Wärme- und Stoffübertragung I

Beispiel: Dreikörperproblem

Prof. Dr.-Ing. Reinhold Kneer Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Lernziele

Dreikörper

- Erweiterung der Bilanzen von Zwei- auf Mehrkörperprobleme
- Erlernen von Ansätzen zur Lösung von Strahlungsaufgaben am Beispiel eines Dreikörperproblems

Zweikörperproblem

Grillgut (2)

Holzkohle (1)

Fragestellung

Welcher Wärmestrom geht von der Holzkohle 1 durch Strahlung an das Grillgut 2 über?

Ausgangssituation

- Die Holzkohle hat eine h\u00f6here Temperatur als das Grillgut.
- Holzkohle und Grillgut strahlen schwarz.

Ansatz

- 1 Energiebilanz (um Holzkohle oder Grillgut)
- 2 Flächenhelligkeiten (Holzkohle und Grillgut)
- 1 relevanter Sichtfaktor (ϕ_{12})

Dreikörperproblem

Fragestellung

Welcher Wärmestrom geht von der Holzkohle 1 durch Strahlung an das Grillgut 2 über?

Überlegungen

 Der Wärmeübergang von der Holzkohle auf das Grillgut bleibt unverändert solange die Umgebungsstrahlung nicht durch die Strahlung der Objekte 1 und 2 beeinflusst wird.

https://www.amazon.de/Schwenkgrill-Grillrost-Edelstahl-Feuerschale-Qualit%C3%A4t/dp/B00AC9KR7K

Dreikörperproblem

Fragestellung

Welcher Wärmestrom geht von der Holzkohle 1 durch Strahlung an das Grillgut 2 über?

Überlegungen

- Strahlungsaustausch findet zwischen Holzkohle und Wand sowie zwischen Grillgut und Wand statt.
- Holzkohle, Grillgut und Wand strahlen schwarz.
- Die Wand ist nach hinten adiabat, folglich wird alle aufgenommene Energie auch wieder durch Eigenemission abgegeben, hieraus folgt die sich einstellende Wandtemperatur.
- Der Strahlungswärmestrom von der Holzkohle auf die Wand ist größer als vom Grillgut auf die Wand.
- Die Wand gibt strahlt gleichmäßig (Symmetrie) auf Holzkohle und Grillgut.
- Die Wand bewirkt einen Nettostrahlungswärmestrom von der Holzkohle indirekt an das Grillgut.

Vorgehensweise zur Lösung der Aufgabe

Problemanalyse

Welcher Wärmestrom geht von der Holzkohle 1 durch Strahlung an das Grillgut 2 über?

Vorgehensweise

- Aufstellen der Bilanzen mit Flächenhelligkeiten und Sichtfaktoren

 Eine der beiden
 - Bilanz um Grillgut
 - · Bilanz um Holzkohle
 - · Bilanz um Wand
 - Definieren aller Flächenhelligkeiten (implizit)

Bilanzen ist

ausreichend

- Holzkohle (Abhängig von T_1 , \dot{Q}_2 und \dot{Q}_W)
- Grillgut (Abhängig von T_2 , \dot{Q}_1 und \dot{Q}_W)
- Wand (Abhängig von T_W , \dot{Q}_1 , \dot{Q}_2)
- Definieren aller Sichtfaktoren
- Auflösen

Lösung des Zweikörperproblems

Annahmen

- Wände bleiben unberücksichtigt
- Alle Körper strahlen schwarz
- T₁, T₂ bekannt

Reziprozitätsbeziehung

$$A_1\phi_{12} = A_2\phi_{21}$$

Nettowärmestrom 1 nach 2

$$\dot{Q}_{1\rightleftharpoons 2} = \dot{Q}_{1\to 2} - \dot{Q}_{2\to 1}$$

$$\dot{Q}_{1\rightleftharpoons 2} = A_1 \phi_{12} (\dot{q}_1^{"} - \dot{q}_2^{"})$$

$$\dot{Q}_{1\rightleftharpoons 2} = A_1 \phi_{12} \sigma (T_1^4 - T_2^4)$$

Dreikörperproblem

Energiebilanz 1 (Holzkohle)

$$\dot{Q}_1 = \dot{Q}_{1 \rightleftharpoons 2} + \dot{Q}_{1 \rightleftharpoons W}$$

$$= A_1 \phi_{12} \sigma (T_1^4 - T_2^4) + A_1 \phi_{1W} \sigma (T_1^4 - T_W^4)$$

