# https://matse.paddel.xyz/spicker

# Lineare Algebra 2

# Patrick Gustav Blaneck

Letzte Änderung: 23. Juni 2021

# Inhaltsverzeichnis

| 1     | Lineare Abbildungen            |                                                    | 2  |
|-------|--------------------------------|----------------------------------------------------|----|
|       | 1.1                            | Grundlegende Eigenschaften linearer Abbildungen    | 2  |
|       | 1.2                            | Matrizen und lineare Abbildungen                   | 3  |
|       | 1.3                            | Abbildungsverkettung und Matrizenmultiplikation    | 4  |
|       | 1.4                            | Koordinatentransformationen                        | 5  |
| 2     | Determinanten                  |                                                    |    |
|       | 2.1                            | Verfahren zur Berechnung der Determinante          | 8  |
| 3     | Lineare Gleichungssysteme      |                                                    | g  |
|       | 3.1                            | Lösbarkeit eines linearen Gleichungssystems        | ç  |
|       |                                | Über- und unterbestimmte lineare Gleichungssysteme |    |
| 4     | Geometrie linearer Abbildungen |                                                    | 12 |
|       | 4.1                            | Orthogonale Abbildungen und Matrizen               | 12 |
|       | 4.2                            | Eigenwerte und Eigenvektoren                       |    |
|       | 4.3                            | Diagonalisierung linearer Abbildungen              | 13 |
| Index |                                |                                                    | 14 |

# 1 Lineare Abbildungen

# 1.1 Grundlegende Eigenschaften linearer Abbildungen

# Definition: Homomorphismus

Eine Abbildung  $f: V \to W$  heißt *linear* oder ein *Homomorphismus*, falls  $\forall x, y \in V, \forall \lambda \in K$  gilt:

- Additivität: f(x + y) = f(x) + f(y)
- Homogenität:  $f(\lambda x) = \lambda f(x)$

Es gilt auch:

- Für eine lineare Funktion f gilt f(0) = 0.
- Die Funktion f ist genau dann linear, wenn  $\forall x, y \in V, \forall \lambda \in K$  gilt:

$$f(x + \lambda y) = f(x) + \lambda f(y)$$

• Summen, Vielfache linearer Abbildungen und vektorwertige Abbildungen, deren Komponenten aus linearen Abbildungen bestehen, sind wiederum linear.

# Definition: Kern

Der *Kern* einer linearen Abbildung  $f: V \rightarrow W$  wird definiert durch

$$\ker(f) := f^{-1}(0)$$

Dabei gilt:

- im(f) ist ein Untervektorraum von W.
- $\ker(f)$  ist ein Untervektorraum von V.

Eine lineare Abbildung ist genau dann injektiv, wenn  $ker(f) = \{0\}$  gilt.

#### Bonus: Defekt

Für eine lineare Funktion  $f: V \to W$  definiert man den *Defekt* von f durch

$$def(f) := dim ker(f)$$

Eine lineare Abbildung ist genau dann injektiv, wenn def(f) = 0 gilt.

#### Definition: Rang

Für eine lineare Funktion  $f: V \to W$  definiert man den Rang von f durch

$$rg(f) := dim im(f)$$

2

Eine lineare Abbildung ist genau dann surjektiv, wenn rg(f) = dim(W) gilt.

# Definition: Dimensionsformel für lineare Abbildungen (Rangsatz)

Es sei  $f: V \to W$  linear. Dann gilt:

$$def(f) + rg(f) = \dim V$$

bzw. äquivalent

$$\dim \ker(f) + \dim \operatorname{im}(f) = \dim V$$

#### Definition: Isomorphismus

Sei  $f: V \to W$  linear. Dann ist f ein *Isomorphismus*, wenn f bijektiv ist.

Es gilt (für *f* linear):

- f ist genau dann ein Isomorphismus, wenn  $ker(f) = \{0\}$  und im(f) = W gilt.
- Gelte  $\dim(V) = \dim(W)$ . Dann gilt f ist injektiv  $\iff f$  ist surjektiv  $\iff f$  ist bijektiv.

Es gilt (für *f* Isomorphismus):

- $\dim(V) = \dim(W)$
- $f^{-1}: W \to V$  ist ebenfalls ein Isomorphismus.

Sei  $\dim(V) = \dim(W) = n$ ,  $(v_1, \dots, v_n)$  eine Basis von V und  $f: V \to W$  linear. f ist genau dann ein Isomorphismus, wenn  $(f(v_1), \dots, f(v_n))$  eine Basis von W bildet.

