## Mitochondrial Genome Sequencing for variants identification in cancer



Group 2 - Pink

Elisabetta Callegaro Alice Casata Alessio Gambella Annalisa Xamin

#### **OUR PROPOSAL**

- Efficient **organelle isolation**
- mtDNA extraction and recovery
- Quality Control (size, amount and purity)
- PacBio Sequel IIe NNGS
   (mtDNA denaturation + custom-made primer set)

No library? - No problem!



Fractionated Mitochondria
 Magnetic Separation (FMMS)

- Lysis Buffer
- Phenol-Chloroform Extraction
- RNases and Proteases Treatment



Quality Control
(low-voltage agarose gel
electrophoresis + Qubit + Nanodrop)

 Sequencing on PacBio Sequel IIe platform -Circular Consensus Mode (CCS)



#### WetLab Workflow

- 1. **DNA extraction** (both nuclear and mitochondrial)
- 2. mtDNA amplification
  - a. MITO amplicons
    - gel electrophoresis
  - b. ROI amplicons
    - purification via Agencourt AMPure XP
    - ii. capillary electrophoresis via LabChip GX
- 3. Library preparation
  - a. via Nextera XT kit (MITO)
  - b. addition of adapters via PCR (ROI)
- 4. Library purification and quality control
  - a. purification via Agencourt AMPure XP
  - b. Qubit
  - c. capillary electrophoresis via LabChip GX
- 5. NGS via Illumina MiSeq



Gel electrophoresis of MITO amplicons. The MITO3 band is not visible.

- 1. **DNA extraction** (both nuclear and mitochondrial)
- 2. mtDNA amplification
  - a. MITO amplicons
    - i. gel electrophoresis
  - b. ROI amplicons
    - . purification via Agencourt AMPure XP
    - ii. capillary electrophoresis via LabChip GX
- 3. **Library preparation** 
  - a. via Nextera XT kit (MITO)
  - b. addition of adapters via PCR (ROI)
- 4. Library purification and quality control
  - a. purification via Agencourt AMPure XP
  - b. Qubit
  - c. capillary electrophoresis via LabChip GX
- 5. NGS via Illumina MiSeq



Results of capillary electrophoresis of the ROI amplicons. The control bands (without DNA template) are shorter in length and not purified.

- 1. **DNA extraction** (both nuclear and mitochondrial)
- 2. mtDNA amplification
  - a. MITO amplicons
    - i. gel electrophoresis
  - b. ROI amplicons
    - i. purification via Agencourt AMPure XP
    - ii. capillary electrophoresis via LabChip GX
- 3. Library preparation
  - a. via Nextera XT kit (MITO)
  - b. addition of adapters via PCR (ROI)
- 4. Library purification and quality control
  - a. purification via Agencourt AMPure XP
  - b. Qubit
  - c. capillary electrophoresis via LabChip GX
- 5. NGS via Illumina MiSeq



Results of capillary electrophoresis on Revvity LabChip GX of the MITO library.

- 1. **DNA extraction** (both nuclear and mitochondrial)
- 2. mtDNA amplification
  - a. MITO amplicons
    - i. gel electrophoresis
  - b. ROI amplicons
    - i. purification via Agencourt AMPure XP
    - ii. capillary electrophoresis via LabChip GX
- 3. Library preparation
  - a. via Nextera XT kit (MITO)
  - b. addition of adapters via PCR (ROI)
- 4. Library purification and quality control
  - a. purification via Agencourt AMPure XP
  - b. Qubit
  - c. capillary electrophoresis via LabChip GX
- 5. NGS via Illumina MiSeq

#### Computational Analysis Workflow

#### 1. Reads Quality Control

- a. before and after adapter removal (FastQC)
- b. Adapters removal (*Trimmomatic*)
- Alignment of the reads with a reference genome (BWA)
- 3. Variant calling (Mutect2)
  - a. Filtering of variants (*FilterMutectCalls*)
- 4. Variant functional annotation
- 5. Comparison of samples (PCA)

#### Results VEP RPE-ROI

#### Variant Effector Predictor - Ensembl

- Processed variants: 6
- Novel variants: 1
- Existing variants: 5

100% missense variants (coding)



#### Results - VEP RPE-ROI

- VEP (Variant Effector Predictor) Ensembl
- Considered predictors:
  - → SIFT: based on sequence homology and the physical properties of amino acids
  - → **Polyphen**: based on phylogenetic considerations

| Location    | Consequence         | Symbol and<br>Gene        | Existing<br>variant | APPRIS | SIFT | PolyPhen | Clinical<br>Significance |
|-------------|---------------------|---------------------------|---------------------|--------|------|----------|--------------------------|
| M:3739-3739 | Missense<br>variant | MT-ND1<br>ENSG00000198888 | -                   | P1     | 0.23 | 0.119    | -                        |

