

Algorithmen und Datenstrukturen

Wintersemester 2018/19 21. Vorlesung

Minimale Spannbäume

Motivation

*) Kantengewichte $w: E \to \mathbb{R}_{>0}$ **) $w(E') := \sum_{e \in F'} w(e)$

Gegeben:

zusammenhängendes Straßennetz $G = (V, E; w^*)$, das eine Menge V von n Städten verbindet.

Gesucht:

Teilnetz G' = (V, E') mit $E' \subseteq E$, so dass

- (1) man von jeder Stadt in G' zu jeder anderen kommen kann (,,G') spannt G auf und
- (2) die "Schneeräumkosten" $w(E')^{**}$ minimal sind unter allen Teilnetzen, die (1) erfüllen.

Beobachtung

Wegen der Minimalität von w(E') gilt:

G' hat keine Kreise \Rightarrow G' ist ein Wald.

G' "erbt" Zusammenhang von $G \Rightarrow G'$ Baum.

G' spannt G auf \Rightarrow G' ist Spannbaum von G.

G' hat minimales Gewicht unter allen Spannbäumen von G.

Wir nennen G' kurz minimalen Spannbaum von G.

Generischer Min.-Spannbaum-Algorithmus

```
GenericMST(UndirectedConnectedGraph G, EdgeWeights w)
A = \emptyset
while |A| < |V| - 1 do
| // Invariante: A \text{ ist Teilmenge eines min. Spannbaums von } G
finde Kante uv, die sicher für A ist
|A = A \cup \{uv\}
return A
Wir sagen uv ist sicher für A,
falls Invariante für A \cup \{uv\} gilt.
```

Beob. Dies ist ein sogenannter *Greedy-Algorithmus*!

Frage: Gibt's überhaupt immer eine sichere Kante?

Antwort: Ja! – Per Induktion!

Frage: Aber wie findet man eine -

ohne schon einen minimalen Spannbaum zu kennen?

Def. Ein Schnitt $(S, V \setminus S)$ eines ungerichteten Graphen G = (V, E) ist eine Zerlegung (od. Zweifärbung*) von V.

*) benachbarte Knaten dürfen hier die gleiche Farbe haben.

Def. Ein Schnitt $(S, V \setminus S)$ eines ungerichteten Graphen G = (V, E) ist eine Zerlegung (od. Zweifärbung*) von V. Eine Kante e kreuzt $(S, V \setminus S)$, wenn ein Endpunkt von e in S und der andere in $V \setminus S$ liegt.

Def. Ein Schnitt $(S, V \setminus S)$ eines ungerichteten Graphen G = (V, E) ist eine Zerlegung (od. Zweifärbung*) von V.

Eine Kante e kreuzt $(S, V \setminus S)$, wenn ein Endpunkt von e in S und der andere in $V \setminus S$ liegt.

Ein Schnitt *respektiert* eine Kantenmenge *A*, wenn keine Kante in *A* den Schnitt kreuzt.

Def. Ein Schnitt $(S, V \setminus S)$ eines ungerichteten Graphen G = (V, E) ist eine Zerlegung (od. Zweifärbung*) von V.

Eine Kante e kreuzt $(S, V \setminus S)$, wenn ein Endpunkt von e in S und der andere in $V \setminus S$ liegt.

Ein Schnitt *respektiert* eine Kantenmenge *A*, wenn keine Kante in *A* den Schnitt kreuzt.

Eine Kante e, die einen Schnitt kreuzt, ist <u>leicht</u>, wenn alle Kanten, die den Schnitt kreuzen, mindestens w(e) wiegen.

Erweiterungssatz

Satz. Sei G = (V, E; w) ein zshg., gewichteter, unger. Graph.

Sei T Kantenmenge eines min. Spannbaums von G.

Sei A Teilmenge von T.

Sei $(S, V \setminus S)$ ein Schnitt, der **A** respektiert.

Sei $uv \in E$ leicht bzgl. $(S, V \setminus S)$.

Dann ist uv sicher für A,

d.h. G hat einen min. Spannbaum, der $A \cup \{uv\}$ enthält.

Beweis

Satz. ... Dann ist *uv* sicher für *A*.

