This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C12N 15/82, 15/10, 9/12, 5/10, C12Q 1/68, A01H 5/00

(11) International Publication Number:

WO 00/08187

(43) International Publication Date:

17 February 2000 (17.02.00)

(21) International Application Number:

PCT/EP99/05652

(22) International Filing Date:

4 August 1999 (04.08.99)

(30) Priority Data:

98202634.6

4 August 1998 (04.08.98)

(71) Applicant (for all designated States except US): VLAAMS INTERUNIVERSITÄIR INSTITUUT VOOR BIOTECH-NOLOGIE [BE/BE]; Rijvisschestraat 120, B-9052 Zwijnaarde (BE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LEE, Jeong, Hee [KR/BE]; Spinmolenplein 274 (22K), B-9000 Gent (BE). VERBRUGGEN. Nathalie [BE/BE]; Avenue des Saisons, 53, B-1050 Ixelles (BE).

(74) Agent: DE CLERCQ, Ann; Ann De Clercq & Co. B.V.B.A. Brandstraat 100, B-9830 Sint-Martens-Latem (BE).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK. SL. TJ. TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: GENES INVOLVED IN TOLERANCE TO ENVIRONMENTAL STRESS

(57) Abstract

The present invention relates to a method for obtaining polynucleic acids comprising coding sequences and/or genes involved in environmental stress resistance in plants, comprising the preparation of a cDNA library comprising coding sequences from siliques, introducing said coding sequences in yeast cells in a functional format and screening for polynucleic acids leading to an enhanced tolerance or resistance to environmental stress conditions in said transformed yeast cells. The present invention further relates to an isolated polynucleic acid obtainable by such a method as listed in Table 1 as well as recombinant polynucleic acid comprising the same. The present invention further relates to an isolated polypeptide encoded by a polynucleic acid of the invention. The present invention also relates to a method for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into a plant cell a recombinant DNA comprising a polynucleic acid as defined which when expressed in a plant cell enhances the tolerances or induces resistance to environmental stress conditions of said plant. The present invention particularly relates to plant cells, plants or harvestable parts or propagation material thereof transformed with a recombinant polynucleic acid as defined above.

and the company of th

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	
AL		FI	Finland	LT	Lithuania	SK	Slovakia	
AM		FR	France	LU	Luxembourg	SN	Senegal	
AT		GA	Gabon	LV	Latvia	SZ	Swaziland	
ΑU		GB	United Kingdom	MC	Monaco	TD	Chad	
AZ	<u>-</u>	GE	-	MD	Republic of Moldova	TG	Togo	
BA	<u> </u>		Georgia	MG	Madagascar	TJ	Tajikistan	
BB		GH	Ghana	MK	The former Yugoslav	TM	Turkmenistan	
BE		GN	Guinea	14112	Republic of Macedonia	TR	Turkey	
BF		GR	Greece	247	Mali	TT	Trinidad and Tobago	
BG	Bulgaria	HU	Hungary	ML		UA	Ukraine	
BJ	Benin	IE	Ireland	MN	Mongolia	UG	Uganda	
BR	Brazil	IL	Israel	MR	Mauritania	US	United States of America	
BY	Belarus	IS	Iceland	MW	Malawi			
CA	Canada	IT	Italy :	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	JP	Japan	NE	Niger ·	VN	Viet Nam	
CG		· KE	Kenya	. NL	Netherlands	YU	Yugoslavia	
CH		KG	Kyrgyzstan	. NO	Norway	zw	Zimbabwe	
Ci		KP	Democratic People's	NZ	New Zealand			
CN			Republic of Korea	PL	Poland		•	
CN		· KR	Republic of Korea	PT	Portugal			
CU		KZ	Kazakstan	RO	Romania		. *	
CZ		LC	Saint Lucia	RU	Russian Federation			
DE		LI.	Liechtenstein	SD	Sudan			
		LK	Sri Lanka	SE	Sweden			
Di		LR	Liberia	SG	Singapore		,	
EF	E Estonia	D.K.						

30

Genes involved in tolerance to environmental stress

The present invention relates to molecular biology, in particular plant molecular biology. In particular, the invention relates to improvements of crop productivity of useful plants. One of the major limitations of crop productivity is the effect of environmental stress conditions on plant growth and development. An important goal of molecular biology is the identification and isolation of genes that can provide resistance or tolerance to such stresses. For agriculture, the creation of transgenic plants containing such genes provides the potential for improving the stress resistance or tolerance of plants.

Drought, salt loading, and freezing are stresses that cause adverse effects on the growth of plants and the productivity of crops. The physiological response to these stresses arises out of changes in cellular gene expression. Expression of a number of genes has been demonstrated to be induced by these stresses (Zhu et al., 1997; Shinozaki et al., 1996; Thomashow, 1994). The products of these genes can be classified into two groups: those that directly protect against environmental stresses and those that regulate gene expression and signal transduction in the stress response. The first group includes proteins that likely function by protecting cells from dehydration, such as the enzymes required for biosynthesis of various osmoprotectants, late-embryogenesis-abundant (LEA) proteins, antifreeze proteins, chaperones, and detoxification enzymes (Shinozaki et al., 1997, Ingram et al., 1996, Bray et al., 1997). The second group of gene products includes transcription factors, protein kinases, and enzymes involved in phosphoinositide metabolism (Shinozaki et al., 1997). An overview of the methods known to improve stress tolerance in plants is also given in Holmberg & Bülow, (1998).

Further studies are definitely needed to give an insight into the mechanisms involved in the plant response to environmental stress conditions.

The study of plants naturally adapted to extreme desiccation has led to the hypothesis that the genetic information for tolerance to environmental stress conditions exists in all higher plants. In glycophytes, this information would only be expressed in seeds and pollen grains which undergo a desiccation process.

The induction of osmotolerance in plants is very important to crop productivity: 30 to 50 % of the land under irrigation is presently affected by salinity. Several lines of evidence also demonstrate that even mild environmental stress conditions throughout the growth season have a negative impact on plant growth and crop productivity. It is

for instance known that even minor limitations in water availability cause a reduced photosynthetic rate. Unpredictable rainfall, increase in soil salinity at the beginning and the end of the growing season often result in decreased plant growth and crop productivity. These environmental factors share at least one element of stress and that is water deficit or dehydration. Drought is a significant problem in agriculture today. Over the last 40 years, for example, drought accounted for 74% of the total US crop losses of corn. To sustain productivity under adverse environmental conditions, it is important to provide crops with a genetic basis for coping with water deficit, for example by breeding water retention and tolerance mechanisms into crops so that they can grow and yield under these adverse conditions.

It is an aim of the present invention to provide a new method for screening for plant genes involved in tolerance or resistance to environmental stress.

It is an aim of the present invention to provide new plant genes, more particularly plant genes providing the potential of improving the tolerance to environmental stress conditions in plants.

It is also an aim of the present invention to provide polypeptides encoded by said new plant genes.

It is further an aim of the present invention to provide methods for producing plants with enhanced tolerance or resistance to environmental stress conditions based on said new genes.

It is also an aim of the present invention to provide recombinant polynucleic acids comprising said new genes.

It is further an aim of the present invention to provide plant cells and plants transformed with said new genes.

It is further an aim of the present invention to provide plant cells and plants with enhanced tolerance or resistance to environmental stress conditions.

The present invention relates more particularly to a method for obtaining polynucleic acids comprising coding sequences and/or genes involved in environmental stress in plants, comprising the preparation of a cDNA library comprising coding sequences from siliques, introducing said coding sequences in yeast cells in a functional format and screening for polynucleic acids leading to an enhanced tolerance or resistance to environmental stress conditions in said transformed yeast cells.

It has been found that the transfer of genes from plants which are often difficult to assay for certain characteristics, to lower eukaryotes, such as yeasts and fungi, but

15

30

in particular yeast, especially Saccharomyces, is relatively-easy to achieve, whereby it has now been shown that the results of testing for tolerance or resistance to environmental conditions in the resulting yeast cells gives a relatively reliable measure of the capability of the inserted coding sequence or gene to induce tolerance or resistance to environmental stress in plants. Thus the expression of polynucleic acid sequences comprising the gene or coding sequence which are responsible for inducing tolerance or resistance to environmental stress conditions can be enhanced in the plant species from which it originates or in any other plant species.

In the present context the term "enhancing" must be understood to mean that the levels of molecules correlated with stress protection in a transformed plant cell, plant tissue or plant part will be "substantially increased" or "elevated" meaning that this level will be greater than the levels in an untransformed plant.

This may be achieved by inducing overexpression of suitable genetic information which is already present, or by any other suitable means of introducing into the plant cell heterologous information resulting in a capability to tolerate or resist environmental stress.

The term "environmental stress" has been defined in different ways in the prior art and largely overlaps with the term "osmotic stress". Holmberg et al., 1998 for instance define different environmental stress factors which result in abiotic stress. Salinity, drought, heat, chilling and freezing are all described as examples of conditions which induce osmotic stress. The term "environmental stress" as used in the present invention refers to any adverse effect on metabolism, growth or viability of the cell, tissue, seed, organ or whole plant which is produced by an non-living or non-biological environmental stressor. More particularly, it also encompasses environmental factors such as water stress (flooding, drought, dehydration), anaerobic (low level of oxygen, CO_2 etc.), aerobic stress, osmotic stress, salt stress, temperature stress (hot/heat, cold, freezing, frost) or nutrients/pollutants stress.

The term "anaerobic stress" means any reduction in oxygen levels sufficient to produce a stress as hereinbefore defined, including hypoxia and anoxia.

The term "flooding stress" refers to any stress which is associated with or induced by prolonged or transient immersion of a plant, plant part, tissue or isolated cell in a liquid medium such as occurs during monsoon, wet season, flash flooding or excessive irrigation of plants, etc.

"Cold stress" and "heat stress" are stresses induced by temperatures which are respectively, below or above, the optimum range of growth temperatures for a

35

particular plant species. Such optimum growth temperature ranges are readily determined or known to those skilled in the art.

"Dehydration stress" is any stress which is associated with or induced by the loss of water, reduced turgor or reduced water content of a cell, tissue, organ or whole plant.

"Drought stress" refers to any stress which is induced by or associated with the deprivation of water or reduced supply of water to a cell, tissue, organ or organism.

"Oxidative stress" refers to any stress which increases the intracellular level of reactive oxygen species.

The terms "salinity-induced stress", "salt-stress" or similar term refer to any stress which is associated with or induced by elevated concentrations of salt and which result in a perturbation in the osmotic potential of the intracellular or extracellular environment of a cell.

Said salt can be for example, water soluble inorganic salts such as sodium sulfate, magnesium sulfate, calcium sulfate, sodium chloride, magnesium chloride, calcium chloride, potassium chloride etc., salts of agricultural fertilizers and salts associated with alkaline or acid soil conditions.

The transgenic plants obtained in accordance with the method of the present invention, upon the presence of the polynucleic acid and/or regulatory sequence introduced into said plant, attain resistance, tolerance or improved tolerance or resistance against environmental stress which the corresponding wild-type plant was susceptible to.

The terms "tolerance" and "resistance" cover the range of protection from a delay to complete inhibition of alteration in cellular metabolism, reduced cell growth and/or cell death caused by the environmental stress conditions defined herein before. Preferably, the transgenic plant obtained in accordance with the method of the present invention is tolerant or resistant to environmental stress conditions in the sense that said plant is capable of growing substantially normal under environmental conditions where the corresponding wild-type plant shows reduced growth, metabolism, viability, productivity and/or male or female sterility. Methodologies to determine plant growth or response to stress include, but are not limited to height measurements, leaf area, plant water relations, ability to flower, ability to generate progeny and yield or any other methodology known to those skilled in the art.

The terms "tolerance" and "resistance" may be used interchangeably in the present invention.

15

20

The methods according to the invention as set out below can be applied to any, higher plant, preferably important crops, preferably to all cells of a plant leading to an enhanced osmotic or any other form of environmental stress tolerance. By means of the embodiments as set out below, it now becomes possible to grow crops with improved yield, growth, development and productivity under environmental stress conditions, it may even become possible for instance to grow crops in areas where they cannot grow without the induced osmotolerance according to the invention.

In order to do a thorough screening for relevant plant genes and/or coding sequences, it is preferred to apply a method according to the invention whereby said cDNA library comprises copies of essentially all mRNA of said plant cell. Probably only coding sequences are sufficient. For the screening of genes involved in environmental stress, it is preferred to use a cDNA library from siliques (fruits, containing the maturing seeds), such as the siliques from *Arabidopsis*, because genes involved in for instance osmotolerance are preferentially expressed in these organs.

Although the genetic information may be introduced into yeast for screening by any suitable method, as long as it is in a functional format long enough tor testing of tolerance or resistance to environmental stress conditions, it is preferred for ease of operation to use a well known vector such as a 2µ plasmid. It is to be preferred to have the coding sequence or the gene under control of a strong constitutive yeast promoter, to enhance good expression of the gene or coding sequence of interest. Strong constitutive yeast promoters are well known in the art and include, but are not limited to the yeast TPI promoter.

The term "gene" as used herein refers to any DNA sequence comprising several operably linked DNA fragments such as a promoter and a 5' untranslated region (the 5'UTR), a coding region (which may or may not code for a protein), and an untranslated 3' region (3'UTR) comprising a polyadenylation site. Typically in plant cells, the 5'UTR, the coding region and the 3'UTR (together referred to as the transcribed DNA region) are transcribed into an RNA which, in the case of a protein encoding gene, is translated into a protein. A gene may include additional DNA fragments such as, for example, introns. As used herein, a genetic locus is the position of a given gene in the genome of a plant.

The present invention more particularly relates to an isolated polynucleic acid obtainable by a method comprising the preparation of a cDNA as set out above comprising coding sequences from siliques, introducing said coding sequences in yeast cells in a functional format and screening for polynucleic acids leading to an

enhanced tolerance or resistance to environmental stress conditions in said transformed yeast cells.

The term "polynucleic acid" refers to DNA or RNA, or amplified versions thereof, or the complement thereof.

The present invention more particularly provides an isolated polynucleic acid obtainable by a method as defined above which encodes a polypeptide as listed in Table 1.

The capacity of an isolated polynucleic acid to confer tolerance or resistance to environmental stress conditions can be tested according to methods well-known in the art, see for example, Grillo et al. (1996), Peassarakli et al. (Editor), Nilsen et al. (1996), Shinozaki et al. (1999), Jones et al. (1989), Fowden et al. (1993) or as described in the appended examples.

The present invention more particularly relates to an isolated polynucleic acid which encodes a homolog of any of the polypeptides as listed in Table 1, which is chosen from:

- (a) any of SEQ ID NO 1, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, or 121, or the complementary strands thereof;
- (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b), or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).

Preferably said sequences according to part (b) hybridize under stringent conditions to the sequences of part (a).

Said fragment as defined above are preferably unique fragments of said sequences.

The term "hybridizing" refers to hybridization conditions as described in Sambrook (1989), preferably specific or stringent hybridization conditions are aimed at.

20

10

25

.10

15

25

Stringent conditions are sequence dependent and will be different in different circumstances. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typically, stringent conditions will be those in which the salt concentration is about 0.02 molar at pH 7 and the temperature is at least about 60°C.

In the present invention, genomic DNA or cDNA comprising the polynucleic acids of the invention can be identified in standard Southern blots under stringent conditions using the cDNA sequence shown. The preparation of both genomic and cDNA libraries is within the skill of the art. Examples of hybridization conditions are also given in the Examples section.

The present invention also relates to the isolated polynucleic acids which encode polypeptides which are a homolog of the polypeptides as set out in Table 1 useful for the production of plants which are resistant or tolerant to environmental stress conditions.

The present invention also relates to a polynucleic acid comprising at least part of any of SEQ ID NO 1, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or 121, or at least part of a gene that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to any of SEQ ID NO 1, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or 121. Preferably, said gene encodes a protein having substantially the same biological activity as the protein having the sequence of SEQ ID NO 2, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76 or 78. Said part of said gene is preferably a unique part.

The present invention preferably relates to the use of a polynucleic acid comprising at least part of any of SEQ ID NO 1, 3, 5, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121, or at least part of a gene that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to any of

SEQ ID NO 1, 3, 5, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121 for the production of transgenic plants having enhanced tolerance or resistance to environmental stress conditions.

Preferably, said gene encodes a protein having substantially the same biological activity as the protein having the sequence of SEQ ID NO 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, or 120. Said part of said gene is preferably a unique part.

The present invention particularly relates to an isolated polynucleic acid as defined above, which encodes a plant homolog of yeast DBF2 kinase, more particularly a DBF2 kinase homolog from Arabidopsis thaliana termed At-DBF2, which can at least be used to confer enhanced environmental stress tolerance or resistance in plants and yeast.

More preferably, the present invention relates to an isolated polynucleic acid encoding a plant DFB2 kinase, which is chosen from:

(a) SEQ ID NO 1, or the complementary strand thereof;

(b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;

 (e) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b), or,

(c) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).

Preferably said sequences according to part (b) hybridize under stringent conditions to the sequences of part (a).

Alternatively, the present invention relates to a polynucleic acid derived from a plant comprising at least part of SEQ ID NO 1, or at least part of a gene having a sequence that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to SEQ ID NO 1. Preferably said gene encodes a protein

20

25

30

having substantially the same biological activity as the protein having the sequence of SEQ ID NO 2.

The present invention also relates to the use of an isolated polynucleic acid as defined above which encodes a plant HSP 17.6A protein for the production of transgenic plants, more particularly a homolog from Arabidopsis thaliana, which at least can be used to confer enhanced environmental stress tolerance in plants and yeast.

More preferably, the present invention relates to the use of an isolated polynucleic acid as defined above which is chosen from:

(a) SEQ ID NO 3, or the complementary strand thereof;

- (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b) or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c),

for the production of transgenic plants having an enhanced tolerance or resistance to environmental stress conditions.

Preferably said sequences according to part (b) hybridize under stringent conditions to the sequences of part (a).

The present invention also relates to the use of a polynucleic acid comprising at least part of SEQ ID NO 3, or at least part of a gene having a sequence that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to SEQ ID NO 3. Preferably said gene encodes a protein having substantially the same biological activity as the protein having the sequence of SEQ ID NO 4, for the production of transgenic plants having enhanced tolerance or resistance to environmental stress conditions.

More preferably, the present invention relates to the use of an isolated polynucleic acid as defined above which is chosen from:

(a) any of SEQ ID NO 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, or 119, or the complementary strand thereof;

10

15

20

35

25

30

- (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b) or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c),

for the production of transgenic plants having an enhanced tolerance or resistance to environmental stress conditions.

The present invention preferably relates to the use of a polynucleic acid comprising at least part of any of SEQ ID NO 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, or 119, or at least part of a gene that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to any of SEQ ID NO 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, or 119, for the production of transgenic plants having enhanced tolerance or resistance to environmental stress conditions.

Preferably, said gene encodes a protein having substantially the same biological activity as the protein having the sequence of SEQ ID NO 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, or 120. Said part of said gene is preferably a unique part.

According to another preferred embodiment, the present invention relates to an isolated polynucleic acid as defined above, which encodes a protein termed c74, more particularly a plant homolog of c74, even more preferably a c74 from Arabidopsis thaliana, which at least can be used to confer enhanced environmental stress tolerance in plants and yeast.

More particularly, the present invention relates to an isolated polynucleic acid as defined above, which is chosen from:

- (a) SEQ ID NO 5, or the complementary strand thereof;
- (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;

15

20

25

30

- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b) or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).

Preferably said sequences according to part (b) hybridize under stringent conditions to the sequences of part (a).

The present invention also relates to a polynucleic acid comprising at least part of SEQ ID NO 5, or at least part of a gene having a sequence that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to SEQ ID NO 5. Preferably said gene encodes a protein having substantially the same biological activity as the protein having the sequence of SEQ ID NO 6.

Two nucleic acid sequences or polypeptides are said to be "identical" according to the present invention if the sequence of nucleotides or amino acid residues, respectively, in the two sequences is the same when aligned for maximum correspondence as described below. The term "complementary to" is used herein to mean that the complementary sequence hybridizes to all or a portion of a given polynucleotide sequence.

Sequence comparisons between two (or more) polynucleic acid or polypeptide sequences are typically performed by comparing sequences of the two sequences over a "comparison window" to identify and compare local regions of sequence similarity. A "comparison window", as used herein, refers to a segment of at least about 20 contiguous positions, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman (1981), by the homology alignment algorithm of Needleman and Wunsch (1970), by the search for similarity method of Pearson and Lipman (1988), by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, WI), or by visual inspection.

"Percentage of sequence identity" is determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleic acid or polypeptide sequences in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.

The term "substantial identity" of polynucleic acid or polypeptide sequences means that a polynucleotide sequence comprises a sequence that has at least 60%, 65%, 70% or 75% sequence identity, preferably at least 80% or 85%, more preferably at least 90% and most preferably at least 95 %, compared to a reference sequence using the programs described above (preferably BLAST) using standard parameters. One of skill will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like. Substantial identity of amino acid sequences for these purposes normally means sequence identity of at least 40%, 45%, 50% or 55% preferably at least 60%, 65%, 70%, 75%, 80% or 85% more preferably at least 90%, and most preferably at least 95%. Polypeptides which are "substantially similar" share sequences as noted above except that residue positions which are not identical may differ by conservative amino acid changes. Conservative amino acid substitutions refer to the interchangeability of residues having similar side chains. For example, a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfur-containing side chains is cysteine and methionine. Preferred conservative amino acids substitution groups are: valinealanine-valine, phenylalanine-tyrosine, lysine-arginine, leucine-isoleucine, asparagine-glutamine.

15

20

25

Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other, or a third nucleic acid, under stringent conditions.

More particularly, the polynucleic acids as used herein will comprise at least part of a DNA sequence which is essentially similar, or, preferentially, essentially identical or identical to one or both of the nucleotide or amino acid sequences corresponding to SEQ ID NO 1 to 121 disclosed herein, more specifically in the nucleotide sequence encoding, or the amino-acid sequence corresponding to the "active domain" of the respective protein or polypeptide.

The polynucleic acid sequences according to the present invention can be produced by means of any nucleic acid amplification technique known in the art such as PCR or conventional chemical synthesis.

For a general overview of PCR see PCR Protocols (Innis et al. (1990)).

Polynucleotides may also be synthesized by well-known techniques as described in the technical literature. See, e.g., Carruthers et al. (1982) and Adams et al. (1983). Double stranded DNA fragments may then be obtained either by synthesizing the complementary strand and annealing the strands together under appropriate conditions, or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

The present invention more particularly relates to an isolated polypeptide encoded by a polynucleic acid according to any of the polynucleic acids as defined above, or a functional fragment thereof.

The present invention preferably relates to an isolated polypeptide as listed in Table 1 or to an isolated polypeptide encoded by a polynucleic acid isolated as defined above. Preferably, the present invention relates to polypeptides or peptides having at least part of the sequence of any of SEQ ID NO NO 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, or 120. Preferably, said part is a unique part and preferably includes the active domain of said polypeptide. Preferably said polypeptide is a recombinant polypeptide.

The term "isolated" distinguishes the protein or polynucleic acid according to the invention from the naturally occuring one.

The present invention also relates to a polypeptide comprising at least part of a polypeptide which is at least 50%, 55%, 60%, 65% identical, preferentially at least 70%, 75% identical, more preferably at least 80% or 85% identical, and most

preferably at least 90% or 95% identical to any of SEQ ID NO NO 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, or 120.

The terms "polypeptide" and "protein" are used interchangeably throughout the present description.

Said polypeptide preferably has the ability to confer tolerance or resistance to environmental stress conditions in at least plants, plant parts, plant tissues, plant cells, plant calli or yeast.

The term "functional fragment" refers to a fragment having substantially the biological activity of the protein from which it is derived.

The polypeptides of the present invention may be produced by recombinant expression in prokaryotic and eukaryotic engineered cells such as bacteria, yeast or fungi. It is expected that those of skill in the art are knowledgeable in the numerous expression systems available for expression in these systems.

The present invention more particularly relates to a method for producing a plant with enhanced environmental stress resistance or tolerance, said method comprising transiently introducing into a plant cell a recombinant DNA comprising any of the polynucleic acids as defined above which when (over)expressed in a plant cell enhances tolerance or resistance to environmental stress of said plant.

The term "plant cell" as defined above also comprises plant tissue or a plant as a whole. The present invention more particularly relates to a method for producing a plant with enhanced environmental stress resistance or tolerance, said method comprising transiently introducing into a plant cell a recombinant DNA comprising any of the polynucleic acids encoding a protein as listed in Table 1 which when (over)expressed in a plant cell enhances tolerance or resistance to environmental stress in said plant.

The term "(over)expression" refers to the fact that the polypeptides of the invention encoded by said polynucleic acid are preferably expressed in an amount effective to confer tolerance or resistance to the transformed plant, to an amount of salt, heat, cold, (or other stress factors) that inhibits the growth of the corresponding untransformed plant.

Several methods to obtain transient introduction and expression of a recombinant DNA in a plant are known to the art. For example, plant virus vectors can

30

35

be used to obtain such purpose. Examples conferring to the use of plant viral vectors are described in Porta and Lomonossoff (1996), WO9320217 and US 5,589,367.

The present invention also relates to a method for producing a plant with enhanced environmental stress resistance or tolerance, said method comprising stably introducing into the genome of a plant cell a recombinant DNA comprising any of the polynucleic acids as defined above which when (over)expressed in a plant cell enhances the environmental stress tolerance or resistance of a plant.

The present invention also relates to a method for producing a plant with enhanced tolerance or resistance to environmental stress conditions, said method comprising introducing into the genome of a plant cell a recombinant DNA comprising any of the polynucleic acids encoding a protein as listed Table 1 which when (over)expressed in a plant cell enhances the environmental stress resistance of said plant.

According to a preferred embodiment, the present invention relates to a method for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid as defined above encoding a DBF2 kinase, preferably a plant DBF2 kinase, most preferably an Arabidopsis DBF2 kinase.

According to another preferred embodiment, the present invention relates to a method as defined above for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid as defined above encoding an HSP 17.6A protein, preferably a plant HSP 17.6A protein, most preferably an Arabidopsis HSP 17.6A.

According to a preferred embodiment, the present invention relates to a method as defined above for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid as defined above encoding a c74 protein, preferably a plant c74 protein, most preferably a Arabidopsis c74 protein.

Preferably, the present invention relates to a method as defined above, comprising:

- (a) introducing into the genome of a plant cell one or more recombinant DNA molecules, said recombinant DNA molecules comprising:
 - a polynucleic acid as defined above, and,
 - a plant expressible promoter, whereby said polynucleic acid is in the same transcriptional unit

and under the control of said plant-expressible promoter, and,

(b) regenerating said plant from said plant cell.

The present invention also relates to a method for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising indirectly increasing of inducing the expression of an endogenous gene in said plant comprised within a polynucleic acid as defined above or indirectly increasing of inducing te activity of a protein as defined above.

The present invention also relates to a method as defined above, comprising:

- (a) introducing into the genome of a plant cell one or more recombinant DNA molecules, said recombinant DNA molecules comprising:
 - a DNA encoding a protein which when expressed in said plant cell at an effective amount indirectly increases or induces the expression of an endogenous polynucleic acid or indirectly increases or induces the protein activity of a protein encoded by said polynucleic acid of the present invention, and,
 - a plant expressible promoter, whereby said DNA is in the same transcriptional unit and under the control of said plant-expressible promoter, and,

(b) regenerating said plant from said plant cell.

A "recombinant" DNA molecule will comprise a "heterologous sequence" meaning that said recombinant DNA molecule will comprise a sequence originating from a foreign species, or, if from the same species, may be substantially modified from its original form. For example, a promoter operably linked to a structural gene which is from a species different from which the structural gene was derived, or, if from the same species, may be substantially modified from its original form.

The present invention also relates to a method as defined above for producing a plant with enhanced tolerance or resistance to environmental stress conditions, said method comprising indirectly increasing or inducing the expression of an endogenous gene in said plant comprised within a polynucleic acid as defined above or indirectly increasing or inducing the activity of a protein of the invention as defined above. According to this embodiment, other polynucleic acids modulating the expression or the activity of a protein according to the present invention may be introduced

15

30

35

transiently or stably into the genome of said plants. The term "modulating" means enhancing, inducing, increasing, decreasing or inhibiting.

Increase or induction of expression or induction or increase of protein activity is required when said regulator protein is a positive regulator of the expression or the activity of at least one of the polynucleic acids or protein of the present invention.

Decrease or inhibition of expression or decrease or inhibition of protein activity is required when said regulator protein is a negative regulator of the expression or activity of at least one of the polynucleic acids or proteins of the present invention.

Increase of the activity of said polypeptide according to the present invention is obtained, according to one embodiment of the invention, by influencing endogenous gene expression in the plant. This is preferably achieved by the introduction of one or more polynucleic acid sequences according to the invention into the plant genome, in a suitable conformation for gene expression (e.g. under control of a plant-expressible promoter). This will result in increased or induced expression (overexpression) or increased or induced activity of the protein in the plant cells, and, in the presence of an adequate substrate, in an increase of tolerance or resistance to environmental stress conditions in a transgenic plant or plant cell as compared to a non-transgenic plant or plant cell. This increase in tolerance can be measured by measuring mRNA levels, or where appropriate, the level or activity of the respective protein (e.g. by means of ELISA, activity of the enzyme as measured by any technique known in the art). Endogenous gene expression refers to the expression of a protein which is naturally found in the plant, plant part or plant cell concerned.

Alternatively, said enhanced tolerance or resistance to environmental stress conditions may be achieved by introducing into the genome of the plant, one or more transgenes which interact with the expression of endogenous genes (polynucleic acids) according to the present invention, by anti-sense RNA, co-suppression or ribozyme suppression of genes which normally inhibit the expression of the polynucleic acids of the present invention or by suppression of genes which normally inhibit the activity of the polypeptides of the invention as defined above.

For inhibition of expression, the nucleic acid segment to be introduced generally will be substantially identical to at least a portion of the endogenous gene or genes to be repressed. The sequence, however, need not be perfectly identical to inhibit expression. The vectors of the present invention can be designed such that the inhibitory effect applies to other genes within a family of genes exhibiting homology or substantial homology to the target gene.

20

35

For antisense suppression, the introduced sequence also need not be full length relative to either the primary transcription product or fully processed mRNA.

Generally, higher homology can be used to compensate for the use of a shorter sequence.

Furthermore, the introduced sequence need not have the same intron or exon pattern, and homology of non-coding segments may be equally effective. Normally, a sequence of between about 30 or 40 nucleotides up to the full length sequence should be used, though a sequence of at least about 100 nucleotides is preferred, a sequence of at least about 200 nucleotides is more preferred, and a sequence of about 500 to about 1700 nucleotides is especially preferred.

Catalytic RNA molecules or ribozymes can also be used to inhibit expression of genes as explained above. It is possible to design ribozymes that specifically pair with virtually any target RNA and cleave the phosphodiester backbone at a specific location, thereby functionally inactivating the target RNA. In carrying out this cleavage, the ribozyme is not itself altered, and is thus capable of recycling and cleaving other molecules, making it a true enzyme. The inclusion of ribozyme sequences within antisense RNAs confers RNA-cleaving activity upon them, thereby increasing the activity of the constructs.

A number of classes of ribozymes have been identified. One class of ribozymes is derived from a number of small circular RNAs which are capable of selfcleavage and replication in plants. The RNAs replicate either alone (viroid RNAs) or with a helper virus (satellite RNAs). Examples include RNAs from avocado sunblotch viroid and the satellite RNAs from tobacco ringspot virus, lucerne transient streak virus, velvet tobacco mottle virus, solanum nodiflorum mottle virus and subterranean clover mottle virus. The design and use of target RNA-specific ribozymes is described in Haseloff et al. (1988).

Another method of suppression of gene expression is sense suppression. Introduction of nucleic acid configured in the sense orientation has been shown to be an effective means by which to block the transcription of target genes. For an example of the use of this method to modulate expression of endogenous genes see, Napoli et al. (1990), and U.S. Patents Nos. 5,034,323, 5,231,020, and 5,283,184.

The suppressive effect may occur where the introduced sequence contains no coding sequence per se, but only intron or untranslated sequences homologous to sequences present in the primary transcript of the endogenous sequence. The introduced sequence generally will be substantially identical to the endogenous

20

sequence intended to be repressed. This minimal identity will typically be greater than about 65%, but a higher identity might exert a more effective repression of expression of the endogenous sequences. Substantially greater identity of more than about 80% is preferred, though about 95% to absolute identity would be most preferred. As with antisense regulation, the effect should apply to any other proteins within a similar family of genes exhibiting homology or substantial homology.

For sense suppression, the introduced sequence, needing less than absolute identity, also need not be full length, relative to either the primary transcription product or fully processed mRNA. This may be preferred to avoid concurrent production of some plants which are overexpressers. A higher identity in a shorter than full length sequence compensates for a longer, less identical sequence. Furthermore, the introduced sequence need not have the same intron or exon pattern, and identity of non-coding segments will be equally effective. Normally, a sequence of the size ranges noted above for antisense regulation is used.

Other methods for altering or replacing genes known in the art can also be used to inhibit expression of a gene. For instance, insertional mutants using T-DNA or transposons can be generated. See, e.g., Haring et al. (1991) and Walbot (1992). Another strategy in genetic engineering of plants and animals is targeted gene replacement. Homologous recombination has typically been used for this purpose (see, Capecchi (1989)).

Alternatively, the present invention also relates to a method as defined above wherein said DNA encodes a sense or antisense RNA or a ribozyme capable of indirectly increasing or inducing the expression of an endogenous polynucleic acid sequence according to the invention as defined above or increasing or inducing the activity of a protein of the invention as defined above. Preferably said endogenous polynucleic acid encodes a protein as listed in Table 1.

The present invention also relates to a recombinant polynucleic acid comprising: a polynucleic acid as defined above, and, a plant expressible promoter, whereby said polynucleic acid is in the same transcriptional unit and under the control of said plant-expressible promoter.

The present invention also relates to a recombinant polynucleic acid comprising:

(a) a DNA encoding a protein which when expressed in said plant at an effective amount indirectly increases or induces the expression of an endogenous

25

30

polynucleic acid as defined above or indirectly increases or induces the protein activity of a polypeptide as defined above, and,

(b) a plant expressible promoter, whereby said DNA is in the same transcriptional unit and under the control of said plant-expressible promoter.

An "endogenous" polynucleic acid refers to a polynucleic acid that is already present in the plant species before transformation.

Said recombinant polynucleic acid as described here above is generally also referred to as a "recombinant vector" or an "expression cassette". An expression cassette of the invention can be cloned into an expression vector by standard methods. The expression vector can then be introduced into host cells by currently available DNA transfer methods.

The present invention also relates to the recombinant polynucleic acid as defined above, comprising a DNA which encodes an anti-sense RNA, a ribozyme or a sense RNA which increases or induces the activity of a protein as defined above in said cell. Preferably said protein is listed in Table 1.

More particularly, the present invention relates to a recombinant polynucleic acid comprising at least part of the nucleotide sequence of any of SEQ ID NO 1, 3, 5, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121.

Preferably, the present invention relates to a recombinant polynucleic acid comprising at least part of the coding sequence of a gene encoding a protein as listed in Table 1. Preferably, said "part" is a unique part of any of said nucleotide sequences. (26-28) As used herein, the term a "plant-expressible promoter" refers to a promoter that is capable of driving transcription in a plant cell. This includes any promoter of plant origin, including the natural promoter of the transcribed DNA sequence, but also any promoter of non-plant origin which is capable of directing transcription in a plant cell. The promoter may also be an artificial or synthetic promoter. The term "plant-expressible promoter" includes, but is not restricted to, constitutive, inducible, organ-, tissue-specific or developmentally regulated promoters.

According to the invention, production and/or activity of a polypeptide according to the present invention in a plant or in plant parts is increased by introducing *one or more* polynucleic acids according to the invention into the genome of the plant. More specifically, the constitutive promoter can be, but is not restricted to, one of the following: a 35S promoter (Odell et al. (1985)), a 35S'3 promoter (Hull and Howell

25

30

(1987)), the promoter of the nopaline synthase gene ("PNOS") of the Ti-plasmid (Herrera -Estrella, (1983)) or the promoter of the octopine synthase gene ("POCS", De Greve et al. (1982)). It is clear that other constitutive promoters can be used to obtain similar effects. A list of plant-expressible promoters that can be used according to the present invention is given in Table 2.

For specific embodiments of this invention, the use of inducible promoters can provide certain advantages. Modulation of protein levels or protein activity may be required in certain parts of the plant, making it possible to limit modulation to a certain period of culture or developmental stage of the plant.

For specific embodiments of this invention, the use of organ- or tissue-specific or chemical inducible promoters can provide certain advantages. Thus, in specific embodiments of the invention, the gene(s) or part thereof is (are) placed under the control of a promoter directing expression in specific plant tissues or organs, such as for instance roots, leaves, harvestable parts, etc.

It is also possible to use a promoter that can be induced upon the environmental stress conditions. Such promoters can be taken for example from stress-related genes which are regulated directly by an environmental, i.e. preferable abiotic, stress in a plant cell, including genes for which expression is increased, reduced or otherwise altered. These stress related genes comprise genes the expression of which is either induced or repressed by anaerobic stress, flooding stress, cold stress, dehydration stress, drought stress, heat stress or salinity. An exemplary list of such promoters is given in Table 3.

The recombinant polynucleic acids according to the present invention may include further regulatory or other sequences from other genes, such as leader sequences (e.g. the cab22 leader from Petunia), 3' transcription termination and polyadenylation signals (e.g. from the octopine synthase gene or the nopaline synthase gene), plant translation initiation consensus sequences, introns, transcription enhancers and other regulatory elements such as adh intron 1, etc, which is or are operably linked to the gene or a fragment thereof. Additionally, the recombinant polynucleic acid can be constructed and employed to target the gene product of the polynucleic acid of the invention to a specific intracellular compartment within a plant cell on to direct a protein to the extracellular environment. This can generally be obtained by operably joining a DNA sequence encoding a transit or signal peptide to the recombinant polynucleic acid.

25

35

The recombinant DNA comprising one or more polynucleic acids according to the present invention may be accompanied by a chimeric marker gene (Hansen et al., 1999 and references therein). The chimeric marker gene can comprise a marker DNA that is operably linked at its 5' end to a plant-expressible promoter, preferably a constitutive promoter, such as the CaMV 35S promoter, or a light inducible promoter such as the promoter of the gene encoding the small subunit of Rubisco; and operably linked at its 3' end to suitable plant transcription 3' end formation and polyadenylation signals. It is expected that the choice of the marker DNA is not critical, and any suitable marker DNA can be used. For example, a marker DNA can encode a protein that provides a distinguishable color to the transformed plant cell, such as the A1 gene (Meyer et al., (1987)), can provide herbicide resistance to the transformed plant cell, such as the *bar* gene, encoding resistance to phosphinothricin (EP 0 242 246), or can provide antibiotic resistance to the transformed cells, such as the *aac*(6') gene, encoding resistance to gentamycin (WO94/01560).

According to another embodiment, the present invention invention relates to the use of the polynucleic acids above as selectable marker gene. More preferably, the present invention also relates to the use of the plant DBF2 gene as defined above as selectable marker gene, selection taking place with treatment with a stress condition.

The recombinant DNA vectors according to the present invention comprising the sequences from genes of the invention will typically also comprise a marker gene which confers a selectable phenotype on plant cells. For example, the marker may encode biocide resistance, particularly antibiotic resistance, such as resistance to kanamycin, G418, bleomycin, hygromycin, or herbicide resistance, such as resistance to chlorosulforon or Basta.

