Лекции по Теории вероятностей 4 семестр

Ilya Yaroshevskiy

16 марта 2021 г.

Оглавление

1			2
	1.1	Статистическая вероятность	2
		1.1.1 Пространство элементарных исходов. Случайные событи	2
		1.1.2 Операции над событиями	3
		1.1.3 Классическое определение вероятности	3
		1.1.4 Геометрическое понятие вероятности	5
2		,	7
	2.1	Аксиоматическое опредление верояности	7
		2.1.1 Свойства операция сложения, умножения	0
		2.1.2 Независимые события	1
3		1;	3
4		1!	5
	4.1	Схема Бернулли	_
		4.1.1 Наиболее вероотяное число успехов	6
		4.1.2 Предельные теоремы в схеме Бернулли 1	7
	4.2	Статистическое определение вероятности	8
		4.2.1 Вероятность отклонения относительной частоты 19	9
		4.2.2 Закон больших чисел Бернулли	9
5		20	0
	5.1	Схемы испытаний и соответствующие распределения 20	0
		5.1.1 Схема до превого успешного испытания	0
		5.1.2 Испытание с несколькими исходами	1
		5.1.3 Урновая схема	2
		5.1.4 Схемы Пуассона. Теорема Пуассона для схемы Бернулли 2	3

1.1 Статистическая вероятность

```
n — ч<br/>сло экспериментов n_A — число выполнения события <br/> A  Отношение \frac{n_A}{n} — частота события <br/> A P(A)\approx \frac{n_A}{n},\; n\to +\infty
```

1.1.1 Пространство элементарных исходов. Случайные событи

Определение. Пространстов элементарных исходов называется множество содержащее все возможные результаты данного эксперимента из которых при испытании происходит ровно один. Элементы этого множества называются элементарными исходами

Обозначение.

- Пространство элементарных исходов Ω
- Элементарный исход $w \in \Omega$

Определение. Случайными событиями называются подмножества $A \subset \Omega$. Событие A наступило если в ходе эксперимента произошел один из элементарных исходов $w \in A$. w — благоприятный к A

```
\Piример. Бросаем один раз монету. \Omega = \{H, T\}. H - \mathrm{Head}(\mathrm{open}), \, T - \mathrm{Tail}(\mathrm{pemka})
```

Пример. Бросаем кубик. = $\{1, 2, 3, 4, 5, 6\}$ Выпало четное число очков. $A = \{2, 4, 6\}$

Пример. Монета бросается дважды

- Учитываем порядок. $\Omega = \{HH, HT, TH, TT\}$
- Не учитываем порядок. $\Omega = \{HH, HT, TT\}$

Пример. Бросается дважды кубик. Учитывем порядок. Число очков кратно 3. $A = \{(1,2),(2,1),(1,5),(5,1),\dots\}$

Пример. Монета бросается до выпадения герба. $\Omega = \{(H), (T, H), (T, T, H), \dots\}$ — счетное число исходов

Пример. Монета бросается на плоскость. $\Omega = \{(x,y) \big| x,y \in \mathbb{R}\}$ — нечетное число исходов

1.1.2 Операции над событиями

Определение. Ω — универсальное событие, достоверное, наступает всегда, т.к. содержит все элементарные исходы

 \emptyset — невозможное событие, никогда не выполняется, т.к. не одержит элементарных исходов

Определение. Суммой событий A+B называется событие $A\cup B$ — событие состоящее в том что произошло событие A или событие B, т.е. хотя бы одно и них

Определение. Произведением $A \cdot B$ называется событие $A \cap B$ — событие состоящее в том что произошло событие A и событие B, т.е. оба из них

Определение. Противоположным к A называется событие \overline{A} — состоящее в том событие A не произошло

Определение. Дополнение

Определение. События A и B называются **несовместными** если $A \cdot B = \emptyset$, т.е. в ходе эксперимента может наступить только одно из них

Определение. Событие A влечет событие B, если $A \subset B$

Определение. $P(A) \le 1$ — вероятность наступления события A

1.1.3 Классическое определение вероятности

Пусть Ω содержит конечное число исходов, при чем их можно считать равновозможным. Тогда применимо классическое определение вероятности

Определение. Вероятность события A $P(A) = \frac{|A|}{|\Omega|} = \frac{m}{n}$, где n — число всех возможных элеметарных исходов, m — число элементарных исходов благоприятных событию A. В частности, если $|\Omega = n|$, а A — элементарный исход, то $P(A) = \frac{1}{n}$

Примечание. Свойства:

- 1. $0 \le P(A) \le 1$
- 4. Если события A и B несовместны то вероятность P(A+B) = P(A) + P(B)