Beweis. Zeige: G hat min. Spannbaum, $\operatorname{der} A \cup \{uv\}$ enthält. Falls $uv \in T$, fertig. Also $uv \notin T$. Sei π u-v-Pfad in T. $\Rightarrow \pi + uv$ ist Kreis (wobei uv $(S, V \setminus S)$ kreuzt) \Rightarrow Kreis enthält zweite Kante xy, $\operatorname{die}(S, V \setminus S)$ kreuzt. $\Rightarrow T' = (T \cup \{uv\}) \setminus \{xy\}$ ist auch Spannbaum von G. $w(T') = w(T) + w(uv) - w(xy) \leq w(T)$

 \leq 0, da uv leicht bzgl. $(S, V \setminus S)$

 $\Rightarrow T'$ ist minimaler Spannbaum von G.

Und: $A \cup \{uv\} \subseteq T'$.

 $\Rightarrow uv$ ist sicher für A.

Zurück zum Algorithmus

```
Satz. Sei G = (V, E; w) ein zshg., gewichteter, unger. Graph. Sei T Kantenmenge eines min. Spannbaums von G. Sei A Teilmenge von T. Sei (S, V \setminus S) ein Schnitt, der A respektiert. Sei uv \in E leicht bzgl. (S, V \setminus S). Dann ist uv sicher für A.
```

GenericMST(UndirectedConnectedGraph G, EdgeWeights w)

Zusammenhangskomponenten

Def.

Eine Zusammenhangskomponente eines Graphen ist ein Teilgraph, der von einer nicht vergrößerbaren ("inklusionsmaximalen") zusammenhängenden Menge von Knoten induziert wird.

Korollar.

G = (V, E) wie gehabt.

 $A \subseteq E$ in einem min. Spannbaum von G enthalten.

 $C = (V_C, E_C)$ Zshgskomp. des Waldes $G_A = (V, A)$.

uv leicht bzgl. $(V_C, V \setminus V_C)$

Dann gilt: uv ist sicher für A.

Der Algorithmus von Jarník-Prim (1930/1957)

JarníkPrimMST — Undirected

Dijkstra (Weighted Graph G = (V, E; w), Vertex s)

Initialize (G, s)

Q =**new** PriorityQueue(V, d)

while not Q.Empty() do

$$u = Q.ExtractMin()$$

foreach $v \in Adj[u]$ do

Relax'(u, v; w)

Relax'(u, v; w)

if v.d > u.d + w(u, v) then

$$v.d = u.d + w(u, v)$$

$$v.\pi = u$$

Q. Decrease Key(v, v.d)

Korrektheit?

// Gewichtung

Folgt aus Korollar: $A = \{\{u, u.\pi\} : u \not\in Q\},$ Kante $\{u, u.\pi\}$ immer sicher bzgl. $(Q^*, V \setminus Q^*),$ wobei $Q^* = Q \cup \{u\}.$

Laufzeit?

 $O(|E|\cdot \text{DecreaseKey} + |V|\cdot \text{ExtractMin})$

$$\Rightarrow O((E + V) \log V)$$
 [Heap/RS-Baum]

 $\Rightarrow O(E + V \log V)$ [Fibonacci-Heap]

Einschub: halbdynamische Mengen (wachsen nur, schrumpfen nicht)

Die halbdyn. Mengen zerlegen immer eine Grundmenge X.

Drei Operationen:

liefert (Zeiger auf) die Menge zurück, die momentan x enthält.

vereinigt die Mengen, die momentan x und y enthalten.

Eine Folge von *m* MakeSet-, Union- und FindSet-Oper., von denen n MakeSet-Oper. sind, benötigt $O(m \cdot \alpha(n))$ Zeit, wobei $\alpha(n) \leq 4$ für alle $n \leq 10^{80}$. Insbesondere $\alpha(n) \ll \log_{10} n$ für n > 1.

Der Algorithmus von Kruskal

```
KruskalMST(WeightedUndirectedGraph G = (V, E; w))
  A = \emptyset
  foreach v \in V do
   MakeSet(v)
  Sortiere E nicht-absteigend nach Gewicht w
  foreach uv \in E do
     if FindSet(u) \neq FindSet(v) then
         A = A \cup \{uv\}
         Union(u, v)
```

Laufzeit?

```
|V|·MakeSet + (|V| - 1)·Union
 + 2|E|·FindSet + Sort(E)
 \in O(E \log V + E \log E)
 = O(E \log V)! Warum??
```


Ubersicht: Algo. für min. Spannbäume

Greedy!

Jarník-Prim

- geht (wie Dijkstra / BFS) wellenförmig von einem Startknoten aus
- aktuelle Kantenmenge zusammenhängend
- Laufzeit $O(E + V \log V)$

Kruskal

- bearbeitet Kanten nach aufsteigendem (genauer: nicht-absteig.) Gewicht
- nach Einfügen der i. Kante gibt es n i Zshgskomp.
- Laufzeit $O(E \log V)$

