Business Case: Target SQL

Context:

Target is a globally renowned brand and a prominent retailer in the United States. Target makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation and an exceptional guest experience that no other retailer can deliver.

This particular business case focuses on the operations of Target in Brazil and provides insightful information about 100,000 orders placed between 2016 and 2018. The dataset offers a comprehensive view of various dimensions including the order status, price, payment and freight performance, customer location, product attributes, and customer reviews.

By analyzing this extensive dataset, it becomes possible to gain valuable insights into Target's operations in Brazil. The information can shed light on various aspects of the business, such as order processing, pricing strategies, payment and shipping efficiency, customer demographics, product characteristics, and customer satisfaction levels.

Data Schema:

Q.1: Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:

1. Data type of all columns in the "customers" table.

SQL Query:

```
SELECT
  column_name,
  data_type
FROM
  `may23-386911.target_sql.INFORMATION_SCHEMA.COLUMNS`
WHERE
  table_name = 'customers'
```

Quer	y results			
JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	column_name •	,	data_type ▼	
1	customer_id		STRING	
2	customer_unique	_id	STRING	
3	customer_zip_co	de_prefix	INT64	
4	customer_city		STRING	
5	customer_state		STRING	

Insights:

Table named "customers" include information regarding customer id, customer unique id, customer zip codes, customer state and city.

2. Get the time range between which the orders were placed.

SOL Query:

```
SELECT
MIN(order_purchase_timestamp) AS min_time_range,
MAX(order_purchase_timestamp) AS max_time_range
FROM `target_sql.orders`
```


Insights: NA

3. Count the number of Cities and States in our dataset.

SQL Query:

```
SELECT COUNT(DISTINCT geolocation_city) AS city_count,
COUNT(DISTINCT geolocation_state) AS state_count
FROM `target_sql.geolocation`
```


I have geolocation table to get the count of cities and states in all of dataset.

Insights:

There are a total of 8011 cities and 27 states.

Q.2: In-depth Exploration:

1. Is there a growing trend in the no. of orders placed over the past years?

SQL Query:

```
SELECT COUNT(order_id) AS order_count,
EXTRACT(year from order_purchase_timestamp) AS market_year,
FROM `target_sql.orders`
GROUP BY market_year
ORDER BY market_year ASC
```


Insights:

In 2016 the no. of orders were less but later on in 2017 and 2018 Target grew its order count and became successful in catering to customer's needs.

2. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

SOL Query:

```
SELECT COUNT(*) AS order_count,
EXTRACT(month FROM order_purchase_timestamp) AS month
FROM `target_sql.orders`
GROUP BY month
ORDER BY month
```

Query results					
JOB IN	IFORMATION	RESULTS	JSON		
Row /	order_count ▼	month ▼	<i>/</i>		
2	8508		2		
3	9893		3		
4	9343		4		
5	10573		5		
7	9412		7		
8	10318		8		
9	4305		9		
10	4959		10		
11	7544		11		
12	5674		12		

Insights

Target made most of its orders in the months of May, July & August.

Months September, October & December were low on orders in comparison.

Recommendation:

Target can add discounts offers and flash sale in the months having low order count to boost customer purchases in order to increase the order count.

3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

i. 0-6 hrs: Dawnii. 7-12 hrs: Morningsiii. 13-18 hrs: Afternooniv. 19-23 hrs: Night

SQL Query:

```
WITH table1 AS

(SELECT order_id,

EXTRACT(hour FROM order_purchase_timestamp) AS hour_cal,

CASE WHEN EXTRACT(hour FROM order_purchase_timestamp) BETWEEN 0 AND 6 THEN

"Dawn"

WHEN EXTRACT(hour FROM order_purchase_timestamp) BETWEEN 7 AND 12 THEN

"Mornings"

WHEN EXTRACT(hour FROM order_purchase_timestamp) BETWEEN 13 AND 18 THEN

"Afternoon"

ELSE "Night" END AS time_of_day

FROM 'target_sql.orders')

SELECT COUNT(distinct order_id) AS order_count, time_of_day

FROM table1

GROUP BY time_of_day

ORDER BY order_count ASC
```

Quer	y results				
JOB IN	FORMATION		RESULTS	JSON	EXEC
Row	order_count	· /	time_of_day	▼	6
1		5242	Dawn		
2	2	27733	Mornings		
3	2	28331	Night		
4	3	38135	Afternoon		

Insights

Maximum orders are in Afternoon and minimum orders are in Dawn as its sleeping period in Brazil.

