Mackenzie McPike

Advisor: Kim Ruane

Tufts University Department of Mathematics

April 18, 2024

Geometric Group Theory

$G \curvearrowright X$

G = finitely generated infinite group

X = proper geodesic metric space

G acts on X by isometries

$G \cap X$ "nicely"

Algebra of $G \longleftrightarrow Geometry of X$

CAT(0) Geometry

Notion of non-positive curvature

CAT(0) Metric Space

- Both triangles have side lengths a, b, c
- X is CAT(0) if $d_X(p,q) \leq d_{\mathbb{E}^2}(\overline{p},\overline{q})$
- Example: Hyperbolic space \mathbb{H}^n
- Example: Trees (no other CAT(0) graphs)

CAT(0) Group

- $G \curvearrowright X$ faithfully and geometrically
- $G \hookrightarrow \text{Isom}(X)$
- Example: W_n acts faithfully and geometrically on a tree

Figure: $W_3 \curvearrowright T_3$

 W_n •000000

•
$$W_3 = \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2$$

•
$$W_3 = \langle a, b, c | a^2, b^2, c^2 \rangle$$

•
$$W_n = \langle a_1, \ldots, a_n | a_1^2, \ldots, a_n^2 \rangle$$

- $W_3 \curvearrowright T_3$ faithfully and geometrically
- a, b, c are reflections

W_3 Acts Geometrically on T_3

W_3 Acts Geometrically on T_3

Figure: Translation axis for ab

$\overline{W_n}$ is virtually free

• $E_n = \text{Subgroup of even length words}$

W_n is virtually free

- $E_n = \text{Subgroup of even length words}$
- $E_n = \langle a_1 a_2, \ldots, a_1 a_n \rangle \cong F_{n-1}$

W_n is virtually free

- $E_n = \text{Subgroup of even length words}$
- $E_n = \langle a_1 a_2, \dots, a_1 a_n \rangle \cong F_{n-1}$
- Ex: $E_3 = \langle ab, ac \rangle \cong \langle x, y \rangle = F_2$

 W_n

- $W_n \rtimes_{\phi} \mathbb{Z}$ is a finite extension of $F_{n-1} \rtimes_{\phi} \mathbb{Z}$
- Do the geometric properties of $F_{n-1} \rtimes_{\phi} \mathbb{Z}$ transfer to $W_n \rtimes_{\phi} \mathbb{Z}$?

Group Extension

W_n 00000●0

$$1 \to H \xrightarrow{\iota} G \xrightarrow{\pi} Q \to 1$$

- G is an extension of H
 - H injects into G
 - $\iota(H) \subseteq G$
 - $Q \cong G/\iota(H)$
- G is a finite extension of H if Q is finite
- The short exact sequence splits if and only if $G \cong H \rtimes_{\phi} Q$ for some $\phi: Q \to \operatorname{Aut}(H)$

W_n

$$1 \to F_{n-1} \to W_n \to \mathbb{Z}_2 \to 1$$

 F_{n-1} is index two (and therefore normal) in W_n

$$W_n \cong F_{n-1} \rtimes_{\tau} \mathbb{Z}_2$$
$$\cong E_n \rtimes_{\tau} \langle a_1 \rangle$$

$$\tau(x_i) = x_i^{-1}$$

G is a Finite Extension of H

$$1 \to H \xrightarrow{\iota} G \xrightarrow{\pi} Q \to 1$$

Example: $W_n \rtimes_{\phi} \mathbb{Z}$ is a finite extension of $F_{n-1} \rtimes_{\phi} \mathbb{Z}$

Fact

H is hyperbolic $\iff G$ is hyperbolic

Open Question

Suppose H is CAT(0). Is G CAT(0)?

Free-by-Cyclic Groups

 $F_n \rtimes_\phi \mathbb{Z}$ ("free-by-cyclic") is an extension of F_n by the integers.

$$G \cong F_{n-1} \rtimes_{\phi} \mathbb{Z}$$

$$1 \to F_{n-1} \stackrel{\iota}{\to} G \stackrel{\pi}{\to} \mathbb{Z} \to 1$$

Free-by-cyclic groups:

- Well-studied
- ② Help us understand $\phi \in Aut(F_n)$
- Mapping tori

$W_n \rtimes_{\phi} \mathbb{Z}$ is a finite extension of $F_{n-1} \rtimes_{\phi} \mathbb{Z}$