Доказательство.
$$]|A|=m_1, |B|=m_2, |A\cup B|=m_1+m_2$$
 $P(A+B)=\frac{m_1+m_2}{n}=\frac{m_1}{n}+\frac{m_2}{n}=P(A)+P(B)$

 $\Pi puмер$. Найти вероятность того, что при бросании кости выпадет четное число очков

$$\Omega = \{1, 2, 3, 4, 5, 6\}, A = \{2, 4, 5\}, P(A) = \frac{3}{6} = \frac{1}{2}$$

Пример. В ящике 3 белых и два черных шара. Вынули 3 шара, найти вероятность того что из них 2 белый и 1 черных

$$n = C_5^3 = 10$$

$$m = C_3^2 \cdot C_2^1 = 6$$

$$P(A) = \frac{6}{10}$$

1.1.4 Геометрическое понятие вероятности

Пусть $\Omega \subset \mathbb{R}^n$ — замкнутая ограниченая область

 $\mu(\Omega)$ — конечная мера множества Ω (например мера Римана, т.ее длина, площадь, объем) В эту область hayead бросаем точку. Термин hayead означает, что веротяность попадания в область A зависит только от меры этой области, но не зависит от ее положения. Вероятность попадания в любые точки равновозможны. Тогда применимо геометрическое определение вероятности.

Определение. $P(A)=\frac{\mu(A)}{\mu(\Omega)},$ где $\mu(\Omega)$ — мера $\Omega,$ $\mu(A)$ — мера благоприятной области A

Примечание. Заметим что по этому определению, мера точки равна 0 и веротяность попадания в конкретную точку равна 0, хотя это событи не является невозможным.

Пример. Игра. Монета диаметром 6 сантиметров бросается на пол, вымощеный квадратной плиткой со стороной 20 сантиметров. Найти вероятнсть того что монета целиком окажется на одной плитке

$$S(\Omega) = 20^2 = 400$$

$$S(A) = 14^2 = 196$$

$$P(A) = \frac{196}{400} = 0.49$$

Задача 1. Пол выложен ламинатом. На пол бросается игла длиной равной ширине доски. Найти вероятность того что она пересечет стык

 $Peшение.\ 2l$ — длина иглы, x — расстояние от центра игла до ближайщего края, φ — угол к ближайшему краю

Игла пересечет край если $x \leq |AB|, \, |AB| = l \sin \varphi$

Можно считать что положение от центра и угол, независимы друг от друга. $x \in [0,l]. \varphi \in [0,\pi]$

$$A: x \le l \sin \varphi$$

$$S(\Omega) = \pi \cdot l$$

$$S(A) = \int_0^{\pi} l \sin \varphi d\varphi = 2l$$

$$P(A) = \frac{S(A)}{S(\Omega)} = \frac{2l}{\pi l} = \frac{2}{\pi}$$

2.1 Аксиоматическое опредление верояности

Колмагоров

 \bullet Ω — пространство элементарных исходов

Систему $\mathcal{F} \subset \Omega$ называем σ -алгеброй событий если:

- 1. $\Omega \in \mathcal{F}$
- 2. Если $A \in \mathcal{F}$, то $\overline{A} \in \mathcal{F}$
- 3. Если $A_1, A_2, \dots \in \mathcal{F}$, то $\bigcup_{i=1}^{+\infty} A_i \in \mathcal{F}$

Примечание. Свойства:

- 1. $\emptyset \in \mathcal{F}$, t.k. $\overline{\Omega} = \emptyset \in \mathcal{F}$
- 2. Если $A_1, A_2, \dots \in \mathcal{F}$, то $\bigcap_{i=1}^{+\infty} A_i \in \mathcal{F}$

Доказательство.
$$A_1,A_2,\cdots\in\mathcal{F}\Rightarrow\overline{A_1},\overline{A_2},\cdots\in\mathcal{F}\Rightarrow\bigcup_{i=1}^{+\infty}\overline{A_i}\in\mathcal{F}\Rightarrow\overline{\bigcup_{i=1}^{+\infty}\overline{A_i}}=\bigcap_{i=1}^{+\infty}A_i\in\mathcal{F}$$

- 3. (a) $F = \{\Omega, \emptyset\}$
 - (b) $F = \{\Omega, \emptyset, A, \overline{A}\}\$

Определение. $]\Omega$ — пространство элементарных исходовб \mathcal{F} — его σ -алгебра. **Вероятностью** на (Ω, \mathcal{F}) обозначается функция $P(A): \mathcal{F} \to \mathbb{R}$ со свойствами:

1. $P(A) \ge 0$ — свойство **неотрицательности**

2. Если событие A_1,A_2,\ldots — попарно несовместны $(\forall i,j: A_i\cap A_j=\emptyset),$ то:

$$P(\bigcup_{i=1}^{+\infty} A_i) = \sum_{i=1}^{+\infty} P(A_i)$$

- свойство **счетной аддитивности**
- 3. $P(\Omega) = 1$ свойство ????

