

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

044234827

COMBINED SCIENCE

0653/33

Paper 3 (Core)

October/November 2019

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 (a) Fig. 1.1 shows two cells.

		cell P		cell Q			
		Fig	J. 1.1 (not to sc	ale)			
	(i)	Identify structures R and S, a	s shown on Fig	. 1.1.			
		R					
		s					
							[2
	(ii)	Cell Q is a plant cell.					
		State two pieces of evidence	from Fig. 1.1 tl	nat support this st	atement.	-	
		1					
		2					
							[2
(b)	Con	nplete the word equation for pl	notosynthesis.				
		+	light chlorophyll		+		
					_		[2
							£

(c) One of the food chains in a garden is shown in Fig. 1.2.

Fig. 1.2

(i)	Name one organism in the food chain shown in Fig. 1.2 which is a herbivore.	
		[1]
(ii)	Name one organism in the food chain shown in Fig. 1.2 which is a secondary consum	ner.
		[1]
(iii)	A gardener removes the lettuces.	
	Suggest what happens to the number of snails.	
	Explain your answer.	
	the number of snails will	
	explanation	
		[1]

[Total: 9]

2 Petroleum is a mixture of compounds which are separated in a fractional distillation column.

Process X changes molecules in one fraction, as shown in Fig. 2.1.

Fig. 2.1

((a)) The	products	of	process	X	include	alkenes.
٨	L	, ,,,,	producto	\circ	PICCOCC	/\	IIIOIGGO	antonioo

(i)	Identify process X.	
		[1]
(ii)	Describe the colour change that is seen when aqueous bromine is mixed with an alkel	ne.
	from to	[2]
(iii)	Name the substance that is formed by the addition polymerisation of ethene.	
		[1]

		5	
(b)	Mos	st of the compounds in petroleum are alkanes.	
	Alka	anes and alkenes contain carbon and hydrogen atoms only.	
	(i)	Name the type of compound that contains carbon and hydrogen atoms only.	
	(ii)	State the type of chemical bond that forms between carbon and hydrogen atoms.	
	(iii)	Identify the two products of the complete combustion of alkanes.	
		and	[2]
	(iv)	The formula of methane is CH ₄ .	
		Complete the dot-and-cross diagram to show the shared electron pairs in a molecul methane.	e of
		Н	
		С	

[2]

[Total: 10]

3 Fig. 3.1 shows a game played on a sloping board.

Fig. 3.1

A ball is launched by a spring up the slope and around the top of the board. The ball then rolls down the slope to fall into one of the traps.

(a) Fig. 3.2 shows the compressed spring when the knob is pulled back.

Fig. 3.2

Fig. 3.3 shows the spring before it is compressed.

Fig. 3.3

(i) On Fig. 3.3 draw a force arrow to show the direction of the force used to compress the spring. [1]

	(ii)	State two effects that a force can have on an object.	
		1	
		2	
			[2]
	(iii)	As the spring is pulled back, work is done.	
		State the two quantities that are needed to calculate the work done.	
		1	
		2	
			[2]
(b)		en the ball is launched up the slope, energy is transferred from the compressed spring ball. The energy of the ball changes as it moves up the slope to other types of energy.	to
	Con	nplete the sequence of energy changes. One has been done for you.	
	from	elastíc potential energy in the spring	
	to	energy of the ball as it begins to move up the slope	
	to	potential energy as the ball slows down going up the slope	
	and	thermal energy lost to the environment	ſΟ.
(-\	T l		[2]
(c)		ball is made from steel.	
	The	mass of the ball is 6.0 g.	
	The	volume of the ball is 0.75 cm ³ .	
	Cald	culate the density of the steel ball. Show your working.	
		density =g/cm ³	[2
		[Total:	
		[Iotal.	9

4 (a) Fig. 4.1 is a diagram of an insect-pollinated flower.

Fig. 4.1

(i)	Name parts A and B shown in Fig. 4.1.	
	A	
	В	
		[2]
(ii)	Describe what happens during fertilisation in the flower.	
		[2]

(b) Some plants produce two different types of flowers on the same plant.

These flowers have either the male or female reproductive parts, as shown in Fig. 4.2.

male flower

[Total: 10]

Fig. 4.2

	(i)	Name one reproductive part of the female flower.	
			[1]
	(ii)	Name one reproductive part of the male flower.	
			[1]
(c)	Fert	tilisation takes place in the reproductive system of the human female.	
	(i)	State where fertilisation takes place in the human female reproductive system.	
			[1]
	(ii)	State the name of the fertilised egg which develops into the embryo.	
			[1]
	(iii)	Describe where the embryo continues its development.	
			[2]

5 (a) The electrolysis of concentrated aqueous sodium chloride is shown in Fig. 5.1.

