Chair of Information Systems and Business Process Management (i17)
Department of Computer Science
TUM School of Computation, Information and Technology
Technical University of Munich

Master's Thesis in Information Systems

Furkan Gürbüz

Fine-Tuning Large Language Model with Custom Dataset for Ansible Code Generation

Chair of Information Systems and Business Process Management (i17)
Department of Computer Science
TUM School of Computation, Information and Technology
Technical University of Munich

Master's Thesis in Information Systems

Furkan Gürbüz

Fine-Tuning Large Language Model with Custom Dataset for Ansible Code Generation

Feinabstimmung eines großen Sprachmodells mit benutzerdefiniertem Datensatz zur Code-Generierung in Ansible

Thesis for the Attainment of the Degree **Master of Science**

at the TUM School of Computation, Information and Technology, Department of Computer Science, Chair of Information Systems and Business Process Management (i17)

Declaration of Academic Integrity

I confirm that this bachelor's thesis is my own work and I have documented all sources and

material used.

I am aware that the thesis in digital form can be examined for the use of unauthorized

aid and in order to determine whether the thesis as a whole or parts incorporated in it

may be deemed as plagiarism. For the comparison of my work with existing sources I

agree that it shall be entered in a database where it shall also remain after examination, to

enable comparison with future theses submitted. Further rights of reproduction and usage,

however, are not granted here.

This thesis was not previously presented to another examination board and has not been

published.

Garching, 01.06.2025

Furkan Gürbüz

3

Abstract

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt

ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo

dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit

amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor

invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et

justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum

dolor sit amet.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt

ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo

dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit

amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor

invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et

justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum

dolor sit amet.

Keywords: Include three to five words, phrases, or acronyms as keywords.

Contents

1	Intr	oduction	6					
	1.1	Motivation	6					
	1.2	Research Questions	7					
	1.3	Contribution	8					
	1.4	Methodology	9					
	1.5	Evaluation	11					
	1.6	Structure	11					
2	Rela	ated Work	12					
3	Solu	ation Design	15					
	3.1	Distinction of small and large language models	15					
	3.2	Architectural and Functional Innovations of Phi-4	17					
4	Implementation							
	4.1	Dataset creation	20					
5	Eva	luation	20					
6	Disc	eussion	20					
7	Conclusion 21							
Bi	bliog	raphy	22					
A	App	endix	24					
L	ist	of Tables						
	1	Performance of Phi-4 on a set of standard benchmarks	16					
	2	Performance of Phi-4 on different metrics	24					
	3	Performance of Phi-4 on a set of standard benchmarks	24					

List of Figures

1	ansible content parser	21
2	My Figure Caption	25
3	performance comparison on math competition problems	25
4	ansible content parser process	26

Introduction

Motivation

In the era of digital transformation, the ability to automate IT operations has become a fundamental driver of organizational efficiency and scalability. Modern enterprises and research institutions are increasingly adopting rapid development cycles that demand frequent updates and enhancements (Gupta et al., 2019). This continuous evolution requires efficient system management, making the automation of deployments and configurations a critical aspect of DevOps practices (Bass et al., 2015).

Furthermore, Enterprise Resource Planning (ERP) systems are crucial to achieve efficiency and scalability by integrating and streamlining essential business functions (Poston and Grabski, 2000). Among these, SAP stands out as a leading ERP solution, continuously evolving its capabilities since its inception in Germany (Klaus et al., 2000). Educational institutions, such as the SAP University Competence Center at the Technical University of Munich, play a crucial role in providing training and equipping future professionals with the knowledge and skills required to operate ERP systems proficiently (UCC, 2024).

In addition to educating future professionals, the SAP UCC also offers hosting of SAP solutions with robust backup and recovery services. The center utilizes an IT Automation software to install and configure SAP systems (UCC, 2024). The software plays a critical role in automating administrative tasks, such as configuration management and application deployment, through the implementation of playbooks. (Ansible, 2024). Manually developing these playbooks is inherently complex and time consuming, requiring a nuanced understanding of the implementation syntax and the specific requirements of SAP systems (Geerling, 2015). This complexity poses a substantial challenge for organizations that want to quickly scale operations or fully embrace automation.

