3.
$$A_x = \sum A_i \cos \theta_i$$
 en $A_y = \sum A_i \sin \theta_i$ $tg\theta = \frac{A_y}{A_x}$ en $A = \sqrt{A_x^2 + A_y^2}$

3.
$$v = v_0 + at$$
 $x - x_0 = v_0 t + \frac{1}{2} a t^2$ $v^2 = v_0^2 + 2a(x - x_0)$

3.
$$y = x \tan \theta_0 - \frac{g}{2v_0^2 \cos^2 \theta_0} x^2$$
 en $x = \frac{v_0^2}{g} \sin(2\theta_0)$

4.
$$\vec{F}_{net} = \frac{d\vec{p}}{dt} = m\vec{a}$$
 met $\vec{p} = m\vec{v}$ 5. $f_s \le \mu_s n$ en $f_k = \mu_k n$

6.
$$W = \int_{\vec{r}_1}^{\vec{r}_2} \vec{F} \cdot d\vec{r}$$
 $P = \frac{dW}{dt} = \vec{F} \cdot \frac{d\vec{r}}{dt} = \vec{F} \cdot \vec{v}$

 $1 \, calorie = 4{,}184 \, J \; ; \; 1 \, elektronvolt = 1 \, eV = 1{,}602 \, 10^{-19} \, J \; ; \; 1 \, kWh = 3{,}6 \, 10^6 \, J$

7.
$$\Delta U_{AB} = -\int_{A}^{B} \vec{F} \cdot d\vec{r}$$
 $K_{2} + U_{2} = K_{1} + U_{1} + W_{n-con}$ $U = \frac{1}{2}kX^{2}$ $\Delta U = mg \Delta y$

9.
$$\vec{r}_{\rm cm} = \frac{\sum m_i \vec{r}_i}{M}$$
 of $\vec{r}_{\rm cm} = \frac{\int \vec{r} \ dm}{M}$ $\vec{P} = \sum m_i \vec{v}_i = M \vec{v}_{\rm MM}$ en $\vec{F}_{\rm net \ extern} = \frac{d\vec{P}}{dt}$

9.
$$V_{1i} - V_{2i} = -(V_{1f} - V_{2f})$$
 $V_{1f} = \frac{m_1 - m_2}{m_1 + m_2} V_{1i} + \frac{2m_2}{m_1 + m_2} V_{2i}$ $V_{2f} = \frac{2m_1}{m_1 + m_2} V_{1i} + \frac{m_2 - m_1}{m_1 + m_2} V_{2i}$

13.
$$m\frac{d^2x}{dt^2} = -kx$$
 $x(t) = A\cos(\omega t + \phi)$ $\omega = \sqrt{k/m}$ $\omega = \sqrt{mgL/I}$

13.
$$m \frac{d^2 x}{dt^2} = -kx - b \frac{dx}{dt}$$
 $x(t) = Ae^{-bt/2m} \cos(\omega t + \phi)$ $\omega = \sqrt{\omega_0^2 - (b/2m)^2}$

13.
$$m\frac{d^2x}{dt^2} = -kx - b\frac{dx}{dt} + F_0 \cos \omega_d t \quad x(t) = A\cos(\omega_d t - \delta)$$

$$A = A(\omega_d) = \frac{F_0}{m\sqrt{(\omega_d^2 - \omega_0^2)^2 + b^2\omega_d^2 / m^2}} \quad \text{tg} \, \delta = \frac{b\omega_d}{m(\omega_d^2 - \omega_0^2)}$$

$$Q = \omega_0 \frac{E_{tot}}{\overline{P}} = \frac{m\omega_0}{b} = \frac{\omega_0}{\Delta\omega} \quad \frac{mec. \quad x \quad v \quad m \quad b \quad k}{elek. \quad q \quad l \quad L \quad R \quad 1/C}$$

14.
$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2} \quad y(x,t) = A\cos(kx \mp \omega t) \quad k = \frac{2\pi}{\lambda} \quad \omega = \frac{2\pi}{T} \quad v = \lambda f = \frac{\lambda}{T} = \frac{\omega}{k}$$

14.
$$V = \sqrt{\frac{F}{\mu}}$$
 $v = \sqrt{\frac{\gamma p}{\rho}}$ $f' = f\left(\frac{v + u_W}{v - u_B}\right)$ $f' = f\sqrt{\frac{c + u}{c - u}} \approx f(1 + \frac{u}{c})$

