

4. 4)求没有使用天津供应商生产的红色零件的工程号JNO;

常见错误: **SELECT JNO FROM J** WHERE NOT EXISTS (SELECT * FROM S,SPJ,P WHERE SPJ.JNO=J.JNO AND SPJ.SNO=S.SNO AND SPJ.PNO=P.PNO AND S.CITY='天津'AND P.COLOR='红'):

当从单个表中查询时,目标 列表达式用*,若为多表必须用 表名.*

正确写法:
SELECT JNO
FROM J
WHERE NOT EXISTS
(SELECT S.*,SPJ.*,P.*
FROM S,SPJ,P
WHERE SPJ.JNO=J.JNO AND
SPJ.SNO=S.SNO AND
SPJ.PNO=P.PNO AND
S.CITY='天津'AND
P.COLOR='红')


```
4)求没有使用天津供应商生产的红色零件的工程号JNO;
 SELECT JNO FROM J
WHERE JNO NOT IN
    (SELECT JNO
    FROM S,SPJ,P
    WHERE S.SNO=SPJ.SNO AND SPJ.PNO=P.PNO AND
       S.CITY='天津' AND P.COLOR='红');
SELECT JNO FROM J
WHERE NOT EXISTS
    (SELECT * FROM SPJ
    WHERE SPJ.JNO=J.JNO AND
       SPJ.SNO IN
          (SELECT SNO FROM S
          WHERE S.CITY= '天津') AND
       SPJ.PNO IN
          (SELECT PNO FROM P
          WHERE P.COLOR='红'))
```


4. 5)求至少用了供应商S1所供应的全部零件的工程号JNO

```
第一种理解:
                                 第二种理解:
SELECT DISTINCT JNO
                                 SELECT DISTINCT JNO
FROM SPJ SPJX
                                 FROM SPJ SPJX
WHERE NOT EXISTS
                                 WHERE NOT EXISTS
 (SELECT *
                                  (SELECT *
 FROM SPJ SPJY
                                   FROM SPJ SPJY
 WHERE SPJY.SNO='S1' AND
                                   WHERE SPJY.SNO='S1' AND
  NOT EXISTS
                                    NOT EXISTS
  (SELECT *
                                    (SELECT *
  FROM SPJ SPJZ
                                    FROM SPJ SPJZ
  WHERE SPJZ.JNO=SPJX.JNO AND
                                    WHERE SPJZ.JNO=SPJX.JNO AND
     SPJZ.PNO=SPJY.PNO AND
                                       SPJZ.PNO=SPJY.PNO));
     SPJZ.SNO=SPJY.SNO));
                                     查询结果: {J4}
  查询结果: { }
```


5. 7)找出没有使用天津产的零件的工程号码

```
SELECT JNO
FROM J
WHERE JNO NOT IN
    (SELECT JNO
    FROM SPJ, S
    WHERE S.SNO=SPJ.SNO AND S.CITY= '天津');
SELECT JNO
                               SELECT JNO
FROM J
                               FROM J
WHERE NOT EXISTS
                               WHERE NOT EXISTS
  (SELECT *
                                  (SELECT SPJ.*, S.*
   FROM SPJ
   WHERE JNO=J,JNO AND
                                    FROM SPJ, S
      SNO IN
                                    WHERE JNO=J.JNO AND
        (SELECT SNO
                                            SNO=S.SNO AND
        FROM S
                                            S.CITY='天津
    WHERE S.CITY= '天津'));
```


5. 11)请将(S2,J6,P4,200)插入供应情况关系

```
INSERT INTO SPJ VALUES('S2','P4','J6',200) 常见错误:
INSERT INTO SPJ VALUES('S2','J6','P4',200) 或
INSERT INTO SPJ (Sno, Pno, Jno, Qty)
VALUES('S2','J6','P4',200)
```

