Unit 11

—Design Sequential Circuits with MSI blocks

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

凑齐7位

□ 寄存器应用—— ④ 7位串/并行转换器

工作分析

- 1.CR=0,寄存器清零,F₇F₆F₅F₄F₃F₂F₁F₀= 00000000
- 2. ∵F₇ = 0, ∴ S₁S₀ = 11, LD=0,是并行输入方式
- 3. CP↑,并行输入,即 F₇F₆F₅F₄F₃F₂F₁F₀=1111110D₆

CP↑,左移,即 F₇F₆F₅F₄F₃F₂F₁F₀=111110D₆D₅

CP↑, 左移,即 F₇F₆F₅F₄F₃F₂F₁F₀=111110D₆D₅D₄ 反向后, S₀=1,S₁S₀

=11,下一刻并入

CP↑, 左移,即 F₇F₆F₅F₄F₃F₂F₁F₀=<mark>0D₆D₅D₄D₃D₂D₁D₀/7</mark>

4. 返回步骤2

□ 寄存器应用—— ④ 串/并行转换器

工作原理

System A: 并行数据(例如8位)并行输入到寄存器中,通过并行→串行的转换(例如,可以使寄存器工作在单向右移方式下),传送到System B。

System B: 收到串行输入的数据,先进串行→并行的转换(上例),然后将并行输出的数据存放到寄存器中(可以使寄存器的并行输入工作式下)

回顾:利用JK触发器设计一个同步二进制串行加法器

方案2: 用一位全加器+D触发器实现

扩展——

能否用中规模芯片74194设计 一个n位同步二进制串行加法器,并能存放计算结果呢?

扩展: 利用74LS194设计一个n位同步二进制串行加法器

3.第2个CP到来:

