Math 297 Discussion 10

Annie Xu

March 27, 2019

Group

A group is a set G with a binary operation $\cdot: G \times G \to G$ s.t.

- i) · is associative $x(yz) = (xy)z \ \forall x, y, z \in G$
- ii) \exists identity element $1 \in G$, $1 \cdot x = x \cdot 1 = x \ \forall x \in G$
- iii) Every element x has an inverse, i.e. an element y s.t. xy = yx = 1

Note: Commutativity not required. Commutative groups are also called **abelian groups**.

Examples

- 1) Zero group 2) $G = \mathbb{Z}, \quad \cdot = +$
- 3) Non-example: \mathbb{Z} with multiplication 4) S_n symmetric group on n letters
- 5) A vector space V along with vector addition
- 6) $\mathbb{Z}/n\mathbb{Z}$, $n \in \mathbb{Z}^+$
- 7) $(\mathbb{Z}/n\mathbb{Z})^{\times}$, $n \in \mathbb{Z}^+$ 8) S_n symmetric group on n letters
- 9) F_2 free groups in a, b
- 10) direct product of groups

Basic Properties

You can prove some general facts about group, using the same techniques from 297: the identity is unique.

the inverse of each element is unique.

$$(a^{-1})^{-1} = a \ \forall a \in G$$

 $(a \cdot b)^{-1} = (b^{-1})(a^{-1})$

generalized associative law holds.

cancellation rule: if au = av, then u = v; and if ub = vb, u = v.

Order

For G a group and $x \in G$, define the **order** of x to be the smallest positive integer n s.t. $x^n = 1$, and denote the integer by |x|. Also say x is of order n. If no positive power of x is the identity, the order of x is defined to be infinity.

Examples

- 1) $x \in G$ has order 1 if and only if x is the identity.
- 2) In the additive groups $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, every nonzero (nonidentity) element has infinite order.
- 3) In the multiplicative group $\mathbb{R} \{0\}$ or $\mathbb{Q} \{0\}$ the element -1 has order 2 and all other nonidentity elements have infinite order.
- 4) In the additive group $\mathbb{Z}/9\mathbb{Z}$, $\bar{6}$ has order 3 (Why?); the order of $\bar{5}$ is 9.
- 5) In the multiplicative group $(\mathbb{Z}/7\mathbb{Z})^{\times}$, $\bar{2}$ has order 3 (Why?); $\bar{3}$ has order 6.
- 6) S_n : using cycle notation, (1 2 3) has order 3.