Math, Problem Set #5, Convex Optimization

OSM Lab, Dr. Barro

Due Friday, July 21 at 8:00am

7.1 Prove **Proposition 7.1.5**: If S is a nonempty subset of V, then conv(S) is convex.

Proof Take any $y, z \in conv(S)$. We want to show that $\lambda y + (1-\lambda)z \in conv(S)$, $\forall \lambda \in (0,1)$. Now note next that since $y, z \in conv(S)$, both can be written as a finite sum of $x_i \in S$, say

$$y = \sum_{j=1}^{n} \lambda_{i_j} x_{i_j}, \quad z = \sum_{k=1}^{m} \lambda_{i_k} x_{i_k}, \quad \text{where} \quad \sum_{j=1}^{n} \lambda_{i_j} = \sum_{k=1}^{m} \lambda_{i_k} = 1$$

Now note that

$$\lambda y + (1 - \lambda)z = \lambda \sum_{j=1}^{n} \lambda_{i_j} x_{i_j} + (1 - \lambda) \sum_{k=1}^{m} \lambda_{i_k} x_{i_k} = \sum_{j=1}^{n} \lambda \lambda_{i_j} x_{i_j} + \sum_{k=1}^{m} (1 - \lambda) \lambda_{i_k} x_{i_k}$$

Some x_i might appear in both sums, but the definition of a convex hull does not require x_i to be distinct (and it would be redundant to require it, since it does not change the condition $\sum_{i=1}^{n} \lambda_i = 1$). Hence without loss of generality, the above is

$$= \sum_{i=1}^{n+m} (\mathbb{1}\{i \le n\} \lambda \lambda_{i_j} + \mathbb{1}\{i > n\} (1-\lambda) \lambda_{i_k}) x_i, \text{ where } x_i \in S \text{ and}$$

$$\sum_{i=1}^{n+m} (\mathbb{1}\{i \le n\} \lambda \lambda_{i_y} + \mathbb{1}\{i > n\} (1-\lambda) \lambda_{i_k}) = \sum_{j=1}^{n} \lambda \lambda_{i_j} + \sum_{i=1}^{m} (1-\lambda) \lambda_{i_k}$$

$$\lambda \sum_{j=1}^{n} \lambda_{i_j} + (1 - \lambda) \sum_{k=1}^{m} \lambda_{i_k} = \lambda + (1 - \lambda) = 1$$

Since $\lambda \in (0,1)$ was arbitrary, we thus have $\lambda y + (1-\lambda)z \in conv(S)$, $\forall \lambda \in (0,1)$, i.e. conv(S) is convex. \square

7.2 Prove that

(i) A hyperplane is convex.

Proof By definition, a hyperplane is a set of the form

$$P = \{x \in V | \langle \mathbf{a}, \mathbf{x} \rangle = \mathbf{b} \}$$
 where $a \in V, a \neq 0, b \in \mathbb{R}$.

Take any $y, z \in P$. We want to show that $\lambda y + (1 - \lambda)z \in P$, $\forall \lambda \in (0, 1)$. Now note

$$\langle \mathbf{a}, \lambda y + (1 - \lambda)z \rangle = \langle \mathbf{a}, \lambda y \rangle + \langle \mathbf{a}, (1 - \lambda)z \rangle$$
$$= \lambda \langle \mathbf{a}, y \rangle + (1 - \lambda)\langle \mathbf{a}, z \rangle = \lambda \mathbf{b} + (1 - \lambda)\mathbf{b} = \mathbf{b}$$

Hence $\lambda y + (1 - \lambda)z \in P$, i.e. a hyperplane is convex. \square

(ii) A halfspace is convex.

Proof By definition, a halfspace is a set of the form

$$H = \{x \in V | \langle \mathbf{a}, \mathbf{x} \rangle \leq \mathbf{b} \}$$
 where $a \in V, a \neq 0, b \in \mathbb{R}$.

Take any $y, z \in H$. We want to show that $\lambda y + (1 - \lambda)z \in H$, $\forall \lambda \in (0, 1)$. Now note

$$\langle \mathbf{a}, \lambda y + (1 - \lambda)z \rangle = \langle \mathbf{a}, \lambda y \rangle + \langle \mathbf{a}, (1 - \lambda)z \rangle$$

= $\lambda \langle \mathbf{a}, y \rangle + (1 - \lambda)\langle \mathbf{a}, z \rangle \le \lambda \mathbf{b} + (1 - \lambda)\mathbf{b} = \mathbf{b}$

Hence $\lambda y + (1 - \lambda)z \in H$, i.e. a hyperplane is convex. \square

7.4 Prove the following Theorem: Let $C \subset \mathbb{R}^n$ be nonempty, closed and convex. A point $p \in C$ is the projection of x onto C if and only if

$$\langle x - p, p - y \rangle \ge 0, \quad \forall y \in C.$$
 (7.14)

Prove the statements below and then write a complete proof of the theorem.

