

⑤ Int. Cl.⁶:

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

Offenlegungsschrift _® DE 198 13 839 A 1

(2) Aktenzeichen:

198 13 839.3

② Anmeldetag:

20. 3.98

(3) Offenlegungstag:

23. 9.99

C 07 K 14/435 C 12 N 15/11 C 07 H 21/04 C 12 N 15/63 C 12 N 1/21 C 12 N 1/19 C 12 N 5/10 C 07 K 16/18 A 61 K 38/17

// (C12N 1/21,C12R 1:19)G01N 33/68,

33/15

(71) Anmelder:

metaGen Gesellschaft für Genomforschung mbH, 14195 Berlin, DE

(74) Vertreter:

Klose, W., Dipl.-Chem.Dr.rer.nat., Pat.-Ass., 13505 Berlin

(72) Erfinder:

Specht, Thomas, Dipl.-Bio.-Chem. Dr., 12209 Berlin, DE; Hinzmann, Bernd, Dipl.-Chem. Dr., 13127 Berlin, DE; Schmitt, Armin, Dipl.-Phys. Dr., 14197 Berlin, DE; Pilarsky, Christian, Dipl.-Biol. Dr., 01474 Schönfeld-Weißig, DE; Dahl, Edgar, Dipl.-Biol. Dr., 14480 Potsdam, DE; Rosentahl, André, Prof. Dipl.-Chem. Dr., 10115 Berlin, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Menschliche Nukleinsäuresequenzen aus Brusttumorgewebe
- Es werden menschliche Nukleinsäureseguenzen -mRNA, cDNA, genomische Sequenzen- aus Brusttumorgewebe, die für Genprodukte oder Teile davon kodieren und deren Verwendung beschrieben. Es werden weiterhin die über die Sequenzen erhältlichen Polypeptide und deren Verwendung beschrieben.

DE 198 13 839 A 1

Beschreibung

Die Erfindung betrifft menschliche Nukleinsäuresequenzen aus Brusttumorgewebe, die für Genprodukte oder Teile davon kodieren, deren funktionale Gene, die mindestens ein biologisch aktives Polypeptid kodieren und deren Verwendung.

Die Erfindung betrifft weiterhin die über die Sequenzen erhältlichen Polypeptide und deren Verwendung.

Eine der Haupttodesursachen bei Frauen ist der Brustkrebs, für dessen Bekämpfung neue Therapien notwendig sind. Bisher verwendete Therapien, wie z. B. Chemotherapie, Hormontherapie oder chirurgische Entfernung des Tumorgewe-

bes, führen häufig nicht zu einer vollständigen Heilung.

Das Phänomen Krebs geht häufig einher mit der Über- oder Unterexpression gewisser Gene in den entarteten Zellen, wobei noch unklar ist, ob diese veränderten Expressionsraten Ursache oder Folge der malignen Transformation sind. Die Identifikation solcher Gene wäre ein wesentlicher Schritt für die Entwicklung neuer Therapien gegen Krebs. Der spontanen Entstehung von Krehs geht häufig eine Vielzahl von Mutationen voraus. Diese können verschiedenste Auswirkungen auf das Expressionsmuster in dem betroffenen Gewebe haben, wie z. B. Unter- oder Überexpression, aber auch Expression verkürzter Gene. Mehrere solcher Veränderungen durch solche Mutationskaskaden können schließlich zu bösartigen Entartungen führen. Die Komplexität solcher Zusammenhänge erschwert die experimentelle Herangehensweise

Für die Suche nach Tumor-bezogenen Kandidatengenen, d. h. Genen; die als Ursache für oder als Folge von bösartigen Entartungen normalen, menschlichen Gewebes angesehen werden können, wird eine Datenbank verwendet, die aus sogenannten ESTs besteht. ESTs (Expressed Sequence Tags) sind Sequenzen von cDNAs, d. h. revers transkribierten mRNAs, den Molekülen also, die die Expression von Genen widerspiegeln. Die EST-Sequenzen werden für normale und entartete Gewebe ermittelt. Solche Datenbanken werden von verschiedenen Betreibern z. T. kommerziell angeboten. Die ESTs der LifeSeq-Datenbank, die hier verwendet wird, sind in der Regel zwischen 150 und 350 Nukleotide lang. Sie repräsentieren ein für ein bestimmtes Gen unverkennbares Muster, obwohl dieses Gen normalerweise sehr viel länger ist (> 2000 Nukleotide). Durch Vergleich der Expressionsmuster von normalen und Tumorgewebe können ESTs identifiziert werden, die für die Tumorentstehung und -prolifertion wichtig sind. Es besteht jedoch folgendes Problem: Da durch unterschiedliche Konstruktionen der eDNA-Bibliotheken die gefundenen EST-Sequenzen zu unterschiedlichen Regionen eines unbekannten Gens gehören können, ergäbe sich in einem solchen Fall ein völlig falsches Verhältnis des Vorkommens dieser ESTs in dem jeweiligen Gewebe. Dieses würde erst bemerkt werden, wenn das vollständige Gen bekannt ist und somit die ESTs dem gleichen Gen zugeordnet werden können.

Es wurde nun gefunden, daß diese Fehlermöglichkeit verringert werden kann, wenn zuvor sämtliche ESTs aus dem jeweiligen Gewebstyp assembliert werden, bevor die Expressionsmuster miteinander verglichen werden. Es wurden also überlappende ESTs ein und desselben Gens zu längeren Sequenzen zusammengefaßt (s. Fig. 1, Fig. 2a und Fig. 3). Durch diese Verlängerung und damit Abdeckung eines wesentlich größeren Genbereichs in jeder der jeweiligen Banken sollte der oben beschriebene Fehler weitgehenst vermieden werden. Da es hierzu keine bestehenden Softwareprodukte gab, wurden Programme für das Assemblieren von genomischen Abschnitten verwendet, die abgewandelt eingesetzt und durch eigene Programme ergänzt wurden. Ein Flowchart der Assemblierungsprozedur ist in Fig. 2b1-2b4 dargestellt.

Es konnten nun die Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 68 gefunden werden, die als Kandidatengene beim Brusttumor eine Rolle spielen.

Von besonderem Interesse sind die Nukleinsäure-Sequenzen Seq. ID Nos. 9, 17,18, 21, 23-25, 27, 31, 36, 38, 39,

42-44, 46-48, 50-53, 55-59, 61-63, 67, 68. Die Erfindung betrifft somit Nukleinsäure-Sequenzen, die ein Genprodukt oder ein Teil davon kodieren, umfassend

- a) eine Nukleinsäure-Sequenz, ausgewählt aus der Gruppe der Nukleinsäure-Sequenzen Seq. ID Nos. 9, 17, 18, 21, 23-25, 27, 31, 36, 38, 39, 42-44, 46-48, 50-53, 55-59, 61-63, 67, 68.
- b) eine allelische Variation der unter a) genannten Nukleinsäure-Sequenzen oder
- c) eine Nukleinsäure-Sequenz, die komplementär zu den unter a) oder b) genannten Nukleinsäure-Sequenzen ist.

Die Erfindung betrifft weiterhin eine Nukleinsäure-Sequenz gemäß einer der Sequenzen Seq. ID Nos. 9, 17, 18, 21, 23-25, 27, 31, 36, 38, 39, 42-44, 46-48, 50-53, 55-59, 61-63, 67, 68 oder eine komplementäre oder allelische Variante davon und die Nukleinsäure-Sequenzen davon, die eine 90%ige bis 95%ige Homologie zu einer humanen Nukleinsäure-Sequenz aufweisen.

Die Erfindung betrifft auch die Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 68, die im Brustiumorgewebe

erhöht exprimiert sind.

Die Erfindung betrifft ferner Nukleinsäure-Sequenzen, umfassend einen Teil der oben genannten Nukleinsäure-Sequenzen, in solch einer ausreichenden Größe, daß sie mit den Sequenzen Seq. ID Nos. 9, 17, 18, 21, 23-25, 27, 31, 36, 38, 39, 42-44, 46-48, 50-53, 55-59, 61-63, 67, 68 hybridisieren.

Die erfindungsgemäßen Nukleinsäure-Sequenzen weisen im allgemeinen eine Länge von mindestens 50 bis 4500 bp, vorzugsweise eine Länge von mindestens 150 bis 4000 bp, insbesondere eine Länge von 450 bis 3500 bp auf.

Mit den erfindungsgemäßen Teilsequenzen Seq. ID Nos. 9, 17, 18, 21, 23-25, 27, 31, 36, 38, 39, 42-44, 46-48, 50-53, 55-59, 61-63, 67, 68 können gemäß gängiger Verfahrenspraxis auch Expressionskassetten konstruiert werden, wobei auf der Kassette mindestens eine der erfindungsgemäßen Nukleinsäure-Sequenzen zusammen mit mindestens einer dem Fachmann allgemein bekannten Kontroll- oder regulatorischen Sequenz, wie z. B. einem geeigneten Promotor, kombiniert wird. Die erfindungsgemäßen Sequenzen können in sense oder antisense Orientierung eingefügt sein.

In der Literatur sind ist eine große Anzahl von Expressionskassetten bzw. Vektoren und Promotoren bekannt, die ver-

wenden werden können.

Unter Expressionskassetten bzw. Vektoren sind zu verstehen: 1. bakterielle, wie z. B., phagescript, pBs, \$\phi X174\$, pBlu-

escript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene), pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia), 2. eukaryontische, wie z. B. pwLneo, pSV2cat, pOG44, pXT1, pSG (Stratagene), pSVK3, pBPV, pMSG, pSVL (Pharmacia).

Unter Kontroll- oder regulatorischer Sequenz sind geeignete Promotoren zu verstehen. Hierbei sind zwei bevorzugte Vektoren der pKK232-8 und der PCM7 Vektor. Im einzelnen sind folgende Promotoren gemeint: lacI, lacZ, T3, T7, gpt, lambda P_R, trc, CMV, HSV Thymidin-Kinase, SV40, LTRs aus Retrovirus und Maus Metallothionein-I.

Die auf der Expressionskassette befindlichen DNA-Sequenzen können ein Fusionsprotein kodieren, das ein bekanntes Protein und ein biologisch aktives Polypeptid-Fragment umfaßt.

Die Expressionskassetten sind ebenfalls Gegenstand der vorliegenden Erfindung.

Die erfindungsgemäßen Nukleinsäure-Fragmente können zur Herstellung von Vollängen-Genen verwendet werden. Die erhältlichen Gene sind ebenfalls Gegenstand der vorliegenden Erfindung.

Die Erfindung betrifft auch die Verwendung der erfindungsgemäßen Nukleinsäure-Sequenzen, sowie die aus der Verwendung erhältlichen Gen-Fragmente.

Die erfindungsgemäßen Nukleinsäure-Sequenzen können mit geeigneten Vektoren in Wirtszellen gebracht werden, in denen als heterologer Teil die auf den Nukleinsäure-Fragmenten enthaltene genetischen Information befindet, die exprimiert wird.

Die die Nukleinsäure-Fragmente enthaltenden Wirtszellen sind ebenfalls Gegenstand der vorliegenden Erfindung.

Geeignete Wirtszellen sind z. B. prokaryontische Zellsysteme wie E. coli oder eukaryontische Zellsysteme wie tierische oder humane Zellen oder Hefen.

Die erfindungsgemäßen Nukleinsäure-Sequenzen können in sense oder antisense Form verwendet werden.

Die Herstellung der Polypeptide oder deren Fragment erfolgt durch Kultivierung der Wirtszellen gemäß gängiger Kultivierungsmethoden und anschließender Isolierung und Aufreinigung der Peptide bzw. Fragmente, ebenfalls mittels gängiger Verfahren. Die Erfindung betrifft ferner Nukleinsäure-Sequenzen, die mindestens eine Teilsequenz eines biologisch aktiven Polypeptids kodieren.

Ferner betrifft die vorliegende Erfindung Polypeptid-Teilsequenzen, sogenannte ORF (open-reading-frame)-Peptide, gemäß den Sequenzprotokollen Seq. ID Nos. 72–76, 79–81, 84–92, 95–98, 102–104, 107–117, 119–127, 129–144, 147.

Die Erfindung betrifft ferner die Polypeptid-Sequenzen, die mindestens eine 80%ige Homologie, insbesondere eine 90%ige Homologie zu den erfindungsgemäßen Polypeptid-Teilsequenzen der Seq. ID Nos. 72–76, 79–81, 84–92, 95–98, 102–104, 107–117, 119–127, 129–144, 147 aufweisen.

Die Erfindung betrifft auch Antikörper, die gegen ein Polypeptid oder Fragment davon gerichtete sind, welche von den erfindungsgemäßen Nukleinsäuren der Sequenzen Seq. ID No. 1 bis Seq. ID 68 kodiert werden.

Unter Antikörper sind insbesondere monoklonale Antikörper zu verstehen.

Die erfindungsgemäßen Polypeptide der Sequenzen Seq. ID Nos. 71 bis 148 können auch als Tool zum Auffinden von Wirkstoffen gegen Brustkrebs verwendet werden, was ebenfalls Gegenstand der vorliegerden Erfindung ist.

Ebenfalls Gegenstand der vorliegenden Erfindung ist die Verwendung der Nukleinsäure-Sequenzen gemäß den Sequenzen Seq. ID No. 1 bis Seq. ID No. 68 zur Expression von Polypeptiden, die als Tools zum Auffinden von Wirkstoffen gegen Brustkrebs verwendet werden können.

Die Erfindung betrifft auch die Verwendung der gefundenen Polypeptid-Teilsequenzen Seq. ID No. 71 bis Seq. ID No. 148 zur Herstellung eines Arzneimittels zur Behandlung des Brustkrebses.

Die Erfindung betrifft auch Arzneimittel, die mindestens eine Polypeptid-Teilsequenz Seq. ID No. 71 bis Seq. ID No. 148 enthalten.

Die gefundenen erfindungsgemäßen Nukleinsäure-Sequenzen können auch genomische oder mRNA-Sequenzen sein. Die Erfindung betrifft auch genomische Gene, ihre Exon- und Intronstruktur und deren Spleißvarianten, erhältlich aus den cDNAs der Sequenzen Seq. ID No. 1 bis Seq. ID No. 68, sowie deren Verwendung zusammen mit geeigneten regulativen Elementen, wie geeigneten Promotoren und/oder Enhancern.

Mit den erfindungsgemäßen Nukleinsäuren (cDNA-Sequenzen) werden genomische BAC-, PAC- und Cosmid-Bibliotheken gescreent und über komplementäre Basenpaarung (Hybridisierung) spezifisch humane Klone isoliert. Die so isolierten BAC-, PAC- und Cosmid-Klone werden mit Hilfe der Fluoreszenz-in-situ-Hybridisation auf Metaphasenchromosomen hybridisiert und entsprechende Chromosomenabschnitte identifiziert, auf denen die entsprechenden genomischen Gene liegen. BAC-, PAC- und Cosmid-Klone werden sequenziert, um die entsprechenden genomischen Gene in ihrer vollständigen Struktur (Promotoren, Enhancer, Silencer, Exons und Introns) aufzuklären. BAC-, PAC- und Cosmid-Klone können als eigenständige Moleküle für den Gentransfer eingesetzt werden (s. Fig. 5).

Die Erfindung betrifft auch BAC-, PAC- und Cosmid-Klone, enthaltend funktionelle Gene und ihre chromosomale Lokalisation, entsprechend den Sequenzen Seq. ID. No. 1 bis Seq. ID No. 68, zur Verwendung als Vehikel zum Gentransfer.

Bedeutungen von Fachbegriffen und Abkürzungen

Nukleinsäuren = Unter Nukleinsäuren sind in der vorliegenden Erfindung zu verstehen: mRNA, partielle cDNA, vollängen cDNA und genomische Gene (Chromosomen).

ORF = Open Reading Frame, eine definierte Abfolge von Aminosäuren, die von der cDNA-Sequenz abgeleitet werden kann.

Contig = Eine Menge von DNA-Sequenzen, die aufgrund sehr großer Ähnlichkeiten zu einer Sequenz zusammengefaßt werden können (Consensus).

Singleton = Ein Contig, der nur eine Sequenz enthält.

65

20

35

45

Erklärung zu den Alignmentparametern

minimal initial match = minimaler anfänglicher Identitätsbereich maximum pads per read = maximale Anzahl von Insertionen maximum percent mismatch = maximale Abweichung in %.

Erklärung der Abbildungen

Fig. 1 zeigt die systematische Gen-Suche in der Incyte LifeSeq-Datenbank.

Fig. 2a zeigt das Prinzip der EST-Assemblierung.

Fig. 2b1-2b4 zeigt das gesamte Prinzip der EST-Assemblierung.

Fig. 3 zeigt die in silico Subtraktion der Genexpression in verschiedenen Geweben.

Fig. 4a zeigt die Bestimmung der gewebsspezifischen Expression über elektronischen Northern.

Fig. 4b zeigt den elektronischen Northern.

Fig. 5 zeigt die Isolierung von genomischen BAC- und PAC-Klonen.

Die nachfolgenden Beispiele erläutern die Herstellung der erfindungsgemäßen Nukleinsäure-Sequenzen, ohne die Erfindung auf diese Beispiele und Nukleinsäure-Sequenzen zu beschränken.

Beispiel 1

20

10

15

Suche nach Tumor-bezogenen Kandidatengenen

Zuerst wurden sämtliche ESTs des entsprechenden Gewebes aus der LifeSeq-Datenbank (vom Oktober 1997) extrahiert. Diese wurden dann mittels des Programms GAP4 des Staden-Pakets mit den Parametern 0% mismatch, 8 pads per read und einem minimalen match von 20 assembliert. Die nicht in die GAP4-Datenbank aufgenommenen Sequenzen (Fails wurden erst bei 1% mismatch und dann nochmals bei 2% mismatch mit der Datenbank assembliert. Aus den Contigs der Datenbank, die aus mehr als einer Sequenz bestanden, wurden Consensussequenzen errechnet. Die Singletons der Datenbank, die nur aus einer Sequenz bestanden, wurden mit den nicht in die GAP4-Datenbank aufgenommenen Sequenzen bei 2% mismatch erneut assembliert. Wiederum wurden für die Contigs die Consensussequenzen ermittelt. Alle übrigen ESTs wurden bei 4% mismatch erneut assembliert. Die Consensussequenzen wurden abermals extrahiert und mit den vorherigen Consensussequenzen sowie den Singletons und den nicht in die Datenbank aufgenommenen Sequenzen abschließend bei 4% mismatch assembliert. Die Consensussequenzen wurden gebildet und mit den Singletons und Fails als Ausgangsbasis für die Gewebsvergleiche verwendet. Durch diese Prozedur konnte sichergestellt werden, daß unter den verwendeten Parametern sämtliche Sequenzen von einander unabhängige Genbereiche darstellten.

Fig. 2b1–2b4 veranschaulicht die Verlängerung der Brusttumorgewebe ESTs.

Die so assemblierten Sequenzen der jeweiligen Gewebe wurden anschließend mittels des gleichen Programms miteinander verglichen (Fig. 3). Hierzu wurden erst alle Sequenzen des ersten Gewebes in die Datenbank eingegeben. (Daher war es wichtig, daß diese voneinander unabhängig waren.)

Dann wurden alle Sequenzen des zweiten Gewebes mit allen des ersten verglichen. Das Ergebnis waren Sequenzen, die für das erste bzw. das zweite Gewebe spezifisch waren, sowie welche, die in beiden vorkamen. Bei Letzteren wurde das Verhältnis der Häufigkeit des Vorkommens in den jeweiligen Geweben ausgewertet. Sämtliche, die Auswertung der assemblierten Sequenzen betreffenden Programme, wurden selbst entwickelt.

Alle Sequenzen, die mehr als viermal in jeweils einem der verglichenen Gewebe vorkamen, sowie alle, die mindestens fünfmal so häufig in einem der beiden Gewebe vorkamen wurden weiter untersucht. Diese Sequenzen wurden einem elektronischen Northern (s. Beispiel 2.1) unterzogen, wodurch die Verteilung in sämtlichen Tumor- und Normal-Geweben untersucht wurde (s. Fig. 4a und Fig. 4b). Die relevanten Kandidaten wurden dann mit Hilfe sämtlicher Incyte ESTs und allen ESTs öffentlicher Datenbanken verlängert (s. Beispiel 3). Anschließend wurden die Sequenzen und ihre Übersetzung in mögliche Proteine mit allen Nukleotid- und Proteindatenbanken verglichen, sowie auf mögliche, für Proteine kodierende Regionen untersucht.

50

Beispiel 2

Algorithmus zur Identifikation und Verlängerung von partiellen cDNA-Sequenzen mit verändertem Expressionsmuster

Im folgenden soll ein Algorithmus zur Auffindung über- oder unterexprimierter Gene erläutert werden. Die einzelnen Schritte sind der besseren Übersicht halber auch in einem Flußdiagramm zusammengefaßt (s. Fig. 4b).

2.1 Elektronischer Northern-Blot

Zu einer partiellen DNA-Sequenz S, z. B. einem einzelnen EST oder einem Contig von ESTs, werden mittels eines Standardprogramms zur Homologiesuche, z. B. BLAST (Altschul, S. F., Gish W., Miller, W., Myers, E. W. und Lipman, D. J. (1990) J. Mol. Biol., 215, 403-410), BLAST2 (Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. und Lipman, D. J. (1997) Nucleic Acids Research 25 3389-3402) oder FASTA (Pearson, W. R. und Lipman, D. J. (1988) Proc. Natl. Acad. Sci. USA 85 2444-2448), die homologen Sequenzen in verschiedenen nach Geweben geordneten (privaten oder öffentlichen) EST-Bibliotheken bestimmt. Die dadurch ermittelten (relativen oder absoluten) Gewebe-spezifischen Vorkommenshäufigkeiten dieser Partial-Sequenz S werden als elektronischer Northern-Blot bezeichnet.

2.1.1

Analog der unter 2.1 beschriebenen Verfahrensweise wurde die Sequenz Seq. ID No. 2 gefunden, die 9× stärker im Brusttumorgewebe als im normalen Gewebe vorkommt.

Die mögliche Funktion dieses Genbereiches betrifft ein 17-kDa-Interferon-induzierbares Gen. Das Ergebnis ist wie folgt:

5

65

Elektronischer Northern für SEQ. ID. NO: 2

Brus	e 0.0000 t 0.0053	TUMOR %Haeufigkeit 0.0102 0.0458	0.0000 undef 0.1165 8.5843	10
Haematopoetisc	e 0.0000 1 0.0039 n 0.0085	0.0338 0.0000 0.0143 0.0099 0.0000	0.0899 11.1243 undef undef 0.2714 3.6843 0.8601 1.1626 undef 0.0000	15
Hepatisch Herz Hoder	n 0.0000 z 0.0074 n 0.0000 e 0.0037	0.0000 0.0000 0.0000 0.0117 0.0024 0.0077	undef undef undef undef undef 0.0000 0.0000 undef 1.5801 0.6329	20
Muskel-Skelett Niere Pankreas	0.0034 0.0030 0.0038 0.0030	0.0120 0.0000 0.0000 0.1066	1.2599 0.7937 0.2855 3.5025 undef 0.0000 undef 0.0000 0.0281 35.6161 1.1186 0 8939	25
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase	0.0000 0.0093 0.0030 0.0089		undef 0.0000	30
Sinnesorgane Weisse_Blutkoerperchen	0.0035			35
Entwicklung Gastrointenstinal Gehirn Haematopoetisch	0.0031 0.0000 0.0039			40
-	0.0000 0.0000 0.0000			45
Brust	NORMIERTE/SUBTE	RAHIERTE BIBL	IOTHEKEN	50
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0000 0.0082 0.0244 0.0057			55
Haut-Muskel Hoden Lunge Nerven Prostata Sinnesorgane	0.0000 0.0082 0.0010 0.0128			60

2.1.2.

Analog der unter 2.1 beschriebenen Verfahrensweise wurde die Sequenz Seq. ID No. 5 gefunden, die 30× stärker im Brustumorgewebe als im normalen Gewebe vorkommt.

Die mögliche Funktion dieses Genbereiches betrifft "macrophage migration inhibition factor related Protein 14(MRP-14)".

Das Ergebnis ist wie folgt:

Elektronischer Northern für SEQ. ID. NO: 5

		Elekuollischer	Mornicin for DEQ	
10			mtiMOD	Verhaeltnisse
		NORMAL	TUMOR	
		%Haeufigkeit	%Haeufigkeit	0.0616 16.2223
	Blase	0.0093	0.1508	0.0340 29.4320
	Brust	0.0013	0.0392	undef 0.0000
15	Eierstock	0.0152	0.0000	under 0.0000
13	Endokrines_Gewebe	0.0018	0.0027	0.6698 1.4930
	Gastrointestinal	0.0174	0.0048	3.6642 0.2729
	Gehirn	0.0051	0.0055	0.9289 1.0765
	Haematopoetisch	0.0993	0.0000	undef 0.0000
	Haut	0.0249	0.0000	undef 0.0000
20	Hepatisch	0.0000	0.0129	0.0000 undef
	nepatison Herr	0.0053	0.0000	undef 0.0000
	Hoden	0.0061	0.0000	undef 0.0000
	Hoden	0.0261	0.0307	0.8508 1.1753
	Lunge	0.0201	0.0230	4.6197 0.2165
25	Magen-Speiseroehre	0.1002	0.0180	0.9517 1.0508
	Muskel-Skelett	0.01/1	0.0068	0.0000 undef
	Niere	0.0000	0.0000	undef 0.0000
	Pankreas	0.0114	0.1600	0.7862 1.2720
	Penis	0.1258	0.0000	undef undef
30	Prostata	0.0000	0.0000	undef 0.0000
50	Uterus	0.0826	0.0000	
	Brust-Hyperplasie	0.0036		
	Duenndarm	0.0000		
	Prostata-Hyperplasie	0.0000		
25	Samenblase	0.0176		
35	Sinnesorgane	0.0000		
	Weisse_Blutkoerperchen	0.1018		
		DODBILO		
40		FOETUS %Haeufigkeit	-	
40			L	
	Entwicklung	0.0000 0.0062		
	Gastrointenstinal			
	Genirn	0.0000		
4.5	Haematopoetisch	0.0000		
45	Herz-Blutgefaesse	0.0000		
	Lunge	0.0037		
	Niere	0.0000		
	Prostata			
	Sinnesorgane	0.0000		
50				
		NORMTERTE/S	UBTRAHIERTE E	BIBLIOTHEKEN
		%Haeufigkei		
	B	: 0.0000	-	
55	Eierstock-Uterus	. 0.0000		
	Endokrines_Gewebe	0.0052		
	roeta	0.0034		
	Gastrointestina	- 0.0144		
	Haematopoetisch	n 0.003/		
60	Haut-Muske.	1 0.0000		
	Hode	0.0000		
	Lung	e 0.0410		
	Nerve	n 0.0000		
	Prostat	a 0.0449		
65	Sinnesorgan	e 0.0000		

DE 198 13 839 A 1

2.1.3.

Analog der unter 2.1 beschriebenen Verfahrensweise wurde die Sequenz Seq. ID No. 16 gefunden, die 30× stärker im Brusttumorgewebe als im normalen Gewebe vorkommt.

Die mögliche Funktion dieses Genbereiches betrifft menschliches Tim23, welches im Proteintranslokase-Komplex der inneren mitochondrialen Membran lokalisiert ist.

Das Ergebnis ist wie folgt:

Elektronischer Northern für SEQ. ID. NO: 16

		`	•	
	NORMAL	TUMOR	Verhaeltnisse	10
	%Haeufigkeit	%Haeufigkeit	N/T T/N	
	0.0046	0.0051	0.9092 1.0998	
	: 0.0013	0.0153	0.0874 11.4458	
Eierstock		0.0026	0.0000 undef	15
Endokrines_Gewebe Gastrointestinal	0.0091	0.0082	1.1163 0.8958	13
		0.0095	1.2214 0.8187	
Haematopoetisch	0.0076	0.0055	1.3934 0.7177	
		0.0000	undef 0 0000	
Hepatisch	0.0199	0.0000	undef 0.0000	20
-	0.0196	0.0065	3.0606 0.3267	20
	0.0100	0.0000	undef 0.0000	
	0.0100	0.0000	undef 0.0000	
Magen-Speiseroehre			4.2137 0.2373	
Muskel-Skelett			undef 0.0000	25
	0.0039		0.5710 1.7513	23
Pankreas			undef 0.0000	
			undef undef	
Prostata			undef undef	
			0.5593 1.7879	20
Brust-Hyperplasie		0.0071	0.2321 4.3088	30
Duenndarm				
Prostata-Hyperplasie				
Samenblase				
Sinnesorgane				
Weisse Blutkoerperchen				35
woloo_blackolpolonen	0.0005			
	FOETUS			
	%Haeufigkeit			40
Entwicklung				40
Gastrointenstinal	0.0000			
Gehirn	0.0125			
Haematopoetisch	0.0000			
Herz-Blutgefaesse	0.0041			45
	0.0111			43
Niere	0.0000			
Prostata	0.0499			
Sinnesorgane	0.0000			
				50
	MODWIDE / 20			50
		RAHIERTE BIBL	IOTHEKEN	
	%Haeufigkeit	RAHIERTE BIBL	JOTHEKEN	
Brust	%Haeufigkeit 0.0000	RAHIERTE BIBL	IOTHEKEN	
Brust Eierstock-Uterus	%Haeufigkeit 0.0000 0.0068	RAHIERTE BIBL	IOTHEKEN	55
Brust Eierstock-Uterus Endokrines_Gewebe	%Haeufigkeit 0.0000 0.0068 0.0000	RAHIERTE BIBL	JOTHEKEN	55
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	%Haeufigkeit 0.0000 0.0068 0.0000 0.0064	RAHIERTE BIBL	JOTHEKEN	55
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	%Haeufigkeit 0.0000 0.0068 0.0000 0.0064 0.0244	RAHIERTE BIBL	JOTHEKEN	55
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	%Haeufigkeit 0.0000 0.0068 0.0000 0.0064 0.0244 0.0057	RAHIERTE BIBL	JOTHEKEN	55
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	%Haeufigkeit 0.0000 0.0068 0.0000 0.0064 0.0244 0.0057 0.0065	RAHIERTE BIBL		
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	%Haeufigkeit 0.0000 0.0068 0.0000 0.0064 0.0244 0.0057 0.0065 0.0156	RAHIERTE BIBL	. TOTHEKEN	55
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	%Haeufigkeit 0.0000 0.0068 0.0000 0.0064 0.0244 0.0057 0.0065 0.7156	RAHIERTE BIBL	IOTHEKEN .	
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	%Haeufigkeit 0.0000 0.0068 0.0000 0.0064 0.0244 0.0057 0.0065 0.0156 0.0164	RAHIERTE BIBL	IOTHEKEN .	
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven Prostata	%Haeufigkeit 0.0000 0.0068 0.0000 0.0064 0.0244 0.0057 0.0065 0.0156 0.0156	RAHIERTE BIBL	IOTHEKEN .	
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	%Haeufigkeit 0.0000 0.0068 0.0000 0.0064 0.0244 0.0057 0.0065 0.0156 0.0156	RAHIERTE BIBL	IOTHEKEN .	

In analoger Verfahrensweise wurden auch folgende Northerns gefunden:

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit 0.0102	N/T T/N 0.0000 undef
5	Blase Brust		0.0102	0.2039 4.9053
	Eierstock	0.0040	0.0156	1.1686 0.8557
	Endokrines_Gewebe	0.0219	0.0409	0.5358 1.8663
	Gastrointestinal	0.0174	0.0238	0.7328 1.3646
	Gehirn	0.0534	0.0526	1.0160 0.9842
10	Haematopoetisch	0.0154	0.0000	undef 0.0000
	Haut	0.0398	0.0000	undef 0.0000 1.5303 0.6535
	Hepatisch	0.0099	0.0065 0.0000	undef 0.0000
	Herz Hoden	0.0519	0.0117	0.5224 1.9144
15	Lunge Lunge	0.0001	0.0378	0.59261.6876
13	Magen-Speiseroehre	0.0224	0.0077	2.5198 0.3968
	Magen-Speiserbenie Muskel-Skelett	0.0411	0.0300	1.3704 0.7297
	Niere	0.0297	0.1232	0.2412 4.1459
	Pankreas	0.0076	0.0276	0.2743 3.6460
20	Penis	0.0389	0.0267	1.4600 0.6849
	Prostata	0.0119	0.0192	0.6215 1.6091
	Uterus	0.0248	0.0356	0.6963 1.4363
	Brust-Hyperplasie	0.0218		
	Duenndarm	0.0156		
25	Prostata-Hyperplasie	0.0238		
	Samenblase	0.0000		
	Sinnesorgane	0.0000		
	Weisse_Blutkoerperchen	0.0087		
20				
30		FOETUS		
		%Haeufigkeit	, -	
	Entwicklung	0.0154		
	Gastrointenstinal	0.0216		
35	Gehirn	0.0188		
	Haematopoetisch	0.0079		
	Herz-Blutgefaesse	0.0368		
	Lunge	0.0481		
	Niere Prostata	0.0124		
40	Prostata Sinnesorgane	0.0000		
	Sinnesorgane	0.02.3		
			JBTRAHIERTE BI	RI.TOTHEKEN
45		%Haeufigkeit	<u>ا</u>	
		0.0204		
	Eierstock-Uterus	0.0320		
	Endokrines_Gewebe	0.0414		
	roetar	0.0414		
50	Gastrointestinal Haematopoetisch	0.0171		
	Haematopoetisch Haut-Muskel	0.0745		
	naut-musket nahoH	0.0312		
	Linge	0.0082		
	Nerven	0.0241		
55	Prostata	0.0321		
	Sinnesorgane	0.0077		
	<u> </u>			

	NORMAL	TUMOR	Verhaeltnisse	
		%Haeufigkeit	N/T T/N	
	0.0046	0.0128	0.3637 2.7495	5
	0.0067	0.0174	0.3822 2.6162	
Eierstock		0.0000	undef 0.0000	
Endokrines_Gewebe		0.0082	0.2233 4.4791	
Gastrointestinal		0.0048	0.8143 1.2281	
Gehirn		0.0110	3.0964 0.3230	10
Haematopoetisch		0.0000	undef 0.0000	
	0.0149	0.0000	undef 0.0000	
Hepatisch		0.0000	undef 0.0000	
	0.0064	0.0000	undef 0.0000	
	0.0183	0.0000	undef 0.0000	15
	0.0137	0.0000	undef 0.0000 0.6300 1.5874	
Magen-Speiseroehre		0.0153 0.0120	0.7138 1.4010	
Muskel-Skelett	0.0030	0.0120	0.0868 11.5165	
Niere Pankreas		0.0342	0.5143 1.9446	
	0.0030	0.0010	undef 0.0000	20
Prostata		0.0085	0.2797 3.5758	
Uterus		0.0003	1.6246 0.6155	
Brust-Hyperplasie		0.0071	1.0240 0.0133	
Duenndarm				
Prostata-Hyperplasie				25
Samenblase	0.0000			
Sinnesorgane				
Weisse Blutkoerperchen				
wersse_bruckoerperemen	0.0001			
				30
	FOETUS			30
				30
Entwicklung	%Haeufigkeit			30
Entwicklung Gastrointenstinal	%Haeufigkeit 0.0000			30
Entwicklung Gastrointenstinal Gehirn	%Haeufigkeit 0.0000 0.0092			
Gastrointenstinal Gehirn	%Haeufigkeit 0.0000 0.0092 0.0188			35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000			35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000			35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000 0.0000			35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000 0.0000	STRAHIERTE BIE	SLIOTHEKEN	35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit	STRAHIERTE BIE	SLIOTHEKEN	35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0204	STRAHIERTE BIE	LIOTHEKEN	35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0204 0.0091	STRAHIERTE BIE	LIOTHEKEN	35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0204 0.0091 0.0000	STRAHIERTE BIE	LIOTHEKEN	35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0204 0.0091 0.0000 0.00093	STRAHIERTE BIE	LIOTHEKEN	35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0204 0.0091 0.0000 0.0093 0.0000	STRAHIERTE BIE	LIOTHEKEN	35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0204 0.0091 0.0000 0.0000 0.0000	STRAHIERTE BIE	LIOTHEKEN	35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0204 0.0091 0.0000 0.0093 0.0000 0.0114 0.0227	STRAHIERTE BIE	LIOTHEKEN	35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0204 0.0091 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000	STRAHIERTE BIE	LIOTHEKEN	35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0204 0.0091 0.0000 0.0093 0.0000 0.0114 0.0227 0.0000 0.0082	STRAHIERTE BIE	LIOTHEKEN	35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0204 0.0091 0.0000 0.0093 0.0000 0.0114 0.0227 0.0000 0.0082 0.0291	STRAHIERTE BIE	LIOTHEKEN	40 45 50
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven Prostata	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0204 0.0091 0.0000 0.0093 0.0000 0.0114 0.0227 0.0000 0.0082 0.0291 0.0000	STRAHIERTE BIE	LIOTHEKEN	35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	%Haeufigkeit 0.0000 0.0092 0.0188 0.0079 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0204 0.0091 0.0000 0.0093 0.0000 0.0114 0.0227 0.0000 0.0082 0.0291 0.0000	STRAHIERTE BIE	LIOTHEKEN	40 45 50

65

		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	
5	Blase	0.0093	0.0256	0.3637 2.7495
	Brust	0.0133	0.0283	0.4704 2.1256
	Eierstock		0.0104	0.8765 1.1409
	Endokrines_Gewebe	0.0274	0.0490	0.5582 1.7916
	Gastrointestinal	0.0116	0.0095	1.2214 0.8187
10	Gehirn	0.0212	0.0164	1.2902 0.7751
10	Haematopoetisch	0.0084	0.0000	undef 0.0000
	Haut	0.0348	0.0000	undef 0.0000
	Hepatisch	0.0149	0.0259	0.5739 1.7426
		0.0191	0.0137	1.3873 0.7208
15	Hoden	0.0122	0.0000	undef 0.0000
13	Lunge	0.0162	0.0165	0.9782 1.0223
	Magen-Speiseroehre	0.0290	0.0153	1.8899 0.5291
	Muskel-Skelett	0.0069	0.0120	0.5710 1.7513
	Niere	0.0178	0.0068	2.6050 0.3839
00	Pankreas	0.0038	0.0221	0.1714 5.8337
20	Penis	0.0180	0.0000	undef 0.0000
	Prostata		0.0234	0.9152 1.0926
	Uterus		0.0214	0.8510 1.1751
	Brust-Hyperplasie			
2.5	Duenndarm			
25	Prostata-Hyperplasie	0.0357		
	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0218		
20				
30		EODWIIC .		
		FOETUS %Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
25	Gastionntenstmar			
35	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0111		
		0.0124		
40	Prostata			
40	Sinnesorgane			
			BTRAHIERTE BIE	BLIOTHEKEN
45		%Haeufigkeit		
45	Brust			
	Eierstock-Uterus			
	Endokrines_Gewebe			
	= = = = = :	0.0076		
50	Gastrointestinal			
30	Haematopoetisch			
	Haut-Muskel			
		0.0000		
		0.0000		
<i>E E</i>	Nerven Prostata			
55				
	Sinnesorgane	0.0000		

	NORMAL %Haeufigkeit	TUMOR %Haeufigkeit	Verhaeltnisse N/T T/N	
Place				5
	0.0000 0.0053		0.0000 undef	
Eierstock		0.0196 0.0052	0.2718 3.6790	
Endokrines Gewebe		0.0032	1.1686 0.8557 0.6698 1.4930	
Gastrointestinal		0.0027	0.4071 2.4562	
	0.0076	0.0033	2.3223 0.4306	10
Haematopoetisch	0.0042	0.0000	undef 0.0000	
	0.0050	0.0000	undef 0.0000	
Hepatisch	0.0099	0.0129	0.7651 1.3069	
Herz	0.0064	0.0000	undef 0.0000	
Hoden	0.0000	0.0117	0.0000 undef	15
	0.0050	0.0142	0.3511 2.8478	
Magen-Speiseroehre		0.0230	0.0000 undef	
Muskel-Skelett			undef 0.0000	
		0.0137	0.8683 1.1517	
Pankreas		0.0055	0.6857 1.4584	20
	0.0030		undef 0.0000	
Prostata			1.3051 0.7662	
		0.0142	0.2321 4.3088	
Brust-Hyperplasie				
Duenndarm Prostata-Hyperplasie				25
Samenblase				
Sinnesorgane				
Weisse Blutkoerperchen				
				30
	FOETUS			
·	%Haeufigkeit			
Entwicklung Gastrointenstinal				
Gehirn				35
Haematopoetisch				
Herz-Blutgefaesse	0.0000			
	0.0037			
-	0.0062			
Prostata				40
Sinnesorgane				
.				
	NORMIERTE/SUBT	RAHTERTE BIRT	TOPUFYEN	
			TOTUENER	
Brust	%Haeufigkeit	DIDI	IOINEREN	45
	0.0000		IOTHEREN	45
Eierstock-Uterus	0.0000 0.0023	DIDI	IOTHEREN	45
Eierstock-Uterus Endokrines Gewebe	0.0000 0.0023 0.0000		IOTHEREN	45
Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000 0.0023 0.0000 0.0047		IOTHEREN	
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	0.0000 0.0023 0.0000 0.0047 0.0122		IOTHEREN	45 50
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	0.0000 0.0023 0.0000 0.0047 0.0122 0.0057		IOTHEREN	
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0000 0.0023 0.0000 0.0047 0.0122 0.0057 0.0000		·	
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000 0.0023 0.0000 0.0047 0.0122 0.0057 0.0000			
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0023 0.0000 0.0047 0.0122 0.0057 0.0000 0.0000			50
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	0.0000 0.0023 0.0000 0.0047 0.0122 0.0057 0.0000 0.0000 0.0000			
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0023 0.0000 0.0047 0.0122 0.0057 0.0000 0.0000 0.0000 0.0000 0.0000			50

60

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	
_	Blase	0.0186	0.0051	3.6370 0.2750
5		0.0147	0.0261	0.5606 1.7838
	Eierstock	0.0182	0.0234	0.7791 1.2836
	Endokrines Gewebe	0.0456	0.0245	1.8605 0.5375
	Gastrointestinal	0.0233	0.0190	1.2214 0.8187
10	Gehirn		0.0230	1.3639 0.7332
10	Haematopoetisch	0.0196	0.0378	0.5175 1.9325
		0.0199	0.0000	undef 0.0000
	Hepatisch	0.0050	0.0388	0.1275 7.8416
		0.0328	0.0275	1.1947 0.8371 0.5224 1.9144
15		0.0183	0.0351 0.0284	0.5267 1.8986
		0.0149	0.0460	0.4200 2.3811
	Magen-Speiseroehre Muskel-Skelett	0.0193	0.0480	0.4639 2.1554
		0.0208	0.0205	1.0130 0.9871
	Pankreas		0.0055	4.4569 0.2244
20	Penis	0.0449	0.0267	1.6846 0.5936
	Prostata		0.0383	0.4350 2.2987
	Uterus		0.0214	1.0831 0.9233
	Brust-Hyperplasie			
	Duenndarm	0.0125		
25	Prostata-Hyperplasie	0.0357		
	Samenblase	0.0356		
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0165		
		FOETUS		
30		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
		0.0375		
35	Haematopoetisch	0.0118		
55	Herz-Blutgefaesse	0.0204		
		0.0296		
		0.0185		
	Prostata			
40	Sinnesorgane	0.02/9		
		NORMTERTE/SU	BTRAHIERTE BI	BLIOTHEKEN
		%Haeufigkeit		
	Brust	0.0068		
	Eierstock-Uterus			
45	Endokrines Gewebe			
		0.0093		
	Gastrointestinal	0.0000		
	Haematopoetisch			
	Haut-Muskel			
50		0.0078		
	Lunge	0.0082		
	Nerven Prostata	0.0100		
	Prostata Sinnesorgane			
	Sinnesorgane	0.0133		
55				
60				

Brust Eierstock Endokrines_Gewebe	0.0274	TUMOR %Haeufigkeit 0.0281 0.0414 0.0260 0.0354	Verhaeltnisse N/T T/N 0.4959 2.0163 0.1931 5.1778 0.4674 2.1393 0.7728 1.2940	5
Haematopoetisch Haut Hepatisch	0.0237 0.0098 0.0149	0.0333 0.0175 0.0000 0.1693 0.0129 0.0412	0.7561 1.3226 1.3547 0.7382 undef 0.0000 0.0881 11.3508 1.1477 0.8713 0.9249 1.0812	10
Lunge Magen-Speiseroehre Muskel-Skelett	0.0171	0.0000 0.0615 0.0383 0.0180	undef 0.0000 0.2836 3.5259 0.2520 3.9685 0.9517 1.0508	15
Pankreas Penis Prostata	0.0180	0.1066 0.0213	0.3799 2.6323 undef 0.0000 0.1685 5.9360 0.5593 1.7879 0.4061 2.4622	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0109 0.0374 0.0386 0.0356 0.0000	0.0203	0.9001 2.4022	25
Weisse_Blutkoerperchen	FOETUS %Haeufigkeit			30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0216 0.0188 0.0079			35
Niere Prostata Sinnesorgane				40
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000	TRAHIERTE BIBI	LIOTHEKEN	45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000 0.0615 0.0078			50
Lunge Nerven Prostata Sinnesorgane	0.0181 0.0192			55

60

5	Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch	0.0046 0.0053 0.0122 0.0036 0.0213 0.0051 0.0028 0.0348	TUMOR %Haeufigkeit 0.0128 0.0218 0.0026 0.0109 0.0048 0.0000 0.0000 0.0000	Verhaeltnisse N/T T/N 0.3637 2.7495 0.2446 4.0878 4.6745 0.2139 0.3349 2.9861 4.4784 0.2233 undef 0.0000 undef 0.0000 undef 0.0000 undef 0.0000
15	Herz Hoden Lunge Magen-Speiseroehre Muskel-Skelett Niere	0.0064 0.0000 0.0324 0.0000 0.0017 0.0357	0.0137 0.0000 0.0189 0.0077 0.0000	0.4624 2.1624 undef undef 1.7118 0.5842 0.0000 undef undef 0.0000 undef 0.0000
20	Prostata Uterus Brust-Hyperplasie	0.0000 0.0214 0.0050 0.0145	0.0000 0.0000 0.0085 0.0000	undef 0.0000 undef undef 2.5169 0.3973 undef 0.0000
25	Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0178 0.0089 0.0000		
30		FOETUS		
35		0.0062 0.0000 0.0039 0.0041 0.0148		
40	Niere Prostata Sinnesorgane			
45	Brust Eierstock-Uterus Endokrines_Gewebe Foetal	%Haeufigkeit 0.0000 0.0068 0.0000	BTRAHIERTE BI	3LIOTHEKEN
50	Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0244 0.0000		
55		0.0020 0.0256		

	0.0465	TUMOR %Haeufigkeit 0.0051	9.0924 0.1100	5
	0.0107	0.0458	0.2330 4.2922	
Eierstock		0.0078	0.3895 2.5671	
Endokrines_Gewebe Gastrointestinal		0.0082	0.6698 1.4930	
	0.0038	0.0048 0.0088	1.2214 0.8187	
Haematopoetisch		0.0000	0.4838 2.0669 undef 0.0000	10
-	0.0099	0.0000	undef 0.0000	
Hepatisch		0.0129	1.1477 0.8713	
<u>-</u>	0.0064	0.1649	0.0385 25.9489	
Hoden	0.0061	0.0117	0.5224 1.9144	
Lunge	0.0050	0.0047	1.0534 0.9493	15
Magen-Speiseroehre	0.0000	0.0230	0.0000 undef	
Muskel-Skelett	0.0514	0.0120	4.2826 0.2335	
Niere	0.0000	0.0000	undef undef	
Pankreas		0.0000	undef 0.0000	
	0.0090	0.0000	undef 0.0000	20
Prostata		0.0362	0.8554 1.1690	
	0.0116	0.0427	0.2708 3.6932	
Brust-Hyperplasie				
Duenndarm				
Prostata-Hyperplasie Samenblase				25
Sinnesorgane				
Weisse_Blutkoerperchen				
wersse_bidtkOelbeichen	0.0000			
				•
				30
	FOETUS			30
	FOETUS %Haeufigkeit			30
Entwicklung	%Haeufigkeit 0.0000			30
Gastrointenstinal	%Haeufigkeit 0.0000 0.0185			30
Gastrointenstinal Gehirn	%Haeufigkeit 0.0000 0.0185 0.0000			30
Gastrointenstinal Gehirn Haematopoetisch	%Haeufigkeit 0.0000 0.0185 0.0000 0.0000			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	%Haeufigkeit 0.0000 0.0185 0.0000 0.0000 0.0082			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	%Haeufigkeit 0.0000 0.0185 0.0000 0.0000 0.0082 0.0185			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	%Haeufigkeit 0.0000 0.0185 0.0000 0.0000 0.0082 0.0185 0.0000			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0185 0.0000 0.0000 0.0082 0.0185 0.0000 0.0000			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	%Haeufigkeit 0.0000 0.0185 0.0000 0.0000 0.0082 0.0185 0.0000 0.0000			35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0185 0.0000 0.0000 0.0082 0.0185 0.0000 0.0000			35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0185 0.0000 0.0000 0.0082 0.0185 0.0000 0.0000	TRAHIERTE BIB	LIOTHEKEN	35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	%Haeufigkeit 0.0000 0.0185 0.0000 0.0000 0.0082 0.0185 0.0000 0.0000 0.0140 NORMIERTE/SUB %Haeufigkeit	TRAHIERTE BIB	LIOTHEKEN	35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	%Haeufigkeit 0.0000 0.0185 0.0000 0.0000 0.0082 0.0185 0.0000 0.0000 0.0140 NORMIERTE/SUB %Haeufigkeit 0.1156	TRAHIERTE BIB	LIOTHEKEN	35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus	%Haeufigkeit 0.0000 0.0185 0.0000 0.0000 0.0082 0.0185 0.0000 0.0000 0.0140 NORMIERTE/SUB %Haeufigkeit 0.1156 0.0183	TRAHIERTE BIB	LIOTHEKEN	35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe	%Haeufigkeit 0.0000 0.0185 0.0000 0.0002 0.0082 0.0185 0.0000 0.0000 0.0140 NORMIERTE/SUB %Haeufigkeit 0.1156 0.0183 0.0245	TRAHIERTE BIB	LIOTHEKEN	35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal	%Haeufigkeit 0.0000 0.0185 0.0000 0.00082 0.0185 0.0000 0.0140 NORMIERTE/SUB %Haeufigkeit 0.1156 0.0183 0.0245 0.0041	TRAHIERTE BIB	LIOTHEKEN	35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	%Haeufigkeit 0.0000 0.0185 0.0000 0.00082 0.0185 0.0000 0.0140 NORMIERTE/SUB %Haeufigkeit 0.1156 0.0183 0.0245 0.0041 0.0122	TRAHIERTE BIB	LIOTHEKEN	35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	%Haeufigkeit 0.0000 0.0185 0.0000 0.00082 0.0185 0.0000 0.0000 0.0140 NORMIERTE/SUB %Haeufigkeit 0.1156 0.0183 0.0245 0.0041 0.0122	TRAHIERTE BIB	LIOTHEKEN	35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	%Haeufigkeit 0.0000 0.0185 0.0000 0.0002 0.0082 0.0185 0.0000 0.0140 NORMIERTE/SUB %Haeufigkeit 0.1156 0.0183 0.0245 0.0041 0.0122 0.0057 0.0065	TRAHIERTE BIB	LIOTHEKEN	35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	%Haeufigkeit 0.0000 0.0185 0.0000 0.0002 0.0082 0.0185 0.0000 0.0140 NORMIERTE/SUB %Haeufigkeit 0.1156 0.0183 0.0245 0.0041 0.0122 0.0057 0.0065 0.0000	TRAHIERTE BIB	LIOTHEKEN	35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	%Haeufigkeit 0.0000 0.0185 0.0000 0.00082 0.0185 0.0000 0.0000 0.0140 NORMIERTE/SUB %Haeufigkeit 0.1156 0.0183 0.0245 0.00183 0.0245 0.00122 0.0057 0.0065 0.0000	TRAHIERTE BIB	LIOTHEKEN	35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	%Haeufigkeit 0.0000 0.0185 0.0000 0.0002 0.0082 0.0185 0.0000 0.0140 NORMIERTE/SUB %Haeufigkeit 0.1156 0.0183 0.0245 0.0183 0.0245 0.0041 0.0122 0.0057 0.0065 0.0000 0.0000	TRAHIERTE BIB	LIOTHEKEN	35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	%Haeufigkeit 0.0000 0.0185 0.0000 0.0082 0.0185 0.0000 0.00140 NORMIERTE/SUB %Haeufigkeit 0.1156 0.0183 0.0245 0.0041 0.0122 0.0057 0.0065 0.0000 0.0000 0.0000	TRAHIERTE BIB	LIOTHEKEN	35 40 45

60

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	
5		0.0139	0.0179	0.7793 1.2831
		0.0133	0.0414	0.3219 3.1067
	Eierstock		0.0156	0.0000 undef
	Endokrines_Gewebe		0.0027	2.6791 0.3733
	Gastrointestinal		0.0048	1.2214 0.8187
10	Gehirn		0.0153	0.6082 1.6441
• •	Haematopoetisch		0.0000	undef 0.0000
	=	0.0199	0.0000	undef 0.0000
	Hepatisch		0.0129	0.3826 2.6139
		0.0085	0.0137	0.6166 1.6218
15		0.0061	0.0117	0.5224 1.9144
13		0.0237	0.0213	1.1120 0.8993
	Magen-Speiseroehre		0.0077	1.2599 0.7937
	Muskel-Skelett		0.0180	0.5710 1.7513
		0.0030	0.0479	0.0620 16.123
20	Pankreas		0.0221	0.1714 5.8337
20		0.0090	0.0533	0.1685 5.9360
	Prostata		0.0085	0.8390 1.1919
	Uterus		0.0214	0.2321 4.3088
	Brust-Hyperplasie	0.0182		
	Duenndarm			
25	Prostata-Hyperplasie	0.0000		
	Samenblase			
	Sinnesorgane	0.0000		
	Weisse_Blutkoerperchen	0.0331		
20				
30		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
	Gehirn			
35	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0000		
		0.0000		
	Prostata			
40	Sinnesorgane			
	52 555-54-15			
			BTRAHIERTE BI	BLIOTHEKEN
45	-	%Haeufigkeit		
43		0.0340		
	Eierstock-Uterus			
	Endokrines_Gewebe			
		0.0006		
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
		0.0000		
		0.0656		
		0.0030		
55	Prostata			
	Sinnesorgane	0.030/		

