Examenul de bacalaureat 2011 Proba E. c) Proba scrisă la MATEMATICĂ

Varianta 2

Filiera teoretică, profilul real, specializarea matematică - informatică. Filiera vocațională, profilul militar, specializarea matematică - informatică.

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.
- La toate subiectele se cer rezolvări complete.

SUBIECTUL I (30 de puncte)

- 1. Calculați rația progresiei geometrice $(b_n)_{n>1}$, cu termeni pozitivi, dacă $b_1 + b_2 = 6$ și $b_3 + b_4 = 24$.
- **2.** Determinați $a \in \mathbb{R}$ pentru care funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = (1 a^2)x + 4$ este constantă.
- 3. Rezolvați în mulțimea numerelor reale inecuația $\left(\frac{3}{2}\right)^x < \left(\frac{2}{3}\right)^x$.
- **4.** Determinați numărul termenilor raționali ai dezvoltării $\left(1+\sqrt{2}\right)^{10}$ 5p
- 5. Calculați distanța de la punctul A(2,2) la dreapta determinată de punctele B(1,0) și C(0,1). 5p
- 5p **6.** Triunghiul ABC are măsura unghiului A de 60° , AB = 4 și AC = 5. Calculați $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră mulțimea $\overline{H = \left\{ A \in \mathcal{M}_2(\mathbb{R}) \mid A^2 = A \right\}}$.
- **5p a)** Arătați că $\begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \in H$.
- 5p **b)** Demonstrați că, dacă $A \in H$, atunci $A^n \in H$, pentru orice număr natural nenul n.
- c) Arătați că mulțimea H este infinită.
 - **2.** Se consideră polinomul $f = (X+i)^{10} + (X-i)^{10}$, având forma algebrică $f = a_{10}X^{10} + a_{0}X^{9} + ... + a_{1}X + a_{0}$, unde $a_{0}, a_{1}, ..., a_{10} \in \mathbb{C}$.
- 5p a) Determinați restul împărțirii polinomului f la X-i.
- **b)** Arătați că toți coeficienții polinomului f sunt numere reale.
- **5p** | c) Demonstrați că toate rădăcinile polinomului f sunt numere reale.

SUBIECTUL al III-lea (30 de puncte)

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^5 5x + 4$.
- a) Calculați $\lim_{x\to 2} \frac{f(x)-f(2)}{x-2}$.
- 5p **b)** Arătați că graficul funcției f are un punct de inflexiune.
- c) Arătați că, pentru orice $m \in (0,8)$, ecuația f(x) = m are exact trei soluții reale distincte. 5p
 - **2.** Se consideră funcția $g: \mathbb{R} \to \mathbb{R}, g(x) = e^{-x}$.
- **5p** a) Calculați $\int_0^1 g(x) dx$.
- **5p b)** Calculați $\int_0^1 x^5 g(x^3) dx$.
- c) Demonstrați că șirul $(I_n)_{n\geq 1}$ definit prin $I_n = \int_1^n g(x^3) dx$ este convergent.