REDES DE COMPUTADORES 2021/2022

aula 0111 - Endereçamento IP

07/04/2022

Pedro Patinho <pp@di.uevora.pt>

(Baseado nos slides do prof. José Legatheaux Martins)

Objetivos do Capítulo

- O funcionamento da Internet exige que os computadores tenham endereços compatíveis com o protocolo IP
- *Os sistemas de endereçamento têm um grande impacto na administração, gestão e escalabilidade de uma rede
- *Saber como são construídos e afetados os endereços IP é o objeto desta lição

An expert is a man who made all the mistakes, which can be made, in a very narrow field.

- Autor: Niels Bohr

Endereços de Rede

- Para se poder enviar pacotes para um computador, é necessário indicar, através de símbolos, uma forma de designar um ponto de ligação de uma das suas interfaces à rede
- *Cada interface deve ter um endereço de rede distinto

Requisitos

- Os endereços têm de ser distintos globalmente
- É desejável evitar que tenham de ser afetados manualmente
- É desejável evitar que tenham todos de ser afetados centralmente um a um, por uma autoridade global
- *Devem facilitar a implementação dos comutadores de pacotes
- *Idealmente deve-se evitar que os comutadores tenham de ter *forwarding tables* muito grandes e difíceis de gerir

A Solução Mais Simples Seria

- Gerá-los aleatoriamente com base num grande número de bits (e.g. 128, 256, ... bits) como as chaves criptográficas
- O método seria descentralizado e permitiria grande autonomia
- Mas as tabelas de encaminhamento teriam dimensão

O (# computadores)

•Não pode ser usada na grande maioria das situações (endereço muito grande (?), dimensão dos cabeçalhos (?), dimensão das tabelas, custo da sua actualização quando há alterações, ...)

Hierarquias São uma Boa Ideia

- *Nos nomes DNS: www.fct.unl.pt
 - Domínio: afetado pelo administrador da UNL
 - Computador: afetado pelo administrador da FCT
- *Endereços IP: 193.136.126.43
 - Prefixo: afetados pelo ICANN, regional Internet registries, pelos ISPs e pelos administradores de rede
 - Computadores: estáticos ou via DHCP
- *Endereços MAC: 00-15-C5-49-04-A9
 - Blocos: afetados pela IEEE a fabricantes / vendedores
 - Interfaces: afetados pelos fabricantes

Frames Ethernet e Pacotes IP

Frames Ethernet e Pacotes IP

Os frames contêm na parte de dados mensagens dos níveis superiores (encapsuladas). Frequentemente os *frames* Ethernet transportam pacotes **IP**

Endereços IP e Endereços Mac

- Endereços IP: 32 (IPv4) ou 128 bits (IPv6)
 - Endereços do nível rede afetados com uma estrutura hierárquica e ligados à localização
 - Identificam origem/destino dos datagramas IP
- *Endereços LAN (ou MAC, Data-Link ou de nível canal)
 - Indicam origem e destino de um frame num canal multi-ponto
 - Têm 48 bits
 - Únicos à saída da fábrica
 - Com mais bits até poderiam ser aleatórios
 - Usá-los na Internet seria difícil ou mesmo impossível devido à escalabilidade do encaminhamento

Endereços IP (IPv4)

- Um número único com 32 bits
- *Identifica uma interface de um computador
- *Representado na notação: 193 . 136 . 126 . 43

3 246 947 883 — Notação decimal 1100000110001000011111000101011 — Notação binária

193.136.126.43 — Quad Notation

Mais em detalhe

- Para os computadores e os utilizadores os endereços IP parecem não ter estrutura
- Mas a rede necessita de encaminhar pacotes com base no endereço IP de destino
- Sem alguma estrutura ou hierarquia, as tabelas de encaminhamentos seriam da dimensão do número de computadores ativos (reachable)
- Mas isso significaria que os comutadores tinham de ter tabelas com milhões de endereços
- Porque não fazer como com os endereços das casas que têm uma hierarquia (país, cidade, rua, prédio, ...) ?

Os endereços IP são hierárquicos

- · Parte dita prefixo de rede e parte dita número do computador
- Também se costuma dizer a parte da rede (network) e a parte do computador (host)
- 193.134.158.0/24 é um prefixo com 24 bits

Os Prefixos IP são hierárquicos

- Os endereços IP estão organizados em intervalos da dimensão de potencias de dois
- Quanto maior o /número menor a dimensão do prefixo
- Os prefixos estão organizados em subconjuntos

O prefixo IP /32 coincide com o endereço IP e corresponde a todos os bits

Prefixos IP e Máscaras

Prefixo: 193.136.126.0/24

Máscara: 255.255.255.0

Endereço ou Prefixo da Rede

Endereço de Rede: Endereço / Dimensão do Prefixo

Notação: 193.136.120.0 / 21

Exemplos

- Vários blocos / 16 agregados
 - A FCCN tem o bloco 193.136.0.0/15
 correspondente a 193.136.0.0/16 e 193.137.0.0/16
- A FCT/UNL tem o equivalente a 8 blocos de /24 agregados
 - FCT/UNL has 193.136.120.0/21 correspondente a 193.136.120.0/24 a 193.136.127.0/24

