Time Series Econometrics, 2ST111

Lecture 10. Unit Roots in Multivariate Time Series and Cointegration

Yukai Yang

Department of Statistics, Uppsala University

Outline of Today's Lecture

- Unit Roots in Multivariate Time Series
 - Asymptotic Results for Nonstationary Vector Processes
 - Vector Autoregressions Containing Unit Roots
 - Spurious Regressions
- Cointegration
 - Introduction

Multivariate Standard Brownian Motion

We introduce the multivariate standard Brownian Motion, the definition on pp.544 in Hamilton,

Definition

n-dimensional standard Brownian motion $\mathbf{W}(\cdot)$ is a continuous-time process associating each data $r \in [0,1]$ with the $(n \times 1)$ vector $\mathbf{W}(r)$ satisfying the following:

- **1** $\mathbf{W}(0) = 0$;
- 2 For any dates $0 \le r_1 < r_2 < ... < r_k \le 1$, the changes $[\mathbf{W}(r_2) \mathbf{W}(r_1)], [\mathbf{W}(r_3) \mathbf{W}(r_2)], ..., [\mathbf{W}(r_k) \mathbf{W}(r_{k-1})]$ are independent multivariate Gaussian with $\mathbf{W}(s) \mathbf{W}(r) \sim N_n(\mathbf{0}, (s-r)\mathbf{I}_n)$:
- **3** For any given realization, $\mathbf{W}(r)$ is continuous in r with probability 1.

Yukai Yang (2ST111)

Cointegration

Multivariate Standard Brownian Motion

Remarks:

- The univariate standard Brownian motion (BM) is a special case of the multivariate standard Brownian motion (MBM or VBM), n = 1.
- The univariate BM can be easily extended to the VBM by adding more independent univariate BMs. Note that the covariance for $\mathbf{W}(s) \mathbf{W}(r)$ is simply $(s-r)\mathbf{I}_n$ implying that they are independent.
- You can simply change all the scalars in the previous lecture to vectors, y_t to \mathbf{y}_t , ε_t to ε_t , the same results hold for the multivariate Brownian motion.
- The matrix $\mathbf{W}(r)\mathbf{W}(r)'$ is Wishart distributed.

Functional Central Limit Theorem

Suppose that $\varepsilon_1, ..., \varepsilon_T$ is an *i.i.d. n*-vector sequence with mean zero and covariance \mathbf{I}_n .

Then we can construct a random vector $\mathbf{X}_T(r)$ that uses only the first rth fraction of the sample $\varepsilon_1, ..., \varepsilon_T$

$$\mathbf{X}_{T}(r) = \frac{1}{T} \sum_{t=1}^{\lfloor rT \rfloor} \varepsilon_{t}, \tag{1}$$

where 0 < r < 1.

The corresponding functional central limit theorem

$$\sqrt{T}\mathbf{X}_{T}(\cdot) \stackrel{d}{\to} \mathbf{W}(\cdot) \tag{2}$$

for $0 \le r \le 1$. Note that $\mathbf{W}(r) \sim N_n(\mathbf{0}, r \mathbf{I}_n)$.

4□ > 4□ > 4□ > 4 = > = 90

Functional Central Limit Theorem

Suppose that there is another vector sequence \mathbf{v}_t such that $\mathbf{v}_t = \mathbf{P}\varepsilon_t$, and that $\mathbf{PP}' = \mathbf{\Omega}$ which is positive definite. The sequence of \mathbf{v}_t is *i.i.d.* with mean zero and covariance $\mathbf{\Omega}$.

Let $X_T^*(r)$ be

$$\mathbf{X}_{T}^{*}(r) = \frac{1}{T} \sum_{t=1}^{\lfloor rI \rfloor} \mathbf{v}_{t}, \tag{3}$$

where 0 < r < 1.

Then the functional central limit theorem

$$\sqrt{T}\mathbf{X}_{T}^{*}(\cdot) \stackrel{d}{\to} \mathbf{P} \cdot \mathbf{W}(\cdot) \tag{4}$$

for $0 \le r \le 1$. Note that **PW** $(r) \sim N_n(\mathbf{0}, r\mathbf{\Omega})$.

