Module 1: File formats, QC and Data Processing

Presented by:

Eric Dawson¹ and Carla Daniela Robles Espinoza²

¹Bioinformatics Scientist (Genomics / AI) - Nvidia ²Laboratorio Internacional de Investigación sobre el Genoma Humano Universidad Nacional Autónoma de México

Based on slides by:

Petr Danecek

Cancer Genome Analysis

26 November – 1 December 2023 – Montevideo, Uruguay

WELLCOME GENOME CAMPUS

CONNECTING

ADVANCED

COURSES+

SCIENTIFIC

CONFERENCES

Data Formats

FASTQ

· Unaligned read sequences with base qualities

SAM/BAM

- · Unaligned or aligned reads
- Text and binary formats

CRAM

Better compression than BAM

VCF/BCF or MAF

- · Flexible variant call format
- · Arbitrary types of sequence variation
- · SNPs, indels, structural variations

BAM/VCF specifications maintained by the Global Alliance for Genomics and Health MAF documentation can be found in NCI's Genomic Data Commons

FASTA - reference genome

FASTA - reference genome

2003	NCBI Build 34	hg16
2004	NCBI Build 35	hg17
2006	NCBI Build 36.1	hg18
2009	GRCh37	hg19
2013	GRCh38	hg38

FASTQ

- · Simple format for raw unaligned sequencing reads
- · Extension to the FASTA file format
- · Sequence and an associated per base quality score

- Quality encoded in ASCII characters with decimal codes 33-126
 - \cdot ASCII code of "A" is 65, the corresponding quality is Q=65-33=32
 - Phred quality score: $P = 10^{-Q/10}$ perl -e 'printf "%d\n",ord("A")-33;'

FAST

- · Simple format for raw unaligned sequencing reads
- Extension to the FASTA file format
- Sequence and an associated per base quality score

```
@ERR007731.739 IL16 2979:6:1:9:1684/1
CTTGACGACTTGAAAAATGACGAAATCACTAAAAAACGTGAAAAATGAGAAATG
@ERR007731.740 IL16 2979:6:1:9:1419/1
AAAAAAAAGATGTCATCAGCACATCAGAAAAGAAGGCAACTTTAAAACTTTTC
BBABBBABABABABBBBBABA>@B@BBAA@4AAA>.>BAA@779:AAA@A
```

- Quality encoded in ASCII characters with decimal codes 33-126
 - ASCII code of "A" is 65, the corresponding quality is Q=65-33=32
 - Phred quality score: $P = 10^{-Q/10}$ perl -e 'printf "%d\n".ord("A")-33:'

Quality	Probability of error	Accuracy
10 (Q10)	1 in 10	90%
20 (Q20)	1 in 100	99%
30 (Q30)	1 in 1000	99.9%
40 (Q40)	1 in 10000	99.99%

FASTQ

ASCII Table

FASTQ

- · Simple format for raw unaligned sequencing reads
- · Extension to the FASTA file format
- · Sequence and an associated per base quality score

- · Quality encoded in ASCII characters with decimal codes 33-126
 - \cdot ASCII code of "A" is 65, the corresponding quality is Q=65-33=32
 - Phred quality score: $P = 10^{-Q/10}$ perl -e 'printf "%d\n",ord("A")-33;'
- · Beware: multiple quality scores were in use!
 - · Sanger, Solexa, Illumina 1.3+
- · Paired-end sequencing produces two FASTQ files

SAM / BAM

SAM (Sequence Alignment/Map) format

- · Unified format for storing read alignments to a reference genome
- Developed by the 1000 Genomes Project group (2009)
- · One record (a single DNA fragment alignment) per line describing alignment between fragment and reference
- 11 fixed columns + optional key:type:value tuples

Note that BAM can contain

- unmapped reads
- · multiple alignments of the same read
- · supplementary (chimeric) reads

Alignment

Sequence

RAM

SAM

SAM	fields	
1	QNAME	Query NAME of the read or the read pair
2	FĹAG	Bitwise FLAG (pairing, strand, mate strand, etc.)
3	RNAME	Reference sequence NAME
4	POS	1-Based leftmost POSition of clipped alignment
5	MAPQ	MAPping Quality (Phred-scaled)
6	CIGAR	Extended CIGAR string (operations: MIDNSHPX=)
7	MRNM	Mate Reference NaMe ('=' if same as RNAME)
8	MPOS	1-Based leftmost Mate POSition
9	ISIZE	Inferred Insert SIZE
10	SEQ	Query SEQuence on the same strand as the reference
11	QUÀL	Query QUALity (ASCII-33=Phred base quality)
12-	ÒTHER	Optional fields

