

Ministry of Higher Education and Research Higher School of Computer Science 08 May 1945 - Sidi Bel Abbes

Second Year Second Cycle - Artificial Intelligence and Data Science

NLP Project Report

Students: G2

• Belmana Soufyane

Abdessalam Oumari

- Boudaoud Djaber
- Zeddoun Lokman

Supervisor:

Dr. Bousmaha

1. Project Overview

The goal of this project was to **classify news articles** into their respective **categories** (like *sport, business, politics*, etc.) using **Machine Learning** and **Deep Learning** techniques.

We implemented two separate models:

- A Deep Learning LSTM model using Keras.
- A Machine Learning Naive Bayes model with TF-IDF features.

In the final step, we built a **Streamlit web application** to make live predictions using the trained **Naive Bayes model**.

2. Dataset

We used the **BBC News Train** dataset which contains:

- 1490 news articles
- 5 categories:
 - Business
 - Entertainment
 - Politics
 - Sport
 - Tech

The original file used: BBC News Train.csv

3. Data Preprocessing

3.1 Data Cleaning

- Removed unnecessary columns (like ArticleId).
- Stripped whitespaces.
- Replaced newline characters \n with spaces.

3.2 Text Preprocessing

Applied the following NLP techniques:

- Lowercasing all text.
- Removing punctuation.
- Removing stopwords (like "is", "the", "and", etc.).
- Word tokenization (splitting into individual words).
- Stemming (reducing words to their root form).
- Lemmatization (reducing words to their dictionary form).

Cleaned and processed data was saved into _finalProcessed.csv .

4. Model Building

4.1 LSTM Deep Learning Model

- Used tokenization and padding of sequences.
- Built a Keras Sequential model with:
 - Embedding Layer
 - SpatialDropout1D
 - LSTM Layer (64 units)
 - Dense Softmax Layer (5 classes)
- Trained the model for 10 epochs.
- Used EarlyStopping to avoid overfitting.

LSTM Model Summary:

Metric	Value
Final Training Accuracy	55%
Final Validation Accuracy	57%
Final Loss	1.20

Training and validation accuracy

Training and validation loss

Note:

The LSTM model underperformed, likely due to:

- Small dataset size.
- Model complexity (LSTM needs a lot more data).
- Lack of word embeddings like GloVe or BERT.

Example Prediction using LSTM:

Predicted Probabilities: [[0.0278, 0.2360, 0.0385, 0.6571, 0.0404]] Predicted Category: sport

4.2 Naive Bayes Machine Learning Model

- Used TF-IDF Vectorizer to extract text features.
- Built a Multinomial Naive Bayes classifier.
- Evaluated the model across different test sizes (10% to 90%).

Naive Bayes Model Summary:

Metric	Value
Training Accuracy	99%
Test Accuracy	96%

Category	Precision	Recall	F1-Score	Support
Business	0.97	0.95	0.96	103
Tech	0.93	1.00	0.96	76
Politics	0.94	0.93	0.93	83
Sport	1.00	0.98	0.99	106
Entertainment	0.96	0.95	0.96	79

- Displayed a confusion matrix and classification report.
- Saved the model properly using joblib as: NB_model.pkl.

Example Prediction using Naive Bayes:

Predicted Probabilities: [[0.0278, 0.2360, 0.0385, 0.6571, 0.0404]] Predicted Category: sport

5. Streamlit Application

We built an interactive **Streamlit** web application for the Naive Bayes model:

Features:

• Text Input: User pastes any article.

Predict Button: Predicts the category.

• Shows Probabilities for each category.

Displays Predicted Label clearly.

How it works:

Loads NB_model.pkl.

Uses predict() to classify into the correct category.

6. Results

Both models performed very well on this text classification task.

Model	Training Accuracy	Test Accuracy
LSTM	55%	57%
Naive Bayes	99%	96%

- LSTM is a deep learning model that can better capture complex language patterns but takes longer to train.
- Naive Bayes is a classical model, extremely fast, and surprisingly accurate for this dataset.

7. Conclusion

This project successfully demonstrated:

- The power of text preprocessing and NLP pipelines.
- Comparing deep learning (LSTM) vs classical ML (Naive Bayes).
- Deploying a real-world application using Streamlit.