(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年6 月23 日 (23.06.2005)

PCT

(10) 国際公開番号 WO 2005/057987 A1

(51) 国際特許分類⁷: H05B 33/14, 33/22, C09K 11/06

(21) 国際出願番号: PCT/JP2004/018960

(22) 国際出願日: 2004年12月13日(13.12.2004)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ: 特願 2003-417066

2003年12月15日(15.12.2003) JF

- (71) 出願人 /米国を除く全ての指定国について/: 出光興産 株式会社 (IDEMITSU KOSAN CO., LTD.) [JP/JP]; 〒 1008321 東京都千代田区丸の内三丁目 1 番 1 号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 岩隈 俊裕 (IWAKUMA, Toshihiro) [JP/JP]; 〒2990293 千葉県 袖ケ浦市上泉 1 2 8 0 番地 Chiba (JP). 富田 誠司 (TOMITA, Seiji) [JP/JP]; 〒2990293 千葉県袖ケ浦市上泉 1 2 8 0 番地 Chiba (JP). 伊藤 光則 (ITO, Mitsunori) [JP/JP]; 〒2990293 千葉県袖ケ浦市上泉 1 2 8 0 番地 Chiba (JP).

- (74) 代理人: 大谷 保、外(OHTANI, Tamotsu et al.); 〒 1050001 東京都港区虎ノ門三丁目25番2号ブリデ ストン虎ノ門ビル6階 大谷特許事務所 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: MATERIAL FOR ORGANIC ELECTROLUMINESCENT DEVICE AND ORGANIC ELECTROLUMINESCENT DEVICE USING SAME

(54) 発明の名称: 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

(57) Abstract: Disclosed is a material for organic electroluminescent devices which is composed of a compound having a specific structure which is low in symmetry. An organic electroluminescent device comprising an organic thin film layer which is composed of one or more layers including at least a light-emitting layer and sandwiched between an anode and a cathode is also disclosed wherein at least one layer of the organic thin film layer contains the above-described material for organic electroluminescent devices. The material for organic electroluminescent devices enables to obtain an organic electroluminescent device which is free from pixel defects and has a high luminous efficiency, excellent heat resistance and long life.

(57)要約:対称性が低い特定構造の化合物からなる有機エレクトロルミネッセンス素子用材料、及び、陰極と陽極 【間に少なくとも発光層を有する一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも一層が、前記有機エレクトロルミネッセンス素子用材料を含有する有機エレクトロルミネッセンス素子であり、発光効率が高く、画素欠陥が無く、耐熱性に優れ、長寿命である有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子を提供する。

明細書

有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

技術分野

本発明は、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子に関し、特に、発光効率が高く、画素欠陥が無く、耐熱性に優れ、長寿命である有機エレクトロルミネッセンス素子に関するものである。

背景技術

有機エレクトロルミネッセンス素子(以下エレクトロルミネッセンスをELと略記することがある)は、電界を印加することより、陽極より注入された電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光素子である。イーストマン・コダック社のC.W.Tangらによる積層型素子による低電圧駆動有機EL素子の報告(C.W.Tang,S.A.Vanslyke,アプライドフィジックスレターズ(Applied Physics Letters),51巻、913頁、1987年等)がなされて以来、有機材料を構成材料とする有機EL素子に関する研究が盛んに行われている。Tangらは、トリス(8-ヒドロキシキノリノールアルミニウム)を発光層に、トリフェニルジアミン誘導体を正孔輸送層に用いている。積層構造の利点としては、発光層への正孔の注入効率

を高めること、陰極より注入された電子をブロックして再結合により生成する励起子の生成効率を高めること、発光層内で生成した励起子を閉じ込めること等が挙げられる。この例のよう有機EL素子の素子構造としては、正孔輸送(注入)層、電子輸送発光層の2層型、又は正孔輸送(注入)層、発光層、電子輸送(注入)層の3層型等がよく知られている。こうした積層型構造素子では注入された正孔と電子の再結合効率を高めるため、素子構造や形成方法の工夫がなされている。

有機EL素子の発光材料としてはトリス(8ーキノリノラート)アルミニウム錯体等のキレート錯体、クマリン誘導体、テトラフェニルブタジエン誘導体、ジスチリルアリーレン誘導体、オキサジアゾール誘導体等の発光材料が知られており、それらからは青色から赤色までの可視領域の発光が得られることが報告されており、カラー表示素子の実現が期待されている(例えば、特許文献 1、特許文献 2、特許文献 3 等参照)。

また、近年、有機EL素子の発光層に蛍光材料の他に、りん光材料を利用することも提案されている(例えば、非特許文献 1、非特許文献 2 参照)。このように有機EL素子の発光層において有機りん光材料の励起状態の一重項状態と三重項状態とを利用し、高い発光効率が達成されている。有機EL素子内で電子と正孔が再結合する際にはスピン多重度の違いから一重項励起子と三重項励起子とが 1:3 の割合で生成すると考えられているので、りん光性の発光材料を用いれば蛍光のみを使った素子に比べて3~4倍の発光効率の達成が考えられる。

このような有機EL素子においては、3 重項の励起状態又は3 重項の励起子が消光しないように順次、陽極、正孔輸送層、有機 発光層、電子輸送層(正孔阻止層)、電子輸送層、陰極のように

層を積層する構成が用いられ、有機発光層にホスト化合物とりん 光発光性の化合物が用いられてきた(例えば、特許文献 4、特許 文献 5 参照)。これらの特許文献ではホスト化合物として 4, 4 - N, N-ジカルバゾールビフェニルが用いられているが、この 化合物はガラス転移温度が 1 1 0 ℃以下であり、さらに対称性が 良すぎるために結晶化しやすく、また、素子の耐熱試験を行なっ た場合、短絡や、画素欠陥が生じるという問題があった。

また、その蒸着の際には、異物や電極の突起が存在する箇所等で結晶成長が生じ、耐熱試験前の初期状態より、欠陥が生じ、経時的に増加することも見出された。また、3回対称性を保有するカルバゾール誘導体もホストとして用いられている。しかし、これらも対称性が良いので、蒸着の際、異物や電極突起の存在する箇所等で結晶が成長し、耐熱試験前の初期状態より欠陥が生じ、経時適に増加することは免れていない。

さらに、有機発光層にホスト化合物とりん光発光性の化合物が用いられてきた特許が開示されている(例えば、特許文献 6、特許文献 7、特許文献 8 等参照)。特許文献 6 では耐熱性は改善されているが、化合物を構成するフェニレン構造において、大部分がパラ位で結合する結合様式をとり、メタ位での結合が中心のベンゼン環のみであるので依然として対称性が良く、結晶化の問題が免れなかった。また、特許文献 7、特許文献 8 では、カルバゾール骨格に加え、さらにトリアジン骨格等の複素環骨格を導入したホスト材料が開示されているが、カルバゾール骨格からフェニレンを介してパラ位でトリアジン環が結合しているため、化合物の直線性が高く、ホストの 3 重項励起状態のエネルギーが小さくなり、ホストからりん光発光性ドーパントへエネルギーが伝達されにくく、特に青色りん光発光性素子では発光効率の低下を引起

こすという問題があった。さらに、特許文献 9 には、5 個以上のベンゼン環を有する基がカルバゾール骨格と結合した化合物が開示されているが、この化合物は、骨格の対称性が高く、結晶化し易く、5 個以上のベンゼン環を有する基の直線性が高いため、3 重項励起状態のエネルギーが小ざくなるという問題があった。

【特許文献1】 特開平8-239655号公報

【特許文献2】 特開平7-138561号公報

【特許文献3】 特開平3-200289号公報

【特許文献4】 米国特許第6,097,147号明細書

【特許文献 5 】 国際公開WO01/41512号公報

【特許文献 6】 特開平2003-31371号公報

【特許文献7】 特開平2002-193952号公報

【特許文献8】 EP1202608号明細書

【特許文献9】 特開2001-313179号公報

【非特許文献 1 】 D.F.O'Brien and M.A.Baldo et al "Improved energy transferin electrophosphorescent devices" Applied Physics letters Vol. 74 No. 3, pp442-444, January 18, 1999

【非特許文献 2】 M.A.Baldo et al "Very high- effic iencygreen organic light-emitting devices based on electr ophosphorescence" Applied Physics letters Vol. 75 No. 1, pp4-6, July 5, 1999

発明の開示

本発明は、前記の課題を解決するためになされたもので、発光効率が高く、画素欠陥が無く、耐熱性に優れ、長寿命である有機 E L 素子用材料及びそれを用いた有機 E L 素子を提供すること

を目的とする。

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、分子量が大きく、対称性の低い化合物をホスト材料として用いることにより、高効率、高耐熱かつ長寿命である有機EL素子が得られることを見出し、本発明を解決するに至った。

すなわち、本発明は、下記一般式(1)~(3)のいずれかで表される化合物からなる有機 E L 素子用材料を提供するものである。

「式中、R₁~R₃は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有しても良い炭素数 1~40のアルキル基、置換基を有しても良い炭素数 3~30の複素環基、置換基を有しても良い炭素数 6~40のアルコキシ基、置換基を有しても良い炭素数 6~40のアリール基、置換基を有しても良い炭素数 7~40のアラルキル基、置換基を有しても良い炭素数 2~40のアルケニル基、置換基を有しても良い炭素数 2~40のアルケニル基、置換基を有しても良い炭素数 1~80のアルキルアミノ基、置換基を有しても良い炭素数 6~80のアリールアミノ基、置換基を有しても良い炭素数 7~80のアラルキルアミノ基、置換基を有しても良い炭素数 7~80のアラルキルアミノ基、置換基を有しても良い炭素数 3~10のアルキルシリル基、置換基を有しても良い炭素数 3~10のアルキルシリル基又はシアノ基である。R₁~R₃は、それぞれ複数であっても良く、隣接するもの同士

で飽和もしくは不飽和の環状構造を形成していても良い。

Xは、下記一般式(4)~(9)のいずれかで表される基である。

(式中、R₄~R₁₃は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有しても良い炭素数1~40のアルキル基、置換基を有しても良い炭素数3~30の複素環基、置換基を有しても良い炭素数6~40のアルコキシ基、置換基を有しても良い炭素数6~40のアリール基、置換基を有しても良い炭素数7~40のアラルキル基、置換基を有しても良い炭素数2~40のアルケニル基、置換基を有しても良い炭素数1~80のアルキルアミノ基、置換基を有しても良い炭素数6~80のアリールアミノ基、置換基を有しても良い炭素数7~80のアラルキルアミノ基、置換基を有しても良い炭素数7~80のアラルキルアミノ基、置換基を有しても良い炭素数7~80のアラルキルアミノ基、置換基を有しても良い炭素数7~80のアラルキルアミノ基、置換基を有しても良い炭素数7~80のアラルキルアミノ基、置換基を有しても良い炭素数7~80のアラルキルアミノ基、置換基を

しても良い炭素数 $3\sim1$ 0 のアルキルシリル基、置換基を有しても良い炭素数 $6\sim3$ 0 のアリールシリル基又はシアノ基である。 $R_4\sim R_{13}$ は、それぞれ複数であっても良く、隣接するもの同士で飽和もしくは不飽和の環状構造を形成していても良い。

 $Y_1 \sim Y_3$ は、それぞれ独立に、一CR(Rは、水素原子、前記一般式(1)~(3)においてXに結合している基又は前記R $_4$, R_5 , R_6 , R_8 , R_9 , R_{10} のいずれかである。)又は窒素原子であり、窒素原子である場合は、その数は同一環に少なくとも2つである。 Czは下記と同じである。

一般式(9)において、tは0~1の整数である。)

Czは下記一般式(10)又は(11)で表される基である。

(式中、Aは、単結合、- ($CR_{14}R_{15}$) n- (n は $1\sim3$ の整数)、- S i R $_{16}$ R $_{17}$ - 、- N R $_{18}$ - 、- O - 又は- S - を表し、R $_{14}$ $_{20}$ に R $_{15}$ 、R $_{16}$ と R $_{17}$ は 互いに結合して飽和もしくは不飽和の環状構造を形成してもよい。R $_{14}$ $_{20}$ は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有しても良い炭素数 $_{30}$ のでルキル基、置換基を有しても良い炭素数 $_{30}$ ので変素環基、置換基を有しても良い炭素数 $_{30}$ ので変素である。 と $_{30}$ ので変素のである。 と $_{30}$ ので変素のである。 と $_{30}$ ので変素を有しても良い炭素数 $_{30}$ ので変素数 $_{30}$ ので変素を有しても良い炭素数 $_{30}$ ので変素数 $_{30}$ ので変素を有しても良い炭素数 $_{30}$ ので変素を有しても良い炭素数 $_{30}$ ので変素数 $_{30}$ ので変素数 $_{30}$ ので変素を有しても良い炭素数 $_{30}$ ので変素数 $_{30}$ ので変素数 $_{30}$ ので変素を有しても良い炭素数 $_{30}$ ので変素を有しても良い炭素数 $_{30}$ ので変素数 $_{30}$ ので変素数 $_{30}$ ので変素を有しても良い

い炭素数 $2\sim40$ のアルケニル基、置換基を有しても良い炭素数 $1\sim80$ のアルキルアミノ基、置換基を有しても良い炭素数 $6\sim80$ のアリールアミノ基、置換基を有しても良い炭素数 $7\sim80$ のアラルキルアミノ基、置換基を有しても良い炭素数 $3\sim10$ のアルキルシリル基、置換基を有しても良い炭素数 $6\sim30$ のアリールシリル基又はシアノ基である。 $R_{19}\sim R_{20}$ は、それぞれ複数であっても良く、隣接するもの同士で飽和もしくは不飽和の環状構造を形成していても良い。

Z は、置換しても良い炭素数 $1 \sim 2$ 0 のアルキル基、置換しても良い炭素数 $6 \sim 1$ 8 のアリール基、又は置換基を有しても良い炭素数 $7 \sim 4$ 0 のアラルキル基を表す。)]

また、本発明は、陰極と陽極間に少なくとも発光層を有する一層又は複数層からなる有機薄膜層が挟持されている有機EL素子において、該有機薄膜層の少なくとも一層が、前記有機EL素子用材料を含有する有機EL素子を提供するものである。

