Dolnośląski Konkurs INFORMATYCZNY zDolny Ślązak

dla uczniów szkół podstawowych

Kuratorium Oświaty we Wrocławiu / Dolnośląski Ośrodek Doskonalenia Nauczycieli we Wrocławiu

Przykładowy arkusz etapu szkolnego

Uczestnik konkursu (wpisz czytelnie, drukowanymi literami)

Nazwisko:	Imię:		Klasa:
Szkoła:		_	

INSTRUKCJA

- 1. Podpisz się powyżej, a poniżej zapisuj swoje odpowiedzi. Oceniana jest tylko karta odpowiedzi na tej stronie.
- 2. W pytaniach zamkniętych z odpowiedziami (a), (b), (c), (d) do wyboru zakreśl znakiem **X** właściwą odpowiedź. W razie pomyłki otocz błędnie zaznaczoną odpowiedź kółkiem i jeszcze raz zaznacz poprawną odpowiedź. Poprawna jest zawsze dokładnie jedna z odpowiedzi.
- 3. Odpowiedzi w pozostałych pytaniach wpisz w pola w wyznaczonym miejscu.
- 4. Pamiętaj, że pracujesz samodzielnie. Nie możesz korzystać z żadnych pomocy tablic, map, słowników, leksykonów, telefonów komórkowych, kalkulatorów itp. Potrzebne informacje zawarte są w treści zadań.
- 5. Maksymalna liczba punktów do zdobycia wynosi 30 po 10 punktów za każde zadanie, po 1 punkcie za każde pytanie. Korzystaj z przykładów ułatwiających zrozumienie zadań i spróbuj rozwiązać choć kilka pytań w każdym zadaniu. Nie musisz rozwiązywać po kolei niektóre pytania są trudne i warto je ominąć, by najpierw zająć się łatwiejszymi pytaniami.

KARTA ODPOWIEDZI

	1.1.		2.1.	3.1.	
	1.2.		2.2.	3.2.	
	1.3.		2.3.	3.3.	
	1.4.		2.4.	3.4.	
1.5.			2.5.	3.5.	
1.6.			2.6.	3.6.	
	1.7. (a) (b)	(c) (d)	2.7.	3.7.	
1.8.			2.8.	3.8. (a) (b)	(c) (d)
	1.9.		2.9.	3.9.	
	1.10.		2.10.	3.10.	

Zadanie 1.

Zakładamy, że notacja *napis*[i] oznacza wyłuskanie pojedynczego znaku z napisu *napis* na pozycji i. Zakładamy numerowanie znaków od 0. Przykładowo, jeżeli napis = "informatyka", to napis[0] = 'i', napis[1] = 'n', napis[10] ='a'. Zakładamy też, że notacja długość(napis) oznacza liczbę znaków w napisie przechowanym w zmiennej napis. Przykładowo, jeżeli napis = "informatyka", to długość(napis) = 11.

Ustaw i na i + 1

Uwaga: Przyjmujemy, że napis podany na wejściu może składać się jedynie z liter a lub b.

Przykład: dla napisu aaabab podanego na wejściu, algorytm wypisze 14 (a wartość zmiennej wynik podczas wykonania algorytmu będzie równa kolejno: 0, 1, 2, 3, 6, 7, 14).

- 1.1. Jaka liczbę wypisze powyższy algorytm dla danej aaaaa?
- 1.2. Jaką liczbę wypisze powyższy algorytm dla danej abbbb?
- 1.3. Jaką liczbę wypisze powyższy algorytm dla danej abababa?
- 1.4. Jaką liczbę wypisze powyższy algorytm dla danej aaa. . aaa b (sto liter a oraz jedna litera b)?
- **1.5.** Podaj napis **składający się z pięciu znaków**, który podany na wejściu spowoduje uzyskanie wyniku 0.
- **1.6.** Podaj napis **składający się z pięciu znaków**, który podany na wejściu spowoduje uzyskanie wyniku 1.
- 1.7. Które z poniższych zdań jest prawdziwe?
- (a) istnieje napis, który podany na wejściu powoduje, że algorytm wypisuje na wyjście liczbę ujemną,
- (b) jeżeli napis na wejściu ma długość n, to liczba na wyjściu nie przekracza n,
- (c) jeżeli napis na wejściu kończy się na ba, to liczba na wyjściu jest nieparzysta,
- (d) istnieje napis składający się z pięciu znaków, który podany na wejściu powoduje, że algorytm wypisuje na wyjście liczbę 15.
- 1.8. Podaj przykład najkrótszego napisu, który podany na wejściu spowoduje uzyskanie wyniku 65.
- 1.9. Podaj przykład najkrótszego napisu, który podany na wejściu spowoduje uzyskanie wyniku 25.
- **1.10.** Ile różnych wyników może zwrócić algorytm dla napisów składających się z 3 znaków?

Zadanie 2.

Rozważmy następujący program (możesz założyć, że wszystkie wersje są równoważne):

```
C++
                              Python
                                                            Pseudokod
#include <iostream>
                              dane = input().split()
                                                             wczytaj a, b
using namespace std;
                              a = int(dane[0])
                                                             ustaw wynik na 0
int main() {
                              b = int(dane[1])
                                                            ustaw i na 0
  int a, b;
                              wynik = 0
                                                             powtarzaj gdy i < b</pre>
  cin >> a >> b;
                              i = 0
                                                               | ustaw wynik na wynik + a + i
  int wynik = 0;
                              while i < b:
                                                               | ustaw i na i + 1
  int i = 0;
                                wynik += a + i
                                                            wypisz wynik
  while (i < b) {
                                i += 1
    wynik += a + i;
                              print(wynik)
    i++;
  }
  cout << wynik;</pre>
}
```

<u>Przykład:</u> Jeżeli do powyższego programu wprowadzić liczby 10 oraz 3 (oddzielone spacją, w tej kolejności), to wartości zmiennych będą się zmieniać w następujący sposób:

i	wynik
0	0
0	10
1	10
1	21
2	21
2	33
3	33

A zatem, dla liczb 10 oraz 3 podanych na wejściu (w tej kolejności), program wypisuje na wyjście liczbę 33.