#### Bonus: Isomorphie

Seien V und W zwei K-Vektorräume Dann heißen V und W isomorph, Schreibweise  $V \simeq W$ , falls ein Isomorphismus von V nach W existiert.

Gilt  $\dim(V) = \dim(W) = n$ , dann gilt direkt  $K^n \simeq V \simeq W$ .

#### Definition: Automorphismus

Sei  $f: V \to W$  linear. Dann ist f ein *Automorphismus*, wenn f bijektiv ist und V = W.

#### Definition: Endomorphismus

Eine lineare Abbildung  $f: V \rightarrow V$  heißt *Endomorphismus*.

#### 1.2 Matrizen und lineare Abbildungen

#### Definition: Abbildungsmatrix

Sei  $f: V \to W$  linear. Dann ist die *Abbildungsmatrix A* bzgl. f gegeben mit

$$A = (f(e_1) \dots f(e_n)) \text{ mit } \forall x : f(x) = Ax$$

Sei  $(v_1, \ldots, v_n)$  eine Basis von V. Dann gilt:

- $\operatorname{im}(f) = \langle f(v_1), \dots, f(v_n) \rangle$
- f ist injektiv  $\iff f(v_1), \dots, f(v_n)$  sind linear unabhängig.

#### Definition: Darstellungsmatrix

Sei  $f: V \to W$  linear,  $\mathcal{B}_V = (v_1, \dots, v_n)$  eine Basis von V und  $\mathcal{B}_W = (w_1, \dots, w_m)$  eine Basis von W. Dann ist

$$M_{\mathcal{B}_W}^{\mathcal{B}_V}(f) = (K_{\mathcal{B}_W}(f(v_1)) \dots K_{\mathcal{B}_W}(f(v_1)))$$

die Darstellungsmatrix von f bezüglich der Basen  $\mathcal{B}_V$  und  $\mathcal{B}_W$ .

 $K_{\mathcal{B}_W}(f(v_i))$  bedeutet hier, dass das Bild von  $v_i$  in der Basis  $\mathcal{B}_W$  kodiert wird.

Es gilt:

• Sind  $\mathcal{B}_V$  und  $\mathcal{B}_W$  die Standardbasen bez. V und W, dann gilt  $M_{\mathcal{B}_W}^{\mathcal{B}_V}(f) = A$ .

# 1.3 Abbildungsverkettung und Matrizenmultiplikation

#### Definition: Eigenschaften der Abbildungsverkettung

Seien U, V, W K-Vektorräume und  $f:V\to W$  sowie  $g:U\to V$  linear. Dann ist auch  $f\circ g:U\to W$  linear.

Ist f ein Isomorphismus und dim(V) = dim(W), dann gilt:

$$rg(f \circ g) = rg(g)$$

# Definition: Eigenschaften der Matrixmultiplikation

Seien *A*, *B*, *C* so, dass die nachfolgend vorkommenden Matrixmultiplikationen definiert sind. Dann gilt:

- A(BC) = (AB)C (Assoziativgesetz)
- A(B+C) = AB + AC und (A+B)C = AC + BC (Distributivgesetz)
- $\bullet \ (AB)^T = B^T A^T$
- Sei  $A \in K^{m \times n}$  und  $E_k \in K^{k \times k}$  die  $(k \times k)$ -Einheitsmatrix. Dann gilt:

$$AE_n = E_m A = A$$

• Sei  $A \in K^{m \times n}$  und  $0_{kl} \in K^{k \times l}$  die  $(k \times l)$ -Nullmatrix. Dann gilt:

$$A0_{nl} = 0_{ml} \quad \text{und} \quad 0_{km}A = 0_{kn}$$

- Das Matrixprodukt ist im Allgemeinen nicht kommutativ.
- Seien  $x, y \in K^n$ . Dann gilt:

$$\langle x, y \rangle = x^T \cdot y$$

#### Definition: Inverse einer Matrix

Sei A eine quadratische Matrix. Gibt es eine Matrix  $A^{-1}$  mit

$$AA^{-1} = A^{-1}A = E$$

so heißt A invertierbar oder auch regulär.  $A^{-1}$  wird als Inverse von A bezeichnet.