産業上の利用可能性

本発明の一般式(1)~(3)のいずれかで表される化合物からなる有機エレクトロルミネッセンス素子用材料を利用すると、発光効率が高く、画素欠陥が無く、耐熱性に優れ、長寿命である有機エレクトロルミネッセンス素子が得られる。このため、本発明の有機エレクトロルミネッセンス素子は、各種電子機器の光源等として極めて有用である。

発明を実施するための最良の形態

本発明の有機EL素子用材料は、下記一般式(1)~(3)の いずれかで表される化合物からなる。

$$\begin{pmatrix} R_1 & X \\ Cz & R_2 \end{pmatrix} \begin{pmatrix} Cz & X \\ Cz & R_3 \end{pmatrix} \begin{pmatrix} R_1 & X & R_3 \\ Cz & R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & R_3 \\ R_2 & Cz \end{pmatrix} \begin{pmatrix} Cz & R_3 & Cz \\ R_2 & Cz \end{pmatrix} \begin{pmatrix} Cz & R_3 & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\ R_3 & Cz \end{pmatrix} \begin{pmatrix} Cz & Cz & Cz \\$$

前記一般式(1)としては、下記構造のうちのいずれかである。

$$\begin{pmatrix} Cz & & X & & \\ & &$$

前記一般式(3)としては、下記構造のうちのいずれかである。

$$R_1$$
 X R_3 Cz Cz Cz Cz

これらのうち、特に、前記一般式(1')又は(3')で表される化合物からなるものが好ましい。

一般式(1)~(3)式において、R1~R3は、それぞれ独 立に、水素原子、ハロゲン原子、置換基を有しても良い炭素数1 ~ 4 0 (好ましくは炭素数 1 ~ 3 0) のアルキル基、置換基を有 しても良い炭素数3~30(好ましくは炭素数3~20)の複素 環基、置換基を有しても良い炭素数1~40(好ましくは炭素数 1~30)のアルコキシ基、置換基を有しても良い炭素数6~4 0 (好ましくは炭素数6~30)のアリール基、置換基を有して も 良 い 炭 素 数 6 ~ 4 0 (好 ま しく は 炭 素 数 6 ~ 3 0) の ア リ ール オキシ基、置換基を有しても良い炭素数7~40(好ましくは炭 素 数 7 ~ 3 0) のア ラルキル 基、置 換 基 を 有 して も 良 い 炭 素 数 2 ~40(好ましくは炭素数2~30)のアルケニル基、置換基を 有しても良い炭素数1~80(好ましくは炭素数1~60)のア ルキルアミノ基、置換基を有しても良い炭素数6~80(好まし く は 炭 素 数 6 ~ 6 0) の ア リ ー ル ア ミ ノ 基 、 置 換 基 を 有 し て も 良 い炭素数7~80(好ましくは炭素数7~60)のアラルキルア ミ ノ 基 、置 換 基 を 有 し て も 良 い 炭 素 数 3 ~ 1 0 (好 ま し く は 炭 素 数 3 ~ 9) のアルキルシリル基、置換基を有しても良い炭素数 6 ~ 3 0 のアリールシリル基(好ましくは炭素数8~20)又はシ アノ基である。R」~R。は、それぞれ複数であっても良く、隣 接するもの同士で飽和もしくは不飽和の環状構造を形成してい ても良い。

R」~R3のハロゲン原子としては、例えば、フッ素、塩素、 臭素、ヨウ素等が挙げられる。

R₁~R₃の置換基を有しても良い炭素数 1~40のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプ

ロピル基、nーブチル基、sーブチル基、イソブチル基、tーブ チル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n - オクチル基、n - ノニル基、n - デシル基、n - ウンデシル基、 n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n ーオクタデシル基、ネオペンチル基、1ーメチルペンチル基、2 - メチルペンチル基、1 - ペンチルヘキシル基、1 - ブチルペン チル基、1 - ヘプチルオクチル基、3 - メチルペンチル基、ヒド ロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチ ル基、2-ヒドロキシイソブチル基、1,2-ジヒドロキシエチ ル基、1,3-ジヒドロキシイソプロピル基、2,3-ジヒドロ キシー t - ブチル基、1,2,3-トリヒドロキシプロピル基、 クロロメチル基、1-クロロエチル基、2-クロロエチル基、2 - クロロイソブチル基、1,2-ジクロロエチル基、1,3-ジ クロロイソプロピル基、2,3-ジクロローtーブチル基、1, 2,3ートリクロロプロピル基、ブロモメチル基、1ーブロモエ チル基、2-ブロモエチル基、2-ブロモイソブチル基、1、2 - ジブロモエチル基、1,3-ジブロモイソプロピル基、2,3 -ジブロモーt-ブチル基、1,2,3-トリブロモプロピル基、 ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2 - ヨードイソブチル基、1,2-ジョードエチル基、1,3-ジ ヨードイソプロピル基、2,3-ジョードーtーブチル基、1, 2,3ートリョードプロピル基、アミノメチル基、1-アミノエ チル基、2-アミノエチル基、2-アミノイソブチル基、1、2 -ジアミノエチル基、1,3-ジアミノイソプロピル基、2,3 -ジアミノーt-ブチル基、1,2,3-トリアミノプロピル基、 シアノメチル基、1-シアノエチル基、2-シアノエチル基、2

ーシアノイソブチル基、1,2ージシアノエチル基、1,3ージシアノイソプロピル基、2,3ージシアノーtーブチル基、1,2,3ートリシアノプロピル基、ニトロメチル基、1ーニトロエチル基、2ーニトロエチル基、1,2ージニトロエチル基、2,3ージニトローtーブチル基、1,2,3ートリニトロプロピル基、シクロペンチル基、シクロペキシル基、シクロオクチル基、3,5ーテトラメチルシクロヘキシル基等が挙げられる。

これらの中でも好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、 n ーブチル基、 s ーブチル基、イソブチル基、t ーブチル基、n ーペンチル基、n ーヘキシル基、n ーヘプチル基、n ーオクチル基、n ーノニル基、n ーデシル基、n ーウンデシル基、n ードデシル基、n ートリデシル基、n ーテトラデシル基、n ーペンタデシル基、n ーヘキサデシル基、n ーヘプタデシル基、n ーオクタデシル基、ネオペンチル基、1 ーメチルペンチル基、1 ーペンチルヘキシル基、1 ーブチルペンチル基、1 ーペプチル基、シクロヘキシル基、シクロオクチル基、3,5 ーテトラメチルシクロヘキシル基等が挙げられる。

R1~R3の置換基を有しても良い炭素数3~30の複素環基としては、例えば、1~ピロリル基、2~ピロリル基、3~ピロリル基、ピラジニル基、2~ピリジニル基、1~イミダゾリル基、2~イミダゾリル基、1~ピラゾリル基、1~インドリジニル基、2~インドリジニル基、3~インドリジニル基、5~インドリジニル基、6~インドリジニル基、7~インドリジニル基、3~イミダゾピリジニル基、5~イミダゾピリジニル基、6~イミダゾピリジニル基、7~イミダゾピリジニル基、6~イミダゾピリジニル基、7~イミダゾピリジニル基、1~インドリル基、2~イ

ンドリル基、3-インドリル基、4-インドリル基、5-インド リル基、6-インドリル基、7-インドリル基、1-イソインド リル基、2-イソインドリル基、3-イソインドリル基、4-イ ソインドリル基、5 - イソインドリル基、6 - イソインドリル基、 7-イソインドリル基、2-フリル基、3-フリル基、2-ベン ゾフラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、 5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラ ニル基、1-イソベンゾフラニル基、3-イソベンゾフラニル基、 4-イソベンゾフラニル基、5-イソベンゾフラニル基、6-イ ソベンゾフラニル基、7-イソベンゾフラニル基、2-キノリル 基、3-キノリル基、4-キノリル基、5-キノリル基、6-キ ノリル基、7-キノリル基、8-キノリル基、1-イソキノリル 基、3-イソキノリル基、4-イソキノリル基、5-イソキノリ ル基、6-イソキノリル基、7-イソキノリル基、8-イソキノ リル基、2ーキノキサリニル基、5ーキノキサリニル基、6ーキ ノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3 - カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基、 ルボリンー 4 ーイル、β ーカルボリンー 5 ーイル、β ーカルボリ ンー6-イル、β-カルボリン-7-イル、β-カルボリン-6 -イル、β-カルボリン-9-イル、1-フェナンスリジニル基、 2-フェナンスリジニル基、3-フェナンスリジニル基、4-フ ェナンスリジニル基、6-フェナンスリジニル基、7-フェナン スリジニル基、8-フェナンスリジニル基、9-フェナンスリジ ニル基、10-フェナンスリジニル基、1-アクリジニル基、2 - アクリジニル基、3-アクリジニル基、4-アクリジニル基、 9-アクリジニル基、1,7-フェナンスロリン-2-イル基、

1,7-フェナンスロリン-3-イル基、1,7-フェナンスロ リンー4-イル基、1,7-フェナンスロリン-5-イル基、1, 7-フェナンスロリン-6-イル基、1,7-フェナンスロリン -8-イル基、1,7-フェナンスロリン-9-イル基、1,7 ーフェナンスロリンー10-イル基、1,8-フェナンスロリン - 2 - イル基、1,8-フェナンスロリン-3-イル基、1,8 -フェナンスロリン-4-イル基、1,8-フェナンスロリン-5 ーイル基、1,8 ーフェナンスロリンー6 ーイル基、1,8 ー フェナンスロリンー7-イル基、1,8-フェナンスロリン-9 -イル基、1,8-フェナンスロリン-10-イル基、1,9-フェナンスロリンー2-イル基、1,9-フェナンスロリン-3 ーイル基、1,9ーフェナンスロリン-4-イル基、1,9-フ ェナンスロリン-5-イル基、1,9-フェナンスロリン-6-イル基、1,9-フェナンスロリン-7-イル基、1,9-フェ ナンスロリン-8-イル基、1,9-フェナンスロリン-10-イル基、1,10-フェナンスロリン-2-イル基、1,10-フェナンスロリン-3-イル基、1,10-フェナンスロリン-4-イル基、1,10-フェナンスロリン-5-イル基、2,9 ーフェナンスロリンー1ーイル基、2,9ーフェナンスロリンー 3 ーイル基、2,9 ーフェナンスロリン-4-イル基、2,9-フェナンスロリン-5-イル基、2,9-フェナンスロリン-6 ーイル基、2,9ーフェナンスロリン-7-イル基、2,9-フ ェナンスロリン-8-イル基、2,9-フェナンスロリン-10 ーイル基、2,8ーフェナンスロリン-1-イル基、2,8-フ ェナンスロリン-3-イル基、2,8-フェナンスロリン-4-イル基、2,8-フェナンスロリン-5-イル基、2,8-フェ ナンスロリンー6-イル基、2,8-フェナンスロリン-7-イ

ル基、2,8-フェナンスロリン-9-イル基、2,8-フェナ ンスロリン-10-イル基、2,7-フェナンスロリン-1-イ ル基、2,7-フェナンスロリン-3-イル基、2,7-フェナ ンスロリンー4-イル基、2,7-フェナンスロリン-5-イル 基、2,7-フェナンスロリンー6-イル基、2,7-フェナン スロリン-8-イル基、2,7-フェナンスロリン-9-イル基、 2,7-フェナンスロリン-10-イル基、1-フェナジニル基、 2-フェナジニル基、1-フェノチアジニル基、2-フェノチア ジニル基、3-フェノチアジニル基、4-フェノチアジニル基、 10-フェノチアジニル基、1-フェノキサジニル基、2-フェ ノキサジニル基、3-フェノキサジニル基、4-フェノキサジニ ル基、10-フェノキサジニル基、2-オキサゾリル基、4-オ キサゾリル基、5-オキサゾリル基、2-オキサジアゾリル基、 5-オキサジアゾリル基、3-フラザニル基、2-チエニル基、 3-チエニル基、2-メチルピロール-1-イル基、2-メチル ピロールー3-イル基、2-メチルピロールー4-イル基、2-メチルピロールー5-イル基、3-メチルピロールー1-イル基、 3 - メチルピロール-2-イル基、3-メチルピロール-4-イ ル基、3 - メチルピロール-5-イル基、2 - t - ブチルピロー ルー4-イル基、3-(2-フェニルプロピル) ピロール-1-イル基、2-メチル-1-インドリル基、4-メチル-1-イン ドリル基、2-メチル-3-インドリル基、4-メチル-3-イ ンドリル基、2 - t - ブチル 1 - インドリル基、4 - t - ブチル 1 ーインドリル基、2 - t - ブチル3-インドリル基、4 - t -ブチル3ーインドリル基等が挙げられる。

これらの中でも好ましくは、2 - ピリジニル基、1 - インドリジニル基、2 - インドリジニル基、3 - インドリジニル基、5 -

インドリジニル基、6 ーインドリジニル基、7 ーインドリジニル基、8 ーインドリジニル基、2 ーイミダゾピリジニル基、3 ーイミダゾピリジニル基、6 ーイミダゾピリジニル基、6 ーイミダゾピリジニル基、7 ーイミダゾピリジニル基、8 ーイミダゾピリジニル基、7 ーイミダゾピリジニル基、1 ーインドリル基、3 ーピリジニル基、1 ーインドリル基、2 ーインドリル基、3 ーインドリル基、7 ーインドリル基、1 ーインドリル基、6 ーインドリル基、7 ーインドリル基、1 ーインインドリル基、2 ーイソインドリル基、5 ーイソインドリル基、6 ーイソインドリル基、5 ーイソインドリル基、5 ーイソインドリル基、6 ーイソインドリル基、7 ーイソインドリル基、6 ーイソインドリル基、7 ーイソインドリル基、1 ーカルバゾリル基、2 ーカルバゾリル基、3 ーカルバゾリル基、9 ーカルバゾリル基等が挙げられる。

R₁~R₃の置換基を有しても良い炭素数 1~40のアルコキシ基は-OYと表される基であり、Yの具体例としては、前記アルキル基で説明したものと同様のものが挙げられ、好ましい例も同様である。

