Quick Summary

- Richer Topology Constraints
 - More precise node/edge relations
 - More precise hierarchical information
- Extend to <u>Symbolic</u> Abstract Analysis
- Verification & Synthesis of other protocols

Recap

Problems:

- Node/edge multiplicities related
- Hierarchical invariants convey more info

Inference Rules (Recap)

 $L \in \{A,S\}$

Richer Node/Edge Constraints

BCube Topology

Node/edge dependencies

$$o = p$$

$$n = p$$

$$m \ge 16$$
 $4*p = m$

Node/edge dependencies

Strictly more general

$$o = p$$

$$n = p$$

$$m \ge 16$$
 $4*p = m$

$\begin{array}{ccc} & o & = p \\ & & \\$

Option 1:

Symbolic backtracking search that evaluates the reachability algorithm

Option 1:

Symbolic backtracking search that evaluates the reachability algorithm

Look at constraints that change reachability inference rules

$$4*p = m$$

$$m - o$$

$$1 \ge 1 \quad \longmapsto \quad L \longrightarrow S$$

$$m/4 \ge 1 \quad \longmapsto \quad L \longrightarrow L$$

$$1 \ge m/4 \quad \longmapsto \quad L \longrightarrow A$$

$$o - m$$

$$m/4 \ge 1 \quad \longmapsto \quad L \longrightarrow S$$

$$1 \ge 1 \quad \longmapsto \quad L \longrightarrow L$$

$$m/4 \ge m \quad \longmapsto \quad L \longrightarrow A$$

Option 2:

Bake symbolic analysis into the fixed-point computation

m:	S:	
	A:	
n:	S:	
	A:	
0:	S:	
	A:	

m:	S:	Τ	
	A:	F	
n:	S:	F	
	A:	F	
0:	S:	F	
	A:	F	

m:	S:	T
	A:	F
n:	S:	(1≥1)∨(m/4≥m)
	A:	(1≥m/4)∨(m/4≥m)
0:	S:	F
	A:	F

m:	S:	Τ	
	A:	F	
n:	S:	Т	
	A:	F	
0:	S:	F	
	A:	F	

m:	S:	Τ	
	A:	F	
n:	S:	Т	
	A:	F	
0:	S:	F	
	A:	F	

m:	S:	Τ	
	A:	F	
n:	S:	Т	
	A:	F	
0:	S:	F	
	A:	F	

In general, these give the conditions under which reachability occurs

Validity means any topology is OK.

SAT means some topology is OK

μZ (Microsoft)

Relatively straightforward encoding into the µZ tool.

SMT fixed point engine

- Linear arithmetic
- Propositional Logic
- Relations S(node) A(node)
- Mod, times, division, ...

μZ - An Efficient Engine for Fixed points with Constraints*

Kryštof Hoder, Nikolaj Bjørner, and Leonardo de Moura

Manchester University and Microsoft Research

Abstract. The μZ tool is a scalable, efficient engine for fixed points with constraints. It supports high-level declarative fixed point constraints over a combination of built-in and plugin domains. The built-in domains include formulas presented to the SMT solver Z3 and domains known from abstract interpretation. We present the interface to μZ , a number of the domains, and a set of examples illustrating the use of μZ .

1 Introduction

Classical first-order predicate and propositional logic are a useful foundation for many program analysis and verification tools. Efficient SAT and SMT solvers and first-order theorem provers have enabled a broad range of applications based on this premise. However, fixed points are ubiquitous in software analysis. Model-checkers compute a set of reachable states as a least fixed point, or dually a set of states satisfying an inductive invariant as a greatest fixed point. Abstract interpreters compute fixed points over an infinite lattice using approximations. An additional layer is required when using first-order engines in these contexts.

The μZ tool is a scalable, efficient engine for fixed points with constraints. At the core is a bottom-up Datalog engine. Such engines have found several applications for static program analysis. A distinguishing feature of μZ is a pluggable and composable API for adding alternative finite table implementations and abstract relations by supplying implementations of relational algebra operations join, projection, union, selection and renaming. Lattice join and widening can be supplied to use μZ in an abstract interpretation context. The μZ tool is part of Z3 [3] and is available from Microsoft Research since version 2.18¹.