	0.0093 0.0160 0.0061 0.0091	TUMOR %Haeufigkeit 0.0026 0.0545 0.0078 0.0082 0.0000	Verhaeltnisse N/T T/N 3.6370 0.2750 0.2936 3.4065 0.7791 1.2836 1.1163 0.8958 undef 0.0000	5
Gehirn Haematopoetisch Haut Hepatisch Herz	0.0034 0.0014 0.0149 0.0000 0.0021	0.0000 0.0000 0.0000 0.0000 0.0275	undef 0.0000 undef 0.0000 undef 0.0000 undef undef 0.0771 12.9744	10
Lunge Magen-Speiseroehre Muskel-Skelett		0.0000 0.0000 0.0000 0.0000	undef 0.0000 undef 0.0000 undef undef undef 0.0000 undef 0.0000	15
Prostata Uterus	0.0120 0.0048 0.0066	0.0000 0.0000 0.0106 0.0000	undef 0.0000 undef 0.0000 0.4475 2.2349 undef 0.0000	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0000 0.0238 0.0000 0.0235			25
Weisse_Blutkoerperchen	FOETUS %Haeufigkeit			30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0031 0.0125 0.0039			35
	0.0000 0.0249			40
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000	TRAHIERTE BIB	LIOTHEKEN	45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000 0.0000			50
Nerven Prostata Sinnesorgane	0.0070 0.0128			55

65

5 10	Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch Herz Hoden	0.0186 0.0093 0.0122 0.0237 0.0271 0.0068 0.0084 0.0050 0.0198 0.0307 0.0122	TUMOR %Eaeufigkeit 0.0128 0.0283 0.0026 0.0136 0.0000 0.0120 0.0000 0.0000 0.0000 0.0005 0.0275 0.0234	1.4548 0.6874 0.3293 3.0366 4.6745 0.2139 1.7414 0.5742 undef 0.0000 0.5630 1.7762 undef 0.0000 undef 0.0000 3.0606 0.3267 1.1176 0.8948 0.5224 1.9144
15	Magen-Speiseroehre Muskel-Skelett	0.0086 0.0119	0.0047 0.0230 0.0180 0.0137 0.0166	2.6336 0.3797 1.2599 0.7937 0.4758 2.1015 0.8683 1.1517 0.2286 4.3753
20		0.0539	0.0000	undef 0.0000
	Prostata	0.0214	0.0341	0.6292 1.5892
	Uterus		0.0142	3.1331 0.3192
	Brust-Hyperplasie			
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0104		
30		•		
30		FOETUS		
		%Haeufigkeit		
	Entwicklung	-		
	Gastrointenstinal			
35	Gehirn			
	Haematopoetisch	0.0039		
	Herz-Blutgefaesse			
	-	0.0370		
	niere Prostata	0.0062		
40	Sinnesorgane			
	Simesorgane	0.0000		
		NORMIERTE/SUE	STRAHIERTE BIE	BLIOTHEKEN
		%Haeufigkeit		
45		0.0204		
	Eierstock-Uterus			
	Endokrines_Gewebe			
	Foetal			•
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel	0.0000		
		0.0082		
	Nerven			
	Prostata			
55	Sinnesorgane			
	= 3 +			

Brust Eierstock	0.0000 0.0080 0.0061	TUMOR %Haeufigkeit 0.0077 0.0261 0.0234	0.0000 undef 0.3058 3.2702 0.2597 3.8507	:	5
Hepatisch	0.0078 0.0076 0.0182 0.0000 0.0000	0.0163 0.0048 0.0077 0.0000 0.0000 0.0388	0.4465 2.2395 1.6285 0.6141 0.9953 1.0047 undef 0.0000 undef undef 0.0000 undef	14	υ
Hoden Lunge Magen-Speiseroehre	0.0042 0.0061 0.0125 0.0097	0.0000 0.0000 0.0165 0.0153	undef 0.0000 undef 0.0000 0.7524 1.3290 0.6300 1.5874	1.	5
Pankreas Penis Prostata Uterus	0.0149 0.0019 0.0090 0.0524 0.0066	0.0000 0.0137 0.0055 0.0267 0.0341 0.0000	undef 0.0000 1.0854 0.9213 0.3428 2.9168 0.3369 2.9680 1.5381 0.6501 undef 0.0000	2	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0062 0.0386 0.0000 0.0235			2	25
Weisse_Blutkoerperchen	O.0113 FOETUS %Haeufigkeit			3	30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0092 0.0000 0.0000 0.0041			3	35
				4	40
Eierstock-Uterus Endokrines_Gewebe	%Haeufigkeit 0.0000 0.0183 0.0000	BTRAHIERTE BIF	BLIOTHEKEN	4	45
Gastrointestinal Haematopoetisch Haut-Muskel	0.0285			5	50
Lunge	0.0246 0.0020				55

5	Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch	0.0093 0.0027 0.0000 0.0055 0.0058 0.0076 0.0084 0.0000	TUMOR %Haeufigkeit 0.0102 0.0196 0.0234 0.0381 0.0143 0.0066 0.0000 0.0000	0.9092 1.0998 0.1359 7.3580 0.0000 undef 0.1435 6.9675 0.4071 2.4562 1.1612 0.8612 undef 0.0000 undef undef undef
15	Hoden	0.0122 0.0100 0.0000	0.0000 0.0000 0.0165 0.0153 0.0060	undef 0.0000 undef 0.0000 0.6020 1.6612 0.0000 undef 0.2855 3.5025
20	Pankreas	0.0120 0.0095	0.0137 0.0000 0.0000 0.0128 0.0142	0.8683 1.1517 undef 0.0000 undef 0.0000 0.7458 1.3409 0.4642 2.1544
25	Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0036 0.0187 0.0089 0.0356 0.0118	0.0142	0.4042 2.1344
20	Weisse_Blutkoerperchen	0.0052		
30		FOETUS		
35		0.0123 0.0188 0.0118		
40	Prostata Sinnesorgane	0.0000		
	Simesorgane	NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN
45	Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000 0.0068 0.0000 0.0064		
50	Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	0.0057 0.0130 0.0312 0.0164		
55	Prostata Sinnesorgane			

Brust Eierstock Endokrines_Gewebe Gastrointestinal	0.0046 0.0040 0.0030 0.0018 0.0271 0.0000	TUMOR %Haeufigkeit 0.0077 0.0240 0.0130 0.0000 0.0095 0.0000 0.0000	Verhaeltnisse N/T T/N 0.6062 1.6497 0.1668 5.9954 0.2337 4.2786 undef 0.0000 2.8499 0.3509 undef undef undef 0.0000	5
Haut Hepatisch Herz Hoden	0.0448 0.0000 0.0000 0.0000 0.0087	0.0000 0.0000 0.0000 0.0234 0.0071 0.0230	undef 0.0000 undef undef undef undef 0.0000 undef 1.2290 0.8137 3.7798 0.2646	15
Pankreas Penis Prostata Uterus	0.0000 0.0000 0.0180 0.0048 0.0116	0.0000 0.0000 0.0000 0.0533 0.0021 0.0000	undef undef undef undef undef undef 0.3369 2.9680 2.2373 0.4470 undef 0.0000	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0125 0.0000 0.0089 0.0118			25
	FOETUS %Haeufigkeit			30
-	0.0000 0.0000 0.0039			35
Prostata Sinnesorgane	0.0000			40
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000	TRAHIERTE BIB	LIOTHEKEN	45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000 0.0057 0.0000 0.0000			50
Lunge Nerven Prostata Sinnesorgane	0.0000			55

65

5 10 15 20	Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch Herz Hoden Lunge Magen-Speiseroehre Muskel-Skelett Niere	0.0182 0.0019 0.0051 0.0028 0.0000 0.0050 0.0085 0.0000 0.0100 0.0097 0.0188 0.0030 0.0000 0.0090 0.0191 0.0116 0.0036 0.0062 0.00208 0.0089	TUMOR %Haeufigkeit 0.0077 0.0196 0.0208 0.0109 0.0000 0.0099 0.0000 0.0065 0.0000 0.0117 0.0071 0.0000 0.0060 0.0060 0.00055 0.0533 0.0106 0.0071	Verhaeltnisse N/T T/N 0.0000 undef 0.1359 7.3580 0.1461 6.8457 1.6745 0.5972 undef 0.0000 0.5161 1.9377 undef 0.0000 undef undef 0.7651 1.3069 undef 0.0000 0.0000 undef 1.4046 0.7120 undef 0.0000 3.1406 0.3184 undef 0.0000 0.0000 undef 0.1685 5.9360 1.7898 0.5587 1.6246 0.6155
	Weisse_Blutkoerperchen	0.0044		
30		FOETUS		
35		%Haeufigkeit 0.0154 0.0062 0.0000 0.0118 0.0245 0.0074 0.0000 0.0000		
45	Eierstock-Uterus Endokrines_Gewebe Foetal	%Haeufigkeit 0.0136 0.0000 0.0000 0.0082	BTRAHIERTE BI	BLIOTHEKEN
50		0.0122 0.0456 0.0097 0.0078 0.0164 0.0050		
55	Prostata Sinnesorgane			
60				

Brust Eierstock	0.0000 0.0120 0.0608	TUMOR %Haeufigkeit 0.0000 0.0763 0.0234	Verhaeltnisse N/T T/N undef undef 0.1573 6.3588 2.5969 0.3851		5
Haematopoetisch Haut Hepatisch	0.0872 0.0017 0.0014 0.0000	0.0245 0.1000 0.0000 0.0000 0.0000 0.0388 0.0000	0.2977 3.3593 0.8724 1.1462 undef 0.0000 undef 0.0000 undef undef 0.3826 2.6139 undef 0.0000	1	10
Hoden	0.0000 0.0050 0.0000	0.0000 0.0355 0.0230 0.0000	undef undef 0.1405 7.1196 0.0000 undef undef undef	1	15
Niere Pankreas Penis Prostata	0.0000 0.0000 0.0000	0.0000 0.0166 0.0000 0.0958 0.0214	undef undef 0.0000 undef undef undef 0.1243 8.0455 0.0774 12.9263	2	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0436 0.0119 0.0089 0.0470			2	25
Entwicklung	FOETUS %Haeufigkeit			3	30
•	0.0000 0.0000 0.0000 0.0000			3	35
Niere Prostata Sinnesorgane				4	40
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000	TRAHIERTE BIB	LIOTHEKEN	4	45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0366 0.0000 0.0000 0.0000 0.0000		·	s	50
Nerven Prostata Sinnesorgane	0.0000 0.0321			5	55

60

		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	N/T T/N
5	Blase	0.0000	0.0051	0.0000 undef
٠,	Brust	0.0040	0.0240	0.1668 5.9954
	Eierstock		0.0078	2.3372 0.4279
	Endokrines_Gewebe	0.0164	0.0245	0.6698 1.4930
	Gastrointestinal	0.0213	0.0190	1.1196 0.8932
10	Gehirn		0.0186	0.7741 1.2918
10	Haematopoetisch	0.0056	0.0000	undef 0.0000
		0.0000	0.0000	undef undef
	Hepatisch	0.0248	0.0065	3.8257 0.2614
		0.0138	0.0000	undef 0.0000
1.5		0.0428	0.0000	undef 0.0000
15		0.0199	0.0165	1.2039 0.8306
	Magen-Speiseroehre		0.0230	0.4200 2.3811
	Muskel-Skelett		0.0000	undef 0.0000
		0.0119	0.0137	0.8683 1.1517
	Pankreas		0.0000	undef 0.0000
20		0.0150	0.0000	undef 0.0000
	Prostata		0.0192	0.6215 1.6091
	Uterus		0.0142	0.9283 1.0772
	Brust-Hyperplasie	0.0254		
	Duenndarm			
25	Prostata-Hyperplasie	0.0238		
	Samenblase			
	Sinnesorgane	0.0116		
	Weisse_Blutkoerperchen	0.0044		
30				
30		FOETUS		
		%Haeufigkeit		
	Entwicklung	0.0000		
	Gastrointenstinal	0.0062		
35	Gehirn			
33	Haematopoetisch			
	Herz-Blutgefaesse	0.0000		
		0.0111		
		0.0185		
40	Prostata			
40	Sinnesorgane	0.0140		
			STRAHIERTE BIE	BLIOTHEKEN
		%Haeufigkeit		
45	Brust	0.0000		
	Eierstock-Uterus			
	Endokrines_Gewebe			
	Foetal			
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
		0.0000		
		0.0000		
	Nerven			
55	Prostata			
	Sinnesorgane	0.0000		

Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn	0.0000 0.0067 0.0000 0.0018 0.0039 0.0017	TUMOR %Haeufigkeit 0.0026 0.0261 0.0000 0.0000 0.0048 0.0022	0.0000 undef 0.2548 3.9243 undef undef undef 0.0000 0.8143 1.2281 0.7741 1.2918	5
Hepatisch Herz Hoden	0.0050	0.0000 0.0000 0.0065 0.0137 0.0000 0.0024	undef 0.0000 undef 0.0000 0.0000 undef 0.3083 3.2436 undef undef 1.5801 0.6329	15
Magen-Speiseroehre Muskel-Skelett Niere Pankreas	0.0000 0.0034 0.0030 0.0000 0.0060		undef undef undef 0.0000 0.2171 4.6066 0.0000 undef undef 0.0000	20
Prostata Uterus Brust-Hyperplasie Duenndarm	0.0017 0.0073	0.0000 0.0000	undef 0.0000 undef 0.0000	
Prostata-Hyperplasie Samenblase Sinnesorgane Weisse Blutkoerperchen	0.0000 0.0000 0.0000			25
Entwicklung	FOETUS %Haeufigkeit			30
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0000 0.0000 0.0039			35
	0.0000 0.0000			40
	NORMIERTE/SUB %Haeufigkeit	TRAHIERTE BIB	LIOTHEKEN	
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000			45
Gastrointestinal Haematopoetisch Haut-Muskel	0.0000 0.0228 0.0000 0.0000			50
Nerven Prostata Sinnesorgane	0.0000 0.0064			55

60

		NORMAL %Haeufigkeit	TUMOR %Haeufigkeit	Verhaeltnisse N/T T/N
5	Blase	0.0046	0.0051	0.9092 1.0998
3	Brust	0.0093	0.0218	0.4281 2.3359
	Eierstock	0.0061	0.0078	0.7791 1.2836
	Endokrines Gewebe	0.0055	0.0000	undef 0.0000
	Gastrointestinal		0.0000	undef 0.0000
	Gehirn	0.0059	0.0033	1.8062 0.5536
10	Haematopoetisch	0.0126	0.0000	undef 0.0000
		0.0050	0.0847	0.0587 17.0262
	Hepatisch	0.0050	0.0000	undef 0.0000
	Herz	0.0138	0.0137	1.0020 0.9980
		0.0061	0.0000	undef 0.0000
15	Lunge	0.0112	0.0024	4.7404 0.2110
	Magen-Speiseroehre	0.0097	0.0537	0.1800 5.5559
	Muskel-Skelett	0.0086	0.0180	0.4758 2.1015
	Niere	0.0119	0.0274	0.4342 2.3033
	Pankreas		0.0000	undef 0.0000
20		0.0030	0.0267	0.1123 8.9040
	Prostata		0.0043	3.3559 0.2980
	Uterus		0.0071	0.4642 2.1544
	Brust-Hyperplasie	0.0036		
	Duenndarm			
25	Prostata-Hyperplasie			
		0.0089		
	Sinnesorgane	0.0000		
	Weisse_Blutkoerperchen	0.0070		•
30		POPULIC		
		FOETUS %Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
	Gastrollitenstrial			
35	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0037		
		0.0000		
	Prostata	0.0000		
40	Sinnesorgane	0.0000		
				D. TOWNERS
			BTRAHIERTE BI	BLIOTHEKEN
4.5		%Haeufigkeit		
45		0.0000		
	Eierstock-Uterus			
	Endokrines_Gewebe	0.0000		
	Foetal Gastrointestinal	0.0029		
	Haematopoetisch	0.0000		
50	Haut-Muskel			
		0.0000		
		0.0000		
		0.0020		
	Prostata			
55	Sinnesorgane			
	<u> </u>			

	0.0000 0.0040 0.0030	TUMOR %Haeufigkeit 0.0077 0.0131 0.0000 0.0000	Verhaeltnisse N/T T/N 0.0000 undef 0.3058 3.2702 undef 0.0000 undef 0.0000	5
Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch Herz	0.0136 0.0059 0.0056 0.0597 0.0000 0.0064	0.0048 0.0099 0.0000 0.0000 0.0065 0.0137	2.8499 0.3509 0.6021 1.6609 undef 0.0000 undef 0.0000 0.0000 undef 0.4624 2.1624	10
Lunge Magen-Speiseroehre Muskel-Skelett		0.0351 0.0095 0.0230 0.0060 0.0068	0.0000 undef 0.1317 7.5943 0.8399 1.1905 1.1420 0.8756 0.8683 1.1517	15
Pankreas Penis Prostata	0.0038 0.0000	0.0000 0.0000 0.0213 0.0000	undef 0.0000 undef undef 0.6712 1.4899 undef 0.0000	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase	0.0093 0.0089 0.0178			25
Sinnesorgane Weisse_Blutkoerperchen				30
Entwicklung Gastrointenstinal Gehirn	%Haeufigkeit 0.0154 0.0031			
Haematopoetisch Herz-Blutgefaesse Lunge	0.0000 0.0245 0.0037			35
Niere Prostata Sinnesorgane				40
Brust	NORMIERTE/SUB %Haeufigkeit 0.0136	TRAHIERTE BIB	LIOTHEKEN	45
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	0.0000 0.0222			
Haematopoetisch Haut-Muskel Hoden	0.0000			50
Nerven Prostata Sinnesorgane	0.0030 0.0064			55

			•	
		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	
	* 7			0.4546 2.1996
5		0.0046	0.0102	
		0.0027	0.0174	0.1529 6.5404
	Eierstock		0.0234	0.6492 1.5403
	Endokrines_Gewebe	0.0146	0.0327	0.4465 2.2395
	Gastrointestinal	0.0291	0.0095	3.0535 0.3275
	Gehirn		0.0252	0.8078 1.2380
10	Haematopoetisch		0.0000	undef 0.0000
	naematopoetisch	0.0149	0.0000	undef 0.0000
		0.0137	0.0113	1.1588 0.8630
	Magen-Speiseroehre	0.0097	0.0153	0.6300 1.5874
	Muskel-Skelett	0.0206	0.0060	3.4261 0.2919
15	Niere	0.0327	0.0411	0.7960 1.2563
	Pankreas	0.0114	0.0221	0.5143 1.9446
		0.0329	0.0000	undef 0.0000
	Prostata		0.0234	1.2203 0.8195
				2.3208 0.4309
	Uterus		0.0071	2.3206 0.4309
20	Brust-Hyperplasie	0.0145		
	Duenndarm	0.0187		
	Prostata-Hyperplasie	0.0119		
	Samenblase	0.0178		
	Sinnesorgane			
25	Simesorgane	0.0000		
23	Weisse_Blutkoerperchen	0.0122		
		FOETUS		
		%Haeufigkeit		
30	Entwicklung	0.0000		
	Gastrointenstinal			
	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse	0.0369		
35		0.0111		
		0.0124		
	Prostata			
	Sinnesorgane	0.0000		
40		NORMIERTE/SU	BTRAHIERTE BI	BLIOTHEKEN
		%Haeufigkeit		
	Brust	0.0000		
	Eierstock-Uterus			
	Endokrines_Gewebe			
45				
45		0.0035		
	Gastrointestinal			
	Haematopoetisch			
	Haut-Muskel	0.0000		
		0.0156		
50	Lunge	0.0246		
50		0.0090		
	Prostata			
	Sinnesorgane			
	Simosorgane			
55				
60				

Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch	0.0000 0.0040 0.0000 0.0036 0.0039 0.0102 0.0084	TUMOR %Haeufigkeit 0.0051 0.0131 0.0052 0.0027 0.0048 0.0077 0.0000	0.0000 undef 0.3058 3.2702 0.0000 undef 1.3396 0.7465 0.8143 1.2281 1.3270 0.7536 undef 0.0000	5
Hepatisch Herz Hoden	0.0000 0.0000 0.0012 0.0000	0.0000 0.0000 0.0137 0.0000 0.0047 0.0000 0.0240	undef undef undef undef 0.0000 undef undef undef 0.2634 3.7971 undef undef 0.1428 7.0051	15
Pankreas	0.0030 0.0000 0.0017	0.0068 0.0000 0.0267 0.0064 0.0071	0.8683 1.1517 undef undef 0.1123 8.9040 0.0000 undef 0.2321 4.3088	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0062 0.0059 0.0000 0.0118			25
Entwicklung	FOETUS %Haeufigkeit 0.0000			30
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0031 0.0000 0.0000			35
Niere Prostata Sinnesorgane				40
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000	TRAHIERTE BIB	LIOTHEKEN	45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0000 0.0000 0.0000 0.0000			50
Nerven Prostata Sinnesorgane	0.0000			55

60

			TUMOR %Haeufigkeit	
5		0.0186	0.0102	1.8185 0.5499
		0.0053	0.0131	0.4077 2.4527
	Eierstock		0.0182	0.5008 1.9967 0.5023 1.9907
	Endokrines_Gewebe Gastrointestinal	0.0055	0.0109 0.0143	0.6786 1.4737
	Gastrointestinai Gehirn		0.0044	0.3871 2.5836
10	Haematopoetisch		0.0378	0.3327 3.0061
		0.0348	0.0000	undef 0.0000
	Hepatisch		0.0000	undef 0.0000
		0.0148	0.0000	undef 0.0000
	Hoden	0.0061	0.0000	undef 0.0000
15		0.0050	0.0142	0.3511 2.8478
	Magen-Speiseroehre	0.0097	0.0153	0.6300 1.5874
	Muskel-Skelett		0.0060	1.7130 0.5838
		0.0119	0.0479	0.2481 4.0308
20	Pankreas		0.0442	0.0857 11.6673
20		0.0060	0.0000	undef 0.0000
	Prostata		0.0149 0.0142	0.9588 1.0429 0.2321 4.3088
	Uterus Brust-Hyperplasie		0.0142	0.2321 4.3086
	Duenndarm	0.0073		
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane	0.0000		
	Weisse_Blutkoerperchen	0.0131		
30		DORMUG		
		FOETUS %Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
	Gehirn			
35	Haematopoetisch			
	Herz-Blutgefaesse	0.0082		
		0.0037		
		0.0062		
40	Prostata			
40	Sinnesorgane	0.0000		•
		NORMIERTE/SU	BTRAHIERTE BI	BLIOTHEKEN
		%Haeufigkeit		
45		0.0068		
	Eierstock-Uterus	0.0228		
	Endokrines_Gewebe	0.0000		
		0.0216		
	Gastrointestinal Haematopoetisch	0.0000		
50	Haut-Muskel			
		0.0000		
		0.0000		
	Nerven	0.0050		
55	Prostata			
,,	Sinnesorgane	0.0000		
60				

	0.0093 0.0067 0.0000	TUMOR %Haeufigkeit 0.0077 0.0131 0.0000 0.0000	Verhaeltnisse N/T T/N 1.2123 0.8249 0.5096 1.9621 undef undef undef 0.0000	5
Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch	0.0019 0.0042 0.0028 0.0050	0.0000 0.0175 0.0000 0.0000 0.0000 0.0412	undef 0.0000 0.2419 4.1338 undef 0.0000 undef 0.0000 undef undef 0.1541 6.4872	10
Hoden	0.0061 0.0062 0.0000	0.0000 0.0000 0.0153 0.0120	undef 0.0000 undef 0.0000 0.0000 undef 0.1428 7.0051	15
Niere Pankreas Penis Prostata	0.0089 0.0038 0.0000 0.0095 0.0033	0.0000 0.0000 0.0267 0.0021 0.0142	undef 0.0000 undef 0.0000 0.0000 undef 4.4745 0.2235 0.2321 4.3088	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0000 0.0030 0.0000 0.0000			25
Weisse_Blutkoerperchen	FOETUS %Haeufigkeit			30
_	0.0062 0.0250 0.0197			35
Prostata Sinnesorgane	0.0249			40
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000	TRAHIERTE BIB	LIOTHEKEN	45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0244 0.0000 0.0000 0.0000			50
Lunge Nerven Prostata Sinnesorgane	0.0064			55

60

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	
5		0.0000	0.0000	undef undef
		0.0080	0.0174	0.4587 2.1801
	Eierstock Endokrines Gewebe		0.0000	undef undef 2.0093 0.4977
	Gastrointestinal		0.0027	0.2036 4.9124
		0.0019	0.0095 0.0110	0.3096 3.2295
10	Haematopoetisch		0.0000	undef undef
	_	0.0099	0.0000	undef 0.0000
	Hepatisch		0.0194	0.0000 undef
		0.0053	0.0137	0.3854 2.5949
		0.0000	0.0000	undef undef
15		0.0037	0.0024	1.5801 0.6329
	Magen-Speiseroehre		0.0000	undef undef
	Muskel-Skelett		0.0060	0.5710 1.7513
		0.0000	0.0000	undef undef
	Pankreas		0.0221	0.0857 11.6673
20	Penis	0.0060 `	0.0000	undef 0.0000
	Prostata	0.0024	0.0043	0.5593 1.7879
	Uterus		0.0285	0.1741 5.7450
	Brust-Hyperplasie	0.0182		
	Duenndarm	0.0000		
25	Prostata-Hyperplasie	0.0059		
	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0000		
30		EOEMITE.		
		FOETUS %Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
	Gehirn			
35	Haematopoetisch			
	Herz-Blutgefaesse	0.0000		
		0.0037		
	Niere	0.0000		
	Prostata	0.1247		
40	Sinnesorgane	0.0000		
		NORMIERTE/SUE	STRAHIERTE BIE	SLIOTHEKEN
45	Brust	%Haeufigkeit 0.0068		
43	Eierstock-Uterus			
	Endokrines_Gewebe			
	Foetal			
	Gastrointestinal			
50	Haematopoetisch			
50	Haut-Muskel			
		0.0078		
		0.0082		
	Nerven	0.0010		
55	Prostata			
55	Sinnesorgane	0.0000		

32

60

	0.0000	TUMOR %Haeufigkeit 0.0102	Verhaeltnisse N/T T/N 0.0000 undef	5
	0.0013	0.0109	0.1223 8.1755	-
Eierstock		0.0052	0.5843 1.7114	
Endokrines_Gewebe Gastrointestinal		0.0082	0.4465 2.2395	
		0.0000	undef 0.0000	
Haematopoetisch	0.0025	0.0307	0.0829 12.0569	10
-	0.0140	0.0000	undef 0.0000	
Hepatisch		0.0000 0.0000	undef 0.0000	
-	0.0000	0.0000	undef 0.0000	
	0.0000	0.0234	undef undef 0.0000 undef	
	0.0037	0.0000	undef 0.0000	15
Magen-Speiseroehre		0.0000	undef undef	
Muskel-Skelett		0.0060	0.8565 1.1675	
	0.0000	0.0205	0.0000 undef	
Pankreas		0.0000	undef 0.0000	
		0.0000	undef undef	20
Prostata		0.0043	1.6779 0.5960	
Uterus			undef 0.0000	
Brust-Hyperplasie				
Duenndarm	0.0062			
Prostata-Hyperplasie	0.0059			25
Samenblase				
Sinnesorgane				
Weisse_Blutkoerperchen	0.0226			
	FOETUS			30
	%Haeufigkeit			
Entwicklung				
Gastrointenstinal				
Gehirn				
Haematopoetisch				35
Herz-Blutgefaesse				
Lunge	0.0000			
Niere	0.0000			
Prostata	0.0000			
Sinnesorgane	0.0000			40
	NODMIEDEE / CORD			
	NORMIERTE/SUB1 %Haeufigkeit	RAHIERTE BIBI	TOTHEKEN	
Brust				45
Eierstock-Uterus				45
Endokrines_Gewebe				
Foetal				
Gastrointestinal				
Haematopoetisch				50
Haut-Muskel				50
Hoden	0.000			
Lunge	0.0164			
Nerven				
Prostata				55
Sinnesorgane	0.0000			55

60

		NORMAL	TUMOR	Verhaeltnisse
			%Haeufigkeit	
5		0.0186	0.0153	1.2123 0.8249
		0.0133	0.0436	0.3058 3.2702
	Eierstock		0.0130	1.4023 0.7131
	Endokrines_Gewebe		0.0191	0.3827 2.6128
	Gastrointestinal		0.0095	2.0357 0.4912
10	Gehirn		0.0449	0.5287 1.8916
	Haematopoetisch	0.0098	0.0000	undef 0.0000
		0.0099	0.0000	undef 0.0000 0.7651 1.3069
	Hepatisch	0.0050	0.0065 0.0550	0.4624 2.1624
		0.0234	0.0000	undef 0.0000
15		0.0244	0.0165	1.3544 0.7383
	Magen-Speiseroehre		0.0307	0.0000 undef
	Muskel-Skelett		0.0180	0.4758 2.1015
		0.0208	0.0205	1.0130 0.9871
	Pankreas		0.0387	0.2939 3.4030
20		0.0120	0.0267	0.4492 2.2260
	Prostata		0.0128	1.6779 0.5960
	Uterus		0.0142	0.4642 2.1544
	Brust-Hyperplasie		0.0112	01.10.12 21.10.1
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen			
				
30				
		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
35	Gehirn			
	Haematopoetisch			
	Herz-Blutgefaesse	0.0164		
	-	0.0247		
	Prostata			
40	Sinnesorgane			
	bimeoorgane	0.250.		
		NORMIERTE/SUB	STRAHIERTE BIE	BLIOTHEKEN
		%Haeufigkeit		
45		0.0544		
	Eierstock-Uterus			
	Endokrines_Gewebe			
	Foetal			
	Gastrointestinal	0.0610		
50	Haematopoetisch			
	Haut-Muskel	0.1328		
		0.0082		
	Nerven			
	Prostata			
55	Sinnesorgane			
	31m.0301guile			

	NORMAL	TUMOR	Verhaeltnisse	
Blase	0.0046	%Haeufigkeit 0.0026	N/T T/N 1.8185 0.5499	
	0.0040	0.0109	0.2446 4.0878	5
Eierstock		0.0078	0.0000 undef	•
Endokrines_Gewebe		0.0054	0.3349 2.9861	
Gastrointestinal		0.0048	1.6285 0.6141	
	0.0263	0.0110	2.3997 0.4167	
Haematopoetisch	0.0042	0.0000	undef 0.0000	10
	0.0050	0.0000	undef 0.0000	
Hepatisch		0.0000	undef 0.0000	
Herz	0.0064	0.0275	0.2312 4.3248	
	0.0000	0.0117	0.0000 undef	
Lunge	0.0112	0.0047	2.3702 0.4219	15
Magen-Speiseroehre	0.0000	0.0000	undef undef	
Muskel-Skelett	0.0051	0.0060	0.8565 1.1675	
	0.0089	0.0000	undef 0.0000	
Pankreas		0.0000	undef 0.0000	
	0.0150	0.0000	undef 0.0000	20
Prostata		0.0064	0.7458 1.3409	
	0.0000	0.0000	undef undef	
Brust-Hyperplasie				
Duenndarm				
Prostata-Hyperplasie				25
Samenblase				
Sinnesorgane				
Weisse_Blutkoerperchen	0.0044			
				30
	FOETUS			30
	%Haeufigkeit			30
Entwicklung	%Haeufigkeit 0.0000			30
Gastrointenstinal	%Haeufigkeit 0.0000 0.0031			30
Gastrointenstinal Gehirn	%Haeufigkeit 0.0000 0.0031 0.0063			30
Gastrointenstinal Gehirn Haematopoetisch	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000 0.0000			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000 0.0000 0.0000			
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000 0.0000 0.0000			35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000 0.0000 0.0000 0.0249 0.0000			35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000 0.0000 0.0000 0.0249 0.0000	TRAHIERTE BIB	liotheken	35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000 0.0000 0.0000 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit	TRAHIERTE BIB	LIOTHEKEN	35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000 0.0000 0.0000 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136	TRAHIERTE BIB	LIOTHEKEN	35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000 0.0000 0.0000 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0091	TRAHIERTE BIB	LIOTHEKEN	35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000 0.0000 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0091 0.0000	TRAHIERTE BIB	LIOTHEKEN	35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000 0.0000 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0091 0.0000 0.0047	TRAHIERTE BIB	LIOTHEKEN	35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000 0.0000 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0091 0.0000 0.0047 0.0000	TRAHIERTE BIB	LIOTHEKEN	35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000 0.0000 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0091 0.0000 0.0047 0.0000 0.0000	TRAHIERTE BIB	LIOTHEKEN	35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000 0.0000 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0091 0.0000 0.0047 0.0000 0.0000	TRAHIERTE BIB	LIOTHEKEN	35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000 0.0000 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0091 0.0000 0.0047 0.0000 0.0000 0.00227	TRAHIERTE BIB	LIOTHEKEN	35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000 0.0000 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0091 0.0000 0.0047 0.0000 0.00227 0.0000 0.0227	TRAHIERTE BIB	LIOTHEKEN	35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven Prostata	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000 0.0000 0.0000 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0091 0.0000 0.0047 0.0000 0.0047 0.0000 0.0027 0.0000 0.0227 0.0000 0.0227	TRAHIERTE BIB	LIOTHEKEN	35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	%Haeufigkeit 0.0000 0.0031 0.0063 0.0079 0.0000 0.0000 0.0000 0.0249 0.0000 NORMIERTE/SUB %Haeufigkeit 0.0136 0.0091 0.0000 0.0047 0.0000 0.0047 0.0000 0.0027 0.0000 0.0227 0.0000 0.0227	TRAHIERTE BIB	LIOTHEKEN	35 40 45

60

		MODMAT	TUMOR	Verhaeltnisse	
		NORMAL %Haeufigkeit			T/N
	Blace	0.0139	0.0230	0.6062	1.6497
5		0.0013	0.0131	0.1019	9.8107
	Eierstock		0.0078	0.7791	1.2836
	Endokrines Gewebe		0.0027	4.6885	0.2133
	Gastrointestinal		0.0048	3.6642	0.2729
	Gehirn		0.0142	0.5955	1.6794
10	Haematopoetisch		0.0000	undef	0.0000
		0.0249	0.0000	undef	0.0000
	Hepatisch		0.0259	0.0000	undef
		0.0159	0.0137	1.1561	0.8650
	===	0.0000	0.0000	undef	undef
15	Lunge	0.0224	0.0260	0.8619	1.1602
	Magen-Speiseroehre		0.0000	undef	0.0000
	Muskel-Skelett	0.0154	0.0060	2.5696	0.3892
		0.0149	0.0137	1.0854	0.9213
	Pankreas		0.0110	0.3428	2.9168
20		0.0120	0.0267	0.4492	2.2260
	Prostata		0.0255	0.7458	1.3409
	Uterus		0.0071	1.8567	0.5386
	Brust-Hyperplasie				
	Duenndarm	0.0093			
25	Prostata-Hyperplasie				
	Samenblase				
	Sinnesorgane				
	Weisse Blutkoerperchen				
30					
		FOETUS			
		%Haeufigkeit			
	Entwicklung				
	Gastrointenstinal				
35	Gehirn				
20	Haematopoetisch				
	Herz-Blutgefaesse				
		0.0037			
		0.0124			
40	Prostata				
40	Sinnesorgane	0.0000			
		NORMIERTE/SUI	BTRAHIERTE BIE	BLIOTHEKEN	
		%Haeufigkeit			
45	Brust	0.0204			
	Eierstock-Uterus	0.0091			
	Endokrines_Gewebe				
	Foetal	0.0070	· ~		
	Gastrointestinal				
50	Haematopoetisch				
	Haut-Muskel				
		0.0000			
	Lunge	0.0164			
•		0.0010			
55	Prostata	0.0128			
JJ	Sinnesorgane	0.0155			

36

60

	NORMAL %Haeufigkeit 0.0139 0.0013	TUMOR %Haeufigkeit 0.0000 0.0109	undef 0.0000		5
Eierstock		0.0109	0.1223 8.1755 1.1686 0.8557		
Endokrines Gewebe		0.0082	1.5628 0.6399		
Gastrointestinal		0.0095	1.0178 0.9825		
Gehirn	0.0068	0.0066	1.0321 0.9689		
Haematopoetisch	0.0028	0.0000	undef 0.0000	1	10
Haut	0.0099	0.0000	undef 0.0000		
Hepatisch	0.0248	0.0000	undef 0.0000		
	0.0053	0.0000	undef 0.0000		
	0.0000	0.0000	undef undef	•	15
	0.0037	0.0095	0.3950 2.5314		13
Magen-Speiseroehre		0.0153	0.0000 undef		
Muskel-Skelett		0.0060	1.1420 0.8756		
		0.0068	2.1708 0.4607		
Pankreas		0.0055	1.0285 0.9723	,	20
	0.0120	0.0000	undef 0.0000	•	20
Prostata Uterus		0.0064 0.0071	0.7458 1.3409		
Brust-Hyperplasie		0.0071	0.2321 4.3088		
Duenndarm					
Prostata-Hyperplasie				,	25
Samenblase				-	
Sinnesorgane					
Weisse Blutkoerperchen					
				3	30
	FOETUS				
	%Haeufigkeit				
Entwicklung					
Gastrointenstinal					
Gehirn				3	35
Haematopoetisch					
Herz-Blutgefaesse					
	0.0074 0.0000				
Prostata					
Sinnesorgane				4	40
Dimesorgane	0.0000				
	NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN		
	%Haeufigkeit				
	0.0068			4	45
_Eierstock-Uterus					
Endokrines_Gewebe					
Foetal					
Gastrointestinal Haematopoetisch					
	0.0057			:	50
	n n453				
- Haut-Muskel Hoden					
Hoden	0.0078				
Hoden	0.0078 0.0000				
Hoden Lunge	0.0078 0.0000 0.0100				<i></i>
Hoden Lunge Nerven	0.0078 0.0000 0.0100 0.0128				55
Hoden Lunge Nerven Prostata	0.0078 0.0000 0.0100 0.0128			•	55

37

60

5 10	Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch Herz Hoden	0.0000 0.0019 0.0051 0.0042 0.0000	TUMOR %Haeufigkeit 0.0026 0.0109 0.0000 0.0027 0.0000 0.0011 0.0000 0.0000 0.0065 0.0000 0.0000	Verhaeltnisse N/T T/N 0.0000 undef 0.1223 8.1755 undef undef 0.0000 undef undef 0.0000 4.6446 0.2153 undef 0.0000 undef undef 0.0000 undef undef undef undef undef undef undef
	Pankreas	0.0034 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	undef undef undef 0.0000 undef undef undef undef
20	Penis Prostata Uterus Brust-Hyperplasie Duenndarm	0.0000 0.0000	0.0000 0.0021 0.0000	undef undef 2.2373 0.4470 undef undef
25	Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0059 0.0000 0.0000		
30		FOETUS %Haeufigkeit		
35		0.0000 0.0031 0.0125 0.0000		
40	Prostata Sinnesorgane	0.0000		
45	Eierstock-Uterus Endokrines_Gewebe	%Haeufigkeit 0.0000 0.0114 0.0000	STRAHIERTE BIE	BLIOTHEKEN
50		0.0122 0.0000 0.0000 0.0000		
55	Lunge Nerven Prostata Sinnesorgane	0.0064		

38

60

Brust Eierstock Endokrines_Gewebe Gastrointestinal	0.0046 0.0000 0.0122 0.0000 0.0136	TUMOR %Haeufigkeit 0.0102 0.0218 0.0442 0.0027 0.0190	Verhaeltnisse N/T T/N 0.4546 2.1996 0.0000 undef 0.2750 3.6368 0.0000 undef 0.7125 1.4035	5
Haematopoetisch Haut Hepatisch Herz	0.0050 0.0000 0.0021	0.0077 0.0000 0.0000 0.0129 0.0000	0.1106 9.0427 undef 0.0000 undef 0.0000 0.0000 undef undef 0.0000	10
Lunge Magen-Speiseroehre Muskel-Skelett Niere	0.0086 0.0000	0.0234 0.0473 0.0767 0.0000 0.0068	0.0000 undef 1.1324 0.8831 0.8819 1.1339 undef 0.0000 0.0000 undef	15
Prostata Uterus Brust-Hyperplasie	0.0030 0.0071 0.0017 0.0000	0.0055 0.0000 0.0128 0.0000	2.0570 0.4861 undef 0.0000 0.5593 1.7879 undef 0.0000	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0030 0.0000 0.0235			25
Entwicklung				30
-	0.0000 0.0039 0.0041 0.0037			35
Niere Prostata Sinnesorgane				40
	NORMIERTE/SUBSTANDED NORMIERTE/SUBSTANDE NORMIERTE/SUBSTANDE NORMIERTE/SUBSTANDE NORMIERTE/SUBSTANDE NORMIERTE/SUBSTANDE NORMIERTE/SUBSTANDE NORMIERTE/SUBSTANDE NORMIERTE/SUBSTANDE NORMIERTE/SUBSTAN	FRAHIERTE BIB	LIOTHEKEN	45
Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000 0.0029			
Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0000 0.0000			50
Nerven Prostata Sinnesorgane	0.0000			55

60

	Place	NORMAL %Haeufigkeit 0.0000	TUMOR %Haeufigkeit 0.0026	Verhaeltnisse N/T T/N 0.0000 undef
5		0.0067	0.0131	0.5096 1.9621
	Eierstock		0.0000	undef 0.0000
	Endokrines_Gewebe		0.0000	undef 0.0000
	Gastrointestinal	0.0019	0.0000	undef 0.0000
	Gehirn		0.0033	0.0000 undef
10	Haematopoetisch	0.0084	0.0000	undef 0.0000
	Haut	0.0000	0.0000	undef undef
	Hepatisch		0.0000	undef undef
	Herz	0.0021	0.0000	undef 0.0000
15		0.0000	0.0000	undef undef
13		0.0000	0.0000	undef undef
	Magen-Speiseroehre		0.0000	undef undef
	Muskel-Skelett		0.0000	undef undef undef
	Pankreas	0.0119	0.0000 0.0000	undef undef
20		0.0000	0.0000	under under
20	Prostata		0.0043	0.5593 1.7879
	Uterus		0.0000	undef 0.0000
	Brust-Hyperplasie		0.000	under 0.0000
	Duenndarm	0.0031		
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane	0.0000		•
	Weisse_Blutkoerperchen	0.0026		
30		POEMUG		
		FOETUS		
	Entwicklung	%Haeufigkeit 0.0000		
	Gastrointenstinal			
	Gehirn			
35	Haematopoetisch			
	Herz-Blutgefaesse			
	Lunge	0.0000		
		0.0124		
40	Prostata			
40	Sinnesorgane	0.0000		·
		NORMIERTE/SUE	STRAHIERTE BIE	BLIOTHEKEN
		%Haeufigkeit		
45	Brust	0.0000		
	Eierstock-Uterus	0.0046		
	Endokrines_Gewebe	0.0490		
	Foetal	0.0029		
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
		0.0000	•	
	Lunge Nerven	0.0082		
	nerven Prostata			
55	Sinnesorgane			
	Dimesoryane	_ ,		

	0.0093 0.0053 0.0122	TUMOR %Haeufigkeit 0.0077 0.0283 0.0130 0.0300	Verhaeltnisse N/T T/N 1.2123 0.8249 0.1882 5.3141 0.9349 1.0696 1.1569 0.8644	5
Gastrointestinal Gehirn Haematopoetisch	0.0136 0.0153 0.0056 0.0199	0.0000 0.0131 0.0000 0.0000 0.0065	undef 0.0000 1.1612 0.8612 undef 0.0000 undef 0.0000 3.0606 0.3267	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0120	0.0137 0.0117 0.0165 0.0000 0.0180	0.9249 1.0812 1.0447 0.9572 1.2792 0.7818 undef 0.0000 0.6662 1.5011	15
Pankreas Penis Prostata Uterus	0.0030 0.0167 0.0066	0.0000 0.0000 0.0533 0.0064 0.0071	undef 0.0000 undef 0.0000 0.0562 17.8081 2.6101 0.3831 0.9283 1.0772	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0125 0.0208 0.0000 0.0353			25
Weisse_Blutkoerperchen Entwicklung	FOETUS %Haeufigkeit			30
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0031 0.0000 0.0079			35
_	0.0000 0.0000			40
	0.0274 0.0000	FRAHIERTE BIB	LIOTHEKEN	45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0244 0.0000 0.0421 0.0000			50
Nerven Prostata Sinnesorgane	0.0151 0.0256			55

60

5	Brust Eierstock Endokrines_Gewebe Gastrointestinal	0.0000 0.0027 0.0000 0.0000	TUMOR %Haeufigkeit 0.0000 0.0174 0.0000 0.0082 0.0048	undef undef 0.1529 6.5404 undef undef 0.0000 undef 0.0000 undef
10	Haematopoetisch Haut Hepatisch	0.0149 0.0050	0.0000 0.0000 0.0000	undef 0.0000 undef 0.0000 undef 0.0000 undef 0.0000
15	Hoden		0.0000 0.0000 0.0000 0.0000	undef 0.0000 undef 0.0000 undef 0.0000 undef 0.0000 undef 0.0000
20	Niere Pankreas	0.0000 0.0000 0.0060	0.0000 0.0000 0.0000 0.0021	undef undef undef undef undef 0.0000 1.1186 0.8939
25	Brust-Hyperplasie Duenndarm Prostata-Hyperplasie	0.0031 0.0030	0.0000	undef 0.0000
	Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0000		
30		FOETUS		
35	Niere Prostata	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		
40	Sinnesorgane	0.0000		
45	Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0245	TRAHIERTE BIB	LIOTHEKEN
50	Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000		
55	Nerven Prostata Sinnesorgane	0.0070 0.0000		
60				

Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch	0.0000 0.0040 0.0000 0.0018 0.0058 0.0000 0.0056 0.0000	TUMOR %Haeufigkeit 0.0128 0.0218 0.0026 0.0000 0.0095 0.0033 0.0000 0.0000 0.0000	Verhaeltnisse N/T T/N 0.0000 undef 0.1835 5.4504 0.0000 undef undef 0.0000 0.6107 1.6375 0.0000 undef undef 0.0000 undef undef undef undef undef	5
Lunge Magen-Speiseroehre Muskel-Skelett	0.0034 0.0000	0.0000 0.0047 0.0000 0.0000 0.0000	undef undef 0.2634 3.7971 undef undef undef 0.0000 undef undef	15
Penis Prostata	0.0030 0.0048 0.0050 0.0000		0.0000 undef undef 0.0000 2.2373 0.4470 undef 0.0000	20
Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0000 0.0000 0.0000			25
Entwicklung Gastrointenstinal				30
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0000			35
Prostata Sinnesorgane	0.0000	TRAHIERTE BIBI	LIOTHEKEN	40
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	%Haeufigkeit 0.0000 0.0000 0.0000 0.0000		J. O. I. M. C.	45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	0.0228 0.0000 0.0000 0.0000			50
Prostata Sinnesorgane				55

5	Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch Herz	0.0000 0.0053 0.0030 0.0000 0.0000 0.0000 0.0000	TUMOR %Haeufigkeit 0.0051 0.0109 0.0052 0.0027 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Verhaeltnisse N/T T/N 0.0000 undef 0.4893 2.0439 0.5843 1.7114 0.0000 undef
15	Lunge Magen-Speiseroehre Muskel-Skelett	0.0050 0.0000 0.0000 0.0000	0.0024 0.0000 0.0000 0.0000 0.0000	2.1069 0.4746 undef undef undef undef undef undef undef undef
20		0.0000 0.0048 0.0000 0.0036	0.0000 0.0000 0.0000	undef undef undef 0.0000 undef undef
25	Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0000 0.0000 0.0235		
30		FOETUS %Haeufigkeit		
35		0.0000 0.0000 0.0000		
40	Prostata Sinnesorgane	0.0000		
45	Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000	TRAHIERTE BIB	SLIOTHEKEN
50	Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000 0.0000 0.0130 0.0000 0.0082		
55	Prostata Sinnesorgane	0.0000		

Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch	0.0000 0.0013 0.0030 0.0018 0.0000 0.0008 0.0000	TUMOR %Haeufigkeit 0.0026 0.0109 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Verhaeltnisse N/T T/N 0.0000 undef 0.1223 8.1755 undef 0.0000 undef 0.0000 undef	5
Hoden	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0024 0.0000 0.0000	undef undef undef undef 0.0000 undef undef undef undef undef	15
Pankreas Penis Prostata Uterus Brust-Hyperplasie	0.0000 0.0000 0.0000 0.0017	0.0000 0.0267 0.0000	undef 0.0000 undef undef 0.0000 undef undef undef undef 0.0000	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0000 0.0000 0.0000 0.0118			25
	FOETUS Haeufigkeit 0.0000			30
Gehirn 0 Haematopoetisch 0 Herz-Blutgefaesse 0 Lunge 0 Niere 0	.0000 .0000 .0000			35
Prostata 0 Sinnesorgane 0	.0000			40
No	ORMIERTE/SUBTR	AHIERTE BIBL	OTHEREN	
%i Brust 0.	naeufigkeit	DIDE	CIMEREN	
Eierstock-Uterus 0.	.0000			45
Endokrines_Gewebe 0.	.0000			
Foetal 0.	.0029			
Gastrointestinal 0. Haematopoetisch 0.	0000			
Haut-Muskel 0.	0000			50
Hoden 0.	0000			30
Lunge 0.	0000	•		
Nerven 0.	0010			
Prostata 0.	0064			
Sinnesorgane 0.	0000			55

60

		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	N/T T/N
	Blase		0.0000	undef undef
5	Brase	0.0000	0.0153	0.0874 11.4458
3	Brust	0.0013	0.0052	0.0000 undef
	Eierstock	0.0000		undef undef
	Endokrines_Gewebe	0.0000	0.0000	0.0000 undef
	Gastrointestinal	0.0000	0.0048	
	Gehirn	0.0000	0.0000	
10	Haematopoetisch	0.0000	0.0000	undef undef
	Haut	0.0000	0.0000	undef undef
	Hepatisch	0.0000	0.0000	undef undef
	Herr	0.0000	0.0000	undef undef
	ueden	0.0000	0.0000	undef undef
	Hoden	0.0012	0.0000	undef 0.0000
15	Lunge	0.0012	0.0000	undef 0.0000
	Magen-Speiseroehre	0.0193		undef undef
	Muskel-Skelett	0.0000	0.0000	undef undef
	Niere	0.0000	0.0000	undef undef
	Pankreas	0.0000	0.0000	
20	Penis	0.0060	0.0000	undef 0.0000
20	Prostata	0.0000	0.0000	undef undef
	Utorus	0.0000	0.0000	undef undef
	Ocerus To a serio	0.0000		
	Brust-Hyperplasie Duenndarm	0.0000		
	Duenndarm	0.0000		
25	Prostata-Hyperplasie	0.0000		
	Samenblase	0.0000		
	Sinnesorgane	0.0000		
	Weisse_Blutkoerperchen	0.0000		
	-			
30				
30		FOETUS		
		e u a au fi aka i i	L .	
		%Haeufigkei		
	Entwicklung	0.0000		
	Entwicklung Gastrointenstinal	0.0000		
	Gastrointenstinal	0.0000 0.0000		
35	Gastrointenstinal Gehirn	0.0000 0.0000 1.0.0000		·
35	Gastrointenstinal Gehirn Haematopoetisch	0.0000 0.0000 0.0000 1 0.0039		
35	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0000 0.0000 0.0000 0.0039		
35	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0000 0.0000 0.0000 0.00039 0.0041		
35	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	0.0000 0.0000 0.0000 0.0039 0.0041 0.0000		
	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0000 0.0000 0.0039 0.0041 0.0000		
35	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	0.0000 0.0000 0.0000 0.0039 0.0041 0.0000		
	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0000 0.0000 0.0039 0.0041 0.0000		
	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0000 1 0.0000 1 0.0039 2 0.0041 2 0.0000 2 0.0000 3 0.0000		TRI I OTHEKEN
	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0000 0.0000 0.0039 0.0041 0.0000 0.0000 0.0000	UBTRAHIERTE E	IBLIOTHEKEN
	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	0.0000 0.0000 0.0000 0.0039 0.0041 0.0000 0.0000 0.0000 0.0000	UBTRAHIERTE E	IBLIOTHEKEN
40	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	0.0000 0.0000 0.0000 0.0039 0.0041 0.0000 0.0000 0.0000 NORMIERTE/S %Haeufigkei	UBTRAHIERTE E	IBLIOTHEKEN
	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostate Sinnesorgane Brus Eierstock-Uteru	0.0000 0.0000 0.0000 0.0039 0.0041 0.0000 0.0000 0.0000 NORMIERTE/S %Haeufigkei t 0.0000 0.0000	UBTRAHIERTE E	IBLIOTHEKEN
40	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brus Eierstock-Uteru Endokrines Geweb	0.0000 0.0000 0.0000 0.0039 0.0041 0.0000 0.0000 0.0000 NORMIERTE/S %Haeufigkei t 0.0000 s 0.0023 e 0.0000	UBTRAHIERTE E	IBLIOTHEKEN
40	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brus Eierstock-Uteru Endokrines Geweb	0.0000 0.0000 0.0000 0.0039 0.0041 0.0000 0.0000 0.0000 NORMIERTE/S %Haeufigkei t 0.0000 s 0.0023 e 0.0000	UBTRAHIERTE E	IBLIOTHEKEN
40	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brus Eierstock-Uteru Endokrines_Geweb	0.0000 0.0000 0.0000 0.0039 0.0041 0.0000 0.0000 0.0000 NORMIERTE/S %Haeufigkei 0.0000 5 0.0023 e 0.0000 1 0.0000	UBTRAHIERTE E	IBLIOTHEKEN
40	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brus Eierstock-Uteru Endokrines Geweb Foeta	0.0000 0.0000 0.0000 0.0039 0.0041 0.0000 0.0000 0.0000 NORMIERTE/S %Haeufigkei 0.0000 0.0023 0.0000 1.0000 0.0000	UBTRAHIERTE E	IBLIOTHEKEN
40	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brus Eierstock-Uteru Endokrines_Geweb Foeta Gastrointestina Haematopoetisc	0.0000 0.0000 0.0000 0.0039 0.0041 0.0000 0.0000 0.0000 NORMIERTE/S %Haeufigkei 0.0000 0.0023 0.0000 1.0000 0.0000 0.0000	UBTRAHIERTE E	IBLIOTHEKEN
40	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostate Sinnesorgane Brus Eierstock-Uteru Endokrines_Geweb Foeta Gastrointestina Haematopoetisc Haut-Muske	NORMIERTE/S %Haeufigkei t 0.0000 NORMIERTE/S %Haeufigkei t 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000	UBTRAHIERTE E	IBLIOTHEKEN
40	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostate Sinnesorgane Brus Eierstock-Uteru Endokrines_Geweb Foeta Gastrointestina Haematopoetisc Haut-Muske	NORMIERTE/S %Haeufigkei t 0.0000 NORMIERTE/S %Haeufigkei t 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000	UBTRAHIERTE E	IBLIOTHEKEN
40	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brus Eierstock-Uteru Endokrines Geweb Foeta Gastrointestina Haematopoetisc Haut-Muske Hode	NORMIERTE/S %Haeufigkei t 0.0000 0.0000 NORMIERTE/S %Haeufigkei 0.0000 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000	UBTRAHIERTE E	IBLIOTHEKEN
40	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brus Eierstock-Uteru Endokrines Geweb Foeta Gastrointestina Haematopoetisc Haut-Muske Hode Lung	NORMIERTE/S %Haeufigkei t 0.0000 1 0.0000 2 0.0000 3 0.0000 4 0.0000 5 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000	UBTRAHIERTE E	IBLIOTHEKEN
40 45 50	Gastrointenstinal Gehirm Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brus: Eierstock-Uteru Endokrines_Geweb Foeta Gastrointestina Haematopoetisc Haut-Muske Hode Lung	0.0000 0.0000 0.0000 0.0039 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/S %Haeufigkei 0.0000 0.0000 1 0.0000 1 0.0000	UBTRAHIERTE E	IBLIOTHEKEN
40	Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brus Eierstock-Uteru Endokrines Geweb Foeta Gastrointestina Haematopoetisc Haut-Muske Hode Lung	0.0000 0.0000 0.0000 0.0039 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/S %Haeufigkei 0.0000 0.0000 1 0.0000 1 0.0000	UBTRAHIERTE E	IBLIOTHEKEN

