

АСУ ТП ПОДСТАНЦИЙ

Издание 4•2009

СОДЕРЖАНИЕ

АСУ ТП ПОДСТАНЦИЙ

	2
ПРИМЕР ПОСТРОЕНИЯ АСУ ТП ПОДСТАНЦИИ	3
АППАРАТНЫЕ СРЕДСТВА ПТК	. 4
модули усо. поставки	. 6
ПРОГРАММНЫЙ КОМПЛЕКС ECRASCADA	
ECRASCADA. ОСНОВНЫЕ ПОДСИСТЕМЫ	8
АРМ ОПЕРАТОРА	. 10
WEB-ИНТЕРФЕЙС	. 11
СПИСОК ПОДДЕРЖИВАЕМОГО ОБОРУДОВАНИЯ	10

Полномасштабные АСУ ТП подстанций включают в себя комплекс технологических компонентов (системы, подсистемы, функции, задачи), обеспечивающих основные потребительские свойства создаваемой системы управления подстанции, и общественных, обеспечивающих целостность системы и ее основные эксплуатационные характеристики. В связи с расширением номенклатуры выпускаемой для объектов энергетики продукции, НПП «ЭКРА» ведутся работы по внедрению и расширению программно-технических средств АСУ ТП, предназначенных для создания единой информационной среды, интегрирующей данные, получаемые как от оборудования собственного производства, так и других производителей. Программно-технический комплекс (ПТК) «ЭКРА» включает в себя набор аппаратных средств, предназначенных для организации сбора, обработки, хранения и передачи информации, реализуемых серией шкафов ШЭ2608.10 различного функционального назначения, и соответствующий пакет программ для управления аппаратными средствами, конфигурирования системы, создания необходимых АРМов и клиентских рабочих мест, объединенных общим название EKRASCADA.

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ

Информационные:

- сбор и обработка аналоговой и дискретной информации (ТИ, ТС, ТИТ) о текущих режимах и состоянии оборудования в системе единого времени АСУ ТП;
- контроль и регистрация отклонения аналоговых параметров режима за нормальные и аварийные пределы;
- контроль и регистрация предупредительных и аварийных сигналов:
- предупредительная и аварийная сигнализация событий (срабатывание устройств РЗА, переключения коммутационной аппаратуры, выход параметров режима за допустимые пределы, срабатывание технологических защит оборудования, неисправность каналов связи и т.п.);
- информационный обмен с вышестоящими и смежными уровнями АСУ ТП в рамках соответствующей АСУ;
- представление объекта в виде мнемосхем в динамике изменения их состояния и режимов с указанием цифровых значений аналоговых технологических параметров, существенных для ведения режимов и контроля состояния оборудования, и индикацией их отклонений от нормы;
- архивирование, хранение и документирование информации.

Управляющие:

- дистанционное управление коммутационным оборудованием;
- оперативная блокировка исполняемых команд.

Сервисные:

- удаленное конфигурирование компонентов ПТК и удобный системный инжиниринг;
- самодиагностика аппаратной, канальной и программной части ПТК;
- дистанционное конфигурирование, настройка, изменение уставок устройств РЗА, работа с их осциллограммами;
- синхронизация системного времени ПТК по спутниковой системе:
- разграничение прав доступа к системе, информационная безопасность и защита от несанкционированного доступа.

В основу разрабатываемых на базе ПТК «ЭКРА» систем управления положены следующие принципы:

 рациональность структуры в условиях интенсивного развития номенклатуры средств и расширения состава

- информационно-вычислительных и управляющих функций системы;
- гибкость структуры, обеспечиваемой модульностью технических средств и программного обеспечения;
- возможность реализации принципов как централизованной, так и децентрализованной (рисунок на стр. 3) организации АСУ ТП подстанции;
- возможности развития системы путем модульного наращивания подсистем и функций.

В ПТК «ЭКРА» используются следующие основные средства связи:

- локальная вычислительная сеть ЛВС на базе 10/100-Мбитной технологии Ethernet (обмен между контроллерами, станциями оператора, архивной, инженерной и другими станциями);
- выделенные физические линии (RS-232, RS-422, RS-485);
- радиоканал (Blue Tooth).

