© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°19

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Exercice 1 ★★ E3A MP 2021

Soient n un entier naturel supérieur ou égal à 2 et E un espace euclidien de dimension n dont le produit scalaire est noté $(\cdot \mid \cdot)$ et la norme $\|\cdot\|$. On note Id_{E} l'endomorphisme identité de E et θ l'endomorphisme nul de E.

- 1. Soit f un endomorphisme auto-adjoint de E que l'on suppose non inversible et non nul.
 - a. Citer le théorème spectral.
 - **b.** Montrer que 0 est valeur propre de f et que f admet au moins une valeur propre non nulle.
 - **c.** Montrer que les sous-espaces Ker(f) et Im(f) sont orthogonaux. Sont-ils supplémentaires ? On justifiera la réponse.

On suppose désormais et jusqu'à la fin de l'exercice que f admet exactement k+1 valeurs propres deux à deux distinctes $(\lambda_j)_{j\in[0,k]}$ avec $k\geq 1$, $\lambda_0=0$ et $0<|\lambda_1|\leq\ldots\leq|\lambda_k|$. Pour tout $j\in[0,k]$, on note E_j le sous-espace propre associé à la valeur propre λ_j et p_j le projecteur orthogonal sur E_j .

- **d.** Montrer que $\mathrm{Id}_{\mathrm{E}} = \sum_{j=0}^{k} p_{j}$.
- **e.** Prouver que l'on a pour tout couple $(i, j) \in [0, k]^2$ tels que $i \neq j$, $p_i \circ p_j = 0$.
- **f.** Démontrer que : $f = \sum_{j=0}^{k} \lambda_j p_j$.
- **g.** Soit p le projecteur orthogonal sur Im(f). Montrer que l'on a : $p = \sum_{j=1}^k p_j$.

On note alors $f^{\rm I}$ l'endomorphisme de E défini par : $f^{\rm I} = \sum_{j=1}^k \frac{1}{\lambda_j} p_j$, appelé inverse généralisé de f.

- 2. Quelques propriétés de l'inverse généralisé.
 - **a.** Montrer que l'on a : $f \circ f^{I} = p$. En déduire que :

$$\forall (x, y) \in E^2, f(x) = p(y) \iff x - f^{I}(y) \in Ker(f)$$

b. Soit *y* un vecteur de E. Montrer que l'on a :

$$\forall x \in E, ||f(x) - y|| = \inf_{z \in E} ||f(z) - y|| \iff x - f^{I}(y) \in Ker(f)$$

3. Application à un exemple.

a. On prend E un espace euclidien de dimension 4 et $\mathcal{B} = (e_1, e_2, e_3, e_4)$ une base orthonormale de E.

Soit f l'endomorphisme de E dont la matrice dans \mathcal{B} est $A = \begin{pmatrix} 3 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 3 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$.

- **b.** Justifier que f est un endomorphisme auto-adjoint, non nul et non inversible.
- c. Montrer que 2 est valeur propre double de la matrice A.
- **d.** En déduire que f admet exactement 3 valeurs propres : $\lambda_0 < \lambda_1 < \lambda_2$.
- **e.** On note pour tout $j \in [0, 2]$, M_i la matrice de p_i dans la base \mathcal{B} .
- **f.** Justifier que l'on peut écrire A sous la forme : $A = 2M_1 + 4M_2$.
- **g.** Montrer que E_2 est de dimension 1 et déterminer un vecteur v_2 de E_2 tel que $||v_2|| = 1$.
- **h.** Démontrer que : $\forall x \in E$, $p_2(x) = (x \mid v_2)v_2$.
- i. Déterminer la matrice M₂.
- **4.** En déduire la matrice associée à $f^{\rm I}$ relativement à la base \mathcal{B} .

Exercice 2 ★★ E3A MP 2019 Maths I

On se propose de déterminer toutes les fonctions f solutions du problème (\mathcal{P}) suivant :

- (i) f est continue sur \mathbb{R}
- (ii) (E₁): $\forall x \in \mathbb{R}, \ f(x) = 1 \int_0^x (t+x)f(x-t) \ dt.$

Pour toute fonction f continue sur \mathbb{R} , on pose $F(x) = \int_0^x f(t) dt$.

- **1.** Soit f une fonction continue sur \mathbb{R} .
 - **a.** Justifier que F est de classe C^1 sur \mathbb{R} .
 - **b.** Montrer que si f vérifie (E_1) , alors f est de classe \mathcal{C}^1 sur \mathbb{R} .
- **2.** Démontrer que f est solution de (\mathcal{P}) si et seulement si elle est solution du problème (\mathcal{P}_1) suivant :
 - (i) f est de classe \mathcal{C}^1 sur \mathbb{R} ;

(ii)
$$\forall x \in \mathbb{R}, \ f'(x) + xf(x) + 2 \int_0^x f(u) \ du = 0;$$

- (iii) f(0) = 1.
- 3. En déduire que f est solution de (\mathcal{P}) si et seulement si F est solution du problème (\mathcal{P}_2) suivant :
 - (i) F est de classe \mathcal{C}^2 sur \mathbb{R} ;
 - (ii) $\forall x \in \mathbb{R}, F''(x) + xF'(x) + 2F(x) = 0;$
 - (iii) F'(0) = 1.
- **4.** On suppose qu'il existe une fonction H développable en série entière sur \mathbb{R} , $H(x) = \sum_{n=0}^{+\infty} a_n x^n$, vérifiant :
 - (i) $\forall x \in \mathbb{R}, \ H''(x) + xH'(x) + 2H(x) = 0$
 - (ii) H'(0) = 1;

© Laurent Garcin MP Dumont d'Urville

- (iii) H(0) = 0.
- **a.** Prouver que l'on a : $a_0=0$, $a_1=1$ et $\forall n\in\mathbb{N},\ a_{n+2}=-\frac{a_n}{n+1}$.
- **b.** En déduire une expression de H(x) pour tout x réel à l'aide de fonctions usuelles.
- **5.** Déterminer alors l'ensemble des solutions du problème (\mathcal{P}) .