АШУҮИС. Анагаах Ухааны Сургууль. Уушги харшил судлалын тэнхим 2020-2021 оны хичээлийн жил

Блок 2: Уушги судлал АУС-3 дамжаа, цахим хичээлийн удирдамж

Дадлага удирдах багш нарын нэрс, имэйл хаяг

Б.Солонго solongo.b@mnums.edu.mn

Д.Ичинноров ichinnorov@mnums.edu.

M.Оюунчимэг oyunchimeg@mnums.edu.

Д.Удвал udval@mnums.edu.

Ц.Найдансүрэн naidansuren@mnums.edu.

Ц.Маналжав manaljav@mnums.edu.mn

Г.Амартувшин amartuvshin.g@mnums.edu.

Цахим хичээлийн сэдэв №2: "Гадаад амьсгалын үйл ажиллагааны шинжилгээ, эмнэлзүйн ач холбогдол" 4 цаг

Сургалтын арга: Цахим сургалт, жижиг бүлгийн

Хүрэх үр дүн: Спирометрийн шинжилгээ хийх аргачлалд суралцаж, рестриктив, обсртуктив агааржилтын алдагдлыг үнэлэх, ялган таних, гуурсан хоолойн тэлэх эмийн болон гуурсан хоолой сэдээх эмийн сорилын хариуг дүгнэх ур чадварыг оюутанууд бие даан эзэмшинэ.

Хичээлийн бэлтгэл:

Нэг. Цахим сургалтын дараах линкээр орж ГАҮА – ны шинжилгээний талаарх лекц болон спирометрийн шинжилгээ хийх аргачлалын талаар видео хичээлийг судалсан байна.

http://elearning.mnums.edu.mn/mod/page/view.php?id=8129

http://elearning.mnums.edu.mn/mod/page/view.php?id=274

Хоёр. Оюутнууд дараах сэдвийн дагуу бие даан уншиж судалсан байна.

- 1. Уушги агааржилтын үйл ажиллагааны алдагдалын шалтгаан, эмгэг жам
- 2. Уушгины агааржилтыг тодорхойлох аргууд
- 3. Спирометрийг хэрхэн хийх аргачлал
- 4. Спирометрээр бөглөрөх хам шинжийг оношлох
- 5. Спирометрээр амьсгалах талбай багасах өөрчлөлтийг оношлох
- 6. Гуурсан хоолойн тэлэх эмийн сорил хийх аргачлал, үнэлэх
- 7. Гуурсан хоолойн сэдээх эмийн сорилууд хийх аргачлал, үнэлэх

Гурав. Хавсралтаар өгсөн ГАҮА-ны шинжилгээ болон эмнэлзүйн тохиолдлыг хэрхэн шийдвэрлэсэн байдалтай танилцаж, бэлтгэж ирэх.

Хичээлийн дараалал

Онолын мэдлэгийг хичээлээс өмнө, хичээлийн дараа elearning блок 2 уушги судлал сорил бөглөж шалгуулах, мэдлэгийг бататгах, шинжилгээ уншиж, дүгнэлт өгөх арга барилд суралцах, багаар ажиллаж хэлэлцүүлэг хийх, эргэх холбоо үүсгэж дүгнэх

Сургалтын арга зүй: Тухайн хэсгийн оюутнууд 4 баг болно онолын мэдлэгээ бататгаж, шинжилгээ уншиж дүгнэх арга барилд суралцаж, багаар ажиллана.

Сургалтын ерөнхий удирдамж

Хугацаа 90мин	Агуулга
5 минут	Бүртгэл, танилцах, хичээлийн зорилго, шинэ мэдээлэл товч солилцох
20 минут	Спирометрийн шинжилгээ хийх заалт бэлтгэл, хийх ерөнхий зарчим, эзлэхүүн, багтаамж хэвийн хэмжээ. Биеийн плетизмографийн шинжилгээ
20минут	Бөглөрөлт хэлбэрийн агааржилтын алдагдлын шалгуур, ангилал, шинжилгээ дүгнэх. Пикфлоуметрийн шинжилгээ
5 минут	Завсарлага /дасгал хийх, онигоо ярих, дуулах г.м. 2-р баг хариуцана/
20 минут	Рестриктив хэлбэрийн агааржилтын алдагдлын шалгуур, ангилал, шинжилгээ дүгнэх. Уушгины диффузлэх чадвар тодорхойлох тухай.
20 минут	Гуурсан хоолой тэлэх болон сэдээх сорил хийх аргачлал, үнэлэх арга. жишээ шинжилгээ дүгнэх
	Хичээлийн төгсгөлд товч дүгнэлт хийх
5 мин	даалгавар

