3° de Secundaria Unidad 2 2024-2025

Última revisión del documento: 17 de febrero de 2025

Nombre del alumno:

Practica la Unidad 2

Fecha:

Aprendizajes:			Puntuación:						
 Deduce información acerca de la estructura atómica a partir de dat experimentales sobre propiedades atómicas periódicas. Representa y diferencia mediante esquemas, modelos y simbología q mica, elementos y compuestos, así como átomos y moléculas. Explica y predice propiedades físicas de los materiales con base modelos submicroscópicos sobre la estructura de átomos, moléculas 				1	2	3	4	5	6
				10	10	10	10	10	10
				7	8	9	10		Total
				10	10	10	10		100
iones, y sus in	Obtenidos								
Ejercicio 1							de 1	0 pu	ntos
Relaciona cada	elemento con la	as características que le corresponden.							
a Tit	anio (A	A Elemento metaloide del grupo III, subgrupo A de la tabla periódica.							
b Or	o B	lacksquare Elemento metálico con Z = 31.							
c He	lio ©	© Elemento metaloide, ubicado en el tercer período de la tabla periódica.							
d Bo	ro	D Elemento conocido como gas noble y se encuentra en el período 1 de la tabla periódica.							
e Ra	dón Œ	Elemento con 22 protones y 22 electrones.							
f Yo	do Œ								
9 Bis	smuto G	© Elemento de la familia de metales alcalino-terreos con 138 neutrones.							
h Ra	dio (H	$\stackrel{\textstyle f (H)}{\textstyle f (H)}$ Elemento no metálico con Z $=83$.							
i Ga	lio (I	① Gas inerte (gas noble) que se encuentra en el período 6 de la tabla periódica.							
j Sili	cio J	① Metal brillante utilizado en joyería.							

Ejercicio 2 de 10 puntos

Relaciona la especie química con la cantidad de protones y electrones de valencia.

 \bigcirc Ión de Aluminio (Al^{3+})

(B) Ión de Nitrógeno (N³⁻)

(C) Ión de Flúor (F⁻)

(D) Litio (Li)

(E) Ión de Potasio (K⁺)

F Ión de Berilio (Be⁻)

 \bigcirc Ión de Azúfre (S²⁺)

(H) Ión de Cloro (Cl⁻)

(I) Ión de Hierro (Fe³⁺)

J Fósforo (P)

- 13 protones y 8 electrones de valencia.
- b _____ 17 protones y 8 electrones de valencia.
- c _____ 9 protones y 8 electrones de valencia.
- d _____ 4 protones y 3 electrones de valencia.
- e _____ 16 protones y 4 electrones de valencia.

- f _____ 15 protones y 5 electrones de valencia.
- **9** _____ 26 protones y 2 electrones de valencia.
- h ______ 7 protones y 8 electrones de valencia.
- i _____ 3 protones y 1 electrón de valencia.
- j _____ 19 protones y 8 electrones de valencia.

Ejercicio 3 de 10 puntos

Relaciona cada concepto con su definición.

- (A) Las sustancias se representan sólo con símbolos atómicos.
- B Esquema tridimensional en el que es posible identificar a los enlaces químicos.
- C Las sustancias se representan con símbolos atómicos y líneas que simbolizan a los enlaces químicos.
- D Esquema tridimensional en el que no es posible identificar a los enlaces químicos.

- O ____ Diagrama de esferas.
- b ____ Fórmula estructural.
- c ____ Fórmula condensada.
- d ____ Diagrama de esferas y barras.

Ejercicio 4

de 10 puntos

Ejercicio 5 ____ de 10 puntos

Completa la siguiente tabla determinando para cada especie, la cantidad de protones \bigoplus , neutrones n y electrones \bigcirc .

Especie	Símbolo	\oplus	0	Θ
Xenón				
Ión negativo de Antimonio				
Fósforo				
Ión negativo de Azúfre				
Ión positivo de Silicio				

Ejercicio 6 de 10 puntos

Escribe el grupo, subgrupo, período y clasificación de los siguientes elementos. Después de realizar este ejercicio, ubica a cada elemento en la tabla periódica que se muestra abajo.

Elemento	Grupo	Subgrupo	Período	Tipo	
Oro					П
Potasio					\vdash
Paladio					
Yodo					Ш
Samario					

Ejercicio 7	de 10 puntos						
Señala en cada uno de los enunciados si la sentencia es fa	ılsa o verdadera.						
 Cometales son maleables, dúctiles y buenos conductores del calor y la electricidad. □ Verdadero □ Falso 	f La masa de un neutrón es similar a la del protón. ☐ Verdadero ☐ Falso						
b Los electrones de valencia se encuentran siempre en el último nivel de energía.	9 El número de masa representa la suma de protones y neutrones.□ Verdadero □ Falso						
 □ Verdadero □ Falso C La fórmula H₂O expresa que la molécula de agua está constituida por dos átomos de oxígeno y uno de hidrógeno. 	 h El número total de electrones en un átomo lo determina el grupo al que pertenece. □ Verdadero □ Falso 						
 □ Verdadero □ Falso d Los subíndices expresan el número de átomos de los elementos presentes en una molécula o unidad fórmula. 	i En una fórmula química, los coeficientes indican el número de moléculas o unidades fórmula; así como también el número de moles presentes de la sustan- cia.						
□ Verdadero □ Falso	☐ Verdadero ☐ Falso						
 El neutrón es una partícula subatómica que se encuentra girando alrededor del núcleo atómico. □ Verdadero □ Falso 	j En la fórmula de la Taurina, 4C ₂ H ₇ NO ₃ S, el número 4 indica que hay 4 átomos de carbono. □ Verdadero □ Falso						
Ejercicio 8	de 10 puntos						
Contesta a las siguientes preguntas, argumentando ampli Explica bajo qué condiciones el número atómico po átomo.	amente tu respuesta. ermite deducir el número de electrones presentes en un						
	En términos generales, el radio de un átomo es aproximadamente 10,000 veces mayor que su núcleo. Si un átomo pudiera amplificarse de manera que el radio de su núcleo midiera 2 mm (lo que mide un grano de sal), ¿cuál sería el radio del átomo en metros?						

Ejercicio 9 de 10 puntos

Señala la opción que responde correctamente a la pregunta de cada uno de los siguientes incisos:

- Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?
 - A El carácter metálico y la electronegatividad
 - B El potencial de Ionización y el carácter metálico
 - © El carácter no metálico y el potencial de ionización
 - D La electronegatividad y la afinidad electrónica
 - (E) Ninguna de las anteriores
- b ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a dere- cha en la tabla periódica?
 - A La electronegatividad y el tamaño atómico
 - B El radio atómico y el radio iónico
 - © El carácter metálico y la afinidad electrónica
 - D Potencial de ionización y electronegatividad
 - (E) Ninguna de las anteriores
- c En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:
 - (A) Derecha y hacia arriba
 - (B) Derecha y hacia abajo
 - (C) Izquierda y hacia arriba
 - D Izquierda y hacia abajo

- d El tamaño de los átomos aumenta cuando:
 - A Se incrementa el número de período
 - B Disminuye el número de período
 - © Se incrementa el número de grupo
 - D Disminuye el número de bloque
 - (E) Ninguna de las anteriores
- e El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?
 - (A) Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
 - B Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un grupo
 - C Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
 - (D) Todos son correctos

Ejercicio 10 ____ de 10 puntos

Completa la siguiente tabla:

Sustancia	a) Tipo de sustancia	b) Fórmula condensada
H H-C-H H-C-H	molecular	CH₄
Cu²+Cu²+ Cu²+Cu²+ Cu²+Cu²+		
Cl· Cl· Mg²+ Mg²- Cl· Cl·		
O ²⁻ Ca ²⁺ O ²⁻ Ca ²⁺		
Ag*_Ag*_ Ag*_Ag*_Ag*		
H - C - OH H - OH H - C - OH H -		

18 VIIIA	$\overset{\text{2}}{H}\overset{\text{4.0025}}{\text{Helio}}$	$\overset{10}{\overset{20.180}{\overset{10}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset$	$\bigwedge_{\text{Argón}}^{18 \ 39.948}$	$\overset{36}{K}\overset{83.8}{\Gamma}$	$\overset{54}{\overset{131.29}{{{{{{{{{{\overset$	$\mathop{Rad^{5}}\limits_{\text{Radon}}$	$0 \\ \frac{118}{O} \\ \frac{294}{S}$	$\overset{7_{1}}{\mathbf{L}}\overset{174.97}{\mathbf{U}}$	$\frac{103}{\text{Lawrencio}}$ 262	
	17 VIIA	9 18.998 Fluor	17 35.453 Cloro	$\overset{35}{\mathrm{Bromo}}$	53 126.9 Yodo	$\overset{85}{\mathrm{At}}_{\dot{A}}^{210}$	$\frac{117}{\mathrm{Tenso}}$	$\sum_{\text{Yterbio}}^{70} \sum_{\text{173.04}}^{173.04}$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	$\overset{16}{S}\overset{32.065}{S}$	$\overset{34}{\mathrm{Se}}^{78.96}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{P0}^{209}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	$\prod_{\text{Tulio}}^{69}$	$\underset{\text{Mendelevio}}{\text{101}} \overset{258}{\text{C}}$	
	15 VA	7 14.007 Nitrógeno	$\overset{\text{15}}{P}\overset{30.974}{\text{Posforo}}$	${\overset{33}{A}}_{\text{Arsénico}}^{74.922}$	$\overset{51}{\mathbf{S}}\overset{121.76}{\mathbf{b}}$ Antimonio	$\overset{83}{\text{Bismuto}}_{\text{1}}^{208.98}$	${\rm Moscovio} \\ {\rm Moscovio} \\$	$\frac{68}{\text{Erbio}}$	100 257 Fermio	
	14 IVA	6 12.011 Carbono	$\overset{14}{\text{Si}}$	$\overset{32}{G}^{72.64}$	$\mathop{Sn}\limits_{\text{Estaño}}^{118.71}$	$\overset{82}{Pb}_{\text{pomo}}^{207.2}$	114 289 Flerovio	$\overset{\textbf{67}}{\text{Holmio}}_{\text{Holmio}}$	99 252 Einsteinio	
	13 IIIA	$\overset{5}{\mathbf{B}}_{Dro}$	$ \bigwedge_{\text{Aluminio}}^{13} \sum_{\text{S6.982}}^{26.982} $	$\overset{31}{G}\overset{69.723}{a}$	\prod_{Indo}^{49}	81 204.38 Talio	$\sum_{\text{Nihonio}}^{113} 284$	$\bigcup_{\text{Disprosio}}^{66} 162.50$	$\overset{98}{\text{Colifornio}}$	
			12 IIB	$\overset{30}{Z}\overset{65.39}{n}$	$\overset{48}{C}\overset{112.41}{d}$	$\overset{80}{\text{Mercurio}}$	$\overset{\text{112}}{C}_{n}^{\text{285}}$	$\prod_{\text{Terbio}}^{65-158.93}$	97 247 Bk	
			11 IB	$\overset{29}{\overset{63.546}{\mathbf{cu}}}_{Cobre}$	${^{47}_{ m Plata}}$	$\overset{79}{\mathbf{Au}}_{Oro}^{196.97}$	Roentgenio	$\mathop{Gadolinio}^{64}$	96 247 Curio	