Определение. Тройка (Ω, \mathcal{F}, P) — вероятностное пространство

Примечание. Свойства:

1. $P(\emptyset) = 0$

Доказательство. \emptyset и Ω — несовместные события

$$P(\underbrace{\emptyset + \Omega}_{\Omega}) = P(\emptyset) + P(\Omega) = 1$$

$$P(\emptyset) + 1 = 1$$

$$P(\emptyset) = 0$$

2. Формула обратной вероятноти

$$P(A) = 1 - P(\overline{A})$$

 Доказательство. A и \overline{A} — несовметсные, $A\cup\overline{A}=\Omega$

$$P(A + \overline{A}) = P(A) + P(\overline{A}) = 1 \Rightarrow P(A) = 1 - P(\overline{A})$$

3. $0 \le P(A) \le 1$

Доказательство.

- (a) $P(A) \ge 0$
- (b) $P(A) = 1 P(\overline{A}) \le 1$

Аксиома 1. Пусть имеется убывающая цепочка событий $A_1\supset A_2\supset A_3\supset\ldots, \bigcap_{i=1}^{+\infty}A_i=\emptyset$ <u>Тогда</u> $P(A_n)\xrightarrow[n\to\infty]{}0$

 $\Pi pumeчanue$. При непрерывном изменении области $A\subset \mathbb{R}^n$ соответствующая вероятность также должна изменяться непрерывно. Аксиома непрерывности следует из аксиомы счетной аддитивности

Доказательство.

т.к. эти события несовместны

$$P(A_n) = \sum_{i=n}^{+\infty} P(A_i \overline{A_{i+1}}) + P(\bigcap_{i=n}^{+\infty} A_i)$$
 т.к.
$$P(\bigcap_{i=1}^{+\infty} A_i) = \emptyset \text{ и } \bigcap_{i=n}^{+\infty} A_i = \bigcap_{i=1}^{+\infty} A_i, \text{ то } P(\bigcap_{i=n}^{+\infty} A_i) = 0$$

$$P(A_n) = \sum_{i=n}^{+\infty} P(A_i \overline{A_{i+1}})$$

$$\sum_{i=1}^{+\infty} P(A_i \overline{A_{i+1}}) = P(A_i)$$

$$P(A_n) \xrightarrow[n \to +\infty]{} 0$$

Примечание. Аксимома счетной аддитивности следует из аксиомы непрерывности и свойства конечной аддитивности

2.1.1 Свойства операция сложения, умножения

Определение.

- 1. Свойство дистрибутивности $A \cdot (B + C) = AB + AC$
- 2. Формула сложения. Если A и B несовместны, то P(A+B) = P(A) + P(B) если несовместны, то P(A+B) = P(A) + P(B) P(AB)

Доказательство.

$$A + B = A\overline{B} + AB + \overline{A}B \Rightarrow P(A + B) = P(A\overline{B}) + P(AB) + P(\overline{A}B) =$$
$$= P(A\overline{B}) + P(AB) + (P(\overline{A}B) + P(AB)) - P(AB) = P(A) + P(B) - P(AB)$$

Задача 2. n писем раскладываются в n конвертов. Найти вероятность того что хотя бы одно письмо попадет в свой коверт. Чему равна эта вероятность при $n \to +\infty$

 $Pewenue. \ A_i - i$ письмо попало в свой коверт A- хотя бы одно письмо попало в свой конверт

$$A = A_1 + A_2 + \dots + A_n$$

$$P(A_i) = \frac{1}{n}, \ P(A_i A_j) = \frac{1}{A_n^2}, \ P(A_i A_j A_k) = \frac{1}{A_n^3}, \dots P(A_1 A_2 \dots A_n) = \frac{1}{n!}$$

$$P(A) = n \cdot \frac{1}{n} - C_n^2 \cdot \frac{1}{A_n^2} + \dots + (-1)^{n+1} \frac{1}{n!} = 1 - \frac{1}{2!} + \frac{1}{3!} - \dots + (-1)^{n+1} \frac{1}{n!}$$

$$e^{-1} = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \dots$$

$$P(A) \xrightarrow[n \to +\infty]{} 1 - e^{-1}$$

2.1.2 Независимые события

Примечание. $\Omega = n, |A| = m_1, |B| = m_2$ $|\Omega \times \Omega| = n^2, AB = m_1 m_2$

