11 正規拡大 (準 Galois 拡大)

11.1 共役

定義 11.1. $\Omega:=\overline{K}:K$ の代数閉包とする。 $L/K,M/K(L,M\subset\Omega)$ が K 上<u>共役 (conjugate)</u>とはある $\sigma\in {\rm Aut}_K(\Omega)$ があって $\sigma(L)=M$ となること。

 $x,y \in \Omega$ が K 上共役 (conjugate)とはある $\sigma \in \mathrm{Aut}_K(\Omega)$ があって $\sigma(x) = y$ となること。

例 11.2. $z, \overline{z} \in \mathbb{C}$ は \mathbb{R} の代数閉包であり、 $G = \operatorname{Aut}_{\mathbb{R}}(\mathbb{C}) := \{\operatorname{Id}_{\mathbb{R}}, \sigma\}, \sigma(z) = \overline{z}$ とする。 このとき G の固定体 $\mathbb{R}^G = \mathbb{R}$ となるので \mathbb{C}/\mathbb{R} は Galois である。 この σ は複素共役をとる写像であるが $\sigma(z) = \overline{z}$ より一般の共役の定義にも適している。

命題 11.3. K の代数閉包 Ω とし、 $x,y \in \Omega$ をとる。このとき次は同値。

- (1) x と y は K 上共役。
- (2) K- 同型写像 $v:K(x)\longrightarrow K(y)$ で v(x)=y となるものが存在する。
- (3) x と y の K 上の最小多項式は同じ。

Proof. $(1) \Rightarrow (3)$

x の最小多項式を $f \in K[X]$ とする。x と y は共役なのである $\sigma \in \operatorname{Aut}_K(\Omega)$ が存在して $\sigma(x) = y$ となる。 σ は K- 自己準同型より K の元を動かさないので f の係数を動かさない。よって $f(y) = f(\sigma(x)) = \sigma(f(x)) = \sigma(0) = 0$ より f は g を根にもつ。g の最小多項式を $g \in K[X]$ とする。 $f \neq g$ と仮定すると $\deg(g)$ の最小性から g|f より f = gh となる $g \in K[X]$ 0 が存在する。このとき g(x) = g(x)0 となり $g \in K[X]$ 1 の最小性に矛盾するから $g \in K[X]$ 2 の最小多項式は一致する。

$$(3) \Rightarrow (2)$$

x と y の最小多項式を $f \in K[X]$ とする。このとき命題 $(\ref{eq:starting})$ より $K(x) \cong K[X]/(f) \cong K(y)$ であり、

$$K(x) \longrightarrow K[X]/(f) \longrightarrow K(y)$$

 $x \longmapsto X + (f) \longmapsto y$

となる同型写像が作れる。 したがって $v: K(x) \longrightarrow K(y), x \longmapsto v(y)$ となる K- 同型写像が存在する。

$$(2) \Rightarrow (1)$$

 Ω は K(x),K(y) の代数閉包でもあるので系($\ref{eq:condition}$)から K- 同型 $v:K(x)\longrightarrow K(y)$ を $\tilde{v}:\Omega\longrightarrow\Omega$ に延長できる。これは K- 自己準同型なので $\tilde{v}\in \operatorname{Aut}_K(\Omega)$ で $\tilde{v}(x)=v(x)=y$ より定義から x と y は K 上共役。

系 11.4. $x \in K$ の最小多項式 $f \in K[X]$ で $\sigma \in \operatorname{Aut}_K(\Omega)$ とする。このとき

$$g(X) := \prod_{\sigma \in Aut_K(\Omega)} (X - \sigma(x))$$

は Ω において f を割る。

Proof. 命題 (11.3) の (1) \Leftrightarrow (3) より f は x の共役元を根としてすべて含むので Ω において f が一次因子の 積に分解できることより g は f を割る。

11.2 正規

定義 11.5. 代数拡大 L/K が正規 (normal) もしくは <u>华 Galois (quasi – galois)</u> であるとは任意の既約多項式 $f \in K[X]$ が根を L 内に一つもてば d は L[X] において一次因子の積に分解することができる。 (すべて同じ体の中に根をもつ)

 $\Leftrightarrow \forall x \in L$ に対してその最小多項式 $f \in K[X]$ は L[X] において一次因子の積に分解できる。

とくに代数閉包 Ω/K は代数閉体の同値条件の命題 $(\ref{AC1})$ の (AC1) から正規拡大である。

命題 11.6. 代数拡大 L/K と代数閉包 Ω/K について次は同値。

- (1) L/K は正規。
- (2) $\forall x \in L$ に対してその任意の共役は L に含まれる。
- (3) $\forall \sigma \in \operatorname{Aut}_K(\Omega), \sigma(L) = L$ となる。
- (4) $\forall \phi \in \operatorname{Hom}_K(L,\Omega), \phi(L) = L$ となる。
- (5) L はある K 上の多項式族 $(f_i)_{i\in I}$ の最小分解体。

Proof. $(1) \Rightarrow (2)$

 $x \in L$ の最小多項式 $f \in K[X]$ をとる。L/K が正規で x が L での f の根なので f は L[X] 上で一次因子 の積に分解できる。よって f の根はすべて L に含まれている。ここで命題(11.3)の(1) \Leftrightarrow (3)より x の任意の共役元も最小多項式は f なので f の根であるからそれは L に含まれる。