Consequently, there is a substantial demand for code generation and support in implementing Ansible playbooks. As it stands, the academic chair does not possess adequate tools for code generation support in Ansible, and existing models do not meet the requirements satisfactorily. By elevating automation capabilities, IT professionals will be well-equipped to optimize operations.

This initiative aligns with trends with focus on enhancing operational efficiency, reducing costs, and accelerating deployment timelines.

Research Questions

This thesis will cover multiple steps involved in fine-tuning a large language model. Firstly, we will create a custom dataset required for the fine-tuning process, ensuring consistency and tailoring the model to our specific use case. Subsequently, we will fine-tune the large language model, a process that requires significant computational resources and coding. Finally, we will conduct a testing and evaluation phase to assess the fine-tuned model.

After implementing the fine-tuned Large Language Model, the deployment process of the SAP UCC will be enhanced due to faster implementation of Ansible playbooks facilitated with the optimized model.

Research Question 1: What methodology can be used to gather and prepare a custom dataset for fine-tuning large language models?

Methodology:

In the context of this research question, the focus is on the creation of a custom dataset, which will be used for fine-tuning the large language model. We employ a Question Answering dataset format, utilizing specific tools to gather our dataset. Following this, we will clean and preprocess the data to eliminate noise and ensure consistency in data quality and format. This step is crucial to optimizing the data set for model training. The data needs to be partitioned into different types of set. This will ensure robustness and reliability of the trained model for our use case.

Expected results:

We have created a dataset that will be cleaned and prepared for fine-tuning the large language model.

Research Question 2: What steps are involved in implementing the fine-tuning process for the large language model?

Methodology:

In the context of this research question, the focus is on the fine-tuning process with the created dataset from RQ1. This research question will focus on the implementation and execution of fine-tuning strategies.

Expected results:

We have tuned the large language model, that is suitable for our use case.

Research Question 3: To what extend does the fine-tuned large language model meet the requirements in terms of performance, accuracy, and applicability?

Methodology:

Concerning this research question the focus is on testing the model performance. Consequently, we test our model's performance with professionals by ensuring the usability, accuracy and functionality.

Expected results:

We have tested our model and give insights on the performance of our fine tuned large language model in the context of code generation.

Contribution

The goal of this thesis is to optimize the implementation of Ansible playbooks by using a fine-tuned large-language model. By generating Ansible code specifically tailored for SAP systems, this thesis aims to reduce the time and expertise required for playbook development, making the process more efficient and accessible for both developers and system administrators. This will enable them to focus on higher-level tasks and strategic decision-making. This approach will lead to more consistent, error-free configurations and contribute to the streamlined management of complex IT systems.

In order to achieve this objective, the thesis will involve fine-tuning a large language model specifically for Ansible code generation. The process will begin with the creation of a custom dataset containing Ansible code specifically designed to meet the unique requirements of SAP system configurations. Once the dataset is created, it will undergo preparation and pre-processing to ensure consistency and remove noise. The data set will then be used to train the model, enabling it to generate context-specific high-quality Ansible playbooks (Howard and Ruder, 2018). Using this custom data set, the model will learn to produce accurate and efficient Ansible YAML code.

Afterwards, the fine-tuning process follows several key steps, beginning with the selection of a pre-trained model. The model parameters will be fine-tuned by training it on the custom dataset, adjusting the model to generate code that is syntactically correct and functionally effective. Fine-tuning iterations will involve gradually adjusting the hyperparameters and retraining the model to

optimize its performance. Upon completion of the fine-tuning process, the model's performance will be tested using a separate validation set to assess its accuracy and effectiveness.

The expected outcomes include not only time and cost savings, but also the ability to scale automation across more complex IT environments. Through the integration of advanced machine learning techniques, this research will contribute to the ongoing evolution of IT automation practices.

Methodology

Design Science Research (DSR) is a well-established methodology in the field of information systems researchIts main focus is to create and evaluate practical solutions—called artifacts—that address real-world problems. First introduced by Hevner et al., DSR highlights the importance of not only building innovative solutions but also thoroughly testing them to bridge the gap between theory and practice (Hevner et al., 2010). The key Components of Design Science Research are Stakeholders and Artifacts. Stakeholders within DSR are divided into different roles:

- Researchers: The individuals who conduct the research and implement the artifacts.
- Practitioners and Users: The end-users and organizations that will benefit from using the
- **Reviewers and Evaluators:** The experts who evaluate the functionality and impact of the artifacts.
- Sponsors and Funding Bodies: The organizations or institutions providing financial support for the research initiative.

