Introduction to Computer Graphics

Animation (2) –

May 26, 2016 Kenshi Takayama

Physically-based deformations

Simple example: single mass & spring in 1D

• Mass m, position x, spring coefficient k, rest length l, gravity g:

Equation of motion
$$m \frac{d^2x}{dt^2} = -k (x - l) + g$$
$$= f_{int}(x) + f_{ext}$$

- f_{ext} : External force (gravity, collision, user interaction)
- $f_{int}(x)$: Internal force (pulling the system back to original)
 - Spring's internal energy (potential): $E(x) \coloneqq \frac{k}{2} \; (x-l)^2$

$$E(x) \coloneqq \frac{k}{2} (x - l)^{-1}$$

• Internal force is the opposite of potential gradient: $f_{\rm int}(x)\coloneqq -\frac{dE}{dx}=-k(x-l)$

$$f_{\rm int}(x) := -\frac{dE}{dx} = -k(x-l)$$

Mass-spring system in 3D

- N masses: i-th mass m_i , position $x_i \in \mathbb{R}^3$
- M springs: j-th spring $e_j = (i_1, i_2)$
 - Coefficient k_j , rest length l_j

• System's potential energy for a state $\mathbf{x} = (x_1, ..., x_N) \in \mathbb{R}^{3N}$:

$$E(\mathbf{x}) \coloneqq \sum_{e_j = (i_1, i_2)} \frac{k_j}{2} (\|x_{i_1} - x_{i_2}\| - l_j)^2$$

Equation of motion:

$$\mathbf{M} \frac{d^2 \mathbf{x}}{dt^2} = -\nabla E(\mathbf{x}) + \mathbf{f}_{\text{ext}}$$

• $\mathbf{M} \in \mathbb{R}^{3N \times 3N}$: Diagonal matrix made of m_i (mass matrix)

Continuous elastic model in 2D (Finite Element Method)

- *N* vertices: *i*-th position $x_i \in \mathbb{R}^2$
- *M* triangles: *j*-th triangle $t_j = (i_1, i_2, i_3)$

• Deformed state: $\mathbf{x} = (x_1, ..., x_N) \in \mathbb{R}^{2N}$

• Deformation gradient:

$$\mathbf{F}_{j}(\mathbf{x}) \coloneqq \begin{pmatrix} \mathbf{r}_{i} \\ \mathbf$$

System's potential:

$$E(\mathbf{x}) \coloneqq \sum_{t_j = (i_1, i_2, i_3)} \frac{A_j}{2} \left\| \mathbf{F}_j(\mathbf{x})^{\mathsf{T}} \mathbf{F}_j(\mathbf{x}) - \mathbf{I} \right\|_{\mathcal{F}}^2$$

• Equation of motion:

$$\mathbf{M}\frac{d^2\mathbf{x}}{dt^2} = -\nabla E(\mathbf{x}) + \mathbf{f}_{\text{ext}}$$

• $\mathbf{M} \in \mathbb{R}^{2N \times 2N}$: Diagonal matrix made of vertices' Voronoi areas

Tessellate the domain into triangular mesh

Linear transformation which maps edges

Green's strain energy

Computing dynamics

• Problem: Given initial value of position $\mathbf{x}(t)$ and velocity $\mathbf{v}(t)\coloneqq \frac{d\mathbf{x}}{dt}$ as

$$\mathbf{x}(0) = \mathbf{x}_0$$
 and $\mathbf{v}(0) = \mathbf{v}_0$,

compute $\mathbf{x}(t)$ and $\mathbf{v}(t)$ for t > 0. (Initial Value Problem)

• Simple case of single mass & spring:

$$m\frac{d^2x}{dt^2} = -k(x-l) + g$$

- → analytic solution exists (sine curve)
- General problems don't have analytic solution
 - From state $(\mathbf{x}_n, \mathbf{v}_n)$ at time t, compute next state $(\mathbf{x}_{n+1}, \mathbf{v}_{n+1})$ at time t+h. (time integration)
 - h: time step

Simplest method: Explicit Euler

Discretize acceleration using finite difference:

$$\mathbf{M} \frac{\mathbf{v}_{n+1} - \mathbf{v}_n}{h} = \mathbf{f}_{\text{int}}(\mathbf{x}_n) + \mathbf{f}_{\text{ext}}$$

