Técnicas de Demonstração

Prof. Dr. Leandro Balby Marinho

UFCG CEEI Departamento de Sistemas e Computação

Matemática Discreta

Roteiro

1. Introdução

- 2. Demontração Exaustiva
- 3. Demontração Direta
- 4. Demontração por Contraposição
- 5. Demontração por Absurdo
- 6. Indução
- 7. Recursividade

Introdução

- ► Uma prova é um argumento válido que estabelece a verdade de senteças matemáticas.
- ▶ Um **teorema** é uma sentença que pode ser mostrada verdadeira.
- Um lemma é normalmente um teorema auxiliar utilizado para provar outros teoremas.
- ► Um **corolário** é um teorema que pode ser estabelecido diretamente do teorema que foi provado.
- Uma conjectura é uma sentença sendo proposta como verdade, mas que precisa ser provada para virar teorema.

Forma dos Teoremas

Muitos teoremas são apresentados na forma condicional $p \rightarrow q$.

Exemplo 1: "Se x > y, no qual x e y são números reais positivos, então $x^2 > y^2$ ". Embora apresentado informalmente, o que esse teorema realmente significa é: $\forall x, y (P(x,y) \rightarrow Q(x,y))$, no qual P(x,y) denota "x > y" e Q(x,y) " $x^2 > y^2$ ".

Exemplo 2: "Se n é um número inteiro ímpar, então n^2 é ímpar." Esse teorema afirma que $\forall n (P(n) \rightarrow Q(n))$, no qual P(n) denota "n é um inteiro ímpar" e Q(n) denota " n^2 é ímpar".

Roteiro

- 1. Introdução
- 2. Demontração Exaustiva
- 3. Demontração Direta
- 4. Demontração por Contraposição
- 5. Demontração por Absurdo
- 6. Indução
- 7. Recursividade

A conjectura pode ser provada verficando-se que ela é verdadeira para todos os elementos da coleção. Para provar a falsidade da conjectura, basta achar um contra-exemplo.

A conjectura pode ser provada verficando-se que ela é verdadeira para todos os elementos da coleção. Para provar a falsidade da conjectura, basta achar um contra-exemplo.

Exemplo 3: Prove a conjectura "Para todo inteiro positivo $n, n! \le n^2$ ".

A conjectura pode ser provada verficando-se que ela é verdadeira para todos os elementos da coleção. Para provar a falsidade da conjectura, basta achar um contra-exemplo.

Exemplo 3: Prove a conjectura "Para todo inteiro positivo n, $n! \le n^2$ ".

Solução: A conjectura é falsa pois não é verdade para todo n: é falsa para n = 4.

n	n!	n ²	$n! \leq n^2$
1	1	1	sim
2	2	4	sim
3	6	9	sim
4	24	16	não

A conjectura pode ser provada verficando-se que ela é verdadeira para todos os elementos da coleção. Para provar a falsidade da conjectura, basta achar um contra-exemplo.

Exemplo 3: Prove a conjectura "Para todo inteiro positivo n, $n! \le n^2$ ".

Solução: A conjectura é falsa pois não é verdade para todo n: é falsa para n = 4.

n	n!	n ²	$n! \leq n^2$
1	1	1	sim
2	2	4	sim
3	6	9	sim
4	24	16	não

Exercício 1: Prove a conjectura "Para qualquer inteiro positivo menor ou igual a 5, o quadrado do inteiro é menor ou igual à soma de 10 mais 5 vezes o inteiro".

Uma prova por casos deve cobrir todos os casos possíveis que aparecem em um teorema.

Uma prova por casos deve cobrir todos os casos possíveis que aparecem em um teorema.

Exemplo 4: Prove que se n é um inteiro, então $n^2 \ge n$.

Uma prova por casos deve cobrir todos os casos possíveis que aparecem em um teorema.

Exemplo 4: Prove que se n é um inteiro, então $n^2 \ge n$.

(i) Quando n = 0. Como $0^2 = 0$, então $n^2 \ge 0$ é verdadeiro nesse caso.

Uma prova por casos deve cobrir todos os casos possíveis que aparecem em um teorema.

Exemplo 4: Prove que se n é um inteiro, então $n^2 \ge n$.

- (i) Quando n = 0. Como $0^2 = 0$, então $n^2 \ge 0$ é verdadeiro nesse caso.
- (ii) Quando $n \ge 1$. Multiplicando os dois lados da inequação pelo inteiro positivo n, obtemos $n \cdot n \ge n \cdot 1$. Isso implica que $n^2 \ge n$ para $n \ge 1$.

Uma prova por casos deve cobrir todos os casos possíveis que aparecem em um teorema.

Exemplo 4: Prove que se n é um inteiro, então $n^2 \ge n$.

- (i) Quando n = 0. Como $0^2 = 0$, então $n^2 \ge 0$ é verdadeiro nesse caso.
- (ii) Quando $n \ge 1$. Multiplicando os dois lados da inequação pelo inteiro positivo n, obtemos $n \cdot n \ge n \cdot 1$. Isso implica que $n^2 \ge n$ para $n \ge 1$.
- (iii) Quando $n \le -1$. Como $n^2 \ge 0$ segue que $n^2 \ge n$.

Uma prova por casos deve cobrir todos os casos possíveis que aparecem em um teorema.

Exemplo 4: Prove que se n é um inteiro, então $n^2 \ge n$.

- (i) Quando n = 0. Como $0^2 = 0$, então $n^2 \ge 0$ é verdadeiro nesse caso.
- (ii) Quando $n \ge 1$. Multiplicando os dois lados da inequação pelo inteiro positivo n, obtemos $n \cdot n \ge n \cdot 1$. Isso implica que $n^2 \ge n$ para $n \ge 1$.
- (iii) Quando $n \le -1$. Como $n^2 \ge 0$ segue que $n^2 \ge n$.

Exercício 2: Mostre que se x ou y forem inteiros pares, então xy é par.

Roteiro

- 1. Introdução
- 2. Demontração Exaustiva
- 3. Demontração Direta
- 4. Demontração por Contraposição
- 5. Demontração por Absurdo
- 6. Indução
- 7. Recursividade

Demontração Direta

A demontração direta de uma sentença $p \to q$ funciona da seguinte forma: assuma que o antecedente p é verdade e deduza a conclusão (ou consequente) q.

Demontração Direta

A demontração direta de uma sentença $p \to q$ funciona da seguinte forma: assuma que o antecedente p é verdade e deduza a conclusão (ou consequente) q.

Para os exemplos que seguem, utilizaremos a seguinte definição sobre a paridade de números inteiros.

Definição 1

Um inteiro n é par se existe um inteiro k tal que n=2k, e n é ímpar se existe um inteiro k tal que n=2k+1.

Exemplo 5: Prove o teorema apresentado no Exemplo 2.

Exemplo 5: Prove o teorema apresentado no *Exemplo 2*.

Solução: Assumindo que n é um número ímpar, nos leva (pela definição) a n = 2k + 1. Se elevarmos os dois lados dessa igualdade ao quadrado, $n^2 = (2k + 1)^2$, temos que $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$, e portanto n^2 também é um número ímpar.

Exemplo 5: Prove o teorema apresentado no *Exemplo 2*.

Solução: Assumindo que n é um número ímpar, nos leva (pela definição) a n = 2k + 1. Se elevarmos os dois lados dessa igualdade ao quadrado, $n^2 = (2k + 1)^2$, temos que $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$, e portanto n^2 também é um número ímpar.

Exemplo 6: Prove que o produto de dois números inteiros pares é par.

Exemplo 5: Prove o teorema apresentado no *Exemplo 2*.

Solução: Assumindo que n é um número ímpar, nos leva (pela definição) a n=2k+1. Se elevarmos os dois lados dessa igualdade ao quadrado, $n^2=(2k+1)^2$, temos que $n^2=4k^2+4k+1=2(2k^2+2k)+1$, e portanto n^2 também é um número ímpar.

Exemplo 6: Prove que o produto de dois números inteiros pares é par.

Solução: Assumindo que os dois números inteiros (aqui chamados x e y) envolvidos no produto são pares, nos dá x = 2m e y = 2n. Então xy = (2m)(2n) = 2(2mn), que por definição é um número par.

Exemplo 5: Prove o teorema apresentado no *Exemplo 2*.

Solução: Assumindo que n é um número ímpar, nos leva (pela definição) a n = 2k + 1. Se elevarmos os dois lados dessa igualdade ao quadrado, $n^2 = (2k + 1)^2$, temos que $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$, e portanto n^2 também é um número ímpar.

Exemplo 6: Prove que o produto de dois números inteiros pares é par.