Artifacts in DSR - as defined by Hevner et al. - include constructs, models, methods, and instantiations, all serving as outputs of the research process that are both innovative and rigorously evaluated (Hevner et al., 2010). Hevner et al. outline a systematic six-step process to conduct DSR (Hevner et al., 2010), which ensures both scientific rigor and practical relevance:

Problem Identification and Motivation: Clearly describe the research problem and justify
its importance. Provide a detailed analysis to establish the relevance and urgency of the
problem (Hevner et al., 2010.

- 2. **Define Objectives of a Solution:** Establish the criteria and benchmarks for an effective solution. Clearly define what constitutes success for the artifact being developed and how it differs or improves existing solutions (Hevner et al., 2010.
- Design and Development: Develop the artifact using theoretical insights and design principles. Specify the components, functionalities and intended applications of the artifact (Hevner et al., 2010.
- 4. **Demonstration:** Apply the artifact in a controlled or real-world setting to prove its practical utility. Provide empirical evidence that the artifact can effectively address the identified problem (Hevner et al., 2010.
- 5. **Evaluation:** Assess the performance of the artifact against predefined objectives. Use qualitative and quantitative measures to assess the utility, efficacy, and quality of the artifact, gathering feedback from key stakeholders (Hevner et al., 2010.
- Communication: Document the research process, findings, and implications. Disseminate
 results to both academic and practitioner communities to highlight contributions to theory
 and practical applications (Hevner et al., 2010).

In this thesis, while the full cycle of Hevner's DSR will not be implemented throughout its concept, its principles will guide the research design. This includes structuring the problem definition and solution design process according to the DSR steps. Additionally, emphasizing the development and preliminary evaluation of a solution artifact, and involving stakeholders to validate the research outputs and ensure practical relevance. By integrating elements of Hevner's DSR, the research aims to maintain a structured, rigorous approach that enhances the significance, relevance, and applicability of the implemented solutions.

In our use case, stakeholders are defined as follows. The researchers consist of the thesis writer and the supervisor. The users include developers and system managers at the SAP UCC Chair. The reviewers and evaluators, a subgroup of the users, will be responsible for assessing the artifact. The funding body supporting this research is the Technical University of Munich.

The primary artifact of this research is the fine-tuned large language model designed to generate improved Ansible code. The artifact aims to enhance the quality, efficiency, and accuracy of code generation to support developers and system managers in the SAP UCC Chair.

Evaluation

How will I evaluate that my proposal is good. This ties into the research questions.

evaluation metrics: - User satisfaction -> let the users take a look at the model with questions and responses - performance metrics and scores (accuracy)

About 1 page.

Structure

This thesis will be structured into seven main chapters. First, an introduction into the conducting research will be given. Afterwards, we will discuss related work based on custom dataset creation and fine-tuning a large language model. Additionally, we will cover the solution design with focus on dataset creation and fine-tuning strategy. The implementation chapter will describe a detailed overview about tools, frameworks and programming languages needed for the development of the solution. Hereby, encountered challenges and problems will also be covered. The evaluation chapter will explain the experiment to evaluate the tuned model, and additionally justify the metrics that are used for testing. Furthermore, a discussion chapter will interpret the results and link them to the research questions stated in the introduction. Hereby, implications of the results will be discussed for future research. Lastly, a conclusion with a summary on the key findings and research contributions will be given.

Related Work

Large language models (LLMs) have a significant impact on the field of computer science, introducing new possibilities across various domains. LLMs decreased the complexity in automation and improved workflows. In recent years, multiple studies show that LLMs create value in technical workflows by reducing the time spent on manual tasks (Brown et al., 2020; Radford et al., 2021). The increased popularity of these models is because of their flexibility. LLMs can generate code, they can assist developers by automating repetitive tasks, documenting workflows, and providing context-aware explanations for complex code fragments, thereby supporting both novice and experienced developers.