6 第六章 关系数据理论

Principles of Database Systems

计算机学院数据库所 Zuo 18-15-17 18-5-17

第六章 关系数据理论

- 6.1 问题的提出
- 6.2 规范化
- 6.3 数据依赖的公理系统
- *6.4 模式的分解
- 6.5 小结

怎样的分解才是正确的、恰当的?——本节给出模式分解的理论基础。

6.4 模式的分解

- 定义6.16: 设有关系模式R(U,F), 称 ρ ={ R₁(U₁, F₁), R₂(U₂, F₂), ..., R_n(U_n, F_n)}为R的一个分解,其中:
 - 1) U=U₁ ∪ U₂ ∪ ...U_n
 - 2) U_i与U_j可以相交,但不允许U_i⊆U_j(1≤i, j≤n)
 - 3) F_i是F在U_i上的投影(也可记作 \(\overline{\textit{\$\Gamma_{R_i}(F)\$}\)}
- 定义6.17: 函数依赖集合{X→Y| X→Y∈F⁺ ∧ XY⊆U_i}的一个覆盖F_i称为F在属性集U_i上的投影。
- ■分解的目标:
- ❖ 达到更高级范式
- ❖ 分解后数据可以还原
- ❖ 分解后属性间的依赖关系保持不变

-17 8

模式分解带来的问题(1)

例1:

R(A, B, C)

А	В	С
1	1	2
2	2	1

$ _{A,B}(R)$	П	Α	B,	(F	\mathbb{R}
---------------	---	---	----	----	--------------

Α	В
1	1
2	2

$$\prod_{B,C}(R)$$

В	C
1	2
2	1

$$\prod_{AB}(R) \bowtie \prod_{BC}(R)$$

Α	В	С
1	1	2
2	2	1

数据可以还原

R(A, B, C)

Α	В	С
1	1	1
2	1	2

$$\prod_{A,B}(R)$$

1 17,0(/		
Α	В	
1	1	
2	1	

$$\prod_{B,C}(R)$$

1 15,5 ()		
В	С	
1	1	
1	2	

$$\prod_{AB}(R)\bowtie\prod_{BC}(R)$$

Α	В	С
1	1	1
1	1	2
2	1	1
2	1	2

数据无法还原

模式分解带来的问题(2)

	\mathbf{D}	\mathbf{D}	_)
3 A	D,	D	\rightarrow	7

Α	В	С
a1	b1	c1
a2	b1	c1
a3	b2	c2
a4	b3	c1

Α	В
a1	b1
a2	b1
a3	b2
a4	b3

Α	С
a1	c1
a2	c1
a3	c2
a4	c1

插入

A	ם
a1	b1
a2	b1
a3	b2
a4	b3
a5	b3

Α	C
a1	c1
a2	c1
a3	c2
a4	c1
a5	c3

Α	В	С
a1	b1	c1
a2	b1	c1
a3	b2	c2
a4	b3	c1
a5	b3	c3

违反 B→C

6.4.1 分解的正确性标准

- 1) 无损连接性——分解所得到的各个关系模式经过自然 连接可以还原成被分解的关系模式, 既不增加原来没 有的元组也不丢失原有的元组。
- 2) 依赖保持性——分解所得到的各个关系模式上的函数 依赖的集合与被分解关系模式原有的函数依赖集等价 ,没有被丢失的现象。
- 对于一个分解,必然有下面四种可能的结果:
- ❖ 具有无损连接性,不具有依赖保持性
- ❖ 不具有无损连接性,具有依赖保持性
- ❖ 既有无损连接性,又有依赖保持性(理想情况)
- ❖ 既没有无损连接性,又没有依赖保持性

- 定义: 任给关系模式R(U, F), ρ={R₁, R₂, ..., R_n}是R的 一个分解。若对R的任一关系r都有:

$$\rho = \prod_{R_1}(r) \bowtie \prod_{R_2}(r) \bowtie \ldots \bowtie \prod_{R_n}(r)$$

则称分解ρ是R的一个无损分解。

即:

无损分解可通过自然连接运算还原。

■ 保持函数依赖性

定义:任给R(U, F), ρ ={R1, R2,Rn}是R的一个 分解,若F⇔ $\Pi_{R1}(F1) \cup \Pi_{R2}(F2) \cup \dots \cup \Pi_{Rn}(Fn)$,则称 ρ 具有函数依赖保持性。

模式分解带来的问题

- 例:对于关系模式SC(Sno,Sdept,Sloc), F={Sno→Sdept,

 $Sdept \rightarrow Sloc$.

