

Gowin Primitives

User Guide

SUG283-2.4E, 09/11/2020

Copyright© 2020 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI®, LittleBee®, Arora, and the GOWINSEMI logos are trademarks of GOWINSEMI and are registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders, as described at www.gowinsemi.com. GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. All information in this document should be treated as preliminary. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description	
04/20/2017	1.0E	Initial version published.	
09/19/2017	1.1E	GW1NR-4, GW1N-6, GW1N-9, GW1NR-9 devices added; ELVDS_IOBUF, TLVDS_IOBUF, BUFG, BUFS, OSC, IEM added; DSP primitive updated; Some ports of ODDR/ODDRC, IDDR_MEM, IDES4_MEM, IDES8_MEM, RAM16S1, RAM16S2、RAM16S4, RAM16SDP1, RAM16SDP2, RAM16SDP4, ROM16 updated; Some Attribute of OSC, PLL and DLLDLY updated; Some primitive instantiation updated; MIPI_IBUF_HS, MIPI_IBUF_LP, MIPI_OBUF, IDES16 and OSER16 updated; Some Attribute of CLKDIV updated.	
04/12/2018	1.2E	Vhdl primitives instantiation added.	
08/08/2018	1.3E	GW1N-2B, GW1N-4B, GW1NR-4B, GW1N-6ES, GW1N-9ES, GW1NR-9ES, GW1NS-2,GW1NS-2C devices added; I3C_IOBUF, DHCEN added; User Flash added; EMPU added; Primitive name updated.	
10/26/2018	1.4E	GW1NZ-1, GW1NSR-2C devices added; OSCZ, FLASH96KZ added.	
11/15/2018	1.5E	GW1NSR-2 device added; GW1N-6ES, GW1N-9ES, GW1NR-9ES devices removed.	
01/26/2019	1.6E	GW1NS-2 supported by 8 frequency division of CLKDIV added; Removed GW1N-1 from the devices supported by TLVDS_TBUF/OBUF.	
02/25/2019	1.7E	Removed GW1N-1 from the devices supported by TLVDS_IOBUF.	
05/20/2019	1.8E	GW1N-1S device added; MIPI_IBUF added; OSCH added; SPMI added; I3C added; Devices supported by OSC updated.	
10/20/2019	1.9E	IOB, BSRAM, CLOCK modules updated.	
11/28/2019	2.0E	GSR and INV modules added in Miscellaneous; Devices supported updated; FLASH64KZ added and FLASH96KZ removed.	
01/16/2020	2.1E	IODELAYA, rPLL, PLLVR, CLKDIV2 added; DPB/DPX9B, SDPB/SDPX9B, rSDP/rSDPX9, rROM/rROMX9, pROM/pROMX9 added; EMCU, BANDGAP, FLASH64K added; IODELAY, PLL, CLKDIV, OSC, DQCE updated; Placement rule of FF、LATCH added; GW2A-55C added; GW1N-6/GW1N-9/GW1NR-9 disabled DP/DPX9, DPB/DPX9B; Notes of register added in IOLOGIC; GW1NZ-1 disabled 1, 2, 4, 8 bit width of DP/DPB and 9 bit width of DPX9/DPX9.	

Date	Version	Description	
03/09/2020 2.2E		GW1NS-2, GW1NS-2C, GW1NSR-2, GW1NSR-2C, GW1NSE-2C disable DP/DPX9 and DPB/DPX9B; OSCEN port description added in OSCF; PLL/rPLLVR parameter description updated.	
06/08/2020	2.3E	GW1N-2, GW1N-2B and GW1N-6 removed; GW1N-9C and GW1NR-9C added; IODELAYC, DHCENC and DCC added; Functional description of MIPI_IBUF added; MIPI_IBUF_HS, MIPI_IBUF_LP and DLL removed; Port diagram of LUT5 and MUX8 added; VCC and GND added; PLLVR, FLASH64K, BUFS, EMPU and CLKDIV2 updated; DP/DPX9, ROM/ROMX9, SDP/SDPX9, rSDP/rSDPX9, rROM/rROMX9 and PLL removed.	
1 NU/11/2020 1 2 / E 1 1		The description of IP invoking of ADC, BANDGAP, SPMI and I3C modules added.	

Contents

SUG283-2.4E

Contents	i
List of Figures	iv
List of Tables	vi
1 IOB	
2 CLU	2
2.1 LUT	
2.1.1 LUT1	
2.1.2 LUT2	
2.1.3 LUT3	
2.1.4 LUT4	
2.1.5 Wide LUT	
2.2 MUX	
2.2.1 MUX2	
2.2.2 MUX4	
2.2.3 Wide MUX	
2.3 ALU	
2.4 FF	
2.4.1 DFF	
2.4.2 DFFE	
2.4.3 DFFS	
2.4.4 DFFSE	
2.4.5 DFFR	30
2.4.6 DFFRE	
2.4.7 DFFP	33
2.4.8 DFFPE	34
2.4.9 DFFC	
2.4.10 DFFCE	37
2.4.11 DFFN	39
2.4.12 DFFNE	40

	2.4.13 DFFNS	41
	2.4.14 DFFNSE	43
	2.4.15 DFFNR	44
	2.4.16 DFFNRE	46
	2.4.17 DFFNP	47
	2.4.18 DFFNPE	49
	2.4.19 DFFNC	50
	2.4.20 DFFNCE	52
	2.5 LATCH	53
	2.5.1 DL	54
	2.5.2 DLE	56
	2.5.3 DLC	57
	2.5.4 DLCE	59
	2.5.5 DLP	60
	2.5.6 DLPE	62
	2.5.7 DLN	64
	2.5.8 DLNE	65
	2.5.9 DLNC	66
	2.5.10 DLNCE	68
	2.5.11 DLNP	70
	2.5.12 DLNPE	71
3	B Memory	74
4	DSP	75
5	Clock	76
	User Flash	
7	'EMPU	78
	7.1 MCU	78
	7.2 EMCU	91
	7.3 USB20_PHY	103
	7.4 ADC	113
8	Miscellaneous	117
	8.1 GSR	117
	8.2 INV	118
	8.3 VCC	
	8.4 GND	
	8.5 BANDGAP	122
	8.6 SPMI	124

SUG283-2.4E iii

List of Figures

Figure 2-1 CLU Port Diagram	2
Figure 2-2 LUT1 Port Diagram	3
Figure 2-3 LUT2 Port Diagram	4
Figure 2-4 LUT3 Port Diagram	6
Figure 2-5 LUT4 Diagram	7
Figure 2-6 MUX2_LUT5 Port Diagram	10
Figure 2-7 MUX2 Port Diagram	14
Figure 2-8 MUX4 Port Diagram	15
Figure 2-9 MUX2_MUX8 Port Diagram	17
Figure 2-10 ALU Port Diagram	21
Figure 2-11 DFF Port Diagram	24
Figure 2-12 DFFE Port Diagram	25
Figure 2-13 DFFS Port Diagram	27
Figure 2-14 DFFSE Port Diagram	28
Figure 2-15 DFFR Port Diagram	30
Figure 2-16 DFFRE Port Diagram	31
Figure 2-17 DFFP Port Diagram	33
Figure 2-18 DFFPE Port Diagram	34
Figure 2-19 DFFC Blcok Diagram	36
Figure 2-20 DFFCE Port Diagram	37
Figure 2-21 DFFN Port Diagram	39
Figure 2-22 DFFNE Port Diagram	40
Figure 2-23 DFFNS Blcok Diagram	41
Figure 2-24 DFFNSE Port Diagram	43
Figure 2-25 DFFNR Port Diagram	44
Figure 2-26 DFFNRE Blcok Diagram	46
Figure 2-27 DFFNP Port Diagram	47
Figure 2-28 DFFNPE Port Diagram	49
Figure 2-29 DFFNC Port Diagram	50
Figure 2-30 DFFNCE Port Diagram	52
Figure 2-31 DL Port Diagram	55

Figure 2-32 DLE Port Diagram	56
Figure 2-33 DLC Port Diagram	58
Figure 2-34 DLCE Port Diagram	59
Figure 2-35 DLP Blcok Diagram	61
Figure 2-36 DLPE Port Diagram	62
Figure 2-37 DLNP Port Diagram	64
Figure 2-38 DLNE Port Diagram	65
Figure 2-39 DLNC Port Diagram	67
Figure 2-40 DLNCE Port Diagram	68
Figure 2-41 DLNP Port Diagram	70
Figure 2-42 DLNPE Port Diagram	71
Figure 7-1 MCU Port Diagram	79
Figure 7-2 Port Diagram of EMCU	92
Figure 7-3 USB20_PHY Port Diagram	104
Figure 7-4 ADC Port Diagram	113
Figure 7-5 IP Customization of ADC	115
Figure 8-1 GSR Port Diagram	117
Figure 8-2 INV Port Diagram	118
Figure 8-3 VCC Port Diagram	120
Figure 8-4 GND Port Diagram	121
Figure 8-5 BANDGAP Port Diagram	122
Figure 8-6 IP Customization of BandGap	123
Figure 8-7 SPMI Port Diagram	124
Figure 8-8 IP Customization of SPMI	127
Figure 8-9 I3C Port Diagram	129
Figure 8-10 IP Customization of I3C	132

vi

List of Tables

	Table 2-1 Port Description	3
	Table 2-2 Parameter	3
	Table 2-3 Truth Table	3
	Table 2-4 Port Description	4
	Table 2-5 Parameter	4
	Table 2-6 Truth Table	5
	Table 2-7 Port Description	6
	Table 2-8 Parameter	6
	Table 2-9 Truth Table	6
	Table 2-10 Port Description	8
	Table 2-11 Parameter	8
	Table 2-12 Truth Table	8
	Table 2-13 Port Description	10
	Table 2-14 Parameter	10
	Table 2-15Truth Table	11
	Table 2-16 Port Description	14
	Table 2-17 Truth Table	14
	Table 2-18 Port Description	15
	Table 2-19 Truth Table	16
	Table 2-20 Port Description	17
	Table 2-21 Truth Table	18
	Table 2-22 ALU Functions	20
	Table 2-23 Port Description	21
	Table 2-24 Parameter	21
	Table 2-25 Primitives Associated With FF	22
	Table 2-26 Type of FF	23
	Table 2-27 Port Description	24
	Table 2-28 Parameter	24
	Table 2-29 Port Description	25
	Table 2-30 Parameter	26
	Table 2-31 Port Description	27
SUG283-	-2.4E	

Table 2-32 Parameter	27
Table 2-33 Port Description	28
Table 2-34 Parameter	29
Table 2-35 Port Description	30
Table 2-36 Parameter	30
Table 2-37 Port Description	31
Table 2-38 Parameter	32
Table 2-39 Port Description	33
Table 2-40 Parameter	33
Table 2-41 Port Description	34
Table 2-42 Parameter	35
Table 2-43 Port Description	36
Table 2-44 Parameter	36
Table 2-45 Port Description	37
Table 2-46 Parameter	38
Table 2-47 Port Description	39
Table 2-48 Parameter	39
Table 2-49 Port Description	40
Table 2-50 Parameter	40
Table 2-51 Port Description	42
Table 2-52 Parameter	42
Table 2-53 Port Description	43
Table 2-54 Parameter	43
Table 2-55 Port Description	45
Table 2-56 Parameter	45
Table 2-57 Port Description	46
Table 2-58 Parameter	46
Table 2-59 Port Description	48
Table 2-60 Parameter	48
Table 2-61 Port Description	49
Table 2-62 Parameter	49
Table 2-63 Port Description	51
Table 2-64 Parameter	51
Table 2-65 Port Description	52
Table 2-66 Parameter	52
Table 2-67 Primitives Related with LATCH	53
Table 2-68 Type of LATCH	54
Table 2-69 Port Description	55
Table 2-70 Parameter	55

Table 2-71 Port Description	56
Table 2-72 Parameter	56
Table 2-73 Port Description	58
Table 2-74 Parameter	58
Table 2-75 Port Description	59
Table 2-76 Parameter	60
Table 2-77 Port Description	61
Table 2-78 Parameter	61
Table 2-79 Port Description	62
Table 2-80 Parameter	63
Table 2-81 Port Description	64
Table 2-82 Parameter	64
Table 2-83 Port Description	65
Table 2-84 Parameter	66
Table 2-85 Port Description	67
Table 2-86 Parameter	67
Table 2-87 Port Description	68
Table 2-88 Parameter	69
Table 2-89 Port Description	70
Table 2-90 Parameter	70
Table 2-91 Port Description	71
Table 2-92 Parameter	72
Table 7-1 Device Supported	78
Table 7-2 Port Description	79
Table 7-3 Device Supported	91
Table 7-4 Port Description	92
Table 7-5 Device Supported	103
Table 7-6 Port Description	104
Table 7-7 Parameter	106
Table 7-8 Device Supported	113
Table 7-9 Port Description	113
Table 8-1 Device Supported	117
Table 8-2 Port Description	117
Table 8-3 Device Supported	118
Table 8-4 Port Description	119
Table 8-5 Device Supported	119
Table 8-6 Port Description	120
Table 8-7 Device Supported	121
Table 8-8 Port Description	121

Table 8-9 Device Supported	122
Table 8-10 Port Description	122
Table 8-11 Device Supported	124
Table 8-12 Port Description	124
Table 8-13 Device Supported	128
Table 8-14 Port Description	129

SUG283-2.4E ix

$oldsymbol{1}$ iob

IOB includes input/output buffer (IO Buffer) and input/output logic (IO Logic). For IO Buffer and IO Logic primitives, see <u>UG289</u>, Gowin Programmable IO(GPIO) User Guide.

SUG283-2.4E 1(133)

 $2_{\scriptscriptstyle \mathrm{CLU}}$

Configurable Logic Unit (CLU) is a basic block for FPGA products. One CFU includes four Configurable Logic Slices (CLS) and one Configurable Routing Unit (CRU), as shown in Figure 2-1. CLS can be configured as LUT, ALU and REG. CFU can implement the functions of MUX/LUT/ALU/FF/LATCH.

Figure 2-1 CLU Port Diagram

2.1 LUT

LUT includes LUT1, LUT2, LUT3 and LUT4, the differences between them are the bit width.

2.1.1 LUT1

Primitive

LUT1 is usually used as a buffer and an inverter. LUT1 is an 1-input lookup table. After initializing, you can look up the corresponding data according to the input address, then it outputs the data.

SUG283-2.4E 2(133)

Port Diagram

Figure 2-2 LUT1 Port Diagram

Port Description

Table 2-1 Port Description

Port Name	I/O	Description
10	Input	Data Input
F	Output	Data Output

Parameter

Table 2-2 Parameter

Name	Value	Default	Description
INIT	2'h0~2'h3	2'h0	Initial value of LUT1

Truth Table

Table 2-3 Truth Table

Input(I0)	Output(F)
0	INIT[0]
1	INIT[1]

Primitive Instantiation

Verilog Instantiation:

```
LUT1 instName (
.I0(I0),
.F(F)
);
defparam instName.INIT=2'h1;

VhdI Instantiation:
COMPONENT LUT1
GENERIC (INIT:bit_vector:=X"0");
PORT(
```

SUG283-2.4E 3(133)

```
F:OUT std_logic;
I0:IN std_logic
);
END COMPONENT;
uut:LUT1
GENERIC MAP(INIT=>X"0")
PORT MAP (
F=>F,
I0=>I0
);
```

2.1.2 LUT2

Primitive

LUT2 is a 2-input lookup table. After initializing, you can look up the corresponding data according to the input address, then it outputs the data.

Port Diagram

Figure 2-3 LUT2 Port Diagram

Port Description

Table 2-4 Port Description

Port Name	I/O	Description
10	Input	Data Input
11	Input	Data Input
F	Output	Data Output

Parameter

Table 2-5 Parameter

Name	Value	Default	Description
INIT	4'h0~4'hf	4'h0	Initial value of LUT2

SUG283-2.4E 4(133)

Truth Table

Table 2-6 Truth Table

Input(I1)	Input(I0)	Output(F)
0	0	INIT[0]
0	1	INIT[1]
1	0	INIT[2]
1	1	INIT[3]

Primitive Instantiation

```
Verilog Instantiation:
```

```
LUT2 instName (
       .10(10),
       .l1(l1),
       .F(F)
  );
  defparam instName.INIT=4'h1;
VhdI Instantiation:
   COMPONENT LUT2
     GENERIC (INIT:bit_vector:=X"0");
     PORT(
      F:OUT std_logic;
      I0:IN std_logic;
      11:IN std_logic
         );
  END COMPONENT;
  uut:LUT2
    GENERIC MAP(INIT=>X"0")
    PORT MAP (
             F=>F.
             10 = > 10,
     11=>11
      );
```

2.1.3 LUT3

Primitive

LUT3 is a 3-input lookup table. After initializing, you can look up the corresponding data according to the input address, then it outputs the data.

SUG283-2.4E 5(133)

Port Diagram

Figure 2-4 LUT3 Port Diagram

Port Description

Table 2-7 Port Description

Port Name	I/O	Description
10	Input	Data Input
l1	Input	Data Input
12	Input	Data Input
F	Output	Data Output

Parameter

Table 2-8 Parameter

Name	Value	Default	Description
INIT	8'h00~8'hff	8'h00	Initial value of LUT3

Truth Table

Table 2-9 Truth Table

Input(I2)	Input(I1)	Input(I0)	Output(F)
0	0	0	INIT[0]
0	0	1	INIT[1]
0	1	0	INIT[2]
0	1	1	INIT[3]
1	0	0	INIT[4]
1	0	1	INIT[5]
1	1	0	INIT[6]
1	1	1	INIT[7]

Primitive Instantiation

Verilog Instantiation:

LUT3 instName (

SUG283-2.4E 6(133)

```
.10(10),
     .l1(l1),
     .12(12),
     .F(F)
);
defparam instName.INIT=8'h10;
VhdI Instantiation:
COMPONENT LUT3
   GENERIC (INIT:bit_vector:=X"00");
   PORT(
    F:OUT std_logic;
    I0:IN std_logic;
    11:IN std_logic;
    I2:IN std_logic
   );
END COMPONENT;
uut:LUT3
  GENERIC MAP(INIT=>X"00")
  PORT MAP (
           F=>F,
           10 = > 10,
           11 = > 11,
           12=>12
    );
```

2.1.4 LUT4

Primitive

LUT4 is a 4-input lookup table. After initializing, you can look up the corresponding data according to the input address, then it outputs the data.

Port Diagram

Figure 2-5 LUT4 Diagram

SUG283-2.4E 7(133)

Port Description

Table 2-10 Port Description

Port Name	I/O	Description
10	Input	Data Input
l1	Input	Data Input
12	Input	Data Input
13	Input	Data Input
F	Output	Data Output

Parameter

Table 2-11 Parameter

Name	Value	Default	Description
INIT	16'h0000~16'hffff	16'h0000	Initial value of LUT4

Truth Table

Table 2-12 Truth Table

Input(I3)	Input(I2)	Input(I1)	Input(I0)	Output(F)
0	0	0	0	INIT[0]
0	0	0	1	INIT[1]
0	0	1	0	INIT[2]
0	0	1	1	INIT[3]
0	1	0	0	INIT[4]
0	1	0	1	INIT[5]
0	1	1	0	INIT[6]
0	1	1	1	INIT[7]
1	0	0	0	INIT[8]
1	0	0	1	INIT[9]
1	0	1	0	INIT[10]
1	0	1	1	INIT[11]
1	1	0	0	INIT[12]
1	1	0	1	INIT[13]
1	1	1	0	INIT[14]
1	1	1	1	INIT[15]

Primitive Instantiation

Verilog Instantiation:

LUT4 instName (.I0(I0),

SUG283-2.4E 8(133)

```
.l1(l1),
        .12(12),
        .13(13),
        .F(F)
  );
  defparam instName.INIT=16'h1011;
VhdI Instantiation:
  COMPONENT LUT4
     GENERIC (INIT:bit_vector:=X"0000");
     PORT(
       F:OUT std_logic;
       10:IN std logic;
       I1:IN std_logic;
       12:IN std_logic;
       I3:IN std_logic
     );
  END COMPONENT;
  uut:LUT4
    GENERIC MAP(INIT=>X"0000")
    PORT MAP (
             F=>F,
             10 = > 10
             11 = > 11,
             12 = > 12
             13 = > 13
      );
```

2.1.5 Wide LUT

Primitive

Wide LUT is used for constructing high-order LUT by LUT4 and MUX2. MUX2 series of Gowin FPGA supports MUX2_LUT5/ MUX2_LUT6/ MUX2_LUT7/ MUX2_LUT8.