Yukai Yang (2ST111)

Vector I(0) process

Recall that

■ A linear zero-mean vector I(0) process is a vector $MA(\infty)$ process

$$\mathbf{u}_t = \mathbf{\Psi}(L)\mathbf{v}_t, \ \mathbf{\Psi}(L) = \mathbf{\Psi}_0 + \mathbf{\Psi}_1 L + \mathbf{\Psi}_2 L^2 + \dots, \tag{5}$$

satisfying 2 conditions:

- **1** $\Psi(1) \neq \mathbf{0}$ (but not necessarily of full rank), (ensures I(0)) and
- 2 the matrix $\Psi_s = (\psi_{ij}^{(s)})$ is one-summable, meaning $\sum_{s=0}^{\infty} s |\psi_{ij}^{(s)}| < \infty$ for all $i, j = 1, 2, \dots, n$ (we need it later).
- The Long-Run coVariance (LRV) matrix of \mathbf{u}_t is

$$LRV(\mathbf{u}_t) \equiv \lim_{T \to \infty} Var[\sqrt{T}\bar{\mathbf{u}}_T] = \mathbf{\Psi}(1)\mathbf{\Omega}\mathbf{\Psi}(1)'. \tag{6}$$

Yukai Yang (2ST111)

Vector I(1) process

A vector I(1) process is defined as

$$\Delta \mathbf{y}_t = \delta + \mathbf{u}_t \tag{7}$$

where $\mathbf{u}_t = \mathbf{\Psi}(L)\mathbf{v}_t$ and $\delta = \mathsf{E}(\Delta\mathbf{y}_t)$ is a vector of constants. Hence,

$$\Delta \mathbf{y}_t = \boldsymbol{\delta} + \mathbf{\Psi}(L)\mathbf{v}_t \tag{8}$$

is the vector moving average (VMA) representation of a vector I(1) process.

■ In levels, y_t can be written as

$$\mathbf{y}_t = \mathbf{y}_0 + \delta t + \sum_{s=1}^t \mathbf{u}_s \tag{9}$$

Beveridge-Nelson decomposition

Using $\Psi(L) = \Psi(1) + \Delta \alpha(L)$ where $\alpha(L) = \sum_{j=0}^{\infty} \alpha_j L^j$, with $\alpha_j = -(\Psi_{j+1} + \Psi_{j+2} + \ldots)$ for $j = 0, 1, \ldots$, we can write

$$\mathbf{u}_t = \mathbf{\Psi}(1)\mathbf{v}_t + \boldsymbol{\eta}_t - \boldsymbol{\eta}_{t-1}, \tag{10}$$

where $\eta_t = \alpha(L)\mathbf{v}_t$ is a zero-mean I(0) process, and $\alpha(L)$ is absolutely summable (ensured by the one-summability).

Substitution of (10) in (9) gives

$$\mathbf{y}_{t} = \underbrace{\delta t}_{\text{linear trend}} + \underbrace{\Psi(1) \sum_{s=1}^{t} \mathbf{v}_{s}}_{\text{stochastic trend}} + \underbrace{\eta_{t}}_{\text{cycle}} + \underbrace{y_{0} - \eta_{0}}_{\text{initial condition}}$$
(11)

FCLT for Serially Dependent Vector Processes

Now suppose that $\delta = \mathbf{0}$ and $\mathbf{y}_0 = \mathbf{0}$.

$$\mathbf{y}_{t} = \sum_{s=1}^{t} \mathbf{u}_{s} = \mathbf{\Psi}(1) \sum_{s=1}^{t} \mathbf{v}_{s} + \boldsymbol{\eta}_{t} - \boldsymbol{\eta}_{0}$$
 (12)

Let $\mathbf{X}_{T}^{**}(r)$ be

$$\mathbf{X}_{T}^{**}(r) = \frac{1}{T} \sum_{t=1}^{\lfloor rT \rfloor} \mathbf{u}_{t} = \mathbf{y}_{\lfloor rT \rfloor} / T, \tag{13}$$

where $0 \le r \le 1$.

Then the functional central limit theorem

$$\sqrt{T}\mathbf{X}_{T}^{**}(\cdot) \stackrel{d}{\to} \mathbf{\Psi}(1) \cdot \mathbf{P} \cdot \mathbf{W}(\cdot) \tag{14}$$

10 / 36

for $0 \le r \le 1$. Note that $\Psi(1)\mathbf{PW}(r) \sim N_n(\mathbf{0}, r\Psi(1)\mathbf{\Omega}\Psi(1)')$.

Yukai Yang (2ST111) Cointegration

Asymptotic Results for Nonstationary Vector Processes

- Proposition 18.1 on pp.547 in Hamilton summarizes the results.
- Note that we use different notations compared to the ones in Hamilton.
- The differences are mainly, in Hamilton,
 - \mathbf{v}_t for *i.i.d.* error vectors with covariance \mathbf{I}_n while we use ε_t ;
 - $\mathbf{\varepsilon}_t$ for $\mathbf{P}\mathbf{v}_t$ while we use \mathbf{v}_t ;
 - $\boldsymbol{\xi}_t = \sum_{s=1}^t \mathbf{u}_s$ while we use \mathbf{y}_t .