### Results VEP RPE-MITO

#### Variant Effector Predictor - Ensembl

- Processed variants: 21
- Novel variants: 1
- Existing variants: 20

50% missense variants

50% synonymous variants



#### Results - VEP RPE-MITO

| Location      | Consequence      | Symbol and<br>Gene         | Existing variant | APPRIS | SIFT | PolyPhen | Clinical<br>Significance     |
|---------------|------------------|----------------------------|------------------|--------|------|----------|------------------------------|
| M:13145-13145 | Missense variant | MT-ND5<br>ENSG00000198786  | rs386829175      | P1     | 1    | 0.003    | benign                       |
| M:6419-6419   | Missense variant | MT-CO1<br>ENSG00000198804  | rs1603220461     | P1     | 0    | 0.999    | -                            |
| M:9912-9912   | Missense variant | MT-CO3<br>ENSG00000198938  | rs28580363       | P1     | 0    | 0.957    | -                            |
| M:15326-15326 | Missense variant | MT-CYB<br>ENSG00000198727  | rs2853508        | P1     | 0.21 | 0.009    | benign, likely<br>pathogenic |
| M:8860-8860   | Missense variant | MT-ATP6<br>ENSG00000198899 | rs2001031        | P1     | 0.43 | 0.003    | benign                       |

#### Results - PCA



#### **Expectations**

- ★ Healthy and cancer cell lines are separated
- ★ MITO and ROI cluster together

#### Limitations

- ★ Overlapping points
- ★ Random distribution (Jitter function)

#### **Explanations**

- ★ Similar data
- ★ Problems in the PCA

#### VCF file analysis

Table S1 | Mutational burden of cancer vs healthy cell lines. The variations have been counted.

| 5 <u>2</u>      | A549 | Cal51 | HCT116 | Nalm6 | RPE |
|-----------------|------|-------|--------|-------|-----|
| MITO            | 36   | 26    | 34     | 57    | 27  |
| ROI             | 8    | 10    | 7      | 21    | 8   |
| $MITO \cap ROI$ | 39   | 32    | 38     | 67    | 30  |



#### **Conclusions**

- ★ Mutational burden higher in cancer cell lines
- ★ ROIs were valuable to identify variants

#### VCF file analysis

#### Only one variant is present in all tumor cell lines but not in RPE cells



#### MT-NDR2 gene

chrM:2.465

Total count: 5024

A: 760 (15%, 33+, 727-)

C:4(0%, 4+, 0-) G:19(0%, 7+, 12-)

T: 4241 (84%, 2949+, 1292-)

N:0

DEL: 8 INS: 1

Table S2 | Position and type of the SNPs found in RPE samples but not in tumor cells.

| Position in ChrM | Gene    | Type                               | RPE MITO | RPE ROI |
|------------------|---------|------------------------------------|----------|---------|
| 152              | -       | Upstream/downstream gene variant   | yes      | yes     |
| 1959             | MT-RNR2 | Non-coding transcript exon variant | yes      | no      |
| 3363             | MT-ND1  | -                                  | no       | yes     |
| 5318             | MT-ND2  | Synonymous variant                 | yes      | no      |
| 5691             | MT-TN   | -                                  | no       | yes     |
| 9912             | MT-CO3  | Missense variant                   | yes      | no      |
| 9950             | MT-CO3  | Synonymous variant                 | yes      | no      |
| 13145            | MT-ND5  | Missense variant                   | yes      | no      |
| 15466            | MT-CYB  | Synonymous variant                 | yes      | no      |
| 15721            | MT-CYB  | Synonymous variant                 | yes      | no      |
| 16192            | -       | Upstream/downstream gene variant   | yes      | no      |

# OUR PROPOSAL VS THE HARSH REALITY

#### **Main Divergences**



#### **Distinct sequencing technologies:**

- Illumina MiSeq
- PacBio Sequel IIe

#### **Distinct extraction processes:**

- Nuclear/mitochondrial DNA extraction + enrichment
- Organelle isolation + mtDNA extraction

Distinct quality control approaches and timing

**Library preparation** 



#### **Some Commonalities**

#### **Quality control techniques:**

- Qubit fluorometer 🔼 Go
- **□** Gel electrophoresis

## CRITICALITIES AND PROBLEMS

(THE DAILY BREAD OF ANY RESPECTABLE SCIENTIST)

#### **Notable Mentions**

- Unsuccessful MITO3 amplification
- Unsatisfactory library size and purity
- Irrelevant PCA plot



# THANK YOU FOR YOUR ATTENTION!



# E.A.M

