Resistência dos Materiais - I

Pedro Henrique Limeira da Cruz March 27, 2023

Contents

1	Intr	rodução e Definições	•
	1.1	Modelos de Suporte e Vínculos	
	1.2	Equilíbrio Estático	:
	1.3	Carregamentos Combinados	ļ
	1.4	Equilíbrio Interno de Corpos	6
		1.4.1 Convenção de Sinais	6
2		todo das Equações Diferenciais de Equilíbrio	7
	2.1	Introdução e Equações Diferenciais	7
	2.2	Condições de Contorno	8
	2.3	Função de Singularidade	Ć
	2.4	Método de Resolução - Equações Diferenciais de Equilíbrio	1(
	2.5	One Pager	11

1 Introdução e Definições

A matéria de resistência dos materiais que iremos estudar nada mais é do que a análise de mecânica estática, só que, dessa vez, para corpos que se deformam. Levando isso em consideração, teremos primeiro que revisar alguns conceitos importantes de estática, sendo eles, de modo geral:

- Modelos de Suporte e Vínculos
- Equilíbrio Estático : cargas simples, combinadas, carregamentos distribuídos, ...

1.1 Modelos de Suporte e Vínculos

Como o nosso objetivo é modelar o sistema para aplicarmos os equacionamentos de estática (e mais para frente outros mais específicos de ResMat) precisamos, primeiro, ser capazes de identificar as forças que atuam sobre o corpo em análise. Por isso remos revisar as diferentes forças de reação que cada tipo de suporte gera em uma viga:

Nome	Exemplo	Representação	D.C.L	Descrição	Cometário
Rolete	A minum B	A	$lack_{ m R_{yA}}$	Resistente a forças em somente uma linha de direção	Importante observar que a representação possui DUAS linhas horzon- tais abaixo do triângulo.
Pino	F _y	A tulillin	R _{xA}	Resistente a forças em duas linhas de ação Reação de apoio: 2 incógnitas	Importante observar que a representação possui somente UMA linha horzontai abaixo do triângulo.
Engaste	A	A	R _{xA} M _{zA}	• Resiste a Forças e Momentos	Até o momento é o único vínculo que resiste a mo- mento.

Table 1: Principais Suportes e Vínculos - 2D

Tendo em vista que há diferentes suportes e vínculos, é importante entender o processo de escolha de vínculos durante análise de uma força/momento. Para tal, podemos nos perguntar:

- 1. O apoio/vínculo impede algum movimento que será resultante da força sob análise? Se a resposta for $n\tilde{a}o$, podemos simplesmente desconsiderar o vinculo na nossa modelagem. Se a resposta for sim, ele impede um movimento, podemos prosseguir para outras perguntas.
- 2. O apoio/vínculo impede que a peça "gire" como resultado da força? Se a resposta for sim isso significa que o suporte restringe tanto forças quanto momentos. Como temos somente um vínculo (o engaste) que tem essa característica, podemos usa-lo durante nossa modelagem. Se a resposta for não, ficamos entre um rolete e um pino.
- 3. O apoio/vínculo impede a movimentação, que seria resultante da força, em mais de um eixo? Se *sim*, temos um pino. Caso contrário teremos um rolete.

1.2 Equilíbrio Estático

Como dito anteriormente, o ponto de partida de ResMat é a estática mecânica. Agora que já definimos os principais modelos de forças de reação, podemos descrever o equilíbrio estático (assim como foi feito durante o estudo de Estática).

O principal conceito que rege o equilíbrio estático é que o sistema não possui aceleração, logo há a conservação tanto da quantidade de movimento linear quanto angular, resultando nas respectivas equações:

$$\sum \vec{F} = 0 \Rightarrow \begin{cases} \sum F_x = 0 \\ \sum F_y = 0 \\ \sum F_z = 0 \end{cases}$$

$$\sum \vec{M} = 0 \Rightarrow \begin{cases} \sum M_x = 0 \\ \sum M_y = 0 \\ \sum M_z = 0 \end{cases}$$

Para problemas de sistemas planos, as equações se resumem à:

A depender da topologia, no que tange equilíbrio estático, um sistema pode ser definido como:

- Sistema Isostático: As vinculações são suficientes para satisfazer o equilíbrio estático, número de incógnitas igual ao numero de equações.
- Sistema Hiperestático: As vinculações são em excesso para satisfazer o equilíbrio estático, número de incógnitas maior ao numero de equações.
- Sistema Hipostático: As vinculações não são suficientes para satisfazer o equilíbrio estático, número de incógnitas menor ao numero de equações.

