Machine Learning for Intelligent Systems

Lecture 14: Backpropagation in Networks

Reading: UML 20.6

The slides are altered from class to use column matrices throughout.

Instructors: Nika Haghtalab (this time) and Thorsten Joachims

Multi Layer Neural Network

Output: $v_{d,1}$

Common Activation Functions

Use a non-linear activation function on nodes of a hidden layer.

Name	Function	Gradient	Graph
Binary step	sign(x)	$\begin{cases} 0 & x \neq 0 \\ N/A & x = 0 \end{cases}$	
sigmoid	$\sigma(x) = \frac{1}{1 + \exp(-x)}$	$\sigma(x)(1-\sigma(x))$	
Tanh	$tanh(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}$	$1 - \tanh^2(x)$	
Rectified Linear (ReLu)	$relu(x) = \max(x, 0)$	$\begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$	

Sometime, $\sigma(x)$ denotes the "generic" notion of activation function, not necessarily sigmoid.

Closer look at the nodes

Vectorized form:

$$\vec{v}_{i+1} = \begin{pmatrix} \sigma(\vec{v}_i \cdot \vec{w}_{i,1}) \\ \vdots \\ \sigma(\vec{v}_i \cdot \vec{w}_{i,k-1}) \\ \mathbf{c} \end{pmatrix}$$

Bias term, has no incoming weights, so it's a fixed constant.

Simpler form

Vectorized form:

$$\vec{v}_{i+1} = \begin{pmatrix} \sigma(\vec{v}_i \cdot \vec{w}_{i,1}) \\ \vdots \\ \sigma(\vec{v}_i \cdot \vec{w}_{i,k-1}) \\ \frac{1/2}{} \end{pmatrix}$$

Bias term, has no incoming weights.

Presentation Trick:

- \rightarrow When σ is sigmoid, $\sigma(0) = 1/2$.
- \rightarrow We can assume that $\overrightarrow{w}_{i,k} = 0$
- \rightarrow The network is fully connected.

$$\rightarrow \vec{v}_{i+1} = \sigma(W_i^{\mathrm{T}} \vec{v}_i)$$

Prediction with Neural Networks

How do we use Neural Networks for predictions?

$$\sigma\left(W_{d-1}^T \dots \sigma\left(W_2^T \sigma\left(W_1^T \sigma\left(W_0^T \vec{v}_0\right)\right)\right) \dots\right)$$

Forward Pass (Prediction)

Input: Neural Network with weight matrices $W_0, W_1, ..., W_{d-1}$ and instance (\vec{x}, y)

$$\vec{v}_0 = \vec{x}$$

For $\ell = 1, ..., d$

•
$$\vec{s}_{\ell} = \mathbf{W}_{\ell-1}^{\mathrm{T}} \vec{v}_{\ell-1}$$

•
$$\vec{v}_{\ell} = \sigma(\vec{s}_{\ell})$$

End For

Output \vec{v}_d

Learning the Weights

How can we learn weight matrices $W_0, W_1, ..., W_{d-1}$ given an sample set $S = \{(\vec{x}_1, y_1), ..., (\vec{x}_m, y_m)\}.$

Need to write the optimization:

$$\min_{W_0,...,W_{d-1}} \frac{1}{m} \sum_{i=1...m} L(\text{forward pass}_{W_0,...,W_{d-1}}(\vec{x}_i), y_i)$$

For convenience, we don't use a regularizer in this lecture.

 $L(y',y_i)$: Evaluates how good is y' as a prediction for y_i . We use $L(y',y_i)=\frac{1}{2}(y'-y_i)^2$

SGD for Neural Networks

How can we learn weight matrices $W_0, W_1, ..., W_{d-1}$ given an sample set $S = \{(\vec{x}_1, y_1), ..., (\vec{x}_m, y_m)\}.$

Stochastic Gradient Descent updates rule:

$$\min_{W_0,...,W_{d-1}} \frac{1}{m} \sum_{i=1...m} L(\text{forward pass}_{W_0,...,W_{d-1}}(x), y_i)$$

Take a random (\vec{x}, y) from the samples, let ∂L denote the partial derivate for this sample with respect to the current weights

For all
$$i = 0, ..., d - 1$$
, $W_i \leftarrow W_i - \eta \frac{\partial L}{\partial W_i}$