MD:Z:1G24C2A76 PG:Z:MarkDuplicates RG:Z:1 NM:i:3 MQ:i:0 AS:i:94 XS:i:94

CIGAR string

Compact representation of sequence alignment

- alignment match or mismatch
- sequence match X sequence mismatch
- insertion to the reference
- D deletion from the reference
- soft clipping (clipped sequences present in SEQ)
- hard clipping (clipped sequences NOT present in SEQ)
- skipped region from the reference
- padding (silent deletion from padded reference)

Examples:

Ref: ACGTACGTACGTACGT Read: ACGT----ACGTACGA

Cigar: 4M 4D 8M

Ref: ACGT----ACGTACGT Read. ACGTACGTACGT

Cigar: 4M 4I 8M

Ref: ACTCAGTG--GT

Read: ACGCA-TGCAGTtagacgt Cigar: 5M 1D 2M 2I 2M 7S

Flags

Hex	Dec	Flag	Description
0x1 0x2 0x4 0x8 0x10 0x20 0x40 0x80 0x100 0x200 0x400 0x800	1 2 4 8 16 32 64 128 256 512 1024 2048	PAIRED PROPER_PAIR UNMAP MUNMAP REVERSE MREVERSE READ1 READ2 SECONDARY QCFAIL DUP SUPPLEMENTARY	paired-end (or multiple-segment) sequencing technology each segment properly aligned according to the aligner segment unmapped next segment in the template unmapped SEQ is reverse complemented SEQ of the next segment in the template is reversed the first segment in the template the last segment in the template secondary alignment not passing quality controls PCR or optical duplicate supplementary alignment

Bit operations made easy

- python
 0x1 | 0x2 | 0x20 | 0x80 .. 163
 bin(163) .. 10100011
- samtools flags
 0xa3 163 PAIRED,PROPER_PAIR,MREVERSE,READ2

Optional tags

Each lane has a unique RG tag that contains meta-data for the lane $\,$ RG tags $\,$

· ID: SRR/ERR number

· PL: Sequencing platform

· PU: Run name

· LB: Library name

· PI: Insert fragment size

· SM: Individual

· CN: Sequencing center

BAM

BAM (Binary Alignment/Map) format

- Binary version of SAM
- Developed for fast processing and random access
 - BGZF (Block GZIP) compression for indexing

Key features

- · Can store alignments from most mappers
- · Supports multiple sequencing technologies
- · Supports indexing for quick retrieval/viewing
- · Compact size (e.g. 112Gbp Illumina = 116GB disk space)
- · Reads can be grouped into logical groups e.g. lanes, libraries, samples
- · Widely supported by variant calling packages and viewers

SAM/BAM tools

Several tools and programs for interacting with SAM/BAM files:

- Samtools (Wellcome Sanger Institute)
- Picard tools (Broad Institute)
- Visualisation: IGV, Ensembl, UCSC

Reference-based Compression

BAM files are too large

· ~1.5-2 bytes per base pair

Increases in disk capacity are being far outstripped by sequencing technologies

Zachary D. Stephens, et al, Big Data: Astronomical or Genomical? DOI: 10.1371/journal.pbio.1002195

Reference-based Compression

BAM files are too large

· ~1.5-2 bytes per base pair

Increases in disk capacity are being far outstripped by sequencing technologies

BAM stores all of the data

- · Every read base
- · Every base quality
- $\boldsymbol{\cdot}$ Using a single conventional compression technique for all types of data

Reference-based Compression

BAM files are too large

· ~1.5-2 bytes per base pair

Increases in disk capacity are being far outstripped by sequencing technologies

BAM stores all of the data

- · Every read base
- · Every base quality
- $\boldsymbol{\cdot}$ Using a single conventional compression technique for all types of data

CRAM

Three important concepts

- · Reference-based compression
- · Controlled loss of quality information
- Different compression methods to suit the type of data, e.g. base qualities vs. metadata vs. extra tags

In lossless mode: 60% of BAM size CRAM is now mature and used in production pipelines

- Support for CRAM added to Samtools/HTSlib in 2014
- · Added in Picard/GATK in 2015

File format for storing generic variation data

- · Accommodate all types of variation: SNPs, short indels, large events
- Multiple samples

VCF

File format for storing generic variation data

- · Accommodate all types of variation: SNPs, short indels, large events
- Multiple samples

FASTQ \ Sequence Alignment BAM \ Variant Calling VCF

Columns

- · Chromosome and position
- Variant ID
- Quality of the call
- · Soft filtering (e.g., is the site low quality, low depth, etc)
- · Optional per-site information in the INFO column
- Optional per-sample information in the FORMAT columns (one column per sample)
- · Optional tags: DP (sequencing depth), GQ (genotype quality)

