1	orthofisher: a	broadly applicable tool for automated gene identification and retrieval
2		
3		Jacob L. Steenwyk ^{1,*} & Antonis Rokas ^{1,*}
4		
5	¹ Vanderbilt Unive	ersity, Department of Biological Sciences, VU Station B#35-1634, Nashville,
6	TN 37235, United	States of America
7		
8	ORCiDs	
9	J. L. Steenwyk: 00	000-0002-8436-595X
10	A. Rokas: 0000-00	002-7248-6551
11		
12	*Correspondence	should be addressed to: jacob.steenwyk@vanderbilt.edu or
13	antonis.rokas@var	nderbilt.edu
14		
15	Running title:	orthofisher: automated gene retrieval
16		
17	Keywords:	phylogenomics, homology, orthology, hidden Markov model, gene family
18		sequence similarity search
19		

20	<u>Abstract</u>
21	Identification and retrieval of genes of interest from genomic data is an essential step for many
22	bioinformatic applications. We present orthofisher, a command-line tool for automated
23	identification and retrieval of genes with high sequence similarity to a query profile-Hidden
24	Markov Model sequence alignment across a set of proteomes. Performance assessment of
25	orthofisher revealed high accuracy and precision during single-copy orthologous gene
26	identification. orthofisher may be useful for assessing gene annotation quality, identifying single-
27	copy orthologous genes for phylogenomic analyses, estimating gene copy number, and other
28	evolutionary analyses that rely on identification and retrieval of homologous genes from
29	genomic data. orthofisher comes complete with comprehensive documentation
30	(https://jlsteenwyk.com/orthofisher/), is freely available under the MIT license, and is available
31	for download from GitHub (https://github.com/JLSteenwyk/orthofisher), PyPi
32	(https://pypi.org/project/orthofisher/), and the Anaconda Cloud
33	(https://anaconda.org/jlsteenwyk/orthofisher).
34	
35	
36	Introduction
37	Sequence similarity searches of genomic data are commonly employed in diverse fields of
38	biology. Several pieces of software have been designed to infer statistically homologous
39	sequences from databases of sequence data, such as BLAST, DIAMOND, and HMMER
40	(Camacho et al. 2009; Eddy 2011; Madden 2013; Buchfink et al. 2015). One frequent use of
41	sequence similarity search methods is for the identification of orthologs, sequences present in the
42	common ancestor of two species, and homologs, sequences that stem from the same common
43	ancestral sequence (Gabaldón and Koonin 2013). For example, the OrthoFinder software
44	conducts BLAST all-vs-all searches across proteomes to infer groups of putatively orthologous
45	genes (Emms and Kelly 2019). Similarly, the BUSCO software aims to identify putatively
46	orthologous genes using a predetermined set of profile Hidden Markov Model sequence
47	alignments (pHMMs) derived from single-copy orthologous proteins from the OrthoDB database
48	(Waterhouse et al. 2013, 2018).

50	The results of these or similar pieces of software can facilitate diverse downstream analyses
51	(Remm et al. 2001; Li et al. 2003; Train et al. 2017; Waterhouse et al. 2018; Emms and Kelly
52	2019). However, global analyses, such as those conducted by OrthoFinder, are computationally
53	expensive and may be beyond the scope of a research project (e.g., studies focused on a few
54	genes). Similarly, software that rely on databases, such as BUSCO, are constrained to the
55	orthologs therein. As a result, there is a need for bioinformatic software that can conduct
56	automated identification and retrieval of putative homologs and orthologs across sequence
57	databases using user-specified query sequences and output files that facilitate downstream
58	analyses.
59	
60	We introduce orthofisher, a command-line toolkit for automated identification of highly similar
61	sequences across proteomes using custom pHMMs. orthofisher facilitates downstream analyses
62	by creating multi-FASTA files populated with highly similar sequences identified during pHMM
63	searches. Default parameters are designed to identify sequences with the highest sequence
64	similarity (i.e., putative orthologous genes), but users can customize its use to best fit their
65	research question (e.g., relaxed thresholds can be used to obtain all putatively homologous genes;
66	similarly, searches in databases that contain gene isoforms can be used to retrieve all isoforms of
67	a particular gene). We demonstrate the efficacy of orthofisher by evaluating the precision and
68	recall for identification of sequences with high similarity to query pHMMs in a multiple
69	sequence FASTA (multi-FASTA) files from animals, plants, and fungi. Comparison of
70	orthofisher, BUSCO, and OrthoFinder revealed similar performance in identification of
71	sequences with high sequence similarity. Thus, orthofisher aims to streamline gene identification
72	and retrieval from genomic data, which is the first step of many bioinformatic analyses and
73	projects. We anticipate orthofisher will be of interest to diverse fields of computational biology
74	and to biologists and bioinformaticians.
75	
76	<u>Methods</u>
77	orthofisher requires two files as input (Figure 1). One file—specified with the -m,hmm

