Mikroelektromechanikai rendszerek

Szenzorok a gyakorlatban.

Iroda: Informatika Tanszék, A602

Email: kajdocsi.laszlo@sze.hu

Oktató: Tüű-Szabó Boldizsár

Iroda: Informatika Tanszék, B606/A

Email: tuu.szabo.boldizsar@sze.hu

Elmozdulás és pozíció mérő szenzorok

- Ellenállásos szenzorok
- Kapacitív szenzorok
- Elektromágneses szenzorok
- Piezoelektromos szenzorok
- Optoelektronikus szenzorok
- Ultrahangos szenzorok

Ellenállásos szenzorok

- Mechanikai erő, hőmérséklet változás vagy különböző sugárzások hatására ellenállás változás jön létre.
- Az érzékelő elem maga az ellenállás.

Forgó potenciométerek

Szolenoidos kivitel

Grafit érintkezővel

Potenciométeres szenzorok tulajdonságai

- A csúszka súrlódása hiszterézis hibát okoz
- A csúszka és az ellenálláspálya kopik
- A csúszka és az ellenálláspálya közötti
- Az átmeneti ellenállás elektronikus zajt okoz
- Csak terheletlenül (R_t = ∞) lineáris
- A linearitást a vezeték-ellenállások is kedvezőtlenül befolyásolják

Nyúlásmérő bélyegek

$$R = \rho \frac{l}{S}$$

Nyúlásmérő bélyegek fajtái

Fémes ellenállas-anyagú

Félvezető ellenállas-anyagú

Nyúlásmérő bélyegek

Nyúlásmérő bélyegek

Mit mérhetünk vele?

- elmozdulást
- sebességet
- gyorsulást
- erőt
- nyomatékot
- nyomást

Kapacitív szenzorok

- Két fém felület, melyek között dielektromos szigetelő anyag van
- A kapacitás az alábbi képlettel számítható:

$$C = \varepsilon_0 \varepsilon \frac{S}{d}$$

 A kapacitív szenzorok jó tulajdonságai az egyszerűség, áttekinthetőség, magas érzékenység és alkalmazhatóság magasabb hőmérsékleteknél is.

10

Kapacitív szenzorok fajtái

Változó felületű kapacitív szenzorok

Kapacitív szenzorok fajtái

Változó dielektrikumú kapacitív szenzorok

Elektromágneses szenzorok

- Az elektromágneses szenzorok működése a tekercs induktivitásának, a mágneses kör mágneses ellenállásának változásán vagy az elektromágneses indukción alapul.
- E tekintetben megkülönböztetjük az öninduktivitás-, kölcsönös induktivitás változásán alapuló és indukciós érzékelőket.
- A kölcsönös- és öninduktivitás változáson alapuló szenzorokat passzív, az indukciós szenzorokat pedig aktív szenzoroknak is nevezzük.

Elektromágneses sznzorok

 Mivel a vasmag mágneses ellenállása kicsi, a vasmag veszteségei elhanyagolhatóak, így az induktivitás a következő képlettel határozható meg:

$$L = \frac{\mu_0 N^2 S_{\delta}}{2\delta}$$

Önindukciós szenzorok

Váltakozó légrésű önindukciós szenzorok

Kölcsönös induktivitású szenzorok

- Nem a tekercs induktivitását mérjük, hanem a két szélső (szekunder) tekercsben indukált feszültséget
- Nagy a megbízhatósága
- Váltakozó hosszú vagy keresztmetszetű légréssel készülnek. Alkalmasak kicsiny mechanikus elmozdulások mérésére.

Indukciós szenzorok

- Valójában generátorok, így az aktív szenzorok csoportjába tartoznak
- Ha egy mozgó vezető egy állandó mágnes erővonalait metszi abban feszültség indukálódik.
- Létezik mozgó tekercses vagy mozgó mágneses kivitel

Piezoelektromos szenzorok

- Bizonyos egykristály szerkezetű dielektromos anyagok mechanikai igénybevétel hatására elektromos potenciált produkálnak. A legismertebb ilyen anyag a kvarc (SiO2).
- Készülhetnek prizma, tárcsa, henger(cső) vagy hengerszelet alakjában.
- Az érzékenység akkor a legnagyobb, a piezoelektromos átalakító szalag alakú. Sajnos, a szalag szilárdsága kicsi és könnyen törik hosszanti terhelés esetén. Szilárdság szempontjából legmegfelelőbb a cilindrikus alak, de nehéz előállítani.

