

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/KR2004/003364

International filing date: 20 December 2004 (20.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: KR
Number: 10-2004-0065453
Filing date: 19 August 2004 (19.08.2004)

Date of receipt at the International Bureau: 04 October 2006 (04.10.2006)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto
is a true copy from the records of the Korean Intellectual
Property Office

출 원 번 호 : 10-2004-0065453
Application Number

출 원 일 자 : 2004년 08월 19일
Date of Application AUG 19, 2004

출 원 인 : 주식회사 하이소닉
Applicant(s) HYSONIC Co.,Ltd

2006 년 10 월 02 일

특 허 청

COMMISSIONER

【서지사항】

【서류명】	특허출원서
【권리구분】	특허
【수신처】	특허청장
【제출일자】	2004.08.19
【발명의 국문명칭】	영상 촬영 장치
【발명의 영문명칭】	IMAGE PHOTOGRAPHING DEVICE
【출원인】	
【명칭】	주식회사 하이소닉
【출원인코드】	1-2001-016514-5
【대리인】	
【성명】	남상선
【대리인코드】	9-1998-000176-1
【포괄위임등록번호】	2003-035908-2
【발명자】	
【성명의 국문표기】	오형렬
【성명의 영문표기】	OH, HYEONG RYEOL
【주민등록번호】	691115-1648421
【우편번호】	156-030
【주소】	서울특별시 동작구 상도동 411 대림아파트 103-704
【국적】	KR
【심사청구】	청구
【취지】	특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의한 출원심사를 청구합니다.

대리인

남상선 (인)

【수수료】

【기본출원료】 0 면 38,000 원

【가산출원료】	31	면	0 원
【우선권주장료】	0	건	0 원
【심사청구료】	10	항	429,000 원
【합계】	467,000	원	
【감면사유】		소기업(70%감면)	
【감면후 수수료】	140,100	원	
【첨부서류】	1. 소기업임을 증명하는 서류[사업자등록증 사본 및 원천징수이행상황 신고서 사본]_2통		

【요약서】

【요약】

영상 촬영 장치가 개시된다. 개시된 영상 촬영 장치는, 제 1렌즈군과, 제 1렌즈군이 고정되는 하우징과, 제 1렌즈군과의 간격조정에 의해 줌배율이 변화되는 제 2렌즈군과, 제 2렌즈군을 줌배율 변화 경로인 제 1이동궤적을 따라 이동시키기 위한 제 1액츄에이터와, 제 2렌즈군과의 간격조정에 의해 줌배율이 변되는 제 3렌즈군과, 제 3렌즈군을 줌배율 변화 경로인 제 2이동궤적을 따라 이동시키기 위한 제 2액츄에이터와, 하우징에 고정되며 제 1렌즈군과 제 2렌즈군 및 제 3렌즈군을 통과한 피사체의상을 촬상하기 위한 이미지센서와, 제 1액츄에이터와 제 2액츄에이터 및 이미지센서를 제어하기 위한 제어부를 갖는다. 이러한 영상 촬영 장치는, 렌즈군을 구동시키는 액츄에이터 부분의 구조를 단순화하고 크기를 소형화시켜 휴대폰과 같이 소형의 통신기기에 장착할 수 있다.

【대표도】

도 5

【색인어】

통신기기, 영상 촬영 장치, 줌

【명세서】

【발명의 명칭】

영상 촬영 장치{IMAGE PHOTOGRAPHING DEVICE}

【도면의 간단한 설명】

- <1> 도 1은 일반적인 영상 촬영 장치의 개략적인 도면,
- <2> 도 2는 도 1에서 줌이 실행된 상태의 도면,
- <3> 도 3은 도 1에 도시한 렌즈군의 이동궤적을 도시한 도면,
- <4> 도 4는 종래 영상 촬영 장치의 일례를 도시한 사시도,
- <5> 도 5는 본 발명에 의한 영상 촬영 장치의 일실시예를 보인 도면,
- <6> 도 6은 도 5에 도시한 제 1로테이터 및 제 2로테이터를 도시한 사시도,
- <7> 도 7은 도 5에 도시한 제 1스테이터 및 제 2스테이터를 도시한 사시도,
- <8> 도 8은 도 7의 분해 도면,
- <9> 도 9는 도 5에 도시한 제 1가이드통체 및 제 2가이드통체의 사시도,
- <10> 도 10은 도 5에 도시한 제 1경통부 및 제 2경통부의 사시도,
- <11> 도 11은 도 5에 도시한 영상 촬영 장치에서 제 1캡부의 다른예를 보인 도면,
- <12> 도 12는 도 11에 도시한 캡통체의 사시도이다.
- <13> 〈도면의 주요 부분에 대한 부호의 설명〉
- <14> 100: 제 1렌즈군 110: 제 2렌즈군
- <15> 120: 제 3렌즈군 130: 하우징

<16> 140: 이미지 센서 200: 제 1코일

<17> 210: 제 1스테이터 212: 제 1자성체

<18> 214: 제 1코어 216: 제 2자성체

<19> 218: 제 2코어 220: 제 1마그네트

<20> 230: 제 1회전통체 232: 제 1회전통체

<21> 240: 제 1경통부 250: 제 1캡축

<22> 260: 제 1가이드통체 262: 제 1슬롯

<23> 300: 제 2코일 310: 제 2스테이터

<24> 312: 제 1자성체 314: 제 3코어

<25> 316: 제 2자성체 318: 제 4코어

<26> 320: 제 2마그네트 330: 제 2회전통체

<27> 340: 제 2경통부 350: 제 2캡축

<28> 360: 제 2가이드통체 362: 제 2슬롯

<29> 400: 캡통체 402: 캡면

<30> 410: 압축스프링

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

<31> 본 발명은 영상 촬영 장치에 관한 것으로, 보다 상세하게는 렌즈군을 구동시

키는 액츄에이터 부분의 구조를 단순화하고 크기를 소형화시켜 휴대폰과 같이 소형의 통신기기에 장착될 수 있도록 하기 위한 것이다.

<32> 도 1은 종래의 일반적인 영상 촬영 장치의 개략적인 구성 도면이고, 도 2는 도 1에서 줌 변화가 실행된 상태의 도면이다.

<33> 이 영상 촬영 장치는 초점을 보상하기 위한 보상렌즈군(10)과, 배율을 변경하기 위한 변위렌즈군(20)과, 보상렌즈군(10)과 변위렌즈군(20)을 통과한 영상을 촬상하여 전기신호로 변환하는 이미지센서(30)로 구성된다.

<34> 줌 비를 바꾸기 위해서는 보상렌즈군(10)과 변위렌즈군(20)을 렌즈 광학계의 설계 데이터로부터 나오는 줌 궤적에 맞추어 연동시켜야 한다.

<35> 이미지센서(30)의 위치에 대한 보상렌즈군(10)과 변위렌즈군(20)의 위치는 렌즈의 설계에 따라 다르며, 본 예시에서는 이미지센서(30)에 가까운 측이 변위렌즈군(20)으로 설계되었다.

<36> 이러한 영상 촬영 장치에서 줌이 실행되는 렌즈군의 이동 궤적을 도 2에 도시한다.

<37> 변위렌즈군(20)의 제 2이동궤적(22)이 큰 변위를 갖는 반면, 보상렌즈군(10)의 제 1이동궤적(12)은 미세 변위 만을 갖는다.

<38> 한편, 이러한 보상렌즈군(10)과 변위렌즈군(20)의 줌 궤적 연동을 구현하기 위하여 통상적으로 캠구조를 사용한다.

<39> 도 4는 종래 영상 촬영 장치의 실시예이다.

<40> 보상렌즈군(10)은 제 1경통(40)에 탑재되고, 변위렌즈군(20)은 제 2경통(4

4)에 탑재된다. 제 1경통(40) 및 제 2경통(44)의 외주에 위치하는 회전경통(50)에는 제 1경통(40)에 형성된 제 1구동핀(42)이 제 1이동궤적(12)을 따라 이동하도록 안내하기 위한 제 1캡홈(54)이 형성되고, 제 2경통(44)에 형성된 제 2구동핀(46)이 제 2이동궤적(22)을 따라 이동하도록 안내하기 위한 제 2캡홈(56)이 형성된다. 이러한 회전경통(50)에는 구동모터(70)의 구동기어(72)로부터 동력을 전달받기 위한 기어치(52)가 형성된다.

<41> 구동모터(70)가 회전하여 구동기어(72)가 기어치(52)를 회전시켜 회전경통
(50)이 회전하면,

<42> 그리고 회전경통(50)의 외주에는 고정경통(60)이 설치되는데, 고정경통(60)에는 제 1구동편(42)과 제 2구동편(46)이 광축 방향으로 이동하도록 가이드 하기 위한 슬롯(62)이 형성된다.

<43> 구동모터(70)가 회전하여 구동기어(72)가 기어치(52)를 회전시키면, 회전경통(50)과 이에 형성된 제 1캡홈(54)과 제 2캡홈(56)이 회전하게 된다. 제 1구동핀(42)과 제 2구동핀(46)이 슬롯(62)에 의해 회전하는 것이 방지되어 높이의 변화가 발생한다. 즉, 제 1구동핀(42)과 제 2구동핀(46)이 도 2와 같은 춤조정이 이루어지는 것이다.

