

## (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau



(43) International Publication Date  
7 June 2001 (07.06.2001)

PCT

(10) International Publication Number  
**WO 01/40146 A1**

(51) International Patent Classification<sup>7</sup>: C07B 37/02, (74) Agent: MURGITROYD & COMPANY: 373 Scotland Street, Glasgow G5 8QA (GB).

(21) International Application Number: PCT/GB00/04584

(81) Designated States (*national*): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(22) International Filing Date: 1 December 2000 (01.12.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:  
9928290.7 1 December 1999 (01.12.1999) GB

(71) Applicant (*for all designated States except US*): THE QUEEN'S UNIVERSITY OF BELFAST [GB/GB]; University Road, Belfast BT7 1NN (GB).

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

**Published:**

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.



**WO 01/40146 A1**

(54) Title: PROCESS FOR PREPARING AMBIENT TEMPERATURE IONIC LIQUIDS

(57) Abstract: A process for preparing an ionic liquid or salt, preferably in which the cation comprises an N-alkylated base and the anion is a carboxylate, formed by reaction between an organic base and an alkylating agent, wherein the alkylating agent is a fluorinated ester or an alkyl sulfonate, is described. Suitable organic bases include imidazoles, substituted imidazoles, pyridines and substituted pyridines. The so-formed products can be subsequently transformed into different ionic liquids or salts by metathesis.

1

2

3

4

5

6

7

8

9

10     "Process for Preparing Ambient Temperature Ionic  
11     Liquids"

12

13     This invention relates to a process for processing  
14     ambient temperature ionic liquids.

15

16     Ambient temperature ionic liquids based upon the 1,3-  
17     dialkylimidazolium cation were first reported in 1982  
18     by Wilkes *et al*<sup>1</sup>. These systems were based upon the  
19     chloroaluminate anion and although they possess many  
20     useful properties (e.g. wide liquids, thermal stability  
21     and large electrochemical window) they are reactive to  
22     certain materials and are sensitive to moisture. An  
23     air and water stable system was developed by Wilkes and  
24     Zaworotko in 1992 based upon the tetrafluoroborate  
25     anion<sup>2</sup>. Since this report a wide range of ionic liquids  
26     containing different anions have appeared in the  
27     literature<sup>3</sup>. These systems have received much attention  
28     and recent studies have shown that ambient temperature  
29     ionic liquids can be used as solvents for a range of  
30     chemical reactions including polymerisation<sup>4</sup>,

hydrogenation<sup>5</sup>, Friedel-Crafts acylations<sup>6</sup> and for the Diels-Alder reaction<sup>7</sup>.

3

4 The principal route currently employed in the synthesis  
5 of the air and moisture stable 1,3-dialkylimidazolium  
6 ionic liquids is outlined in Scheme 1.

7

8

9

10

11



21

23  
24 The first step with this method is the alkylation of 1-  
25 alkylimidazole with a haloalkane to give a 1,3-  
26 dialkylimidazolium halide salt. The second step is  
27 metathesis of the halide for the appropriate anion.  
28 The second step can be carried out with either an acid  
29 or a metal salt to eliminate H-Hal as or precipitate  
30 M<sup>+</sup>Hal respectively. It is here that the intrinsically  
31 good solvating properties of these ionic liquids become  
32 a problem. In many of the syntheses the ionic liquids

1 solvate the halide waste so effectively that complete  
2 removal is not effected. Halide contamination of the  
3 ionic liquids is a problem that must be overcome for  
4 them to be used as reaction solvents on a large scale.  
5 For instance, when used as media for transition metal  
6 catalysed reactions the presence of strongly co-  
7 ordinating halide ions have been shown to reduce  
8 catalyst activity<sup>5</sup>. The opportunity exists in many  
9 reactions for the residual halides to be oxidised to  
10 halogens which will result with many substrates and can  
11 corrode apparatus. In addition, this method always  
12 generates a stoicheiometric amount of halide salt as a  
13 waste product. When metathesis is carried out using a  
14 silver salt the route becomes prohibitively expensive  
15 upon scale up. Employing the alkali metal salts  
16 reduces the cost, but not the waste.

17

18 We have developed a new method for the synthesis of the  
19 air- and moisture-stable ionic liquids that overcomes  
20 the possibility of halide impurities and reduces the  
21 amount of waste products. This method is based upon  
22 the use of fluorinated esters or alkyl sulfonates as  
23 replacements for haloalkanes.

