PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-293695

(43)Date of publication of application: 20.10.2000

(51)Int.CI.

B25J 13/08 B65G 61/00 G06T 7/00

(21)Application number: 11-101885

(71)Applicant:

FANUC LTD

(22)Date of filing: 08.04.1999 (72)Inventor:

WATANABE ATSUSHI

ARIMATSU TARO

(54) PICTURE PROCESSOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a picture processor which detects the position and attitude of each of piled objects (workpieces) in the same shape.

SOLUTION: Teaching models are generated from two-dimensional pictures obtained by image picking up workpieces by a camera from plural directions, and stored, and the relative position and attitudes of the workpieces with respect to the camera are stored correspondingly to the teaching models. The piled workpieces are image picked up by the camera so that two-dimensional pictures can be obtained. The position and attitudes of the camera at that time are stored (200-202). Then, matching processing is operated between the teaching models and the image picked-up two-dimensional pictures so that the conformed teaching model can be obtained (203-207). Then, the three-dimensional position and attitudes of the workpieces are obtained from the relative position and attitudes of the workpieces of the obtained teaching model with respect to the camera and the position and attitudes of the camera at the time of photographing (208 and 209). The picking of the workpieces is operated by a robot based on the position and attitudes (210). Thus, it is possible to automatically operate the picking of even the piled workpieces.

LEGAL STATUS

[Date of request for examination]

20.04.1999

[Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3377465

[Date of registration]

06.12.2002

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-293695 (P2000-293695A)

(43)公開日 平成12年10月20日(2000.10.20)

識別記号	· FI	テーマコード(参考)
	G06F 15/70	350H 3F059
	B 2 5 J 13/08	A 5L096
	B 6 5 G 61/00	
	G 0 6 F 15/70	3 5 0 M
		455A
	審査請求有	請求項の数5 OL (全 9 頁)
	成为 自己 ' '	G 0 6 F 15/70 B 2 5 J 13/08 B 6 5 G 61/00 G 0 6 F 15/70

(21)出願番号 特願平11-101885

(22)出顧日 平成11年4月8日(1999.4.8)

(71)出願人 390008235

ファナック株式会社

山梨県南都留郡忍野村忍草字古馬場3580番

地

(72)発明者 渡辺 淳

山梨県南都留郡忍野村忍草字古馬場3580番

地 ファナック株式会社内

(72)発明者 有松 太郎

山梨県南都留郡忍野村忍草字古馬場3580番

地 ファナック株式会社内

(74)代理人 100082304

弁理士 竹本 松司 (外4名)

最終頁に続く

(54) 【発明の名称】 画像処理装置

(57)【要約】

【課題】 山積みされた同一形状の対象物(ワークピース)の個々の位置姿勢を検出することができる画像処理 装置を得る。

【解決手段】 ワークピースを複数の方向からカメラで 撮像した 2 次元画像から教示モデルを生成して記憶し、ワークピースとカメラの相対位置姿勢を対応して記憶する。カメラでワークピースの山を撮像し 2 次元画像を得る。そのときのカメラの位置姿勢を記憶する(200~202)。教示モデルと撮像した 2 次元画像でマッチン 10 グ処理を行い適合した教示モデルを求める(203~207)。求めた教示モデルのワークピースとカメラの相対位置姿勢と撮像したときのカメラの位置姿勢よりワークピースの 3 次元位置姿勢を得る(208,209)。この位置姿勢に基づきワークピースをロボットでピッキングする(210)。山積みされたワークピースでもロボットで自動的にピッキングできる。

1

【特許請求の範囲】

【請求項1】 対象物自体、又は該対象物と同一形状の物体を基準対象物とし、該基準対象物の画像データから教示モデルを作り、前記対象物を含む画像データをデータ取込み手段により取り込んで、前記教示モデルと前記対象物を含む画像データとのマッチングを行う画像処理装置において

データ取込み手段により前記基準対象物の画像データを 複数の方向から捕らえ、捕らえた方向毎に教示モデルを 作り、該教示モデルを前記方向の情報と対応付けて記憶 10 する手段と、

