PEC 4: Predicció de dolències cardíaques a partir d'un electrocardiograma – Part en Python

Vicent Caselles Ballester January 28, 2024

```
[1]: ## Imports
     import pandas as pd
     from sklearn.decomposition import PCA
     from sklearn.preprocessing import StandardScaler, OneHotEncoder
     from sklearn.model_selection import train_test_split
     from sklearn.metrics import *
     import matplotlib.pyplot as plt
     import numpy as np
     from tensorflow.keras.models import Model, Sequential
     from tensorflow.keras.layers import (Input, Dense, Conv1D, MaxPooling1D,
                                          Dropout, concatenate, Flatten,
     Activation, BatchNormalization)
     from tensorflow.keras.utils import to_categorical
     import tensorflow as tf
     import seaborn as sns
     import os
```

Llegim les dades.

Separem variables predictores de la classe a predir.

```
[3]: x_train = data_train.drop('ECG_signal', axis=1)
y_train = data_train.ECG_signal
```

Escalo les dades (fa que backpropagation vagi millor). Utilitzo Z-Score Normalization, i.e.

$$Z = \frac{X - \mu}{\sigma}$$

per a que les varibles tinguin mitjana 0 i desviació estàndard 1.

```
[4]: zscore_scaler = StandardScaler()
zscore_scaler.fit(x_train)
```

```
x_train = zscore_scaler.transform(x_train)
x_train = pd.DataFrame(x_train)
```

```
[5]: x_train.plot(kind='box', figsize=(15,5))
plt.xticks(rotation=90)
plt.show()
```


Cool. Veiem que algunes variables tenen força outliers.

Porto les dades a numpy.ndarrays.

```
[6]: x_train = x_train.to_numpy()
y_train = y_train.to_numpy()
```

```
[7]: mlb = OneHotEncoder()

mlb.fit(y_train.reshape(-1,1))
y_train = mlb.transform(y_train.reshape(-1,1)).toarray()
```

Definim els dos models.

```
[8]: model1 = Sequential()

model1.add(Input(shape=x_train.shape[1],))
model1.add(Dense(15, activation='relu'))
model1.add(Dropout(0.2))
model1.add(Dense(4, activation='softmax'))

model2 = Sequential()
model2.add(Input(shape=x_train.shape[1], ))
model2.add(Dense(25, activation='relu'))
model2.add(Dropout(0.2))
```

```
model2.add(Dense(10, activation='relu'))
model2.add(Dropout(0.2))
model2.add(Dense(4, activation='softmax'))
```

Compilem els dos models.

Faig el fit dels models, suprimint el output que és pesat i dificulta la lectura.

```
2024-01-28 22:53:15.282665: W tensorflow/tsl/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz
```

Grafico el procés de training dels dos models.

```
[12]: plt.subplot(1, 2, 1)
      plt.plot(history1.history['loss'])
      plt.plot(history1.history['val_loss'])
      plt.title('model1 loss')
      plt.ylabel('loss')
      plt.xlabel('epoch')
      plt.legend(['train', 'val'], loc='upper right')
      plt.subplot(1,2,2)
      plt.plot(history1.history['accuracy'])
      plt.plot(history1.history['val_accuracy'])
      plt.title('model1 accuracy')
      plt.ylabel('accuracy')
      plt.xlabel('epoch')
      plt.legend(['train', 'val'], loc='upper right')
      plt.tight_layout()
      plt.show()
```



```
[13]: plt.subplot(1, 2, 1)
      plt.plot(history2.history['loss'])
      plt.plot(history2.history['val_loss'])
      plt.title('model2 loss')
      plt.ylabel('loss')
      plt.xlabel('epoch')
      plt.legend(['train', 'val'], loc='upper right')
      plt.subplot(1,2,2)
      plt.plot(history2.history['accuracy'])
      plt.plot(history2.history['val_accuracy'])
      plt.title('model2 accuracy')
      plt.ylabel('accuracy')
      plt.xlabel('epoch')
      plt.legend(['train', 'val'], loc='upper right')
      plt.tight_layout()
      plt.show()
```


Veiem que els dos models són molt semblants. A continuació realitzo les prediccions.

[16]: [0.08279136568307877, 0.9724310636520386]

Amb aquest conjunt de dades, el model 2 mostra una millor accuracy. A continuació, desfaig el one-hot encoding per a poder crear les matrius de confusió. Les mostro, però recordeu que el anàlisi de veritat el duc a terme a l'informe generat amb .Rmd.

```
[17]: y_test = mlb.inverse_transform(y_test)
y_pred1 = mlb.inverse_transform(y_pred1)
y_pred2 = mlb.inverse_transform(y_pred2)
```



```
plt.xlabel('True Labels')
plt.ylabel('Predicted Labels')
plt.title('Resultados para el modelo 2')
plt.show()
```


Podem mostrar també diferents mètriques per als dos models.

Precision score for model 2: 0.9718752753546568

Resumen para el modelo 2

	precision	recall	f1-score	support
AFF ARR	0.91	0.98	0.95 1.00	97 117
CHF NSR	0.98	0.92	0.95	96 89
ACM	1.00	1.00		
accuracy			0.97	399
macro avg	0.97	0.97	0.97	399
weighted avg	0.97	0.97	0.97	399

Resultados para el modelo 1

		precision	recall	f1-score	support
	A 1717	0.00	0.05	0.04	101
	AFF	0.92	0.95	0.94	101
	ARR	1.00	1.00	1.00	116
	CHF	0.94	0.91	0.93	93
	NSR	1.00	1.00	1.00	89
accui	racy			0.97	399
macro	avg	0.97	0.97	0.97	399
weighted	avg	0.97	0.97	0.97	399

Veiem que en totes les mètriques possibles """guanya""" marginalment el model 2.

Guardem els resultats a continuació.

```
[22]: if not os.path.exists('confusion_matrices'):
    os.mkdir('confusion_matrices')
```