Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	θ
1.2 Описание выходных данных	θ
2 МЕТОД РЕШЕНИЯ	7
3 ОПИСАНИЕ АЛГОРИТМОВ	8
3.1 Алгоритм метода getA класса triangle	8
3.2 Алгоритм метода getB класса triangle	
3.3 Алгоритм метода getC класса triangle	g
3.4 Алгоритм функции operator	g
3.5 Алгоритм функции operator+	10
3.6 Алгоритм функции main	12
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	13
5 КОД ПРОГРАММЫ	18
5.1 Файл main.cpp	18
5.2 Файл triangle.cpp	19
5.3 Файл triangle.h	20
6 ТЕСТИРОВАНИЕ	21
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	27

1 ПОСТАНОВКА ЗАДАЧИ

Перегрузка арифметических операций.

Перезагрузка операции для объекта треугольник.

У треугольника есть стороны a, b, c и они принимают только натуральные значения. Определяем операцию сложения и вычитания для треугольников.

- + сложить значения сторон, если допустимо.
- вычесть значения сторон, если допустимо.

Складываются и вычитаются соответствующие стороны треугольников. Т.е. a1 + a2, b1 + b2, c1 + c2. Если после выполнения операции получается недопустимый треугольник, то результатом операции берется первый аргумент.

Написать программу, которая выполняет операции над треугольниками.

В основной программе реализовать алгоритм:

- 1. Ввод количества треугольников n.
- 2. В цикле для каждого треугольника вводятся исходные длины сторон. Далее создается объект, в конструктор которого передаются значения длин сторон. Каждый объект треугольника получает свой номер от 1 до п.
- 3. В цикле, последовательно, построчно вводится «номер первого треугольника» «символ арифметической операции + или -» «номер второго треугольника»
- 4. После каждого ввода выполняется операция, результат присваивается первому аргументу (объекту треугольника).
- 5. Цикл завершается по завершению данных.
- 6. Выводится результат последней операции.

Гарантируется:

• Количество треугольников больше или равно 2;

• Значения исходных длин сторон треугольников задаются корректно.

Реализовать перегрузку арифметических операции «+» и «-» для объектов треугольника посредством самостоятельных не дружественных функций.

1.1 Описание входных данных

Первая строка содержит значение количества треугольников n:

«Натуральное значение»

Далее п строк содержат

«Натуральное значение» «Натуральное значение»

Начиная с n + 2 строки:

«Натуральное значение» «Знак операции» «Натуральное значение»

1.2 Описание выходных данных

а = «Натуральное значение»; b = «Натуральное значение»; c = «Натуральное значение».

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- функция operator+ для Перегрузка оператора +;
- функция operator- для Перегрузка оператора -;
- vector типизированный контейнер последовательностей.

Класс triangle:

- функционал:
 - о метод getA Геттер значения поля а;
 - о метод getB Геттер значения поля b;
 - о метод getC Геттер значения поля с.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм метода getA класса triangle

Функционал: Геттер значения поля а.

Параметры: нет.

Возвращаемое значение: int - значение поля.

Алгоритм метода представлен в таблице 1.

Таблица 1 – Алгоритм метода getA класса triangle

N₂	Предикат	Действия	No
			перехода
1		Возврат значения поля а	Ø

3.2 Алгоритм метода getB класса triangle

Функционал: Геттер значения поля b.

Параметры: нет.

Возвращаемое значение: int - значение поля.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода getB класса triangle

N	о Предикат	Действия	No
			перехода
1		Возврат значения поля с	Ø

3.3 Алгоритм метода getC класса triangle

Функционал: Геттер значения поля с.

Параметры: нет.

Возвращаемое значение: int - значение поля.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода getC класса triangle

1	🛭 Предикат	Действия	No
			перехода
1		Возврат значения поля с	Ø

3.4 Алгоритм функции operator-

Функционал: Перегрузка оператора - для вычитания сторон двух треугольников.

