|Chapter 7 Energy of a System

Energy

Every physical process that occurs in the Universe involves energy and energy transfer/transformations.

Conservation of Energy states that energy cannot be created or destroyed, only transferred.

If the total amount of energy in a system changes, it can only be due to the fact that energy has crossed the boundary of the system by some method of energy transfer.

Formulas

- **Kinetic** Energy (Associated with motion/velocity): $\frac{1}{2}mv^2$
- Potential Energy:
 - Gravitational Potential Energy: mgh
 - *Elastic* Potential Energy: $\frac{1}{2}kx^2$
- Internal Energy: Associated with temperature

Work

Work W done on a system by an agent exerting a constant force on a the system is the product of the magnitude, F of the force, the magnitude Δr of the displacement of the point of application of the force, and $\cos\theta$, where θ is the angle between the force and the displacement vectors.

 $W = F\Delta r\cos\theta$

- Displacement: The distance over which force is applied.
- Work Requirement: Work occurs only if a force moves an object through displacement.
- Perpendicular Force: No work is done if force is perpendicular to displacement.
- Scalar Nature: Work is scalar and cumulative. In isolated systems with only conservative forces, zero displacement results in zero total work.

Work in Pushing a Block

- ullet The normal force, n and the gravitational force, mg, do not work on the object
 - $\cos \theta = \cos 90^\circ = 0$
- The force F does do work on the object
- $W = (F imes \cos heta) imes \Delta r = F imes (\Delta r imes \cos heta)$

Units of Work

- Scalar quantity
- SI Unit is Joule $(J = N \cdot m)$

Energy Transfer

- If work done is **positive**, energy is *transferred to* the system
- If work done is **negative**, energy is *transferred out* from the system
- If a system interacts with its environment, this is a transfer of energy

Scalar Product

- The scalar product of two vectors is written as $\overrightarrow{A} \cdot \overrightarrow{B}$, this is also called the dot product
- $\overrightarrow{A} \cdot \overrightarrow{B} = A B \cos \theta$

- Scalar product is commutative
 - $A \cdot B = B \cdot A$
- The scalar product obeys the distributive law of multiplication
 - $A \cdot (B+C) = A \cdot B + A \cdot C$

Work Produced by Multiple Forces

- If more than one force acts on a system and the system *can be modeled as a particle*, the total work down on the system is the work produced by the net force
- If the system *cannot be modeled as a particle*, then the total work is equal to the algebraic sum of the work produced by the individual forces

Hooke's Law

 $F_s = -kx$

- k is the *spring constant* and it measures the stiffness of the spring
- ullet x is the position of the block with respect to the equilibrium position (x=0)

When x is **positive**: spring is stretched, F_s is **negative**

When x is **0**: equilibrium position, F_s is **0**

When x is **negative**: spring is compressed, F_s is **positive**

The force exerted by the spring is always directed opposite to the displacement from equilibrium

 ${\it F_s}$ is called the *restoring force*

If the block is released it will oscillate back and forth between x and -x

Work produced by a Spring

- Identify the block as the system
 - $W_s=rac{1}{2}x_{max}^2$

Spring with an Applied Force

- Suppose a force F_{app} from an external agent, stretches the spring
- The applied force is equal and opposite to the spring force
- $F_{app} = -F_s = -(-kx) = kx = \frac{1}{2}kx_{max}^2$

Kinetic Energy

- Kinetic Energy is the energy of a particle due to its motion
 - $K=rac{1}{2}mv^2$
- A change in kinetic energy is one possible result of doing work to transfer energy into a system
- When work is done on a system and the only change in the system is in its speed, the work done by the **net** force equals the change in kinetic energy of the system.

Work-Kinetic Energy Theorem

• The normal and gravitational forces do no work since they are perpendicular to the direction of the displacement $W = F\Delta x = \Delta K = \frac{1}{2}mv^2 - 0$

Non-isolated System

- An non-isolated system is one that interacts with or is influenced by its environment
 - It would not interact with its environment

Internal Energy

- The energy associated with an object's temperature is called its internal energy, E_{int}
- The friction does work and increases the internal energy of the surface

Potential Energy

- Potential energy is energy related to the configuration of a system in which the components of the system interact by forces
 - Elastic potential energy stored in a spring
 - Gravitational potential energy, G.P.E. = mgh

Power

- The time rate of energy transfer is called power
- The average power is given by $P=rac{W}{\Delta t}$ when the method of energy transfer is work

Instantaneous Power

- The $\it instantaneous\ power$ is the limiting value of the average power as Δt approaches zero

$$ullet P = rac{W}{\Delta t} = rac{dW}{dt} = rac{F imes dr}{dt} = F imes rac{dr}{dt} = F imes v$$

Units of Power

- The SI unit of power is called the Watt
 - $\bullet \quad 1\,Watt = 1\,Joule/second = 1kg \cdot m^2/s^3$
- Horsepower can also be used
 - $\bullet \quad 1\,hp = 746\,W$
- Units of power can also be used to express units of work or energy
 - $1\,kWh = (1000\,W)(3600\,s) = 3.6 \times 10^6\,J$, Energy transferred in 1 hour at a constant rate