

Системный анализ процессов химической технологии

Лабораторная работа №7

Расчет химико-технологической системы переменной структуры

Вячеслав Алексеевич Чузлов, к.т.н., доцент ОХИ ИШПР

6 марта 2023 г.

Задача

Рассчитать химико-технологическую систему (определить составы и свойства всех потоков):

Для решения поставленной задачи будет реализована объектная модель: каждый элемент химико-технологической системы будет описан как отдельный класс.

Атрибуты класса	Описание
mass_flow_rate: float	Массовый расход, кг / ч
mole_flow_rate: float	Мольный расход, кмоль / ч
volume_flow_rate: float	Объемный расход, м ³ / ч
mass_fractions: np.ndarray	Массовые доли
mole_fractions: np.ndarray	Мольные доли
volume_fractions: np.ndarray	Объемные доли
temperature: float	Температура потока, К
density: float	Плотность потока, г / см ³
average_mol_mass: float	Средняя молекулярная масса потока, г / моль
cp: float	Массовая теплоемкость потока, кДж / кг
<pre>definit(self, mass_flow_rate: float, mass_fractions: np.ndarray, temperature: float) -> None</pre>	Создает новый экземпляр класса Flow, заполняя все поля

Функции для пересчета составов

1. Пересчет массовых долей в объемные:

$$\varphi_i = \frac{\frac{\omega_i}{\rho_i}}{\sum\limits_{i=1}^n \frac{\omega_i}{\rho_i}}$$

где φ_i – объемная доля i-го компонента; ω_i – массовая доля i-го компонента; ρ_i – плотность i-го компонента; n – число компонентов в системе; i – индекс компонента в системе.

2. Пересчет массовых долей в мольные:

$$\chi_i = \frac{\frac{\omega_i}{M_i}}{\sum_{i=1}^n \frac{\omega_i}{M_i}}$$

где χ_i – мольная доля i-го компонента; ω_i – массовая доля i-го компонента; M_i – молярная масса i-го компонента; n – число компонентов в системе; i – индекс компонента в системе.

Функции для расчета плотности и средней молекулярной массы

1. Расчет плотности:

$$\rho = \frac{1}{\sum_{i=1}^{n} \frac{\omega_i}{\rho_i}}$$

где ho – плотность потока; ω_i – массовая доля i-го компонента; ρ_i – плотность i-го компонента; n – число компонентов в системе; i – индекс компонента в системе.

2. Расчет средней молекулярной массы потока:

$$m = \frac{1}{\sum_{i=1}^{n} \frac{\omega_i}{M_i}}$$

где m – средняя молекулярная масса потока; ω_i – массовая доля i-го компонента; M_i – молярная масса i-го компонента; n – число компонентов в системе; i – индекс компонента в системе.

Функции для расчета теплоемкости потока

Расчет теплоемкости потока в зависимости от состава потока и температуры среды осуществляется следующим образом:

• определяется теплоемкость компонентов потока при температуре среды:

$$Cp_i = \sum_{j=1}^{5} j \cdot k [i, j] \cdot T^{j-1}$$

где Cp_i – теплоемкость i-го компонента, кДж / кг; $k\left[i,j\right]$ – коэффициенты аппроксимации температурной зависимости энтальпии для i-го компонента; T – температура потока, K;

• определяется общая теплоемкость потока:

$$Cp = \sum_{i=1}^{n} \omega_i \cdot Cp_i$$

где ω_i – массовая доля i-го компонента; Cp_i – теплоемкость i-го компонента, кДж / кг; n – число компонентов в системе.

