Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

An efficient method for generating property-energy consistent basis sets. New pecJ-n (n = 1, 2) basis sets for high-quality calculations of indirect nuclear spin-spin coupling constants involving ¹H, ¹³C, ¹⁵N, and ¹⁹F nuclei

Yuriy Yu. Rusakov, Irina L. Rusakova

Supplementary Information

Basis sets are given CFOUR format

```
H:pecJ-1
Property-energy consistent basis set
2
0 1
5
  2
5.07308E+03 2.16644E+02 2.50008E+01 5.00205E+00 1.29556E+00
4.00307E-01 1.33227E-01
0.00000000 1.00000000 0.00000000 0.00000000 0.00000000
1.48544E+00 4.06750E-01
1.00000000 0.00000000
0.00000000 1.00000000
C:pecJ-1
```

Property-energy consistent basis set

```
3
0 1 2
8 3 2
3.551632E+04 5.744652E+03 9.954157E+02 2.315943E+02 6.620654E+01
2.157261E+01 7.648720E+00 2.844272E+00 6.482868E-01 2.179306E-01
0.00000000
0.00000000
0.00000000
0.00000000 1.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
```

```
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
1.00000000
3.053233E+01 6.903835E+00 1.882246E+00 5.969291E-01 1.734469E-01
4.2186E-03 0.00000000 0.00000000
3.2808E-02 0.00000000 0.00000000
1.1902E-01 0.00000000 0.00000000
0.00000000 1.00000000 0.00000000
0.00000000 0.00000000 1.00000000
1.234913E+00 3.853405E-01
1.00000000 0.00000000
0.00000000 1.00000000
N:pecJ-1
Property-energy consistent basis set
3
0 1 2
8 3
   2
10 5 2
1.649023E+05 9.215658E+03 1.455967E+03 3.238329E+02 8.920075E+01
2.841262E+01 1.001470E+01 3.764414E+00 7.224090E-01 2.026552E-01
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
1.00000000
3.123160E+01 6.893201E+00 1.978571E+00 6.571405E-01 1.946419E-01
7.8950E-03 0.00000000 0.000000000
5.5666E-02 0.00000000 0.00000000
1.6792E-01 0.00000000 0.00000000
0.00000000 \ 1.00000000 \ 0.00000000
0.00000000 0.00000000 1.00000000
```

```
1.411561E+00 3.724804E-01
```

1.00000000 0.00000000 0.00000000 1.00000000

```
F:pecJ-1
Property-energy consistent basis set
```

2.282510E+05 1.395200E+04 2.238199E+03 5.097673E+02 1.430299E+02 4.604822E+01 1.633767E+01 6.221429E+00 1.267895E+00 3.612004E-01

9.142507E+01 1.727983E+01 4.618007E+00 1.355099E+00 3.034276E-01

5.5622E-03 0.00000000 0.00000000 5.4380E-02 0.00000000 0.00000000 2.1629E-01 0.00000000 0.00000000 0.00000000 1.00000000 0.00000000