Es gilt:

- Eine lineare Abbildung  $f:V\to W$  ist genau dann invertierbar, wenn ihre Darstellungsmatrix invertierbar ist.
- Jede invertierbare Matrix ist quadratisch.

Seien  $A, B \in K^{n \times n}$  invertierbar. Dann gilt:

- $AB = E \iff BA = E \iff B = A^{-1}$
- AB ist invertierbar, und es gilt  $(AB)^{-1} = B^{-1}A^{-1}$ .
- $A^{-1}$  ist invertierbar, und es gilt  $(A^{-1})^{-1} = A$ .
- $A^T$  ist invertierbar, und es gilt  $(A^T)^{-1} = (A^{-1})^T$ .
- Für  $\lambda \in K \setminus \{0\}$  ist  $\lambda A$  invertierbar, und es gilt  $(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$ .

#### 1.4 Koordinatentransformationen

#### Definition: Koordinatenabbildung

Sei V ein K-Vektorraum mit einer Basis  $\mathcal{B}=(b_1,\ldots,b_n)$ . Dann existiert genau ein Isomorphismus  $\varphi_{\mathcal{B}}:K^n\to V$  mit  $\varphi_{\mathcal{B}}(e_i)=v_i$ ,  $1\leq i\leq n$ .

Der Isomorphismus  $\varphi_B$  heißt *Koordinatenabbildung*.

# Definition: Koordinaten eines Vektors

Sei V ein K-Vektorraum mit einer Basis  $\mathcal{B} = (b_1, \ldots, b_n)$ . Die Abbildung  $K_{\mathcal{B}}(v)$  mit

$$K_{\mathcal{B}}: V \to K^n, v = \sum_{i=1}^n \lambda_i b_i \longmapsto \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

5

erzeugt die Koordinaten von v bezüglich der Basis  $\mathcal{B}$ .

Es gilt:

$$\bullet \ K_{\mathcal{B}}(v) = \varphi_{\mathcal{B}}^{-1}(v)$$

#### Definition: Transformationsmatrix

Sei ein Vektorraum V mit den Basen  $\mathcal{A}=(a_1,\ldots,a_n)$  und  $\mathcal{B}=(b_1,\ldots,b_n)$  gegeben.

Für einen Vektor v existieren die Darstellungen  $K_A(v)$  und  $K_B(v)$ . Es gilt:



Die Matrix  $T^{\mathcal{A}}_{\mathcal{B}}$  heißt Transformationsmatrix des Basiswechsels von  $\mathcal{A}$  nach  $\mathcal{B}$ 

Sei  $v \in V$  beliebig,  $K_{\mathcal{A}}(v) = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^T$  und  $K_{\mathcal{B}}(v) = \begin{pmatrix} y_1 & \dots & y_n \end{pmatrix}^T$ . Dann gilt:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = T_{\mathcal{B}}^{\mathcal{A}} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Sind die Koordinaten von v beqüglich  $\mathcal{A}$  bekannt, kann man mithilfe der Matrix  $T_{\mathcal{B}}^{\mathcal{A}}$  die Koordinaten von v bezüglich  $\mathcal{B}$  berechnen.

Seien A und B die Matrizen der Basisvektoren von A bzw. B. Dann gilt:

$$\begin{array}{ccc}
x & \xrightarrow{E} & x \\
A & & & \downarrow B \\
K_{\mathcal{A}}(x) & \xrightarrow{T_{\mathcal{B}}^{\mathcal{A}}} & K_{\mathcal{B}}(x)
\end{array}$$

Man erkennt:

$$T_{\mathcal{B}}^{\mathcal{A}} = B^{-1}A$$

#### Definition: Darstellungsmatrix mit Basistransformation

Seien V und W endlich erzeugt mit Basen  $\mathcal{A}$  und  $\mathcal{A}'$  bzw.  $\mathcal{B}$  und  $\mathcal{B}'$ . Sei weiter  $f:V\to W$  linear. Dann gilt:

$$M_{\mathcal{B}'}^{\mathcal{A}'}(f) = T_{\mathcal{B}'}^{\mathcal{B}} \cdot M_{\mathcal{B}}^{\mathcal{A}}(f) \cdot T_{\mathcal{A}}^{\mathcal{A}'}$$

Zur Visualisierung dient folgendes kommutative Diagramm:



6

# 2 Determinanten

#### Definition: Elementarmatrix

Seien  $1 \le i, j \le n$  mit  $i \ne j$  und  $\lambda \in K \setminus \{0\}$  gegeben. Dann sei

wobei der (i,j)-te Eintrag den Wert  $\lambda$  annehmen soll und alle anderen Einträge außerhalb der Hauptdiagonalen 0 sein sollen.

