

Agenda

CRIANDO SUBREDES

Endereço de Rede

- Quando a parte do ID de host de um endereço IP é composta por zeros, tratase de um endereço de rede
- - 113.0.0.0 → endereço de rede
 - 113.10.6.3 → endereço de um host
- O roteador usa o endereço de rede para encaminhar o pacote para a rede adequada
- O endereço de rede não pode ser atribuído a nenhum host

Endereço de Broadcast

- Endereço usado para enviar mensagens a TODOS os hosts da rede
- O endereço de broadcast é composto por bits 1 nos octetos de host
- Ex. classe A:
 - 113.0.0.0 → endereço de rede
 - 113.10.6.3 → endereço de um host
 - 113.11111111.11111111.1111111
 - 113.255.255.255 → endereço de broadcast

Criando uma Sub Rede

- Primeiro definimos quantas sub redes são necessárias e quantos hosts cada uma terá
- Devemos lembrar que perderemos 2 sub redes e todos os seus hosts, e que em todas as demais sub redes perderemos mais 2 endereços
- Ex. de criação de sub rede
- Pensemos num endereço classe C:

• Se tomarmos emprestados 2 bits da parte de host teremos:

Ao tomarmos 2 bits emprestados teremos 4 sub redes (2²) com 64 hosts (26)

A primeira e a última sub rede não serão usadas, então perdemos 2 sub redes e 128 hosts

Nas 2 sub redes restantes, o primeiro e o último endereço não são usados, então teremos 62 hosts em cada, totalizando 124 hosts

Antes de criar as sub redes, usando a classe C pura, tínhamos 254 hosts

Criar as sub redes gerou uma perda de 51% dos endereços

Exemplo:

- Uma empresa recebeu da entidade regulamentadora de endereços IP (IANA) o endereço IP 221.157.37.0, para ser utilizado em sua rede interna. (endereço classe C)
- Por motivos não pertinentes aqui, a empresa necessita de 5 endereços de sub-redes com pelo menos 4 hosts em cada.
- Com esse endereço puro, é possível endereçar apenas uma única rede com 254 hosts, por isso faz-se necessário o uso de sub-redes.
- Ao observar-se que existe o último octeto do endereço (classe C), com 8 bits para endereçar hosts, pode-se então utilizá-los para criar as sub-redes necessárias para atender à necessidade da empresa.

- Atentar para o fato que se deve reservar no mínimo 2 bits para hosts e no mínimo 2 bits para sub-redes, conforme é apresentado a seguir:
 - IP 221.157.37.0 11011101.10011101.00100100000 00
 - Máscara da Classe C (255.255.255.0) -(R.R.R.H)

Bits emprestados	Máscara de sub-rede	Qtde. de sub-redes	Qtde. de hosts
1	255.255.255.128 11111111.11111111.1111111.10000000	$2^1 = 2 (2 - 2 = 0)$	2 ⁷ = 128 (128 - 2 = 126)
2	255.255.255.192 11111111.1111111111111111111000000	$2^2 = 4 (4 - 2 = 2)$	$2^6 = 64 (64 - 2 = 62)$
3	255.255.255.224 11111111.1111111.1111111.11100000	$2^3 = 8 (8 - 2 = 6)$	$2^5 = 32 (32 - 2 = 30)$
4	255.255.255.240 11111111.11111111111111111110000	2 ⁴ = 16 (16 - 2 = 14)	2 ⁴ = 16 (16 - 2 = 14)
5	255.255.255.248 11111111.11111111.1111111000	$2^5 = 32 (32 - 2 = 30)$	$2^3 = 8 (8 - 2 = 6)$
6	255.255.255.252 11111111.11111111.111111100	$2^6 = 64 (64 - 2 = 62)$	$2^2 = 4 (4 - 2 = 2)$

 Como pode ser observado na tabela, existem apenas três possibilidades que atendem à condição de oferecer cinco sub-redes, com pelo menos quatro hosts em cada uma delas.

