## Particle spectrograph

## Wave operator and propagator

| fields $t^{\alpha}_{\alpha} + 2 \partial_{x} \partial^{x} \partial_{\beta} \sigma^{\alpha \beta}_{\alpha}$ $3^{x} \partial_{\beta} t^{\alpha \beta} + 2 \partial_{x} \partial^{x} \partial_{\beta} \sigma^{\alpha \beta x}$ $3^{x} \partial_{\beta} t^{\alpha \beta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\lambda} \partial_{\beta} \sigma^{\alpha \beta x}$ $3^{x} \partial_{\beta} t^{\beta \alpha}$ $3^{x} \partial_{\beta} t^{\beta \alpha}$ $3^{x} \partial_{\beta} t^{\alpha x} + 3 \partial_{\delta} \partial^{\beta} \partial^{\alpha} t^{x} \partial_{\delta} \partial^{\alpha} t^{\alpha x} \partial_{\delta} \partial^{\alpha} d^{\alpha} \partial^{\alpha} \partial^{\alpha} d^{\alpha} \partial^{\alpha} \partial^{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Source constraints                                                                               |                                                                                                                                                                                                          |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| $2ik \ O_{3}^{\#1} = 0$ $2ik \ O_{1}^{\#2} = 0$ $2ik \ O_{1}^{\#2} = 0$ $2ik \ O_{1}^{\#2} = 0$ $3k \partial_{\beta} a^{x} t^{\beta} = 3k \partial^{\beta} t^{\alpha} + 2 \partial_{x} \partial^{\beta} \partial^{\alpha} \theta^{\alpha}$ $0$ $3k \partial_{\beta} a^{x} t^{\beta} = 3k \partial^{\beta} t^{\alpha} + 2 \partial_{\beta} \partial^{\beta} \partial^{\alpha} \theta^{\alpha}$ $0$ $3k \partial_{\beta} a^{x} t^{\beta} + 3k \partial^{\beta} t^{\alpha} + 3k \partial^{\beta} t^{\alpha} + 2 \partial_{\beta} \partial^{\beta} \partial^{\alpha} \theta^{\alpha}$ $0$ $3k \partial_{\beta} a^{x} t^{\beta} + 3k \partial^{\beta} t^{\alpha} + 3k \partial^{\beta} \partial^{\alpha} \theta^{\alpha}$ $2 \partial_{\delta} \partial^{\alpha} a^{\beta} b^{\alpha} + 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} b^{\alpha}$ $2 \partial_{\delta} \partial^{\alpha} a^{\beta} b^{\alpha} + 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} b^{\alpha}$ $2 \partial_{\delta} \partial^{\alpha} a^{\beta} b^{\alpha} + 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} b^{\alpha}$ $3 \partial_{\delta} \partial^{\alpha} a^{\beta} b^{\alpha} b^{\alpha} + 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} b^{\alpha}$ $3 \partial_{\delta} \partial^{\beta} \partial^{\alpha} t^{\beta} + 3 \partial_{\delta} \partial^{\beta} \partial^{\alpha} t^{\beta} + 3 \partial_{\delta} \partial^{\beta} \partial^{\alpha} t^{\beta} + 3 \partial_{\delta} \partial^{\beta} \partial^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} b^{\beta} \partial^{\beta} \partial^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} \partial^{\beta} \partial^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} \partial^{\beta} b^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} \partial^{\beta} b^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} \partial^{\beta} b^{\alpha} b^{\alpha} b^{\alpha} \partial^{\beta} b^{\alpha} b^{\alpha} b^{\alpha} \partial^{\beta} \partial^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} \partial^{\beta} \partial^{\beta} b^{\alpha} b^{\alpha} b^{\alpha} \partial^{\beta} \partial^{\beta} b^{\alpha} b^{\alpha} b^{\alpha} \partial^{\beta} \partial^{\beta} b^{\alpha} b^{\alpha} b^{\alpha} \partial^{\beta} b^{\alpha} b^{\alpha} \partial^{\beta} \partial^{\beta} b^{\alpha} b^{\alpha} \partial^{\beta} b^{\alpha} \partial^{\beta} b^{\alpha} b^{\alpha} \partial^{\beta} b^{\alpha} \partial^{\beta} b^{\alpha} \partial^{\beta} b^{\alpha} \partial^{\beta} b^{\alpha} b^{\alpha} \partial^{\beta} \partial^{\beta} b^{\alpha} b^{\alpha} \partial^{\beta} b^{\alpha} \partial^{\beta} b^{\alpha} b^{\alpha} b^{\alpha} \partial^{\beta} b^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} \partial^{\beta} b^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} \partial^{\beta} b^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} \partial^{\beta} b^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} b^{\alpha} b^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  | idamental fields                                                                                                                                                                                         | Multiplicities |
| $k \ \sigma_{1}^{\#1} = 0 \qquad \partial_{\beta} \partial_{\alpha} T^{\alpha \beta} = \partial_{\beta} \partial^{\beta} T^{\alpha} + 2 \partial_{\alpha} \partial^{\lambda} \partial_{\beta} \sigma^{\alpha \beta}$ $k \ \sigma_{1}^{\#2} T^{\alpha} = 0 \qquad \partial_{\alpha} \partial_{\beta} \partial^{\alpha} T^{\beta X} = \partial_{\alpha} \partial^{\lambda} \partial_{\beta} T^{\alpha \beta} + 2 \partial_{\delta} \partial^{\beta} \partial_{\alpha} \partial^{\beta} \partial^{\alpha}$ $\delta_{\alpha} \partial_{\beta} \partial^{\alpha} T^{\beta X} = \partial_{\alpha} \partial^{\lambda} \partial_{\beta} T^{\beta \alpha}$ $\delta_{\alpha} \partial_{\beta} \partial^{\alpha} T^{\beta X} + \partial_{\alpha} \partial^{\beta} T^{\alpha X} + \partial_{\alpha} \partial^{\alpha} T^{\alpha \beta} + 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} T^{\alpha \beta} + 2 \partial_{\delta} \partial^{\alpha} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  | $0 = g_{\infty} 1^{\kappa}$                                                                                                                                                                              | 1              |
| $k \ O_{1}^{\#2} \alpha = 0 $ $ \partial_{x} \partial_{\beta} \partial^{\alpha} t^{\beta X} == \partial_{x} \partial^{x} \partial_{\beta} t^{\alpha \beta} + 2 \partial_{c} \partial^{5} \partial_{x} \partial_{\beta} \sigma^{\alpha \beta X} $ $ \partial_{x} \partial_{\beta} \partial^{\alpha} t^{\beta X} == \partial_{x} \partial^{x} \partial_{\beta} t^{\beta \alpha} $ $ \partial_{x} \partial_{\beta} \partial^{\alpha} t^{\beta X} + \partial_{x} \partial^{\beta} t^{\alpha X} + \partial_{x} \partial^{x} t^{\alpha \beta} + $ $ 2 \partial_{5} \partial_{x} \partial^{\alpha} \sigma^{\beta X} + \partial_{x} \partial^{\beta} t^{\alpha X} + $ $ 2 \partial_{5} \partial_{x} \partial^{\alpha} \sigma^{\beta X} + 2 \partial_{5} \partial^{5} \partial_{x} \sigma^{\alpha \beta X} = $ $ \partial_{x} \partial^{\alpha} t^{X\beta} + \partial_{x} \partial^{\beta} t^{\alpha X} + 2 \partial_{5} \partial^{5} \partial^{\alpha} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\alpha} t^{X\beta} + \partial_{x} \partial^{\beta} t^{\alpha X} + 2 \partial_{5} \partial^{5} \partial^{\alpha} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\alpha} t^{X\beta} + \partial_{x} \partial^{\beta} t^{\alpha X} + 2 \partial_{5} \partial^{5} \partial^{\alpha} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\alpha} t^{X\beta} + 2 \partial_{5} \partial^{\alpha} \partial^{\beta} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\alpha} t^{X\beta} + 2 \partial_{5} \partial^{\alpha} \partial^{\beta} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\alpha} t^{X\beta} + 2 \partial_{5} \partial^{\alpha} \partial^{\beta} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\alpha} t^{X\beta} + 2 \partial_{5} \partial^{\alpha} \partial^{\beta} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\alpha} t^{X\beta} + 2 \partial_{5} \partial^{\alpha} \partial^{\beta} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\alpha} t^{X\beta} + 2 \partial_{5} \partial^{\alpha} \partial^{\beta} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\alpha} t^{X\beta} + 2 \partial_{5} \partial^{\alpha} \partial^{\beta} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\alpha} t^{X\beta} + 2 \partial_{5} \partial^{\alpha} \partial^{\beta} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\alpha} t^{X\beta} + 2 \partial_{5} \partial^{\alpha} \partial^{\beta} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\alpha} t^{X\beta} + 2 \partial_{5} \partial^{\alpha} \partial^{\beta} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\alpha} t^{X\beta} + 2 \partial_{5} \partial^{\alpha} \partial^{\beta} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\alpha} t^{X\beta} + 2 \partial_{5} \partial^{\alpha} \partial^{\beta} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\beta} \partial^{\alpha} t^{X\beta} + 2 \partial_{5} \partial^{\alpha} \partial^{\beta} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\beta} \partial^{\alpha} t^{X\beta} + 2 \partial_{5} \partial^{\alpha} \partial^{\beta} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\beta} \partial^{\alpha} t^{X\beta} + 2 \partial_{5} \partial^{\alpha} \partial^{\beta} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\beta} \partial^{\alpha} d^{\alpha} t^{X\beta} + 2 \partial_{5} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\beta} \partial^{\alpha} \partial^{\alpha} t^{X\beta} + 2 \partial_{5} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \sigma^{\alpha X} = $ $ \partial_{x} \partial^{\beta} \partial^{\alpha} \partial^{\alpha} d^{\alpha} \partial^{\beta} \partial^{\alpha} d^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | $_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$                                   | 1              |