Тухайн хэсгийн оюутнууд 4 баг болж ррt товч мэдээлэл бэлтгэх ба даалгаварт байгаа шинжилгээнээс 2-ыг сонгож ангийнхандаа танилцуулна.

Эмнэлзүйн тохиолдол, шинжилгээнүүдийг дүгнэсэн дүгнэлтээ багийн гишүүд нэгтгэж, classroom байршуулна. эсвэл e-mail хичээлийн дараа илгээнэ.

Үнэлгээ: Ирц 10%, идэвхи оролцоо, илтгэл, асуулт хариулт 60%, мэдлэг шалгах сорил 10%, бие даалтын ажил 20% тооцно. 60 дээш хувь тооцуулсан тохиолдолд хөтөлбөрийн шаардлага хангасан гэж үзнэ.

Ашиглах эх сурвалж:

- 1. Б.Гомбосүрэн. Амьсгалын эрхтний эмгэг судлал. 2015 он, 173-192 х.
- 2. Д.Ичинноров, М.Оюунчимэг. Амьсгалын эрхтний өвчин эмгэгүүд. 2014 он. 68-74х.
- 3. J.F.Murray, J.A.Nadel Textbook of respiratory medicine. 2005

Хичээлд бэлтгэж уншиж дугнэх жишээг хавсаргав.

А 28 эм 162см, 60кг, БЖИ 22,9

Spirometric values	Pre test	Ref value	%
FVC, L	3.89	3.40	114
FEV1, L	2.54	2.93	87
FEV1 /(FVC) %	65.26	86.25	76
FEF _{25-75%} (MMF) L/s	1.59	3.50	45
PEF L/s	5.05	6.75	75

Г.Б 27 эм **Дүгнэлт 1**

Нотолгоо

- FEV1/FVC=65,26 буюу 70%-иас буурсан
- PEF 5.05 L/s (75%) буюу 80%-иас буурсан
- FEF_{25-75%} 45% буюу 65%-иас буурсан

Дүгнэлт 1

Бөглөрөлт хэлбэрийн агааржилтын алдагдал

Б 28 эм 162см, 60кг

Spirom etric values	Pre test	Ref value	%	Post test	%	Differe nce abs	%
FVC, L	3.89	3.40	114	4.08	120	0.19	5
FEV1, L	2.54	2.93	87	3.18	109	0.64	25
FEV1 /(FVC) %	65.26	86.25	76	77.97	90		
FEF ₂₅₋ 75% (MMF) L/s	1.59	3.50	45	3.09	88	1.50	94

Г.Б 27 эм **Гуурсан хоолой тэлэх эмийн сорилын дүгнэлт**

Нотолгоо:

 FEV1 +(0.64L) буюу 640мл 25% нэмэгдсэн Дүгнэлт Гуурсан хоолой эргэх шинж чанартай. Сорил эерэг

Нотолгоо:

- FEV₁+(0.64L) буюу 640мл 25% нэмэгдсэн
- FEF_{25-75%} +(1.50L/s) 94% нэмэгдсэн
- FEV1/FVC 77,97 % болсон
- PEF + 1.38L/s 27% нэмэгдсэн

Дүгнэлт: Гуурсан хоолой тэлэх эмийн FEV_1 (15-25%) бага зэрэг

Case 3

A 30 year-old woman presents for evaluation of dyspnea on exertion which has been present for 2 months. She is a life-long non-smoker with no prior history of asthma or other pulmonary problems. She works as a receptionist at a publishing company. She has two cats and several parakeets at home.

