COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

January 29, 2023

Lecture 8: Regular Expressions

Recap

Definition (Pattern)

A pattern α is a string of symbols of a certain form representing a (possibly infinite) set of strings in Σ^* .

$$L(\alpha) = \{ x \in \Sigma^* \mid x \text{ matches } \alpha \}$$

Recap: Atomic and Compound Patterns

- $a \in \Sigma$, $L(a) = \{a\}$
- \circ ε , $L(\varepsilon) = {\varepsilon}$
- \emptyset \varnothing , $L(\varnothing) = \varnothing$
- \odot Σ , matching any alphabet
- Σ^* , matching any finite string
- x matches $\alpha + \beta$ if $L(\alpha + \beta) = L(\alpha) \cup L(\beta)$
- \bullet x matches $\alpha \cap \beta$ if $L(\alpha \cap \beta) = L(\alpha) \cap L(\beta)$
- \bullet x matches $\alpha\beta$ if x = yz where $L(\alpha\beta) = L(\alpha)L(\beta)$
- **4** x matches α^* if x can be expressed as zero or more of strings that match α , i.e., $L(\alpha^*) = L(\alpha)^*$
- ② x matches α^+ if x can be expressed as one or more of strings that match α , i.e., $L(\alpha^+) = L(\alpha)^+$

Recap: DFA to regular expression

Lemma

Any regular language can be specified by a regular expression

Recap: DFA to regular expression

Lemma

Any regular language can be specified by a regular expression

Want: Given any DFA, convert it into a regular expression.

Lemma

Given any DFA A, we can obtain a regular expression, say R_A , such that $L(A) = L(R_A)$.

Recap: Computing with labelled graphs

Lemma

Any regular language can be specified by a regular expression

Want: Given any DFA, convert it into a regular expression.

Lemma

Given any DFA A, we can obtain a regular expression, say R_A , such that $L(A) = L(R_A)$.

Regular expressions

For a regular expression E we write L(E) for its language. The set of valid regular expressions RegEx can be defined recursively as the following:

	Syntax	Semantics
Empty String	ϵ	$L(\epsilon) = \{\epsilon\}$
Empty Set	Ø	$L(\varnothing) = \varnothing$
Single Letter	a	$L(a) = \{a\}$
Union	E + F	$L(E+F) = L(E) \cup L(F)$
Concatenation	E.F	$L(E.F) = L(E) \circ L(F)$
Kleene Star	E^*	$L(E)^*$

Theorem

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA, then there is an RE R such that L(R) = L(A).

Theorem

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA, then there is an RE R such that L(R) = L(A).

Theorem

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA, then there is an RE R such that L(R) = L(A).

Proof.

Let us assign states in Q = $\{q_1,\ldots,q_n\}$ an arbitrary order, where q_0 = q_1 and $q_1<\cdots< q_n$.

Theorem

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA, then there is an RE R such that L(R) = L(A).

Proof.

Let us assign states in Q = $\{q_1,\ldots,q_n\}$ an arbitrary order, where q_0 = q_1 and $q_1<\cdots< q_n$.

Each path on a DFA corresponds to a word.

Theorem

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA, then there is an RE R such that L(R) = L(A).

Proof.

Let us assign states in Q = $\{q_1,\ldots,q_n\}$ an arbitrary order, where q_0 = q_1 and $q_1<\cdots< q_n$.

Each path on a DFA corresponds to a word.

We will incrementally consider longer and longer paths.

Proof. (contd.)

Proof. (contd.) Let us define the following set of paths.

Proof. (contd.) Let us define the following set of paths.

p(i, j, k) := the set of paths from q_i to q_j that do not have intermediate states that are greater than q_k .

Proof. (contd.) Let us define the following set of paths.

p(i,j,k) := the set of paths from q_i to q_j that do not have intermediate states that are greater than q_k .

Proof. (contd.) Let us define the following set of paths.

p(i,j,k):= the set of paths from q_i to q_j that do not have intermediate states that are greater than q_k .

Note that q_i and q_j need not be smaller than q_k .