Hereby, it is important to discuss the advantages and challenges within the integration of LLMs into workflows. On the one hand, research has shown that LLMs can accelerate development cycles. enhance code quality, and minimize common errors (Chen et al., 2021). On the other hand, ensuring that the generated code is interpretable and trustworthy remains a crucial issue. Furthermore, data privacy concerns arise when proprietary or sensitive codebases are involved, and the need to fine-tune models for specialized domains introduces additional complexity (Bender et al., 2021).

Within the context of this research, LLMs are particularly promising for supporting the development and maintenance of Ansible playbooks in SAP environments. By fine-tuning a dedicated model, such as Phi-4, to the specific requirements and conventions of SAP infrastructure automation, the model can assist developers in multiple ways. For example, it can generate playbook templates, suggest improvements to existing code, automate routine configuration tasks, and provide explanatory comments for non-trivial sections of automation logic. These capabilities not only enhance productivity but also contribute to knowledge transfer, making it easier for new team members to understand and contribute to the automation process. Additionally, since the fine-tuning process incorporates domain-specific best practices, the model's recommendations are better aligned with the operational and technical constraints of SAP systems, ultimately improving the reliability and maintainability of the resulting playbooks (Hevner et al., 2010; Vaswani et al., 2017).

The use of LLMs to automate IT tasks has seen significant growth in recent years. These models have the potential to greatly enhance developer productivity, especially when applied in domain-

specific contexts. One of the prominent projects in this area is Ansible Lightspeed, developed by Sahoo et al. (2024). Ansible Lightspeed is a generative AI service specifically designed to generate Ansible YAML code. This service utilizes the IBM Watsonx Code Assistant for Red Hat Ansible (WCA-Ansible), a transformer-based decoder with 350 million parameters. The model was trained from the ground up on a diverse set of natural language, source code, and Ansible-specific data. By providing code recommendations based on natural language prompts, Ansible Lightspeed supports developers in streamlining their IT automation tasks. The effectiveness of the model was evaluated through interaction data from more than 10,000 users, achieving a notable 13.66 percent N-day user retention rate on day 30 (Sahoo et al., 2024). These figures demonstrate that a specialized model can achieve high acceptance rates among its users when deployed effectively.

In contrast to Ansible Lightspeed, our model is specifically tailored to automation tasks within SAP environments. While Ansible Lightspeed relies on general Ansible data, our model is trained on a dataset specifically curated for SAP-related tasks. This SAP-focused dataset is created using the Ansible Content Parser, a tool that meticulously extracts relevant content from existing SAP sources. Using this specialized data set, we anticipate that our model will offer more detailed and context-specific code recommendations that are perfectly suited to SAP environments.

There are several key differences between Ansible Lightspeed and our fine-tuned model within this research. First, the domain focus sets them apart. Ansible Lightspeed is designed for general IT automation tasks using Ansible, whereas our model is specifically targeted at automating SAP environments. This specialization ensures that our model can address the unique requirements and complexities associated with SAP systems. Secondly, the datasets used to train the models differ significantly. Ansible Lightspeed is trained on generic Ansible data, encompassing source code and natural language inputs from a wide range of domains. In contrast, our model leverages a custom dataset specifically designed for SAP environments. This allows us to create a dataset that compensates the unique requirements of SAP environments. Our model can provide code recommendations that are more accurate and more relevant by concentrating on this customized data, guaranteeing that they precisely match the requirements of SAP systems. Third, each model has a distinct user base. A flexible strategy that can be adjusted to different use cases is required because Ansible Lightspeed is made to accommodate a broad spectrum of developers that use Ansible for a variety of IT automation jobs. On the other hand, our strategy is designed for a niche market: customers that are particularly interested in using Ansible playbooks to automate SAP

systems. Finally, the training methodologies and the models themselves differ significantly. Ansible Lightspeed relies on the IBM Watsonx Code Assistant, which is designed for general-purpose code generation and leverages a broad dataset to ensure flexibility across various IT automation contexts. In contrast, our approach utilizes the Phi-4 model, which is fine-tuned specifically for SAP environments using a custom dataset. Existing code completion systems such as GitHub Copilot (GitHub, 2021), Tab9 (Tab9, 2018), Replit (Replit, 2016), and Amazon Code Whisperer (Amazon, 2023) represent more generic approaches to source code generation. These tools support a variety of programming languages and tasks, demonstrating the versatility of LLMs in software development. However, studies have shown that specialized models, like our SAP-focused model and Ansible Lightspeed, can achieve higher acceptance rates and greater user satisfaction by tailoring optimizations to specific domains (Ziegler et al., 2022; Pujar et al., 2023).