		C = 11.01.15	
NORI		Verhaeltnisse	
В В В В В В В В В В В В В В В В В В В	eufigkeit %Haeufigkei	t N/T T/N	
Blase 0.03 Brust 0.00		undef 0.0000	
Eierstock 0.0		0.4757 2.1023	5
Endokrines_Gewebe 0.00		1.5582 0.6418	
Gastrointestinal 0.00		0.6698 1.4930	
Gehirn 0.01		undef 0.0000	
Haematopoetisch 0.00		0.8386 1.1924	
Haut 0.03		0.0739 13.5274	. 10
Hepatisch 0.00		undef 0.0000	
Herz 0.01		undef 0.0000	
Hoden 0.00		undef 0.0000	
Lunge 0.01		0.5224 1.9144	
Magen-Speiseroehre 0.00		1.1851 0.8438	15
Muskel-Skelett 0.00		undef undef	
Niere 0.008		0.8565 1.1675	
Pankreas 0.013		1.3025 0.7678	
Penis 0.009		2.3999 0.4167	
Prostata 0.009		undef 0.0000	20
Uterus 0.006		2.2373 0.4470	
Brust-Hyperplasie 0.010	0.0071	0.9283 1.0772	
Duenndarm 0.006	2		
Prostata-Hyperplasie 0.003	0		
Samenblase 0.008	9		25
Sinnesorgane 0.023	5		
Weisse_Blutkoerperchen 0.007	8		
FOETU			30
Fritwickly- 0 025	figkeit		
Entwicklung 0.015 Gastrointenstinal 0.009	1		
Gehirn 0.0125	2		
Haematopoetisch 0.0000			
Herz-Blutgefaesse 0.0082) }		35
Lunge 0.0296			
Niere 0.0000			
Prostata 0.0000			
Sinnesorgane 0.0000			
			40
NORMIE	RTE/SUBTRAHIERTE BIBL	IOTHEKEN	
snaeur	igkeit		
Brust 0.0000			4.5
Eierstock-Uterus 0.0046			45
Endokrines_Gewebe 0.0000			
Foetal 0.0210			
Gastrointestinal 0.0122			
Haematopoetisch 0.0114	•		_
Haut-Muskel 0.0032			50
Hoden 0.0000			
Lunge 0.0164			•
Nerven 0.0131 Prostata 0.0000			
Sinnesorgane 0.0000			
0.0000			55

60

Blase	%Haeufigkeit 0.0232	0.0051	4.5462 0.2200
Brust	0.0027		0.1747 5.7229
Eierstock	0.0030	0.0078	0.3895 2.5671
	0.0000	0.0054	0.0000 undef
		0.0095	0.2036 4.9124
Gastiointestin	0.0076	0.0099	0.7741 1.2918
Was to poet i sch	0.0028	0.0000	undef 0.0000
	0.0020		undef undef
			0.7651 1.3069
Hepatisch	0.0050		0.0963 10.3795
Herz	0.0053		1.0447 0.9572
Hoden	0.0122		0.5267 1.8986
Lunge	0.0037		3.7798 0.2646
Magen-Speiseroehre	0.0290		undef 0.0000
Muskel-Skelett	0.001/		1.3025 0.7678
Niere	0.0089		1.3713 0.7292
Pankreas	0.0076	-	undef 0.0000
Penis	0.0030		under 0.0000
Prostata	0.0024		0.2237 4.4697
Uterus	0.0083	0.0000	undef 0.0000
Brust-Hyperplasie	0.0000		
Duenndarm	0.0062		
Proctata-Hyperplasie	0.0089		
Samenhlase	0.0000		
Sinnesorgane	0.0000		
Simesorgano	0.0017		
Mersse_Brackoerberomen			
	FOETUS		
	%Haeufigkeit	t	
Entwicklung			
Castrointenstinal	0.0000		
Gehirn	0.0063		
Haematopoetisch	0.0000		
uorz-Blutgefaesse	0.0041		
Tunge	0.0074		
Niere	0.0247		
Prostata	0.0000		
Sinnesorgane	0.0000		
51111650194			
			TRITOTHEKEN
			TDDIOIME.
	NORMIERTE/S %Haeufigkei		TDD10111111
Brusi	%Haeufigkei		
	%Haeufigkei c 0.0000		
Eierstock-Uteru:	%Haeufigkei t 0.0000 s 0.0068		
Eierstock-Uteru: Endokrines Geweb	%Haeufigkei c 0.0000 c 0.0068 e 0.0000		
Eierstock-Uteru: Endokrines_Geweb Foeta	%Haeufigkei c 0.0000 s 0.0068 e 0.0000 l 0.0017		
Eierstock-Uteru: Endokrines_Geweb Foeta: Gastrointestina	%Haeufigkei c 0.0000 s 0.0068 e 0.0000 l 0.0017 l 0.0122		
Eierstock-Uteru: Endokrines_Geweb: Foeta: Gastrointestina Haematopoetisc	%Haeufigkei c 0.0000 s 0.0068 e 0.0000 l 0.0017 l 0.0122 h 0.0000		
Eierstock-Uteru: Endokrines_Gewebd Foeta: Gastrointestina Haematopoetisc Haut-Muske	%Haeufigkei c 0.0000 s 0.0068 e 0.0000 l 0.0017 l 0.0122 h 0.0000 l 0.0000		
Eierstock-Uteru: Endokrines_Geweb: Foeta: Gastrointestina Haematopoetisc Haut-Muske Hode	%Haeufigkei c 0.0000 s 0.0068 e 0.0000 l 0.0017 l 0.0122 h 0.0000 l 0.0000 n 0.0000		
Eierstock-Uteru: Endokrines_Gewebd Foeta: Gastrointestina Haematopoetisc Haut-Muske Hode Lung	%Haeufigkei c 0.0000 s 0.0068 e 0.0000 l 0.0017 l 0.0122 h 0.0000 l 0.0000 n 0.0000 e 0.0082		
Eierstock-Uterus Endokrines_Gewebe Foeta Gastrointestina Haematopoetisc Haut-Muske Hode Lung Nerve	%Haeufigkei 0.0000 0.0068 0.0000 1.0017 1.0.0122 1.0.0000 1.0.0000 1.0.0000 1.0.0000 1.0.0000 1.0.0000 1.0.0000 1.0.0000 1.0.0000 1.0.0000 1.0.0000 1.0.0000 1.0.0000 1.0.00000 1.0.0000 1.0.0000 1.0.0000 1.0.0000 1.0.0000 1.0.00000 1.0.0000		
Eierstock-Uterus Endokrines_Gewebe Foeta Gastrointestina Haematopoetisc Haut-Muske Hode Lung Nerve	%Haeufigkei 0.0000 5 0.0068 e 0.0000 1 0.0017 1 0.0122 h 0.0000 1 0.0000 0 0.0000 e 0.0082 n 0.0020 a 0.0128		
Eierstock-Uterus Endokrines_Gewebe Foeta Gastrointestina Haematopoetisc Haut-Muske Hode Lung Nerve	%Haeufigkei 0.0000 5 0.0068 e 0.0000 1 0.0017 1 0.0122 h 0.0000 1 0.0000 0 0.0000 e 0.0082 n 0.0020 a 0.0128		
Eierstock-Uterus Endokrines_Gewebe Foeta Gastrointestina Haematopoetisc Haut-Muske Hode Lung Nerve	%Haeufigkei 0.0000 5 0.0068 e 0.0000 1 0.0017 1 0.0122 h 0.0000 1 0.0000 0 0.0000 e 0.0082 n 0.0020 a 0.0128		
	Elase Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch Herz Hoden Lunge Magen-Speiseroehre Muskel-Skelett Niere Pankreas Penis Prostata Uterus Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	Blase	#Haeufigkeit #Haeufigkeit Blase 0.0232 0.0051 Brust 0.0027 0.0153 Eierstock 0.0030 0.0078 Endokrines_Gewebe 0.0000 0.0054 Gastrointestinal 0.0019 0.0095 Gehirn 0.0076 0.0099 Haematopoetisch 0.0028 0.0000 Hepatisch 0.0050 0.0065 Herz 0.0053 0.0550 Hoden 0.0122 0.0117 Lunge 0.0037 0.0071 Magen-Speiseroehre 0.0290 0.0077 Muskel-Skelett 0.0017 0.0000 Pankreas 0.0076 0.0055 Penis 0.0030 0.0068 Pankreas 0.0076 0.0055 Penis 0.0030 0.0000 Prostata 0.0024 0.0106 Uterus 0.0083 0.0000 Brust-Hyperplasie 0.0003 Brust-Hyperplasie 0.0000 Sinnesorgane 0.0000 Weisse_Blutkoerperchen 0.0017 FOETUS #Haeufigkeit Entwicklung 0.0000 Gehirn 0.0063 Haematopoetisch 0.0000 Herz-Blutgefaesse 0.0041 Lunge 0.0074 Niere 0.0247 Prostata 0.0000

	0.0000 0.0013 0.0030 0.0055	TUMOR %Haeufigkeit 0.0051 0.0131 0.0052 0.0000 0.0000	Verhaeltnisse N/T T/N 0.0000 undef 0.1019 9.8107 0.5843 1.7114 undef 0.0000 undef undef	5
Haematopoetisch Haut Hepatisch Herz	0.0000	0.0055 0.0000 0.0000 0.0000	1.2386 0.8074 undef 0.0000 undef undef undef 0.0000 undef 0.0000	10
Lunge Magen-Speiseroehre Muskel-Skelett	0.0000	0.0000 0.0047 0.0153 0.0000 0.0068	undef undef 0.0000 undef 0.0000 undef undef 0.0000 1.3025 0.7678	15
Prostata	0.0030 0.0000 0.0033	0.0000 0.0000 0.0085 0.0000	undef undef undef 0.0000 0.0000 undef undef 0.0000	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0062 0.0059 0.0178 0.0000			25
Weisse_Blutkoerperchen	FOETUS %Haeufigkeit			30
	0.0031 0.0063 0.0000 0.0000			35
Niere Prostata Sinnesorgane				40
-	NORMIERTE/SUB	PRAHIERTE BIB	LIOTHEKEN	
Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000 0.0023			45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0065 0.0000			50
Nerven Prostata Sinnesorgane	0.0000 0.0000			55

60

		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	N/T T/N
5		0.0093	0.0051	1.8185 0.5499
		0.0053	0.0196	0.2718 3.6790
	Eierstock		0.0052	1.1686 0.8557
	Endokrines_Gewebe	0.0073	0.0109	0.6698 1.4930
	Gastrointestinal		0.0143	0.6786 1.4737
10	Gehirn		0.0022	2.7094 0.3691
10	Haematopoetisch		0.0378	0.1109 9.0183
		0.0050	0.0000	undef 0.0000
	Hepatisch		0.0065	0.0000 undef
		0.0138	0.0000	undef 0.0000
15		0.0122	0.0234	0.5224 1.9144
13		0.0012	0.0071	0.1756 5.6957
	Magen-Speiseroehre	0.0290	0.0000	undef 0.0000
	Muskel-Skelett		0.0120	0.4283 2.3350
		0.0000	0.0000	undef undef
20	Pankreas		0.0000	undef 0.0000
20		0.0150	0.0000	undef 0.0000
	Prostata		0.0085	0.5593 1.7879
	Uterus		0.0071	0.6963 1.4363
	Brust-Hyperplasie	0.0000		
25	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane	0.0000		
	Weisse_Blutkoerperchen	0.0044		
20				
30		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
	Gehirn			
35	Haematopoetisch			
	Herz-Blutgefaesse			
		0.0148		
		0.0062		
	Prostata	0.0499		
40	Sinnesorgane	0.0000		
			BTRAHIERTE BIE	BLIOTHEKEN
_		%Haeufigkeit		
45		0.0000		
	Eierstock-Uterus			
	Endokrines_Gewebe	0.0000		
		0.0187		
	Gastrointestinal	0.0244		
50	Haematopoetisch			
	Haut-Muskel			
		0.0156		
		0.0000 0.0131		
	nerven Prostata			
55	Sinnesorgane			
	Simesorgane	0.000		

50

60

Brust Eierstock	0.0000 0.0040 0.0091	TUMOR %Haeufigkeit 0.0077 0.0153 0.0286 0.0327	Verhaeltnisse N/T T/N 0.0000 undef 0.2621 3.8153 0.3187 3.1376 0.5582 1.7916	5
Hepatisch	0.0155 0.0127 0.0098 0.0000	0.0095 0.0099 0.0000 0.0000 0.0000	1.6285 0.6141 1.2902 0.7751 undef 0.0000 undef undef undef 0.0000 0.9634 1.0380	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0061 0.0149 0.0097 0.0103	0.0117 0.0260 0.0077 0.0060	0.5224 1.9144 0.5746 1.7403 1.2599 0.7937 1.7130 0.5838	15
Pankreas	0.0060 0.0024	0.0342 0.0055 0.0000 0.0106 0.0000	0.6078 1.6452 0.3428 2.9168 undef 0.0000 0.2237 4.4697 undef 0.0000	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0000 0.0093 0.0059 0.0178			25
Weisse_Blutkoerperchen	0.0052			30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0062 0.0125 0.0236			35
Niere Prostata Sinnesorgane				40
Brust Eierstock-Uterus Endokrines_Gewebe	%Haeufigkeit 0.0000 0.0114	TRAHIERTE BIE	LIOTHEKEN	45
Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0210 0.0244 0.0000 0.0421 0.0000			50
Lunge Nerven Prostata Sinnesorgane	0.0064			55

60

10	Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch Herz Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0000 0.0013 0.0000 0.0018 0.0019 0.0008 0.0014 0.0000 0.0050 0.0050 0.0032 0.0000 0.0012 0.0000	TUMOR %Haeufigkeit 0.0179 0.0065 0.0000 0.0000 0.0022 0.0000 0.0000 0.0000 0.0000 0.0000 0.0047 0.0000 0.0060	0.0000 undef 0.2039 4.9053 undef undef undef 0.0000 undef 0.0000 0.3871 2.5836 undef 0.0000 undef undef undef 0.0000 undef 0.0000 undef undef 0.2634 3.7971 undef undef 0.2855 3.5025
	Niere Pankreas	0.0000	0.0000 0.0055	undef undef 0.0000 undef
20	Penis	0.0000	0.0000	undef undef
	Prostata Uterus		0.0000	undef undef undef 0.0000
	Brust-Hyperplasie		0.0000	under c.ooo
	Duenndarm	0.0000		
25	Prostata-Hyperplasie Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen			
30		FOETUS		
		%Haeufigkeit		
	Entwicklung Gastrointenstinal			
35	Gehirn	0.0000		
33	Haematopoetisch			
	Herz-Blutgefaesse Lunge	0.0000		
		0.0000		
40	Prostata			
40	Sinnesorgane	0.0000		
45 50	Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0064 0.0000 0.0000 0.0065 0.0000 0.0164 0.0040	TRAHIERTE BIE	BLIOTHEKEN
55	Prostata			
	Sinnesorgane	0.0000		

52

60

Brust Eierstock	0.0000 0.0053 0.0213	TUMOR %Haeufigkeit 0.0051 0.0153 0.0234	0.0000 undef 0.3495 2.8614 0.9089 1.1002	5
Hepatisch	0.0078 0.0136 0.0098 0.0000 0.0000	0.0518 0.0048 0.0120 0.0000 0.0000 0.0194	0.3525 2.8368 1.6285 0.6141 1.1260 0.8881 undef 0.0000 undef undef 0.0000 undef	10
Hoden	0.0095 0.0428 0.0137 0.0097	0.0000 0.0117 0.0142 0.0000 0.0600	undef 0.0000 3.6565 0.2735 0.9656 1.0356 undef 0.0000 0.0286 35.0255	15
Niere Pankreas Penis Prostata	0.0178 0.0170 0.0150 0.0071	0.0479 0.0000 0.0000 0.0383	0.3721 2.6872 undef 0.0000 undef 0.0000 0.1864 5.3637	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase	0.0000 0.0208 0.0089	0.0071	0.9283 1.0772	25
Sinnesorgane Weisse_Blutkoerperchen	0.0353			20
	FOETUS %Haeufigkeit			30
Haematopoetisch Herz-Blutgefaesse	0.0123 0.0000 0.0039 0.0164			35
_				40
Brust	NORMIERTE/SUI %Haeufigkeit 0.0000	BTRAHIERTE BII	BLIOTHEKEN	45
Eierstock-Uterus Endokrines_Gewebe Foetal	0.0434 0.0000 0.0210			
Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000			50
Lunge	0.0082 0.0151 0.0321			55

		NORMAL	TUMOR	Verhaeltnisse
		%Haeufigkeit	%Haeufigkeit	N/T T/N
5	Blase	0.0232	0.0256	0.9092 1.0998
-	Brust	0.0053	0.0131	0.4077 2.4527
	Eierstock		0.0078	0.7791 1.2836
	Endokrines Gewebe		0.0054	2.0093 0.4977
	Gastrointestinal		0.0000	undef 0.0000
	Gehirn			
10			0.0131	0.3225 3.1004
	Haematopoetisch		0.0000	undef 0.0000
	Haut		0.0000	undef 0.0000
	Hepatisch		0.0000	undef undef
	Herz	0.0201	0.0000	undef 0.0000
1.5	Hoden	0.0000	0.0117	0.0000 undef
15	Lunge	0.0125	0.0118	1.0534 0.9493
	Magen-Speiseroehre		0.0153	2.5198 0.3968
	Muskel-Skelett		0.0060	0.5710 1.7513
		0.0119	0.0137	0.8683 1.1517
20	Pankreas		0.0110	0.3428 2.9168
		0.0090	0.0533	0.1685 5.9360
	Prostata		0.0170	0.6991 1.4303
	Uterus		0.0142	0.6963 1.4363
	Brust-Hyperplasie	0.0073		
	Duenndarm	0.0125		
25	Prostata-Hyperplasie	0.0119		
	Samenblase			
	Sinnesorgane			
	Weisse Blutkoerperchen			
	"czoc_biachocipcionen	0.0002		
30				
30		POPMIIC		
		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
35	Gehirn	0.0063		
	Haematopoetisch	0.0236		
	Herz-Blutgefaesse	0.0041		
	Lunge	0.0037		
	Niere	0.0000		
	Prostata			
40	Sinnesorgane			
	210001940			
				٠
		NORMIEDAE/GIID	TRAHIERTE BIB	LTOTHEKEN
			TOTAL DID	TTOT HEIGH
45	D	%Haeufigkeit 0.0000		
	Eierstock-Uterus			
	Endokrines_Gewebe			
	Foetal	0.0128		
	Gastrointestinal	0.0244		
50	Haematopoetisch			
	Haut-Muskel	0.0130		
		0.0078		
	Lunge			
	Nerven			
c c	Prostata			
55	Sinnesorgane			
	Jimesorgane	0.0000		

54

60

Brust Eierstock	0.0093 0.0053 0.0000	TUMOR %Haeufigkeit 0.0051 0.0153 0.0026	1.8185 0.5499 0.3495 2.8614 0.0000 undef	5
Hepatisch	0.0039 0.0034 0.0028 0.0050 0.0000	0.0000 0.0143 0.0164 0.0000 0.0000 0.0194	undef 0.0000 0.2714 3.6843 0.2064 4.8443 undef 0.0000 undef 0.0000 0.0000 undef	10
Hoden	0.0032 0.0061 0.0075 0.0000	0.0000 0.0000 0.0047 0.0000 0.0180	undef 0.0000 undef 0.0000 1.5801 0.6329 undef undef 0.1903 5.2538	15
Niere Pankreas Penis Prostata	0.0059 0.0019 0.0060 0.0024	0.0137 0.0055 0.0000 0.0043	0.4342 2.3033 0.3428 2.9168 undef 0.0000 0.5593 1.7879	20
Uterus Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase	0.0073 0.0093 0.0030	0.3000	undef 0.0000	25
Sinnesorgane Weisse_Blutkoerperchen	0.0118			
	FOETUS %Haeufigkeit	·		30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0031 0.0000 0.0079			35
Lunge	0.0000 0.0062 0.0000			40
=	%Haeufigkeit 0.0000	BTRAHIERTE BI	BLIOTHEKEN	45
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	0.0000 0.0006 0.0000			50
Haut-Muskel Hoden Lunge Nerven	0.0097 0.0000 0.0082 0.0050			
Prostata Sinnesorgane				55

DE 198 13 839 A 1

Elektronischer Northern für SEQ. ID. NO: 54

		NORMAL	TUMOR	Wash and built
			%Haeufigkeit	Verhaeltnisse
5	Blace	0.0139	0.0102	N/T T/N 1.3639 0.7332
3		0.0080	0.0218	
	Eierstock		0.0182	0.3669 2.7252
	Endokrines Gewebe			0.6678 1.4975
	Gastrointestinal		0.0191	0.6698 1.4930
		0.0059	0.0286	0.3393 2.9474
10	Haematopoetisch		0.0110	0.5419 1.8454
	-		0.0000	undef 0.0000
	Hepatisch	0.0050	0.0000	undef 0.0000
	-	0.0000	0.0129	0.0000 undef
			0.0000	undef 0.0000
15		0.0122	0.0117	1.0447 0.9572
		0.0100	0.0071	1.4046 0.7120
	Magen-Speiseroehre		0.0153	0.0000 undef
	Muskel-Skelett		0.0000	undef 0.0000
		0.0149	0.0137	1.0854 0.9213
20	Pankreas		0.0442	0.3000 3.3335
		0.0060	0.0000	undef 0.0000
	Prostata		0.0128	0.7458 1.3409
	Uterus		0.0000	undef 0.0000
	Brust-Hyperplasie			
25	Duenndarm			
23	Prostata-Hyperplasie			
	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0026		
20				
30	•	FORMUG		
		FOETUS		
	F=+	%Haeufigkeit		
	Entwicklung Gastrointenstinal			
35	Gehirn			
	Haematopoetisch Herz-Blutgefaesse			
		0.0111		
		0.0309		
40	Prostata			
	Sinnesorgane	0.0000		
		NORMIERTE/SUB	TRAHIERTE BIB	LTOTHEKEN
		%Haeufigkeit		0.1.0.1.1.0.1.D.1.
45	Brust	0.0136		
	Eierstock-Uterus			
	Endokrines_Gewebe	0.0245		
	Foetal			
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
	Hoden			
	Lunge			
	Nerven			
55	Prostata			
-	Sinnesorgane			
	,			

60

	NORMAL %Haeufigkeit 0.0046 0.0067	TUMOR %Haeufigkeit 0.0051 0.0153	Verhaeltnisse N/T T/N 0.9092 1.0998 0.4368 2.2892		5
Eierstock		0.0130	0.0000 undef		
Elerstock	0.0000	0.0136	0.6698 1.4930		
Endokrines_Gewebe Gastrointestinal	0.0031	0.0143	0.9500 1.0527		
Gastrointestinai Gehirn	0.0130	0.0088	1.6450 0.6079	1	0
Haematopoetisch		0.0000	undef 0.0000		
Haematopoetisti	0.0000	0.0000	undef undef		
Hepatisch		0.0000	undef 0.0000		
перастаси	0.0042	0.0137	0.3083 3.2436		
	0.0000	0.0117	0.0000 undef	1	15
	0.0062	0.0095	0.6584 1.5189		
Magen-Speiseroehre	0.0002	0.0997	0.0000 undef		
Muskel-Skelett	0.0017	0.0180	0.0952 10.5076		
Niere	0.0119	0.0137	0.8683 1.1517		
Pankreas	0.0095	0.0110	0.8571 1.1667	2	20
	0.0150	0.0000	undef 0.0000	-	20
Prostata		0.0128	0.5593 1.7879		
Uterus		0.0071	1.3925 0.7181		
Brust-Hyperplasie		****			
Duenndarm	0.0218				25
Prostata-Hyperplasie				-	دد
Samenblase	0.0089				
Sinnesorgane	0.0000				
Weisse_Blutkoerperchen	0.0070	*			
MC100C_D1ucnos_ps_				,	30
				•	30
	FOETUS			•	30
	%Haeufigkeit				30
Entwicklung	%Haeufigkeit 0.0000			•	30
Gastrointenstinal	%Haeufigkeit 0.0000 0.0031				
Gastrointenstinal Gehirn	%Haeufigkeit 0.0000 0.0031 0.0000				35
Gastrointenstinal Gehirn Haematopoetisch	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157				
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000				
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000				
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000				35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000 0.0000				
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000 0.0000				35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000 0.0000				35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000 0.0000 0.0000	BTRAHIERTE BI	BLIOTHEKEN		35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000 0.0000 0.0000	BTRAHIERTE BI	BLIOTHEKEN		35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Biutgefaesse Lunge Niere Prostata Sinnesorgane	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SU %Haeufigkeit		BLIOTHEKEN		35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SU %Haeufigkeit 0.0068		BLIOTHEKEN		35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SU %Haeufigkeit 0.0068		BLIOTHEKEN		35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SU %Haeufigkeit 0.0068 0.0068 0.0000		BLIOTHEKEN		35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SU %Haeufigkeit 0.0068 0.0068 0.0000 0.0029		BLIOTHEKEN		35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SU %Haeufigkeit 0.0068 0.0068 0.0000 0.0029 0.0366		BLIOTHEKEN		35 40
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SU %Haeufigkeit 0.0068 0.0068 0.0000 0.0029 0.0366 0.0171		BLIOTHEKEN		35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SU %Haeufigkeit 0.0068 0.0068 0.0000 0.0029 0.0366 0.0171		BLIOTHEKEN		35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SU %Haeufigkeit 0.0068 0.0068 0.0068 0.0029 0.0366 0.0171 0.0032 0.0078 0.0082		BLIOTHEKEN		35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SU %Haeufigkeit 0.0068 0.0068 0.0068 0.0029 0.0366 0.0171 0.0032 0.0078 0.0082		BLIOTHEKEN		35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Biutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven Prostata	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SU %Haeufigkeit 0.0068 0.0068 0.0068 0.0000 0.0029 0.0366 0.0171 0.0032 0.0078 0.0082 0.0082 0.0064		BLIOTHEKEN		35 40 45
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	%Haeufigkeit 0.0000 0.0031 0.0000 0.0157 0.0000 0.0000 0.0000 0.0000 0.0000 NORMIERTE/SU %Haeufigkeit 0.0068 0.0068 0.0068 0.0000 0.0029 0.0366 0.0171 0.0032 0.0078 0.0082 0.0082 0.0064		BLIOTHEKEN		35 40 45

		NORMAL	TUMOR	Nambaal badaaa
			%Haeufigkeit	Verhaeltnisse N/T T/N
5	Blase	0.0000	0.0204	0.0000 undef
-		0.0000	0.0218	0.0000 undef
	Eierstock	0.0000	0.0026	0.0000 undef
	Endokrines_Gewebe		0.0054	0.0000 undef
	Gastrointestinal	0.0039	0.0048	0.8143 1.2281
10		0.0008	0.0011 -	0.7741 1.2918
	Haematopoetisch		0.0000	undef undef
		0.0000	0.0000	undef undef
	Hepatisch		0.0000	undef undef
		0.0000	0.0000	undef undef
15		0.0012	0.0000	undef undef
	Magen-Speiseroehre		0.0047 0.0000	0.2634 3.7971
	Muskel-Skelett		0.0000	undef undef
		0.0000	0.0000	undef undef undef undef
	Pankreas		0.0000	0.0000 undef
20		0.0000	0.0267	0.0000 undef
	Prostata		0.0000	undef undef
		0.0033	0.0000	undef 0.0000
	Brust-Hyperplasie	0.0000		
	Duenndarm	0.0000		
25	Prostata-Hyperplasie	0.0000		
	Samenblase			
	Sinnesorgane			
	Weisse_Blutkoerperchen	0.0009		
30				
30		FOETUS		
		%Haeufigkeit		
	Entwicklung			
	Gastrointenstinal			
35	Gehirn	0.0000		
	Haematopoetisch			
	Herz-Blutgefaesse			
	_	0.0000		
		0.0000		
40	Prostata			
	Sinnesorgane	0.0000		
		NORMIERTE/SUB	TRAHTERTE RIE	LIOTHEKEN
		%Haeufigkeit		TTOTHEWEN
45	Brust	0.0136		
	Eierstock-Uterus	0.0320		
	Endokrines_Gewebe	0.0000		
	Foetal	0.0367		
	Gastrointestinal			
50	Haematopoetisch			
	Haut-Muskel			
	Hoden			
	Lunge			
55	Nerven Prostata			
33	Sinnesorgane			
	51.m.c501.gane	000		

58

60

:	NORMAL	TUMOR	Verhaeltnisse		
	%Haeufigkeit	%Haeufigkeit	N/T T/N		
Blase	0.0046	0.0051	0.9092 1.0998	:	5
Brust	0.0027	0.0109	0.2446 4.0878		
Eierstock	0.0091	0.0026	3.5059 0.2852		
Endokrines_Gewebe	0.0036	0.0054	0.6698 1.4930		
Gastrointestinal	0.0019	0.0000	undef 0.0000		
Gehirn	0.0017	0.0044	0.3871 2.5836	1	0
Haematopoetisch	0.0028	0.0000	undef 0.0000		
Haut	0.0000	0.0847	0.0000 undef		
Hepatisch	0.0000 .	0.0000	undef undef		
Herz	0.0021	0.0000	undef 0.0000		
Hoden	0.0000	0.0000	undef undef	1	15
Lunge	0.0050	0.0000	undef 0.0000	1	
Magen-Speiseroehre	0.0000	0.0000	undef undef		
Muskel-Skelett	0.0017	0.0060	0.2855 3.5025		
Niere	0.0000	0.0000	undef undef		
Pankreas	0.0057	0.0110	0.5143 1.9446		
Penis	0.0000	0.0000	undef undef	2	20
Prostata	0.0000	0.0021	0.0000 undef		
Uterus	0.0033	0.0000	undef 0.0000		
Brust-Hyperplasie	0.0000				
Duenndarm	0.0031				
Prostata-Hyperplasie	0.0059			=	25
Samenblase	0.0000	•			
Sinnesorgane	0.0000				
Weisse_Blutkoerperchen	0.0061				
Weisse_Bidckoerberchen	0.0002				
					30
					50
	FOETUS				50
	FOETUS				30
Entwicklung	%Haeufigkeit				50
Entwicklung	%Haeufigkeit 0.0000				50
Gastrointenstinal	%Haeufigkeit 0.0000 0.0031				35
Gastrointenstinal Gehirn	%Haeufigkeit 0.0000 0.0031 0.0000				
Gastrointenstinal Gehirn Haematopcetisch	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079				
Gastrointenstinal Gehirn Haematopcetisch Herz-Blutgefaesse	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000				
Gastrointenstinal Gehirn Haematopcetisch Herz-Blutgefaesse Lunge	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074				
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000				35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000 0.0000				
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000 0.0000				35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000 0.0000				35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000 0.0000	JBTRAHIERTE B	IBLIOTHEKEN		35
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000 0.0000 0.0000	JBTRAHIERTE B	IBLIOTHEKEN		35
Gastrointenstinal Gehirn Haematopcetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000 0.0000 0.0000 NORMIERTE/SU %Haeufigkeit	JBTRAHIERTE B	IBLIOTHEKEN		35
Gastrointenstinal Gehirn Haematopcetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000 0.0000 0.0000 NORMIERTE/SU %Haeufigkeit 0.0000	JBTRAHIERTE B	BLIOTHEKEN		35
Gastrointenstinal Gehirn Haematopcetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines Gewebe	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000 0.0000 0.0000 NORMIERTE/SI %Haeufigkeit 0.0000 0.0000	JBTRAHIERTE B	IBLIOTHEKEN		35
Gastrointenstinal Gehirn Haematopcetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines Gewebe	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000 0.0000 0.0000 NORMIERTE/SI %Haeufigkeit 0.0000 0.0000	JBTRAHIERTE B	IBLIOTHEKEN		35
Gastrointenstinal Gehirn Haematopcetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000 0.0000 0.0000 NORMIERTE/SE %Haeufigkeit 0.0000 0.0000 0.0000 0.0000 0.0000	JBTRAHIERTE B	IBLIOTHEKEN		35 40 45
Gastrointenstinal Gehirn Haematopcetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000 0.0000 0.0000 NORMIERTE/SE %Haeufigkeit 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	JBTRAHIERTE B	IBLIOTHEKEN		35
Gastrointenstinal Gehirn Haematopcetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0122 0.0000 0.0000	JBTRAHIERTE B	IBLIOTHEKEN		35 40 45
Gastrointenstinal Gehirn Haematopcetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0122 0.0000 0.0000 0.0000	JBTRAHIERTE B	IBLIOTHEKEN		35 40 45
Gastrointenstinal Gehirn Haematopcetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	JBTRAHIERTE B	BLIOTHEKEN		35 40 45
Gastrointenstinal Gehirn Haematopcetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000	JBTRAHIERTE B	BLIOTHEKEN		35 40 45 50
Gastrointenstinal Gehirn Haematopcetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven Prostata	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000	JBTRAHIERTE B	BLIOTHEKEN		35 40 45
Gastrointenstinal Gehirn Haematopcetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven Prostata	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000	JBTRAHIERTE B	BLIOTHEKEN		35 40 45 50
Gastrointenstinal Gehirn Haematopcetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	%Haeufigkeit 0.0000 0.0031 0.0000 0.0079 0.0000 0.0074 0.0000	JBTRAHIERTE B	BLIOTHEKEN		35 40 45 50

		NORMAL,	FUNOD	
			TUMOR %Haeufigkeit	Verhaeltnisse
5	Blase	0.0000	0.0000	
,		0.0173	0.0523	undef undef 0.3313 3.0187
	Eierstock	0.0000	0.0026	0.0000 undef
	Endokrines Gewebe	0.0018	0.0000	undef 0.0000
	Gastrointestinal	0.0000	0.0000	undef undef
10		0.0000	0.0000	undef undef
10	Haematopoetisch	0.0028	0.0000	undef 0.0000
		0.0050	0.0000	undef 0.0000
	Hepatisch		0.0000	undef undef
		0.0000	0.0000	undef undef
15		0.0000	0.0000	undef undef
		0.0000	0.0000	undef undef
	Magen-Speiseroehre	0.0000	0.0000	undef undef
	Muskel-Skelett		0.0000	undef undef
		0.0000	0.0000	undef undef
20	Pankreas		0.0000	undef undef
	Prostata	0.0000	0.0000	undef undef
	Uterus		0.0000	undef 0.0000
	Brust-Hyperplasie		0.0285	0.2321 4.3088
	Duenndarm			
25	Prostata-Hyperplasie			
	Samenblase	0.0000		
	Sinnesorgane	0.0000		
	Weisse_Blutkoerperchen	0.0000		
30				
		FOETUS		
	Product also	%Haeufigkeit		
	Entwicklung Gastrointenstinal	0.0000		
	Gehirn			
35	Haematopoetisch			
	Herz-Blutgefaesse	0.0000		
	Lunge			
	Niere			
••	Prostata			
40	Sinnesorgane			
	_	10DW####		
	I	NORMIERTE/SUBT Haeufigkeit	RAHIERTE BIBL	IOTHEKEN
45	Brust (
	Eierstock-Uterus (
	Endokrines Gewebe (0.0000		
	Foetal (
	Gastrointestinal (0.0000		
50	Haematopoetisch (0.0000		
	Haut-Muskel (0.0000		
	Hoden (
	Lunge 0			
	Nerven 0			
55	Prostata 0	.0128		
	Sinnesorgane O	.0000		

60

	0.0046 0.0013	TUMOR %Haeufigkeit 0.0051 0.0109 0.0000	Verhaeltnisse N/T T/N 0.9092 1.0998 0.1223 8.1755 undef 0.0000		5
Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch	0.0039 0.0025 0.0000 0.0000	0.0000 0.0095 0.0066 0.0000 0.0000	undef 0.0000 0.4071 2.4562 0.3871 2.5836 undef undef undef undef 0.0000 undef	;	10
Herz Hoden	0.0074 0.0061 0.0025 0.0000	0.0000 0.0234 0.0095 0.0000	undef 0.0000 0.2612 3.8288 0.2634 3.7971 undef undef undef 0.0000		15
Niere Pankreas	0.0030 0.0000 0.0060 0.0024	0.0068 0.0055 0.0000 0.0000	0.4342 2.3033 0.0000 undef undef 0.0000 undef 0.0000 undef 0.0000		20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0073 0.0031 0.0089 0.0089		,		25
Weisse_Blutkoerperchen	0.0009				30
Haematopoetisch Herz-Blutgefaesse	0.0000 0.0000 0.0000				35
Niere Prostata Sinnesorgane	0.0185 0.0000				40
Brust Eierstock-Uterus	%Haeufigkeit 0.0068	BTRAHIERTE BI	BLIOTHEKEN		45
Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0245 0.0035 0.0000 0.0114				50
Lunge	0.0000 0.0020 0.0064				55

5		0.0000	TUMOR %Haeufigkeit 0.0000	Verhaeltnisse N/T T/N undef undef
	Erust Eierstock Endokrines_Gewebe Gastrointestinal	0.0091	0.0109 0.0000 0.0245	0.1223 8.1755 undef undef 0.3721 2.6874
10	Gehirn Haematopoetisch	0.0017	0.0000 0.0022 0.0000 0.0000	undef undef 0.7741 1.2918 undef 0.0000 undef undef
15	Hepatisch Herz		0.0000 0.0000 0.0000	undef undef undef 0.0000 undef 0.0000
13	Magen-Speiseroehre Muskel-Skelett	0.0034	0.0024 0.0000 0.0000	2.1069 0.4746 undef undef undef 0.0000
20	Pankreas	0.0030		undef 0.0000 0.0000 undef undef 0.0000
	Uterus Brust-Hyperplasie Duenndarm	0.0000 0.0000		0.2797 3.5758 undef undef
25	Prostata-Hyperplasie Samenblase Sinnesorgane	0.0059 0.0000 0.0000		
	Weisse_Blutkoerperchen	0.0000		
30		FOETUS		
		%Haeufigkeit		
	Entwicklung Gastrointenstinal	0.0031		
35	Gehirn Haematopoetisch	0.0000		
	Herz-Blutgefaesse	0.0041		
	Lunge Ni e re			
40	Prostata	0.0000		
	Sinnesorgane	0.0000		
	1	NORMIERTE/SUBT	RAHIERTE BIBL	IOTHEKEN
45	Brust (&Haeufigkeit		
	Eierstock-Uterus (0.0068		
	Endokrines_Gewebe (Foetal (
	Gastrointestinal (0.000		
50	Haematopoetisch (Haut-Muskel (0.0000		
	Hoden 0	0.0000		
	Lunge 0 Nerven 0			
55	Prostata 0			
	Sinnesorgane O	.0000		

65

Blase Brust Eierstock Endokrines_Gewebe Gastrointestinal	0.0000 0.0080 0.0091 0.0055	TUMOR %Haeufigkeit 0.0051 0.0153 0.0078 0.0109 0.0238	0.0000 undef 0.5242 1.9076 1.1686 0.8557 0.5023 1.9907 0.3257 3.0703	5
Gehirn Haematopoetisch Haut Hepatisch	0.0051 0.0140 0.0000	0.0077 0.0000 0.0000 0.0000 0.0000	0.6635 1.5071 undef 0.0000 undef undef undef 0.0000 undef undef	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0061 0.0050 0.0000	0.0000 0.0047 0.0077 0.0000 0.0068	undef 0.0000 1.0534 0.9493 0.0000 undef undef 0.0000 0.8683 1.1517	15
Pankreas	0.0019 0.0030 0.0048 0.0033	0.0000 0.0000 0.0021 0.0214	undef 0.0000 undef 0.0000 2.2373 0.4470 0.1547 6.4632	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0031 0.0119 0.0000 0.0000			25
	FOETUS %Haeufigkeit			30
Haematopoetisch Herz-Blutgefaesse	0.0000 0.0063 0.0079 0.0041			35
Lunge Niere Prostata Sinnesorgane	0.0074 0.0185 0.0000 0.0140			40
Eierstock-Uterus	%Haeufigkeit 0.0000 0.0091	JBTRAHIERTE BI	BLIOTHEKEN	45
Gastrointestinal Haematopoetisch Haut-Muskel	0.0087 0.0244 0.0057			50
Lunge	0.0000 0.0030 0.0000			55

Eierstock 0.0030 0.0026 1.1686	1.4930
Gastrointestinal 0.0039 0.0000 undef Gehirn 0.0034 0.0044 0.7741 Haematopoetisch 0.0042 0.0000 undef	1.2918 0.0000
Hepatisch 0.0149 0.0000 undef (Herz 0.0011 0.0000 undef (Hoden 0.0000 0.0000 undef (Lunge 0.0012 0.0000 undef (Magen-Speiseroehre 0.0000 0.0000 undef (0.0000
Muskel-Skelett 0.0017 0.0060 0.2855 3 Niere 0.0059 0.0000 undef 0 Pankreas 0.0019 0.0055 0.3428 2 Penis 0.0060 0.0000 undef 0 Prostata 0.0000 0.0000 undef 0	3.5025 0.0000 2.9168 0.0000
Uterus 0.0033 0.0000 undef 0 Brust-Hyperplasie 0.0036 Duenndarm 0.0000 25 Prostata-Hyperplasie 0.0000 Samenblase 0.0089	0.000
Sinnesorgane 0.0000 Weisse_Blutkoerperchen 0.0026	
30 FOETUS	
#Haeufigkeit Entwicklung 0.0000 Gastrointenstinal 0.0092 Gehirn 0.0125 Haematopoetisch 0.0039 Herz-Blutgefaesse 0.0082	
Lunge 0.0000 Niere 0.0062 Prostata 0.0000 Sinnesorgane 0.0000	
NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN % Haeufigkeit 45 Brust 0.0000 Eierstock-Uterus 0.0046	N
Endokrines_Gewebe 0.0490 Foetal 0.0058 Gastrointestinal 0.0000 50 Haematopoetisch 0.0000 Haut-Muskel 0.0065 Hoden 0.0000	
Lunge 0.0000 Nerven 0.0010 Prostata 0.0000 Sinnesorgane 0.0000	

60

Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch Haut	0.0046 0.0080 0.0061 0.0000 0.0213 0.0008 0.0028 0.0000	TUMOR %Haeufigkeit 0.0665 0.0436 0.0234 0.0000 0.0571 0.0000 0.0000 0.0000	0.0699 1 0.1835 5 0.2597 3 undef 1 0.3732 2 undef (undef)	I/N 14.2976 5.4504 3.8507 undef 2.6795 0.0000 0.0000 undef	5
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0000 0.0000 0.0087 0.0290 0.0000	0.0000 0.0000 0.0142 0.0000 0.0000	undef	undef undef 1.6273 0.0000 undef	15
Niere Pankreas	0.0119 0.0133	0.0205 0.0276	0.48002		
Penis	0.0000	0.0000	undef 1		20
Prostata	0.0119	0.0106	1.1186		
Uterus		0.0071	0.4642	2.1544	
Brust-Hyperplasie Duenndarm	0.0073				
Prostata-Hyperplasie					25
Samenblase	0.0178				
Sinnesorgane					
Weisse_Blutkoerperchen	0.0000				
Entwicklung Gastrointenstinal	FOETUS %Haeufigkeit 0.0000				30
					35
	0.0000				
Gehirn					33
	0.0000				55
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0000 0.0000 0.0037				33
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	0.0000 0.0000 0.0037 0.0000				33
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0000 0.0037 0.0000 0.0000				40
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	0.0000 0.0000 0.0037 0.0000 0.0000				
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	0.0000 0.0000 0.0037 0.0000 0.0000	BTRAHIERTE BIH	зьіотнек	ŒN	
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	0.0000 0.0000 0.0037 0.0000 0.0000 0.0000 NORMIERTE/SUI %Haeufigkeit 0.0476	BTRAHIERTE BII	BLIOTHEK	TEN	40
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines Gewebe	0.0000 0.0000 0.0037 0.0000 0.0000 0.0000 NORMIERTE/SUI %Haeufigkeit 0.0476 0.0274 0.0000	BTRAHIERTE BII	вьіотнек	TEN	40
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000 0.0000 0.0037 0.0000 0.0000 0.0000 NORMIERTE/SUI %Haeufigkeit 0.0476 0.0274 0.0000 0.0052	BTRAHIERTE BII	вьіотнек	ŒN	40
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	0.0000 0.0000 0.0037 0.0000 0.0000 0.0000 NORMIERTE/SUI %Haeufigkeit 0.0476 0.0274 0.0000 0.0052 0.0122	BTRAHIERTE BII	вьіотнек	ŒN	40
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	0.0000 0.0000 0.0037 0.0000 0.0000 0.0000 NORMIERTE/SUI %Haeufigkeit 0.0476 0.0274 0.0000 0.0052 0.0122 0.0000	BTRAHIERTE BII	вьіотнек	ŒN	40
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0000 0.0000 0.0037 0.0000 0.0000 0.0000 NORMIERTE/SUI %Haeufigkeit 0.0476 0.0274 0.0000 0.0052 0.0122 0.0000 0.0000	BTRAHIERTE BII	BLIOTHEK	EN	40
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000 0.0000 0.0037 0.0000 0.0000 0.0000 NORMIERTE/SUI %Haeufigkeit 0.0476 0.0274 0.0000 0.0052 0.0122 0.0000 0.0000 0.0000	BTRAHIERTE BII	вьіотнек	EN	40
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000 0.0000 0.0037 0.0000 0.0000 0.0000 NORMIERTE/SUI %Haeufigkeit 0.0476 0.0274 0.0000 0.0052 0.0122 0.00122 0.0000 0.0000 0.0000	STRAHIERTE BII	вьіотнек	ŒN	40
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0000 0.0037 0.0000 0.0000 0.0000 NORMIERTE/SUI %Haeufigkeit 0.0476 0.0274 0.0000 0.0052 0.0122 0.0000 0.0000 0.0000 0.0000	STRAHIERTE BII	вьіотнек	EN	40
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	0.0000 0.0000 0.0037 0.0000 0.0000 0.0000 NORMIERTE/SUI %Haeufigkeit 0.0476 0.0274 0.0000 0.0052 0.0122 0.00122 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	BTRAHIERTE BII	зьіотнек	ŒN	40 45 50

5	Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch	0.0000 0.0053 0.0061 0.0073 0.0097 0.0059	TUMOR %Haeufigkeit 0.0051 0.0174 0.0026 0.0027 0.0048 0.0055 0.0000	0.0000 undef 0.3058 3.2702 2.3372 0.4279 2.6791 0.3733 2.0357 0.4912 1.0837 0.9227 undef 0.0000
15	Hepatisch Herz Hoden Lunge Magen-Speiseroehre Muskel-Skelett Niere	0.0053 0.0000 0.0087 0.0000 0.0103 0.0000	0.0000 0.0000 0.0000 0.0000 0.0071 0.0153 0.0000 0.0068	undef 0.0000 undef undef undef 0.0000 undef undef 1.2290 0.8137 0.0000 undef undef 0.0000 0.0000 undef
20	Prostata	0.0120 0.0000	0.0055 0.0267 0.0021	0.6857 1.4584 0.4492 2.2260 0.0000 undef
25	Uterus Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0000 0.0000 0.0000 0.0000	0.0142	0.6963 1.4363
30				
		FOETUS		
35	Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	0.0154 0.0000 0.0039 0.0041 0.0000		
40	Prostata Sinnesorgane			
45	1	NORMIERTE/SUBT %Haeufigkeit	RAHIERTE BIBL	IOTHEKEN
45	Foetal (0.0046 0.0000 0.0082		
50	Gastrointestinal (Haematopoetisch (Haut-Muskel (Hoden (Lunge (0.0000 0.0032 0.0156 0.0082		
55	Nerven (Prostata (Sinnesorgane (0.0040 0.0128		

66

60

A 1

Elektronischer Northern für SEQ. ID. NO: 66

Brust Eierstock		0.1508 0.0392 0.0000	0.0616 16.2223 0.0340 29.4320 undef 0.0000	5
Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch	0.0174 0.0051 0.0993 0.0249	0.0027 0.0048 0.0055 0.0000 0.0000	0.6698 1.4930 3.6642 0.2729 0.9289 1.0765 undef 0.0000 undef 0.0000 0.0000 undef	10
Herz Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0053 0.0061 0.0261 0.1062	0.0000 0.0000 0.0307 0.0230 0.0180 0.0068	undef 0.0000 undef 0.0000 0.8508 1.1753 4.6197 0.2165 0.9517 1.0508 0.0000 undef	15
Pankreas Penis Prostata	0.0114 0.1258 0.0000	0.0000 0.1600 0.0000	undef 0.0000 0.7862 1.2720 undef undef	20
Uterus Brust-Hyperplasie Duenndarm Prostata-Hyperplasie	0.0036 0.0000	0.0000	undef 0.0000	25
Samenblase Sinnesorgane	0.0178 0.0000			
Weisse_Blutkoerperchen				30
Entwicklung	FOETUS %Haeufigkeit 0.0000			
Gastrointenstinal Gehirn Haematopoetisch	0.0062 0.0000 0.0000			35
Niere	0.0037 0.0000			
Prostata Sinnesorgane				40
	NORMIERTE/SU	BTRAHIERTE BI	BLIOTHEKEN	
Eierstock-Uterus	0.0000			45
Gastrointestinal	0.0052 0.0122			
Haematopoetisch Haut-Muskel Hoden	0.0057 0.0000 0.0000			50
Lunge Nerven	0.0410 0.0000			
Prostata Sinnesorgane				55

60

5	Brust Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch	0.0093 0.0013 0.0000 0.0073 0.0000	TUMOR %Haeufigkeit 0.0051 0.0044 0.0052 0.0109 0.0000 0.0055 0.0000	Verhaeltnisse N/T T/N 1.8185 0.5499 0.3058 3.2702 0.0000 undef 0.6698 1.4930 undef undef 1.2386 0.8074 undef 0.0000 undef undef
15	Hepatisch Herz Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0000 0.0042 0.0000 0.0025 0.0000	0.0129 0.0000 0.0234 0.0000 0.0000 0.0000	0.0000 undef undef 0.0000 0.0000 undef undef 0.0000 undef undef undef undef
20	Pankreas Penis Prostata	0.0057 0.0030 0.0786	0.0000 0.0000 0.0554	undef 0.0000 undef 0.0000 1.4198 0.7043
25	Uterus Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0000 0.1011 0.0000 0.0000	0.0000	undef 0.0000
30				
50		FOETUS		
35 40		0.0062 0.0000 0.0039 0.0000 0.0037 0.0000 0.0000		
45	Brust	NORMIERTE/SUBT %Haeufigkeit 0.0000	FRAHIERTE BIBI	LIOTHEKEN
50	Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	0.0000 0.0000 0.0082 0.0000 0.0057 0.0065 0.0078		
55	Prostata Sinnesorgane	0.0128		

68

60

Brust Eierstock Endokrines Gewebe	0.0018	0.0179 0.0065 0.0000 0.0000	Verhaeltnisse N/T T/N 0.0000 undef 0.2039 4.9053 undef undef undef 0.0000 undef 0.0000	5
Hepatisch	0.0008 0.0014 0.0000	0.0000 0.0022 0.0000 0.0000 0.0000	0.3871 2.5836 undef 0.0000 undef undef undef 0.0000 undef 0.0000	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0000 0.0012 0.0000	0.0000 0.0047 0.0000 0.0060 0.0000	undef undef 0.2634 3.7971 undef undef 0.2855 3.5025 undef undef	15
Pankreas	0.0000 0.0000 0.0000 0.0083	0.0055 0.0000 0.0000 0.0000	0.0000 undef undef undef undef undef undef 0.0000	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0000 0.0000 0.0000 0.0000			25
Entwicklung	FOETUS %Haeufigkeit			30
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0000 0.0000 0.0000			35
	0.0000 0.0000			40
Eierstock-Uterus Endokrines_Gewebe	%Haeufigkeit 0.0000 0.0046	BTRAHIERTE BI	BLIOTHEKEN	45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000 0.0000			50
	0.0040 0.0000			55

2.2 Fisher-Test

60

Um zu entscheiden, ob eine Partiai Sequenz S eines Gens in einer Bibliothek für Normal-Gewebe signifikant häufiger oder seltener vorkommt als in einer Bibliothek für entartetes Gewebe, wird Fishers Exakter Test, ein statistisches Standardverfahren (Hays, W. L., (1991) Statistics, Harcourt Brace College Publishers, Fort Worth), durchgeführt.

