Wedderburn 主定理

戚天成◎

复旦大学 数学科学学院

2024年1月31日

这份笔记主要记录可分代数的基本概念以及 Wedderburn 主定理的证明, 主要参考文献是 [Jac09] 和 [Wei94]. 由于水平有限, 虽然我全力以赴, 但还是无法避免笔记中存在不足与错误, 欢迎大家指出, 谢谢.

1 可分代数

可分代数是域论中可分扩张的自然推广. 回忆域的代数扩张 $K \subseteq L$ 被称为**可分扩张**, 如果 L 中任何元素在 K 上最小多项式无重根. 接下来我们将把有限维可分扩张推广为一种特殊的有限维半单代数. 首先注意

Lemma 1.1. 设 $K \subseteq L$ 是域的有限扩张, 则 $K \subseteq L$ 可分 \Leftrightarrow 对 K 的任何域扩张 $F, L \otimes_K F$ 是 Artin 半单环.

Proof. 充分性: 假设 $K\subseteq L$ 不是可分扩张, 那么存在 $\alpha\in L$ 使得 α 在 K 上的最小多项式 m(x) 有重根. 考虑 K 的代数闭包 \overline{K} , 那么 m(x) 在 \overline{K} 上可表示为 $m(x)=(x-\beta)^2g(x)$, 这里 $\beta\in\overline{K}$, $g(x)\in\overline{K}[x]$. 现考虑 $L\otimes_K\overline{K}$ 的 K-子代数 $K(\alpha)\otimes_K\overline{K}$, 由于 K-代数同构 $K(\alpha)\otimes_K\overline{K}\cong K[x]/(m(x))\otimes_K\overline{K}\cong \overline{K}[x]/(m(x))$. 注意到 $\overline{K}[x]/(m(x))$ 有非零幂零元 $\overline{x-\beta}$, 所以 $L\otimes_K\overline{K}$ 不是 Artin 半单的. 必要性: 设 $K\subseteq L$ 是有限可分扩张, 那么本原元定理表明存在 $\alpha\in L$ 使得 $L=K(\alpha)$. 设 α 在 K 上最小多项式是 m(x), 则 m(x) 无重根, 所以对 K 的任何域扩张 F[x], m(x) 在 F[x] 中可分解为一些两两不相伴的不可约多项式的乘积, 设两两不相伴的一个可约多项式 $p_1(x), p_2(x), ..., p_s(x) \in F[x]$ 满足 $m(x) = p_1(x) \cdots p_s(x)$. 于是由 $L\otimes_K F = K(\alpha)\otimes_K F$ 以及 $K(\alpha)\cong K[x]/(m(x))$ 可知有 K-代数同构 $L\otimes_K F\cong F[x]/(m(x))$. 应用中国剩余定理可知

$$L \otimes_K F \cong F[x]/(p_1(x)) \times F[x]/(p_2(x)) \times \cdots \times F[x]/(p_s(x)),$$

即 $L \otimes_K F$ 同构于有限多个域的直积, 这说明 $L \otimes_K F$ 是 Artin 半单环.

设 A 是域 F 上有限维代数, 如果对任给域扩张 $E \supseteq F$, $A \otimes_F E$ 是 Artin 半单代数, 则称 A 是**可分代数**. [引理1.1] 表明有限扩张 $K \subseteq L$ 是可分的当且仅当 $_{K}L$ 是可分代数.

Proposition 1.2. 设 F 是域, A 是可分 F-代数, 则 A^e 是 Artin 半单代数.

Proof. 设 $E \in F$ 的代数闭包. 因为 $A \in F$ 是有限维 F-代数, 故 $A \otimes_F E$ 是域 E 上有限维代数. 因为 $A \otimes_F E$ 是 Artin 半单环, 所以存在有限个极大理想 $I_1, I_2, ..., I_s$ 使得

$$\Theta: A \otimes_F E \to (A \otimes_F E)/I_1 \oplus (A \otimes_F E)/I_2 \oplus \cdots \oplus (A \otimes_F E)/I_s, x \mapsto (x+I_1, x+I_2, ..., x+I_s)$$

