

Figure 45.5: The cube centered at the origin with diagonal through (-1, -1, -1) and (1, 1, 1) has twelve edges. The edge from (1, 1, -1) to (1, 1, 1) is associated with the linear form x + y = 2.

Observe that a 0-dimensional face of \mathcal{P} is a vertex. If \mathcal{P} has dimension d, then the (d-1)-dimensional faces of \mathcal{P} are called its facets.

If (P) is a linear program in standard form, then its basic feasible solutions are exactly the vertices of the polyhedron $\mathcal{P}(A,b)$. To prove this fact we need the following simple proposition

Proposition 45.5. Let Ax = b be a linear system where A is an $m \times n$ matrix of rank m. For any subset $K \subseteq \{1, ..., n\}$ of size m, if A_K is invertible, then there is at most one basic feasible solution $x \in \mathbb{R}^n$ with $x_j = 0$ for all $j \notin K$ (of course, $x \ge 0$)

Proof. In order for x to be feasible we must have Ax = b. Write $N = \{1, ..., n\} - K$, x_K for the vector consisting of the coordinates of x with indices in K, and x_N for the vector consisting of the coordinates of x with indices in N. Then

$$Ax = A_K x_K + A_N x_N = b.$$

In order for x to be a basic feasible solution we must have $x_N = 0$, so

$$A_K x_K = b.$$

Since by hypothesis A_K is invertible, $x_K = A_K^{-1}b$ is uniquely determined. If $x_K \ge 0$ then x is a basic feasible solution, otherwise it is not. This proves that there is at most one basic feasible solution $x \in \mathbb{R}^n$ with $x_j = 0$ for all $j \notin K$.

Theorem 45.6. Let (P) be a linear program in standard form, where Ax = b and A is an $m \times n$ matrix of rank m. For every $v \in \mathcal{P}(A, b)$, the following conditions are equivalent: