1 Theoretical Basics

We start with the set of test functions

$$\mathcal{D} = C_0^{\infty}(\mathbb{R}) = \{ f \in C^{\infty} : \operatorname{supp}(f) \text{ is compact in } \mathbb{R} \}$$

and endow it with the topology: a sequence $(\varphi_j)_{j\in\mathbb{N}}$ with $\varphi_j\in\mathcal{D}$ converges against φ , if there is a compact set $K\subset\mathbb{R}$ with $\operatorname{supp}(\varphi_j)\subset K$ for all j and

$$\lim_{j \to \infty} \sup_{x \in K} \left| \frac{\partial^{\alpha}}{\partial x^{\alpha}} \left(\varphi_{j}(x) - \varphi(x) \right) \right| = 0$$

for all multi-indizies $\alpha \in \mathbb{N}^n$. The set \mathcal{D} is – endowed with this convergence concept – a complete locally convex topological vector space satisfying the Heine–Borel property (Rudin 1991, §6.4–5).

The set of linear functionals from \mathcal{D} to \mathbb{R} we call the set of distributions

$$\mathcal{D}' = \{ f \colon D \to \mathbb{R} : f \text{ is linear } \}$$

That is, a distribution T assigns to each test function φ a real (or complex) scalar $T(\varphi)$ such that

$$T(c_1\varphi_1 + c_2\varphi_2) = c_1T(\varphi_1) + c_2T(\varphi_2)$$

for all test functions φ_1 , φ_2 and scalars c_1 , c_2 . Moreover, T is continuous if and only if

$$\lim_{k \to \infty} T(\varphi_k) = T\left(\lim_{k \to \infty} \varphi_k\right)$$

for every convergent sequence $\varphi_k \in \mathcal{D}$. (Even though the topology of \mathcal{D} is not metrisable, a linear functional on \mathcal{D} is continuous if and only if it is sequentially continuous.) Equivalently, T is continuous if and only if for every compact subset K of \mathbb{R} there exists a positive constant C_K and a non-negative integer N_K such that

$$|T(\varphi)| \le C_K \sup_K |\partial^{\alpha} \varphi|$$

for all test functions φ with support contained in K and all multi-indices α with $|\alpha| \leq N_K$ (Grubb 2009, p. 14).

The duality pairing between a distribution $T \in \mathcal{D}'$ and a test function $\varphi \in \mathcal{D}$ is denoted using angle brackets by

$$\begin{cases} \mathcal{D}' \times \mathcal{D} \to \mathbb{R} \\ (T, \varphi) \mapsto \langle T, \varphi \rangle \end{cases}$$

so that $\langle T, \varphi \rangle = T(\varphi)$. One interprets this notation as the distribution T acting on the test function φ to give a scalar, or symmetrically as the test function φ acting on the distribution T.

Now taking at distributions a closer look, we distinguish between two kinds: we call a distribution

• regular if there is locally integrable function

$$f \in L^1_{loc}(\mathbb{R}) = \{ f : \Omega \to \mathbb{C} \text{ measurable} : f|_K \in L_1(K) \ \forall K \subset \mathbb{R}, \ K \text{ compact} \}$$

such that the distribution T can be written as

$$\langle T_f, \varphi \rangle = \int_{\mathbb{R}} f(t)\varphi(t)dt \quad \forall \varphi \in D$$

Sometimes, one abuses notation by identifying T_f with f, provided no confusion can arise, and thus the pairing between T_f and φ is often written

$$\langle f, \varphi \rangle = \langle T_f, \varphi \rangle = \int_{\mathbb{R}} f(t)\varphi(t)dt \quad \forall \varphi \in D$$

• **singular** if the distribution is not regular, e.g. if there is no integral representation with a locally integrable function.

