

Arduino Workshop #1

"Στόχος του εργαστηρίου είναι η εξοικείωση και εκμάθηση της πλακέτας Arduino. Στο εργαστήριο αυτό θα υλοποιηθεί ένα απλό σύστημα, με έναν αισθητήρα εισόδου και 3 εξόδους".

Θεωρία

Συνδεσμολογία του breadboard

- Οριζόντιες συνδέσεις
- Κατακόρυφες συνδέσεις

Αισθητήρες

Υπάρχουν πολλών ειδών αισθητήρες πχ. ψηφιακοί, αναλογικοί κτλ

- Ψηφιακοί σημαίνει 0 ή 1 (LOW ή HIGH)
- Αναλογικοί σημαίνει 0 μέχρι 255

Θα χρησιμοποιήσουμε μόνο ψηφιακούς αισθητήρες δηλαδή θα παίξουμε μόνο με 0 ή 1 (LOW ή HIGH).

Εντολές στην Wiring/C

#define button 3	Κάνει match τον αριθμό 3 με το button. Όπου γράφει button εννοούμε 3.					
Serial.begin(9600);	Ξεκινάει την διαδικασία για εκτύπωση κειμένου στην οθόνη (διευκολύνει συνήθως τον Programmer).					
pinMode(button, INPUT); pinMode(led, OUTPUT)	Το πρώτο όρισμα είναι κατι που έχουμε κανει define και το δεύτερο είναι αν είναι INPUT ή OUTPUT.					
Serial.println("Hello there");	Εκτυπώνει το μήνυμα "Hello there"					
digitalWrite(led, HIGH); digitalWrite(led, LOW);	Στο led δίνουμε 0 ή 1 (LOW ή HIGH) και στην ουσία δίνουμε 5V ή 0V άρα ανάβουμε/σβήνουμε το led.					
digitalRead(button);	Διαβάζουμε την κατάσταση του button. Αν είναι πατημένο θο μας δώσει LOW αλλιώς HIGH.					

```
// Do something
}else if(condition2) {
   // Do something else
}else {
   // Do something else else
}
```

Κώδικας του Arduino

Η γλώσσα λέγεται Wiring αλλά μπορείτε να χρησιμοποιήστε οτιδήποτε υπάρχει στην C.

Example:

```
int led = 13; // OR #define led 13 what' s the difference?
// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
// the loop routine runs over and over again forever:
void loop() {
  digitalWrite(led, HIGH); // turn the LED on (HIGH is the
voltage level)
                            // wait for a second
  delay(1000);
 digitalWrite(led, LOW); // turn the LED off by making
the voltage LOW
                            // wait for a second
 delay(1000);
}
```

So, τι κάνει το παραπάνω πρόγραμμα;

Hardware

			Arduino Nano V 3.0 GRBL Pinout			Pin diagram for Grbl v0.8 and v0.9				
				14.3	ATme	ga 328P				
Pinout Ref									Pinout Ref	
D13	Spidle	Direction	D13	(3		D12	Spindle	Enable	D12	
3V3	Not	Used	3V3	1.8		D11	Limit	Z-Axis	D11	
VREF	Not	Used	VREF	5983	vsn s	D10	Limit	Y-Axis	D10	
A0	Reset/	Abort	A0	4 2 11		D9	Limit	X-Axis	D9	
A1	Feed	Hold	A1	(E) 2	200	D8	Stepper Enable/Disable		D8	
A2	Cycle Star/	Resume	A2	(B)	. 90	D7	Direction	Z Axis	D7	
A3	Coolant	Enable	A3	198	9	D6	Direction	Y Axis	D6	
A4	(Not Used/	Reserve)	A4	(0.3)	o tell g	D5	Direction	X Axis	D5	
A5	Probe		A5	5 5	1 2 2 1	D4	Step Pulse	Z Axis	D4	
A6	Not	Used	A6	9 2 18	8 - Bo 6 1	D3	Step Pulse	Y Axis	D3	
A7	Not	Used	A7	100	10 and	D2	Step Pulse	X Axis	D2	
			5V	ET ama	XB XIZ	GND				
			RST	S 9.	EU SPEUITI	RST				
			GND	ON TONI	MAIN ARDIN	RX1				
			VIN	(C)		TX1				
							aditional layout: (NOTE: The probe A5 pin is only available			

Let the workshop begin...

Good luck:)

Μέρος 1

Υλοποιήστε το παρακάτω sketch

και απο το Arduino IDE πηγαίντε στο *Files>Examples>01.Basics>Blink* και ανεβάστε το στο Arduino. Ελέγξτε αν δουλεύει σωστά! Τι θα έπρεπε να κάνει;

Μέρος 2

Προσθέστε στο παραπάνω σύστημα άλλα δύο LED με άλλες δύο αντιστάσεις μια για κάθε LED. Κάθε ένα απο τα LED θα πρέπει να είναι συνδεδεμένο σε ένα digital pin στο Arduino (ελεύθερες επιλογές απο το 2 μέχρι και 13). Το sketch είναι το ακόλουθο

ως αποτέλεσμα θα πρέπει να κάνουν blink και τα 3 LED μαζί.

Μέρος 3

Πάμε τώρα να δούμε πως μπορούμε να ελέγξουμε κάθε ένα LED ξεχωριστά. Θα πρέπει βάση του παρακάτω σχήματος να γίνει ανεξάρτητος έλεγχος στα LED και να ανάβει το πρώτο για 2 sec, έπειτα αφού σβήνει να ανάψει το δεύτερο για 4 sec και τέλος αφού σβήσει και αυτό να ανάψει το τρίτο για 6 sec.

Μέρος 4

Αφήνουμε το σύστημα στην άκρη χωρίς να το βγάλουμε απο το breadboard. Τώρα δημιουργήστε ένα νέο αρχείο χωρίς να κλείσετε το παλιό και συνδέστε τον αισθητήρα απόστασης όπως φαίνεται στο σχήμα παρακάτω. Αφού τον συνδέσετε πρέπει να ανεβάσετε κάποιον κώδικα. Πόσο εύκολο είναι;

fritzing

Για το κουμπάκι ακολουθήστε το παρακάτω schema

Μέρος 5

Στο τελευταίο βήμα θα πρέπει να συνδυάσετε τα δύο παραπάνω project έτσι ώστε σύμφωνα με την απόσταση να ανάβουν συγκεκριμένα led. Δηλαδή

- 1. αν η απόσταση είναι απο 1cm μέχρι και 10cm να ανάβουν όλα τα LED
- 2. αν είναι από 10cm έως και 20cm να ανάβουν δύο LED
- 3. αν είναι απο 20cm έως και 30cm να ανάβει ένα led
- 4. αλλιώς να μην ανάβει κανένα.

Bonus

Η ομάδα που θα τελειώσει πρώτη θα χρησιμοποιήσει και ένα buzzer που θα ηχεί όλο και πιο γρήγορα ανάλογα με την απόσταση προσομοιώνοντας έτσι το parking σύστημα ενός αυτοκινήτου.