(i)
$$||x - y||^2 = ||x - p||^2 + ||p - y||^2 + 2\langle x - p, p - y \rangle$$

Proof Recall that in \mathbb{R}^n , the usual inner product is additive, linear in both arguments, and $\langle x, y \rangle = \langle y, x \rangle$.

$$||x - y||^2 = \langle x - y, x - y \rangle = \langle x - p + p - y, x - p + p - y \rangle$$

$$= \langle x - p, x - p \rangle + \langle p - y, x - p \rangle + \langle p - y, x - p \rangle + \langle p - y, p - y \rangle$$

$$= ||x - p||^2 + ||p - y||^2 + 2\langle x - p, p - y \rangle \quad \Box$$

(ii) If (7.14) holds, then ||x - y|| > ||x - p|| for all $y \in C$, $y \neq p$.

Proof (7.14) states that $\langle x - p, p - y \rangle \ge 0$, $\forall y \in C$. Further note that for any inner product, $\langle x, x \rangle \ge 0$, with equality iff x = 0. Hence, since $y \ne p$, $||y - p||^2 > 0$.

Combining the two inequalities, it easily follows from (i) that

$$||x - y||^2 = ||x - p||^2 + ||p - y||^2 + 2\langle x - p, p - y \rangle > ||x - p||^2$$

Since the inner product is non-negative, this shows that $\|x-y\|^2 > \|x-p\|^2$

(iii) If $z = \lambda y + (1 - \lambda)p$, where $\lambda \in [0, 1]$, then

$$||x - z||^2 = ||x - p||^2 + 2\lambda \langle x - p, p - y \rangle + \lambda^2 ||y - p||^2$$

Proof Observe that $p-z=p-\lambda y-(1-\lambda)p=\lambda(p-y)$, so with (i), we have

$$||x - z||^2 = ||x - p||^2 + ||p - z||^2 + 2\langle x - p, p - z \rangle$$

$$= ||x - p||^2 + ||\lambda(p - y)||^2 + 2\langle x - p, \lambda(p - y) \rangle$$

$$= ||x - p||^2 + 2\lambda\langle x - p, p - y \rangle + \lambda^2 ||p - y||^2 \quad \Box$$

.

(iv) If p is a projection of x onto the convex set C, then $\langle x-p,p-y\rangle \geq 0$ for all $y\in C$.

Proof Take $y \in C$. Define $z = \lambda y + (1 - \lambda)p$, for some $\lambda \in [0, 1]$. Observe by convexity, $z \in C$.

By definition, p is a projection of x onto the convex set C if and only if $||x-p|| \le ||x-z||$, $\forall z \in C$. By Theorem 7.1.15, the projection on our set unique, so the inequality is strict unless z = p.

Note that since from (iii), $||x-z||^2 = ||x-p||^2 + 2\lambda \langle x-p, p-y \rangle + \lambda^2 ||y-p||^2$. Combining the above, we get that

$$0 \le ||x - z||^2 - ||x - p||^2 = 2\lambda \langle x - p, p - y \rangle + \lambda^2 ||y - p||^2$$

Hence $0 \le \langle x-p, p-y \rangle + \frac{1}{2}\lambda ||y-p||^2$. Now, by choosing $\lambda = 0$, we get $0 \le \langle x-p, p-y \rangle$. \square

Theorem of Exercise 7.4 Let $C \subset \mathbb{R}^n$ be nonempty, closed and convex. A point $p \in C$ is the projection of x onto C if and only if

$$\langle x - p, p - y \rangle \ge 0, \quad \forall y \in C.$$
 (7.14)

Complete Proof (\Rightarrow) The forward direction is (iv); see the proof above.

(⇐) By (ii), ||x - y|| > ||x - p|| for all $y \in C$, $y \neq p$. This is the definition of a projection: p is a projection of x onto the convex set C if and only if $||x - p|| \le ||x - y||$, $\forall y \in C$, which completes the proof (in fact, the backward direction even shows that p is the unique projection). \square

7.6 Prove: if $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function, then the set $\{x \in \mathbb{R}^n | f(x) \le c\} \subset \mathbb{R}^n$ is a convex set.

Proof Let $A = \{x \in \mathbb{R}^n | f(x) \le c\} \subset \mathbb{R}^n$. Take any $y, z \in A$. We want to show that $\lambda y + (1 - \lambda)z \in A$, $\forall \lambda \in (0, 1)$.