Q.3: Evolution of E-commerce orders in the Brazil region:

1. Get the month on month no. of orders placed in each state.

SQL Query:

```
SELECT DISTINCT c.customer_state,
COUNT(o.order_id) AS order_count,
EXTRACT(month FROM o.order_purchase_timestamp) as month
FROM `target_sql.orders` AS o JOIN `target_sql.customers` AS c
ON o.customer_id = c.customer_id
GROUP BY month, c.customer_state
ORDER BY c.customer_state ASC, month ASC
```

JOB IN	FORMATION	RESULTS	JSON EXE	ECUTION DETAILS
Row /	customer_state ▼		order_count ▼	month ▼
1	AC	"	8	1
2	AC		6	2
3	AC		4	3
4	AC		9	4
5	AC		10	5
6	AC		7	6
7	AC		9	7
8	AC		7	8
9	AC		5	9
10	AC		6	10
11	AC		5	11

Insights

Some states show low order count on monthly basis which shows the customers are not buying Most of their goods from Target

Recommendation

Target needs to increase their promotion campaign, sales pitch & offers in the states having low order count to boost customer acquisition.

2. How are the customers distributed across all the states?

SQL Query:

```
SELECT DISTINCT customer_state,
COUNT (DISTINCT customer_id) AS customer_count
FROM `target_sql.customers`
GROUP BY customer_state
ORDER BY customer_state ASC
```


Insights

RR state has highest customer count and SP state has lowest customer count.

Recommendation

Target can increase its service and discount on products and come up with month ending sales to boost customer acquisition in the states having low customer count.

Q.4: Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

1. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment_value" column in the payments table to get the cost of orders.

SQL Query:

```
SELECT
table2.year,
ROUND(((amount / lead(table2.amount) OVER(ORDER BY table2.year DESC))-
1)*100,2) AS percentage_increase
FROM
(SELECT
table1.year AS year,
SUM(table1.total_amount) AS amount
FROM
(SELECT
EXTRACT(year FROM o.order_purchase_timestamp) AS year,
EXTRACT(month FROM o.order_purchase_timestamp) AS month,
SUM(payment_value) AS total_amount
FROM `target_sql.orders` AS o JOIN `target_sql.payments` AS p
ON o.order_id=p.order_id
GROUP BY year, month
HAVING year IN (2017, 2018) AND (month BETWEEN 1 AND 8)) AS table1
GROUP BY year) AS table2
ORDER BY year DESC
LIMIT 1
```


Insights

The growth rate for Target looks good and promising.

2. Calculate the Total & Average value of order price for each state.

SOL Ouerv:

```
SELECT s.seller_state,
ROUND(SUM(o.price),2) AS total_price,
ROUND(AVG(o.price),2) AS avg_price,
FROM `target_sql.order_items` AS o JOIN `target_sql.sellers` AS s
ON o.seller_id = s.seller_id
GROUP BY s.seller_state
```

Quer	y results			
JOB IN	FORMATION	RESULTS	JSON I	EXECUTION DETAILS
Row	seller_state ▼	1	total_price ▼	avg_price ▼
1	SP		8753396.21	108.95
2	MG		1011564.74	114.6
3	PR		1261887.21	145.53
4	SC		632426.07	155.2
5	RS		378559.54	172.15
6	DF		97749.48	108.73
7	ES		47689.61	128.2
8	RJ		843984.22	175.17
9	GO		66399.21	127.69
10	PA		1238.0	154.75

