027359 - Arquitetura e Organização de Computadores 1

Fundamentos

Luciano de Oliveira Neris

luciano@dc.ufscar.br

Adaptado de slides do prof. Marcio Merino Fernandes

Fonte: http://www.rdavid.com.br/eniac

Departamento de Computação Universidade Federal de São Carlos

- Sistema: conjunto de componentes que trabalham de maneira coordenada para realizar alguma atividade.
- Principais características:
 - · Um sistema é composto por partes.
 - Todas as partes de um sistema devem se relacionar de forma direta ou indireta.
 - Um sistema pode abrigar outro sistema.

Abordagem "sistêmica": Facilita a compreensão do funcionamento como um todo e a participação de cada uma das partes envolvidas

- Sistema de Computação: realiza algum tipo de processamento de informações de entrada para gerar algum tipo de saída
 - O processamento (computação) é especificado através de um conjunto de instruções (programa) que definem o que, quando e como deve ser feito
 - Processar informação significa, abstratamente, transformar elementos de entrada com o objetivo de produzir elementos na saída, de uma forma coerente, desejável e previsível.
 - Composto por subsistemas

- Sistema de Computação: estrutura dividida em 3 componentes:
 - Hardware
 - Software
 - Dados

- Onipresentes: estão em todo lugar
 - Uso geral: servidores, desktops, laptops, PDAs, etc.
 - Uso específico: máquinas registradors, ATMs, vídeo games, centrais telefônicas, etc.
 - Embarcados: carros, impressoras, DVDs, telefone celular, equipamentos industriais, equipamentos médicos, etc.

- · Características Diferenciais
 - Velocidade
 - Custo
 - Facilidade de uso, interface, suporte
 - Escalabilidade
 - Consumo de Energia
 - Dispositivos Portáteis
 - Dispositivos de grande porte (datacenters, supercomputadores)

- Três questões básicas associadas com sistemas de computação:
 - —Para que eles são usados?
 - -Como são implementados?
 - -O que eles podem fazer, e o que não podem?

• Entrada:

- · Como consigo interagir com o sistema?
- · Qual a linguagem que ele entende?
- Quanto de conhecimento preciso ter para "inserir coisas" no sistema?
- Qual o formato ou modalidade devo usar?
- •

· Saída:

- · Qual a linguagem que o usuário entende?
- · Qual o resultado esperado pelo usuário?
- Quanto de conhecimento preciso para entender os resultados produzidos?
- Qual o formato, linguagem e modalidade a ser utilizada?

•

Existe uma longa distancia entre um determinado comportamento desejado, e um conjunto de dispositivos eletrônicos (desorganizados).

Um computador de uso geral pode ser visto como o ponto central de uma ponte para se caminhar de um conjunto de dispositivos eletrônicos até a obtenção de um comportamento desejado (função).

Arquitetura x Organização

- Arquitetura refere-se aos atributos que são visíveis para o programador, ou seja, os atributos que tem impacto direto na execução do programa.
 - Atributos:
 - Conjunto de instruções
 - Número de bits para representar diferentes categorias de dados (e.g., números e caracteres).
 - Mecanismos de E/S

Arquitetura x Organização

- Organização diz respeito às unidades operacionais e suas interconexões que implementam as especificações de sua arquitetura, ou seja, como as características da arquitetura será implementada.
 - Atributos:
 - · Sinais de controle
 - Tecnologia de memória, tecnologia de transistores etc.

Detalhes do hardware que são transparentes ao programador fazem parte da organização do sistema.

Arquitetura x Organização

- Especificar se um computador deve ou não ter uma instrução de multiplicação constitui uma decisão de projeto de Arquitetura
- Definir se essa instrução será implementada por uma unidade específica de multiplicação ou por um mecanismo que utiliza repetidamente sua unidade de soma é uma decisão de Organização

- O estudo de sistemas (incluindo os computacionais) são extremamente complexos se forem analisados detalhadamente.
- Utilizando diferentes níveis de abstração é possível reduzir a complexidade da análise de sistemas pois omite detalhes
 - Abstração: distinção entre as propriedades externas de um componente e os detalhes internos de sua construção.

- O computador pode ser visto por várias perspectivas ou níveis, do mais alto nível, "do usuário", até o mais baixo nível, "de transistores". Cada um desses níveis representa uma abstração do computador;
- Uma das razões para o grande sucesso dos computadores digitais é o grau de separação desses níveis, ou seja, a independência entre os níveis.

