Syntax Analysis

Syntax Analysis is the second phase of compilation

Comparison with lexical analysis:

Phase	Input	Output
Lexer	string of characters	string of tokens
Parser	string of tokens	Parse tree/AST

- Syntax analysis is also called parsing
 - > Because it produces a parse tree.
 - > AST (Abstract Syntax Tree) is a simplified parse tree.

What is a Parse Tree?

- Parse tree: a tree that represents grammatical structure
- Language constructs often have recursive structures

 $\textbf{If-stmt} \equiv \textbf{if} \; (EXPR) \; \textbf{then Stmt else Stmt fi}$

Stmt ≡ If-stmt | While-stmt | ...

A Parse Tree Example

- Code to be compiled:
 - \dots if x==y then \dots else \dots fi
- Lexer:
- Parser:
 - Input: sequence of tokens
 - ... IF ID==ID THEN ... ELSE ... FI
 - > Desired output:

REs cannot express recursive program constructs

Example of a recursive construct is matching parenthesis: # of "(" must equal # of ")"

```
✓ (x+y)*z
```

REs cannot express recursive program constructs

- Example of a recursive construct is matching parenthesis: # of "(" must equal # of ")"
 - ✓ (x+y)*z
 - ✓ ((x+y)+y)*z
 - ✓ (...(((x+y)+y)+y)...)
- Can regular expressions express this construct?
 - ightharpoonup Recall RL \equiv L(Regular Expression) \equiv L(Finite Automata)
 - Boils down to whether an FA can accept this construct

RE/FA is Not Powerful Enough

 \square Describe strings with pattern $[i]^i$ (i \ge 1)

RE/FA is Not Powerful Enough

 \square Describe strings with pattern $[i]^i$ ($i \ge 1$)

- > "[", "[[" are different states as only former accepts on "]"
- > "[[", "[[[" are different states as only former accepts on "]]"
- \rightarrow Infinite as for any [i, there exists a [i+1] that is a new state
- > Contradiction: no finite automaton accepts arbitrary nesting

REs are not suitable for Syntax Analysis

- REs cannot express recursive language constructs
- Programming languages belong to a category called CFLs
 - CFL is short for Context Free Language
 - CFLs are a strictly larger set than RLs
- To express CFLs, we need a new formalism: Grammars
- Grammars are general enough to express most languages
 - Regular Languages
 - Context Free Languages
 - Context Sensitive Languages
 - Recursively Enumerable Languages

A Grammar defines a Language

- A grammar, along with tokens, defines a language
 - Like how English grammar defines the English language
- Grammars are defined using rigorous math just like for REs
- Recall the following definitions
 - ightharpoonup Language: A set of strings over alphabet Alphabet: A finite set of symbols Empty string: ε
- ☐ We will also start calling strings in the language sentences

An Example Grammar

Language L = { any string with "00" at the end }

- Grammar G = { T, N, s, δ } where T = { 0, 1 }, N = { A, B }, s = A, and production rules δ = { A \rightarrow 0A | 1A | 0B, B \rightarrow 0 }
- Derivation: from grammar to language
 - ightharpoonup A \Rightarrow 0A \Rightarrow 00B \Rightarrow 000
 - ightharpoonup A \Rightarrow 1A \Rightarrow 10B \Rightarrow 100
 - ightharpoonup A \Rightarrow 0A \Rightarrow 00A \Rightarrow 000B \Rightarrow 0000
 - ightharpoonup A \Rightarrow 0A \Rightarrow 01A \Rightarrow ...

Grammar, formally defined

- \square A grammar consists of 4 components (T, N, S, δ)
 - ➤ T set of terminal symbols
 - Leaves in the parse tree essentially tokens
 - N set of non-terminal symbols
 - Internal nodes in the parse tree that expands into tokens
 - Language construct composed of one or more tokens like: statements, loops, functions, classes, ...
 - ➤ S A special non-terminal start symbol
 - Every string in language is derived from it
 - $\rightarrow \delta$ a set of **production** rules
 - "LHS → RHS": left-hand-side produces right-hand-side

Production Rule and Derivation

- \sqcup "LHS \to RHS"
 - Production rule to replace LHS with RHS
 - Applied repeatedly to derive target sentence from S
- $\beta \Rightarrow \alpha$: string β derives α

 - $\begin{array}{lll} \blacktriangleright & \beta \Rightarrow \alpha & & \text{1 step} \\ \blacktriangleright & \beta \Rightarrow *\alpha & & \text{0 or more steps} \end{array}$
 - $\Rightarrow \beta \stackrel{*}{\Longrightarrow} \alpha$ 0 or more steps
 - example:

$$A \Rightarrow 0A \Rightarrow 00B \Rightarrow 000$$

$$A \stackrel{*}{\Longrightarrow} 000$$

$$A \stackrel{+}{\Longrightarrow} 000$$

Noam Chomsky Grammars

Chomsky classified grammars into 4 types:

Type 0: recursive grammar

Type 1: context sensitive grammar

Type 2: context free grammar

Type 3: regular grammar

(Classification done based on form of production rules)

The grammars produce the corresponding languages:

L(recursive grammar) \equiv recursively enumerable language L(context sensitive grammar) \equiv context sensitive language

L(context sensitive grammar) \equiv context sensitive language

 $L(context\ free\ grammar) \equiv context\ free\ language$

L(regular grammar) ≡ regular language

Type 0: Unrestricted/Recursive Grammar

- ☐ Type 0 grammar unrestricted or recursive grammar
 - ightharpoonup Form of rules $\alpha \to \beta$

where
$$\alpha \in (N \cup T)^+$$
, $\beta \in (N \cup T)^*$

- No restrictions on form of grammar rules
- $\begin{array}{c} \blacktriangleright \quad \text{Example:} \\ \quad \text{aAB} \rightarrow \text{aCD} \\ \quad \text{aAB} \rightarrow \text{aB} \\ \end{array}$

 $\mathsf{A} o arepsilon$; erase rule is allowed

Type 1: Context Sensitive Grammar

- Type 1 grammar context sensitive grammar
 - > Form of rules

$$\alpha A\beta \to \alpha \gamma \beta$$

where
$$A \in N$$
, $\alpha, \beta \in (N \cup T)^*$, $\gamma \in (N \cup T)^+$

- ightharpoonup Replace A by γ only if found in the context of α and β
- No erase rule
- ➤ Example: aAB → aCB

