Mean Estimation from One-bit Measurements

Alon Kipnis (Stanford) John Duchi (Stanford)

> Allerton October 2017

Table of Contents

Introduction

Motivation

Preliminaries

Adaptive Encoding
Main Results

Distributed Encoding
Threshold Detection

Summary

Point estimation under communication constraints:

Point estimation under communication constraints:

Estimation error is due to:

- (i) limited data
- (ii) limited bits

Point estimation under communication constraints:

Estimation error is due to:

- (i) limited data
- (ii) limited bits

Relevant scenarios:

Point estimation under communication constraints:

Estimation error is due to:

- (i) limited data
- (ii) limited bits

Relevant scenarios:

big data

Point estimation under communication constraints:

Estimation error is due to:

- (i) limited data
- (ii) limited bits

Relevant scenarios:

- ▶ big data
- low-power sensors

Point estimation under communication constraints:

Estimation error is due to:

- (i) limited data
- (ii) limited bits

Relevant scenarios:

- big data
- low-power sensors
- distributed computing / optimization

This talk:

Estimating the mean θ of a normal distribution $\mathcal{N}(\theta, \sigma^2)$ from one-bit per sample $(\sigma \text{ is known})$

▶ Distributed: $M_i = f_i(X_i)$

- ▶ Distributed: $M_i = f_i(X_i)$
- ▶ Centralized: $M^n = (M_1, ..., M_n) = f(X_1, ..., X_n)$

- ▶ Distributed: $M_i = f_i(X_i)$
- ▶ Centralized: $M^n = (M_1, ..., M_n) = f(X_1, ..., X_n)$
- ▶ Adaptive / Sequential: $M_i = f_i(X_i, M^{i-1})$

► Estimation via compressed information [Han '87], [Zhang & Berger '88] (centralized)

- Estimation via compressed information [Han '87], [Zhang & Berger '88] (centralized)
- Estimation from multiple machines subject to a bit constraint [Zhang, Duchi, Jordan, Wainwright '13] (distributed / adaptive)

- Estimation via compressed information [Han '87], [Zhang & Berger '88] (centralized)
- Estimation from multiple machines subject to a bit constraint [Zhang, Duchi, Jordan, Wainwright '13] (distributed / adaptive)
- Remote multiterminal source coding (CEO) [Berger, Zhang, Wiswanathan '96], [Oohama '97] (distributed)

Q: in what setting consistent estimation is possible?

Q: in what setting consistent estimation is possible?

A: all!

Q: in what setting consistent estimation is possible?

A: all ! Proof:

$$M_i = \mathbf{1}(X_i > 0), \quad i = 1, \dots, n$$

(distributed setting)

Q: in what setting consistent estimation is possible?

A: all ! Proof:

$$M_i = \mathbf{1}(X_i > 0), \quad i = 1, \dots, n$$

(distributed setting)

$$\frac{1}{n}\sum_{i=1}^{n} M_i \to \mathbb{P}(X > 0) = \Phi(\theta/\sigma)$$

Q: in what setting consistent estimation is possible?

A: all ! Proof:

$$M_i = \mathbf{1}(X_i > 0), \quad i = 1, \dots, n$$

(distributed setting)

$$\frac{1}{n}\sum_{i=1}^{n} M_i \to \mathbb{P}(X > 0) = \Phi(\theta/\sigma)$$

$$\sigma\Phi^{-1}\left(\frac{1}{n}\sum_{i=1}^n M_i\right) \to \theta$$

Definition: asymptotic relative efficiency (ARE):

$$ARE(\widehat{\theta}_n) \triangleq \lim_{n \to \infty} \mathbb{E}\left[\left(\widehat{\theta}_n - \boldsymbol{\theta}\right)^2\right] / \left(\sigma^2/n\right)$$

(relative to sample mean $\bar{ heta}$)

