

MÜHENDİSLİK FAKÜLTESİ

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

AYDINLATMA TEKNİĞİ VE PROJESİ

KONU: ALTI DAİRELİ BİR APARTMANIN AYDINLATMA PROJE TASARIMI

KORDİNATÖR: PROF.DR. CENK YAVUZ

HAZIRLAYAN: ÖMER FARUK ORUÇ

TARİH: 01.01.2025

İÇİNDEKİLER

GİRİŞ	3
VAZİYET PLANI	4
BİNA DIŞ GÖRÜNÜMÜ	5
MİMARİ TASARIM	6
ELEKTRİK TASARIMI	10
DAİRE TABLOLARI YÜKLENME CETVELLERİ	15
DAİRE TALEP GÜCÜNÜN HESAPLANMASI	17
APARTMAN ANA TABLOSU YÜKLENME CETVELİ	17
BİNANIN TALEP GÜCÜNÜN HESAPLANMASI	18
AKIM HESABI VE KABLO KESİTİNİN HESABI	19
GERİLİM DÜŞÜMÜ HESAPLAMALARI	19
DIALUX BENZETİM ÇALIŞMASI	21
AUTOCAD VE DIALUX ÇALIŞMALARININ BAĞLANTI ADRESLERİ	26
TESEKKÜR	26

GİRİŞ

Bu proje, altı daireli bir apartmanın elektrik tesisatı ve aydınlatma sistemlerinin tasarımını kapsamaktadır. Amaç, teorik hesaplamaları pratik uygulamalarla birleştirerek, her dairenin ve apartmanın genel elektrik sistemlerinin enerji verimliliği ve güvenliği açısından optimize edilmesini sağlamaktır. Proje, yalnızca teknik gereklilikleri değil, aynı zamanda kullanıcı konforunu ve estetik kaygıları da gözeterek yapılmıştır.

Her daire için bağımsız olarak yapılan aydınlatma hesaplamaları, mekânların fonksiyonuna uygun ışık seviyelerini sağlayacak armatür seçimlerini de kapsamıştır. Bu hesaplamalar, her dairenin benzersiz iç tasarımı ve kullanım alanları dikkate alınarak detaylandırılmıştır. Aydınlatma ve priz linyeleri, ideal sorti sayılarına uygun olarak düzenlenmiş ve böylece enerji verimliliği ile güvenlik arasındaki denge korunmuştur. Ayrıca, özel yük gereksinimleri olan çamaşır makinesi, bulaşık makinesi ve fırın cihazları için ayrı linyeler oluşturulmuş, bu linyeler tali tablolara bağlanmıştır.

Dairelerin tali tablolardan apartmanın ana tablosuna ve oradan kofraya kadar uzanan elektrik tesisatı, güvenli ve yasal mevzuatlara uygun şekilde tasarlanmıştır. Bu süreçte gerilim düşümü hesapları ve yük dengesizliklerinin minimize edilmesi için gerekli kablo kesitleri özenle seçilmiştir. Tüm tesisat bileşenlerinin enerji verimliliğini sağlaması ve uzun vadeli performans sunması hedeflenmiştir.

Teorik hesaplamalar ve tasarımların gerçek hayata aktarılabilirliğini test etmek amacıyla Dialux ortamında benzetim çalışması yapılmıştır. Bu benzetimler, teorik değerlerle çok yakın sonuçlar vermiş, ancak yansıtma faktörlerindeki değişiklikler ve mobilyaların etkisi nedeniyle bazı farklılıklar gözlemlenmiştir. Bu durum, tasarım sürecinde mekâna özgü koşulların dikkate alınması gerektiğine işaret etmiştir.

VAZİYET PLANLAMASI

BİNA DIŞ GÖRÜNÜMÜ

TASARIMCI: ÖMER FARUK ORUÇ	1:50 @ A3
ZEMİN KAT PLANI	

TASARIMCI: ÖMER FARUK ORUÇ	1:50 @ A3
[1-2-3-4-5] KAT PLANI	

TEK HAT ŞEMASI

TASARIMCI: ÖMER FARUK ORUÇ	
TEK HAT ŞEMASI	

DAİRE TABLOLARI YÜKLENME CETVELLERİ

Her bir dairenin toplam kurulu gücünü hesaplamak için dairelerinin ayrı ayrı yüklenme cetvelleri oluşturulmuştur. Bun kurulu ve talep güçlerinin belirlenmesinde önem arz etmektedir. Bununla birlikte ilerleyen kısımlarda kablo kesit seçimi de gösterilmiştir.