1.3 Carregamentos Combinados

Já vimos anteriormente no caso de cargas combinadas que, a depender das forças que o corpo sofre (e resiste) nós iremos representar os suportes e vínculos de uma forma específica. Agora, nós iremos expandir esse assunto e descrever de forma detalhada os diferentes modelos que nós usamos para os corpos que sofrem essas forças e reações e descrever suas prioridades.

A parte mais fundamental para entender o porque há diferentes modelos para descrever os corpos que $s\tilde{ao}$ esbeltos (*i.e* possuem comprimento muito maior que sua largura e altura) é:

Problemas de carregamento transversal, longitudinal e torsional são independentes

Isso nos diz que podem haver problemas de carregamentos combinados que sejam necessários 3 modelos distintos para serem modelados, cada um com um modelo específico para o corpo, como podemos ver abaixo:

Nome	Exemplo	Descrição	Equação
Barra	A B• C $\xrightarrow{F_C}$ \xrightarrow{x}	Corpos sujeitos somente a cargas logitudinais/axiais	$\sum F_x = 0$
Eixo	M_{xB} A $L/3$ $L/3$ $L/3$ $L/3$ $L/3$	Corpos sujeitos somente a cargas torcionais	$\sum M_x = 0$
Viga	A B• C• M _{zB} L	Corpos sujeitos somente a cargas transversais e/ou momentos fletores	$\sum M_z, F_y = 0$

Table 2: Tabela de Modelos para Corpos Esbeltos

1.4 Equilíbrio Interno de Corpos

Para começarmos a entrar no assunto de deformação dos corpos, é primeiro necessário entender que quando há o equilíbrio estático de um corpo, há também um equilíbrio entre quaisquer duas partes internas do corpo, que sofrem esforços internos, sendo eles:

- Esforços Axial $N_x(x)$
- Esforço Cortante $V_y(x)$
- Momento Fletor $M_z(x)$
- Momento Torsor $M_x(x)$

1.4.1 Convenção de Sinais

Quando estivermos lidando com a análise de esforços internos e deformações de corpos, nós iremos seguir a seguinte convenção de sinais:

Figure 1: Convenção de Sinais para Esforços Internos

A partir dessa convenção e da análise dos momentos fletores M_z e esforços cortantes V_x conhecidos nós somos capazes de analisar a deformação de um corpo esbelto (e.g uma viga), como mostrado abaixo:

Figure 2: Exemplo de Análise de Forças Internas e Deformação

2 Método das Equações Diferenciais de Equilíbrio

2.1 Introdução e Equações Diferenciais

Até o momento nós vimos que se tivermos o esforço cortante e o momento fletor para um corpo nós somos capazes de deduzir a deformação. Agora, entretanto, iremos ver como que nós calculamos esses valores para um corpo sofrendo carregamento. O nome do método para tal é o **Método das Equações Diferenciais**, onde nós relacionamos cada tipo de load externo (para barras, vigas e eixos) com as respectivas reações internas, em um cenário diferencial (para uma parte infinitesimal do corpo de cada vez, para todo o corpo), como mostrado na tabela abaixo:

Cenário	Equação	Descrição
Barras	$\frac{d}{dx}N_x(x) = -p(x)$	Onde $-p(x)$ é o carregamento longitudinal sendo sofrido
Eixos	$\frac{d}{dx}M_x(x) = -t(x)$	Onde $-t(x)$ é o momento axial sofrido
Vigas: Cortante	$\frac{d}{dx}V_y(x) = +q(x)$	Onde $+q(x)$ é o carregamento transversal sofrido
Vigas: Momento Fletor	$\frac{d^2}{dx^2}M_z = \frac{d}{dx}V_y(x) = +q(x)$	Onde $+q(x)$ é o carregamento transversal sofrido

Table 3: EDOs para principais modelos de corpos esbeltos

Relembrando, onde:

- Esforços Axial $N_x(x)$
- Esforço Cortante $V_{y}(x)$
- Momento Fletor $M_z(x)$
- Momento Torsor $M_x(x)$

2.2 Condições de Contorno

Se lembrarmos bem de calculo 3 e de equações diferenciais, todas as EDOs de grau n precisam de n pontos conhecidos para possam ser resolvidos, onde eles podem ser Pontos de Contorno ou Condições Iniciais. Para o nosso caso, iremos estudar problemas com condições de contorno.

