General Factor Design

Calvin Tran

The yield of a chemical process is being studied. The two factors of interest are temperature and pressure. Three levels of each factor are selected; however, only nine runs can be made in one day. The experimenter runs a complete replicate of the design on each day. The data are shown in the following table. Analyze the data, assuming that the days are blocks.

- Two factors, 2x3 design
- Blocking factor is day

```
In [14]: library(ggplot2)

Yield = read.csv('/content/Yield.csv')
Yield$Blocks = as.factor(Yield$Blocks)
Yield$Temperature = as.factor(Yield$Temperature)
Yield$Pressure = as.factor(Yield$Pressure )

dim(Yield)
head(Yield)
```

18 · 4

A data.frame: 6 × 4

	Blocks	Temperature	Pressure	Yield
	<fct></fct>	<fct></fct>	<fct></fct>	<dbl></dbl>
1	Day1	Low	250	86.3
2	Day1	Low	260	84.0
3	Day1	Low	270	85.8
4	Day1	Medium	250	88.5
5	Day1	Medium	260	87.3
6	Day1	Medium	270	89.0

Examine Data Graphically

Main effects: Temperature and Pressure

```
In [15]: install.packages('patchwork',verbose=FALSE)
library(patchwork)
```

#boxplots box1 = ggplot(Yield, aes(x=Temperature,y=Yield))+geom_boxplot() box2 = ggplot(Yield, aes(x=Pressure,y=Yield))+geom_boxplot() (box1|box2)

Installing package into '/usr/local/lib/R/site-library'
(as 'lib' is unspecified)

In [16]: #violin plots vio1 = ggplot(Yield, aes(group=Temperature, x=Temperature,y=Yield))+geom_violin()+geom vio2 = ggplot(Yield, aes(group=Pressure, x=Pressure,y=Yield))+geom_violin()+geom_dotpl vio1 | vio2

Plots

These plots suggest that the effect of temperature has a large impact on the resulting Yield.

The variance seen in pressure is likely explained as a result of being tested alongside different temperatures. The means for the different pressures appear roughly equal.

The interaction between factors will be explored later below.

Evaluate Necessity of Blocking Factor

Compare the ratio of the Sum of Squares for the blocking factor to the Sum of Squares of the Overall Error

```
In [17]: #examine the blocks graphically
   box_block = ggplot(Yield, aes(x=Blocks,y=Yield))+geom_boxplot()
   vio_block =ggplot(Yield, aes(group=Blocks, x=Blocks,y=Yield))+geom_violin()+geom_dotpl
   box_block | vio_block

Warning message:
   "Groups with fewer than two data points have been dropped."
```


In [18]: #Conduct analysis of variance to see the relative effect of blocking factor
Yield_aov = aov(Yield~Temperature*Pressure+Blocks, Yield)
summary(Yield_aov)

```
Df Sum Sq Mean Sq F value Pr(>F)
                     2 99.85
                                49.93 87.936 1.1e-05 ***
Temperature
                                       4.850 0.04767 *
Pressure
                     2
                         5.51
                                 2.75
                                 6.72 11.844 0.00567 **
Blocks
                     2 13.45
Temperature: Pressure 4
                         4.28
                                 1.07
                                        1.886 0.21777
Residuals
                         3.97
                                 0.57
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Blocking factor

• Sum Sq of Blocks: 13.45

• Sum Sq of Residuals/Error: 3.97

Ratio: 13.45/3.97 = 3.3879

Graphically **the Yield means appear different** between the Day 1 and Day 2 blocks.

This indicates that the **blocking factor is worth keeping**. Blocking was helpful in improving the precision of the comparison of treatment means.

Conduct Analysis of Variance and test hypothesis on main effects

Conclusions using significance level 0.05

