MA 205 Complex Analysis: Review

U. K. Anandavardhanan IIT Bombay

September 04, 2015

Announcement

Those who have not yet collected their Quiz I papers, please collect it from me at the end of the class.

1. If u(x, y) is harmonic then both u_x and u_y are harmonic. (a) True (b) False.

Justification: Laplacian commutes with partial derivatives:

$$\frac{\partial}{\partial x}\nabla u = \nabla \frac{\partial u}{\partial x}.$$

(♣) True

(b) False.

2. The largest domain Ω among the following to which the function $u(x,y) = \sqrt{\sqrt{x^2 + y^2} + x}$ can be harmonically extended throughout (i.e., there is $h: \Omega \to \mathbb{R}$ such that h is harmonic in Ω and h(x,y) = u(x,y) wherever u(x,y) is harmonic) is (a) \mathbb{C} (b) $\mathbb{C}\setminus\{0\}$ (c) $\mathbb{C}\setminus\{x\mid x<0\}$ (d) $\mathbb{C}\setminus\{x\mid x\leq0\}$ (e) $\mathbb{C}\setminus\{x\mid x\leq0\}$

Justification: Take $x = r \cos \theta$ and $y = r \sin \theta$ with $r \ge 0$ and $-\pi < \theta \le \pi$. Then $u(x,y) = \sqrt{2r} |\cos \frac{\theta}{2}|$ (which is harmonic in $\mathbb{C}\setminus\{x\mid x\le 0\}$). The function $f(r,\theta) = \sqrt{2r}\cos \frac{\theta}{2}$ extends u(x,y) and is harmonic when $r\ne 0$. Note that f cannot be further extended harmonically to \mathbb{C} since $\sqrt{2z}$ cannot be holomorphically defined throughout \mathbb{C} .

(a)
$$\mathbb{C}$$
 (\clubsuit) $\mathbb{C}\setminus\{0\}$ (c) $\mathbb{C}\setminus\{x\mid x<0\}$ (d) $\mathbb{C}\setminus\{x\mid x\leq0\}$ (e) $\mathbb{C}\setminus\mathbb{R}$

Note added after the class: The correct answer would be 1

(a)
$$\mathbb{C}$$
 (b) $\mathbb{C}\setminus\{0\}$ (c) $\mathbb{C}\setminus\{x\mid x<0\}$ (a) $\mathbb{C}\setminus\{x\mid x\leq0\}$ (b) $\mathbb{C}\setminus\mathbb{R}$

Justification: $u(x,y) = \sqrt{2r} \mid \cos \frac{\theta}{2} \mid$ and the largest domain in which this is harmonic in $\mathbb{C} \setminus \{x \mid x \leq 0\}$. If h(x,y) is any continuous function defined in a larger domain in \mathbb{C} which matches u(x,y) in $\mathbb{C} \setminus \{x \mid x \leq 0\}$ then h(x,y) has to agree with u(x,y) everywhere since u(x,y) is continuous everywhere and $\mathbb{C} \setminus \{x \mid x \leq 0\}$ is dense in \mathbb{C} .

3. Let
$$f(z) = \sum_{n=0}^{\infty} F_n \left(z - \frac{1}{2} \right)^n$$
, where F_n is the n^{th} Fibonacci

number. Expand f(z) as a power series $\sum a_n z^n$ around z=0.

Then its radius of convergence of is

(a)
$$\frac{\sqrt{5}-1}{2}$$

(b)
$$\frac{\sqrt{5}+1}{2}$$

(a)
$$\frac{\sqrt{5}-1}{2}$$
 (b) $\frac{\sqrt{5}+1}{2}$ (c) $\frac{\sqrt{5}-2}{2}$ (d) $\frac{\sqrt{5}+2}{2}$ (e) $\frac{3-\sqrt{5}}{2}$

(d)
$$\frac{\sqrt{5}+2}{2}$$

(e)
$$\frac{3-\sqrt{5}}{2}$$

Justification: The original series centered at z = 1/2 has radius of convergence $\frac{\sqrt{5}-1}{2}$. A point on this circle of convergence is given by $\frac{1}{2} + re^{i\theta}$. The minimum of $\left|\frac{1}{2} + re^{i\theta}\right|$ is when $\theta = \pi$.

(a)
$$\frac{\sqrt{5}-1}{2}$$
 (b) $\frac{\sqrt{5}+1}{2}$ (c) $\frac{\sqrt{5}-2}{2}$ (d) $\frac{\sqrt{5}+2}{2}$ (e) $\frac{3-\sqrt{5}}{2}$.

(b)
$$\frac{\sqrt{5}+1}{2}$$

$$\left(\clubsuit\right)\frac{\sqrt{5}-2}{2}$$

(d)
$$\frac{\sqrt{5}+2}{2}$$

(e)
$$\frac{3-\sqrt{5}}{2}$$

4. The function $f(z) = (1 - \sin z)^2$ has a zero at $z = \frac{\pi}{2}$ of multiplicity (i.e., order) equal to

(a) 1

(b) 2 (c) 3

(d) 4

(e) 5.

Justification: Since

$$\sin z = \cos(z - \frac{\pi}{2}) = 1 + (z - \frac{\pi}{2}) + \frac{(z - \frac{\pi}{2})^2}{2!} + \dots,$$

we get $(1 - \sin z)^2 = (z - \frac{\pi}{2})^2 g(z)$, where $g(\pi/2) \neq 0$.

OR

Show that
$$f(\pi/2) = f'(\pi/2) = f^{(2)}(\pi/2) = f^{(3)}(\pi/2) = 0$$
 and $f^{(4)}(\pi/2) \neq 0$.