Definition: asymptotic relative efficiency (ARE):

$$\mathrm{ARE}(\widehat{\theta}_n) \triangleq \lim_{n \to \infty} \mathbb{E}\left[\left(\widehat{\theta}_n - \boldsymbol{\theta}\right)^2\right] / \left(\sigma^2 / n\right)$$

(relative to sample mean $\bar{ heta}$)

Proposition

ARE under centralized encoding is 1

Definition: asymptotic relative efficiency (ARE):

$$\mathrm{ARE}(\widehat{\theta}_n) \triangleq \lim_{n \to \infty} \mathbb{E}\left[\left(\widehat{\theta}_n - \boldsymbol{\theta}\right)^2\right] / \left(\sigma^2 / n\right)$$

(relative to sample mean $\bar{ heta}$)

Proposition

ARE under centralized encoding is 1

Proof:

$$\mathbb{E}\left(\boldsymbol{\theta} - \widehat{\boldsymbol{\theta}}\right)^{2} = \underbrace{\mathbb{E}\left(\boldsymbol{\theta} - \overline{\boldsymbol{\theta}}\right)^{2}}_{\sigma^{2} / n} + \mathbb{E}\left(\overline{\boldsymbol{\theta}} - \widehat{\boldsymbol{\theta}}\right)^{2}$$

Definition: asymptotic relative efficiency (ARE):

$$\mathrm{ARE}(\widehat{\theta}_n) \triangleq \lim_{n \to \infty} \mathbb{E}\left[\left(\widehat{\theta}_n - \theta\right)^2\right] / \left(\sigma^2 / n\right)$$

(relative to sample mean $\bar{\theta}$)

Proposition

ARE under centralized encoding is 1

Proof:

$$\mathbb{E}\left(\theta - \widehat{\theta}\right)^{2} = \underbrace{\mathbb{E}\left(\theta - \overline{\theta}\right)^{2}}_{O(2^{-2n})} + \underbrace{\mathbb{E}\left(\overline{\theta} - \widehat{\theta}\right)^{2}}_{O(2^{-2n})}$$

- $> X_1, \dots, X_n \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(\theta, \sigma^2)$
- ▶ Replicate *k* times:
 - \bullet $\theta_1, \ldots, \theta_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_0^2)$
 - $\bullet \ \theta_j \to X_{j,1}, \dots, X_{j,n}$

- $X_1, \ldots, X_n \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(\theta, \sigma^2)$
- ▶ Replicate *k* times:
 - \bullet $\theta_1, \ldots, \theta_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_0^2)$
 - $\bullet \quad \theta_j \to X_{j,1}, \dots, X_{j,n}$
- ▶ Encoder i block encodes $X_{1,i}, \ldots, X_{k,i}$ using k bits

- $X_1, \ldots, X_n \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(\theta, \sigma^2)$
- ▶ Replicate *k* times:
 - \bullet $\theta_1, \ldots, \theta_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_0^2)$
 - $\bullet \ \theta_j \to X_{j,1}, \dots, X_{j,n}$
- ▶ Encoder i block encodes $X_{1,i}, \ldots, X_{k,i}$ using k bits

$$D_{CEO} = \inf_{k} \frac{1}{k} \sum_{j=1}^{k} \mathbb{E} \left(\theta_j - \widehat{\theta}_j \right)^2$$

Quadratic Gaussian CEO under optimal rate allocation [Chen, Zhang, Berger, Wicker '04] :

$$D_{CEO} \ge \frac{4}{3} \frac{\sigma^2}{n} + o(1/n)$$

Quadratic Gaussian CEO under optimal rate allocation [Chen, Zhang, Berger, Wicker '04] :

$$D_{CEO} \ge \frac{4}{3} \frac{\sigma^2}{n} + o(1/n)$$

Conclusion

Distributed encoding will hurt you (even if you can repeat experiment and encode over blocks)

Table of Contents

Introduction

Motivation

Preliminaries

Adaptive Encoding
Main Results

Distributed Encoding
Threshold Detection

Summary

▶ Distributed: $M_i = f_i(X_i)$

 $\mathsf{ARE} \geq 4/3$

- ▶ Distributed: $M_i = f_i(X_i)$
- ▶ Centralized: $M^n = f(X_1, ..., X_n)$

 $\mathsf{ARE} \geq 4/3$

ARE = 1

- ▶ Distributed: $M_i = f_i(X_i)$
- ▶ Centralized: $M^n = f(X_1, ..., X_n)$
- Next: adaptive: $M_i = f_i(X_i, M^{i-1})$

 $ARE \ge 4/3$

ARE = 1

 $\mathsf{ARE} = \pi/2$

Main Results (adaptive encoding)

Theorem (achievability)

There exists an estimator with ARE $\pi/2$

Theorem (converse)

No estimator have ARE lower than $\pi/2$

(i) For
$$X \sim \mathcal{N}(\theta, \sigma^2)$$
, $\operatorname{med}(X) = \theta$

- (i) For $X \sim \mathcal{N}(\theta, \sigma^2)$, $\operatorname{med}(X) = \theta$
- (ii) $\operatorname{med}(X) = \underset{m}{\operatorname{argmin}} \ \mathbb{E} \left| X m \right|$

- (i) For $X \sim \mathcal{N}(\theta, \sigma^2)$, $\operatorname{med}(X) = \theta$
- (ii) $\operatorname{med}(X) = \underset{m}{\operatorname{argmin}} \ \mathbb{E} \left| X m \right|$
- (iii) Stochastic gradient descent on $\mathbb{E}|X-\theta|$:

- (i) For $X \sim \mathcal{N}(\theta, \sigma^2)$, $\operatorname{med}(X) = \theta$
- (ii) $\operatorname{med}(X) = \underset{m}{\operatorname{argmin}} \ \mathbb{E} |X m|$
- (iii) Stochastic gradient descent on $\mathbb{E}\left|X-\theta\right|$:

$$\widehat{\theta}_n = \frac{1}{n} \sum_{i=1}^n \theta_i$$

existence of an estimator with ARE $=\pi/2$

- (i) For $X \sim \mathcal{N}(\theta, \sigma^2)$, $\operatorname{med}(X) = \theta$
- (ii) $\operatorname{med}(X) = \underset{m}{\operatorname{argmin}} \ \mathbb{E} |X m|$
- (iii) Stochastic gradient descent on $\mathbb{E}|X-\theta|$:

$$heta_n = heta_{n-1} + \gamma_n \mathrm{sign}(X_n - heta_n)$$

$$\widehat{ heta}_n = \frac{1}{n} \sum_{i=1}^n heta_i$$

From [Polyak & Juditsky '92] (under conditions on (γ_n)):

$$\sqrt{n}(\theta - \widehat{\theta}_n) \to \mathcal{N}\left(0, \sigma^2 \pi/2\right)$$

Converse ARE $\geq \pi/2$

The van-Trees inequality (e.g. [Tsybakov '08]) implies

$$\mathbb{E}\left(\theta - \widehat{\theta}\right)^2 \ge \frac{1}{I_{\theta}(M^n) + c} = \frac{1}{\sum_{i=1}^n I_{\theta}(M_i | M^{i-1}) + c}$$

Converse ARE $\geq \pi/2$

The van-Trees inequality (e.g. [Tsybakov '08]) implies

$$\mathbb{E}\left(\theta - \widehat{\theta}\right)^2 \ge \frac{1}{I_{\theta}(M^n) + c} = \frac{1}{\sum_{i=1}^n I_{\theta}(M_i | M^{i-1}) + c}$$

