Tasks and Events, PPI, GPIOTE, and EasyDMA

nRF52 Global Tech Tour

Outline

- Tasks and events
- ▶ PPI
- ▶ GPIO and GPIOTE
- EasyDMA
- Demo

What to solve

What to solve, SW solution

```
Loop mode
  While(1){
   if(pin_high)
    output = true;
   else
    output = false;
  }
 Interrupt mode
  Enable external interrupt
  Enable global interrupts
  ISR extint(void){
   if(pin_high)
    output = true;
   else
    output = false;
```

Interrupts

Tasks and events

GPIOTE events

GPIOTE tasks

Linking an event to a tasks

Whole system with Programmable Peripheral Interconnect (PPI)

Outline

- ▶ Tasks and events
- PPI
- ▶ GPIO and GPIOTE
- EasyDMA
- Demo

Advanced PPI connections: Groups

Advanced PPI connections: Fork

PPI features

Feature	nRF51	nRF52
Programmable Channels	16 (channel 0-15)	20 (channel 0-19)
Preprogrammed Channels	12 (channel 20-31)	12 (channel 20-31)
Channel groups	4	6
Fork	Not available	All 32 channels can be forked

- Any channel can be included in any group
- A channel can be part of more than one group
- Multiple events can control the same task (but uses multiple channels)
- An event can be connected to several channels

Outline

- ▶ Tasks and events
- ▶ PPI
- ▶ GPIO and GPIOTE
- EasyDMA
- Demo

Peripherals pin access

GPIOTE

General Purpose IO Tasks and Events

- Can send tasks off chip
- Can convert external events to internal events
- Fully integrated with PPI and IRQ system

GPIOTE Input mode: Receive external events

- Generate event on rising, falling or toggle of external signal
- Does not require 16Mhz clock
 - Keeps peripherals power domain on, resulting in increased leakage
- Port event can be used to detect inputs without extra leakage
 - ▶ Port event has new Latch mode where input pin(s) triggering the event is logged.
 - Latch status is set when input condition is met and has to be cleared by user

GPIOTE Output mode: Send events off chip

- Generate signals for external devices based on any internal event
- ▶ TASKS_OUT: can be programmed to set output high, low or to toggle value
- ▶ TASKS_SET: New task in nRF52832: Sets output high
- ▶ TASKS_CLEAR: New task in nRF52832: Sets output low

Outline

- ▶ Tasks and events
- ▶ PPI
- ▶ GPIO and GPIOTE
- EasyDMA
- Demo

Interacting with EasyDMA

Interacting with EasyDMA

Control registers	Status registers	
xxx.PTR		Start of RAM buffer
xxx.MAXCNT		Size of RAM buffer
xxx.LIST		Autolog configuration
	xxx.AMOUNT	RAM buffer consumed

Tasks	Events	
START	STARTED	.PTR & .MAXCNT captured
STOP	STOPPED	
	END	Done with RAM access

Multiple EasyDMA channels

Outline

- ▶ Tasks and events
- ▶ PPI
- ▶ GPIO and GPIOTE
- EasyDMA
- Demo

PPI and GPIOTE demo

- Code to show how to set up a PPI connection from one input to one output using GPIOTE
 - Use SDK drivers
 - May be included in a SoftDevice project later on so should preferably support this as well
 - Connection between a button and a LED for visual check

Source code

```
// Get the instance allocated for both OUT task and IN event
gpiote task addr = nrf drv gpiote out task addr get(GPIO OUTPUT PIN NUMBER);
input evt addr = nrf drv gpiote in event addr get(GPIO INPUT PIN NUMBER);
// Get a PPI channel from the PPI pool
APP ERROR CHECK(nrf drv ppi channel alloc(&ppi channel));
// Tie the GPIOTE IN event and OUT task through allocated PPI channel
APP ERROR CHECK(nrf drv ppi channel assign(ppi channel, input_evt_addr, gpiote_task_addr));
// Enable the allocated PPI channel
APP ERROR CHECK(nrf drv ppi channel enable(ppi channel));
// Enable OUT task and IN event
nrf drv gpiote out task enable(GPIO OUTPUT PIN NUMBER);
nrf drv gpiote in event enable(GPIO INPUT PIN NUMBER, false);
while (true)
                                          // Get a PPI channel from the PPI pool
                                          APP ERROR CHECK(nrf drv ppi channel alloc(&ppi channel));
                                         // Tie the GPIOTE IN event and OUT task through allocated PPI channel
   // No need to do anything other than sleep,
                                          APP_ERROR_CHECK(nrf_drv_ppi_channel_assign(ppi_channel, input_evt_addr, gpiote_task_addr));
   WFE();
                                          // Enable the allocated PPI channel
                                          APP ERROR CHECK(nrf drv ppi channel enable(ppi channel));
                                          // Enable OUT task and IN event
                                          nrf drv gpiote out task enable (GPIO OUTPUT PIN NUMBER);
                                          nrf drv gpiote in event enable (GPIO INPUT PIN NUMBER, false);
```

Development tools

- Keil
 - ▶ IDE with
 - C-compiler
 - Debugger
 - Programming support
- nRFGo studio
 - Programming support
- nrfjprog
 - Command line programming tool

