Identifying latent space geometry of network formation models via analysis of curvature

Shane Lubold, Arun Chandrasekhar, Tyler McCormick

May 17th, 2021

Latent Space Model

Talk Overview

▶ Different geometries lead to networks with different properties [Asta and Shalizi, 2015].

Talk Overview

- ▶ Different geometries lead to networks with different properties [Asta and Shalizi, 2015].
- ▶ Estimating the geometry of a network is critical!

Talk Overview

- Different geometries lead to networks with different properties [Asta and Shalizi, 2015].
- Estimating the geometry of a network is critical!
- Our contribution: propose the first data-driven, HT framework for estimating geometry!

Model Inputs

1. Latent space $\mathcal{M}^p(\kappa)$ with dimension p and curvature κ .

Model Inputs

- 1. Latent space $\mathcal{M}^p(\kappa)$ with dimension p and curvature κ .
- 2. Node-specific effects $\nu_1, \ldots, \nu_n \in (-\infty, 0]$.

Model Inputs

- 1. Latent space $\mathcal{M}^p(\kappa)$ with dimension p and curvature κ .
- 2. Node-specific effects $\nu_1, \ldots, \nu_n \in (-\infty, 0]$.
- 3. Node locations z_1, \ldots, z_n on $\mathcal{M}^p(\kappa)$.

Model Inputs

- 1. Latent space $\mathcal{M}^p(\kappa)$ with dimension p and curvature κ .
- 2. Node-specific effects $\nu_1, \ldots, \nu_n \in (-\infty, 0]$.
- 3. Node locations z_1, \ldots, z_n on $\mathcal{M}^p(\kappa)$.

We consider un-directed graph G drawn according to

$$P(G_{ij} = 1|z, \nu) = \exp(\nu_i + \nu_j - d_{\mathcal{M}}(z_i, z_j))$$
 (1)

Model Inputs

- 1. Latent space $\mathcal{M}^p(\kappa)$ with dimension p and curvature κ .
- 2. Node-specific effects $\nu_1, \ldots, \nu_n \in (-\infty, 0]$.
- 3. Node locations z_1, \ldots, z_n on $\mathcal{M}^p(\kappa)$.

We consider un-directed graph G drawn according to

$$P(G_{ij} = 1|z, \nu) = \exp(\nu_i + \nu_j - d_{\mathcal{M}}(z_i, z_j))$$
 (1)

Question: Given G drawn from (1), what geometry generated G?

Model Inputs

- 1. Latent space $\mathcal{M}^p(\kappa)$ with dimension p and curvature κ .
- 2. Node-specific effects $\nu_1, \ldots, \nu_n \in (-\infty, 0]$.
- 3. Node locations z_1, \ldots, z_n on $\mathcal{M}^p(\kappa)$.

We consider un-directed graph G drawn according to

$$P(G_{ij} = 1|z, \nu) = \exp(\nu_i + \nu_j - d_{\mathcal{M}}(z_i, z_j))$$
 (1)

Question: Given G drawn from (1), what geometry generated G?

Contribution: Provide a HT framework to answer this!

Candidate Geometries

Candidate Geometries

Candidate Geometries

➤ Original paper: [Hoff et al., 2002, Handcock et al., 2007, Hoff, 2005]

- ➤ Original paper: [Hoff et al., 2002, Handcock et al., 2007, Hoff, 2005]
- ► Selecting dimension: [Oh and Raftery, 2001]

- ➤ Original paper: [Hoff et al., 2002, Handcock et al., 2007, Hoff, 2005]
- ► Selecting dimension: [Oh and Raftery, 2001]
- ightharpoonup Network properties ightharpoonup geometry type. [Smith et al., 2019]

- Original paper: [Hoff et al., 2002, Handcock et al., 2007, Hoff, 2005]
- ► Selecting dimension: [Oh and Raftery, 2001]
- Network properties → geometry type. [Smith et al., 2019]
- Consistency of parameters: [Shalizi and Asta, 2017]

- Original paper: [Hoff et al., 2002, Handcock et al., 2007, Hoff, 2005]
- ► Selecting dimension: [Oh and Raftery, 2001]
- Network properties → geometry type. [Smith et al., 2019]
- Consistency of parameters: [Shalizi and Asta, 2017]
- Applications
 - ► CEO behavior [Friel et al., 2016]
 - Triadic data [Sosa and Rodriguez, 2018],
 - Anomaly detection [Lee et al., 2020]
 - Many many others!
- Extensions

