TopAL - Tópicos de Álgebra Linear Lista 5

- 1. Seja V um espaço vetorial com produto interno. Mostre que
 - (i) $\langle 0, u \rangle = 0$ para todo $u \in V$;
 - (ii) se $\langle v, u \rangle = 0$ para todo $u \in V$, então v = 0.
- 2. Mostre que se $\langle \cdot, \cdot \rangle_i, \, i=1,\dots,n$ são produtos internos, então

$$\langle v, u \rangle = \sum_{i=1}^{n} \alpha_i \langle v, u \rangle_i,$$

onde $\alpha_i \geq 0$, i = 1, ..., n, ao menos um deles não-nulo.

3. Mostrar a regra do paralelogramo, que diz que a norma é induzida pelo produto interno se, e se somente se,

$$||v + u||^2 + ||v - u||^2 = 2 ||v||^2 + 2 ||u||^2$$
.

4. Considere o espaço das funções contínus em [a, b], com norma

$$||f|| = \max_{x \in [a,b]} |f(x)|.$$

Prove ou dê um contra-exemplo para a afirmação de que essa norma provém de um produto interno.

5. Seja V o espaço dos polinômios de grau menor ou igual a 2, definidos no intervalo [-1,1], com produto interno

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x) dx.$$

Considere as bases $\alpha = \{1, x, x^2\}$ e $\beta = \{1, x, \frac{1}{2}(3x^2 - 1)\}$. Encontre a matriz do produto interno nas bases $\alpha \in \beta$.

6. Seja V o espaço dos polinômios de grau menor ou igual a 2, definidos no intervalo [-1,1], com produto interno

$$\langle p, q \rangle = \int_{-1}^{1} \frac{p(x)q(x)}{\sqrt{1-x^2}} dx.$$

Considere as bases $\alpha = \{1, x, x^2\}$ e $\beta = \{1, x, 2x^2 - 1\}$. Encontre a matriz do produto interno nas bases $\alpha \in \beta$.

- 7. Considere a base $\{(1,0,1),(2,1,-1),(-1,1,0)\}$ do \mathbb{R}^3 . Encontre uma base ortogonal a partir dessa base, usando o processo de Gram-Schmidt.
- 8. Considere o espaço das funções contínuas definidas no intervalo $[-\pi,\pi]$, com produto interno

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx.$$

Verifique que o conjunto $\{1, s_1, c_1, s_2, c_2, \dots\}$ é ortogonal, onde

$$s_n(t) = \sin(nt)$$
 e $c_n(t) = \cos(nt)$.

1

9. Considere o espaço das matrizes 2×2 com produto interno

$$\langle A, B \rangle = \operatorname{tr}(B^t A).$$

Encontre uma base ortogonal a partir da base

$$\left\{ \left[\begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array}\right], \left[\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right], \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right] \right\}.$$

10. Seja V espaço de dimensão finita com produto interno e seja $\{v_1, \ldots, v_n\}$ base ortonormal de V. Mostre que

$$\langle v, u \rangle = \sum_{k=1}^{n} \langle v, v_k \rangle \overline{\langle u, v_k \rangle}.$$

11. Verifique as identidades de polarização:

Re
$$\langle v, u \rangle = \frac{1}{4} (\|v + u\|^2 - \|v - u\|^2)$$

Im $\langle v, u \rangle = \frac{1}{4} (\|v + iu\|^2 - \|v - iu\|^2)$

- 12. Seja $S \subset V$. Mostre que $[S] \subset (S^{\perp})^{\perp}$, e que se V tem dimensão finita, então $[S] = (S^{\perp})^{\perp}$.
- 13. Seja V o espaço real com produto interno das funções contínuas, definidas no intervalo [-1,1], com o produto interno

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt.$$

Seja W o subespaço das funções ímpares. Encontre W^{\perp} .

- 14. Seja V espaço vetorial de dimensão finita e T operador linear sobre V. Mostre que, se T é inversível, então T^* é inversível e $(T^*)^{-1} = (T^{-1})^*$.
- 15. Seja V um espaço com produto interno e ξ e η vetores fixos em V. Mostre que $Tv = \langle v, \xi \rangle \eta$ define um operador linear sobre V. Mostre que T possui um adjunto e encontre o adjunto explicitamente.
- 16. Seja V o espaço das funções infinitamente continuamente diferenciáveis no intervalo [a, b] tais que f(a) = f(b), com produto interno

2

$$\langle f, g \rangle = \int_{a}^{b} f(t)g(t)dt.$$

Seja T o operador linear Tf = f'. Encontre o operador adjunto de T.