U^b

b UNIVERSITÄT BERN

UNIVERSITÄT BERN

Network Security

III. Asymmetric Encryption

Prof. Dr. Torsten Braun, Institut für Informatik

Bern, 07.03.2022 - 14.03.2022

UNIVERSITÄT RERN

Network Security: Asymmetric Encryption Table of Contents

- 1. Introduction
- 2. Rivest Shamir Adleman Algorithm
- 3. Key Management
- 4. Elliptic Curves

$u^{^{\scriptscriptstyle b}}$

UNIVERSITÄT

1. Introduction

1. Asymmetric Encryption

1. Introduction

2. Asymmetric Encryption Problems

- Attacker knows public key, encryption scheme, and cipher text.
- Everybody can send a message to a receiver and imitate identities.
- Very computing intensive compared to symmetric encryption

b UNIVERSITÄT BERN

1. Introduction

3. Asymmetric Encryption Applications

- Encryption and decryption
- Digital signatures: encrypting a (part of a) message with a private key
- Symmetric key exchange

u^{b}

1. Introduction

4. Asymmetric Encryption: Requirements

- Computationally easy to
 - generate a public/private key pair
 - encrypt a message C = e(PU, M)
 - decrypt a message M = D(PR, C)

- Computationally infeasible to
 - determine the private key PR
 - recover message M knowing the public key PU and ciphertext C
- 2 keys are applied in either order:M = D(PU, e(PR, M))

$$= D(PR, e(PU, M))$$

u^{b}

1. Introduction

5. Asymmetric Encryption: Public Key Cryptanalysis

Key size must be

- large enough to make brute-force attack infeasible,
- but small enough for practical encryption and decryption.

Another attack: find private key from public key. Today, it has not been mathematically proven that this is infeasible for all asymmetric encryption algorithms.

u^{t}

D UNIVERSITÄT BERN

2. Rivest Shamir Adleman

1. Algorithm

Key Generation

- 1. Selection of 2 big prime numbers p, q, e.g., 1024 bits
- 2. Calculate $n = p \cdot q$; $z = (p-1) \cdot (q-1)$
- 3. Select e < n, so that e and z do not have common factors.
- 4. Select d so that $e \cdot d \mod z = 1$.
- 5. Public key: <e, n>, private key: <d, n>

- Encryption: c = m^e mod n
 - m: message in plaintext
 - c: message in ciphertext
- Decryption: m = c^d mod n
- Security is based on the fact that there are no fast algorithms for prime factorization.

b UNIVERSITÄT BERN

2. RSA

2. Example

Key Generation

$$- p = 7, q = 11$$

- n = 77;
z =
$$(p-1)\cdot(q-1) = 60 = 5\cdot3\cdot2\cdot2$$

$$- e = 7$$

- 7d mod
$$60 = 1 \Rightarrow d = 43$$

(7·43 = 301, 301 mod $60 = 1$)

$$- = <7,77>; = <43,77>$$

Encryption

$$-$$
 m = 9, c = 9^7 mod 77 = 37

Decryption

$$-$$
 m = 37^{43} mod $77 = 9$

2. RSA

3. Processing of Multiple Blocks

$u^{^{\scriptscriptstyle b}}$

b UNIVERSITÄT BERN

2. RSA

4.1 Security Attacks

- Brute force
- Mathematical attacks
 - Efforts to factoring the product of two primes

- Timing attacks
 - Measuring decryption running time dependent on data
 - Solutions
 - constant time
 - random delays
 - Blinding: multiply ciphertext before exponentiation

Default solution: large keys

b UNIVERSITÄT

2. RSA

4.2 Security Attacks

- Hardware fault-based attacks
 - inducing hardware faults in generating signatures,
 e.g., by reducing processor power
 - requires access to the hardware
- Chosen ciphertext attack
 - exploits properties of RSA algorithm
 - Adversary chooses ciphertext and is given corresponding plaintext.
 - From that the private key could be derived.

b UNIVERSITÄT

2. RSA

5. Factorization

2020: RSA-250 (829 bits) was factored.

u^{b}

b UNIVERSITÄT BERN

3. Key Management

1. Session Key Exchange

- Public keys → certificates
- Key Distribution Center
 - Negotiation of N keys with N clients
 - KDC calculates session keys and uses one of the N keys for key exchange
- Diffie Hellman Key Exchange

u^t

UNIVERSITÄT BERN

3. Key Management

2.1 Diffie Hellman Key Exchange

- A and B exchange prime p and generator g (also prime).
- A selects secret random number x (private key), calculates n = g^x mod p, and transmits n (public key) to B.
- B selects secret random number y (private key), calculates m = g^y mod p, and transmits m (public key) to A.