2 Architecture

A sample program is in Fig. 1 and the main components of μZ are depicted on Fig. 2. As input μZ receives a set of relations, rules (Horn clauses) and ground facts (unit clauses). The last rule uses the

```
\begin{array}{ll} \ell_0 & : & [Int] \text{ using pentagon} \\ \ell_1 & : & [Int] \text{ using pentagon} \\ \ell_0(0). & & \\ \ell_0(x) & \leftarrow \ell_0(x_0), x = x_0 + 1, x_0 < n. \\ \ell_1(x) & \leftarrow \ell_0(x), n \leq x. \end{array}
```

Fig. 1. Sample μZ input

^{*} Appeared in CAV 2011, Copyright Springer Verlag.

http://research.microsoft.com/en-us/um/redmond/projects/z3/

Still Not Enough!

Reachability only infers **some** nodes are reachable

Missing invariant that each Level1 goes to each pod

Richer Hierarchy Information

Reachability analysis now passes if we add one inference rule

(a)
$$L = 2, S_1 = 2, S_2 = 4, K = 1, T = 4$$

(b)
$$L = 2, S_1 = 3, S_2 = 3, K = 1, T = 4$$

(a)
$$L = 2, S_1 = 2, S_2 = 4, K = 1, T = 4$$

(a)
$$L = 2, S_1 = 2, S_2 = 4, K = 1, T = 4$$

(b)
$$L = 2, S_1 = 3, S_2 = 3, K = 1, T = 4$$

(a)
$$L = 2, S_1 = 2, S_2 = 4, K = 1, T = 4$$

(b)
$$L = 2, S_1 = 3, S_2 = 3, K = 1, T = 4$$

Edge between boxes means the constraint holds for **each pair** of "pods"

(a)
$$L = 2, S_1 = 2, S_2 = 4, K = 1, T = 4$$

(b)
$$L = 2, S_1 = 3, S_2 = 3, K = 1, T = 4$$

Basically just a macro here, the value **n must be fixed**

Can we make n a variable?

Can all nodes in m reach all other nodes in m?

Create 2 variables for m

Initial pod / other pods

minit mother

S

Can all nodes in m reach all other nodes in m?

Create 2 variables for m

Initial pod / other pods

Can all nodes in m reach all other nodes in m?

Create 2 variables for m

Initial pod / other pods

But not clear how this abstract topology lifts to the PG with hierarchy

Symbolic Failure Analysis

Destination

Source

Idea from before:

generate a "worst" case concrete topology, and find a lower bound on the min-cut of this topology

Destination

Destination

Destination

Source

Idea from before:

generate a "worst" case concrete topology, and find a lower bound on the min-cut of this topology

Better Connectivity

Worse Connectivity

Destination

Source

A topology with more nodes can be less connected

Destination

Source

Need to lower bound failures symbolically

Better Connectivity

Worse Connectivity

Destination

Source

$$p \ge 2$$

$$e \ge 4$$

$$o \ge 3$$

$$n \ge 4$$

$$m \ge 4$$

Destination

Source

 $p \ge 2$ $e \ge 4$ $o \ge 3$ $n \ge 4$

First we rewrite the topology to consider only a single source and destination node

Destination

Source

 $p \ge 2$ $e \ge 4$ $o \ge 3$ $n \ge 4$ $m \ge 4$

First we rewrite the topology to consider only a single source and destination node

Conservatively reduce edge count — more on how to do this better later

Destination

Source

$$p \ge 2$$

$$e \ge 4$$

$$o \ge 3$$

$$n \ge 4$$

$$m \ge 4$$

Step 1:

Pick a path from Source to Destination

Destination

Source

$$p \ge 2$$
 $e \ge 4$
 $o \ge 3$
 $n \ge 4$

 $m \geq 4$

Step 1:

Pick a path from Source to Destination

Step 2:

Label each edge with a unique variable

Destination

Source

$$p \ge 2$$
 $e \ge 4$
 $o \ge 3$
 $n \ge 4$

 $m \geq 4$

Step 1:

Pick a path from Source to Destination

Step 2:

Label each edge with a unique variable

Step 3:

Compute number of disjoint paths symbolically

Step 4:

Minimize the resulting ILP

Destination

Source

How disjoint paths to n?

X = min(e,n)

 $p \ge 2$

 $e \ge 4$

 $0 \ge 3$

 $n \ge 4$

 $m \ge 4$

How disjoint paths to Destination?

