Fermat 予想

@unaoya

2019年10月27日

- 1. Cornell-Silverman-Stevens
- 2. Darmon-Diamond-Taylor
- 3. conrad \mathcal{O} seminar http://math.stanford.edu/c̃onrad/modseminar/
- 4. 藤原先生

1 Darmon $\boldsymbol{\mathcal{O}}$ survey

特別な場合に簡略化した証明をする。

定理 1. 楕円曲線 E/\mathbb{Q} が 5 で good reduction で Galois 表現が $E_5\cong X_0(17)_5$ とする。このとき E は保型的。

 $X = X_0(17)$ について調べることで以下がわかる。

補題 1. $X_0(17)$ の $\mod 5$ 表現 $\bar{\rho}_0\colon G_\mathbb{Q} \to GL_2(\mathbb{F}_5)$ は以下をみたす。

- 1. $\det(\bar{\rho}_0)$ は円分指標 $\bar{\epsilon}$: $G_{\mathbb{Q}} \to \mathbb{F}_5^{\times}$
- $2. \bar{\chi}_2$ を位数 4 の不分岐指標として

$$|\bar{\rho}_0|_{D_5} \cong \begin{pmatrix} \bar{\chi}_1 & * \\ 0 & \bar{\chi}_2 \end{pmatrix}, \bar{\rho}_0|_{I_5} \cong \begin{pmatrix} \bar{\epsilon} & * \\ 0 & 1 \end{pmatrix}$$

 $3. 非自明指標 <math>ar{\Psi}|_{I_{17}}$ により

$$\bar{\rho}_0|_{D_{17}} \cong \begin{pmatrix} \bar{\epsilon} & \bar{\Psi} \\ 0 & 1 \end{pmatrix}$$

 $4. \bar{\rho}_0$ は全射

定義 1. A を完備ネーター局所 \mathbb{Z}_5 代数で剰余体が \mathbb{F}_5 なるものとする。 $\bar{\rho}_0$ の変形 $\rho:G_{\mathbb{Q}}\to GL_2(A)$ が許容的とは以下をみたすこと。

1. $\det \rho$ が円分指標 $\epsilon \colon G_{\mathbb{Q}} \to \mathbb{Z}_5^{\times} \subset A$

2.

$$\bar{\rho}_0|_{D_5} \cong \begin{pmatrix} \chi_1 & * \\ 0 & \chi_2 \end{pmatrix}, \bar{\rho}_0|_{I_5} \cong \begin{pmatrix} \epsilon & * \\ 0 & 1 \end{pmatrix}$$

3.

$$\bar{\rho}_0|_{D_{17}} \cong \begin{pmatrix} \epsilon & \Psi \\ 0 & 1 \end{pmatrix}$$

命題 1. E/\mathbb{Q} が 5 等分点で保型的なら T_5E は admissible

このことから以下を証明すればよい

定理 2. 全ての許容的な $\bar{ ho}_0$ の変形は保型的

保型的な変形と許容的な変形の間の全単射を構成するが、そのままでは無限集合になる。変形の係数環と分岐条件を決めて有限集合の比較をする。言い換えると $MD_\Sigma(A) \to AD_\Sigma(A)$ が各 A, Σ について全単射であることを示す。もし AD_Σ および MD_Σ が表現可能関手であればそれらを表現する間の同型を示せばよい。

定理 3 (Mazur). AD_{Σ} は有限生成局所 \mathbb{Z}_5 代数で剰余体が \mathbb{F}_5 である R_{Σ} により表現される

 $T_5X \in AD_{\Sigma}(\mathbb{Z}_5)$ なのでこれに対応する射 $\pi_{R_{\Sigma}}: R_{\Sigma} \to \mathbb{Z}_5$ が存在する。