Sno	Sdept	Sloc
99001	计算机	D1
99002	电信	D2
99003	自控	D3
99004	电信	D2
99005	管理	D2

<u>R1</u>	未保持	f d (丢失了fd:	sdept→s	loc)
Sno	Sdept		Sno	Sloc	
99001	计算机		99001	D1	
99002	电信		99002	D2	
99003	自控		99003	D3	
99004	电信		99004	D2	
99005	管理		99005	D2	
R3	未保持	ffd	(丢失了fd	l: sno→sd	lept)

未保持	d (丢失了fd:	sdept→s]	loc)
Sdept		Sno	Sloc	
计算机		99001	D1	
电信		99002	D2	
自控		99003	D3	
电信		99004	D2	
管理		99005	D2	

ρ2:

Sno	Sloc	
99001	D1	
99002	D2	
99003	D3	
99004	D2	

D2

99005

Sdept	Sloc
计算机	D1
电信	D2
自控	D3
管理	D2

哪些分解具有无 损连接性?

R1 ⋈ **R2=R**

哪些保持了FD?

计算机学院数据库所 Zuo

模式分解带来的问题

Sloc

D1

D2

D3

D2

D2

R6

- 例:对于关系模式SC(Sno,Sdept,Sloc), F={Sno→Sdept,

 $Sdept \rightarrow Sloc$.

Sdept

计算机

电信

自控

电信

管理

Sno

99001

99002

99003

99004

99005

μυ:

ρ3: **R5**

Sno	Sdept
99001	计算机
99002	电信
99003	自控
99004	电信
99005	管理

保持了fd。

Sdept	Sloc
计算机	D1
电信	D2
自控	D3
管理	D2

哪些分解具有无 损连接性?

R1 ⋈ **R2=R**

哪些保持了FD?

计算机学院数据库所 Zuo

ρ4: **R7**

•	
	_
	•
	•

1 \ 1
Sno
99001
99002
99003
99004
99005

R8

Sdept
计算机
电信
自控
管理

R9

Sloc
D1
D2
D3
上归比。

6.4.2 分解的无损连接性和保持函数依赖性及治疗

问题:如何验证一个分解p是否为无损分解?

算法6.2:

输入: $R(A_1,A_2,...A_n)$, F, $\rho=\{R_1,R_2,...R_k\}$, $F=\{FD_1,FD_2,...,FD_\rho\}$

设: FD_i为X_i→A_{ii};

输出: 分解ρ是否具有无损连接性

步骤:

(1)建立k*n的矩阵S,列j 对应属性 A_j ,行i对应分解中的一个关系模式 R_i ;

若属性Ai属于Ui,则在i列i行处填ai,否则填bii

3-5-17 (15)

▶ 步骤: (续)

(1)
$$\rho = \{R_1 < U_1, F_1 > , R_2 < U_2, F_2 >, \dots, R_k < U_k, F_k > \}$$

IF R_i 包含属性A_j THEN

$$S[i,j] := a_j;$$

ELSE

$$S[i,j] := b_{ii};$$

END FOR;

END FOR;

示例1: (第1,2步)

$$U = \{ A, B, C, D, E \}$$

$$F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow E\}$$

$$\rho = \{ (A, B, C), (C, D), (D, E) \}$$

	Α	В	С	D	Е
ABC	a ₁	a ₂	a ₃	b ₁₄	b ₁₅
CD	b ₂₁	b ₂₂	a ₃	a ₄	b ₂₅
DE	b ₃₁	b ₃₂	b ₃₃	a ₄	a ₅

(3) DO UNTIL S 无变化 //逐个检查F中的每个函数依赖,并修改表中元素。 FOR 每个X→Y DO

FOR S中所有在X对应的列上具有相同符号的行 $i_1,i_2,...i_k$ DO 按照下列规则修改Y所对应列的符号:

- a. FOR 每个具有"a"类符号的Y对应列 DO 把该列i₁,i₂,...i_k行的符号改为相同的a类符号; END FOR;
- b. FOR 每个不具有"a"类符号的Y对应列 DO 在该列上选择一个"b"类符号 把该列i₁,i₂,...i_k行的符号改为相同的b类符号; END FOR;

