

July 2006

FDD8580/FDU8580

N-Channel PowerTrench® MOSFET

20V, **35A**, **9**mΩ

Features

- Max $r_{DS(on)} = 9m\Omega$ at $V_{GS} = 10V$, $I_D = 35A$
- Max $r_{DS(on)} = 13m\Omega$ at $V_{GS} = 4.5V$, $I_D = 33A$
- Low gate charge: $Q_{g(TOT)} = 19nC(Typ)$, $V_{GS} = 10V$
- Low gate resistance
- 100% Avalanche tested
- RoHS compliant

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{\text{DS}(\text{on})}$ and fast switching speed.

Application

- Vcore DC-DC for Desktop Computers and Servers
- VRM for Intermediate Bus Architecture

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V_{DS}	Drain to Source Voltage		20	V
V_{GS}	Gate to Source Voltage		±20	V
	Drain Current -Continuous (Package Limited)		35	
I _D	-Continuous (Die Limited)		58	Α
	-Pulsed	(Note 1)	159	
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	66	mJ
P_{D}	Power Dissipation		49.5	W
T _J , T _{STG}	Operating and Storage Temperature		-55 to 175	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case TO-252,TO-251	3.03	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient TO-252,TO-251	100	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient TO-252,1in ² copper pad area	52	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD8580	FDD8580	TO-252AA	13"	12mm	2500 units
FDU8580	FDU8580	TO-251AA	N/A(Tube)	N/A	75 units

Electrical Characteristics T_J = 25°C unless otherwise noted

Symbol	Parameter	lest Conditions	Wiin	тур	wax	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	20			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C		17.3		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 16V, V _{GS} = 0V			1 250	μА
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20V			±100	nA

On Characteristics

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.2	1.8	2.5	V
<u> </u>		I_D = 250 μ A, referenced to 25°C		-6.3		mV/°C
	Drain to Source On Resistance	V _{GS} = 10V, I _D = 35A		6.6	9.0	
r _{DO(})		$V_{GS} = 4.5V, I_D = 33A$		9.3	13.0	mΩ
'DS(on)		$V_{GS} = 10V, I_D = 35A$ $T_J = 175^{\circ}C$		10.6	14.5	11132
9 _{FS}	Forward Transcondductance	$V_{DS} = 5V, I_{D} = 35A$		61		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V - 40V V - 0V	1085	1445	pF
C _{oss}	Output Capacitance	V _{DS} = 10V, V _{GS} = 0V, f = 1MHz	340	450	pF
C _{rss}	Reverse Transfer Capacitance	1 - 11/11/12	205	310	pF
R_g	Gate Resistance	f = 1MHz	1.3		Ω

Switching Characteristics

$t_{d(on)}$	Turn-On Delay Time	.,,	7	14	ns
t _r	Rise Time	V_{DD} = 10V, I_{D} = 35A V_{GS} = 10V, R_{GS} = 27 Ω	11	20	ns
$t_{d(off)}$	Turn-Off Delay Time	$V_{GS} = 10V, R_{GS} = 27\Omega$	59	94	ns
t _f	Fall Time		34	54	ns
$Q_{g(TOT)}$	Total Gate Charge at 10V	V _{GS} = 0V to 10V	19	27	nC
$Q_{g(5)}$	Total Gate Charge at 5V	$V_{GS} = 0V \text{ to } 5V$ $V_{DD} = 10V$ $I_{D} = 35A$	10	14	nC
Q_{gs}	Gate to Source Gate Charge	$I_{0} = 35A$ $I_{0} = 1.0 \text{mA}$	3.5		nC
Q_{gd}	Gate to Drain "Miller" Charge		3.9		nC

Drain-Source Diode Characteristics

,	\/	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 35A$	0.95	1.25	\/
	v _{SD}	Source to Drain Diode 1 of Ward Voltage	V _{GS} = 0V, I _S = 15A	0.85	1.2	'
ŀ	t _{rr}	Reverse Recovery Time	$I_F = 35A$, di/dt = 100A/ μ s	26	39	ns
	Q _{rr}	Reverse Recovery Charge	$I_F = 35A$, di/dt = 100A/ μ s	19	29	nC

1: Pulse time < 300 µs, Duty cycle = 2%. 2: Starting T_J = 25°C, L = 0.3mH, I_{AS} = 21A, V_{DD} = 18V, V_{GS} = 10V.

Figure 1. On Region Characteristics

Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

Figure 3. Normalized On Resistance vs Junction Temperature

Figure 4. On-Resistance vs Gate to Source Voltage

Figure 5. Transfer Characteristics

Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Figure 7. Gate Charge Characteristics

Figure 8. Capacitance vs Drain to Source Voltage

Figure 9. Unclamped Inductive Switching Capability

Figure 10. Maximum Continuous Drain Current vs Case Temperature

Figure 11. Forward Bias Safe Operating Area

Figure 12. Single Pulse Maximum Power Dissipation

Figure 13. Transient Thermal Response Curve

UniFET™ $\mathsf{UltraFET}^{\circledR}$ VCX^{TM} Wire™

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	OCX™	SILENT SWITCHER®
ActiveArray™	GlobalOptoisolator™	OCXPro™	SMART START™
Bottomless™	GTO™	OPTOLOGIC [®]	SPM™
Build it Now™	HiSeC™	OPTOPLANAR™	Stealth™
CoolFET™	I ² C™	PACMAN™	SuperFET™
CROSSVOLT™	i-Lo™	POP™	SuperSOT™-3
DOME™	ImpliedDisconnect™	Power247™	SuperSOT™-6
EcoSPARK™	IntelliMAX™	PowerEdge™	SuperSOT™-8
E ² CMOS™	ISOPLANAR™	PowerSaver™	SyncFET™
EnSigna™	LittleFET™	PowerTrench®	TCM™
FACT™	MICROCOUPLER™	QFET®	TinyBoost™
FAST [®]	MicroFET™	QS™	TinyBuck™
FASTr™	MicroPak™	QT Optoelectronics™	TinyPWM™
FPS™	MICROWIRE™	Quiet Series™	TinyPower™
FRFET™	MSX™	RapidConfigure™	TinyLogic [®]
	MSXPro™	RapidConnect™	TINYOPTO™
Across the board. Aroun	d the world.™	µSerDes™	TruTranslation™
The Power Franchise®		ScalarPump™	UHC™

Programmable Active Droop™

DISCLAIMER

PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

ELIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.