1.1 The dirac delta distribution

$$f = \delta_{x_0}, \ \langle \delta_{x_0}, \varphi \rangle = \varphi(x_0)$$

It is easy to see that $f^{\epsilon}(x) \to 0$ almost everywhere and

$$\int f(y)dy = \alpha \neq 0$$

but

$$\int f^{\epsilon} dx = \frac{1}{\epsilon} \int f(\underbrace{\frac{x}{\epsilon}}_{=:y}) dx = \int f(y) dy$$

Definition 1.1

For $f \in \mathcal{D}'$ we say $f^{\epsilon} \rightharpoonup f \in \mathcal{D}'$ if

$$\langle f^{\epsilon}, \varphi \rangle \to \langle f, \varphi \rangle \quad \forall \varphi \in \mathcal{D}$$

Example 1.2

Let $f^{\epsilon}(x) = \frac{1}{\epsilon} f(\frac{x-x_0}{\epsilon}, f \in C_c^{\infty}(\mathbb{R})$ with

$$\int_{\mathbb{R}} f(y)dy = \alpha < \infty$$

$$f^{\epsilon} \rightharpoonup \alpha \delta_{x_0}$$

1.2 The Schrödinger Operator

An Operator A is defined by three properties:

- \bullet space, i.e. a Hilbertspace H
- domain, $dom A \subset H$
- operation, Au with $u \in dom A$

The Schrödinger Operator is definied on the space $H = L^2(\mathbb{R})$ by

$$Au = -u'' + Vu$$

Now the question what is the domain of A arises.

Example 1.3

$$i \cdot \frac{\partial \psi}{\partial t}) A \psi$$

For $\Omega \subset \mathbb{R}$ the probability of an particle being with Ω in t can be described as

$$\int_{\Omega} |\psi(x,t)|^2$$

One now often is interested in quantum states of such particle and we therefore formulate the spectral problem

$$Au = \lambda u$$

Now assume V is rather good, e.g. $V \in L^{\infty}(\mathbb{R})$ and $dom A = H^2(\mathbb{R})$.

Definition 1.4

We call an operator A symmetric if

$$(Au, v)_H = (u, Av) \quad \forall u, v \in dom H$$

Example 1.5

Let
$$A = -\frac{d^2}{dx^2} + V$$
 for $V : \mathbb{R} \to \mathbb{R}$

$$(Au, v) = \int -u'' \overline{v} dx + \int V u \overline{v} dx$$
$$= \int u' \overline{v'} dx + \int V u \overline{v} dx$$

$$(u, Av) = \int -u\overline{v''}dx + \int u\overline{V}vdx$$
$$= \int u'\overline{v'}dx + \int Vu\overline{v}dx$$

And therefore A is symmetric.

Definition 1.6

For an operator A the adjoint A^* is the unique operator such that $\forall v, v^* \in H$ where

$$(Au, v)_H = (u, v*) \quad \forall u \in dom A$$

Then define $dom A^* = \{v \in H\}$ and $A^*v = v^*$.

Definition 1.7

An operator A is self-adjoint if A = A*.

If A is a self-adjoint operator then A is already symmetric but not the other way round. But as soon as A is bounded and symmetric then the operator is self-adjoint.

Example 1.8

Let $H = L^2(0,1)$ and define $A = -\frac{d^2}{dx^2}$ on $dom A = C_0^{\infty}(0,1)$. As A is symmetric A^* is an extension of A, e.g. $A^* \supset A$.

Now for $v, v^* \in L^2$

$$\int -u''\overline{v}dx = \int u\overline{v^*} \forall u \in C_0^{\infty}(0,1)$$

Let $v \in C^{\infty}(0,1)$: $v^* := -v''$

$$\int -u''\overline{v}dx = -\int u'\overline{v'}dx = -\int u\overline{v''}dx = \int u\overline{v^*}dx$$

 $\Rightarrow H^2(0,1) \cap H^1_0(0,1) \Rightarrow A \text{ is self-adjoint.}$

Further, we are going to examine small or even singular particles more closely. The potential V is a vector such that gradV = F whereas F denotes the force acting upon a particle.