前記対象物を含む画像データに対し、前記教示モデルと のマッチングを行って、適合する教示モデルを選択する 手段と

前記画像データにおける前記対象物の位置情報又は姿勢 情報を得る手段と、

前記位置情報又は前記姿勢情報、及び前記選択した教示 モデルに対応付けられた情報に基づいて、前記対象物の 方向、又は位置と方向を求める手段とを備えた画像処理 装置。 20

【請求項2】 前記画像処理される画像データが、カメラで撮影された画像から作成されていることを特徴とする請求項1に記載の画像処理装置。

【請求項3】 前記画像処理される画像データが、対象物からデータ取込み手段までの距離の2次元配列、2次元配列の部分、又は複数の距離の集合であることを特徴とする請求項1に記載の画像処理装置。

【請求項4】 教示モデルのための前記画像データは、別の場所で採取され、本画像処理装置までオンライン、又はオフラインで供給されることを特徴とする請求項130乃至3の内1項記載の画像処理装置。

【請求項5】 前記データ取込み手段はロボットに取り付けられていることを特徴とする請求項1乃至3の内1項記載の画像処理装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、3次元的に位置姿勢が未知な対象物の3次元位置姿勢を検出する画像処理装置に関する。特に、ロボット等の産業機械によって、山積みされたワークピースを1つ1つ取り出すビンピッ40キング作業分野に適用される画像処理装置に関する。

[0002]

【従来の技術】同一形状のワークピースが乱雑に山積みされた中から、又は、所定領域内に3次元的に異なる任意の位置姿勢で収納されているワークピースの集合から個々のワークピースを取出す作業は人手によって行われている。ロボット(専用機)を使用してワークピースを他パレット等の他のものに収納したり、機械や装置等の所定位置に搬送するような場合においても、乱雑に山積みされたワークピースから1つ1つをロボット(専用 50

2

機)が直接ワークピースを取り出すことができないことから、予めロボット(専用機)で取り出せるようにワークピースを整列させておく必要がある。この場合にも山積みされたワークピースから人手によって1つ1つ取り出し整列配置する必要があった。

[0003]

【発明が解決しようとする課題】同一形状のワークピースが山積みされた中から、又は対象のワークピースが所定領域内に3次元的に異なる任意の位置姿勢で収納されている中から個々のワークピースをロボット(専用機)で取り出すことができない理由は、山積みされたワークピースの位置姿勢を把握できないことから、ロボット(専用機)を個々のワークピースを把持できる位置姿勢に制御することができないことに起因する。

【0004】そこで、本発明の課題は、山積みされ若しくは所定領域内に3次元的に異なる任意の位置姿勢で収納されている対象物(ワークピース)に対して、その対象物の位置姿勢を検出することができる画像処理装置を得ることにある。

[0005]

【課題を解決するための手段】請求項1に係わる発明の 画像処理装置は、基準対象物の画像データから教示モデ ルを作り、前記基準対象物と同一形状の対象物を含む画 像データをデータ取込み手段により取り込んで、前記教 示モデルと前記対象物を含む画像データとのマッチング を行う画像処理装置であって、データ取込み手段により 前記基準対象物の画像データを複数の方向から捕らえ、 捕らえた方向毎に教示モデルを作り、この作られた教示 モデルを前記方向の情報と対応付けて記憶手段に記憶し ておき、前記対象物を含む画像データに対し、前記教示 モデルとのマッチングを行って、適合する教示モデルを 選択する手段と、前記画像データにおける前記対象物の 位置情報又は姿勢情報を得る手段とを備え、さらに、前 記位置情報又は前記姿勢情報、及び前記選択した教示モ デルに対応付けられた情報に基づいて、前記対象物の方 向、又は位置と方向を求める手段とを備えたものであ る。