Type 2: Context Free Grammar

- - > Form of rules

$$A \rightarrow \gamma$$

where
$$A \in N$$
, $\gamma \in (N \cup T)^+$

ightharpoonup Can replace A by γ at any time — cannot specify context

Type 2: Context Free Grammar

- ☐ Type 2 grammar context free grammar
 - > Form of rules

$$A \rightarrow \gamma$$

where
$$A \in N$$
, $\gamma \in (N \cup T)^+$

- ightharpoonup Can replace A by γ at any time cannot specify context
- Are programming languages (PLs) context free ?
 - > Some PL constructs are context free: If-stmt, declaration
 - Many are not: def-before-use, matching formal/actual parameters, etc.

Type 3: Regular Grammar

- Type 3 grammar regular grammar
 - > Form of rules

$$A \rightarrow \alpha$$
, or $A \rightarrow \alpha B$

where
$$A, B \in N$$
, $\alpha \in T$

- Regular grammar defines RE
- > Can be used to define tokens for lexical analysis
- > Example:

$$A \rightarrow 1A \mid 0$$

Differentiate Type 2 and 3 Grammars

> Regular grammar

$$S \rightarrow [S \mid [T \mid T \rightarrow T \mid T]]$$

> Context free grammar

$$S \rightarrow [S][]$$

Differentiate Type 1 and 2 Grammars

Type 2 grammar (context free)

```
\begin{array}{lll} S \rightarrow D \ U \\ D \rightarrow int \ x; & | & int \ y; \\ U \rightarrow x{=}1; & | & y{=}1; \end{array}
```

☐ Type 1 grammar (context sensitive)

```
S \rightarrow D U

D \rightarrow int x; | int y;

int x; U \rightarrow int x; x=1;

int y; U \rightarrow int y; y=1;
```

Are Programming Languages Really Context Free?

- Language from type 2 grammar
 - $ightharpoonup S \Rightarrow DU \Rightarrow int x; U \Rightarrow int x; x=1;$
 - $ightharpoonup S \Rightarrow DU \Rightarrow int x; U \Rightarrow int x; y=1;$
 - $ightharpoonup S \Rightarrow DU \Rightarrow int y; U \Rightarrow int y; x=1;$
 - $ightharpoonup S \Rightarrow DU \Rightarrow int y; U \Rightarrow int y; y=1;$

- Language from type 1 grammar
 - $ightharpoonup S \Rightarrow DU \Rightarrow int x; U \Rightarrow int x; x=1;$
 - $ightharpoonup S \Rightarrow DU \Rightarrow int y; U \Rightarrow int y; y=1;$

Are Programming Languages Really Context Free?

- Language from type 2 grammar
 - \Rightarrow S \Rightarrow DU \Rightarrow int x; U \Rightarrow int x; x=1;
 - $ightharpoonup S \Rightarrow DU \Rightarrow int x; U \Rightarrow int x; y=1;$
 - $ightharpoonup S \Rightarrow DU \Rightarrow int y; U \Rightarrow int y; x=1;$
 - $ightharpoonup S \Rightarrow DU \Rightarrow int y; U \Rightarrow int y; y=1;$

- Language from type 1 grammar
 - $ightharpoonup S \Rightarrow DU \Rightarrow int x; U \Rightarrow int x; x=1;$
 - $ightharpoonup S \Rightarrow DU \Rightarrow int y; U \Rightarrow int y; y=1;$
- PLs are context sensitive, why use CFG in parsing?

The Chomsky Hierarchy of Grammars

 \square RL \subset CFL \subset CSL \subset L(Recursive Grammar)

The Chomsky Hierarchy of Grammars

 \square RL \subset CFL \subset CSL \subset L(Recursive Grammar)

- \square However, $\mathsf{L}_{\mathsf{y}} \subset \mathsf{L}_{\mathsf{x}}$ where $\mathsf{L}_{\mathsf{x}} : [^i]^k$ —RG, $\mathsf{L}_{\mathsf{y}} : [^i]^i$ —CFG
 - > Is it a problem?

Context Free Grammars

Syntax Analysis is a process of derivation

- Grammar is used to derive string or construct parser
- A derivation is a sequence of applications of rules
 - Starting from the start symbol
 - $ightharpoonup S \Rightarrow ... \Rightarrow ... \Rightarrow ... \Rightarrow (sentence)$
- Leftmost and Rightmost drivations
 - At each derivation step, leftmost derivation always replaces the leftmost non-terminal symbol
 - > Rightmost derivation always replaces the rightmost one

Examples

$$\mathsf{E} \to \mathsf{E} \,^*\,\mathsf{E} \, \mid \, \mathsf{E} \,^+\,\mathsf{E} \,\mid \, (\,\mathsf{E}\,) \,\mid \, \mathsf{id}$$

leftmost derivation

$$\mathsf{E} \Rightarrow \mathsf{E} + \mathsf{E} \Rightarrow \mathsf{E} * \mathsf{E} + \mathsf{E} \Rightarrow \mathsf{id} * \mathsf{E} + \mathsf{E} \Rightarrow \mathsf{id} * \mathsf{id} + \mathsf{E} \Rightarrow ...$$
$$\Rightarrow \mathsf{id} * \mathsf{id} + \mathsf{id} * \mathsf{id}$$

> rightmost derivation

$$E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow E + E * id \Rightarrow E + id * id \Rightarrow ...$$

 $\Rightarrow id * id + id * id$

A Parse Tree represent the Derivation

This is the parse tree that represents both derivations:

- A parse tree
 - describes program structure (defined by the rules applied)
 - is agnostic of leftmost or rightmost derivation (as long as the same rules are applied in both)
- ☐ There are two types of nodes in a parse tree:
 - > Leaves: terminals that form the sentence
 - > Non-leaves: intermediate non-terminals in the derivation

Different Rules result in different Parse Trees

Application of different rules result in different parse trees:

- Note: each parse tree has a unique leftmost derivation
 - ightharpoonup First: $E \Rightarrow E + E \Rightarrow E * E + E \Rightarrow id * E + E \Rightarrow id * id + E \Rightarrow ...$
 - ightharpoonup Second: $E \Rightarrow E * E \Rightarrow id * E \Rightarrow id * E + E \Rightarrow id * id + E \Rightarrow ...$
 - ightharpoonup Third: $E \Rightarrow E * E \Rightarrow id * E \Rightarrow id * E * E \Rightarrow id * E + E * E \Rightharpoonup ...$
- Same goes for rightmost derivations

Ambiguity

- □ A grammar G is ambiguous if
 - ightharpoonup there exist a string $str \in L(G)$ such that
 - > more than one parse tree derives *str*
 - \equiv there is more than leftmost derivation for str
 - \equiv there is more than rightmost derivation for *str*
- Grammars that produce multiple parse trees is a problem
 - Each parse tree is a different interpretation of program
- Likely, there is an unambiguous version of the grammar
 - That accepts the same programming language
 - Programming languages are rarely inherently ambiguous

Grammar can be rewritten to remove ambiguity

- ☐ Method I: to specify **precedence**
 - > build precedence into grammar, have different non-terminal for each precedence level
 - Lower precedence relatively higher in tree (close to root)
 - Higher precedence relatively lower in tree (far from root)
 - Same precedence depends on associativity

Syntax Analysis

How to Remove Ambiguity?

- - > Allow recursion only on either left or right non-terminal
 - Left associative recursion on left non-terminal
 - Right associative recursion on right non-terminal
- For the previous example,

```
\mathsf{E} \to \mathsf{E} + \mathsf{E} \dots; allows both left/right associativity
```

rewrite it to

$$E \rightarrow E + T \dots$$
; only left associativity $F \rightarrow P \hat{F} \dots$; only right associativity

Ambiguity is undecidable for CFGs

- Decidable: computable using a Turing Machine
- lt is **decidable** if a string is in a context free language
 - Implementing a parser is feasible for every CFL
- It is **undecidable** if a CFG is ambiguous
 - Checking ambiguity at compile time is impossible
 - Can only be checked reliably at runtime for a given string
 - In practice, tools like Yacc check for a more restricted grammar (e.g. LALR(1)) instead
 - LALR(1) is a subset of unambiguous grammars
 - Can be done easily at compile time

The Two Outcomes of Parsing

- Outcome 1: Parser is able to derive input from grammar
 - Parser builds parse tree that represents the derivation
- Outcome 2: Parser is unable to derive input from grammar
 - Parser emits a syntax error with source code location

The Two Outcomes of Parsing

- Outcome 1: Parser is able to derive input from grammar
 - Parser builds parse tree that represents the derivation
- Outcome 2: Parser is unable to derive input from grammar
 - Parser emits a syntax error with source code location
- How would you write a parser that does both well?

Types of Parsers

- Universal parser
 - Can parse any CFG e.g. Early's algorithm
 - Powerful but extremely inefficient (O(N³) where N is length of string)
- Top-down parser
 - Tries to expand start symbol to input string
 - > Finds leftmost derivation
 - > Only works for a certain class of grammars
 - Starts from root and expands into leaves
 - > Parser structure closely mimics grammar
 - Amenable to implementation by hand

Types of Parsers (cont.)

- Bottom-up parser
 - Tries to reduce the input string to the start symbol
 - Finds reverse order of the rightmost derivation
 - Works for wider class of grammars
 - Starts at leaves and build tree in bottom-up fashion
 - > More amenable to generation by an automated tool

What Output do We Want?

- The output of parsing is
 - parse tree, or
 - abstract syntax tree
- An abstract syntax tree is
 - similar to a parse tree but ignores some details
 - > internal nodes may contain terminal symbols

An Example

Consider the grammar

$$\mathsf{E} \ \to \ \mathsf{int} \ | \ (\,\mathsf{E}\,) \ | \ \mathsf{E} + \mathsf{E}$$
 and an input

$$5 + (2 + 3)$$

After lexical analysis, we have a sequence of tokens

Parse Tree of the Input

- A parse tree
 - > Traces the operation of the parser
 - Does capture the nested structure
- but contains too much information
 - > parentheses
 - > single-successor nodes

Abstract Syntax Tree

An Abstract Syntax Tree (AST) for the input

- > AST also captures the nested structure
- > AST abstracts from parse tree (a.k.a. concrete syntax tree)
- > AST is more compact and contains only relevant info
- > ASTs are used in most compilers rather than parse trees

How are ASTs Constructed?

- ☐ Through implementation of semantic actions
- ☐ We already used them in project 1 to return token tuples
- To construct AST, we attach an **attribute** to each symbol X
 - X.ast the constructed AST for symbol X
- Extend each production rule with semantic actions, i.e.

$$X \rightarrow Y_1Y_2...Y_n$$
 { actions }

actions may define or use X.ast, Y_i .ast $(1 \le i \le n)$

For the previous example, we have

- Here, we use two pre-defined fuctions
 - ptr1=mkleaf(n) create a leave node and assign value "n"
 - > ptr2=mkplus(t1, t2) create a tree node and assign the root value "PLUS", and two subtrees as t1 and t2

For input INT₅ '+' '(' INT₂ '+' INT₃ ')'
Construction order given is for a top-down LL(1) parser
(Order can change depending on parser implementation)

For input INT₅ '+' '(' INT₂ '+' INT₃ ')'

Construction order given is for a top-down LL(1) parser (Order can change depending on parser implementation)

E1.ast=mkleaf(5)

For input INT₅ '+' '(' INT₂ '+' INT₃ ')'

Construction order given is for a top-down LL(1) parser (Order can change depending on parser implementation)

E1.ast=mkleaf(5) E2.ast=mkleaf(2)

For input INT₅ '+' '(' INT₂ '+' INT₃ ')'

Construction order given is for a top-down LL(1) parser (Order can change depending on parser implementation)

E1.ast=mkleaf(5) E2.ast=mkleaf(2) E3.ast=mkleaf(3)

