Manifolds III

March 31, 2025

Review

If X, Y are topological spaces and $f, g: X \to Y$ continuous maps, we say f and g are homotopic (written $f \simeq g$) if there is a homotopy $H: X \times I \to Y$ (where I = [0,1]) such that H(x,0) = f(x) and H(x,1) = g(x) for all $x \in X$. We say that f is null-homotopic if it is homotopic to a constant map.

Proposition

Homotopy is an equivalence relation on the collection of continuous maps.

- 1. $f \simeq f$ by H(x, t) := f(x).
- 2. $f \stackrel{\tilde{H}}{\simeq} g \Longrightarrow g \simeq f$ by defining $\tilde{H}(x,t) := H(x,1-t)$.
- 3. $(f \stackrel{F}{\simeq} g \wedge g \stackrel{G}{\simeq} h) \Longrightarrow f \simeq h$ by

$$H(x,t) := \begin{cases} F(x,2t) & 0 \le t \le 1/2 \\ G(x,2t-1) & 1/2 \le t \le 1 \end{cases}.$$

Proposition

For $f_0, f_1: X \to Y$ and $g_0, g_1: Y \to Z$, if $f_0 \stackrel{F}{\simeq} f_1$ and $g_0 \stackrel{G}{\simeq} g_1$, then $g_0 \circ f_0 \simeq g_1 \circ f_1$.

Proof

Define H(x,t) := G(F(x,t),t) such that $H(x,0) = G(F(x,0),0) = G(f_0(x),0) = g_0 \circ f_0(x)$. Similarly, $H(x,1) = g_1 \circ f_1(x)$.

Definition: Homotopic Spaces

We say that two spaces X and Y are homotopic to each other $(X \simeq Y)$ if there are continuous maps $f: X \to Y$ and $g: Y \to X$ such that $f \circ g \simeq \operatorname{id}_Y$ and $g \circ f \simeq \operatorname{id}_X$.

Example

 \mathbb{R}^n is homotopic to $\{0\}$ (or any single point) by $\iota:0\to\mathbb{R}^n$ and $r:\mathbb{R}^n\to 0$. Then $r\circ\iota:0\to 0$ is id_0 and $\iota\circ r:\mathbb{R}^n\ni x\mapsto 0\in\mathbb{R}^n$ is homotopic to $\mathrm{id}_{\mathbb{R}^n}$. In fact, consider $H:\mathbb{R}^n\times I\to\mathbb{R}^n$ where H(x,t)=tx, $H(x,1)=x=\mathrm{id}_{\mathbb{R}^n}(x)$ and H(x,0)=0.

Definition: Path

A path in X from p to q is a continuous map $f: I \to X$ such that f(0) = p and f(1) = q.

Definition: Path Homotopic

Let $f,g:I \to X$ be two paths in X from p to q.

We say that f and g are path homotopic (write $f \sim g$) if there is a homotopy $H: I \times I \to X$ such that H(s,0) = f(s), G(s,1) = g(s), H(0,t) = p and H(1,t) = q.

1

Proposition

Path homotopy is an equivalence relation on the collection of paths from p to q. Write [f], the equivalence class of f in the quotient.

Definition: Loop

In the special case that p = q, we say that $f: I \to X$ is a loop

Definition: Fundamental Group

Given (X, p), $\pi_1(X, p)$ (the fundamental group of X at the point p) is the set of all loops at p modulo the path homotopy.

{loops at
$$p$$
}/ ~

Equivalently, $(S^1,1)$, {loops at p} = {continuous maps $f:(S^1,1) \to (X,p)$ } with f(1)=p. We say this is the homotopy "relative to $1 \in S^1$ ". We have $H:S^1 \times I \to X$ such that H(s,0)=f(s), H(s,1)=g(s) and H(1,t)=p.

Definition: Free Homotopy

For two loops $f, g: S^1 \to X$, we say that f and g are free homotopic if $f \simeq g$.

Lemma

When $f: I \to X$ is a path from p to q, if $f \circ \varphi$ is a reparameterization of f then $(f \circ \varphi) \sim f$ where $\varphi: I \to I$ satisfies $\varphi(0) = 0$ and $\varphi(1) = 1$.

Proof

Note that φ is homotopic to the identity map id_I through $H(s,t)=ts+(1-t)\varphi(s)$ since $H(s,0)=\varphi(s)$ and $H(s,1)=s=\mathrm{id}_I(s)$.

Then consider $f \circ H : I \times I \to X$ which is a path homotopy between f and $f \circ \varphi$.

Fundamental Group

Let $f, g: I \to X$ be two paths with f(1) = g(0).

Then we can "compose" (concatenate) f and g together $(f \cdot g) : I \to X$ by

$$(f \cdot g)(s) := \begin{cases} f(2s) & 0 \le s \le 1/2 \\ g(2s-1) & 1/2 \le s \le 1 \end{cases}.$$

Lemma

If
$$f_0 \stackrel{F}{\sim} f_1$$
, $g_0 \stackrel{G}{\sim} g_1$ and $f_0(1) = f_1(1) = g_0(0) = g_1(0)$, then $f_0 \cdot g_0 \sim f_1 \cdot g_1$.

Proof

Define

$$H(s,t) := \begin{cases} F(2s,t) & 0 \le s \le 1/2 \\ G(2s-1,t) & 1/2 \le s \le 1 \end{cases}.$$

Then

$$H(s,0) = \begin{cases} F(2s,0) = f_0(2s) & 0 \le s \le 1/2 \\ G(2s-1,0 = g_0(2s-1)) & 1/2 \le s \le 1 \end{cases}.$$

Similarly $H(s,1) = (f_1 \cdot g_1)(s)$, hence $f_0 \cdot g_0 \sim f_1 \cdot g_1$. With this, we have a well-defined $[f] \cdot [g] := [f \cdot g]$.

Simple Properties

For f from p to q where c_p is the constant map at p,

- 1. $[c_p] \cdot [f] = [f] \cdot [c_q]$ since $c_p \cdot f$ is a reparameterization of f.
- 2. Let \overline{f} be the inverse path of f (i.e. $\overline{f}(s) = f(1-s)$). Then $[f] \cdot [\overline{f}] = [c_p]$ and $[\overline{f}] \cdot [f] = [c_q]$.

$$H(s,t) := \begin{cases} f(2s) & 0 \le s \le t/2 \\ f(t) & t/2 \le s \le 1 - t/2 \\ f(2-2s) & 1 - t/2 \le s \le 2 \end{cases}$$

1. $([f] \cdot [g]) \cdot [h] = [f] \cdot ([g] \cdot [h])$, since these are reparameterizations of the same path.

Group Structure

 $\pi_1(X, p) = \{\text{loops at } p\} / \sim.$

Define $[f] \cdot [g] := [f \cdot g]$.

It has an identity element $[c_p] = e$.

For any $f \in \pi_1(X, p)$, it has an inverse $[\overline{f}]$ such that $[f] \cdot [\overline{f}] = [\overline{f}] \cdot [f] = [c_p]$. Finally, it is associative by (3) above.

Proposition

Suppose $p, q \in X$ with X path-connected.

Then $\pi_1(X, p)$ is isomorphic to $\pi_1(X, q)$.

Remark: this isomorphism is not canonical.

Proof

We define a path γ from q to p and $\Phi_{\gamma}: \pi_1(X,p) \to \pi_1(X,q)$ by $[f] \mapsto [\gamma \cdot f \cdot \overline{\gamma}]$. Φ_{γ} is a group homomorphism.

$$\begin{split} \Phi_{\gamma}[f] \cdot \Phi_{\gamma}[g] &= [\gamma \cdot f \cdot \overline{\gamma}] \cdot [\gamma \cdot g \cdot \overline{\gamma}] \\ &= [\gamma \cdot f \cdot \overline{\gamma} \cdot \gamma \cdot g \cdot \overline{\gamma}] \\ &= [\gamma \cdot f] \cdot \overline{[\overline{\gamma} \cdot \gamma]} \cdot [g \cdot \overline{\gamma}] \\ &= [\gamma \cdot (f \cdot g) \cdot \overline{\gamma}] \\ &= \Phi_{\gamma}[f \cdot g]. \end{split}$$

 Φ_{γ} has an inverse, $\Phi_{\overline{\gamma}} : \pi_1(X,q) \to \pi_1(X,p)$.

$$\Phi_{\overline{\gamma}} \circ \Phi_{\gamma}[f] = \Phi_{\overline{\gamma}}[\gamma \cdot f \cdot \overline{\gamma}] = [\overline{\gamma} \cdot \gamma \cdot f \cdot \overline{\gamma} \cdot \gamma] = [f].$$

Induced Homomorphism

 $\varphi:(X,p)\to (Y,q)$ induces

$$\varphi_* : \pi_1(X, p) \to \pi_1(Y, q)$$
$$[f] \mapsto [\varphi \circ f].$$

 φ_* is a homomorphism.

$$(\varphi_*[f]) \cdot (\varphi_*[g]) = [\varphi \circ f] \cdot [\varphi \circ g] = [(\varphi \circ f) \cdot (\varphi \circ g)] = [\varphi \circ (f \cdot g)] = \varphi_*[f \cdot g].$$

Proposition

If $\varphi, \psi : (X, p) \to (Y, q)$ are homotopic, then $\varphi_* = \psi_* : \pi_1(X, p) \to \pi_1(Y, q)$.

