hhu,

Adaptively measuring quantum expectation values using the empirical Bernstein stopping rule

Supervisor: Prof. Martin Kliesch

Ugur Tepe

Why Quantum Computing

- Physical Problems
 - Quantum Chemistry
 - Condensed Matter
 - 3. ...

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical [...]

Why Quantum Computing

Mathematical Problems

- 1. Solve System of Equations
- Combinatorial Problems
- Finding Prime Factors (Shor's algorithm)
- 4. ...

$$1517 = 41 * 37$$

Qubits

- Basis: $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$
- Combine physical systems→ Tensor product ⊗

 $| 01 \rangle, |10 \rangle, |11 \rangle$ analogous

bloch.kherb.ic

Quantum Gates: X-gate

Classical

•
$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

•
$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

• X-gate: $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$X|0\rangle = |1\rangle$$

$$X|1\rangle = |0\rangle$$

bloch.kherb.io

Quantum Gates: R_y -gate

Quantum

$$|0\rangle - R_Y(\theta) - \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

•
$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

• $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
• $R_y(\theta) = \begin{bmatrix} \cos \theta/2 & -\sin \theta/2 \\ \sin \theta & \cos \theta/2 \end{bmatrix}$

$$R_{y}\left(\frac{\pi}{2}\right)|0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

$$R_{y}\left(\frac{\pi}{2}\right)|1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

och.kherb.io

Schematic Overview of VQA

Schematic Overview of VQA

Empirical Bernstein Stopping (EBS)

An adaptive sampling algorithm

Bernstein's Inequality

$$\mathbb{P}[|\bar{X}_t - \mu| \ge \epsilon] \le exp\left[-\frac{\frac{1}{2}(t\epsilon)^2}{\Sigma^2 + \frac{1}{3}Rt\epsilon}\right] \coloneqq \delta$$

So called bound form

$$|\bar{X}_t - \mu| \le \sqrt{\frac{2 \, \Sigma^2 \ln(2/\delta)}{t}} + \frac{R \ln(2/\delta)}{3t}$$

Independent and identically distributed random variable

- $X_1 \dots X_t \triangleq \text{i.i.d}$ random variables
- $a \le X_i \le b$
- $\epsilon \in R^+$
- $R \triangleq \mathsf{Range}$
- $\bar{X}_t = \frac{1}{t} \sum_{i=1}^t X_i$ $\Sigma^2 = \sum_{i=1}^t \sigma_i^2$

Bernstein's Inequality

$$\mathbb{P}[|\bar{X}_t - \mu| \ge \epsilon] \le exp\left[-\frac{\frac{1}{2}(t\epsilon)^2}{\sum^2 + \frac{1}{3}Rt\epsilon}\right] \coloneqq \delta$$

So called bound form

$$|\bar{X}_t - \mu| \leq \frac{2 \Sigma^2 \ln(2/\delta)}{t} + \frac{R \ln(2/\delta)}{3t}$$

Variance usually unknown

Independent and identically distributed random variable

- $X_1 \dots X_t \triangleq \text{i.i.d}$ random variables
- $a \le X_i \le b$
- $\epsilon \in R^+$
- $R \triangleq \mathsf{Range}$
- $\bar{X}_t = \frac{1}{t} \sum_{i=1}^t X_i$ $\Sigma^2 = \sum_{i=1}^t \sigma_i^2$

Empirical Bernstein Bound

Variance
$$\Sigma^2 \xrightarrow{\text{Replace}} \text{Empirical variance } \bar{V}_t$$

Empirical Bernstein Bound ¹

$$|\bar{X}_t - \mu| \le \sqrt{\frac{2\bar{V}_t \ln(3/\delta)}{t}} + \frac{3R \ln(3/\delta)}{t}$$

Ideally: $\bar{V}_t \ll R^2$!

