Corso di Laurea in Matematica

GEOMETRIA A

Seconda prova intermedia aa. 2018/2019

Esercizio 1. Si consideri il piano euclideo $V=\mathbb{E}^2$ munito del prodotto scalare standard e della base ortonormale $\{e_1,e_2\}$ e delle relative coordinate normali (x,y). Si consideri la forma quadratica

$$Q_k$$
: $Q_k(x,y) = (k+1)x^2 - 2xy + 2y^2 + 2x + 2ky = 0$

- (i) Si discuta al variare di $k \in \mathbb{R}$ il tipo euclideo della conica \mathcal{Q}_k
- (ii) Si ponga k=1. Scrivere la forma canonica euclidea \mathcal{Q}_1' di \mathcal{Q}_1 e un'isometria diretta che la trasformi in essa.

Si consideri quindi la chiusura proiettiva $\overline{\mathcal{Q}}_1$ di \mathcal{Q}_1 in $\mathbb{P}^2(\mathbb{R})$ rispetto alla sostituzione $x = x_1/x_0$ e $y = x_2/x_0$.

(iii) Si scriva la matrice associata alla proiettività $f: \mathbb{P}^2(\mathbb{R}) \to \mathbb{P}^2(\mathbb{R})$

$$f([1,0,0]) = [0,1,1] \qquad f([0,1,0]) = [0,-1,1]$$

$$f([0,0,1]) = [1,-1,-1] \quad f([1,1,1]) = [\sqrt{3},-1,1]$$

e si dimostri che $\overline{Q}_1 = f(\mathcal{D})$, dove \mathcal{D} è la conica di equazione canonica proiettivamente equivalente a \overline{Q}_1 .

Svolgimento Esercizio 1.

(i) La matrice associata alla conica Q_k è

$$A := \left(\begin{array}{ccc} 0 & 1 & k \\ 1 & (k+1) & -1 \\ k & -1 & 2 \end{array}\right)$$

e indichiamo con A_0 la sottomatrice quadrata 2×2 corrispondente alle entrate in basso a destra. Osserviamo che

$$\det A = -(k+1)(k^2+2) \qquad \det A_0 = 2k+1.$$

Quindi

$$\det A \colon \begin{cases} > 0 & \text{per } k < -1 \\ = 0 & \text{per } k = -1 \\ < 0 & \text{per } k > -1 \end{cases} \qquad \det A_0 \colon \begin{cases} > 0 & \text{per } k > -1/2 \\ = 0 & \text{per } k = -1/2 \\ < 0 & \text{per } k < -1/2 \end{cases}$$

Per quanto riguarda il caso k > -1/2, per il quale abbiamo un'ellisse, dobbiamo determinare se l'ellisse è a punti reali o meno. Utilizzando il metodo dei minori principali, vediamo che per k > -1/2 la segnatura di A_0 è (2,0), mentre quella di A è (2,1), quindi l'ellisse è a punti reali.

1

Concludiamo quindi che

$$Q_k: \begin{cases} iperbole \ non \ degenere \ per \ k < -1/2 \land k \neq -1 \\ iperbole \ degenere \ per \ k = -1 \\ parabola \ per \ k = -1/2 \\ ellisse \ a \ punti \ reali \ per \ k > -1/2 \end{cases}$$

(ii) Poniamo k = 1 e calcoliamo gli autovalori della matrice A_0 . Il polinomio caratteristico di A_0 è p(t) = (t-3)(t-1). Gli autospazi corrispondenti agli autovalori 1 e 3 sono generati da $v_1 = (1,1)$ e $v_2 = (-1,1)$ rispettivamente. Operiamo quindi il cambio di coordinate

$$\begin{cases} x = \frac{1}{\sqrt{2}}(x_1 - y_1) \\ y = \frac{1}{\sqrt{2}}(x_1 + y_1) \end{cases}$$

l'espressione f nelle nuove coordinate assume quindi la forma

$$f(x_1, y_1) = x_1^2 + 3y_1^2 + \frac{4}{\sqrt{2}}x_1 = 0$$

Per togliere i termini di primo grado utilizziamo il metodo del completamento dei quadrati

$$\left(x_1 + \sqrt{2}\right)^2 + 3y_1^2 - 2 = 0;$$

poniamo quindi

$$\begin{cases} x_2 = x_1 + \sqrt{2} \\ y_2 = y_1 \end{cases}$$

e otteniamo quindi l'equazione

$$\frac{x_2^2}{2} + \frac{y_2^2}{2/3} = 1.$$

Il cambio di coordinate operato è quindi

$$\begin{cases} x = \frac{1}{\sqrt{2}}(x_2 - y_2) - 1\\ y = \frac{1}{\sqrt{2}}(x_2 + y_2) - 1 \end{cases}$$

e l'isometria è data quindi da

$$\begin{cases} x_2 = \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y + \sqrt{2} \\ y_2 = -\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y \end{cases}$$

