CH3) Arithmétique dans un anneau principal

Dans tout ce document, $(A, +, \times)$ désigne un anneau **intègre.** On note A^* le groupe des unités de A (ne pas confondre avec le sous-ensemble $A \setminus \{0\}$).

1. Divisibilité dans un anneau intègre

Définition 1.1. On note $/_A$ la relation sur $A \setminus \{0\}$ définie par :

$$x /_A y \Leftrightarrow \exists z \in A \ y = zx$$

On dit alors que x divise y, et que y est un multiple de x.

Cette relation est un **préordre :** elle est réflexive, transitive, mais pas symétrique ni antisymétrique. En fait :

Lemme 1.2. Soient x, y dans $A \setminus \{0\}$. Alors :

$$(x /_A y \ et \ y /_A x) \Leftrightarrow \exists u \in A^* \ y = xu$$

 $D\acute{e}monstration$. Par hypothèse, il existe u, v dans A tels que :

$$y = xu$$
 et $x = yv$

Donc:

$$y = xu = yuv$$

D'où:

$$y(uv - 1) = 0$$

Comme $y \neq 0$ et A intègre, on obtient uv = 1 : u (ainsi que v) est inversible, i.e. dans A^* .

Corollaire 1.3. Soit $u \in A^*$. Alors :

$$\forall x \in A, \ x /_A \ u \Leftrightarrow x \in A^*$$

2. Anneau principal

Soit x un élément non-nul de A.

Théorème - Définition 2.1. L'ensemble des multiples de x est un idéal de A. Il est noté xA.

Un idéal de $(A, +, \times)$ qui est de la forme xA est dit **principal**.

Exercice 2.2. Montrer que xA est l'idéal engendré par $\{x\}$.

Remarque 2.3. La relation de divisibilité correspond à la relation d'inclusion entre idéaux. En effet :

$$x/_A y \Leftrightarrow yA \subset xA$$

Lemme 2.4. Soient x, y dans A. On a:

$$xA = yA \Leftrightarrow \exists u \in A^* \ y = xu$$

Définition 2.5. Si xA = yA on dit que x et y sont **associés**. On note :

$$x \sim y$$

Définition 2.6. L'anneau $(A, +, \times)$ est **principal** si il est intègre et tout idéal de $(A, +, \times)$ est principal.

Nous savons déjà que $(\mathbb{Z}, +, \times)$ est principal.

Proposition 2.7. Soit I un idéal de $(A, +, \times)$. On suppose que $(A, +, \times)$ est principal. Alors, tout idéal de l'anneau quotient $(A/I, +, \times)$ est principal.

Démonstration. Soit $p_I:A\to A/I$ la surjection canonique. Soit J un idéal de $(A/I,+,\times)$. Alors, $J'=(p_I)^{-1}(J)$ est un idéal de $(A,+,\times)$. Comme ce dernier est principal, il existe x dans A tel que :

$$J' = xA$$

On note $\bar{x} = p_I(x)$. Alors \bar{x} appartient à $J = p_I(J')$. Donc :

$$\bar{x}(A/I) \subset J$$

Inversement, pour tout \bar{y} dans J, il existe y dans J' tel que $p_I(y) = \bar{y}$. Comme J' = xA, y est un multiple de x: il existe z dans A tel que:

$$y = xz$$

Alors:

$$\bar{y} = p_I(y) = p_I(x)p_I(z) = \bar{x}p_I(z)$$

ce qui montre bien :

$$J \subset \bar{x}(A/I)$$

- 3. Plus petit multiple commun, plus grand diviseur commun
- 3.1. Plus petit multiple commun. Nous avons déjà vu qu'une intersection d'idéal est un idéal. Dans un anneau principal, tout idéal est principal...

Définition 3.1. Soit $(A, +, \times)$ un anneau principal. Soient a, b deux éléments de A. Tout élément qui engendre l'idéal $aA \cap bA$ est appelé **plus petit multiple commun à** a **et** b. On note :

$$ppcm(a, b)$$
 ou $a \lor b$

On a donc:

$$aA \cap bA = (a \vee b)A$$

Remarque 3.2. Le ppcm n'est pas unique, mais il l'est modulo les unités. Plus précisément, si μ et μ' sont des ppcm de a et de b alors il existe une unité $u \in A^*$ telle que :

$$\mu' = u\mu$$

Lemme 3.3. Soit $(A, +, \times)$ un anneau principal. Soient a, b deux éléments de A. Un élément μ de A est un ppcm de a et b si et seulement :

$$\left\{ \begin{array}{ll} a \mathrel{/_A} \mu \ et \ b \mathrel{/_A} \mu & , \\ \forall x \in A, & a \mathrel{/_A} x \ et \ b \mathrel{/_A} x \implies \mu \mathrel{/_A} x \end{array} \right.$$

Démonstration. La première assertion signifie exactement que μ est dans $aA \cap bB$, et la seconde, que tout élément de $aA \cap bA$ est un multiple de μ , *i.e.* que μ engendre l'idéal $aA \cap bA$.

Plus généralement :

Théorème - Définition 3.4. Soit $(A, +, \times)$ un anneau principal. Soient $(a_i)_{1 \leq i \leq n}$ une famille d'éléments de A. Tout élément qui engendre l'idéal $\bigcap_{1 \leq i \leq n} a_i A$ est appelé plus petit multiple commun aux a_i . On note :

$$ppcm(a_1, a_2, ..., a_n)$$
 ou $a_1 \vee a_2 \vee ... \vee a_n$

Il est caractérisé comme étant un élément μ de A tel que :

$$\left\{ \begin{array}{ll} \forall i & a_i \mathbin{/_A} \mu \\ \forall x \in A, & (\forall i, \ a_i \mathbin{/_A} x) \implies \mu \mathbin{/_A} x \end{array} \right.$$

Il est défini modulo les unités de A

3.2. Plus grand diviseur commun.

Définition 3.5. Soit $(A, +, \times)$ un anneau principal. Soient a, b deux éléments de A. Tout élément qui engendre l'idéal aA + bA est appelé **plus grand diviseur commun à** a **et** b. On note :

$$pgcd(a,b)$$
 ou $a \wedge b$

On a donc:

Théorème 3.6 (de Bezout dans un anneau principal quelconque). Soit $(A, +, \times)$ un anneau principal. Soient a, b deux éléments de A. Si un élément δ de A est un pgcd de a et de b alors :

$$\exists u \in A \ \exists v \in A, \ \delta = au + by.$$

La réciproque est vraie si δ est inversible.

Lemme 3.7. Soit $(A, +, \times)$ un anneau principal. Soient a, b deux éléments de A. Un élément δ de A est un pgcd de a et b si et seulement :

$$\left\{ \begin{array}{ll} \delta \mathrel{/_A} a \ et \ \delta \mathrel{/_A} b & , \\ \forall x \in A, & x \mathrel{/_A} a \ et \ x \mathrel{/_A} b \implies x \mathrel{/_A} \delta \end{array} \right.$$

Démonstration. La première assertion signifie exactement que δ est dans l'idéal aA+bA engendré par a et b, et la seconde, que tout élément de aA+bA est un multiple de δ , i.e. que δ engendre l'idéal aA+bA.

Plus généralement :

Théorème - Définition 3.8. Soit $(A, +, \times)$ un anneau principal. Soient $(a_i)_{1 \leq i \leq n}$ une famille d'éléments de A. Tout élément qui engendre l'idéal engendré par $\{a_1, a_2, ..., a_n\}$ est appelé plus grand diviseur commun aux a_i . On note :

$$pgcd(a_1, a_2, ..., a_n)$$
 ou $a_1 \wedge a_2 \wedge ... \wedge a_n$

Il est caractérisé comme étant un élément δ de A tel que :

$$\left\{ \begin{array}{ll} \forall i & \delta \: /_A \: a_i \\ \forall x \in A, & (\forall i, \: x \: /_A \: a_i) \implies x \: /_A \: \delta \end{array} \right.$$

Il est défini modulo les unités de A.

3.3. Éléments premiers entre eux.