是 E-代数同构。由单环结构定理证明过程知每个 $(A \otimes_F E)/I_k$ 代数同构于某个除环 (它某个不可约模自同态环)上的矩阵环。因 E 是代数闭域,且每个 $(A \otimes_F E)/I_k$ 是有限维 E-代数,故其上不可约模的自同态环作为 E-代数同构于 E,进而知存在矩阵环 $M_{n_1}(E), M_{n_2}(E), ..., M_{n_s}(E)$ 使得有 E-代数同构 $A \otimes_F E \cong M_{n_1}(E) \oplus M_{n_2}(E) \oplus \cdots \oplus M_{n_s}(E)$. 于是有 E-代数同构 $A^{op} \otimes_F E = (A \otimes_F E)^{op} \cong (M_{n_1}(E))^{op} \oplus (M_{n_2}(E))^{op} \oplus \cdots \oplus (M_{n_s}(E))^{op} \cong M_{n_1}(E) \oplus M_{n_2}(E) \oplus \cdots \oplus M_{n_s}(E)$. 于是有 E-代数同构 $A^e \otimes_F E = (A \otimes_F A^{op}) \otimes_F E \cong (A \otimes_F A^{op}) \otimes_F (E \otimes_E E) \cong A \otimes_F (E \otimes_E E) \otimes_F A^{op} \cong (A \otimes_F E) \otimes_E (E \otimes_F A^{op}) \cong (M_{n_1}(E) \oplus M_{n_2}(E) \oplus \cdots \oplus M_{n_s}(E)) \otimes_E (M_{n_1}(E) \oplus M_{n_2}(E) \oplus \cdots \oplus M_{n_s}(E)) \cong \oplus_{i=1}^s \oplus_{j=1}^s M_{n_{in_j}}(E)$,所以 $A^e \otimes_F E$ 是 Artin 半单代数. 命 $\varphi: A^e \to A^e \otimes_F E, x \mapsto x \otimes 1_F$,易见这是单 F-代数同态。由于 A^e 是有限维 F-代数,故 A^e 是左 Artin 环,要证明它是半单的,由 Artin 半单环结构定理,只需证明 A^e 是半本原的.我们来证明 A^e 是在 Artin 环,要证明它是半单的,由 Artin 半单环结构定理,只需证明 A^e 是半本原的.我们来证明 A^e 是左 Artin 环,要证明它是半单的,由 Artin 半单环结构定理,只需证明 A^e 是半本原的.我们来证明 A^e 是左 Artin 环,要证明它是半单的,由 Artin 半单环结构定理,只需证明 A^e 是本 是有限维 $A^e \otimes_F E$ 中幂零元,由此说明 $A^e \otimes_F E$ 中左拟正则元,从而得到 $A^e \otimes_F E$ 与 $A^e \otimes_F E$ 中左拟正则元,从而得到 $A^e \otimes_F E$ 与 $A^e \otimes_F E$ 的, $A^e \otimes_F E$ 中左拟正则元,从而得到 $A^e \otimes_F E$ 的, $A^e \otimes_F E$ 和 $A^e \otimes_F E$ 中左拟正则元,从而得到 $A^e \otimes_F E$ 和 $A^e \otimes_F E$

$$[(\sum_{i=1}^{l} x_i \otimes k_i)(x \otimes 1_F)]^t = (\sum_{i=1}^{l} x_i x \otimes k_i)^t,$$

将等式右边展开知存在 $y_1, y_2, ..., y_l \in (Jac(A^e))^t, a_1, a_2, ..., a_l \in E$ 使

$$\left(\sum_{i=1}^{l} x_i x \otimes k_i\right)^t = y_1 \otimes a_1 + y_2 \otimes a_2 + \dots + y_l \otimes a_l.$$

而 $(\operatorname{Jac}(A^e))^t = 0$,所以 $y_1 = y_2 = \cdots = y_l = 0$,故上式等号右边是零,断言得证.所以 $x \otimes 1_F \in \operatorname{Jac}(A^e \otimes_F E) = 0$, $\forall x \in \operatorname{Jac}(A^e)$.故 x = 0, $\forall x \in \operatorname{Jac}(A^e)$.这就得到 $\operatorname{Jac}(A^e) = 0$,所以 A^e 是 Artin 半单环.

Remark 1.3. 因为 Artin 半单环上的模均投射, 所以可分代数 A 作为 A^e -模也投射.

2 Wedderburn 主定理

下面我们可以给出 Wedderburn 主定理的证明.

Wedderburn Principal Theorem. 设 A 是域 F 上有限维代数, 记 $N = \operatorname{Jac}(A)$, 若 $\overline{A} = A/N$ 是可分代数,则存在 A 的一个子代数 S 使得 A = N + S 且 $N \cap S = \{0\}$,即作为 F-线性空间有直和分解 $A = N \oplus S$.

Proof. 我们先证明结论对 $N^2 = \{0\}$ 的情形成立, 再对 $\dim_F A$ 作归纳证明一般的情形.

Step1. 设 $N^2=\{0\}$, 因为 N 是 A 的 F-子空间,所以存在补空间 V 使得 $A=N\oplus V$,并且可选取 V 使得 $1_A\in V$ (这是因为商空间 A/N 非零). 我们有标准投射 $p:A\to\overline{A}, a\mapsto a+N$,它满是 F-代数同态,以及 F-线性映射 $i:\overline{A}\to A, (n+v)+N\mapsto v$,这里 $n\in N, v\in V$ 是代表元 n+v 的分解,那么 $pi=\mathrm{id}_{\overline{A}}$ 且 $i(1_A+N)=1_A$. 下面基于线性映射 i 构造一代数同态 $i':\overline{A}\to A$ 使得 $pi'=\mathrm{id}_{\overline{A}}$,一旦这样的代数同态 i' 存在,那么 $A=\mathrm{Ker}p\oplus i'(\overline{A})=N\oplus S$,这里直和是线性空间的直和, $S=i'(\overline{A})$ 是 A 的子代数. 现令 $f:\overline{A}\times\overline{A}\to N$ 满足 f(a+N,b+N)=i(ab+N)-i(a+N)i(b+N),f 作为映射明显是定义合理的,且 p(i(ab+N)-i(a+N)i(b+N))=(ab+N)-(a+N)(b+N)=0+N 表明