【0006】請求項2に係わる発明は、前記画像処理される画像データが、カメラで撮影された画像から作成されているものであり、請求項3に係わる発明は、前記画像処理される画像データが、対象物からデータ取込み手段までの距離の2次元配列、その2次元配列のある部分、複数の距離の集合からなるものである。又、請求項4に係わる発明は、数示モデルのための画像データは別の場所で採取され、本画像処理装置までオンライン又はオフラインで供給されるものであること。請求項5に係わる発明は、前記データ取込み手段がロボットに取り付けられていることを特徴とするものである。

[0007]

【発明の実施の形態】本発明の一実施形態としてロボッ

トシステムによって構成した例を以下説明する。本実施 形態では、図1に示すように、認識対象物である同一形 状のワークピースWが多数山積みされている状態で、こ の山をロボット手首先端に取り付けられたデータ取込み 手段としての撮像デバイス (カメラ又は視覚センサ等) 20にて撮像し、撮像された画像に基づいて、個々のワ ークピースWの位置姿勢を検出するものである。そのた めに、予め取り出そうとするワークピースWの1つを基 準対象物とし、この基準対象物のワークピースWに対し て、撮像デバイス20で複数の方向から撮像し、この撮10 像で得られた画像データから対象物を教示モデルとして 記憶しておき、ワークピースWの山を撮像しその画像に 対して教示モデルとマッチング処理を行い、マッチング 値に基づいて教示モデルを選択し、選択した教示モデル と画像視野における対象物の位置に基づいて各ワークピ ースの位置姿勢を求めるようにしたものである。

【0008】図3は、本実施形態において用いるロボットRBの制御装置10の要部プロック図であり、従来のロボット制御装置と同一構成である。符号8で示されるバスに、メインプロセッサ(以下単にプロセッサとい 20う。)1、RAM、ROM、不揮発性メモリ(EEPROMなど)からなるメモリ2、教示操作盤用インターフェイス3,外部装置用のインターフェイス6、本発明の画像処理装置との通信インターフェイス7及びサーボ制御部5が接続されている。又、教示操作盤用インターフェイス3には教示操作盤4が接続されている。

【0009】ロボットRB及びロボット制御装置10の基本機能をささえるシステムプログラムは、メモリ2のROMに格納されている。又、アプリケーションに応じて教示されるロボットの動作プログラム並びに関連設定30データは、メモリ2の不揮発性メモリに格納される。そして、メモリ2のRAMは、プロセッサ1が行う各種演算処理におけるデータの一時記憶の記憶領域として使用される。

【0010】サーボ制御部5は、サーボ制御器5al~5 an (n:ロボットの総軸数にロボット手首に取り付ける ツールの可動軸数を加算した数)を備えており、プロセ ッサ、ROM、RAM等で構成され、各軸を駆動するサ ーボモータの位置・速度のループ制御、さらには電流ル ープ制御を行っている。いわゆる、ソフトウエアで位 40 置、速度、電流のループ制御を行うデジタルサーボ制御 器を構成している。サーボ制御器5al~5anの出力は各 サーボアンプ 5 bl~ 5 bnを介して各軸サーボモータM1 ~Mnを駆動制御する。なお、図示はしていないが、各 サーボモータM1~Mnには位置・速度検出器が取り付 けられており、該位置・速度検出器で検出した各サーボ モータの位置、速度は各サーボ制御器5al~5anにフィ ードバックされるようになっている。又、入出力インタ ーフェイス6には、ロボットに設けられたセンサや周辺 機器のアクチュエータやセンサが接続されている。