END FOR;

END FOR;

END UNTIL;

(4) 如果S中存在<u>一行全为"a"类符号</u>,则 ρ 具有无损连接性,否则 ρ 不具有无损连接性。

17 17

■示例1: (第3,4歩)

 $F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow E\}$

AB→C

	А	В	С	D	Ш
ABC	a ₁	a_2	a_3	b ₁₄	b ₁₅
CD	b ₂₁	b ₂₂	a_3	a ₄	b ₂₅
DE	b ₃₁	b ₃₂	b ₃₃	a ₄	a ₅

	А	В	С	D	Е
ABC	a ₁	a ₂	a_3	b ₁₄	b ₁₅
CD	b ₂₁	b ₂₂	a ₃	a ₄	b ₂₅
DE	b ₃₁	b ₃₂	b ₃₃	a ₄	a ₅

 $C \rightarrow D$

D→E

	Α	В	С	D	Е
ABC	a ₁	a ₂	a_3	(a ₄)	b ₁₅
CD	b ₂₁	b ₂₂	a ₃	a ₄	b ₂₅
DE	b ₃₁	b ₃₂	b ₃₃	a ₄	a ₅

	A	В	C	D	Е
ABC	a ₁	a ₂	a ₃	a ₄	(a ₅)
CD	b ₂₁	b ₂₂	a_3	a ₄	a ₅
DE	b ₃₁	b ₃₂	b ₃₃	a ₄	a ₅

示例2:

$$U=\{A,B,C,D,E\},$$

$$F=\{A\rightarrow C,B\rightarrow C,C\rightarrow D,DE\rightarrow C,CE\rightarrow A\}$$

$$\rho=\{(A,D),(A,B),(B,E),(C,D,E),(A,E)\}$$

A→C

	Α	В	С	D	Ε
AD	a ₁	b ₁₂	b ₁₃	a_4	b ₁₅
AB	a ₁	a_2	b ₂₃	b ₂₄	b ₂₅
BE	b ₃₁	a_2	b ₃₃	b ₃₄	a ₅
CDE	b ₄₁	b ₄₂	a ₃	a ₄	a ₅
AE	a ₁	b ₅₂	b ₅₃	b ₅₄	a ₅

	Α	В	С	D	Е
AD	a ₁	b ₁₂	b ₁₃	a_4	b ₁₅
AB	a ₁	a_2	b ₁₃	b ₂₄	b ₂₅
BE	b ₃₁	a ₂	b ₃₃	b ₃₄	a ₅
CDE	b ₄₁	b ₄₂	a_3	a ₄	a ₅
AE	a ₁	b ₅₂	b ₁₃	b ₅₄	a ₅

\blacksquare F={A \longrightarrow C, B \longrightarrow C, C \longrightarrow D, DE \longrightarrow C, CE \longrightarrow A}

B→C							
	Α	В	С	D	Е		
AD	a ₁	b ₁₂	b ₁₃	a_4	b ₁₅		
AB	a ₁	a_2	b ₁₃	b ₂₄	b ₂₅		
BE	b ₃₁	a_2	b ₁₃	b ₃₄	a ₅		
CDE	b ₄₁	b ₄₂	a_3	a_4	a ₅		
AE	a ₁	b ₃₂	b ₁₃	b ₅₄	a ₅		

	Α	В	С	D	Е
AD	a ₁	b ₁₂	b ₁₃	a ₄	b ₁₅
AB	a ₁	a ₂	b ₁₃	a ₄	b ₂₅
BE	b ₃₁	a ₂	b ₁₃	a_4	a ₅
CDE	b ₄₁	b ₄₂	a ₃	a ₄	a ₅
AE	a ₁	b ₃₂	b ₁₃	a_4	a ₅

 $C \rightarrow D$

	Α	В	С	D	Е
AD	a ₁	b ₁₂	b ₁₃	a_4	b ₁₅
AB	a ₁	a_2	b ₁₃	a_4	b ₂₅
BE	b ₃₁	a ₂	a_3	a_4	a ₅
CDE	b ₄₁	b ₄₂	a_3	a_4	a ₅
AE	a ₁	b ₃₂	a_3	a ₄	a ₅

