TOPIC:	ELECTRO	MAGNETIC	WAVES

TOPI	C: ELECTRO MAGN	NETIC WAVES		
1.	displacement current	-		cross the source of 220v. Find the
	a. 2.4A	b. 3.4A	c. 4.4A	d. 5.2A
2.	A plane electromagne	etic wave $E_z = 100 \mathrm{co}$	$s(6\times10^{8}t+4x)v/m$ pr	ropagates in a medium of dielectric
	constant			
	a. 1.5	b. 2.0	c. 2.4	d. 4.0
3.	field is in the y-direction of x and t is	tion and its maximum		wave length of 6mm. The electric The equation for the electric field as
	a. $11\sin\pi\left(t-\frac{x}{c}\right)$		b. $33 \sin \pi \times 10^{11} \left(t - \frac{1}{2} \right)^{11} = 0$	$\left(\frac{x}{c}\right)$
	c. $33\sin\pi\left(t-\frac{x}{c}\right)$		d. $11\sin \pi \times 10^{11} \left(t - \frac{1}{6} \right)^{11}$	$\left(\frac{x}{c}\right)$
4.	A plane electromagne	etic wave travels in fre	ee space along x-direct	ion. If the value of \overrightarrow{B} (in t <i>esla</i>) at a
	particular point in spa	ace and time is 1.2×10^{-2}	$0^{-8}\widehat{K}$, the value of \overrightarrow{E}	$(invm^{-1})$ at that point is
5	a. $1.2\hat{J}$	b. $3.6\widehat{K}$ t of an electromagnetic	c. $1.2\widehat{K}$	d. $3.6\hat{J}$
5.				
		$\left(\frac{d}{d}\right)y + \left(5.4 \times 10^8 \frac{raa}{s}\right)$	$t \hat{l} $ The wave length of	f this part of electromagnetic wave
	is a. 1.5m	b. 2m	c. 2.5m	d. 3.5m
6			c wave in a medium is	
0.			$\pi \times 10^{-2} \frac{rad}{s} x, E_z = 0.$	-
	a. Moving along x of	direction with frequence	cy 10^6 HZ and wave lea	ngth 100m
	b. Moving along X	direction with frequen	acy 10^6 HZ and wave le	ength 200m
	c. Moving along –X	direction with freque	ency 10^6 HZ and wave 1	length 200m
		-	acy $2\pi \times 10^6$ HZ and w	_
7.			omagnetic wave in vacu	
	$\vec{E} = 40\cos(KZ - 6 \times$	$10^8 t$) \hat{I} , where E,Z and	l t are in volt per meter	, meter and second respectively.
	The value of wave ve	/	_	
	a. $2m^{-1}$		c. $6m^{-1}$	d. $3m^{-1}$
8.		etic wave travels in va	cuum along z direction	a. If the frequency of the wave is
	a. 5m	b. 7.5m	c. 8.5m	d. 10m
9.				α and \in and μ represent the
				he medium is given by

	a. $\sqrt{\frac{\in_0 \mu_0}{\in \mu}}$ b.	$\sqrt{\frac{\in \mu}{\in_0 \ \mu_0}}$	c. $\sqrt{\frac{\in}{\mu_0 \in_0}}$	$d. \sqrt{\frac{\mu_0 \in_0}{\in}}$
10.	In a plane electromagnet $2.5 \times 10^{10} HZ$ and amplit			lally at a frequency of ing magnetic field will be
	a. $1.52 \times 10^{-8} wb / m^2$		b. $1.52 \times 10^{-7} wb / m^2$	
	c. $1.6 \times 10^{-6} wb / m^2$		d. $1.6 \times 10^{-7} wb / m^2$	
	The maximum magnetic a. Zero b.	flux density of such $3 \times 10^{-4} T$	a wave is c. $5.8 \times 10^{-9} T$	arrival at a receiving antenna. d. $3.3 \times 10^{-13} T$ At a point 10km due north of the
	transmitter the peak electrons. $3.33 \times 10^{-10} T$ b. The magnetic field in the	tric field is $10^{-3}v/m$ $3.33 \times 10^{-12}T$ e plane electromagne	c. The amplitude of the c. $10^{-3}T$ etic wave is given by	e radiated magnetic field is d. $3\times10^5 T$
	$B_z = 2 \times 10^{-7} \sin(0.5 \times 10^{-7})$,		ectric field will be
	a. $E_z = 30\sqrt{2}\sin(0.5 \times 10^3)$	/	m	
	b. $E_z = 60 \sin(0.5 \times 10^3)$ c. $E_y = 30\sqrt{2} \sin(0.5 \times 10^3)$	/		
	d. $E_y = 30\sqrt{2} \sin(0.5 \times 10^3)$,	m	
14.	The refractive index and	/	edium are 1.5 and 5×1	$10^{-7}H/m$. The relative
	permittivity of the mediu a. 25 b.	ım is nearly 15	c. 10	d. 6 eld vector upwards. Its magnetic
16.		east ctric field of the ligh ctromagnetic wave i	t coming from the sun	d. downwards is 720 N/C.The average total
	c. $6.37 \times 10^{-9} Jm^{-3}$		d. $81.35 \times 10^{-12} Jm^{-3}$	
17.	Which of the following r	=	=	1 Heat
18.	•	und buildings, althouge that Cavelength than light	•	d. Heat rays The reason is that radio waves
19.	The ultra high frequency a. Television waves		in electromagnetic wab. cellular phone com	
	c. commercial FM radio		d. none	
		cosmic rays ane electromagnetic	c. x-rays d. micr wave varies with time	
22.	The magnetic field of a b $B = 12 \times 10^{-8} \sin(1.20 \times 10^{-8})$			light as given by the beam is (Wm^{-2})