3

For input INT₅ '+' '(' INT₂ '+' INT₃ ')'
Construction order given is for a top-down LL(1) parser
(Order can change depending on parser implementation)

E4.ast=mkplus(E2.ast, E3.ast)

PLUS

PLUS

E1.ast=mkleaf(5) E2.ast=mkleaf(2) E3.ast=mkleaf(3)

5

2

3

For input INT₅ '+' '(' INT₂ '+' INT₃ ')'

Construction order given is for a top-down LL(1) parser (Order can change depending on parser implementation)

For input INT₅ '+' '(' INT₂ '+' INT₃ ')'

Construction order given is for a top-down LL(1) parser (Order can change depending on parser implementation)

E5.ast=mkplus(E1.ast, E4.ast)

For input INT₅ '+' '(' INT₂ '+' INT₃ ')'

Construction order given is for a top-down LL(1) parser (Order can change depending on parser implementation)

E5.ast=mkplus(E1.ast, E4.ast)

For input INT₅ '+' '(' INT₂ '+' INT₃ ')'

Construction order given is for a top-down LL(1) parser (Order can change depending on parser implementation)

E5.ast=mkplus(E1.ast, E4.ast)

Summary

- Compilers specify program structure using CFG
 - Most programming languages are not context free
 - Context sensitive analysis can easily separate out to semantic analysis phase
- A parser uses CFG to
 - ightharpoonup ... answer if an input str \in L(G)
 - ... and build a parse tree
 - > ... or build an AST instead
 - ... and pass it to the rest of compiler

Parsing

Parsing

- We will study two approaches
- ☐ Top-down
 - Easier to understand and implement manually
- Bottom-up
 - More powerful, can be implemented automatically

Consider a CFG grammar G

$$S \rightarrow AB$$
 $A \rightarrow a$ $D \rightarrow d$ $C \rightarrow c$

$$A \ \rightarrow$$

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

- \Rightarrow aCB (2)
- \Rightarrow acB (3)
- \Rightarrow acbD (4)
- \Rightarrow acbd (5)

$$S \Rightarrow AB (5)$$

- \Rightarrow AbD (4)
- \Rightarrow Abd (3)
- \Rightarrow aCbd (2)
- \Rightarrow acbd (1)

Consider a CFG grammar G

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

 $D \rightarrow d \qquad C \rightarrow c$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbb (4) \Rightarrow acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$S \rightarrow AB$$
 $A \rightarrow a$ $D \rightarrow d$ $C \rightarrow c$

$$\mathsf{A} \, o \,$$

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbb (4) \Rightarrow acbd (5)

$$\Rightarrow$$
 acb

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

 $D \rightarrow d \qquad C \rightarrow c$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$S \rightarrow AB$$
 $A \rightarrow a$ $D \rightarrow d$ $C \rightarrow c$

$$A \rightarrow i$$

$$S \,\rightarrow\, A\,B \qquad A \,\rightarrow\, a\,C \qquad B \,\rightarrow\, b\,D$$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$egin{array}{lll} \mathsf{S} &
ightarrow \mathsf{A} \, \mathsf{B} & \mathsf{A} &
ightarrow \mathsf{a} \ \mathsf{D} & \mathsf{d} & \mathsf{C} &
ightarrow \mathsf{c} \end{array}$$

$$S \,\rightarrow\, A\,B \qquad A\,\rightarrow\, a\,C \qquad B\,\rightarrow\, b\,D$$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$S \rightarrow AB$$
 $A \rightarrow a$ $D \rightarrow d$ $C \rightarrow c$

$$\mathsf{A} \, \to \,$$

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acod (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow Abd \ (3)$$

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$S \rightarrow AB$$
 $A \rightarrow a$ $D \rightarrow d$ $C \rightarrow c$

$$A \rightarrow a$$

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow Abd \ (3)$$

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$S \rightarrow AB$$
 $A \rightarrow a$ $D \rightarrow d$ $C \rightarrow c$

$$A \ \rightarrow$$

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$S \rightarrow AB$$
 $A \rightarrow a$ $D \rightarrow d$ $C \rightarrow c$

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (4) \Rightarrow acbd (5)

$$S \Rightarrow AB(5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$S \rightarrow AB$$
 $A \rightarrow a$ $D \rightarrow d$ $C \rightarrow c$

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow Abd \ (3)$$

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Consider a CFG grammar G

$$S \rightarrow AB$$
 $A \rightarrow a$ $D \rightarrow d$ $C \rightarrow c$

$$S \rightarrow AB$$
 $A \rightarrow aC$ $B \rightarrow bD$

Actually, this language has only one sentence, i.e.

$$L(G) = \{ acbd \}$$

Leftmost Derivation:

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbd (2)

$$\Rightarrow$$
 acbd (1)

Top Down Parsers

Backtracking or Predictive?

- How does a parser choose between production rules?
 - ightharpoonup Given $A o \alpha | \beta$, expand A to α or β ?
- Backtracking parser: exhaustively tries all rules
 - > When input mismatch, backtrack to alternative rule
 - Con Non-linear time due to exhaustive search
 - Con Complex to roll back semantic actions on backtrack
 - Pro Can parse most CFGs (except left-recursion)
- Predictive parser: predict correct rule using lookahead
 - Looks ahead k input symbols to make prediction
 - Con Can parse only a subset of CFGs (dependent on k)
 - Pro Linear time as only correct derivations are done
 - Pro Simple structure as there is no need to backtrack
- Parsers can be backtracking or predictive (or both).

Recursive Descent or Table Driven?

