

Graded Quiz • 50 min

Congratulations! You passed!

Grade received 100% Latest Submission Grade 100%

To pass 80% or higher

Go to next item

1.	What is stored in the 'cache' during forward propagation for latter use in backward propagation?	1/1 point
	$\bigcirc b^{[l]}$ $\bigcirc A^{[l]}$ $\circledcirc Z^{[l]}$	
	$W^{[l]}$	
	\swarrow Correct Yes. This value is useful in the calculation of $dW^{[l]}$ in the backward propagation.	
2.	Among the following, which ones are "hyperparameters"? (Check all that apply.)	1/1 point
	\square activation values $a^{[l]}$	
	$igsquare$ bias vectors $m{b}^{[l]}$	
	\checkmark size of the hidden layers $n^{[l]}$	
	✓ Correct	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	✓ number of iterations	
	✓ Correct	
	✓ learning rate \$\$\alpha\$\$	
	✓ Correct	
	✓ number of layers \$\$L\$\$ in the neural network	
	✓ Correct	
	∠ ^A Expand	

 $\textbf{3.} \ \ \text{Considering the intermediate results below, which layers of a deep neural network are they likely to belong to?}$

1/1 point

	Later layers of the deep neural network.	
	Early layers of the deep neural network.	
	Input layer of the deep neural network.	
	Middle layers of the deep neural network.	
	∠ ⁷ Expand	
	Correct Correct. The deep layers of a neural network are typically computing more complex features such as the ones shown in the figure.	
4.	$\label{lower} Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers l=1, 2,, L. True/False?$	1 / 1 point
	○ True	
	False	
	∠ ⁷ Expand	
	\bigcirc Correct Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]}),z^{[2]}=W^{[2]}a^{[1]}+b^{[2]},)$ in a deeper network, we cannot avoid a for loop iterating over the layers: $(a^{[l]}=g^{[l]}(z^{[l]}),z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]},)$.	
5.	Assume we store the values for $n^{[l]}$ in an array called layer_dims, as follows: layer_dims = $[n_x, 4, 3, 2, 1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?	1 / 1 point
	for i in range(1, len(layer_dims)/2): parameter['W' + str(i)] = np.random.randn(layer_dims[i], layer_dims[i-1]) * 0.01 parameter['b' + str(i)] = np.random.randn(layer_dims[i], 1) * 0.01	
	for i in range(1, len(layer_dims)): parameter['W' + str(i)] = np.random.randn(layer_dims[i], layer_dims[i-1]) * 0.01 parameter['b' + str(i)] = np.random.randn(layer_dims[i], 1) * 0.01	
	for i in range(1, len(layer_dims)/2): parameter['W' + str(i)] = np.random.randn(layer_dims[i], layer_dims[i-1]) * 0.01 parameter['b' + str(i)] = np.random.randn(layer_dims[i-1], 1) * 0.01	
	for i in range(1, len(layer_dims)): parameter['W' + str(i)] = np.random.randn(layer_dims[i-1], layer_dims[i]) * 0.01 parameter['b' + str(i)] = np.random.randn(layer_dims[i], 1) * 0.01	
	^{▶ Z} Expand	
	⟨→⟩ Correct	
6.	Consider the following neural network:	1 / 1 point

How many layers does this network have?

The number of layers L is 4.

Yes. The number of rows in ${\cal A}^{[1]}$ corresponds to the number of units in the l-th layer.

⊘ Correct