## CLAIMS

1. Per(3,6-anhydro)cyclodextrin derivative
 corresponding to one of the following formulae:



5

- at least one of the groups R1 represents a group -OCONHR<sup>2</sup> and the other groups R<sup>1</sup>, which may be 10 identical or different, represent a corresponding to one of the formulae: -OCONHR2, -OH,  $-OR^3$ , -SH,  $-SR^3$ ,  $-OCOR^3$ ,  $-NH_2$ ,  $-NHR^3$ ,  $-NR^3R^4$ ,  $-CONH_2$ ,  $-CONHR^3$ ,  $-CONR^3R^4$ , -CN,  $-COOR^3$ ,  $-OCH_2CO_2H$ , -COOH and  $-R^3$ , in which the group(s)  $R^2$ , which are 15 identical or different, represent a saturated or unsaturated aliphatic group, R3 and R4, which are identical or different, represent a saturated or unsaturated, aliphatic or aromatic hydrocarbon group optionally substituted with halogen atoms 20 which may contain one or more heteroatoms chosen from O, S and N, and/or
- at least one of the groups  $R^1$  represents a group -OCONH( $CR^5R^6$ )<sub>m</sub>NHCOOR<sup>7</sup>, the other groups  $R^1$  corresponding to the same definition as that given

25

above, R<sup>5</sup> and R<sup>6</sup>, which are identical or different, represent H or a saturated or unsaturated aliphatic group, and R<sup>7</sup> represents a glucosidic or maltosidic unit of the peranhydrocyclodextrin and m is an integer ranging from 1 to 20;

- n is equal to 6, 7 or 8.
- Per(3,6-anhydro)cyclodextrin derivative according
   to Claim 1, in which all the groups R<sup>1</sup> represent the group -OCONHR<sup>2</sup> with R<sup>2</sup> having the same meaning as in Claim 1, and n is equal to 6.
- 3. Per(3,6-anhydro)cyclodextrin derivative according to Claim 2, in which R<sup>2</sup> represents an ethyl radical.
- 4. Per(3,6-anhydro)cyclodextrin derivative according to Claim 2, in which R<sup>2</sup> represents a hexyl radical.
  - 5. Method for preparing a per(3,6-anhydro)cyclodextrin derivative corresponding to one of the following formulae (I) and (II):



- at least one of the groups R1 represents a group -OCONHR<sup>2</sup> and the other groups R<sup>1</sup>, which may be identical or different, represent a 5 corresponding to one of the formulae: -OCONHR2, -OH,  $-OR^3$ , -SH,  $-SR^3$ ,  $-OCOR^3$ ,  $-NH_2$ ,  $-NHR^3$ ,  $-NR^3R^4$ ,  $-CONH_2$ ,  $-CONHR^3$ ,  $-CONR^3R^4$ , -CN,  $-COOR^3$ ,  $-OCH_2CO_2H$ , -COOH and  $-R^3$ , in which the  $R^2$  group(s), which are identical or different, represent a saturated or 10 unsaturated aliphatic group, R3 and R4, which are identical or different, represent a saturated or unsaturated, aliphatic or aromatic hydrocarbon group optionally substituted with halogen atoms 15 which may contain one or more heteroatoms chosen from O, S and N, and/or
- at least one of the groups R<sup>1</sup> represents a group -OCONH(CR<sup>5</sup>R<sup>6</sup>)<sub>m</sub>NHCOOR<sup>7</sup>, the other groups R<sup>1</sup>
   corresponding to the same definition as that given above, R<sup>5</sup> and R<sup>6</sup>, which are identical or different, represent H or a saturated or unsaturated aliphatic group, and R<sup>7</sup> represents a glucosidic or maltosidic unit of the peranhydrocyclodextrin and m is an integer ranging from 1 to 20;
  - n is equal to 6, 7 or 8, said process comprising successively:
- a step consisting in reacting a per(3,6-30 anhydro)cyclodextrin corresponding to one of the following formulae (III) or (IV):



in which n is equal to 6, 7 or 8, with an isocyanate of formula  $OCN-R^2$  and/or a diisocyanate  $OCN(CR^5R^6)_mNCO$  in a quantity such that at least one of the OH groups is converted to a group  $-OCONH(CR^5R^6)_mNHCOOR^7$ ; and

