1}^d} - 1 \right)^2 r_t^d d_t + \epsilon_t^{kb} \end{split}$$

Calibrarea parametrilor

Calibrated p	arameters	Initial calibration	Romanian calibration			
Parameter	Description	Value				
β_P	Patient households' discount factor	0.9943	→ 0.9963 (Copaciu et al. 2015)			
β_I	Impatient households' discount factor	0.975				
$egin{array}{c} eta_E \ \phi \end{array}$	Entrepreneurs' discount factor Inverse of the Frisch elasticity	0.975 1.0	→ 7.822 (Copaciu et al. 2015)			
$\overset{\cdot}{\mu}$	Share of unconstrained households	0.8	 0.9 (NBR data on no. of debitors) 			
ε^h α δ ε^y	Weight of housing in households' utility function Capital share in the production function Depreciation rate of physical capital $\frac{e^y}{e^y-1}$ is the markup in the goods market	0.2 0.25 0.025	→ 0.55 (Copaciu et al. 2015) → 0.049 (Copaciu et al. 2015)			
ε^{l}	$\frac{e^l}{e^l-1}$ is the markup in the labor market	5				
m_{E}^{I}	Households' LTV ratio	0.7	→ 0.71 (NBR FSR 2022)			
$m^E u^b$	Entrepreneurs' LTV ratio Target capital-to-loans ratio	0.35	$v^{ss} = 0.16$			
$arepsilon^d$	$\frac{\varepsilon^d}{\varepsilon^d-1}$ is the markdown on deposit rate	-1.46	→ -0,5767(NBR data on interest rates)			
ε^{bH}	$\frac{\varepsilon^{bH}}{\varepsilon^{bH}-1}$ is the markup on rate on loans to households	2.79	→ 1,1728 (NBR data on interest rates)			
ε^{bE}	$\frac{e^{bE}}{e^{bE}-1}$ is the markup on rate on loans to firms	3.12	→ 2,53004 (NBR data on interest rates			
δ^b ξ_1 ξ_2	Cost for managing the bank's capital position Parameter of adjustment cost for capacity utilization Parameter of adjustment cost for capacity utilization	0.1049 —— 0.0478 —— 0.00478 ——	→ 0.1213 (recalculation) → 0.0755 (recalculation) → 0.00751 (recalculation)			

Pentru noii parametrii:

$$\varphi_{v}$$
 – CCyB multiplicator – 0,25

 $\delta^{\it h}-{\it depreciation}\ {\it rate}\ {\it of}\ {\it housing}-0{,}01$

Distribuțiile parametrilor structurali estimați

		Prior distribution			Posterior distribution				
	Parameter	Distrib.	Mean	Std.dev.	Mean	2.5%	Median	97.5%	
κ_p	p stickiness	Gamma	50.0	20.0	30.57	10.68	28.65	49.89	
κ_w	w stickiness	Gamma	50.0	20.0	102.35	70.29	99.90	133.81	
κ_i	Invest. adj. cost	Gamma	2.5	1.0	10.26	7.57	10.18	12.81	
κ_d	Dep. rate adj. cost	Gamma	10.0	2.5	3.63	2.28	3.50	4.96	
κ_{bE}	Firms rate adj. cost	Gamma	3.0	2.5	9.51	6.60	9.36	12.31	
κ_{bH}	HHs rate adj. cost	Gamma	6.0	2.5	10.22	7.47	10.09	12.88	
κ_{Kb}	Leverage dev. cost	Gamma	10.0	5.0	11.49	4.03	11.07	18.27	
ϕ_{π}	T.R. coeff. on π	Gamma	2.0	0.5	2.01	1.72	1.98	2.30	
ϕ_R	T.R. coeff. on R	Beta	0.75	0.10	0.77	0.72	0.77	0.81	
$\dot{\phi}_{\mathrm{y}}$	T.R. coeff. on y	Normal	0.10	0.15	0.35	0.15	0.35	0.55	
i_p	p indexation	Beta	0.50	0.15	0.17	0.06	0.16	0.28	
ι_w	w indexation	Beta	0.50	0.15	0.28	0.16	0.28	0.39	
a^h	Habit coefficient	Beta	0.50	0.10	0.85	0.81	0.86	0.90	