(iii) La quadrica $\overline{\mathcal{Q}}_1$ ha equazione

$$F(x_0, x_1, x_2) = x_1^2 - x_1 x_2 + x_2^2 + x_1 x_0 + x_0 x_2 = 0.$$

Per trovare la matrice associata a f, essendo

$$(1,0,0) + (0,1,0) + (0,0,1) = (1,1,1)$$

cerchiamo $a, b, c, k \in \mathbb{R}$ tali che

$$(0, a, a) + (0, -b, b) + (c, -c, -c) = (\sqrt{3}k, -k, k)$$

Una soluzione non nulla è data da

$$a = c = 1, b = k = 1/\sqrt{3}$$

quindi la matrice associata alla proiettività f è data da

$$M = \begin{pmatrix} 0 & 0 & 1\\ 1 & -1/\sqrt{3} & -1\\ 1 & -1/\sqrt{3} & -1 \end{pmatrix}$$

Quindi per trovare l'equazione della contro
immagine di $\overline{\mathcal{Q}}_1$ rispetto alla proiettività f calcoliamo

$$F((x_0, x_1, x_2) \cdot M^t) = x_0^2 + x_1^2 - x_2^2 = 0.$$

Esercizio 2. Al variare del parametro $a \in \mathbb{C}$ si consideri la famiglia di curve piane affini in \mathbb{C}^2

$$C_a \colon x^2 y = x + a$$

- (i) Si trovino i punti singolari al variare di $a \in \mathbb{C}$ e se ne determinio le tangenti principali. Si trovino inoltre i punti impropri al variare di $a \in \mathbb{C}$ e si determini se sono semplici o singolari. Si calcoli quindi la tangente (o le tangenti principali, nel caso siano punti non semplici) al variare di $a \in \mathbb{C}$.
- (ii) Si dimostri che C_0 è riducibile, mentre C_a è irriducibile per $a \neq 0$.
- (iii) Si dimostri che per $a \in \mathbb{C} \setminus \{0\}$ ciascuna delle curve \mathcal{C}_a presenta un solo flesso e si determini la tangente inflessionale in esso.
- (iv) Si dimostri che le curve C_a con $a \in \mathbb{C}$ hanno un asintoto in comune. Si determinino inoltre i punti a tangente orizzontale delle C_a al variare di $a \in \mathbb{C} \setminus \{0\}$.
- (v) Si disegni la curva C_a in \mathbb{R}^2 per a=0 e a=1.

Svolgimento Esercizio 2.

(i) Sia $f(x,y) = x^2y - x - a$. Calcoliamo i punti singolari, trovando i punti della curva $C_a := f(x,y) = 0$ in cui si annulla il gradiente.

$$(f_x, f_y) = (2xy - 1, x^2),$$

siccome $(f_x, f_y) \neq (0,0)$ per ogni punto della curva, C_a non ha punti singolari. Per trovare i punti impropri omogeneizziamo utilizzando le variabili omogenee x_0, x_1, x_2 , dove $x = x_1/x_0$ e $y = x_2/x_0$.

$$F(x_0, x_1, x_2) = x_1^2 x_2 - x_0^2 x_1 - a x_0^3$$

Studiamo quindi i punti singolari della curva $\overline{\mathcal{C}}_a$ con $x_0 = 0$. Osserviamo che tali punti devono soddisfare $F(0, x_1, x_2) = x_1^2 x_2 = 0$, quindi i punti impropri della curva sono

$$P_1 := [0:1:0]$$
 $P_2 := [0:0:1].$

Per determinare se sono semplici o meno, calcoliamo le derivate di F rispetto alle tre coordinate omogenee.

$$F_0 = -2x_0x_1 - 3ax_0^2$$

$$F_1 = 2x_1x_2 - x_0^2$$

$$F_2 = x_1^2$$

Osserviamo quindi che $F_0(P_1) = F_1(P_1) = 0$ e $F_2(P_1) = 1$, quindi P_1 è un punto semplice con retta tangente $\tau_1 \colon x_2 = 0$. Invece $F_0(P_2) = F_1(P_2) = F_2(P_2) = 0$, quindi P_2 è un punto singolare per ogni $a \in \mathbb{C}$. Calcoliamo le tangenti principali a $\overline{\mathcal{C}}_a$ in P_2 andando a lavorare nello spazio affine $U_2 := \{x_2 \neq 0\}$, utilizzando le coordinate affini $u := x_0/x_2$ e $v := x_1/x_2$. Dovremo quindi determinare le tangenti principali alla curva di equazione

$$g(u,v) := v^2 - u^2v - au^3 = 0$$

nel punto (0,0). Dal momento che il monomio di grado più basso è di ordine 2, il punto (0,0) è un punto doppio, le cui tangenti principali sono date dalla fattorizzazione della componente di grado 2 del polinomio g(u,v), nello specifico il punto ha un'unica tangente principale τ_2 , di equazione v=0, ossia $x_1=0$.