Lemma (K. & Duchi '17)

$$I_{\theta}(M_i|M^{i-1}) \le \frac{2}{\pi\sigma^2}$$

Converse ARE $\geq \pi/2$

The van-Trees inequality (e.g. [Tsybakov '08]) implies

$$\mathbb{E}\left(\theta - \widehat{\theta}\right)^2 \ge \frac{1}{I_{\theta}(M^n) + c} = \frac{1}{\sum_{i=1}^n I_{\theta}(M_i|M^{i-1}) + c}$$

Lemma (K. & Duchi '17)

$$I_{\theta}(M_i|M^{i-1}) \leq \frac{2}{\pi\sigma^2}$$

Proof:

Stein's identity implies that detection region maximizing the information is a threshold: $M_i^{-1}(1)=(\theta,\infty)$

Table of Contents

Introduction

Motivation

Preliminaries

Adaptive Encoding
Main Results

Distributed Encoding
Threshold Detection

Threshold Detection

$$M_i = \operatorname{sign}(X_i - t_i), \quad i = 1, \dots, n$$

Threshold Detection

$$M_i = \operatorname{sign}(X_i - t_i), \quad i = 1, \dots, n$$

Threshold Detection

$$M_i = \operatorname{sign}(X_i - t_i), \quad i = 1, \dots, n$$

Threshold Detection

$$M_i = \operatorname{sign}(X_i - t_i), \quad i = 1, \dots, n$$

Threshold Detection

We consider only messages of the form

$$M_i = \operatorname{sign}(X_i - t_i), \quad i = 1, \dots, n$$

Assume:

$$\lambda_n([a,b]) = \frac{1}{n} \mathsf{card}\left([a,b] \cap \{t_i\}\right)$$

converges weakly to a probability distribution λ

Threshold Detection

We consider only messages of the form

$$M_i = \operatorname{sign}(X_i - t_i), \quad i = 1, \dots, n$$

Assume:

$$\lambda_n([a,b]) = \frac{1}{n} \operatorname{card} ([a,b] \cap \{t_i\})$$

converges weakly to a probability distribution λ

Example: t_1, \ldots, t_n drawn i.i.d. from a distribution λ on $\mathbb R$

Main Results (distributed encoding)

Main Results (distributed encoding)

Theorem

(i) The Maximum likelihood estimator $\widehat{ heta}_{ML}$ satisfies

$$\sqrt{n}(\theta - \widehat{\theta}_{ML}) \to \mathcal{N}\left(0, \sigma^2/K_{\lambda}(\theta)\right)$$

where:

$$K_{\lambda}(\theta) = \int_{\mathbb{R}} \eta \left(\frac{t - \theta}{\sigma} \right) \lambda(dt)$$
$$\eta(x) = \frac{\phi^{2}(x)}{\Phi(x)\Phi(-x)}$$

Main Results (distributed encoding)

Theorem

(i) The Maximum likelihood estimator $\widehat{ heta}_{ML}$ satisfies

$$\sqrt{n}(\theta - \widehat{\theta}_{ML}) \to \mathcal{N}\left(0, \sigma^2/K_{\lambda}(\theta)\right)$$

where:

$$K_{\lambda}(\theta) = \int_{\mathbb{R}} \eta \left(\frac{t - \theta}{\sigma} \right) \lambda(dt)$$
$$\eta(x) = \frac{\phi^{2}(x)}{\Phi(x)\Phi(-x)}$$

(ii) For any estimator $\widehat{\theta}(M_1,\ldots,M_n)$:

$$\liminf_{c \to \infty} \liminf_{n \to \infty} \sup_{\tau : |\tau - \theta| \le \frac{c}{\sqrt{n}}} n \mathbb{E} \left(\widehat{\theta} - \tau \right)^2 \ge \sigma^2 / K_{\lambda}(\theta),$$

► MLE is local asymptotically minimax

- ► MLE is local asymptotically minimax
- \blacktriangleright ARE of MLE is $1/K_{\lambda}(\theta)$ only depends on asymptotic threshold density λ

- MLE is local asymptotically minimax
- \blacktriangleright ARE of MLE is $1/K_{\lambda}(\theta)$ only depends on asymptotic threshold density λ

