Problem Set 3

Due: 3/23

Part One: Hand-Written Exercise

1. We mentioned that the F statistic is given by:

$$F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)},$$

where SSR_r and SSR_{ur} are the residual sums of squares of restricted and unrestricted regressions respectively. Moreover, $(SSR_r - SSR_{ur})$ and SSR_{ur} are independent of each other.

(a) Given the fact that:

$$\frac{(n-k-1+q)\hat{\sigma}_{r}^{2}}{\sigma^{2}} - \frac{(n-k-1)\hat{\sigma}_{ur}^{2}}{\sigma^{2}} \sim \chi^{2}(q),$$

where $\hat{\sigma}_r^2$ and $\hat{\sigma}_{ur}^2$ are the OLS estimators of σ^2 of the restricted and unrestricted regressions respectively. Please show that

$$\frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)} \sim F(q, n-k-1).$$

(b) Show that the F statistic can also be written as the R-squared form

$$F = \frac{(R_{ur}^2 - R_r^2)/q}{(1 - R_{ur}^2)/(n - k - 1)},$$

where R_r^2 and R_{ur}^2 are the R^2 s of the restricted and unrestricted regressions, respectively.

2. Let $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1,i} + \hat{\beta}_2 x_{2,i} + \hat{\beta}_3 x_{3,i} + \hat{\beta}_4 x_{4,i} + \hat{\beta}_5 x_{5,i}$, with i = 1, ..., 150. Suppose we construct $\mathbf{R}\boldsymbol{\beta} = \mathbf{c}$ in order to test the following hypothesis jointly:

hypothesis 1: $\beta_1 = \beta_2 = \beta_5 = 0$

hypothesis 2: $\beta_0 + 3\beta_3 - 6\beta_4 = 4$

hypothesis 3 : $\beta_2 + 4\beta_4 + 1 = 2\beta_1$

hypothesis 4 : $\beta_0 + 3\beta_1 + \beta_3 + 5\beta_5 = 7$

- (a) Please write out matrix \mathbf{R} and \mathbf{c} .
- (b) Construct the test statistics, and indicate which distribution does it follows (make sure the degree of freedom is clearly specified).
- 3. Consider two dummy variables:

 $D_{i1} = 1$ if i is the top $\frac{1}{3}$ trading volume stock and $D_{i1} = 0$ otherwise;

 $D_{i2} = 1$ if i is the bottom $\frac{1}{3}$ trading volume stock and $D_{i2} = 0$ otherwise.

If we assume that there are differences in intercept and slope between each group and reference group (middle size of trading volume stock).

- (a) Please write down the regression model with the setting above.
- (b) Please write down the regression models when $D_{i1} = 1$, $D_{i2} = 0$; $D_{i1} = 0$, $D_{i2} = 1$ and $D_{i1} = D_{i2} = 0$ respectively.

(Note that there is another independent variable x_i)

4. The following model can be used to study whether campaign expenditures affect election outcomes:

$$voteA = \beta_0 + \beta_1 ln(expendA) + \beta_2 ln(expendB) + \beta_3 prtystrA + u,$$

where "voteA" is the percentage of the vote received by candidate A, "expendA" and "expendB" are campaign expenditures by candidates A and B, and "prtystrA" is a measure of party strength for candidate A (the percentage of the most recent presidential vote that went to A's party). [modified from Wooldridge. Problem 1CE from chapter 4.]

- (a) What is the interpretation of β_1 ?
- (b) In terms of the parameters, state the null hypothesis that the effect of the increase in A's expenditure will be offset by the increase in B's expenditure.
- (c) Write the detailed procedure to do the hypothesis testing in (b).
- (d) If someone claims that both candidates' expenditures do not have any effect on the outcome, how can you specify a testing null hypothesis?
- (e) Write the detailed procedure to do the hypothesis testing in (d).

Part Two: Monte Carlo Simulation (Due: 3/30)

- Simulation design:
 - Sample sizes N:

- (i) 10
- (ii) 500
- Number of replications: 1000
- Data generating process (DGP):
 - (i) $y_i \sim N(0, 1)$
 - (ii) $y_i \sim t(4)$
 - (iii) $y_i \sim t(1)$
- The statistics:

$$M_N = \frac{1}{\hat{\sigma}_N \sqrt{N}} \sum_{i=1}^N \phi(y_i), \text{ where } \hat{\sigma}_N^2 = \frac{1}{N} \sum_{i=1}^N \left(\phi(y_i) - \frac{1}{N} \sum_{i=1}^N \phi(y_i) \right)^2,$$

with the moment functions:

- (i) $\phi(y_i) = y_i$
- (ii) $\phi(y_i) = y_i^3$
- (iii) $\phi(y_i) = \sin(y_i)$
- (iv) $\phi(y_i) = \cos(y_i)$
- For the total 24 different ways of constructing M_N , please plot their corresponding histogram using 1000 replications. Open a new window and combine the 24 graphs on a single plot and place them as 6×4 .
- Please compute the empirical frequencies of the events: $M_N > Z_{.99} = 2.3$ and $M_N > Z_{.95} = 1.6$ for each simulations (Z_q is the q^{th} quantile of standard normal distribution). Record them under their corresponding graphs, see if the frequencies are, respectively, sufficiently close to the 5% and 1% nominal levels.
- Please add the Gaussian kernel density estimate (KDE) of M_N as well as the probability density function (PDF) of N(0,1) for each simulation graphs.