

RAJESH SHARMA SOFTWARE ENGINEER Walt Disney Animation Studios

Machine Learning

Rajesh Sharma ————

Today

- Recap
- Transfer Learning
 - Building a Facial Recognition System

Questions

Is it a bug on line 7 of code where it says "patch_width=PATCH_HEIGHT"?not a problem if images are square, but otherwise could	
be	Randi Rost
	Ganesh Belgur
Are feature maps just multiple sets of patches? If yes, are the patch sizes different across feature maps for a given layer?	Ramachandra
What strategies will you use to make sure that denoised images are temporally coherent when you have a sequence of images?	Esan Mandal
What is pooling and is it used here?	Alberto Grimaudo
Why the number of layer is three in this example?	Satoshi Nishimura
And why did you choose the values you chose?	Gabriel Zachmann
usually filter sizes are 3x3 or 5x5 or 7x7, but I never saw something like 4x4 why?	Vahe Vardanyan
Is the convolution filter given What is it? Laplace, edge detector, blurr, who decides it?	Anonymous Attendee
So the denoised image here is smaller than the original image?	Andrew Douglas
Why do the denoised images seem to have a greenish cast compared to the ground truth?	David Bollo
If you have a noisy image, but you don't have a ground truth, how can you denoise it?	Neel Sandell

Convolutional Neural Network (CNN)

Convolution (Extract High-Level Features)

Homework

```
def saturate(original, factor=1.5):
   saturated = tf.image.adjust saturation(original, factor)
   # return both the saturated and the normal image
   tensor tuple = (saturated, original)
   return tensor tuple
def downres(original):
   scaled down = tf.image.resize(original, size=[100,100], method=tf.image.ResizeMethod.NEAREST NEIGHBOR)
   downres = tf.image.resize(scaled down, size=[PATCH HEIGHT, PATCH WIDTH],
                                          method=tf.image.ResizeMethod.NEAREST NEIGHBOR)
   # return both the downres'd and the normal image
   tensor tuple = (downres, original)
   return tensor tuple
```

Transfer Learning

Build a Facial Recognition System

Delta News Hub / CC BY (https://creativecommons.org/licenses/by/2.0)

Transfer Learning

Build a Facial Recognition System

End to End System - Transfer Learning

- -- Read Camera Input Stream
- -- Isolate Faces
- -- Compare with stored ground truth
- -- Identify person

Extracting Faces -- Haar Cascades

End to End System - Transfer Learning

- -- Use other people's trained network
- -- Add in your own data

Extracting Faces -- MT-CNN

Hands-on

★ facialRecognition01.ipynb

End to End System - Transfer Learning

- 1. Get faces from ground-truth images (MTCNN)
- 2. Encode ground-truth images (FACENET)
- 3. Read Camera Input Stream
- 4. Isolate Faces (MTCNN)
- 5. Encode input face (FACENET)
- 6. Compare encoding with stored ground-truth
- 7. Identify person

Facenet - triplet loss: Paper

$$x = \begin{bmatrix} 128-d \\ 0.931 \\ 0.433 \\ 0.331 \\ \vdots \\ 0.942 \\ 0.158 \\ 0.039 \end{bmatrix}$$

$$Loss = \sum_{i=1}^{N} \left[\|f_i^a - f_i^p\|_2^2 - \|f_i^a - f_i^n\|_2^2 + \alpha \right]_+$$

Hands-on

★ facialRecognition02.ipynb

Autoencoder

Autoencoder

Autoencoder - A variation

You don't because

The latent space and the input distributions are different!

But there is a way:

Treat x,y as μ and σ of a distribution

Variational Autoencoder

You get nice continuous distribution for each input

Latent Spaces and Embeddings

https://projector.tensorflow.org

For each input we can generate new 'fake' output!

Moreover, we can interpolate!

but, we can do even better!

What about the distributions for other inputs?

What if we could take this and turn it into

What if we could take this and turn it into

A continuous multi-modal distribution!

We can then interpolate between two (or more) inputs

Figure 6. Interpolation experiments for celebA

Next Class

- Finish facial recognition
- Generative Networks: Var-AE vis, GAN
- Homework:
 - Get celebrity images, find encodings
 - Find out who looks like you
- @xarmalarma, #siggraphNOW

THANK YOU

WANT TO HEAR MORE FROM SIGGRAPH AND DISNEY?

Check out SIGGRAPH Now on YouTube

YouTube.com/user/ACMSIGGRAPH

Subscribe to the SIGGRAPH Spotlight podcast

