

Elementos básicos

- Fusibles: presentan una impedancia ideal de 0 Ω entre sus terminales, valor que pasa a ∞ Ω luego de la programación.
- Antifusibles: dispositivos normalmente abiertos que una vez programados pasan a ser un cortocircuito, en un proceso irreversible.
- Switches EPROM/EEPROM: dispositivos de paso reprogramables, cuyo estado no se altera al cortarse la alimentación de energía.
- Llaves SRAM: basados en llaves de paso MOS controladas desde un flipflop estático, cuyo contenido se borra al cortarse la energía.

3

Fusibles

- Normalmente $Z = 0 \Omega$.
- Luego de programación Z = $\infty \Omega$.
- · Empleo PAL.
- Irreversibilidad.
- Se agregan resistencias y capacidades parásitas en serie.
- Imposibilidad de tests exhaustivos en fábrica.
- Baja confiabilidad.

Ref: [VIR]

Antifusibles

- Puntos de paso normalmente abiertos que pasan a conducción irreversible mediante la programación
- Ventajas:
 - altísima densidad de integración
 - aptos para operar en ambientes con radiación (RadHard)
- · Desventajas:
 - imposibilidad de test exhaustivo en fábrica.
 - requieren circuitos especiales de programación con circulación de corrientes relativamente importantes, asi como procesos especiales de fabricación.
 - irreversibilidad, y por ello imposibilidad de test exhaustivo en fábrica
 - degeneración de la señal por agregado de resistencias y capacidades parásitas.
 - El antifusible es resistivo y además agrega una capacidad parásita de 1 a 2 fF (Cap. entrada inversor CMOS en 1µm 35 fF).
 - Se le debe agregar la capacidad de los terminales, $\approx 10~\text{fF}.$
 - Para disminuir el retardo de interconexión se debe minimizar el número de antifusibles conectados en serie.
 - Las propiedades de los antifusibles cambian con el tiempo.
 - · Se ha hecho un gran esfuerzo para hacerlos confiables a largo plazo.
 - · Todos los fabricantes entregan información sobre la confiabilidad a largo plazo.
- Tipos:
 - Por contacto entre capas de Silicio por fusión de un separador dieléctrico (Actel PLICE, Programmable low-impedance circuit element)
 - Por contacto metálico entre líneas metálicas por fusión de Si amorfo (Quick Logic Via Link).

5

Antifusible polisilicio/difusión 1/3

- Sistema empleado por Actel.
- Corriente de programación: 5 mA.
- Area conductora luego de la programación: 20 nm de diámetro.
- La programación lleva dopantes del poli y la difusión al enlace.
- Dieléctrico de separación ONO (Oxido-Nitruro-Oxido: SiO2, Si3N4).

Antifusible polisilicio/difusión 2/3

- La corriente de programación y el proceso determinan la resistencia promedio.
 - Con 5 mA R = 500 □
 - Con 15 mA R = 100 □
- · Tensión de programación 18V.

Porcentaje 100 0 052 Resistencia del antifusible

Ref: [SMI]

Antifusible polisilicio/difusión 3/3

- · Típicamente sólo se progama el 2% de los antifusibles.
- · Tiempos de programación:
 - ACT 1, ACT 2 y ACT 3: 5 a 10m por dispositivo.

Dispositivo	Antifusibles
A1010	112.000
A1020	186.000
A1225	250.000
A1240	400.000
A1280	750.000

Ref: [SMI]

Antifusible metal/metal 1/2

- · Sistema empleado por QuicLogic (ViaLink).
- · Metal/metal con dieléctrico (aleación de tungsteno, titanio y silicio).
- Corriente de programación 15 mA.
- Resistencia promedio = 80 □ (R = 0,8 / I, I en mA y R en □.)
- · Tiene dos ventajas con respecto al poli/difusión:
 - Se tiene conexión directa a las líneas de interconexión.(Menos espacio y menor capacidad parásita).
 - Se pueden usar mayores corrientes de programación para reducir R.

Resistencia del antifusible

Porcentaje

100

Resistencia del antifusibe

Ref: [SMI]

Interconexiones EPROM y EEPROM 1/3

Ventajas:

- Muy alta densidad de integración, ocupan un poco más de área que un antifusible.
- Al ser reprogramables, dan la posibilidad de realizar un test exhaustivo del dispositivo.
- En ciertos casos, ofrecen programación en el circuito.