Tablo-1: Zemin Kat Ve Üçüncü Kat Dairelerinin Yüklenme Cetveli

TT NORMAL KAT TABLOSU		BESLEM KAÇAK AK	2X6 TALİ TABLO m^2 30(ma) KAÇAK AKIM RÖLESİ					
LİNYE NO		SORTİ SAYIS	I	SİGORTA	GÜÇ D.	IMI		
NO	PRİZ	AYDINLATMA	ÖZEL LİNYE	(A)	R	S	T	
1			BULAŞIK MAK.	16	2500 W			
2			FIRIN	16	2000 W			
3			ÇAMAŞIR MAK.	16	2500 W			
4	2			16	600 W			
5	5			16	1500 W			
6	5			16	1500 W			
7		2		6	64 W			
8		5		6	101.5 W			
9		5		6	119.5 W			
				TOPLAM (KURULU GÜÇ)	10885 W			

Tablo-2: Birinci Kat Ve Dörüdncü Kat Dairelerinin Yüklenme Cetveli

TT	BESLEME HATTI	2X6 TALİ TABLO
NORMAL		m^2

KAT TABLOSU		KAÇAK AK	30(ma) KAÇAK AKIM RÖLESİ						
LİNYE NO		SORTİ SAYIS	I	SİGORTA (A)	GÜÇ DAGILIMI				
110	PRİZ	AYDINLATMA	ÖZEL LİNYE		R	S	T		
1			BULAŞIK MAK.	16		2500 W			
2			FIRIN	16		2000 W			
3			ÇAMAŞIR MAK.	16		2500 W			
4	2			16		600 W			
5	5			16		1500 W			
6	5			16		1500 W			
7		2		6		64 W			
8		5		6		101.5 W			
9		5		6		119.5 W			
				TOPLAM (KURULU GÜÇ)		10885 W			

Tablo-3: İkinci Kat Ve Beşinci Kat Dairelerinin Yüklenme Cetveli

TT NORMAL		BESLEM	IE HATTI		2X6	TALİ m^	TABLO
KAT TABLOSU		KAÇAK AR			(ma) k	Z KAÇAK ÖLESİ	
LİNYE		SORTİ SAYIS	I	SİGORTA	GÜ	JÇ DA	GILIMI
NO	PRİZ	AYDINLATMA	ÖZEL	(A)	R	S	T
			LİNYE				
1			BULAŞIK MAK.	16			2500 W

2			FIRIN	16	2000 W
3			ÇAMAŞIR MAK.	16	2500 W
4	2			16	600 W
5	5			16	1500 W
6	5			16	1500 W
7		2		6	64 W
8		5		6	101.5 W
9		5		6	119.5 W
				TOPLAM (KURULU GÜÇ)	10885 W

DAİRE TALEP GÜCÜNÜN HESAPLANMASI

Daire başı talep gücü (1) numaralı denklemde gösterildiği gibi hesap edilmektedir.

$$P_{talep_{g\ddot{u}\varsigma}_daire} = (8000 \times 0.6) + \left((Dairenin \, Toplam \, Kurulu \, G\ddot{u}c\ddot{u} - 8000) \times 0.4 \right) Watt \qquad (1)$$

Daire başı toplam kurulu güç 10885 W olarak bulunmuştu. (1) Numaralı denklemde Dairenin kurulu güçü yerine konulursa (3) numaralı sonuç elde edilir.

$$P_{talep_{güc}} = (8000 \times 0.6) + ((10885 - 8000) \times 0.4) Watt$$
 (2)

$$P_{talep_{g\ddot{u}c}} = 5954 \, Watt \tag{3}$$

APARTMAN ANA TABLOSU YÜKLENME CETVELİ

Bina içerisinde bulunan tüm dahili güçler yüklenme cetveline yazılıp ölçümlenmiştir.