Для сетей на базе Ethernet предусмотрена возможность 100%-ого "холодного", "теплого" или "горячего" резервирования.

Коммуникационное оборудование ЛВС входит в состав шкафов ШЭ 2608.10

ПРИНЯТЫЕ СОКРАЩЕНИЯ

APM – автоматизированное рабочее место ACУ ТП – автоматическая система управления технологическими процессами

БД – база данных

ГИП – графический интерфейс пользователя

ЛВС – локальная вычислительная сеть

ОИК – оперативный информационный комплекс

ПО – программное обеспечение

ПТК – программно-технический комплекс

 $\mathsf{T}\mathsf{U},\,\mathsf{T}\mathsf{C},\,\mathsf{T}\mathsf{U}\mathsf{T}$ – телеизмерение, телесигнализация,

телеизмерения текущие

ТС – технические средства

РЗА – релейная защита и автоматика

СЕВ – система единого времени

СУБД – система управления БД

ТС – технические средства

УСО – устройство связи с объектом ЧМИ – человеко-машинный интерфейс

ШИТО – шкаф ИТО

ПРИМЕР ПОСТРОЕНИЯ АСУ ТП ПОДСТАНЦИИ

АППАРАТНЫЕ СРЕДСТВА ПТК

АППАРАТНЫЕ СРЕДСТВА ПТК «ЭКРА»

Аппаратные средства ПТК «ЭКРА» функционально можно разделить на две группы - это группа серверного оборудования и группа устройств сбора информации (телемеханики). Конструктивное исполнение шкафов обеспечивает:

- модульность;
- легкий доступ к ТС, требующим замены в процессе эксплуатации;
- эргономичность и удобство эксплуатации;
- защиту от несанкционированного доступа.

СЕРВЕРНОЕ ОБОРУДОВАНИЕ

К группе серверного оборудования относятся шкафы типа ШЭ2608.10.006, ШЭ2608.10.007, ШЭ2608.10.010.

Шкаф ШЭ2608.10.006 условно носит название шкафа локального (промежуточного) сбора. Он предназначен для организации сбора данных на распределенных (расположенных в отдельных, достаточно удаленных зданиях) объектах подстанций и передачи информации в основной сервер подстанций. Шкаф содержит необходимое компьютерное, сетевое и коммуникационное оборудование, используется как локальный сервер и контроллер сбора данных с различных цифровых преобразователей,

терминалов, УСО, а также связи со специализированными подсистемами с реализацией функций протокольного шлюза.

Шкафы ШЭ2608.10.007 и ШЭ2608.10.010 – шкафы серверов первого уровня. Шкафы содержат необходимое компьютерное, сетевое и коммуникационное оборудование, которое обеспечивает ввод данных с интеллектуальных устройств системы, формирование и актуализацию единой оперативной базы данных, ведение архива данных, информационный обмен между системами верхнего уровня и клиентскими рабочими местами, а также при необходимости организацию дублирующего оперативного сервера, выделенного сервера РЗА и WEB-сервера.

УСТРОЙСТВА СБОРА ИНФОРМАЦИИ

К группе устройств сбора информации относятся различные модификации шкафов типа ШЭ2608.10.011.

Шкаф ШЭ2608.10.011 – базовый шкаф – позиционируется как шкаф ввода и регистрации дискретных и аналоговых сигналов и вывода дискретных сигналов и команд. Шкаф содержит интеллектуальный контроллер ввода-вывода БЭ2002, который обеспечивает мониторинг и управление модулями УСО, расположенными в шкафу, локальную регистрацию дискретных событий и передачу данных на серверы системы. Оборудование шкафа позволяет организовать прием из сис-

Оборудование шкафа позволяет организовать прием из системы и выдачу на органы коммутационной и сигнальной аппаратуры команды включения/выключения.