- ▶ Original paper: [Hoff et al., 2002, Handcock et al., 2007, Hoff, 2005]
- ► Selecting dimension: [Oh and Raftery, 2001]
- Network properties → geometry type. [Smith et al., 2019]
- ► Consistency of parameters: [Shalizi and Asta, 2017]
- Applications
 - ► CEO behavior [Friel et al., 2016]
 - ► Triadic data [Sosa and Rodriguez, 2018],
 - Anomaly detection [Lee et al., 2020]
 - Many many others!
- Extensions
 - ▶ time-series [Salter-Townshend and McCormick, 2017]

- Original paper: [Hoff et al., 2002, Handcock et al., 2007, Hoff, 2005]
- ► Selecting dimension: [Oh and Raftery, 2001]
- Network properties → geometry type. [Smith et al., 2019]
- ► Consistency of parameters: [Shalizi and Asta, 2017]
- Applications
 - ► CEO behavior [Friel et al., 2016]
 - Triadic data [Sosa and Rodriguez, 2018],
 - Anomaly detection [Lee et al., 2020]
 - Many many others!
- Extensions
 - ▶ time-series [Salter-Townshend and McCormick, 2017]
 - various geometry types [Asta and Shalizi, 2015]

- Original paper: [Hoff et al., 2002, Handcock et al., 2007, Hoff, 2005]
- ► Selecting dimension: [Oh and Raftery, 2001]
- Network properties → geometry type. [Smith et al., 2019]
- Consistency of parameters: [Shalizi and Asta, 2017]
- Applications
 - ► CEO behavior [Friel et al., 2016]
 - Triadic data [Sosa and Rodriguez, 2018],
 - Anomaly detection [Lee et al., 2020]
 - Many many others!
- Extensions
 - ▶ time-series [Salter-Townshend and McCormick, 2017]
 - ▶ various geometry types [Asta and Shalizi, 2015]
 - Partial network data [McCormick and Zheng, 2015]

(Euclidean)
$$H_0: \mathcal{M} = \mathbb{R}^p$$
, $H_a: \mathcal{M} \neq \mathbb{R}^p$

(Euclidean)
$$H_0: \mathcal{M} = \mathbb{R}^p$$
, $H_a: \mathcal{M} \neq \mathbb{R}^p$

(Spherical)
$$H_0: \mathcal{M} = \mathbb{S}^p, H_a: \mathcal{M} \neq \mathbb{S}^p$$

(Euclidean)
$$H_0: \mathcal{M} = \mathbb{R}^p$$
, $H_a: \mathcal{M} \neq \mathbb{R}^p$

(Spherical)
$$H_0: \mathcal{M} = \mathbb{S}^p$$
, $H_a: \mathcal{M} \neq \mathbb{S}^p$

(Hyperbolic)
$$H_0: \mathcal{M} = \mathbb{H}^p$$
, $H_a: \mathcal{M} \neq \mathbb{H}^p$

▶ Given $G \sim LS(\mathcal{M})$, we want to test

(Euclidean)
$$H_0: \mathcal{M} = \mathbb{R}^p, H_a: \mathcal{M} \neq \mathbb{R}^p$$

(Spherical)
$$H_0: \mathcal{M} = \mathbb{S}^p$$
, $H_a: \mathcal{M} \neq \mathbb{S}^p$

(Hyperbolic)
$$H_0: \mathcal{M} = \mathbb{H}^p$$
, $H_a: \mathcal{M} \neq \mathbb{H}^p$

Assume that $\kappa \in [-b, -a] \cup \{0\} \cup [a, b]$, with b > a > 0.

Convert hypotheses into easily tested conditions!

To create hypothesis testing framework, we have three steps:

1. Show that the eigenvalues of distance matrices for points on $\mathcal M$ tell us the geometry. So the eigenvalues become our test statistics.

- 1. Show that the eigenvalues of distance matrices for points on $\mathcal M$ tell us the geometry. So the eigenvalues become our test statistics.
- 2. Estimate distances between LS positions using graph.

- 1. Show that the eigenvalues of distance matrices for points on $\mathcal M$ tell us the geometry. So the eigenvalues become our test statistics.
- 2. Estimate distances between LS positions using graph.
- 3. Use sampling uncertainty to construct distribution of test statistic.

