Chapter 14.1: Multivariate Functions

G4: Surfaces. I can identify standard quadric surfaces including: spheres, ellipsoids, elliptic paraboloids, hyperboloids, cones, and hyperbolic paraboloids. I can match graphs of functions of two variables to their equations and contour plots and determine their domains and ranges.

Mechanics

- 1. Algebraically describe the domains of each of the following functions. Then sketch them on (separate) xy-planes.
 - (a) $f(x,y) = \sqrt{x-y-1}$.
 - (b) $f(x,y) = \sqrt{(x-4)(y^2-1)}$
 - (c) $f(x,y) = \cos^{-1}(y 4x^2)$.

(d)
$$f(x,y) = \frac{1}{4 - x^2 - y^2}$$
.

(e)
$$f(x,y) = \frac{1}{\ln(4-x^2-y^2)}$$

- 2. For each of the surfaces (a)-(g), determine if the proposed descriptions of the level curves are correct. If not, give a correct descriptor. [Note: consider a point as a circle/ellipse of radius 0]
 - (a) $z = 2x^2 3y^2$; Level curves are concentric ellipses.
 - (b) $z = x^2 + y^2$; Level curves are concentric circles
 - (c) $z = \frac{1}{x+y}$; Level curves are lines, whenever $x \neq -y$.
 - (d) z = 2x + 3y; Level curves are parallel planes.
 - (e) $z = \sqrt{25 x^2 y^2}$; Level curves are concentric circles, but only if z > 5 or z < -5
 - (f) $z = \sqrt{x^2 + y^2}$; Level curves are concentric circles, but only if $z \ge 0$.
 - (g) z = xy; Level curves are hyperbolas.

Applications

3. Multivariable functions are often used in economic models to describe how one should price an asset, or how to determine the utility of a product. For example, consider a utility function u(x, y, z), where x, y, z represent three independent properties of an object (eg., price, quantity, quality), and u tells you how much you value that item. In this context, what economic significance do the level surfaces u(x, y, z) = C have (assume C is a constant). Give a example of how this phenomenon might manifest in your day-to-day life.

Extensions

- 4. Find an equation for the level surface of the function $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ passing through (1, 1, 1). Sketch a plot of this level surface in \mathbb{R}^3 .
- 5. Let $f(x,y) = (x-y)^2$. Determine the equations and shapes of the cross-sections when x = 0, y = 0, and x = y, and describe the level curves. Use this information to produce a sketch of the graph of the surface. Confirm your sketch using a 3d graphing utility.