

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14060048603

FCC REPORT (WIFI)

Applicant: SHENZHEN HONESTY ELECTRONIC TECHNOLOGY

CO.,LTD

Address of Applicant:

Room6E, Douhui Electronic City Building A, Zhonghang Road,

Futian District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: S19, HQ6500

FCC ID: 2ACIC-HQ6500

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 23 Jun. 2014

Date of Test: 24 Jun. to 14 Jul., 2014

Date of report issued: 15 Jul., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	15 Jul., 2014	Original

Luna Gao Report Clerk Prepared by: Date: 15 Jul., 2014

Reviewed by: Date: 15 Jul., 2014

Project Engineer

Project No.: CCIS140600486RF

3 Contents

			Page
1	CO	/ER PAGE	1
2	VER	RSION	2
3		NTENTS	
		T SUMMARY	
4			
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	8
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.2 6.7	2 Radiated Emission Method Spurious Emission	
	6.7.		
	6.7.2		
7	_	T SETUP PHOTO	
8	EUI	CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	SHENZHEN HONESTY ELECTRONIC TECHNOLOGY CO., LTD	
Address of Applicant:	Room6E, Douhui Electronic City Building A, Zhonghang Road, Futian District, Shenzhen, China	
Manufacturer :	SHENZHEN HONESTY ELECTRONIC TECHNOLOGY CO., LTD	
Address of Manufacturer:	Room6E, Douhui Electronic City Building A, Zhonghang Road, Futian District, Shenzhen, China	

5.2 General Description of E.U.T.

_	
Product Name:	Mobile Phone
Model No.:	S19, HQ6500
Hardware Version:	E2106_V1.10
Software Version	106_v89_gp3010hd_op
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2 dBi
AC adapter:	MODEL:C14500 Input: AC 100-240V 50/60Hz 0.15A Output: DC 5V, 700mA
Power supply:	Rechargeable Li-ion Battery DC3.7V-3800mAh
Remark:	The model: S19, HQ6500 were identical inside, the electrical circuit design, components used and internal wiring, with only difference being model name, ID and mechanical components.

Operation Frequency each of channel For 802.11b/g/n(H20)									
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz		
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz		
3	2422MHz	6	2437MHz	9	2452MHz				

Operation Frequency each of channel For 802.11n(H40)									
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
		4	2427MHz	7	2442MHz				
		5	2432MHz	8	2447MHz				
3	2422MHz	6	2437MHz	9	2452MHz				

Note

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency		
The lowest channel	2412MHz		
The middle channel	2437MHz		
The Highest channel	2462MHz		

802.11n (H40)

Channel	Frequency		
The lowest channel	2422MHz		
The middle channel	2437MHz		
The Highest channel	2452MHz		

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate		
802.11b	1Mbps		
802.11g	6Mbps		
802.11n(H20)	6.5Mbps		
802.11n(H40)	13.5Mbps		

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	July 09 2014	July 08 2015	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	Jun., 25 2014	Jun., 24 2015	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	Jun., 25 2014	Jun., 24 2015	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2014	Mar. 31 2015	
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2014	Mar. 31 2015	
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2014	Mar. 31 2015	
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2014	Mar. 31 2015	
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2014	Mar. 31 2015	
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2014	Mar. 31 2015	
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	July 09 2014	July 08 2015	
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2014	Mar. 31 2015	
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2014	Mar. 29 2015	
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	Jun., 25 2014	Jun., 24 2015	
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2014	Mar. 31 2015	
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2013	Aug. 11 2014	
19	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	Jun., 25 2014	Jun., 24 2015	
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	Jun., 25 2014	Jun., 24 2015	

Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	July 09 2014	July 08 2015
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	Jun., 25 2014	Jun., 24 2015
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2014	Mar. 31 2015
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2014	Mar. 31 2015
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2 dBi.