Proof

Let $[f] \in \pi_1(X, p)$, $\varphi_*[f] = [\varphi \circ f]$ and $\psi_*[f] = [\psi \circ f]$ and $H: X \times I \to Y$ a homotopy between φ and ψ . Then define $\tilde{H} := I \times I \to Y$ by $\tilde{H}(s, t) = H(f(s), t)$ such that

$$\tilde{H}(s,0) = H(f(s),0) = \varphi \circ f(s)$$

$$\tilde{H}(s,1) = H(f(s),1) = \psi \circ f(s).$$

Corollary

If $X \simeq Y$, then $\pi_1(X) \simeq \pi_1(Y)$.

Examples (*)

 $\pi_1(S^1) \cong \mathbb{Z}$ and $\pi_1(S^n) = 0$ for $n \ge 2$.

For $n \ge 2$, write $S^n = A_+ \cup A_-$ where A_+ and A_- are large balls centered at the north and south pole respectively. Then A_+ and A_- are both homeomorphic to \mathbb{R}^n and $A_+ \cap A_-$ (their intersection about the equator) is homeomorphic to $S^{n-1} \times \mathbb{R}$.

We fix a base point $p \in A_+ \cap A_-$ and let $f : I \to S^n$ be a loop based at p.

There exists a partition of I, $0 = s_0 < s_1 < \cdots < s_k = 1$, such that $f|_{[s_i, s_{i+1}]}$ is contained in A_- or A_+ .

Draw a path γ_i from p to $f(s_i)$ such that $\gamma_i \subseteq A_+ \cap A_-$. Let $f_i = f|_{[s_i, s_{i+1}]}$ such that $f = f_0 \cdot f_1 \cdots f_k$. Then this is path homotopic to

$$(f_0\cdot\overline{\gamma}_1)\cdot(\gamma_1\cdot f\cdot\overline{\gamma}_2)\cdots(\gamma_{k-1}\cdot f_{k-1}\cdot\overline{\gamma}_k)\cdot(\gamma_k\cdot f_k).$$

 $\text{Each } \gamma_i \cdot f_i \cdot \overline{\gamma}_i \text{ is contained in } A_- \text{ or } A_+, \text{ hence } \gamma_i \cdot f_i \overline{\gamma}_{i+1} \sim c_p, \, f \simeq c_p \text{ and } \big[f \big] = e.$

April 2, 2025

Correction

For $\varphi, \psi : (X, x_0) \to (Y, y_0)$ where $\varphi \simeq \psi$, we say a homotopy H between φ and ψ is base point preserving if $H(x_0, t) = y_0$ for all $t \in [0, 1]$.

Proposition

If $\varphi \simeq \psi$ through a base point preserving homotopy, then $\varphi_* = \psi_*$, $\pi_1(X, x_0) \to \pi_1(Y, y_0)$.

For $X \simeq Y$, $\varphi : X \to Y$ and $\psi : Y \to X$ where $\psi \circ \varphi = \mathrm{id}_X$ and $\varphi \circ \psi = \mathrm{id}_Y$, in general $\psi \circ \varphi(x_0) \neq x_0$ and $\varphi \circ \psi(y_0) \neq y_0$. Set up: $\varphi_0, \varphi_1 : X \to Y$ with $\varphi_0 \simeq \varphi_1$ through a homotopy H.

Write $\varphi_t = H(\cdot, t) : X \to Y$ and fix a base point $x_0 \in X$ and set $\gamma(t) = \varphi_t(x_0)$ for $t \in [0, 1]$.

Proposition 1

$$(\varphi_0)_* = \Phi_{\gamma} \circ (\varphi_1)_* : \pi_1(X, x_0) \to \pi_1(Y, \varphi(x_0)).$$

Proof

Let f be a loop at x_0 .

IMAGE 1

Let γ_t be $\gamma|_{[0,t]}$ and then, by rescaling the domain [0,t] to [0,1] i.e.

$$\gamma_t : [0,1] \to Y$$

$$s \mapsto \gamma(ts).$$

from $\varphi_0(x_0)$ to $\gamma(t) = \varphi_t(x_0)$. Then $\gamma_t \cdot (\phi_t \circ f) \cdot \overline{\gamma}_t$ is a homotopy between $(\varphi_0 \circ f)$ and $\gamma \cdot (\varphi_1 \circ f) \cdot \overline{\gamma}$. Hence

$$(\varphi_0)_*[f] = [\varphi_0 \circ f] = [\gamma] \cdot [\varphi_1 \circ f] \cdot [\overline{\gamma}] = \Phi_{\gamma} \circ (\varphi_1)_*[f].$$

Proposition 2

If $X \simeq Y$, then $\pi_1(X) \cong \pi_1(Y)$.

Proof

Since $(\psi \circ \varphi) \simeq \mathrm{id}_X$, by Proposition 1

$$\psi_* \circ \varphi_* = (\psi \circ \varphi)_* = \Phi_{\gamma} \circ (\mathrm{id}_{\chi})_* = \Phi_{\gamma}.$$

Hence $\psi_* \circ \varphi_*$ is an isomorphism (as is $\varphi_* \circ \psi_*$). Therefre φ_* and ψ_* are isomorphisms.

Recall: Covering Map

For X, \tilde{X} connected, $\pi: \tilde{X} \to X$ is a covering map if for each $p \in X$ there exists a neighborhood $U \subset X$ such that $\pi^{-1}(U)$ is a disjoint union

$$\pi^{-1}(U) = \bigcup_{\alpha \in A} U_{\alpha}$$

such that $\pi|_{U_{\alpha}}:U_{\alpha}\to U$ is a homeomorphism.

Lifting Properties

A lift is a map \tilde{f} such that $f = \pi \circ \tilde{f}$.

- 1. Path Lifting: Let $f: I \to X$ be a path from x_0 . Then, for any $\tilde{x}_0 \in \pi^{-1}(x_0)$, there is a unique lift \tilde{f} of f with $\tilde{f}(0) = \tilde{x}_0$.
- 2. Homotopy Lifting: Let $f_0, f_1: I \to X$ be paths in X with $f_0(0) = f_1(0) = x_0$ and $f_0(1) = f_1(1)$. Suppose H is a path homotopy between f_0 and f_1 . Then for any $\tilde{x}_0 \in \pi^{-1}(x_0)$, there is a unique lift $\tilde{H}: I \times I \to \tilde{X}$ of H. In particular, \tilde{H} is a path homotopy between \tilde{f}_0 and \tilde{f}_1 . That is if $H(0,t) = x_0$ then $\tilde{H}(0,t) \in \pi^{-1}(x_0)$ for all t. Hence $\tilde{H}(0,t) = \tilde{x}_0$, $\forall t \in [0,1]$. Similarly, $\tilde{H}(1,t)$ is identically constant. In particular, $\tilde{f}_0(1) = \tilde{H}(1,0) = \tilde{H}(1,1) = \tilde{f}_1(1)$.

Fundamental Group of the Circle

```
\pi_1(S^1) = \mathbb{Z}.
```

Example

```
\pi: \mathbb{R} \to S^1 by s \mapsto e^{2\pi i \cdot s}.
```

Proof

Take as a base point $1=x_0\in S^1\subseteq \mathbb{C}$. For each $n\in \mathbb{Z}$, we define a loop $\omega_n:[0,1]\to S^1$ by $s\mapsto e^{2\pi i\cdot ns}$. Let f be a loop at $x_0\in S^1$. We can lift f to $\tilde{f}:I\to\mathbb{R}$ at $0\in\mathbb{R}$. Then $\tilde{f}(1)\in\pi^{-1}(x_0)=\mathbb{Z}\subseteq\mathbb{R}$. This defines a map φ that sends a loop f to $\tilde{f}(1)\in\mathbb{Z}$. This φ induces $\varphi:\pi_1(S^1,x_0)\to\mathbb{Z}$ well-defined. If $f_0,f_1:I\to S^1$ at x_0 are path homotopic via H, then we may lift H to $\tilde{H}:I\times I\to\mathbb{R}$ which implies $\tilde{f}_0(1)=\tilde{f}_1(1)$.

 φ is surjective, since for any $n \in \mathbb{Z}$ we may consider the loop ω_n where $\tilde{\omega}_n(1) = n$.

 φ is a group homorphism since $\varphi[f \cdot g] = \widetilde{f \cdot g}(1) = \widetilde{g} + \widetilde{f}(1) = \varphi[f] + \varphi[g]$.

 φ is injective, since if $\varphi[f] = 0$ (i.e. $\tilde{f}(0) = 0$) then \tilde{f} is a loop in $\mathbb R$ and \tilde{f} is null-homotopic to c_0 by H. Therefore $\pi \circ \tilde{H}$ is a path-homotopy between f and c_{x_0} (i.e. [f] = e).

Path-Lifting

For $f:I \to X$, we have a special case where $\operatorname{im} f \subseteq U$ evenly covered. Write $\pi^{-1}(U) = \bigcup \tilde{U}_{\alpha}$ and pick the \tilde{U}_{α} which contains \tilde{x}_0 . Since $\pi|_{\tilde{U}_{\alpha}}:\tilde{U}_{\alpha}\to U$ is a homemorphism, $\tilde{f}:=(\pi|_{\tilde{U}_{\alpha}})^{-1}\circ f$ is the unique lift of f at \tilde{x}_0 . In general, pick a partition of $I=[0,1],\ 0=t_0< t_1<\cdots< t_m=1$, such that $\operatorname{im} f|_{[t_i,t_{i+1}]}\subseteq U_i$ evenly covered. We can lift $f|_{[0,t_1]}$ at \tilde{x}_0 , giving $\tilde{f}:[0,t]\to \tilde{X}$. Next, we lift $f|_{t_1,t_2}$ at $\tilde{f}(t_1)\in \tilde{X}$. Since the partition is finite, we may repeat the process until f is entirely lifted. This lift is unique.