4

【0011】図4は、ロボット制御装置10のインター フェイス7に接続される画像処理装置30のブロック図 で、従来の画像処理装置の構成と同一構成である。プロ セッサ31を備え、該プロセッサ31にはバス40を介 してこのプロセッサ31が実行するシステムプログラム 等を記憶するROM32、画像処理プロセッサ33、撮 像デバイス20に接続された撮像デバイスインターフェ イス34、各種指令やデータを入出力するためのCRT や液晶等の表示手段付MDI35、フレームメモリ3 6、不揮発性メモリ37、データの一時記憶等に利用さ れるRAM38、ロボット制御装置に接続された通信イ ンターフェイス39が接続されている。カメラ20で撮 像された画像は、画像メモリ26に格納される。画像処 理プロセッサ33は、画像メモリに格納された画像をプ ロセッサ31の指令により画像処理して対象物を認識す る。この画像処理装置30の構成、作用は従来の画像処 理装置と同一であり差異はないが、本発明に関連し、不 揮発性メモリ37に後述する教示モデルが記憶されるこ と、及びこの教示モデルを用いて撮像デバイス20で撮 像したワークピースWの山の画像に対してパターンマッ チング処理を行い、ワークピースWの位置姿勢を求める 点が相違するのみである。

【0012】撮像デバイス20は、後述するように画像データを得るものであるが、この撮像デバイス20としては、2次元画像を得るCCDカメラでも、又、距離データを測定できる視覚センサでもよい。CCDカメラの場合には撮像して得られた2次元画像より画像データを従来から公知の方法で得るが、距離データを測定できる視覚センサの場合は、センサと対象物との距離データを要素とした2次元配列データを画像データとして得るものである。この距離データを測定できる視覚センサは、例えば、特開平7-270137号公報に記載されたスポット光走査型3次元視覚センサ等で公知であるので、簡単にこの3次元視覚センサについて述べる。

【0013】この視覚センサは、2台のスキャナによって任意の方向(X方向、Y方向)にスポット状の光を照射して対象物上に照射された光ビームを、位置検出型の検出器(PSD)で測定することによって光ビームの位置を計測するものである。2台のスキャナのミラーの偏向角度 θ x、 θ yと PSD上の受光位置からビームが照射された対象物の3次元位置から計算して求められるものである。

【0014】この3次元視覚センサを用いて、画像データとして、距離データを要素とする2次元配列データを得る方法について、図7から図9を参照しながら簡単に説明する。

【0015】対象物に対する走査範囲(計測範囲)が予め決められており、スキャナのミラーの偏向角度 θx 、 θy をディスクリートに制御して、図7に示すように、 50 この走査範囲のX、Y平面における点(1, 1)から点 (1, n)、点(2, 1)から点(2, n)、・・・点(m, 1)から点(m, n)と走査して各点における3次元位置を測定し、各点(i、j)におけるこのセンサとビームが照射された点の対象物間の距離Z(i、j)を求め、画像処理装置30のRAM38に格納する。こうして、画像データを、図8に示すようなセンサと対象物に照射されたビームの点間の距離データZ(i、j)を要素とする2次元配列データとして得る。

【0016】図9は、この画像データを得るための画像 処理装置30のプロセッサ31が実行する処理のフロー10 チャートである。まず、指標i、jを「1」にセットし (ステップ300)、予め決められた計測範囲の始点 y 1, x1(図7における点(1, 1))に対応するミラ 一の偏向角度 θx、θyをセンサ20に送出し照射指令を 出力する(ステップ301~303)、センサ20は、 ミラーをこの偏向角度に設定し、光ビームを照射する。 そしてPSDで得られた信号を画像処理装置30に出力 する。画像処理装置30のプロセッサ31は、このPS Dからの信号と指令したミラーの偏向角度 θx 、 θy よ り、対象物に照射されたビームの位置を計算し、このセ20 ンサとこのビームが照射された位置との距離Z(i、 j)を計算し、この値をRAM28に2次元配列データ [i、j]として格納する(ステップ304, 30 5)。なお、対象物に照射されたビームの位置を計算し 及び距離Z(i、j)の計算をセンサ20側で行うよう

【0017】次に指標iを「1」インクリメントし、X軸方向走査のミラーの偏差角度 θ xを設定所定量 Δ xだけ増加させ(ステップ306,307)、指標iが設定値nを越えたか判断し(ステップ308)、越えてなけ30ればステップ308の処理を行い次の点の距離Z(i、j)を求める。以下、指標iが設定値nを越えるまでステップ308の処理を実行し、図7における点(1,1)から点(1,n)までの各点における距離Z(i、j)を求めて記憶する。

