Unit 6: Fourier Series

(Book: Advanced Engineering Mathematics By Jain and Iyengar, Chapter-9)

Learning Outcomes:

- 1. To know about even and odd functions.
- 2. To find Fourier series of even and odd functions.

Even functions:

Let f(x) be a function defined on [-l, l].

Then f(x) is said to be an even function if

$$f(-x) = f(x), \qquad -l \le x \le l$$

For example, $f(x) = x^2$, $f(x) = x^4$, f(x) = k, $f(x) = \cos x$ are all even functions as:

Odd functions:

Let f(x) be a function defined on [-l, l].

Then f(x) is said to be an *odd function* if

$$f(-x) = -f(x), \qquad -l \le x \le l$$

For example, f(x) = x, $f(x) = x^3$, $f(x) = \sin x$, $f(x) = \tan x$, are all odd functions as:

Graphically, even functions have symmetry about the y-axis, whereas odd functions have symmetry around the origin.

Examples:

- ▶ Sums of odd powers of x are odd: $5x^3 3x$
- Sums of even powers of x are even: $-x^6 + 4x^4 + x^2 3$
- \triangleright sin x is odd, and cos x is even

- ▶ The product of two odd functions is even: $x \sin x$ is even
- ▶ The product of two even functions is even: $x^2 \cos x$ is ev
- ► The product of an even function and an odd function is odd: sin x cos x is odd

Polling Quiz

The function $f(x) = x \sin x + \cos x + x^2 + x^3 \tan x + 3$ is:

- (A) An even function
- (B) An odd function
- (C) Neither even nor odd
- (D) I don't Know.

Change of interval:

Let periodic function f(x) be defined on the interval [c, 2l + c].

If c = -l, then interval becomes [-l, l]

Then, Euler's coefficients a_0 , a_n , b_n are:

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin\left(\frac{n\pi x}{l}\right) dx$$

Two Important Definite integrals

If f(x) is an odd function, then:

$$\int_{-l}^{l} f(x)dx = 0$$

If f(x) is an even function, then:

$$\int_{-l}^{l} f(x)dx = 2 \int_{0}^{l} f(x)dx$$

Fourier series of an Even function

If f(x) is an even function on [-l, l], then:

$$b_n = 0$$

Required Fourier series is:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{l}\right) \right]$$

Fourier series of an Odd function

If f(x) is an odd function on [-l, l], then:

$$a_o=0$$
, $a_n=0$

Required Fourier series is:

$$f(x) = \sum_{n=1}^{\infty} \left[b_n \sin\left(\frac{n\pi x}{l}\right) \right]$$

Problem 1. Find the Fourier series expansion of the function:

$$f(x) = x, \qquad x \in [-\pi, \pi].$$

Solution. Here f(x) = x, $x \in [-\pi, \pi]$

Since
$$f(-x) = -x = -f(x)$$

So, f(x) is an odd function.

Hence, $a_0 = 0$, $a_n = 0$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin\left(\frac{n\pi x}{l}\right) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin\left(\frac{n\pi x}{\pi}\right) dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(nx) \, dx$$

$$= \frac{2}{\pi} \int_0^{\pi} x \sin(nx) \ dx$$

 $\{x \sin(nx) \text{ is an even function}\}\$

$$= \frac{2}{\pi} \left[x \left(-\frac{\cos(nx)}{n} \right) + 1 \left(\frac{\sin(nx)}{n^2} \right) \right]_0^{\pi}$$

$$= \frac{2}{\pi} \left[-\pi \left(\frac{\cos(n\pi)}{n} \right) + 0 \right] = \frac{2}{n} (-1)^{n+1}$$

The required Fourier series is:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{l}\right) + b_n \sin\left(\frac{n\pi x}{l}\right) \right]$$

$$f(x) = \frac{0}{2} + \sum_{n=1}^{\infty} \left[(0) \cos\left(\frac{n\pi x}{\pi}\right) + \frac{2}{n} (-1)^{n+1} \sin\left(\frac{n\pi x}{\pi}\right) \right]$$

$$x = \sum_{n=1}^{\infty} \frac{2}{n} (-1)^{n+1} \sin(nx) \quad \text{Answer.}$$

Polling Quiz

If f(x) is an odd function, which of the following is true:

(A)
$$a_0 = 0$$

(B)
$$a_n = 0$$

(C)
$$b_n = 0$$

(D) (A) and (B)

Problem 2. Find the Fourier series expansion of the function:

$$f(x) = x^2, \qquad x \in [-2,2].$$

Solution. Here $f(x) = x^2$, $x \in [-2,2]$

Since
$$f(-x) = (-x)^2 = x^2 = f(x)$$

So, f(x) is an even function.

Hence, $\boldsymbol{b_n} = \mathbf{0}$

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$$

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$$
$$= \frac{1}{2} \int_{-2}^{2} x^2 dx$$
$$= \int_{0}^{2} x^2 dx = \frac{8}{3}$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx$$

$$= \frac{1}{2} \int_{-2}^{2} x^2 \cos\left(\frac{n\pi x}{2}\right) dx$$

$$= \int_0^2 x^2 \cos\left(\frac{n\pi x}{2}\right) dx \quad \{x^2 \cos\left(\frac{n\pi x}{2}\right) \text{ is an even function}\}$$

$$a_n = \frac{16}{n^2 \pi^2} \cos(n\pi) = \frac{16}{n^2 \pi^2} (-1)^n$$

The required Fourier series is:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{l}\right) + b_n \sin\left(\frac{n\pi x}{l}\right) \right]$$

$$f(x) = \frac{8/3}{2} + \sum_{n=1}^{\infty} \left[\frac{16}{n^2 \pi^2} (-1)^n \cos\left(\frac{n\pi x}{2}\right) + (0) \sin\left(\frac{n\pi x}{2}\right) \right]$$

$$x^2 = \frac{4}{3} + \sum_{n=1}^{\infty} \left[\frac{16}{n^2 \pi^2} (-1)^n \cos \left(\frac{n \pi x}{2} \right) \right]$$
 Answer.