| $ \begin{array}{ll}                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 ==                                                                                             | ${}_{\beta}\partial^{\alpha}t^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}t^{\alpha\beta} + 2\partial_{\delta}\partial_{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$ | ĸ              |
| $x^{\alpha} + \partial_{\chi} \partial^{\chi} r^{\alpha \beta} +$ $x^{\beta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$ $y^{\beta} r^{\alpha \chi} +$ $2 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta}$ $2 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} +$ $2 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} +$ $2 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} +$ $2 \partial_{\delta} \partial_{\lambda} \partial^{\beta} \sigma^{\alpha \delta} +$ $2 \partial_{\delta} \partial_{\lambda} \partial^{\beta} \sigma^{\alpha \delta} +$ $2 \partial_{\delta} \partial_{\delta} \partial_{\lambda} \partial^{\beta} \partial^{\beta} \sigma^{\alpha \delta} +$ $2 \partial_{\delta} \partial_{\delta} \partial_{\lambda} \partial^{\beta} \partial^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  | ${}_{\beta}\partial^{\alpha}t^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}t^{\beta\alpha}$                                                                                              | Е              |
| $x^{5} + 2 \partial_{\sigma} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = $ $y^{6} t^{\alpha \chi} + $ $2 \partial_{\sigma} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta}$ $x^{5} + 2 \partial_{\sigma} \partial^{\delta} \partial^{\beta} \partial^{\alpha} t^{\chi} - $ $x^{5} + 2 \partial_{\sigma} \partial^{\delta} \partial^{\beta} \partial^{\alpha} t^{\chi} - $ $\partial_{\chi} \partial^{\alpha} t^{\beta \chi} - 3 \partial_{\sigma} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} - $ $\partial_{\chi} \partial^{\beta} t^{\alpha \chi} - 3 \partial_{\sigma} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} + $ $\partial_{\chi} \partial^{\beta} t^{\alpha \chi} - 3 \partial_{\sigma} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} + $ $\partial_{\sigma} \partial^{\beta} t^{\alpha \chi} - 3 \partial_{\sigma} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} + $ $\partial_{\sigma} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\alpha} \partial^{\delta} \partial^{\epsilon} - $ $\partial_{\sigma} \partial_{\sigma} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\epsilon} - $ $\partial_{\sigma} \partial_{\sigma} \partial_{\lambda} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\epsilon} - $ $\partial_{\sigma} \partial_{\sigma} \partial_{\sigma} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\epsilon} - $ $\partial_{\sigma} \partial_{\sigma} \partial_{\sigma} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\epsilon} - $ $\partial_{\sigma} \partial_{\sigma} \partial_{\sigma} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  | $^{\alpha} _{I}^{\beta \chi} + \partial_{\chi} \partial^{\beta} _{I}^{\chi \alpha} + \partial_{\chi} \partial^{\chi} _{I}^{\alpha \beta} +$                                                              | 3              |
| $9^{\beta} t^{\alpha \chi} +$ $2 \partial_{5} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta}$ $(^{5} + 2 \partial_{5} \partial^{5} \partial^{\beta} \partial^{\alpha} t^{\chi} -$ $(^{5} + 2 \partial_{5} \partial^{5} \partial^{\beta} \partial^{\alpha} t^{\chi} -$ $(^{5} + 2 \partial_{5} \partial^{5} \partial^{\beta} \partial^{\alpha} t^{\chi} -$ $(^{5} + 2 \partial_{5} \partial^{5} \partial^{\beta} \partial^{\alpha} t^{\chi} -$ $(^{5} + 2 \partial_{5} \partial^{5} \partial^{\beta} \partial^{\alpha} t^{\chi} -$ $(^{5} + 2 \partial_{5} \partial^{5} \partial^{\beta} \partial^{\alpha} t^{\chi} -$ $(^{5} + 2 \partial_{5} \partial^{5} \partial^{\beta} \partial^{\alpha} t^{\chi} -$ $(^{5} \partial_{5} \partial^{\alpha} t^{\beta} + 3 \partial_{5} \partial^{5} \partial^{\alpha} t^{\gamma} +$ $(^{5} \partial_{5} \partial_{\chi} \partial^{\beta} \partial^{\alpha} d^{\beta} -$ $(^{5} \partial_{5} \partial_{\chi} \partial^{\beta} \partial^{\alpha} d^{\beta} -$ $(^{5} \partial_{5} \partial_{\chi} \partial^{\beta} \partial^{\alpha} d^{\beta} -$ $(^{5} \partial_{5} \partial_{\lambda} \partial^{\beta} \partial^{\alpha} d^{\beta} +$ $(^{5} \partial_{5} \partial_{5} \partial_{\chi} d^{\alpha} +$ $(^{5} \partial_{5} \partial_{5} \partial_{\chi} d^{\beta} +$ $(^{5} \partial_{5} \partial_{5} \partial_{\gamma} d^{\beta} \partial_{\gamma} d^{\beta} \partial_{\gamma} d^{\beta} -$ $(^{5} \partial_{5} \partial_{\gamma} \partial_{\gamma} \partial_{\gamma} \partial_{\gamma} \partial_{\gamma} d^{\beta} -$ $(^{5} \partial_{5} \partial_{\gamma} \partial_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  | $2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$                                |                |
| $2 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta}$ $(\delta^{2} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} T^{\chi} - \delta^{2} \partial^{\delta} \partial^{\beta} \partial^{\alpha} T^{\chi} - \delta^{2} \partial^{\delta} \partial^{\beta} \partial^{\alpha} T^{\chi} + \delta^{2} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \nabla^{\alpha} + \delta^{2} \partial^{\beta} \partial^{\alpha} \nabla^{\beta} \nabla^{\beta} + \delta^{2} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \nabla^{\beta} \nabla^{\beta} - \delta^{2} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \nabla^{\beta} \nabla^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o v                                                                                              | $+ \alpha^{\alpha} t^{\chi \beta} + \partial_{\chi} \partial^{\beta} t^{\alpha \chi} +$                                                                                                                  |                |
| ${}^{(\delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \alpha^{\tau X}_{X} -$ ${}^{(\delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{X}_{X} -$ ${}^{(\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta X}_{X} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta}_{X} -$ ${}^{(\delta} \partial_{\lambda} \partial^{\beta} \tau^{\alpha X}_{X} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha}_{X} +$ ${}^{(\delta)} \partial_{\lambda} \partial^{\beta} \tau^{\alpha X}_{X} + 3 \partial_{\delta} \partial^{\delta} \partial_{\lambda} \partial^{\alpha} \tau^{\beta \alpha}_{X} +$ ${}^{(\delta)} \partial_{\delta} \partial_{\lambda} \partial^{\beta} \partial^{\alpha} \partial^{\delta} \partial^{\delta}_{\xi} -$ ${}^{(\delta)} \partial_{\delta} \partial_{\lambda} \partial^{\beta} \partial^{\alpha} \partial^{\delta} \partial^{\delta}_{\xi} -$ ${}^{(\delta)} \partial_{\delta} \partial_{\lambda} \partial^{\beta} \partial^{\alpha} \partial^{\delta} \partial^{\delta}_{\xi} +$ ${}^{(\delta)} \partial_{\delta} \partial_{\lambda} \partial^{\beta} \partial^{\alpha} \partial^{\delta} \partial^{\delta}_{\xi} +$ ${}^{(\delta)} \partial_{\delta} \partial_{\lambda} \partial^{\beta} \partial^{\alpha} \partial^{\beta} \partial^{\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  | $\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$                                                                          |                |