24

25 Thus, according to one aspect of the present invention,  
26 there is provided a process for preparing an ionic  
27 liquid or salt formed by reaction between an organic  
28 base and an alkylating agent, wherein the alkylating  
29 agent is a fluorinated ester or an alkyl sulfonate.

30

31 The so-formed product of the organic base and ester or  
32 sulfonate could subsequently be transformed into a

1 different ionic liquid or salt with a range of  
2 different anions by metathesis, preferably using an  
3 acid or metal salt.

4

5 In one embodiment of the present invention, the cation  
6 formed is an N-alkylated base.

7

8 For this, the organic base could be an imidazole or a  
9 substituted imidazole. Preferably, the substituted  
10 imidazolium salt is a 1,3-dialkylimidazolium  
11 trifluoroethanoate and the (n-1)-substituted imidazole  
12 is a 1-alkylimidazole.

13

14 Alternatively, the organic base is a pyridine or a  
15 substituted pyridine.

16

17 Other organic bases include the phosphines and  
18 sulfides.

19

20 Also preferably a co-solvent is used.

21

22 The following description will focus on using the  
23 organic base 1-methylimidazole, the imidazole most  
24 commonly used in the preparation of ambient temperature  
25 ionic liquids, and ethyl trifluoroethanoate as the  
26 alkylating agent.

27

28 The synthesis is similar to that mentioned above in  
29 Scheme 1, in that there is an alkylation and a  
30 metathesis step to give the desired ionic liquid as  
31 shown in Scheme 2.

32



10

11 Scheme 2.

12

13 The reaction of 1-methylimidazole with ethyl  
 14 trifluoroethanoate to give 1-ethyl-3-methylimidazolium  
 15 trifluoroethanoate, [emim][TFA], proceeds cleanly and  
 16 smoothly at moderate temperature (70°C). However, some  
 17 reduction in the rate of reaction may occur as the  
 18 reaction proceeds. The primary reason for the  
 19 reduction in rate is that unreacted 1-methylimidazole  
 20 concentrates in the ionic liquid phase as it forms,  
 21 while the ethyl trifluoroethanoate is only slightly  
 22 soluble in [emim][TFA]; thus reactants are kept apart.  
 23 Addition of a co-solvent to solubilise reactants and  
 24 products, for example acetonitrile, overcomes this  
 25 problem and a significant rate enhancement is observed.  
 26 Alternatively, the reaction may be performed in an  
 27 autoclave.

28

29 [emim][TFA] is an ambient temperature ionic liquid with  
 30 all the expected characteristics in its own right. In  
 31 addition, it is a good starting point for the synthesis

1 of other air- and moisture-stable ionic liquids with  
2 metathesis of the trifluoroethanoate anion easily  
3 achieved. Addition of the desired acid to [emim][TFA]  
4 yields a reaction mixture with only one volatile  
5 material, trifluoroethanoic acid (b.pt.72 °C), which is  
6 easily removed under vacuum. This is true as long as  
7 the added acid is of higher boiling point than CF<sub>3</sub>CO<sub>2</sub>H,  
8 which most acids of interest are (e.g. HPF<sub>6</sub>, HBF<sub>4</sub>,  
9 H<sub>3</sub>PM<sub>12</sub>O<sub>40</sub> (M = W, Mo), H<sub>3</sub>PO<sub>4</sub>). This gives the desired  
10 ionic liquid, without extractions and washings, in a  
11 halide free state.

12

13 The use of longer alkyl chain esters (e.g. hexyl  
14 trifluoroethanoate) works equally as well with 1-  
15 alkylimidazoles to give the desired product. The use  
16 of more fluorinated esters (e.g. ethyl  
17 heptafluorobutanoate) is still possible although they  
18 may have the drawback of generating a less volatile  
19 carboxylic acid by-product.

20

21 Alkyl sulfonates for use as the alkylating agent are  
22 also well known in the art, such as a methyl sulfonate;  
23 more particularly butyl methylsulfonate.

24

25 According to a second aspect of the present invention  
26 there is provided a process for preparing an ionic  
27 liquid or salt formed by reaction between an organic  
28 base and fluorinated alkylating agent whenever the so-  
29 formed fluorinated by-product has a lower boiling point  
30 than the acid added to the alkylating agent.