Piezoelektromos szenzorok

Transzformátoros piezoelektromos szenzorok

- Ezek az érzékelők két piezoaktív szekcióból tevődnek össze.
- Az érzékelők ezen típusát villamos nagyságok mérésére használjuk (áram, feszültség, frekvencia) és két csoportra osztjuk őket: Feszültség- és áramtranszformátorok.

Optoelektronikus szenzorok

- Az optikai szenzorok általában három részből állnak: (fény)forrás, fényérzékelő és szállítóközeg
- Fényérzékelő mint optikai szenzor: a fényenergiát elektromos nagysággá (áram, feszültség, ellenállás, kapacitás vagy villamos töltés) alakítja át.
- Alkalmazási lehetőségek: közelség mérés, távolság mérés, fényerősség, stb.

Optoelektronikus szenzorok

Közelség érzékelők:

- Fényforrásként LED-et használnak
- Vevőoldalon fotodióda vagy fototranzisztor található

Optikai távolságmérő:

- Vörös- vagy lézerfénnyel működnek
- Általában háromszögelési módszeren vagy Time-of-Flight technológián (TOF) alapul.

Ultrahangos szenzorok

 Az ultrahang érzékelő a nagyfrekvenciás hanghullámok visszaverődése alapján működik.

Hőmérsékletmérő szenzorok

- Expanziós hőmérők
- Ellenállásos hőmérők
- Termoelektromos érzékelők (termoelemek, dióda és tranzisztor mint hőmérséklet érzékelők)
- · Hősugárzás érzékelők.

A felsoroltak mellett léteznek más eljárások is, és a jövőben még újabbak fognak megjelenni!

Expanziós hőmérséklet szenzorok

- Melegedésre tágul, hűtésre viszont összehúzódik, hőmérséklet változásra lineárisan változtatja méreteit.
- Tipikus expanziós érzékelő a higanyos hőmérő.
- A higany mellett használható még toluol, etilalkohol, pentán.
- Lehet még dilatációs hőmérő. Pl. termosztát.
- Vagy bimetálos (ikerfémes) hőmérők.

Ellenállás hőmérők

- Fém ellenállás-hőmérők. A fém ellenállás-hőmérőket tekercs alakúra gyártják.
- A platina a legmegfelelőbb anyag ellenállásos hőmérő készítésére, mert 99,999% tisztaságú fém állítható elő, kémiailag semleges és elég nagy az ellenállás, lineáris a hőmérséklet állandója.
- A platina ellenállás hőmérsékletmérésre -200°C-tól 630°C-ig (maximum 1060°C-ig) alkalmazható.
- Lehet még réz vagy nikkel huzalból, de kevésbé hatékony.

Félvezetős ellenállás hőmérők

- A termisztorok hőmérsékletre érzékeny félvezető ellenállások, anyagukat tekintve nehézfém oxidokból készült kerámiák.
- A -50 °C-tól 100 °C-ig terjedő tartományban mérnek.
- A termisztorok fajtái lehetnek NTC és PTC típusúak.
- Gyors reakcióval rendelkeznek és az öregedés folyamán nő a stabilitásuk.
- Kifejezetten nemlineáris karakterisztika.

NTC és PTC termisztorok karakterisztikái

Termoelemek

- A termoelemek elsődleges feladata a magas 500 1000 °C hőmérsékletek mérése volt. Ma is ezen a területen a legnagyobb a jelentőségük, de alkalmazásuk sikeresen kiterjedt a rendkívül alacsony hőmérsékletek (1K-ig), valamint az egészen magas hőmérsékletek (4000 °C-ig) mérésére is.
- Termoelem a szokványos elnevezése azoknak a mérőeszközöknek amelyek két különböző anyagú, egyik végükön összeforrasztott (összehegesztett esetleg csak erősen összecsavart) huzalból állnak.

Termoelemek

Nyomásmérő szenzorok

- Azt a skaláris mennyiséget amit az egységnyi felületre S [m2] ható erő F [N] értékére kapunk, nyomásnak nevezzük P [Pa].
- P = F / S
- A nyomásméréseket három csoportba kategorizáljuk:
 - Abszolút nyomásmérés
 - Légnyomásmérés
 - Differenciális nyomásmérés

Nyomásmérő szenzorok

- A nyomásérzékelők lehetnek közvetlen vagy kompenzációs típusúak.
- Mindkét esetben közös elemük az elsődleges érzékelő elem, amely a p nyomást vagy a Δp nyomáskülönbséget erővé alakítja.
- Ez általában egy elasztikus elem, amely az F erő hatására deformálódik vagy pedig elmozdul Δx távolságra.
- A közvetlen átalakítóknál az erő vagy az elmozdulás a következő lépésben elektromos jellé alakul.