| $\partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$ $\partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \beta} +$ $\partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$ $\partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon} -$ $\partial_{\epsilon} \partial_{\lambda} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon} -$ $\partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon} -$ $\partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon} +$ $\partial_{\epsilon} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \nabla^{\lambda} \partial_{\epsilon} +$ $\partial_{\epsilon} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi \delta} +$ $\partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\lambda} \tau^{\chi \delta} +$ $\partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\lambda} \tau^{\chi \delta} -$ $\partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\lambda} \nabla^{\lambda} \partial_{\delta} \partial_{\epsilon} \partial_{\lambda} \nabla^{\delta} \partial_{\epsilon} \partial_{\lambda} \partial_{\delta} \partial_{\epsilon} \partial_{\lambda} \partial_{\delta} \partial_{\epsilon} \partial_{\lambda} \partial_{\delta} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\int_{2^{+}}^{\pi^{+} \alpha \beta} - 2  i  k  \sigma_{2^{+}}^{\# 1 \alpha \beta} = 0  -i  (4)$ | $1 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \iota^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \iota^{\chi}_{\chi}$              | 2              |
| $\partial_{\chi}\partial^{\beta} \tau^{\alpha\chi} - 3 \partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta} \tau^{\chi\alpha} +$ $\partial_{\chi}\partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\chi} \tau^{\beta\alpha} +$ $\partial_{\varepsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta\varepsilon} -$ $\partial_{\varepsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta\varepsilon} -$ $\partial_{\varepsilon}\partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\varepsilon} +$ $\partial_{\varepsilon}\partial_{\varepsilon}\partial_{\chi}\partial^{\beta}\sigma^{\alpha}\varepsilon +$ $\partial_{\varepsilon}\partial_{\varepsilon}\partial_{\chi}\partial^{\beta}\sigma^{\alpha}\varepsilon +$ $\partial_{\varepsilon}\partial_{\varepsilon}\partial_{\lambda}\partial^{\beta}\sigma^{\alpha}\varepsilon +$ $\partial_{\varepsilon}\partial_{\varepsilon}\partial_{\sigma}\partial_{\chi}\tau^{\chi\delta} +$ $\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\sigma}\partial_{\chi}\tau^{\chi\delta} +$ $\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\sigma}\partial_{\chi}\tau^{\chi\delta} +$ $\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\sigma}\partial_{\chi}\tau^{\chi\delta} -$ $\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\sigma}\partial_{\chi}\tau^{\chi} -$ $\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\sigma}\partial_{\tau}\tau^{\chi} -$ $\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\sigma}\partial_{\tau}\tau^{\chi} -$ $\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\sigma}\partial_{\tau}\tau^{\chi} -$ $\partial_{\varepsilon}\partial^{\varepsilon}\partial_{\sigma}\partial_{\tau}\partial_{\tau}\partial_{\tau}\partial_{\tau}\partial_{\tau}\partial_{\tau}\partial_{\tau}\partial_{\tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  | $3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} -$                                        |                |
| $\begin{aligned} \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + 3  \partial_{\sigma} \partial^{\sigma} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} + \\ \partial_{\varepsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \varepsilon} - \\ \partial_{\varepsilon} \partial_{\lambda} \partial^{\beta} \partial^{\alpha} \sigma^{\beta \varepsilon} - \\ \partial_{\varepsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \varepsilon} + \\ \partial_{\varepsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \varepsilon} + \\ \partial_{\varepsilon} \partial_{\varepsilon} \partial_{\lambda} \partial^{\beta} \sigma^{\alpha \delta \varepsilon} + \\ \partial_{\varepsilon} \partial_{\varepsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi \delta} + \\ \partial_{\varepsilon} \partial_{\varepsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi \delta} + \\ \partial_{\varepsilon} \partial_{\varepsilon} \partial_{\delta} \partial_{\lambda} \sigma^{\beta \delta} - \\ \partial_{\varepsilon} \partial_{\varepsilon} \partial_{\delta} \partial_{\lambda} \sigma^{\beta \delta \alpha} - \\ \partial_{\varepsilon} \partial_{\varepsilon} \partial_{\delta} \partial_{\delta} \tau^{\chi} - \\ \partial_{\varepsilon} \partial_{\varepsilon} \partial_{\delta} \partial_{\delta} \partial_{\varepsilon} \partial_{\chi} \partial_{\varepsilon} $                                                                                                                                                                                                                                |                                                                                                  | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} t^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} t^{\chi \alpha} +$                      |                |
| $\begin{aligned} \partial_{\varepsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \varepsilon} &- \\ \partial_{\varepsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \varepsilon} &- \\ \partial_{\varepsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \varepsilon} &- \\ \partial_{\varepsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \varepsilon} &+ \\ \partial_{\varepsilon} \partial_{\varepsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi \delta} &+ \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi \delta} &+ \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} &+ \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} &+ \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\lambda} \sigma^{\beta \delta \alpha} &- \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\lambda} \sigma^{\beta \delta \alpha} &- \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\lambda} \sigma^{\beta \delta \alpha} &- \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\lambda} \partial^{\delta \delta} \partial_{\lambda} \partial^{\delta \varepsilon} &- \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\lambda} \partial^{\delta} \partial_{\lambda} \partial^{\delta \varepsilon} &- \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\lambda} \partial^{\delta} \partial^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} t^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} t^{\beta\alpha} +$                        |                |
| $\begin{aligned} \partial_{\xi} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \xi} - \\ \partial_{\xi} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \xi} + \\ \partial_{\xi} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \xi} + \\ \partial_{\xi} \partial^{\xi} \partial_{\delta} \partial_{\chi} r^{\chi \delta} + \\ \partial_{\xi} \partial^{\xi} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} + \\ \partial_{\xi} \partial^{\xi} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} + \\ \partial_{\xi} \partial^{\xi} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} - \\ \partial_{\xi} \partial^{\xi} \partial_{\delta} \partial_{\delta} r^{\chi} - \\ \partial_{\xi} \partial^{\xi} \partial_{\delta} \partial_{\delta} \partial_{\xi} \partial_{\chi} \sigma^{\delta \xi} \right) = 0 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  | $4\ ar{\imath}\ k^{\chi}\ \partial_{\epsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\delta arepsilon}_{\ \ \delta}$ -                                                                       |                |
| $\begin{aligned} \partial_{\varepsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \varepsilon} + \\ \partial_{\varepsilon} \partial_{\varepsilon} \partial_{\lambda} T^{X^{\delta}} + \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\chi} T^{X^{\delta}} + \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} + \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} - \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\delta} T^{X}_{\chi} - \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\delta} \partial_{\varepsilon} \partial_{\chi} \nabla^{\delta \varepsilon} \right) = 0 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | $6$ i $k^{\chi}$ $\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{eta\deltaarepsilon}$ -                                                                                     |                |
