AI24BTECH11034 Tanush Sri Sai Petla

(Note: 'a' represents the ambient, '2' represents the exit of the diffuser, and 's'

2) Two position vectors are indicated by $\overline{V}_1 = \begin{cases} x_1 \\ y_1 \end{cases}$ and $\overline{V}_2 = \begin{cases} x_2 \\ y_2 \end{cases}$. If $a^2 + b^2 = 1$, then

the operation $\overline{V}_2 = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \overline{V}_1$ amounts to obtaining the position vector \overline{V}_2 from \overline{V}_1

b) $\frac{T_{O2s}+T_a}{T_{O2}+T_a}$ c) $\frac{P_{O2s}-P_a}{P_{o2}-P_{as}}$ d) $\frac{P_a-P_{O2s}}{P_a-P_{O2}}$

1) Isentropic efficiency η_e of a subsonic diffuser is defined as:

represents an isentropic process.)

a) $\frac{T_{O2s}-T_a}{T_{O2s}-T_a}$

by

	a) translation				
	b) rotation				
	c) magnification	c) magnification			
	d) combination of t	d) combination of translation, rotation, and magnification			
	3) An aircraft is climbing at a constant speed in a straight line at a steep angle of climb The load factor it sustains during the climb is:				
	a) equal to 1.0		c) positive but less	than 1.0	
	b) greater than 1.0		d) dependent on the	weight of the aircraft	
	4) In a general case of a homogeneous material under thermo-mechanical loading, the number of distinct components of the state of stress is:				
	a) 3	b) 4	c) 5	d) 6	
5) The linear second-order partial differential equation: $5\frac{\partial^2 \phi}{\partial x^2} + 3\frac{\partial^2 \phi}{\partial x^2} + 2\frac{\partial^2 \phi}{\partial y^2} + 9 = 0$ is:					
	a) Parabolic		c) Elliptic		
	b) Hyperbolic		d) None of the above		
	, .1				
6) All other factors remaining constant, if the weight of an aircraft increases by 30%, then the takeoff distance increases by approximately:					
	a) 15%	b) 30%	c) 70%	d) 105%	
	7) A vertical slender rod is suspended by a hinge at the top and hangs freely. It is heated until it attains a uniform temperature. Neglecting the effect of gravity, the rod has				

- a) Stress but no strain
- b) Strain but no stress

- c) Both stress and strain
- d) Neither stress nor strain
- 8) An aircraft stalls at a speed of 40 m/s in straight and level flight. The slowest speed at which this aircraft can execute a level turn at a bank angle of 60 degrees is:
 - a) 28.3 m/s
- b) 40.0 m/s
- c) 56.6 m/s
- d) 80.0 m/s
- 9) The eigen-values of a real symmetric matrix are always
 - a) positive

c) real

b) imaginary

- d) complex conjugate pairs
- 10) The concentrations of a certain chemical species at time t in a chemical reaction is described by the differential equation $\frac{dx}{dt} + kx = 0$, with $x(t = 0) = x_0$. Given that e is the base of the natural logarithms, the concentration x at $t = \frac{1}{k}$
 - a) falls to the value $0.5x_0$

c) falls to the value $\frac{x_0}{a}$

b) rises to the value $2x_0$

d) rises to the value ex_0

- 11) The definite integral $\int_{-1}^{+1} \frac{dx}{x^2}$
 - a) does not exist b) is equal to 2 c) is equal to 0 d) is equal to -2

- 12) The absolute ceiling of an aircraft is the altitude above which it:
 - a) can never reach
 - b) cannot sustain level flight at a constant speed
 - c) can perform accelerated flight as well as straight and level flight at a constant speed
 - d) can perform straight and level flight at a constant speed only
- 13) A thin rectangular plate made of isotropic material which satisfies the octahedral (i.e., Von Mises/Distortion energy) failure criterion has yield strength of 200 MPa under uniaxial tension. As shown in the figure, if it is loaded with uniform tension of 150 MPa along the x-direction, the maximum uniform tensile stress that can be applied along the y-direction before the plate starts yielding is about

a) 227 MPa b) 77 MPa c) 87 MPa d) 114 MPa