Structural Equation Modeling

?PX1JHP97587GZ

- Introduction to SEM
- How to interpret pathways
- Example 1 using lavaan
- Model fits & saturated models
- Example 2 using lavaan
- Example 3 using piecewise SEM
- A couple of other things you should be aware of (but I'm not covering)

Multiple Regression

Interpreting results from multiple regression and structural equation models Grace & Bollen (2005) Bulletin of the Ecological Society of America 86:283-295

Multiple Regression

These can not be too correlated!

Multiple Regression

Partial regression coefficients

Effect of elevation on plant cover at average age and fire severity.

Im(Plant.Cover ~ Elevation + Stand.age + Fire.severity, data=data)

Plant cover = 0.038(elevation) + 0.149(age) – 7.96(severity)

Stand age

Elevation

Plant Cover

Fire severity

Dictionary definition

"the expected change in the dependent variable associated with a unit change in a given predictor while controlling for the correlated effects of other predictors"

These can not be too correlated!

Better biological hypothesis!

Indirect effect of elevation on cover

Indirect effect of elevation on cover

Or

Effect of elevation on cover due to age and fire severity

Effect of elevation on cover unrelated to age and fire severity

Another example

Indirect effect of elevation on cover = -0.022 * 0.085 * -7.32 = 0.014 Cover increases by 1.4% per 100m

Indirect effect of elevation on cover = -0.022 * 0.085 * -7.32 = 0.014

Cover increases by 1.4% per 100m

Total effect of elevation on cover

= indirect pathway + direct pathway

= (-0.022 * 0.85 * -7.32) + 0.037

= 0.050

Cover increases by 5% per 100m

Indirect effect of elevation on cover = -0.022 * 0.085 * -7.32 = 0.014 Cover increases by 1.4% per 100m

Total effect of elevation on cover

- = indirect pathway + direct pathway
- = (-0.022 * 0.85 * -7.32) + 0.037
- = 0.050

Cover increases by 5% per 100m

If one moved upslope 100m and allowed stand age and severity to vary as it naturally would (i.e. not holding them constant) there would be a net increase in cover of 5%.

Part of this increase (1.4%) would be due to the effects of age and fire severity.

Perhaps some people think in equations?

Questions

- 1. What is the indirect effect of temperature on reproduction?
- 2. What are the units of the indirect effect?
- 3. What is the total effect of temperature on reproduction?

Questions

- 1. What is the indirect effect of temperature on reproduction?
- 2. What is the total effect of temperature on reproduction?
- 3. What's your biological interpretation?

SEM in lavaan

Borrowed heavily from this great website resource! http://www.structuralequations.com/LavaanTutorials.html

Let's try this model first.

NOTE: The path coefficients for unanalysed relationships (curved arrows) between exogenous variables (variables that only predict others) are their correlations (when standardised) or covariances (when unstandardized).

> summary(fit, rsq=T, fit.measures=TRUE) lavaan (0.5-23.1097) converged normally a	after 16 iteratio	Standardized Root	Mean Squar	e Residua	1:	
Number of observations	90	SRMR				0.000
Estimator	ML	Parameter Estimate	25:			
Minimum Function Test Statistic Degrees of freedom	0.000	Information Standard Errors				Expected Standard
Minimum Function Value 0.	.000000000000	Stalluaru Errors				3 Callual u
Model test baseline model:		Regressions:	Estimate	Std.Err	z-value	P(> z)
Minimum Function Test Statistic	22.383	cover ~				
Degrees of freedom	22.303	age	-0.005			0.067
P-value	0.000	firesev	-0.067	0.020	-3.353	0.001
User model versus baseline model:		Covariances:			_	
oser moder versus baserine moder.			Estimate	Std.Err	z-value	P(> z)
Comparative Fit Index (CFI)	1.000	age ~~ firesev	9.319	2.377	3.921	0.000
Tucker-Lewis Index (TLI)	1.000	THESEV	9.319	2.3//	3.921	0.000
Loglikelihood and Information Criteria:		Intercepts:			_	
Logitkermood and information criteria.			Estimate			
Loglikelihood user model (HO)	-529.693	.cover	1.122	0.090	12.398	0.000
Loglikelihood unrestricted model (H1)	-529.693	age firesev	25.567 4.565	1.317 0.173	19.410 26.356	0.000 0.000
		Tiresev	4.303	0.1/3	20.330	0.000
Number of free parameters	9	Variances:				
Akaike (AIC)	1077.385	var rances.	Estimate	Std.Err	z-value	P(> z)
Bayesian (BIC)	1099.883	.cover	0.078	0.012	6.708	0.000
Sample-size adjusted Bayesian (BIC)	1071.479	age	156.157		6.708	0.000
Root Mean Square Error of Approximation:		firesev	2.700	0.402	6.708	0.000
RMSEA	0.000	R-Square:	Estimate			
90 Percent Confidence Interval P-value RMSEA <= 0.05	0.000 0.000 NA	cover	0.220			