- 23. The electric field $(in NC^{-1})$ in an electromagnetic wave is given by $E = 50 \sin W \left(t \frac{x}{c} \right)$. The energy stored in a cylinder of cross- section $10cm^2$ and length 100cm along the x-axis will be ______
- 24. In an electromagnetic wave, the amplitude of electric field is 1 v/m. The frequency of wave is $5 \times 10^{+14} HZ$. The wave is propagating along z-axis. The average energy density of electric field in J/m^3 will be _____ $\times 10^{-12} J/m^{+3}$
- 25. Intensity of the electromagnetic wave is about, If $B_0 = 2 \times 10^{-7} T$ is ______ Wm^{-2}
- 26. If the magnetic field of a plane electromagnetic wave is given by

$$B = 300 \times 10^{-6} \sin \left(2\pi \times 2 \times 10^{15} \left(t - \frac{x}{c} \right) \right)$$
 Find the maximum electric field in _____ $\times 10^4 N/C$ associated with it.

- 27. A 27mW beam of cross sectional area of $10mm^2$. Find the magnitude of the maximum electric field (in kv/m) in the electromagnetic wave is given by _____ $(E_0 = 9 \times 10^{-12} \, SI \, units; c = 3 \times 10^8 \, m/s)$
- 28. About 5% of the power of a 100w light bulb is converted intensity $(inWm^{-2})$ of visible radiation at a distance of 1m from the bulb? $\times 10^{-1}W/m^2$
- 29. Light with an energy flux of $20W/cm^2$ falls on a non-reflecting surface at normal incidence. If the surface has an area of $30cm^2$, find the total momentum $(in k^2 \times 10^{-4} kg \, m/s)$ delivered (for complete absorption) during 30min, where k=_____
- 30. A plane em wave of wave intensity of 10 W / m^2 strikes a small mirror of area 20cm^2 , held perpendicular to the approaching wave. The radiation force on the mirror will be _____× $10^{-10} N$

S.NO	1-c	2-b	3-b	4-d	5-d	6-b	7-a	8-b	9-b	10-с
Multiple choice type	11-d	12-b	13-d	14-d	15-b	16-b	17-с	18-b	19-b	20-d
Numerical type questions	Integer value 21 Ans-9	22 Ans-2	23 Ans-1	24 Ans-2	25 Ans-5	26 Ans-3	27 Ans-1	28 Ans-4	29 Ans-6	30 Ans-1

$$id = \frac{v}{X_c} = \frac{220}{50} = 4.4A$$

2. Comparing the given equation with equation of a plane EMW
$$E_z = E_0 \cos(wt + kx)$$
 we have

$$w = 6 \times 10^8 \text{ and } K = 4$$

$$V = \frac{W}{K}$$
 $V = \frac{W}{K} = \frac{6 \times 10^8}{4} = \frac{3}{2} \times 10^8 \, \text{m/s}$

$$\mu = \frac{c}{V} = \frac{3 \times 10^8}{\frac{3}{2} \times 10^8} = 2$$

3.
$$W = 2\pi f = \frac{2\pi c}{\lambda} = \frac{2\pi \times 3 \times 10^8}{6 \times 10^{-3}}$$

$$W \approx \pi \times 10^{11} rad / s$$

The equation for the electric field along y-axis in the EMW is

$$E_{y} = E_{0} \sin w \left(t - \frac{x}{c} \right)$$
$$= 33 \sin \pi \times 10^{11} \left(t - \frac{x}{c} \right)$$