Параметры: triangle t1, triangle t2 - вычитаемые треугольники.

Возвращаемое значение: triangle - новый треугольник.

Алгоритм функции представлен в таблице 4.

Таблица 4 – Алгоритм функции operator-

N₂	Предикат	Действия	N₂
		πε	
1		Инициализация объекта t класса triangle c 2	
		передачей параметризированному конструктору	
		параметров значение вызова метода getA y	
		объекта t1 + значение вызова метода getA у	
		объекта t2, значение вызова метода getB у объекта	
		t1 + значение вызова метода getB у объекта t2,	
		значение вызова метода getC у объекта t1	
		+значение вызова метода getC у объекта t2.	
2		Инициализация переменных t1a, t1b, t1c типа int	3

Nº	Предикат	Действия	N₂
			перехода
		значениями вызова метода getA у объекта t1,	
		вызова метода getB у объекта t1, вызова метода	
		getC y объекта t1	
3		Инициализация переменных t2a, t2b, t2c типа int	4
		значениями вызова метода getA у объекта t2,	
		вызова метода getB у объекта t2, вызова метода	
		getC y объекта t2	
4		Иницализация объекта t класса triangle с	5
		передачей t1a - t2a, t1b - t2b, t1c - t2c	
		параметризированному конструктору	
5		Инициализация переменных ta, tb, tc типа int 6	
		значениями вызова метода getA у объекта t,	
		вызова метода getB у объекта t, вызова метода	
		getC y объекта t	
6	ta + tb <= tc ta + tc <= tb tc	Возврат t1	Ø
	+ tb <= tc ta <= 0 tb <= 0		
	tc <= 0		
		Возврат t	Ø

3.5 Алгоритм функции operator+

Функционал: Перегрузка оператора + для сложения сторон двух треугольников.

Параметры: triangle t1, triangle t2 - складываемые треугольники.

Возвращаемое значение: triangle - новый треугольник.

Алгоритм функции представлен в таблице 5.

Таблица 5 – Алгоритм функции operator+

No	Предикат	Действия	№ перехода
1		Инициализация объекта t класса triangle с	2
		передачей параметризированному конструктору	
		параметров значение вызова метода getA y	
		объекта t1 + значение вызова метода getA y	
		объекта t2, значение вызова метода getB у объекта	
		t1 + значение вызова метода getB у объекта t2,	
		значение вызова метода getC у объекта t1	
		+значение вызова метода getC у объекта t2.	
2		Инициализация переменных t1a, t1b, t1c типа int	3
		значениями вызова метода getA у объекта t1,	
		вызова метода getB у объекта t1, вызова метода	
		getC y объекта t1	
3		Инициализация переменных t2a, t2b, t2c типа int 4	
		значениями вызова метода getA у объекта t2,	
		вызова метода getB у объекта t2, вызова метода	
		getC y объекта t2	
4		Иницализация объекта t класса triangle с	5
		передачей t1a + t2a, t1b + t2b, t1c + t2c	
		параметризированному конструктору	
5		Инициализация переменных ta, tb, tc типа int	6
		значениями вызова метода getA у объекта t,	
		вызова метода getB у объекта t, вызова метода	
		getC у объекта t	
6	ta + tb <= tc ta + tc <= tb	Возврат t1	Ø
	tc + tb <= tc		
		Возврат t	Ø
	<u> </u>		I

3.6 Алгоритм функции main

Функционал: Главная функция программы.

Параметры: нет.

Возвращаемое значение: int - код ошибки.

Алгоритм функции представлен в таблице 6.

