Question Number	Answer		Mark
3(a)	Ensure metre rule is vertical	(1)	
	• Measure <i>d</i> in multiple places and calculate the mean	(1)	
	• Measure the time taken for the wave to travel at least 2 lengths of the tray		
	Or measure the time taken for the wave to travel the length of the tray,		
	repeat this and calculate the mean average time/speed	(4)	
	Or use a video camera to film the wave to determine the time taken	(1)	
	• Calculate <i>v</i> using the average time for the wave to travel 40 cm		
	(accept v = 0.40 m/t)	(1)	4
	Or calculate v using total distance the wave travelled in the time measured	(1)	-
3(b)(i)	EITHER		
	• Plot a graph of v^2 on the y-axis against d on the x-axis		
	Or compared $v^2 = kd$ with $y = mx$	(1)	
	• The gradient will be <i>k</i>	(1)	
	MP2 dependent on MP1		
	OR		
	• Plot a graph of v^2 on the x-axis and d on the y-axis	(1)	
	• The gradient will be 1/k	(1)	2
	MP2 dependent on MP1		
3(b)(ii)	Max ONE from		
	• Values of <i>d</i> recorded to inconsistent decimal places (d.p.)	(1)	
	• Inconsistent significant figures (s.f.) for <i>k</i> values calculated	(1)	
	No evidence of repeated measurement	(1)	
	Not enough depths tested (to plot a graph)	(1)	
	• $k = 9.9$ incorrectly rounded (9.96)	(1)	1
3(b)(iii)	• Mean value of $k = 9.71 \text{ (m s}^{-2})$	(1)	
	• Calculates percentage difference from 9.81 m s ⁻²	(1)	
	• Percentage difference small so k could be gravitational field strength		
	(Allow correct conclusion from their calculated mean <i>k</i> value)	(1)	3
	MP3 depends on MP2		
	For MP2, the denominator must be the published value (9.81 m s ⁻²)		
	Example of calculation		
	Mean $k = (9.36 + 9.9 + 9.88) / 3 = 9.71$		
	Percentage difference = $[(9.81 - 9.71) / 9.81] \times 100\% = 1\%$, which is small so k		
	could be g.		
	Total for question 3		10