Санкт-Петербургский политехнический университет Петра Великого Высшая школа прикладной математики и вычислительной физики Кафедра прикладной математики

Курсовая работа

по дисциплине «Стохастические модели и анализ данных»

на тему

Восстановление зависимостей

Выполнили студенты гр. 5040102/00201

Жуков А.К.

Грицаенко Н.Д.

Преподаватель

Баженов А.Н.

Оглавление

Постановка задачи	3
Решение	
Построение данных для регрессии с помощью интервальной моды	4
Параметры модели	6
Коридор совместных зависимостей	8
Граничные точки множества совместности	8
Прогноз за пределы интервала:	9
Заключение	9
Приложение:	9
Использованная литература	9

Постановка задачи

Дан регистратор, который может оцифровывать данные в определенном диапазоне [-0.5, 0.5] V. Также есть данные размерности 1024*8*10*10, где 8 -число каналов, 10 -число измерений, 10 -число уровней.

Необходимо зафиксировать любой из каналов. Далее зафиксировать каждый уровень. Для каждого уровня получаются данные 10*1024, то есть 10 измерений. Из каждого из 10 изменений нужно вырезать одинаковый интервал, затем склеить эти интервалы в один массив данных.

Возьмём интервал [480, 500]. Для каждого уровня получится (500-480)*10 = 200 интервалов.

Далее для каждого массива из 200 интервалов нужно найти интервальную моду [1].

Мода интервальной выборки — совокупность интервалов пересечения наибольших совместных подвыборок рассматриваемой выборки.

Таким образом, для 10 уровней получится 10 интервалов.

Для полученных интервалов нужно восстановить линейную зависимость с учётом интервальной неопределённости данных.

Модель данных будем искать в классе линейных функций:

$$y = \beta_1 + \beta_2 x$$

С неотрицательной первой производной: $\beta_2 > 0$

Ниже приведём графики исходных данных

Рисунок 1 Исходные данные: 10 уровней

Рисунок 2. 10 измерений для одного уровня

Решение

Построение данных для регрессии с помощью интервальной моды

Соберем 200 интервалов для первого уровня и построим интервальную моду:

Рисунок 3. Интервальная мода для всех измерений 1 уровня 1 канала

Приведём также график частот интервальных мод

Рисунок 4. График частот интервальных мод

Аналогично строим интервальную моду для остальных 9 уровней первого канала, получаем 10 интервальных мод:

Таблица 1. Интервальные моды для первого канала

Уровень	1	2	3	4	5	6	7	8	9	10
inf(mode)	-0.4632	-0.3723	-0.2806	-0.1886	-0.0967	0.0881	0.1789	0.2707	0.3616	0.4535
sup(mode)	-0.4591	-0.3681	-0.2752	-0.1832	-0.0917	0.0920	0.1839	0.2753	0.3656	0.4580

Приведём график получившихся интервальных мод:

Рисунок 5. Интервальные моды для первого канала

Параметры модели

Поставим задачу оптимизации и решим её методом линейного программирования [1]:

$$mid \ \mathbf{y}_{i} - w_{i} \cdot rad \ \mathbf{y}_{i} \leq X\beta \leq mid \ \mathbf{y}_{i} + w_{i} \cdot rad \ \mathbf{y}_{i}, \qquad i = 1, m,$$

$$\sum_{i=1}^{m} w_{i} \rightarrow min,$$

$$w_{i} \geq 0, \qquad i = 1, m,$$

$$w, \beta = ?$$

Где $m=10,\ y_i$ — интервальные моды, X — матрица $m\times 2$, в первом столбце которой элементы равные 1, во втором — значения x_i (номера уровней).

Решение задачи оптимизации:

$$w = [1.0375, 1.4667, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.81, 1.4358]$$
$$\beta = [0, 0.9179]$$

Построим график $y = \beta_1 + \beta_2 x$:

Рисунок 6. Решение задачи оптимизации (y = 0 + 0.9179x)

Построим информационное множество параметров модели. Поскольку информационное множество задачи построения линейной зависимости по интервальным данным задаётся системой линейных неравенств, то оно представляет собой выпуклый многогранник [2]. Обозначим на графике несколько точечных оценок:

• Центр наибольшей диагонали информационного множества:

$$\hat{\beta}_{\text{maxdig}} = \frac{1}{2}(b_1 - b_2),$$

где b_1 и b_2 — наиболее удалённые друг от друга вершины многогранника

• Центр тяжести информационного множества:

$$\hat{\beta}_{gravity} = \frac{1}{n} \sum_{i=1}^{n} b_i,$$

где b_i – вершина многогранника, n – их количество.

Рисунок 7. Информационное множество линейной модели

$$\beta_1 = [-0.00538, 0.00036]$$

 $\beta_2 = [0.9091, 0.9246]$

Коридор совместных зависимостей

Рисунок 8 Коридор совместных зависимостей, весь диапазон

Рассмотрим подробнее, что происходит вокруг каждой точки:

Рисунок 9 Коридор совместных событий в окрестности каждого наблюдения

Граничные точки множества совместности

По рисунку 8 видим, что граничными оказались точки с номерами 1, 2, 5, 9, 10.

Прогноз за пределы интервала:

С помощью построенной выше модели

$$\hat{y}(x) = [-0.00538, 0.00036] + [0.9091, 0.9246]x$$

Можно получить прогнозные значения выходной переменной:

Возьмём 5 точек:

$$x_n = [-0.75, -0.25, 0.25, 0.75, 5]$$

Тогда $y_p = \widehat{y}(x_p)$

x_p	y_p	$rad y_p$
-0.75	[-0.6988, -0.6814]	0.0087
-0.25	[-0.2365, -0.2269]	0.0048
0.25	[0.2219, 0.2315]	0.0048
0.75	[0.6764, 0.6938]	0.0087
5	[4.5401, 4.6234]	0.0416

Неопределённость прогноза растёт по мере удаления от области, в которой производились исходные измерения. Это обусловлено видом коридора зависимости, расширяющимся за пределами области измерений.

Заключение

В ходе первой части работы с помощью вычисления интервальной моды нами были найдены данные для построения регрессии.

В ходе второй части работы была построена линейная модель данных, была сформирована и решена задача линейного программирования. Также было получено информационное множество для параметров линейной модели, построен коридор совместности и обнаружены граничные точки коридора совместности.

По полученной модели были вычислены прогнозы за пределами области измерений.

Приложение:

Ссылка на проект с кодом реализации:

https://github.com/Nikitagritsaenko/Stochastic-models-and-data-analysis

Использованная литература

- 1. А.Н. Баженов, С.И. Жилин, С.И. Кумков, С.П. Шарый. Обработка и анализ данных с интервальной неопределённостью. РХД. Серия «Интервальный анализ и его приложение». Ижевск. 2021. с.200.
- 2. А.Н. Баженов Лекции по обработке данных с интервальной неопределённостью (2021) https://cloud.mail.ru/public/rUwf/V8qPtjC1H