TP 7: Conception d'une alimentation DC

Partie 1 : Questions préliminaires

Redresseurs de tension

Dans cette partie, nous considérons un GBF délivrant un signal sinusoïdal $V = V_{pp}/2 * \sin(2*\pi*f*t)$ avec $V_{pp}=5V$ et f=5kHz

a- Donner l'allure des composantes u(t) et i(t) des deux figures ci-dessous, sachant que la charge aux bornes de AB est de $1k\Omega$. Quelle est la tension moyenne ?

b- Donner l'allure de u(t) si l'on place un condensateur de capacité $1\mu F$ en parallèle. Pour simplifier les calculs, on peut utiliser la formule suivante avec t_0 le temps de bascule en charge ou en décharge.

$$U_C(t0+t) = V_{pp}/2 * (1-exp(-t/\tau))$$
 pour la charge
$$U_C(t0+t) = U_C(t0) * exp(-t/\tau)$$
 pour la décharge

Filtrage simple

Réaliser la simulation suivante à l'aide de LTSpice

- a- Représenter l'allure de la tension aux bornes de R1 sur 10ms avec différentes valeurs de R1 : $10k\Omega$; $5.6k\Omega$; $2.2k\Omega$; $1k\Omega$; 560Ω ; 220Ω ; 100Ω
- b- Que se passe-t-il lorsque R1 diminue ? Expliquer ce comportement.
- c- Refaites la simulation avec un condensateur de $10\mu F$. Le signal est-il significativement amélioré ?

Filtrage double

- a- Représenter l'allure de la tension aux bornes de R1 sur 10ms avec différentes valeurs de R1 : 10Kohm ; 5.6Kohm ; 2.2Kohm ; 1Kohm ; 560ohm ; 220ohm ; 100ohm. Pourquoi le signal est-il meilleur que précédemment ? Que s'est-il passé ?
- b- Quel est le principal inconvénient de ce montage?

Partie 2 – Manipulations : Redresseur mono alternance

Redresseur de tension

- a- Mesurer l'allure de la tension UAB en reproduisant le schéma de gauche de la première partie
 « Redresseur de tension » (redresseur mono alternance). Mesurer la tension moyenne ainsi que la tension efficace (VRMS)
 Comparer avec les résultats théoriques.
- b- Ajouter dans le circuit un condensateur de capacité 1μF en parallèle avec la résistance. Interprétez le résultat. Attention !! Le condensateur explose s'il est branché à l'envers ! Faites vérifier...
- c- Prendre une valeur plus grande de la résistance R ou de la capacité C et interprétez le résultat.