			10 VIIIB	$\sum_{\text{Niquel}}^{28} \overset{58.693}{\text{1}}$	$\overset{46}{P}\overset{106.42}{d}$	$\Pr^{78 195.08}_{\textbf{C}}$	$\bigcup_{\text{Darmstadtio}}^{281}$	$\frac{63}{Europio}$	$\underset{\text{Americio}}{Am}$	
			9 VIIIB	$\bigcup_{\text{Cobalto}}^{27} \bigcup_{\text{Cobalto}}^{58.933}$	\mathop{Rodio}_{Rodio}	$\prod_{ ext{Iridio}}^{ ext{77}}$	$\underset{Meitnerio}{109} \overset{268}{26}$	$\overset{62}{S}\overset{150.36}{m}$	Puronio	
		SS	8 VIIIB	$\overset{26}{F}\overset{55.845}{e}$	$\mathop{Ruthenio}^{44\ 101.07}$	$\overset{76}{\text{Osmio}}$	$\overline{\mathrm{Hassio}}$	$\overset{\text{61}}{P_{\text{prometio}}}\overset{\text{145}}{\text{Prometio}}$	93 237 Neptunio	
	gía:	Negro: Naturales Gris: Simtéticos	7 VIIB	$\sum_{\mathrm{Manganeso}}^{25} 54.938$	$\prod_{ m Tecnecio}^{43}$	$\mathop{Renio}_{\text{Renio}}^{75}$	Bohrio	$\overset{60}{\text{Neodimio}}_{\text{Neodimio}}$	92 238.03 Uranio	
	Simbología:		6 VIB	$\overset{24}{\overset{51.996}{\mathbf{\Gamma}}}$ Cromo	${\overset{42}{\mathrm{Nolybdeno}}}^{95.94}$	$\frac{74}{W}$ Tungstenio	106 266 S8 Seaborgio	$\Pr_{Praseodymio}^{59}$	$\overset{91}{\operatorname{Pa}}^{231.04}$	
	Sin	$\sum_{ ext{Simbolo}}^{ ext{Z}} A_r$	5 VB	$\sum_{\text{Vanadio}}^{23} 50.942$	$\sum_{\text{Niobio}}^{41}$	$\overset{73}{\text{Tantalo}}^{180.95}$	$\bigcup_{\text{Dubnio}}^{105} \bigcup_{\text{Dubnio}}^{262}$	$\overset{58}{\overset{140.12}{Cerio}}$	$\frac{90}{1}$	
			4 IVB	22 47.867 Titanio	$\sum_{\mathrm{Circonio}}^{40}$	$\overset{72}{H}\overset{178.49}{f}$	$\underset{\text{Rutherfordio}}{\text{Rutherfordio}}$	$\sum_{\mathrm{Lantánido}}^{57}$	$\overset{89}{Ac}^{227}$	
			3 IIIA	$\overset{21}{S}\overset{44.956}{c}$ Escandio	39 88.906 V Itrio	57-71 *	. 89 103 .** ** 	s -terreos		nidos
	2 IIA	$\mathop{Berilio}^{4}$	${\overset{12}{\mathrm{Mg}}}^{24.305}$	$\overset{20}{\text{Calcio}}^{40.078}$	$\overset{38}{S}\overset{87.62}{ ext{rondio}}$	$\overset{56}{Bario}_{\text{Bario}}$	\mathop{Radio}^{88}	$ \begin{array}{ccc} \text{Metales Alcalinos} & & \\ \text{Metales Alcalino-terreos} & & \\ \text{Metal} & & \\ \end{array} $	tle tl o o	Lantánidos/Actínidos
1 IA	1 1.0079 Hidrógeno	$\sum_{\text{Litio}}^{6.941}$	$\overset{_{11}}{\overset{22.990}{\text{Sodio}}}$	19 39.098 K	$\mathop{Rb}_{\text{Pubidio}}^{37-85.468}$	\sum_{Cesio}^{55}	$\overset{87}{Francio}^{223}$	Metales Metales Metal	Metaloide No metal Halógeno	Gases IN Lantánic
	Н	2	ĸ	4	വ	9	7			