As in this case V has only a small support one could approximate V with a single-point potential.

But the operator itself is harder to understand

$$Au = -u'' + \delta_{r_0}u$$

For f, g:

$$\int (f \cdot g) \varphi dx = \int f (g \cdot \varphi) dx$$

Now suppose $f \in \mathcal{D}$, $q \in C^{\infty}(\mathbb{R})$:

$$\langle g \cdot f, \varphi \rangle \stackrel{def}{=} \langle f, \underbrace{g \cdot \varphi}_{\in \mathcal{D}} \rangle$$

1.3 Main Problem

For a differential equation we distinguish between three different solution concepts

- classical $u \in \mathbb{C}^2$
- strong $u \in H^2$
- weak $u \in H^1$

With some conditions to the potential those terms can be equivalent.

1.3.1 I:

Define A^{ϵ} on $dom A^{\epsilon} = H^{2}(\mathbb{R})$ with

$$A^{\epsilon}u = -u'' + \frac{1}{\epsilon}f(\frac{x}{\epsilon})u, \ f \in C_c^{\infty}(\mathbb{R})$$

while $\int_{\mathbb{R}} f(x) dx = \alpha \neq 0$. Now the question arises: $A^{\epsilon} \xrightarrow{\epsilon \to 0}$?

1.3.2 II:

 $Au - \mu u = f \in L^2, u \in \mathbb{C} \setminus \mathbb{R}$ with A = -u'' + V the resolvent.

$$(A - \mu I)^{-1}$$

todo check if A is self-adjoint \Rightarrow has solution for $\mathbb{C} \setminus \mathbb{R}$ defined and bounded arbetrary f Partial integration yields

$$\int u'\overline{v'}dx + \int Vu\overline{v}dx + \mu \int u\overline{v}dx = \int f\overline{v}dx \quad (*)$$

which holds for an arbitrary $v \in C_0^{\infty}(\mathbb{R}) <$

We say, u is a weak solution if $u \in H^1(\mathbb{R})$ and (*) holds. If the potential is even in L^{∞} then the solution is also a strong solution (i.e. $u \in H^2$) todo proof

For $f \in L^2(\mathbb{R})$, $Au - \mu u = f$ If we tale a potential V, then $\int Vu\overline{v}dx$ could be also written as $V(u\overline{v})$.

Now suppose $H = L^2(\mathbb{R}), A = -\frac{d^2}{dx^2} + \alpha \delta_{x_0}$

$$\int u'\overline{v}'dx + \alpha u(x_0)\overline{v}(x_0) + \mu \int u\overline{v}dx = \int f\overline{v}dx \quad \forall v \in C_0^{\infty}(\mathbb{R})(1)$$

Since this formular only evaluations vandu in $x_0 \Rightarrow \forall v \in H^1(\mathbb{R}), u \in H^1(\mathbb{R})$ is enough.

For d = 1: $H^1(\mathbb{R}) \subset C(\mathbb{R})$ todo proof

2 The definition of our operator

2.0.1 I:

Now, we want to show that (1) has a unique solution using the Lax-Milgram theorem: Let $\mathcal{H} = H^1(\mathbb{R})$ and define a[u, v] as LHS and $\langle f, v \rangle$ as RHS of (1):

$$a[u,v] := \int u'\overline{v}'dx + \alpha u(x_0)\overline{v}(x_0) + \mu \int u\overline{v}dx$$
$$\langle f, v \rangle := \int f\overline{v}dx$$

If $\mu \in \mathbb{R}$ todo check if that is really necessary since Lax-Milgram needs it, (and usse trace? inequality)

since $|u(x_0)|^2 = |u(x) + \int_x^{x_0} u'(\tau) d\tau|^2$ we can write with labech formula todo which formular is this?

