Tarea 1 Probabilidad

Victor Tortolero CI:24.569.609

a.1)Demuestre que $A \cap B = B \cap A$

Tenemos $\underbrace{A\cap B}_{L1}=\underbrace{B\cap A}_{L2},$ partiremos de L1 para llegar a L2.

Sea x un elemento cualquiera:

$$x \in (A \cap B) \Leftrightarrow x \in A \land x \in B$$
 Definición de la intersección
$$\Leftrightarrow x \in B \land x \in A$$
 Conmutativa
$$\Leftrightarrow x \in (B \cap A)$$
 Definición de la intersección

 \therefore de L1llegamos a L2aplicando leyes lógicas y propiedades de conjuntos, y por lo tanto queda demostrado que $A\cap B=B\cap A$

a.2)Demuestre que $A \cup B = B \cup A$

Tenemos $\underbrace{A \cup B}_{L1} = \underbrace{B \cup A}_{L2}$, partiremos de L1 para llegar a L2.

Sea x un elemento cualquiera:

$$x \in (A \cup B) \Leftrightarrow x \in A \lor x \in B$$
 Definición de la unión
$$\Leftrightarrow x \in B \lor x \in A$$
 Conmutativa
$$\Leftrightarrow x \in (B \cup A)$$
 Definición de la unión

 \therefore de L1llegamos a L2aplicando leyes lógicas y propiedades de conjuntos, y por lo tanto queda demostrado que $A\cup B=B\cup A$

b.1)Demuestre que $A \cup (B \cup C) = (A \cup B) \cup C$

Tenemos
$$\underbrace{A \cup (B \cup C)}_{L1} = \underbrace{(A \cup B) \cup C}_{L2}$$
, partiremos de $L1$ para llegar a $L2$.

Sea x un elemento cualquiera:

$$x \in (A \cup (B \cup C)) \Leftrightarrow x \in A \lor x \in (B \cup C)$$
 Definición de la unión
$$\Leftrightarrow x \in A \lor (x \in B \lor x \in C)$$
 Definición de la unión
$$\Leftrightarrow (x \in A \lor x \in B) \lor x \in C$$
 Asociatividad
$$\Leftrightarrow x \in (A \cup B) \lor x \in C$$
 Definición de la unión
$$\Leftrightarrow x \in ((A \cup B) \cup C)$$
 Definición de la unión

 \therefore de L1 llegamos a L2 aplicando leyes lógicas y propiedades de conjuntos, y por lo tanto queda demostrado que $A \cup (B \cup C) = (A \cup B) \cup C$