

Algorithms and data structures

Algorithms and data structures

- Professor:
 - Dr. Ilinka Ivanoska
- Assistant:
 - Dr. Ilinka Ivanoska
- Labs:
 - http://code.finki.ukim.mk/

Outline

- Algorithms complexity
- Arrays and lists
- Algorithms techniques introduction
- Algorithms techniques 2
- One-dimensional data structures (stacks, queues, priority lists)
- Sorting
- Hashing
- Trees (general, binary)
- Trees (AVL, rest)
- Graphs introduction
- Graphs algorithms

Literature

- The Algorithm Design Manual
 - Steven S. Skiena
 - 2008
 - http://www3.cs.stonybrook.edu/~ skiena/373/videos/
- Introduction to Algorithms, 3rd Edition (The MIT Press)
 - Cormen, Leiserson, Rivest, Stein
 - **2009**

Literature

Java Collections
An Introduction to Abstract
Data Types, Data Structures
and Algorithms

David A. Watt
and Deryck F. Brown

- □ Data Structures & Algorithms in Java, 2nd edition
 - Robert Lafore
 - **2002**

- Java Collections
 - David Watt and Deryck Brown
 - **2001**

Activities

- Lectures
 - Major course topics
- Exercises
 - Examples, implementations, solved examples
- Labs
 - Individual work
 - Should be done within the deadline of 1 week after the publication of the assignment.

Consultations and office hours

- Preferred way:
 - Mail ilinka.ivanoska@finki.ukim.mk, KONSULTACII course
 - Greater transparency
 - Opportunity for the students to help each other
- Office hours
 - Virtual on the KONSULTACII course

Learning management system

- moodle based solution
- http://courses.finki.ukim.mk/
- Learning material, useful links
- Lectures and exercises
- Discussion forums

Exams (under construction)

- The exams (colloquia or final) are executed on a PC.
- They are twofold.
 - The first part is theory of 8 questions from the lectures (in total 10 points).
 - The second part is solving 1 problem on the code system, and additionally 2 problems for a higher grade.
- In order to qualify for the second part, the students must win at least 5 points.
- Every problem is graded with 2 points. If all test cases pass, the solution is given 2 points. If a predefined minimal percentage (which differ per task) is reached, the solution is graded with 1 point.
- Note that the solutions are double checked after the exams.

Grading (final version will be posted separately on the courses page)

- Signature (the right to enter the exams)
 - Lab assignments, individually solved, with correct solutions.
 - Maximum exception is 2 non-submitted or incorrect assignments.
- Grading
 - 2 points from practical problems and 5, 6, 7, 8, 9 or 10 points from theoretical questions -> 6
 - 3 points from practical problems and 5, 6, 7, 8, 9 or 10 points from theoretical questions -> 7
 - 4 points from practical problems and 5, 6, 7, 8, 9 or 10 points from theoretical questions -> 8
 - 5 points from practical problems and 5, 6, 7, 8, 9 or 10 points from theoretical questions -> 9
 - 6 points from practical problems and 5, 6 or 7 points from theoretical questions -> 9
 - 6 points from practical problems and 8, 9 and 10 points from theoretical questions -> 9 with a possibility of 10
- Students with a grade 9 with a possibility of 10, according to these criteria can take an additional oral exam where they will answer for a grade of 10.

At the end (or the beginning) ...

Bad programmers worry about the code. Good programmers worry about data structures and their relationships

Linus Torvalds

Algorithms

Before starting to write the programming code of a problem being solved, the problem solution - the algorithm - should be devised

Algorithms

- Algorithm
 - A procedure for problem solution
 - It goes step-by-step
 - Finite number of steps
- Notations for algorithms description
 - Spoken language
 - Pseudo language
 - Programming language

Algorithms should be?

- ☐ Algorithms should be:
 - Correct
 - Efficient
 - Easy to implement

Data structures

- The information that should be processed by the program are stored in data structures
 - The algorithms efficiency depends on the data structures choice.

Example:

Phone number search for a known address and address search for a known phone number

- Data structures can be
 - Static
 - Change just in values
 - Arrays or records
 - Dynamic
 - Change in look, size
 - Stacks, lists, trees, files

Algorithms performance

- Actions performed on data structures:
 - Search and find
 - Count
 - Insert (add)
 - Sort
 - Delete
- In order to improve the algorithm, a good one should be written, preferably even the best one (optimization)

How to compare algorithms?

- One problem can be solved in several ways
 - Different algorithms

BUT,

- How to evaluate their efficiency?
- How to compare them?

Example

Two sorting algorithms comparison:

Algorithm B is faster than algorithm A.

Here is how you compare algorithms!

