PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer Semestre 2019

MAT 1203 – Álgebra lineal

Solución Interrogación 2

1. Sea A una matriz invertible tal que una descomposición en matrices elementales de A^{-1} es

$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Sin calcular A ni A^{-1} .

- a) [4 ptos] Encuentre una factorización PA = LU.
- b) [2 ptos] Usando la factorización anterior, resuelva el sistema

$$Ax = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Solución.

a) De la descomposición de A^{-1} , haciendo $A = (A^{-1})^{-1}$, tenemos que

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

entonces,

$$\underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}}_{P} A = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{L} \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{U} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$U = \left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & -1/2 & 1/2\\ 0 & 0 & 1 \end{array}\right).$$

b) El sistema
$$Ax = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 es equivalente al sistema

$$PAx = L(Ux) = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$

si denotamos por y=Ux, entonces debemos resolver el sistema $Ly=\begin{pmatrix}1\\1\\0\end{pmatrix}$ cuya solución

es
$$y = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
 luego, para resolver el sistema inicial debemos resolver $Ux = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$

cuya solución es
$$x = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
.

- 0.25 ptos por determinar cada inversa de las matrices elementales (1 pto).
- 1 pto por determinar correctamente P.
- 1 pto por determinar correctamente L.
- 1 pto por determinar correctamente U.
- 0.5 por plantear la equivalencia $PAx = L(Ux) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.
- 0.5 por encontrar correctamente y.
- 1 pto por encontrar correctamente x.

- 2. Sea A una matriz de 3×3 con determinante 2 y sean B, C dos matrices de 3×3 tales que:
 - B es la matriz que se obtiene al realizar la siguiente operación en A: A la fila dos se le resta la fila tres.
 - C es la matriz que se obtiene al realizar la siguiente operación en A: Se intercambia la fila dos por la fila tres.

Calcular el determinante de $(3A^TB^{-1}C^3)$.

Solución.

Al realizar la operación elemental de restar a la fila dos se le resta la fila 3, el determinante de A no cambia, es decir

$$\det(B) = \det(A) = 2.$$

Al realizar la operación elemental de intercambio de filas, el determinante de A cambia el signo, es decir

$$\det(C) = -\det(A) = -2.$$

Luego, usando propiedades del determinante tenemos

$$\begin{aligned} \det(3A^T B^{-1} C^3) &= \det(3A^T) \cdot \det(B^{-1}) \cdot \det(C^3) \\ &= 3^3 \cdot \det(A^T) \cdot \frac{1}{\det(B)} \cdot [\det(C)]^3 \\ &= 3^3 \cdot \det(A) \cdot \frac{1}{\det(B)} \cdot [\det(C)]^3 \\ &= 3^3 \cdot 2 \cdot \frac{1}{2} \cdot (-2)^3 = -6^3. \end{aligned}$$

- 1 pto por determinar det(B).
- 1 pto por determinar det(C).
- 0.5 pto por ocupar que $\det(A \cdot B) = \det(A) \cdot \det(B)$.
- 1 pto por ocupar que si $A \in M_{n \times n}$ y $t \in \mathbb{R}$ entonces $\det(tA) = t^n(A)$.
- 1 pto por ocupar que $det(A^{-1}) = \frac{1}{\det(A)}$.
- 1 pto por ocupar que $det(A^t) = \det(A)$.
- 0.5 por llegar al resultado correcto.

3. Sea

$$A = \begin{pmatrix} \alpha & 2 & 1\\ 2\alpha & \alpha + 5 & 4\\ \alpha & 2 & \alpha \end{pmatrix}$$

- a) Aplicando el desarrollo por cofactores, calcule el determinante de A.
- b) Determine todos los valores de $\alpha \in \mathbb{R}$ para los que la matriz A es invertible.

Solución.

a) Observe que

$$|A| = \alpha \begin{vmatrix} \alpha + 5 & 4 \\ 2 & \alpha \end{vmatrix} - 2 \begin{vmatrix} 2\alpha & 4 \\ \alpha & \alpha \end{vmatrix} + \begin{vmatrix} 2\alpha & \alpha + 5 \\ \alpha & 2 \end{vmatrix} = \alpha^3 - \alpha$$

b) La matriz A es invertible si y sólo si $|A| \neq 0$, por lo tanto, del inciso anterior tenemos que A es invertible si y sólo si $\alpha^3 - \alpha = \alpha(\alpha^2 - 1) \neq 0$ y esto ocurre si y sólo si

$$\alpha \neq 0, \alpha \neq 1 \text{ y } \alpha \neq -1$$

- 1 pto por aplicar correctamente el desarrollo en cofactores.
- 2 ptos por determinar correctamente el determinante.
- 1.5 ptos por argumentar que la matriz A es invertible si y sólo si $|A| \neq 0$.
- 0.5 ptos por encontrar cada valor que no debe tomar α .(1.5 ptos)

4. Sean S el paralelepípedo que tiene un vértice en el origen y vértices adyacentes en (1,0,2), (-1,2,4), (-1,1,0), y $T(x_1,x_2,x_3) = (\alpha x_1 + x_2, x_1 + x_2, x_1 + x_2 + x_3)$ una transformación lineal. Encuentre el o los valor(es) de α tal que el volumen del paralelepípedo T(S) sea 4.