File format for storing generic variation data

- · Accommodate all types of variation: SNPs, short indels, large events
- Multiple samples

Genotypes (for diploid individuals)

- Homozygous reference (e.g., A/A if the reference allele is A)
- · Homozygous alternative (e.g., G/G if the reference allele is A)
- Heterozygous (e.g., C/T)

Allele numbering (for VCF notation):

- · Reference allele is 0, first alternative allele is 1, second is 2, etc
- Homozygous reference (0/0)
- · Homozygous alternative (1/1, 2/2, etc.)
- Heterozygous (0/1, 1/2, etc)

VCF

File format for storing generic variation data

- · Accommodate all types of variation: SNPs, short indels, large events
- · Multiple samples
- · Tab-delimited text, parsable by standard UNIX commands
- · Flexible and user-extensible
- Compressed with BGZF (bgzip), indexed with TBI or CSI (tabix)

Sequencing Instrument

FASTO

Sequence Alignment

BAM

Variant Calling

VCF

File format for storing generic variation data

- · Accommodate all types of variation: SNPs, short indels, large events
- Multiple samples
- Tab-delimited text, parsable by standard UNIX commands
- · Flexible and user-extensible
- Compressed with BGZF (bgzip), indexed with TBI or CSI (tabix)

Some annotations important in tumour VCFs:

- · AF: Allelic fraction of alternate alleles in tumour sample
- · GERMQ: Phred-scaled quality that ALT alleles are not germline
- PON: Site found in panel of normals

FASTQ |

Sequence Alignment

BAM |

Variant Calling

VCF

VCF / BCF

VCFs can be very big

- · compressed VCF with 3781 samples, human data:
 - 54 GB for chromosome 1
 - · 680 GB whole genome

VCFs can be slow to parse

- · text conversion is slow
- · main bottleneck: FORMAT fields

```
##fileformat=VCFv4.0
##fileDate=20100707
##source=VCFtools
##ALT=<ID=DEL,Description="Deletion">
##INFO=<ID=END.Number=1.Type=Integer.Description="End position of the variant">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE1 SAMPLE2
     . A G . PASS AC=67:AN=5400:DP=2809 GT:PL:DP:G0 1/1:0.9.73:26:22
                                                                             0/0:0.9.73:13:31
                                                                                                0/0:0.9.73:48:99 1/0:255.0.75:32:15 1/0:255.0.75:32:15
        A T . PASS AC=15;AN=6800;DP=6056 GT:PL:DP:GQ 0/0:0,9,73:13:31
                                                                             1/0:255,0,75:32:15 0/0:0,2,80:14:90 1/1:0,9,73:26:22
                                                                                                                                     0/0:0,9,73:13:31
       C T . PASS AC=20;AN=6701;DP=5234 GT:PL:DP:GQ
                                                                             0/0:0.2.170:14:90
                                                                                                1/1:0.9.73:13:31 0/0:0.6.50:13:80
                                                                                                                                     0/0:0.2.80:14:90
                                                        1/0:255.0.75:32:15
       A G . PASS AC=67;AN=5400;DP=2809 GT:PL:DP:G0 1/1:0.9.73:26:22
                                                                             0/0:0.9.73:13:31
                                                                                                0/0:0.9.73:48:99 1/0:255.0.75:32:15 1/0:255.0.75:32:15
                 PASS AC=15:AN=6800:DP=6056 GT:PL:DP:GO 0/0:0.9.73:13:31
                                                                             1/0:255.0.75:32:15 0/0:0.2.80:14:90 1/1:0.9.73:26:22
                                                                                                                                     0/0:0.9.73:13:31
```

BCF

- binary representation of VCF
- · fields rearranged for fast access

```
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE1 SAMPLE2 SAMPLE3 SAMPLE4 SAMPLE5 0/0:0,9,73:13:13 SAMPLE4 SAMPLE5 0/0:0,9,73:13:13 O/0:0,9,73:13:13 SAMPLE4 SAMPLE5 0/0:0,9,73:13:13 SAMPLE5 0/0:0,9,73:13:13 SAMPLE5 0/0:0,9,73:14:19 SAMPLE5 0/
```

