Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика с системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Технологии машинного обучения»

Отчёт по рубежному контролю №1

Выполнил: студент группы РТ5-61Б Мамаев Т.Э. Подпись и дата: Проверил: преподаватель каф. ИУ5 Гапанюк Ю.Е.

Подпись и дата:

Москва, 2023 г.

Вариант 5(Задача 1)

Для заданного набора данных проведите корреляционный анализ. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Сделайте выводы о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель.

Описание датасета

Serial No. - 0 GRE Score - 0

Набор данных содержит несколько параметров, которые считаются важными при подаче заявки на магистерские программы. Параметры:

GRE Scores (out of 340) TOEFL Scores (out of 120) University Rating (out of 5) Statement of Purpose and Letter of Recommendation Strength (out of 5) Undergraduate GPA (out of 10) Research Experience (either 0 or 1) Chance of Admit (ranging from 0 to 1)

```
1)
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
filename = '/Users/kovalenkov/Documents/Бауманка/3 курс/6
cemectp/TMO/Machine learning technologies/Admission Predict.csv'
ds = pd.read csv(filename)
pd.set option('display.max colwidth', None)
pd.set option('display.float format', '{:.2f}'.format)
ds = pd.DataFrame(ds)
ds.head()
   Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \
                                                     4 4.50 4.50 9.65
0
                  337
          1
                                118
1
           2
                   324
                                107
                                                     4 4.00 4.50 8.87
2
          3
                   316
                               104
                                                    3 3.00 3.50 8.00
                                                     3 3.50 2.50 8.67
3
           4
                    322
                                110
                    314
                                103
                                                     2 2.00 3.00 8.21
   Research Chance of Admit
         1
0
                        0.92
1
         1
                        0.76
2
         1
                        0.72
3
         1
                        0.80
         0
                        0.65
# размер датасета
ds.shape
(400, 9)
# проверим наличие пустых значений
for col in ds.columns:
   temp_null_count = ds[ds[col].isnull()].shape[0]
   print('{} - {}'.format(col, temp null count))
```

```
TOEFL Score - 0
University Rating - 0
SOP - 0
LOR - 0
CGPA - 0
Research - 0
Chance of Admit - 0
```

Датасет не имеет пустых значений

Основные статистические характеристки набора данных ds.describe()

	Serial No.	GRE Score	TOEFL Score	University	Rating	SOP	LOR	\
count	400.00	400.00	400.00	_	400.00	400.00	400.00	
mean	200.50	316.81	107.41		3.09	3.40	3.45	
std	115.61	11.47	6.07		1.14	1.01	0.90	
min	1.00	290.00	92.00		1.00	1.00	1.00	
25%	100.75	308.00	103.00		2.00	2.50	3.00	
50%	200.50	317.00	107.00		3.00	3.50	3.50	
75%	300.25	325.00	112.00		4.00	4.00	4.00	
max	400.00	340.00	120.00		5.00	5.00	5.00	
	CGPA Rese	arch Chanc	e of Admit					

	CGPA	Kesearch	Chance	0†	Admit
count	400.00	400.00			400.00
mean	8.60	0.55			0.72
std	0.60	0.50			0.14
min	6.80	0.00			0.34
25%	8.17	0.00			0.64
50%	8.61	1.00			0.73
75%	9.06	1.00			0.83
max	9.92	1.00			0.97

уникальные значения для целевого признака ds['Chance of Admit '].unique()

```
array([0.92, 0.76, 0.72, 0.8, 0.65, 0.9, 0.75, 0.68, 0.5, 0.45, 0.52, 0.84, 0.78, 0.62, 0.61, 0.54, 0.66, 0.63, 0.64, 0.7, 0.94, 0.95, 0.97, 0.44, 0.46, 0.74, 0.91, 0.88, 0.58, 0.48, 0.49, 0.53, 0.87, 0.86, 0.89, 0.82, 0.56, 0.36, 0.42, 0.47, 0.55, 0.57, 0.96, 0.93, 0.38, 0.34, 0.79, 0.71, 0.69, 0.59, 0.85, 0.77, 0.81, 0.83, 0.67, 0.73, 0.6, 0.43, 0.51, 0.39])
```

Joinplot

```
sns.jointplot(x='TOEFL Score', y='CGPA', data=ds)
```

<seaborn.axisgrid.JointGrid at 0x126db8a30>

sns.jointplot(x='TOEFL Score', y='CGPA', data=ds, kind="kde")
<seaborn.axisgrid.JointGrid at 0x126dc7580>

sns.histplot(ds['CGPA'], kde=True)

<AxesSubplot:xlabel='CGPA', ylabel='Count'>

sns.boxplot(x=ds['CGPA'])

<AxesSubplot:xlabel='CGPA'>

sns.jointplot(x='TOEFL Score', y='CGPA', data=ds, kind="hex")
<seaborn.axisgrid.JointGrid at 0x1290cd2e0>

Koppeляционный анализ ds.corr()

	Seria	al No.	GRE S	Score 7	TOEFL	Score	Un	iversity	Rating	\
Serial No.		1.00	-	-0.10		-0.15			-0.17	
GRE Score		-0.10		1.00		0.84			0.67	
TOEFL Score		-0.15		0.84		1.00			0.70	
University Rating		-0.17		0.67		0.70			1.00	
SOP		-0.17		0.61		0.66			0.73	
LOR		-0.09		0.56		0.57			0.66	
CGPA		-0.05		0.83		0.83			0.75	
Research		-0.06		0.58		0.49			0.45	
Chance of Admit		0.04		0.80		0.79			0.71	
	SOP	LOR	CGPA	Resear	rch (Chance	of A	Admit		
Serial No.	-0.17	-0.09	-0.05	-0.	.06			0.04		
GRE Score	0.61	0.56	0.83	0.	.58			0.80		
TOEFL Score	0.66	0.57	0.83	0.	.49			0.79		
University Rating	0.73	0.66	0.75	0.	.45			0.71		
SOP	1.00	0.73	0.72	0.	.44			0.68		
LOR	0.73	1.00	0.67	0.	.40			0.67		
CGPA	0.72	0.67	1.00	0.	.52			0.87		

Research	0.44	0.40	0.52	1.00	0.55
Chance of Admit	0.68	0.67	0.87	0.55	1.00

На основе корреляционной матрицы можно сделать следующие выводы:

- 1. Целевой признак наиболее сильно коррелирует с признаками CGPA(0,87), GRE Score(0,80), TOEFL Score(0,79). Эти признаки должны остаться в модели.
- 2. Целевой признак коррелирует с признаком Research(0,55) слабее всего, но его также следует оставить.
- 3. Serial no. стоит исключить из построения модели, так это просто номер по списку.
- 4. Все признаки хорошо коррелируются(кроме Serial no.) с целевым признаком, все признаки будут влиять на модель обучения.