The way of constructing high-order LUT is as follows: one LUT5 can be implemented by two LUT4s and one MUX2_LUT5; one LUT6 can be implemented by two LUT5s and one MUX2_LUT6; one LUT7 can be implemented by two LUT6s and one MUX2_LUT7; one LUT8 can be implemented by two LUT7s and MUX2_LUT8.

The following takes LUT5 as an example to introduce the use of Wide LUT.

SUG283-2.4E 9(133)

Port Diagram

Figure 2-6 MUX2_LUT5 Port Diagram

Port Description

Table 2-13 Port Description

Port Name	I/O	Description
10	Input	Data input
I1	Input	Data input
12	Input	Data input
13	Input	Data input
14	Input	Data input
F	Output	Data output

Parameter

Table 2-14 Parameter

Parameter	Value	Default	Description
INIT	32'h00000~32'hfffff	32'h00000	Initial value of LUT5

SUG283-2.4E 10(133)

Truth Table

Table 2-15Truth Table

Input(I4)	Input(I3)	Input(I2)	Input(I1)	Input(I0)	Output(F)
0	0	0	0	0	INIT[0]
0	0	0	0	1	INIT[1]
0	0	0	1	0	INIT[2]
0	0	0	1	1	INIT[3]
0	0	1	0	0	INIT[4]
0	0	1	0	1	INIT[5]
0	0	1	1	0	INIT[6]
0	0	1	1	1	INIT[7]
0	1	0	0	0	INIT[8]
0	1	0	0	1	INIT[9]
0	1	0	1	0	INIT[10]
0	1	0	1	1	INIT[11]
0	1	1	0	0	INIT[12]
0	1	1	0	1	INIT[13]
0	1	1	1	0	INIT[14]
0	1	1	1	1	INIT[15]
1	0	0	0	0	INIT[16]
1	0	0	0	1	INIT[17]
1	0	0	1	0	INIT[18]
1	0	0	1	1	INIT[19]
1	0	1	0	0	INIT[20]
1	0	1	0	1	INIT[21]
1	0	1	1	0	INIT[22]
1	0	1	1	1	INIT[23]
1	1	0	0	0	INIT[24]
1	1	0	0	1	INIT[25]
1	1	0	1	0	INIT[26]
1	1	0	1	1	INIT[27]
1	1	1	0	0	INIT[28]
1	1	1	0	1	INIT[29]
1	1	1	1	0	INIT[30]
1	1	1	1	1	INIT[31]

Primitive Instantiation Verilog Instantiation:

SUG283-2.4E 11(133)

```
MUX2_LUT5 instName (
     .10(f0),
     .l1(f1),
     .S0(i5),
     .O(o)
  );
  LUT4 lut_0 (
   .10(i0),
   .l1(i1),
   .l2(i2),
   .13(i3),
   .F(f0)
  );
  defparam lut_0.INIT=16'h184A;
  LUT4 lut_1 (
   .I0(i0),
   .I1(i1),
   .12(i2),
   .13(i3),
   .F(f1)
  );
  defparam lut_1.INIT=16'h184A;
VhdI Instantiation:
  COMPONENT MUX2_LUT5
     PORT(
      O:OUT std_logic;
       I0:IN std_logic;
       11:IN std_logic;
       S0:IN std_logic
      );
  END COMPONENT;
  COMPONENT LUT4
     PORT(
       F:OUT std_logic;
       I0:IN std_logic;
       I1:IN std_logic;
       I2:IN std_logic;
       I3:IN std_logic
```

SUG283-2.4E 12(133)

```
);
END COMPONENT;
uut0: MUX2_LUT5
  PORT MAP (
          0 = > 0,
           10 = > f0,
           11 = > f1
           S0=>i5
   );
uut1:LUT4
  GENERIC MAP(INIT=>X"0000")
  PORT MAP (
           F=>f0,
          10 = > i0
          I1=>i1,
          12 = > i2
          13=>i3
    );
uut2:LUT4
  GENERIC MAP(INIT=>X"0000")
  PORT MAP (
           F=>f1,
           10 = > i0,
          11 = > i1,
          12=>i2.
          13=>i3
   );
```

2.2 MUX

MUX is a multiplexer. There are multiple inputs. It transmits one input to the output based on the channel-selection signal. Gowin MUX includes 2-to-1 multiplexer and 4-to-1 multiplexer.

2.2.1 MUX2

Primitive

2-to-1 Multiplexer (MUX2) selects one of the two inputs as the output based on the selection signal.

SUG283-2.4E 13(133)

Port Diagram

Figure 2-7 MUX2 Port Diagram

Port Description

Table 2-16 Port Description

Port Name	I/O	Description
10	Input	Data Input
I1	Input	Data Input
S0	Input	Selection Signal
0	Output	Data Output

Truth Table

Table 2-17 Truth Table

Input(S0)	Output(O)
0	10
1	I1

Primitive Instantiation

Verilog Instantiation:

```
MUX2 instName (
        .10(10),
        .I1(I1),
        .S0(S0),
        .O(O)
  );
VhdI Instantiation:
  COMPONENT MUX2
```

```
PORT(
 O:OUT std_logic;
   I0:IN std_logic;
            I1:IN std_logic;
```

SUG283-2.4E 14(133)

2.2.2 MUX4

Primitive

4-to-1 Multiplexer (MUX4) selects one of the four inputs as the output based on the selection signal.

Port Diagram

Figure 2-8 MUX4 Port Diagram

Port Description

Table 2-18 Port Description

Port Name	I/O	Description
10	Input	Data Input
I1	Input	Data Input
12	Input	Data Input
13	Input	Data Input
S0	Input	Selection Signal
S1	Input	Selection Signal
0	Output	Data Output

SUG283-2.4E 15(133)

Truth Table

Table 2-19 Truth Table

Input(S1)	Input(S0)	Output(O)
0	0	10
0	1	I1
1	0	12
1	1	13

Primitive Instantiation

```
Verilog Instantiation:
  MUX4 instName (
       .10(10),
       .l1(l1),
       .12(12),
       .13(13),
       .S0(S0),
       .S1(S1),
       .O(O)
  );
Vhdl Instantiation:
  COMPONENT MUX4
     PORT(
      O:OUT std_logic;
         I0:IN std_logic;
                  I1:IN std_logic;
                  I2:IN std_logic;
                  I3:IN std_logic;
                  S0:IN std_logic;
                  S1:IN std_logic
          );
  END COMPONENT;
  uut:MUX4
    PORT MAP (
             O=>O,
             10 = > 10,
             I1=>I1,
             12 = > 12,
```

13 = > 13,

SUG283-2.4E 16(133)

2.2.3 Wide MUX

Primitive

Wide MUX is used for constructing high-order MUX by MUX4 and MUX2. MUX2 series of Gowin FPGA supports MUX2_MUX8/ MUX2_MUX16/ MUX2_MUX32.

The way of constructing high-order MUX is as follows: One MUX8 can be implemented by two MUX4s and one MUX2_MUX8; one MUX16 can be implemented by two MUX8s and one MUX2_MUX16; one MUX32 can be implemented by two MUX16s and one MUX2_MUX32.

The following takes MUX2_MUX8 as an example to introduce the use of Wide MUX.

Port Diagram

Figure 2-9 MUX2_MUX8 Port Diagram

Port Description

Table 2-20 Port Description

Port Name	I/O	Description
10	Input	Data input
I1	Input	Data input
12	Input	Data input

SUG283-2.4E 17(133)

Port Name	I/O	Description
13	Input	Data input
14	Input	Data input
15	Input	Data input
16	Input	Data input
17	Input	Data input
S0	Input	Selection signal
S1	Input	Selection signal
S2	Input	Selection signal
0	Output	Data output

Truth Table

Table 2-21 Truth Table

Input(S2)	Input(S1)	Input(S0)	Output(O)
0	0	0	10
0	0	1	I1
0	1	0	12
0	1	1	13
1	0	0	14
1	0	1	15
1	1	0	16
1	1	1	17

Primitive Instantiation

Verilog Instantiation:

```
MUX2_MUX8 instName (
.l0(o0),
.l1(o1),
.S0(S2),
.O(O)
);
MUX4 mux_0 (
.l0(i0),
.l1(i1),
.l2(i2),
.l3(i3),
.S0(s0),
```

SUG283-2.4E 18(133)

```
.S1(s1),
      .0(00)
  );
  MUX4 mux_1 (
      .10(i4),
      .I1(i5),
      .l2(i6),
      .13(i7),
      .S0(s0),
      .S1(s1),
      .O(o1)
  );
VhdI Instantiation:
  COMPONENT MUX2_MUX8
     PORT(
      O:OUT std_logic;
        I0:IN std_logic;
                 I1:IN std_logic;
                 S0:IN std_logic
         );
  END COMPONENT;
  COMPONENT MUX4
         PORT(
      O:OUT std_logic;
        I0:IN std_logic;
                 I1:IN std_logic;
                 I2:IN std_logic;
                 I3:IN std_logic;
                 S0:IN std_logic;
                 S1:IN std_logic
        );
  END COMPONENT;
  uut1:MUX2_MUX8
    PORT MAP (
             O=>O,
             10 = > 00,
             I1=>01,
             S0=>S2
```

SUG283-2.4E 19(133)

2 CLU 2.3 ALU

```
);
uut2:MUX4
      PORT MAP (
           0 = > 00,
           10 = > 10,
           11 = > 11,
           I2=>I2,
           I3=>I3,
          S0=>S0,
           S1=>S1
   );
uut3:MUX4sss
      PORT MAP (
           O=>01,
           I0=>I4,
           I1=>I5,
          12=>16,
           I3=>I7,
          S0=>S0,
           S1=>S1
    );
```

2.3 ALU

Primitive

ALU is a 2-input arithmetic logic Unit and it can realize the functions of ADD/SUB/ADDSUB.

Table 2-22 ALU Functions

Item	Description
ADD	ADD
SUB	SUB
ADDSUB	ADDSUB
CUP	CUP
CDN	CDN
CUPCDN	CUPCDN
GE	GE
NE	NE
LE	LE
MULT	MULT

SUG283-2.4E 20(133)

2 CLU 2.3 ALU

Port Diagram

Figure 2-10 ALU Port Diagram

Port Description

Table 2-23 Port Description

Port Name	Input/Output	Description
10	Input	Data Input
I1	Input	Data Input
13	Input	Data Input
CIN	Input	Carry Input
COUT	Output	Carry Output
SUM	Output	Data Output

Parameter

Table 2-24 Parameter

Name	Value	Default	Description
ALU_MODE	0,1,2,3,4,5,6,7,8,9	0	Select the function of arithmetic. 0:ADD; 1:SUB; 2:ADDSUB; 3:NE; 4:GE; 5:LE; 6:CUP; 7:CDN; 8:CUPCDN; 9:MULT

Primitive Instantiation

Verilog Instantiation:

ALU instName (.I0(I0), .I1(I1),

SUG283-2.4E 21(133)

2 CLU 2.4 FF

```
.13(13),
      .CIN(CIN),
      .COUT(COUT),
      .SUM(SUM)
  );
  defparam instName.ALU_MODE=1;
VhdI Instantiation:
  COMPONENT ALU
      GENERIC (ALU_MODE:integer:=0);
     PORT(
      COUT:OUT std_logic;
                SUM:OUT std_logic;
        I0:IN std_logic;
                I1:IN std_logic;
                I3:IN std_logic;
                CIN:IN std_logic
         );
  END COMPONENT;
  uut:ALU
      GENERIC MAP(ALU_MODE=>1)
    PORT MAP (
            COUT=>COUT.
            SUM=>SUM,
            10 = > 10,
            11 = > 11,
            13 = > 13,
            CIN=>CIN
      );
```

2.4 FF

Flip-flop is a basic component in the timing circuit. Timing logic in FPGA can be implemented through an FF. The commonly used FF includes DFF, DFFE, DFFS, DFFSE, etc. The differences between them are reset modes, triggering modes, etc.

Table 2-25 Primitives Associated With FF

Primitive	Description
DFF	D flip-flop
DFFE	D flip-flop with clock enable
DFFS	D flip-flop with synchronous set

SUG283-2.4E 22(133)

2 CLU 2.4 FF

Primitive	Description	
DFFSE	D flip-flop with clock enable and synchronous set	
DFFR	D flip-flop with synchronous reset	
DFFRE	D flip-flop with clock enable and synchronous reset	
DFFP	D flip-flop with asynchronous preset	
DFFPE	D flip-flop with clock enable and asynchronous preset	
DFFC	D flip-flop with asynchronous clear	
DFFCE	D flip-flop with clock enable and asynchronous clear	
DFFN	Neg-edge D flip-flop	
DFFNE	Neg-edge D flip-flop with clock enable	
DFFNS	Neg-edge D flip-flop with synchronous set	
DFFNSE	Neg-edge D flip-flop with clock enable and synchronous set	
DFFNR	Neg-edge D flip-flop with synchronous reset	
DFFNRE	Neg-edge D flip-flop with clock enable and synchronous reset	
DFFNP	Neg-edge D flip-flop with asynchronous preset	
DFFNPE	Neg-edge D flip-flop with clock enable and asynchronous preset	
DFFNC	Neg-edge D flip-flop with asynchronous clear	
DFFNCE	Neg-edge D flip-flop with clock enable and asynchronous clear	

Placement Rule

Table 2-26 Type of FF

No.	Type 1	Type 2
1	DFFS	DFFR
2	DFFSE	DFFRE
3	DFFP	DFFC
4	DFFPE	DFFCE
5	DFFNS	DFFNR
6	DFFNSE	DFFNRE
7	DFFNP	DFFNC
8	DFFNPE	DFFNCE

- 1. DFF of the same type can be placed on two FFs in the same CLS. All input other than pin input must be in the same net;
- 2. DFF of two types but same No. can be palced on two FFs in the same CLS, as shown in Table 2-26. All input other than pin input must be in the same net;
- 3. DFF and ALU can be constrainted in the same or different locations of the same CLS;

SUG283-2.4E 23(133)

4. DFF and LUT can be constrainted in the same or different locations of the same CLS;

Note!

The two nets via inverter can not be placed in the same CLS.

2.4.1 DFF

Primitive

The D Flip-Flop (DFF), pos-edge triggered, is commonly used for signal sampling and processing .

Port Diagram

Figure 2-11 DFF Port Diagram

Port Description

Table 2-27 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
Q	Output	Data Output

Parameter

Table 2-28 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for DFF

Primitive Instantiation

Verilog Instantiation:

```
DFF instName (
.D(D),
.CLK(CLK),
.Q(Q)
```

SUG283-2.4E 24(133)

```
);
  defparam instName.INIT=1'b0;
VhdI Instantiation:
  COMPONENT DFF
     GENERIC (INIT:bit:='0');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
                CLK:IN std_logic
 );
  END COMPONENT;
  uut:DFF
    GENERIC MAP(INIT=>'0')
    PORT MAP (
            Q = > Q,
            D=>D,
            CLK=>CLK
      );
```

2.4.2 DFFE

Primitive

DFFE, pos-edge triggered, is thw D Flip-Flop with clock enable.

Port Diagram

Figure 2-12 DFFE Port Diagram

Port Description

Table 2-29 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input

SUG283-2.4E 25(133)

Port Name	I/O	Description
CE	Input	Clock Enable
Q	Output	Data Output

Parameter

Table 2-30 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for DFFE

Primitive Instantiation

```
Verilog Instantiation:
```

```
DFFE instName (
        .D(D),
        .CLK(CLK),
        .CE(CE),
        .Q(Q)
  );
  defparam instName.INIT=1'b0;
VhdI Instantiation:
  COMPONENT DFFE
     GENERIC (INIT:bit:='0');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
                CLK:IN std_logic;
                CE:IN std_logic
         );
  END COMPONENT;
  uut:DFFE
    GENERIC MAP(INIT=>'0')
    PORT MAP (
            Q=>Q,
            D=>D,
            CLK=>CLK,
            CE=>CE
      );
```

2.4.3 DFFS

SUG283-2.4E 26(133)

Primitive

DFFS, pos-edge triggered, is the D Flip-Flop with synchronous set .

Port Diagram

Figure 2-13 DFFS Port Diagram

Port Description

Table 2-31 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
SET	Input	Synchronous Set Input
Q	Output	Data Output

Parameter

Table 2-32 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b1	Initial value for DFFS

Primitive Instantiation

Verilog Instantiation:

```
DFFS instName (
.D(D),
.CLK(CLK),
.SET(SET),
.Q(Q)
);
defparam instName.INIT=1'b1;
VhdI Instantiation:
COMPONENT DFFS
GENERIC (INIT:bit:='1');
PORT(
```

SUG283-2.4E 27(133)

```
Q:OUT std_logic;
D:IN std_logic;
CLK:IN std_logic;
SET:IN std_logic
);
END COMPONENT;
uut:DFFS
GENERIC MAP(INIT=>'1')
PORT MAP (
Q=>Q,
D=>D,
CLK=>CLK,
SET=>SET
);
```

2.4.4 DFFSE

Primitive

DFFSE, pos-edge triggered, is the D Flip-Flop with clock enable and synchronous set..

Port Diagram

Figure 2-14 DFFSE Port Diagram

Port Description

Table 2-33 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
SET	Input	Synchronous Set Input
CE	Input	Clock Enable
Q	Output	Data Output

SUG283-2.4E 28(133)

Parameter

Table 2-34 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b1	Initial value for DFFSE

Primitive Instantiation

```
Verilog Instantiation:
  DFFSE instName (
        .D(D),
        .CLK(CLK),
        .SET(SET),
        .CE(CE),
        .Q(Q)
  );
  defparam instName.INIT=1'b1;
VhdI Instantiation:
  COMPONENT DFFSE
     GENERIC (INIT:bit:='1');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
                CLK:IN std_logic;
                SET:IN std_logic;
                CE:IN std_logic
         );
  END COMPONENT;
  uut:DFFSE
    GENERIC MAP(INIT=>'1')
    PORT MAP (
            Q=>Q,
            D=>D,
            CLK=>CLK,
            SET=>SET,
            CE=>CE
```

);

SUG283-2.4E 29(133)

2.4.5 DFFR

Primitive

DFFR, pos-edge triggered, is the D Flip-Flop with synchronous reset.

Port Diagram

Figure 2-15 DFFR Port Diagram

Port Description

Table 2-35 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
RESET	Input	Synchronous Reset Input
Q	Output	Data Output

Parameter

Table 2-36 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for DFFR

Primitive Instantiation

Verilog Instantiation:

```
DFFR instName (
.D(D),
.CLK(CLK),
.RESET(RESET),
.Q(q)
);
defparam instName.INIT=1'b0;
Vhdl Instantiation:
COMPONENT DFFR
GENERIC (INIT:bit:='0');
```

SUG283-2.4E 30(133)

```
PORT(
Q:OUT std_logic;
D:IN std_logic;
CLK:IN std_logic;
RESET:IN std_logic
);
END COMPONENT;
uut:DFFR
GENERIC MAP(INIT=>'0')
PORT MAP (
Q=>Q,
D=>D,
CLK=>CLK,
RESET=>RESET
);
```

2.4.6 DFFRE

Primitive

DFFRE, pos-edge triggered, is the D Flip-Flop with clock enable and synchronous reset.

Port Diagram

Figure 2-16 DFFRE Port Diagram

Port Description

Table 2-37 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
RESET	Input	Synchronous Reset Input
CE	Input	Clock Enable
Q	Output	Data Output

SUG283-2.4E 31(133)

Parameter

Table 2-38 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for DFFRE

Primitive Instantiation

```
Verilog Instantiation:
  DFFRE instName (
      .D(D),
      .CLK(CLK),
      .RESET(RESET),
      .CE(CE),
      .Q(Q)
  );
  defparam instName.INIT=1'b0;
VhdI Instantiation:
  COMPONENT DFFRE
     GENERIC (INIT:bit:='0');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
                CLK:IN std_logic;
                RESET:IN std_logic;
                CE:IN std_logic
        );
  END COMPONENT;
  uut:DFFRE
    GENERIC MAP(INIT=>'0')
    PORT MAP (
            Q=>Q,
            D=>D,
            CLK=>CLK,
            RESET=>RESET,
            CE=>CE
       );
```

SUG283-2.4E 32(133)

2.4.7 DFFP

Primitive

DFFP, pos-edge triggered, is the D Flip-Flop with asynchronous preset.