Her pulmonary function testing is as follows:

Pre-Bronchodilator (BD)	Post- BD

Test	Actual	Predicted	% Predicted	Actual	% Change
FVC (L)	1.73	4.37	40	1.79	4
FEV ₁ (L)	1.57	3.65	43	1.58	0
FEV ₁ /FVC (%)	91	84		88	- 3
RV (L)	1.01	1.98	51		
TLC (L)	2.68	6.12	44		
RV/TLC (%)	38	30			
DLCO* corr	5.13	32.19	16		

^{*}DLCO is measured in ml/min/mmHg

Her flow volume loops is as follows:

•	Pred		Pre
	Pre	-	Post
	Post		

- 1. Describe the pattern of abnormality, if one is present.
- 2. Grade the severity of the abnormality.
- 3. Generate a differential diagnosis for the observed abnormality.

Case 3 Interpretation

This patient has a markedly reduced FEV₁ and FVC. However, the FEV₁/FVC ratio is normal (91%) and, therefore, she cannot be classified as having obstructive lung disease.

The pattern of reduced FEV_1 and FVC with preserved FEV_1/FVC ratio is often seen in restrictive processes but in order to confirm the diagnosis of restriction, you must examine the total lung capacity. For this patient, the TLC is markedly reduced at 41% of predicted and confirms that she has a restrictive process. Based on her TLC of < 50% predicted, she would be classified as having a "severe" restrictive defect. Her DLCO is also reduced suggesting she has a loss of alveolar-capillary surface area for gas exchange and also suggesting that the cause of her restriction is intrinsic to the lungs (i.e. due to a problem in the pulmonary parenchyma).

Further evaluation revealed that this patient had hypersensitivity pneumonitis, likely secondary to her exposure to parakeets. The parakeets were removed from her home and she was given a course of oral corticosteroids.

Following treatment, her repeat pulmonary function tests were improved, as was the CT scan of her chest:

	Pre-Treat	tment		Post- Treatment			
Test	Actual	Predicted	% Pred	Actual	Predicted	% Pred	
FVC (L)	1.73	4.37	40	3.00	4.35	69	
FEV ₁ (L)	1.57	3.65	43	2.40	3.63	66	
FEV ₁ /FVC (%)	91	84		80	83		
RV (L)	1.01	1.98	51	0.70	1.99	35	
TLC (L)	2.68	6.12	44	3.70	6.11	61	
RV/TLC (%)	38	30		19	30		
DLCO* corr	5.13	32.19	16	13.61	32.04	32.04 42	

CT Scan Images

Бие даан ажиллах хичээлд зориулсан ГАҮА шинжилгээнүүд

Тохиолдол 1

Доорх шинжилгээгээр хэвийн спирометрийг жишээ болгон харуулж байна.

- 1.Бөглөрөлт хэлбэрийн агааржилтын алдагдалын үзүүлэлтүүд FEV1-106.3%, FEV1/VC-95.26%, PEF-101.8% хэвийн байна.
- 2.Хязгаарлагдмал хэлбэрийн агааржилтын алдагдалын үзүүлэлтүүд VC-92.9%, FVC-92.1% хэвийн байна.

Case 2

A 54 year-old man presents to his primary care provider with dyspnea and a cough. He is a non-smoker with no relevant occupational exposures.

	Pre-Brono	chodilator (BD)	Post- BD		
Test	Actual	Predicted	% Predicted	Actual	% Change
FVC (L)	3.19	4.22	76	4.00	25
FEV ₁ (L)	2.18	3.39	64	2.83	30
FEV ₁ /FVC (%)	68	80		71	4

His flow volume loops is as follows:

- 1. Describe the pattern of abnormality, if one is present.
- 2. Grade the severity of the abnormality.
- 3. Generate a differential diagnosis for the observed abnormality.

Амьсгаадна, бачуурна, цээж шуугина гэсэн зовиуртай 53 настай эмэгтэй.

