Asymptotic Notations, Review of Functions & Summations

Dr. Navjot Singh Design and Analysis of Algorithms

- Running time of an algorithm as a function of input size n for large n.
- Expressed using only the highest-order term in the expression for the exact running time.
 - Instead of exact running time, say $\Theta(n^2)$.
- Describes behavior of function in the limit.
- Written using Asymptotic Notation.

- Θ , O, Ω , o, ω
- Defined for functions over the natural numbers.
 - \mathbf{Ex} : $f(n) = \Theta(n^2)$.
 - Describes how f(n) grows in comparison to n^2 .
- Define a set of functions; in practice used to compare two function sizes.
- The notations describe different rate-of-growth relations between the defining function and the defined set of functions.

For function g(n), we define $\Theta(g(n))$, Theta of n, as the set:

 $\Theta(g(n)) = \{f(n) : \exists \text{ positive constants} c_1, c_2, \text{ and } n_{0,} \text{ such that } \forall n \geq n_0, \text{ we have } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}$

Intuitively: Set of all functions that have the same *rate of growth* as g(n).

g(n) is an asymptotically tight bound for f(n).

For function g(n), we define $\Theta(g(n))$, Theta of n, as the set:

 $\Theta(g(n)) = \{f(n) : \exists \text{ positive constants} c_1, c_2, \text{ and } n_{0,} \text{ such that } \forall n \geq n_0, \text{ we have } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}$

Technically, $f(n) \in \Theta(g(n))$. Older usage, $f(n) = \Theta(g(n))$. I'll accept either...

f(n) and g(n) are nonnegative, for large n.

$$\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_{0_1} \text{ such that } \forall n \geq n_0, \text{ we have } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}$$

- $10n^2 + 3n = \Theta(n^2)$
- What constants for n_0 , c_1 , and c_2 will work?
- Make c_1 a little smaller than the leading coefficient, and c_2 a little bigger.
- To compare orders of growth, look at the leading term.

 $\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_{0_1} \text{ such that } \forall n \geq n_0, \text{ we have } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}$

- Prove that $n^2/2-3n = \Theta(n^2)$
- Is $3n^3 \in \Theta(n^4)$??
- How about $2^{2n} \in \Theta(2^n)$??

O-notation

For function g(n), we define O(g(n)), Big-O of n, as the set:

$$O(g(n)) = \{f(n) : \exists \text{ positive constants}$$

 $c \text{ and } n_{0,} \text{ such that } \forall n \geq n_0, \text{ we have }$
 $0 \leq f(n) \leq cg(n)\}$

Intuitively: Set of all functions whose *rate* of *growth* is the same as or lower than that of g(n).

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)).$$

 $\Theta(g(n)) \subset O(g(n)).$

g(n) is an asymptotically upper bound for f(n).


```
O(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_{0}, \text{ such that } \forall n \geq n_0, \text{ we have } 0 \leq f(n) \leq cg(n)\}
```

- Any linear function an + b is in $O(n^2)$. How?
- Show that $3n^3 = O(n^4)$ for appropriate *c* and n_0 .

Ω -notation

For function g(n), we define O(g(n)), big-Omega of n, as the set:

$$\Omega(g(n)) = \{f(n) : \exists \text{ positive constants} c \text{ and } n_0, \text{ such that } \forall n \geq n_0, \text{ we have } 0 \leq cg(n) \leq f(n)\}$$

Intuitively: Set of all functions whose *rate* of *growth* is the same as or higher than that of g(n).

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = \Omega(g(n)).$$

 $\Theta(g(n)) \subset \Omega(g(n)).$

g(n) is an asymptotically lower bound for f(n).

$$\Omega(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_{0}, \text{ such that } \forall n \geq n_0, \text{ we have } 0 \leq cg(n) \leq f(n)\}$$

• $\sqrt{n} = \Omega(\lg n)$. Choose *c* and n_0 .


```
Theorem: For any two functions g(n) and f(n), f(n) = \Theta(g(n)) iff f(n) = O(g(n)) and f(n) = \Omega(g(n)).
```

- $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$
- In practice, asymptotically tight bounds are obtained from asymptotic upper and lower bounds.

Running Times

- "Running time is O(f(n))" \Rightarrow Worst case is O(f(n))
- O(f(n)) bound on the worst-case running time $\Rightarrow O(f(n))$ bound on the running time of every input.
- $\Theta(f(n))$ bound on the worst-case running time $\not \Rightarrow \Theta(f(n))$ bound on the running time of every input.
- "Running time is $\Omega(f(n))$ " \Rightarrow Best case is $\Omega(f(n))$
- Can still say "Worst-case running time is $\Omega(f(n))$ "
 - Means worst-case running time is given by some unspecified function $g(n) \in \Omega(f(n))$.

- Insertion sort takes $\Theta(n^2)$ in the worst case, so sorting (as a problem) is $O(n^2)$. Why?
- Any sort algorithm must look at each item, so sorting is $\Omega(n)$.
- In fact, using (e.g.) merge sort, sorting is $\Theta(n \lg n)$ in the worst case.
 - Later, we will prove that we cannot hope that any comparison sort to do better in the worst case.

