Mathématiques Préparatoires II

Ce document est une synthèse du cours de mathématiques dispensé par M. Jean-François Mallordy en classe préparatoire au lycée Blaise Pascal, Clermont-Ferrand en 2022-2023. Il s'agit d'un complément au cours de Maths Spé et ne saurait en aucun cas y être un quelconque remplacement!

Paris, 2024

Mis en forme par Émile Sauvat emile.sauvat@ens.psl.eu

Chapitres

1	Suites et séries	3
2	Limites et continuité	13
3	Dérivation et intégration	28

Chapitre 1

Suites et séries

On considèrera comme acquis en sup les cas réel et complexe : Notament :
-> Théorème des gendarmes -> Théorème de la limite monotone

Contenu

1.1	Norme	+
	1.1.1 Généralités	٠
	Norme	F
	Distance	г
	Boule ouverte et fermée 4	г
	Segment et ensemble convexe 4	F
	1.1.2 Normes euclidiennes	;
	1.1.3 Exemple de normes	;
	Norme N_{∞} :	;
	Norme N_1 :	;
	Norme N_2 :	;
2	Suites	į
	Suite convergente	;
	Suite bornée	;
	Suite extraite	;
	Valeur d'adhérence	;
3	Normes équivalentes	
	1.3.1 Définition	•
	1.3.2 Cas de espaces de dimension fini	•
ļ	Comparaisons asymptotiques	;
	Négligeabilité	;
	Domination	;
	Équivalence	}
5	Séries dans un K espace vectoriel de dimension finie 8	;
	Sommes partielles	;
	Série convergente)
	Divergence grossière)
	Convergence absolue)
6	Complément sur les séries numériques)
	1.6.1 Règle de <u>Dalembert</u>)
	1.6.2 Séries alternées)
	Défnition)
	1.6.3 Sommation des relations de comparaisons	
7	Produit de deux séries absolument convergentes 11	
	Produit de <u>Cauchy</u>	
.8	Dualité série-suite	<u>, </u>

1.1 Norme

1.1.1 Généralités

Norme Une norme sur E est une application $N: E \rightarrow R$ vérifiant :

- $\forall x \in E, \ N(x) = o_R \Leftrightarrow x = o_E$
- $-- \forall x \in E, \ \forall \lambda \in K, \ N(\lambda.x) = |\lambda| N(x)$
- $\forall x, y \in E, \ N(x+y) \leq N(x) + N(y)$

Lemme 1.1.1.

Soit (E, N) un espace vectoriel normé, On a $N \ge 0$ (i.e. $\forall x \in E, N(x-y) \ge 0$)

Distance Une distance sur X est une application $d: X^2 \to \mathbb{R}$ vérifiant :

- $-- \forall x, y \in E, \ d(x, y) = 0 \Leftrightarrow x = y$
- $\forall x, y \in E, d(x, y) = d(y, x)$
- $\forall x, y, z \in E, d(x, z) \leq d(x, y) + d(y, z)$

Lemme 1.1.2.

Soit (E, N) un espace vectoriel normé. Si $\forall (x, y) \in E^2$, d(x, y) = N(x - y) alors d est une distance sur E.

Boule ouverte et fermée Soient $a \in E$, $r \in R$ On pose

$$B(a, r) = \{x \in E \mid d(x, a) < r\}$$
 $B_f(a, r) = \{x \in E \mid d(x, a) \le r\}$

Les boules ouverte et fermée de centre a et de rayon r.

Segment et ensemble convexe Soit E un K espace vectoriel quelconque

- -> Pour $(a, b) \in E^2$ on défini le <u>segment</u> : $[a, b] = \{(1 t)a + tb \mid t \in [0, 1]\}$ -> $C \subset E$ est dit convexe si $\forall (a, b) \in C^2$, $[a, b] \subset C$
 - Lemme 1.1.3.

Dans E un EVN quelconque les boules sont convexes

1.2. SUITES 5

1.1.2 Normes euclidiennes

Ici E est un R espace vectoriel muni d'un produit scalaire*

$$oldsymbol{\phi}: \left(egin{array}{ccc} \mathcal{E}^2 & \longrightarrow & \mathsf{R} \ (x,y) & \longmapsto & \langle x
angle \, y \end{array}
ight)$$

On a alors par théorème † , $x\mapsto \sqrt{\langle x\rangle\,x}$ est une norme sur E . On notera

$$\|x\|_2 = N_2(x) = \sqrt{\langle x \rangle x}$$

Note. L'inégalité triangulaire pour $\|.\|_2$ est dite inégalité de Minkovsky

Si
$$E=\mathbf{C}^n$$
, $z=(z_1,\ldots,z_n)$, $N(z)=\sqrt{\sum\limits_{k=1}^n|z_k|^2}$ est une norme

Lemme 1.1.5.
$$E = C^{\circ}([a,b],C) \; Soit \; f \in E \; on \; pose$$

$$N(f) = \sqrt{\int_a^b |f(x)|^2 \, dx} \qquad alors \; N \; est \; une \; norme \; sur \; E$$

1.1.3 Exemple de normes

Norme N_{∞} :

Dans
$$E=\mathcal{K}^n$$
 soit $x=(x_1,\ldots,x_n),\;\; \mathcal{N}_\infty(x)=\max_{i\in \llbracket 1,n\rrbracket}|x_i|$
Dans $E=\mathcal{C}^0([a,b],\mathcal{K})$ soit $f\in E,\;\; \mathcal{N}_\infty(f)=\sup_{x\in [a,b]}|f(x)|$

Norme N_1 :

Dans
$$E=K^n$$
 soit $x=(x_1,\ldots,x_n)$, $N_1(x)=\sum_{i=1}^n|x_i|$
Dans $E=\mathcal{C}^{0}([a,b],K)$ soit $f\in E$, $N_1(f)=\int_a^b|f(x)|\,\mathrm{d}x$

Norme N_2 :

Dans
$$E=K^n$$
 soit $x=(x_1,\ldots,x_n),\; N_2(x)=\sqrt{\sum_{i=1}^n {x_i}^2}$
Dans $E=\mathcal{C}^\circ([a,b],K)$ soit $f\in E,\; N_2(f)=\sqrt{\int_a^b (f(x))^2\,\mathrm{d}x}$

1.2 Suites

Suite convergente Soit $u=(u_n)_{n\in\mathbb{N}}\in E^\mathbb{N}$ et $\ell\in E$. On dit que u converge vers ℓ et on note

$$u_n \mathop{\longrightarrow}\limits_{n o +\infty} \ell$$
 ssi $orall arepsilon >$ 0, $\exists n_{ exttt{o}} \in \mathbf{N}$: $orall n \geq n_{ exttt{o}}$, $d(u_n,\ell) < arepsilon$

Si
$$egin{array}{ccc} u_n & rac{\rightarrow}{n} \, \ell_1 & \in E \ u_n & rac{\rightarrow}{n} \, \ell_2 & \in E \end{array}$$
 Alors $oldsymbol{\ell}_1 = oldsymbol{\ell}_2$

^{*.} Un produit scalaire est une forme bilinéaire symétrique définie positive

^{†.} Voir cours de sup

Démonstration. Par l'absurde, on suppose
$$\ell_1 \neq \ell_2$$
. Soit $\varepsilon = \frac{1}{2}d(\ell_1,\ell_2) > 0$ On a alors $\begin{array}{c} n_1 \in \mathbb{N} : \forall n \geq n_1, \ d(u_n,\ell_1) < \varepsilon \\ n_2 \in \mathbb{N} : \forall n \geq n_2, \ d(u_n,\ell_2) < \varepsilon \end{array}$ et soit $p = \max(n_1,n_2)$

$$d(\ell_1,\ell_2) \leq d(\ell_1,u_p) + d(\ell_2,u_p) < 2\varepsilon = d(\ell_1,\ell_2)$$
 impossible

Lemme 1.2.1.
$$\text{Soit } (u_n)_{_{n\in \mathbf{N}}} \in E^{\mathbf{N}}, \ \ell \in E \quad \text{Alors } u_n \underset{n}{\rightarrow} \ell \ \Leftrightarrow \ \|u_n - \ell\| \underset{n}{\rightarrow} \mathsf{o}$$

Démonstration. Notons
$$v_n=\|u_n-\ell\|$$
 et $\lambda=0$ Alors $d(u_n,\ell)=\|u_n-\ell\|=v_n=\|v_n-\lambda\|=d(v_n,\lambda)$

$$\begin{array}{c} \| o_n - \lambda \| = a(o_n, \lambda) \\ \text{or } u_n \underset{n}{\to} \ell \text{ } \underline{\mathsf{ssi}} : \forall \varepsilon > \mathsf{o}, \ \exists n_{\mathsf{o}} \in \mathsf{N} : \ \forall n \geq n_{\mathsf{o}}, \ d(u_n, \ell) < \varepsilon \ \Rightarrow \ d(v_n, \lambda) < \varepsilon \ \Rightarrow \ v_n \underset{n}{\to} \\ 0 \end{array}$$

Soient
$$u_n$$
, $v_n \in E^{\mathbf{N}}$ et $\lambda \in K$ si on a $u_n \xrightarrow{n} \alpha$ et $v_n \xrightarrow{n} \beta$
Alors $\lambda u_n + v_n \xrightarrow{n} \lambda \alpha + \beta$

Lemme: Inégalité triangulaire renversée.

Soit
$$x, y \in E$$
 alors $|N(x) - N(y)| \le N(x - y)$

$$\textit{D\'{e}monstration. } \textit{N}(x) \leq \textit{N}(x-y) + \textit{N}(y) \Rightarrow \underbrace{\textit{N}(x) - \textit{N}(y)}_{t \in \textbf{R}} \leq \textit{N}(x-y)$$

On conclut alors par agument de symétrie.

Lemme 1.2.3. Soit
$$u_n \in E^N$$
, $\alpha \in K$ on a $u_n \underset{n}{\rightarrow} \alpha \Rightarrow \|u_n\| \underset{n}{\rightarrow} \|\alpha\|$

Attention ! La réciproque est fausse!

Suite bornée Soit $(u_n)_{n\in \mathbb{N}}\in E^{\mathbb{N}}$ on dit que (u_n) est bornée si $\exists M\in \mathbb{R}$: $\forall n\in \mathbb{N}$ $N, ||u_n|| \leq M.$

Lemme 1.2.4. Toute suite $(u_n)_{n\geq 0}\in E^{\mathbf{N}}$ convergente est bornée

Lemme 1.2.5.

On suppose
$$\begin{cases} \lambda_n \xrightarrow{n} \mu \in K \\ u_n \xrightarrow{n} v \in E \end{cases}$$
 Alors $\lambda_n u_n \xrightarrow{n} \mu v$

Suite extraite Soit $u \in E^{\mathbb{N}}$ on appelle <u>suite extraite</u> (ou sous-suite) de u toute suite $ig(u_{arphi(n)}ig)_{n\in \mathbf{N}}$ où $arphi: \mathbf{N} o \mathbf{N}$ est une extractrice (injection croissante) NB : en fait $(v_n)_{n\geq 0}=ig(u_{arphi(n)}ig)_{n\geq 0} \Leftrightarrow v=u\circ arphi$

Valeur d'adhérence $\ell \in E$ est une valeur d'adhérence de u s'il existe une suite extraite de u qui converge vers ℓ . On notera \mathcal{V}_u l'ensemble des valeurs d'adhérence de u.

Théorème 1.2.6.

Soit $u \in E^{\mathbf{N}}$ si u converge vers $\ell \in K$ alors toute suite extraite de u converge vers ℓ

Démonstration. Soit $arphi: \mathbf{N} o \mathbf{N}$ une extractrice et $(v_n)_{n \geq 0} = ig(u_{arphi(n)}ig)_{n \geq 0}$ Soit $\varepsilon >$ o et $n_{\text{o}} \in \mathbf{N}$: $\forall n \geq n_{\text{o}}, \ d(u_{n}, \ell) < \varepsilon$ donc $\varphi(n) \geq n_{\text{o}}$ et ainsi $d\left(u_{\varphi(n)}, \ell\right) < \varepsilon$ et $v_n \to \ell$

Corollaire.

Toute suite admettant au moins 2 valeurs d'adhérence est

1.3 Normes équivalentes

1.3.1 Définition

Soit E un K espace vectoriel, N et N' deux normes sur E. N et N' sont dites équivalentes $(N \sim N')$ si $\exists \alpha, \beta \in \mathbb{R} : \alpha N \leq N' \leq \beta N$

Note. On peut aussi l'écrire $N' \leq \beta N$ et $N \leq \frac{1}{\alpha} N'$

Lemme 1.3.1.

Soit N, N' des normes équivalentes sur E, $u \in E^N$, $\ell \in E$ alors

- 1) $u_n \underset{n}{\rightarrow} \ell$ dans $(E, N) \Leftrightarrow u_n \underset{n}{\rightarrow} \ell$ dans (E, N')
- 2) u est bornée dans $(E, N) \Leftrightarrow u$ est bornée dans (E, N')

Lemme 1.3.2.

Sur K^n , N_1 , N_2 et N_∞ sont équivalentes et plus précisément $N_\infty \le N_1 \le \sqrt{n}\,N_2 \le n\,N_\infty$

Cas de espaces de dimension fini

Rappel. Un espace vectoriel E est de dimension finie s'il existe une famille d'éléments de E libre et génératrice, c'est alors une base de E.

Théorème 1.3.3.

Sur un K-ev de dimension finie, toutes les normes sont équivalentes. Sera démontré ultérieurement.

Corollaire.

Dans un K espace vectoriel de dimension finie, la notion de convergence ne dépend pas de la norme.

Attention! C'est faux en dimension quelconque!

Soit E de dimension finie et $e=(e_1,\ldots,e_p)$ une base de E. Soit $(x_n)_{n\geq 0}\in E^{\mathbb{N}}$ et $\alpha\in E$. On écrit $\left\{ \begin{array}{l} x_n=x_{1,n}e_1+\cdots+x_{p,n}e_p\\ \alpha=\alpha_1e_1+\cdots+\alpha_pe_p \end{array} \right.$ On a alors $x_n\underset{n}{\to}\alpha\ \Leftrightarrow\ \forall k\in \llbracket 1,p\rrbracket,\ x_{k,n}\underset{n}{\to}\alpha_k \right.$

Théorème 1.3.5.