An Alternative Representation of a VAR(p) Process

Consider the following VAR(p) process

$$\mathbf{\Phi}(L)\mathbf{y}_t = \alpha + \mathbf{v}_t,\tag{15}$$

where $\Phi(L) = \mathbf{I}_n - \Phi_1 L - ... - \Phi_p L^p$, and \mathbf{v}_t is defined as before.

The lag polynomial can be rewritten as

$$\Phi(L) = \mathbf{I}_n - \Phi_1 L - \dots - \Phi_p L^p
= (\mathbf{I}_n - \rho L) - (\zeta_1 L + \zeta_2 L^2 + \dots + \zeta_{p-1} L^{p-1})(1 - L)$$

where
$$\rho = \sum_{s=1}^{p} \mathbf{\Phi}_s$$
 and $\boldsymbol{\zeta}_s = -(\mathbf{\Phi}_{s+1} + \mathbf{\Phi}_{s+2} + ... \mathbf{\Phi}_p)$.

Then it follows that

$$\mathbf{y}_{t} = \rho \mathbf{y}_{t-1} + \zeta_{1} \Delta \mathbf{y}_{t-1} + \zeta_{2} \Delta \mathbf{y}_{t-2} + \dots + \zeta_{p-1} \Delta \mathbf{y}_{t-p+1} + \alpha + \mathbf{v}_{t}.$$
 (16)

A Very Strong Assumption

• If $I_n = \rho$, we can equivalently analyze the first-order difference of \mathbf{y}_t , which is a VAR(p-1) process.

$$\Delta \mathbf{y}_{t} = \zeta_{1} \Delta \mathbf{y}_{t-1} + \zeta_{2} \Delta \mathbf{y}_{t-2} + \dots + \zeta_{p-1} \Delta \mathbf{y}_{t-p+1} + \alpha + \mathbf{v}_{t}.$$
 (17)

lacksquare By assuming that $\zeta(L)$ is stable, the model can be

$$\Delta \mathbf{y}_t = \zeta(1)^{-1} \alpha + \zeta(L)^{-1} \mathbf{v}_t = \delta + \mathbf{u}_t, \tag{18}$$

where $\zeta(L)^{-1} = \Psi(L)$, $\delta = \Psi(1)\alpha$ and $\mathbf{u}_t = \Psi(L)\mathbf{v}_t$.

- The assumption $\mathbf{I}_n = \boldsymbol{\rho}$ is so strong that we could rarely find it in reality.
- Note that $\mathbf{I}_n = \boldsymbol{\rho}$ implies $|\mathbf{I}_n \boldsymbol{\rho}| = 0$, but the other way around does not hold.
- First we consider the testing for the case $I_n = \rho$, and then the more interesting case $|I_n \rho| = 0$ follows.

 4 □ > 4 □

The Case with No Drift

■ The regression model

$$\mathbf{y}_t = \rho \mathbf{y}_{t-1} + \zeta_1 \Delta \mathbf{y}_{t-1} + \zeta_2 \Delta \mathbf{y}_{t-2} + ... + \zeta_{p-1} \Delta \mathbf{y}_{t-p+1} + \alpha + \mathbf{v}_t.$$

Assumptions: the lag polynomial $\zeta(L)$ is stable, or equivalently the roots of the polynomial

$$|\mathbf{I}_n - \zeta_1 z - \zeta_2 z^2 - \dots - \zeta_{p-1} z^{p-1}| = 0$$
 (19)

are all outside the unit disk.

- lacksquare Null hypothesis H_0 : $oldsymbol{
 ho}=lacksquare$ and $lpha=oldsymbol{0}$
- From [18.2.18] on pp.551, we see that the estimators have different rates of convergence. In particular, $\hat{\rho} \mathbf{I}_n = O_p(T^{-1})$
- The test is given by [18.2.25] on pp.552. Note that the parameters are split into two parts, ζ s and (α, ρ) .

14 / 36

The Case with Drift

■ The regression model

$$\mathbf{y}_t = \rho \mathbf{y}_{t-1} + \zeta_1 \Delta \mathbf{y}_{t-1} + \zeta_2 \Delta \mathbf{y}_{t-2} + ... + \zeta_{p-1} \Delta \mathbf{y}_{t-p+1} + \alpha + \mathbf{v}_t.$$

- Assumptions: the lag polynomial $\zeta(L)$ is stable and $\alpha \neq \mathbf{0}$.
- Null hypothesis $H_0: \rho = \mathbf{I}_n$
- Note that there is a reparametrization in [18.2.43] on pp.556!
- The rates of convergence of the estimators are shown in [18.2.45] on pp.556.
- The test for equation i is given by [18.2.49] on pp.557. Note that the parameters are split into two parts, ζ_i s and $(\alpha_i^*, \rho_i^*, \gamma_i)$.