Port Diagram

Figure 2-17 DFFP Port Diagram

Port Description

Table 2-39 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
PRESET	Input	Asynchronous Preset Input
Q	Output	Data Output

Parameter

Table 2-40 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b1	Initial value for DFFP

Primitive Instantiation

Verilog Instantiation:

VhdI Instantiation:

COMPONENT DFFP

SUG283-2.4E 33(133)

```
GENERIC (INIT:bit:='1');
  PORT(
   Q:OUT std_logic;
   D:IN std_logic;
              CLK:IN std_logic;
              PRESET: IN std_logic
      );
END COMPONENT;
uut:DFFP
 GENERIC MAP(INIT=>'1')
 PORT MAP (
          Q = > Q,
          D=>D,
          CLK=>CLK,
          PRESET=>PRESET
   );
```

2.4.8 DFFPE

Primitive

DFFPE, pos-edge triggered, is the D Flip-Flop with clock enable and asynchronous preset.

Port Diagram

Figure 2-18 DFFPE Port Diagram

Port Description

Table 2-41 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
PRESET	Input	Asynchronous Preset Input
CE	Input	Clock Enable

SUG283-2.4E 34(133)

Port Name	I/O	Description
Q	Output	Data Output

Parameter

Table 2-42 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b1	Initial value for DFFPE

Primitive Instantiation

```
Verilog Instantiation:
  DFFPE instName (
       .D(D),
       .CLK(CLK),
       .PRESET(PRESET),
       .CE(CE),
       Q(Q)
  );
  defparam instName.INIT=1'b1;
VhdI Instantiation:
  COMPONENT DFFPE
     GENERIC (INIT:bit:='1');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
                CLK:IN std_logic;
                PRESET:IN std_logic;
                CE:IN std_logic
         );
  END COMPONENT;
  uut:DFFPE
    GENERIC MAP(INIT=>'1')
    PORT MAP (
            Q = > Q,
            D=>D,
            CLK=>CLK,
            PRESET=>PRESET,
            CE=>CE
      );
```

SUG283-2.4E 35(133)

2.4.9 DFFC

Primitive

DFFC, pos-edge triggered, is the D Flip-Flop with asynchronous clear.

Port Diagram

Figure 2-19 DFFC Blcok Diagram

Port Description

Table 2-43 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
CLEAR	Input	Asynchronous Clear Input
Q	Output	Data Output

Parameter

Table 2-44 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for DFFC

Primitive Instantiation

Verilog Instantiation:

VhdI Instantiation:

COMPONENT DFFC

SUG283-2.4E 36(133)

```
GENERIC (INIT:bit:='0');
  PORT(
   Q:OUT std_logic;
   D:IN std_logic;
             CLK:IN std_logic;
             CLEAR: IN std_logic
      );
END COMPONENT;
uut:DFFC
 GENERIC MAP(INIT=>'0')
 PORT MAP (
         Q=>Q,
          D=>D,
          CLK=>CLK,
          CLEAR=>CLEAR
   );
```

2.4.10 DFFCE

Primitive

DFFCE, pos-edge triggered, is the D Flip-Flop with clock enable and asynchronous clear.

Port Diagram

Figure 2-20 DFFCE Port Diagram

Port Description

Table 2-45 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
CLEAR	Input	Asynchronous Clear Input
CE	Input	Clock Enable
Q	Output	Data Output

SUG283-2.4E 37(133)

Parameter

Table 2-46 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for DFFCE

Primitive Instantiation

```
Verilog Instantiation:
  DFFCE instName (
      .D(D),
      .CLK(CLK),
     .CLEAR(CLEAR),
      .CE(CE),
      .Q(Q)
  );
  defparam instName.INIT=1'b0;
VhdI Instantiation:
  COMPONENT DFFCE
     GENERIC (INIT:bit:='0');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
                CLK:IN std_logic;
                CLEAR:IN std_logic;
                CE:IN std_logic
         );
  END COMPONENT;
  uut:DFFCE
    GENERIC MAP(INIT=>'0')
    PORT MAP (
            Q=>Q,
            D=>D,
            CLK=>CLK,
            CLEAR=>CLEAR,
            CE=>CE
      );
```

SUG283-2.4E 38(133)

2.4.11 DFFN

Primitive

DFFN is D Flip-Flop with neg-edge clock.

Port Diagram

Figure 2-21 DFFN Port Diagram

Port Description

Table 2-47 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
Q	Output	Data Output

Parameter

Table 2-48 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for DFFN

Primitive Instantiation

Verilog Instantiation:

```
DFFN instName (
.D(D),
.CLK(CLK),
.Q(Q)
);
defparam instName.INIT=1'b0;
Vhdl Instantiation:
COMPONENT DFFN
GENERIC (INIT:bit:='0');
PORT(
Q:OUT std_logic;
D:IN std_logic;
```

SUG283-2.4E 39(133)

```
CLK:IN std_logic
);
END COMPONENT;
uut:DFFN
GENERIC MAP(INIT=>'0')
PORT MAP (
Q=>Q,
D=>D,
CLK=>CLK
```

2.4.12 DFFNE

Primitive

DFFNE, neg-edge triggered, is the D Flip-Flop with clock enable.

Port Diagram

Figure 2-22 DFFNE Port Diagram

Port Description

Table 2-49 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
CE	Input	Clock Enable
Q	Output	Data Output

Parameter

Table 2-50 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for DFFNE

SUG283-2.4E 40(133)

Primitive Instantiation

```
Verilog Instantiation:
  DFFNE instName (
      .D(D),
      .CLK(CLK),
      .CE(CE),
      .Q(Q)
  );
  defparam instName.INIT=1'b0;
VhdI Instantiation:
  COMPONENT DFFNE
     GENERIC (INIT:bit:='0');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
                CLK:IN std_logic;
                CE:IN std_logic
         );
  END COMPONENT;
  uut:DFFNE
    GENERIC MAP(INIT=>'0')
    PORT MAP (
            Q = > Q,
            D=>D,
            CLK=>CLK,
            CE=>CE
      );
```

2.4.13 DFFNS

Primitive

DFFNS, neg-edge triggered, is the D Flip-Flop with synchronous set.

Port Diagram

Figure 2-23 DFFNS Blcok Diagram

SUG283-2.4E 41(133)

Port Description

Table 2-51 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
SET	Input	Synchronous Set Input
Q	Output	Data Output

Parameter

Table 2-52 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b1	Initial value for DFFNS

Primitive Instantiation

```
Verilog Instantiation:
  DFFNS instName (
      .D(D),
      .CLK(CLK),
      .SET(SET),
      .Q(Q)
  );
  defparam instName.INIT=1'b1;
VhdI Instantiation:
  COMPONENT DFFNS
     GENERIC (INIT:bit:='1');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
                CLK:IN std_logic;
                SET:IN std_logic
         );
  END COMPONENT;
  uut:DFFNS
    GENERIC MAP(INIT=>'1')
    PORT MAP (
            Q = > Q,
```

SUG283-2.4E 42(133)

```
D=>D,
CLK=>CLK,
SET=>SET
```

2.4.14 DFFNSE

Primitive

DFFNSE, neg-edge triggered, is the D Flip-Flop with clock enable, and synchronous set.

Port Diagram

Figure 2-24 DFFNSE Port Diagram

Port Description

Table 2-53 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
SET	Input	Synchronous Set Input
CE	Input	Clock Enable
Q	Output	Data Output

Parameter

Table 2-54 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b1	Initial value for DFFNSE

Primitive Instantiation

Verilog Instantiation:

```
DFFNSE instName (
.D(D),
.CLK(CLK),
.SET(SET),
```

SUG283-2.4E 43(133)

```
.CE(CE),
      .Q(Q)
  );
  defparam instName.INIT=1'b1;
VhdI Instantiation:
  COMPONENT DFFNSE
     GENERIC (INIT:bit:='1');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
                CLK:IN std_logic;
                SET:IN std_logic;
                CE:IN std_logic
         );
  END COMPONENT;
  uut:DFFNSE
    GENERIC MAP(INIT=>'1')
    PORT MAP (
            Q = > Q,
            D=>D,
            CLK=>CLK,
            SET=>SET.
            CE=>CE
      );
```

2.4.15 DFFNR

Primitive

DFFNR, neg-edge triggered, is the D Flip-Flop with synchronous reset.

Port Diagram

Figure 2-25 DFFNR Port Diagram

SUG283-2.4E 44(133)

Port Description

Table 2-55 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
RESET	Input	Synchronous Reset Input
Q	Output	Data Output

Parameter

Table 2-56 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for DFFNR

Primitive Instantiation

```
Verilog Instantiation:
DFFNR instName (
```

```
.D(D),
      .CLK(CLK),
      .RESET(RESET),
      .Q(Q)
  );
  defparam instName.INIT=1'b0;
VhdI Instantiation:
  COMPONENT DFFNR
     GENERIC (INIT:bit:='0');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
                CLK:IN std_logic;
                RESET:IN std_logic
         );
  END COMPONENT;
  uut:DFFNR
    GENERIC MAP(INIT=>'0')
    PORT MAP (
            Q = > Q,
            D=>D,
            CLK=>CLK,
```

SUG283-2.4E 45(133)

RESET=>RESET

);

2.4.16 DFFNRE

Primitive

DFFNRE, neg-edge triggered, is the D Flip-Flop with clock enable, and synchronous reset.

Blcok Diagram

Figure 2-26 DFFNRE Blcok Diagram

Port Description

Table 2-57 Port Description

Port Name	I/O	Description	
D	Input	Data Input	
CLK	Input	Clock input	
RESET	Input	Synchronous Reset Input	
CE	Input	Clock Enable	
Q	Output	Data Output	

Parameter

Table 2-58 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for DFFNRE

Primitive Instantiation

Verilog Instantiation:

```
DFFNRE instName (
.D(D),
.CLK(CLK),
.RESET(RESET),
.CE(CE),
```

SUG283-2.4E 46(133)

```
.Q(Q)
  );
  defparam instName.INIT=1'b0;
VhdI Instantiation:
  COMPONENT DFFNRE
     GENERIC (INIT:bit:='0');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
                CLK:IN std_logic;
                RESET:IN std_logic;
                CE:IN std_logic
          );
  END COMPONENT;
  uut:DFFNRE
    GENERIC MAP(INIT=>'0')
    PORT MAP (
            Q = > Q,
            D=>D,
            CLK=>CLK,
            RESET=>RESET,
            CE=>CE
      );
```

2.4.17 DFFNP

Primitive

DFFNP, neg-edge triggered, is the D Flip-Flop with asynchronous preset.

Port Diagram

Figure 2-27 DFFNP Port Diagram

SUG283-2.4E 47(133)

Port Description

Table 2-59 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
PRESET	Input	Asynchronous Preset Input
Q	Output	Data Output

Parameter

Table 2-60 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b1	Initial value for DFFNP

Primitive Instantiation

```
Verilog Instantiation:
  DFFNP instName (
       .D(D),
       .CLK(CLK),
       .PRESET(PRESET),
       .Q(Q)
  );
  defparam instName.INIT=1'b1;
VhdI Instantiation:
  COMPONENT DFFNP
     GENERIC (INIT:bit:='1');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
                CLK:IN std_logic;
                PRESET:IN std_logic
         );
  END COMPONENT;
  uut:DFFNP
    GENERIC MAP(INIT=>'1')
    PORT MAP (
            Q = > Q,
            D=>D,
            CLK=>CLK,
```

SUG283-2.4E 48(133)

PRESET=>PRESET

);

2.4.18 DFFNPE

Primitive

DFFNPE, neg-edge triggered, is the D Flip-Flop with clock enable, and asynchronous preset.

Port Diagram

Figure 2-28 DFFNPE Port Diagram

Port Description

Table 2-61 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
PRESET	Input	Asynchronous Preset Input
CE	Input	Clock Enable
Q	Output	Data Output

Parameter

Table 2-62 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b1	Initial value for DFFNPE

Primitive Instantiation

Verilog Instantiation:

```
DFFNPE instName (
.D(D),
.CLK(CLK),
.PRESET(PRESET),
.CE(CE),
.Q(Q)
```

SUG283-2.4E 49(133)

```
);
  defparam instName.INIT=1'b1;
VhdI Instantiation:
  COMPONENT DFFNPE
     GENERIC (INIT:bit:='1');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
                CLK:IN std_logic;
                PRESET:IN std_logic;
                CE:IN std_logic
         );
  END COMPONENT;
  uut:DFFNPE
    GENERIC MAP(INIT=>'1')
    PORT MAP (
            Q = > Q,
            D=>D,
            CLK=>CLK,
            PRESET=>PRESET,
            CE=>CE
      );
```

2.4.19 DFFNC

Primitive

DFFNC, neg-edge triggered, is the D Flip-Flop with asynchronous clear.

Port Diagram

Figure 2-29 DFFNC Port Diagram

SUG283-2.4E 50(133)

Port Description

Table 2-63 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
CLEAR	Input	Asynchronous Clear Input
Q	Output	Data Output

Parameter

Table 2-64 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for DFFNC

Primitive Instantiation

```
Verilog Instantiation:
  DFFNC instName (
       .D(D),
       .CLK(CLK),
       .CLEAR(CLEAR),
       .Q(Q)
  );
  defparam instName.INIT=1'b0;
VhdI Instantiation:
  COMPONENT DFFNC
     GENERIC (INIT:bit:='0');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
                CLK:IN std_logic;
                CLEAR: IN std_logic
        );
  END COMPONENT;
  uut:DFFNC
    GENERIC MAP(INIT=>'0')
    PORT MAP (
            Q=>Q,
            D=>D,
```

SUG283-2.4E 51(133)

CLK=>CLK, CLEAR=>CLEAR

);

2.4.20 DFFNCE

Primitive

DFFNCE, neg-edge triggered, is the D Flip-Flop with clock enable and asynchronous clear.

Port Diagram

Figure 2-30 DFFNCE Port Diagram

Port Description

Table 2-65 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLK	Input	Clock input
CLEAR	Input	Asynchronous Clear Input
CE	Input	Clock Enable
Q	Output	Data Output

Parameter

Table 2-66 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for DFFNCE

Primitive Instantiation

Verilog Instantiation:

DFFNCE instName (.D(D),

SUG283-2.4E 52(133)

```
.CLK(CLK),
       .CLEAR(CLEAR),
       .CE(CE),
       .Q(Q)
  );
  defparam instName.INIT=1'b0;
VhdI Instantiation:
  COMPONENT DFFNCE
     GENERIC (INIT:bit:='0');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
                CLK:IN std_logic;
                CLEAR: IN std_logic;
                CE:IN std_logic
         );
  END COMPONENT;
  uut:DFFNCE
    GENERIC MAP(INIT=>'0')
    PORT MAP (
            Q=>Q,
            D=>D,
            CLK=>CLK,
            CLEAR=>CLEAR,
            CE=>CE
      );
```

2.5 LATCH

LATCH is a memory cell circuit and its status can be changed by specified input level.

Table 2-67 Primitives Related with LATCH

Primitive	Description
DL	Data Latch
DLE	Data latch with enable
DLC	Data latch with asynchronous clearing
DLCE	Data latch with enable and asynchronous clearing
DLP	Data latch with asynchronous preset
DLPE	Data latch with asynchronous preset and enable
DLN	Data latch, active-low

SUG283-2.4E 53(133)

Primitive	Description
DLNE	Data latch with enable, active-low
DLNC	Data latch with asynchronous clearing, active-low
DLNCE	Data latch with enable and asynchronous clearing, active-low
DLNP	Data latch with asynchronous preset, active-low
DLNPE	Data latch with asynchronous preset and enable, active-low

Placement Rule

Table 2-68 Type of LATCH

No.	Type 1	Type 2
1	DLC	DLP
2	DLCE	DLPE
3	DLNC	DLNP
4	DLNCE	DLNPE

- 1. DL of the same type can be placed on two FFs in the same CLS. All input other than pin input must be in the same net;
 - 5. DL of two types but same No. can be palced on two FFs in the same CLS, as shown in Table 2-68. All input other than pin input must be in the same net;
 - 6. DL and ALU can be constrainted in the same or different locations of the same CLS;
 - 7. DL and LUT can be constrainted in the same or different locations of the same CLS;

Note!

The two nets via inverter can not be placed in the same CLS.

2.5.1 DL

Primitive

The Data Latch (DL) is a kind of commonly used latch. The control signal G is active-high.

SUG283-2.4E 54(133)

Port Diagram

Figure 2-31 DL Port Diagram

Port Description

Table 2-69 Port Description

Port Name	I/O	Description
D	Input	Data Input
G	Input	Control Signal Input
Q	Output	Data Output

Parameter

Table 2-70 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for initial DL

Primitive Instantiation

Verilog Instantiation:

```
DL instName (
.D(D),
.G(G),
.Q(Q)
);
defparam instName.INIT=1'b0;
Vhdl Instantiation:
COMPONENT DL
GENERIC (INIT:bit:='0');
PORT(
Q:OUT std_logic;
D:IN std_logic;
G:IN std_logic
```

SUG283-2.4E 55(133)

```
);
END COMPONENT;
uut:DL
GENERIC MAP(INIT=>'0')
PORT MAP (
Q=>Q,
D=>D,
G=>G
```

2.5.2 DLE

Primitive

Data Latch with Latch Enable (DLE) is a latch with the function of enable control. The control signal G is active-high.

Port Diagram

Figure 2-32 DLE Port Diagram

Port Description

Table 2-71 Port Description

Port Name	I/O	Description
D	Input	Data Input
G	Input	Control Signal Input
CE	Input	Clock Enable
Q	Output	Data Output

Parameter

Table 2-72 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for initial DLE

SUG283-2.4E 56(133)

Primitive Instantiation

```
Verilog Instantiation:
  DLE instName (
       .D(D),
       .G(G),
       .CE(CE),
       .Q(Q)
  );
  defparam instName.INIT=1'b0;
VhdI Instantiation:
  COMPONENT DLE
     GENERIC (INIT:bit:='0');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
      G:IN std_logic;
      CE:IN std_logic
     );
  END COMPONENT;
  uut:DLE
    GENERIC MAP(INIT=>'0')
    PORT MAP (
            Q = > Q,
            D=>D,
            G=>G.
            CE=>CE
      );
```

2.5.3 DLC

Primitive

Data Latch with Asynchronous Clear (DLC) is a latch with the function of clear. The control signal G is active-high.

SUG283-2.4E 57(133)

Port Diagram

Figure 2-33 DLC Port Diagram

Port Description

Table 2-73 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLEAR	Input	Asynchronous Clear Input
G	Input	Control Signal Input
Q	Output	Data Output

Parameter

Table 2-74 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for initial DLC

Primitive Instantiation

Verilog Instantiation:

```
DLC instName (
.D(D),
.G(G),
.CLEAR(CLEAR),
.Q(Q)
);
defparam instName.INIT=1'b0;
Vhdl Instantiation:
COMPONENT DLC
GENERIC (INIT:bit:='0');
PORT(
Q:OUT std_logic;
```

SUG283-2.4E 58(133)

```
D:IN std_logic;
G:IN std_logic;
CLEAR:IN std_logic
);
END COMPONENT;
uut:DLC
GENERIC MAP(INIT=>'0')
PORT MAP (
Q=>Q,
D=>D,
G=>G,
CLEAR=>CLEAR
);
```

2.5.4 DLCE

Primitive

Data Latch with Asynchronous Clear and Latch Enable (DLCE) is a latch with the function of enable control and clear. The control signal G is active-high.

Port Diagram

Figure 2-34 DLCE Port Diagram

Port Description

Table 2-75 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLEAR	Input	Asynchronous Clear Input
G	Input	Control Signal Input
CE	Input	Clock Enable
Q	Output	Data Output

SUG283-2.4E 59(133)

Parameter

Table 2-76 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for initial DLCE

Primitive Instantiation

```
Verilog Instantiation:
  DLCE instName (
       .D(D),
       .CLEAR(CLEAR),
       .G(G),
       .CE(CE),
       .Q(Q)
  );
  defparam instName.INIT=1'b0;
VhdI Instantiation:
  COMPONENT DLCE
     GENERIC (INIT:bit:='0');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
                G:IN std_logic;
                CE:IN std_logic;
      CLEAR: IN std_logic
     );
  END COMPONENT;
  uut:DLCE
    GENERIC MAP(INIT=>'0')
    PORT MAP (
            Q = > Q,
            D=>D,
            G=>G,
            CE=>CE,
            CLEAR=>CLEAR
      );
```

2.5.5 DLP

Primitive

Data Latch with Asynchronous Preset (DLP) is a latch with preset

SUG283-2.4E 60(133)

function. The control signal G is active-high.

Port Diagram

Figure 2-35 DLP Blcok Diagram

Port Description

Table 2-77 Port Description

Port Name	I/O	Description
D	Input	Data Input
PRESET	Input	Asynchronous Preset Input
G	Input	Control Signal Input
Q	Output	Data Output

Parameter

Table 2-78 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b1	Initial value for initial DLP

Primitive Instantiation

Verilog Instantiation:

```
DLP instName (
.D(D),
.G(G),
.PRESET(PRESET),
.Q(Q)
);
defparam instName.INIT=1'b1;
VhdI Instantiation:
COMPONENT DLP
GENERIC (INIT:bit:='1');
PORT(
Q:OUT std_logic;
```

SUG283-2.4E 61(133)

```
D:IN std_logic;
G:IN std_logic;
PRESET:IN std_logic
);
END COMPONENT;
uut:DLP
GENERIC MAP(INIT=>'1')
PORT MAP (
Q=>Q,
D=>D,
G=>G,
PRESET => PRESET
);
```

2.5.6 DLPE

Primitive

Data Latch with Asynchronous Preset and Latch Enable (DLPE) is a latch with the function of enable control and preset, and control signal G is active-high.

Port Diagram

Figure 2-36 DLPE Port Diagram

Port Description

Table 2-79 Port Description

Port Name	I/O	Description
D	Input	Data Output
PRESET	Input	Asynchronous Preset Input
G	Input	Control Signal Input
CE	Input	Clock Enable
Q	Output	Data Output

SUG283-2.4E 62(133)

Parameter

Table 2-80 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b1	Initial value for initial DLPE

Primitive Instantiation

```
Verilog Instantiation:
  DLPE instName (
       .D(D),
       .PRESET(PRESET),
       .G(G),
       .CE(CE),
       .Q(Q)
  );
  defparam instName.INIT=1'b1;
VhdI Instantiation:
  COMPONENT DLPE
     GENERIC (INIT:bit:='1');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
      G:IN std_logic;
      CE:IN std_logic;
      PRESET:IN std_logic
     );
  END COMPONENT;
  uut:DLPE
    GENERIC MAP(INIT=>'1')
    PORT MAP (
            Q=>Q,
            D=>D,
            G=>G,
     CE=>CE
            PRESET =>PRESET
```

);

SUG283-2.4E 63(133)

2.5.7 DLN

Primitive

Data Latch with Inverted Gate (DLN) is a latch with the control signal active-low.

Port Diagram

Figure 2-37 DLNP Port Diagram

Port Description

Table 2-81 Port Description

Port Name	I/O	Description
D	Input	Data Input
G	Input	Control Signal Input
Q	Output	Data Output

Parameter

Table 2-82 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for initial DLN

Primitive Instantiation

Verilog Instantiation:

```
DLN instName (
.D(D),
.G(G),
.Q(Q)
);
defparam instName.INIT=1'b0;
```

VhdI Instantiation:

COMPONENT DLN

SUG283-2.4E 64(133)

```
GENERIC (INIT:bit:='0');
PORT(
Q:OUT std_logic;
D:IN std_logic;
G:IN std_logic
);
END COMPONENT;
uut:DLN
GENERIC MAP(INIT=>'0')
PORT MAP (
Q=>Q,
D=>D,
G=>G
);
```

2.5.8 DLNE

Primitive

Data Latch with Latch Enable and Inverted Gate (DLNE) is a latch with the function of enable control, and control signal G is active-low.

Port Diagram

Figure 2-38 DLNE Port Diagram

Port Description

Table 2-83 Port Description

Port Name	I/O	Description
D	Input	Data Input
G	Input	Control Signal Input
CE	Input	Clock Enable
Q	Output	Data Output

SUG283-2.4E 65(133)

Parameter

Table 2-84 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for initial DLNE

Primitive Instantiation

```
Verilog Instantiation:
  DLNE instName (
     .D(D),
     .G(G),
     .CE(CE),
     .Q(Q)
  );
  defparam instName.INIT=1'b0;
VhdI Instantiation:
  COMPONENT DLNE
     GENERIC (INIT:bit:='0');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
      G:IN std_logic;
      CE:IN std_logic
     );
  END COMPONENT;
  uut:DLNE
    GENERIC MAP(INIT=>'0')
    PORT MAP (
            Q = > Q,
            D=>D,
            G=>G,
            CE => CE
      );
```

2.5.9 DLNC

Primitive

Data Latch with Asynchronous Clear and Inverted Gate (DLNC) is a latch with the function of clear, and control signal G is active-low.

SUG283-2.4E 66(133)

Port Diagram

Figure 2-39 DLNC Port Diagram

Port Description

Table 2-85 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLEAR	Input	Asynchronous Clear Input
G	Input	Control Signal Input
Q	Output	Data Output

Parameter

Table 2-86 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for initial DLNC

Primitive Instantiation

Verilog Instantiation:

```
DLNC instName (
.D(D),
.G(G),
.CLEAR(CLEAR),
.Q(Q)
);
defparam instName.INIT=1'b0;
VhdI Instantiation:
COMPONENT DLNC
GENERIC (INIT:bit:='0');
PORT(
Q:OUT std_logic;
```

SUG283-2.4E 67(133)

```
D:IN std_logic;
G:IN std_logic;
CLEAR:IN std_logic
);
END COMPONENT;
uut:DLNC
GENERIC MAP(INIT=>'0')
PORT MAP (
Q=>Q,
D=>D,
G=>G,
CLEAR => CLEAR
);
```

2.5.10 DLNCE

Primitive

Data Latch with Asynchronous Clear, Latch Enable, and Inverted Gate (DLNCE) is a latch with the function of enable control and clear, and control signal G is active-low.

Port Diagram

Figure 2-40 DLNCE Port Diagram

Port Description

Table 2-87 Port Description

Port Name	I/O	Description
D	Input	Data Input
CLEAR	Input	Asynchronous Clear Input
G	Input	Control Signal Input
CE	Input	Clock Enable
Q	Output	Data Output

SUG283-2.4E 68(133)

Parameter

Table 2-88 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b0	Initial value for initial DLNCE

Primitive Instantiation

```
Verilog Instantiation:
  DLNCE instName (
       .D(D),
       .CLEAR(CLEAR),
       .G(G),
       .CE(CE),
       Q(Q)
  );
  defparam instName.INIT=1'b0;
VhdI Instantiation:
  COMPONENT DLNCE
     GENERIC (INIT:bit:='0');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
               G:IN std_logic;
               CE:IN std_logic;
      CLEAR:IN std_logic
    );
  END COMPONENT;
  uut:DLNCE
    GENERIC MAP(INIT=>'0'
        )
    PORT MAP (
            Q=>Q,
            D=>D,
            G=>G,
            CE=>CE,
            CLEAR=>CLEAR
```

);

SUG283-2.4E 69(133)

2.5.11 DLNP

Primitive

Data Latch with Asynchronous Preset and Inverted Gate (DLNP) is a latch with the function of asynchronous preset, and control signal G is active-low.

Port Diagram

Figure 2-41 DLNP Port Diagram

Port Description

Table 2-89 Port Description

Port Name	I/O	Description
D	Input	Data Input
PRESET	Input	Asynchronous Preset Input
G	Input	Control Signal Input
Q	Output	Data Output

Parameter

Table 2-90 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b1	Initial value for initial DLNPE

Primitive Instantiation

Verilog Instantiation:

SUG283-2.4E 70(133)

VhdI Instantiation:

```
COMPONENT DLNP
  GENERIC (INIT:bit:='1');
  PORT(
   Q:OUT std_logic;
   D:IN std_logic;
   G:IN std_logic;
   PRESET:IN std_logic
 );
END COMPONENT;
uut:DLNP
 GENERIC MAP(INIT=>'1')
 PORT MAP (
         Q = > Q,
          D=>D,
          G=>G.
          PRESET => PRESET
   );
```

2.5.12 DLNPE

Primitive

Data Latch with Asynchronous Preset, Latch Enable and Inverted Gate (DLNPE) is a latch with the function of enable control and preset, and control signal G is active-low.

Port Diagram

Figure 2-42 DLNPE Port Diagram

Port Description

Table 2-91 Port Description

Port Name	I/O	Description
D	Input	Data Input

SUG283-2.4E 71(133)

Port Name	I/O	Description
PRESET	Input	Asynchronous Preset Input
G	Input	Control Signal Input
CE	Input	Clock Enable
Q	Output	Data Output

Parameter

Table 2-92 Parameter

Name	Value	Default	Description
INIT	1'b0,1'b1	1'b1	Initial value for initial DLNPE

Primitive Instantiation

```
Verilog Instantiation:
  DLNPE instName (
       .D(D),
       .PRESET(PRESET),
       .G(G),
       .CE(CE),
       .Q(Q)
  );
  defparam instName.INIT=1'b1;
VhdI Instantiation:
  COMPONENT DLNPE
     GENERIC (INIT:bit:='1');
     PORT(
      Q:OUT std_logic;
      D:IN std_logic;
      G:IN std_logic;
      CE:IN std_logic;
      PRESET:IN std_logic
    );
  END COMPONENT;
  uut:DLNPE
    GENERIC MAP(INIT=>'1')
    PORT MAP (
            Q = > Q,
```

D=>D,

SUG283-2.4E 72(133)

```
G=>G,
CE=>CE,
PRESET => PRESET
);
```

SUG283-2.4E 73(133)

$\mathbf{3}_{\text{Memory}}$

Gowin FPGA products provide abundant memory resources, including Block Static Random Access Memory (BSRAM) and Shadow Static Random Access Memory (SSRAM). For BSRAM and SSRAM primitives, see UG285, Gowin BSRAM & SSRAM User Guide.

SUG283-2.4E 74(133)

 $oldsymbol{4}_{ ext{DSP}}$

Gowin FPGA products provide abundant DSP resources, which can meet the demand of high-performance digital signal processing. For DSP primitives, see <u>UG287</u>, Gowin DSP User Guide.

SUG283-2.4E 75(133)

5 Clock

Gowin FPGA products provide dedicated global clock (GCLK, including PCLK and SCLK) directly connected to all resources of the devices. In addition to GCLK, PLL, HCLK and bidirectional data strobe circuit for DDR Memory (DQS) are also available. For clock primitives, see UG286, Gowin Clock User Guide.

SUG283-2.4E 76(133)

6 User Flash

Gowin LittleBee[®] Family FPGA products provide User Flash. Different series of devices support different sizes of Flash, including FLASH96K, FLASH64K, FLASH64KZ, FLASH128K, FLASH256K and FLASH608K. For the Flash primitives, see <u>UG295</u>, Gowin Flash User Guide.

SUG283-2.4E 77(133)

 7_{EMPU}

7.1 MCU

Primitive

ARM Cortex-M3 Microcontroller Unit (MCU) is a micro-processor based on the ARM Cortex-m3. The 32-bit AHB/APB bus is used. It supports the functions of two UARTs, two Timers and Watchdog. It also provides 16-bit GPIO, two UARTs, two JTAGs, two User Interrupt interfaces, AHB Flash read interface, AHB Sram read/write interface, two AHB bus extension interfaces, and one APB bus extension interface.

Device Supported

Table 7-1 Device Supported

Family	Series	Device
	GW1NS	GW1NS-2C
GW1N	GW1NSE	GW1NSE-2C
	GW1NSR	GW1NSR-2C

SUG283-2.4E 78(133)

Port Diagram

Figure 7-1 MCU Port Diagram

Port Description

Table 7-2 Port Description

Port Name	I/O	Description
FCLK	input	Free running clock
PORESETN	input	Power on reset

SUG283-2.4E 79(133)

Port Name	I/O	Description	
SYSRESETN	input	System reset	
RTCSRCCLK	input	Used to generate RTC clock	
IOEXPINPUTI[15:0]	input	IOEXPINPUTI	
UART0RXDI	input	UARTORXDI	
UART1RXDI	input	UART1RXDI	
SRAM0RDATA[31:0]	input	SRAM Read data bus	
TARGFLASH0HRDATA[31:0]	input	TARGFLASHO, HRDATA	
TARGFLASH0HRUSER[2:0]	input	TARGFLASH0, HRUSER	
TARGFLASH0HRESP	input	TARGFLASH0, HRESP	
TARGFLASH0EXRESP	input	TARGFLASH0, EXRESP	
TARGFLASH0HREADYOUT	input	TARGFLASH0, EXRESP	
TARGEXP0HRDATA[31:0]	input	TARGEXP0, HRDATA	
TARGEXP0HREADYOUT	input	TARGEXP0, HREADY	
TARGEXP0HRESP	input	TARGEXP0, HRESP	
TARGEXP0EXRESP	input	TARGEXP0, EXRESP	
TARGEXP0HRUSER[2:0]	input	TARGEXP0, HRUSER	
INITEXP0HSEL	input	INITEXP0, HSELx	
INITEXP0HADDR[31:0]	input	INITEXP0, HADDR	
INITEXP0HTRANS[1:0]	input	INITEXP0, HTRANS	
INITEXP0HWRITE	input	INITEXP0, HWRITE	
INITEXP0HSIZE[2:0]	input	INITEXP0, HSIZE	
INITEXP0HBURST[2:0]	input	INITEXP0, HBURST	
INITEXP0HPROT[3:0]	input	INITEXP0, HPROT	
INITEXPOMEMATTR[1:0]	input	INITEXP0, MEMATTR	
INITEXP0EXREQ	input	INITEXP0, EXREQ	
INITEXP0HMASTER[3:0]	input	INITEXP0, HMASTER	
INITEXP0HWDATA[31:0]	input	INITEXP0, HWDATA	
INITEXP0HMASTLOCK	input	INITEXP0, HMASTLOCK	
INITEXP0HAUSER	input	INITEXP0, HAUSER	
INITEXP0HWUSER[3:0]	input	INITEXP0, HWUSER	
APBTARGEXP2PRDATA[31:0]	input	APBTARGEXP2, PRDATA	
APBTARGEXP2PREADY	input	APBTARGEXP2, PREADY	
APBTARGEXP2PSLVERR	input	APBTARGEXP2, PSLVERR	
MTXREMAP[3:0]	input	The MTXREMAP signals control the remapping of the boot memory range.	
DAPSWDITMS	input	Debug TMS	
DAPTDI	input	Debug TDI	
DAPNTRST	input	Test reset	
DAPSWCLKTCK	input	Test clock / SWCLK	
FLASHERR	input	Output clock, used by the TPA to sample the other pins	
FLASHINT	input	Output clock, used by the TPA to sample the other pins	
IOEXPOUTPUTO[15:0]	output	IOEXPOUTPUTO	
IOEXPOUTPUTENO[15:0]	output	IOEXPOUTPUTENO	
UART0TXDO	output	UART0TXDO	
UART1TXDO	output	UART1TXDO	

SUG283-2.4E 80(133)

Port Name	I/O	Description
UART0BAUDTICK	output	UART0BAUDTICK
UART1BAUDTICK	output	UART1BAUDTICK
INTMONITOR	output	INTMONITOR
MTXHRESETN	output	SRAM/Flash Chip reset
SRAM0ADDR[12:0]	output	SRAM address
SRAM0WREN[3:0]	output	SRAM Byte write enable
SRAM0WDATA[31:0]	output	SRAM Write data
SRAM0CS	output	SRAM Chip select
TARGFLASH0HSEL	output	TARGFLASH0, HSELx
TARGFLASH0HADDR[28:0]	output	TARGFLASH0, HADDR
TARGFLASH0HTRANS[1:0]	output	TARGFLASH0, HTRANS
TARGFLASH0HWRITE	output	TARGFLASH0, HWRITE
TARGFLASH0HSIZE[2:0]	output	TARGFLASH0, HSIZE
TARGFLASH0HBURST[2:0]	output	TARGFLASH0, HBURST
TARGFLASH0HPROT[3:0]	output	TARGFLASH0, HPROT
TARGFLASH0MEMATTR[1:0]	output	TARGFLASHO, MEMATTR
TARGFLASH0EXREQ	output	TARGFLASHO, EXREQ
TARGFLASH0HMASTER[3:0]	output	TARGFLASH0, HMASTER
TARGFLASH0HWDATA[31:0]	output	TARGFLASH0, HWDATA
TARGFLASH0HMASTLOCK	output	TARGFLASH0, HMASTLOCK
TARGFLASH0HREADYMUX	output	TARGFLASH0, HREADYOUT
TARGFLASH0HAUSER	output	TARGFLASH0, HAUSER
TARGFLASH0HWUSER[3:0]	output	TARGFLASH0, HWUSER
TARGEXP0HSEL	output	TARGEXP0, HSELx
TARGEXP0HADDR[31:0]	output	TARGEXP0, HADDR
TARGEXP0HTRANS[1:0]	output	TARGEXP0, HTRANS
TARGEXP0HWRITE	output	TARGEXP0, HWRITE
TARGEXP0HSIZE[2:0]	output	TARGEXP0, HSIZE
TARGEXP0HBURST[2:0]	output	TARGEXP0, HBURST
TARGEXP0HPROT[3:0]	output	TARGEXP0, HPROT
TARGEXP0MEMATTR[1:0]	output	TARGEXP0, MEMATTR
TARGEXP0EXREQ	output	TARGEXP0, EXREQ
TARGEXP0HMASTER[3:0]	output	TARGEXP0, HMASTER
TARGEXP0HWDATA[31:0]	output	TARGEXP0, HWDATA
TARGEXP0HMASTLOCK	output	TARGEXP0, HMASTLOCK
TARGEXP0HREADYMUX	output	TARGEXP0, HREADYOUT
TARGEXP0HAUSER	output	TARGEXP0, HAUSER
TARGEXP0HWUSER[3:0]	output	TARGEXP0, HWUSER
INITEXP0HRDATA[31:0]	output	INITEXP0, HRDATA
INITEXP0HREADY	output	INITEXP0, HREADY
INITEXP0HRESP	output	INITEXP0, HRESP
INITEXP0EXRESP	output	INITEXP0,EXRESP
INITEXP0HRUSER[2:0]	output	INITEXP0, HRUSER
APBTARGEXP2PSTRB[3:0]	output	APBTARGEXP2, PSTRB
APBTARGEXP2PPROT[2:0]	output	APBTARGEXP2, PPROT

SUG283-2.4E 81(133)

Port Name	I/O	Description
APBTARGEXP2PSEL	output	APBTARGEXP2, PSELx
APBTARGEXP2PENABLE	output	APBTARGEXP2, PENABLE
APBTARGEXP2PADDR[11:0]	output	APBTARGEXP2, PADDR
APBTARGEXP2PWRITE	output	APBTARGEXP2, PWRITE
APBTARGEXP2PWDATA[31:0	output	APBTARGEXP2, PWDATA
DAPSWDO	output	Serial Wire Data Out
DAPSWDOEN	output	Serial Wire Output Enable
DAPTDO	output	Debug TDO
DAPJTAGNSW	output	JTAG or Serial-Wire selection JTAG mode(1) or SW mode(0)
DAPNTDOEN	output	TDO output pad control signal
TPIUTRACEDATA[3:0]	output	Output data
TPIUTRACESWO	output	Serial Wire Viewer data
TPIUTRACECLK	output	Output clock, used by the TPA to sample the other pins

Primitive Instantiation

Verilog Instantiation:

```
MCU u_sse050_top_syn (
       .FCLK(fclk),
       .PORESETN(poresetn),
       .SYSRESETN(sysresetn),
       .RTCSRCCLK(rtcsrcclk),
       .IOEXPINPUTI(ioexpinputi[15:0]),
       .IOEXPOUTPUTO(ioexpoutputo[15:0]),
       .IOEXPOUTPUTENO(ioexpoutputeno[15:0]),
       .UART0RXDI(uart0rxdi),
       .UART0TXDO(uart0txdo),
       .UART1RXDI(uart1rxdi),
       .UART1TXDO(uart1txdo),
       .SRAM0RDATA(sram0rdata[31:0]),
       .SRAM0ADDR(sram0addr[12:0]),
   .SRAM0WREN(sram0wren[3:0]),
   .SRAM0WDATA(sram0wdata[31:0]),
   .SRAM0CS(sram0cs),
   .MTXHRESETN(mtxhreset),
   .TARGFLASH0HSEL(targflash0hsel),
```

SUG283-2.4E 82(133)

