

Null Hypothesis Testing

Klinkenberg 14 sep 2017

TOC

- null hypothesis significance testing
- h_0 and h_a
- frequentist probability
- standard error

decision table

- o alpha alpha
- power
- post hoc power
- effect size
- alpha
- beta
- o p value

reasoning scheme

Neyman-Pearson Paradigm

H_0 and H_A

H_0

- Skeptical point of view
- No effect
- · No preference
- No Correlation
- · No difference

H_A

- Refute Skepticism
- Effect
- · Preference
- Correlation
- Difference

Frequentist probability

- Objective Probability
- · Relative frequency in the long run

Standard Error

95% confidence interval

$$SE = \frac{\text{Standard deviation}}{\text{Square root of sample size}} = \frac{s}{\sqrt{n}}$$

- Lowerbound = $\bar{x} 1.96 \times SE$
- Upperbound = $\bar{x} + 1.96 \times SE$

SAMPLES FROM NORMAL DISTRIBUTION

 μ falls within the CI in ~95% of the samples

Binomial H_0 distribution

Binomial Null distribution

Binomial H_A distribution

Binomial alternative distribution

Binomial alternative distribution

Binomial alternative distribution

Binomial alternative distribution

Decision table

 $H_0 = \text{True} \qquad H_0 = \text{False}$ $Decide to reject <math>H_0$ Type I error Alpha α Correct True positive = Power $Decide not to reject H_0$ Correct True negative Type II error Beta β

Alpha α

- Incorrectly reject H_0
- · Type I error
- False Positive
- · Criteria often 5%
- · Distribution depends on sample size

Binomial Null distribution

Power

- Correctly reject H_0
- True positive
- · Power equal to: 1 Beta
 - Beta is Type II error
- · Criteria often 80%
- · Depends on sample size

Binomial alternative distribution

Post-Hoc Power

- Also known as: observed, retrospective, achieved, prospective and a priori power
- Specificly meaning:

The power of a test assuming a population effect size equal to the observed effect size in the current sample.

Source: O'Keefe (2007)

Effect size

In statistics, an effect size is a quantitative measure of the strength of a phenomenon. Examples of effect sizes are the correlation between two variables, the regression coefficient in a regression, the mean difference and standardised differences.

For each type of effect size, a larger absolute value always indicates a stronger effect. Effect sizes complement statistical hypothesis testing, and play an important role in power analyses, sample size planning, and in meta-analyses.

Source: WIKIPEDIA

Both distributions 0.30 H0 HA 0.20 0.10 0.00 0 2 5 3 10 6 7 8 9 1 4 number of head

Effect size

1 - alpha

- Correctly accept H_0
- · True negative

Binomial Null distribution

Beta

- Incorrectly accept H_0
- · Type II error
- False Negative
- · Criteria often 20%
- · Distribution depends on sample size

Binomial alternative distribution

P-value

Conditional probability of the found test statistic or more extreme assuming the null hypothesis is true.

Reject H_0 when:

- p-value <= alpha</pre>
- test statistic more extreme than your critical value

Binomial Null distribution

Test statistics

Some common test statistics

- · Number of heads
- · Sum of dice
- Difference
- *t*-statistic
- *F*-statistic
- χ^2 -statistic
- etc...

Decision Table

```
N = 10 # Sample size
HO = .5 # Probability of head under HO 50/50
HA = .2 # Aternative expected value
alpha = .05 # Selected type I error
# Color areas red for selected alpha
area <- dbinom(0:N, N, H0) < alpha/2
col = rep("beige", N+1)
col[area] = "red"
col2 = rep("red", N+1)
col2[area] = "beige"
# Delete # to not color the plots
# col = col2 = "beige"
layout(matrix(1:9,3,3, byrow=T))
plot.new()
text(0.5,0.5, "Binomial Distribution", cex=1.5)
```


Binomial Distribution

H0 True

Alpha / Type I error

H0 False

Reject H0

Power

Accept H0

Beta / Type II error

Reasoning Scheme

NHST Reasoning Scheme

R<-PSYCHOLOGIST

- · in Klinkenberg
- ✓ S.Klinkenberg@UvA.nl
- • ShKlinkenberg

END