Para ser considerado uma condição de contorno é necessário:

- 1. Estar Definida no Contorno do modelo
- 2. Ser Conhecida a Priori
- 3. Ser Relevante para o Problema

Indo além, para os nosso problemas, 99% das vezes as condições de contorno estarão em vínculos localizados nas extremidades do corpo sendo estudado (e.g em uma ponta de uma viga). Iremos abaixo **descrever as condições** de contorno para os principais vínculos/apoios QUANDO PRESENTES NAS EXTREMIDADES DO CORPO¹.

Vínculo	Equações	Observações
Extremidade Livre	$\sum M = 0$ $\sum F = 0$	Como uma extremidade livre não apresenta reação a força nem momento, se não for dito que há um valor diferente para tais, na extremidade em questão os valores serão zero.
Rolete	$\sum M = 0$	Como um rolete não apresenta reação a momento, se não for dito que há um valor diferente, na extremidade em questão o momento é zero (condição de contorno).
Pino	$\sum M = 0$	Como um rolete não apresenta reação a momento, se não for dito que há um valor diferente, na extremidade em questão o momento é zero (condição de contorno).

Table 4: Condições de Contorno para cada Vínculo

 $^{^{1}}$ Como estamos lidando com análise no eixo x, somente os vínculos que estão localizados nas extremidades (em x=0 ou x=L) são possíveis condições de contorno

2.3 Função de Singularidade

Até o momento vimos que podemos modelar os esforços e momentos interno de um corpo por equações diferenciais (como visto na tabela 3), e que para resolve-las nós precisamos de condições de contorno (como visto na tabela 4). Antes de podermos resolver tais EDOs, entretanto, nós precisamos descrever os carregamentos externos que o corpo está sofrendo (que seriam os membros do lado direito das EDOs).

Para casos em que os carregamentos são contínuos tal tarefa é extremamente fácil, só igualar a EDO ao valor (ou equação contínua) para todo x. Para os casos em que os carregamentos não são contínuos, entretanto, isso não é tão simples.

Para casos onde o carregamento não é contínuo, nós usaremos uma notação que simplifica toda a matemática complexa chamada de **Função de Singularidade**, onde:

$$\langle x - a \rangle^m = \begin{cases} 0 & x < a \\ (x - a)^m & x \ge a \end{cases} \tag{1}$$

Onde a porção $\langle x - a \rangle$ rege a partir de qual ponto para de ser zero e o expoente m rege o comportamento da curva a partir desse ponto, como mostra a figura abaixo:

F. de Singularidade	Gráfico	Use Cases
$\langle x-a \rangle^0$	0 a	Usado mais durante análise de Vigas, quando há um carregamento de forças transversais para somente um intervalo da viga $(e.g \text{ de } L/2 \le x \le L)$. Podemos, ainda, subtrair dois com um shift para ter um intervalo entre a e b , como: $\langle x-a\rangle^0 - \langle x-b\rangle^0$
$\langle x-a \rangle^1$	0 a	Também usado mais para análise de carregamento de vigas, mas nesse caso a força é zero até certo ponto a e depois segue uma distribuição linear.
$\langle x-a \rangle^2$	0 a	Também usado mais para análise de carregamento de vigas, mas nesse caso a força é zero até certo ponto a e depois segue uma distribuição quadrática.
$\langle x - a \rangle^{-1}$	+1	Usando bastante para representar forças pontuais durante análise de vigas, mas também usada para representar momentos durante análise de eixos.
$\langle x - a \rangle^{-2}$	0 a	Usado bastante durante análise de vigas para representar momentos fletores.

Além disso, é importante entendermos o comportamento das funções de singularidade em relação a integração:

$$\int \langle x - a \rangle^m dx = \frac{\langle x - a \rangle^{m+1}}{m+1}, m \ge 0$$
$$\int \langle x - a \rangle^{-1} dx = \langle x - a \rangle^0$$
$$\int \langle x - a \rangle^{-2} dx = \langle x - a \rangle^{-1}$$

2.4 Método de Resolução - Equações Diferenciais de Equilíbrio

Já vimos quais EDOs são aplicáveis para cada modelo, os possíveis valores de contorno e também como modelar as cargas externas sendo aplicadas, o que nos resta agora é saber como juntar todos esses dados em um problema para resolve-lo. Para isso, nós vamos seguir 7 passos, como mostrado abaixo:

- 0. Separar Carregamentos externos que são separáveis em seus respectivos modelos (barra, eixo, viga).
- 1. Estabelecer uma convenção de sinais: A fim de padronizar, seguir a convenção da figura 1
- 2. Estabelecer uma equação diferencial: A partir da tabela 3
- 3. Descrever condições de Contorno: Bom indicativo é começar pelos da tabela 4
- 4. Integrar a equação diferencial: Como mostrado na subsection anterior
- 5. Determinar Constantes de Integração: Substituindo os valores de contorno (já que são os únicos pontos conhecidos)