- $F_{n-1} \leq W_n$ is characteristic: $\phi(F_{n-1}) = F_{n-1}$
- $F_{n-1} \rtimes_{\phi} \mathbb{Z} \leq W_n \rtimes_{\phi} \mathbb{Z}$, index two

$$1 \to F_{n-1} \rtimes_{\phi} \mathbb{Z} \xrightarrow{\iota} W_n \rtimes_{\phi} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}_2 \to 1$$

• Short exact sequence splits

$$W_n \rtimes_{\phi} \mathbb{Z} \cong (F_{n-1} \rtimes_{\phi} \mathbb{Z}) \rtimes_{\hat{\tau}} \mathbb{Z}_2$$

$$\hat{\tau}(x_i) = x_i^{-1}, \hat{\tau}(t) = a_1 \phi(a_1) t$$

$F_2 \rtimes_{\phi} \mathbb{Z}$	CAT(0) for every $\phi \in Aut(F_2)$ (Tom Brady '94)
$W_3 \rtimes_{\phi} \mathbb{Z}$	CAT(0) for every $\phi \in \operatorname{Aut}(W_3)$ (this thesis)

 $n \ge 4$

$F_{n-1} \rtimes_{\phi} \mathbb{Z}$	Non-examples (Gersten) and examples (Samuelson, Lyman)	
$W_n \rtimes_{\phi^p} \mathbb{Z}$	Virtually CAT(0) Examples (Lyman)	

Question (Piggott-Ruane)

Are all $W_n \rtimes_{\phi} \mathbb{Z} CAT(0)$?

Objectives

Question

Can we extend the action of $F_2 \rtimes_{\phi} \mathbb{Z} \curvearrowright X$, X CAT(0) to $W_3 \rtimes_{\phi} \mathbb{Z} \curvearrowright X$ faithfully and geometrically?

 $Aut(W_n)$ is much "simpler" than $Aut(F_n)$.

Question

Can we use the combinatorial properties of W_n to determine when $W_n \rtimes_{\phi} \mathbb{Z}, n \geq 4$ is hyperbolic?

Piggott-Ruane-Walsh '10

• Inspiration for extending action to finite extension

$$1 o \mathsf{Inn}(\mathit{B}_{4}) \overset{\iota}{ o} \mathsf{Aut}(\mathit{B}_{4}) \overset{\pi}{ o} \mathbb{Z}_{2} o 1$$

- Inn(B₄) acts faithfully and geometrically on a CAT(0) 2-complex X (Brady '94, Crisp-Paoluzzi '05)
- There is an order two isometry of X that extends the action to a faithful geometric action $Aut(B_4) \curvearrowright X$
- Fun fact: $Aut(B_4) \cong Aut(F_2) \cong Aut(W_3)$

$W_3 \rtimes_{\phi} \mathbb{Z}$ is CAT(0): Four Cases

- \bullet Inn(W_3)
- $\bullet \phi|_{F_2}$ is parabolic \longrightarrow extend action
- $\phi|_{F_2}$ is hyperbolic \longrightarrow extend action

$GL(2,\mathbb{Z})$

$A \in \mathit{GL}(2,\mathbb{Z})$	$ \mathbf{tr}(A) $
Identity	2
Elliptic	< 2
Parabolic	2
Hyperbolic	> 2

$Inn(W_3)$

$\phi \in \operatorname{Inn}(W_3)$

 $W_3 \rtimes_{\phi} \mathbb{Z} \curvearrowright T_3 \times \mathbb{R}$ faithfully and geometrically

- $W_3 \times \mathbb{Z} \curvearrowright T_3 \times \mathbb{R}$
- Product of two CAT(0) spaces is CAT(0)

Elliptic: Finite order in $Out(W_3)$

- $\phi^p \in \operatorname{Inn}(W_3)$
- $\exists \psi \in [\phi]$ such that $\psi^p = \operatorname{Id}_{W_3}$
- $W_3 \rtimes_{\phi} \mathbb{Z} \cong W_3 \rtimes_{\psi} \mathbb{Z}$

Claim

 $W_3 \rtimes_{\psi} \mathbb{Z}_p$ acts faithfully and geometrically on a tree T.

 $W_3 \rtimes_{\psi} \mathbb{Z}$ acts faithfully and geometrically on $T \times \mathbb{R}$.

Elliptic: Finite order in $Out(W_3)$

Theorem (Karrass, Pietrowski, and Solitar '94)

G is a finite extension of a free group if and only if G acts on a locally finite tree T with finite edge and vertex stabilizers.

