TipoB- Farão essa avaliação os alunos listados abaixo: Podem fazer individual ou em dupla ok devolutiva no portfólio 10-04 as 23:59. PODE SER REALIZADA EM DUPLA DENTRO DO GRUPO

18	19.1.9045	DOUGLAS DA ROCHA	
19	16.2.0444	EDUARDO MATHEUS FERREIRA	
20	20.1.4239	ELISA COELHO MALAQUIAS	
21	19.1.7092	ELLEN JUNKER	
22	20.1.9093	ESTHER CAROLINA VALENTIM	
23	18.1.6614	FABRÍCIO ANTONIO VIEIRA	
24	20.1.1954	FELIPE LUZ BATISTA	
25	20.1.7208	FRANKLIN FREIRE CONCEIÇÃO	
26	20.1.6911	GABRIEL FERNANDO REPPA DA SILVA	
27	18.2.0466	GABRIEL VICENTE DONNINI DE SOUZA	
28	18.2.0482	GABRIEL VIEIRA BERNARDES	
29	18.2.2279	GILBERT SAMPAIO ALVES	
30	18.2.1815	GUILHERME ALEXANDRE FRANKENBERGER	
31	17.1.2717	GUILHERME CAMARGO NONINO	
32	19.1.3715	GUSTAVO CONSTANTINI MATTOS	
33	20.1.3954	GUSTAVO DALMO TEIXEIRA	TRANCAMENTO em 05/04/21.
34	19.1.0859	GUSTAVO HENRIQUE STAHL MÜLLER	
35	19.1.0529	GUSTAVO MARTINS DOS SANTOS	
36	19.1.2745	GUSTAVO MOURA FERREIRA AMORIM	
37	19.1.3175	JESSICA BECKER LOPES	
38	18.1.4310	JESSICA BUENO DE LIMA	

Respostas na folha anexo use arredondamento conforme NBR Conforme parágrafo 5° do artigo 81, do Regimento Geral da UNIVALI- "atribuir-se-á nota zero ao aluno que deixar de submeter-se à verificação prevista na data fixada, bem como ao aluno que nela se utilizar de meio fraudulento". Obsrespostas sem justificativas serão desconsideradas. Todos os cálculos devem ser realizados utilizando o formulário. Permitido somente uso de calculadoras científica RESPONDA SOMENTE NA FOLHA DE RESPOSTA RESPONDA SOMENTE NA FOLHA DE RESPOSTA

<u>1ª Questão</u>: <u>DUAS CASAS APÓS A VIRGULA, PORÉM VARIÂNCIA TODAS AS CASAS E ARREDONDAR NO FINAL</u> Em amostras de combustíveis da marca A foram medidos a concentração aditivo em mg por litro em gasolinas aditivadas de diferentes postos de combustíveis que afirmam ser da marca A . Os dados, após convenientemente agrupados, forneceram a seguinte distribuição : 14,0; 14,1; 14,13; 14,17; 14,2; 14,2; 14,3; 14,3; 14,3; 14,35; 14,4; 14,5; 14,6; 14,7; 14,8; 14,8; 14,9; 15,0; 15,1; 15,2; 15,6; 15,6; 15,7; 15,8; 15,9.

- 1.1- Com os dados do item anterior, agrupar os dados em forma de tabela com intervalo de classe, considerando os seguintes itens:
 - a) Determine a frequência absoluta de cada classe (fi) (vale 0,5 pontos)
 - b) Determine o ponto médio de cada classe (x_M) (vale 0,25 pontos)
 - c) Determine a frequência relativa de cada classe (f_{ri}) em % com dois decimais. (vale 0, 25 pontos)
 - d) Determine as freqüências relativas acumuladas "abaixo de" (Fri↓) e "acima de" (Fri ↑) em %(vale 0,5 pontos)

At= 15,9-14= 1,9
i= 1+(3,3*log(n))= 5,613202029
$$\cong$$
 5,61 \cong 6
h = At/i = 0,3385 ou 0,34
ou
0,32 (i=6)

Condição	
h	h*i + menor xi >= xi
0,34	16,03092 ou 16,03
0,32	15,9

LINHAS	Intervalo	fi	Xm	fri (%)	Fr₁↓	Fri↑
1	14 14,32	9	14,16	36	36	100
2	14,32 14,64	4	14,48	16	52	64
3	14,64 14,96	4	14,80	16	68	48
4	14,96 15,28	3	15,12	12	80	32
5	15,28 15,6	0	15,44	0	80	20
6	15,6 15,92	5	15,76	20	100	20
		25		100		

1.2-Esboçar graficamente, com base nos itens a e b do item 1.1, o Histograma e o polígono de frequências correspondente (**vale 0,25 pontos**).