4. Here
$$\vec{B} = 1.2 \times 10^{-8} \hat{k}T$$

The magnitude of
$$\vec{E}$$
 is $E = BC$

$$E = (1.2 \times 10^{-8})(3 \times 10^{8}) = 3.6 v / m$$

B is along Z direction and wave propagates along x-direction.

$$\vec{E}$$
 is along y direction $\vec{E} = 3.6 \hat{J} v / m$

5.
$$E = 3.1N / C \cos((1.8rad / m)y + (5.4 \times 10^8 rads^{-1})t)\hat{I}$$

Comparing with
$$E = E_0 \cos(Ky + wt)$$

$$K = 1.8 radm^{-1}$$
; $E_0 = 3.1 N / C$; $C = 3 \times 10^8 m / s$

$$W = 5.4 \times 10^8 rad / s$$

$$\lambda = \frac{2\pi}{K} = \frac{2 \times 22}{1.8 \times 7} = 3.5m$$

6.
$$E_y = 2.5N / C \times \cos\left[\left(2\pi \times 10^6 \frac{rad}{m}\right)t - \left(\pi \times 10^{-2} \frac{rad}{s}\right)x\right]$$

$$E_z = 0; E_x = 0$$

The wave is moving in the positive direction of x

This is in the form $E_v = E_0 \cos(wt - kx)$

$$w = 2\pi \times 10^6; 2\pi f = 2\pi \times 10^6$$

$$\Rightarrow f = 10^6 HZ$$

$$K = \frac{2\pi}{\lambda} \Rightarrow \frac{2\pi}{\lambda} = \pi \times 10^{-2}$$

$$\Rightarrow \lambda = 200m$$

7. Compare the given equation with

$$E = E_0 \cos(KZ - wt); W = 6 \times 10^8$$

$$K = \frac{W}{C} = \frac{6 \times 10^8}{3 \times 10^8} = 2m^{-1}$$

8.
$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{40 \times 10^6} = 7.5m$$

9.
$$\mu = \frac{c}{v} = \frac{1}{\sqrt{\mu_0 \in_0}} \sqrt{\frac{\mu \in}{\mu_0 \in_0}} = \sqrt{\frac{\in \mu}{\in_0 \mu_0}}$$

10.
$$C = \frac{E_0}{B_0} \Rightarrow B_0 = \frac{E_0}{C} = 1.6 \times 10^{-6} Wb / m^2$$

11.
$$B = \frac{E}{C} = \frac{10^{-4}}{3 \times 10^8} = 3.3 \times 10^{-13} T$$

12.
$$B_0 = \frac{E_0}{C} = \frac{10^{-3}}{3 \times 10^8} = 3.3 \times 10^{-12} T$$

13. Wave is along +ve x-axis

B is directed along z-axis

E is along y-axis $E_0 = B_0 C$; $E_0 = 2 \times 10^{-7} \times 3 \times 10^8 = 60 v / m$

$$\therefore E_{v} = 60\sin(0.5 \times 10^{3} x + 1.5 \times 10^{11} t) v / m$$

14.
$$\mu = \frac{c}{v} = \frac{3 \times 10^8}{v} \Rightarrow v = \frac{3 \times 10^8}{\mu} = \frac{3 \times 10^8}{1.5}$$

$$\Rightarrow v = 2 \times 10^8 m/s$$

 μ of the medium [given]= $5 \times 10^{-7} H/m$

$$v = \frac{1}{\sqrt{\mu \in}} = \frac{1}{\sqrt{\mu \in_0 \in_r}}$$

$$\Rightarrow V^2 = \frac{1}{\mu \in_0 \in_r} \Rightarrow E_r = \frac{1}{v^2 \mu \in_0}$$

$$E_r = \frac{1}{(2 \times 10^8)^2 \times 5 \times 10^{-7} \times 8.85 \times 10^{-12}}$$

$$\approx 5.65 \approx 6$$

16. Total average energy density of EMW is
$$U_{avg} = \frac{1}{2}to \in_0 E_{rms}^2 + \frac{1}{2u_0}B_{rms}^2$$

$$\begin{split} B_{rms} &= \frac{E_{rms}}{c}; c = \frac{1}{\sqrt{\mu_0 E_0}} \\ &= \frac{1}{2} \in_0 E_{rms}^2 + \frac{1}{2\mu_0} \left(\frac{E_{rms}^2}{C^2} \right) \\ &= \frac{1}{2} \in_0 E_{rms}^2 + \frac{1}{2\mu_0} E_{rms}^2 / \mu_0 \in_0 \\ &= \frac{1}{2} \in_0 E_{rms}^2 + \frac{1}{2} \in_0 E_{rms}^2 = \in_0 E_{rms}^2 \\ &= 8.85 \times 10^{-12} \times (720)^2 = 4.58 \times 10^{-6} Jm^{-3} \end{split}$$