31

1   The cation formed is preferably an N-alkylated base.  
2   This is a general method that can be used to synthesise  
3   a range of (imidazolium, possibly substituted  
4   imidazolium) ionic liquids and low melting point salts.  
5  
6   The present invention extends to any product obtainable  
7   from any of the new processes herein described.  
8   Particularly, it extends to a 1,3-dialkylimidazolium-  
9   based ionic liquid whenever prepared by reacting  
10   1-alkylimidazole with a fluorinated ester, followed by  
11   metathesis.  
12  
13   The present invention also extends to the use of any  
14   ester able to act in a similar manner to form an  
15   ambient temperature ionic liquid with an organic base.  
16  
17   The reaction conditions required to effect the  
18   processes of the present invention will be known or  
19   calculable to those skilled in the art.  
20  
21   The use of fluorinated compounds, although expensive,  
22   is desired for two reasons. Firstly, fluorination of  
23   the ester activates the molecule for the alkylation  
24   step, and secondly, fluorinated products are more  
25   volatile and of lower boiling point than their non-  
26   fluorinated analogues, thus making separation of the  
27   ionic liquid easier. The cost of using fluorinated  
28   esters should not be prohibitively expensive as the  
29   carboxylic acid by-product can be recycled. An overall  
30   process is envisaged as shown in Scheme 3.



Scheme 3

19

20 R = hydrocarbyl, or substituted hydrocarbyl.

21 X = any anion such as nitrate, tetrafluoroborate,  
22 hexafluorophosphate, etc.

23 mim = 1-methylimidazole.

24

25 R and X are used in their normal context as is well  
26 known in the art.

27

28 As scheme 3 shows, the waste trifluoroethanoic acid is  
29 recovered and converted into the reactive ester either  
30 through a straight esterification or via the anhydride.  
31 This gives the following balanced equation for the  
32 synthesis of ambient temperature ionic liquids;



2

3 The present invention thus provides a new synthetic  
4 route to ambient temperature ionic liquids that ensures  
5 the product is halide-free. If the metathesis is  
6 performed with an acid rather than a metal salt, then  
7 the product will be both halide-free and metal-free.  
8 In addition, the alkylating agent can be regenerated  
9 from inexpensive and readily available materials, thus  
10 reducing waste.

11

12 **Experimental**

13

14 **Preparation of 1-ethyl-3-methylimidazolium**  
15 **trifluoroethanoate, [emim][TFA].**

16

17 1-Methylimidazole (2.5g, 30.4mmol) and ethyl  
18 trifluoroethanoate (25.8g, 181.6mmol) were dissolved in  
19 ethanenitrile (20cm<sup>3</sup>). The resultant solution was  
20 placed in a sealed glass vessel and stirred at 70°C for  
21 5 days giving a pale yellow solution. The volatiles  
22 were removed *in vacuo* giving [emim][TFA] in 100% yield.

23

24 **Preparation of 1-ethyl-3-methylimidazolium**  
25 **tetrafluoroborate, [emim][BF<sub>4</sub>]**

26

27 To [emim][TFA] (1.0g, 4.5mmol) was added one equivalent  
28 of fluoroboric acid (0.412cm<sup>3</sup> of 10.8M aq. solution, 4.5  
29 mmol) and the mixture was stirred overnight at room  
30 temperature. Heating under vacuum at 100°C removes  
31 trifluoroethanoic acid and water giving [emim][BF<sub>4</sub>].

1   **Preparation of 1-ethyl-3-methylimidazolium  
2   hexafluorophosphate, [emim][PF<sub>6</sub>]**

3

4   To [emim][TFA] (2.0g, 8.9mmol) dissolved in water  
5   (10cm<sup>3</sup>) was added hexafluorophosphoric acid (2cm<sup>3</sup> of  
6   6.79M aq. solution, 13.58mmol). This gave [emim][PF<sub>6</sub>]  
7   as a white precipitate which was collected by vacuum  
8   filtration.

9

10   **Preparation of butyl methanesulfonate (BuOMs)**

11

12   To a 500 cm<sup>3</sup> round-bottomed flask, equipped with a  
13   magnetic stirrer and pressure equalising dropping  
14   funnel, was added butanol (55.6 g, 0.75 mol),  
15   triethylamine (55.7 g, 0.55 mol) and dichloromethane  
16   (300 cm<sup>3</sup>). Methanesulfonyl chloride (57.3 g, 0.05 mol)  
17   was then added dropwise over a two-hour period from the  
18   dropping funnel, with cooling from an ice bath. The  
19   mixture was stirred for a further 24 hours at room  
20   temperature. The reaction mixture was filtered,  
21   concentrated on a rotary evaporator, and distilled (bp  
22   - 80-90 °C at 5 mm Hg). This gave 68.1 g (98%) of a  
23   colourless oil.