The present invention also relates to a recombinant host cell transformed with an isolated polynucleic acid as defined above. Said host can be any host known in the art. Preferably said recombinant host cell is a plant cell, yeast, fungi, insect cell, etc. In order to be efficiently expressed in said host, said polynucleic acids can be combined with any promoter known to function in said host system. Methods for transforming said host cells are also well known in the art.

The present invention particularly also relates to a plant cell transformed with at least one recombinant polynucleic acid as defined above.

The present invention also relates to a plant consisting essentially of plant cells transformed with at least one recombinant polynucleic acid as defined above.

15

25

30

A "transgenic plant" refers to a plant comprising a transgene in the genome of essentially all of its cells.

DNA constructs of the invention may be introduced into the genome of the desired plant host by a variety of conventional techniques (see for example Hansen et al., 1999 for review and WO 99/05902). For example, DNA constructs of the invention may be introduced into the genome of the desired plant host by using techniques such as protoplast transformation, biolistics or microprojectile bombardment or Agrobacterium mediated transformation.

Microinjection techniques are known in the art and well described in the scientific and patent literature. The introduction of DNA constructs using polyethylene glycol precipitation is described in Paszkowski et al. (1984).

Electroporation techniques are described in Fromm et al. (1985). Biolistic transformation techniques are described in Klein et al. (1987).

Alternatively, the DNA constructs may be combined with suitable T-DNA flanking regions and introduced into a conventional Agrobacterium host vector. The virulence functions of the Agrobacterium host will direct the insertion of the construct and adjacent marker into the plant cell DNA when the cell is infected by the bacteria. Agrobacterium tumefaciens-mediated transformation techniques, including disarming and use of binary vectors, are well described in the scientific literature. See, for example Horsch et al. (1984), and Fraley et al. (1983).

Transformed plant cells which are derived by any of the above transformation techniques can be cultured to regenerate a whole plant which possesses the transformed genotype and thus the desired phenotype. Such regeneration techniques rely on manipulation of certain phytohormones in a tissue culture growth medium. Plant regeneration from cultured protoplasts is described in Evans et al. (1983); and Binding (1985). Regeneration can also be obtained from plant callus, explants, organs, or parts thereof. Such regeneration techniques are described generally in Klee et al. (1987).

The polynucleic acids and polypeptides of the invention can be used to confer desired traits on a broad range of plants, including monocotyledonous or dicotyledonous plants, preferably they belong to a plant species of interest in agriculture, wood culture or horticulture, such as a crop plant, root plant, oil producing plant, wood producing plant, fruit producing plant, fodder or forage legume, companion or ornamental or horticultured plant. The plants can include species from the genera Actinidia, Apium, Allium, Ananas, Arachis, Arisaema, Asparagus, Atropa, Avena, Beta,

Brassica, Carica, Cichorium, Citrus, Citrullus, Capsicum, Cucumis, Cucurbita, Cydonia, Daucus, Diospyros, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoscyamus, Ipomoea, Lactuca, Linum, Lolium, Lycopersicon, Malus, Mangifera, Manihot, Majorana, Medicago, Musa, Nicotiana, Oryza, Panicum, Pannesetum, Persea, Petroselinum, Phaseolus, Pisum, Pyrus, Prunus, Raphanus, Rheum, Ribes, Rubus, Saccharum, Secale, Senecio, Sinapis, Solanum, Sorghum, Spinacia, Trigonella, Triticum, Vaccinium, Vitis, Vigna, Zea, and Zingiber. Additional species are not excluded. Crops grown on cultivated lands in arid and semi-arid areas in which irrigation with ground water is needed may advantageously benefit from the invention.

One of skill will recognize that after the recombinant polynucleic acid is stably incorporated in transgenic plants and confirmed to be operable, it can be introduced into other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed. As described before, the plant cells, plant tissue, in particular, transgenic plants of the invention display a certain higher or enhanced degree of tolerance (or even resistance) to environmental stress conditions compared to the corresponding wild-type plants. For the meaning of "environmental stress", see supra. In a preferred embodiment of the present invention, the transgenic plant displays increased tolerance to osmotic stress, salt stress, cold and/or heat stress. An increase in tolerance to such environmental stress is understood to refer to a tolerance to a level of such stress which inhibits the growth and productivity of the corresponding untransformed plant, as determined by methodologies known to the art. Such increased tolerance in transgenic plants is related to an increased expression level in the transgenic plant or parts thereof of one ore more of the polynucleic acids of the present invention and/or to an increased level of activity of the polypeptide(s) encoded by said polynucleic acid, as determined by methodologies known to the art. In comparison with their untransformed counterparts, and determined according to methodologies known in the art, a transgenic plant according to the present invention shows an increased growth, viability, metabolism, fertility and/or productivity under mild environmental stress conditions. In the alternative, a transgenic plant according to the invention can grow under environmental stress conditions wherein the untransformed counterparts can not grow. An increase in tolerance to salt stress is understood to refer to the capability of the transgenic plant to grow under stress conditions which inhibit the growth of at least 95% of the parent, non-stress tolerant plants from which the stress tolerant transgenic

15

25

35

plants are derived. Typically, the growth rate of stress tolerant plants of the invention will be inhibited by less than 50%, preferably less than 30%, and most preferably will have a growth rate which is not significantly inhibited by growth conditions which inhibit the growth of at least 95% of the parental, non-stress tolerant plants. In an alternative example, under mild environmental stress conditions, the growth and/or productivity of the transgenic plants is statistically at least 1 % higher than for their untransformed counterparts, preferably more than 5 % higher and most preferably more than 10 % higher.

Any transformed plant obtained according to the invention can be used in a conventional breeding scheme or in *in vitro* plant propagation to produce more transformed plants with the same characteristics and/or can be used to introduce the same characteristic in other varieties of the same or related species.

Furthermore, the characteristic of the transgenic plants of the present invention to maintain normal/rapid/high growth rates under environmental stress conditions can be combined with various approaches to confer environmental stress tolerance with the use of other stress tolerance genes. Some examples of such stress tolerant genes are provided in Holmberg and Bülow (1998). Most prior art approaches which include the introduction of various stress tolerance genes have the drawback that they result in reduced or abnormal growth (compared to non-transgenic controls) under normal, non-stressed conditions, namely stress tolerance comes at the expense of growth and productivity (Kasuga et al., 1999). This correlation between constitutive expression of stress-responsive genes and reduced growth rates under normal growth conditions indicates the presence of cross talk mechanisms between stress response control and growth control.

Furthermore, the characteristic of the transgenic plants of the present invention to display tolerance to environmental stress conditions can be combined with various approaches to confer to plants other stress tolerance genes, e.g., osmotic protectants such as mannitol, proline; glycine-betaine, water-channeling proteins, etc. Thus, the approach of the present invention to confer tolerance to environmental stress conditions to plants can be combined with prior art approaches which include introduction of various stress tolerance genes. Combination of these approaches may have additive and/or synergistic effects in enhancing tolerance or resistance to environmental stress.

Thus, it is immediately evident to the person skilled in the art that the method of the present invention can be employed to produce transgenic stress tolerant plant with

any further desired trait (see for review TIPTEC Plant Product & Crop Biotechnology 13 (1995), 312-397) comprising:

- (i) herbicide tolerance (DE-A 3701623; Stalker (1988)),
- (ii) insect resistance (Vaek (1987)),
- (iii) virus resistance (Powell (1986), Pappu (1995), Lawson (1996)),
- (iv) ozone resistance (Van Camp (1994)),
- (v) improving the preserving of fruits (Oeller (1991)),
- (vi) improvement of starch composition and/or production (Stark (1992), Visser (1991)),
- (vii) altering lipid composition (Voelker (1992)),
- (viii) production of (bio)polymers (Poirer (1992)),
- (ix) alteration of the flower color, e.g., bu manipulating the anthocyanin and flavonoid biosynthetic pathway (Meyer (1987), WO90/12084),
- (x) resistance to bacteria, insects and fungi (Duering (1996), Strittmatter (1995), Estruch (1997)),
- (xi) alteration of alkaloid and/or cardia glycoside composition,
- (xii) inducing maintaining male and/or female sterility (EP-A1 0 412 006; EP-A1 0 223 399; WO93/25695);
- (xiii) higher longevity of the inflorescences/flowers, and
- (xvi) stress resistance.

30

Thus, the present invention relates to any plant cell, plant tissue, or plant which due to genetic engineering displays an enhanced tolerance or resistance to environmental stress obtainable in accordance with the method of the present invention and comprising a further nucleic acid molecule conferring a novel phenotype to the plant such as one of those described above.

The present invention also relates to a callus or calli consisting essentially of plant cells as defined here above. Such transgenic calli can be preferably used for the production of secondary metabolites in plant cell suspension cultures.

The present invention also relates to any other harvestable part, organ or tissue or propagation material of the plant as defined here above.

The present invention also relates to the seed of a transgenic plant as defined here above, comprising said recombinant DNA.

The present invention also relates to the use of any isolated polynucleic acid as defined above to produce transgenic plants.

25

30

35

The present invention also relates to the use of a recombinant polynucleic acid as defined above, to produce transgenic plants, preferably transgenic plants having an enhanced tolerance or resistance to environmental stress conditions. Preferably said polynucleic acid encodes a polypeptide as listed in Table 1.

The present invention also relates to the use of an isolated polynucleic acid as defined above, to produce transgenic callus having an enhanced tolerance or resistance to environmental stress conditions. Preferably said polynucleic acid encodes a polypeptide as listed in Table 1.

The present invention also relates to probes and primers derived from the genes of the invention that are useful for instance for the isolation of additional genes having sequences which are similar to but differ from any of SEQ ID NO 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121, but which encode a protein having substantially the same biological activity as a protein having the amino acids sequence of any of SEQ ID NO 2 to 120 (even numbers) by techniques known in the art, such as PCR. The presence of a homologous gene in another plant species can for instance be verified by means of Northern of Southern blotting experiments.

The present invention also relates to the cloning of the genomic counterpart of any of the cDNA sequences as represented in SEQ ID NO 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121. These genomic counterparts can be selected from a genomic library using these cDNA sequences as a probe. The present invention also relates to the coding region as well as the promoter region of any of said genomic clones.

The term "probe" according to the present invention refers to a single-stranded oligonucleotide *sequence* which is designed to specifically hybridize to any of the polynucleic acids of the invention.

The term "primer" refers to a single stranded oligonucleotide sequence capable of acting as a point of initiation for synthesis of a primer extension product which is complementary to the nucleic acid strand to be copied. Preferably the primer is about 5-50 nucleotides long. The term "target region" of a probe or a primer according to the present invention is a sequence within the polynucleic acid(s) to which the probe or the primer is completely complementary or partially complementary (i.e. with some degree

20

25

30

35

of mismatch). It is to be understood that the complement of said target sequence is also a suitable target sequence in some cases.

"Specific hybridization" of a probe to a target region of the polynucleic acid(s) means that the probe forms a duplex with part of this region or with the entire region under the experimental conditions used, and that under those conditions this probe does substantially not form a duplex with other regions of the polynucleic acids present in the sample to be analysed.

"Specific hybridization" of a primer to a target region of the polynucleic acid(s) means that, during the amplification step, said primer forms a duplex with part of this region or with the entire region under the experimental conditions used, and that under those conditions the primer does not form a duplex with other regions of the polynucleic acids present in the sample to be analysed. It is to be understood that "duplex" as used hereby, means a duplex that will lead to specific amplification.

Preferably, the probes of the invention are about 5 nucleotides to about 1 Kb long, more preferably from about 10 to 25 nucleotides. The nucleotides as used in the present invention may be ribonucleotides, deoxyribonucleotides and modified nucleotides such as inosine or nucleotides containing modified groups which do not essentially alter their hybridization characteristics. The probes according to the present invention preferably include parts of the cDNA sequences of any of the polynucleic acids as defined above.

The present invention also relates to a composition comprising a polynucleic acid sequence as defined above, a polypeptide as defined above, a probe as defined above or a primer as defined above.

The present invention also relates to a pharmaceutical or agrochemical composition comprising said polynucleic acid, a polypeptide of the invention as defined above.

The present invention also relates to antibodies specifically reacting with a protein or polypeptide according to the present invention.

The following Examples describe by way of example the tolerance and/or resistance to several environmental stress conditions observed for transgenic plants and yeast overexpressing some of the polynucleic acids according to the present invention. Unless stated otherwise in the Examples, all recombinant DNA techniques are carried out according to standard protocols as described in Sambrook et al. (1989) and in volumes 1 and 2 of Ausubel et al. (1994). Standard materials and methods for plant molecular work are described in Plant Molecular Biology Labfax (1993) by R.D.D.

Croy, jointly published by BIOS Scientific Publications Ltd. (UK) and Blackwell Scientific Publications, UK.

These examples and figures are not to be construed as limiting to any of the embodiments of the present invention as set out above. All of the references mentioned herein are incorporated by reference.

35

BRIEF DESCRIPTION OF THE FIGURES AND TABLES

Figure 1. At-DBF2 encodes a functional homolog of the yeast Dbf2 (A) Comparison of the deduced amino acid sequence of At-DBF2 with that of yeast DBF2. Gaps were introduced to optimize the alignment. Roman numerals above the At-DBF2 sequence indicate the protein kinase catalytic subdomains defined by Hanks et al. (1988). (B) Complementation of dbf2. The dbf2 mutant S7-4A [MATa dbf2\Delta::URA3 ura3 leu2 ade5 trp1 his7] (Toyn and Johnston, 1994) (B1) forms swollen pairs of daughter cells (dumbbells) at restrictive temperature (37° C). The defective morphology of the dbf2 mutant can be complemented by transformation with the pYX112 centromeric plasmid (Ingenius, R&D system) containing the At-DBF2 cDNA (B2) or DBF2 (B3); wild type (CG378 strain, MATa ade5 leu2 trp1 ura3) (B4). Log phase cultures were shifted from 28°C to 37°C and photographed after 16 hours. After 16 hours, 98% of the S7-4A cells arrested with a dumbbell morphology (B1) whereas 6,1 and 0% of dumbbells were observed in B1, B3 and B4. Strains were kindly provided by (Dr Lindl, Max Planck Institut fur Zuchtungsforschung, Koln, Germany).

Figure 2. Overexpression of *DBF2* or *At-DBF2* enhances tolerance to osmotic, salt, heat and cold stress. Yeast cells were grown in YPD and cell density was adjusted to OD600 at 2. (1) DY, (2) DY transformed with pYX212 containing *DBF2*, pYX-YDBF2, (3) DY transformed with vector alone or (4) with vector containing *At-DBF2*, pYX-AtDBF2. Serial dilutions were made in step1:10. Ten μl of each dilution was spotted on solid YPD medium (control) supplemented with 2M sorbitol (osmotic stress) or 1.2 M NaCl (salt stress) or 4μl H₂O₂ (oxidative stress) and incubated at 28°C or at 42°C (heat stress) or at 4°C (cold stress) for 3 days.

Figure 3. *DBF2* and *At-DBF2* are induced by stress. (a) Northern analysis showing the kinetics of *At-DBF2* induction in plants treated with PEG 6000 20 % and the one of *DBF2* in yeast treated with sorbitol 2M for the time indicated. (b) Northern analysis of *At-DBF2* in 10 day-old-plants grown for 5 hours in control conditions (as described in Verbruggen et al. 1993) (1), at 37° C (2), with PEG 6000 20 % (3), NaCl 1% (4), at 4° C (5) or with 0.4 mM H₂O₂ (6); and of *DBF2* in yeast cells grown for 11/2 hour in YPD (1), at 37° C (2), with sorbitol 2M (3), with NaCl 1.2 M (4), at 4° C (5) or with 0.4 mM H₂O₂ (6). Control of loading has been done with EtBr staining and is shown under each Northern analysis.

25

30

(c) Western analysis of At-DBF2 in Arabidopsis. Samples are similar to those analysed in (b). Antibodies used were raised against yeast Dbf2 and kindly provided by Dr L. Leindl (Max Planck Institut fur Zuchtungsforschung, Koln, Germany).

Figure 4. *DBF2* overexpression can suppress *hog1* osmosensitivity. The *hog1* mutant (4) [W303-1A, *MATa*, *hog1*Δ:: *TRP1*] and wild type (W303) (1) were kindly provided by Dr Thevelein (Katholieke Universiteit Leuven, Belgium). The *hog1* mutant was transformed with pYX-YDBF2 (2) or pYX-AtDBF2 (3). Each of the 4 strains was grown for 16 hours in YPD (rich medium), and cell density was adjusted to OD600 at 2. Serial dilutions, 1:10 were made at five consecutive steps. Ten microliter of each dilution was spotted on solid YPD medium (control) or solid YPD medium supplemented with 0,9 M NaCl and incubated at 28°C for 3 days.

Figure 5. *T-DBF2* (*Nicotiana tabacum* DBF2) is periodically expressed during plant cell cycle. Tobacco *DBF2* expression has been followed in BY2 cells synchronised with aphidicolin (a & b) or with propyzamide (c & d) with *At-DBF2* as probe. The measure of relative rate of DNA synthesis and of the mitotic index, the use of the cell cycle markers *CYCB1.2* and *H4* markers have been previously described (Reicheld et al., 1995). *T-DB*F2 transcript levels were quantified from the blots shown in b and d using a PhosphorImager (Molecular Dynamics).

Figure 6. shows the results of a comparison of the growth of *A. thaliana* plants transformed with the following constructs: P35S-At-DBF2 (upper left and bottom right section), P35S control (upper right section) and P35S-antisense At-DBF2 (bottom left section) upon applying a salt stress of 200 mM NaCl overnight.

Figure 7 shows the results of a comparison of the growth of *A. thaliana* plants transformed with the following constructs: P35S-At-DBF2 (upper left and bottom right section), P35S control (upper right section) and P35S-antisense At-DBF2 (bottom left section) upon applying an osmotic stress induced by 20% PEG overnight.

Figure 8 shows the results of a comparison of the growth of *A. thaliana* plants transformed with the following constructs: P35S-At-DBF2 (upper left and bottom right section), P35S control (upper right section) and P35S-antisense At-DBF2 (bottom left

15

20

25

30

section) upon applying a cold stress by gradually decreasing the temperature untill - 7°C.

Figure 9 shows the results of a comparison of the growth of *A. thaliana* plants transformed with the following constructs: P35S-At-DBF2 (upper left and bottom right section), P35S control (upper right section) and P35S-antisense At-DBF2 (bottom left section) upon applying a heat stress of 2 hours at 48°C.

Figure 10 shows the results of a comparison of the growth of *A. thaliana* plants transformed with the following constructs: P35S-At-DBF2 (upper left and bottom right section), P35S control (upper right section) and P35S-antisense At-DBF2 (bottom left section). It can be concluded that the P35S-At-DBF2 transformed plants do not show morphological abnormalities compared to the control transgenic plants.

Figure 11 shows the results of a salt stress tolerance test with transgenic *A. thaliana* plants overexpressing HSP 17.6A (A) or c74 (B). The control plants (bottom left in A en B) is a transgenic line transformed with pBIN-35S-CaMVter. The other sections in A are 5 independently obtained transgenic lines overexpressing HSP17.6A. The other sections in B are 5 independently obtained transgenic lines overexpressing c74.

Figure 12 shows the influence of *At-DBF2* expression in sense and antisense orientations on stress tolerance. BY2 cells were transformed by *A. tumefaciens* with recombinant T-DNA vectors containing At-DBF2 driven by CaMV 35S RNA promoter, pBIN-35S-At-DBF2 (upper left and right sections in A or diamonds in B), the CaMV 35S promoter and terminator pBIN-35S-CaMVter (bottom left sections in A or triangles in B), or antisense *At-DBF2* under the control of the CaMV 35S promoter pBIN-35S-ASAt-DBF2 (bottom right sections in A or circles in B). (A) Picture of the same amounts of transgenic cells after 3 weeks of growth on solid medium supplemented with 300 mM NaCl, 25% PEG, 2mM H₂O₂, or at 47°C (heat). (B) Growth of suspension cells in liquid medium. Upon stress, growth was measured as fresh weigth and expressed as a percentage of unstressed growth (control) (a). Stresses were applied after subculturing (= day 0) at indicated temperatures (e) and concentrations of NaCl (b) PEG (c), and H₂O₂ (f). For the cold shock (d), cells were maintained at 0°C for 2 days before the 2-week culture at 22°C. For each construction data of three

independent transgenic lines were pooled. To not overload the figure, SDs are not shown (maximum 15% of measured values). (C) Northern analysis of At-DBF2+TDBF2, kin1, and HSP17.6. Total RNAs were extracted from independent lines transformed with pBIN-35S-At-DBF2 (1) and (2), pBIN-35S-CaMter (3), and pBIN-35S-ASAt-DBF2 (4). Osmotic stress was induced with 10% PEG treatment for 5 hr (stressed).

Figure 13 shows the results of the growth of *A. thaliana* plants transformed with p35S-AtHSP17.6A and P35S control (upper right section) upon applying an osmotic stress induced by 20% PEG overnight. The results of two independent experiments are shown, each performed with 3 independently obtained transgenic lines overexpressing At-HSP17.6A (upper left and bottom left and right).

Figure 14 shows the results of the germination of *A. thaliana* plants transformed with p35S-Atc74 and P35S control (bottom section) on mineral medium supplemented with 125 mM NaCl. The results of two independent experiments are shown, each performed with 2 independently obtained transgenic lines overexpressing Atc74 (2 upper sections).

20

25

30

35

10

Table 1. Classification of the *Arabidopsis thaliana* clones isolated in Example 2. Clones isolated according to the description in example 2 have been analyzed on their potential to confer tolerance. According to the method described in example 2, the tolerance of different yeast transformants expressing an Arabidopsis cDNA to osmotic stress and salt stress was compared with the tolerance of DY wild type cells.

+ : similar growth to the DY wild type cells;

++ : growth of the transformant is visible at a 10-fold higher dilution

(1:10) than control (1:1);

+++ : growth of the transformant is visible at a 100-fold higher dilution

(1:100) than control (1:1);

++++ : growth of the transformant is visible at a 1000-fold higher

dilution (1:1000) than control (1:1).

Table 2. Exemplary plant-expressible promoters for use in the performance of the present invention.

WO 00/08187 PCT/EP99/05652

34

Table 3. Exemplary stress-inducible promoters for use in the performance of the present invention.

EXAMPLES

Example 1. Construction of the cDNA library.

Total RNA has been isolated from green siliques from *Arabidopsis thaliana* by grinding 1 g of siliques in 4 ml extraction buffer (100 mM tris-Hcl, pH 8, 10 mM EDTA, 100 mM LiCl) at 4° C, followed by phenolisation and chloroform: isoamylalcohol (24:1) extraction. To the aqueous phase, LiCl was added up to a final concentration of 2M, and the total RNA was allowed to precipitate overnight at 4°C. After centrifugation, the pellet was redissolved in 400 µl H₂O and reprecipitated with ethanol. Poly(A) messenger RNA was isolated from the total RNA by binding it to an oligo-dT cellulose spun column (Pharmacia), washing the column three times with 10 mM Tris-HCl, pH 7.5, 1 mM EDTA, 0.5 M NaCl and eluting the mRNA with 10 mM Tris-HCl, pH 7.5, 1 mM EDTA at 65° C.

The eluate was precipitated with ethanol, and cDNA was synthesized using MMLV- reverse transcriptase (Pharmacia) and a d(T)₁₄-Xhol primer for the first strand and *E. coli* DNA polymerase I (Pharmacia) for the second strand.

Example 2. Yeast transformation and selection for osmotolerance.

The cDNA was cloned into pYX vectors (Ingenius, R&D systems; 2 μ based pYX 212 for bank 1, ARS/CEN based pYX112 for bank 2) as EcoRI - Xhol fragments, using an Eco RI/Not I adaptor.

In these constructs, the cDNA is under the control of the strong constitutive TPI promoter. The yeast strain DY (MATa, his3, can1-100, ade2, leu2, trp1, ura3::3xSV40AP1-lacZ; kindly provided by N. Jones, Imperial Cancer Research Fund, London, UK) has been transformed with these cDNA libraries, using the Lithium Acetate transformation procedure (Gietz and Schietsl, 1995). After transformation with the Arabidopsis cDNA bank, transformants have been selected for the ability to grow in the presence of 100mM LiCl in a stepwise selection (Lee et al., 1999). LiCl is commonly used for salt tolerance screening in yeast (Haro et al. 1991). Several A. thaliana genes, conferring osmotolerance to the yeast, have been isolated (Table 1). To further analyse the potential of the selected Arabidopsis cDNA's to confer tolerance to environmental stress in yeast, each yeast transformant expressing such selected Arabidopsis cDNA's has been exposed to osmotic stress and salt stress. Each of the transformants was therefore grown for 16 hours in YPD (rich medium), and cell density was adjusted to OD₆₀₀ at 2. Serial dilutions, 1:10, were made at three consecutive

steps. Ten microliters of each dilution was spotted on solid YPD medium (control) supplemented with 2 M sorbitol (osmotis stress) or 1.2 M NaCl (sait stress) and incubated at 28°C for 3 days. The results of this drop growth test (see also Lee et al., 1999) are shown in Table 1.

5

10

15

20

25

30

35

Example 3. Characterization of At-DBF2.

At-DBF2, a 1.8 kb cDNA (SEQ ID NO 1) has been identified in this screening that encodes a predicted 60.2 kDa protein showing 81 % similarity with the yeast Dbf2 transcriptional regulator. Homology (less than 40% similarity) has also be found with the putative Dbf2 homologues in human, C. elegans and Drosophila (named Ndr for nulear Dbf2 related, Millward et al. 1995). The At-DBF2 deduced protein sequence (SEQ ID NO 2) contains the 11 domains of protein kinases (Figure 1A). Amino acids lying between the invariant residues D and N of domain VI do not match the features of serine/threonine specificity (LKPE) defined by Hanks et al. (1988) but the GSPDYIALE peptide in domain VIII does well indicate serine/threonine specificity and At-DBF2 can complement the yeast dbf2 mutant (Figure 1B).

In mature Arabidopsis plants, *At-DBF2* is expressed in all tested organs. The highest abundance of transcripts has been found in siliques. A Southern analysis in Arabidopsis, tobacco and tomato has revealed that *DBF2* seems to be conserved in plants (see Example 13 below). As *At-DBF2* has been identified in a screening for LiCl tolerance, its effect in other stress situations has been tested in yeast (Figure 2).

Example 4. Overexpression of *Arabidopsis* and *Saccharomyces* cerevisiae DBF2 enhances cold, heat, salt and drought tolerance in yeast.

In order to test whether the effect was specific to the plant gene, the yeast *DBF2* gene has been overexpressed in the same vector. Upon a drop growth test (Figure 2 and Lee et al., 1999). A remarkable enhancement of stress tolerance can be seen at 42°C, during osmotic stress (sorbitol), and after salt and cold treatments in yeast. There is no difference between stress tolerance afforded by the plant or the yeast gene. The enhancement of stress tolerance due to the overexpression of *At-DBF2* or *DBF2* reflects a role for these genes in stress situations. Therefore yeast and Arabidopsis plants have been exposed to sorbitol- and PEG-induced osmotic stress. *At-DBF2* as well as *DBF2* is induced rapidly (1 to 2 hours) and transiently upon osmotic stress (Figure 3A). The expression of *At-DBF2* and *DBF2* has been analyzed during other environmental stresses in Arabidopsis plants or in yeast cells after the

time corresponding to the highest induction seen in Fig. 3A (Figure 3B). In plant as in yeast, there is a clear induction after heat, salt, osmotic and to a lesser extent after cold, which perfectly correlates with stresses to which the overexpression enhances tolerance. However, many genes are induced upon stress without relevant adaptive role, amongst others because post-transcriptional mechanisms inhibit subsequent translation. Here *At-DBF2* protein amount, as detected by anti-Dbf2 antibodies, clearly increased upon stress (Figure 3C).

Example 5. Both *At-DBF2* and *DBF2* can functionally complement the *hog1* mutation.

To investigate a possible interaction between stress signaling pathways and *DBF2*, the salt sensitive hog1 mutant was transformed with *At-BDF2* and *DBF2*. The *HOG1* MAP kinase pathway regulates osmotic induction of transcription in yeast (Schuller *et al.* 1994). The osmosensitivity of the mutant could be recovered by the overexpression of both *DBF2* and *At-DBF2* (Figure 4).

Example 6. At-DBF2 is cell cycle regulated.

DBF2 expression is cell cycle regulated where it plays a role in DNA synthesis initiation but also in nuclear division through its association with the CCR4 complex (Komarnitsky et al. 1998, Johnston et al. 1990). This regulation was investigated in plants. A tobacco BY-2 cell line in which the highest level of culture synchronization, compared with other plant cell lines has been achieved so far (Shaul et al. 1996, Reicheld et al. 1995) was used. Stationary phase cells were diluted into fresh medium and treated with aphidicolin (blocking cells in the beginning of the S phase) for 24 hours, then washed. The percentage of synchronous mitosis after release from the aphidicolin block was about 65 % (Figure 5A-B). A 1.6-Kb tobacco DBF2 homologue (T-DBF2) could be detected on Northern blot with the At-DBF2 as a probe. T-DBF2 steady-state transcript level clearly oscillates during the cell cycle and is mainly present during S, decreases during G2 until late M from where it increases until a peak in S phase. T-DBF2 expression occurs clearly before CYCB1.2 (a marker of G2-M phases), but parallels the one of H4 (a S phase marker) except at the S/G2 transition, where T-DBF2 transcripts decline earlier, and at the M/G1 transition, where T-DBF2 expression increases earlier. The use of the cell cycle markers CYCB1.2 and H4 is described in Reicheld et al.

. : . :

15

20

25

To follow unperturbed G1 and S phases, BY2 cell suspension was synchronized using a double blocking procedure (Nagata et al.,1992). After the release from the aphidicoline block, cells are treated for 4 hours with propyzamide in the beginning of the preprophase. The percentage of synchronous mitosis after the release from the propyzamide block was higher than 75%. *T-DBF2* was periodically expressed with an undetectable expression until late M, a sharp increase in G1 and a peak in mid S (Figure 5C-D) which confirms results of Figures 5A-B. However a function for the plant *DBF2* in cell cycle can only be assigned with measurement of the kinase activity. In yeast, *DBF2* transcript levels do not correlate with kinase activation which occurs by dephosphorylation (Toyn and Johnson, 1994). The precise function of Dbf2 in regulation of the cell cycle is not known. An essential role has been proposed during anaphase or telophase. No activity has been measured in G1 despite evidence for a role for Dbf2 in initiation of DNA synthesis.

As other proteins recently identified, Dbf2 controls the M/G1 transition which is a major cell cycle transition in yeast (Aerne *et al.* 1998). The existence of a M/G1 control checkpoint has been suggested in plant cells (Hemmerlin and Bach 1998) but its importance compared to G1/S and G2/M has not been investigated.

Overexpression of *DBF2* in yeast results in kinase activity throughout the cell cycle, which may be due to the saturation of a post-translational deactivating mechanism (Toyn and Johnston, 1994). Overexpression of the functionnally conserved *At-DBF2* has most probably the same effect. However, the presence of Dbf2 kinase activity at the wrong time in the cell cycle does apparently not affect its progression. In marked contrast constitutive activity has a marked effect on stress tolerance. The role played by *At-DBF2* or *DBF2* in stress is most probably independent from the cell division cycle. *At-DBF2* expression is present in all plant organs (abundant expression is observed in stems where only 1-2 % cells have a mitotic activity) and can be rapidly induced upon stress. However, a link with the cell cycle is not excluded. Higher stress tolerance in yeast overexpressing *DBF2* or *At-DBF2* may be correlated to the overproduction of the kinase in G1 where yeast cells are particularly sensitive to stress. Most plant cells are also thought to be blocked in G1 but the relationship with stress response is poorly known.

Example 7. Tobacco cell transformation and recombinant T-DNA Vector construction

BY2 cells were stably transformed as described (Shaul et al., 1996) by Agrobacterium tumefaciens C58C1Rif^R (pGV2260) strain (Deblaere et al., 1985) carrying pBIN-35S-At-DBF2 or pBIN-35S-ASAt-DBF2 recombinant binary vectors. PBIN-35S-At-DBF2 is the plant binary vector pBIN m-gfp4 in which the BamHI-Sacl fragment containing the gfp reporter gene was replaced with a BamHI-Sacl fragment containing the At-DBF2 cDNA from pYX-At-DBF2. p-Bin-35S-CaMVter is the plant binary vector pBIN19 in the HindIII-Sacl restriction sites of which the hindIII-Sacl fragment of pDH51 containing the cauliflower mosaic virus (CaMV) 35S RNA promoter and terminator was cloned. pBIN-35S-ASAt-DBF2 is the pBIN-35S-CaMVter vector in which the At-DBF2 cDNA was cloned in the antisense orientation from pYXAt-DBF2 in the BamHI-Smal restriction sites, between the CaMV 35S RNA promoter and terminator. More details are described in Lee et al. (1999).

15

20

25

Example 8. Overexpression of At-DBF2 sense and antisense RNA in plant cells

Transgenic plant cells overexpressing At-DBF2 were generated to test the role of this protein in stress tolerance in planta. Tobacco BY2 cells were stably transformed by A. tumefaciens carrying the At-DBF2 cDNA driven by the strong constitutive CaMV 35S RNA promoter. The antisense At-DBF2 RNA also was overexpressed under the control of the same promoter. Control lines were obtained by transforming tobacco BY2 cells with pBIN-35S-CaMVter. Three independently obtained At-DBF2overexpressing tobacco transgenic cell lines have been selected with a high and similar At-DBF2 expression and analysed further. Three tobacco transgenic cell lines overexpressing antisense At-DBF2 were chosen that showed an undetectable tobacco DBF2 transcript level. Both the overexpression of At-DBF2 and the down-regulation of the endogenous gene by the antisense strategy did not result in significant differences in growth after 2 weeks (Fig. 12A and 12B). On the contrary, marked differences in growth were observed after a 2-week treatment with NaCl, PEG-induced drought, cold, or high temperatures. Transgenic lines that overexpressed At-DBF2 were clearly more tolerant than control lines. Inhibition of the endogenous DBF2 expression was correlated with a higher sensitivity to those stresses. To understand the basis of stress

30

tolerance in *At-DBF2*-overexpressing plant cells, expression of stress-induced genes was followed in control and stress conditions (Fig. 12C). Tobacco kin1 and HSP17.6A homologues already were induced in *At-DBF2*-overexpressing tobacco cells in control conditions to a level similar to that observed during stress conditions (PEG-induced drought), suggesting that *At-DBF2* overexpression may mimic a stress signal.

Example 9. Arabidopsis transformation and recombinant T-DNA vector construction with genes conferring tolerance to environmental stress

Arabidopsis were stably transformed as described in Clarke, Wei and Lindsey (1992) by Agrobacterium tumefaciens C58C1RifR (pGV2260) strains carrying pBIN-35S-At-DBF2, pBIN-35S-At-HSP17.6A, pBIN-35S-At-c74 recombinant binary vectors. pBIN-35S-At-DBF2 is described in Lee et al. 1999. pBIN-35S-At-HSP17.6A recombinant binary vector was constructed as following: the EcoRI-Xhol fragment containing At-HSP17.6A cDNA in pYX-HSP17.6A (recombinant pYX212) was first cloned in pYES2 (Invitrogen) resulting in pYES-HSP17.6A. Than the BamHI-SphI fragment of pYES-HSP17.6A containing the At-HSP17.6A cDNA was cloned in the plant binary vector pBIN m-gfp4 in which the BamHI-SacI fragment containing the gfp receptor gene was deleted and replaced by the At-HSP17.6A cDNA. The 3' protruding ends generated by Sacl and Sphl were blunt ended by T4 DNA polymerase. pBIN-35S-c74 was constructed with a similar strategy as pBIN-35S-AtHSP17.6A with an intermediary pYES-Atc74 vector. The At-c74 cDNA was first amplified with PCR using the primers 5' AAA AAA CAC ATA CAG GAA TTC 3' (SEQ ID NO 122) and 5' AGT TAG CTA GCT GAG CTC GAG 3' (SEQ ID NO 123), then cloned "blunt ended" in the vector pYES2 cut with Notl and BstXI and blunt ended with T4 DNA polymerase. Subsequently, the BamHI-SphI fragment of pYES-c74 was cloned in pBINm-gfp4 as explained supra.

Example 10. Tolerance to environmental stress in plant cells

Transgenic calli were isolated from each of the transgenic Arabidopsis lines transformed with At-DBF2, At-HSP17.6A and At-c74. The growth of these transgenic calli during salt stress was measured and compared with control calli derived from transgenic Arabidopsis lines transformed with pBIN-35S-CaMVter. Callus pieces (25 for each transgenic line) of similar fresh weight (50 to 100 mg) were therefor grown on callus inducing medium (Clarke et al., 1992) supplemented with 200mM NaCl. After two weeks, from visual inspection, it was clear that transgenic calli transformed with

30

35

At-DBF2 or At-HSP17.6A or At-c74 looked much better than control transgenic calli transformed with pBIN-35S-CaMVter. The latter calli turned yellow and started dying. To confirm the observation, the fresh weight of the calli was measured. In comparison with the control transgenic calli, the fresh weight of the transgenic calli was for each of the three lines at least five times higher than the fresh weight of the control trangenic calli.

Example 11. Tolerance to environmental stress in plants.

Seeds from transgenic Arabidopsis plants tranformed with pBIN-35S-At-DBF2, p-BIN-35S-At-c74, or pBIN-35S-At-HSP17.6A, were sown in bulk on nylon filters (as described in Verbruggen et al. 1993) placed on solid K1 medium supplemented with kanamycin (75 micrograms/ml). For each recombinant pBIN binary vector at least five independent transgenic lines were tested for stress tolerance. In each of these lines overexpression of the transgene has been confirmed with Northern hybridisation experiments. Control plants were the ones transformed with pBIN-35S-CaMVter and transgenic plants transformed with pBIN-35S-AS+At-DBF2. After sowing, seeds were kept overnight at 4 degrees (to enhance germination). Growth was at 22 degrees, 60 % humidity, 16 hours light/8 hours dark, 70 microeinsteins. After 9 days growth, filters were transferred to liquid K1 medium supplemented with 200 mM NaCl for overnight incubation. Plants were allowed to recover for 5 to 6 days by transferring the filters to solid K1 medium. Under these conditions, the control transgenic plants turned yellow, their growth was inhibited and eventually they died. On the contrary, the transgenic lines transformed with At-DBF2 or At-HSP17.6A or At-c74 survived very well (Figure 6 and Figure 11).

To further evaluate the scope of protection to environmental stress, transgenic plants were exposed to osmotic stress. Therefor seeds from transgenic Arabidopsis plants transformed with pBIN-35S-At-DBF2, pBIN-35S-At-c74 or pBIN-35S-At-HSP17.6A were sown in bulk on nylon filters (as described in Verbruggen et al. 1993) placed on solid K1 medium supplemented with kanamycin (75 micrograms/ml). For each recombinant pBIN binary vector at least five independent transgenic lines were tested for stress tolerance. In each of these lines overexpression of the transgene has been confirmed with Northern hybridisation experiments. Control plants were the ones transformed with pBIN-35S-CaMVter and transgenic plants transformed with pBIN-35S-ASAt-DBF2. After sowing, seeds were kept overnight at 4 degrees (to enhance germination). Growth was at 22 degrees, 60 % humidity, 16 hours light/8 hours dark,

25

30

70 microeinsteins. After 9 days growth, filters were transferred to liquid K1 medium supplemented with 20 % polyethylene glycol for overnight incubation. Plants were allowed to recover for 5 to 6 days by transferring the filters to solid K1 medium. Under these conditions, the control transgenic plants turned yellow, their growth was inhibited and eventually they died. On the contrary, the transgenic lines transformed with At-DBF2, At-HSP17.6A or At-c74 survived very well (see Figure 7 and 13). Their growth was comparable to growth on control medium without polyethylene glycol.