17.
$$\beta$$
 – rays

- 18. The wave length of radio waves being much larger than light, has a size comparable to those of buildings, hence diffract from them.
- 19. Cellular phone
- 20. Microwaves are used to cook food microwave oven is a domestic application of these waves.
- 21. Amplitude of electric and magnetic field are related by $\frac{E_0}{B_r} = c$

Average energy density of the magnifield

$$\begin{split} U_{\scriptscriptstyle B} = & \frac{1}{4} \frac{B_{\scriptscriptstyle 0}^{\; 2}}{\mu_{\scriptscriptstyle 0}} = \frac{1}{4} \frac{E_{\scriptscriptstyle 0}^{\; 2}}{\mu_{\scriptscriptstyle 0} C^2} \bigg(C = \frac{1}{\sqrt{\mu_{\scriptscriptstyle 0} E_{\scriptscriptstyle 0}}} \bigg) \\ = & \frac{1}{4} \in_{\scriptscriptstyle 0} E_{\scriptscriptstyle 0}^2 \\ = & \frac{1}{4} \times 8.854 \times 10^{-12} \times \big(2\big)^2 = 8.854 \times 10^{-12} \\ = & 8.86 \times 10^{-12} \, Jm^{-3} \end{split}$$

22. Here
$$B = 12 \times 10^{-8} \sin(1.20 \times 10^7 Z - 3.6 \times 10^{15} t)$$

Comparing with $B = B_0 \sin(KZ - Wt)$

$$B_0 = 12 \times 10^{-8} T$$

$$I_{avg} = \frac{1}{2} \frac{B_0^2 c}{\mu_0} = \frac{1}{2} \frac{\left(12 \times 10^{-8}\right)^2 \times 3 \times 10^8}{4\pi \times 10^{-7}}$$
$$= 1.71 W m^{-2}$$

23. Energy contained in a cylinder U= average energy density ×volume

$$= \frac{1}{2} \in_{0} E_{0}^{2} \times AL$$

$$= \frac{1}{2} \times 8.85 \times 10^{-12} \times (50)^{2} \times (10 \times 10^{-4}) \times 1$$

$$= 1.1 \times 10^{-11} J$$

24. The average density U_E is given by

$$U_{E} = \frac{1}{2} \in_{0} E_{rms}^{2} = \frac{1}{2} \in_{0} \left(\frac{E_{0}}{\sqrt{2}}\right)^{2}$$

$$= \frac{1}{4} \in_{0} E_{0}^{2}$$

$$= \frac{1}{4} \times \left(8.85 \times 10^{-12}\right) \times \left(1\right)^{2}$$

$$= 2.2 \times 10^{-12} Jm^{-3}$$

$$I = \frac{1}{2} \frac{B_0^2}{\mu_0} C = \frac{1}{2} \times \frac{\left(2 \times 10^{-7}\right)^2}{4\pi \times 10^{-7}} \times 3 \times 10^8$$
$$= 5Wm^{-2}$$

26.
$$E_0 = B_0 \times C = 100 \times 10^{-6} \times 3 \times 10^8$$

= $3 \times 10^4 N/C$

27.
$$I = \frac{power}{area} \Rightarrow \frac{1}{2} E_0 E_0^2 C = \frac{27 \times 10^{-3}}{10 \times 10^{-6}}$$

 $\Rightarrow \frac{1}{2} \times 9 \times 10^{-12} \times E^2 \times 3 \times 10^8 = 2700$
 $\Rightarrow E = \sqrt{2} \times 10^3 \Rightarrow 1.4 \text{kv/m}$

28.
$$I = \frac{power}{area} = \frac{100 \times 0.05}{4\pi (1)^2}$$

$$= 0.4W / m^2 = 4 \times 10^{-1} W / m^2$$

29.
$$\phi = 20W / cm^2$$
 $A = 30cm^2$
 $t = 30 \min = 30 \times 60s$

Total energy falling on the surface in time t is $U=\phi At$ $U=20\times 30\times 30\times 60J$

Momentum delivered =
$$\frac{U}{C} = \frac{20 \times 30 \times 30 \times 60}{3 \times 10^8}$$

= $36 \times 10^{-4} kgms^{-1} = (6)^2 \times 10^{-4} kgms^{-1}$

Momentum of the reflected light= 0

Momentum of the reflected light= 0
$$30. \text{ Radiation force} = \frac{2I_{0w}A}{C}$$

$$= \frac{2 \times 10 \times 20 \times 10^{-4}}{3 \times 10^{8}}$$

$$= 1.33 \times 10^{-10} N$$