Вычислим интеграл:

$$I = \int_{0}^{1} \frac{dx}{1 + x^2}$$

при помощи функции scipy.integrate.quad.

```
[1]: from scipy.integrate import quad
```

```
[2]: def func(x): return 1 / (1 + x ** 2)
```

```
[3]: a, b = 0, 1 res = quad(func, a, b) res
```

```
[3]: (0.7853981633974484, 8.719671245021581e-15)
```

Численное интегрирование

В тех случаях, когда подынтегральная функция принимает один или несколько параметров помимо своего основного аргумента, эти дополнительные параметры могут быть переданы в метод quad в виде кортежа в аргументе args. Например, определим следующий интеграл в численном выражении:

$$I_{n,m} = \int_{-\pi/2}^{\pi/2} \sin^n x \cos^m x \, dx$$

```
[4]: import numpy as np
```

```
[5]: def func(x, n, m):
return np.sin(x) ** n * np.cos(x) ** m
```

```
[6]: n, m = 2, 3 quad(func, -np.pi/2, np.pi/2, args=(n, m))
```

Система взаимосвязанных ОДУ первого порядка

Рассмотрим следующую схему химических реакций:

$$A \rightarrow B \rightarrow C$$

с константами скоростей k_1 и k_2 . Уравнения, описывающие скорость изменения концентраций компонентов по времени, записываются следующим образом:

$$\begin{cases} \frac{d\left[A\right]}{dt} = -k_1\left[A\right] \\ \frac{d\left[B\right]}{dt} = k_1\left[A\right] - k_2\left[B\right] \\ \frac{d\left[C\right]}{dt} = k_2\left[B\right] \end{cases}$$

Для численного решения предположим $y_1 \equiv [A]$, $y_2 \equiv [B]$ и $y_3 \equiv [C]$:

$$\begin{cases} \frac{d[A]}{dt} = -k_1 y_1 \\ \frac{d[B]}{dt} = k_1 y_1 - k_2 y_2 \\ \frac{d[C]}{dt} = k_2 y_2 \end{cases}$$

Система взаимосвязанных ОДУ первого порядка

Зададимся значениями констант: $u_1 = 0.2 c^{-1}$, $u_2 = 0.8 c^{-1}$ и начальными условиями: $u_1(0) = 100$, $y_2(0) = 0 y_3(0) = 0.$

```
import numpy as np
from scipy.integrate import solve ivp
```

```
[2]: k1, k2 = .2, .8
     y0 = 100, 0, 0
     t0, tf = 0.20
```

```
[3]:
     def func(t, y, k1, k2):
         v1, v2, v3 = v
         dy1dt = -k1 * y1
         dy2dt = k1 * y1 - k2 * y2
         dv3dt = k2 * v2
         return dy1dt, dy2dt, dy3dt
```

```
solution = solve ivp(
[4]:
        func, (t0, tf), y0, dense_output=True,
        args=(k1, k2)
    t = np.linspace(t0, tf, 10)
     a, b, c = solution.sol(t)
[5]: for ai, bi, ci in zip(a, b, c):
        print(f'{ai:>8.2f} {bi:>8.2f} {ci:>8.2f}')
     100.00
              0.00
                      0.00
      64.12
            15.74
                     20.14
      41.11 12.75
                     46.14
      26.36 8.63
                     65.02
      16.90 5.61
                     77.49
      10.84
            3.61
                     85.56
       6.95
              2.31
                      90.74
       4.45
            1.49
                      94.06
       2.86
              0.95
                      96.19
       1.83
                9 61
                       97.56
```

TOMSK ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ UNIVERSITY УНИВЕРСИТЕТ

Задания

Задание 1

Дана зависимость энтальпии от температуры:

ΔH , к $oxtlusk Д$ ж/моль	
29.62	
21.88	
15.52	
10.38	
6.40	
3.35	
1.13	
0.21	

Определить значения энтальпии при изменении от 300 до 1000 с шагом 50 K, используя:

- 1. Кубический сплайн;
- 2. Линейную аппроксимацию.

Используя функцию scipy.integrate.quad, вычислите значение энтропии воды при ее нагревании от 400 до 500 K по формуле:

$$\Delta S = \eta \cdot \int\limits_{400}^{500} \! rac{C_v \cdot dT}{T}$$

Количество молей $\eta=3$; значение теплоемкости $C_v=35.0~{\rm Дж}$ / (моль · K).

Дана схема химических превращений:

Контакты

Вячеслав Алексеевич Чузлов, к.т.н., доцент ОХИ ИШПР

✓ Учебный корпус №2, ауд. 136✓ chuva@tpu.ru

+7-962-782-66-15

Благодарю за внимание!