Шкаф ШЭ2608.10.011М – модификация базового шкафа – позиционируется как шкаф контроллера присоединения, т.е. шкаф ориентируется на информационное обслуживание небольшого условно выделенного объекта ПС, такого как вводы высоковольтных линий, трансформаторов, оборудование шин, секции ячеек КРУ и т.п. и их комбинации. Как и базовый, шкаф обеспечивает мониторинг и управление модулями УСО, расположенными в шкафу, только в меньшем количестве. Кроме этого к контроллеру БЭ2002 через интерфейсы RS-485 могут быть подключены терминалы РЗА и циф-

ровые измерительные преобразователи электрических параметров условно выделенного объекта.

Вычислительные ресурсы контроллера и коммуникационные позволяют дополнительно реализовать на уровне шкафа контроллера присоединения выполнение различных сервисных и логических функций, а также при необходимости организовать информационный обмен данными между такими же контроллерами.

Таким образом, создается локальная система сбора и управления уровня присоединения, интегрированная в общую систему.

Шкаф ШЭ2608.10.011Б – модификация базового шкафа – позиционируется как шкаф оперативной блокировки, т.е. кроме функций базового шкафа в контроллер шкафа дополнительно заложены функции логики оперативной блокировки управления коммутационными аппаратами объектов ПС. Оборудование шкафа также содержит органы ручного управления обходом оперативной блокировки и разрешения управления. При необходимости шкаф может выполнять удаленные команды включения/отключения, содержать соответственно органы ручного управления коммутационными аппаратами.

Год

МОДУЛИ УСО. ПОСТАВКИ

МОДУЛИ УСО

СИСТЕМА ЕДИНОГО ВРЕМЕНИ

Для обеспечения точной синхронизации всех низовых устройств с астрономическим временем, в составе ПТК АСУ ТП ПС предусматривается система единого времени. Она состоит из GPS-приемников. Элементы ПТК (серверы SCADA, APM операторов), а также контроллеры присоединений синхронизируются по ЛВС по протоколу NTP, при этом обеспечивается точность привязки к астрономическому времени до 1 мс. Прочие низовые устройства и подсистемы синхронизируются либо по выделенной шине синхронизации, что обеспечивает максимальную точность привязки к астрономическому времени, либо по интерфейсным (последовательным) портам через соответствующие коммуникационные серверы

Шкаф телемеханики ШЭ2608.10.011

ПОСТАВКИ

Объект	Компания-потребитель	постав- ки
ПС «Новокремлевская» г. Казань	ОАО «Татэнерго»	2005
ПС «Бугульма»	ОАО «Татэнерго»	2007
ПС «Киндери»	ОАО «Татэнерго»	2007
Нижнекамская ГЭС	ОАО «Татэнерго»	2008
ПС «Восточная»	филиал ОАО «MPCK Сибири», ОАО «Алтайэнерго»	2008
Нижнекамская ТЭЦ ПТК-1	ОАО «Татэнерго»	2008
Нижнекамская ТЭЦ ПТК-2	ОАО «Татэнерго»	2008
Заинская ГРЭС	ОАО «Татэнерго»	2008
Ванкорское месторождение ГТЭС	НК «Роснефть»	2008
Набережно-челнинская ТЭЦ	ОАО «Татэнерго»	2008
Казанская ТЭЦ-1 ОАО «Татэнерго»	ОАО «Татэнерго»	2008- 05.2009
Казанская ТЭЦ-2	ОАО «Татэнерго»	2008- 01.2009
Казанская ТЭЦ-3	ОАО «Татэнерго»	2008- 02.2009
Уруссинская ГРЭС	ОАО «Татэнерго»	02.2009
ПС «Советская»	«Брянскэнерго» Филиал ОАО «МРСК Центра»	05.2009
ПС «Пущино» г. Казань	ОАО «Татэнерго»	05.2009
Зарамагские ГЭС	ОАО «Зарамагские ГЭС» филиал ОАО «РусГидро» Республика Северная Осетия - Алания	05.2009
ПС Томская	филиал «МРСК Сибири» ОАО «Томская распределительная компания»	08.2009
ПС Карьер	ОАО «Мордовцемент»	09.2009
ПС Западная	Казанские ЭС	10.2009
ПС Южная	Казанские ЭС	10.2009
ПС Каргали	Казанские ЭС	10.2009