Определение. События A и B называются независимыми, если P(AB) = P(A)P(B)

 \varPi римечание. Свойство: если A и B — независимы, то A и \overline{B} — независимые

Доказательство.
$$P(A)=P(A(B+\overline{B}))=P(AB+A\overline{B})=P(AB)+P(A\overline{B})\Rightarrow P(A\overline{B})=P(A)-P(AB)=P(A)-P(A)\cdot P(B)=P(A)\cdot (1-P(B))=P(A)\cdot P(\overline{B})\Rightarrow A$$
 и \overline{B} — независимы

Определение. События A_1,A_2,\ldots,A_n называются независимыми в совкупности, если для любого набора $1\leq i_1,i_2,\ldots,i_k\leq n$ $P(A_{i_1}A_{i_2}\ldots A_{i_k})=P(A_{i_1})P(A_{i_2})\ldots P(A_{i_k})$

Примечание. Если события независимы в совокупности, то события независимы попарно(при k=2). Обратное неверно

Пример (Берштейна). Три грани правильного тетраэдра выкрашены в красный, синий, зленый цвета, а четвертая грань во все жти три цвета A— грань содержит красный цвет, B— синий, C— зеленый

$$P(A) = P(B) = P(C) = \frac{2}{4} = \frac{1}{2}$$

$$P(AB) = P(AC) = P(BC) = \frac{1}{4}$$

$$P(AB) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = P(A)P(B)$$

⇒ все события попарно независим

$$P(ABC) = \frac{1}{4} \neq P(A)P(B)P(C) = \frac{1}{8}$$

⇒ события не независимы в совокупности

Примечание. Если в условии есть "хотябы т.е. требуется найти вероятность совместных независимых событий, то применяем формулу обратной вероятности

Задача 3. Найти веротяность того, что при 4 бросаниях кости, хотябы один раз выпадет шестерка.

 $Peшение.\]A_1$ — при 1 броске "6 A_2 — при 2х бросках "6 $\dots,\,A$ — хотя бы один раз "6"

$$A = A_1 + A_2 + A_3 + A_4$$
$$P(A_1) = P(A_2) = P(A_3) = P(A_4) = \frac{1}{6}$$

$$P(\overline{A_1}) = P(\overline{A_2}) = P(\overline{A_3}) = P(\overline{A_4}) = \frac{5}{6}$$

 \overline{A} — ни разу не выпадет

$$\overline{A} = \overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3} \cdot \overline{A_4}$$

$$P(\overline{A}) = \left(\frac{5}{6}\right)^4$$

$$P(A) = 1 - P(\overline{A})$$

Задача 4. Два стрелка стреляют по мишени. Вероятность попадания первого — 0.6, второго — 0.8

 $Peшение.\ A_1-1$ й попал

 A_2-2 й попал

A — один попал

$$A = A_1 \cdot \overline{A_2} + \overline{A_1} A_2$$

$$P(A) = P(A) \cdot P(\overline{A_2}) + P(\overline{A_1}) \cdot P(A_2)$$

Теорема 3.0.1 (Баеса). $]H1, H2, \ldots, H_n, \ldots$ — полн. у. соб. Тогда

$$P(H_k|A) = \frac{P(H_k)P(A|H_k)}{\sum_{i=1}^{\infty} P(H_i)P(A|H_i)}$$

Пример. В первой коробке 4 белых и два черных шара, во второй й белый и два черных. Из первой коробки во вторую переложили два шара, затем из второй коробке доставли шар. Найти вероятность того что он оказался белый

Peшение. •] H_1 — переложили 2 белых

-] H_2 переложили 2 черных
-] H_3 переложили 1 черный и 1 белый
- ullet]A из второй коробки достали белый

$$P(H_1) = \frac{4}{6} \cdot \frac{3}{5} = \frac{6}{15}$$

$$P(H_2) = \frac{2}{6} \cdot \frac{1}{5} = \frac{1}{15}$$

$$P(H_3) = \frac{4}{6} \cdot \frac{2}{5} + \frac{2}{6} \cdot \frac{4}{5} = \frac{8}{15}$$

$$\sum P(H_i) = 1 - \text{ верно}$$

$$P(A|H_1) = \frac{3}{5}$$

$$P(A|H_2) = \frac{1}{5}$$

$$P(A|H_3) = \frac{2}{5}$$

По формуле полной вероятности:

$$P(A) = P(H_1)(A|H_1) + P(H_2)(A|H_2) + P(H_3)(A|H_3) = \frac{6}{15} \cdot \frac{3}{5} + \frac{1}{15} \cdot \frac{1}{5} + \frac{8}{15} \cdot \frac{2}{5} = \frac{7}{15}$$

ЛЕКЦИЯ 3.