.TARGFLASH0HADDR(targflash0haddr[28:0]), .TARGFLASH0HTRANS(targflash0htrans[1:0]),

.TARGFLASH0HWRITE(targflash0hwrite),

- .TARGFLASH0HSIZE(targflash0hsize[2:0]),
- .TARGFLASH0HBURST(targflash0hburst[2:0]),
- .TARGFLASH0HPROT(targflash0hprot[3:0]),
- .TARGFLASH0MEMATTR(targflash0memattr[1:0]),
- .TARGFLASH0EXREQ(targflash0exreq),
- .TARGFLASH0HMASTER(targflash0hmaster[3:0]),
- .TARGFLASH0HWDATA(targflash0hwdata[31:0]),
- .TARGFLASH0HMASTLOCK(targflash0hmastlock),
- .TARGFLASH0HREADYMUX(targflash0hreadymux),
- .TARGFLASH0HAUSER(targflash0hauser),
- .TARGFLASH0HWUSER(targflash0hwuser[3:0]),
- .TARGFLASH0HRDATA(targflash0hrdata[31:0]),
- .TARGFLASH0HRUSER(targflash0hruser[2:0]),
- .TARGFLASH0HRESP(targflash0hresp),
- .TARGFLASH0EXRESP(targflash0exresp),
- .TARGFLASH0HREADYOUT(targflash0hreadyout),
- .TARGEXP0HSEL(targexp0hsel),
- .TARGEXP0HADDR(targexp0haddr[31:0]),
- .TARGEXP0HTRANS(targexp0htrans[1:0]),
- .TARGEXP0HWRITE(targexp0hwrite),
- .TARGEXP0HSIZE(targexp0hsize[2:0]),
- .TARGEXP0HBURST(targexp0hburst[2:0]),
- .TARGEXP0HPROT(targexp0hprot[3:0]),
- .TARGEXP0MEMATTR(targexp0memattr[1:0]),
- .TARGEXP0EXREQ(targexp0exreg),
- .TARGEXP0HMASTER(targexp0hmaster[3:0]),
- .TARGEXP0HWDATA(targexp0hwdata[31:0]),
- .TARGEXP0HMASTLOCK(targexp0hmastlock),
- .TARGEXP0HREADYMUX(targexp0hreadymux),
- .TARGEXP0HAUSER(targexp0hauser),
- .TARGEXP0HWUSER(targexp0hwuser[3:0]),
- .TARGEXP0HRDATA(targexp0hrdata[31:0]),
- .TARGEXP0HREADYOUT(targexp0hreadyout),
- .TARGEXP0HRESP(targexp0hresp),
- .TARGEXP0EXRESP(targexp0exresp),
- .TARGEXP0HRUSER(targexp0hruser[2:0]),
- .INITEXP0HSEL(initexp0hsel),
- .INITEXP0HADDR(initexp0haddr[31:0]),

SUG283-2.4E 83(133)

```
.INITEXP0HTRANS(initexp0htrans[1:0]),
.INITEXP0HWRITE(initexp0hwrite),
.INITEXP0HSIZE(initexp0hsize[2:0]),
.INITEXP0HBURST(initexp0hburst[2:0]),
.INITEXP0HPROT(initexp0hprot[3:0]),
.INITEXP0MEMATTR(initexp0memattr[1:0]),
.INITEXP0EXREQ(initexp0exreq),
.INITEXP0HMASTER(initexp0hmaster[3:0]),
.INITEXP0HWDATA(initexp0hwdata[31:0]),
.INITEXP0HMASTLOCK(initexp0hmastlock),
.INITEXP0HAUSER(initexp0hauser),
.INITEXP0HWUSER(initexp0hwuser[3:0]),
.INITEXP0HRDATA(initexp0hrdata[31:0]),
.INITEXP0HREADY(initexp0hready),
.INITEXP0HRESP(initexp0hresp),
.INITEXP0EXRESP(initexp0exresp),
.INITEXP0HRUSER(initexp0hruser[2:0]),
.APBTARGEXP2PSEL(apbtargexp2psel),
.APBTARGEXP2PENABLE(apbtargexp2penable),
.APBTARGEXP2PADDR(apbtargexp2paddr[11:0]),
.APBTARGEXP2PWRITE(apbtargexp2pwrite),
.APBTARGEXP2PWDATA(apbtargexp2pwdata[31:0]),
.APBTARGEXP2PRDATA(apbtargexp2prdata[31:0]),
.APBTARGEXP2PREADY(apbtargexp2pready),
.APBTARGEXP2PSLVERR(apbtargexp2pslverr),
.APBTARGEXP2PSTRB(apbtargexp2pstrb[3:0]),
.APBTARGEXP2PPROT(apbtargexp2pprot[2:0]),
.MTXREMAP(mtxremap[3:0]),
.DAPSWDITMS(dapswditms),
.DAPSWDO(dapswdo),
.DAPSWDOEN(dapswdoen),
.DAPTDI(daptdi),
.DAPTDO(daptdo),
.DAPNTRST(dapntrst),
.DAPSWCLKTCK(dapswclk_tck),
.DAPNTDOEN(dapntdoen),
.DAPJTAGNSW(dapjtagnsw),
.TPIUTRACEDATA(tpiutracedata[3:0]),
```

SUG283-2.4E 84(133)

```
.TPIUTRACESWO(tpiutraceswo),
 .TPIUTRACECLK(tpiutraceclk),
 .FLASHERR(flasherr),
 .FLASHINT(flashint)
);
VhdI Instantiation:
COMPONENT MCU
   PORT(
FCLK: IN std logic;
PORESETN:IN std_logic;
SYSRESETN:IN std_logic;
RTCSRCCLK: IN std logic;
UARTORXDI:IN std_logic;
UART1RXDI:IN std_logic;
CLK:IN std_logic;
RESET:IN std_logic;
IOEXPINPUTI:IN std_logic_vector(15 downto 0);
SRAMORDATA:IN std_logic_vector(31 downto 0);
TARGFLASH0HRDATA:IN std_logic_vector(31 downto 0);
TARGFLASH0HRUSER:IN std_logic_vector(2 downto 0);
TARGFLASH0HRESP:IN std_logic;
TARGFLASH0EXRESP:IN std_logic;
TARGFLASH0HREADYOUT: IN std_logic;
TARGEXP0HRDATA: IN std_logic_vector(31 downto 0);
TARGEXPOHREADYOUT: IN std_logic;
TARGEXP0HRESP:IN std_logic;
TARGEXP0EXRESP:IN std_logic;
TARGEXPOHRUSER: IN std_logic_vector(2 downto 0);
INITEXP0HSEL:IN std_logic;
INITEXP0HADDR: IN std_logic_vector(31 downto 0);
INITEXP0HTRANS: IN std_logic_vector(1 downto 0);
                   IN std_logic;
INITEXP0HWRITE:
INITEXP0HSIZE: IN std_logic_vector(2 downto 0);
INITEXP0HBURST: IN std_logic_vector(2 downto 0);
INITEXP0HPROT: IN std_logic_vector(3 downto 0);
INITEXPOMEMATTR: IN std_logic_vector(1 downto 0);
INITEXP0EXREQ: IN std_logic;
INITEXP0HMASTER: IN std_logic_vector(3 downto 0);
```

SUG283-2.4E 85(133)

```
INITEXP0HWDATA: IN std_logic_vector(31 downto 0);
INITEXP0HMASTLOCK: IN std_logic;
INITEXP0HAUSER: IN std_logic;
INITEXP0HWUSER: IN std_logic_vector(3 downto 0);
APBTARGEXP2PRDATA: IN std_logic_vector(3 downto 0);
APBTARGEXP2PREADY: IN std logic;
APBTARGEXP2PSLVERR: IN std_logic;
MTXREMAP: IN std_logic_vector(3 downto 0);
DAPSWDITMS: IN std logic;
DAPTDI: IN std_logic;
DAPNTRST: IN std_logic;
DAPSWCLKTCK: IN std logic;
FLASHERR: IN std_logic;
FLASHINT: IN std logic;
IOEXPOUTPUTO:OUT std_logic_vector(15 downto 0);
IOEXPOUTPUTENO:OUT std_logic_vector(15 downto 0);
IOEXPINPUTI:OUT std logic vector(15 downto 0);
UART0TXDO: OUT std_logic;
UART1TXDO: OUT std_logic;
UARTOBAUDTICK: OUT std logic;
UART1BAUDTICK: OUT std logic;
INTMONITOR: OUT std_logic;
MTXHRESETN: OUT std_logic;
SRAM0ADDR:OUT std_logic_vector(12 downto 0);
SRAMOWREN:OUT std logic vector(3 downto 0);
SRAM0WDATA:OUT std_logic_vector(31 downto 0);
SRAMOCS: OUT std_logic;
TARGFLASH0HSEL: OUT std logic;
TARGFLASH0HWRITE: OUT std_logic;
TARGFLASH0EXREQ: OUT std_logic;
TARGFLASH0HMASTLOCK: OUT std_logic;
TARGFLASH0HREADYMUX: OUT std_logic;
TARGFLASH0HAUSER: OUT std logic;
SRAMORDATA:OUT std_logic_vector(31 downto 0);
TARGFLASH0HADDR:OUT std_logic_vector(28 downto 0);
TARGFLASH0HTRANS:OUT std logic vector(1 downto 0);
TARGFLASH0HSIZE:OUT std_logic_vector(2 downto 0);
TARGFLASH0HBURST:OUT std_logic_vector(2 downto 0);
```

SUG283-2.4E 86(133)

```
TARGFLASH0HPROT:OUT std logic vector(3 downto 0);
TARGFLASH0MEMATTR:OUT std_logic_vector(1 downto 0);
TARGFLASH0HMASTER:OUT std_logic_vector(3 downto 0);
TARGFLASH0HWDATA:OUT std logic vector(31 downto 0);
TARGFLASH0HWUSER:OUT std_logic_vector(3 downto 0);
TARGFLASH0HRDATA:OUT std logic vector(31 downto 0);
TARGEXP0HADDR:OUT std_logic_vector(31 downto 0);
TARGEXP0HSEL: OUT std_logic;
TARGEXPOHWRITE: OUT std logic;
TARGEXP0EXREQ: OUT std_logic;
TARGEXPOHMASTLOCK: OUT std_logic;
TARGEXPOHREADYMUX: OUT std logic;
TARGEXP0HAUSER: OUT std_logic;
INITEXPOHREADY: OUT std logic;
INITEXP0HRESP: OUT std_logic;
INITEXP0EXRESP: OUT std_logic;
TARGEXP0HTRANS:OUT std_logic_vector(1 downto 0);
TARGEXP0HSIZE:OUT std_logic_vector(2 downto 0);
TARGEXP0HBURST:OUT std_logic_vector(2 downto 0);
TARGEXP0HPROT:OUT std_logic_vector(3 downto 0);
TARGEXPOMEMATTR:OUT std_logic_vector(1 downto 0);
TARGEXP0HMASTER:OUT std_logic_vector(3 downto 0);
TARGEXPOHWDATA:OUT std_logic_vector(31 downto 0);
TARGEXP0HWUSER:OUT std_logic_vector(3 downto 0);
INITEXP0HRDATA:OUT std_logic_vector(31 downto 0);
INITEXP0HRUSER:OUT std_logic_vector(2 downto 0);
APBTARGEXP2PSTRB:OUT std_logic_vector(3 downto 0);
APBTARGEXP2PPROT:OUT std_logic_vector(2 downto 0);
APBTARGEXP2PADDR:OUT std_logic_vector(11 downto 0);
APBTARGEXP2PWDATA:OUT std_logic_vector(31 downto 0);
TPIUTRACEDATA:OUT std_logic_vector(3 downto 0);
APBTARGEXP2PSEL: OUT std_logic;
APBTARGEXP2PENABLE: OUT std logic;
APBTARGEXP2PWRITE: OUT std_logic;
DAPSWDO: OUT std_logic;
DAPSWDOEN: OUT std logic;
DAPTDO: OUT std_logic;
DAPJTAGNSW: OUT std_logic;
```

SUG283-2.4E 87(133)

```
DAPNTDOEN: OUT std_logic;
     TPIUTRACESWO: OUT std_logic;
     TPIUTRACECLK: OUT std_logic;
);
     END COMPONENT;
     uut: MCU
       PORT MAP (
     FCLK=> fclk;
      PORESETN=> poresetn;
      SYSRESETN=> sysresetn;
      RTCSRCCLK=> rtcsrcclk;
     UART0RXDI=> uart0rxdi;
     UART1RXDI=> uart1rxdi;
     CLK=>clk,
      RESET=>reset,
     IOEXPINPUTI=>ioexpinputi,
     SRAM0RDATA=>sram0rdata,
     TARGFLASH0HRDATA=>targflash0hrdata,
     TARGFLASH0HRUSER=>targflash0hruser,
     TARGFLASH0HRESP=>targflash0hresp,
     TARGFLASH0EXRESP=>targflash0exresp,
     TARGFLASH0HREADYOUT=>targflash0hreadyout,
     TARGEXP0HRDATA=>targexp0hrdata,
     TARGEXP0HREADYOUT=>targexp0hreadyout,
     TARGEXP0HRESP=>targexp0hresp,
     TARGEXP0EXRESP=>targexp0exresp,
     TARGEXP0HRUSER=>targexp0hruser,
     INITEXP0HSEL=>initexp0hsel,
      INITEXP0HADDR=>initexp0haddr,
      INITEXP0HTRANS=>initexp0htrans,
     INITEXP0HWRITE=>initexp0hwrite,
     INITEXP0HSIZE=>initexp0hsize,
     INITEXP0HBURST=>initexp0hburst,
      INITEXP0HPROT=>initexp0hprot,
      INITEXPOMEMATTR=>initexp0memattr,
      INITEXP0EXREQ=>initexp0exreq,
      INITEXP0HMASTER=>initexp0hmaster,
```

SUG283-2.4E 88(133)

INITEXP0HWDATA=>initexp0hwdata,

INITEXP0HMASTLOCK=>initexp0hmastlock,

INITEXP0HAUSER=>initexp0hauser,

INITEXP0HWUSER=>initexp0hwuser,

APBTARGEXP2PRDATA=>apbtargexp2prdata,

APBTARGEXP2PREADY=>apbtargexp2pready,

APBTARGEXP2PSLVERR=>apbtargexp2pslverr,

MTXREMAP=>mtxremap,

DAPSWDITMS=>dapswditms,

DAPTDI=>daptdi,

DAPNTRST=>dapntrst,

DAPSWCLKTCK=>dapswclktck,

FLASHERR=>flasherr,

FLASHINT=>flashint,

IOEXPOUTPUTO=>ioexpoutputo,

IOEXPOUTPUTENO=>ioexpoutputeno,

IOEXPINPUTI=>ioexpinputi,

UART0TXDO=>uart0txdo,

UART1TXDO=>uart1txdo.

UART0BAUDTICK=>uart0baudtick,

UART1BAUDTICK=>uart1baudtick,

INTMONITOR=>intmonitor,

MTXHRESETN=>mtxhresetn,

SRAM0ADDR=>sram0addr,

SRAMOWREN=>sramOwren,

SRAM0WDATA=>sram0wdata,

SRAM0CS=>sram0cs.

TARGFLASH0HSEL=>targflash0hsel,

TARGFLASH0HWRITE=>targflash0hwrite,

TARGFLASH0EXREQ=>targflash0exreq,

TARGFLASH0HMASTLOCK=>targflash0hmastlock,

TARGFLASH0HREADYMUX=>targflash0hreadymux,

TARGFLASH0HAUSER=>targflash0hauser,

SRAM0RDATA=>sram0rdata,

TARGFLASH0HADDR=>targflash0haddr,

TARGFLASH0HTRANS=>targflash0htrans,

TARGFLASH0HSIZE=>targflash0hsize,

TARGFLASH0HBURST=>targflash0hburst,

SUG283-2.4E 89(133)

TARGFLASH0HPROT=>targflash0hprot, TARGFLASH0MEMATTR=>targflash0memattr, TARGFLASH0HMASTER=>targflash0hmaster, TARGFLASH0HWDATA=>targflash0hwdata, TARGFLASH0HWUSER=>targflash0hwuser, TARGFLASH0HRDATA=>targflash0hrdata, TARGEXP0HADDR=>targexp0haddr, TARGEXP0HSEL=>targexp0hsel, TARGEXP0HWRITE=>targexp0hwrite, TARGEXP0EXREQ=>targexp0exreq, TARGEXP0HMASTLOCK=>targexp0hmastlock, TARGEXP0HREADYMUX=>targexp0hreadymux, TARGEXP0HAUSER=>targexp0hauser, INITEXP0HREADY=>initexp0hready, INITEXP0HRESP=>initexp0hresp, INITEXP0EXRESP=>initexp0exresp, TARGEXP0HTRANS=>targexp0htrans, TARGEXP0HSIZE=>targexp0hsize, TARGEXP0HBURST=>targexp0hburst, TARGEXP0HPROT=>targexp0hprot, TARGEXP0MEMATTR=>targexp0memattr, TARGEXP0HMASTER=>targexp0hmaster, TARGEXP0HWDATA=>targexp0hwdata, TARGEXP0HWUSER=>targexp0hwuser, INITEXP0HRDATA=>initexp0hrdata, INITEXP0HRUSER=>initexp0hruser, APBTARGEXP2PSTRB=>apbtargexp2pstrb, APBTARGEXP2PPROT=>apbtargexp2pprot, APBTARGEXP2PADDR=>apbtargexp2paddr, APBTARGEXP2PWDATA=>apbtargexp2pwdata, TPIUTRACEDATA=>tpiutracedata, APBTARGEXP2PSEL=>apbtargexp2psel, APBTARGEXP2PENABLE=>apbtargexp2penable, APBTARGEXP2PWRITE=>apbtargexp2pwrite, DAPSWDO=>dapswdo, DAPSWDOEN=>dapswdoen, DAPTDO=>daptdo, DAPJTAGNSW=>dapitagnsw,

SUG283-2.4E 90(133)

DAPNTDOEN=>dapntdoen,
TPIUTRACESWO=>tpiutraceswo,
TPIUTRACECLK=>tpiutraceclk);

7.2 EMCU

Primitive

EMCU(ARM Cortex-M3 Microcontroller Unit) is a micro-processor based on the ARM Cortex-m3. The 32-bit AHB/APB bus is used. It supports the functions of two UARTs, two Timers and Watchdog. It also provides 16-bit GPIO, two UARTs and JTAGs, six User Interrupt interfaces, AHB Flash read interface, AHB Sram read/write interface, two AHB bus extension interfaces, and one APB bus extension interface.