- 1. Show that the eigenvalues of distance matrices for points on $\mathcal M$ tell us the geometry. So the eigenvalues become our test statistics.
- 2. Estimate distances between LS positions using graph.
- 3. Use sampling uncertainty to construct distribution of test statistic.

Embedding Conditions

Theorem ([Schoenberg, 1935])

Let D contains distances between z_1, \ldots, z_K . Then, $\{z_1, \ldots, z_K\} \stackrel{isom}{\to} \mathbb{R}^p$ for some p if and only if F(D) is psd, where

$$F(D) = -1/2JD \circ DJ.$$

and J is the $K \times K$ centering matrix.

Embedding Conditions - Example

Embedding Conditions - Example

$$\lambda_1(F(D)) = 0$$
 $F(D)$ is psd

Embedding Conditions - Example

$$\lambda_1(F(D)) = 0$$
 $F(D)$ is psd

Embedding Conditions - Example

$$\lambda_1(F(D)) = 0$$
 $F(D)$ is psd

$$\lambda_1(F(D)) < 0$$
 $F(D)$ is not psd

If D is **ANY** distance matrix for points on \mathcal{M} :

If D is **ANY** distance matrix for points on \mathcal{M} :

If D is **ANY** distance matrix for points on \mathcal{M} :

$$H_0: \mathcal{M} = \mathbb{R}^p, \quad H_a: \mathcal{M} \neq \mathbb{R}^p$$

$$\updownarrow$$

$$H_0: \lambda_1(F(D)) \geq 0, \quad H_a: \lambda_1(F(D)) < 0.$$

► Similar results hold for spherical and hyperbolic spaces.

If D is **ANY** distance matrix for points on \mathcal{M} :

- ► Similar results hold for spherical and hyperbolic spaces.
- ► Main point: Eigenvalues of distance matrix tell us the geometry! So how do we find points on M?

To create hypothesis testing framework, we have three steps:

To create hypothesis testing framework, we have three steps:

- 1. Show that the eigenvalues of distance matrices for points on $\mathcal M$ tell us the geometry. So the eigenvalues become our test statistics.
- 2. Estimate distances between LS positions using graph.
- 3. Use sampling uncertainty to construct distribution of test statistic.

Convert probabilities to distances

Suppose
$$u_i=0$$
, so
$$P(\textit{G}_{ij}=1|z)=\exp(-\textit{d}(z_i,z_j))\;.$$

Convert probabilities to distances

Suppose
$$\nu_i = 0$$
, so

$$P(G_{ij}=1|z)=\exp(-d(z_i,z_j)).$$

Now solve for distance

$$d(z_i,z_j) = -\log(P(G_{ij}=1|z)).$$

Convert probabilities to distances

Suppose $\nu_i = 0$, so

$$P(G_{ij}=1|z)=\exp(-d(z_i,z_j)).$$

Now solve for distance

$$d(z_i, z_j) = -\log(P(G_{ij} = 1|z)).$$

But how do we estimate $P(G_{ij} = 1|z)$?

Embedding Problem

Let's use cliques!

Embedding Problem

Let's use cliques!

Embedding Problem

Let's use cliques!

Nodes in cliques C_k and $C_{k'}$ are at roughly the same positions,

$$P(G_{kk'}=1|\nu,z)$$

Nodes in cliques C_k and $C_{k'}$ are at roughly the same positions,

$$P(G_{kk'}=1|
u,z)pprox rac{1}{\ell^2}\sum_{i\in C_k}\sum_{j\in C_{k'}}G_{ij}$$

Nodes in cliques C_k and $C_{k'}$ are at roughly the same positions,

$$P(G_{kk'}=1|\nu,z) pprox rac{1}{\ell^2} \sum_{i \in C_k} \sum_{j \in C_{k'}} G_{ij} := \hat{p}_{k,k'}$$
 .

and $\hat{d}_{k,k'} = -\log(\hat{p}_{k,k'})$ by graph model!

Nodes in cliques C_k and $C_{k'}$ are at roughly the same positions,

$$P(G_{kk'}=1|\nu,z) pprox rac{1}{\ell^2} \sum_{i \in C_k} \sum_{j \in C_{k'}} G_{ij} := \hat{p}_{k,k'}$$
 .

and $\hat{d}_{k,k'} = -\log(\hat{p}_{k,k'})$ by graph model!