Sei *C*2 die Matrix, die man aus der Einheitsmatrix gewinnt, indem man die *i*-te und *j*-te Spalte vertauscht, also

Zuletzt definieren wir

Matrizen der Gestalt C1, C2 oder C3 nennt man Elementarmatrizen.

Es gilt:

• Die Multiplikation einer Matrix A von links mit einer Elementarmatrix entspricht der Anwendung einer elementaren Zeilenoperation des Gauß-Verfahrens auf A.

Notation: Zi statt Ci

• Die Multiplikation einer Matrix *A* von rechts mit einer Elementarmatrix entspricht der Anwendung einer elementaren Spaltenoperation auf *A*.

Notation: Si statt Ci

• C1 entspricht dem Addieren von  $\lambda$ -mal Spalte bzw. Zeile j auf Spalte bzw. Zeile i.

7

- C2 entspricht dem Tauschen von Spalte bzw. Zeile *i* mit Spalte bzw. Zeile *j*.
- C3 entspricht dem Multiplizieren von Spalte bzw. Zeile i mit  $\lambda$ .

#### Definition: Eigenschaften der Determinante

Für  $A, B \in K^{n \times n}$  gilt:

- S1 und Z1 ändern die Determinante einer Matrix nicht. (det(C1) = 1)
- S2 und Z2 kehren das Vorzeichen der Determinante um. (det(C2) = -1)
- S3 und Z3 vervielfachen den Wert der Determinante um den Faktor  $\lambda$ . (det(C3) =  $\lambda$ )
- $det(A) = det(A^T)$
- Besitzt A zwei gleiche Spalten bzw. Zeilen, so gilt det(A) = 0.
- A invertierbar  $\iff$   $det(A) \neq 0$
- det(AB) = det(A) det(B)
- A invertierbar  $\implies \det(A^{-1}) = (\det(A))^{-1}$

# 2.1 Verfahren zur Berechnung der Determinante

# Definition: Laplacescher Entwicklungssatz

Für  $A \in K^{n \times n}$  bezeichne  $A_{ij}$  die Matrix in  $K^{(n-1)\times(n-1)}$ , die durch Streichen der *i*-ten Zeile und der *j*-ten Spalte aus A hervorgeht.

Es sei  $A = (a_{ij}) \in K^{n \times n}$  und j mit  $1 \le j \le n$ . Dann gilt:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$

Man spricht von der Entwicklung der Determinante nach der j-ten Spalte. Ebenso ist eine Entwicklung der Determinante nach der i-ten Zeile möglich:

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$

#### Definition: Determinante mit Gauß-Algorithmus

Zur Berechnung mit dem Gauß-Algorithmus bringt man die gegebene Matrix A mittels äquivalenter Zeilen- oder Spaltenumformungen Z1-Z3 bzw. S1-S3 auf Stufenform B und errechnet dann nach Folgerung  $\det(A)$  leicht als Produkt der Hauptdiagonalelelemente von B, multipliziert mit den Determinanten der genutzten Elementarmatrizen.

#### Bonus: Tipps zur Determinantenberechnung

- 1. Für  $(2 \times 2)$  und  $(3 \times 3)$ -Matrizen empfiehlt sich die Sarrus-Regel.<sup>a</sup>
- 2. Die Laplace-Entwicklung ist dann vorzuziehen, wenn in einer Spalte oder Zeile nur wenige Nicht-Null-Einträge vorhanden sind, weil bei einer Entwicklung nach dieser Zeile bzw. Spalte die meisten Summanden erst gar nicht berechnet werden müssen.
- 3. Es können zur Berechnung der Determinanten mehrere Verfahren kombiniert werden, z.B.  $(4\times4)$ -Matrizen zuerst nach Laplace entwickeln und die dann entstehenden Determinanten von  $(3\times3)$ -Matrizen direkt mit der Sarrus-Regel berechnen.