Soient
$$p, q, r \in \mathbb{N}^*$$
 $\begin{cases} A_n \xrightarrow{n} A & dans \ \mathcal{M}_{p,q}(\mathbb{R}) \\ B_n \xrightarrow{n} B & dans \ \mathcal{M}_{q,r}(\mathbb{R}) \end{cases}$ Alors $A_n B_n \xrightarrow{n} AB$

$$\begin{array}{l} \textit{D\'{e}monstration.} \; \text{Soit} \; (i,j) \in \llbracket 1,p \rrbracket \times \llbracket 1,r \rrbracket \\ (A_nB_n)_{i,j} = \sum_{k=1}^q \underbrace{(A_n)_{i,k}}_{\rightarrow a_{i,k}} \underbrace{(B_n)_{k,j}}_{\rightarrow b_{k,j}} \xrightarrow{n} \sum_{k=1}^q a_{i,k} b_{k,j} = (AB)_{i,j} \; \text{donc} \; A_nB_n \xrightarrow{n} AB \end{array} \qquad \Box$$

1.4 Comparaisons asymptotiques

Soient
$$(u_n)_{n\geq n_0}$$
 , $(v_n)_{n\geq n_0}\in \mathbb{C}^{\mathbf{N}}$

Négligeabilité On dit que u_n est négligeable devant v_n quand $n \to +\infty$ noté $u_n = 0$ o (v_n) s'il existe $n_0 \in \mathbf{N}$ et $(\delta_n)_{n \geq n_0}$ tel que

- $orall n \geq n_{ extsf{o}}$, $u_n = \delta_n v_n$
- $--\delta_n \xrightarrow[n \to +\infty]{} 0$

Domination On dit que u_n est dominée par v_n quand $n \to +\infty$ noté $u_n = \bigcap_{n \to +\infty} O(v_n)$ s'il existe $n_0 \in \mathbf{N}$ et $(B_n)_{n \geq n_0}$ tel que

- $\forall n \geq n_0, \ u_n = B_n v_n$
- $--(B_n)_{n\geq n_0}$ est bornée

Équivalence On dit que u_n est équivalent à v_n , noté $u_n \sim v_n$ si :

$$u_n-v_n \mathop{=}\limits_{n o +\infty} \circ (v_n)$$

Note. $u_n \sim v_n \Leftrightarrow u_n = v_n + \circ (v_n)$

1.5 Séries dans un K espace vectoriel de dimension finie

Note. On note par abus " $dimE<\infty$ "

Le cas scalaire est abordé en MPSI.

Soit $u=(u_n)\in E^{\mathbf{N}}$; pour $n\in \mathbf{N}$ on pose $U_n=\sum_{k=1}^n u_k$.

Sommes partielles La suite (U_n) est dite suite des sommes partielles associée à u.

Série convergente On dit que la série de terme général u_n converge si (U_n) converge.

Dans ce cas on pose $\sum_{0}^{+\infty} = \lim_{n \to +\infty} U_n \in E$

Lemme 1.5.1

$$(\sum u_n {\sf converge}) \; \Rightarrow \; \left(u_n \underset{n}{ o} {\sf o}\right)$$

Attention ! La réciproque est fausse! (ex : (H_n))

Divergence grossière Lorsque $u_n \not \stackrel{}{\underset{n}{\not=}}$ o, la série $\sum u_n$ est dite grossièrement divergente " $\sum u_n$ DVG" ainsi : ($\sum u_n$ DVG $\Rightarrow \sum u_n$ DV)

Théorème : Reste d'une série convergente.

On suppose $\sum u_n$ converge, on note $S=\sum_{n=0}^\infty u_n$ la "limite de la somme" et $R_n=\sum_{k=n+1}^{+\infty}u_k$ le "reste d'ordre n". Alors $\begin{vmatrix} \forall n\in \mathbf{N},\ S=U_n+R_n \\ R_n \to 0 \end{vmatrix}$

Démonstration. bien-fondé?

Soit $n \in \mathbb{N}$ pour $m \geq n+1$, $\sum_{k=n+1}^m u_k = U_m - U_n \underset{m}{\rightarrow} S - U_n$ donc R_n existe avec $R_n = S - U_n$ d'où $S = U_n + R_n$ puis $R_n = S - U_n \rightarrow S - S = 0$

Lemme 1.5.2.

Soit
$$(u_n)$$
, $(v_n) \in E^{\mathbf{N}}$ et $\lambda \in K$
On suppose que $\sum u_n$ et $\sum v_n$ convergent alors :
 $- > \sum \lambda u_n + v_n$ converge
 $- > \sum_{n=0}^{\infty} \lambda u_n + v_n = \lambda \sum_{n=0}^{\infty} u_n + \sum_{n=0}^{\infty} v_n$

Convergence absolue Soit $(u_n) \in E^{\mathbb{N}}$ on dit que $\sum u_n$ converge absolument si $\sum ||u_n||$ converge.

Note. Vu $dimE < \infty$, ceci ne dépend pas du choix de la norme

Théorème 1.5.3.

Dans un K espace vectoriel de <u>dimension finie</u>, toute série absolument convergente est convergente " $CVA \Rightarrow CV$ "

Sera démontré ultérieurement. *

Attention ! Faux dans un EVN quelconque!

Lemme 1.5.4.

Soit (E, N) un K espace vectoriel normé de dimension finie On supposons que $\sum u_n$ CVA. Alors $\|\sum_{n=0}^{\infty} u_n\| \leq \sum_{n=0}^{\infty} \|u_n\|$

^{*.} TODO : add ref

1.6 Complément sur les séries numériques

Rappel. Soit $z \in \mathbb{C}$ alors $\sum z^n \; \mathsf{CV} \Rightarrow |z| < \mathtt{1}$

-> Lorsque
$$|z|<1$$
 on a $\sum_{n=0}^{\infty}z^n=rac{1}{1-z}$ -> On définie $\exp(z)=\sum_{n=0}^{\infty}rac{z^n}{n!}$

1.6.1 Règle de Dalembert

Théorème : Règle de Dalembert.

Soit
$$(u_n) \in (\mathbb{C}^*)^{\mathbb{N}}$$

On suppose l'existence de $\ell \in \mathbb{R} \cup \{+\infty\}$ tel que $\left|\frac{u_{u+1}}{u_n}\right| \to \ell$
Alors: 1) $\ell < 1 \Rightarrow \sum_{n=1}^{\infty} u_n \ CVA$
2) $\ell > 1 \Rightarrow \sum_{n=1}^{\infty} u_n \ DVG$

Démonstration. 1) On suppose $\ell < 1$ et on note $r_n = \left| \frac{u_{u+1}}{u_n} \right|$. On pose $\theta \in [\ell, 1]$ et $\varepsilon = \theta - \ell$ On a alors

 $\exists n_0 \in \mathbf{N} : \forall n \geq n_0, \ |r_n - \ell| < \varepsilon \text{ soit en particulier } r_n < \ell + \varepsilon = \theta \text{ Ainsi } \forall n \geq n_0, \ |u_{n+1}| < \theta \, |u_n| \\ \text{et } |u_n| \leq \theta^{n-n_0} \, |u_{n_0}| \text{ (REC)} \quad \text{On a alors } \forall n \geq n_0, \ |u_n| \leq \underbrace{\theta^{-n_0} \, |u_{n_0}|}_{\text{cte}} \theta^n \text{ or } \sum \theta^n \text{ converge}$

car $\theta \in]0,1[$

donc par théorème de comparaison $\sum |u_n|$ converge.

2) On suppose $\ell>1$ et on fixe $\theta\in \mathbf{R}$ tel que $1<\theta<\ell$, on a alors $\exists n_0\in \mathbf{N}: \forall n\geq n_0,\ r_n>\theta\;(\ldots)$

on obtient
$$|u_n| o +\infty$$
 donc $u_n o n$ o donc $\sum u_n$ DVG

1.6.2 Séries alternées

Défnition La série réelle $\sum u_n$ est dite <u>alternée</u> si $\left\{ \begin{array}{l} \forall n \in \mathbb{N}, \ u_n = (-1)^n \, |u_n| \\ \forall n \in \mathbb{N}, \ u_n = (-1)^{n+1} \, |u_n| \end{array} \right.$

Théorème : Critère spécial des série alternées.

Soit (u_n) une suite, on suppose

- 1) $\sum u_n$ est alternée
- 2) $\overline{u}_n o \mathsf{o}$
- 3) $(|u_n|)_{n>0}$ décroit.

alors $\sum u_n$ converge et de plus, $\forall n \in \mathbb{N}$

- $->|R_n|\leq |u_{n+1}|$
- -> R_n et u_{n+1} ont le même signe
- -> S est compris entre U_n et U_{n+1}

1.6.3 Sommation des relations de comparaisons

Théorème: Cas convergent.

Soit (u_n) , $(v_n) \in \mathbf{R^N}$ et $v_n \ge$ 0, $\forall n \ge n_0$. On suppose que $\sum u_n$ et $\sum v_n$ converge et on pose $R_n = \sum_{k=n+1}^{+\infty} u_n$ et $R'_n = \sum_{k=n+1}^{+\infty} v_n$

- 1) $u_n = o_{n \to +\infty}(v_n) \Rightarrow R_n = o_{n \to +\infty}(R'_n)$ 2) $u_n = \bigcirc_{n \to +\infty}(v_n) \Rightarrow R_n = \bigcirc_{n \to +\infty}(R'_n)$ 3) $u_n \xrightarrow[n \to +\infty]{} v_n \Rightarrow R_n \xrightarrow[n \to +\infty]{} R'_n$

Théorème : Cas divergent.

Soit (u_n) , $(v_n) \in \mathbf{R^N}$ et $v_n \ge 0$, $\forall n \ge n_0$. On suppose que $\sum u_n$ et $\sum v_n$ diverge et on note $U_n = \sum_{k=0}^n u_n$ et $V_n = \sum_{k=0}^n v_n$

- 1) $u_n = \circ_{n \to +\infty}(v_n) \Rightarrow U_n = \circ_{n \to +\infty}(V_n)$ 2) $u_n = \bigcirc_{n \to +\infty}(v_n) \Rightarrow U_n = \bigcirc_{n \to +\infty}(V_n)$ 3) $u_n \stackrel{\sim}{\underset{n \to +\infty}{\sim}} v_n \Rightarrow U_n \stackrel{\sim}{\underset{n \to +\infty}{\sim}} V_n$

Théorème de Cesàro.

- Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ 1) Si $u_n \to \lambda$ avec $\lambda \in \mathbb{R}$, alors $\frac{1}{n+1} \sum_{k=0}^n u_k \to \lambda$ 2) Si $u_n \to +\infty$ alors $\frac{1}{n+1} \sum_{k=0}^n u_k \to +\infty$

Démonstration. 1) Supposons $u_n o \lambda$ alors $u_n - \lambda = \mathtt{o(1)},$ on pose ensuite $v_n = \mathtt{1}$ alors $\sum v_n$ diverge et d'après le théorème de sommation en cas divergent

$$\sum_{k=0}^n u_k - \lambda = \mathtt{O}(\sum_{k=0}^n \mathtt{1}) \;\; \Rightarrow \;\; rac{\mathtt{1}}{n+\mathtt{1}}(\sum_{k=0}^n u_k) - \lambda o \mathtt{O}$$

2) Supposons $u_n \to +\infty$ et posons $a_n = \frac{1}{n+1} \sum_{k=0}^n u_k$ Soit $A \in \mathbb{R}$ et A' = A+1 Soit $n_0 \in \mathbb{N}$: $\forall n \geq n_0$, $u_n > A'$, puis pour $n \geq n_0$:

$$a_n = \frac{1}{n+1} \left(\sum_{k=0}^{n_0-1} u_k + \sum_{k=n_0}^{n} u_k \right) \text{ donc } a_n > \frac{c}{n+1} + A' \frac{n+1-n_0}{n+1} = A' + \frac{c-n_0A'}{n+1}$$

Soit $n_1 \geq n_0$ tel que $orall n \geq n_1$, $\left| rac{\mathcal{C} - A' n_0}{n+1}
ight| <$ 1 alors $orall n \geq n_1$, $a_n > A$ d'où $a_n o +\infty$ \Box

1.7 Produit de deux séries absolument convergentes

Produit de Cauchy Soient $\sum u_n$ et $\sum v_n$ des séries quelconques (convergentes ou non) de nombres complexes.

On pose $\forall n \in \mathbf{N}: w_n = \sum\limits_{i+j=n} u_i v_j = \sum\limits_{k=0}^n u_k v_{n-k}$ (somme finie!) La série $\sum w_n$ est appelée produit de Cauchy de $\sum u_n$ et $\sum v_n$.

Lorsque $\sum u_n$ et $\sum v_n$ convergent on a pas forcément $(\sum u_n) \times (\sum v_n) = \sum w_n$

Si
$$\sum u_n$$
 et $\sum v_n$ convergent absolument alors : 1) $\sum w_n$ CVA 2) $(\sum_{n=0}^{\infty} u_n) \times (\sum_{n=0}^{\infty} u_n) = \sum_{n=0}^{\infty} w_n$

1)
$$\sum w_n$$
 CVA

2)
$$\left(\sum_{n=0}^{\infty}u_{n}\right) imes\left(\sum_{n=0}^{\infty}u_{n}\right)=\sum_{n=0}^{\infty}w_{n}$$

Signalé :

$$Si$$
 $\left\{egin{array}{l} \sum u_n \; \mathsf{CVA} \ \sum v_n \; \mathsf{converge} \ \mathit{alors} \; \sum w_n \; \mathit{converge} \; \mathit{et} \; (\sum_{n=0}^\infty u_n) \; imes \; (\sum_{n=0}^\infty u_n) = \sum_{n=0}^\infty w_n \end{array}
ight.$

1.8 Dualité série-suite

Toute suite peut-être envisagée comme une série Ici (E, N) est un EVN de dimension finie.