1.3- Calcule o valor da média (0,25), mediana (0,25), da variância (0,5) **e** do desvio padrão amostral (0,15) dos dados do item 1.1.

PELOS VALORES ISOLADOS:

Média	14,75 mg/L	(SOMA/QUANTIDADE = 368,65/25) (Valor central com os dados
Mediana	14,6 mg/L	ordenados)
Somatório variância	0,5565160000	((xi-Média)^2)
	0,4173160000	((xi-Média)^2)
	0,3794560000	((xi-Média)^2)
	0,3317760000	((xi-Média)^2)
	0,2981160000	((xi-Média)^2)
	0,2981160000	((xi-Média)^2)
	0,1989160000	((xi-Média)^2)
	0,1989160000	((xi-Média)^2)
	0,1989160000	((xi-Média)^2)
	0,1568160000	((xi-Média)^2)
	0,1197160000	((xi-Média)^2)
	0,0605160000	((xi-Média)^2)
	0,0213160000	((xi-Média)^2)
	0,0021160000	((xi-Média)^2)
	0,0029160000	((xi-Média)^2)
	0,0029160000	((xi-Média)^2)
	0,0237160000	((xi-Média)^2)
	0,0645160000	((xi-Média)^2)
	0,1253160000	((xi-Média)^2)
	0,2061160000	((xi-Média)^2)
	0,7293160000	((xi-Média)^2)
	0,7293160000	((xi-Média)^2)
	0,9101160000	((xi-Média)^2)
	1,1109160000	((xi-Média)^2)
	1,3317160000	((xi-Média)^2)
Resultado somatório	8,4754000000	(Soma de todos)
Resultado variância	0,353141666667	(Soma/(total-1)
Variância Arredondada	0,35	
Desvio Padrão	0,59 mg/L	(Raiz da variância)

Média	14,75 mg/L	(SOMA DE TODOS MULTIPLICADOS PELAS SUAS FREQUÊNCIAS/QUANTIDADE = 368,72/25)	
	_ 1,106,1		
n/2=	12,5	$\left(\frac{n}{-}-F_{}\right)$	Fi↓
Lmd=	14,32	$Md = L_{Md} + \frac{2^{-ant}}{2} h$	9
Fant=	9	f _{Md}	13
Fmd=	4		17
h=	0,32		20
Mediana	14,60 mg/L		20
			25
Somatório variância	3,120168960	((PontoMedio-Média)^2)*Frequencia	
	0,289013760	((PontoMedio-Média)^2)*Frequencia	
	0,010485760	((PontoMedio-Média)^2)*Frequencia	
	0,413368320	((PontoMedio-Média)^2)*Frequencia	
	0,000000000	((PontoMedio-Média)^2)*Frequencia	
	5,112627200	((PontoMedio-Média)^2)*Frequencia	
Resultado somatório	8,945664000	SOMA TODOS	
Resultado variância	0,357826560	(Soma/(total-1)	
Variância arredondada	0,36		
Desvio Padrão	0,60 mg/L	(Raiz da variância)	

CONAN DE TODOS NALUTIDIAS ADOS DEL AS SUAS

1.4- Baseado nos itens 1.1, 1.2 e 1.3 interprete de forma clara os resultados. (vale 0,5 ponto)

CV = DesvioPadrão / Média * 100 = 0,59/14,75*100 = 4% DADOS ISOLADOS

CV = DesvioPadrão / Média * 100 = 0,6/14,75*100 = 4,06% DADOS EM INTERVALO

A partir dos resultados obtidos e do coeficiente de variação calculado (por volta de 4%) é possível concluir que os dados não possuem uma grande variação e que a média calculada é significativa. Ou seja, os valores podem ser substituídos pela média de 14,75 mg/. Entretanto, os dados com um ponto médio de 14,16 se mostram mais frequentes, aparecendo 9 vezes, enquanto o segundo mais frequente aparece 5.