A Noção de Rede é um Conceito Recursivo

- O universo de todas as redes da Internet tem um endereço correspondente a um prefixo de comprimento nulo
- A rede de uma instituição é um sub-prefixo do prefixo de um ISP ou de um prefixo "provider independent"

Afetação de Endereços IP

- Os prefixos são afetados hierarquicamente pela ICANN/IANA às
- RIRs (Regional Internet Registries) que por sua vez afetam sub-prefixos aos ISPs (as RIRs podem afetar endereços "provider independent" diretamente a instituições)
- Os ISPs afetam depois sub-prefixos aos seus clientes e os clientes às suas subredes e computadores

Explicações

- Separação do controlo
 - Prefixos: afetados a uma instituição ou a uma subrede
 - Endereços: afetados pela instituição aos seus computadores
- *Quem afeta prefixos IP?
 - Internet Corporation for Assigned Names and Numbers
 - · Afeta blocos de endereços às Regional Internet Registries
 - Regional Internet Registries (RIRs)
 - E.g., RIPE (Réseaux IP Européens)
 - Afetam blocos de endereços a subregiões
 - Afetam prefixos aos Internet Service Providers e às instituições grandes
 - Internet Service Providers (ISPs)
 - Afetam prefixos aos seus clientes

Encaminhamento

- *Cada comutador tem uma tabela de encaminhamento que
 - Mapeia prefixos para interfaces

- Procura nessa tabela a entrada correspondente ao prefixo que contém o endereço de destino
- E envia o pacote pela interface indicada
- *Mas se a um endereço podem corresponder várias entradas
 - Qual delas deve escolher?

Longest Prefix Match Forwarding

A Escalabilidade Baseia-se na Agregação

Visão na rede da FCCN: 193.136.120.0/21 é a FCT 193.136.135.0/24 é a

A Escalabilidade Baseia-se na Hierarquia

- Hierarquia estrita
 - Ótima para a escalabilidade
 - Não obriga toda a gente a conhecer todos os outros
 - Reduz o tamanho das tabelas
 - Reduz o número de atualizações quando alguma coisa muda
- *Hierarquia não uniforme (..../xx)
 - É muito útil pois as redes são de diferentes dimensões
 - E assim evita que as tabelas cresçam muito

No Concreto Não é Bem Assim

Multi-Homing: A Agregação Deixou de Ser Possível

Visão dos comutadores da rede core da Internet: 193.136.0.0/15 é a FCCN mas 193.136.120.0/21 é a FCT/UNL que é atingível via a FCCN e o ISP2

O resto da Internet necessita de saber que o prefixo 193.136.120.0/21 é acessível via a FCCN e o ISP2.

As tabelas de encaminhamento passaram a ter que ter duas entradas distintas para prefixos em que um é um subconjunto do outro.

A Quem Pertence um Endereço?

- Address registries
 - Existem diretorias públicas dos prefixos dos diferentes ISPs
 - Em geral estão desatualizadas
- Como consultá-las
 - UNIX: "whois -h whois.ripe.net 193.136.126.43"
 - http://www.ripe.net/whois/
 - http://www.geektools.com/whois.php

– ...

Exemplo

\$ whois -h whois.ripe.net 193.136.126.43

% This is the RIPE Database query service.

% The objects are in RPSL format.

inetnum: 193.136.120.0 - 193.136.127.255

netname: PT-FCT-UNL-1

descr: Faculdade de Ciencias e Tecnologia da Universidade Nova ...

country:PT

admin-c: RCUN1-RIPE

tech-c: RCUN1-RIPE

status: ASSIGNED PA

org: ORG-UNDL3-RIPE

remarks: SERVIP-UNL

remarks: created 19931130

mnt-by: AS1930-MNT

Geolocalização de um Endereço IP

Existem também bases de dados de localização dos endereços IP:

Geolocation data from DB-IP (Product: Full updated on 11/3/2015)				
IP Address	Country	Region	City	ISP
188.37.139.250	PT 🌌	Lisbon District	Lisbon	Vodafone Portugal
	Time Zone	Latitude	Longitude	Organization
	Europe/lisbon	38.7663	-9.09784	
Google Map for Lisbon, Lisbon District, PT (New window)				

Conclusões

- Os endereços IP têm duas partes, o prefixo e o número de computador
- Os prefixos estão associados a um sub parte da Internet (e.g. ISP, instituição, edifício, rede sem fios, ...)
- O conceito é hierárquico pois um conjunto com um único prefixo a certo nível pode decompor-se em mais subprefixos
- A decomposição acaba nos prefixos dos canais (ver adiante)
- Esta hierarquia é fundamental para a escalabilidade do encaminhamento na Internet