RECREATING THE 2021/22 PREMIER LEAGUE SEASON WITH POISSON PROCESSES

Josiah Wu

Mathematics Student at Imperial College London Y1 Summer Research Project

Introduction

- The English Premier League is a well-known professional football league in the UK.
- A Premier League season consists of 20 teams, each playing 38 matches against each other in a round-robin format.
- This project aims to generate simulations to reproduce the 2021/22 Premier League season, due to my dissatisfaction with the disastrous performance of my favourite team (Manchester United) in that season.

What is a Poisson Process?

The simulations in this project involve modelling with a Stochastic Process called **one-dimensional Poisson Process**. A one-dimensional Poisson Process is a **Counting Process** $\{N(t), t \geq 0\}$, a collection of random variables in which for all $s, t \geq 0$ [1]:

- $N(t) \ge 0$
- N(t) is an integer.
- $s \le t \implies N(s) \le N(t)$

A one-dimensional Poisson Process is therefore a Counting Process $\{N(t), t \geq 0\}$ with arbitrary intensity $\lambda(t) > 0$ such that [2]:

- $\bullet N(0) = 0$
- For any $m \in \mathbb{N}, \ t_0 < t_1 < \dots < t_m \Longrightarrow N(t_1) N(t_0), \ N(t_2) N(t_1), \ \dots, \ N(t_m) N(t_{m-1})$ are independent random variables.
- The number of events occurring within any interval A=(a,b] is randomly distributed by ${\rm Poi}(\Lambda)$, where $\Lambda=\int_a^b\lambda(t)dt$.
- If $\lambda(t) = \lambda_0 \ \forall t \geq 0$, i.e. the Poisson Process is **homogeneous**, then the time difference between any two consecutive events is randomly distributed by $\text{Exp}(\lambda_0)$.

Note that if $\lambda(t)$ is not constant over time then we say the Poisson Process is **inhomogeneous**.

Project Outline

As there is no open dataset available on the internet, I web-scraped information for all the goals scored in the 2021/22 Premier League season from the Premier League official website [3], using a Python package named Selenium. (If you're interested in how any of this works, please visit the code on my GitHub page. [a])

In this project, I used the data I web-scraped to find the best-fit intensity $\lambda(t)$ for each team. This then can be used to simulate goal-scoring through an inhomogeneous Poisson Process. Finally, one can find the final result of a simulated season by comparing the number of goals scored in matches.

References

- [1] Ross, Sheldon. 1995. Chapter 2: The Poisson Process. Stochastic Process, 2nd Edition. Wiley, pp 59-60.
- [2] Tijms, Henk C. 2003. Chapter 1: The Poisson Process and Related Processes. A First Course in Stochastic Models. John Wiley and Sons, pp 2,3,22.
- [3] Results. Premier League Official Website. https://www.premierleague.com/results?co=1&se=418&cl=-1
- [4] Daley, Daryl J. and Vere-Jones, David. 2003. Chapter 7: Conditional Intensities and Likelihoods. An introduction to the theory of point processes, Volume I, Elementary theory and methods, 2nd Edition. New York, Springer, pp 213.
- [5] Stats (v3.6.2) optim: General-purpose Optimization. RDocumenation. https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/optim
- [6] Chen, Yuanda. 2016. Thinning Algorithm for Simulating Poisson Processes. https://www.math.fsu.edu/~ychen/research/Thinning%20algorithm.pdf
- [a] GitHub Repository https://github.com/jwu29/21-22PLSimulation

Can goal-scoring be modelled by a homogeneous Poisson Process?

After having collected the data, I suspected that the intensity $\lambda(t)$ is constant. To see if this is true, I first recorded the number of goals scored per match by each team in the 2021/22 season. Then I applied the **Chi-Squared Goodness of Fit Test**, a hypothesis test with the following hypotheses:

- H_0 : Goals scored per match is randomly distributed by $Poi(\lambda_0)$ for some $\lambda_0 \in \mathbb{R}$
- H_1 : Goals scored per match isn't randomly distributed by $Poi(\lambda_0)$ for all $\lambda_0 \in \mathbb{R}$

If the intensity is indeed constant, then H_0 should be concluded for the test. However, looking at the p-values for all 20 teams suggests that there isn't sufficient evidence to conclude H_0 for most teams.

