The use of biplots in statistical analysis: with examples in GenStat

Alex Glaser

VSN International, 5 The Waterhouse, Waterhouse Street Hemel Hempstead, UK

email: alex@vsni.co.uk

European GenStat and ASReml Applied
Statistics Conference
14 July 2010

Introduction

- Summary of biplots
 - Quick guide to biplots
 - Interpretation/scaling
 - Different visualisation techniques

- Examples of biplots in GenStat and for statistical analysis, e.g.
 - Principal components analysis
 - More specific techniques (GGE Biplot)

Quick guide to biplots

- Introduced by Gabriel (1971) to allow simultaneous display of both samples and variables from a data matrix, **Y**.
- Gower & Hand (1996): biplots can be considered multivariate analogues to a scatterplot.
- Both methods utilize the same technique
 - Samples displayed as points.
 - Variables displayed as vectors or axes (linear or nonlinear).

Factorization

• Any $n \times p$ matrix **Y** of rank r can be factorized as

$$\mathbf{Y} = \mathbf{G} \quad \mathbf{H}' \\ n \times p \quad n \times r \quad r \times p$$

- If r = 2, then vectors (of order two) $\mathbf{g_1}, ..., \mathbf{g_n}$ and $\mathbf{h_1},, \mathbf{h_p}$ may be plotted in a standard plane, where:
 - gi can be considered 'row' effects
 - **h**_j can be considered 'column' effects
- Since 'row' effects and 'column' effects plotted jointly, referred to as a biplot
- Both G and H non-uniquely defined some constraint required,
 e.g. orthonormality of one matrix.

Singular value decomposition

If ${\bf Y}$ is greater than rank two, cannot fully display all details of the 'row' effects and 'column' effects of the data.

Use singular value decomposition to factorize

$$\mathbf{Y} = \mathbf{U} \quad \mathbf{S} \quad \mathbf{V}' \\
n \times p \quad n \times r \quad r \times r \quad r \times p$$
(1)

where

- **U** and **V** are the orthonormal matrix of the *left* and *right* singular vectors respectively
- **S** is a diagonal matrix of the ordered singular values

Note that the original data matrix \mathbf{Y} is rarely used in equation (1), usually a transformation is taken

Singular value decomposition

If we construct another matrix using only the first m columns of ${\bf U}$ and ${\bf V}$, and first m singular values, thus

$${\bf Y}_{(m)} = {\bf U}_{(m)} {\bf S}_{(m)} {\bf V}_{(m)}'$$

then $\mathbf{Y}_{(m)}$ is the least-squares rank m approximation of \mathbf{Y} .

Gabriel (1971)

If a matrix \mathbf{Y} can be satisfactorily approximated by a rank two matrix $\mathbf{Y}_{(2)}$, the biplot of $\mathbf{Y}_{(2)}$ may allow useful approximate visual inspection of \mathbf{Y} itself.

Singular value decomposition

Rewriting rank 2 data matrix as

$$\mathbf{y}_{ij} = \sum_{k=1}^{2} u_{ik} s_k v_{kj}$$

$$= \sum_{k=1}^{2} \left(u_{ik} s_k^{\alpha} \right) \sum_{k=1}^{2} \left(s_k^{1-\alpha} v_{kj} \right) \quad 0 \le \alpha \le 1$$

Red equation represents 'row' effects (coordinates of samples) Green equation represents 'column' effects (coordinates of the variables)

Common values of α are 1, 1/2 and 0.

Different values of α highlight different aspects.

Scaling parameter α

Different values of α imply the following:

- $\alpha = 1$ (row-metric preserving)
 - Distances between samples approximates their Euclidean distance
 - Projecting a sample at right angles on a variable approximates position of sample on that variable
- $\alpha = 0$ (column-metric preserving)
 - Cosine of angle between axes approximates the correlation between variables.
 - Distance of variables from origin approximates variation
- $\alpha = 1/2$ (symmetric biplots)
 - Useful for ascertaining the relative magnitude of variation of samples and variables

Correspondence analysis

Correspondence analysis is a statistical method for representing categorical data graphically.

Example in Greenacre (1984 & 2006) of smoking habits amongst different staff.

	None	Light	Medium	Heavy
Senior Manager	4	2	3	2
Junior Manager	4	3	7	4
Senior Employee	25	10	12	4
Junior Employee	18	24	33	13
Secretary	10	6	7	2

Would like to see relationship between staff seniority and smoking habits.

