1 Expressions

• Our basic notions here are **expression** and **evaluation**.

Definition 1.1 (Expression)

Let $A = \{a, b, ..., z\}$ be the set of names.

- i. all names are expressions;
- ii. if ω_1 and ω_2 are expressions, so is $(\omega_1 \omega_2)$;
- iii. if ω is an expression and α is a name, then $(\lambda \alpha.\omega)$ is an expression.
- iv. nothing else is an expression.
- Some example expressions:

$$x \qquad (xy) \qquad (x(yz)) \qquad ((xy)z)$$

$$(\lambda x.x) \qquad (\lambda y.(\lambda x.x)) \qquad (\lambda z.(x(\lambda y.(yz)))) \qquad (x(\lambda z.(\lambda y.(yz))))$$

$$x(\lambda x.x) \qquad (\lambda y.(\lambda x.x))(\lambda x.x) \qquad (\lambda y.(\lambda x.x))(\lambda x.x)(xy) \qquad (x(yz))((xy)z)$$

• Note that in lambda calculus we write fx rather than the usual f(x) to represent the application of function f to the argument x.

Notational conventions:

i. Omit the outermost parentheses:

$$x$$
 xy $x(yz)$ $(xy)z$ $\lambda x.x$ $\lambda y.(\lambda x.x)$ $\lambda z.(x(\lambda y.(yz)))$ $x(\lambda z.(\lambda y.(yz)))$

ii. Parentheses associate to left:

$$fxyz \equiv (((fx)y)z)$$

iii. Stacked lambdas:

$$(\lambda f.(\lambda x.(f(fx)))) \equiv \lambda f \lambda x.(f(fx))$$
$$\equiv \lambda f x.(f(fx))$$

• The notions of bondage, freedom and substitution we covered in predicate logic apply here as well.

2 β -reduction

- An expression of the form $(\lambda \alpha. \gamma)\omega$ is called a β -redex.
- It can be β -reduced to $\gamma[\omega/\alpha]$, called a reduct, if ω is free for α in γ .
- A lambda expression can be reduced by turning all the redexes to reducts, which results in a β -normal form.
- Some example reductions:

$$(\lambda f.fx)g \to_{\beta} gx$$

$$(\lambda f.fx)ga \to_{\beta} gxa$$

$$(\lambda f.fx)(ga) \to_{\beta} gax$$

$$(\lambda f\lambda x.fx)ga \to_{\beta} ga$$

• There may be more than one redex in a expression:

$$(\lambda x.y)((\lambda z.zz)(\lambda w.w)) \rightarrow_{\beta} (\lambda x.y)((\lambda w.w)(\lambda w.w))$$
$$\rightarrow_{\beta} (\lambda x.y)(\lambda w.w) \rightarrow_{\beta} y$$

• Another reduction of the same expression would be:

$$(\lambda x.y)((\lambda z.zz)(\lambda w.w)) \rightarrow_{\beta} y$$

- The first is called the applicative order reduction; the second is called the 3.2 Arithmetic normal order reduction.
- Reduce the following expressions:

$$(\lambda x.mx)j$$

$$(\lambda y.yj)m$$

$$(\lambda x.\lambda y.y(yx))jm$$

$$(\lambda y.yj)(\lambda x.mx)$$

$$(\lambda x.xx)(\lambda y.yyy)$$

3 Lambda calculus in action: some examples

3.1 Logic

• Let's define the truth values:

$$\mathbf{T} \equiv \lambda x \lambda y. x$$
$$\mathbf{F} \equiv \lambda x \lambda y. y$$

- Verify that $\lambda x \lambda y. yxy$ behaves like and in prefix notation (i.e. $\wedge pq$).
- Can you think of lambda expressions for \vee and -?
- What about an if-then-else function that applies to the test, a function to execute if the test is true and a function to execute if the test is false.

• Number can be represented as lambda expressions in the following way:

$$0 \equiv \lambda f \lambda x.x$$

$$1 \equiv \lambda f \lambda x. f x$$

$$2 \equiv \lambda f \lambda x. f (f x)$$

$$3 \equiv \lambda f \lambda x. f (f (f x))$$

$$\vdots$$

• A successor function which returns n+1 given n is:

$$\mathbf{S} \equiv \lambda a \lambda f \lambda x. f(afx)$$

• Here are addition and multiplication (again in prefix notation); verify that they do what they are meant to do.

$$+ \equiv \lambda a \lambda b \lambda f \lambda x. a f(b f x)$$
$$\times \equiv \lambda a \lambda b \lambda f. a(b f)$$