Report for the Markov model (cohort state-transition model)

Data and parameters

% latex table generated in R 3.6.3 by x table 1.8-4 package % Tue Jan 19 13:18:13 2021

Table 1: Data from Global Health Data Exchange

	Table 1. Data from Global Health Data Exchange						
	index	sex	incidence	$death_CVD$	$death_nonCVD$		
1	40	$_{\mathrm{male}}$	0.003888	0.000819	0.002494		
2	45	male	0.006729	0.001340	0.003399		
3	50	male	0.010564	0.002302	0.004951		
4	55	male	0.015291	0.003665	0.007282		
5	60	male	0.022078	0.006404	0.011159		
6	65	male	0.030980	0.011155	0.016946		
7	70	male	0.043589	0.019978	0.026305		
8	40	female	0.004545	0.000351	0.001137		
9	45	female	0.007094	0.000643	0.001620		
10	50	female	0.010133	0.001206	0.002475		
11	55	female	0.013734	0.002014	0.003705		
12	60	female	0.018272	0.003872	0.005850		
13	65	female	0.023744	0.006996	0.009060		
_14	70	female	0.033907	0.013398	0.014907		

[%] latex table generated in R 3.6.3 by x table 1.8-4 package % Tue Jan 19 13:18:13 2021

Table 2: Distribution of the population

	index	sex	num
1	40	male	229
2	45	male	444
3	50	male	422
4	55	male	410
5	60	male	322
6	65	male	160
7	70	$_{\mathrm{male}}$	116
8	40	female	498
9	45	female	856
10	50	female	822
11	55	female	842
12	60	female	519
13	65	female	394
14	70	female	187

[%] latex table generated in R 3.6.3 by x table 1.8-4 package % Tue Jan 19 13:18:13 2021

Table 3: Distribution of the population under different strategies

ab <u>ie 5:</u>		ution or t	пе роршанс			
	index	sex	strategy	low	medium	$_{ m high}$
1	40	male	strategy1	159	8	62
2	45	$_{\mathrm{male}}$	strategy1	173	64	207
3	50	$_{\mathrm{male}}$	strategy1	188	63	171
4	55	$_{\mathrm{male}}$	strategy1	200	89	121
5	60	$_{\mathrm{male}}$	strategy1	129	89	104
6	65	male	strategy1	71	42	47
7	70	male	strategy1	48	28	40
8	40	female	strategy1	444	6	48
9	45	female	strategy1	738	18	100
10	50	female	strategy1	677	20	125
11	55	female	strategy1	440	217	185
12	60	female	strategy1	216	164	139
13	65	female	strategy1	128	136	130
14	70	female	strategy1	65	55	67
15	40	$_{\mathrm{male}}$	strategy2	163	50	16
16	45	male	strategy2	212	168	64
17	50	male	strategy2	106	231	85
18	55	male	strategy2	35	210	165
19	60	$_{\mathrm{male}}$	strategy2	5	81	236
20	65	male	strategy2	1	15	144
21	70	male	strategy2	0	3	113
22	40	female	strategy2	478	17	3
23	45	female	strategy2	734	108	14
24	50	female	strategy2	537	238	47
25	55	female	strategy2	277	433	132
26	60	female	strategy2	44	282	193
27	65	female	strategy2	4	104	286
28	70	female	strategy2	0	23	164
29	40	male	strategy3	0	0	0
30	45	male	strategy3	0	0	0
31	50	male	strategy3	106	231	85
32	55	male	strategy3	35	210	165
33	60	male	strategy3	5	81	236
34	65	male	strategy3	1	15	$\frac{2}{144}$
35	70	male	strategy3	0	3	113
36	40	female	strategy3	0	0	0
37	45	female	strategy3	0	0	0
38	50	female	strategy3	537	238	47
39	55	female	strategy3	277	433	132
40	60	female	strategy3	44	282	193
41	65	female	strategy3	4	104	$\frac{133}{286}$
42	70	female	strategy3	0	23	164
-44	10	плане	strategy 3	- 0		104

Component 1: A transition probability matrix P_t

$$P_t = \begin{cases} p_{[1,1,t]} & p_{[1,2,t]} & p_{[1,3,t]} & p_{[1,4,t]} \\ p_{[2,1,t]} & p_{[2,2,t]} & p_{[2,3,t]} & p_{[2,4,t]} \\ p_{[3,1,t]} & p_{[3,2,t]} & p_{[3,3,t]} & p_{[3,4,t]} \\ p_{[4,1,t]} & p_{[4,2,t]} & p_{[4,3,t]} & p_{[4,4,t]} \end{cases}$$