R₁~R₃の置換基を有しても良い炭素数 6~40のアリール基としては、例えば、フェニル基、1ーナフチル基、2ーナフチル基、1ーアントリル基、2ーアントリル基、9ーアントリル基、1ーフェナントリル基、2ーフェナントリル基、3ーフェナントリル基、4ーフェナントリル基、9ーフェナントリル基、1ーナフタセニル基、2ーナフタセニル基、9ーナフタセニル基、1ーピレニル基、2ーピフェニルイル基、4ーピフェニルイル基、pーターフェニルー4ーイル基、pーターフェニルー3ーイル基、mーターフェニルー2ーイル基、mーターフェニルー2ーイル基、mーターフェニルー2ーイル基、mーターフェニルー3ーイル基、mーターフェニルー3ーイル基、mーターフェニルー3ーイル基、mーターフェニルー2ーイル基、mーターフェニルー2ーイル基、mーターフェニルー2ーイル基、mーターフェニルー2ーイル基、mーターフェニルー3ーイル基、mーターフェニルー2ーイル基、mーターフェニルー3ーイル基、mーターフェニルー3ーイル基、mーターフェニルー2ーイル基、mーターフェニルー2ーイル基、mーターフェニルー3ーイル基、mーターフェニルー2ーイル基、mーターフェニルー3ーイル基、mーターフェニルー3ーイル基、mーターフェニルー2ーイル基、mーターフェニルー2ーイル基、mーターフェニルー3ーイル基、mーターフェニルー3ーイル基、mーターフェニルー3ーイル基、mーターフェニルー3ーイル基、mーターフェニルー2ーイル基、mーターフェニルー2ーイル基、mーターフェニルー3ーイル基、mーターフェニルー3ー

oートリル基、mートリル基、pートリル基、pーtーブチルフェニル基、pー (2ーフェニルプロピル) フェニル基、3ーメチルー2ーナフチル基、4ーメチルー1ーナフチル基、4ーメチルー1ーアントリル基、4'ーメチルビフェニルイル基、4'ー・tーブチルーpーターフェニルー4ーイル基、oークメニル基、mークメニル基、pークメニル基、2,3ーキシリル基、3,4ーキシリル基、9ーフェナントリル基、2ーナフチル基、9ーフェナントリル基、2ービフェニルイル基、3ービフェニルイル基、4ービフェニルイル基、pートリル基、3,4ーキシリル基等が挙げられる。

R₁~R₃の置換基を有しても良い炭素数 6~40のアリール オキシ基は一OArと表される基であり、Arの具体例としては、 前記アリール基で説明したものと同様のものが挙げられ、好まし い例も同様である。

 $R_1 \sim R_3$ の置換基を有しても良い炭素数 $7 \sim 40$ のアラルキル基としては、例えば、ベンジル基、1-フェニルエチル基、2-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニルー 1-ブチル基、 $\alpha-$ ナフチルメチル基、 $1-\alpha-$ ナフチルエチル基、 $1-\alpha-$ ナフチルイソプロピル基、 $1-\alpha-$ ナフチルイソプロピル基、 $1-\alpha-$ ナフチルイソプロピル基、 $1-\alpha-$ ナフチルイソプロピル基、 $1-\alpha-$ ナフチルイソプロピル基、 $1-\alpha-$ ナフチルメチル基、 $1-\alpha-$ ナフチルメチル基、 $1-\alpha-$ ナフチルメチル基、 $1-\alpha-$ ナフチルメチル基、 $1-\alpha-$ ナフチルイソプロピル基、 $1-\alpha-$ 1 ロリルメチル基、 $1-\alpha-$ 1 ロリル)エチル基、 $1-\alpha-$ 2 ロリル)エチル基、 $1-\alpha-$ 3 ロロベンジル基、 $1-\alpha-$ 4 ローベンジル基、 $1-\alpha-$ 4 ロロベンジル

mーブロモベンジル基、oーブロモベンジル基、pーヨードベンジル基、mーヨードベンジル基、oーヨードベンジル基、pーヒドロキシベンジル基、mーヒドロキシベンジル基、oーヒドロキシベンジル基、pーアミノベンジル基、mーアミノベンジル基、oーアミノベンジル基、pーニトロベンジル基、mーニトロベンジル基、oーニトロベンジル基、pーシアノベンジル基、mーシアノベンジル基、oーシアノベンジル基、1ーヒドロキシー2ーフェニルイソプロピル基、1ークロロー2ーフェニルイソプロピル基等が挙げられる。

これらの中でも好ましくは、ベンジル基、p - シアノベンジル基、m - シアノベンジル基、o - シアノベンジル基、1 - フェニルエチル基、2 - フェニルイソプロピル基等が挙げられる。

R₁~R₃の置換基を有しても良い炭素数 2~40のアルケニル基としては、ビニル基、アリル基、1ーブテニル基、2ーブテニル基、3ーブテニル基、1,3ーブタンジエニル基、1ーメチルビニル基、スチリル基、2,2ージフェニルビニル基、1,2ージフェニルビニル基、1ーメチルアリル基、1,1ージメチルアリル基、2ーメチルアリル基、1,1ージメチルアリル基、2ーメチルアリル基、3ージフェニルアリル基、3ーフェニルアリル基、3ージフェニルアリル基、1,2ージメチルアリル基、3ーフェニルー1ーブテニル基、3ーフェニルー1ーブテニル基等が挙げられ、好ましくは、スチリル基、2,2ージフェニルビニル基等が挙げられる。

R $_1$ ~ R $_3$ の置換基を有しても良い炭素数 1 ~ 8 0 のアルキルアミノ基、置換基を有しても良い炭素数 6 ~ 8 0 のアリールアミノ基、置換基を有しても良い炭素数 7 ~ 8 0 のアラルキルアミノ

基としては、-NQ₁Q₂と表され、Q₁、Q₂の具体例としては、 それぞれ独立に、前記アルキル基、前記アリール基、前記アラル キル基で説明したものと同様のものが挙げられ、好ましい例も同 様である。

R₁~R₃の置換基を有しても良い炭素数3~10のアルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基等が挙げられる。

R₁~R₃の置換基を有しても良い炭素数 6~30のアリール シリル基としては、トリフェニルシリル基、フェニルジメチルシ リル基、 t ーブチルジフェニルシリル基等が挙げられる。

また、R₁~R₃が複数あった場合に形成される環状構造としては、ベンゼン環等の不飽和6員環の他、飽和もしくは不飽和の5員環又は7員環構造等が挙げられる。

一般式(1)~(3)式において、Xは、下記一般式(4)~(9)のいずれかで表される基である。

$$R_{4} \xrightarrow{Y_{1}} R_{5}$$

$$R_{6} \xrightarrow{Y_{1}} Y_{3}$$

$$R_{7} \xrightarrow{R_{8}} R_{7}$$

$$(4)$$

$$(5)$$

$$\begin{array}{c|c}
R_{10} \xrightarrow{Y_1} & Y_2 \\
R_{10} & & \\
\hline
 & & \\
\hline$$

一般式(4)~(9)において、R₄~R₁₃は、それぞれ独立 に、水素原子、ハロゲン原子、置換基を有しても良い炭素数1~ 40(好ましくは炭素数1~30)のアルキル基、置換基を有し ても良い炭素数3~30(好ましくは炭素数3~20)の複素環 基、置換基を有しても良い炭素数1~40(好ましくは炭素数1 ~30)のアルコキシ基、置換基を有しても良い炭素数6~40 (好ましくは炭素数6~30)のアリール基、置換基を有しても 良い炭素数6~40(好ましくは炭素数6~30)のアリールオ キシ基、置換基を有しても良い炭素数7~4.0(好ましくは炭素 数7~30)のアラルキル基、置換基を有しても良い炭素数2~ 40(好ましくは炭素数2~30)のアルケニル基、置換基を有 しても良い炭素数1~80(好ましくは炭素数1~60)のアル キルアミノ基、置換基を有しても良い炭素数6~80(好ましく は炭素数6~60)のアリールアミノ基、置換基を有しても良い 炭素数7~80(好ましくは炭素数7~60)のアラルキルアミ ノ基、置換基を有しても良い炭素数3~10(好ましくは炭素数 3~9)のアルキルシリル基、置換基を有しても良い炭素数6~ 30のアリールシリル基(好ましくは炭素数8~20)又はシア ノ基である。R4~R13は、それぞれ複数であっても良く、隣接 するもの同士で飽和もしくは不飽和の環状構造を形成していて も良い。

R₄~R₁₃の示す各基の具体例としては、前記R₁~R₃で説明 したものと同様のものが挙げられ、好ましい例も同様である。

- 一般式(4)~(9)において、 Y_1 ~ Y_3 は、それぞれ独立に、-CR(Rは、水素原子、前記一般式(1)~(3)においてXに結合している基又は前記 R_4 , R_5 , R_6 , R_8 , R_9 , R_1 , R_9 のいずれかである。)又は窒素原子であり、窒素原子である場合は、その数は同一環に少なくとも2つである。
 - 一般式(9)において、 t は0~1の整数である。
- 一般式(4)で表される基としては、下記構造のうちのいずれかであると好ましい。

一般式(5)で表される基としては、下記構造のうちのいずれかであると好ましい。

一般式(6)で表される基としては、下記構造のうちのいずれ かであると好ましい。

一般式(7)で表される基としては、下記構造のうちのいずれかであると好ましい。

一般式(8)で表される基としては、下記構造のうちのいずれかであると好ましい。

一般式(9)で表される基としては、下記構造のうちのいずれかであると好ましい。

一般式(1)~(3)式において、Czは下記一般式(10) 又は(11)で表される基を表す。

一般式(10)又は(11)において、Aは、単結合、-(CR₁₄R₁₅)_n-(nは1~3の整数)、-SiR₁₆R₁₇-、-

 NR_{18} -、-O-又は-S-を表し、 R_{14} と R_{15} 、 R_{16} と R_{17} は互いに結合して飽和もしくは不飽和の環状構造を形成しても よい。R₁₄~R₂₀は、それぞれ独立に、水素原子、ハロゲン原 子、置換基を有しても良い炭素数1~30のアルキル基、置換基 を有しても良い炭素数3~20の複素環基、置換基を有しても良 い炭素数1~30のアルコキシ基、置換基を有しても良い炭素数 6~40のアリール基、置換基を有しても良い炭素数6~30の アリールオキシ基、置換基を有しても良い炭素数7~40のアラ ルキル基、置換基を有しても良い炭素数2~40のアルケニル基、 置換基を有しても良い炭素数1~80のアルキルアミノ基、置換 基を有しても良い炭素数6~80のアリールアミノ基、置換基を 有しても良い炭素数 7 ~ 8 0 のアラルキルアミノ基、置換基を有 しても良い炭素数3~10のアルキルシリル基、置換基を有して も良い炭素数6~30のアリールシリル基又はシアノ基である。 R₁₉~R₂₀は、それぞれ複数であっても良い。R₁₄~R₂₀の示 す 各 基 の 具 体 例 と し て は 、 前 記 R ュ ~ R ョ で 説 明 し た も の と 同 様 のものが挙げられ、好ましい例も同様である。

Z は、置換しても良い炭素数 $1 \sim 2$ 0 のアルキル基、置換しても良い炭素数 $6 \sim 1$ 8 のアリール基、又は置換基を有しても良い炭素数 $7 \sim 4$ 0 のアラルキル基を表す。

Zの炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、nーブチル基、sーブチル基、イソブチル基、tーブチル基、nーペンチル基、nーへキシル基、nーペプチル基、nーオクチル基、nーノニル基、nーデシル基、nーウンデシル基、nードデシル基、nートリデシル基、nーテトラデシル基、nーペンタデシル基、nーヘキサデシル基、nーペプタデシル基、nーペクタデシル基、ネオペンチ

ル基、1-メチルペンチル基、2-メチルペンチル基、1-ペンチルへキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、3-メチルペンチル基等が挙げられ、好ましくは、メチル基、エチル基、プロピル基、n-ヘキシル基、n-ヘプチル基等が挙げられる。

Zのアリール基としては、例えば、フェニル基、ナフチル基、 トリル基、ビフェニル基、ターフェニル基等が挙げられ、好まし くは、フェニル基、ビフェニル基、トリル基等が挙げられる。

Zのアラルキル基としては、例えば、 α ーナフチルメチル基、 $1-\alpha$ ーナフチルエチル基、 $2-\alpha$ ーナフチルイソプロピル基、 $2-\alpha$ ーナフチルイソプロピル基、 β ーナフチルメチル基、 $1-\beta$ ーナフチルエチル基、 $2-\beta$ ーナフチルエチル基、 $1-\beta$ ーナフチルイソプロピル基、 $2-\beta$ ーシアノベンジル基、 $2-\beta$ ーシアノベンジル基、 $2-\beta$ ーシアノベンジル基、 $2-\beta$ ーシアノベンジル基、 $2-\beta$ ーフェニルイソプロピル基等が挙げられ、好ましくは、ベンジル基、 $2-\beta$ ーシアノベンジル基等が挙げられる。

前記Czとしては、下記構造

のうちのいずれかであると好ましく、下記構造のうちのいずれか であるとさらに好ましい。

また、Czが、置換基を有していても良いカルバゾリル基、又は置換基を有していても良いアリールカルバゾリル基であると

特に好ましい。

前記一般式(1)~(3)において例示した各基の置換基としては、例えば、ハロゲン原子、ヒドロキシル基、アミノ基、ニトロ基、シアノ基、アルキル基、アルケニル基、シクロアルキル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基、アラルキル基、アリールオキシ基、アルコシキカルボニル基等が挙げられる。本発明の一般式(1)~(3)のいずれかで表される化合物からなる有機EL素子用材料の具体例を以下に示すが、これら例示化合物に限定されるものではない。

また、本発明の有機EL素子用材料は、有機EL素子のホスト 材料であると好ましい。

次に、本発明の有機EL素子について説明する。

本発明の有機 E L 素子は、陰極と陽極間に少なくとも発光層を有する一層又は複数層からなる有機薄膜層が挟持されている有機 E L 素子において、該有機薄膜層の少なくとも一層が、本発明の有機 E L 素子用材料を含有する。 多層型の有機 E L 素子の構造としては、例えば、陽極/正孔輸送層(正孔注入層)/発光層/陰極、陽極/発光層/電子輸送層(電子注入層)/陰極、陽極/正孔輸送層(正孔注入層)/発光層/電子輸送層(電子注入層)/陰極、陽極/正孔輸送層(正孔注入層)/発光層/正孔障壁層/電子輸送層(電子注入層)/陰極、等の多層構成で積層したものが挙げられる。

前記発光層は、ホスト材料とりん光性の発光材料からなり、該ホスト材料が前記有機 E L 素子用材料からなると好ましい。

りん光性の発光材料としては、りん光量子収率が高く、発光素子の外部量子効率をより向上させることができるという点で、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体が好ましく、イリジウム錯体及び白金錯体がより好ましく、オルトメタル化イリジウム錯体が最も好ましい。オルトメタル化金属錯体のさらに好ましい形態としては、以下に示すイリジウム錯体が好ましい。

$$(K-10) \qquad (K-11) \qquad (K-12)$$

$$\begin{bmatrix} F_3C & CF_3 \\ N & CF_3 \end{bmatrix}$$

$$(K-13) \qquad (K-14) \qquad (K-15)$$

$$\begin{bmatrix} K-15 \\ K-16 \end{bmatrix}$$

$$(K-16) \qquad (K-16)$$

本発明の有機EL素子は、陰極と有機薄膜層との界面領域に、 還元性ドーパントが添加されてなると好ましい。

前記還元性ドーパントとしては、アルカリ金属、アルカリ金属 錯体、アルカリ金属化合物、アルカリ土類金属、アルカリ土類金 属錯体、アルカリ土類金属化合物、希土類金属、希土類金属錯体、 及び希土類金属化合物等から選ばれた少なくとも一種類が挙げ られる。

前記アルカリ金属としては、Na(仕事関数:2.36 e V)、 K(仕事関数:2.28 e V)、Rb(仕事関数:2.16 e V)、 Cs(仕事関数:1.95 e V)等が挙げられ、仕事関数が2.