- Session key: z = n^y mod p
 = m^x mod p = g^{xy} mod p
- Security by infeasibility to compute x and y (discrete logarithm), which is much more complex than prime factorization

b UNIVERSITÄT BERN

3. Key Management

2.2 Diffie Hellman Key Exchange Example

- p = 47, g = 3, A: x = 8, B: y = 10
- $-A \rightarrow B: (47, 3, n = 28 (= 38 \mod 47))$
- $B \rightarrow A$: (47, 3, m= 17 (= 3¹⁰ mod 47))
- Key $z = 17^8 \mod 47 = 28^{10} \mod 47 = 3^{80} \mod 47 = 4$

- Problem:"Man in the Middle" attack
- Solution: Authenticated DH exchange using private or public keys

UNIVERSITÄT

3. Key Management

3. "Man in the Middle" Attack

u'

b UNIVERSITÄT BERN

4. Elliptic Curves

1. Arithmetics

- Most public-key cryptography products and standards use RSA.
- The key length for secure RSA use has increased over recent years and generates heavier processing load on applications using RSA.

- Elliptic Curve Cryptography is showing up in standardization efforts including IEEE P1363 for Public-Key Cryptography.
- ECC aims to offer equal security for a far smaller key size.

4. Elliptic Curves

2. Elliptic Curves over Real Numbers

- Elliptic curves are not ellipses.
- Elliptic curves are described by cubic equations, similar to those used for calculating the circumference of an ellipse (Weierstrass equation):

$$y^2$$
 + axy + by = x^3 + cx^2 + dx + e

- Here: equations of the form $y^2 = x^3 + ax + b$
- To plot such a curve, we need to compute $y = \sqrt{(x^3 + ax + b)}$
- Sets of points E(a, b) depict curves, e.g., E(-1,0), E(1,1)
- For any 3 points in such a set: the sum is O (zero point).

UNIVERSITÄT Bern

(b) $y^2 = x^3 + x + 1$

u^{b}

b UNIVERSITÄT BERN

4. Elliptic Curves

3. Addition Rules

$$0 = -0$$

$$P + O = P$$

$$P + (-P) = O$$

To add two points P, Q with different x coordinates: draw a straight line and find the point of intersection: P + Q = -R

$u^{^{\scriptscriptstyle b}}$

b UNIVERSITÄT BERN

4. Elliptic Curves

4. Elliptic Curves over Z_p

- Elliptic curve cryptography makes use of elliptic curves, in which variables and coefficients are restricted to elements of a finite field.
- Prime curve over Z_p
 - integers from 0 to p-1
 - good for software processing
- Binary curve over GF(2^m)
 - values in GF(2^m) and calculations over GF(2^m)
 - good for hardware processing

- here: y^2 mod p = (x^3 + ax + b) mod p, which is for example satisfied by a=1, b=1, x=9, y=7, p=23
 - $-7^2 \mod 23 = (9^3 + 9 + 1) \mod 23$
 - $-49 \mod 23 = 739 \mod 23$
 - -3 = 3
- Coefficients a, b and variables x, y are all elements of Z_p.

b UNIVERSITÄT RERN

4. Elliptic Curves

5. Points on the Elliptic Curve $E_{23}(1,1)$

UNIVERSITÄT

4. Elliptic Curves

6. E_p(a,b) Addition Rules

1.
$$P + O = P$$

2.
$$P = (x_P, y_P): P + (x_P, -y_P) = O$$

3.
$$P = (x_P, y_P), Q = (x_Q, y_Q), P \neq -Q: R = P + Q = (x_R, y_R)$$

4. Multiplication as repeated addition, e.g., 4P = P + P + P + P

$$x_R = (\lambda^2 - x_P - x_Q) \mod p$$

$$y_R = (\lambda(x_P - x_R) - y_P) \mod p$$

$$\lambda = \begin{cases} \left(\frac{y_Q - y_P}{x_Q - x_P}\right) \mod p & \text{if } P \neq Q \\ \left(\frac{3x_P^2 + a}{2y_P}\right) \mod p & \text{if } P = Q \end{cases}$$

$u^{^{b}}$

4. Elliptic Curves

7. Elliptic Curves over GF(2^m)

- A finite field (Galois Field) GF(2^m)
 consists of 2^m elements together with
 addition and multiplication operations
 that can be defined over polynomials.
- Cubic equation appropriate for cryptographic applications is
 y² + xy = x³ + ax² + b,
 x, y, a, b are elements of GF(2^m).