On pose
$$orall n \in \mathbf{N}^* \quad \left\{ egin{array}{ll} b_{\scriptscriptstyle 0} = a_{\scriptscriptstyle 0} \ b_n = a_n - a_{n-1} \end{array}
ight.$$
 On a alors pour $n \in \mathbf{N}$

$$\sum_{k=0}^n b_k = b_0 + \sum_{k=1}^n (a_k - a_{k-1}) = a_0 + a_n - a_0 = a_n$$
 soit $a_n = \sum_{k=0}^n b_k$

On sait ensuite que (a_n) converge si et seulement si $\sum b_k$ converge donc

$$(a_n)$$
 converge $\Leftrightarrow \sum a_n - a_{n-1}$ converge

Chapitre 2

Limites et continuité

Cadre : (E, N) est un espace vectoriel normé quelconque et $A \subset E$

	n	+	$\overline{}$	n	
Co	ווי	L	C		u

Contena			
2.1	Ouve	rts et fermés	
	2.1.1	Intérieurs	
		Point intérieur	
		Intérieur	
	2.1.2	Ouverts	
		Définition	
	2.1.3	Fermés	
		Lois de <u>Morgan</u> :	
		Définition	
	2.1.4	Adhérence	
		Point adhérent	
		Adhérence	
		Frontière	
		Densité	
		Exemple	
2.2	Limite	es	
	2.2.1	Cas général	
		Définition	
		Limite en $\pm\infty$	
		Limite infinie	
		Voisinage	
	2.2.2	Produit fini d'espaces vectoriels normés	
		Norme produit	
2.3	Conti	nuité 19	
	2.3.1	Cas général	
		Continuité en un point	
		Continuité	
		Fonction Lipschitzienne	
		Distance à un ensemble	
	2.3.2	Cas des applications linéaires	
		Norme subordonnée	
2.4	Image	e réciproque et continuité	
		Voisinage relatif	
		Ouvert relatif	
		Fermé relatif	
2.5	Comp	pacité	
	2.5.1	Compacité dans un espace vectoriel normé quelconque 24	
		Dartie compacts	

	Continuité uniforme	24									
2.5.2	Compacité en dimension finie	25									
2.5.3	Applications aux séries en dimension finie	26									
	Séries de matrices	26									
2.6 Connexité par arcs											
	Chemin	26									
	Composantes connexes	27									
	Connexité par arcs	27									
	Partie étoilée	27									

2.1 Ouverts et fermés

On considère ici $A \subset E$ et $\alpha \in E$

2.1.1 Intérieurs

Point intérieur

 $-> \alpha$ est un dit un point intérieur à A s'il existe un réel r> o tel que $B(\alpha,r)\subset A$

Intérieur

-> On pose $A = \{x \in E \mid x \text{ est intérieur à } A\}$ dit intérieur de A

Lemme 2.1.1.

Soit $A \subset E$ alors $A \subset A$

Lemme : Croissance de l'intérieur. Soit $A, B \in E$ alors $A \subset b \Rightarrow A \subset B$

2.1.2 Ouverts

Définition Dans (E, N) on appelle <u>ouvert</u> (ou <u>partie ouverte</u>) **toute** réunion de boules ouvertes.

```
Théorème : Caractérisation des ouverts.
```

```
Soit U \subset E alors (U \ ouvert) \Leftrightarrow (\forall x \in U, \exists r > 0 : B(x, r) \subset U)
```

Démonstration.

 \sqsubseteq Pour chaque $x \in U$, on choisit r_x tel que $B(x, r_x) \subset U$ alors $U = \bigcup_{x \in U} B(x, r_x)$ donc par définition, U est un ouvert.

```
\Rightarrow On note U=\bigcup B(x_i,r_i) , soit x\in U et i_0\in I tel que x\in B(x_{i_0},r_{i_0}) Soit r=r_{i_0}-d(x,x_{i_0})> o alors B(x,r)\subset B(x_{i_0},r_{i_0}) | Soit y\in B(x,r) c'est-à-dire d(x,y)< r alors | d(y,x_{i_0})\leq d(y,x)+d(x,x_{i_0})< r_{i_0} Ainsi \forall x\in U,\ \exists r>0:\ B(x,r)\subset U
```

Corollaire.

Soit $U \subset E$ alors U ouvert $\Leftrightarrow U \subset U \Leftrightarrow U = U$

Note. $\mathcal{T} = \{U \subset E \mid U \text{ est ouvert}\}\$ est appelé Topologie de (E, N)

Théorème 2.1.2.

- Toute réunion d'ouvert est un ouvert.
 Toute intersection finie d'ouvert est un ouvert.

Démonstration. On démontre la deuxième assertion

- -> Cas de l'intersection vide : $\bigcap_{\emptyset} = E$
- -> Cas de 2 ouverts : Soit A, B deux ouverts de E , soit $x \in A \cap B$, on a $\exists r_1, r_2 > 0$ tels que $B(x, r_1) \subset A$ et $B(x, r_2) \subset B$ alors soit $r = \min(r_1, r_2)$, $B(x, r) \subset A \cap B$ et par le théorème de caractérisation des ouverts, $A \cap B$ est un ouvert
- -> Cas de p ouverts, $p \in \mathbb{N}^*$: par récurrence sur p avec le cas p=2

2.1.3 **Fermés**

Lois de Morgan : ${}^{c}\left(\bigcap_{i\in I}A_{i}\right) = \bigcup_{i\in I}{}^{c}A_{i}$ et ${}^{c}\left(\bigcup_{i\in I}A_{i}\right) = \bigcap_{i\in I}{}^{c}A_{i}$

Définition On appelle fermé tout complémentaire d'un ouvert de E Ainsi A est fermé $\Leftrightarrow {}^{c}A$ est ouvert avec ${}^{c}A = C_{E}A$

Théorème 2.1.3.

- 1) Toute intersection de fermés est fermée.
- 2) Toute réunion finie de fermés est fermée.

Démonstration. 1) Soit $(\Phi_i)_{i\in I}$ une famille de fermés de E on a $^c(\cap_I \Phi_i) = \bigcup_I {^c\Phi_i}$ est un ouvert donc l'intersection des ϕ_i est fermée.

2.1.4 Adhérence

Point adhérent α est dit adhérent à A si $\forall r > 0$, $B(\alpha, r) \cap A \neq \emptyset$

Adhérence On pose $\overline{A} = \{x \in E \mid x \text{ est adhérent à } A\}$ dit adhérence de A.

Lemme : Croissance de l'adhérence.

Soit A, B \in E alors A \subset b \Rightarrow $\overline{A} \subset \overline{B}$

Théorème 2.1.4.

Soit $lpha \in E$ alors $lpha \in \overline{A} \Leftrightarrow \exists (a_n) \in A^{\mathbf{N}} : a_n \underset{n}{\rightarrow} lpha$

Démonstration.

 $\stackrel{\textstyle \longleftarrow}{}$ Soit r> 0 et $n_{\text{o}}\in \mathbf{N}$ tels que $\forall n\geq n_{\text{o}},\ d(a_{n},\alpha)< r$ alors $B(\alpha,r)\cap A\neq\emptyset$ donc $\alpha\in\overline{A}$

 \Rightarrow Soit $n \in \mathbb{N}$, $\exists a_n \in B(\alpha, \frac{1}{n+1}) \cap A$ d'où $(a_n) \in A^{\mathbb{N}}$ vérifie $a_n \xrightarrow[n]{} \alpha$

Théorème : Caractérisation des fermés.

Soit $A \subset E$, A est fermé si et seulement si A est stable par passage à la limite.

Démonstration. \Longrightarrow Soit $B={}^cA$ et $(a_n)\in A^{\mathbf N}$ telle que $a_n\underset{n}{\to} \alpha\in E$

Si $\alpha \in \mathcal{B}$, $\exists r > 0$ et $n_0 \in \mathbb{N}$ tels que $\forall n \geq n_0$, $a_n \in \mathcal{B}(\alpha, r)$ soit $a_{n_0} \in \mathcal{B}(\alpha, r) \Rightarrow a_{n_0} \notin \mathcal{A}$ (impossible!) d'où $\alpha \in \mathcal{A}$

 \models Par contraposée, on suppose que $B={}^cA$ n'est pas un ouvert donc $\exists \alpha \in B: \forall r > 0$, $\exists x \in B(\alpha,r)$ tel que $x \notin B$. On a alors $\alpha \in \overline{A}$ et $\alpha \in B$ soit $\alpha \notin A$ d'où $\exists (a_n) \in A^N$ avec $a_n \underset{n}{\rightarrow} \alpha$. On a donc trouvé une suite convergente d'éléments de A dont la limite n'est pas dan A.

Corollaire.

Soit $A \subset E$, on a : A femré $\Leftrightarrow \overline{A} \subset A \Leftrightarrow \overline{A} = A$

Lemme 2.1.5.

Soit $A \subset E$ alors $c(\overline{A}) = \widehat{c}A$ et $c(A) = \overline{c}A$

Lemme 2.1.6.

- 1) A est un ouvert
- 2) A est le plus grand ouvert de E inclu dans A

Lemme 2.1.7.

- 1) \overline{A} est un fermé
- 2) \overline{A} est le plus petit fermé de E contenant A

Théorème 2.1.8.

Les notions suivantes, (notions topologiques):

- point intérieur
- ouvert
- point adhérent
- fermé

sont invariants par passage à une norme équivalente.

Démonstration. On sait que la convergence d'une suite est invariante par norme équivalente (Page 7) donc on a l'invariance des notions "point adhérent" et "adhérence" ainsi que "point intérieur" par le complémentaire de l'adhérence (Page 16) puis par caractérisation séquentielle des fermés on a l'invariance de la notion "fermé" ainsi que "ouvert" par le complémentaire.

Lemme 2.1.9.

- 1) Toute boule fermée est fermée
- 2) Toute sphère est fermée

Frontière Soit $A \subset E$ on définie sa <u>frontière</u> comme $F_r(A) = \overline{A} \setminus A$

2.2. LIMITES 17

VA \subset E , $F_r(A)$ est fermée et $F_r(A) = \overline{A} \cap \overline{{}^c A}$

Densité Soit $D \subset A \subset E$ on dit que D est dense dans A si tout élément de A est limite d'une suite d'éléments de D soit

$$\forall a \in A, \exists (d_n) \in D^{\mathbf{N}} : d_n \xrightarrow{n} a$$

Lemme 2.1.11.

Soit $D \subset A$ alors on a : D dense dans $A \Leftrightarrow A \subset \overline{D}$

Exemple Soit $n \in \mathbb{N}^*$ alors $GL_n(K)$ dense dans $\mathcal{M}_n(K)$

Démonstration. Soit $M \in \mathcal{M}_n(K)$ et $r = \operatorname{rg}(M) \in \llbracket 1, n \rrbracket$ Par théorème * $\exists U, V \in GL_n(K)$: $M = UJ_rV$ posons alors pour $p \in \mathbb{N}^*$ $J_r(\frac{1}{p}) =$ $\mathsf{Diag}\big(\underbrace{\mathtt{1},\ldots,\mathtt{1}}_p,\tfrac{\mathtt{1}}_p,\ldots,\tfrac{\mathtt{1}}_p\big) \text{ puis } M_p = UJ_r\big(\tfrac{\mathtt{1}}{p}\big)V \text{ alors } M_p \in GL_n(K) \underset{p \to +\infty}{\longrightarrow} M$

2.2 Limites

2.2.1 Cas général

Dans toute cette partie, F est un K espace vectoriel et $f: A(\subset E) \to F$

Définition Soit $\alpha \in \overline{A}$, $b \in F$. On dit que f admet b comme limite au point α , noté

orall arepsilon > o, $\exists \delta >$ o tel que $orall x \in A$, $d(x, lpha) < \delta \Rightarrow d(f(x), b) < arepsilon$

Soit $A(\subset E) \stackrel{f}{\to} B(\subset F) \stackrel{g}{\to} G$ et $\alpha \in \overline{A}$, $\beta \in \overline{B}$, $c \in G$ Si on a $f(x) \underset{x \to \alpha}{\longrightarrow} \beta$ et $g(y) \underset{y \to \beta}{\longrightarrow} c$ <u>alors</u> $g(f(x)) \underset{x \to \alpha}{\longrightarrow} c$

Soit $\alpha \in \overline{A}$, $b \in F$, $(a_n) \in A^N$ avec $\begin{cases} f(x) \xrightarrow[x \to \alpha]{} b \\ a_n \xrightarrow[n]{} \alpha \end{cases}$

Théorème : Caractérisation séquentielle d'une limite.

$$\begin{array}{ll} \textit{Soit} \ \alpha \in \overline{A}, \ b \in \mathcal{F} \\ \textit{Alors} \left(f(x) \underset{x \rightarrow \alpha}{\longrightarrow} b \right) \ \Leftrightarrow \ \left(\forall (a_n) \in A^{\mathbf{N}}, \ (a_n \underset{n}{\rightarrow} \alpha) \Rightarrow (f(a_n) \underset{n}{\rightarrow} b) \right) \end{array}$$

^{*.} Voir cours de sup

Démonstration. ⇒ Lemme

 \sqsubseteq Par contraposée on fixe $\varepsilon_0 >$ o tel que $\forall n \in \mathbf{N}$, $\exists a_n$ tel que $\left\{ \begin{array}{l} d(a_n, \alpha) < \frac{1}{n+1} \\ d(f(a_n), b) \geq \varepsilon_0 \end{array} \right.$ D'où $(a_n) \in A^{\mathbb{N}}$ telle que $a_n \underset{n}{\rightarrow} \alpha$ et $f(a_n) \underset{n}{\nrightarrow} b$

Lemme : Unicité de la limite.