 MD_Σ の表現可能性をあらかじめ示すことはできないが、その候補を定義する。 $N_\Sigma=17\prod_{p\in\Sigma}p^2$ とし、それに対応する Hecke 環を $T(\Sigma)$ とする。これは $\ell\nmid N_\Sigma$ なる T_ℓ と $q\in\Sigma\cup\{17\}$ なる U_q で生成される。f を X に対応する正規固有形式とし $T(\Sigma)$ の eigenform を inductive に

$$f_{\emptyset} = f, f_{\Sigma \cup \{q\}} = f_{\Sigma}(\tau) - a_q f_{\Sigma}(q\tau) + q f_{\Sigma}(q^2\tau)$$

と定義する。さらにイデアル $m_\Sigma \subset T(\Sigma)$ を $5, T_\ell - a_\ell, U_q, U_{17} + 1$ で生成されるものとし、 T_Σ を $T(\Sigma)$ の m_Σ による完備化とする。これは有限平坦局所 \mathbb{Z}_5 代数で剰余体が \mathbb{F}_5 である。さらに \mathbb{Z}_5 代数の射 $T_\Sigma \to O$ に対して、 $\Gamma_0(N_\Sigma)$ の 5 進固有形式で f_Σ と $\mod 5$ で合同なるものが対応する。特に f_σ に対応する $\pi_{T_\Sigma} \colon T_\Sigma \to \mathbb{Z}_5$ が存在する。

定理 4 (Eichler-Shimura, Carayol).

 $T(\Sigma)$ と $X_0(N_\Sigma), J_0(N_\Sigma)$ の関係。

上の定理と R_{Σ} の普遍性から $\phi_{\Sigma} \colon R_{\Sigma} \to T_{\Sigma}$ が定義される。これは π と整合的。目標は以下を示すこと。

定理 5. ϕ_{Σ} は同型

全射性は比較的容易に示せる。

1.1 可換環論

C を有限生成完備局所 \mathbb{Z}_p 代数 A と全射 π : $A \to \mathbb{Z}_p$ の組 (A,π) のなす圏とする。 $\Phi_A = \ker \pi/(\ker \pi)^2, \eta_A = \pi(Ann_A\ker \pi)$ とする。

定理 6. $R,T \in C$ で T は有限生成ねじれ自由 \mathbb{Z}_p 加群であり、 $\phi: R \to T$ を全射とする。 $|\Phi_R| \leq |\mathbb{Z}_p/\eta_T| < \infty$ ならば ϕ は同型。

定理 7. ϕ : $A \to B$ を C の全射で B は完全交差とする。 Φ_{ϕ} : $\Phi_{A} \to \Phi_{B}$ が同型で、これらが有限なら ϕ は同型。

証明. B は完全交差なので C の全射 ν_B : $U = \mathbb{Z}_p[[X_1, \dots, X_n]] \to B$ で $\ker \nu_B = (f_1, \dots, f_n)$ なるものが 取れる。 $b_i \in \ker \pi_B$ に対し Φ_ϕ が同型から $a_i \in \ker \pi_A$ で $\phi(a_i) = b_i$ なるものが取れる。これを使って ν_A : $\mathbb{Z}_p[[X_1, \dots, X_n]] \to A$ を $X_i \mapsto a_i$ として定めると中山の補題より ν_A は全射。 a_i の定義から $\ker \nu_B \supset$

 $\ker \nu_A$ である。逆が言えるか? Φ_{ν_A} : $\Phi_U \to \Phi_A$ の $\ker \Phi_A$ $\ker \Phi_A$ の $\ker \Phi_A$ の $\ker \Phi_A$ $\ker \Phi$

1.2 $\Phi_{R_{\Sigma}} \succeq \eta_{T_{\Sigma}}$

 $X = X_0(17), T = end(T_5(X)) = \{Trace(f) = 0\}$ とする。これは rank3 の自由 \mathbb{Z}_p 加群で $G_{\mathbb{Q}}$ の共役作用 を持つ。 $A = T \otimes \mathbb{Q}_p/\mathbb{Z}_p$ とする。これは $G_{\mathbb{Q}}$ 加群。

 Σ を素数の集合で $\{5,17\}$ を含まないとする。これに対し $J_r \subset H^1(\mathbb{Q}_r,A)$ を素数 r に対して以下で定める。

