Aufgabe 19:

Sei M eine Menge und T für M als Speicherplatz vorgesehene Tabelle.

$$M := \{17, 42, 26, 11, 54, 5, 14\}, |T| = 7$$

$$h_1(x) := x \bmod 7$$

$$h(x,0) := h_1(x)$$

$$h(x,i) := (h(x,0) - s(x,i)) \mod 7$$

a) offenes Hashverfahren mit linearem Sondieren:

$$s(x,i):=i$$

1. h(17, i) gibt : 3							
			17					
2 h(42 i) aibt · 0							
2. h(42, i	giot . U							
42			17					
3. h(26, i	3. h(26, i) gibt : 5							
42			17		26			
4. h(11, i) gibt : 4							
42			17	11	26			
5. h(54, i) gibt : 5, 4, 3,	2						
42		54	17	11	26			
6. h(5, i)	6. h(5, i) gibt: 5, 4, 3, 2, 1							
42	5	54	17	11	26			
7. h(14, i	7. h(14, i) gibt: 0, 6							
42	5	54	17	11	26	14		

^{=&}gt; 8 Kollisionen

b) offenes Hashverfahren mit quadratischem Sondieren mit Vorzeichenwechsel:

$$s(x,i) := \left[\frac{i}{2}\right]^2 \cdot (-1)^{i}$$

1. h(17. i) gibt: 3

		17		

2. h(42, i) gibt: 0

()	, 0			
42		17		
12		1 /		

3. h(26, i) gibt : 5

42		17	26	

4. h(11, i) gibt: 4

42	2			17	11	26	
----	---	--	--	----	----	----	--

5. h(5	4, i) gibt : 5 , 6	,				
42			17	11	26	54
6. h(5	, i) gibt : 5, 6,	4, 2				
42		5	17	11	26	54
	4, i) gibt: 0, 1		1			
42	14	5	17	11	26	54
	=> 5 Koll	isionon				
	-> 3 K011	isionen				
c) Off	enes Hashver	fahren mit do	ppeltem Hashi	ing und $g(x) =$	$(1 + (x \mod 5)$)) als zweiter
	shfunktion.					, ,
	s(x,i):=	$i \cdot g(x)$				
1. h(1	7, i) gibt: 3		1			
			17			
2 h(4	2 i) aibt: 0					
42	2, i) gibt: 0		17			
42			1 /			
3 h(2	6, i) gibt: 5					
42	5, 1) 8101. 5		17		26	
			1 1			
4. h(1	1, i) gibt: 4					
42			17	11	26	
5. h(5	4, i) gibt: 5, 0	, 2		1	1	1
42		54	17	11	26	
	, i) gibt: 5, 4,					
42	5	54	17	11	26	
7 1 (1	4 i) - i1 4 0 0	1 (
	$\frac{4, i) \text{ gibt: } 0, 2}{5}$		17	1.1	26	14
42	5	54	17	11	26	14

=> 9 Kollisionen