UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA DEPARTAMENTO DE ELÉCTRICA-ELECTRÓNICA

LABORATORIO DE CIRCUITOS ELÉCTRICOS III INFORME No. 7

MEDIDA DEL FACTOR DE POTENCIA TRIFÁSICO

Estudiante:

Caballero Burgoa, Carlos Eduardo.

Carrera:

Ing. Electromecánica.

Docente:

Ing. Marco Antonio Vallejo Camacho.

Grupo: 2F (Martes).

Fecha de entrega: 5 de Noviembre del 2024.

1. Cálculos teóricos

1.1. Carga RL

Figura 1: Circuito trifásico equilibrado con carga RL.

Considerando un circuito trifásico con carga RL estrella equilibrado (**Figura 1**). Se calcula la frecuencia angular (ω):

$$\omega = 2\pi f$$

$$= 2\pi (50)$$

$$= 100\pi [rad/s]$$

Se halla la impedancia en el dominio de frecuencia:

$$Z = R + j\omega L$$

= 500 + j (100\pi) (0.5)
= 500 + j50\pi [\Omega]

Y su representación fasorial:

$$|Z| = \sqrt{500^2 + (50\pi)^2}$$

$$= 524.09$$

$$\theta = \arctan\left(\frac{50\pi}{500}\right)$$

$$= 17.44^{\circ}$$

$$Z = 524.09/17.44^{\circ} [\Omega]$$

Por tanto, el factor de potencia es:

$$fp = cos(17.44^{\circ})$$
$$= 0.9540 (atrasado)$$

1.2. Carga RC

Considerando un circuito trifásico con carga RC estrella equilibrado (**Figura 2**).

Figura 2: Circuito trifásico equilibrado con carga RC.

Se halla la impedancia en el dominio de frecuencia:

$$\begin{split} Z &= R + \frac{1}{j\omega C} \\ &= 500 + \frac{1}{j(100\pi)(20 \times 10^{-6})} \\ &= 500 - j\frac{500}{\pi} \left[\Omega\right] \end{split}$$

Y su representación fasorial:

$$|Z| = \sqrt{500^2 + \left(-\frac{500}{\pi}\right)^2}$$

$$= 524.72$$

$$\theta = \arctan\left(\frac{-500/\pi}{500}\right)$$

$$= -17.66^{\circ}$$

$$Z = 524.72/-17.66^{\circ} [\Omega]$$

Por tanto, el factor de potencia es:

$$fp = cos(-17.66^{\circ})$$
$$= 0.9529 (adelantado)$$

1.3. Resumen de resultados

En la siguiente tabla se resumen los valores obtenidos teóricamente:

	Carga RL	Carga RC			
FP	0.9540 (atrasado)	0.9529 (adelantado)			
φ [°]	17.44	-17.66			

2. Simulación

Se utilizó el software *Electronic Workbench v5.12.* para simular los circuitos, la carga RL puede verse en la **Figura 3**, y la carga RC puede verse en la **Figura 4**.

Figura 3: Simulación de la carga RL.

Figura 4: Simulación de la carga RC.

2.1. Resumen de resultados

En la siguiente tabla se resumen los valores obtenidos de la simulación:

	Carga RL			Carga RC		
	Z_1	Z_2	Z_3	Z_1	Z_2	Z_3
$U_{\mathrm{FASE}}\left[\mathrm{V} ight]$	220	220	220	220	220	220
$U_R[V]$	209.7	209.6	209.6	209.8	209.9	209.9
$FP = U_R/U_{FASE}$	0.9532	0.9527	0.9527	0.9536	0.9541	0.9541
$\phi = \cos^{-1}(FP) [^{\circ}]$	17.602	17.688	17.688	-17.515	-17.429	-17.429
FP trifásica (promedio)	0.9529 (atrasado)		0.9539 (adelantado)			

3. Tablas y mediciones

Se presentan los resultados obtenidos con las mediciones de voltaje realizadas en laboratorio, el calculo del factor de potencia, el ángulo y el factor de potencia promedio:

	Carga RL			Carga RC			
	Z_1	Z_2	Z_3	Z_1	Z_2	Z_3	
$U_{\mathrm{FASE}}\left[\mathrm{V} ight]$	222	221	223	222	222	223	
$U_R[V]$	209	208	209	211	211	212	
$FP = U_R/U_{FASE}$	0.9414	0.9412	0.9372	0.9505	0.9505	0.9507	
$\phi = \cos^{-1}(FP) [^{\circ}]$	19.705	19.750	20.410	-18.112	-18.112	-18.071	
FP trifásica (promedio)	0.9399 (atrasado)			0.9505 (adelantado)			

Se presentan los resultados obtenidos con las mediciones realizadas con el cosímetro para el calculo del factor de potencia, el ángulo y el factor de potencia promedio:

	Carga RL			Carga RC		
	Z_1	Z_2	Z_3	Z_1	Z_2	Z_3
FP	0.95	0.96	0.95	0.94	0.94	0.94
φ [°]	18	16	18	-19	-19	-19
FP trifásica (promedio)	0.9533 (atrasado)			0.94 (adelan	tado)

4. Cuestionario

1. A qué se deben las variaciones de factores de potencia entre los cálculos teóricos y medidos si existen?

La desviación estándar de los valores del factor de potencia se resumen en la siguiente tabla:

	Carga RL			Carga RC			
	x	$x_i - \bar{x}$	$(x_i - \bar{x})^2$	x	$x_i - \bar{x}$	$(x_i - \bar{x})^2$	
Z_1	0.9414	1.4956×10^{-3}	2.2367×10^{-6}	0.9505	-7.4065×10^{-5}	5.4856×10^{-9}	
Z_2	0.9412	1.2306×10^{-3}	1.5144×10^{-6}	0.9505	-7.4065×10^{-5}	5.4856×10^{-9}	
Z_3	0.9372	-2.7262×10^{-3}	7.4319×10^{-6}	0.9507	1.4813×10^{-4}	2.1943×10^{-8}	
	$\bar{x} = 0.9399$			$\bar{x} = 0.9506$			
	$\sigma_{n-1} = 2.3646 \times 10^{-3}$			$\sigma_{n-1} = 1.2828 \times 10^{-4}$			

Los valores de desviación estándar son muy próximos a cero, lo que implica que la variación entre los valores se debe a diferencias entre los voltajes de linea, las resistencias, los inductores y los capacitores.

2. Qué otra manera se podría aplicar para medir el factor de potencia para cada fase?

Otro modo de medición del factor de potencia puede encontrarse a partir de la definición de factor de potencia:

$$FP = \frac{P}{|\bar{S}|}$$

Donde:

- P es la potencia activa consumida por la parte resistiva de la impedancia.
- $|\bar{S}|$, es la potencia aparente, es decir, la magnitud de la potencia compleja.

Por tanto midiendo ambas potencias con un vatímetro puede hallarse el factor de potencia.