To further analyse the scope of protection to environmental stress, transgenic plants were exposed to high and low temperatures. Therefor seeds from transgenic plants transformed with pBIN-35S-At-DBF2 or pBIN-35S-At-c74 were sown in bulk on nylon filters (as described in Verbruggen et al. 1993) placed on solid K1 medium supplemented with kanamycin (75 micrograms/ml). For each recombinant pBIN binary vector at least five independent transgenic lines were tested for stress tolerance. In each of these lines overexpression of the transgene has been confirmed with Northern hybridisation experiments. Control plants were the ones transformed with pBIN-35S-CaMVter and transgenic plants transformed with pBIN-35S-ASAt-DBF2. After sowing, seeds were kept overnight at 4 degrees (to enhance germination). Growth was at 22 degrees, 60 % humidity, 16 hours light/8 hours dark, 70 microeinsteins. After 9 days growth, for the experiments with high temperature stress, plants were exposed to 48°C for two hours. For the experiments with low temperature stress, plants were exposed to gradually decreasing temperatures, down to -7°C. Plants were allowed to recover for 5 to 6 days by transferring the filters to solid K1 medium.

Under both low temperature and high temperature stress, the growth of control transgenic plants was inhibited and eventually they died. The transgenic lines transformed with At-DBF2 or At-c74 survived very well. Their growth was comparable to growth under control conditions with normal temperature (see Figure 8 and 9).

To further analyse the scope of protection to environmental stress, transgenic plants were exposed to salt stress during germination. Sterilized mature seeds from transgenic plants transformed with pBIN-35S-At-DBF2 or pBIN-35S-At-c74 were placed on top of petri dishes containing MS (Murashige and Skoog) medium with 0,8 % agar and 30 g l⁻¹ sucrose. Control plants were the ones transformed with pBIN-35S-CaMVter. Prior to germination and pH 5.7 adjustment, NaCl was added to a final concentration of 125 mM. Three petri dishes with a mean of 40-50 seeds per dish were used per treatment in every experiment. The complete experiment was repeated

20

25

30

twice. Seed germination at 22°C was followed. Seeds were considered to germinate after radical and green cotyledon emergency occurred.

On control medium (without 125 mM NaCl), germination of all transgenic lines was very similar to each other and to wild type plants. On medium supplemented with 125 mM NaCl, seeds from transgenic lines overexpressing At-DBF2 or At-c74 germinate significantly better than control transgenic lines. Less than 10 % of the seeds from transgenic lines transformed with pBIN-35S-CaMVter germinate under these conditions. In contrast, more than 70 % of the seeds from trangenic lines overexpressing At-DBF2 or At-c74 germinate on medium containing 125 mM NaCl (Figure 14).

Example 12. Southern hybridisation of At-DBF2 genes in other plants

To investigate whether *DBF2* homologues exist in other plant species, a Southern hybridisation analysis was performed using the full length *At-DBF2* as a probe. Genomic DNA was extracted from tobacco, tomato and rice according to Dellaporta et al. (1983) and further purified by phenol :chloroform extractions.

DNA (10 μg) was digested with restriction enzymes and separated on 1% (w/v) agarose gels using Lambda DNA digested with Hind III as molecular size standards. The DNA was transformed on to nylon membranes (Hybond N; Amersham, little Chalfont, UK) in 0.4 N NaOH. Filters were UV-cross-linked for 30 seconds, prehybridized for 3 hours at 56°C in hybridization solution (2x SSPE, 0.1%(w/v) SDS, 5x Denhardt solution) using 200

gm⁻³ denatured salmon sperm DNA, and hybridized overnight with radiolabelled probes. 1X SSPE was 0.15 M NaCl/ 0.01 M sodium dihydrogen phosphate/ 1 mM EDTA

Filters were washed at 56°C in 2x SSPE, 0.1% (w/v) SDS for 20 min, then 1x SSPE, 0.1% (w/v) SDS for 20 min, and finally in 0.1x SSPE, 0.1% (w/v) SDS for 20 min. Filters were exposed to X-ray film (Kodak X-AR; Kodak, NY, USA) in the presence of intensifying screens for 24 hours.

The results of the hybridisation experiments show that tobacco, tomato and rice have at least one homologue to At-DBF2.

Tabel 1

putative function in	Features of encoded protein	SEQ ID NO.	Growth on medium with1,2 M NaCl	growth on medium with 2,0 M sorbitol
signalling	Similar to a yeast DBF2 cell cycle protein	1	++++	++++
metabolism	HSP17.6A	3	++++	++++
unknown	C74	5	+++	+++
metabolism	Similar to ADH2	. 7	+	++++
metabolism	Similar to D. melanogaster catalase/catalase 3	9	++++	+
metabolism	Similar to the HSP90 heat shock protein family	11	++++	++++
metabolism	similar to phosphoenolpyruvate carboxylase	13	+	+++
metabolism	pathogen related proteins, class 10	15	+	++++
metabolism	Arabidopsis ascorbate peroxidase	17	++++	++++
metabolism	similar to phosphatase binding protein	19	++++	1-1-1-1
metabolism	similar to phosphatase binding protein	21	++++	++++
metabolism	similar to retinol dehydrogenase	23	+++ .	1111
metabolism	similar to retinol dehydrogenase	25	++++	++++
metabolism	ribosomal protein	27	: ++++	++++
metabolism	ribosomal protein	29	++++	++++ .
metabolism	similar to a protein transporter (kinase homolog)	31	++++	++++
metabolism	similar to a peptide transporter	33	++++	+
metabolism	similar to a wheat low affinity cation transporter LCT1	35	++++	++++
metabolism	similar to yeast iso-1-cytochrome c (CYC-1)	37	++++	++++
metabolism	similar to yeast OSM1	39	++++	++++
metabolism	similar to yeast copper uptake gene (CUP1)	41	++++	+++
metabolism	similar to yeast UV-induced damage repair protein (RAD7)	43	++++	++++ -
metabolism	electron transporter, apocytochrome b	45	++++	++++
metabolism	similar to membrane lipoprotein LPPL1	47	++++	++++
metabolism	similar to tobacco auxin binding protein	49	+	++++
metabolism	similar to tobacco cytokinin binding protein CBP 57	51	+++	++++
signalling	similar to calcium binding protein yeast calcineurin B	53	+++	++++

signalling	similar to calcium binding protein glycine max calnexin	55	++++	+++
signalling	similar to calcium binding protein Dictyostelium discoideum calreticulin	calcium binding protein 57 ++++ +++		++++
signalling	similar to calcium binding protein calmodulin 1	59	++++	+
signalling	similar to calcium binding protein calmodulin 2	61	+	++++
signalling	MAP kinase kinase, homologous to Dyctyostelium mekA (DdMek1)	63	+++	+++
signalling	similar to human adenosine kinase	65	+	++++
signalling	similar to human tyrosine kinase	67	++++	++++
signalling	similar to common ice plant tyrosine kinase	69	++++	++++
signalling	similar to the yeast protein kinase C receptor	71	++++	++++
signalling	similar to tobacco and Arabidopsis HAT7 homeotic protein	73	++	++++
signalling	similar to E. coli sigma factor regulator (RSEB)	75	+	++++
signalling	similar to human protein phosphatase 2C	77	++++	++++
metabolism	late embryogenesis abundant proteins, Arabidopsis LEA protein 10 & 14	79	++	++++
metabolism	late embryogenesis abundant proteins, Arabidopsis LEA protein 10 & 14	81	++	++++
metabolism	pathogen related proteins, class 10	83	++++	++++
metabolism	cell wall peroxidase	85	++++	+++
metabolism	ribosomal protein	87	+++	++++
metabolism	salt stress induced protein, SAS 1	89	++++	++++
metabolism	PR gene (AIG2)	91	++++	++++
metabolism	MT1c	93	++++	++++
metabolism	IPP2 (Isopentenyl diphosphate)	95	+++	++++
metabolism	chlorophyll a/b binding protein	97	+++	+++
metabolism	glutathione transferase	99	++	++++
signalling	cold- and ABA inducible, calcium dependent – kinase, Kin1	101	++++	++++
signalling	MAP kinase, Atmpk1	103	++	++++
signalling	Arabidopsis cell cycle protein histone H2A	105	++++	++++
unknown	chromosome 4 – sequence	107	+++	++++
unknown	chromosome 4 – sequence	109	+	++++
unknown	chromosome 5 – sequence	111	++++	+++
unknown	chromosome 5 – sequence	113	++++	++
unknown	chromosome 5 – sequence	115	++++	++++
unknown	chromosome 5 – sequence	117	+	++++
		L		

signalling	similar to calcium binding protein	121	++++	++++
	centrin (caltractin)			

TABLE 2
EXEMPLARY PLANT-EXPRESSIBLE PROMOTERS FOR USE IN THE PERFORMANCE OF
THE PRESENT INVENTION

GENE SOURCE	EXPRESSION PATTERN	REFERENCE
α-amylase (<i>Amy32b</i>)	Aleurone	Lanahan <i>et al</i> (1992); Skriver <i>et al.</i> (1991)
cathepsin β-like gene	Aleurone	Cejudo <i>et al.</i> (1992)
Agrobacterium rhizogenes rolB	Cambium	Nilsson et al. (1997)
PRP genes	cell wall	http://salus.medium.edu/mmg/tierney/html
barley Itr1 promoter	Endosperm	
synthetic promoter	Endosperm	Vicente-Carbajosa et al.(1998)
AtPRP4	Flowers	http://salus.medium.edu/ mmg/tierney/html
chalene synthase (chsA)	Flowers	van der Meer et al. (1990)
apetala-3	Flowers	
Chitinase	fruit (berries, grapes, etc)	Thomas et al. CSIRO Plant Industry, Urrbrae, South Australia, Australia; http://winetitles.com.au /gwrdc/csh95-1.html
rbcs-3A	green tissue (eg leat)	Lam et al. (1990); Tucker et al. (1992)
leaf-specific genes	Leaf	Baszczynski et al. (1988)
AtPRP4	Leaf	http://salus.medium.edu/ mmg/tierney/html
Pinus cab-6	Leaf	Yamamoto et al. (1994)
SAM22	Senescent leaf	Crowell et al. (1992)
R. japonicum nif gene	Nodule	United States Patent No. 4, 803, 165
B. japonicum nifH gene	Nodule	United States Patent No. 5, 008, 194

	T	
GmENOD40	Nodule	Yang et al. (1993)
PEP carboxylase (PEPC)	Nodule	Pathirana et al. (1992)
Leghaemoglobin (Lb)	Nodule	Gordon et al. (1993)
Tungro bacilliform virus gene	Phloem	Bhattacharyya-Pakrasi et al. (1992)
sucrose-binding protein gene	plasma membrane	Grimes et al. (1992)
pollen-specific genes	pollen; microspore	Albani et al. (1990); Albani et al. (1991)
maize pollen-specific gene	Pollen	Hamilton et al. (1992)
sunflower pollen-expressed gene	Pollen	Baltz et al. (1992)
B. napus pollen-specific gene	pollen;anther; tapetum	Arnoldo et al. (1992)
root-expressible genes	Roots	Tingey et al. (1987); An et al. (1988);
tobacco auxin-inducible gene	root tip	Van der Zaal et al. (1991)
β-tubulin	Root	Oppenheimer et al. (1988)
Tobacco root-specific genes	Root	Conkling et al. (1990)
B. napus G1-3b gene	Root	United States Patent No. 5, 401, 836
SbPRP1	Roots	Suzuki et al. (1993)
AtPRP1; AtPRP3	roots; root hairs	http://salus.medium.edu/ mmg/tierney/html
RD2 gene	root cortex	http://www2.cnsu.edu/ncsu/research
TobRB7 gene	root vasculature	http://www2.cnsu.edu/ncsu/research
AtPRP4	leaves; flowers; lateral root primordia	http://salus.medium.edu/mmg/tierney/html
Seed-specific genes	Seed	Simon <i>et al.</i> (1985); Scofield <i>et al.</i> (1987); Baszczynski <i>et al.</i> (1990)
Brazil Nut albumin	seed	Pearson <i>et al.</i> (1992)
Legumin	Seed	Ellis et al. (1988)
Glutelin (rice)	Seed	Takaiwa et al. (1986);Takaiwa et al.

		(1987)
Zein	Seed	Matzke et al. (1990)
NapA	Seed	Stalberg et al. (1996)
Sunflower oleosin	seed(embryo and dry seed)	Cummins <i>et al.</i> (1992)
LEAFY	shoot meristem	Weigel <i>et al.</i> (1992)
Arabidopsis thaliana knat1	shoot meristem	Accession number AJ131822
Malus domestica kn1	shoot meristem	Accession number Z71981
CLAVATA1	shoot meristem	Accession number AF049870
Stigma-specific genes	Stigma	Nasrallah <i>et al.</i> (1988); Trick <i>et al.</i> (1990)
Class I patatin gene	Tuber	Liu et al. (1991)
Blz2	Endosperm	EP99106056.7
PCNA rice Meristem Kosugi (1997)		Kosugi <i>et al</i> (1991); Kosugi and Ohashi (1997)

Table 3. Stress inducible promoters

Name	Stress	Reference
P5CS (delta(1)-pyrroline-5- carboxylate syntase)	salt, water	Zhang et al; Plant Science. Oct 28 1997; 129(1): 81-89
cor15a	Cold	Hajela et al., Plant Physiol. 93: 1246-1252 (1990)
cor15b	Cold	Wiihelm et al., Plant Mol Biol. 1993 Dec; 23(5):1073-7
cor15a (-305 to +78 nt)	cold, drought	Baker et al., Plant Mol Biol. 1994 Mar; 24(5): 701-13
rd29	salt, drought, cold	Kasuga et al., Nature Biotechnology, vol 18, 287- 291, 1999
heat shock proteins, including artificial promoters containing the heat shock element (HSE)	Heat	Barros et al., Plant Mol Biol, 19(4): 665-75, 1992. Marrs et al., Dev Genet.,14(1): 27- 41, 1993. Schoffl et al., Mol Gen Gent, 217(2-3): 246-53, 1989.
smHSP (small heat shock proteins)	heat	Waters et al, J Experimental Botany, vol 47, 296, 325- 338, 1996
wcs120	Cold	Ouellet et al., FEBS Lett. 423, 324-328 (1998)
ci7	Cold	Kirch et al., Plant Mol Biol, 33(5): 897-909, 1997 Mar
Adh	cold, drought, hypoxia	Dolferus et al., Plant Physiol, 105(4): 1075-87, 1994 Aug
pwsi18	water: salt and drought	Joshee et al., Plant Cell Physiol, 39(1): 64-72, 1998, Jan
ci21A	Cold	Schneider et al., Plant Physiol, 113(2): 335-45, 1997
Trg-31	Drought	Chaudhary et al., Plant Mol Biol, 30(6): 1247-57, 1996
Osmotin	Osmotic	Raghothama et al., Plant Mol Biol, 23(6): 1117-28, 1993

REFERENCES

Adams et al. (1983), J. Am. Chem. Soc. 105:661

Aerne et al. (1998). Molecular Biology of the Cell,vol 9, 945-956.

Bray et al. (1997), Plant responses to water deficit. Trends Plant Sci 2, 48-54

Carruthers et al. (1982), Cold Spring Harbor Symp. Quant. Biol. 47:411-418
Capecchi (1989), Science 244:1288-1292

Deblaere et al. (1985), Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants, Nucl. Acids Res. 13, 4777-4788.

De Greve et al. (1982), J. Mol. Appl. Genet. 1(6):499-511

Dellaporta et al. (1983), A plant DNA minipreparation, version II. Plant Mol. Biol. Rep.
 1, 19-22

Evans et al. (1983), Protoplasts Isolation and Culture, Handbook of Plant Cell Culture, pp. 124-176

Fowden et al. (1993), Plant Adaptation to Environmental Stress; ISBN: 0412490005

Fraley et al. (1983), Proc. Natl. Acad. Sci USA 80:4803

Fromm et al. (1985), Proc. Natl. Acad. Sci. USA 82:5824

Gietz and Schietsl, (1995) Methods in Molecular and Cellular Biology, 5, 255-269.

Grillo et al (1996), Physical Stresses in Plants: Genes and Their Products for Tolerance. Springer Verlag; ISBN: 3540613471

20 Hanks et al. (1988). Science, 241, 42-52.

Hansen et al. (1999), Trends in plant science reviews, Vol 4, No 6, 226-231

Haring et al. (1991), Plant Mol. Biol. 16:449-469

Haro et al. (1991). FEBS Lett, 291, 189-191.

Haseloff et al. (1988), Nature 334;585-591

Hemmerlin and Bach (1998). Plant Journal 14 (1) 65-74 Johnston et al. (1990). Mol and Cell Biol 10, no 4,1358-1366

Herrera - Estrella (1983), Nature 303:209-213

Holmberg & Bülow (1998), Improving stress tolerance in plants by gene transfer. Trends Plant Sci. 3, 61-66

30 Horsch et al., 1984), Science 233:496-498

Hull and Howell (1987), Virology 86:482-493

Ingram et al. (1996), The molecular basis of dehydration tolerance in plants. Ann. Rev.

Plant Physiol. Plant Mol. Biol. 47, 377-403

Innis et al. (1990), A guide to methods and applications, Academic Press, San Diego

Jones et al (1989), Plants Under Stress: Biochemistry, Physiology and Ecology and Their Application to Plant Improvement (Society for Experimental Biology Seminar Serie), Cambridge Univ. Pr. (Short); ISBN: 0521344239

Johnston et al. (1995)

Kasuga et al. (1999), Nature Biotechnology 17, 287-291
Klee et al. (1987), Ann. Rev. of Plant Phys. 38:467-486
Klein et al. (1987), Nature 327:70-73
Komarnitsky et al. (1998). Mol and Cell Biol. 1 8, no.4, 2100-2107
Lee et al (1999). Proc. Nat. Acad. Sci. USA 1996, 5873-5877

Meyer et al. (1987), Nature 330:677
 Millward et al. (1995). Proc. Nat. Acad. Sci. USA, 92, 5022-5026.
 Nagata et al. (1992). Int. Rev. Cytol., 132, 1-30
 Napoli et al. (1990), The Plant Cell 2:279-289
 Needleman and Wunsch (1970), Mol. Biol. 48:443

Nilsen et al (1996), The Physiology of Plants Under Stress; Abiotic Factors. ISBN: 047131526

Odell et al. (1985), Nature 313:482-493
Paszkowski et al. (1984), EMBO j. 3:2717-2722
Pearson and Lipman (1988), Proc. Natl. Acad. Sci. (USA) 85:2444

Peassarakli et al, Handbook of Plant and Crop Stress. ISBN: 0824789873

Raton (1985), Binding, Regeneration of Plants, Plant Protoplasts, pp. 21-73, CRC

Press

Reicheld et al. (1995). Plant Journal 7 (2) 245-252 Sambrook (1989), Molecular cloning, a laboratory manual, Cold Spring Harbor Press, 7.52.

Shaul et al. (1996). PNAS 93,4868-4872

25

Shinozaki et al. (1996), Molecular responses to drought and cold stress, Curr. Opin. Biotechnol. 7, 161-167

Shinozaki et al. (1997), Gene expression and signal transduction in water-stress response. Plant Physiol. 115, 327-334

Shinozaki et al. (1999), Drought, Salt, Cold and Heat Stress: Molecular Responses in Higher Plants (Biotechnology Intelligence Unit); ISBN: 1570595631
Schuller et al. (1994). Embo Journal, 13, 4382-4389.
Smith and Waterman (1981), Adv. Appl. Math. 2:482

Tomashow (1994), Arabidopsis (eds Meyrowitz, E & Somerville, C, 807-834 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1994)

Toyn and Johnston, (1994). Embo Journal, 13, 1103-1113.

Verbruggen et al. (1993). Plant Phys. 103, 771-781

- Walbot (1992), Ann. Rev. Plant Mol. Biol. 43:49-82
 Weising et al; (1988), Ann; Rev. Genet. 22;421-477
 Stalker, Science 242 (1988), 419
 Vaek, Plant Cell 5 (1987), 159-169
 Powell, Science 232 (1986), 738-743
- Pappu, World Journal of Microbiology & Biotechnology 11 (1995), 426-437 Lawson, Phytopathology 86 (1996) 56 suppl.

 Van Camp, Biotech. 12 (1994), 165-168

 Oeller, Science 254 (1991), 437-439

 Stark, Science 242 (1992), 419
- Visser, Mol. Gen. Genet. 225 (1991), 289-296
 Voelker, Science 257 (1992), 72-74
 Poirer, Science 256 (1992), 520-523
 Meyer, Nature 330 (1987), 667-678
 Duering, Molecular Breeding 2 (1996), 297-305
- Strittmatter, Bio/Technology 13 (1995), 1085-1089
 Estruch, Nature Biotechnology 15 (1997), 137-141
 An, et al., Plant Physiol. 88: 547, 1998.
 Albani, et al., Plant Mol. Biol. 15: 605, 1990.
 Albani, et al., Plant Mol. Biol. 16: 501, 1991.
- Arnoldo, et al., J. Cell. Biochem., Abstract No. Y101, 204, 1992.

 Baltz, et al., The Plant J. 2: 713-721, 1992.

 Baszczynski, et al., Nucl. Acid Res. 16: 4732, 1988.

 Baszczynski, et al., Plant Mol. Biol. 14: 633, 1990.

 Bhattacharyya-Pakrasi, et al, The Plant J. 4: 71-79, 1992.
- Cejudo, F.J., et al. Plant Molecular Biology 20:849-856, 1992.
 Conkling, et al., Plant Physiol. 93: 1203, 1990.
 Crowell, et al., Plant Mol. Biol. 18: 459-466, 1992.
 Cummins, et al., Plant Mol. Biol. 19: 873-876, 1992
 Ellis, et al., Plant Mol. Biol. 10: 203-214, 1988.
- 35 Gordon, et al., J. Exp. Bot. 44: 1453-1465, 1993.

Grimes, et al., The Plant Cell 4:1561-1574, 1992.

Hamilton, et al., Plant Mol. Biol. 18: 211-218, 1992.

Kosugi et al, Upstream sequences of rice proliferating cell nuclear antigen (PCNA) gene mediate expression of PCNA-GUS chimeric gene in meristems of transgenic tobacco plants, *Nucleic Acids Research* 19:1571-1576, 1991.

Kosugi S. and Ohashi Y, PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene, *Plant Cell 9*:1607-1619, 1997.

Lam, E. et al., The Plant Cell 2: 857-866, 1990.

Lanahan, M.B., et al., Plant Cell 4:203-211, 1992.

Liu et al., Plant Mol. Biol. 153:386-395, 1991.

Matzke et al Plant Mol Biol, 14(3):323-32 1990

Nasrallah, et al., Proc. Natl. Acad. Sci. USA 85: 5551, 1988.

Nilsson et al., Physiol. Plant. 100:456-462, 1997

Oppenheimer, et al., Gene 63: 87, 1988.

Pathirana, et al., Plant Mol. Biol. 20: 437-450, 1992.

Pearson, et al., Plant Mol. Biol. 18: 235-245, 1992.

Scofield, et al., J. Biol. Chem. 262: 12202, 1987.

Simon, et al., Plant Mol. Biol. 5: 191, 1985.

Stalberg, et al, Planta 199: 515-519, 1996.

Suzuki et al., Plant Mol. Biol. 21: 109-119, 1993.

Skriver, K., et al. Proc. Natl. Acad. Sci. (USA) 88: 7266-7270, 1991.

Takaiwa, et al., Mol. Gen. Genet. 208: 15-22, 1986.

Takaiwa, et al., FEBS Letts. 221: 43-47, 1987.

Tingey, et al., EMBO J. 6: 1, 1987.

25 Trick, et al., Plant Mol. Biol. 15: 203, 1990.

Tucker et al., Plant Physiol. 113: 1303-1308, 1992.

Van der Meer, et al., Plant Mol. Biol. 15, 95-109, 1990.

Van der Zaal, et al., Plant Mol. Biol. 16, 983, 1991.

Vicente-Carbajosa et al., Plant J. 13: 629-640, 1998.

30 Weigel et al., Cell 69:843-859, 1992.

Yamamoto et al., Plant Cell Physiol. 35:773-778, 1994.

Yang, et al., The Plant J. 3: 573-585.

Clarke et al. (1992), Plant Molecular Biology Reporter Volume 10(2), 178-189

Ausubel et al. (1994),

35 Zhu et al. (1997),

Zhang et al; Plant Science. Oct 28 1997; 129(1): 81-89 Hajela et al., Plant Physiol. 93: 1246-1252 (1990) Wlihelm et al., Plant Mol Biol. 1993 Dec; 23(5):1073-7 Baker et al., Plant Mol Biol. 1994 Mar; 24(5): 701-13 Kasuga et al., Nature Biotechnology, vol 18, 287-291, 1999 Barros et al., Plant Mol Biol, 19(4): 665-75, 1992. Marrs et al., Dev Genet.,14(1): 27-41, 1993. Schoffl et al., Mol Gen Gent, 217(2-3): 246-53, 1989. Waters et al, J Experimental Botany, vol 47, 296, 325-338, 1996 Ouellet et al., FEBS Lett. 423, 324-328 (1998) Kirch et al., Plant Mol Biol, 33(5): 897-909, 1997 Dolferus et al., Plant Physiol, 105(4): 1075-87, 1994 Joshee et al., Plant Cell Physiol, 39(1): 64-72, 1998 Schneider et al., Plant Physiol, 113(2): 335-45, 1997 Chaudhary et al., Plant Mol Biol, 30(6): 1247-57, 1996 Raghothama et al., Plant Mol Biol, 23(6): 1117-28, 1993 Valvekens et al. (1988) Porta et al. (1996), Mol Biol, 5(3):209-21

20

25

30

35

Claims

- 1. A method for obtaining polynucleic acids comprising coding sequences and/or genes involved in environmental stress in plants, comprising the preparation of a cDNA library comprising coding sequences from siliques, introducing said coding sequences in yeast cells in a functional format and screening for polynucleic acids leading to an enhanced tolerance or resistance to environmental stress conditions in said transformed yeast cells.
- 10 2. An isolated polynucleic acid obtainable by a method according to claim 1.
 - 3. The isolated polynucleic acid of claim 2 which encodes a polypeptide as listed in Table 1.
- 15 4. The isolated polynucleic acid of claim 3, which is chosen from:
 - (a) any of SEQ ID NO 1, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or 121, or the complementary strands thereof;

(b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;

- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b); or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).
- The isolated polynucleic acid of any of claim 2 to 4, which encodes a plant homolog of yeast DBF2 kinase.
 - 6. The isolated polynucleic acid of claim 5, which is chosen from:
 - (a) SEQ ID NO 1, or the complementary strands thereof;
 - (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;

- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b); or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).
- Use of an isolated polynucleic acid of claims 2 to 3 which encodes an HSP 17.6A
 protein for the production of transgenic plants having an enhanced tolerance or
 resistance to environmental stress conditions.
- 8. Use of an isolated polynucleic acid of claim 7 for expression of the protein encoded thereby in a plant cell, with said polynucleic acid being chosen from:
 - (a) SEQ ID NO 3, or the complementary strand thereof;
 - (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
 - (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b); or,
 - (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).
 - 9. Use of an isolated polynucleic acid as defined above which is chosen from:
 - (a) any of SEQ ID NO 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, or 119, or the complementary strand thereof;
 - (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
 - (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b) or,
 - (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c),

for the production of transgenic plants having an enhanced tolerance or resistance to environmental stress conditions.

15

20

25

30

- 10. The isolated polynucleic acid of any of claims 2 to 4, which encodes a c74 protein which is chosen from:
 - (a) SEQ ID NO 5, or the complementary strand thereof;
 - (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
 - (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b); or,
 - (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).
- 11. An isolated polypeptide encoded by a polynucleic acid according to or as defined in any of claims 2 to 10, or a functional fragment thereof.
- 12. The isolated polypeptide of claim 11 having at least part of the sequence of any of SEQ ID NO 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, or 120.
- 13. A method for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising transiently introducing into a plant cell a recombinant DNA comprising a polynucleic acid of or as defined in any of claims 2 to 10 which is expressed in an amount effective to confer enhanced tolerance or resistance to environmental stress.
- 14. A method for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising stably introducing into a plant cell a recombinant DNA comprising a polynucleic acid of or as defined in any of claims 2 to 10 which is expressed in an amount effective to confer enhanced tolerance or resistance to environmental stress.

15

20

25

- 15. The method of claims 13 or 14 for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid of claims 5 or 6 encoding a plant DBF2 kinase.
- 16. The method of claim 16 for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid of claims 7 or 8 encoding an HSP 17.6A protein.
- 17. The method of claim 13 to 14 for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid of claim 10 encoding a c74 protein.
- 18. The method of any of claims 13 to 17, comprising introducing into the genome of a plant cell one or more recombinant DNA molecules, said recombinant DNA molecules comprising:
 - a polynucleic acid according to or as defined in any of claims 2 to 10, and,
 - a plant expressible promoter, whereby said polynucleic acid is in the same transcriptional unit and under the control of said plant-expressible promoter.
 - 19. A method for producing a plant with enhanced tolerance or resistance to environmental stress, comprising introducing into the genome of a plant cell one or more recombinant DNA molecules, said recombinant DNA molecules comprising:
 - a DNA encoding a protein which when expressed in said plant cell at an effective amount indirectly increases or induces the expression of an endogenous polynucleic acid according to or as defined in any of claims 2 to 10 or indirectly increases or induces the activity of a polypeptide of claims 11 or 12, and,

- a plant expressible promoter, whereby said DNA is in the same transcriptional unit and under the control of said plant-expressible promoter.
- 20. A method of claim 19 wherein said DNA encodes a sense or antisense RNA molecule or a ribozyme capable of increasing or inducing the expression of said endogenous polynucleic acid sequence according to or as defined in any of claims 2 to 10.
- 21. A recombinant polynucleic acid comprising: a polynucleic acid according to or as defined in any of claims 2 to 10, and, a plant expressible promoter, whereby said polynucleic acid is in the same transcriptional unit and under the control of said plant-expressible promoter.
- 22. A recombinant polynucleic acid comprising:
 - (a) a DNA encoding a protein which when expressed in said plant cell at an effective amount increases or induces the expression of an endogenous polynucleic acid according to or as defined in any of claims 2 to 10 or increases or induces the activity of a polypeptide of claims 11 or 12, and,
- (b) a plant expressible promoter, whereby said DNA is in the same transcriptional unit and under the control of said plant-expressible promoter.
 - 23. The recombinant polynucleic acid of claim 22, wherein said DNA encodes an antisense RNA, a ribozyme or a sense RNA which when expressed in a cell of a plant increases or induces the expression of an endogenous polynucleic acid according to or as defined in any of claims 2 to 10 or which induces or increases the activity of a protein of claim 11 or 12.
- 24. The recombinant polynucleic acid of claim 21 comprising at least part of the nucleotide sequence of any of SEQ ID NO 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 90, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121, or part thereof.

15

20

25

- 25. The recombinant polynucleic acid of claim 21 to 24 comprising at least part of the coding sequence of a gene encoding a protein as listed in Table 1.
- 26. The recombinant polynucleic acid of any of claims 21 to 25 wherein said plantexpressible promoter is a constitutive promoter.
- 27. The recombinant polynucleic acid of any of claims 21 to 25 wherein said plantexpressible promoter is a stress-inducible or organ- or tissue-specific promoter.
- 28. The recombinant polynucleic acid of any of claims 21 to 26 wherein said plantexpressible promoter is the 35S promoter of CaMV.
 - 29. A recombinant host cell transformed with at least one isolated polynucleic acid of or as defined in any of claims 2 to 10.
 - 30. A plant cell transformed with a recombinant polynucleic acid of any one of claims 21 to 28.
 - 31. A plant consisting essentially of plant cells of claim 30.
 - 32. A callus consisting essentially of plant cells of claim 30.
 - 33. A harvestable part, organ, tissue or propagation material of a plant of claim 31, comprising said recombinant DNA.
 - 34. The use of a recombinant polynucleic acid of claim 21 to 28 to produce transgenic plants.
- 35. A probe which is part of the polynucleic acid sequence of or as defined in any of claims 2 to 10 and which hybridizes specifically with said polynucleic acid or the complement thereof.
 - 36. A primer which is part of the polynucleic acid sequence of or as defined in any of claims 2 to 10 and which specifically amplifies said polynucleic acid or the complement thereof.

WO 00/08187 PCT/EP99/05652

61

37. A composition comprising a polynucleic acid sequence of or as defined in any of claims 2 to 10, a polypeptide of claim 11 or 12, a probe of claim 35 or a primer of claim 36.

005	DBF2 LGCMLFESLVGYTPFSGSSTNETYDNLRTWKGTLRRPRGSDGRAFSDRTWDLITRLIADPINRLRSFEHVKRMSYFADINFSTLRSMIPPFTPGLDSET At-DBF2 DAGYFDDFWNEADIAKYADVFNSGCGRTALVDDSAVSSKLVGFTFRHRNGKGGSSGMLFNGLEHSDPFSTFY 528
_	X XI ** FSGSSTNETYAISRSWKGTLNRARHEDGRAAFYNRTWDLITRHRADLSTRTRSFEHEVKMSYFADILFKALRSIIPPFTPQLDSET
356	VII
287	II ** EVCALKILNKKLGFKLNGTCHVLTERGSLTTTRSETHVKLLSGTTPVGSRGMAIESELGGDFRTESIGRRCLKSGHARFYISEMFCAVNEKHLLSKT
189	arvysgramyfleyycdmfdyvisrrartkavleylagasalpnsdaiklneeussylarehavlskrrlkpknr <u>dfemitavgaggyghvyl</u> arkkdtk
88 01	MSCLSTDGHGTPGGSGHFPNQNLTKRRTRPAGINDSPSPVKCFFFPYEDTSNTSLKEVSQPTKYSSNSPPVSPAIFYERATSWCT

