We have that $B = \lfloor \log_2(N) \rfloor R$, where B is the total (finite) time budget, N is the number of configurations (hence $\log_2(N)$ is the total number of iterations), and R is the maximum number of iterations to run per configuration.

Let's concretize this with an example containing 8 configurations where we naively eliminate the second half at each iteration.

	1	2	3	4	5	6	7	8
i = 1	R/8							
i=2	R/4	R/4	R/4	R/4	X	X	X	X
i=3	R/2	R/2	X	X	X	X	X	X

- 4 arms that are allocated R/8
- 2 arms that are allocated R/4 + R/8
- 2 arms that are allocated R/2 + R/4 + R/8

Summing it up, we have

$$S = (4)(R/8) + (2)(R/4 + R/8) + (2)(R/2 + R/4 + R/8)$$

= 3R
= B

Thus, the total budget for all arms is B and hence the budget per arm is B/8.