FMI, Info, Anul I Logică matematică și computațională

Examen

1 Partea I. Logică propozițională

(P1) [1 punct] Fie

$$Z = \{ \varphi \in Form \mid Var(\varphi) = \{v_1, v_2\} \}.$$

Să se demonstreze că Z este numărabilă.

Demonstraţie:

Din Propoziția 1.5 avem că mulțimea Form este numărabilă. Din definiția mulțimii Z știm că aceasta este infinită și că este inclusă mulțimii Form. Atunci, cf. exercițiului suplimentar $(S1.1).(ii)^1$, deoarece orice submulțime infinită a unei mulțimi numărabile este numărabilă, avem că Z este numărabilă.

(P2) [1 punct] Arătați că pentru orice formule φ , ψ , χ , avem:

$$\varphi \lor \psi \to \chi \sim (\varphi \to \chi) \land (\psi \to \chi).$$

Demonstrație: Fie $e: V \to \{0,1\}$ o evaluare arbitrară. Trebuie să demonstrăm că

$$e^+(\varphi \lor \psi \to \chi) = e^+((\varphi \to \chi) \land (\psi \to \chi)),$$

deci că

$$(e^+(\varphi) \vee e^+(\psi)) \to e^+(\chi) = (e^+(\varphi) \to e^+(\chi)) \wedge (e^+(\psi) \to e^+(\chi)).$$

Avem cazurile:

 $^{^{1}} Vezi: \ https://cs.unibuc.ro//~lleustean/Teaching/2018-LOGICINFO/Exercitii_suplimentare_solutii.pdf$

(i)
$$e^+(\varphi) = e^+(\psi) = 0$$
. Atunci

(ii)
$$e^{+}(\varphi) = e^{+}(\psi) = 1$$
. Atunci

$$\begin{split} (e^+(\varphi) \vee e^+(\psi)) &\to e^+(\chi) &= (1 \vee 1) \to e^+(\chi) \\ &= 1 \to e^+(\chi) = e^+(\chi), \\ (e^+(\varphi) \to e^+(\chi)) \wedge (e^+(\psi) \to e^+(\chi)) &= (1 \to e^+(\chi)) \wedge (1 \to e^+(\chi)) \\ &= e^+(\chi) \wedge e^+(\chi) = e^+(\chi). \end{split}$$

(iii)
$$e^+(\varphi) = 1$$
 și $e^+(\psi) = 0$. Atunci

$$\begin{split} (e^+(\varphi) \vee e^+(\psi)) &\to e^+(\chi) &= (1 \vee 0) \to e^+(\chi) \\ &= 1 \to e^+(\chi) = e^+(\chi), \\ (e^+(\varphi) \to e^+(\chi)) \wedge (e^+(\psi) \to e^+(\chi)) &= (1 \to e^+(\chi)) \wedge (0 \to e^+(\chi)) \\ &= e^+(\chi) \wedge 1 = e^+(\chi). \end{split}$$

(iv) $e^+(\varphi) = 0$ și $e^+(\psi) = 1$. Similar cu cazul precedent.

(P3) [1,5 puncte] Fie $\varphi, \psi \in Form$. Să se arate sintactic :

$$\vdash (\varphi \to \neg \varphi) \to \neg \varphi.$$

Demonstrație: Avem:

$$(1) \quad \{\varphi \to \neg \varphi, \neg \neg \varphi\} \quad \vdash \neg \neg \varphi \to \varphi \qquad \qquad (S8.3).(iii), \text{ P. } 1.42.(ii)$$

(2)
$$\{\varphi \to \neg \varphi, \neg \neg \varphi\} \vdash \neg \neg \varphi$$
 Prop. 1.40.(ii)

(3)
$$\{\varphi \to \neg \varphi, \neg \neg \varphi\} \vdash \varphi$$
 (MP): (1), (2)

(4)
$$\{\varphi \to \neg \varphi, \neg \neg \varphi\} \vdash \varphi \to \neg \varphi$$
 Prop. 1.40.(ii)

(5)
$$\{\varphi \to \neg \varphi, \neg \neg \varphi\} \vdash \neg \varphi$$
 (MP): (4), (3)

(5)
$$\{\varphi \to \neg \varphi, \neg \neg \varphi\} \vdash \neg \varphi$$
 (MP): (4), (3)
(6) $\{\varphi \to \neg \varphi, \neg \neg \varphi\} \vdash \neg \varphi \to (\varphi \to \neg(\psi \to \psi))$ (S8.3).(ii), P. 1.42.(ii)
(7) $\{\varphi \to \neg \varphi, \neg \neg \varphi\} \vdash \varphi \to \neg(\psi \to \psi)$ (MP): (6), (5)
(8) $\{\varphi \to \neg \varphi, \neg \neg \varphi\} \vdash \neg(\psi \to \psi)$ (MP): (7), (3)

$$(7) \quad \{\varphi \to \neg \varphi, \neg \neg \varphi\} \quad \vdash \varphi \to \neg(\psi \to \psi) \tag{MP}: (6), (5)$$