Tablo-4: İkinci Kat Ve Beşinci Kat Dairelerinin Yüklenme Cetveli

TABLO	SiGORTA	KAÇAK	BESLEME	GÜ	Ç DAGILIMI	(W)		
ADI	(A)	AKIM RÖLESi (mA)	(mm^2)	R FAZI	S FAZI	T FAZI		
TT1	32	30	2x6	10885 W				
TT2	32	30	2x6		10885 W			
TT3	32	30	2x6			10885 W		
TT4	32	30	2x6 10885 W					
TT5	32	30	2x6		10885 W			
TT6	32	30	2x6			10885 W		
MT	10	30	2x2.5	1000 W				
AS.T	20	30	2x4		3000W			
A.T	3x63	300	4x6	22770 W	24770 W	21770 W		
			TOPLAM (KURULU GÜÇ)		69310 W	,		

BİNANIN TALEP GÜCÜNÜN HESAPLANMASI

Binanın talep gücü (4) numaralı denklemde gösterildiği gibi hesap edilmektedir.

$$P_{Anatablo_talep_{g\ddot{u}c\ddot{u}}} = (Daire\ sayısı \times 1\ dairenin\ kurulu\ g\ddot{u}c\ddot{u} \times eşzamanlık\ katsayısı) + (Asansör\ g\ddot{u}c\ddot{u} \times 0.55) + MT\ g\ddot{u}c\ddot{u}\ Watt$$
 (4)

Verilen (4) numaralı denklemde daire sayısını 6 olarak almamız gerekmektedir. 6 daire için ise eşzamanlılık katsayısı 0,43 olarak alınmaktadır. Geriye kalan tüm ifadeler de yerlerine yazıldığında (6) numaralı denklem elde edilir.

$$P_{Anatablo_talep_{g\"{u}c\"{u}}} = (6 \times 10885 \times 0.43) + (3000 \times 0.55) + 1000 Watt$$
 (5)

$$P_{Anatablo_talep_{g\"{u}c\"{u}}} = 30733.3 \ Watt \tag{6}$$

AKIM HESABI VE KABLO KESİTİNİN HESABI

En uzak mesafedeki özel linye yükü ile tali tablo arası, tali tabloyla ana tablo arası ve ana tablo kofra arasındaki kablonun akım hesabı (7), (8) ve (9) numaralı denklemlerde gösterilmiştir.

$$I_{Linye} = \frac{P_{y\ddot{u}k}}{V_{fn}} = \frac{2500}{230} = 10.870 \, Amper \tag{7}$$

$$I_{TT} = \frac{P_{Talep_{TT}}}{V_{fn}} = \frac{5954}{230} = 25.887 \, Amper \tag{8}$$

$$I_{AT} = \frac{P_{Talep_{AT}}}{V_{ff}} = \frac{30733.3}{400 \times \sqrt{3}} = 44.360 \, Amper \tag{9}$$

Yukarıda elde edilen akım değerlerini taşıyabilme kapasitesine sahip kablolar tercih edilmelidir. Bu kablolar aynı zamanda bir sonraki bölümde anlatılan gerilim düşümü hesabına da uyum sağlaması gerekmektedir. Kağıt üzerinde yapılan hesaplamalar neticesinde kablo kesitleri şu şekilde olacaktır:

• Linye Kablosu: 2.5 mm² (min.)

TT Kablosu: 6 mm²

• AT Kablosu: 10 mm^2

GERİLİM DÜŞÜMÜ HESAPLAMALARI

Yönetmeliğe göre aydınlatma devrelerinde gerilim düşümü hesabının belirli aralıklarda olması gerekmektedir.

En Uzak Özel Linye İçin Gerilim Düşümü Hesabı:

En uzaktaki özel linyenin tali tablosuna olan uzaklığı 18m olarak ölçülmüştür. Bu koşul altında gerilim düşümü denklem (10) ile gösterildiği şekilde hesaplanır.

$$\%\varepsilon_{1} = \frac{200 \times P \times L}{\aleph \times q \times V_{fn}^{2}} = \frac{200 \times 2500 \times 18}{56 \times 2.5 \times 230^{2}} = 1.215$$
 (10)

Gerilim düşümü %1,5 değerinin altındadır. Yönetmeliğe uygundur.

Ana Tabloya En Uzak Tali Tablo İçin Gerilim Düşümü Hesabı:

En uzaktaki tali tablo ile ana panoya olan uzaklık 17,49m olarak ölçülmüştür. Bu koşul altında gerilim düşümü denklem (11) ile gösterildiği şekilde hesaplanır.

$$\%\varepsilon_{2} = \frac{200 \times P \times L}{\aleph \times q \times V_{fn}^{2}} = \frac{200 \times 5954 \times 17.49}{56 \times 6 \times 230^{2}} = 1.172$$
 (11)

Gerilim düşümü %1,5 değerinin altındadır. Yönetmeliğe uygundur.