Thin ring or hollow cylinder about its axis $I = MR^2$

Solid sphere about diameter $L = \frac{2}{3}MR^2$

Flat plate about perpendicular axis $I = \frac{1}{12}M(a^2 + b^2)$

Disk or solid cylinder about its axis $I = \frac{1}{2} MR^2$

Hollow spherical shell about diameter $I = \frac{2}{3} MR^2$

© 2012 Pearson Education, Inc

Linear Quantity or Equation	Angular Quantity or Equation	Relation Between Linear and Angular Quantities
Position x	Angular position θ	
Speed $v = dx/dt$	Angular speed $\omega = d\theta/dt$	$v = \omega r$
Acceleration a	Angular acceleration α	$a_t = \alpha r$
Mass m	Rotational inertia I	$I = \int r^2 dm$
Force F	Torque τ	$\tau = rF\sin\theta$
Kinetic energy $K_{\text{trans}} = \frac{1}{2}mv^2$	Kinetic energy $K_{\text{rot}} = \frac{1}{2}I\omega^2$	
Newton's second law (constant	mass or rotational inertia):	1 1 1 1/42
F = ma	$ au = I \alpha$	$I = I_{\rm cm} + Md^2$
0.2012 Premion Education, Inc. $\vec{p}=m\vec{v}$	$\vec{L} = I\vec{\omega}$	$\vec{L} = \vec{r} \times \vec{p}$
,	= − 1₩	
≓ _dp	_≠ _ dL	$\vec{\tau} = \vec{r} \times \vec{F}$
$\vec{F}_{net} = \frac{d\vec{p}}{dt}$	$\vec{\tau} = \frac{d\vec{L}}{dt}$	$\tau = r \times F$
$\vec{p} = m \vec{v} = cte$	$\vec{L} = I \vec{\omega} = c^{te}$	

29.
$$\vec{E}(x,t) = E_{p} \sin(kx - \omega t) \hat{j}$$
 $\vec{B}(x,t) = B_{p} \sin(kx - \omega t) \hat{k}$

$$\frac{\partial^{2} E}{\partial x^{2}} = \varepsilon_{0} \mu_{0} \frac{\partial^{2} E}{\partial t^{2}} \quad V = \frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}} = \frac{\omega}{k} = \lambda f \quad E = cB \quad \vec{V} = \frac{\vec{E} \times \vec{B}}{B^{2}}$$

$$V = \frac{1}{\sqrt{\varepsilon \mu}} = \frac{1}{\sqrt{\varepsilon_{r} \mu_{r}}} c \quad of \quad \frac{c}{V} = \sqrt{\varepsilon_{r} \mu_{r}} = n \quad S_{uit} = S_{0} \cos^{2} \alpha$$

30.
$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
 $\tan \theta_p = \frac{n_2}{n_1}$ $\sin \theta_c = \frac{n_2}{n_1}$ $n = A + \frac{B}{\lambda^2}$ $\frac{\tau}{L} = \frac{t_{\text{max}} - t_{\text{min}}}{L} = \frac{n_k}{c} \left(\frac{n_k}{n_r} - 1 \right)$

31.
$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$
 $M = \frac{h'}{h} = -\frac{s'}{s}$ $f = \frac{R}{2}$ $\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$
 $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$ $P = \frac{1}{f}$ $m = \frac{\beta}{\alpha}$ $m \approx -\frac{L}{f_2}\left(\frac{25 \text{ cm}}{f_2}\right)$ $m = \frac{fo}{fe}$

32.
$$\Delta \phi = k \Delta x = \frac{2\pi}{\lambda} \Delta x = \frac{2\pi}{\lambda_{vacuum}} (n \Delta x)$$
 $\lambda = vT = \frac{c}{n}T = \frac{\lambda_{vacuum}}{n}$

32. Meerdere spleten, breedte a, onderlinge afstand d

$$\overline{S} = \overline{S_0} \left[\frac{\sin(\phi/2)}{\phi/2} \right]^2 \left(\frac{\sin \frac{N\Delta\phi}{2}}{\sin \frac{\Delta\phi}{2}} \right)^2 \qquad \phi = \frac{2\pi}{\lambda} a \sin\theta \qquad \Delta\phi = \frac{2\pi}{\lambda} d \sin\theta$$

Interferentie : hoofdmax : $d\sin\theta = m\lambda$ minima : $d\sin\theta' = \frac{m'}{N}\lambda$

Diffractie: minima: $a \sin \theta = m\lambda$

 $\frac{\lambda}{\Delta \lambda} = mN$: Rayleighcriterium en "resolutie"

33.
$$x' = \gamma(x - vt)$$
 $t' = \gamma(t - vx/c^2)$ $u = \frac{u' + v}{1 + uv/c^2}$ $\gamma = \frac{1}{\sqrt{1 - u^2/c^2}}$

33.
$$E = mc^2 = \frac{m_0c^2}{\sqrt{1 - u^2/c^2}} = \gamma m_0c^2$$

34.
$$R(\lambda, T) = \frac{2\pi hc^2}{\lambda^5 (e^{hc/\lambda kT} - 1)}$$
 $P_{\text{blackbody}} = \sigma A T^4$ $\lambda_{\text{peak}} T = 2,898 \text{ mm} \cdot \text{K}$