Thus,

$$P4 = 1 - P1 - P2 - P3$$

$$P1 = p_live_cvd * (1 - p_acvd_cvdth)$$

$$P2 = p_live_cvdth + p_live_cvd * p_acvd_cvdth$$

$$P3 = p_live_oth_death$$

$$P6 = 1 - (p_ccvd_cvdth + p_ccvd_acvd * p_acvd_cvdth) - p_live_oth_death$$

$$P5 = p_ccvd_cvdth + p_ccvd_acvd * p_acvd_cvdth$$

Table 4: Incidence rate				
Item		CVD incidence(HR)	CVD cause-specific mortality (HR)	
	Low risk	0.63	1	
Strategy 1	Medium risk	1.56	1	
	High risk	1.6	1.7	
	Low risk	0.43	1	
Strategy 2	Medium risk	0.97	1	
	High risk	2.06	1.7	
Strategy 3	Low risk	0.45	1	
	Medium risk	1.09	1	
	High risk	2.11	1.7	
	Weight control	0.93	0.93	
Intervention	Smoke cession	0.85	0.72	
	Salt reduction	0.81	0.66	
Medication	Statin and antihypertensive	e 0.7	0.82	

Strategy 1 (a male 40-45)

Thus, we take the example of individuals in the low level

```
\begin{split} \underline{P4} &= 1 - P1 - P2 - P3 \\ \underline{P1} &= p\_live\_cvd\_l*(1 - p\_acvd\_cvdth) \\ \underline{P2} &= p\_live\_cvdth\_l + p\_live\_cvd\_l*p\_acvd\_cvdth \\ P3 &= p\_live\_oth\_death \\ P6 &= 1 - (p\_ccvd\_cvdth + p\_ccvd\_acvd*p\_acvd\_cvdth) - p\_live\_oth\_death \\ P5 &= p\_ccvd\_cvdth + p\_ccvd\_acvd*p\_acvd\_cvdth \end{split}
```

We say that the screening strategy will have an influence on the first line of the transition matrix.

```
## , , 1
##
                                      S3
             S1
                         S2
## S1 0.9951701 0.002338958 8.943242e-08 0.002490893
## S2 0.0000000 0.994722422 2.786685e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
##
   , , 2
##
##
                                      S3
             S1
                         S2
## S1 0.9951701 0.002338958 8.943242e-08 0.002490893
## S2 0.0000000 0.994722422 2.786685e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
  , , 3
##
```

```
S2
                                      S3
## S1 0.9951701 0.002338958 8.943242e-08 0.002490893
## S2 0.0000000 0.994722422 2.786685e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
## , , 4
##
##
                         S2
                                      S3
                                                   S4
             S1
## S1 0.9951701 0.002338958 8.943242e-08 0.002490893
## S2 0.0000000 0.994722422 2.786685e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
## , , 5
##
##
                                                   S4
             S1
                         S2
                                      S3
## S1 0.9951701 0.002338958 8.943242e-08 0.002490893
## S2 0.0000000 0.994722422 2.786685e-03 0.002490893
## S3 0.0000000 0.000000000 1.000000e+00 0.000000000
## S4 0.0000000 0.000000000 0.000000e+00 1.000000000
##
## , , 6
##
##
           S1
                       S2.
                                    S3
                                                S4
## S1 0.99256 0.004046553 2.530846e-07 0.00339323
## S2 0.00000 0.992031641 4.575129e-03 0.00339323
## S3 0.00000 0.000000000 1.000000e+00 0.00000000
## S4 0.00000 0.000000000 0.000000e+00 1.00000000
##
##
  , , 7
##
##
                       S2
                                    S3
## S1 0.99256 0.004046553 2.530846e-07 0.00339323
## S2 0.00000 0.992031641 4.575129e-03 0.00339323
## S3 0.00000 0.000000000 1.000000e+00 0.00000000
## S4 0.00000 0.000000000 0.000000e+00 1.00000000
##
## , , 8
##
           S1
                       S2
                                    S3
## S1 0.99256 0.004046553 2.530846e-07 0.00339323
## S2 0.00000 0.992031641 4.575129e-03 0.00339323
## S3 0.00000 0.000000000 1.000000e+00 0.00000000
## S4 0.00000 0.000000000 0.000000e+00 1.00000000
##
## , , 9
##
                       S2
                                    S3
           S1
## S1 0.99256 0.004046553 2.530846e-07 0.00339323
## S2 0.00000 0.992031641 4.575129e-03 0.00339323
## S3 0.00000 0.000000000 1.000000e+00 0.00000000
## S4 0.00000 0.000000000 0.000000e+00 1.00000000
##
```

```
##
  , , 10
##
##
                                               S4
## S1 0.99256 0.004046553 2.530846e-07 0.00339323
## S2 0.00000 0.992031641 4.575129e-03 0.00339323
## S3 0.00000 0.000000000 1.000000e+00 0.00000000
## S4 0.00000 0.000000000 0.000000e+00 1.00000000
##
             S1
                         S2
                                      S3
                                                  S4
     1.0000000 0.000000000 0.000000e+00 0.000000000
## 0
     0.9951701 0.002338958 8.943242e-08 0.002490893
     0.9903634 0.004654274 6.696371e-06 0.004975580
     0.9855801 0.006946129 1.975494e-05 0.007454063
     0.9808198 0.009214701 3.919975e-05 0.009926339
     0.9760825 0.011460165 6.496594e-05 0.012392408
## 5
     0.9688204 0.015318616 1.176447e-04 0.015743367
     0.9616123 0.019116935 1.879745e-04 0.019082777
     0.9544579 0.022855820 2.756803e-04 0.022410617
## 9 0.9473567 0.026535961 3.804902e-04 0.025726867
## 10 0.9403083 0.030158042 5.021354e-04 0.029031509
```

