More about SVD!

LECTURE 15

X "A Change of Bases" viewpoint

A = UZVT & IR m×n

Pick any X & IR and consider

X = VTX

Then % is the expansion coefficient of % w.r.t. the ONB $\{v_1, \dots, v_n\}$ why? You should know this by now. But, just in case,

 $\hat{x} = V^T \times \Leftrightarrow x = V \hat{x}$

= \widetilde{X} , \widetilde{V} , + ... + \widetilde{X} n \widetilde{V} n linear comb. of $\{\widetilde{V}_1, \dots, \widetilde{V}$ n $\}$.

Now, let $b = A \times \in \mathbb{R}^m$ Expand $b \times r.t.$ the ONB $\{u_i, \dots, u_m\}$ $\hat{b} = U^T b = U^T A \times = U^T A V \times$

 $= \underbrace{\bigcup^{\mathsf{T}} \bigcup \Sigma \bigvee^{\mathsf{T}} \bigvee \widetilde{\times}}_{\mathbf{In}} = \sum \widetilde{\mathbf{X}}$

Now, we know that Σ is diagonal!

This again shows that
" I represents the essence of A
in a much clearer manner!"

* SVD vs Eigenvalue Decomposition Let $A \in \mathbb{R}^{m \times m}$ be diagonalizable, i.e., = the eigenvalue decomposition: $A = X \wedge X$ Note: where $X = [X_1 \cdots X_m] \in \mathbb{C}^{m \times m}$ Evenif $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_m) \in \mathbb{C}^{m \times m}$ $A \in \mathbb{R}^m$, satisfying $A \times j = \lambda_j \times j$, $j = 1, \dots, m$ its eignal's & egvec's $A \times = \times \Lambda$ may be complex- Note that the eigenvectors { X1, ..., Xm} valued! form a basis of C^m, but not necessarily orthonormal in general unless $A^* = A$ (unitary) EX. Here $A^* := (\overline{a_{ji}}) = \overline{A}$ conjugate transposition of $A \in \mathbb{C}$ "unitarity" is a generalization of "symmetry With the eigenvalue decomposition, b = A x can be simplified as $\widetilde{b} = \Lambda \widetilde{x}$ via $\widetilde{b} = X^{-1}b$ diagonal $X = X^{-1}$

change of bases again!

So, we can summarize as follows:

- · SVD: Use Two different ONB's U, V and work for any matrix.
- EIG: Use one basis (not ONB in general) and work only for square matrices.

★ Matrix Properties via SVD

Let A ∈ IR^{m×n},

p:= min (m, n)

r:= # nonzero singular values

≤ p

Thm rank (A) = r.

(Proof) Let $A = U \Sigma V^T$. Since U, V are orthogonal matrices, they are of full rank. Hence, rank $(A) = rank(\Sigma)$ = # nonzero diagonalentries

Recall $\langle u_1, \dots, u_r \rangle = r$ $:= span\{u_1, \dots, u_r\} \longrightarrow$ $\underline{Thm} \quad range(A) = \langle u_1, \dots, u_r \rangle$ $null(A) = \langle v_{r+1}, \dots, v_n \rangle$

(Proof) Since
$$\Sigma \in \mathbb{R}^{m \times n}$$
 is diagonal with only r nonzero entries, range $(\Sigma) = \langle \mathfrak{E}_1, \dots, \mathfrak{E}_r \rangle \subset \mathbb{R}^m$

 \Leftrightarrow range (A) = < $w_1, \dots, w_r > \subset \mathbb{R}^m$. \(\sigma\) On the other hand, it is clear that for any vector $X \in \mathbb{R}^n$ s.t.

X = [0,0,...,0, Xr+1,..., Xn],

$$\sum X = \begin{bmatrix} \sigma_{1} & \sigma_{0} \\ \vdots & \vdots \\ \sigma_{n} \end{bmatrix} \begin{bmatrix} \sigma_{n} \\ \vdots \\ \sigma_{n} \end{bmatrix} = \emptyset$$

So, null $(\bar{\Sigma}) = \langle e_{r+1}, \dots, e_n \rangle \subset \mathbb{R}^n$ Then, for such \times , we have $A \vee \times = U \Sigma \vee^T \vee \times$

i.e., any member of null (A) should be of the form $V \times X$, $\times \in \text{null}(\Sigma)$ i.e., null $(A) = \langle \psi_{r+1}, \dots, \psi_n \rangle \subset \mathbb{R}^n$

Thm $||A||_2 = \sigma_i$, $||A||_F = \sqrt{\sigma_i^2 + \dots + \sigma_r^2}$

(Proof) Since U, V one orthogonal, $\|A\|_{2} = \|\sum\|_{2} = \max_{1 \le j \le r} \{|\sigma_{j}|\} = \sigma_{i} /$

The Frobenius norm is also invariant w.r.t. rotations (ortho. matrix multiplications)

Hence, $\|A\|_{F} = \|\Sigma\|_{F} = \sqrt{\sigma_{1}^{2} + \dots + \sigma_{r}^{2}}$

The nonzero singular values of A are the square roots of the nonzero eigenvalues of A^TA or AA^T.

$$(\text{Proof}) \quad A^{\mathsf{T}} A = (U \Sigma V^{\mathsf{T}})^{\mathsf{T}} (U \Sigma V^{\mathsf{T}})$$

$$= V \Sigma^{\mathsf{T}} \Sigma V^{\mathsf{T}}$$

$$\iff (A^{\mathsf{T}} A) V = V (\Sigma^{\mathsf{T}} \Sigma)$$

" diag (σ, -, σ, , o, ... o)

So, the col's of V are the eigenvectors of ATA and their nonzero eignal's are of2, ..., or2 you can show similarly that the col's of U are the eigenvec's of AAT, and their nonzero eigval's are $\sigma_1^2, \dots, \sigma_r^2$

Thm $A^T = A \Rightarrow \sigma_i(A) = |\lambda_i(A)|$

(Proof) HW#3 Prob3 says:

any symmetric matrix has only real-valued eigenvalues and the

eigenvec's form an ONB. So, $A = Q \wedge Q^T$, Q: ortho, Λ : diag = Q / / sgn(1) Q

where
$$|\Lambda| := \begin{bmatrix} 1\lambda_1 & 0 \\ 0 & 1\lambda_m \end{bmatrix}$$

$$sgn(\Lambda) := \begin{bmatrix} sgn(\lambda_1) & 0 \\ 0 & sgn(\lambda_m) \end{bmatrix}$$

Now, it's clear that Q sgn(1) is orthogonal if Q is orthogonal. why?

$$(Q sgn(\Lambda))(Q sgn(\Lambda))^{T}$$

$$= Q sgn(\Lambda) sgn(\Lambda) Q^{T}$$

$$= Q Q^{T} = Im$$
So, $A = Q |\Lambda| (Q sgn(\Lambda))^{T}$

$$U \sum_{V} V^{T}$$

Thm For
$$A \in \mathbb{R}^{m \times m}$$
,
$$|\det(A)| = \prod_{i=1}^{m} \sigma_i = \sigma_1 \cdot \sigma_2 \cdot \cdots \cdot \sigma_m$$

(Proof) We'll use the following facts.

· det
$$(A^T) = det(A)_m$$