Device Supported

Table 7-3 Device Supported

Family	Series	Device
	GW1NS	GW1NS-4C
GW1N	GW1NSR	GW1NSR-4C
	GW1NSER	GW1NSER-4C

SUG283-2.4E 91(133)

Port Diagram

Figure 7-2 Port Diagram of EMCU

Port Description

Table 7-4 Port Description

Port Name	I/O	Description
FCLK	input	Free running clock
PORESETN	input	Power on reset
SYSRESETN	input	System reset

SUG283-2.4E 92(133)

Port Name	I/O	Description
RTCSRCCLK	input	Used to generate RTC clock
IOEXPINPUTI[15:0]	input	IOEXPINPUTI
UART0RXDI	input	UART0RXDI
UART1RXDI	input	UART1RXDI
SRAM0RDATA[31:0]	input	SRAM Read data bus
TARGFLASH0HRDATA[31:0]	input	TARGFLASHO, HRDATA
TARGFLASH0HRUSER[2:0]	input	TARGFLASH0, HRUSER
TARGFLASH0HRESP	input	TARGFLASH0, HRESP
TARGFLASH0EXRESP	input	TARGFLASH0, EXRESP
TARGFLASH0HREADYOUT	input	TARGFLASH0, EXRESP
TARGEXP0HRDATA[31:0]	input	TARGEXP0, HRDATA
TARGEXP0HREADYOUT	input	TARGEXP0, HREADY
TARGEXP0HRESP	input	TARGEXP0, HRESP
TARGEXP0EXRESP	input	TARGEXP0, EXRESP
TARGEXP0HRUSER[2:0]	input	TARGEXP0, HRUSER
INITEXP0HSEL	input	INITEXP0, HSELx
INITEXP0HADDR[31:0]	input	INITEXP0, HADDR
INITEXP0HTRANS[1:0]	input	INITEXP0, HTRANS
INITEXP0HWRITE	input	INITEXP0, HWRITE
INITEXP0HSIZE[2:0]	input	INITEXP0, HSIZE
INITEXP0HBURST[2:0]	input	INITEXP0, HBURST
INITEXP0HPROT[3:0]	input	INITEXP0, HPROT
INITEXPOMEMATTR[1:0]	input	INITEXP0, MEMATTR
INITEXP0EXREQ	input	INITEXP0, EXREQ
INITEXP0HMASTER[3:0]	input	INITEXP0, HMASTER
INITEXP0HWDATA[31:0]	input	INITEXP0, HWDATA
INITEXP0HMASTLOCK	input	INITEXP0, HMASTLOCK
INITEXP0HAUSER	input	INITEXP0, HAUSER
INITEXP0HWUSER[3:0]	input	INITEXP0, HWUSER
APBTARGEXP2PRDATA[31:0]	input	APBTARGEXP2, PRDATA
APBTARGEXP2PREADY	input	APBTARGEXP2, PREADY
APBTARGEXP2PSLVERR	input	APBTARGEXP2, PSLVERR
MTXREMAP[3:0]	input	The MTXREMAP signals control the remapping of the boot
	-	memory range.
DAPSWDITMS	input	Debug TMS
DAPTDI	input	Debug TDI
DAPNTRST	input	Test reset
DAPSWCLKTCK	input	Test clock / SWCLK
FLASHERR	input	Output clock, used by the TPA to sample the other pins
FLASHINT	input	Output clock, used by the TPA to sample the other pins
GPINT	input	GPINT
IOEXPOUTPUTO[15:0]	output	IOEXPOUTPUTO
IOEXPOUTPUTENO[15:0]	output	IOEXPOUTPUTENO
UARTOTXDO	output	UARTOTXDO
UART1TXDO	output	UART1TXDO

SUG283-2.4E 93(133)

Port Name	I/O	Description
UART0BAUDTICK	output	UART0BAUDTICK
UART1BAUDTICK	output	UART1BAUDTICK
INTMONITOR	output	INTMONITOR
MTXHRESETN	output	SRAM/Flash Chip reset
SRAM0ADDR[12:0]	output	SRAM address
SRAMOWREN[3:0]	output	SRAM Byte write enable
SRAMOWDATA[31:0]	output	SRAM Write data
SRAM0CS	output	SRAM Chip select
TARGFLASH0HSEL	output	TARGFLASH0, HSELx
TARGFLASH0HADDR[28:0]	output	TARGFLASH0, HADDR
TARGFLASH0HTRANS[1:0]	output	TARGFLASHO, HTRANS
TARGFLASH0HSIZE[2:0]	output	TARGFLASHO, HSIZE
TARGFLASH0HBURST[2:0]	output	TARGFLASHO, HBURST
TARGFLASH0HREADYMUX	output	TARGFLASHO, HREADYOUT
TARGEXP0HSEL	output	TARGEXP0, HSELx
TARGEXP0HADDR[31:0]	output	TARGEXP0, HADDR
TARGEXPOHTRANS[1:0]	output	TARGEXPO, HTRANS
TARGEXPOHWRITE	output	TARGEXPO, HWRITE
TARGEXPOHSIZE[2:0]	output	TARGEXPO, HSIZE
TARGEXPOHBURST[2:0]	output	TARGEXPO, HBURST
TARGEXP0HPROT[3:0]	output	TARGEXPO, HPROT
TARGEXPOMEMATTR[1:0]	output	TARGEXPO, MEMATTR
TARGEXPOEXREQ	output	TARGEXPO, EXREQ
TARGEXPOHMASTER[3:0]	output	TARGEXPO, HMASTER
TARGEXP0HWDATA[31:0]	output	TARGEXPO, HWDATA
TARGEXP0HMASTLOCK	output	TARGEXPO, HMASTLOCK
TARGEXP0HREADYMUX	output	TARGEXP0, HREADYOUT
TARGEXP0HAUSER	output	TARGEXP0, HAUSER
TARGEXP0HWUSER[3:0]	output	TARGEXP0, HWUSER
INITEXP0HRDATA[31:0]	output	INITEXP0, HRDATA
INITEXP0HREADY	output	INITEXP0, HREADY
INITEXP0HRESP	output	INITEXP0, HRESP
INITEXP0EXRESP	output	INITEXP0,EXRESP
INITEXP0HRUSER[2:0]	output	INITEXP0, HRUSER
APBTARGEXP2PSTRB[3:0]	output	APBTARGEXP2, PSTRB
APBTARGEXP2PPROT[2:0]	output	APBTARGEXP2, PPROT
APBTARGEXP2PSEL	output	APBTARGEXP2, PSELx
APBTARGEXP2PENABLE	output	APBTARGEXP2, PENABLE
APBTARGEXP2PADDR[11:0]	output	APBTARGEXP2, PADDR
APBTARGEXP2PWRITE	output	APBTARGEXP2, PWRITE
APBTARGEXP2PWDATA[31:0]	output	APBTARGEXP2, PWDATA
DAPTDO	output	Debug TDO
DAPJTAGNSW	output	JTAG or Serial-Wire selection JTAG mode(1) or SW mode(0)
DAPNTDOEN	output	TDO output pad control signal
5.11 H 15 CEN	Jaipai	120 Satpat pad Sonti Ol Olgilai

SUG283-2.4E 94(133)

Port Name	I/O	Description
TPIUTRACEDATA[3:0]	output	Output data
TPIUTRACECLK	output	Output clock, used by the TPA to sample the other pins

Primitive Instantiaton

Verilog Instantiation:

MCU u_sse050_top_syn (

- .FCLK(fclk),
- .PORESETN(poresetn),
- .SYSRESETN(sysresetn),
- .RTCSRCCLK(rtcsrcclk),
- .IOEXPINPUTI(ioexpinputi[15:0]),
- .IOEXPOUTPUTO(ioexpoutputo[15:0]),
- .IOEXPOUTPUTENO(ioexpoutputeno[15:0]),
- .UART0RXDI(uart0rxdi),
- .UART0TXDO(uart0txdo),
- .UART1RXDI(uart1rxdi),
- .UART1TXDO(uart1txdo),
- .SRAM0RDATA(sram0rdata[31:0]),
- .SRAM0ADDR(sram0addr[12:0]),
 - .SRAM0WREN(sram0wren[3:0]),
 - .SRAM0WDATA(sram0wdata[31:0]),
 - .SRAM0CS(sram0cs),
 - .MTXHRESETN(mtxhreset),
 - .TARGFLASH0HSEL(targflash0hsel),
 - .TARGFLASH0HADDR(targflash0haddr[28:0]),
 - .TARGFLASH0HTRANS(targflash0htrans[1:0]),
 - .TARGFLASH0HSIZE(targflash0hsize[2:0]),
 - .TARGFLASH0HBURST(targflash0hburst[2:0]),
 - .TARGFLASH0HREADYMUX(targflash0hreadymux),
 - .TARGFLASH0HRDATA(targflash0hrdata[31:0]),
 - .TARGFLASH0HRUSER(targflash0hruser[2:0]),
 - .TARGFLASH0HRESP(targflash0hresp),
 - .TARGFLASH0EXRESP(targflash0exresp),
 - .TARGFLASH0HREADYOUT(targflash0hreadyout),
 - .TARGEXP0HSEL(targexp0hsel),
 - .TARGEXP0HADDR(targexp0haddr[31:0]),
 - .TARGEXP0HTRANS(targexp0htrans[1:0]),

SUG283-2.4E 95(133)

```
.TARGEXP0HWRITE(targexp0hwrite),
```

- .TARGEXP0HSIZE(targexp0hsize[2:0]),
- .TARGEXP0HBURST(targexp0hburst[2:0]),
- .TARGEXP0HPROT(targexp0hprot[3:0]),
- .TARGEXP0MEMATTR(targexp0memattr[1:0]),
- .TARGEXP0EXREQ(targexp0exreq),
- .TARGEXP0HMASTER(targexp0hmaster[3:0]),
- .TARGEXP0HWDATA(targexp0hwdata[31:0]),
- .TARGEXP0HMASTLOCK(targexp0hmastlock),
- .TARGEXP0HREADYMUX(targexp0hreadymux),
- .TARGEXP0HAUSER(targexp0hauser),
- .TARGEXP0HWUSER(targexp0hwuser[3:0]),
- .TARGEXP0HRDATA(targexp0hrdata[31:0]),
- .TARGEXP0HREADYOUT(targexp0hreadyout),
- .TARGEXP0HRESP(targexp0hresp),
- .TARGEXP0EXRESP(targexp0exresp),
- .TARGEXP0HRUSER(targexp0hruser[2:0]),
- .INITEXP0HSEL(initexp0hsel),
- .INITEXP0HADDR(initexp0haddr[31:0]),
- .INITEXP0HTRANS(initexp0htrans[1:0]),
- .INITEXP0HWRITE(initexp0hwrite),
- .INITEXP0HSIZE(initexp0hsize[2:0]),
- .INITEXP0HBURST(initexp0hburst[2:0]),
- .INITEXP0HPROT(initexp0hprot[3:0]),
- .INITEXP0MEMATTR(initexp0memattr[1:0]),
- .INITEXP0EXREQ(initexp0exreq),
- .INITEXP0HMASTER(initexp0hmaster[3:0]),
- .INITEXP0HWDATA(initexp0hwdata[31:0]),
- .INITEXP0HMASTLOCK(initexp0hmastlock),
- .INITEXP0HAUSER(initexp0hauser),
- .INITEXP0HWUSER(initexp0hwuser[3:0]),
- .INITEXP0HRDATA(initexp0hrdata[31:0]),
- .INITEXP0HREADY(initexp0hready),
- .INITEXP0HRESP(initexp0hresp),
- .INITEXP0EXRESP(initexp0exresp),
- .INITEXP0HRUSER(initexp0hruser[2:0]),
- .APBTARGEXP2PSEL(apbtargexp2psel),
- .APBTARGEXP2PENABLE(apbtargexp2penable),

SUG283-2.4E 96(133)

```
.APBTARGEXP2PADDR(apbtargexp2paddr[11:0]),
 .APBTARGEXP2PWRITE(apbtargexp2pwrite),
 .APBTARGEXP2PWDATA(apbtargexp2pwdata[31:0]),
 .APBTARGEXP2PRDATA(apbtargexp2prdata[31:0]),
 .APBTARGEXP2PREADY(apbtargexp2pready),
 .APBTARGEXP2PSLVERR(apbtargexp2pslverr),
 .APBTARGEXP2PSTRB(apbtargexp2pstrb[3:0]),
 .APBTARGEXP2PPROT(apbtargexp2pprot[2:0]),
 .MTXREMAP(mtxremap[3:0]),
 .DAPSWDITMS(dapswditms),
 .DAPTDI(daptdi),
 .DAPTDO(daptdo),
 .DAPNTRST(dapntrst),
 .DAPSWCLKTCK(dapswclk_tck),
 .DAPNTDOEN(dapntdoen),
 .DAPJTAGNSW(dapjtagnsw),
 .TPIUTRACEDATA(tpiutracedata[3:0]),
 .TPIUTRACECLK(tpiutraceclk),
 .FLASHERR(flasherr),
  .GPINT(gpint),
 .FLASHINT(flashint)
);
VhdI Instantiation:
COMPONENT MCU
   PORT(
FCLK:IN std_logic;
PORESETN: IN std_logic;
SYSRESETN:IN std_logic;
RTCSRCCLK:IN std_logic;
UARTORXDI: IN std_logic;
UART1RXDI:IN std_logic;
CLK:IN std_logic;
RESET: IN std logic;
IOEXPINPUTI:IN std_logic_vector(15 downto 0);
SRAMORDATA: IN std_logic_vector(31 downto 0);
TARGFLASH0HRDATA: IN std logic vector(31 downto 0);
TARGFLASH0HRUSER:IN std_logic_vector(2 downto 0);
TARGFLASH0HRESP:IN std_logic;
```

SUG283-2.4E 97(133)

```
TARGFLASH0EXRESP: IN std logic;
TARGFLASH0HREADYOUT: IN std_logic;
TARGEXPOHRDATA: IN std_logic_vector(31 downto 0);
TARGEXPOHREADYOUT: IN std logic;
TARGEXP0HRESP:IN std_logic;
TARGEXPOEXRESP: IN std logic;
TARGEXP0HRUSER: IN std_logic_vector(2 downto 0);
INITEXP0HSEL:IN std_logic;
INITEXP0HADDR: IN std_logic_vector(31 downto 0);
INITEXP0HTRANS: IN std_logic_vector(1 downto 0);
INITEXP0HWRITE: IN std_logic;
INITEXP0HSIZE: IN std logic vector(2 downto 0);
INITEXP0HBURST: IN std_logic_vector(2 downto 0);
INITEXP0HPROT: IN std_logic_vector(3 downto 0);
INITEXPOMEMATTR: IN std_logic_vector(1 downto 0);
INITEXP0EXREQ: IN std_logic;
INITEXP0HMASTER: IN std_logic_vector(3 downto 0);
INITEXP0HWDATA: IN std_logic_vector(31 downto 0);
INITEXP0HMASTLOCK: IN std_logic;
INITEXPOHAUSER: IN std logic;
INITEXP0HWUSER: IN std_logic_vector(3 downto 0);
APBTARGEXP2PRDATA: IN std_logic_vector(3 downto 0);
APBTARGEXP2PREADY: IN std_logic;
APBTARGEXP2PSLVERR: IN std_logic;
MTXREMAP: IN std logic vector(3 downto 0);
DAPSWDITMS: IN std_logic;
DAPTDI: IN std_logic;
DAPNTRST: IN std logic;
DAPSWCLKTCK: IN std_logic;
FLASHERR: IN std_logic;
FLASHINT: IN std_logic;
GPINT: IN std_logic;
IOEXPOUTPUTO:OUT std logic vector(15 downto 0);
IOEXPOUTPUTENO:OUT std_logic_vector(15 downto 0);
IOEXPINPUTI:OUT std_logic_vector(15 downto 0);
UART0TXDO: OUT std logic;
UART1TXDO: OUT std_logic;
UARTOBAUDTICK: OUT std_logic;
```

SUG283-2.4E 98(133)

```
UART1BAUDTICK: OUT std logic;
INTMONITOR: OUT std_logic;
MTXHRESETN: OUT std_logic;
SRAM0ADDR:OUT std_logic_vector(12 downto 0);
SRAMOWREN:OUT std_logic_vector(3 downto 0);
SRAMOWDATA:OUT std logic vector(31 downto 0);
SRAM0CS: OUT std_logic;
TARGFLASH0HSEL: OUT std_logic;
TARGFLASHOHREADYMUX: OUT std logic;
SRAM0RDATA:OUT std_logic_vector(31 downto 0);
TARGFLASH0HADDR:OUT std_logic_vector(28 downto 0);
TARGFLASH0HTRANS:OUT std logic vector(1 downto 0);
TARGFLASH0HSIZE:OUT std_logic_vector(2 downto 0);
TARGFLASH0HBURST:OUT std_logic_vector(2 downto 0);
TARGFLASH0HRDATA:OUT std_logic_vector(31 downto 0);
TARGEXP0HADDR:OUT std_logic_vector(31 downto 0);
TARGEXP0HSEL: OUT std logic;
TARGEXP0HWRITE: OUT std_logic;
TARGEXP0EXREQ: OUT std_logic;
TARGEXPOHMASTLOCK: OUT std logic;
TARGEXP0HREADYMUX: OUT std_logic;
TARGEXPOHAUSER: OUT std_logic;
INITEXP0HREADY: OUT std_logic;
INITEXP0HRESP: OUT std_logic;
INITEXP0EXRESP: OUT std logic;
TARGEXP0HTRANS:OUT std_logic_vector(1 downto 0);
TARGEXP0HSIZE:OUT std_logic_vector(2 downto 0);
TARGEXP0HBURST:OUT std_logic_vector(2 downto 0);
TARGEXP0HPROT:OUT std_logic_vector(3 downto 0);
TARGEXPOMEMATTR:OUT std_logic_vector(1 downto 0);
TARGEXP0HMASTER:OUT std_logic_vector(3 downto 0);
TARGEXPOHWDATA:OUT std_logic_vector(31 downto 0);
TARGEXP0HWUSER:OUT std_logic_vector(3 downto 0);
INITEXP0HRDATA:OUT std_logic_vector(31 downto 0);
INITEXP0HRUSER:OUT std_logic_vector(2 downto 0);
APBTARGEXP2PSTRB:OUT std logic vector(3 downto 0);
APBTARGEXP2PPROT:OUT std_logic_vector(2 downto 0);
APBTARGEXP2PADDR:OUT std_logic_vector(11 downto 0);
```

SUG283-2.4E 99(133)

```
APBTARGEXP2PWDATA:OUT std_logic_vector(31 downto 0);
     TPIUTRACEDATA:OUT std_logic_vector(3 downto 0);
     APBTARGEXP2PSEL: OUT std_logic;
     APBTARGEXP2PENABLE: OUT std_logic;
     APBTARGEXP2PWRITE: OUT std_logic;
      DAPTDO: OUT std_logic;
      DAPJTAGNSW: OUT std_logic;
     DAPNTDOEN: OUT std_logic;
     TPIUTRACECLK: OUT std_logic;
);
      END COMPONENT;
     uut: MCU
       PORT MAP (
     FCLK=> fclk;
      PORESETN=> poresetn;
      SYSRESETN=> sysresetn;
      RTCSRCCLK=> rtcsrcclk;
      UARTORXDI=> uart0rxdi;
     UART1RXDI=> uart1rxdi;
     CLK=>clk,
      RESET=>reset.
     IOEXPINPUTI=>ioexpinputi,
     SRAMORDATA=>sram0rdata,
     TARGFLASH0HRDATA=>targflash0hrdata,
     TARGFLASH0HRUSER=>targflash0hruser,
     TARGFLASH0HRESP=>targflash0hresp,
     TARGFLASH0EXRESP=>targflash0exresp,
     TARGFLASH0HREADYOUT=>targflash0hreadyout,
     TARGEXP0HRDATA=>targexp0hrdata,
     TARGEXP0HREADYOUT=>targexp0hreadyout,
     TARGEXP0HRESP=>targexp0hresp,
     TARGEXP0EXRESP=>targexp0exresp,
     TARGEXP0HRUSER=>targexp0hruser,
      INITEXP0HSEL=>initexp0hsel,
      INITEXP0HADDR=>initexp0haddr,
      INITEXP0HTRANS=>initexp0htrans,
      INITEXP0HWRITE=>initexp0hwrite,
```

SUG283-2.4E 100(133)

INITEXP0HSIZE=>initexp0hsize,

INITEXP0HBURST=>initexp0hburst,

INITEXP0HPROT=>initexp0hprot,

INITEXPOMEMATTR=>initexp0memattr,

INITEXP0EXREQ=>initexp0exreq,

INITEXP0HMASTER=>initexp0hmaster,

INITEXP0HWDATA=>initexp0hwdata,

INITEXP0HMASTLOCK=>initexp0hmastlock,

INITEXP0HAUSER=>initexp0hauser,

INITEXP0HWUSER=>initexp0hwuser,

APBTARGEXP2PRDATA=>apbtargexp2prdata,

APBTARGEXP2PREADY=>apbtargexp2pready,

APBTARGEXP2PSLVERR=>apbtargexp2pslverr,

MTXREMAP=>mtxremap,

DAPSWDITMS=>dapswditms,

DAPTDI=>daptdi,

DAPNTRST=>dapntrst,

DAPSWCLKTCK=>dapswclktck,

FLASHERR=>flasherr,

FLASHINT=>flashint.

