Theorem

Let the homogeneous linear equation with constant coefficients $a_0T(n) + a_1T(n-1) + \cdots + a_kT(n-k) = 0$ be given. If its characteristic equation $a_0r^k + a_1r^{k-1} + \cdots + a_kr^0 = 0$ has k distinct solutions r_1, r_2, \ldots, r_k , then the solution is given by $T(n) = c_1r_1^n + c_2r_2^n + \cdots + c_kr_k^n$ where c_i are constants.

Example1:

Solve
$$T(0) = 0$$
, $T(1) = 1$, $T(n) - 3T(n-1) - 4T(n-2) = 0$ if $n > 1$

Solution

Step1: Find the characteristic equation: $r^2 - 3r - 4 = 0$, (r - 4)(r + 1) = 0, implies r = 4 or r = -1

Step2: Apply the theorem: $T(n) = c_1 4^n + c_2 (-1)^n$

Step 3: Find c_1 and c_2

$$T(0) = c_1 4^0 + c_2 (-1)^0 = 0$$
 implies $c_1 + c_2 = 0 \dots (1)$

$$T(1) = c_1 4^1 + c_2 (-1)^1 = 1$$
 implies $4c_1 - c_2 = 1 \dots (2)$

Solve equations (1) & (2) to get $c_1 = \frac{1}{5}$, $c_2 = -\frac{1}{5}$. Hence, the solution is: $T(n) = \frac{1}{5}4^n - \frac{1}{5}(-1)^n$

Example2:

Solve
$$T(0) = 0$$
, $T(1) = 1$, $T(n) - T(n-1) - T(n-2) = 0$ if $n > 1$

Solution

Step1: Find the characteristic equation: $r^2 - r - 1 = 0, r = \frac{1 \pm \sqrt{5}}{2}$

Step2: Apply the theorem: $T(n) = c_1(\frac{1+\sqrt{5}}{2})^n + c_2(\frac{1-\sqrt{5}}{2})^n$

Step 3: Find c_1 and c_2

$$T(0) = c_1(\frac{1+\sqrt{5}}{2})^0 + c_2(\frac{1-\sqrt{5}}{2})^0 = 0 \text{ implies } c_1 + c_2 = 0 \dots (1)$$

$$T(1) = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^1 + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^1 = 1 \text{ implies } c_1 \left(\frac{1+\sqrt{5}}{2}\right) + c_2 \left(\frac{1-\sqrt{5}}{2}\right) = 1 \dots (2)$$

Solve equations (1) & (2) to get $c_1 = \frac{1}{\sqrt{5}}$, $c_2 = -\frac{1}{\sqrt{5}}$. Hence, the solution is: $T(n) = ((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n)/\sqrt{5}$

Theorem

Let r be a root of multiplicity m, then $T(n) = r^n$, $T(n) = nr^n$, $T(n) = n^2r^n$, ..., $T(n) = n^{m-1}r^n$ are all solutions.

Example:

Solve
$$T(0) = 0$$
, $T(1) = 1$, $T(2) = 2$, $T(n) - 7T(n-1) + 15T(n-2) - 9T(n-3) = 0$ if $n > 2$

Solution

Step1: Find the characteristic equation: $r^3 - 7r^2 + 15r - 9 = 0$ implies $(r-1)(r-3)^2 = 0$, implies r = 1 or r = 3 of multiplicity 2

Step2: Apply the theorem: $T(n) = c_1 1^n + c_2 3^n + c_3 n 3^n$

Step 3: Find c_1 , c_2 , and c_3

$$c_1 = -1, c_2 = 1, c_3 = -\frac{1}{3}$$

Hence the solution is: $T(n) = (-1)1^n + (1)3^n + \left(-\frac{1}{3}\right)n3^n = -1 + 3^n - n3^{n-1}$