Solução: Assumindo que os dois números inteiros (aqui chamados x e y) envolvidos no produto são pares, nos dá x = 2m e y = 2n. Então xy = (2m)(2n) = 2(2mn), que por definição é um número par.

Exercício 3: Dê uma demonstração direta ao teorema "Se um inteiro é divisível por 6, então duas vezes esse inteiro é divisível por 4".

Roteiro

- 1. Introdução
- 2. Demontração Exaustiva
- 3. Demontração Direta
- 4. Demontração por Contraposição
- 5. Demontração por Absurdo
- 6. Indução
- 7. Recursividade

Demontração por Contraposição

A sentença condicional $p \to q$ pode ser provada mostrando-se que a sua contrapositiva $\neg q \to \neg p$ é verdadeira.

Demontração por Contraposição

A sentença condicional $p \to q$ pode ser provada mostrando-se que a sua contrapositiva $\neg q \to \neg p$ é verdadeira.

Exemplo 7: Mostre que se 3n + 2 é ímpar, no qual n é um número inteiro, então n é ímpar.

Solução: Primeiro assumimos que n é par (a negação que n é ímpar), ou seja, n = 2k. Agora basta verificar que 3n + 2 também é par: 3(2k) + 2 = 6k + 2 = 2(3k + 1).

Demontração por Contraposição

A sentença condicional $p \to q$ pode ser provada mostrando-se que a sua contrapositiva $\neg q \to \neg p$ é verdadeira.

Exemplo 7: Mostre que se 3n + 2 é impar, no qual n é um número inteiro, então n é impar.

Solução: Primeiro assumimos que n é par (a negação que n é ímpar), ou seja, n=2k. Agora basta verificar que 3n+2 também é par: 3(2k)+2=6k+2=2(3k+1).

Exercício 4: Mostre que se n=ab, no qual a e b são inteiros positivos, então $a \le \sqrt{n}$ ou $b \le \sqrt{n}$.

Roteiro

- 1. Introdução
- 2. Demontração Exaustiva
- 3. Demontração Direta
- 4. Demontração por Contraposição
- 5. Demontração por Absurdo
- 6. Indução
- 7. Recursividade

Demonstração por Absurdo

- Para demonstrar p, assumimos ¬p e mostramos que isso leva a uma contradição. Como ¬p → F é verdadeira, concluimos que ¬p é falsa e portanto que p é verdadeira.
- ▶ De outra forma, para provar $p \to q$, basta mostrar $p \land \neg q \to \mathbf{F}$, pois $(p \land \neg q \to \mathbf{F}) \to (p \to q)$ é uma tautologia (verifique isso).

Demonstração por Absurdo

- Para demonstrar p, assumimos ¬p e mostramos que isso leva a uma contradição. Como ¬p → F é verdadeira, concluimos que ¬p é falsa e portanto que p é verdadeira.
- ▶ De outra forma, para provar $p \to q$, basta mostrar $p \land \neg q \to \mathbf{F}$, pois $(p \land \neg q \to \mathbf{F}) \to (p \to q)$ é uma tautologia (verifique isso).

Exemplo 8: Se um número somado a ele mesmo é ele mesmo, então esse número é 0.

Demonstração por Absurdo

- Para demonstrar p, assumimos ¬p e mostramos que isso leva a uma contradição. Como ¬p → F é verdadeira, concluimos que ¬p é falsa e portanto que p é verdadeira.
- ▶ De outra forma, para provar $p \to q$, basta mostrar $p \land \neg q \to \mathbf{F}$, pois $(p \land \neg q \to \mathbf{F}) \to (p \to q)$ é uma tautologia (verifique isso).

Exemplo 8: Se um número somado a ele mesmo é ele mesmo, então esse número é 0.

Solução: Podemos tentar mostrar que $[(x+x=x) \land (x \neq 0)] \rightarrow \mathbf{F}$, no qual x denota um número qualquer. Como $x \neq 0$, então ambos os lados da equação 2x = x podem ser divididos por x, dando 2 = 1, o que é claramente um absurdo.

Roteiro

- 1. Introdução
- 2. Demontração Exaustiva
- 3. Demontração Direta
- 4. Demontração por Contraposição
- 5. Demontração por Absurdo
- 6. Indução
- 7. Recursividade

Indução Matemática

► Muitas sentenças matemáticas afirmam que uma propriedade é verdadeira para todos os inteiros positivos. Por exemplo, para todo inteiro positivo *n* :

Indução Matemática

- Muitas sentenças matemáticas afirmam que uma propriedade é verdadeira para todos os inteiros positivos. Por exemplo, para todo inteiro positivo n:
 - ▶ $n! \leq n^n$,
 - ► $n^3 n$ é divisível por 3,
 - ▶ a soma dos primeiros n inteiros positivos é n(n+1)/2.

