Predicting Insurance Costs: Analysis and Insights

SDS Mini-Datathon Team

National University of Singapore

October 28, 2025

Problem Framing & Objective

- **Challenge**: Predict medical insurance charges using demographic and lifestyle data
- Goal: Build accurate regression models and identify key cost drivers
- Importance: Fair pricing, risk assessment, healthcare insights
- Dataset: 1,338 records with age, sex, BMI, children, smoker, region, charges
- Equity Context: Recent studies highlight insurance pricing inequities
 - NAIC Special Committee on Race and Insurance
 - Concerns over credit scoring as proxy discriminator
 - Our analysis ensures fairness through statistical testing

Dataset and Features

Feature	Туре	Notes
age sex bmi children smoker region	integer categorical float integer categorical categorical	years male/female (encoded) body mass index number of dependents yes/no (encoded) NE/NW/SE/SW (encoded)
Engineered bmi_category age_group	categorical categorical	underweight/normal/overweight/obese young/middle/senior

Table: Dataset schema and engineered features

Exploratory Data Analysis

- Data quality: No missing values, clean dataset
- Key statistics: Charges range \$1,122–\$63,771 (mean \$13,270)
- Distribution: Right-skewed charges, normal BMI/age

Exploratory Data Analysis (Cont.)

Figure: Correlation Matrix

Preprocessing and Feature Engineering

- Label-encode: sex, smoker, region; derive bmi_category and age_group.
- Train/test split: 80/20 with fixed random seed for reproducibility.
- Standardize inputs with StandardScaler (fit on train, transform test).
- Keep target in original units (USD) to simplify interpretation of RMSE/MAE.

Modeling Approach: Linear Regression

Ordinary Least Squares (OLS)

- Model: $\hat{y} = \beta_0 + \sum_{j=1}^{p} \beta_j x_j$
- Objective: Minimize sum of squared residuals

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

- Closed-form solution: $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$
- Assumptions: Linearity, homoscedasticity, independence, normality
- Advantages: Fast, interpretable coefficients, well-understood
- Limitations: Cannot capture non-linear interactions (e.g., smoker × BMI)
- Test Performance: R²=0.787, RMSE=\$5,747

Modeling Approach: Decision Tree

Recursive Binary Partitioning

- Algorithm: CART (Classification and Regression Trees)
- Splitting criterion: Minimize variance at each node

$$MSE_{node} = \frac{1}{n_{node}} \sum_{i \in node} (y_i - \bar{y}_{node})^2$$

• Feature selection: Choose split that maximizes variance reduction

$$\Delta = \mathsf{MSE}_{\mathsf{parent}} - \left(\frac{\mathit{n}_{\mathsf{left}}}{\mathit{n}}\mathsf{MSE}_{\mathsf{left}} + \frac{\mathit{n}_{\mathsf{right}}}{\mathit{n}}\mathsf{MSE}_{\mathsf{right}}\right)$$

- Advantages: Non-linear, handles interactions, interpretable rules
- Limitations: High variance (overfitting), unstable to data perturbations
- Test Performance: R²=0.740, RMSE=\$6,354

Modeling Approach: Random Forest

Bootstrap Aggregating (Bagging) of Decision Trees

• **Ensemble method**: Train *B* trees on bootstrap samples

$$\hat{y}_{\mathsf{RF}} = \frac{1}{B} \sum_{b=1}^{B} \hat{y}_b(\mathbf{x})$$

- **Feature randomness**: At each split, consider random subset of \sqrt{p} features
- Variance reduction: Decorrelates trees, reduces overfitting

$$Var(\bar{X}) = \frac{\sigma^2}{B}$$
 (for independent trees)

- Out-of-bag (OOB) error: Internal validation using 37% held-out samples
- Advantages: Robust, handles high-dimensional data, reduces overfitting
- Baseline Performance: R²=0.865, RMSE=\$4,574
- **Optuna-tuned**: $R^2=0.879$, RMSE=\$4,327 (+1.4% improvement)

Modeling Approach: XGBoost

Gradient Boosting with Regularization

• Additive model: Build trees sequentially to correct residuals

$$\hat{y}^{(t)} = \hat{y}^{(t-1)} + \eta \cdot f_t(\mathbf{x})$$

where η is the learning rate, f_t is the t-th tree

• Objective function: Loss + regularization

$$\mathcal{L}^{(t)} = \sum_{i=1}^n \ell(y_i, \hat{y}_i^{(t)}) + \Omega(f_t)$$

$$\Omega(f) = \gamma T + \frac{1}{2} \lambda \|\mathbf{w}\|^2 + \alpha \|\mathbf{w}\|_1$$

(T=# leaves, $\mathbf{w}=$ leaf weights, $\gamma,\lambda,\alpha=$ regularization)

- **Second-order approximation**: Uses gradient and Hessian for faster convergence
- Advantages: State-of-the-art accuracy, handles missing data, parallelized
- Optuna-tuned Performance: R²=0.879, RMSE=\$4,331

Evaluation Metrics

Regression Performance Measures

Coefficient of Determination (R²):

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2} = 1 - \frac{\mathsf{SS}_{\mathsf{res}}}{\mathsf{SS}_{\mathsf{tot}}}$$

Proportion of variance explained by the model (0 to 1, higher is better)

Root Mean Squared Error (RMSE):

$$\mathsf{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Average prediction error in dollars (lower is better, sensitive to outliers)

Mean Absolute Error (MAE):

$$\mathsf{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Median-like error metric (lower is better, robust to outliers)

Validation and Evaluation

- Validation: 5-fold cross-validation on the training data to assess variance.
- Metrics reported: R^2 , RMSE, MAE (on the holdout test set).