<44> 한편, 피사체의 거리에 따라 이미지센서(80)에 맷히는 초점의 정도가 변화하므로 피사체의 거리에 따라 초점을 다시 맞추는 동작을 하여야 양호한 영상을 얻을 수 있다. 이를 위하여 보상렌즈군(10)과 변위렌즈군(20)을 통과한 피사체의 영상을 활상하기 위한 이미지센서(80)를 부착판(82)에 설치한다. 그리고 부착판(82)의 위

치를 조정하기 위한 리드스크류(92)를 회전시키는 조정모터(90)를 설치한다.

<45> 조정모터(90)가 리드스크류(92)를 회전시키면, 부착판(82) 및 이미지센서(80)가 광축방향으로 구동하여 영상 촬영시 이미지센서가 최적 초점 위치에 있게 된다.

<46> 그러나, 이와 같은 종래의 영상 촬영 장치는 부피가 큰 2개의 모터를 사용하여야 하므로 영상 촬영 장치의 부피가 커지게 되고, 이미지센서 면 자체를 이동하여야 하므로 포커싱 조정 기구가 매우 엄밀히 관리되어야 하는 문제점이 있었다.

【발명이 이루고자 하는 기술적 과제】

<47> 본 발명은 상기한 사정을 감안하여 안출된 것으로서, 본 발명의 목적은 렌즈군을 구동시키는 액추에이터 부분의 구조를 단순화하고 크기를 소형화시켜 휴대폰과 같이 소형의 통신기기에 장착될 수 있도록 하기 위한 것이다.

【발명의 구성】

<48> 상기와 같은 목적을 달성하기 위한 본 발명은, 제 1렌즈군; 상기 제 1렌즈군이 고정되는 하우징; 상기 제 1렌즈군과의 간격조정에 의해 줌배율이 변화되는 제 2렌즈군; 상기 제 2렌즈군을 줌배율 변화 경로인 제 1이동궤적을 따라 이동시키기 위한 제 1액추에이터; 상기 제 2렌즈군과의 간격조정에 의해 줌배율이 변되는 제 3렌즈군; 상기 제 3렌즈군을 줌배율 변화 경로인 제 2이동궤적을 따라 이동시키기 위한 제 2액추에이터; 상기 하우징에 고정되며, 상기 제 1렌즈군과 상기 제 2렌즈군 및 상기 제 3렌즈군을 통과한 피사체의상을 촬상하기 위한 이미지센서; 및 상기 제 1액추에이터와 상기 제 2액추에이터 및 상기 이미지센서를 제어하기 위한 제

어부를 포함하여 이루어지는 영상 촬영 장치를 제공한다.

<49> 상기 제 1액츄에이터는,

<50> 상기 제어부로부터 전원을 공급받으며, 다수의 구역으로 분할하여 각각 교번
되는 극성의 자기장을 발생시키기 위한 제 1코일을 포함하는 제 1스테이터; 상기
제 1코일로부터 발생되는 분할된 각각의 자기장에 노출되도록 극성이 분할된 제 1
마그네트를 포함하여 이루어지며, 상기 제 1코일에 전류가 인가될 때 회전운동을
하는 제 1로테이터; 상기 제 2렌즈군을 고정하기 위한 제 1경통부; 및 상기 제 1로
테이터의 회전력을 상기 광축 방향으로의 이송력으로 변환하여 상기 제 1경통부에
전달하기 위한 제 1캡부를 포함하여 이루어진다.

<51> 상기 제 1스테이터는,

<52> 상기 하우징에 고정되며, 상기 제 1마그네트의 분할된 동일한 한 극성에 각각 대응되는 다수의 제 1코어들을 갖는 제 1자성체; 상기 하우징에 고정되며, 상기 제 1마그네트의 분할된 동일한 다른 한 극성에 각각 대응되며, 상기 제 1코어들 사이에 각각 삽입되는 다수의 제 2코어들을 갖는 제 2자성체; 및 각각의 상기 제 1코어들 사이에 상기 제 2코어들이 결합된 상태에서 상기 제 1코어 및 상기 제 2코어의 외주에 감기는 상기 제 1코일을 포함하여 이루어진다.

<53> 상기 제 1로 테이터는,

<54> 상기 제 1마그네트; 및 상기 제 1마그네트가 고정되며, 상기 제 1이동궤적에
일치되는 제 1궤적홀이 형성된 제 1회전통체;를 포함하여 이루어지고,

<55> 상기 제 1캡부는,

<56> 상기 제 1경통부에 고정되며, 상기 제 1궤적홈에 삽입되는 제 1캡축; 및

<57> 상기 하우징에 고정되며, 상기 제 1캡축이 상기 광축 방향으로만 이동할 수 있도록 가이드하기 위한 제 1슬롯이 형성된 제 1가이드통체를 포함하여 이루어진다.