GPINT=>gpint,

IOEXPOUTPUTO=>ioexpoutputo,

IOEXPOUTPUTENO=>ioexpoutputeno,

IOEXPINPUTI=>ioexpinputi,

UART0TXDO=>uart0txdo,

UART1TXDO=>uart1txdo,

UART0BAUDTICK=>uart0baudtick,

UART1BAUDTICK=>uart1baudtick,

INTMONITOR=>intmonitor,

MTXHRESETN=>mtxhresetn,

SRAM0ADDR=>sram0addr,

SRAM0WREN=>sram0wren,

SRAM0WDATA=>sram0wdata,

SRAM0CS=>sram0cs,

TARGFLASH0HSEL=>targflash0hsel,

TARGFLASH0HREADYMUX=>targflash0hreadymux,

SRAM0RDATA=>sram0rdata,

TARGFLASH0HADDR=>targflash0haddr,

SUG283-2.4E 101(133)

TARGFLASH0HTRANS=>targflash0htrans, TARGFLASH0HSIZE=>targflash0hsize, TARGFLASH0HBURST=>targflash0hburst, TARGFLASH0HRDATA=>targflash0hrdata, TARGEXP0HADDR=>targexp0haddr, TARGEXP0HSEL=>targexp0hsel, TARGEXP0HWRITE=>targexp0hwrite, TARGEXP0EXREQ=>targexp0exreq, TARGEXP0HMASTLOCK=>targexp0hmastlock, TARGEXP0HREADYMUX=>targexp0hreadymux, TARGEXP0HAUSER=>targexp0hauser, INITEXP0HREADY=>initexp0hready, INITEXP0HRESP=>initexp0hresp, INITEXP0EXRESP=>initexp0exresp, TARGEXP0HTRANS=>targexp0htrans, TARGEXP0HSIZE=>targexp0hsize, TARGEXP0HBURST=>targexp0hburst, TARGEXP0HPROT=>targexp0hprot, TARGEXPOMEMATTR=>targexp0memattr, TARGEXP0HMASTER=>targexp0hmaster, TARGEXP0HWDATA=>targexp0hwdata, TARGEXP0HWUSER=>targexp0hwuser, INITEXP0HRDATA=>initexp0hrdata, INITEXP0HRUSER=>initexp0hruser, APBTARGEXP2PSTRB=>apbtargexp2pstrb, APBTARGEXP2PPROT=>apbtargexp2pprot, APBTARGEXP2PADDR=>apbtargexp2paddr, APBTARGEXP2PWDATA=>apbtargexp2pwdata, TPIUTRACEDATA=>tpiutracedata, APBTARGEXP2PSEL=>apbtargexp2psel, APBTARGEXP2PENABLE=>apbtargexp2penable, APBTARGEXP2PWRITE=>apbtargexp2pwrite, DAPTDO=>daptdo, DAPJTAGNSW=>dapjtagnsw, DAPNTDOEN=>dapntdoen, TPIUTRACECLK=>tpiutraceclk);

SUG283-2.4E 102(133)

7.3 USB20_PHY

Primitive

The USB20_PHY is a complete mixed signal IP solution that can implement OTG connection from Soc to other special manufacture technology. USB20_PHY supports USB 2.0 480-Mbps protocol and data rate and it is backward compatible with USB 1.1 1.5-Mbps and 12-Mbps protocols and data rate.

Device Supported

Table 7-5 Device Supported

Family	Series	Device
	GW1NS	GW1NS-2, GW1NS-2C
GW1N	GW1NSE	GW1NSE-2C
	GW1NSR	GW1NSR-2, GW1NSR-2C

SUG283-2.4E 103(133)

Port Diagram

Figure 7-3 USB20_PHY Port Diagram

Port Description

Table 7-6 Port Description

Port Name	I/O	Description
DATAIN[15:0]	input	16-bit parallel USB data input bus
TXVLD	input	Transmit Valid. Indicates that the DataIn bus is valid.
TXVLDH	input	Transmit Valid High.When DataBus16_8 = 1, this signal indicates that the DataIn[15:8] bus contains valid transmit data.
RESET	input	Reset. Reset all state machines in the UTM.
SUSPENDM	input	Suspend. 0:suspend, 1: normal
XCVRSEL[1:0]	input	Transceiver Select. This signal selects between the LS, FS and HS transceivers
TERMSEL	input	Termination Select. This signal selects between the FS and HS terminations
OPMODE[1:0]	input	Operational Mode. These signals select between various operational modes

SUG283-2.4E 104(133)

Port Name	I/O	Description
IDPULLUP	input	Signal that enables the sampling of the analog Id line.
DPPD	input	This signal enables the 15k Ohm pull-down resistor on the DP line.
DMPD	input	0b : Pull-down resistor not connected to DM; 1b : Pull-down resistor
		connected to DM
CHARGVBUS	input	This signal enables charging Vbus
DISCHARGVBUS	input	The signal enables discharging Vbus.
TXBITSTUFFEN	input	Indicates if the data on the DataOut[7:0] lines needs to be bitstuffed or not.
TXBITSTUFFENH	input	Indicates if the data on the DataOut[15:8] lines needs to be bitstuffed or not.
TXENN	input	Active low enable signal. Only used when FsLsSerialMode is set to 1b
TXDAT	input	Differential data at D+/D- output. Only used when FsLsSerialMode is set to 1b
TXSE0	input	Force Single-Ended Zero. Only used when FsLsSerialMode is set to 1b
FSLSSERIAL	input	0b : FS and LS packets are sent using the parallel interface. 1b : FS and LS packets are sent using the serial interface.
INTCLK	input	Clock signals provided internally of the SoC
TEST	input	For IP TESTing purpose.Please leave it unconnected since there are already soft pull-down in the IP
SCANCLK	input	Clock signals for scan mode
SCANEN	input	Select to shift mode
SCANMODE	input	High effective signal to enter scan mode
TRESETN	input	Low effective RESET signal for scan mode
SCANIN1	input	Scan chain input
SCANIN2	input	Scan chain input
SCANIN3	input	Scan chain input
SCANIN4	input	Scan chain input
SCANIN5	input	Scan chain input
SCANIN6	input	Scan chain input
DP	inout	USB data pin Data+
DM	inout	USB data pin Data-
ID	inout	ID signal from the cable
VBUS	inout	Vbus signals connected with the cable
REXT	inout	12.7K High precision resistor
XIN	inout	Crystal in signals, supported range is 12MHZ~24MHZ
XOUT	inout	Crystal out signals
DATAOUT[15:0]	output	DataOut. 16-bit parallel USB data output bus.
TXREADY	output	Transmit Data Ready.
RXACTIVE	output	Receive Active. Indicates that the receive state machine has detected SYNC and is active.
RXVLD	output	Receive Data Valid. Indicates that the DataOut bus has valid data.
RXVLDH	output	Receive Data Valid High.
CLK	output	Clock. This output is used for clocking receive and transmit parallel data.
RXERROR	output	Receive Error.
LINESTATE[1:0]	output	Line State. These signals reflect the current state of the single ended receivers.
HOSTDIS	output	This signal is used for all types of peripherals connected to it.

SUG283-2.4E 105(133)

Port Name	I/O	Description
IDDIG	output	Indicates whether the connected plug is a mini-A or mini-B.
ADPPRB	output	Indicates if the voltage on Vbus (0.6V < Vth < 0.75V).
ADPSNS	output	Indicates if the voltage on Vbus (0.2V < Vth < 0.55V).
SESSVLD	output	Indicates if the session for an A/B-peripheral is valid (0.8V < Vth < 2V).
VBUSVLD	output	Indicates if the voltage on Vbus is at a valid level for operation (4.4V < Vth < 4.75V)
RXDP	output	Single-ended receive data, positive terminal. This signal is only valid if FsLsSerial Mode is set to 1b
RXDM	output	Single-ended receive data, negative terminal. This signal is only valid if FsLsSerial Mode is set to 1b
RXRCV	output	Receive data. This signal is only valid if FsLsSerial Mode is set to 1b
LBKERR	output	used for observation
CLKRDY	output	Observation/debug signal to show that the internal PLL has locked and is ready.
CLK480PAD	output	480MHZ clock output for observation
SCANOUT1	output	Scan chain output
SCANOUT2	output	Scan chain output
SCANOUT3	output	Scan chain output
SCANOUT4	output	Scan chain output
SCANOUT5	output	Scan chain output
SCANOUT6	output	Scan chain output

Parameter

Table 7-7 Parameter

Name	Default	Description
DATABUS16_8	1'b0	Selects between 8 and 16 bit data transfers.
ADP_PRBEN	1'b0	Enables/disables the ADP Probe comparator
TEST_MODE	5'b0	used for testing and debugging purpose
HSDRV1	1'b0	High speed drive adjustment. Please connect to 0 for normal operation.
HSDRV0	1'b0	High speed drive adjustment. Please connect to 0 for normal operation.
CLK_SEL	1'b0	Clock source selection signal. 0 to select external clock provided by the crystal connected on XIN, XOUT. 1 to select internal clock provided on INTCLK port
M	4'b0	M divider input data bit
N	6'b101000	N divider input data bit
С	2'b01	Control charge pump current input data bit, it supports from 30uA (00) to 60uA (11).
FOC_LOCK	1'b0	LOCK is generated by PLL lock detector. 1: LOCK is always high(always lock)

Primitive Instantiation

Verilog Instantiation:

SUG283-2.4E 106(133)

USB20_PHY usb20_phy_inst (

```
.DATAOUT(dataout[15:0]),
```

- .TXREADY(txready),
- .RXACTIVE(rxactive),
- .RXVLD(rxvld),
- .RXVLDH(rxvldh),
- .CLK(clk),
- .RXERROR(rxerror),
- .DP(dp),
- .DM(dm),
- .LINESTATE(linestate[1:0]),
- .DATAIN(datain[15:0]),
- .TXVLD(txvld),
- .TXVLDH(txvldh),
- .RESET(reset),
- .SUSPENDM(suspendm),
- .XCVRSEL(xcvrsel[1:0]),
- .TERMSEL(termsel),
- .OPMODE(opmode[1:0]),
- .HOSTDIS(hostdis),
- .IDDIG(iddig),
- .ADPPRB(adpprb),
- .ADPSNS(adpsns),
- .SESSVLD(sessvld),
- .VBUSVLD(vbusvld),
- .RXDP(rxdp),
- .RXDM(rxdm),
- .RXRCV(rxrcv),
- .IDPULLUP(idpullup),
- .DPPD(dppd),
- .DMPD(dmpd),
- .CHARGVBUS(chargvbus),
- .DISCHARGVBUS(dischargvbus),
- .TXBITSTUFFEN(txbitstuffen),
- .TXBITSTUFFENH(txbitstuffenh),
- .TXENN(txenn),
- .TXDAT(txdat),
- .TXSE0(txse0),

SUG283-2.4E 107(133)

```
.FSLSSERIAL(fslsserial),
.LBKERR(lbkerr),
.CLKRDY(clkrdy),
.INTCLK(intclk),
.ID(id),
.VBUS(vbus),
.REXT(rext),
.XIN(xin),
.XOUT(xout),
.CLK480PAD(clk480pad),
.TEST(test),
.SCANOUT1(scanout1),
.SCANOUT2(scanout2),
.SCANOUT3(scanout3),
.SCANOUT4(scanout4),
.SCANOUT5(scanout5),
.SCANOUT6(scanout6),
.SCANCLK(scanclk),
.SCANEN(scanen),
.SCANMODE(scanmode),
.TRESETN(tresetn),
.SCANIN1(scanin1),
.SCANIN2(scanin2),
.SCANIN3(scanin3),
.SCANIN4(scanin4),
.SCANIN5(scanin5),
.SCANIN6(scanin6)
);
defparam usb20_phy_inst.DATABUS16_8 = 1'b0;
defparam usb20_phy_inst.ADP_PRBEN = 1'b0;
defparam usb20_phy_inst.TEST_MODE = 5'b0;;
defparam usb20_phy_inst.HSDRV1 = 1'b0;
defparam usb20_phy_inst.HSDRV0 = 1'b0;
defparam usb20_phy_inst.CLK_SEL = 1'b0;
defparam usb20_phy_inst.M = 4'b0;
defparam usb20_phy_inst.N = 6'b101000;
defparam usb20_phy_inst.C = 2'b01;
defparam usb20_phy_inst.FOC_LOCK = 1'b0;
```

SUG283-2.4E 108(133)

```
Vhdl Instantiation:
COMPONENT USB20_PHY
GENERIC (
TEST_MODE:bit_vector:="00000";
                  DATABUS16 8:bit:='0';
                  ADP_PRBEN:bit:='0';
                  HSDRV1:bit:='0';
                  HSDRV0:bit:='0';
      CLK_SEL:bit:='0';
      M:bit_vector:="0000";
      N:bit_vector:=" 101000";
      C:bit_vector:="01";
      FOC_LOCK:bit:='0';
);
   PORT(
     DATAIN:IN std_logic_vector(15 downto 0);
TXVLD:IN std_logic;
TXVLDH:IN std_logic;
RESET: IN std_logic;
SUSPENDM:IN std_logic;
XCVRSEL:IN std_logic_vector(1 downto 0);
TERMSEL: IN std_logic;
OPMODE:IN std_logic_vector(1 downto 0);
DATAOUT:OUT std_logic_vector(15 downto 0);
TXREADY:OUT std_logic;
RXACTIVE:OUT std_logic;
RXVLD:OUT std_logic;
RXVLDH:OUT std_logic;
CLK:OUT std_logic;
RXERROR:OUT std_logic;
DP:INOUT std_logic;
DM:INOUT std_logic;
LINESTATE:OUT std_logic_vector(1 downto 0);
IDPULLUP: IN std_logic;
DPPD:IN std_logic;
DMPD:IN std_logic;
CHARGVBUS: IN std_logic;
```

SUG283-2.4E 109(133)

DISCHARGVBUS: IN std_logic;

TXBITSTUFFEN:IN std_logic;

TXBITSTUFFENH:IN std_logic;

TXENN:IN std_logic;

TXDAT:IN std_logic;

TXSE0:IN std_logic;

FSLSSERIAL: IN std_logic;

HOSTDIS:OUT std_logic;

IDDIG:OUT std_logic;

ADPPRB:OUT std_logic;

ADPSNS:OUT std_logic;

SESSVLD:OUT std_logic;

VBUSVLD:OUT std_logic;

RXDP:OUT std_logic;

RXDM:OUT std_logic;

RXRCV:OUT std_logic;

LBKERR:OUT std_logic;

CLKRDY:OUT std_logic;

INTCLK:IN std_logic;

ID:INOUT std_logic;

VBUS:INOUT std_logic;

REXT:INOUT std_logic;

XIN:IN std_logic;

XOUT:INOUT std_logic;

TEST:IN std_logic;

CLK480PAD:OUT std_logic;

SCANCLK: IN std_logic;

SCANEN: IN std_logic;

SCANMODE: IN std_logic;

TRESETN: IN std_logic;

SCANIN1:IN std_logic;

SCANOUT1:OUT std_logic;

SCANIN2:IN std_logic;

SCANOUT2:OUT std_logic;

SCANIN3:IN std_logic;

SCANOUT3:OUT std_logic;

SCANIN4:IN std_logic;

SCANOUT4:OUT std_logic;

SUG283-2.4E 110(133)

```
SCANIN5:IN std_logic;
SCANOUT5:OUT std_logic;
SCANIN6:IN std_logic;
SCANOUT6:OUT std_logic;
     );
END COMPONENT;
uut: USB20_PHY
 PORT MAP (
DATAIN=>datain,
TXVLD=>txvld,
TXVLDH=>txvldh,
RESET=>reset,
SUSPENDM=>suspendm,
XCVRSEL=>xcvrsel,
TERMSEL=>termsel,
OPMODE=>opmode,
DATAOUT=>dataout,
TXREADY=>txready,
RXACTIVE=>rxactive,
RXVLD=>rxvld,
RXVLDH=>rxvldh,
CLK=>clk,
RXERROR=>rxerror,
DP=>dp,
DM=>dm.
LINESTATE=>linestate,
0IDPULLUP=>idpullup,
DPPD=>dppd,
DMPD=>dmpd,
CHARGVBUS=>chargvbus,
DISCHARGVBUS=>dischargvbus,
TXBITSTUFFEN=>txbitstuffen,
TXBITSTUFFENH=>txbitstuffenh,
TXENN=>txenn,
TXDAT=>txdat,
TXSE0=>txse0.
FSLSSERIAL=>fslsserial,
HOSTDIS=>hostdis,
```

SUG283-2.4E 111(133)

7 EMPU 7.4 ADC

```
IDDIG=>iddig,
ADPPRB=>adpprb,
ADPSNS=>adpsns,
SESSVLD=>sessvld,
VBUSVLD=>vbusvld,
RXDP=>rxdp,
RXDM=>rxdm,
RXRCV=>rxrcv,
LBKERR=>lbkerr,
CLKRDY=>clkrdy,
INTCLK=>intclk,
ID=>id,
VBUS=>vbus,
REXT=>rext,
XIN=>xin,
XOUT=>xout,
TEST=>test,
CLK480PAD=>clk480pad,
SCANCLK=>scanclk,
SCANEN=>scanen,
SCANMODE=>scanmode,
TRESETN=>tresetn,
SCANIN1=>scanin1,
SCANOUT1=>scanout1,
SCANIN2=>scanin2,
SCANOUT2=>scanout2,
SCANIN3=>scanin3,
SCANOUT3=>scanout3,
SCANIN4=>scanin4,
SCANOUT4=>scanout4,
SCANIN5=>scanin5,
SCANOUT5=>scanout5,
SCANIN6=>scanin6,
SCANOUT6=>scanout6
```

);

SUG283-2.4E 112(133)

7 EMPU 7.4 ADC

7.4 ADC

Primitive

It is an 8-channel, 12-bit, single port ADC with the features of low power, low leakage and high-dynamic.

Device Supported

Table 7-8 Device Supported

Family	Series	Device
	GW1NS	GW1NS-2, GW1NS-2C
GW1N	GW1NSE	GW1NSE-2C
	GW1NSR	GW1NSR-2, GW1NSR-2C

Port Diagram

Figure 7-4 ADC Port Diagram

Port Description

Table 7-9 Port Description

Port Name	I/O	Description
ADOUT[11:0]	Output	ad conversion results.
EOC	Output	end of conversion.
CLK	Input	main clock.
PD	Input	power down signal.
SOC	Input	start of conversion.
SEL[2:0]	Input	channel select signal.
CH[7:0]	Input	channel signal-ended analog voltage input.
VREF	Input	voltage reference

Primitive Instantiation

Verilog Instantiation:

ADC adc_inst(
.CLK(clk),
.PD(pd),
.SOC(soc),

SUG283-2.4E 113(133)

7.4 ADC 7 EMPU

```
.SEL(sel[2:0]),
              .CH(ch[7:0]),
              .VREF(vref),
              .EOC(eoc),
              .ADOUT(adout[11:0])
          );
       VhdI Instantiation:
          COMPONENT ADC
             PORT(
             CLK=>IN std_logic;
                    PD=>IN std_logic;
                    SOC=>IN std_logic;
                    SEL=>IN std_logic_vector(2 downto 0);
                    CH=>IN std_logic_vector(7 downto 0);
                    VREF=>IN std_logic;
                    EOC=>OUT std_logic;
                    ADOUT=>OUT std_logic_vector(11 downto 0)
                );
          END COMPONENT;
          uut=> ADC
            PORT MAP (
                    CLK=>clk,
                    PD=>pd,
                    SOC=>soc,
                    SEL=>sel,
                    CH=>ch,
                    VREF=>vref,
EOC=>eoc,
ADOUT=>adout
             );
      Invoke IP
```

Click "ADC" on the IP Core Generator, and a brief introduction to the ADC will be displayed.

IP Configuration

Double-click the "ADC" to open the "IP Customization" window. This displays the "File", "Options", ports diagram, and the "Help", as shown in Figure 7-5.

SUG283-2.4E 114(133) 7 EMPU 7.4 ADC

W IP Customization **ADC** General GW1NS-2 Part Number: GW1NS-LX2QN48C6/I5 Device: D:\test prj\src\gowin_adc Create In: gowin_adc | Module Name: | Gowin_ADC File Name: Language: Verilog ▼ Synthesis Tool: GowinSynthesis → reset adout[11:0] Options Use External Clock ■ Enable Reference Voltage s el[2:0] Reference Voltage Type: VCCX ch[7:0] Q Q ОК Cancel Help

Figure 7-5 IP Customization of ADC

1. File

- Device: Selected device;
- Part Number: Selected Part Number;
- Create In: The target path. You can reedit in the textbox or select a path by clicking the button.
- File Name: The file name. You can reedit in the textbox.
- Module Name: The module name. You can reedit in the textbox.
 The module name can not be the same as the primitive name. If it is the same, an error prompt will pop up.
- Language: Verilog and VHDL;
- Synthesis Tool: GowinSynthesis and Synplify Pro.

2. Options

- Use External Clock: Configure external clock.
- Enable Reference Voltage: Configure enable reference voltage, and the default is VCCX.
- Reference Voltage Type: VCCX, 34/40(*VCCX), 31/40(*VCCX), 29/40(*VCCX), 27/40(*VCCX), 22/40(*VCCX), 20/40(*VCCX) and External.
- 3. The ports diagram is based on the current IP Core configuration, as

SUG283-2.4E 115(133)

7 EMPU 7.4 ADC

shown in Figure 7-5;

4. Help

Click "Help" to open the IP Core configuration information. The Help page displays "Information" and "Options".