<sup>&</sup>lt;sup>a</sup>Siehe Lineare Algebra 1

#### Bonus: Inverse einer $(2 \times 2)$ -Matrix

Sei A definiert als  $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ . Dann gilt:

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

# 3 Lineare Gleichungssysteme

#### 3.1 Lösbarkeit eines linearen Gleichungssystems

#### Definition: Lineares Gleichungssystem

Seien  $A = (a_{ij}) \in K^{m \times n}$  und  $b = \begin{pmatrix} b_1 & \dots & b_m \end{pmatrix}^T$ . Dann heißt

$$a_{11}x_1 + \ldots + a_{1n}x_n = b_1$$

. . .

$$a_{m1}x_1 + \ldots + a_{mn}x_n = b_m$$

*lineares Gleichungssystem* bzgl.  $(x_1, \ldots, x_n)$  mit Koeffizienten  $a_{ij}$  in K. Hierbei sind  $x_1, \ldots, x_n$  die *Unbekannten* des Systems.

Für  $b = 0_{m1}$  nennt man das lineare Gleichungssystem homogen, sonst inhomogen.

Jedes lineare Gleichungssystem kann in der Form Ax = b geschrieben werden.

#### Definition: Lösungsmenge

Die Lösungsmenge L(A,b) des zu (A,b) gehörigen Gleichungssystems ist festgelegt durch

$$L(A, b) := \{x \in K^n \mid Ax = b\}$$

#### Definition: Spaltenrang

Die lineare Abbildung  $L_A: K^n \to K^m$  sei gegeben durch  $L_A(x) := Ax$ . Dann sei  $\operatorname{rg}(A) := \operatorname{rg}(L_A)$ . Der *Spaltenrang*  $\operatorname{rg}_S(A)$  sei die maximale Anzahl linear unabhängiger Spaltenvektoren von A.

Es gilt  $rg(A) = rg_S(A)$ .

#### Definition: Zeilenrang

Für  $A \in K^{m \times n}$  sei die maximale Anzahl linear unabhängiger Zeilenvektoren von A der Zeilenrang  $\operatorname{rg}_Z(A)$  von A.

Es gilt:

$$rg(A) = rg_S(A) = rg_Z(A)$$

9

#### Definition: Lösbarkeit von linearen Gleichungssystemen

Das lineare Gleichungssystem Ax = b ist genau dann lösbar, wenn gilt:

$$\operatorname{rg}(a_1,\ldots,a_n)=\operatorname{rg}(a_1,\ldots,a_n,b)$$

Kürzer schreibt man rg(A) = rg(A, b).

Ax = b ist also genau dann eindeutig lösbar, falls  $ker(A) = \{0\} \iff rg(A) = rg(A, b) = n$ .

# Bonus: Äquivalente Bedingungen für eindeutige Lösbarkeit

Sei  $K \in \{\mathbb{R}, \mathbb{C}\}$ . Für  $A \in K^{n \times n}$  und die dadurch gegebene lineare Abbildung  $L_A$  sind folgende Bedingungen äquivalent:

- 1. *A* ist invertierbar.
- 2. Ax = 0 hat nur die triviale Lösung x = 0.
- 3. Durch Zeilen- und Spaltenumformungen kann *A* auf die Einheitsmatrix transformiert werden.
- 4. A ist darstellbar als Produkt von Elementarmatrizen.
- 5. Ax = b besitzt für jedes  $b \in K^n$  mindestens eine Lösung.
- 6. Ax = b hat genau eine Lösung für jedes  $b \in K^n$ .
- 7.  $det(A) \neq 0$
- 8.  $im(A) = K^n$
- 9.  $L_A$  ist bijektiv.
- 10. Die Spaltenvektoren von A sind linear unabhängig.
- 11. Die Zeilenvektoren von A sind linear unabhängig.
- 12. Die Spaltenvektoren von A bilden eine Basis von  $K^n$ .
- 13. Die Zeilenvektoren von A bilden eine Basis von  $K^n$ .
- 14. rg(A) = n
- 15.  $ker(L_A) = \{0\}$
- 16.  $(\ker(L_A))^{\perp} = K^n$
- 17. Das orthogonale Komplement des von den Zeilen von A aufgespannten Raums ist  $\{0\}$ .
- 18.  $A^T A$  ist invertierbar.