6.2 Conducted Emission

	-					
Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.4: 2003					
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz				
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	Fraguerou rongo (MIII-)	dBuV)				
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30 * Decreases with the logarithn	60	50			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 					
Test setup:	LISN 40cm		er — AC power			
Test Instruments:	Refer to section 5.6 for details	i				
Test mode:	Refer to section 5.3 for details	3				
Test results:	Passed					

Measurement Data

Neutral:

Trace: 13

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: 486RF Job No. EUT

: Mobile phone : S19 Model

: WIFI Mode Test Mode

Power Rating: AC120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Carey

	Freq	Read Level	LISN Factor		Level	Limit Line	Over Limit	Remark
	MHz	—dBu∜	<u>dB</u>	<u>ap</u>	dBu₹	—dBu⊽	<u>ab</u>	
1	0.150	44.46	0.25	10.78	55.49	66.00	-10.51	QP
2	0.150	27.37	0.25	10.78	38.40	56.00	-17.60	Average
3	0.170	41.92	0.25	10.77	52.94	64.94	-12.00	QP
4	0.170	25.76	0.25	10.77	36.78	54.94	-18.16	Average
5	0.194	38.69	0.25	10.76	49.70	63.84	-14.14	QP
6	0.198	22.66	0.25	10.76	33.67	53.71	-20.04	Average
1 2 3 4 5 6 7 8 9	0.219	35.39	0.25	10.76	46.40	62.88	-16.48	QP
8	0.219	19.39	0.25	10.76	30.40	52.88	-22.48	Average
9	0.246	19.12	0.26	10.75	30.13	51.91	-21.78	Average
10	0.266	31.64	0.26	10.75	42.65	61.25	-18.60	QP
11	0.435	32.03	0.26	10.73	43.02	57.15	-14.13	QP
12	0.437	25.39	0.27	10.74	36.40	47.11	-10.71	Average

Line:

Trace: 15

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

: 486RF Job No.

EUT : Mobile phone Model : S19 : WIFI Mode Test Mode Power Rating : AC120V/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Carey

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	āĒ	dBu₹	−dBuV	<u>ab</u>	
1	0.150	43.81	0.27	10.78	54.86	66.00	-11.14	QP
2	0.150	29.53	0.27	10.78	40.58	56.00	-15.42	Average
3	0.170	42.00	0.27	10.77	53.04	64.94	-11.90	QP
2 3 4 5 6	0.170	29.38	0.27	10.77	40.42	54.94	-14.52	Average
5	0.198	37.70	0.28	10.76	48.74	63.71	-14.97	QP
6	0.219	35.66	0.28	10.76	46.70	62.88	-16.18	QP
7	0.219	21.69	0.28	10.76	32.73	52.88	-20.15	Average
7 8 9	0.242	33.82	0.27	10.75	44.84	62.04	-17.20	QP
9	0.266	19.77	0.27	10.75	30.79	51.25	-20.46	Average
10	0.294	32.77	0.26	10.74	43.77	60.41	-16.64	QP
11	0.313	18.78	0.26	10.74	29.78	49.88	-20.10	Average
12	0.435	22.58	0.28	10.73	33.59			Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.			

Measurement Data

T O.L.	Max	kimum Conduct	L' - '(/ ID - ·)	D 1		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	16.44	14.00	14.20	12.00		
Middle	15.07	14.23	13.53	12.65	30.00	Pass
Highest	15.10	13.34	12.65	12.23		

Test plot as follows:

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

T . O.						
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	9.30	16.51	17.80	36.71		
Middle	9.46	16.51	17.80	36.71	>500	Pass
Highest	9.38	16.51	17.80	36.71		

T		99% Occupy		5 "		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.91	16.51	17.64	36.07		
Middle	12.75	16.51	17.64	36.07	N/A	N/A
Highest	12.59	16.43	17.64	36.07		

Test plot as follows:

Highest channel

Span 40 MHz

Date:

Center 2.462 GHz

25.JUN.2014 20:05:15

Highest channel

25.JUN.2014 19:59:58

Date:

Highest channel

Date:

25.JUN.2014 19:48:31

Date:

Span 40 MHz

Date:

Center 2.462 GHz

25.JUN.2014 20:06:53

Highest channel

Span 40 MHz

Date:

Center 2.462 GHz

25.JUN.2014 20:11:52

Highest channel

25.JUN.2014 20:17:50

Date:

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

T O		Power Spec		5 "		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	5.85	1.31	0.27	-4.72		
Middle	5.23	0.50	-0.41	-4.76	8.00	Pass
Highest	4.62	-0.76	-1.10	-5.38		

Test plot as follows:

Report No: CCIS14060048603

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Took Donning month	TOO Daniel C Coastion 45 047 (4)		
Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:			
	Spectrum Analyzer		
	E.U.T		
	Non-Conducted Table		
	Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.4: 2003				
Test Frequency Range:	2.3GHz to 2.5GHz				
Test site:	Measurement Distance: 3m				
Receiver setup:	Frequency	Detector Peak	RBW 1MHz	VBW 3MHz	Remark Peak Value
	Above 1GHz	Peak	1MHz	10Hz	Average Value
Limit:	Freque Above 1	-	Limit (dBuV/m @3m) 54.00 74.00		Remark Average Value Peak Value
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 				
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

802.11b

Test channel: Lowest

Horizontal:

Trace: 67

Frequency (MHz)

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro : 486RF

EUT : Mobile phone

Model

: S19 : WIFI-B-L mode Test mode Power Rating: 120V/60Hz Environment: Temp:25.5°C

Huni:55%

Test Engineer: Carey

REMARK

	Freq				Preamp Factor			
	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	
_	2390.000 2390.000							

Trace: 81

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 486RF Pro

EUT : Mobile phone S19 Model Test mode : WIFI-B-L mode

Power Rating: 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

Ellara	-	Antenna Factor			Remark	
-	MHz	 <u>d</u> B/m	 	 	 	-
_	2390.000 2390.000	 	 	 	 	

Test channel: Highest

Horizontal:

Frequency (MHz) Trace: 97

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 486RF Pro

: Mobile phone EUT

Model : S19

Test mode : WIFI-B-H mode Power Rating: 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

REMARK

	Freq		Antenna Factor				Remark	
	MHz	dBu∜	<u>dB</u> /m	 <u>d</u> B	$\overline{dB} \overline{uV}/\overline{m}$	dBu√/m	 	-
l 2	2483.500 2483.500							

Vertical:

Trace: 83

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro : 486RF

EUT : Mobile phone

Model : S19

: WIFI-B-H mode Test mode Power Rating: 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

	-				Preamp Factor				Remark	
•	MHz	dBu∀	<u>dB</u> /m	<u>dB</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>		
l 2	2483.500 2483.500									

802.11g

Test channel: Lowest

Horizontal:

Trace: 69

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro : 486RF

EUT : Mobile phone

Model : S19

: WIFI-G-L mode Test mode Power Rating : 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

REMARK

1 2

 Freq		Antenna Factor						
 MHz	dBu∜	<u>dB</u> /m	₫B	<u>dB</u>	dBuV/m	dBuV/m	₫B	
 		27.58 27.58						Peak Average

Frequency (MHz) Trace: 79

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro : 486RF

EUT : Mobile phone Model : S19 Test mode : WIFI-G-L mode
Power Rating : 120V/60Hz
Environment : Temp:25.5 C Huni:55%

2320

Test Engineer: Carey REMARK :

Elita			Intenna Factor					Remark
-	MHz	dBu∜	— <u>d</u> B/m	 <u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
	2390.000 2390.000							

2350

Project No.: CCIS140500383RF

2422

Test channel: Highest

Horizontal:

Trace: 95

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 486RF Pro EUT

: Mobile phone Model : S19 Test mode : WIFI-G-H mode

Power Rating: 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK:

mmu	-		Antenna Factor				Remark	
-	MHz	dBu∜	dB/m	 dB	dBuV/m	dBu√/m	 	
_	2483.500 2483.500			 			 	

Frequency (MHz) Trace: 85

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 486RF Pro

EUT : Mobile phone : S19 Model Test mode : WIFI-G-H mode Power Rating : 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