Vector Autoregressions Containing Unit Roots

Remarks:

- We can test all the parameters including ζ s. The "null hypothesis" in previous pages stresses that they are somewhat "assumed" but still the zero parameters are put inside the regression.
- We see that the limiting distributions of these parameters depend closely on the assumptions or (better say) beliefs.
- Though these tests are not so often used in reality, but the tests for the case n=1 is widely used, which are exactly the augmented Dickey-Fuller tests.

Spurious Regressions

Consider the I(1) vector sequence \mathbf{y}_t whose difference is simply

$$\Delta \mathbf{y}_t = \boldsymbol{\varepsilon}_t,$$

where ε_t has covariance \mathbf{I}_n .

• For simplicity, assume n = 2. Let us regress the following model

$$y_{1t} = \alpha + \gamma y_{2t} + \epsilon_t \tag{20}$$

- We know that $\alpha = 0$ and $\gamma = 0$.
- However,

$$\begin{pmatrix} T^{-1/2}\hat{\alpha}_T \\ \hat{\gamma}_T \end{pmatrix} \stackrel{d}{\to} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \tag{21}$$

where h_1 and h_2 are given by [18.3.9] on pp.559.

- We see that neither of them are consistent because h_1 and h_2 have random variables with non-zero expectation and non-zero variances.
- Even worse, $\hat{\alpha}_T$ diverges.

Cointegration

Engel and Granger's cointegration:

- The I(1) process \mathbf{y}_t defined in (8) is cointegrated with cointegrating vector $\mathbf{a} \neq 0$ (of dimension $n \times 1$), if $\mathbf{a}'\mathbf{y}_t$ is trend-stationary.
- Multiplying (11) on both sides by a', we obtain

$$\mathbf{a}'\mathbf{y}_t = \mathbf{a}'\delta t + \mathbf{a}'\Psi(1)\sum_{s=1}^t \mathbf{v}_s + \mathbf{a}'\eta_t + \mathbf{a}'(\mathbf{y}_0 - \eta_0)$$
 (22)

and $\mathbf{a}'\mathbf{y}_t$ is trend-stationary if $\mathbf{a}'\mathbf{\Psi}(1) = \mathbf{0}'$.

- The example on pp.572 about the purchasing power parity (PPP).
- The sufficient condition for $\mathbf{a}'\Psi(1) = \mathbf{0}'$ holds for a non-zero vector \mathbf{a} is that $\Psi(1)$ has reduced rank.
- Suppose that the null space of $\Psi(1)$ has dimension h. There exist h a vectors who are linearly independent such that $\mathbf{A}'\Psi(1) = \mathbf{0}'$, where $\mathbf{A} = (\mathbf{a}_1, ..., \mathbf{a}_h)$. A is not unique!

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ■

Related Concepts

- The cointegrating (CI) rank is the number of linearly independent cointegrating vectors. If the CI rank is equal to h, then $\operatorname{rank}(\Psi(1)) = n h$.
- The CI space is the space spanned by the cointegrating vectors.
- It may also happen that $\mathbf{a}' \boldsymbol{\delta} = 0$. Then $\mathbf{a}' \mathbf{y}_t$ is stationary, rather than trend stationary.
- In that case $\operatorname{rank}([\delta : \Psi(1)]) = \operatorname{rank}(\Psi(1))$: since the left matrix has 1 + n columns and n rows, its rank can't exceed $\operatorname{rank}(\Psi(1))$. This implies that δ is a linear combination of the columns of $\Psi(1)$.

