$12n_{0240} (K12n_{0240})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{45} + u^{44} + \dots + b + 2u, -2u^{45} + 2u^{44} + \dots + a + 8u, u^{46} - 2u^{45} + \dots + u + 1 \rangle$$

$$I_2^u = \langle u^3 + b - u + 1, u^6 - 3u^4 + 2u^2 + a + 1, u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 54 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -u^{45} + u^{44} + \dots + b + 2u, -2u^{45} + 2u^{44} + \dots + a + 8u, u^{46} - 2u^{45} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u\\-u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2u^{45} - 2u^{44} + \dots + 10u^{2} - 8u\\u^{45} - u^{44} + \dots + 5u^{2} - 2u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1\\-u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 4u^{45} - 4u^{44} + \dots - 10u - 1\\u^{45} - u^{44} + \dots + 4u^{2} - 3u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} - 2u\\-u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} - 2u^{3} + u\\u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{12} + 5u^{10} - 9u^{8} + 6u^{6} - u^{2} + 1\\-u^{14} + 6u^{12} - 13u^{10} + 10u^{8} + 2u^{6} - 4u^{4} - u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{45} - u^{44} + \dots - 8u + 1\\u^{45} - u^{44} + \dots + 5u^{2} - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{13} - 6u^{11} + 13u^{9} - 10u^{7} - 2u^{5} + 4u^{3} + u\\-u^{13} + 5u^{11} - 9u^{9} + 6u^{7} - u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-3u^{45} + 56u^{43} + \cdots 5u 1$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{46} + 11u^{45} + \dots + 25u + 1$
c_2, c_4	$u^{46} - 9u^{45} + \dots - 9u + 1$
c_3, c_8	$u^{46} + u^{45} + \dots + 1152u + 256$
<i>C</i> ₅	$u^{46} - 2u^{45} + \dots + 2660u + 1960$
c_6, c_7, c_{11}	$u^{46} + 2u^{45} + \dots - u + 1$
c_9	$u^{46} + 2u^{45} + \dots + 7u + 1$
c_{10}, c_{12}	$u^{46} - 6u^{45} + \dots - 73u + 17$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{46} + 57y^{45} + \dots - 21y + 1$
c_2, c_4	$y^{46} - 11y^{45} + \dots - 25y + 1$
c_{3}, c_{8}	$y^{46} - 51y^{45} + \dots - 1490944y + 65536$
c_5	$y^{46} + 18y^{45} + \dots - 21367920y + 3841600$
c_6, c_7, c_{11}	$y^{46} - 38y^{45} + \dots - 17y + 1$
c_9	$y^{46} + 54y^{45} + \dots - 17y + 1$
c_{10}, c_{12}	$y^{46} + 34y^{45} + \dots - 5737y + 289$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.088878 + 0.844041I		
a = 3.37742 - 1.22551I	11.39320 + 1.80249I	-2.43037 - 0.91952I
b = -2.98228 + 0.61868I		
u = -0.088878 - 0.844041I		
a = 3.37742 + 1.22551I	11.39320 - 1.80249I	-2.43037 + 0.91952I
b = -2.98228 - 0.61868I		
u = -0.116026 + 0.837306I		
a = -3.46305 + 1.35399I	10.46260 + 9.14915I	-3.66280 - 5.53840I
b = 3.14660 - 0.77902I		
u = -0.116026 - 0.837306I		
a = -3.46305 - 1.35399I	10.46260 - 9.14915I	-3.66280 + 5.53840I
b = 3.14660 + 0.77902I		
u = 1.141830 + 0.219995I		
a = -0.660574 + 0.098342I	-1.38478 - 0.54129I	-5.73844 + 0.I
b = -0.127713 - 0.217138I		
u = 1.141830 - 0.219995I		
a = -0.660574 - 0.098342I	-1.38478 + 0.54129I	-5.73844 + 0.I
b = -0.127713 + 0.217138I		
u = 0.058004 + 0.794656I		
a = 1.48803 - 0.66681I	3.97447 - 2.81253I	-2.78364 + 4.01547I
b = -1.176270 + 0.234722I		
u = 0.058004 - 0.794656I		
a = 1.48803 + 0.66681I	3.97447 + 2.81253I	-2.78364 - 4.01547I
b = -1.176270 - 0.234722I		
u = -1.139460 + 0.393221I		
a = -1.60826 + 1.63861I	7.33193 - 4.71190I	-6.52326 + 0.I
b = 2.48711 + 1.35446I		
u = -1.139460 - 0.393221I		
a = -1.60826 - 1.63861I	7.33193 + 4.71190I	-6.52326 + 0.I
b = 2.48711 - 1.35446I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.175260 + 0.396885I		
a = 1.58950 - 1.52874I	8.06092 + 2.65955I	0
