第七章 脉冲单元电路

7.1 脉冲信号与脉冲电路

7.2 集成门构成的脉冲单元电路

7.3 555定时器及其应用

7.1 脉冲信号与脉冲电路 7.1.1 脉冲信号

- ❖按狭义定义的脉冲信号是指那些持续时间极短, 在瞬间完成突变的电压或电流波形
- ❖按广义定义的脉冲信号则指凡是不具有连续正 弦波形状的信号,几乎都可通称脉冲信号
- ◆矩形波、方波、锯齿波、钟形脉冲、尖脉冲等都是脉冲信号,在数字电路中最常见的脉冲信号是矩形脉冲和方波,其实方波只是矩形脉冲的一种特殊情况

7.1.1 脉冲信号

矩形脉冲的波形参数

Vm脉冲幅度

 $t_{\rm r}$ 上升时间

tf下降时间

tw脉冲宽度

T 脉冲周期

q 占空比 $q = \frac{t_W}{T}$

7.1.2 脉冲电路

- ◆用来产生和处理(变换、整形、鉴幅等)脉冲 波形的电路称为脉冲电路
- ❖从严格的意义上讲,脉冲电路属于模拟电路的范畴,但是由于脉冲电路与数字电路有着密切的联系,所以在数字电路课程中有关脉冲电路的内容常常占有一定篇幅,主要讨论脉冲产生和波形变换
- ❖脉冲电路可以用晶体管或集成电路作为开关和 RC和RL电路构成,按其工作时的电路状态通常分 双稳态电路、单稳态电路和无稳态电路三类

7.2 集成门构成的脉冲单元电路 7.2.1 双稳态触发器—施密特触发器

施密特触发器是一种双稳态电路,工作时它有两个稳定的电路状态,在输入信号的触发作用下在两个状态之间转换

7.2.2 单稳态触发器

单稳态触发器是只有一个稳态的电路,工作时有一个稳态和一个暂稳态,当无输入信号触发时电路处于稳态,在输入信号的触发下电路状态转换进入暂稳态,在暂稳态持续一定时间后,它又会自动地返回到稳态

7.2.3 无稳态触发器--多谐振荡器

多谐振荡器是无稳态电路,工作时没有一个稳定状态,只有两个暂稳态。接通电路的电源后,不需要任何输入信号,电路会自动地进入暂稳态,在两个暂稳态之间转换,并周而复始地持续进行这种转换

7.3 555定时器及其应用

555定时器是一种多用途的单片中规混合集成电路,它使用方便,应用灵活,用途及其广泛,只需要添加有限的外围元器件,就可以构成许多实用的电子电路。

下面以555为例,介绍各类脉冲整形电路的原理与构成。

7.3.1 555定时器的电路结构

7.3.1 555定时器的电路结构

555定时器工作原理

555定时器功能表

\overline{R}	<i>v</i> _{I1 (Vc1-)}	$v_{\rm I2~(Vc2+)}$	$\overline{(S_{\mathrm{D}})}$	$\overline{(R_{\mathrm{D}})}$	(Q)	$T_{ m D}$	$v_{\rm O}$
L	×	×	X	×	Н	饱和	$V_{ m OL}$
Н	$>V_{ m REF1}$	$>V_{ m REF2}$	L	Н	Н	饱和	$V_{ m OL}$
Н	$<$ V_{REF1}	$ < V_{ m REF2} $	Н	L	L	截止	$V_{ m OH}$
Н	$<$ $V_{ m REF1}$	$>V_{ m REF2}$	Н	Н	保持	保持	不变

$$V_{\text{REF1}} = \frac{2}{3}V_{\text{CC}} = V + V_{\text{REF1}} = \frac{2}{3}V_{\text{CC}} = V + V_{\text{CC}} = V + V_$$

工作原理

❖ 暂稳态 I 电容C充电,两端电压上升,充电路径为 V_{CC} → R_1 → R_2 → C → 地,充电时间常数 $\tau_{\hat{\Sigma}} = (R_1 + R_2)C$,电路在暂稳态 I 期内,

输出 $v_{O} = V_{OH}$

❖自动翻转 I

当电容端电压充电到 V_{T+} 时,电路翻转, T_D 饱和,电容C中止充电,开始放电

工作原理

❖ 暂稳态 II 电容 C放电,两端电压下降,放电路径为 $C \rightarrow R_2 \rightarrow T_D \rightarrow$ 地,放电时间常数 $\tau_{\dot{\Omega}} = R_2 C$,电路暂稳态期 II 内,输出 $\nu_O = V_{OL}$