Bits emprestados	Máscara de sub-rede	Qtde. de sub-redes	Qtde. de hosts
1	255.255.255.128 11111111.111111111111111111110000000	$2^1 = 2 (2 - 2 = 0)$	$2^7 = 128 (128 - 2 = 126)$
2	255.255.255.192 11111111.11111111111111111111111111	$2^2 = 4 (4 - 2 = 2)$	$2^6 = 64 (64 - 2 = 62)$
3	255.255.255.224 11111111.11111111111111111111100000	$2^3 = 8 (8 - 2 = 6)$	2 ⁵ = 32 (32 - 2 = 30)
4	255.255.255.240 11111111111111111111111111110000	2 ⁴ = 16 (16 - 2 = 14)	2 ⁴ = 16 (16 - 2 = 14)
5	255.255.255.248 11111111.1111111111111111111111111111	2 ⁵ = 32 (32 - 2 = 30)	$2^3 = 8 (8 - 2 = 6)$
6	255.255.255.252 11111111.111111111111111	$2^6 = 64 (64 - 2 = 62)$	$2^2 = 4 (4 - 2 = 2)$

- Algumas considerações importantes para a compreensão da criação das sub-redes:
 - Endereço de rede ou sub-rede: é obtido passando-se todos os bits que endereçam hosts para o nível lógico 0 (zero), por exemplo: 110 00000.
 - Endereço de Broadcast: é obtido passando-se todos os bits que endereçam hosts para o nível lógico 1 (um), por exemplo: 110 11111.
- Como exemplo, pode-se utilizar a opção que usa três bits emprestados para criar as subredes.
- Assim, tomando-se como exemplo o endereço dado, que é 221.157.37.0000000, teremos:

Sub-redes	Endereços de sub-rede	Broadcast	Endereços de Broadcast
221.157.37. 000 <mark>00000</mark>	221.157.37.0	221.157.37. 000 11111	221.157.37.31
221.157.37. 001 <mark>00000</mark>	221.157.37.32	221.157.37. 001 11111	221.157.37.63
221.157.37. 010 00000	221.157.37.64	221.157.37. 010 <mark>11111</mark>	221.157.37.95
221.157.37. 011 <mark>00000</mark>	221.157.37.96	221.157.37. 011 <mark>11111</mark>	221.157.37.127
221.157.37. 100 00000	221.157.37.128	221.157.37. 100 <mark>11111</mark>	221.157.37.159
221.157.37. 101 <mark>00000</mark>	221.157.37.160	221.157.37. 101 <mark>11111</mark>	221.157.37.191
221.157.37. 110 <mark>00000</mark>	221.157.37.192	221.157.37. 110 <mark>11111</mark>	221.157.37.223
221.157.37. 111 <mark>00000</mark>	221.157.37.224	221.157.37. 111 <mark>11111</mark>	221.157.37.255

- A partir da tabela anterior, podemos observar que os endereços IP válidos estão no intervalo entre o endereço da sub-rede e o endereço de broadcast para cada segmento de rede.
- Foram criadas 8 sub-redes e em cada uma delas existem 30 endereços para hosts válidos ou endereçáveis

Nº sub- rede	End. sub-rede	End. hosts válidos	End. Broadcast
1	221.157.37.0	de 221.157.37.1 à 221.157.37.30	221.157.37.31
2	221.157.37.32	de 221.157.37.33 à 221.157.37.62	221.157.37.63
3	221.157.37.64	de 221.157.37.65 à 221.157.37.94	221.157.37.095
4	221.157.37.96	de 221.157.37.97 à 221.157.37.126	221.157.37.127
5	221.157.37.128	de 221.157.37.129 à 221.157.37.158	221.157.37.159
6	221.157.37.160	de 221.157.37.161 à 221.157.37.190	221.157.37.191
7	221.157.37.192	de 221.157.37.193 à 221.157.37.222	221.157.37.223
8	221.157.37.224	de 221.157.37.225 à 221.157.37.254	221.157.37.255

CIDR (CLASSLESS INTERDOMAIN ROUTING)

- Roteamento entre domínios sem o uso do conceito de classe (classless)
- Surgiu em 1993 por conta do esgotamento do endereços IPv4
- Usando a técnica de CIDR, que aloca os endereços IP de classe C disponíveis em blocos de tamanho variável, pode-se minimizar esse problema.

- Identificado como endereçamento classless (sem classe), o CIDR usa a ideia usada no endereçamento de sub-rede permitindo que um prefixo de rede tenha um tamanho qualquer.
- O modelo oferece um endereçamento hierárquico, em que cada ISP (Internet Service Provider – Provedor de Serviços de Internet) comercial poderia receber um grande bloco de endereços da internet, que o provedor poderia alocar aos assinantes.

- Por permitir que o prefixo de rede ocorra com um limite de bit qualquer, o CIDR permite que o provedor atribua a um assinante um bloco de endereços apropriado às necessidades dele.
- Como um endereço de sub-rede, o CIDR usa uma máscara de endereços de 32 bits para especificar o limite entre prefixo e sufixo.
- Bits 1 (um) subsequentes na máscara especificam o tamanho do prefixo (rede), e bits 0 (zero) correspondem ao sufixo (hosts).

- Para entender como funciona a criação do esquema pode-se supor a existência de um provedor que precisa atribuir a uma organização um bloco de endereços de classe C, em vez de um endereço de classe B.
- O bloco precisa ser grande o suficiente para atender a todas as redes da organização e precisa estar em um limite que seja de uma potência de dois, supondo que a organização precise de 500 redes, o provedor pode lhe atribuir um bloco de 512 endereços de classe C.

Endereço	Endereço decimal	Endereço binário
Inicial	196.28.0.0	11000100.0001110.00000000.00000000
Final	196.28.1.255	11000100.0001110.00000001.11111111
		com a máscara 255.255.254.0

Blocos de Endereço e Notação CIDR

Como a identificação de um bloco CIDR exige um endereço e uma máscara, criou-se uma notação abreviada para expressar os dois itens (notação CIDR)

Essa abreviação representa o tamanho da máscara decimal e usa uma barra para separá-la do endereço.

- Assim, na notação CIDR, o bloco de endereço desenvolvido anteriormente fica como:
 - 196.28.0.0 / 23
- Em que o /23 indica uma máscara de endereços com 23 bits marcados como 1, ou seja:
 - IP: 196.28.0.0
 - Máscara:
 111111111111111111111110.00000000

Lembre-se que os prefixos /8, /16 e /24 correspondem às divisões das classes A, B e C.

- Também foi criado para resolver o problema de encerramento dos endereços IPv4.
- A ideia por trás da NAT é atribuir a cada empresa um único endereço IP para tráfego na internet.
- Dentro da rede de uma empresa todo host usa um endereço IP privado, usado para roteamento do tráfego interno. Porém, quando um pacote sai da empresa e vai para um provedor, ocorre uma conversão de endereço.

- Dentro das instalações da empresa, todos os hosts têm um endereço exclusivo da forma 10.x.y.z (privado de classe A).
- No entanto, quando uma mensagem deixa as instalações da empresa, ela passa por uma caixa NAT que converterá o endereço IP de origem interna, 10.x.y.z, para o endereço IP verdadeiro da empresa, 201.x.y.z, por exemplo.

 Com frequência, a caixa NAT é combinada em um único dispositivo com um firewall, que oferece segurança por meio do controle cuidadoso do que entra na empresa e do que sai dela ou ao roteador da empresa.

- Quando a mensagem retorna para a empresa, é preciso localizar a máquina de destino dentro da rede. Para isso, podem ser utilizados dois processos:
 - Tabela de tradução NAT
 - Mapeamento de porta.

- Tabela de tradução NAT
 - O processo é realizado guardando-se os endereços IP da máquina origem, dentro da rede da empresa, e o endereço da máquina destino no ambiente internet.
 - Isso é feito por meio da leitura dos pacotes de saída.

- Mapeamento de porta
 - A caixa NAT usa o endereço IP do host na rede interna associado a um número de porta (TCP ou UDP) acima de 1024 (portas de 0 a 1023 são reservadas para serviços conhecidos).
 - Cada mensagem TCP enviada contém uma porta de origem e uma porta de destino. Juntas, essas portas servem para identificar os processos que utilizam a conexão em ambas as extremidades.

- Quando um processo deseja estabelecer uma conexão TCP, ele se associa a uma porta TCP não usada em seu próprio host.
- Essa porta é chamada porta de origem e informa ao código do TCP para onde devem ser enviados os pacotes que chegarem e que pertencem a essa conexão.

 O processo também fornece uma porta de destino para informar a quem devem ser entregues os pacotes no lado remoto. Usando o campo porta origem (source port), é realizado o mapeamento processo.

- Sempre que uma mensagem de saída entra na caixa NAT, o endereço de origem 10.x.y.z é substituído pelo endereço IP verdadeiro da empresa e o campo Source Port do TCP é substituído por um índice para a tabela de conversão de 65.536 entradas da caixa NAT.
- Essa entrada de tabela contém a porta de origem e o endereço IP original.