b = -2.60724 - 1.21777I		
u = -1.175260 - 0.396885I		
a = 1.58950 + 1.52874I	8.06092 - 2.65955I	0
b = -2.60724 + 1.21777I		
u = -0.027447 + 0.752835I		
a = -2.58406 - 0.48560I	1.16885 + 1.15848I	-5.01072 + 0.12391I
b = 1.92495 + 0.96879I		
u = -0.027447 - 0.752835I		
a = -2.58406 + 0.48560I	1.16885 - 1.15848I	-5.01072 - 0.12391I
b = 1.92495 - 0.96879I		
u = 0.135112 + 0.737338I		
a = -0.263549 - 0.833035I	1.53760 - 3.03900I	-1.98360 + 5.04098I
b = 0.030415 + 0.576766I		
u = 0.135112 - 0.737338I		
a = -0.263549 + 0.833035I	1.53760 + 3.03900I	-1.98360 - 5.04098I
b = 0.030415 - 0.576766I		
u = 1.215480 + 0.337571I		
a = 0.103389 + 1.085520I	0.425497 - 1.277230I	0
b = -0.822594 + 0.083089I		
u = 1.215480 - 0.337571I		
a = 0.103389 - 1.085520I	0.425497 + 1.277230I	0
b = -0.822594 - 0.083089I		
u = -1.259210 + 0.309211I		
a = -0.456708 + 1.219730I	-2.63767 + 2.66589I	0
b = 2.37986 - 0.29804I		
u = -1.259210 - 0.309211I		
a = -0.456708 - 1.219730I	-2.63767 - 2.66589I	0
b = 2.37986 + 0.29804I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape	
u = -1.308600 + 0.052486I			
a = 0.039504 + 0.254143I	-5.32887 + 1.91338I	0	
b = 0.45316 - 1.39921I			
u = -1.308600 - 0.052486I			
a = 0.039504 - 0.254143I	-5.32887 - 1.91338I	0	
b = 0.45316 + 1.39921I			
u = 1.31477			
a = 1.61451	-6.82836	-12.1040	
b = 0.0640641			
u = -0.494895 + 0.460674I			
a = 0.357271 - 1.172810I	5.38865 + 5.18412I	-6.71823 - 6.02395I	
b = 0.450500 - 0.532533I			
u = -0.494895 - 0.460674I			
a = 0.357271 + 1.172810I	5.38865 - 5.18412I	-6.71823 + 6.02395I	
b = 0.450500 + 0.532533I			
u = 1.291940 + 0.323151I			
a = -1.15932 - 1.41965I	-2.95162 - 5.04688I	0	
b = 1.49071 - 1.53239I			
u = 1.291940 - 0.323151I			
a = -1.15932 + 1.41965I	-2.95162 + 5.04688I	0	
b = 1.49071 + 1.53239I			
u = -0.418017 + 0.505684I			
a = -0.149306 + 0.739200I	5.63155 - 1.66298I	-5.86083 - 1.14993I	
b = -0.653704 + 0.563087I			
u = -0.418017 - 0.505684I			
a = -0.149306 - 0.739200I	5.63155 + 1.66298I	-5.86083 + 1.14993I	
b = -0.653704 - 0.563087I			
u = -1.307310 + 0.347945I			
a = 0.790380 - 0.475352I	-0.29502 + 6.93232I	0	
b = -1.45484 - 0.59474I			

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.307310 - 0.347945I		
a = 0.790380 + 0.475352I	-0.29502 - 6.93232I	0
b = -1.45484 + 0.59474I		
u = 1.366120 + 0.148240I		
a = -0.533420 - 0.484870I	0.048597 - 0.512586I	0
b = -0.989531 + 0.198012I		
u = 1.366120 - 0.148240I		
a = -0.533420 + 0.484870I	0.048597 + 0.512586I	0
b = -0.989531 - 0.198012I		
u = -1.345150 + 0.312918I		
a = 0.253414 + 0.362467I	-3.12507 + 6.85143I	0
b = 0.191334 - 0.810458I		
u = -1.345150 - 0.312918I		
a = 0.253414 - 0.362467I	-3.12507 - 6.85143I	0
b = 0.191334 + 0.810458I		
u = 1.329650 + 0.375534I		
a = 0.49137 + 2.28669I	6.94740 - 6.18607I	0
b = -3.08691 - 0.08101I		
u = 1.329650 - 0.375534I		
a = 0.49137 - 2.28669I	6.94740 + 6.18607I	0
b = -3.08691 + 0.08101I		
u = -1.38696		
a = -0.181617	-7.20797	0
b = 0.699740		
u = 1.345460 + 0.367374I		
a = -0.43223 - 2.36028I	5.8692 - 13.4842I	0
b = 3.46843 + 0.20726I		
u = 1.345460 - 0.367374I		
a = -0.43223 + 2.36028I	5.8692 + 13.4842I	0
b = 3.46843 - 0.20726I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.390620 + 0.107679I		
a = 0.514855 + 0.841670I	-0.55483 - 6.96949I	0
b = 0.807363 - 0.612141I		
u = 1.390620 - 0.107679I		
a = 0.514855 - 0.841670I	-0.55483 + 6.96949I	0
b = 0.807363 + 0.612141I		
u = 0.582853		
a = -0.782593	-1.21098	-7.83090
b = 0.178233		
u = 0.282232 + 0.263140I		
a = -0.99274 - 1.11009I	-0.549820 - 0.931505I	-8.30910 + 7.33237I
b = 0.157868 + 0.383616I		
u = 0.282232 - 0.263140I		