- Sistemas em que o hardware é dedicado para uma aplicação particular não são flexíveis
- Sistemas de propósito geral podem executar diferentes tarefas através dos sinais de controle
- Ao invés de se reprogramar o hardware, muda-se o conjunto de sinais de controle

Arquitetura de Computadores

- Dispositivos Universais de Computação
 - —Dados tempo e memória suficiente, <u>todos</u> os computadores são capazes de executar as mesmas tarefas;
 - Tese de Turing: toda computação pode ser executada por uma máquina de Turing (um dispositivo computacional teoricamente universal);
- · Transformação de um Problema
 - —O objetivo final é transformar um problema, descrito em linguagem natural, em elétrons circulando através de um circuíto!
 - -Isto é a essência da <u>Ciência</u> e <u>Engenharia da Computação</u>.

Aspectos teóricos e práticos : 5W: 80%, HW: 20% Aspectos práticos : SW: 50% , HW: 50%

Transformação de um Problema

Matéria Prima: dispositivos eletrônicos

Linguagem Natural Algoritmo Programa Arquitetura do Computador Microarquitetura Circuítos Logicos **Dispositivos**

Níveis de Descrição

- Esses níveis não correspondentem necessariamente a componentes individuais, porém determinam uma série de interfaces padronizadas.
- —Interfaces padronizadas permitem:
 - Portabilidade
 - Uso de Software/Hardware desenvolvido por terceiros
 - Uso mais amplo

Linguagem Natural Algoritmo Programa Arquitetura do Computador Microarquitetura Circuítos Logicos **Dispositivos**

Nível de Programa

- Programa
 - Sequência de passos
 - Para cada passo:
 - —uma operação lógica ou aritmética é realizada
 - -um conjunto diferente de sinais deve ser fornecido
 - Para cada operação, um código único é fornecido:
 - -Exemplo: ADD, MOVE, etc
 - Função da Unidade de Controle:
 - —Interpretar o código e gerar os sinais de controle que executarão a instrução requerida

Nível de Programa

- —A maioria dos computadores executa um programa de gerenciamento, chamado <u>sistema operacional (S.O.)</u>.
- —Os programas de aplicação interagem com a arquitetura da máquina através do S.O.

Programa de Aplicação

Sistema Operacional

Programa (Software)

Exemplo:

Estes Slides

Acrobat Reader/
PowerPoint

Windows 7

Dados

Programa de Aplicação

S.O.

Nível de Programa

- SO gerencia os recursos da máquina durante a execução dos programas
 - Operações de Entrada/Saída (E/S), "carga" do programa na memória, exceções, etc.
 - Gerente dos recursos, escondendo o acesso direto ao hardware dos usuários
 - Também: multiprocessamento, gerência de arquivos, processamento distribuído, ...

Nível de Máquina

Arquitetura do Computador

 Especificação formal de todas as funções que uma determinada máquina pode executar. Essas funções são conhecidas como <u>ISA</u> (<u>Instruction Set Architecture</u>).

Microarquitetura

 Implementação da ISA em um microprocessador, ou seja, a forma como as especificações da ISA ocorrerão (registradores, ULA).

Circuítos Lógicos

 Cada elemento da microarquitetura é composto por cicuítos lógicos simples (portas)

Dispositivos Eletrônicos (devices)

 Cada circuito lógico é construído com dispositivos eletrônicos, como transistores CMOS (complementary metal-oxidesemiconductor)

Nível de Máquina

- Os números binários são base da teoria computacional
 - 100011000001 (bits): "Linguagem" do computador
 - 1. Primórdios: uso da linguagem nativa em binário.
 - 2. Linguagem de Montagem (Assembly)
 - Montador (Assembler): traduz uma versão simbólica das instruções para sua representação binária na arquitetura
 - add A, B -> montador -> 100011000001
 - 3. Linguagem de Programação de alto-nível
 - Compilador: traduz instruções de alto-nível para instruções binárias diretamente ou via um montador
 - A + B -> compilador -> add A, B -> montador -> 100011000001

Este Curso

Linguagem Natural Foco secundário, mas necessário Algoritmo Programa Arquitetura do Computador Foco principal Microarquitetura Circuítos Logicos Dispositivos

Computador de von Neumann

Computador de Von Neumann

- ·Princípio do programa armazenado
 - Dados e Instruções no mesmo espaço de memória
- ·Execução Sequencial de instruções.
- Implementação da máquina universal de Turing;
- ·Base para 99% das máquinas até os dias atuais;
- ·Alternativa ao modelo de Von Neuman: máquinas paralelas;

Computador de von Neumann

- Palavras (= conjunto de bits) -> podem ter diferentes significados agrupados em: dados e instruções
- Instruções: Contêm as informações que o computador necessita para executar as várias operações
- Cada máquina possui um conjunto de instruções (coleção completa de instruções que será entendida pela CPU)

- Memória Principal
 - Consiste de um arranjo linear de células de armazenamento endereçáveis similares aos registradores, porém em quantidade muito maior;
 - O endereçamento pode ser byte a byte, ou palavra a palavra, a qual geralmente é constituída por 1 ou mais bytes (ex: palavra de 32 bits, ou 4 bytes);
 - Cada palavra possui um único endereço e pode ser lida ou escrita na memória. A natureza da operação é indicada por meio de sinais de controle. A posição de memória em que deve ser efetuada a operação é especificada por um endereço.