にしてもよい。

【0018】ステップ308で指標iが設定値nを越えたことが判別されると、指標iを「1」にセットしかつ指標jを「1」インクリメントして、Y軸方向走査のミラーの偏差角度 θ yを設定所定量 Δ yだけ増加させる 40 (ステップ309~311)。そして、指標jが設定値mを越えたか判断し(ステップ312)、越えてなければステップ302に戻り前述したステップ302以下の処理を実行する。

【0019】このようにして、指標jが設定値mを越えるまでステップ302~312の処理を繰り返し実行する。指標jが設定値mを越えると、図7に示す計測範囲(走査範囲)を全て計測したことになり、RAM28には、2次元配列データである距離データZ(1、1)~Z(m、n)が記憶され、画像データ取得処理は終了す50

る。指標iに対し、適当に距離の測定を省くことによって、2次元配列の画像データの部分、あるいは複数の距離データの集合を得ることができる。

【0020】以上が、距離データを測定できる視覚センサによる画像データとしての2次元配列データを得る処理である。こうして得られた2次元配列データを画像データとして用い、教示モデルの作成及び対象物の位置、姿勢(方向)を検出するようにしてもよいが、説明を簡単にするために、画像データを取り込むためのデータ取込み手段としての撮像デバイスにCCDカメラを用いて、このカメラ20で対象物を撮像して得られた画像データを用いるものとして以下説明する。

【0021】まず、教示モデルを教示する動作処理について説明する。図5は、本発明の画像処理装置30に教示モデルのを教示する動作処理を示すフローである。ロボット制御装置10の教示操作盤4から予め、教示モデルのために所定位置に所定姿勢で配置された基準となる1つのワークピースWに対して、ロボット手首先端に取り付けられたカメラ20で撮像する最初(第0番目)の位置姿勢と、撮像方向を変えて撮像する位置姿勢を特定するため、該最初の位置姿勢からカメラを回転させる回転軸と回転角を設定し、かつ、その撮像位置姿勢の数Nをも設定する。なお、ここでは、位置姿勢情報を使用する例を取り上げるが、位置に対する要求精度が高くない場合には、姿勢(方向)情報だけで充分である。

【0022】例えば、図2に示すようにワークピースWに対して4方向から撮像しこの4つの画像データから教示モデルを生成する。図2(a)に示す第0番目の撮像位置姿勢では、ワークピースWを真上のワールド座標系 Z軸方向から撮像した画像データから教示モデルを生成する。次の撮像位置姿勢は、このカメラ位置において、ワークピースの配置位置(ワークピースに対して設定されているワーク座標系の原点)を通りカメラの中心軸方向に対して垂直方向の軸及び該軸周りに回転させる回転角を設定する。最初(第0番目)の位置姿勢でワールド座標系の Z軸とカメラの中心軸を平行とした場合には、ワールド座標系の X軸、 Y軸は垂直であるから、このうちどちらかの軸を選択し該軸周りにワークピース位置を中心に回転させる。

【0023】図2(b)に示す例では、ワールド座標系X軸まわりに30度回転するものとして設定し、そのとき撮像して得られる画像データから教示モデルを生成する。同様に、図2(c)、(d)は、ワークピースの配置位置を通りワールド座標系のX軸と平行な軸周りにカメラ20をそれぞれ60度、90度回転させたときの画像データから教示モデルを生成するものである。以下、この4つの教示モデルを得るものを例に取り説明する。なお、この例では、0度、30度、60度、90度の4つの教示モデルとしたが、この回転角の刻みを小さくし、さらに多くの教示モデルを得るようにしておけば、