<58> 상기 제 1캡부의 다른예로서,

<59> 상기 제 1회전통체의 단면부상에 형성되고, 상기 제 1경통부를 제 1이동궤적을 따라 이동시키기 위한 캠면이 형성된 캠통체; 및 상기 제 1경통부를 상기 캠통체축으로 소정의 탄성력으로 미는 탄성부재로 구성할 수 있다.

<60> 상기 캠면은 대칭되는 위치에 복열로 형성되고, 상기 제 1경통부는 2점이 각각의 상기 캠면에 접촉된다.

<61> 상기 제 2액츄에이터는,

<62> 상기 제어부로부터 전원을 공급받으며, 다수의 구역으로 분할하여 각각 교번되는 극성의 자기장을 발생시키기 위한 제 2코일을 포함하는 제 2스테이터; 상기 제 2코일로부터 발생되는 분할된 각각의 자기장에 노출되도록 극성이 분할된 제 2마그네트를 포함하여 이루어지며, 상기 제 2코일에 전류가 인가될 때 회전운동을 하는 제 2로테이터; 상기 제 3렌즈군을 고정하기 위한 제 2경통부; 및 상기 제 2로테이터의 회전력을 상기 광축 방향으로의 이송력으로 변환하여 상기 제 2경통부에 전달하기 위한 제 2캡부를 포함하여 이루어진다.

<63> 상기 제 2스테이터는,

<64> 상기 하우징에 고정되며, 상기 제 2마그네트의 분할된 동일한 한 극성에 각

각 대응되는 다수의 제 3코어들을 갖는 제 3자성체; 상기 하우징에 고정되며, 상기 제 2마그네트의 분할된 동일한 다른 한 극성에 각각 대응되며, 상기 제 3코어들 사이에 상기 제 4코어들이 결합된 상태에서 상기 제 3코어 및 상기 제 4코어의 외주에 감기는 상기 제 2코일을 포함하여 이루어진다.

<65> 상기 제 2로 테이터는,

<67> 상기 제 2캡부는,

<68> 상기 제 2경통부에 고정되며, 상기 제 2궤적홈에 삽입되는 제 2캡축; 및

<69> 상기 하우징에 고정되며, 상기 제 2캡축이 상기 광축 방향으로만 이동할 수 있도록 가이드하기 위한 제 2슬롯이 형성된 제 2가이드통체를 포함하여 이루어진다.

<70> 상기 제어부는,

<72> 상기 제 1액츄에이터 및 상기 제 2액츄에이터 중 하나를 미세구동시켜 오토포커싱을 실시한다.

<73> 이하에서는 본 발명에 따른 영상 촬영 장치의 바람직한 실시예를 첨부도면을

참조하여 상세히 설명한다.

<74> 먼저 제 1실시예를 설명한다.

<75> 도 5는 본 실시예인 영상 촬영 장치를 보인 도면이고, 도 6은 도 5에 도시한 제 1로테이터 및 제 2로테이터를 도시한 사시도이며, 도 7은 도 5에 도시한 제 1스테이터 및 제 2스테이터를 도시한 사시도이다. 도 8은 도 7의 분해 도면이고, 도 9는 도 5에 도시한 제 1가이드통체 및 제 2가이드통체의 사시도이며, 도 10은 도 5에 도시한 제 1경통부 및 제 2경통부의 사시도이다.

<76> 이 도면에 도시된 영상 촬영 장치는,

<77> 제 1렌즈군(100); 제 1렌즈군(100)이 고정되는 하우징(130); 제 1렌즈군(100)과의 간격조정에 의해 줌배율이 변화되는 제 2렌즈군(110); 제 2렌즈군(110)을 줌배율 변화 경로인 제 1이동궤적을 따라 이동시키기 위한 제 1액추에이터; 제 2렌즈군(110)과의 간격조정에 의해 줌배율이 변되는 제 3렌즈군(120); 제 3렌즈군(120)을 줌배율 변화 경로인 제 2이동궤적을 따라 이동시키기 위한 제 2액추에이터; 하우징(130)에 고정되며, 제 1렌즈군(100)과 제 2렌즈군(110) 및 제 3렌즈군(120)을 통과한 피사체의상을 촬상하기 위한 이미지센서(140); 및 제 1액추에이터와 제 2액추에이터 및 이미지센서(140)를 제어하기 위한 제어부로 이루어진다.