- ? 2.1. Co wypisze powyższy program dla danych 5 oraz 5?
- ?) 2.2. Co wypisze powyższy program dla danych 30 oraz 1?
- ? 2.3. Załóżmy, że jako pierwszą liczbę na wejściu podano 10. Ile powinna być równa druga liczba na wejściu, żeby na wyjściu uzyskać wynik 10?
- ? 2.4. Co wypisze powyższy program dla danych 0 oraz 100?
- ?) 2.5. Co wypisze powyższy program dla danych 70 oraz 61?

We wszystkich poniższych pytaniach przyjmujemy następującą notację. Niech f(a,b) jest wynikiem działania programu dla danych a,b (oddzielonych spacją, w tej kolejności).

```
Przykład: f(10,3) = 33.
```

- **? 2.6.** Ile jest równe f(6,4)?
- ? 2.7. Jaka jest najmniejsza dodatnia liczba całkowita b, dla której f(10, b) > 48?
- ? 2.8. Jaka jest najmniejsza dodatnia liczba całkowita a, dla której f(a, 10) > 100?
- ? 2.9. Ile jest równe f(f(4,5), f(2,2))?
- **? 2.10.** Podaj przykład **dodatnich liczb całkowitych** a i b mniejszych niż 100, dla których f(a,b) = 2500.

Zadanie 3.

W tym zadaniu rozważamy algorytm, który przyjmuje na wejściu jedną dodatnią liczbę całkowitą n, a na wyjściu zwraca dwie liczby całkowite (w tej kolejności):

- liczbę bitów (cyfr) w zapisie liczby *n* w systemie dwójkowym,
- sumę cyfr liczby *n* w systemie dziesiętnym.

<u>Przykład:</u> $19 = 16 + 0 + 0 + 2 + 1 = 2^4 + 0 + 0 + 2^1 + 2^0$, a więc jej zapis w systemie dwójkowym to: 10011_2 . Jeśli więc algorytm otrzyma na wejściu liczbę 19, to na wyjściu otrzymamy, w tej kolejności, liczby:

- 5 (zapis w systemie dwójkowym liczby 19 ma pięć bitów),
- 10 (suma cyfr liczby 19 w zapisie dziesiętnym).

Niech a(n) będzie pierwszą zwróconą liczbą przez algorytm dla danej n, zaś b(n) – drugą zwróconą liczbą przez algorytm dla danej n.

Przykład: Zgodnie z rozważaniami w poprzednim przykładzie: a(19) = 5 oraz b(19) = 10.

- ? 3.1. Ile wynosi *b*(1234)?
- ? 3.2. Ile wynosi *a*(10)?
- **?** 3.3. Wskaż największą dodatnią liczbę całkowitą n, dla której a(n) = 5.
- ? 3.4. Wskaż najmniejszą dodatnią liczbę całkowitą, dla której a(n) > b(n).
- ? 3.5. Wskaż najmniejszą dodatnią liczbę całkowitą, dla której b(n) = 25.
- ? 3.6. Wskaż najmniejszą dodatnią liczbę całkowitą, dla której b(b(n)) = 13.
- ? **3.7.** Ile wynosi a(1) + a(2) + a(3) + ... + a(100)?

W kolejnych pytaniach rozważamy nowy algorytm, bazujący na poprzednio zdefiniowanych funkcjach. Algorytm ten przedstawiony jest w postaci poniższej listy kroków:

- 1. wczytaj z wejścia dodatnią liczbę całkowitą n,
- 2. ustaw n na b(n),
- 3. ustaw n na a(n),
- 4. wypisz na wyjście n.

 $\underline{Przykład}$: Jeżeli na wejściu (w pierwszym kroku) podamy n=15, to w drugim kroku algorytmu $n\leftarrow b(15)=6$, a w trzecim kroku algorytmu otrzymamy $n\leftarrow a(6)=3$. W czwartym kroku na wyjście zostanie więc wypisana liczba 3.

- ?) 3.8. Które z poniższych zdań jest prawdziwe?
 - (a) algorytm zawsze wypisuje na wyjściu liczbę mniejszą niż liczba podana na wejściu,
- (b) algorytm zawsze wypisuje na wyjściu liczbę mniejszą niż 10,
- (c) algorytm zawsze wypisuje na wyjściu liczbę o tej samej parzystości co liczba podana na wejściu,
- (d) istnieje dodatnia liczba naturalna, dla której algorytm wypisuje na wyjściu liczbę 0.
- ? 3.9. Jaka liczba zostanie wypisana na wyjściu dla danej n = 554 podanej na wejściu?
- $(\ref{eq:constraint})$ 3.10. Jaka jest najmniejsza dodatnia liczba całkowita n podana na wejściu, dla której algorytm wypisze 5?

BRUDNOPIS (zapisy w brudnopisie nie będą sprawdzane)

BRUDNOPIS (zapisy w brudnopisie nie będą sprawdzane)

