

第十一讲 垂心与欧拉线

例1. $\triangle ABC$ 的三条高分别是 $AD \setminus BE \setminus CF$. $\triangle AEF \setminus \triangle BDF \setminus \triangle CDE$ 的垂心分别为 $P \setminus Q \setminus R$. 求证: $\triangle PQR \cong \triangle DEF$.

证明:设 ABC 垂心为 H,则 HFQD与 HERD 均为平行四边形.从而 $FQ/\!\!/HD/\!\!/ER$,且 FQ=HD=ER,故 EFQR 为平行四边形,从而 EF=QR,同理 DF=PR, DE=PQ .从而 $\triangle POR \cong \triangle DEF$.

例2. 如图, $\triangle ABC$ 中,AB < AC,AD为 BC 边上的高. P为 AD 上一点,满足 $\angle ABP = \angle ACP$. 求证: P 是 $\triangle ABC$ 的垂心.

证明:作B关于D的对称点B',则B'在DC上,且ACB'P四点共圆.则 $\angle PAC = \angle PB'B = \angle PBB'$,结合 $PA \perp BC$,易知 $PB \perp AC$.故P是 $\triangle ABC$ 的垂心.

例3. 设 $A_1A_2A_3A_4$ 为圆O的内接四边形, H_1 、 H_2 、 H_3 、 H_4 依次为 $\triangle A_2A_3A_4$ 、 $\triangle A_3A_4A_1$ 、 $\triangle A_4A_1A_2$ 、 $\triangle A_1A_2A_3$ 的垂心.求证: H_1 、 H_2 、 H_3 、 H_4 四点共圆,并请指出该圆的圆心位置.

证明: 连 A_2H_1 , A_1H_2 , 取 A_3A_4 的中点 M, 连 OM. 由常用结论知 $A_2H_1/\!\!/OM$, $A_2H_1=2OM$, $A_1H_2/\!\!/OM$, $A_1H_2=2OM$, 从而 $H_1H_2A_1A_2$ 是平行四边形,故 $H_1H_2/\!\!/A_1A_2$, $H_1H_2=A_1A_2$. 同理可知, $H_2H_3/\!\!/A_2A_3$, $H_2H_3=A_2A_3$;

 $H_3H_4//A_3A_4$, $H_3H_4=A_3A_4$; $H_4H_1//A_4A_1$, $H_4H_1=A_4A_1$.

从而易知 $A_1H_1, A_2H_2, A_3H_3, A_4H_4$ 相互平分,从而 $A_1A_2A_3A_4$ 与 $H_1H_2H_3H_4$

中心对称,由四边形 $A_1A_2A_3A_4$ 有外接圆知,四边形 $H_1H_2H_3H_4$ 也有外接圆.

取 H_3H_4 的中点 M_1 ,作 $M_1O_1 \perp H_3H_4$,且 $M_1O_1 = MO$,则点 O_1 即为四边形 $H_1H_2H_3H_4$ 的外接圆圆心.

例4. $\triangle ABC$ 中,O为外心,三条高 AD、BE、CF 交于点 H,直线 ED 和 AB 交于点 M,FD 和 AC 交于点 N. 求证: (1) $OB \bot DF$, $OC \bot DE$; (2) $OH \bot MN$.

证明: (1) 由 $\angle AFC = \angle ADC = 90^{\circ}$ 得 AFDC 共圆,

于是
$$\angle BFD + \angle OBF = \angle ACB + (90^{\circ} - \frac{1}{2}\angle AOB) =$$

 $\angle ACB + (90^{\circ} - \angle ACB) = 90^{\circ}$

故 $OB \perp DF$,同理 $OC \perp DE$;

(2) 由九点圆性质知 $\triangle DEF$ 外心为 OH 中点 V.

由 ABDE 共圆, 得: $MD \cdot ME = MB \cdot MA$,

故M在圆V与圆O的根轴上;

同理N在圆V与圆O的根轴上;

由根轴与连心线垂直,得: MN LOV

例5. 如图,锐角 $\triangle ABC$ 的垂心为H,BC、CA、AB 边的中点分别为D、E、F.以D为圆心,DH为半径 的圆交 BC 于 A_1,A_2 . 类似的,我们得到 B_1,B_2,C_1,C_2 . 求证: A_1,A_2,B_1,B_2,C_1,C_2 六点共圆.

证明: 取 AH 中点 P,则 PH // OD (都与 BC 垂直),

$$PH = \frac{1}{2}AH = OD$$
,故 $PHDO$ 为平行四边形;

:考虑到平行四边形四条边的平方和等于对角线平方和, 有
$$OA_1^2 = OD^2 + DA_1^2 = OD^2 + DH^2 = \frac{PD^2 + OH^2}{2} = \frac{AO^2 + OH^2}{2}$$
 定值,故 $A_1, A_2, B_1, B_2, C_1, C_2$ 六点共圆

例6. 如图, 在 $\triangle ABC$ 中, H 为垂心, M 为 BC 中点. 连结 MH, 过 H 点作 MH 的垂线, 分别交 $AB \setminus AC$ 于点 $E \setminus F$. 证明: HE = HF.

证明:延长 HM 与外接圆交于 D,则 HBDC 为平行四边形 而 H、E、B、D 共圆, H、F、C、D 共圆,

$$\boxplus \angle HED = \angle HBD = \angle HCD = \angle HFD$$

故 HE = HF .