- a step consisting, when not all the OH groups have been converted to a group -OCONHR<sup>2</sup> and/or OCONH(CR<sup>5</sup>R<sup>6</sup>) mNHCOOR<sup>7</sup>, in optionally reacting the remaining OH groups with one or more reagents in order to convert them to the desired groups R<sup>1</sup> different from -OCONHR<sup>2</sup> and/or -OCONH(CR<sup>5</sup>R<sup>6</sup>) mNHCOOR<sup>7</sup>.
- 15 6. Polymer obtained by reacting at least two per(3,6-anhydro)cyclodextrins corresponding to one of the following formulae (III) or (IV):



in which n is equal to 6, 7 or 8 and a diisocyanate of formula OCN- (CR<sup>5</sup>R<sup>6</sup>)<sub>m</sub>-NCO, in which R<sup>5</sup> and R<sup>6</sup>, which are identical or different, represent H or a saturated or unsaturated aliphatic group and m is 5 an integer ranging from 1 to 20, the OH groups having not reacted during the reaction to optionally converted into groups, which are identical or different, representing groups chosen from: -OCONHR<sup>2</sup>, -OR<sup>3</sup>, -SH, -SR<sup>3</sup>, -OCOR<sup>3</sup>, -NH<sub>2</sub>, -NHR<sup>3</sup>, 10  $-NR^3R^4$ ,  $-CONH_2$ ,  $-CONHR^3$ ,  $-CONR^3R^4$ , -CN,  $-COOR^3$ , -OCH<sub>2</sub>COOH, -COOH and -R<sup>3</sup>, in which the group(s) R<sup>2</sup> represent a saturated or unsaturated aliphatic group, R<sup>3</sup> and R<sup>4</sup>, which may be identical 15 different, represent a saturated or unsaturated, aliphatic or aromatic hydrocarbon group optionally substituted with halogen atoms which may contain one or more heteroatoms chosen from O, S and N.

- 20 7. Polymer according to Claim 6, for which n is equal to 6 and  $R^5$  and  $R^6$  both represent H and m is equal to 6.
- 8. Method for binding and separating ions, comprising the steps consisting in:
  - bringing a medium containing the said ions into contact with:
- 1) a per(3,6-anhydro)cyclodextrin derivative
  30 corresponding to one of the following formulae (I)
   or (II):

- at least one of the groups R1 represents a group 5 -OCONHR<sup>2</sup> and the other groups R<sup>1</sup>, which may be identical or different, represent a corresponding to one of the formulae: -OCONHR2, -OH,  $-OR^3$ , -SH,  $-SR^3$ ,  $-OCOR^3$ ,  $-NH_2$ ,  $-NHR^3$ ,  $-NR^3R^4$ ,  $-CONH_2$ ,  $-CONHR^3$ ,  $-CONR^3R^4$ , -CN,  $-COOR^3$ ,  $-OCH_2CO_2H$ , 10 -COOH and  $-R^3$ , in which the group(s)  $R^2$ , which are identical or different, represent a saturated or unsaturated aliphatic group, R3 and R4, which are identical or different, represent a saturated or 15 unsaturated, aliphatic or aromatic hydrocarbon group optionally substituted with halogen atoms which may contain one or more heteroatoms chosen from O, S and N, and/or
- at least one of the groups R<sup>1</sup> represents a group -OCONH(CR<sup>5</sup>R<sup>6</sup>)<sub>m</sub>NHCOOR<sup>7</sup>, the other groups R<sup>1</sup> corresponding to the same definition as that given above, R<sup>5</sup> and R<sup>6</sup>, which are identical or different, represent H or a saturated or unsaturated aliphatic group, and R<sup>7</sup> represents a glucosidic or maltosidic

unit of the peranhydrocyclodextrin and m is an integer ranging from 1 to 20;

- n is equal to 6, 7 or 8,and/or
- 2) a polymer obtained by reacting at least two per(3,6-anhydro)cyclodextrins of formula (III) or (IV), as defined in claim 6, and a diisocyanate of 10 formula OCN- (CR5R6) m-NCO, for which R5 and R6, which identical or different, represent H or a saturated or unsaturated aliphatic group and m is an integer ranging from 1 to 20, the OH groups having not reacted during the reaction to 15 optionally converted into groups, which identical or different, representing groups chosen from: -OCONHR<sup>2</sup>, -OR<sup>3</sup>, -SH, -SR<sup>3</sup>, -OCOR<sup>3</sup>, -NH<sub>2</sub>, -NHR<sup>3</sup>,  $-NR^3R^4$ ,  $-CONH_2$ ,  $-CONHR^3$ ,  $-CONR^3R^4$ , -CN,  $-COOR^3$ , -OCH<sub>2</sub>CO<sub>2</sub>H, -COOH and -R<sup>3</sup>, in which the group(s) R<sup>2</sup>, 20 which are identical or different, represent a saturated or unsaturated aliphatic group, R3 and R4, which may be identical or different, represent a saturated or unsaturated, aliphatic or aromatic hydrocarbon group which may contain one or more 25 heteroatoms chosen from O, S and N, and n is equal to 6, 7 or 8, in order to bind the said ions in the of a complex with the anhydro) cyclodextrin derivative or the polymer; and separating the said ions thus complexed from the said medium. 30
  - 9. Method according to Claim 8, in which the said ions are anions based on chromium or manganese.