Homotopy Lifting

For each fixed $(y_0,t_0) \in I \times I$, by continuity, there is a neighborhood $N(y_0) \times (t_0 - \varepsilon, t_0 + \varepsilon)$ such that H sends $N(y_0) \times (t_0 - \varepsilon, t_0 + \varepsilon)$ inside an evenly covered neighborhood. By compactness of $\{y_0\} \times [0,1]$, there is a finite collection of $N_{t_i}(y_0) \times (t_i - \varepsilon_i, t_i + \varepsilon_i)$ such that they cover $\{y_0\} \times I$ and the image of each under H is contained in an evenly covered neighborhood. Set $N = \bigcap_i N_{t_i}(y_0)$, a neighborhood of y_0 , and construct a partition $0 = t_0 < t_1 < \dots < t_m = 1$ such that $H(N \times [t_i, t_{i+1}] \subseteq U_i$ evenly covered. Then we can start with $H|_{N \times [0,t_1]}$ and lift it at \tilde{x}_0 by some $(\pi|_{\tilde{U}_a})^{-1}$. Then lift each $H|_{N \times [t_i,t_{i+1}]}$ one by one. Eventually, we have $\tilde{H}: N \times [0,1] \to \tilde{X}$ that lifts $H: N \times [0,1] \to \tilde{X}$ at \tilde{x}_0 . This lift holds for any $y_0 \in I$ and, if two strips overlap, then the lift must agree there by the uniqueness of path lifting. This assures that $\tilde{H}: I^2 \to \tilde{X}$ is continuous.

Remark

Given a continuous map $F: Y \times I \to X$ and a covering $\pi: \tilde{X} \to X$, suppose that we have a map $\tilde{F}: Y \times \{0\} \to \tilde{X}$ that lifts $F|_{Y \times \{0\}}: Y \times \{0\} \to X$. Then there is a unique lift $\tilde{F}: Y \times I \to \tilde{X}$ of F which extends $\tilde{F}: Y \times \{0\} \to \tilde{X}$.

Theorem: Fundamental Theorem of Algebra

A polynomial $p(z) = z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n$ (with $a_i \in \mathbb{C}$) has a root in \mathbb{C} .

Proof

Suppose otherwise. Then $p(z) \neq 0$, $\forall z \in \mathbb{C}$. Consider $f_r : [0,1] \to S^1$ $(r \geq 0)$ by

$$f_r(s) = \frac{p(re^{2\pi is})/p(r)}{|p(re^{2\pi is})/p(r)|}.$$

Then $f_0(s) \equiv 1$ is a constant loop at $1 \in \mathbb{C}$, and $f_r \simeq f_0$ for each $r \geq 0$. Consider $R \geq 1$ large such that $R \gg \sum_{i=1}^n |a_i|$. On $\{z: |z| = R\}$, we have

$$|z^{n}| > \left(\sum_{i=1}^{n} |a_{i}|\right) \cdot |z^{n-1}| \ge \sum_{i=1}^{n} |a_{i}| \cdot |z^{n-i}| = \left|\sum_{i=1}^{n} |a_{i}z^{n-i}|\right|.$$

This implies that p does not have any roots on $\{|z|=R\}$. Moreover, for $p_t(z)=z^n+t(a_1z^{n-1}+\cdots a_{n-1}z+a_n)$ with $0 \le t \le 1$, p_t does not have any roots on $\{|z|=R\}$. Consider

$$f_{R,t}(s) = \frac{p_t(Re^{2\pi i s})/p_t(R)}{|p_t(Re^{2\pi i s})/p_t(R)|}.$$

Then

$$f_{R,0}(s) = \frac{(Re^{2\pi is})^n/R^n}{|(Re^{2\pi is})^n/R^n|} = (e^{2\pi is})^n = \omega_n(s).$$

Therefore $f_{R,1}(s) \simeq f_R(s)$ and $f_R \simeq \omega_n$. But since $\omega_n \neq$ constant so this is a contradiction.

April 7, 2025

Definition: Retraction

Let X be a space and $A \subseteq X$ be a subset. We say that a continuous map $r: X \to A$ is a retraction if $r|_A = \mathrm{id}_A$. In particular, becasue $r \circ \iota_A = \mathrm{id}_A$, for $x_0 \in A$

$$r_*\circ (\iota_A)_*:\pi_1(A,x_0)\to \pi_1(A,x_0)$$

is an isomorphism. Hence $r_*: \pi(X, x_0) \to \pi(A, x_0)$ is surjective.

Corollary

There is no retraction $r: D^2 \to S^1 (= \partial D^2)$.

Proof

Suppose there is such a map r, then

$$r_*: \overbrace{\pi_1(D^2, x_0)}^{=0} \to \overbrace{\pi_1(S^1, x_0)}^{=\mathbb{Z}}$$

is surjective which is a contradiction.

Corollary

Every continuous map $h: D^2 \to D^2$ has a fixed point.

Proof

Suppose $\exists h : D^2 \to D^2$ without fixed points.

IMAGE 1

Define $r: D^2 \to D^2$ as the ray pictured from h(x) through x to the boundary. If $x \in \partial D^2$, then by construction r(x) = x. Hence $r: D^2 \to S^1$ is a retraction which is a contradiction.

Corollary (Borsuk-Ulam)

Let $f: S^2 \to \mathbb{R}^2$. Then there exists a pair of antipodal points x and -x on S^2 such that f(x) = f(-x). This carries analogously to higher dimensions.

Proof

Suppose that $f(x) \neq f(-x)$ for all $x \in S^2$. We define $g: S^2 \to S^1$ by $g(x) = \frac{f(x) - f(-x)}{||f(x) - f(-x)||}$. On $S^2 \subseteq \mathbb{R}^3$, we consider a loop γ at the equator by $\gamma(s) = (\cos(2\pi s), \sin(2\pi s), 0)$ for $s \in [0, 1]$. Because S^2 is simply connected, $g \circ \gamma : [0, 1] \to S^1$ is path-homotopic to a constant loop in S^1 . On the other hand, we lift $h := g \circ \gamma$ to $\tilde{h} : [0, 1] \to \mathbb{R}$ with $\tilde{h}(0) = 0 \in \mathbb{R}$. Note

$$h(s+1/2) = g \circ \gamma(s+1/2) = g(\cos(2\pi s + \pi), \sin(2\pi s + \pi), 0) = g(-\gamma(s)) = -g(\gamma(s)) = -h(s).$$

Hence $\tilde{h}(s+1/2) \in \pi^{-1}(-h(s))$ where $\pi : \mathbb{R} \to S^1$ is the covering map. Since $\pi^{-1}(-h(s)) = \frac{1}{2} + \tilde{h}(s) + \mathbb{Z}$, for each $s \in [0,1/2]$ there is an integer q_s such that $\tilde{h}(s+1/2) = \frac{1}{2} + \tilde{h}(s) + q_s$ and

$$\tilde{h}(s+1/2) - \tilde{h}(s) = \frac{1}{2} + q_s.$$

The left hand side depends continuously on s and, by continuity, q_s is a constant (call it q). This gives

$$\tilde{h}(1) = \tilde{h}(1/2) + \frac{1}{2} + q = \tilde{h}(0) + 1 + 2q = 1 + 2q \neq 0$$

which contradicts the assertion that h is homotopic to a constant loop.

Corollary (Large Fiber Lemma)

If $f:[0,1]^{n+1}\to\mathbb{R}^n$ is a continuous map, then there exist $a,b\in[0,1]^{n+1}$ such that f(a)=f(b) and $|a-b|\geq 1$. Remark: if z=f(a)=f(b), then the lemma says that diam $f^{-1}(z)\geq 1$.

8

Proof

Take the sphere of radius 1/2 in $[0,1]^{n+1}$, then by Borsuk-Ulam there exist a pair of antipodal points $a,b \in S^1$ such that f(a) = f(b) and $|a-b| \ge 1$.

Proposition

$$\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y)$$

Proof

Write $F: \pi_1(X \times Y) \to \pi_1(X) \times \pi_1(Y)$ by $[f] \mapsto ([g], [h])$. Then $f: [0,1] \to X \times Y$ is a loop at (x_0, y_0) , f(s) = (g(s), h(s)), and $g: [0,1] \to X$ and $h: [0,1] \to Y$ are loops at x_0 and y_0 respectively.

Definition: Wedge Sum

Let X and Y be path-connected topological spaces. Then $X \vee Y = (X \coprod Y)/x_0 \sim y_0$ Let $\{X_\alpha\}$ be a family of such spaces. Then $\bigvee_\alpha X_\alpha = \coprod_\alpha X_\alpha/\sim$.

Sketch

$$\pi_1(S^1_-, x_0) \to \pi_1(X, x_0)$$
 gen $\mapsto \alpha$
 $\pi_1(S^1_+, x_0) \to \pi_1(X, x_0)$ gen $\mapsto \beta$

with $\alpha \neq \beta$, $\alpha\beta \neq \beta\alpha$. Then $\pi_1(X, x_0)$ should be $\langle \alpha, \beta \rangle$.

