1 Řady

1.1 Úvod

Definice 1.1

Nechť $\{a_n\}_{n\in\mathbb{N}}$ je posloupnost. Číslo $s_m=a_1+a_2+\ldots+a_m$ nazveme m-tým částečným součtem řady $\sum a_n$. Součtem nekonečné řady $\sum_{n=1}^\infty a_n$ nazveme limitu posloupnosti $\{s_m\}_{m\in\mathbb{N}}$, pokud tato limita existuje. Je-li tato limita konečná, pak řekneme, že řada je konvergentní. Je-li tato limita nekonečná nebo neexistuje, pak řekneme, že řada je divergentní. Tuto limitu budeme značit $\sum_{n=1}^\infty a_n$.

Věta 1.1 (Nutná podmínka konvergence)

Jestliže je $\sum_{n=1}^{\infty} a_n$ konvergentní, pak $\lim_{n\to\infty} a_n = 0$.

 $D\mathring{u}kaz$

 $\sum_{n=1}^{\infty} a_n \text{ konverguje} \implies \exists \lim_{m \to \infty} s_m = s \in \mathbb{R}. \ a_n = s_n - s_{n-1}. \lim_{n \to \infty} a_n = \lim_{n \to \infty} s_n - s_{n-1}. \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_n - s_{n-1} = s - s = 0$

Pozor

Tato věta je pouze a jen implikace.

Věta 1.2 (konvergence součtu řad)

Necht $\alpha \in \mathbb{R} \setminus \{0\}$, pak $\sum_{n=1}^{\infty} a_n$ konverguje $\Leftrightarrow \sum_{n=1}^{\infty} \alpha \cdot a_n$ konverguje.

Necht $\sum_{n=1}^{\infty} a_n$ konverguje a $\sum_{n=1}^{\infty} b_n$ konverguje, pak $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$.

 $D\mathring{u}kaz$

 $\sum_{n=1}^{\infty} a_n$ konverguje \exists limita z $s_m \to s \in \mathbb{R}$ a to je z AL právě tehdy, když konverguje $\alpha s_m \to \alpha \cdot s \in \mathbb{R}$, tedy $\sum_{n=1}^{\infty} \alpha \cdot a_n$ konverguje.

 $\sum_{n=1}^{\infty}a_n=s\in\mathbb{R}\text{ i }\sum_{n=1}^{\infty}b_n=\sigma\in\mathbb{R}\text{ konvergují, tedy konverguje i }s_m+\sigma_m\to s+\sigma\in\mathbb{R}.$

1.2 Řady s nezápornými členy

Pozorování

Nechť $\{a_n\}_{n=1}^{\infty}$ je řada s nezápornými členy. Pak $\sum_{n=1}^{\infty} a_n$ konverguje, nebo má součet $+\infty$.

Věta 1.3 (Srovnávací kritérium)

 $\frac{1}{Necht \sum_{n=1}^{\infty} a_n \ a \sum_{n=1}^{\infty} b_n \ jsou \ \check{r}ady \ s \ nez\acute{a}porn\acute{y}mi \ \check{c}leny \ a \ necht \ \exists n_0 \in \mathbb{N} \ tak, \ \check{z}e \ \forall n \in \mathbb{N}, \ n \geq n_0 \ plati \ a_n \leq b_n. \ Pak \ a) \sum_{n=1}^{\infty} b_n \ konverguje \implies \sum_{n=1}^{\infty} a_n \ konverguje \ b) \sum_{n=1}^{\infty} a_n \ diverguje \implies \sum_{n=1}^{\infty} b_n \ diverguje.$

Důkaz

a) Označme $s_n=a_1+\ldots+a_n$ a $\sigma_n=b_1+\ldots+b_n$. Pro každé $n\in\mathbb{N},\,n\geq n_0$ platí

$$s_n = a_1 + \ldots + a_{n_0} + a_{n_0+1} + \ldots + a_n \le a_1 + \ldots + a_{n_0} + b_{n_0+1} + \ldots + b_n \le a_1 + \ldots + a_{n_0} + \sigma_n \le a_1 + \ldots + a_{n_0} + \alpha \le a_1 + \ldots + a_{n$$

A to je konečné, neboť $\sum_{n=1}^{\infty} b_n$ konverguje, tedy $\sigma \in \mathbb{R}$. s_n neklesající a omezená $\Longrightarrow \exists \lim_{n \to \infty} s_n \in \mathbb{R}$.

b) Nepřímím důkazem z a).

Věta 1.4 (Limitní srovnávací kritérium)

Nechť $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$ jsou řady s nezápornými členy a nechť $\lim_{n\to\infty} \frac{a_n}{b_n} = A \in \mathbb{R}^*$. Jestliže $A \in (0,\infty)$, pak $\sum_{n=1}^{\infty} b_n$ konverguje $\Leftrightarrow \sum_{n=1}^{\infty} a_n$ konverguje. Jestliže A = 0, pak $\sum_{n=1}^{\infty} b_n$ konverguje $\Rightarrow \sum_{n=1}^{\infty} a_n$ konverguje. Jestliže $A = \infty$, pak $\sum_{n=1}^{\infty} a_n$ konverguje $\Rightarrow \sum_{n=1}^{\infty} b_n$ konverguje.

Důkaz

(i) Z $\lim_{n\to\infty} \frac{a_n}{b_n} = K \in (0,\infty)$ plyne, k $\varepsilon = \frac{K}{2} \exists n_0 \ \forall n \geq n_0 : \left| \frac{a_n}{b_n} - K \right| < \varepsilon = \frac{K}{2}$, tedy $\frac{K}{2} \leq \frac{a_n}{b_n} \leq \frac{3}{2}K$.

 $\sum_{n=1}^{\infty} b_n \text{ konverguje} \overset{\text{konvergence součtu řad}}{\Longrightarrow} \sum_{n=1}^{\infty} \frac{3}{2} K \cdot b_n \text{ konverguje} \land a_n \leq \frac{3}{2} K \cdot b_n \overset{\text{Srov. kritérium}}{\Longrightarrow} \sum_{n=1}^{\infty} a_n \text{ konverguje}.$

 $\sum_{n=1}^{\infty} a_n$ konverguje $\wedge \frac{K}{2} \cdot b_n \leq a_n \implies \sum_{n=1}^{\infty} \frac{K}{2} \cdot b_n$ konverguje $\implies \sum_{n=1}^{\infty} b_n$ konverguje.

(ii) Z $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ plyne, k $\varepsilon = 1 \exists n_0 \ \forall n \geq n_0 : \left| \frac{a_n}{b_n} - K \right| < \varepsilon = 1$, tedy $a_n < b_n$, a pokud $\sum_{n=1}^{\infty} b_n$ konverguje, tak $\sum_{n=1}^{\infty} a_n$ konverguje podle srovnávacího kritéria.

(iii) Úplně stejně jako (ii).