Implications

- If h = n, rank $(\Psi(1)) = n h = 0 \Rightarrow \Psi(1) = 0$, which is ruled out since \mathbf{u}_t is I(0).
- LRV($\Delta \mathbf{y}_t$) = LRV(\mathbf{u}_t) = $\mathbf{\Psi}(1)\mathbf{\Omega}\mathbf{\Psi}(1)'$ is positive definite if and only if $\mathbf{\Psi}(1)$ is of full rank.
- Therefore, \mathbf{y}_t cannot be cointegrated if $LRV(\Delta \mathbf{y}_t)$ is positive definite. In this case, each element of $\Delta \mathbf{y}_t$ has its LRV > 0 and is a univariate I(1) process.
- Let $\mathbf{y}_t' = (y_{1t}, \mathbf{y}_{2t}')$ and $\mathbf{a}' = (a_1, \mathbf{a}_2')$. If h = 1 and $a_1 \neq 0$, then y_{1t} is cointegrated with some elements in \mathbf{y}_{2t} (i.e. $\mathbf{a}_2 \neq 0$). But \mathbf{y}_{2t} is not cointegrated (itself) without y_{1t} , i.e. there is no CI vector such as $(0, \mathbf{b}')$.
 - If h > 1 (more than 1 Cl vector), then \mathbf{y}_{2t} is also cointegrated (itself).

The Stock-Watson Common Trend Representation

Fact 1: if $rank(\Psi(1)) = n - h$, there exists a non-singular $n \times n$ matrix \mathbf{G} , and a $n \times (n - h)$ matrix \mathbf{F} of full column rank, such that $\Psi(1)\mathbf{G} = [\mathbf{F} \vdots \mathbf{0}_{n \times h}]$.

Then the stochastic trend component of y_t in (11) can be written $\Psi(1) \sum_{s=1}^t \mathbf{v}_s = \Psi(1) \mathbf{G} \mathbf{G}^{-1} \sum_{s=1}^t \mathbf{v}_s$

$$= \left[\mathbf{F} \stackrel{.}{\cdot} \mathbf{0}_{n \times h} \right] \begin{pmatrix} \boldsymbol{ au}_t \\ \dots \\ \boldsymbol{v}_t \end{pmatrix} = \mathbf{F} \boldsymbol{ au}_t$$

Therefore, an I(1) system with a CI rank equal to h has h-h "common stochastic trends", which are the elements of τ_t .

Cointegrated VAR

- We don't use the VMA form to model cointegration. Normally we use the VAR model.
- We need to model \mathbf{y}_t , not just $\Delta \mathbf{y}_t$!
- We transform the VAR into its VECM form.

Stationary VAR

- A VAR(p) model with stable lag polynomial, implies that y_t is stationary, therefore not cointegrated. What conditions must be imposed if we want the VAR to allow for cointegration of \mathbf{y}_t ?
- We write the VAR(p) as

$$\mathbf{y}_t - \mathbf{a} - \mathbf{d}t = \mathbf{w}_t \tag{23}$$

$$\mathbf{\Phi}(L)\mathbf{w}_t = \mathbf{v}_t \tag{24}$$

which is equivalent to

$$\mathbf{\Phi}(L)\mathbf{y}_t = \alpha + \gamma t + \mathbf{v}_t \tag{25}$$

for
$$lpha = \mathbf{\Phi}(1)\mathbf{a} - (\sum_{j=1}^p j\mathbf{\Phi}_j)\mathbf{d}$$
 and $\gamma = \mathbf{\Phi}(1)\mathbf{d}$.

Yukai Yang (2ST111)

I(1) VAR and Reduced Rank Condition

- $\mathbf{w}_t \sim \mathsf{I}(1)$ and $\mathbf{v}_t \sim \mathsf{I}(0)$.
- Multiply both sides of (24) by $\Delta = 1 L$:

$$\Phi(L)\Delta \mathbf{w}_t = (1-L)\mathbf{v}_t$$
, and substitute $\Psi(L)\mathbf{v}_t$ (Wold representation) for $\Delta \mathbf{w}_t$: $\Phi(L)\Psi(L)\mathbf{v}_t = (1-L)\mathbf{v}_t$.

This must be true for any \mathbf{v}_t , hence

$$\mathbf{\Phi}(L)\mathbf{\Psi}(L) = (1-L)\mathbf{I}_n \tag{26}$$

- Let L=1, we see that $\mathbf{\Phi}(1)\mathbf{\Psi}(1)=0$.
- For cointegration, we need $\Psi(L)$ to be one-summable and $\operatorname{rank}(\Psi(1)) = n h$.
- The essential condition for this is that $rank(\mathbf{\Phi}(1)) = h < n$ (reduced rank).
- Denote $\Pi = -\Phi(1)$ hereafter. $rank(\Pi) = rank(\Phi(1))$.

CI Vectors

■ If $rank(\Pi) = h$, there exist two $n \times h$ matrices $\tilde{\alpha}$ and β , each of of rank h, such that

$$\mathbf{\Pi} = \tilde{\boldsymbol{\alpha}} \boldsymbol{\beta}' \tag{27}$$

Hence, $\tilde{\alpha}\beta'\Psi(1) = \mathbf{0} \Rightarrow \beta'\Psi(1) = \mathbf{0}$, which shows that the rows of β' are cointegrating vectors.