DE→C

	Α	В	С	D	Е
AD	a ₁	b ₁₂	b ₁₃	a_4	b ₁₅
AB	a ₁	a_2	b ₁₃	a_4	b ₂₅
BE	a_1	a_2	a_3	a_4	a ₅
CDE	a_1	b ₄₂	a ₃	a_4	a ₅
AE	a ₁	b ₃₂	a ₃	a ₄	a ₅

CE→A

6.4.2 分解的无损连接性和保持函数依赖性验检验

□判断分解无损连接性的简单算法

■ 定理6.5: 设R(U, F), ρ ={R₁, R₂}是R的一个分解,F是R上的 函数依赖集, ρ 具有无损连接性的充要条件是:

$$(R_1 \cap R_2) \rightarrow (R_1 - R_2) \in F^+$$
 或 $(R_1 \cap R_2) \rightarrow (R_2 - R_1) \in F^+$

■ 示例:

R=ABC, F={A→B}, 判断以下分解是否具有无损连接性。

1)
$$\rho_1 = \{R_1(AB), R_2(AC)\}$$

$$R_1 \cap R_2 = A, R_1 - R_2 = B$$

由A → B ,得到 ρ_1 是无损连接分解

2)
$$\rho_2 = \{R_1(AB), R_2(BC)\}$$

$$R_1 \cap R_2 = B$$
, $R_1 - R_2 = A$, $R_2 - R_1 = C$

B→A, B→C均不成立,所以 ρ_2 不是无损连接分解

例:对于关系模式 SC(Sno,Sdept,Sloc), F={Sno→Sdept, Sdept→Sloc}.

 ρ_1 ={ R₁(Sno, Sdept), R₂(Sno, Sloc) }

5-17 (21)

6.4.2 分解的无损连接性和保持函数依赖性的 法自己的

依赖保持性

定义6.19: 设有R(U, F), $\rho=\{R_1(U_1, F_1), R_2(U_2, F_2), ..., R_k(U_k, F_k)\}$ 是R的一个分解,若F+=(F₁ U F₂ U ... U F_k)+,则称 ρ 具有**函数依赖保持性**。

例1: 设 $R_1(U, F)$, $U = \{A, B, C\}$, $F = \{A \rightarrow B, C \rightarrow B\}$, 判断 $\rho_1 = \{AC, AB\}$ 是否具有依赖保持性?

解: $\pi_{AC}(F) \cup \pi_{AB}(F) = \{\epsilon, A \rightarrow B\}$,显然与F不等价,所以 ρ_1 不具有依赖保持性。

例2: 设 $R_2(U, F)$, $U = \{A, B, C, D, E, F\}$, $F = \{A \rightarrow B, E \rightarrow A, C \rightarrow F, CE \rightarrow D\}$, 判断 $\rho_2 = \{ABE, CDEF\}$ 是否具有依赖保持性?

22

要记住的三个事实:

- 要求分解保持函数依赖,模式分离总可以达 到3NF,不一定能达到BCNF。
- 要求分解既保持函数依赖又具有无损连 接性,可以达到3NF,不一定能达到BCNF。
- 要求分解具有无损连接性,可以达到4NF。

- ■算法6.2 判别一个分解的无损连接性
- **算法6.3**(合成法)转换为3NF的保持函数依赖的分解。
- 算法6.4 转换为3NF既有无损连接性又保持函数依赖的 分解
- 算法6.5 (分解法) 转换为BCNF的无损连接分解
- 算法6.6 达到4NF的具有无损连接性的分解