Soit
$$\alpha \in \overline{A}$$
, $b_1 \in F$, $b_2 \in F$
Si $f(x) \xrightarrow[x \to \alpha]{} b_1$ et $f(x) \xrightarrow[x \to \alpha]{} b_2$ alors $b_1 = b_2$

Soit $\alpha \in \overline{A}$ et $b \in F$

On suppose que $f(x)\underset{x \to \alpha}{\longrightarrow} b$ alors ceci reste vrai si

- ullet On remplace $\|\dot{\|}_E$ par une une norme équivalente
- On remplace || || par une une norme équivalente

Limite en $\pm\infty$ On dit que $f(x) \underset{\|x\| \to +\infty}{\longrightarrow} b$ si $\forall \varepsilon >$ o, $\exists M \in \mathbb{R}$ tel que $\|x\| > M \Rightarrow$ $d(f(x), b) < \varepsilon$

Limite infinie Ici $f: A(\subset E) \to \mathbb{R}$ et $\alpha \in \overline{A}$ On dit que $f(x) \underset{x \to \alpha}{\longrightarrow} +\infty$ si $\forall M \in \mathbb{R}$, $\exists \delta > 0$ tel que $\forall x \in A$, $d(x,\alpha) < \delta \Rightarrow f(x) > M$

Voisinage Soit (E, N) un espace vectoriel normé quelconque et $\alpha \in E$ Soit $V \subset E$ alors V est un voisinage de α si $\exists r > 0$ tel que $B(\alpha, r) \subset V$ On peut noter $\mathcal{V}_{\alpha} = \{V \subset E \mid V \text{ est } v(\alpha)\}$

Note. $V \in \mathcal{V}_{\alpha} \Leftrightarrow \alpha \in V$

Lemme 2.2.4. On suppose que $f(x) \underset{x \to \alpha}{\longrightarrow} b \in F$ Alors f est bornée localement au voisinage de α (noté v(a))

2.2.2 Produit fini d'espaces vectoriels normés

Norme produit Soient $(E_1, N_1), \ldots, (E_r, N_R)$ des K espaces vectoriels normés. On note $W = \prod_{i=1}^r E_i = E_1 \times \cdots \times E_r$ et $x = (x_1, \dots, x_r) \in W$ On pose $\forall x \in W$, $N(x) = \max_{1 \le i \le r} \{N_i(x_i)\}$ alors $\left\{\begin{array}{l} N \text{ est dite } \underline{\text{norme produit}} \\ (E, N) \text{ est } \underline{\text{dit } \underline{\text{EVN produit}}} \end{array}\right.$

Lemme 2.2.5.

Soient U_1 ouvert de (E_1, N_1) \vdots U_r ouvert de (E_r, N_r) alors $U_1 \times \cdots \times U_r$ est un ouvert de WUn produit fini d'ouvert est un ouvert

2.3. CONTINUITÉ 19

Lemme 2.2.6.

Un produit fini de fermé est un fermé

Lemme 2.2.7.

Soit
$$u=(u_n)\in W^{\mathsf{N}}$$
, $b\in W$ où $W=\prod_{i=1}^r E_i$
On note $u_n=(u_{1,n},\ldots,u_{r,n})$ et $b=(b_1,\ldots,b_r)$
alors $u_n\stackrel{\rightarrow}{\to} b \Leftrightarrow \forall i\in \llbracket 1,r \rrbracket$, $u_{i,n}\stackrel{\rightarrow}{\to} b_i$

Lemme 2.2.8.

$$\begin{array}{l} \textit{Soit } f: A(\subset E) \rightarrow W = \prod_{i=1}^r E_i \text{ , } \alpha \in \overline{A} \text{ et } b = (b_1, \ldots, b_r) \in W \\ \textit{On note } \forall x \in A \text{ , } f(x) = (f_1(x), \ldots, f_r(x)) \\ \underline{\textit{alors}} \left(f(x) \underset{x \rightarrow \alpha}{\longrightarrow} b \right) \ \Leftrightarrow \ \left(\forall i \in \llbracket 1, r \rrbracket, \ f_i(x) \underset{x \rightarrow \alpha}{\longrightarrow} b_i \right) \end{array}$$

Lemme 2.2.9.

$$egin{aligned} f_1:A&
ightarrow F\ f_2:A&
ightarrow F \end{aligned},\; lpha\in\overline{A},\lambda\in K\;et\;b_1,b_2\in F \end{aligned}$$
 On suppose que $\left\{egin{aligned} f_1(x)&\underset{x
ightarrow lpha}{\longrightarrow}b_1\ f_2(x)&\underset{x
ightarrow lpha}{\longrightarrow}b_2 \end{aligned}
ight.\; \underline{alors}\; (\lambda f_1+f_2)(x)&\underset{x
ightarrow lpha}{\longrightarrow}(\lambda b_1+b_2) \end{array}
ight.$

Lemme 2.2.10.

Soit
$$f: A(\subset E) \to F$$
 avec $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$ une base de F On écrit $f(x) = \sum_{i=1}^p f_i(x)\varepsilon_i$ et $b = \sum_{i=1}^p b_i\varepsilon_i$ alors $f(x) \underset{x \to \alpha}{\longrightarrow} b \Leftrightarrow \forall i \in \llbracket 1, p \rrbracket, \ f_i(x) \underset{x \to \alpha}{\longrightarrow} b_i$

2.3 Continuité

2.3.1 Cas général

Continuité en un point Soit $f: A(\subset E) \to F$ et $a \in A$ alors f est dite $\mathcal{C}^{ ext{o}}$ en a si $orall arepsilon > ext{o}$, $\exists \delta > ext{o}$: $orall x \in \mathcal{A}$, $d(a,x) < \delta \ \Rightarrow \ d(f(x),f(a)) < arepsilon$

Lemme 2.3.1.
$$f\mathcal{C}^{\circ}$$
 en $a \Leftrightarrow f(x) \underset{x \to a}{\longrightarrow} f(a)$

Lemme 2.3.2.

 $f \ \mathcal{C}^{\circ}$ en $a \Leftrightarrow (f \ admet \ une \ limite \ finie \ ai \ point \ en \ a)$

Théorème : Caractérisation séquentielle de la continuité.

Soit
$$f: A(\subset E) \to F$$
 et $a \in A$ alors f est continue au point a si et seulement si $\Big(\forall (a_n) \in A^{\mathsf{N}}, \ a_n \underset{n}{\to} a \ \Rightarrow \ f(a_n \underset{n}{\to} f(a) \Big)$

Démonstration. Caractérisation séquentielle d'une limite Page 17 et Lemme.

Continuité f est dite continue si $\forall a \in A$, f est continue au point a.

Fonction Lipschitzienne Soit $f: A(\subset E) \to F$ et $k \in \mathbb{R}^+$

- • f est dite \underline{k} -lipschitzienne si $\forall (x,y) \in A^2$, $d(f(x),f(y)) \leq k.d(x,y)$
- • f est dite $\overline{\text{lipschitzienne}}$ s'il existe $k \in \mathbb{R}^+$ tel que f est k-lipschitzienne.

Lemme 2.3.3.

| f est lipschitzienne $\Rightarrow f$ est continue

Attention ! La réciproque est fausse!

Lemme 2.3.4.

$$A(\subset E) \stackrel{f_1}{\rightarrow} B(\subset F) \stackrel{f_2}{\rightarrow} G.$$

On suppose f_1 k_1 -lipschitzienne et f_2 k_2 -lipschitzienne alors $f_2 \circ f_1$ est $k_1 \times k_2$ -

Distance à un ensemble Soit $A \subset E$, $a \neq \emptyset$ et $x \in E$

$$d(x, A) = \inf\{d(x, \alpha) \mid \alpha \in A\}$$

Théorème 2.3.5.

Toute partie de R non vide et minorée admet une borne inférieure

Théorème 2.3.6. Soit
$$A\subset E$$
 , $A
eq \emptyset$ alors $\delta: egin{array}{l} E\to R \\ x\mapsto d(x,A) \end{array}$ est 1-lipschitzienne

Démonstration. Soit $(x,y)\in E^2$ Soit $\alpha\in A$, $d(x,\alpha)\leq d(x,y)+d(y,\alpha)$ ainsi $\forall \alpha\in$ $A,d(x,A)-d(x,y) \leq d(y,\alpha)$ donc μ est un minorant de $\{d(y,\alpha) \mid \alpha \in A\}$ donc

 $\mu \leq d(y,A)$ d'où $\underbrace{d(x,A)-d(y,A)}_{\wedge} \leq d(x,y)$ et on a de même pour le couple (y,x) ,

$$-\theta \leq d(y,x) = d(x,y)$$

En bref :
$$|d(x, A) - d(y, A)| \le d(x, y)$$

Lemme 2.3.7.

La composée de deux applications continues est continue

Lemme 2.3.8.

Pour $f: A(\subset E) \to F$ et $B \subset F$ on note $f|_B$ la restriction Alors f continue $\Rightarrow f|_B$ continue

Lemme 2.3.9.

2.3. CONTINUITÉ 21

Lemme 2.3.10.

Soit $f,g\in \mathcal{C}^{0}(A,F)$, E,F des espaces vectoriels normés Soit $D\subset A$ dense dans A et $f|_{D}=g|_{D}$ alors f=g

2.3.2 Cas des applications linéaires

Théorème 2.3.11.

Soit $u \in \mathcal{L}(E, F)$ <u>alors</u> $u \in \mathcal{C}^{\circ}(E, F) \Leftrightarrow \exists C \in \mathbb{R}^{+} : \forall x \in E, \|u(x)\| \leq C\|x\| \Leftrightarrow u \text{ est lipschitzienne.}$

Démonstration. (1) \Rightarrow (2) : Si $u \in \mathcal{C}^0(E,F)$ alors u est \mathcal{C}^0 en o et avec $\varepsilon=1$, soit $\delta>0$ tel que $\forall x \in E$, $\|x\|<\delta \Rightarrow \|u(x)\|<1$. Soit alors $x \in E\setminus\{0\}$, on pose $x'=\frac{\delta}{2}\frac{x}{\|x\|}$ donc $\|u(x')\|<1$ et ainsi $\|u(x)\|\leq \frac{2}{\delta}\|x\|$

(2)
$$\Rightarrow$$
 (3) : On suppose $\forall x \in E$, $||u(x)|| \le C||x||$ puis soit $(x,y) \in E^2$ on a $||u(x-y)|| \le C||x-y||$ donc u est C -lipschitzienne

Notation On note $\mathcal{L}_c(E, F) = \{u \in \mathcal{L}(E, F) \mid u \text{ est continue }\}$

Norme subordonnée

- Soit (E, N) et (F, N') des K espaces vectoriels normés et $u \in \mathcal{L}_c(E, F)$ on pose $|||u||| = \sup\{N'(u(x)) \mid x \in E \text{ et } N(x) \leq 1\} = \sup_{N(x) \leq 1} N'(u(x))$
- $\mathcal{L}_c(E, F)$ est un K espace vectoriel et |||.||| est une norme sur $\mathcal{L}_c(E, F)$. On l'appelle <u>nome subordonnée</u> à N et N' ou encore <u>norme d'opérateur</u> notée

Démonstration.

- Si u= o alors |||u|||= o, réciproquement si |||u|||= o, $\forall x\in B_f(0,1), u(x)=$ o Soit $x\in E\setminus \{0\}$ en posant $x'=\frac{x}{\|x\|}$ on a $\frac{1}{\|x\|}u(x)=$ o donc u(x)= o
- $\forall u \in \mathcal{L}_c(E, F), \ \forall k \in K \text{ on a } |||\lambda u||| = |\lambda|||u|||$
- Soit $(u,v) \in \mathcal{L}_c(E,F)$ on pose w=u+v , soit $x \in B_f(0,1)$ on a $\|w(x)\| \le \|u(x)\| + \|v(x)\| \le \|\|u\|\| + \|\|v\|\|$ et ainsi $\|\|u\|\| + \|\|v\|\|$ est un majorant de $X = \{\|w(x)\| \mid x \in B_f(0,1)\}$ or $\|\|w\|\|$ est le plus petit majorant de X donc $\|\|w\|\| \le \|\|u\|\| + \|\|v\|\|$

Lemme 2.3.12.

$$(E,N)$$
, (F,N') des espaces vectoriels normés et $E \neq \{0\}$ Soit $u \in \mathcal{L}_c(E,F)$ Alors $||u|| = \sup_{\|x\| \leq 1} \|u(x)\| = \sup_{\|x\| = 1} \|u(x)\| = \sup_{x \in E \setminus \{0\}} \frac{\|u(x)\|}{\|x\|}$

Note. Soit $u \in \mathcal{L}_c(E,F)$ Si $E \neq \{0\}$, |||u||| est le plus petit $k \in \mathbb{R}^+$ tel que $\forall x \in E$, $||u(x)|| \leq k \, ||x||$ (c'est vrai même si $E = \{0\}$) ainsi |||u||| est la plus petite constante de Lipschitz de u

On a donc $\forall u \in \mathcal{L}_c(E, F), \ \forall x \in E, \ \|\|u(x)\|\| \le \|\|u\|\| \|x\|\|$

Théorème 2.3.13.

 $(E,N),\ (F,N'),\ (G,n'')$ des espaces vectoriels normés quelconques avec $E\stackrel{u}{
ightarrow} G$ et $u\in\mathcal{L}_c(E,F),\ v\in\mathcal{L}_c(F,G)$ Alors $v\circ u\in\mathcal{L}_c(E,G)$ et $|||v\circ u|||\leq |||u|||.|||v|||$

Démonstration. $v \circ u \in \mathcal{L}_c(E,G)$ car linéaire et continue puis u est |||u|||-lipschitzienne et

et v est |||v|||-lipschitzienne donc v o u est |||u|||.|||v|||-lipschitzienne du coup $|||v \circ u||| \le |||u|||.|||v|||$

Note. $\forall u, v \in \mathcal{L}_c(E)$, $v \circ u \in \mathcal{L}_c(E)$ et $|||v \circ u||| \le |||u||| \times |||v|||$ On dit aussi que |||.||| est une norme sous-multiplicative ou une norme d'algèbre

Lemme 2.3.14.

```
Lorsque E \neq \{0\}, \forall u \in \mathcal{L}_c(E, F)

u \in \mathcal{C}^o(E, F) \Leftrightarrow u \text{ born\'ee sur } \mathcal{B}_f(0, 1)

\Leftrightarrow u \text{ est born\'ee sur } S(0, 1)
```

Lemme 2.3.15.