(8)
$$\{\varphi \to \neg \varphi, \neg \neg \varphi\} \vdash \neg (\psi \to \psi)$$
 (MP): (7), (3)

(9)
$$\{\varphi \to \neg \varphi\} \vdash \neg \varphi \tag{S8.2}: (8)$$

(10)
$$\vdash (\varphi \to \neg \varphi) \to \neg \varphi$$
 T.ded pentru (9)

(P4) [2,5 puncte]

- (i) Să se aducă formula $\varphi := (v_1 \leftrightarrow \neg v_2) \rightarrow v_1$ la FND și FNC folosind transformări sintactice.
- (ii) Să se aducă formula $\psi := (v_1 \wedge v_3) \leftrightarrow (\neg v_2 \vee v_3)$ la FND și FNC folosind funcția booleană asociată.

Demonstraţie:

(i) Avem:

$$(v_1 \leftrightarrow \neg v_2) \rightarrow v_1 \sim ((v_1 \rightarrow \neg v_2) \land (\neg v_2 \rightarrow v_1)) \rightarrow v_1 \qquad \text{(înlocuirea dublei implicații)}$$

$$\sim \neg((\neg v_1 \lor \neg v_2) \land (\neg \neg v_2 \lor v_1)) \lor v_1 \qquad \text{(înlocuirea implicației)}$$

$$\sim \neg((\neg v_1 \lor \neg v_2) \land (v_2 \lor v_1)) \lor v_1 \qquad \text{(dubla negație)}$$

$$\sim (\neg(\neg v_1 \lor \neg v_2) \lor \neg(v_1 \lor v_2)) \lor v_1 \qquad \text{(de Morgan)}$$

$$\sim ((v_1 \land v_2) \lor (\neg v_1 \land \neg v_2)) \lor v_1 \qquad \text{(de Morgan)}$$

$$\sim (v_1 \land v_2) \lor (\neg v_1 \land \neg v_2) \lor v_1 \qquad \text{(asociativitatea)}$$

iar ultima formulă este în FND. Mai departe, obținem:

$$(v_1 \wedge v_2) \vee (\neg v_1 \wedge \neg v_2) \vee v_1 \sim v_1 \vee (v_1 \wedge v_2) \vee (\neg v_1 \wedge \neg v_2)$$
 (comutativitatea disjuncției)
 $\sim v_1 \vee (\neg v_1 \wedge \neg v_2)$ (absorbția)
 $\sim (v_1 \vee \neg v_1) \wedge (v_1 \vee \neg v_2)$ (distributivitatea)

iar ultima formulă este în FNC. De asemenea, ultima formulă este echivalentă și cu:

$$v_1 \vee \neg v_2$$
,

care este şi în FND, şi în FNC.

(ii) Alcătuim tabelul de valori al funcției asociate $F_{\psi}:\{0,1\}^3 \to \{0,1\}$, precum și al

funcției $\neg \circ F_{\psi}$.

x_0	x_1	x_2	$x_0 \wedge x_2$	$\neg x_1$	$\neg x_1 \lor x_2$	$F_{\psi}(x_0, x_1, x_2) := (x_0 \land x_2) \leftrightarrow (\neg x_1 \lor x_2)$	$\neg F_{\psi}(x_0, x_1, x_2)$
1	1	1	1	0	1	1	0
1	1	0	0	0	0	1	0
1	0	1	1	1	1	1	0
1	0	0	0	1	1	0	1
0	1	1	0	0	1	0	1
0	1	0	0	0	0	1	0
0	0	1	0	1	1	0	1
0	0	0	0	1	1	0	1

Aplicând raționamentul din demonstrațiile Teoremelor 1.75 și 1.77, obținem că forma normală disjunctivă a lui ψ este:

$$(v_1 \wedge v_2 \wedge v_3) \vee (v_1 \wedge v_2 \wedge \neg v_3) \vee (v_1 \wedge \neg v_2 \wedge v_3) \vee (\neg v_1 \wedge v_2 \wedge \neg v_3)$$

.