Definition: Free Product

Let $\{G_{\alpha}\}_{\alpha}$ be a family of groups. $*_{\alpha}G_{\alpha} = \{g_1g_2\cdots g_k : \text{ each } g_i \text{ is a word in some } A_{\alpha}\}.$

Proposition

If for each α , there is a group homomorphism $\phi_{\alpha}: G_{\alpha} \to H$ then $\{\phi_{\alpha}\}$ induces a group homomorphism $\Phi: *_{\alpha}G_{\alpha} \to H$ by $g_1 \cdots g_k \mapsto \phi_{\alpha_1}(g_1) \cdots \phi_{\alpha_k}(g_k)$.

Van-Kapen Theorem

Setup

Let $X = \bigcup_{\alpha} A_{\alpha}$, each A_{α} open and connected where $\{A_{\alpha}\}$ have a common point x_0 . Assume also that each $A_{\alpha} \cap A_{\beta}$ is path connected. Then $j_{\alpha}: A_{\alpha} \hookrightarrow X$ induces $j_{\alpha}: \pi_1(A_{\alpha}, x_0) \to \pi_1(X, x_0)$. $\{j_{\alpha}\}_{\alpha}$ induces $\Phi: *_{\alpha}\pi_1(A_{\alpha}, x_0) \to \pi_1(X, x_0)$ which is surjective by a similar argument as was used above for Example (*) $(S^2 = A_- \cup A_+)$ applied to $X = \bigcup_{\alpha} A_{\alpha}$. Now, what is the kernel of Φ ?

Then $i_{\beta\alpha}(w)i_{\alpha\beta}(w)^{-1}$ is NOT id in $*_{\alpha}\pi_1(A_{\alpha})$.

But through Φ , it hould be $\mathrm{id} \in \pi_1(X, x_0)$. Hence every element in $*_{\alpha}\pi_1(A_{\alpha})$ of the form $i_{\beta\alpha}(w)i_{\alpha\beta}(w)^{-1}$ where $w \in \pi_1(A_{\alpha} \cap A_{\beta})$ is in the kernel of Φ .

Theorem (Van-Kampen)

If every $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$ is path connected, $\ker \Phi$ is the normal subgroup N generated by $\{i_{\beta\alpha}(w)i_{\alpha\beta}(w)^{-1}: \alpha, \beta \in A, w \in \pi_1(A_{\alpha} \cap A_{\beta})\}$. Hence $\pi_1(X, x_0) \cong (*_{\alpha}\pi_1(A_{\alpha}, x_0))/N$.

Remarks

- 1. In the case that $X = A_0 \cup A_1$ with $A_0 \cap A_1$ path connected, then the intersection condition holds.
- 2. If $X = A_0 \cup A_1$ and $A_0 \cap A_1$ is simply connected, then $N = \{id\}$ and $\pi_1(X) = \pi_1(A_0) * \pi_1(A_1)$.
- 3. If $X = A_0 \cup A_1$ and A_1 is simply connected, then $\pi_1(X) = \pi_1(A_0)/N$ and N is the normal subgroup generated by

$$i_{01}(w)\overbrace{i_{10}(w)}^{\in \pi_1(A_1,x_0)} = i_{01}(w)$$

i.e. N is the normal closure of $i_{01}(\pi_1(A_0 \cap A_1))$.

Example

IMAGE 2

For each $\alpha \in \{1, ..., 5\}$, let A_{α} be a small neighborhood of $T \cup e_1$. Every double/triple intersection is a neighborhood of T. Hence it is path continuous and we have that $\pi_1(A_{\alpha}) = \mathbb{Z}$. Thus $\pi_1(A_{\alpha} \cap A_{\beta}) = \mathrm{id}$, and $\pi_1(X) = *_{\alpha} \pi_1(A_{\alpha})/N = *_1^5 \mathbb{Z}$.

Example

IMAGE 3

By Van-Kampen, $\pi_1(X) = \pi_1(A_0)$ modulo the normal closure of $i(\pi_1(A_0 \cap A_1))$. That is

$$\langle a, b \mid aba^{-1}b^1 \rangle = \mathbb{Z}^2.$$

Remark

In general, orientable M_g is the connected sum of g many toruses.

April 9, 2025

Recall: Van-Kampen Theorem

Write $\pi_1(X) = (\pi_1(A) * \pi_1(B))/N$ where N is the normal closure of $i_{\alpha\beta}(w)i_{\beta\alpha}(w)^{-1}$ for $w \in \pi_1(A \cap B)$, $i_{\alpha\beta} : \pi_1(A \cap B) \to \pi_1(A)$ and $i_{\beta\alpha} : \pi_1(A \cap B) \to \pi_1(B)$.

Example

 M_g is the connected sum of g many tori, and $\pi_1(M_g) = \langle a_1, b_1, \dots, a_g, b_g \mid [a_1b_1] \cdots [a_gb_g] \rangle$.

Example

 N_g is the connected sum of g many \mathbb{RP}^2 (e.g. N_2 is the Klein bottle). N_g has a polygon-representation by the 2g-gon with boundary identified through $a_1a_1a_2a_2\cdots a_ga_g$. Therefore $\pi_1(N_g) = \left\langle a_1\cdots a_g \mid a_1^2\cdots a_g^2\right\rangle$.

Abelianiztion

- 1. Ab $(\pi_1(M_g))$ is the free abelian group generated by $\{a_1,b_1,\ldots,a_g,b_g\}=\mathbb{Z}^{2g}$.
- 2. $\operatorname{Ab}(\pi_1(N_g)) = \operatorname{Ab}(\langle a_1 \cdots a_{g-1} a_1 a_2 \cdots a_g \mid a_1^2 \cdots a_g^2 \rangle = \mathbb{Z}^{g-1} \oplus \mathbb{Z}_2.$

Corollary

None of the surfaces in $\{S^2, M_1, \dots, M_g, \dots, N_1, \dots, N_g, \dots\}$ are homotopic to each other.

Definition: Cell Complex

0-cells are points; 1-cells, e^1 , are intervals; 2-cells, e^2 , are disks; n-cells, e^n , are \overline{B}^n . A cell complex for space X is a decomposition (assuming finite dimensions) $X = X^0 \cup X^1 \cup \cdots \cup X^n$ where X^0 is the discrete set of points (i.e. 0-cells), X^1 is the space obtained by gluing 1-cells to X^0 ($\varphi_\alpha:\partial e^1_\alpha \to X^0$), X^2 is the space obtained by gluing 2-cells to X^1 ($\varphi_\alpha:\partial e^2_\alpha \to X^1$), and in general X^n is obtained by gluing x^n -cells x^n -cells

Examples

Cell complexes need not be unique. $S^2 = X^1 \cup_{\alpha} e_+^2 \cup_{\alpha} e_-^2$ and $S^2 = \{e^0\} \cup_{\alpha} \{e^2\}$. $\mathbb{RP}^2 = \{e^1\} \cup_{\alpha} \{e^2\}$ where φ_α is given by $z \mapsto z^2$. \mathbb{T}^2 is gluing e^2 to $S^1 \vee S^1$.

Theorem (Computing Fundamental Group)

Set up

Let X be a path-connected space, $Y = X \cup_{\alpha} e_{\alpha}^2$ (i.e. X is created by gluing 2-cells $\{e_{\alpha}^2\}_{\alpha}$ to X via $\phi_{\alpha}: \partial e_{\alpha}^2 \to X$). The inclusion $\iota: X \to Y$ induces $\iota_*: \pi_1(X) \to \pi_1(Y)$. Fix a base point $s_0 \in S^1$. For each α we draw a path γ_{α} from x_0 to $\varphi_{\alpha}(s_0)$. Then $\gamma_{\alpha} \cdot \varphi_{\alpha} \cdot \overline{\gamma}_{\alpha}$ is a loop based at x_0 . Thus $\gamma_{\alpha} \cdot \varphi_{\alpha} \cdot \overline{\gamma}_{\alpha}$ is null-homotopic in Y (because φ_{α} is null-homotopic in e_{α}^2). That is $\iota_*[\gamma_{\alpha} \cdot \varphi_{\alpha} \cdot \overline{\gamma}_{\alpha}] = \operatorname{id} \operatorname{in} \pi_1(Y)$ and is therefore in the kernel.

Theorem

Let N be the normal subgroup in $\pi_1(X)$ generated by elements of the form $[\gamma_\alpha \cdot \varphi_\alpha \cdot \overline{\gamma}_\alpha]$. Then $\pi_1(Y) \cong \pi_1(X)/N$.

IMAGE 1

Example

 \mathbb{RP}^2 is X^1 with e^2 glued to it by the map $\varphi: z \mapsto z^2$. Then $\pi_1(\mathbb{RP}^2) = \pi_1(S^1)/N = \langle \gamma \mid \gamma^2 \rangle$ where N is generated by φ . Similarly, the theorem applies to any M_g or N_g .

Definition: Deformation Retraction

For $X \subseteq Z$, $r: Z \to X$ is a retraction if $r|_X = \mathrm{id}_X$ implies $r \circ \iota = \mathrm{id}_X$. If $\iota \circ r: Z \to Z$ is homotopic to id_X , then $r_*: \pi_1(Z) \to \pi_1(X)$ is an isomorphism.

Proof

For each α , we glue a strip S_{α} along γ_{α} . We set the base at z_0 above x_0 , $Z = Y \cup_{\alpha} S_{\alpha}$. Y is a deformation retraction of $Z(\pi_1(Y) = \pi_1(Z))$.