Proof. (contd.) Let us define the following set of paths.

p(i,j,k):= the set of paths from q_i to q_j that do not have intermediate states that are greater than q_k .

Note that q_i and q_j need not be smaller than q_k .

Let R(i,j,k) be the regular expression that defines the set of words along the paths in p(i,j,k).

Proof. (contd.)

Proof. (contd.)

Let us define R(i, j, k) by induction over k.

Proof. (contd.)

Let us define R(i, j, k) by induction over k.

Base case: Let $\{a_1,\ldots,a_r\}=\{a\mid \delta(q_i,a)=q_j\}$, i. e., letters that take q_i to q_j .

$$R(i,j,0) \coloneqq \begin{cases} a_1 + \dots + a_r, i \neq j \\ a_1 + \dots + a_r + \varepsilon \text{ Otherwise} \end{cases}$$

Proof. (contd.)

Let us define R(i, j, k) by induction over k.

Base case: Let $\{a_1,\ldots,a_r\}=\{a\mid \delta(q_i,a)=q_j\}$, i. e., letters that take q_i to q_j .

$$R(i,j,0) \coloneqq \begin{cases} a_1 + \dots + a_r, i \neq j \\ a_1 + \dots + a_r + \varepsilon \text{ Otherwise} \end{cases}$$

$$R(i,j,k) := R(i,j,k-1) + R(i,k,k-1)R(k,k,k-1)*R(k,j,k-1)$$

Let $F = \{q_{j1}, \dots, q_{js}\}$

Let
$$F = \{q_{j1}, \ldots, q_{js}\}$$

Let
$$F = \{q_{j1}, ..., q_{js}\}$$

The following regular expression will recognize L(A)

$$R(1, j_1, n) + \cdots + R(1, j_s, n)$$

Base Cases:

$$R(1,1,0) = \varepsilon + 1$$

Base Cases:

$$R(1,1,0) = \varepsilon + 1$$

$$R(2,2,0) = \varepsilon + 0 + 1$$

Base Cases:

$$R(1,1,0) = \varepsilon + 1$$

 $R(2,2,0) = \varepsilon + 0 + 1$
 $R(1,2,0) = 0$

$$R(1,1,0) = \varepsilon + 1$$

 $R(2,2,0) = \varepsilon + 0 + 1$
 $R(1,2,0) = 0$
 $R(2,1,0) = \emptyset$

$$R(1,1,0) = \varepsilon + 1$$

 $R(2,2,0) = \varepsilon + 0 + 1$
 $R(1,2,0) = 0$
 $R(2,1,0) = \emptyset$

$$R(1,2,1) = R(1,2,0) +$$

$$R(1,1,0) = \varepsilon + 1$$

 $R(2,2,0) = \varepsilon + 0 + 1$
 $R(1,2,0) = 0$
 $R(2,1,0) = \emptyset$

$$R(1,2,1) = R(1,2,0) + R(1,1,0)R(1,1,0)*R(1,2,0)$$

$$R(1,1,0) = \varepsilon + 1$$

 $R(2,2,0) = \varepsilon + 0 + 1$
 $R(1,2,0) = 0$
 $R(2,1,0) = \emptyset$

$$R(1,2,1) = R(1,2,0) + R(1,1,0)R(1,1,0)*R(1,2,0)$$

= 0+

$$R(1,1,0) = \varepsilon + 1$$

 $R(2,2,0) = \varepsilon + 0 + 1$
 $R(1,2,0) = 0$
 $R(2,1,0) = \emptyset$

$$R(1,2,1) = R(1,2,0) + R(1,1,0)R(1,1,0)*R(1,2,0)$$

= 0 + (\varepsilon + 1)(\varepsilon + 1)*0

$$R(1,1,0) = \varepsilon + 1$$

 $R(2,2,0) = \varepsilon + 0 + 1$
 $R(1,2,0) = 0$
 $R(2,1,0) = \emptyset$

$$R(1,2,1) = R(1,2,0) + R(1,1,0)R(1,1,0)*R(1,2,0)$$

= 0 + (\varepsilon + 1)(\varepsilon + 1)*0 = 1 * 0

$$R(1,1,0) = \varepsilon + 1$$

 $R(2,2,0) = \varepsilon + 0 + 1$
 $R(1,2,0) = 0$
 $R(2,1,0) = \emptyset$

$$R(1,2,1) = R(1,2,0) + R(1,1,0)R(1,1,0)^*R(1,2,0)$$

= 0 + (\varepsilon + 1)(\varepsilon + 1)^*0 = 1 * 0
$$R(2,2,1) = R(2,2,0) + R(2,1,0)R(1,1,0)^*R(1,2,0)$$

