Introduction to Topology

Group Theory, Lecture 16, 17, 18

Haoming Wang

01 August 2019

This is the Lecture Note for the *Introduction to Topology*. The course covers the following topics: Naive Set Theory, Elementary Number Theory, Group Theory, Topological Spaces and Continuous Maps, Introduction to Algebraic Topology.

Abelian Group

Definition 1 (Abelian Group). Given a group (G, \square) , we say (G, \square) is a abelian group if $\forall g, g' \in G, g \square g' = g' \square g$.

The set $\mathbb{Z} \times \mathbb{Z}$ is equivalent with $\{\{1,2\} \xrightarrow{f} \mathbb{Z} | f \text{ if a map}\}$. For any $(x,y) \in \mathbb{Z} \times \mathbb{Z}$, it can be represented as $f: 1 \mapsto x, 2 \mapsto y$, $\{1,2\}$ is the ordinate. And for any maps $\{1,2\} \xrightarrow{f} \mathbb{Z}$, it is corresponded by $(f(1),f(2)) \in \mathbb{Z} \times \mathbb{Z}$.

Let *S* be a set, define

 $T(g_1 \square g_2) = T(g_1) \square' T(g_2).$

$$\mathbb{Z}^{\oplus S} := \{S \xrightarrow{f} \mathbb{Z} | f \text{ is a map s.t. } f(s) \neq 0 \text{ for finitely many } s \in S\}$$

The element of $\mathbb{Z}^{\oplus S}$ is encoding each element of S with integer, and only finite element of S will be encoded by nonzero integer.

Example 1. The element of $\mathbb{Z}^{\oplus \mathbb{N}}$ is a series of integer $(x_1, x_2, \cdots)(x_i \in \mathbb{Z}, i \in \mathbb{N})$ which has only finite nonzero integers.

We can define add on $\mathbb{Z}^{\oplus S}$: $(x_s)_{s \in S} + (y_s)_{s \in S} = (x_s + y_s)_{s \in S}$. Then for any $(x_s)_{s \in S}$, $(y_s)_{s \in S} \in \mathbb{Z}^{\oplus S}$, the binary operation $(\mathbb{Z}^{\oplus S}, +)$ has 1. $(x_s + y_s)_{s \in S} \in \mathbb{Z}^{\oplus S}$ (for $(x_s)_{s \in S}$, $(y_s)_{s \in S}$ only has finite nonzero integers)

2.
$$e = (0)_{s \in S} \in \mathbb{Z}^{\oplus S}$$

3. $((x_s)_{s \in S})^{-1} = (-x_s)_{s \in S} \in \mathbb{Z}^{\oplus S}$
4. $(x_s)_{s \in S} + (y_s)_{s \in S} = (x_s + y_s)_{s \in S} = (y_s)_{s \in S} + (x_s)_{s \in S}$
Thus $(\mathbb{Z}^{\oplus S}, +)$ is a abelian group, and we call $(\mathbb{Z}^{\oplus S}, +)$ as **Free**

Abelian Group. **Definition 2** (Homomorphism). Given two groups (G, \square) , (G', \square') , a map $G \xrightarrow{T} G'$ is a homomorphism w.r.t. \square and \square' if $\forall g_1, g_2 \in G$,

Example 2. Map $\mathbb{Z} \xrightarrow{T} \mathbb{Z}/5\mathbb{Z}$ is a homomorphism, since for any $a, b \in \mathbb{Z}$, $(a + 5\mathbb{Z}) + (b + 5\mathbb{Z}) = (a + b) + 5\mathbb{Z}$.

CONTENT:

- 1. Abelian Group
- 2. Normal Subgroup
- 3. Theorem of Isomorphism
- 4. Homotopy

Note 1. Sometimes, we will denote $S \xrightarrow{f} \mathbb{Z}$ by $(x_s)_{s \in S}$.

Note 2. The purpose of defining a group homomorphism is to create functions that preserve the algebraic structure. An equivalent definition of group homomorphism is: The map $G \xrightarrow{h} G'$ is a group homomorphism if whenever $a \Box b = c$ we have $h(a) \Box' h(b) = h(c)$.

In other words, the group G' in some sense has a similar algebraic structure as G and the homomorphism h preserves that.