ПРОГРАММНЫЙ КОМПЛЕКС EKRASCADA

Оборудование ПТК «ЭКРА» работает под управлением ПО EKRASCADA. Разработанная в ООО НПП «ЭКРА» SCADA-система EKRASCADA представляет собой мощный и гибкий инструмент для наблюдения, анализа и управления процессами

Данный программный пакет содержит все необходимые компо-ненты системы SCADA:

- единые средства конфигурирования (инжиниринга), администрирования системы для создания описаний устройств сист темы, каналов связи, протоколов обмена, данных и создания видеоформ;
- средства управления регистрацией событий и просмотра журналов событий и осциллограмм;
- настройка средств архивирования и формирования отчетов,
- шлюзы для интеграции со смежными подсистемами и системами верхнего уровня и др. EKRASCADA включает:

- инструментальную среду разработки и модернизации SCADA-проекта, объединенную в ПО Конфигуратор. Таким образом, возможна корректировка прикладного ПО самим Заказчиком без дополнительного инжиниринга и привлечения разработчика EKRASCADA;
- исполнительную среду работы системы в реальном времени, обеспечивающую выполнение основных функции SCADA сервера (оперативный, архивный, коммуникационный), WEBсервер, шлюзы, АРМы и т.д.

Основной типовой набор функций:

- сбор текущей технологической информации от оборудования;
- архивация информации, ее обработка и хранение в заданных форматах за заданные интервалы времени;
- представление текущей и исторической (архивной) информации на экране операторской станции (в формах динамизированных мнемосхем, анимационных изображений, таблиц, трендов, аварийных сообщений и т.д.);
- печать отчетов, рапортов и протоколов в задаваемых пользователем формах по времени, по запросу оператора;
- регистрация аварийных ситуаций в моменты их возникновения и вывод аварийных сообщений на экран;
- ввод команд оператора, их обработка и передача оборудова-
- информационные сетевые взаимодействия между станцией оператора и средствами системы управления;
- передача информации смежным системам (другим SCADAсистемам, АСУП и т.п.);
- удаленное считывание/задание уставок оборудования РЗА;
- сервисные функции;
- администрирование системы.

СЕРВЕР ДАННЫХ

Сервер данных EKRASCADA - это ядро SCADA-системы, которое реализует функции приема, обработки информации, ведение оперативной БД, организацию доступа к БД, сеансов связи (обмена данными) между компонентами комплекса, а также предоставляет данные смежным подсистемам и ОИК. Сервер данных реализован в виде комплекса приложений. В

оперативных режимовай по виде комплектой притожении. В нем можно выделить две функциональные части:
 • оперативный сервер - Менеджер данных - основное хранили-

- ще информации (поле «мгновенных» или текущих значений со всеми необходимыми атрибутами) и базовых средств ее обработки.
- коммуникационный север Менеджер драйверов, который выполняет функции организации в информационной сети каналов связи, предотвращая возможные коллизии при одновременном обмене информации сервера сразу с нескольки-

СОЗДАНИЕ И КОНФИГУРИРОВАНИЕ SCADA-ПРОЕКТА

Совокупность инструментального ПО объединена в единую среду разработки - Конфигуратор, который решает задачи по настройке параметрической части SCADA-проекта:

- создание информационной базы контролируемых параметров (списка заводимых в систему сигналов, дополнительных вычисляемых переменных, условий аварийного состояния и порядок его обработки);
- создание списка исполняемых команд и порядок их блокиро-
- предоставление инструментов разработки экранных форм АРМ. С помощью интегрированного редактора - среды графического конфигурирования - собираются мнемосхемы и видеоформы конкретных SCADA-проектов АСУ ТП из имеющихся у него графических примитивов (мнемосимволов), разнообразных элементов изображения промышленных объектов, базовых заготовок, подлежащих настройке и динамизации. Библиотеки мнемоэлементов могут создаваться и расширяться пользователем. С его помощью также автоматически создаются web-страницы для отображения мнемосхем через web – обозреватель. Редактор имеет удобный ГИП и прост в использовании:
- администрирование системы: создание пользователей, разграничение их прав к мониторингу и управлению
- настройка и администрирование долговременной базы данных (архивного сервера).