0.0000000 0.0000000 1.00000000

2.207200E+00 4.610628E-01

1.00000000 0.00000000 0.00000000 1.00000000

H:pecJ-2

Property-energy consistent basis set

```
3.26942E+04 3.09626E+03 1.76078E+02 2.25414E+01 4.68174E+00
1.25964E+00 3.88875E-01 1.26668E-01
0.00000000 1.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2.35117E+00 7.73294E-01 2.79310E-01
1.00000000 0.00000000 0.00000000
0.00000000 1.00000000 0.00000000
0.00000000 0.00000000 1.00000000
1.07027E+00
1.00000000
C:pecJ-2
Property-energy consistent basis set
0 1 2 3
9 4
   3 1
11 6 3 1
1.620383E+05 8.803354E+03 1.333357E+03 3.008000E+02 8.511667E+01
2.752030E+01 9.731687E+00 3.570774E+00 8.102360E-01 3.593953E-01
1 356139F-01
0.00000000 0.00000000
0.00000000 0.00000000
0.00000000 0.00000000
0.00000000 1.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000
0.00000000 0.00000000
0.00000000 0.00000000
0.00000000 0.00000000
0.00000000 0.00000000
0.00000000 0.00000000
1.00000000 0.00000000
0.00000000 1.00000000
9.495948E+01 1.778687E+01 4.534333E+00 1.336460E+00 4.353544E-01
1.348775E-01
7.9297E-04 0.00000000 0.00000000 0.00000000
8.7271E-03 0.00000000 0.00000000 0.000000000
5.0608E-02 0.00000000 0.00000000 0.00000000
```

```
6.136738E+00 1.157001E+00 3.542131E-01
1.00000000 0.00000000 0.00000000
0.00000000 \ 1.00000000 \ 0.00000000
0.00000000 0.00000000 1.00000000
7.838496E-01
1.00000000
N:pecJ-2
Property-energy consistent basis set
0 1 2 3
9 4 3 1
11 6 3 1
2.079517E+05 1.292159E+04 1.817985E+03 4.082074E+02 1.167577E+02
3.805405E+01 1.337707E+01 4.904271E+00 1.419406E+00 5.160150E-01
1.537757E-01
0.00000000 0.00000000
0.00000000 0.00000000
0.00000000 0.00000000
0.0000000 0.00000000
0.00000000 0.00000000
0.00000000 0.00000000
0.00000000 0.00000000
0.00000000 0.00000000
0.00000000 0.00000000
1 00000000 0 00000000
0.00000000 1.00000000
5.465743E+01 1.370955E+01 4.095889E+00 1.373762E+00 4.870015E-01
1.595081E-01
3.0587E-03 0.00000000 0.00000000 0.00000000
2.0245E-02 0.00000000 0.00000000 0.00000000
8.5787E-02 0.00000000 0.00000000 0.00000000
0.00000000 \ 0.00000000 \ 1.00000000 \ 0.00000000
4.573625E+00 1.031398E+00 2.690828E-01
1.00000000 0.00000000 0.00000000
0.00000000 \ 1.00000000 \ 0.00000000
0.00000000 \ 0.00000000 \ 1.00000000
```

```
1.051532E+00
```

1.00000000

```
F:pecJ-2
Property-energy consistent basis set
```

4 0 1 2 3 9 4 3 1 11 6 3 1

3.22435E+05 1.95000E+04 2.92300E+03 6.64500E+02 1.87500E+02 6.06200E+01 2.14200E+01 7.95000E+00 2.25700E+00 8.81500E-01 3.04100E-01

3.9372E-03 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

0.00000000 0.00000000

0.00000000 0.00000000

2.84686E+02 4.38800E+01 9.92600E+00 2.93000E+00 9.13200E-01 2.67200E-01

1.5560E-02 0.00000000 0.00000000 0.00000000

1.0143E-01 0.00000000 0.00000000 0.00000000

 $0.00000000 \ 1.00000000 \ 0.00000000 \ 0.00000000$

 $0.00000000 \ 0.00000000 \ 1.00000000 \ 0.00000000$

4.10694E+00 1.19313E+00 1.98893E-01

 $1.00000000\ 0.00000000\ 0.00000000$

 $0.00000000 \ 1.00000000 \ 0.00000000$

 $0.00000000 \ 0.00000000 \ 1.00000000$

1.89198E+00

1.00000000

Table S1. The SSCCs (in Hz) calculated at the CCSD level (J_{CCSD}) with taking into account solvent (Δ_{solv}) and vibrational (Δ_{vib}) corrections using the pecJ-n (n = 1, 2), ccJ-pVXZ (X=D, T), and pcJ-n (n = 1,2) basis sets.

Molecule	SSCC	Basis set	N _{bas}	J _{CCSD}	Δ_{vib}	$J_{ m tot}$
CH₃CHO	² J(H,H)	pecJ-1	112	-16.4		-17.0
		pecJ-2	196	-15.9	-0.6	-16.5
		ccJ-pVDZ	104	-16.5		-17.1
		ccJ-pVTZ	208	-15.8		-16.4
		pcJ-1	108	-17.0		-17.6
		pcJ-2	228	-16.0		-16.6
	² J(F,F)	pecJ-1	135	48.0	-4.9	43.1
65		pecJ-2	215	34.9		30.0
		ccJ-pVDZ	125	40.0		35.1
CF ₄		ccJ-pVTZ	205	40.8		35.9
		pcJ-1	135	55.9		51.0
		pcJ-2	255	39.3		34.4
		pecJ-1	103	354.8		360.7
		pecJ-2	169	332.3		338.2
	2 // 5 / 5 /	ccJ-pVDZ	95	355.7	T 0	361.6
	² J(F,F)	ccJ-pVTZ	171	344.9	5.9	350.8
		pcJ-1	101	364.2		370.1
CULE		pcJ-2	201	334.2		340.1
CH ₂ F ₂	²J(H,H)	pecJ-1	103	0.0	0.7	0.7
		pecJ-2	169	1.4		2.1
		ccJ-pVDZ	95	0.7		1.4
		ccJ-pVTZ	171	1.7		2.4
		pcJ-1	101	0.4		1.1
		pcJ-2	201	1.5		2.2
	¹J(C,H)	pecJ-1	87	139.3	3.9	143.2
		pecJ-2	146	140.2		144.1
		ccJ-pVDZ	80	140.5		144.4
		ccJ-pVTZ	154	140.6		144.5
		pcJ-1	84	141.4		145.3
		pcJ-2	174	140.7		144.6
		pecJ-1	87	46.4	-1.5	44.9
	²J(F,H)	pecJ-2	146	48.0		46.5
CH₃F		ccJ-pVDZ	80	48.7		47.2
СПЗГ		ccJ-pVTZ	154	48.7		47.2
		pcJ-1	84	49.2		47.7
		pcJ-2	174	47.8		46.3
	² Ј(Н,Н)	pecJ-1	87	-10.9	-0.2	-11.1
		pecJ-2	146	-10.1		-10.3
		ccJ-pVDZ	80	-10.6		-10.8
		ccJ-pVTZ	154	-9.9		-10.1
		pcJ-1	84	-10.9		-11.1
		pcJ-2	174	-10.2		-10.4