- 1. $r \notin \Sigma \cup \{5,17\}$ のとぎ $J_r = \ker(H^1(\mathbb{Q}_r,A) \to H^1(I_r,A))$
- 2. $r \in \Sigma$ のとぎ $J_r = H^1(\mathbb{Q}_r, A)$
- 3. $J_{17} = \ker(H^1(\mathbb{Q}_{17}, A) \to H^1(\mathbb{Q}_{17}, A/A^{\circ}_{(17)}))$
- 4. $J_5 = \ker(H^1(\mathbb{Q}_5, A) \to H^1(I_5, A/A_{(5)}^{\circ}))$

さらに

$$S_{\Sigma}(\mathbb{Q}, A) = \ker(H^1(\mathbb{Q}, A) \to \prod_r H^1(\mathbb{Q}_r, A)/J_r$$

とする。つまり $S_{\Sigma}(\mathbb{Q},A) = \{s \in H^1(\mathbb{Q},A) | s_r \in J_r\}$ とする。

 R_{Σ} は普遍変形環なので ρ^{univ} : $G_{\mathbb{Q}} \to GL_2(R_{\Sigma})$ が存在する。対応する普遍コホモロジー類を $u_{\Sigma} \in H^1(\mathbb{Q}, M_2(\Psi_{R_{\Sigma}}))$ とする。 $\det(u_{\Sigma}) = 1$ なので u_{Σ} の像は $T \otimes \Psi_{R_{\Sigma}}$ に入る。これを用いて ϕ_{Σ} : $Hom(\Psi_{\mathbb{R}_{\Sigma}}, \mathbb{Q}_5/\mathbb{Z}_5) \to H^1(\mathbb{Q}, A)$ が定義できる。

命題 2. ϕ_{Σ} は $S_{\Sigma}(\mathbb{Q}, A)$ への同型

定理 8.

$$|\mathbb{Z}_5/\eta_{T_{\Sigma}}| = \prod_{q \in \Sigma} (q-1)(a_q^2 - (q+1)^2)$$

Σの大きさに関する帰納法で示す。

- 1. $\eta_{\emptyset} = \mathbb{Z}_5$ であること。
- 2. Σ' を一つ素数を追加したものとし $\eta_{T'/T}=(q-1)(T_q^2-(a+1)^2)$ となること。

 $\Lambda = T_5(J) \otimes_T T, \Lambda' = T_5(J') \otimes_{T'} T'$ であり、

1.3 判定法の条件をみたすこと

- $\Sigma = \emptyset$ の場合に帰着できる。
- $\Sigma = \emptyset$ の場合、右辺は 1 なので、 $S_{\emptyset}(\mathbb{Q}, A)$ が自明であることを示す。

命題 3. $|S_{\emptyset}(\mathbb{Q}, A_5^*)| = 1$

証明. まず $s \in S$ と good prime q について $s_q = 0$ を示す。次に $H^1(\mathbb{Q}, A_5^*) \to H^1(K, A_5^*)$ が単射であることを示す。これを用いて証明。

 $\bar{s} \in \operatorname{Hom}(G_K, A_5^*)$ とみて、L/K を \bar{s} が $U = \operatorname{Gal}(L/K)$ を経由する最大拡大とする。 $\bar{s} \colon U \to A_5^*$ が 0 であることを言えばよい。

 $au\in\Gamma$ を適切に固定。 $h\in U$ を任意にとり、 $h au\in\Gamma$ が Frob_q なる素数 q を選ぶ。すると au の取り方から q は good prime であり、 $s_q=0$ となる。特に q の上にある K の素点 Q に対し $\overline{s}(\operatorname{Frob}_Q)=0$ となる。au の取り方から K_Q/\mathbb{Q}_q の剰余次数は 4 で、 $\operatorname{Frob}_Q=(h au)^4=h^+\in U^+$ となる。h は任意のなので \overline{s} は U^+ を消す。一方、U への $\tau\in G$ の作用は τ の定義から固有値 1 を持つ、つまり U^+ は非自明。 \overline{s} は G 同変なので $0\neq U^+\subset\ker \overline{s}\subset U$ は G 部分加群で、U は既約 G 加群なので $\ker \overline{s}=U$ 、すなわち $\overline{s}=0$ である。

