

Course > Unit 5: ... > Lec. 8: ... > 10. Exe...

10. Exercise: Exponential PDF

Exercises due Mar 13, 2020 05:29 IST Completed

Exercise: Exponential PDF

2/2 points (graded)

Let X be an exponential random variable with parameter $\lambda=2$. Find the values of the following. Use 'e' for the base of the natural logarithm (e.g., enter e^(-3) for e^{-3}).

a)
$$\mathbf{E}[(3X+1)^2] = \boxed{8.5}$$
 Answer: 8.5

b)
$${f P}(1 \le X \le 2) = \boxed{ ext{ 0.117} }$$
 \checkmark Answer: 0.11702

Solution:

a) By expanding the quadratic, using linearity of expectations, and the facts that ${f E}\,[X]=1/\lambda$ and ${f E}\,[X^2]=2/\lambda^2$, we have

$$\mathbf{E}\left[\left(3X+1
ight)^{2}
ight]=9\mathbf{E}\left[X^{2}
ight]+6\mathbf{E}\left[X
ight]+1=9\cdotrac{2}{2^{2}}+6\cdotrac{1}{2}+1=rac{17}{2}.$$

b) We have seen that for a>0, we have ${\bf P}\,(X\ge a)=e^{-\lambda a}$, so that ${\bf P}\,(X\le a)=1-e^{-\lambda a}$. Therefore,

$$\mathbf{P}(1 \le X \le 2) = \mathbf{P}(X \le 2) - \mathbf{P}(X \le 1) = (1 - e^{-4}) - (1 - e^{-2}) = e^{-2} - e^{-4}.$$

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 5: Continuous random variables:Lec. 8: Probability density functions / 10. Exercise: Exponential PDF

Show	all posts	~	by recent ac	ctivity 🗸
Q <u>1</u>	Answer(a) ca	annot be applied yet		1
•		hinking the first question hint $\frac{h+X^c}{h+X^c} = E[X^a] + E[X^b] + E[X^c]$		8
		$P(X \le 2) - P(X \le 1)$? please explain to me why this equality is True? $P(1 \le X \le 2) = P(X \le 2) - P(X \le 1)$? Tha	nk you □	5
1		urce on integration by parts ound reviewing integration by parts very useful on this link: https://www.mathsis	<u>fun.com/c</u>	2
? !	l'm stumped	d on a) - no idea how to begin.		3
	Resolving In	finities ard time integrating over the range 0 to infinity. Are there any resources on how	to resolve	2
1		ea for solution to b) following the line of thinking given in the "show answer", I found the correct solu	tion by int	6
		ng with my solution for a)? ruggling a bit with question a). Here is the approach that I used (and which failed) <u>: 1. l calc</u>	2 new_
4)

© All Rights Reserved