- How is the parser implementation done?
 - Hand-coded parsers are typically recursive descent
 - Auto-generated parsers are table driven
- Recursive descent parser: each non-terminal is a function
 - > Function is in charge of expanding non-terminal
 - Descends parse tree via recursive calls to non-terminals
 - Hand-written but easier to customize and control
 - > Typically uses backtracking rather than prediction
- ☐ Table driven parser: uses a table of predictions
 - Similar to lexer, uses a table to decide on next production
 - ➤ Table indexed by non-terminal and *k* lookahead symbols
 - > Similar to lexer, table can be generated from grammar
 - Always predictive but can use backtracking if needed

Backtracking Example

input string: int * int

start symbol: E

initial parse tree is E

Backtracking Example

input string: int * int

start symbol: E

initial parse tree is E

Assume: when there are alternative rules, try right rule first

Ε

 $E \Rightarrow T$

– pick right most rule $E{\rightarrow}T$

$$\mathsf{E} \; \Rightarrow \; \mathsf{T} \; \Rightarrow \; (\; \mathsf{E} \;)$$

- pick right most rule E→T
- pick right most rule $T\rightarrow$ (E)

$$\mathsf{E} \Rightarrow \mathsf{T} \Rightarrow (\mathsf{E})$$

- pick right most rule E→T
- pick right most rule $T\rightarrow (E)$
- "(" does not match "int"

$$\mathsf{E} \Rightarrow \mathsf{T} \Rightarrow (\mathsf{E})$$

- pick right most rule E→T
- pick right most rule $T\rightarrow (E)$
- "(" does not match "int"
- failure, backtrack one level

$$E \Rightarrow T \Rightarrow (E)$$

- pick right most rule E→T
- pick right most rule $T\rightarrow (E)$
- "(" does not match "int"
- failure, backtrack one level

$$E \Rightarrow T \Rightarrow (E)$$

 \Rightarrow int

- pick right most rule E→T
- pick right most rule T→(E)
- "(" does not match "int"
- failure, backtrack one level
- pick $T \rightarrow int$
- "int" matches input "int"

$$E \Rightarrow T \Rightarrow (E)$$

 \Rightarrow int

- pick right most rule E→T
- pick right most rule T→(E)
- "(" does not match "int"
- failure, backtrack one level
- pick $T \rightarrow int$
- "int" matches input "int"
- however, we expect more tokens
- failure, backtrack one level

$$E \Rightarrow T \Rightarrow (E)$$

 \rightarrow int

- pick right most rule E→T
- pick right most rule T→(E)
- "(" does not match "int"
- failure, backtrack one level
- pick $T \rightarrow int$
- "int" matches input "int"
- however, we expect more tokens
- failure, backtrack one level

$$E \Rightarrow T \Rightarrow (E)$$

 \rightarrow int

 \Rightarrow int * T

- pick right most rule E→T
- pick right most rule T→(E)
- "(" does not match "int"
- failure, backtrack one level
- pick $T \rightarrow int$
- "int" matches input "int"
- however, we expect more tokens
- failure, backtrack one level
- pick T→int * T

$$\begin{array}{lll} E \Rightarrow T \xrightarrow{} (E) & - \operatorname{pick} \operatorname{right} \operatorname{most} \operatorname{rule} E {\to} T \\ & - \operatorname{pick} \operatorname{right} \operatorname{most} \operatorname{rule} T {\to} (E) \\ & - \text{``('')} \operatorname{does} \operatorname{not} \operatorname{match} \text{``int''} \\ & - \operatorname{failure, backtrack} \operatorname{one} \operatorname{level} \\ & \to \operatorname{int} & - \operatorname{pick} T {\to} \operatorname{int} \\ & - \operatorname{pick} \operatorname{Tomegaphical} \text{``int''} \\ & - \operatorname{however, we expect more} \operatorname{tokens} \\ & - \operatorname{failure, backtrack} \operatorname{one} \operatorname{level} \\ & \to \operatorname{int} {}^* T \Rightarrow \operatorname{int} {}^* (E) & - \operatorname{pick} T {\to} \operatorname{int} {}^* T \\ & - \operatorname{pick} T {\to} \operatorname{int} {}^* (E) & \end{array}$$

$$\begin{array}{lll} E \Rightarrow T \xrightarrow{} (E) & - \text{pick right most rule } E \rightarrow T \\ & - \text{pick right most rule } T \rightarrow (E) \\ & - \text{"(" does not match "int")} \\ & - \text{failure, backtrack one level} \\ & \rightarrow \text{int} & - \text{pick } T \rightarrow \text{int} \\ & - \text{pick } T \rightarrow \text{int} \\ & - \text{however, we expect more tokens} \\ & - \text{failure, backtrack one level} \\ & \Rightarrow \text{ int * T } \Rightarrow \text{ int * (E)} \\ & - \text{pick } T \rightarrow \text{int * (E)} \\ & - \text{"(" does not match input "int")} \end{array}$$

failure, backtrack one level

$$\begin{array}{ll} \mathsf{E} \, \Rightarrow \, \mathsf{T} \, \frac{}{\Rightarrow \, (\mathsf{E})} & - \, \mathsf{pick} \, \mathsf{right} \, \mathsf{most} \, \mathsf{rule} \, \mathsf{E} \! \to \! \mathsf{T} \\ & - \, \mathsf{pick} \, \mathsf{right} \, \mathsf{most} \, \mathsf{rule} \, \mathsf{T} \! \to \! (\mathsf{E}) \\ & - \, \text{"(" does not match "int"} \\ & - \, \mathsf{failure, backtrack one level} \\ & \Rightarrow \, \mathsf{int} & - \, \mathsf{pick} \, \mathsf{T} \! \to \! \mathsf{int} \\ & - \, \mathsf{pick} \, \mathsf{T} \! \to \! \mathsf{int} \\ & - \, \mathsf{however, we expect more tokens} \\ & - \, \mathsf{failure, backtrack one level} \\ & \Rightarrow \, \mathsf{int} \, ^* \, \mathsf{T} \, \xrightarrow{} \, \mathsf{int} \, ^* \, (\mathsf{E}) \\ & \Rightarrow \, \mathsf{int} \, ^* \, \mathsf{T} \, \xrightarrow{} \, \mathsf{int} \, ^* \, (\mathsf{E}) \\ \end{array}$$