- Can use asymptotic notation in equations to replace expressions containing lower-order terms.
- For example,

$$4n^3 + 3n^2 + 2n + 1 = 4n^3 + 3n^2 + \Theta(n)$$

= $4n^3 + \Theta(n^2) = \Theta(n^3)$. How to interpret?

- In equations, $\Theta(f(n))$ always stands for an *anonymous function* $g(n) \in \Theta(f(n))$
 - In the example above, $\Theta(n^2)$ stands for $3n^2 + 2n + 1$.

For a given function g(n), the set little-o:

$$o(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \text{ such that}$$

 $\forall n \ge n_0, \text{ we have } 0 \le f(n) < cg(n)\}.$

f(n) becomes insignificant relative to g(n) as n approaches infinity:

$$\lim_{n\to\infty} [f(n) / g(n)] = 0$$

g(n) is an *upper bound* for f(n) that is not asymptotically tight. Observe the difference in this definition from previous ones. Why?

For a given function g(n), the set little-omega:

$$\omega(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \text{ such that}$$

 $\forall n \ge n_0, \text{ we have } 0 \le cg(n) < f(n)\}.$

f(n) becomes arbitrarily large relative to g(n) as n approaches infinity: $\lim_{n\to\infty} \left[\frac{f(n)}{g(n)} \right] = \infty.$

g(n) is a **lower bound** for f(n) that is not asymptotically tight.

Comparison of Functions

$$f \leftrightarrow g \approx a \leftrightarrow b$$

$$f(n) = O(g(n)) \approx a \leq b$$

 $f(n) = \Omega(g(n)) \approx a \geq b$
 $f(n) = \Theta(g(n)) \approx a = b$
 $f(n) = o(g(n)) \approx a < b$
 $f(n) = \omega(g(n)) \approx a > b$

Limits

•
$$\lim_{n\to\infty} [f(n)/g(n)] = 0 \Rightarrow f(n) \in o(g(n))$$

•
$$\lim_{n\to\infty} [f(n)/g(n)] < \infty \Rightarrow f(n) \in O(g(n))$$

•
$$0 < \lim_{n \to \infty} [f(n) / g(n)] < \infty \Rightarrow f(n) \in \Theta(g(n))$$

•
$$0 < \lim_{n \to \infty} [f(n) / g(n)] \Rightarrow f(n) \in \Omega(g(n))$$

•
$$\lim_{n\to\infty} [f(n) / g(n)] = \infty \Rightarrow f(n) \in \omega(g(n))$$

• $\lim_{n\to\infty} [f(n)/g(n)]$ undefined \Rightarrow can't say

Transitivity

$$f(n) = \Theta(g(n)) \& g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$$

$$f(n) = O(g(n)) \& g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$$

$$f(n) = \Omega(g(n)) \& g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$$

$$f(n) = o(g(n)) \& g(n) = o(h(n)) \Rightarrow f(n) = o(h(n))$$

$$f(n) = \omega(g(n)) \& g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n))$$

Reflexivity

$$f(n) = \Theta(f(n))$$

$$f(n) = O(f(n))$$

$$f(n) = \Omega(f(n))$$

Properties

Symmetry

$$f(n) = \Theta(g(n))$$
 iff $g(n) = \Theta(f(n))$

Complementarity

$$f(n) = O(g(n))$$
 iff $g(n) = \Omega(f(n))$
 $f(n) = o(g(n))$ iff $g(n) = \omega((f(n)))$

Common Functions

- *f*(*n*) is
 - monotonically increasing if $m \le n \Rightarrow f(m) \le f(n)$.
 - monotonically decreasing if $m \ge n \Rightarrow f(m) \ge f(n)$.
 - strictly increasing if $m < n \Rightarrow f(m) < f(n)$.
 - strictly decreasing if $m > n \Rightarrow f(m) > f(n)$.

Useful Identities:

$$a^{-1} = \frac{1}{a}$$
$$(a^{m})^{n} = a^{mn}$$
$$a^{m}a^{n} = a^{m+n}$$

Exponentials and polynomials

$$\lim_{n \to \infty} \frac{n^b}{a^n} = 0$$

$$\Rightarrow n^b = o(a^n)$$

Logarithms

$$x = \log_b a$$
 is the exponent for $a = b^x$.

Natural log: In $a = \log_e a$

Binary log: $\lg a = \log_2 a$

$$lg^2a = (lg a)^2$$

$$lg lg a = lg (lg a)$$

$$a = b^{\log_b a}$$

$$\log_c(ab) = \log_c a + \log_c b$$

$$\log_b a^n = n \log_b a$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_b(1/a) = -\log_b a$$

$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b c} = c^{\log_b a}$$

- If the base of a logarithm is changed from one constant to another, the value is altered by a constant factor.
 - $Ex: log_{10} n * log_2 10 = log_2 n.$
 - Base of logarithm is not an issue in asymptotic notation.
- Exponentials with different bases differ by a exponential factor (not a constant factor).
 - $Ex: 2^n = (2/3)^{n*} 3^n$.

