## Question 30.

Let  $U \subseteq \mathbf{R}^n$  be an open set in  $\mathbf{R}^n$ , and let K be a compact subset of U. Prove that there exists an *infinitely differentiable* function  $\varphi : \mathbf{R}^n \to [0,1]$  such that  $\varphi(p) = 1$  for all  $p \in K$ , and  $\varphi(p) = 0$  for all  $p \in \mathbf{R}^n \setminus U$ . This is called a **bump function** supported on U.

(For a function  $f: U \to Y$ , the *n*th total derivative  $f^{(n)}$  is defined as follows: for n = 0, we set  $f^{(0)} = f$ ; for  $n \ge 1$ , if  $f^{(n-1)}$  is totally differentiable, we set  $f^{(n)} = (f^{(n-1)})'$ . We say that f is **infinitely differentiable** if  $f^{(n)}$  exists for all  $n \ge 0$ .)

*Proof.* First, we notice that the bump function in Big List #4 can be generalised to arbitrary intervals by simply performing horizontal translations. Now, we show that bump functions for closed rectangles within open rectangles in  $\mathbb{R}^n$  can be constructed.

Let  $R = \prod_{i=1}^n [a_i, b_i]$  be a closed rectangle that is inside an open rectangle  $S = \prod_{i=1}^n (c_i, d_i)$  in  $\mathbb{R}^n$ . This implies that for all  $i, c_i < a_i \le b_i < d_i$ . Considering this as an interval in  $\mathbb{R}$ , we can find a bump function  $\varphi_i$  such that  $\varphi_i([a_i, b_i]) = \{1\}$  and  $\varphi_i(\mathbb{R} \setminus (c_i, d_i)) = \{0\}$ . Notice that this is a function from  $\mathbb{R}$  to  $\mathbb{R}$ . We define  $\alpha_i : \mathbb{R}^n \to \mathbb{R}$  by  $\alpha_i(x) = \varphi_i(x_i)$ . It will be shown that the bump function supported in S is

$$\beta(x) = \prod_{i=1}^{n} \alpha_i(x)$$

If  $p = (p_1, ..., p_n) \in R$ , then for all  $i \in \{1, ..., n\}$ ,  $p_i \in [a_i, b_i]$ , so  $\alpha_i(p) = 1$ . We have

$$\beta(p) = \prod_{i=1}^{n} \alpha_i(p) = 1$$

Using a similar argument, if  $p \in \mathbb{R}^n \setminus S$ , there is at least one component of p such that  $p_i \notin (c_i, d_i)$ , and so  $\alpha_i(p) = 0$ , which implies that

$$\beta(p) = 0$$

as desired. Now, we can proceed proving the main result.

Let U be an open subset of  $\mathbb{R}^n$ , and let  $K \subseteq U$  be compact. For every  $y \in K$ , there exists an open ball centered around y so that  $B(y, \delta) \subseteq U$ .

## Question 31.

- (a) Let  $A \in M_n(\mathbf{R})$  be a symmetric matrix and let  $Q(\vec{x}) = \vec{x}^T A \vec{x}$  be the corresponding quadratic form. Prove that the following two statements are equivalent:
  - (i)  $Q(\vec{x}) > 0$  for all  $\vec{x} \neq \vec{0}$ .
  - (ii) All eigenvalues of A are strictly positive.

In this case, we say that Q is a **positive definite** quadratic form, and that A is a **positive definite** matrix.

- (b) Prove the following "stay away" lemma, which you will need for part (c): if  $Q : \mathbf{R}^n \to \mathbf{R}$  is a positive definite quadratic form, then there exists a constant  $\eta > 0$  such that  $Q(\vec{x}) \ge \eta ||\vec{x}||^2$  for all  $\vec{x} \in \mathbf{R}^n$ .
- (c) Let  $U \subseteq \mathbf{R}^n$  be an open set, let  $f: U \to \mathbf{R}$  be a twice continuously differentiable function, and let  $p_0 \in U$  be a point at which  $\nabla f(p_0) = \vec{0}$ . Prove that if the Hessian matrix  $Hf(p_0)$  is positive definite, then f achieves a **local minimum** at  $p_0$ ; *i.e.*  $p_0$  has an open neighborhood  $U_0$ , contained in U, such that  $f(p) \geq f(p_0)$  for all  $p \in U_0$ .

Proof. (a):

Suppose that  $Q(\vec{x}) > 0$  for all  $\vec{x} \neq 0$ . Since A is symmetric, it is orthogonally diagonalizable, so there exists an orthogonal matrix  $P \in M_n(\mathbb{R})$  such that  $B = P^{\top}AP$  is diagonal. Letting  $Q_B(\vec{x}) = \vec{x}^{\top}B\vec{x}$ , we have that

$$Q(\vec{x}) = Q_B \circ P(\vec{x})$$

We will show that  $Q_B(\vec{x}) > 0$  for all  $\vec{x} \neq 0$ .

Let  $\vec{x} \in \mathbb{R}^n$  so that  $\vec{x} \neq 0$ . Since  $Q(\vec{x}) > 0$ , it follows that  $Q_B(\vec{x}) > 0$  as well, which implies that its eigenvalues are strictly positive. Since A and B share the same eigenvalues, we are done with this direction.

Г