الكاالك	-		Antenna Factor	-			Remark	
	MHz	dBu∜	<u>dB</u> /m	 	dBuV/m	$\overline{dB} \overline{uV}/\overline{m}$	 	
1 2	2483.500 2483.500			 			 	

802.11n (H20) Test channel: Lowest

Horizontal:

Trace: 71

Frequency (MHz)

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 486RF Pro

: Mobile phone EUT

Model : S19

: WIFI-N20-L mode Test mode

Power Rating: 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

	-		Antenna Factor				Remark	
-	MHz	dBu∜	dB/m	 	$\overline{dBuV/m}$	$\overline{dBuV/m}$	 	
	2390.000 2390.000							

Frequency (MHz) Trace: 77

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 486RF Pro

EUT : Mobile phone

Model : S19

: WIFI-N20-L mode Test mode

Power Rating: 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

EMART	-		antenna Factor						Remark
-	MHz	<u>d</u> Bu∇	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>a</u> B	
-	2390.000 2390.000				0.00 0.00				

Test channel: Highest

Horizontal:

Trace: 93

Frequency (MHz)

Site

: 3m chamber : FCC_PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro EUT : 486RF

: Mobile phone Model : S19 : WIFI-N20-H mode Test mode

Power Rating: 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK

- Junua			Antenna Factor				Remark	
-	MHz	dBu∜	<u>dB</u> /m	dB	 dBuV/m	$\overline{dBuV/m}$	 	
	2483.500 2483.500							

Vertical:

Frequency (MHz) Trace: 87

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro : 486RF

EUT : Mobile phone

Model : S19

: WIFI-N20-H mode Test mode

Power Rating: 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Carey

REMARK

Freq		Antenna Factor		-				Remark	
MHz	—dBu∜	<u>dB</u> /m	<u>dB</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>		-
2483.500 2483.500									

802.11n (H40) Test channel: Lowest

Horizontal:

Trace: 73

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 486RF Condition

Pro

EUT : Mobile phone

: S19 Model

Test mode : WIFI-N40-L mode

Power Rating: 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Carey

REMARK

	Freq		Antenna Factor					Remark
	MHz	dBu∀	<u>dB</u> /m	 <u>d</u> B	dBuV/m	dBu√/m	дв	
1 2	2390.000 2390.000							

Vertical:

Trace: 75

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 486RF Pro

EUT : Mobile phone

Model : S19

Test mode : WIFI-N40-L mode

Power Rating: 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

ReadAntenna Cable Preamp Limit Over Loss Factor Level Line Limit Remark Freq Level Factor

dBuV dB/m dB dB dBuV/m dBuV/m

5.67 0.00 60.59 74.00 -13.41 Peak 5.67 0.00 47.03 54.00 -6.97 Average 1 2390.000 27.34 27.58 2 2390.000 13.78 27.58

Test channel: Highest Horizontal:

Trace: 91

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 486RF Pro

EUT : Mobile phone

Model : S19

: WIFI-N40-H mode Test mode

Power Rating: 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

1 2

	Freq		ReadAntenna Level Factor						Remark	
	MHz	dBu∜	<u>dB/m</u>	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	dB		-
l 2	2483.500 2483.500									

Vertical:

Trace: 89

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 486RF Pro

EUT : Mobile phone

Model

: S19 : WIFI-N40-H mode Test mode

Power Rating: 120V/60Hz

Environment : Temp:25.5°C Huni: 55%

Test Engineer: Carey

REMARK

m.	-		Antenna Factor					Remark
	MHz	dBu∜	dB/m	dB	dB	$\overline{dBuV/m}$	$\overline{dB} \overline{uV} / \overline{m}$	
	2483.500 2483.500							

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.4:2003 and KDB558074							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer							
	Non-Conducted Table							
	Ground Reference Plane							
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