$(2) \Rightarrow (1)$

 $\forall x \in L$ について L/K が代数拡大より最小多項式 $f \in K[X]$ がある。f の他の根 $a_i \in \Omega/K, 1 \leq i \leq n := \deg(f)$ も f を最小多項式として持っているから命題 (11.3) の $(1) \Leftrightarrow (3)$ より a_i は x の共役元である。したがって $a_i \in L$ であるから f は L[X] で $f = \prod_{i=1}^n (X - a_i)$ と一次因子の積に分解できるので L/K は正規拡大。

$(1) \Rightarrow (5)$

 $\forall x \in L$ の K 上の最小多項式の族 $(f_i)_{i \in I}$ をとり、この最小分解体を M とする。このとき M[X] では f_i はすべて一次因子の積に分解できるから $M \subset L$ であり、 $x \in M$ でもあるので M = L より L は $(f_i)_{i \in I}$ の最小分解体である。

$(5) \Rightarrow (3)$

L が $(f_i)_{i\in I}$ の最小分解体であるとする。 f_i の根を $\alpha_{ij}\in\Omega/K, 1\leq j\leq n:=\deg(f_i)$ とする。この根の集合を R_i とおくとき最小分解体の定義から $L=K(\cup_{i\in I}R_i)$ とかける。 $\forall \sigma\in\operatorname{Aut}_K(\Omega)$ をとったときこれは K を動かさない。また、 α_{ij} の最小多項式はすべて f_i なのでそれぞれ共役であり体の準同型から単射なので $\sigma(R_i)=R_i$ となる。したがって $\sigma(L)=\sigma(K(\cup_{i\in I}R_i))=K(\cup_{i\in I}R_i)=L$ より成立。

$(3) \Rightarrow (2)$

 $\forall x \in L$ に対してその共役は任意の $\sigma \in \mathrm{Aut}_K(\Omega)$ による $\sigma(x)$ であるが仮定より $\sigma(L) = L$ より $\sigma(x) \in L$ となる。したがって任意の元のすべての共役は L に含まれるので成立。

$(4) \Rightarrow (3)$

 $\forall \sigma \in \mathrm{Aut}_K(\Omega)$ をとる。 このとき $\sigma|_L \in \mathrm{Hom}_K(L,\Omega)$ なので仮定より $\sigma|_L(L) = L$ で $\sigma|_L(L) = \sigma(L)$ より成立。

$(3) \Rightarrow (4)$

 $\phi \in \operatorname{Hom}_K(L,\Omega)$ にたいして $L,\phi(L)$ は K の代数拡大なので定理 $(\ref{eq:condition})$ から代数閉包 Ω に埋め込めるので Ω はこれらの代数閉包でもある。 ϕ は体の準同型より単射なので $\phi:L\longrightarrow \phi(L)$ は全単射となっているから $L\cong \phi(L)$ になっていて系 $(\ref{eq:condition})$ よりこれを延長する $\sigma:\Omega\longrightarrow \Omega$ が存在する。したがって仮定より $\sigma(L)=L$ であり、 $\sigma|_L=\phi$ なので $\phi(L)=\sigma|_L(L)=\sigma(L)=L$ より成立。

系 11.7. L/K: 有限次拡大のとき

$$L/K$$
: 正規 \Leftrightarrow $[L:K]_s = h_L(L)(:= |\mathrm{Hom}_K(L,L)|)$

が成り立つ。

Proof. 系 $(\ref{eq:condition})$ より $[L:K]_s \leq [L:K]$ より L/K が有限次拡大なので $[L:K]_s$ も有限。 $L \subset \Omega$ から一般に $\mathrm{Aut}_K(L) \subset \mathrm{Hom}_K(L,\Omega)$ である。体の準同型は単射なので $\mathrm{Hom}_K(L,L) = \mathrm{Aut}_K(L)$ とも書ける (\Rightarrow)

命題 (11.6) の $(1)\Leftrightarrow (4)$ から $\forall \sigma\in \operatorname{Hom}_K(L,\Omega)$ をとると $\sigma(L)=L$ となっているので $\sigma\in\operatorname{Aut}_K(L)$ である。よって $\operatorname{Hom}_K(L,\Omega)\subset\operatorname{Aut}_K(L)$ であるので、一般に $\operatorname{Aut}_K(L)\subset\operatorname{Hom}_K(L,\Omega)$ が成り立つことを考えれば $\operatorname{Aut}_K(L)=\operatorname{Hom}_K(L,\Omega)$ だから $h_L(L)=[L:K]_s$ である。

 (\Leftarrow)

 $h_L(L) = [L:K]_s$ が有限で成り立っていて $\operatorname{Aut}_K(L) \subset \operatorname{Hom}_K(L,\Omega)$ より $\operatorname{Aut}_K(L) = \operatorname{Hom}_K(L,\Omega)$ である。 $\forall \sigma \in \operatorname{Hom}_K(L,\Omega)$ をとると $\sigma \in \operatorname{Aut}_K(L)$ なので $\sigma(L) = L$ を満たすから命題(11.6)の(1) \Leftrightarrow (4)から L/K は正規。