Desventajas:

- Requieren dedicar área de silicio y de metalización para circuitos especiales de programación con la aplicación de voltajes relativamente elevados.
- El uso de tecnologías EPROM/EEPROM requiere de procesos especiales.

11

Interconexiones EPROM y EEPROM 2/3

- Transistores NMOS la tensión umbral pasa de ≈1V a una mayor que Vcc.
- Tiene un segundo gate sin conexión al resto del circuito (flotante), separado por una muy delgada capa de óxido del sustrato.
- Programación y borrado:
 - a) Programación: Vpp a gate2 y Vds (ligeramente menor a Vpp) al drain.
 - b) Electrones quedan atrapados en el gate1, e incrementan la tensión umbral.
 - c) Luz UV, electrones ganan la energía suficiente para vencer la barrera de potencial.

Interconexiones EPROM y EEPROM 3/3

- Para celdas EPROM y EEPROM:
 - Celda programada: transistor permanentemente cortado sin importar Vgs.
 - Celda no programada: transistor con baja tensión umbral.

13

Interconexiones SRAM 1/2

- · Retienen la información mediante flipflops cuya salida controla:
 - Transistores CMOS que operan como interruptores.
 - Transistores CMOS para sintetizar lógica mediante tablas de búsqueda (LUTs o LookUp Tables).
 - Se requiere trabajar con la norma JTAG para la configuración.
- Ventajas:
 - Es un proceso CMOS estandar.
 - Se pueden testear exhaustivamente.
 - Se pueden programar en el circuito.
- Desventajas:
 - Cada llave SRAM implica el uso de seis o más transistores.
 - La configuración es volátil.

Interconexiones SRAM 2/2

- Dos inversores realimentados para mantener la información (FF latch)
- Una línea de escritura/lectura.
- · Una línea de datos.
- · Salidas Q y Q' al gate del transistor de configuración.

Interconexiones

- Fuertemente relacionadas con la granularidad
 - Cuanto menor es la granularidad (menores las celdas) más recursos de cableado se requieren para resolver la misma función
- Interconexionamiento segmentado.
 - Líneas de metal distribuidas en el CI.
- Interconexionamiento jerárquico, según el alcance
 - Local: conecta cada celda a los vecinos inmediatos
 - Vecinal: permite conectar grupos de celdas
 - Global: permite conectar cualquier celda con cualquier otra dentro del dispositivo

Interconexionado segmentado, arquitectura

- · Los retardos de interconexión dependen de:
 - Longitud de las pistas (R y C).
 - Número de interruptores que cuelgan de las pistas (C).
 - Número de interruptores atravesados por la señal (R).
- · Pregunta clave: ¿cuál debe ser la longitud de las pistas?

Dr. Carlos Arturo Gayoso

17

Interconexionado segmentado

- Supone que todas las pistas son idénticas.
- Se miden los efectos de la longitud de segmentación en el área y la velocidad.

Idea mejor: combinar segmentos de distinta longitud (generalmente de 2, 3 o 4)

Interconexionado segmentado, ejemplo

 Ejemplo comercial de interconexionado segmentado: serie XC3000, conexiones programables, fijas y magic boxs.

22

Fig: [XIL]

Interconexionado jerárquico

- Se trabaja con segmentos de distinta longitud.
- Existe un nivel de jerarquía entre las pistas.
- Hay mejoras en velocidad y área con respecto a las FPGAs segmentadas.
- Los algoritmos de ruteo son más sencillos.

Fig: [ROS]

Interconexiones locales

- Las cadenas de CARRY y CASCADA (ALTERA).
 - Vías rápidas de conexiones de cada celda lógica con las inmediatas superior e inferior, orientados especialmente para acelerar la realización de operaciones aritméticas.
- Interconexión rápida directa (XILINX).
 - Son caminos potenciales entre cada celda y las 4 que la rodean, de propósitos generales y bajo tiempo de propagación.

Conexiones directas Provee un camino directo de cada CLB con los CLB o IOB adyacentes. Es un vínculo de bajo retardo. – Menos de 1 ns. Ejemplos: XC3000 y XC4000.

Interconexiones globales, líneas dedicadas

- Son líneas en todo el integrado que van hasta cada flip flop.
 - Ejemplo FLEX10K:
 - · Hasta 8 señales de output enable.
 - · Hasta 6 señales de clock enable.
 - · Hasta 2 señales de reloj.
 - · Hasta 2 señales de clear.