Indução Matemática

- Muitas sentenças matemáticas afirmam que uma propriedade é verdadeira para todos os inteiros positivos. Por exemplo, para todo inteiro positivo n:
 - $ightharpoonup n! \leq n^n$
 - ► $n^3 n$ é divisível por 3,
 - ▶ a soma dos primeiros n inteiros positivos é n(n+1)/2.
- Intuição: como saber que um dominó arbitrário irá cair numa fileira infinita de dominós?

Primeiro Princípio de Indução Matemática

Primeiro Princípio de Indução

Para provar que $\forall n P(n)$, no qual n é um inteiro positivo, é verdade, precisamos provar duas sentenças:

- 1. P(1) (passo básico ou base da indução)
- 2. $\forall k (P(k) \rightarrow P(k+1))$ no qual k é um inteiro positivo (**passo indutivo**)

Demonstração usando o primeiro princípio da indução

Passo 1	Prove a base da indução
Passo 2	Suponha $P(k)$
Passo 3	Prove $P(k+1)$

Exemplo 9: Mostre que o número de linhas em uma tabela verdade para n proposições é dado por 2^n ($\forall n P(n)$ no qual P(n) denota 2^n).

Exemplo 9: Mostre que o número de linhas em uma tabela verdade para n proposições é dado por 2^n ($\forall n P(n)$ no qual P(n) denota 2^n).

Exemplo 9: Mostre que o número de linhas em uma tabela verdade para n proposições é dado por 2^n ($\forall n P(n)$ no qual P(n) denota 2^n).

Solução: $P(1) = 2^1 = 2$ é verdade, pois uma proposição tem dois valores possíveis.

Exemplo 9: Mostre que o número de linhas em uma tabela verdade para n proposições é dado por 2^n ($\forall n P(n)$ no qual P(n) denota 2^n).

Solução: $P(1) = 2^1 = 2$ é verdade, pois uma proposição tem dois valores possíveis. Agora supomos que $P(k) = 2^k$ e tentamos mostrar que

$$P(k+1) = 2^{k+1}$$

Exemplo 9: Mostre que o número de linhas em uma tabela verdade para n proposições é dado por 2^n ($\forall n P(n)$ no qual P(n) denota 2^n).

Solução: $P(1) = 2^1 = 2$ é verdade, pois uma proposição tem dois valores possíveis. Agora supomos que $P(k) = 2^k$ e tentamos mostrar que

$$P(k+1) = 2^{k+1}$$

Como P(k+1) = 2P(k), chegamos a

$$P(k+1) = 2(2^k) = 2^{k+1}$$

- (□) (団) (三) (□)

Exemplo 10: Mostre que a equação $1 + 3 + 5 + ... + (2n - 1) = n^2$ é verdadeira para qualquer inteiro positivo n.

Prof. Dr. Leandro Balby Marinho

Exemplo 10: Mostre que a equação $1+3+5+\ldots+(2n-1)=n^2$ é verdadeira para qualquer inteiro positivo n.

Solução: Para n = 1, P(1): $1 = 1^2$ é verdadeiro.

Prof. Dr. Leandro Balby Marinho

Exemplo 10: Mostre que a equação $1+3+5+\ldots+(2n-1)=n^2$ é verdadeira para qualquer inteiro positivo n.

Solução: Para n=1, P(1): $1=1^2$ é verdadeiro. Agora supomos

$$P(k): 1+3+5+\ldots+(2k-1)=k^2$$
 (1)

Exemplo 10: Mostre que a equação $1 + 3 + 5 + ... + (2n - 1) = n^2$ é verdadeira para qualquer inteiro positivo n.

Solução: Para n=1, P(1): $1=1^2$ é verdadeiro. Agora supomos

$$P(k): 1+3+5+\ldots+(2k-1)=k^2$$
 (1)

Usando a hipótese de indução, queremos mostrar P(k+1), ou seja

$$P(k+1): 1+3+5+\ldots+[(2(k+1)-1]=(k+1)^2$$
 (2)

Exemplo 10: Mostre que a equação $1+3+5+\ldots+(2n-1)=n^2$ é verdadeira para qualquer inteiro positivo n.

