From Lane A to Bounce-Derived Lane B: BAO & H_0 with Emergent Time in the SFV/dSB Model

Steven Hoffmann

October 5, 2025

Abstract

We present a fully reproducible pipeline that connects a successful two-field bounce in the Superfluid False Vacuum / de Sitter Brane (SFV/dSB) model to bounce-derived pre-recombination expansion (Lane B) capable of matching BAO data at $H_0 \approx 72\,\mathrm{km\,s^{-1}\,Mpc^{-1}}$ without disturbing recombination-era geometry. The only ingredient beyond the bounce is an emergent-time clock $\alpha(z)$ multiplying the background expansion, set by a first-principles onset rule $m_{\rm eff} = 3H(z_c)$, with the energy normalization fixed by the bounce scale $\Lambda^* = 0.72\,\mathrm{eV}$. With a narrow Gaussian clock centered at $z_c \simeq 1.546 \times 10^4$ and width $\sigma_{\ln(1+z)} = 0.30$, amplitude $\varepsilon = 0.531$, we obtain an Eisenstein–Hu sound horizon $r_{\rm d} = 139.911\,\mathrm{Mpc}$ and a DESI GCcomb BAO $\chi^2 \simeq 20.33$ for N = 12 points using the official covariance, while $\alpha(z \sim 1100) - 1 \lesssim 10^{-12}$. This offers a realist, bounce-anchored explanation of the H_0 tension via pre-equality expansion, competitive with standard Λ CDM BAO fits at the same H_0 .

1 Conceptual roadmap: Lane $A \rightarrow Lane B$

Lane A (phenomenology): treat $\alpha(z)$ as a controlled deformation of E(z) with compact support in $\ln(1+z)$, scan $(\varepsilon, z_c, \sigma)$ against DESI BAO (and optionally SNe) at fixed $(H_0, \Omega_{\rm m}, \Omega_{\rm r})$. Lane B (bounce-derived): fix the *amplitude scale* by $\Lambda^* = 0.72 \, \text{eV}$ from the bounce; set the onset by

$$m_{\text{eff}}(\text{onset}) = 3 H(z_c),$$
 (1)

where $m_{\rm eff}$ is the lightest Hessian eigenfrequency of the wall potential evaluated along the golden-run background. In radiation domination, $H(z) \propto (1+z)^2$, so the dimensionless unfreeze factor

$$\zeta \equiv \frac{1 + z_c}{1 + z_{\rm eq}} \simeq \left[\frac{m_{\rm eff}}{3H(z_{\rm eq})} \right]^{1/2} \tag{2}$$

is directly determined by the wall curvature and $v_{\rm phys}/M_{\rm Pl}$.

2 Model and clocks

We write $E(z) = \sqrt{\Omega_{\rm r}(1+z)^4 + \Omega_{\rm m}(1+z)^3 + \Omega_{\Lambda}}$ and define the SFV clock

$$E_{\rm SFV}(z) = \alpha(z) E(z), \qquad \alpha(z) = 1 + \varepsilon \exp\left[-\frac{(\ln(1+z) - \ln(1+z_c))^2}{2\sigma^2}\right]. \tag{3}$$

Lane B adds the meff-centered exporter that computes a bounce-informed $\alpha(z)$ by mapping $r \to z$ via the underdamping condition $m_{\text{eff}} = 3H$.

3 Meff-derived centering (Step A): method and result

Along the bounce track $(\Phi(r), \phi(r))$ we evaluate the 2 × 2 Hessian

$$H_{ij} = \partial_i \partial_j V(\Phi, \phi) \,, \tag{4}$$

and take its light eigenvalue λ_{\min} . With fields normalized by a physical unit v_{phys} (so that the physical potential is $\rho = \Lambda_{\star}^4 U$ with dimensionless U), the light-mode frequency is

$$m_{\text{eff}} = \frac{\Lambda_{\star}^2}{v_{\text{phys}}} \sqrt{\lambda_{\text{min}}} \,.$$
 (5)

The onset redshift then follows from

$$m_{\text{eff}} = 3H(z_c), \qquad (6)$$

solved using the exact H(z) for our baseline $(H_0, \Omega_m, N_{\text{eff}})$. For $(\Lambda_{\star} = 0.72 \,\text{eV}, v_{\text{phys}}/M_{\text{Pl}} = 4.2 \times 10^{-5})$ and the golden-run potential, we find along the wall a representative light curvature

$$\lambda_{\min} \simeq 4.8 \times 10^{-6} \implies m_{\text{eff}} \simeq 1.1 \times 10^{-26} \,\text{eV} \implies z_c \simeq 1.546 \times 10^4 \,,$$
 (7)

which we adopt to center the GAUSS clock used in the BAO analysis.

4 Main result at fixed $H_0 = 72$, $\Omega_{\rm m} = 0.322$, $N_{\rm eff} = 3.046$

- Lane B (GAUSS form, bounce-anchored): $(\varepsilon, z_c, \sigma) = (0.531, 15460, 0.30)$
- Sound horizon: $r_{\rm d} = 139.911 \, {\rm Mpc}$ (Eisenstein-Hu integral)
- DESI BAO GCcomb $\chi^2 = 20.33$ for N = 12 (full covariance)
- Recombination safety: $\alpha(1100) 1 \lesssim 10^{-12}$; angular scale ℓ_A essentially unchanged.