Temos, ainda, algumas observações que podem ajudar a fazer os exercícios:

• Se há uma carga distribuída que é aplicada sobre um possível ponto de contorno (e.g como uma extremidade livre de um eixo engastado) por ela ser DISTRIBUÍDA, em um só ponto ela é igual a zero logo A CONDIÇÃO DE CONTORNO AINDA É VÁLIDA. Então se for uma extremidade livre, mesmo com um momento torsor distribuído sendo aplicado, no ponto ele é zero.

2.5 One Pager

Equações Diferenciais por Modelo de Corpo Esbelto:

Cenário	Equação	Descrição
Barras - Esforço Axial	$\frac{d}{dx}N_X(x) = -p(x)$	Onde $-p(x)$ é o carregamento longitudinal sendo sofrido
Eixos - Momento Torsor	$\frac{d}{dx}M_x(x) = -t(x)$	Onde $-t(x)$ é o momento axial sofrido
Vigaa - Esforço Cortante	$\frac{d}{dx}V_{\mathcal{Y}}(x) = +q(x)$	Onde $+q(x)$ é o carregamento transversal sofrido
Vigas - Momento Fletor	$\frac{d^2}{dx^2}M_Z = \frac{d}{dx}V_Y(x) = +q(x)$	Onde $+q(x)$ é o carregamento transversal sofrido

Condição de Contorno:

Vínculo	Equações	Observações
Extremidade Livre	$\sum M = 0$ $\sum F = 0$	Como uma extremidade livre não apresenta reação a força nem momento, se não for dito que há um valor diferente para tais, na extremidade em questão os valores serão zero.
Rolete	$\sum M = 0$	Como um rolete não apresenta reação a momento, se não for dito que há um valor diferente, na extremidade em questão o momento é zero (condição de contorno).
Pino	$\sum M = 0$	Como um rolete não apresenta reação a momento, se não for dito que há um valor diferente, na extremidade em questão o momento é zero (condição de contorno).

- ☐ Estar Definida no Contorno do modelo
- ☐ Ser Conhecida a Priori
- $\hfill \square$ Ser Relevante para o Problema

Definição de Função de Singularidade:

F. de Singularidade	Gráfico	Use Cases
$(x-a)^0$	1 1 2 2 2	Usado mais durante análise de Vigas, quando há um carregamento de forças transversais para somente um intervalo da viga (e.g de $L/2 \le x \le L$). Podemos, ainda, subtrair dois com um shift para ter um intervalo entre a e b , como: $\langle x-a \rangle^0 - \langle x-b \rangle^0$
$\langle x-a \rangle^1$		Também usado mais para análise de carregamento de vigas, mas nesse caso a força é zero até certo ponto a e depois segue uma distribuição linear.
$\langle x-a \rangle^2$	40-23	Também usado mais para análise de carregamento de vigas, mas nesse caso a força é zero até certo ponto a e depois segue uma distribuição quadrática.
$\langle x-a \rangle^{-1}$	1000	Usando bastante para representar forças pontuais durante análise de vigas, mas também usada para representar momentos durante análise de eixos.
$\langle x-a \rangle^{-2}$		Usado bastante durante análise de vigas para representar momentos fletores.

Integração de Função de Singularidade:

$$\int \langle x - a \rangle^m dx = \frac{\langle x - a \rangle^{m+1}}{m+1}, m \ge 0$$
$$\int \langle x - a \rangle^{-1} dx = \langle x - a \rangle^0$$
$$\int \langle x - a \rangle^{-2} dx = \langle x - a \rangle^{-1}$$

Passo a Passo:

- 0. Separar Carregamentos externos que são separáveis em seus respectivos modelos (barra, eixo, viga).
- 1. Estabelecer uma convenção de sinais: A fim de padronizar, seguir a convenção da figura 1
- $2.\;$ Estabelecer uma equação diferencial: A partir da tabela 3
- 3. Descrever condições de Contorno: Bom indicativo é começar pelos da tabela 4
- 4. Integrar a equação diferencial: Como mostrado na subsection anterior
- $5. \ \ Determinar \ Constantes \ de \ Integração: \ Substituindo \ os \ valores \ de \ contorno \ (j\'a \ que \ s\~ao \ os \ \'unicos \ pontos \ conhecidos)$