Date: 25.MAY.2014 22:01:53

30MHz~25GHz

Date: 25.MAY.2014 22:15:19

30MHz~25GHz

Date: 25.MAY.2014 22:16:22

30MHz~25GHz

Date: 25.MAY.2014 22:05:46

30MHz~25GHz

Date: 25.MAY.2014 22:06:09

30MHz~25GHz

Date: 25.MAY.2014 22:06:49

30MHz~25GHz

Test mode: 802.11n(H20)

Date: 15.JUN.2014 01:05:00

30MHz~25GHz

Date: 25.MAY.2014 22:08:06

30MHz~25GHz

Date: 25.MAY.2014 22:08:31

30MHz~25GHz

Date: 25.MAY.2014 22:09:16

30MHz~25GHz

Date: 25.MAY.2014 22:09:42

30MHz~25GHz

Date: 25.MAY.2014 22:10:20

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205										
Test Method:	ANSI C63.4:200)3									
Test Frequency Range:	9KHz to 25GHz										
Test site:	Measurement D	istance: 3m									
Receiver setup:											
	Frequency	Detector	RBW	VBW	Remark						
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value						
	Above 1GHz	Peak	1MHz	3MHz	Peak Value						
	Above IGI12	Peak	1MHz	10Hz	Average Value						
Limit:		T									
	Freque		Limit (dBuV		Remark						
	30MHz-88MHz 40.0 Quasi-peak V										
	88MHz-216MHz 43.5 Quasi-peak Valu										
	216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value										
	960MHz-	1GHz			Quasi-peak Value						
	Above 1	GHz	54.0 74.0		Average Value Peak Value						
Test Procedure:	1. The EUT w	vas nlaced on t			e 0.8 meters above						
	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the make the maters and to find the maters and to find the maters and the specified E 6. If the emission of the EUT have 10dB	at a 3 meter come the position was set 3 meter was set 3 meter thich was mount a height is varied to determine to the and vertice assurement. The rota table maximum read ceiver system and width with sion level of the would be reported to the would be reported to the position of the would be reported to the terminal than the rota table maximum read ceiver system and width with sion level of the would be reported to the reported	amber. The of the highes is away from inted on the tried from one he maximum al polarizations ion, the EU a was turned was turned was set to P Maximum He EUT in peasing could buted. Otherwise re-tested	table was rest radiation. If the interfer op of a variation of the armount of the	rence-receiving able-height antenna our meters above the field strength. Intenna are set to a from 1 meter to 4 the ees to 360 degrees						

Below 1GHz

Horizontal:

Site

3m chamber FCC_PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

Pro 486RF EUT Mobile phone

: S19 Model Test mode : WIFI mode Power Rating : 120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey
REMARK :

מאדטוונכ	i									
	_		Antenna					Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark	
-	MHz	dBu∜	$-\overline{dB}/\overline{m}$			$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB		
1	36.895	35.11	12.82	0.50	29.93	18.50	40.00	-21.50	QP	
	78.139	37.66	8.31	0.84	29.65	17.16	40.00	-22.84	QP	
3	132.221	47.10	8.77	1.21	29.32	27.76	43.50	-15.74	QP	
4	195.137	44.16	10.57	1.37	28.86	27.24	43.50	-16.26	QP	
5	226.894	43.04	11.51	1.51	28.67	27.39	46.00	-18.61	QP	
6	301.422	35.77	13.08	1.77	28.45	22.17	46.00	-23.83	QP	

Vertical:

Site : 3m chamber

Condition : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL

Pro : 486RF

EUT : Mobile phone

: S19 Model : WIFI mode Test mode Power Rating : 120V/60Hz

Environment : Temp: 25.5 C Huni: 55%

Test Engineer: Carey
REMARK:

mon	•	Read	Antenna	Cable	Preamn		Limit	Over		
	Freq		Factor		-				Remark	
-	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dB} \overline{uV}/\overline{m}$	<u>dB</u>		
1	30.853	47.38	12.32	0.44	29.97	30.17	40.00	-9.83	QP	
	37.025	48.88	12.82	0.50	29.93	32.27	40.00	-7.73	QP	
3	77.865	48.70	8.26	0.84	29.66	28.14	40.00	-11.86	QP	
4	131.758	54.61	8.82	1.21	29.32	35.32	43.50	-8.18	QP	
5	137.903	53.52	8.35	1.25	29.28	33.84	43.50	-9.66	QP	
6	191.074	49.42	10.56	1.37	28.89	32.46	43.50	-11.04	QP	