TEST RES	ULTS	Pred		MEAS	JRED VALU	ES —		Normal range ()	95%
		value	Pre to	est	Post test	Difference		Pre (0) & Post (X) Results	range
Abbr.	Unit	Ecsc_f	abs 9	6pred	abs %pred	abs %pre	20 40	60 80 100 120 140 160	180 %pred
FVC	L	3.20	2.18	*68				0	80-126
FEV1	L	2.74	1.27	*46			0		80-127
FEV6	L	3.20	2.18	*68				0	80-126
FEV1/FVC		0.79	0.58	*74				0	88-114
PEF	L/min	394.59	151.40	*38			0		74-136
FEF25	L/s	5.70	1.75	31			0		-
FEF50	L/s	3.96	0.89	*22			0		63-159
FEF75	L/s	1.54	0.51	*33			0		48-210
EF25-75%	L/s	3.21	0.85	27			0		-
LAGE	a		112.00						-
FIVC	L		2.19						-
FIV1	L		2.19						-
FIV1/FIVC			1.00						-
PIF	L/s		3.35						-
PIF/PEF			1.33						-

Temperature: 24.8 °C Humidity: 12.9 % Pressure: 875.2 mbar Gain (insp/exp): 1.02/1.08 Btps (insp/exp): 1.116/1.000

- 1. Хэрэв агааржилтын алдагдал байгаа бол хэлбэрийг тогтооно уу
- 2. Агааржилтын алдагдлын хүндийн зэргийг тогтооно уу
- 3. Шалтгаан юу байж болох вэ?

59 настай эрэгтэй, амьсгаадна, бачуурна, цээж шуугина гэсэн зовиуртай.

TEST RES	ULTS	Pred	_	- ME/	SURED 1	/ALUE	S—		Normal range	· ()	95%
		value	Pre to	est	Post t	est	Differe	nce	Pre (0) & Post	(X) Results	range
Abbr.	Unit	Ecsc_f	abs %	6pred	abs %	pred	abs '	%pre 20	40 60 80 100	120 140 160 180	%pred
FVC	L	2.70	2.28	85	2.15	80	-0.13	-6	ХО		80-126
FEV1	L	2.31	1.07	*46	1.34	'58	*0.27	*25	0 X		80-127
FEV6	L	2.70	2.28	85	2.15	80	-0.13	-6	XO		80-126
FEV1/FVC		0.81	0.46	*57	0.62	*77	0.16	34	0 X	-	88-114
PEF	L/min	355.97	139.75	*39	172.24	*48	32.49	23	0 X		74-136
FEF25	L/s	5.40	0.82	15	1.33	25	0.51	62 OX			-
FEF50	L/s	3.79	0.70	*18	0.94	"25	0.25	35 OX			63-159
EF75	L/s	1.61	0.35	"22	0.44	"27	0.09	26 OX			48-210
EF25-75%	L/s	3.33	0.62	19	0.87	26	0.24	39 OX			-
_AGE	a		93.00		83.00		-10.00	-11			-
IVC	L		1.86		2.19		0.33	18			-
FIV1	L		1.86		2.19		0.33	17			-
FIV1/FIVC			1.00		1.00		-0.00	-0			-
PIF	L/s		3.03		4.08		1.05	35			-
PIF/PEF			1.30		1.42		0.12	9			-

Temperature: 28.1 °C Humidity: 12.7 % Pressure: 886.8 mbar Gain (insp/exp): 1.02/1.08 Btps (insp/exp): 1.110/1.000

- 1. Хэрэв агааржилтын алдагдал байгаа бол хэлбэрийг тогтооно уу
- 2. Агааржилтын алдагдлын хүндийн зэргийг тогтооно уу
- 3. Шалтгаан юу байж болох вэ?

75 настай эмэгтэй, амьсгаадна гэсэн зовиуртай спирометрийн шинжилгээ хийлгэсэн.

- 1. Хэрэв агааржилтын алдагдал байгаа бол хэлбэрийг тогтооно уу
- 2. Агааржилтын алдагдлын хүндийн зэргийг тогтооно уу
- 3. Шалтгаан юу байж болох вэ?