Kofa Ve Ana Tablo Arası Gerilim Düşümü Hesabı:

Ana pano ile kofraya olan uzaklık 11,15m olarak ölçülmüştür. Bu koşul altında gerilim düşümü denklem (12) ile gösterildiği şekilde hesaplanır.

$$\%\varepsilon_3 = \frac{100 \times P \times L}{\aleph \times q \times V_{ff}^2} = \frac{100 \times 30733.3 \times 11.15}{56 \times 10 \times 400^2} = \mathbf{0.382}$$
 (12)

Gerilim düşümü %1,5 değerinin altındadır. Yönetmeliğe uygundur.

Toplam Gerilim Düşümü Hesabı:

Elektrik iç tesisleri yönetmeliğine göre gerilim düşüm hesabı toplamı %3'ü geçmemelidir. İlgili toplama denklemi (13) ile gösterilmiştir.

$$\% \varepsilon_{\text{Tonlam}} = \% \varepsilon_1 + \% \varepsilon_2 + \% \varepsilon_3 = 2.769 \tag{13}$$

Elde edilen sonuç %3 değerinin altında kalmıştır. Yönetmeliğe uygundur.

Tablo-5: Aydınlatma Hesap Tablosu

Aydınlatılan <u>Yer</u>		<u>Büyüklükler</u>						<u>Seçilen Büyüklükler</u>								Hesapla	nan Bü	iyüklükle	e <u>r</u>			Secilen
<u>Ad</u>	<u>a (m)</u>	<u>b</u> (m)	<u>H</u> (m)	<u>S (m²)</u>	<u>çd</u> (m)	<u>ρt</u> (%)	<u>ρd</u> (%)	Ayd. Sist.	E ₀ (lüks)	<u>n</u> (adet)	<u>c (m)</u>	<u>φ1n</u> (lm)	<u>h</u> (m)	<u>k</u>	<u>n</u> (%)	φ0 (lm)	<u>φ1</u> (lm)	P (Watt)	<u>φ0</u> n(lm)	E _{0n} (lüks)	P _{top} (W)	Armatür
Banyo 1	1,800	2,500	2,800	4,500	0,800	0,8	0,5	Direkt	150	2	0,500	2000	1,500	0,698	0,240	3515,620	2000	18,500	4000	170,670	37,000	Philips CorePro LED Ampul 18.5W E27
Banyo 2	1,800	2,500	2,800	4,500	0,800	0,8	0,5	Direkt	150	2	0,500	2000	1,500	0,698	0,240	3515,620	2000	18,500	4000	170,670	37,000	Philips CorePro LED Ampul 18.5W E27
Giyinme Odası 1	1,800	2,000	2,800	3,600	0,800	0,8	0,5	Direkt	50	1	0,500	1000	1,500	0,632	0,240	937,500	1000	10,500	1000	53,333	10,500	Panasonic LED Ampul 10,5W E27
Giyinme Odası 2	1,800	2,000	2,800	3,600	0,800	0,8	0,5	Direkt	50	1	0,500	1000	1,500	0,632	0,240	937,500	1000	10,500	1000	53,333	10,500	Panasonic LED Ampul 10,5W E27
Yatak Odası 1	4,700	3,300	2,800	15,510	0,800	0,8	0,5	Direkt	50	1	0,500	2700	1,500	1,292	0,410	2364,329	2700	20,000	2700	57,099	20,000	Philips Trueforce Core LED Ampul 20W E27
Yatak Odası 2	4,700	3,300	2,800	15,510	0,800	0,8	0,5	Direkt	50	1	0,500	2700	1,500	1,292	0,410	2364,329	2700	20,000	2700	57,099	20,000	Philips Trueforce Core LED Ampul 20W E27
Salon Ve Amerikan Mutfak	3,500	8,100	2,800	28,350	0,800	0,8	0,5	Direkt	125	3	0,500	3500	1,500	1,629	0,450	9843,750	3500	32,000	10500	133,333	96,000	Leday Ufo Led Ampul 32W E27
Çamaşır Odası	1,400	3,500	2,800	4,900	0,800	0,8	0,5	Direkt	50	1	0,500	1500	1,500	0,667	0,240	1276,042	1500	14	1500	58,775	14,000	Panasonic Led Ampul 14 W E27

DIALUX BENZETİM ÇALIŞMASI

Bu proje kapsamında, altı daireli bir apartmanın aydınlatma ve elektrik tesisat tasarımlarının teorik hesaplamalarının doğrulanması ve optimize edilmesi amacıyla Dialux yazılımı kullanılarak benzetim çalışması yapılmıştır. Dialux, profesyonel aydınlatma tasarımı ve analizleri için geliştirilmiş bir yazılım olup, gerçek dünya verilerine dayalı doğru ve detaylı simülasyonlar sağlar.