9 e V以下のものが特に好ましい。これらのうち好ましくはK、Rb、Cs、さらに好ましくはRb又はCsであり、最も好ましくはCsである。

前記アルカリ土類金属としては、Ca(仕事関数: 2.9 e V)、Sr(仕事関数: 2.0~2.5 e V)、Ba(仕事関数: 2.5 2 e V)等が挙げられ、仕事関数が 2.9 e V以下のものが特に好ましい。

前記希土類金属としては、Sc、Y、Ce、Tb、Yb等が挙 げられ、仕事関数が2.9eV以下のものが特に好ましい。

以上の金属のうち好ましい金属は、特に還元能力が高く、電子 注入域への比較的少量の添加により、有機 E L 素子における発光 輝度の向上や長寿命化が可能である。

前記アルカリ金属化合物としては、Li₂O、Cs₂O、K₂O 等のアルカリ酸化物、LiF、NaF、CsF、KF等のアルカ リハロゲン化物等が挙げられ、LiF、Li₂O、NaFのアル カリ酸化物又はアルカリフッ化物が好ましい。

前記アルカリ土類金属化合物としては、BaO、SrO、CaO及びこれらを混合したBa、Sr_{1-x}O(0 < x < 1)や、Ba、Ca_{1-x}O(0 < x < 1)等が挙げられ、BaO、SrO、CaOが好ましい。

前記希土類金属化合物としては、YbF3、ScF3、ScO3、 Y2O3、Ce2O3、GdF3、TbF3等が挙げられ、YbF3、 ScF3、TbF3が好ましい。

前記アルカリ金属錯体、アルカリ土類金属錯体、希土類金属錯体としては、それぞれ金属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオンの少なくとも一つ含有するものであれば特に限定はない。また、配位子にはキノリノー

ル、ベンゾキノリノール、アクリジノール、フェナントリジノール、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール、ヒドロキシジアリールオキサジアゾール、ヒドロキシジアリールチアジアゾール、ヒドロキシフェニルピリジン、ヒドロキシフェニルベンゾイミダゾール、ヒドロキシベンゾトリアゾール、ヒドロキシフルボラン、ビピリジル、フェナントロリン、フタロシアニン、ポルフィリン、シクロペンタジエン、βージケトン類、アゾメチン類、及びそれらの誘導体などが好ましいが、これらに限定されるものではない。

還元性ドーパントの添加形態としては、前記界面領域に層状又は島状に形成すると好ましい。形成方法としては、抵抗加熱蒸着法により還元性ドーパントを蒸着しながら、界面領域を形成する発光材料や電子注入材料である有機物を同時に蒸着させ、有機物中に還元ドーパントを分散する方法が好ましい。分散濃度としてはモル比で有機物:還元性ドーパント=100:1~1:100、好ましくは5:1~1:5である。

還元性ドーパントを層状に形成する場合は、界面の有機層である発光材料や電子注入材料を層状に形成した後に、還元ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは層の厚み 0.1~15 n m で形成する。

還元性ドーパントを島状に形成する場合は、界面の有機層である発光材料や電子注入材料を島状に形成した後に、還元ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは島の厚み 0.05~1 n m で形成する。

また、本発明の有機 E L 素子における、主成分と還元性ドーパントの割合としては、モル比で主成分:還元性ドーパント=5: 1~1:5であると好ましく、2:1~1:2であるとさらに好

ましい。

本発明の有機EL素子は、前記発光層と陰極との間に電子注入層を有し、該電子注入層が含窒素環誘導体を主成分として含有すると好ましい。

前記電子注入層に用いる電子輸送材料としては、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。

この含窒素環誘導体としては、例えば、一般式(A)で表されるものが好ましい。

 $R^2 \sim R^7$ は、それぞれ独立に、水素原子、ハロゲン原子、オキシ基、アミノ基、又は炭素数 $1 \sim 40$ の炭化水素基であり、これらは置換されていてもよい。

このハロゲン原子の例としては、前記と同様のものが挙げられる。また、置換されていても良いアミノ基の例としては、前記アルキルアミノ基、アリールアミノ基、アラルキルアミノ基と同様のものが挙げられる。

炭素数1~40の炭化水素基としては、置換もしくは無置換の アルキル基、アルケニル基、シクロアルキル基、アルコキシ基、 アリール基、複素環基、アラルキル基、アリールオキシ基、アル コキシカルボニル基等が挙げられる。このアルキル基、アルケニ

ル基、シクロアルキル基、アルコキシ基、アリール基、複素環基、アラルキル基、アリールオキシ基の例としては、前記と同様のものが挙げられ、アルコキシカルボニル基は一COOY'と表され、Y'の例としては前記アルキル基と同様のものが挙げられる。

Mは、アルミニウム(A1)、ガリウム(Ga)又はインジウム(In)であり、Inであると好ましい。

一般式(A)のLは、下記一般式(A')又は(A'')で表される基である。

(式中、 $R^8 \sim R^{12}$ は、それぞれ独立に、水素原子又は置換もしくは無置換の炭素数 $1 \sim 4$ 0 の炭化水素基であり、互いに隣接する基が環状構造を形成していてもよい。また、 $R^{13} \sim R^{27}$ は、それぞれ独立に、水素原子又は置換もしくは無置換の炭素数 $1 \sim 4$ 0 の炭化水素基であり、互いに隣接する基が環状構造を形成していてもよい。)

一般式 (A') 及び (A'') の $R^8 \sim R^{12}$ 及び $R^{13} \sim R^{27}$ が示す炭素数 $1 \sim 40$ の炭化水素基としては、前記 $R^2 \sim R^7$ の具体例と同様のものが挙げられる。

また、前記 R ⁸ ~ R ¹² 及び R ¹³ ~ R ²⁷ の互いに隣接する基が環状構造を形成した場合の 2 価の基としては、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ジフェニルメタン - 2, 2 ' - ジイル基、ジフェニルエタン - 3, 3 ' - ジイル基、ジフェ

ニルプロパン-4,4'-ジイル基等が挙げられる。

一般式(A)で表される含窒素環の金属キレート錯体の具体例を以下に示すが、これら例示化合物に限定されるものではない。

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

$$\begin{array}{c|c}
 & CH_3 \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

$$\begin{pmatrix}
& & & \\
& & & \\
& & & \\
& & & \\
CH_3 & 2 & (A-4)
\end{pmatrix}$$

$$\begin{array}{c|c}
C_6 H_5 \\
\hline
C_6 H_5 \\
\hline
C_6 H_5
\end{array}$$
(A-13)

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

$$\begin{array}{c|c}
 & CH_3 \\
 & CH_3
\end{array}$$

$$\begin{array}{c}
 & CH_3 \\
 & CH_3
\end{array}$$

$$\begin{array}{c}
 & CH_3 \\
 & CH_3
\end{array}$$

$$\begin{bmatrix}
C_2 H_5 & & \\
C_{13} & & \\
C_{13} & & \\
C_{13} & & \\
C_{14} & & \\$$

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

$$\begin{bmatrix} CH_3 & CH_3 \end{bmatrix} 2 & CH_3 \end{bmatrix} (A - 3 2)$$

$$\begin{bmatrix}
C_{2} & H_{5} & & & & & \\
C_{13} & & & &$$

前記電子注入層の主成分である含窒素環誘導体としては、含窒素 5 員環誘導体も好ましく、含窒素 5 員環としては、イミダゾール環、トリアゾール環、テトラゾール環、オキサジアゾール環、チアジアゾール環、オキサトリアゾール環、チアトリアゾール環等が挙げられ、含窒素 5 員環誘導体としては、ベンゾイミダゾール環、ベンゾトリアゾール環、ピリジノイミダゾール環、ピリミ

ジノイミダゾール環、ピリダジノイミダゾール環であり、特に好ましくは、下記一般式(B)で表されるものである。

$$L^{B} = \begin{pmatrix} N & & & \\ Z^{B2} & & & \\ X^{B2} & & & \end{pmatrix} n^{B2}$$
 (B)

一般式(B)中、L^B は二価以上の連結基を表し、例えば、 炭素、ケイ素、窒素、ホウ素、酸素、硫黄、金属(例えば、バリウム、ベリリウム)、芳香族炭化水素環、芳香族複素環等が挙げられ、これらのうち炭素原子、窒素原子、ケイ素原子、ホウ素原子、酸素原子、硫黄原子、アリール基、芳香族複素環基が好ましく、炭素原子、ケイ素原子、アリール基、芳香族複素環基がさらに好ましい。

L®のアリール基及び芳香族複素環基は置換基を有していてもよく、置換基として好ましくはアルキル基、アルケニル基、アルカニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、スルホニル基、ハロゲン原子、シアノ基、芳香族複素環基であり、より好ましくはアルキル基、アリール基、アルコキシ基、アリールオシ基、ハロゲン原子、シアノ基、芳香族複素環基であり、さらに好ましくはアルキル基、アリール基、

アルコキシ基、アリールオキシ基、芳香族複素環基であり、特に 好ましくはアルキル基、アリール基、アルコキシ基、芳香族複素 環基である。

L® の具体例としては、以下に示すものが挙げられる。

一般式(B)における X^{B^2} は、-O-、-S-又は $=N-R^{B^2}$ 2を表す。 R^{B^2} は、水素原子、脂肪族炭化水素基、アリール基又は複素環基を表す。

R^{B2}の脂肪族炭化水素基は、直鎖、分岐又は環状のアルキル基(好ましくは炭素数 1~20、より好ましくは炭素数 1~12、特に好ましくは炭素数 1~8のアルキル基であり、例えば、メチル、エチル、iso一プロピル、tertーブチル、nーオクチル、nーデシル、nーヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシル等が挙げられる。)、アルケニル基(好ましくは炭素数 2~20、より好ましくは炭素数 2~12、特に好ましくは炭素数 2~20、より好ましくは炭素数 2~10、より好ましくは炭素数 2~12、特に好ましくは炭素数 2~20、より好ましくは炭素数 2~12、特に好ましくは炭素数 2~8のアルキニル基であり、例えば、プロパルギル、3ーペンチニル等が挙げられる。)であり、アルキル基であると好ましい。

 R^{B^2} のアリール基は、単環又は縮合環であり、好ましくは炭素数 $6 \sim 30$ 、より好ましくは炭素数 $6 \sim 20$ 、さらに好ましくは炭素数 $6 \sim 12$ のアリール基であり、例えば、フェニル、2ーメチルフェニル、3ーメチルフェニル、4ーメチルフェニル、2ーメトキシフェニル、3ートリフルオロメチルフェニル、ペンタフルオロフェニル、1-ナフチル、2-ナフチル等が挙げられる。

 R^{B^2} の複素環基は、単環又は縮合環であり、好ましくは炭素数 $1\sim 2$ 0、より好ましくは炭素数 $1\sim 1$ 2、さらに好ましくは炭素数 $2\sim 1$ 0 の複素環基であり、好ましくは窒素原子、酸素原子、硫黄原子、セレン原子の少なくとも一つを含む芳香族へテロ環基である。この複素環基の例としては、例えば、ピロリジン、

ピペリジン、ピペラジン、モルフォリン、チオフェン、セレノフェン、フラン、ピロール、イミダゾール、ピラゾール、ピリジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、オキサゾリン、フタラジン、ナフチリジン、キノリン、カーリン、フェナジン、アクリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンゾイミダゾール、ボンゾオキサゾール、ベングチアゾール、アゼピン等が挙げられ、好ましくは、フラン、チオフェン、ピリジン、アクリジン、ナフチリジン、ピリダジン、トリアジン、キノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリンであり、より好ましくはキノリンである。

R^{B2}で表される脂肪族炭化水素基、アリール基及び複素環基は置換基を有していてもよく、置換基としては前記L^Bで表される基の置換基として挙げたものと同様であり、また好ましい置換基も同様である。

R^{B2}として好ましくは脂肪族炭化水素基、アリール基又は複素環基であり、より好ましくは脂肪族炭化水素基(好ましくは炭素数 6~30、より好ましくは炭素数 6~20、さらに好ましくは炭素数 6~12のもの)又はアリール基であり、さらに好ましくは脂肪族炭化水素基(好ましくは炭素数 1~20、より好ましくは炭素数 1~12、さらに好ましくは炭素数 2~10のもの)である。

 X^{B^2} として好ましくは-O-、 $=N-R^{B^2}$ であり、より好ま

しくは=N-R^{B2}であり、特に好ましくは=N-R^{B2}である。 Z^{B2}は、芳香族環を形成するために必要な原子群を表す。Z^{B2} ²で形成される芳香族環は芳香族炭化水素環、芳香族複素環のいずれでもよく、具体例としては、例えば、ベンゼン環、ピリジン環、ピリジン環、ピリジン環、トリアジン環、ピール環、フラン環、チオフェン環、セレノフェン環、テルロフェン環、イミダゾール環、チアゾール環、セレナゾール環、テルラゾール環、チアジアゾール環、オキサジアゾール環、ピラゾール環などが挙げられ、好ましくはベンゼン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピリジン環、ピリダジン環であり、より好ましくは