Pentru noii parametrii:

 $\kappa_{ih}-housing\ investment\ adj.\ cost-Gamma\ -10-1,0$

		Prior distribution			Posterior distribution			
	Parameter	Distribution	Mean	Std.dev.	Mean	2.5%	Median	97.5%
AR co	pefficients							
ρ_z	Consumpt. prefer.	Beta	0.8	0.10	0.396	0.260	0.394	0.531
ρ_h	Housing prefer.	Beta	0.8	0.10	0.917	0.858	0.921	0.975
ρ_{mE}	Firms' ĽŤV	Beta	0.8	0.10	0.892	0.839	0.894	0.945
ρ_{mI}	HHs' LTV	Beta	0.8	0.10	0.925	0.875	0.929	0.979
ρ_d	Dep. markdown	Beta	0.8	0.10	0.830	0.739	0.838	0.917
ρ_{bH}	HHs loans markup	Beta	0.8	0.10	0.808	0.675	0.820	0.949
ρ_{bE}	Firms loans markup	Beta	0.8	0.10	0.820	0.688	0.834	0.956
ρ_a	Technology	Beta	0.8	0.10	0.936	0.899	0.939	0.975
ρ_{qk}	Invest. efficiency	Beta	0.8	0.10	0.543	0.396	0.548	0.694
$\rho_{\rm y}$	<i>p</i> mark-up	Beta	0.8	0.10	0.306	0.205	0.305	0.411
ρ_l	w mark-up	Beta	0.8	0.10	0.636	0.511	0.640	0.769
ρ_{Kb}	Balance sheet	Beta	0.8	0.10	0.810	0.717	0.813	0.906
Stand	ard deviations							
σ_z	Consumpt. prefer.	Inv. Gamma	0.01	0.05	0.027	0.019	0.027	0.035
σ_h	Housing prefer.	Inv. Gamma	0.01	0.05	0.076	0.022	0.071	0.129
σ_{mE}	Firms' LTV	Inv. Gamma	0.01	0.05	0.007	0.005	0.007	0.009
σ_{mI}	HHs' LTV	Inv. Gamma	0.01	0.05	0.003	0.003	0.003	0.004
σ_d	Dep. markdown	Inv. Gamma	0.01	0.05	0.033	0.024	0.032	0.043
σ_{bH}	HHs loans markup	Inv. Gamma	0.01	0.05	0.067	0.035	0.066	0.115
σ_{bE}	Firms loans markup	Inv. Gamma	0.01	0.05	0.063	0.034	0.063	0.096
σ_a	Technology	Inv. Gamma	0.01	0.05	0.006	0.004	0.006	0.007
σ_{qk}	Invest. efficiency	Inv. Gamma	0.01	0.05	0.019	0.013	0.019	0.025
σ_R	Monetary policy	Inv. Gamma	0.01	0.05	0.002	0.001	0.002	0.002
$\sigma_{\rm y}$	<i>p</i> mark-up	Inv. Gamma	0.01	0.05	0.634	0.274	0.598	0.985
σ_l	w mark-up	Inv. Gamma	0.01	0.05	0.577	0.378	0.561	0.761
σ_{Kb}	Balance-sheet	Inv. Gamma	0.01	0.05	0.031	0.026	0.031	0.037

Pentru noii parametrii:

 $ho_{
u} \, - {
m target} \, {
m capital} \, {
m to} \, {
m loans} \, {
m ratio} \, - {
m Beta} \, - 0.1 \, - 0.05$

 $\sigma_{\nu}\,$ —target capital to loans ratio $\,-$ Inv. Gamma $\,-$ 0.01 $\,-$ 0.05