浙江大学 2018 - 2019 学年 春夏 学期

《离散数学及其应用》课程期末考试试卷

课程号: 21180010_, 开课学院: _计算机_

考试试卷: √A卷、B卷(请在选定项上打√)

考试形式: √闭、开卷(请在选定项上打√),允许带_____入场

考试日期: 2019年07月04日, 考试时间: 120分钟

诚信考试,沉着应考,杜绝违纪。

考生姓名:		学号:		任课教帅:				
题序	_	=	=	四	五	六	七	总 分
得分								
评卷人								

- 1. (20 marks) Determine whether the following statements are true or false. If it is true write a $\sqrt{}$ otherwise a \times in the blank before the statement.
- 1) () "This statement is false." is a proposition.
- 2) () If a relation R on a nonempty set A is transitive then $R^2 = R$.
- 3) () The wheel W_n is not a bipartite graph for every n>=3.
- 4) () P(A) = P(B), if and only if A = B, where P(X) is the power set of X.
- 5) () A weakly connected directed graph with $deg^+(v)=deg^-(v)$ for all vertices v is not always strongly connected.
- 6) () The Hasse diagram for the partial ordering $(\{1, 2, 3, 4, 5, 6, 7, 8, 9\}, |)$ is not a tree.
- 7) () $\left[\frac{x}{2}\right] = \left[\frac{x+1}{2}\right]$ for all real number x.
- 8) () There is not any countable infinite set A with a bijection: $A \rightarrow A \times A$.

9)	() Let $a_1 = 2$, $a_2 = 9$, and $a_n = 2a_{n-1} + 3a_{n-2}$ for $n \ge 3$. Then $a_n \le 3^n$ for all positive					
	integers.					
10)	() If $\forall x (P(x) \lor Q(x))$ and $\forall x ((\neg P(x) \land Q(x)) \rightarrow R(x))$ are true, then					
	$\forall x(\neg R(x) \rightarrow P(x))$ is also true, where the domains of all quantifiers are the					
	same.					
•	(22 mayles) Filling in the blowles					
2.	(33 marks) Filling in the blanks.					
1)	If T is a full 3-ary tree with 10 vertices, its minimum and maximum heights					
	are					
2)	Use Huffman coding to encode these symbols with given frequencies: A: 0.10,					
	B: 0.20, C: 0.05, D: 0.15, E: 0.30, F: 0.12, G: 0.08. The average number of bits					
	required to encode a symbol is					
3)	If G is a planar connected graph with 10 vertices, each of degree 4, then G has regions.					
4)	The full disjunctive normal form of $\neg r \lor (p \leftrightarrow q)$ is					
5)	Let A={a, b, c, d, e}, the Hasse diagram of a partial relation R on A is					
	illustrated in Fig. 1 b c					
	Fig.1					
	Then $ R = \underline{\hspace{1cm}}$.					
6)	There are non-isomorphic rooted trees with 5 vertices.					
7)	There is a binary tree. Its postorder traversal is DEBFCA, and its inorder traversal					
	is DBEACF. Its preorder is					
8)	Suppose $A=\{1,2,3\}$, there are relations which are reflexive and symmetric					
	on the set A; there are equivalence relations on the set A; there are					
	partial orderings on the set A .					
9)	Suppose that S= {a, b}. How many ordered pairs (A, B) are there such that A and					
	B are subsets of S with A⊆B?					

10) Suppose W is a weighted graph (See Fig. 2), the length of the shortest path between a and z is

Fig. 2

- **3**. (12 marks) How many different ways can you put 9 coins in 9 boxes which are labeled $B_1,...,B_9$ on them
- (1) if the coins are all different and no box is empty?
- (2) if the coins are all different and only two boxes B_1 and B_9 are empty?
- (3) if the coins are all different and exactly four boxes are not empty?
- (4) if the coins are all different and each box is either empty or contains exactly three coins?
- (5) if the coins are identical?
- (6) if the coins are identical and exactly six boxes are empty?

4.	(8	marks
┱. (O	mains

- (1) Find the smallest partial ordering on {1, 2, 3} that contains (1,1), (3,2), (1,3).
- (2) Find the smallest equivalent relation on {1, 2, 3} that contains (1,1), (3,2), (1,3).

- 5. (8 marks) Let a_n be the number of strings of length n consisting of the characters 0, 1, 2 with no consecutive 0's.
- (1) Find a recurrence relation for a_n and give the necessary initial condition(s).
- (2) Find an explicit formula for a_n by solving the recurrence relation in part (1).

- **6**. (10 marks) G is a directed graph (See Fig. 3).
- (1) Find the number of different paths of length 3.
- (2) Determine whether G is strongly connected or weakly connected.
- (3) Is the underlying undirected graph of G a Hamilton graph? Justify your answer.
- (4) Find the chromatic number of the underlying undirected graph of G.
- (5) Find the spanning tree for the underlying undirected graph of G. Choose V_4 as the root of the spanning tree.

- 7. (9 marks) Let G be a planar simple graph containing no triangles, let e and v be the number of edges and the number of vertices of G, respectively. Prove that:
- (1) $e \le 2v-4$.
- (2) G has a vertex of degree at most 3.
- (3) $\chi(G) \le 4$. Where $\chi(G)$ is the chromatic number (色数) of G. (You cannot use "the four color theorem" in your proof.)