- The matrices $\tilde{\alpha}$ and β are not uniquely defined, since $\tilde{\alpha}\beta' = \tilde{\alpha}\mathbf{H}\mathbf{H}^{-1}\beta'$ for any non-singular matrix \mathbf{H} (of dimension $h \times h$).
- For estimation, h^2 identification restrictions need to be imposed. For example, if h=1, $\beta'=(\beta_1,\ \beta_2)$ must be normalized to e.g. $(1,\ -b)$ where $b=-\beta_2/\beta_1$.

VECM Representation

We have

$$\Delta \mathbf{y}_{t} = \tilde{\alpha} \beta' y_{t-1} + \alpha + \gamma t + \zeta_{1} \Delta \mathbf{y}_{t-1} + \dots + \zeta_{p-1} \Delta \mathbf{y}_{t-p+1} + \mathbf{v}_{t}$$
 (28)

which is the vector error-correction model (VECM).

- The variables $\beta' y_{t-1}$ are the "cointegrating errors" (or "disequilibrium terms") which are corrected for in each equation of the system through the "loading coefficients" in the matrix $\tilde{\alpha}$.
- If $\beta' y_t$ has no trend, then $\beta' \mathbf{d} = 0$ and $\gamma = -\tilde{\alpha}\beta' \mathbf{d} = 0$. In this case, the VECM does not include the linear trend term although it may be present in some elements of y_t as we see in equation (23).

A Cointegraed VAR(1)

Consider the simple VAR(1) process:

$$\mathbf{y}_t = \mathbf{A}\mathbf{y}_{t-1} + \mathbf{v}_t, \tag{29}$$

with $\mathbf{A}(z) = \mathbf{I} - \mathbf{A}z$ has at least one root at z = 1 if $|\mathbf{A}(1)| = 0$. Equivalently, the corresponding $\mathbf{\Pi}$ has reduced rank where $\mathbf{\Pi} = \mathbf{A} - \mathbf{I}$.

- We assume that $\mathbf{y}_t \sim \mathsf{I}(1)$. Very important!
- The corresponding VECM is

$$\Delta \mathbf{y}_t = \mathbf{\Pi} \mathbf{y}_{t-1} + \mathbf{v}_t \tag{30}$$

with $\Pi = \tilde{\alpha} \beta'$, h is the CI rank.

■ Since $\tilde{\alpha}$ and β are both $n \times h$ full rank matrices, there exist $\tilde{\alpha}_{\perp}$ and β_{\perp} , which are both $n \times (n - h)$ matrices, s.t. $\tilde{\alpha}'_{\perp} \tilde{\alpha} = 0$ and $\beta'_{\perp} \beta = 0$.

Roots and Eigenvalues

- If (29) is stable (the lag polynomial $\mathbf{A}(L)$ is stable), the roots of $|\mathbf{A}(z)| = |\mathbf{I} \mathbf{A}z| = 0$ are all outside the unit circle, i.e. |z| > 1.
- This is equivalent to the eigenvalue problem $|\lambda \mathbf{I} \mathbf{A}| = 0$, which implies that the modulus of all the eigenvalues of \mathbf{A} matrix are all smaller than 1, i.e. $|\lambda| < 1$.
- If the system contains unit roots, we say, some of the roots or eigenvalues are equal to one.

Long-run relations

• Multiplying both sides of (30) by β' yields

$$\beta'(\mathbf{y}_{t} - \mathbf{y}_{t-1}) = \beta'\tilde{\alpha}\beta'\mathbf{y}_{t-1} + \beta'\mathbf{v}_{t}$$

$$\beta'\mathbf{y}_{t} = (\beta'\tilde{\alpha} + \mathbf{I})\beta'\mathbf{y}_{t-1} + \beta'\mathbf{v}_{t}$$

$$\rightarrow \mathbf{s}_{t} = \mathbf{B}\mathbf{s}_{t-1} + \eta_{t} = \mathbf{B}^{t}\mathbf{s}_{0} + \sum_{i=0}^{t-1} \mathbf{B}^{i}\eta_{t-i}$$
(31)

$$= \sum_{i=0}^{\infty} \mathbf{B}^i \boldsymbol{\eta}_{t-i}, \tag{32}$$

where $\mathbf{s}_t = \beta' \mathbf{y}_t \sim \mathsf{I}(0)$, $\mathbf{B} = \beta' \tilde{\alpha} + \mathsf{I}$ and $\boldsymbol{\eta}_t = \beta' \mathbf{v}_t \sim \mathsf{I}(0)$.

