Exercício Prático 02 Professor: Romanelli

Parte 1

- MUX 2x1: circuito que seleciona um dos 2 sinais de entrada e manda na saída.

- MUX 4x2: circuito que seleciona um dos 4 sinais de entrada e manda na saída.

- Full Adder(Somador Completo de 1 bit): circuito que faz a soma de um 1 bit

Exercício Prático 02 Professor: Romanelli

ULA 1 bit: circuito combinatório responsável pela execução de somas, subtrações e funções lógicas

Testes da ULA 1 bit

$$AND(A,B) \rightarrow A = 0, B = 1$$

$OR(A,B) \rightarrow A = 1, B = 1$

 $SOMA(A,B) \rightarrow A = 1, B = 1$

$NOT(A) \rightarrow A = 1$

 $\mathsf{SOMA}(\mathsf{A},\mathsf{-B}) \to \mathsf{A} = \mathsf{1}, \, \mathsf{B} = \mathsf{-(1)}$

ULA 4 bits: circuito combinatório responsável pela execução de somas, subtrações e funções lógicas

Exercício Prático 02 Professor: Romanelli

Testes da ULA 4 bits

 $AND(A,B) \rightarrow A = 2, B = 1$

$OR(A,B) \rightarrow A = 2$, B = 3

806454 - Yago Almeida Melo

 $NOT(A) \rightarrow A = 12$

Exercício Prático 02 Professor: Romanelli

$AND(A, B) \rightarrow A = 12, B = 13$

TABELA DE TESTES DA ULA 4 BITS

Instrução Realizada	Binário (A,B,Op.code)	Valor em Hexa (0x)	Resultado em Binário
AND(A,B)	0010 0001 00	0x084	0000
OR(A,B)	0010 0011 01	0x08D	0011
SOMA(A,B)	0010 0011 11	0x08F	0011
NOT(A)	1100 0011 10	0x30E	0011
AND(B,A)	1100 1101 00	0x334	1100

PARTE 2

 ULA 74LS181: circuito combinatório responsável pela execução de somas, subtrações e funções lógicas.

Instruções	Binário	Resultado da operação
450	010001010000	1011
CB1	110010110001	0000
A32	101000110010	0001
C43	110001000011	0000
124	000100100100	1111
785	011110000101	0111
9B6	100110110110	0010

CD7	110011010111	0000
FE8	111111101000	1110
649	011001001001	1101
D9A	110110011010	1001
FCB	111111001011	1100
63C	011000111100	1111
98D	100110001101	1111
76E	011101101110	0111
23F	001000111111	0011

Teste (CB1) ⇒(OR(A,B))' A=1100, B = 1011 /./ OP = 0000

Exercício Prático 02 Professor: Romanelli

Pergunta:

Se o objetivo fosse realmente testar esta ULA, quantas linhas a nossa tabela verdade deveria ter, ou seja na verdade a tabela que você preencheu deveria ter quantas linhas?

Resposta: A tabela verdade teria 4096 linhas, pois são 4 bits da entrada A, 4 bits da entrada B e 4 bits de seleção, totalizando 12 bits, ou seja, 2 elevado a 12 combinações.

FIM.