| $\begin{aligned} \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\chi} r^{\chi \delta} + \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} + \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} - \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\delta} r^{\chi} - \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\delta} r^{\chi} - \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\delta} \partial_{\varepsilon} \partial_{\chi} \partial_{\varepsilon} \partial_$ |                                                                                                  | $6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$                                                                                  |                |
| $\begin{aligned} \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} + \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} - \\ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\delta} r^{\chi}_{\chi} - \\ ^{3} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\chi} \sigma^{\delta \varepsilon}_{\delta} ) &= 0 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  | $2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$                                                                                     |                |
| $\partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$ $\partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\delta} \tau^{X}_{\chi} -$ $^{3} k^{X} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta \epsilon}_{\delta}) == 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  | $6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$                                                                                  |                |
| $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau_{\chi}^{\chi} - \frac{1}{\lambda^{\chi}}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\chi}\sigma^{\delta\epsilon} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  | $6$ i $k^{\chi}$ $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{eta\deltalpha}$ -                                                                                        |                |
| $^{3}$ $k^{\chi}$ $\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\chi}\sigma^{\delta\epsilon}_{\delta}$ ) == 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  | $2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$                                                                                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  | $4  i  \eta^{\alpha\beta}  k^{\chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$                                                         |                |
| Total constraints/gauge generators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fotal constraints/gauge g                                                                        | enerators:                                                                                                                                                                                               | 16             |

|                                     |                                   |                                           |                                          |                                    | $\frac{-t_1}{2}$                                   |                              | 디스                                                     | ]                       |                                                                                                              |                                                                                                                                                                                                               |                                                                                                  |                                                                                                                                                                                                                                                      |                                                                                                                                                                                            |
|-------------------------------------|-----------------------------------|-------------------------------------------|------------------------------------------|------------------------------------|----------------------------------------------------|------------------------------|--------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\tau_{1}^{\#2}{}_{\alpha}$         | 0                                 | 0                                         | 0                                        | $\frac{2ik}{t_1 + 2k^2t_1}$        | $-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$ | 0                            | $\frac{-4 k^4 r_5 + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$   |                         |                                                                                                              |                                                                                                                                                                                                               | $\partial_{lpha} f_{ ,  	heta}$                                                                  | + ,,,                                                                                                                                                                                                                                                |                                                                                                                                                                                            |
| $\tau_{1^{-}\alpha}^{\#1}$          | 0                                 | 0                                         | 0                                        | 0                                  | 0                                                  | 0                            | 0                                                      |                         |                                                                                                              | α,<br>α                                                                                                                                                                                                       | $f_{,\theta}^{\theta}$ -2                                                                        | $_{\alpha '}^{} g_{\theta}^{} f_{\alpha}^{}$                                                                                                                                                                                                         | +                                                                                                                                                                                          |
| $\sigma_{1}^{\#2}{}_{\alpha}$       | 0                                 | 0                                         | 0                                        | $\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$ | $\frac{-2k^2r_5+t_1}{(t_1+2k^2t_1)^2}$             | 0                            | $\frac{i\sqrt{2} k(2k^2 r_5 t_1)}{(t_1 + 2k^2 t_1)^2}$ |                         |                                                                                                              | $\frac{1}{2}t_1(2\mathcal{A}^{\alpha\prime}_{\alpha}\mathcal{A}^{\theta}_{\beta}-4\mathcal{A}^{\theta}_{\beta}\partial_{f}^{\sigma\prime}+4\mathcal{A}^{\theta}_{\beta}\partial^{\prime}f^{\alpha}_{\sigma}-$ | $2 \partial_i f^{\theta}_{\ \ \ } \partial^i f^{\alpha}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $\partial^{\theta}f^{\alpha\prime} - \partial_{\alpha}f_{\theta\prime}\partial^{\theta}f^{\alpha\prime} + \partial_{\prime}f_{\alpha\theta}\partial^{\theta}f^{\alpha\prime} + \partial_{\theta}f_{\alpha\prime}\partial^{\theta}f^{\alpha\prime} +$ | $\partial_{\theta} f_{,\alpha} \partial^{\theta} f^{\alpha \prime} + 2 \mathcal{A}_{\alpha \theta \prime} (\mathcal{A}^{\alpha \prime \theta} + 2 \partial^{\theta} f^{\alpha \prime})) +$ |