24

25   **Preparation of 1-butyl-3-methylimidazolium  
26   methanesulfonate ([bmim][Oms])**

27

28   In a 100 cm<sup>3</sup> round-bottomed flask, was added butyl  
29   methanesulfonate (15.3 g, 0.10 mol) and  
30   1-methylimidazole (8.21g, 0.10mol). A reflux condenser  
31   was attached and the mixture heated at 100 °C for 48

1    hours. A vacuum was applied to the flask (1 mm Hg) to  
2    remove unreacted starting materials for 12 hours at  
3    80 °C. The low-melting salt [bmim][Oms] (22.3 g, 95%)  
4    solidified on cooling.

5

6    **References**

7

8    1. J.S. Wilkes, J.A. Levisky, R.A. Wilson and C.L.  
9       Hussey, *Inorg. Chem.*, 1982, 21, 1263.

10

11    2. J.S., Wilkes and M.J. Zaworotko, *J. Chem. Soc.,*  
12       *Chem. Commun.*, 1992, 965.

13

14    3. C.M. Gordon, J. Holbrey, A.R. Kennedy and K.R.  
15       Seddon, *J.Mater. Chem.*, 1998, 1, 2627; E.I. Cooper  
16       and E.J.M. O'Sullivan, in *Molten Salts*, Eds. R.J.  
17       Gale, G. Blomgren and H. Kojima, The  
18       Electrochemical Society Proceedings Series,  
19       Pennington, NJ, 1992, 16, 386; P. Bonhote, A.P.  
20       Diaz, N. Papageorgiou, K. Kalanasundaram and M.  
21       Gratzel, *Inorg. Chem.*, 1996; 35, 1168; M. Fields,  
22       F.V. Hutson, K.R. Seddon and C.M. Gordon, World  
23       Patent, WO 98/06106, 1998.

24

25    4. A.A.K. Abdul-Sada, P.W. Ambler, P.K.G. Hodgson,  
26       K.R. Seddon and N.J. Stewart, World Patent, WO  
27       95/21871, 1995.

28

29    5. Y. Chauvin, L. Mussmann and H. Olivier, *Angew.*  
30       *Chem. Int. Ed. Engl.*, 1995, 34, 2698; P.A.Z.  
31       Suarez, J.E.L. Dullius, S. Einloft, R.F. de Souza

1       and J. Dupont, *Polyhedron*, 1996, 1217; A.L.  
2       Monteiro, F.K. Zinn, R.F. de Souza and J. Dupont,  
3       *Tetrahedron-Asymmetry*, 1997, **8**, 177; P.A.Z.  
4       Suarez, J.E.L. Dullius, S. Einloft, R.F. de Souza  
5       and J. Dupont, *Inorg. Chim. Acta*, 1997, **255**, 207.  
6  
7       6. C.J. Adams, M.J. Earle, G. Roberts and K.R.  
8       Seddon, *Chem. Commun.*, 1998, 2097; J.A. Boon, J.A.  
9       Levinsky, J.L. Pflug and J.S. Wilkes, *J. Org. Chem.*  
10      1986, **51**, 480.  
11  
12      7. M.J. Earle, P.B. McCormac., and K.R. Seddon, *Green*  
13      *Chem.* 1999, **1**, 23.  
14

1       CLAIMS

2

3       1. A process for preparing an ionic liquid or salt  
4                  formed by reaction between an organic base and an  
5                  alkylating agent, wherein the alkylating agent is a  
6                  fluorinated ester or an alkyl sulfonate.

7

8       2. A process as claimed in Claim 1 wherein the cation  
9                  formed is an N-alkylated base.

10

11      3. A process as claimed in Claim 2 wherein the organic  
12                  base is an imidazole or a substituted imidazole.

13

14      4. A process as claimed in Claim 3 wherein the organic  
15                  base is a 1-alkylimidazole.

16

17      5. A process as claimed in Claim 4 wherein the organic  
18                  base is 1-methylimidazole.

19

20      6. A process as claimed in Claim 2 wherein the organic  
21                  base is a pyridine or a substituted pyridine.

22

23      7. A process as claimed in Claim 6 wherein the organic  
24                  base is an alkylpyridine.