ベンゼン環、ピリジン環、ピラジン環であり、さらに好ましくは

ベンゼン環、ピリジン環であり、特に好ましくはピリジン環であ

る。

Z®で形成される芳香族環は、さらに他の環と縮合環を形成してもよく、置換基を有していてもよい。置換基としては前記LBで表される基の置換基として挙げたものと同様であり、好ましくはアルキル基、アルケニル基、アルキニル基、アリール基、アシルオキシ基、アリールオキシ基、アシルオキシ基、アリールオキシカルボニル基、アリールオキシカルボニルアミノ基、アルコキシカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アルキルチオ基、アリールチオ基、スルホニル基、ハロゲン原子、シアノ基、複素環基であり、より好ましくはアルキル基、アリール基、アルコキシ基、アリールオキシ基、カルブログン原子、シアノ基、複素環基であり、さらに好ましくはアルキル基、アリール基、アルコキシ基、アリールオキシ基、芳香族複素環基であり、特に好ましくはアルキル基、アリール基、アルール基、アリール基、アルール基、アリール基、アルール基、アリール基、アリール基、アリール基、アルール基、アリール基、アルコキシ基、アリール基、アリール基、アリール基、アルコール基、アリール基、アリール基、アリール基、アリール基、アリール基、アリール基、アリール基、アルコール基、アリール基、アルコールを含まれる。

コキシ基、芳香族複素環基である。

n ^{B 2}は、1~4の整数であり、2~3であると好ましい。

前記一般式(B)で表される含窒素 5 員環誘導体のうち、さらに好ましくは下記一般式(B')で表されるものが好ましい。

一般式(B')中、R^{B71}、R^{B72}及びR^{B73}は、それぞれ一般式(B)におけるR^{B2}と同様であり、また好ましい範囲も同様である。

 Z^{B71} 、 Z^{B72} 及び Z^{B73} は、それぞれ一般式(B)における Z^{B2} と同様であり、また好ましい範囲も同様である。

 L^{B71} 、 L^{B72} 及び L^{B73} は、それぞれ連結基を表し、一般式(B)における L^{B} の例を二価としたものが挙げられ、好ましくは、単結合、二価の芳香族炭化水素環基、二価の芳香族複素環基、及びこれらの組み合わせからなる連結基であり、より好ましくは単結合である。 L^{B71} 、 L^{B72} 及び L^{B73} は置換基を有していてもよく、置換基としては前記一般式(B)における L^{B} で表され

る基の置換基として挙げたものと同様であり、また好ましい置換 基も同様である。

Yは、窒素原子、1,3,5-ベンゼントリイル基又は2,4,6-トリアジントリイル基を表す。1,3,5-ベンゼントリイル基は2,4,6-位に置換基を有していてもよく、置換基としては、例えば、アルキル基、芳香族炭化水素環基、ハロゲン原子などが挙げられる。

一般式(B)又は(B')で表される含窒素 5 員環誘導体の具体例を以下に示すが、これら例示化合物に限定されるものではない。

$$(B-1)$$

$$(B-2)$$

$$(B-3)$$

$$(B-4)$$

$$(B-5)$$

$$(B-6)$$

(B-7)

$$(B - 8)$$

(B-9)

また、前記電子注入層の構成成分として、前記含窒素環誘導体の他に無機化合物として、絶縁体又は半導体を使用することが好ましい。電子注入層が絶縁体や半導体で構成されていれば、電流のリークを有効に防止して、電子注入性を向上させることができる。

このような絶縁体としては、アルカリ金属カルコゲナイド、ア ルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及 びアルカリ土類金属のハロゲン化物からなる群から選択される 少なくとも一つの金属化合物を使用するのが好ましい。電子注入 層がこれらのアルカリ金属カルコゲナイド等で構成されていれ ば、電子注入性をさらに向上させることができる点で好ましい。 具体的に、好ましいアルカリ金属カルコゲナイドとしては、例え ば、Li2〇、Li〇、Na2S、Na2Se及びNaOが挙げら れ、好ましいアルカリ土類金属カルコゲナイドとしては、例えば、 CaO、BaO、SrO、BeO、BaS及びCaSeが挙げら れる。また、好ましいアルカリ金属のハロゲン化物としては、例 えば、LiF、NaF、KF、LiCl、KCl及びNaCl等 が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物 としては、例えば、CaF2、BaF2、SrF2、MgF2及び BeF₂等のフッ化物や、フッ化物以外のハロゲン化物が挙げら れる。

また、半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子注入層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。電子注入層がこれらの絶縁性薄膜で構成され

ていれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、このような無機化合物としては、前記アルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等が挙げられる。

また、本発明における電子注入層は、前述の還元性ドーパントを含有していても好ましい。

本発明の有機EL素子は、前記発光層と陽極との間に正孔輸送層を有し、該正孔輸送層がアリールアミン誘導体を主成分として含有すると好ましい。また、正孔輸送層に含有される正孔輸送材料としては、3重項エネルギーが2.52~3.7 e Vであると好ましく、2.8~3.7 e Vであるとさらに好ましい。このような範囲の正孔輸送材料を用いることで、発光層の励起エネルギーが失活することを防ぐことができる。

前記正孔輸送材料としては、下記一般式(C)及び(D)で表されるものが好ましい。

$$Ar^{7} \left(N \right)_{M}^{Ar^{9}}$$
(C)

(式中、Ar 7 は、炭素数が $6\sim40$ の芳香族基であり、Ar 8 及びAr 9 は、それぞれ水素原子又は炭素数が $6\sim40$ の芳香族基であり、mは $1\sim6$ の整数である。)

$$Ar^{10} \xrightarrow{\left(\begin{array}{c} N \\ Ar^{11} \end{array}\right)_{p}} \xrightarrow{\left(\begin{array}{c} Ar^{12} \\ q \\ Ar^{13} \end{array}\right)_{q}} Ar^{14} \xrightarrow{\left(\begin{array}{c} N \\ Ar^{15} \end{array}\right)_{s}} Ar^{16}$$
(D)

(式中、 Ar^{10} 及び Ar^{10} は、炭素数が $6\sim40$ の芳香族基であり、 $Ar^{11}\sim Ar^{15}$ は、それぞれ水素原子又は炭素数が $6\sim40$ の芳香族基であり、縮合数 p、q、r、s は、それぞれ 0 又は1 である。)

前記一般式(C)及び(D)において、炭素数が6~40の芳 香族基のうち、好ましい核原子数5~40のアリール基としては、 フェニル、ナフチル、アントラニル、フェナンスリル、ピレニル、 コロニル、ビフェニル、ターフェニル、ピローリル、フラニル、 チオフェニル、ベンゾチオフェニル、オキサジアゾリル、ジフェ ニルアントラニル、インドリル、カルバゾリル、ピリジル、ベン ゾキノリル、フルオランテニル、アセナフトフルオランテニル等 が挙げられる。また、好ましい核原子数5~40のアリーレン基 としては、フェニレン、ナフチレン、アントラニレン、フェナン スリレン、ピレニレン、コロニレン、ビフェニレン、ターフェニ レン、ピローリレン、フラニレン、チオフェニレン、ベンゾチオ フェニレン、オキサジアゾリレン、ジフェニルアントラニレン、 インドリレン、カルバゾリレン、ピリジレン、ベンゾキノリレン、 フルオランテニレン、アセナフトフルオランテニレン等が挙げら れる。なお、炭素数が6~40の芳香族基は、さらに置換基によ り置換されていてもよく、好ましい置換基として、炭素数1~6 のアルキル基(エチル基、メチル基、iープロピル基、nープロ ピル基、s - ブチル基、t - ブチル基、ペンチル基、ヘキシル基、 シクロペンチル基、シクロヘキシル基等)、炭素数1~6のアル コキシ基 (エトキシ基、メトキシ基、i-プロポキシ基、n-プ ロポキシ基、s-ブトキシ基、t-ブトキシ基、ペントキシ基、 ヘキシルオキシ基、シクロペントキシ基、シクロヘキシルオキシ 基等)、核原子数5~40のアリール基、核原子数5~40のア

リール基で置換されたアミノ基、核原子数 5 ~ 4 0 のアリール基を有するエステル基、炭素数 1 ~ 6 のアルキル基を有するエステル基、シアノ基、ニトロ基、ハロゲン原子が挙げられる。

本発明において、有機EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する役割を担うものであり、4.5 e V以上の仕事関数を有することが効果的である。本発明に用いられる陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、金、銀、白金、銅等が適用できる。また陰極としては、電子注入層又は発光層に電子を注入する目的で、仕事関数の小さい材料が好ましい。陰極材料は特に限定されないが、具体的にはインジウム、アルミニウム、マグネシウム、マグネシウムーインジウム合金、マグネシウムーアルミニウム合金、アルミニウムーリチウム合金、アルミニウムースカンジウムーリチウム合金、マグネシウムー銀合金等が使用できる。

本発明の有機EL素子の各層の形成方法は特に限定されない。 従来公知の真空蒸着法、スピンコーティング法等による形成方法 を用いることができる。本発明の有機EL素子に用いる、前記一 般式(1)~(3)のいずれかで表される化合物を含有する有機 薄膜層は、真空蒸着法、分子線蒸着法(MBE法)あるいは溶媒 に解かした溶液のディッピング法、スピンコーティング法、キャ スティング法、バーコート法、ロールコート法等の塗布法による 公知の方法で形成することができる。

本発明の有機EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数 n m から 1 μ m の範囲が好ましい。

実 施 例

次に、実施例を用いて本発明をさらに詳しく説明する。 合成例1 (化合物 (C5) の合成)

化合物 (C5) の合成経路を以下に示す。

(1) 中間体 (IM1) の合成

1 リットルの三つロフラスコに3, 3'ージブロモビフェニル5 0 g (1 6 0 m m o 1)、カルバゾール1 8. 4 g (1 1 0 m m o 1)、よう化銅3. 0 g (1 6 m m o 1)、りん酸カリウム4 6. 6 g (2 2 0 m m o 1)、トランス1, 2 ーシクロヘキサンジアミン1 8. 2 g (1 6 0 m m o 1)、1, 4 ージオキサン5 0 0 ミリリットルを入れ、アルゴン雰囲気下1 0 5 ℃で1 2 時間攪拌した。その後、反応溶液を室温まで冷やし、水1 6 0 ミリリットルを加え、ジクロロメタンで3回抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮した。

残さをシリカゲルカラムにかけ、ジカルバゾリル体、未反応物等を除去精製し、11.2gの中間体(IM1)を得た(28mmo1,収率 25%)。得られた化合物について FD-MS(フィールドディソープションマススペクトル)を測定したところ、以下のようであった。

FD-MS : calcd for $C_{24}H_{16}BrN=398$, found, m/z=399 (100), 397 (90)

(2) 中間体 (IM2) の合成

200ミリリットルの三つロフラスコに中間体(IM1)5. 0g(12.6mmol)を脱水トルエン30ミリリットルと脱 水エーテル30ミリリットルの混合溶媒に溶解し、アルゴン雰囲 気下-40℃でノルマルブチルリチウムヘキサン溶液(1.6 M) 10ミリリットル (16mmol) を加え、-40℃から0℃ で1時間撹拌した。次に反応溶液を一70℃まで冷却し、ホウ酸 トリイソプロピル8.7ミリリットル(38mmo1)をエーテ ル12ミリリットルに希釈した溶液を20分かけて滴下し、一7 0℃で1時間撹拌した。その後室温まで昇温して6時間攪拌した。 更に反応溶液に5%塩酸35ミリリットルを加えて室温で40 分間攪拌した。反応溶液を二層に分離した後、有機層を飽和食塩 水で洗浄し、無水硫酸ナトリウムで乾燥した。有機溶媒を5分の 1程度まで減圧留去後、析出した結晶を濾過し、トルエンーノル マルヘキサン混合溶媒、ノルマルヘキサンで順次洗浄し、中間体 IM2 3.5g(9.6mmol,収率76%)を得た。得ら れた化合物についてFD-MSの測定結果を以下に示す。

FD-MS : calcd for C₂₄H₁₈BNO₂=363, found, m/z=363 (M⁺, 100) (3) 化合物 (C 5) の合成

200ミリリットルの三つロフラスコにアルゴン雰囲気下、メタジプロモベンゼン1.0g(4.2 m m o 1)、中間体(I M 2)3.2g(8.8 m m o 1)、テトラキストリフェニルホスフィンパラジウム0価(Pd(PPh₃)₄)208 m g(0.18 m m o 1)、ジメトキシエタン100ミリリットル、炭酸ナトリウム10重量%水溶液27g(25 m m o 1)を入れ、78℃

で12時間攪拌した。反応終了後、室温まで冷やし、析出した結晶をろ別し、少量の水、メタノール、ヘキサンで洗浄した(収量3.4g)。ろ別した固体をトルエンに溶かし、シリカゲルカラムで分離精製し、2.2gの化合物(C5)を得た(3.0mm o1,収率74%)。90MHzNMR及び質量分析にて目的物であることを同定した。FD-MSの測定結果を以下に示す。FD-MS:calcd for $C_{54}H_{36}N_2$ =712, found, m/z=712 (M^+ , 100) 合成例2 (化合物(C8)の合成)

化合物(C8)の合成経路を以下に示す。

(1) 中間体(IM3)の合成

200ミリリットルの三つロフラスコにアルゴン雰囲気下、3,5-ジブロモビフェニル6.2g(20mmol)、パラー(カルバゾリルー9ーイル)フェニルボロン酸5.8g(20mmol)、テトラキストリフェニルホスフィンパラジウム0価(Pd(PPh₃)₄)460mg(0.4mmol)、ジメトキシエタ

ン100ミリリットル、炭酸ナトリウム10重量%水溶液64g (60mmol)を入れ、78℃で10時間攪拌した。

反応終了後、室温まで冷却し、析出した固体をろ別した。ろ液にトルエン100ミリリットルを加え、分液ロートを用いて水、飽和食塩水で順に有機層を洗浄し、無水硫酸マグネシウムで乾燥、ろ過後、有機層を減圧濃縮し、褐色の粘性固体を得た。これをシリカゲルカラムで精製し、5.2gの中間体(IM3)を得た(11mmo1,収率55%)。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{30}H_{20}BrN=474$, found, m/z=475 (100), 473 (90)