We believe that our fine-tuned model, specifically focused on SAP scenarios, will deliver comparable or even superior results relative to existing generic models. By precisely addressing the needs of developers working in SAP environments, our model has the potential to significantly enhance their efficiency and productivity. Ultimately, this could set a new benchmark for future developments in domain-specific AI-driven code generation tools.

15

Solution Design

Solution Design: Architecture, rationale, specifications, algorithms, mockups

Distinction of small and large language models

Artificial intelligence now relies heavily on language models, especially in natural language pro-

cessing (NLP). The number of parameters, computational complexity, and data efficiency set Large

Language Models (LLMs) apart. LLMs show gains in thinking, problem-solving, and generalization

across a range of tasks as they grow. Even though models with more than 100 billion parameters,

like GPT-4 and PaLM-2, have historically been categorized as "large," new developments in training

techniques and data efficiency indicate that models like Phi-4 (14B) may be able to perform on par

with much larger models, redefining the bar for LLM classification (Abdin et al., 2024; Hoffmann

et al., 2022).

A Large Language Model is typically characterized by the following three key factors:

1. the number of parameters - The number of trainable weights in the model, historically

considered the defining metric of largeness

2. the scale and quality of its training data - The breadth and curation of the dataset used for

pretraining significantly impact generalization and performance.

3. its capacity for cross-task generalization - The ability of the model to function effectively on

zero-shot, few-shot, and fine-tuning tasks with little modification

Historically, models with tens or hundreds of billions of parameters have been classified as LLMs,

assuming that increased scale directly correlates with superior performance (Kaplan et al., 2020).

However, recent research suggests that data quality and training methodology can enable smaller

models to outperform larger counterparts (Hoffmann et al., 2022).

Phi-4, a 14-billion-parameter model, exemplifies this shift. While previous Phi models relied

primarily on distillation from GPT-4, Phi-4 surpasses its teacher in reasoning-heavy benchmarks

such as graduate-level problem-solving (GPQA) and mathematical reasoning (MATH) (Abdin et

al., 2024). Its architecture remains similar to its predecessors, but improvements in synthetic data

generation, post-training refinement, and training curriculum optimization allow it to compete with

much larger LLMs, including LLaMA-3-70B and GPT-4o-mini in select benchmarks (Microsoft Research, 2024).

Traditionally, the distinction between small and large language models has been parameter-centric, with models under 10 billion parameters considered "small" or "medium-sized" (Gunasekar et al., 2023). However, scaling laws indicate that data efficiency and architectural optimizations allow for "small" models by parameter count to function as large models in performance (Hoffmann et al., 2022).

 Table 1

 Performance of Phi-4 on a set of standard benchmarks.

Benchmarks	Models						
	Phi-4	Phi-3	Qwen 2.5	GPT	LLaMA-3.3	Qwen 2.5	GPT
	14B	14B	14B instruct	4o-mini	70B instruct	72B instruct	40
MMLU	84.8	77.9	79.9	81.8	86.3	85.3	88.1
GPQA	56.1	31.2	42.9	40.9	49.0	50.6	50.6
MATH	80.4	44.6	75.6	73.0	66.3	74.6	74.6
HumanEval	82.6	67.8	72.1	86.2	78.9	87.1	90.6
MGSM	80.6	63.9	77.9	86.5	89.1	82.8	90.4
SimpleQA	3.0	7.6	7.6	39.4	9.3	8.6	9.3
DROP	75.5	58.3	59.7	79.9	82.4	80.9	85.6
MMLUPro	70.4	51.3	63.2	63.4	69.6	69.6	73.0
HumanEval+	82.8	69.2	79.1	82.4	77.8	84.0	88.0
ArenaHard	75.4	67.0	68.3	73.1	76.4	79.2	85.6
LiveBench	47.6	28.1	49.8	58.7	57.1	64.6	72.4
IFEval	63.0	57.9	78.7	78.7	89.3	85.6	84.8
PhiBench (internal)	56.2	43.9	49.8	58.7	57.1	64.6	72.4

Data sourced from (Abdin et al., 2024). Best scores for each benchmark are highlighted in **bold**.