 $X=X_0(17)$ の 5 等分点への $G_{\mathbb{Q}_5},G_{\mathbb{Q}_{17}}$ 作用、つまり MLT で持ち上げたい $\mod 5$ 表現 $\bar{\rho_0}$ の定義。 p=17 では \mathbb{F}^2_5 に $\begin{pmatrix} \bar{\epsilon} & \bar{\Psi} \\ 0 & 1 \end{pmatrix}$ で作用。 $\bar{\Psi}$ は分岐指標。これの End^0 に定まる表現を計算する。 End^0 の基底を

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ でとると、これらの移り先は

$$\begin{pmatrix} \bar{\epsilon} & \bar{\Psi} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \bar{\epsilon} & \bar{\Psi} \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \bar{\epsilon} & -\bar{\Psi} \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \bar{\epsilon}^{-1} & -\bar{\epsilon}^{-1}\bar{\Psi} \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -2\bar{\Psi} \\ 0 & -1 \end{pmatrix}$$

$$\begin{pmatrix} \bar{\epsilon} & \bar{\Psi} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \bar{\epsilon} & \bar{\Psi} \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & \bar{\epsilon} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \bar{\epsilon}^{-1} & -\bar{\epsilon}^{-1}\bar{\Psi} \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & \bar{\epsilon} \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \bar{\epsilon} & \bar{\Psi} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \bar{\epsilon} & \bar{\Psi} \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \bar{\Psi} & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \bar{\epsilon}^{-1} & -\bar{\epsilon}^{-1}\bar{\Psi} \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \bar{\Psi}\bar{\epsilon}^{-1} & -\bar{\epsilon}^{-1}\bar{\Psi}^{2} \\ \bar{\epsilon}^{-1} & -\bar{\epsilon}^{-1}\bar{\Psi} \end{pmatrix}$$

となる。従って A_5 への $G_{\mathbb{Q}_{17}}$ 作用は、1 次元ずつの filtration $A_5^0\subset A_5^1\subset A_5$ があって、それぞれの gr に $\epsilon,1,\epsilon^{-1}$ で作用する。

命題 4. $h_{17}=1$

証明. A_5 への $G_{\mathbb{Q}_{17}}$ 作用は、1 次元ずつの filtration $A_5^0 \subset A_5^1 \subset A_5$ があって、それぞれの gr に χ , $1, \chi^{-1}$ で作用する。ここで χ は円分指標。

 $0 \to A_5^0 \to A_5 \to A_5/A_5^0 \to 0$ から Galois コホモロジーの長完全列をかくと、

$$0 \to H^{0}(\mathbb{Q}_{17}, A_{5}^{0}) \to H^{0}(\mathbb{Q}_{17}, A_{5}) \to H^{0}(\mathbb{Q}_{17}, A_{5}/A_{5}^{0})$$

$$\to H^{1}(\mathbb{Q}_{17}, A_{5}^{0}) \to H^{1}(\mathbb{Q}_{17}, A_{5}) \to H^{1}(\mathbb{Q}_{17}, A_{5}/A_{5}^{0})$$

$$\to H^{2}(\mathbb{Q}_{17}, A_{5}^{0}) \to H^{2}(\mathbb{Q}_{17}, A_{5}) \to H^{2}(\mathbb{Q}_{17}, A_{5}/A_{5}^{0}) \to 0$$

 $h_{17} = |H^0(\mathbb{Q}_{17}, A_5^*)|/[H^1(\mathbb{Q}_{17}, A_5): \ker H^1(\mathbb{Q}_{17}, A_5) \to H^1(\mathbb{Q}_{17}, A_5/A_5^0)]$ を求める。上の完全列から $0 \to H^1(\mathbb{Q}_{17}, A_5)/\ker \to H^1(\mathbb{Q}_{17}, A_5/A_5^0) \to H^2(\mathbb{Q}_{17}, A_5^0) \to H^2(\mathbb{Q}_{17}, A_5) \to H^2(\mathbb{Q}_{17}, A_5/A_5^0) \to 0$ が完全なので

$$[H^1(\mathbb{Q}_{17}, A_5) : \ker] = \frac{h^1(A_5/A_5^0)h^2(A_5)}{h^2(A_5^0)h^2(A_5/A_5^0)}$$

