Python for Scientific Computing

Lecture 2: Data Structures

Albert DeFusco
Center for Simulation and Modeling

September 18, 2013

Download your own Python

https://www.enthought.com/products/epd/free/

Review π

$$\pi = 2 \prod_{i=1}^{\infty} \frac{4i^2}{4i^2 - 1}$$

Review π

$$\pi=2\prod_{i=1}^{\infty}\frac{4i^2}{4i^2-1}$$

```
1 pi = 2.
2 for i in range(1,n):
3  pi *= 4.*i**2 / (4.*i**2 - 1)
4 print pi
```

Containers

- tuples, lists and strings
 - Elements are accessed with container[]
 - ► Indexed starting at 0
 - Arguments for len(container)
 - Each type has special features

Tuples

- ► Tuple = (1,3., 'red')
- Contain references to other objects
- The structure cannot be changed
- A convenient way to pass multiple objects
 - Packing and un-packing

Lists

- List = ['red','green','blue']
- ► Resizable
- List-of-Lists is a multi-dimensional list
- ► Lists are not arrays
- ▶ range() is a list

Dictionaries

Key - value pairs

```
Protons = {'Oxygen': 8, 'Hydrogen': 1}
Protons['Carbon'] = 6
```

- Any type can be a key or value
- ► Look-up tables
- Sorting and searching operations

Indexing Lists and tuples

Slicing just like Fortran 90L[start:stop:stride]

 $start \le i < stop; i+ = stride$

- ► Negative indices start at the end of the list
 - ▶ -1 is the last element

Other operations

- ▶ Search for value with in
- ► Concatenate with + or *
- Count number of occurrences

Loops

- Iterate over any sequence
 - string, list, keys in dictionary, lines in file

```
1 vowels = 'aeiouy'
2 for i in 'orbital':
3     if i in vowels:
4     print(i)
```

Loops

► Keep a counter

```
1 shells = ('s', 'p', 'd', 'f')
2 for index, thisShell in enumerate(shells):
3     print index, thisShell
```

Loops

► List comprehension

```
1  even = [i for i in range(100) if i%2 == 0]
2
3  listX = [-1, 0, 1]
4  listY = [2, 4]
5  myTuple = [(x,y) for x in listX for y in listY]
```

Mutability of objects

- Immutable objects get created and destroyed upon assignment and collection
 - Strings
 - Numbers (no ++ operator)
 - Tuples
- Mutable objects create references to contained objects upon assignment
 - Lists
 - Dictionaries

Hands-on: Mutability

Tuples or Lists?

- List: homogeneous data
 - Elements can be added or deleted
 - Elements can be in any order
 - Mutable

- ► Tuples: heterogeneous data (structs)
 - Constant size
 - Order matters
 - Immutable

Container examples

- List
 - Particles
 - ▶ Lines in an input file
- ► Tuple
 - Position data
- Dictionary
 - Associated lists
 - ► Look-up tables
 - Histograms
 - Networks
 - Graphs

Functions

- Doc strings
- ► Default values
- ► Optional arguments
- Returns

Functions

```
1  def divide(x,y):
2    """Divide takes two integers as input
3    returns a tupe of quotient and remainder"""
4    return x/y,x%y
```

Mathematical Exercises

Write a function to differentiate another function

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

Mathematical Exercises

Write a function to differentiate another function

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

- f(x) and h are arguments
 - make h = 0.01 the default value
- ▶ Practice with the following functions
 - $f(x) = x^2$ at x = 1
 - f(x) = cos(x) at $x = 2\pi$
 - $f(x) = e^{-2x^2}$ at x = 0

recursions

$$n! = \prod_{k=1}^{n} k$$

```
1 def factorial(n):
2   if(n=0):
3   return 1
4   return n*factorial(n-1)
```