unbekannt

Energiebilanz 2 (Wände)

$$\dot{Q}_{W} = 0 = \dot{Q}_{W \ge 1} + \dot{Q}_{W \ge 2} + \dot{Q}_{W \ge W}$$

$$= A_{W} \phi_{W1} \sigma (T_{W}^{4} - T_{1}^{4}) + A_{W} \phi_{W2} \sigma (T_{W}^{4} - T_{2}^{4})$$

$$A_{1} \phi_{1W} \qquad A_{2} \phi_{2W}$$

Wandtemperatur

$$T_W^4 = \frac{A_1 \phi_{1W} T_1^4 + A_2 \phi_{2W} T_2^4}{A_1 \phi_{1W} + A_2 \phi_{2W}}$$

Dreikörperproblem

Annahmen

- Wände <u>werden</u> berücksichtigt
- Alle Körper strahlen schwarz
- T₁, T₂ bekannt

Wärmestrom 1 (Holzkohle)

$$\dot{Q}_1 = \dot{Q}_{1 \rightleftarrows 2} + \dot{Q}_{1 \rightleftarrows W}$$

$$= A_1 \phi_{12} \sigma(T_1^4 - T_2^4) + A_1 \phi_{1W} \sigma(T_1^4 - T_W^4)$$

$$\dot{Q}_1 = \dot{Q}_{1 \rightleftarrows 2} + \dot{Q}_{1 \rightleftarrows W}$$

$$= A_1 \phi_{12} \sigma(T_1^4 - T_2^4) + A_1 \phi_{1W} \sigma(T_1^4 - T_W^4)$$

$$= \sigma T_1^4 \left[A_1 \phi_{12} + \frac{(A_1 \phi_{1W})(A_2 \phi_{2W})}{A_1 \phi_{1W} + A_2 \phi_{2W}} - \sigma T_1^4 \left[A_1 \phi_{1W} + \frac{(A_1 \phi_{1W})(A_2 \phi_{2W})}{(A_1 \phi_{1W})(A_2 \phi_{2W})} \right]$$

Wandtemperatur

$$=A_{1} \sigma \underbrace{(T_{1}^{A_{1}} \phi T_{2}^{A_{1}}) T_{1}^{A_{1}} \phi + A_{2} \phi_{2} \phi_{2} \psi_{2}^{T_{1}^{A_{1}}}}_{A_{1} \phi_{1}_{W} + A_{2} \phi_{2} \phi_{2} \psi_{2}^{W}} + \frac{1}{\phi_{1}_{W}}}$$

Dreikörperproblem: Zusammenfassung der Annahmen

Annahmen

- Alle Körper strahlen schwarz
- Der Strahlungsaustausch findet ausschließlich zwischen den Körpern statt (Summe der Sichtfaktoren ist 1)
- Die Temperatur der K\u00f6rper 1 und K\u00f6rper
 2 ist gegeben
- Körper 3 gibt alle empfangene
 Strahlungsenergie wieder ab (adiabat)

Lösung

$$\dot{Q}_1 = \dot{Q}_{1 \rightleftarrows 2} + \dot{Q}_{1 \rightleftarrows 3}$$

$$= A_1 \sigma (T_1^4 - T_2^4) \left[\phi_{12} + \frac{1}{\frac{A_1}{A_2 \phi_{23}} + \frac{1}{\phi_{13}}} \right]$$

Grillen über dem Kugelgrill

Tipps für die nächste Grillfeier...

- 1. Anheben des Rostes verlangsamt den Garvorgang kaum
- 2. Schwarz als Farbe und kugelig als Form sind ausgesprochen ungünstig

Anteil des strahlenden Kohlebettes im "Sichtfeld" des Grillguts

Anteil des strahlenden Kohlebettes im "Sichtfeld" des Grillguts

Anteil des strahlenden Kohlebettes im "Sichtfeld" des Grillguts

Anteil des strahlenden Kohlebettes im "Sichtfeld" des Grillguts: fast 100%

Diskussion der Annahmen und Materialeigenschaften

Verständnisfragen

Weshalb wird der Strahlungsaustausch so viel komplizierter, wenn ein drittes Objekt hinzugenommen wird?

Wenn mehrere Körper am Strahlungsaustausch beteiligt sind, lassen sich dann bestimmte Körper zusammenfassen? In welchem Fall dürfen Körper zusammengefasst werden?

Literatur: Modernist Cuisine erschienen im TASCHEN Verlag