This matrix is the trace matrix of the specific population (male, 40-45) during these 10 cycles under Strategy1. The whole cohort starts in S1 state and transitions to the rest of the states over time.

```
## [1] 0.02619713
```

91 92

```
##
                         S2
                                      S3
     1.0000000 0.000000000 0.000000e+00 0.000000000
## 0
     0.9953560 0.002153078 5.073306e-08 0.002490893
     0.9907335 0.004284794 6.101180e-06 0.004975580
## 2
     0.9861325 0.006395307 1.809181e-05 0.007454064
     0.9815529 0.008484775 3.596355e-05 0.009926344
     0.9769946 0.010553356 5.965774e-05 0.012392422
     0.9700395 0.014109055 1.080810e-04 0.015743399
     0.9631339 0.017610510 1.727711e-04 0.019082841
     0.9562774 0.021058338 2.534798e-04 0.022410733
## 9 0.9494698 0.024453148 3.499617e-04 0.025727058
## 10 0.9427107 0.027795546 4.619744e-04 0.029031802
```

[1] 0.02414187

We perform the same procedure for all risk levels under Strategy1: low, medium and high, and then obtain the following tables for the probability of transitioning from S1 to S2.

Table 5: prevented CVD (a male patient aged 40-45)

Stratification	CVD events
Low risk	0.0261971
Medium risk	0.0411423
High risk	0.0241419

Prevented CVD events under Strategy1

% latex table generated in R 3.6.3 by x table 1.8-4 package % Tue Jan 19 13:18:13 2021

Table 6: prevented CVD events under the screening of Strategy 1

					0,
	index	sex	low	medium	high
1	40	$_{\mathrm{male}}$	0.0261971333996861	0.0411423157671217	0.0241418741114777
2	45	$_{\mathrm{male}}$	0.0446662026698032	0.069704932825595	0.0411977580213452
3	50	$_{\mathrm{male}}$	0.0686498212143506	0.106257977576601	0.0633906156178216
4	55	$_{\mathrm{male}}$	0.0964812671663052	0.147811865408869	0.0892169300114954
5	60	$_{\mathrm{male}}$	0.133402396456711	0.201558970142265	0.123598398830557
6	65	$_{\mathrm{male}}$	0.176118520190639	0.261464892450898	0.163583856805719
7	70	$_{\mathrm{male}}$	0.233163576957691	0.339852915513992	0.217135761953413
8	40	female	0.0307923491079538	0.0482983309128298	0.0283814498112105
9	45	female	0.0475251300830973	0.074134262095425	0.0438372600085826
10	50	female	0.0669000278544402	0.103683369229555	0.0617637548542279
11	55	female	0.0889574275344238	0.136816575540527	0.0822147922467317
12	60	female	0.115254496192866	0.175615094116597	0.106657199033764
13	65	female	0.144039065274721	0.216807377740607	0.1335248314275
14	70	female	0.18161177556816	0.265636503674557	0.169046209493589

[1] 575.7483

This is the result for the CVD events under 3 different strategies