Assessing Trustworthiness of Autonomous Systems

Greg Chance¹, Kerstin Eder¹

Trustworthy Systems Lab, University of Bristol, Bristol, UK

Abstract-As autonomous systems (AS) become more ubiquitous in society, more responsible for our safety and our interaction with them more frequent, it is essential that they are trustworthy. Assessing the trustworthiness of AS is a major challenge for the verification and development community (practitioners and researchers). Assessing trustworthiness must extend beyond conventional verification and validation (V&V) and safety-critical systems assurance, and now consider the the manner in which people will interface and interact with AS across the broad range of current and future artificial intelligence (AI) applications. The meta-expression 'trustworthiness' is examined in the context of AS, capturing and condensing the current understanding in the literature. A list of challenges are presented in the form of a process that can be used as a trustworthiness assessment framework for AS.

1 Introduction

The use of AI-enabled and autonomous systems is pervasive in current society and is set to become even more so with current technological growth trends and adoption rates. Systems with embedded AI and machine learning (ML) algorithms can be found in numerous applications from mobile phones [8], insurance pricing [7] and vacuum cleaners [9] to medical diagnostics [5], detecting structural damage to buildings [1] and predicting the shape of protein molecules [2]. There is also growing use of machine learning in a range of safety-critical systems (SCSs), for example in the aerospace and automotive industry where low reliability of these systems could result in catastrophic failure and potentially loss of life or damage to property and the environment. These safety-critical autonomous systems (SCAS) present a complex but essential challenge to the safety assurance and verification community. Conventional V&V is principally concerned with assessing the system against a set of requirements. What human factors are considered eg. ISO29119 But if AS are to be fully trustworthy there is an aspect We find ourselves at a central tenet; is the AS appropriately trustworthy and, is the user's trust in the AS appropriate? To present a defensible safety argument for AS and SCAS... trust stakeholders trust qualities application specific

Statements about authorship contribution. Greg Chance (e-mail: greg.chance@bristol.ac.uk), and Kerstin Eder (e-mail: kerstin.eder@bristol.ac.uk) are with the Trustworthy Systems Lab, Department of Computer Science, University of Bristol, Merchant Ventures Building, Woodland Road, Bristol, BS8 1UQ, United Kingdom.

In addition to assessing the AS trustworthiness, there must also be consideration to gain, calibrate and maintain user trust in the system [4, 3], else failures related to overtrust and undertrust are possible.

In the following, related work is reviewed in Section

2 Related Work

3 Assessment Framework Vision

3.1 Assessment Methods & Corroborative Evidence

Gaining reliability assurance of SCASs using testing alone is unfeasible given the often high-dimensional operational state space. Multiple testing methodologies should be employed where appropriate, e.g. verification, falsification and testing, [Harper Corroborative 2022] combining mutually consistent evidence from multiple and diverse assessment methods will raise the confidence in system trustworthiness.

Knowledge of the internal state of the system is often hidden, e.g. blackbox, due to IP and commercial sensitivity, but whitebox access will be essential for certain aspects of trustworthiness assessment. This may not need to reveal sensitive algorithms but just enough information through observability points in the software architecture could go a long way to understanding if automated decisions are made for the right reason[6].

4 Conclusion

References

- [1] O. Avci et al. "A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications". In: *Mechanical systems and signal processing* 147 (2021), p. 107077.
- [2] E. Callaway. "The entire protein universe: AI predicts shape of nearly every known protein". In: Nature News 608 (2022). Accessed: 2022-08-02, pp. 15–16.
- [3] E. K. Chiou and J. D. Lee. "Trusting Automation: Designing for Responsivity and Resilience". In: *Human Factors* (2021).
- [4] B. C. Kok and H. Soh. "Trust in robots: Challenges and opportunities". In: *Current Robotics Reports* 1.4 (2020), pp. 297–309.
- [5] I. Kononenko. "Machine learning for medical diagnosis: history, state of the art and perspective". In: Artificial Intelligence in medicine 23.1 (2001), pp. 89–109.

- [6] P. Koopman and M. Wagner. "Toward a framework for highly automated vehicle safety validation". In: SAE Technical Paper, Tech. Rep (2018).
- [7] K. Kuo and D. Lupton. "Towards explainability of machine learning models in insurance pricing". In: arXiv preprint arXiv:2003.10674 (2020).
- Medium. Artificial Intelligence in Mobile Phones. h ttps://medium.com/gobeyond-ai/artificial-in
- telligence-ai-in-mobile-phones-is-it-a-goo ${\tt d-thing-fe044f20ea6c}.\ Accessed:\ 2022\text{-}08\text{-}02.$
- [9] Tensor Flow Blog. $Ecovacs\ Robotics:\ the\ AI\ robotic$ vacuum cleaner powered by TensorFlow. https://b log.tensorflow.org/2020/01/ecovacs-robotics -ai-robotic-vacuum.html. Accessed: 2022-08-02.