Note that the set \mathbb{R}^n is convex. By definition of 'convex function', $\forall y, z \in \mathbb{R}^n$,

$$f(\lambda y + (1 - \lambda)z) \le \lambda f(y) + (1 - \lambda)f(z) \le \lambda c + (1 - \lambda)c = c$$

where the first inequality comes from convexity of \mathbb{R}^n , and the last follows since we assume $y, z \in A$. A is convex. \square

7.7 Prove that any nonnegative combination of convex functions is convex. That is, for any convex set C, for any convex functions f_1, \dots, f_k taking C to \mathbb{R} , and for any $\lambda_1, \dots, \lambda_k \in \mathbb{R}_+$, the function

$$f(x) = \sum_{i=1}^{k} \lambda_i f_i(x)$$

is convex.

Proof Note that since all f_i are convex, for any convex set C, and for any $x, y \in C$, $\lambda \in [0, 1]$, we have

$$f_i(\lambda x + (1 - \lambda)y) \le \lambda f_i(x) + (1 - \lambda)f_i(y)$$

Now take arbitrary convex $C, x, y \in C, \lambda \in [0, 1]$, and observe

$$f(\lambda x + (1 - \lambda)y) = \sum_{i=1}^{k} \lambda_i f_i(\lambda x + (1 - \lambda)y) \le \sum_{i=1}^{k} (\lambda f_i(x) + (1 - \lambda)f_i(y))$$

$$= \lambda \sum_{i=1}^{k} f_i(x) + (1 - \lambda) \sum_{i=1}^{k} f_i(y) = \lambda f(x) + (1 - \lambda) f(y) \quad \Box$$

7.13 If $f: \mathbb{R}^n \to \mathbb{R}$ is convex and bounded above, prove that f is constant.

Proof Suppose f is not constant, i.e. there exist some x_0, x_1 such that $f(x_1) > f(x_0)$, i.e. $f(x_1) - f(x_0) = e > 0$. Without loss of generality, $x_1 > x_0$, i.e. $x_1 - x_0 = d > 0$ For any $x > x_1$, we observe that

$$t = \frac{x - x_1}{x - x_0} \in (0, 1]$$
 and $1 - t = 1 - \frac{x - x_1}{x - x_0} = \frac{x_1 - x_0}{x - x_0} \in [0, 1)$

where the closed sides of the bounds are approached as $x \to \infty$.

I chose this fraction to allows us to represent the middle point (x_1) as a convex combination of the outer ones, as we can see that

$$x_1 = \frac{x - x_0}{x - x_0} x_1 = \frac{x x_1 - x x_0 + x x_0 - x_1 x_0}{x - x_0} = \frac{x_1 - x_0}{x - x_0} x + \frac{x - x_1}{x - x_0} x_0 = (1 - t)x + tx_0$$

such that

$$f(x_1) = f(\frac{x_1 - x_0}{x - x_0}x + \frac{x - x_1}{x - x_0}x_0) \le \frac{x_1 - x_0}{x - x_0}f(x) + \frac{x - x_1}{x - x_0}f(x_0)$$

Then note that

$$f(x) \ge \frac{x - x_0}{x_1 - x_0} f(x_1) - \frac{x - x_1}{x_1 - x_0} f(x_0) = \frac{x - x_0}{x_1 - x_0} f(x_1) - \frac{x - x_0 + x_0 - x_1}{x_1 - x_0} f(x_0)$$
$$= \frac{x - x_0}{x_1 - x_0} (f(x_1) - f(x_0)) + f(x_0) = \frac{x - x_0}{d} e + f(x_0) > f(x_0)$$

It is obvious that for any finite M as a bound of the function, we could choose a suitable x such that f(x) > M (just to be rigorous, the $x > x_0 + \frac{d}{e}(M - f(x_0))$ will do). Thus, f is unbounded, a contradiction. This proves that, f must be constant. \square

7.20 Prove Proposition 7.4.3 : If $f: \mathbb{R}^n \to \mathbb{R}$ is convex and -f is also convex, then f is affine.

Proof Since we $f: \mathbb{R}^n \to \mathbb{R}$, we know that affine functions are of the form f(x) = L(x) + b, where L(x) is a linear transformation, and $b \in \mathbb{R}$.