34.
$$K_{\text{max}} = hf - \phi = hf - hf_0 = eU_s$$
 $p = hf / c = h / \lambda$

34.
$$E_n = -\frac{ke^2}{2a_0} \left(\frac{1}{n^2}\right) = -\frac{13.6 \text{ eV}}{n^2}$$
 $\frac{1}{\lambda} = R_H \left(\frac{1}{n_2^2} - \frac{1}{n_1^2}\right)$ $R_H = \frac{ke^2}{2a_0hc} = 1,097 \times 10^7 \text{m}^{-1}$
 $a_0 = \frac{\hbar^2}{mke^2} = 0,0529 \text{ nm}$ 38. $N = N_0 e^{-\lambda t}$

38.
$${}_{Z}^{A}X + E_{b} \rightarrow Z_{1}^{1}p + (A - Z)_{0}^{1}n$$
 $E_{b} = \{[Zm_{p} + (A - Z)m_{n}] - m_{x}\}c^{2} = \Delta mc^{2}$

Symbool	Omschrijving	Waarde
e	Elementairelading	1,60218 10 ⁻¹⁹ C
с	Lichtsnelheid in vacuum	2,99792458 10 ⁸ m/s
G	Gravitatieconstante	6,6720 10 ⁻¹¹ Nm ² /kg ²
h	Constante van <u>Planck</u>	6,6261 10 ⁻³⁴ Js
N _A	Getal van <u>Avogadro</u>	6,02214 10 ²³ mol ⁻¹
R	Universelegasconstante	8,31441 J/(molK)
k _B	Constante van <u>Boltzmann</u>	1,38054 10 ⁻²³ J/K
σ	Constante van Stefan-Boltzmann	5,67 10 ⁻⁸ W/m ² K ⁴
b	Constante van Wien	2,9 10 ⁻³ mK
m _{0,e}	Rustmassa van het elektron	9,1094 10 ⁻³¹ kg = 0,00055 t
m _{0,n}	Rustmassa van het neutron	1,67493 10 ⁻²⁷ kg = 1,0086 u
m _{0,p}	Rustmassa van het proton	1,67262 10 ⁻²⁷ kg = 1,0073 u
alfa deeltje	Rustmassa van het alfa deeltje	6,6443 10 ⁻²⁷ kg = 4,0015 u
u	Atomaire massaeenheid	1,6605 10 ⁻²⁷ kg = 1 u
H 1,1	Rustmassa van waterstof-1 atoom	1,6734 10 ⁻²⁷ kg = 1,0078 u
He 4,2	Rustmassa van Helium-4 atoom	6,6461 10 ⁻²⁷ kg = 4,0026 u
R _{oo}	Rydbergconstante	1,0974 10 ⁷ m ⁻¹
εο	Permittiviteit van het luchtledige	8,854188 10 ⁻¹² C ² /(Nm ²)
μο	Permeabiliteit van het luchtledige	4π 10 ⁻⁷ Tm/A

Werken met de TI30A:

 $27^{2/3}$: $27 y^{x}(2/3) = 9^{1/2}$ of $9^{0,5}$: $9 \text{ 2nd } y^{x} 2 = Bgsin 0,5$: 0,5 2nd sin

 $6,7 \ 10^8 : 6.7 \ EE \ 8 \pm \qquad \qquad -6,7 \ 10^{-8} : 6.7 \ EE \ 8 \pm \qquad \qquad -6,7 \ 10^{-8} : 6.7 \ EE \ 8 \pm \qquad \qquad -6,7 \ 10^{-8} : 6.7 \ EE \ 8 \pm \qquad \qquad -6,7 \ 10^{-8} : 6.7 \ EE \ 8 \pm \qquad \qquad -6,7 \ 10^{-8} : 6.7 \ EE \ 8 \pm \qquad \qquad -6,7 \ 10^{-8} : 6.7 \ EE \ 8 \pm \qquad \qquad -6,7 \ 10^{-8} : 6.7 \ EE \ 8 \pm \qquad \qquad -6,7 \ 10^{-8} : 6.7 \ EE \ 8 \pm \qquad \qquad -6,7 \ 10^{-8} : 6.7 \ EE \ 8 \pm \qquad \qquad -6,7 \ 10^{-8} : 6.7 \ EE \ 8 \pm \qquad \qquad -6,7 \ 10^{-8} : 6.7 \ EE \ 8 \pm \qquad \qquad -6,7 \ 10^{-8} : 6.7 \ EE \ 8 \pm \qquad \qquad -6,7 \ 10^{-8} : 6.7 \ EE \ 8 \pm \sim -6,7 \ 10^{-8} :$