25

26      8. A process as claimed in Claim 1 wherein the organic  
27                  base is a phosphine or a sulphide

28

29      9. A process as claimed in any one of the preceding  
30                  Claims wherein a co-solvent is used.

31

32      10. A process as claimed in Claim 9 wherein the co-  
33                  solvent is acetonitrile.

1

2     11. A process as claimed in any one of the preceding  
3       Claims wherein the reaction is carried out under  
4       pressure.

5

6     12. A process as claimed in any one of the preceding  
7       Claims wherein the anion formed is  
8       trifluoroethanoate.

9

10    13. A process as claimed in any one of the preceding  
11      Claims wherein the alkylating agent is ethyl  
12      trifluoroethanoate.

13

14    14. A process as claimed in any one of Claims 1-12  
15      wherein the alkylating agent is a methyl sulfonate.

16

17    15. A process as claimed in Claim 14 wherein the  
18      alkylating agent is butyl methylsulfonate.

19

20    16. A process as claimed in any one of the preceding  
21      Claims wherein the so-formed product is subsequently  
22      transformed into a different ionic liquid or salt by  
23      metathesis.

24

25    17. A process as claimed in Claim 16 wherein an acid or  
26      metal salt is used for the metathesis.

27

28    18. A process for preparing an ionic liquid or salt  
29      formed by reaction between an organic base and  
30      fluorinated alkylating agent whenever the so-formed  
31      fluorinated by-product has a lower boiling point  
32      than the acid added to the alkylating agent.

33

1       19. An ionic liquid or salt whenever prepared by a  
2              process as claimed in Claims 1-18.

3

4       20. A 1, 3-dialkylimidazolium trifluoroethanoate  
5              whenever prepared by a process as claimed in any one  
6              of Claims 1-18.

7

8

# INTERNATIONAL SEARCH REPORT

Inte      ional Application No  
PCT/GB 00/04584

**A. CLASSIFICATION OF SUBJECT MATTER**  
 IPC 7 C07B37/02 B01J31/02 B01J37/00

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)  
 IPC 7 C07B B01J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data, BEILSTEIN Data

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                | Relevant to claim No. |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A          | WO 95 21871 A (BP CHEM INT LTD ;ABDUL SADA ALA A K (GB); AMBLER PHILIP WILLIAM (G)<br>17 August 1995 (1995-08-17)<br>cited in the application<br>the whole document<br>-----<br>X | 1                     |
| X          | BEILSTEIN INFORMATION SERVICE; FILE:<br>XFIRE,<br>XP002163372<br>see BRN: 7736754<br>& HOWARTH ET AL.: TETRAHEDRON LETT.,<br>vol. 38, no. 17, 1997, pages 3097-3100,<br>-----     | 20                    |

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

\* Special categories of cited documents :

- \*A\* document defining the general state of the art which is not considered to be of particular relevance
- \*E\* earlier document but published on or after the international filing date
- \*L\* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- \*O\* document referring to an oral disclosure, use, exhibition or other means
- \*P\* document published prior to the international filing date but later than the priority date claimed

- \*T\* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- \*X\* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- \*Y\* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- \*a\* document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

20 March 2001

05/04/2001

Name and mailing address of the ISA  
 European Patent Office, P.B. 5818 Patentlaan 2  
 NL - 2280 HV Rijswijk  
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.  
 Fax: (+31-70) 340-3016

Authorized officer

Goetz, G

# INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/GB 00/04584

| Patent document cited in search report | Publication date | Patent family member(s) |              | Publication date |
|----------------------------------------|------------------|-------------------------|--------------|------------------|
| WO 9521871                             | A 17-08-1995     | AU 1584895              | A 29-08-1995 |                  |
|                                        |                  | BR 9505775              | A 27-02-1996 |                  |
|                                        |                  | CA 2159479              | A 17-08-1995 |                  |
|                                        |                  | CN 1123031              | A 22-05-1996 |                  |
|                                        |                  | CZ 9502576              | A 17-01-1996 |                  |
|                                        |                  | EP 0693088              | A 24-01-1996 |                  |
|                                        |                  | FI 954807               | A 09-10-1995 |                  |
|                                        |                  | JP 8509242              | T 01-10-1996 |                  |
|                                        |                  | NO 954015               | A 09-10-1995 |                  |
|                                        |                  | ZA 9501060              | A 12-08-1996 |                  |