NH ₃	2//11/10	pecJ-1	60	-12.3		-11.6
		pecJ-2	103	-10.9		-10.2
		ccJ-pVDZ	55	-12.2	0.7	-11.5
	² J(H,H)	ccJ-pVTZ	113	-10.6	0.7	-9.9
		pcJ-1	57	-12.3		-11.6
		pcJ-2	123	-10.7		-10.0
		pecJ-1	114	2.5		2.7
	² J(C,N)	pecJ-2	189	2.7	0.2	2.9
		ccJ-pVDZ	105	2.6		2.8
		ccJ-pVTZ	195	2.7		2.9
		pcJ-1	111	2.6		2.8
CI CN		pcJ-2	225	2.7		2.9
CH₃CN		pecJ-1	114	-16.8		-17.5
		pecJ-2	189	-16.3		-17.0
	2 (/)	ccJ-pVDZ	105	-17.0	0.7	-17.7
	² J(H,H)	ccJ-pVTZ	195	-16.2	-0.7	-16.9
		pcJ-1	111	-17.5		-18.2
		pcJ-2	225	-16.4		-17.1
		pecJ-1	109	124.6		129.2
		pecJ-2	186	126.0		130.6
	1,(6,11)	ccJ-pVDZ	100	126.3		130.9
	¹ J(C,H)	ccJ-pVTZ	202	126.2	4.6	130.8
		pcJ-1	104	126.9		131.5
		pcJ-2	222	126.2		130.8
		pecJ-1	109	-11.6	0.5	-11.1
	² J(<u>H</u> -N- <u>H</u>)	pecJ-2	186	-10.3		-9.8
		ccJ-pVDZ	100	-11.4		-10.9
		ccJ-pVTZ	202	-10.0		-9.5
		pcJ-1	104	-11.5		-11.0
		pcJ-2	222	-10.2		-9.7
	² J(<u>H</u> -C- <u>H</u>)	pecJ-1	109	-13.5	-0.7	-14.2
		pecJ-2	186	-13.0		-13.7
CH ₃ NH ₂		ccJ-pVDZ	100	-13.5		-14.2
		ccJ-pVTZ	202	-12.8		-13.5
		pcJ-1	104	-14.0		-14.7
		pcJ-2	222	-13.0		-13.7
		pecJ-1	109	-3.9		-4.3
	² J(<u>H</u> -N- <u>C</u>)	pecJ-2	186	-3.4		-3.8
		ccJ-pVDZ	100	-4.0	-0.4	-4.4
		ccJ-pVTZ	202	-3.4		-3.8
		pcJ-1	104	-3.9		-4.3
		pcJ-2	222	-3.4		-3.8
	² J(<u>H</u> -C- <u>N</u>)	pecJ-1	109	-0.7	0.0	-0.7
		pecJ-2	186	-0.8		-0.8
		ccJ-pVDZ	100	-0.8		-0.8
		ccJ-pVTZ	202	-0.9		-0.9
		pcJ-1	104	-0.3		-0.3

	pcJ-2	222	-0.8		-0.8
³ J(H,H)	pecJ-1	109	6.5	0.4	6.9
	pecJ-2	186	6.6		7.0
	ccJ-pVDZ	100	6.4		6.8
	ccJ-pVTZ	202	6.6		7.0
	pcJ-1	104	6.5		6.9
	pcJ-2	222	6.6		7.0

Equilibrium geometries

H2 CCSD[T]/aug-cc-pV5Z geometry:

H 0.000000 0.000000 0.000000 H 0.000000 0.000000 0.741608

C2H2 CCSD[T]/aug-cc-pV5Z geometry:

C 0.000000 0.000000 0.000000 C 0.000000 0.000000 1.201932 H 0.000000 0.000000 -1.059175 H 0.000000 0.000000 2.261107

N2 CCSD[T]/aug-cc-pVQZ geometry:

N 0.000000 0.000000 0.000000 N 0.000000 0.000000 1.098191

F2 CCSD[T]/aug-cc-pVQZ geometry:

F 0.000000 0.000000 0.000000 F 0.000000 0.000000 1.410220

CH4 CCSD[T]/aug-cc-pV5Z geometry:

C 0.000000 0.000000 0.000000 H 0.000000 0.000000 1.084304 H 1.022292 0.000000 -0.361435 H -0.511146 -0.885331 -0.361435 H -0.511146 0.885331 -0.361435

NH3 CCSD[T]/aug-cc-pV5Z geometry:

N 0.000000 0.000000 0.000000 H 0.000000 0.000000 1.009374 H 0.966374 0.000000 -0.291472 H -0.392349 -0.883148 -0.291459

HF CCSD[T]/aug-cc-pV5Z geometry:

```
H 0.000000 0.000000 0.000000
F 0.000000 0.000000 0.916093
```

CH3NH2 CCSD[T]/aug-cc-pVQZ geometry:

```
C -0.050248 -0.704349 0.000000

N -0.050248 0.756384 -0.000000

H -0.587350 -1.059747 -0.876853

H 0.942667 -1.163461 0.000000

H -0.587350 -1.059747 0.876853

H 0.443119 1.107253 0.808804

H 0.443119 1.107253 -0.808804
```

CH3F CCSD[T]/aug-cc-pVQZ geometry:

С	0.000000	0.000000	0.000000
F	0.000000	0.000000	1.381670
Н	1.028869	0.000000	-0.350417
Н	-0.514434	-0.891027	-0.350416
Н	-0.514435	0.891026	-0.350417

CH3CN CCSD[T]/aug-cc-pVQZ geometry:

```
C 0.000000 0.000000 0.000000
C 0.000000 0.000000 1.458513
N 0.000000 0.000000 2.614443
H 0.000000 1.021083 -0.369268
H 0.884284 -0.510542 -0.369268
H -0.884284 -0.510542 -0.369268
```

CH3CHO CCSD[T]/aug-cc-pVQZ geometry:

```
C 0.000000 0.000000 0.000000
C 0.000000 0.000000 1.493631
O 0.966776 0.000000 2.169827
H -1.003217 0.000000 1.954314
H -0.538912 -0.875276 -0.361736
H -0.538912 0.875276 -0.361736
H 1.013668 0.000000 -0.385927
```

CF2H2 CCSD[T]/aug-cc-pVQZ geometry:

```
C 0.000000 0.000000 0.000000
F 0.000000 0.000000 1.353125
F 1.283765 0.000000 -0.427661
H -0.484666 -0.909444 -0.346074
H -0.485857 0.906141 -0.352997
```

CF4 CCSD[T]/aug-cc-pVQZ geometry:

```
C 0.000000 0.000000 0.000000
F 0.000000 0.000000 1.315134
F 1.239920 0.000000 -0.438378
F -0.619960 -1.073802 -0.438378
F -0.619960 1.073802 -0.438378
```

C6H6 CCSD/PCM/aug-cc-pVQZ geometry in benzene:

```
C 0.000000 0.000000 0.000000
C 0.000000 0.000000 1.386066
C 1.200368 0.000000 2.079099
C 2.400736 0.000000 -0.000000
C 1.200368 0.000000 -0.693033
H -0.933380 0.000000 -0.538887
H 3.334117 0.000000 1.924953
H 3.334117 0.000000 1.924953
H 1.200368 0.000000 1.7770808
H 1.200368 0.000000 3.156874
H -0.933380 0.000000 -0.538887
```

C2H6 CCSD/PCM/aug-cc-pVQZ geometry in carbon tetrachloride:

```
C 0.000000 0.000000 0.761933
C 0.000000 0.000000 -0.761933
H 0.000000 1.015469 1.155985
H -0.879422 -0.507734 1.155985
H 0.000000 -1.015469 -1.155985
H -0.879422 0.507734 -1.155985
H 0.879422 0.507734 -1.155985
```

C2H4 CCSD/PCM/aug-cc-pVQZ geometry in carbon tetrachloride:

```
C 0.000000 0.000000 0.664597
C 0.000000 0.000000 -0.664597
H 0.000000 0.921801 1.229229
H 0.000000 -0.921801 1.229229
H 0.000000 -0.921801 -1.229229
H 0.000000 0.921801 -1.229229
```