| $\sigma_{1}^{\#1}{}_{\alpha}$       | 0                                 | 0                                         | 0                                        | 0                                  | $\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$                 | 0                            | $-\frac{2ik}{t_1+2k^2t_1}$                             |                         |                                                                                                              | $\mathcal{A}_{\alpha}^{\ \ \ \ }\partial_{\alpha}f'$                                                                                                                                                          | $2 \partial_i f^{\alpha i} \partial_{\theta} f$                                                  | $\partial^{\theta} f^{\alpha \prime} + \partial_{\prime} f$                                                                                                                                                                                          | $\mathcal{A}_{\alpha\theta_{I}}(\mathcal{A})$                                                                                                                                              |
| $\tau_1^{\#1}{}_+\alpha\beta$       | $-\frac{i\sqrt{2}k}{t_1+k^2t_1}$  | $-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$ | $\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$ | 0                                  | 0                                                  | 0                            | 0                                                      |                         | $\sigma_{\alpha \beta \chi}$ +                                                                               | $\mathcal{A}^{\alpha'}_{\alpha} \mathcal{A}^{\theta}_{\beta}$ -4                                                                                                                                              | $\partial_{,}f^{\theta}_{\theta}\partial^{\prime}f^{\alpha}_{\alpha}-$                           | $\partial^{\theta} f^{\alpha \prime} - \partial_{\alpha} f_{\theta \prime}$                                                                                                                                                                          | $_{\theta}f_{\prime\alpha}\partial^{\theta}f^{\alpha\prime}+2$                                                                                                                             |
| $\sigma_{1}^{\#2}{}_{+}\alpha\beta$ | $-\frac{\sqrt{2}}{t_1+k^2t_1}$    | $\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$     | $\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$ | 0                                  | 0                                                  | 0                            | 0                                                      | e) action               | $S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} +$ | $\frac{1}{2}t_{1}$ (2 §                                                                                                                                                                                       | 2                                                                                                |                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                          |
| $\sigma_{1}^{\#1}{}_{+}\alpha\beta$ | 0                                 | $-\frac{\sqrt{2}}{t_1+k^2t_1}$            | $\frac{i\sqrt{2}k}{t_1+k^2t_1}$          | 0                                  | 0                                                  | 0                            | 0                                                      | Quadratic (free) action | $\iiint (f^{\alpha\beta} t)$                                                                                 |                                                                                                                                                                                                               |                                                                                                  |                                                                                                                                                                                                                                                      |                                                                                                                                                                                            |
|                                     | $\sigma_{1}^{\#1} + \alpha \beta$ | $\sigma_{1}^{#2} + \alpha \beta$          | $\tau_{1}^{\#1} + \alpha \beta$          | $\sigma_{1^{-}}^{\#1} +^{\alpha}$  | $\sigma_{1}^{\#2} +^{lpha}$                        | $t_{1}^{\#1} \dagger^{lpha}$ | $\tau_{1}^{\#2} + ^{\alpha}$                           | Quadr                   | S == [                                                                                                       |                                                                                                                                                                                                               |                                                                                                  |                                                                                                                                                                                                                                                      |                                                                                                                                                                                            |

| $(t_1+2k^2t_1)^2$               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                                      |                                                                                                                                            |                                                                                                                                                                                                                                                                                           |                                                                                                                                                         | ${\mathcal A}_{0}^{\#1}$    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(t_1+2)$                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                       | $f_{I\theta}$                                                                                                                                                                                                | _                                                                                                                                                                                                                                                    |                                                                                                                                                                                               |                                                                                                                                                                                                                                      |                                                                                                                                            |                                                                                                                                                                                                                                                                                           |                                                                                                                                                         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| '                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                       | $2 \partial_{\alpha}$                                                                                                                                                                                        | $f_{\alpha i}$                                                                                                                                                                                                                                       |                                                                                                                                                                                               |                                                                                                                                                                                                                                      |                                                                                                                                            | $\mathcal{A}^{\alpha\prime}$                                                                                                                                                                                                                                                              | 1t                                                                                                                                                      | $f_{0}^{#2}$                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| o<br>                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\partial' f^{\alpha}$ -                                                                                                                                                                                              | $\partial_{\theta} f_{ \theta}^{ \theta}$                                                                                                                                                                    | $\theta f_{\alpha l} \partial^{\epsilon}$                                                                                                                                                                                                            | + ((,                                                                                                                                                                                         | + 0                                                                                                                                                                                                                                  |                                                                                                                                            | -20 <sup>0</sup> 3                                                                                                                                                                                                                                                                        | ש <i>מא</i> מ                                                                                                                                           | $f_{0}^{\#1}$ $f_{0}^{\#2}$ | 12 kt1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $(2t_1)^2$                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | θ', θ'                                                                                                                                                                                                                | $f^{\alpha}_{\alpha}$                                                                                                                                                                                        | " + d                                                                                                                                                                                                                                                | $g_{	heta} f_{lpha}$                                                                                                                                                                          | $\mathcal{R}_{lphaeta}$                                                                                                                                                                                                              |                                                                                                                                            | $\mathcal{A}^{\alpha l \theta}$                                                                                                                                                                                                                                                           | Jz d                                                                                                                                                    |                             | ı̈́ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $(t_1 + 2 k)$                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x' + 4 3                                                                                                                                                                                                              | $^{\theta}$ + 4 $^{\theta}$                                                                                                                                                                                  | $\alpha_{\theta} \partial_{\theta} f^{a}$                                                                                                                                                                                                            | $^{\alpha l\theta}$ + 2                                                                                                                                                                       | $\mathcal{A}_{,	hetalpha}$ - $\partial_{,}$                                                                                                                                                                                          | + '8                                                                                                                                       | $^{\prime\prime}{}_{\alpha}$ - $(\partial_{\alpha}$                                                                                                                                                                                                                                       | ', y, z](                                                                                                                                               | $\mathcal{A}_{0^+}^{\#1}$   | $-t_1$ $i\sqrt{2} kt_1$ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $t_1+2k^2t_1$ $(t_1+2k^2t_1)^2$ |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\mathcal{A}_{\alpha}^{\ \ \ \ }\partial_{\alpha}f^{\ \ \ }$                                                                                                                                                          | $2 \partial_i f^{\alpha i} \partial_{\theta} f_i$                                                                                                                                                            | $\partial_{\theta} f^{\alpha \prime} + \partial_{\iota} f$                                                                                                                                                                                           | $\mathcal{A}_{\alpha\theta\prime}$ (A'                                                                                                                                                        | $A_{\alpha\theta_l} + 2\partial_{\beta}\zeta$                                                                                                                                                                                        | $(_{lpha_{ecta}eta})\partial^{	heta}\mathcal{F}^{lphaeta}$                                                                                 | 34 K 38 A                                                                                                                                                                                                                                                                                 | $\mathcal{A}_{\theta^{(\prime)}}^{(\prime)}))[t, \chi$                                                                                                  |                             | $\mathcal{A}^{\#1}_{0^+}+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ı-T                             |               | tβχ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{1}{2}t_{1}(2\mathcal{A}^{\alpha\prime}_{}\mathcal{A}^{\theta}_{}^{}-4\mathcal{A}^{\theta}_{\alpha}^{\theta}\partial_{,}f^{\alpha\prime}+4\mathcal{A}^{\theta}_{\beta}^{}\partial^{\prime}f^{\alpha}_{\alpha}-$ | $2\partial_{i}f^{\theta}_{}\partial^{\prime}f^{\alpha}_{}-2\partial_{i}f^{\alpha \prime}\partial_{\theta}f^{}_{}+4\partial^{\prime}f^{\alpha}_{}\partial_{\theta}f^{}_{}-2\partial_{\alpha}f_{\prime\theta}$ | $\partial^{\theta}f^{\alpha\prime} - \partial_{\alpha}f_{\theta\prime}\partial^{\theta}f^{\alpha\prime} + \partial_{\imath}f_{\alpha\theta}\partial^{\theta}f^{\alpha\prime} + \partial_{\theta}f_{\alpha\prime}\partial^{\theta}f^{\alpha\prime} +$ | $\partial_{\theta} f_{,\alpha} \partial^{\theta} f^{\alpha \prime} + 2  \mathcal{A}_{\alpha \theta \prime}  (\mathcal{A}^{\alpha \prime \theta} + 2  \partial^{\theta} f^{\alpha \prime})) +$ | $\frac{1}{3}r_2\left(4\partial_{\beta}\mathcal{A}_{\alpha\prime\theta}-2\partial_{\beta}\mathcal{A}_{\alpha\theta\prime}+2\partial_{\beta}\mathcal{A}_{\prime\theta\alpha}-\partial_{\prime}\mathcal{A}_{\alpha\beta\theta}+\right.