77 78 argument—provides the paths to query pHMMs that will be used during sequence similarity 79 search; the other file—specified with the -f, --fasta argument—provides the paths to FASTA files 80

that will be used as the sequence search database. orthofisher then loops through each FASTA

81	file and uses each pHMM to search for similar sequences using HMMER3 (Eddy 2011) with an	
82	expectation-value threshold of 0.001 (which can be modified with the -e,evalue argument).	
83	orthofisher then parses the resulting HMMER3 output using biopython (Cock et al. 2009) and	
84	identifies top hits. Top hits are defined following criteria used in the BUSCO pipeline	
85	(Waterhouse et al. 2018) wherein all sequences with scores that are greater than or equal to 85%	
86	of the score of the best hit are maintained. Users can modify this threshold using the -b,	
87	bitscore argument. Top hits are considered homologous genes.	
88		
89	orthofisher outputs three directories and two text files that enable researchers to easily evaluate	
90	results from sequence similarity search and facilitate downstream analyses. The three directories	
91	are	
92	• hmmsearch_output: HMMER3 output files,	
93	• all_sequences: one multi-FASTA file per pHMM, which are populated with	
94	homologous sequences identified during the sequence similarity search step, and	
95	• scog: one multi-FASTA file per pHMM, which are populated with only those	
96	homologous sequences that are present at most only once in each genome.	
97	The two text files are	
98	• short_summary.txt: the number and percentage of sequences present in single-copy,	
99	multi-copy, or absent sequences per pHMM search, and	
100	• long_summary.txt: the homologous sequences identified during pHMM search for every	
101	query and sequence database.	
102	Contents of output files will be heavily dependent on user parameters, the pHMMs used, and the	
103	input files. For example, transcriptomic data may require additional processing steps such as	
104	collapsing isoforms into a single representative sequence per gene. The intent of orthofisher—	
105	which is to identify single-copy orthologous genes—is flexible enough to capture paralogous	
106	sequences as well. A tutorial for how to use orthofisher is publicly available as part of the online	
107	documentation https://jlsteenwyk.com/orthofisher/tutorial .	
108		
109	Nearly 30% of bioinformatic tools fail to install (Mangul et al. 2019), which poses a nontrivial	
110	problem for the reproducibility of computational experiments. To remedy this issue, we	
111	implemented state-of-the-art standards of software development practices and design principles	

(Darriba *et al.* 2018) following previously established protocol (Steenwyk *et al.* 2020, 2021). For example, whenever changes to code are made, faithful function of orthofisher is tested using a continuous integration pipeline, a process that automatically builds, packages, and tests installation and function using Python versions 3.6, 3.7, and 3.8. We also wrote several unit and integration tests that span 95% of the orthofisher code.

Results and Discussion

To determine the similarities and differences between orthofisher and other algorithms that identify putative orthologs, we compared results obtained from orthofisher with that of BUSCO and OrthoFinder. BUSCO and OrthoFinder are both widely adopted methods of identifying orthologous genes across multiple proteomes. As noted in the introduction, each software differs – more specifically, BUSCO conducts homology searches using a predefined set of pHMMs and OrthoFinder conducts proteome-wide analysis to identify groups of orthologous genes. Thus, we expect that if orthofisher can identify putative orthologs across proteomes, it will identify the same genes BUSCO identifies during its sequence similarity search. Given that both algorithms conduct pHMM-based searches, we anticipate that both will exhibit near identical performances. When comparing orthofisher and BUSCO to OrthoFinder, we anticipate the sequences identified during sequence similarity search by orthofisher and BUSCO will be in the same orthologous group of genes inferred by OrthoFinder.