File format for storing aggregated variation data

- Stands for "Mutation-Annotation Format" and is a tab-delimited text file containing aggregated information from VCF files (NCI-GDC)
- It aggregates lots of information 120+ fields per mutation! You can review all these at:

https://docs.gdc.cancer.gov/Data/File Formats/MAF Format/

You can convert between VCF and MAF via vcf2maf tools!

```
perl vcf2maf.pl --input-vcf [vcf_file] --output-maf
[maf_file] --vep-path /cm/shared/apps/vep/ensembl-vep-
release-106.1/ --vep-data /mnt/Archives/vep/106/38/ --ref-
fasta [fasta_file] --tumor-id [tumor] --normal-id [normal]
```

```
Sequencing Instrument

FASTQ 

Sequence Alignment

BAM
```

Mutation Calling

MAF

Global Alliance for Genomics and Health

International coalition dedicated to improving human health Mission

- establish a common framework to enable sharing of genomic and clinical data
 Working groups
 - clinical
 - regulatory and ethics
 - security
 - data

Data working group

- beacon project ... test the willingness of international sites to share genetic data
- · BRCA challenge .. advance understanding of the genetic basis of breast and other cancers
- · matchmaker exchange .. locate data on rare phenotypes or genotypes
- · reference variation .. describe how genomes differ so researchers can assemble and interpret them
- · benchmarking .. develop variant calling benchmark toolkits for germline, cancer, and transcripts
- file formats .. CRAM, SAM/BAM, VCF/BCF

File formats

http://samtools.github.io/hts-specs/

Quality Control

Biases in sequencing

- Base calling accuracy
- · Read cycle vs. base content
- GC vs. depth
- · Indel ratio

Biases in mapping

Genotype checking

- · Sample swaps
- Contaminations

Read coverage

Read coverage / depth

- Is every genomic position covered to a sufficient depth?
- Average depth: number of reads / target size
 - Whole human genome: 3Gb
 - Human exome: 50Mb

Exomes

- Be careful to distinguish between the total sequencing yield and on-target bases

Useful coverage:

- 15x OK for common germline variants
- 30x OK for most things
- 100-200x for low VAF variants in tumours

Base calling errors

Base-calling for next-generation sequencing platforms, doi: 10.1093/bib/bbq077

Base quality

Sequencing by synthesis: dephasing

- · growing sequences in a cluster gradually desynchronize
- · error rate increases with read length

Calculate the average quality at each position across all reads

Base quality

Base quality

Library prep biases: PCR duplicates

Experiments start with small amounts of DNA

- A PCR amplification step is necessary for Illumina sequencing: one molecule -> many identical molecules

Problem:

- Additional PCR copy molecules are not informative

Solution:

- Infer and mark PCR duplicates, discount in later analysis
 - Mark if reads and their mates start at the same position
- Use Picard MarkDuplicates or samtools markdup
- Typical duplication rates: Exomes 15-20%, Genomes < 5%

GC bias

GC- and AT-rich regions are more difficult to amplify

· compare the GC content against the expected distribution (reference sequence)

GC bias

GC- and AT-rich regions are more difficult to amplify

· compare the GC content against the expected distribution (reference sequence)

CC content by cycle

Was the adapter sequence trimmed?

CC content by cycle

Was the adapter sequence trimmed?

Fragment size

Paired-end sequencing: the size of DNA fragments matters

Fragment size

Paired-end sequencing: the size of DNA fragments matters

This is 100bp paired-end sequencing. Can you spot any problems??

This is 100bp paired-end sequencing. Can you spot any problems??

The insert size should be at least 200bp for the mates not to overlap.

Mismatches per cycle

Mismatches in aligned reads (requires reference sequence)

- · detect cycle-specific errors
- · Base qualities are informative!

Mismatches per cycle

Mismatches in aligned reads (requires reference sequence)

- · detect cycle-specific errors
- · Base qualities are informative!

Insertions / Deletions per cycle

False indels

· air bubbles in the flow cell can manifest as false indels

Insertions / Deletions per cycle

False indels

· air bubbles in the flow cell can manifest as false indels

Auto QC tests

A suggestion for human data:

Minimum number of mapped bases	90%
Maximum error rate	0.02% 5%
Maximum number of duplicate reads Minimum number of mapped reads which are properly paired	5% 80%
Maximum number of duplicated bases due to overlapping read pairs	4%
Maximum in/del ratio	0.82
Minimum in/del ratio	0.68
Maximum indels per cycle, factor above median	8
Minimum number of reads within 25% of the main peak	80%

Detecting sample swaps

Check the identity against a known set of variants

Software

Software used to produce graphs in these slides

- samtools stats and plot-bamstats
- bcftools gtcheck
- matplotlib

Exercise time!

- Open your VM
- Open a terminal window.
- Go to the Module 1 folder:

cd /home/manager/Module_1

- Open the exercises, which are in the GitHub

 Data formats and QC
- Follow the instructions!

Exercise time!

Solutions will be shared through Slack!