03 Norm and distance

Unit 1: Vectors, Book ILA Ch. 1-5

- 01 Vectors
- 02 Linear Functions
- 03 Norms and Distances
- 04 Clustering

• 05 Linear Independence

Unit 2: Matrices, Book ILA Ch. 6-11 + Book IMC Ch. 2

Unit 3: Least Squares, Book ILA Ch. 12-14 + Book IMC Ch. 8

Unit 4: Eigen-decomposition, Book IMC Ch. 10, 12, 19

Outline: 03 Norms and Distances

- Norm
- Distance
- Standard deviation
- Angle

Outline: 03 Norms and Distances

- Norm
- Distance
- Standard deviation
- Angle

Norm

Definition: The Euclidean norm, or just norm, of an n-vector x is:

$$||x||=\sqrt{x_1^2\!+\!\ldots\!+\!x_n^2}=\sqrt{x^Tx}$$

Remarks: The norm:

- is used to measure the size of a vector
- reduces to the absolute value for scalar, i.e. for n=1.

Norm

Properties: For any scalar β and any n-vectors x, y:

- 1. Homogeneity: ||eta x|| = |eta|||x||
- 2. Triangle inequality: $||x+y|| \le ||x|| + ||y||$
- 3. Nonnegative: $||x|| \ge 0$
- 4. Definite: $\vert \vert x \vert \vert = 0$ if and only if x = 0

Exercise (at home): Show Prop. 1, 3, 4. Verify Prop. 2 in Python.

Norm

In Python, the module linalg from numpy has a function computing the norm.

```
In [8]:
    import numpy as np
    x = np.array([2, -1, 2])
    print(np.sqrt(np.sum(x ** 2)))
    print(np.linalg.norm(x))
    print(np.sqrt((np.inner(x, x))))

3.0
3.0
3.0
3.0
```

Root Mean Square (RMS) value

Definition: The mean-square value of an n-vector x is:

$$\frac{x_1^2 + \ldots + x_n^2}{n} = \frac{||x||^2}{n}.$$

Definition: The root-mean-square (RMS) value of an n-vector x is:

$$rms(x) = \sqrt{rac{x_1^2+\ldots+x_n^2}{n}} = rac{||x||}{\sqrt{n}}.$$

Remarks: rms(x) gives "typical" values of $|x_i|$: e.g. rms(1_n) = 1

Exercise: Write a function computing the root-mean-square value in Python.

```
In [10]:
    def rms(x):
        return np.linalg.norm(x) / np.sqrt(len(x))
        ones = np.ones(4)
        rms(ones)
Out[10]:

1.0
```

In Python, we can visualize the RMS value using matplotlib.

Chebyshev inequality

Proposition: Consider an n-vector x. The Chebyshev inequality states:

$$\#\{|x_i|\geq a\}\leq igg(rac{||x||}{a}igg)^2,$$

i.e. the number of entries x_i such that $|x_i| \geq a$ is no more than $\left(\frac{||x||}{a}\right)^2$, i.e.:

$$rac{\#\{|x_i|\geq a\}}{n}\leq igg(rac{rms(x)}{a}igg)^2,$$

i.e. the fraction of entries x_i such that $|x_i| \geq a$ is no more than $\left(\frac{rms(x)}{a}\right)^2$.

Example: With a = 5rms(x), we see that in any vector x, no more than 4\% of entries can satisfy $|x_i| \geq 5rms(x)$.

Outline: 03 Norms and Distances

- Norm
- Distance
- Standard deviation
- Angle

Distance

Definition: The Euclidean distance, or just distance, between n-vectors a and b is:

$$dist(a, b) = ||a - b||.$$

This definition agrees with ordinary distance for n = 1, 2, 3.

Definition: The RMS deviation between the n-vectors a and b is defined as:

$$rms(a-b)$$
.