 ψ is order p in Aut(F_2)

 $W_3 \rtimes_{\psi} \mathbb{Z}_p$ is a finite extension of F_2

 $W_3 \rtimes_{\psi} \mathbb{Z}_p \curvearrowright \mathcal{T}$ with finite edge and vertex stabilizers

 T/F_2 is a finite graph with $\pi_1(T/F_2) \cong F_2$

"Extend" the action to $W_3 \rtimes_{\psi} \mathbb{Z} \curvearrowright \mathcal{T} \times \mathbb{R}$

Parabolic Automorphisms of F_2

- $\phi|_{F_2}$ has trace ± 2
- We only need to consider $\phi|_{F_2}$ with abelianization:

$$\phi_{ab} = egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix}$$

- $F_2 \rtimes_{\phi} \mathbb{Z} \cong (\mathbb{Z} \oplus \mathbb{Z})_{*\mathbb{Z}}$
- X =Cayley complex of $(\mathbb{Z} \oplus \mathbb{Z})_{*\mathbb{Z}}$ is CAT(0)

Cayley Complex of $(\mathbb{Z} \oplus \mathbb{Z})_{*\mathbb{Z}}$

$$(\mathbb{Z} \oplus \mathbb{Z})_{*\mathbb{Z}} \cong \langle \alpha, \beta, y | [\alpha, \beta], y \beta y^{-1} = \alpha \rangle$$

(b) Plane glued to top of each strip

- Move to appropriate strip
 - β^n to the left of γ
 - α^n to the left of y^{-1}

- Move to appropriate strip
 - β^n to the left of y
 - α^n to the left of y^{-1}
- y or y^{-1} to go up/down

- Move to appropriate strip
 - β^n to the left of y
 - α^n to the left of y^{-1}
- y or y^{-1} to go up/down
- Repeat until in "destination plane"
- Path in "destination plane"

- $w \in \langle \alpha, \beta \rangle$ is path in destination plane
- $h = \prod_{i=1}^n g_i y^{\epsilon_i}$ is path in Bass-Serre tree
- $g_i y^{\epsilon_i} = \beta^n y$ or $\alpha^n y^{-1}$

$(\mathbb{Z} \oplus \mathbb{Z})_{*\mathbb{Z}}$ Bass-Serre Tree

(a) Bass-Serre Tree

(b) Cayley Complex X

$$W_3 \rtimes_{\phi} \mathbb{Z} \cong (\mathbb{Z} \oplus \mathbb{Z})_{*\mathbb{Z}} \rtimes_{\hat{\tau}} \mathbb{Z}_2$$

$$(\mathbb{Z} \oplus \mathbb{Z})_{*\mathbb{Z}} \curvearrowright X$$
 by left multiplication

Extend the action by an order two isometry such that $(\mathbb{Z} \oplus \mathbb{Z})_{*\mathbb{Z}} \rtimes \langle \hat{\tau} \rangle \hookrightarrow \operatorname{Isom}(X)$

As an automorphism:
$$\hat{\tau}(\alpha) = \beta$$
, $\hat{\tau}(\beta) = \alpha$, $\hat{\tau}(y) = y^{-1}$

As an isometry of $X: \hat{\tau}: v_g \mapsto v_{\hat{\tau}(g)}$

$W_3 \rtimes_{\psi} \mathbb{Z} \curvearrowright X$

$W_3 \rtimes_{\psi} \mathbb{Z} \curvearrowright X$

- g lives in plane $h = (\beta y)^3 \alpha y^{-1}$
- $\hat{\tau}(g)$ lives in plane $\hat{\tau}(h) = (\alpha y^{-1})^3 \beta y$

Hyperbolic Automorphisms of F_2

- $\phi|_{F_2}$ has eigenvalues $\lambda, \frac{1}{\lambda}, |\lambda| > 1$
- $F_2 \rtimes_{\phi} \mathbb{Z}$ is the fundamental group of a finite volume hyperbolic manifold with torus cusp
- Torus is generated by $\langle [x, y], t \rangle$

Hyperbolic Automorphisms of F_2

- $F_2 \rtimes_\phi \mathbb{Z}$ acts faithfully and geometrically on truncated hyperbolic space
- (Bridson and Haefliger) Truncated hyperbolic space is CAT(0)

Truncated Hyperbolic Space

Mostow-Prasad Rigidity

Theorem: Mostow-Prasad Rigidity

Let M_1 and M_2 be finite volume hyperbolic n-manifolds, $n \geq 3$. Any isomorphism $\theta: \pi_1(M_1) \longrightarrow \pi_1(M_2)$ is induced, up to conjugacy, by an isometry $f: M_1 \longrightarrow M_2$.