Derivative of the network

We need to compute the derivates $\frac{\partial L}{\partial W_i}$

Chain rule in derivates:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g(x)} \cdot \frac{\partial g(x)}{\partial h(x)} \cdot \frac{\partial h(x)}{\partial x}$$

(Element wise) Application of chain rule:

$$\frac{\partial L}{\partial w_{i,j}(z)} = \frac{\partial L}{\partial v_{i+1,j}} \cdot \frac{\partial v_{i+1,j}}{\partial s_{i+1,j}} \cdot \frac{\partial s_{i+1,j}}{\partial w_{i,j}(z)}$$
$$= \frac{\partial L}{\partial v_{i+1,j}} \sigma'(s_{i+1,j}) \quad v_{i,z}$$

Derivative wrt Node Values

We need to compute the derivates $\frac{\partial L}{\partial v_{i,j}}$

For v_d , it's just the derivate of the loss with respect to the actual label y. For square loss:

$$\frac{\partial L}{\partial v_d} = v_d - y$$

Application of chain rule:

$$\frac{\partial L}{\partial v_{d-1,1}} = \frac{\partial L}{\partial v_d} \cdot \frac{\partial v_d}{\partial s_d} \cdot \frac{\partial s_d}{\partial v_{d-1,1}}$$
$$= (v_d - y) \cdot \sigma'(s_d) \cdot w_{d-1,1}(1)$$

Derivative wrt Node Values

More generally, recursively

$$\frac{\partial L}{\partial \vec{v}_{i}} = \frac{\partial L}{\partial \vec{v}_{i+1}} \cdot \frac{\partial \vec{v}_{i+1}}{\partial \vec{s}_{i+1}} \cdot \frac{\partial \vec{s}_{i+1}}{\partial \vec{v}_{i}}$$

$$= W_{i} \left(\sigma'(\vec{s}_{i+1}) \odot \frac{\partial L}{\partial \vec{v}_{i+1}} \right)$$

Element-wise matrix multiplication: $\begin{pmatrix} a \\ \vdots \\ b \end{pmatrix} \odot \begin{pmatrix} c \\ \vdots \\ d \end{pmatrix} = \begin{pmatrix} ac \\ \vdots \\ bd \end{pmatrix}$

All together

We can compute all the derivates $\frac{\partial L}{\partial \vec{v}_i}$ before each round of SGD.

$$\frac{\partial L}{\partial v_d} = v_d - y$$

$$\frac{\partial L}{\partial \vec{v}_i} = W_i \left(\frac{\partial L}{\partial \vec{v}_{i+1}} \odot \sigma'(\vec{s}_{i+1}) \right)$$

When we start, we now have the derivates with respect to weights.

$$\frac{\partial L}{\partial W_i} = \vec{v}_i \left(\frac{\partial L}{\partial \vec{v}_{i+1}} \odot \sigma'(\vec{s}_{i+1}) \right)^T$$

Back Propagation

Each Round of SGD: Forward Pass then Back Propagation

Forward Pass (Prediction)

$$\vec{v}_0 = (\vec{x}, 1)$$

For $\ell = 1, ..., d$

- $\vec{s}_{\ell} = \mathbf{W}_{\ell-1}^{\mathrm{T}} \vec{v}_{\ell-1}$
- $\vec{v}_{\ell} = \sigma(\vec{s}_{\ell})$

End For

Output \vec{s}_0 , \vec{v}_0 , ..., \vec{s}_d , \vec{v}_d

Backward Pass

$$\vec{\delta}_d = \frac{\partial L}{\partial v_d} \sigma'(s_d)$$

For $\ell = d - 1 ..., 0$

- $W_{\ell} = W_{\ell} \eta \ \vec{v}_{\ell} \ \vec{\delta}_{\ell+1}^{T}$
- $\vec{\delta}_{\ell} = (W_{\ell}\vec{\delta}_{\ell+1}) \odot \sigma'(\vec{s}_{\ell})$

End For

Output W_0 , W_1 , ... W_{d-1}

SGD on Non-Convex

The loss in neural networks is non-convex.

Many of the theoretical guarantees of SGD only hold for convex losses.

- 1. Initialization.
- \rightarrow Don't start $W_0, W_1, ..., W_{d-1} = 0$
- → Randomized your starting weights.
- 2. Run separate SGDs and take the best.