PRACTICA Nro. 4 – TRANSFORMADAS INTEGRALES TRANSFORMADA DE FOURIER

1.- Graficar $|F_{(\varpi)}|; \theta_{(\varpi)}$ Si

a)
$$f_{(t)} = e^{-2t} u_{(t)}$$
; b) $f_{(t)} = e^{4t} u_{(-t)}$; c) $f_{(t)} = 5(u(t+4) - u(t-4))$

2.- Si $f_{(t)} = 4e^{-3t}u_{(t)} - 2e^{2t}u_{(-t)}$, hallar:

a)
$$F_{(\omega)}; R_{(\omega)}; X_{(\omega)}$$
 b) $\left|F_{(1)}\right|; heta_{(1)}$

RESPUESTAS

a)
$$F_{(\omega)} = \frac{12}{9 + \omega^2} - \frac{4}{4 + \omega^2} + j \left(\frac{-4\omega}{9 + \omega^2} - \frac{2\omega}{4 + \omega^2} \right)$$
; b) $\left| F_{(1)} \right| = 0.89$; $\theta_{(1)} = -1.107 \, rad$

3.- Si $f_{(t)} = 3\delta(t+4) + 4\delta(t-4)$. Hallar

a)
$$|F(\frac{\pi}{16})|; \theta(\frac{\pi}{16})|$$
 b) $|F(\frac{\pi}{12})|; \theta(\frac{\pi}{12})|$ R.- a)5; -0.142 rad; b) $\sqrt{13}$, -0.243.

4.- Calcular la transformada de Fourier aplicando propiedades y transformadas conocidas

a)
$$f_{(t)} = \frac{\cos(3t)}{t^2 + 9}$$
 b) $f_{(t)} = \frac{1}{t^2 - 4t + 10}$ c) $f_{(t)} = \frac{1}{(t - 2)^4}$

d)
$$f_{(t)} = \frac{te^{-j4t}}{(t+3)^3}$$
 e) $f_{(t)} = \frac{2e^{-j3t}}{3+j4t}$ f) $f_{(t)} = \frac{t+1}{t^2-4t+4}$

g)
$$f_{(t)} = \frac{te^{j4t} + 3}{t^2 + 4}$$
 h) $f_{(t)} = \frac{t\cos(3t)}{t^2 + 4t + 4}$ i) $f_{(t)} = \frac{t^2 sen(2t)}{t^2 + 9}$

j)
$$f_{(t)} = \frac{e^{j2t}}{1 + it + 2t^2}$$
 k) $f_{(t)} = \frac{t+2}{t^2 - 6t + 5}$ l) $f_{(t)} = 3e^{-5|t+3|} \cos(5t + 15)$

m)
$$f_{(t)} = e^{-2t}u(t-3)$$
 n) $f_{(t)} = \frac{e^{-jt}sen(2t-2)}{1-t}$ o) $f_{(t)} = \frac{t\cos(2t)}{3+2j(t+1)}$

p)
$$f_{(t)} = te^{-3t}u(t-5)$$
 q) $f_{(t)} = t^2e^{-2t}u(t-3)$ r) $f_{(t)} = \frac{sen^3(2t)}{t}$

s)
$$f_{(t)} = |t - 2|\cos(\frac{\pi}{2}t)$$
 t) $f_{(t)} = \cos(\frac{\pi}{3}t)\operatorname{sgn}(t+3)$ u) $f_{(t)} = (t-2)u(t-2)$

v)
$$f_{(t)} = \frac{e^{-j3t}}{(2+j3t)^4}$$
 w) $f_{(t)} = \frac{t^2 e^{j3t}}{t^2 - 6t + 13}$ x) $f_{(t)} = t^2 e^{-jt} \operatorname{sgn}(t-3)$

RESPUESTAS:

a)
$$F_{(\omega)} = \frac{\pi}{6} \left(e^{-3|\omega-3|} + e^{-3|\omega+3|} \right)$$
; b) $F_{(\omega)} = \frac{\pi}{\sqrt{6}} e^{-\sqrt{6}|\omega| - j2\omega}$; c) $F_{(\omega)} = \frac{\pi}{6} \varpi^3 e^{-j2\omega} \operatorname{sgn}(\omega)$;

d)
$$F_{(\omega)} = -\frac{\pi}{2}(\omega + 4)e^{j3(\omega + 4)}\operatorname{sgn}(\omega + 4)(2 + j3(\omega + 4))$$
; e) $F_{(\omega)} = \pi e^{\frac{3}{4}(\omega + 3)}u(-\omega - 3)$;

f)
$$F_{(\omega)} = -\pi e^{-j2\omega} \operatorname{sgn}(\omega)(3\omega + j)$$
; g) $F_{(\omega)} = -j\pi e^{-2|\omega - 4|} \operatorname{sgn}(\omega - 4) + \frac{3\pi}{2} e^{-2|\omega|}$;

h)
$$F_{(\omega)} = -\frac{\pi}{2}e^{j2\omega} \left[e^{-j6} \operatorname{sgn}(\omega - 3)(-2\omega + 6 + j) + e^{j6} \operatorname{sgn}(\omega + 3)(-2\omega - 6 + j) \right];$$

i)
$$F_{(\omega)} = \frac{\pi}{2i} \left[-3e^{-3|\omega-2|} + 2\delta_{(\omega-2)} + 3e^{-3|\omega+2|} - 2\delta_{(\omega+2)} \right];$$

$$\mathrm{j)} \ F_{(\omega)} = \frac{2\pi}{3} \left(e^{-(\varpi-2)} u \left(\varpi-2\right) + e^{\frac{1}{2}(\varpi-2)} u \left(-\varpi+2\right) \right); \\ \mathrm{k)} \ F_{(\omega)} = -j \frac{7\pi}{4} e^{-j5\omega} \operatorname{sgn}(\omega) + j \frac{3\pi}{4} e^{-j\omega} \operatorname{sgn}(\omega); \\ \mathrm{sgn}(\omega) + j \frac{3\pi}{4} e^{$$