Definition 4. Given two groups $(G, \square), (G', \square')$, let $G \xrightarrow{T} G'$ be a homomorphism:

1.
$$ker(T) := T^{-1}(e') = \{g \in G | T(g) = e'\};$$

2.
$$im(T) := T(G) = \{T(g) | g \in G\}.$$

Exercise 1. Show that ker(T) is a subgroup of (G, \square) , im(T) is a subgroup of (G', \square') .

Proof. 1.

- (o.) Obviously $ker(T) \subseteq G$.
- (1.) for $\forall g_1, g_2 \in ker(T)$:

$$T(g_1 \square g_2) = T(g_1) \square' T(g_2)$$
$$= e' \square e' = e'$$

thus $g_1 \square g_2 \in ker(T)$.

(2.) for $\forall g \in ker(T)$,

$$T(g) = T(g \square e)$$

$$= T(g) \square' T(e)$$

$$= e' \square' T(e) = e'$$

and $T(e)\Box'e'=e'$ in the same way, thus $e\in ker(T)$, and be the unit element of ker(T).

(3.) for $\forall g \in ker(T)$,

$$T(e) = T(g \square g^{-1})$$

$$= T(g) \square' T(g^{-1})$$

$$= e' \square' T(g^{-1})$$

$$= e'$$

and $T(g^{-1})\square'e'=e'$, thus $T(g^{-1})=e'$, and $g^{-1}\in ker(T)$. Thus ker(T) is a subgroup of (G,\square) .

2.

o. Obviously $im(T) \subseteq G'$.

1. for $\forall g_1', g_2' \in im(T), \exists g_1, g_2, \text{ s.t. } T(g_1) = g_1', T(g_2) = g_2'.$ Thus

$$T(g_1 \square g_2) = T(g_1) \square' T(g_2)$$
$$= g_1' \square' g_2'$$

thus $g_1' \square' g_2' \in im(T)$.

(2.) Since $e \in ker(T) \Rightarrow T(e) = e' \Rightarrow e' \in im(T)$.

(3.) for
$$\forall g' \in im(T), \exists g \in G$$
, s.t. $T(g) = g'$, and

$$T(e) = T(g \square g^{-1})$$

$$= T(g) \square' T(g^{-1})$$

$$= g' \square' T(g^{-1})$$

$$= e'$$

and $T(g^{-1})\Box'g'=e'$ in the same way, thus $T(g^{-1})=g'^{-1}$, $g'^{-1}\in$ im(T).

Thus im(T) is a subgroup of G'.

Exercise 2. $G \xrightarrow{T} G'$ is a homomorphism show that T(e) = e' and $T(g^{-1}) = T(g)^{-1}$ for $\forall g \in G$. e' is the unit element of (G', \square') ,

Proof. 1.
$$ker(T)$$
 is a subgroup of G , thus $e \in ker(T) \Rightarrow T(e) = e'$. 2. $T(g^{-1})\Box'T(g) = T(g^{-1}\Box g) = T(e) = e'$, thus $T(g^{-1}) = T(g)^{-1}$. \Box

Definition 5. Given two groups $(G, \Box), (G', \Box')$, let $G \xrightarrow{T} G'$ be a homomorphism. If (G', \square') is abelian, cok(T) := G'/im(T).

Normal Subgroup

Consider a group (G, \square) and natural projection π . Are there is map \square' such that the following commutative diagram holds? i.e. for $\forall g_1, g_2, \pi(g_1 \square g_2) = \pi(g_1) \square' \pi(g_2) ?$

$$\begin{array}{c|c} (a,b)G\times G^{(a,b)} & & \square & \\ \hline & \pi\times\pi \downarrow & & \downarrow \pi \\ \hline (a\square H,b\square H)G/H\times G/H & & \square' \\ \end{array}$$

In the other word, for $(a, b) \in G \times G$, we can define map \square' as

$$(a\Box H)\Box'(b\Box H) := a\Box b\Box H$$

But there is not well-defined, because there would exists $a', b' \in G$ such that $a'\Box H = a\Box H, b'\Box H = b\Box H$, thus $(a\Box H)\Box'(b\Box H) =$ $(a'\Box H)\Box'(b'\Box H)$, but $a'\Box b'\Box H \neq a\Box b\Box H$.