Exercício de Fixação

- Não avaliativo
- Fazer no caderno
- Não é pra entregar

Exercício 1:

- Uma empresa tem o endereço IP 199.17.15.0, para ser utilizado em sua rede interna.
- A empresa possui os seguintes departamentos:
 - RH (10 funcionários)
 - Logística (15 funcionários)
 - Financeiro (8 funcionários)
 - Desenvolvimento de sistemas (25 funcionários)
 - Infraestrutura e TI (22 funcionários)
- A empresa decidiu que quer que cada departamento seja uma sub-rede com seus hosts.
- Qual a classe do endereço IP recebido pela empresa?
- Quantas redes com quantos hosts em cada uma podemos ter nessa classe?
- Quantas subredes são necessárias? Qual a quantidade de hosts necessários nas subredes?
- Criar a tabela de planejamento das sub-redes que serão criadas.

Resolução 1

- Qual a classe do endereço IP recebido pela empresa?
 - Classe C
- Quantas redes com quantos hosts em cada uma podemos ter nessa classe?
 - 2.097.152 redes com 254 hosts cada
- Quantas subredes são necessárias? Qual a quantidade de hosts necessários nas subredes?
 - 5 sub-redes com 25 hosts cada
- Criar a tabela de planejamento das sub-redes que serão criadas.

- IP 199.17.15.0 11001001.00001111.00001000.00000000
- Máscara da Classe C (255.255.25.0) (R.R.R.H)

Bits emprestados	Máscara de sub-rede	Qtde. de sub-redes	Qtde. de hosts
1	255.255.255.128 11111111111111111111111111111111111	$2^1 = 2 (2 - 2 = 0)$	2 ⁷ = 128 (128 - 2 = 126)
2	255.255.255.192 11111111111111111111111111111111111	$2^2 = 4 (4 - 2 = 2)$	$2^6 = 64 (64 - 2 = 62)$
3	255.255.255.224 11111111111111111111111111111111111	$2^3 = 8 (8 - 2 = 6)$	$2^5 = 32 (32 - 2 = 30)$
4	255.255.255.240 111111111111111111111111111111111111	2 ⁴ = 16 (16 - 2 = 14)	2 ⁴ = 16 (16 - 2 = 14)
5	255.255.255.248	$2^5 = 32 (32 - 2 = 30)$	$2^3 = 8 (8 - 2 = 6)$
6	255.255.255.252 111111111111111111111111	$2^6 = 64 (64 - 2 = 62)$	$2^2 = 4 (4 - 2 = 2)$

 Existe apenas uma possibilidade que atende à condição de oferecer cinco sub-redes, com pelo menos vinte e cinco hosts em cada uma delas.

Bits emprestados	Máscara de sub-rede	Qtde. de sub-redes	Qtde. de hosts
1	255.255.255.128 11111111111111111111111111111111111	$2^1 = 2 (2 - 2 = 0)$	$2^7 = 128 (128 - 2 = 126)$
2	255.255.255.192 11111111111111111111111111111111111	$2^2 = 4 (4 - 2 = 2)$	$2^6 = 64 (64 - 2 = 62)$
3	255.255.255.224 11111111111111111111111111111111111	$2^3 = 8 (8 - 2 = 6)$	$2^5 = 32 (32 - 2 = 30)$
4	255.255.255.240 11111111111111111111111111110000	2 ⁴ = 16 (16 - 2 = 14)	2 ⁴ = 16 (16 - 2 = 14)
5	255.255.255.248	$2^5 = 32 (32 - 2 = 30)$	$2^3 = 8 (8 - 2 = 6)$
6	255.255.255.252 11111111.111111111111111	$2^6 = 64 (64 - 2 = 62)$	$2^2 = 4 (4 - 2 = 2)$

- Sendo assim, vamos precisar pegar três bits emprestados para criar as sub-redes.
 - Logo: 199.17.15.00000000, teremos:

Sub-redes	Endereços de sub-rede	Broadcast	Endereços de Broadcast
199.17.15.000 00000	199.17.15.0	199.17.15.000 11111	199.17.15.31
199.17.15.001 00000	199.17.15.32	199.17.15.001 11111	199.17.15.63
199.17.15.010 00000	199.17.15.64	199.17.15.010 11111	199.17.15.95
199.17.15.011 00000	199.17.15.96	199.17.15.011 11111	199.17.15.127
199.17.15.100 00000	199.17.15.128	199.17.15.100 11111	199.17.15.159
199.17.15.101 00000	199.17.15.160	199.17.15.101 11111	199.17.15.191
199.17.15.110 00000	199.17.15.192	199.17.15.110 11111	199.17.15.223
199.17.15.111 00000	199.17.15.224	199.17.15.111 11111	199.17.15.255