$ | $\partial_\theta \mathcal{A}_{\alpha\beta i} - 2\partial_\theta \mathcal{A}_{\alpha i\beta})\partial^\theta \mathcal{A}^{\alpha\beta i} +$ | $r_{5}\left(\partial_{i}\mathcal{A}_{\theta}^{k}\partial^{\theta}\mathcal{A}^{\alpha_{l}}_{}-\partial_{\theta}\mathcal{A}_{l}^{k}\partial^{\theta}\mathcal{A}^{\alpha_{l}}_{}-\left(\partial_{\alpha}\mathcal{A}^{\alpha_{l}\theta}-2\partial^{\theta}\mathcal{A}^{\alpha_{l}}_{}\right)$ | $(\partial_{\kappa}\mathcal{A}_{,\;\;\theta}^{\;\;\kappa}-\partial_{\kappa}\mathcal{A}_{\theta\;\;,}^{\;\;\kappa})))[t,\;\kappa,\;y,\;z]dzdyd\kappa dt$ | ${\mathscr R}_1^{\sharp}$   | ‡1 † <sup>α</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                 |               | $\frac{3}{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>B                                                                                                                                                                                                                | 2 9                                                                                                                                                                                                          | Ô                                                                                                                                                                                                                                                    | $\partial_{\theta} f$                                                                                                                                                                         | $4 \partial_{\beta}$                                                                                                                                                                                                                 | $\partial_{	heta} S$                                                                                                                       | $\mathcal{R}_{\lambda}$                                                                                                                                                                                                                                                                   |                                                                                                                                                         | ${\cal F}_1^{\sharp}$       | <sup>‡2</sup> † <sup>α</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| )                               | (free) action | $S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + \mathcal{A}^{\alpha\gamma} \sigma_{\alpha\gamma\chi} + \mathcal{A}^{\alpha\gamma} \sigma_{\alpha\gamma} + \mathcal{A}^{\alpha\gamma} \sigma_{\alpha\gamma\chi} + \mathcal{A}^{\alpha\gamma} \sigma_{\alpha\gamma\chi} + \mathcal{A}^{\alpha\gamma} \sigma_{\alpha\gamma\chi}$ | $\frac{1}{2}t_{1}$ (                                                                                                                                                                                                  |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                               | $\frac{1}{3}r_{2}$                                                                                                                                                                                                                   |                                                                                                                                            | r <sub>5</sub> (0,                                                                                                                                                                                                                                                                        |                                                                                                                                                         | $f_1^{\sharp}$              | *** † † † ***  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † † **  *** † **  *** † **  *** † **  *** † **  *** † **  *** † **  ** |
|                                 | ee)           | $\tau_{\alpha\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                                      |                                                                                                                                            |                                                                                                                                                                                                                                                                                           |                                                                                                                                                         | $\mathcal{F}$               | (# <u>1</u> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>O</b>                        | tic (fr       | $\int (f_{\alpha eta})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                                      |                                                                                                                                            |                                                                                                                                                                                                                                                                                           |                                                                                                                                                         | ${\mathcal F}$              | (#2 †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _                               | adra          | = [[[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                                      |                                                                                                                                            |                                                                                                                                                                                                                                                                                           |                                                                                                                                                         | f                           | #1 †'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u></u>                         | n<br>N        | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                                      |                                                                                                                                            |                                                                                                                                                                                                                                                                                           |                                                                                                                                                         |                             | -#2 . (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                              |                               |                      |                                     | ,                            |                                   |                                                                         |                                                                           |                                      |                                    |                   | _                                |                                                                   |                                     |                                  |                           |     |