<78> 제 1액추에이터는,

<79> 제어부로부터 전원을 공급받으며, 다수의 구역으로 분할하여 각각 교변되는 극성의 자기장을 발생시키기 위한 제 1코일(200)을 포함하는 제 1스테이터(210);

제 1코일(200)로부터 발생되는 분할된 각각의 자기장에 노출되도록 극성이 분할된
제 1마그네트(220)를 포함하여 이루어지며, 제 1코일(200)에 전류가 인가될 때 회
전운동을 하는 제 1로테이터; 제 2렌즈군(110)을 고정하기 위한 제 1경통부(240);
및 제 1로테이터의 회전력을 광축 방향으로의 이송력으로 변환하여 제 1경통부
(240)에 전달하기 위한 제 1캡부로 이루어진다.

<80> 제 1스테이터(210)는,

<81> 하우징(130)에 고정되며, 제 1마그네트(220)의 분할된 동일한 한 극성에 각각 대응되는 다수의 제 1코어(214)들을 갖는 제 1자성체(212); 하우징(130)에 고정되며, 제 1마그네트(220)의 분할된 동일한 다른 한 극성에 각각 대응되며, 제 1코어(214)들 사이에 각각 삽입되는 다수의 제 2코어(218)들을 갖는 제 2자성체(216); 및 각각의 제 1코어(214)를 사이에 제 2코어(218)들이 결합된 상태에서 제 1코어(214) 및 제 2코어(218)의 외주에 감기는 제 1코일(200)로 이루어진다.

<82> 제 1로 테이터는,

<83> 제 1마그네트(220); 및 제 1마그네트(220)가 고정되며, 제 1이동궤적에 일치되는 제 1궤적홀(232)이 형성된 제 1회전통체(230);로 이루어지고,

<84> 제 1캠프부는,

<85> 제 1경통부(240)에 고정되며, 제 1궤적홈(232)에 삽입되는 제 1캡축(250);
및 하우징(130)에 고정되며, 제 1캡축(250)이 광축 방향으로만 이동할 수 있도록
가이드하기 위한 제 1슬롯(262)이 형성된 제 1가이드통체(260)로 이루어진다.

<86> 제 2액츄에이터는,

<87> 제어부로부터 전원을 공급받으며, 다수의 구역으로 분할하여 각각 교번되는 극성의 자기장을 발생시키기 위한 제 2코일(300)을 포함하는 제 2스테이터(310); 제 2코일(300)로부터 발생되는 분할된 각각의 자기장에 노출되도록 극성이 분할된 제 2마그네트(320)를 포함하여 이루어지며, 제 2코일(300)에 전류가 인가될 때 회전운동을 하는 제 2로테이터; 제 3렌즈군(120)을 고정하기 위한 제 2경통부(340); 및 제 2로테이터의 회전력을 광축 방향으로의 이송력으로 변환하여 제 2경통부(340)에 전달하기 위한 제 2캡부로 이루어진다.

<88> 제 2스테이터(310)는,

<89> 하우징(130)에 고정되며, 제 2마그네트(320)의 분할된 동일한 한 극성에 각각 대응되는 다수의 제 3코어(314)들을 갖는 제 3자성체(312); 하우징(130)에 고정되며, 제 2마그네트(320)의 분할된 동일한 다른 한 극성에 각각 대응되며, 제 3코어(314)들 사이에 각각 삽입되는 다수의 제 4코어(318)들을 갖는 제 4자성체(316); 및 각각의 제 3코어(314)들 사이에 제 4코어(318)들이 결합된 상태에서 제 3코어(314) 및 제 4코어(318)의 외주에 감기는 제 2코일(300)로 이루어진다.

<90> 제 2로테이터는,

<91> 제 2마그네트(320); 및 제 2마그네트(320)가 고정되며, 제 2이동 궤적에 일치되는 제 2궤적 흄이 형성된 제 2회전통체(330)로 이루어지고,

<92> 제 2캡부는,

<93> 제 2경통부(340)에 고정되며, 제 2궤적 흄(332)에 삽입되는 제 2캡축(350); 및 하우징(130)에 고정되며, 제 2캡축(350)이 광축 방향으로만 이동할 수 있도록

가이드하기 위한 제 2슬롯(362)이 형성된 제 2가이드통체(360)로 이루어진다.

<94> 이와 같은 영상 촬영 장치가 설치된 통신기기의 키패드에는 줌을 실행하기 위한 버튼과 피사체의 상을 촬영하기 위한 버튼을 구비한다.

<95> 한편 제어부는, 제 1액츄에이터를 구동시켜 제 2렌즈군(110)을 제 1이동궤적을 따라 이동시키고, 제 2액츄에이터를 구동시켜 제 3렌즈군(120)을 제 2이동궤적을 따라 이동시킴으로써 줌변화를 실시한다.