IMAGE 2

Set $A = Z - \bigcup_{\alpha} \{y_{\alpha}\}$, where y_{α} is a point in e_{α}^2 not intersecting S_{α} . B = Z - X. A deformation retracts to $X \pi_1(A) = \pi_1(X)$. B is the union of some S_{α} (removing r_{α}) and some e_{α}^2 (removing ∂e_{α}^2). B is contractible, $\pi_1(B) = \operatorname{id}$ and $A \cap B$ is the union of strips S_{α} and open disks punctured at y_{α} . Therefore

$$\pi_1(Y) = \pi_1(Z) = (\pi_1(A) * \pi_1(B))/N = \pi_1(A)/\iota_*(\pi_1(A \cap B)) \cong \pi_1(X)/\iota_*(\pi_1(A \cap B)).$$

Consider the loop $\delta_{\alpha} \cdot \gamma_{\alpha} \cdot \varphi_{\alpha} \cdot \overline{\gamma}_{\alpha} \cdot \overline{\delta}_{\alpha}$ where δ_{α} runs from z_0 to x_0 , call this λ_{α} . It suffices to show that these generate $\pi_1(A \cap B, z_0)$. Cover $A \cap B$ by $A_{\alpha} = (A \cap B) - \bigcup_{\beta \neq \alpha} e_{\beta}^2$. Then A_{α} is a union of strips (with trivia fundamental group) and a single punctured, open disk $e_{\alpha}^2 - \{y_{\alpha}\}$ and $\pi_1(A_{\alpha}) = \mathbb{Z} = \langle \lambda_{\alpha} \rangle$. So $A_{\alpha} \cap A_{\beta}$ is the union of strips, equal to $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$ and simply connected. By Van-Kampen,

$$\pi_1(A \cap B) = (*_{\alpha}\pi_1(A_{\alpha}))/N = *_{\alpha}\pi_1(A_{\alpha})$$

is the free group generated by $\{\lambda_{\alpha}\}_{\alpha}$. This completes the proof.

Generalization (Theorem: Part 2)

If $Y = X \cup_{\alpha} e_{\alpha}^{n}$ for $n \geq 3$, then $\pi_{1}(Y) \cong \pi_{1}(X)$.

This follows from the same argument where instead A_{α} is the union of strips and a single punctured ball $B^n - \{y_{\alpha}\} \simeq S^{n-1}$. So $\pi_1(A_{\alpha}) = \mathrm{id}$, $\pi_1(A \cap B) = \mathrm{id}$, and $\pi_1(X) \cong \pi_1(Y)$.

Theorem: Part 3

Suppose X has a cell complex $X = X^0 \cup X^1 \cup \cdots \cup X^n$. Then $\pi_1(X) \cong \pi_1(X^2)$. The proof follows directly from part 2.

Corollary

Given any group represented by generators and relations $G = \langle g_{\alpha} \mid r_{\beta} \rangle$, there is a cell complex X_G , of dimension 2, such that $\pi_1(X_G) \cong G$.

Proof

For each g_{α} , we draw a circle S_{α}^{1} . Then $X^{1} = \bigvee_{\alpha} S_{\alpha}^{1}$ has fundamental group $*_{\alpha} \pi_{1}(S_{\alpha}) = \langle g_{\alpha} \rangle_{\alpha}$. To construct X_{G} , for each r_{β} glue a 2-cell e_{α}^{2} along r_{β} (think of r_{β} as a loop in X^{1}). Then in $X_{G} := X^{1} \cup_{\beta} e_{\beta}^{2}$ we have $\pi_{1}(X_{G}) = \langle g_{\alpha} | r_{\beta} \rangle$.

April 14, 2025

Recall: Covering Spaces

Let $p: \tilde{X} \to X$, both X and \tilde{X} path-connected.

- 1. Path-lifting: let $f: I \to X$ starting at $f(0) = x_0$. There is a unique lifting \tilde{f} of f at $\tilde{x}_0 \in p^{-1}(x_0)$.
- 2. Homotopy-lifting: let $f_0, f_1 : I \to X$ be two paths with $f_0(0) = f_1(0) = x_0$ and $f_0(1) = f_1(1)$. Suppose f_t is a path-homotopy between f_0 and f_1 . Then there exists a unique lift \tilde{f}_t between \tilde{f}_0 and \tilde{f}_1 at $\tilde{x} \in p^{-1}(x)$.

These come from the following: let $f_t: Y \to X$ be a homotopy between f_0 and f_1 . Given $\tilde{f}_0: Y \to \tilde{X}$ that lifts f_0 , there exists a unique lifting \tilde{f}_t . For path-lifting, we take Y a point; for homotopy-lifting, Y = [0, 1].

Proposition 1.31 (in Hatcher)

The covering map $p: \tilde{X} \to X$ induces $p_*: \pi_1(\tilde{X}, \tilde{x}_0) \to \pi_1(X, x)$.

- 1. p_* is injective.
- 2. $p_*(\pi_1(\tilde{X}, \tilde{x}_0))$ are exactly loops at x_0 that lift to loops at \tilde{x}_0 .

Proof of 1

Suppose $p_*[f] = \mathrm{id} \in \pi_1(X, x_0)$ where $[f] \in \pi_1(\tilde{X}, \tilde{x}_0)$. Then $[p \circ f] = \mathrm{id}$, and $[p \circ f]$ is path-homotopic to the constant loop c_{x_0} . Hence the lifting $p \circ f = f$ is path-homotopic to a constant loop $c_{\tilde{x}_0}$.

Proof of 2

Let $[f] \in \pi_1(\tilde{X}, \tilde{x}_0)$. $p_*[f] = [p \circ f]$, $p \circ f$ lifts to f at \tilde{x}_0 which is a loop at \tilde{x}_0 . Let f be a loop at x_0 . Suppose f lifts to a loop \tilde{f} at \tilde{x}_0 (i.e. $p \circ \tilde{f} = f$). Hence $[f] = [p \circ \tilde{f}] = p_*[\tilde{f}] \in p_*(\pi_1(\tilde{X}, \tilde{x}_0))$.

Example

If
$$p: S^1 \to S^1$$
 by $z \to z^2$, then $p_*(\pi_1(S^1, 1)) = 2\mathbb{Z} \le \mathbb{Z} = \pi_1(S^1, 1)$.

Remark

If $p: \tilde{X} \to X$ connected, then $p^{-1}(x)$ has the same cardinality for all $x \in X$.

Proof

Fix $x_0 \in X$. Consider $\mathcal{A} = \{x \in X : p^{-1}(x) \text{ and } p^{-1}(x_0) \text{ have the same cardinality}\} \neq \emptyset$. Then \mathcal{A} is open since for each $x \in \mathcal{A}$, there is a neighborhood U of x such that U is evenly covered by p (i.e. $p^{-1}(U) = \bigcup_{\alpha \in I} V_{\alpha}$ where $V_{\alpha} \stackrel{p}{\cong} U$). Then $p^{-1}(x')$ has cardinality |I| for all $x' \in U$. It follows, since \mathcal{A}^c is open, that \mathcal{A} is also closed.

Proposition

The number of sheets is given by $[\pi_1(X, x_0) : p_*(\pi_1(\tilde{X}, \tilde{x}_0))]$.

Proof

Write $H = p_*(\pi_1(\tilde{X}, \tilde{x}_0))$. Define $\Phi : \{H\text{-cosets in } \pi_1(X, x_0)\} \to p^{-1}(x_0)$ by $H[g] \mapsto \tilde{g}(1)$ where \tilde{g} is a lift of g at \tilde{x}_0 . This map is well defined, since for $[h \cdot g]$ with $h \in H$, $h \cdot g(1) = \tilde{g}(1)$ (because $\tilde{h}(1) = \tilde{x}_0$). Φ is surjective. Let $\tilde{x}_1 \in p^{-1}(x_0)$

IMAGE 1

and let \tilde{g} be a path from \tilde{x}_0 to \tilde{x}_1 . Define $g = p \circ \tilde{g}$, a loop at x_0 . Then $\Phi(H[g]) = \tilde{g}(1) = \tilde{x}_1$. Φ is injective. Suppose $\Phi(H[g_1]) = \Phi(H[g_2])$ (i.e. $\tilde{g}_1(1) = \tilde{g}_2(1)$.

IMAGE 2

Consider the loop $g_1\overline{g}_2$ in X at x_0 . It lifts to $\tilde{g}_1\overline{\tilde{g}}_2$, which is a loop at \tilde{x}_0 . This shows that $[g_1\overline{g}_2] \in H$ (i.e. $H[g_1] = H[g_2]$).

Recall (Manifolds 2)

If a smooth manifold M is non-orientable, then there is a double cover (2 sheets) $p: \hat{M} \to M$ (\hat{M} connected). Consequently, $\pi_1(M)$ has a subgroup of index 2.

Definition: Locally Path-Connected

A topological space is called locally path-connected if for each $x \in X$ and every neighborhood $U \ni X$, there is a neighborhood $V \ni X$ such that $V \subseteq U$ and V is path-connected (i.e. $\forall x \in X$, there exists a local basis $\{U_{\alpha}\}$ at X such that each U_{α} is path-connected). For example, the Topologist's sine curve with endpoints identified is path-connected but not locally path-connected.