(2) 中間体 (IM4) の合成

200ミリリットルの三つロフラスコに中間体(IM3)3.0g(6.3mmo1)を脱水トルエン30ミリリットルと脱水エーテル30ミリリットルの混合溶媒に溶解し、アルゴン雰囲気下-40℃でノルマルブチルリチウムへキサン溶液(1.6M)4.3ミリリットル(6.8mmo1)を加え、-40℃から0℃で1時間撹拌した。次に反応溶液を-70℃まで冷却し、ホウ酸トリイソプロピル4.2ミリリットル(18mmo1)をエーテル6ミリリットルに希釈した溶液を20分かけて滴下し、-70℃で1時間撹拌した。その後室温まで昇温して6時間撹拌した。更に反応溶液に5%塩酸15ミリリットルを加えて室温で30分間攪拌した。反応溶液を二層に分離した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。有機溶媒を5分の1程度まで減圧留去後、析出した結晶を濾過し、トルエンーノルマルへキサン混合溶媒、ノルマルへキサンで順次洗浄し、中間体(IM4)1.9g(4.3mmo1,収率69%)を得た。得

られた化合物についてFD-MSの測定結果を以下に示す。
FD-MS: calcd for C30H22BNO2=439, found, m/z=439 (M⁺, 100)
(3) 化合物 (C8) の合成

 $200 \le yyy + n$ の三つロフラスコにアルゴン雰囲気下、メタジブロモベンゼン0.47g(2.0mmo1)、中間体(IM4)1.8g(4.1mmo1)、テトラキストリフェニルホスフィンパラジウム0 価(Pd(PPh $_3$) $_4$)104mg(0.09mmo1)、ジメトキシエタン $50 \le yyy + n$ 、炭酸ナトリウム10 重量%水溶液14g(12mmo1)を入れ、78 で 12 時間攪拌した。反応終了後、室温まで冷やし、析出した結晶をろ別し、少量の水、メタノール、ヘキサンで洗浄した(収量1.8g)。ろ別した固体をトルエンに溶かし、シリカゲルカラムで分離精製し、1.4gの化合物(C8)を得た(1.6mm o1,収率81%)。 $90MHzNMR及び質量分析にて目的物であることを同定した。FD-MSの測定結果を以下に示す。FD-MS:calcd for <math>C_{66}H_{14}N_2=864$, found, m/z=864 (M^+ , 100) 合成例 3 (化合物(C14) の合成)

化合物(C14)の合成経路を以下に示す。

(1) 中間体(IM5)の合成

300ミリリットルの三つロフラスコにアルゴン雰囲気下、1 ーブロモー3ーヨードベンゼン5.0g(18mmol)、パラ ー(カルバゾリルー9ーイル)フェニルボロン酸5.2g(18 mmol)、テトラキストリフェニルホスフィンパラジウム0価 (Pd(PPh₃)₄)414mg(0.36mmol)、ジメト キシエタン100ミリリットル、炭酸ナトリウム10重量%水溶 液58g(54mmol)を入れ、80℃で12時間攪拌した。 反応終了後、室温まで冷却し、トルエン100ミリリットルを加 え、分液ロートを用いて水、飽和食塩水で順に有機層を洗浄し、 無水硫酸マグネシウムで乾燥、ろ過後、有機層を減圧濃縮し、黄 褐色の固体を得た。これをシリカゲルカラムで精製し、5.1g の中間体(IM5)を得た(13mmol,収率72%)。得ら れた化合物についてFD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{24}H_{16}BrN=398$, found, m/z=399 (100), 397 (93)

(2) 中間体 (IM6) の合成

 $200 \le yyy$ トルの三つロフラスコに中間体(IM5) 5. 0g(12.6 mmol) を脱水トルエン $30 \le yyy$ トルと脱水エーテル $30 \le yyy$ トルの混合溶媒に溶解し、アルゴン雰囲気下 -40 $\mathbb C$ でノルマルブチルリチウムへキサン溶液(1.6 M) $10 \le yyy$ トル(16 mmol) を加え、-40 $\mathbb C$ から 0 $\mathbb C$ で 1 時間撹拌した。次に反応溶液を-70 $\mathbb C$ まで冷却し、ホウ酸トリイソプロピル $8.7 \le yyy$ トル(38 mmol) をエーテル $12 \le yyy$ トルに希釈した溶液を 20 分かけて滴下し、-70 $\mathbb C$ で 1 時間撹拌した。その後室温まで昇温して 6 時間撹拌した。 更に反応溶液に 5% 塩酸 $30 \le yyy$ トルを加えて室温で 40

分間攪拌した。反応溶液を二層に分離した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。有機溶媒を5分の1程度まで減圧留去後、析出した結晶を濾過し、トルエンーノルマルヘキサン混合溶媒、ノルマルヘキサンで順次洗浄し、中間体(IM6)3.8g(10mmo1,収率79%)を得た。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{24}H_{18}BNO_2=363$, found, m/z=363 (M⁺, 100)

(3) 化合物 (C14) の合成

FD-MS : calcd for $C_{60}H_{40}N_2=788$, found, m/z=788 (M^+ , 100) 合成例 4 (化合物(C 2 2) の合成)

化合物(C22)の合成経路を以下に示す。

FD-MS : calcd for $C_{60}H_{40}N_2=788$, found, m/z=788 (M^+ , 100) 合成例 5 (化合物(C 6 6) の合成)

化合物 (C66) の合成経路を以下に示す。

(1) 化合物 (IM7) の合成

2 リットルの三つロフラスコにアルゴン雰囲気下、1,3,5 ートリブロモベンゼン70g(0.2 2 m o 1)、カルバゾール 7 3.6g(0.4 4 m o 1)、よう化銅4.2g(2 2 m m o 1)、りん酸カリウム187g(0.88 m o 1)、トランスー 1,2ーシクロヘキサンジアミン25g(0.2 2 m o 1)、1, 4ージオキサン700ミリリットルを入れ、104℃で16時間 攪拌した。その後室温まで冷却し、水600ミリリットル加えて 塩化メチレンで抽出後、有機層を水で洗浄し、ついで無水硫酸マ グネシウムで乾燥後、ろ別し、スラリー状態になるまで減圧濃縮 した。得られた固体をろ過し、ろ液をさらに減圧濃縮した。残さ

をトルエン300ミリリットルに溶かし、シリカゲルカラムにて精製し、22gの中間体(IM7)を得た(45mmo1,収率20%)。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS: calcd for $C_{30}H_{19}BrN_2=487$, found, m/z=488 (100), 48 6 (95)

(2) 化合物(IM8)の合成

 $300 \le yyy$ トルの三つロフラスコに、アルゴン雰囲気下、化合物(1M7)9.0 g(18mmo1)、脱水トルエン $100 \le yyy$ トル、脱水ジエチルエーテル $100 \le yyy$ トルを入れ、攪拌しながら-10 % に冷却した。そこへノルマルブチルリチウム(1.6M へキサン溶液) $14.8 \le yyy$ トル(23mmo1)を10分かけて滴下した。さらに2時間攪拌後、ホウ酸トリイソプロピル10.4 g(56mmo1)をエーテル $25 \le yyy$ トルに希釈した溶液を20分かけて滴下し、室温で8時間攪拌した。その後0% に冷却し、濃塩酸4 100

分液ロートにて溶液を二層に分離した後、有機層を100ミリリットルの水、飽和食塩水で順に洗浄し、再度有機層を分離し、無水硫酸マグネシウムにて乾燥した。溶液をろ過後、減圧濃縮し、得られた粘性固体をTHF(テトラヒドロフラン)30ミリリットルに溶解させ、ヘキサン100ミリリットルを加え、減圧下析出晶をろ過した。さらにろ液を濃縮し、得られた粘性物をTHFに溶解させ、ヘキサンを加えて同様の操作をおこない、計5.9gの中間体(IM8)を得た(13mmol,収率71%)。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS: calcd for $C_{30}H_{21}BN_2O_2=452$, found, m/z=452 (100)

(3) 中間体 (IM9) の合成

300ミリリットルの三つロフラスコにアルゴン雰囲気下、1 ーブロモー3ーヨードベンゼン5.0g(18mmol)、中間 体(IM8)8.1g(18mmol)、テトラキストリフェニ ルホスフィンパラジウム0価(Pd(PPh₃)₄)414mg(0. 36mmol)、ジメトキシエタン100ミリリットル、炭酸ナトリウム10重量%水溶液58g(54mmol)を入れ、80℃で10時間攪拌した。反応終了後、室温まで冷却し、トルエン100ミリリットルを加え、分液ロートを用いて水、飽和食塩水で順に有機層を洗浄し、無水硫酸マグネシウムで乾燥、ろ過後、有機層を減圧濃縮し、黄褐色の固体を得た。これをシリカゲルカラムで精製し、9.2gの中間体(IM9)を得た(16mmol,収率88%)。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS: calcd for $C_{37}H_{27}BrN_2=579$, found, m/z=580 (100), 57 8 (90)

(4) 中間体 (IM10) の合成

300ミリリットルの三つロフラスコに、アルゴン雰囲気下、化合物(IM9)6.0g(10mmo1)、脱水トルエン70ミリリットルと脱水ジエチルエーテル70ミリリットルを入れ、攪拌しながら-10℃に冷却した。そこへノルマルブチルリチウム(1.6Mへキサン溶液)7.5ミリリットル(12mmol)を10分かけて滴下した。さらに2時間攪拌後、ホウ酸トリイソプロピル5.6g(30mmol)をエーテル20ミリリットルに希釈した溶液を10分かけて滴下し、室温で6時間攪拌した。その後0℃に冷却し、濃塩酸4ミリリットルを水100ミリリットルで希釈した希塩酸を添加し、酸性とした。

分液ロートにて溶液を二層に分離した後、有機層を70ミリリットルの水、飽和食塩水で順に洗浄し、再度有機層を分離し、無水硫酸マグネシウムにて乾燥した。溶液をろ過後、減圧濃縮し、得られた粘性固体をTHF20ミリリットルに溶解させ、ヘキサン70ミリリットルを加え、減圧下析出晶をろ過した。さらにろ液を濃縮し、得られた粘性物をTHFに溶解させ、ヘキサンを加えて同様の操作をおこない、計4.1gの中間体(IM10)を得た(7.5 mmo1,収率75%)。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{37}H_{29}BN_2O_2=544$, found, m/z=544 (100)

(5) 化合物 (C66) の合成

200ミリリットルの三つロフラスコにアルゴン雰囲気下、1 , $3-\overline{y}$ プロモベンゼン640 m g (2.7 m m o 1) 、中間体 (I M 6) 3.0 g (5.5 m m o 1) 、テトラキストリフェニルホスフィンパラジウム0 価 $(Pd(PPh_3)_4)$ 127 m g (0.11 m m o 1) 、ジメトキシエタン50 ミリリットル、炭酸ナトリウム10 重量%水溶液17 g (16 m m o 1) を入れ、80 で 14 時間攪拌した。反応終了後、室温まで冷却し、析出した結晶をろ別した。得られた結晶を水、メタノール、ヘキサンで順に洗浄し、2.5 g の結晶を得た。さらに化合物をトルエンに加熱溶解し、室温に放置して再結晶化させ、2.0 g の化合物(C6 6)を得た(1.9 m m o 1 、収率71%)。90 M H z N M R 及び質量分析にて目的物であることを同定した。FD - M S の測定結果を以下に示す。

FD-MS : calcd for $C_{78}H_{50}N_4=1042$, found, m/z=1042 (M⁺, 100), 1043 (80)

合成例 6 (化合物 (C 2 6) の合成)

化合物 (C26) の合成経路を以下に示す。

(1) 中間体 (IM11) の合成

500ミリリットルの三つロフラスコにアルゴン雰囲気下、1,3,5ートリブロモベンゼン30g(94mmo1)、カルバゾール18.8g(60mmo1)、よう化銅0.6g(3mmo1)、りん酸カリウム25.5g(120mmo1)、トランスー1,2ーシクロヘキサンジアミン3.4g(30mmo1)、1,4ージオキサン200ミリリットルを入れ、105℃で攪拌しながら16時間加熱還流した。その後室温まで冷却し、水150ミリリットル加えて塩化メチレンで抽出後、有機層を水で洗浄し、ついで無水硫酸マグネシウムで乾燥後、ろ別し、スラリー状態になるまで減圧濃縮した。得られた固体をろ過し、ろ液をさらに減圧濃縮した。残さをトルエンに溶かし、シリカゲルカラムにて精製し、17gの中間体(IM11)を得た(42mmo1,収率71%)。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS : calcd for C₁₈H₁₁Br₂N=401, found, m/z=401 (M⁺, 100) (2) 化合物 (C 2 6) の合成

100ミリリットルの三つ口フラスコにアルゴン雰囲気下、中間体(IM11)1.2g(3.0mmol)、中間体(IM6)

2. 2g(6mmol)、テトラキストリフェニルホスフィンパラジウム 0 価 ($Pd(PPh_3)_4$) 173mg(0.15mmol)、ジメトキシエタン 40 ミリリットル、炭酸ナトリウム 10 重量%水溶液 20g(18mmol)を入れ、80 で 13 時間 攪拌した。反応終了後、室温まで冷却し、析出した結晶をろ別した。得られた結晶を水、メタノール、ヘキサンで順に洗浄し、1.9g の結晶を得た。さらに化合物をトルエンに加熱溶解し、室温に放置して再結晶化させ、1.4g の化合物(C26)を得た(1.6mmol,収率 53%)。 90MHzNMR及び質量分析にて目的物であることを同定した。<math>FD-MSの測定結果を以下に示す。

FD-MS : calcd for C₆₆H₄₃N₃=877, found, m/z=877 (M⁺, 100) 合成例 7 (化合物 (C 3 3) の合成)

化合物 (C33) の合成経路を以下に示す。

$$\begin{array}{c|c} & & & & \\ & & & \\ N & & & \\ & & & \\ IIM4) & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

100ミリリットルの三つロフラスコにアルゴン雰囲気下、中間体(IM11)1.2g(3.0mmol)、中間体(IM4)2.6g(6mmol)、テトラキストリフェニルホスフィンパラジウム0価(Pd(PPh₃)4)172mg(0.15mmol)、ジメトキシエタン40ミリリットル、炭酸ナトリウム10重量%水溶液20g(18mmol)を入れ、80℃で16時間