These results highlight that Phi-4 competes with or surpasses larger models, challenging the traditional parameter-based classification of LLMs. This performance is attributed to its advanced data curation, synthetic augmentation techniques, and novel post-training refinements, such as Direct Preference Optimization (DPO) and Pivotal Token Search (PTS), which improve its reasoning abilities and factual accuracy (Microsoft Research, 2024).

The emergence of efficiently trained models like Phi-4 calls for a reconsideration of what defines a large language model. While previous generations of LLMs emphasized parameter count as the primary metric, scaling laws suggest that training efficiency and data optimization can achieve comparable results at a fraction of the size (Hoffmann et al., 2022).

Phi-4's reliance on high-quality synthetic and curated datasets allows it to outperform models with much larger parameter counts, challenging the notion that size alone dictates performance. Post-Training techniques like Pivotal Token Search (PTS) enhance its ability to generate more accurate and reliable responses, narrowing the performance gap between Phi-4 and models exceeding 70B parameters (Microsoft Research, 2024). Unlike trillion-parameter models that require massive computational infrastructure, Phi-4 achieves LLM-level performance at a fraction of the cost, making it more accessible for real-world applications (Gunasekar et al., 2023).

In Conclusion traditional definitions of Large Language Models have been parameter-driven, models like Phi-4 challenge this paradigm by demonstrating LLM-level performance at a reduced scale. By leveraging data efficiency, architectural refinements, and synthetic data augmentation, Phi-4 competes with models 5× its size, suggesting that the classification of LLMs should now consider both parameter count and efficiency metrics. As AI research progresses, the emphasis will likely shift toward models that optimize performance while balancing computational feasibility, ensuring broader accessibility and responsible AI deployment.

Architectural and Functional Innovations of Phi-4

The Phi-4 model continues Microsoft's efforts to enhance natural language understanding and generation. Previous models like Turing-NLG and GPT-3 set benchmarks in terms of scale and capability, but Phi-4 aims to push these boundaries further by incorporating advanced learning techniques and broader datasets focusing on data quality (Abdin et al., 2024). Unlike its predecessors, which relied primarily on organic data, Phi-4 strategically incorporates synthetic data throughout the training process, leading to substantial improvements in performance, particularly in reasoning and problem solving tasks.

Phi-4 is a 14 billion parameter transformer-based LLM, developed with a specific focus on data quality. This substantial increase in parameters allows Phi-4 to capture and generate more nuanced and contextually accurate text. The model was trained using a mixed precision training approach, optimizing computational efficiency while maintaining high accuracy and stability. Advanced hardware optimizations, including the use of GPUs and TPUs, support large-scale computations. Innovations such as the Zero Redundancy Optimizer (ZeRO) and Megatron-LM further enhance the training process by effectively distributing the computational load.

The architecture of Phi-4 follows a decoder-only transformer with a default context length of 4096 tokens, extended to a 16K context length during midtraining. The training process involved approximately 10 trillion tokens, utilizing linear warm-up and decay schedules with a peak learning rate of 0.0003 and a global batch size of 5760. Additionally, the model employs techniques like rejection sampling and Direct Preference Optimization (DPO) during post-training, refining its outputs to achieve state-of-the-art performance.

Phi-4 demonstrates significant advancements in several key areas, which will be described in the following paragraph. One of the most important advantage is the models efficiency to performance ratio. Natural Language Understanding capabilities (Abdin et al., 2024). Additionally, Phi-4 generates coherent, context-sensitive text that closely mimics human writing, making it particularly useful for content creation, customer service automation, and interactive AI applications. This aspect of Phi-4's capabilities highlights its strength in Natural Language Generation (Abdin et al., 2024). The model's ability to learn from limited examples has been enhanced, enabling it to adapt quickly to new tasks with minimal additional training data, demonstrating its flexibility and efficiency in few-shot learning scenarios (Abdin et al., 2024). This can be very useful for our use case because of the limited size of the dataset. Furthermore, by building on its diverse training set, Phi-4 offers robust multilingual support, including less commonly spoken languages, thus broadening its applicability globally and enhancing its utility in a variety of linguistic contexts (Abdin et al., 2024). Leveraging its training on technical and programming data, Phi-4 can understand, generate, and even debug code snippets across various programming languages, highlighting its proficiency in code comprehension and generation (Abdin et al., 2024). Synthetic data plays a pivotal role in Phi-4's training regime. High-quality synthetic datasets are designed to prioritize reasoning and problem-solving and are meticulously generated using techniques like multi-agent prompting, self-revision workflows, and instruction reversal. By addressing some of the shortcomings of conventional unsupervised datasets, these techniques make it possible to create datasets that improve the model's capacity for reasoning and problem-solving.