Soit $X \subset \mathbb{R}$ non vide et majorée et $\mu \in \mathbb{R}^+$ Alors $\sup(\mu X) = \mu(\sup X)$

Théorème 2.3.16.

 E_1, \ldots, E_n des espaces vectoriels normés $\varphi: E_1 \times \cdots \times E_n \to F$ une application n-linéaire, $W = E_1 \times \cdots \times E_n$ muni de la norme produit Alors (φ est continue) $\Leftrightarrow (\exists M \in \mathbb{R}^+ : \forall (x_1, \ldots, x_n) \in W, \|\varphi(x_1, \ldots, x_n)\| \leq M \times \|x_1\| \times \cdots \times \|x_n\|$)

Démonstration. \models On fixe $M \ge 0$ vérifiant la propriété.

$$\begin{array}{lll} \text{Soit } x = (x_1, \dots, x_n) \in \mathcal{W} \text{ et } y \in \mathcal{W} \cap B_f(x, 1) \\ \varphi(y) - \varphi(x) & = & \varphi(y_1, \dots, y_n) - \varphi(x_1, \dots, x_n) \\ & = & \varphi(y_1, y_2, \dots, y_n) - \varphi(x_1, y_2, \dots, y_n) + \varphi(x_1, y_2, \dots, y_n) \\ & & - \varphi(x_1, x_2, y_3, \dots, y_n) + \\ & \vdots \\ & & + \varphi(x_1, \dots, x_{n-1}, y_n) - \varphi(x_1, \dots, x_n) \\ & = & \sum_{i=1}^n \varphi(x_1, \dots, x_{i-1}, y_i - x_i, y_{i+1}, \dots, y_n) \end{array}$$

ainsi $\|\varphi(y) - \varphi(x)\| \leq \sum_{i=1}^n M \|x_1\| \cdots \|x_{i-1}\| \cdot \|y_i - x_i\| \cdot \|y_{i+1}\| \cdots \|y_n\|$ or $\forall i \in [\![1,n]\!], \ \|y_i - x_i\| \leq \|y - x\|$ et $\forall j, \ \|y_j\| \leq \|x_j\| + \|y_j - x_j\| \leq \|x\| + 1$ donc $\|\varphi(y) - \varphi(x)\| \leq nM(\|x\| + 1)^{n-1} \cdot \|y - x\|$ du coup $\varphi(y) \xrightarrow[y \to x]{} \varphi(x)$ donc φ est continue

 \implies Si $\varphi \in \mathcal{C}^{\circ}(W, F)$ alors φ est \mathcal{C}° en o donc soit $\delta >$ o tel que $\forall x \in \mathcal{B}(0, \delta), \ \|\varphi(x)\| < 1$ Soit $x \in W$

ullet Si orall i, $x_i
eq ext{o}$, posons $x_i' = rac{x_i}{\|x_i\|} rac{\delta}{2}$ et $x' = (x_1', \dots, x_n')$ donc $\|arphi(x')\| < ext{1 or } arphi(x') = rac{\delta^n}{2^n} rac{1}{\|x_1\| \cdots \|x_n\|} arphi(x)$

donc $\|arphi(x)\| \leq \left(rac{2}{\delta}
ight)^n \prod_{i=1}^n \|x_i\| = M \prod_{i=1}^n \|x_i\|$

ullet Si $\exists i_0$ tel que $x_{i_0}=$ o alors arphi(x)= o donc $\|arphi(x)\|\leq M\prod_{i=1}^n\|x_i\|$

2.4 Image réciproque et continuité

L'idée générale est ici de travailler dans A munie de la distance induite par la norme de F

Note. Soit $a \in A$ et $r \in \mathbb{R}+$ alors on note $B^A(a,r)=\{x \in A, \ d(x,a) < r\}=A \cap B(a,r)$

Voisinage relatif Soit $a \in A$ et $V \subset A$ alors V est dit voisinage relatif de a s'il existe r > o tel que $B^A(a,r) \subset V$ **Ouvert relatif** Soit $U \subset A$ alors U est dit ouvert relatif de A s'il est voisinage relatif de chacun de ses points. i.e. $\forall x \in U, \exists r > 0 : B^A(x, r) \subset U$ Théorème : Caractérisation des ouverts relatifs. Soit $U \subset A$ alors: U ouvert relatif de $A \Leftrightarrow \exists U'$ ouvert de E tel que $U = A \cap U'$ Démonstration. \subseteq Soit U' ouvert de E tel que $A \cap U' = U$ alors Soit $x \in U = A \cap U'$ alors $\exists r > 0$ tel que $A \cap B(x, r) \subset U$ donc U est un voisnage relatif de xPar définition, U est un ouvert relatif sur A \Rightarrow $\forall x \in U$ ouvert relatif $\exists r_x >$ o tel que $A \cap B(x, r_x) \subset U$, alors $U' = \bigcup_{x \in U} B(x, r_x)$ est un ouvert de E et $U = A \cap U'$ **Fermé relatif** Soit $\Phi \subset A$ alors Φ est dit fermé relatif de A si $A \setminus \Phi$ est un ouvert relatif de A. Théorème : Caractérisation des fermés relatifs. Soit $\Phi \subset A$ alors : Φ fermé relatif de $A \Leftrightarrow \exists \Phi'$ fermé de e tel que $\Phi = A \cap \Phi'$ Démonstration. Clair en considérant $U = A \setminus \Phi$ Théorème 2.4.1. Soit $X \subset A$ alors X est un fermé relatif de $A \Leftrightarrow$ Pour toute suite $(x_n) \in X^N$ qui converge vers $a \in A$ on $a \in X$ Démonstration. \Longrightarrow Soit $(x_n) \in X^{\mathbf{N}}$ avec $x_n \underset{n}{ o} a \in A$

Théorème 2.4.2.

 $\xi_0 \notin X$

 $x_{n_0} \in A \setminus X$ (impossble!) donc $a \in X$.

Soit $A \subset E$ et E, F des espaces vectoriels normés $f \in C^{0}(A, F)$ et $Y \subset F$ alors

- 1) Y fermé $\Rightarrow f^{-1}(Y)$ fermé relatif de A
- 2) Y ouvert $\Rightarrow f^{-1}(Y)$ ouvert relatif de A

Si $a \in A \setminus X$ alors $\exists r > 0$ et $n_0 \in \mathbb{N}$ tels que $\forall \geq n_0, x_n \in B(x_n, a) \cap A$ du coup

Par contraposée on suppose $\exists \xi_0 \in A \setminus X : \forall r > 0 \exists x \in A \cap B(\xi_0, r)$ tel que $x \in X$. On a alors $\forall n \in \mathbb{N}$, $\exists x_n$ tel que $d(x_n, \xi_0) < \frac{1}{n+1}$ d'où $(x_n) \in X^{\mathbb{N}}$ avec $x_n \xrightarrow[n]{} \xi_0$ mais

Démonstration.

1) Soit $f^{-1}(Y) = \{x \in A , f(x) \in Y\}$ et soit $(x_n) \in (f^{-1}(Y))^N$ tel que $x_n \xrightarrow[n]{} a \in A$ Comme f est C^0 on a $f(x_n) \xrightarrow[n]{} f(a) \in A$ car $a \in f^{-1}(Y)$ donc par théorème $f^{-1}(Y)$ est un fermé relatif.

2) Clair avec $F \setminus Y$ ouvert de F

Cas particulier Lorsque A = E alors $\forall Y \subset F$, $\begin{cases} Y \text{ fermé} \Rightarrow f^{-1}(Y) \text{ fermé} \\ Y \text{ ouvert} \Rightarrow f^{-1}(Y) \text{ ouvert} \end{cases}$

2.5 Compacité

2.5.1 Compacité dans un espace vectoriel normé quelconque

Partie compacte On dit que A est une partie compacte de E (ou compact de E) si toute suite d'éléments de A admet une sous-suite qui converge vers un élément de A.

Lemme 2.5.1.

A est compacte \Rightarrow A est fermée et bornée

Lemme 2.5.2.

Soit A un compact et X fermé alors $A \cap X$ est compact

Théorème 2.5.3.

Soit A un compact et $(a_n) \in A^N$ alors : (a_n) converge $\Leftrightarrow (a_n)$ admet au plus une valeur d'adhérence

Théorème 2.5.4.

Soit E_1, \ldots, E_r des espaces vectoriels normés et $A_1 \subset E_1, \ldots, A_r \subset E_r$ des compacts Alors $A_1 \times \cdots \times A_r$ est un compact de $E_1 \times \cdots \times E_r$

Continuité uniforme Si E,F est un espace vectoriel normé et $f:A\to F$ alors f est dite <u>uniformément continue</u> si $\forall \varepsilon>$ 0, $\exists \delta>$ 0 : $\forall (x,y)\in A^2,\ d(x,y)<\delta$ \Rightarrow $d(f(x),f(y))<\varepsilon$

Théorème 2.5.5.

Soit $f \in C^{\circ}(A, F)$ alors si A est compact f(A) est compact. "L'image continue d'un compact est un compact."

2.5. COMPACITÉ 25

Démonstration. Soit $a_{\varphi(n)} \xrightarrow{n} \alpha \in A$ alors $f(a_{\varphi(n)}) \xrightarrow{n} f(\alpha) \in f(A)$

Théorème de Heine.

Toute application continue sur un compact est uniformément continue.

Démonstration. Par l'absurde :

On suppose $\exists \varepsilon_0 > 0 : \forall \delta > 0, \exists (x,y) \in A^2 : d(x,y) < \delta \text{ et } d(f(x),f(y)) \geq \varepsilon_0$ On pose alors (x_n) et (y_n) vérifiant ces propriétés avec $\delta_n = \frac{1}{n+1}$ et $x_{\varphi(n)} \xrightarrow{n} \alpha \in A$ puis on a $||f(x_n) - f(y_n)|| \to 0$ d'où la contradiction.

Lemme 2.5.6.

Soit $X \subset \mathbb{R}$ non vide et majoré alors $\sup(X) \in \overline{X}$

Théorème 2.5.7.

Soit $f \in \mathcal{C}^{\circ}(A, \mathbf{R})$ Si A est un compact non vide alors f admet un maximum sur A

Note. PG -> On dit que "f est bornée et atteind ses bornes"

Démonstration. Soit $B = f(A) \neq \emptyset$, B est borné comme image continue d'un compact. Soit alors $\beta = \sup(B)$. On a donc $\beta \in \overline{B} = B$ donc $\begin{cases} \beta \text{ majore } B \\ \beta \in B \end{cases}$ d'où $\beta = \max(B)$

2.5.2 Compacité en dimension finie

Rappel:

Théorème de Bolzano-Weierstrass.

Dans \mathbf{R} , tout segment [a, b] est compact.

Corollaire.

Sur un K-ev de dimension finie, toutes les normes sont équivalentes.

Démonstration. Voir la fin du chapitre.

Théorème 2.5.8.

Soit E un espace vectoriel normé de dimension finie et $A \subset E$ alors A compact ⇔ A fermé et borné

Démonstration. On démontre le cas où $K = \mathbb{R}$ avec N_{∞} pour se ramener à [-M, M] puis on en déduit le cas où $K = \mathbf{C}$

Théorème 2.5.9.

Soit E un espace vectoriel normé quelconque si $F \subset E$ est un sous-espace vectoriel avec $\dim F < \infty$ alors F est fermé

Démonstration. On montre la stabilité par passage à la limite en considérant M un majorant des x_n et le compact Bf(0, M)

Théorème 2.5.10.

Soit E, F des espaces vectoriels normé avec E de dimension finie, si $u \in \mathcal{L}(E, F)$ alors u est continue.

Démonstration. Soit $e=(e_1,\ldots,e_p)$ base de E, on choisit $\|x\|=\max_{1\leq k\leq p}|x_k|$ où $x=\sum_{k=1}^p x_k e_k$. Soit $x\in E$, $\|u(x)\|=\|\sum_{k=1}^p x_k u(e_k)\|\leq \sum_{k=1}^p |x_k|\|u(e_k)\|$ Posons alors $C=\sum_{k=1}^p \|u(e_k)\|$ alors $\|u(x)\|\leq C\|x\|$ et comme u est linéaire, $u\in C^o(E,F)$

Corollaire.

E est un K espace vectoriel de dimension $p \in \mathbf{N}^*$ et $e = (e_1, \ldots, e_p)$ une base de E. Pour $i \in \llbracket \mathbf{1}, p \rrbracket$ on pose $e_i^* : egin{array}{c} E o K \\ x \mapsto x_i \end{array}$ alors e_i^* est linéaire donc $\mathcal{C}^{\mathtt{O}}$

Théorème 2.5.11.

 E_1, \ldots, E_r, F des espaces vectoriels de dimensions finies et $\varphi: E_1 \times \cdots \times E_r \to F$ r-linéaire alors $\varphi \in C^{\circ}(E_1 \times \cdots \times E_r, F)$

2.5.3 Applications aux séries en dimension finie

Théorème 2.5.12.