❖自动翻转Ⅱ

当电容端电压放电到 V_T —时,电放电到F—时,电路翻转,F—截止,电容F—止放电,开始充电

工作原理

主要技术参数的估算
$$t_{W1} = \tau_{\pi} \ln \frac{v_{(\infty)} - v_{(0)}}{v_{(\infty)} - v_{(t)}} = (R_1 + R_2)C \ln \frac{V_{CC} - \frac{1}{3}V_{CC}}{V_{CC} - \frac{2}{3}V_{CC}} = 0.7(R_1 + R_2)C$$

$$t_{W2} = \tau_{\dot{M}} \ln \frac{v_{(\infty)} - v_{(0)}}{v_{(\infty)} - v_{(t)}} = R_2 C \ln \frac{0 - \frac{2}{3} V_{CC}}{0 - \frac{1}{3} V_{CC}} = 0.7 R_2 C$$
输出脉冲局期 T

$$T = t_{W1} + t_{W2} = 0.7(R_1 + 2R_2)C$$

输出脉冲占空比a

$$q = \frac{t_{W1}}{T} = \frac{R_1 + R_2}{R_1 + 2R_2}$$

多谐振荡器的应用

- ❖各类脉冲源
- ❖模拟声响发生器

只有当前一个振荡器输出高电平时,才驱动后一个振荡器振荡,扬声器发声;而前一个振荡器输出低电平时,导致后面振荡器复位并停止震荡,此时扬声器无音频输出。因此从扬声器中听到间歇式的"呜.....呜"声响

工作原理

- ❖稳态 无输入信号触发时,定时电容C已放电完毕,电路处于稳态,输出 $v_{O}=V_{OL}$
- ❖触发翻转 输入信号 v_I 负跳沿触发后, T_D 截止,电路翻转进入暂稳态,定时开始

工作原理

- ❖ 暂稳态 定时电容C充电,两端电压上升, 充电路径为 V_{CC} →R →C → 地,充电时间常数 τ_{Σ} =RC,电路暂稳态期内,输出 ν_{O} = V_{OH}
- ❖自动返回 当电容C上电压 上升到V_{T+} 时,*T*_D饱和,充 电停,定,定时, 电停止, 等。 结束

工作原理

❖恢复阶段 电容C经 T_D 放电,放电时间常数 $\tau_{\text{th}} = r_{\text{CES}}C$,放电至0V后电路又处于稳态

主要技术参数的估算

❖输出脉宽tw(暂稳态持续时间,定时时间)

$$t_{W} = \tau_{\tilde{\pi}} \ln \frac{v_{(\infty)} - v_{(0)}}{v_{(\infty)} - v_{(t)}} = RC \ln \frac{V_{CC} - 0}{V_{CC} - \frac{2}{3}V_{CC}} = 1.1RC$$

单稳态触发器的定时作用

❖恢复时间 t_{rf} t_{rf} ≈ (3~5) $\tau_{\text{DES}}C$

单稳态触发器的应用

单稳态触发器的应用

脉冲定时延迟

工作原理

- ◆当 $v_{\text{I}} \ge \frac{2}{3}V_{\text{CC}}$ 时, $v_{\text{O}} = V_{\text{OL}}$,此时对应的输入电压为 $V_{\text{T}+}$,称为接通电压 $V_{\text{T}+} = \frac{2}{3}V_{\text{CC}}$ 当 $v_{\text{I}} \le \frac{1}{3}V_{\text{CC}}$ 时, $v_{\text{O}} = V_{\text{OH}}$,此时对应的输入电压为 $V_{\text{T}-}$,称为关断电压 $V_{\text{T}-} = \frac{1}{3}V_{\text{CC}}$ 令 $\Delta V_{\text{T}-} = V_{\text{T}+} V_{\text{T}-} = \frac{1}{3}V_{\text{CC}}$ 称为回差电压 $V_{\text{T}+}$ 、 $V_{\text{T}-}$ 与电路参数有关,而与输入无关
- ❖输入v_I不仅起触发作用,而且对输出状态的稳定起维持作用
- $\diamond V_{T+}$ 和 V_{T-} 的不一致性,即回差特性,是施密特触发器最重要的电气特性

施密特触发器的应用

❖波形变换

施密特触发器的应用

❖脉冲整形

施密特触发器的应用

❖脉冲鉴幅

关于石英晶体稳频振荡器

- 555定时器或集成门构成的RC脉冲振荡器存在的共同性问题
- ❖振荡器状态的转换时间,都发生在电容充放电速度缓慢变化的时段,因此转换电平的微小变化都会导致转换时间的提前和滞后,从而引起振荡周期的较大变化
- ❖温度变化、电源电压波动、外界干扰等都可能是 引起转换电平小变化的原因
- ❖RC脉冲振荡器不能用于对频率要求较高的数字系统,因此应当采取稳频措施

石英晶体稳频振荡器

石英晶体稳频振荡器的特点

- ❖输出频率仅与石英晶体的固有振荡频率有关,与R、 C及其它元件无关
- ❖输出频率稳定度极高可达10⁻⁷以上
- ❖可直接产生占空比50%的矩形脉冲
- ❖电路简单可靠