Амьсгаадна, гэсэн зовиуртай 51 настай эрэгтэйн спирометрийн шинжилгээ хийлгэсэн.

TEST RES	ULTS	Pred		MEASI	JRED VALU	IES —	No	rmal range ()	8	95%
		value	Pre t	est	Post test	Difference	Pre	(0) & Post (X) Results	ra	ange
Abbr.	Unit	China_f	abs %	%pred	abs %pred	abs %pre	20 40 60	80 100 120 140 1	50 180 %	pred
FVC	L	2.88	2.25	*78				0	80	0-126
FEV1	L	2.28	1.66	*73				0	80	0-127
FEV6	L	2.88	2.25	*78				0	80	0-126
FEV1/FVC		0.81	0.74	91				0	88	8-114
PEF	L/min	379.86	250.85	*66			0		74	4-136
EF25	L/s	5.53	4.09	74				0		-
FEF50	L/s	3.40	2.20	65			0-		- 63	3-159
EF75	L/s	1.21	0.62	51			0		48	8-210
EF25-75%	L/s	2.51	1.71	68			0)		-
AGE	a		84.00							-
IVC	L		2.18							-
IV1	L		2.18							-
IV1/FIVC			1.00							-
IF	L/s		3.23							-
IF/PEF			0.77							-

Temperature: 24.3 °C Humidity: 11.8 % Pressure: 866.1 mbar Gain (insp/exp): 1.02/1.08 Btps (insp/exp): 1.119/1.000

BEST CURVES

Flow (L/s)

TRENDING

- 1. Хэрэв агааржилтын алдагдал байгаа бол хэлбэрийг тогтооно уу
- Агааржилтын алдагдлын хүндийн зэргийг тогтооно уу
 Шалтгаан юу байж болох вэ?

Тохиолдол 7

31 настай эмэгтэй хоолой сэрвэгнэж ханиалгана гэсэн зовиуртай метахолиноор сэдээх сорил хийлгэв. Спирометрийн шинжилгээнд дүгнэлт бичиж ирүүлнэ үү?

Conc	FVC	FEV 1	FEV1%F	PEF
	1.44	1.22	85.72	3.02
	1.75	1.40	80.32	2.32
0.9 %	1.69	1.40	82.95	2.42
	3.5	0.2	-3.2	-4.3
0.075 mg/ml	1.55	1.34	86.75	2.46
	-11.5	-4.4	8.0	6.3
0.15 mg/ml	1.70	1.31	77.21	2.71
	-2.9	-6.6	-3.9	16.9
0.31 mg/ml	1.61	1.23	75.96	2.08
	-7.7	-12.7	-5.4	-10.4
0.62 mg/ml	1.58	1.16	73.83	2.51
5000 000 00 000 000	-9.7	-17.0	-8.1	8.4
		900		
	84			
	_	cal	.culated!	
the Transfer				not be
				not be
				U. NO. STORY AND ST
the same of the sa	982 9382 9381			
	0.9 % 0.075 mg/ml 0.15 mg/ml 0.31 mg/ml 0.62 mg/ml	1.44 1.75 0.9 % 1.69 3.5 0.075 mg/ml 1.55 -11.5 0.15 mg/ml 1.70 -2.9 0.31 mg/ml 1.61 -7.7 0.62 mg/ml 1.58 -9.7	1.44 1.22 1.75 1.40 0.9 % 1.69 1.40 3.5 0.2 0.075 mg/ml 1.55 1.34 -11.5 -4.4 0.15 mg/ml 1.70 1.31 -2.9 -6.6 0.31 mg/ml 1.61 1.23 -7.7 -12.7 0.62 mg/ml 1.58 1.16 -9.7 -17.0	1.44 1.22 1.75 1.40 80.32 0.9 % 1.69 3.5 0.2 -3.2 0.075 mg/ml 1.55 1.34 86.75 -11.5 -4.4 8.0 0.15 mg/ml 1.70 1.31 77.21 -2.9 -6.6 -3.9 0.31 mg/ml 1.61 1.23 75.96 -7.7 -12.7 -5.4 0.62 mg/ml 1.58 1.16 73.83 -9.7 -17.0 -8.1