Definition 6 (Normal Subgroup). Given a group (G, \square) , (H, \square) is a subgroup of (G, \square) (denote by $H \leq G$). We call H is a normal subgroup, denote by $H \subseteq G$, if $\forall g \in G, \forall h \in H, g^{-1} \square h \square g \in H$.

Exercise 3. Show that the definition of normal subgroup is equivalent with $g^{-1} \square H \square g = H$.

Note 3. Given maps f_1 , f_2 and a surjection g, we have proved if $g \circ f_1 = g \circ f_2 \Rightarrow f_1 = f_2$, thus if \square' exists, there would be only one.

Note 4. The definition of normal subgroup is equivalent with

- 1. $\forall g \in G, \forall \hat{h} \in H, g \Box h \Box g^{-1} \in H.$
- 1. $\forall g \in G, \forall n \in H$, 2. $g^{-1} \square H \square g \subseteq H$ 3. $g \square H \square g^{-1} \subseteq H$ 4. $g^{-1} \square H \square g = H$
- 5. $g \square H \square g^{-1} = H$

Proof. $\forall g \in G, \forall h \in H, g^{-1} \square h \square g \in H \Leftrightarrow g^{-1} \square H \square g \subseteq H$ by the definition of coset. And then for $\forall g \in G, H \square g \subseteq g \square H$ and $g^{-1}\Box H \subseteq H\Box g^{-1} \Rightarrow g\Box H \subseteq H\Box g$ Because $g = (g^{-1})^{-1}$. So $g\Box H = H\Box g$ and $g^{-1}\Box H\Box g = H$.

Exercise 4. If $H \subseteq G$, show that $a^{-1} \square a' \in H$, $b^{-1} \square b' \in H \Rightarrow$ $(a\Box b)^{-1}\Box(a'\Box b')\in H$, that is $H\unlhd G$ is the sufficient condition.

Proof. Denote $a^{-1} \square a' = h \in H$, $\exists h' \in H$, s.t. $b^{-1} \square b' = h' \Rightarrow b' =$ $b\Box h'$, thus

$$(a\Box b)^{-1}\Box(a'\Box b')$$

$$= b^{-1}\Box a^{-1}\Box a'\Box b'$$

$$= b^{-1}\Box h\Box b\Box h'$$

$$= (b^{-1}\Box h\Box b)\Box h'$$

$$H \unlhd G \Rightarrow b^{-1} \Box h \Box b \in H \Rightarrow (a \Box b)^{-1} \Box (a' \Box b') \in H.$$

We have seen that if $H \triangleleft G$ then there is a binary operation $G/H \times$ $G/H \xrightarrow{\square'} G/H((a\square H, b\square H) \mapsto a\square b\square H)$, such that the commutative diagram

$$\begin{array}{ccc} G\times G & & \square & G \\ \pi\times\pi \downarrow & & \downarrow \pi \\ G/H\times G/H & & \square' \to G/H \end{array}$$

holds.

Exercise 5 (Quotient Group). $H \subseteq G$, show that $(G/H, \square')$ is a group.

Proof. o. $H \subseteq G \Rightarrow \square'$ is well-defined by $(g_1 \square H) \square' (g_2 \square H) :=$ $(g_1 \square g_2) \square H$ for any $g_1, g_2 \in G$.

- 1. $\forall g_1, g_2 \in G, g_1 \square H, g_2 \square H \in G/H$, then $(g_1 \square H) \square'(g_2 \square H) =$ $(g_1 \square g_2) \square H$. $g_1 \square g_2 \in G$ thus $(g_1 \square g_2) \square H \in G/H$.
- 2. $\forall g \in G, g \square H \in G/H$, then $(g \square H) \square H = (g \square e) \square H = g \square H$, thus $e_{G/H} = H \in G/H$.

3.
$$(g\Box H)^{-1} = g^{-1}\Box H \in G/H$$
.

Exercise 6. $G \xrightarrow{T} G'$ is a homomorphism, show that $ker(T) \triangleleft G$ and $im(T) \leq G'$.

Proof. 1. For $\forall g \in G, k \in ker(T)$,

$$T(g^{-1} \square k \square g) = T(g^{-1}) \square' e' \square' T(g)$$
$$= T(g)^{-1} \square' T(g)$$
$$= e'$$

Thus $g^{-1} \square k \square g \in ker(T) \Rightarrow ker(T) \trianglelefteq G$.