Source

X = min(e,n)

 $Y = min(X, \infty)$

$$p \ge 2$$

$$e \ge 4$$

$$0 \ge 3$$

$$n \ge 4$$

$$m \ge 4$$

Destination

Source

Destination

Source

minimize Y

 $p \ge 2$

 $e \ge 4$

 $0 \ge 3$

 $n \ge 4$

 $m \ge 4$

X = min(e,n)

 $Y = min(X, \infty)$

ILP Solver

Destination

Source

Answer: 4

ILP Solver

Destination

Source

 $p \ge 2$ $e \ge 4$ $o \ge 3$ $n \ge 4$ $m \ge 4$

Repeat until no path remains to the destination

Destination

Source

 $p \ge 2$ $e \ge 4$ $o \ge 3$ $n \ge 4$ $m \ge 4$

Repeat until no path remains to the destination

Destination

Source

 $p \ge 2$ $e \ge 4$ $o \ge 3$ $n \ge 4$ Repeat until no path remains to the destination

Note: failures along the paths are considered independently

Destination

Source

$$p \ge 2$$

$$e \ge 4$$

$$o \ge 3$$

$$n \ge 4$$

$$m > 4$$

A Better Approximation:

Reduce the edge counts in a more reasonable way than just setting to 0.

Destination

Source

$$p \ge 2$$

 $e \ge 4$

 $0 \ge 3$

 $n \ge 4$

m > 2

A Better Approximation:

Reduce the edge counts in a more reasonable way than just setting to 0.

DCell Topology

I still don't know how to abstract this topology :(

Invariant is an existential but we can only use foralls

Propane LP Extension

Encoding Local Preference:

Sometimes you want a local preference rather than a global preference in Propane:

- Easier to specify LP, MEDs
- Easier for operators new to lang.
- Can compose nicer
- Load balancing can be better

```
lp(X, P1 >> P2)
lp(Y, P1 >> P2)
```


$$(.*; P1; X) >> (.*; P2; X)$$

$$U (.*; P1; Y) >> (.*; P2; Y)$$

lp(X, P1 >> P2)

lp(Y, P1 >> P2)

T

$$(.*; P1; X) >> (.*; P2; X)$$

$$U (.*; P1; Y) >> (.*; P2; Y)$$

Note:

Global safety analysis still passes, so the policy is still safe under all failures

Synthesis of Other Protocols

Verification Recap

Verification Recap

EC: {T}, {S}, {U}

Equivalence Classes:

Traffic classes that will experience the exact same forwarding behavior after the control plane stabilizes

High-level Idea

PG lets us represent a local preference among neighbors. We wish to prefer based on:

- (1) Protocol (AD)
- (2) Protocol-specific preference

Verification Recap

EC: {T}, {S}, {U}

AD: $\{1 \mapsto 1, 5 \mapsto 2, 20 \mapsto 3, 110 \mapsto 4\}$

Static User eBGP OSPF

BGP (lp): $\{100 \mapsto 1\}$

OSPF: $\{_ \mapsto 1\}$

Preference: (AD x _)

Protocol specific

BGP: {1,2,3,4}

OSPF: {1,2,3,4}

Verification Recap

EC: {T}, {S}, {U}

Idea From Last Time:

PG can encode preferences:

- 1. BGP local-pref
- 2. Route Redistribution AD
- 3. Edge weight etc.

Idea From Last Time:

PG can encode preferences:

- 1. BGP local-pref
- 2. Route Redistribution AD
- 3. Edge weight etc.

Key Insight:

In the PG (Propane), how we interpret the preferences determines the implementation.

Idea From Last Time:

PG can encode preferences:

- 1. BGP local-pref
- 2. Route Redistribution AD
- 3. Edge weight etc.

Key Insight:

In the PG (Propane), how we interpret the preferences determines the implementation.

LP → BGP
AD → Route Redist.

Key Insight:

In the PG (Propane), how we interpret the preferences determines the implementation.

LP → BGP

AD Route Redist.

Propane:

Compiler infers all node preferences and can choose how to partition the topology according to RR preferences.

Constraints: <u>RR</u>:

Can't rely on context (e.g, community tag), preference must be unique from neighbors.

Constraints: OSPF:

No preferences allowed within an OSPF region.

Constraints: RIP:

No preferences allowed within a RIP region.

We could possible support the following arrows so far

Pick any combination of arrows to generate a tool & paper

Compilation / Safety

Verification

Config Minimization / Migration

Policy Synthesis

Verification / Equivalence