- :: EKRASCADA.
- : ОСНОВНЫЕ ПОДСИСТЕМЫ

Разработка мнемосхем

Конфигуратор архива

ОПЕРАТИВНОЕ И ДИСПЕТЧЕРСКОЕ УПРАВЛЕНИЕ

Главным инструментом дистанционного управления в EKRASCADA является ПО APM оператора. При выполнении команды на мнемосхеме изменяется текущее положение коммутационного аппарата. Также при этом осуществляется защита от несанкционированного доступа и проверка возможности выполнения команд исходя из конфигурации системы и текущего ее состояния.

Предусмотрена также программная блокировка, исключающая одновременное дистанционное и ручное управление. Все действия оператора регистрируются в базе с соответствующей меткой времени. В качестве выходных сигналов, при помощи которых осуществляется управление оборудованием ПС, используются дискретные сигналы.

АРХИВИРОВАНИЕ И ХРАНЕНИЕ ДАННЫХ

Сервер архива формирует и хранит долговременные архивы, представляет информацию об истории протекания технологических процессов за необходимый срок: развитии аварий, работе автоматики, действиях оператора.

Максимальная глубина архива ретроспективной информации определяется размером дискового пространства и может задаваться пользователем. Объем архивируемых сигналов (с соответствующей временной меткой, признаком достоверности и др. атрибутов) и период записи аналоговых значений в базу может также настраиваться пользователем.

Дополнительно структурно необходим SQL-сервер базы данных (MySql или MS SQL).

Конфигурирование прав пользователей

Задание условий блокировок команд

ШЛЮЗЫ ДЛЯ ИНТЕГРАЦИИ СО СМЕЖНЫМИ ПОДСИСТЕМАМИ И СИСТЕМАМИ ВЕРХНЕГО УРОВНЯ

ЕКRASCADA работает в связке с терминальным оборудованием НПП «ЭКРА», а также оборудованием Schneider Electric, Siemens, ООО «Прософт-системы», ЗАО «РАДИУС Автоматика», НПП «Бреслер», поддерживает протоколы МЭК 870-5-101/103/104, Modbus, некоторые собственные протоколы производителей оборудования, а также обмен данными по ОРС-технологии.

Для настройки шлюзов (каналов связи, протоколов обмена, задания объема передаваемой информации и др.) имеется специальное инструментальное ПО.

ФОРМИРОВАНИЕ ОТЧЕТНОЙ ДОКУМЕНТАЦИИ

ЕКRASCADA предоставляет оператору архивные данные по его требованию в виде таблиц, диаграмм, графиков в соответствии с заданными форматами представления документа. Вид документа настраивается один раз и запоминается в виде шаблонов, которые с помощью имеющегося инструментального ПО могут создаваться и изменяться пользователем. По этому шаблону формируется выходной документ на любой момент времени. На основании сформированных отчетов производится анализ состояния оборудования и режимов в различных ситуациях, неоперативные расчеты, статистический анализ и др.

АРМ ОПЕРАТОРА

APM оператора – это приложение, позволяющее оперативному персоналу:

- просматривать на экранах рабочих станций комплекса ЕКRASCADA мнемосхемы элементов энергетических объектов с реальными значениями аналоговых и дискретных сигналов, получать их архивные значения,
- просматривать аварийно-предупредительную сигнализацию, квитировать ее,

- выдавать команды оборудованию, считывать и изменять уставки терминалов РЗА, а также скачивать и просматривать записанные ими осциллограммы,
- выводить на печать выходные документы и отчеты. Вся информация для APM оператора берётся из оперативной и архивной (долговременной) баз данных сервера.

WEB-ИНТЕРФЕЙС

По желанию Заказчика при наличии web-сервера EKRASCADA можно не устанавливать ПО APM оператора. При этом доступ к системе и вышеперечисленным возможностям APM оператора осуществляется с любого узла, подключенного к локальной сети, из простого web-браузера, например, Internet Explorer. Как и в случае с обычными клиентскими приложениями, осуществляется защита от несанкционированного доступа. Web-сервер EKRASCADA реализует связь с оперативным и архивным сервером и обеспечивает передачу экранных форм, сигнализации, ведомостей событий и др. функционального наполнения SCADA-проекта.