Solução: Para n=1, P(1): $1=1^2$ é verdadeiro. Agora supomos

$$P(k): 1+3+5+\ldots+(2k-1)=k^2$$
 (1)

Usando a hipótese de indução, queremos mostrar P(k+1), ou seja

$$P(k+1): 1+3+5+\ldots+[(2(k+1)-1]=(k+1)^2$$
 (2)

Mostrando-se a penúltima parcela, procedemos como segue:

=1+3+5+...+(2k-1)+[(2(k+1)-1]
=
$$k^2$$
+[2(k+1)-1] (pela hipótese de indução)
= k^2 +2k+1
=(k+1)²

Exemplo 11: Mostre que, para qualquer inteiro positivo n, $2^{2n} - 1$ é divisível por 3.

Exemplo 11: Mostre que, para qualquer inteiro positivo n, $2^{2n} - 1$ é divisível por 3.

Solução: P(1) é verdade, pois $2^{2(1)} - 1 = 3$ é divisível por 3.

Prof. Dr. Leandro Balby Marinho

Exemplo 11: Mostre que, para qualquer inteiro positivo n, $2^{2n} - 1$ é divisível por 3.

Solução: P(1) é verdade, pois $2^{2(1)}-1=3$ é divisível por 3. Agora assumimos que P(k) é verdade, ou seja, $2^{2k}-1=3m\Rightarrow 2^{2k}=3m+1$ para algum inteiro m. A partir disso, precisamos mostrar que $2^{2(k+1)}-1$ é divisível por 3.

Exemplo 11: Mostre que, para qualquer inteiro positivo n, $2^{2n} - 1$ é divisível por 3.

Solução: P(1) é verdade, pois $2^{2(1)}-1=3$ é divisível por 3. Agora assumimos que P(k) é verdade, ou seja, $2^{2k}-1=3m\Rightarrow 2^{2k}=3m+1$ para algum inteiro m. A partir disso, precisamos mostrar que $2^{2(k+1)}-1$ é divisível por 3.

$$2^{2(k+1)} - 1 = 2^{2k+2} - 1$$

= $2^2 \cdot 2^k - 1$
= $2^2(3m+1) - 1$ (pela hipótese de indução)
= $12m + 3$
= $3(4m+1)$

4ロ > 4回 > 4 き > 4 き > り へ ら

Exercícios sobre Indução

Exercício 5: Mostre que, para todo inteiro positivo n, $1+2+\ldots+n=\frac{n(n+1)}{2}$.

Exercício 6: Mostre que, para todo inteiro positivo n, $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1$.

ロト 4 回 ト 4 豆 ト 4 豆 ト 4 回 ト

Prof. Dr. Leandro Balby Marinho

Segundo Princípio de Indução Matemática

Segundo Princípio de Indução ou Indução Forte

Para provar que $\forall n P(n)$, no qual n é um inteiro positivo, é verdade, precisamos provar duas sentenças:

- 1. P(1) (passo básico ou base da indução)
- 2. $\forall k (P(1) \land P(2) \land ... \land P(k) \rightarrow P(k+1))$ (passo indutivo)

Princípio da Boa Ordenação

Toda coleção de inteiros positivos que contém algum elemento tem um menor elemento.

Exemplo 12: Prove que, para todo $n \ge 2$, n é um número primo ou um produto de números primos.

Solução: P(2) é verdadeiro, pois 2 é um número primo. A hipótese de indução implica assumir que P(r), no qual $2 \le r \le k$, é verdadeira. A partir disso, precisamos concluir k+1. Se k+1 for primo, terminamos. Se k+1 não for primo é um número composto e pode ser escrito como k+1=ab, no qual $2 \le a \le b < k+1$. A hipótese de indução pode ser aplicada a a e b, logo cade um deles ou é um primo, ou um produto de primos. Portanto, k+1 é um produto de primos.

Exemplo 12: Prove que, para todo $n \ge 2$, n é um número primo ou um produto de números primos.

Solução: P(2) é verdadeiro, pois 2 é um número primo. A hipótese de indução implica assumir que P(r), no qual $2 \le r \le k$, é verdadeira. A partir disso, precisamos concluir k+1. Se k+1 for primo, terminamos. Se k+1 não for primo é um número composto e pode ser escrito como k+1=ab, no qual $2 \le a \le b < k+1$. A hipótese de indução pode ser aplicada a a e b, logo cade um deles ou é um primo, ou um produto de primos. Portanto, k+1 é um produto de primos.

