

Методы Оптимизации

ЛАБОРАТОРНАЯ РАБОТА 1

Авторы: Куприянов, Долматова, Шайдулин, группы M3233,M3232,M3233

Цели работы

- Исследовать различные численные методы для нахождения локального минимума
- Понять какой метод стоит использовать в зависимости от ситуаций
- Научиться реализовывать алгоритмы на языке Python 3
- Изучить возможности библиотеки scipy.optimize

РАБОТА

Мы решили что для данной работы нам стоит рассмотреть функцию Розенброка поскольку она является достаточно важной и часто используемой при исследовании алгоритмов оптимизации и имеет достаточно удобную структуру, чтобы показать плюсы и минусы разных видов. Как вторую функцию мы решили использовать какую-нибудь несложную квадратичную функцию, и взяли $(x-2)^2 + (y-3)^2$

В качестве начальных точек мы выбрали (10000,1888); (-2;-2);(0.001;0.003) так как надо было посмотреть как будут вести себя функции в зависимости от координатной четверти исходной точки, но при этом не стали брать слишком большие или малые значения, чтобы не ухудшать асимптотику алгоритмов и было легче предсказать результат.

При работе мы рассматривали три точности: 1е-2, 1е-4, 1е-6.

Ссылка на реализацию всех методов

МЕТОД ГРАДИЕНТНОГО СПУСКА

И так, начнем с метода градиентного спуска:

Результаты работы программы:

Table	1:	O	ptimization	Results
-------	----	---	-------------	---------

Function	Initial Point	Tolerance	Minimum	Function Value at Mini-	Iterations
				mum	
Rosenbrock	(10000, 1888)	0.010000	(10000.0000,	999962240456434432.000000	0 2
			1888.0000)		
Quadratic	(10000, 1888)	0.000100	(9990.0000,	995968311934480512.000000	1001
			1888.0005)		
Rosenbrock	(10000, 1888)	0.000001	(9990.0000,	995968311934480512.000000	1001
			1888.0005)		
Quadratic	(10000, 1888)	0.010000	(-1.9903,	3559.746798	3
*			-1.9976)		
Rosenbrock	(10000, 1888)	0.000100	(0.8500,	0.031138	1001
	()		0.7318)		
Quadratic	(10000, 1888)	0.000001	(0.8500,	0.031138	1001
Quadratic	(10000, 1000)	0.000001	0.7318)	0.001100	1001
Rosenbrock	(-2, -2)	0.010000	(0.0505,	0.901564	7
Toschorock	(-2, -2)	0.010000	0.0017)	0.501604	
Quadratic	(-2, -2)	0.000100	(0.8924,	0.021291	1001
Quadratic	(-2, -2)	0.000100	0.8063)	0.021291	1001
Rosenbrock	(-2, -2)	0.000001	(0.8924,	0.021291	1001
Rosenbrock	(-2, -2)	0.000001	0.8063)	0.021291	1001
Quadratic	(-2, -2)	0.010000		103513229.000000	2
Quadratic	(-2, -2)	0.010000	(10000.0000,	103513229.000000	2
D , ,	(0.0)	0.000100	1888.0000)	100000010000000	1001
Rosenbrock	(-2, -2)	0.000100	(9990.1731,	103309846.097530	1001
	(2 2)		1886.1473)		1001
Quadratic	(-2, -2)	0.000001	(9990.1731,	103309846.097530	1001
			1886.1473)		
Rosenbrock	(0.001, 0.003)	0.010000	(-1.2004,	26.246402	130
			-1.0005)		
Quadratic	(0.001, 0.003)	0.000100	(1.9969,	0.000024	821
			2.9962)		
Rosenbrock	(0.001, 0.003)	0.000001	(1.9999,	0.000000	1001
			2.9999)		
Quadratic	(0.001, 0.003)	0.010000	(0.0176,	12.762760	5
	' '		0.0280)		
Rosenbrock	(0.001, 0.003)	0.000100	(1.9973,	0.000024	541
	' '		2.9959)		
Quadratic	(0.001, 0.003)	0.000001	(2.0000,	0.000000	769
	(1	1	

Как мы можем видеть, что метод хорошо и быстро работает при небольшой точности, но затем возникают проблемы:

Таким образом, из плюсов можем отметить:

Плюсы метода градиентного спуска:

- 1. Эффективность на больших наборах данных: Градиентный спуск может хорошо работать на больших объемах данных, ведь не надо храненить весь набор данных в памяти.
- 2. Возможность нахождения локальных минимумов: Градиентный спуск может быть решить задачу нахождения локальных минимумов функций

Минусы метода градиентного спуска:

- 1. Зависимость от начальной точки: Результаты градиентного спуска могут зависеть от начальной точки, с которой начинается оптимизация, что видно из графика.
- 2. Чувствительность к выбору скорости обучения: Выбор правильной скорости обучения (learning rate) градиентного спуска. Слишком большая скорость обучения может привести к расходимости, а слишком маленькая к медленной сходимости или застреванию в локальном минимуме, поэтому нам важно было подобрать этот параметр корректно.
- 3. Вычислительная сложность на больших наборах данных: На больших наборах данных вычисление градиента требует большого числа итераций

МЕТОД ДИХАТОМИИ И ЗОЛОТОГО СЕЧЕНИЯ

Теперь перейдем ко второму пункту работы:

Рассмотрим графики полученные при работе программы.

Теперь перейдем к результатам работы программы:

Table 1: Optimization Results: Golden Section

Function	Initial Point	Tolerance	Point	Value	Iterations
Rosenbrock	(10000, 1888)	0.01	(10000, 1888)	9.9996e17	2
Quadratic	(10000, 1888)	0.0001	(9939.99, 1888.003)	9.7617e17	1001
Rosenbrock	(10000, 1888)	1e-6	(9939.95, 1888.003)	9.7616e17	1001
Quadratic	(10000, 1888)	0.01	(-2, -2)	3609	2
Rosenbrock	(10000, 1888)	0.0001	(0.5613, 0.2318)	0.885387	1001
Quadratic	(10000, 1888)	1e-6	(0.5611, 0.2315)	0.885808	1001
Rosenbrock	(-2, -2)	0.01	(0.001, 0.003)	0.9989	2
Quadratic	(-2, -2)	0.0001	(0.4922, 0.3187)	0.840806	1001
Rosenbrock	(-2, -2)	1e-6	(0.4919, 0.3183)	0.841072	1001
Quadratic	(-2, -2)	0.01	(10000, 1888)	1.035e8	2
Rosenbrock	(-2, -2)	0.0001	(9941.0296, 1876.8819)	1.023e8	1001
Quadratic	(-2, -2)	1e-6	(9940.99, 1876.8744)	1.023e8	1001
Rosenbrock	(0.001, 0.003)	0.01	(0.001, 0.003)	41	2
Quadratic	(0.001, 0.003)	0.0001	(1.9993, 2.9991)	1e-6	334
Rosenbrock	(0.001, 0.003)	1e-6	(2, 3)	0	383
Quadratic	(0.001, 0.003)	0.01	(0.001, 0.003)	12.978010	2
Rosenbrock	(0.001, 0.003)	0.0001	(1.9993, 2.9989)	2e-6	262
Quadratic	(0.001, 0.003)	1e-6	(2, 3)	0	320

(10000, 1888) (10000, 1888) (9942.5, (10000, 1888) 0.0001 9.7716e17 1001 1888.003) (9942.45. (10000, 1888) 1e-6 9.7714e17 1001 1888.003) (10000, 1888) 0.01 (-2, -2) 0.0001 (0.4997, 0.3252) 0.819319 1001 (0.5785, 0.252)0.86129 1001 1e-6 0.01 0.9989

Value

Iterations

Quadratic Rosenbrock (10000, 1888) (10000, 1888) Quadratic Rosenbrock (-2, -2)(0.001, 0.003)Quadratic 0.819277 1001 (-2, -2)0.0001 (0.5127, 0.3391)Rosenbrock (-2, -2)(0.5123, 0.3387)0.819713 1e-6 1001 0.01 (10000, 1888) Quadratic (-2, -2)1.035e8(9943.4955. Rosenbrock (-2, -2)0.0001 1.023e81001 1877.3468) (9943.4469, Quadratic (-2, -2)1e-6 1.023e8 1001 1877.3376) (0.001, 0.003) Rosenbrock 0.01 41 (0.001, 0.003)354 0.0001 (0.001, 0.003)(1.9993, 2.9991) Quadratic 1e-6 Rosenbrock (0.001, 0.003)403 1e-6 (0.001, 0.003) 12.978010 Quadratic Rosenbrock (0.001, 0.003) 0.0001 (1.9992, 2.9988) 280 (0.001, 0.003) 340 Quadratic (2, 3)

Table 2: Optimization Results: Dichotomy

Point

Tolerance

Initial Point

Function

Rosenbrock

Quadratic

Rosenbrock

Как мы видим, оба из методов достаточно схожи по результатам, как в плане значений так и по результатам, но на наших данных метод золотого сечения чуть эффективнее, причем оба работают не хуже, а где-то даже лучше чем метод градиентного спуска, например при точках небольших значений, как (0.001;0.003) и максимальной точности,

Плюсы:

- 1. Метод золотого сечения достаточно эффективен, когда функция имеет один экстремум на отрезке, как в нашем случае
- 2. Этот метод не требует непрерывной дифференцируемости функции, поэтому он может использоваться для оптимизации негладких функций.

