Design and Analysis of Sample Surveys

Andrew Gelman

Department of Statistics and Department of Political Science

Columbia University

Class 14b: Review

Class 1a: Introduction

- Goal: learning about the population
- Intermediate steps:
 - Sample to population (sampling)
 - Survey response to question of interest (measurement)

Happiness and the Tea Party movement

▶ A Brooks *New York Times* op-ed:

People at the extremes are happier than political moderates . . . none, it seems, are happier than the Tea Partiers . . .

But sociologist Jay Livingston writes:

The GSS does not offer "bitter" or "Tea Party" as choices, but extreme conservatives are nearly three times as likely as others to be "not too happy."

Let's look at the data!

Data from General Social Survey

- ▶ Is this just sampling variation?
 - ▶ Sample size for "Extremely Conservative" here is 80
 - Thus the standard error for that green bar on the right is approx $\sqrt{0.3 \cdot 0.7/80} = 0.05$

How did Brooks get this wrong?

- Averaging over all the years, conservatives seem pretty happy!
- ► The importance of descriptive inference
 - ▶ Be careful about explaining patterns that aren't real!

Class 1b: Statistical inference and linear regression

$$ightharpoonup \sqrt{p(1-p)/n}$$
 or σ/\sqrt{n}

$$\sim \sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}$$

- ► Sample size calculations
- (y+2)/(n+4)
- Weighted averages
- Living with uncertainty

Linear regression

- Interpreting coefficients
- Building models
- ▶ The role of statistical significance

Class 2a: Logistic regression

- Logistic curve
- ▶ Divide-by-4 rule
- Latent continuous variable
- Choice models

Class 2b: The challenge of estimating small effects

- ► The statistical significance filter
- When possible, study large effects
- Study effects in context

Business-relevant examples . . .

Example: incumbency advantage over time

Class 3a: Nonresponse and survey adjustment

- Unit nonresponse
- Item nonresponse
- Intentional missing data
- Structural missing data

Observed and completed data

Observed data display

Completed data display

Observed and completed data

Observed data display

Completed data display

Class 3b: Adjusting for nonresponse

- Subsetting and imputation for item nonresponse
- Poststratification and weighting for unit nonresponse

Class 4a: Weighting and poststratification

- ▶ Where do weights come from?
- ▶ Poststratification identity: $\theta = \frac{\sum_{j} N_{j} \theta_{j}}{\sum_{j} N_{j}}$
- Challenges in weighting
- Challenges in poststratification
- Weighted regression using the "survey" package in R

Example: CBS/New York Times pre-election polls

id	org	У	state	edu	age	adults	weight
6140	cbsnyt	NA	7	3	1	2	923
6141	cbsnyt	1	39	4	2	2	558
6142	cbsnyt	0	31	2	4	1	448
6143	cbsnyt	0	7	3	1	2	923
6144	cbsnyt	1	33	2	2	1	403

- ▶ The weight is listed as just another survey variable
- But they are actually constructed after the survey
- Weights $w_i = g(X_i, \theta)$

Class 4b: Ratio and regression estimation

- Ratio estimation of a ratio
- Ratio estimation of a population average
- Regression estimation
- Robustness through model and design

Regression estimation as a general framework

- ▶ Fit a regression, $y_i = a + bx_i + \text{error}$
- ▶ Regression estimate of \overline{Y} is $\overline{y} + b(\overline{X} \overline{x})$
- Special cases:
 - ightharpoonup b = 0: unadjusted sample average
 - $b = \frac{\overline{y}}{\overline{z}}$: ratio estimation
 - b = 1: simple adjustment
- Regression estimation is valid for any b
 - ▶ Optimal for b = least-squares estimate

Class 5a: Simple and stratified random sampling

- Sampling from a list
- Systematic sampling
- Stratified sampling
- Design and analysis

(A bit of) the population

KASSUMB	ULA-KAIZ	509
KATOPIS Theodore 120 F 82212 249-3047	KATTULA Jennafer 409 E 69	212 327-2845
KATOVITZ Michael 299 W 12 212 929-9511	KATUN Mosammat 316 W 95	212 666-4817
KATOWSKY Marc 215 E 95 212 706-2855	KATUS B 210 W 89	
KATRAGADDA Sireesha 31 E 31212 532-6457	KATUSAK F J 176 E 77	
31 E 31	KATVAN Moshe 40 W 17	
KATRANCI Elif 155 E 99212 722-1951	Moshe 40 W 17	
KATRI Edmond 160 E 48212 588-0118	Moshe 40 W 17	
KATRITSIS A	Moshe & Rivka 117 W 17	
KATROV Marat P 747 10 Av 212 757-4845	KATWAROO Dianna 434 W 163.	
KATS Amir 531 W 48 212 333-5811 Ester 15 Willett 212 477-2490	Errol 434 W 163	
	KATYAL Monica 617 W 115 KATYANG Keo 104 W 96	
Guyora 230 W 82	KATZ A	212 749-0380
Inna 1277 3 Av. 212 288-7739	KATZ A	212 721-3304
Michael 345 E 93	A 268 E Bway	212 982-8619
Victor 75 West St	A 737 Park Av	212 517-8897
KATSAMAKIS Basil 315 F 69. 212 628-9512	A 737 Park Av A 25 Av	212 533-9692
Basil 530 E 72 212 628-0312	A 148 10 Av	212 366-6487
KATSANOS Andrew 321 E 71 212 717-9393	A 315 F 86	212831-7554
Christina 417 W 47 212 459-2304	A D 433 W 21	212 255-1769

