

www.**eritecampinas**.com.br

PROFESSOR DANILO

ATIVIDADE AVALIATIVA 4° BIMESTRE

ONDULATÓRIA – ITINERÁRIO – 07/10/2024

NOTA:

NOME:

ATIVIDADE AVALIATIVA 2 – 4° BIMESTRE

Parte 1 - Experimental

OBJETIVO

Medir o poder rotatório da sacarose.

A primeira parte desta atividade consiste em coletar dados experimentais e não irá compor a nota desta atividade.

Assim, os alunos que faltarem não serão penalizados por isso e os dados experimentais serão compartilhados.

Primeiramente, vamos produzir uma solução de água com sacarose. A solubilidade máxima da sacarose em água é dada pelo gráfico a seguir:

Curva de Solubilidade da sacarose em água

Figura 1: Curva de solubilidade da sacarose em água

Para termos certeza de que vamos conseguir dissolver a sacarose com facilidade, vamos escolher um valor para a massa de sacarose por massa de água bem inferior à solubilidade dada pelo gráfico acima.

1. VALOR ESCOLHIDO DE MASSA DE SACAROSE POR MASSA DE ÁGUA:

Concentração (C)______ g sacarose/ ml de água

Assume que a densidade da água é de 1 g/ml.

Agora, precisamos medir as dimensões do aquário para determinar o volume de água que vamos preparar de solução.

2. DIMENSÕES DO AQUÁRIO, EM DECÍMETROS:

Comprimento interno do aquário (L):	dm
Largura interna do aquário (W): _	dm
Altura de água (H):	dm

Agora, vamos determinar a massa de sacarose que vamos utilizar para a solução. Para isso, resolva os exercícios número 1 e 2.

3. VOLUME DE ÁGUA UTILIZADO, EM MILITROS:

Volume de água (V)_____ ml

4. MASSA DE SACAROSE (MEDIDO NA BALANÇA) UTILIZADO NESSE EXPERIMENTO:

Massa de sacarose (ms)_____ ml

Uma vez tendo a solução, podemos determinar o poder rotatório do açúcar $[\alpha]_{\lambda}^{T}$. Nessa nossa representação, λ representa o comprimento de onda do laser que vamos utilizar e T a temperatura, em °C (graus Célsius) da água durante o experimento. Anote estes dados abaixo:

5. COMPRIMENTO DE ONDA DO LASE UTILIZADO (EM NANÔMETROS):

Comprimento de onda do laser (λ)_____ nm

6. TEMPERATURA DA SOLUÇÃO

Temperatura da solução (T)_____°C

Com isso podemos escrever o poder rotatório $[\alpha]_{\lambda}^{T}$ da sacarose com os valores do comprimento de onda e da temperatura.

7. PODER ROTATÓRIO DA SACAROSE $[\alpha]_{\lambda}^{T}$ PARA AS CONDIÇÕES DO EXPERIMENTO:

[α]–

A **lei de Biot** nos fornece uma relação entre o ângulo de rotação α (em graus) no campo eletromagnético causado pela solução de substância oticamente ativa (no nosso caso, a sacarose), o poder rotatório da substância de estudo $[\alpha]_{\lambda}^{T}$ para determinado comprimento de onda λ e temperatura T, a distância percorrido pela luz L na solução (em decímetro) e a concentração da substância oticamente ativa C (em g/ml). Esta relação (**lei de Biot**) é apresentada abaixo:

$$\alpha = [\alpha]_{\lambda}^{T} \times L \times C$$
 [Lei de Biot]

Vamos determinar o poder rotatório da sacarose a partir de dois valores de L, pois podemos virar o aquário. Para ajudar com os cálculos, vamos colocar abaixo os dados que já temos:

8. DADOS OBTIDOS ATÉ AGORA:

 L_1 ____ dm L_2 ____ dm C _____ g/ml

Vamos efetuar as medidas dos ângulos de rotação para os dois comprimentos. Para isso, devemos verificar no nosso polarímetro qual a posição para que a intensidade do laser, ao passar pelo filtro polarizador, seia mínima.

Usando o transferidor acoplado ao experimento, indique se tivemos que rotacionar o transferidor no sentido horário ou antihorário e de quanto tivemos que rotacionar (α_0).