攪拌した。反応終了後、室温まで冷却し、析出した結晶をろ別した。得られた結晶を水、メタノール、ヘキサンで順に洗浄し、2.7gの結晶を得た。さらに化合物をトルエンに加熱溶解し、室温に放置して再結晶化させ、2.1gの化合物(C33)を得た(2.0mmo1,収率68%)。90MHzNMR及び質量分析にて目的物であることを同定した。FD-MSの測定結果を以下に示す。

FD-MS : calcd for C₇₈H₅₁N₃=1029, found, m/z=1029 (M⁺, 100) 合成例 8 (化合物 (C 5 7) の合成)

化合物 (C57) の合成経路を以下に示す。

$$\begin{array}{c|c} & & & & \\ & &$$

100ミリリットルの三つロフラスコにアルゴン雰囲気下、中間体(IM6) 2. 0g(5. 4mmo1)、2, 6 ージフェニルー4ー(3,5ージブロモフェニル)ーピリミジン1.2 g(2. 6mmo1)、テトラキストリフェニルホスフィンパラジウム 0 価(Pd(PPh_3) $_4$)150 mg(0. 13mmo1)、ジメトキシエタン40ミリリットル、炭酸ナトリウム10重量%水溶液17g(16mmo1)を入れ、80℃で16時間攪拌した。反応終了後、室温まで冷却し、析出した結晶をろ別した。得られた結晶を水、メタノール、ヘキサンで順に洗浄し、2.0gの結晶を得た。さらに化合物をトルエンに加熱溶解し、室温に放置し

て再結晶化させ、1.5g の化合物(C57)を得た(1.6m m o l, 収率 6 l%)。90MHzNMR及び質量分析にて目的物であることを同定した。FD-MS の測定結果を以下に示す。FD-MS : calcd for $C_{70}H_{46}N_4=942$, found, m/z=942 (M^+ , 100) 合成例 9 (化合物(C5) の合成)

化合物 (C5) 'の合成経路を以下に示す。

(1) 中間体 (IM12) の合成

1 リットルの三つロフラスコに、アルゴン雰囲気下、3 ーブロモー9ーフェニルカルバゾール25g(78mmo1)、脱水トルエン250ミリリットルと脱水ジエチルエーテル250ミリリットルを入れ、攪拌しながらー20℃に冷却した。そこへノルマルブチルリチウム(1.6Mへキサン溶液)50ミリリットル(80mmo1)を20分かけて滴下した。さらに2時間攪拌後、ホウ酸トリイソプロピル44g(234mmo1)をエーテル50ミリリットルに希釈した溶液を20分かけて滴下した後、室温まで昇温し、6時間攪拌した。その後0℃に冷却し、濃塩酸10ミリリットルを水200ミリリットルで希釈した希塩酸を添加し、酸性とした。

分液ロートにて溶液を二層に分離した後、有機層を200ミリリットルの水、飽和食塩水で順に洗浄し、再度有機層を分離し、無水硫酸マグネシウムにて乾燥した。溶液をろ過後、減圧濃縮し、得られた粘性固体をTHFに一端溶解させ、次いでヘキサンを加えて析出させ、減圧下析出晶をろ過した。さらにろ液を濃縮し、同様の操作をおこない、計16gの中間体(IM12)を得た(56mmol,収率71%)。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS: calcd for $C_{18}H_{14}BNO_2=414$, found, m/z=414 (100)

(2) 中間体 (IM13) の合成

1 リットルの三つロフラスコにアルゴン雰囲気下、1 ーブロモー3ーヨードベンゼン8.5g(30mmo1)、(IM12)12g(29mmo1)、テトラキストリフェニルホスフィンパラジウム0価(Pd(PPh。)4)1.7g(1.45mmo1)、ジメトキシエタン300ミリリットル、炭酸ナトリウム10重量%水溶液96g(90mmo1)を入れ、80℃で12時間攪拌した。反応終了後、室温まで冷却し、トルエン250ミリリットルを加え、分液ロートを用いて二層に分離した後、有機層を水、飽和食塩水で順に洗浄し、再度有機層を分離し、無水硫酸マグネシウムで乾燥、ろ過後、有機層を減圧濃縮し、茶褐色の粘性固体を得た。これをシリカゲルカラムで精製し、9.7gの中間体(IM13)を得た(24mmo1、収率84%)。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS: calcd for $C_{24}H_{16}BrN=398$, found, m/z=399 (100), 397 (90)

(3) 中間体 (IM14) の合成

500ミリリットルの三つロフラスコに中間体(IM13)9.

のg(22.7mmo1)を脱水トルエン60ミリリットルと脱水エーテル60ミリリットルの混合溶媒に溶解し、アルゴン雰囲気下-20℃でノルマルブチルリチウムへキサン溶液(1.6 M)18ミリリットル(29mmo1)を加え、-20℃から0℃で2時間撹拌した。次に反応溶液を-40℃まで冷却し、ホウ酸トリイソプロピル15.7ミリリットル(68mmo1)をエーテル20ミリリットルに希釈した溶液を20分かけて滴下し、-40℃で1時間撹拌した。その後室温まで昇温して8時間撹拌した。更に反応溶液に4%塩酸を加えて室温で20分間攪拌した。反応溶液を二層に分離した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。有機溶媒を5分の1程度まで減圧留去後、析出した結晶を濾過し、トルエンーノルマルへキサン混合溶媒、ノルマルへキサンで順次洗浄し、中間体(IM14)6.4g(17.6mmo1,収率78%)を得た。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS : calcd for C₂₄H₁₈BNO₂=363, found, m/z=363 (M⁺, 100) (4) 中間体 (IM15) の合成

1リットルの三つロフラスコにアルゴン雰囲気下、1ーブロモー3ーヨードベンゼン5.1g(18mmol)、中間体(IM14)6.2g(17mmol)、テトラキストリフェニルホスフィンパラジウム0価(Pd(PPh₃)4)980mg(0.85mmol)、ジメトキシエタン150ミリリットル、炭酸ナトリウム10重量%水溶液54g(51mmol)を入れ、80℃で14時間攪拌した。反応終了後、室温まで冷却し、トルエン150ミリリットルを加え、分液ロートを用いて二層に分離した後、有機層を水、飽和食塩水で順に洗浄し、再度有機層を分離し、無水硫酸マグネシウムで乾燥、ろ過後、有機層を減圧濃縮し、茶褐

色の粘性固体を得た。これをシリカゲルカラムで精製し、4.1 gの中間体 (IM15)を得た (8.6 m m o l , 収率 5 1%)。得られた化合物について FD-MS の測定結果を以下に示す。 FD-MS : calcd for $C_{30}H_{20}BrN=474$, found, m/z=474 (100)

(5) 中間体 (IM16) の合成

200ミリリットルの三つロフラスコに中間体(IM15)4. Og(8.4mmol) を脱水トルエン45ミリリットルと脱水 エーテル45ミリリットルの混合溶媒に溶解し、アルゴン雰囲気 下-20℃でノルマルブチルリチウムへキサン溶液(1.6M) 5.6ミリリットル(9.0 m m o 1) を加え、-20℃から0℃ で 1 時間 撹拌 した。次に反応溶液を - 2 0 ℃まで冷却し、ホウ酸 トリイソプロピル5.5ミリリットル(24mmol)をエーテ ル10ミリリットルに希釈した溶液を20分かけて滴下し、一2 0℃で1時間撹拌した。その後室温まで昇温して8時間攪拌した。 更に反応溶液に4%塩酸を加えて酸性とし、室温で40分間攪拌 した。反応溶液を二層に分離した後、有機層を飽和食塩水で洗浄 し、無水硫酸ナトリウムで乾燥した。有機溶媒を5分の1程度ま で減圧留去後、析出した結晶を濾過し、トルエンーノルマルヘキ サン混合溶媒、ノルマルヘキサンで順次洗浄し、中間体(IM1 6) 2. 4 g (5. 5 m m o l, 収率 6 5 %) を得た。得られた 化合物についてFD-MSの測定結果を以下に示す。

FD-MS : calcd for C₃₀H₂₂BNO₂=439, found, m/z=439 (M⁺, 100) (6) 化合物 (C 5) 'の合成

200ミリリットルの三つ口フラスコにアルゴン雰囲気下、メタジブロモベンゼン640mg(2.7mmol)、(IM16) 2.4g(5.5mmol)、テトラキストリフェニルホスフィンパラジウム0価(Pd(PPh3)4)318mg(0.28m

 $m \circ 1$)、ジメトキシエタン1 2 0 ミリリットル、炭酸ナトリウム1 0 重量%水溶液1 7 g(1 6.5 m m o 1)を入れ、7 8 $^{\circ}$ で1 6 時間攪拌した。反応終了後、室温まで冷やし、析出した結晶をろ別し、少量の水、メタノール、ヘキサンで洗浄した。ろ別した固体をトルエンに溶かし、シリカゲルカラムで分離精製し、1.9 g の化合物(C 5)'を得た(2.2 m m o 1,収率8 1%)。9 0 M H z N M R 及び質量分析にて目的物であることを同定した。F D - M S の測定結果を以下に示す。

FD-MS : calcd for C₆₆H₄₄N₂=864, found, m/z=864 (M⁺, 100) 実施例1 (有機EL素子の作製:緑色発光)

25mm×75mm×0.7mm厚のIT〇透明電極付きガラ ス基板をイソプロピルアルコール中で超音波洗浄を5分間行な った後、UVオゾン洗浄を30分間行なった。洗浄後の透明電極 付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透 明電極が形成されている側の面上に前記透明電極を覆うように して膜厚60nmで下記TPD232を成膜した。このTPD2 32膜は、正孔注入層として機能する。続けて、TPD232膜 上に膜厚30nmで下記TBDBを成膜した。このTBDB膜は 正孔輸送層として機能する。さらに、TBDB膜上に膜厚30n m上記化合物(C5)をホスト材料として蒸着し発光層を成膜し た。同時にりん光発光性のIr金属錯体ドーパントとして上記 (K-13)を添加した。発光層中における(K-13)の濃度 は5重量%とした。この膜は、発光層として機能する。この膜上 に膜厚10nmの上記(A-7)を成膜した。この(A-7)膜 は正孔障壁層として機能する。さらにこの膜上に膜厚40nmの 下記8-ヒドロキシキノリンのアルミニウム錯体(Ala膜)を 成膜した。このAl q 膜は電子注入層として機能する。この後ハ

ロゲン化アルカリ金属であるLiFを0.2 nmの厚さに蒸着し、次いでアルミニウムを150 nmの厚さに蒸着した。このA1/LiFは陰極として働く。このようにして有機EL素子を作製した。

この素子について、通電試験を行なったところ、電圧 5.5~V、電流密度 0.2~3~m A $/~c~m^2$ にて、発光輝度 1.0~2~c~d $/~m^2$ の緑色発光が得られ、色度座標は(0.3~0, 0.6~3)、発光効率は 4.3~c~d / A であった。またこの素子を初期輝度 5.0~0~c~d / m^2 にて定電流駆動させ、輝度 2.5~0~0~c~d / m^2 まで半減する時間は 8.2~1~ 時間であった。それらの結果を表 1~ に示す。

実施例2~8(有機EL素子の作製:緑色発光)

実施例1において、発光層のホスト材料の化合物(C5)に代えて、表1に記載の化合物を使用したこと以外は同様の方法で有機EL素子を作製し、同様に電圧、電流密度、輝度、発光効率、

色度、輝度半減寿命を測定し表1に示した。

比較例1

実施例1において、発光層のホスト材料の化合物(C5)に代えて、公知の下記化合物(CBP)を使用したこと以外は同様の方法で有機EL素子を作製し、同様に電圧、電流密度、輝度、発光効率、色度、輝度半減寿命を測定し表1に示した。

CBP

比較例2

実施例1において、発光層のホスト材料の化合物(C5)に代えて、公知の下記化合物(CMTTP)を使用したこと以外は同様の方法で有機EL素子を作製し、同様に電圧、電流密度、輝度、発光効率、色度、輝度半減寿命を測定し表1に示した。

CMTTP

表 1

	発光層の おみり材料	電圧 (V)	電流 密度 (mA/ cm ²)	輝度 (cd/ m²)	発光 効率 (cd/ A)	色 度 座 標 (x, y)	輝度半減 寿命 (時間) 初期輝度 5000cd/m²
実施例 1	(C5)	5.5	0.23	102	44.3	(0.30,0.63)	821
実施例 2	(C8)	5.4	0.20	105	52.5	(0.31, 0.62)	1210
実施例3	(C14)	5.5	0.24	103	42.9	(0.31, 0.62)	1336
実施例 4	(C22)	5.7	0.26	100	38.4	(0.30,0.64)	984
実施例 5	(C26)	5.4	0.22	101	45.9	(0.31, 0.62)	816
実施例 6	(C57)	5.3	0.23	102	44.3	(0.31,0.62)	920
実施例7	(C66)	5.4	0.24	103	42.9	(0.31,0.63)	895
実施例8	(C5)′	5.4	0.26	101	38.8	(0.32, 0.61)	886
比較例 1	(CBP)	5.5	0.32	106	33.1	(0.32, 0.61)	442
比較例 2	(CMTTP)	5.5	.0.39	100	25.6	(0.33,0.61)	403

表1に示したように本発明の有機EL素子用材料を用いた有機EL素子は、高効率かつ長寿命な緑色発光が得られる。

実施例9 (有機EL素子の作製:青色発光)

25 mm×75 mm×0.7 mm厚のITO透明電極付きガラス基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。洗浄後の透明電極付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極が形成されている側の面上に前記透明電極を覆うようにして膜厚60 nmで上記TPD232を成膜した。このTPD2

3 2 膜は、正孔注入層として機能する。続けて、このTPD23 2 膜上に膜厚10nmで下記TCTAを成膜した。このTCTA膜は正孔輸送層として機能する。さらに、TCTA膜上に膜厚3 0 n mの上記化合物(С8)を蒸着し発光層を成膜した。同時にりん光性のIr金属錯体ドーパントとして上記(K-10)を添加した。発光層中における(K-10)の濃度は7.5 重量%とした。この膜は、発光層として機能する。この膜上に膜厚30nmの上記(A-7)を成膜した。このA1q膜は電子注入層として機能する。この後ハロゲン化アルカリ金属であるLiFを0.2 n mの厚さに蒸着し、次いでアルミニウムを150 n mの厚さに蒸着した。このA1/LiFは陰極として働く。このようにして有機EL素子を作製した。