Þ

ARE =
$$\frac{1}{K_{\lambda}(\theta)} = \frac{\sigma^2}{\int \eta\left(\frac{t-\theta}{\sigma}\right)\lambda(dt)} > \pi/2$$

(equality iff $\lambda = \delta_{\theta}$)

Table of Contents

Introduction

Motivation Preliminaries

Adaptive Encoding

Main Results

Distributed Encoding
Threshold Detection

ightharpoonup Centralized encoding: ARE= 1

- ► Centralized encoding: ARE= 1
- ► Adaptive:
 - ightharpoonup ARE is $\pi/2$

- ► Centralized encoding: ARE= 1
- Adaptive:
 - ▶ ARE is $\pi/2$
 - $\,\blacktriangleright\,\sim 1.57$ more samples are required due to 1-bit constraints

- Centralized encoding: ARE= 1
- Adaptive:
 - ▶ ARE is $\pi/2$
 - $ightharpoonup \sim 1.57$ more samples are required due to 1-bit constraints
- Distributed threshold detection:
 - ARE of MLE characterized by density of threshold values

- Centralized encoding: ARE= 1
- Adaptive:
 - ▶ ARE is $\pi/2$
 - $ightharpoonup \sim 1.57$ more samples are required due to 1-bit constraints
- Distributed threshold detection:
 - ARE of MLE characterized by density of threshold values
 - MLE is local asymptotically optimal

- Centralized encoding: ARE= 1
- Adaptive:
 - ▶ ARE is $\pi/2$
 - $ightharpoonup \sim 1.57$ more samples are required due to 1-bit constraints
- Distributed threshold detection:
 - ARE of MLE characterized by density of threshold values
 - MLE is local asymptotically optimal

- ► Centralized encoding: ARE= 1
- Adaptive:
 - ▶ ARE is $\pi/2$
 - $ightharpoonup \sim 1.57$ more samples are required due to 1-bit constraints
- Distributed threshold detection:
 - ARE of MLE characterized by density of threshold values
 - MLE is local asymptotically optimal

Open question

Is there a distributed encoding scheme with ARE that is both finite and independent of radius of Θ ?

Minimax threshold density

Minimax
$$\lambda$$
 for $\theta \in (-b\sigma, b\sigma)$:

$$\begin{aligned} & \underset{\tau \in (-b,b)}{\inf} \int \eta(t-\tau) \lambda(dt) \\ & \text{subject to} \quad \lambda(dt) \geq 0, \quad \int \lambda(dt) \leq 1. \end{aligned}$$

Minimax λ

support of optimal threshold density λ^\star

$$K^* = \inf_{\theta} K^*(\theta) = \inf_{\theta} \int \eta(t - \theta) \lambda^*(dt)$$

Minimax λ

Minimax ARE vs size of parameter space

► ARE increases with size of parameter space

One-step Optimal Scheme

Initialization: $P_0(t) = \pi(\theta)$ Repeat for $n \ge 1$:

(i)
$$P_n(t) = \mathbb{P}(\theta = t | M^n) = \alpha_n P_{n-1}(t) \Phi\left(M_n \frac{t - \tau_{n-1}}{\sigma}\right)$$

(ii)
$$\widehat{\theta} = \mathbb{E}[\theta|M^n] = \int tP_n(t)dt$$

(iii) Find τ_n from

$$\tau_n = \frac{1}{2} \left(\frac{\int_{-\infty}^{\tau} t P_n(t) dt}{\int_{-\infty}^{\tau} P_n(t) dt} + \frac{\int_{\tau}^{\infty} t P_n(t) dt}{\int_{\tau}^{\infty} P_n(t) dt} \right)$$

(iv)
$$M_{n+1} = \operatorname{sign}(X_{n+1} - \tau_n)$$

Numerical Example

Normalized empirical risk versus number of samples n (1000 Monte Carlo experiments)