		Fig. 5.1				
	(i)	Complete Fig. 5.1 by adding the labels anode, cathode and electrolyte.	[2]			
	(ii)	One of the products of this electrolysis is chlorine gas.				
		Identify the two other products.				
		1				
		2				
			[2]			
	(iii)	Describe a chemical test for chlorine gas and state the positive result.				
		test				
		result				
			[2]			
(b)	An a	atom of sodium has atomic number 11 and nucleon number 23.				
	State the number of protons and the number of neutrons in this atom of sodium.					
	prot	ons				
	neu	trons	[2]			
			//			

(c) A chlorine atom has 17 electrons.

A chloride ion has the symbol Cl^- .

Complete Fig. 5.2 to show the electron arrangements in a chlorine atom and in a chloride ion.

Fig. 5.2

[2]

[Total: 10]

6 Fig. 6.1 shows an electric hair dryer.

Fig. 6.1

The hair dryer contains:

- an electrical heater to heat the air used to dry the hair
- a fan driven by the electric motor in the circuit to blow the air over the wet hair.

When the heater is switched off, the fan blows cool air over the hair.

When the heater is switched on, hot air is blown over the hair.

(a) Fig. 6.2 shows an incomplete circuit diagram for the hair dryer.

Fig. 6.2

The circuit symbol for a heater is ______

On Fig. 6.2 complete the circuit diagram to show:

- how the heater is connected
- how the heater can be switched off so the fan only blows cool air.

(b)	The	hair dryer operate	es from a 240	V supply. T	he current thr	ough the hair d	ryer is 3.0A.	
	(i)	Calculate the total	ıl resistance (of the circuit				
		Show your working	ng and state t	the unit of yo	our answer.			
				resistance	=	ur	nit	[3]
	(ii)	Circle the correct	fuse value to	use in the	hair dryer.			
		1 A	3 A	5 A	10 A	13 A		[1]
(c)	Wet	hair will dry witho	ut the use of	a hair dryer				
	(i)	Name the proces	s by which ha	air dries.				
								[1]
	(ii)	Describe in terms	of water mo	lecules how	this process	causes wet hai	r to dry.	
								[1]
	(iii)	When hair is dried	d without usir	ng a dryer, tl	ne head feels	colder as the h	air dries.	
		Explain why the h	nead feels co	lder.				
								[2]
							[Total: 1	U]

7 (a) Chemical digestion occurs in the alimentary canal.

Use words from the list to complete the sentence about chemical digestion.

Each word may be used once, more than once, or not at all.

absorbed	atoms	egested	excreted				
	ions	molecules					
Chemical digestion in the alimentary canal produces small, soluble							
	that can b	oe		[2]			

(b) Amylase is an enzyme that breaks down starch into simpler reducing sugars.

Starch solution is placed in each of two test-tubes.

Amylase solution is added to test-tube 1 and water is added to test-tube 2.

The apparatus is shown in Fig. 7.1.

Fig. 7.1

After 10 minutes the contents of each test-tube are tested with Benedict's solution.

The results of the investigation are shown in Table 7.1.

Table 7.1

test-tube	amylase present	reducing sugar present	colour of result of Benedict's test
1	yes	yes	
2	no	no	

(i) Complete Table 7.1 with the colours of the Benedict's test results.

© UCLES 2019 0653/33/O/N/19

[2]

	(ii)	The experiment is repeated with boiled enzyme in test-tube 1. This time there is no reducing sugar present in test-tube 1 after 10 minutes.
		Explain why there is no reducing sugar in test-tube 1.
		[1]
(c)	Tab	le 7.2 shows four main processes that occur in the alimentary canal.
		nplete each row of Table 7.2 with one region of the alimentary canal where each process es place.

