

End-to-End Memory Networks with Knowledge Carryover for Multi-Turn Spoken Language Understanding SEP. 12th, 2016 @ San Francisco

Spoken Dialogue System

Spoken/Natural Language Understanding (SLU/NLU)

Contextual Spoken Language Understanding

Model Architecture

End-to-End Training

Experiments

Spoken Dialogue System

Spoken/Natural Language Understanding (SLU/NLU)

Contextual Spoken Language Understanding

Model Architecture

End-to-End Training

Experiments

Spoken Dialogue System (SDS)

- Spoken dialogue systems are intelligent agents that are able to help users finish tasks more efficiently via <u>spoken interactions</u>.
- Spoken dialogue systems are being incorporated into various devices (smart-phones, smart TVs, in-car navigating system, etc).

JARVIS – Iron Man's Personal Assistant

Baymax – Personal Healthcare Companion

Good intelligent assistants help users to organize and access information conveniently

Dialogue System Pipeline

LU Importance

Learning Curve of System Performance

RL Agent w/o LU errors

Rule Agent w/o LU errors

LU Importance

Learning Curve of System Performance

The system performance is sensitive to LU errors, for both rule-based and reinforcement learning agents.

Dialogue System Pipeline

SLU usually focuses on understanding single-turn utterances

The understanding result is usually influenced by 1) local observations 2) global knowledge.

Spoken Language Understanding

Domain Identification → Intent Prediction → Slot Filling

communication


```
U_1 send email to bob

S_1 B-contact_name

\Rightarrow send_email(contact_name="bob")

U_2 are we going to fish this weekend

S_2 B-message I-message I-message

S_2 I-message I-message

\Rightarrow send_email(message="are we going to fish this weekend")
```


Spoken Dialogue System

Spoken/Natural Language Understanding (SLU/NLU)

Contextual Spoken Language Understanding

Model Architecture

End-to-End Training

Experiments

MODEL ARCHITECTURE

1. Sentence Encoding

$$m_i = \text{RNN}_{\text{mem}}(x_i)$$

2. Knowledge Attention

3. Knowledge Encoding

$$p_i = \operatorname{softmax}(u^T m_i)$$
 $h = \sum_i p_i m_i$ $o = W_{kg}(h + u)$

Idea: additionally incorporating contextual knowledge during slot tagging

MODEL ARCHITECTURE

1. Sentence Encoding

$$m_i = \text{RNN}_{\text{mem}}(x_i)$$

 $u = \text{RNN}_{\text{in}}(c)$

2. Knowledge Attention

3. Knowledge Encoding

$$p_i = \operatorname{softmax}(u^T m_i)$$
 $h = \sum_i p_i m_i$ $o = W_{kg}(h + u)$

Idea: additionally incorporating contextual knowledge during slot tagging

END-TO-END TRAINING

Tagging Objective

$$y = RNN(o, c)$$

slot tag sequence

contextual utterances & current utterance

$$p(y \mid c) = p(y \mid w_1, ..., w_T) = \prod p(y_i \mid w_1, ..., w_i).$$

RNN Tagger

$$h_t = \phi(Mo + Ww_t + Uh_{t-1})$$

$$\hat{y_t} = \text{softmax}(Vh_t)$$

Automatically figure out the attention distribution without explicit supervision

Spoken Dialogue System

Spoken/Natural Language Understanding (SLU/NLU)

Contextual Spoken Language Understanding

Model Architecture

End-to-End Training

Experiments

- Dataset: Cortana communication session data
 - GRU for all RNN
 - adam optimizer
 - embedding dim=150
 - hidden unit=100
 - dropout=0.5

Model	Training Set	Knowledge Encoding	Sentence Encoder	First Turn	Other	Overall
RNN Tagger	single-turn	Х	Х	60.6	16.2	25.5

The model trained on single-turn data performs worse for non-first turns due to mismatched training data

- Dataset: Cortana communication session data
 - GRU for all RNN
 - adam optimizer
 - embedding dim=150
 - hidden unit=100
 - dropout=0.5

Model	Training Set	Knowledge Encoding	Sentence Encoder	First Turn	Other	Overall
RNN Tagger	single-turn	х	Х	60.6	16.2	25.5
	multi-turn	X	x	55.9	45.7	47.4

Treating multi-turn data as single-turn for training performs reasonable

- Dataset: Cortana communication session data
 - GRU for all RNN
 - adam optimizer
 - embedding dim=150
 - hidden unit=100
 - dropout=0.5

Model	Training Set	Knowledge Encoding	Sentence Encoder	First Turn	Other	Overall
RNN Tagger	single-turn	х	Х	60.6	16.2	25.5
	multi-turn	Х	X	55.9	45.7	47.4
Encoder-	multi-turn	current utt (c)	RNN	57.6	56.0	56.3
Tagger	multi-turn	history + current (x, c)	RNN	69.9	60.8	62.5

Encoding current and history utterances improves the performance but increases the training time

- Dataset: Cortana communication session data
 - GRU for all RNN
 - adam optimizer
 - embedding dim=150
 - hidden unit=100
 - dropout=0.5

Model	Training Set	Knowledge Encoding	Sentence Encoder	First Turn	Other	Overall
RNN Tagger	single-turn	Х	Х	60.6	16.2	25.5
	multi-turn	X	X	55.9	45.7	47.4
Encoder-	multi-turn	current utt (c)	RNN	57.6	56.0	56.3
Tagger	multi-turn	history + current (x, c)	RNN	69.9	60.8	62.5
Proposed	multi-turn	history + current (x, c)	RNN	73.2	65.7	67.1

Applying memory networks significantly outperforms all approaches with much less training time

- Dataset: Cortana communication session data
 - GRU for all RNN
 - adam optimizer
 - embedding dim=150
 - hidden unit=100
 - dropout=0.5

Model	Training Set	Knowledge Encoding	Sentence Encoder	First Turn	Other	Overall
RNN Tagger	single-turn	Х	X	60.6	16.2	25.5
	multi-turn	X	Х	55.9	45.7	47.4
Encoder-	multi-turn	current utt (c)	RNN	57.6	56.0	56.3
Tagger	multi-turn	history + current (x, c)	RNN	69.9	60.8	62.5
Proposed	multi-turn	history + current (x, c)	RNN	73.2	65.7	67.1
	multi-turn	history + current (x, c)	CNN	73.8	66.5	68.0

NEW! NOT IN THE PAPER!

CNN produces comparable results for sentence encoding with shorter training time

Spoken Dialogue System

Spoken/Natural Language Understanding (SLU/NLU)

Contextual Spoken Language Understanding

Model Architecture

End-to-End Training

Experiments

Conclusion

- The proposed *end-to-end* memory networks store contextual knowledge, which can be exploited dynamically based on an attention model for manipulating knowledge carryover for multi-turn understanding
- The end-to-end model performs the tagging task instead of classification
- The experiments show the *feasibility* and *robustness* of modeling knowledge carryover through memory networks

Future Work

- Leveraging not only local observation but also global knowledge for better language understanding
 - Syntax or semantics can serve as global knowledge to guide the understanding model
 - "Knowledge as a Teacher: Knowledge-Guided Structural
 Attention Networks," arXiv preprint arXiv: 1609.03286

THANKS FOR YOUR ATTENTION!

The code will be available at https://github.com/yvchen/ContextualSLU