Краткое описание

СПИСОК ПОДДЕРЖИВАЕМОГО ОБОРУДОВАНИЯИ ПРОТОКОЛОВ ПЕРЕДАЧИ ДАННЫХ

Фирма-производитель

По желанию Заказчика возможна интеграция любых типов микропроцессорного оборудования с любыми протоколами передачи данных.

ТАБЛИЦА 1 ПОДДЕРЖИВАЕМОЕ ОБОРУДОВАНИЕ

		'
БЭ2704	000 НПП «ЭКРА»	Микропроцессорные цифровые терминалы защиты
ШЭ1110	ООО НПП «ЭКРА»	Комплекс защит генераторов, трансформаторов и блоков генератор –
Сириус-Мвк	НПФ «Радиус автоматика»	трансформатор электростанций Терминал защиты вводов, присоединений и синхронных электродвигателей
Сириус-С	НПФ «Радиус автоматика»	Терминал защиты секционного выключателя
Сириус-В	НПФ «Радиус автоматика»	Терминал защиты вводного выключателя
Сириус-2-Л Сириус-2-С	НПФ «Радиус автоматика» НПФ «Радиус автоматика»	Терминал защиты присоединений Терминал защиты секционного выключателя
Сириус-2-В	НПФ «Радиус автоматика»	Терминал защиты вводного выключателя
Сириус-АЧР	НПФ «Радиус автоматика»	Микропроцессорное устройство автоматической частотной разгрузки
Сириус-Л Сириус-Л	НПФ «Радиус автоматика» НПФ «Радиус автоматика»	Терминал защиты присоединений Терминал защиты присоединений с цепями напряжения
Сириус – ЦС Сириус – РНМ-1	НПФ «Радиус автоматика» НПФ «Радиус автоматика»	Блок центральной сигнализации Регулятор напряжения трансформатора микропроцессорный
Сириус-ИМФ-3-Р	НПФ «Радиус автоматика»	микропроцессорный Индикатор микропроцессорный фиксирующий
БРЕСЛЕР-0106	НПП «Бреслер»	фикропроцессорный регистратор аварийных сигналов
БРЕСЛЕР-0107	НПП «Бреслер»	Микропроцессорный регистратор аварийных сигналов
Sepam 2000AET400	Schneider ElectricООО «АЛЕКТО»	Серия устройств защиты и измерения Преобразователи измерительные многофункциональные серии АЕТ
УПК-Ц	Prosoft	Многофункциональные серии АСТ Серия цифровых устройств передачи команд
CЭT-4TM	ФГУП «Нижегородский завод имени И.М. Фрунзе»	комалд Счетчики электрической энергии многофункциональные
Vacon NXL TM - 1	Vacon НПЦ «Мирономика»	Преобразователь частоты Прибор мониторинга температуры масла

ТАБЛИЦА 2 ПОДДЕРЖИВАЕМЫЕ ПРОТОКОЛЫ

Тип	Краткое описание
IEC 101 IEC 103 IEC 104 Modbus Spa-Bus	Протокол передачи данных МЭК 60870-5-101 Протокол передачи данных МЭК 60870-5-103 Протокол передачи данных МЭК 60870-5-104 Протокол передачи данных Modbus Протокол передачи данных Spa-Bus. Данный протокол является открытым и опубликован в Spa-Bus Communication
Протокол СЭТ-4ТМ-совместимый IEC 61850¹	является открытым и опубликован в Зра-Боз Communication Protocol V.4//ABB Relays, 1992 Modbus – подобный протокол передачи данных Протокол передачи данных МЭК 61850 (сети и системы связи на ПС)

Примечание: Список поддерживаемых терминалов и протоколов передачи данных постоянно пополняется.

^{1 –} Реализация протокола находится в разработке

ООО НПП «ЭКРА» 428003, РФ, г. Чебоксары, пр. И. Яковлева, 3 тел. прямой (8352) 22 01 16 (зав. отделом системных задач) тел. / факс: (8352) 22 01 10 (многоканальный), 22 01 30 (автосекретарь) 39 99 29, 55 03 68 57 00 35, 57 00 76