From Data to Insights - Exercise sheet 9

discussed June 20 and June 21

June 13, 2024

1 Matched Filter

- A) Show that the matched filter $(C^{-1} \cdot \boldsymbol{m})^{\mathrm{T}} \cdot \boldsymbol{d}$ has a maximal signal-to-noise ratio among any linear combinations of the data vector \boldsymbol{d} , when the signal contained in the data has a true shape \boldsymbol{m} (times some unknown amplitude) and the data has a covariance matrix C.
- B) If the signal contained in the data is a linear combination of two components,

$$d = A \cdot m + B \cdot n + \mathcal{N}(0, C) ,$$

how does the uncertainty of the optimal estimator of A change? (Hint: you can use a Fisher matrix approach) Derive a condition for which the introduction of the second component $B \cdot n$ does not change the uncertainty of the matched filter estimate of A, and again discuss what this corresponds to in a Fisher matrix approach to the problem.

2 Likelihood free inference

A) Warm-up 1:

Draw N points from a standard normal distribution (i.e. the 1D Gaussian distribution with $\mu=0$ and $\sigma=1$). Then apply kernel density estimation to these points with a Gaussian kernel and the optimum kernel width introduced in the lecture. For N=10,30,100,300, compare the resulting PDFs with the true Gaussian PDF from which the points were drawn.

B) Warm-up 2:

Repeat the above for a 2D standard normal distribution (e.g. use np.random.normal(size=(2,N)) to draw the random points). To compare the true PDF and the PDF from kernel density estimation you can simply use plt.contour, i.e. you don't need to worry about 1σ and 2σ contours.

(Hint: in the 2D Gaussian case with diagonal covariance the optimal kernel also has a diagonal covariance with the standard deviation in the *i*th direction given by $\sigma_{K,i} = \sigma/N^{1/6}$. This follows from the so called Scott's rule.)

C) Likelihood free inference:

We will consider a simple situation where our data 'vector' is just a 1-dimensional number d, and our model for it depends on only one parameter α . The following piece of code will serve as a black-box for simulating observations of d, given a value for the parameter α :

```
def blackbox_simulator(alpha, N):
return np.random.standard_cauchy(size = N)+alpha**2
```

Use this black box to draw N = 30.000 pairs if (d_i, α_i) within a unifor prior $\alpha_i \in [0, 2]$. Then use kernel density estimation to estimate the joint PDF $p(d, \alpha)$.

Now use the blackbox one more time generate a single value \hat{d} to for $\alpha=1$. We will treat \hat{d} as the 'actual measurement, performed in the actual Universe'. Use your above kernel density estimate to calculate the Bayesian posterior $p(\alpha|\hat{d})$.

d) Likelihood full inference:

The above blackbox is generating random draws from the Cauchy distribution with the likelihood given by

$$p(d|\alpha) = \frac{1}{\pi(1 + (d - \alpha^2)^2)} \ . \tag{1}$$

With that knowledge, you can also directly calculate $p(\alpha|\hat{d})$ (for the same 'measurement' \hat{d} as before), using the standard Bayesian approach. Do that and compare the result to your that from the likelihood free approach.

3 Discussion questions

- A) Identify more than one way published results in physics (cosmology could be a good example, e.g. recent past cosmic shear results from DES, KiDS, or HSC) have quantified the signal-to-noise ratio of their measurement. Which advantages or disadvantages do you see? In which way is there a 'bias-versus-variance trade off' in these methods for determining signal-to-noise ratio?
- B) In what way is the task of kernel-density estimation another instance of the 'bias-versus-variance trade off'? (Hint: given a set of random draws from a distribution, a histogram of these draws with infinitesimally small bins would actually be an unbiased estimate of the original distribution.)