$$a[u,v] = \int |u'|^2 + \alpha |u(x_0)|^2 - \mu \int |u|^2$$

$$\leq 2|u(x)|^2 + 2|\int_{x_0}^x u'(\tau)d\tau|^2$$

$$\leq 2|u(x)|^2 + 2\int_{x_0}^x |u'(\tau)|^2 d\tau (x_1 - x_0)^2$$

$$\leq 2|u(x)|^2 + 2\int_{x_0}^{x_1} |u'(\tau)|^2 d\tau (x_1 - x_0)^2$$

$$\xrightarrow{Integr.} (x_1 - x_0)|u(x_0)|^2 \le 2 \int_{x_0}^{x_1} |u(x)|^2 dx + 2(x_1 - x_0)^2 \int_{x_0}^{x_1} u'(\tau) d\tau$$

todo is there something missing? can't read what I've written there

$$\Rightarrow |u(x_0)|^2 \le \underbrace{\frac{2}{x_1 - x_0}}_{=:b} \int_{\mathbb{R}} |u(x)|^2 dx + \underbrace{2(x_1 - x_0)}_{=:b} \int_{\mathbb{R}} |u'(\tau)| d\tau$$

Now a is not independent from b, a small a results in a large b and vice versa. For $\alpha \geq 0$:

$$a[u, u] \stackrel{perdef}{\geq} \int |u'|^2 - \mu |u|^2$$

$$\stackrel{\mu < -1}{\geq} \int |u'|^2 + \int |u|^2$$

$$= ||u||_{\mathcal{H}}^2$$

For $\alpha < 0$

$$a[u, u] \ge \int |u'|^2 - \mu \int |u| + \alpha a \int |u(x)|^2 dx + \alpha b \int_{\mathbb{R}} |u'(\tau)| d\tau$$

$$= (1 + \alpha b) \int |u'|^2 + (\alpha a - \mu) \int |u|^2$$

$$= c||u||_{2\ell}^2$$

As we want that both coefficients in front of the integrals to be positive => we chose x_n correspondent is it really x_n . We therefore generally choose μ 'relatively' close to $-\infty$.

2.0.2 II:

Now, we have to proof:

$$|a[u,v]| \overset{Cauchy-Schwarz}{\underset{ford=1}{\leq}} \|u'\|_{L^{2}} \|v'\|_{L^{2}} + |\alpha| \left(a\|u\|_{L^{2}}^{2} + b\|u'\|_{L^{2}}^{2}\right)^{\frac{1}{2}} (... \text{same vor } v?)^{\frac{1}{2}} + |\mu| \|u\|_{L^{2}} \|v\|_{L^{2}}$$

$$\leq C\|u\|_{\mathcal{H}} \|v\|_{\mathcal{H}}$$

2.0.3 III:

$$|\langle f, v \rangle| \le c ||v||_{\mathcal{H}}$$

Which follows from (1) RHS , Hölder $=> L^2$ Norm of both $\leq H^1$ Norm! todo proof

Lax-Milgram gives as now the unique solution for the given problem.

2.1 Now to my homework

For $f \stackrel{R_{\mu}}{\mapsto} u$ solution of (1) and since (1) is the weak formulation of

$$\underbrace{-u'' + \alpha \delta_{x_0} u}_{=:Au} - \mu u = f \quad (2)$$

the mapping $f \mapsto u$ gives us also a weak solution of (2).

Now we focus on this equation: $Au - \mu = f$:

Definition 2.1

 $dom A = range R_{\mu} \subset H^{1}(\mathbb{R})$

$$Au := \underbrace{f}_{\in L^2} + \mu \underbrace{u}_{\in H^1} \subset L^2$$

2 The definition of our operator

So the next steps would be to

- describe domain of A explicitly
- show that $A = A^*$

Homework: Let $u \in dom A$ and $u \in C^2(-\infty, x_0]$ and also $u \in C^2[x_0, \infty)$

 \Rightarrow find conditions on u at $x_0such that our assumption holds by the way <math>u \in H^1(\mathbb{R})$.