```
In [19]: Yield_main_aov = aov(Yield~Temperature+Pressure+Blocks, Yield)
         summary(Yield_main_aov)
                    Df Sum Sq Mean Sq F value Pr(>F)
         Temperature 2 99.85 49.93 66.508 7.18e-07 ***
         Pressure 2 5.51 2.75 3.668 0.06017.
         Blocks
                   2 13.45 6.72 8.958 0.00491 **
         Residuals 11 8.26 0.75
        Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
         F-statistic
            \# n = 2
            \# a = b = 3
            \# a-1 = 2
            \# (a*b)(n-1) = (3*3)(1) = 9
In [20]: # Compute critical value of F
         qf(c(0.05),2,9,lower.tail=FALSE)
        4.25649472909375
In [21]: #Multiple comparisons for the main effect of Temperature
         install.packages('emmeans', verbose=FALSE)
         library(emmeans)
         print(emmeans(Yield_main_aov, pairwise ~ Temperature | Pressure))
         Installing package into '/usr/local/lib/R/site-library'
         (as 'lib' is unspecified)
```

\$emmeans Pressure = 250: Temperature em High

Temperature	emmean	SE	df	lower.CL	upper.CL
High	91.7	0.510	11	90.6	92.8
Low	86.1	0.606	11	84.8	87.4
Medium	89.4	0.606	11	88.0	90.7

Pressure = 260:

Temperature	emmean	SE	df	lower.CL	upper.CL
High	91.5	0.510	11	90.4	92.6
Low	85.9	0.606	11	84.5	87.2
Medium	89.2	0.606	11	87.8	90.5

Pressure = 270:

Temperature	emmean	SE	df	lower.CL	upper.CL
High	92.6	0.463	11	91.6	93.6
Low	87.0	0.510	11	85.9	88.1
Medium	90.3	0.510	11	89.2	91.4

Results are averaged over the levels of: Blocks Confidence level used: 0.95

\$contrasts

Pressure = 250:

contrast	estimate	SE	df	t.ratio	p.value
High - Low	5.61	0.531	11	10.581	<.0001
High - Medium	2.33	0.531	11	4.393	0.0028
Low - Medium	-3.28	0.500	11	-6.564	0.0001

Pressure = 260:

contrast		estimate	SE	df	t.ratio	p.value
	High - Low	5.61	0.531	11	10.581	<.0001
	High - Medium	2.33	0.531	11	4.393	0.0028
	Low - Medium	-3.28	0.500	11	-6.564	0.0001

Pressure = 270:

```
contrast estimate SE df t.ratio p.value
High - Low 5.61 0.531 11 10.581 <.0001
High - Medium 2.33 0.531 11 4.393 0.0028
Low - Medium -3.28 0.500 11 -6.564 0.0001
```

Results are averaged over the levels of: Blocks P value adjustment: tukey method for comparing a family of 3 estimates

These estimates indicate that as temperature increases from Low to Medium to High, the mean yield also increases. This is consistent for all pressures.

```
Temperature = High:
            estimate SE df t.ratio p.value
contrast
Pressure250 - Pressure270 -0.914 0.531 11 -1.722 0.2405
Pressure260 - Pressure270 -1.131 0.531 11 -2.131 0.1287
Temperature = Low:
              estimate SE df t.ratio p.value
contrast
Pressure250 - Pressure260 0.217 0.500 11 0.433 0.9026
Pressure250 - Pressure270 -0.914 0.531 11 -1.722 0.2405
Pressure260 - Pressure270 -1.131 0.531 11 -2.131 0.1287
Temperature = Medium:
            estimate SE df t.ratio p.value
contrast
Pressure250 - Pressure270 -0.914 0.531 11 -1.722 0.2405
Pressure260 - Pressure270 -1.131 0.531 11 -2.131 0.1287
Results are averaged over the levels of: Blocks
P value adjustment: tukey method for comparing a family of 3 estimates
```

On the other hand, these p-values for these estimates indicate that changing the pressure has no significant effect on the mean.

Main Effects

Using a 0.05 significance level, it appears that the temperature factor affects the mean while the pressure factor does not.

Critical F-value = 4.256

- The F-value for temperature, at 66.508 is larger than this critical value. Along with a very small p-value well below the significance level, This indicates a significant difference in means.
- The F-value for pressure, at 3.668 is smaller than this critical value. Along with a p-value higher than the significance level, This indicates no difference in means, failing to reject the null hypothesis.

Construct Interaction Plot & test on interaction of factors

Conclusions using significance level 0.05