The features of Phi-4 enable a wide range of applications in many industries. By producing comprehensive and context-specific automation scripts, Phi-4 can greatly simplify activities, lessen developer workload, and increase accuracy and consistency in SAP environments, where automating intricate and crucial processes is crucial.

In addition to being the result of recent advancements, Phi-4 serves as a basis for upcoming developments. Its efficiency, scalability, and capacity to adjust to domain-specific requirements are the goals of ongoing research. To further improve the model's resilience and protect data privacy, methods like federated learning and continuous training on decentralized data are being investigated. Microsoft's dedication to integrating cutting-edge AI capabilities throughout its product line is demonstrated by integration into platforms such as Visual Studio and Azure, which make these potent tools available to developers and businesses globally.

In conclusion, Microsoft's Phi-4 model pushes the limits of natural language creation and processing, marking a substantial breakthrough in AI technology. It serves as a foundation for upcoming AI-driven advancements due to its scalable architecture, broad range of capabilities, and varied application potential. The knowledge and technologies underpinning Phi-4 will be used as a benchmark as we further explore the solution architecture for this thesis, helping us create our refined, domain-specific models.

Implementation

Implementation: Development process, technology stack, code structure, integration, testing, de-

ployment

Dataset creation

In this thesis, the initial phase of fine-tuning a LLM involved the development of a custom dataset

designed to provide the model with the necessary training data. The primary emphasis was placed

on Ansible code, particularly in the context of SAP environments. To ensure a sufficient volume of

data for learning, general Ansible code was also incorporated to aid in syntax acquisition.

Ansible Lightspeed, developed by Red Hat, incorporates a robust open-source parser designed to

efficiently transform data from a chosen GitHub repository into a JSONL (JSON Lines) file format.

This file format is particularly advantageous for machine learning applications due to its structure.

Each entry within the JSONL file is placed on a separate line, where each line comprises a JSON

object. These objects are meticulously organized into multiple crucial columns, e.g. one for input

data and the other for output data. This separation ensures that the data is ready for training machine

learning models, streamlining the process by clearly delineating the inputs and expected outputs,

which are essential for supervised learning tasks. Furthermore, this structured approach aids in

maintaining data integrity and enhancing the parser's operational efficiency when dealing with

complex datasets from extensive repositories. Figure 2 shows a process step to generate the raw data

set based on the GitHub repositories.

technology stack for fine tuning phi-4: unsloth for more effiency,

Evaluation

Discussion

endresults zukunftsperspective

Figure 1
ansible content parser

GitHub repository for Ansible Content Parser with input and output configuration details