 $i(ab+N)-i(a+N)i(b+N)\in \mathrm{Ker}p=N$. 易见 f 是 F-双线性映射,即 $f\in C^2(\overline{A},N)$. 我们说明 N 上有 \overline{A} - \overline{A} 双模结构: $\overline{A}\times N\to N, (a+N,x)\mapsto i(a+N)x, N\times \overline{A}\to N, (x,a+N)\mapsto xi(a+N)$, 因为 $N^2=\{0\}$,所以上述数乘作用给出 N 的双模结构. 进而知 N 有左 \overline{A}^e -模结构,我们知道代数 \overline{A} 系数在 N 中的上同调由下述 F-模复形给出:

$$0 \longrightarrow C^0(\overline{A}, N) \xrightarrow{\delta^0} C^1(\overline{A}, N) \xrightarrow{\delta^1} C^2(\overline{A}, N) \xrightarrow{\delta^2} \cdots,$$

其中 $C^0(\overline{A}, N) = N, C^n(\overline{A}, N)$ 表示 \overline{A}^n 到 N 的 n-线性映射全体, $\delta^0: N \to C^1(\overline{A}, N), n \mapsto \delta^0(n): \overline{A} \to N, x \mapsto xn - nx$, 对每个 $n \ge 1$, $\delta^n: C^n(\overline{A}, N) \to C^{n+1}(\overline{A}, N)$ 满足对每个 $f \in C^n(\overline{A}, N)$ 有

$$\delta^{n}(f)(x_{1}, x_{2}, ..., x_{n+1}) = x_{1}f(x_{2}, ..., x_{n+1}) + \sum_{i=1}^{n} (-1)^{i}f(x_{1}, ..., x_{i}x_{i+1}, ..., x_{n+1}) + (-1)^{n+1}f(x_{1}, ..., x_{n})x_{n+1}.$$

直接计算可知 $\delta^2(f)(a+N,b+N,c+N)=(a+N)f(b+N,c+N)-f(ab+N,c+N)+f(a+N,bc+N)-f(a+N,b+N)(c+N)=i(a+N)i(bc+N)-i(a+N)i(b+N)i(c+N)-i(abc+N)+i(ab+N)i(c+N)+i(ab+N)i(c+N)+i(abc+N)-$

Step2. 下面对正整数 $n=\dim_F A$ 作归纳证明结论. 若 n=1, 则 $N=\{0\}$, 此时取 S=A 即可. 假设结论对维数不超过 $n-1 (n\geq 2)$ 的可分代数成立, 现考虑 $\dim_F A=n$ 的情形. 若 $N^2=\{0\}$, 由前面的讨论知结论成立. 因此我们可设 $N^2\neq\{0\}$, 命 $B=A/N^2$, 那么 $\mathrm{Jac}(B)=N/N^2$. 由 F-代数同构 $B/\mathrm{Jac}(B)=(A/N^2)/(N/N^2)\cong\overline{A}$ 知 $B/\mathrm{Jac}(B)$ 是维数为 n 的 F-可分代数, 注意到 $(\mathrm{Jac}(B))^2=\{0\}$, 所以由前面证明的特殊情形知存在 B 的子代数 S/N^2 , 这里 S 是 A 的子代数且 $S\supseteq N^2$, 使得 $B=(S/N^2)\oplus (N/N^2)$, 这说明 $N\cap S=N^2$ 以及 A=N+S. 因为 $N^2\neq\{0\}$, 所以 $\dim_F(S/N^2)<\dim_F A=n$, 并注意到 F-代数同构 $\overline{A}\cong B/(N/N^2)\cong S/N^2$, 所以 S/N^2 是维数不超过 n-1 的 F-可分代数. 下面说明 $\mathrm{Jac}(S)=N^2$, 一旦证明该断言,对 S 使用归纳假设得到存在 S 的子代数 S' 使得 $S=S'\oplus N^2$, 于是 A=N+S=N+S' 以及 $N\cap S'=(N\cap S')\cap S=N^2\cap S'=\{0\}$ 得到 $A=N\oplus S'$, 这里 S' 是 A 的子代数. 因此只需证明 $\mathrm{Jac}(S)=N^2$. 由代数同构 $S/N^2\cong\overline{A}\cong\overline{A}\otimes_F F$ 以及 $\overline{A}\otimes_F F$ 是 Artin 半单代数可得 S/N^2 是半本原环,所以 S S S S S 和 S S 和

参考文献

[Jac09] N. Jacobson. Basic algebra II. Dover Publications, 2nd edition, 2009.

[Wei94] C. A. Weibel. An introduction to homological algebra. Number 38. Cambridge university press, 1994.