Tipikus nyomásérzékelők

- A deformáció villamos kimenetté alakul.
- A villamos nyomásérzékelők többsége rendelkezik membrán típusú primer elemmel.
- A primer elem karakterisztikáitól függ a méréstartomány, a rezonáló frekvencia és a szenzor érzékenysége.
- Az elem deformációja, a nyomás hatására jön létre, és a továbbiakban villamos jellé alakul át.
- Megkülönböztetünk elektromágneses, kapacitív, ellenállásos valamint piezoelektromos érzékelőket.

Tipikus nyomásérzékelők

Szintmérő szenzorok

- A szint tulajdonképpen egy folyékony, vagy szemcsés anyag magassága az edényben vagy tartályban.
- A szintmérő szenzorokat nívómétereknek is nevezzük.
- A szintet a hosszúság mértékegységében fejezzük ki (m).
- A szintmérésmódszerek két csoportba oszthatók:
 - A kiválasztott diszkrét pontokban történő szintmérési módszerek (minimum, maximum),
 - A folyamatos szintmérési módszerek.

Szintmérési technikák

- Úszós szintérzékelők: Az úszó egy 80 200 mm átmérőjű gömb. a folyadék felszínén úszik, melynek a szintjét mérjük. Az úszó helyzete mechanikus úton egy mutatóra vagy egy szögelfordulás érzékelőre kerül.
- Merülős szintérzékelők: A merülő általában egy cilindrikus keresztmetszetű rúd mely felső vége egy erő érzékelőre van erősítve. Sűrűsége nagyobb mint a mért folyadék sűrűsége, a hossza pedig közel megegyezik a mérési tartománnyal.

Szintmérési technikák

- Hidrosztatikus szintérzékelők: Ezen szenzorok működési elve Pascal törvényén alapul, mely segítségével kiszámítható a P nyomás adott sűrűségű, nyugodt, homogén fluidban h mélységen.
- Ellenállásos szintmérők: leginkább egy kifeszített fém szalagból és egy ellenálláshuzalból állnak. A folyadék vagy a szemcsés anyag felszíne alatt a szalag és a huzal rövidre vannak zárva. Az áramkör ellenállása a felszín felett arányos a mért szinttel.

Szintmérési technikák

- Kapacitív szintérzékelők: leginkább sík vagy cilindrikus kondenzátorok melyek fegyverzetei között a mért folyadék helyezkedik el. A folyadék lehet vezető vagy szigetelő.
- Ultrahangos szintérzékelők: A hanghullámok, ultrahanghullámok és a mikrohullámú sugárzás visszaverődése két fluid határfelületéről hatásosan alkalmazható a szintmérés területén. A szint arányos az eltelt T idővel, amíg a hullám megteszi a forrástól az érzékelőig az utat.

Szintmérő szenzorok

Inerciális szenzorok – IMU

- Olyan szenzorok egysége, amelyek valamilyen mozgásból származó értékeket mérnek.
- Lehet:
 - Gyorsulás (gyorsulásmérő)
 - Sebesség (gyorsulásmérő)
 - Megtett út (gyorsulásmérő)
 - Tájolás (giroszkóp)
 - Magasság (magnetométer)

Gyorsulásmérő szenzor

- Egyszerűen fogalmazva a gyorsulásmérő szenzor az X, Y és Z irányba ható erőhatásokat méri.
- Ezeknek az adatoknak a gravitáció miatt tudjuk hasznát venni.
- Tudjuk, ha egy test mozdulatlan, akkor csak a gravitációnak köszönhetően lesz gyorsulása, elhanyagolva minden más minimális erőhatást.

Giroszkóp

- Szögsebességet mér a három tengely irányában.
- Nem közvetlenül méri a dőlést (pitch), perdülést (roll) és irányváltoztatást (yaw).
- Ha időben integráljuk a három tengely szögsebesség értékét, akkor megkapjuk a szögekben kifejezett elmozdulásokat a három tengelyre vetítve.

Magnetométer

- Mágneses térerősség mérésére szolgáló szenzor.
- A Föld mágneses terét használja az orientáció meghatározására.
- Hasonlóan működik mint az iránytű.
- A mért értékekből kiolvasható az irányváltoztatás.

Köszönöm a figyelmet!