<96> 또한 제어부는, 제 1액츄에이터를 미세구동시켜 오토 포커싱을 실시한다.

<97> 이하에서는 상기와 같은 구성을 갖는 영상 촬영 장치의 작용을 설명한다.

<98> 사용자가 통신기기의 키패드에 설치된 촬영 버튼을 누르면, 제어부는 이미지센서(140)를 구동시켜 제 1렌즈군(100)과 제 2렌즈군(110) 및 제 3렌즈군(120)을 통과하는 피사체의 상을 촬영한다. 이미지센서(140)는 촬상된 상을 전기적인 시그널로 변환시켜 플렉시블 피씨비를 통하여 본체내의 제어부로 전송한다.

<99> 한편, 사용자는 이미지센서(140)에 촬상되는 피사체의 상의 배율을 변화시키고자 할 경우에 키패드에 설치된 줌실행 버튼을 누른다.

<100> 이에 따라 제어부는 제 1액츄에이터의 제 1코일(200)과 제 2액츄에이터의 제 2코일(300)에 전원을 인가하여 자기장을 발생시킨다.

<101> 제 1코일(200)에 자기장이 발생함과 동시에 제 1스테이터(210)의 제 1코어(214)와 제 2코어(218)에 각각 다른 극성의 자력이 형성되고, 제 1마그네트(220)와의 반발력으로 제 1마그네트(220) 및 제 1회전통체(230)를 1구간 밀게 된다. 이때 제어부에서 제 1코일(200)에 인가되는 전류의 방향을 바꾸면 제 1코어(214) 및 제

2코어(218)에 반대 극성이 자력이 형성되고, 다시 제 1마그네트(220)와의 반발력으로 제 1마그네트(220) 및 제 1회전통체(230)를 같은 방향으로 1구간 더 밀게 된다.

<102> 이와 같이 제어부는 연속적으로 제 1코일(200)에 인가되는 전류의 방향을 바꾸어줌으로써 제 1회전통체(230)를 연속적으로 회전시키는 것이 가능해진다.

<103> 제 1회전통체(230)가 회전함에 따라 제 1케적홈(232)에 일단이 삽입된 제 1캡축(250)은 광축 방향으로 이동하는 힘을 받게 된다. 제 1캡축(250)은 제 1가이드통체(260)의 제 1슬롯(262)에 가이드되어 광축 방향으로만 구동하게 된다.

<104> 제 1캡축(250)이 이동하면 제 1경통부(240) 및 제 2렌즈군(110)이 광축 방향으로 이동하게 된다. 따라서 제 2렌즈군(110)이 줌배율 변화 경로인 제 1이동케적을 따라 이동하게 된다.

<105> 한편, 제 2코일(300)에 자기장이 발생함과 동시에 제 2스테이터(310)의 제 3코어(314)와 제 4코어(318)에 각각 다른 극성의 자력이 형성되고, 제 2마그네트(320)와의 반발력으로 제 2마그네트(320) 및 제 2회전통체를 1구간 밀게 된다. 이 때 제어부에서 제 2코일(300)에 인가되는 전류의 방향을 바꾸면 제 3코어(314) 및 제 4코어(318)에 반대 극성이 자력이 형성되고, 다시 제 2마그네트(320)와의 반발력으로 제 2마그네트(320) 및 제 2회전통체를 같은 방향으로 1구간 더 밀게 된다.

<106> 이와 같이 제어부는 연속적으로 제 2코일(300)에 인가되는 전류의 방향을 바꾸어줌으로써 제 2회전통체를 연속적으로 회전시키는 것이 가능해진다.

<107> 제 2회전통체가 회전함에 따라 제 2케적홈(332)에 일단이 삽입된 제 2캡축(350)은 광축 방향으로 이동하는 힘을 받게 된다. 제 2캡축(350)은 제 2가이드통체

(360)의 제 2슬롯(362)에 가이드되어 광축 방향으로만 구동하게 된다.

제 2캡축(350)이 이동하면 제 2경통부(340) 및 제 3렌즈군(120)이 광축 방향으로 이동하게 된다. 따라서 제 3렌즈군(120)이 줌배율 변화 경로인 제 2이동궤적을 따라 이동하게 된다.

이와 같이하여 제 1렌즈군(100)과 제 2렌즈군(110) 및 제 3렌즈군(120)이 이루는 줌배율이 변화하게 된다.

한편, 이미지센서(140)에서 촬상한 피사체의 상이 초점이 맞지 않아 흐릿하게 될 경우, 제어부는 제 1액츄에이터를 미세하게 구동시켜 피사체의 상의 초점을 맞추어 촬영되는 영상을 선명하게 한다.