Interesting facts:

If we take the closure of $C_0^\infty(\mathbb{R})$ but the Closure in $H^1!!!$ we get:

$$\bar{[t]}C_0^\infty(\mathbb{R}) = H^1$$

We want to construct the operator A in a smart way with

$$A = -\frac{d^2}{dx^2} + \alpha d_{x_0}, \quad \mathcal{H} = L^2(\mathbb{R})$$

Then we introduced the variational problem

$$\forall v \in H^1(\mathbb{R}): \quad \int \nabla u \overline{\nabla v} dx - \mu \int u \overline{v} dx + \alpha u(x_0) v(x_0) = \int f \overline{v} dx \quad (1)$$

 $\exists_1 u \in H^1(\mathbb{R}) \text{ satisfying } (1)$

$$L^2(\mathbb{R}) \ni f \mapsto u \eqqcolon R_u f$$

For $f_1 \neq f_2 \Rightarrow u_1 \neq u_2$, since:

Suppose
$$u_1 = u_2 \Rightarrow \int (f_1 - f_2)\overline{v} = 0 \quad \forall \underbrace{v \in H^1(\mathbb{R})}_{\text{and therefore}} \Rightarrow f_1 = f_2$$

Since H^1 is dense in $L^2 \Longrightarrow f_1 = f_2$

$$\Rightarrow \frac{f = R_{\mu}^{-1}u}{Au - \mu u} \} Au = R_{\mu}^{-1}u + \mu u$$

 $\Rightarrow dom A = range A \mathbb{R}_{mu}$

$$R_{\mu}^{-1}u = Au - \mu u \stackrel{\mathcal{F}}{=} g \text{ or } u = R_{\mu}g$$

$$\int u'v' - \mu \int u\overline{v} + \alpha u(x_0)v(x_0) = \int (Au - \mu u)\overline{v} \quad (2)$$

Lets take $v \in C_0^{\infty}(-\infty, x_0)$:

$$\Leftrightarrow \int_{-\infty}^{x_0} u'v'dx = \int_{-\infty}^{x_0} Au\overline{v}$$
$$\Leftrightarrow -\int_{-\infty}^{x_0} u\overline{v}''dx = \int_{-\infty}^{x_0} Au\overline{v}dx$$

for $u \in D'$:

$$\langle u^{(m)}, v \rangle = (-1)^m \langle u, v^{(m)} \rangle \quad v \in C^{\infty}$$

$$\Rightarrow \langle u^{(m)}, v \rangle = \langle u, v'' \rangle = \int_{-\infty}^{x_0} u \overline{v}'' = -\int_{-\infty}^{x_0} A u \overline{v}$$

 $\Rightarrow u'' = \underbrace{-Au}_{\in L^2}$ on $.(-\infty, x_0)$ Analogous argument on (x_0, ∞)

Therefore we can fix the statement:

$$dom A \supset \{u \in H^1(\mathbb{R}), u \in H^2(-\infty, x_0), u \in H^2(x_0, \infty)\}$$

for an arbitrary $b \in C_0^{\infty}(\mathbb{R})$, therefore with the help of (2) since $u \in H^2$ only on these two subintervals we integrate twice by parts on both sides of x_0

$$-\left(\int_{-\infty}^{x_0} + \int_{x_0}^{\infty}\right) u'' \overline{v} + \left(u'(x_0 - 0)v(x_0 - 0) - u'(x_0 + 0)v(x_0 + 0)\right) + \alpha u(x_0)\overline{v}(x_0)$$

$$= -\int_{-\infty}^{x_0} u'' v - \int_{x_0}^{\infty} s u'' v$$

which we can rewrite with the fact that v is continous and $v(x_0 + 0) = v(x_0 - 0)$, after all we know that $v \in C_0^{\infty}$

$$\Leftrightarrow u'(x_0 - 0) - u'(x_0 + 0) + \alpha u(x_0) = 0$$

 $\Rightarrow dom \subset \{u \in H^1(\mathbb{R}), u \in H^2(-\infty, x_0), u \in H^2(x_0, \infty), u'(x_0 - 0) - u'(x_0 + 0) + \alpha u(x_0) = 0\} =: B \text{ And the action of the operator is defined by}$

$$Au = \begin{cases} -u'', & (-\infty, x_0) \\ -u'', & (x_0, \infty) \end{cases}$$