Пример. По статистике 1% населения болен раком. Тест дает правильный результат в 99% случаев. Тест оказался положительным. Найти веротяность того что человек болен.

14

- $P(H_1) = 0.01$
- $P(H_2) = 0.99$
- $P(A|H_1) = 0.99$
- $P(A|H_2) = 0.01$

$$P(H_1|A) = \frac{P(H_1)P(A|H_1)}{P(H_1)P(A|H_1) + P(H_2)P(A|H_2)} = \frac{1}{2}$$

Сделаем второй тест:

- $P(H_1) = 0.01$
- $P(H_2) = 0.99$
- $P(AA|H_1) = 0.99^2$
- $P(AA|H_2) = 0.01^2$

$$P(H_1|AA) = \frac{0.99}{0.99 + 0.01} = 0.99$$

4.1 Схема Бернулли

Определение. Схемой Бернулли называется серия независимых испытаний, каждое из которых имеет два исхода, каждое интересующее нас событие лиибо произошло либо не произошло, успех

- n число испытаний
- \bullet p вкроятность события A при одном испытании
- q = 1 p
- ν_k число успехов при k испытаниях
- $P_n(k) = P(\nu_k = k)$

Теорема 4.1.1. Вероятность того что при n испытаниях произойдет ровно k успехов равна:

$$P_n(k) = C_n^k p^k q^{n-k}$$

Доказательство. Рассмотрим один из исходов благоприятных событию A: $A_1 = \underbrace{YY \dots Y}_k \underbrace{HH \dots H}_{n-k}$ — независмые события

- $P(\mathcal{Y}) = p$
- P(H) = q

$$P(A_1) = \underbrace{pp \dots p}_{k} \underbrace{qq \dots q}_{n-k} = p^k q^{n-k}$$
$$P(A) = C_n^k p^k q^{n-k}$$

Задача 5. Вероятност попадания стрелка в цель при одном выстреле 0.8. Найти вероятность того что при 5 выстрелах буду 3 попадания

Решение.

• n = 5

• p = 0.8

• q = 0.2

• k = 3

$$P_5(3) = C_5^3 p^3 q^2 = 0.2048$$

4.1.1 Наиболее вероотяное число успехов

Выясним при каком значении k вероятность предшествующего числа успехов k-1 будет не более чесм веротяность k успехов

$$P_k(k-1) \le P_k(k)$$

$$C_n^{k-1}p^{k-1}q^{n-k+1} \le C_n^k p^k qn - k$$

$$\frac{n!}{(k-1)!(n-k+1)!} q \le \frac{n!}{(k!(n-k)!)} p$$

$$\frac{k!}{(k-1)!} q \le \frac{(n-k+1)!}{(n-k)!} p$$

$$k(1-p) \le (n-k+1)p$$

$$k \le np+p$$

Так как k — целое то выполняется: $np+p-1 \le k \le np+p$ Рассмотрим три ситуации:

- 1. np целое. Тогда np+p целое и k=np наиболее вероятное число исходов
- 2. np+p не целое. Тогда $k=\lceil np+p \rceil$
- 3. np+p целое. Тогд np+p-1 целое и $P_n(k-1)=P_n(k)$ и имеем два наиболле веротяных числа успехов:
 - $\bullet \ k=np+p$
 - k = np + p 1

4.1.2 Предельные теоремы в схеме Бернулли

Определение. Локальная формула Муавра-Лапласса. Применяем когда требутеся найти веротяноть точно числа успехов.

$$P_n(\nu_n = x) \approx \frac{1}{\sqrt{npq}} \varphi(x)$$

, где $\varphi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, x=\frac{k-np}{\sqrt{npq}}$ — функция Гауса. Свойства функции Гауса $\varphi(x)$:

- 1. $\varphi(-x) = \varphi(x)$ четная
- 2. при x > 5, $\varphi(x) \approx 0$

Определение. Интгрелальная формула Лапласса. Применяем если число успехов лежит в неком диапозоне.

$$P_n(x_1 \le \nu_n \le x_2) \approx \Phi(x_1) - \Phi(x_2)$$

, где

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{z^2}{2}} dz$$

— функция Лапласса

$$x_1 = \frac{k_1 - np}{\sqrt{npq}}, \ x_2 = \frac{k_2 - np}{\sqrt{npq}}$$

Свойства $\Phi(x)$:

1. $\Phi(-x) = \Phi(x)$ — нечетная

2. при x > 5, $\Phi(x) \approx 0.5$

Примечание. В некоторых источниках под функцией Лапласса поразумевается несколько иная функция, чаще всего:

18

$$F_0(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{z^2} 2dz$$

$$F_0(x) = 0.5 + \Phi(x)$$
 или $\Phi(x) = F_0(x) - 0.5$

Примечание. Формула применяем при $n \geq 100$ и $p,q \geq 0.1$

Задача 6. Вероятность попадания стрелка в цель при одном выстреле 0.8. Стрелок сделал 400 выстрелов. Найти вероятность того что

- 1. произошло ровно 330 попаданий
- 2. произошло от 312 до 336 попаданий

Решение. 1. n = 400, p = 0.8, q = 0.2, k = 330

$$x = \frac{330 - 400 \cdot 0.8}{\sqrt{400 \cdot 0.8 \cdot 0.2}} = 1.25$$

$$P_{400}(330) \approx \frac{1}{8} \cdot \varphi(1.25) \approx \frac{1}{8} \cdot 0.1826 \approx 0.0228$$

2. $n = 400, p = 0.8, q = 0.2, k_1 = 312, k_2 336$

$$x_1 = \frac{312 - 400 \cdot 0.8}{\sqrt{400 \cdot 0.8 \cdot 0.2}} = -1$$

$$x_2 = \frac{336 - 400 \cdot 0.8}{\sqrt{400 \cdot 0.8 \cdot 0.2}} = 2$$

$$P_{400}(312 \le \nu_n \le 336) = \Phi(2) - \Phi(-1) = \Phi(2) + \Phi(1) \approx 0.8185$$

4.2 Статистическое определение вероятности

- n_A число появления события A при n испытаниях
- $\frac{n_A}{n}$ частота события A

$$P(A) pprox rac{n_A}{n}$$
, при $n o \infty$

4.2.1 Вероятность отклонения относительной частоты

]p — веротяность события $A, \, \frac{n_A}{n}$ — частота A По интегральной формуле Лапласса:

$$\begin{split} P\left(\left|\frac{n_A}{n} - p\right| \leq \varepsilon\right) &= P(-\varepsilon \leq \frac{n_A}{n} - p \leq \varepsilon) = P(-n\varepsilon \leq n_a - np \leq n\varepsilon) = P(np - n\varepsilon \leq n_A \leq np + n) \\ x_1 &= \frac{np - n\varepsilon - np}{\sqrt{npq}} = -\frac{n\varepsilon}{\sqrt{npq}} \\ x_2 &= \frac{np + n\varepsilon - np}{\sqrt{npq}} = \frac{n}{\sqrt{npq}} \\ P\left(\left|\frac{n_A}{n} - p\right| \leq \varepsilon\right) &= \Phi\left(\frac{n\varepsilon}{\sqrt{npq}}\right) - \Phi\left(-\frac{n\varepsilon}{\sqrt{npq}}\right) = 2\Phi\left(\frac{n\varepsilon}{\sqrt{npq}}\right) \\ P\left(\left|\frac{n_A}{n} - p\right| \leq \varepsilon\right) &= 2\Phi\left(\frac{\sqrt{n}}{\sqrt{pq}}\varepsilon\right) \end{split}$$

4.2.2 Закон больших чисел Бернулли

Более точно последняя формула выглядит так:

$$\begin{split} P\left(\left|\frac{n_A}{n}-p\right| \leq \varepsilon\right) \xrightarrow[n \to \infty]{} 2\Phi\left(\frac{\sqrt{n}}{\sqrt{pq}}\varepsilon\right) \end{split}$$
при $n \to \infty$ $\frac{\sqrt{n}}{\sqrt{pq}}\varepsilon \to \infty$ и $\Phi\left(\frac{\sqrt{n}}{\sqrt{pq}}\right) \to 0.5$
$$P\left(\left|\frac{n_A}{n}-p\right| \leq \varepsilon\right) \to 2 \cdot 0.5 = 1$$

$$\lim_{n \to \infty} P\left(\left|\frac{n_A}{n}-p\right| \leq \varepsilon\right) = 1$$

— закон больших чисел Бернулли

То есть при большом числе испытаний, будет близко в реальной вероятности

5.1 Схемы испытаний и соответствующие распределения

- n число испытаний
- р вероятность при одном испытании
- \bullet q = 1 p веротяность неудачи при одном испытании

Определение.

$$k \to C_n^k p^k q^{n-k}$$

— биноминальное распределение с параметрами n и p

Обозначение. $B_{n,p} = B(n,p)$

5.1.1 Схема до превого успешного испытания

Определение. Схема до первого успешного испытания. Пусть проводится бесконечная серия испытаний, которая заканчивается после первого успеха под номером τ

