Core-Maths-C3 - 2009-June

Figure 1

Figure 1 shows part of the curve with equation $y = -x^3 + 2x^2 + 2$, which intersects the x-axis at the point A where x = a.

To find an approximation to α , the iterative formula

$$x_{n+1} = \frac{2}{(x_n)^2} + 2$$

is used.

(a) Taking $x_0 = 2.5$, find the values of x_1, x_2, x_3 and x_4 . Give your answers to 3 decimal places where appropriate.

(3)

(b) Show that $\alpha = 2.359$ correct to 3 decimal places.

(3)

- (a) Use the identity $\cos^2 \theta + \sin^2 \theta = 1$ to prove that $\tan^2 \theta = \sec^2 \theta 1$.
- (b) Solve, for $0 \le \theta \le 360^{\circ}$, the equation

$$2\tan^2\theta + 4\sec\theta + \sec^2\theta = 2$$
(6)

(1)

Question 3

Rabbits were introduced onto an island. The number of rabbits, P, t years after they were introduced is modelled by the equation

$$P = 80e^{\frac{1}{5}t}, \quad t \in \mathbb{R}, t \geqslant 0$$

- (a) Write down the number of rabbits that were introduced to the island.
- (b) Find the number of years it would take for the number of rabbits to first exceed 1000.
 (2)
- (c) Find $\frac{dP}{dt}$.
- (d) Find P when $\frac{dP}{dt} = 50$.

- (i) Differentiate with respect to x
 - (a) $x^2 \cos 3x$ (3)

(b)
$$\frac{\ln(x^2+1)}{x^2+1}$$
 (4)

(ii) A curve C has the equation

$$y=\sqrt{(4x+1)}, x>-\frac{1}{4}, y>0$$

The point P on the curve has x-coordinate 2. Find an equation of the tangent to C at P in the form ax + by + c = 0, where a, b and c are integers.

(6)

Figure 2

Figure 2 shows a sketch of part of the curve with equation y = f(x), $x \in \mathbb{R}$. The curve meets the coordinate axes at the points A(0,1-k) and $B(\frac{1}{2}\ln k,0)$, where k is a constant and k > 1, as shown in Figure 2.

On separate diagrams, sketch the curve with equation

(a)
$$y = |f(x)|$$
, (3)

(b)
$$y = f^{-1}(x)$$
. (2)

Show on each sketch the coordinates, in terms of k, of each point at which the curve meets or cuts the axes.

Given that $f(x) = e^{2x} - k$,

(c) state the range of f, (1)

(d) find $f^{-1}(x)$, (3)

(e) write down the domain of f^{-1} . (1)

(a) Use the identity $\cos(A+B) = \cos A \cos B - \sin A \sin B$, to show that

$$\cos 2A = 1 - 2\sin^2 A \tag{2}$$

The curves C_1 and C_2 have equations

$$C_1$$
: $y = 3\sin 2x$

$$C_2: \quad y = 4\sin^2 x - 2\cos 2x$$

(b) Show that the x-coordinates of the points where C_1 and C_2 intersect satisfy the equation

$$4\cos 2x + 3\sin 2x = 2\tag{3}$$

- (c) Express 4 cos 2x + 3 sin 2x in the form R cos (2x α), where R > 0 and 0 < α < 90°, giving the value of α to 2 decimal places.
 (3)
- (d) Hence find, for $0 \le x < 180^\circ$, all the solutions of

$$4\cos 2x + 3\sin 2x = 2$$

giving your answers to 1 decimal place.

(4)

The function f is defined by

$$f(x) = 1 - \frac{2}{(x+4)} + \frac{x-8}{(x-2)(x+4)}, \quad x \in \mathbb{R}, \ x \neq -4, \ x \neq 2$$

(a) Show that
$$f(x) = \frac{x-3}{x-2}$$
 (5)

The function g is defined by

$$g(x) = \frac{e^x - 3}{e^x - 2}, \quad x \in \mathbb{R}, \ x \neq \ln 2$$

(b) Differentiate
$$g(x)$$
 to show that $g'(x) = \frac{e^x}{(e^x - 2)^2}$ (3)

(c) Find the exact values of x for which g'(x) = 1

(4)

Question 8

(a) Write down $\sin 2x$ in terms of $\sin x$ and $\cos x$.

(1)

(b) Find, for $0 \le x \le \pi$, all the solutions of the equation

$$\csc x - 8\cos x = 0$$

giving your answers to 2 decimal places.

(5)