Update velocity
Update position

$$\mathbf{v}_{n+1} \leftarrow \mathbf{v}_n + h \, \mathbf{M}^{-1} \left(\mathbf{f}_{\text{int}}(\mathbf{x}_n) + \mathbf{f}_{\text{ext}} \right)$$

$$\mathbf{x}_{n+1} \leftarrow \mathbf{x}_n + h \, \mathbf{v}_{n+1}$$

- Pro: easy to compute
- Con: overshooting
 - With larger time steps, mass can easily go beyond the initial amplitude
 - → System energy explodes over time

Method to be chosen: Implicit Euler

Find $(\mathbf{x}_{n+1}, \mathbf{v}_{n+1})$ such that:

$$\begin{cases} \mathbf{v}_{n+1} = \mathbf{v}_n + h \, \mathbf{M}^{-1} \left(\mathbf{f}_{\text{int}} (\mathbf{x}_{n+1}) + \mathbf{f}_{\text{ext}} \right) \\ \mathbf{x}_{n+1} = \mathbf{x}_n + h \, \mathbf{v}_{n+1} \end{cases}$$

- Represent \mathbf{v}_{n+1} using unknown position \mathbf{x}_{n+1}
- Pros: can avoid overshoot

Cons: expensive to compute (i.e. solve equation)

Inside of Implicit Euler

$$\mathbf{x}_{n+1} = \mathbf{x}_n + h \, \mathbf{v}_{n+1}$$

$$= \mathbf{x}_n + h \, \mathbf{v}_n + h^2 \mathbf{M}^{-1} (\mathbf{f}_{\text{int}}(\mathbf{x}_{n+1}) + \mathbf{f}_{\text{ext}})$$

$$= \mathbf{x}_n + h \, \mathbf{v}_n + h^2 \mathbf{M}^{-1} (-\nabla E(\mathbf{x}_{n+1}) + \mathbf{f}_{\text{ext}})$$

$$= \mathbf{x}_n + h \, \mathbf{v}_n + h^2 \mathbf{M}^{-1} (-\nabla E(\mathbf{x}_{n+1}) + \mathbf{f}_{\text{ext}})$$

$$\mathbf{F}(\mathbf{y}) \coloneqq h^2 \nabla E(\mathbf{y}) + \mathbf{M} \, \mathbf{y} - \mathbf{M}(\mathbf{x}_n + h \, \mathbf{v}_n) - h^2 \mathbf{f}_{\text{ext}} = \mathbf{0}$$

- Reduce to root-finding problem of function $\mathbf{F}: \mathbb{R}^{3N} \mapsto \mathbb{R}^{3N}$
 - → Newton's method:

$$\mathbf{y}^{(i+1)} \leftarrow \mathbf{y}^{(i)} - \left(\frac{d\mathbf{F}}{d\mathbf{y}}\right)^{-1} \mathbf{F}(\mathbf{y}^{(i)})$$

$$= \mathbf{y}^{(i)} - \left(h^2 \mathcal{H}_E(\mathbf{y}^{(i)}) + \mathbf{M}\right)^{-1} \mathbf{F}(\mathbf{y}^{(i)})$$
2nd derivative of potential E (Hessian matrix)

- Coefficient matrix of large linear system changes at every iteration
 - high computational cost!

Mass-spring model vs continuous model (FEM)

• Both:

- System potential defined as the sum of deformation energy of small elements
- Implicit Euler needed for both
- Mass-spring:
 - Inappropriate for modeling objects occupying continuous 2D/3D domains
 - Effective for modeling web-/mesh-like materials
- FEM:
 - Higher computational cost in general
 - Good domain tessellation
 - Complex potential energy
 - Can handle various (nonlinear) materials

	Mass-spring	FEM
Physical accuracy	\triangle	\circ
Impl. / comput. cost	0	\triangle

Position-Based Dynamics

PBD: Physics-based animation framework specialized for CG

- First PBD papers:
 - Meshless deformations based on shape matching [Müller et al., SIGGRAPH 2005]
 - Position Based Dynamics [Müller et al.,VRIPhys 2006]
- Basic idea

Compute positions making potential zero (goal position), then pull particles toward them

- System energy always decreases (never explodes)
- Easy to compute → perfect for games!
- Not physically meaningful computation (e.g. FEM)
 - OK for CG purposes

https://www.youtube.com/watch?v=CClwiC37kks

Case of single mass & spring (no ext. force)

Explicit Euler

$$v_{n+1} \leftarrow v_n + \frac{h \, k}{m} (l - x_n)$$
 $v_{n+1} \leftarrow v_n + \frac{\alpha}{h} (l - x_n)$
 $x_{n+1} \leftarrow x_n + h \, v_{n+1}$ $x_{n+1} \leftarrow x_n + h \, v_{n+1}$

