2. 機械学習の基本的な手順

: ツールによる支援が可能

2.1 Weka を用いた機械学習

- Weka とは
 - Waikato Environment for Knowledge Analysis
 - ・ 機械学習のアルゴリズムを実装した Java ライブラリ
 - データファイルを直接操作できる GUI を持つ
 - 講習では開発者版 3.9.3 を用いる
 - ライセンスは GNU GPL
 - プログラムの実行・改変・再配布が自由
 - ただし二次的著作物に対しても GNU GPL が適用される

勉強のためのデータセット

表 2.2 Weka 付属のデータ (一部)

データ名	内容	特徴	正解情報
breast-cancer	乳癌の再発	カテゴリ	クラス (2 値)
contact-lenses	コンタクトレンズの推薦	カテゴリ	クラス (3 値)
cpu	CPU の性能評価	数值	数值
credit-g	融資の審査	混合	クラス (2 値)
diabetes	糖尿病の検査	数值	クラス (2 値)
iris	アヤメの分類	数值	クラス (3 値)
ReutersCorn	記事分類	文字列	クラス (2 値)
supermarket	スーパーの購買記録	カテゴリ	なし
weather.nominal	ゴルフをする条件	カテゴリ	クラス (2 値)
weather.numeric	ゴルフをする条件	混合	クラス (2 値)

起動

• アプリケーションの選択

- Explorer: データの読み込みから、特徴選択・学習・評価を試行錯誤的に行うのに適した操作を提供
- Workbench: すべてのアプリケーションをまとめた GUI (カスタマイズ可能)
- Experimenter: ハイパーパラメータ等を変えて性能を比較実験
- KnowledgeFlow: 実験プロセスを GUI で組み立て
- SimpleCLI: コマンドラインインタフェース

Explorer での操作

- 前処理
 - データの読み込み
 - 標準化
 - 特徵選択
 - ・ 特徴の分析

- 識別
 - 100 以上の識別ア ルゴリズムの実装
 - 学習の設定
 - ハイパーパラメータの設定
 - ・ 学習結果の評価

- 可視化
 - データの2次元プ ロット

Explorer での操作

- 読み込み可能なデータ形式
 - ARFF (Attribute Relationship File Format) 形式
 - ヘッダ部とデータ部で構成
 - ヘッダ部
 - @relation:データ集合の名前(ファイル名と同じでよい)
 - @attribute:特徴の各次元の名前とデータの型を宣言
 - データ部
 - @data 以降に 1 行 1 件のデータを CSV 形式で記述
 - 各特徴・クラスラベルはカンマ区切り

• アヤメの分類データ (iris)

setosa

versicolor virginica

```
% 1. Title: Iris Plants Database @RELATION iris データセット名
```

萼・花びらの 長さ・幅

アヤメの 種類

```
@ATTRIBUTE sepallength REAL 特徴名と型 @ATTRIBUTE sepalwidth REAL @ATTRIBUTE petallength REAL
```

@ATTRIBUTE petalwidth REAL

@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}

@DATA

```
5.1, 3.5, 1.4, 0.2, Iris-setosa

4.9, 3.0, 1.4, 0.2, Iris-setosa

...

7.0, 3.2, 4.7, 1.4, Iris-versicolor

6.4, 3.2, 4.5, 1.5, Iris-versicolor

...

6.3, 3.3, 6.0, 2.5, Iris-virginica

5.8, 2.7, 5.1, 1.9, Iris-virginica
```

これ以降、1行に1事例 (Excelの CSV 形式と同じ)

- 特徴抽出後のデータを読み込む
 - いくつかの特徴の操作(フィルタの適用)が可能

2.1.2 前処理

- 分析
 - 主成分分析(次元削減)
 - データの散らばりをできるだけ保存する低次元空間へ 写像
 - データの可視化に有効
- データの標準化
 - すべての次元を平均0、分散1にそろえる
 - 各次元に対して平均値を引き、標準偏差で割る