FIGURE 1 A

FIGURE 1B

FIGURE 2

FIGURE 3

а

C

FIGURE 4

FIGURE 5

6/15

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

FIGURE 12A

FIGURE 12c

FIGURE 13

15/15

FIGURE 14

SEQUENCE LISTING

<110> VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECHNOLOGIE
<120> Genes involved in tolerance to environmental stress
<130> VIB-14-NV/OSMO
<140>
<141>
<150> 98202634.6 <151> 1998-08-04
<160> 126
<170> PatentIn Ver. 2.1
<210> 1
<211> 1909 <212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS <222> (40)(1626)
(2227 (40)(1020)
<pre><400> 1 cggtagcctg actgctggat tggcctgctg ctgacaatt atg gcg ggt aac atg 54</pre>
Met Ala Gly Asn Met
4
1
tcg tgt tta agc acg gac gga cac ggg acc cct ggc ggt tca ggg cat 102
tcg tgt tta agc acg gac gga cac ggg acc cct ggc ggt tca ggg cat 102 Ser Cys Leu Ser Thr Asp Gly His Gly Thr Pro Gly Gly Ser Gly His
tcg tgt tta agc acg gac gga cac ggg acc cct ggc ggt tca ggg cat Ser Cys Leu Ser Thr Asp Gly His Gly Thr Pro Gly Gly Ser Gly His 10 15 20 ttc ccc aat cag aac cta acg aaa aga aga acg cgt cca gcg ggt atc Phe Pro Asn Gln Asn Leu Thr Lys Arg Arg Thr Arg Pro Ala Gly Ile
tcg tgt tta agc acg gac gga cac ggg acc cct ggc ggt tca ggg cat Ser Cys Leu Ser Thr Asp Gly His Gly Thr Pro Gly Gly Ser Gly His 10 15 20 ttc ccc aat cag aac cta acg aaa aga aga acg cgt cca gcg ggt atc Phe Pro Asn Gln Asn Leu Thr Lys Arg Arg Thr Arg Pro Ala Gly Ile 25 30 35
tcg tgt tta agc acg gac gga cac ggg acc cct ggc ggt tca ggg cat Ser Cys Leu Ser Thr Asp Gly His Gly Thr Pro Gly Gly Ser Gly His 10 15 20 ttc ccc aat cag aac cta acg aaa aga aga acg cgt cca gcg ggt atc Phe Pro Asn Gln Asn Leu Thr Lys Arg Arg Thr Arg Pro Ala Gly Ile 25 30 35 aac gac tcg cct tcg ccg gtg aaa tgc ttt ttt ttc ccc tat gaa gac 198
tcg tgt tta agc acg gac gga cac ggg acc cct ggc ggt tca ggg cat Ser Cys Leu Ser Thr Asp Gly His Gly Thr Pro Gly Gly Ser Gly His 10 15 20 ttc ccc aat cag aac cta acg aaa aga aga acg cgt cca gcg ggt atc Phe Pro Asn Gln Asn Leu Thr Lys Arg Arg Thr Arg Pro Ala Gly Ile 25 30 35
tcg tgt tta agc acg gac gga cac ggg acc cct ggc ggt tca ggg cat Ser Cys Leu Ser Thr Asp Gly His Gly Thr Pro Gly Gly Ser Gly His 10 15 20 ttc ccc aat cag aac cta acg aaa aga aga acg cgt cca gcg ggt atc Phe Pro Asn Gln Asn Leu Thr Lys Arg Arg Thr Arg Pro Ala Gly Ile 25 30 35 aac gac tcg cct tcg ccg gtg aaa tgc ttt ttt ttc ccc tat gaa gac Asn Asp Ser Pro Ser Pro Val Lys Cys Phe Phe Pro Tyr Glu Asp
tcg tgt tta agc acg gac gga cac ggg acc cct ggc ggt tca ggg cat Ser Cys Leu Ser Thr Asp Gly His Gly Thr Pro Gly Gly Ser Gly His 10 15 20 ttc ccc aat cag aac cta acg aaa aga aga acg cgt cca gcg ggt atc Phe Pro Asn Gln Asn Leu Thr Lys Arg Arg Thr Arg Pro Ala Gly Ile 25 30 35 aac gac tcg cct tcg ccg gtg aaa tgc ttt ttt ttc ccc tat gaa gac Asn Asp Ser Pro Ser Pro Val Lys Cys Phe Phe Pro Tyr Glu Asp 40 45 50 acc tcc aac acg tca tta aag gaa gtg tcc cag ccc acg aaa tac agt 246 Thr Ser Asn Thr Ser Leu Lys Glu Val Ser Gln Pro Thr Lys Tyr Ser
tcg tgt tta agc acg gac gga cac ggg acc cct ggc ggt tca ggg cat Ser Cys Leu Ser Thr Asp Gly His Gly Thr Pro Gly Gly Ser Gly His 10 15 20 ttc ccc aat cag aac cta acg aaa aga aga acg cgt cca gcg ggt atc Phe Pro Asn Gln Asn Leu Thr Lys Arg Arg Thr Arg Pro Ala Gly Ile 25 30 35 aac gac tcg cct tcg ccg gtg aaa tgc ttt ttt ttc ccc tat gaa gac Asn Asp Ser Pro Ser Pro Val Lys Cys Phe Phe Phe Pro Tyr Glu Asp 40 45 50 acc tcc aac acg tca tta aag gaa gtg tcc cag ccc acg aaa tac agt Thr Ser Asn Thr Ser Leu Lys Glu Val Ser Gln Pro Thr Lys Tyr Ser 55 60 65
tcg tgt tta agc acg gac gga cac ggg acc cct ggc ggt tca ggg cat Ser Cys Leu Ser Thr Asp Gly His Gly Thr Pro Gly Gly Ser Gly His 10 15 15 20 15 15 10 15 15 10 15 15 10 15 15
tcg tgt tta agc acg gac gga cac ggg acc cct ggc ggt tca ggg cat Ser Cys Leu Ser Thr Asp Gly His Gly Thr Pro Gly Gly Ser Gly His 10 15 20 ttc ccc aat cag aac cta acg aaa aga aga acg cgt cca gcg ggt atc Phe Pro Asn Gln Asn Leu Thr Lys Arg Arg Thr Arg Pro Ala Gly Ile 25 30 35 aac gac tcg cct tcg ccg gtg aaa tgc ttt ttt ttc ccc tat gaa gac Asn Asp Ser Pro Ser Pro Val Lys Cys Phe Phe Phe Pro Tyr Glu Asp 40 45 50 acc tcc aac acg tca tta aag gaa gtg tcc cag ccc acg aaa tac agt Thr Ser Asn Thr Ser Leu Lys Glu Val Ser Gln Pro Thr Lys Tyr Ser 55 60 65
tcg tgt tta agc acg gac gga cac ggg acc cct ggc ggt tca ggg cat Ser Cys Leu Ser Thr Asp Gly His Gly Thr Pro Gly Gly Ser Gly His 10 15 20 ttc ccc aat cag aac cta acg aaa aga aga acg cgt cca gcg ggt atc Phe Pro Asn Gln Asn Leu Thr Lys Arg Arg Thr Arg Pro Ala Gly Ile 25 aac gac tcg cct tcg ccg gtg aaa tgc ttt ttt ttc ccc tat gaa gac Asn Asp Ser Pro Ser Pro Val Lys Cys Phe Phe Phe Pro Tyr Glu Asp 40 45 acc tcc aac acg tca tta aag gaa gtg tcc cag ccc acg aaa tac agt Thr Ser Asn Thr Ser Leu Lys Glu Val Ser Gln Pro Thr Lys Tyr Ser 55 60 tcc aat tcc cct cca gtc agc ccg gca att ttt tat gag agg gcg acg Ser Asn Ser Pro Pro Val Ser Pro Ala Ile Phe Tyr Glu Arg Ala Thr 70 75 80 tcg tgg tgc acg caa agg gtg gtg agt ggg agg gcg atg tac ttt cta 342
tcg tgt tta agc acg gac gga cac ggg acc cct ggc ggt tca ggg cat Ser Cys Leu Ser Thr Asp Gly His Gly Thr Pro Gly Gly Ser Gly His 10 15 20 ttc ccc aat cag aac cta acg aaa aga aga acg cgt cca gcg ggt atc Phe Pro Asn Gln Asn Leu Thr Lys Arg Arg Thr Arg Pro Ala Gly Ile 25 30 35 aac gac tcg cct tcg ccg gtg aaa tgc ttt ttt ttc ccc tat gaa gac 198 Asn Asp Ser Pro Ser Pro Val Lys Cys Phe Phe Pro Tyr Glu Asp 40 45 50 acc tcc aac acg tca tta aag gaa gtg tcc cag ccc acg aaa tac agt 246 Thr Ser Asn Thr Ser Leu Lys Glu Val Ser Gln Pro Thr Lys Tyr Ser 55 60 65 tcc aat tcc cct cca gtc agc ccg gca att ttt tat gag agg gcg acg 294 Ser Asn Ser Pro Pro Val Ser Pro Ala Ile Phe Tyr Glu Arg Ala Thr 70 75 80 85 tcg tgg tgc acg caa agg gtg gtg agt ggg agg gca atg tac ttt cta 342 Ser Trp Cys Thr Gln Arg Val Val Ser Gly Arg Ala Met Tyr Phe Leu
tcg tgt tta agc acg gac gga cac ggg acc cct ggc ggt tca ggg cat Ser Cys Leu Ser Thr Asp Gly His Gly Thr Pro Gly Gly Ser Gly His 10 15 20 ttc ccc aat cag aac cta acg aaa aga aga acg cgt cca gcg ggt atc Phe Pro Asn Gln Asn Leu Thr Lys Arg Arg Thr Arg Pro Ala Gly Ile 25 aac gac tcg cct tcg ccg gtg aaa tgc ttt ttt ttc ccc tat gaa gac Asn Asp Ser Pro Ser Pro Val Lys Cys Phe Phe Phe Pro Tyr Glu Asp 40 45 acc tcc aac acg tca tta aag gaa gtg tcc cag ccc acg aaa tac agt Thr Ser Asn Thr Ser Leu Lys Glu Val Ser Gln Pro Thr Lys Tyr Ser 55 60 tcc aat tcc cct cca gtc agc ccg gca att ttt tat gag agg gcg acg Ser Asn Ser Pro Pro Val Ser Pro Ala Ile Phe Tyr Glu Arg Ala Thr 70 75 80 tcg tgg tgc acg caa agg gtg gtg agt ggg agg gcg atg tac ttt cta 342

1

Glu	Tyr	Tyr	Cys 105	Asp	Met	Phe	Asp	Tyr 110	Val	Ile	Ser	Arg	Arg 115	Gln.	Arg	• •
acg Thr	aaa Lys	cag Gln 120	gtc Val	cta Leu	gag Glu	tat Tyr	ctg Leu 125	cag Gln	cag Gln	caa Gln	Ser	caa Gln 130	ctt Leu	ccg Pro	aat Asn	438
tct Ser	gac Asp 135	cag Gln	atc Ile	aag Lys	ctc Leu	aac Asn 140	gaa Glu	gag Glu	tgg Trp	tcc Ser	tcc Ser 145	tat Tyr	tta Leu	cag Gln	aga Arg	486
gag Glu 150	cat His	cag Gln	gtt Val	ttg Leu	tcg Ser 155	aaa Lys	aga Arg	agg Arg	ttg Leu	aag Lys 160	cca Pro	aaa Lys	aac Asn	aga Arg	gac Asp 165	534
ttt Phe	gaa Glu	atg Met	att Ile	aca Thr 170	caa Gln	gta Val	ggt Gly	caa Gln	ggt Gly 175	ggt Gly	tat Tyr	ggg Gly	cat His	gtt Val 180	tat Tyr	582
tta Lev	gcc Ala	aga Arg	aag Lys 185	aaa Lys	gac Asp	aca Thr	aaa Lys	gag Glu 190	gtg Val	tgc Cys	gcc Ala	tta Leu	aaa Lys 195	att Ile	ttg Leu	630
aat Asr	aag Lys	aag Lys 200	Leu	ggt	ttc Phe	aaa Lys	ctt Leu 205	Asn	ggt Gly	aca Thr	tgc Cys	cat His 210	gtt Val	ttg Leu	acc Thr	678
gaç Glı	agg Arg 215	Gln	agt Ser	ctg Leu	act Thr	aca Thr 220	Thr	aga Arg	tcc Ser	gag Glu	acg Thr 225	atg Met	gtg Val	aag Lys	ctc Leu	726
Cta Let 23	ı Ser	Gly	acg Thr	acc Thr	ccc Pro 235	Val	ggc Glý	agt Ser	agg Arg	ggg Gly 240	atg Met	gcg Ala	ata Ile	gaa Glu	agt Ser 245	774
ga Gl	g cta u Lev	ggc Gly	ggt Gly	gac Asp 250	Phe	cgt	aca Thr	gaa Glu	agt Ser 255	Ile	gga Gly	cgt Arg	aga Arg	tgc Cys 260	Leu	822
aa. Ly	a agt s Sei	ggc Gly	cat His 265	: Ala	aga Arg	ttc Phe	tat Tyr	att Ile 270	Ser	gaa Glu	atg Met	ttc Phe	tgt Cys 275	Ala	gtc Val	870
aa As	c gaç n Glı	g aaa 1 Lys 280	s His	ctt Leu	tta Leu	agt Ser	aaa Lys 285	Thr	gac Asp	agc Ser	aca Thr	ato Ile 290	Ser	aac Asn	gaa Glu	918
ga Gl	a gal u Ası 29!	Sei	t ago	ato Ile	aac Asn	ata 116	arç	g tta g Lev	gaa Glu	aaa Lys	tto Phe 305	Lys	gac Asp	ctt Lev	ggg	966
ta Ty 31	r Pr	a gc	g ttg a Le	g ago	gaç Glu 315	Lys	a tct s Sei	ato	gag Glu	gac Asp 320	Arg	agg Arg	, aag , Lys	ttg Lev	tac Tyr 325	1014
ac Th	c tg r Cy	t cc	g aa o As	c tco n Se	c ato	g gti t Vai	t ggg 1 Gl	g tot y Sei	ccç Pro	gac Asp	tac Tyr	ata	gco Ala	tta Lei	gaa Glu	1062

aaacgcctaa aaaaatcgaa ctttaaacgc ttttaaaacg gctgcccata aaaaaaaagg 1876

en en gallande de la companya de la

ttttttaata aaaaatcgta aaaaaaaaa cgt

<210> 2 <211> 528 <212> PRT <213> Arabidopsis thaliana

<400> 2
Met Ala Gly Asn Met Ser Cys Leu Ser Thr Asp Gly His Gly Thr Pro
1 10 15

Gly Gly Ser Gly His Phe Pro Asn Gln Asn Leu Thr Lys Arg Arg Thr 20 25 30

Arg Pro Ala Gly Ile Asn Asp Ser Pro Ser Pro Val Lys Cys Phe Phe 35 40 45

Phe Pro Tyr Glu Asp Thr Ser Asn Thr Ser Leu Lys Glu Val Ser Gln 50 55 60

Pro Thr Lys Tyr Ser Ser Asn Ser Pro Pro Val Ser Pro Ala Ile Phe 65 70 75 80

Tyr Glu Arg Ala Thr Ser Trp Cys Thr Gln Arg Val Val Ser Gly Arg 85 90 95

Ala Met Tyr Phe Leu Glu Tyr Tyr Cys Asp Met Phe Asp Tyr Val Ile 100 105 110

Ser Arg Arg Gln Arg Thr Lys Gln Val Leu Glu Tyr Leu Gln Gln Gln 115 120 125

Ser Gln Leu Pro Asn Ser Asp Gln Ile Lys Leu Asn Glu Glu Trp Ser 130 135 140

Ser Tyr Leu Gln Arg Glu His Gln Val Leu Ser Lys Arg Arg Leu Lys 145 150 155 160

Pro Lys Asn Arg Asp Phe Glu Met Ile Thr Gln Val Gly Gln Gly Gly 165 170 175

Tyr Gly His Val Tyr Leu Ala Arg Lys Lys Asp Thr Lys Glu Val Cys 180 185 190

Ala Leu Lys Ile Leu Asn Lys Lys Leu Gly Phe Lys Leu Asn Gly Thr 195 200 205

Cys His Val Leu Thr Glu Arg Gln Ser Leu Thr Thr Thr Arg Ser Glu 210 215 220

Thr Met Val Lys Leu Leu Ser Gly Thr Thr Pro Val Gly Ser Arg Gly 225 230 230 240

Met Ala Ile Glu Ser Glu Leu Gly Gly Asp Phe Arg Thr Glu Ser Ile 245 250 255

Gly Arg Arg Cys Leu Lys Ser Gly His Ala Arg Phe Tyr Ile Ser Glu 260 265 270

Met Phe Cys Ala Val Asn Glu Lys His Leu Leu Ser Lys Thr Asp Ser 275 280 285

Thr Ile Ser Asn Glu Glu Asp Ser Ser Ile Asn Ile Arg Leu Glu Lys 290 295 300

Phe Lys Asp Leu Gly Tyr Pro Ala Leu Ser Glu Lys Ser Ile Glu Asp 305 310 315 320

Arg Arg Lys Leu Tyr Thr Cys Pro Asn Ser Met Val Gly Ser Pro Asp 325 330 335

Tyr Ile Ala Leu Glu Val Leu Arg Gly Lys Arg Tyr Glu Tyr Thr Val 340 345 350

Asp Tyr Trp Ser Leu Gly Cys Met Leu Phe Glu Ser Leu Val Gly Tyr 355 360 365

Thr Pro Phe Ser Gly Ser Ser Thr Asn Glu Thr Tyr Ala Ile Ser Arg 370 375 380

Ser Trp Lys Gln Thr Leu Asn Arg Ala Arg His Glu Asp Gly Arg Ala 385 390 395 400

Ala Phe Tyr Asn Arg Thr Trp Asp Leu Ile Thr Arg His Arg Ala Asp 405 410 415

Leu Ser Thr Arg Thr Arg Ser Phe Glu His Glu Val Lys Met Ser Tyr 420 425 430

Phe Ala Asp Ile Leu Phe Lys Ala Leu Arg Ser Ile Ile Pro Pro Phe 435 440 445

Thr Pro Gln Leu Asp Ser Glu Thr Asp Ala Gly Tyr Phe Asp Asp Phe 450 455 460

Trp Asn Glu Ala Asp Ile Ala Lys Tyr Ala Asp Val Phe Asn Ser Gln 465 470 475

Cys Cys Arg Thr Ala Leu Val Asp Asp Ser Ala Val Ser Ser Lys Leu 485 490 495

Val Gly Phe Thr Phe Arg His Arg Asn Gly Lys Gln Gly Ser Ser Gly 500 505 510

Met Leu Phe Asn Gly Leu Glu His Ser Asp Pro Phe Ser Thr Phe Tyr 515 520 525

<210> 3

<211> 695

<212> DNA

<213	> Ar	abid	opsi	s th	alia	na				•						
	> CD		(564)												
<400 tatt		tt g	gtac	cgag	c to	ggat	ccac	: tag	taaç	ggc	cgcc	agtg	rtg c	tgga:	attcg	60
gcac	gagc	aa g	raaag	rttaa	c ac	aaca	gcta	aga	atg Met	Asr	tto Lev	gag ıGlu	ttt Phe	gga Gly	agg Arg	114
											÷					
ttt Phe	cca Pro	ata Ile 10	ttt Phe	tca Ser	atc Ile	ctc Leu	gaa Glu 15	gac Asp	atg Met	ctt Leu	gaa Glu	gcc Ala 20	cct Pro	gaa Glu	gaa Glu	162
caa Gln	acc Thr 25	gag Glu	aag Lys	act Thr	cgt Arg	aac Asn 30	aac Asn	cct Pro	tca Ser	aga Arg	gct Ala 35	tac Tyr	atg Met	cga Arg	Asp	210
gca Ala 40	aag	gca Ala	atg Met	gct Ala	gct Ala 45	aca	cca Pro	gct Ala	gac Asp	gtt Val 50	atc	gag Glu	cac His	ccg Pro	gat Asp 55	258
gcg Ala	tac Tyr	gtt Val	ttc Phe	gcc Ala 60	gtg Val	gac Asp	atg Met	cct Pro	gga Gly 65	atc Ile	aaa Lys	gga Gly	gat Asp	gag Glu 70	att Ile	306
cag Gln	gtc Val	cag Gln	ata Ile 75	gag Glu	aac Asn	gag Glu	aac Asn	gtg Val 80	ctt Leu	gtg Val	gtg Val	agt Ser	ggc Gly 85	Lys	aga Arg	354
cag Gln	agg Arg	gac Asp 90	aac Asn	aag Lys	gag Glu	aat Asn	gaa Glu 95	ggt Gly	gtg Val	aag Lys	ttt Phe	gtg Val 100	Arg	atg Met	gag Glu	402
agg Arg	agg Arg 105	atg Met	Gly	aag Lys	ttt Phe	atg Met 110	agg Arg	aag Lys	ttt Phe	cag Gln	tta Leu 115	cct Pro	gat Asp	aat Asn	gca Ala	450
gat Asp 120	Leu	gag Glu	aag Lys	atc	tct Ser 125	gcg Ala	gct Ala	tgt Cys	aat Asn	gac Asp 130	Gly	gtg Val	ttg Leu	aaa Lys	gtg Val 135	498
act Thr	att Ile	ccg Pro	aaa Lys	ctt Leu 140		cct Pro	cct Pro	gag Glu	cca Pro 145	Lys	aaa Lys	cca Pro	aag Lys	act Thr 150	Ile	546
			gtc Val	Ala	tga	gtt	tgtt	tgt	gatc	cgtg	tt t	ttgt	gttt	t		594
aat	gaat	gta	atcg	ataa	.gc a	.acta	cctc	t tg	gtgt	tcgt	tgt	aaaa	tga	aata	aaaata	654
		~=~		+					eact							695

<222> (133)..(1083)

<400> 5

```
<210> 4
<211> 156
<212> PRT
<213> Arabidopsis thaliana
<400> 4
Met Asp Leu Glu Phe Gly Arg Phe Pro Ile Phe Ser Ile Leu Glu Asp
Met Leu Glu Ala Pro Glu Glu Gln Thr Glu Lys Thr Arg Asn Asn Pro
                                 25
Ser Arg Ala Tyr Met Arg Asp Ala Lys Ala Met Ala Ala Thr Pro Ala
                             40
Asp Val Ile Glu His Pro Asp Ala Tyr Val Phe Ala Val Asp Met Pro
Gly Ile Lys Gly Asp Glu Ile Gln Val Gln Ile Glu Asn Glu Asn Val
Leu Val Val Ser Gly Lys Arg Gln Arg Asp Asn Lys Glu Asn Glu Gly
                                     90
Val Lys Phe Val Arg Met Glu Arg Arg Met Gly Lys Phe Met Arg Lys
                                105
Phe Gln Leu Pro Asp Asn Ala Asp Leu Glu Lys Ile Ser Ala Ala Cys
                             120
Asn Asp Gly Val Leu Lys Val Thr Ile Pro Lys Leu Pro Pro Pro Glu
                         135
Pro Lys Lys Pro Lys Thr Ile Gln Val Gln Val Ala
 <210> 5
 <211> 1311
 <212> DNA
 <213> Arabidopsis thaliana
 <220>
 <221> CDS
```

7

and the second section of the contraction of the co

Met Ser Pro Asp Asn Lys Leu Leu Pro Lys Arg Ile Ile

cggcacgagt ccacatgaaa ttcgattctc acatttcttc tatttaattc gaatttcaaa 60

ttgccatttc tcagattccg gggaaagaaa aaaaaaacct agaaaagtgt tttctccgtt 120 ttccaatcat cc atg agt ccg gac aat aaa ctg ctt ccg aag cgg atc atc 171

																•
ctt Leu	gta Val 15	cgg Arg	cac His	ggt Gly	gaa Glu	tcg Ser 20	gaa Glu	GJA aaa	aat Asn	ctc Leu	gac Asp 25	acg Thr	gcg Ala	gcg Ala	tat Tyr	219
aca Thr 30	acg Thr	acg Thr	ccg Pro	gat Asp	cat His 35	aag Lys	atc Ile	cag Gln	tta Leu	acg Thr 40	gat Asp	tcc Ser	ggt Gly	ttg Leu	ctt Leu 45	267
cag Gln	gcg Ala	cag Gln	gaa Glu	gcc Ala 50	gga Gly	gct Ala	cgt Arg	ctc Leu	cac His 55	gct Ala	ttg Leu	atc Ile	tct Ser	tct Ser 60	aat Asn	315
cct Pro	tct Ser	tca Ser	ccg Pro 65	gag Glu	tgg Trp	cgt Arg	gtg Val	tac Tyr 70	ttc Phe	tac Tyr	gtt Val	tcg Ser	ccg Pro 75	tac Tyr	gat Asp	363
cgg Arg	act Thr	cga Arg 80	tct Ser	acg Thr	ctc Leu	cgg Arg	gag Glu 85	atc Ile	gga Gly	cgg Arg	tcg Ser	ttc Phe 90	tcg Ser	cgt Arg	cgc Arg	411
cgt Arg	gtg Val 95	att Ile	ggt Gly	gtt Val	cgc Arg	gaa Glu 100	gaa Glu	tgt Cys	cgg Arg	att Ile	agg Arg 105	gaa Glu	cag Gln	gat Asp	ttt Phe	459
ggg Gly 110	aat Asn	ttt Phe	cag Gln	gtt Val	aaa Lys 115	gag Glu	cga Arg	atg Met	aga Arg	gca Ala 120	acg Thr	aaa Lys	aag Lys	gtc Val	aga Arg 125	507
gag Glu	aga Arg	ttt Phe	ggc	cgc Arg 130	Phe	ttt Phe	tac Tyr	cgg	ttc Phe 135	ccg Pro	gag Glu	gga Gly	gaa Glu	tcc Ser 140	gcc Ala	555
gcc Ala	gat Asp	gtc Val	ttc Phe 145	Asp	cgc Arg	gtc Val	tcc Ser	agt Ser 150	ttt Phe	ctc Leu	gag Glu	tct Ser	cta Leu 155	tgg Trp	aga Arg	603
gac Asp	att	gac Asp 160	Met	aac Asn	aga Arg	ctg Leu	cac His 165	Ile	aac Asn	ccg Pro	tct Ser	cat His 170	Glu	cta Leu	aac Asn	651
t t t Phe	gtg Val	. Ile	gtc Val	tca Ser	cat His	ggc Gly 180	Leu	aca Thr	tcg Ser	cgt Arg	gtg Val 185	Phe	ctg Leu	atg Met	aaa Lys	699
tgg Trp 190	Phe	aag Lys	tgg Trp	tca Ser	gtg Val	. Glu	cag Gln	tto Phe	gag Glu	gga Gly 200	Lev	aac Asn	aat Asn	cca Pro	ggg Gly 205	747
aac Ası	agt Sei	gaç Glu	g ato	aga Arg 210	y Val	atg Met	gaa Glu	tta Lei	gga Gly 215	Glr	ggc Gly	ggt Gly	gat Asp	tac Tyr 220	agc Ser	795
tt: Le:	g gcg ı Ala	g ati	cate His	s His	c aca s Thi	a gaç Glu	g gaa 1 Glu	gag 1 Glu 230	ı Lev	gco 1 Ala	e aca a Thi	tgg Tr	g gga o Gly 235	Lev	tca Ser	843
CC	a ga	g at	g ati	t gca	a gat	t caa	a aaq	g tg	g cgg	g gcl	t aad	c gcg	g cat	. aaa	a ggc	891

Pro	Glu	Met 240	Ile	Ala	Asp	Gln	Lys 245	Trp	Arg	Ala	Asn,	Ala 250	His	Lys	Gly	
		aaa Lys														939
		gat Asp														987
		gaa Glu	Glu		Glu										Ser	1035
		tat Tyr													tga	1083
tact	atti	tta d	cagaa	caaa	aa go	atac	atga	a gaa	agaaa	acgt	tta	actaa	ag	aatto	agaag	1143
atti	gati	ttt g	gataa	aaaa	ct to	gtaco	caati	t tac	ctgai	taa	gcti	tcte	gt	gtcti	agttt	1203
gtag	gctti	ttg g	gttt	gtgga	aa aa	agtgi	tgta	a cad	catc	gtta	taad	cacca	agg	aaaca	attaca	1263
ggaa	aatt	tga a	agal	tca	tt t1	tatto	gtgad	c aaa	aaaa	aaaa	aaaa	aaaa	a		ė	1311
<21:	0> 6 1> 3: 2> Pl 3> A:		dops:	is tl	halia	ana										
	0> 6 Ser	Pro	Asp	Asn 5		Leu	Leu	Pro	Lys 10	Arg	Ile	Ile	Leu	Val	Arg	
His	Gly	Glu	Ser 20	Glu	Gly	Asn	Leu	Asp 25	Thr	Ala	Ala	Tyr	Thr 30	Thr	Thr	
Pro	Asp	His 35	Lys	Ile	Gln	Leu	Thr 40	Asp	Ser	Gly	Leu	Leu 45	Gln	Ala	Gln	. •
Glu	Ala 50	Gly	Ala	Arg	Leu	His 55	Ala	Leu	Ile	Ser	Ser 60	Asn	Pro	Ser	Ser	
Pro 65		Trp	Arg	Val	Tyr 70	Phe	Tyr	Val	Ser	Pro 75		Asp	Arg	Thr	Arg 80	•
Ser	Thr	Leu	Arg	Glu 85		Gly	Arg	Ser	Phe 90	Ser	Arg	Arg	Arg	Val 95	Ile	
_		Arg	100		,			105			. •		110			
Gln	Val	Lys		Arg	Met	Arg	Ala 120		Lys	Lys	Val	Arg		Arg	Phe	

Gly	Arg 130	Phe	Phe	Tyr	Arg	Phe 135	Pro	Glu	Gly	Glu	Ser 140	Ala	Ala	Asp	Val		
Phe 145	Asp	Arg	Val	Ser	Ser 150	Phe	Leu	Glu	Ser	Leu 155		Arg	Asp	Ile	Asp 160		
Met	Asn	Arg	Leu	His 165	Ile	Asn	Pro	Ser	His 170	Glu	Leu	Asn	Phe	Val 175	Ile		
Val	Ser	His	Gly 180	Leu	Thr	Ser	Arg	Val 185	Phe	Leu	Met	Lys	Trp 190		Lys		
Trp	Ser	Val 195	Glu	Gln	Phe	Glu	Gly 200	Leu	Asn	Asn	Pro	Gly 205	Asn	Ser	Glu		
Ile	Arg 210	Val	Met	Glu	Leu	Gly 215	Gln	Gly	Gly	Asp	Tyr 220	Ser	Leu	Ala	Ile		
His 225	His	Thr	Glu	Glu	Glu 230	Leu	Ala	Thr	Trp	Gly 235	Leu	Ser	Pro	Glu	Met 240		
Ile	Ala	Asp	Gln	Lys 245	Trp	Arg	Ala	Asn	Ala 250	His	Lys	Gly	Glu	Trp 255			
Glu	Asp	Cys	Lys 260	Trp	Tyr	Phe	Gly	Asp 265	Phe	Phe	Asp	His	Met 270	Ala	Asp		
Ser	Asp	Lys 275	Glu	Cys	Glu	Thr	Glu 280	Ala	Thr	Glu		Arg 285	Glu	Glu	Glu		
Glu	Glu 290		Glu	Gly	Lys	Arg 295	Val	Asn	Leu	Leu	Thr 300	Ser	Ser	Glu	Tyr		
Ser 305		Glu	Pro	Glu	Leu 310	Tyr	Asn	Gly	Gln	Cys 315	Cys						
														,			
<21 <21	.0> 7 .1> 8 .2> D	63 NA								·	 						
<21	.3> A	rabi	dobs	is t	nall	ana									,		
	10> 11> C 12> (. (83	7)													
	00> 7 ngaca		aacc	taaa		Ala				Lys					Lys	51	
				acc Thr					Gly					Thr		99	

aga Arg	ttg Leu	ttc Phe 30	aca Thr	gag Glu	aat Asn	ggc Gly	gcg Ala 35	tat Tyr	gtg Val	ata Ile	gtc Val	gcg Ala 40	gat Asp	atc Ile	ctt Leu	147	•
gat Asp	aat Asn 45	gaa Glu	ggc Gly	atc Ile	ctt Leu	gtg Val 50	gcg Ala	gaa Glu	tcg Ser	atc Ile	ggt Gly 55	ggg Gly	tgt Cys	tac Tyr	gtt Val	195	
cat His 60	tgt Cys	gac Asp	gta Val	tcg Ser	aag Lys 65	gag Glu	gct Ala	gat Asp	gtt Val	gag Glu 70	gcg Ala	gca Ala	gtg Val	gag Glu	cta Leu 75	243	
gca Ala	atg Met	aga Arg	cgt Arg	aaa Lys 80	ggt Gly	aga Arg	cta Leu	gat Asp	gtg Val 85	atg Met	ttc Phe	aac Asn	aat Asn	gcc Ala 90	GJA aaa	291	
atg Met	tcg Ser	ctt Leu	aac Asn 95	gaa Glu	ggt Gly	agt Ser	atc Ile	atg Met 100	GJA aaa	atg Met	gac Asp	gtg Val	gac Asp 105	atg Met	gtt Val	339	
aac Asn	aaa Lys	ctt Leu 110	gtc Val	tcg Ser	gtt Val	aat Asn	gtc Val 115	aat Asn	ggt Gly	gtt Val	ttg Leu	cat His 120	ggt Gly	atc Ile	aaa Lys	387	
cat His	gcc Ala 125	gct Ala	aag Lys	gcc Ala	atg Met	atc Ile 130	Lys	Gly	gga Gly	cga Arg	gga Gly 135	ggc	tcg Ser	ata Ile	ata Ile	435	
tgc Cys 140	aca Thr	tcg Ser	agc Ser	tca Ser	tca Ser 145	Gly	cta Leu	atg Met	gga Gly	gga Gly 150	Leu	gga Gly	gga Gly	cat His	gcg Ala 155	483	
tat Tyr	acg Thr	ctc Leu	tcc Ser	aaa Lys 160	Gly	ggc	atc Ile	aac	ggg Gly 165	Val	gtg Val	agg Arg	aca	acg Thr 170	gag Glu	531	٠
tgc Cys	gag Glu	ctt Lev	ggg Gly 175	Ser	cac His	ggc	ato Ile	cgt Arg	Val	aat Asn	ago Ser	ato Ile	tct Ser 185	Pro	cat His	5 79	
gga Gly	gtt Val	ecc Pro 190	Thr	gac Asp	ato	ttg Lev	gtt Val 195	. Asr	gcg Ala	tac Tyr	cgt Arg	aag Lys 200	Phe	ctt Lev	aac Asn	627	
aat Asn	gac Asp 205	Lys	a cto s Lei	aac a Asr	gto Val	gct Ala 210	Gli	g gto ı Val	acc Thr	gac Asr	215	e Ile	gct Ala	gag Glu	, aaa 1 Lys	675	
ggg Gly 220	, Sei	t ttg r Lei	g cto u Leo	g aco	ggs r Gly 225	Arg	a gco g Ala	ggt Gly	act Thi	gtg Val 230	L Glu	g gad	gta Val	gct LAla	caa Gln 235	723	
gca Ala	a gci a Ala	t tte	g tt u Ph	t ct e Le 24	u Ala	a age	c caa r Gli	a gaa n Glu	a tcg ı Sei 249	c Se	g ggg	g tto y Pho	e Ile	ace The 25	c gga r Gly O	771	
cat	t aa	c tt	g gt	t gt	t ga	t gg	t gg	t ta	c aca	a tc	t gc	c ac	t ag	t ac	t. atg	819	٠

His Asn Leu Val Val Asp Gly Gly Tyr Thr Ser Ala Thr Ser Thr Met 255 260 265

aga ttt atc tac aac tag ttttcgtttg gtggtgtttc cttttc Arg Phe Ile Tyr Asn 270 863

<210> 8 <211> 272 <212> PRT <213> Arabidopsis thaliana

<400> 8

Met Ala Asn Ser Asp Lys Arg Leu Phe Glu Lys Val Ala Ile Ile Thr 1 5 10

Gly Gly Ala Arg Gly Ile Gly Ala Ala Thr Ala Arg Leu Phe Thr Glu 20 25 30

Asn Gly Ala Tyr Val Ile Val Ala Asp Ile Leu Asp Asn Glu Gly Ile 35 40 45

Leu Val Ala Glu Ser Ile Gly Gly Cys Tyr Val His Cys Asp Val Ser 50 55 60

Lys Glu Ala Asp Val Glu Ala Ala Val Glu Leu Ala Met Arg Arg Lys 65 70 75 80

Gly Arg Leu Asp Val Met Phe Asn Asn Ala Gly Met Ser Leu Asn Glu 85 90 95

Gly Ser Ile Met Gly Met Asp Val Asp Met Val Asn Lys Leu Val Ser 100 105 110

Val Asn Val Asn Gly Val Leu His Gly Ile Lys His Ala Ala Lys Ala 115 120 125

Met Ile Lys Gly Gly Arg Gly Gly Ser Ile Ile Cys Thr Ser Ser Ser 130 135 140

Ser Gly Leu Met Gly Gly Leu Gly Gly His Ala Tyr Thr Leu Ser Lys 145 150 155 160

Gly Gly Ile Asn Gly Val Val Arg Thr Thr Glu Cys Glu Leu Gly Ser

His Gly Ile Arg Val Asn Ser Ile Ser Pro His Gly Val Pro Thr Asp 180 185 190

Ile Leu Val Asn Ala Tyr Arg Lys Phe Leu Asn Asn Asp Lys Leu Asn 195 200 205

Val Ala Glu Val Thr Asp Ile Ile Ala Glu Lys Gly Ser Leu Leu Thr 210 215 220

Gly Arg Ala Gly Thr Val Glu Asp Val Ala Gln Ala Ala Leu Phe Leu

225 230 235 240

Ala Ser Gln Glu Ser Ser Gly Phe Ile Thr Gly His Asn Leu Val Val 245 250 255

Asp Gly Gly Tyr Thr Ser Ala Thr Ser Thr Met Arg Phe Ile Tyr Asn 260 265 270

<210> 9

<211> 3107

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (20)..(34)

<220>

<221> CDS

<222> (958)..(1054)

<220>

<221> CDS

<222> (1209)..(1486)

<220>

<221> CDS

<222> (1578) .. (2354)

<220>

<221> CDS

<222> (2440)..(2529)

<220>

<221> CDS

<222> (2629)..(2790)

<220>

<221> CDS

<222> (2884)..(2943)

<400> 9

tcaaccttct atcatcacc atg gat cct tac aag gtatcttcga tcatattctt 54

Met Asp Pro Tyr Lys

									1.0							
ttgt	tgtti	tt t	tttt	ttata	a gt	atga	caca	cat	gtgt	tct	aaaa	atcġ	ga c	gttc	aaatg	414
atat	aatc	ga t	tgtt	tagad	gt	ccga	ccgt	ata	ttat	ttt	agtg	atat	ca g	ccaa	atcag	474
atta	agta	at c	atca	acaa	aat	gatt	gatc	aga	tcta	tca	atac	aagt	gt a	ttt	tttt	534
caca	taca	aa a	aaat	tatc	t ca	ccga	cgaa	aaa	aaaa	taa	aaaa	ttat	ta t	gtag	atcca	594
tcga	acaa	aa g	gctt	gaat	a tc	ggaa	gtca	ctt	aaaa	gtg	taat	aatc	ga a	taaa	tatta	654
gtgg	ataa	aa t	gaaa	ttta	t ct	acaa	ccct	act	ctcc	gac	atgt	tact	gt t	tgcg	tcatc	714
aaat	ctaa	ag c	cttt	ttgg	c aa	ataa	tggt	cgg	aaga	cta	ctcg	tgtc	gg g	atgg	accac	774
ccgg	atcc	ga t	cagg	aaac	g gg	ttt	gata	tgt	ttcg	ggt	tacg	acaa	aa a	atta	gggct	834
tttt	atca	aa t	caat	cagt	t gg	tagt	aaaa	ttt	tgtg	gat	tgtt	cttg	tc g	atto	cgttt	894
gatt	gttg	ac c	aaat	ttct	t cc	tagg	attt	tgt	tgat	aat.	cgat	cgta	ta a	tggt	gattg	954
cag	tat Tyr	cgt Arg	cct Pro	tca Ser	agc Ser 10	gcg Ala	tac Tyr	aac Asn	gcc Ala	cca Pro 15	ttc Phe	tac Tyr	acc Thr	aca Thr	aac Asn 20	1002
ggt Gly	ggt Gly	gct Ala	cca Pro	gtc Val 25	tcc Ser	aac Asn	aac Asn	atc Ile	tct Ser 30	tcc Ser	ctc Leu	acc Thr	atc Ile	gga Gly 35	gaa Glu	1050
aga Arg		atcg	jtaac	cct	gaat	ttc	aaga	igtet	at c	aata	agaa	it cg	rgaac	ttgt		1104
tgga	ttta	itg a	aaga	gata	a a	actga	gata	tag	agto	taa	gctç	gagat	ct g	ıttcç	rtgaag	1164
cgtg	atgt	ga t	tatt	ttta	a ca	atgtg	gttac	tto	gtaa	tgg	gcag	g gt ly	ccg Pro	gtt Val 40	ctt Leu	1219
ctt Leu	gag Glu	gat Asp	tat Tyr 45	cat His	ttg Leu	atc Ile	gag Glu	aag Lys 50	gtt Val	gct Ala	aat Asn	ttc Phe	acc Thr 55	aga Arg	gag Glu	1267
agg Arg	atc Ile	cct Pro 60	gag Glu	aga Arg	gtg Val	gtt Val	cat His 65	gct Ala	aga Arg	gga Gly	atc Ile	agt Ser 70	gct Ala	aag Lys	ggt Gly	1315
ttc Phe	ttt Phe 75	gaa Glu	gtc Val	acc Thr	cat His	gac Asp 80	att Ile	tca Ser	aac Asn	ctc Leu	act Thr 85	tgt Cys	gct Ala	gat Asp	ttt Phe	1363
ctc Leu 90	aga Arg	gcc Ala	cct Pro	ggt Gly	gtt Val 95	Gln	act Thr	ccg Pro	gtt Val	att Ile 100	Val	cgt Arg	ttc Phe	tca Ser	acg Thr 105	1411
gtt Val	gtt Val	cac	gga Gly	cgt Arg 110	gcc Ala	agt Ser	cct Pro	gaa Glu	acc Thr 115	atg Met	agg Arg	gat Asp	att Ile	cgt Arg 120	ggt Gly	1459

ttt Phe		Val					Arg (aaga	aa g	attc	aaag	t .		1506
ttcc	attt	tt a	atcg	tctt	t ta	gctt	ettt	aga	atca	gga	ctga	tttt	tg t	cttg	ttact	1566
gtta	tgat	ca g	gga Gly	aac Asn	ttt Phe	gat Asp	ctt Leu 135	gtt Val	Gly	aac Asn	aac Asn	act Thr 140	Pro	gtg Val	ttc Phe	1616
Phe	atc Ile 145	cgt Arg	gat Asp	ggg Gly	Ile	cag Gln 150	ttc Phe	ccg Pro	gat Asp	gtt Val	gtc Val 155	cac His	gcg. Ala	ttg Leu	aaa Lys	1664
cct Pro 160	aac Asn	cga Arg	aaa Lys	aca Thr	aac Asn 165	atc Ile	caa Gln	gag Glu	tac Tyr	tgg Trp 170	agg Arg	att Ile	ctg Leu	gac Asp	tac Tyr 175	1712
atg Met	tcc Ser	cac His	ttg Leu	cct Pro 180	gag Glu	agt Ser	ttg Leu	ctc Leu	aca Thr 185	tgg Trp	tgc Cys	tgg Trp	atg Met	ttt Phe 190	Asp	1760
gat Asp	gtt Val	ggt Gly	att Ile 195	Pro	caa Gln	gat Asp	tac Tyr	agg Arg 200	cat His	atg Met	gag Glu	ggt Gly	ttc Phe 205	ggt Gly	gtc Val	1808
cac His	acc Thr	tac Tyr 210	act Thr	ctt Leu	att Ile	gcc Ala	aaa Lys 215	tct Ser	gga Gly	aaa Lys	gtt Val	ctc Leu 220	ttt Phe	gtg Val	aag Lys	1856
Phe	cac His 225	tgg Trp	aaa Lys	cca Pro	act Thr	tgt Cys 230	Gly	atc Ile	aag Lys	aat Asn	ctg Leu 235	act Thr	gat Asp	gaa Glu	gag Glu	1904
gcc Ala 240	aag Lys	gtt Val	gtt Val	gga Gly	gga Gly 245	Ala	aat Asn	cac His	agc Ser	cac His 250	gcc Ala	act Thr	aag Lys	gat Asp	ctc Leu 255	1952
cac His	gat Asp	gcc Ala	att Ile	gca Ala 260	tct Ser	ggc Gly	aac Asn	tac Tyr	ccc Pro 265	gag Glu	tgg Trp	aaa Lys	ctt Leu	ttc Phe 270	atc Ile	2000
cag Gln	acc Thr	atg Met	gat Asp 275	cct Pro	gca Ala	gat Asp	Glu	gat Asp 280	Lys	ttt Phe	gac Asp	Phe	gac Asp 285	Pro	ctt Leu	2048
gat Asp	gtg Val	acc Thr 290	Lys	atc Ile	tgg Trp	cct Pro	gag Glu 295	gat Asp	att Ile	ttg Leu	cct Pro	ctg Leu 300	Gln	ccg Pro	gtt Val	2096
ggt Gly	cgc Arg 305	Leu	gtt Val	ctg Leu	aac Asn	agg Arg 310	acc Thr	att Ile	gac Asp	aac Asn	tto Phe 315	Phe	aat Asn	gaa Glu	act Thr	2144
															tac Tyr	2192