한편, 도 11은 도 5에 도시한 영상 촬영 장치에서 제 1캡부의 다른 예를 도시하며, 도 12는 도 11에 도시한 캡통체의 사시도이다.

이 도면에 도시된 제 1캡부는,

제 1회전통체(230)의 단면부상에 형성되고, 제 1경통부(240)를 제 1이동궤적을 따라 이동시키기 위한 캠면(402)이 형성된 캠통체(400); 및 제 1경통부(240)를 캠통체(400)측으로 소정의 탄성력으로 미는 탄성부재로 이루어진다.

캡면(402)은 대칭되는 위치에 복열로 형성되고, 제 1경통부(240)는 2점이 각각의 캡면(402)에 접촉된다. 따라서 캡통체(400)는 360° 회전하는 것이 가능해진다.

그리고 탄성부재는 압축스프링(410)으로 이루어진다.

캡통체(400)가 제 1경통부(240)의 단면부상에 형성됨으로써 제 1경통부(24

0)의 반경이 커지게 되고, 이에 따라 제 1경통부(240)의 내부에 고정되는 제 2렌즈
군(110)의 반경도 커질 수 있다. 따라서 고화질의 상을 촬영할 수 있게 된다.

【발명의 효과】

<117> 이상에서 설명한 바와 같이 본 발명의 영상 촬영 장치는, 렌즈군을 구동시키는 액추에이터 부분의 구조를 단순화하고 크기를 소형화시켜 휴대폰과 같이 소형의 통신기기에 장착할 수 있는 효과가 있다.

<118> 이상에서는 본 발명을 하나의 실시예로써 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며, 특히 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형이 가능할 것이다.

【특허청구범위】

【청구항 1】

제 1렌즈군;

상기 제 1렌즈군이 고정되는 하우징;

상기 제 1렌즈군과의 간격조정에 의해 줌배율이 변화되는 제 2렌즈군;

상기 제 2렌즈군을 줌배율 변화 경로인 제 1이동궤적을 따라 이동시키기 위한 제 1액츄에이터;

상기 제 2렌즈군과의 간격조정에 의해 줌배율이 변되는 제 3렌즈군;

상기 제 3렌즈군을 줌배율 변화 경로인 제 2이동궤적을 따라 이동시키기 위한 제 2액츄에이터;

상기 하우징에 고정되며, 상기 제 1렌즈군과 상기 제 2렌즈군 및 상기 제 3렌즈군을 통과한 피사체의상을 촬상하기 위한 이미지센서; 및
상기 제 1액츄에이터와 상기 제 2액츄에이터 및 상기 이미지센서를 제어하기 위한 제어부를 포함하여 이루어지는 영상 촬영 장치.

【청구항 2】

청구항 1에 있어서, 상기 제 1액츄에이터는,

상기 제어부로부터 전원을 공급받으며, 다수의 구역으로 분할하여 각각 교번되는 극성의 자기장을 발생시키기 위한 제 1코일을 포함하는 제 1스테이터;

상기 제 1코일로부터 발생되는 분할된 각각의 자기장에 노출되도록 극성이

분할된 제 1마그네트를 포함하여 이루어지며, 상기 제 1코일에 전류가 인가될 때 회전운동을 하는 제 1로테이터;
상기 제 2렌즈군을 고정하기 위한 제 1경통부; 및
상기 제 1로테이터의 회전력을 상기 광축 방향으로의 이송력으로 변환하여
상기 제 1경통부에 전달하기 위한 제 1캡부를 포함하여 이루어진 것을 특징으로 하
는 영상 촬영 장치.

【청구항 3】

청구항 2에 있어서, 상기 제 1스테이터는,
상기 하우징에 고정되며, 상기 제 1마그네트의 분할된 동일한 한 극성에 각
각 대응되는 다수의 제 1코어들을 갖는 제 1자성체;
상기 하우징에 고정되며, 상기 제 1마그네트의 분할된 동일한 다른 한 극성
에 각각 대응되며, 상기 제 1코어들 사이에 각각 삽입되는 다수의 제 2코어들을 갖
는 제 2자성체; 및

각각의 상기 제 1코어들 사이에 상기 제 2코어들이 결합된 상태에서 상기 제
1코어 및 상기 제 2코어의 외주에 감기는 상기 제 1코일을 포함하여 이루어지는 것
을 특징으로 하는 영상 촬영 장치.