|------------------------------|-------------------------------|----------------------|-------------------------------------|------------------------------|-----------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|------------------------------------|-------------------|----------------------------------|-------------------------------------------------------------------|-------------------------------------|----------------------------------|---------------------------|-----|
| $r_{0}^{"+} r_{0}^{"+}$      | $\sqrt{2} kt_1   0$           | $2 k^2 t_1 \qquad 0$ | 0 0                                 | 0 0                          |                                   |                                                                         | #1                                                                        | -#1                                  | <i>u</i> 1                         |                   | $\tau_{2}^{\#1}_{2}$             | $-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$                              | $\frac{4k^2}{(1+2k^2)^2t_1}$        | 0                                |                           |     |
| $\mathcal{H}_0^{\sharp \pm}$ | $-t_1$ $ i $                  | $i\sqrt{2} kt_1$ -3  | 0                                   | 0                            |                                   | $^{\sharp 1}_{+} + ^{\alpha \beta}$ $^{\sharp 1}_{+} + ^{\alpha \beta}$ | $\mathcal{A}_{2}^{\sharp 1}_{\alpha\beta}$ $\frac{t_1}{2}$ $i \times t_1$ | $-\frac{ikt_1}{\sqrt{2}}$            | 0                                  | X                 | $\sigma_{2}^{\#1}_{\alpha\beta}$ | $\frac{2}{(1+2k^2)^2t_1}$                                         | $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$ | 0                                |                           |     |
|                              | $\mathcal{A}_{0}^{\#1}$ †     | $f_{0}^{#1} + -$     |                                     | ${\mathcal A}_{0^-}^{\#1} +$ | <i>A</i> (2 <sup>±</sup> -        | $^{1}$ $^{\alpha \beta \chi}$                                           | $\frac{ikt_1}{\sqrt{2}}$                                                  | $k^2 t_1$                            | 0<br><u>t</u> 1<br>2               |                   | ٠                                | $\sigma_2^{\#1} + ^{lphaeta}$                                     | $\tau_{2+}^{\#1} + \alpha \beta$    | $\sigma_2^{\#1} +^{lphaeta\chi}$ |                           |     |
| .A.#                         | ‡1 + <sup>α</sup>             |                      | $r_{1}^{+1} = \frac{t}{\alpha_{1}}$ |                              | $\frac{t_1^{\#2}}{1+\alpha\beta}$ | $f_{1}^{\#1}_{\alpha\beta}$ $-\frac{ikt_{1}}{\sqrt{2}}$                 | $\mathcal{A}_{1^{-}\alpha}^{\sharp 1}$                                    | $\frac{\mathcal{A}_1^{\#2}}{0}$      | $\frac{\alpha f_1^{\#1}\alpha}{0}$ | $f_1^{\#2}\alpha$ | $\sigma_{0}^{\#1}$               | 0                                                                 | 0                                   | 0                                | $\frac{1}{k^2 r_2 - t_1}$ |     |
|                              | .' '<br>‡2 †α<br>.+ †         |                      |                                     | 2                            |                                   |                                                                         |                                                                           |                                      |                                    |                   | $	au_0^{\#2}$                    | 0                                                                 | 0                                   | 0                                | 0                         |     |
|                              |                               |                      | $-\frac{t_1}{\sqrt{2}}$             |                              | 0                                 | 0                                                                       | 0                                                                         | 0                                    | 0                                  | 0                 |                                  | $\frac{k}{3^2t_1}$                                                | $\frac{2}{3t_1}$                    |                                  |                           |     |
| $f_1^{\pi}$                  | $^{*1}_{+}$ † $^{\alpha}_{-}$ |                      | $\frac{i k t_1}{\sqrt{2}}$          |                              | 0                                 | 0                                                                       | 0                                                                         | 0                                    | 0                                  | 0                 | $\tau_0^{\#1}$                   | $i \sqrt{2} k $ (1+2 k <sup>2</sup> ) <sup>2</sup> t <sub>1</sub> | $\frac{2k^2}{(1+2k^2)^2t_1}$        | 0                                | 0                         |     |
| $\mathcal{F}$                | (# <u>1</u> †                 | α                    | 0                                   |                              | 0                                 | 0                                                                       | $k^2 r_5 - \frac{t_1}{2}$                                                 | $\frac{1}{2}$ $\frac{t_1}{\sqrt{2}}$ | 0                                  | ikt <sub>1</sub>  |                                  |                                                                   | i                                   |                                  |                           |     |
|                              | (# <u>-</u> 2 †               |                      | 0                                   |                              | 0                                 | 0                                                                       | $\frac{t_1}{\sqrt{2}}$                                                    | 0                                    | 0                                  | 0                 | $\sigma_{0}^{\#1}$               | $\frac{1}{(1+2k^2)^2t_1}$                                         | $i\sqrt{2} k$ $(1+2k^2)^2 t_1$      | 0                                | 0                         |     |
| f                            | 7#1+                          | α                    | 0                                   |                              | 0                                 | 0                                                                       | 0                                                                         | 0                                    | 0                                  | 0                 |                                  | i                                                                 | i                                   |                                  |                           |     |
| f                            | <sup>#2</sup> †               | α                    | 0                                   |                              | 0                                 | 0                                                                       | $-ikt_1$                                                                  | 0                                    | 0                                  | 0                 |                                  | $\sigma_{0}^{\#1}$ †                                              | $\tau_{0}^{\#1}$ †                  | $\tau_{0}^{\#2}$ †               | $\sigma_{0}^{\#1}$ †      |     |
|                              |                               |                      |                                     |                              |                                   |                                                                         |                                                                           |                                      |                                    |                   |                                  |                                                                   |                                     |                                  |                           | 107 |



(No massless particles)

## Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$