Alternativ, ne putem uita pe liniile cu 1 de pe coloana valorilor lui $\neg \circ F_{\psi} = F_{\neg \psi}$ pentru a obține (ca mai sus) următoarea formă normală disjunctivă a lui $\neg \psi$:

$$(v_1 \land \neg v_2 \land \neg v_3) \lor (\neg v_1 \land v_2 \land v_3) \lor (\neg v_1 \land \neg v_2 \land v_3) \lor (\neg v_1 \land \neg v_2 \land \neg v_3),$$

iar, pe urmă, aplicând Propoziția 1.71.(ii), obținem că o formă normală conjunctivă a lui $\neg \neg \psi$, și deci a lui ψ , este:

$$(\neg v_1 \lor v_2 \lor v_3) \land (v_1 \lor \neg v_2 \lor \neg v_3) \land (v_1 \lor v_2 \lor \neg v_3) \land (v_1 \lor v_2 \lor v_3).$$

(P5) [2 puncte]

(i) Să se aplice algoritmul Davis-Putnam mulțimii de clauze:

$$S = \{\{v_0\}, \{\neg v_0, v_1\}, \{\neg v_1, v_2, v_3\}, \{\neg v_3, v_4\}, \{\neg v_4\}, \{\neg v_2\}\}.$$

(ii) Folosind primul subpunct și eventual alte proprietăți, să se arate că:

$$\{v_0, v_0 \to v_1, (v_1 \to v_2) \lor v_3, v_3 \to v_4\} \vDash \neg v_4 \to v_2.$$

Demonstrație:

(i) Aplicând algoritmul Davis-Putnam pentru intrarea ${\mathcal S}$ obținem următoarea rulare:

$$\begin{array}{c} i \coloneqq 1 \\ S_1 \coloneqq \mathcal{S} \\ P1.1. & x_1 \coloneqq v_0 \\ T_1^1 \coloneqq \{\{v_0\}\} \\ T_1^0 \coloneqq \{\{-v_0, v_1\}\} \\ P1.2. & U_1 \coloneqq \{\{v_1\}\} \\ P1.3. & S_2 \coloneqq \{\{-v_1, v_2, v_3\}, \{-v_3, v_4\}, \{-v_4\}, \{-v_2\}, \{v_1\}\} \\ P2.1. & x_2 \coloneqq v_1 \\ T_2^1 \coloneqq \{\{v_1\}\} \\ T_2^0 \coloneqq \{\{-v_1, v_2, v_3\}\} \\ P2.2. & U_2 \coloneqq \{\{v_2, v_3\}\} \\ P2.3. & S_3 \coloneqq \{\{-v_3, v_4\}, \{-v_4\}, \{-v_2\}, \{v_2, v_3\}\} \\ P2.4. & i \coloneqq 3; \ \text{goto } P3.1 \\ P3.1. & x_3 \coloneqq v_2 \\ T_3^1 \coloneqq \{\{v_2, v_3\}\} \\ T_3^0 \coloneqq \{\{-v_2\}\} \\ P3.2. & U_3 \coloneqq \{\{v_3\}\} \\ T_3^0 \coloneqq \{\{-v_4\}, \{-v_3, v_4\}, \{v_3\}\} \\ T_4 \coloneqq \{\{v_3\}\} \\ T_4 \coloneqq \{\{v_4\}\} \\ P4.2. & U_4 \coloneqq \{\{v_4\}\} \\ P4.3. & S_5 \coloneqq \{\{-v_4\}, \{v_4\}\} \\ P4.4. & i \coloneqq 4; \ \text{goto } P5.1 \\ P5.1. & x_5 \coloneqq v_4 \\ T_5^5 \coloneqq \{\{v_4\}\} \\ P5.2. & U_5 \coloneqq \{\Box\} \\ P5.3. & S_6 \vDash \{\Box\} \\ P5.4. & \Box \in S_6 \Rightarrow \mathcal{S} \ \text{este nesatisfiabiliā}. \end{array}$$

(ii) Echivalent cu a arăta că următoarea mulțime de formule este nesatisfiabilă:

$$\{v_0, v_0 \to v_1, (v_1 \to v_2) \lor v_3, v_3 \to v_4, \neg(\neg v_4 \to v_2)\}$$

. Ceea ce revine la a arăta că următoarea formulă este nesatisfiabilă:

$$v_0 \land (v_0 \rightarrow v_1) \land ((v_1 \rightarrow v_2) \lor v_3) \land (v_3 \rightarrow v_4) \land \neg(\neg v_4 \rightarrow v_2)$$