$$R(1,1,0) = \varepsilon + 1$$

 $R(2,2,0) = \varepsilon + 0 + 1$
 $R(1,2,0) = 0$
 $R(2,1,0) = \emptyset$

$$R(1,2,1) = R(1,2,0) + R(1,1,0)R(1,1,0)^*R(1,2,0)$$

$$= 0 + (\varepsilon + 1)(\varepsilon + 1)^*0 = 1 * 0$$

$$R(2,2,1) = R(2,2,0) + R(2,1,0)R(1,1,0)^*R(1,2,0)$$

$$= \varepsilon + 0 + 1 + 0$$

$$R(1,1,0) = \varepsilon + 1$$

 $R(2,2,0) = \varepsilon + 0 + 1$
 $R(1,2,0) = 0$
 $R(2,1,0) = \emptyset$

$$R(1,2,1) = R(1,2,0) + R(1,1,0)R(1,1,0)^*R(1,2,0)$$

$$= 0 + (\varepsilon + 1)(\varepsilon + 1)^*0 = 1 * 0$$

$$R(2,2,1) = R(2,2,0) + R(2,1,0)R(1,1,0)^*R(1,2,0)$$

$$= \varepsilon + 0 + 1 + \emptyset(\varepsilon + 1)^*0$$

$$R(1,1,0) = \varepsilon + 1$$

 $R(2,2,0) = \varepsilon + 0 + 1$
 $R(1,2,0) = 0$
 $R(2,1,0) = \emptyset$

$$R(1,2,1) = R(1,2,0) + R(1,1,0)R(1,1,0)^*R(1,2,0)$$

$$= 0 + (\varepsilon + 1)(\varepsilon + 1)^*0 = 1 * 0$$

$$R(2,2,1) = R(2,2,0) + R(2,1,0)R(1,1,0)^*R(1,2,0)$$

$$= \varepsilon + 0 + 1 + \varnothing(\varepsilon + 1)^*0 = \varepsilon + 0 + 1$$

Examples (Contd.)

$$L(A) = R(1,2,2)$$

$$= R(1,2,1) + R(1,2,1)R(2,2,1)^*R(2,2,1)$$

$$= 1^*0 + 1^*0(\varepsilon + 0 + 1)^*(\varepsilon + 0 + 1)$$

$$= 1^*0(0+1)^*$$

Limitations of Finite Automata

Limitations of Finite Automata

$$L_{0,1} = \{0^n 1^n \mid n \ge 0\}$$

Lemma

There is no finite state automaton accepting $L_{0,1}$

Lemma

There is no finite state automaton accepting $L_{0,1}$

Proof.

▶ Suppose there was a DFA accepting $L_{0,1}$.

Lemma

There is no finite state automaton accepting $L_{0,1}$

Proof.

▶ Suppose there was a DFA accepting $L_{0,1}$. By Pigeon Hole Principle, $\exists i,j \in \mathbb{N}$ such that $i \neq j$

Lemma

There is no finite state automaton accepting $L_{0,1}$

Proof.

▶ Suppose there was a DFA accepting $L_{0,1}$. By Pigeon Hole Principle, $\exists i,j \in \mathbb{N}$ such that $i \neq j$, automaton reaches the same state after reading both $0^i,0^j$.

Lemma

There is no finite state automaton accepting $L_{0,1}$

Proof.