となる。

双対性から $h^2(V) = h^0(V^*)$ である?

p=5 では \mathbb{F}_5^2 に $\begin{pmatrix} \bar{\epsilon} & \bar{\Psi} \\ 0 & 1 \end{pmatrix}$ で作用。 $\bar{\Psi}$ は分岐指標。これの End^0 に定まる表現を計算する。 End^0 の基底 $\begin{pmatrix} 1 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 1 \end{pmatrix} & \begin{pmatrix} 0 & 0 \end{pmatrix}$

を
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ でとると、これらの移り先は

$$\begin{pmatrix} \bar{\epsilon} & \bar{\Psi} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \bar{\epsilon} & \bar{\Psi} \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \bar{\epsilon} & -\bar{\Psi} \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \bar{\epsilon}^{-1} & -\bar{\epsilon}^{-1}\bar{\Psi} \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -2\bar{\Psi} \\ 0 & -1 \end{pmatrix}$$

$$\begin{pmatrix} \bar{\epsilon} & \bar{\Psi} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \bar{\epsilon} & \bar{\Psi} \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & \bar{\epsilon} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \bar{\epsilon}^{-1} & -\bar{\epsilon}^{-1}\bar{\Psi} \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & \bar{\epsilon} \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \bar{\epsilon} & \bar{\Psi} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \bar{\epsilon} & \bar{\Psi} \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \bar{\Psi} & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \bar{\epsilon}^{-1} & -\bar{\epsilon}^{-1}\bar{\Psi} \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \bar{\Psi}\bar{\epsilon}^{-1} & -\bar{\epsilon}^{-1}\bar{\Psi}^{2} \\ \bar{\epsilon}^{-1} & -\bar{\epsilon}^{-1}\bar{\Psi} \end{pmatrix}$$

となる。従って A_5 への $G_{\mathbb{Q}_{17}}$ 作用は、1 次元ずつの filtration $A_5^0\subset A_5^1\subset A_5$ があって、それぞれの gr に $\epsilon,1,\epsilon^{-1}$ で作用する。

命題 5. $h_5 \leq \frac{1}{25}$

証明. $\phi_1: H^1(\mathbb{Q}_5, A_5) \to H^1(\mathbb{Q}_5, A_5/A_5^0), \phi_2: H^1(\mathbb{Q}_5, A_5/A_5^0) \to H^1(I_5, A_5/A_5^0)$ とし、その合成を ϕ とする。 $|Im\phi| \ge 25$ を示したい。 $|Im\phi| \ge |Im\phi_1|/|\ker\phi_2|$ である。 $|Im\phi_1| = 125$ であることは上の補題と同様にして長完全列を書いて示せる。 $|\ker\phi_2| = 5$ は inflation-restriction 系列をかく。

 $p=\infty$ の場合。

補題 2. $h_{\infty} = |H^0(\mathbb{R}, A_5^*)| = |(A_5^*)^{G_{\mathbb{R}}}| = 25$

証明. これは $\bar{\rho}_0$ が odd であることから複素共役の固有値が -1,1,1 である。従って固定部分が \mathbb{F}_5 上 2 次元。

命題 6. $|S_{\emptyset}(\mathbb{Q}, A_5)| = 1$

証明. セルマー群の双対性から (Tate-Poitou 完全列?)。

$$\frac{|S_{\emptyset}(\mathbb{Q}, A_5)|}{|S_{\emptyset}(\mathbb{Q}, A_5^*)|} = h_{\infty} h_5 h_{17} \le 1$$