En dimension finie, la convergence absolue entraine la convergence

Démonstration. Soit E un K espace vectoriel normé de dimension finie et $(u_n) \in E^N$. On note $U_n = \sum_{k=0}^n u_k$ et $a_n = \|u_n\|$. On suppose alors que $\sum a_n$ converge en on note $\alpha = \sum_{n=0}^{\infty} a_n$

- $\bullet \forall n \in \mathbb{N}, \|U_n\| \leq \sum_{k=0}^n a_k \leq \alpha \text{ donc } U_n \in Bf(0, \alpha) \text{ compact}$
- $ullet(U_n)$ admet au plus 1 valeur d'adhérence car $\forall (n,p) \in \mathbb{N}^2$, $\|U_p U_n\| \le |A_p A_n|$ donc $\|U_{\varphi(n)} U_{\psi(n)}\| \le |A_{\varphi(n)} A_{\psi(n)}| \xrightarrow{n} 0$

Séries de matrices Soit $E = \mathcal{M}_p(K)$ muni d'une <u>norme d'algèbre</u> (tq $\forall (A, B) \in E^2$, $||AB|| \le ||A|| \cdot ||B||$)

- Si $A \in E$ alors $\sum \frac{1}{n!} A^n$ converge et on pose $\exp(A) = e^A = \sum_{n=0}^{+\infty} \frac{1}{n!} A^n$
- Si $A \in E$ telle que $\|A\| < 1$ alors $\sum A^n$ converge et $\sum_{n=0}^{+\infty} A^n = (I_p A)^{-1}$

2.6 Connexité par arcs

Chemin Pour $A \subset E$,

- Soit $x, y \in A$ on appelle <u>chemin</u> (ou chemin continu) de x à y <u>dans</u> A toute application $\gamma \in C^{\circ}([u, v], A)$ où u < v réels tels que $\gamma(u) = x$ et $\gamma(v) = y$.
- On définit une relation binaire \mathcal{R} sur A par $\forall (x,y) \in A^2 : x\mathcal{R}y \Leftrightarrow \text{il existe un}$ chemin de x à y.

Lemme 2.6.1.

 $\mid \mathcal{R}$ est une relation d'équivalence sur A

Composantes connexes On appelle composante connexes par arcs les classes d'équivalences dans A par \mathcal{R} .

Rappel. $\forall x \in A$, $Cl\{x\} = \{y \in A \mid xRy\}$

Connexité par arcs A est dite <u>connexe par arcs</u> si $\forall (x,y) \in A^2$, $x \mathcal{R} y$ A est connexe par arcs si pour tout $x,y \in A$ il existe un chemin de x à y dans A.

Lemme 2.6.2.

 $A \ convexe \Rightarrow A \ connexe \ par \ arcs$

Partie étoilée $A \subset E$ est dite étoilée s'il existe $\alpha \in A$ tel que $\forall b \in A$, $[\alpha, b] \subset A$

Lemme 2.6.3.

A étoilée \Rightarrow A connexe par arcs

Cas de \mathbf{R} : $\forall A \subset \mathbf{R}$, A convexe \Leftrightarrow A intervalle

Théorème 2.6.4.

Dans R, les parties connexes par arcs sont exactement les intervalles.

Démonstration. \implies Soient $a, b \in A$ avec $a \le b$ et $c \in [a, b]$ alors par TVI $\exists \theta \in [0, 1]$ et $\gamma \in C^{\circ}([0, 1], A)$ tels que $c = \gamma(\theta)$ donc $c \in A$. □

Théorème 2.6.5.

L'image continue d'un connexe par arcs est connexe par arcs Autrement dit soit $f \in C^0(A, F)$ avec F un espace vectoriel normé alors A connexe par arcs $\Rightarrow f(A)$ connexe par arcs

 $\begin{array}{ll} \textit{D\'{e}monstration}. \ \, \text{Soit} \,\, x,y \in f(A) \,\, \text{avec} & x' \in A \,\, \text{tel que} \,\, x = f(x') \\ y' \in A \,\, \text{tel que} \,\, y = f(y') & \text{on pose} \,\, \tilde{\gamma} = f \,\, \text{o} \,\, \gamma : \\ [\mathfrak{0},\mathfrak{1}] \to f(a) & \text{alors} \,\, \tilde{\gamma} \,\, \text{est} \,\, \mathcal{C}^{\mathfrak{0}} \,\, \text{et} \,\, \tilde{\gamma}(\mathfrak{0}) = x \,\, \text{et} \,\, \tilde{\gamma}(\mathfrak{1}) = y \,\, \text{donc par d\'{e}finition} \,\, f(A) \,\, \text{est connexe par arcs.} \end{array}$

* * *

Chapitre 3

Dérivation et intégration

<u>Cadre</u>: Soit $f: I \to E$ une fonction à valeur dans E un K espace vectoriel de dimension finie et I un intervalle réel non trivial (i.r.n.t.)

Contenu

3.1	Dérivée	28
	Défnition	28
	Fonction dérivable	29
	Fonction continuement dérivable	29
3.2	Dérivées successives	30
	Classe \mathcal{C}^k	30
	Classe \mathcal{C}^{∞}	30
3.3	Fonctions convexes	31
	Barycentre (HP)	31
	Fonction convexe	31
	Épigraphe	31
	Fonction concave	32
3.4	Intégration sur un segment	32
	3.4.1 Fonctions continues par morceaux	32
	Subdivision	32
	Intégrale	33
	3.4.2 Propriétés de l'intégrale	33
	Notations	34
	3.4.3 Inégalités	34
3.5	Théorème fondamental	34
3.6	Formules de <u>Taylor</u>	35
	Négligeabilité	36

3.1 Dérivée

Défnition Soit $a \in I$, f est <u>dérivable</u> en a s'il existe $\ell \in E$ tel que $\frac{f(x)-f(a)}{x-a} \underset{x \to a; x \leqslant a}{\longrightarrow} \ell$. On pose alors

$$f'(x) = \lim_{x o a; x \leqslant a} rac{f(x) - f(a)}{x - a}$$

Note. On note $\mathcal{T}_f(x,a)=rac{f(x)-f(a)}{x-a}$ le "taux d'acroissement"

3.1. DÉRIVÉE 29

 $\mathsf{Rq}\,:\,\mathcal{T}_f(x,a)=\mathcal{T}_f(a,x)$

Lemme 3.1.1.

Soit $a \in I$, $(f \text{ dérivable au point } a) \Rightarrow (f \text{ continue au point } a)$

Fonction dérivable $f: I \to E$ est dite dérivable (sur I) si $\forall a \in I$, f est dérivable au point a

Dans ce cas on pose $f': rac{I o E}{a \mapsto f'(a)}$ la <u>dérivée de f</u>.

Fonction continuement dérivable f:I o E est dite $\underline{\mathsf{continuement}}$ dérivable ou de <u>classe</u> C^1 si f est dérivable et $f' \in C^0(I, E)$. On note $C^1(I, E)$ l'ensemble de ces fonctions.

Lemme 3.1.2.

Foit deux fonctions $f, g: I \to E$, $\lambda \in K$, $a \in I$. Si f et g sont dérivables au

- (1) $\lambda f + g$ est dérivable au point a
- $(2) (\lambda f + g)'(a) = \lambda f'(a) + g'(a)$

Lemme 3.1.3.

On considère la composition $I \xrightarrow{f} E \xrightarrow{u} F$ et $a \in I$ avec E et F des espaces vectoriels normés de dimensions finies. On suppose $u \in \mathcal{L}(E, F)$ et f dérivable au point a alors

- (1) $u \circ f$ est dérivable au point a
- (2) $(u \circ f)'(a) = u(f'(a))$

Lemme 3.1.4.

Soit $a \in I$ et $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_p)$ une base de E. Notons $f(x) = \sum_{k=1}^p f_k(x)\varepsilon_k$. On

f est dérivable en $a\Leftrightarrow orall k\in \llbracket exttt{1}, exttt{p}
rbracket, f_k$ est dérivable en a

Dans ce cas $f'(a) = \sum_{k=1}^p f'_k(a) \varepsilon_k$

Lemme 3.1.5.

 $C^1(I, E)$ est un K espace vectoriel comme sous-espace vectoriel de E^I

Théorème 3.1.6.

Soit $\Phi: E_1 \times \cdots \times E_p \to F$ p-linéaire avec E_1, \ldots, E_p de dimensions finies et $a \in \mathit{I. Soit}\ f_{1}: \mathit{I}
ightarrow \mathsf{E}_{1}, \ldots, f_{p}: \mathit{I}
ightarrow \mathsf{E}_{p}\ \mathit{d\'{e}rivables}\ \mathit{au\ point}\ a$

On pose
$$g: egin{aligned} I & \longrightarrow I & \longrightarrow F \ x & \mapsto & \Phi(f_1(x), \dots, f_p(x)) \end{aligned}$$
 alors (2) $g'(a) = \sum_{i=1}^p \Phi(f_1(x), \dots, f_i'(x), \dots, f_p(x))$

Démonstration. Cas p = 2 scalaire : Soit $x \in I \setminus \{a\}$

$$egin{aligned} \mathcal{T}_g(x,a) &= rac{1}{x-a} ig[B(f_1(x),f_2(x)) - B(f_1(a),f(_2(a)) ig] \ &= B(\mathcal{T}_{f_1}(x,a),f_2(x)) + B(f_1(a),\mathcal{T}_{f_2}(x,a) \end{aligned}$$

 $\text{Puis comme B est bilin\'eaire, B est $\mathcal{C}^{\scriptscriptstyle 0}$ donc $\mathcal{T}_g(x,a) \underset{x \to a: x \leqslant a}{\longrightarrow} B(f_1'(a),f_2(a)) + B(f_1(a),f_2'(a))$}$ donc q est dérivable au point a

On a ensuite le résultat pour une application p-linéaire par récurrence puis dans le cas vectoriel en décomposant selon toute les bases.

Théorème 3.1.7.

Soit la composition $I \stackrel{u}{\to} J \stackrel{v}{\to} K$ avec I, J des i.r.n.t. et $a \in I, b = u(a) \in J$. Si u dérivable au point a et v dérivable au point b alors

- $u \circ u$ est dérivable au point a
- $(v \circ u)'(a) = v'(u(a)) \times u'(a)$

Composition vers un espace vectoriel de dimension finie :

Corollaire.

Soit $I \stackrel{\varphi}{\to} J \stackrel{f}{\to} E$ avec I, J des i.r.n.t. et E un K espace vectoriel de dimension finie, $a \in I$, $b = \varphi(a) \in J$. Si φ dérivable au point α et f dérivable au point b

- $f \circ \varphi$ est dérivable au point α
- $_{\scriptscriptstyle (2)} (f \circ \varphi)'(a) = f'(\varphi(a)) \times \varphi'(a)$

3.2 Dérivées successives

- On définit $f^{(0)} = f$
- Si f' est dérivable sur I on pose $f^{(1)} = f'$
- Pour $k \in \mathbb{N}$, si $f^{(k)}$ est bien définie et dérivable sur I on pose $f^{(k+1)} = (f^{(k)})'$

Classe C^k Soit $k \in \mathbb{N}$, f est dite k fois dérivable si $f^{(k)}$ existe.

Classe C^{κ} Soit $\kappa \in \mathbb{N}$, f est dite κ follows:

Dans ce cas f est dite de classe C^{k} si $\begin{cases} f^{(k)} \text{ existe} \\ f^{(k)} \in C^{0}(I, E) \end{cases}$

Classe C^{∞} f est dite de classe C^{∞} si $\forall k \in \mathbb{N}$ on a f est de classe C^k

Lemme 3.2.1.

Soit $f:I \to E$ alors $f \in \mathcal{C}^{\infty} \ \Leftrightarrow \ \forall k \in \mathbb{N}$, f est k fois dérivable

Théorème : Formule de Leibniz.

Soit f,g:I o E de classe \mathcal{C}^n alors fg est de classe C^n et $(fg)^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(k)} g^{(n-k)}$

Démonstration. Rappel : voir cours de sup

Plus généralement, si $B: E_1 \times E_2 \to F$ est bilinéaire avec E_1, E_2, F de dimensions finies et $(f,g) \in C^n(I,E_1) \times C^n(I,E_2)$ alors la formule à l'ordre n avec B reste vraie.

Lemme 3.2.2.

Soit $f:I \to E$ et $e=(e_1,\ldots,e_n)$ une base de ESoit $f(x) = f_1(x)e_1 + \cdots + f_n(x)e_n$, $\forall x \in I$ alors $f \in C^k(I, E) \Leftrightarrow \forall j \in [1, p], f_j \in C^k(I, E)$

Lemme 3.2.3.

Soit $I \xrightarrow{\varphi} J \xrightarrow{f} F$, I, J i.r.n.t. Si φ et f sont de classe C^k <u>alors</u> $\varphi \circ f \in C^k(I, F)$

3.3 Fonctions convexes

Barycentre (HP) Soit E un espace vectoriel et $x_1,\ldots,x_p\in E$ Soit $\alpha_1,\ldots,\alpha_p\in R$ tels que $\sum_{k=1}^p\alpha_k\leqslant$ o. On note $S=\sum_{k=1}^p\alpha_k$ On appelle <u>barycentre du système</u> $\left((x_1,\alpha_1),\ldots,(x_p,\alpha_p)\right)$ le point $\sum_{k=1}^p\frac{\alpha_k}{S}x_k$ On parle d'isobarycentre si $\alpha_1=\cdots=\alpha_k$

Note. On peut se ramener à $\sum_{k=1}^p lpha_k = \mathtt{1}$ en posant $lpha_k' = rac{lpha_k}{\mathsf{S}}$

Théorème 3.3.1.

Tout ensemble convexe est stable par barycentration à coefficients positifs

Démonstration. Soit $X \subset E$ convexe. On démontre la propriété par récurrence avec $\mathcal{A}(n)$ le prédicat correspondant à la propriété pour n vecteurs de X.

On a $\mathcal{A}(1)$ et $\mathcal{A}(2)$. On suppose $\mathcal{A}(n)$ et on considére n+1 vecteurs de X et n+1 scalaires quelconques. On pose x le barycentre du système.

- Si $S = \sum_{k=1}^{n} \alpha_k \le 0$ alors on pose y le barycentre du système composé des n premiers termes et on a $x = \text{Bar}((y, S), (x_{n+1}, \alpha_{n+1})) \in X$ d'après A(2)
- ullet Si S= 0 alors $lpha_{n+1}=$ 1 et $x=x_{n+1}\in X$ D'où $\mathcal{A}(n+1)$

Fonction convexe Soit $f: I \to \mathbb{R}$ avec I i.r.n.t. alors f est dites convexe si

$$\forall (x,y) \in I^2, \forall \lambda \in [0,1] f((1-\lambda)x + \lambda y) \leqslant (1-\lambda)f(x) + \lambda f(y)$$

Interprétation géométrique : "L'arc reste sous la corde"

Épigraphe Soit $f: I \to \mathbb{R}$ on appelle <u>épigraphe de f</u> l'ensemble

$$E(f) = \{(x, y) \in I \times \mathbb{R} ; f(x) \leqslant y\}$$

Théorème 3.3.2.