さらに精度のよいワークピースの位置姿勢を検出することができる。

【0024】上述したように、ロボット手首先端に取り付けたカメラ20で最初(第0番目)に撮像するロボットの位置姿勢と回転中心軸となる軸及び回転角を教示し、かつその数Nを設定する。説明をわかりやすくするために、所定位置に所定姿勢で配置されたワークピースWに対し、カメラの中心軸がワールド座標系のZ軸と平行で、ワークピースWのワールド座標系上のX、Y軸座標値と同一でZ軸のみが異なる位置を第0番目の教示モ10デル撮像位置として教示し、さらに、ワークピースWの配置位置を通り、ワールド座標系X軸と平行な軸周りに30度、60度、90度回転させた位置を第1,第2、第3の撮像位置として設定する。又撮像位置の数Nを「4」と設定する。

【0025】そして、教示モデル取得指令を教示操作盤 4から入力すると、ロボット制御装置10のプロセッサ 1は、撮像回数を係数するカウンタMを「O」にセット し (ステップ100)、ロボットを動作させ第M (= 0)番目の位置姿勢に移動させ、画像処理装置30ヘカ20 メラでの撮像指令を出力する (ステップ101)。 画像 処理装置30では、この指令を受けてカメラ20でワー クピースWを撮像し、その画像データを画像メモリ36 に格納するが、さらに、この画像データからM番目の教 示モデルを生成して不揮発性メモリ37に格納する (ス テップ102)。さらに、カメラとワークピースとの相 対位置姿勢を求めM番目の教示モデルの相対位置姿勢と して不揮発性メモリ37に格納し、データ取得信号をロ ボット制御装置に送る(ステップ103)。すなわち、 撮像を行ったときのワールド座標系上のカメラ位置姿勢30 とワークピースWの位置姿勢より、カメラに設けられた カメラ座標系でのワークピースの位置姿勢に変換し、こ れをカメラとワークピースとの相対位置姿勢として記憶 する。例えば、カメラ座標系の位置姿勢として [x0, y0, z0, α0, β0, y0] c として記憶される。なお α 、 β 、 γ はそれぞれX、Y、Z軸周りの回転角を意味 し、「c」はカメラ座標系を意味する。

【0026】次に、データ取得信号を受信するとロボット制御装置10のプロセッサ1は、カウンタMを「1」インクリメントし(ステップ104)、該カウンタMの40値が設定値N(=4)より小さいか判断し(ステップ105)、小さければ、(ステップ101に戻り第M番目の撮像位置姿勢にロボットを移動させる。すなわち、図2に示す上述した例では、ワークピース配置位置を通りワールド座標系のX軸と平行な軸周りに30度をカメラを回転させ撮像を行い教示モデルとそのときのカメラとワークピースとの相対位置姿勢を記憶する。

【0027】以下、カウンタMの値が設定値N (=4) ンマッチング処理を行いワークピースWの検出を行うになるまで、ステップ101~105の処理を行い、教 (ステップ203)。このパターンマッチング処理で示モデルとカメラとワークピースとの相対位置姿勢を不50 は、ワークピースの画像内の位置、回転、及びスケール

揮発性メモリに記憶する。上述した例では、図 2 (a) ~ (d) の画像データから生成された教示モデルが記憶され、その教示モデルに対してそれぞれカメラとワークピースとの相対位置姿勢として $\begin{bmatrix} x \ 0, \ y \ 0, \ z \ 0, \ y \ 1, \ z \ 1, \ \alpha \ 1, \ \beta \ 1, \ y \ 1, \ c$

[x2, y2, z2, $\alpha2$, $\beta2$, $\gamma2$] c 、 [x3, y3, z3, $\alpha3$, $\beta3$, $\gamma3$] c が記憶される。

【0028】以上のようにして、画像処理装置30の不揮発性メモリ37には教示モデルとカメラ20とワークピースWとの相対位置が記憶される。なお、上述した実施形態では、ロボットを使用して教示モデルを教示記憶させたが、ロボットを使用せず、例えば手動操作で教示記憶させるようにしてもよい。この場合は、画像処理装置30に接続されているカメラの視野内に基準となるワークピースを配置し、このワークピースの姿勢を変え、カメラで撮像しその画像データから教示モデルを生成し、そのときのカメラとワークピースの相対位置姿勢を手動で入力して教示モデルに対応させて記憶させるようにすればよい。