Above 1GHz

Test mod	de:	3	302.11b	Test chan	nel:		Lowest	Rem	ark:		Peak
Frequency (MHz)	Le	ad vel uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (d		Level (dBuV/m)	Limit Line (dBuV/m		r Limit dB)	Pol.
4824.00	46.	.92	31.53	8.90	40.	24	47.11	74.00	-26	6.89	Vertical
4824.00	4824.00 46.13 31.53		31.53	8.90	40.	24	46.32	74.00	-27	7.68	Horizontal

Test mod	de:	8	302.11b	Test chan	nel:		Lowest	Ren	nark:	l A	Average
Frequency (MHz)	Le	ad vel uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (dl	tor	Level (dBuV/m)	Limit Lir (dBuV/r		ver Limit (dB)	Pol.
4824.00	36.	.81	31.53	8.90	40.	24	37.00	54.00	-	17.00	Vertical
4824.00	35.	.35	31.53	8.90	40.	24	35.54	54.00	-	18.46	Horizontal

Test mod	de:	3	302.11b	Test chan	nel:		Middle	Rema	ark:		Peak
Frequency (MHz)	_	ad vel uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Factor		Level (dBuV/m)	Limit Line		r Limit dB)	Pol.
4874.00	(* * / (* *)		31.58	8.98	40	.15	46.77	74.00	-27	7.23	Vertical
4874.00	874.00 45.93 31.58		31.58	8.98	40	.15	46.34	74.00	-27	7.66	Horizontal

Test mod	de:	3	302.11b	Test channel:		Middle		Remark:		P	Average	
Frequency (MHz)	Le	ead vel suV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fa	amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m)		r Limit IB)	Pol.	
4874.00	35	.89	31.58	8.98	40	.15	36.30	54.00	-17	7.70	Vertical	
4874.00			31.58	8.98	40	.15	35.89	54.00	-18	3.11	Horizontal	

Test mod	de:	8	302.11b	Test chan	nel:	ŀ	Highest	Rer	nark:			Peak
Frequency (MHz)		Level uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Cable Loss Pre		Level (dBuV/m)	Limit Li (dBuV/r	-	Over (dl	-	Pol.
4924.00	45.	.49	31.69	9.08	40.	.03	46.23	74.00)	-27.	77	Vertical
4924.00	45.	.16	31.69	9.08	40	.03	45.90	74.00)	-28.	.10	Horizonta

Test mod	de:	3	302.11b	Test chan	nel:	ŀ	Highest	Ren	nark:	l A	Average
Frequency (MHz)	' ' I Factor I		Cable Loss (dB)	Prea Facto		Level (dBuV/m)	Limit Lir (dBuV/n	-	er Limit (dB)	Pol.	
4924.00	34.	.69	31.69	9.08	40	.03	35.43	54.00	-1	8.57	Vertical
4924.00	35	.54	31.69	9.08	0.08 40		36.28	54.00	-1	7.72	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mod	de:	802.11g	Test chan	nel:		Lowest	Remark	(:		Peak
Frequency (MHz)	Read Level (dBuV	I Factor	Cable Loss (dB)	Prea Fac (d	tor	Level (dBuV/m)	Limit Line (dBuV/m)		Limit B)	Pol.
4824.00	46.47	7 31.53	8.90	40.	24	46.66	74.00	-27	.34	Vertical
4824.00	45.88	31.53	8.90	40.	24	46.07	74.00	-27	.93	Horizontal

Test mod	de:	8	302.11g	Test chan	nel:		Lowest	Remarl	C :	F	Average
Frequency (MHz)	' '		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (dl	tor	Level (dBuV/m)	Limit Line (dBuV/m)	Over (dl	Limit B)	Pol.
4824.00	36.	.29	31.53	8.90	40.	24	36.48	54.00	-17	.52	Vertical
4824.00	35.	.53	31.53	8.90	40.	24	35.72	54.00	-18	.28	Horizontal

