例 3 设由三种同型号的造纸机 A_1 , A_2 , A_3 使用四种不同涂料 B_1 , B_2 , B_3 , B_4 制造同版纸, 对每种不同搭配进行两次重复测量光洁度,数据如下:

机器 涂料	B_1	B_2	B_3	B_4
A_{l}	42.5, 42.6	42.0, 42.2	43.9, 43.6	42.2, 42.5
A_2	42.1, 42.3	41.7, 41.5	43.1, 43.0	42.5, 41.6
A_3	43.6, 43.8	43.6, 43.2	44.1, 44.2	42.9, 43.0

在显著水平 $\alpha = 0.05$ 下,检验不同机器、不同涂料及他们的交互作用的对光洁度的影响是否显著?

解:本题属于两因素重复试验的方差分析问题,为便于计算,将测量结果的数据均减去 42,所得

В	B_1	B_2	B_3	B_4	$T_{i_{-}} = \sum_{j=1}^{4} \sum_{k=1}^{2} x_{ijk}$	$T_{i.}^{2} = \left(\sum_{j=1}^{4} \sum_{k=1}^{2} X_{ijk}\right)^{2}$	$\sum_{j=1}^{4} \sum_{k=1}^{2} \chi_{ijk}^{2}$
A							
A_1	0.5, 0.6	0, 0.2	1.9, 1.6	0.2, 0.5	5.5	30.25	7.11
	(1.1),1.21	(0.2),0.04	(3.5),12.25	(0.7),0.49			
A_2	0.1, 0.3	-0.3, -0.5	1.1, 1.0	-0.5, -0.4	0.8	0.64	3.06
	(0.4),0.16	(-0.8),0.64	(2.1),4.41	(-0.9),0.81			
A_3	1.6, 1.8	1.6, 1.2	2.1, 2.2	0.9, 1.0	12.4	153.76	20.86
	(3.4),11.56	(2.8),7.84	(4.3),18.49	(1.9),3.61			
$T_{.j.} = \sum_{i=1}^{3} \sum_{k=1}^{2} x_{ijk}$	4.9	2.2	9.9	1.7	$\sum_{i=1}^{3} \sum_{j=1}^{4} \sum_{k=1}^{2} x_{ijk}$	$\sum_{i=1}^{3} T_{i}^{2} =$	$\sum_{i=1}^{3} \sum_{j=1}^{4} \sum_{k=1}^{2} x_{ijk}^{2} =$
					=18.7	184.65	31.03
$T_{.j.}^2 = (\sum_{i=1}^3 \sum_{k=1}^2 x_{ijk})^2$	24.01	4.84	98.01	2.89	$\sum_{j=1}^{4} T_{.j.}^{2} =$		
					129.75		
$\sum_{i=1}^{3} \left(\sum_{k=1}^{2} x_{ijk} \right)^{2}$	12.93	8.52	35.15	4.91	$\sum_{j=1}^{4} \sum_{i=1}^{3} T$	$x_{ij\bullet}^2 = \sum_{j=1}^4 \sum_{i=1}^3 (\sum_{k=1}^2 x_{ijk})^2$	$)^2 = 61.51$

方差分析结果不变,由条件知r=3,s=4,t=2,n=24,故由所给数据列表计算如下:

其中,
$$T_{i..} = \sum_{i=1}^{4} \sum_{k=1}^{2} x_{ijk}$$
, $T_{.j.} = \sum_{i=1}^{3} \sum_{k=1}^{2} x_{ijk}$, $T_{ij\bullet} = \sum_{k=1}^{t} X_{ijk}$, $T_{...} = \sum_{i=1}^{3} \sum_{k=1}^{4} \sum_{k=1}^{2} x_{ijk}$,

$$S_T = \sum_{i=1}^{3} \sum_{j=1}^{4} \sum_{k=1}^{2} (x_{ijk} - \overline{x})^2 = \sum_{i=1}^{3} \sum_{j=1}^{4} \sum_{k=1}^{2} x_{ijk}^2 - \frac{T^2}{n} = 31.03 - \frac{18.7^2}{24} = 16.4596$$

$$S_A = \sum_{i=1}^{3} \sum_{i=1}^{4} \sum_{k=1}^{2} (\overline{x}_{i..} - \overline{x})^2 = st \sum_{i=1}^{3} (\overline{x}_{i..} - \overline{x})^2 = \frac{1}{st} \sum_{i=1}^{3} T_{i..}^2 - \frac{T_{...}^2}{n} = \frac{1}{8} \times 184.65 - \frac{18.7^2}{24} = 8.5109$$

$$S_B = \sum_{i=1}^{3} \sum_{j=1}^{4} \sum_{k=1}^{2} (\overline{x}_{.j.} - \overline{x})^2 = rt \sum_{j=1}^{4} (\overline{x}_{.j.} - \overline{x})^2 = \frac{1}{rt} \sum_{j=1}^{4} T_{.j.}^2 - \frac{T_{...}^2}{n} = \frac{1}{6} \times 129.75 - \frac{18.7^2}{24} = 7.0546$$

$$S_E = \sum_{i=1}^{3} \sum_{j=1}^{4} \sum_{k=1}^{2} (x_{ijk} - \overline{x}_{ij.})^2 = \sum_{i=1}^{3} \sum_{j=1}^{4} \sum_{k=1}^{2} x_{ijk}^2 - \frac{1}{t} \sum_{j=1}^{4} \sum_{i=1}^{3} (\sum_{k=1}^{2} x_{ijk})^2 = 31.03 - \frac{1}{2} \times 61.51 = 0.275$$

$$S_{A\times B}=S_T-S_A-S_B-S_E=0.6191$$
.于是得方差分析表如下:

方差来源	离差平方和	自由度	均方离差平方和	F比值	显著性
因素 A	$S_A = 8.5109$	r-1=2	$\overline{S}_A = S_A / 2 = 4.2555$	$\frac{\overline{S}_A}{\overline{S}_E} = 185.53$	高度显著
因素 B	$S_B = 7.0546$	s-1=3	$\overline{S}_B = S_B / 3 = 2.3515$	$\frac{\overline{S}_B}{\overline{S}_E} = 154.03$	高度显著
交 互 作 用 A×B	$S_{A\times B}=0.6191$	(r-1)(s-1) $= 6$	$\overline{S}_{A \times B} = S_{A \times B} / 6$ $= 0.1032$	$\frac{\overline{S}_{A \times B}}{\overline{S}_E} = 4.51$	显著
误差 <i>E</i>	$S_E = 0.275$	rs(t-1) = 12	$\overline{S}_E = S_E / 12 = 0.0229$		
总和	$S_T = 16.4596$	rst-1=23			

当 $\alpha = 0.05$ 时,查表得 $F_{0.05}(2,12) = 3.89 < 185.83$, $F_{0.05}(3,12) = 3.49 < 154.03$, $F_{0.05}(6,12) = 3 < 4.51$. 故机器、涂料对光洁度的影响高度显著,他们的交互作用对光洁度影响显著。