

DIME ... Y TE DIRÉ

DEDUCCIÓN NATURAL

Paso 3: cálculo lógico

Deducción

Proceso de razonamiento que permite

obtener nuevo conocimiento

a partir de otro conocido

¿Qué es una Deducción Natural (DN)

Método de **cálculo** que nos permite <u>inferir</u>
nuevas fbfs

a partir de otras conocidas.

Es un **método sintáctico** que **"manipula"**

las fbfs según

reglas del sistema

Ejemplo

Fbf-1: $\mathbf{A} \wedge \mathbf{B}$

Nueva fbf: **B**

Regla aplicada a Fbf-1: **EC**

¿Para qué sirve?

Para demostrar la validez de un razonamiento

Ejemplo de razonamiento correcto "muy" evidente:

"En invierno hace frío, y ahora estamos en invierno por eso hace frío".

Aplicando reglas del sistema se demuestra

MC = { A: es invierno; B: hace frío}

 $1 \qquad A \to B$

2 A

3 B

Busca en la hoja de reglas la que tenga la forma $A \rightarrow B$, $A \Rightarrow ???$

¿Para qué NO sirve?

Para demostrar la **NO** validez de un razonamiento

Ejemplo de razonamiento **NO** correcto "muy" evidente:

"Si es de día, no es de noche, y como no es día, entonces es de noche".

No lo demuestras con reglas ...otro método (contraejemplo, por ejemplo).

MC = { D: es de día; N: es de noche}

$$1 \qquad \mathsf{D} \to \neg \mathsf{N}$$

Busca en la hoja de reglas la que tenga la forma

$$D \rightarrow \neg N, \neg D \Rightarrow ???$$

Aplica contraejemplo

Componentes de una Deducción natural

Premisas

En filas numeradas precedidas por guion

-1 Fbf-P1

-2 Fbf-P2

•••••

-n Fbf-Pn

Fbf inferida

En fila numerada

X Y Z

X: Nº línea

Y: Fbf obtenida

Z: Justificación fbf Y: Regla aplicada a fbf(s)

conocida y nº de línea de dicha fbf(s).

Fbf "supuesta" cierta

En fila numerada indentada

X Y Z

X: Nº línea

Y: Fbf que se supone cierta >> premisa de una subdeducción

Z: Justificación de fbf Y: escribir supuesto

Ejemplo 1 de una Deducción

Ejemplo 2 de una Deducción

1, 2: Premisas

-1 ¬B

 $-2 A \rightarrow B$

Sub-deducción: supuesto provisional **3: Fbf supuesta cierta:** Premisa dl supuesto

5: Conclusión dl supuesto

supuesto

6: Fbf conclusión

3 A supuesto

4 B MP 2,3

5 B ∧ ¬B IC 1,4, cierre supuesto

6 ¬A IN 3-5

¿ Cómo se hace una deducción? ESTRATEGIAS

Asumimos fbfs premisas

Consideramos la fbf conclusión que se debe obtener

Según la ESTRUCTURA LÓGICA de la conclusión >> Elegimos Estrategia y reglas de inferencia

Reglas de básicas de deducción

Una regla de deducción es un razonamiento propuesto por el sistema cuya validez ha sido comprobada.

Regla que introduce conectiva

IC A,
$$B \Rightarrow A \wedge B$$

Regla que elimina conectiva

EC
$$A \wedge B \Rightarrow A$$

→ Otra representación

Otras reglas no básicas (ver hoja reglas)

Ejemplo

$$A \rightarrow B$$
, $\neg B \Rightarrow \neg A$

Estrategias para hacer deducciones

IMPORTANTE : Decide la estrategia al comenzar la deducción.

Cada sub-deducción lleva su propia estrategia

>> **Prueba directa** : se quiere introducir un condicional:

basada en la regla TD: $(A \Rightarrow B) \Rightarrow A \rightarrow B$

>> Prueba por casos: para fórmulas disyuntivas

basada en la regla ED: A v B, (A \Rightarrow C), (B \Rightarrow C) \Rightarrow C

>> Reducción al absurdo: se supone la negación de la fbf que se quiere obtener

basada en regla IN: (A \Rightarrow B $\land \neg$ B) $\Rightarrow \neg$ A

PRUEBA DIRECTA >> TD: $(A \Rightarrow B) \Rightarrow A \rightarrow B$

- Suponer cierta la fbf antecedente del condicional. A
- **A**: premisa del supuesto.
- Aplicar reglas hasta obtener B.
- **B:** conclusión del supuesto.
- Se justifica **cierre** del supuesto con Regla: **TD**
- Se añade A → B a la deducción.

Si
$$A \rightarrow B = Q \rightarrow$$
 Fin deducción principal.

eoc, **seguir** hasta obtener Q.

Ejercicio 1. Hoja 4. Deducción natural

$$\neg bo \rightarrow de$$
, $bo \rightarrow \neg cl \Rightarrow \neg de \rightarrow \neg cL$

Estrategia: Prueba Directa.

Ejercicio 2. Hoja 4. Deducción natural

$$P \rightarrow Q, P \rightarrow (Q \rightarrow R) \Rightarrow P \rightarrow R$$

Estrategia: Prueba Directa.