Proposition: Lifting Criterion

Let Y be path-connected and locally path-connected. Given a covering map $p:(\tilde{X},\tilde{x}_0)\to (X,x_0)$ and a map $f:(Y,y_0)\to (X,x_0)$, f has a lift \tilde{f} at \tilde{x}_0 ($\tilde{f}(y_0)=\tilde{x}_0$) if and only if $f_*(\pi_1(Y,y_0))\subseteq p_*(\pi_1(\tilde{X},\tilde{x}_0))$.

Proof

$$(\Longrightarrow)$$

 (\longleftarrow) Let $y \in Y$, and draw a path γ from y_0 to y.

IMAGE 3

We lift $f \circ \gamma$ to a path in \tilde{X} starting at \tilde{x}_0 and define $\tilde{f}(y)$ as the endpoint (i.e. $\tilde{f}(y) = \widetilde{f \circ \gamma}(a)$). This is well-defined, since $(f \circ \gamma) \cdot (f \circ \overline{\gamma}')$ is a loop at x_0 and $[(f \circ \gamma) \cdot (f \circ \overline{\gamma}'] = f_*[\gamma \cdot \overline{\gamma}'] \in f_*\pi_1(Y, y_0) \leq p_*\pi_1(\tilde{X}, \tilde{x}_0)$. Hence $(f \circ \gamma) \cdot (f \circ \overline{\gamma}')$ lifts to a loop at \tilde{x}_0 .

IMAGE 4

Therefore $\widetilde{f \circ \gamma}(1) = \widetilde{f \circ \gamma'}(1)$.

 \tilde{f} is continuous. Fix $f(y) \in X$ and let U be a neighborhood of f(y) that is evenly covered by p. Choose a path-connected neighborhood V of y such that $f(V) \subseteq U$. We check $\tilde{f}|_{V}$.

IMAGE 5

Because V is path-connected, we may draw a path η in V from y to y'. Then $\tilde{f}(y') = f \circ \gamma \circ \eta(1)$, and $\widetilde{\gamma \cdot \eta}$ is first lifting $f \circ \gamma$ at \tilde{x}_0 followed by lifting $f \circ \eta$ at $\tilde{\gamma}(1)$. Let $\tilde{U} \subseteq \tilde{X}$ such that $p|_{\tilde{U}} : \tilde{U} \to U$ is a homeomorphism and $\widetilde{f} \circ \gamma(1) \in \tilde{U}$. Then $\widetilde{f} \circ \eta(1) = (p^{-1})|_{U} \circ f(y')$. Hence $\tilde{f}(y') = f \circ (\gamma \circ \eta)(1) = \widetilde{f} \circ \eta(1) = (p^{-1})|_{U} \circ f(y')$ (i.e. $\tilde{f} = (p^{-1})|_{U} = f$ on V). Hence \tilde{f} is continuous at y. \tilde{f} is a lift of f. In fact, $(p \circ \tilde{f})(y) = p \circ (\widetilde{f}\gamma(1)) = f(y)$.

Corollary

 $Y \stackrel{f}{\longrightarrow} X$ If Y is simply connected, then $f_*\pi_1(Y) \leq p_*\pi_1(\tilde{X})$ always holds (i.e. we can always lift f to $\tilde{f}: Y \to \tilde{X}$ in this case).

Proposition: Unique Lifting

Given $p: \tilde{X} \to X$ and $f: Y \to X$, if two lifts \tilde{f}_1 and \tilde{f}_2 of f agree at one point, then the agree everywhere on Y.

Proof

Take $\mathcal{A}=\{y\in Y: \tilde{f}_1(y)=\tilde{f}_2(y)\}\neq\varnothing$. Locally for each $y\in Y$ there exists a neighborhood V of y such that $\tilde{f}=(p^{-1})|_{U}\circ f$. If $y\in\mathcal{A}$, then $\tilde{f}_1(y)=\tilde{f}_2(y)$. Take a neighborhood U of f(y) that is evenly covered and \tilde{U} of $\tilde{f}_1(y)=\tilde{f}_2(y)$ such that $p|_{\tilde{U}}:\tilde{U}\to U$ is a homeomorphism. Then on V, a path-connected neighborhood such that $f(V)\subseteq U, \ \tilde{f}_i=(p^{-1})|_{U}\circ f$ (i.e. $\tilde{f}_1=\tilde{f}_2$ on V). If $y\in\mathcal{A}^c, \ \tilde{f}_1(y)\neq\tilde{f}_2(y)$. Then $\tilde{U}_i\ni\tilde{f}_i(y)$ with $\tilde{U}_1\cap\tilde{U}_2=\varnothing$. Then on V, $\tilde{f}_i=(p^{-1})|_{\tilde{U}_i}\circ f$ (ie \tilde{f}_1 and \tilde{f}_2 never agree on V). Hence $\mathcal{A}=Y$.

Remark

If $p: \tilde{X} \to X$ is a covering map, recall that a covering transformation is a map $f: \tilde{X} \to \tilde{X}$ such that

commutes. This $f: \tilde{X} \to \tilde{X}$ is a lift of $p: \tilde{X} \to X$. If we fix $\tilde{x}_1, \tilde{x}_2 \in p^{-1}(x_0)$, the lifting criterion says that $p_*\pi_1(\tilde{X}, \tilde{x}_1) \leq p_*\pi_1(\tilde{X}, \tilde{x}_2)$. In particular, if $\pi_1(\tilde{X})$ is, then this holds. Hence there is a unique lift of p (i.e. covering transformation) f such that $f(\tilde{x}_1) = \tilde{x}_2$.

April 16, 2025

Question

Given X path-connected and locally path-connected, when does X admit a simply connected covering space $p: \tilde{X} \to X$?

Definition: Semi-locally Simply Connected

We say that X is semi-locally simply connected if for any $x \in X$ there exists a neighborhood U such that every loop in U is null-homotopic in X. That is $\text{Im}(\pi_1(U) \to \pi_1(X))$ is trivial.

Non-example

The Hawaiian earing in \mathbb{R}^2 .

Example

The cones over the Hawaiian earing.

IMAGE 1

In fact, this is simply connected.

Example

The double Hawaiian earing with cones.

IMAGE 2

Theorem

X has a simply connected covering space (i.e. a universal covering) if and only if *X* is semi-locally simply connected.

Proof

 (\Longrightarrow) Let $x \in X$ and pick a neighborhood U of x that is evenly covered by p. Let f be a loop at x in U. f lifts to \tilde{f} at \tilde{x}_0 , which is a loop. Retract \tilde{f} to $c_{\tilde{x}_0}$ by a path-homotopy H. Then $p \circ H$ shows that f is null-homotopic in X.

(\iff) We construct \tilde{X} as follows: fix $x_0 \in X$ and set $\tilde{X} = \{[\gamma] \text{ path homotopies } : \gamma \text{ is a path starting at } x_0\}$. Let $\mathcal{U} = \{U : \operatorname{Im}(\pi_1(U) \to \pi_1(X)) \text{ is trivial}\}$. By assumption \mathcal{U} is a basis for X. For each $u \in \mathcal{U}$ and each γ from x_0 to a point in U, we define $U_{\lceil \gamma \rceil} = \{\gamma \cdot \eta\} : \eta$ starting at $\gamma(1)$ stays in U. Then $p: \tilde{X} \to X$ by $[\gamma] \to \gamma(1)$.

We need to check that $\{U_{\lceil \gamma \rceil}: U \in \mathcal{U}, \gamma \text{ a path from } x_0 \text{ to a point in } U\}$ generates a topology on \tilde{X} .

We need also to check that $p: U_{[\gamma]} \to U$ is bijective. It is clearly surjective, and if $p[\gamma \cdot \eta] = p[\gamma \cdot \delta]$ with η, δ paths starting at $\gamma(1)$ and staying in U. Then $\eta(1) = \delta(1)$ and, since η, δ share the same endpoints and they stay in $U_{[\gamma]}$, then $[\eta] = [\delta]$. Hence $[\gamma \cdot \eta] = [\gamma \cdot \delta]$ and p is injective.

Further, we need to check that $p:U_{[\gamma]}\to U$ is a homemorphism and that $p^{-1}(U)=\dot\bigcup_{[\gamma]}U_{[\gamma]}$. Hence p is a covering map.

Finally, we need to check that \tilde{X} is simply connected. Recall that $p: \tilde{X} \to X$ induces an injective homomorphism $p_*: \pi_1(\tilde{X}, \tilde{x}_0) \to \pi_1(X, x_0)$. It suffices to show that $p_*\pi_1(\tilde{X}, \tilde{x}_0) = \mathrm{id}$. We se $\mathrm{t}\tilde{x}_0 = [C_{x_0}] \in \tilde{X}$. Recall also that elements in $p_*\pi_1(\tilde{X}, \tilde{x}_0)$ are exactly the loops in X at x_0 such that they lift to loops at \tilde{x}_0 . Suppose $[\gamma] \in p_*\pi_1(\tilde{X}, \tilde{x}_0)$. Then γ lifts to a loop $\tilde{\gamma}$ at $\tilde{x}_0 = [C_{x_0}]$. For $t \in [0,1]$, consider the path γ_t which follows γ on [0,t] then stays stationary at $\gamma(t)$ for the remaining time. Then $t \mapsto [\gamma_t]$ is a path on \tilde{X} , $p([\gamma_t]) = \gamma_t(1) = \gamma(t)$, and $t \mapsto [\gamma_t]$ is a lift of γ at $\tilde{x}_0 = [C_{x_0}]$. Then $t \mapsto [\gamma_t]$ is a loop (i.e. $[\gamma] = [\gamma_1] = \tilde{x}_0 = [C_{x_0}]$) and γ is null-homotopic. This shows that $p_*\pi_1(\tilde{X}, \tilde{x}_0) = \mathrm{id}$ (i.e. \tilde{X} is simply connected).