I)
$$F_{(\omega)} = \frac{30e^{j3\omega}(\omega^2 + 50)}{(\omega^2 - 10\omega + 50)(\omega^2 + 10\omega + 50)}$$
; m) $F_{(\omega)} = \frac{e^{-j3\omega - 6}}{2 + j\omega}$; n) $F_{(\omega)} = -\pi e^{-j(\omega + 1)}(u(\omega + 3) - u(\omega - 1))$

o)
$$\frac{\pi}{2} \left[e^{\frac{3}{2}(\varpi-2)+j(\varpi-2)} \left(-1+j\frac{3}{2}\right) u(-\varpi+2)-j\delta(\varpi-2)+e^{\frac{3}{2}(\varpi+2)+j(\varpi+2)} \left(-1+j\frac{3}{2}\right) u(-\varpi-2)-j\delta(\varpi+2) \right];$$

p)
$$F_{(\omega)} = \frac{e^{-j5\omega-15}(16+j5\omega)}{(3+j\omega)^2}$$
;q) $F_{(\omega)} = e^{-6-j3\omega} \left(\frac{50+j42\omega-9\omega^2}{(2+j\omega)^3}\right)$;

r)
$$F_{(\omega)} = \frac{\pi}{4} (-u(\omega+6) + u(\omega-6) + 3u(\omega+2) - 3u(\omega-2));$$

$$\text{s)} \ \ F_{(\omega)} = e^{-j2\varpi} \Biggl(\frac{2\varpi^2 + \frac{\pi^2}{2}}{\left(\varpi^2 - \frac{\pi^2}{4}\right)^2} \Biggr); \ \text{t)} \ \ F_{(\omega)} = \frac{j18\omega e^{j3\omega}}{9\omega^2 - \pi^2} \ ; \ \text{u)} \ \ F_{(\omega)} = \Biggl(-\frac{1}{\omega^2} + j\pi\delta^{\prime}_{(\omega)} \Biggr) e^{-j2\omega};$$

v)
$$F_{(\omega)} = -\frac{\pi}{243}(\omega+3)^3 e^{\frac{2}{3}\omega+2}u(-\omega-3);$$
 w) $F_{(\omega)} = \frac{\pi}{2}e^{-2|\omega-3|-j3(\omega-3)}[(3-j2\operatorname{sgn}(\omega-3))^2+4\delta(\omega-3)];$

$$\mathbf{X}) \ F_{(\omega)} = \frac{2e^{-j3(\omega+1)} \left[-6(\omega+1) + j\left(2 - 9(\omega+1)^2\right) \right]}{(\varpi+1)^3}$$

5.- Expresar en términos de u(t) y hallar su transformada de Fourier de las funciones

a)
$$f_{(t)} = \begin{cases} -2 & t < -1 \\ 4 & -1 < t < 1 \\ 3 & t > 1 \end{cases}$$

a)
$$f_{(t)} = \begin{cases} -2 & t < -1 \\ 4 & -1 < t < 1 \\ 3 & t > 1 \end{cases}$$
 b) $f_{(t)} = \begin{cases} 2 & t < -3 \\ -3 & -3 < t < 5 \\ 4 & t > 5 \end{cases}$

RESPUESTAS

$$\text{a)} \ \ F_{(\omega)} = \frac{6e^{j\omega} - e^{-j\omega}}{j\omega} + \pi\delta(\omega); \ \text{b)} \ \ F_{(\omega)} = \frac{-5e^{j3\omega} + 7e^{-j5\omega}}{j\omega} + 6\pi\delta(\omega); \ \text{c)} \ \ F_{(\omega)} = -j\frac{8}{\varpi^2} sen(5\varpi) + j\frac{40}{\varpi}\cos(5\varpi)$$

7.- Si
$$f_{(t)} = 3 \operatorname{sgn}(t-4) + u(t+2) - u(t-4)$$

- a) Graficar la función y hallar su transformada de Fourier.
- b) Expresar la función en términos u(t) y hallar su transformada, verifique que es el mismo resultado que a)

R.- En ambos casos:
$$F_{(\omega)} = \frac{5e^{-j4\omega} + e^{j2\omega}}{i\omega}$$

8.- Calcular la transformada de Fourier de la siguiente función:

R.-
$$F_{(\omega)} = 2\pi \delta(\varpi) + \frac{-2e^{j2\varpi} + 2e^{-j3\varpi}}{\varpi^2}$$

- 9.- Demostrar que $\mathcal{F}\left\{t^ne^{-at}u_{(t)}\right\} = \frac{n!}{\left(a+j\varpi\right)^{n+1}}$ sabiendo que: $\mathcal{F}\left\{e^{-at}u_{(t)}\right\} = \frac{1}{a+j\varpi}$; a>0; $n\in\mathbb{N}$
- 10.- Demostrar que $\mathcal{F}\left\{\frac{1}{t^n}\right\} = \frac{\left(-j\right)^n \pi \varpi^{n-1} \operatorname{sgn}(\varpi)}{(n-1)!}$ sabiendo que: $\mathcal{F}\left\{\operatorname{sgn}(t)\right\} = \frac{2}{j\varpi}$
- 11.-Obtener una fórmula para: $\mathcal{F}\left\{t^ne^{at}u_{(-t)}\right\}$ para $a>0; \quad n\in N$