

For K-Nearest Neighbors, training data is the model

- For K-Nearest Neighbors, training data is the model
- Fitting is fast—just store data

- For K-Nearest Neighbors, training data is the model
- Fitting is fast—just store data
- Prediction can be slow—lots of distances to measure

- For K-Nearest Neighbors, training data is the model
- Fitting is fast—just store data
- Prediction can be slow—lots of distances to measure
- Decision boundary is flexible

 For logistic regression, model is just parameters

- For logistic regression, model is just parameters
- Fitting can be slow—must find best parameters

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

- For logistic regression, model is just parameters
- Fitting can be slow—must find best parameters
- Prediction is fast—calculate expected value

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

- For logistic regression, model is just parameters
- Fitting can be slow—must find best parameters
- Prediction is fast—calculate expected value
- Decision boundary is simple, less flexible

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

 Want to predict whether to play tennis based on temperature, humidity, wind, outlook

- Want to predict whether to play tennis based on temperature, humidity, wind, outlook
- Segment data based on features to predict result

- Want to predict whether to play tennis based on temperature, humidity, wind, outlook
- Segment data based on features to predict result

Leaves

- Want to predict whether to play tennis based on temperature, humidity, wind, outlook
- Segment data based on features to predict result

- Want to predict whether to play tennis based on temperature, humidity, wind, outlook
- Segment data based on features to predict result
- Trees that predict categorical results are <u>decision trees</u>

- Example: use slope and elevation in Himalayas
- Predict average precipitation (continuous value)

- Example: use slope and elevation in Himalayas
- Predict average precipitation (continuous value)

- Example: use slope and elevation in Himalayas
- Predict average precipitation (continuous value)
- Values at leaves are averages of members

BUILDING A DECISION TREE

Select a feature and split data into binary tree

BUILDING A DECISION TREE

- Select a feature and split data into binary tree
- Continue splitting with available features

BUILDING A DECISION TREE

- Select a feature and split data into binary tree
- Continue splitting with available features

Until:

Leaf node(s) are pure—only one class remains

Until:

- Leaf node(s) are pure—only one class remains
- A maximum depth is reached

Until:

- Leaf node(s) are pure—only one class remains
- A maximum depth is reached
- A performance metric is achieved

Use greedy search: find the best split at each step

- Use greedy search: find the best split at each step
- What defines the best split?

- Use greedy search: find the best split at each step
- What defines the best split?
- One that maximizes the information gained from the split

- Use greedy search: find the best split at each step
- What defines the best split?
- One that maximizes the information gained from the split
- How is information gain defined?

Classification Error Equation

$$E(t) = 1 - \max_{i} [p(i|t)]$$

Classification Error Equation

$$E(t) = 1 - \max_{i} [p(i|t)]$$

Classification Error Before

$$1 - \frac{8}{12} = 0.3333$$

Classification Error Equation

$$E(t) = 1 - \max_{i} [p(i|t)]$$

Classification Error Left Side

$$1 - \frac{2}{4} = 0.5000$$

Classification Error Equation

$$E(t) = 1 - \max_{i} [p(i|t)]$$

Classification Error Left Side

$$1 - \frac{2}{4} = 0.5000$$

Classification Error Equation

$$E(t) = 1 - \max_{i} [p(i|t)]$$

Classification Error Right Side

$$1 - \frac{6}{8} = 0.2500$$

Classification Error Equation

$$E(t) = 1 - \max_{i} [p(i|t)]$$

Classification Error Change

$$0.3333 - \frac{4}{12} * 0.5000 - \frac{8}{12} * 0.2500$$

Classification Error Equation

$$E(t) = 1 - \max_{i} [p(i|t)]$$

Classification Error Change

$$0.3333 - \frac{4}{12} * 0.5000 - \frac{8}{12} * 0.2500$$

$$= 0$$

- Using classification error, no further splits would occur
- Problem: end nodes are not homogeneous
- Try a different metric?

Entropy Equation

$$H(t) = -\sum_{i=1}^{n} p(i|t)log_2[p(i|t)]$$

Entropy Equation

$$H(t) = -\sum_{i=1}^{n} p(i|t)log_2[p(i|t)]$$

Entropy Before

$$-\frac{8}{12}\log_2(\frac{8}{12}) - \frac{4}{12}\log_2(\frac{4}{12})$$

= 0.9183

Entropy Equation

$$H(t) = -\sum_{i=1}^{n} p(i|t)log_2[p(i|t)]$$

Entropy Left Side

$$-\frac{2}{4}\log_2(\frac{2}{4}) - \frac{2}{4}\log_2(\frac{2}{4})$$

= 1.0000

Entropy Equation

$$H(t) = -\sum_{i=1}^{n} p(i|t)log_2[p(i|t)]$$

Entropy Right Side

$$-\frac{6}{8}\log_2(\frac{6}{8}) - \frac{2}{8}\log_2(\frac{2}{8})$$

= 0.8113

Entropy Equation

$$H(t) = -\sum_{i=1}^{n} p(i|t)log_2[p(i|t)]$$

Entropy Right Side

$$0.9183 - \frac{4}{12} * 1.0000 - \frac{8}{12} * 0.8113$$

= 0.0441

 Splitting based on entropy allows further splits to occur

- Splitting based on entropy allows further splits to occur
- Can eventually reach goal of homogeneous nodes

- Splitting based on entropy allows further splits to occur
- Can eventually reach goal of homogeneous nodes
- Why does this work with entropy but not classification error?