TD
$$\begin{bmatrix}
A \\
... \\
B
\end{bmatrix}$$

PRUEBA POR CASOS >> **ED** : $A \lor B$, $(A \Rightarrow C)$, $(B \Rightarrow C) \Rightarrow C$

Ejercicio 3. Hoja 4. Deducción natural

vo v ve, vo \rightarrow II, ve \rightarrow es \Rightarrow ll v es

Estrategia: Prueba por casos


```
Q: II v es
- 1 vo v ve
- 2 vo → II
- 3 ve \rightarrow es
                 supuesto
                 MP 2,4
   6 II v es
                 ID 5, cierre sup.
   7 ve
                 supuesto
   8 es
                 MP 4,7
   9 es v II
                 ID 8, cierre sup.
10 II v es
                 ED 1, 4-6, 7-9
```


Ejercicio 4. Hoja 4. Deducción natural

Estrategia: Prueba por casos

P1: El gato y el perro han entrado en casa.

P2: Al menos uno de los dos ha pisado el charco.

P3: Si el gato lo ha pisado, habrá dejado pisadas

P4: Si fue el perro, habrá dejado pisadas

Q: Hay pisadas

MC = { ga: gato entra casa;
pe: perro entra en casa;
gac: gato pisa charco;
pec: perro pisa charco;
pi: hay pisadas}


```
Q: pi
1 ga ∧ pe,
2 gac v pec,
3 gac \rightarrow pi,
4 pec \rightarrow pi
      5. gac Supuesto1
                MP 3,5, cierre sup1
      6.
         pec Supuesto2
               MP 4,7, cierre sup2.
 9.
                ED, 2, 5-6, 7-8
    pi
```


REDUCCIÓN ABSURDO: IN: (A⇒ B ∧ ¬B) ⇒ ¬A

Objetivo: Obtener contradicción

- Se supone cierta la **negación** de la fbf objetivo.
- Se obtiene **contradicción** en la sub-deducción.
- Se cierra el supuesto con la fbf que es contradicción
- Se justifica el cierre del supuesto con la regla

(IN)
$$(A \Rightarrow B \land \neg B) \Rightarrow \neg A$$

Ejercicio 5. Hoja 4. Deducción natural

Estrategia: Reducción al absurdo

Puedes hacer la deducción aplicando directamente

las reglas de inferencia

a las premisas

sin usar las estrategias anteriores...

Ejercicio 6. Hoja 4. Deducción natural

Estrategia: Aplicar reglas a las premisas

P1: Si tiro un huevo contra la pared, revienta

P2: Al reventar el huevo, se mancha la pared

P3: Si la pared se mancha, el dueño se enfada

P4: Si el dueño se enfada conmigo, me denuncia

P5: Tiro un huevo a la pared

Q: Me denuncia el dueño

MC = { hu: tiro huevo;

rev: huevo revienta;

ma: huevo mancha pared;

du: dueño se enfada;

de: dueño denuncia }

- 1 hu → rev
- 2 rev → ma Q: de
- 3 ma → du
- 4 du \rightarrow de
- 5 hu

6 rev MP 1,5

7 ma MP 2,6

8 du MP 3,7

9 de MP 4,8

Ejercicio 6. Hoja 4. Deducción natural

Estrategia: Reducción al absurdo

12 de

IN					
	A				
	 В	^	7	В	

_	1 hu → rev	
_	2 rev → ma	Q: de
-	$3 \text{ ma} \rightarrow \text{du}$	
_	4 $du \rightarrow de$	
-	5 hu	
	6 ¬de	supuesto
	7 ¬du	MT 4,6
	8 ¬ma	MT 3,7
	9 ¬rev	MT 2,8
	10 ¬hu	MT 1,9
11 hu ∧ ¬hu		IC, 5, 10 cierre sup.

IN 6-11

Ejercicio 7. Hoja 4. Deducción natural

Estrategia: Reducción al absurdo

P1: Sólo si llego pronto no se me enfría el café.

P2: No llego pronto a menos que el tráfico vaya bien, suene el despertador y no me quede dormido.

P3: Pero o no suena el despertador o estoy sordo.

P4: Oigo bien (no estoy sordo).

Q: Por lo tanto, se me enfría el café.

 MC = { ca: enfría café; p: llego pronto; t: tráfico bien; sd: suena despertador; d: me quedo dormido; stoy sordo. ctoy sordo. stoy sordo. ctoy sordo.

- 2 p \rightarrow t \wedge sd \wedge ¬d Q: ca - 3 ¬sd \vee s - 4 ¬s

5 ¬ca supuesto
6 p MP,1,5
7 t ∧ sd ∧ ¬d MP,2,6
8 sd EC, 7
9 s SD,3,8
10 s ∧ ¬s IC,4,9, cierra sup
11 ¬¬ca IN,5-10

EN 11

25

Reto 1: Coge una verdad lógica e intenta demostrarla.

Ejemplo: $P \wedge P \Rightarrow P \vee P$.

Reto 2: Para practicar la reducción al absurdo coge una mentira, niégala, e intenta demostrar esa fórmula.

Ejemplo: $\neg(A \land (A \rightarrow B) \land \neg B)$.

Reto 1: Coge una verdad lógica e intenta demostrarla.

Ejemplo: $P \wedge P \Rightarrow P \vee P$.

-1 P A P
2 P
3 P V P ID, 2

Reto 2: Para practicar la reducción al absurdo coge una mentira, niégala, e intenta demostrarla.

Ejemplo: $\neg(P \land (P \rightarrow Q) \land \neg Q)$.

$1 P \wedge (P \rightarrow Q) \wedge \neg Q$		
2 P	EC 1	
3 P → Q	EC 1	
4 ¬Q	EC 1	
5 Q	MP 2,3	}
6 Q ∧ ¬Q	IC 4,5	
7 ¬(P ∧ (P → C	() ∧ ¬Q)	IN 1-6

¬Α