- Algorithms comparison is done by a model which is independent of hardware
- Hypothetical computer Random Access Machine

Algorithms performance

- Random Access Machine
 - Every simple operation (+, *, -, =, if, call) is
 executed in one time unit
 - The cycles (loops), procedures and functions are executed in as many time units as there are iterations
 - There is unlimited memory

Counting steps

```
Sum( x, n)
{
    int sum = 0;
    for (int i=0; i<=n; ++i)
        sum = sum*x+1;
    return sum;
}</pre>
```

Number of executed operations

Total:
$$T(n) = 5n+9$$

 $\sum_{i=0}^{n} x^{i}$ T(n) is a function number of execut dependance of the

T(n) is a function that gives the number of executed operations in dependance of the number of input data

How about comparison?

- Lets consider 2 algorithms, A and B, that solve the same problem.
- We have done analysis of the necessary steps for each of the algorithms
 - \blacksquare T_A(n) and T_B(n)
 - n is a measure for the problem size
 - n is the input data size
- Hence, we are left **only** to compare the two functions $T_A(n)$ and $T_B(n)$ and we determine the winner!

BUT!

- We can check for some finite value of n (n₀) which algorithm is faster (has a smaller number of operations)
- In general case we do not know how much n can be.
 - **1**0, 100, ..100 000...1000 000 ??
- \square It can be shown that **if** $T_A(n) \le T_B(n)$ **for all** $n \ge 0$,
 - The algorithm A is faster, better!
- However,
 - We do not know n beforehand!!
- Therefore we consider setting an upper asymptotic limit for high problems sizes
 - For big n

Also...

- T(n) computation is exhaustive for algorithms with a lot of instructions and operations
- It is not necessary to know the exact number of operations
 - to determine the complexity of a given algorithm
 - to determine which algorithm is more efficient (faster)
- We need an assessor (function) that will be upper asymptotic limit of T(n)

"Big O" definition

- The most used method and notation for assessing algorithms complexity is Big O
- Big O is the asymptotic execution time (operations number) of a given algorithm
- We need an answer to the question: How does the algorithm execution time increases as a function of the input data number?
- □ Big O is an upper limit
- Mathematical tool
- There are a lot of unnecessary details in a simple assessment of a given algorithm

"Big O" definition

"Big O" formal definition

- T(n) is O(g(n)) if there are positive constants c and n_0 such that $T(n) \le c g(n)$ for $n \ge n_0$
 - n is the input data number
 - T(n) is a function that describes the real algorithm execution time (the executed operations number – one operation is executes in one time unit)
 - g(n) is a function that characterizes the upper limit of T(n) (asymptotic limit of T(n))
 - It is closest to T(n), and always above it, for any n, starting from some n₀
 - It is guarantied that T(n) can not be bigger than g(n) for every n ≥ n₀

How to determine O(g(n))?

- The assessment of algorithms complexity can be made even easier
- O(g(n)) ONLY the term with the highest power of the asymptotic function g(n) is taken

Rules for O(..) use

- All terms are removed, except the term with the highest degree
 - Example $O(n^2 + n \log n + n) \rightarrow O(n^2)$
 - $g(n) = n^2 + n \log n + n$
- The constants are removed
 - Example

$$O(3n^2) \rightarrow O(n^2)$$

$$O(1024) \rightarrow O(1)$$

Algorithms comparison

- According to RAM model we have:
 - The best execution time
 - The average execution time
 - The worst execution time
 - Big O
- Example: Write code in pseudo language for the calculation of the sum $\sum_{i=1}^{n} i^3$

Algorithms comparison

```
sum (n)
{
    partial_sum = 0;
    for (i=1; i<=n; i++)
        partial_sum += i*i*i;
    return partial_sum;
}</pre>
```

$$T(n) = 6n + 4$$

```
1
1 + n+1 + n = 2n+2
n+n+n+n = 4n
1
O(n)
```

Declarations do not affect execution time

It is called algorithms **COMPLEXITY**

Cycles:

 Sum of times necessary to execute operations in the cycle multiplied by the number of operations

```
for (int i=0; i<n; i++) 2n O(n) {
    a += i;
    b *=i;
}
```


- Nested cycles:
 - Sum of the times necessary to execute the cycle operations multiplied by the product of the cycle iterations number

- Consecutive times:
 - With consecutive executions the highest cardinality is taken from the blocks of consecutive codes

Algorithms complexity is O(n²)

☐ IF / ELSE:

 Sum of the duration of the condition and the longer time of the blocks S1 and S2 durations

```
if (condition)
S1
else
S2
```


Recursions:

 The recursion complexity is considered on a case-bycase basis and there is no general template for its duration

```
factorial (n)
{
    if (n<=1)
       return 1;
    else
      return (n*factorial(n-1));
}</pre>
```

What is the complexity of this code?