> summary(fit, rsq=T, fit.measures=TRUE)		
lavaan (0.5-23.1097) converged normally at	fter 64 iterations	
Number of observations	Used 45	Total 48
Estimator Minimum Function Test Statistic Degrees of freedom P-value (Chi-square)	ML 0.358 1 0.550	
Model test baseline model:		
Minimum Function Test Statistic Degrees of freedom P-value	68.824 6 0.000	
User model versus baseline model:		
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	1.000 1.061	
Loglikelihood and Information Criteria:		
Loglikelihood user model (HO) Loglikelihood unrestricted model (H1)	-115.455 -115.276	
Number of free parameters Akaike (AIC) Bayesian (BIC) Sample-size adjusted Bayesian (BIC)	13 256.911 280.397 239.648	
Root Mean Square Error of Approximation:		
RMSEA 90 Percent Confidence Interval P-value RMSEA <= 0.05	0.000 0.000 0.331 0.572	

Standardized Root Mean Square Residual:					
SRMR				0.011	
Parameter Estimate	es:				
Information				Expected	
Standard Errors				Standard	
Regressions:					
r ~	Estimate	Std.Err	z-value	P(> z)	
fpba (PpRS)	0.004	0.007	0.599	0.549	
Tmpcntr (Pptm)		0.004	-0.280	0.780	
Laydate (RSly)	-0.027	0.036	-0.748	0.454	
Tmpcntr (RStm)		0.196		0.567	
Laydate ~					
Tmpcntr (Lytm)	-4.790	0.383	-12.508	0.000	
Intercepts:					
	Estimate		z-value		
.r	-0.016		-0.424		
. fpba	8.913				
.Laydate	119.344				
Tempcntre	0.068	0.150	0.451	0.652	
Variances:			_		
	Estimate		z-value		
.r	0.001				
.fpba	0.391				
.Laydate	6.667		4.743		
Tempcntre	1.010	0.213	4.743	0.000	
R-Square:	Cetimat-				
r	Estimate 0.009				
r fpba	0.009				
Laydate	0.013				
Defined Parameters	: Estimate	Std.Err	z-value	P(> z)	
indPop	0.001	0.001	0.467	0.640	
indRS	0.129	0.173	0.747	0.455	
RStotal	0.123	0.093	0.747	0.455	
Poptotal	-0.001	0.004	-0.262	0.793	
. 57 23 241	3.001	2.001	3.202	31,733	

Model Fit

If model is a good fit:

- Chi-square value ≥ 0
- P-value (Chi-square): non-significant
- CFI (comparative fit index) ≥ 0.95 (some say 0.90)
- RMSEA \leq 0.06 (excellent), \leq 0.06 (good), \leq 0.10 (moderate), >10 (poor fit)
- P-value (RMSEA) likelihood that rmsea is less than 0.05. You want this to be a big number. You want the probability that this number is less than 0.05 to be very high.
- AIC/BIC to compare among models (smaller is better)

Model Fit

Poor model fit suggests that there is substantial covariation between exogenous variables that isn't explained by your model.

The reason for this might be that there additional latent factors, regression terms, covariance terms etc. that your model is missing, and/or parameters it currently has which are incorrectly specified.

Presumably, if the "correct" model was specified, the parameter estimates would be of different magnitudes (even for those parameters included in both your model and the "correct" model).

Saturated/just-identified models

A just-identified model is a model that utilizes all of the uniquely estimable parameters. This type of model will always result in a "perfect fit" to the empirical data. Since there is no way one can really test or confirm the plausibility of a just-identified model (also referred to as a saturated model), this type of model is also problematic.

 The number of parameters estimated by the model equals the number of variances and covariances in the data matrix.

lavaan (0.5-23.1097) converged normally a	fter 13 iterations
Number of observations	90
Estimator	ML
Minimum Function Test Statistic	0.000
Degrees of freedom	0
Parameter Estimates:	
Information	Expected
Standard Errors	Standard

Bigger model in lavaan

Write out the equations!

Another way to think about this:

$$\frac{dPop}{dTemp} = \frac{dLay}{dTemp} * \frac{\partial RS}{\partial Lay} * \frac{\partial Pop}{\partial RS} + \frac{\partial Pop}{\partial Temp} * \frac{\partial Pop}{\partial Temp} + \frac{\partial Pop}{\partial Temp}$$

Complex data

- Non-normal data (poisson, logistic etc.)
- Need to account for non-independent measurements?
- Want random intercepts, slopes?

Package piecewiseSEM in R is useful for this. Download from github library(devtools) install_github("jslefche/piecewiseSEM@2.0") library(piecewiseSEM)

Still a package under progress

Things you should know!

(that I'm not covering)

Latent variables

Latent variables are hypothetical or theoretical variables (constructs) that cannot be observed directly. Latent variables are of major importance to most disciplines but generally lack an explicit or precise way of measuring their existence or influence.

e.g. personality type

Piecewise SEM

Doesn't solve equations simultaneously, therefore you need to account for error – don't want propagation of error.

- Bootstrapping technique to solve this issue! Just ask me for the code.
- Currently being worked into the package itself, but not quite there yet.

Can't calculate combined paths if one pathway is non-linear!