Correspondence analysis menu

Extended in the 13th edition.

- Press the Biplot button
- Select scaling and other plotting options
- Press the Run button
 - CABIPLOT

Asymmetric CA biplot

Dimension 2

Dimension 1

Vectors vs. axes

Vector biplot

Principal Component Biplot +3

BIPLOT command

Axes biplot

DBIPLOT command

Vectors

Vector biplot

Pros

- Simplicity
- Can see contribution of each variable

Cons

 Difficult to know how to relate points to variables

Axes biplot

Pros

- Analogous to a scatterplot
- Can relate original data to variables

Cons

- Contribution of each variable to variation not so obvious
- More complicated design

Prediction

PC-2 (30.2%)

PCP biplot (73.9%)

PC-1 (43.7%)

Single point in a standard plot, at point (x_1, y_1)

(x,y,)_•

Prediction

Orthogonally project from (x_1, y_1) onto axes

Interpolation

Alternatively, travel x_1 along x-axis and y_1 along y-axis

Same point in a biplot

Prediction

Orthogonally project from (x_1, y_1) onto axes

Interpolation

Alternatively, travel x_1 along x-axis and y_1 along y-axis

Interpolative axes

PCP biplot (73.9%)

PC-1 (43.7%)

GGE Biplot

- Yan & Kang (2003): Observed phenotypic variation (P) of genotypes across environments is made up of environment variations (E), genotype variations (G) and genotype-by-environment interaction (GE).
- This can be written as

$$P - E = G + GE$$

 Usually E is the dominant source of variation, so environmental means removed and analysis concentrates on the genotype variation and genotype-by-environment interaction.

Example

Tolerance to infection by pink stem borer of seven winter wheat genotypes (A...G) in seven environments (a...g).

	a	Ь	С	d	e	f	g
Α	27.5	35.7	46.4	53.7	33.3	64.9	43.3
В	35.7	37.5	46.2	40.8	51.9	45.6	57.5
C	46.4	46.2	38.7	49.1	50.4	55.6	69.4
D	53.7	40.8	49.1	51.2	49.4	48.1	57.5
E	33.3	51.9	50.4	49.4	42.5	63.1	68.9
F	64.9	45.6	55.6	48.1	63.1	60.0	63.1
G	43.3	57.5	69.4	57.5	68.9	63.1	43.7

GGE Biplot menu

Use GGE Biplot menu from Meta Analysis section of Stats

- Click on Options
- Select Connect environment scores with origin and show rug plot

vailable Data:	X-dimension: 1 Y-dimension: 2 Labels for environments: Labels for genotypes:
Scaling	Quantile to cull at: 0.5 Normalize data C Genotype C Symmetric
☐ Sectors ☐ Connect enviro	ound genotype scores Mega environment Inment scores with origin Inment scores with origin and show rug plot
Ranking lines Perpendicular t	o axis Projected onto axis

GGE biplot

PC2 - 30.88%

Scatter plot (Total - 76.70%)

PC1 - 45.82%

Staying with scatter plot

- Click on Options
- Select Convex Hull and Sectors

GGE biplot

PC2 - 30.88%

Scatter plot (Total - 76.70%)

PC1 - 45.82%

@

GGE biplot - Ranking plot

Click on Type of plot drop-down menu on GGE Biplot

GGE biplot - Ranking plot

PC2 - 30.88%

Ranking biplot (Total - 76.70%)

GGE biplot - Comparison plot

Choose Comparison from Type of plot

- Select Genotype radio button in Method box
- Select Genotype to be used as base Genotype in First Environment

GGE biplot - Comparison plot

PC2 - 30.88%

Comparison biplot (Total - 76.70%)

Raton.

References

Gabriel, K.R. (1971). The biplot graphic display of matrices with application to pricipal component analysis. Biometrika, 58, 453. Gower, J.C. & Hand, D.J. (1996). Biplots. Monographs on Statistics and Applied Probability 54. Chapman & Hall, London. Greenacre, M.J. (1984). Theory and Applications of Correspondence Analysis. Academic Press, London. Greenacre, M.J. (2007). Correspondence Analysis in Practice, second edition. Chapman & Hall, London. Legendre, P. & Legendre, L. (1998). Numerical Ecology, Second English Edition. Elsevier, Amsterdam. Yan, W. & Kang, M.S. (2003). GGE Biplot Analysis: a Graphical

Tool for Breeders, Geneticists and Agronomists. CRC Press, Boca