Die Null-Hypothese lautet: die beiden Bibliotheken können bezüglich der Häufigkeit zu S homologer Sequenzen nicht unterschieden werden. Falls die Null-Hypothese mit hinreichend hoher Sicherheit abgelehnt werden kann, wird das zu S gehörende Gen als interessanter Kandidat für ein Krebs-Gen akzeptiert, und es wird im nächsten Schritt versucht, eine Verlängerung seiner Sequenz zu erreichen.

Beispiel 3

Automatische Verlängerung der Partial-Sequenz

- 5 Die automatische Verlängerung der Partial-Sequenz S vollzieht sich in drei Schritten:
 - 1. Ermittlung aller zu S homologen Sequenzen aus der Gesamtmenge der zur Verfügung stehenden Sequenzen mit Hilfe von BLAST
 - 2. Assemblierung dieser Sequenzen mittels des Standardprogramms GAP4 (Bonfield, J. K., Smith, K. F., und Staden R. (1995), Nucleic Acids Research 23 4992–4999) (Contig-Bildung).
 - 3. Berechnung einer Konsens-Sequenz C aus den assemblierten Sequenzen.

Die Konsens-Sequenz C wird im allgemeinen länger sein als die Ausgangssequenz S. Ihr elektronischer Northern-Blot wird demzufolge von dem für S abweichen. Ein erneuter Fisher-Test entscheidet, ob die Alternativ-Hypothese der Abweichung von einer gleichmäßigen Expression in beiden Bibliotheken aufrechterhalten werden kann.

Ist dies der Fall, wird versucht, C in gleicher Weise wie S zu verlängern. Diese Iteration wird mit der jeweils erhaltenen Konsensus-Sequenzen C_i (i: Index der Iteration) fortgesetzt bis die Alternativ-Hypothese verworfen wird (if H_0 Exit; Abbruchkriterium I) oder bis keine automatische Verlängerung mehr möglich ist (while $C_i > C_{i-1}$; Abbruchkriterium II).

Im Fall des Abbruchkriteriums II bekommt man mit der nach der letzten Iteration vorliegenden Konsens-Sequenz eine komplette oder annähernd komplette Sequenz eines Gens, das mit hoher statistischer Sicherheit mit Krebs in Zusammenhang gebracht werden kann.

Analog der oben beschriebenen Beispiele konnten die in der Tabelle I beschriebenen Nukleinsäure-Sequenzen aus Brusttumorgewebe gefunden werden.

Ferner konnten zu den einzelnen Nukleinsäure-Sequenzen die Peptidsequenzen (ORF's) bestimmt werden, die in der Tabelle II aufgelistet sind, wobei wenigen Nukleinsäure-Sequenzen kein Peptid zugeordnet werden kann und einigen Nukleinsäure-Sequenzen mehr als ein Peptid zugeordnet werden kann. Wie bereits oben erwähnt, sind sowohl die ermittelten Nukleinsäure-Sequenzen, als auch die den Nukleinsäure-Sequenzen zugeordneten Peptid-Sequenzen Gegenstand der vorliegenden Erfindung.

70

10

30

35

40

45

50

55

60

TABELLE

fd			EST	Länge	Chromos.
i				der	-
ż	Txpression	Funktion		ange-	Lokali-
į			Ausg.	mel.	sation
			- länge	Sequenz	
7	ca 5 x stärker im Brusttumor als	humane NADH ubiquinone oxidoreductase MLRQ-	265	513	unbkt.
-		Untereinheit; sie stellt ein Enzym der Elektronen- Transportkette dar			
2	nor als	17-kDA Interferon-induziertes Gen über dessen	238	029	unbkt.
		FUNKTION MICH DENAME IN THE ACT FOR A PAGE ANTIGORS	24.4	1845	unhkt
3	ior als	or als vermutilich humanes Gegenstuck des SES-Kritigeris	1	2	
	im entspr. Normalgewebe, ca. 12 x	del Kalle, melber hander es skal vormans am			
	als im	einen Transkriptionsfaktor			
			000	0077	
4	ca. 6 x stärker im Pankreasturmor	humanes "alpha-2-macroglobulin receptor-	738	1439	numanes
		associated protein", gehört zu einem "Proteinase-			Calibration of the second
	2 x stärker im Brusttumor als im	Scavanging-System" (fängt Proteinase-Aktivitat ab)			m 4p10,5
	entspr. Normalgewebe		000	000	114
3	sttu	"macrophage migration inhibition factor related	203	000	UIIDKI.
_	lim entspr. Normalgewebe, ca. 16 x	ca. 16 x protein 14 (MRP-14)", spielt wahrscheinlich eine			•
	stärker im Blasentumor als im	Rolle bei der Immunmodulation			
	entspr. Normalgewebe				1-1-1 O.E.O.
ဖ	ca. 4 x stärker im Brusttumor als	humanes lamin B2 (LAMB2) Gen, Lamins bilden die	20 <u>8</u>	606 -	VIV DICTI
	im entspr. Normalgewebe	nukleäre Lamina, welche unternaib der Inneren			אם וופן ו.
		Zellmembran des Zellkerns liegt, sie spielt eine			
		wichtige Kolle in der Kegulation der Kernstluktul			
		während des Zellzyklus und der Transkription		3	
7	ca. 4 x stärker im Pankreas als im	regulatorische Untereinheit eines RNA-bindenden	760	026 	unbkt.
_	entspr. Normalgewebe	Proteins, über dessen Funktion noch nichts publiziert			
		wurde			

DE 198 13 839 A 1

1					
i			EST	Länge	Chromos.
ž	Expression			aer	
	===;	LUNKHON		ange-	Lokali-
			Ausg.	mel.	sation
∞	ca. 5 x stärker im Brusttumor ale	himonon Antionidate Programme	a l	2	
		Vermutlich eine Peroxidase darstellt (Peroxiredovin-	760	686	unbkt.
		Familie), es schützt die Zelle vor oxidativen			
ြ	ca 4 x stärker im Brusttumor als	riozessen.			
		di Denailli	276	2017	unbkt.
10	Š	h.monoo [1]			
: 	im entsor Normalgamaka oo 0x	iluillailes Fibromodulin, es stellt ein Proteoglykan	252	2233	Hum.Chro
···	Stärker im Rissendemebe de im	des knorpeis dar			m.1 zw.
	lentenr Timorgemebe als IIII				D1S477u
					D1S504
					(219-222
11	ca. 3 x stärker im Brusthumor ale	11 monday			cM)
: 		"Canc" "Spanstund complied by the continue of	252	1365	Hum.Chro
		Zelbewediabbeit		-=-	m. 2 zw.
	entspr. Normalgewebe	Zalibeweglictikell			D2S289u.
					D2S388
				<u> </u>	(107-111
12	ca. 3 x stärker im Brusttumor als	Ostrogen-induzierhares Gen dessen Einsteine	010		cM)
		13 Xinicht verstanden ist	2/3	1597	Hum.Chro
				<u> </u>	m. 18 zw.
	entspr. Normalnewehe			<u>~</u>	D18S1114
					u.D18S468
			-	<u> </u>	(61-64 cM)
				7	/

			FST	länge	Chrom.
Lfd.			3	der	
,	1	Finktion		angemel.	angemel. Lokalisati
ž	Expression		Ausg)	uo
			länge	Sednenz	
		bumana "integrin-linked kinase (ILK)", steuert den	296	1780	Hum.Chro
33	tuilioi als iiii	Zusamanaban der Eibrinection-Matrix und hemmt die			m. 11 zw.
	entspr. Normalgewebe	Cusalilliellabad del Fibiliocaco Indiano del Company del Control del Kariberexprimierende			D11S1318
		27 III 1636 VOII E-Cachiciini, Iciv accidentational Albertagischen			_ j
					D11S1338
					(6-14 cM)
	W. C.	inhotonnt himanes HISTONE H2B2	301	892	Hum.Chro
4		underallit, Ilumanda 1110 lora india	- ,		m. 6 zw.
	entspr. Normalgewebe				D6276u.
					D6S439
					(44-48 cM)

			EST	Länge	Chromos.
- 1				der	
Z	Expression	Funktion		Ange-	Lokali-
			Ausg		sation
4	- 1		länge	Sednenz	
<u>-</u>		numanes Gegenstuck des Enhancers des Drosophila	263	992	Hum.Chro
	circpi: rollialyewede	rudimentary - Jens ("numan enhancer of rudimentary			m. 14 zw.
		nomolog"), spieit moglicherweise eine Rolle im			D14S63 u.
_		Pyrimidin-Stoffwechsel	-		D14S251
10	11 × 24 = 1 = 1	112			(59-65 cM)
<u>2</u> —		menschliches 1 m23, welches im Proteintrnaslokase-	260	1196	unbkt.
_	entspr. Normalgewebe	Komplex der ineren mitochondrialen Membran Iokalisiert ist			
17	ca. 6 x stärker im Brustfumor als im	unhakannt	COC	1407	
:			283	1105	unbkt.
18	1	nalise himonos Con mit Abrilablait	010		
) -		"Supplemental Consists of Figure 1 Misus	7/7	5005	Hum.Chro
	Normaloguebe	synaprosoniai associated protein"			m. 7, zw.
					D7S499 u.
					D7S2429
,	- 1				(76-77 cM)
2 8	in Brustlumoren ernont	human intestinal trefoil factor	246	834	unbkt.
07	In Brusttumoren ernönt	humaer RNA polymerase II transcription factor	279	765	Chromoso 23
21	ca. 4 x stärker im Brusttumor als im	unbekannt. hat geringe Homologie zu einem humanen	245	770	111 13 144au
		Homeobox-Gen	247		UIIDAL.
22	ca. 2 x stärker im Brusttumor als im	humane JAK1 Tvrosinkinase, ein US-Patent hesteht	282	2327	CTC nicht
	entspr. Normalgewebe, ca. 17 x		1		Vartion
	stärker im Hauttumor als im entspr.				אמו מכו ו.
	Normalgewebe				
23	tumor als im	unbekannt	260	911	unhkt
	entspr. Normalgewebe		3		dilbat.
				T	

Humanes Cyclin D1, eine Veröffentlichung wird Cyclin D1 in entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 8 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Parkreastumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Parkreastumor als im entspr. Normalgewebe ca. 3 x stärker im Parkreastumor als im entspr. Normalgewebe ca. 3 x stärker im Parkreastumor als im entspr. Normalgewebe ca. 3 x stärker im Parkreastumor als im entspr. Normalgewebe ca. 3 x stärker im Parkreastumor als im entspr. Normalgewebe ca. 3 x stärker im Parkreastumor als im entspr. Normalgewebe ca. 3 x stärker im Parkreastumor als im entspr. Normalgewebe ca. 3 x stärker im Parkreastumor als im entspr. Normalgewebe ca. 3 x stärker im Parkreastumor als im entspr. Normalgewebe ca. 3 x stärker im Parkreastumor als im entspr. Normalgewebe ca. 3 x stärker im Parkreastumor als im entspr. Normalgewebe ca. 3 x stärker im Parkreastumor als im entspr.				TS.T	Länge	Chromos.
Expression Ca. 7 x stärker im Brusttumor als im entspr. Normalgewebe entspr. Normalgewebe, ca. 2 x stärker im Devisition als im entspr. Normalgewebe, ca. 2 x stärker im Devisition als im entspr. Normalgewebe, ca. 12 x stärker im Devisition als im entspr. Normalgewebe, ca. 12 x stärker im Devisition als im entspr. Normalgewebe, ca. 12 x stärker im Devisition als im entspr. Normalgewebe, ca. 12 x stärker im Devisition als im entspr. Normalgewebe, ca. 12 x stärker im Devisition als im entspr. Normalgewebe, ca. 12 x stärker im Devisition als im entspr. Normalgewebe, ca. 12 x stärker im Devisition als im entspr. Normalgewebe, ca. 12 x stärker im Devisition als im entspr. Normalgewebe, ca. 12 x stärker im Devisition als im entspr. Normalgewebe, ca. 12 x stärker im Devisition als im entspr. Normalgewebe, ca. 12 x stärker im Devisition als im entspr. Normalgewebe, ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Devisition als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe.	Lfd.				der	
ca. 7 x stärker im Brusttumor als im entspr. Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe ca. 4 x stärker im Brusttumor als im entspr. Normalgewebe ca. 4 x stärker im Brusttumor als im entspr. Normalgewebe ca. 4 x stärker im Brusttumor als im entspr. Normalgewebe ca. 4 x stärker im Brustumor als im entspr. Normalgewebe ca. 4 x stärker im Brustumor als im entspr. Normalgewebe ca. 4 x stärker im Brustumor als im entspr. Normalgewebe ca. 4 x stärker im Brustumor als im entspr. Normalgewebe ca. 4 x stärker im Brustumor als im entspr. Normalgewebe ca. 5 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 5 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 3 x stärker im Brustumor als im entspr. Normalgewebe ca. 3 x stärker im Brustumor als im entspr. Normalgewebe, ca. 3 x stärker im Brustumor als im entspr. Normalgewebe, ca. 3 x stärker im Brustumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe ca. 3 x stärker im Pa	2		Funktion		Ange-	Lokali-
ca. 7 x stärker im Brusttumor als im unbekannt, möglicherweise humanes Gegenstück eines Gans von arabidopsis thaliana (Chromosom 1) eines Gens von arabidopsis thaliana (Chromosom 1) eines Gegenstück eines eines Gegenstück eines eines Gens von arabidopsis thaliana (Chromosom 1) eines Gegenstück eines Gens von arabidopsis thaliana (Chromosom 1) eines Gegenstück eines Gens von arabidopsis thaliana (Chromosom 1) eines Araiker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Gehlintumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr.	ž	Expression		Ausg	mel.	sation
ca. 7 x stärker im Brusttumor als im entspr. Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 12 x stärker im Demandered ca. 2 x stärker im Demandered ca. 1 x stärker im Demandered ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 1 x stärker im Demandered ca. 3 x stärker im Demandered ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 1 x stärker im Demandered ca. 3 x stärker im Demandered ca. 3 x stärker im Demandered ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Demandered ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr.				länge	Sequenz	
entspr. Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe ca. 2 x stärker im Denstrumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe		ca. 7 x stärker im Brusttumor als im	unbekannt, möglicherweise humanes Gegenstück	264	595	unbkt.
ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Denstumor als im entspr. Normalgewebe, ca. 12 x stärker im Denstumor als im entspr. Normalgewebe, ca. 12 x stärker im Denstumor als im entspr. Normalgewebe, ca. 12 x stärker im Denstumor als im entspr. Normalgewebe, ca. 12 x stärker im Denstumor als im entspr. Normalgewebe ca. 6 x stärker im Denstumor als im entspr. Normalgewebe ca. 6 x stärker im Brusttumor als im entspr. Normalgewebe ca. 6 x stärker im Brusttumor als im entspr. Normalgewebe ca. 6 x stärker im Brusttumor als im entspr. Normalgewebe ca. 6 x stärker im Brusttumor als im entspr. Normalgewebe ca. 6 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärk	30	entspt. Notmaigewebe	unbekannt, vermutlich humanes Gegenstück eines	251	988	unbkt.
ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 4 x stärker im Derustumor als im entspr. Normalgewebe, ca. 12 x stärker im Derustumor als im entspr. Normalgewebe, ca. 12 x stärker im Derustumor als im entspr. Normalgewebe, ca. 12 x stärker im Derustumor als im entspr. Normalgewebe, ca. 12 x stärker im Derustumor als im entspr. Normalgewebe, ca. 12 x stärker im Derustumor als im entspr. Normalgewebe, ca. 12 x stärker im Derustumor als im entspr. Normalgewebe, ca. 12 x stärker im Gehimtumor als im entspr. Normalgewebe, ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe ca. 3 x stärker im Pankreasturmor als im entspr.	c7	entspr. Normalgewebe	Gens von caenorhabditis elegans, das auf Cosmid R11H6 lokalisiert ist			
entspr. Normalgewebe, ca. 12 x von Proteinbestandteil eines Proteosoms, das den Abbau stärker im Pankreastumor als im entspr. Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 6 x stärker im Brusttumor als im entspr. Normalgewebe ca. 6 x stärker im Brusttumor als im entspr. Normalgewebe ca. 6 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr. Normalgewebe ca. 3 x stärker im Pankreastumor als im entspr.	26	ca 2 x stärker im Brusttumor als im	humane "macropain subunit zeta", ein	239	1008	unbkt.
stärker im Pankreastumor als im entspr. Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 4 x stärker im Uterustumor als im entspr. Normalgewebe, ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 8 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe	3	entspr. Normalgewebe, ca. 12 x	Proteinbestandteil eines Proteosoms, das den Abbau			
entspr. Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 4 x stärker im Uterustumor als im entspr. Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im humanes 80K-L. Protein, ein Substrat der Proteinentspr. Normalgewebe ca. 3 x stärker im Brusttumor als im humanes 80K-L. Protein, ein Substrat der Proteinentspr. Normalgewebe ca. 3 x stärker im Brusttumor als im humanes 80K-L. Protein, ein Substrat der Proteinentspr. Normalgewebe		stärker im Pankreastumor als im	von Proteinen und möglicherweise auch von KIVA			
ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe ca. 4 x stärker im Uterustumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 6 x stärker im Brusttumor als im entspr. Normalgewebe ca. 6 x stärker im Brusttumor als im entspr. Normalgewebe ca. 6 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im humanes 80K-L. Protein, ein Substrat der Proteinentspr. Normalgewebe		entspr. Normalgewebe	reguliert	260	2773	unbkt
entspr. Normalgewebe, ca. 4 x stärker im Brusttumor als im entspr. Normalgewebe ca. 2 x stärker im Pankreastumor als im entspr. Normalgewebe, ca. 6 x stärker im Uterustumor als im entspr. Normalgewebe, ca. 12 x stärker im Uterustumor als im entspr. Normalgewebe, ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe	27	ca. 2 x stärker im Brusttumor als im	unbekannt	607	2177	:
stärker im Uterustumor als im entspr. Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 12 x stärker im Dankreastumor als im entspr. Normalgewebe, ca. 6 x stärker im Uterustumor als im entspr. Normalgewebe ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe, ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe		entspr. Normalgewebe, ca. 4 x				
Normalgewebe ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 12 x stärker im Uterustumor als im entspr. Normalgewebe, ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 8 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe		stärker im Uterustumor als im entspr.				
ca. 2 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 12 x stärker im Dankreastumor als im entspr. Normalgewebe, ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe, ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe, ca. 12 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe	-:-	Normalgewebe	Ogway that and the standard to the control of the c	252	3448	unbkt
entspr. Normalgewebe, ca. 12 x stärker im Pankreastumor als im entspr. Normalgewebe, ca. 6 x stärker im Uterustumor als im entspr. Normalgewebe, ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe, ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe	28	ca. 2 x stärker im Brusttumor als im	humanes Cyclin D1, ein US-Patent besteht, gernals	767		
stärker im Pankreastumor als im entspr. Normalgewebe, ca. 6 x stärker im Uterustumor als im entspr. Normalgewebe, ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe, ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe		entspr. Normalgewebe, ca. 12 x	einer Veröffentlichung wird Cyclin D'1 In		,,	
entspr. Normalgewebe, ca. 6 x stärker im Uterustumor als im entspr. Normalgewebe ca. 8 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe		stärker im Pankreastumor als im	Pankreastumoren uberexpiriner			
stärker im Uterustumor als im entspr. Normalgewebe ca. 8 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe		entspr. Normalgewebe, ca. 6 x				
Normalgewebe ca. 8 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe		stärker im Uterustumor als im entspr.				
ca. 8 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe		Normalgewebe		284	1579	STS nicht
entspr. Normalgewebe, ca. 12 x stärker im Gehirntumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe	29	Γ	Ribonuklease 6-Vorlaurer-Iviolekui		<u> </u>	kartiert
stärker im Gehirntumor als im entspr. Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe		entspr. Normalgewebe, ca. 12 x				
Normalgewebe ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe		stärker im Gehirntumor als im entspr.			. ··-	
ca. 3 x stärker im Brusttumor als im entspr. Normalgewebe, ca. 3 x stärker im Pankreasturmor als im entspr. Normalgewebe		Normalgewebe	Michael Land Land	970	3070	STS fehlt 1
	8	ł	humanes 80K-L Protein, ein Substrat der Frotein-	7	<u></u>)
stärker im Pankreasturmor als im entspr. Normalgewebe		entspr. Normalgewebe, ca. 3 x	Kinase C			
entspr. Normalgewebe	_	stärker im Pankreasturmor als im				
		entspr. Normalgewebe				

				1				,													
5	Chromos.	Lokali-	sation		unbkt.	KEINE	ANGABE	KEINE	ANGABE	KEINE	ANGABE	KEINE	ANGABE	KEINIE	ANGABE	STS WI-	13202	(Chrom. 6,	Koordinate	761	CentiRays)
10	Länge der	angemel.		Sednenz	2751	890		693		1054		541		1187	5	2281	:				
15	EST		Ausg	länge	291	275		287		282		155		291	2	239)				
20										esine											
25										e der Kin	F2)										
30		Funktion				tor		ctase		zur Famili	λ nz goloι					inkinase					
35						pin-Rezep		Oxidoredul		se, welche	nanes Hon					in-/Threor					
40					unbekannt	Benzodiazepin-Rezeptor		Ubiquinon Oxidoreduktase		neue ATPase, welche zur Familie der Kinesine	gehört (humanes Homolog zu KIF2)	Lysozym		unbekannt		putative Serin-/Threoninkinase	•				
45				-	<u>≅</u>	stark						eren				stark					
50		Expression			ca. 4 x starker im brusttumor a entspr. Normalgewebe	33 Expression in Brusttumoren stark		rk erhöht		rk erhöht		ernont in Brust- sowie mehreren	Blase-,	, a		39 in Brust- und Penistumoren stark					
55	1	Expr		1 1 1	ca. 4 x starker im brust entspr. Normalgewebe	ion in Bru		35 IIM Brusttumor stark erhöht		ım Brusttumor stark erhöht		n Brust- sc	anderen (Genirn-, Blase-, Eierstocktumoren)	erhöht in Brust- und	Prostatatumoren	- und Peni					
60					ca. 4 x sentspr. I	Express erhöht		im brusi		im Brusi			anderen Eierstoc		Prostata	in Brust-	erhöht			<u></u>	
	<u> </u>		<u>.</u>	5	2	33	į	င္ပ	[8	ک	1	3/	;	38		33					

									_	L		
Lfd										- - -	der	
•		Everence				Ē.	Funktion				angemel.	Lokali-
Ž		EApress	5			•				Ausg)	sation
<u>:</u>										länge	Sednenz	
9	im Brustfumor stark erhöht	or stark e	rhöht	put	putatives Kupfer-Aufnahme Gen	fer-Aufna	hme Gen			271	1759	STS WI-
}	וווו סומפונתו 	וסו אושוי ס		<u>.</u>								11879
_												(Chrom. 9,
												Koordinate
				_								429.1
									•			CentiRays)
41	41 im Brusttumor stark erhöht	nor stark e	rhöht	AB	Alpha Galaktosidase A	osidase A				245	1447	KEINE
<u>.</u>												ANGABE
42	im Brusttumor stark erhöht	nor stark e	srhöht	ner Wa	neues Homologes zu humanem B-cell Wachstrimsfaktor (BCGF1)	loges zu l	numanem 3F1)	B-cell		151	831	KEINE ANGABE
43	im Brusttumor stark erhöht	nor stark	erhöht	E E	unbekannt					263	528	KEINE
			•								100	ANGABE 6: 1 DAG
44	im Brusttumor sehr stark erhöht	nor sehr s	tark erhöht	III	unbekannt					270	1027	Siene PAC
45		oetischen	pun	F.	Phosphatase					303	2160	KEINE
	Brusttumoren erhöht	en erhöht									١	יון טייטיין איייין
46		nor erhöh	14	보호	HUMANES Homologes zu einem Maus co- Chaperonin	lomologe	s zu einen	n Maus (-00	323	642	KEINE ANGABE
47	im Brusttumor stark erhöht	nor stark	erhöht	운 두	molog zu	einem im	printed Ge	en von C	Homolog zu einem imprinted Gen von Chromosom	266	1415	KEINE ANGABE
48	im Brusttumor erhöht	mor erhöh	ţ	<u> </u>	RNA-Helicase	ō.				261	2949	KEINE ANGABE
4	49 in Brust-, Blasen und Prostatatumoren erhöht	Slasen und moren erh	iöht	중투	Kopplungsfaktor F6 ist eine Komponente der mitochondrialen ATP-Synthase, welcher für die Interaktion des katalytischen und	ktor F6 is ilen ATP-	t eine Kon Synthase, ischen un	nponente welcher d	ə der für die	268	999	KEINE ANGABE
				ă	protonenübertragenden Segments erforderlich ist	rtragende	en Segmer	nts erfor	derlich ist			
20) im Brusttumor erhöht	mor erhöh	1	I I	unbekannt					173	904	
65	60	55	50	45	40	35	30	25	20	15	10	5

								1		1		_		_						1			T				
5	Chromos.		Lokali-	sation		KEINE	ANGABE	KEINE	ANGABE	KEINE	ANGABE	KFINE	ANGABE	Chromoso	m 17	KEINE	ANGABE	Keine	Angabe	Chrom.	11q12 pac	pDJ363p2	Keine	Angabe	Keine	Angabe	
10	Länge	der	angemel.		Sequenz	1239		996		556		1349		2021		900		1212		494			729		1315		2011
15	EST			Ausg	länge	291		260		250		295) 	284		262		272		242			173		241		219
20																									olog		
25																		<u>.</u>		Homologes zu Prostata bindendem Protein,					Glucose-6-phosphate dehydrogenase Homolog		
30		;	Funktion			Q				3-2 Gen		rase						ndes Prote		ta bindenc					dehydrog		
35						ane ATPas			į	Homologes zum NAG-2 Gen		Arginin Methyltransferase	•			_		3TP binder		s zu Prosta	<u>-</u>				phosphate		
40						neue huma		unbekannt		Homologe		Arginin Me		unbekannt		Stromelysin		humanes GTP bindendes Protein	-	Homologe	Untereinheit C-1		unbekannt		-9-esoon!9		unbekannt
45						ata- und		0		en:	testinal, l otstata)		:ht		ıta)								<u> </u>			1 2 2	
50			Expression			ernont in Brust- sowie Prostata- und neue humane ATPase	noren	in Genirn-, Brust-, Penis- und	erhöht	ernont in Brust- sowie mehreren	anderen Tumoren (Gastrointestinal, Gehirn, Niere, Pankreas, Protstata)	as- sowie	Gastrointestinaltumoren erhöht	in Brust- sowie anderen Tumoren	(Herz, Skelettmuskel, Prostata) erhöht	nur im Brusttumor gefunden		ight		וסוו			ight	7 - 1 - 2	ont	11	oz IIII brust- una Oterustumoren er
55			Idx I			in Brust- s	Skelettmuskeltumoren	rn-, Brust-	Pankreastumoren erhöht	in Brust- s	n i umorer Niere, Pa	54 in Brust-, Pankreas- sowie	ntestinaltu	t- sowie ar	Skelettmus	Brusttumoi	1	Im Brusttumor erhoht	14.000	iiii brusttumor ernont			ım brusttumor erhöht	14	o i jim brusttumor ernont	1 lb 2	- and oter
60					7						andere Gehirn,	in Brus	Gastroi	in Brus	(Herz, Serhöht		c	snua wil						C	lm brus	1. D.::0	III BIUSI
	<u>면</u>	•	2	Ž	ĭ	<u></u>	į	25		53		54		55		56		2	20	င္က		C	ဂိုင်	2	6	ç	70
65																											

65

73			EST	Länge	Chrom
; J				der	
ż	Expression	Funktion		ange-	Lokalisat.
:			Ausg	mel.	
			länge	Sequenz	
63	im Brustfumor efark arhöht	unbekannt	246	2009	STS SHGC-
					32788
					(Chrom.1,
					Koordinate
					5089.0
					Centirays)
64	in Brust- und Blasentumoren stark	Ets Transkriptionsfaktor	256	2269	Keine Angabe
	erhöht		0,0	4704	OTO OTO
65	im Brusttumor erhöht	IL13 Rezeptor alpha-1 Kette	746	18/4	34461 (
99	in Blasen- und Brustumoren stark	Inhibition der Zellteilung und der Makrophagen	238	687	
}	erhöht	Aktivität. Protein-Kinasen Inhibitor			
29	67 im Brusttumor erhöht	möglicherweise eine Dehydrogenase	218	1528	
			,	700	
99	In Brusttumoren erhöht.	unbekannt	1/3	908	

Tabelle Ⅱ

	DNA-Sequenz Seq. ID. No.	Peptid-Sequenz (ORFs) Seq. ID. No.
5	3 9	71 72
		73 74
10	1.4	75 76
	14 16 17	77 78 79
15	18	80 81
	19 20	82 83
20	21	84 85 86
	23	87 88
25	24	89 90
25	25 27	91 92
	29 31	93 94 95
30		96 96 97
	33	98 • 99
35	35 36	100 101
	36 38 39	102 103 104
40	40 41	105 106
	42 43	107 108
45	44	109 110
73	44	111 112 113
	46 47	113 114 115
50	48	116 117
	49 50	118 119
55	51	120 121 122
	52	123 124
60	53	125 126
	54 55	127 128 129
65		130 131
		132 133

●_{DE 198 13 839 A 1}

DNA-Sequenz	Peptid-Sequenz (ORFs)	
Seq. ID. No.	Seq. ID. No.	
56	134	
	135	
57	136	5
58	137	
59	138	
	139	
61	140	
62	141	10
63	142	
0.5	143	
	144	
64	145	
66	146	15
67	147	
68	148	
00	110	

Die erfinderischen Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 68 der ermittelten Kandidatengene und die ermittelten Aminosäure-Sequenzen Seq. ID No. 71 bis Seq. ID No. 148 werden in dem nachfolgenden Sequenzprotokoll beschrieben.

Sequenzprotokoll

(1) ALLGEMEINE INFORMATION:

(i) ANMELDER:

5

10

15

20

25

30

40

50

55

- (A) NAME: metaGen Gesellschaft für Genomforschung mbH
- (B) STRASSE: Ihnestrasse 63
- (C) STADT: Berlin
- (E) LAND: Deutschland
- (F) POST CODE (ZIP): D-14195
- (G) TELEFON: (030)-8413 1672
- (H) TELEFAX: (030)-8413 1671
 - (ii) TITEL DER ERFINDUNG:

Menschliche Nukleinsäure-Sequenzen aus

Brusttumorgewebe

- (iii) Anzahl der Sequenzen: 143
- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
- (2) INFORMATION ÜBER SEQ ID NO: 1:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 513 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:
- 60 (A) BIBLIOTHEK: cDNA library

O_{DE 198 13 839 A 1}

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 1:

gtacaggage tegtgeegtg geceacagee cacageecae agetatygge tyggeloogae 180 cggtgaagat getggegge aacgaattee aggtgteet gageagetee atgteggtgt 180 cagagetgaa ggegeagate acceagaaga teggegtgea egeetteeag cagegtetgg 240 ctgteeace gageggtgtg gegetgeagg acaaggeee eettgeeage cagggeetgg 300 geceeggeag caeggteetg etggtggtgg acaaatgega egaacetetg ageateetgg 360 geceeggeag caeggteetg ageageacet acgaggtgeg getgaegeag accegtgee 420 acetgaagea geaagtgage gggetggagg gtgtgeagga egaeetgte tggetgaeet 480 acetgaaggaa geeeetggag gaeeagetee egetgggga gtaeeggeete aageeeetga 540 geaeegtgt catgaatetg egeetgeegg gaggeggeae agageetgge gggeggaget 600 geaeegtgt eacageatee gageaggate aagggeegga aataaagget gttgtaaaga 660 aagggeetee accageatee gageaggate aagggeegga aataaagget gttgtaaaga 660 670	CCTTCAGGTA GGAGGTCCTG GGTGACTTTG GAAGTCCGTA GTGTCTCATT GCAGATAATT 60 TTTAGCTTAG GGCCTGGGGG CTAGGTCGGT TCTCTCTTT CCAGTCGGAG ACCTCTGCCG 120 CAAACATGCT CCGCCAGATC ATCAGTCAGG CCAAGAAGCA TCCGAGCTTG ATCCCCCTCT 180 TTGGATTTAT TGGAACTGGA GCTACTGGAG CAACACTGTA TCTCTTGCGT CTGGCATTGT 240 TCAATCCAGA TGTTTGTTGG GACAGAAATA ACCCAGAGCC CTGGAACAAA CTGGGTCCCA 300 ATGATCAATA CAAGTTCTAC TCAGTGAATG TGGATTACAG CAAGCTGAAG AAGGAACGTC 360 CAGATTTCTA AATGAAATGT TTCACTATAA CGCTGCTTTA GAATGAAGGT CTTCCAGAAG 420 CCACATCCGC ACAATTTTCC ACTTAACCAG GAAATATTC TCCTCTAAAT GCATGAAATC 480 ATGTTGGAGA TCTCTATTGT AATCCTATT GGN	10
(A) LÄNGE: 670 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear (iii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA (iiii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (ivi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:2: atagggecgg tgctgcctgc ggaagcggc ggctgagagg cacagagactc accagacaca cacagagagactcagaagactgaagactgaagactgaagactgaagactgaagacactgaagacactgaagacactgaagacactgaagacactgaagacactgaagacactgaagacactgaagacactacagagacactacacagagacactacagagacacacac	(2) INFORMATION ÜBER SEQ ID NO: 2:	
(iii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA (iiii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:2: atagggccgg tgotgcctgc ggaagccgc ggctgaagag cacagacat cagagtgaa gctgtgcggg aacgaattc cagagtgaa ggccaagac accagaaga tagtggcgg cacagac cagagtgaa ggcggagtga ggctgaaga gccctgaag ggccaagac cacaggcca accagagcaa caccagaaga caccagaaga caccagaaga caccagaaga caccagaaga caccagaaga ggccaagac cagagcact cagaggtgaa gacaggtca cacaggcca accagagca cacaggcca accagagcaa caccagaaga caccagaaga caccagaaga caccagaaga caccagaaga gacaggaact cagaggtcc cagaggaactc cagaggaact cagaggaact cacagagaaa caccagaaga caccagagaa caccagaaga gacaggaact cagaggaact cacagagaaca accagagaaca cacagagaaca cacagagaacaacaaagagaa gacacagaacaaagaa gacacagaacaaagaacaaagaacaacaagagaa gacacagaacaaagaacaacaaagagaaaaaaaa	(A) LÄNGE: 670 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel	
hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:2: atagggccgg tgctgcctgc ggaagccgc cacagccac cacagccac cacagccac cacagccac cacagccac cacagccac cacagccac cacagccac cacagcctgaa ggctgcagat gctgcgggc accagatc accagagatc accagagatca accagagatca accagagatca cacagagatca cacagagata cacagagagata cacagag	• /	
(vii) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (viii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:2: atagggccgg tgctgcctgc ggaagccggc ggctgagagg gtacaggagc tcgtgcgtg gccacaagcc cacagccac agccatggc tgggacctga 120 so ggtgaagat gctgcgggc aacgaattca accagaaga tcggcggc accagacta accagagata ctgtccacac gagcgtgaagat gctgcgggc accagaaga tcggcggc accagaga tcggcgtga accagagacct atctttgcca 60 sqgtgaagata accagagatca accagagacca accagagacca accagagacca accagagacca accagagacca accagagacca accagagacca accagagacca accagagaccaca accagagacca accagagaccaca accagagaccaca accagagaccaca accagagaccaca accagagaccaca accagagaccaca accagagaccaca accagagacca accagagacacaca accagagacacaca accagagacacacac	(ii) MOLEKÜLTYP: aus einzelnen ES1s durch Assemblierung und Editierung hergestellte partielle cDNA	30
(vii) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (viii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:2: atagggccgg tgctgcctgc ggaagccgc ggctgagagg cacagaccc agccacagcc cacagaccac cacagaccac agccacagaga tcgtggcgggc aacgaatcc aggtgtcct cagagactgaa ggcgcagatc acccagaaga tcgtgcagg cacagactc accagaaga tcgtgcagg cacagactc accagaaga tcgtgcagg cacagactc accagaaga tcgtgcagg cacagactc accagaaga tcgtgcagg accagactc accagaggtccc ggcttcagg cacagactc accagactc accagaaga tcgtgcaga accagactc accagaccac accagacact accagaagaccac accagacact accagaagaccac accagacaccac accagacact accagacaccac accagacaccaccacacaca	(iii) HYPOTHETISCH: NEIN	
(A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:2: atagggccgg tgctgcctgc ggcaagccgc cacagccac agcaatcc atctttgcca 60 gtacaggagc tcgtgcgtg gccacagcc cacagccac agcaatggc tgggaactga accagagatc atcgtgcgtg aacgaattcc aggttcct gagcagtca atgtcgtgt 180 cggtgaagat gcggcgaagat accagaaga tcggcgtga acaggtccc caggcttcag ggcgctgaaga accaggtccc cacagccac aggcgttgg gcgctgcagg acaagtgcc catggcaga caggctcga accaggccga acaggtccc acaggcctgg 300 acctgaagaata caagggccgc agcagcact acgaggtcg acaagtccc accagaaga accaggtccg agcagcact acgaggtcg acaagtccc acagggctgg gcgctgaaga accaggtccc acgagcctgg 360 acctgaagaata caagggccgc agcagcact acgaggtcg agcagctctg agcacctctg agcacctctg acctgaagaa gcaagtgag gggctggagg gtgtgcagga accggcccc acgagcctga 360 acctgaaggaga gcccctggag gaccagctc acgaggtcg gagcaggacc accgggcct acgagcctga acctgaggca acctgaggca acctgaggca acctgaggca acctgaggca acctgaggca acctgagggaa gcccctggag gaccagctc cgctgggga acaaggcctga aggcccctga 360 acctgagggaa gcccctggag gaccagctc acgaggccta acgagcctga acctgaggca accgggccc accggggaaccccagagaccc acgaggcca accgggccc acctgaggga accagctcc accagaggcaccagaccc acgaggccac accgaggccac accagaggccac accagaggccac accagaggcaccaccac accagaggcaccaccac accagaggccaccaccaccaccaccaccaccaccaccacc	(iii) ANTI-SENSE: NEIN	35
(A) BIBLIOTHEK: cDNA library (Xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:2: atagggccgg tgctgcctgc ggaagccggc ggctgagagg cagcgaactc atctttgcca for gtacaggagc tcgtgcgtg gcccacagcc cacagcccac agccatggc tgggacctga fixed gggacctga accagagat tcggggagg accagagat tcgggggg accagagat tcggggggg accagagat tcggcgtga ggcgtgagg acagggtcc acgggtctg ggcgtgagg acagggtcc catggtggtg acaaatgga cagggtcc acgggtcgg ggcggagg acaaatgga cagggtcg accaggaga accagagatc accagagagatca accagagagatca accagagagatca accagagagatca accagagagatca accagagagatca accagagagatca accagagagatca accagagagatca accagagaga ggcggagagagagagagagagagaga	(A) ORGANISMUS: MENSCH	40
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:2: atagggccgg tgctgcctgc ggaagccggc ggctgagagg cagcgaactc atctttgcca 60 gtacaggac tcgtgccgtg gcccacagcc cacagcccac aggcaattcc aggtgtccct gagcagttgaagat gctggcggc aacgaattcc aggtgtccct gagcagtcca atgtcggtgt 180 cagagctgaa ggcgcagatc acccagaaga tcggcgtgca cacggtctcg gcgctgcagg acagggtcc catgtccacc gagcgttgtg gcgctgagg acaaatgcga cacggcctc accggcctgagagataa caagggccgc agcagccc accagaccc accagagcacct acctgaaga cacggaccc accagaggatca accagaggatca accagaggatca accagaggatca accagaggatca accagaggatca agcagccca accagaggatca accagagatca accagagagatca accagagatca accagagatca accagagatca accagagatca accagagaga accagagatca accagagatatca accagagatca accagagatca accagagatca accagagatca acca	(vii) SONSTIGE HERKUNFT:	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:2: atagggccgg tgctgcctgc ggaagccggc ggctgagagg cagcgaactc atctttgcca 60 tggaacaggac tcgtgccgtg gcccacagcc cacagcccac agccatgggc tgggaacttga 120 tcggtgaagat gctggcggc aacgaattcc aggtgtccct gagcagctcc atgtcggtgt 180 cagagctgaa ggcgcagatc acccagaaga tcggcgtgca cgccttccag cagcgtctgg 240 ctgtccaccc gagcggtgtg gcgctgcagg acaagtgcc ccttgccagc cagggcctgg 300 ctgtccaccc gagcggtgtg gcgctgcagg acaaatgcga cgaacctctg agcatcctgg 360 gccccggcag cacggtcctg ctggtggtgg acaaatgcga cgaacctctg agcatcctgg 360 acctgaacaca acctgaagca gcaagtgag gtgtgcagga cgacctgttc tggetgacct 420 tcgaggggaa gccctggag gagctggagg gtgtgcagga cgacctgttc tggetgacct 480 acctgaagggaa gcccctggag gagccggaacaca agagcctgg gggcggagct 600 gagcgcgtca accagcatcc accagcatcc gagcaggatc aagggccgga aataaaggct gttgtaaaga 660 aagggcctca accagcatcc gagcaggatc aagggccgga aataaaggct gttgtaaaga 660 670	(A) BIBLIOTHEK: cDNA library	45
gtacaggage tegtgeegtg gedeacaged cacageded aggedeacaged aggedeacagedeacaged aggedeacaged aggedeacagedagagagedagagedagagedagagedagagagedagagedagagagedagagagedagagagag	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:2:	45
cagagetgaa ggegeagate acceagadga teggegege egecteday cagggeetgg 300 ctgtecace gageggtgtg gegetgeagg acagggtee cettgeeage cagggeetgg 360 geeceggeag caeggteetg etggtggtgg acaaatgega egaacetetg ageateetgg 360 tgaggaataa caagggeege ageageacet acgaggtgeg getgaegeag acegtggee 420 acetgaagea geaagtgage gggetggagg gtgtgeagga egacetgtte tggetgaeet 480 tegaggggaa geecetggag gaceagetee egetggggga gtaeggeete aageeeetga 540 geacegtgtt catgaatetg egeetgeggg gaggeggeae agageetgge gggeggaget 600 gaagggeetee aceageatee gageaggate aagggeegga aataaagget gttgtaaaga 660 670		
ctgtccacc gagcggtgtg gcgctgcagg acagggtcc certification of the gagcact acagggtcc acaggtcct acagggtcc acagggtcc acagggtcc acagggtcc acagggtcc acagggtcc acagggtcc acagggtcc acagggtcc accagcact acagggtcc accagcact acagggtcc accagcact acagggtcc accagcact accagaggtcc accagcact accagggtcc accagcact accagggtcc accagcact accaggggac accagcact accaggggac accagcact accagcact accagcacc accagcaccacc accagcaccaccaccaccaccaccaccaccaccaccacca		
acctgaagca gcaagtgagc gggctggagg gtgtgtagga cgaccgctc oggscggab 540 tcgaggggaa gcccctgagggctc cgctggggga gtacggcctc aagcccctga 540 gcaccgtgtt catgaatctg cgcctgcggg gaggcggcac agagcctggc gggcggagct 600 aagggcctcc accagcatcc gagcaggatc aagggccgga aataaaggct gttgtaaaga 660 670	gcccggcag cacggtctg ctggtggtgg acaaatgcga cgaacctctg agcatcctgg 360) ₅₅
g ==	acctgaagca gcaagtgagc gggctggagg gtgtgcagga cgdcccgtto cggcggagct 54 tcgaggggaa gcccctgag gaccagctcc cgctggggga gtacggcctc aagcccctga 54 tcgaggggaa gccctggag gagggggagct 60))

(2) INFORMATION ÜBER SEQ ID NO: 3:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
- (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:

5

10

15

20

25

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 3:

```
ggtgccgtca cgggacagag cagtcggtga caggacagag cagtcggtga cgggacacag
35
    tggttggtga cgggacagag cggtcggtga cagcctcaag ggcttcagca ccgcgcccat 120
    ggcagagcca gaccgactca gattcagact ctgagggagg agccgctggt ggagaagcag 180
    acatggactt cctgcggaac ttattctccc agacgctcag cctgggcagc cagaaggagc 240
    gtctgctgga cgagctgacc ttggaagggg tggcccggta catgcagagc gaacgctgtc 300
    gcagagtcat ctgtttggtg ggagctggaa tctccacatc cgcaggcatc cccgactttc 360
40
    gctctccatc caccggcctc tatgacaacc tagagaagta ccatcttccc tacccagagg 420
    ccatctttga gatcagctat ttcaagaaac atccggaacc cttcttcgcc ctcgccaagg 480
    aactctatcc tgggcagttc aagccaacca tctgtcacta cttcatgcgc ctgctgaagg 540
    acaaggggct actcctgcgc tgctacacgc agaacataga taccctggag cgaatagccg 600
    ggctggaaca ggaggacttg gtggaggcgc acggcacctt ctacacatca cactgcgtca 660
    ggccaagtgc cggcacgaat acccgctaag ctggatgaaa gagaagatct tctctgaggt 720
    gacgcccaag tgtgaagact gtcagagcct ggtgaagcct gatatcgtct tttttggtga 780
    gageeteeca gegegtttet teteetgtat geagteagae tteetgaagg tggaeeteet 840
    cctggtcatg ggtacctcct tgcaggtgca gccctttgcc tccctcatca gcaaggcacc 900
    cctctccacc cctcgcctgc tcatcaacaa ggagaaagct ggccagtcgg accctttcct 960
    ggggatgatt atgggcctcg gaggaggcat ggactttgac tccaagaagg cctacagggal020
    cgtggcctgg ctgggtgaat gcgaccaggg ctgcctggcc cttgctgagc tccttggatg1080
    gaagaaggag ctggaggacc ttgtccggag ggagcacgcc agcatagatg cccagtcggg1140
    ggcgggggtc cccaacccca gcacttcagc ttcccccaag aagtccccgc cacctgccaa1200
   ggacgaggcc aggacaacag agagggagaa accccagtga cagctgcatc tcccaggcgg1260
    gatgccgagc tecteaggga cagetgagee ecaaceggge etggccceet ettaaceage1320
    agttettgte tggggagete agaacatese ceaatetett acageteest ecceaaact1380
60
   ggggtcccag caaccctggc ccccaacccc agcaaatctc taacacctcc tagaggccaal440
   ggcttaaaca ggcatctcta ccagccccac tgtctctaac cactcctggg ctaaggagta1500
   acctccctca tctctaactg ccccacggg gccagggcta ccccagaact tttaactctt1560
   ccaggacagg gagcttcggg ccccactct gtctcctgcc cccgggggcc tgtggctaag1620
   taaaccatac ctaacctacc ccagtgtggg tgtgggcctc tgaatctaac ccacacccag1680
   cgtaggggga gtctgagccg ggagggctcc cgagtctctg ccttcagctc ccaaagtggg1740
```

tggtgggccc ccttcacgtg ggacccactt cccatgctgg atgggcagaa gacattgctt1800 attggagaca aattaaaaac aaaaacaact aacaaaaaaa aaaaa 5 (2) INFORMATION ÜBER SEQ ID NO: 4: (i) SEQUENZ CHARAKTERISTIK: 10 (A) LÄNGE: 1499 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 15 (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA 20 (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN 25 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: 30 (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 4: cggctcgagg gcgccgcgga gggtcaggtc gtttctgcgc gggctcccgg cgctgctact gctgctgctc ttcctcgggc cctggcccgc tgcgagccac ggcggcaagt actcgcggga 120 gaagaaccag cccaagccgt ccccgaaacg cgagtccgga gaggagttcc gcatggagaa 180 gttgeaccag ctgtgggaga aggcccagcg actgcatctt cctcccgtga ggctggccga 240 getecaeget gatetgaaga tacaggagag ggacgaacte geetggaaga aactaaaget 300 tgacggcttg gacgaagatg gggagaagga agcgagactc atacgcaacc tcaatgtcat 360 cttggccaag tatggtctgg acggaaagaa ggacgctcgg caggtgacca gcaactccct 420 cagtggcacc caggaagacg ggctggatga ccccaggctg gaaaagctgt ggcacaaggc 480 gaagacetet gggaaattet eeggegaaga actggacaag etetggeggg agtteetgea 540 tcacaaagag aaagttcacg agtacaacgt cctgctggag accctgagca ggaccgaaga 600 aatccacgag aacgtcatta gcccctcgga cctgagcgac atcaagggca gcgtcctgca 660 cagcaggcac acggagctga aggagaagct gcgcagattc aaccagggcc tggaccgcct 720 gcgcagggtc agccaccagg gctacagcac tgaggctgag ttcgaggagc ccagggtgat 780 tgacctgtgg gacctggcgc agtccgccaa cctcacggac aaggagctgg aggcgttccg 840 ggaggagete aagcactteg aagceaaaat egagaageac aaccactace agaagcaget 900 ggagattgcg cacgagaagc tgaggcacgc agagagcgtg ggcgacggcg agcgtgtgag 960 ccgcagccgc gagaagcacg ccctgctgga ggggcggacc aaggagctgg gctacacggt1020 gaagaagcat ctgcaggacc tgtccggcag gatctccaga gctcggcaca acgaactctg1080 aaggcattgg ggagcccagc ccggcaggga agaggccagc gtgaaggacc tgggctcttgl140 gccgtggcat ttccgtggac agcccgccgt cagggtggct ggggctggca cgggtgtcga1200 60 ggcaggaagg attgtttctg gtgactgcag ccgctgccgt cgcgacacag ggcttggtgg1260 tggtagcatt tgggtctgag atcggcccag ctctgactga aggggcttgg cttccactca1320 gcatcagcgt ggcagtcacc accccagtga ggacctcgat gtccagctgc tgtcaggtct1380 gatagteete tgetaaaaca acacgattta cataaaaaat ettacacate tgecacegga1440 aataccatgc acagagtcct taaaaaatag agtgcagtat ttaaaccaaa aaaaaaaa 1499

(2) INFORMATION ÜBER SEQ ID NO: 5:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 688 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:

5

10

15

20

25

30

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 5:
- gggccaagtg ccccagtcag gagctgccta taaatgccga gcctgcacag ctctggcaaa 60 cactctgtgg ggctcctcgg ctttgacaga gtgcaagacg atgacttgca aaatgtcgca 120 gctggaacgc aacatagaga ccatcatcaa caccttccac caatactctg tgaagctggg 180 gcacccagac accctgaacc agggggaatt caaagagctg gtgcgaaaag atctgcaaaa 240 ttttctcaag aaggagaata agaatgaaaa ggtcatagaa cacatcatgg aggacctgga 300 cacaaatgca gacaagcagc tgagcttcga ggagttcatc atgctgatgg cgaggctaac 360 ctgggcctcc cacgagaaga tgcacgaggg tgacgaggc cctggccacc accataagcc 420 aggcctcggg gagggcaccc cctaagacca cagtggccaa gatcacagtg gccacggcca 480 cggccacagt catggggcca acggccacag gggctgtta tgtcaaactg tcttggctgt ggggctaggg 600 gctggggca aataaagtct cttcctccaa ggtcagtgct tgtgtgcttc ttccagctcc 660 tgttcaacac tgcctttcca gggggtgg
- 50 (2) INFORMATION ÜBER SEQ ID NO: 6:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 909 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN

65

(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	5
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	10
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:6:	15
tcgagccgca ttcgaccaga agtcggcgca cgcggcctcg gtccggttga ctttgcggac 6 catggagggc ggcttcggct ccgatttcgg gggctccggc agcgggaagc tggacccagg 12 gctcataatg gagcaggtga aagtgcagat cgccgtggcc aacgcgcagg agctgctgca 18 gaggatgacg gacaagtgtt tccggaagtg tatagggaaa cctgggggct ccctggacaa 24 gaggatgacg gacaagtgtt tccggaagtg tatagggaaa ctgggggct ggaacaccgt 30	0 0 0 20
ctccgagcag aagtgcatcg ccatgtgcat ggaccgctac atggacgcct ggaacaccgt 30 gtctcgcgcc tacaactcgc ggctgcagcg ggaacgagcc aacatgtgac cggcgagcgc 36 gggccacccc accctgttca tttccataaa cgtgctttga gaggcggggt ccgcatgtac 42 gtactgcctg cccggggctt aggagggtgg caccggtgct gggacacacg ggactgtgtc 48 ctcgccacc cccgccctgc cccctgccag ccagtgcagc ttggatctcg ggggtgtggg	0
540 gccctgtgcc ttcctgaagt gctggcagcc cagtggcacc tccttcaggc ctttggggta 60 gccctgtgcc ttcctgaagt gctggcagcc cagtggcagc tccttcaggc ctttggggta 66 ttcccctagt gtgcccaagt cagcctcata ttctgggcgg acagcttgtc tggacttcgg 66 agttgggggt ggtcagacac cacaggagct gtcacctcct gcggatgggc aaataaattg 72 gtggaggacg gaaagaaacc tctttatttc cctcctgagg ggtctctctc tgggaagagg 84	0
tgacgcgtgt ccctggaacc ccagctcgga gggtctcagc ctcccctggg ttgggagaag 84 tccatcttc cccttagtgc caccgggctg ctgagtcacg aggaatgtgt tgctgctgcc 90 acccctgcc	0 35
(2) INFORMATION ÜBER SEQ ID NO: 7:	40
 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 	45
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	50
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	55
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	60
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	65