- This process contains the linear combinations of \mathbf{y}_t , which are stationary or asymptotically stable process over time.
- $m{\beta}$ consists of h linearly independent vectors, and it is called long-run relations or cointegrating relations if $m{\beta}' \mathbf{y}_t \sim \mathbf{I}(0)$.
- These linear combinations are not unique. For any $K \neq 0$, $K\beta'\mathbf{y}_t$ is also stationary.

Why $\beta' y_t$ is asymptotically stable?

- Due to the important assumption: $|\mathbf{A}(z) = 0|$ has n h unit roots and the other roots are outside the unit circle.
- $\mathbf{\Pi} = \mathbf{A} \mathbf{I} = -\mathbf{A}(1)$ has reduced rank and can be decomposed by $\tilde{\alpha}\beta'$. CI rank is h. And $\mathbf{A} = \mathbf{I} + \tilde{\alpha}\beta'$.
- Check the following derivation carefully

$$|\mathbf{A}(z)| = 0 \implies |(\beta, \beta_{\perp})' \mathbf{A}(z)(\beta, \beta_{\perp})| = 0$$

$$\implies \begin{vmatrix} \beta' \beta - \beta' \mathbf{A} \beta z & -\beta' \mathbf{A} \beta_{\perp} z \\ -\beta'_{\perp} \mathbf{A} \beta z & \beta'_{\perp} \beta_{\perp} - \beta'_{\perp} \mathbf{A} \beta_{\perp} z \end{vmatrix} = 0 (33)$$

$$\implies |\mathbf{I}_{h} - (\mathbf{I}_{h} + \beta' \tilde{\alpha}) z ||\mathbf{I}_{n-h} - \mathbf{I}_{n-h} z| = 0$$
 (34)

where $\mathbf{I}_h + \boldsymbol{\beta}' \tilde{\boldsymbol{\alpha}} = \mathbf{B}$

■ The other roots $(|\mathbf{I}_h - (\mathbf{I}_h + \beta'\tilde{\alpha})z| = 0)$ are outside the unit circle as assumed...

The Pushing Force

lacksquare Multiplying both sides of (30) by $ilde{lpha}'_{ot}$ yields

$$\tilde{\alpha}'_{\perp} \Delta \mathbf{y}_{t} = \tilde{\alpha}'_{\perp} \mathbf{v}_{t}$$

$$\tilde{\alpha}'_{\perp} \mathbf{y}_{t} = \tilde{\alpha}'_{\perp} \sum_{i=0}^{t-1} \mathbf{v}_{t-i} + \tilde{\alpha}'_{\perp} \mathbf{y}_{0}.$$
(35)

- $\tilde{\alpha}'_{\perp} \sum_{i=0}^{t-1} \mathbf{v}_{t-i}$ in (35) is the common stochastic trends of the I(1) VAR(1) process. We see that there are n-h common stochastic trends, or unit roots in the vector system.
- The common stochastic trends are not unique. For any full rank $(n-h)\times (n-h)$ matrix K, $K\tilde{\alpha}'_{\perp}\sum_{i=0}^{t-1}\mathbf{v}_{t-i}$ common trends as well.
- $\tilde{\alpha}'_{\perp} \sum_{i=0}^{t-1} \mathbf{v}_{t-i}$ is also called the pushing force.

Granger's VMA Representation

The beautiful identity:

$$\beta_{\perp}(\tilde{\alpha}_{\perp}'\beta_{\perp})^{-1}\tilde{\alpha}_{\perp}' + \tilde{\alpha}(\beta'\tilde{\alpha})^{-1}\beta' = I.$$
 (36)

Thus, we have

$$\mathbf{y}_{t} = (\beta_{\perp}(\tilde{\alpha}'_{\perp}\beta_{\perp})^{-1}\tilde{\alpha}'_{\perp} + \tilde{\alpha}(\beta'\tilde{\alpha})^{-1}\beta')\mathbf{y}_{t}$$
$$= (\beta_{\perp}(\tilde{\alpha}'_{\perp}\beta_{\perp})^{-1})\tilde{\alpha}'_{\perp}\mathbf{y}_{t} + (\tilde{\alpha}(\beta'\tilde{\alpha})^{-1})\beta'\mathbf{y}_{t}$$

Replace the red parts by the common trends and the long-run relations:

$$y_t = \mathbf{C} \sum_{i=0}^{t-1} \mathbf{v}_{t-i} + \mathbf{C} \mathbf{y}_0 + \tilde{\alpha} (\beta' \tilde{\alpha})^{-1} (\sum_{i=0}^{\infty} \mathbf{B}^i \boldsymbol{\eta}_{t-i},)$$
(37)

where $\mathbf{C}=oldsymbol{eta}_\perp (ilde{lpha}'_\perp oldsymbol{eta}_\perp)^{-1} ilde{lpha}'_\perp$.