Group Actions on Fibers (Monodromy Action)

Given $p:(\tilde{X},\tilde{x}_0)\to (X,x_0)$ a covering map, $\pi_1(X,x_0)$ acts on p^{-1} as follows: $p^{-1}(x_0)\times \pi_1(X,x_0)\to p^{-1}(x_0)$ by $(e,[f])\mapsto \tilde{f}_e(1)$ where \tilde{f}_e is the (unique) lift of f at $e\in p^{-1}(x_0)$. This is a right $\pi_1(X,x)$ action.

We want to check that $(e \cdot [f]) \cdot [g] = e \cdot [f \cdot g]$. We have that $e \cdot [f \cdot g] = (f \cdot g)_e(1)$, but $(f \cdot g)_e$ is the lift of f at e followed by the lift of g at the endpoint of \tilde{f}_e , call it $\tilde{f}_e(1) = z$. Then $(f \cdot g)_e(1) = \tilde{g}_z(1) = z \cdot [g] = (e \cdot [f]) \cdot [g]$.

This action is transitive. Given e and e', draw a path connecting them \tilde{g} . Under the map p, we have that $p \circ \tilde{g} = g$ which is a loop at x_0 . Then $e \cdot [g] = \tilde{g}(1) = e'$.

Recall: Given a right *G*-set *S*, $G_S = \{g \in G : s \cdot g = s\}$ is the isotropy subgroup at $s \in S$.

Given $e \in p^{-1}(x_0)$, the isotropy subgroup at e is all the loops such that their lfts at e are loops (i.e. the isotropy subgroup at e is precisely $p_*\pi_1(\tilde{X},e)$).

Recall: $G \cdot S = G/G_s$. Here, this tells us that $p^{-1}(x_0) = \pi_1(X, x_0)/p_*\pi_1(\tilde{X}, e)$. This recovers the fact that the number of sheets is equal to the index of $\operatorname{im}(p_*)$.

In particular, if \tilde{X} is simply connected, then

- $\pi_1(X, x_0)$ acts freely on $p^{-1}(x_0)$ and
- the number of sheets equals the cardinality of $\pi_1(X, x_0)$.

Definition: Universal Cover

A covering space $p: \tilde{X} \to X$ is called universal if it has the universal property (i.e. for any covering space $q: Y \to X$, there is a covering map $\tilde{p}: \tilde{X} \to Y$ such that the associated diagram commutes).

$$\tilde{X} \xrightarrow{\tilde{p}} Y$$

$$\downarrow p \downarrow \qquad q$$

$$\downarrow q$$

Definition: Covering Homomorphism

Let $p_1: X_1 \to X$ and $p_2: X_2 \to X$ be two covering spaces. A covering homomorphism is a map $\varphi: X_1 \to X_2$ such that the associated diagram commutes

By definition, φ is a lift of p_1 .

Proposition

- 1. A covering homomorphism φ is uniquely determined by its value at one point.
- 2. For each $x \in X$, $\varphi|_{p_1^{-1}(x)} : p_1^{-1}(x) \to p_2^{-1}(x)$ is $\pi_1(X, x_0)$ -equivariant.
- 3. A covering homomorphism $\varphi: X_1 \to X_2$ is a covering map. Assuming this, the universal cover is unique.

Recall: if S_1, S_2 are right G-sets, a G-equivariant map $\varphi: S_1 \to S_2$ is a map such that the associated diagram commutes

$$S_{1} \xrightarrow{\varphi} S_{2}$$

$$\downarrow \cdot g \qquad \qquad \downarrow \cdot g$$

$$S_{1} \xrightarrow{\varphi} S_{2}$$

Proof of 2

Let $e \in p_1^{-1}(x)$. We need to show taht $\varphi(e) \cdot g = \varphi(e \cdot g)$. We have that $g \in \pi_1(X, x_0)$ is represented by a loop f at x_0 . So $e \cdot g = e \cdot [f] = \tilde{f}_e(1) \in X_1$, and $\varphi(e \cdot g) = \varphi(\tilde{f}_e(1))$. On the left hand side, we have that $\varphi(e) \cdot g = f_{\varphi(e)}(1) \in X_2$. We need to verify that $\varphi(\tilde{f}_e) = \tilde{f}_{\varphi(e)}$ which are both lifts of f at $\varphi(e)$. But since the diagram commutes, $p_2(\varphi \circ \tilde{f}_e) = p_1 \circ \tilde{f}_e = f$.

Uniqueness in 3

Suppose we have

$$X_1 \xleftarrow{\psi} X_2$$

$$X_1 \xrightarrow{p_1} Q$$

$$X_2 \xrightarrow{p_2} X$$

with $\varphi(e_1) = e_2$ and $\psi(e_2) = e_1$. Then $\psi \circ \varphi(e_1) = e_1$. Hence $\psi \circ \varphi = \operatorname{id}$ and, similarly, $\psi \circ \varphi = \operatorname{id}$. Hence φ is a bijection and a homemorphism.

Proof of 3

 φ is surjective. Given any $e' \in X_2$, set $x_0 = p_2(e)$ and let $e \in p_1^{-1}(x_0)$ so $\varphi(e) \in p_2^{-1}(x_0)$. Since $\pi_1(X, x_0)$ acts transitively on $p_2^{-1}(x_0)$, there exists $g \in \pi_1(X, x_0)$ such that $e' = \varphi(e) \cdot g = \varphi(e \cdot g)$ φ is a covering map. Let V be a neighborhood of $x_0 \in X$ such that V is evenly covered by both p_1 and p_2 . Let U be a component in $p_2^{-1}(V)$ that contains e_2 . Then $p_1^{-1}(X) = \bigcup U_\alpha$. U as a component in $p_2^{-1}(V)$ is both open and closed.

Hence $\varphi^{-1}(U)$ is open and closed in $p_1^{-1}(V) = \dot{\bigcup} U_\alpha$. It follows that $\varphi^{-1}(U)$ is the disjoint union of several components of $\{U_\alpha\}_\alpha$, and each component is homemorphic to V and consequently homeomorphic to U. This shows that φ is a covering map.

April 21, 2025

Recall: Lifting Criterion

There exists a lift \tilde{f} of f at \tilde{x}_0 if and only if $f_*\pi_1(Y, y_0) \subseteq p_*\pi_1(\tilde{X}, \tilde{x}_0)$.

If $(\tilde{X}, \tilde{x}_0) \stackrel{p}{\to} (Y, y_0)$, $\pi_1(X, x_0)$ acts transitively on $p^{-1}(x_0)$ by path lifting (a right action where $e \in p^{-1}(x_0)$ by $e \cdot [\gamma] = \tilde{\gamma}_e(1)$). The isotropy subgroup at e is $p_*\pi_1(\tilde{X}, e)$.

Covering Transformations

Write $\operatorname{Aut}(\tilde{X} \xrightarrow{p} X)$ for the covering group $\{\varphi : \tilde{X} \to \tilde{X} \text{ covering transformations}\}$.

- 1. $\varphi: \tilde{X} \to \tilde{X}$ is uniquely determined by its value at one point.
- 2. Given $e_1, e_2 \in p^{-1}(x)$, there is $\varphi \in \operatorname{Aut}(\tilde{X} \xrightarrow{p} X)$ if and only if $p_*\pi_1(\tilde{X}, e_1) = p_*\pi_1(\tilde{X}, e_2)$. In fact, for $\varphi \in \operatorname{Aut}(\tilde{X} \xrightarrow{p} X)$ with $p_*\pi_1(\tilde{X}, e_1) \subseteq p_*\pi_1(\tilde{X}, e_2)$.
- 3. $\varphi|_{p^{-1}(x)}: p^{-1}(x) \to p^{-1}(x)$ is $\pi_1(X, x)$ -equivariant (i.e. $\varphi(e) \cdot \gamma = \varphi(e \cdot \gamma)$.

Example

Given $p: \mathbb{R} \to S^1$, what is $\operatorname{Aut}(\mathbb{R} \stackrel{p}{\to} S^1)$?

 $1 \in S^1$, $p^{-1}(1) = \mathbb{Z} \subseteq \mathbb{R}$, $\forall \varphi \in \operatorname{Aut}(\mathbb{R} \xrightarrow{p} S^1)$, $\varphi(0) = k \in \mathbb{Z}$. Then $\varphi(x) = x + k$. In fact, the map $x \mapsto x + k$ is a covering transofmratio that agrees with φ at $0 \in \mathbb{R}$. Hence they agree everywhere (i.e. $\varphi(x) = x + k$ for all x).

Example

Given $p: S^2 \to \mathbb{RP}^2$, then $\operatorname{Aut}(S^2 \xrightarrow{p} \mathbb{RP}^2) = \{\operatorname{id}, A\}$ with A the antipodal map.

Proposition: Normal Covering

Let $\tilde{X} \stackrel{p}{\to} X$ be a covering map. The following are equivalent

- 1. There exists $x \in X$ such that $p_*\pi_1(\tilde{X}, e)$ is normal for one (thus for all) $e \in p^{-1}(x)$.
- 2. For every $x \in X$ and each $e \in p^{-1}(x)$, $p_*\pi_1(\tilde{X}, e)$ is normal.