- "(" does not match input "int"- failure, backtrack one level

$$\begin{array}{lll} E \Rightarrow T \xrightarrow{} (E) & - \operatorname{pick} \operatorname{right} \operatorname{most} \operatorname{rule} E {\to} T \\ & - \operatorname{pick} \operatorname{right} \operatorname{most} \operatorname{rule} T {\to} (E) \\ & - \text{``('' does not match "int''} \\ & - \operatorname{failure, backtrack one level} \\ & \Rightarrow \operatorname{int} & - \operatorname{pick} T {\to} \operatorname{int} \\ & - \operatorname{pick} \operatorname{Total} \\ & - \operatorname{however, we expect more tokens} \\ & - \operatorname{failure, backtrack one level} \\ & \Rightarrow \operatorname{int} {}^*T \xrightarrow{} \operatorname{int} {}^*(E) \\ & - \operatorname{pick} T {\to} \operatorname{int} {}^*(E) \\ & - \operatorname{mint} {}^*\operatorname{match input} \text{``int''} \\ & - \operatorname{failure, backtrack one level} \\ & \Rightarrow \operatorname{int} {}^*\operatorname{int} & - \operatorname{pick} T {\to} \operatorname{int} \\ & - \operatorname{pick} T {\to} \\ & -$$

$$\begin{array}{lll} E \Rightarrow T \xrightarrow{} (E) & - \operatorname{pick} \operatorname{right} \operatorname{most} \operatorname{rule} E {\to} T \\ & - \operatorname{pick} \operatorname{right} \operatorname{most} \operatorname{rule} T {\to} (E) \\ & - \text{``('')} \operatorname{does} \operatorname{not} \operatorname{match} \text{``int''} \\ & - \operatorname{failure, backtrack} \operatorname{one} \operatorname{level} \\ & - \operatorname{pick} T {\to} \operatorname{int} \\ & - \operatorname{int''} \operatorname{matches} \operatorname{input} \text{``int''} \\ & - \operatorname{however, we expect} \operatorname{more} \operatorname{tokens} \\ & - \operatorname{failure, backtrack} \operatorname{one} \operatorname{level} \\ & - \operatorname{pick} T {\to} \operatorname{int} {}^* T \\ & - \operatorname{pick} T {\to} \operatorname{int} {}^* (E) \\ & - \operatorname{``('')} \operatorname{does} \operatorname{not} \operatorname{match} \operatorname{input} \text{``int''} \\ & - \operatorname{failure, backtrack} \operatorname{one} \operatorname{level} \\ & \to \operatorname{int} {}^* \operatorname{int} \\ & - \operatorname{pick} T {\to} \operatorname{int} \\ & - \operatorname{pick} T {\to} \operatorname{int} \\ & - \operatorname{pick} T {\to} \operatorname{int} \\ & - \operatorname{match, accept} \end{array}$$

Recursive Descent Parser with Backtracking

Recursive Descent Parsing Implementation

- When expanding a non-terminal, try all productions until
 - A production is found that generates a portion of the input, or
 - No production is found that generates a portion of the input, in which case backtrack to previous non-terminal
- Create a function for each non-terminal
 - 1. For RHS of each production rule,
 - a. For a terminal, match with input symbol and consume
 - b. For a non-terminal, call function for that non-terminal
 - c. If match succeeds for entire RHS, return success
 - d. If match fails, regurgitate input and try next RHS
 - 2. If match succeeds for any rule, apply that rule to LHS
- If entire input string matched with start symbol, success!

 $\mathsf{E} \to \mathsf{T} + \mathsf{E} + \mathsf{T}$

A Hand-coded Recursive Descent Parser

Sample implementation of parser for previous grammar:

```
T \rightarrow int * T \mid int \mid (E)
fetchNext()
                                     void term()
                                         if (sym==IntNum) {
                                           fetchNext():
                                           if (sym==StarNum) {
void expr()
                                            fetchNext():
                                            term():
   term():
   if (sym==AddNum) {
     fetchNext();
                                         else if (sym==LeftParenNum) {
     expr();
                                           fetchNext():
                                           expr():
                                           if (sym==RightParenNum)
                                            fetchNext():
```

Recursive Descent has a Left Recursion Problem

- Recursive descent doesn't work if grammar is left recursive
- Why is left recursion a problem?
 - For left recursive grammar

$$A \to A \ b \ \mid \ c$$

We may repeatedly choose to apply A b

$$A \Rightarrow A b \Rightarrow A b b \dots$$

- Sentence can grow indefinitely w/o consuming input
- > How do you know when to stop recursion and choose c?

Recursive Descent has a Left Recursion Problem

- Recursive descent doesn't work if grammar is left recursive
- Why is left recursion a problem?
 - For left recursive grammar

$$A \to A \ b \ \mid \ c$$

We may repeatedly choose to apply A b

$$\mathsf{A} \Rightarrow \mathsf{A} \; \mathsf{b} \Rightarrow \mathsf{A} \; \mathsf{b} \; \mathsf{b} \; ...$$

- > Sentence can grow indefinitely w/o consuming input
- > How do you know when to stop recursion and choose c?
- Rewrite the grammar so that it is right recursive
 - > Which expresses the same language

Removing Left Recursion

All immediate left recursion can be eliminated this way:

$$\textbf{A} \rightarrow \textbf{A} \ \textbf{x} \ | \ \textbf{y}$$

change to

$$A \rightarrow y A'$$

$$A' \rightarrow x A' \mid \varepsilon$$

Not all left recursion is immediate

(Recursion may involve multiple non-terminals)

$$\textbf{A} \rightarrow \textbf{BC} \ | \ \textbf{D}$$

$$\mathsf{B} \to \mathsf{AE} \ | \ \mathsf{F}$$

... see Section 4.3 for elimination of general left recursion

... (not required for this course)

Table Driven Parser using Predictions

Predictive Parsers can avoid Backtracking

- Predict correct production rule based on *k* lookahead
 - Backtracking can be avoided if grammar limited to LL(k)
- LL(k) Parser
 - ➤ L left to right scan
 - ➤ L leftmost derivation
 - > k k symbols of lookahead
 - > A predictive parser that uses k lookahead tokens
- LL(k) Grammar
 - A grammar parse-able by LL(k) parser with no backtracking
- LL(k) Language
 - > A language that can be expressed as a LL(k) grammar
 - > LL(k) languages are a restricted subset of CFLs
 - ➤ But many languages are LL(k). In fact, many are LL(1)!