Yukai Yang (2ST111)

Cointegrated VAR with Intercept and Trend

■ We consider the following VAR(1) model

$$\mathbf{y}_t = \mathbf{A}\mathbf{y}_{t-1} + \mu + \delta t + \mathbf{v}_t, \tag{38}$$

where μ and δ may not be zero. $\mathbf{A}(z)$ contains r unit roots and the others roots are outside the unit circle.

■ The corresponding VECM

$$\Delta \mathbf{y}_t = \mathbf{\Pi} \mathbf{y}_{t-1} + \boldsymbol{\mu} + \boldsymbol{\delta} t + \mathbf{v}_t, \tag{39}$$

33 / 36

where $\Pi = \tilde{lpha}eta'$.

- $\beta' \mathbf{y}_t$ is trend stationary. But the "one-summability" should be carefully checked.
- The pushing force may contains quadratic trend:

$$\tilde{\boldsymbol{\alpha}}'_{\perp} \Delta \mathbf{y}_{t} = \tilde{\boldsymbol{\alpha}}'_{\perp} \boldsymbol{\mu} + \tilde{\boldsymbol{\alpha}}'_{\perp} \delta t + \tilde{\boldsymbol{\alpha}}'_{\perp} \mathbf{v}_{t}$$

$$\tilde{\boldsymbol{\alpha}}'_{\perp} \mathbf{y}_{t} = \tilde{\boldsymbol{\alpha}}'_{\perp} \sum_{i=0}^{t-1} (\boldsymbol{\mu} + \boldsymbol{\delta}(t-i) + \mathbf{v}_{t-i}) + \tilde{\boldsymbol{\alpha}}'_{\perp} \mathbf{y}_{0}. \tag{40}$$

The role of deterministic terms

■ The Granger VMA representation is

$$\mathbf{y}_{t} = \mathbf{C}\mathbf{y}_{0} + \mathbf{C}\sum_{i=0}^{t-1}(\mu + \delta(t-i) + \mathbf{v}_{t-i})$$
 (41)

$$+\tilde{\alpha}(\beta'\tilde{\alpha})^{-1}(\sum_{i=0}^{\infty}\mathsf{B}^{i}\beta'(\mu+\delta(t-i)+\mathsf{v}_{t-i})) \qquad (42)$$

where $\mathbf{C} = \boldsymbol{\beta}_{\perp} (\tilde{\alpha}_{\perp}' \boldsymbol{\beta}_{\perp})^{-1} \tilde{\alpha}_{\perp}'$ and the last term is trend stationary.

- If $\delta = \tilde{\alpha}\kappa$, where κ is an $h \times h$ matrix, there will be no quadratic trend in the system!
- Given $\delta = 0$, if $\mu = \tilde{\alpha}\gamma$, where γ is an $h \times h$ matrix, there will be no deterministic trend in the system!

◆ロト ◆団 ト ◆ 差 ト ◆ 差 ・ からで

Restricted intercept and trend

- Given CI h, the deterministic terms can be written as $\mathbf{d}_t = \mu + \delta t = \tilde{\alpha}\kappa_0 + \tilde{\alpha}_{\perp}\kappa_1 + (\tilde{\alpha}\gamma_0 + \tilde{\alpha}_{\perp}\gamma_1)t$
- the following models (hypotheses) have nested relations:

$$H(h)$$
: $\mathbf{d}_t = \tilde{\alpha}\kappa_0 + \tilde{\alpha}_{\perp}\kappa_1 + (\tilde{\alpha}\gamma_0 + \tilde{\alpha}_{\perp}\gamma_1)t$ (43)

$$H^*(h)$$
 : $\mathbf{d}_t = \tilde{\alpha}\kappa_0 + \tilde{\alpha}_\perp \kappa_1 + \tilde{\alpha}\gamma_0 t$ (no quadratic trend) (44)

$$H_1(h)$$
: $\mathbf{d}_t = \tilde{\alpha}\kappa_0 + \tilde{\alpha}_{\perp}\kappa_1$ (no trend in $\beta' y_t$) (45)

$$H_1^*(h)$$
 : $\mathbf{d}_t = \tilde{\alpha}\kappa_0$ (no trend) (46)

$$H_2(h)$$
: $\mathbf{d}_t = 0$ (no deterministic terms) (47)