Independent and identically distributed random variable

- $X_1 \dots X_t \triangleq \text{i.i.d}$ random variables
- $a \le X_i \le b$
- $\epsilon \in R^+$
- $R \triangleq \mathsf{Range}$

•
$$\bar{X}_t = \frac{1}{t} \sum_{i=1}^t X_i$$

•
$$\bar{X}_t = \frac{1}{t} \sum_{i=1}^t X_i$$

• $\bar{V}_t = \frac{1}{t} \sum_{i=1}^t (X_i - \bar{X}_t)$

Empirical Bernstein Stopping (EBS)²

Pseudo Code Implementation

- $X_1 \dots X_t \triangleq \text{i.i.d}$ random variables
- $\epsilon \in R^+$
- $1 \delta \triangleq$ Confidence
- $R \triangleq \mathsf{Range}$

•
$$\bar{X}_t = \frac{1}{t} \sum_{i=1}^t X_i$$
•
$$c(t) = \sqrt{\frac{2\bar{V}_t \ln(3/\delta_t)}{t}} + \frac{3R \ln(3/\delta_t)}{t}$$

Empirical Bernstein Stopping (EBS)²

Pseudo Code Implementation

```
while ct > eps:
    sample(X)
    update(mean, variance)
    update(ct)
return mean
```


Empirical Mean of a Dice: EBS Algorithm

 $\epsilon = 0.1$ $\delta = 0.1$ R = 5

Empirical Mean of a Dice: EBS Algorithm

 $\epsilon = 0.1$ $\delta = 0.1$ R = 5

Empirical Mean of a Dice: EBS Algorithm

VQAs for solving the Electronic Structure Problem

Electronic Structure Problem

Describing whole system

Kinetic Energy

$$H = -\sum_{i} \frac{\nabla^2_{R_i}}{2M_i} - \sum_{i} \frac{\nabla^2_{r_i}}{2m_i} - \sum_{i,j} \frac{Z_i e^2}{|R_i - r_j|} + \sum_{i,j>i} \frac{Z_i Z_j e^2}{|R_i - R_j|} - \sum_{i,j>i} \frac{e^2}{|r_i - r_j|}$$
Nuclei
Electron - Nuclei
Nuclei
Nuclei
Electron - Electron - Electron

Potenial Energy

- $R_i \triangleq \text{Nuclei position}$
- $r_i \triangleq Electron position$
- $M_i \triangleq \text{Nuclei mass}$
- $m_i \triangleq \mathsf{Electron} \; \mathsf{mass}$
- $Z_i \triangleq \text{Nuclei charge}$
- 1 Hartee ≜ 27.2 eV

Born-Oppenheimer approximation + second quantization

$$H = \sum_{p,q} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{p,q,r,s} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$$

- $a^{\dagger} \triangleq \text{creation operator}$
- $a \triangleq \text{annihilation operator}$
- p,q,r,s: orbital label

Electronic Structure Problem

$$H = \sum_{p,q} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{p,q,r,s} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$$

- $R_i \triangleq \text{Nuclei position}$
- $r_i \triangleq \text{Electron position}$
- $M_i \triangleq \text{Nuclei mass}$
- $m_i \triangleq \text{Electron mass}$
- $Z_i \triangleq \text{Nuclei charge}$
- 1 Hartee ≜ 27.2 *eV*

- How to represent this on a quantum computer?
 - Jordan Wigner mapping
 - >
- lacksquare Fermionic operators $igthered_i c_i P_i$

- $a^{\dagger} \triangleq \text{creation operator}$
- $a \triangleq \text{annihilation operator}$
- p, q, r, s: orbital label

Results: Total Energy of H_2

Total Energy of H_2

Overview

- $\widehat{H}_{H_2}(d) = g_1(d)\mathbb{I} + g_2(d)Z_0 + g_3(d)Z_1 + g_4(d)Z_0 \otimes Z_1 + g_5(d)Y_0 \otimes Y_1 + g_6(d)X_0 \otimes X_1^3$
- Guaranteed accuracy ϵ with EBS
- Ansatz for parametrised Circuit: 3

