

Тестирование гипотез

Тест гипотез . Параметрические тесты. Z,T критерий. Зависимые и независимые выборки, Двусторонний и односторонний тест Проверка на нормальность.

План курса

Что будет на уроке сегодня

- 📌 Параметрические тесты. Z и t критерии
- Алгоритм проведения тестирования гипотез
- 🖈 Зависимые и независимые выборки
- 🎓 Проверка на нормальность

Центральная предельная теорема

Пусть генеральная совокупность имеет любое распределение с средним арифметическим μ и дисперсией σ^2 , тогда

$$\bar{X} \to N \left(\mu, \frac{\sigma^2}{n}\right)$$

Статистическая гипотеза – это предположение о неизвестном распределении случайных величин, соответствующих каким-либо представлениям о том явлении, которое изучается.

Алгоритм для тестирования гипотез

- ✓ Формулирование нулевой H_0 и альтернативной гипотез H_1
- ✓ Выбор уровня статистической значимости α
- ✓ Выбор статистического критерия
- ✓ Расчет наблюдаемого критерия
- ✓ Сравнение табличного и наблюдаемого значения
- ✓ Вывод

Формулирование нулевой H_0 и альтернативной гипотез H_1

Нулевая гипотеза H_0 - это утверждение о свойствах генеральной совокупности, которое кажется правдоподобным, но требует проверки.

Альтернативной гипотезой H_1 является любая действительная гипотеза, отличная от нулевой.

Пример 1 : в группе плацебо давление в среднем снизилось на 10 мм рт.ст , а в группе на новом препарате за то же время на 25 мм рт.ст. стоит задача доказать эффективность препарата.

 $H_0: \mu = \mu_0$

 $H_1: \mu > \mu_0$

Формулирование нулевой H_0 и альтернативной гипотез H_1

Пример 2 : Утверждается, что шарики для подшипников имеют диаметр 10мм проверить эту гипотезу, если в выборке из n=16 шариков, среднее оказалось равным 10,3 мм.

$$H_0: \mu_1 = \mu_0$$

$$H_1: \mu_1 > \mu_0$$

Формулирование нулевой H_0 и альтернативной гипотез H_1

- 1. Новое утверждение всегда вкладывается в альтернативную гипотезу H_1
- 2. Пока не будет доказано, что нулевая гипотеза H_0 ложная, она считается истинной

Выбор уровня статистической значимости α

Чаще всего для α выбирают значения:

0.01 (1%)

0.05 (5%)

0.1 (10%)

Критический регион

Выбор статистического критерия

- Z критерий
- ✓ известна σ генеральной совокупности

- t критерий (критерий Стьюдента)
- ✓ если σ генеральной совокупности неизвестна

При больших размерах выборок результаты Z- теста и t-теста дают схожие значения p-value* (* эту величину рассмотрим на следующих слайдах)

Расчет наблюдаемого критерия

•
$$t_{\mathrm{H}} = \frac{\bar{X} - \mu}{\sigma_{\mathrm{H}} / \sqrt{n}}$$

Сравнение табличного и наблюдаемого значения. Вывод

x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616

Таблица z-значений

Варианты ошибок при тестировании гипотез

Ошибка І рода : мы отвергаем Н0,когда она верна

Уровень значимости α –вероятность ошибки I рода

Ошибка II рода: мы принимаем H0,когда она неверна

β- вероятность ошибки II рода

(1- β)-мощность теста – вероятность отклонить НО, когда верна Н1

Варианты альтернативной гипотезы (z распределение):

$$H_o: \mu = \mu_0$$

 $H_1: \mu < \mu_0$

$$H_o: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

$$Z_{\rm H} = \frac{\bar{X} - \mu}{\boldsymbol{\sigma} / \sqrt{n}}$$

Варианты альтернативной гипотезы (z распределение):

$$H_o: \mu = \mu_0$$

 $H_1: \mu < \mu_0$

$$H_o: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

$$t_{\rm H} = \frac{\bar{X} - \mu}{\boldsymbol{\sigma}_{\rm H} / \sqrt{n}}$$

Этапы проверки гипотезы

- 🗸 $\,$ Формулирование нулевой $\,H_0\,$ и $\,$ альтернативной гипотез $\,H_1\,$
- ✓ Выбор уровня статистической значимости α
- ✓ Выбор статистического критерия
- ✓ Расчет наблюдаемого критерия
- ✓ Сравнение табличного и наблюдаемого значения
- ∕ Вывод