Solución.

El volumen de T(S) esta dado por el valor absoltuto del producto entre, el determinante de la matriz de transformacion de T y el determinante de la matriz cuyas columnas son los vectores que forman el paralepípedo S. Es decir

$$\begin{vmatrix} \det \begin{pmatrix} 1 & -1 & -1 \\ 0 & 2 & 1 \\ 2 & 4 & 0 \end{pmatrix} \cdot \det \begin{pmatrix} \alpha & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{vmatrix} = |-2 \cdot (\alpha - 1)| = 4 \leftrightarrow \alpha = -1 \land \alpha = 3$$

Puntaje:

- 2 pto por ocupar que el volumen de T(S) esta dado por el valor absoltuto del producto, del determinante de la matriz de transformacion de T y el determinante de la matriz cuyas columnas son los vectores que forman el paralepípedo S
- ullet 1 ptos por encontrar correctamente la matriz de transformación de T
- 0.5 ptos por encontrar correctamente cada determinante.(1 pto)
- 1 pto por concluir cada valor que debe tomar α . (2 ptos)

Continúa en la siguiente página.

5. Utilizando el método de Cramer determine la tercera columna de la inversa de
$$A = \begin{bmatrix} 3 & 1 & 2 & -1 \\ 0 & 2 & 0 & 1 \\ 0 & -2 & 1 & 1 \\ 0 & 3 & 0 & 5 \end{bmatrix}$$
.

Solución.

Para determinar la tercera columna de la inversa de A, se debe resolver el sistema matricial

$$Ax = e_3$$
. Como el det $\begin{bmatrix} 3 & 1 & 2 & -1 \\ 0 & 2 & 0 & 1 \\ 0 & -2 & 1 & 1 \\ 0 & 3 & 0 & 5 \end{bmatrix} = 21 \neq 0$, este sistema tiene solución única. Luego

aplicando la regla de cramer el vector $\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$ es solución de este sistema y sus componentes son:

$$x = \frac{\det\begin{bmatrix} 0 & 1 & 2 & -1 \\ 0 & 2 & 0 & 1 \\ 1 & -2 & 1 & 1 \\ 0 & 3 & 0 & 5 \end{bmatrix}}{\det\begin{bmatrix} 3 & 1 & 2 & -1 \\ 0 & 2 & 0 & 1 \\ 0 & -2 & 1 & 1 \\ 0 & 3 & 0 & 5 \end{bmatrix}} = \frac{-14}{21} = \frac{-2}{3}$$

$$\frac{\det\begin{bmatrix} 3 & 0 & 2 & -1 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix}}{\det\begin{bmatrix} 3 & 1 & 2 & -1 \\ 0 & 2 & 0 & 1 \\ 0 & -2 & 1 & 1 \\ 0 & 3 & 0 & 5 \end{bmatrix}} = 0$$

$$\frac{\det\begin{bmatrix} 3 & 1 & 0 & -1 \\ 0 & 2 & 0 & 1 \\ 0 & -2 & 1 & 1 \\ 0 & 3 & 0 & 5 \end{bmatrix}}{\det\begin{bmatrix} 3 & 1 & 2 & -1 \\ 0 & 2 & 0 & 1 \\ 0 & -2 & 1 & 1 \\ 0 & 3 & 0 & 5 \end{bmatrix}} = \frac{21}{21} = 1$$

$$t = \frac{\det\begin{bmatrix} 3 & 1 & 2 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & -2 & 1 & 1 \\ 0 & 3 & 0 & 5 \end{bmatrix}}{\det\begin{bmatrix} 3 & 1 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & -2 & 1 & 1 \\ 0 & 3 & 0 & 5 \end{bmatrix}} = 0$$

$$\det\begin{bmatrix} \frac{3}{0} & \frac{1}{0} & \frac{2}{0} & 0 \\ 0 & 2 & 0 & 0 \\ 0 & -2 & 1 & 1 \\ 0 & 3 & 0 & 5 \end{bmatrix} = 0$$

luego la tercera columna de la inversa de
$$A$$
 es $\begin{pmatrix} \frac{-2}{3} \\ 0 \\ 1 \\ 0 \end{pmatrix}$

- 1 pto por por mostrar el sistema matricial que resuelve el problema.
- 1 pto por enunciar que la solución de cada componente esta dada por $\frac{\det(A_i(e_3))}{\det(A)}$.
- 1 pto por calcular correctamente cada componente del vector.(4 puntos)

6. Dada la transformación lineal
$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$$
 definida por $T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + 2x_3 \\ x_2 + x_3 \\ x_1 + x_3 \\ x_1 - x_2 \end{pmatrix}$.

Encuentre el espacio nulo de esta transformación y determine si T es inyectiva

Solución.