Nodes in cliques C_k and $C_{k'}$ are at roughly the same positions,

$$P(G_{kk'} = 1 | \nu, z) \approx \frac{1}{\ell^2} \sum_{i \in C_k} \sum_{j \in C_{k'}} G_{ij} := \hat{\rho}_{k,k'}.$$

and $\hat{d}_{k,k'} = -\log(\hat{p}_{k,k'})$ by graph model!

$$\hat{D} = \begin{pmatrix} 0 & -\log\left(\frac{2}{25}\right) & -\log\left(\frac{3}{25}\right) \\ -\log\left(\frac{2}{25}\right) & 0 & -\log\left(\frac{1}{25}\right) \\ -\log\left(\frac{3}{25}\right) & -\log\left(\frac{1}{25}\right) & 0 \end{pmatrix}$$

Nodes in cliques C_k and $C_{k'}$ are at roughly the same positions,

$$P(G_{kk'}=1|\nu,z)pprox rac{1}{\ell^2}\sum_{i\in C_k}\sum_{i\in C_{k'}}G_{ij}:=\hat{p}_{k,k'}.$$

and $\hat{d}_{k,k'} = -\log(\hat{p}_{k,k'})$ by graph model!

$$\hat{D} = \begin{pmatrix} 0 & -\log\left(\frac{2}{25}\right) & -\log\left(\frac{3}{25}\right) \\ -\log\left(\frac{2}{25}\right) & 0 & -\log\left(\frac{1}{25}\right) \\ -\log\left(\frac{3}{25}\right) & -\log\left(\frac{1}{25}\right) & 0 \end{pmatrix}$$

Find K cliques of size ℓ and compute \hat{D} using these cliques.

To create hypothesis testing framework, we have three steps:

To create hypothesis testing framework, we have three steps:

- 1. Show that the eigenvalues of distance matrices for points on $\mathcal M$ tell us the geometry. So the eigenvalues become our test statistics.
- 2. Estimate distances between LS positions using graph.
- 3. Use sampling uncertainty to construct distribution of test statistic.

Bootstrapping $\lambda_{\min}(F(D))$

Bootstrapping - Euclidean!

Bootstrapping - Not Euclidean!

To create hypothesis testing framework, we have three steps:

To create hypothesis testing framework, we have three steps:

1. Show that the eigenvalues of distance matrices for points on $\mathcal M$ tell us the geometry. So the eigenvalues become our test statistics.

To create hypothesis testing framework, we have three steps:

- 1. Show that the eigenvalues of distance matrices for points on \mathcal{M} tell us the geometry. So the eigenvalues become our test statistics.
- 2. Estimate distances between LS positions using graph.

To create hypothesis testing framework, we have three steps:

- 1. Show that the eigenvalues of distance matrices for points on $\mathcal M$ tell us the geometry. So the eigenvalues become our test statistics.
- 2. Estimate distances between LS positions using graph.
- 3. Use sampling uncertainty to construct distribution of test statistic.

To create hypothesis testing framework, we have three steps:

- 1. Show that the eigenvalues of distance matrices for points on $\mathcal M$ tell us the geometry. So the eigenvalues become our test statistics.
- 2. Estimate distances between LS positions using graph.
- 3. Use sampling uncertainty to construct distribution of test statistic.

 $G \rightarrow Cliques$

To create hypothesis testing framework, we have three steps:

- 1. Show that the eigenvalues of distance matrices for points on $\mathcal M$ tell us the geometry. So the eigenvalues become our test statistics.
- 2. Estimate distances between LS positions using graph.
- 3. Use sampling uncertainty to construct distribution of test statistic.

 $\mathsf{G} \to \mathsf{Cliques} \to \hat{D} \to \mathsf{Dist.}$ of Test Statistic .

Simulations

▶ We generate graphs on n = 1200 nodes.

Simulations

- ▶ We generate graphs on n = 1200 nodes.
- We generate 25 sets of LS positions, then 100 networks from each set.
 - First draw K group centers. Create equal sized groups.
 - Distribute LS locations around these group centers.

Simulations

- ▶ We generate graphs on n = 1200 nodes.
- ▶ We generate 25 sets of LS positions, then 100 networks from each set.
 - First draw K group centers. Create equal sized groups.
 - ▶ Distribute LS locations around these group centers.
- We draw $\nu_i \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(-0.2, 0)$.