Тестирование гипотезы о средней арифметической нормально распределенной популяции, когда среднее квадратичное отклонение известно

Пример:

Утверждается, что шарики для подшипников имеют диаметр 10мм. Используя односторонний критерий α =0,05, проверить эту гипотезу, если в выборке из n=16 шариков, среднее оказалось равным 10,3 мм, а дисперсия нам известна и равна 1

Формулирование гипотез:

$$H_o: \mu = \mu_0$$

 $H_1: \mu > \mu_0$

Выбор критерия

$$Z_{\rm H} = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

ПРОДОЛЖЕНИЕ ПРИМЕРА

$$\alpha = 0.05$$
$$Z_{\rm T} = 1.65$$

$$Z_{\rm H} = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} = \frac{10.3 - 10}{1 / \sqrt{16}} = 1.2$$

Вывод: шарики для подшипников имеют диаметр 10 мм . Гипотеза верна при $\alpha = 0.05$

P- value

P- value $\,$ –вероятность, что значение критерия окажется не меньше критического, при условии справедливости H_o

P-value на графике – это вероятность в распределение тест-статистика, которая лежит за пределами наблюдаемого значения

P- value > α , мы принимаем H_o

P- value $< \alpha$, отвергаем нулевую гипотезу

Пример задачи. Распределение Стьюдента.

Пример: продавец утверждает, что он изготавливает детали размером 10 мм. Взята выборка из 12 деталей. Сигма генеральной совокупности неизвестна.

```
. . .
import numpy as np
from scipy import stats
x=np.array([10.50,9.94,10.42,10.47,10.4,9.93,9.17, 9.26,10.11, 10.15, 10.5, 10.47])
np.mean(x)
10.1100000000000001
np.std(x,ddof=1)
0.4683238972412927
len(x)
t= (10.11-10)/(0.468/np.sqrt(12))
0.8142119180879295
```

$$t_{\scriptscriptstyle \mathrm{H}} = rac{ar{X} - \mu}{oldsymbol{\sigma}_{\scriptscriptstyle \mathrm{H}}/\sqrt{n}}$$

Таблица Стьюдента

Найдем табличное значение критерия Стьюдента для выборки из 12 деталей и α =5%.

 $t_{\scriptscriptstyle \rm T}~\approx 1.8$

Интерпретация результата pvalue

```
stats.ttest_lsamp(x,10)
Ttest_1sampResult(statistic=0.8136488014166606, pvalue=0.43310585815519953)
                          t = 0.814
```

Вывод: размер деталей 10 мм на уровне значимости 5%

Виды статистических гипотез

• Одновыборочный тест

- Двухвыборочный тест
- ✓ С независимыми выборками

stats.ttest_ind() # для независимых выборок

✓ С зависимыми выборками

stats.ttest_rel() # для зависимых выборок

Тест Шапиро- Уилка

```
import numpy as np
import pylab
import scipy.stats as stats
s=np.random.normal(0,1,50)
array([ 0.43507927, 1.12302794, -1.76378535, -0.32484652, 0.25193946,
      -1.58486552, -0.74597495, 0.27302867, -0.77653299, -0.12801778,
       0.44396807, -0.80571221, -0.38895459, 0.65446725, 2.0436492,
       0.29404962, -1.53355959, 0.13827812, 1.66355153, -0.13573367,
       0.5227811 , 0.35510889 , -0.06720652 , -0.16222717 , -0.93790625 ,
       2.1139018 , 1.3912777 , -0.65442247 , -0.93968824 , 0.55763116 ,
      -0.12623996, -1.20722968, -1.34055146, 0.44679731, -1.60493754,
      -0.8595879 , -0.58670928 , 0.68185516 , 0.00330427 , 2.0326811 ,
       0.07547452, -0.32851781, 0.38514654, -0.70570828, -0.65930789,
      -1.01643873, 1.64351553, 1.60437097, 0.22644044, 0.75850462])
stats.shapiro(s)
(0.9684699177742004, 0.20040656626224518)
```


QQ-график

```
import pylab
import scipy.stats as stats
stats.probplot(s, dist= "norm", plot= pylab)
pylab.show()
```


Проверка на нормальность

Конец