Homework 1

Shun Zhang

Exercise 1.1

Let $\mu(x) = \mathbb{P}(X_0 = x)$.

Base Case: The distribution of X_0 is characterized as μ as definition.

Inductive step: Assume that for some $n \geq 0$, $\mathbb{P}(X_n = x)$ can be represented with P and μ . $\mathbb{P}(X_{n+1} = y) = \mathbb{P}(X_n = x)\mathbb{P}(X_{n+1} = y|X_n = x) = \mathbb{P}(X_n = x)$ x)P(x,y). We already know that $\mathbb{P}(X_n=x)$ can be represented with P and μ . So $\mathbb{P}(X_{n+1}=y)$ can also be represented using P and μ .

Exercise 1.2

$$\mathbb{P}(X_1 = y) = \sum_{x \in \Omega} \mathbb{P}(X_1 = y | X_0 = x) P(X_0 = x) = \sum_{x \in \Omega} P(x, y) P(X_0 = x) = \sum_{x \in \Omega} P_{xy} \mu_x = (\mu_1 \quad \mu_2 \quad \cdots \quad \mu_k) \begin{pmatrix} P_{1y} \\ P_{2y} \\ \vdots \\ P_{ky} \end{pmatrix}.$$

The distribution of
$$X_1$$
 is $(\mathbb{P}(X_1 = 1), \dots, \mathbb{P}(X_1 = k)) = (\mu_1 \quad \mu_2 \quad \dots \quad \mu_k) \begin{pmatrix} P_{11} & \dots & P_{1k} \\ P_{21} & \dots & P_{2k} \\ \dots & \dots & \dots \\ P_{ky} & \dots & P_{kk} \end{pmatrix} = 0$

 μP .

To show the distribution of X_t is μP^t by way of induction. the base case is shown above. Assume for some n > 0, the distribution of X_n is μP^n , consider the distribution of X_{n+1} .

$$\mathbb{P}(X_{n+1} = y) = \sum_{x \in \Omega} \mathbb{P}(X_{n+1} = y | X_n = x) P(X_n = x)$$
. Similar to the

The distribution of
$$X_{n+1}$$
.

$$\mathbb{P}(X_{n+1} = y) = \sum_{x \in \Omega} \mathbb{P}(X_{n+1} = y | X_n = x) P(X_n = x).$$
 Similar to the reasoning in the base case, this is $\mu P^n \begin{pmatrix} P_{1y} \\ P_{2y} \\ \dots \\ P_{ky} \end{pmatrix}$. So the distribution of X_{n+1} is

$$\mu P^n P = \mu P^{n+1}.$$