Alumno:

Duración: dos horas. Una condición suficiente de aprobación es la resolución completa y justificada de dos ejercicios cualesquiera No se consideran cálculos dispersos o sin comentarios, ni diagramas sin la identificación completa de sus elementos.

1. El conjunto $L = \{\alpha, a, b, c, \omega\}$ se estructura en un retículo con las leyes de composición interna + y · definidas en la siguiente tabla.

+	α	a	b	c	ω		α	a	b	c	ω
α		a	b	c		α		α	α	α	
a			ω	c	ω	a			α	a	a
b				ω	ω	b				α	b
c					ω	c					c
ω						ω					

Completar la tabla, construir el diagrama de Hasse del retículo (con $x \leq y$ sii xy = x) y la matriz $M_{\mathcal{R}}$ de la relación $\mathcal{R} = \{(x,y) \in L^2 : x + cx \leq a, by + c = c\}$. ¿Cuál es la clausura transitiva de R?

2. En el conjunto $A = \{a_1, a_2, a_3, a_4, a_5\}$ sea \mathcal{S} la relación determinada por el digraph de la figura, y \mathcal{T} la relación definida la matriz $M_{\mathcal{T}}$, y sea \mathcal{R} la relación $\mathcal{R} = (\mathcal{S} + \mathcal{T})^{-1}$. Analizar si \mathcal{R} es una relación de orden en A, y en caso afirmativo dibujar su diagrama de Hasse y determinar, siempre que existan, $\max(B), \min(B), \sup(B), \inf(B)$, siendo $B = \{a_2, a_3, a_4\}$.

3. Dadas n líneas dispuestas en el plano en posición general (esto es, ningún par de rectas son paralelas y en ningún punto se cortan más de dos), sea x_n la cantidad de regiones en que queda dividido el plano (en la figura se observa que para tres líneas es $x_3 = 7$). Plantear la ecuación de recurrencia (justificar detalladamente), resolverla y mostrar en un dibujo que la solución predice la situación correcta para n = 4.

4. Sea f la función booleana de cuatro variables x, y, z, u en $(B, +, \cdot, ', \mathbf{0_B}, \mathbf{1_B})$, representada por el circuito de la figura, con compuertas (AND, OR, NOT). Representar f, siempre que sea posible, con un circuito con solo compuertas AND y determinar todos los $(x, y, z, u) \in B^4$ que verifican $las\ dos$ condiciones siguientes: f(x, y, z, u) + xyzu' = z, z'f(x, y, z, u) + xz = u'. Si el cardinal de B es 8, ¿cuántas soluciones hay?