【0029】又、教示モデルを作成し記憶しておくのではなく、教示モデルとなる基準対象物の画像データを記憶しておき、対象物の位置、姿勢を検出する際に、この画像データから教示モデルを作成するようにしてもよいものである。

【0030】次に、このように教示モデルが設定記憶されている画像処理装置30を用いて、3次元で位置姿勢の異なる対象物のワークピースの3次元位置姿勢を検出する方法の例として、教示モデルの基準のワークピースと同一形状のワークピースが山積みされた山からロボットによって個々のワークピースを取り出すピッキング作業について説明する。

【0031】図6は、このピッキング作業の動作処理フローである。ロボット制御装置10に教示操作盤4等からピッキング指令が入力されると、プロセッサ1は、まず、教示されているロボット先端手首に取り付けられているカメラ20を山積みされたワークピースが該カメラの視野に入る撮像位置へロボットRBを移動させ、該カメラ20のワールド座標系上の3次元位置姿勢を画像処理装置30へ出力すると共に撮像指令を出力する(ステップ200、201)。画像処理装置30のプロセッサ31は、撮像指令を受信し、ワークピースWの山を撮像し幾つかのワークピースWの画像データを得て画像メモリ36に記憶する(ステップ202)。

【0032】続いて、画像メモリ36に記憶した画像に対して不揮発性メモリ37に設定記憶されている教示モデルの1つ(第0番目の教示モデル)を使用してパターンマッチング処理を行いワークピースWの検出を行う(ステップ203)。このパターンマッチング処理で

の変化を検出するマッチング処理を行う。そして、マッチング値が設定基準値以上のものが検出されたか判断し (ステップ204)、基準値以上のものが検出されなければ、全教示モデル (第0~第3番目の教示モデル)に対してパターンマッチング処理を行ったか判断し (ステップ205)、行っていなければ、他の教示モデルによりパターンマッチングの処理を行う (ステップ206)。

【0033】こうして、ステップ204で、いずれかの 教示モデルに対してマッチング値が設定基準値以上のワ10 ークピースWが検出されると、この検出したワークピー スWに対して他の教示モデルで全てマッチング処理を行 う。すなわち、検出されたワークピースWの2次元画像 に対して、設定記憶されている教示モデルの全てとパタ ーンマッチング処理を行う(ステップ207)。このパ ターンマッチング処理によって得られたマッチング値が 一番高い教示モデルを選択し、この選択教示モデルに対 応して記憶するカメラとワークピースとの相対位置姿勢 と、選択した教示モデルに対するマッチング処理での画 像内の位置、回転及びスケールの変化量とにより最終的20 なカメラ20とワークピースWとの相対位置姿勢として 得る(ステップ208)。そしてこの相対位置姿勢とス テップ201の処理で送られてきているカメラのワール ド座標系における位置姿勢からワークピースのワールド 座標系上の位置、姿勢(方向)を求め出力する。すなわ ち、ワークピースWとカメラ20の相対位置姿勢は、カ メラ座標系からみたワークピースWの位置姿勢であるか ら、この位置姿勢のデータと、カメラ20のワールド座 標系における位置姿勢のデータにより座標変換の演算を 行うことによりワールド座標系上の検出ワークピースW30 の位置、姿勢(方向)が求められ出力される(ステップ 209)。なお、ここではマッチング値が一番高いもの を選択したが、0度の教示モデルを優先的に選択した り、スケールの拡大率の高いもの(即ち、カメラに近い ものであり、山積みの最上部にあるもの)を優先的に選 択することができる。

【0034】ロボット制御装置10は送られて来た検出ワークピースWの3次元位置姿勢に基づき、ロボットを動作させ従来と同様にこの検出ワークピースWを把持して教示された所定の位置に移動させるピッキング処理を40行う(ステップ210)。そして、ステップ202に戻り、ステップ202以下の処理を繰り返し実行する。全てのワークピースがワークピースの山からピッキングされなくなると、ステップ203~206の処理で、全ての教示モデルに対してパターンマッチング処理をしても設定基準値以上のマッチング値を得ることができないから、このピッキング作業は終了する。