算法6.3 达到3NF且保持函数依赖的分解算法。

输入: 给定关系模式R<U, F>

输出: $\rho = \{R_1, ..., R_k\}, R_i \in 3NF, i = 1, 2, ..., k$

步骤

- 1. 求 R的最小函数依赖集F';
- 2.若F'中有X→A,且XA=U,则 ρ = {R},算法终止;
- 3.找出不在F'中出现的属性,将它们构成一个关系模式, 并从U中去掉它们(剩余属性仍记为U);
- 4.对于F'中的每个 $X \rightarrow A_n$ 构成一个关系模式XA.如果F'中有 $X \rightarrow A_1, X \rightarrow A_2, ..., X \rightarrow A_n$,则可以用 $XA_1A_2...A_n$ 代替n个模式 $XA_1, XA_2, ..., XA_n$;
- 5.如发现某个 $U_i \subseteq U_j$,则应将 U_i 去掉。

[例] R<U,F>,U={S#,D,M,C#,G},F={S#→ D,S# → M,D→ M, (S#,C#)→ G}. 试将R分解3NF,并保持函数依赖。

解: (1)最小依赖集:

$$F' = \{S\# \rightarrow D, D \rightarrow M, (S\#, C\#) \rightarrow G\}$$

(2)分解

$$R_1(S\#, D), \{S\#\rightarrow D\}$$

 $R_2(D, M), \{D\rightarrow M\}$
 $R_3(S\#, C\#, G), \{(S\#, C\#)\rightarrow G\}$

这个分解是无损连接的分解吗?

示例: R(C, T, H, R, S, G), 其中C-课程, T-教师, H-时间, R 一教室, S-学生, G-成绩, 满足如下语义:

- C→T (每门课仅一名教师上)
- 2. HR→C (任一时间,一个教室只能上一门课)
- F = 3. HT→R (一个时间,一个教师只能在一个教室上课)
 - 4. CS→G (一个学生,一门课只有一个成绩)
 - 5. HS→R (一个时间,一个学生只能在一个教室上课)

求R的3NF分解,并要求保持函数依赖。

解: (1)最小依赖集 $F' = \{C \rightarrow T,$ $HR \rightarrow C, HT \rightarrow R,$ $CS \rightarrow G, HS \rightarrow R$

(2)分解

CT(*C*,*T*), {*C*→*T*} 授课老师安排表 HRC(H,R,C), { HR→C} 教室安排表 HTR(H,T,R), {HT→R} 教师课表 **CSG(C,S,G)**, {**CS→G**} 成绩表 *HSR(H,S,R)*, {*HS→R*} 学生课表 这个分解是无损连接的分解吗?

- 算法6.4 达到3NF既保持函数依赖又无损连接的分解。
 - (1) 设 $\rho = \{R_1 < U_1, F_1 > ..., R_k < U_k, F_k > \}$ 是 $R < U_1, F >$ 的一个保持函数依赖的3NF分解(可由前一算法求得)
 - (2) 设X为R<U,F>的码,

若有某个 U_i , $X \subseteq U_i$, 则 ρ 即为所求,

否则令 $\tau = \rho \cup \{R^* < X, F_X > \}$,r即为所求

(如发现某个 U_i ⊆X,则应将 U_i 去掉)

8-5-17 28

算法6.5:将R分解为BCNF,且具有无损联接性。

输入: R, F

输出: R的一个无损联接分解ρ= $\{R_1,R_2,...R_k\}$,且每个 R_i 相对于 π_{R_i} (F)是BCNF。

步骤:

- (1)赋初值ρ={R};
- (2) 若p中所有R_i∈BCNF, 转(4);
- (3) 若 ρ 中有一个S \notin BCNF,则S中必能找到一个函数依赖 $X \rightarrow A \in F_i^+$,X不是S的码,且A \notin X。设S $_1$ =XA,S $_2$ =S-A,用分解{S $_1$, S $_2$ }代替S,转(2);
 - (4) 分解结束,输出ρ。

[例] R<U,F>,U={S#,D,M,C#,G},F={S#→ D,S# → M,D→ M, (S#,C#)→ G}. 试将R分解BCNF,并保持无损连接.

解:

```
第1遍: R的码为(S\#,C\#).

U_1=\{S\#,D\},\ F_1=\{S\#\to D\};
U_2=\{S\#,M,C\#,G\},\ F_2=\{S\#\to M,\ (S\#,C\#)\to G\};
第2遍: 对R_2<U_2,F_2>进一步分解.
U_2=\{S\#,M\},\ F_2=\{S\#\to M\};
```

 $\rho = \{(S\#, D\#), (S\#, M), (S\#, C\#, G)\}.$

 $U_3 = \{S\#, C\#, G\}, F_2 = \{(S\#, C\#) \rightarrow G\};$

(保持FD吗?)