<u>2ª Questão</u>: <u>DUAS CASAS APÓS A VIRGULA, PORÉM VARIÂNCIA TODAS AS CASAS E ARREDONDAR NO FINAL</u> Uma máquina produz bastões metálicos usados em um sistema de suspensão de veículos automotivos. Uma amostra aleatória de 9 bastões é selecionada, sendo o comprimento (em *mm*). Os dados resultantes são mostrados a seguir:

118,33 118,36 118,34 118,35 118,29 118,35 118,36 118,33 118,34

Calcular preferencialmente no exel:

(3,0 pontos) a) média (Duas casas após a vírgula) b) mediana c) moda d) amplitude total f) variância(todas as casas e arredonde para duas no final) g) desvio padrão(Duas casas após a vírgula) e) coeficiente de variação Duas casas após a vírgula. Interprete o resultado às medidas de dispersão calculadas

- b) Mediana = 118,34 *mm* (valor central com o conjunto ordenado)
- c) Moda = Não tem, muitos valores possuem a maior frequência
- d) Amplitude total = 0.07 (118,36-118,29)
- e) Variância = 0,00046

Somatório variância 0,0023901235 ((118,29-Média)^2)

0,0001580247 ((118,33-Média)^2)*2 0,0000024691 ((118,34-Média)^2)*2 0,0002469136 ((118,35-Média)^2)*2 0,0008913580 ((118,36-Média)^2)*2

Resultado somatório 0,0036888889 (Soma de todos) **Resultado variância** 0,000461111111 (Soma/(total-1)

Variância

Arredondada 0,00046

- f) Desvio Padrão = 0,02 mm (Raiz da variância)
- g) Coeficiente de variação = 0,02% (DesvioPadrão / Média * 100 = 0,02/118,34*100)

Interpretação: A média do conjunto de dados é significativa pois o coeficiente de variação obtido tem uma porcentagem extremamente baixa, o que indica que os dados não variam muito e que eles podem ser substituídos pelo valor da média.

3ª Questão (0,6)

colocar ao lado quantitativa discretas (QD) quantitativa contínuas (QC), qualitativa nominal (QN), qualitativa ordinal (QO).

- a) (QD) Número de funcionários de uma indústria;
- b) (QC)Concentração de cádmio em resíduos da indústria de tintas
- c) (QC)Temperaturas de um forno num processo cerâmico;
- d) (QC)Dimensões de tijolos produzidos numa olaria;
- e) (QD)Quantidade de arvores num reflorestamento;
- f) (QC)Comprimento de uma viga.

<u>4ª Questão</u>: <u>DUAS CASAS APÓS A VIRGULA, PORÉM VARIÂNCIA TODAS AS CASAS E ARREDONDAR NO FINAL</u> Um pesquisador está estudando a resistência de um certo material sob determinadas condições.

Resistência	fi
(MPa)	
599	25
598	15
512	30
513	35
Total	105

Como o uso do formulário calcule:

a) Média, moda e mediana (0,75)

Média = **545,33 MPa** ((599*25+598*15+512*30+513*35)/105)

Moda = **513 MPa** (valor mais frequente)

Mediana = **513 MPa** (valor central com o conjunto ordenado)

b) A variância (0,5) e o desvio padrão (0,15)

Somatório variância 72002,777777777000 ((599-Média)^2)*25

41606,6666666666000 ((598-Média)^2)*15 33333,33333333334000 ((512-Média)^2)*30 36590,5555555556000 ((513-Média)^2)*35

 Resultado somatório
 183533,33333333300
 (Soma de todos)

 Resultado variância
 1764,74358974359
 (Soma/(total-1)

Variância Arredondada 1764,74

Variância = **1764,74**

Desvio Padrão = **42,01 MPa** (raiz da variância)

c) Interprete os resultados (0,5) CV = DesvioPadrão / Média * 100 = 42,01/545,33*100 = 7,7

A partir da análise dos dados obtidos pode-se concluir que a média dos dados é significativa, uma vez que o coeficiente de variação obtido (7,7%) é bem baixo. Portanto, os valores do conjunto de dados podem ser substituídos pelo valor da média (545,33 MPa).