- Example: $GF(2^4)$ with the irreducible polynomial $f(x) = x^4 + x + 1$
- Generator g with f(g) = 0: $g^4 = g + 1$, in binary: g = 0010
- $g^5 = g^4 g = (g + 1) g = g^2 + g = 0110 (XOR)$

9 9 9	(9 '/9	9 9	3 1 13 (7 t 3 t t)
g ⁰ =0001	g ⁴ =0011	g ⁸ =0101	g ¹² =1111
g ¹ =0010	g ⁵ =0110	g ⁹ =1010	g ¹³ =1101
g ² =0100	g ⁶ =1100	g ¹⁰ =0111	g ¹⁴ =1001
g ³ =1000	g ⁷ =1011	g ¹¹ =1110	g ¹⁵ =0001

$u^{'}$

UNIVERSITÄT BERN

4. Elliptic Curves

8. Example Point on $E_2^4(g^4,1)$

$$y^2 + xy = x^3 + g^4x^2 + 1$$

 (g^5, g^3) satisfies equation.
 $(g^3)^2 + g^5 g^3 = (g^5)^3 + g^4 (g^5)^2 + 1$
 $g^6 + g^8 = g^{15} + g^{14} + 1$
 $1100 + 0101 = 0001 + 1001 + 0001$
 $1001 = 1001$

b UNIVERSITÄT BERN

4. Elliptic Curves

9. Points on the Elliptic Curve $E_2^4(g^4,1)$

UNIVERSITÄT

4. Elliptic Curves

10. E₂^m(a,b) Addition Rules

1.
$$P + O = P$$

2.
$$P = (x_P, y_P): P + (x_P, x_P + y_P) = O$$

 $(x_P, x_P + y_P) = -P$

3.
$$P = (x_p, y_p), Q = (x_Q, y_Q): R = P + Q = (x_R, y_R)$$

4.
$$P = (x_p, y_p): R = 2P = (x_R, y_R)$$

$$y_R = \lambda(x_P + x_R) + x_R + y_P$$

$$\lambda = \frac{y_Q + y_P}{x_O + x_P}$$

 $x_R = \lambda^2 + \lambda + x_P + x_O + a$

$$egin{array}{lll} x_R &=& \lambda^2 + \lambda + a \ y_R &=& x_P^2 + (\lambda + 1) x_R \end{array}$$

$$\lambda = x_P + rac{y_P}{x_P}$$

$u^{\scriptscriptstyle \mathsf{b}}$

^b Universität Bern

4. Elliptic Curves

11. Elliptic Curve Cryptography

To form a cryptographic system using elliptic curves, we need to find a "hard problem", e.g.,

- factoring the product of two primes or
- taking the discrete logarithm.

- Q = k P;Q, P belong to a prime curve.
- It is easy to compute Q given k, P,
 e.g., 100P=2(2(P+2(2(2(P + 2P)))))
- It is hard to find k given Q, P.
- This is known as the elliptic curve logarithm problem.

u'

^b Universität Bern

4. Elliptic Curves

12. Example ECC

- $E_{23}(9, 17)$ is defined by $y^2 \mod 23 = (x^3 + 9x + 17) \mod 23$.
- What is the discrete logarithm k of Q = (4, 5) to the base P = (16, 5)?
- Brute-force method is to compute multiples of P until Q is found.

- P = (16, 5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 20); 5P = (13, 10); 6P = (7, 3); 7P = (8, 7); 8P = (12, 17); 9P = (4, 5).
- discrete logarithm Q = (4, 5) to the base P = (16, 5) is k = 9.
- In reality, k would be so large as to make the brute-force approach infeasible.

UNIVERSITÄT

4. Elliptic Curves

13. Analog to Diffie Hellman Key Exchange – An attacker would need to calculate k

- given base point G and kG.
- Example: p=211, $E_p(0, -4)$: $y^2 = x^3-4$; G=(2, 2)
- 240 G = O
- Private key n_A = 121 \rightarrow public key $P_{\Delta} = 121 (2, 2) = (115, 48)$
- $n_B = 203 \rightarrow P_B = 203 (2, 2) = (130, 203)$
- Shared key = 121 (130, 203) = 203 $(115, 48) = 121 \cdot 203(2, 2) = (161, 69)$

Global Public Elements

elliptic curve with parameters a, b, and q, where q is a prime or an integer of the form 2^m Gpoint on elliptic curve whose order is large value n

 $n_A \le n$

 $n_R \le n$

User A Key Generation

Calculate public P_{\perp} $P_A = n_A \times G$

Select private n₄

Select private n_R

 $K = n_A \times P_B$

User B Key Generation

Calculate public P_R $P_R = n_R \times G$

Calculation of Secret Key by User A

Calculation of Secret Key by User B $K = n_R \times P_A$

4. Elliptic Curves

UNIVERSITÄT BERN

14. Comparable Key Sizes in Terms of Computational Efforts for Cryptanalysis

·	Symmetric key algorithms	Diffie-Hellman, Digital Signature Algorithm	RSA (size of <i>n</i> in bits)	ECC (modulus size in bits)
	80	L = 1024 $N = 160$	1024	160–223
·	112	L = 2048 $N = 224$	2048	224–255
	128	L = 3072 $N = 256$	3072	256–383
	192	L = 7680 $N = 384$	7680	384–511
	256	L = 15,360 N = 512	15,360	512+

Thanks

for Your Attention

<u>u</u>

UNIVERSITÄT

Prof. Dr. Torsten Braun, Institut für Informatik

Bern, 07.03.2022 - 14.03.2022