話の流れ。 $\Sigma=\emptyset$ の時には判定法の条件を満たすので、 $R_\Sigma=T_\Sigma$ が証明できる。一般の Σ はこれに帰着する。

2 Galois cohomology

etale cohomology との関係、とくに Tate-Poitou duality と Poincare duality の関係。

有限体の Brauer 群。 $G=\hat{\mathbb{Z}}$ の群コホモロジーの計算。local fields では $H^q(G,A)=\operatorname{colim} H^q(G/nG,A^{nG})$ で定義する。(これは $M\mapsto M^G$ の derived functor ではない?)A が有限もしくは可除の場合に $H^2=0$ を示す。(実際には 2 以上全て消える?)

(副有限) 群の(連続) コホモロジーをサイトの非可換コホモロジーとして解釈したい。群コホモロジーと 分類空間のコホモロジー、etale cohomology と Galois cohomology の対応

2.1 巡回群の有限係数コホモロジー

位数 n の巡回群は lens 空間を分類空間にもつ。 $\mathbb Z$ の resoution として

2.2 表現の変形と Selmer 群

 $ar{
ho}\colon G o GL_d(\mathbb{F})$ とその変形 $ho\colon G o GL_d(O/\lambda^n)$ に対し、 $Ext^1_{O/\lambda^n[G]}(ad
ho,ad
ho)$ と $H^1(G,ad
ho)$ は同型となる。これの部分群 $Ext^1_{D\cap O/\lambda^n[G]}(ad
ho,ad
ho)$ に対応する部分群として $H^1_D(G,ad
ho)\subset H^1(G,ad
ho)$ を定義し、さらに $H^1_D(G,ad
ho)=H^1_D(G,ad
ho)\cap H^1(G,ad^0
ho)$ を定義する。この時

問題 1. $Def^{\chi}_{\bar{\rho}}(\mathbb{F}[\epsilon]/\epsilon^2)$ と $H^1_D(G,ad^0\rho)$ と $Hom_{\mathbb{F}}(m_{R_D}/(\lambda,m_{R_D}^2),\mathbb{F})$ と $Hom_{O-alg}(R_D,\mathbb{F}[\epsilon/\epsilon^2)$ は同型。

一般論として deformation と H^1 の関係を SGA や小平に沿って理解する。

群のコホモロジー

群の拡大との関連について https://ncatlab.org/nlab/show/group+extension

G を群、A をアーベル群とする。 $H^2(G,A)$ と Ext(G,A) は自然同値。ここで、Ext(G,A) は G の A による中心拡大のなす群。

中心拡大とは $1 \rightarrow A \rightarrow \hat{G} \rightarrow G \rightarrow 1$ という完全列であって、A の像が \hat{G} の中心に入るものをいう。

この対応を記述する。まず cocycle $c:G^2\to A$ を用いて集合 $G\times A$ に群構造を定める。さらにこれが $H^2(G,A)$ から Ext(G,A) への射を誘導する。逆に中心拡大に対し、 $c:G^2\to A$ をつぎのように定める。まず集合としての切断 $G\to \hat{G}$ をとり、s とする。 $c(g,g')=-s(g)^{-1}s(g')^{-1}s($ これは s の選び方によらず定まる。この二つの対応が H^2 と Ext の同型を定める。

3 有限平坦群スキーム

Raynaud Ø

参考 Wood

 $F = \mathbb{F}_q, q = p^r$ とする。

F-line とは augmentation ideal の $F^ imes$ 作用による分解 $I=\oplus_{\chi\in\hat{F}^ imes}I_\chi$ の各因子が可逆イデアルであることをいう。

F-vector space の分類 R を剰余標数 p の局所環で μ_{q-1} を含むとする。この時 R 上の F-line は $\gamma_i, \delta_i \in R$ であって $i=1,\ldots,r$ で $\gamma_i\delta_i=w\in pR^{\times}$ であるもので分類できる。

特に R が strictly henselian DVR で標数 (0,p) とし、 π を素元、v(p)=e とする。この時、R 上の F-line の同型類は整数の r 個組 (n_1,\ldots,n_r) により分類さ s れる。