Nº sub- rede	End. sub-rede	End. hosts válidos	End. Broadcast
1	199.17.15.0	de 199.17.15.1 à 199.17.15.30	199.17.15.31
2	199.17.15.32	de 199.17.15.33 à 199.17.15.62	199.17.15.63
3	199.17.15.64	de 199.17.15.65 à 199.17.15.94	199.17.15.95
4	199.17.15.96	de 199.17.15.97 à 199.17.15.126	199.17.15.127
5	199.17.15.128	de 199.17.15.129 à 199.17.15.158	199.17.15.159
6	199.17.15.160	de 199.17.15.161 à 199.17.15.190	199.17.15.191
7	199.17.15.192	de 199.17.15.193 à 199.17.15.222	199.17.15.223
8	199.17.15.224	de 199.17.15.225 à 199.17.15.254	199.17.15.255

Exercício 2

- Uma empresa recebeu um endereço IP (199.17.15.0) e deseja criar 4 sub redes com 20 hosts em cada.
- Responda:
 - Qual a classe desse endereço?
 - Qual a máscara padrão desse endereço?
 - Qual a máscara mais adequada para a criação dessas sub redes?
 - Quais os endereços das subredes válidas?

Resolução 2

- Qual a classe desse endereço?
 - 199.17.15.0 classe C
- Qual a máscara padrão desse endereço?
 - Máscara padrão classe C: 255.255.255.0

Qual a máscara mais adequada para a criação dessas sub redes?

Bits emprestados	Máscara de sub-rede	Qtde. de sub-redes	Qtde. de hosts
1	255.255.255.128 11111111.11111111111111111110000000	$2^1 = 2 (2 - 2 = 0)$	2 ⁷ = 128 (128 - 2 = 126)
2	255.255.255.192 11111111111111111111111111111111111	$2^2 = 4 (4 - 2 = 2)$	2 ⁶ = 64 (64 - 2 = 62)
3	255.255.255.224 11111111.1111111111111111111100000	$2^3 = 8 (8 - 2 = 6)$	$2^5 = 32 (32 - 2 = 30)$
4	255.255.255.240 11111111.11111111.11111111110000	2 ⁴ = 16 (16 - 2 = 14)	2 ⁴ = 16 (16 - 2 = 14)
5	255.255.255.248 11111111.1111111111111111111111111111	$2^5 = 32 (32 - 2 = 30)$	$2^3 = 8 (8 - 2 = 6)$
6	255.255.255.252 11111111.1111111.1111111100	2 ⁶ = 64 (64 - 2 = 62)	$2^2 = 4 (4 - 2 = 2)$

Quais os endereços das subredes válidas?

Nº sub- rede	End. sub-rede	End. hosts válidos	End. Broadcast
1	199.17.15.0	de 199.17.15.1 à 199.17.15.30	199.17.15.31
2	199.17.15.32	de 199.17.15.33 à 199.17.15.62	199.17.15.63
3	199.17.15.64	de 199.17.15.65 à 199.17.15.94	199.17.15.95
4	199.17.15.96	de 199.17.15.97 à 199.17.15.126	199.17.15.127
5	199.17.15.128	de 199.17.15.129 à 199.17.15.158	199.17.15.159
6	199.17.15.160	de 199.17.15.161 à 199.17.15.190	199.17.15.191
7	199.17.15.192	de 199.17.15.193 à 199.17.15.222	199.17.15.223
8	199.17.15.224	de 199.17.15.225 à 199.17.15.254	199.17.15.255

Exercício 3

- Alguns endereços IPs foram atribuídos a empresas distintas, conforme segue.
 Qual a máscara de rede que será configurada nos roteadores?
 - Uninove: 182.98.0.0 / 14
 - Lojas Renner: 199.9.15.0 / 28
 - Casas Bahia: 160.8.0.0 / 10
 - Apple: 222.9.8.0 / 25

Resolução 3

- Uninove: 182.98.0.0 / 14
 - 11111111.11111100.00000000.00000000
 - 255.252.0.0
- Lojas Renner: 199.9.15.0 / 28
 - 11111111.11111111.11111111.11110000
 - 255.255.255.240
- Casas Bahia: 160.8.0.0 / 10
 - 1111111.11000000.00000000.00000000
 - 255.192.0.0
- Apple: 222.9.8.0 / 25
 - 11111111.11111111.11111111.10000000
 - 255.255.255.128