- For $a \ge 0$, b > 0, $\lim_{n \to \infty} (\lg^a n / n^b) = 0$, so $\lg^a n = o(n^b)$, and $n^b = \omega(\lg^a n)$
 - Prove using L'Hopital's rule repeatedly
- $\lg(n!) = \Theta(n \lg n)$
 - Prove using Stirling's approximation (in the text) for lg(n!).

Exercise

Express functions in A in asymptotic notation using functions in B.

A B

$$5n^2 + 100n$$

$$3n^2 + 2$$

$$A \in \Theta(B)$$

 $A \in \Theta(n^2), n^2 \in \Theta(B) \Rightarrow A \in \Theta(B)$

$$\log_3(n^2)$$

$$\log_2(n^3)$$

$$A \in \Theta(B)$$

 $\log_b a = \log_c a / \log_c b$; A = $2 \lg n / \lg 3$, B = $3 \lg n$, A/B = $2 / (3 \lg 3)$

$$A \in \omega(B)$$

 $a^{\log b} = b^{\log a}$; B = $3^{\lg n} = n^{\lg 3}$; A/B = $n^{\lg(4/3)} \to \infty$ as $n \to \infty$

$$A \in o(B)$$

$$\lim_{n\to\infty} (\lg^a n / n^b) = 0 \text{ (here } a = 2 \text{ and } b = 1/2) \Rightarrow A \in o(B)$$

Summations – Review

Review on Summations

Why do we need summation formulas?

For computing the running times of iterative constructs (loops).

Example: Maximum Subvector

Given an array A[1...n] of numeric values (can be positive, zero, and negative) determine the subvector A[i...j] ($1 \le i \le j \le n$) whose sum of elements is maximum over all subvectors.

1	-2	2	2


```
\begin{aligned} \mathsf{MaxSubvector}(A, n) \\ & \mathit{maxsum} \leftarrow 0; \\ & \mathsf{for} \ i \leftarrow 1 \ \mathsf{to} \ n \\ & \mathsf{do} \ \mathsf{for} \ j = i \ \mathsf{to} \ n \\ & \mathit{sum} \leftarrow 0 \\ & \mathsf{for} \ k \leftarrow i \ \mathsf{to} \ j \\ & \mathsf{do} \ \mathit{sum} \ += A[k] \\ & \mathit{maxsum} \leftarrow \mathsf{max}(\mathit{sum}, \ \mathit{maxsum}) \end{aligned}
```

$$\bullet T(n) = \sum_{i=1}^{n} \sum_{j=i}^{n} \frac{1}{k=i}^{j}$$

◆NOTE: This is not a simplified solution. What *is* the final answer?

Review on Summations

• Constant Series: For integers a and b, $a \le b$,

$$\sum_{i=a}^{b} 1 = b - a + 1$$

• Linear Series (Arithmetic Series): For $n \ge 0$,

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

• Quadratic Series: For $n \ge 0$, $\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

Review on Summations

• Cubic Series: For $n \ge 0$,

$$\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \dots + n^3 = \frac{n^2 (n+1)^2}{4}$$

• Geometric Series: For real $x \ne 1$,

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1}$$

For
$$|x| < 1$$
, $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$

• Linear-Geometric Series: For $n \ge 0$, real $c \ne 1$,

$$\sum_{i=1}^{n} ic^{i} = c + 2c^{2} + \dots + nc^{n} = \frac{-(n+1)c^{n+1} + nc^{n+2} + c}{(c-1)^{2}}$$

• Harmonic Series: *n*th harmonic number, *n*∈I⁺,

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
$$= \sum_{k=1}^{n} \frac{1}{k} = \ln(n) + O(1)$$

Telescoping Series:

$$\sum_{k=1}^{n} a_k - a_{k-1} = a_n - a_0$$

• Differentiating Series: For |x| < 1,

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{\left(1-x\right)^2}$$

Review on Summations

- Approximation by integrals:
 - For monotonically increasing f(n)

$$\int_{m-1}^{n} f(x)dx \le \sum_{k=m}^{n} f(k) \le \int_{m}^{n+1} f(x)dx$$

For monotonically decreasing f(n)

$$\int_{m}^{n+1} f(x) dx \le \sum_{k=m}^{n} f(k) \le \int_{m-1}^{n} f(x) dx$$

How?

Review on Summations

nth harmonic number

$$\sum_{k=1}^{n} \frac{1}{k} \ge \int_{1}^{n+1} \frac{dx}{x} = \ln(n+1)$$

$$\sum_{k=2}^{n} \frac{1}{k} \le \int_{1}^{n} \frac{dx}{x} = \ln n$$

$$\Rightarrow \sum_{k=1}^{n} \frac{1}{k} \le \ln n + 1$$

- Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C., Introduction to algorithms. MIT press, 2009
- Dr. David Kauchak, Pomona College
- Prof. David Plaisted, The University of North Carolina at Chapel Hill