Apartmanın genel mimari planı Dialux yazılımına aktarılmış ve bir dairenin boyutları, oda yerleşimleri ve mobilya detayları modele dahil edilmiştir. Tavan, duvar ve zemin yansıtma faktörleri malzeme özelliklerine göre ayarlanarak benzetimdeki doğruluk arttırılmıştır. Tavan yansıtıcılığı %80, duvar yansıtıcılığı %50 ve zemin yansıtıcılığı %30 olarak tanımlanmıştır. Bu oranlar kullanılan malzeme yapısından dolayı tam olarak sağlanamamış olsa da yakın değerler kullanılarak her odanın aydınlatma düzeyi teoriye yakın sonuçlarla bulunmuştur. Malzeme ve materyaller uygun aralıklarda belirlenip Şekil-1'deki gibi kaba çalışması oluşturuluştur.

Şekil-1 Mobilya Yerleştirilmiş Kaba Tasarım

Mobilyaların, mekan boyama işlemlerinin ve zemin kaplamalarının tamamlanmasının ardından daha önce aydınlatma hesaplamaları yapılan değerler ile uygun armatürler Şekil-2'de gösterildiği gibi seçilmiştir.

Şekil-2 Aydınlatma Yapılmış Genel Tasarım

Tüm odaların aydınlatılması için piyasada kullanılan belli armatürlerden projeye uygun olanları seçilmiştir. Seçilen armatürler ve değerleri Şekil-3'te gösterilmiştir.

İşiklik listesi

Ф _{topl}		P _{toplam} 245.0 W	Işık verimi 76.3 lm/W				
Adt.	Üretici	Ürün No.	Ürün adı	Р	Φ	İşık verimi	
1	Artemide S.p.A.	T272030	PANTAREI 390	37.0 W	1505 lm	40.7 lm/W	
1	Artemide S.p.A.	T272030	PANTAREI 390	37.0 W	1505 lm	40.7 lm/W	
2	LIGHTRON S BV	IC -	GAM-L2WG4-HELDER-LC-N-16LED-3000K-2300LM-20W	20.0 W	1877 lm	93.9 lm/W	
2	NVC	70092073	NLED9124N 10W 5700K 筒灯	10.5 W	860 lm	81.9 lm/W	
1	PROLED	MN18014 WBSCCT	UNI-BRIGHT Moon Sensor 180 CCT - 2700K/3000K/4000K	14.0 W	1196 lm	85.4 lm/W	
3	3 VARTON V1- R0-00502 -30000-2 003230 Cosmo 600 mm suspende d 32W 3000K		Hospitality lighting	32.0 W	3000 lm	93.7 lm/W	

Şekil-3 Kullanılan Armatür Listesi

Benzetim çalışması neticesinde her bir odanın aydınlık seviyesi belirlenmiştir. Bunu Şekil-4'te görmemiz mümkündür.

Şekil-4 Oda Aydınlatmaları

Benzetim uygulaması aynı zamanda her bir odanın ışık dağılım eğrisini verebilmektedir. Tek tek ayrıntılı incelenebildiği gibi Şekil-5'te gösterildiği gibi genel bir şekilde incelemekte mümkündür.

Şekil-5 Daire Işık Dağılım Eğrisi

AUTOCAD VE DIALUX ÇALIŞMALARININ BAĞLANTI ADRESLERİ

Proje olarak tasarladığım AutoCAD ve DIALux çizim dosyalarıma, bununla birlikte DIALux çıktı raporuna aşağıda eklemiş olduğum link vasıtası ile Sakarya Üniversitesi E-Mail hesabınız ile erişim sağlayabilirsiniz. Detaylı bilgi için omer.oruc2@ogr.sakarya.edu.tr mail adresi ile iletişim kurabilirsiniz.

htt	https://drive.google.com/file/d/1xYj3j1wrki52Fs2Rax-YnkeGiFx8TUTa/view?usp=sharingwritering		

TEŞEKKÜR

Almış olduğum bu ders sürecinde değerli teknik bilgileri ve rehberliğiyle çokça yardımı olan, aynı zamanda bu projeyi yapmama vesile olup piyasada kaliteli işler yapabilmem için bana önemli fırsatlar sunan kıymetli hocam Sayın Prof. Dr. Cenk Yavuz'a en içten teşekkürlerimi sunarım.