- E/S (I/O)
 - O computador se comunica com o "mundo exterior" através do Sistema de I/O (Input/Output);
 - Dispositivos de I/O: Monitor, teclado, disco (HD), placa de rede, microfone, alto-falante, memória flash, etc..;
 - Os dispositivos de I/O não se conectam diretamente à CPU, mas através de interfaces (ex: controladora de disco), estas sim conectadas ao barramento;

- E/S (I/O)
 - A CPU se comunica c/ esses dispositivos externos através de registradores especiais, ou registradores de I/O;
 - Essa troca de dados pode ser feita de 2 maneiras:
 - I/O mapeado na memória: os registradores de I/O aparecem como endereços de memória;
 - I/O via instruções especializadas, que utilizam os registradores de I/O;
 - Interrupções são utilizadas p/ notificar a CPU sobre eventos de I/O;

- Interconexão (barramento)
 - Barramento: um caminho de comunicação entre dois ou mais dispositivos. Conjunto de fios (linhas), os quais transmitem simultaneamente um bit (0 ou 1);
 - Barramentos podem ser de 3 tipos:
 - Dados: transmitem dados de um componente a outro
 - Endereço: determinam o local de um dado sendo acessdao
 - Controle: determinam a direção de um determinado fluxo de dados, ou quando um componente pode acessar o barramento

Interconexão (barramento)

registradores especiais

Visão Mais Frequente do Programador

- Todo computador possui um clock para sincronizar as atividades de seus componentes;
- O número fixo de ciclos de clock é necessário para executar uma dada operação ou transferências de dados;

Unidade Lógica e Aritmética (ULA)

 ULA: "Motor" do computador -> dispositivo que executa operações aritméticas (add, sub, etc) e lógicas (AND, OR, etc).

Unidade Lógica e Aritmética (ULA)

Como projetar e implementar uma ULA?

Unidade Lógica e Aritmética (ULA)

Como projetar e implementar uma ULA?

Function Table

	Mode Select Inputs			Active LOW Operands & F _n Outputs		Active HIGH Operands & F _n Outputs	
				Logic	Arithmetic (Note 2)	Logic	Arithmetic (Note 2)
S 3	S2	S1	S0	(M = H)	$(M = L) (C_n = L)$	(M = H)	$(M = L) (C_n = H)$
L	L	L	L	Ā	A minus 1	Ā	A
L	L	L	H	ĀB	AB minus 1	Ā + B	A + B
L	L	Н	L	Ā + B	AB minus 1	ĀB	A + B
L	L	H	Н	Logic 1	minus 1	Logic 0	minus 1
L	Н	L	L	Ā+B	A plus (A + B)	AB	A plus AB
L	Н	L	Н	B	AB plus $(A + \overline{B})$	B	(A + B) plus AB
L	Н	Н	L	Ā⊕B	A minus B minus 1	A ⊕ B	A minus B minus 1
L	Н	Н	Н	A + B	A + B	AB	AB minus 1
Н	L	L	L	ĀΒ	A plus (A + B)	Ā + B	A plus AB
Н	L	L	H	A ⊕ B	A plus B	Ā⊕B	A plus B
Н	L	H	L	В	AB plus (A + B)	В	(A + B) plus AB
Н	L	H	H	A + B	A + B	AB	AB minus 1
Н	Н	L	L	Logic 0	A plus A (Note 1)	Logic 1	A plus A (Note 1)
Н	H	L	Н	AB	AB plus A	A + B	(A + B) plus A
Н	Н	Н	L	AB	AB minus A	A + B	(A + B) plus A
Н	Н	Н	Н	A	Α	Α	A minus 1

Note 1: Each bit is shifted to the next most significant position.

Connection Diagram

Pin Descriptions

Pin Names	Description Operand Inputs (Active LOW)			
Ā0-Ā3				
B0−B3	Operand Inputs (Active LOW)			
S0-S3	Function Select Inputs			
M	Mode Control Input			
Cn	Carry Input			
F0-F3	Function Outputs (Active LOW)			
A = B	Comparator Output			
G	Carry Generate Output (Active LOW)			
P	Carry Propagate Output (Active LOW)			
C _{n+4}	Carry Output			