Model	Mean R^2 (5-fold)	Std
Linear Regression Decision Tree	0.738 0.720	0.049 0.067
Random Forest	0.825	0.043

Table: Cross-validation performance (training folds)

Hyperparameter Tuning with Optuna

- Bayesian optimization (TPE) over 20 trials per model to maximize R^2 on validation.
- Search spaces summarized below; priors encourage compact trees and regularization to reduce overfitting.

Model	Hyperparameter	Range
Random Forest	n₋estimators	200-800
Random Forest	max_depth	4-16
Random Forest	min_samples_split	2-20
Random Forest	min_samples_leaf	1-20
XGBoost	n_estimators	200-800
XGBoost	max_depth	3–8
XGBoost	learning_rate	0.01-0.3
XGBoost	subsample	0.6 - 1.0
XGBoost	colsample_bytree	0.6 - 1.0
XGBoost	gamma	0.0 - 5.0
XGBoost	reg_alpha, reg_lambda	0.0-10.0

Table: Optuna search spaces

Best Hyperparameters Found

XGBoost

Random Forest

Param	Value	
n_estimators	567	
max_depth	5	
min_samples_split	7	
min_samples_leaf	8	

Param	Value	
n_estimators	253	
max_depth	4	
learning_rate	0.0231	
subsample	0.7301	
$colsample_bytree$	0.7555	
gamma	1.3567	
reg_alpha	8.2874	
reg_lambda	3.5675	

Both tuned models achieve $R^2 \approx 0.879$ on the test set, improving over the untuned Random Forest.

Key Findings & Visualizations

Model	R ²	RMSE (\$)	MAE (\$)
Linear Regression	0.787	5,747	4,097
Decision Tree	0.740	6,354	2,878
Random Forest (Baseline)	0.865	4,574	2,503
Random Forest (Optuna)	0.879	4,327	2,458
XGBoost (Optuna)	0.879	4,331	2,479

Table: Model Performance Comparison

- \bullet Best Model: Tuned tree ensembles cluster at $R^2\approx 0.879$ with <\$4.35k RMSE
- Improvement: $+1.4 R^2$ points over the untuned Random Forest
- Cross-validation confirms stability

Model Performance: Visual Comparison

Figure: R² on test set across models (higher is better)

Residual Diagnostics

Figure: Residuals vs predictions and residual distribution (tuned XGBoost)

Mean residual \approx -222; standard deviation \approx 4333. Approximate symmetry and homoscedasticity are acceptable for pricing use cases.

Permutation Importance (Random Forest)

Figure: Permutation importance on the test split

Feature Impact Analysis

Figure: SHAP Summary Plot

Figure: SHAP Feature Importance

- Top factors: Smoking (dominant), Age, BMI
- Sex and region have minimal impact

Partial Dependence Plots

Figure: Marginal Effects of Key Features

- Age: Linear increase (\$8-10k from 20 to 60)
- BMI: Gentle upward curve (accelerates above 30)
- Smoker: Dramatic step function (+\$20k for smokers)

Fairness Analysis

Figure: Charges by Sex

• **Sex**: Welch's t-test p=0.226 \rightarrow \checkmark No significant bias

- Region: ANOVA p=0.091 \rightarrow \checkmark Minimal bias
- Differences reflect genuine risk factors, not discrimination

\$11,208

southwest

Practical Recommendations

For Insurers:

- Deploy XGBoost with Optuna for premium calculation
- Highest ROI: Smoking cessation programs (\$20k impact)
- Target obesity prevention (BMI effect accelerates ¿30)

Policy Implications:

- Fair pricing based on verifiable risks validated via statistical tests
- Monitor regional healthcare access disparities
- Implement quarterly fairness audits (NAIC recommendations)

• Future Work:

- Collect longitudinal data, medical history
- Disparate impact analysis (Al Fairness 360, Fairlearn)
- Avoid controversial proxies (credit scores, ZIP codes)

Difficulties Faced & Solutions

• Dataset Limitations:

- Small size (1,338 records) limits generalizability
- Missing features: medical history, genetics, lifestyle details
- Static data: no temporal health changes

Technical Challenges:

- XGBoost version conflicts: Resolved via conda-forge channel
- SHAP API changes: Updated to new waterfall/summary plot syntax
- Model overfitting: Addressed with Optuna's Bayesian optimization
- PDP compatibility: Ensured fitted estimator passed correctly

Solutions:

- Feature engineering for better segmentation
- Rigorous validation and error analysis
- Innovative explainability techniques

Conclusion

- Successfully predicted 87.9% of insurance cost variance (tuned ensembles)
- Smoking is the dominant factor (+\$20k), followed by age and BMI
- Models validated as fair through statistical testing (p¿0.05)
- Full interpretability via SHAP and PDPs ensures transparency
- Future: Larger datasets, disparate impact analysis, advanced Al

Thank you for your attention!