Soit $f: I \to \mathbf{R}$ alors f est convexe $\Leftrightarrow E(f)$ est convexe

Démonstration.

Si f est convexe, on vérifie avec la définition que E(f) l'est aussi.

Réciproquement, si E(f) est convexe, alors pour $x,y\in I$ et $\lambda\in[0,1]$ avec $x\leqslant y$ on pose $z=(1-\lambda)x+\lambda y\in[x,y]$ et on a $(x,f(x)),(y,f'y))\in E(f)$ donc $c=(z,(1-\lambda)f(x)+\lambda f(y))\in E(f)$ ainsi $f(z)\leqslant(1-\lambda)f(x)+\lambda f(y)$

Théorème : Inégalité de Jensen.

Si $f: I \to \mathbf{R}$ est convexe alors pour $x_1, \ldots, x_n \in I$ et $\lambda_1, \ldots, \lambda_n \in \mathbf{R}^+$ tels que $\sum_{i=1}^n \lambda_i = 1$ on a $f\left(\sum_{i=1}^n \lambda_i x_i\right) \leqslant \sum_{i=1}^n \lambda_i f(x_i)$

Démonstration. On pose $a_i = (x_i, f(x_i)) \in E(f)$ donc $\sum_{i=1}^n \lambda a_i \in E(f)$ car E(f) est stable par barycentration donc $\sum_{i=1}^n \lambda_i x_i \in I$ et finallement $f(\sum_{i=1}^n \lambda_i x_i) \leqslant \sum_{i=1}^n \lambda_i f(x_i)$

Lemme des pentes.

Soit $f: I \to \mathbb{R}$ une application alors avec $p(a, b) = \frac{f(a) - f(b)}{a - b}$ f convexe $\Leftrightarrow (\forall (a, b, c) \in I^3$ tels que a < b < c, $p(a, b) \leqslant p(a, c) \leqslant p(b, c))$

Théorème 3.3.3.

Soit $f:I\to \mathbf{R}$ dérivable sur I alors f est convexe sur I si et seulement si f' est croissante sur I

Démonstration. \implies Si f est convexe, soient $x,y\in I$ alors $\forall t\in]x,y[$, $p(x,t)\leqslant p(x,y)$ puis en passant à la limite $f'(x)\leqslant p(x,y)$ d'où $f'(x)\leqslant f'(y)$ par symétrie \implies On suppose f' croissante et $a< b< c\in I$. Par le théorème des accroissements finis on a p(a,b)=f'(x) et p(b,c)=f'(y) avec x et y dans les segments respectifs a,b et b,c ainsi a,b et a,c alors a,c et a,c

Corollaire.

Soit $f \in \mathcal{D}^2(I, \mathbf{R})$ alors f est convexe $\Leftrightarrow f'' \geqslant 0$

Fonction concave Soit $f:I\to \mathbf{R}$ avec I un i.r.n.t. alors f est dite $\underline{\mathsf{concave}}$ si -f est convexe.

Théorème 3.3.4.

Soit $f: I \to \mathbb{R}$ dérivable et convexe <u>alors</u> $\forall x_0, x \in I$, $f(x) \geqslant f(x_0) + (x - x_0)f'(x_0)$

"Le graphe de f est au dessus de ses tangentes"

Démonstration. Soit $x, x_0 \in I$

- Si $x = x_0$ on a bien le résultat.
- Si $x>x_0$ alors $p(x,x_0)=f'(\theta)$ où $\theta\in]x,x_0[$ donc $f'(\theta)\geqslant f'(x_0)$
- Si $x < x_0$ même raisonnement.

3.4 Intégration sur un segment

Cadre : $f: I \to E$ avec I intervalle réel non trivial et E de dimension finie.

3.4.1 Fonctions continues par morceaux

Subdivision Soit a < b réels et $f : [a, b] \to E$ On appelle subdivision de [a, b] toute suite finie $(\alpha_0, \ldots, \alpha_n) = \sigma$ telle que $a = \alpha_0 < \cdots < \alpha_n = b$

Continuité par morceaux Soit a < b réels et $f : [a, b] \rightarrow E$

f est dite <u>continue par morceaux</u> si il existe une subdivision $\sigma = (\alpha_0, \ldots, \alpha_n)$ de [a, b] telle que $\forall k \in [0, n-1]$ la restriction $f|_{]\alpha_k,\alpha_{k+1}[}$ est prolongeable en une fonction continue sur le segment $[\alpha_k,\alpha_{k+1}]$

Définition bis Soit I i.r.n.t. et $f: I \rightarrow E$

On dit que f est continue par morceaux (\mathcal{C}_{pm}^{o}) si sa restriction à tout segment de I est continue par morceaux

Lemme 3.4.1.

 $\mathcal{C}^\circ_{vm}([a,b],E)$ et $\mathcal{C}^\circ_{vm}(I,E)$ sont des K espaces vectoriels

Lemme 3.4.2.

Soit $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$ une base de E. On note $f(x) = \sum_{k=1}^p f_k(x)\varepsilon_k$ alors f est continue par moreceaux $\Leftrightarrow \forall k \in \llbracket 1, p \rrbracket, \ f_k \in \mathcal{C}^0_{pm}(I, K)$

Intégrale Soit a < b réels et $f \in C_{pm}^{0}([a, b], E)$

On fixe $\varepsilon=(\varepsilon_1,\ldots,\varepsilon_p)$ une base de E et on note $f(x)=\sum_{k=1}^p f_k(x)\varepsilon_k$, $\forall x\in[a,b]$ On a alors

$$\int_a^b f = \sum_{k=1}^p \left(\int_a^b f_k \right) \varepsilon_k$$

3.4.2 Propriétés de l'intégrale

Théorème 3.4.3.

$$\mathcal{I}: egin{array}{c} \mathcal{C}^{\circ}_{pm}([a,b],\mathcal{E})
ightarrow \mathcal{E} \ f \mapsto \int_a^b f \end{array} \hspace{0.5cm} ext{est linéaire}$$

Démonstration. On se ramène au cas scalaire en écrivant $f(x) = \sum_{k=1}^p f_k(x) arepsilon_k$

Lemme 3.4.4.

Soit a < b réels et $f, g \in \mathcal{C}^{\circ}_{pm} \big([a,b], E \big)$ tels que $\big\{ x \in [a,b] \mid f(x) \leqslant g(x) \big\}$ est \underline{fini} alors $\int_a^b f = \int_a^b g$

Notations Soit I i.r.n.t., $f \in C_{pm}^0(I, E)$ et $(a, b) \in I^2$

- Si a < b on a $\int_a^b f(t)dt \in E$
- ullet Si a>b on pose $\int_a^b f(t)dt=-\int_b^a f(t)dt$
- Si a = b on pose $\int_a^b f(t)dt = 0$

Théorème : Relation de Chasles.

Soit
$$f \in \mathcal{C}^{\circ}_{pm}(I,E)$$
 $(a,b,c) \in I^3$ alors $\int_a^b f(t)dt + \int_b^c f(t)dt = \int_a^c f(t)dt$

Démonstration. Connu sur les coordonnées.

3.4.3 Inégalités

Théorème 3.4.5

Soit $a\leqslant b$, $f\in\mathcal{C}^\circ_{pm}([a,b],E)$ avec E un espace vectoriel normé de dimension finie alors $\left\|\int_a^b f(x)dx\right\|\leqslant \int_a^b \left\|f(x)\right\|dx$

 $\begin{array}{ll} \textit{D\'{e}monstration.} \ \ \forall u \ \left\| \sum_{k=0}^{n-1} \frac{b-a}{n} f(a+k\frac{b-a}{n}) \right\| \ \leqslant \ \ \sum_{k=0}^{n-1} \frac{b-a}{n} \left\| f(a+k\frac{b-a}{n}) \right\|, \ \ \text{d'apr\`es les r\'esultats sur les sommes de } \ \frac{\text{R\'{e}mann}}{n} \ \text{comme les inegalit\'es larges passent \`a la limite on a} \ \left\| \int_a^b f \right\| \leqslant \int_a^b \|f\| \end{array}$

Théorème de positivité amélioré.

Soit
$$f:[a,b] \to \mathbb{R}$$
 telle que $f \in C^{\circ}([a,b],E)$, $f \geqslant 0$ sur $[a,b]$ et $a < b$
Alors $\int_a^b f(x) dx = 0 \iff \forall x \in [a,b], \ f(x) = 0$

 $D\'{e}monstration. \implies Clair par linéarité.$

 \in Comme f est C^0 on sait que $\int_{[a,b]} = 0 \Leftrightarrow \int_{]a,b[} = 0$ puis on suppose $\exists x_0 \in]a,b[$ tel que $f(x_0) \leqslant 0$

Soit $\varepsilon = \frac{1}{2}f(x_0) > 0$ on considère $\delta > 0$ tel que $a \leqslant x_0 - \delta < x_0 + \delta \leqslant b$ et $\forall x \in [a,b], |x-x_0| < \delta \Rightarrow |f(x)-f(x_0)| < \varepsilon$ du coup $\int_a^b f \geqslant \int_{x_0-\delta}^{x_0+\delta} f \leqslant 2\delta\varepsilon > 0$ donc $\int_a^b f > 0$

Corollaire.

Sous les même hypothèse on a si f n'est pas identiquement nulle sur [a,b] alors $\int_a^b f(x) dx > 0$

3.5 Théorème fondamental

Théorème fondamental de l'analyse.

Soit I i.r.n.t. , $a \in I$ et $f \in \mathcal{C}^{\circ}(I, E)$ on pose $\forall x \in I$, $F(x) = \int_a^b f(t) dt$ Alors $F \in \mathcal{C}^{\scriptscriptstyle 1}(I, \mathbf{R})$ et $\forall x \in I$, F'(x) = f(x)

Démonstration. Soit $x_0 \in I$ et $x \in I \setminus \{x_0\}$

Posons $\Delta(x) = \frac{1}{x-x_0} \left(F(x) - F(x_0) \right)$ alors si $x_0 < x$, $\|\Delta(x) - f(x_0)\| \leqslant \frac{1}{|x-x_0|} \int_{x_0}^x \|f(t) - f(x_0)\|$ Soit arepsilon> o, soit $\delta>$ o tel que $orall x\in I$, $|x-x_0|<\delta\Rightarrow \|f(x)-f(x_0)\|<arepsilon$ alors

 $\| \Delta(x) - f(x_0) \| \leqslant rac{1}{x - x_0} \int_{x_0}^x arepsilon dt = arepsilon$

On a de même pour $x_0 > x$

Ainsi $\forall \varepsilon >$ 0, $\exists \delta >$ 0 tel que $\forall x \in I \setminus \{x_0\}$, $|x-x_0| < \delta \Rightarrow \|f(x)-f(x_0)\| \leqslant \varepsilon$ c'est à $\text{dire } \delta(x) \underset{x \to x_0; x \leqslant x_0}{\longrightarrow} f(x_0) \text{ donc } F \text{ est d\'erivable au point } x_0 \text{ avec } F'(x_0) = f(x_0)$

Corollaire.

Soit $h \in C^1(I, E)$ et $(a, b) \in I^2$ Alors $\int_a^b h'(x) dx = [h]_a^b$

Note. Si $f \in \mathcal{C}^{\circ}_{vm}(I, E)$, $a \in I$ alors $F(x) = \int_a^x f(t) dt$ bien définie $\forall x \in I$ et $F \in \mathcal{C}^{\circ}(I, E)$

Théorème : Inégalité des accroissements finis.

Soit $f \in C^1([a, b], E)$, a < b et $M \in \mathbb{R}^+$, on suppose $\forall x \in [a, b], ||f'(x)|| \leq M$ Alors $||f(b) - f(a)|| \leq M |b - a|$

Démonstration. $f(b)-f(a)=\int_a^b f'(t)dt$ car f est \mathcal{C}^1 donc $\|f(b)-f(a)\|\leqslant \int_a^b \|f'(t)\|\,dt\leqslant \int_a^b \|f'(t)\|\,dt$ M(b-a)

Théorème 3.5.1. Soit a < b réels et $f \in \mathcal{C}^{\circ}_{pm}([a,b],E)$ Soit $u \in \mathcal{L}(E,F)$ avec E,F de dimension finie. Alors $\int_a^b u \circ f = u\left(\int_a^b f\right)$

 $\begin{array}{ll} \textit{D\'{e}monstration.} & \underline{\text{Cas 1}} : \text{soit } f \in \mathcal{C}^{\text{o}}\big([a,b], E\big) \text{ Posons } \forall [a,b] \\ G(x) = \int_a^x u \circ f \text{ , } \Phi(x) = \int_a^x f \text{ et } \Delta(x) = G(x) - u(\Phi(x)) \\ \Delta \text{ est d\'{e}rivable et } \forall x \in [a,b], \ \Delta'(x) = (u \circ f)(x) - u(\Phi'(x)) = \text{o donc } \Delta(x) = \text{cte} = 0. \end{array}$ $\Delta(a) = 0$

Cas 2 : soit $f \in \mathcal{C}^{\circ}_{nm}([a,b],E)$ Soit $\sigma=(\alpha_0,\ldots,\alpha_p)$ une subdivision adaptée

 $\begin{array}{c} \overline{\operatorname{CdS}\ 2} & . \ \operatorname{Solit}\ J \in \mathbb{C}_{pm,\lfloor [\omega_i,\sigma_j,\, \bot]} \ \operatorname{Solit}\ J \in \mathbb{C}_{pm,\lfloor [\omega_i,\sigma_j,\, \bot]} \ \operatorname{Solit}\ J \in \mathbb{C}_{nm,\lfloor [\omega_i,\sigma_i,\, \bot]} \ \operatorname{Solit}\ J \in \mathbb{C}_{nm,\lfloor [\omega_i,\sigma_i,\sigma_i,\, \bot]} \ \operatorname{Solit}\ J \in \mathbb{C}_{nm,\lfloor [\omega_i,\sigma_i,\sigma_i,\sigma_i,\, \bot]} \ \operatorname{Solit}\ J \in \mathbb{C}_{nm,\lfloor [\omega_i,\sigma_i,\sigma_i,\sigma_i,\, \bot]} \ \operatorname{Solit}\ J \in \mathbb{C}_{nm,\lfloor [\omega_i,\sigma_i,\sigma_i,\sigma$ d'où le résultat.