320	325	330 335	•
tca gac gac aag ctg Ser Asp Asp Lys Leu 340	Leu Gln Cys Arg I	tc ttt gct tat ggt gac act le Phe Ala Tyr Gly Asp Thr 45 350	2240
cag aga cat cgc ctt Gln Arg His Arg Leu 355	gga ccg aat tat t Gly Pro Asn Tyr L 360	tg cag ctt cca gtc aat gct eu Gln Leu Pro Val Asn Ala 365	2288
ccc aaa tgt gct cac Pro Lys Cys Ala His 370	cac aac aat cac c His Asn Asn His H 375	at gaa ggt ttt atg aac ttc is Glu Gly Phe Met Asn Phe 380	2336
atg cac aga gat gag Met His Arg Asp Glu 385	_ ·	acaccact tgagctacca	2384
ttgttagtct ttttactt	gg aatcaaaatt ctca	tttggt ttgtactttt tacag atc	
		390	
aat tac tac ccc tca Asn Tyr Tyr Pro Ser 395	Lys Phe Asp Pro V	rtc cgc tgc gct gag aaa gtt Val Arg Cys Ala Glu Lys Val 100 405	2490
ccc acc cct aca aac Pro Thr Pro Thr Ass 410		att cga aca aag gtccgattcc lle Arg Thr Lys	2539
tgccatgcct tctctaaa	atc ttcaaatcct aaac	ctcaagt ttattagaat attggtgct	a 2599
agaaaacctt ttaattgo		ytc atc aag aaa gag aac aac /al Ile Lys Lys Glu Asn Asn 425	2652
ttc aaa cag gct gga Phe Lys Gln Ala Gly 430	a gac agg tac aga t y Asp Arg Tyr Arg S 435	tca tgg gca cca gac agg caa Ser Trp Ala Pro Asp Arg Gln 440	2700
gac agg ttt gtt aa Asp Arg Phe Val Ly 445	g aga tgg gtg gag a s Arg Trp Val Glu 450	att cta tcg gag cca cgt ctc Ile Leu Ser Glu Pro Arg Leu 455	2748
		tct tac tgg ctc aag Ser Tyr Trp Leu Lys 470	2790
gtcagaacca aaaaaac	act cggtcaaatt tct	acgtcct ttttaccaag tttcagca	aa 2850
ctaaaacatt atttatc	tct ctgtatctct cag	gct gat cga tcc ttg gga ca Ala Asp Arg Ser Leu Gly Gl 475 48	n
aaa ctc gca agc cg Lys Leu Ala Ser Ar 48	g Leu Asn Val Arg	cca agc atc tag aggccaatct Pro Ser Ile 490	2953

ccatataagc tcagtctatg tgaggtacaa tcaatctcat cgatctatca tcgcttggtc 3013
gttaaatccg tcaaaaagat aatcacatgt gttgttgttt cttgtctata taataataat 3073
gcttgtaatc ccaaaaactc atgtttcctt cctt 3107

<210> 10

<211> 492

<212> PRT

<213> Arabidopsis thaliana

<400> 10

Met Asp Pro Tyr Lys Tyr Arg Pro Ser Ser Ala Tyr Asn Ala Pro 1 5 10 15

Phe Tyr Thr Thr Asn Gly Gly Ala Pro Val Ser Asn Asn Ile Ser Ser 20 25 30

Leu Thr Ile Gly Glu Arg Gly Pro Val Leu Leu Glu Asp Tyr His Leu
35 40 45

Ile Glu Lys Val Ala Asn Phe Thr Arg Glu Arg Ile Pro Glu Arg Val
50 55 60

Val His Ala Arg Gly Ile Ser Ala Lys Gly Phe Phe Glu Val Thr His 65 70 75 8

Asp Ile Ser Asn Leu Thr Cys Ala Asp Phe Leu Arg Ala Pro Gly Val 85 90 95

Gln Thr Pro Val Ile Val Arg Phe Ser Thr Val Val His Gly Arg Ala 100 105 110

Ser Pro Glu Thr Met Arg Asp Ile Arg Gly Phe Ala Val Lys Phe Tyr 115 120 125

Thr Arg Glu Gly Asn Phe Asp Leu Val Gly Asn Asn Thr Pro Val Phe 130 135 140

Phe Ile Arg Asp Gly Ile Gln Phe Pro Asp Val Val His Ala Leu Lys 145 150 155 16

Pro Asn Arg Lys Thr Asn Ile Gln Glu Tyr Trp Arg Ile Leu Asp Tyr 165 170 175

Met Ser His Leu Pro Glu Ser Leu Leu Thr Trp Cys Trp Met Phe Asp 180 185 190

Asp Val Gly Ile Pro Gln Asp Tyr Arg His Met Glu Gly Phe Gly Val 195 200 205

His Thr Tyr Thr Leu Ile Ala Lys Ser Gly Lys Val Leu Phe Val Lys 210 215 220

Phe His Trp Lys Pro Thr Cys Gly Ile Lys Asn Leu Thr Asp Glu Glu

225

24

Ala Lys Val Val Gly Gly Ala Asn His Ser His Ala Thr Lys Asp Leu 245 250 255

230

His Asp Ala Ile Ala Ser Gly Asn Tyr Pro Glu Trp Lys Leu Phe Ile 260 265 270

Gln Thr Met Asp Pro Ala Asp Glu Asp Lys Phe Asp Phe Asp Pro Leu 275 280 285

Asp Val Thr Lys Ile Trp Pro Glu Asp Ile Leu Pro Leu Gln Pro Val 290 295 300

Gly Arg Leu Val Leu Asn Arg Thr Ile Asp Asn Phe Phe Asn Glu Thr 305 310 315 32

Glu Gln Leu Ala Phe Asn Pro Gly Leu Val Val Pro Gly Ile Tyr Tyr 325 330 335

Ser Asp Asp Lys Leu Leu Gln Cys Arg Ile Phe Ala Tyr Gly Asp Thr 340 345 350

Gln Arg His Arg Leu Gly Pro Asn Tyr Leu Gln Leu Pro Val Asn Ala 355 360 365

Pro Lys Cys Ala His His Asn Asn His His Glu Gly Phe Met Asn Phe 370 375 380

Met His Arg Asp Glu Glu Ile Asn Tyr Tyr Pro Ser Lys Phe Asp Pro 385 390 395

Val Arg Cys Ala Glu Lys Val Pro Thr Pro Thr Asn Ser Tyr Thr Gly
405 410 415

Ile Arg Thr Lys Cys Val Ile Lys Lys Glu Asn Asn Phe Lys Gln Ala
420 425 430

Gly Asp Arg Tyr Arg Ser Trp Ala Pro Asp Arg Gln Asp Arg Phe Val 435 440 445

Lys Arg Trp Val Glu Ile Leu Ser Glu Pro Arg Leu Thr His Glu Ile 450 455 460

Arg Gly Ile Trp Thr Ser Tyr Trp Leu Lys Ala Asp Arg Ser Leu Gly
465 470 475 48

Gln Lys Leu Ala Ser Arg Leu Asn Val Arg Pro Ser Ile 485 490

<210> 11

<211> 2687

<212> DNA

<213> Arabidopsis thaliana

```
<220>
<221> CDS
<222> (67)..(204)
<220>
<221> CDS
<222> (521)..(661)
<220>
<221> CDS
<222> (745)..(1026)
<220>
<221> CDS
<222> (1114)..(2667)
<400> 11
aagttccaaa ttttctctta gcattctctt tegtttctcg ttttcgttga atcaaagttc 60
                                                                   108
gttgcg atg gcg gat gtt cag atg gct gat gca gaa act ttt gct ttc
       Met Ala Asp Val Gln Met Ala Asp Ala Glu Thr Phe Ala Phe
                                                                   156
caa get gag att aac cag ett ett age ttg ate ate aac aeg tte tae
Gln Ala Glu Ile Asn Gln Leu Leu Ser Leu Ile Ile Asn Thr Phe Tyr
                                                                   204
age aac aaa gaa ate tte etc egt gag etc atc agt aac tet tet gat
Ser Asn Lys Glu Ile Phe Leu Arg Glu Leu Ile Ser Asn Ser Ser Asp
                 35
gtaagtttcc cttcaaatct ctctctgact cggtgtgact cgtccgcttc ctattttctt 264
gactgttgtt tgttctttaa ttcctggatt cgttgatagc gttggattcg taggtttagc 324
gttgtgattg cttattcaaa taaatcgtga tttggcttgt gcatcacgtt aagtttagaa 384
ttcttagctt gtgctcgatc ttcatgtgtt gtagttacat atatagaacg gttcttgctt 444
cgatgtagtt tttgatttac cctagaggat tgagtaaagc ttctgattat ctttgtttat 504
atgaacggtt ttgtag gct ctt gac aag att cga ttt gag agc tta acg gat 556
                  Ala Leu Asp Lys Ile Arg Phe Glu Ser Leu Thr Asp
                                50
                                                                   604
aag agc aag ctc gat gga cag cct gaa ctc ttc att aga ttg gtt cct
Lys Ser Lys Leu Asp Gly Gln Pro Glu Leu Phe Ile Arg Leu Val Pro
     60
                                                                   652
gac aag cct aat aag acg ctc tca att att gac agt ggt att ggc atg
Asp Lys Pro Asn Lys Thr Leu Ser Ile Ile Asp Ser Gly Ile Gly Met
                      80
                                                                   701
acc aaa gca ggtaacgaat caatgcctaa taatctctcg ttggtgagat
Thr Lys Ala
 gtttagtgta tgtgctgtgg ttatgactct ctattatttt tca gat ttg gtg aac
                                                                   756
```

Asp Leu Val Asn 95

								0 T			·		-	•		
aac Asn	ttg Leu	gga Gly 100	acc Thr	att Ile	gcg Ala	agg Arg	tct Ser 105	gga Gly	aca Thr	aaa Lys	Glu	ttt Phe 110	atg Met	gag Glu	5-5	804
ctt Leu	caa Gln 115	gct Ala	gga Gly	gct Ala	gat Asp	gta Val 120	agc Ser	atg Met	ata Ile	gga Gly	caa Gln 125	ttt Phe	ggt Gly	gtt Val	ggt Gly	852
ttc Phe 130	tac Tyr	tct Ser	gct Ala	tat Tyr	ctt Leu 135	gtt Val	gca Ala	gag Glu	aag Lys	gtt Val 140	gtt Val	gtc Val	act Thr	aca Thr	aag Lys 145	900
cac His	aat Asn	gat Asp	gat Asp	gaa Glu 150	caa Gln	tac Tyr	gtt Val	tgg Trp	gag Glu 155	tct Ser	caa Gln	gct Ala	ggt Gly	ggt Gly 160	tcc Ser	948
ttc Phe	act Thr	gtc Val	act Thr 165	agg Arg	gat Asp	gtg Val	gat Asp	ggg Gly 170	gaa Glu	cca Pro	ctt Leu	ggt Gly	aga Arg 175	gga Gly	act Thr	996
	atc Ile									gtaa	aggaa	atc g	gtage	cttt	ga	1046
gtg	tttt	ggg (ggato	gttc	t ti	tctt	ttggl	t gtl	tttc	gtg	ttc	taca	aag	tgtg	tttatt	1106
cat	gcag	ctt Leu	gaa Glu	tac Tyr 190	ttg Leu	gag Glu	gag Glu	agg Arg	aga Arg 195	ctc Leu	aaa Lys	gac Asp	ttg Leu	gtg Val 200	aag Lys	1155
aag Lys	cac His	tct Ser	gag Glu 205	ttc Phe	atc Ile	agt Ser	tac Tyr	cct Pro 210	atc Ile	tac Tyr	ctt Leu	Trp	acc Thr 215	gag Glu	aaa Lys	1203
acc Thr	acc Thr	gag Glu 220	aag Lys	gag Glu	atc Ile	agt Ser	gac Asp 225	gat Asp	gag Glu	gat Asp	gaa Glu	gat Asp 230	gaa Glu	cca Pro	aag Lys	1251
aaa Lys	gaa Glu 235	aac Asn	gaa Glu	ggt Gly	gag Glu	gtt Val 240	Glu	gaa Glu	gtt Val	gat Asp	gag Glu 245	Lys	aag Lys	gag Glu	aaa Lys	1299
gat Asp 250	Gly	aaa Lys	aag Lys	aag Lys	aag Lys 255	Lys	atc Ile	aag Lys	gaa Glu	gtc Val 260	Ser	cac His	gag Glu	tgg Trp	gaa Glu 265	1347
cto	ato l Ile	aac Asn	aag Lys	Gln 270	Lys	ccg Pro	atc Ile	tgg Trp	Leu 275	Arg	aag Lys	cca Pro	gaa Glu	gag Glu 280	atc Ile	1395
act Thi	. aag	gaa	gag	tat	gct	gct	tto	tac	aag	ago	ttg	acc	aat	gac	: tgg	1443

!	gaa Glu	gat Asp	cac His 300	tta Leu	gcc Ala	gtg Val	aaa Lys	cac His 305	ttc Phe	tca Ser	gtg Val	gag Glu	ggt Gly 310	cag Gln	cta Leu	gaa Glu	1491
	ttc Phe	aag Lys 315	gcc Ala	att	ctc Leu	ttt Phe	gta Val 320	cca Pro	aag Lys	aga Arg	gct Ala	ccg Pro 325	ttt Phe	gat Asp	ctc Leu	ttt Phe	1539
	gac Asp 330	acg Thr	agg Arg	aag Lys	aag Lys	ttg Leu 335	aat Asn	aac Asn	atc Ile	aag Lys	ctt Leu 340	Tyr	gtc Val	agg Arg	agg Arg	gtg Val 345	1587
	ttc Phe	att Ile	atg Met	gac Asp	aac Asn 350	tgt Cys	gaa Glu	gag Glu	cta Leu	atc Ile 355	cca Pro	gag Glu	tac Tyr	ctc Leu	agc Ser 360	ttt Phe	1635
	gtg Val	aaa Lys	ggt Gly	gtt Val 365	gtt Val	gac Asp	tct Ser	gat Asp	gac Asp 370	ttg Leu	cca Pro	ctc Leu	aac Asn	atc Ile 375	tct Ser	cgt Arg	1683
	gag Glu	acg Thr	ctt Leu 380	caa Gln	cag Gln	aac Asn	Lys	atc Ile 385	ctt Leu	aag Lys	gtg Val	atc Ile	agg Arg 390	aag Lys	aat Asn	cta Leu	1731
	gtg Val	aag Lys 395	aag Lys	tgc Cys	att Ile	gag Glu	atg Met 400	ttc Phe	aac Asn	gag Glu	att Ile	gct Ala 405	gag Glu	aac Asn	aaa Lys	gag Glu	1779
	gac Asp 410	tac Tyr	acc Thr	aaa Lys	ttc Phe	tat Tyr 415	Glu	gct Ala	ttc Phe	tcc Ser	aag Lys 420	aat Asn	ctc Leu	aaa Lys	ttg Leu	ggt Gly 425	1827
	atc Ile	cat His	gaa Glu	gac Asp	agt Ser 430	cag	aac Asn	agg Arg	gga Gly	aag Lys 435	Ile	gct Ala	gat Asp	ctt Leu	cta Leu 440	cgg	1875
	tac Tyr	cac His	tcc Ser	aca Thr 445	Lys	agt Ser	ggt Gly	gat Asp	gaa Glu 450	Met	acg Thr	agc Ser	ttc Phe	aaa Lys 455	Asp	tac Tyr	1923
	gtc Val	aca Thr	agg Arg 460	Met	aag Lys	gaa Glu	ggt Gly	caa Gln 465	Lys	gac Asp	att Ile	ttc Phe	tac Tyr 470	Ile	act Thr	ggt Gly	1971
	gaa Glu	agc Ser 475	Lys	aag Lys	gcg	gtg Val	gag Glu 480	Asn	tcc Ser	ttc Phe	ttg Leu	gag Glu 485	Arg	ctg Leu	aag Lys	aag Lys	2019
	aga Arg 490	Gly	tac Tyr	gag Glu	gta Val	ctt Leu 495	Tyr	atg Met	gtg Val	gat Asp	gcg Ala 500	ı Ile	gac Asp	gaa Glu	tac Tyr	gct Ala 505	2067
	gtt Val	gga Gly	caa Glr	ı ttg ı Lei	aaq Lys 510	Gli	tatı Tyr	gac Asp	ggt Gly	aag Lys 515	: Lys	ctt Leu	gtt Val	tct Ser	gcg Ala 520	act Thr	2115
	aaa	gaa	ggo	cto	aaa	a cti	gaa	gat	gaç	acc	gaa	a gaa	gag	aag	j aaa	aag	2163

7.

															•	
Lys	Glu	Gly	Leu 525	Lys	Leu	Glu	Asp	Glu 530	Thṛ	Gļu	Glu		Lys 535	Lys	Lys	
agg	gaa Glu	gag Glu 540	aag Lys	aag Lys	aag Lys	tcc Ser	ttc Phe 545	gag Glu	aat Asn	ctc Leu	tgc Cys	aag Lys 550	acg Thr	att Ile	aag Lys	2211
gaa Glu	att Ile 555	ctc Leu	Gly	gac Asp	aag Lys	gtt Val 560	gag Glu	aag Lys	gtt Val	gtg Val	gtc Val 565	tca Ser	gac Asp	agg Arg	att Ile	2259
gtg Val 570	gac Asp	tct Ser	ccc Pro	tgc Cys	tgt Cys 575	cta Leu	gta Val	act Thr	ggt Gly	gaa Glu 580	tat Tyr	gga Gly	tgg Trp	act Thr	gca Ala 585	2307
aat Asn	atg Met	gag Glu	agg Arg	att Ile 590	atg Met	aag Lys	gca Ala	cag Gln	gcc Ala 595	ttg Leu	aga Arg	gat Asp	agc Ser	agc Ser 600	atg Met	2355
agt Ser	ggt Gly	tac Tyr	atg Met 605	tcg Ser	agc Ser	aag Lys	aaa Lys	aca Thr 610	atg Met	gag Glu	atc Ile	aac Asn	ccc Pro 615	Asp	aac Asn	2403
ggt Gly	ata Ile	atg Met 620	Glu	gac Asp	ctc Leu	agg Arg	aag Lys 625	Arg	gct Ala	gaa Glu	gca Ala	gac Asp 630	Lys	aat Asn	gac Asp	2451
aag Lys	tct Ser 635	Val	aaa Lys	gat Asp	ctt Leu	gtc Val 640	atg Met	ttg Leu	ctg Leu	tat Tyr	gag Glu 645	Thr	gct Ala	ttg Leu	ttg Leu	2499
acg Thr 650	Ser	gga Gly	ttt Phe	agt Ser	ctt Leu 655	Asp	gaa Glu	ccg Pro	aac Asn	act Thr 660	Phe	gct Ala	gct Ala	agg Arg	att Ile 665	2547
cac	agg Arg	atg Met	ttg Leu	aag Lys 670	Leu	ggt Gly	ctg Leu	agt Ser	att Ile 675	Asp	gag Glu	gat Asp	gag Glu	aac Asn 680	Val	2595
gaç Glu	gaa Glu	gat Asp	ggt Gly 685	Asp	atg Met	cct Pro	gag Glu	ttg Leu 690	Glu	gag Glu	gac Asp	gct Ala	gct Ala 695	Glu	gag Glu	2643
	aag Lys		Glu	_	_				atga	aga	aatt	gcto	tt			2687
<2: <2:	10> 1 11> 1 12> 1	704 PRT	idops	sis t	hali	iana									,	
Me	00> : t Ala		p Va		n Met	t Ala	a Ası	o Ala	a Glu 10		r Phe	e Ala	a Phe	e Glr 1!	n Ala	

Glu Ile Asn Gln Leu Leu Ser Leu Ile Ile Asn Thr Phe Tyr Ser Asn 25 Lys Glu Ile Phe Leu Arg Glu Leu Ile Ser Asn Ser Ser Asp Ala Leu Asp Lys Ile Arg Phe Glu Ser Leu Thr Asp Lys Ser Lys Leu Asp Gly . 50 Gln Pro Glu Leu Phe Ile Arg Leu Val Pro Asp Lys Pro Asn Lys Thr Leu Ser Ile Ile Asp Ser Gly Ile Gly Met Thr Lys Ala Asp Leu Val Asn Asn Leu Gly Thr Ile Ala Arg Ser Gly Thr Lys Glu Phe Met Glu 105 Ala Leu Gln Ala Gly Ala Asp Val Ser Met Ile Gly Gln Phe Gly Val Gly Phe Tyr Ser Ala Tyr Leu Val Ala Glu Lys Val Val Val Thr Thr 135. 140 Lys His Asn Asp Asp Glu Gln Tyr Val Trp Glu Ser Gln Ala Gly Gly Ser Phe Thr Val Thr Arg Asp Val Asp Gly Glu Pro Leu Gly Arg Gly 165 Thr Lys Ile Ser Leu Phe Leu Lys Asp Asp Gln Leu Glu Tyr Leu Glu 185 Glu Arg Arg Leu Lys Asp Leu Val Lys Lys His Ser Glu Phe Ile Ser 200 Tyr Pro Ile Tyr Leu Trp Thr Glu Lys Thr Thr Glu Lys Glu Ile Ser 215 Asp Asp Glu Asp Glu Asp Glu Pro Lys Lys Glu Asn Glu Gly Glu Val 235 Glu Glu Val Asp Glu Lys Lys Glu Lys Asp Gly Lys Lys Lys Lys Lys Ile Lys Glu Val Ser His Glu Trp Glu Leu Ile Asn Lys Gln Lys Pro 260 265 Ile Trp Leu Arg Lys Pro Glu Glu Ile Thr Lys Glu Glu Tyr Ala Ala 280

Phe Tyr Lys Ser Leu Thr Asn Asp Trp Glu Asp His Leu Ala Val Lys

His Phe Ser Val Glu Gly Gln Leu Glu Phe Lys Ala Ile Leu Phe Val

295

310

305

315

				323			•		330					درد		
Asn	Ile	Lys	Leu 340	Tyr	Val	Arg	Arg	Val 345	Phe	Ile	Met	Asp	Asn 350	Сув	Glu	
Glu	Leu	Ile 355	Pro	Glu	Tyr	Leu	Ser 360		Val	Lys	Gly	Val 365	Val	Asp	Ser	
Asp	Asp 370	Leu	Pro	Leu	Asn	Ile 375	Ser	Arg	Glu		Leu 380	Gln	Gln	Asn	Lys	
Ile 385		Lys	Val	Ile	Arg 390	Lys	Asn	Lėu	Val	Lys 395	Lys	Суз	Ile	Glu	Met 400	
Phe	Asn	Glu	Ile	Ala 405	Glu	Asn	Lys	Glu	Asp 410	Tyr	Thr	Lys	Phe	Tyr 415	Glu	
Ala	Phe	Ser	Lys 420	Asn	Leu	Lys	Leu	Gly 425	Ile	His	Glu	Asp	Ser 430	Gln	Asn	
Arg	Gly	Lys 435	Ile	Ala	Asp	Leu	Leu 440	Arg	Tyr	His	Ser	Thr 445	Lys	Ser	Gly	
qzA	Glu 450	Met	Thr	Ser	Phe	Lys 455	Asp	Tyr	Val	Thr	Arg 460	Met	Lys	Glu	Gly	
Gln 465	Lys	Asp	Ile	Phe	Tyr 470	Ile	Thr	Gly	Glu	Ser 475	Lys	Lys	Ala	Val	Glu 480	
				485					Arg 490					495		
Met	Val	Asp	Ala 500		Asp	Glu	Tyr	Ala 505	Val	Gly	Gln	Leu	Lys 510	Glu	Tyr	

Pro Lys Arg Ala Pro Phe Asp Leu Phe Asp Thr Arg Lys Lys Leu Asn

Asp Glu Thr Glu Glu Glu Lys Lys Lys Arg Glu Glu Lys Lys Ser

Asp Gly Lys Lys Leu Val Ser Ala Thr Lys Glu Gly Leu Lys Leu Glu

Phe Glu Asn Leu Cys Lys Thr Ile Lys Glu Ile Leu Gly Asp Lys Val 545 550 555 560

Glu Lys Val Val Val Ser Asp Arg Ile Val Asp Ser Pro Cys Cys Leu 565 570 575

Val Thr Gly Glu Tyr Gly Trp Thr Ala Asn Met Glu Arg Ile Met Lys 580 585 590

Ala Gln Ala Leu Arg Asp Ser Ser Met Ser Gly Tyr Met Ser Ser Lys 595 600 605

Lys Thr Met Glu Ile Asn Pro Asp Asn Gly Ile Met Glu Asp Leu Arg 610 615 620

	Lys 625	Arg	Ala	Glu	Ala	Asp 630	Lys	Asn	Asp	Lys	Ser 635	Val	Lys	Asp	Leu	Val 640	·
1	Met	Leu	Leu	Tyr	Glu 645	Thr	Ala	Leu		Thr 650	Ser	Gly	Phe	Ser	Leu 655		
	Glu	Pro	Asn	Thr 660	Phe	Ala	Ala	Arg	Ile 665	His	Arg	Met	Leu	Lys 670	Leu	Gly	
	Leu	Ser	Ile 675	Asp	Glu	Asp	Glu	Asn 680	Val	Glu	Glu	Asp	Gly 685	Asp	Met	Pro	
	Glu	Leu 690	Glu	Glu	Asp	Ala	Ala 695	Glu	Glu	Ser		Met 700	Glu	Glu	Val	Asp	
•								٠				· .					
											•						
)> 1. L> 2!															
		2> DI															* .
	<21	3> A:	rabio	lops	is th	nalia	ana	:				-					
	<22	١.															
	*	l> C1	os -					*									
	<22	2>_(18).	. (292	24)												
	<40	0> 1	3														
				ggcga											gca (50
					. 1		Ala (Gly A	Arg 1		Ile(Glu 1	Lys 1	Met 1	Ala	Ser	
						1				5					10.		
						cgg				cct					gaa		98
				Gln		cgg			Val	cct				Ser			98
	Ile	Asp	Ala	Gln 15	Leu	cgg Arg	Gln	Leu	Val 20	cct Pro	Ala	Lys	Val	Ser 25	gaa Glu	Asp	
	Ile gat	Asp	Ala	Gln 15 gtt	Leu gag	cgg Arg	Gln gat	Leu	Val 20 ctt	cct Pro	Ala	Lys gat	Val cgc	Ser 25 ttt	gaa Glu ctc	Asp	98 146
	Ile gat	Asp	Ala ctt Leu	Gln 15 gtt Val	Leu gag	cgg Arg	Gln gat	Leu gct Ala	Val 20 ctt	cct Pro	Ala	Lys gat	Val cgc Arg	Ser 25 ttt	gaa Glu	Asp	
	Ile gat Asp	aag Lys	Ala ctt Leu 30	Gln 15 gtt Val	Leu gag Glu	cgg Arg tac Tyr	Gln gat Asp	gct Ala 35	Val 20 ctt Leu	cct Pro ctc Leu	Ala ctt Leu	Lys gat Asp	cgc Arg 40	Ser 25 ttt Phe	gaa Glu ctc Leu	Asp gac Asp	146
	Ile gat Asp	aag Lys	Ala ctt Leu 30	Gln 15 gtt Val	gag Glu tta	cgg Arg tac Tyr	Gln gat Asp	gct Ala 35	Val 20 ctt Leu gat	cct Pro ctc Leu	Ala ctt Leu cgt	Lys gat Asp	cgc Arg 40	Ser 25 ttt Phe	gaa Glu ctc Leu	gac Asp	
	Ile gat Asp	aag Lys ctc Leu	Ala ctt Leu 30 cag Gln	Gln 15 gtt Val	gag Glu tta	cgg Arg tac Tyr	gat Asp ggc Gly	gct Ala 35 gag Glu	Val 20 ctt Leu gat	cct Pro ctc Leu	Ala ctt Leu cgt	Lys gat Asp	cgc Arg 40	Ser 25 ttt Phe	gaa Glu ctc Leu	gac Asp	146
	gat Asp att	aag Lys ctc Leu 45	Ala ctt Leu 30 cag Gln	Gln 15 gtt Val gat Asp	gag Glu tta Leu	cgg Arg tac Tyr cac	gat Asp ggc Gly 50	gct Ala 35 gag Glu	Val 20 ctt Leu gat Asp	cct Pro ctc Leu ctc	Ala ctt Leu cgt Arg	gat Asp gaa Glu 55	cgc Arg 40 acg	Ser 25 ttt Phe gtt Val	gaa Glu ctc Leu caa Gln	gac Asp gag Glu	146
	gat Asp att Ile	aag Lys ctc Leu 45	ctt Leu 30 cag Gln	Gln 15 gtt Val gat Asp	gag Glu tta Leu	cgg Arg tac Tyr cac His	gat Asp ggc Gly 50	gct Ala 35 gag Glu	Val 20 ctt Leu gat Asp	cct Pro ctc Leu ctc Leu	Ala ctt Leu cgt Arg	gat Asp gaa Glu 55	cgc Arg 40 acg Thr	Ser 25 ttt Phe gtt Val	gaa Glu ctc Leu caa Gln	gac Asp gag Glu	146
	gat Asp att Ile	aag Lys ctc Leu 45	ctt Leu 30 cag Gln	Gln 15 gtt Val gat Asp	gag Glu tta Leu	cgg Arg tac Tyr cac His	gat Asp ggc Gly 50 gag Glu	gct Ala 35 gag Glu	Val 20 ctt Leu gat Asp	cct Pro ctc Leu ctc Leu	Ala ctt Leu cgt Arg	gat Asp gaa Glu 55	cgc Arg 40 acg Thr	Ser 25 ttt Phe gtt Val	gaa Glu ctc Leu caa Gln	gac Asp gag Glu	146
	gat Asp att Ile	aag Lys ctc Leu 45	ctt Leu 30 cag Gln	Gln 15 gtt Val gat Asp	gag Glu tta Leu	cgg Arg tac Tyr cac His	gat Asp ggc Gly 50 gag Glu	gct Ala 35 gag Glu	Val 20 ctt Leu gat Asp	cct Pro ctc Leu ctc Leu	ctt Leu cgt Arg	gat Asp gaa Glu 55	cgc Arg 40 acg Thr	Ser 25 ttt Phe gtt Val	gaa Glu ctc Leu caa Gln	gac Asp gag Glu aag Lys	146
	gat Asp att Ile tta Leu 60	aag Lys ctc Leu 45 tac Tyr	ctt Leu 30 cag Gln gag Glu	Gln 15 gtt Val gat Asp ctt Leu	gag Glu tta Leu tct Ser	cgg Arg tac Tyr cac His gct Ala 65	gat Asp ggc Gly 50 gag Glu	gct Ala 35 gag Glu tat Tyr cta	Val 20 ctt Leu gat Asp gaa Glu	cct Pro ctc Leu ctc Leu ggg Gly	ctt Leu cgt Arg aag Lys 70	gat Asp gaa Glu 55 cgt Arg	cgc Arg 40 acg Thr gag Glu	Ser 25 ttt Phe gtt Val cct Pro	gaa Glu ctc Leu caa Gln agc Ser	gac Asp gag Glu aag Lys 75	146
	gat Asp att Ile tta Leu 60	aag Lys ctc Leu 45 tac Tyr	ctt Leu 30 cag Gln gag Glu	Gln 15 gtt Val gat Asp ctt Leu	gag Glu tta Leu tct Ser	cgg Arg tac Tyr cac His gct Ala 65	gat Asp ggc Gly 50 gag Glu	gct Ala 35 gag Glu tat Tyr cta	Val 20 ctt Leu gat Asp gaa Glu	ctc Leu ctc Leu ggg Gly	ctt Leu cgt Arg aag Lys 70 ttg Leu	gat Asp gaa Glu 55 cgt Arg	cgc Arg 40 acg Thr gag Glu	Ser 25 ttt Phe gtt Val cct Pro	gaa Glu ctc Leu caa Gln agc Ser gac Asp	gac Asp gag Glu aag Lys 75 tca Ser	146 194 242
	gat Asp att Ile tta Leu 60	aag Lys ctc Leu 45 tac Tyr	ctt Leu 30 cag Gln gag Glu gag Glu	Gln 15 gtt Val gat Asp ctt Leu	gag Glu tta Leu tct Ser ggg Gly 80	tac Tyr cac His gct Ala 65 agt Ser	gat Asp ggc Gly 50 gag Glu gtc Val	gct Ala 35 gag Glu tat Tyr cta Leu	Val 20 ctt Leu gat Asp gaa Glu acg Thr	ctc Leu ctc Leu ggg Gly agt Ser 85	ctt Leu cgt Arg aag Lys 70 ttg	gat Asp gaa Glu 55 cgt Arg	cgc Arg 40 acg Thr gag Glu	Ser 25 ttt Phe gtt Val cct Pro ggt Gly	gaa Glu ctc Leu caa Gln agc Ser gac Asp	gac Asp gag Glu aag Lys 75 tca Ser	146 194 242 290
	gat Asp att Ile tta Leu 60 ctt Leu att	aag Lys ctc Leu 45 tac Tyr	ctt Leu 30 cag Gln gag Glu gag	Gln 15 gtt Val gat Asp ctt Leu cta Leu	gag Glu tta Leu tct Ser ggg Gly 80	cgg Arg tac Tyr cac His gct Alaa 65 agt Ser	gat Asp ggc Gly 50 gag Glu gtc Val	gct Ala 35 gag Glu tat Tyr cta Leu tct	Val 20 ctt Leu gat Asp gaa Glu acg Thr	ctc Leu ctc Leu ggg Gly agt Ser 85	ctt Leu cgt Arg aag Lys 70 ttg Leu	Lys gat Asp gaa Glu 55 cgt Arg gat Asp	cgc Arg 40 acg Thr gag Glu cct Pro	Ser 25 ttt Phe gtt Val cct Pro ggt Gly	gaa Glu ctc Leu caa Gln agc Ser gac Asp 90	gac Asp gag Glu aag Lys 75 tca Ser	146 194 242
	gat Asp att Ile tta Leu 60 ctt Leu att	aag Lys ctc Leu 45 tac Tyr	ctt Leu 30 cag Gln gag Glu gag	Gln 15 gtt Val gat Asp ctt Leu cta Leu tcc Ser	gag Glu tta Leu tct Ser ggg Gly 80 aag	cgg Arg tac Tyr cac His gct Alaa 65 agt Ser	gat Asp ggc Gly 50 gag Glu gtc Val	gct Ala 35 gag Glu tat Tyr cta Leu tct	Val 20 ctt Leu gat Asp gaa Glu acg Thr	ctc Leu ctc Leu ggg Gly agt Ser 85	ctt Leu cgt Arg aag Lys 70 ttg Leu	Lys gat Asp gaa Glu 55 cgt Arg gat Asp	cgc Arg 40 acg Thr gag Glu cct Pro	Ser 25 ttt Phe gtt Val cct Pro ggt Gly gcc Ala	gaa Glu ctc Leu caa Gln agc Ser gac Asp 90 aat	gac Asp gag Glu aag Lys 75 tca Ser	146 194 242 290
	gat Asp att Ile tta Leu 60 ctt Leu	aag Lys ctc Leu 45 tac Tyr gag Glu	ctt Leu 30 cag Gln gag Glu gag Glu	gtt Val gat Asp ctt Leu cta Leu	gag Glu tta Leu tct Ser ggg Gly 80	cgg Arg tac Tyr cac His gct Alaa 65 agt Ser	gat Asp ggc Gly 50 gag Glu gtc Val	gct Ala 35 gag Glu tat Tyr cta Leu tct Ser	Val 20 ctt Leu gat Asp gaa Glu acg Thr	ctc Leu ctc Leu ggg Gly agt Ser 85	ctt Leu cgt Arg aag Lys 70 ttg Leu	Lys gat Asp gaa Glu 55 cgt Arg gat Asp	cgc Arg 40 acg Thr gag Glu ctta Leu	Ser 25 ttt Phe gtt Val cct Pro ggt Gly gcc Ala 105	gaa Glu ctc Leu caa Gln agc Ser gac Asp 90 aat	gac Asp gag Glu aag Lys 75 tca Ser	146 194 242 290
	gat Asp att Ile tta Leu 60 ctt Leu att Ile gct	aag Lys ctc Leu 45 tac Tyr gag Glu	ctt Leu 30 cag Gln gag Glu gag Glu	gtt Val gat Asp ctt Leu cta Leu gat gat gtg	gag Glu tta Leu tct Ser ggg Gly 80 Lys	cgg Arg tac Tyr cac His gct Ala 65 agt Ser	gat Asp ggc Gly 50 gag Glu gtc Val	gct Ala 35 gag Glu tat Tyr cta Leu tct Ser cac	Val 20 ctt Leu gat Asp gaa Glu acg Thr cac His 100 cgt	ctc Leu ctc Leu ggg Gly agt Ser 85	ctt Leu cgt Arg aagg Lys 70 ttg Leu ctt Leu agg	gat Asp gaa Glu 55 cgt Arg gat Asp	cgc Arg 40 acg Thr gag Glu ctta Leu aag	Ser 25 ttt Phe gtt Val cct Pro ggt Gly gcc Alaa 105	gaa Glu ctc Leu caa Gln agc Ser gac Asp 90 aat	gac Asp gag Glu aag Lys 75 tca Ser ttg Leu	146 194 242 290