orthofisher and BUSCO obtain similar results

To evaluate the efficacy of orthofisher, we compared results obtained from orthofisher to those obtained from BUSCO, v4.0.4 (Waterhouse et al. 2018). To do so, both algorithms were used to identify 255 near-universally single-copy orthologous genes obtained from the Eukaryota OrthoDB, v10 (Waterhouse et al. 2013), database across the proteomes of animals (Homo sapiens: GCF 000001405.39; Mus musculus: GCF 000001635.27), plants (Arabidopsis thaliana, NCBI accession: GCA 000001735.2; Solanum lycopersicum: GCF 000188115.4), and fungi (Saccharomyces cerevisiae, NCBI accession: GCA 000146045.2; Candida albicans: GCA 000182965.3). Measures of precision and recall were calculated as follows:

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

where *TP* represents true positives, *FP* represents false positives, and *FN* represents false negatives of single-copy orthologous genes. Precision and recall values range from 0 to 1 and higher values reflect better performance.

Near perfect values of precision and recall (0.98 or [231 / [231 + 4]] and 1.0 or [231 / [231 + 0]], respectively) reveal orthofisher is able to automate the identification and retrieval of sequences with high similarity to the query pHMM. A low false positive rate of 0.02 was observed. The difference in the performance of BUSCO and orthofisher stems from an additional set of genespecific score and length thresholds used by the BUSCO software, which are not implemented in orthofisher. These results demonstrate that orthofisher can accurately identify homologous genes.

To demonstrate the importance of using a score threshold of 85% of the score observed in the best hit following the BUSCO pipeline (Waterhouse *et al.* 2018), we highlight an example where absence of a score threshold would have led to identification of additional putatively orthologous genes. A HMMER search using the query BUSCO pHMM 1001705at2759 and a e-value threshold of 1e-10 in the proteome of *A. thaliana* reports the gene as multi-copy whereas both orthofisher and BUSCO report this gene to be single-copy. More specifically, when using only an e-value threshold of 1e-10, the following nine genes are reported: AEE76455.1, AEE78573.1, AEC10322.1, ANM68500.1, AED93406.1, AEE76521.1, AEE82221.1, AED98328.1, and AEE29324.1; however, AEE76455.1 has a score of 242.5 and the next best hit, AEE78573.1, has a score of 64.5. Thus, a score threshold of 85% of the best hit (in this case 242.5*0.85) is helpful during sequence similarity searches.

orthofisher and BUSCO perform similarly to OrthoFinder

Comparison of the results of BUSCO and orthofisher to OrthoFinder, a global (or whole proteome) ortholog calling algorithm revealed BUSCO, orthofisher, and OrthoFinder produce similar results. To perform these comparisons, we first used OrthoFinder, v2.3.8 (Emms and Kelly 2019), to identify putative orthologous groups of genes in the same animal, plant, and fungal proteomes described above using an inflation parameter of 1.5 and DIAMOND,

170	v0.9.24.125 (Buchfink et al. 2015). Then, we determined if genes identified as multi-copy are
171	part of the same or different orthologous group(s) of genes and also assessed if genes identified
172	as single-copy in BUSCO or orthofisher were also single-copy in OrthoFinder.
173	
174	Among multi-copy genes, we found BUSCO and OrthoFinder had nearly identical performance
175	in the proteomes of A. thaliana, S. lycopersicum, and C. albicans. For S. cerevisiae, one gene,
176	1545004at2759, out of 255 differed between BUSCO and OrthoFinder wherein BUSCO
177	identified two homologs and OrthoFinder split these two genes into different orthologous groups
178	of genes. A similar scenario was observed among 12 / 255 and 3 / 255 genes in the human and
179	mouse proteomes, respectively. For orthofisher, a similar scenario was observed for 1 / 255
180	genes in S. lycopersicum; 1 / 255 genes in A. thaliana; 8 / 255 genes in S. cerevisiae; 4 / 255
181	genes in C. albicans; 13 / 255 genes in the human proteome; and 4 / 255 genes in the mouse
182	proteome. We note that isoforms of the same gene sequence were present in the analysed
183	proteomes and were accounted for in these analyses.
184	
185	Among single-copy genes, we observed a few instances where single-copy genes in BUSCO
186	were multi-copy in OrthoFinder. More specifically, this was observed for 8 genes in S.
187	lycopersicum; 16 genes in A. thaliana; 2 genes in S. cerevisiae; 2 genes in C. albicans; 36 genes
188	in the human proteome; and 26 genes in the mouse proteome. Similar results were observed for
189	orthofisher. More specifically, 16 / 255 genes in A. thaliana were identified as single-copy by
190	orthofisher but were in multi-copy orthologous groups of genes in OrthoFinder. The same
191	observation was made for 7 / 255 genes in S. lycopersicum; 1 / 255 gene in S. cerevisiae; 2 / 255
192	genes in C. albicans; 35 / 255 genes in the human proteome; and 24 / 255 genes in the mouse
193	proteome.
194	
195	In summary, sequence similarity searches of 255 genes in 6 proteomes identified differences
196	among 105 genes (6.86%; 105 / 1,530) between BUSCO and OrthoFinder; similarly, we
197	identified differences among 116 genes (7.58%; 116 / 1,530) between orthofisher and
198	OrthoFinder. These differences likely stem from differences in the approach of each algorithm to
199	identify putative orthologs. Specifically, OrthoFinder uses DIAMOND and Markov clustering to
200	identify orthologous groups, BUSCO uses pHMM-based search and gene-specific score and