9. SENTIDO DE ROTAÇÃO DO TRASNFERIDOR E ÂNGULO INICIAL

Sentido de rotação: _______ α_0 ______

Por fim, com o aquário posicionado adequadamente, meça as posições angulares ($\alpha_{\textit{final1}}$ e $\alpha_{\textit{final2}}$) do transferidor para ambos os comprimentos considerados no experimento.

10. POSIÇÕES ANGULARES COM A SOLUÇÃO

 $lpha_{ extit{final1}}$ ______

www.**eritecampinas**.com.br

Colégio

PROFESSOR DANILO	ATIVIDADE AVALIATIVA 4° E	BIMESTRE	ONDULATÓR	MA – ITINERÁRIO – 07/10/2024
	ores dos ângulos de rotação para lizados e termine de resolver os			1 ponto
exercícios avaliativos a seguir.		7. Para $[\alpha]_5^2$	$_{98}^{20} = +66,5$, qual a	cor da luz utilizada? Considere a
Parto 2 Evara	ícios avaliativos	tabela a seg	uir para responder	
Parte 2 – Exercícios avaliativos		C	or da luz	Frequência da cor (10 ¹⁴ Hz)
			Violeta	6,70 a 7,50
	1 ponto		Anil	6,00 a 6,89
1. Com base no item 2 da Part	te 1 – Experimental, determine o		Azul	5,70 a 5,99
	no experimento, em mililitros (ml).		Verde	5,30 a 5,69
			Amarela	5,00 a 5,29
			laranjada	4,80 a 4,99
			/ermelha	4,00 a 4,79
		Note e ado		
		A velocidad	de da luz é 3⋅10 ⁸ r	n/s ;
		1 nm = 10 ⁻⁹	⁹ m;	
				de onda, velocidade de uma onda
	1 ponto	e a sua fre	quência é:	
2. Com base no exercício 2 e no	item 2 da Parte 1 – Experimental,		V =	$=\lambda \cdot f$;
	arose que vamos utilizar no			nacional, a velocidade é em m/s,
experimento.			ento de onda é en	n metros (m) e a frequência em
		hertz (Hz).		
	1 ponto			
3 Com hase nos exercícios ante	eriores e nas medidas obtidas na			
	ne os ângulos de rotação (α_1 para			
•	io do angulos do rotação (aq para			1 ponto
L_1 e α_2 para L_2).		Consider	e uma solução d	e sacarose cujo poder rotatório
		$[\alpha]_{598}^{20} = +66,$	5, o comprimento	percorrido pela luz foi de 1 dm e o
		ângulo de ro	otação obtido foi d	e 10°. Determine a concentração
		dessa soluç		
		,		
	1 ponto			
4. Com base na lei de Biot. det	termine a unidade de medida de			
$[\alpha]_{\lambda}^{T}$.				
$[\omega]_{\lambda}$.				1 ponto
		9. Se o com	nprimento da soluc	ão for muito grande, e ângulo de
				180 °C e isso pode acarretar um
				ue estamos querendo medir a
	!			uma amostra. Se a concentração
				$[\alpha]_{598}^{20} = +66.5$, qual o comprimento
	1 ponto		-	um ângulo de rotação de 180°?
5. Com base nas instruções dos	s exercícios anteriores, determine	minimo dess	sa solução para dai	um angulo de rotação de 160 :
	para as condições do presente			
experimento. Lembre-se que for	•			
experimento. Lembre-se que for	am reitas duas medidas.			
	!			[]
	!	40 0	ada da (/ / ·	1 ponto
				Interior nos faz perceber que não
				e quantas voltas o campo o em uma solução de substância
				nha que o ângulo de rotação real
As próximas 5 questões são			ntração também real de 1 g/ml e	
	o de base para comparar com	-		-
nosso resultado experimental				ento de 3 dm. Qual o ângulo de
	1 nonto			r medindo e qual a concentração
6 Na literatura é possívol opos	1 ponto untrar que o poder rotatório para a			ado complementa a justificativa do
v. Na meratura, e possiver enco	iliai que o pouei iolalollo pala a	porque o p	roressor sugeriu i	uma concentração tão baixa de

açúcar.

sacarose $\left[\alpha\right]_{598}^{20}=+66,5$, nas mesmas unidades que trabalhamos

neste experimento. Qual a temperatura e comprimento de onda a

que se refere este poder rotatório?