Таблица 6 – Алгоритм функции таіп

Nº	Предикат	Действия	№ перехода
1		Объявление перменных n, a, b, c типа int	2
2		Ввод значения п	
3		Объявление вектора значений ts типа triangle	4
4		Инициализация i = 0 тиа int	5
5	i < n	Ввод значений a, b, c	6
		Объявление переменных t1, t2 типа int и ор типа	9
		string	
6		Инициализация объекта t класса triange с	7
		передачей параметризированному конструктору	
		значений a, b, c	
7		Добавление объекта t в конец вектора ts 8	
8		i++	5
9	cin << t1 << op << t2	Ввод значений t1, op, t2 10	
			11
10	op == "+"	ts[t1 - 1] = ts[t1 - 1] + ts[t2 - 1]	9
		ts[t1 - 1] = ts[t1 - 1] - ts[t2 - 1]	9
11		Инициализация объекта lst класса triange равному	12
		ts[t1 + 1]	
12		Вывод значений полей a, b, c объекта lst 13	
13		Возврат значения 0	

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-5.

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

Рисунок 5 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл таіп.срр

Листинг 1 – main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include "triangle.h"
#include <vector>
triangle operator+(triangle t1, triangle t2) {
  int t1a = t1.getA(), t1b = t1.getB(), t1c = t1.getC();
  int t2a = t2.getA(), t2b = t2.getB(), t2c = t2.getC();
  triangle t(t1a + t2a, t1b + t2b, t1c + t2c);
  int ta = t.getA(), tb = t.getB(), tc = t.getC();
  if(ta + tb <= tc || ta + tc <= tb || tc + tb <= tc)
     return t1;
  return t;
}
triangle operator-(triangle t1, triangle t2) {
  int t1a = t1.getA(), t1b = t1.getB(), t1c = t1.getC();
  int t2a = t2.getA(), t2b = t2.getB(), t2c = t2.getC();
  triangle t(t1a - t2a, t1b - t2b, t1c - t2c);
  int ta = t.getA(), tb = t.getB(), tc = t.getC();
  if(ta + tb <= tc || ta + tc <= tb || tc + tb <= tc || ta <= 0 || tb <= 0
|| tc <= 0)
     return t1;
  return t;
}
int main()
  int n, a, b, c;
  cin >> n;
```

```
vector<triangle> ts;
  for(int i = 0; i < n; i++) {
     cin >> a >> b >> c;
     triangle t(a, b, c);
     ts.push_back(t);
  int t1, t2;
  string op;
  while(cin >> t1 >> op >> t2) {
     if(op == "+")
        ts[t1 - 1] = ts[t1 - 1] + ts[t2 - 1];
     else
        ts[t1 - 1] = ts[t1 - 1] - ts[t2 - 1];
  }
  triangle lst = ts[t1 - 1];
  cout << "a = " << lst.getA() << "; b = " << lst.getB() << "; c = " <<
lst.getC() << ".";
  return(0);
}
```

5.2 Файл triangle.cpp

Листинг 2 – triangle.cpp

```
#include "triangle.h"

triangle::triangle(int a, int b, int c) {
    this->a = a;
    this->b = b;
    this->c = c;
}

float triangle::S() {
    float p = P() * 0.5;
    return sqrt(p * (p - a) * (p - b) * (p - c));
}

float triangle::P() {
    return a + b + c;
}

int triangle::getA() {
    return a;
}
```

```
int triangle::getB() {
    return b;
}
int triangle::getC() {
    return c;
}
```

5.3 Файл triangle.h

Листинг 3 – triangle.h

```
#ifndef __TRIANGLE__H
#define ___TRIANGLE___H
#include <cmath>
#include <iostream>
using namespace std;
class triangle
private:
  int a, b, c;
public:
  triangle(int, int, int);
  float P();
  float S();
  int getA();
  int getB();
  int getC();
};
#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 7.

Таблица 7 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
2 3 4 5 1 2 3 1 + 2	a = 4; b = 6; c = 8.	a = 4; b = 6; c = 8.
2 3 4 5 1 2 3 1 + 2 1 - 2	a = 3; b = 4; c = 5.	a = 3; b = 4; c = 5.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).