Table 7.2

One is done for you.

process	one region of the alimentary canal
absorption	small intestine
digestion	
egestion	
ingestion	

[3]

[Total: 8]

8	(a)	Dur	alumin is a mixture of aluminium and copper.											
		Aluı	minium is in Group III in the Periodic Table, and copper is a transition element.											
		(i)	(i) State the general name of mixtures of metals. [1]											
		(ii)	Suggest one physical property of copper that is also a physical property of aluminium.											
			[1]											
	(b)	Car	bon is used in the extraction of copper from copper oxide.											
		(i)	Complete the word equation for the reaction between carbon and copper oxide.											
			+ copper +											
			[2]											
		(ii)	State the type of chemical change that happens when oxygen is removed from a substance.											
			[1]											
		(iii)	The reaction between carbon and copper oxide is exothermic.											
			State what is meant by exothermic.											
			[1]											
			[Total: 6]											

9 Fig. 9.1 shows a lightning flash, which is a form of electrostatic discharge.

Fig. 9.1

(a)	Name the two opposite types of electric charge.
	and[1]
(b)	Lightning occurs when clouds become highly charged. A very high potential difference of more than 1000000 V exists between the thundercloud and the ground.
	Name the unit which has the symbol V.
	[1]
(c)	The thundercloud consists mainly of water droplets. The droplets in the cloud become electrically charged.
	Suggest what happens to the water molecules to cause them to become electrically charged.
	[4]

(d) A lightning flash emits a range of wavelengths between $390 \,\text{nm}$ and $590 \,\text{nm}$. $(1 \,\text{nm} = 0.000 \,000 \,001 \,\text{m})$.

Table 9.1 shows the range of wavelengths of different parts of the electromagnetic spectrum.

Table 9.1

type of electromagnetic wave	range of wavelengths				
gamma rays	less than 0.001 nm				
X-rays	0.001–10 nm				
ultraviolet	10–400 nm				
visible light	400–750 nm				
infrared	750 nm–1 mm				
microwaves	1 mm-100 cm				
radio waves	more than 100 cm				

	lder	ntify the two parts of the electromagnetic spectrum emitted by lightning.
		and [2]
(e)	Thu	under is the sound energy produced by the lightning flash.
	(i)	A woman hears the sound of thunder 5.0 seconds after she sees the lightning flash hit the ground on top of a distant hill.
		The speed of sound in air is 330 m/s.
		Calculate the distance of the woman from the top of the hill.
		Show your working.
		distance = m [2]
	(ii)	Explain why the thunder from a distant lightning flash is heard some time after the flash is seen.
		[1]

[Total: 8]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

		2 H	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
	IIA			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ā	bromine 80	53	П	iodine 127	85	Αţ	astatine -			
	I			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>L</u>	tellurium 128	84	Ро	molouium -	116		livermorium -
	>			7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	E	bismuth 209			
	2			9	ပ	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Вр	lead 207	114	F1	flerovium -
	≡			2	Ω	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	<i>1</i> L	thallium 204			
										30	Zu	zinc 65	48	පි	cadmium 112	80	Нg	mercury 201	112	ű	copemicium —
										29	Cn	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -
dn										28	ī	nickel 59	46	Pd	palladium 106	78	പ	platinum 195	110	Ds	darmstadtium -
Group										27	රි	cobalt 59	45	뫈	rhodium 103	77	'n	iridium 192	109	Μ	meitnerium -
		- I	hydrogen 1							26	Fe	iron 56	44	R	ruthenium 101	9/	Os	osmium 190	108	Hs	hassium
										25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
					loq	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	ā	tantalum 181	105	οp	dubnium —
					ato	rela				22	ï	titanium 48	40	Zr	zirconium 91	72	Ŧ	hafnium 178	104	Ŗ	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	26	Ва	barium 137	88	Ra	radium —
	_			3	:=	lithium 7	£	Na	sodium 23	19	¥	potassium 39	37	&	rubidium 85	55	S	caesium 133	87	ΐ	francium -

			_			_
71	Ρ	lutetium 175	103	۲	lawrencium	Ι
		ytterbium 173			_	Ι
69	Tm	thulium 169	101	Md	mendelevium	Ι
89	Щ	erbium 167	100	Fm	fermium	I
29	운	holmium 165	66	Es	einsteinium	1
99	ò	dysprosium 163	86	ರ	californium	I
99	Д	terbium 159	97	BK	berkelium	-
64	9 G	gadolinium 157	96	Cm	curium	_
63	En	europium 152	92	Am	americium	-
62	Sm	samarium 150	94	Pn	plutonium	-
61	Pm	promethium -	93	ď	neptunium	-
09	PN	neodymium 144	92	\supset	uranium	238
69	Ą	praseodymium 141	91	Ра	protactinium	231
58	Ce	cerium 140	06	Т	thorium	232
22	Га	lanthanum 139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).