Position-Based Dynamics

$$v_{n+1} \leftarrow v_n + \frac{\alpha}{h}(l - x_n)$$
$$x_{n+1} \leftarrow x_n + h \ v_{n+1}$$

- $0 \le \alpha \le 1$ is "stiffness" parameter unique to PBD
 - $\alpha = 0$ \rightarrow No update of velocity (spring is infinitely soft)
 - $\alpha = 1$ \rightarrow Spring is infinitely stiff (?)
 - → Energy never explodes in any case ©
- Note: Unit of α/h is (time)⁻¹ $\rightarrow \alpha$ has no physical meaning!
 - Reason why PBD is called non physics-based but geometry-based

Case of general deforming shape (no ext. force)

Explicit Euler

$$\mathbf{v}_{n+1} \leftarrow \mathbf{v}_n - h \; \mathbf{M}^{-1} \nabla E(\mathbf{x}_n)$$

$$\mathbf{x}_{n+1} \leftarrow \mathbf{x}_n + h \, \mathbf{v}_{n+1}$$

Position-Based Dynamics

$$\mathbf{v}_{n+1} \leftarrow \mathbf{v}_n + \frac{\alpha}{h} (\mathbf{g}(\mathbf{x}_n) - \mathbf{x}_n)$$
$$\mathbf{x}_{n+1} \leftarrow \mathbf{x}_n + h \, \mathbf{v}_{n+1}$$

- Goal position g
 - Rest shape rigidly transformed such that it best matches the current deformed state
 - (SVD of moment matrix)

- Called "Shape Matching"
 - One technique within the PBD framework
 - Connectivity info (spring/mesh) not needed → meshless

Shape Matching per (overlapping) local region

More complex deformations

Acceleration techniques

Local regions from voxel lattice

Local regions from octree

Hair particles

Chain regions

Animating hair using 1D chain structure

Extension: Deform rest shapes of local regions

Autonomous motion of soft bodies

https://www.youtube.com/watch?v=0AWtQbVBi3s

Example-based deformations

https://www.youtube.com/watch?v=45QjojWiOEc

General procedure of PBD

• Input: initial position \mathbf{x}_0 & velocity \mathbf{v}_0

• At every frame:

$$\mathbf{p} = \mathbf{x}_n + h \, \mathbf{v}_n$$
 prediction $\mathbf{x}_{n+1} = \text{modify}(\mathbf{p})$ position correction $\mathbf{u} = (\mathbf{x}_{n+1} - \mathbf{x}_n)/h$ velocity update $\mathbf{v}_{n+1} = \text{modify}(\mathbf{u})$ velocity correction

(My understanding is still weak)

Various geometric constraints available in PBD (other than Shape Matching)

Volume constraint

Stretch constraint

Strain constraint

Twist constraint

Density constraint

Robust Real-Time Deformation of Incompressible Surface Meshes [Diziol SCA11]
Long Range Attachments - A Method to Simulate Inextensible Clothing in Computer Games [Kim SCA12]
Position Based Fluids [Macklin SIGGRAPH13]

Position-based Elastic Rods [Umetani SCA14]

Position-Based Simulation of Continuous Materials [Bender Comput&Graph14]

Putting everything together: FLEX in PhysX

SDK released by NVIDIA!

https://www.youtube.com/watch?v=z6dAahLUbZg

Collisions

Another tricky issue

- For each voxel grid, record which particles it contains
- Test collisions only among nearby particles

Collision detection for deformable objects [Teschner CGF05] Staggered Projections for Frictional Contact in Multibody Systems [Kaufman SIGGRAPHAsia08] Asynchronous Contact Mechanics [Harmon SIGGRAPH09] Energy-based Self-Collision Culling for Arbitrary Mesh Deformations [Zheng SIGGRAPH12] Air Meshes for Robust Collision Handling [Muller SIGGRAPH15]

[Muller15]

Pointers

- Surveys, tutorials
 - A Survey on Position-Based Simulation Methods in Computer Graphics [Bender CGF14]
 - http://www.csee.umbc.edu/csee/research/vangogh/I3D2015/matthias_muller_slides.pdf
 - Position-Based Simulation Methods in Computer Graphics [Bender EG15Tutorial]
- Libraries, implementations
 - https://code.google.com/p/opencloth/
 - http://shapeop.org/
 - http://matthias-mueller-fischer.ch/demos/matching2dSource.zip
 - https://bitbucket.org/yukikoyama
 - https://developer.nvidia.com/physx-flex
 - https://github.com/janbender/PositionBasedDynamics