Exercício 7: Considere um jogo no qual dois jodagores se revezam retirando um número positivo de palitos de um de dois conjuntos de palitos. O jogador que retirar o último palito ganha o jogo. Mostre que se os dois conjuntos de palitos possuem o mesmo número inicial de elementos, o segundo jogador sempre pode garantir a vitória.

Roteiro

- 1. Introdução
- 2. Demontração Exaustiva
- 3. Demontração Direta
- 4. Demontração por Contraposição
- 5. Demontração por Absurdo
- 6. Indução
- 7. Recursividade

Introdução

Uma definição onde um item é definido em termos de si mesmo é chamada de uma **definição recursiva** ou **definição por recorrência**. Uma definição recursiva tem duas partes:

Introdução

Uma definição onde um item é definido em termos de si mesmo é chamada de uma **definição recursiva** ou **definição por recorrência**. Uma definição recursiva tem duas partes:

 Uma condição básica, onde casos mais simples do item sendo definido são especificados.

Introdução

Uma definição onde um item é definido em termos de si mesmo é chamada de uma **definição recursiva** ou **definição por recorrência**. Uma definição recursiva tem duas partes:

- 1. Uma **condição básica**, onde casos mais simples do item sendo definido são especificados.
- Um passo recursivo, onde novos casos são construídos em função de casos anteriores.

Uma sequencia S é uma lista de objetos numerados em determinada ordem. S(n) denota o n-ésimo elemento da sequencia.

Uma sequencia S é uma lista de objetos numerados em determinada ordem. S(n) denota o n-ésimo elemento da sequencia.

Exemplo 12: A sequencia S é definida por

- 1. S(1) = 2 (condição básica)
- 2. S(n) = 2S(n-1) para $n \ge 2$) (passo recursivo)

O primeiro elemento é 2 pela condição básica. A partir disso, aplicando o passo recursivo temos: S(2)=2S(1)=2S(2)=4 para o segundo elemento. Continuando dessa forma, temos que a sequencia S é

Sequencia de Fibonacci

A sequencia de Fibonacci f é definida por:

- 1. f(0) = 0 (condição básica)
- 2. f(1) = 1 (condição básica)
- 3. f(n) = f(n-1) + f(n-2) para $n \ge 2$ (passo recursivo)

Seguencia de Fibonacci

A seguencia de *Fibonacci* f é definida por:

- 1. f(0) = 0 (condição básica)
- 2. f(1) = 1 (condição básica)
- 3. f(n) = f(n-1) + f(n-2) para $n \ge 2$ (passo recursivo)

Exemplo 13: A sequencia de Fibonnaci para $2 \le n \le 6$ segue abaixo:

$$f(2) = f(1) + f(0) = 1 + 0 = 1,$$

$$f(3) = f(2) + f(1) = 1 + 1 = 1,$$

$$f(4) = f(3) + f(2) = 2 + 1 = 1,$$

$$f(5) = f(4) + f(3) = 3 + 2 = 5,$$

$$f(6) = f(5) + f(4) = 5 + 3 = 8.$$

Conjuntos Definidos por Recorrência

Um conjunto é uma coleção desordenada de objetos.

Conjuntos Definidos por Recorrência

Um conjunto é uma coleção desordenada de objetos.

Exemplo 14: O subconjunto S dos inteiros definido por

- 1. $3 \in S$ (condição básica)
- 2. Se $x \in S$ e $y \in S$, então $x + y \in S$ (passo recursivo).

Alguns elementos de S são 3+3=6, 3+6=6+3=9, 6+6=12 e assim por diante. S se trata dos múltiplos positivos de S (verifique isso).

Conjuntos Definidos por Recorrência

Um conjunto é uma coleção desordenada de objetos.

Exemplo 14: O subconjunto *S* dos inteiros definido por

- 1. $3 \in S$ (condição básica)
- 2. Se $x \in S$ e $y \in S$, então $x + y \in S$ (passo recursivo).

Alguns elementos de S são 3+3=6, 3+6=6+3=9, 6+6=12 e assim por diante. S se trata dos múltiplos positivos de S (verifique isso).