5 Default parameter set and determinism

Unless otherwise specified, all reported numbers use the following fixed cosmology and clock parameters:

Parameter	Value	Note
H_0	$72.0{\rm kms^{-1}Mpc^{-1}}$	fixed throughout
$\Omega_{ m m}$	0.322	fixed throughout
$\Omega_{ m b} h^2$	0.0224	DESI baseline
$N_{ m eff}$	3.046	standard
$z_{ m eq}$	~ 4000	derived for the above $(H_0, \Omega_{\rm m}, N_{\rm eff})$
Clock form	GAUSS	$\alpha(z) = 1 + \varepsilon \exp[-(\ln(1+z) - \ln(1+z_c))^2/(2\sigma^2)]$
$(arepsilon, z_c, \sigma)$	(0.531, 15460, 0.30)	tuned via $m_{\text{eff}} = 3H(z_c)$ and BAO r_d

The pipeline is *deterministic*: no stochastic sampling or random seeds are used. Numerical quadratures use fixed absolute/relative tolerances; re-running the commands reproduces the same numbers to the shown precision.

6 Definition of the sound horizon used in BAO fits

All BAO predictions in this paper use the Eisenstein-Hu (EH) sound horizon at the baryon drag epoch, computed as

$$z_{\rm d}^{\rm EH}(\Omega_{\rm b}h^2,\Omega_{\rm m}h^2)$$
 per Eq. (4) of Eisenstein & Hu (1998), (8)

$$r_{\rm d}^{\rm EH} = \frac{c}{H_0} \int_{z_{\rm d}^{\rm EH}}^{\infty} \frac{c_s(z)}{E_{\rm SFV}(z)} dz, \qquad c_s(z) = \frac{c}{\sqrt{3(1+R(z))}}, \quad R(z) = \frac{3\Omega_{\rm b}}{4\Omega_{\gamma}} \frac{1}{1+z}, \quad (9)$$

with
$$E_{\rm SFV}(z) = \alpha(z)E(z)$$
 and $E(z) = \sqrt{\Omega_{\rm r}(1+z)^4 + \Omega_{\rm m}(1+z)^3 + \Omega_{\Lambda}}$.

Note on exporter "anchors". The meff-centered exporter reports an internal " r_d " for diagnostics. For *data-level* comparisons to DESI we always use $r_d^{\rm EH}$ as above. The two values are close but not identical; adopting a single definition avoids any ambiguity in χ^2 .

A Robustness: BBN, CMB, and late-time distances

For the tuned GAUSS clock $(\varepsilon, z_c, \sigma) = (0.531, 15460, 0.30)$ we have

$$\alpha(z) - 1 = \varepsilon \exp\left[-\frac{\left(\ln(1+z) - \ln(1+z_c)\right)^2}{2\sigma^2}\right]. \tag{10}$$

Recombination safety. At $z_* \approx 1100$,

$$\Delta \equiv \ln \frac{1 + z_c}{1 + z_*} \approx \ln \frac{15461}{1101} \approx 2.64, \quad \Rightarrow \quad \alpha(z_*) - 1 \approx 0.531 \exp \left[-\frac{(2.64)^2}{2(0.30)^2} \right] \sim 10^{-17}, \quad (11)$$

so $E_{\rm SFV}(z_*)$ is indistinguishable from $E(z_*)$ at machine precision; $\ell_{\rm A}$ and peak phasing are unaffected.

BBN safety. For $z \sim 10^8$,

$$\ln \frac{1+z}{1+z_c} \approx \ln \frac{10^8}{1.546 \times 10^4} \approx 8.77 \implies \alpha(z) - 1 \sim \varepsilon \exp \left[-\frac{(8.77)^2}{2(0.30)^2} \right] \sim 10^{-180}, \quad (12)$$

utterly negligible relative to standard BBN expansion.

Late-time distances. For $z \lesssim 2000$ the Gaussian tail is exponentially suppressed; SN distances are unchanged up to the usual absolute magnitude shift.

B Emergent-clock onset as a first-principles crossing

In radiation domination $H(z) \propto (1+z)^2$. The onset z_c is not a free placement but follows from the wall soft-mode becoming underdamped:

$$m_{\text{eff}} = 3H(z_c) \qquad \Longrightarrow \qquad \frac{1+z_c}{1+z_{\text{eq}}} = \left[\frac{m_{\text{eff}}}{3H(z_{\text{eq}})}\right]^{1/2} \equiv \zeta.$$
 (13)

Evaluating the light Hessian eigenvalue along the wall on the golden-run background fixes ζ (numerically $\zeta \simeq 3.9$), i.e. $z_c \simeq 1.546 \times 10^4$ for our baseline cosmology. This links the clock's timing directly to bounce microphysics.