Теорема 5.1.1. $p(\tau = k) = q^{k-1}p$

Доказательство.

$$p(\tau = k) = p(\underbrace{\operatorname{HH} \dots \operatorname{H}}_{k-1} \underbrace{\operatorname{Y}}_{k}) = q^{k-1}p$$

Определение. $k \to q^{k-1}p, \ 1 \le k \le \infty$ — называется геометрическим распределением с параметром t

Обозначение. G(p)

Примечание. Это распределение обладает так назыаемым свойством отсутствия после действия или свойством нестарения

Теорема 5.1.2.
$$]p(\tau = k) = q^{k-1}p$$
 Тогда $\forall n, k \in \mathbb{N} \ p(\tau > n + k | \tau > n) = p(\tau > k)$

Доказательство. По формуле условной вероятности:

$$p(\tau > n + k | \tau > k) = \frac{p(\tau > n + k \text{ u } \tau > j)}{p(\tau > n)} = \frac{p(\tau > n + k)}{p(\tau > n)}$$
(5.1)

 $p(\tau > m) = p(\text{первые } m \text{ неудач}) = q^m$

$$5.1 = \frac{q^{n+k}}{q^n} = q^k$$

 $\ensuremath{\mathit{Примечаниe}}.$ То, проработет ли девайс k часов после этого, не зависит от того сколько проработал до этого

Примечание. Также $p(\tau = n + k | \tau > n) = p(\tau = k)$

5.1.2 Испытание с несколькими исходами

Пусть при n испытаниях могут произойти m несовместных исходов

ullet p_i — вероятность i-го исхода при одном отдельном испытании

Теорема 5.1.3. Вероятность того, что при n испытаниях первый исход появится n_1 раз, второй n_2 раз, ..., m-й n_m раз. $n_1+n_2+\cdots+n_m=m$ Тогда

$$p(n_1, n_2, \dots, n_m) = \frac{n!}{n_1! n_2! \dots n_m!} p_1^{n_1} p_2^{n_2} \dots p_m^{n_m}$$

Доказательство. $A_1 = \underbrace{11 \dots 1}_{n_1} \underbrace{22 \dots 2}_{n_2} \dots \underbrace{m \dots m}_{n_m}$

$$p(A_1) = p_1^{n_1} \dots p_n^{n_m}$$

Остальные благоприятные исходы отличаются лишь расположением i-х исходов по n местам, а веротяности будут те-же. Всего таких исходов будет:

$$C_n^{n_1}C_{n-n_1}^{n_2}C_{n-n_1-n_2}^{n_3}\dots C_{n_m}^{n_m} = \frac{n!}{n_1!n_2!\dots n_m!}$$

— формула для перестановок с повторениями

Задача 7. Два одинаковых по силе шахматиста играют матч из 6 партий. Вероятность ничьи при одной пратии — 0.5. Найти веротяность того, что второй игрок две партии выиграл, а три партии свел в ничью

Решение. Исходы:

1. первый выиграл

- 2. второй выиграл
- 3. ничья

$$p_3 = \frac{1}{2}; \ p_1 = p_2 = \frac{1}{2} \left(1 - \frac{1}{2} \right) = \frac{1}{4}; \ n = 6$$
$$P(1, 2, 3) = \frac{6!}{1!2!3!} \cdot \left(\frac{1}{4} \right)^1 \cdot \left(\frac{1}{4} \right)^2 \cdot \left(\frac{1}{2} \right)^3 = \frac{15}{2^7}$$

5.1.3 Урновая схема

В урне N шаров. Из них K белых, а черных N-K. Из нее выбираем n шаров без учета порядка. k — число вынутых белых

Теорема 5.1.4 (Схема в возвратом). Вероятность вынуть белый шар не менятеся.

Тогда

$$p = \frac{K}{N}$$
 $p_n(k) = C_n^k p^k (1-p)^{n-k}$

— биноминальное распределение

Теорема 5.1.5 (Схема без возврата). Тогда

$$P_{N,K}(n,k) = \frac{C_K^k \cdot C_{N-K}^{n-k}}{C_N^n}$$

Определение.

$$k \to \frac{C_K^k \cdot C_{N-K}^{n-k}}{C_N^n}, \ k \le K$$

назвается гипергеометрическим распределением веротяности

Лемма 1.

$$C_K^k \sim \frac{K^k}{k!}$$

, $npu\ K\to\infty, K=const$

Доказательство.

$$C_K^k = \frac{K!}{k!(K-k)!} = \frac{K(K-1)\dots(K-k+1)}{K^k} \cdot \frac{K^k}{k!} = \underbrace{1\cdot\left(1-\frac{1}{K}\right)\cdot\left(1-\frac{2}{K}\right)\dots\left(1-\frac{k-1}{K}\right)}_{1} \cdot \frac{K^k}{k!} \sim \frac{K^k}{k!}$$

Теорема 5.1.6.