Class 5b: Cluster sampling with equal cluster sizes

- Why do cluster sampling?
- Goal of equal-probability sampling
- Analysis of cluster data
- Design effects

Class 6a: Cluster sampling with unequal cluster sizes

- Sampling with equal probability at both stages
- ► Sampling clusters with probability proportional to size
- Adjusting for unequal sampling probabilities
- Design effects

Class 6b: Inference for regression coefficients

- ▶ Option 1: weighted regression
- ▶ Option 2: unweighted regression, including in the model all variables that affect the probability of inclusion in the survey
- Discuss
- Population mean as a special case of a regression coefficient
- Population difference as a special case of a regression coefficient
- Practical limitations of weighting
- Practical limitations of modeling

Putting it all together

- Our ideal procedure:
 - As easy to use as hierarchical regression
 - Population info included using poststratification
- Smooth transition from classical weighting
 - Equivalent weights
 - When different methods give different results, we can track it back to an interaction

Class 7a: Survey interviewing

- Questions and answers in surveys
- Evaluating survey questions
- Survey interviewing
- Surveys vs. other sources of information (administrative data, economic activity, . . .)
- Conceptual or specification errors
- Sampling and nonsampling errors
- ► Errors of measurement, interviewers, question wording, . . .
- Errors in reporting

Class 7b: Challenges in survey measurement

- Difficulty of estimating small percentages
- Framing and question wording

Estimating measurement effects

- ▶ You are conducting a survey and are concerned about the possible effects of the wording of one particular question. You decide to do one of two experiments:
 - (a) Within-subject design: Put the two different wordings on the same survey form (randomizing the order of the two questions) and compare responses to the two wordings.
 - ▶ (b) Between-subject design: Randomly give one wording to half the respondents and the other wording to the other half. Compare the average responses under the two wordings.
- Give a reason why you might prefer design (a).
- Give a reason why you might prefer design (b).
- Computing standard errors for different designs

Measurement: Church attendance

Class 8a: Using surveys to answer questions in political science

- Political attitudes and behavior
- Comparing different groups

Democrats and Republicans separately in 2000

Average economic and social ideology scores among Bush voters (red) and Gore voters (blue) in each state

Class 8b: Conducting a survey in the real world

- Research goals
- Population, frame, and sampling design
- Constructing and testing the survey instrument
- Sampling and data collection
- Collection of auxiliary data
- Data cleaning and manipulation
- Data analysis

Class 9a: Voting

- Survey questions on demographics
- Political affiliation
- Issue attitudes

Class 9b: Public opinion

- Partisan polarization
- Elite and mass attitudes
- Uniform partisan swing

Political polarization since 1990

Class 10a: Political participation

- Asking about voting
- Other forms of political participation
- Rationality of voting and responding to surveys
- Data sources

Question wording and vote intention

'If election were held tomorrow . . .'

Question wording and nonresponse

From Verba, Schlozman, Brady, Voice and Equality (1995)

Class 10b: Understanding and displaying data

- ► Manipulating data in R
- Looking carefully at the data
- Effective graphing

Real simple

Re-expression saves space and adds clarity

Re-expression saves space and adds clarity

Class 11a: Bayesian inference

- Calibration of probabilities
- Combining prior and data information
- Example: forecasting
- MRP

Aligning voters with Congress

Class 11b: Ideal-point modeling

- Applications: ability testing, ranking
- Compare to ideal-point modeling
- Implications for education and for data collection more generally

Class 12a: Multilevel regression and poststratification

- State-level opinions
- Comparisons to state policies
- Demographic breakdowns
- Displaying inferences

Class 12b: Challenges in multilevel regression and poststratification

- ► Many factors, deep interactions
- ▶ Fitting and understanding models
- Adjusting for non-census variables
- Differential nonresponse within cells

Class 13a: Low response rates in U.S. surveys

- When does it matter?
- Validation of survey data
- Methods for increasing response rates

Class 13b: Surveys in less-developed countries

Iraq mortality survey

Class 14a: Network sampling

- Fractal sampling
- Penumbra sampling
- Learning about networks
- Averaging over networks