Bioinformatics and Statistical Genetics Jan Graffelman and Gabriel Valiente

Partial Exam November 2, 2022

 Points: 10 10 10 10 10 10 10 10 10 10 10 10 10	3 4 5 6 7 8 9 10	Total
 An n × n distance matrix D for a phylogenetic tree with n leaves is ultrametric every three leaves i, j, k, of the three distances D[i, j], D[i, k], D[j, k],	10 10 10 10 10 10 10 10	100
every three leaves <i>i</i> , <i>j</i> , <i>k</i> , of the three distances <i>D</i> [<i>i</i> , <i>j</i>], <i>D</i> [<i>i</i> , <i>k</i>], <i>D</i> [<i>j</i> , <i>k</i>],		
 3. Given an n × n distance matrix D, the unique phylogenetic tree T with n leave fits the data, if D is ultrametric, can be reconstructed in time using the U algorithm. O(n) O(n²) O(n³) O(n⁴) O(n⁵) 4. Given an n × n distance matrix D, the unique phylogenetic tree T with n leave fits the data, if D is additive, can be reconstructed in time using the NJ algorous O(n) O(n²) O(n²) O(n³) O(n⁴) O(n⁵) 5. Given an n × m genomic matrix M, the unique phylogenetic tree T with n leave fits the data, if it exists, can be reconstructed in time using the algorithm Gusfield (1991). 	k , of the three distances $D[i,j]$, $D[i,k]$, $D[j,k]$, e equal \bigcirc the two smallest are different \bigcirc the two smallest are different \bigcirc the sum of the two smallest rix D for a phylogenetic tree with n leaves is additive if for the three sums of distances $D[i,j] + D[k,\ell]$, $D[i,k] + D[k,\ell]$ the two smallest are different \bigcirc the two	o large is equal or even by $D[j, D]$
 4. Given an n × n distance matrix D, the unique phylogenetic tree T with n leave fits the data, if D is additive, can be reconstructed in time using the NJ algorous O(n) ○ O(n²) ○ O(n³) ○ O(n⁴) ○ O(n⁵) 5. Given an n × m genomic matrix M, the unique phylogenetic tree T with n leave fits the data, if it exists, can be reconstructed in time using the algorithm Gusfield (1991). 	ce matrix D , the unique phylogenetic tree T with n leavelermetric, can be reconstructed in time using the U	ves th
fits the data, if it exists, can be reconstructed in time using the algorithm Gusfield (1991).	ce matrix D , the unique phylogenetic tree T with n leavelditive, can be reconstructed in time using the NJ alg	
O(n) $O(n)$ $O(n+n)$ $O(n+n)$ $O(n+n)$		
6. What does KPCOFGS mean? Explain your answer.		

Bioinformatics and Statistical Genetics Jan Graffelman and Gabriel Valiente

Partial Exam November 2, 2022

10	7.	What are the potential sources of bias in the taxonomic classification of sequence reads from a metagenomic sample?
10	8.	Is the taxonomic assignment of sequence reads in a metagenomic sample coming from unknown sequences possible? Explain your answer.
10	9.	What is the best indicator of classification error for the taxonomic annotation of sequence reads? Explain your answer.
10	10.	In the taxonomic assignment of sequence reads, what does it mean for a node in the reference taxonomy to be relevant?