٠		110					115		٠		•	120				
aaa	aat	gat	ttc	att	gat	gag	agt	tct	gca	act	act	gaa	tec	gat	att	434
Lys	Gly 125	Asp	Phe	Val	Asp	Glu 130	Ser	Ser	Ala	Thr	Thr 135	Glu	Ser	Asp	Ile	
gaa Glu 140	gag Glu	act Thr	ttt Phe	aag Lys	agg Arg 145	ctc Leu	gtt Val	tcg Ser	gat Asp	ctt Leu 150	ggt Gly	aag Lys	tct Ser	cct Pro	gaa Glu 155	482
																530
Glu	Ile	Phe	gat Asp	gcc Ala 160	Leu	aag Lys	Asn	Gln	Thr 165	gtg Val	Asp	Leu	Val	Leu 170	Thr	530
gct Ala	cat His	cct Pro	act Thr 175	cag Gln	tct Ser	gtg Val	cgt Arg	aga Arg 180	tca Ser	ttg Leu	ctt Leu	Gln'	aag Lys 185	cat His	ggg Gly	578
agg	ata	agg	gac	tat	ctt	: act	caa	ctc	tat	gca	aaq	gac	att	act	cct	626
Arg	Ile	Arg 190	Asp	Cys	Leu	Ala	Gln 195	Leu	Tyr	Ala	Lys	Asp 200	Ile	Thr	Pro	
gat Asp	gac Asp 205	aag Lys	cag Gln	gag Glu	cta Leu	gat Asp 210	gag Glu	tct Ser	ctg Leu	caa Gln	aga Arg 215	gag Glu	att Ile	caa Gln	gct Ala	674
										cct Pro 230						722
gaa Glu	atg Met	aga Arg	gct Ala	gga Gly 240	atg Met	agt Ser	tat Tyr	ttc Phe	cac His 245	gag Glu	aca Thr	atc Ile	tgg Trp	aaa Lys 250	ggt Gly	770
gtc Val	ccc	aag Lys	ttc Phe 255	ttg Leu	cgc Arg	cgt Arg	gtg Val	gac Asp 260	aca Thr	gct Ala	ctg Leu	aaa Lys	aac Asn 265	att Ile	GJA aaa	818
										ttg Leu					tcg Ser	866
tgg Trp	atg Met 285	Gly	ggt Gly	gat Asp	cgt Arg	gat Asp 290	ggt Gly	aat Asn	ccg	agg Arg	gtc Val 295	Thr	cct	gag Glu	gtc Val	914
	Arg					Leu				atg Met 310	Ala					962
tat Tyr	aac Asn	caa Gln	atc	gag Glu 320	Asn	ctg Leu	atg Met	ttt Phe	gag Glu 325	tta Leu	tct Ser	atg Met	tgg Trp	cgt Arg 330	tgc Cys	1010
				Arg					Glu	ctg Leu						1058

	gct Ala 350	Ala			Tyr									cca Pro	1106
	cca Pro		_	_				_			_	_			1154
													Ser	gat Asp 395	1202
	gaa Glu	Glu		\mathbf{Thr}_{\cdot}											1250
	ctc Leu	-		-			_		-		_				1298
	gga Gly 430													gga Gly	1346
	ctt Leu				_			-			_			aca Thr	1394
Val	ttg Leu														1442
	tgg Trp														1490
	aaa Lys		Pro										Glu	gaa Glu	1538
	gat Asp 510	Val	_	-			Lys	-				-		tca Ser	1586
	Phe					Ile					Ser			gat Asp	1634
Leu					Leu					His				cca Pro 555	1682
				Leu					Ala					gct Ala	1730

cct Pro	gcc Ala	gct Ala	gtt Val 575	gca Ala	aga Arg	ctc Leu	ttt Phe	tct Ser 580	ata Ile	gac Asp	tgg Trp	tac Tyr	aaa Lys 585	aac Asn	cgt Arg	1778
att Ile	aac Asn	ggt Gly 590	aaa Lys	caa Gln	gag Glu	gtt Val	atg Met 595	att ·Ile	ggt Gly	tac Tyr	Ser	gat Asp 600	tca Ser	ggg	aaa Lys	1826
gat Asp	gca Ala 605	ggg Gly	cgt Arg	ctc Leu	tca Ser	gct Ala 610	gct Ala	tgg Trp	gag Glu	cta Leu	tac Tyr 615	aaa Lys	gct Ala	caa Gln	gaa Glu	1874
gag Glu 620	ctt Leu	gtg Val	aag Lys	gtt Val	gct Ala 625	Lys	aaa Lys	tat Tyr	gga Gly	gtg Val 630	aag Lys	cta Leu	act Thr	atg Met	ttc Phe 635	1922
cat His	ggc Gly	cgt Arg	ggt Gly	ggc Gly 640	aca Thr	gtc Val	gga Gly	aga Arg	gga Gly 645	Gly	ggt Gly	cct Pro	act Thr	cat His 650	ctt Leu	1970
gct Ala	ata Ile	ttg Leu	tct Ser 655	cag Gln	cca Pro	cca Pro	gat Asp	aca Thr 660	gtt Val	aat Asn	ggc Gly	tct Ser	ctt Leu 665	cga Arg	gtc Val	2018
acg Thr	gtt Val	cag Gln 670	ggt Gly	gaa Glu	gtc Val	att Ile	gag Glu 675	Gln	tca Ser	ttt Phe	Gly ggg	gag Glu 680	gca Ala	cac His	tta Leu	2066
tgc Cys	ttt Phe 685	aga Arg	aca Thr	ctt Leu	caa Gln	cgt Arg 690	ttc Phe	aca Thr	gca Ala	gct Ala	act Thr 695	cta Leu	gag Glu	cac His	gga Gly	2114
atg Met 700	Asn	cct Pro	ccg Pro	att Ile	tca Ser 705	cca Pro	aaa Lys	ccc Pro	gag Glu	tgg Trp 710	cgt Arg	gct Ala	ttg Leu	ctt Leu	gat Asp 715	2162
gaa Glu	atg Met	gcg Ala	gtt Val	gtt Val 720	gca Ala	act Thr	gag Glu	gaa Glu	tac Tyr 725	cga Arg	tct Ser	gtc Val	gtt Val	ttc Phe 730	caa Gln	2210
gaa Glu	cct Pro	cga Arg	ttc Phe 735	gtc Val	gag Glu	tat Tyr	ttc Phe	cgc Arg 740	ctc Leu	gct Ala	act Thr	ccg Pro	gag Glu 745	ctg Leu	gag Glu	2258
tat Tyr	gga Gly	cgt Arg 750	atg Met	aat Asn	att Ile	gga Gly	agt Ser 755	aga Arg	cct Pro	tca Ser	aag Lys	cga Arg 760	aaa Lys	cca Pro	agc Ser	2306
ggt Gly	ggg Gly 765	atc Ile	gaa Glu	tct Ser	ctc Leu	cgt Arg 770	gca Ala	atc Ile	cca Pro	tgg Trp	atc Ile 775	ttt Phe	gct Ala	tgg Trp	acg Thr	2354
caa Gln 780	aca Thr	aga Arg	ttc Phe	cat His	ctt Leu 785	cct Pro	gta Val	tgg Trp	tta Leu	ggt Gly 790	ttc Phe	gga Gly	gca Ala	gca Ala	ttt Phe 795	2402
agg	tat	gcg	atc	aag	aag	gat	gtg	aga	aac	ctt	cac	atg	ctg	caa	gat	2450

```
Arg Tyr Ala Ile Lys Lys Asp Val Arg Asn Leu His Met Leu Gln Asp
                                    805
atg tat aaa caa tgg ccc ttt ttc cga gtc acc atc gat cta att gaa
                                                                   2498
Met Tyr Lys Gln Trp Pro Phe Phe Arg Val Thr Ile Asp Leu Ile Glu
            815
                            820
atg gtg ttc gcc aag gga gac ccc ggg atc gct gct ttg tac gac aaa
                                                                   2546
Met Val Phe Ala Lys Gly Asp Pro Gly Ile Ala Ala Leu Tyr Asp Lys
                           835
ctt ctt gtc tca gaa gat tta tgg gct ttt gga gag aaa ctc aga gcc
                                                                   2594
Leu Leu Val Ser Glu Asp Leu Trp Ala Phe Gly Glu Lys Leu Arg Ala
                        850
aac ttt gat gaa acc aag aac ctc gtc ctc cag act gct gga cat aaa
                                                                   2642
Asn Phe Asp Glu Thr Lys Asn Leu Val Leu Gln Thr Ala Gly His Lys
                    865
                                        870
gac ctt ctt gaa gga gat cct tac ttg aaa cag aga cta agg cta cgt
                                                                   2690
Asp Leu Leu Glu Gly Asp Pro Tyr Leu Lys Gln Arg Leu Arg Leu Arg
                880
                                    885
gac tot tac att acg acc otc aac gtt tgc caa gcc tac aca ttg aag
                                                                  2738
Asp Ser Tyr Ile Thr Thr Leu Asn Val Cys Gln Ala Tyr Thr Leu Lys
            895
                                900
agg atc cgt gat gca aac tac aat gtg act ctg cga cca cac att tct
                                                                   2786
Arg Ile Arg Asp Ala Asn Tyr Asn Val Thr Leu Arg Pro His Ile Ser
                            915
aaa gag atc atg caa tca agc aaa tca gca caa gag ctc gtc aag ctt
                                                                  2834
Lys Glu Ile Met Gln Ser Ser Lys Ser Ala Gln Glu Leu Val Lys Leu
   925
                        930
                                           935
aac ccc acg agt gaa tac gcg cct gga ctt gag gac aca ctt atc tta
                                                                  2882
Asn Pro Thr Ser Glu Tyr Ala Pro Gly Leu Glu Asp Thr Leu Ile Leu
                    945
                                        950
acc atg aag ggt att gct gca gga ttg caa aac acc ggt taa gtgagtca
Thr Met Lys Gly Ile Ala Ala Gly Leu Gln Asn Thr Gly
```

<210> 14

<211> 968

<212> PRT

<213> Arabidopsis thaliana

<400> 14

Met Ala Gly Arg Asn Ile Glu Lys Met Ala Ser Ile Asp Ala Gln Leu

1 5 10 15

Arg Gln Leu Val Pro Ala Lys Val Ser Glu Asp Asp Lys Leu Val Glu 20 25 30

Tyr Asp Ala Leu Leu Leu Asp Arg Phe Leu Asp Ile Leu Gln Asp Leu

40

His Gly Glu Asp Leu Arg Glu Thr Val Gln Glu Leu Tyr Glu Leu Ser 50 60

Ala Glu Tyr Glu Gly Lys Arg Glu Pro Ser Lys Leu Glu Glu Leu Gly 65 70 75 80

Ser Val Leu Thr Ser Leu Asp Pro Gly Asp Ser Ile Val Ile Ser Lys 85 90 95

Ala Phe Ser His Met Leu Asn Leu Ala Asn Leu Ala Glu Glu Val Gln
100 105 110

Ile Ala His Arg Arg Ile Lys Lys Leu Lys Lys Gly Asp Phe Val 115 120 125

Asp Glu Ser Ser Ala Thr Thr Glu Ser Asp Ile Glu Glu Thr Phe Lys 130 135 140

Arg Leu Val Ser Asp Leu Gly Lys Ser Pro Glu Glu Ile Phe Asp Ala 145 150 155 160

Leu Lys Asn Gln Thr Val Asp Leu Val Leu Thr Ala His Pro Thr Gln 165 170 175

Ser Val Arg Arg Ser Leu Leu Gln Lys His Gly Arg Ile Arg Asp Cys 180 185 190

Leu Ala Gln Leu Tyr Ala Lys Asp Ile Thr Pro Asp Asp Lys Gln Glu 195 200 205

Leu Asp Glu Ser Leu Gln Arg Glu Ile Gln Ala Ala Phe Arg Thr Asp 210 215 220

Glu Ile Arg Arg Thr Pro Pro Thr Pro Gln Asp Glu Met Arg Ala Gly 225 230 235 240

Met Ser Tyr Phe His Glu Thr Ile Trp Lys Gly Val Pro Lys Phe Leu 245 250 255

Arg Arg Val Asp Thr Ala Leu Lys Asn Ile Gly Ile Asp Glu Arg Val 260 265 270

Pro Tyr Asn Ala Pro Leu Ile Gln Phe Ser Ser Trp Met Gly Gly Asp 275 280 285

Arg Asp Gly Asn Pro Arg Val Thr Pro Glu Val Thr Arg Asp Val Cys 290 295 300

Leu Leu Ala Arg Met Met Ala Ala Asn Leu Tyr Tyr Asn Gln Ile Glu 305 310 310 315 320

Asn Leu Met Phe Glu Leu Ser Met Trp Arg Cys Thr Asp Glu Phe Arg 325 330 335

Val Arg Ala Asp Glu Leu His Arg Asn Ser Arg Lys Asp Ala Ala Lys

340 345 350

His Tyr Ile Glu Phe Trp Lys Thr Ile Pro Pro Thr Glu Pro Tyr Arg 355 360 365

Val Ile Leu Gly Asp Val Arg Asp Lys Leu Tyr His Thr Arg Glu Arg 370 375 380

Ser Arg Gln Leu Leu Ser Asn Gly Ile Ser Asp Ile Pro Glu Glu Ala 385 390 395 400

Thr Phe Thr Asn Val Glu Gln Phe Leu Glu Pro Leu Glu Leu Cys Tyr 405 410 415

Arg Ser Leu Cys Ser Cys Gly Asp Ser Pro Ile Ala Asp Gly Ser Leu 420 425 430

Leu Asp Phe Leu Arg Gln Val Ser Thr Phe Gly Leu Ser Leu Val Arg 435 440 445

Leu Asp Ile Arg Gln Glu Ser Glu Arg His Thr Asp Val Leu Asp Ala 450 455 460

Ile Thr Lys His Leu Asp Ile Gly Ser Ser Tyr Arg Asp Trp Ser Glu 465 470 475 480

Glu Gly Arg Gln Glu Trp Leu Leu Ala Glu Leu Ser Gly Lys Arg Pro 485 490 495

Leu Phe Gly Pro Asp Leu Pro Lys Thr Glu Glu Ile Ser Asp Val Leu 500 505 510

Asp Thr Phe Lys Val Ile Ser Glu Leu Pro Ser Asp Cys Phe Gly Ala 515 520 525

Tyr Ile Ile Ser Met Ala Thr Ser Pro Ser Asp Val Leu Ala Val Glu 530 535 540

Leu Leu Gln Arg Glu Cys His Val Lys Asn Pro Leu Arg Val Val Pro 545 550 555 560

Leu Phe Glu Lys Leu Ala Asp Leu Glu Ala Ala Pro Ala Ala Val Ala 565 570 575

Arg Leu Phe Ser Ile Asp Trp Tyr Lys Asn Arg Ile Asn Gly Lys Gln 580 585 590

Glu Val Met Ile Gly Tyr Ser Asp Ser Gly Lys Asp Ala Gly Arg Leu
595 600 605

Ser Ala Ala Trp Glu Leu Tyr Lys Ala Gln Glu Glu Leu Val Lys Val 610 615 620

Ala Lys Lys Tyr Gly Val Lys Leu Thr Met Phe His Gly Arg Gly Gly 625 630 635 640

Thr Val Gly Arg Gly Gly Gly Pro Thr His Leu Ala Ile Leu Ser Gln

۵	٨	5	
O	•	-	

.650

655

Pro Pro Asp Thr Val Asn Gly Ser Leu Arg Val Thr Val Gln Gly Glu 660 665 670

Val Ile Glu Gln Ser Phe Gly Glu Ala His Leu Cys Phe Arg Thr Leu 675 680 685

Gln Arg Phe Thr Ala Ala Thr Leu Glu His Gly Met Asn Pro Pro Ile 690 695 700

Ser Pro Lys Pro Glu Trp Arg Ala Leu Leu Asp Glu Met Ala Val Val 705 710 715 720

Ala Thr Glu Glu Tyr Arg Ser Val Val Phe Gln Glu Pro Arg Phe Val 725 730 735

Glu Tyr Phe Arg Leu Ala Thr Pro Glu Leu Glu Tyr Gly Arg Met Asn 740 745 750

Ile Gly Ser Arg Pro Ser Lys Arg Lys Pro Ser Gly Gly Ile Glu Ser 755 760 765

Leu Arg Ala Ile Pro Trp Ile Phe Ala Trp Thr Gln Thr Arg Phe His 770 775 780

Leu Pro Val Trp Leu Gly Phe Gly Ala Ala Phe Arg Tyr Ala Ile Lys 785 790 795 800

Lys Asp Val Arg Asn Leu His Met Leu Gln Asp Met Tyr Lys Gln Trp 805 810 815

Pro Phe Phe Arg Val Thr Ile Asp Leu Ile Glu Met Val Phe Ala Lys 820 825 830

Gly Asp Pro Gly Ile Ala Ala Leu Tyr Asp Lys Leu Leu Val Ser Glu 835 840

Asp Leu Trp Ala Phe Gly Glu Lys Leu Arg Ala Asn Phe Asp Glu Thr 850 860

Lys Asn Leu Val Leu Gln Thr Ala Gly His Lys Asp Leu Leu Glu Gly 865 870 875 880

Asp Pro Tyr Leu Lys Gln Arg Leu Arg Leu Arg Asp Ser Tyr Ile Thr 885 890 895

Thr Leu Asn Val Cys Gln Ala Tyr Thr Leu Lys Arg Ile Arg Asp Ala 900 905 910

Asn Tyr Asn Val Thr Leu Arg Pro His Ile Ser Lys Glu Ile Met Gln 915 920 925

Ser Ser Lys Ser Ala Gln Glu Leu Val Lys Leu Asn Pro Thr Ser Glu 930 940

Tyr Ala Pro Gly Leu Glu Asp Thr Leu Ile Leu Thr Met Lys Gly Ile

945 950 955 960 Ala Ala Gly Leu Gln Asn Thr Gly <210> 15 <211> 271 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (17)..(259) <400> 15 togattcagg ttaagg atg tog aga got aca tac att atc ggt gcc ctt gcg 52 Met Ser Arg Ala Thr Tyr Ile Ile Gly Ala Leu Ala gga tot gcg gta gta gct tac gtg tgt gac aaa gtt att tot gat gat Gly Ser Ala Val Val Ala Tyr Val Cys Asp Lys Val Ile Ser Asp Asp 20 aag ott tit gga ggt act aca cca gga act att act aac aag gaa tgg Lys Leu Phe Gly Gly Thr Thr Pro Gly Thr Ile Thr Asn Lys Glu Trp 35 40 ggt gct gcg act gaa gag aga tta caa gca tgg cca aga gtt gct ggt 196 Gly Ala Ala Thr Glu Glu Arg Leu Gln Ala Trp Pro Arg Val Ala Gly 50 55 . cet eec gte gte atg aac eet ate agt ege eag aat tte ate gte aag Pro Pro Val Val Met Asn Pro Ile Ser Arg Gln Asn Phe Ile Val Lys 70 tca cgt cct gaa taa cttttgatgc ct 271 Ser Arg Pro Glu <210> 16 <211> 80 <212> PRT <213> Arabidopsis thaliana <400> 16 Met Ser Arg Ala Thr Tyr Ile Ile Gly Ala Leu Ala Gly Ser Ala Val 10 Val Ala Tyr Val Cys Asp Lys Val Ile Ser Asp Asp Lys Leu Phe Gly 25 Gly Thr Thr Pro Gly Thr Ile Thr Asn Lys Glu Trp Gly Ala Ala Thr

```
Glu Glu Arg Leu Gln Ala Trp Pro Arg Val Ala Gly Pro Pro Val Val
                         55
                                              60 -
Met Asn Pro Ile Ser Arg Gln Asn Phe Ile Val Lys Ser Arg Pro Glu
 65
                     70
<210> 17
<211> 2580
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (30) .. (143)
<220>
<221> CDS
<222> (295)..(417)
<220>
<221> CDS
<222> (582)..(632)
<220>
<221> CDS
<222> (1179) .. (1245)
<220>
<221> CDS
<222> (1334)..(1383)
<220>
<221> CDS
<222> (1497) . . (1577)
<220>
<221> CDS
 <222> (1661)..(1740)
<220>
 <221> CDS
 <222> (1882)..(1984)
 <220>
 <221> CDS
 <222> (2370)..(2564)
 <400> 17
 tetteacaaa teetaaacga gtaggaget atg get gea eeg att gtt gat geg
                                  Met Ala Ala Pro Ile Val Asp Ala
 gag tac ttg aaa gag atc act aag get ege egt gag etc egt tet etc
                                                                     101
 Glu Tyr Leu Lys Glu Ile Thr Lys Ala Arg Arg Glu Leu Arg Ser Leu
```

20

15

atc gcg aac aag aac tgt gct cct atc atg ctc cga ttg gcg Ile Ala Asn Lys Asn Cys Ala Pro Ile Met Leu Arg Leu Ala 25 30 35	143
taagttttcg atttccttgg tttttcgtcg agttgactgt tacagatttc gtttattcat	203
gtggagatcg ttcgattgta gttaggctgt agaatcgatt ttgtttgttt ttgaatgttg	263
aaatgtttgt atcatctggt ttttatgaag a tgg cac gat gct gga acc tat Trp His Asp Ala Gly Thr Tyr 40	315
gat gct caa tcg aag acc ggt gga cct aat ggc tct atc agg aac gaa Asp Ala Gln Ser Lys Thr Gly Gly Pro Asn Gly Ser Ile Arg Asn Glu 50 55 60	363
gaa gag cac act cat ggt gcc aac agt ggt ttg aag atc gct ctc gat Glu Glu His Thr His Gly Ala Asn Ser Gly Leu Lys Ile Ala Leu Asp 65 70 75	411
ctc tgt ggtaggattt tgatttagtt tttgtagatt cactttctgg ataatttcat Leu Cys	467
gcgatgtatc cgttttatgt tgtggtttaa gaacactgtt caaaataatt acattatgct	527
tttggaaatg gactttgtat cgcttaatta tgagatccta tctttgatgt ttca gag Glu 80	584
ggc gtg aaa gct aag cat ccc aaa atc aca tac gca gac ctg tat cag Gly Val Lys Ala Lys His Pro Lys Ile Thr Tyr Ala Asp Leu Tyr Gln 85 90 95	632
gtgagttaag gctgtgagag aaatcttttt gatgtccttg ttgctttttc tgcacatttg	692
tttttcaaag ttcgctggaa ctgtattcgg cttgtgtcat tacctcgtcc caggtttgag	752
cttgttgttt aggagactta gttgatagtt gagcagctgt gtaaatatgg tttcagttgt	812
aatttgtttc aggagatgtt actgattgtg atttggttta caaaaatcat agattgacta	872
tgttgttcaa ctagaacttt tatctcttgc agtaatagct aaattcaagt aaaatataca	932
ctgaatgaat tcaaacgacc aagaaggaaa ctgtaatgta atgtcaatct gtttccatcc	992
taagtcacat gtctgtcgtc tgtacctata acctgtctct acgactgttt gtattgccgt	1052
ttctccattt tatatttggt cttacaaggt cgaggcttta tttatgaatt cccaatagaa	1112
gtgtaccagt ttaatggcaa ttaagttttg ggtatgaatt atttactttt aagtgttttg	1172
tttcag ctt gct ggt gtg gta gca gtt gag gtt act ggt gga cct gac Leu Ala Gly Val Val Ala Val Glu Val Thr Gly Gly Pro Asp 100 105 110	1220
atc gtg ttc gtt ccc ggg aga aag g tatactttct catctcttga	1265

Ile Val Phe Val Pro Gly Arg Lys A 115	٠
gacattataa cagcttatca gtttaacact aaagcaaaca taattactgt atgtttcttc	1325
ttgatagg at tca aat gtc tgc ccc aag gaa gga aga ctt cct gat gcc sp Ser Asn Val Cys Pro Lys Glu Gly Arg Leu Pro Asp Ala 120 125 130	1374
aaa caa ggt acactaaatt cttgtatcaa ttataacaaa cttttcatgt Lys Gln Gly 135	1423
tttctactga taatcttgtt ttggaattgg aagatttttt ctatgaattc acattgttta	1483
tatctctgta ggt ttc caa cat ctc aga gat gtc ttc tac cgc atg gga Phe Gln His Leu Arg Asp Val Phe Tyr Arg Met Gly 140 145	1532
cta tct gat aag gat att gtg gca ctc tca ggg ggt cat act ctg Leu Ser Asp Lys Asp Ile Val Ala Leu Ser Gly Gly His Thr Leu 150 155 160	1577
gtaaattcat tggtcactta cttaacttcc gttgtttttg aacaaatatg cttgttgtgc	1637
ttatgaccac attgggtgtt tag gga agg gct cac ccg gag agg tca ggc ttt Gly Arg Ala His Pro Glu Arg Ser Gly Phe 165 170	1690
gat gga cca tgg acc caa gag ccg ctg aat ttt gac aac tcc tac ttc Asp Gly Pro Trp Thr Gln Glu Pro Leu Asn Phe Asp Asn Ser Tyr Phe 175 180 185	1738
gt gtaattttca tttctttatc ctcagagatt ttctttgtgc attttttaa Va	1790
tcttttctgt ttgtgtctcc aagaaataaa agcagcaaac agatactttt ttacatgatc	1850
ggttatccat gattatttac tgttttggta c c agg gaa ctg ctg aaa gga gaa l Arg Glu Leu Leu Lys Gly Glu 190 195	1903
tca gag ggc ttg ttg aaa ctt cca act gac aag acc tta ttg gaa gac Ser Glu Gly Leu Leu Lys Leu Pro Thr Asp Lys Thr Leu Leu Glu Asp 200 205 210	1951
ccg gag ttc cgt cgt ctt gtt gag ctt tat gca aaggtataat atactggaga Pro Glu Phe Arg Arg Leu Val Glu Leu Tyr Ala 215 220	2004
tottototgo ototttgoca titgtttott gogttgotat aataaccatt ggaacataac	2064
togatttcct ttattggttt cacattttca ctgaatccac aagcacacac actgaatcac	2124
aaaccaaatt atctagggtt ttgttctaga gaaccccacg gatccttatc gcctttatag	2184

ttgctgatgt tgcaaaatga taaaatgaac actcttacta ctatcagtga gaactgtaat 2244

attagetttt tgttagaacc gtaaacagaa attectatgg ttetttatga ttteettget 2304 taattaagtt tcaataagat aagaaagtgt tgttatgtgt tgacaagttc agtttgtggt 2364 ggcag gat gaa gat gca ttc ttc aga gac tac gcg gaa tcg cac aag aaa 2414 Asp Glu Asp Ala Phe Phe Arg Asp Tyr Ala Glu Ser His Lys Lys 235 225 230 ctc tct gag ctt ggt ttc aac cca aac tcc tca gca ggc aaa gca gtt Leu Ser Glu Leu Gly Phe Asn Pro Asn Ser Ser Ala Gly Lys Ala Val 245 240 2510 gca gac agc acg att ctg gca cag agt gcg ttc ggg gtt gca gtt gct Ala Asp Ser Thr Ile Leu Ala Gln Ser Ala Phe Gly Val Ala Val Ala 260 265 gct gcg gtt gtg gca ttt ggt tac ttt tac gag atc cgg aag agg atg Ala Ala Val Val Ala Phe Gly Tyr Phe Tyr Glu Ile Arg Lys Arg Met 280 2580 aag taa acgaaatagg aagtaa Lys <210> 18 <211> 287 <212> PRT <213> Arabidopsis thaliana <400> 18 Met Ala Ala Pro Ile Val Asp Ala Glu Tyr Leu Lys Glu Ile Thr Lys Ala Arg Arg Glu Leu Arg Ser Leu Ile Ala Asn Lys Asn Cys Ala Pro 25 Ile Met Leu Arg Leu Ala Trp His Asp Ala Gly Thr Tyr Asp Ala Gln Ser Lys Thr Gly Gly Pro Asn Gly Ser Ile Arg Asn Glu Glu Glu His Thr His Gly Ala Asn Ser Gly Leu Lys Ile Ala Leu Asp Leu Cys Glu 70 Gly Val Lys Ala Lys His Pro Lys Ile Thr Tyr Ala Asp Leu Tyr Gln Leu Ala Gly Val Val Ala Val Glu Val Thr Gly Gly Pro Asp Ile Val 105 Phe Val Pro Gly Arg Lys Asp Ser Asn Val Cys Pro Lys Glu Gly Arg 120

140

Leu Pro Asp Ala Lys Gln Gly Phe Gln His Leu Arg Asp Val Phe Tyr

```
Arg Met Gly Leu Ser Asp Lys Asp Ile Val Ala Leu Ser Gly Gly His
                   150
                                    155
Thr Leu Gly Arg Ala His Pro Glu Arg Ser Gly Phe Asp Gly Pro Trp
                                   170
               165
Thr Gln Glu Pro Leu Asn Phe Asp Asn Ser Tyr Phe Val Arg Glu Leu
                               185
Leu Lys Gly Glu Ser Glu Gly Leu Leu Lys Leu Pro Thr Asp Lys Thr
                                                205
                            200
        195 -
Leu Leu Glu Asp Pro Glu Phe Arg Arg Leu Val Glu Leu Tyr Ala Asp.
                       215
                                          220
Glu Asp Ala Phe Phe Arg Asp Tyr Ala Glu Ser His Lys Lys Leu Ser
                   .230
                                       235
Glu Leu Gly Phe Asn Pro Asn Ser Ser Ala Gly Lys Ala Val Ala Asp
                245
                                    250
Ser Thr Ile Leu Ala Gln Ser Ala Phe Gly Val Ala Val Ala Ala Ala
                                265
Val Val Ala Phe Gly Tyr Phe Tyr Glu Ile Arg Lys Arg Met Lys
                                                285
                            280
<210> 19
<211> 1861
<212> DNA
<213> Arabidopsis thaliana
<220>
 <221> CDS
 <222> (26) . . (284)
 <220>
 <221> CDS
 <222> (541)..(917)
 <220>
 <221> CDS
 <222> (1257)..(1493)
 <220>
 <221> CDS
 <222> (1584)..(1853)
 atagaaaaac cctaagtagg tigtg atg ttg cga gct tta gca cgg cct ctc
                             Met Leu Arg Ala Leu Ala Arg Pro Leu
 gaa cgg tgt ttg gga agc aga gct agt ggt gat ggt tta ctc tgg caa
```

Glu 10	Arg	Cys	Leu	Gly	Ser 15	Arg	Ala	Ser	Gly	Asp 20	Gly	Leu	Leu	Trp	G1n 25	
		ttg. Leu														148
		aat Asn														196
		act Thr 60														244
		ttc Phe												taagt	tata	294
atc	ccact	tctit	cctt	ccct	a aa	actt	gttt	ago	gatto	ettt	ctto	cttt	cga (ctcti	ttgact	354
acg	ttt	tga t	ggto	aaaa	ac ti	tatga	agato	tct	atta	accc	tgat	tcat	ttc a	aatai	ttaaaa	414
gati	tcga	att t	tgct	atga	aa gi	tttt	ggtci	ttg	gtgaa	acat	gtt	caggi	ttt _.	gtaaa	attgcc	474
tct	tgaa	ttg a	attt	gtag	gt ca	atgti	tctt	g tta	agtga	aaat	tta	cagga	att	ggtti	ttatga	534
ttg	cag a	aa tt	t go	ca ag	ga ga	aa ca	at g	gg gg	ga ti	ta t	ct g	ta g	at g	tt a	tç aaa	584
	•	ys Pi	ne A.		rg Gi 90	lu H	is G	ly G		eu S 95	er V	al A	sp V		le Lys 00	٠.
aag Lys	gca	ttc	aaa	gaa	90 aca	gaa	gaa	gag	ttt.	95 tgt	ggt	al A atg	gtt	aaa Lys		
Lys	gca Ala	ttc	aaa Lys 105 atg	gaa Glu aaa	aca Thr	gaa Glu caa	gaa Glu atg	gag Glu 110 gct	ttt Phe	tgt Cys gta	ggt Gly gga	al A atg Met tct	gtt Val 115 tgc Cys	aaa Lys tgt	cga Arg	
Lys tcc Ser	gca Ala ctt Leu	ttc Phe ccc Pro 120 gca Ala	aaa Lys 105 atg Met	gaa Glu aaa Lys	aca Thr ccg Pro	gaa Glu caa Gln gac	gaa Glu atg Met 125	gag Glu 110 gct Ala	ttt Phe act Thr	tgt Cys gta Val	ggt Gly gga Gly gct	al A atg Met tct Ser 130 aat Asn	gtt Val 115 tgc Cys	aaa Lys tgt Cys	cga Arg ctt Leu	632
tcc Ser gtt Val	gca Ala ctt Leu ggt Gly 135	ttc Phe ccc Pro 120 gca Ala	aaa Lys 105 atg Met atc Ile	gaa Glu aaa Lys tct Ser	aca Thr ccg Pro aat Asn	gaa Glu caa Gln gac Asp 140 agc Ser	gaa Glu atg Met 125 aca Thr	gag Glu 110 gct Ala ctg Leu	ttt Phe act Thr tat Tyr	tgt Cys gta Val gtt Val	ggt Gly gga Gly gct Ala 145 gtt Val	al A atg Met tct Ser 130 aat Asn	gtt Val 115 tgc Cys ctt Leu	aaa Lys tgt Cys ggg Gly	cga Arg ctt Leu gac Asp	632 680
tcc ser gtt Val tcg ser 150	gca Ala ctt Leu ggt Gly 135 aga Arg	ttc Phe ccc Pro 120 gca Ala	aaa Lys 105 atg Met atc Ile gtt Val	gaa Glu aaa Lys tct Ser ctt Leu	aca Thr ccg Pro aat Asn gga Gly 155 cgg	gaa Glu caa Gln gac Asp 140 agc Ser	gaa Glu atg Met 125 aca Thr	gag Glu 110 gct Ala ctg Leu gtt Val	ttt Phe act Thr tat Tyr tca Ser	tgt Cys gta Val gtt Val ggg Gly 160 cat	ggt Gly gga Gly gct Ala 145 gtt Val	al A atg Met tct Ser 130 aat Asn gat Asp gtt	gtt Val 115 tgc Cys ctt Leu agt Ser	aaa Lys tgt Cys ggg Gly aat Asn	cga Arg ctt Leu gac Asp aaa Lys 165 gaa Glu	632 680 728
tcc Ser gtt Val tcg Ser 150 ggt Gly	gca Ala ctt Leu ggt Gly 135 aga Arg	ccc Pro 120 gca Ala gcc Ala	aaa Lys 105 atg Met atc Ile gtt Val gct Ala	gaa Glu aaa Lys tct Ser ctt Leu gaa Glu 170	aca Thr ccg Pro aat Asn gga Gly 155 cgg	gaa Glu caa Gln gac Asp 140 agc Ser tta Leu	gaa Glu atg Met 125 aca Thr gtt Val tct Ser	gag Glu 110 gct Ala ctg Leu gtt Val act Thr	ttt Phe act Thr tat Tyr tca Ser gat Asp 175	tgt Cys gta Val gtt Val ggg Gly 160 cat His	ggt Gly gga Gly gct Ala 145 gtt Val	al A atg Met tct Ser 130 aat Asn gat Val	gtt Val 115 tgc Cys ctt Leu agt Ser	aaa Lys tgt Cys ggg Gly aat Asn gtt Val 180	ctt Leu gac Asp aaa Lys 165 gaa Glu atc	632 680 728

0.0	205	210

gtat	aact	ta g	tttt	gçtt	g cc	tgct	tgtt	aaa	ttgc	gtg .	tgat	taca	ta g	catc	tgtga	977
tgaa	gtta	ta a	tatt	taaa	a gg	tgta	atct	gat	gttg	ttt	tttc	tttt	ct c	ttt	cattt	1037
atat	aaat	gg g	ggct	tgca	a tg	ttcc	agga	atc	cgtc	aca	cggg	ctcc	tg c	aacg	tttet	1097
tccc	cagt	gg a	tttt	gtgc	t tt	tcta	agaa	ttc	ccgg	tag	: tcag	agct	at a	cata	ataat	1157
gaag	atac	at g	cttt	ttag	t tg	cttg	tgac	ctt	tccg	tga.	atgt	ttga	gc t	cgtt	gtata	1217
ttag	ttag	ct a	aatc	gttt	t ca	tata	cgct	tct	ttat	ag g	ta t	cg a	ga t	ca a	tt	1271
.*	,						٠.٠			V	al S	*	rg S 15	er I	le	
	rat	σta	tac	tta	aaa		cca	σασ	tat	tac	aaa	gac	cca	att	tte	1319
Gly	Asp	Val 220	Tyr	Leu	Lys	Lys	Pro	Glu	Tyr	Tyr	Arg	Asp 230	Pro	Ile	Phe	
											٠.			٠.		
														aca Thr		1367
	235					240				_	245	•				
														ttt		1415
Glu 250	Pro	Ser	Ile	Ile	Val 255	Arg	Lys	Leu	Lys	Pro 260	Gln	Asp	Leu	Phe	Leu 265	
ata	ttt	qca	tca	gat	ggt	ctc	tgg	gaa	cat	ctt	agt	gat	gaa	aca	gcc	1463
								Glu						Thr 280		
						-				~+~:			or a s			1513
		Ile	Val					Arg		gtac	ıyıı	. <u>.</u>	CLac	acto	.α	
	,		285					290	٠.			•				
agtt	tgct	tt g	tato	ttca	c at	ttat	gtta	a gct	actt	agt	ttat	ttat	tt a	ittaa	ctctg	1573
tgti	tctad													gaa g Glu C	raa 21::	1622
			9 ⊥ y .			295	ary a	,	,		300			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
														ata		1670
Ala 305	Ala	Lys	Lys	Arg	Glu 310	Met	Arg	Tyr	Gly	Asp 315	Ile	Lys	Lys	Ile	A1a 320	
222	άσa	att.	cna	caa	cat	ttc	cat	aac	gac	ata	age	αtt	att	gta	att	1718
Lys	Gly	Ile	Arg	Arg	His	Phe	His	Asp	Asp	Ile	Ser	Val	Ile	Val	Val	
			,	325					330		• •			335		
														gtg Val		1766
-1+			340					345				_	350		-	
caa	gga	ggt	atc	acc	gct	cca	ccg	gat	atc	tac	tca	tta	cac	tct	gat	1814
Gln	Gly	355	Ile	Thr	Ala	.Pro	9ro 360		11e	туr	ser	165	HIS	Ser	Asp	
						,										

1861

gaa gca gag caa cga cgg tta ctc aat gtg tta tac tga ctgtttga Glu Ala Glu Gln Arg Arg Leu Leu Asn Val Leu Tyr 370 <210> 20 <211> 380 <212> PRT <213> Arabidopsis thaliana Met Leu Arg Ala Leu Ala Arg Pro Leu Glu Arg Cys Leu Gly Ser Arg Ala Ser Gly Asp Gly Leu Leu Trp Gln Ser Glu Leu Arg Pro His Ala . 25 Gly Gly Asp Tyr Ser Ile Ala Val Val Gln Ala Asn Ser Arg Leu Glu Asp Gln Ser Gln Val Phe Thr Ser Ser Ser Ala Thr Tyr Val Gly Val Tyr Asp Gly His Gly Gly Pro Glu Ala Ser Arg Phe Val Asn Arg His Leu Phe Pro Tyr Met His Lys Phe Ala Arg Glu His Gly Gly Leu Ser Val Asp Val Ile Lys Lys Ala Phe Lys Glu Thr Glu Glu Glu Phe Cys 105 Gly Met Val Lys Arg Ser Leu Pro Met Lys Pro Gln Met Ala Thr Val 120 Gly Ser Cys Cys Leu Val Gly Ala Ile Ser Asn Asp Thr Leu Tyr Val Ala Asn Leu Gly Asp Ser Arg Ala Val Leu Gly Ser Val Val Ser Gly Val Asp Ser Asn Lys Gly Ala Val Ala Glu Arg Leu Ser Thr Asp His 170 Asn Val Ala Val Glu Glu Val Arg Lys Glu Val Lys Ala Leu Asn Pro 185 Asp Asp Ser Gln Ile Val Leu Tyr Thr Arg Gly Val Trp Arg Ile Lys Gly Ile Ile Gln Val Ser Arg Ser Ile Gly Asp Val Tyr Leu Lys Lys 215 Pro Glu Tyr Tyr Arg Asp Pro Ile Phe Gln Arg His Gly Asn Pro Ile

