MOSFET :-

- Metal Oxide-Semiconductor Field Expect Transistor.
 - 1 Depletion type MOSFET
 - @ Enhancement type MOSFET
- Depletion Type MOSFET

Basic construction:

A slab of p-type material is n-channel je roma silicon base &

-9t is the poundation on

which the device is constand

is referred to an substrate (s

substrate - Sometimes, the substrate is internally connected to sour

termina.

- sometimes an addition a

terminal is taken out a label

ری تخ

drain & source terminals are connected contacts to n-doped regions linked by n-channel as shown above Kig,

The gare is also connected to metal contact sugace out remains inswated from the n-channel by a very thin silid

axide (310)

- Sioz is a type of insulator referred to as a dielectric.

(which sets up opposing electric field within the dielectric when expased to an enternally applied field). - SiO2 layer is an insulating layer means that there is no direct electrical connection beth gate terminal & the channel of MOSFET - This inswaring layer of Sio 2 accounts for the very desirable high ilp impedance of the device. (9/p resistance of a MOSFET is usually more than that of typical JEET.) - Because of the very high i/p impedance, the gare current It is essentially OA for dc-biased configurations. Meaning of MOSFET: -'Metal' for metallic contacts used for connecting Drain, source & aate, oxide, kor silicondioxide insulating layer & "Semiconductor" for the basic smuture on which the n- de ptype regions are dipused. IGFET: Insulated Gate FET (as there is insulating layer bett gate & the channel.)

The transfer characteristics shows that Io has a nonlinear velation with Vas which is expressed mathematically as

 $I_{D} = I_{DSS} \left[1 - \frac{V_{GS}}{V_{\rho}} \right]^{2}$

p-channel depletion type MOSFET with Ioss=6MA a VD=6

Enhancement MosfeT -

The transfer curve is not defined by shockley's ean a the arain current is now cut off while the gate to source voltage reaches a specific magnitude, in case of Enhancement MOSFET.

The current control in an n-channel device is now effected by a positive pare to source vtg rather than the range of negative vtg encountered for n-channel JFETS & n-channel depletion type MosfeTs.

n-channel EMOSFET :-

The bosic construction of n-channel

1

enhancement type MOSFET is given inig @

-A slab of p-type material is formed from a silicon base of is referred to an substrate. The subtrate is sometimes connect to the source (internally), whereas in other cases a fourth lead is made available for external control of its potential level.

- The source & drain terminals are connected through metallic contacts to n-doped regions.
- But a channel bet two n-doped region is absent.
- From a section of p-type marerial.

The construction of an enhancement type

Mosfet is quite similal to the degletion type

Mosfet except for the absence of a channel bett D 45 herminals.

(NO channel)

	Ment Type Mosfet 1-
characteristics of n-channel Enhance	ment type
n-channel enhancement MOSTE	r is shown in fig @ de
To(mA) (maro) (maro)	V 45 = +8 V
8	V48=+7V
5	$V_{GS} = f \in V$
4	$V_{GS} = + SV$
2	VGS=+4V
1-1-1-5	$\sqrt{GS=+3V}$
1 2 3 4 5 6 7 8 VGS 5	10 15 20 25 $V_{GS=V_{T=2V}}$ Drain characteristics.
fig @ transpor characteristics fig (d)	
- Drain current is zero for VGS	≤ V _T ,
- The transfer characteristics is s	nown in big Q. is very
much different from those obt	gin earlier.
- 9t is now totally in the tre	vas region & remains
zen HII VGS=VT.	
- The relation bet ID & VGS i	s given by the following
egn	N. P.
$I_D = K (V_{GS} - V_T)^2$	
- 9tis the squared term that	sesults in nonlinear (curved)
relationship bet Io 4 Vas.	
The berm K is constant & 113 V	alue & depends on the
construction of device	
where k = -	Io(on)
	V4s(0n) - VT)2

