Exercise 1. Recount the textbook's description of Gaussian elimination.

Exercise 2. Recount the textbook's description of elimination for simultaneous polynomial equations in two (or more) variables.

Exercise 3. The textbook mentions Cramer's rule in passing. Describe Cramer's rule.

Exercise 4 (5.2.1). *Derive an equation that is linear in y from the two equations*

$$x^{2} + xy + y^{2} = 1,$$

$$4x^{2} + 3xy + 2y^{2} = 3,$$

and hence show that $y = (1 - 2x^2)/x$.

Exercise 5 (5.2.2). Deduce that the intersections of the two curves in Exercise 5.2.1 occur where x satisfies $3x^4 - 4x^2 + 1 = 0$.

This example, where the two equations of degree 2 yield a single equation of degree $4(=2\times2)$, illustrates a general phenomenon where degrees are multiplied. We will observe other instances, and study it more deeply, as the book progresses.

The present example is not a typical equation of degree 4, since it is quadratic in $x^2 = z$. However, this makes it a lot easier to solve.

Exercise 6 (5.2.3). Solve $3z^2 - 4z + 1 = 0$ for $z = x^2$ by factorizing the left-hand side, and hence find four solutions for x.

Give geometric reasons why you would expect two curves of degree 2 to have up to four intersections. Could they have more than four?