Now lets show " \supset ":

Let $u \in B$, and since for $u \in B$ it holds $u \in H^2$ for both sides $f \coloneqq \begin{cases} -u'', & (-\infty, x_0) \\ -u'' & (x_0, \infty) \end{cases}$

Now we have to show that u is in Range of R_{μ} .

Idea: $Au = R_{\mu}^{-1}u + \mu u$

$$\Rightarrow u = R_{\mu}Au - \mu R_{\mu}u$$
$$= R_{\mu}(\underbrace{Au}_{f} - \mu u)$$

We have to show $u \in domA = rangeR_{\mu}$

guess take $u \in B$ construct $f = \begin{cases} -u'', & (-\infty, x_0) \\ -u'', (x_0, \infty) \end{cases}$ and further to show::

So we have to show $u = R_{\mu}(f - \mu u)$:

$$\int u'v' - \mu \int uv + \alpha u(x_0)v(x_0) = \int (f - \mu u)v$$

$$\int u'v' + \alpha u(x_0)v(x_0) = -\int_{-\infty}^{x_0} u''v - \int_{x_0} u''v$$

$$\Rightarrow \int u'v' + \alpha u(x_0)v(x_0) = \int_{-\infty}^{x_0} u'v' + \int_{x_0}^{\infty} u'v' - u'(x_0 - 0)v(x_0) + u'(x_0 + 0)v(x_0)$$

$$\alpha u(x_0)v(x_0) = u(x_0 + 0)v(x_0) - u(x_0 - 0)v(x_0)$$

 \Rightarrow holds for $B \Rightarrow dom A = B$.

Now we are going to show the self-adjointness:

We know that $A = R_{\mu}^{-1}u + \mu u$. We are going to show that R_{μ}^{-1} is symmetric and then A is of course symmetric as it is simply its shift.

As $dom R_{\mu} = L^2(\mathbb{R})$ and $range R_{\mu} = dom R_{\mu}^{-1}$ we are first going to focus on R_{μ} , and proof that this operator is symmetric:

$$(\underbrace{R_{\mu}f}_{=u},g)-(f,\underbrace{R_{\mu}g}_{=:v})=\gamma$$
 We want to show that $\gamma=0$:

$$\int u'\phi' - \mu u\overline{\phi} + \alpha u(x_0)\overline{\phi(x_0)} = \underbrace{\int f\overline{\phi}}_{v}$$
$$\int v'\psi - \mu \int v\overline{\psi} + \alpha u(x_0)\overline{\psi(x_0)} = \underbrace{\int g\overline{\psi}}_{v}$$

Summing over lines yields: $0 - 0 + 0 = \gamma$.

Now as we know that R_{μ} is symmetric we show that R_{μ}^{-1} is also symmetric:

$$(R_{\mu}^{-1}u, v) = (u, v^*) \quad u \in dom R_{\mu}^{-1}$$

 $u = R_{\mu}f$ for some f since $dom R_{\mu}^{-1} = range R_{\mu}$. Now we have to show that $v \in dom R_{\mu}^{-1}$ and since self-sadjoint and operator is definied on whole space

$$(f,v) = (R_{\mu}f, v^*) = (f, R_{\mu}v^*)$$
 for arbitrary $f \in C^2$

$$v = R_{\mu}v^* \Rightarrow v \in rangeR_{\mu} = domR_{\mu}^{-1}???$$