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 7:

5	tgcgtgctgg aatggcttcc	cgtgcgttca aaaagagctc	ctttcagcct tggtcatcct	ggtgtggggc ggctaaagga	ttgtaaacat gcagaggaaa	acggcgcgcg ataacataaa tggagacggt	120 180
	catccctgta	gatgtcatga	ggcgagctgg	gattaaggtc	accgttgcag	gcctggctgg	240
10	aaaagaccca	gtacagtgta	gccgtgatgt	ggtcatttgt	cctgatgcca	gccttgaaga	300
10	tgcaaaaaaa	gagggaccat	atgatgtggt	ggttctacca	ggaggtaatc	tgggcgcaca	360
	gaatttatct	gagtctgctg	ctgtgaagga	gatactgaag	gagcaggaaa	accggaaggg	420
	cctgatagcc	gccatctgtg	caggtcctac	tgctctgttg	gctcatgaaa	taggttttgg	480
	aagtaaagtt	acaacacacc	ctcttgctaa	agacaaaatg	atgaatggag	gtcattacac	540
15	ctactctgag	aatcgtgtgg	aaaaagacgg	cctgattctt	acaagccggg	ggcctgggac	600
	cagcttcgag	tttgcgcttg	caattgttga	agccctgaat	ggcaaggagg	tggcggctca	660
	agtgaaggct	ccacttgttc	ttaaagacta	gagcagcgaa	ctgcgacgat	cacttagaga	720
	aacaggccgt	taggaatcca	ttctcactgt	gttcgctcta	aacaaaacag	tggtaggtta	780
20	atgtgttcag	aagtcgctgt	ccttactact	tttgcggaag	tatggaagtc	acaactacac	840
	agagatttct	cagcctacaa	attgtgtcta	tacatttcta	agccttgttt	gcagaataaa	900
		agcaaactaa			_	- -	930

25

30

35

(2) INFORMATION ÜBER SEQ ID NO: 8:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 989 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 40 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- 50 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 55 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 8:

```
cgcgcgggcg tcgtgcacgc ggttgtagct gcccggcggc ggcagaagcg gcgctcgcgc 60
caagggacgt gtttctgcgc tcgcgtggtc atggaggcgc tgccgctgct agccgcgaca 120
actccggacc acggccgca ccgaaggctg cttctgctgc cgctactgct gttcctgctg 180
ccggctggag ctgtgcaggg ctgggagaca gaggagaggc cccggactcg cgaagaggag 240
tgccacttct acgcgggtgg acaagtgtac ccgggagagg catcccgggt atcggtcgcc 300
gaccactccc tgcacctaag caaagcgaag atttccaagc cagcgcccta ctgggaagga 360
```


gaagagcctg gacagatgta atgagaacta aagaaaacag atggctggag atgacattta1020 tccagggtca ctttgtcagg ccctaggact taaatcgaag ttgaactttt tttttttt1080 aaccaaatag ataggggagg ggaggaggaa gagggaggac agggagagaa aataccatgc1140 ataaattgtt tactgaattt ttatatctga gtgttcaaaa tatttccaag cctgagtatt1200 gtctattggt atagattttt agaaatcaat aattgattat ttatttgcac ttattacaat1260 gcctgaaaaa gtgcaccaca tggatgttaa gtagaaattc aagaaagtaa gatgtcttca1320 gcaactcagt aaaaccttac gccacctttt ggtttgtaaa aggtttttta tacatttcaal380 acaqqttqca caaaagttaa aataatgggg tcttttataa atccaaagta ctgtgaaaac1440 10 attttacata ttttttaaat cttctgacta atgctaaaac gtaatctaat taaatttcat1500 acagttactg cagtaagcat taggaagtga atatgatata caaaatagtt tataaagact1560 ctatagtttc tataatttat tttactggca aatgtcatgc aacaataata aattattgta1620 aactttgtgg cttttggtct gtgatgcttg gtctcaaagg aaaaaataag atggtaaatg1680 15 ttqatattta caaacttttc taaagatgtg tctctaacaa taaaagttaa ttttagagta1740 gttttatatt aattaccaaa ctttttcaaa acaaattctt acgtcaaata tctqqqaaqt1800 ttctctgtcc caatcttaaa atataaaata tagatataga agttcataga ttgactcctt1860 ggcatttcta tttatgtatc cattaaggat gagttttaaa aggctttctc ttcatacttt1920 20 tgaaaaattt cttctatgat tacagtagct atgtacatgt gtacatctat ttttcccaag1980 caatatgttt tgggtttaga gtctgagtga tgaccaa

(2) INFORMATION ÜBER SEQ ID NO: 10:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2233 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 40 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- 45 (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- 50 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 10:
- cggctcgagc ggcgcgaagt tccatgaggg gcctccggtc actgatcttg ctggacctga 60
 gttataacca ccttcggaag gtgcctgatg ggctgcctc agctcttgag cagctgtaca 120
 tggagcacaa caatgtctac accgtccccg atagctactt ccggggggcg cccaagctgc 180
 tgtatgtgcg gctgtccac aacagtctaa ccaacaatgg cctggcctcc aacaccttca 240
 attccagcag cctccttgag ctagacctct cctacaacca gctgcagaag atccccccag 300
 tcaacaccaa cctggagaac ctctacctcc aaggcaatag gatcaatgag ttctccatca 360
 gcagcttctg caccgtggtg gacgtcgtga acttctccaa gctgcaggtg ctgcgcctgg 420
 acgggaacga gatcaagcgc agggcatgcc tgccgacgcg cccctctgcc tgcgccttgc 480

55

25

30

cagootoato	gagatctgag	cayccctggc	accgggtact	gggcggagag	ccccgtggc 540)
	n+ aa+++aa+	ttaactrita.	ctddaaddic	caggalygac	catguacus out	•
	acaccctcta	tagicticii	tcctgtaggt	qqqqttaygg	ggggcgacea oo	,
	accetectact	gaggagatag	acadaaqctc	activities	agggacagaa	•
	at acasadat	ccctggatgt	tccaacccca	idaattttat	ggcccccaag .o.	•
	+datctdadd	tcatqqaact	tcaaaagtgg	calqyycaac	agtatataac or	,
++	taacaatccc	taactatata	tgagcagcac	Ligacayete	tetetetete	,
	catacaatta	ctctagactc	ccatttqttq	Cililicadaa	tataccccc 500	, 10
	ctcttctgaa	atccactica	cccactccac	LLECULULAU	agacgeeceer	,
	a a or carractic	angagacccc	aaddcatqtq	agcallegee	cagcaacccgroot	•
+	ccacactata	tataaaaata	aaaqqacacc	aggagicaci	tetacacocorr.	•
+	cccctggaaa	decaceagat.	tagaagatcac	caycalgaly	acadedecedizes	15
+ + + + +	+~~~~~~~~	Cadocaacct	caddcttada	leadlylata	gggccacacccz	•
	~~+ > ~ C + C + +	taaaaataaa	Taadactica	yaayayyaaa	ggccagaccca	•
+++	carcatetee	aatoooccaa	acacacctca	aattggctga	geegagaaagroo	•
	20++0C2++C	ttacccaaca	ctttctgcat	Codadoayu	accelacety	,
	~~~~~~~	acaaccacaT.	ggtttttaaa	qualyagaa	cacag ce eg exee.	-
	+ - +	ααaaαarτc⊤.	anatectual	quiayayaca	gaccccaggero	-
	++~c+>~ccc	aaadaaddad	gatutuutta	attiguete		•
	+ - ~ + +	ataccadete.	Taactaaaat	Cograagee	caggecaggere	-
	+acctatact	addcatacaa	CCCTCTGCLL	Luavacutu	gagetacatoria	•
		ttoctttata	DELLUGERUG	qqaqcaccca	466666666	-
	++	taaaacttaa	CCCACCTOCC	CLLLYGGCAA	ggccgggacaroo	•
	arcagt cagg	- dacaadact	attaaaaaaa	agttagtta	ageacaggeen	-
1	~~~~+~~~~	CCCTGATACT	araracaci	Luaaytatt	ccccagagaaa	- 30
	~~+~+++~~~	CTACCTTCTT	nnctccauac	Clygaascca	Caddagecace	_
	++02202220	- dadct ccdat.	araaaaaaaca	aqqctqccc	cegeeeeaggere	•
		atotosacac	catcatocci	llalaaayya		•
aggaaaagca	tgagtggtgg	ctaacctgac	caataaagtt	attttatgat	cgcaaacaaaa-	25
aaaaaaaaa	aaa				223	٥
		DEO ID NO. 4	۸.			
(2) INFORMA	TION UBER	SEQ ID NO: 1	1:			40
		EEDICTIV.				
(i) SEQUE	NZ CHARAK	IERISTIK:				
(A) LÂN	NGE: 1365 Ba	senpaare			•	
(B) TYF	P: Nukleinsäur	e				45
(C) STr	ang: einzel				•	
(D) TO	POLOGIE: line	ear				
` ,					CE dillination on	
(ii) MOLEK	ÜLTYP: aus e	einzelnen EST	s durch Asser	mblierung und	i Editierung	50
herges	telte partielle	cDNA				
_						
(iii) HYPOT	HETISCH: NE	EIN .				<i></i>
(iii) ANTI-SI	ENSE: NEIN					55
	INICT.	•				
(vi) HERKU	JNFT: GANISMUS: I	MENSCH				60
(C) OR	GAN:					
(3) 3.						
(vii) SONS	TIGE HERKU	NFT:				
(A) BIE	BLIOTHEK: cD	NA library				65

#### (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 11:

```
ggggcagget gagacagege ceagaacete ggagcaagge qttqqcaqat etqaagacag
     catgtacaca gccattcccc agagtggctc tccattccca ggctcagtgc aggatccagg 120
    cctgcatgtg tggcgggtgg agaagctgaa gccggtgcct gtggcgcaag agaaccaggg 180
    cgtcttcttc tcgggggact cctacctagt gctgcacaat ggcccagaag aggtttccca 240
    tctgcacctg tggataggcc agcagtcatc ccgggatgag cagggggcct gtgccgtgct 300
10
    ggctgtgcac ctcaacacgc tgctgggaga gcggcctgtg cagcaccgcg aggtgagggc 360
    aatgagtetg acctetteat gagetaette ceaeggggee teaagtacea ggaaggtggt 420
    gtggagtcag catttcacaa gacctccaca ggagccccag ctgccatcaa gaaactctac 480
    caggtgaagg ggaagaagaa catccgtgcc accgagcggg cactgaactg ggacagcttc 540
15
    aacactgggg actgcttcat cctggacctg ggccagaaca tcttcgcctg gtgtggtgga 600
    aagtccaaca teetggaacg caacaaggeg agggaeetgg eeetggeeat eegggaeagt 660
    gagcgacagg gcaaggccca ggtggagatt gtcactgatg gggaggagcc tgctgagatg 720
    atccaggtcc tgggccccaa gcctgctctg aaggagggca accctgagga agacctcaca 780
    gctgacaagg caaatgccca ggccgcagct ctgtataagg tctctgatgc cactggacag 840
20
    atgaacctga ccaaggtggc tgactccagc ccatttgccc ttgaactgct gatatctgat 900
    gactgctttg tgctggacaa cgggctctgt ggcaagatct atatctggaa ggggcgaaaa 960
    gcgaatgaga aggagcggca ggcagccctg caggtggccg agggcttcat ctcgcgcatg1020
    cagtacgccc cgaacactca ggtggagatt ctgcctcagg gccgtgagag tcccatcttc1080
    aaqcaatttt tcaaggactg gaaatgaggg tgggcgtctt cctgccccat gctccctgc1140
    ccccaccac ctgcctgctt gcttctctgg ctgcctggtc agtgcagagg tgcccctgc1200
    agatgttcaa taaaggagac aagtgctttc ccagctcttt tcctgcaaaa cctgccctgg1260
    gctgattctc actgtcaccc acctattcac ctgggttcat ccccatgctg ggggtggagt1320
30
    agcacacaga tgacaattgg acagccttgg aggggccaga gctgc
```

- 35 (2) INFORMATION ÜBER SEQ ID NO: 12:
  - (i) SEQUENZ CHARAKTERISTIK:
    - (A) LÄNGE: 1597 Basenpaare
    - (B) TYP: Nukleinsäure
    - (C) STrang: einzel
    - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 50 (iii) HYPOTHETISCH: NEIN
  - (iii) ANTI-SENSE: NEIN
- ₅₅ (vi) HERKUNFT:
  - (A) ORGANISMUS: MENSCH
  - (C) ORGAN:
- 60 (vii) SONSTIGE HERKUNFT:
  - (A) BIBLIOTHEK: cDNA library
- 65 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 12:

accaatggce aggccatcge tgaaagatge eggegtegee actetggeet ggatggtgat 60 aatgggtgat ggeetgeaca attteagega tggeetagea attggtgetg ettttactga 120 aggettatea agtggttaa gtaettetgt tgetgtgte tgteatgagt tgeeteatga 180 attaggtgae tttgetgtte taetaaagge tggeatgaee gttaageagg etgteettta 240 taatgeattg teagecatge tggegtatet tggaatggea acaggaattt teattggtea 300 taatgeattg teagecatge tggegtatet tggaatggea getggettat teattggtea 360	5
ttatgctgaa aatgtttcta tgtggatatt tgcacttact gctggcttat tcatgtatgt 360 tgctctggtt gatatggtac ctgaaatgct gcacaatgat gctagtgacc atggatgtag 420 ccgctggggg tatttcttt tacagaatgc tgggatgctt ttgggttttg gaattatgtt 480 acttatttcc atatttgaac ataaaatcgt gtttcgtata aatttctagt taaggtttaa 540 atgctagagt agcttaaaaa gttgtcatag tttcagtagg tcatagggag atgagtttgt 600 atgctagagt agcttaaaaa gttgtcatag tttcagtagg tcatagggag atgagtttgt 600	10
atgctgtact atgcagcgtt taaagttagt gggttttgtg attittgtat tgaatattge 300 tgtctgttac aaagtcagtt aaaggtacgt tttaatattt aagttattct atcttggaga 720 taaaatctgt atgtgcaatt caccggtatt accagttat tatgtaaaca agagatttgg 780 taaaatctgt tctgtatgtt tcagggaaaa atgtctttaa tgctttttca agaactaaca 840	15
cagttattcc tatactggat tttaggtctc tgaagaactg ctggtgttta ggaataagaa 900 tgtgcatgaa gcctaaaata ccaagaaagc ttatactgaa tttaagcaaa gaaataaagg 960 agaaaagaga agaatctgag aattggggag gcatagattc ttataaaaaat cacaaaattt1020 gttgtaaatt agaggggaga aatttagaat taagtataaa aaggcagaat tagtatagag1080 tacattcatt aaacattttt gtcaggatta tttcccgtaa aaacgtagtg aggcactttt1140	20
catatactaa tttagttgta catttaactt tgtataatac agadatetaa atatattaattaatta tgaattcaag caatatatca cttgaccaag aaattggaat ttcaaaatgt tcgtgcgggt1260 atataccaga tgagtacagt gagtagttt atgtatcacc agactgggtt attgccaagt1320	25
gagtagtaaa actttgatat atatgaggat attaaaacta cactaagtat catttgattc1440 gattcagaaa gtactttgat atctctcagt gcttcagtgc tatcattgtg agcaattgtc1500 ttttatatac ggtactgtag ccatactagg cctgtctgtg gcattctcta gatgtttctt1560 ttttacacaa taaattcctt atatcagctt gaaaaaa 1597	30
(2) INFORMATION ÜBER SEQ ID NO: 13:	35
<ul> <li>(i) SEQUENZ CHARAKTERISTIK:</li> <li>(A) LÄNGE: 1780 Basenpaare</li> <li>(B) TYP: Nukleinsäure</li> <li>(C) STrang: einzel</li> <li>(D) TOPOLOGIE: linear</li> </ul>	40
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	45
(iii) HYPOTHETISCH: NEIN	50
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	55
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	60
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 13:	



```
cgggcgcggc cggacggtag ttccccggag aaggatcctg cagcccgagt cccgaggata
     aagettgggg tteateetee tteeetggag eeegagteee gteeteagge tteeecaate 120
     caggggactc ggcgccggga cgctgctatg gacgacattt tcactcagtg ccgggagggc 180
     aacgcagtcg ccgttcgcct gtggctggac aacacggaga acgacctcaa ccagggggac 240
     gatcatggct tetececett geactgggce tgeegagagg. geegetetge tgtggttgag 300
     atgttgatca tgcgggggc acggatcaat gtaatgaacc gtggggatga caccccctg 360
     catctggcag ccagtcatgg acaccgtgat attgtacaga agctattqca gtacaaqqca 420
10
     gacatcaatg cagtgaatga acacgggaat gtgcccctqc actatqcctq tttttgqqqc 480
     caagatcaag tggcagagga cctggtggca aatggggccc ttgtcagcat ctgtaacaag 540
     tatggagaga tgcctgtgga caaagccaag gcacccctga gagagcttct ccgagagcgg 600
     gcagagaaga tgggccagaa tctcaaccgt attccataca aqqacacatt ctqqaaqqqq 660
    accaccegea eteggeeceg aaatggaace etgaacaaac actetggeat tgaetteaaa 720
15
    cagcitaact tootgacgaa gotcaacgag aatcactotg gagagotatg gaagggoogo 780
    tggcagggca atgacattgt cgtgaaggtg ctgaaggttc gagactggag tacaaggaag 840
     agcagggact tcaatgaaga gtgtccccgg ctcaggattt tctcqcatcc aaatgtgctc 900
     ccagtgctag gtgcctgcca gtctccacct gctcctcatc ctactctcat cacacactgg 960
20
    atgccgtatg gatccctcta caatgtacta catgaaggca ccaatttcgt cgtggaccag1020
     agccaggctg tgaagtttgc tttggacatg gcaaggggca tggccttcct acacacacta1080
     gagcccctca tcccacgaca tgcactcaat agccgtagtg taatgattga tgaggacatg1140
    actgcccgaa ttagcatggc tgatgtcaag ttctctttcc aatgtcctgg tcgcatgtat1200
    gcacctgcct gggtagcccc cgaagctctg cagaagaagc ctgaagacac aaacagacgc1260
    tcagcagaca tgtggagttt tgcagtgctt ctgtgggaac tggtgacacg ggaggtaccc1320
    tttgctgacc tctccaatat ggagattgga atgaaggtgg cattggaagg ccttgggcta1380
    ccatcccacc aggtatttcc cctcatgtgt gtaagctcat gaagatctgc atgaatgaag1440
    accetgeaaa gegaceeaaa tttgacatga ttgtgeetat eettgagaag atgeaggaca1500
    agtaggactg gaaggtcctt gcctgaactc cagaggtgtc gggacatggt tgggggaatg1560
    cacctcccca aagcagcagg cctctggttg cctcccccgc ctccagtcat ggtactaccc1620
    cagccatggg gtccatcccc ttcccccatc cctaccactg tggccccaag aggggggggc1680
    tcagagcttt gtcacttgcc acatggtgtc tcccaacatg ggagggatca gccccgcctg1740
35
    tcacaataaa gtttattatg aaaacaaaaa aaaggtgtgg
```

- (2) INFORMATION ÜBER SEQ ID NO: 14:
  - (i) SEQUENZ CHARAKTERISTIK:
    - (A) LÄNGE: 892 Basenpaare
    - (B) TYP: Nukleinsäure
    - (C) STrang: einzel
    - (C) Straing, ellizer
    - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
  - (iii) HYPOTHETISCH: NEIN
  - (iii) ANTI-SENSE: NEIN
  - (vi) HERKUNFT:
    - (A) ORGANISMUS: MENSCH
    - (C) ORGAN:
  - (vii) SONSTIGE HERKUNFT:
- 65 (A) BIBLIOTHEK: cDNA library

45

55

### (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 14:

ggggtaatctaa	getegtagt getegaaga caaggagag cateteete egegggtga gatecagae gggeaecaa etetggaat ggttaeete tttecacaa agttaattt	tcgccttcaa aagccgtgac ctactccgta taaggccatg ggcttcccgc ggccgtgcgc ggccgtcacc ttcctgatat attatctact gctaaagctg ctgtccctt	catgeoggaa taaggogcag tacgtgtaca ggaatcatga ctgctgctgc aagtacacca gaccaagaaa gcagaaaaga gcctcttgat ggtccattcc atctcctctt	aagaaggacg aggtgctgaa actccttcgt acaacaagcg ccggggagtt gcgctaagta gcttcttatc agacgagaat ctcattcaga ttctctctaa ttgcctctga	gcaagaagcg gcaggtccac caacgacatc ctcgaccatc ggccaagcac aacttgccaa aaaagaagca gcaaccatac ttccaaagag taatcattta gaaagagtat aqcctgtac	gctcgtctca gcccaagaag caaggcagcc cccgacaccg ttcgaacgca acctccaggg gccgtgtccg ggagggactt caattgcctt ctagatggac aatcatttac ctgttcctca ataagcttct cttaataaat gc	240 300 360 420 480 540 600 660 720 780	5 10 15
(2		TION ÜBER S		5:				25
	(A) LÄN (B) TYF (C) ST	NZ CHARAKT NGE: 992 Base P: Nukleinsäur rang: einzel POLOGIE: line	enpaare e					30
	(ii) MOLEK herges	(ÜLTYP: aus e tellte partielle	einzelnen EST cDNA	s durch Asse	mblierung und	d Editierung		35
	(iii) HYPOT	HETISCH: NE	EIN					. 40
	(iii) ANTI-S	ENSE: NEIN						40
	(vi) HERKI (A) OR (C) OF	GANISMUS:	MENSCH				•	45
	(vii) SONS (A) BIE	TIGE HERKU BLIOTHEK: c[	NFT: ONA library					50
	(xi) SEQU	ENZ-BESCH	REIBUNG: SE	EQ ID NO: 15:				
	cggcagctg	c tgtagcgaa	g agagtttgg	t actuactac	rg aatctgtga	g gcggcggtg t gctggtaca a tgaatgcat a cagtccctc	g 180	·
	gaaggtgtt atcacatat ctggtttac	t gtaaaatgt g acatcagtc c gagctgata	a tgaagaaca a gttgtttga c ccagacata	t ttcatcgat	g atctggcag a acaaagact	ga cctcagctg cg gattaaaga ct gtgttggaa	c 300 g 360 g 420	) 60 ) )
						g tagtggaag t gactgtatt		



#### 5 (2) INFORMATION ÜBER SEQ ID NO: 16:

- (i) SEQUENZ CHARAKTERISTIK:
  - (A) LÄNGE: 1196 Basenpaare
  - (B) TYP: Nukleinsäure
  - (C) STrang: einzel
  - (D) TOPOLOGIE: linear
- 25 (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
  - (iii) ANTI-SENSE: NEIN
  - (vi) HERKUNFT:

20

35

40

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
  - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 16:

```
gggcgcccgg aaggtcagcg tgtgaagtag gcgctggcaa cgcggggtta cccgctgtta 60
     ttgaggagta acggcccagc ggaccaccca ggcttgaggc agcggcggga accactcggt 120
     ttgctgcgat accatggaag gaggcggggg aagcggcaac aaaaccacag ggggattggc 180
    cggctttttc ggagccggcg gagcaggtta ctcgcacgcg gatttggctg gcgtcccgct 240
    aactggtatg aaccctctgt ctccttattt aaatgtggat ccacgatacc tcgtgcagga 300
    tacagatgag tttattttac ctaccggagc taataaaacc cggggcagat ttgagctggc 360
    cttctttacg attggaggat gttgcatgac aggggctgcg tttggtgcaa tgaatggtct 420
55
    tcggctagga ttgaaggaaa cccagaacat ggcctggtcc aaaccaagaa atgtacagat 480
    tttgaatatg gtgactaggc aaggggcact ttgggctaat actctaggtt ctctggcttt 540
    gctctatagt gcatttggtg tcatcattga gaaaacacga ggtgcagaag atgaccttaa 600
    cacagtagca gctggaacca tgacaggcat gttgtataaa tgtacaggtg gtcttcgagg 660
    gatagcacga ggtggtctga caggactaac acttaccagc ctctatgcac tatataataa 720
60
    ctgggagcac atgaaaggct ccttgctcca acagtcactc tgaagatttt gccaactcat 780
    gaatggagga cacttcagta gtcatctaga tccttttata agacagtttg gagttattct 840
    ctctcttcta cctacaatta gtttgaaaaa ttggagattt tgatttgctg tgatgaaaat 900
    cctggatggc tgaccaagac tggcacttgt tccagccatt agtgagttga agccaaagcc 960
65
    ctttggtgac tcactgagta ccatggttct gttctcctct ggagatcttg cacgtatctg1020
    ttttcctccc ccatgaacta gaaaaccact tactcccaga attcaggtcg tgcttgttag1080
```



tactatatca ccaagtccat tcatttaatg atccaaaact gtaatgttgc actgtattcc1140 aaataaaggg taaaaacaga accaaagtta taactccaac acacaaaaa aaaaaa 1196	5
(2) INFORMATION ÜBER SEQ ID NO: 17:  (i) SEQUENZ CHARAKTERISTIK:	10
(A) LÄNGE: 1105 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	15
<ul><li>(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA</li></ul>	20
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	25
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	30
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	35
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 17:	
ggcttaggcc cagcccctg ceteceetee etteceecag gtataagage tgageteagg 60 tgagetgget cetectgtet tgteteageg getgecaaca gateatgage cateagetee 120 tetggggeca getataggae aacagaacte teaceaaagg accagacaca gtgageacea 180 tetggggeca getataggae aacagaacte teaceaaagg atteagtgat gtggagaggg 240	) [*]
tgggacagtg tcggtcagcc aacgcagagg atgctcagga dttodytyd 3990 aaggagacgc 300 ccattgagac cctcatcaag aactttcacc agtactccgt ggagggtggg aaggagacgc 300 tgaccccttc tgagctacgg gacctggtca cccagcagct gccccatctc atgccgagca 360 tgaccccttc tgagctacgg gacctggtca cccagcagctg caatgactct aaactggagt 420	0 0 ⁴⁵ 0
tcaggagttt ctgggagctg attggagaag cggccadgag cggttggggag agactgtggg 540 tccgggggca ctgagaactc cctctggaat tcttgggggg tgttggggag agactgtggg 540 cctggagata aaacttgtct cctctaccac caccctgtac cctagcctgc acctgtctt ggatgctctg 660	0 0 50 0
gggagctcat gggtggagga gttttcatca gaggggggs caas gaattggtag tagggggaga 78 ggatgaatat ttgagggata aaaattgtgt aagagccaaa gaattggtag tagggggaga 84 acagagagga gctgggctat gggaaatgat ttgaataatg gagctgggaa tatggctgga 84 tatctggtac taaaaaaggg tctttaagaa cctacttcct aatctcttcc ccaatccaaa 90 tatctggtac taaaaaaggg tctttaagaa cctacttcct cgccccagg ctcctcctag 96	0 0 ₅₅ 0
ccatagetgt etgiccagig etetetetet getteedget organisms gaggetgagg102 actetgicc igggetaggg caggggagga gggagagcag ggitggggga gaggetgagg102 agagtgigae atgigggag aggaccaget gggigetigg geatigaeag aatgatggit108 gittigtate attigatiaa taaaa	0 0 5 ⁶⁰

(2) INFORMATION ÜBER SEQ ID NO: 18:

- (i) SEQUENZ CHARAKTERISTIK:
  - (A) LÄNGE: 2006 Basenpaare
  - (B) TYP: Nukleinsäure
  - (C) STrang: einzel
  - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- . (iii) HYPOTHETISCH: NEIN
  - (iii) ANTI-SENSE: NEIN
  - (vi) HERKUNFT:

20

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- 25 (vii) SONSTIGE HERKUNFT:
  - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 18:

tgcgagccga ggcgccgagc aagatggcgg cgcgagtgct gcgcgcccgc ggaggcgctg ggccggcggc ctcctgcagc gggcggcccc ctgcagcctc ctgcccaggc tccggacatg 120 gacatcttcc agcaacagat ctcgagaaga cagctggcta aaatccttat ttgtccggaa 180 agttgatcca agaaaagatg cccactccaa tctcctagcc aaaaaggaaa caagcaatct 240 atacaaatta cagtttcaca atgttaaacc ggaatgccta gaagcataca acaaaatttg 300 tcaagaggtg ttgccaaaga ttcacgaaga taaacactac ccttgtactt tggtggggac 360 ttggaacacg tggtatggcg agcaggacca agctgtccac ctctggaggt atgaaggagg 420 ctatccagcc ctcacagaag tcatgaataa actcagagaa aataaggaat ttttggaatt 480 tcgtaaggca agaagtgaca tgcttctctc caggaagaat cagctcctgt tggagttcag 540 tttctggaat gagcctgtgc caagatccgg acctaatata tatgaactca ggtcttacca 600 actocgacca ggaaccatga ttgaatgggg caattactgg gctcgtgcaa.tccgcttcag 660 acaggatggt aacgaagccg tcggaggatt cttctctcag attgggcagc tgtacatggt 720 gcaccatctt tgggcttaca gggatcttca gaccagggaa gacatacgga atgcagcatg 780 gcacaaacat ggctgggagg aattggtata ttacacagtt ccacttattc aggaaatgga 840 atccagaatc atgatcccac tgaagacctc gccctccag taaagctgta gagtttctat 900 gtgcctacat acatttctgt gacaagtatt tgtcgtaaat taattttaat tgtgtatcaa 960 gtgaaaaaga aacactgagg ttttaagctg ctgtatatag cttgtgagaa acctcttttc1020 tttaaaattt acataatcac aagaaaggaa agaattacag ttggactgat tgtgacagtg1080 ccttgtcgtc ctctttgaaa caccccgtgt tgtccagtat accttataac acttagccac1140 ttctccccac cctccagaag gggtccacgt tgaattctga atcatcttga aaataagatt1200 ccaaccacaa aaaaaattta gccatttctt tactaaaaaa aaccaaaaaa caaatctgtt1260 ttataatcac agatttttag acaaatttct tgtatcagga agaaatacaa attttgtcat1320 gtttctcaag cagtttttct gagtagtttc tgaggaggaa caaattacaa gtgtacccaa1380 taactgaaaa tgttttaact cactctcatt tgtaagcagt ccacatagta gacaatgggt1440 60 tttccaagct gggcaaggta catttaatca gtaaatcagt ttcacatcat gtattgtgat1500 gtttcaatgt gagacacaaa aacaatggct tgaaacttgt gtatcatatg tgattttgaa1560 atgaacacct tgaatagcac taatttttat ttgtggtatt tttctataac aaaacaagta1620 gctctaggaa aagaggtttt attttgtaaa cgatcatttg tgacctcaga cactctctgg1680 ctaatatttt aataagctca cagcagataa ttctgagatc atgggtgagg ggtggtgcat1740 gttgagattt aaattggcat aaagcigcat actttttgtc tagctgtttg atttcatttt1800 ttaatatagt atgccaattt tgtgactgtt accatgtgaa agtcctgttg aaatgaacaa1860

ttgtctgccc cacaatcaag aatgtatgtg taaagtgtga ataaatctca tatcaaatgt1920 caaactttta catgtgaatg attttctcaa agaacataga aaagtcaata aaatcctctt1980 aatttccaca aaaaaaaaaa aaaac	5
2) INFORMATION ÜBER SEQ ID NO: 19:	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 834 Basenpaare (B) TYP: Nukleinsäure	10
(C) STrang: einzel (D) TOPOLOGIE: linear	15
<ul><li>(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA</li></ul>	20
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	25
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	30
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	35
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 19:	
ccggaaccag aactggaatc cgcccttacc gcttgctgcc aaaacagtgg gggctgaact 60 gacctctccc ctttgggaga gaaaaactgt ctgggagctt gacaaaggca tgcaggagag 120	40
gacctetece ettigggaga gaadaactgt etgggaget gaadaactgt 180 aacaggagea gecacageca ggagggagag cettececaa gcaaacaate cagageaget 180 gtgcaaacaa eggtgcataa atgaggeete etggaccatg aagegagtee tgagetgegt 240 eceggagee aeggtggtea tggetgecag agegetetge atgetgggge tggteetgge 300 ettgetgtee tecagetetg etgaggagta egtgggeetg tetgeaaace agtgtgeegt 360 ectgetgtee tecagetetg etgagggta ececcatgte acceecaagg agtgcaacaa 420 gecagecaag gacagggtgg actgeggeta ececcatgte tggtgtttea ageceetgea 480	
gccagccaag gacagggtgg actgcggtta booodaty to tagtgtttca agcccctgca 480 ccggggctgc tgctttgact ccaggatccc tggagtgcct tggtgtttca agcccctgca 480 ggaagcagaa tgcacctct gaggcacctc cagctgcccc cggccggggg atgcgaggct 540 cggagcaccc ttgcccggct gtgattgctg ccaggcactg ttcatctcag cttttctgtc 600 cctttgctcc cggcaagcgc ttctgctgaa agttcatatc tggagcctga tgtcttaacg 660 cctttgctcc cggcaagcgc ttctgctgaa agttcatatc tggagctt tctgaggttg 720	50
cettigetee eggeaagege tietgetgaa agticatus eggagaett tetgaggitg 720 aataaaggie ecatgeteea eeegaggaca gitettegig eeigagaett tetgaggitg 720 tgettiatit etgetgegie giggaeageg ggagggigte aggggagagi etgeeagge 780 etcaagggea ggaaaagaet eeetaaggag eigeagigea igeaaggata titt 834	
(2) INFORMATION ÜBER SEQ ID NO: 20:	60
<ul> <li>(i) SEQUENZ CHARAKTERISTIK:</li> <li>(A) LÄNGE: 765 Basenpaare</li> <li>(B) TYP: Nukleinsäure</li> <li>(C) STrang: einzel</li> </ul>	65

- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
  - (iii) HYPOTHETISCH: NEIN
  - (iii) ANTI-SENSE: NEIN
  - (vi) HERKUNFT:

5

10

15

20

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
  - (A) BIBLIOTHEK: cDNA library
- 25 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:20 :

- (2) INFORMATION ÜBER SEQ ID NO: 21:
- 45 (i) SEQUENZ CHARAKTERISTIK:
  - (A) LÄNGE: 779 Basenpaare
  - (B) TYP: Nukleinsäure
  - (C) STrang: einzel
  - (D) TOPOLOGIE: linear
  - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
    - (iii) HYPOTHETISCH: NEIN
- 60 (iii) ANTI-SENSE: NEIN
  - (vi) HERKUNFT:
    - (A) ORGANISMUS: MENSCH
- 65 (C) ORGAN:
  - (vii) SONSTIGE HERKUNFT:

50

#### (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 21:	3
gcggggagtc caggttccgc cccggagccg acttcctcct ggtcggcggc tgcagcggg 60 tgagcggcgg cagcggccgg ggatcctgga gccatggggc gcgcgcgcga cgccatcctg 120 gatgcgctgg agaacctgac cgccgaggag ctcaagaagt tcaagctgaa gctgctgtcg 180 gtgccgctgc gcgagggcta cgggcgcatc ccgcggggcg cgctgctgc catggacgcc 240 ttggacctca ccgacaagct ggtcagcttc tacctggaga cctacggcgc cgagctcacc 300 ttggacctca ccgacaagct ggtcagcttc gagcagctgca ggcggccacg 360	10
gctaacgtgc tgcgcgacat gggcctgcag gagatggccg ggcagccaag 420 caccagggct ctggagccgc gccagctggg atccaggccc ctcctcagtc ggcagccaag 420	15
ccaggectge actitataga ctagtactgy getgegede type of the cagged actitataga ctagtactgy getgegede type of the cagged actitataga ctagtactgy getgegede type of the cagged at gagedagta ccagged type of the cagged at gagedagta ccagged type of the caggedagta ctagtactgy acceptage agest activated accagged type of the caggedagta ctagtactgy agest type of the caggedagtactgy agest type of the caggedagtactgy agest type of the caggedagta ctagtactgy agest type of the caggedagtactgy ages of the caggedagtac	20
	25
(2) INFORMATION ÜBER SEQ ID NO: 22:	
(i) SEQUENZ CHARAKTERISTIK:  (A) LÄNGE: 2327 Basenpaare  (B) TYP: Nukleinsäure	30
(C) STrang: einzel (D) TOPOLOGIE: linear	35
<ul><li>(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA</li></ul>	40
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	45
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	50
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 22:	55
cccacgegte egagacatta ataagettga agageagaat ecagatattg tttcagaaaa 60 aaaaccagea actgaagtgg accceacaca ttttgaaaag egetteetaa agaggateeg 120 tgaettggga gagggeeact ttgggaaggt tgagetetge aggtatgaee ecgaagggae 180 caatacaggg gageaggtgg etgttaaate tetgaageet gagagtggag gtaaccacat 240 caatacaggg gageaggtgg etgttaaate tetgaageet tatcatgaga acattgtgaa 300	) 60 ) )
caatacaggg gagcaggtgg ctgttadatc titgaagctc gagaggggg acattgtgaa 300 agctgatctg aaaaaggaaa tcgagatctt aaggaacctc tatcatgaga acattgtgaa 300 gtacaaagga atctgcacag aagacggagg aaatggtatt aagctcatca tggaatttct 360 gccttcggga agccttaagg aatatcttcc aaagaataag aacaaaataa acctcaaaca 420	)

gcagctaaaa tatgccgttc agatttgtaa ggggatggac tatttgggtt ctcggcaata 480 cgttcaccgg gacttggcag caagaaatgt ccttgttgag agtgaacacc aagtgaaaat 540 tggagacttc ggtttaacca aagcaattga aaccgataag gagtattaca ccgtcaagga 600 5 tgaccgggac agccctgtgt tttggtatgc tccagaatgt ttaatgcaat ctaaatttta 660 tattgcctct gacgtctggt cttttggagt cactctgcat gagctgctga cttactgtga 720 ttcagattct agtcccatgg ctttgttcct gaaaatgata ggcccaaccc atggccagat 780 gacagtcaca agacttgtga atacgttaaa agaaggaaaa cgcctgccgt gcccacctaa 840 10 ctgtccagat gaggtttatc aacttatgag gaaatgctgg gaattccaac catccaatcg 900 gacaagcttt cagaacctta ttgaaggatt tgaagcactt ttaaaataag aagcatgaat 960 aacatttaaa ttccacagat tatcaagtcc ttctcctgca acaaatgccc aagtcatttt1020 ttaaaaaattt ctaatgaaag aagttigtgt tctgtccaaa aagtcactga actcatactt1080 cagtacatat acatgtataa ggcacactgt agtgcttaat atgtgtaagg acttcctct1140 15 taaatttggt accagtaact tagtgacaca taatgacaac caaaatattt gaaagcactt1200 aagcactcct ccttgtggaa agaatatacc accatttcat ctggctagtt caccatcaca1260 actgcattac caaaagggga tttttgaaaa cgaggagttg accaaaataa tatctgaaga1320 tgattgcttt tccctgctgc cagctgatct gaaatgtttt gctggcacat taatcataga1380 20 taaagaaaga ttgatggact tagccctcaa atttcagtat ctatacagta ctagaccatg1440 cattcttaaa atattagata ccaggtagta tatattgttt ctgtacaaaa atgactgtat1500 tctctcacca gtaggactta aactttgttt ctccagtggc ttagctcctg ttcctttggg1560 tgatcactag cacccatttt tgagaaagct ggttctacat ggggggatag ctgtggaata1620 gataatttgc tgcatgttaa ttaattctca agaactaagc ctgtgccagt gctttcctaa1680 gcagtatacc tttaatcaga actcattccc agaacctgga tgctattaca catgctttta1740 agaaacgtca atgtatatcc ttttataact ctaccacttt ggggcaagct attccagcac1800 tggttttgaa tgctgtatgc aaccagtctg aataccacat acgctgcact gttcttagag1860 30 ggtttccata cttaccaccg atctacaagg gttgatccct gtttttacca tcaatcatca1920 ccctgtggtg caacacttga aagacccggc tagaggcact atggacttca ggatccacta1980 gacagttttc agtttgcttg gaggtagctg ggtaatcaaa aatgtttagt cattgattca2040 atgtgaacga ttacggtctt tatgaccaag agtctgaaaa tctttttgtt atgctgttta2100 gtattcgttt gatattgtta cttttcacct gttgagccca aattcaggat tggttcagtg2160 35 gcagcaatga agttgccatt taaatttgtt catagcctac atcaccaagg tctctgtgtc2220 aaacctgtgg ccactctata tgcactttgt ttactcttta tacaaataaa tatactaaag2280 actttaaaag agaagagaaa aaagaaaaga aaaaaaaag ggggaag 40

(2) INFORMATION ÜBER SEQ ID NO: 23:

- (i) SEQUENZ CHARAKTERISTIK:
  - (A) LÄNGE: 911 Basenpaare
  - (B) TYP: Nukleinsäure
  - (C) STrang: einzel
  - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
  - (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
  - (A) ORGANISMUS: MENSCH
  - (C) ORGAN:
  - (vii) SONSTIGE HERKUNFT:
    - (A) BIBLIOTHEK: cDNA library

45

50

55

60

### (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:23:

ccgggattgg ctgcggcct cgcgacctc ctgcttcct ccccgcccg cgcccctc 60 ctggtttgtg cgcccgtcg aggtcgcagg cctctttgtc agctgagtt gcgcgggctg 120 acgcgcact atgtagcggg tttcgggcgg gccacgcgtg cggacacgga acccaacccc 180 acccacct gagctccagg agttcgtcc tacaggcaca agccattgaa gctgcagg cctgttgctg 300 ctgtttcaat tgacttaagc caactatccc atgactaca atgcgaatat tgcgtactaa cttgtagcaa acccaaggc aggtgaaggaggaggaggaggaggaggaggaggaggagga	5 10 15
WATER SEO ID NO: 24:	25
(2) INFORMATION ÜBER SEQ ID NO: 24:  (i) SEQUENZ CHARAKTERISTIK:  (A) LÄNGE: 595 Basenpaare  (B) TYP: Nukleinsäure  (C) STrang: einzel	30
(D) TOPOLOGIE: linear	35
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	40
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN  (vi) HERKUNFT:	45
(A) ORGANISMUS: MENSCH (C) ORGAN:	
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	50
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:24:	55
cccacgcgtc cggccaggat actgcgagta tggcggcgtc aaaggtgaag caggacatgc 60 ctccgccggg gggctatggg cccatcgact acaaacggaa cttgccgcgt cgaggactgt 120 cgggctacag catgctggc atagggattg gaaccctgat ctacgggcac tggagcataa 180 cgggctacag ccgtgagcgc aggcgctac aaatcgagga cttcgaggct cgcatcgcgc 240 tgtagcact gttacaggca gaaaccgacc ggaggacctt gcagatgctt cgggagaacc 300 tgtagaggaga ggccatcatc atgaaggacg tgcccgactg gaaggtgggg gagtctgtgt 360 tggaggagga ggccatcatc atgaaggacg tgccgagggt gtacgggct cgcaccacag 420	60
tggaggagga ggccatcatc atgaaggacg tgcccgdccg gddggogstg cgcaccacag 420 tccacacaac ccgctgggtg ccccccttga tcggggagct gtacgggctg cgcaccacag 420	65



aggaggetet ceatgecage caeggettea tgtggtacae gtaggeeetg tgeeeteegg 480 ceaectggat ecetgeeet eeceaetggg aeggaataaa tgetetgeag aeetggaaaa 540 aagaaaggag gacaagaaaa aaegggggte agaagggaga gagtgggeee eegta 595

#### (2) INFORMATION ÜBER SEQ ID NO: 25:

- (i) SEQUENZ CHARAKTERISTIK:
  - (A) LÄNGE: 886 Basenpaare
  - (B) TYP: Nukleinsäure
  - (C) STrang: einzel
  - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:

5

10

15

20

25

30

35

40

45

50

55

60

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
  - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 25:

ctcagtatta agcaacagaa aatgagactc atcgtagact cagcatagac ccatcacaga cctgtcagag gccgattgta agctcgctgt agacccatga tagcagaccc gtagtcacta 120 gcactggatc aaatgcaagc ttataaagca ttggacacct caagtctagt cggcgagcag 180 gtcacaagct acctaactaa gaagtttgct gaactacgca gccccaatga gttcaaggtg 240 tacatgggcc acggtgggaa gccctgggtc tccgacttca gtcaccctca ttacctggct 300 gggagaagag ccatgaagac agtttttggt gttgagccag acttgaccag ggaaggcggc 360 agtattcccg tgaccttgac ctttcaggag gccacgggca agaacgtcat gctgctgcct 420 gtggggtcag cggatgacgg agcccactcc cagaatgaaa agctcaacag gtataactac 480 atagagggaa ccaagatgct ggccgcgtac ctgtatgagg tctcccagct gaaggactag 540 gccaagccct ctgtgtgcca tctccaatga gaaggaatcc tgccctcacc tcaccctttt 600 gactttagag aacagacaca agtgtatcca gctgtccacg ggtggagcta cccgttgggc 720 ttatgagtga cctggagtga cagctgagtc accctgggta agttctcaga gtggtcagga 780 tggcttgacc tgcagaagat acccaaggtc caaaagcaca aggtctgcgg aaagttctgg 840 ttgtcggctg ggcaccacgg ctcacaccta taatcgagca tttggg 886

- (2) INFORMATION ÜBER SEQ ID NO: 26:
  - (i) SEQUENZ CHARAKTERISTIK:
    - (A) LÄNGE: 1008 Basenpaare
    - (B) TYP: Nukleinsäure
    - (C) STrang: einzel



(vi) HERKUNFT:



- (A) ORGANISMUS: MENSCH
- (C) ORGAN:

5

10

- (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 27:

```
ttaaaaaaaa aaccgcctgg tcttggggtc cattaaaccc atggaacttc actatcccca
      gttagccgtc ccagcgggtt aagtggacct ccaagtgtat ggctttatgg tttatggccg 120
15
      ggttcaggcc cttaataaag tgtaattatg tattaccagc agggtgtttt taactgtgac 180
      tattgtataa aaacaaatct tgatatccag aagcacatga agtttgcaac tttccaccct 240
      gcccattttt gtaaaactgc agtcatcttg gaccttttaa aacacaaatt ttaaactcaa 300
      ccaagctgtg ataagtggaa tggttactgt ttatactgtg gtatgttttt gattacagca 360
      gataatgctt tcttttccag tcgtctttga gaataaagga aaaaaaatct tcagatgcaa 420
20
      tggttttgtg tagcatcttg tctatcatgt tttgtaaata ctggagaagc tttgaccaat 480
      ttgacttaga gatggaatgt aactttgctt acaaaaattg ctattaaact cctgcttaag 540
      gtgttctaat tttctgtgag cacactaaaa gcgaaaaata aatgtgaata aaatgtacaa 600
      atttgttgtg tttttttatg ttctaataat actgagactt ctaggtctta ggttaatttt 660
25
      taggaagatc ttgcatgcca tcaggagtaa attttattgt ggttcttaat ctgaagtttt 720
      caagetetga aatteataat eegeagtgte agattaegta gaggaagate itacaacatt 780
      ccatgtcaaa tctgttacca tttattggca tttagttttc atttaagaat Igaacataat 840
      tatttttatt gtagctatat agcatgtcag attaaatcat ttacaacaaa aggggtgtga 900
      acctaagact atttaaatgt cttatgagaa aatttcataa agccattctc ttgtcattca 960
30
      ggtccagaaa caaattttaa actgagtgag agtctataga atccatactg cagatgggtc1020
      atgaaatgtg accaaatgtg tttcaaaaat tgatggtgta ttacctgcta ttgtaattgc1080
      ttagtgcttg gctaatttcc aaattattgc ataatatgtt ctaccttaaq aaaacaggtt1140
      tatgtaacaa agtaatggtg ttgaatggat gatgtcagtt catgggcctt tagcatagtt1200
     ttaagcatcc ttttttttg aaagtgttga aagtgtgtta gcatcttgtt actcaaagga1260
     taagacagac aataatactt cactgaatat taataatctt tactagttta cctcctctgc1320
     tctttgccac ccgataactg gatatctttt ccttcaaagg accctaaact gattgaaatt1380
     taagatatgt atcaaaaaca ttatttcatt taatgcacat ctgttttgct gtttttgagc1440
     agtgtgcagt ttagggttca tgataaatca ttgaaccaca tgtgtaacaa ctgaatgcca1500
40
     aatcttaaac tcattagaaa aataacaaat taggttttga cacgcattct taattggaat1560
     aatggatcaa aaatagtggt tcatgacctt accaaacacc cttgctacta ataaaatcaa1620
     ataacactta gaagggtatg tatttttagt tagggtttct tgatcttgga ggatgtttga1680
     aagttaaaaa ttgaatttgg taaccaaagg actgatttat gggtctttcc tatcttaacc1740
45
     aacgttttct tagttaccta gatggccaag tacagtgcct ggtatgtagt aagactcagt1800
     aaaaaagtgg atttttaaaa ataactccca aagtgaatag tcaaaaatcc tgttagcaaa1860
     ctgttatata ttgctaagtt tgttctttta acagctggaa tttattaaga tgcattattt1920
     tgattttatt cactgcctaa aacactttgg gtggtattga tggagttggt ggattttcct1980
     ccaagtgatt aaatgaaatt tgacgtatct tttcatccaa agttttgtac atcatgtttt2040
50
     ctaacggaaa aaaatgttaa tatggctttt ttgtattact aaaaatagct ttgagattaa2100
     ggaaaaataa ataactcttg tacagttcag tattgtctat taaatctgta ttggcagtat2160
     gtataatggc atttgctgtg gttacaaaat acttcctctg ggttataata atcatttgat2220
     ccaattccta ttgcttgtaa aataaagttt taccagttga tataaaaaaa aaa
55
```

- (2) INFORMATION ÜBER SEQ ID NO: 28:
  - (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 3448 Basenpaare
    - (B) TYP: Nukleinsäure

65



	ing: einzel OLOGIE: line	ar .				
(ii) MOLEKÜ hergeste	ÜLTYP: aus ei ellte partielle d	inzelnen ESTs DNA	durch Assem	nblierung und	Editierung	5
(iii) HYPOTH	IETISCH: NEI	IN				10
(iii) ANTI-SE	NSE: NEIN					
(vi) HERKU (A) ORG (C) ORG	SANISMUS: M	MENSCH				15
(vii) SONSTI (A) BIBL	GE HERKUN IOTHEK: cDI	FT: NA library				20
(xi) SEQUE	NZ-BESCHRI	EIBUNG: SEQ	ID NO: 28:			25
tgtgggccac	tgtggtagtg	gaggtggggt	gtttgggagg	ctgcgtgcca	500005000	0
aaaaggtttg	cattctcaca	ttgccaggat	gataagttcc	tttccttttc	tttaaagaag 12	
ttgaagttta	ggaatccttt	ggtgccaact	ggtgtttgaa	agtagggacc	tcagaggttt 18	0 30
acctagagaa	caggtggttt	ttaagggtta	tcttagatgt	ttcacaccgg	aaggttttta 24	U
aacactaaaa	tatataattt	atagttaagg	ctaaaaagta	tatttattgc	agaggatgtt 30	0
cataaggcca	gtatgattta	taaatgcaat	ctccccttga	tttcttctgc	ctttgatgtt 36	
acagatttaa	tacagtttat	ttttaaagat	agatcctttt	ataggtgaga	aaaaaacaat 42	0 35
ctggaagaaa	aaaaccacac	aaagacattg	attcagcctg	tttggcgttt	cccagagtca 48	U
tctgattgga	caggcatggg	tgcaaggaaa	attagggtac	tcaacctaag	ttcggttccg 54	
atgaattett	atcccctqcc	ccttccttta	aaaaacttag	tgacaaaata	gacaatttgc 60	
acatettage	tatgtaattc	ttqtaatttt	tatttaggaa	gtgttgaagg	gaggtggcaa 66	0 40
gagtgtggag	gctgacgtgt	gagggaggac	aggcgggagg	aggtgtgagg	agececaaca /2	U
acttcctqtc	ctactaccqc	ctcacacqct	tcctctccag	agtgatcaag	tgtgacccgg /8	U
actocctcco	agcctaccaa	gagcagatcg	aagccctgct	ggagtcaagc	ctgcgccagg 84	0
cccagcagaa	catggacccc	aaqqccqccq	ggaggaggga	aaaggaggag	gaggaggtgg 90	
acctddcttd	cacacccacc	gacgtgcggg	acqtqqacat	ctgagggcgc	caggcaggcg 96	
ggcgccaccg	ccacccqcag	cgagggcgga	gccggcccca	ggtgctcccc	tgacagtccc102	Ü
tcctctccaa	agcattttga	taccagaagg	gaaagcttca	ttottottgt	tgttggttgt100	•
tttttccttt	gctctttccc	ccttccatct	ctgacttaag	caaaagaaaa	agattaccca114	· U
aaaactgtct	ttaaaaqaga	gagagagaaa	aaaaaaatag	tatttgcata	accetgagegizu	0 30
atagagaaga	agggttgtgc	tacagatgat	agaggatttt	ataccccaat	aatcaactcg126	0
tttttatatt	aatgtacttg	tttctctgtt	gtaagaatag	gcattaacac	aaaggaggcg132	·U
tctcqqqaqa	ggattaggtt	ccatccttta	cgtgtttaaa	aaaaagcata	aaaacattttis	U
aaaaacataq	aaaaattcag	caaaccattt	ttaaagtaga	agagggtttt	aggtagaaaa144	55
acatattctt	atacttttcc	tqataaagca	cagctgtagt	ggggttctag	gcatctctgt13t	10
actttgcttg	ctcatatgca	tgtagtcact	ttataagtca	ttgtatgtta	ttatattccgise	Ü
tagtagatgt	gtaacctctt	caccttattc	atggctgaag	tcacctcttg	gttacagtagioz	. 0
cataaaaaaaa	ccgtgtgcat	gtcctttgcg	cctgtgacca	ccaccccaac	aaaccatccaloo	60 60
gtgacaaacc	atccagtgga	ggtttgtcgg	gcaccagcca	gcgtagaggg	LCgggaaagg1/4	. 0
ccacctgtcc	cactcctacq	atacqctact	ataaagagaa	gacgaaatag	tgacataataiot	, ,
tattctattt	ttatactctt	cctatttttg	tagtgacctg	tttatgagat	gctggttttciot	o U
tacccaacgg	ccctgcagcc	agctcacgtc	caggttcaac	ccacagctac	ttggtttgtg192	(U

ttcttcttca tattctaaaa ccattccatt tccaagcact ttcagtccaa taggtgtagg1980 aaatagcgct gttttgttg tgtgtgcagg gagggcagtt ttctaatgga atggtttggg2040 aatatccatg tacttgtttg caagcaggac tttgaggcaa gtgtgggcca ctgtggtggc2100

agtggaggtg gggtgtttgg gaggctgcgt gccagtcaag aagaaaaagg tttgcattct2160 cacattgcca ggatgataag ttcctttcct tttctttaaa gaagttgaag tttaggaatc2220 ctttggtgcc aactggtgtt tgaaagtagg gacctcagag gtttacctag agaacaggtg2280 gtttttaagg gttatcttag atgtttcaca ccggaaggtt tttaaacact aaaatatata2340 atttatagtt aaggctaaaa agtatattta ttgcagagga tgttcataag gccagtatga2400 tttataaatg caatctcccc ttgatttaaa ccttctgcct ttgatgttac agatttaata2460 cagtttattt ttaaagatag atcctttat aggtgagaaa aaaacaatct ggaagaaaaa2520 10 aaccacaca agacattgat tcagcctgtt tggcgtttcc cagagtcatc tgattggaca2580 qqcatqqqtg caaggaaaat tagggtactc aacctaagtt cggttccgat gaattcttat2640 cccctgcccc ttcctttaaa aaacttagtg acaaaataga caatttgcac atcttggcta2700 tgtaattctt gtaattttta tttaggaagt gttgaaggga ggtggcaaga gtgtggaggc2760 tgacgtgtga gggaggacag gcgggaggag gtgtgaggag gaggctcccg aggggaaggg2820 gcggtgccca caccggggac aggccgcagc tccattttct tattgcgctg ctaccgttga2880 cttccaggca cggtttggaa atattcacat cgcttctgtg tatctctttc acattgtttg2940 ctgctattgg aggatcagtt ttttgtttta caatgtcata tactgccatg tactagtttt3000 agttttctct tagaacattg tattacagat gccttttttg tagttttttt tttttttatg3060 20 tgatcaattt tgacttaatg tgattactgc tctattccaa aaaggttgct gtttcacaat3120 acctcatgct tcacttagcc atggtggacc cagcgggcag gttctgcctg ctttggcggg3180 cagacacgcg ggcgcgatcc cacacaggct ggcgggggcc ggccccgagg ccgcgtgcgt3240 25 tgatgctggg cacttcatct gatcgggggc gtagatcata gtagttttta cagctgtgtt3360 attctttgcg tgtagctatg gaagttgcat aattattatt tatattataa caatgtgtct3420 acgtgccaca gggcgttgta ctgtagga

- 30 (2) INFORMATION ÜBER SEQ ID NO: 29:
  - (i) SEQUENZ CHARAKTERISTIK:
    - (A) LÄNGE: 1574 Basenpaare
    - (B) TYP: Nukleinsäure
    - (C) STrang: einzel
    - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
  - (iii) ANTI-SENSE: NEIN
- 50 (vi) HERKUNFT:
  - (A) ORGANISMUS: MENSCH
  - (C) ORGAN:
- 55 (vii) SONSTIGE HERKUNFT:
  - (A) BIBLIOTHEK: cDNA library
- 60 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 29:

gctctctgct ccggtgcagg cgcgcagggc gccctgggct gggagcaacg cgactgaccg 60 tggtcgtggg cggacggcg ctgcagcgtg gaggagctgg ggtcgctgtg ggtcgcgaac 120 agagcccggg acgtgcgcc ttggtgcacg atcctgaagg ggagctccga ggggcccggg 180 tcgccagggc tgctgcggc attcccggag cccggcgcg ggcccgcgag atactggttt 240 aggccgtccc agggctccgg gcgcacccgg tggccgctgc tgcagcggag ggagcgcgcc 300





ggtactggtt ttggagaact tgtctacaac cagggattga ttttaaagat gtctttttt 300 attttacttt tttttaagca ccaaattttg ttgtttttt tttttctccc ctccccacag 360 atcccatctc aaatcattct gttaaccacc attccaacag gtcgaggaga gcttaaacac 420 cttcttcctc tgccttgttt ctcttttatt ttttattttt tcgcatcagt attaatgttt 480 ttgcatactt tgcatcttta ttcaaaagtg taaactttct ttgtcaatct atggacatgc 540 ccatatatga aggagatggg tgggtcaaaa agggatatca aatgaagtga taggggtcac 600 aatggggaaa ttgaagtggt gcataacatt gccaaaatag tgtgccacta gaaatggtgt 660 aaaggctctt ttttttttt ttaaaagaaa agttattacc atgtattttg tgaggcaggt 720 10 ttacaacact acaagtcttg agttaagaag gaaagaggaa aaaagaaaaa acaccaatac 780 ccagatttaa aaaaaaaaa acgatcatag tcttaggagt tcatttaaac cataggaact 840 tttcacttat ctcatgttag ctgtaccagt cagtgattaa gtagaactac aagttgtata 900 ggctttattg tttattgctg gtttatgacc ttaataaagt gtaattatgt attaccagca 960 15 gggtgttttt aactgtgact attgtataaa aacaaatctt gatatccaga agcacatgaa1020 gtttgcaact ttccaccetg cccatttttg taaaactgca gtcatcttgg accttttaaa1080 acacaaattt taaactcaac caagctgtga taagtggaat ggttactgtt tatactgtgg1140 tatgtttttg attacagcag ataatgcttt cttttccagt cgtctttgag aataaaggaa1200 aaaaaatctt cagatgcaat ggttttgtgt agcatcttgt ctatcatgtt ttgtaaatac1260 20 tggagaagct ttgaccaatt tgacttagag atggaatgta actttgctta caaaaattgc1320 tattaaactc ctgcttaagg tgttctaatt ttctgtgagc acactaaaag cgaaaaataa1380 atgtgaataa aatgtaaaaa attgttgtgt ttttttatgt tctaataata ctgagacttc1440 taggtcttag gttaattttt aggaagatct tgcatgccat caggagtaaa ttttattgtg1500 25 gttcttaatc tgaagttttc aagctctgaa attcataatc cgcagtgtca gattacgtag1560 aggaagatet tacaacatte catgteaaat etgttaceat ttattggeat ttagttttea1620 tttaagaatt gaacataatt attttattg tagctatata gcatgtcaga ttaaatcatt1680 tacaacaaaa ggggtgtgaa cctaagacta tttaaatgtc ttatgagaaa atttcataaa1740 gccattctct tgtcattcag gtccagaaac aaattttaaa ctgagtgaga gtctatagaa1800 30 tccatactgc agatgggtca tgaaatgtga ccaaatgtgt ttcaaaaatt gatggtgtat1860 tacctgctat tgtaattgct tagtgcttgg ctaatttcca aattattgca taatatgttc1920 taccttaaga aaacaggttt atgtaacaaa gtaatggtgt tgaatggatg atgtcagttc1980 atgggccttt agcatagttt taagcatcct ttttttttt tttttgaaag tgtgttagca2040 35 tcttgttact caaaggataa gacagacaat aatacttcac tgaatattaa taatctttac2100 tagtitacet cetetgetet itgecacecg ataactggat atettteet teaaaggace2160 ctaaactgat tgaaatttaa gatatgtatc aaaaacatta tttcatttaa tgcacatctg2220 ttttgctgtt tttgagcagt gtgcagttta gggttcatga taaatcattg aaccacatgt2280 gtaacaactg aatgccaaat cttaaactca ttagaaaaat aacaaattag gttttgacac2340 40 gcattcttaa ttggaataat ggatcaaaaa tagtggttca tgaccttacc aaacaccctt2400 gctactaata aaatcaaata acacttagaa gggtatgtat ttttagttag ggtttcttga2460 tcttggagga tgtttgaaag ttaaaaattg aatttggtaa ccaaaggact gatttatggg2520 tctttcctat cttaaccaac gttttcttag ttacctagat ggccaagtac agtgcctggt2580 45 atgtagtaag actcagtaaa aaagtggatt tttaaaaata actcccaaag tgaatagtca2640 aaaatcctgt tagcaaactg ttatatattg ctaagtttgt tcttttaaca gctggaattt2700 attaagatgc attattttga ttttattcac tgcctaaaac actttgggtg gtattgatgg2760 agttggtgga ttttcctcca agtgattaaa tgaaatttga cgtatctttt catccaaagt2820 tttgtacatc atgtttcta acggaaaaaa atgttaatat ggcttttttg tattactaaa2880 aatagctttg agattaagga aaaataaata actcttgtac agttcagtat tgtctattaa2940 atctgtattg gcagtatgta taatggcatt tgctgtggtt acaaaatact tcctctgggt3000 tataataatc atttgatcca attcctattg cttgtaaaat aaagttttac cagttgatat3060 aaaaaaaaa 55 3070

#### (2) INFORMATION ÜBER SEQ ID NO 31:

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 2751 Basenpaare

(B) TYP: Nukleinsäure(C) STrang: einzel

65

(D) TOP	OLOGIE: linea	ır	•				
(ii) MOLEKÜ hergeste	LTYP: aus eir ellte partielle c	nzelnen ESTs DNA	durch Assem	blierung und E	ditierung		5
(iii) HYPOTH	ETISCH: NEII	N					10
(iii) ANTI-SEI	NSE: NEIN						
(vi) HERKUN (A) ORG (C) ORG	ANISMUS: M	ENSCH					15
(vii) SONSTI (A) BIBL	GE HERKUNI IOTHEK: cDN	FT: IA library					20
(xi) SEQUE	NZ-BESCHRE	IBUNG: SEQ	ID NO:31:				25
tggggctgga	gtgcactagt	ctttttgctt	ggtagttttģ	catggtttag	ggttaaaaat	60 120	
aattccgaag	atacaccagc	tcacaaatga	aaacgicage	accactcacc	tttctcccag		
							30
	1 1	ナベベベミコミナナナ	TCACACCACC	LLLautoaca	caacgoomer		
							35
		~~~~~~	araar oo aa	LLLLaaaluu	400090		
							40
							40
		2010002000	TTGALGUE	auaauaua	ucccougg-5-		45
		+	- Mamartonac	aaaccaaccc	uuuq ogg		
gagttcttaa	atccaggtag	ggaactcact	Statetecta	ctctggacct	attcaatqqc.	1200	
tgggctttag	tgagaccaca	gaccaggeee	grettacaa	taggetttta cagttetggg	ggcgggctca	1260	
							50
							55
							60
tgatttcttg				aacattaatt acttgtttat			65
		ccaatacat	- reriadulul	. עייין הייים ה			

tgcagtatgc atttcttcac accagtacat tcttaagtgt acttgtttat aaggaataac2100

ataaactaat ctgtaccttt atatatgt gtgtgtacat atatacatat ataaactgta2160

15

20

25

30

35

40

(2) INFORMATION ÜBER SEQ ID NO: 33:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 890 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

45

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 33:

```
ggcggcgggg agggggggg cggatgcggg gacagcggcc tggctaactc ctgccaggca
    gtgcccttcc cggagcgtgc cctcgccgct gagctcccct gaacagcagc tgcagcagcc 120
    atggeceege cetgggtgee egecatggge tteacgetgg egeceageet ggggtgette 180
    gtgggctccc gctttgtcca cggcgagggt ctccgctggt acgccggcct gcagaagccc 240
    tcgtggcacc cgccccactg ggtgctgggc cctgtctggg gcacgctcta ctcagccatg 300
55
    gggtacggct cctacctggt ctggaaagag ctgggaggct tcacagagaa ggctgtggtt 360
    cccctgggcc tctacactgg gcagctggcc ctgaactggg catggccccc catcttcttt 420
    ggtgcccgac aaatgggctg ggccttggtg gatctcctgc tggtcagtgg ggcggcggca 480
    gcactacegt ggcctggtac caggtgagec egetggcege eegectgete taccectace 540
    tggcctggct ggccttcgcg accacactca actactgcgt atggcgggac aaccatggct 600
60
    ggcgtggggg acggcgtg ccagagtgag tgcccggccc accagggact gcagctgcac 660
    cagcaggtgc catcacgctt gtgatgtggt ggccgtcacg ctttcatgac cactgggcct 720
    gctagtctgt cagggccttg gcccaggggt cagcagagct tcagaggtgg ccccacctga 780
   gcccccaccc gggagcagtg tcctgtgctt tctgcatgct tagagcatgt tcttggaaca 840
   tggaatttta taagctgaat aaagtttttg acttccttta aaaaaaaaa
                                                                      890
```

(2) INFORMATION ÜBER SEQ ID NO: 35:	
 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 693 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 	5
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	15
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	20
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	25
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 35:	50
cgtcctttca tccgggcgtt tgcctgcagc aagatggcgg cggtctcaat gtcagtggta 60 ctgaggcaga cgttgtggcg gagaagggca gtggctgtag ctgccctttc cgtttccagg 120 gttccgacca ggtcgttgag gacttccaca tggagattgg cacaggacca gactcaagac 180 acacaactca taacagttga tgaaaaattg gatatcacta ctttaactgg cgttccagaa 240 gagcatataa aaactagaaa agtcaggatc tttgttcctg ctcgcaataa catgcagtct 300 gagcatataa aaactagaaa agtcaggatc tttgttcctg ctcgcaataa catgcagaaa 360))
ggagtaaaca acacaaagaa atggaagatg gagtttgata tcagggaggg adgggaaca 420 cctttgatgg gttgggcatc aacggctgat cccttatcca acatggttct aaccttcagt 420 cctttgatgg gttgggcatc aacggctgat acatggat ggagctatga cattgaagag 480	0 ⁴⁰
actaaagaag atgcagttic ctttgcagaa aaaaatggat ggagetaga 34 aggaaggttc caaaacccaa gtccaagtct tatggtgcaa acttttcttg gaacaaaaga 54 acaagagtat ccacaaaata ggttggcact gactatatct ctgcttgact gtgaataaag 60 tcagctatgc agtatttata gtccatgtat aataaataca tctcttaatc tcctaataaa 66 ttggaccttt aaactacaaa aaaaaaaaaa aaa	0
(2) INFORMATION ÜBER SEQ ID NO: 36:	50
 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1054 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel 	5.
(D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	6
(iii) HYPOTHETISCH: NEIN	

- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 15 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 36:

```
gcageteaeg egaetgetge ageeggeget gggeecagge accaeegegg tgetgetget 60
     gcagatetee aegeggeegg aggatetegg ggagacagte tgeteeetea agttegeega 120
20
     ccgagtgggt caagtggage tggggccage ccggcgccge agggtcccge gctcctccgg 180
     gacgcettet teceteagea ecgacactee geteaceggg accecetgea eccetaegee 240
     gtcccctggc agtcctccat gccccagtcc cgacaacggc tcgggctcgg ctctcgcgcc 300
     cgcagagggc ctgcccctct agtcctgggt cgcggccctg cccatggggt ctcaggccag 360
     gtctctgctg gcagaggcgg tagtaaagtc cctgtacccc gtctcccagg gcacaagctc 420
     cctagectet ttggatecat tgeccetgag eteccagagt gaccecteca cetecgeage 480
     cagtgaagtg tgttgtgcct gctgaagtga tcacccccg ccccagccc tgcatcaggc 540
     cacaggtett ggetttetee ttateaceat ttgetgttat caeggeacae ageagggaat 600
    cccaggcccc cccgccaagt ggttacccaa gtcaccactc ctgacccaaa aatcaggcat 560
    ggcattaaaa cgttgcaaat tcctttactg ttatccccc caccaccagg accatgtagg 720
    gtgcagtctt tactccctaa cccgtttccc gaaaaaggtg ctacctcctt tccagacaga 780
    tgagagaggg caggaettea ggetggatee accaetggge teteeeteee ceageetgga 840
    gcacgggagg ggaggtgacg gctggtgact gatggatggg tagtgggctg agaagagggg 900
35
    actaggaagg gctattccag gctcagccct gctcctgcag ctttgccgct gagtgtagga 960
    aaaacaggca tgacagacca gggtgagggt tgtgcccagc tgggccacgg ccatgcgtgg1020
    ggtggcccaa taaacaccgt ggactcccaa aaaa
```

- 40 (2) INFORMATION ÜBER SEQ ID NO: 37:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 541 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

45

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 37:

aaaaatattt gctggaaagg acggtgggag gattacaggc gtgagccact gcgcccggcc 60 acattcagtt cttatcaaag aaataaccca gacttaatct tgaatgatac gattatgccc 120 aatattaagt aaaaaatata agaaaaggtt atcttaaata gatcttaggc aaaataccag 180 ctgatgaagg catctgatgc cttcatctgt tcagtcatct ccaaaaacag taaaaaataac 240 cactttttgt tgggcaatat gaaatttta aaggagtaga ataccaaatg atagaaacag 300 actgcctgaa ttgagaattt tgattttta aagtgtgttt ctttctaaat tgctgttcct 360 taatttgatt aatttaattc atgtattatg attaaatctg aggcagatga gcttacaagt 420 attgaaataa ttactaatta atcacaaatg tgaagttatg catgatgtaa aaaatacaaa 480 catctaatt aaaggctttg caacacaaaa gaaagaaaaaa aagaaaaagaa aagggaaagg 540 541	10
(2) INFORMATION ÜBER SEQ ID NO: 38:	20
 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1187 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 	25
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	30
(iii) HYPOTHETISCH: NEIN	25
(iii) ANTI-SENSE: NEIN	35
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	40
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	45
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 38:	
cggctcgagg ccattcacca acceggcccg caaggacgga gcaatgttct tccactggcg 60 acgtgcagcg gaggaggca aggactaccc ctrtgccagg ttcaataaga ctgtgcaggt 120 gcctgtgtac tcggagcagg agtaccagct ttatctccac gatgatgctt ggactaaggc 180 agaaactgac cacctctttg acctcagcg ccgctttgac ctgcgtrttg ttgttatcca 240	50
tgaccggtat gaccaccage agttcaagaa gegttetgtg gadgaccaga aggts 360 ctaccacate tgtgctaage ttgccaacgt gegggetgtg ceaggcacag acettaagat 360 aceagtattt gatgctggge acgaacgacg geggaaggaa cagettgage gtctctacaa 420	55
ggcccggaag aaggagcgg agaaacgcag ccaggacctg cagaagctga tcacagcggc 540 agacaccact gcagagcagc ggcgcacgga acgcaaggcc cccaaaaaga agctacccca 600 gaaaaaggag gctgagaagc cggctgttcc tgagactgca ggcatcaagt ttccagactt 660 caagtctgca ggtgtcacgc tgcggagcca acggatgaag ctgccaagct ctgtgggaca 720	60


```
gaagaagatc aaggccctgg aacagatgct gctgcagctt ggtgtggagc tgagcccgac 780
acctacggag gagctggtgc acatgttcaa tgagctgcga aggacctggt gctgctctac 840
gagctcaagc aggcctgtgc caactgcgag tatgagctgc agatgctgcg gcaccgtcat 900
gaggcactgg cccgggctgg tgtgctaggg ggccctgcca caccagcatc aggcccaggc 960
ccggcctctg ctgagccggc agtgactgaa cccggacttg gtcctgacc caaggacacc1020
atcattgatg tggtgggcgc acccctcacg cccaattcga gaaagcgacg ggagtcggcc1080
tccagctcat cttccgtgaa gaaagccaag aggcccacg gggtgtgggc1140
gacgctgtta tgtaaataga gctgctgagt tggaaaaaaa aaaaaaa 1187
```

(2) INFORMATION ÜBER SEQ ID NO: 39:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2281 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- _{so} (iii) ANTI-SENSE: NEIN

15

20

25

35

40

- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 39:

```
gggtagaagt cggtagagcc agaaactcac ttttgatgtt ggtgtgcccc tagtggcgag
    ctggattcta aatcgtgccc tttattccct gcagccctga agttcagtcc atcttgaaga 120
    totoccaaco toaggagoot gagottatga atgocaacoo ttotoctoca coaagtoott 180 -
    ctcagcaaat caaccttggc ccgtcgtcca atcctcatgc taaaccatct gactttcact 240
    tettgaaagt gateggaaag ggeagttttg gaaaggttet tetageaaga cacaaggeag 300
    aagaagtgtt ctatgcagtc aaagttttac agaagaaagc aatcctgaaa aagaaagagg 360
    agaagcatat tatgtcggag cggaatgttc tgttgaagaa tgtgaagcac cctttcctgg 420
    tgggccttca cttctcttc cagactgctg acaaattgta ctttgtccta gactacatta 480
    atggtggaga gttgttctac catctccaga gggaacgctg cttcctggaa ccacgggctc 540
    gtttctatgc tgctgaaata gccagtgcct tgggctacct gcattcactg aacatcgttt 600
55
    atagagactt aaaaccagag aatattttgc tagattcaca gggacacatt gtccttactg 660
    acttcggact ctgcaaggag aacattgaac acaacagcac aacatccacc ttctgtggca 720
    cgccggagta tctcgcacct gaggtgcttc ataagcagcc ttatgacagg actgtggact 780
    ggtggtgcct gggagctgtc ttgtatgaga tgctgtatgg cctgccgcct ttttatagcc 840
   gaaacacage tgaaatgtae gacaacatte tgaacaagee tetecagetg aaaccaaata 900
60
   ttacaaatto cgcaagacae eteetggagg geeteetgea gaaggacagg acaaagegge 960
   teggggeeaa ggatgaette atggagatta agagteatgt ettettetee ttaattaaet1020
   gggatgatet cattaataag aagattaete eeeettttaa eeeaaatgtg agtgggeeea1080
   acgacctacg gcactttgac cccgagttta ccgaagagcc tgtccccaac tccattggca1140
```

caaagetttt cetategeag tgttteagtt etttatttte cettgtggat atgetgtgtg1680 aacegtegtg tgagtgtgt atgeetgate acagatggat tttgttataa geateaatgt1740 gacaettgea ggacaetaea acgtgggaca ttgtttgttt etteeatatt tggaagataa1800 gacaettgea ggacaetaea ggtggaca ttgtttgttt etteeatatt tggaagataa1800	5 10 15
	25
(2) INFORMATION ÜBER SEQ ID NO:40 : (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1759 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel	30
(D) TOPOLOGIE: linear	33
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	40
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	45
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	50
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 40:	55
gcggcggcgg ttgaactgac tcggagcgag gagacccgag cgagcagacg cggccctggc 60 gcccgcctg cgcactcacc atggcgatgc atttcatct ctcagataca gcggtgcttc 120 tgtttgattt ctggagtgtc cacagtcctg ctggcatggc cctttcggtg ttggtgctcc 180 tgcttctggc tgtactgtat gaaggcatca aggttggcaa agccaagctg ctcaaccagg 240 tactggtgaa cctgccaacc tccatcagcc agcagaccat cgcagagaca gacggggact 300 tactggtgaa cctgccaacc tccatcagcc agcagacca caggtggtat ttgtgtcact 360	60
ctgcaggctc agattcattc cctgttggca gaacccacca caggtggtat ttgtgtcact 360	65

ttggccagtc tctaatccat gtcatccagg tggtcatcgg ctacttcatc atgctggccg 420 taatgtccta caacacctgg attttccttg gtgtggtctt gggctctgct gtgggctact 480 acctagetta eccaettete ageacagett agetggtgag gaacgtgcag geactgagge 540 tggagggaca tggagccccc tcttccagac actatacttc caactgccct ttcttctgat 600 ggctattcct ccaccttatt cccagccct ggaaactttg agctgaagcc agcacttgct 660 ccctggagtt cggaagccat tgcagcaacc ttccttctca gccagcctac atagggccca 720 ggcatggtct tgtgtcttaa gacagctgct gtgaccaaag ggagaatgga gataacaggg 780 gtggcagggt tactgagccc atgacaatgc ttctctgtga ctcaaaccag gaatttccaa 840 agatttcaag ccagggagaa gggttcttgg tgatgcaggg catggaacct ggacaccetc 900 ageteteetg ettigtgeet tatetacagg ageategee attggaette etgacetett 960 ctgtctttga gggacagaga ccaagctaga tcctttttct cacctttctg cctttggaac1020 acatgaagat catctcgtct atggatcatg ttgacaaact aagtttttt tatttttccc1080 15 attgaactcc tagttggcaa ttttgcacat tcatacaaaa aaatttttaa tgaaatgatt1140 tcattgattc atgatggatg gcagaaactg ctgagaccta tttccctttc ttggggagag1200 aataagtgac agctgattaa aggcagagac acaggactgc tttcaggctc ctggtttatt1260 ctctgataga ctgagctcct tccaccagaa ggcactgcct gcaggaagaa gatgatctga1320 tggccgtggg tgtctgggaa gctcttcgtg gcctcaatgc cctcctttat cctcatctt1380 20 cttctatgca gaacaaaag ctgcatctaa taatgttcaa tacttaatat tctctattta1440 ttacttactg cttactcgta atgatctagt ggggaaacat gattcattca cttaaaatac1500 tgattaagcc atggcaggta ctgactgaag atgcaatcca accaaagcca ttacatttt1560 tgagttagat gggactctct ggatagttga acctcttcac tttataaaaa aggaaagaga1620 gaaaatcact gctgtatact aaatacctca cagattagat gaaaagatgg ttgtaagctt1680 tgggaattaa aaacaaacaa atacatttta gtaaatatat aaattttaaa tagaaaaaaa1740 agaaaaagt agcaggggt

50

(2) INFORMATION ÜBER SEQ ID NO: 41:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1447 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear

40

35

- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 45 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- 50 (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- 55 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 60 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 41:

ggtctacctc tggggataac cgtcccagtt gccagagaaa caataacgtc attatttaat 60 aagtcatcgg tgattggtcc gcccctgagg ttaatcttaa aagcccaggt tacccgcgga 120 aatttatgct gtccggtcac cgtgacaatg cagctgagga acccagaact acatctgggc 180

tgcgcgcttg cgcttcgctt cctggccctc grttcctggg acatccctgg ggctagagca 240 ctggacaatg gartggcaag gacgcctacc atgggctggc tgcactggga gcgcttcatg 300 tgcaaccttg actgccagga agagccagat tcctgcatca gtgagaagct cttcatggag 360 atggcagagc tcatggtctc agaaggctgg aaggatgcag gttatgagta cctctgcatt 420 gatgactgtt ggatggctcc ccaaagagat tcagaaggca gacttcaggc agaccctcag 480 cgctttcctc atgggattcg ccagctagct aattatgttc acagcaaagg actgaagcta 540 cgctttcctc atgggattcg ccagctagct aattatgttc	5
gggatttatg cagatgttgg aaataaaacc tgcgcaggct tccctgggag ttttggatac 660 tacgacattg atgcccagac ctttgctgac tggggagtag atctgctaaa atttgatggt 660 tgttactgtg acagtttgga aaatttggca gatggttata agcacatgtc cttggccctg 720 aataggactg gcagaagcat tgtgtactcc tgtgagtggc ctctttatat gtggcccttt 780 aataggactg cagaagcat tgtgtactcc tgtgagtggc ctctttatat gtggcccttt 780	10
caaaagccca attatacaga datccgacag tactggacac datggacaccacttt taaccaggag 900 attgatgatt cctggaaaag tataaagagt atcttggact ggacatcttt taaccaggag 900 agaattgttg atgttgctgg accagggggt tggaatgacc cagatatgtt agtgattggc 960 aactttggcc tcagctggaa tcagcaagta actcagatgg ccctctgggc tatcatggct1020 gctcctttat tcatgtctaa tgacctccga cacatcagcc ctcaagccaa agctctcctt1080 caggataagg acgtaattgc catcaatcag gaccccttgg gcaagcaagg gtaccagctt1140 caggataagg acgtaattgc catcaatcag gaccccttgg gcaagcaagg gtaccagctt11200	15
agacagggag acaactttga agtgtgggaa cgacctctct caggcttagt ctgggctgta1200 gctatgataa accggcagga gattggtgga cctcgctctt ataccatcgc agttgcttcc1260 ctgggtaaag gagtggcctg taatcctgcc tgcttcatca cacagctcct ccctgtgaaa1320 ctgggtaaag gagtgacaga gtcacataaa tcccacaggc1380	20
aggaagctag ggttctatga atggattta aggttatgat gooddaan actttaaaat1440 actgttttgc ttcagctaga aaatacaatg cagatgtcat taaaagactt actttaaaat1440 gtttaaa	25
(2) INFORMATION ÜBER SEQ ID NO: 42:	30
 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 831 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 	35
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	40
(iii) HYPOTHETISCH: NEIN	45
(iii) ANTI-SENSE: NEIN	43
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	50
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	55
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 42:	
ggagteecte ttgeteacee ttgaettgga aaaaceagtt tetettttat tgtetgttae 60 taatetetat tetaaaaatt eageteaatt eteaaceata eteeaaaete tetetttee 120 agetaeettt aeteeetete etteaattee aettteetet gettaetttt tttttttte 180 tgaeagggte teaetttgte geeegggeag gagtgeagtg geteaatett gggeteactg 240	60 65
	0.5

	cagcctcaac	ctcccagagg	cggggtctca	ccatgttgcc	cagactggtc	ttgaactcct	300
	gagertaage	aattcacctg	cctcgqcctc	ccaaagtgtt	gggatcacag	acatanaan	260
5	ougua c c c g g	cereargere	litticatta	aagagagaaa	tcaactattc	200200000	420
.,		cccaygagic	allicigitc	Cacacaaaca	tactaaacta	aatactttat	400
	acaggaeeee	agrygagrga	agttcaggag	gcatqqaqct	gacaaccatg	aggeeteage	540
	ageoucegee	accaccyccy	Cogocaccac	Cataacaaca	acsacsacsa	Cagcagoago	600
	agcagcagca	gcaayaytaa	ctctgactta	ggaatagaga	cadccadada	Gasatatast	660
10	caacgaagga	gacacccgga	grgrgcgrgc	ttcttcagag	agacagataa	tagacacatt	720
	ggaaaaagca	ccycagaigg	gaaccttaat	ctttctttc	taaaattgat	actataaaaa	780
	tttgcgtttt	ctgtaacttg	taaaaactaa	aagttgcccg	tctactgaaa	a	831

- (2) INFORMATION ÜBER SEQ ID NO: 43:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 528 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 30 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- ³⁵ (vi) HERKUNFT:

15

20

25

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- 40 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 45 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 43:

```
acgaagctga ctcctggcca ggccagccc tggttcccta cccataccc tgtgagcttg 60 cgcagctcac gccttacctc cctcccttg gtctgcagat ctctcacttc aagaattccga 120 agtacatcg gtttgtcaca aactaccccc tcaccattc aggaaagatc cagaaattca 180 gccggttggc ttgactctc cctgtcagaa tgcaacctgg ctttatgcac ctagatgtcc 300 ccagcaccca gttctgagcc aggcacatca aatgtcaagg aattgactga acgaactaag 360 agctcctgga tgggtccggg aactcgcctg ggcacaaggt gccaaaaggc aggcagcctg 420 cccaggccct ccctcctgtc catccccac attcccctgt ctgtccttgt gatttggcat 480 aaagaagcttc tgttttcttt ggctaaaaaaa aaaaaaaaa aaaaaaaaa
```

- (2) INFORMATION ÜBER SEQ ID NO: 44:
- (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1027 Basenpaare

(B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergesteilte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xii) SEQUENZ-BESCHREIBUNG: SEQ ID NO:44: ggctttgtcc tttgctcctg ctccacgtg accatgggac cttaaagcgt tgcaggttcc for treatful trea		
(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (iii) ANTI-SENSE: NEIN (iii) ANTI-SENSE: NEIN (iii) ANTI-SENSE: NEIN (ivi) HERKUNFT:	(C) STrang: einzel (D) TOPOLOGIE: linear	5
(iii) ANTI-SENSE: NEIN (iii) ANTI-SENSE: NEIN (iv) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:44: ggctttgtcc tttgctcctg ctccccgtgg accatgggac cttaaagcgt tgcaggttcc 60 acctottgaga ctgcgaggat ctccaaggagg ggcttcaact cttgagattg gacattgtgac gagggac acatgggac ggttctaact cttgagattg gacattgtgac gagggacaaa actgcgaggac ctccaaggac ggttctaact cttgagattg gacactggac ggttcaact acatgggac gggacaaa acatgtttttg gaaattcaca ccaaggtgag ggcactgag ggagagaaa catgagagaaa atggtagaaa atggtagaaa atggtagaaa tggtaattgagaa ttgctatagaa atggtactgag ggcactgagag ggaagagag ggaagagag ggaattagaa gggtatttaag gggtttttaag gggtttttaag gggttttaagagg ctcacaggag ggcactgagatt tttgactgaa gggttttaagaact gggtttttaag gggttttaagaact gggtttttaagagggtttttaagaact gggtttttaagaact ggggttttaatt gactgagaaa acctcagagag ggggtaat tttttaattg gactgagagat ttttgattgaact gagggttttaatta gagggttttaagaact gagggttttaagaact gagggttttaaaaaa acatggaat acaaaatggaa agggtttaaa atggagaactgag ggggttttaagaact gagggttttaagaact gagggtttaagaact gagggttttaagaact gagggtttaagaact gagggtttaagaact gagggtttaagaact gagggtttaagaact gagggtttaagaact gagggtttaagaact gagggtttaagaact gagggtttaagaact gagggtttaag	(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	10
(vii) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (viii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:44: ggctttgtcc tttgctcctg ctcccgtgg accatgggac cttaaagcgt tgcaggttcc for ggcgttctaga agaggtgtgg ctctatggagat tccatggagac dtcatttgc ttcaaagtgc cattggagagac cattgagac gggcttcaac gggggacaaa accattgtaga acatggtgg gaaattcaca cattgtgca gagggacaaa gccacagcaa ggcacattaca file gggaggaaac cattattgg gaaattcaca cattgtgca gagggacaaa gccacaggca ggcacatta file gggaggaaac cattattga gaaataaat caaggtgg gccacattga ggcacaatta file gggaggaaac cataaaatag gagaaaata caagtagg gccacagca ggcacagt ttgatttag 360 caacttgtt gtttcaaaa taggtgcaca tgttagacaat tcagacagt ttgatttag 360 cacacttgt gagagaaaa tcagaattga aatgtgagaa tcagaaatag tgccatagg ggagaaag tccacactga gaagaataa aacttgaa catgagaaa atgtgagaa tgcatagg gagaaaag tcacaacttga gagagaaaa tgcatagaa aggattttag gagagaaaa aacttgac ggtttccta aggagtaga aggagtaga tgcatagg gagagaaag 540 cacacctgg ggccactga gagagaaaa aacttgac ggtttcaca gagagtgta tgcatagg gagagaaag 540 cacactgtt tgttacaaag ttttacaag gagagaaa aggagtataa aacttagac Goo aatgaataa aacatggaa ttacaagaga ggttttta ggaggagaaa aggtttttacaagg gagggtaaa attttaatttt gaacaactg ggggttacaaa aacattagaa ggggggtaaa ttttaatttt gaacaactg gggggtaaa attttaaatta gagaggggaaaa attagaaacc ggggggtaaa ttttaatta gaacttgggaaaa aactagaactg gggggggggg	(iii) HYPOTHETISCH: NEIN	10
(vii) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (viii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (Xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:44: ggctttgtcc tttgctcctg ctcccgtgg accatgggac cttaaaagcgt tgcaggttcc attcttgaga agaggttgtgg ggcttccag ggcgttacat acctcctgcc attctctaa 120 accatggag ctctcttgaga ctgcaggat ctccaggcag ggttetcact cttggagtct gaccaattac 180 gcgttacaa actgttttg ttcaaatggc caattgtgca gagggacaaag gccacaagca cactcttcaa 240 ggaggtaccaa actgtttttg gaaagtaaca ccaaggtggg gcccacagca gacagggggac cggttaccta ggttetcatt gttcttcaaa tcaggtgcc aaattaaqtga tcagacaggt tggattttag 360 acacgtggcc cgaggggct tacaatagtga tcagacagt tcagacagt tggtttccaa dagaggaaac cataaaatag gatgaacaat caaataagtaa tcagacaggt tggattctgaa ataagtaacaa acacgttttag gaggataa dagaagaac cataaatag gatgaacaat ggttagcaga tgcctatggg agaggaaaag 540 cgtactgaa aatggtccag gacaggagga tggaattaga tcccaggtag tcccaacgtt 480 accgtatctgaa aatggatcaa taacggtgag tggatcttg gaggttaaa aacttagtca ctttcaacagtca ggtgtcttcta gaggttaaa aacttagtca ftttpcccctg gcgtttcctaa ggaggtgaaaa atggagaaaa ggtttttaag tttttcaaacg tcttgcacaag gacgagatga cacacactaca ggtttttccaaa gaggtgaaaa attttaatag ggtttttcaa ggtgttcttc ttttpccacac taccacctg gttttccaaa acaactgtca gttttattag gagggaaaa attttaatta gugttttccaaaa cactggtaa gttttattag gatgggaaaa attttaatta tttttttt	(iii) ANTI-SENSE: NEIN	
(vii) SONSTIGE HERKUNFT:	(A) ORGANISMUS: MENSCH	
(Xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:44: ggcttttgtcc tttgctcotg ctcccgtgg accatgggac cttaaagcgt tgcaggttcc 60 tgatttggac agaggtgtgg ggccttcaag gccgttacat acctcctgcc attcttgagactggagat ctccaggcag ggttctcacc tctggagttc gaccattac 180 gcgttacata actgttttg acattgttga gagggacaaa gcgcacagaca cactcttcaa 240 gcgttacaca actgttttg gaaattcaca ccaaggtagg gcccactgca ggcagtggc 300 acacgtggcc cgaggggctg tggaacgggt cccggaactg tcagacatgt ttgattttag 360 gctttccttt gttcttcaaa tcaggtggcc aaataagtga tcagacatgt ttgattttag 360 gctttccttt gttcttcaaa tcaggtgcc aaataagtga tcagacatgt ttgattttag 360 gctttcttag ttcttcaaa tcaggtgcc aaataagtga tcagacatgt ttgattttag 360 gctttctaa acatggaca atgtgacac atgtaaaatg cacacatgtt 480 aaataagta cacaactgaca actgttagaaa atgtgagcac tgttagcaga tgcctatggg agaggaaag 540 gctatctgaa aatgtgccag ggcaggagg tggaaatgga tcccagagt cctcacacgg foo aatgaatat acatgtgcct taccaggtg ggtgttttc gaagataaaa acatttagtc 660 aatgaatta acatgtgcct taccaggtg ggtgttttc gaagataaaa acattttgccctg gcgtttccta agtacgaaaa ggttttaaa ggtttttcaaa caggattctg cccctgagg ttgttatttt ttgtcctatt 780 tttttccacg taccacaca cacacacac gaggtgtaat ttttaatttg atcagaactg 840 atttttcaaa acactgtca gttttattga gatggaaaa atgtaaacct atttttata 900 attttataaaaa cactggaaat acaaatgaga agagtctaca ataaattaaa acatggaada acaaatgaga agagtctaca ataaataaaa acatgtaca gttttattga gatggaaaa atttttaatta 900 attttataaaaa cactggaat acaaatgaga agagtctaca ataaattaaa attttttata 900 atttaaaaaa cactggaat acaaatgaga agagtctaca ataaattaaa attttttaa 900 atttaaaaaa 1027 ttaaaaaa (2) INFORMATION ÜBER SEQ ID NO: 45: (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 2160 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellite partielle cDNA	(WID SONSTICE HERKLINET:	20
ggctttgtcc tttgctcctg ctccccgtgg accatgggac cttaaagcgt tgcaggttcc agaggtgtgg ggccttccag gccgttacat acctcctgcc aattcttaa 120 gacggttcctgg ctcctggaggat ctccaggaggat ctccaggaggat ctccaggaggat ctccaggaggat ctccaggaggat gagggacaaa actgtttttg ttcaaatggc caattgtgca gaaggacaaa actgtttttt gttctcaaatgac caatggagac ccaaggaggaggacaaa ccaaggtagg ggcaccagtga gaaattacaa ccaaggtagg ggcaccagtga ggaaattacaa ccaaggtagg ggcaccagtga ggcaccagtga gaaattacatggagaaa taggagaaat caaaaatag gatgaaaatc aatgtgaa atggagaaat tacaaggagaa tgtaaaatga tccaaggagagaaatgaatata acatggcct gagaaggaga tgtaaaatga tccaagagagagaaatgaatata acatggcct gagaaggagagagagagagagaaatgaatata acatggcct tttgcccctgagagagagagaaatgaaaaagga tcccaaggtagaaaaggaggagcaatgagaaaggagaaatgaaaaaggaaaggagaaatgaaaaaggaaaaggagaaaaggagaaaaggagagaaaaggaga	(A) BIBLIOTHEK: cDNA library	
ggctttgtcc tttgctcctg ctcccgtgg accatgggac cttaaaaggt tgcaggttcc 60 ctcttgaga ctgcgaggat ctccaggcag ggttctcacc tctgaga ctgcgaggat ctccaggcag ggttctacc tctgagagat ctccaaggcag ggttctacc tctgagagat ctccaaggcag ggttctacc tctgagagat ctccaaggaga caattgtga gagggacaaa acctattaca 240 gaccaagtaga caacaggaga caattgtga gagggacaaa ggcacagtga ggcacattga ggcagatggc cggttacat acaggagac caaggagggt tggaacggtg ccaggaactg caaataagtag caataaaatag gatgaaaatc aaaattga caaaaataga atggagaca ctgaaaatag caaaaataga aatggagaa atggagaaa atggagaga ggaaggaga aatgaataa acaggatga ctgaaaatag caaaatagaataa acaggagaga atggaacat tggtagagaa caaaggaga aatggaataa acaggatga ctccaagag ctgaaaatag aatggagaaa atggagaaaat caaggatga caaaggaga aatggaataa acaaggatga caaagtga caaagtga caaactgga aatgaataa acaaggatga caaaggaga agggaaaag 540 tccaagagt ctcaacactg 600 aattattag aggagaaaa caaaatagaga aggagaaaag 540 tccaaactga ggttctcaa aggagaaaaa aactctaga ggttttcaaa gggttttta ggaaatagaa aactctaga ggtttttcaaa gggtttttaag gggtttttaag ggtttttaag gggtttttaag tttgtccaaa aacttaga caaaaatgaga atgaaaaaa acaactagaa acaacacac ggaggttat ttttaattt attgaaact tttttaattag atgaaaaaa acaaactgaa acaacacacac gagggttata atgaaacat tatgggagaga atagaacac ggaggttata atgaaacat acaagaactg agaggttata acaaaatgaga agagtctaaa acaagaacg atgaaaaaa acaacactgaa ggaggttata acaaaatgaga agagtctaaa atgaaacac acaagaacg gtatttaata 960 atgaaaaaaa acaacactgaa ggaggttata acaaaatgaga agagtctaaa atgaaacac acacacac gagggttat atgaaacac acacagaacac acacacacacacacacacac		25
tcatttggac agaggtgtgg ctccagg gggttctcac tctggagtact tctctgaga ctgcaggag ctccaggag gggggacaa ctccaggcag gggggacaa gggggacaaa catttttgc ttcaaatggc caattgtgca ggagaggacaa catgttttg gaaatcaca caaggtgcg gccactgca ggcacactgca ggcacactgca ggcacactgca ggcacactgca ggcacactgca tcagacatgt tcatttatta 360 tcaggagaaac cataaaatag gatgaaaatc aaattgaga aatgtgacaa aatgtgagaa acctgaaaatg caataaatag gatgaaaatc aaattgaga aatgaataat acaggacacagaaagagaaaaaaac cataaaatag gatgaaaatc acaggaggacaaa acaggacacagagaga acattgacag aatgaataat acaggacacagagaga acaattaaag ggccacactgaa ggccacactgaa ggcacactga ggcacactga tcagacactgt ttgatttaag 360 tcacacactgtt 480 agaggaaaaa 540 acaacttgaacacac ggattactaaa acaatggacac taacaagaa acaatgaataa acaactgaca ggggttctccaaa agagaaaaaa ggttttaaag tctccaacactg 660 gaggataaaa aacactcacac gaggtttataa ggggggaaaa acaactgaca ggttttattaag gggggttttt caaggattatt ttgtccaaa acaacacac gaggagaaaa acaacacac gagatttata gaggggaaaa acaactgaaaaa acaacacac gtttaattaa gaggggaaaa acaacacac gtttaaaaaa acaacaggaa acaaacacac gaggggatttt aacaagaacgt gagggtattt aacaagaacgt gagggtattaaaacct attttaata 900 aacactggaat acaacatgaaa acaactgaaaaa acaacacac gagaggtattaaaacac acacacacacacacacacacacacacac	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:44:	
ttcattttgc ttcaaatggc caattgtgca gagggacaaa gccaacagca ggccactgca ggcggttaccaa actgtttttg gaaattcaca caaggtcgg accagtggc cgaggggctg tggaacgggt cccggaactg ccaaggtcgg cgtttccttt gtctctaaaatag gatgaaaatc taaggagaaa caattgtgac cataaaatag gatgaaaatc caaaatgga aattgtgac cctgaatgaaa atgtgacaaa acgttcgaa aatggacaaa acgtgacaa acgtgacaaa acggaaaaa acggaaaaaa acggaaaaaaa acggaaaaaa acggaaaaaa acggaaaaaaaa		30
cggttaccaa actgtttttg gaaattcaca cacaggtgg geedatagaa gaactgatgacaacaggggac cgaggggctg tggaacggg cccggaactg tcagacatgt ttgattttag 360 cacacgtggagaaac cataaaatag gatgaaaac catagatgacaa atgtgagcaa atgtgagcaa aatgaatata acatggcet tacacagggaga aatgaataa acatggcet tacacaggtga ggcttttc gaagataaaa gggtcatttaaaggttttaaaggattcttcaacaggttttaaaggattcttcaacaacaggttttacaaaaa acaactgtca gcgttccta aggagtcataaaaa acaactgtca gttttattga gaaggaaaaa atgtaaacct tatggagaaa acaacactgtca gttttattataa gaaggagaaaa atgtaaacct attttatta gaagaggaaaa atgaaaacac attttatta gaagaggaaaa atgaaaacac atttttatta gaagaggagaaaa atgaaaacac atttttatta gaagaggaaaa atgaaaacac atttttatta gaagaggataat acaaatgaga atagagacac aacacacaa acacactgca gttttattaa gaagaggtttt aacaaaaaa acactggaat acaaatgaga atgaggagaaa atgaaacact atttttatta 960 atgaggttttaaaaaa cactggaatt acaaaatgaga agaggtcaca ataaattaag atttttgaat1020 atgaggataaaa acacgaacgg gaaggtatat acaaaatgaga atgaggataaca ataaattaag atttttgaat1020 atgaggataaaa acactggaate acaaatgaga agaggtcaca ataaaattaag atttttgaat1020 atgaggataaaa acacggaacgggaggaggaggaggaggaggaggaggagga	ctctctgaga ctgcgaggat ctccaggcag ggttctcacc tctggageca gaodatota 240	
tagagaaac cataaaatag gatgaaaatc aagtaadatc cotgatgaaa atgtagacac cotgatgaaa atgtagacac tgtagagaa tgcctatggg agaggaaaag 540 tgaaatgaga tgggtcttc agagattatg ccttaaaaaa gagattctg gaggataaaa agaactgaaa acaactgaa tatgacact atatgggaaga acaactgaca gttttatga gagggaaaa atgtaaaact tatgggaaga acaactgaca gtttattga gagggaaaa atgtaaacct attttaatta 900 atgtatatta agaggtttaaaaaa cactggaatt acaaaatgaga gaggtttaaa agaggttataa acaagaacgt gtattatta 960 atgtataaaaa cactggaatt acaaaatgaga agaggtctaca ataaaataag attttgaat1020 atgtataaaaa 1027 (2) INFORMATION ÜBER SEQ ID NO: 45: (i) SEQUENZ CHARAKTERISTIK: (A) LÂNGE: 2160 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	eggttaccaa actgtttttg gaaattcaca ccaaggtcgg geecaetged ggotspergal 360 acacgtggcc cgaggggctg tggaacgggt cccggaactg tcagacatgt ttgattttag 360 acacgtggcc caagagggcc aaataagtga tcagcacagc tgcttccaaa 420	35
tttttccacg tactccacag ccaacatcac gaggtgaat ttttaatttg atcagaactg 840 ttaccaaaaa acaactgtca gttttattga gatggaaaa atgtaaacct attttatta 900 cttaagactt tatgggagag attagacact ggaggtttt aacaagaacgt gtatttatta 960 atgttcaaaa cactggaatt acaaatgaga agagtctaca ataaaattaag attttgaat1020 ttaaaaaa (2) INFORMATION ÜBER SEQ ID NO: 45: (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 2160 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	taggagaaac cataaaatag gatgaaaatc aagtaadatg catagatgto dadagatgto dadagatgto dadagatgto dadagatgto taaacttgac cetgatgaaa atgtgagcac tgttagcaga tgcctatggg agaggaaaag 540 cgtatetgaa aatggtecag gacaggagga tgaaatgaga teccagagte etcacacetg 600 aatgaattat acatgtgeet taccaggtga gtggtettte gaagataaaa aactetagte 660 aatgaattat acatgtgeet taccaggtga gtggtettte gaagataaaa actetagte 720	40
(2) INFORMATION ÜBER SEQ ID NO: 45: (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 2160 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	gtctcctttc atgactttaa caggattctg cccctgagg tgtaattete esgebatt 840 tttttccacg tactccacag ccaacatcac gaggtgtaat ttttaatttg atcagaactg 840 ttaccaaaaa acaactgtca gttttattga gatgggaaaa atgtaaacct atttttatta 900 cttaagactt tatgggagag attagacact ggaggttttt aacagaacgt gtatttatta 960 atgttcaaaa cactggaatt acaaatgaga agagtctaca ataaattaag atttttgaat1020	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 2160 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA		50
(A) LÄNGE: 2160 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	(2) INFORMATION ÜBER SEQ ID NO: 45:	
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	(A) LÄNGE: 2160 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel	55
·	(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung	60
	(iii) HYPOTHETISCH: NEIN	65

- (iii) ANTI-SENSE: NEIN
- 5 (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 15 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:45:

```
acttcctcca agtgataatc cagattttga tccagaagag gatgaaccac gcttgaggcc
     tcttggcctc acatacagtt ggtatatgaa ttcttcttga gatttttgga gagccctgat 120
     ttccagccta gcattgcaaa acgatacatt gatcagaaat tcgtacaaca gctcctggag 180
20
     ctttttgata gtgaagatcc cagagaacgt gacttcctga agactgttct gcaccgaatt 240
     tatgggaaat ttcttggatt aagagcattc atcagaaaac aaattaacaa cattttcctc 300
     aggtttatat atgaaacaga acatttcaat ggtgttgctg aacttcttga aatattagga 360
     agtattatca atggctttgc attgccactg aaagcagaac ataaacaatt tctaatgaag 420
     gttcttattc ctatgcatac tgcaaaagga ttagctttgt ttcatgctca gctagcatat 480
     tgtgttgtac agttcctgga gaaagataca acactaacag agccagtgat cagaggactg 540
     ctgaaatttt ggccaaaaac ctgcagtcag aaagaggtga tgtttttagg agaaattgaa 600
     gaaatettag atgteattga accaacacag tteaaaaaaa ttgaagagee aetttteaag 660
     cagatatcca agtgtgtatc cagttctcat tttcaggttg cagaaagggc attgtacttc 720
     tggaataacg aatatattct tagtttgatt gaggagaaca ttgataaaat tctgccaatt 780
     atgtttgcca gtttgtacaa aatttccaaa gaacactgga atccgaccat tgtagcactg 840
     gtatacaatg tgctgaaaac cctaatggaa atgaatggca agcttttcga tgaccttact 900
     ageteataca aagetgaaag acagagagag aaaaagaagg aattggaacg tgaagaatta 960
     tggaaaaaat tagaggagct aaagctaaag aaagctctag aaaaacagaa tagtgcttac1020
     aacatgcaca gtattctcag caatacaagt gccgaataaa aaaaaagcct cccacctctg1080
     ccggataggc agagttttgt atgctttttt gaaatatgta aaaattacaa aacaaacctc1140
     atcagtataa tataattaaa aggccaattt tttctggcaa ctgtaaatgg aaaaatatat1200
40
     ggactaaacg tagccctgtg ctgtatcatg gccatagtat attgtaacct ttgtctaatc1260
    attggattta ttgtgtcact tctgaagttt cacagaaatg aatgaatttt atcatctatg1320
    atatgagtga gataattatg ggagtggtaa gaattatgac ttgaattctt ctttgattgt1380
    gttgcacata gatatggtag tctgctctgt atatttttcc cttttataat gtgcttttca1440
    cactgctgca aaccttagtt acatcctagg aaaaaatact tcctaaaata aaactaaggt1500
    atcatectta ecettetett tgteteacee agaaatatga tggggggaat taeetgeeet1560
    aacccctccc tcaataaata cattactgta ctctggaatt taggcaaaac cttaaatctc1620
    caggettttt aaageacaaa atataaataa aagetgegaa agtaaaccaa aattetteag1680
    attigtteete atgaatatee eeetteetet geaattetee agagtggtaa cagatgggta1740
50
    gaggcagete aggtgaatta eccagettge eteteaatte attecteete tteetetaa1800
    aggetgaagg cagggeettt ccagteetea caacetgtee tteacetagt ccctcctgac1860
    ccagggatgg aggctttgag tcccacagtg tggtgataca gagcactagt tgtcactgcc1920
    tggctttatt taaaggaact gcagtaggct tcctctgtag agctctgaaa aggttgacta1980
    tatagaggtc ttgtatgttt ttacttggtc aagtatttct cacatctttt gttatcagag2040
55
    taccattcca atctcttaac ttgcagttgt gtggaaaact gttttgtaat gaaagatctt2100
    cattggggga ttgagcagca tttaataaag tctatgtttg tattttgcct taaaaaaaa2160
```

