EE24BTECH11021 - Eshan Ray

Question:

Find the area of the region bounded by the curve $y = \sqrt{x}$ and the lines x = 2y + 3 and the x - axis.

Solution:

Variable	Description	value
V	Quadratic Form Matrix	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
и	Linear Coefficient Vector	$\begin{pmatrix} \frac{-1}{2} \\ 0 \end{pmatrix}$
f	Constant Term	0
h	Point on the line $x = 2y + 3$	$\begin{pmatrix} 3 \\ 0 \end{pmatrix}$
m	slope of the line $x = 2y + 3$	$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$
k_i	constant for point of intersection of the curve and the line	_

TABLE 0: Input parameters

The point of intersection of the line with the parabola is $x_i = h + k_i m$, where, k_i is is calculated as follows:-

$$k_{i} = \frac{1}{m^{\top}Vm} \left(-m^{\top} \left(Vh + u \right) \pm \sqrt{\left[m^{\top} \left(Vh + u \right) \right]^{2} - g\left(h \right) \left(m^{\top}Vm \right)} \right)$$

$$k_{i} = \frac{1}{\left(2 - 1\right) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}} \left(-\begin{pmatrix} 2 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} \\ 0 \end{pmatrix} \right) \pm \sqrt{\left[\begin{pmatrix} 2 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} \\ 0 \end{pmatrix} \right) \right]^{2} - g(h) \left(\begin{pmatrix} 2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right)}$$
(1)

We get,

$$k_i = -1, 3$$

$$x_1 = \begin{pmatrix} 3 \\ 0 \end{pmatrix} + (-1) \begin{pmatrix} 2 \\ 1 \end{pmatrix} \tag{2}$$

$$\implies x_1 = \begin{pmatrix} 3 \\ 0 \end{pmatrix} + \begin{pmatrix} -2 \\ -1 \end{pmatrix} \tag{3}$$

$$\implies x_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \tag{4}$$

$$x_2 = \binom{3}{0} + (3) \binom{2}{1} \tag{5}$$

$$\implies x_2 = \begin{pmatrix} 3 \\ 0 \end{pmatrix} + \begin{pmatrix} 6 \\ 3 \end{pmatrix} \tag{6}$$

$$\implies x_2 = \begin{pmatrix} 9 \\ 3 \end{pmatrix} \tag{7}$$

As, y cannot be negative, so the point of intersection of the line and the parabola is (9,3). \therefore The area bounded by the curve $y = \sqrt{x}$ and line x = 2y + 3 in the $1^{st} - quadrant$ is given by:-

Area =
$$\int_{0}^{3} \sqrt{x} \, dx + \int_{2}^{9} \sqrt{x} - \frac{x-3}{2} \, dx$$
 (8)

$$Area = \frac{2}{3} \left[x^{\frac{3}{2}} \right]_0^9 - \frac{1}{2} \left(\left(\frac{9^2}{2} - 27 \right) - \left(\frac{3^2}{2} - 9 \right) \right)$$
 (9)

$$Area = \frac{2}{3} ((27) - (0)) - \frac{1}{2} \left(\frac{27}{2} - \frac{-9}{2} \right)$$
 (10)

$$Area = 18 - 9 \tag{11}$$

$$Area = 9 \tag{12}$$

So, the required area is 9 units.

Fig. 0: Intersection of line and parabola