Para determinar el respectivo espacio nulo debemos resolver, $T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, es decir,

resolver el sistema homogéneo

$$x_1 + x_2 + 2x_3 = 0$$

$$x_2 + x_3 = 0$$

$$x_1 + x_3 = 0$$

$$x_1 - x_2 = 0$$

Cuya solución se puede escribir como x = -z, y = -z o bien

$$Si$$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in Nul(T)$ entonces $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = z \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$, $z \in \mathbb{R}$.

De donde se tiene que

$$Nul(T) = Gen \left\{ \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \right\}.$$

En particular la transformación T es no inyectiva, ya que $Nul(T) \neq \{0\}$.

- 1 pto por argumentar que el espacio nulo consta de los vectores tal que $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$.
- 1 pto por argumentar que el espacio nulo consta de los vectores que satisfacen el sistema homogéneo.
- 2 ptos por mostrar el espacio nulo correctamente. (se descuenta un punto 1 punto por error)
- 2 ptos por concluir que la transformación no es inyectiva.(sino justifica no se le asigna puntaje).

7. Sea $\mathbb{P}_3(\mathbb{R})$ el espacio de los polinomios de grado inferior o igual a 3 y

$$E = \{ P \in \mathbb{P}_3(\mathbb{R}) \mid P(-1) = 0 \text{ y } P(1) = 0 \}.$$

Demuestre que E es un subespacio vectorial de $\mathbb{P}_3(\mathbb{R})$.

Solución.

- Una forma de demostrarlo:
 - El polinomio nulo Θ satisface $\Theta(-1) = \Theta(1) = 0$. Entonces $\Theta \in E$.
 - \bullet Sean P_1 y P_2 dos polinomios de E y sea $\lambda_1 \in \mathbb{R}$. Entonces

$$(\lambda_1 P_1 + P_2)(-1) = \lambda_1 P_1(-1) + P_2(-1) = \lambda_1 \cdot 0 + 0 = 0,$$

porque $P_1(-1) = 0$ y $P_2(-1) = 0$, y también

$$(\lambda_1 P_1 + P_2)(1) = \lambda_1 P_1(1) + P_2(1) = \lambda_1 \cdot 0 + 0 = 0,$$

porque $P_1(1) = 0$ y $P_2(1) = 0$. Entonces $\lambda_1 P_1 + \lambda_2 P_2 \in E$, por lo cual E es un subespacio vectorial de $\mathbb{P}_3(\mathbb{R})$.

Puntaje:

- 2 ptos por enunciar que propiedades debe cumplir para ser subespacio.
- 1 ptos por demostrar la primera propiedad.
- 3 ptos por demostrar la segunda propiedad.
- Otra forma de demostrarlo:

$$E = \{P \in \mathbb{P}_3(\mathbb{R}) \mid P(-1) = 0 \text{ y } P(1) = 0\}$$

$$E = \{a_3x^3 + a_2x^2 + a_1x + a_0 \mid -a_3 + a_2 - a_1 + a_0 = 0 \land a_3 + a_2 + a_1 + a_0 = 0\}$$

$$E = \{a_3x^3 + a_2x^2 + a_1x + a_0 \mid a_3 = -a_1 \land a_2 = -a_0\}$$

$$E = \{-a_1x^3 - a_0x^2 + a_1x + a_0\}$$

$$E = \{a_1(-x^3 + x) + a_0(-x^2 + 1)\}$$

$$E = \operatorname{Gen}\{(-x^3 + x), (-x^2 + 1)\}$$

entonces E es un espacio generado por elementos de $\mathbb{P}_3(\mathbb{R})$, por lo cual es un subespacio vectorial de $\mathbb{P}_3(\mathbb{R})$.

- 2 ptos por encontra cada vector que genera a E.(4 puntos)
- 2 ptos por argumentar que los conjuntos generados son subespacios.

- 8. Determine si las siguientes afirmaciones son verdaderas o falsas. Justifique sus respuestas.
 - a) Si $T: M_{2\times 2} \longrightarrow \mathbb{R}$ es la transformación definida por T(A) = det(A) entonces T es una transformación lineal.
 - b) Si A es una matriz de 3×3 tal que $A = -A^t$ entonces det(A) = 0.

c) Si
$$A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$
 entonces $Col(A) = Nul(A)$.

Solución.

- a) Falsa . El det(A+B) no siempre es igual al det(A)+det(B) o $det(cA)=c^2det(A)$
- b) Verdadera $det(A) = det(-A^t) \leftrightarrow det(A) = -det(A) \leftrightarrow det(A) = 0$
- c) Verdadera

$$Col(A) = Gen\left\{ \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} -1\\-1 \end{pmatrix} \right\} = Gen\left\{ \begin{pmatrix} 1\\1 \end{pmatrix} \right\}$$
y
$$Nul(A) = \left\{ \begin{pmatrix} x\\t \end{pmatrix} \mid A \begin{pmatrix} x\\y \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix} \right\} = Gen\left\{ \begin{pmatrix} 1\\1 \end{pmatrix} \right\}$$

Puntaje:

2 ptos por argumentar cada alternativa correctamente.