【0035】山積み等されたワークピースが存在する全 ある。 領域がカメラの視野に入らないような場合や、カメラ2 【図2 0の向きを変更して他のワークピースの影に入ったワー50 ある。

クピースを撮像する必要がある場合には、ステップ205で「Yes」と判断されたときステップ200に戻り、他のワークピースをも撮像できる別の位置姿勢にカメラを移動させればよい。

10

【0036】又、上述した実施形態のように、ロボットと画像処理装置30を用いた場合には、ステップ201でカメラの3次元位置姿勢を画像処理装置30に出力することなくロボット制御装置が記憶しておき、ステップ208でワークピースとカメラの相対位置姿勢をロボット制御装置に出力しステップ209の処理をロボット制御装置で実行するようにしてもよい。

【0037】又、第1の視覚センサであるCCDカメラに広角レンズを取り付けて撮像する場合において、例えば、0度の向きのワークピースが画像視野の角にある場合には、視差の影響で30度傾いていると判断する恐れがある。この場合には、画像内のワークピースの位置に応じてロボット手先に取り付けたカメラを平行移動して、該ワークピースの真上に位置させ視差の影響をなくし、その位置を図6のステップ200の位置とすることにより誤判断を防ぐこともできる。

【0038】又、ロボットを用いない場合は、山積みされたワークピース又は3次元的に位置姿勢の異なる対象とするワークピースが少なくとも1以上含む領域をカメラの視野内に配置し、カメラのワールド座標系上の位置姿勢を教示し、対象物検出指令をこの画像処理装置30に入力すれば、画像処理装置30は図6のステップ202~209の処理を行い対象のワークピースWの3次元位置姿勢を検出する。

【0039】又、教示モデルのための前記画像データは、別の場所で採取され手もよく、この場合には、本画像処理装置までオンライン、又はフロッピー(登録商標)ディスク等によりオフラインでこの画像処理装置に供給するようにしてもよい。そのためには、画像処理装置には、通信回線と接続される通信インターフェースやフロッピーディスクからデータを読み込むためのディスクドライバー等を設ければよい。

[0040]

【発明の効果】本発明においては、同一形状のワークピースが乱雑に山積みされていても、又、所定領域内に同一形状のワークピースが少なくとも1以上3次元的に異なる任意の位置姿勢で収納されていても、対象とする各ワークピースの位置姿勢を検出することかできるので、このようなワークピースの山や集合から個々のワークピースをロボット(専用機をも含む)で自動的にピッキングすることが可能になる。

【図面の簡単な説明】

【図1】本発明の一実施形態の概要を説明する説明図である。

【図2】同実施形態における教示モデルの例を示す図で ある。 【図3】同実施形態におけるロボット制御装置の要部プロック図である。

【図4】同実施形態における画像処理装置の要部ブロック図である。

【図5】同実施形態における教示モデルを生成する動作 処理フローである。

【図6】同実施形態を用いたピッキング作業の動作処理フローである。

【図7】本発明の一実施形態に用いる距離データを測定できる視覚センサの動作説明図である。

【図8】同距離データを測定できる視覚センサによって 得る画像データとしての距離データを要素とする2次元 配列データの説明図である。

【図9】同画像データとしての2次元配列データの取得 処理のフローチャートである。

【符号の説明】

- 10 ロボット制御装置
- 20 撮像ディバイス
- 30 画像処理装置
- W ワークピース

Z(1, 1) Z(1, 2)

Z (1, n)

【図7】

フロントページの続き

F ターム(参考) 3F059 AA01 BA03 BA08 DA02 DB05 DB08 DB09 FB12 5L096 AA09 BA05 CA05 EA13 EA16 EA17 FA67 FA69 FA76 HA01 HA09