Development of Computable Phenotyping for congestive heart failure and utilization of ML clustering method for analysis

By Mansi, Soundarya, Ghata, Namita CHIP 690 BHMI

Introduction

- Develop Computable Phenotype for congestive heart failure patient
- Use of OMOP data model and de-identify MIMIC database
- Detect outlier with probability density statistical method
- Implement machine learning clustering method to analyze comorbidity among clusters
- Implement the Logistic regression ML method to predict hypertension occurrence in Congestive heart failure patients based on other features in datasets.

Methods - Results

Cohort Definition

- Includes all patients with diagnosis of Congestive Heart Failure
- Includes all patients with age 50 years or olders
- Patients must have 2 or more visits on records
- Patient must have systolic and diastolic bp values on records(can not be null)

Other variables for analysis:

- Created pathway1: patients who takes lisinopril as ingredient noted as 1, otherwise 0
- Gathered patient's age, gender, maximum weight(in Kg)
- Created pathway alive_dead:: Patient who is alive denoted as 1, dead denoted as 0
- Created diabetes pathway: Patient who has diabetes as condition denoted as 1, otherwise 0
- Created hypertension pathway: Patient who has hypertension denoted as 1, otherwise 0
- Created hyperlipidemia pathway: patient who has hyperlipidemia denoted as ${f 1}$, otherwise ${f 0}$

Cohort for analysis

4	person_id integer	<u></u>	pathway1 text	۵	diastolic_bp numeric	systolic_bp numeric	age double precision ▲	gender text	weight numeric	dead_alive text	diabetes_pathway text	hypertention_pathway text	hyperlipidemia_pathway text
1	3927758	850	1		89	169	81	FEMALE	98.00		0	0	1
2	3927758	872	1		111	195	66	MALE	56.00	1	0	1	1
3	3927758	881	1		107	185	79	FEMALE	55.00	0	0	1	0
4	3927758	886	0		82	142	85	FEMALE	59.90	0	0	1	0
5	3927758	894	1		107	193	56	FEMALE	148.90	1	1	1	1
6	3927758	899	0		92	184	85	FEMALE	56.80	0	0	1	0
7	3927759	902	1		99	143	303	FEMALE	72.00	0	0	1	1
8	3927759	913	1		73125	225	85	MALE	66.50	0	0	1	1
9	3927759	921	0		119	225	51	FEMALE	221.00	1	0	0	0
10	3927759	932	0		85	165	78	FEMALE	65.20	1	0	0	1
11	3927759	936	0		96	152	60	FEMALE	235.00	0	0	1	1
12	3927759	948	0		87	157	83	MALE	141.30	0	0	1	0

Outlier Detection with Exploratory Data analysis and three standard deviation

Removing manual error by setting the limits

Application of Outlier removal with probability density function

68% of the data is within 1 standard deviation, 95% is within 2 standard deviation, 99.7% is within 3 standard deviations

```
: 1 df_1.info()
2 df_1.isnull().any()
3 df_1.shape
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 2707 entries, 0 to 3153
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	person_id	2707 non-null	int64
1	pathway1	2707 non-null	int64
2	diastolic_bp	2707 non-null	float64
3	systolic bp	2707 non-null	float64
4	age	2707 non-null	int64
5	gender	2707 non-null	object
6	weight	2707 non-null	float64
7	dead alive	2707 non-null	int64
8	diabetes_pathway	2707 non-null	int64
9	hypertention_pathway	2707 non-null	int64
10	hyperlipidemia_pathway	2707 non-null	int64
	es: float64(3), int64(7) ry usage: 253.8+ KB	, object(1)	

: (2707, 11)

K-Medoids Clustering Methods

- This method will produce k clusters from a given data set based on similarity among the data points within a cluster.
- Before proceeding with clustering methods, first we scale our dataset. Scaling the data set will reduce the variability among different variables in the dataset.
- Each datapoint acts as medoids and with each iteration of the algorithm, medoids will be a minimal total distance to other members of clusters. We also used the elbow method to determine the optimal number of clusters.
- Even Though we can not visually see the kink in the graph, we determine k=6

Table # 1 Summary

Cluster Characteristic	Cluster 0 n=749	Cluster 1 n=360	Cluster 2 n=567	Cluster 3 n=339	Cluster 4 n=451	Cluster 5 n=241
Sex(n)						
Female	322	178	261	158	197	101
Male	427	182	306	181	254	140
Systolic BP (Mean, SD)	170.48 (26.2)	182.52 (27.5)	176.63 (26.4)	173.24 (24.3)	172.4 (27.3)	182.7 (25.5)
Diastolic BP (Mean,SD)	103.8 (22.8)	117.5 (28.3)	108.5 (25.2)	104.2 (23.1)	108 (24.4)	111 (26.0)
Weight (Mean, SD)	86.1 (25.8)	100.6 (32.6)	86.7 (22.6)	93.6 (25.5)	91.2 (27.3)	92.4 (26.6)
Pathway1(n) (Lisinopril)	155	93	462	0	451	104
Alive (n)	59	249	0	289	447	69
Diabetes as comorbidity (N)	0	11	28	28	51	241
Hypertension as comorbidity (N)	148	277	491	251	349	85
Hyperlipidemia as comorbidity (N)	113	0	417	339	369	96

Comorbidity among the Clusters

Logistic Regression Model to predict hypertension

Data exploration