By convexity of f, -f, we have that for any $y, z \in \mathbb{R}^n$, and $\forall \lambda \in [0, 1]$,

$$f(\lambda y + (1-\lambda)z) \leq \lambda f(y) + (1-\lambda)f(z), \quad -f(\lambda y + (1-\lambda)z) \leq -\lambda f(y) - (1-\lambda)f(z)$$

Combining these inequalities yields $f(\lambda y + (1 - \lambda)z) = \lambda f(y) + (1 - \lambda)f(z)$.

q(0) = f(x) - f(0) = 0, and $q(\lambda y + (1 - \lambda)z) = \lambda q(y) + (1 - \lambda)q(z)$ (*)

We now show that f is affine. Define
$$g: \mathbb{R}^n \to \mathbb{R}$$
 as $g(x) = f(x) - f(0)$. Observe:

Let y be arbitrary, z=0. Then we have that $g(\lambda y)=\lambda g(y) \ \forall \lambda \in [0,1]$. This is enough to show that g is a linear function, since we can easily observe that since $x\mapsto \frac{x}{\lambda}$ is a bijection, and $\frac{1}{\lambda}\in [0,1]$ for $\lambda>1$, such that for any $y=\frac{x}{\lambda}\in \mathbb{R}^n$, we have that $f(\frac{x}{\lambda})=\frac{1}{\lambda}f(x)$, i.e. $f(\lambda y)=\lambda f(y)$. Linearity in negative values follows similarly with the bijection $x\mapsto -x$. Thus, combining linearity with (*) yields that for any $y,z\in \mathbb{R}^n$, $a,b\in \mathbb{R}$, g(ay+bz)=ag(y)+bg(z), which is the definition of a linear transformation.

We have thus shown that f(x) = g(x) + f(0), so f is affine. \square

7.21 Prove Proposition 7.4.11 : If $D \subset \mathbb{R}$, and $f : \mathbb{R}^n \to D$ is a strictly increasing function, then x^* is a local minimizer for the problem

minimize
$$\phi \circ f(x)$$

subject to $G(x) \leq \mathbf{0}$
 $H(x) = 0$

if and only if x^* is a local minimizer for the problem

minimize
$$f(x)$$

subject to $G(x) \leq \mathbf{0}$.
 $H(x) = 0$

Proof Note that the constraints stance out a convex set K. We're proving a local property in \mathbb{R} , and the constraints are invariant across the two problems.

 \Rightarrow Suppose x^* is a minimizer of the second problem. We have that $f(x^*) \leq f(x)$ for all x in some open neighborhood $\mathscr{O} = B_{\epsilon}(x^*) \cap f(K)$, $\epsilon > 0$ (without loss of generality, since we are in Euclidean space). Since ϕ is strictly increasing, we have $\phi(y) > \phi(z)$ whenever y > z. Thus for all $x \in \mathscr{O}$, since $f(x) \geq f(x^*)$, we have $\phi \circ f(x) \geq \phi \circ f(x^*)$. This shows that x^* remains a minimizer in \mathscr{O} under optimization of $\phi \circ f(x)$. \square

 \Leftarrow Suppose x^* is a minimizer of the first problem. We have that $\phi \circ f(x^*) \leq \phi \circ f(x)$ for all x in some open neighborhood \mathscr{O} . For the second problem, there are four mutually exclusive cases we need to distinguish for \mathscr{O} :

- (i) There are no minimizers in \mathcal{O} and subsets thereof.
- (ii) x^* is the local minimizer in some $\mathcal{U} \subset \mathcal{O}$.
- (iii) There are multiple, finite minimizers in some $\mathscr{U} \subset \mathscr{O}$; none of them are x^* .
- (iv) There are infinitely many minimizers, none of which are x^* .
- (i) is impossible since it would imply that for each x in any \mathscr{U} , there exist some y, z such that f(y) < f(x) < f(z). If x^* in some \mathscr{U} , this would imply by (\Rightarrow) that $\phi \circ f(y) < \phi \circ f(x^*) < \phi \circ f(z)$, contradicting our assumptions.

Observe that by shrinking the open set \mathscr{O}_{ϵ} to a sufficiently small ϵ , case (iii) can be reduced to case (i).

(iv) is either reduced to (i), or we must observe that for any $\epsilon > 0$, there is a sequence of minimizers converging to x^* . In the latter case, we observe that since for any choice of $\mathscr{U} \ni x^*$, there exists a minimizer x' such that $f(x') \leq f(x) \ \forall x \in \mathscr{U}$. Hence it follows from (\Rightarrow) that $\phi \circ f(x') \leq \phi \circ f(x^*)$, and in fact, by our assumption on x^* as a minimizer of the first problem that $\phi \circ f(x') = \phi \circ f(x^*)$. But then since ϕ is strictly increasing, $\phi(y) = \phi(z) \Rightarrow y = z$. Hence $f(x) \geq f(x') = f(x^*)$, for all $x \in \overline{\mathscr{U}}$, and x^* is a minimizer of the second problem. \square