MSRI Soergel bimodule workshop

June/July 2017

Week 1 Day 3 Afternoon: Basic Exercises

Light leaves

- 1. Describe all light leaves maps from ss...s (m times).
- **2.** The diagram $ss \to s$ of degree +1, which is a horizontal reflection of the light leaf for 01, is not a light leaf. Rewrite this morphism as an R-linear combination of double leaves.
- **3.** Let W be of type A_7 , and let \underline{w} be the reduced expression

 $\underline{w} = 1357246352461357.$

- a) What braid relations of the form sts = tst can be applied to \underline{w} ?
- b) Show that

 $\underline{e} = 1111010110100000$

is the unique subexpression with defect zero and terminus

 $w_I = 13435437.$

(Note that w_I is the longest element of the parabolic subgroup for $I = \{1, 3, 4, 5, 7\}$.)

- c) Draw the corresponding light leaf.
- d) Take this light leaf, and precompose it with the upside-down version of itself, to obtain a morphism $\underline{w_I} \to \underline{w} \to \underline{w_I}$. Compute this morphism, modulo terms lower than w_I . (A lengthy calculation, this is a supplemental exercise.)

Zamolodchikov

- **4.** Let $S = \{s, t, u\}$ be type A_3 . Let $\underline{w} = tstuts$ and let $\underline{y} = utstut$ be two expressions for the longest element $w_0 \in W$. There are (essentially) two paths from \underline{w} to \underline{y} in the reduced expression graph of w_0 . Find a reasonably quick proof that the two corresponding morphisms of Bott-Samelson bimodules are not equal. (Extra Credit: find the lower terms which express the difference of these two morphisms.)
- **5.** Let $S = \{s, t, u\}$ be type B_3 , with $m_{st} = 3$ and $m_{tu} = 4$. The "miraculous" reduced expression is $\underline{w} = stustsutu$. Draw the Zamolodchikov relation.