- 10. Method according to Claims 8 or 9, in which the per(3,6-anhydro)cyclodextrin derivative corresponds to formula (I) in which all the groups R<sup>1</sup> represent the group -OCONHR<sup>2</sup> with R<sup>2</sup> having the same meaning as in Claim 1, and n is equal to 6.
  - 11. Method according to Claim 10, in which  $R^2$  represents an ethyl or hexyl radical.
- 10 12. Method according to Claim 8 or 9, in which the polymer is as defined in Claim 7.
- Method according to any one of Claims 8 to 12, in 13. which. said medium since the is an aqueous 15 solution, the per(3,6-anhydro)cyclodextrin derivative or the polymer is dissolved in organic solvent which is immiscible with the said aqueous solution.
- 20 14. Pharmaceutical composition for the decontamination, in relation to ions based on chromium or manganese, of a human being, comprising:

- 5 at least one of the groups R1 represents a group -OCONHR<sup>2</sup> and the other groups R<sup>1</sup>, which may be identical or different, represent a corresponding to one of the formulae: -OCONHR2, -OH,  $-OR^3$ , -SH,  $-SR^3$ ,  $-OCOR^3$ ,  $-NH_2$ ,  $-NHR^3$ ,  $-NR^3R^4$ ,  $-CONH_2$ ,  $-CONHR^3$ ,  $-CONR^3R^4$ , -CN,  $-COOR^3$ ,  $-OCH_2CO_2H$ , 10 -COOH and  $-R^3$ , in which the group(s)  $R^2$ , which are identical or different, represent a saturated or unsaturated aliphatic group, R3 and R4, which are identical or different, represent a saturated or 15 unsaturated, aliphatic or aromatic hydrocarbon group optionally substituted with halogen atoms which may contain one or more heteroatoms chosen from O, S and N, and/or
- at least one of the groups R<sup>1</sup> represents a group -OCONH(CR<sup>5</sup>R<sup>6</sup>) mNHCOOR<sup>7</sup>, the other groups R<sup>1</sup> corresponding to the same definition as that given above, R<sup>5</sup> and R<sup>6</sup>, which are identical or different, represent H or a saturated or unsaturated aliphatic group, and R<sup>7</sup> represents a glucosidic or maltosidic

unit of the peranhydrocyclodextrin and m is an integer ranging from 1 to 20;

- n is equal to 6, 7 or 8,
- 5 and/or
  - (2) a polymer as defined in Claims 6 and 7.
- 15. Pharmaceutical composition according to Claim 14, in which all the groups R<sup>1</sup> represent the group
   10 -O-CO-NHR<sup>2</sup> and n is equal to 6, R<sup>2</sup> having the same meaning as in Claim 1.
  - 16. Complex of an ion chosen from  $CrO_4^{2-}$ ,  $Cr_2O_7^{2-}$  and  $MnO_4^{2-}$  with:
- 15 (1) a per(3,6-anhydro)cyclodextrin derivative corresponding to one of the following formulae:



in which:

20

25

- at least one of the groups R<sup>1</sup> represents a group -OCONHR<sup>2</sup> and the other groups R<sup>1</sup>, which may be identical or different, represent a group corresponding to one of the formulae: -OCONHR<sup>2</sup>, -OH, -OR<sup>3</sup>, -SH, -SR<sup>3</sup>, -OCOR<sup>3</sup>, -NH<sub>2</sub>, -NHR<sup>3</sup>, -NR<sup>3</sup>R<sup>4</sup>, -CONH<sub>2</sub>, -CONHR<sup>3</sup>, -CONR<sup>3</sup>R<sup>4</sup>, -CN, -COOR<sup>3</sup>, -OCH<sub>2</sub>CO<sub>2</sub>H,

-COOH and  $-R^3$ , in which the group(s)  $R^2$ , which are identical or different, represent a saturated or unsaturated aliphatic group,  $R^3$  and  $R^4$ , which are identical or different, represent a saturated or unsaturated, aliphatic or aromatic hydrocarbon group optionally substituted with halogen atoms which may contain one or more heteroatoms chosen from O, S and N, and/or

- at least one of the groups R¹ represents a group -OCONH(CR⁵R⁶) mNHCOOR⁷, the other groups R¹ corresponding to the same definition as that given above, R⁵ and R⁶, which are identical or different, represent H or a saturated or unsaturated aliphatic group, and R⁷ represents a glucosidic or maltosidic unit of peranhydrocyclodextrin and m is an integer ranging from 1 to 20;
  - n is equal to 6, 7 or 8,
- 20 and/or
  - (2) a polymer as defined in Claims 6 and 7.
- 17. Complex according to Claim 16, in which the per(3,6-anhydro)cyclodextrin derivative corresponds to formula (I) in which all the groups R<sup>1</sup> represent the group -O-CO-NHR<sup>2</sup> and n is equal to 6, R<sup>2</sup> having the same meaning as in Claim 1.