Application of ANN to forecasting

Agenda

- Problems in applying ANN in time-domain
- Case-study: Current speed forecast in Oresund
- Drawbacks

Feedforward Network in Time

Neural Network in Time

Neural Network in Time

Neural Network in Time

The Project

Total Span: 15.9 km

Total Cost: 3.7 billion US\$

The Project

Tunnel

Bridge

Tunnel Element Towing

- 0.75 m/s (operational limit)
- 1.0 m/s (survival limit)
- 1.2 m/s (critical limit)

ØTC work sites (Øresund Tunnel Contractors)

24 hour Weather Windows

	0.75 m/s	1.0 m/s	1.25 m/s	1.5 m/s
February	18.90%	49.90%	77.40%	93.70%
August	50.70%	86.40%	96.80%	99.00%
October	38.10%	68.00%	90.50%	98.30%

Nested Deterministic Models

The Idea

- Use (local) observations (water levels, wind speed, current speed and direction)
- Use global information through models (pressure fields)
- Use ANNs as a data assimilation system

Real-Time Current Forecast

- On-line observations
- Operational deterministic forecast (MIKE 21, HIRLAM)
- Artificial Neural Networks
- Forecast Window +36 hours
- Confidence limits (90%)

System Architecture

Results +1 hour

Results +1 hour

Results +6 hours

Results +6 hours

Results - up to 48 hours

Results - up to 48 hours

Average N-S Velocity at Nordre Røse - Lead time M21 hour

Results - Summary

Performance	1	6	48
MSE (m/s)	0.0034	0.0311	0.0526
NMSE	0.0125	0.116	0.1955
MAE (m/s)	0.0439	0.1355	0.1718
r	0.994	0.9466	0.9026
R2	0.988	0.9002	0.8147

One more example from civil engineering field:

Hybrid Approach for Modeling Wet Weather Response in Wastewater Systems

(Vojinovic, Kecman, Babovic, ASCE, J. OF WATER RESOURCES PLANNING AND MANAGEMENT, NOV/DEC 2003, 511-521)

Modeling by deterministic (first principle) models takes account of what we know, Modeling data (statistical models) takes account of uncertainty, or random phenomena.

Hybrid Model

 $y_{deterministi}$ deterministic model output

MOUSE

HYBRID

FORECAST	PERFORMANCE			
HORIZON	$E_{(expd\sigma)}$	R2	r	MAE
1	0.147	0.910	0.955	0.003
	(28%)	(12%)	(4%)	(40%)
2	0.174	0.869	0.935	0.004
	(15%)	(6%)	(2%)	(20%)
3	0.175	0.866	0.936	0.004
	(15%)	(6%)	(2%)	(20%)
4	0.173	0.868	0.936	0.004
	(16%)	(6%)	(2%)	(20%)
5	0.175	0.864	0.934	0.004
	(15%)	(6%)	(2%)	(20%)

Results: Improvements in respect to the deterministic model results