

第八章非线性方程和方程组的数值解法

第八章非线性方程和方程组的数值解法

第一节引言

8.1.1 问题的背景

问题: 求 f(x) = 0 或多元非线性方程组 $f_i(x_1, x_2, ..., x_n) = 0$, i = 1, 2, ..., n 的解。

求解方法及研究内容:求解非线性方程一般不用直接法,而采用**迭代法**;迭代法的基本问题 是收敛性、收敛速度和计算效率。

与求解线性方程组的不同点: 同的初值可能有不同的收敛性态, 有的初值使迭代收敛, 而有的则不收敛。

本章介绍方程的迭代解法,它仅限于求方程的实根。 运用迭代法求解方程的根应解决以下两个问题:

- 确定根的初值;
- 将进一步精确化到所需要的精度。

8.1.2 一元方程的搜索法

对于一元非线方程。

$$f(x) = 0 \tag{8.1.1}$$

如有满足 x^* 满足 $f(x^*)=0$,则称 x^* 为该**方程的解或根**,也称 x^* 为函数f(x)的零点或根。

解析函数在根的两侧是否变号,取决于**根的重数**。

我们称点 x^* 是函数f(x)的m 重根,如果f(x)在 x^* 领域上可表示为。

$$f(x) = (x - x^*)^m g(x)$$
 (8.1.2)

其中m是不小于1的正整数, $g(x^*) \neq 0$ 。

则当m为奇数时,f(x)在点 x^* 处变号,当m为偶数时不变号。

注: g(x)在x*附近保号

(8.1.2) 等价于条件。

$$f(x^*) = f'(x^*) = \dots = f^{(m-1)}(x^*) = 0, f^{(m)}(x^*) \neq 0$$
 (8.1.3)

提示:
$$f(x) = f(x^*) + f'(x^*)(x - x^*) + \frac{f^{(m-1)}(x^*)}{(m-1)!}(x - x^*)^{m-1} + \frac{f^{(m)}(\xi_x)}{(m)!}(x - x^*)^m$$

搜索法

对于给定的f(x),设有根区间为[a,b],从 x_0 =a出发,以步长h=(b-a)/n(n是正整数),在[a,b]内取定节点: a_i = a_0 +kh(k=0,1,2,…,n),从左至右检查f(x_i)的符号(连续函数的介值性定理)

例1 方程f(x)=x3-x-1=0 确定其有根区间

解: f(0)<0 f(2)>0 在区间(0,2)内至少有一个实根

设从x=0出发,取h=0.5为步长向右进行根的搜索,列表如下

X	0	0. 5	1. 0	1. 5	2	
f(x)	_	_	_	+	+	

可以看出,在[1.0,1.5]内必有一根

8.1.3 二分法

原理:设f(x)在区间[a,b]上连续,f(a)f(b)<0,则由连续函数的性质知f(x)=0在

(a,b)内至少有一个实根。[a,b]为 f(x)=0 的有根区间。

特别地,f(x)在区间[a,b]上单调,那么f(x)=0在(a,b)内只有唯一的实根 x^* 。

思想:逐步将**有根区间分半**,通过**判别函数值的符号**进一步搜索有根区间。将有根区间缩小到充分小,从而求出满足给定精度的近似值。↓

现采用以下步骤来求这根的近似值。。

- (2) 计算 $f(a)f(x_0)$,若 $f(a)f(x_0) > 0$,则取 $a_1 = x_0, b_1 = b$; 否则 $a_1 = a, b_1 = x_0$;

(3) 重复上述步骤,直到 $|b_n-a_n|<\varepsilon$,则取 $x^*\approx x_n=(a_n+b_n)/2$

$$|x^* - x_n| \le \frac{b_n - a_n}{2} = \frac{b - a}{2^{n+1}}$$

误差分析:
$$|x^* - x_n| < (b_n - a_n)/2 = (b - a)/2^{n+1}$$
 (8.1.4)

例 8.1.2: 证明方程 $x^3 - 2x^2 - 4x - 7 = 0$ 在[3,4]内只有一根。使用二分法求误差不超过 10^{-3} 的根的迭代多少次? \downarrow

解 :设 f(k	a_k	$f(a_k)$	c_k	$f(c_k)$	\boldsymbol{b}_k	$f(b_k)$,
f(3)f(4) < 0	0	3	-	3.5	-	4	+	而
f(x)在[3,4]上		3.5	-	3.75	+	4	+	
为了使 <i>x</i> _n	2	3.5	-	3.625	-	3.75	+	曲
(b-a)=1, #	3	3.625	-	3.6875	+	3.75	+	í为
$x_0 = 3.632$	4	3.625	-	3.6563	+	3.6875	+	./3
λ ₉ = 3.032 ° °	5	3.625	-	3.6406	+	3.6563	+	
	6	3.625	-	3.6328	+	3.6406	+	
	7	3.625	-	3.6289	-	3.6328	+	
	8	3.6289	-	3.6309	-	3.6328	+	
	9	3.6309	-	3.6318		3.6328	+	

二分法的优点是不管有根区间 [a,b] 多大,总能求出满足精度要求的根,且对函数f(x)的要求不高,只要连续即可,计算亦简单;它的局限性是只能用于求函数的实根,不能用于求复根及偶数重根,它的收敛速度与比值为 $\frac{1}{2}$ 的等比级数相同。

