Overheads: - Outline

QUIZ # 1

Recap Wednesday: S_N2 Reactions

Leaving Groups:

Weaker base = better LG $I^- > Br^- > Cl^- >> F^-$

Nucleophiles:

stronger base = better Nu⁻ size matters

aprotic solvent

protic solvent (eg H₂O, CH₃OH) size trend reverses with H-bonding

Examples of Nucleophiles:

H₃C—Br
$$\Theta$$
 OCH₃ \longrightarrow H₃C—OCH₃ ether Θ SCH₃ \longrightarrow H₃C—SCH₃ thioether Θ which is better? aprotic: ${}^{\circ}$ OR protic: ${}^{\circ}$ SR Θ CN \longrightarrow H₃C—C Ξ N nitrile Θ CN \longrightarrow H₃C—C Ξ C \longrightarrow H₃C—C Ξ C—R \longrightarrow H₃C—C Ξ C—R \longrightarrow Chem 241 recall - only works for 1° R-Br \longrightarrow because S_N2!!

Neutral Nucleophiles:

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

need "extra" step to remove H⁺ (fast eq'm)

same for:
$$H_3C$$
— Br + NH_3 \longrightarrow H_3C — N — H

 $S_N 1 \text{ Reaction} \Rightarrow \text{Lab } #2$

$$H_3C$$
 CH_3
 H_3C
 CH_3
 CH_3

Compare to $S_N 2$

- 1) <u>Kinetics</u>: only R-Br in RDStep, :: unimolecular (: $S_{N}\underline{1}$) $rate = \Delta[R-Br]/\Delta t = k[R-Br]$ (if [Nu⁻] \uparrow , rate does not \uparrow)
- 2) <u>Stereochemistry</u>: $(S_N 2 = inversion)$
 - \implies C⁺ is <u>flat</u>, so Nu⁻ can add to <u>either</u> side

3) Effect of Substitution:

 \Rightarrow most stable C⁺ formed fastest (TS ψ , Ea ψ) (Same as Markovnikov!)

Leaving Groups:

 \Rightarrow Need good LG to make C⁺ (same trends as S_N2)

Nucleophiles:

- ⇒ Not in RDS : do not affect rate
- ⇒ Can use lower concentration of weaker Nu

e.g.
$$R - Br + Nu^{\ominus} \rightarrow R - OH$$

 S_N2 : $Nu^- = OH$ -, high concentration helps $(OH^- = strong base / Nu^-)$

 S_N1 : $Nu^- = H_2O$ (weaker base / Nu^-)

Added complication for S_N1

⇒ C⁺ can rearrange

1) Allylic & Benzylic Halides

Also makes S_N 2 better (as long as not 3°):

- resonance stabilizes δ^+ in TS