3.6 Formules de Taylor

Théorème : Formule de Taylor avec reste intégral.

Soit $n \in \mathbb{N}$, $f \in \mathcal{C}^{n+1}(I, E)$ et $(a, x) \in I^2$ avec I i.r.n.t. et $\dim E < \infty$ Alors $f(x) = \sum_{k=0}^n \frac{(x-a)^k}{k!!} f^{(k)}(a) + \mathcal{R}_n(a, x)$ où $\mathcal{R}_n(a, x) = \int_a^x \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+1)}(t) dt$

 $Dcute{e}monstration.$ On montre $\mathcal{T}(n)$ le théorème au rang n par récurrence :

- ullet T(0) : Soit $f \in \mathcal{C}^1(I,E)$ alors $f(x) = f(a) + \int_a^x f'(t) dt$

• Soit $f \in \mathbb{N}$ On suppose f(a) et on considère $f \in C^{n+2}(I, E)$ d'après f(a) : $f(a) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \mathcal{R}_n(a, x)$ avec $f(a) = \left[-\frac{(x-t)^{n+1}}{(n+1)!} f^{(n+1)}(t) \right]_a^x + \int_a^x \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt = \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(a)$ d'où T(n+1)

Corollaire : Inégalité de <u>Taylor-Lagrange</u>.

Sous les mêmes hypothèses on a $f(x) \leqslant \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \frac{|x-a|^{n+1}}{(n+1)!} \sup_{x \in [x,a]} \|f^{(n+1)}(x)\|$

Négligeabilité Soit f:I o E ; $\varphi:I o \mathsf{R}$; $a\in ar{I}$, on dit que $f(x)= \circ_{x o a}(\varphi(x))$ s'il existe r > 0 et $\delta : V = I \cap]a - r, a + R[\setminus \{a\} \rightarrow R$ tels que

$$\forall x \in V$$
, $\|f(x)\| = \delta(x) \times \varphi(x)$ et $\delta(x) \xrightarrow[x \to a]{} 0$

Théorème d'intégration des DL.

Soit $f \in C^{\circ}(I, E)$; $x_{\circ} \in I$; I i.r.n.t. E un EVN de dimension finie. On suppose que f admet un DL en x_0 $f(x) = a_0 + (x - x_0)a_1 + \dots + (x - x_0)^n a_n + \circ_{x o x_0} ((x - x_0)^n)$ Soit g une primitive de f sur I . Alors $g(x) = g(x_0) + (x - x_0)a_0 + \frac{(x - x_0)^2}{2}a_1 + \dots + \frac{(x - x_0^{n+1})}{n+1}a_n + \circ_{x o x_0} ((x - x_0)^{n+1})$ $où a_0, a_1, \ldots, a_n \in E$

Démonstration. On note $r(x) = f(x) - \sum_{k=0}^n (x-x_0)^k a_k$ ($\in \mathcal{C}^{\circ}(I, E)$) $g(x) - g(x_0) = \int_{x_0}^x f(t) dt = \sum_{k=0}^n \frac{(x-x_0)^{k+1}}{k+1} a_k + R(x)$ où $R(x) = \int_{x_0}^x r(t) dt$ Soit $\varepsilon > 0$; soit $\delta > 0$ tel que $\forall t \in I$, $|t-x_0| < \delta \Rightarrow ||r(t)|| \leqslant \varepsilon |t-x_0|^n$ Soit $x \in I$, on suppose $|x-x_0| < \delta$ et $x \leqslant x_0$ alors $||R(x)|| \leqslant \int_{x_0}^x \varepsilon (t-x_0)^n dt = \int_{x_0}^x r(t)^{n+1} dt$ $arepsilon rac{(x-x_{ extsf{O}})^{n+1}}{n+1} \leqslant arepsilon (x-x_{ extsf{O}})^{n+1}$ Ainsi $orall x \in I \setminus \{x_0\}, \ |x-x_0| < \delta \Rightarrow rac{\|R(x)\|}{|-x_0|^{n+1}} \leqslant arepsilon \ ext{donc} \ R(x) = \circ_{x o x_0} \left((x-x_0)^{n+1}
ight)$

Théorème : Développement limité de Taylor-Young.

Soit
$$f \in C^n(I, E)$$
; $x_0 \in I$ alors $f(x) = \sum_{k=0}^n \frac{(x-x_0)^k}{k!} f^{(k)}(x_0) + o_{x \to x_0} ((x-x_0)^n)$

Démonstration. On démontre T(n) le théorème au rang n par récurrence :

- ullet $\mathcal{T}(\mathtt{0})$: $orall f \in \mathcal{C}^\mathtt{0}(I,E)$, $f(x) = f(x_\mathtt{0}) + \mathtt{o}_{x o x_\mathtt{0}}(\mathtt{1})$
- ullet : Soit $n\in \mathbf{N}$, on suppose T(n) et on considère $f\in \mathcal{C}^{n-1}(I,E)$

on a
$$f'(x) = \sum_{k=0}^n rac{(x-x_0)}{k!} (f')^{(k)}(x_0) + \circ_{x o x_0} ((x-x_0)^n)$$

on a $f'(x) = \sum_{k=0}^n \frac{(x-x_0)^k}{k!} (f')^{(k)}(x_0) + o_{x\to x_0} ((x-x_0)^n)$ On applique alors Le théorème précédent à f' qui est bien continue sur I

$$f(x) = f(x_0) + \sum_{k=0}^n rac{(x-x_0)^{k+1}}{(k+1)!} f^{(k+1)}(x_0) + oldsymbol{\circ}_{x o x_0} \left((x-x_0)^{n+1}
ight)$$

Table des matières - Première année

0	Intro	oduction 3
	0.1	Règles d'écriture
		0.1.1 Quantificateurs
		0.1.2 Conditions Nécessaires et Suffisantes
	0.2	Modes de démonstaration
		0.2.1 Modus Ponen
		0.2.2 Contraposée
		0.2.3 Disjonction de cas
		0.2.4 Absurde
		0.2.5 Analyse Synthèse
		0.2.6 Récurrence
		0.2.7 Exemples
1	Ense	embles et applications 8
	1.1	Opérations sur les Parties
		1.1.1 Notations
		1.1.2 Propriétés
	1.2	Recouvrement disjoint et Partitions
	1.3	Éléments applicatifs
		1.3.1 Graphe
		1.3.2 Indicatrice
	1.4	Relations binaires
2	Calo	culus 12
	2.1	Sommes et Produits
	2.2	Coefficients binomiaux
	2.3	Valeur absolue
	2.4	Trigonométrie
_		
3		nbres Complexes 15
	3.1	Calcul dans \mathbb{C}
	3.2	Conjugaison et module
		3.2.2 Module du complexe
		3.2.3 Inégalité triangulaire
	3.3	Unimodulaires et trigonométrie
	5.5	3.3.1 Technique de l'angle moitié
4		ctions 18
	4.1	Généralités sur les fonctions
	4.2	Dérivation
	4.3	Fonctions usuelles
	4.4	Dérivation d'une fonction complexe

5	Prim 5.1	itives et équations différentielles Calcul de primitives
	5.2 5.3	Équations différentielles du premier ordre
6	Nom	bres réels et suites numériques
	6.1	Ensembles de nombres réels
	6.2	Suites réelles
		6.2.1 Généralités
		6.2.2 Suites particulières
7	Fond	ctions d'une variable réelle
	7.1	Limites et Continuité
		7.1.1 Limite d'une fonction en un point
		7.1.2 Continuité en un point
		7.1.3 Continuité sur un intervalle
		7.1.4 Fonctions à valeurs complexes
	7.2	Dérivabilité
		7.2.1 Extremum local et point critique
		7.2.2 Théorèmes de Michel Rolle et des accroissements finis
		7.2.3 Fonctions de classe \mathscr{C}^k , $(k \in \mathbb{N} \cup \{+\infty\})$
	7.3	Convexité
		7.3.1 Généralités
		7.3.2 Fonctions convexes dérivables et deux fois dérivables
8	Arith	nmétique dans Z
	8.1	Relation de divisibilité dans $\mathbb Z$
		8.1.1 Principe de bon ordre
		8.1.2 Multiples et partie $a\mathbb{Z}$
	8.2	Algorithme de division euclidienne
	8.3	pgcd et ppcm
		8.3.1 Egalité de Bézout
		8.3.2 Algorithme d'Euclide
	8.4	Entiers premiers entre eux
	8.5	Nombres premiers
	8.6	Congruences
9	Stru	ctures algébriques usuelles
	9.1	Lois de composition interne
	9.2	Structure de groupe
	9.3	Structure d'anneau et de corps
		9.3.1 Structure d'anneau
		9.3.2 Structure de corps
10	Calc	ul matriciel et systèmes linéaires
-		Opérations sur les matrices
		10.1.1 Somme et Produit matriciel
		10.1.2 Matrice élémentaire
		10.1.3 Matrices colonnes
		10.1.4 Matrice transposée
	10.2	Opérations élémentaires
		Systèmes Linéaires
		Anneau des matrices carrées

11	_		65
	11.1	Anneau des polynômes à 1 indéterminée	65 66
		11.1.2 Composition de polynômes	66
	11.2	Divisibilité et Division Euclidienne	67
		11.2.1 Divisibilité des polynômes	67
		11.2.2 Polynômes associés	67 67
	11 3	11.2.3 Division euclidienne polynômiale	68
	11.0	11.3.1 Fonction polynômiale associée	68
		11.3.2 Racines du polynôme	68
		11.3.3 Ordre de multiplicité	69
		11.3.4 Méthode de Horner pour l'évaluation polynômiale	69 70
	11.4	Dérivation	70
12	Anal	Lyse asymptotique	71
13	Espa	aces vectoriels et applications linéaires	72
14	Mat	rices II	73
	14.1	Matrices et applications linéaires	73
		14.1.1 Matrice d'une application linéaire dans des bases	73 75
		14.1.2 Application linéaire canoniquement associée	75
	14.2	Changement de bases	76
		Équivalence et similitude	77
		14.3.1 Matrices équivalentes et rang	77
		14.3.2 Matrices semblables et trace	78
15	Grou	upe symétrique et déterminant	7 9
16	•		80
		Continuité uniforme	80
	10.2	Intégrations des fonctions en escalier	81 81
	16.3	Fonctions continues par morceaux	82
		16.3.1 Généralités	82
		16.3.2 Intégrale d'une fonction continue par morceaux	82
		Sommes de Riemman	83 84
		Formules de Taylor globales	84
17		ombrement Condition of the Condition of	86
	17.1	Cardinal d'un ensemble	86 86
		17.1.2 Lemme des Bergers et principe des Tirroirs	87
		17.1.3 Calcul sur les cardinaux	88
	17.2	Listes et Combinaisons	89
			90
18	Prob	pabilités	20
18	18.1	Univers, évènements et variables aléatoires	90
18	18.1	Univers, évènements et variables aléatoires	90 91
18	18.1	Univers, évènements et variables aléatoires	90 91 91
18	18.1 18.2	Univers, évènements et variables aléatoires	90 91 91 91
18	18.1 18.2	Univers, évènements et variables aléatoires	90 91 91

		18.3.3 Loi binomiale	93
19	Espa	ices préhilbertiens réels	94
	19.1	Produit scalaire	94
		Norme associée à un produit scalaire	95
		Orthogonalité	96
		19.3.1 Résultats théoriques	96
		19.3.2 Procédé d'orthonormalisation de Gram-Schmidt	97
	19.4	Bases orthonormées	98
		Projection orthogonale sur un sous-espace de dimension finie	99
20	Proc	rédés sommatoires discrets	100
21	Fond	ctions de deux variables	101
	21.1	Continuité	101
		21.1.1 Notion d'ouvert	101
		21.1.2 Fonctions de deux variables	102
	21.2	Dérivation	103
		21.2.1 Dérivée partielles	103
			104

Table des matières - Deuxième année

1	Suit	es et séries 3
	1.1	Norme
		1.1.1 Généralités
		1.1.2 Normes euclidiennes
		1.1.3 Exemple de normes
	1.2	Suites
	1.3	Normes équivalentes
		1.3.1 Définition
		1.3.2 Cas de espaces de dimension fini
	1.4	Comparaisons asymptotiques
	1.5	Séries dans un K espace vectoriel de dimension finie
	1.6	Complément sur les séries numériques
		1.6.1 Règle de Dalembert
		1.6.2 Séries alternées
		1.6.3 Sommation des relations de comparaisons
	1.7	Produit de deux séries absolument convergentes
	1.8	Dualité série-suite
2	Limi	tes et continuité 13
	2.1	Ouverts et fermés
		2.1.1 Intérieurs
		2.1.2 Ouverts
		2.1.3 Fermés
		2.1.4 Adhérence
	2.2	Limites
		2.2.1 Cas général
		2.2.2 Produit fini d'espaces vectoriels normés
	2.3	Continuité
		2.3.1 Cas général
		2.3.2 Cas des applications linéaires
	2.4	Image réciproque et continuité
	2.5	Compacité
		2.5.1 Compacité dans un espace vectoriel normé quelconque 24
		2.5.2 Compacité en dimension finie
		2.5.3 Applications aux séries en dimension finie
	2.6	Connexité par arcs
3	Déri	vation et intégration 28
	3.1	Dérivée
	3.2	Dérivées successives
	3.3	Fonctions convexes
	3.4	Intégration sur un segment
		3.4.1 Fonctions continues par morceaux
		3.4.2 Propriétés de l'intégrale

	3.4.3	Inégalités															34
3.5	Théore	ème fondam	ental														34
3.6	Formu	les de Taylo	or .														35