- ▶ Suppose there was a DFA accepting $L_{0,1}$. By Pigeon Hole Principle, $\exists i, j \in \mathbb{N}$ such that $i \neq j$, automaton reaches the same state after reading both $0^i, 0^j$.
- ▶ Then $0^i \cdot 1^j$ and $0^j \cdot 1^j$ are both accepted or both rejected

Lemma

There is no finite state automaton accepting $L_{0,1}$

Proof.

- ▶ Suppose there was a DFA accepting $L_{0,1}$. By Pigeon Hole Principle, $\exists i, j \in \mathbb{N}$ such that $i \neq j$, automaton reaches the same state after reading both $0^i, 0^j$.
- ▶ Then $0^i \cdot 1^j$ and $0^j \cdot 1^j$ are both accepted or both rejected, which is a contradiction.

Lemma

There is no finite state automaton accepting $L_{0,1}$

Proof.

- ▶ Suppose there was a DFA accepting $L_{0,1}$. By Pigeon Hole Principle, $\exists i, j \in \mathbb{N}$ such that $i \neq j$, automaton reaches the same state after reading both $0^i, 0^j$.
- ▶ Then $0^i \cdot 1^j$ and $0^j \cdot 1^j$ are both accepted or both rejected, which is a contradiction.

Lemma

 $\forall n \in \mathbb{N} \text{ let } PAL_n = \{w \cdot w^R \mid w \in \Sigma^*, |w| = n\}.$ Any automaton accepting PAL_n must have $|\Sigma|^n$ states.

Lemma

 $\forall n \in \mathbb{N} \text{ let } PAL_n = \{w \cdot w^R \mid w \in \Sigma^*, |w| = n\}.$ Any automaton accepting PAL_n must have $|\Sigma|^n$ states.

Proof.

By Pigeon Hole Principle.

Lemma

 $\forall n \in \mathbb{N} \text{ let } PAL_n = \{w \cdot w^R \mid w \in \Sigma^*, |w| = n\}.$ Any automaton accepting PAL_n must have $|\Sigma|^n$ states.

Proof.

By Pigeon Hole Principle.

Suppose $\exists x, y \in \Sigma^n$ such that $x \neq y$

Lemma

 $\forall n \in \mathbb{N} \text{ let } PAL_n = \{w \cdot w^R \mid w \in \Sigma^*, |w| = n\}.$ Any automaton accepting PAL_n must have $|\Sigma|^n$ states.

Proof.

By Pigeon Hole Principle.

Suppose $\exists x, y \in \Sigma^n$ such that $x \neq y$,

automaton reaches the same state after reading both x, y.

Lemma

 $\forall n \in \mathbb{N} \text{ let } PAL_n = \{w \cdot w^R \mid w \in \Sigma^*, |w| = n\}.$ Any automaton accepting PAL_n must have $|\Sigma|^n$ states.

Proof.

By Pigeon Hole Principle.

Suppose $\exists x, y \in \Sigma^n$ such that $x \neq y$,

automaton reaches the same state after reading both x,y.

Then $x \cdot x^R$ and $y \cdot x^R$ are both accepted or both rejected

Lemma

 $\forall n \in \mathbb{N} \text{ let } PAL_n = \{w \cdot w^R \mid w \in \Sigma^*, |w| = n\}.$ Any automaton accepting PAL_n must have $|\Sigma|^n$ states.

Proof.

By Pigeon Hole Principle.

Suppose $\exists x, y \in \Sigma^n$ such that $x \neq y$,

automaton reaches the same state after reading both x,y.

Then $x \cdot x^R$ and $y \cdot x^R$ are both accepted or both rejected, which is a contradiction.

Lemma

 $\forall n \in \mathbb{N} \text{ let } PAL_n = \{w \cdot w^R \mid w \in \Sigma^*, |w| = n\}.$ Any automaton accepting PAL_n must have $|\Sigma|^n$ states.

Proof.

By Pigeon Hole Principle.

Suppose $\exists x, y \in \Sigma^n$ such that $x \neq y$,

automaton reaches the same state after reading both x,y.

Then $x \cdot x^R$ and $y \cdot x^R$ are both accepted or both rejected, which is a contradiction.

Corollary

Let $PAL = \bigcup_{n>0} PAL_n$. PAL is not regular.