Définition 3.9. Soit $(A, +, \times)$ un anneau principal. Soient a, b deux éléments de A. On dit que a et b sont premiers entre eux si:

$$\forall d \in A, d /_A a \ et \ d /_A b \implies d \in A^*$$

En d'autre termes, a et b sont premiers entre eux si leurs seuls diviseurs communs sont tous les inversibles (c'est à dire les éléments de A qui de toute manière divisent tous les éléments de A).

Clairement, deux éléments a et b sont premiers entre eux si et seulement leur pgcd est 1. En particulier :

Théorème 3.10. Soit $(A, +, \times)$ un anneau principal. Soient a, b deux éléments de A. Alors, a et b sont premiers entre eux si et seulement si l'idéal aA + bA qu'ils engendrent est A tout entier. Ceci équivaut à :

$$\exists u, v \in A \ ux + vy = 1$$

4. Décomposition en facteurs premiers

4.1. Élément premier, élément irréductible.

Définition 4.1. Un élément p de $A \setminus \{0\}$ est irréductible si:

$$\left\{ \begin{array}{ll} p \notin A^*, \\ \forall a,b \in A, & p = ab \implies a \in A^* \ ou \ b \in A^* \end{array} \right.$$

Lemme 4.2. Soit $p \in A \setminus \{0\}$. Alors p est irréductible si et seulement si :

$$\left\{ \begin{array}{ll} p \notin A^*, \\ \forall a,b \in A, & p = ab \implies p \sim a \ ou \ p \sim b \end{array} \right.$$

Définition 4.3. Un élément p de $A \setminus \{0\}$ est **premier** si:

$$\left\{ \begin{array}{l} p \notin A^*, \\ \forall a,b \in A, \quad p \mathbin{/}_A \ ab \implies p \mathbin{/}_A \ a \ ou \ p \mathbin{/}_A \ b \end{array} \right.$$

4.2. Équivalence premier-irréductible.

Théorème 4.4. Soit $(A, +, \times)$ un anneau principal. Un élément de $A \setminus \{0\}$ est premier si et seulement si il est irréductible.

Remarque 4.5. L'implication premier \implies irréductible est vraie dans tout anneau intègre, mais l'implication inverse utilise le fait que $(A, +, \times)$ est supposé principal.

Démonstration. Soit $p \in A \setminus \{0\}$. On suppose $p \notin A^*$.

- Si p est premier: Soient a, b tels que p = ab. Donc p divise a ou b; disons qu'il divise a: a = pa'. Alors p = pa'b, d'où b inversible puisque A est intègre.
- Si p est irréductible: Soient a, b tels que p divise ab. Soit d le pgcd de a et de p. Alors d divise p ainsi que a. Nous avons l'alternative suivante : soit d est inversible, soit il ne l'est pas. Dans le premier cas, a et p sont premiers entre eux, et il existe u, v tel que :

$$1 = au + pv$$

On multiplie les deux termes par b:

$$b = abu + pbv$$

Comme p divise ab, on voit qu'il divise b.

Dans l'autre cas, d n'est pas inversible. Comme p est irréductible, et que d divise p, c'est que d et p sont associés. En particulier, p divise a puisque d divise a.

4.3. Décomposition en facteurs premiers : existence.

Définition 4.6. Soit a un élément non-nul de A. Une décomposition de a en facteurs irréductibles est la donnée d'un élément u de A^* et d'éléments irréductibles p_1, p_2, \ldots, p_n de A tels que :

$$a = up_1p_2...p_n$$

Théorème 4.7. Soit $(A, +, \times)$ un anneau principal. Alors, tout élément non nul de A admet une décomposition en facteurs irréductibles.

Démonstration. Soit \mathcal{A} l'ensemble des éléments de A qui admettent une décomposition en facteurs irréductibles. Supposons par l'absurde que \mathcal{A} ne soit pas $A \setminus \{0\}$ tout entier, *i.e.* qu'il existe un élément a_1 non nul hors de \mathcal{A} . Alors, a_1 n'est pas irréductible. On peut donc l'écrire comme un produit de deux éléments non inversibles de A. De plus, si ces deux facteurs étaient dans \mathcal{A} , leur produit, a_1 , serait aussi dans \mathcal{A} . Donc l'un d'entre eux n'est pas dans \mathcal{A} . On peut donc écrire :

$$a_1 = a_2 \alpha_1$$

où $a_2 \notin \mathcal{A}$. En itérant l'argument, on construit par récurrence une suite $(a_n)_{n \in \mathbb{N}}$ telle que, pour tout n, on a :

$$\begin{cases} a_n = a_{n+1}\alpha_n, \\ a_{n+1} \notin \mathcal{A}, \ \alpha_n \notin A^* \end{cases}$$