2. (1.)
$$T(g_1)\Box'T(g_2) = T(g_1\Box g_2) \in im(T);$$
 (2.) $e' = T(e) \in im(T);$ (3) $T(g)^{-1} = T(g^{-1}) \in im(T).$

Note 5. a, a' belong to the same coset of $H \Leftrightarrow a \square H = a' \square H \Leftrightarrow a^{-1}a' \in H \Leftrightarrow$ $a' = a \square h$.

Thus if subgroup (H, \square) is normal then $(G/H, \square')$ is a group. Conversely, if (G, \square) is abelian, then any subgroup (H, \square) is normal, for $ghg^{-1} = gg^{-1}h = h \in H$; and $(G/H, \square')$ is abelian, for

$$(a\Box H)\Box'(b\Box H)$$

$$= a\Box b\Box H = b\Box a\Box H$$

$$= (b\Box H)\Box'(a\Box H).$$

Exercise 7. $G \xrightarrow{T} G'$ is a homomorphism, show that T is injection $\Leftrightarrow ker(T) = \{e\}.$

Proof. \Rightarrow : $\forall g \in G, k \in ker(T), T(g \square k) = T(g) \square' T(k) = T(g) \square' e' =$ $T(g) \Rightarrow g = g \square k$. Similarly, $g = k \square g$, thus $k = e(\forall k \in ker(T))$ and $ker(T) = \{e\}.$

 \Leftarrow : For any $g_1, g_2 \in G$, if $T(g_1) = T(g_2)$, then

$$T(g_2)\Box T(g_2)^{-1} = T(g_1)\Box' T(g_2)^{-1}$$

$$= T(g_1)\Box' T(g_2^{-1})$$

$$= T(g_1\Box g_2^{-1})$$

$$= e'$$

Thus
$$g_1 \Box g_2^{-1} \in ker(T) = \{e\} \Rightarrow g_1 \Box g_2^{-1} = e \Rightarrow g_1 = g_2.$$

Theorem of Isomorphism

Theorem 1 (Theorem of homomorphism). *Given groups* (G, \square) *and* (G', \square') , suppose $G \xrightarrow{T} G'$ is a homomorphism, H < G. Then

1.
$$T(H) = \{e'\}$$
, i.e. $H \subseteq ker(T) \Leftrightarrow \exists ! map \ G/H \xrightarrow{\tilde{T}} G' \ s.t.$

- 2. If $H \subseteq ker(T)$ and $H \subseteq G$ then $G/H \xrightarrow{\tilde{T}} G'$ is a homomorphism.
- 3. $H = ker(T) \Leftrightarrow \tilde{T}$ is injection.
- 4. T is surjection $\Leftrightarrow \tilde{T}$ is surjection.

Proof. 1. \Leftarrow : for $\forall h \in H$, $\pi(h) = \pi(e) = H$, thus

$$T(h) = \tilde{T} \circ \pi(h) = \tilde{T} \circ \pi(e) = T(e) = e',$$

thus $T(h) = e'(\forall h \in H)$, that is $H \subseteq ker(T)$.

 \Rightarrow : Define $\tilde{T}(g \square H) := T(g)$. For any $g, g_1 \in G$, s.t. $\pi(g) = \pi(g_1)$, that is $g \square H = g_1 \square H \Leftrightarrow \exists h \in H \text{ s.t. } g = g_1 \square h$. Thus T(g) = $T(g_1 \square h) = T(g_1) \square' T(h) = T(g_1)$. Thus the definition of \tilde{T} is well **defined**. π is surjection $\Rightarrow \tilde{T}$ has uniqueness.

2. $H \subseteq G$, thus $(G/H, \square^*)$ is a group, where $(g_1 \square G) \square^* (g_2 \square H) = g_1 \square g_2 \square H$ for any $g_1, g_2 \in G$. Thus

$$\begin{split} \tilde{T}((g_1 \square H) \square^*(g_2 \square H)) &= \tilde{T}(g_1 \square g_2 \square H) \\ &= T(g_1 \square g_2) = T(g_1) \square' T(g_2) \\ &= \tilde{T}(g_1 \square H) \square' \tilde{T}(g_2 \square H). \end{split}$$

So \tilde{T} is a homomorphism.