Ground State Energy $H_2(d)$: VQA

- $\epsilon = 0.01$
- $\delta = 0.1$
- R = 3.0636
- 1 Hartee ≜ 27.2 eV

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-1.00

Ground State Energy $H_2(d)$: VQA

- $\epsilon = 0.01$
- $\delta = 0.1$
- R = 3.0636
- 1 Hartee ≜ 27.2 *eV*

Total Energy of H_2

Reducing the measurement effort

Empirical Variance \bar{V}_t vs Number of Measurements N

Reducing the measurement effort

Accuracy ϵ vs Number of Measurements N

Summary & Outlook

Summary & Outlook

Summary:

- Significant reduction of VQA measurement effort
- **Guaranteed** confidence 1δ and accuracy ϵ However, ...
- Finding suitable ansatz is hard→ EBS advantage may not be a pronounced
- \blacksquare H_2 is **minimal** example
- Optimal setup → no noise simulation
- Energy estimator depends on measurement strategy

Outlook

- Different applications: e.g., state verifications, etc...
- Test on real quantum hardware
- Improvements to EBS: Adapt beyond real-valued random variables

Sources

- 1. JY. Audibert et. al., *Tuning bandit algorithms in stochastic environments* (2007)
- 2. V. Mnih, Efficient stopping rules (2008)
- 3. P. J. O'Malley, Scalable quantum simulation of molecular energies (2016)
- 4. J. Preskill, Quantum computing in the NISQ era and beyond (2018)
- 5. A. Peruzzo, A variational eigenvalue solver on a photonic quantum processor (2018)
- 6. J. K. Blitzstein and J. Hwang, Introduction to probability (2015)
- 7. M. Kliesch, Characterization, certification, and validation of quantum systems (2020)
- 8. M. A. Nielsen, Quantum computation and quantum information (2010)
- 9. Smite-Meister, Bloch sphere, a geometrical representation of a two-level quantum system (2009)
- 10. L. Zhu, Optimizing shot assignment in variational quantum eigensolver measurement (2023)
- 11. Molecular orbit H2 https://commons.wikimedia.org/wiki/File:H2OrbitalsAnimation.gif 25.09.2023 (20:15)
- 12. Feynman picture https://www.britannica.com/biography/Richard-Feynman 25.09.2023 (20:15)
- 13. H2 molecule https://byjus.com/chemistry/hydrogen-gas/ 25.09.2023 (20:15)

Appendix: Jordan – Wigner Mapping

Electronic Structure Problem

Jordan-Wigner Mapping

1 electron orbital + spin → 2 qubits

Sum of Pauli operators

Sum of

fermionic

operators

Measurement

Energy curve of H_2

How to measure?

$$\widehat{H}_{H_2}(R) = g_1(R)\mathbb{I} + g_2(R)Z_0 + g_3(R)Z_1 + g_4(R)Z_0 \otimes Z_1 + g_5(R)Y_0 \otimes Y_1 + g_6(R)X_0 \otimes X_1$$

\widehat{H}_i	Measurement Basis	$E(R) \\ +g_0 E_0$
Z_0		g_2E_2
Z_1	> - z	g_3E_3
$Z_0 \otimes Z_1$	J	g_4E_4
$Y_0 \otimes Y_1$	— Y	g_5E_5
$X_0 \otimes X_1$	— X	g_6E_6

Energy curve of H_2

How to measure?

$$\widehat{H}_{H_2}(R) = g_1(R)\mathbb{I} + g_2(R)Z_0 + g_3(R)Z_1 + g_4(R)Z_0 \otimes Z_1 + g_5(R)Y_0 \otimes Y_1 + g_6(R)X_0 \otimes X_1$$

