Theory Of Computation **CSC3113**

Pre-Requisite

- Basic Mathematical Concepts
- **Sets, Graphs, Relations, and Languages**
- Definitions, Theorems, and Proofs

Computer Science Department American International University-Bangladesh Mashiour Rahman **Assistant Professor**

Assumed Background

- # Sets / Sequences
- Functions / Relations
- Equivalence relations / Partitions
- Graphs
- Types of proof
- ☐ Proof by construction
- ☐ Proof by contradiction
- Proof by induction

- # The symbols ∈ and ∉denote set membership and non membership, respectively. example: $(7) \in \{7, 21, 57\}$ and $(8) \notin \{7, 21, 57\}$
- \blacksquare Subset: $A \subseteq B$, Every element of A is an element of B.
- # Multiset: {7} and {7,7} are different as mltisets but identical as sets. ■ Proper Subset: If A is a subset of B and not equal to B.
- \blacksquare Infinite set natural numbers $N = \{1,2,3,...\}$ and integers $Z = \{...,-2,-1,0,1,2,...\}$, contains infinitely many elements.
- #\Empty set: Set with 0 members, written as Ø.
- \clubsuit [n] rule about n: A set containing elements according to some rule.
- **\mathbf{H} \mid_{n} n = m^2** for some $m \in \mathbb{N} \setminus \{ means the set of perfect squares. <math>\}$
- **#** (Cardinality of a set: the number of elements in it.
- Set Operations:
- \blacksquare Compliment: A, is the set of all elements under consideration that are not in A.
- **\blacksquare** Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$, the set we get by combining all the elements of in $A = \{x : x \in A \text{ or } x \in B\}$, the set we get by combining all the elements of in $A = \{x \in A \text{ or } x \in B\}$.
- elements of all the sets in S. example, $\bigcup S=\{a,b,c,d\}$ if $S=\{\{a,b\},\{b,c\},\{c,d\}\}$. $S=\{x:x\in P \text{ for some set } P\in S\}$ is the set whose elements are the

Intersection: $A \cup B = \{x : x \in A \text{ and } x \in B\}$, the set of elements that are in both A and B, example: $\{7, 21\} \cap \{9, 5, 7\} = \{7\}$.

elements of all the sets in S. example, $\bigcap S=\{c,d\}$ if $S=\{\{a,c,d\},\{c,d\},\{b,c,d\}\}\}$. $\mathbb{D}_{S}=\{x:x\in P \text{ for each set } P\in S\}$ is the set whose elements are the

- \blacksquare Two sets A and B are equal, written as A = B, if $A \subseteq B$ and $B \subseteq A$.
- **\square** Difference of two sets A and B, written A-B, is the set of all elements of A that are not elements of B. That is, $A - B = \{x : x \in A \text{ and } x \notin B\}$.
- **Two sets are** *disjoint* If they have no element in common. That is, $A \cap B = \phi$.
- if $A = \{0, 1\}$, then the power set of $A = \{\phi, \{0\}, \{1\}, \{0,1\}\}$. **★** Power Set: Power set of a set A is the set of all subsets of A.
- \blacksquare A partition of a nonempty set A is a subset Π of 2^A such that,

- $\square ()\Pi = A.$
- **T**[Example, $\{\{a, b\}\{c\}\{d\}\}$ is a partition of $\{a, b, c, d\}$.

- **#** Sequence: a list of object in some order.
- √ (7, 21, 57) is a sequence of 7, 21, and 57.
- \blacksquare Order matters, so (7, 21, 57) is not the same as (21, 7, 57).
- \blacksquare Repetition is allowed, so (7, 21, 57) is not the same as (7, 21, 7, 57).
- # Tuple:)Finite sequence.
- K-Tuple: A sequence with k elements.
- # Pair A 2-tuple is called a pair.
- wherein the first element is a member of A and the second element is a member of B. \blacksquare Cartesian product/cross product of A and B, written $A \times B$, is the set of all pairs

If
$$A = \{1,2\}$$
 and $B = \{x, y, z\}$,

If
$$A = \{1,2\}$$
 and $B = \{x, y, z\}$,
 $A \times B = \{(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)\}$

$$A \times A = A^2 = \{(1,1), (1,2), (2,1), (2,2)\}$$

 ☐ Domain: the set of possible inputs.

Range: the set of outputs.

K. The notation for saying that f is a function with domain D and range R is \mathcal{E} : \mathcal{D}

k-ary function: a function with k arguments (arity of a function).

