Difference of nth powers identity

We will prove the following identity for all $x, c \in \mathbb{R}, n \in \mathbb{N}$: $x^{n} - c^{n} = (x - c) \sum_{i=1}^{n} x^{n-i} c^{i-1}$

Proof. By induction on
$$n$$
. If $n=1$, we have $x-c=(x-c)\sum_{i=1}^1 x^{1-i}c^{i-1}=(x-c)(1)$

Now for some fixed natural number, k, assume: $x^{k-1}-c^{k-1}=(x-c)\sum_{i=1}^{k-1}x^{k-1-i}c^{i-1}$

$$x^{k-1} - c^{k-1} = (x-c) \sum_{i=1}^{k-1} x^{k-1-i} c^{i-1}$$

Multiply both sides of the equation by x+c: $(x+c)(x^{k-1}-c^{k-1})=(x+c)(x-c)\sum_{i=1}^{k-1}x^{k-1-i}c^{i-1}$

Distribute on the left side:
$$x^k - c^k - xc^{k-1} + x^{k-1}c = (x+c)(x-c)\sum_{i=1}^{k-1} x^{k-1-i}c^{i-1}$$

Now distribute the
$$x-c$$
 term on the right side: ... = $(x+c)(\sum_{i=1}^{k-1} x^{k-i}c^{i-1} - \sum_{i=1}^{k-1} x^{k-1-i}c^i)$

And distribute the
$$x+c$$
 term on the right side: ... = $\sum_{i=1}^{k-1} x^{k+1-i} c^{i-1} - \sum_{i=1}^{k-1} x^{k-i} c^i + \sum_{i=1}^{k-1} x^{k-i} c^i - \sum_{i=1}^{k-1} x^{k-1-i} c^{i+1}$

Now extract an
$$xc$$
 from the third sum and a c^2 from the fourth sum:
$$\ldots = \sum_{i=1}^{k-1} x^{k+1-i} c^{i-1} - \sum_{i=1}^{k-1} x^{k-i} c^i + (xc) (\sum_{i=1}^{k-1} x^{k-1-i} c^{i-1}) - (c^2) (\sum_{i=1}^{k-1} x^{k-1-i} c^{i-1})$$

The third and fourth sums are now identical, so we can combine them: ... =
$$\sum_{i=1}^{k-1} x^{k+1-i} c^{i-1} - \sum_{i=1}^{k-1} x^{k-i} c^i + c(x-c) (\sum_{i=1}^{k-1} x^{k-1-i} c^{i-1})$$

Which, by the induction hypothesis, is equivalent to: ... =
$$\sum_{i=1}^{k-1} x^{k+1-i} c^{i-1} - \sum_{i=1}^{k-1} x^{k-i} c^i + c(x^{k-1} - c^{k-1})$$

Now we bring the left side of the equation back:
$$x^k - c^k - xc^{k-1} + x^{k-1}c = \sum_{i=1}^{k-1} x^{k+1-i}c^{i-1} - \sum_{i=1}^{k-1} x^{k-i}c^i + c(x^{k-1} - c^{k-1})$$

And move some terms over to the right, to isolate the
$$x^k - c^k$$
: $x^k - c^k = xc^{k-1} - x^{k-1}c + \sum_{i=1}^{k-1} x^{k+1-i}c^{i-1} - \sum_{i=1}^{k-1} x^{k-i}c^i + c(x^{k-1} - c^{k-1})$

Now we turn our attention to the two remaining sums.

For concision and clarity, we make the following designations: Let $\alpha=\sum_{i=1}^{k-1}x^{k+1-i}c^{i-1}$ Let $\beta=\sum_{i=1}^{k-1}x^{k-i}c^i$

Let
$$\alpha = \sum_{i=1}^{k-1} x^{k+1-i} c^{i-1}$$

So that we have:
$$x^k-c^k=xc^{k-1}-x^{k-1}c+\alpha-\beta+c(x^{k-1}-c^{k-1})$$

We also introduce two new terms: Let
$$\gamma=\sum_{i=1}^k x^{k+1-i}c^{i-1}$$
 Let $\delta=\sum_{i=1}^k x^{k-i}c^i$

Observe that $\alpha = \gamma - xc^{k-1}$ and $\beta = \delta - c^k$.

We substitute these results into our equation:
$$x^k-c^k=xc^{k-1}-x^{k-1}c+\gamma-xc^{k-1}-\delta-c^k+c(x^{k-1}-c^{k-1})$$

Simplifying and rearranging terms:
$$x^k-c^k=\gamma-\delta-x^{k-1}c-c^k+c(x^{k-1}-c^{k-1})\\x^k-c^k=\gamma-\delta-c(x^{k-1}-c^{k-1})+c(x^{k-1}-c^{k-1})\\x^k-c^k=\gamma-\delta$$

We replace
$$\gamma$$
 and δ with their definitions: $x^k-c^k=\sum_{i=1}^k x^{k+1-i}c^{i-1}-\sum_{i=1}^k x^{k-i}c^i$

And extract an x and c from the sums to make them identical: $x^k-c^k=(x)\sum_{i=1}^k x^{k-i}c^{i-1}-(c)\sum_{i=1}^k x^{k-i}c^{i-1}$

$$x^{k} - c^{k} = (x) \sum_{i=1}^{k} x^{k-i} c^{i-1} - (c) \sum_{i=1}^{k} x^{k-i} c^{i-1}$$

A final combining of like terms concludes the proof by induction: $x^k-c^k=(x-c)\sum_{i=1}^k x^{k-i}c^{i-1}$