\widehat{H}_i	Measurement Basis	$E(R) \\ +g_0 E_0$
Z_0)	g_2E_2
Z_1	> - z	g_3E_3
$Z_0 \otimes Z_1$		g_4E_4
$Y_0 \otimes Y_1$	— Y	g_5E_5
$X_0 \otimes X_1$	— X	g_6E_6

- 3 x measurement → estimate
- General optimal strategy unclear

Physical Qubit Implementations

Physical Support	Information	0>	1>
Photons	Polarization	\longleftrightarrow	1
	Number	Vacuum	Single Photon
Electron	Spin	↑	\
	Number	No Electron	One Electron
		•••	

Quantum Gates

Quantum

$$|0\rangle$$
 H $\frac{|0\rangle + |1\rangle}{\sqrt{2}}$

•
$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

•
$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Hadamard -gate=

$$\frac{1}{\sqrt{2}}\begin{bmatrix}1&1\\1&-1\end{bmatrix}$$

$$H|0\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

$$H|1\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

och.kherb.io

Universality of Gates

- Certain sets of gates are universal
 - Every unitary operation can be build using these
- Any gate can be decomposed using these
 - {CNOT, all single qubit gates}¹
 - $\{CNOT, H, T\}^2$
 - ...

(ϵ, δ) -Stopping Algorithm

A stopping algorithm terminates when condition is met, i.e.:

$$\mathbb{P}[|\hat{\mu} - \mu| \le \epsilon] \ge 1 - \delta$$

Estimate $\hat{\mu}$ is called an absolute (ϵ, δ) -estimate

- $\hat{\mu} \triangleq \text{Estimate}$
- $\mu \triangleq \text{Expected value}$
- $\epsilon \triangleq \text{Error margin}$
- $1 \delta \triangleq \text{Confidence}$

Why Tail Bounds

Empirical Mean of a Dice

Why Tail Bounds

Empirical Mean of a Dice

 $\epsilon = 0.1$

Why Tail Bounds

Empirical Mean of a Dice

 $\epsilon = 0.1$

Höffding's Inequality

$$\mathbb{P}[|\overline{X_t} - \mu| \ge \epsilon] \le 2exp\left[-\frac{2t\epsilon^2}{R^2}\right] := \delta$$

Bounded form

$$|\bar{X}_t - \mu| \le R \sqrt{\frac{\ln(2/\delta)}{2t}} \coloneqq \epsilon$$

Solve for t gives minimally required number of samples t_{min}

$$t_{min} = 2\left(\frac{R}{\epsilon}\right)^2 \ln(2/\delta)$$

Independent and identically distributed random variable

- $X_1 \dots X_t \triangleq \text{i.i.d}$ random variables
- $a \le X_i \le b$
- $\epsilon \in R^+$
- $R \triangleq \mathsf{Range}$
- $X_t = \frac{1}{t} \sum_{i=1}^t X_i$

Empirical Mean of a Dice: Höffing's Bound

Bernstein's bound

$$|\bar{X}_t - \mu| \le \sqrt{\frac{2 \Sigma^2 \ln(2/\delta)}{t}} + \frac{R \ln(2/\delta)}{3t}$$

For $\Sigma < R \longrightarrow$ Bernstein "better" For $\Sigma > R \longrightarrow$ Höffding "better"

Höffding's bound

Empirical Bernstein stopping Improvements

Empirical Bernstein Stopping

Pseudo Code Implementation: Improvements

Batch the samples into one sample

Update c(t) with a growing gap

- $X_1 \dots X_t \triangleq \text{i.i.d}$ random variables
- $\epsilon \in R^+$
- $1 \delta \triangleq$ Confidence

- $R \triangleq \mathsf{Range}$
- $\bullet \quad \bar{X}_t = \frac{1}{z} \sum_{i=1}^t X_i$
- $c(t) = \sqrt{\frac{2\bar{V}_t \ln(3/\delta_t)}{t}} + \frac{3R \ln(3/\delta_t)}{t}$