例: R(C, T, H, R, S, G), 其中C—课程, T—教师, H—时间, R—教室, S—学生, G—成绩, 满足如下语义:

- C→T (每门课仅一名教师上)
- 2. HR→C (任一时间,一个教室只能上一门课)
- F = 3. HT→R (一个时间,一个教师只能在一个教室上课)
 - 4. CS→G (一个学生,一门课只有一个成绩)
 - 5. HS→R (一个时间,一个学生只能在一个教室上课)

试将R分解为具有无损连接性的BNCF。

解: (先求R的候选码)

(HS)+=HSRCTG=U, KEY=HS

- 1) 对F中的函数依赖 $CS \rightarrow G$,:左部CS不是码且 $G \notin CS$
- ∴将R分解为: S₁=CSG, S₂=CTHRSG—G = CTHRS
- ρ₁={CSG, CTHRS}, 且 CSG∈BCNF, CTHRS∉BCNF

 $F = \{C \rightarrow T, HR \rightarrow C, HT \rightarrow R, CS \rightarrow G, HS \rightarrow R\}$

解: (续)

 ρ_1 ={CSG, CTHRS}

2) 对 $S_2 = CTHRS$, KEY=HS

对函数依赖 $C \rightarrow T$,:左部C不是码

二将 S_2 分解为: S_{21} =CT(BCNF), S_{22} =CTHRS—T = CHRS ρ_2 ={CSG, CT, CHRS}

(函数依赖HT→R丢失了, 因此分解不具有依赖保持性)

3) 对 S_{22} = CHRS, KEY=HS

对函数依赖 $HR \rightarrow C$,:左部HT不是码

二将S₂₂分解为: S₂₂₁=HRC(BCNF), S₂₂₂=CHRS—C=HRS(BCNF)

ρ₃={CSG, CT, HRC, HRS}, 分解结束。

设计最优的原则:

- 表达性:
 - 数据等价(无损联接性)
 - 依赖等价(依赖保持性)
- 分离性: 指属性间的独立联系—基本信息单位。

目的:

- a.消除操作异常
- b.消除数据冗余

方法: 规范化——用范式表达结果

■最小冗余性:

要求优化后的DB能表达原DB的所有信息。

课堂练习

■ 设有以下关系R:

工厂名	产品号	产品名	车间名	车间地点	单价
W1	P1	M1	J1	D1	100
W2	P1	M1	J1	D2	110
W2	P2	M2	J1	D2	80
W2	P3	M3	J2	D3	75
W3	P1	M1	J1	D4	90

试分析上述数据,并充分利用常识,完成以下要求:

- 1. 分析R的函数依赖,求R的候选码。
- 2. 求R的最高范式级别(到BCNF为止),说明理由。
- 3. 分析R存在的主要问题。
- 4. 将R分解为一组合适的3NF关系模式。

5-17 34

小结

一、函数依赖

函数依赖的定义、类型、码, 主属性和非主属性

二、关系模式的规范化

1NF, 2NF, 3NF, BCNF, 4NF

- 三、Armstrong公理系统
 - 1. 逻辑蕴涵,闭包
 - 2. Armstrong公理系统(三条基本规则和三个推论)
 - 3. 属性闭包
 - 4. 等价、覆盖和最小函数依赖集

四、关系模式分解

- 1. 无损连接性(检验方法)
- 2. 依赖保持性
- 3. 分解为BNCF的算法(具有无损连接性)
- 4. 分解为3NF的算法(具有依赖保持性及无损连接性)

小结

- ■若要求分解具有无损连接性,那么模式分解一 定能够达到4NF
- 若要求分解保持函数依赖. 那么模式分解一定 能够达到3NF,但不一定能够达到BCNF
- 若要求分解既具有无损连接性. 又保持函数依 赖,则模式分解一定能够达到3NF,但不一定能 够达到BCNF
- 本章作业: P203 6, 7