- $N \to \infty$
- $K \to \infty$

• $\frac{K}{N} \to p \in (0,1)$

• n и $0 \le k \le K$ — фиксированны

Тогда

$$P_{N,K}(n,k) = \frac{C_K^k C_{N-K}^{n-k}}{C_N^n} \to C_n^k p^k (1-p)^{n-k}$$

Доказательство.

$$P_{N,K}(n,k) = \frac{C_K^k C_{N-K}^{n-k}}{C_N^n} \xrightarrow[N \to \infty]{} \frac{K^k}{k!} \cdot \frac{(N-K)^{n-k}}{(n-k)!} \cdot \frac{n!}{N^n} = \frac{n!}{k! \cdot (n-k)!} \cdot \frac{K^k}{N^k} \cdot \frac{(N-K)^{n-k}}{N^{n-k}} =$$

$$= C_n^k \left(\frac{K}{N}\right)^k \left(1 - \frac{K}{N}\right)^{n-k} \xrightarrow[N \to \infty]{} C_n^k \cdot p^k \cdot (1-p)^{n-k}$$

5.1.4 Схемы Пуассона. Теорема Пуассона для схемы Бернулли

Схема: вероятность успеха при одном отдельном испытании зависит от числа испытаний n таким образом, чтобы $n\cdot p_n=\lambda (\text{точнее } np_n\xrightarrow[n\to\infty]{}\lambda)$ Появление очень редких событий в длинном потоке испытаний

Теорема 5.1.7 (Формула Пуассона). Пусть $n \to \infty, \ p_n \to 0,$ так что $np_n \to \lambda > 0$

 $\overline{\text{Тогда}}$ вероятность k успехов при n испытаниях $p(\nu_n=k)=C_n^kp_n^k(1-p_n)^{n-k}\xrightarrow[n\to\infty]{\lambda^k\over k!}e^{-\lambda}$

Доказательство. Положим $\lambda_n = np_n$

$$p(\nu_n = k) = C_n^k p_n^k (1 - p_n)^{n-k} \xrightarrow[n \to \infty]{} \frac{n^k}{k!} \cdot \frac{\lambda_n^k}{n^k} \cdot \left(1 - \frac{\lambda_n}{n}\right)^{n-k} = \frac{\lambda_n^k}{k!} \cdot \left(1 - \frac{\lambda_n}{n}\right)^n \cdot \left(1 - \frac{\lambda_n}{n}\right)^{-k} \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} \cdot \left(1 - \frac{\lambda_n}{n}\right)^n \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} \cdot \left(1 - \frac{\lambda_n}{n}\right)^{-k} \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} e^{-\lambda_n} \xrightarrow[n \to \infty]{} \frac{\lambda_n^k}{k!} e^{-\lambda_n}$$

1. Оценка погрешности в формуле Пуссона

Теорема 5.1.8. Пусть ν_n – число успешных про k в схеме Бернулли с вероятностью p

$$\lambda = np \quad A \subset \{0, 1, 2, \dots n\}$$
 — произвольное подмножество

Тогда погрешность

$$\left| p(\nu_n \in A) - \sum_{k \in A} \frac{\lambda_k}{k!} e^{-\lambda} \right| \le \min(p, \lambda p) = \min(p, np^2) = \min\left(p, \frac{\lambda^2}{n}\right)$$

23

Примечание. Формулу Пуасснона иногда называют формулой редких событий и применяем при малых $p,\,n\geq 100$

Задача 8. Прибор состоит из 1000 элементов. Вероятность отказа каждого элемента $\frac{1}{1000}$. Какова вероятность отказа больше двух элементов

Решение.

$$p_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda}$$

, где $\lambda = np$

- n = 1000
- p = 0.001
- $\lambda = np = 1$
- *k* > 2

$$p(\nu_n > 2) = 1 - p(\nu_n \le 2) = 1 - (p(0) + p(1) + p(2)) \approx 1 - \left(\frac{\lambda^0}{0!}e^{-\lambda} + \frac{\lambda^1}{1!}e^{-\lambda} + \frac{\lambda^2}{2!}e^{-\lambda}\right) = 1 - 2.5e^{-1} \approx 0.0803$$

Погрешность $\varepsilon \leq \min(p, \lambda p) = 0.001$