Left factoring can make grammars LL(1)

- An LL(1) grammar
 - > First terminal of every alternative production is unique

$$A \rightarrow a B D \mid b B B$$

$$B \rightarrow c \mid bce$$

- $\mathsf{D} \to \mathsf{d}$
- What if no LL(1)? Left factor to make it LL(1)!
 - What if production rules for A was changed to below?

$$A \rightarrow a \ B \ D \ \mid \ a \ B \ B$$

Left factor a B to enable prediction:

$$A \rightarrow a B A' \mid a B A' A' \rightarrow D \mid B$$

 \square In general, if you see $A \to \alpha\beta + \alpha\gamma$, change to:

$$A \rightarrow \alpha A'$$
 $A' \rightarrow \beta \mid \gamma$

A Table Driven Pushdown Automaton

Syntax stack — hold right hand side (RHS) of grammar rules Parse table M[A,b] — an entry containing rule "A \rightarrow ..." or error Parser code — next action based on **(current token, stack top)** Table can be automatically generated from grammar (just like lexers)

A Sample Parse Table

	int	*	+	()	\$
E	$E\toTX$			$E\toTX$		
X			$X \to +E$		X o arepsilon	X o arepsilon
T	$T \to int\;Y$			T o (E)		
Y		$Y \rightarrow *T$	$Y \rightarrow \varepsilon$		$Y \rightarrow \varepsilon$	$Y \rightarrow \varepsilon$

- Predicts rule based on (current non-terminal, lookahead)
 - > First column lists all non-terminals
 - First row lists all possible terminals and \$
 - A table entry contains one production (one prediction)
- What if an entry has more than one production?
 - Means that this grammar is not LL(1)
 - > A parser can handle this situation by either:
 - Throwing an error to grammar writer to fix the problem
 - Resorting to backtracking to try out both productions

Pseudocode for Table-Driven Parser

- **X** symbol at the top of the syntax stack
- a current input symbol
- Parsing based on (X,a)
 - \rightarrow If X==a==\$, then
 - parser halts with "success"
 - ➤ If X==a!=\$, then
 - pop X from stack and advance input head
 - If X!=a, then Case (a): if $X \in T$, then
 - parser halts with "failed", input rejected

Case (b): if $X \in N$, $M[X,a] = "X \rightarrow RHS"$

pop X and push RHS to stack in reverse order

Push RHS in Reverse Order

X — symbol at the top of the syntax stack

a — current input symbol

☐ Why? Because that is the order of leftmost derivation.

Applying LL(1) Parsing to a Grammar

Given our old grammar

- Requires left factoring of T and int
- After rewriting grammar, we have

To recognize "int * int"

☐ To recognize "int * int"

To recognize "int * int"

☐ To recognize "int * int"

☐ To recognize "int * int"

To recognize "int * int"

Recognition Sequence

It is possible to write in a action list

Stack	Input	Action
E \$	int * int \$	$E{ o}TX$
T X \$	int * int \$	T→ int Y
int Y X \$	int * int \$	terminal
Y X \$	* int \$	Y→ * T
* T X \$	* int \$	terminal
T X \$	int \$	T→ int Y
int Y X \$	int \$	terminal
Y X \$	\$	$Y \rightarrow \varepsilon$
X \$	\$	$X \rightarrow \varepsilon$
\$	\$ \$ halt and acce	

First step in building Parse Table: First and Follow Sets

 \triangleright Set of terminals that can start a string derived from α .

 \triangleright Set of terminals that can follow α in some derivation.

- \square Given rule $A \rightarrow \alpha$,
 - ightharpoonup Choose $A \to \alpha$ for all terminals in First(α)
 - ightharpoonup Choose $A \to \alpha$ for all terminals in Follow(A), if and only if $\alpha \Rightarrow *\varepsilon$

Intuitive Meaning of First and Follow

 $c \in First(A)$

 $a \in Follow(A)$

■ Why is the Follow Set important?

Syntax Analysis

Calculating First(α)

- \square Given $A \to \alpha$, let's calculate First(α).
 - $\rightarrow \alpha$ is string $Y_1 Y_2 Y_3 ... Y_m$ of terminals and non-terminals.
 - \rightarrow For all Y_i , if Y_i is a terminal t, then First(Y_i) = t
 - \rightarrow For all non-terminal Y_i , recursively calculate First(Y_i) (Using below algorithm, replacing α with Y_i)
 - \triangleright Either way, we can assume we know First(Y_i) for all i
- \square Apply following rules until no terminal or ε can be added
 - 1). Add (First(Y_1) ε) to First(α).
 - 2). If First(Y_1), ..., First(Y_{k-1}) all contain ε , then add $(\sum_{1 \le i \le k} First(Y_i) - \varepsilon)$ to First(α).
 - 3). If First(Y_1), ..., First(Y_m) all contain ε , then add ε to First(α).

Calculating Follow(A)

- Follow(α) = $\{t|S \Rightarrow *\alpha t\beta\}$ Intuition: if X \rightarrow A B, then First(B) \subseteq Follow(A)
- Apply following rules until no terminal or ε can be added

little trickier because B may be ε i.e. B \Rightarrow * ε

- 1). $\$ \in \text{Follow}(S)$, where S is the start symbol. e.g. $\text{Follow}(E) = \{\$... \}$.
- 2). Look at the occurrence of a non-terminal on the right hand side of a production which is followed by something If ... $\rightarrow \alpha A\beta$, then First(β)-{ ε } \subseteq Follow(A)
- 3). Look at N on the RHS that is not followed by anything, if $(X \to \alpha A)$ or $(X \to \alpha A\beta)$ and $\varepsilon \in \text{First}(\beta)$, then $\text{Follow}(X) \subset \text{Follow}(A)$

Calculating First and Follow Sets for the example

- Start by calculating the First Sets for all RHSs
 - ➤ First(T X)
 - \rightarrow First(+ E), First(ε)
 - First(int Y), First((E))
 - \rightarrow First(* T), First(ε)
- If any of the above First Sets contains ε , calculate the Follow Set for corresponding non-terminal

Calculating First and Follow Sets for the example

Symbol	First		
((
))		
+	+		
*	*		
int	int		
Е	(, int		
Χ	+ , ε		
T	(, int		
Υ	$^{*}, \varepsilon$		