Aplicând transformări sintactice, obținem că formula de mai sus este echivalentă, pe rând, cu:

$$v_0 \wedge (\neg v_0 \vee v_1) \wedge ((\neg v_1 \vee v_2) \vee v_3)) \wedge (\neg v_3 \vee v_4) \wedge \neg (\neg \neg v_4 \vee v_2)$$

$$v_0 \wedge (\neg v_0 \vee v_1) \wedge (\neg v_1 \vee v_2 \vee v_3) \wedge (\neg v_3 \vee v_4) \wedge \neg (v_4 \vee v_2)$$

$$v_0 \wedge (\neg v_0 \vee v_1) \wedge (\neg v_1 \vee v_2 \vee v_3) \wedge (\neg v_3 \vee v_4) \wedge (\neg v_4 \wedge \neg v_2)$$

$$v_0 \wedge (\neg v_0 \vee v_1) \wedge (\neg v_1 \vee v_2 \vee v_3) \wedge (\neg v_3 \vee v_4) \wedge \neg v_4 \wedge \neg v_2$$

ultima formulă fiind în FNC și corespunzându-i forma clauzală \mathcal{S} de la (i).

2 Partea II. Logică de ordinul întâi

(P6) [3 puncte]

- (i) Să se arate că pentru orice limbaj \mathcal{L} de ordinul I și orice formule φ , ψ ale lui \mathcal{L} , avem:
 - (a) $\exists x \varphi \vee \exists x \psi \vDash \exists x (\varphi \vee \psi)$, pentru orice variabilă x.
 - (b) $\forall x(\psi \to \varphi) \vDash \exists x\psi \to \varphi$, pentru orice variabilă $x \not\in FV(\varphi)$.
- (ii) Să se dea exemplu de limbaj \mathcal{L} de ordinul I și de formule φ, ψ ale lui \mathcal{L} astfel încât:

$$\exists x \varphi \to \exists x \psi \not\models \forall x (\varphi \to \psi).$$

Demonstraţie:

(i) Fie \mathcal{A} o \mathcal{L} -structură și $e: V \to A$.

- (a) Presupunem $\mathcal{A} \vDash \exists x (\varphi \lor \psi)[e] \Leftrightarrow \text{există } a \in A \text{ a.î. } \mathcal{A} \vDash (\varphi \lor \psi)[e_{x \leftarrow a}] \Leftrightarrow \text{există } a \in A \text{ a.î. } (\mathcal{A} \vDash \varphi[e_{x \leftarrow a}] \text{ sau } \mathcal{A} \vDash \psi[e_{x \leftarrow a}]) \Leftrightarrow \text{există } a \in A \text{ a.î. } \mathcal{A} \vDash \varphi[e_{x \leftarrow a}] \text{ sau există } a \in A \text{ a.î. } \mathcal{A} \vDash \psi[e_{x \leftarrow a}] \Leftrightarrow \mathcal{A} \vDash (\exists x \varphi)[e] \text{ sau } \mathcal{A} \vDash (\exists x \psi)[e] \Leftrightarrow \mathcal{A} \vDash (\exists x \varphi \lor \exists x \psi)[e]$
- (b) $\forall x(\psi \to \varphi) \vDash \exists x\psi \to \varphi$: $\mathcal{A} \vDash \forall x(\psi \to \varphi)[e] \iff \text{pentru orice } a \in A, \ \mathcal{A} \vDash (\psi \to \varphi)[e_{x\leftarrow a}] \iff \text{pentru orice } a \in A, \ \mathcal{A} \nvDash \psi[e_{x\leftarrow a}] \text{ sau } \mathcal{A} \vDash \varphi[e_{x\leftarrow a}] \iff (\text{aplicând Propoziția 2.25})$ $\text{pentru orice } a \in A, \ \mathcal{A} \nvDash \psi[e_{x\leftarrow a}] \text{ sau } \mathcal{A} \vDash \varphi[e] \iff \mathcal{A} \nvDash \exists x\psi[e] \text{ sau } \mathcal{A} \vDash \varphi[e]$ $\iff \mathcal{A} \vDash (\exists x\psi \to \varphi)[e].$
- (ii) Considerăm $\mathcal{L}_{ar} = (\dot{<}, \dot{+}, \dot{\times}, \dot{S}, \dot{0}), \mathcal{L}_{ar}$ -structura $\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0)$ și $e : V \to \mathbb{N}$ o evaluare arbitrară. Fie $\dot{2} := \dot{S}\dot{S}\dot{0}, \varphi := \neg(x\dot{<}\dot{0} \lor x = \dot{0})$ și $\psi := \neg(x\dot{<}\dot{2}).$

 $\mathcal{N} \vDash (\exists x \varphi \to \exists x \psi)[e] \Leftrightarrow \mathcal{N} \nvDash (\exists x \varphi)[e] \text{ sau } \mathcal{N} \vDash (\exists x \psi)[e] \Leftrightarrow \text{pentru orice } n \in \mathbb{N} \text{ avem } n \leq 0 \text{ sau există } n \in \mathbb{N} \text{ a.î. } n \geq 2.$

Dar $\mathcal{N} \not\models \forall x (\varphi \to \psi)[e]$.