Test mod	de:	8	302.11g	Test chan	nel:		Middle	Rema	ark:		Peak
Frequency (MHz)	Re Le (dB	vel	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Line		r Limit dB)	Pol.
4874.00	44.	.20	31.58	8.98	40	.15	44.61	74.00	-29	9.39	Vertical
4874.00	46.	.10	31.58	8.98	40	.15	46.51	74.00	-27	7.49	Horizontal

Test mod	de:	8	302.11g	Test chan	nel:		Middle	Rem	nark:	<i>-</i>	Average
Frequency (MHz)	Le	ead vel suV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Lin (dBuV/n	-	er Limit (dB)	Pol.
4874.00	33	.97	31.58	8.98	40	.15	34.38	54.00	-	19.62	Vertical
4874.00	36	.33	31.58	8.98	40	.15	36.74	54.00	-	17.26	Horizontal

Test mod	de:	8	02.11g	Test chan	nel:	ŀ	Highest	Rer	mark	ζ:		Peak
Frequency (MHz)	(MHz) (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Facto		Level (dBuV/m)	Limit Li (dBuV/r			Limit B)	Pol.
4924.00	46.	.25	31.69	9.08 40.		.03	46.99	74.00)	-27	.01	Vertical
4924.00	45.	.79	31.69	9.08	40.	.03	46.53	74.00)	-27	.47	Horizontal

	Test mod	de:	8	02.11g	Test chan	nel:	ł	Highest	Re	mark	C:	A	verage
	Frequency (MHz)	(MHz) (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)	Pre: Facto	amp r (dB)	Level (dBuV/m)	Limit L (dBuV			Limit B)	Pol.
Ī	4924.00	35.	.78	31.69	9.08	40	.03	36.52	54.0	0	-17	'.48	Vertical
Ī	4924.00	35.	.02	31.69	9.08	40	.03	35.76	54.0	0	-18	3.24	Horizontal

Remark

^{1.}Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

^{3.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mod	le:	802	2.11(n20)	Test chan	nel:		Lowest	Rer	nark:		Peak
Frequency (MHz)	Le	ead vel suV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (d	ctor	Level (dBuV/m)	Limit Li (dBuV/i		ver Limit (dB)	Pol.
4824.00			8.90	40.	24	45.35	74.00) .	28.65	Vertical	
4824.00	45	.43	31.53	8.90	40.	24	45.62	74.00) .	28.38	Horizontal

Test mod	le:	80	2.11(n20)	Test chan	nel:		Lowest	Remar	k:	P	Average
Frequency (MHz)	Le	ead vel suV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (d	tor	Level (dBuV/m)	Limit Line (dBuV/m)	Over (d	Limit B)	Pol.
4824.00	35	.36	31.53	8.90	40.	24	35.55	54.00	-18	.45	Vertical
4824.00	34	.71	31.53	8.90	40.	24	34.90	54.00	-19	.10	Horizontal

Test mod	Test mode: 80		Test chan	nel:		Middle	Remarl	< :		Peak
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (dl	tor	Level (dBuV/m)	Limit Line (dBuV/m)		Limit B)	Pol.
4874.00	46.24	31.58	8.98	40.	15	46.65	74.00	-27	'.35	Vertical
4874.00	45.45	31.58	8.98	40.	15	45.86	74.00	-28	3.14	Horizontal

Test mod	de:	802	2.11(n20)	Test chan	nel:		Middle	Rer	mark	:	Д	verage
Frequency (MHz)	Le	ead vel suV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Liı (dBuV/r		Over (d	Limit B)	Pol.
4874.00	35	.82	31.58	8.98	40	.15	36.23	54.00)	-17	.77	Vertical
4874.00	35	.51	31.58	8.98	40	.15	35.92	54.00)	-18	.08	Horizontal