Conclusion

Bibliography

- Abdin, M., Aneja, J., Behl, H., Bubeck, S., Eldan, R., Gunasekar, S., Harrison, M., Hewett, R. J., Javaheripi, M., Kauffmann, P., Lee, J. R., Lee, Y. T., Li, Y., Liu, W., Mendes, C. C. T., Nguyen, A., Price, E., de Rosa, G., Saarikivi, O., ... Zhang, Y. (2024). Phi-4 technical report. https://arxiv.org/abs/2412.08905
- Amazon. (2023). Ai powered productivity tool [Accessed: January 17, 2025]. https://aws.amazon. com/codewhisperer/
- Ansible. (2024). Ansible documentation [Accessed: June 25, 2024]. https://docs.ansible.com/ansible/latest/index.html
- Bass, L., Weber, I., & Zhu, L. (2015). *Devops: A software architect's perspective*. Addison-Wesley Professional.
- Geerling, J. (2015). Ansible for devops: Server and configuration management for humans. Leanpub.
- GitHub. (2021). Github copilot [Accessed: January 17, 2025]. https://github.com/features/copilot
- Gupta, S., Qian, X., Bhushan, B., & Luo, Z. (2019). Role of cloud erp and big data on firm performance: A dynamic capability view theory perspective. *Management Decision*, 57(8), 1857–1882.
- Hevner, A., Chatterjee, S., Hevner, A., & Chatterjee, S. (2010). Design science research in information systems. *Design research in information systems: theory and practice*, 9–22.
- Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification.
- Klaus, H., Rosemann, M., & Gable, G. G. (2000). What is erp? *Information systems frontiers*, 2, 141–162.
- Poston, R., & Grabski, S. (2000). The impact of enterprise resource planning systems on firm performance.
- Pujar, S., Buratti, L., Guo, X., Dupuis, N., Lewis, B., Suneja, S., Sood, A., Nalawade, G., Jones, M., Morari, A., & Puri, R. (2023). Automated code generation for information technology tasks in yaml through large language models. https://arxiv.org/abs/2305.02783
- Replit. (2016). Build software collaboratively with the power of ai [Accessed: January 17, 2024]. https://replit.com/
- Sahoo, P., Pujar, S., Nalawade, G., Genhardt, R., Mandel, L., & Buratti, L. (2024). Ansible light-speed: A code generation service for it automation. *Proceedings of the 39th IEEE/ACM*

International Conference on Automated Software Engineering, 2148–2158. https://doi.org/ 10.1145/3691620.3695277

Tab9. (2018). Tab9 ai coding assistant [Accessed: January 17, 2025]. https://www.tabnine.com/UCC, S. (2024). Sap ucc documentation [Accessed: October 10, 2024]. https://ucc.tum.de/

Ziegler, A., Kalliamvakou, E., Simister, S., Sittampalam, G., Li, A., Rice, A., Rifkin, D., & Aftandilian, E. (2022). Productivity assessment of neural code completion. https://arxiv.org/abs/2205.06537

Appendix

Table 2 *Performance of Phi-4 on different metrics*

phi-4 14b	phi-3 14b	Qwen 2.5 14b instruct
α	β	γ
1	1110.1	a
1		
2	10.1	b
2		'
3	23.113231	c

A note describing the table.

Table 3 *Performance of Phi-4 on a set of standard benchmarks.*

Benchmarks	Models						
	Phi-4	Phi-3	Qwen 2.5	GPT	LLaMA-3.3	Qwen 2.5	GPT
	14B	14B	14B instruct	4o-mini	70B instruct	72B instruct	40
MMLU	84.8	77.9	79.9	81.8	86.3	85.3	88.1
GPQA	56.1	31.2	42.9	40.9	49.0	50.6	50.6
MATH	80.4	44.6	75.6	73.0	66.3	74.6	74.6
HumanEval	82.6	67.8	72.1	86.2	78.9	87.1	90.6
MGSM	80.6	63.9	77.9	86.5	89.1	82.8	90.4
SimpleQA	3.0	7.6	7.6	39.4	9.3	8.6	9.3
DROP	75.5	58.3	59.7	79.9	82.4	80.9	85.6
MMLUPro	70.4	51.3	63.2	63.4	69.6	69.6	73.0
HumanEval+	82.8	69.2	79.1	82.4	77.8	84.0	88.0
ArenaHard	75.4	67.0	68.3	73.1	76.4	79.2	85.6
LiveBench	47.6	28.1	49.8	58.7	57.1	64.6	72.4
IFEval	63.0	57.9	78.7	78.7	89.3	85.6	84.8
PhiBench (internal)	56.2	43.9	49.8	58.7	57.1	64.6	72.4

Data sourced from (Abdin et al., 2024). Best scores for each benchmark are highlighted in **bold**.

Figure 2
My Figure Caption

A note describing the figure

Figure 3 performance comparison on math competition problems

Phi-4 outperforms many larger models, showcasing impressive efficiency and accuracy on the AMC 10/12 tests (**<empty citation>**)

Figure 4
ansible content parser process

GitHub repository for Ansible Content Parser with input and output configuration details (<empty citation>)