【청구항 4】

청구항 2에 있어서, 상기 제 1로테이터는,

상기 제 1마그네트; 및

상기 제 1마그네트가 고정되며, 상기 제 1이동케적에 일치되는 제 1케적홈이 형성된 제 1회전통체;를 포함하여 이루어지고,

상기 제 1캡부는,

상기 제 1경통부에 고정되며, 상기 제 1케적홈에 삽입되는 제 1캡축; 및 상기 하우징에 고정되며, 상기 제 1캡축이 상기 광축 방향으로만 이동할 수 있도록 가이드하기 위한 제 1슬롯이 형성된 제 1가이드통체를 포함하여 이루어지는 것을 특징으로 하는 영상 촬영 장치.

【청구항 5】

청구항 2에 있어서, 상기 제 1로테이터는,

상기 제 1마그네트; 및

상기 제 1마그네트가 고정되며, 상기 제 1이동케적에 일치되는 제 1케적홈이 형성된 제 1회전통체;를 포함하여 이루어지고,

상기 제 1캡부는,

상기 제 1회전통체의 단면부상에 형성되고, 상기 제 1경통부를 제 1이동케적을 따라 이동시키기 위한 캠면이 형성된 캠통체; 및

상기 제 1경통부를 상기 캠통체측으로 소정의 탄성력으로 미는 탄성부재를 포함하여 이루어지는 것을 특징으로 하는 영상 촬영 장치.

【청구항 6】

청구항 5에 있어서, 상기 캠면은 대칭되는 위치에 복열로 형성되고, 상기 제

1경통부는 2점이 각각의 상기 캠면에 접촉되는 것을 특징으로 하는 영상 촬영 장치.

【청구항 7】

청구항 1에 있어서, 상기 제 2액츄에이터는,
상기 제어부로부터 전원을 공급받으며, 다수의 구역으로 분할하여 각각 교번 되는 극성의 자기장을 발생시키기 위한 제 2코일을 포함하는 제 2스테이터;
상기 제 2코일로부터 발생되는 분할된 각각의 자기장에 노출되도록 극성이 분할된 제 2마그네트를 포함하여 이루어지며, 상기 제 2코일에 전류가 인가될 때 회전운동을 하는 제 2로테이터;
상기 제 3렌즈군을 고정하기 위한 제 2경통부; 및
상기 제 2로테이터의 회전력을 상기 광축 방향으로의 이송력으로 변환하여 상기 제 2경통부에 전달하기 위한 제 2캡부를 포함하여 이루어진 것을 특징으로 하는 영상 촬영 장치.

【청구항 8】

청구항 7에 있어서, 상기 제 2스테이터는,
상기 하우징에 고정되며, 상기 제 2마그네트의 분할된 동일한 한 극성에 각각 대응되는 다수의 제 3코어들을 갖는 제 3자성체;
상기 하우징에 고정되며, 상기 제 2마그네트의 분할된 동일한 다른 한 극성에 각각 대응되며, 상기 제 3코어들 사이에 각각 삽입되는 다수의 제 4코어들을 갖

는 제 4자성체; 및

각각의 상기 제 3코어들 사이에 상기 제 4코어들이 결합된 상태에서 상기 제 3코어 및 상기 제 4코어의 외주에 감기는 상기 제 2코일을 포함하여 이루어지는 것을 특징으로 하는 영상 촬영 장치.

【청구항 9】

청구항 7에 있어서, 상기 제 2로테이터는,

상기 제 2마그네트; 및

상기 제 2마그네트가 고정되며, 상기 제 2이동궤적에 일치되는 제 2궤적홈이 형성된 제 2회전통체;를 포함하여 이루어지고,

상기 제 2캡부는,

상기 제 2경통부에 고정되며, 상기 제 2궤적홈에 삽입되는 제 2캡축; 및

상기 하우징에 고정되며, 상기 제 2캡축이 상기 광축 방향으로만 이동할 수 있도록 가이드하기 위한 제 2슬롯이 형성된 제 2가이드통체를 포함하여 이루어지는 것을 특징으로 하는 영상 촬영 장치.

【청구항 10】

청구항 1에 있어서, 상기 제어부는,

상기 제 1액츄에이터를 구동시켜 상기 제 2렌즈군을 상기 제 1이동궤적을 따라 이동시키고, 상기 제 2액츄에이터를 구동시켜 상기 제 3렌즈군을 상기 제 2이동궤적을 따라 이동시킴으로써 줌변화를 실시하며;

상기 제 1액추에이터 및 상기 제 2액추에이터 중 하나를 미세구동시켜 오토포커싱을 실시하는 것을 특징으로 하는 영상 촬영 장치.

【도면】

【도 1】

【도 2】

【도 3】

【도 4】

【도 5】

【도 6】

【도 7】

【도 8】

【도 9】

【도 10】

【도 11】

【도 12】

