

Q: Why should storytelling in visualization be tailored to the audience?

- A. To make all users interpret the data the same way
- B. To reduce the need for extra explanation
- C. To match the story's detail and visuals to user background
- D. To ensure charts display consistently everywhere
- E. To avoid confusion from colors or layouts

CPSC 100

Computational Thinking

Intro to Human Computer Interaction

Instructor: Parsa Rajabi

Department of Computer Science

University of British Columbia

Agenda

- Course Admin
- Learning Goals
- Human Computer Interaction
 - Introduction + Activity

Course Admin

Course Admin

- PC Quiz 7
 - Due Monday, March 31, 11:59pm
- Lab 8 Visualization (last lab! 🎉)
 - Due Friday, March 28, 11:59pm
- Project Milestone 3 (you should be ~40% done by now!)
 - "Lab 9" will be used for project co-working session
 - Due Monday, April 7, 11:59pm
 - Make sure to submit your <u>Al Disclosure</u> via qualtrics form!

Learning Goals

Learning Goals

After this **today's lecture**, you should be able to:

- Describe the historical evolution of HCI, highlighting pioneers like Douglas Engelbart and key innovations
- Describe the concept of **IoT** and give concrete examples (e.g., smart thermostats, wearable health devices).
- Distinguish between AR and VR technologies, and identify key examples (e.g., Google Glass, Meta Quest)
- Define and explain the **five key usability attributes**: learnability, efficiency, memorability, errors, and satisfaction.
- Explain why tailoring data visualizations to the audience's background is crucial in HCI.

Human Computer nteraction

Introduction to HCI

 Human-Computer Interaction (HCI) is the study and practice of how people interact with computers and design technologies that let humans engage with digital systems effectively and intuitively.

Where did it start from?

Douglas Engelbart

Douglas Engelbart (1925-2013)

- Founding father of HCI (one of)
- Augmentation Research Center
 - SRI International (Non-profit R&D org)
- Inventions
 - Computer mouse (1968)
 - NLS (oN-Line System 1960s)

Douglas Engelbart: 2008

Whatis challenging us now?

Internet of Things (IoT)

"Things" refer to any physical object with a device that has its own IP address and can connect & send/receive data via a network

20

Internet of Things (IoT)

Everyday objects with connectivity, sensing abilities, and increased + embedded computing power.

- Connected home technology
 - Thermostats, lighting, energy monitoring
- Wearables
 - Activity/fitness trackers
- Medical/wellness devices
 - Bathroom scales, blood pressure monitors

What happens to loT devices when there is no internet?

AR + VR

Augmented + Virtual Reality

Virtual Reality (VR)

- Use of computers to simulate a real or imagined environment
- Three-dimensional (3-D) space

Augmented Reality (AR)

 Uses an image of an actual place or things that adds digital information to it

Meta Quest 2019-now

Google Glass 2014-15

How do we design for the future?

HCI: User Centered Design

HCI: Usability

- Quality attribute
 - Assesses how easy user interfaces are to use
 - Improving ease-of-use during the design process
- Defined by 5 quality components

- 1. Learnability
- 2. Efficiency
- 3. Memorability
- 4. Errors
- 5. Satisfaction

- Learnability:
 - How easy is it to learn task the first time?

- Learnability:
 - How easy is it to learn task the first time?
- Efficiency:
 - How quickly can tasks be done (post-learning)?

- Learnability:
 - How easy is it to learn task the first time?
- Efficiency:
 - How quickly can tasks be done (post-learning)?
- Memorability:
 - How easy is it to re-establish proficiency after being away?

- Learnability:
 - How easy is it to learn task the first time?
- Efficiency:
 - How quickly can tasks be done (post-learning)?
- Memorability:
 - How easy is it to re-establish proficiency after being away?
- Errors:
 - How many errors do users make, how severe are these errors, and how easily can they recover from the errors?

HCI: Usability Components

Learnability:

— How easy is it to learn task the first time?

• Efficiency:

– How quickly can tasks be done (post-learning)?

Memorability:

– How easy is it to re-establish proficiency after being away?

• Errors:

– How many errors do users make, how severe are these errors, and how easily can they recover from the errors?

Satisfaction:

— How pleasant is it to use the design?

HCI: Usability Components

• Learnability:

— How easy is it to learn task the first time?

• Efficiency:

– How quickly can tasks be done (post-learning)?

Memorability:

– How easy is it to re-establish proficiency after being away?

• Errors:

– How many errors do users make, how severe are these errors, and how easily can they recover from the errors?

Satisfaction:

– How pleasant is it to use the design?

Activity

Intro to HCI Activity

- Follow the handout worksheet (on Canvas OR on paper)
 - 1. Think of: a technological interaction from last week that irritated you.
 - 2. Draw/visualize it (to the best of your ability)
 - 3. Explain exactly HOW it failed for you. Depict activity, tasks, interactions.

4. Doors!

Q: How does this door work?

- A. Push to the left
- B. Push to the right
- C. Pull on the left
- D. Pull on the right
- E. Slide it along

Q: How does this door work?

- A. Push to the left
- B. Push to the right
- C. Pull on the left
- D. Pull on the right
- E. Slide it along

Q: How does this door work?

- A. Push to the left
- B. Push to the right
- C. Pull on the left
- D. Pull on the right
- E. Slide it along

Wrap up

Wrap Up

- PC Quiz 7
 - Due Monday, March 31, 11:59pm
- Lab 8 Visualization (last lab! 🎉)
 - Due Friday, March 28, 11:59pm
- Project Milestone 3 (you should be ~40% done by now!)
 - "Lab 9" will be used for project co-working session
 - Due Monday, April 7, 11:59pm
 - Make sure to submit your <u>Al Disclosure</u> via qualtrics form!

LIZ FOSSLIEN

What was your main takeaway from today's session?

