Simulación de Acoplamiento Molecular utilizando AutoDock

Tutorial

Descargar programas:

Interfaz Gráfica

MGLTools: Es un software desarrollado en el Laboratorio de Gráfica Molecular (MGL) para visualización y análisis de estructuras moleculares. http://mgltools.scripps.edu/downloads

Ejecutables

autogrid4: Realiza el cálculo de las grillas que describen el sitio de unión del ligando.

autodock4: Realiza el cálculo de acoplamiento (docking) entre un ligando y una proteína target.

http://autodock.scripps.edu/downloads/autodock-registration/autodock-4-2-download-page/

Simulación de Docking Molecular

Práctico de Docking

Ligando

El indinavir es un antiretroviral del grupo de los inhibidores enzimáticos de la proteasa; y es utilizado en la terapia antiretroviral altamente supresiva de adultos y de pacientes pediátricos con infección por VIH-1 y enfermos de sida. El indinavir inhibe a la enzima proteasa, encargada de la formación y maduración del virus, con lo que se evita la replicación viral.

AutoDockTools (ADT)

A.- En la parte superior hay menús que acceden a las diferentes funciones de ADT, el visualizador molecular, incluyendo la capacidad de leer y escribir archivos de coordenadas, crear imágenes, modificar, etc.

B.- Una fila de botones de acceso rápido a las funciones de AutoDock.

C.- La sección de manipulación del visualizador.

D.- La ventana de visualización.

Preparar la Proteína

1.- Cargar la proteína:

File → Read Molecule (Seleccionar el archivo proteina.pdb, y presione Open).

2.- Añadir Hidrógenos:

Edit → Hydrogens → Add (Solo los H polares)

3.- Agregar carga atómica:

Grid → Macromolecule → Choose → proteina.pdb (Guardar la proteína en formato PDBQT: proteina.pdbqt)

Preparar el Ligando

1.- Cargar el ligando:

File → Read Molecule (seleccionar el archivo ligando.pdb, y presione Open).

2.- Añadir Hidrógenos:

Edit → Hydrogens → Add

3.- Agregar carga atómica:

Ligand → Input → Choose

Preparar el Ligando

4.- Seleccionar los segmentos a rotar:

Ligand → Torsion Tree → Detect Root

5.- Se elige el árbol de torsión:

Ligand → Torsion Tree → Choose Torsion (Luego seleccionamos Done)

Si quisiéramos introducir el número de torsiones nosotros seleccionamos en:

Ligand → Torsion Tree → Set Number of Torsions...

6.- Guardamos el ligando preparado:

Ligand → Output → Save as PDBQT (Guardar el ligando en formato PDBQT: ligando.pdbqt)

Definir el espacio de búsqueda

1.- Cargar la Proteína:

Grid → Macromolecule → Open (cargar proteina.pdbqt)

2.- Generar la lista de propiedades de cada átomo del ligando:

Grid → Set Map Types → Open Ligand (seleccionar el archivo ligando.pdbqt)

3.- Definir el espacio de búsqueda:

Grid → Grid Box (cambiar parámetros, guardar y fcerrar)

Centre la caja en la posición (x,y,z) = (16,25,4) que corresponde al sitio activo de esta enzima y la dimensión en puntos como 30, 30, 30 con un espaciado de 1 Å. Este tamaño y espaciado disminuye el tiempo de cálculo, pero se recomienda un espaciado de 0.375 Å.

Definir el espacio de búsqueda

4.- Guardar los parámetros de la grilla:

Grid \rightarrow Output \rightarrow Save GPF (guardar grilla.gpf)

5.- Correr cálculo de la grilla por consola de windows:

autogrid4.exe -p grilla.gpf -l grilla.glg &

*Al finalizar saldrá: autogrid4: Successful Completion.

Preparar archivos del Docking

1.- Cargar la proteína:

Docking → Macromolecule → Select Rigid Filename (cargar proteina.pdbqt)

2.- Cargar el ligando:

File → Read Molecule (seleccionar el archivo ligando.pdbqt)

3.- Seleccionar el ligando:

Docking → Ligand → Choose

Preparar archivos del Docking

4.- Establecer los parámetros de búsqueda:

Docking → Search Parameters → Genetic Algorithm

5.- Definir los parámetros iniciales del docking:

Docking → Docking Parameters... (aceptar por defecto)

6.- Guardar los parámetros:

Docking \rightarrow Output \rightarrow Lamarckian GA (guardar docking.dpf)

Preparar archivos del Docking

7.- Correr cálculo del docking por consola de windows:

autodock4.exe-p docking.dpf-l docking.dlg &

*Al finalizar saldrá: autodock4: Successful Completion.

Análisis de resultados

Necesitamos 3 archivos para visualizar los resultados:

proteina.pdbqt (Estructura cristal del la proteína) ligando.pdbqt (En este caso es el ligando cristalográfico) docking.dlg (Resultado del docking)

1.- Cargar el resultado:

Analyze → Docking → Open (abrir archivo: docking.dlg)

Analyze → Conformations → Load

Analyze \rightarrow Conformations \rightarrow Play

2.- Cargar proteína y ligando cristal:

Grid → Macromolecule → Open (cargar proteina.pdbqt)

Grid → Macromolecule → Open (cargar ligando.pdbqt)

Análisis de resultados

Las energías mostradas corresponde a la **energía de unión** (Binding Energy), la cual corresponde a la suma de las energías intramoleculares, torsional e interna.

K_i es la constante de disociación para el ligando, calculada a partir de la energía de unión obtenida para la configuración seleccionada.

Ref RMS es la raíz cuadrada de la raíz media de las diferencias entre las coordenadas de la conformación seleccionada y una utilizada como referencia en el clúster de conformaciones.

Actividad Práctica

Cada alumno deberá:

- 1- Realizar una búsqueda bibliográfica acerca de la proteína y el ligando para identificar el sitio de unión y función de la proteína.
- 2- Analizar las interacciones del ligando en el sitio de unión de la proteína, identificando los aminoácidos del entorno y comparando las energías de unión obtenidas. Discutir los resultados. (Se puede utilizar MGLTools o VMD para visualizar).
- 3- Conclusión del trabajo.
- 4- Enviar adjunto los archivos de resultados de este tutorial.

IMPORTANTE: Todos estos puntos deben ser enviados en un documento PDF (máximo 3 hojas) al correo: bit120.unab.republica@gmail.com a más tardar el día Jueves 8 de Junio hasta las 23:59 hrs.