Өвчтөн Э 13 настай эрэгтэй амьсгаадна, хуурай ханиалгана, амьсгал гаргалт саадтай гэсэн зовиуртай эмнэлэгт хандсан. Спиромертийн шинжилгээнд :

TEST RESULTS		Pred — MEASURED VALUES —						Normal range ()				95%					
		value	Pre test		Post test		Difference		Pre (0) & Post (X) Resu			sults		range			
Abbr.	Unit	Polg_Z_m	abs%	6pred	abs %	6pred	abs '	%pre	20	40	60	80	100	120	140 16	180	%pred
FVC	L	3.16	2.01	*64	1.99	*63	-0.02	-1			*						82-124
FEV1	L	2.90	1.24	*43	1.58	*54	*0.34	'28		0	Х						81-124
FEV6	L	3.16	2.01	*64	1.99	*63	-0.02	-1			*						82-124
FEV1/FVC		0.92	0.62	*67	0.79	*86	0.18	29			0	X-		-			88-115
PEF	L/min	392.30	153.10	*39	216.48	*55	63.38	41		0	Х						78-130
FEF25	L/s	5.10	1.63	32	3.19	62	1.56	95	0		Х						-
FEF50	L/s	3.61	0.85	'23	1.63	*45	0.79	93	0	Х						-	62-163
FEF75	L/s	1.86	0.30	*16	0.64	*35	0.34	111	0	х .							52-193
FEF25-75%	L/s	3.36	0.69	21	1.42	42	0.73	105	0	Х							-
FIVC	L		1.31		1.89		0.58	45									-
FIV1	L		1.31		1.89		0.58	45									-
FIV1/FIVC			1.00		1.00		-0.00	-0									-
PIF	L/s		2.83		4.15		1.32	47									-
PIF/PEF			1.11		1.15		0.04	4									-

Temperature: 24.0 °C Humidity: 14.0 % Pressure: 869.3 mbar Gain (insp/exp): 1.02/1.08 Btps (insp/exp): 1.119/1.000

BEST CURVES

TRENDING

1. Хэрэв агааржилтын алдагдал байгаа бол хэлбэрийг тогтооно уу

Vol (L)

- 2. Агааржилтын алдагдлын хүндийн зэргийг тогтооно уу
- 3. Шалтгаан юу байж болох вэ?

A 60 year-old man presents to his primary care provider with complaints of increasing dyspnea on exertion. He has a 40 pack-year history of smoking and is retired following a career as a building contractor.

His pulmonary function testing is as follows:

	Pre-Bron	chodilator (BD)	Post- BD		
Test	Actual	Predicted	% Predicted	Actual	% Change
FVC (L)	1.89	4.58	41	3.69	96
FEV ₁ (L)	0.89	3.60	25	1.89	112
FEV ₁ /FVC (%)	47	79			
RV (L)	5.72	2.31	248		
TLC (L)	7.51	6.41	117		
RV/TLC (%)	76	37			
DLCO* corr	20.73	33.43	62		

^{*}DLCO is measured in ml/min/mmHg

His flow volume loops is as follows:

- Describe the pattern of abnormality, if one is present.
 Grade the severity of the abnormality.
 Generate a differential diagnosis for the observed abnormality.

A 25 year-old man presents to his physician with complaints of dyspnea and wheezing. He is a non-smoker. Two years ago, he was in a major motor vehicle accident and was hospitalized for 3 months. He had a tracheostomy placed because he remained on the ventilator for a total of 7 weeks. His tracheostomy was removed 2 months after his discharge from the hospital.

His pulmonary tests are as follows:

	Pre-Bronchodilator (BD)						
Test	Actual	Predicted	% Predicted				
FVC (L)	4.73	4.35	109				
FEV ₁ (L)	2.56	3.69	69				
FEV ₁ /FVC (%)	54	85					

His flow volume loop is as follows:

- 1. Describe the pattern of abnormality, if one is present.
- 2. Grade the severity of the abnormality.
- 3. Generate a differential diagnosis for the observed abnormality.