Type 1 error approaches α as clique size increases.

Power: As number of cliques increases, power increases.

Power: As number of cliques increases, power increases.

Banerjee, Duflo, Chandrasekhar and Jackson Data

- > 75 villages from Karnakata, India.
- ► We explored, for example, how predicted geometry affects likelihood of loans between villagers.

- ▶ We proposed first tests of latent space geometry. (curvature and dimension not discussed).
- ▶ We showed our methods identify signal in data consistent with economic intuition.

- ▶ We proposed first tests of latent space geometry. (curvature and dimension not discussed).
- ▶ We showed our methods identify signal in data consistent with economic intuition.

 \mathbf{G}

- ▶ We proposed first tests of latent space geometry. (curvature and dimension not discussed).
- ► We showed our methods identify signal in data consistent with economic intuition.

 $G \rightarrow Cliques$

- ▶ We proposed first tests of latent space geometry. (curvature and dimension not discussed).
- ▶ We showed our methods identify signal in data consistent with economic intuition.

$$\mathsf{G} \to \mathsf{Cliques} \to \hat{D}$$

- ▶ We proposed first tests of latent space geometry. (curvature and dimension not discussed).
- ► We showed our methods identify signal in data consistent with economic intuition.

 $\mathsf{G} o \mathsf{Cliques} o \hat{\mathcal{D}} o \mathsf{Dist.}$ of Test Statistic .

Future Work

- How to combine three HTs into one estimate of geometry?
- Can we test if the constant curvature assumption is satisfied?
- ▶ What if there are few cliques? Different geometry characterizations might lead to better tests [Gu et al., 2019]?
- ➤ The sub-sampling method requires several parameters. Can we use a simpler resampling method, like [Levin and Levina, 2019]?

More Information

At https://slubold.github.io/

- Arxiv pre-print
- Code
- ▶ Blog post on major points of paper
- ► These slides!

References I

In Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, pages 102–110. AUAI Press.

Friel, N., Rastelli, R., Wyse, J., and Raftery, A. E. (2016). Interlocking directorates in irish companies using a latent space model for bipartite networks.

Proceedings of the National Academy of Sciences, 113(24):6629–6634.

Gu, A., Sala, F., Gunel, B., and Ré, C. (2019). Learning mixed-curvature representations in products of model spaces.

References II

- Handcock, M. S., Raftery, A. E., and Tantrum, J. M. (2007). Model-based clustering for social networks.

 J. R. Statist. Soc. A.
- Hoff, P. (2005).

 Bilinear mixed-effects models for dyadic data.

 Journal of the American Statistical Association.
- Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association.
- Lee, J., Li, G., and Wilson, J. D. (2020). Varying-coefficient models for dynamic networks. Computational Statistics Data Analysis.
- Levin, K. and Levina, E. (2019).
 Bootstrapping networks with latent space structure.

References III

McCormick, T. H. and Zheng, T. (2015).

Latent surface models for networks using aggregated relational data.

Journal of the American Statistical Association, 110(512):1684–1695.

Oh, M.-S. and Raftery, A. (2001).

Bayesian multidimensional scaling and choice of dimension.

Journal of the American Statistical Association.

Salter-Townshend, M. and McCormick, T. H. (2017). Latent space models for multiview network data. Annals of Applied Statistics.

Schoenberg, I. (1935).
A remark to maurece frechets article.

Ann. of Math, 36(3).

References IV

Shalizi, C. R. and Asta, D. (2017).

Consistency of maximum likelihood for continuous-space network models

arXiv preprint arXiv:1711.02123.

Smith, A. L., Asta, D. M., Calder, C. A., et al. (2019). The geometry of continuous latent space models for network data.

Statistical Science, 34(3):428–453.

Sosa, J. and Rodriguez, A. (2018).

A latent space model for cognitive social structures data.

Clique sizes

- ► We do not need all cliques!
- ► We

Figure 1: Number of cliques of size $\ell \in \{4,5,6\}$ in the Indian villages data

Picking Cliques

$$\hat{C}_{1}, \dots, \hat{C}_{K} \in \underset{C_{1}, \dots, C_{k}}{\operatorname{argmin}} \sum_{i,j}^{K} |C_{i} \cap C_{j}|$$
such that $|C_{i}| = \ell$ for each i and
$$\hat{P}(C_{1}, \dots, C_{K}) \text{ does not contains a 0.}$$
(2)