

REINFORCEMENT LEARNING

Lecture 2 : Dynamic Programming

Ibrahim Sammour

December | 2023

EPISODIC and CONTINUING TASKS

Episodic tasks:

- Finite amount of time.
- Has a terminal state.
- Examples:
 - Car racing from a start to a finish line.
 - Playing a chess game.
 - Navigating through a maze.

Continuing tasks:

- Does not have a terminal state.
- Examples:
 - Stock trading agent.
 - Autonomous car with no clear destination.

OPTIMAL POLICY – Episodic Tasks

Episode 0: π_0

Episode 1: π_1

Episode 2: π_2

π_0	a_1	a_2
s_1	0.5	0.5
s_2	0.5	0.5
s_3	0.5	0.5

π_1	a_1	a_2
s_1	0.6	0.4
s_2	0.7	0.3
s_3	\bigcirc .	0.9

π_2	a_1	a_2
s_1	0.3	0.7
s_2	0.8	0.2
s_3	0.6	0.4

Cumulative Reward

$$\bar{r} = r_t + \gamma * r_{t+1} + \gamma^2 * r_{t+2} + \cdots + \gamma^T * r_T$$

Value Function in a single run (Bellman)

$$V(s_t) = r_t + \gamma V(s_{t+1})$$

Bellman Optimality

$$V(s_t) = \max_{a} [r_t + \gamma V(s_{t+1}) \mid s_t = s]$$

Richard Bellman

Bellman Expectation Equation

$$V_{\pi}(s_t) = \mathbb{E}_{\pi}[r_t + \gamma V_{\pi}(s_{t+1}) \mid s_t = s]$$

We calculate this equation at the end of the episode

It is an expectation because it includes a probability

Richard Bellman

Another representation of Bellman equation

$$V_{\pi}(s_t) = \sum_{a} \pi(a \mid s_t) \sum_{s' : r} p(s', r \mid s_t, a) [r_t + \gamma V_{\pi}(s_{t+1})]$$

 $\sum_{t=0}^{\infty} \pi(a \mid s_t)$: Sum of probabilities of all possible actions at state s_t

$$\sum_{s'\cdot r}^{\infty} p(s',r\mid s_t,a): Sum\ of\ probabilities\ of\ transisioning\ to\ state\ s'$$

OPTIMAL POLICY — Episodic Tasks

We calculate a new value function at the end of each episode

End of Episode 0: V_{π_0}

End of Episode 1: V_{π_1}

End of Episode 2: V_{π_2}

The new value function is used to update the policy

$$\pi_0 \Rightarrow Episode \ 0 \Rightarrow V_{\pi_0} \Rightarrow \pi_1 \Rightarrow Episode \ 1 \Rightarrow V_{\pi_1} \Rightarrow \dots$$

Another representation of Bellman equation

$$V_{\pi}(s_t) = \sum_{a} \pi(a \mid s_t) \sum_{s' : r} p(s', r \mid s_t, a) [r_t + \gamma V_{\pi}(s_{t+1})]$$

State	1	2	3
7	-]	-4	Goal (-1)
2	-2	-]	-7
3	-]	-2	-]
4 ement Learning -	Start December 2023	-]	-3

π_1	a_1	a_2
s_1	0.6	0.4
s_2	0.7	0.3
s_3	\bigcirc .	0.9

Ibrahim Sammour - Reinford

Action Value function

$$Q(s_t, a) = ??$$

$$Q(s_t, a) = [r_t + \gamma Q(s_{t+1}, a_{t+1}) | s_t = s, a_t = a]$$

$$Q_{\pi}(s_t, a) = ??$$

$$Q_{\pi}(s_t, a) = \mathbb{E}_{\pi}[r_t + \gamma Q_{\pi}(s_{t+1}, a_{t+1}) \mid s_t = s, a_t = a]$$

Action Value Function

Another representation of action value function

$$Q_{\pi}(s_{t}, a_{t}) = \sum_{s' \cdot r} p(s', r \mid s_{t}, a) [r_{t} + \gamma Q_{\pi}(s_{t+1}, a) \mid s_{t} = s, a_{t} = a]$$

$$\sum_{s' \cdot r} p(s', r \mid s_t, a) : Sum \ of \ probabilities \ of \ transisioning \ to \ state \ s'$$

Policy Iteration

Two steps:

- 1- Policy Evaluation: Asses the value of states under the current policy π .
 - Apply Bellman equation

$$V_{\pi}(s_t) = \sum_{a} \pi(a \mid s_t) \sum_{s':r} p(s',r \mid s_t,a) [r_t + \gamma V_{\pi}(s_{t+1})]$$

Policy Iteration

2- Policy Improvement: Update the policy based on the current value function estimate.

$$\pi'(s) = \operatorname{argmax}_{a} \sum_{s',r} p(s',r \mid s,a)[r + \gamma V_{\pi}(s')]$$

Greedily select actions that maximizes the expected reward

Continue until $\pi'(s)$ stabilizes

$$\pi^* = \pi'$$

Value Iteration

Single Step:

Update using Bellman optimality equation:

$$V(s) = \max_{a} \sum_{s',r} p(s',r \mid s,a)[r + \gamma V(s')]$$

Repeat until it converges to V*

Then:

$$\pi^*(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r \mid s,a)[r + \gamma V^*(s')]$$