#### Definition: Allgemeine Lösung eines linearen Gleichungssystems

Sei  $x_s \in K^n$  eine (spezielle) Lösung von Ax = b. Dann gilt:

$$L(A, b) = x_s + \ker(A) = \{x_s + x \mid x \in \ker(A)\}\$$

bzw., wenn  $(v_1, \ldots, v_r)$  eine Basis von  $\ker(A)$  ist:

$$L(A,b) = \{x + \lambda_1 v_1 + \ldots + \lambda_r v_r \mid \lambda_i \in K\}$$

#### Definition: Cramersche Regel

Es seien  $A = (a_1 \dots a_n) \in K^{n \times n}$  und  $x, b \in K^n$  sowie Ax = b ein lineares Gleichungssystem, und es gelte  $det(A) \neq 0$ . Seien

$$A_i := \begin{pmatrix} a_1 & \dots & a_{i-1} & b & a_{i+1} & \dots & a_n \end{pmatrix}, 1 \leq i \leq n$$

Dann gilt:

$$x_i = \frac{\det(A_i)}{\det(A)}, 1 \le i \le n$$

# 3.2 Über- und unterbestimmte lineare Gleichungssysteme

#### Definition: Normalgleichung

Sei  $p_A(b)$  die Projektion eines Vektors  $b \in \mathbb{R}^m$  auf den von den Vektoren  $A = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix} \in \mathbb{R}^{m \times n}$  aufgespannten Unterraum U, also das Bild von A.

Damit existiert ein  $x \in \mathbb{R}^n$  mit

$$p_A(b) = \sum_{k=1}^n x_k a_k = Ax$$

Dann gilt

$$b - p_A(b) \iff \ldots \iff A^T A x = A^T b$$

Die Gleichungen  $A^TAx = A^Tb$  heißen *Normalgleichungen*.

Die Normalgleichungen sind für jede relle Matrix  $A \in \mathbb{R}^{m \times n}$  lösbar.

#### Definition: Verallgemeinerte Inverse

Gegeben ist ein lineares Gleichungssystem Ax = b mit  $A \in \mathbb{R}^{m \times n}$ ,  $x \in \mathbb{R}^n$ ,  $b \in \mathbb{R}^m$ .

Im Fall rg(A) = n (voller Spaltenrang) existiert mit

$$x = (A^T A)^{-1} A^T b$$

eine eindeutige Lösung. In diesem Fall heißt  $(A^TA)^{-1}A^T$  verallgemeinerte Inverse von A.

Im Fall rg(A) = m (voller Zeilenrang) existiert mit

$$x = A^T (AA^T)^{-1}b$$

eine eindeutige Lösung. In diesem Fall heißt  $A^T(AA^T)^{-1}$  verallgemeinerte Inverse von A.

#### Definition: Methode der kleinsten Quadrate

Gegeben ist das Gleichungssystem

$$Ax = b$$
,  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$ ,  $m \ge n$ 

Im Fall rg(A) = n gilt für

$$x_s = (A^T A)^{-1} A^T b$$

dass

$$||b - Ax_s|| = \min_{z \in \mathbb{R}^n} ||b - Az||$$

Der Vektor  $x_s$  heißt Näherungslösung nach der Methode der kleinsten Quadrate.

# 4 Geometrie linearer Abbildungen

# 4.1 Orthogonale Abbildungen und Matrizen

#### Definition: Isometrie

Eine *Isometrie* ist eine lineare Abbildung, die zwei metrische Räume aufeinander abbildet und dabei die euklidische Länge eines Vektors erhält.

Sei  $f: \mathbb{R}^n \to \mathbb{R}^n$  beliebig. Dann sind äquivalent:

- 1.  $\forall x, y \in \mathbb{R}^n : \langle f(x), f(y) \rangle = \langle x, y \rangle$
- 2. *f* ist eine winkelerhaltende Isometrie.

#### Definition: Orthogonalmatrix

Eine Matrix  $A \in \mathbb{R}^{n \times n}$  heißt *orthogonal*, wenn ihre Spaltenvektoren eine Orthonormalbasis bilden.

Die Menge aller orthogonalen Matrizen in  $\mathbb{R}^{n \times n}$  heiße O(n).

Es gilt:

• 
$$A \in O(n) \implies |\det(A)| = 1$$

Es sind äquivalent:

- 1.  $A \in O(n)$
- 2. *A* ist invertierbar, und es gilt  $A^{-1} = A^T$
- 3.  $A^{T} \in O(n)$

#### Algorithmus: QR-Zerlegung

Sei  $A=\begin{pmatrix} a_1 & \dots & a_n \end{pmatrix} \in \mathbb{R}^{m \times n}$  und  $\operatorname{rg}(A)=n$ . Dann gibt es eine in den Spalten orthogonale Matrix  $Q \in \mathbb{R}^{m \times n}$  und eine obere Dreiecksmatrix  $R \in \mathbb{R}^{n \times n}$  mit A=QR. Hierbei können die Spalten von Q mithilfe des Verfahrens von Gram-Schmidt aus den Spalten von A erzeugt werden, und es gilt  $\operatorname{rg}(R)=n$ .