 Classification error is a flat function with maximum at center

$$E(t) = 1 - \max_{i} [p(i|t)]$$

- Classification error is a flat function with maximum at center
- Center represents ambiguity—50/50 split

$$E(t) = 1 - \max_{i} [p(i|t)]$$

- Classification error is a flat function with maximum at center
- Center represents ambiguity—50/50 split
- Splitting metrics favor results that are furthest away from the center

$$E(t) = 1 - \max_{i}[p(i|t)]$$

Entropy has the same maximum but is curved

$$H(t) = -\sum_{i=1}^{n} p(i|t)log_2[p(i|t)]$$

- **Entropy has the same maximum** but is curved
- **Curvature allows splitting to** continue until nodes are pure

$$H(t) = -\sum_{i=1}^{n} p(i|t)log_2[p(i|t)]$$

- **Entropy has the same maximum** but is curved
- **Curvature allows splitting to** continue until nodes are pure
- How does this work?

$$H(t) = -\sum_{i=1}^{n} p(i|t)log_2[p(i|t)]$$

With classification error, the function is flat

With classification error, the function is flat

- With classification error, the function is flat
- Final average classification error can be identical to parent

- With classification error, the function is flat
- Final average classification error can be identical to parent
- Resulting in premature stopping

With entropy gain, the function has a "bulge"

- With entropy gain, the function has a "bulge"
- Allows average information of children to be less than parent

- With entropy gain, the function has a "bulge"
- Allows average information of children to be less than parent
- Results in information gain and continued splitting

THE GINI INDEX

In practice, Gini index often used for splitting

$$G(t) = 1 - \sum_{i=1}^{n} p(i|t)^{2}$$

THE GINI INDEX

- In practice, Gini index often used for splitting
- Function is similar to entropy has bulge

$$G(t) = 1 - \sum_{i=1}^{n} p(i|t)^{2}$$

THE GINI INDEX

- In practice, Gini index often used for splitting
- Function is similar to entropy has bulge
- Does not contain logarithm

DECISION TREES ARE HIGH VARIANCE

Problem: decision trees tend to overfit

DECISION TREES ARE HIGH VARIANCE

- Problem: decision trees tend to overfit
- Small changes in data greatly affect prediction high variance

DECISION TREES ARE HIGH VARIANCE

- Problem: decision trees tend to overfit
- Small changes in data greatly affect prediction high variance
- Solution: Prune trees

- Problem: decision trees tend to overfit
- Small changes in data greatly affect prediction—high variance
- Solution: Prune trees

- Problem: decision trees tend to overfit
- Small changes in data greatly affect prediction—high variance
- Solution: Prune trees

How to decide what leaves to prune?

- How to decide what leaves to prune?
- Solution: prune based on classification error threshold

$$E(t) = 1 - \max_{i} [p(i|t)]$$

STRENGTHS OF DECISION TREES

Easy to interpret and implement—"if ... then ... else" logic

STRENGTHS OF DECISION TREES

- Easy to interpret and implement—"if ... then ... else" logic
- Handle any data category binary, ordinal, continuous

STRENGTHS OF DECISION TREES

- Easy to interpret and implement—"if ... then ... else" logic
- Handle any data category binary, ordinal, continuous
- No preprocessing or scaling required

Import the class containing the classification method.

from sklearn.tree import DecisionTreeClassifier

Import the class containing the classification method.

from sklearn.tree import DecisionTreeClassifier

Create an instance of the class.

Import the class containing the classification method.

from sklearn.tree import DecisionTreeClassifier

Create an instance of the class.

Import the class containing the classification method.

```
from sklearn.tree import DecisionTreeClassifier
```

Create an instance of the class.

Fit the instance on the data and then predict the expected value.

```
DTC = DTC.fit(X_train, y_train)
y_predict = DTC.predict(X_test)
```

Import the class containing the classification method.

```
from sklearn.tree import DecisionTreeClassifier
```

Create an instance of the class.

Fit the instance on the data and then predict the expected value.

```
DTC = DTC.fit(X_train, y_train)
y_predict = DTC.predict(X_test)
```

Tune parameters with cross-validation. Use DecisionTreeRegressor for regression.

