Monitor: An Abnormality Detection Approach in Buildings Energy Consumption

Haroon Rashid, Pushpendra Singh

Buildings Consume 40% of Energy

Residential Buildings

Commercial Buildings

Buildings Waste Energy

- Faults waste up to 20%
- ON appliances in unoccupied space
- Device misconfigurations

AC ducts

Energy Consumption of Day 9 is Abnormal

Energy Consumption of Day 9 is Abnormal

Problem Definition

Develop a reliable abnormality detection method using smart meter data only

Smart meter

Time	Value	
29/11/15 00:02	204.1066437	
29/11/15 00:03	165.0479126	
29/11/15 00:03	155.0028381	
29/11/15 00:04	151.2414856	
29/11/15 00:04	150.5730286	
29/11/15 00:05	149.3900299	
29/11/15 00:05	148.5323944	
29/11/15 00:06	148.2239685	
29/11/15 00:06	148.7650452	
29/11/15 00:07	149.0418243	
29/11/15 00:07	158.4056854	
29/11/15 00:08	208.932785	
29/11/15 00:08	209.9034576	
29/11/15 00:09	149.928009	
29/11/15 00:09	150.6716309	
29/11/15 00:10	150.6894531	
29/11/15 00:10	150.5117798	
29/11/15 00:11	149.8588104	
29/11/15 00:11	149.8042297	
29/11/15 00:12	149.4410248	
29/11/15 00:12	148.8970337	
29/11/15 00:13	148.7256317	
29/11/15 00:13	148.7540283	
29/11/15 00:14	148.1561584	
29/11/15 00:14	148.4674377	
29/11/15 00:15	147.9857788	
29/11/15 00:15	148.1070557	
29/11/15 00:16	146.5702972	

Proposed Method: Monitor

Step 2: MDS

Dissimilarity Matrix

	Day1	Day2	Day3	Day4
Day1	0000	2789	1194	2699
Day2	2789	0000	2516	0254
Day3	1194	2516	0000	2371
Day4	2699	0254	2371	0000

MDS

Data Input

MDS Step

Abnormality Step

Step 3: Abnormality Detection

- Compute density for each day's consumption
- Compare densities
- Compute Normalized density corresponding to each group
- Present normalized density ad Abnormality score

Experimental Setup

- Dataset: IIIT Campus
 - Two faculty apartments, a chiller and Lecture block
 - Duration: Sixteen weeks
 - Sampling: Hourly
- K value: 4 7 [Ensemble approach]
- Baselines
 - ADM-I and ADM-II

Compare Abnormality Scores of Monitor with Existing Methods

MDS Representation & Power Consumption Signatures of Apartment

Accuracy Metric: Area Under Curve (AUC)

Monitor Increases AUC by 17%

The higher the AUC, the better is the performance

Monitor Reduces False Positives by Larger Margin

Method	Apartment 1	Apartment 2	Lecture Block	Chiller
ADM-I	15	9	7	20
ADM-II	0	1	2	2
Monitor	0	2	0	0

Effect of k on Abnormality Score

Conclusion

- Monitor improves AUC as compared to existing methods
 - Reduces false positives by large margin

Is reliable as compared to existing methods

ANNEXURE

Anomaly Detection

Effect of Aggregation Methods

MDS: Example

False Negatives

Method	Apartment 1	Apartment 2	Lecture Block	Chiller
ADM-I	0	0	2	0
ADM-II	1	1	2	2
Monitor	1	1	3	1