OR

For
$$g(z) = 1 - \sin z$$
, $g(\pi/2) = g'(\pi/2) = 0$ and $g''(\pi/2) \neq 0$.

(a) 1

(b) 2

(c) 3

5. The singularity at z = 0 of the function $f(z) = \sin z \cdot \sin \frac{1}{z}$ is

(a) bp (b) removable (c) pole (d) essential (e) nota.

Justification: The Laurent expansion of f(z) around the isolated singularity z = 0 has infinite principal part.

(a) bp (b) removable (c) pole (4) essential (e) nota.

4 D > 4 D > 4 E > 4 E > E 9 Q O

6. The singularity at z = 0 of $f(z) = \sin^{-1} z \cdot \sin^{-1} \frac{1}{z}$ is

(a) bp

(b) removable

(c) pole

(d) essential

(e) nota.

Justification: $\sin^{-1} z$ is holomorphic in a small enough neighborhood of z=0 and z=0 is a branch point for $\sin^{-1} \frac{1}{z}$.

(♣) bp (b) removable (c) pole (d) essential (e) nota.

- 7. The gamma function is never vanishing.
 - (a) True

(b) False.

Justification:

$$\Gamma(z)\Gamma(1-z)=\frac{\pi}{\sin\pi z}.$$

(♣) True

(b) False.

8. The residue at z = 0 of $f(z) = \frac{z}{(1 - \cos z)^2}$ is

(a) 0 (b) $\frac{1}{3}$ (c) $\frac{2}{3}$ (d) 1

(b)
$$\frac{1}{3}$$

(c)
$$\frac{2}{3}$$
 (d)

(e) nota.

Justification:

$$1 - \cos z = \frac{z^2}{2} \left[1 - \frac{z^2}{12} + \frac{z^4}{360} - \dots \right]$$

$$f(z) = \frac{4}{z^3} \left[1 + \left(\frac{z^2}{12} - \frac{z^4}{360} + \dots \right) + \left(\frac{z^2}{12} - \frac{z^4}{360} + \dots \right)^2 + \dots \right]^2$$

(b)
$$\frac{1}{3}$$

$$(\clubsuit) \frac{2}{3}$$

- 9. The value of $\int_{-\infty}^{\infty} \frac{\cos x}{x^2+1} dx$ is

- (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{2}$

(d) $\frac{\pi}{2a}$

(e) $\frac{\pi e}{2}$.

Justification: Can take $f(z) = \frac{e^{iz}}{z^2+1}$ and the semicircular contour: L from -R to R and $C = Re^{i\theta}$ where θ is from 0 to π . By CRT, the total integral is $2\pi i$ Res $(f,i) = 2\pi i \cdot \frac{e^{-1}}{2i} = \frac{\pi}{2}$. Now,

$$\left| \int_C \frac{e^{iz}}{z^2 + 1} dz \right| \le \frac{\pi R}{R^2 - 1}$$

and this goes to 0 as $R \to \infty$. The required integral is the real part of the integral over L in the limit.

(a) $\frac{\pi}{2}$

(c) πe

(d) $\frac{\pi}{2a}$

(e) $\frac{\pi e}{2}$.

- 10. Among the following theorems my most favourite is
 - (a) Morera (b) ZAI (c) CRT (d) RRST

- (e) MMT.

Justification: Any reasonable justification.

Any one answer.

Endsem Review

1. Let $D = \{z \mid |z| < 1\}$. Let $f : D \to D$ be holomorphic such that f(0) = 0 and |f(z)| < 1 for all $z \in D$. Consider

$$g(z) = \begin{cases} \frac{f(z)}{z} & z \neq 0 \\ f'(0) & z = 0. \end{cases}$$

Then,

- (i) g is holomorphic in D.
 - (a) True

- (b) False.
- (ii) On $\{z \mid |z| \le r < 1\}$, |g| takes its maximum at some z_0 . (a) True (b) False.
- (iii) In (ii), $|z_0|$ is ____.
- (iv) $|f(z)| \leq |z|$ on D.
 - (a) True

(b) False.

Endsem Review

2. Let f be entire and it is given that $|f(z)| \le K|z|^n$ for all $|z| \ge M$. Then,

- (i) Can write $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n$ for all $z \in \mathbb{C}$. (a) True (b) False.
- (ii) $|f^{(m)}(0)| \le \frac{m!K|z|^n}{M^m}$ follows from (a) ODAD (b) ZAI (c) CRT (d) MMT (e) Cauchy's Est.
- (iii) $f^{(m)}(0) = 0$ for $m \ge n$. (a) True (b) False.
- (iv) $f^{(m)}(0) = 0$ for $m \ge n + 1$. (a) True (b) False.
- (v) f is a polynomial of degree at most n.(a) True(b) False.

Endsem Review

- 3. Let f be on a region Ω bounded by a simple closed curve γ . Then $\frac{1}{2\pi \iota} \int_{\gamma} \frac{f'(z)}{f(z)} dz$ is
 - (i) when f has one zero and no pole in Ω (a) 1 (b) 2 (c) 3 (d) nota (e) can't say.
 - (ii) when f has one zero of multiplicity one and no pole in Ω (a) 1 (b) 2 (c) 3 (d) nota (e) can't say.
- (iii) when f has one zero of multiplicity one and another zero of multiplicity two and one pole of order one in Ω (a) 1 (b) 2 (c) 3 (d) nota (e) can't say.
- (iv) when f has one pole of order one and another of order two and no zeros
 - (a) 1 (b) 2 (c) 3 (d) nota (e) can't say.