3. We now explore the structure of $ker(\tilde{T})$. Given $a \in G$, then

$$a\Box H \in ker(\tilde{T}) \Leftrightarrow \tilde{T}(a\Box H) = T(a) = e'$$

 $\Leftrightarrow a \in ker(T)$
 $\Rightarrow a\Box H \in ker(T)/H$

If $a\Box H \in ker(T)/H$, then $\exists k \in ker(T)$, s.t. $a\Box H = k\Box H$, then $\exists h \in H \subseteq ker(T)$, s.t. $a = k\Box h \in ker(T)$ (for $k, h \in ker(T)$, $ker(T) \leq G$ and enclosed with \Box) Thus $a\Box H \in ker(\tilde{T}) \Leftrightarrow a\Box H \in ker(T)/H$, thus $ker(\tilde{T}) = ker(T)/H$.

Thus \tilde{T} is injection $\Leftrightarrow ker(\tilde{T}) = \{H\}$ (for H is unit element of G/H) $\Leftrightarrow ker(T) = H$.

4.⇒:
$$\tilde{T} \circ \pi$$
 is surj. ⇒ \tilde{T} is surj. ⇐: Composite of surj. is surj. \Box

Collectively, \tilde{T} is inj. $\Leftrightarrow H = ker(T)$; \tilde{T} is surj. $\Leftrightarrow T$ is surj. Thus \tilde{T} is isomorphism (bij. + homomorphism) $\Leftrightarrow T$ is surj and H = ker(T).

So $G \xrightarrow{T} G'$ is a homomorphism then exists an isomorphism $G/ker(T) \xrightarrow{\tilde{T}} im(T)$, denote by $G/ker(T) \simeq im(T)$. This conclusion is called **1st theorem of isomorphism**.

Example 3. Define $S_3 := \{\{1,2,3\} \xrightarrow{\sigma} \{1,2,3\} | \sigma \text{ is bij.} \}$, then (S_3,\circ) is a group. And the element of (S_3,\circ) is e' = (1)(2)(3).

Given a group $(\mathbb{Z}, +)$, define a homomorphism $\mathbb{Z} \xrightarrow{T} S_3$. So if $1 \mapsto (12)$, then $T(2) = T(1+1) = T(1) \circ T(1) = e'$, $T(-1) = T(1)^{-1} = T(1) = (12)$. Furthermore $T(2\mathbb{Z}) = e'$, $T(2\mathbb{Z} + 1) = (12)$. And $ker(T) = 2\mathbb{Z}$, $im(T) = \{(12), e'\}$. So $\mathbb{Z}/2\mathbb{Z} \simeq \{(12), e'\}$. Similarly, $\mathbb{Z}/3\mathbb{Z} \simeq \{e', (123), (132)\}$ (Define T(1) = (123)).

Homotopy

Definition 7 (Path). Assume *X* is a top. sp. $p, q \in X$.

1. A path from p to q in X is a continuous map $[0,1] \xrightarrow{\gamma} X$, s.t. $\gamma(0) = p, \gamma(1) = q$.

Note 6. Easy to check: $H \le G$, $ker(T) \le G$, $H \subseteq ker(T) \Rightarrow H \le ker(T)$. If $H \le ker(T)$, then $ker(T)/H := \{k \square H | k \in ker(T)\}$.

3.
$$\forall \gamma \in \Omega(X, p, q)$$
, define inverse path $[0, 1] \xrightarrow{\gamma^-} X(t \mapsto \gamma(1 - t))$.

Thus we attain a map $\Omega(X,p,q) \to \Omega(X,q,p)(\gamma \mapsto \gamma^-)$, which is a bijection.

Definition 8. Assume *X* is a top. sp. $p,q,r,s \in X$. For $\sigma \in \Omega(X,p,q), \gamma \in \Omega(X,q,r)$, define $[0,1] \xrightarrow{\sigma \cdot \gamma} X$ by

$$(\sigma \cdot \gamma)(t) := \begin{cases} \sigma(2t), & t \in [0, 1/2], \\ \gamma(2t-1), & t \in [1/2, 1]. \end{cases}$$

Exercise 8. Given a top. sp. X and subspace A, B of X, s.t. $X = A \cup B$ and either A, $B \subseteq_{open} X$ or A, $B \subseteq_{close} X$. Show that a map $X \xrightarrow{f} Y$ to a top. sp. Y is conti. $\Leftrightarrow A \xrightarrow{f|_A} Y$ and $B \xrightarrow{f|_B} Y$ are conti.