a = -0.99274 + 1.11009I	-0.549820 + 0.931505I	-8.30910 - 7.33237I
b = 0.157868 - 0.383616I		
u = -0.263046		
a = 2.94586	-2.04174	0.290920
b = 0.883552		

$$II. \\ I_2^u = \langle u^3 + b - u + 1, \ u^6 - 3u^4 + 2u^2 + a + 1, \ u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{6} + 3u^{4} - 2u^{2} - 1 \\ -u^{3} + u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{6} + 3u^{4} - 2u^{2} - 1 \\ -u^{3} + u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + 2u \\ u^{3} - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{6} + 3u^{4} + u^{3} - 2u^{2} - 2u - 1 \\ -2u^{3} + 2u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^7 6u^6 + 2u^5 + 16u^4 5u^3 9u^2 + 8u 21$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^{8}$
c_3, c_8	u^8
C_4	$(u+1)^8$
c_5, c_9	$u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1$
c_{6}, c_{7}	$u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1$
c_{10}, c_{12}	$u^8 + 3u^7 + 7u^6 + 10u^5 + 11u^4 + 10u^3 + 6u^2 + 4u + 1$
c_{11}	$u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^8$
c_3, c_8	y^8
c_{5}, c_{9}	$y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1$
c_6, c_7, c_{11}	$y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1$
c_{10}, c_{12}	$y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.180120 + 0.268597I		
a = -0.325934 + 0.693334I	-2.68559 - 1.13123I	-10.92586 + 0.21647I
b = -1.20799 - 0.83423I		
u = 1.180120 - 0.268597I		
a = -0.325934 - 0.693334I	-2.68559 + 1.13123I	-10.92586 - 0.21647I
b = -1.20799 + 0.83423I		
u = 0.108090 + 0.747508I		
a = 1.03462 - 0.99451I	0.51448 - 2.57849I	-8.77377 + 3.25417I
b = -0.711982 + 1.138990I		
u = 0.108090 - 0.747508I		
a = 1.03462 + 0.99451I	0.51448 + 2.57849I	-8.77377 - 3.25417I
b = -0.711982 - 1.138990I		
u = -1.37100		
a = -0.801005	-8.14766	-19.8990
b = 0.205997		
u = -1.334530 + 0.318930I		
a = 0.842429 - 0.289836I	-4.02461 + 6.44354I	-14.3478 - 4.5473I
b = -0.365014 - 1.352640I		
u = -1.334530 - 0.318930I		
a = 0.842429 + 0.289836I	-4.02461 - 6.44354I	-14.3478 + 4.5473I
b = -0.365014 + 1.352640I		
u = 0.463640		
a = -1.30123	-2.48997	-19.0060
b = -0.636025		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^8)(u^{46}+11u^{45}+\cdots+25u+1)$
c_2	$((u-1)^8)(u^{46} - 9u^{45} + \dots - 9u + 1)$
c_3, c_8	$u^8(u^{46} + u^{45} + \dots + 1152u + 256)$
c_4	$((u+1)^8)(u^{46} - 9u^{45} + \dots - 9u + 1)$
c_5	$(u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1)$ $\cdot (u^{46} - 2u^{45} + \dots + 2660u + 1960)$
c_6, c_7	$ \left (u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1)(u^{46} + 2u^{45} + \dots - u + 1) \right $
<i>C</i> 9	$(u^8 - u^7 + \dots + 2u - 1)(u^{46} + 2u^{45} + \dots + 7u + 1)$
c_{10}, c_{12}	$(u^{8} + 3u^{7} + 7u^{6} + 10u^{5} + 11u^{4} + 10u^{3} + 6u^{2} + 4u + 1)$ $\cdot (u^{46} - 6u^{45} + \dots - 73u + 17)$
c_{11}	$ (u8 - u7 - 3u6 + 2u5 + 3u4 - 2u - 1)(u46 + 2u45 + \dots - u + 1) $

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^8)(y^{46} + 57y^{45} + \dots - 21y + 1)$
c_2, c_4	$((y-1)^8)(y^{46}-11y^{45}+\cdots-25y+1)$
c_{3}, c_{8}	$y^8(y^{46} - 51y^{45} + \dots - 1490944y + 65536)$
c_5	$(y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1)$ $\cdot (y^{46} + 18y^{45} + \dots - 21367920y + 3841600)$
c_6, c_7, c_{11}	$(y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1)$ $\cdot (y^{46} - 38y^{45} + \dots - 17y + 1)$
c_9	$(y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1)$ $\cdot (y^{46} + 54y^{45} + \dots - 17y + 1)$
c_{10}, c_{12}	$(y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1)$ $\cdot (y^{46} + 34y^{45} + \dots - 5737y + 289)$