# 4.2 Eigenwerte und Eigenvektoren

# Definition: Eigenwert, Eigenvektor und Eigenraum

Existiert für einen Endomorphismus f ein  $\lambda \in \mathbb{C}$  und  $v \in V \setminus \{0\}$  mit

$$f(v) = \lambda v$$

dann heißt v Eigenvektor von f zum Eigenwert  $\lambda$ .

Sei  $\lambda$  ein Eigenwert von f und  $v_1, \ldots, v_k$  Eigenvektoren von f zu  $\lambda$ . Dann ist auch  $v \in L(v_1, \ldots, v_k) \setminus \{0\}$  ein Eigenvektor von f zu  $\lambda$ .

Für  $\lambda \in \mathbb{C}$  ist  $\mathrm{Eig}(f;\lambda) := \{v \in V \mid f(v) = \lambda v\}$ , der *Eigenraum* von f zu  $\lambda$ , ein Untervektorraum von V.

Es gilt:

- Für  $\lambda \neq \gamma$  gilt  $\operatorname{Eig}(f;\lambda) \cap \operatorname{Eig}(f;\gamma) = \{0\}.$
- Eigenvektoren zu unterschiedlichen Eigenwerten sind linear unabhängig.
- Die Eigenwerte einer Dreiecksmatrix sind die Werte auf der Hauptdiagonalen.

# Definition: Charakteristisches Polynom

Sei  $A \in \mathbb{C}^{n \times n}$ . Dann ist die Funktion

$$\chi_A(\lambda) := \det(A - \lambda E)$$

ein Polynom mit  $deg(\chi_A) = n$  und heißt *charakteristisches Polynom*.

Es gilt:

- $\lambda \in \mathbb{C}$  ist Eigenwert von  $A \iff \chi_A(\lambda) = 0$
- *A* hat (mit Vielfachheit) genau *n* Eigenwerte  $\lambda_i \in \mathbb{C}$ .
- $\operatorname{Eig}(f;\lambda) = \ker(A \lambda E)$

# Bonus: Eigenwerte und Determinanten

Für  $A = (a_1 \ldots a_n) \in \mathbb{C}^{n \times n}$  mit Eigenwerten  $\lambda_i$ ,  $1 \le i \le n$  gilt

$$\det(A) = \prod_{i=1}^{n} \lambda_i$$

# 4.3 Diagonalisierung linearer Abbildungen

4.4

# Index

Abbildungsmatrix, 3 Allgemeine Lösung eines linearen Gleichungssystems, 10 Automorphismus, 3

Charakteristisches Polynom, 13 Cramersche Regel, 10

Darstellungsmatrix, 3
Darstellungsmatrix mit Basistransformation, 6
Defekt, 2
Determinante mit Gauß-Algorithmus, 8
Dimensionsformel für lineare Abbildungen
(Rangsatz), 2

Eigenschaften der Abbildungsverkettung, 4 Eigenschaften der Determinante, 7 Eigenschaften der Matrixmultiplikation, 4 Eigenwert, Eigenvektor und Eigenraum, 13 Eigenwerte und Determinanten, 13 Elementarmatrix, 7 Endomorphismus, 3

Homomorphismus, 2

Inverse einer (2 × 2)-Matrix, 8 Inverse einer Matrix, 4 Isometrie, 12 Isomorphie, 3 Isomorphismus, 3 Kern, 2 Koordinaten eines Vektors, 5 Koordinatenabbildung, 5

Laplacescher Entwicklungssatz, 8 Lineares Gleichungssystem, 9 Lösbarkeit von linearen Gleichungssystemen, 9

Lösungsmenge, 9

Methode der kleinsten Quadrate, 11

Normalgleichung, 11

Orthogonalmatrix, 12

QR-Zerlegung, 12

Rang, 2

Spaltenrang, 9

Tipps zur Determinantenberechnung, 8 Transformationsmatrix, 5

Verallgemeinerte Inverse, 11

Zeilenrang, 9

Äquivalente Bedingungen für eindeutige Lösbarkeit, 10