(ii) Se a=0 la curva risulta chiaramente riducibile, in quanto l'equazione diventa $x^2y-x=x(xy-1)=0$. Quindi per a=0 C_a risulta essere l'unione di una retta e di un'iperbole. Supponiamo ora che $a\neq 0$ e dimostriamo che C_a è irriducibile. Consideriamo la chiusura proiettiva \overline{C}_a di equazione $F(x_0,x_1,x_2)=0$. Essendo \overline{C}_a di grado 3, se fosse riducibile si spezzerebbe nell'unione di tre rette (con eventualmente qualche retta multipla) o nell'unione di una retta e una conica. In entrambi i casi, un punto di intersezione di queste componenti sarebbe singolare per \overline{C}_a e una delle sue tangenti principali coinciderebbe con la retta contenuta nel supporto di \overline{C}_a .

Nel nostro caso $\overline{\mathcal{C}}_a$ ha come unico punto singolare P_2 , la cui unica tangente principale è τ_2 : $x_1 = 0$. Calcoliamo quindi $I(\overline{\mathcal{C}}_a, \tau_2; P_2)$. Nelle coordinate (u, v) la retta ha parametrizzazione u = t, v = 0, quindi

$$g(t,0) = -at^3.$$

Dal momento che $a \neq 0$ avremo $I(\overline{C}_a, \tau_2; Q) = 3$, quindi la retta non è componente della curva \overline{C}_a . Ne deduciamo che C_a è irriducibile per $a \neq 0$.

(iii) Per calcolare il flesso di C_a studiamo l'intersezione tra la curva e la sua hessiana. Calcoliamo quindi le derivate seconde di $F(x_0, x_1, x_2)$.

$$F_{00} = -2x_1 - 6ax_0$$
 $F_{01} = -2x_0$ $F_{02} = 0$
 $F_{11} = 2x_2$ $F_{12} = 2x_1$ $F_{22} = 0$

L'equazione dell'hessiana di $\overline{\mathcal{C}}_a$ è data quindi dall'annullamento di

$$\det \begin{pmatrix} -2x_1 - 6ax_0 & -2x_0 & 0\\ -2x_0 & 2x_2 & 2x_1\\ 0 & 2x_1 & 0 \end{pmatrix} = 8x_1^2(x_1 + 3ax_0)$$

Cerchiamo quindi l'intersezione tra l'hessiana e la curva, trovando le soluzioni del sistema

$$\begin{cases} x_1^2(x_1 + 3ax_0) = 0\\ x_1^2x_2 - x_0^2x_1 - ax_0^3 = 0 \end{cases}$$

Le soluzioni del sistema sono $P_2 = [0:0:1]$, che non è un punto di flesso perché singolare, e $P_3 = [1:-3a:-2(9a)^{-1}]$. Essendo P_3 liscio per ogni $a \in \mathbb{R} \setminus \{0\}$, P_3 è punto di flesso. La retta inflessionale è quindi la retta data dall'equazione

$$f_x\left(-3a, -\frac{2}{9a}\right)(x+3a) + f_y\left(-3a, -\frac{2}{9a}\right)\left(y + \frac{2}{9a}\right) = 0,$$

cioè $x + 9a + 27a^2y = 0$.

(iv) Nel secondo punto abbiamo trovato che per ogni $a \in \mathbb{C}$ la retta $x_2 = 0$ è tangente al punto improprio [0:1:0], quindi la retta y=0 è asintoto per ogni $a \in \mathbb{C}$. Analogamente, la retta $x_1=0$ è tangente principale al punto [0:0:1], quindi anche x=0 è asintoto.

I punti a tangente orizzontale sono i punti $P=(x_0,y_0)\in\mathcal{C}_a$ tali che $f_x(x_0,y_0)=0$. Cerchiano quindi le soluzioni del sistema

$$\begin{cases} 2x_0y_0 - 1 = 0 \\ x_0^2y_0 - x_0 - a = 0 \end{cases} \qquad \begin{cases} x_0 = -2a \\ y_0 = -(4a)^{-1} \end{cases}$$