```
In [23]: #interaction plot
  interaction1 = with(Yield, interaction.plot(Pressure,Temperature,Yield))
  interaction2 = with(Yield, interaction.plot(Temperature,Pressure,Yield))
  (interaction1|interaction2)
```


While two of the lines seem rather parallel, in the first chart the line for High temperature differs for pressure=250, and in the second chart the lines for pressure=250 and pressure=260 intersect.

This indicates that there is an interaction between factors, and this seems to exist at high temperatures at 250 pressure.

```
In [24]:
        #aov
        Yield aov = aov(Yield~Temperature*Pressure+Blocks, Yield)
         summary(Yield_aov)
                            Df Sum Sq Mean Sq F value Pr(>F)
        Temperature
                             2 99.85 49.93 87.936 1.1e-05 ***
                             2 5.51
                                        2.75 4.850 0.04767 *
        Pressure
                             2 13.45
                                        6.72 11.844 0.00567 **
        Blocks
        Temperature:Pressure 4 4.28
                                        1.07 1.886 0.21777
        Residuals 7 3.97
                                        0.57
        ---
        Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
In [25]: print(emmeans(Yield_aov, pairwise ~ Temperature | Pressure)$contrasts)
        Pressure = 250:
         contrast estimate SE df t.ratio p.value
         High - Low 4.20 0.754 7 5.574 0.0021
         High - Medium 1.45 0.754 7 1.924 0.2018
         Low - Medium -2.75 0.754 7 -3.650 0.0196
        Pressure = 260:
         contrast estimate SE df t.ratio p.value
         High - Low 7.10 0.754 7 9.423 0.0001
         High - Medium 3.10 0.754 7 4.114 0.0109
         Low - Medium -4.00 0.754 7 -5.309 0.0028
        Pressure = 270:
         contrast estimate SE df t.ratio p.value
         High - Low 5.56 0.942 7 5.899 0.0015
         High - Medium
                         2.46 0.942 7 2.608 0.0794
         Low - Medium -3.10 0.754 7 -4.114 0.0109
        Results are averaged over the levels of: Blocks
        P value adjustment: tukey method for comparing a family of 3 estimates
        These results differ slightly from the model without the interaction factor.
        At pressure = 250 and at pressure = 270, the contrasts between high and medium temperature
        is higher than the significance level.
        This indicates that at certain pressures, increasing the temperature from "medium" to
```

"high" has no effect. The resulting mean yield is the same.

In [26]: print(emmeans(Yield_aov, pairwise ~ Pressure | Temperature)\$contrasts)

Temperature = High:

contrast	estimate	SE	df	t.ratio	p.value
Pressure250 - Pressure260	-1.300	0.754	7	-1.725	0.2619
Pressure250 - Pressure270	-1.706	0.942	7	-1.812	0.2342
Pressure260 - Pressure270	-0.406	0.942	7	-0.431	0.9039

Temperature = Low:

contrast		estimate	SE	df	t.ratio	p.value
Pressure250 -	Pressure260	1.600	0.754	7	2.123	0.1544
Pressure250 -	Pressure270	-0.350	0.754	7	-0.464	0.8897
Pressure260 -	Pressure270	-1.950	0.754	7	-2.588	0.0816

Temperature = Medium:

contrast			estimate	SE	df	t.ratio	p.value
Pressure250	-	Pressure260	0.350	0.754	7	0.464	0.8897
Pressure250	-	Pressure270	-0.700	0.754	7	-0.929	0.6406
Pressure260	-	Pressure270	-1.050	0.754	7	-1.393	0.3942

Results are averaged over the levels of: Blocks P value adjustment: tukey method for comparing a family of 3 estimates

These p-values still indicate that changing the pressure has no effect on the yield.