```
df 1.columns
Index(['person id', 'pathway1', 'diastolic bp', 'systolic bp', 'age', 'gender',
       'weight', 'dead alive', 'diabetes pathway', 'hypertention pathway',
       'hyperlipidemia pathway'],
      dtype='object')
print('0=without the condition ; 1=with the condition')
print(df 1['diabetes pathway'].value counts())
print(df 1['hyperlipidemia pathway'].value counts())
print(df 1['hypertention pathway'].value counts())
0=without the condition ; 1=with the condition
     2348
      359
Name: diabetes pathway, dtype: int64
     1373
     1334
Name: hyperlipidemia pathway, dtype: int64
     1601
     1106
Name: hypertention pathway, dtype: int64
```

		person_id	pathy	vay1 dia	stolic_bp	systolic_bp	ag	je v	weight dea	ad_alive hy	pertention_pathway	hyperlipidemia_pathwa
diabetes_pathway	3.92	7974e+08	0.458	3262 10	7.783646	174.204855	72.56899	5 89.9	47832 0	.406729	0.600511	0.48466
1	3.92	7964e+08	0.526	6462 10	9.807799	181.696379	68.47075	2 94.3	97521 0	.440111	0.532033	0.54596
f_1.groupby(hype	erlipide	emia_	pathwa	y').mear	1()						
										it dead aliv	e dishetes nethuses	
hyperlipidemia_pat	thway	pers	on_id	pathway	1 diastolio	c_bp systol	іс_вр	age	weigh	it dead_ain	e diabetes_patriwa	y nypertention_pathwa
hyperlipidemia_pat		3.927957		0.39839				.426803				
hyperlipidemia_pat		3.927957	'e+08		8 108.352	2513 175.6	21996 71.		89.57742	2 0.31318	33 0.11871	
	0	3.927957	'e+08 le+08	0.39839	8 108.352 1 107.742	2513 175.6 2879 174.7	21996 71.	.426803	89.57742	2 0.31318	33 0.11871	8 0.51056
	0	3.927957 3.927989	'e+08 le+08 on_pa	0.39839 0.53823 thway'	8 108.352 1 107.742).mean()	2513 175.6; 2879 174.7(21996 71. 32369 72.	.426803 .641679	89.57742: 91.52655:	2 0.31318 2 0.51199	33 0.11871 34 0.14692	8 0.51056 7 0.67466
f_1.groupby(0 1	3.927957	'e+08 le+08 on_pa	0.39839	8 108.352 1 107.742).mean()	2513 175.6 2879 174.7	21996 71. 32369 72.	.426803	89.57742: 91.52655:	2 0.31318 2 0.51199	33 0.11871 34 0.14692	8 0.51056 7 0.67466
hyperlipidemia_pat	0 1 hype	3.927957 3.927989	e+08 le+08 on_pa	0.39839 0.53823 thway'	8 108.352 1 107.742).mean()	2513 175.6; 2879 174.7(21996 71. 52369 72.	.426803 .641679	89.57742: 91.52655:	2 0.31318 2 0.51199	33 0.11871 34 0.14692	8 0.51056

Data Visualization

Selecting Feature & Splitting Data

```
# dividing the data into training and test sets
#split dataset in features and target variable
feature cols = ['pathway1','diastolic bp','systolic bp','age','weight']
x = df 1[feature cols] # Features
y = df 1.hypertention pathway # Target variable
from sklearn.model selection import train test split
x train, x test, y train, y test = train test split(x, y, test size = 0.2, random state=0)
# import the class
from sklearn.linear model import LogisticRegression
# instantiate the model (using the default parameters)
logreg = LogisticRegression()
# fit the model with data
logreg.fit(x train,y train)
y pred=logreg.predict(x test)
```

Model Evaluation

```
class_names=[0,1] # name of classes
fig, ax = plt.subplots()
tick_marks = np.arange(len(class_names))
plt.xticks(tick_marks, class_names)
plt.yticks(tick_marks, class_names)
# create heatmap
sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="Blues" ,fmt='g')
ax.xaxis.set_label_position("top")
plt.tight_layout()
plt.ylabel('Actual label')
plt.xlabel('Predicted label')
```

Text(0.5, 257.44, 'Predicted label')

ROC Curve

```
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
print("Precision:",metrics.precision_score(y_test, y_pred))
print("Recall:",metrics.recall_score(y_test, y_pred))
```

Accuracy: 0.6033210332103321 Precision: 0.5965665236051502 Recall: 0.9114754098360656

Discussion

- In our logistics classification we try to predict the hypertension in patients depending on other factors, after prediction our model has an accuracy of 0.6(good accuracy average is 0.7), indicating that the model is unsuitable for this Dataset. One reason for the low classification accuracy could be that our classes are not well separable using the current features. Finding more features would be a solution to this. Also, we originally intended to use this model to predict CHF in patients, but we only created a dataset for patients with CHF and not for patients without, so including that information could improve the accuracy.
- Our cohort can not be the ideal sample of a population and thus analysis results can not be interpreted for the whole population.
- Our cluster classifications do not show any substantial difference in hypertension or in hyperlipidemia patients.
- The overall occurrence of diabetes with congestive heart failure is relatively less as compared to hypertension and hyperlipidemia.