201	length thresholds using OrthoDB, and orthofisher uses pHMM-based similarity search
202	thresholds. Also, these differences are in part driven by each algorithm reporting different results
203	(i.e., OrthoFinder reports groups of putatively orthologous genes and BUSCO and orthofisher
204	report putative orthologous genes).
205	
206	orthofisher is helpful for estimating the number of members in a gene family
207	To demonstrate how to use orthofisher to estimate the number of gene family members, we
208	estimate the number of DNA photolyase (PFam: PF00875) and zinc finger, C2H2 type (PFam:
209	PF00096) homologs in S. cerevisiae, C. albicans, two species from the Hanseniaspora genus (H.
210	uvarum NRRL Y1614 and H. vineae NRRL Y17529, both of which are known to lack DNA
211	photolyases (Steenwyk et al. 2019)), and three Aspergillus species (A. niger CBS 513.88, A.
212	fumigatus Af293, and A. flavus NRRL 3357). When estimating gene family number, we
213	recommend lowering the score threshold to, for example, 25% of the best hit, which we have
214	done here. In line with previous reports, we found that Hanseniaspora species lacked DNA
215	photolyases whereas S. cerevisiae, C. albicans, and all Aspergillus species had one or two DNA
216	photolyases. In contrast, proteins with Zinc finger domains are more abundant across all species
217	with copies ranging from 16 (H. vineae) to 39 (A. flavus).
218	
219	<u>Practical considerations</u>
220	The intended use of orthofisher is to help identify orthologous genes across species using
221	accurate and sensitive pHMM-based searches. We encourage users to evaluate results produced
222	by orthofisher using additional approaches (e.g., phylogenetic inference) to infer precise
223	relationships of orthology and paralogy among sequences. We note that orthofisher is not
224	explicitly designed to identify a single-representative sequence if multiple isoforms encoded by
225	one gene sequence are present in a proteome. Thus, we also suggest users collapse isoforms prior
226	to or after orthofisher analysis following standard protocol in many transcriptomics studies.
227	
228	In summary, orthofisher is a command-line tool for automated identification and retrieval of
229	genes of interest from genomic data. We anticipate orthofisher will be useful for evaluating
230	genome completeness, performing phylogenomic inferences, estimating gene family size, and

other analyses that rely on identification and retrieval of homologous genes from genomic data.

232	
233	Web resources
234	orthofisher comes complete with comprehensive documentation
235	(https://jlsteenwyk.com/orthofisher/), is freely available under the MIT license, and is available
236	for download from GitHub (https://github.com/JLSteenwyk/orthofisher), PyPi
237	(https://pypi.org/project/orthofisher/), and the Anaconda Cloud
238	(https://anaconda.org/jlsteenwyk/orthofisher). The proteomes, pHMMs, and outputs of
239	orthofisher, BUSCO, and OrthoFinder are available through figshare (doi:
240	10.6084/m9.figshare.14399150).
241	
242	<u>Acknowledgements</u>
243	We thank members of the Rokas laboratory and two anonymous reviewers for useful feedback
244	and discussion.
245	
246	Funding
247	J.L.S. and A.R. were supported by the Howard Hughes Medical Institute through the
248	James H. Gilliam Fellowships for Advanced Study program. A.R. was supported by the National
249	Science Foundation (DEB-1442113), the National Institutes of Health/National Institute of
250	Allergy and Infectious Diseases (R56 AI146096), the Guggenheim Foundation, and the
251	Burroughs Wellcome Fund.