Algorithms comparison rules

Recursions:

```
fib (n)
{
    if (n<=1)
       return 1;
    else
      return (fib(n-1) + fib(n-2));
}</pre>
```

$$T(n)$$
 – fib(n) execution time

$$T(n) = T(n-1) + T(n-2) + 2$$

Comparison principles

In the following example, solved with 3 different algorithms **the practical way** of their complexity assessment will be shown

- Example:
 - Find the biggest positive subsum in an array of n integers
 - Input: -2, 11, -4, 13, -5, -2

The example solved with 3 nested cycles

```
max_subsequence_sum( a[], n )
  max\_sum = o; best\_i = best\_j = -1;
  for( i=0; i<n; i++)
                                                        \rightarrow n
     for(j=i; j<n; j++)
                                                        \rightarrow n-i+1
        this sum=o;
        for(k = i; k < = j; k++)
                                                         \rightarrow j-i+1
           this_sum += a[k];
        if( this_sum > max_sum )
           /* update max_sum, best_i, best_j */
           max_sum = this_sum;
           best_i = i;
           best_j = j;
     return max_sum;
```

The algorithm complexity is $O(n^3)$

The example solved with 2 nested cycles

```
max_subsequence_sum( a[], n )
  max_sum = 0; best_i = best_j = -1;
  for( i=0; i<n; i++ )
     this sum=o;
      for(j = i; j <= n; j++)
           this_sum += a[j];
           if( this_sum > max_sum )
             /* update max_sum, best_i, best_j */
             max_sum = this_sum;
             best_i = i;
             best_j = j;
     return max sum;
```

The algorithm complexity is *O*(n²)

The example solved with one cycle

```
max_subsequence_sum(a[], n)
  i = this\_sum = max\_sum = o; best\_i = best\_j = -1;
  for(j=0; j<n; j++)
     this sum += a[j];
     if(this sum > max sum)
       /* update max_sum, best_i, best_j */
       max sum = this sum;
       best i = i;
       best_j = j;
     else
      if (this sum < 0)
       i = j + 1;
       this sum = 0;
   return max_sum;
```

The algorithm complexity is O(n)

And what if...

☐ ...the input data is always divisible by 2?

The complexity is described by a logarithmic function!

```
foo (n) {
    // n > 0
    total = 0;
    while (n > 1) {
        n = n / 2;
        total++;
    }
    return total;
}
```

The algorithms complexity is *O*(log n)

 $\log_2 8 = ?$

Answer: 3

Back to the example

```
int max_sub_seq_sum(int a[], unsigned int n)
max sub sum(a[], left, right)
                                      return max sub sum(a, o, n-1);
{
  if (left == right) /* base case */
     if(a[left] > o) return a[left];
     else return o;
  center = (left + right )/2;
  max left sum = max_sub_sum(a, left, center);
  max right sum = max sub sum(a, center+1, right);
  max_left_border_sum = 0; left_border_sum = 0;
```


... continue

```
The algorithms
for( i=center; i>=left; i-- )
                                complexity is O(nlog<sub>2</sub>n)
   left_border_sum += a[i];
   if( left_border_sum > max_left_border_sum )
      max_left_border_sum = left_border_sum;
max_right_border_sum = 0; right_border_sum = 0;
for( i=center+1; i<=right; i++ )</pre>
   right_border_sum += a[i];
   if( right_border_sum > max_right_border_sum )
      max_right_border_sum = right_border_sum;
return max3( max_left_sum, max_right_sum,
 max_left_border_sum + max_right_border_sum );
```


Algorithms comparison

Алгоритам	1	2	3	4
кардиналност	O(n ³)	$O(n^2)$	$O(n \log n)$	O(n)
влез $n = 10$ n = 100 n = 1,000 n = 10,00 n = 100,0	O NA	0.00045 0.01112 1.1233 111.13 NA		0.00034 0.00063 0.00333 0.03042 0.29832

Execution time of each of the previous algorithms

Algorithms comparison with Big O

Execution time of each of the previous algorithms

The most used complexities

функција	Име
	Константа
C	
log n	Логаритамска к
log^2n	Квадратно-логаритамска
n	Линеарна
nlog n	
n^2	Квадратна
n^3	Кубна
2 ⁿ	Експоненционална

Example

□ It is compared how much data (*n*) can be processed by each of the algorithms for 1, 2, ..., 10 sec:

Growth rates of different complexities

n	1	2	4	16	256	4096	65536
ln n	0	1	2	4	8	12	16
n·ln	0	2	8	64	2048	49152	1048576
n ²	1	2	16	256	65536	16777216	4.295 x 10 ⁹
n ³	1	8	64	4096	16777216	6.872×10^{10}	2.815×10^{14}
2 ⁿ	2	4	16	65536	1.16×10^{73}	> 10 ¹²³²	Огромно

Notations

O-notation

 Upper limit on the algorithm execution time. It measures complexity in the worst case.

\square Ω -notation

 Lower limit on the algorithm execution time. It measures complexity in the **best** case (which is not very useful).

θ-notation

- Lower and upper limit on the algorithm execution time.
- It is used in algorithms analysis research.