Exercício 8: Dê uma definição recursiva para o conjunto de pessoas que são ancestrais de João. A condição básica é dada abaixo:

- 1. Os pais de João são seus ancestrais (condição básica)
- 2. Passo recursivo?

Cadeias Definidas por Recorrência

Cadeia

O conjunto Σ^* de *cadeias* sob o alfabeto Σ pode ser definido por:

- 1. $\lambda \in \Sigma^*$ (no qual λ é a cadeia vazia) (condição básica)
- 2. Se $w \in \Sigma^*$ e $x \in \Sigma$, então $wx \in \Sigma^*$ (passo recursivo).

Cadeias Definidas por Recorrência

Cadeia

O conjunto Σ^* de *cadeias* sob o alfabeto Σ pode ser definido por:

- 1. $\lambda \in \Sigma^*$ (no qual λ é a cadeia vazia) (condição básica)
- 2. Se $w \in \Sigma^*$ e $x \in \Sigma$, então $wx \in \Sigma^*$ (passo recursivo).

Exemplo 15: Seja $\Sigma = \{0,1\}$. O conjunto Σ^* de todas as cadeias em Σ pode ser dado usando-se a definição recursiva acima.

Cadeias Definidas por Recorrência

Cadeia

O conjunto Σ^* de *cadeias* sob o alfabeto Σ pode ser definido por:

- 1. $\lambda \in \Sigma^*$ (no qual λ é a cadeia vazia) (condição básica)
- 2. Se $w \in \Sigma^*$ e $x \in \Sigma$, então $wx \in \Sigma^*$ (passo recursivo).

Exemplo 15: Seja $\Sigma = \{0,1\}$. O conjunto Σ^* de todas as cadeias em Σ pode ser dado usando-se a definição recursiva acima. A condição básica forma a cadeia vazia λ . Na primeira aplicação do passo recursivo, as cadeias 0 e 1 são formadas. Na segunda aplicação do passo recursivo, as cadeias 00, 01, 10 e 11 são formadas e assim por diante.

Operações Definidas por Recorrência

Certas operações em objetos podem ser definidas por recorrência.

Operações Definidas por Recorrência

Certas operações em objetos podem ser definidas por recorrência.

Exemplo 16: Uma definição recursiva para a exponenciação a^n de um número real não nulo a, no qual n é um inteiro positivo é

- 1. $a^0 = 1$ (condição básica)
- 2. $a^n = a(a^{n-1})$ para $n \ge 1$ (passo recursivo)

Operações Definidas por Recorrência

Certas operações em objetos podem ser definidas por recorrência.

Exemplo 16: Uma definição recursiva para a exponenciação a^n de um número real não nulo a, no qual n é um inteiro positivo é

- 1. $a^0 = 1$ (condição básica)
- 2. $a^n = a(a^{n-1})$ para $n \ge 1$ (passo recursivo)

Exemplo 17: Uma definição recursiva para a multiplicação dos inteiros positivos a e b é

- 1. a(1) = a (condição básica)
- 2. a(b) = a(b-1) + a para $b \ge 2$ (passo recursivo)

Algoritmo Recursivo

Um algoritmo é chamado recursivo quando ele resolve um problema reduzindo-o a instâncias do mesmo problema com entradas menores.

Algoritmo Recursivo

Um algoritmo é chamado recursivo quando ele resolve um problema reduzindo-o a instâncias do mesmo problema com entradas menores.

Exemplo 18: Algoritmo recursivo para calcular *n*!

```
    procedure FAT(n: inteiro não negativo)
    if n = 0 then
    FAT(n) := 1
    else
    return FAT(n) := n · FAT(n - 1)
    end if
    end procedure
```

Exemplo 19: Algoritmo recursivo para calcular a^n

```
    procedure EXP(a: real não nulo, n: inteiro não negativo)
    if n = 0 then
    EXP(a, n) := 1
    else
    return EXP(a, n) := a · EXP(a, n - 1)
    end if
    end procedure
```

Exemplo 19: Algoritmo recursivo para calcular a^n

```
    procedure EXP(a: real não nulo, n: inteiro não negativo)
    if n = 0 then
    EXP(a, n) := 1
    else
    return EXP(a, n) := a · EXP(a, n - 1)
    end if
    end procedure
```

Exercício 9: Mostre que o algoritmo acima está correto.

Referências

Judith L. Gersting. Fundamentos Matemáticos para a Ciência da Computação. Quinta Edição. LTC, 2004.