Presupunem că $\mathcal{N} \vDash \forall x (\varphi \to \psi)[e] \Leftrightarrow \mathcal{N} \vDash \forall x (\neg \varphi \lor \psi)[e] \Leftrightarrow \text{pentru orice } n \in \mathbb{N} \text{ avem } (n \leq 0 \text{ sau } n \geq 2), \text{ ceea ce nu este adevărat (luăm } n := 1, \text{ de exemplu)}.$

(P7) [1 punct] Fie \mathcal{L} un limbaj de ordinul I ce conține cel puțin un simbol de relație unară P și un simbol de constantă c. Să se arate:

$$\vDash P(c) \to (\exists v_0 P(v_0)).$$

Demonstrație: Fie \mathcal{A} o \mathcal{L} -structură şi $e:V\to A$ o evaluare. Vrem să arătăm că $\mathcal{A} \vDash (P(c) \to (\exists v_0 P(v_0)))[e]$, i.e. că $(P(c))^{\mathcal{A}}(e) \to (\exists v_0 P(v_0))^{\mathcal{A}}(e) = 1$. Presupunem că $(P(c))^{\mathcal{A}}(e) = 1$ şi cercetăm dacă şi $(\exists v_0 P(v_0))^{\mathcal{A}}(e) = 1$. Din faptul că $(P(c))^{\mathcal{A}}(e) = 1$, avem că $c^{\mathcal{A}}(e) \in P^{\mathcal{A}}$, deci că $c^{\mathcal{A}} \in P^{\mathcal{A}}$. Cu scopul unei reductio ad absurdum, să presupunem că $(\exists v_0 P(v_0))^{\mathcal{A}}(e) = 0$. Despachetând semantic, aceasta înseamnă că nu există $a \in A$ astfel încât $(P(v_0))^{\mathcal{A}}(e_{v_0 \leftarrow a}) = 1$, i.e. $a \in P^{\mathcal{A}}$. Dar aceasta contrazice faptul descoperit anterior, că $c^{\mathcal{A}} \in P^{\mathcal{A}}$.

- (P8) [2 puncte] Fie \mathcal{L} un limbaj de ordinul întâi care conține
 - două simboluri de relații unare R, S și două simboluri de relații binare P, Q;
 - ullet un simbol de operație unară f;
 - \bullet un simbol de constantă c.

Să se găsească forme normale prenex pentru următoarele formule ale lui \mathcal{L} :

$$\varphi_1 = \exists x P(x, y) \to (\neg \exists z (f(z) = c) \land \forall v R(v))$$

$$\varphi_2 = \exists x (\forall y S(y) \land \neg \exists y Q(x, y)) \to \neg (\forall x \exists y Q(x, y) \land \neg \exists x R(x)).$$

Demonstrație:

$$\varphi_{1} \quad \exists \quad \forall x (P(x,y) \rightarrow (\forall z \neg (f(z) = c) \land \forall v R(v)))$$

$$\exists \quad \forall x (P(x,y) \rightarrow \forall z \forall v (\neg (f(z) = c) \land R(v)))$$

$$\exists \quad \forall x \forall z \forall v (P(x,y) \rightarrow (\neg (f(z) = c) \land R(v)))$$

$$\varphi_{2} \quad \exists \quad \exists x (\forall y S(y) \land \forall y \neg Q(x,y)) \rightarrow (\exists x \forall y \neg Q(x,y) \lor \exists x R(x))$$

$$\exists \quad \exists x \forall y (S(y) \land \neg Q(x,y)) \rightarrow \exists x (\forall y \neg Q(x,y) \lor R(x)))$$

$$\exists \quad \forall x \exists y ((S(y) \land \neg Q(x,y)) \rightarrow \exists x \forall y (\neg Q(x,y) \lor R(x)))$$

$$\exists \quad \forall x \exists y ((S(y) \land \neg Q(x,y)) \rightarrow \exists u \forall v (\neg Q(u,v) \lor R(u)))$$

$$\exists \quad \forall x \exists y ((S(y) \land \neg Q(x,y)) \rightarrow \exists u \forall v (\neg Q(u,v) \lor R(u)))$$

 $\exists \forall x \exists y \exists u \forall v ((S(y) \land \neg Q(x,y)) \rightarrow (\neg Q(u,v) \lor R(u)))$