この素子について、通電試験を行なったところ、電圧 $6.8\,\mathrm{V}$ 、電流密度 $0.3\,\mathrm{7\,m\,A/c\,m^2}$ にて、発光輝度 $1.0\,\mathrm{3\,c\,d/m^2}$ の青色発光が得られ、色度座標は($0.1\,8$, $0.3\,8$)、発光効率は $2.7.8\,\mathrm{c\,d/A}$ であった。またこの素子を初期輝度 $5.0\,\mathrm{c\,d/m^2}$ にて定電流駆動させ、輝度 $2.5\,\mathrm{0\,c\,d/m^2}$ まで半減する時間は $2.3\,5\,\mathrm{6}$ 間であった。それらの結果を表 $2\,\mathrm{に示す}$ 。

実施例10~12 (有機EL素子の作製:青色発光)

実施例9において、発光層のホスト材料の化合物(C8)に代えて、表2に記載の化合物を使用したこと以外は同様の方法で有

機EL素子を作製し、同様に電圧、電流密度、輝度、発光効率、 色度、輝度半減寿命を測定し表1に示した。

比較例3

実施例9において、発光層のホスト材料の化合物(C8)に代えて、公知の上記化合物(CBP)を使用したこと以外は同様の方法で有機EL素子を作製し、同様に電圧、電流密度、輝度、発光効率、色度、輝度半減寿命を測定し表2に示した。

比較例4

実施例9において、発光層のホスト材料の化合物(C8)に代えて、公知の上記化合物(CMTTP)を使用したこと以外は同様の方法で有機EL素子を作製し、同様に電圧、電流密度、輝度、発光効率、色度、輝度半減寿命を測定し表2に示した。

比較例5

実施例9において、発光層のホスト材料の化合物(C8)に代えて、公知の下記化合物(CTP)を使用したこと以外は同様の方法で有機EL素子を作製し、同様に電圧、電流密度、輝度、発光効率、色度、輝度半減寿命を測定し表2に示した。

CTP

表 2

	発光層の おみト材料	電圧 (V)	電流密度 (mA/ cm ²)	輝度 (cd/ m²)	発光 効率 (cd/ A)	色 度 座 標 (x, y)	輝度半減 寿命 (時間) 初期輝度 500cd/m²
実施例 9	(C8)	6.8	0.37	103	27.8	(0.18, 0.38)	2 3 5
実施例 10	(C14)	6.8	0.35	101	28.9	(0.18, 0.38)	2 3 8
実施例 11	(C26)	6.5	0.32	101	31.5	(0.17, 0.36)	2 4 2
実施例 12	(C33)	6.6	0.32	104	32.5	(0.17, 0.36)	284
比較例 3	(CBP)	6.8	0.63	100	15.8	(0.17, 0.38)	103
比較例 4	(CMTTP)	6.8	0.44	103	23.4	(0.18, 0.38)	1 1 8
比較例 5	(CTP)	10.2	11.2	84	0.75	(0.20, 0.40)	6

表2に示したように本発明の有機EL素子用材料を用いた有機EL素子は、高効率かつ長寿命な緑色発光が得られる。

請求の範囲

1. 下記一般式(1)~(3)のいずれかで表される化合物からなる有機エレクトロルミネッセンス素子用材料。

「式中、R₁~R₃は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有しても良い炭素数1~40のアルキル基、置換基を有しても良い炭素数3~30の複素環基、置換基を有しても良い炭素数6~40のアルコキシ基、置換基を有しても良い炭素数6~40のアリール基、置換基を有しても良い炭素数7~40のアラルキル基、置換基を有しても良い炭素数2~40のアルケニル基、置換基を有しても良い炭素数1~80のアルキルアミノ基、置換基を有しても良い炭素数6~80のアリールアミノ基、置換基を有しても良い炭素数6~80のアリールアミノ基、置換基を有しても良い炭素数7~80のアラルキルアミノ基、置換基を有しても良い炭素数7~80のアフルキルシリル基、置換基を有しても良い炭素数3~10のアルキルシリル基又はシアノ基である。R₁~R₃は、それぞれ複数であっても良く、隣接するもの同士で飽和もしくは不飽和の環状構造を形成していても良い。

Xは、下記一般式(4)~(9)のいずれかで表される基である。

(式中、R4~R13は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有しても良い炭素数1~40のアルキル基、置換基を有しても良い炭素数3~30の複素環基、置換基を有しても良い炭素数6~40のアルコキシ基、置換基を有しても良い炭素数6~40のアリール基、置換基を有しても良い炭素数7~40のアラルキル基、置換基を有しても良い炭素数7~40のアラルキル基、置換基を有しても良い炭素数1~80のアルケニル基、置換基を有しても良い炭素数1~80のアルキルアミノ基、置換基を有しても良い炭素数6~80のアリールアミノ基、置換基を有しても良い炭素数7~80のアラルキルアミノ基、置換基を有しても良い炭素数7~80のアラルキルアミノ基、置換基を有しても良い炭素数3~10のアルキルシリル基、置換基を有しても良い炭素数6~30のアリールシリル基又はシアノ基である。R4~R13は、それぞれ複数であっても良く、隣接するもの同士で飽和もしくは不飽和の環状構造を形成していても良い。

 $Y_1 \sim Y_3$ は、それぞれ独立に、-CR(Rは、水素原子、前記一般式(1)~(3)においてXに結合している基又は前記 R4, R5, R6, R8, R9, R10のいずれかである。)又は窒素原子であり、窒素原子である場合は、その数は同一環に少なくとも 2 つである。 C_Z は下記と同じである。

一般式 (9) において、 t は 0 ~ 1 の整数である。)

Czは下記一般式(10)又は(11)で表される基である。

(式中、Aは、単結合、- (CR₁₄R₁₅) n- (nは1~3の整 数)、- S i R 1 6 R 1 7 - 、 - N R 1 8 - 、 - O - 又 は - S - を 表 し、R14とR15、R16とR17は互いに結合して飽和もしくは不 飽和の環状構造を形成してもよい。R14~R20は、それぞれ独 立に、水素原子、ハロゲン原子、置換基を有しても良い炭素数1 ~40のアルキル基、置換基を有しても良い炭素数3~30の複 素環基、置換基を有しても良い炭素数1~40のアルコキシ基、 置換基を有しても良い炭素数6~40のアリール基、置換基を有 しても良い炭素数6~40のアリールオキシ基、置換基を有して も良い炭素数7~40のアラルキル基、置換基を有しても良い炭 素数2~40のアルケニル基、置換基を有しても良い炭素数1~ 80のアルキルアミノ基、置換基を有しても良い炭素数6~80 のアリールアミノ基、置換基を有しても良い炭素数7~80のア ラルキルアミノ基、置換基を有しても良い炭素数3~10のアル キルシリル基、置換基を有しても良い炭素数6~30のアリール シリル基又はシアノ基である。R」。~R20は、それぞれ複数で

あっても良く、隣接するもの同士で飽和もしくは不飽和の環状構造を形成していても良い。

Z は、置換しても良い炭素数 $1 \sim 2$ 0 のアルキル基、置換しても良い炭素数 $6 \sim 1$ 8 のアリール基、又は置換基を有しても良い炭素数 $7 \sim 4$ 0 のアラルキル基を表す。)]

2. 下記一般式(1')又は(3')で表される化合物からなる請求項1に記載の有機エレクトロルミネッセンス素子用材料。

$$Cz$$
 R_1
 R_2
 Cz
 R_2
 Cz
 R_3
 R_3
 R_2
 Cz
 R_3
 R_3

[式中、 $R_1 \sim R_3$ 、X、 C_Z は前記と同じ。]

- 3. 前記Czが、置換基を有していても良いカルバゾリル基、 又は置換基を有していても良いアリールカルバゾリル基である 前記一般式(1)~(3)のいずれかで表される化合物からなる 請求項1記載の有機エレクトロルミネッセンス用材料。
- 4. 前記一般式(1)~(3)のいずれかで表される化合物が、 有機エレクトロルミネッセンス素子の発光層に含まれるホスト 材料である請求項1記載の有機エレクトロルミネッセンス素子 用材料。
- 5. 陰極と陽極間に少なくとも発光層を有する一層又は複数層

からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも一層が、請求項 1記載の有機エレクトロルミネッセンス素子用材料を含有する 有機エレクトロルミネッセンス素子。

- 6. 前記発光層がホスト材料とりん光性の発光材料を含有し、 該ホスト材料が請求項1記載の有機エレクトロルミネッセンス 素子用材料からなる請求項5に記載の有機エレクトロルミネッ センス素子。
- 7. 陰極と有機薄膜層との界面領域に、還元性ドーパントが添加されてなる請求項5に記載の有機エレクトロルミネッセンス素子。
- 8. 前記発光層と陰極との間に電子注入層を有し、該電子注入層が含窒素環誘導体を主成分として含有する請求項5記載の有機エレクトロルミネッセンス素子。

INTERNATIONAL SEARCH REPORT

International application No.

			101/012	0047010300			
Α. ¯	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ H05B33/14, H05B33/22, C09K11/06						
Acc	According to International Patent Classification (IPC) or to both national classification and IPC						
B.	B. FIELDS SEARCHED						
Min	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ H05B33/00-33/28, C09K11/00-11/89						
	Jitsuyo Kokai Ji	itsuyo Shinan Koho 1971-2005 To	tsuyo Shinan Toroku Koho roku Jitsuyo Shinan Koho	1996-2005 1994-2005			
Elec	CA (STN)	ase consulted during the international search (name of o	data base and, where practicable, search te	rms used)			
C.	DOCUMEN	ITS CONSIDERED TO BE RELEVANT					
C	ategory*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
	A	JP 2000-21572 A (Mitsubishi 21 January, 2000 (21.01.00), Claims 1 to 3; table 1; Par. (Family: none)	- ·	1-8			
•	A	JP 2001-313179 A (Mitsubishi 09 November, 2001 (09.11.01), Claims 1 to 3; table 1; Par. (Family: none)	1-8				
	A	JP 2003-31371 A (Mitsubishi 31 January, 2003 (31.01.03), Claims 1 to 3; Par. Nos. [004 (Family: none)		1-8			
×	Further do	cuments are listed in the continuation of Box C.	See patent family annex.				
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance			"T" later document published after the interdate and not in conflict with the applicathe principle or theory underlying the in	tion but cited to understand			
"E"	-	eation or patent but published on or after the international	"X" document of particular relevance; the cl considered novel or cannot be considered	aimed invention cannot be			
"L"	document w	hich may throw doubts on priority claim(s) or which is blish the publication date of another citation or other n (as specified)	step when the document is taken alone "Y" document of particular relevance; the cl	aimed invention cannot be			
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed			considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family				
Date of the actual completion of the international search 13 March, 2005 (13.03.05)			Date of mailing of the international search 05 April, 2005 (05.				
Nam		g address of the ISA/ se Patent Office	Authorized officer				
Facs	imile No.		Telephone No.				

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/018960

		PCT/JP2	004/018960
C (Continuation)	DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	ant passages	Relevant to claim No.
А	JP 2002-193952 A (Fuji Photo Film Co., L 10 July, 2002 (10.07.02), Full text; all drawings (Family: none)	td.),	1-8
A	EP 1202608 A2 (Toyota Central Research A Development Laboratories, Inc.), 02 May, 2002 (02.05.02), Full text; all drawings & JP 2002-203683 A	nd	1-8
A	WO 2001/041512 A1 (THE TRUSTEES OF PRINCETON UNIVERSITY, THE UNIVERSITY OF SOUTHERN CALIFORNIA), 07 June, 2001 (07.06.01), Full text; all drawings & JP 2003-515897 A		1-8

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl. ⁷ H05B33/14, H05B33/22, C09K11/06				
B. 調査を行	テった分野	·		
調査を行った量	長小限資料(国際特許分類(IPC)) . ⁷ H05B33/00-33/28 C09K11/00-11/89	:	-	
日本国実 日本国公 日本国実	トの資料で調査を行った分野に含まれるもの 用新案公報 1922-1996年 開実用新案公報 1971-2005年 用新案登録公報 1996-2005年 録実用新案公報 1994-2005年	•		
国際調査で使用 CA(S	目した電子データベース(データベースの名称、 TN)	調査に使用した用語)		
こ 関連ナン	こし対なさるフサボ			
引用文献の	ると認められる文献		関連する	
カテゴリー*	引用文献名 及び一部の箇所が関連する。	ときは、その関連する箇所の表示	請求の範囲の番号	
A	JP 2000-21572 A (2000. 1. 21, 請求項1-3, アミリーなし)	三菱化学株式会社)	1-8	
A	JP 2001-313179 A 2001.11.9,請求項1-3, アミリーなし)		1 — 8	
区 C欄の続き	をにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。	
もの 「E」 国際出版 以後に位 「L」 優先権主 日若献(理 文献 「O」 口頭によ	のカテゴリー 他のある文献ではなく、一般的技術水準を示す 自日前の出願または特許であるが、国際出願日 会表されたもの 主張に疑義を提起する文献又は他の文献の発行 は他の特別な理由を確立するために引用する 理由を付す) こる開示、使用、展示等に言及する文献 質日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表を出願と矛盾するものではなく、多の理解のために引用するもの 「X」特に関連のある文献であって、当の新規性又は進歩性がないと考え 「Y」特に関連のある文献であって、当上の文献との、当業者にとってもよって進歩性がないと考えられる「&」同一パテントファミリー文献	送明の原理又は理論 当該文献のみで発明 こられるもの 当該文献と他の1以 目明である組合せに	
国際調査を完了	した日 18.03.2005	国際調査報告の発送日 05. 4	. 2005	
日本国	0名称及びあて先 関特許庁 (ISA/JP) 『便番号100-8915 『千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 里村利光 電話番号 03-3581-1101	2V 3491 内線 3271	

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 2003-31371 A (三菱化学株式会社) 2003. 1. 31, 請求項1-3, 段落【0047】-【005 8】(ファミリーなし)	1-8
A	JP 2002-193952 A (富士写真フイルム株式会社) 2002.7.10,全文全図 (ファミリーなし)	1-8
A .	EP 1202608 A2 (株式会社豊田中央研究所) 2002.5.2,全文全図 & JP 2002-203683 A	1-8
A	WO 2001/041512 A1 (THE TRUSTEES OF PRINCETON UNI VERSITY, THE UNIVERSITY OF SOU THERN CALIFORNIA) 2001. 6. 7, 全文全図 & JP 2003-515897 A	1-8