235

230.

```
Pro Leu Arg Arg Pro Ala Met Thr Ala Glu Pro Ser Ile Ile Val Arg
             245 250 255
Lys Leu Lys Pro Gln Asp Leu Phe Leu Ile Phe Ala Ser Asp Gly Leu
                           265
Trp Glu His Leu Ser Asp Glu Thr Ala Val Glu Ile Val Leu Lys His
                    280
       275
Pro Arg Thr Gly Ile Ala Arg Arg Leu Val Arg Ala Ala Leu Glu Glu
                     295
Ala Ala Lys Lys Arg Glu Met Arg Tyr Gly Asp Ile Lys Lys Ile Ala
                                  315 320
                 310
Lys Gly Ile Arg Arg His Phe His Asp Asp Ile Ser Val Ile Val Val
              325 330 335
Tyr Leu Asp Gln Asn Lys Thr Ser Ser Ser Asn Ser Lys Leu Val Lys
                     345 350
Gln Gly Gly Ile Thr Ala Pro Pro Asp Ile Tyr Ser Leu His Ser Asp
                                         365
Glu Ala Glu Gln Arg Arg Leu Leu Asn Val Leu Tyr
                     375
    370
<210> 21
 <211> 3633
 <212> DNA
 <213> Arabidopsis thaliana
 <220>
 <221> CDS
 <222> (41)..(356)
 <220>
 <221> CDS
 <222> (811)..(956)
 <220>
 <221> CDS
 <222> (1076)..(1389)
 <220>
 <221> CDS
 <222> (1544)..(1592)
 <220>
```

<221> CDS

<220> <221> CDS

<222> (1925)..(2010)

<222> (2037)..(2120)

```
<220>
<221> CDS
<222> (2399)..(2501)
<220>
<221> CDS
<222> (2621)..(2718)
<22.0>
<221> CDS
<222> (2802)..(2924)
<220>
<221> CDS
<222> (3071)..(3185)
<220>
<221> CDS
<222> (3324)..(3431)
<220>
<221> CDS
<222> (3518) . (3619)
<400> 21
ggcgattgag cgaagaagaa accttcgttc tctctcggaa atg acg aag aag
                                             Met Thr Lys Arg Lys
aag gaa gta ata gat gtc gat tgc tcc gag aag aaa gat ttt gtg att
                                                                    103
Lys Glu Val Ile Asp Val Asp Cys Ser Glu Lys Lys Asp Phe Val Ile
                                      15
                 10
gat tgg tct tcc gct atg gat aag gaa gac gaa gtt ccc gag ctc gag
Asp Trp Ser Ser Ala Met Asp Lys Glu Asp Glu Val Pro Glu Leu Glu
                                  30
                                                                    199
att gtt aat acc acc aaa cct act cct ccg cca ccg cca acg ttt ttc
Ile Val Asn Thr Thr Lys Pro Thr Pro Pro Pro Pro Pro Thr Phe Phe
                              45
                                                                    247
tcc gac gat caa acc gat tct ccg aaa ctc cta acc gat cgt gac ctc
Ser Asp Asp Gln Thr Asp Ser Pro Lys Leu Leu Thr Asp Arg Asp Leu
                                                                    295
gac gag cag cta gag cgt aaa aaa gcg atc ctg aca tta ggt ccg ggc
 Asp Glu Gln Leu Glu Arg Lys Lys Ala Ile Leu Thr Leu Gly Pro Gly
                                          80
 tta ccc gac aag ggt gag aaa att cga ctc aaa atc gct gat ctc gaa
                                                                    343
 Leu Pro Asp Lys Gly Glu Lys Ile Arg Leu Lys Ile Ala Asp Leu Glu
                                                          100
                                                                    396
 gag gag aag cag c gtagagtttt agaaggctcg aaaatggttc gcattctgat
 Glu Glu Lys Gln A
             105
```

tcaattgcat gcttagttcg tttgattttc ttagatatgt tactgtttta ggttggggtt	456
ttcaagttta tgctaaagtt tggcttttt tgagtacatt tatgtgtatc tttactggtc	516
ttacctcata gtccaagcta gattcgagct catttatgtg tatgatctat agtcacagaa	576
catctatgtg ttcgagctca tttatgtgtt tgaatatgaa tatgatgcta caaaagactt	636
ttttggcagg aggtggacag aagttctaag gtcgtgtctt cgactagctc aggtattctt	696
ggtggataat gttaaagttg tttgcttcta acatagtggt tcattttct gtatggtttt	756
tcgatttatc tttcattttt tggacttaag tttgatgagc catgtttcat gtag gt	812
tca gat gtt tta ccg caa gga aat gca gtt tca aaa gat acc tct aga Ser Asp Val Leu Pro Gln Gly Asn Ala Val Ser Lys Asp Thr Ser Arg 110 115 120	860
ggg aat gca gac tca aaa gac acc tct aga caa ggg aat gca gat tca Gly Asn Ala Asp Ser Lys Asp Thr Ser Arg Gln Gly Asn Ala Asp Ser 125 130 135	908
aaa gaa gtc tca cgg tca aca ttt tct gcg gtt ttc agt aaa cca aaa Lys Glu Val Ser Arg Ser Thr Phe Ser Ala Val Phe Ser Lys Pro Lys 140 145 150	956
gtatggagca tcgttttttt ttttttgttc aacgtatgga gcctctatat tttgcaattt	1016
taaaactgtt ttggatgggt acttcttcat gatacgattt tgtaatctgt gttcaacag	1075
acg gat tot cag toa aag aaa goo ttt ggt aaa gaa ota gaa gat otg Thr Asp Ser Gln Ser Lys Lys Ala Phe Gly Lys Glu Leu Glu Asp Leu	1123
155 160 165 170	
gga tgt gaa agg agg aaa cac aag gct ggt aga aag cct gta aca agg Gly Cys Glu Arg Arg Lys His Lys Ala Gly Arg Lys Pro Val Thr Arg 175 180 185	1171
ctg agc aac ggg tgg cgg ttg ttg cca gat gta ggg aaa gct gag cac	1219
Leu Ser Asn Gly Trp Arg Leu Leu Pro Asp Val Gly Lys Ala Glu His 190 195 200	
agt gca aag cag ttt gat tct gga ctt aaa gaa tca aaa ggg aat aag Ser Ala Lys Gln Phe Asp Ser Gly Leu Lys Glu Ser Lys Gly Asn Lys	1267
205 210 215	
aaa tcc aag gaa cct tat gga aag aaa agg ccc atg gaa tct tcg act Lys Ser Lys Glu Pro Tyr Gly Lys Lys Arg Pro Met Glu Ser Ser Thr 220 225 230	1315
tat tct ctg att gat gat gat gat gat gat gat gat g	1363
gac acc agt ggc cat gaa act cct ag gttcgtttcc aactgtttct	1409

2471

Asp Thr Ser Gly His Glu Thr Pro Ar 255
gctactagtt tgttgttttc tctaagggtt ctcaagttta ccactgctgg ttactgcaat 1469
tttgttgtga catgacaatc tggtacataa tagaatgaga tgtattgtaa ttgctcaact 1529
tetttetete atag g gag tgg tet tgg gaa aaa tet eea tea caa agt tea 1580 g Glu Trp Ser Trp Glu Lys Ser Pro Ser Gln Ser Ser 260 265 270
agg cgc cgt aag gtattcttgc ttactcccgc tactgtatat cttgcaattg 1633
Arg Arg Lys 275
cagtttttac gtagtcatta tagtccttaa gaaatttaca ccagcagaag catgactcat 169
tttctaaacc ttcttgttat ctcccaacag aaaattttat gaattcctta aaaagacttc 175
agttttcgaa cgtttgattc ctctctagat gaactgcagg atttatactt gccaggaaaa 181
cttcctactt gactatatca tttatttggc ttctttaata ttgtctttac tccaactcat 187
ttgttatgtt gtttttctta cttattgatg atattcccta aaaaaactat ag aaa tca 193 Lys Ser
gag gac aca gtg ata aat gtg gat gaa gaa gat cag cct tca aca Glu Asp Thr Val Ile Asn Val Asp Glu Glu Glu Ala Gln Pro Ser Thr 280 285 290
gtg gcg gag caa gcg gct gaa ctg cct gaa gg gtaaatgtga cctattttct 203 Val Ala Glu Gln Ala Ala Glu Leu Pro Glu Gl 295 300
ctttag c ctc att aag tta caa ctg gct ata tat aaa cta ata gtt gat 207 y Leu Ile Lys Leu Gln Leu Ala Ile Tyr Lys Leu Ile Val Asp 305 310 315
aaa aca tgc agc tta cag gaa gat ata tgc tac cca aca ag gtaaatctat 213 Lys Thr Cys Ser Leu Gln Glu Asp Ile Cys Tyr Pro Thr ArSe 320 325 330 e
ctcaagactg atctaggcta acttectgta aatttgtaac cctcaaaaga tttaatgctt 219
ggtgattcag ggatgatect cactttgttc aagtttgtct taaagatctt gaatgccttg 225
cacctcgaga atatctgaca tcgccggtta tgaatttcta catgaggtat tttttggagt 231
gatagacttg ccatatatgt catcttatat tatgctagcg ctatttgcat gttatttata 237
taactattgt cctgttttct tttggtag g ttc ttg cag cag cag ata tca tca 242 g Phe Leu Gln Gln Gln Ile Ser S h 335
tcg aat caa atc tct gct gat tgt cac ttc ttt aat acc tat ttc tac 247 r Ser Asn Gln Ile Ser Ala Asp Cys His Phe Phe Asn Thr Tyr Phe T 345 350 355

aag aag ctc agt gac gct gt r Lys Lys Leu Ser Asp Ala 360	t acg tac aag gtg Val Thr Tyr Lys 365	attagaa aaatgtgatc	2521
ctttaaaaat aattatctgt tggo	attett gegatteaaa	tttttatcat tgttatttat	2581
gttaactggt ctatttatct tgtc	ctttca atgaaatag (ggg aat gac aag gat Gly Asn Asp Lys A 370	2635
gcc ttc ttt gtg agg ttc ag p Ala Phe Phe Val Arg Phe 375	g cgg tgg tgg aag Arg Arg Trp Trp L 380	ggt att gat cta ttt ys Gly Ile Asp Leu P 385	2683
cgt aag gct tat att ttc at e Arg Lys Ala Tyr Ile Phe 390	a cca ata cat gaa Ile Pro Ile His G 395	ga gtaagtatct lu	2728
ttccttttag cactctactt tcga	tttttt cgcaagagtt	ctcaagaatt cagattettg	2788
taccatgttt cag t ctc cac t r Leu His T e 400s	gg agc ctt gtg at rp Ser Leu Val Ilo 40	e Val Cys Ile Pro Asp	2838
aag aaa gat gaa tcg ggg tt Lys Lys Asp Glu Ser Gly Le 415	g act ata ctt cac u Thr Ile Leu His 420	ctt gat tct cta gga Leu Asp Ser Leu Gly 425	2886
ctt cac tcg aga aaa tca at Leu His Ser Arg Lys Ser IJ 430	t gtt gaa aat gta e Val Glu Asn Val 435	aaa ag gtgagatgct Lys Ar	2934
aggggcttta cccgtgactt tate	ttctca catgettgac	gttgtatgca tatggtttca	2994
gttcataaaa ggaaaaatta ttad	actggc ttgaaaatgt	acgacattta ctagtttcta	3054
tgtcaatttg ttgtag g ttt ct g Phe Le 440	a aaa gac gaa tgg u Lys Asp Glu Trp 445	aat tat ttg aat caa Asn Tyr Leu Asn Gln 450	3104
gat gac tat tcc ttg gat ct Asp Asp Tyr Ser Leu Asp Le 455	g cct atc tca gaa u Pro Ile Ser Glu 460	aaa gta tgg aaa aac Lys Val Trp Lys Asn 465	3152
ctc cct cgt agg atc agc ga Leu Pro Arg Arg Ile Ser Gl 470			3205
atcccatgat tcaaggaact ttgt	ttatac ggtttcttcg	gaaatatgat tatattcaga	3265
cactagaacc acaggaagtt caat	tcgtct tatgatatta	ttctctttgt gcaaccag	3323
gtt ccg cag cag aaa aac ga Val Pro Gln Gln Lys Asn As 480	t ttt gat tgt ggt p Phe Asp Cys Gly 485	ccg ttt gtg ctc ttc Pro Phe Val Leu Phe 490	3371

ttc Phe	att Ile 495	aaa Lys	cgg Arg	ttc Phe	att Ile	gaa Glu 500	gag Glu	gcg Ala	cct Pro	caa Gln	agg Arg 505	ctg Leu	aaa Lys	agg Arg	aaa Lys	3419
gac Asp 510	ctg Leu	gga Gly	atg Met	gtga	agtaa	atc (caaa	actct	t ti	teete	gatad	c cga	aatc	acat		3471
atct	tett	ct 1	tacto	ettgt	c ta	aact	tgto	tco	ctcaa	atgt	atco		Phe 1	gac a Asp 1 515		3526
			aga Arg 520				Ala									3574
			atc Ile										Glu	taa		3619
acca	gtad	cag a	atta				i						•			3633
<211 <212)> 22 L> 54 2> PF 3> Ar	16 RT	dopsi	is tl	nalia	ana										
)> 22 Thr		Arg	Lys 5	Lys	Glu	Val	Ile	Asp 10	Val	Asp	Cys	Ser	Glu 15	Lys	
Lys	Asp	Phe	Val 20	Ile	Asp	Trp	Ser	Ser 25	Ala	Met	Asp	Lys	Glu 30	Asp	Glu	
Val	Pro	Glu 35	Leu	Glu	Ile	Val	Asn 40	Thr	Thr	Lys	Pro	Thr 45	Pro	Pro	Pro	
Pro	Pro 50	Thr	Phe	Phe	Ser	Asp 55	Asp	Gln	Thr	Asp	Ser 60	Pro	Lys	Leu	Leu	
Thr 65	Asp	Arg	Asp	Leu	Asp 70	Glu	Gln	Leu	Glu	Arg 75	Lys	Lys	Ala	Ile	Leu 80	. , .
Thr	Leu	Gly	Pro	Gly 85	Leu	Pro	Asp	Lys	Gly 90	Glu	Lys	Ile	Arg	Leu 95	Lys	
Ile	Ala	qzA	Leu 100	Glu	Glu	Glu	Lys	Gln 105	Arg	Ser	Asp	Val	Leu 110	Pro	Gln	
Gly	Asn	Ala 115	Val	Ser	Lys	Asp	Thr 120	Ser	Arg	Gly	Asn	Ala 125	Asp	Ser	Lys	
Asp	Thr 130	Ser	Arg	Gln	Gly	Asn 135	Ala	Asp	Ser	Lys	Glu 140	Val	Ser	Arg	Ser	
Thr	Phe	Ser	Ala	Val	Phe	Ser	Lys	Pro	Lys	Thr	Asp	Ser	Gln	Ser	Lys	

145 150 155 Lys Ala Phe Gly Lys Glu Leu Glu Asp Leu Gly Cys Glu Arg Arg Lys 165 170 His Lys Ala Gly Arg Lys Pro Val Thr Arg Leu Ser Asn Gly Trp Arg 185 Leu Leu Pro Asp Val Gly Lys Ala Glu His Ser Ala Lys Gln Phe Asp 195 205 Ser Gly Leu Lys Glu Ser Lys Gly Asn Lys Lys Ser Lys Glu Pro Tyr 215 Gly Lys Lys Arg Pro Met Glu Ser Ser Thr Tyr Ser Leu Ile Asp Asp 230 250 Thr Pro Arg Glu Trp Ser Trp Glu Lys Ser Pro Ser Gln Ser Ser Arg Arg Arg Lys Lys Ser Glu Asp Thr Val Ile Asn Val Asp Glu Glu Glu 275 280 Ala Gln Pro Ser Thr Val Ala Glu Gln Ala Ala Glu Leu Pro Glu Gly 295 Leu Ile Lys Leu Gln Leu Ala Ile Tyr Lys Leu Ile Val Asp Lys Thr 315 Cys Ser Leu Gln Glu Asp Ile Cys Tyr Pro Thr ArSeg Phe Leu Gln 325 330 Gln Gln Ile Ser Sr Ser Asn Gln Ile Ser Ala Asp Cys His Phe Phe 340e Asn Thr Tyr Phe Tr Lys Lys Leu Ser Asp Ala Val Thr Tyr Lys Gly 355y 360 Asn Asp Lys Ap Ala Phe Phe Val Arg Phe Arg Arg Trp Trp Lys Gly 375 Ile Asp Leu Pe Arg Lys Ala Tyr Ile Phe Ile Pro Ile His Glu r Leu His Trp Ser Leu Val Ile Val Cys Ile Pro Asp Lys Lys Asp Glu Ser Gly Leu Thr Ile Leu His Leu Asp Ser Leu Gly Leu His Ser Arg 420 Lys Ser Ile Val Glu Asn Val Lys Arg Phe Leu Lys Asp Glu Trp Asn 435 Tyr Leu Asn Gln Asp Asp Tyr Ser Leu Asp Leu Pro Ile Ser Glu Lys

117					450				•	455					460	
Val	Trp	Lys	Asn	Leu 465	Pro	Arg	Arg			Glu	Ala	Val	Val	Ġln 475	Val	
Pro	Gln	Gln	Lys 480	Asn	Asp	Phe	Asp	Суз 485	Gly	Pro	Phe	Val	Leu 490	Phe	Phe	
Ile	Lys	Arg 495	Phe	Ile	Glu ,	Glu	Ala 500	Pro	Gln	Arg	Leu	Lys 505	Arg	Lys	Asp	
<i>:</i> .	510					515	•				520					
	Arg	Ile	Lys	Ile	Arg 530	Asn	Thr	Leu	Ile	Glu 535	Leu	Phe	Arg	Val	Ser 540	
Asp	Gln	Thr	Glu	•						•	•					
.016																
<211	.> 11	L08														
_	-		dopsi	is th	nalia	ana										
-226	· }~														•	
		os					٠	•								
<222	?> (2	22).	. (110	77)												
<400)> 23	3.					_					•		٠		
				catca	aa g	atg	aag	gca	ctc	att	ctt	gtt	gga	ggc	tte	- 51
				catca	aa g	atg Met 1	aag Lys	gca Ala	ctc Leu	att Ile 5	ctt Leu	gtt Val	gga Gly	ggc Gly	ttc Phe 10	51
agga	gtta	aga (gcato			Met 1	Lys	Ala	Leu	Ile 5	Leu	Val	Gly	Gly	Phe 10	
agga ggc	igt ta	aga (gcato	aga	cca	Met 1 ttg	Lys	Ala	Leu agt	Ile 5	Leu	Val aag	Gly	ggc Gly ctt Leu 25	Phe 10	51 99
agga ggc Gly gat	act Thr	cgc Arg	ttg Leu aat Asn	aga Arg 15	cca Pro	Met 1 ttg Leu atg	Lys act Thr	Ala ctc Leu ctt Leu	agt Ser 20	Ile 5 ttc Phe	Leu cca Pro	Val aag Lys gag	ccc Pro	Cly ctt Leu	Phe 10 gtt Val	
agga ggc Gly gat	act Thr	cgc Arg	ttg Leu aat	aga Arg 15	cca Pro	Met 1 ttg Leu atg	Lys act Thr	Ala ctc Leu	agt Ser 20	Ile 5 ttc Phe	Leu cca Pro	Val aag Lys gag	Gly ccc Pro	ctt Leu 25	Phe 10 gtt Val	99
agga ggc Gly gat Asp	act Thr ttt Phe	cgc Arg gct Ala	ttg Leu aat Asn 30	aga Arg 15 aaa Lys	cca Pro ccc Pro	Met 1 ttg Leu atg Met	Lys act Thr atc Ile	Ala ctc Leu ctt Leu 35	agt Ser 20 cat His	Ile 5 ttc Phe cag Gln	cca Pro ata Ile	Val aag Lys gag Glu	CCC Pro gct Ala 40	ctt Leu 25	Phe 10 gtt Val aag Lys	99
agga ggc Gly gat Asp gca Ala	act Thr ttt Phe gtt Val	cgc Arg gct Ala gga Gly 45	ttg Leu aat Asn 30 gtt Val	aga Arg 15 aaa Lys gat Asp	cca Pro ccc Pro gaa Glu	Met 1 ttg Leu atg Met gtg Val	Lys act Thr atc Ile gtt Val 50	Ala ctc Leu ctt Leu 35 ttg Leu	agt Ser 20 cat His gcc	Ile 5 ttc Phe cag Gln atc Ile	cca Pro ata Ile aat Asn	aag Lys gag Glu tat Tyr 55	CCC Pro gct Ala 40 cag Gln	ctt Leu 25 ctt Leu cca Pro	Phe 10 gtt Val aag Lys gag Glu	99 147 195
agga ggc Gly gat Asp gca Ala	act Thr ttt Phe gtt Val	cgc Arg gct Ala gga Gly 45	ttg Leu aat Asn 30 gtt Val	aga Arg 15 aaa Lys gat Asp	cca Pro ccc Pro gaa Glu	Met 1 ttg Leu atg Met gtg Val	Lys act Thr atc Ile gtt Val 50	Ala ctc Leu ctt Leu 35 ttg Leu	agt Ser 20 cat His gcc Ala	Ile 5 ttc Phe cag Gln atc Ile acc	cca Pro ata Ile aat Asn	aag Lys gag Glu tat Tyr 55	CCC Pro gct Ala 40 cag Gln	ctt Leu 25 ctt Leu	Phe 10 gtt Val aag Lys gag Glu aaa	99 147
agga ggc Gly gat Asp gca Ala gtg Val	act Thr ttt Phe gtt Val atg Met 60	cgc Arg gct Ala gga Gly 45 ctg Leu	ttg Leu aat Asn 30 gtt Val aac Asn	aga Arg 15 aaa Lys gat Asp	cca Pro ccc Pro gaa Glu ttg Leu	Met 1 ttg Leu atg Met gtg Val aag Lys 65 acc	Lys act Thr atc Ile gtt Val 50 gac Asp	Ala ctc Leu ctt Leu 35 ttg Leu ttt Phe	agt Ser 20 cat His gcc Ala gag Glu	Ile 5 ttc Phe cag Gln atc Ile acc Thr	cca Pro ata Ile aat Asn aag Lys 70	Val aag Lys gag Glu tat Tyr 55 ctg Leu	CCC Pro gct Ala 40 cag Gln gaa Glu	ctt Leu 25 ctt Leu cca Pro atc	Phe 10 gtt Val aag Lys gag Glu aaa Lys	99 147 195
agga ggc Gly gat Asp gca Ala gtg Val	act Thr ttt Phe gtt Val atg Met 60	cgc Arg gct Ala gga Gly 45 ctg Leu	ttg Leu aat Asn 30 gtt Val aac Asn	aga Arg 15 aaa Lys gat Asp	cca Pro ccc Pro gaa Glu ttg Leu	Met 1 ttg Leu atg Met gtg Val aag Lys 65 acc	Lys act Thr atc Ile gtt Val 50 gac Asp	Ala ctc Leu ctt Leu 35 ttg Leu ttt Phe	agt Ser 20 cat His gcc Ala gag Glu	Ile 5 ttc Phe cag Gln atc Ile acc Thr	cca Pro ata Ile aat Asn aag Lys 70	Val aag Lys gag Glu tat Tyr 55 ctg Leu	CCC Pro gct Ala 40 cag Gln gaa Glu	ctt Leu 25 ctt Leu cca Pro	Phe 10 gtt Val aag Lys gag Glu aaa Lys	99 147 195 243
	Val Pro Ile Leu Leu 525 Asp <210 <211 <212 <221 <220	Val Trp Pro Gln Ile Lys Leu Gly 510 Leu Arg 525 Asp Gln <210> 23 <211> 13 <212> D1 <213> An <220> <221> C1	Val Trp Lys Pro Gln Gln Ile Lys Arg	Val Trp Lys Asn Pro Gln Gln Lys 480 Ile Lys Arg Phe 495 Leu Gly Met Phe 510 Leu Arg Ile Lys 525 Asp Gln Thr Glu <210> 23 <211> 1108 <212> DNA <213> Arabidops: <220> <221> CDS	Pro Gln Gln Lys Asn 480 Ile Lys Arg Phe Ile 495 Leu Gly Met Phe Asp 510 Leu Arg Ile Lys Ile 525 Asp Gln Thr Glu <210> 23 <211> 1108 <212> DNA <213> Arabidopsis th	Val Trp Lys Asn Leu Pro 465 Pro Gln Gln Lys Asn Asp 480 Ile Lys Arg Phe Ile Glu 495 Leu Gly Met Phe Asp Lys 510 Leu Arg Ile Lys Ile Arg 525 Asp Gln Thr Glu <210> 23 <211> 1108 <212> DNA <213> Arabidopsis thalia <220> <221> CDS	Val Trp Lys Asn Leu Pro Arg	Val Trp Lys Asn Leu Pro Arg Arg 465 Pro Gln Gln Lys Asn Asp Phe Asp 480 Ile Lys Arg Phe Ile Glu Glu Ala 495 Leu Gly Met Phe Asp Lys Lys Trp 510 Leu Arg Ile Lys Ile Arg Asn Thr 525 Asp Gln Thr Glu <210> 23 <211> 1108 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS	Val Trp Lys Asn Leu Pro Arg Arg Ile 465 Pro Gln Gln Lys Asn Asp Phe Asp Cys 480 Ile Lys Arg Phe Ile Glu Glu Ala Pro 495 Leu Gly Met Phe Asp Lys Lys Trp Phe 510 Leu Arg Ile Lys Ile Arg Asn Thr Leu 525 Asp Gln Thr Glu <210> 23 <211> 1108 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS	Val Trp Lys Asn Leu Pro Arg Arg Ile Ser 470 Pro Gln Gln Lys Asn Asp Phe Asp Cys Gly 480 Ile Lys Arg Phe Ile Glu Glu Ala Pro Gln 495 Leu Gly Met Phe Asp Lys Lys Trp Phe Arg 510 Leu Arg Ile Lys Ile Arg Asn Thr Leu Ile 525 Asp Gln Thr Glu <210> 23 <211> 1108 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS	Val Trp Lys Asn Leu Pro Arg Arg Ile Ser Glu 465 Pro Gln Gln Lys Asn Asp Phe Asp Cys Gly Pro 480 Ile Lys Arg Phe Ile Glu Glu Ala Pro Gln Arg 495 Leu Gly Met Phe Asp Lys Lys Trp Phe Arg Pro 510 Leu Arg Ile Lys Ile Arg Asn Thr Leu Ile Glu 525 Asp Gln Thr Glu <210> 23 <211> 1108 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS	Val Trp Lys Asn Leu Pro Arg Arg Ile Ser Glu Ala 465 Pro Gln Gln Lys Asn Asp Phe Asp Cys Gly Pro Phe 480 Ile Lys Arg Phe Ile Glu Glu Ala Pro Gln Arg Leu 495 Leu Gly Met Phe Asp Lys Lys Trp Phe Arg Pro Asp 510 Leu Arg Ile Lys Ile Arg Asn Thr Leu Ile Glu Leu 525 Asp Gln Thr Glu <210> 23 <211> 1108 <221> DNA <213> Arabidopsis thaliana <220> <221> CDS	Val Trp Lys Asn Leu Pro Arg Arg Ile Ser Glu Ala Val 465 Pro Gln Gln Lys Asn Asp Phe Asp Cys Gly Pro Phe Val 480 Ile Lys Arg Phe Ile Glu Glu Ala Pro Gln Arg Leu Lys 500 Leu Gly Met Phe Asp Lys Lys Trp Phe Arg Pro Asp Glu 510 Leu Arg Ile Lys Ile Arg Asn Thr Leu Ile Glu Leu Phe 525 Asp Gln Thr Glu	Val Trp Lys Asn Leu Pro Arg Arg Ile Ser Glu Ala Val Val 465 Pro Gln Gln Lys Asn Asp Phe Asp Cys Gly Pro Phe Val Leu 480 Ile Lys Arg Phe Ile Glu Glu Ala Pro Gln Arg Leu Lys Arg 500 Leu Gly Met Phe Asp Lys Lys Trp Phe Arg Pro Asp Glu Ala 510 Leu Arg Ile Lys Ile Arg Asn Thr Leu Ile Glu Leu Phe Arg 525 Asp Gln Thr Glu **C210> 23 *C211> 1108 *C220> *C220> *C221> CDS	Val Trp Lys Asn Leu Pro Arg Arg Ile Ser Glu Ala Val Val Gln 465 Pro Gln Gln Lys Asn Asp Phe Asp Cys Gly Pro Phe Val Leu Phe 480 Ile Lys Arg Phe Ile Glu Glu Ala Pro Gln Arg Leu Lys Arg Lys 500 Leu Gly Met Phe Asp Lys Lys Trp Phe Arg Pro Asp Glu Ala Ser 510 Leu Arg Ile Lys Ile Arg Asn Thr Leu Ile Glu Leu Phe Arg Val 525 Asp Gln Thr Glu **C210> 23 <221> DNA <220> <221> CDS	Val Trp Lys Asn Leu Pro Arg Arg Ile Ser Glu Ala Val Val Gln Val 465 Pro Gln Gln Lys Asn Asp Phe Asp Cys Gly Pro Phe Val Leu Phe Phe 480 Ile Lys Arg Phe Ile Glu Glu Ala Pro Gln Arg Leu Lys Arg Lys Asp 500 Leu Gly Met Phe Asp Lys Lys Trp Phe Arg Pro Asp Glu Ala Ser Ala 510 Leu Arg Ile Lys Ile Arg Asn Thr Leu Ile Glu Leu Phe Arg Val Ser 525 Asp Gln Thr Glu

•																
				95					100	1				105	٠	
				Asp	-		_						_	atg Met		387
													Val	aca Thr		435
														agc Ser		483
gga Gly 155	aga Arg	gtg Val	gag Glu	aag Lys	ttt Phe 160	gtg Val	gaa Glu	aag Lys	cca Pro	aaa Lys 165	ctg Leu	tat Tyr	gta Val	ggt Gly	aac Asn 170	531
														gat Asp 185		579
att Ile	gag Glu	cta Leu	aga Arg 190	ccg Pro	act Thr	tca Ser	atc Ile	gaa Glu 195	aaa Lys	gag Glu	act Thr	ttc Phe	cct Pro 200	aag Lys	att Ile	627
gca Ala	gca Ala	gcg Ala 205	caa Gln	Gly	ctc Leu	tat Tyr	gct Ala 210	atg Met	gtg Val	cta Leu	cca Pro	ggg Gly 215	ttt Phe	tgg Trp	atg Met	675
gac Asp	att Ile 220	Gly	caa Gln	ccc	cgt Arg	gac Asp 225	tac Tyr	ata Ile	acg Thr	ggt Gly	ttg Leu 230	aga Arg	ctc Leu	tac Tyr	tta Leu	723
														cca Pro		771
ata Ile	gtt Val	G]A aaa	aat Asn	gtt Val 255	ctt Leu	gtt Val	gac Asp	gaa Glu	acc Thr 260	gct Ala	aca Thr	att Ile	Gly	gaa Glu 265	gga Gly	819
tgt Cys	ttg Leu	att Ile	gga Gly 270	cca Pro	gac Asp	gtt Val	gcc Ala	att Ile 275	ggt Gly	cca Pro	ggc Gly	tgc Cys	att Ile 280	gtt Val	gag Glu	867
tca Ser	gga Gly	gtc Val 285	aga Arg	ctc Leu	tcc Ser	cga Arg	tgc Cys 290	acg Thr	gtc Val	atg Met	cgt Arg	gga Gly 295	gtc Val	cgc Arg	atc Ile	915
aag Lys	aag Lys 300	cat His	gcg Ala	tgt Cys	atc Ile	tcg Ser 305	agc Ser	agt Ser	atc Ile	atc Ile	ggg Gly 310	tgg Trp	cac His	tca Ser	acg Thr	963
gtt Val 315	ggt Gly	caa Gln	tgg Trp	gcc Ala	agg Arg 320	atc Ile	gag Glu	aac Asn	atg Met	acg Thr 325	atc Ile	ctc Leu	ggt Gly	gag Glu	gat Asp 330	1011

gtt cat gtg agc gat gag atc tat agc aat gga gga gtt gtt ttg cca 1059 Val His Val Ser Asp Glu Ile Tyr Ser Asn Gly Gly Val Val Leu Pro 335 cac aag gag atc aaa tca aac atc ttg aag cca gag ata gtg atg tga His Lys Glu Ile Lys Ser Asn Ile Leu Lys Pro Glu Ile Val Met 355 1109 aa <210> 24 <211> 361 <212> PRT <213> Arabidopsis thaliana Met Lys Ala Leu Ile Leu Val Gly Gly Phe Gly Thr Arg Leu Arg Pro Leu Thr Leu Ser Phe Pro Lys Pro Leu Val Asp Phe Ala Asn Lys Pro Met Ile Leu His Gln Ile Glu Ala Leu Lys Ala Val Gly Val Asp Glu Val Val Leu Ala Ile Asn Tyr Gln Pro Glu Val Met Leu Asn Phe Leu Lys Asp Phe Glu Thr Lys Leu Glu Ile Lys Ile Thr Cys Ser Gln Glu Thr Glu Pro Leu Gly Thr Ala Gly Pro Leu Ala Leu Ala Arg Asp Lys 90 Leu Leu Asp Gly Ser Gly Glu Pro Phe Phe Val Leu Asn Ser Asp Val 105 Ile Ser Glu Tyr Pro Leu Lys Glu Met Leu Glu Phe His Lys Ser His Gly Gly Glu Ala Ser Ile Met Val Thr Lys Val Asp Glu Pro Ser Lys 135 Tyr Gly Val Val Val Met Glu Glu Ser Thr Gly Arg Val Glu Lys Phe 150 155 Val Glu Lys Pro Lys Leu Tyr Val Gly Asn Lys Ile Asn Ala Gly Ile Tyr Leu Leu Asn Pro Ser Val Leu Asp Lys Ile Glu Leu Arg Pro Thr 185 Ser Ile Glu Lys Glu Thr Phe Pro Lys Ile Ala Ala Ala Gln Gly Leu 200

								•									
Ту		la :	Met	Val	Leu	Pro	Gly 215		Trp	Met	Asp	Ile 220	Gly	Gln	Pro	Arg	
As 22	-	уŗ	Ile	Thr	Gly	Leu 230	Arg	Leu	Tyr	Leu	Asp 235	Ser	Leu	Arg	Lys	Lys 240	
S€	r P	ro	Ala	Lys	Leu 245	Thr	Ser	Gly	Pro	His 250		Val	Gly	Asn	Val 255	Leu	
				260			٠.		265					270		`	
			275	•			:·.	280					285	, ,	Leu		
	2	90					295					300		;	Cys		
3()5					310					315					Arg 320	
					325			·	:	330					335		
				340					345		His	Lys	Glu	350	Lys	Ser	
. A	sn I	le	Leu 355		Pro	Glu	Ile	Val 360		· · · ·		٠					•
< <	210: 211: 212: 213:	> 1 > D	071 NA	.dops	sis t	hali	ana										
<	220: 221: 222:	> C		(105	55)			: :		•		· ,					•••••
- t	400: .cca	> 2 ata	a at	g aa et Ly 1	aa go ys Al	ca ac la Th	et et ir Le	a go eu Al	ca go la A	ca co la Pi	cc to	er Se	et ct er Le	c ac	ca aç nr Se	gc ctc er Leu	50
I	ect Pro 15	Туг	cga Arg	a ac	c aac r Ası	tct n Sei 20	c Se	t tto	e Gly	c tca y Sei	r Ly:	g tca s Sei 5	a tco	g cti r Lei	t cto	ttt Phe 30	98
1	egg Arg	tct Ser	c cc	a tc	c tc r Se 3	r Se	c tc r Se	r Se	a gte r Va	c tc: 1 Se: 4	r Me	g ace	g ac	a ac	g cgf r Arg 4	t gga g Gly 5	146
i	aac Asn	gto Va	g gc l Al	a Va	g gc l Al O	g gc a Al	t gc a Al	t gc a Al	t ac a Th 5	r Se	c ac r Th	t ga r Gl	g gc	g ct a Le 6	u Ar	a aaa g Lys	194

gga Gly	ata Ile	Ala	gag Glu	Phe	tac Tyr	aat Asn	gaa Glu 70	act Thr	tcg Ser	ggt Gly	ttg Leu	tgg Trp 75	gaa Glu	gag Glu	att Ile	242	
Trp	gga Gly 80	Asp	cat His	atg Met	cat His	cat His 85	ggc	ttt Phe	tat Tyr	gac Asp	cct Pro 90	gat Asp	tct Ser	tct Ser	gtt Val	290	
caa Gln 95	ctt Leu	tct Ser	gat Asp	tct Ser	ggt Gly 100	cac	aag Lys	gaa Glu	gct Ala	cag Gln 105	atc Ile	cgt Arg	atg Met	Ile	gaa Glu 110	338	
gag Glu	tct Ser	ctc Leu	cgt Arg	ttc Phe 115	gcc Ala	ggt Gly	gtt Val	act Thr	gat Asp 120	gaa Glu	gag Glu	gag Glu	gag Glu	aaa Lys 125	aag Lys	386	
ata Ile	aag Lys	aaa Lys	gta Val 130	gtg Val	gat Asp	gtt Val	Gly	tgt Cys 135	ggg	att Ile	gga Gly	gga Gly	agc Ser 140	tca Ser	aga Arg	434	
							gct Ala 150								agc Ser	482	
Pro	Val 160	Gln	Ala	Lys	Arg	Ala 165	aat Asn	Asp	Leu	Ala	Ala 170	Ala	Gln	Ser	Leu	530	-
Ser 175	His	Lys	Ala	Ser	Phe 180	Gln	gtt Val	Ala	Asp	Ala 185	Leu	Asp	Gln	Pro	Phe 190	578	-
Glu	Asp	Gly	Lys	Phe 195	Asp	Leu	gtg Val	Trp	Ser 200	Met	Glu	Ser	Gly	G1u 205	His	626	
Met	Pro	Asp	Lys 210	Ala	Lys	Phe	Val	Lys 215	Gl u	Leu	Val	Arg	Val 220	Ala	gct Ala	674	
Pro	Gly	Gly 225	Arg	Ile	Ile	Ile	Val 230	Thr	Trp	Суз	His	Arg 235	Asn	Leu	tct Ser	722	
Ala	Gly 240	Glu	Glu	Ala	Leu	Gln 245	Pro	Trp	Glu	Gln	Asn 250	Ile	Leu	Asp	aaa Lys	770	
11e 255	Cys	Lys	Thr	Phe	260	Leu	Pro	Ala	Trp	265	Ser	Thr	Asp	Asp	tat Tyr 270	818	
gto Val	aac Asn	ttg Lev	ctt Leu	caa Gln 275	Ser	cat His	tct Ser	cto Leu	cag Gln 280	Asp	att Ile	aag Lys	tgt Cys	gcg Ala 285	gat Asp	866	

