Week 2 Variables

Michael W. Kearney, PhD

School of Journalism Informatics Institute University of Missouri

2018-01-23

Outline

Recap

Sampling

Variables

Example

Independent and dependent variables

Hypotheses/research questions

Research designs

Scientific method

- Try to be "objective"
- Theories should be falsifiable
- Research should be reproducible
- Knowledge is cumulative and provisional

Outline

Recap

Sampling

Variables

Example

Independent and dependent variables

Hypotheses/research questions

Research designs

Random sample

- Technically, it should be a "uniform" random sample
- Everyone in a sampling frame (all possible data points) has an equal probability of being selected
- Best method for making inferences but expensive and difficult to do

Quasi-random sample

- Samples that use mathematical rules but lack access to the full population
- One common technique is probability matching, which is when you match the demographics in a sample with the desired population

Snowball sample

- When you use one to recruit more into the sample
- Not very representative, but useful for getting access to niche or hard-to-reach groups

Convenience sample

 A sample that is not random but selected largely due to convenience (low cost, ease of access, etc.)

Why care about sampling?

- The sampling method and study design has a direct effect on one's ability to make inferences from data
- Inferences are conclusions drawn from a sample and applied to a population

Outline

Recap

Sampling

Variables

Example

Independent and dependent variables

Hypotheses/research questions

Research designs

Variable

- A constant is a fixed value that never changes.
 - e.g., pi, the number 1, etc.
- A variable is a value that differs across observations.
 - can often be thought of as features or characteristics

Variable values

- Values are measurements (observations) on a given variable
 - e.g., Tracy's height (variable) is 6 '6' ' (value)
 - e.g., Avery's final race position (variable) is 1 (value)
 - e.g., Cory's skill level in chess (variable) is master (value)
 - e.g., Rory's hometown (variable) is Kansas City (value)
- · Different levels of measurement enable different levels of analysis

Levels of measurement

- Nominal: values represent different categories [or named things]
- Ordinal: values represent meaningful sequence
- Interval: values represent meaningful sequence using equi-distant intervals
- Ratio: values represent real numbers

Nominal

Values represent different categories [or named things]

- · Can be used to operationalize anything
- This is often done using dummy codes

Ordinal

Values represent meaningful sequence

- The order people finish in a race
- The distance from 1st to 2nd can vary wildly with the distance from 2nd to 3rd

Interval

Values represent meaningful sequence using equi-distant intervals

- Likert-type items, e.g., I always make my bed in the morning: Strongly Agree...
 Strongly Disagree and other survey items that measure a range of feelings/attitudes using numbers
- This is why the visual representation of numbers on a survey is often important

Ratio

Values represent real numbers

- Numbers correspond to some non-arbitrary meaning.
- A true 0 (zero) exists

Temperature

Do the statements below add up?

- The temperature today is 30 degrees Fahrenheit
- The temperature yesterday is 60 degrees Fahrenheit
- Yesterday was twice as hot as tomorrow

Numeric

- In R, we will refer to **continuous** interval and ratio variables as numeric values.
- · Values are continuous if they don't only exist as discrete units

```
x <- c(1.25, 3.5, 4)
class(x)
## [1] "numeric"</pre>
```


Integer

• In R, we will refer to **discrete** numbers as integer values.

```
x <- c(1, 2, 3)
class(x)
## [1] "numeric"</pre>
```

Categorical/character

- I will tend to refer to nominal variables as categorical variables
- Categorical variables are represented in R as character and factor variables

```
x <- c('a', 'b', 'c')
class(x)
## [1] "character"

x <- as.factor(x)
class(x)
## [1] "factor"</pre>
```


Defining variables

Conceptual definition

A description of a variable's theoretical meaning.

Operational definition

A description of a variable's observable meaning.

Outline

Recap

Sampling

Variables

Example

Independent and dependent variables

Hypotheses/research questions

Research designs

Size

Define the word size

• Size refers to the dimensions of an object

Two classes

Let's say we want to find the size of two classes

- CLASS 1: 20x20 room with 5 students
- CLASS 2: 10x10 room with 10 students

Defining "class size"

- CLASS 1: 20x20 room with 5 students
- CLASS 2: 10x10 room with 10 students
- If we define the size of a class in terms of physical space, class 1 is bigger
- If we define the size of a class in terms of number of students, class 2 is bigger
- It's even possible to define class in terms of mass of students

Is any definition right or wrong?

Practice

Let's practice conceptually and operationally defining variables

Media exposure

- · Conceptual definition:
- Operational definition:

Views on climate change

- Conceptual definition:
- Operational definition:

Coverage of environmental issues

- Conceptual definition:
- · Operational definition:

Accuracy in reporting

- · Conceptual definition:
- Operational definition:

Fake news

- Conceptual definition:
- Operational definition:

Social media use

- Conceptual definition:
- Operational definition:

Political ideology

- Conceptual definition:
- Operational definition:

Perceived role of journalists

- Conceptual definition:
- · Operational definition:

Outline

Recap

Sampling

Variables

Example

Independent and dependent variables

Hypotheses/research questions

Research designs

Classifying variables

- Variables can be classified according to their status in a theoretical and/or statistical model
- There are several different labels applied toward this end, but for the most part they all do the same thing
- Variables that represent the cause
- Variables that represent the effect

Terminology

- The cause is the independent variable
- The effect is the dependent variable
- There's also exogeneous and endogenous, predictors and outcomes, and probably some other synonyms

Cause isn't always cause

- Although we use the cause/effect heuristic when modeling the relationship between two variables, we usually acknowledge multiple and/or reinforcing causes or some underlying "root cause"
- As long as we all know that, the cause/effect heuristic is still helpful for organizing our theoretical and statistical models

Practice

Let's practice identifying independent and dependent variables

- Sun
- Surface temperature

- · Public perceptions of an event
- · Reporting information about an event

- Social media
- · Face-to-face interaction

Outline

Recap

Sampling

Variables

Example

Independent and dependent variables

Hypotheses/research questions

Research designs

Relationships between variables

- Research questions ask about the relationship between two or more variables
 - These questions can guess direction (e.g., positive vs negative) but that kind of defeats the purpose
- Hypotheses predict the relationship between two or more variables
 - Hypotheses can either predict whether there is a relationship or what direction the relationship is in

RQ/H

- Use research questions when there isn't a lot of research in an area and the theory isn't clear about what to expect
- Otherwise, use hypotheses

Outline

Recap

Sampling

Variables

Example

Independent and dependent variables

Hypotheses/research questions

Research designs

Overview of study designs

- Surveys
- Experiments
- · Content/text analysis

Next week

- Survey research with Dr. Ben Warner from Communication Department
- · Make sure you've completed your IRB training

Table of Contents

Recap

Sampling

Variables

Example

Independent and dependent variables

Hypotheses/research questions

Research designs

