Model Performance: Accuracy and Cross-Entropy Loss

Accuracy

• Defined as: $\frac{\text{correct predictions}}{\text{total predictions}}$

- What is a correct prediction?
 - Recall that in logistic regression, our predicted value is $p(y_i=1)$, the probability of event occurrence
 - To decide whether the prediction is correct, we must convert $p(y_i=1)$ to a binary prediction by setting a *threshold*

$p(y_i = 1)$	y_i	Correct?
.77	1	
.27	0	
.53	0	
.54	1	
.11	0	
.87	0	

Accuracy

Easy to understand, but not useful in learning

 Rarely used as a performance metric; we will discuss performance metrics in subsequent lectures

• A loss is a measure of model performance that we use during training

- The lower the loss, the better the performance. During training, we look for parameters that *minimize* the loss.
 - Sometimes, including in logistic regression, we can be sure that we've found the best possible parameters those that give us the lowest loss possible
 - Other times we cannot be sure, so we lower the loss as much as we can

• Suppose we have a fair coin:

•
$$p(y_i = 1) = .5$$
 (heads)

•
$$p(y_i = 0) = .5$$
 (tails)

• What is the probability that we observe the following?

• What if the coin is not balanced?

•
$$p(y_i = 1) = .3$$
 (heads)

•
$$p(y_i = 0) = .7$$
 (tails)

• What is the probability that we observe the following?

• Suppose we don't know $p(y_i = 1)$. We might try to infer it – i.e. *learn* it – by choosing a value that maximizes the probability of our observations. We may need many observations to be confident.

• What if it's a different coin every time...

• ...or not a coin

• We'd like to predict p_i values that maximize the probability of our observations (the y_i). This is what the cross-entropy loss measures.

• We'd like to predict p_i values that maximize the probability of our observations (the y_i). This is what the cross-entropy loss measures.

• For those who are interested: the cross-entropy loss is the *negative* log-likelihood of our observations, given our predictions.

• If we reduce it, we increase the probability of our observations.

• If we increase it, we reduce the probability of our observations.

Minimizing Loss

• As we change a parameter – in this case, the *intercept*, or *bias* of a linear regression model – the loss changes.

Minimizing Loss

• How do we reduce the loss? Follow the slope.