$$x_i' = \frac{x_i - m_i}{\sigma_i}$$
 $m_i, \ \sigma_i$: 軸 i の平均、標準偏差

主成分分析の考え方

 \bar{x}_1, \bar{x}_2 :平均値、 $N: \vec{y}$ データ数

対角成分は分散、 非対角成分は相関を表す

$$\frac{\sum (x_1 - \bar{x}_1)(x_2 - \bar{x}_2)}{\sum (x_2 - \bar{x}_2)^2}$$

 Σ (\sharp

半正定値(→固有値がすべて0以上の実数) 対称行列(→固有ベクトルが実数かつ直交) であるので、以下のように分解できる

$$\Sigma' = U^T \Sigma U = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

 $\Sigma'=U^T\Sigma U=\left(egin{array}{cc} \lambda_1 & 0 \ 0 & \lambda_2 \end{array}
ight)$ は固有値の大きい順、Uは対応する 固有ベクトル $U_{_I},\ U_{_2}$ を並べたもの

 λ_{I} に対応する固有ベクトル U_{I} で 2次元データを1次元に射影

$$u_1 = U_1^T \boldsymbol{x}$$
 寄与率= $\frac{\lambda_1}{\lambda_1 + \lambda_2}$

• 標準化

- 主成分分析
 - iris データ (4 次元特徴) を 2 次元に

データのプロット (Visualize)

データのプロット (Visualize)

• 1 つのグラフのみ表示

2.1.4 学習 k-NN 法

- NN (Nearest Neighbor: 最近傍)法
 - ・識別したいデータと最も近い事例を求め、その事例の属するクラスを識別結果とする(1-NN法)
 - k 番目までの近い事例を求め、多数決を採るのが k-NN 法

識別器の学習 (Classify)

識別器の学習 (Classify)

• IBk (k-NN 法) のパラメータ

- 分割学習法
 - データの半分を学習用、残りの半分を評価用とする
 - ハイパーパラメータを調整する場合は、学習用・検 証用・評価用に分ける
- 交差確認法
 - データを m 個の集合に分割し、 m-1 個の集合で 学習、残りの 1 個の集合で評価を行う
 - 評価する集合を入れ替え、合計 m 回評価を行う
 - 分割数をデータ数とする場合を一つ抜き法とよぶ

- 分割学習法(1)
 - 全学習データ χ を学習用データ集合 χ と評価用 データ集合 χ に分割する
 - χ_τを用いて識別機を設計し、χ_εを用いて誤識別率
 を推定する

- 分割学習法(2)
 - 全学習データ χ を学習用データ集合 χ 、調整用 データ集合 χ 、評価用データ集合 χ に分割する
 - χ_{Γ} を用いて識別機を設計、 χ_{Γ} を用いてハイパーパラメータを調整、 χ_{Γ} を用いて誤識別率を推定する

• 交差確認法

識別器の学習 (Classify)

• 評価法の設定

識別器の学習 (Classify)

• 学習結果の見方

```
=== Summary ===
```

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Total Number of Instances

14 1 0.9167 0.1051 0.1645 31.4161 % 39.3051 % 15

```
正解率
93.3333 %
6.6667 %
```

=== Confusion Matrix ===

```
a b c d e <-- classified as
3 0 0 0 0 | a = a
0 3 0 0 0 | b = i
0 0 3 0 0 | c = u
0 0 0 3 0 | d = e
1 0 0 0 2 | e = o
```

縦方向が正解、横方向が予測 対角成分が正解数

結果の可視化

• 混同行列

	予測+	予測一
正解十	true positive(TP)	false negative(FN)
正解一	falsepositive(FP)	true negative(TN)

• 正解率
$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

• 精度
$$Precision = \frac{TP}{TP + FP}$$

• 再現率
$$Recall = \frac{TP}{TP + FN}$$

• F i
$$F$$
-measure = $2 \times \frac{Precision \times Recall}{Precision + Recall}$

正解の割合 クラスの出現率に 偏りがある場合は不適

正例の判定が 正しい割合

正しく判定された 正例の割合

> 精度と再現率の 調和平均

まとめ

• 機械学習の基本的なプロセス

- データの前処理で有効な技法
 - 標準化、主成分分析
- 代表的なベースライン手法
 - k-NN 法(1-NN は最も近い事例を答とする)
- 結果の評価
 - 分割学習法、交差確認法
 - 正解率、精度、再現率、 F 値