Test mod	de:	802	2.11(n20)	Test chan	nel:	ŀ	Highest	Rer	mark	(:		Peak
Frequency (MHz)	(MHz) Read Level Factorial (dBuV) Factorial (dBuV)		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Facto		Level (dBuV/m)	Limit Li (dBuV/			Limit B)	Pol.
4924.00	46.	55	31.69	9.08 40.		.03	47.29	74.00)	-26	.71	Vertical
4924.00	45.	88	31.69	9.08	40.	.03	46.62	74.00)	-27	.38	Horizontal

	Test mode:		802	2.11(n20)	Test chan	nel:	ŀ	Highest	Rema	rk:	ļ ļ	Average
	Frequency (MHz)	Read L (dBu		Antenna Factor (dB/m)	Cable Loss (dB)	Prea Facto		Level (dBuV/m)	Limit Line (dBuV/m)		· Limit IB)	Pol.
Ī	4924.00	35.8	36	31.69	9.08	40.	03	36.60	54.00	-17	7.40	Vertical
Ī	4924.00	34.6	64	31.69	9.08	40.	03	35.38	54.00	-18	3.62	Horizontal

Remark:

- 1.Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mod	de:	802.11(n40)		Test channel:		Lowest		Remark:		Peak	
Frequency (MHz)	Le	ead vel suV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (d	ctor	Level (dBuV/m)	Limit Line		r Limit dB)	Pol.
4844.00	44	.07	31.53	8.90	40.	24	44.26	74.00	-29	9.74	Vertical
4844.00	45	.55	31.53	8.90	40.	24	45.74	74.00	-28	3.26	Horizontal

Test mod	le:	80	2.11(n40)	Test chan	nel:		Lowest	Rer	nark		P	Average
Frequency (MHz)	Le	ead vel suV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (d	ctor	Level (dBuV/m)	Limit Liı (dBuV/r		Over l (dE		Pol.
4844.00	34	.55	31.53	8.90	40.	24	34.74	54.00)	-19.	26	Vertical
4844.00	35	.33	31.53	8.90	40.	24	35.52	54.00)	-18.	48	Horizontal

Test mod	de:	802.11(n40)		Test channel:		Middle		Remark:		Peak	
Frequency (MHz)	Re Lev (dB	vel	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m)		· Limit IB)	Pol.
4874.00	46.	22	31.58	8.98	40	.15	46.63	74.00	-27	7.37	Vertical
4874.00	45.	51	31.58	8.98	40	.15	45.92	74.00	-28	3.08	Horizontal

Test mod	de:	802	2.11(n40)	Test chan	Test channel:		Middle	Remark:		Average	
Frequency (MHz)	Le	ead vel uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m)		Limit B)	Pol.
4874.00	35	.96	31.58	8.98	40	.15	36.37	54.00	-17	7.63	Vertical
4874.00	34	.77	31.58 8.98		40	.15	35.18	54.00	-18	3.82	Horizontal

Test mod	Test mode:		2.11(n40)	Test chan	nel:	ŀ	Highest	Rem	ark:		Peak
Frequency (MHz)		Level uV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Facto		Level (dBuV/m)	Limit Line (dBuV/m		r Limit dB)	Pol.
4904.00	45.	.88	31.69	9.08	40.	.03	46.62	74.00	-2	7.38	Vertical
4904.00	45.	.34	31.69	9.08	40.	.03	46.08	74.00	-2	7.92	Horizontal

	Test mod	Test mode:		2.11(n40)	Test chan	nel:	ŀ	Highest	Rer	nark:	, A	Average
	Frequency (MHz)	Read (dBu		Antenna Factor (dB/m)	Cable Loss Pr		amp r (dB)	Level (dBuV/m)	Limit Li (dBuV/r		ver Limit (dB)	Pol.
ĺ	4904.00	35.	25	31.69	9.08	40	.03	35.99	54.00)	-18.01	Vertical
	4904.00	35.	44	31.69	9.08	40	.03	36.18	54.00)	-17.82	Horizontal

Remark

- 1.Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.