On voit que pour tout n, a_{n+1} divise a_n , et donc :

$$a_n A \subset a_{n+1} A$$

Les a_nA forment donc une suite croissante d'idéaux, dont l'union est donc un idéal de A. Comme A est principal, il existe $a_{\infty} \in A$ tel que :

$$a_{\infty}A = \bigcup_{n>1} a_n A$$

D'une part, a_{∞} divise tous les a_n (car $a_nA \subset a_{\infty}A_{\infty}$). Par ailleurs, a_{∞} appartient à l'union des a_nA : il existe donc un entier n tel que $a_{\infty} \in a_nA$. Donc a_n divise a_{∞} . D'après le lemme 1.2 a_{∞} et a_n sont associés, et donc $a_nA = a_{\infty}A$. Donc:

$$a_n A \subset a_{n+1} A \subset a_\infty A = a_n A$$

On en déduit que a_n et a_{n+1} sont associés, mais c'est absurde puisque $\alpha_n \notin A^*$. \square

4.4. Décomposition en facteurs premiers : unicité.

Théorème 4.8. Soit $(A, +, \times)$ un anneau principal et a un élément non nul de A. Considérons deux décompositions de a en facteurs irréductibles :

$$a = up_1p_2...p_n$$
 avec $u \in A^*$ et $p_1, p_2, ..., p_n$ irréductibles

et

$$a = vq_1q_2...q_m$$
 avec $v \in A^*$ et $q_1, q_2, ..., q_m$ irréductibles

Alors, n = m, et à une permutation des facteurs près, on a $p_i \sim q_i$ pour tout i.

Démonstration. Soit P(n) l'assertion : L'énoncé du théorème est vrai pour tout élément x de A qui admet une décomposition en facteurs irréductibles avec exactement n facteurs irréductibles.

Nous allons montrer par récurence sur n que P(n) est vraie pour tout $n \ge 0$, ce qui montrera le théorème.

Initialisation: Montrons P(0): cette assertion signifie qu'un élément inversible ne peut être multiple d'un élément irréductible. Ceci découle du Corollaire 1.3 (puisque par définition, un irréductible n'est pas inversible).

Hérédité: Supposons que P(n-1) est vrai, avec $n \ge 1$, et montrons P(n). Soit donc a un élément de A admettant une décomposition avec exactement n facteurs irréductibles :

$$a = up_1p_2...p_n$$

Soit $a=vq_1q_2...q_m$ une autre décomposition en facteurs irréductibles. Le terme p_n de la première décomposition divise a, et donc $vq_1q_2...q_m$. Comme p_n est irréductible, il est premier. Donc il divise soit q_m , soit $vq_1q_2...q_{m-1}$. Si on est dans le second cas, on itère l'argument : p_n divise soit q_{m-1} , soit $vq_1q_2...q_{m-2}$. De proche en proche, on montre que soit p_n divise un des q_i soit il divise v. Mais cette dernière alternative est impossible d'après le Corollaire 1.3.

On a donc montré que p_n divise un des q_i , disons, quitte à permuter les q_i , qu'il divise q_m . On a donc $q_m = p_n \alpha$. Comme q_m est irréductible et que p_n n'est pas inversible, α est une unité. Donc, $p_n \sim q_m$, et :

$$up_1p_2...p_{n-1} = (v\alpha)q_1q_2...q_{m-1}$$

Le facteur $v\alpha$ est inversible, donc on a égalité entre deux décompositions en facteurs irréductibles, une des décompositions faisant intervenir n-1 facteurs irréductibles. Par hypothèse de récurrence P(n-1), on a m-1=n-1, i.e. m=n, et, après permutation des facteurs, chaque p_i est associé à q_i . Donc P(n) est vrai.