252 <u>Literature Cited</u>

285

286

287

- Buchfink, B., C. Xie, and D. H. Huson, 2015 Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12: 59–60.
- Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos *et al.*, 2009 BLAST+: architecture and applications. BMC Bioinformatics 10: 421.
- Cock, P. J. A., T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox *et al.*, 2009 Biopython: freely
 available Python tools for computational molecular biology and bioinformatics.
 Bioinformatics 25: 1422–1423.
- Darriba, D., T. Flouri, and A. Stamatakis, 2018 The State of Software for Evolutionary Biology (K. Crandall, Ed.). Mol. Biol. Evol. 35: 1037–1046.
- Eddy, S. R., 2011 Accelerated Profile HMM Searches (W. R. Pearson, Ed.). PLoS Comput. Biol. 7: e1002195.
- Emms, D. M., and S. Kelly, 2019 OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20: 238.
- Gabaldón, T., and E. V. Koonin, 2013 Functional and evolutionary implications of gene orthology. Nat. Rev. Genet. 14: 360–366.
- Li, L., C. J. Stoeckert, and D. S. Roos, 2003 OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 13: 2178–2189.
- 270 Madden, T., 2013 The BLAST sequence analysis tool. BLAST Seq. Anal. Tool 1–17.
- Mangul, S., T. Mosqueiro, R. J. Abdill, D. Duong, K. Mitchell *et al.*, 2019 Challenges and recommendations to improve the installability and archival stability of omics computational tools. PLOS Biol. 17: e3000333.
- Remm, M., C. E. V. Storm, and E. L. L. Sonnhammer, 2001 Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J. Mol. Biol. 314: 1041–1052.
- Steenwyk, J. L., T. J. Buida, A. L. Labella, Y. Li, X.-X. Shen *et al.*, 2021 PhyKIT: a broadly
 applicable UNIX shell toolkit for processing and analyzing phylogenomic data (R.
 Schwartz, Ed.). Bioinformatics.
- Steenwyk, J. L., T. J. Buida, Y. Li, X.-X. Shen, and A. Rokas, 2020 ClipKIT: A multiple sequence alignment trimming software for accurate phylogenomic inference (A. Hejnol, Ed.). PLOS Biol. 18: e3001007.
- Steenwyk, J. L., D. A. Opulente, J. Kominek, X.-X. Shen, X. Zhou *et al.*, 2019 Extensive loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts (S. Kamoun, Ed.). PLOS Biol. 17: e3000255.
 - Train, C.-M., N. M. Glover, G. H. Gonnet, A. M. Altenhoff, and C. Dessimoz, 2017 Orthologous Matrix (OMA) algorithm 2.0: more robust to asymmetric evolutionary rates and more scalable hierarchical orthologous group inference. Bioinformatics 33: i75–i82.
- Waterhouse, R. M., M. Seppey, F. A. Simão, M. Manni, P. Ioannidis *et al.*, 2018 BUSCO
 Applications from Quality Assessments to Gene Prediction and Phylogenomics. Mol. Biol.
 Evol. 35: 543–548.
- Waterhouse, R. M., F. Tegenfeldt, J. Li, E. M. Zdobnov, and E. V. Kriventseva, 2013 OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Res. 41: D358–D365.

296	
297	Figure 1. Workflow overview for orthofisher. orthofisher takes two files as input, which
298	specify the location of query pHMMs and the FASTA files wherein sequence similarity searches
299	will be performed. orthofisher then outputs three directories and two text files that summarize
300	results and facilitate downstream analyses.

Figure Legend

Input Files

HMMs

HMM protein A HMM protein B HMM protein C

FASTA Files

Proteome A Proteome B Proteome C

Output Files

protein A multiple sequence FASTA file → protein B multiple sequence FASTA file → protein C multiple sequence FASTA file

→ protein A proteome A pHMM search → protein A proteome B pHMM search → protein A proteome C pHMM search

→ single-copy orthologs protein A → single-copy orthologs protein B → single-copy orthologs protein C

short_summary.txt

- absolute number and percentage of single-copy, multi-copy, or absent sequence searches per proteome

long_summary.txt
- hits identified during sequence similarity search for every pHMM and proteome