Relatório Técnico: Análise de Estruturas de Árvores de Busca Balanceadas

Seu Nome

21 de junho de 2025

Conteúdo

1	Inti	rodução	2		
2	Me	todologia Experimental	2		
3	Resultados				
	3.1	Apresentação dos Resultados	2		
		Análise Crítica dos Resultados			
	3.3	Respostas às Perguntas Propostas	3		
4	Ent	rega	4		
	4.1	Código-fonte	4		
	4.2	Scripts ou Instruções de Execução	4		
	4.3	Relatório Técnico em PDF	4		

1 Introdução

Esta seção apresentará uma breve introdução teórica sobre as três estruturas de árvores de busca abordadas neste relatório: Binary Search Tree (BST) clássica, Árvore AVL e Árvore Rubro-Negra. Serão destacados os princípios de funcionamento de cada uma e suas principais características, especialmente no que tange ao balanceamento.

2 Metodologia Experimental

Detalhes da metodologia experimental utilizada para a coleta dos dados. Incluir informações sobre os cenários de teste (dados ordenados e não ordenados), o número de elementos inseridos, as métricas coletadas (tempo de inserção, tempo de busca, número de rotações, altura da árvore, etc.) e o ambiente de execução dos experimentos.

3 Resultados

3.1 Apresentação dos Resultados

Nesta subseção, serão apresentados os resultados dos experimentos em **tabelas e gráficos comparativos**. Certifique-se de que as tabelas sejam claras e os gráficos bem rotulados, permitindo uma fácil compreensão e comparação entre as diferentes estruturas de árvores e cenários.

Tabela 1: Tempo Médio de Inserção (ms)

Cenário	BST	AVL	Rubro-Negra
Ordenado	X	Y	Z
Não Ordenado	А	В	C

3.2 Análise Crítica dos Resultados

Esta seção se dedicará à **análise crítica dos resultados**, discutindo os seguintes pontos:

- **O impacto do balanceamento automático nas operações de inserção e busca:** Analise como a capacidade de auto-balanceamento das árvores AVL e Rubro-Negra afeta o desempenho em comparação com a BST clássica, especialmente em termos de complexidade de tempo para inserções e buscas.
- **As diferenças observadas entre os cenários de dados ordenados e não ordenados:** Discuta como a natureza dos dados (ordenados vs. não

Figura 1: Comparativo do Tempo de Busca para Diferentes Estruturas.

ordenados) influencia o desempenho de cada tipo de árvore e por que certas estruturas são mais sensíveis à ordem de inserção.

- **A relação entre o número de rotações e o desempenho das árvores balanceadas:** Explore como a quantidade de rotações realizadas para manter o balanceamento impacta o tempo total de execução das operações, considerando o custo computacional das rotações.
- **Como a altura da árvore influencia o tempo de busca:** Explique a correlação direta entre a altura da árvore e a eficiência das operações de busca, e como o balanceamento ajuda a manter a altura logarítmica.

3.3 Respostas às Perguntas Propostas

Baseado nos dados e na análise, responda às seguintes perguntas:

• **Por que a BST clássica apresenta desempenho inferior em dados ordenados?** Explique o cenário de degeneração da BST clássica em dados ordenados e como isso afeta sua complexidade de tempo.

- **Por que a AVL tende a realizar mais rotações que a Rubro-Negra?**
 Compare os critérios de balanceamento da AVL e da Rubro-Negra e explique por que a AVL exige um balanceamento mais rigoroso, resultando em mais rotações.
- **Em quais cenários a Rubro-Negra pode ser preferida à AVL?** Discuta as vantagens da Rubro-Negra em cenários específicos, como quando há um grande volume de inserções e deleções, e a AVL se torna muito custosa em termos de rotações.

4 Entrega

4.1 Código-fonte

Nesta seção, forneça informações sobre o **código-fonte bem documentado** das três estruturas (BST clássica, AVL e Rubro-Negra). Você pode incluir trechos de código relevantes ou indicar onde o código completo pode ser encontrado (e.g., em um repositório GitHub).

4.2 Scripts ou Instruções de Execução

Detalhe os **scripts ou instruções para compilação e execução dos experimentos**. Isso deve permitir que qualquer pessoa reproduza seus resultados. Inclua comandos de compilação, como executar os testes e como gerar os dados para os gráficos.

4.3 Relatório Técnico em PDF

Este documento LaTeX, uma vez compilado, constituirá o **relatório técnico em PDF**. Certifique-se de que ele contenha todos os itens solicitados:

- **Introdução teórica breve sobre cada estrutura** (abordada na Seção ??).
- **Metodologia experimental** (abordada na Seção ??).
- **Resultados (tabelas e gráficos)** (abordados na Subseção ??).
- **Discussão e respostas às questões propostas** (abordadas nas Subseções ?? e ??).