3. Aut $(\tilde{X} \xrightarrow{p} X)$ acts transitively on some (thus all) fiber $p^{-1}(x)$.

If any of these hold, we say that $p: \tilde{X} \to X$ is a normal covering.

Proof

Suppose $e, e' \in p^{-1}(x)$ with $p_*\pi_1(\tilde{X}, e)$ and $p_*\pi_1(\tilde{X}, e')$. These are the isotropy subgroups at e and e' respectively. We know also $\pi_1(X,x)$ acts transitively on $p^{-1}(x)$.

Fact: If S is a right G-set, then $G_s = \{h \in G : s \cdot h = s\}$ and $G_{sg} = \{h \in G : s \cdot g \cdot h = s \cdot g\} = \{h \in S : s \cdot g \cdot h \cdot g^{-1} = s\}$. So $g \cdot G_{sg} \cdot g^{-1} \in G_s$ which implies that $G_{sg} = g^{-1} \cdot G_s \cdot g$. So if G_s is normal then so is G_{sg} .

IMAGE 1

$$\begin{array}{ccc} \pi_1(\tilde{X}, e_0) & \stackrel{\Phi_{\tilde{h}}}{\longrightarrow} & \pi_1(\tilde{X}, e) \\ & & \downarrow^{p_*} & & \downarrow^{p_*} \\ \pi_1(X, x_0) & \stackrel{\Phi_h}{\longrightarrow} & \pi_1(X, x) \end{array}$$

commutes. Hence Φ_h maps $p_*\pi_1(\tilde{X},e_0)$ to $p_*\pi_1(\tilde{X},e)$, and $\Phi_h:\pi_1(X,x_0) \xrightarrow{\sim} \pi_1(X,x)$

preserves normal subgroups.

(3) implies (1)

Finally, for every $e_1, e_2 \in p^{-1}(x)$, there exists $\varphi \in \operatorname{Aut}(\tilde{X} \xrightarrow{p} X)$ such that $\varphi(e_1) = e_2$. This holds if and only if $p_*\pi_1(\tilde{X},e_1)=p_*\pi_1(\tilde{X},e_2)$ for every $e_1,e_2\in p^{-1}(x)$. That is, $e_2=e_1\cdot \gamma$ for some $\gamma\in\pi_1(X,x)$ and $H=\gamma^{-1}H\gamma$ for every $\gamma \in \pi_1(X, x)$. So *H* is normal.

Remark

The (simply connected) universal cover is always normal because $\{id\}$ is normal in $\pi_1(X,x)$.

Theorem

Let $p: \tilde{X} \to X$ be a covering map with $x \in X$ and $e \in p^{-1}(x)$. Then $\operatorname{Aut}(\tilde{X} \xrightarrow{p} X) \cong \frac{N_G(H)}{H}$ where $G = \pi_1(X, x)$, $H = p_* \pi_1(\tilde{X}, e)$, and $N_G(H) = \{g \in G : g^{-1}Hg = H\}$.

Special Case 1

If $p: \tilde{X} \to X$ is a normal covering, then H is normal in G. Then also $\operatorname{Aut}(\tilde{X} \xrightarrow{p} X) \cong G/H$.

Special Case 2

If $p: \tilde{X} \to X$ is the (simply connected) universal covering, then $\operatorname{Aut}(\tilde{X} \xrightarrow{p} X) \cong \pi_1(X, x)$.

Proof

Let S be a right G-set with transitive action and $\operatorname{Aut}_G(S)\{\varphi:S\to S\text{ G-equivariant bijections}\}$. Fix $s\in S$. Then $\operatorname{Aut}_G(S) \cong \frac{N_G(H)}{H} \text{ where } h = G_s.$ Define $\Phi: N_G(H) \to \operatorname{Aut}_G(S)$ by $\gamma \mapsto \Phi(\gamma) = \varphi_\gamma$ with $\varphi_\gamma: S \to S$ defined by

$$G_{s \cdot \gamma} = \gamma^{-1} H \gamma = H = G_s.$$

Then there exists a unique $\varphi_{\gamma} \in \operatorname{Aut}_G(S)$ such that $\varphi_{\gamma}(s) = s \cdot \gamma$.

Lemma

For each $s' \in S$, $s' = s \cdot \gamma'$ for some $\gamma' \in G$. Then $\varphi_{\gamma}(s') = \varphi_{\gamma}(s \cdot \gamma') = \varphi_{\gamma}(s) \cdot \gamma' = s \cdot \gamma \gamma'$. This is well defined. If $s' = s \cdot \gamma''$, then $s = s(\gamma \cdot \gamma'' \cdot (\gamma')^{-1} \cdot \gamma^{-1})$ which implies that $\gamma \cdot \gamma''(\gamma')^{-1} \cdot \gamma^{-1} \in G_s$ and $\gamma'' \cdot (\gamma')^{-1} \in G_s$.

 Φ is a group homomorphism since

$$\varphi_{\gamma_1} \circ \varphi_{\gamma_2}(s) = \varphi_{\gamma_1}(s \cdot \gamma_2) = \varphi_{\gamma_1}(s) \cdot \gamma_2 = s \cdot \gamma_1 \cdot \gamma_2.$$

 Φ is surjective since letting $\varphi \in \operatorname{Aut}_G(S)$, it maps s to some $\varphi(s) = s' = s \cdot \gamma$ and hence $\varphi = \varphi_{\gamma}$.

If $\varphi_{\gamma}=\mathrm{id}$, then $\varphi_{\gamma}(s)=s$ and $\gamma\in G_s=H$. So Φ induces $\frac{N_G(H)}{H}\cong\mathrm{Aut}_G(S)$.

Take $G = \pi_1(X,x)$ and $\operatorname{Aut}(\tilde{X} \xrightarrow{p} X) \to \operatorname{Aut}_G(p^{-1}(x)) \cong \frac{N_G(H)}{H}$ by $\varphi \mapsto \varphi|_{p^{-1}(x)}$ where H is the isotropy subgroup of the $\pi_1(X,x)$ action at e $(p_*\pi_1(\tilde{X},e))$. Then $\varphi \mapsto \varphi|_{p^{-1}(x)}$ is injective because it is uniquely determined by its value at one point.

 $\varphi\mapsto \varphi|_{p^{-1}(x)}$ is surjective. Letting $\eta\in \operatorname{Aut}_g(p^{-1}(x))$ and $e_1\in p^{-1}(x)$, we set $e_2=\eta(e_1)$ and see that $p_*\pi_1(\tilde{X},e_1)=G_{e_1}=G_{e_2}=p_*\pi_1(\tilde{X},e_2)$. By the lifting criterion, there exists $\varphi\in \operatorname{Aut}(\tilde{X}\stackrel{p}{\to}X)$ such that $\varphi(e_1)=e_2$. Then $\varphi|_{p^{-1}(x)}=\eta$ since both are in $\operatorname{Aut}_G(p^{-1}(x))$ and they agree at one point (hence everywhere). Thus we conclude that the map is a bijection and

$$\operatorname{Aut}(\tilde{X} \xrightarrow{p} X) \cong \operatorname{Aut}_{G}(p^{-1}(x)) \cong \frac{N_{G}(H)}{H}.$$

Definition: Covering Space Action

Let X be connected and locally path connected with a group action Γ acting by homeomorphism. The quotient map $p: X \to X/\Gamma$ will be a covering map if we impose (*) for all $x \in X$, there exists a neighborhood U of x such that $U \cap (g \cdot U) = \emptyset$ for each $g \in \Gamma - \{id\}$. In particular, G acts freely on X. We say that a Γ -action on X is a covering space action if (*) if fulfilled.

Counter-example

Consider an \mathbb{R} action on \mathbb{R}^2 by translation. Then $U \cap (g \cdot U) \neq \emptyset$.

IMAGE 2

Remark

Assuming (*), $\{g \cdot U : g \in \Gamma\}$ is a disjoint family of open sets.

Example

Take a \mathbb{Z} -action by \mathbb{R}^2 given by $\gamma(x, y) = (x + 1, -y)$.

IMAGE 3

Example

 S^2 with \mathbb{Z}_2 -action ({id, A}).

Theorem

If Γ acts on X as a covering space action, then $q: X \to X/\Gamma$ is a normal covering map.

Proof

Let $\overline{x} \in X/\Gamma$ and pick $x \in q^{-1}(\overline{x})$. By (*), we have a neighborhood U such that $\{g \cdot U : g \in \Gamma\}$ is a disjoint collection. Let V = q(U), an open neighborhood of \overline{x} in X/Γ . Then $q^{-1}(V) = \{g \cdot U : g \in \Gamma\}$. Moreover, $g \cdot U \to V$ is a homeomorphism. If there exist $x', g'x' \in g \cdot U$, then $x' = h_1 \cdot u_1$ and $g' \cdot x' = h_2 \cdot u_2$. So $h_1^{-1}x' \in U$ and $h_2^{-1}g' \cdot x' \in U$ but this holds only for the identity map. So the covering map is injective.

Classifications of Covering Spaces

Take X path-connected, locally path-connected and semi-locally simply path connected (guaranteeing a simply connected universal cover). Then there is a 1-1 correspondence between

$$\begin{cases} \text{isomorphism classes of covering} \\ \text{spaces } p \colon \hat{X} \to X \end{cases} \longleftrightarrow \begin{cases} \text{conjugacy classes of subgroups in } \pi_1(X,x) \end{cases}$$

$$(p:\hat{X} \to X) \leftrightarrows \left[p_* \pi_1(\hat{X},\hat{e}) \right]$$