Geometrische Optik

Protokoll zum Versuch Nummer O1 vom 18. Mai 2015

Frederik Edens, Dennis Eckermann

 $Gruppe\ 6mo$ $f_\ eden 01@uni-muenster.de$ $den nis.\ eckermann@gmx.de$

Inhaltsverzeichnis

1.	Einle	eitung	1			
2.	Auswertung					
	2.1.	Demoversuch	2			
	2.2.	Brechung am Prisma	2			
3.	3. Diskussion					
Α.	Anha	ang	4			
	A.1.	Fehlerrechnung	4			
		A.1.1. Ablenkungswinkel	4			
		A.1.2. Brechungsindex vom Prisma	4			

1. Einleitung

$$n = \frac{\sin\frac{\alpha + \delta_m}{2}}{\sin\delta_m} \tag{1.1}$$

 mit

$$\delta_m = \arctan \frac{x_m}{y_m} \tag{1.2}$$

2. Auswertung

2.1. Demoversuch

Die folgenden Versuche wurden mit zwei Lasern durchgeführt. Der im Folgenden als "roter Laser"bezeichnete Laser hat auf dem Gerät eine Wellenlänge von $\lambda = (630 \text{ bis } 680) \text{ nm}$ angegeben. Der andere Laser, im Folgenden als "blauer Laser"bezeichnet, hat auf dem Gerät keine Wellenlänge angegeben. Daher wird die Angabe aus der Versuchsanleitung $[1, S. 9] \lambda = 405 \text{ nm}$ angenommen.

2.2. Brechung am Prisma

In diesem Versuch wird der Brechungsindex eines Prismas aus Flintglas bestimmt. Dieser kann mit Hilfe von (1.1) aus dem minimalen Ablenkungswinkel δ_m und dem Innenwinkel des Prismenquerschnittes α berechnet werden. Da das Prisma im Querschnitt ein gleichseitiges Dreieck ist, ist der Innenwinkel $\alpha = 60^{\circ}$. Um δ_m zu bestimmen dreht man das Prisma so lange im Lichtstrahl, bis der Ablenkwinkel nicht mehr kleiner wird. Nun misst man die Abstände in x- und y-Richtung eines Punktes im Abgelenkten Strahl vom Prisma und erhält aus (1.2) den Ablenkwinkel.

Unsere Ergebnisse sind in Tabelle 1 zu finden. Die dazugehörigen Fehlerrechnungen (A.2) und (A.3) sind im Anhang zu finden.

Laserfarbe	x_m [cm]	$y_m [cm]$	δ_m [°]	n
rot	$58,0 \pm 0,5$	$54,0 \pm 0,5$	47.0 ± 0.4	$1,608 \pm 0,004$
blau	57.5 ± 0.5	47.0 ± 0.5	50.7 ± 0.4	$1,646 \pm 0,004$

Tabelle 1 – Prisma...

3. Diskussion

A. Anhang

A.1. Fehlerrechnung

In diesem Versuch werden alle Messgrößen linear oder anti-proportional berechnet. Daher ist der Fehler aller vorkommenden Größen $y(x_1, \ldots, x_n)$ gegeben durch

$$\Delta y = \sqrt{\sum_{i=1}^{n} \left(y \frac{\Delta x_i}{x_i} \right)^2} = |y| \sqrt{\sum_{i=1}^{n} \left(\frac{\Delta x_i}{x_i} \right)^2}$$
 (A.1)

A.1.1. Ablenkungswinkel

 $\delta_m = \arctan \frac{x}{y}$

$$\Delta \delta_{m} = \sqrt{\left(\frac{\partial \delta_{m}}{\partial x} \Delta x\right)^{2} + \left(\frac{\partial \delta_{m}}{\partial y} \Delta y\right)^{2}}$$

$$= \sqrt{\left(\frac{\frac{1}{y}}{1 + \left(\frac{x}{y}\right)^{2}} \Delta x\right)^{2} + \left(\frac{\frac{x}{y^{2}}}{1 + \left(\frac{x}{y}\right)^{2}} \Delta y\right)^{2}}$$

$$= \sqrt{\left(\frac{y}{x^{2} + y^{2}} \Delta x\right)^{2} + \left(\frac{x}{x^{2} + y^{2}} \Delta y\right)^{2}}$$
(A.2)

A.1.2. Brechungsindex vom Prisma

$$\Delta n = \left| \frac{\partial n}{\partial \delta_m} \Delta \delta_m \right| = \left| \frac{\cos \frac{\delta_m + \alpha}{2}}{2 \sin \alpha} \Delta \delta_m \right| \tag{A.3}$$

Literatur

[1] Markus Donath und Anke Schmidt, Hrsg. Anleitung zu den Experimentellen Übungen zur Optik, Wärmelehre und Atomphysik. Auflage 2015. Stand 10. April 2015. Physikalisches Institut, 2015.