- (2) INFORMATION ÜBER SEQ ID NO: 46:
- (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 642 Basenpaare

(B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	5
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	
(iii) HYPOTHETISCH: NEIN	10
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	15 20
(vii) SONSTIGE HERKUNFT:	20
(A) BIBLIOTHEK: cDNA library	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:46 :	25
cgacgggccg cgcgcctggc gcatgcgcgc cggcgaccac gcctaaatag ccgcagcctc 60 tgcgcgtcgc cctccacggt taccccggct ctccgccct ccttctcgcg gcgctcgagg 120 tgcgcgtcgc cctcacggt taccccggct cagatcaag accggcgtgg tgaagcggtt 180	30
ggtcaaagaa aaagtgatgt atgaaaaaga ggcaaaacad caagaagaad agttcgaaaa 300 aatgagagct gaagacggtg aaaattatga cattaaaaag caggcagaga tcctacaaga 300 atccaggatg atgatccag attgccagcg caggttggaa gccgcatatt tggatcttca 360 acggatacta gaaaaatgaaa aagacttgga agaagctgag gaatataaag aagcacgttt 420 acggatacta gaaaaatgaaa aagacttgga agaagttttct cgtatggggt ggtttttgca 480	35
agtactggat tragtgadgt tagaagertg dadetteele system agtactggat tragtgadgt tagaagertg dadetteele system agtactggat tagatgate tagatgetg tagatgate cartggtaat tagtggtcaag 540 gagggatgag gaartgtroga ttggtttta gragggtaraa atataagatt regtttgrogta 600 arttgaraat graaagaaa tgggggrace regattaaaaa aa 642	
(2) INFORMATION ÜBER SEQ ID NO: 47:	
 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1415 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel 	45
(D) TOPOLOGIE: linear	50
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	55
(iii) HYPOTHETISCH: NEIN	•
(iii) ANTI-SENSE: NEIN	60
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	60
(C) Chonia.	65

(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library

5

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:47:

```
ggcatctggc agagggggt ggggctgggc cagctggggt agagcggagg agcgggtgcc 60
10
     ggctgaagcg gggcggtggg cgcggagcga atgggggcac cgacaccact cctcaccggc 120
     agecgggtge tgagggeege ggtgtgggtg egeggaeagt cagggegeag gtgggeageg 180
     cgcacggcct gccagccgg ggcgccagaa tcctgcgctg cggggccgag aggggcgccg 240
     cgcccgccgc agcctggagc tttccgcgaa cctcggggcg cccatgacgg cggcggcgac 300
15
     ggctaccgtg ctcaaggagg gcgtgctgga gaagcgcagg gcggggctgc tgcagctgtg 360
     gaageggaae getgegteet caeegaaege gggetgeage tettegagge caagggeaeg 420
     ggcggccggc ccaaggagct cagcttcgcc cgcatcaagg ccgtggagtg cgtggagagc 480
     accgggcgcc acatctactt cacgctggtg accgaagggg cggcgagatc gacttccgct 540
     gccccctgga agatcccggc tggaacgccc agatcaccct aggcctggtc aagttcaaga 600
20
     accagcagge catecagaca gtgegggeee ggeagageet egggaeeggg accetegtgt 660
     cctaaaccac cgggcgcacc atctttcctt catgctaccc accacctcag tgctgaggtc 720
     aaggcagctt cgttgttccc tctggcttgt gggggcacgg ctgtgctcca tgtggcaagg 780
     tggaaggcat ggacgtgtgg aggaggcgct ggagctgaag gaatggacga gccctgggag 840
    gagggcagaa ggctacgcag ggctgaggat gaagatgcag cccctggatg gtcccagact 900
    ctcaggacat geccagetea ggggettega gecacaggee tggeeteata tggeatgagg 960
    gggagctggc ataggagccc cctccctgct gtggtcctgc cctctgtcct gcagactgct1020
    cttagccccc tggctttgtg ccaggcctgg aggagggcag tcccccatgg ggtgccgagc1080
    caacccctca ggaatcagga ggccagcctg gtaccaaaag gagtacccag ggcctggtac1140
    ccaggcccac tccagaatgg cctctggact caccttgaga agggggagct gctgggccta1200
    aagcccactc ctgggggtct cctgctgctt aggtcctttt gggaccccca cccatccagg1260
    ccctttcttt gcacacttct tcccccact ctacgcatct tccccccact gcggtgttcg1320
35
    gcctgaaggt ggtgggggtg aggggggtt tggccattag catttcatgt ctttccccaal380
    atgaagatgc cctgcaaagg gcagtaacca caaaa
```

- (2) INFORMATION ÜBER SEQ ID NO: 48:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2949 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 55 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- 60 (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- 65 (Vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

40

45

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:48:

			•			
gcgcaggcgc a	agtggtgagc	ggcaacatgg	cgtccaggtc	taagcggcgt	gccgtggaaa 60	5
	~~~~~~~~~~	daticccccad -	TCCAGCGCGG	Lyayyaayay	gaaaaagaag aac	
+	CARTARAGAC	natdatdaca	uluacaayya	aaayyatyuu	gaggaogagg	
++	aasaataaat	attgaatttg	aadcttattc	Colalcayar	aatgattatg 210	
	~~~~++=	CACCACCTTT	ttctaaauuc	LUCLYLYAAC	actiguaguae 300	10
	~++>>++C22	cadaaccata	ttaaaaatat	yattaaytaa	acggacgere eve	
	chatratrat	atqqatqaaq	atdaddtill	Lygilliala	agectecaa 120	
	and a second	acceaging	TTGGGGGGGL	llaayayiig	geceaagee .ee	
	~~~~+~+~~~	aadadcatdd	ttgaacagci	qqacaayccc	ccadacgaca	
	+ ~+ ~~~~~	ctcctaagtg	aaadattcal	Laalyecool	ccacagareg cor	15
	~+ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	cttcacaaac	aactoocoo.	uucacacaya	accaacaage oo	
	~+ ~ ~ + a ~ + + +	taccttctga	ttagtaagac	atttytygaa	gcaggaaaaa .e.	
	22222CCT	accaacaaaa	adaaadctuc	quiadigitie	geadacgeag .vv	
	+++ctatcac	aaddcaattc	tcaagttcaa	Clacicagig	caggaggaga 010	20
	+ ~+ ~~~~~~~	aaatootctt	TEGALGACUL	accaatyacy	ccccegegaa Jou	
- 4 4 4 4-	nattecamer.	racaadatda	acdaaatcat	qqataaatty	adagaatate 200	
	~ ~ ~ ~ ~ + + + ~ ~ ~	aatooacagt	aataaactta	llllylaaa	actaccagaaruu	
	~~~+++>cta	aaaaactcad	actttattca	qailaayiii	CECEGGGGGGGGGG	25
and the second s	+ ~ + ~ ~ ~ ~ + ~ + ~ +	atatataaca	Catttacada	atattagete		
		~=+++======	cttttccaad	aduaduadaa	gca cggag ccr	
	~~~~+ ~~ = + =	a a a a c t t c t a	TETETELALL	laaaalaala	tacacag tg trait	
	aaatee	tataastata	aaatcccutct	Legequeaty	Cacacacacac	30
	+~~	acctaccttt	anaacccuuc	Lacativity	geeegeegggeee	30
	++C	+ < + < + < > < + < > < < < < < < < < <	TTCAGGGCAC	Gellacacaca	cccgccgccc	
and the second second		~~~~=T=~~TT	arccactact	LUCLULAGAA	cgccccccc	
	~~~~~~++~~	+ raaatarra	TTOTOGLACC	authuataa	ucug cccupp	
كالمراجع بالمراجع والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراج	~~~~+~~+ <i>cc</i>	tastataatt	otteteadaa	atquigaatt	cacggaagagaaa	35
	~~~~+~+	taataattaa	graaccadac	aggggatgea	googagoaaon	
	at caacatta	antanttacc	tgatccatca	acatteegay	caaccegeaer	
	NENEEDCOCO.	ctttctttat	atttagagtg	LLLLLLLLL	agooaaaagaaa	
	+-~~~	cdattcdctt	dataattici	aayaytttay	Cecguacaaca	40
	c+aaatacta	aacaqttqaq	gaagtaatca	cyacaccacc	CCCCCCCCCCCC	
		~~~********	tradtaadcc	LLULaaaLyu	cgacgagggara	
	acttcaaat	- rtaaaaatut	CTTCCaacaa	quaaggcag	CC CC C C C C C C C C C C C C C C C C	
	+~+~a	accaatttoo	addlullace	atqqccqcqc	00900090	45
1. 4 4 4		cacaddacdc	raadaladac	LLCGagagaa	geggaeeaagee	7.5
	~~~~+~~+~~	- trocaaarro	agaaauattt	Coatcattat	0009090090	
1 I I.		- atacctacat	CAAACEELUL	. uu tuttuutuu	cg ccca agains	
		Caatgratal			25-2-35	
		- ctaacttcaa	TOOCGLCALU		0444	50
1 4		- + + c c - c a a c a	ana waaucca	ayaattiget		
	+	- actacataac	gadcuautti	. UCCCCCCCCC		
+			aacaaaluuu	actigagetige	coodgaraa	
		* ++>>c>cc>c	TOTTOLLUA	Lagactigge	uccccccc	55
		~	TTTCTCLLL	. uualacaaay	gaadaadaa	
		ttaggttaga	TCCLLualay	acayettea	agactic	
	+ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- maaamactac	' aatolicacci	. Leceleace	~g = g = g =	
	~~~~~t > > > >	tadactcaaa	i adaat.ccllu	. Lyayuutuau	caaggaaaaa	
aacctccaca	qqqtqtttat	. ttttcactto	tatgacaggo	: acgtttccat	au cauguu	
gagtttgct					2949	
5-55						

- (2) INFORMATION ÜBER SEQ ID NO: 49:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 665 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
- (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- vi) HERKUNFT:

5

10

15

25

30

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 49:

```
cctagacccg tccggtcgca gactgtcctc cgagacgctt cctgtccggt gagcgtcgac 60

cgactgaaac ggcggccat aatacattgc gatggcggt aggcgttggg gggcggagcc 120

agggccggaa gtagagcgga ggtggtggcg gcggaggctt tggcagctcg ggactgagtg 180

caagaatcag catgattctt cagaggctct tcaggttctc ctctgtcatt cggtcagccg 240

tctcagtcca tttgcggagg aacattggtg ttacagcagt ggcatttaat aaggaacttg 300

atcctataca gaaactcttt gtggacaaga ttagagaata caaatctaag cgacagacat 360

ctggaggacc tgttgatgct agttcagagt atcagcaaga gctggaggg gagctttta 420

agctcaagca aatgtttggt aatgcagaca tgaatacatt tcccaccttc aaatttgaag 480

atcccaaatt tgaagtcatc gaaaaacccc aggcctgaag aaataaagta aaattaatct 540

ggtaatttgt cacggattag ttgacaact agttagaagt ttcagaataa acatgcattt 600

cataactgtc aaatgttctt ttaattctga gtccaaataa attatttggt gatgttgaaa 660

aaaaa
```

- 50 (2) INFORMATION ÜBER SEQ ID NO:50 :
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 904 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN

65

(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	5
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	10
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:50 :	15
tcaccaccga gtgatgtgct gaggcctcct gcagtgdatg ctccttcdat todaystate aggcagtgcc attcagcaca ggagagctct ttttgccttt ggctttcaat tccaaaacat 12 gatttaattt ctaactaaat tagtatggca ctagttatga agtatctgct taaaaaccctt 18 gatttaatta tcctgtggat ttaaaaactc taattccatg ttttcttccc atctgcctta 24 catcatgata tcctgtggat ttaaaaactc taattccatg ttttcttccc atctgcctta 24	10 ²⁰
aaacttaaaa acaaaagcaa gitgiccita aaagticiit tittaagtaa dosgoogaaatcc 42 tactgcaaat titctatgca aacttgcctc ctgctgttat ctgtgaagct caggaaatcc 42 aaacatttgt gittcaacaa gggacagtaa actgtgtgtt tacagccaaa agaaatgcct 48 aaacatttgt gittcaacaa tittaagga 54	20 30 ²⁵ 40
tcataaagat gttttcatat ctgaactcct aaataagtga aattacagta gtottcataa 66 acaaaatact ttttaggtag ccatgettga gactttttaa aaatataact ttttccttaa 66 agttttcagc tatagcaaaa ggtagttatg tatgccagac ctaatatgag ctgccaccaa 72 cacccctaga actttcagcc atggtgtctt cagaattgta gcgcatttct gaatctaggc 78 cacccctaga actttcagcc atggtgtctt cagaattgta gcgcatttct gaatctaggc 78	60 20 30 80 40
aaatcctcct tttacccgtt gaatgttttg aatgccttgd ddddaday gagtaaaaac 90 gatctctagg aagggctgtt aggtaccaat tctgtttttt caactttgga aggtaaaaac 90 cccg	04 35
(2) INFORMATION ÜBER SEQ ID NO: 51:	40
 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1239 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel 	. 45
(D) TOPOLOGIE: linear	50
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	
(iii) HYPOTHETISCH: NEIN	5:
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	6
(vii) SONSTIGE HERKUNFT:	. 6

(A) BIBLIOTHEK: cDNA library

5

35

40

45

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 51:

```
cgaaggcagg cgcaaggagc aagcgcagat tgtgggcggc tgtgtcagct gacccaaggg
     gccttcgagg tgccttaggc cgcttgcctt gctctcagaa tcgctgccgc catggctagt 120
10
     cagteteagg ggatteagea getgetgeag geegagaage gggeageega gaaggtgtee 180
    gaggeeegea aaagaaagaa eeggaggetg aageaggeea aagaagaage teaggetgaa 240
    attgaacagt accgcctgca gagggagaaa gaattcaagg ccaaggaagc tgcggcattg 300
    ggatcccgtg gcagttgcag cactgaagtg gagaaggaga cccaggagaa gatgaccatc 360
15
    ctccagacat acttccggca gaacagggat gaagtcttgg acaacctctt ggcttttgtc 420
    tgtgacattc ggccagaaat ccatgaaaac taccgcataa atggatagaa gagagaagca 480
    cctgtgctgt ggagtggcat tttagatgcc ctcacgaata tgaagcttag cacagctcta 540
    gttacattct tatgatatgg cattaaatta tttccatata ttatataata ggtccttcca 600
    ctttttggag agtagcaaat ctagcttttt tgtacagact tagaaattat ctaaagattt 660
20
    catcttttta cctcatattt cttaggaatt taatggttat atgttgtctt tttttcctat 720
    gtcttttggc tcaagcaaca tgtatatcag tgttgacttt ttctttctta gatctagttt 780
    aaaaaaaaa aaaaccacat aacaattctt tgaagaaagg aagggattaa ataatttttt 840
    tecetaacae tttettgaag gteagggget ttatetatga aaaagtagta aatagtiett 900
25
    tgtaacctgt gtgaagcagc agccagcctt aaagtagtcc attcttgcta atggttagaa 960
    cagtgaatac tagtggaatt gtttgggctg cttttagttt ctcttaatca aaattactag1020
    atgatagaat tcaagaactt gttacatgta ttacttggtg tatcgataat catttaaaag1080
    taaagactct gtcatgcaaa tttaacccca tattttttt ttccctgtct ccgtgacaac1140
    cagtggttct tcatttttga tcatgcgaaa tgcatcttga cccagatggt ctgcagaact1200
    tcacttagga cattagcaca caaatagcac acatatctt
                                                                      1239
```

(2) INFORMATION ÜBER SEQ ID NO:52:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 966 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 50 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- ⁵⁵ (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- 60 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 52:

gccctgagga ccctagtcca acatggcggc gcccagcgga gggtggaacg gcgtcggcgc 60 aggcttgtgg gccgcctcc tectaggggc cgtggcgctg aggccggcgg aggccggcgg acatggcgct ttgacgtggg gcccggcggc gtcgtgcatt ccttccca 180 catcggggc ccgggggaca atatacgtg tatgttcact tacgcctctc aaggagggccatgggggggggg	5 10 15
(2) INFORMATION ÜBER SEQ ID NO: 53:	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 556 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel	25
(D) TOPOLOGIE: linear	30
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	35
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	40
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	40
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	45
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:53:	50
taaagctgcg gcggcggttc gcgtttctcg tgtccgcttg actgacagct gcgcggcggg 60 agcgggcggc gcgagcggga ggcggcggcg cagagcttgg ggcttccttg gtcgcaccca 120 ccacctgcct gcccactggt cagccttcag ggaccctgag caccgcctgg tctctttcct 180 gtggccagcc cagaactgaa gcgctgcggc atggcgcgc cctgcctcca ggccgtcaag 240 gtggccagct tcgccttcaa cctgctcttc tggctgggag gctgtggcgt gctgggtgtc 300 tacctcatgt tcgccttcaa cctgctcttc tggctggag tgtcctctc cttcccgtcc 360	55
ggcatctggc tggccgcac acaggggagc ttcgccacgc tgtcctcttc cttcccgtcc 360 ctgtcggctg ccaacctgct catcatcacc ggcgcctttg tcatggccat cggcttcgtg 420 ggctgcctgg gtgccatcaa ggagaacaag tgcctcctgc tcactttctt ccggtgctgc 480 tggttggagg ccaccatcgc catcctcttc ttcgcctaca cggacaagat tgacaggtat 540 gcccagcaag acctga	60

(2) INFORMATION ÜBER SEQ ID NO:54:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1349 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:

5

10

15

20

25

30

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:54:

```
cgggggagtg aggagaaagg gggggcttgg cggccggagg aggagtaggt gcgggtgaag
     atggcggcag ccgaggccgc gaactgcatc atggaggtgt cctgtggcca ggcggaaagc 120
35
     agtgagaagc ccaacgctga ggacatgaca tccaaagatt actactttga ctcctacgca 180
     cactttggca tccacgagga gatgctgaag gacgaggtgc gcaccctcac ttaccgcaac 240
     tccatgtttc ataaccggca cetettcaag gacaaggtgg tgctggacgt cggctcgggc 300
     accggcatcc tctgcatgtt tgctgccaag gccggggccc gcaaggtcat cgggatcgag 360
40
     tgttccagta tctctgatta tgcggtgaag atcgtcaaag ccaacaagtt agaccacgtg 420
     gtgaccatca tcaaggggaa ggtggaggag gtggagctcc cagtggagaa ggtggacatc 480
     atcatcagcg agtggatggg ctactgcctc ttctacgagt ccatgctcaa caccgtgctc 540
     tatgcccggg acaagtggct ggcgcccgat ggcctcatct tcccagaccg ggccacgctg 600
45
     tatgtgacgg ccatcgagga ccggcagtac aaagactaca agatccactg gtgggagaac 660
     gtgtatggct tcgacatgtc ttgcatcaaa gatgtggcca ttaaggagcc cctagtggat 720
     gtcgtggacc ccaaacagct ggtcaccaac gcctgcctca taaaggaggt ggacatctat 780
     accetcaage tegaagacet gacettcace tecceettet geetgeaagt gaageggaat 840
     gactacgtgc acgeectggt ggestacttc aacategagt teacaegetg ccacaagagg 900
50
     accggettet ecaccagece egagteceeg tacacgeact ggaageagae ggtgttetae 960
    atggaggact acctgaccgt gaagacgggc gaggagatct tcggcaccat cggcatgcgg1020
    cccaacgcca agaacaaccg ggacctggac ttcaccatcg acctggactt caagggccag1080
    ctgtgcgagc tgtcctgctc caccgactac cggatgcgct gaggcccggc tctcccgccc1140
55
    tgcacgagcc caggggctga gcgttcctag gcggtttcgg ggctccccct tcctctccct1200
    ccctcccgca gaagggggtt ttaggggcct gggctggggg gatggggagg gcacatcgtg1260
    actgtgtttt tcataactta tgttttata tggttgcatt tacgccaata aatcctcagc1320
    tggggaaaaa aaaaaaaaa aaaaagga
60
```

(2) INFORMATION ÜBER SEQ ID NO: 55:

(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 2021 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	5
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	10
(iii) HYPOTHETISCH: NEIN	15
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	20
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	25
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:55:	30
ctctgtctca aaagagaaaa aaaaagaaaa gtaaccttca gagattctta gaagagttgc 60 ccattcacac ccacgccctt gcccaaggct ggcccactta gagcgaaact taacttttgt 120 ctggatggga agagaagtaa gtctaccccg aggttgccat gttgaagagt gagaggtcca 180 agtgattctg tgcattgaaa ccaagacacc ccacccagaa cacttcttcc ctccctcagc 240 ccaaaccaaa ggctgggtt ctcatctcca agtggctgtt ctccaacttt cccaagccgc 300 ccaaaccaaa ggctggggtt ctcatctcca agtggctgta atttgaagac ggggcccagg 360	35
ttgcattccc cagactggac tactgtggcg gttaggttag	40
gggggagggg aaggatgtgg titgcagage ggaageagag titggadeas gtggagttgg 720 gagettegtg tgtteceace etcagtgagg aggtgtgagt gggtgageat gtggagttgg 780 gtgtteceae ecteagtgag gaggtgtgag tgggggtgea tatagaggea gtgeetgetg 780 gtgtteceae ecteagtgag gaggtgtgag agggagetg tetttagggg teattteage 840	45
cageteetee cateacagat gacageteea agoetagaty system of the same acceptance of the same accep	
ggtattttcc ccctcaggct cctgggtctg ttgctgcct daysgagaggt gctcacccca1260 ctgatgaggg gaccctgcc tgtttccccc atactgagtt ctagggaggt gctcacccca1260 gactcttagg aagggtctag agaaatgaga ggagcccaag ccaggggcca gctccgagaa1320 gactcttagg aagggtctag agaaatgag agacaggttt tcaaaggcac1380	55
aggetecee tgecagette taggatette ettiggtgige dagggagag gtgectagag1500 geagettgea eccagette ettiatetea aettattte etggggagag gtgectagag1500 ggattgaggt aaetteaaet gggaatteea aggaaggtgg geaagtagee ttggetetet1560 eccaceatgt ceateaggat tgagagtgtg tetagetee gaceaetttg tettgaeetta1620 eccaceatgt eateagette attegette attegette teeageteaa1680	60
ctgaaaagtt gggaactgag gggtgccttc attescette gattates cccq cccctttct1740 cttgggactt gggtggtggg actggagace tcacccctgc tcccgtcccg ccccctttct1740 atcccaacct gtttccatgt agcagacct tcctagggag cagggagggg aagccacaga1800)

ttgcaaaccc aggggctcct ttttcatict ttctaaaacc ttgatatcct cagcccaaag1860 gcgatgccc cctgcacct ccaagcctgg aattgtgcat aacccggatc ttgtatcttt1920 gtataacgga tgttatttgt acgaagggca gttcgtaaac agcacttgtt ctttaataa1980 aagaatgttt tgcaaaaaaa aaaaaaaaa tccgaaaaaa a

(2) INFORMATION ÜBER SEQ ID NO:56:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 900 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
- ²⁵ (iii) ANTI-SENSE: NEIN

5

10

15

20

30

35

- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:56:

```
gcgaccgcct ctactggaag tttgaccctg tgaaggtgaa ggctctggaa ggcttccccc
40
       gtotogtggg tootgactto tttggctgtg cgagcotgco aacactttoc totgaccatg 120
       gcttggatgc cctcaggggt gctgacccct gccaggccac gaatatcagg ctagagaccc 180
       atggccatct ttgtggctgt gggcaccagg catgggactg agcccatgtc tcctcagggg 240
       gatggggtgg ggtacaacca ccatgacaac tgccgggagg gccacgcagg tcgtggtcac 300
45
       ctgccagcga ctgtctcaga ctgggcaggg aggctttggc atgacttaag aggaagggca 360
       gtcttgggcc cgctatgcag gtcctggcaa acctggctgc cctgtctcca tccctgtccc 420
       tcagggtagc accatggcag gactggggga actggagtgt ccttgctgta tccctgttgt 480
       gaggtteett ccaggggetg gcactgaage aagggtgetg gggeeecatg geetteagee 540
       50
       cctgcatctg tctgccttct ggctgacaat cctggaaatc tgttctccag aatccaggcc 660
       aaaaagttca cagtcaaatg gggaggggta ttcttcatgc aggagacccc aggccctgga 720
       ggctgcaaca tacctcaatc ctgtcccagg ccggatcctc ctgaagccct tttcgcagca 780
       ctgctatcct ccaaagccat tgtaaatgtg tgtacagtgt gtataaacct tcttcttctt 840
      ttttttttttt aaactgagga ttgtcattaa acacagttgt tttctaaaaa aaaaaaaaa 900
55
```

(2) INFORMATION ÜBER SEQ ID NO: 57:

(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1212 Basenpaare

65

(B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	5
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	10
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	15
(vii) SONSTIGE HERKUNFT:	20
(A) BIBLIOTHEK: cDNA library	
	25
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:57 :	
ggcggggcct gcgggcggac cgcggccgaa gccgcacggg agacgacgag gaggagccgg	60
aagaccacgo tgatcaaggo actgacgggo gatgcogcda totagccacg ggaccacgotg	40
The second of the contract of	
gccaccetgg aagacgtgge ccacteggat eteatetige acgregagga egreagetas a	120
	180 540
gcccacgga accgaacgtc gtgcccgtgt ctgccctgcg gggccacggg ctccaggagc 5 tgaaagctga gctcgatgcg gcggttttga aggcgacggg gagacagatc ctcactctcc 6	
	340 900 45
gggcatcgct gcctggggag ctgaggcgtt dccgtctc gctcccagcc atttgctggg gtgcagcagtg gtgcagcagca cctgcccaa agggggcgc ccgagcgtcc gagactgct gtgaactgctl(
The section of controls and an action of the section of the sectio	
ttcctcgga atgtttccgt aacaggacat taaaccttttg attttacttc agtgaaaaaal(aaatccagtt cctcctgcac ctgccgtgag ccgtgcctg gtggcaccga cggccctccll	- 50
	200 212
gaaaaatcag gt	212
	55
(2) INFORMATION ÜBER SEQ ID NO: 58:	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 494 Basenpaare	60
(A) LANGE, 494 Basenpaure (B) TYP: Nukleinsäure	
(C) STrang: einzel	
(D) TOPOLOGIE: linear	65

- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assembiierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:

10

15

20

35

40

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:58:
- ctccctaggt acaaatagcc ctgggctctg cagctccaca ggctcctggg gtggagtcca 60
 aatcactcat tgtttgtgaa agctgagctc acagcaaaac aagccaccat gaagctgtcg 120
 gtgtgtctcc tgctggtcac gctggccctc tgctgctacc aggccaatgc cgagttctgc 180
 ccagctcttg tttctgagct gttagacttc ttcttcatta gtgaacctct gttcaagtta 240
 agtcttgcca aatttgatgc ccctccggaa gctgttgcag ccaagttagg agtgaagaga 300
 tgcacggatc agatgtccct tcagaaacga agcctcattg cggaagtcct ggtgaaaata 360
 ttgaagaaat gtagtgtg acatgtaaaa actttcatcc tggtttccac tgctttcaa 420
 tgacaccctg atcttcactg cagaatgtaa aggtttcaac gtcttgcttt aataaatcac 480
 ttgctctcca cgtc
 - (2) INFORMATION ÜBER SEQ ID NO: 59:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 729 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
- (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:59 :

ttttttcct tgggaagcag gagtttatt ttatcctttt gtaagtatta actcggtaat cacaacaac acggagcaat ctcaatgctg tttatccgga ggacagtctg cggggtcgtg acgattcttt tcttcttgaa gtttttcctt ttcctgaatc tcataatgat tcttggccat gattctgtct tttcaatgac tgtggcttct actcgaacaa gatcctttcc gaggagtggc ttgccaagca gcgtgaagtt gtctgccca accagcagga ccttctccag ggtcaccttc actacacac caaggtctag ttcattcca attaagatca ggtcttcaga ggtcaccttc actggcggc tggcaaagtg caccacggca aagagcctgc catactgccc cgtgacgatc acctcattca ccttctcac gacctctgca tggtgtctgg tctcctcaac tgggtcttggc agaacaactt ctggccaagg tggtgaactc agggatgtt tatgaagtgc tctgtgaatt gaaccttcga gaggacgcca gcggacgcca gcggccctaa ggtgacgtc agggaagatg ctgccatggc cgcccate ttcccgcagc ctcggccgga accgcgaacc	180 240 300 360 420 480 540 600 660	5 10 15
		20
(2) INFORMATION ÜBER SEQ ID NO:61:		
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1315 Basenpaare (B) TYP: Nukleinsäure		25
(C) STrang: einzel (D) TOPOLOGIE: linear		30
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA		35
(iii) HYPOTHETISCH: NEIN		
(iii) ANTI-SENSE: NEIN		40
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:		45
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library		
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:61 :		50
cagaggetet tittaaate tiggggaaat catacecaet gaggaataga ggeeagggea gateaggeet gegtggattg tiggteaget agggaageag aaggaggaag aegetiggaat catigteagg aetgagaata tiggtgtgagt tigetittgag ggtggeeatg tigageaeett ggeeagatta atetetitee eeeeteeatg atggtggeag gggeaggage tigaettegtig	180 1240	55
atgctagatta atctctttcc cccctcatg atggtsgods gaptagctcat cgagagggat atgctgggtg gcatgctgc tgggcacagt gagtcaggtg gtgagctcat cgagagggatggcaagaagt acaagctctt ctatggaatg agttctgaaa tggccatgaa gaagtatgctgggggggggg	360 3420 3480	60
990000000000000000000000000000000000000		

- ²⁰ (2) INFORMATION ÜBER SEQ ID NO: 62:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2011 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 35 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- 40 (vi) HERKUNFT:

25

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- 45 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:62:

```
tagaatattc atgtgagttc attecteet getgagattg tteageteet cetteeetge 60
tatacegaet ggaettgaae actaagtett caatagetga gatteteeat ettaatetae 120
tteggaggeaa gageagattg gttgtteat tatggatgga ggggatgatg gtaacettat 180
tateaaaaag aggtttgtt etgaggeaga actagatgaa eggegeaaaa ggaggeaaga 240
agaatgggag aaagttegaa aacetgaaga teeagaagaa tgteeagagg aggtttatga 300
eecetegatet etatatgaaa ggetacagga acagaaggae aggaageage aggageaga 360
ggaacagtte tetegacage aggaactaat agaaaageaa egaagagaag aagaactgaa 480
agaactgaag gaatacagaa acatggtaag aggettagaa etteeeagag agaactgaa 480
ggaagtggaa aagaacetga etgtgaagee tatagaaace aagaacaagt teteeeagge 600
gaagtgttgg caggagetgt gaageataag ageteagaga gtggeaacaag tgtgaaaaga 660
etgaaaceeg accetgagee agatgacaag aateeagage eeteeteete etgetgeagt atgtateege 780
```


cgaagtggca gtcaaggaag aactgacagt gttgaaaaat caaaaaaacg ggaacatagt 420 cccagcaaag aaaaatctag aaagcgtagt agaagcaaag aacgttccca caaacgagat 480 cacagtgata gtaaggacca gtcagacaaa catgatcgtc gaaggagcca aagtatagaa 540 caagagagcc aagaaaaca gcataaaaac aaagatgaga ctgtgtgaaa atattttgta 600 aaagtggate acattgaate etataaatga ttaaatetge tttttteece caegttgaga 660 ttgtgcagta gttcgcactc ctcaagctct ccctgtaggc tgcattttca tttcctctt 720 cgtgtaggga agtgcctttg taattccatt tattgcattg gtgttttcac ccaattgtta 780 agtttgatac atgatgcaca gattgttctt gcatttttat tgtttgtttt tgaaatgtac 840 10 agtotgtaca tatgtoctga aaatgtttta attootttgg catggttgcc atgttggtta 900 aatttgtata aggcaataaa ctgccactaa tctatttttg ttttgtaggt gtgggattat 960 ggtttgtgta ctgaagttag catggctgtg cttttcgtaa tagaatgcta aagactttga1020 gaatggatet tggatgteta ttataggaga agtatgtget gecaatgtae aagaaggeag1080 15 cattgtagga ttaacattct tgtctactgt atattatctt ggaaggctct tgttaatatg1140 ttacacttaa tattctccac agttaccttt agagagaatt tatgagaagt tagtttctga1200 tgcagaggtt tttaggctgt gatttcatca aaagtccttt tagcattcta cctcaaaggg1260 acacttagta tgcctaaaat ttartcactt agttttcctt ttttatttga aaaaatacat1320 20 gacatgtaat cittittct tgaattcttt ctcagatttt aaagtactat attaaagaaa1380 aaaattaatg totaaagoot agoattottg cagaacoota tactaacatg taatggggag1440 agggtggggc agatgagtag agaaacagat tcaagcctca agcttccaaa gcatttttat1500 aaatggaaaa toottaaatt atgaaacago ttgatatagt gtootttttt taaaattoag1560 aactitttt attgataatg gagattgctg tttgagttit taaacttaat ctagaacaga1620 25 ggagtattaa aagtaatgct gtgctgcatt atttaagact atcagcaaat tatttgatag1680 attgttctta caacttgtat tctgattaca gaaccatcat gagtgtggaa taaatactgg1740 attaaatcct ttatcctggg tcttggcttt tcccccattt gttaaatttt tttagcatat1800 ttatattgtg gaaattgatg aaacgtcagt agagtcacac tttgtgtaca gggatgtctt1860 agtgcccaga tgacaagtga attttggaga aatgcataga ctgggattgg gcatgtggta1920 atcaataatc titattagaa tacttgataa tggcagttcc ctttgtcagt ggttgttaca1980 tgtgtcattt gattactttg ttccatgtc

(2) INFORMATION ÜBER SEQ ID NO:64:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 2269 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

65

35

40

45

50

55

(XI) SEQUE	12-DE0011112					
t-accet	tgcagagaag	accaactaat	tqqgggaaca	gccccagttc	tggtcgaaga 60	5
	~~~+~~~	actaccaaoi -	Duaudauad	aagtacgacg		.,
	+ ~+ ~ ~ ~ ~ ~	TAGALOGCOC	Cattlelle	aaccqcqcc		
		+aaaaaaacca	act ccatuce.	Cauciacaaa	~~~~~~~~	
		ar radar cai	1 Daullululu	uadaaqqacg	9000550000	
		AACCCETTOA .	CCAUGGCagc		~99~9	10
		accccracca.	CCCCGGGGGGG	Lucyus	gagoostor	
	<b>トゥトペックグサクナ</b>	ccaccocado.	at. Edu Lucts	CCCGGGGGGG		
ccctggcagc	Lorgacycot	ccaccgcagg	cccactgatg	gcaagctctt	ccccagcgat 540	
gactccggtg	gaagtgacgt	ggacceggae	aadcacdada	agcggaaacg	aggeeggeee 600	15
ggttttcgtg	actgcaagaa	ctagaactat	ctcdadddca	agaagagcaa	gcacgcgccc 660	
cgaaagctga	gcaaayayca	ctgggaccgc	gacatoctca	tccacccqqa	gctcaacgag 720 ctccgaggct 780	
agaggcaccc	acctgtggga	teaccegg	gacatettea	agttcctgcg	ctccgaggct 780	
ggcctcatga	agtgggagaa	ccggcacgaa	agegeeesea	tgacctacga	gaagetgage 840	
gtggcccaac	tatggggcca	aaayaaaaay	atcagaaaaa	nggtagatag	ccggcgactc 900	20
cgggccatga	ggtactacta	caaacygyay	+udsaddadd	aagaggttct	ccggcgactc 900 ccagagtcgg 960	
gtctacaagt	ttggcaaaaa	ctcaagegge	Lygaaygagg	ccactcgagg	ccagagtcgg 960	
aactgagggt	tggaactata	cccgggacca	aacccacyga	ggaatgctcc	cctgcaaacc1020	
ttcctgggag	gacaggcagg	ccagatggcc	teraccator	tectaggact	cagctgtgct1080	25
gtggagagaa	gctgatgttt	tggtgtattg	transparent	agaatttaaa	cggagactat1140	
ggcctcgcct	ccccaccctc	ctcttggaat	cactagecet	acceptete	gctgacttta1200	
tagctgcaag	tgtatctcct	tttatctggt	tagactagac	caaddaddcc	agacactaaa1260	
tgcagacaac	accttcctcc	tgcagacacc	regactyaye	cadgadgad	tggggaggcc1320	30
ctaggggagc	accgtgatgg	agaggacaga	teesegggeee	agant cagaa	tttctggact1380 cactccctaa1440	50
ggcgttcacc	tccctgctca	gtgcttgggc	catacagato	tatttttct	cactccctaal440	
tttatgtgct	atataaatat	gtcagatgta	catagagate	gcctccagt	aaaacattcc1500	
cctccccact	cctctcccac	agagtgctgg	###c#cctat	daatudaddc	gggctgatgc1560	_
tgggaccctt	aggatggggc	teceageice	tttatataa	ctacctotot	agagacctcc1620 actgaaattt1680	35
aataaagtgc	cttctgggct	ttt.ctaacc	tagaaaaaa	gaaaatgaag	actgaaattt1680 gtctaccagg1740	
gggcctttgg	atcgaatatg	gtcaayayyt	cggaggggag	gadadogadg	gtctaccagg1740 agcaggtgtg1800	
ctgagggtga	gggcaaaggc	tgacgaagag	gggagctaea	gascadctd	agcaggtgtg1800 agactgttgg1860	
ggcttacaga	cacatggact	gggccgggag	gegageaaag	cadaacactd	agactgttgg1860 aggtcagaag1920	40
agaacgctta	caagacttca	tgcaagcaag	ccttgacctt	naccaaqtct	aggtcagaag1920 gtcctgttta1980	
catcctgctg	tcatgacacc	gologagiga	ggacctgato	r ttctcaagat	gtcctgttta1980 gtctagaatt2040 tgtaaactgt2100	
ggactgattt	. ttcctattag	tagatagttt	tacattccas	ccaagtgtgc	tgtaaactgt2100	
gcatggctgg	ccttgtggaa	cagacygee	totalcasas	tcagagttag	gatcttgtaa2160	45
atatctgtaa	tatgaatccc	: agcttttgag	taaaaasaa	r adttodcatt	tgttgaaagt2220 2269	.5
aggtggagat	gagtactige	: Lyayaaayaa	caactttac	tttagattt	2269	
atagtctttt	tctctggggt	. ittitaatty	Caactetta		•	
						50
(O) INTODMA	ATION ÜBER	SEO ID NO:8	5 ·			50
(2) INFORING	TION OBLIV		<b>J</b> .			
// OFOUR	NZ OLIADAV	TEDICTIK				
(I) SEQUE	NZ CHARAK	TENIOTIK.				
(A) LAI	NGE: 1874 Ba	senpaare				55
	P: Nukleinsäu	re				
(C) ST	rang: einzel					
(D) TO	POLOGIE: lin	ear				
				1 14	d Editionum	60
(ii) MOLE	⟨ÜLTYP: aus ∈	einzelnen ES	Ts durch Asse	emblierung un	o Edillerang	
heraes	stellte partielle	cDNA				
3	<del>-</del>					

65

(iii) HYPOTHETISCH: NEIN



- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:

5

15

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- 10 (vii) SONSTIGE HERKUNFT:
  - (A) BIBLIOTHEK: cDNA library
  - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:65:

```
caaaaaaacc tcttaatatt ctggagtcat cattcccttc gacagcattt tcctctgctt
     tgaaagcccc agaaatcagt gttggccatg atgacaacta cagaaaaacc agaggcagct 120
     tctttgccaa gacctttcaa agccatttta ggctgttagg ggcagtggag gtagaatgac 180
20
     tccttgggta ttagagtttc aaccatgaag tctctaacaa tgtattttct tcacctctgc 240
     tactcaagta gcatttactg tgtctttggt ttgtgctagg cccccgggtg tgaagcacag 300
     accepticea ggggtttaca gtetatttga gacteeteag ttettgeeae tttttttt 360
     aatctccacc agtcattttt cagacctttt aactcctcaa ttccaacact gatttcccct 420
     tttgcattct ccctccttcc cttccttgta gccttttgac tttcattgga aattaggatg 480
     taaatctgct caggagacct ggaggagcag aggataatta gcatctcagg ttaagtgtga 540
     gtaatctgag aaacaatgac taattcttgc atattttgta acttccatgt gagggttttc 600
     agcattgata tttgtgcatt ttctaaacag agatgagctg gtatcttcac gtagaacatt 660
     ggtattcgct tgagaaaaa agaatagttg aacctatttc tctttcttta caagatgggt 720
30
     ccaggatice tetittetet gecataaatg attaattaaa tagetttigt giettaeait 780
     ggtagccagc cagccaaggc tctgtttatg cttttggggg gcatatattg ggttccattc 840
     tcacctatcc acacaacata tccgtatata tcccctctac tcttacttcc cccaaattta 900
     aagaagtatg ggaaatgaga ggcatttccc ccaccccatt tctctcctca cacacagact 960
35
     catattactg gtaggaactt gagaacttta tttccaagtt gttcaaacat ttaccaatca1020
    tattaataca atgatgctat ttgcaattcc tgctcctagg ggaggggaga taagaaaccc1080
    tcactctcta caggtttggg tacaagtggc aacctgcttc catggccgtg tagaagcatgl140
    gtgccctggc ttctctgagg aagctggggt tcatgacaat ggcagatgta aagttattct1200
40
    tgaagtcaga ttgaggctgg gagacagccg tagtagatgt tctactttgt tctgctgttc1260
    tctagaaaga atatttggtt ttcctgtata ggaatgagat taattccttt ccaggtattt1320
    tataattctg ggaagcaaaa cccatgcctc cccctagcca tttttactgt tatcctattt1380
    agatggccat gaagaggatg ctgtgaaatt cccaacaaac attgatgctg acagtcatgc1440
    agtotgggag tggggaagtg atottttgtt cocatoctot tottttagca gtaaaatagc1500
45
    tgagggaaaa gggagggaaa aggaagttat gggaatacct gtggtggttg tgatccctag1560
    gtcttgggag ctcttggagg tgtctgtatc agtggatttc ccatccctg tgggaaatta1620
    gtaggeteat ttactgtttt aggtetagee tatgtggatt tttteetaac atacetaage1680
    aaacccagtg tcaggatggt aattcttatt ctttcgttca gttaagtttt tcccttcatc1740
50
    tgggcactga agggatatgt gaaacaatgt taacattttt ggtagtcttc aaccagggat1800
    tgtttctgtt taacttctta taggaaagct tgagtaaaat aaatattgtc tttttgtatg1860
    tcaaaaaaa aaaa
                                                                      1874
```

### (2) INFORMATION ÜBER SEQ ID NO:66:

- 60 (i) SEQUENZ CHARAKTERISTIK:
  - (A) LÄNGE: 687 Basenpaare
  - (B) TYP: Nukleinsäure
  - (C) STrang: einzel
- 65 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	5
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	10
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	15
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:66 :	20
gggccaagtg ccccagtcag gagctgccta taaatgccga gcctgcacag ctctggcaaa 60	25
getggaaege aacatagaga ceateateaa eacetteeae eaataetetg tgaagetggg 180 geacecagae accetgaace agggggaatt caaagagetg gtgegaaaag atetgeaaaa 240 tttteteaag aaggagaata agaatgaaaa ggteatagaa eacateatgg aggaeetgga 300 cacaaatgea gacaageage tgagettega ggagtteate atgetgatgg egaggetaae 360 etggeetee cacgagaaga tgeaegagg tgaegagge eetggeeae accataagee 420 aggeeteggg gagggeaeee eetaagaeea cagtggeeaa gateaeagtg geeaeggeea 480 aggeeteggg gagggeaeee eetaagaeea cagtggeeaa gateaeagtg geeaeggeea 540	30 )
eggecteggg gagggtatee betatgated edgoggera gagggecagg ceacectgee 540 cggecacagt catggtggec acggecacag ceactaatea ggaggecagg ceacectgee 540 tetacecaae cagggeceg gggectgtta tgtcaaactg tettggetgt ggggetaggg 600 getggggeca aataaagtet ettectecaa gteagtgete tgtgtgette ttecaeettt 660 etgcaageet geetttecag gggtgtg	) ) ) )
(2) INFORMATION ÜBER SEQ ID NO: 67:	40
<ul> <li>(i) SEQUENZ CHARAKTERISTIK:</li> <li>(A) LÄNGE: 1528 Basenpaare</li> <li>(B) TYP: Nukleinsäure</li> <li>(C) STrang: einzel</li> <li>(D) TOPOLOGIE: linear</li> </ul>	45
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	50
(iii) HYPOTHETISCH: NEIN	55
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	60
(vii) SONSTIGE HERKUNFT: (A) RIBLIOTHEK: cDNA library	6



### (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:67:

```
gagcaacgct ggagcatccc gctctggtgc cgctgcagcc ggcagagatg gttgagctca
     tgttcccgct gttgctcctc cttctgcct tccttctgta tatggctgcg ccccaaatca 120
     ggaaaatgct gtccagtggg gtgtgtacat caactgttca gcttcctggg aaagtagttg 180
     tggtcacagg agctaataca ggtatcggga aggagacagc caaagagctg cctcagagag 240
     gagetegagt atatttaget tgeegggatg tggaaaaggg ggaattggtg cecaaagaga 300
10
     tocagaccae gacagggaae cagcaggtgt tggtgeggaa aetggaeetg tetgataeta 360
     agtotattcg agottttgct aagggottct tagotgagga aaagcacctc cacgttttga 420
     tcaacaatgc aggagtgatg atgtgtccgt actcgaagac agcagatggc tttgagatgc 480
     acataggagt caaccacttg ggtcacttcc tcctaaccca tctgctgcta gagaaactaa 540
     aggaatcage eccateaagg atagtaaatg tgtetteeet egeacateae etgggaagga 600
15
     tocacttoca taacctgcag ggcgagaaat totacaatgc aggcctggcc tactgtcaca 660
     gcaagctagc caacatcctc ttcacccagg aactggcccg gagactaaaa ggctctggcg 720
     ttacgacgta ttctgtacac cctggcacag tccaatctga actggttcgg cactcatctt 780
     tcatgagatg gatgtggtgg cttttctcct ttttcatcaa gactcctcag cagggagccc 840
20
    agaccagect geactgtgee ttaacagaag gtettgagat tetaagtggg aatcatttea 900
    gtgactgtca tgtggcatgg gtctctgccc aagctcgtaa tgagactata gcaaggcggc 960
    tgtgggacgt cagttgtgac ctgctgggcc tcccaataga ctaacaggca gtgccagttg1020
    gacccaagag aagactgcag cagactacac agtacttctt gtcaaaatga ttctccttca1080
    aggttttcaa aacctttagc acaaagagag caaaaccttc cagccttgcc tgcttggtgt1140
    ccagttaaaa ctcagtgtac tgccagattc gtctaaatgt ctgtcatgtc cagatttact1200
    ttgcttctgt tactgccaga gttactagag atatcataat aggataagaa gaccctcata1260
    tgacctgcac agctcatttt ccttctgaaa gaaactacta cctaggagaa tctaagctat1320
    agcagggatg atttatgcaa atttgaacta gcttctttgt tcacaattca gttcctccca1380
    accaaccagt cttcacttca agagggccac actgcaacct cagcttaaca tgaataacaa1440
    agactggctc aggagcaggg cttgccaagg catggtggat caccggagtc aagtagttcal500
    agaccagcct ggccaacatg gtgaaacc
35
```

### (2) INFORMATION ÜBER SEQ ID NO: 68:

- (i) SEQUENZ CHARAKTERISTIK:
  - (A) LÄNGE: 904 Basenpaare
  - (B) TYP: Nukleinsäure
  - (C) STrang: einzel
  - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 50 (iii) HYPOTHETISCH: NEIN
  - (iii) ANTI-SENSE: NEIN
- 55 (vi) HERKUNFT:
  - (A) ORGANISMUS: MENSCH
  - (C) ORGAN:
- 60 (vii) SONSTIGE HERKUNFT:
  - (A) BIBLIOTHEK: cDNA library

65

40

### (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:68

tcaccaccga gtgatgtgct gaggcctcct gcagtgaatg ctccttccat tcctgtactc aggcagtgcc attcagcaca ggagagctct ttttgccttt ggctttcaat tccaaaacat 1 gatttaattt ctaactaaat tagtatggca ctagttatga agtatctgct taaaaccctt 1 catcatgata tcctgtggat ttaaaaactc taattccatg ttttcttccc atctgcctt atcatctcat caccctgctt atcaatattc agtttgatga gcactattaa ctaaaatatg aacttgcaaat tttctatgca aacttgcctc ctgctgttat ttttaagtaa attgttgaca aacttgcctc aaacatttgt gtttcaacaa gggacagtaa actgtgtgt tacagcaaa agaaatgcct aacaaatact ttttaagtaa ggtagtcatt ttttttc tcgtaaatat ttttattggc gactatttaa cagaaatgcct aacaaaatact ttttaggtag gactttttaa aaatacagta gattatatta ctgaactcct aaataagtga aattacagta gattatatta agtttcagc tatagcaaaa ggtagttatg tatgccagac ctaaatagag ctagccaacaa agtttcagc aagtttcagc atggtgtctt cagaattgta gcgcatttct gaatctaagc gatctctaag aagggctgtt aggtaccaat tctgtttttt caactttgga aggtaaaaac gatctctagg aagggctgtt aggtaccaat tctgtttttt caactttgga aggtaaaaac gatctctagg aagggctgtt aggtaccaat tctgtttttt caactttgga aggtaaaaac gatctctagg aagggctgtt aggtaccaat tctgtttttt caactttgga aggtaaaaac gatccccg	180 240 300 360 10 480 540 560 720 780 840	5
(2) INFORMATION ÜBER SEQ ID NO: 71:	2	25
<ul><li>(A) LÄNGE: 212 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	3	30
(ii) MOLEKÜLTYP: ORF	:	35
(iii) HYPOTHETISCH: ja		40
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		45
(Xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 71  RDTVVGDGTE RSVTASRASA PRPWQSQTDS DSDSEGGAAG GEADMDFLRN LFSQTLSLGS 6 QKERLLDELT LEGVARYMQS ERCRRVICLV GAGISTSAGI PDFRSPSTGL YDNLEKYHLP 1 YPEAIFEISY FKKHPEPFFA LAKELYPGQF KPTICHYFMR LLKDKGLLLR CYTQNIDTLE 1 RIAGLEQEDL VEAHGTFYTS HCVRPSAGTN TR		50
(2) INFORMATION ÜBER SEQ ID NO: 72:		55
<ul><li>(A) LÄNGE: 29 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzei</li><li>(D) TOPOLOGIE: linear</li></ul>		60
(ii) MOLEKÜLTYP: ORF		65



### (iii) HYPOTHETISCH: ja

5	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
10	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 72	
	SLNTAFSNVL HKNRILATQL LSLSVIILP	29
15	(2) INFORMATION ÜBER SEQ ID NO:73 :	
20	<ul><li>(A) LÄNGE: 71 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	
25	(ii) MOLEKÜLTYP: ORF	
30	(iii) HYPOTHETISCH: ja	
. 35	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 73	
40	QSQNDFTTDS LESLGAEFRK IPTSMKAKRS TKPSSCPRRY ESAHPSMATT STQPLVRKPW ATSLKTQTKN H	60
45	(2) INFORMATION ÜBER SEQ ID NO: 74:  (A) LÄNGE: 44 Aminosäuren	•
50	(B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
55	(iii) HYPOTHETISCH: ja	
60	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
c	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 74	

SNLVYVLSLH FPVFSYFLKG RPRSVLSYCH IGSKMSTHSL APNH 44	
(2) INFORMATION ÜBER SEQ ID NO: 75:	5
(A) LÄNGE: 30 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	10
(ii) MOLEKÜLTYP: ORF	15
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 75	25
ATSFMSYLCI FLYSAIFLKE GPGLYYPTAT 30	
(2) INFORMATION ÜBER SEQ ID NO: 76:	30
<ul><li>(A) LÄNGE: 113 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	35
(ii) MOLEKÜLTYP: ORF	40
(iii) HYPOTHETISCH: ja	45
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	50
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 76	
IPEDPHIDES KAKHQAIIMS TSLRVSPSIH GYHFDTASRK KAVGNIFENT DQESLERLFR 60 NSGDKKAEER AKIIFAIDQD VEEKTRALMA LKKRTKDKLF QFLKLRKYSI KVH 113	55
(2) INFORMATION ÜBER SEQ ID NO:77 :	60
(A) LÄNGE: 105 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	65

	(D) TOPOLOGIE: linear	
5	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
10	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
15	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 77	
20	GAEEGRQEAQ GSRKESYSVY VYKVLKQVHP DTGISSKAMG IMNSFVNDIF ERIAGEASRL 60 AHYNKRSTIT SREIQTAVRL LLPGELAKHA VSEGTKAVTK YTSAK 10	
25	(2) INFORMATION ÜBER SEQ ID NO: 78:	
30	<ul><li>(A) LÄNGE: 221 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	
35	(ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja	
40	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
45	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 78	
50	GSGGNHSVCC DTMEGGGGSG NKTTGGLAGF FGAGGAGYSH ADLAGVPLTG MNPLSPYLNV 60 DPRYLVQDTD EFILPTGANK TRGRFELAFF TIGGCCMTGA AFGAMNGLRL GLKETQNMAW 120 SKPRNVQILN MVTRQGALWA NTLGSLALLY SAFGVIIEKT RGAEDDLNTV AAGTMTGMLY 180 KCTGGLRGIA RGGLTGLTLT SLYALYNNWE HMKGSLLQQS L 221	)
55	(2) INFORMATION ÜBER SEQ ID NO:79:	
60	<ul><li>(A) LÄNGE: 118 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	

65

(ii) MOLEKÜLTYP: ORF

(iii) HYPOTHETISCH: ja

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	5
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 79	
ONRTLTKGPD TVSTMGQCRS ANAEDAQEFS DVERAIETLI KNFHQYSVEG GKETLTPSEL 60 RDLVTQQLPH LMPSNCGLEE KIANLGSCND SKLEFRSFWE LIGEAAKSVK LERPVRGH 118	10
(2) INFORMATION ÜBER SEQ ID NO:80:	15
<ul><li>(A) LÄNGE: 60 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	20
(ii) MOLEKÜLTYP: ORF	25
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 80	35
NLSPLPPPCT LACTCPHLCK VQLPSPGLCA LCLGCSGELM GGGVSTRGRL RGLVGPGMNI 60	40
(2) INFORMATION ÜBER SEQ ID NO: 81:	
<ul><li>(A) LÄNGE: 293 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	45
(ii) MOLEKÜLTYP: ORF	50
(iii) HYPOTHETISCH: ja	55
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	60
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 81	
	65



5	ASRGAEQDGG ASAARPRRW AGGLLQSPAP CSLLFRLRTW TSJSNRSRED SWLKSLFVRK 60 VDPRKDAHSN LLAKKETSNL YKLQFHNVKP ECLEAYNKIC QEVLPKIHED KHYPCTLVGT 120 WNTWYGEQDQ AVHLWRYEGG YPALTEVMNK LRENKEFLEF RKARSDMLLS RKNQLLLEFS 180 FWNEPVPRSG PNIYELRSYQ LRPGTMIEWG NYWARAIRFR QDGNEAVGGF FSQIGQLYMV 240 HHLWAYRDLQ TREDIRNAAW HKHGWEELVY YTVPLIQEME SRIMIPLKTS PLQ 293
10	(2) INFORMATION ÜBER SEQ ID NO: 82:
15	<ul><li>(A) LÄNGE: 80 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>
	(ii) MOLEKÜLTYP: ORF
20	(iii) HYPOTHETISCH: ja
25	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
30	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 82
	MAARALCMLG LVLALLSSSS AEEYVGLSAN QCAVPAKDRV DCGYPHVTPK ECNNRGCCFD 60 SRIPGVPWCF KPLQEAECTF 80
35	(2) INFORMATION ÜBER SEQ ID NO: 83:
40	(A) LÄNGE: 118 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear
45	(ii) MOLEKÜLTYP: ORF
	(iii) HYPOTHETISCH: ja
50	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
55	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 83
60	MDVFLMIRRH KTTIFTDAKE SSTVFELKRI VEGILKRPPD EQRLYKDDQL LDDGKTLGEC 60 GFTSQTARPQ APATVGLAFR ADDTFEALCI EPFSSPPELP DVMKPQDSGS SANEQAVQ 118
	(2) INFORMATION ÜBER SEQ ID NO:84 :

<ul><li>(A) LÄNGE: 195 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>		5
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja		10
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 84		20
MGRARDAILD ALENLTAEEL KKFKLKLLSV PLREGYGRIP RGALLSMDAL DLTDKLVSFY LETYGAELTA NVLRDMGLQE MAGQLQAATH QGSGAAPAGI QAPPQSAAKP GLHFIDQHRA ALIARVTNVE WLLDALYGKV LTDEQYQAVR AEPTNPSKMR KLFSFTPAWN WTCKDLLLQA LRESQSYLVE DLERS	1 120	25
(2) INFORMATION ÜBER SEQ ID NO: 85:		
<ul><li>(A) LÄNGE: 39 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>		30
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja		40
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	•	45
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 85		
RMSSTRQCGP SPPTQARCGS SSVSHQPGTG PARTCSSRP	39	50
(2) INFORMATION ÜBER SEQ ID NO: 86:		
(A) LÄNGE: 37 Aminosäuren  (B) TYP: Protein  (C) STRANG: einzel  (D) TOPOLOGIE: linear  (ii) MOLEKÜLTYP: ORF		55 6
(II) IVIOLEROLITE. OIG		



(iii)	HYP	OTH	ETIS	CH:	ia
-------	-----	-----	------	-----	----

5	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
10	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 86	
	WSGAEAPSQQ HSGQPLAIPP NHPESDLFIH NIRKASL	37
15	(2) INFORMATION ÜBER SEQ ID NO: 87:	
20	<ul><li>(A) LÄNGE: 100 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	
25	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
30	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
35	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 87	
40	GESRFRPGAD FLLVGGCSGV SGGSGRGSWS FGARARRHPG CAGEPDRRGA QEVQAEAAVG AAARGLRAHP AGRAAVHGRL GPHRQAGQLL PGDLRRRAHR	60 100
	(2) INFORMATION ÜBER SEQ ID NO: 88:	
45	<ul><li>(A) LÄNGE: 63 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	
50	(ii) MOLEKÜLTYP: ORF	
55	(iii) HYPOTHETISCH: ja	
60	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
60	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 88	

PGLAAGLATL LLPSPPRAAS LVCAPVAGRR PLCQLELRGL TRHYVAGFGR ATRAGQEPNP SRP	63	5
(2) INFORMATION ÜBER SEQ ID NO:89 :		_,
(A) LÄNGE: 113 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		10
(ii) MOLEKÜLTYP: ORF		15
(iii) HYPOTHETISCH: ja		20
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		25
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 89		
GIGCGPRDPP ASLPAPRRLS GLCARRRSQA SLSAGVARAD APLCSGFRAG HACGTGTQPQ PTLSSRSSSL TSAEVQLPQF LAQVDNYRHK PLKLECPVAG ISIDLSQLSL QLQ	60 113	30
(2) INFORMATION ÜBER SEQ ID NO: 90:		35
<ul><li>(A) LÄNGE: 153 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>		40
(ii) MOLEKÜLTYP: ORF	•	
(iii) HYPOTHETISCH: ja		45
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		50
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 90		55
HASGQDTASM AASKVKQDMP PPGGYGPIDY KRNLPRRGLS GYSMLAIGIG TLIYGHWSIN KWNRERRRLQ IEDFEARIAL LPLLQAETDR RTLQMLRENL EEEAIIMKDV PDWKVGESVI HTTRWVPPLI GELYGLRTTE EALHASHGFM WYT	4 60 F 120 153	
(2) INFORMATION ÜBER SEQ ID NO: 91:		60
<b>(-)</b>		65

60 120 141

(A) LÄNGE: 141 Aminosäuren

5	(B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
10	(iii) HYPOTHETISCH: ja	
15	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
20	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 91	
25	SLALDOMOAY KALDTSSLVG EQVTSYLTKK FAELRSPNEF KVYMGHGGKP LAGRRAMKTV FGVEPDLTRE GGSIPVTLTF QEATGKNVML LPVGSADDGA NYIEGTKMLA AYLYEVSQLK D	WVSDFSHPHY HSQNEKLNRY
	(2) INFORMATION ÜBER SEQ ID NO: 92:	
30	<ul><li>(A) LÄNGE: 39 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	
35	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
40		
	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
45		
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 92	
50	KMYKFVVFFY VLIILRLLGL RLIFRKILHA IRSKFYCGS	39
	(2) INFORMATION ÜBER SEQ ID NO: 93 :	
55	<ul><li>(A) LÄNGE: 61 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li></ul>	
60	(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
65	(iii) HYPOTHETISCH: ja	

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		5
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 93		
SFQALKFIIR SVRLRRGRSY NIPCQICYHL LAFSFHLRIE HNYFYCSYIA CQIKSFTTKG	60 61	10
(2) INFORMATION ÜBER SEQ IÐ NO: 94:		
<ul><li>(A) LÄNGE: 284 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>		15 20
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja		25
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 94		
EWKKLIMVQH WPETVCEKIQ NDCRDPPDIW TIRGEWPDRS ESCHNOWITH EEDDLNSVLL	180	35
MRAYWPDVIH SFPNRSKIWK HEMEMICION TO THE WEST OF THE WE	284	40
(2) INFORMATION ÜBER SEQ ID NO: 95:	•	
<ul><li>(A) LÄNGE: 63 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li></ul>		45
(D) TOPOLOGIE: linear		50
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja		55
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		60
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 95		
		65



QKRSFLEASA MEFSIIREIG QTSPKWSEFL NPGRELTLLS SLDLIGHWAL VRPQTRPVSP 60

	VGF	63
5	(2) INFORMATION ÜBER SEQ ID NO:96 :	
10	<ul><li>(A) LÄNGE: 74 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	
15	(ii) MOLEKÜLTYP: ORF	
20	(iii) HYPOTHETISCH: ja	
25	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 96	
30	SFCLVVLHGL GLKIIPKIHQL TNENVSLCAT LPPAQSEFGT QKRTVYTTHL SPSMYSLWA DAPIHGNPLT HFKT	60 74
35	(2) INFORMATION ÜBER SEQ ID NO: 97:	
40	<ul><li>(A) LÄNGE: 67 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	
45	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
50	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
55	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 97	
60	FRRYTSSQMK TSASAPPSLL PKVNLVLRKE LFIPLTFLPA CTHCGQMHQY MVILLLILRR 6 RKLNILL	
c s	(2) INFORMATION ÜBER SEQ ID NO: 98:	
65	(A) LÄNGE: 77 Aminosäuren	

(B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	5
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	10
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 98	20
CHLNLTMFLG WSQLFRVPVC VISSAGWLSS ELLEIFTHAS ANHFEQGCLL VDDLLFFMTG 60 77	20
(2) INFORMATION ÜBER SEQ ID NO:99:	25
<ul><li>(A) LÄNGE: 132 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	30
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	35
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	40
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 99	45
TAAAAAMAPP WVPAMGFTLAP SLGCFVGSRF VHGEGLRWYA GLQKPSWHPP HWVLGPVWGT 60 LYSAMGYGSY LVWKELGGFTE KAVVPLGLYT GQLALNWAWP PIFFGARQMG WALVDLLLVS 120 GAAAALPWPG TR 132	
GAMMII WI G III	50
(2) INFORMATION ÜBER SEQ ID NO:100 :	
<ul><li>(A) LÄNGE: 130 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	55
(ii) MOLEKÜLTYP: ORF	60
(iii) HYPOTHETISCH: ja	6.



5	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 100	
10	AAGRGGADAG TAAWLTPARQ CPSRSVPSPL SSPEQQLQQP WPRPGCPPWA SRWRPAWGAS WAPALSTARV SAGTPACRSP RGTRPTGCWA LSGARSTQPW GTAPTWSGKS WEASQRRLWF PWASTLGSWP	60 120 130
15	(2) INFORMATION ÜBER SEQ ID NO: 101:	
20	<ul><li>(A) LÄNGE: 186 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	
25	(ii) MOLEKÜLTYP: ORF	
23	(iii) HYPOTHETISCH: ja	
30	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
35	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 101	
40	RPFIRAFACS KMAAVSMSVV LRQTLWRRRA VAVAALSVSR VPTRSLRTST WRLAQDQTQD (TQLIFVDEKL DITTLTGVPE EHIKTRKVRI FVPARNNMQS GVNNTKKWKM EFDTRERWEN TPLMGWASTAD PLSNMVLTFS TKEDAVSFAE KNGWSYDIEE RKVPKPKSKS YGANFSWNKR TRVSTK	20
45	(2) INFORMATION ÜBER SEQ ID NO: 102:	
45	(A) LÄNGE: 106 Aminosäuren (B) TYP: Protein	
50	(C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
55	(iii) HYPOTHETISCH: ja	
60	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	



## (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 102

QLTRLLQPAL GPGTTAVLLL QISTRPEDLG ETVCSLKFAD RVGQVELGPA RRRRVPRSSG 60 TPSSLSTDTP LTGTPCTPTP SPGSPPCPSP DNGSGSALAP AEGLPL 1	0 06	5
(2) INFORMATION ÜBER SEQ ID NO: 103:	1	10
<ul><li>(A) LÄNGE: 308 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>		15
(ii) MOLEKÜLTYP: ORF		20
(iii) HYPOTHETISCH: ja		20
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		25
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 103		30
GSRPFTNPAR KDGAMFFHWR RAAEEGKDYP FARFNKTVQV PVYSEQEYQL YLHDDAWTKA 6 ETDHLFDLSR RFDLRFVVIH DRYDHQQFKK RSVEDLKERY YHICAKLANV RAVPGTDLKI 1 PVFDAGHERR RKEQLERLYN RTPEQVAEEE YLLQELRKIE ARKKEREKRS QDLQKLITAA 1 DTTAEQRRTE RKAPKKKLPQ KKEAEKPAVP ETAGIKFPDF KSAGVTLRSQ RMKLPSSVGQ 2 KKIKALEQML LELGVELSPT PTEELVHMFN ELRRTWCCST SSSRPVPTAS MSCRCCGTVM 1 RHWPGLVC	180 240	35
(2) INFORMATION ÜBER SEQ ID NO: 104:		40
<ul><li>(A) LÄNGE: 388 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>		45
(ii) MOLEKÜLTYP: ORF		50
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		55
: (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 104		60
THE TOTAL WOLLD WIS OF OFFIMNAND SPPPSPSOOI NLGPSSNPHA KPSDFHFLKV	60	
IVPFIPCSPE VQSILKISQP QEPELMAANP STITSTSQQT MSERNVLLKN VKHPFLVGLH IGKGSFGKVL LARHKAEEVF YAVKVLQKKA ILKKKEEKHI MSERNVLLKN VKHPFLVGLH FSFQTADKLY FVLDYINGGE LFYHLQRERC FLEPRARFYA AEIASALGYL HSLNIVYRDL		65



5	KPENILLDSQ GHIVLTDFGL CKENIEHNST ISTFCGIPEY LAPEVLHKQP YDRTVDWWCL 240 GAVLYEMLYG LPPFYSRNTA EMYDNILNKP LQLKPNITNS ARHLLEGLLQ KDRTKRLGAK 300 DDFMEIKSHV FFSLINWDDL INKKITPPFN PNVSGPNDLR HFDPEFTEEP VPNSIGKSPD 360 SVLVTASVKE AAEAFLGFSY APPTDSFL 388
10	(2) INFORMATION ÜBER SEQ ID NO: 105:  (A) LÄNGE: 165 Aminosäuren
15	(A) EXIGE: 103 Aminosauteri (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear
	(ii) MOLEKÜLTYP: ORF
20	(iii) HYPOTHETISCH: ja
25	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
30	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 105
35	TDSERGDPSE QTRPWRPPCA LTMAMHFIFS DTAVLLFDFW SVHSPAGMAL SVLVLLLAV 60 LYEGIKVGKA KLLNQVLVNL PTSISQQTIA ETDGDSAGSD SFPVGRTHHR WYLCHFGQSL 120 IHVIQVVIGY FIMLAVMSYN TWIFLGVVLG SAVGYYLAYP LLSTA 165
	(2) INFORMATION ÜBER SEQ ID NO: 106:
40	(A) LÄNGE: 478 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear
45	(ii) MOLEKÜLTYP: ORF
50	(iii) HYPOTHETISCH: ja
55	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 106
60	GLPLGITVPV ARETITSLFN KSSVIGPPLR LILKAQVTRG NLCCPVTVTM QLRNPELHLG 60 CALALRFLAL VSWDIPGARA LDNGLARTPT MGWLHWERFM CNLDCQEEPD SCISEKLFME 120 MAELMVSEGW KDAGYEYLCI DDCWMAPQRD SEGRLQADPQ RFPHGIRQLA NYVHSKGLKL 180
65	GIYADVGNKT CAGFPGSFGY YDIDAQTFAD WGVDLLKFDG CYCDSLENLA DGYKHMSLAL 240 NRTGRSIVYS CEWPLYMWPF QKPNYTEIRQ YCNHWRNFAD IDDSWKSIKS ILDWTSFNQE 300 RIVDVAGPGG WNDPDMLVIG NFGLSWNQQV TQMALWAIMA APLFMSNDLR HISPQAKALL 360



QDKDVIAINQ DPLGKQGYQL RQGDNFEVWE KPLSGLAWAV AMINRQEIGG PRSYTIAVAS 420 LGKGVACNPA CFITQLLPVK RKLGFYEWTS RLRSHINPTG TVLLQLENTM QMSLKDLL 478	5
(2) INFORMATION ÜBER SEQ ID NO:107:	
<ul><li>(A) LÄNGE: 115 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	10
(ii) MOLEKÜLTYP: ORF	15
(iii) HYPOTHETISCH: ja	20
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	25
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 107	
ESLLLTLDLE KPVSLLLSVT NLYSKNSAQF STILQTLSFP ATFTPSPSIP LSSAYFFFFS 60 DRVSLCRPGR SAVAQSWGSL QASTSQRASD HHASAPQVGW GLTRRHTTTA GLIFC 115	30
(2) INFORMATION ÜBER SEQ ID NO: 108:	35
<ul><li>(A) LÄNGE: 69 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	40
(ii) MOLEKÜLTYP: ORF	45
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	50
: (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 108	55
TKLTPGQASP WFPTHTPVSL RSSRLTSLPL VCRSLTSRFR STSCLSQTTP SPFQERSRNS 60 NFESRWNDI	) 60
(2) INFORMATION ÜBER SEQ ID NO:109 :	
(A) LÄNGE: 78 Aminosäuren (B) TYP: Protein	65



_	(C) STRANG: einzel (D) TOPOLOGIE: linear	
5	(ii) MOLEKÜLTYP: ORF	
10	(iii) HYPOTHETISCH: ja	
15	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 109	
20	MSPAPSSEPG TSNVKELTER TKSSWMGPGT RLGTRCQKAG SLPRPSLLSI PHIPLSVLVI WHKELLFSLA KKKKKKKK	60 78
25	(2) INFORMATION ÜBER SEQ ID NO: 110:	
30	<ul><li>(A) LÄNGE: 78 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	
	(ii) MOLEKÜLTYP: ORF	
35	(iii) HYPOTHETISCH: ja	
40	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
45	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 110	•
	FFFFFFFLAK ENRSSLCQIT RTDRGMWGMD RREGLGRLPA FWHLVPRRVP GPIQELLVRS 6 VNSLTFDVPG SELGAGDI	50 78
50	(2) INFORMATION ÜBER SEQ ID NO: 111:	
55	<ul><li>(A) LÄNGE: 77 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	
60	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
65		

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	5
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 111	
LSETARISRQ GSHLWSLTNY FILLQMANCA EGQSHSHTLQ RLPNCFWKFT PRSGPLQAAG 60 TRGPRGCGTG PGTVRHV	10
(2) INFORMATION ÜBER SEQ ID NO: 112:	15
<ul><li>(A) LÄNGE: 75 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	20
(ii) MOLEKÜLTYP: ORF	25
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 112	35
PITSFCFKWP IVQRDKATAT LFNGYQTVFG NSHQGRAHCR QLAHVARGAV ERVPELSDMF 60 DFSVSFVLQI RCPNK	
(2) INFORMATION ÜBER SEQ ID NO: 113:	40
<ul><li>(A) LÄNGE: 103 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	. 45
(ii) MOLEKÜLTYP: ORF	50
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	55
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 113	60
DCEDLQAGFS PLESDQLLHF ASNGQLCRGT KPQPHSSTVT KLFLEIHTKV GPTAGSWHTW 6 PEGLWNGSRN CQTCLILAFP LFFKSGAQIS DQHSCFQIGE TIK 1	0 03 65

	(2) INFORMATION ÜBER SEQ ID NO: 114:
5	<ul><li>(A) LÄNGE: 134 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>
10	(ii) MOLEKÜLTYP: ORF
15	(iii) HYPOTHETISCH: ja
20	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 114
25	IAAASARRPP RLPRLSAPPS RGARGTMADP RVRQIKIKTG VVKRLVKEKV MYEKEAKQQE 60 EKIEKMRAED GENYDIKKQA EILQESRMMI PDCQRRLEAA YLDLQRILEN EKDLEEAEEY 12 KEARLVLDSV KLEA
30	(2) INFORMATION ÜBER SEQ ID NO: 115:
35	<ul><li>(A) LÄNGE: 171 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>
40	(ii) MOLEKÜLTYP: ORF
	(iii) HYPOTHETISCH: ja
45	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
50	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 115
55	SGAVGAERMG APTPLLTGSR VLRAAVWVRG QSGRRWAART ACQPGAPESC AAGPRGAPRP 60 PQPGAFREPR GAHDGGGDGY RAQGGRAGEA QGGAAAAVEA ERCVLTERGL QLFEAKGTGG 120 RPKELSFARI KAVECVESTG RHIYFTLVTE GAARSTSAAP WKIPAGTPRS P 171
	(2) INFORMATION ÜBER SEQ ID NO: 116 :
60	(A) LÄNGE: 247 Aminosäuren (B) TYP: Protein

(C) STRANG: einzel (D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: ORF	5
(iii) HYPOTHETISCH: ja	10
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 116	
AWSSSRTSRP SRQCGPGRAS GPGPSCPKPP GAPSFLHATH HLSAEVKAAS LFPLACGGTA 60 VLHVARWKAW TCGGGAGAEG MDEPWEEGRR LRRAEDEDAA PGWSQTLRTC PAQGLRATGL 120 ASYGMRGSWH RSPLPAVVLP SVLQTALSPL ALCQAWRRAV PHGVPSQRLR NQEASLVPKG 180 VPRAWYPGPL QNGLWTHLEK GELLGLKPTP GGLLLRSFW DPHPSRPFLC TLLPPPLRIF 240 PPLRCSA	20
	25
(2) INFORMATION ÜBER SEQ ID NO: 117:	
(A) LÄNGE: 521 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	30
(ii) MOLEKÜLTYP: ORF	35
(iii) HYPOTHETISCH: ja	40
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	40
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 117	45
SKLNSYYGNV PVIEVKNKH PVEVVYLSEAQ KDSFESILRL IFEIHESGEK GDIVVFLACE 60 QDIEKVCETV YQGSNLNPD LGELVVVPLYP KEKCSLFKPL DETEKRCQVY QRRVVLTTSS 120 GEFLIWSNSV RFVIDVGVE RRKVYNPRIRA NSLVMQPISQ SQAEIRKQIL GSSSSGKFFC 180 LYTEEFASKD MTPLKPAEM QEANLTSMVLF MKRIDIAGLG HCDFMNRPAP ESLMQALEDL 240 DYLAALDNDG NLSEFGIIM SEFPLDPQLSK SILASCEFDC VDEVLTIAAM VTAPNCFSHV 300	50
PHGAEEAALT CWKTFLHPE GDHFTLISIYK AYQDTTLNSS SEYCVEKWCR DYFLNCSALR 360 MADVIRAELL EIIKRIELP YAEPAFGSKEN TLNIKKALLS GYFMQIARDV DGSGNYLMLT 420 HKQVAQLHPL SGYSITKKM PEWVLFHKFSI SENNYIRITS EISPELFMQL VPQYYFSNLP 480 PSESKDILQQ VVDHLSPVS TMNKEQQMCET CPETEQRCTL Q 521	55
(2) INFORMATION ÜBER SEQ ID NO:118 :	61
(A) LÄNGE: 65 Aminosäuren	

(B) TYP: Protein

5	(C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
10	(iii) HYPOTHETISCH: ja	
15	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 118	
20	MAGRRVGAEP GPEVERRWWR RRLWQLGTEC KNQHDSSEAL QVLLCHSVSR LSPFAEEHWC YSSGI	60 65
25	(2) INFORMATION ÜBER SEQ ID NO:119:	
30	<ul><li>(A) LÄNGE: 108 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	
35	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
40	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
45	(xì) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 119	•
50	MILQRLFRFS SVIRSAVSVH LRRNIGVTAV AFNKELDPIQ KLFVDKIREY KSKRQTSGGP VDASSEYQQE LERELFKLKQ MFGNADMNTF PTFKFEDPKF EVIEKPQA	50 LO8
	(2) INFORMATION ÜBER SEQ ID NO: 120:	
55	(A) LÄNGE: 67 Aminosäuren (B) TYP: Protein	
60	(C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
65	(iii) HYPOTHETISCH: ja	

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		
		5
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 120		
RGFYLPKLKK QNWYLTALPR DHLWALVESR HSKHSTGKRR ICLDSEMRYN SEDTMAESSR EVGGSSY	60 67	10
(2) INFORMATION ÜBER SEQ ID NO:121 :		15
<ul><li>(A) LÄNGE: 129 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>		20
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja		25
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 121		
AACLALRIAA AMASCSQGIQ QLLQAEKRAA EKVSEARKRK NRRLKQAKEE AQAEIEQYRL QREKEFKAKE AAALGSRGSC STEVEKETQE KMTILQTYFR QNRDEVLDNL LAFVCDIRPE IHENYRING	60 120 129	35
(2) INFORMATION ÜBER SEQ ID NO:122 :		40
<ul><li>(A) LÄNGE: 167 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>		45
(ii) MOLEKÜLTYP: ORF		50
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		5:
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 122		60



5	NATPQHRCFS LLSIYAVVFM DFWPNVTDKS QEVVQDFIPV LPEVCLEDGH LLLGLLLHFS AATATGSQCR SFLGLEFFLP LQAVLFNFSL SFFFGLLQPP VLSFAGLGHL LGCPLLGLQQ LLNPLRLTSH GGSDSESKAS GLRHLEGPLG QLTQPPTICA CSLRLPS	60 120 167
	(2) INFORMATION ÜBER SEQ ID NO: 123:	
10	<ul><li>(A) LÄNGE: 175 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	
15	(ii) MOLEKÜLTYP: ORF	
20	(iii) HYPOTHETISCH: ja	
25	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 123	
30	SNMAAPSGGW NGVGASLWAA LLLGAVALRP AEAVSEPTTV AFDVRPGGVV HSFSHNVGPG DKYTCMFTYA SQGGTNEQWQ MSLGTSEDHQ HFTCTIWRPQ GKSYLYFTQF KAEVRGAEIE YAMAYSKAAF ERESDVPLKT EEFEVTKTAV AHRPGAFKAE LSKLVIVAKA SRTEL	60 120 175
35	(2) INFORMATION ÜBER SEQ ID NO: 124:	
40	(A) LÄNGE: 143 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
45	(ii) MOLEKÜLTYP: ORF	•
	(iii) HYPOTHETISCH: ja	
50	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	

(2) INFORMATION ÜBER SEQ ID NO: 125:

IGLETFFSGF SPGGRPFKLN LRK

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 124

65

55

60

AVTSSPVAGG TFSSPVKLKG PVSLKGQHIT GFLGGTLKFS TWADVALSGG ACRVAEALGQ 60 RTEGPGPSWL PTASQFPLPA ELFWTQDRRS GGTKRVGNKW GLFLGKKTHG SPNFEPGSAL 120

<ul><li>(A) LÄNGE: 90 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>		5
(ii) MOLEKÜLTYP: ORF		10
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 125		20
EAVGSQEGPG PSVLCPRASA TLQAPPDKAT SAQVENLRVP PRKPVMCWPF RDTGPFSFTG DEKVPPATGL LVTAQCAMPW PQSPAWTAQL	60 90	25
(2) INFORMATION ÜBER SEQ ID NO: 126:		
(A) LÄNGE: 132 Aminosäuren (B) TYP: Protein (C) STRANG: einzel		30
(D) TOPOLOGIE: linear		35
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja		4(
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	•	4:
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 126		5
APPGLFPVAS PELKRCGMAR ACLQAVKYLM FAFNLLFWLG GCGVLGVGIW LAATQGSFAT LSSSFPSLSA ANLLIITGAF VMAIGFVGCL GAIKENKCLL LTFFRCCWLE ATIAILFFAY TDKIDRYAQQ DL	60 120 132	J
(2) INFORMATION ÜBER SEQ ID NO: 127:		5
(A) LÄNGE: 118 Aminosäuren		é
(A) EANGE: 1707 Hillings direction  (B) TYP: Protein  (C) STRANG: einzel  (D) TOPOLOGIE: linear		•
(ii) MOLEKÜLTYP: ORF		(



#### (iii) HYPOTHETISCH: ja

- (vi) HERKUNFT:
  - (A) ORGANISMUS: MENSCH
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 127
- SAAAWRAPAS RPSSTSCSPS TCSSGWEAVA CWVSASGWPP HRGASPRCPL PSRPCRLPTC 60 SSSPAPLSWP SASWAAWVPS RRTSASCSLS SGAAGWRPPS PSSSSPTRTR LTGMPSKT 116
  - (2) INFORMATION ÜBER SEQ ID NO: 128:
- (A) LÄNGE: 357 Aminosäuren
  - (B) TYP: Protein
  - (C) STRANG: einzel
  - (D) TOPOLOGIE: linear
    - (ii) MOLEKÜLTYP: ORF
- 30 (iii) HYPOTHETISCH: ja
  - (vi) HERKUNFT:
    - (A) ORGANISMUS: MENSCH
  - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 128
- VRVKMAAAEA ANCIMEVSCG QAESSEKPNA EDMTSKDYYF DSYAHFGIHE EMLKDEVRTL 60
  TYRNSMFHNR HLFKDKVVLD VGSGTGILCM FAAKAGARKV IGIECSSISD YAVKIVKANK 120
  LDHVVTIIKG KVEEVELPVE KVDIIISEWM GYCLFYESML NTVLYARDKW LAPDGLIFPD 180
  RATLYVTAIE DRQYKDYKIH WWENVYGFDM SCIKDVAIKE PLVDVVDPKQ LVTNACLIKE 240
  VDIYTVKVED LTFTSPFCLQ VKRNDYVHAL VAYFNIEFTR CHKRTGFSTS PESPYTHWKQ 300
  TVFYMEDYLT VKTGEEIFGT IGMRPNAKNN RDLDFTIDLD FKGQLCELSC STDYRMR 357
- (2) INFORMATION ÜBER SEQ ID NO: 129:
  - (A) LÄNGE: 129 Aminosäuren
  - (B) TYP: Protein
  - (C) STRANG: einzel
  - (D) TOPOLOGIE: linear
- 60 (ii) MOLEKÜLTYP: ORF
  - (iii) HYPOTHETISCH: ja

65

55

25

35

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH .	5
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 129	
NQDTPPRTLL PSLSPNQRLG FSSPSGCSPT FPSRLHSPDW TTVAVRLDLK TGPRLGMNGC 60 SPLLLFPPTS LMREVVAFPS QGASMGKVSK ASGGAEYQRR GMAVTISPSP NLSPFFESEW 120 GRVGRDPDL	10
(2) INFORMATION ÜBER SEQ ID NO: 130:	15
<ul><li>(A) LÄNGE: 41 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	20
(ii) MOLEKÜLTYP: ORF	25
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 130	35
RQCLLWGHNW CMPAPKGPVF RGHFSQLLPS QMTAPSLEGA Q 41	
(2) INFORMATION ÜBER SEQ ID NO: 131:	40
(A) LÄNGE: 125 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	45
(ii) MOLEKÜLTYP: ORF	50
(iii) HYPOTHETISCH: ja	•
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	55
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 131	
QGQDKPSGLW PPGPWFPCPT TWSPHGWLAG CPCVCVTHGV SAGLCPGWEG VYVALTVLAQ 60 SWWILSMDND TLRIVLVCFS YLWGIFPLRL LGLLLPQGVL TLRLMRGPLP VSPILSSREV 120	65

LTPDS

125

5	(2) INFORMATION ÜBER SEQ ID NO: 132:
10	(A) LÄNGE: 120 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear
	(ii) MOLEKÜLTYP: ORF
15	(iii) HYPOTHETISCH: ja
20	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
25	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 132
	DKGELGASCL PLTGPLHTKE DPRSWQGEPV PLKTCLHFQF GREKRGGYPF SELAPGLGSS 60 HFSRPFLRVW GEHLPRTQYG GNRQGSPHQP QGQDTLRQQQ TQEPEGENTP QIGKTNQDNP 120
30	(2) INFORMATION ÜBER SEQ ID NO: 133:
35	<ul><li>(A) LÄNGE: 105 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>
	(ii) MOLEKÜLTYP: ORF
40	(iii) HYPOTHETISCH: ja
45	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
50	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 133
	PHSRHCLYMH PHSHLLTEGG NTQLHMLTHS HLLTEGGNTR SSALMRFQTL LPLCKPHPSP 60 PPDKEIYKSG SLPTLPHSLS KKGLRLGDGE IVTAIPLRWY SAPPEAFETF PIEAP 105
55	(2) INFORMATION ÜBER SEQ ID NO: 134:
60	(A) LÄNGE: 72 Aminosäuren (B) TYP: Protein (C) STRANG: einze! (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja		5
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		10
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 134		15
DRLYWKFDPV KVKALEGFPR LVGPDFFGCA SLPTLSSDHG LDALRGADPC QATNIRLETH GHLCGCGHQA WD	60 72	15
(2) INFORMATION ÜBER SEQ ID NO: 135:		20
<ul><li>(A) LÄNGE: 67 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>		25
(ii) MOLEKÜLTYP: ORF		30
(iii) HYPOTHETISCH: ja		35
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		40
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 135		
PLPGHEYQAR DPWPSLWLWA PGMGLSPCLL RGMGWGTTTM TTAGRATQVV VTCQRLSQTG QGGFGMT	60 67	45
(2) INFORMATION ÜBER SEQ ID NO: 136:		5(
(A) LÄNGE: 180 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		5:
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja		6
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		6



### (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 136

5	GGACGRTAAE AARETTRRSR KMRTRREFPV ISVVGYTNCG KTTLIKALTG DAAIQPRDQL 60 FATLDVTAHA GTLPSRMTVL YVDTIGFLSQ LPHGLIESFS ATLEDVAHSD LILHVRDVSH 120 PEAESRNAAF CPRCVACSCP PRSWTPWWRF TTRWTSCPGT APRNRTSCPC LPCGATGSRS 180
10	(2) INFORMATION ÜBER SEQ ID NO: 137:
15	<ul><li>(A) LÄNGE: 120 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>
20	(ii) MOLEKÜLTYP: ORF
20	(iii) HYPOTHETISCH: ja
25	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
30	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 137
35	PWALQLHRLL GWSPNHSLFV KAELTAKQAT MKLSVCLLLV TLALCCYQAN AEFCPALVSE 60 LLDFFFISEP LFKLSLAKFD APPEAVAAKL GVKRCTDQMS LQKRSLIAEV LVKILKKCSV 120
	(2) INFORMATION ÜBER SEQ ID NO:138 :
40	<ul><li>(A) LÄNGE: 226 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>
45	(ii) MOLEKÜLTYP: ORF
50	(iii) HYPOTHETISCH: ja
	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH
55	(vi) SECUENZ RESCUREIDUNO, OFO IT HE
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 138

65

60

LGNHNKHGAI SMLFIRRTVC GVVTILFFLK FFLFLNLIMI LGHDSVFSMT VASTRTRSFP 60

RSGLPSSVKL SAPTSRTFSS RILSPHARSS SFPIKIRSSE VTFHWRLAKC TTAKSLPYCP 120

VTIISFTFFT TSAWCLVSST GSGRTTSGQG GELRDVLGTY PGRYEVLCEL NLREADQRE APGPEGLRML WLHADASRPK VTVREDAAMA AAIFPQPRPE TETTRT	A 180 226	
(2) INFORMATION ÜBER SEQ ID NO:139:		5
(A) LÄNGE: 222 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		10
(ii) MOLEKÜLTYP: ORF		15
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	·	20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 139		25
VRVVSVSGRG CGKMAAAMAA SSLTVTLGRL ASACSHSILR PSGPGAASLW SASRRFNSQ TSYLPGYVPK TSLSSPPWPE VVLPDPVEET RHHAEVVKKV NEMIVTGQYG RLFAVVHFA RQWKVTSEDL ILIGNELDLA CGERIRLEKV LLVGADNFTL LGKPLLGKDL VRVEATVIE TESWPRIIMR FRKRKNFKKK RIVTTPQTVL RINSIEIAPC LL	AS 120	30
(2) INFORMATION ÜBER SEQ ID NO:140:		35
<ul><li>(A) LÄNGE: 181 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>		40
(ii) MOLEKÜLTYP: ORF		45
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		50
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 140		55
MMVAGAGADF VMLGGMLAGH SESGGELIER DGKKYKLFYG MSSEMAMKKY AGGVAEYRY WRPRSLVIVW RQNSWLLRGG WYSSQRSMVN RGSMLGSVEK SLGLRNPEGE DNKVFPTLF SEGKTVEVPF KGDVEHTIRD ILGGIRSTCT YVGAAKLKEL SRRTTFIRVT QQVNPIFSE	RA 120	60

	(2) INFORMATION ÜBER SEQ ID NO:141:	
5	<ul><li>(A) LÄNGE: 168 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	
10	(ii) MOLEKÜLTYP: ORF	
15	(iii) HYPOTHETISCH: ja	
20	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
25	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 141	
23	STWRQEQIGC FIMDGGDDGN LIIKKRFVSE AELDERRKRR QEEWEKVRKP EDPEECPEEV YDPRSLYERL QEQKDRKQQE YEEQFKFKNM VRGLDEDETN FLDEVSRQQE LIEKQRREEE LKELKEYRNN LKKVGISQEN KKEVEKKLTV KPIETKNKFS QAKCWQEL	60 12:
30		
	(2) INFORMATION ÜBER SEQ ID NO:142:	
35	<ul><li>(A) LÄNGE: 153 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	
40	(ii) MOLEKÜLTYP: ORF	
45	(iii) HYPOTHETISCH: ja	
50	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	٠
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 142	
55	TRKERSKEQR SRGEVEEKKH KEDKDDRRHR DDKRDSKKEK KHSRSRSRER KHRSRSRSRN 6 AGKRSRSRSK EKSSKHKNES KEKSNKRSRS GSQGRTDSVE KSKKREHSPS KEKSRKRSRS 1 KERSHKRDHS DSKDQSDKHD RRRSQSIEQE SQEKQHKNKD ETV 1	0 20 53
60	(2) INFORMATION ÜBER SEQ ID NO:143:	
65	<ul><li>(A) LÄNGE: 131 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	

(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja		5
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		10
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 143		
KRRNIKKTKM IGGTEMTKEI PRKRKNTVEA EAEKGNTEVG VEVEMQGNEV EVEAKRNQVN IKMKVKKNQI NEVEVAVKEE LTVLKNQKNG NIVPAKKNLE SVVEAKNVPT NEITVIVRTS QTNMIVEGAK V	60 120 131	15
(2) INFORMATION ÜBER SEQ ID NO:144:		20
<ul><li>(A) LÄNGE: 144 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>		25
(ii) MOLEKÜLTYP: ORF		30
(iii) HYPOTHETISCH: ja		2.0
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		35
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 144		
IFLCWDYVPV FLIFQHCQFF LDCHFDFVYL IFLYFHFYVY LISLCFYFYF VSLHFYFDSY FCVSFLCFCF YCVFSLSWNL FCHLCAAYHL CLLYVSSLLP LPYFSVPWTF LFSFISSFLI IVTISSSTSL IFFLSFSIPC PFYPP	60 [°] 120 144	4.
(2) INFORMATION ÜBER SEQ ID NO: 145:		5
<ul><li>(A) LÄNGE: 131 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>		5
(ii) MOLEKÜLTYP: ORF	•	
(iii) HYPOTHETISCH: ja		•

(vi)	HERKUNFT:	
	(A) ORGANISMUS:	MENSCH

(x	i)	SEQU	JENZ-	BES	CHE	REIBL	JNG:	SEO	ID	NO:	145
1.	,	~~~	,		$\sim$ 111	100	J18G.	JEU	ш	17(1)	14:

RLHRRTGASR SSHSSDSGGS DVDLDPTDGK LFPSDGFRDC KKGDPKHGKR KRGRPRKLSK 60 EYWDCLEGKK SKHAPRGTHL WEFIRDILIH PELNEGLMKW ENRHEGVFKF LRSEAVAQLW 120 GQKKKNSNMT YEKLSRAMRY YYKREILERV DGRRLVYKFG KNSSGWKEEE VLQSRN*

(2) INFORMATION ÜBER SEQ ID NO: 146:

- (A) LÄNGE: 114 Aminosäuren
- (B) TYP: Protein
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear
- ²⁵ (ii) MOLEKÜLTYP: ORF

15

20

30

35

45

- (iii) HYPOTHETISCH: ja
- (vi) HERKUNFT:
  - (A) ORGANISMUS: MENSCH
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 146
- MTCKMSQLER NIETIINTFH QYSVKLGHPD TLNQGEFKEL VRKDLQNFLK KENKNEKVIE 60 40 HIMEDLDTNA DKQLSFEEFI MLMARLTWAS HEKMHEGDEG PGHHHKPGLG EGTP 114
  - (2) INFORMATION ÜBER SEQ ID NO: 147:
  - (A) LÄNGE: 333 Aminosäuren
    - (B) TYP: Protein
    - (C) STRANG: einzel
- 50 (D) TOPOLOGIE: linear
  - (ii) MOLEKÜLTYP: ORF
- 55 (iii) HYPOTHETISCH: ja
  - (vi) HERKUNFT:
    - (A) ORGANISMUS: MENSCH
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 147

ATLEHPALVP LQPAEMVELM FPLLLLLPF LLYMAAPQIR KMLSSGVCTS TVQLPGKVVV 60 VTGANTGIGK ETAKELAQRG ARVYLACRDV EKGELVAKEI QTTTGNQQVL VRKLDLSDTK 120 SIRAFAKGFL AEEKHLHVLI NNAGVMMCPY SKTADGFEMH IGVNHLGHFL LTHLLLEKLK 180 ESAPSRIVNV SSLAHHLGRI HFHNLQGEKF YNAGLAYCHS KLANILFTQE LARRLKGSGV 240 TTYSVHPGTV QSELVRHSSF MRWMWWLFSF FIKTPQQGAQ TSLHCALTEG LEILSGNHFS 300 DCHVAWVSAQ ARNETIARRL WDVSCDLLGL PID 3333	5				
(2) INFORMATION ÜBER SEQ ID NO: 148:	10				
<ul><li>(A) LÄNGE: 67 Aminosäuren</li><li>(B) TYP: Protein</li><li>(C) STRANG: einzel</li><li>(D) TOPOLOGIE: linear</li></ul>	15				
(ii) MOLEKÜLTYP: ORF	20				
(iii) HYPOTHETISCH: ja					
(vi) HERKUNFT:	25				
(A) ORGANISMUS: MENSCH					
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 148	30				
RGFYLPKLKK QNWYLTALPR DHLWALVESR HSKHSTGKRR ICLDSEMRYN SEDTMAESSR 60 GVGGSSY	35				
Patentansprüche					
<ol> <li>Eine Nukleinsäure-Sequenz, die ein Genprodukt oder ein Teil davon kodiert, umfassend</li> <li>a) eine Nukleinsäure-Sequenz, ausgewählt aus der Gruppe Seq. ID No. 9, 17, 18, 21, 23–25, 27, 31, 36, 38, 39, 42–44, 46–48, 50–53, 55–59, 61–63 und 67, 68</li> <li>b) eine allelische Variation der unter a) genannten Nukleinsäure-Sequenzen</li> </ol>	40				
oder c) eine Nukleinsäure-Sequenz, die komplementär zu den unter a) oder b) genannten Nukleinsäure-Sequenzen	45				
ist.  2. Eine Nukleinsäure-Sequenz gemäß einer der Sequenzen Seq. ID Nos. 9, 17, 18, 21, 23–25, 27, 31, 36, 38, 39, 42–44, 46–48, 50–53, 55–59, 61–63 und 67, 68 oder eine komplementäre oder allelische Variante davon.  3. Nukleinsäure-Sequenz Seq. ID No. 1 bis Seq. ID No. 68, dadurch gekennzeichnet, daß sie in Brusttumorgewebe erhöht exprimiert sind.					
<ol> <li>BAC, PAC und Cosmid-Klone, enthaltend funktionelle Gene und ihre chromosomale Lokalisation, entsprechend den Sequenzen Seq. ID. No. 1 bis Seq. ID No. 68, zur Verwendung als Vehikel zum Gentransfer.</li> <li>Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß sie eine 90%ige Ho-</li> </ol>					
mologie zu einer humanen Nukleinsäure-Sequenz aufweist.  6. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß sie eine 95%ige Ho-	55				
mologie zu einer humanen Nukleinsäure-Sequenz aufweist.  7. Eine Nukleinsäure-Sequenz, umfassend einen Teil der in den Ansprüchen 1 bis 6 genannten Nukleinsäure-Sequenzen, in solch einer ausreichenden Größe, daß sie mit den Sequenzen gemäß den Ansprüchen 1 bis 6 hybridisie-					
ren.  8. Ein Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 50 bis 4500 bp aufweist.	60				
<ol> <li>9. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 150 bis 4000 bp aufweist.</li> <li>10. Eine Nukleinsäure-Sequenz gemäß einem der Ansprüche 1 bis 9, die mindestens eine Teilsequenz eines biologisch aktiven Polypeptids kodiert.</li> <li>11. Eine Expressionskassette, umfassend ein Nukleinsäure-Fragment oder eine Sequenz gemäß einem der Ansprüche 1 bis 9, zusammen mit mindestens einer Kontroll- oder regulatorischen Sequenz.</li> <li>12. Eine Expressionskassette, umfassend ein Nukleinsäure-Fragment oder eine Sequenz gemäß Anspruch 11, wo-</li> </ol>	65				
12. Ellie Explicasioniskassene, unitassene elli riukiellisaare Tragilielli odel elle trequella gellias Tragilielli (1)					

rin die Kontroll- oder regulatorische Sequenz ein geeigneter Promotor ist.

- 13. Eine Expressionskassette gemäß einem der Ansprüche 11 und 12, dadurch gekennzeichnet, daß die auf der Kassette befindlichen DNA-Sequenzen ein Fusionsprotein kodieren, das ein bekanntes Protein und ein biologisch aktives Polypeptid-Fragment umfaßt.
- Verwendung der Nukleinsäure-Sequenzen gemäß den Ansprüchen 1 bis 10 zur Herstellung von Vollängen-Genen.
  - 15. Ein DNA-Fragment, umfassend ein Gen, das aus der Verwendung gemäß Anspruch 14 erhältlich ist.
  - 16. Wirtszelle, enthaltend als heterologen Teil ihrer exprimierbaren genetischen Information ein Nukleinsäure-Fragment gemäß einem der Ansprüche 1 bis 10.
- 17. Wirtszelle gemäß Anspruch 16, dadurch gekennzeichnet, daß es ein prokaryontisches oder eukaryontische Zellsystem ist.
  - 18. Wirtszelle gemäß einem der Ansprüche 16 oder 17, dadurch gekennzeichnet, daß das prokaryontische Zellsystem E. coli und das eukaryontische Zellsystem ein tierisches, humanes oder Hefe-Zellsystem ist.
  - 19. Ein Verfahren zur Herstellung eines Polypeptids oder eines Fragments, dadurch gekennzeichnet, daß die Wirtszellen gemäß den Ansprüchen 16 bis 18 kultiviert werden.
  - 20. Ein Antikörper, der gegen ein Polypeptid oder ein Fragment gerichtet ist, welches von den Nukleinsäuren der Sequenzen Seq. ID No. 1 bis Seq. ID No. 68 kodiert wird, das gemäß Anspruch 19 erhältlich ist.
  - 21. Ein Antikörper gemäß Anspruch 20, dadurch gekennzeichnet, daß er monoklonal ist.
  - 22. Polypeptid-Teilsequenzen, gemäß den Sequenzen Seq. ID Nos. 72-76, 79-81, 84-92, 95-98, 102-104, 107-117, 119-127, 129-144, 147.
  - 23. Polypeptid-Teilsequenzen gemäß Anspruch 22, mit mindestens 80% iger Homologie zu diesen Sequenzen.
  - 24. Polypeptid-Teilsequenzen gemäß Anspruch 22, mit mindestens 90%iger Homologie zu diesen Sequenzen.
  - 25. Verwendung der Polypeptid-Teilsequenzen gemäß den Sequenzen Seq. ID No. 71 bis Seq. ID No. 148, als Tools zum Auffinden von Wirkstoffen gegen Brustkrebs.
- 26. Verwendung der Nukleinsäure-Sequenzen gemäß den Sequenzen Seq. ID No. 1 bis Seq. ID No. 68 zur Expression von Polypeptiden, die als Tools zum Auffinden von Wirkstoffen gegen Brustkrebs verwendet werden können.
   27. Verwendung der Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 68 in sense oder antisense Form.
  - 28. Verwendung der Polypeptid-Teilsequenzen Seq. ID No. 71 bis Seq. ID No. 148 als Arzneimittel in der Gentherapie zur Behandlung des Brustkrebses.
- 29. Verwendung der Polypeptid-Teilsequenzen Seq. ID No. 71 bis Seq. ID No. 148, zur Herstellung eines Arzneimittels zur Behandlung des Brustkrebses.
  - 30. Arzneimittel, enthaltend mindestens eine Polypeptid-Teilsequenz Seq. ID No. 71 bis Seq. ID No. 148.
  - 31. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 10, dadurch gekennzeichnet, daß es eine genomische Sequenz ist.
- 32. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 10, dadurch gekennzeichnet, daß es eine mRNA-Sequenz ist.
  - 33. Genomische Gene, ihre Promotoren, Enhancer, Silencer, Exonstruktur Intronstruktur und deren Spleißvarianten, erhältlich aus den cDNAs der Sequenzen Seq. ID No. 1 bis Seq. ID No. 68.
  - 34. Verwendung der genomischen Gene gemäß Anspruch 33, zusammen mit geeigneten regulativen Elementen.
  - 35. Verwendung gemäß Anspruch 34, dadurch gekennzeichnet, daß das regulative Element ein geeigneter Promotor und/oder Enhancer ist.
  - 36. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 450 bis 3500 bp aufweist.

45 Hierzu 10 Seite(n) Zeichnungen

5

15

20

40

50

55

60

Nummer: Int. Cl.⁶: Offenlegungstag:

**DE 198 13 839 A1 C 07 K 14/435**23. September 1999

## Systematische Gen-Suche in der Incyte LifeSeq Datenbank



Fig. 1



**DE 198 13 839 A1 C 07 K 14/435**23. September 1999

## Prinzip der EST-Assemblierung

# Assemblierung bei 0% Mismatch mit GAP4 (Staden) Contigs Singletons In Anzahl und Länge zunehmende Contigs Iterative Assemblierung mit steigendem Mismatch (1%,2%,4%)

5000-6000 Contigs ~25.000 übrige Singletons



~30.000 Konsensussequenzen pro Gewebe

Fig. 2a

**DE 198 13 839 A1 C 07 K 14/435**23. September 1999

~50.000 ESTs eines Gewebes (z.B.: Brust Tumor) GAP4 assembly 1. Runde: minimum initial match: 20 maximum pads per read: 8 maximum percent mismatch: 0 nicht GAP4-Datenbank 1: assemblierte **ESTs** Contigs 1 Singletons 1 GAP4 assembly 2. Runde: minimum initial match: 20 maximum pads per read: 8 maximum percent mismatch: 1 nicht GAP4-Datenbank 2: assemblierte **ESTs** Contigs 2 Singletons 2 GAP4 assembly 3. Runde: minimum initial match: 20 maximum pads per read: 8 maximum percent mismatch: 2 nicht GAP4-Datenbank 3: assemblierte **ESTs** Singletons 3 Contigs 3 Fig. 2b1



Fig. 2b2



Fig. 2b3

assemblierte Datenbank eines spezifischen Gewebes (z.B.: Brust Tumor)

**DE 198 13 839 A1 C 07 K 14/435**23. September 1999

assemblierte Datenbank eines spezifischen Gewebes (z.B.: Brust Tumor) Consensus 6 Einlesen als Singletons Datenbank eines Datenbank eines zweiten spezifischen Gewebes spezifischen Gewebes (z.B.: Brust Tumor) (z.B.: Brust Normal) GAP4 assembly minimum initial match: 20 maximum pads per read: 8 maximum percent mismatch: 4 nicht Gewebs-Tumor-Gewebs-Normal-Gewebsspezifische spezifische spezifische **ESTs ESTs ESTs** 

Fig. 2b4

In silico Subtraktion der Genexpression in verschiedenen Geweben ~30.000 Konsensussequenzen Assemblierung bei 4% Mismatch Krebsgewebe ~30,000 Konsensussequenzen Normalgewebe

Spezifische Gene Normalgewebe

Spezifische Gene Krebsgewebe

In beiden Geweben expremierte Gene

Fig. 3



Fig. 4a



Fig. 4b



**DE 198 13 839 A1 C 07 K 14/435**23. September 1999

Isolieren von genomischen BAC und PAC Klonen



Chromosomale Klon-Lokalisation über FISH





**

Sequenzierung von Klonen, die in Regionen lokalisiert sind, die chromosomale Deletionen in Prostata- und Brustkrebs aufweisen, führt zur Identifizierung von Kandidatengenen



Bestätigung der Kandidatengene durch Screening von Mutationen und/oder Deletionen in Krebsgeweben

Fig. 5