I Input: $(a_1, a_2, \dots a_k)$, a k-tuple (argument).

 \square unary function if k=1

 \blacksquare binary function if k = 2

- # Predicate (property): a function whose range is {TRUE, FALSE}.
- \blacksquare Relation: a property whose domain is a set of k tuples, \mathbb{A}^k for a set \mathbb{A} .
- Relation, k-ary relation or k-ary relation on A is written as $R(a_1, a_2, ..., a_k)$.
- \blacksquare Binary relation: 2-ary relation. Customary infix notation aRb, where R is the relation between the elements a and \overline{b} .
- $B \times A$ is simply the relation Ul $A \times B$, denoted R^{-1} **#** *Inver*se of a binary relation $|R|\subseteq$ $\{(b, a) : (a, b) \in R\}.$
- # Equivalence relation: two objects being equal
- \Box reflexive: $\forall x$, xRx.
- **\Box** symmetric: $\forall xy$, xRy iff yRx
- **transitive:** $\forall xyz$, xRy and $yRz \Rightarrow xRz$

- ☐ A graph consists of a finite set of vertices (nodes) with lines connecting some of them (edges), G = (V, E)
- Undirected graph:
- degree of a node: the number of edges at a particular node.
- path: a sequence of nodes connected by edges.
- simple path: a path that doesn't repeat any nodes.
- cycle: a path starts and ends in the same node
- # tree: no cycle
- // / leaves: nodes of degree 1 in a tree.
- root: special designated node.
- **II** in-degree and out-degree
- directed path
- directed acyclic graph (DAG)
- \blacksquare Sub Graph: Graph G is a subgraph of graph H, if the nodes of G are a subset of the nodes of H (i.e. $G.V \subseteq H.V$).
- # connected: every two nodes of a graph have a path between them.
- strongly connected: every 2 nodes of a di-graph have a path between them.

Strings

- ★ Strings of characters.
- symbols from an alphabet. Example: $\Sigma_1 = \{0,1\}$, $\Sigma_2 = \{a, x, y, z\}$, $\Gamma = \{0,1, x, z\}$. # Alphabet: any finite set, ∑ and Γ designate alphabets and a typewriter font for
- A string over an alphabet: a finite sequence of symbols from the alphabet. If $\Sigma_1 = \{0,1\}$, then 01001 is a string over Σ_1 . Ħ
- \blacksquare Length of a string w: |w|.
- # Empty string: 8.
- **#** String *z* is a *substring* of string *w* if *z* appears consecutively within *w*. Example: z=cad, w=abracadabra.
- \blacksquare If w=xv for some x, then v is a suffix of w; If w=vy for some y, then v is a prefix of w.
- written w^R , is the string obtained by writing w in the opposite order (i.e. $w_n w_{n-1} \dots w_1$). **‡** If w has length n, we can write $w = w_1 w_2 \dots w_n$ where each $w \in \Sigma$. Reverse of w,
- \blacksquare Concatenation of two strings x and y, written xy, is the string obtained by appending y to the end of x, as in $x_1 \dots x_n y_1 \dots y_n$. To concatenate a string with itself many
- times we use the superscript notation $xx \cdots x = \frac{x^k}{x^k}$.

- A language is a set of strings.
- # The set of all strings of all lengths, including the empty string, over an alphabet ∑ is denoted by Σ^* .
- expect that shorter strings precede longer strings. Example: Lexicographic ordering of Lexicographic ordering of strings is the same as the familiar dictionary ordering, all strings over the alphabet $\Sigma = \{0,1\}$ is $(\varepsilon,0,1,00,01,10,11,000,\ldots)$. Ħ
- \blacksquare A language L over the alphabet A is a subset of A^* . $L\subseteq A^*$.

- # Proof: a convincing logical argument that a statement is true.
- **#** convincing in an absolute sense
- The pigeonhole principle: there are n pigeonholes, n + 1 or more pigeons, and every pigeon occupies a hole, then some hole must have at least two pigeons.
- Proof by construction: Prove a particular type of objects exists by constructing the object. Ħ
- Proof by contradiction: Assume a theorem is false and then show that this assumption leads to a false consequence. 口
- Proof by induction: A proof by induction has —
- A predicate: P,
- lack A basis: $\exists k$, P(k) is true,
- $lack A_n$ induction hypothesis: for some $n \geq k$, P(k), P(k+1), ..., P(n) are true.
- \bullet An inductive step: P(n+1) is true given the induction hypothesis.