Множественный доступ и правило двойного оборота

Урок №10

Memory lane

Физическое кодирование

Единицы измерения информации

Байт в килобайте

Сколько килобайт в мегабайте?

Байт в килобайте

Сколько килобайт в мегабайте?

Правильно - 1000. Кило – десятичная приставка.

1024 байт составляют 1 кибибайт.

Международная электротехническая комиссия приняла изменения еще в 1999 году, а ГОСТ 8.417 закрепил данное в 2002.

Кибибиты

Измерения в байтах									
<u>ГОСТ 8.417</u> —2002			<u>Приставки</u> <u>СИ</u>		Приставки <u>МЭК</u>				
Название	Обозначен ие	Степень	Название	Степень	Название	Символ		Степень	
<u>байт</u>	Б	10 ⁰	-	<u> 10°</u>	<u>байт</u>	В	Б	2 ⁰	
<u>килобайт</u>	Кбайт	10 ³	<u>кило-</u>	<u> 10³</u>	<u>кибибайт</u>	KiB	КиБ	2 ¹⁰	
<u>мегабайт</u>	Мбайт	10 ⁶	<u>мега-</u>	<u> 10</u> 6	<u>мебибайт</u>	MiB	МиБ	2 ²⁰	
<u>гигабайт</u>	Гбайт	10 ⁹	<u>гига-</u>	<u> 10</u> 9	<u>гибибайт</u>	GiB	ГиБ	2 ³⁰	
<u>терабайт</u>	Тбайт	10 ¹²	<u>тера-</u>	<u> 10¹²</u>	<u>тебибайт</u>	TiB	ТиБ	2 ⁴⁰	
<u>петабайт</u>	Пбайт	10 ¹⁵	пета-	<u> 10¹⁵</u>	<u>пебибайт</u>	PiB	ПиБ	2 ⁵⁰	
<u>эксабайт</u>	Эбайт	10 ¹⁸	<u>экса-</u>	<u> 10¹⁸</u>	<u>эксбибайт</u>	EiB	ЭиБ	2 ⁶⁰	
		21		21				70	
<u>зеттабайт</u>	3байт	10 ²¹	<u>зетта-</u>	<u> 10²¹</u>	<u>зебибайт</u>	ZiB	3иБ	2 ⁷⁰	
<u>йоттабайт</u>	Ибайт	10 ²⁴	<u>йотта-</u>	<u> 10²⁴</u>	<u>йобибайт</u>	YiB	ЙиБ	2 ⁸⁰	

New Lane

Вопрос:

Как несколько компьютеров могут общаться одновременно?

И не мешать друг другу.

Технологии множественного доступа

Единая среда распространения информации

CSMA/CD

Способы подключения нескольких пользователей

- Частотным способом (FDMA)
- Временным способом (TDMA)
- Кодовым разделением (CDMA)

Частотный способ (FDMA)

На время передачи данных каждому пользователю выделяется своя частота

Временной способ (TDMA)

Каждому пользователю для передачи предоставляется определённое время.

Кодовое разделение (CDMA)

Каждому пользователю присваивается свой код. Передача происходи постоянно, отличить данные помогает код пользователя, который добавляется к каждому сообщению. Используется в Wi-Fi и проводных сетях.

Вопрос

В общей среде 10 компьютеров

Два компьютера начали одновременно передавать сообщение

Что будет происходить с этими сообщениями?

Коллизии

Столкновение и искажение сообщений в сети

Решение – контроль несущей

Пользователь слушает среду передачи. Если уровень частоты сигналов вне «несущего» диапазона — среда свободна

Опять вопрос?

Что делать, если несколько пользователей сочли среду передачи «чистой» и начали передачу?

JAM

- Jam последовательность "усиливает" коллизию.
- "Ускоряет" и увеличивает вероятность обнаружения другими пользователями коллизий.

Вопрос

Пользователей уже больше – 1024512

Как часто в таком случае будут случаться коллизии? Как решить проблему?

Протокол CSMA/CD

Основан на контроле несущей. Используется при передаче данных в проводных сетях.

Если два пользователя одновременно начали передачу, то пользователи отказываются от передачи.

Пользователи выкидывают случайные числа и откладывают передачу на более поздний момент времени.

Новая проблема

В сети 1024512 компьютеров. Два компьютера начали передавать данные. Произошла коллизия и усиливается jamпоследовательностью.

В это время компьютер 1 договорил сообщение до конца.

Дойдет ли его сообщение? Нужно ли ему снова передать сообщение? Как ему понять, что его сообщение пропало?

Правило двойного оборота

- минимальная длина сообщения,
- длина кабеля,
- скорость транспортировки сигнала,
- скорость отправки сообщения,
 - должны быть взаимосвязаны, гарантируя возврат помехи после коллизии его первого бита к источнику ДО завершения отправки всего сообщения источником

Решение – физическое ограничение на длину кабеля

Длина кабеля: $L=V^*(T/2)=(V^*N)/(2^*M)$, [м]

Что есть что:

Величина	Обозначение, размерность			
Сообщение	N, байт			
Скорость отправки сообщения (скорость интернета)	М, байт/с			
Время отправки сообщения	T=N/M, c			
Скорость носителя сигнала	V, м/c			

NPV

Скорость передачи информации в проводнике относительно скорости света.

C * 2/3

с – скорость света

Скорость света – 299 792 458 м/с

Скорость света – 300 000 000 м/с

Простой расчет

- Длина сообщения 5 байт
- Скорость соединения 1 килобит/с
- Скорость электронов в проводе 2/3 * с
- Чему равна длина кабеля?

Практика