1 6			
RHS	First		
ΤX	(,int		
+ E	+		
ε	ε		
int Y	int		
(E)	(
* T	*		
Э	3		

Calculating First and Follow Sets for the example

Symbol	First		
((
))		
+	+		
*	*		
int	int		
Е	(, int		
Х	+ , ε		
Т	(, int		
Υ	$^{*}, \varepsilon$		

RHS	First
TX	(,int
+ E	+
ε	ε
int Y	int
(E)	(
* T	*
ε	ε

Non-terminal	Follow		
Χ	\$,)		
Υ	\$,),+		
Е	\$,)		
T	\$,),+		

Construction of LL(1) Parse Table

- $lue{}$ To construct the parse table, we check each $A \rightarrow \alpha$
 - ightharpoonup For each terminal $a \in First(\alpha)$, then add $A \rightarrow \alpha$ to M[A,a].
 - ightharpoonup If ε ∈ First(α), then for each terminal b ∈ Follow(A), add A→ α to M[A,b].
 - ightharpoonup If $\varepsilon \in \mathsf{First}(\alpha)$ and $\$ \in \mathsf{Follow}(\mathsf{A})$, then add $\mathsf{A} \rightarrow \alpha$ to M[A,\$].

Example

RHS	First		
ΤX	(,int		
+ E	+		
ε	ε		
int Y	int		
(E)	(
* T	*		
ε	ε		

Non-terminal	Follow	
Х	\$,)	
Υ	\$,),+	

Table	int	*	+	()	\$
E	$E\toTX$			$E\toTX$		
X			$X \to +E$		X o arepsilon	X o arepsilon
T	$T \rightarrow int Y$			T o (E)		
Υ		Y o *T	$Y \rightarrow \varepsilon$		Y o arepsilon	Y o arepsilon

Determine if Grammar G is LL(1)

Observation

If a grammar is LL(1), then each of its LL(1) table entry contains at most one rule. Otherwise, it is not LL(1).

- Two methods to determine if a grammar is LL(1) or not
 - Construct LL(1) table, and check if there is a multi-rule entry or
 - (2) Checking each rule as if the table is getting constructed. G is LL1(1) iff for a rule A $\rightarrow \alpha | \beta$
 - ightharpoonup First(α) \cap First(β) = ϕ
 - ightharpoonup at most one of α and β can derive ε
 - ightharpoonup If β derives ε , then First(α) \cap Follow(A) = ϕ

Left-recursion disqualifies grammar for LL(1)

- Recall recursive descent had trouble with left-recursion.
- ☐ Table-driven parsers have a similar problem.
- igspace Left-recursion is of the form A o Ab|a or A o Ab|arepsilon
 - ightharpoonup For A o Ab|a, First(Ab) \cap First(a) = {a}
 - ightharpoonup For $A o Ab|\varepsilon$, First $(Ab) \cap$ Follow $(A) = \{b\}$
 - Either way, an ambiguity in prediction
- Even if prediction can be made with more lookahead,
 - > Sentence can grow indefinitely w/o consuming input
 - ightharpoonup We may repeatedly choose to apply $A \rightarrow Ab$:

$$A \Rightarrow A b \Rightarrow A b b \dots$$

> Same stack explosion problem as with recursive descent

Dealing with Non-LL(1) Grammars

- (1) Likely still an LL(1) language. Massage to LL(1) grammar:
 - Apply left-factoring
 - Apply left-recursion removal
- (2) If (1) fails, the possibilities are...
 - Grammar just needs a little more lookahead (May need LL(k) parser where k > 1 or backtracking)
 - Grammar is ambiguous (multiple parse trees)
- How do we deal with ambiguous grammars then?
 - Note: left-factoring and left-recursion removal don't help
 - Expressing precedence and associativity in grammar helps

Ambiguous not just non-LL(1)

```
Some grammars are not LL(1) even after left-factoring and
     left-recursion removal
          S \rightarrow if C then S \mid if C then S else S \mid a (other statements)
          C \rightarrow b
    change to
          S \rightarrow if C then S X \mid a
          X \rightarrow \text{else S} \mid \varepsilon
          C \rightarrow b
     problem sentence: "if b then if b then a else a"
           First(X) = {else, \varepsilon}
           From S \to if C then S X, Follow(S) \subset Follow(X)
           Follow(X) = \{else, \$\}
           For X \to \text{else } S \mid \varepsilon, First(else S) \cap Follow(X) = {else}
Such grammars are potentially ambiguous
```

Removing Ambiguity

- ☐ We want to express precedence of if-then-else over if-then.
- How would you rewrite grammar to express precedence?

```
S \rightarrow if C then S \mid S2 S2 \rightarrow if C then S2 else S \mid a C \rightarrow b
```

- Now grammar is unambiguous but it is not LL(k) for any k
 - > Intuitively, must lookahead until 'else' to choose rule for 'S'
 - That lookahead may be an arbitrary number of tokens
- Changing the grammar to be perfectly unambiguous
 - Can be very taxing for programmers to specify correctly
 - May still result in grammar not suitable for LL(1) parsing
- More practical to encode precedence rules into parser
 - ightharpoonup E.g. Always choose $X \to else$ S over $X \to \varepsilon$ on 'else' token

LL(1) Time and Space Complexity

- LL(1) parsers operate in linear time and space relative to the length of input.
- Time: each token is processed constant number of times
 - ➤ Why?
- Space: stack space required is at max the length of input
 - ightharpoonup If X $ightharpoonup \varepsilon$ rules removed (easily done by substitution)
 - > Why?
- How about LL(k)?
 - > Same time complexity as the same argument applies
 - ightharpoonup Space complexity is $O(T^k)$, where T is number of terminals (if constructing the parse table naively)

ANTLR: A modern LL(k) parser

- A free open source top-down LL(k) parser (antlr.org)
 - > Used in Apache Groovy, Jython, MySQL Workbench, ...
- Reduces table space by expressing lookahead as DFA
 - A DFA decides on which rule for each non-terminal
 - DFA can express arbitrarily long lookahead compactly
- If you are interested, refer to this paper:
 - LL(*): The Foundation of the ANTLR Parser Generator https://www.antlr.org/papers/LL-star-PLDI11.pdf