Insights

State wise price bifurcation can be seen by total and average price

3. Calculate the Total & Average value of order freight for each state.

SQL Query:

```
SELECT s.seller_state,
ROUND(SUM(o.freight_value),2) AS total_freight_price,
ROUND(AVG(o.freight_value),2) AS avg_freight_price,
FROM `target_sql.order_items` AS o JOIN `target_sql.sellers` AS s
ON o.seller_id = s.seller_id
GROUP BY s.seller_state
```

Quer	y results			
JOB IN	IFORMATION	RESULTS	JSON EXI	ECUTION DETAILS
Row	seller_state ▼	6	total_freight_price	avg_freight_price
1	SP		1482487.67	18.45
2	MG		212595.06	24.08
3	PR		197013.52	22.72
4	SC		106547.06	26.15
5	RS		57243.09	26.03
6	DF		18494.06	20.57
7	ES		12171.13	32.72
8	RJ		93829.9	19.47
9	GO		12565.5	24.16
10	PA		155.11	19.39

Insights

Freight charges can be displayed state-wise

Recommendation

Company should think about reducing the cost of freight charges in the states where the prices are high currently. They can negotiate with their delivery partners to reduce the cost.

Q.5: Analysis based on sales, freight and delivery time.

1. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

- **time_to_deliver** = order_delivered_customer_date order_purchase_timestamp
- diff_estimated_delivery = order_estimated_delivery_date order_delivered_customer_date

SQL Query:

```
SELECT order_id,
TIMESTAMP_DIFF(order_delivered_customer_date,order_purchase_timestamp,day)
AS time_to_deliver,
TIMESTAMP_DIFF(order_estimated_delivery_date,order_delivered_customer_date,day)
AS diff_estimated_delivery,
FROM `target_sql.orders`
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION	DETAILS
Row	order_id ▼	1	time_to_deliver	diff_est	timated_delive
1	1950d777989f6a	a877539f5379	3	0	-12
2	2c45c33d2f9cb8	ff8b1c86cc28	3	0	28
3	65d1e226dfaeb8	3cdc42f66542	3	5	16
4	635c894d068ac	37e6e03dc54e	3	0	1
5	3b97562c3aee8l	odedcb5c2e45	3:	2	0
6	68f47f50f04c4cl	o6774570cfde	2	9	1
7	276e9ec344d3b	f029ff83a161c	4	3	-4
8	54e1a3c2b97fb0)809da548a59	4	0	-4
9	fd04fa4105ee80	45f6a0139ca5	3.	7	-1
10	302bb8109d097	a9fc6e9cefc5	3:	3	-5

Insights

Negative integer indicates the number of days taken after the actual delivery date to deliver the product to customers.

Recommendation

Target should work with their supply chain and with their delivery partners to improve the delivery time in order to retain customers.

2. Find out the top 5 states with the highest & lowest average freight value.

SQL Query:

```
(SELECT s.seller_state,
ROUND(AVG(freight_value)) as avg_value, 'high_avg_value' as category,
FROM `target_sql.order_items` as o JOIN `target_sql.sellers` as s
ON o.seller_id = s.seller_id
GROUP BY s.seller_state
ORDER BY avg_value DESC
LIMIT 5)
UNION ALL
(SELECT s.seller_state,
ROUND(AVG(freight_value)) as avg_value, 'low_avg_value' as category
FROM `target_sql.order_items` as o JOIN `target_sql.sellers` as s
ON o.seller_id = s.seller_id
GROUP BY s.seller_state
ORDER BY avg_value ASC
LIMIT 5)
```

Quer	y results					
JOB IN	FORMATION	RESULTS	JSON	EXI	ECUTION DETAILS	EXE
Row	seller_state ▼	li	avg_value	•	category •	
1	RO			51.0	high_avg_value	
2	CE			46.0	high_avg_value	
3	PB			39.0	high_avg_value	
4	PI			37.0	high_avg_value	
5	ES			33.0	high_avg_value	
6	SP			18.0	low_avg_value	
7	PA			19.0	low_avg_value	
8	RJ			19.0	low_avg_value	
9	DF			21.0	low_avg_value	
10	PR			23.0	low_avg_value	

Insights

States displaying highest & lowest average freight charges.

Recommendation

Company needs to reduce the freight difference between highest freight vale and lowest freight value.

They need to gather more data to analyse why the freight charges are high in RO, CE, PB, PI & ES states and how they can reduce them to cost benefit the company in long run.

3. Find out the top 5 states with the highest & lowest average delivery time.

SOL Query:

```
(SELECT c.customer_state,
{\tt ROUND}({\tt AVG}({\tt TIMESTAMP\_DIFF}({\tt order\_delivered\_customer\_date}, {\tt order\_purchase\_timest})
amp, day)), 2) avg_time_to_deliver, 'highest_avg_time' AS category,
FROM `target_sql.orders` AS o JOIN `target_sql.customers` AS c
ON o.customer_id = c.customer_id
GROUP BY c.customer_state
ORDER BY avg_time_to_deliver DESC
LIMIT 5)
UNION ALL
(SELECT c.customer_state,
{\tt ROUND}({\tt AVG}({\tt TIMESTAMP\_DIFF}({\tt order\_delivered\_customer\_date}, {\tt order\_purchase\_timest})
amp, day)), 2) avg_time_to_deliver, 'lowest_avg_time' AS category,
FROM `target_sql.orders` AS o JOIN `target_sql.customers` AS c
ON o.customer_id = c.customer_id
GROUP BY c.customer_state
ORDER BY avg_time_to_deliver ASC
LIMIT 5)
```

JOB IN	FORMATION RESULTS	JSON EXI	ECUTION DETAILS	EXECU
Row	customer_state ▼	avg_time_to_deliver	category ~	//
1	RR	28.98	highest_avg_time	
2	AP	26.73	highest_avg_time	
3	AM	25.99	highest_avg_time	
4	AL	24.04	highest_avg_time	
5	PA	23.32	highest_avg_time	
6	SP	8.3	lowest_avg_time	
7	PR	11.53	lowest_avg_time	
8	MG	11.54	lowest_avg_time	
9	DF	12.51	lowest_avg_time	
10	SC	14.48	lowest_avg_time	

Insights

Highest average delivery time is approx. more than 22 days

Recommendation

Company should work with delivery partners to reduce the delivery time for the states showing high average time to deliver.

4. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

SQL Query:

```
SELECT c.customer_state,
ROUND(AVG(TIMESTAMP_DIFF(order_delivered_customer_date,order_estimated_deliver
y_date,day)),2) AS avg_delivery_time
FROM `target_sql.orders` AS o JOIN `target_sql.customers` AS c
ON o.customer_id = c.customer_id
GROUP BY c.customer_state
ORDER BY avg_delivery_time ASC
LIMIT 5
```

Quer	y results			
JOB IN	FORMATION	RESULTS	JSON	EXECUT
Row	customer_state -	·	avg_delivery_t	time 7
1	AC			9.76
2	RO		-1	9.13
3	AP		-1	8.73
4	AM		-1	8.61
5	RR		-1	6.41

Insights

Top 5 states having lowest delivery time.

Q.6: Analysis based on the payments:

1. Find the month on month no. of orders placed using different payment types.

SQL Query:

```
SELECT p.payment_type,
EXTRACT(month FROM o.order_purchase_timestamp) AS months,
COUNT(p.order_id) AS order_count
FROM `target_sql.payments` AS p JOIN `target_sql.orders` AS o
ON p.order_id = o.order_id
GROUP BY p.payment_type, months
ORDER BY p.payment_type, months
```


2. Find the no. of orders placed on the basis of the payment installments that have been paid.

SQL Query:

```
WITH table1 AS
(SELECT
payment_installments, payment_sequential,
COUNT (order_id) AS order_count
FROM `target_sql.payments`
GROUP BY payment_installments, payment_sequential)
SELECT SUM(order_count) AS paid_orders
FROM table1
WHERE payment_installments = payment_sequential
```