Figure 2: Chi-Squared Test p-values for all teams; the horizontal line represents p = 0.90. Note that H_0 is accepted when $p \ge 0.90$, and rejected otherwise.

Modelling the Intensity Function

From the last section we can conclude that the intensity function cannot be constant. However, I made an educated guess that every team's intensity function is periodic every match, and is a multiple of the PDF for the Beta distribution. The resulting intensity function is

$$\lambda(t; \alpha, \beta, \theta) = \theta \left[\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} (t \bmod 1)^{\alpha - 1} (1 - (t \bmod 1))^{\beta - 1} \right]$$

It can be shown that for any intensity $\lambda(t) \in \mathbb{R}$, the log-likelihood of intensity [4] is given by

$$log[L(x_1, \cdots, x_n)] = \sum_{i=1}^{n} log \lambda(x_i) - \int_A \lambda(s) ds$$

By using the built-in optim function in R, it's possible to find optimal values of α, β, θ which maximizes the log-likelihood [5].

How to simulate one-dimensional Poisson Processes

Simulating a one-dimensional homogeneous Poisson Process (1D-HPP) within the interval (0,t] requires drawing samples (x_1, \dots, x_k) from $X \sim \text{Exp}(\lambda_0)$, where $k = \sup\{\sum_{n=1}^q x_n \le t : q \in \mathbb{Z}^+\}$. Then a realization of 1D-HPP is denoted by $\vec{v} = (y_1, y_2, \dots, y_k) = (x_1, x_1 + x_2, \dots, \sum_{n=1}^k x_n)$ [6].

However, simulating a 1D inhomogeneous Poisson Process (1D-IHPP) is not as straight forward. It involves an algorithm called the **thinning algorithm** [6], which works if $\lambda(t)$ is bounded above:

- 1. Let $M = \sup_{t \geq 0} \lambda(t)$. Simulate a 1D-HPP in (0, t] with intensity M, yielding $\vec{v} = (y_1, \dots, y_k)$.
- 2. Draw sample (u_1, \dots, u_k) from $\mathrm{Unif}(0,1)$; for $1 \le i \le k$, if $u_i > \lambda(y_i)/M$, delete y_i from \vec{v} ; else, continue.
- 3. Return \vec{v} .

Putting it all together...

We can now use the optimal parameters to simulate results of 38 matches for all 20 teams in the 2021/22 season. Figure 3 depicts the result of one particular simulation.

Figure 3: A graph showing all goals scored in a simulated 21/22 Premier League season, where the dots represent the goals.

I then used the results to generate the final league table for the 2021/22 season 100 times. It turns out the model is accurate in predicting the top four teams in the league, but not for other positions. However, I believe the model could be improved by making the multiplier θ in the intensity function more dependent on the opponent - for example, if a team faces a difficult opponent then the multiplier θ should be smaller.

	Champions	2nd Place	3rd Place	4th Place	5th Place	6th Place	7th Place	8th Place	9th Place	10th Place
Projected	Man City	Liverpool	Chelsea	Tottenham	Arsenal	Leicester	Man United	Man United	Cry. Palace	Cry. Palace
Standings	(51%)	(38%)	(33%)	(25%)	(23%)	(14%)	(11%)	(16%)	(15%)	(12%)
	Liverpool	Man City	Tottenham	Chelsea	Tottenham	Tottenham	Arsenal	Arsenal	West Ham	Everton
	(42%)	(34%)	(12%)	(19%)	(17%)	(13%)	(11%)	(11%)	(11%)	(11%)
	Chelsea	Leicester	Leicester	West Ham	Leicester	West Ham	Leicester	Aston Villa	United	Arsenal
	(2%)	(5%)	(11%)	(13%)	(15%)	(12%)	(11%)	(11%)	(10%)	(11%)
Actual Standings	Man City	Liverpool	Chelsea	Tottenham	Arsenal	Man United	West Ham	Leicester	Brighton	Wolves

Figure 4: Table of Projected Standings. See [a] for complete table.