

Basic Electrical Technology

Node Voltage Analysis

Objective

> Application of KCL for analysis of DC circuits

Introduction

Kirchhoff's Current Law (KCL)

 States that at any node (junction) in a circuit, the algebraic sum of currents entering and leaving the node at any instant of time must be equal to zero.

Node

 A point in an electric circuit where 3 or more elements are connected.

Branch

- A conducting path between two nodes in a circuit containing circuit elements.
- The circuit has six branches

Node Voltage Analysis Method

- Convert all the practical voltage sources to current sources
- ► Identify nodes in the circuit
- ➤ One of the nodes is taken as reference node

- ➤ Assign a voltage to each of the remaining nodes
- ➤ Write KCL equations for all the nodes (excluding the reference node)
- ➤ Solve for voltages

Illustration 1

Determine the current through the galvanometer "G"

Ans: 84 mA

Illustration 1 contd...

How to write the network equations by inspection?

Illustration 2

Find the power dissipated in 8 Ω resistor. Use Node Voltage Method

Ans: 13.47 W

Illustration 3

Find the current through 40 V battery. Is the battery charging or discharging?

Ans: 4.19 A, Discharging

Homework

Determine the power dissipated in 8 Ω resistor. Is the 4 V source charging or discharging?

Ans: $P_{8\Omega} = 1.386 \text{ W}$ Charging

Summary

➤ Node voltages are determined

➤ Other operating conditions can be determined using the node voltages

➤ Concept of super-node:- If there is a voltage source between two nodes