## Due: 6 December 2020 @22 o'clock – No late homework will be accepted.

- 1) Consider the BiCMOS follower circuit shown in Figure 1a. The BJT transistor parameters are  $V_{BE,on}=0.7V$ ,  $V_{CE,sat}=0.2V$ ,  $V_A=\infty$ , and the depletion mode n-MOSFET parameters are  $V_{TH}=-1.8V$ ,  $k_n=12mA/V^2$ ,  $\lambda=0$  (You can treat depletion mode MOSFETS as regular MOSFETS).
  - a. Determine the maximum and minimum values of output voltage and the corresponding input voltages for the circuit to operate in the linear region (i.e., Class-A operation) for (a)  $R_L=\infty$  and (b)  $R_L=500\Omega$ .
  - b. What is the smallest value of  $R_L$  possible if a 2 V peak sine wave is produced at the output?
  - c. What is the corresponding power conversion efficiency?
- 2) Consider the class-AB output stage in Figure 1b. Assume that all transistors are matched, with parameters  $V_+ = -V_- = 12 \ V$  and  $\beta = 40$ ,  $V_{BE}(npn) = V_{BE}(pnp) = 0.7 \ V$ ,  $R_1 = R_2 = 250 \ \Omega$ ,  $R_3 = R_4 = 0 \ \Omega$ ,  $R_L = 8 \ \Omega$ . Hint: You can practically assume that  $i_{E3} = i_O$ .
  - a. For  $v_I = 0$  V, determine  $i_{E1}$ ,  $i_{E2}$ ,  $i_{B1}$ , and  $i_{B2}$ .
  - b. For  $v_I = 5 V$ , determine  $i_O, i_{E1}, i_{E2}, i_{B1}, i_{B2}$ , and  $i_I$ .
  - c. Using the results of part (b), determine the current gain of the output stage.
- 3) Consider the class-AB MOSFET output stage, shown in Figure 2a. The circuit parameters are  $I_{Bias}=0.2mA$ ,  $R_L=1k\Omega$ . The transistor parameters are  $V_{TH,n}=0.8V$ ,  $k_n'=100\mu A/V^2$ ,  $V_{TH,p}=-0.8V$ ,  $k_p'=40\mu A/V^2$ . For the quiescent condition, assume  $V_{GS,3}=V_{SG,4}$  and  $V_{GS,1}=V_{GS,2}$ . Assume  $\lambda=0$  for all transistors.
  - a. If  $V_i=-1.5V$ ,  $V_O=0V$ , and  $i_{D1}=i_{D2}=0.5mA$ , determine the W/L ratio of each transistor.
  - b. Assuming a voltage drop across  $I_{Bias}$  of 0.2 V and  $V_i = -1.5V$ , find the maximum and minimum limits of  $V_O$ .
- 4) Using SPICE, plot the input/output characteristic of the circuit shown in Figure 2b for  $-2 \text{ V} < V_{in} < +2 \text{ V}$ . Also, plot the output waveform for an input sinusoid having a peak amplitude of 2 V. How do these results change if the load resistance is raised to 16  $\Omega$ ? Use 2N2222 npn and 2N2907 pnp transistors in LTSpice.



Fig 1a. The figure of Question 1



Fig 1b. The figure of Question 2



Fig 2a. The figure of Question 3



Fig 2b. The figure of Question 4