Proof. \Rightarrow : f is conti, thus $\forall U \subseteq_{open} Y, f^{-1}(U) \subseteq_{open} X$. And $f|_A^{-1}(U) = f^{-1}(U) \cap A \subseteq_{open} A$, since A is equipped by subspace top. So $f|_A$ is conti. and the same thing to $f|_B$.

 \Leftarrow : Suppose $A, B \subseteq_{open} X$, for any $U \subseteq_{open} Y$, since $f|_A$ conti., $f|_A^{-1}(U) \subseteq_{open} A$, thus $\exists V \subseteq_{open} X$, s.t. $f|_A^{-1}(U) = V \cap A \subseteq_{open} X$, and similarly $f|_B^{-1}(U) \subseteq_{open} X$. Thus

$$f^{-1}(U) = \{x \in X | f(x) \in U\}$$

$$= \{x \in A | f(x) \in U\} \cup \{x \in B | f(x) \in U\}$$

$$= f|_A^{-1}(U) \cup f|_B^{-1}(U)$$

$$\subseteq_{open} X.$$

Thus f is conti. If A, $B \subseteq_{close} X$, the argument is similar, because $X \xrightarrow{f} Y$ is conti. $\Leftrightarrow \forall U \subseteq_{open} Y, f^{-1} \subseteq_{open} X \Leftrightarrow \forall U \subseteq_{close} Y, f^{-1} \subseteq_{close} X$.

Thus map $[0,1] \xrightarrow{\sigma \cdot \gamma} X$ is also conti. and $\sigma \cdot \gamma \in \Omega(X,p,r)$. And we can define another map: $\Omega(X,p,q) \times \Omega(X,q,r) \to \Omega(X,p,r)((\sigma,\gamma) \mapsto \sigma \cdot \gamma)$.

Notice that the "composite" path does not have "associative" property, that is for any 3 paths $\sigma \in \Omega(X,p,q), \gamma \in \Omega(X,q,r), \tau \in \Omega(X,r,s), (\sigma \cdot \gamma) \cdot \tau$ is not necessarily equal to $\sigma \cdot (\gamma \cdot \tau)$. Because the time (or say speed) distribution on these two composite paths is different, the former is $\sigma(0-1/4) \to \gamma(1/4-1/2) \to \tau(1/2-1)$, whereas the later is $\sigma(0-1/2) \to \gamma(1/2-3/4) \to \tau(3/4-1)$.

Definition 9 (Homotopy). Given two conti. maps $X \xrightarrow{f} Y$, $X \xrightarrow{g} Y$ between top. sp. X and Y. A map $X \times [0,1] \xrightarrow{H} Y$ is a homotopy from f to g if H is conti. and $\forall x \in X$, H(x,0) = f(x), H(x,1) = g(x).

Note 7. Notice that the open set in subspace topology is not necessarily open set in (parent) topology.

The intuition of homotopy is creating a map *H* that starts from *f* and generally approximates to g as time goes on. On the other hand, we can also view H as creating a path from y_1 to y_2 . If H exists, we say f and g are homotopy, denote by $f \sim g$.

Definition 10. Suppose *X* is a top. sp. $p,q \in X, \sigma, \gamma \in \Omega(X, p, q)$, we say σ and γ are homotopic with fixed initial and end point if \exists homotopy $[0,1] \times [0,1] \xrightarrow{H} X$ from σ to γ , s.t. $\forall s \in [0,1], H(0,s) =$ p, H(1,s) = q, and denote by $p \sim q$.

Notice that homotopy is only required to be two maps at beginning and end, that is $H(x,0) = \sigma(x)$ and $H(x,1) = \gamma(x)$. But when we say two paths are homotopic, we need for any $s \in [0,1]$, path H(x,s) is from p to q. \sim is an equivalence relation on $\Omega(X,p,q)$, and define $\pi_1(X, p, q) := \Omega(X, p, q) / \sim$, and denote the equivalence class of $\gamma \in \Omega(X, p, q)$ as $[\gamma]$. So if $\gamma \sim \sigma$, then $[\gamma] = [\sigma] \in \pi_1(X, p, q)$.