- Mostow proved the compact case in 1968
- Prasad extended to finite volume manifolds in 1973
- See board

Hyperbolic Automorphism of W₃

Want: $\pi_1(M) \rtimes_{\hat{\tau}} \langle \tilde{f} \rangle \hookrightarrow \mathsf{Isom}(X)$

Make sure \tilde{f} is an isometry of X = truncated hyperbolic space

Truncated Hyperbolic Space

Hyperbolic Automorphism of W₃

- $\tilde{f}: \mathbb{H}^3 \to \mathbb{H}^3$ descends to quotient
- $f: \mathbb{H}^3/\pi_1(M) \longrightarrow \mathbb{H}^3/\hat{\tau}(\pi_1(M))$
- $f : \mathsf{cusp} \longrightarrow \mathsf{cusp}$
- \bullet \tilde{f} leaves the set horoballs invariant

Conclusion & Next Steps

Theorem

For every $\phi \in Aut(W_3)$, $W_3 \rtimes_{\phi} \mathbb{Z}$ is CAT(0).

Original Question

There are no hyperbolic $W_3 \rtimes_{\phi} \mathbb{Z}$. Are there any hyperbolic $W_4 \rtimes_{\phi} \mathbb{Z}$?

Future directions: When is $W_n \rtimes_{\phi} \mathbb{Z}$ hyperbolic?

$$\operatorname{\mathsf{Aut}}(W_n)=\operatorname{\mathsf{Aut}}^\circ(W_n)\rtimes\Sigma_n$$

 Σ_n = permutations of the generators a_1, \ldots, a_n

 $\phi \in \operatorname{Aut}^{\circ}(W_n)$ sends every generator to a conjugate of itself Generated by χ_{ij} : $\chi_{ij}(a_j) = a_i a_j a_i$

$W_3 \rtimes_{\phi} \mathbb{Z}$ is never hyperbolic

 $\phi(abc)$ is a conjugate of $(abc)^{\pm} \rightarrow$ check the generators of Aut (W_3)

 $W_3
times_\phi \mathbb{Z}$ contains a $\mathbb{Z} \oplus \mathbb{Z}$ subgroup

$\mathbb{Z} \oplus \mathbb{Z}$ subgroups

Theorem (Dahmani-Krishna-Mutanguha 2023)

Suppose G is a hyperbolic group. Then $G \rtimes_{\phi} \mathbb{Z}$ is hyperbolic if and only if it does not contain a copy of $\mathbb{Z} \oplus \mathbb{Z}$.

Brinkmann ('00) proved for F_2 using train track theory.

 $F_2 \rtimes_{\phi} \mathbb{Z}$ does not contain a $\mathbb{Z} \oplus \mathbb{Z}$ if and only if ϕ is atoroidal.

Atoroidal: No power of ϕ preserves the conjugacy class of an infinite order element

Open Questions

- When does $\phi \in \operatorname{Aut}^{\circ}(W_n)$, $n \geq 4$ fix an infinite order element? **Lemma:** If $\phi \in \operatorname{Aut}^{\circ}(W_4)$ is the product of 3 elementary partial conjugations, then there is an infinite order w such that $\phi(w) = w^{\pm}$
- **②** When does a power of $\phi \in \operatorname{Aut}^{\circ}(W_n)$ fix an infinite order element?
- **3** When does a power of $\phi \in \operatorname{Aut}(W_n)$ preserve the conjugacy class of an infinite order element?

Example: $W_4 \rtimes_{\psi} \mathbb{Z}$ is Hyperbolic

By Gersten-Stallings and Bestvina-Handel, $F_3 \rtimes_{\psi|_{F_2}} \mathbb{Z}$ is hyperbolic.

$$\psi = \chi_{a,\{bc\}} \circ \chi_{d,(bc)} \circ \sigma_{(bdc)} \in \mathsf{Aut}(W_n)$$

$$\psi(a) = a$$

$$\psi(b) = d$$

$$\psi(c) = dabad$$

$$\psi(d) = dacad$$

Can we come up with an example with $\phi \in \operatorname{Aut}^{\circ}(W_n)$?

Thank You!

Q & A