Минусы:

 Точность: В некоторых случаях метод золотого сечения может работать медленнее по сравнению с другими методами, так как он не всегда обеспечивает быстрое сходимость к минимуму.

Метод дихотомии:

Плюсы:

- 1. эффективен, даже когда функция имеет несколько экстремумов на заданном интервале.
- 2. Метод дихотомии не так чувствителен к начальным условиям, как некоторые другие методы.

Минусы:

- 1. Метод дихотомии может иметь медленную скорость сходимости на больших интервалах.
- 2. Метод дихотомии может быть не очень эффективен для оптимизации негладких функций.
- 3. Требует больше вычислений по сравнению с методом золотого сечения, метод дихотомии требует больше вычислений за каждую итерацию, как видно из выходных данных

МЕТОД НЕЛДЕРА-МИДА

Результаты метода:

Table 1: Optimization Results

Function	Initial Point	Tolerance	Minimum	Function Value at Minimum	Iterations
Rosenbrock	(10000, 1888)	0.01	[1.00312, 1.00633]	1.03542e-05	646
Quadratic	(-2, -2)	0.0001	[1.00002, 1.00003]	5.00977e-10	660
Rosenbrock	(0.001, 0.003)	1e-6	[1, 1]	1.14087e-13	673
Quadratic	(10000, 1888)	0.01	[0.997731, 0.9957]	1.05479e-05	64
Rosenbrock	(-2, -2)	0.0001	[1.00001, 1.00003]	1.81794e-10	79
Quadratic	(0.001, 0.003)	1e-6	[1, 1]	4.29682e-14	94
Rosenbrock	(10000, 1888)	0.01	[1.00098, 1.00226]	9.69496e-06	72
Quadratic	(-2, -2)	0.0001	[1.00002, 1.00004]	4.29235e-10	87
Rosenbrock	(0.001, 0.003)	1e-6	[1, 1]	6.44232e-14	101
Quadratic	(10000, 1888)	0.01	[2.00262, 2.99748]	1.32008e-05	56
Rosenbrock	(-2, -2)	0.0001	[2, 3]	2.63024e-10	71
Quadratic	(0.001, 0.003)	1e-6	[2, 3]	2.52297e-13	85
Rosenbrock	(10000, 1888)	0.01	[2.00302, 2.99667]	2.02160e-05	35
Quadratic	(-2, -2)	0.0001	[2.00003, 3.00001]	9.32861e-10	52
Rosenbrock	(0.001, 0.003)	1e-6	[2, 3]	1.14531e-13	65
Quadratic	(10000, 1888)	0.01	[2.00372, 3.00174]	1.68383e-05	69
Rosenbrock	(-2, -2)	0.0001	[2, 3]	3.86720e-10	84
Quadratic	(0.001, 0.003)	1e-6	[2, 3]	9.68225e-14	99

Как мы видим, ситуация по количеству итераций, при небольшой точности для всех точек кроме (0.001;0.003) ,этот метод выходит не очень эффективным по сравнению с предыдущими методами , зато в остальных случаях видно, что эффективность сильно возрастает, но точность слегка ниже и в некоторых случаях отстает примерно на 0.1 от предыдущих методов. Из данных, а также известной теории можем отметить:

Плюсы:

- 1. Метод Нелдера-Мида не требует наличия градиентов функции. Это будет важно полезно, если функция недифференцируема или тяжело ее дифференцировать
- 2. относительно прост в реализации, тем более есть уже готовая библиотека которую мы и использовали
- 3. Метод Нелдера-Мида может быть использован для функций в многомерных пространствах

Минусы:

- 1. Метод Нелдера-Мида может быть медленным при сходимости к оптимальному решению, например в случае большого числа параметров или сложной функции
- 2. Также он не гарантирует нахождение глобального минимума функции и результаты могут зависеть от начального приближения
- 3. В высокоразмерных пространствах метод Нелдера-Мида может столкнуться с плохой эффективности из-за большого объема вычислений, (к сожалению не успели доделать доп. Пункт 2)

ЗАКЛЮЧЕНИЕ

Подводя итог к работе, хотелось бы отметить, что мы освоили основную теорию алгоритмов предложенных в работе, а также реализовали их на практике, что помогло узнать их плюсы и минусы в зависимости от начальных данных и исходных функций, показав в каких случаях лучше применять тот или иной из методов.