In Python, we can compute distances using the norm function.

```
In [15]:
    a = np.array([1, 2])
    b = np.array([2, 3])

    plt.plot([a[0], b[0]], [a[1], b[1]])
    plt.title(f"Distance between points: {np.linalg.norm(a - b)}");
```


Triangle inequality

- Remember the triangle inequality: $||x+y|| \le ||x|| + ||y||$
- Apply with: x = a b and y = b c and get:

$$||a-c|| \le ||a-b|| + ||b-c||.$$

i.e. the third edge is not longer than the sum of the other two.

In Python, we can use a notion of distance to compute differences between more complex data.

```
import matplotlib.pyplot as plt
import numpy as np
import geomstats.datasets.utils as ds
data, patient_ids, labels = ds.load_connectomes()
fig = plt.figure(figsize=(6, 3))
ax = fig.add_subplot(121); imgplot = ax.imshow(data[0])
ax = fig.add_subplot(122); imgplot = ax.imshow(data[1])
```


We verify that two schizophrenic subjects are "closer" than a schizophrenic subject and a healthy control.

Nearest Neighbor

Definition: If z_1, \ldots, z_m is a list of n-vectors, z_j is the nearest neighbor of the n-vector x if $||x-z_j|| \le ||x-z_i||$, for all $i=1,\ldots,m$.

Exercise: Design an algorithm that can predict if a subject is schizophrenic or not.

Outline: 03 Norms and Distances

- Norm
- Distance
- Standard deviation
- Angle

Standard Deviation

Definition: The standard deviation of the n-vector x is:

$$std(x) = rms(x-ar{x}1) = rac{||x-ar{x}1.||}{\sqrt{n}}.$$

The standard deviation gives the typical amount that x_i varies around \bar{x} .

Properties:

- 1. std(x)=0 if and only if $x=\alpha 1$ for some α .
- 2. We have: $rms(x)^2 = \bar{x}^2 + std(x)^2$

Example: Finance

- x is time series of returns (say, in %) on some investment or asset over some period,
- \bar{x} is the mean return over the period,
- std(x) measures how variable the return is over the period, and is called the risk.

Multiple investments (with different return time series) are:

- · compared in terms of return and risk,
- and plotted on a risk-return plot.

Exercise: Show, for return time series x with mean return 8% and risk 3%, a loss ($x_i \le 0$) can occur in no more than 14.1% of the time. Hint: Use Chebychev inequality.

Outline: 03 Norms and Distances

- Norm
- Distance
- Standard deviation
- Angle

Cauchy-Schwarz Inequality

Theorem: For any two n-vectors a and b, we have the Cauchy-Schwarz inequality:

$$|a^Tb| \le ||a||||b||.$$

Exercise (at home): Use the Cauchy-Schwarz inequality to prove the triangle inequality.

Angle

Definition: The angle between two non-zeros n-vectors a and b is:

$$ngle(a,b) = arccos(rac{a^Tb}{||a||||b||}).$$

It coincides with the ordinary angle in 2D and 3D.

Properties: The angle $\angle(a,b)$ is the number in $[0,\pi]$ that satisfies: $a^Tb=||a||||b||\cos(\angle(a,b))$

Classification of angles

Write: $\theta = \angle(a,b)$

- ullet $heta=\pi/2=90^{\circ}$: a and b are orthogonal, written $a\perp b$, ($a^Tb=0$)
- $oldsymbol{ heta} heta = 0$: a and b are aligned ($a^Tb = \|a\| \|b\|$)
- $oldsymbol{ heta} heta = \pi = 180^{\circ}$: a and b are anti-aligned ($a^Tb = -\|a\|\|b\|$)
- ullet $heta \leq \pi/2 = 90^{\circ}$: a and b make an acute angle ($a^Tb \geq 0$)
- ullet $heta \geq \pi/2 = 90^{\circ}$: a and b make an obtuse angle ($a^Tb \leq 0$)

Outline: 03 Norms and Distances

- Norm
- Distance
- Standard deviation
- Angle

Resources

• Book ILA Ch. 3