Generated Files

After configuration, it will generate three files that are named after the "File Name".

- "gowin_adc.v" file is a complete Verilog module to generate instance SPMI, and it is generated according to the IP configuration;
- "gowin_adc_tmp.v" is the instance template file;
- "gowin_adc.ipc" file is IP configuration file. The user can load the file to configure the IP.

Note!

If VHDL is selected as the hardware description language, the first two files will be named with .vhd suffix.

SUG283-2.4E 116(133)

8 Miscellaneous 8.1 GSR

8 Miscellaneous

8.1 **GSR**

Primitive

Global Reset/Set (GSR)

Devices Supported

Table 8-1 Device Supported

Family	Series	Device
	GW2A	GW2A-18, GW2A-18C, GW2A-55, GW2A-55C
GW2A	GW2AR	GW2AR-18, GW2AR-18C
	GW2ANR	GW2ANR-18C
	GW1N	GW1N-1, GW1N-1S, GW1N-4, GW1N-4B, GW1N-9, GW1N-9C
	GW1NR	GW1NR-4, GW1NR-4B, GW1NR-9, GW1NR-9C
	GW1NRF	GW1NRF-4B
GW1N	GW1NS	GW1NS-2, GW1NS-2C, GW1NS-4, GW1NS-4C
	GW1NSE	GW1NSE-2C
	GW1NSER	GW1NSER-4C
	GW1NSR	GW1NSR-2, GW1NSR-2C, GW1NSR-4, GW1NSR-4C
	GW1NZ	GW1NZ-1

Port Diagram

Figure 8-1 GSR Port Diagram

Port Description

Table 8-2 Port Description

Name	I/O	Description
GSRI	Input	GSR input, active-low

SUG283-2.4E 117(133)

8 Miscellaneous 8.2 INV

Primitive Instantiation

8.2 INV

Primitive

Inverter (INV)

);

Devices Supported

Table 8-3 Device Supported

Family	Series	Device
	GW2A	GW2A-18, GW2A-18C, GW2A-55, GW2A-55C
GW2A	GW2AR	GW2AR-18, GW2AR-18C
	GW2ANR	GW2ANR-18C
	GW1N	GW1N-1, GW1N-1S, GW1N-4, GW1N-4B, GW1N-9,
		GW1N-9C
	GW1NR	GW1NR-4, GW1NR-4B, GW1NR-9, GW1NR-9C
	GW1NRF	GW1NRF-4B
GW1N	GW1NS	GW1NS-2, GW1NS-2C, GW1NS-4, GW1NS-4C
	GW1NSE	GW1NSE-2C
	GW1NSER	GW1NSER-4C
	GW1NSR	GW1NSR-2, GW1NSR-2C, GW1NSR-4, GW1NSR-4C
	GW1NZ	GW1NZ-1

Port Diagram

Figure 8-2 INV Port Diagram

SUG283-2.4E 118(133)

8 Miscellaneous 8.3 VCC

Port Description

Table 8-4 Port Description

Name	I/O	Description
I	Input	INV data input
0	Output	INV data output

Primitive Instantiation

```
Verilog instantiation:
```

```
INV uut (
       .O(O),
       .l(l)
  );
VhdI instantiation:
  COMPONENT INV
      PORT (
            O:OUTPUT std_logic;
            I:IN std_logic
      );
  END COMPONENT;
  uut:INV
        PORT MAP(
         O \Rightarrow O,
       l => l
       );
```

8.3 VCC

Primitive

VCC

Devices Supported

Table 8-5 Device Supported

Family	Series	Device
	GW2A	GW2A-18, GW2A-18C, GW2A-55, GW2A-55C
GW2A	GW2AR	GW2AR-18, GW2AR-18C
	GW2ANR	GW2ANR-18C
GW1N	GW1N	GW1N-1, GW1N-1S, GW1N-4, GW1N-4B, GW1N-9, GW1N-9C
GWIIN	GW1NR	GW1NR-4, GW1NR-4B, GW1NR-9, GW1NR-9C
	GW1NRF	GW1NRF-4B

SUG283-2.4E 119(133)

8 Miscellaneous 8.4 GND

Family	Series	Device
	GW1NS	GW1NS-2, GW1NS-2C, GW1NS-4, GW1NS-4C
	GW1NSE	GW1NSE-2C
	GW1NSER	GW1NSER-4C
	GW1NSR	GW1NSR-2, GW1NSR-2C, GW1NSR-4, GW1NSR-4C
	GW1NZ	GW1NZ-1

Port Diagram

Figure 8-3 VCC Port Diagram

Port Description

Table 8-6 Port Description

Name	I/O	Description
V	Output	VCC output

Primitive Instantiation

VCC uut (

```
Verilog instantiation:
```

```
.V(V)
);
VhdI instantiation:
COMPONENT VCC
PORT (
V:OUT std_logic
);
END COMPONENT;
uut:VCC
PORT MAP(
V => V
```

8.4 GND

Primitive

GND

);

SUG283-2.4E 120(133)

8.4 GND 8 Miscellaneous

Devices Supported

Table 8-7 Device Supported

Family	Series	Device		
	GW2A	GW2A-18, GW2A-18C, GW2A-55, GW2A-55C		
GW2A	GW2AR	GW2AR-18, GW2AR-18C		
	GW2ANR	GW2ANR-18C		
	GW1N	GW1N-1, GW1N-1S, GW1N-4, GW1N-4B, GW1N-9,		
	GWIN	GW1N-9C		
	GW1NR	GW1NR-4, GW1NR-4B, GW1NR-9, GW1NR-9C		
	GW1NRF	GW1NRF-4B		
GW1N	GW1NS	GW1NS-2, GW1NS-2C, GW1NS-4, GW1NS-4C		
	GW1NSE	GW1NSE-2C		
	GW1NSER	GW1NSER-4C		
	GW1NSR	GW1NSR-2, GW1NSR-2C, GW1NSR-4, GW1NSR-4C		
	GW1NZ	GW1NZ-1		

Port Diagram

Figure 8-4 GND Port Diagram

Port Description

Table 8-8 Port Description

Name	I/O	Description
G	Output	GND output

Primitive Instantiation

```
Verilog instantiation:
```

```
GND uut (
     .G(G)
);
```

```
VhdI instantiation:
  COMPONENT GND
      PORT (
           G:OUT std_logic
      );
  END COMPONENT;
  uut:GND
        PORT MAP(
         G \Rightarrow G
```

SUG283-2.4E 121(133) 8 Miscellaneous 8.5 BANDGAP

);

8.5 BANDGAP

Primitive

BANDGAP

Supported Devices

Table 8-9 Device Supported

Family	Series	Device
GW1N	GW1NZ	GW1NZ-1

Port Diagram

Figure 8-5 BANDGAP Port Diagram

Port Description

Table 8-10 Port Description

Name	I/O	Description
BGEN	Input	BANDGAP enable signal, active-high

Primitive Instantiation

```
Verilog Instantiation:
BANDGAP uut (
```

```
.BGEN(bgen)
);
VhdI Instantiation:
COMPONENT BANDGAP
PORT (
BGEN:IN std_logic
);
END COMPONENT;
uut:BANDGAP
PORT MAP(
```

BGEN=> I

);

Invoke IP

Click "BandGap" on the IP Core Generator, and a brief introduction to the BandGap will be displayed.

SUG283-2.4E 122(133)

8 Miscellaneous 8.5 BANDGAP

IP Configuration

Double-click the "BandGap" to open the "IP Customization" window. This displays the "File", "Options", ports diagram, and the "Help", as shown in Figure 8-6.

Figure 8-6 IP Customization of BandGap

1. File

- The File displays the basic information related to BandGap.
- The BandGap file configuration is similar to that of SP. For the detailed configuration, please see <u>7.4 ADC > Invoke IP</u>.
- 2. The ports diagram is based on the current IP Core configuration, as shown in Figure 8-6;
- 3. Help Click "Help" to open the IP Core configuration information. The Help page displays "Information".

Generated Files

After configuration, it will generate three files that are named after the "File Name".

- "gowin_bandgap.v" file is a complete Verilog module to generate instance BandGap, and it is generated according to the IP configuration;
- "gowin_bandgap_tmp.v" is the instance template file;
- "gowin_bandgap.ipc" file is IP configuration file. The user can load the file to configure the IP.

SUG283-2.4E 123(133)

8 Miscellaneous 8.6 SPMI

Note!

If VHDL is selected as the hardware description language, the first two files will be named with .vhd suffix.

8.6 SPMI

Primitive Instantiation

System Power Management Interface (SPMI) is a two-wire serial interface, which can be used to dynamically control the internal power supply of the on-chip system.

Supported Devices

Table 8-11 Device Supported

Family	Series	Device
GW1N	GW1NZ	GW1NZ-1

Port Diagram

Figure 8-7 SPMI Port Diagram

Port Description

Table 8-12 Port Description

Port Name	I/O	Description
CLK	input	Clock input
CLKEXT	input	External clock input
CE	input	Clock Enable
RESETN	input	Reset input
ENEXT	input	Enext input
LOCRESET	input	Local reset input
PA	input	Priority arbitration input
SA	input	Secondary arbitration input
CA	input	Connection arbitration input
ADDRI	input	Addr input
DATAI	input	Data input
ADDRO	output	Addr output
DATAO	output	datat output
STATE	output	state output
CMD	output	command output

SUG283-2.4E 124(133)

8.6 SPMI 8 Miscellaneous

Port Name	I/O	Description
SDATA	inout	SPMI Serial data
SCLK	inout	SPMI Serial Clock

Primitive Instantiation

```
Verilog Instantiation:
  SPMI uut (
       .ADDRO(addro),
       .DATAO(datao),
      .STATE(state),
       .CMD(cmd),
       .SDATA(sdata),
      .SCLK(sclk),
      .CLK(clk),
      .CE(ce),
       .RESETN(resetn),
      .LOCRESET(locreset),
      .PA(pa),
       .SA(sa),
      .CA(ca),
       .ADDRI(addri),
      .DATAI(datai),
      .CLKEXT(clkext),
      .ENEXT(enext)
  );
VhdI Instantiation:
  COMPONENT SPMI
     PORT(
     CLK:IN std_logic;
             CLKEXT:IN std_logic;
             CE:IN std_logic;
             RESETN:IN std_logic;
             ENEXT:IN std_logic;
             LOCRESET:IN std_logic;
             PA:IN std_logic;
```

SUG283-2.4E 125(133)

ADDRI:IN std_logic_vector(3 downto 0);

SA:IN std_logic; CA:IN std_logic; 8 Miscellaneous 8.6 SPMI

```
DATAI:IN std_logic_vector(7 downto 0);
          ADDRO:OUT std_logic_vector(3 downto 0);
          DATAO:OUT std_logic_vector(7 downto 0);
          STATE:OUT std_logic_vector(15 downto 0);
          CMD:OUT std_logic_vector(3 downto 0);
          SDATA:INOUT std_logic;
          SCLK:INOUT std_logic
   );
END COMPONENT;
uut: SPMI
 PORT MAP (
  CLK=>clk,
          CLKEXT=>clkext,
          CE=>ce,
          RESETN=>resetn,
          ENEXT=>enext,
          LOCRESET=>locreset,
          PA=>pa,
          SA=>sa.
          CA=>ca.
          ADDRI=>addri,
          DATAI=>datai.
          ADDRO=>addro,
          DATAO=>datao,
          STATE=>state.
          CMD=>cmd,
          SDATA=>sdata.
          SCLK=>sclk
  );
```

Invoke IP

Click "SPMI" on the IP Core Generator, and a brief introduction to the SPMI will be displayed.

IP Configuration

Double-click the "SPMI" to open the "IP Customization" window. This displays the "File", "Options", ports diagram, and the "Help", as shown in Figure 8-8.

SUG283-2.4E 126(133)

8 Miscellaneous 8.6 SPMI

🖺 IP Customization \times **SPMI** File Device: GW1NZ-1 Part Number: GW1NZ-LV1FN32C5/I4 D:\test prj\src\gowin_spmi Module Name: Gowin_SPMI File Name: gowin_spmi Language: Verilog Options ADDRO[3:0] Functional Configuration CE DATAO[7:0] ☐ Shutdown by VCCEN Master/Slave: O Master

Slave LOCRESET STATE[15:0] Master Configuration CMD[3:0] 0 -SCLK Normal Period: 3 Respond Delay: 0 SCLK Low Period: SDATA -ADDRIG01 Slave Configuration SCLK ◀▶ SID: 0 ■ ENEXT General Configuration Request Pipeline Steps: 1 Clock Frequency: 1 ☐ Enable State Code Register ☐ Enable Decode Command Clock From External Enable Reset Command 2 OK Help

Figure 8-8 IP Customization of SPMI

5. File

- The File displays the basic information related to SPMI.
- The SPMI file configuration box is similar to that of SP. For the details, please see <u>7.4 ADC > Invoke IP</u>.

6. Options

- The Options is used to configure SPMI by users, as shown in Figure 8-8.
- Functional Configuration:
 - Shutdown by VCCEN: Shutdown by external pin VCCEN If this option is checked, the communication function of SPMI will be disabled.
 - Master/Slave: Set SPMI as Master or Slave.
- Master Configuration:
 - MID: Master ID. The range is 0-3, and default value is 0.
 - Respond Delay: Set the response delay.
 - SCLK Normal Period: Set SCLK period in normal mode.
 - SCLK Normal Period: Set SCLK period in low mode.

SUG283-2.4E 127(133)

- Slave Configuration: SID: Slave ID.
- General configuration:
 - Enable State Code Register: Enable or disable the state code register. If "Enable State Code Register" is checked, the output state code will pass a register.
 - Request Pipeline Steps: Set the sampling delay step of the request signal.
 - Enable Decode Command: Enable or disable decode. If "Enable Decode Command" is checked, SPMI will decode the reset, sleep, shutdown, and wakeup.
 - Enable Decode Command: Enable or disable reset.
 - Clock From External: Enable or disable the external clock.
 - Clock Frequency: System clock frequency.
- 7. The ports diagram is based on the current IP Core configuration, as shown in;
- 8. Help

Click "Help" to open the IP Core configuration information. The Help page displays "Information" and "Options".

Generated Files

After configuration, it will generate three files that are named after the "File Name".

- "gowin_spmi.v" file is a complete Verilog module to generate instance SPMI, and it is generated according to the IP configuration;
- "gowin_spmi_tmp.v" is the instance template file;
- "gowin_spmi.ipc " file is IP configuration file. The user can load the file to configure the IP.

Note

If VHDL is selected as the hardware description language, the first two files will be named with .vhd suffix.

8.7 I3C

Primitive

I3C (Improved Inter Integrated Circuit) is a two-wire bus with the key features of I2C and SPI, which can effectively reduce the physical ports of integrated circuit, support the advantages of low power, high data rate and other existing port protocols.

Supported Devices

Table 8-13 Device Supported

Family	Series	Device
GW1N	GW1NZ	GW1NZ-1

SUG283-2.4E 128(133)

Port Diagram

Figure 8-9 I3C Port Diagram

Port Description

Table 8-14 Port Description

Port Name	I/O	Description
CE	input	Clock Enable
RESET	input	Reset input
CLK	input	Clock input
LGYS	input	The current communication object is the I2C setting signal
CMS	input	The device enters the Master's set signal
ACS	input	Select the setting signal when determining whether to continue.
AAS	input	Reply the ACK setting signal when a reply is required from the ACK/NACK
STOPS	input	Input the STOP command
STRTS	input	Input the START command.
LGYC	input	The current communication object is the I2C
CMC	input	The reset signal that the device is in master.
ACC	input	The reset signal that selects continue when selecting whether to continue
AAC	input	Reply the ACK reset signal when a reply is required from the ACK/NACK
SIC	input	Interrupt to identify the reset signal
STOPC	input	The reset signal is in STOP state

SUG283-2.4E 129(133)

Port Name	I/O	Description
STRTC	input	The reset signal is in START state
STRTHDS	input	Adjust the setting signal when generating START
SENDAHS	'	Adjust the setting signal of SCL at a high level when the
	input	address is sent.
SENDALS		Adjust the setting signal of SCL at a low level when the
ACKHS	input	address is sent
SENDDLS	input	Adjust the setting signal of SCL at a high level in ACK.
	input	Adjust the setting signal of SCL at a low level in ACK.
RECVDHS	input	Adjust the setting signal of SCL at a high level when the data are received
RECVDLS	input	Adjust the setting signal of SCL at a low level when the
	input	data are received
ADDRS	input	The slave address setting interface
DI	input	Data Input.
SDAI	input	I3C serial data input
SCLI	input	I3C serial clock input
LGYO	'	Output the current communication object as the I2C
	output	command.
СМО	output	Output the command of the device is in the Master mode.
ACO	output	Continue to output when selecting whether to continue
AAO	output	Reply ACK when you need to reply ACK/NACK
SIO	output	Interrupt to output the identity bit
STOPO	output	Output the STOP command
STRTO	output	Output the START command
PARITYERROR	output	Output check when receiving data
DOBUF	output	Data output after caching
DO	output	Data output directly
STATE	output	Output the internal state
SDAO	output	I3C serial data output
SCLO	output	I3C serial clock output
SDAOEN	output	I3C serial data oen output
SCLOEN	output	I3C serial clock oen output
SDAPULLO	output	Controllable pull-up of the I3C serial data
SCLPULLO	output	Controllable pull-up of the I3C serial clock
SDAPULLOEN	output	Controllable pull-up of the I3C serial data oen
SCLPULLOEN	output	Controllable pull-up of the I3C serial clock oen

Primitive Instantiation

SUG283-2.4E 130(133)

```
.SIO(sio),
.STOPO(stopo),
.STRTO(strto),
.PARITYERROR(parityerror),
.DOBUF(dobuf),
.DO(dout),
.STATE(state),
.SDAO(sdao),
.SCLO(sclo),
.SDAOEN(sdaoen),
.SCLOEN(scloen),
.SDAPULLO(sdapullo),
.SCLPULLO(sclpullo),
.SDAPULLOEN(sdapulloen),
.SCLPULLOEN(sclpulloen),
.LGYS(lgys),
.CMS(cms),
.ACS(acs),
.AAS(aas),
.STOPS(stops),
.STRTS(strts),
.LGYC(lgyc),
.CMC(cmc),
.ACC(acc),
.AAC(aac),
.SIC(sic),
.STOPC(stopc),
.STRTC(strtc),
.STRTHDS(strthds),
.SENDAHS(sendahs),
.SENDALS(sendals),
.ACKHS(ackhs),
.ACKLS(ackls),
.STOPSUS(stopsus),
.STOPHDS(stophds),
.SENDDHS(senddhs),
.SENDDLS(senddls),
```

SUG283-2.4E 131(133)

.RECVDHS(recvdhs),

```
.RECVDLS(recvdls),
.ADDRS(addrs),
.DI(di),
.SDAI(sdai),
.SCLI(scli),
.CE(ce),
.RESET(reset),
.CLK(clk)
);
```

Invoke IP

Click "I3C > I3C SDR" on the "IP Core Generator" page. A brief introduction to the I3C SDR will be displayed.

Configure IP

Double-click "I3C SDR", and the "IP Customization" window pops up. This displays the "File", "Options", port diagram, and "Help", as shown in Figure 8-10.

Figure 8-10 IP Customization of I3C

1. File

The File displays the basic information related to the I3C.

SUG283-2.4E 132(133)

 The I3C file configuration is similar to that of ADC. For the detailed configuration instructions, please see 7.4 ADC > Invoke IP.

2. Options

- The Options is used to configure I3C by users, as shown in Figure 8-10.
- SLAVE STATIC ADDRESS: Specify the static address of the Slave.
- 3. The ports diagram is based on the IP Core configuration, as shown in:

4. Help

Click "Help" to open the IP Core configuration information. The Help page displays "Information" and "Options".

Generated Files

After configuration, it will generate three files that are named after the "File Name".

- "gowin_i3c.v" file is a complete Verilog module to generate instance I3C, and it is generated according to the IP configuration;
- "gowin_i3c_tmp.v" is the instance template file;
- "gowin_i3c.ipc " file is IP configuration file. You can load the file to configure the IP.

Note

If VHDL is selected as the hardware description language, the first two files will be named with .vhd suffix.

SUG283-2.4E 133(133)