												•	•			
tgg Trp	tca Ser	gag Glu	aac Asn 290	gta Val	gct Ala	cct Pro	Phe	tgg Trp 295	cct Pro	gçg Ala	gtt Val	ata Ile	cgg Arg 300	act Thr	gca Ala	914
tta Leu	aca Thr	tgg Trp 305	aag Lys	ggc Gly	ctt Leu	gtg Val	tct Ser 310	ctg Leu	ctt Leu	cgt Arg	agt Ser	ggt Gly 315	atg Met	aaa Lys	agt Ser	962
att. Ile	aaa Lys 320	gga Gly	gca Ala	ttg Leu	Thr	atg Met 325	cca Pro	ttg Leu	atg Met	Iļe	gaa Glu 330	ggt Gly	tac Tyr	aag Lys	aaa Lys	1010
						atc Ile								taa		1055
gtct	aaag	gct	ataci	ta					: :		•	٠.				1071
-								· ·							• •	
<211)> 2 L> 3	48			÷		· .				· ·				*	•
	2> P1 3> A1		dops	is t	nalia	ana										
<400)> 2	6								2	•					
			Thr	Leu 5	Ala	Ala	Pro	Ser	Ser 10	Leu	Thr	Ser	Leu	Pro 15		• .
Arg	Thr	Asn	Ser 20		Phe	Gly	Ser	Lys 25	Ser	Ser	Leu	Leu	Phe 30		Ser	
Pro	Ser	Ser 35		Ser	Ser	Val	Ser 40	Met	Thr	Thr	Thr	Arg 45		Asn	Val	
Ala	Val 50		Ala	Ala	Ala	Thr 55	Ser	Thr	Glu	Ala	Leu 60		Lys	Gly	Ile	
Ala 65		Phe	Tyr	Asn	Glu 70		Ser	Gly	Leu	Trp 75		Glu	Ile	Trp	Gly 80	•
Asp	His	Met	His	His 85		Phe	Tyr	Asp	Pro 90		Ser	Ser	Val	. Glr 95	Leu 5	
Ser	Asp	Ser	Gly 100		Lys	Glu	Ala	Gln 105		Arg	Met	lle	Glu 110		ı Ser	
Leu	Arg	Phe 11:		a Gly	Val	Thr	120		ı Glu	ı Glu	Glu	125		; Ile	e Lys	
Lys	Val		l Ası	o Val	Gly	/ Cys		/ Ile	e Gly	/ Gly	Ser 140		Arg	ј Ту:	r Leu	٠.
Ala 145		r Ly:	s Pho	e Gly	7 Ala 150		ı Cys	s Ile	e Gly	7 Ile 155		Leu	sei	r Pr	0 Val 160	
Glr	ı Al	a Ly:	s Ar	g Ala 16		n Ası) Lev	ı Ala	a Ala 17		a Glr	ı Sei	. Ļe	. Se 17	r His 5	

Lys	Ala	Ser	Phe 180	Gln	Val	Ala	Asp	Ala 185	Leu	Asp	Gln	Pro	Phe 190	Glu	Asp	
Gly	Lys	Phe 195	Asp	Leu	Val	Trp	Ser 200		Glu	Ser		Glu 205	His	Met	Pro	
	Lys 210	Ala	Lys	Phe	Val	Lys 215	Glu	Leu	Val	Arg	Val 220		Ala	Pro	Gly	•
Gly 225	Arg	Ile	Ile	Ile	Val 230	Thr	Trp	Cys	His	Arg 235	Asn	Leu	Ser		Gly 240	
Glu	Glu	Ala	Leu	Gln 245	Pro	Trp	Glu	Gln	Asn 250	Ile	Leu	yab	Lys	Ile 255	Cys	
Ļys	Thr	Phe	Tyr 260	Leu	Pro	Ala	Trp	Cys 265	Ser	Thr	Asp	Asp	Tyr 270	Val	Asn	
Leu	Leu	Gln 275	Ser	His	Ser	Leu	Gln 280		Ile	Lys	Cys	Ala 285	Asp	Trp	Ser	
Glu	Asn 290		Ala	Pro	Phe	Trp 295		Ala	Val	Ile	Arg 300	Thr	Ala	Leu	Thr	
Trp 305		Gly	Leu	Val	Ser 310	Leu	Leu	Arg	Ser	Gly 315	Met	Lys	Ser	Ile	Lys 320	
Gly	Ala	Leu	Thr	Met 325		Leu	Met	Ile	Glu 330		Tyr	Lys	Lys	Gly 335	Val	
Ile	Lys	Phe	Gly 340		Ile	Thr	Суз	Gln 345		Pro	Leu		•	•	٠	•
														٠.		
<21	0> 2 1> 7 2> D	68								•						
			dops	is t	hali	ana							•			
	1> C	DS 3)	(752	:)									•		•	
	0> 2									. ,						
ag.	atg Met 1	aag Lys	ttc Phe	aac Asn	gtt Val 5	gcg Ala	aat Asn	cca Pro	act Thr	act Thr 10	gga Gly	tgc Cys	cag Gln	aag Lys	aag Lys 15	47
cto	gag ıGlu	ato 1 Ile	gac Asp	gat Asp 20	as C	caç Glr	g aaa n Lys	a cta s Leu	cgt Arg 25	Ala	ttt Phe	tac Tyr	gac Asp	aag Lys 30	Arg	95
ato Ilo	e tet e Sei	caa r Glr	a gaa n Glu 3!	ı Va.	c agt l Sei	gga Gly	a gat y Ası	c gct o Ala 40	a Le	ı Gli g ggc	gag Glu	g gag ı Glu	tto Phe 45	Lys	gga Gly	143

																	•
	gtt Val															191	
	cag Gln 65														_	239	
	act Thr															287	
aga Arg	aag Lys	tct Ser	gtt Val	cgt Arg 100	Gly	tgc Cys	att Ile	gtg Val	agc Ser 105	cct Pro	gat Asp	ctc Leu	tct Ser	gtt Val 110	Leu	335	
	ctt Leu											Pró				383	
-	cat His		_	_	-	-		Pro	-	_	_		_		_	431	
	ctg Leu 145				_		-	_	_							479	
	tac Tyr	_	-	_				_	_		_	_	-			527	
	cct Pro															575	
	a gct g Ala			Ala												623	
-	t gct p Ala	_	Asp		_	_		Leu	-	_		-	_	_	-	671	
	t gac g Asp 225	Arg					Leu					Ser				719	
	t gct r Ala 0					Ser						agct	tga	gatt	ca	768	

<210> 28 <211> 249 <212> PRT

<213> Arabidopsis thaliana

<400> 28

Met Lys Phe Asn Val Ala Asn Pro Thr Thr Gly Cys Gln Lys Lys Leu 1 5 10 15

Glu Ile Asp Asp Asp Gln Lys Leu Arg Ala Phe Tyr Asp Lys Arg Ile
20 25 30

Ser Gln Glu Val Ser Gly Asp Ala Leu Gly Glu Glu Phe Lys Gly Tyr 35 40 45

Val Phe Lys Ile Lys Gly Gly Cys Asp Lys Gln Gly Phe Pro Met Lys 50 55 60

Gln Gly Val Leu Thr Pro Gly Arg Val Arg Leu Leu Leu His Arg Gly 65 70 75 80

Thr Pro Cys Phe Arg Gly His Gly Arg Arg Thr Gly Glu Arg Arg Arg 85 90 95

Lys Ser Val Arg Gly Cys Ile Val Ser Pro Asp Leu Ser Val Leu Asn 100 105 110

Leu Val Ile Val Lys Lys Gly Glu Asn Asp Leu Pro Gly Leu Thr Asp 115 120 125

His Glu Ser Lys Met Arg Gly Pro Lys Arg Ala Ser Lys Ile Arg Lys 130 135 140

Leu Phe Asn Leu Lys Lys Glu Asp Asp Val Arg Thr Tyr Val Asn Thr 145 150 155 160

Tyr Arg Arg Lys Phe Thr Asn Lys Lys Gly Lys Glu Val Ser Lys Ala 165 170 175

Pro Lys Ile Gln Arg Leu Val Thr Pro Leu Thr Leu Gln Arg Lys Arg 180 185 190

Ala Arg Ile Ala Asp Lys Lys Lys Ile Ala Lys Ala Asn Ser Asp 195 200 205

Ala Ala Asp Tyr Gln Lys Leu Leu Ala Ser Arg Leu Lys Glu Gln Arg 210 215 220

Asp Arg Arg Ser Glu Ser Leu Ala Lys Glu Arg Ser Arg Leu Ser Ser 225 230 235 240

Ala Ala Lys Pro Ser Val Thr Ala

<210> 29

<211> 1201

<212> DNA

<213> Arabidopsis thaliana

```
<220>
<221> CDS
<222> (24)..(35)
<220>
<221> CDS
<222> (147) .. (187)
<220>
<221> CDS
<222> (283) . . (383)
<220>
<221> CDS
<222> (689) .. (833)
<220>
<221> CDS
<222> (916) .. (1005)
<220>
<221> CDS
<222> (1103)..(1196)
<400> 29
cacgegggag ctcaacatca gee atg geg gaa cag gttactegat ctgttetete
                          Met Ala Glu Gln
ctctaagctt atcctcgttt tatgatctat tgatccttat tcactcaaat gattctaata 115
ctcttctctt ttctctgtca ctaattttca g act gag aaa gct ttt ctt aag
                                                                   167
                                   Thr Glu Lys Ala Phe Leu Lys
cag cct aag gtc ttc ctt ag gtaattttgc gattcgattt ctctctgttc
                                                                   217
Gln Pro Lys Val Phe Leu Se
tctattgttt cattgtattt aagttccaag ttgtttatat tgttcattgt ttctgattta 277
tcaag c tcg aag aaa tct gga aag gga aag aga cct gga aaa ggt gga
                                                                   325
      r Ser Lys Lys Ser Gly Lys Gly Lys Arg Pro Gly Lys Gly Gly
                                 25 ·
aac cgt ttc tgg aag aac att ggt ttg ggc ttc aag act cct cgt gaa
                                                                   373
Asn Arg Phe Trp Lys Asn Ile Gly Leu Gly Phe Lys Thr Pro Arg Glu
                             40
gcc att gat g gtatgtttaa gcttttaact cgttataata gataaggaac
                                                                   423
Ala Ile Asp G
     50
tcttggattg tgttgttcat atagtcgata gatttcaaat gctattttgt cttgtagaat 483
cttaagcttt ggtttagtga gttctgattc ttcagcttta tctggatcta cattactgtt 543
```

tcag	tgat	gc a	aatg	ttat	c ag	taga	tttt	gaa	ttag	rtag	gatg	tcac	tg a	attt	gaatat	603	
gtga	tcaa	igc t	tcat	:agaa	a co	tgca	tcat	tct	ctat	ata	cctt	taag	rtc a	agat	tctcag	663	
gtta	ttgt	gt a	atttg	ıtgtg	g aa	cag					gac a Asp I					714	٠.
															tgc Cys	762	
cac His	agt Ser	gcg Ala	aaa Lys 80	atg Met	cag Gln	agg Arg	acc Thr	att Ile 85	atc Ile	gtg Val	cga Arg	agg Arg	gat Asp 90	tac Tyr	ctt Leu	810	,
			aag Lys					jtaa:	attca	at ac	catto	ctcat	ac	ttct	ttcc	863	i . •
atag	gagto	ett a	acaca	attga	at gt	ttaa	ıgaaa	a gta	aatai	cct	tttt	gtt	ett i		Tyr	919	į
gag Glu	aag Lys	agg Arg	cat His 105	tca Ser	aac Asn	att Ile	ccg Pro	gct Ala 110	cat His	gtc Val	tca Ser	cca Pro	tgc Cys 115	Phe	cgt	967	
			gga Gly										ytta	tgat	ct	101	.5
gatt	caa	acc	taca	aatt	gt c	tccat	tga	t tc	tgat	tatc	gtga	aatti	tgt	tttg	atctt	107	15
ttgl	ttg	tta	atga	ttga	ta a	tttca									ttc Phe	112	17
		Leu													aag Lys	117	15
			act Thr				gct	gc		-		٠				120)1
<21 <21	0> 3 1> 1 2> P 3> A	60 RT	dops	is t	hali	ana											
	0> 3 Ala		ı Gln	Th	r Gl 5	u Ly	s Al	a Ph		u Ly 0	s Gl	n Pr	o Ly		al 15		

					,	• •		
Phe Leu Ser	Ser Lys	Lys Ser		Gly Lys 5	Arg Pro	Gly Lys	Gly	
Gly Asn Arg		Lys Asr			Phe Lys		Arg	
Glu Ala Ile 50	Asp Gly		Val Asp 55	Lys Lys	Cys Pro 60	Phe Thr	Gly	,
Thr Val Ser	: Ile Arg	Gly Aro	g Ile Leu	Ala Gly 7		His Ser	Ala 8	
Lys Met Glr		Tle Ile 35	e Val Arç	Arg Asp 90	Tyr Leu	His Phe 95		
Lys Lys Tyr	Gln Arg	Tyr Gl		His Ser)5	Asn Ile	Pro Ala 110	His	
Val Ser Pro	Cys Phe	e Arg Vai	l Lys Glu 120	Gly Asp	His Ile		Gly	÷ .
Gln Cys Arg	g Pro Leu		s Thr Val	Arg Phe	Asn Val	Leu Lys	Val	
Ile Pro Ala 145	a Gly Ser	r Ser Se 150	r Ser Phe	e Gly Lys 15		Phe Thr	Gly 16	
 Met								i.
<210> 31 <211> 1790 <212> DNA <213> Arab	idopsis	thaliana						
<220> <221> CDS <222> (23)	(1780)	·	* · ·					••
<400> 31 tgtgagtaat	ttagcga					a gca aga u Ala Are		52
ctc atc ga Leu Ile Gl	u Glu Gl							100
ast aat to	a ata aa	c ttt aa	t aaa aa	c cca cca	tto aac	г дад ааа	aca	148

Asp Gly Ser Val Asp Phe Asn Gly Asn Pro Pro Leu Lys Glu Lys Thr

gga aac tgg aaa gct tgt cct ttt att ctt ggt aat gaa tgt tgt gag Gly Asn Trp Lys Ala Cys Pro Phe Ile Leu Gly Asn Glu Cys Cys Glu 45 50 55

35

30 -

40

agg Arg	cta Leu 60	gct Ala	tac Tyr	tat Tyr	ggt Gly	att Ile 65	gct Ala	CJA aaa	aat Asn	tta Leu	atc Ile 70	act Thr	tac Tyr	ctc Leu	acc Thr	244
act Thr 75	aag Lys	ctt Leu	cac His	caa Gln	gga Gly 80	aat Asn	gtt Val	tct Ser	gct Ala	gct Ala 85	aca Thr	aac Asn	gtt Val	acc Thr	aca Thr 90	292
tgg Trp	caa Gln	GJY ggg	act Thr	tgt Cys 95	tat Tyr	ctc Leu	act Thr	cct Pro	ctc Leu 100	att Ile	gga Gly	gct Ala	gtt Val	ctg Leu 105	gct Ala	340
gat Asp	gct Ala	tac Tyr	tgg Trp 110	gga Gly	cgt Arg	tac Tyr	tgg Trp	acc Thr 115	atc Ile	gct Ala	tgt Cys	ttc Phe	tcc Ser 120	Gly	att Ile	388
tat Tyr	ttc Phe	atc Ile 125	ggg Gly	atg Met	tct Ser	gcg Ala	tta Leu 130	act Thr	ctt Leu	tça Ser	gct Ala	tca Ser 135	gtt Val	ccg Pro	gca Ala	436
							Gly						gca Ala			484
									Leu				gct Ala			532
Thr	Gly	Gly	Ile	Lys 175	Pro	Cys	Val	Ser	Ser 180	Phe	Gly	Ala	gat Asp	Gln 185	Phe	580
Asp	Asp	Thr	Asp 190	Ser	Arg	Glu	Arg	Val 195	Arg	Lys	Ala	Ser	Phe 200	Phe	Asn	628
tgg Trp	ttt Phe	tac Tyr 205	ttc Phe	tcc Ser	atc Ile	aat Asn	att Ile 210	gga Gly	gca Ala	ctt Leu	gtg Val	tca Ser 215	tct Ser	agt Ser	ctt Leu	676
Leu	Val 220	Trp	Ile	Gln	Glu	Asn 225	Arg	Gly	Trp	Gly	Leu 230	Gly		Gly	Ile	724
cca Pro 235	Thr	gtg Val	ttc Phe	atg Met	gga Gly 240	Leu	gcc Ala	att Ile	gca Ala	agt Ser 245	Phe	ttc Phe	ttt Phe	Gly	aca Thr 250	772
cct Pro	ctt Leu	tat Tyr	agg Arg	ttt Phe 255	Gln	aaa Lys	cct Pro	gga Gly	gga Gly 260	Ser	cct Pro	ata Ile	act	egg Arg 265	Ile	820
				. Val					Lys				aaa Lys 280	Val		868
gaa	gac	gcc	aca	ctt	ctg	tat	gaa	act	caa	gac	aag	aac	tct	gct	att	916

Gl	u Asp	Ala 285	Thr	Leu	Leu		Glu 290	Thr	Gln	Asp	Lys	Asn 295	Ser	Ala	Ile	:
	t gga a Gly 300															964
	a gcc s Ala 5															1012
	c tcg n Ser															1060
	g atc u Ile								Ser							1108
J -	a tac l Tyr	•		_					-				_			1156
aa As	c tgc n Cys 380	Lys	att Ile	gga Gly	tca Ser	ttc Phe 385	cag Gln	ctt Leu	cct Pro	cct Pro	gca Ala 390	gca Ala	ctc Leu	ggg Gly	aca Thr	1204
	c gac e Asp 5															1252
	c gtt e Val				Arg											1300
ga G1	g ata u Ile	caa Gln	aga Arg 430	atg Met	gga Gly	att Ile	ggt Gly	ctg Leu 435	ttt	gtc Val	tct Ser	gtt Val	ctc Leu 440	tgt Cys	atg Met	1348
_	a gct a Ala	-	Ala		-	_		Ile								1396
	t gga eu Gly 460	Leu					Ala					Ser				1444
	ng att in Ile 75										Glu					1492
	cc ggt le Gly	_			Phe			_		Ser		_	_	_	Arg	1540
	gc tto er Le	-	_	_		_		_			-					1588

515 ttg agc tcg ttg atc ctc acg ctc gtg act tat ttt aca aca aga aat Leu Ser Ser Leu Ile Leu Thr Leu Val Thr Tyr Phe Thr Thr Arg Asn 530. ggg caa gaa ggt tgg att tcg gat aat ctc aat tca ggt cat ctc gat 1684 Gly Gln Glu Gly Trp Ile Ser Asp Asn Leu Asn Ser Gly His Leu Asp 545 tac ttc ttc tgg ctc ttg gct ggt ctt agc ctt gtg aac atg gcg gtt 1732 Tyr Phe Phe Trp Leu Leu Ala Gly Leu Ser Leu Val Asn Met Ala Val 560 565 555 tac ttc tct gct gct agg tat aag caa aag aaa gct tcg tcg tag Tyr Phe Phe Ser Ala Ala Arg Tyr Lys Gln Lys Lys Ala Ser Ser 580 1791 taatgctgtt a <210> 32 <211> 585 <212> PRT <213> Arabidopsis thaliana Met Gly Ser Ile Glu Glu Glu Ala Arg Pro Leu Ile Glu Glu Gly Leu Ile Leu Gln Glu Val Lys Leu Tyr Ala Glu Asp Gly Ser Val Asp Phe 25 Asn Gly Asn Pro Pro Leu Lys Glu Lys Thr Gly Asn Trp Lys Ala Cys Pro Phe Ile Leu Gly Asn Glu Cys Cys Glu Arg Leu Ala Tyr Tyr Gly 55 Ile Ala Gly Asn Leu Ile Thr Tyr Leu Thr Thr Lys Leu His Gln Gly Asn Val Ser Ala Ala Thr Asn Val Thr Thr Trp Gln Gly Thr Cys Tyr 90 85 Leu Thr Pro Leu Ile Gly Ala Val Leu Ala Asp Ala Tyr Trp Gly Arg 100 105 Tyr Trp Thr Ile Ala Cys Phe Ser Gly Ile Tyr Phe Ile Gly Met Ser

Ala Leu Thr Leu Ser Ala Ser Val Pro Ala Leu Lys Pro Ala Glu Cys

Ile Gly Asp Phe Cys Pro Ser Ala Thr Pro Ala Gln Tyr Ala Met Phe

- 135

150

145

Phe Gly Gly Leu Tyr Leu Ile Ala Leu Gly Thr Gly Gly Ile Lys Pro 170 Cys Val Ser Ser Phe Gly Ala Asp Gln Phe Asp Asp Thr Asp Ser Arg 185 Glu Arg Val Arg Lys Ala Ser Phe Phe Asn Trp Phe Tyr Phe Ser Ile 200 205 Asn Ile Gly Ala Leu Val Ser Ser Ser Leu Leu Val Trp Ile Gln Glu 215 Asn Arg Gly Trp Gly Leu Gly Phe Gly Ile Pro Thr Val Phe Met Gly 230 235 Leu Ala Ile Ala Ser Phe Phe Phe Gly Thr Pro Leu Tyr Arg Phe Gln 245 250 Lys Pro Gly Gly Ser Pro Ile Thr Arg Ile Ser Gln Val Val Ala Ser Phe Arg Lys Ser Ser Val Lys Val Pro Glu Asp Ala Thr Leu Leu 275 Tyr Glu Thr Cln Asp Lys Asn Ser Ala Ile Ala Gly Ser Arg Lys Ile 300 Glu His Thr Asp Asp Cys Gln Tyr Leu Asp Lys Ala Ala Val Ile Ser Glu Glu Glu Ser Lys Ser Gly Asp Tyr Ser Asn Ser Trp Arg Leu Cys 325 330 Thr Val Thr Gln Val Glu Glu Leu Lys Ile Leu Ile Arg Met Phe Pro 345 Ile Trp Ala Ser Gly Ile Ile Phe Ser Ala Val Tyr Ala Gln Met Ser Thr Met Phe Val Gln Gln Gly Arg Ala Met Asn Cys Lys Ile Gly Ser 375 Phe Gln Leu Pro Pro Ala Ala Leu Gly Thr Phe Asp Thr Ala Ser Val 390 Ile Ile Trp Val Pro Leu Tyr Asp Arg Phe Ile Val Pro Leu Ala Arg 410 Lys Phe Thr Gly Val Asp Lys Gly Phe Thr Glu Ile Gln Arg Met Gly 420 425 Ile Gly Leu Phe Val Ser Val Leu Cys Met Ala Ala Ala Ala Ile Val 440 Glu Ile Ile Arg Leu His Met Ala Asn Asp Leu Gly Leu Val Glu Ser

Gly Ala Pro Val Pro Ile Ser Val Leu Trp Gln Ile Pro Gln Tyr Phe 470 475 Ile Leu Gly Ala Ala Glu Val Phe Tyr Phe Ile Gly Gln Leu Glu Phe Phe Tyr Asp Gln Ser Pro Asp Ala Met Arg Ser Leu Cys Ser Ala Leu 500 505 Ala Leu Leu Thr Asn Ala Leu Gly Asn Tyr Leu Ser Ser Leu Ile Leu 520 Thr Leu Val Thr Tyr Phe Thr Thr Arg Asn Gly Gln Glu Gly Trp Ile Ser Asp Asn Leu Asn Ser Gly His Leu Asp Tyr Phe Phe Trp Leu Leu 550 555 Ala Gly Leu Ser Leu Val Asn Met Ala Val Tyr Phe Phe Ser Ala Ala 565 Arg Tyr Lys Gln Lys Lys Ala Ser Ser 580 -<210> 33 <211> 1984 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (20)..(1975) <400> 33 ttcaccgtcg gcttctcaa atg cag gat att ctc gga tcg gtt cgc cga tcc Met Gln Asp Ile Leu Gly Ser Val Arg Arg Ser ttg gtt ttc cgg tcg tct ttg gcc gga gac gat ggt act agc ggc gga Leu Val Phe Arg Ser Ser Leu Ala Gly Asp Asp Gly Thr Ser Gly Gly . 20 ggt ctt agc gga ttc gtc ggg aag att aac tct agt atc cgt agc tct 148 Gly Leu Ser Gly Phe Val Gly Lys Ile Asn Ser Ser Ile Arg Ser Ser -35 cga att ggg ctc ttt tct aag ccg cct cca ggg ctt cct gct cct aga 196 Arg Ile Gly Leu Phe Ser Lys Pro Pro Pro Gly Leu Pro Ala Pro Arg - 50 aaa gaa gaa gcg ccg tcg att cgg tgg agg aaa ggg gaa tta atc ggt Lys Glu Glu Ala Pro Ser Ile Arg Trp Arg Lys Gly Glu Leu Ile Gly 60 65 tgc ggt gct ttt gga aga gtt tac atg gga atg aac ctc gat tcc ggc

													•			
Суѕ	Gly	Ala	Phe	Gly 80	Arg	Val	Tyr	Met	Gly 85	Met	Asn	Leu	Asp	Ser 90	Gly	
gag Glu	ctt Leu	ctt Leu	gca Ala 95	att Ile	aaa Lys	cag Gln	Val	tta Leu 100	atc Ile	gct Ala	cca Pro	agc Ser	agt Ser 105	gct Ala	tca Ser	340
aag Lys	gag Glu	aag Lys 110	act Thr	cag Gln	ggt Gly	cac His	atc Ile 115	cga Arg	gag Glu	ctt Leu	gag Glu	gaa Glu 120	gaa Glu	gta Val	caa Gln	388
												tac Tyr				436
gta Val 140	aga Arg	gag Glu	agt Ser	gat Asp	tcg Ser 145	ttg Leu	aat Asn	att Ile	ttg Leu	atg Met 150	gag Glu	ttt Phe	gtt Val	cct Pro	ggt Gly 155	484
gga Gly	tca Ser	ata Ile	tca Ser	tct Ser 160	ttg Leu	ttg Leu	gag Glu	aag Lys	ttt Phe 165	Ģly	tct Ser	ttt Phe	cct Pro	gag Glu 170	cct Pro	532
gtg Val	att Ile	att Ile	atg Met 175	Tyr	aca Thr	aag Lys	caa. Gln	ctt Leu 180	ctg Leu	ctt Leu	Gly	ctg Leu	gaa Glu 185	tat Tyr	ctt Leu	580
cac His	aac Asn	aat Asn 190	Gly aga	atc Ile	atg Met	cat His	cga Arg 195	gat Asp	att Ile	aag Lys	Gly ggg	gca Ala 200	aat Asn	att Ile	ttg Leu	628
gcc Val	gat Asp 205	aac Asn	aaa Lys	ggt Gly	tgc Cys	atc Ile 210	aga Arg	ctc Leu	gca Ala	gat Asp	ttt Phe 215	ggt Gly	gct Ala	tcc Ser	aag Lys	676
aaa Lys 220	Val	gta Val	gag Glu	cta Leu	gct Ala 225	act Thr	gta Val	aat Asņ	ggt Gly	gcc Ala 230	aaa Lys	tct Ser	atg Met	aag Lys	ggg Gly 235	724
acg Thr	cct Pro	tat Tyr	tgg Trp	atg Met 240	gct Ala	cct Pro	gaa Glu	gtc Val	att Ile 245	ctc Leu	cag Gln	act Thr	ggt Gly	cat His 250	agc Ser	772
ttc Phe	tct Ser	gct Ala	gat Asp 255	ata Ile	tgg Trp	agt Ser	gtt Val	ggg Gly 260	tgc Cys	act Thr	gtg Val	att Ile	gag Glu 265	atg Met	gct Ala	820
acg Thr	Gly	aag Lys 270	cct Pro	ccc Pro	tgg Trp	agc Ser	gag Glu 275	cag Gln	tat Tyr	cag Gln	cag Gln	ttt Phe 280	Ala	gct Ala	gtc Val	868
ctt Leu	cat His 285	att Ile	ggt Gly	aga Arg	aca Thr	aaa Lys 290	gct Ala	cat His	cct Pro	cca Pro	att Ile 295	cca Pro	gaa Glu	gac	ctc Leu	916
tca Ser	cca Pro	gag Glu	gct Ala	aaa Lys	gac Asp	ttt Phe	cta Leu	atg Met	aaa Lys	tgc Cys	tta Leu	cac His	aaa Lys	gaa Glu	cca Pro	964

														•		
300					305		-			310					315	
agc Ser	ttg Leu	aga Arg	ctc Leu	tct Ser 320	gca Ala	acc Thr	gaa Glu	Leu	ctt Leu 325	cag Gln	cac His	ccg Pro	ttt Phe	gtc Val 330	Thr	1012
gga Gly	aag Lys	cgc Arg	cag Gln 335	gaa Glu	cct Pro	tat Tyr	cca Pro	gct Ala 340	tac Tyr	cgt Arg	aat Asn	tct Ser	ctt Leu 345	acg Thr	gaa Glu	1060
tgt Cys	gga Gly	aac Asn 350	cca Pro	ata Ile	act Thr	act Thr	caa Gln 355	gga Gly	atg Met	aat Asn	gtt Val	cgg Arg 360	agt Ser	tca Ser	ata Ile	1108
aát Asn	tcg Ser 365	ttg Leu	atc Ile	agg Arg	agg Arg	tcg Ser 370	aca Thr	tgt Cys	tca Ser	ggc Gly	ttg Leu 375	aag Lys	gat Asp	gtc Val	tgt Cys	1156
gaa Glu 380	ctg Leu	gga Gly	agc Ser	ttg Leu	agg Arg 385	agt Ser	tcc Ser	att Ile	ata Ile	tac Tyr 390	cca Pro	cag Gln	aag Lys	tca Ser	aat Asn 395	1204
aac Asn	tca Ser	gga Gly	ttt Phe	ggt Gly 400	tgg Trp	cga Arg	gat Asp	gga Gly	gac Asp 405	tct Ser	gat Asp	gac Asp	ctt Leu	tgt Cys 410	cag Gln	1252
acc Thr	gat Asp	atg Met	gat Asp 415	gat Asp	ctc Leu	tgc Cys	aac Asn	att Ile 420	gaa Glu	tca Ser	gtc Val	aga Arg	aac Asn 425	aat Asn	gtt Val	1300
ttg Leu	tca Ser	cag Gln 430	tcc Ser	acc Thr	gat Asp	tta Leu	aac Asn 435	aag Lys	agt Ser	ttt Phe	aat Asn	ccc Pro 440	atg Met	tgt Cys	gat Asp	1348
tcc Ser	acg Thr 445	gat Asp	aac Asn	tgg Trp	tct Ser	tgc Cys 450	aag Lys	ttt. Phe	gat Asp	gaa Glu	agc Ser 455	cca Pro	aaa Lys	gtg Val	atg Met	1396
aaa Lys 460	agc Ser	aaa Lys	tct Ser	aac Asn	ctg Leu 465	ctt Leu	tct Ser	tac Tyr	caa Gln	gct Ala 470	tct Ser	caa Gln	ctc Leu	caa Gln	act Thr 475	1444
gga Gly	gtt Val	cca Pro	tgt Cys	gat Asp 480	gag Glu	gaa Glu	acc Thr	agc Ser	tta Leu 485	aca Thr	ttt Phe	gct Ala	ggt Gly	ggc Gly 490	tct Ser	1492
tcc Ser	gtt Val	Ala	gag Glu 495	gat Asp	gat Asp	tat Tyr	aaa Lys	ggc Gly 500	aca Thr	gag Glu	ttg Leu	aaa Lys	ata Ile 505	aaa Lys	tca Ser	1540
ttt Phe	ttg Leu	gat Asp 510	gag Glu	aag Lys	gct Ala	cag Gln	gat Asp 515	ttg Leu	aaa Lys	agg Arg	ttg Leu	cag Gln 520	acc Thr	cct Pro	ctg Leu	1588
ctt Leu	gaa Glu 525	gaa Glu	ttc Phe	cac His	aat Asn	gct Ala 530	atg Met	aat Asn	cca Pro	gga Gly	ata Ile 535	ccc Pro	caa Gln	ggt Gly	gca Ala	1636

ctt Leu 540	gga Gly	gac Asp	acc Thr	aat Asn	atc Ile 545	tác Tyr	aat Asn	tta Leu	cca Pro	aac Asn 550	tta Leu	cca Pro	agt Ser	ata Ile	agc Ser 555	1684
aag Lys	aca Thr	cct Pro	aaa Lys	cga Arg 560	ctt Leu	ccg Pro	agt Ser	aga Arg	cga Arg 565	ctc Leu	tca Ser	gca Ala	Ile	agt Ser 570	gat Asp	1732
gct Ala	atg Met	Pro	agc Ser 575	cca Pro	ctc Leu	aaa Lys	agc Ser	tcc Ser 580	aaa Lys	cgt Arg	aca Thr	ctg Leu	aac Asn 585	aca Thr	agc Ser	1780
aga Arg	gtg Val	atg Met 590	cag Gln	tca Ser	gga Gly	Thr	gaa Glu 595	cca Pro	act Thr	caa Gln	gtc Val	aac Asn 600	gag Glu	tcg Ser	acc Thr	1828
aag Lys	aag Lys 605	gga Gly	gta Val	aat Asn	aat Asn	agc Ser 610	cgt Arg	tgt Cys	ttc Phe	tca Ser	gag Glu 615	ata Ile	cgt Arg	cgg Arg	aag Lys	1876
tgg Trp 620	gaa Glu	gaa Glu	gaa Glu	ctc Leu	tat Tyr 625	gaa Glu	gag Glu	ctt Leu	gag Glu	agg Arg 630	cat His	cga Arg	gag Glu	aat Asn	ctg Leu 635	1924
cga Arg	cac Hiş	gct Ala	ggt Gly	gca Ala 640	gga Gly	ggg Gly	aag Lys	act Thr	cċa Pro 645	tta Leu	tca Ser	ggc Gly	cac His	aaa Lys 650	gga Gly	1972
tag	tgaa	cggc	:t								,	٠				1984

<210> 34

<211> 651 <212> PRT

<213> Arabidopsis thaliana

<400> 34

Met Gln Asp Ile Leu Gly Ser Val Arg Arg Ser Leu Val Phe Arg Ser 1 5 10 15

Ser Leu Ala Gly Asp Asp Gly Thr Ser Gly Gly Gly Leu Ser Gly Phe 20 25 30

Val Gly Lys Ile Asn Ser Ser Ile Arg Ser Ser Arg Ile Gly Leu Phe 35 45

Ser Lys Pro Pro Gly Leu Pro Ala Pro Arg Lys Glu Glu Ala Pro 50 60

Ser Ile Arg Trp Arg Lys Gly Glu Leu Ile Gly Cys Gly Ala Phe Gly 65 70 75 80

Arg Val Tyr Met Gly Met Asn Leu Asp Ser Gly Glu Leu Leu Ala Ile 85 90 95

Lys Gln Val Leu Ile Ala Pro Ser Ser Ala Ser Lys Glu Lys Thr Gln 105 Gly His Ile Arg Glu Leu Glu Glu Glu Val Gln Leu Leu Lys Asn Leu 120 Ser His Pro Asn Ile Val Arg Tyr Leu Gly Thr Val Arg Glu Ser Asp 130 135 Ser Leu Asn Ile Leu Met Glu Phe Val Pro Gly Gly Ser Ile Ser Ser 155 Leu Leu Glu Lys Phe Gly Ser Phe Pro Glu Pro Val Ile Ile Met Tyr 165 170 Thr Lys Gln Leu Leu Gly Leu Glu Tyr Leu His Asn Asn Gly Ile Met His Arg Asp Ile Lys Gly Ala Asn Ile Leu Val Asp Asn Lys Gly Cys Ile Arg Leu Ala Asp Phe Gly Ala Ser Lys Lys Val Val Glu Leu 215. 220 Ala Thr Val Asn Gly Ala Lys Ser Met Lys Gly Thr Pro Tyr Trp Met 230 Ala Pro Glu Val Ile Leu Gln Thr Gly His Ser Phe Ser Ala Asp Ile Trp Ser Val Gly Cys Thr Val Ile Glu Met Ala Thr Gly Lys Pro Pro 265 Trp Ser Glu Gln Tyr Gln Gln Phe Ala Ala Val Leu His Ile Gly Arg Thr Lys Ala His Pro Pro Ile Pro Glu Asp Leu Ser Pro Glu Ala Lys 295 Asp Phe Leu Met Lys Cys Leu His Lys Glu Pro Ser Leu Arg Leu Ser 310 315 Ala Thr Glu Leu Leu Gln His Pro Phe Val Thr Gly Lys Arg Gln Glu 330 Pro Tyr Pro Ala Tyr Arg Asn Ser Leu Thr Glu Cys Gly Asn Pro Ile 345 Thr Thr Gln Gly Met Asn Val Arg Ser Ser Ile Asn Ser Leu Ile Arg Arg Ser Thr Cys Ser Gly Leu Lys Asp Val Cys Glu Leu Gly Ser Leu Arg Ser Ser Ile Ile Tyr Pro Gln Lys Ser Asn Asn Ser Gly Phe Gly 385

Trp Arg Asp Gly Asp Ser Asp Asp Leu Cys Gln Thr Asp Met Asp Asp 405 410 Leu Cys Asn Ile Glu Ser Val Arg Asn Asn Val Leu Ser Gln Ser Thr 425 Asp Leu Asn Lys Ser Phe Asn Pro Met Cys Asp Ser Thr Asp Asn Trp 440 Ser Cys Lys Phe Asp Glu Ser Pro Lys Val Met Lys Ser Lys Ser Asn 455 Leu Leu Ser Tyr Gln Ala Ser Gln Leu Gln Thr Gly Val Pro Cys Asp 470 475 Glu Glu Thr Ser Leu Thr Phe Ala Gly Gly Ser Ser Val Ala Glu Asp 490 Asp Tyr Lys Gly Thr Glu Leu Lys Ile Lys Ser Phe Leu Asp Glu Lys 505 Ala Gln Asp Leu Lys Arg Leu Gln Thr Pro Leu Leu Glu Glu Phe His 515 520 Asn Ala Met Asn Pro Gly Ile Pro Gln Gly Ala Leu Gly Asp Thr Asn 535 Ile Tyr Asn Leu Pro Asn Leu Pro Ser Ile Ser Lys Thr Pro Lys Arg 550 555 Leu Pro Ser Arg Arg Leu Ser Ala Ile Ser Asp Ala Met Pro Ser Pro 565 570 Leu Lys Ser Ser Lys Arg Thr Leu Asn Thr Ser Arg Val Met Gln Ser 585 Gly Thr Glu Pro Thr Gln Val Asn Glu Ser Thr Lys Lys Gly Val Asn 605 Asn Ser Arg Cys Phe Ser Glu Ile Arg Arg Lys Trp Glu Glu Glu Leu 615 620 Tyr Glu Glu Leu Glu Arg His Arg Glu Asn Leu Arg His Ala Gly Ala 625 630 635 Gly Gly Lys Thr Pro Leu Ser Gly His Lys Gly

<210> 35

<211> 1736

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1605)

	> 35																
atg	cċc	cct	cct	aag	atg	ctt	cca	cca	acg	gca	agg	gat	tca	gta	gca	48	
Met	Pro	Pro	Pro	Lys	Met	Leu	Pro	Pro	Thr	Ala	Arg	Asp	Ser	Val	Ala	•	
1				5					10					15			
<u> </u>										*							
ααα	aca.	aaa	aat	agt.	cca	cca	cct	cca	cċt	cca	cca	cca	gct	cgg	tgg	96	
C117	Thr	Clv	Glv	Cor	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Pro	Ala	Arg	Trp		
GIY	TILL	GIY	20	Jer	110			25					30		•		
			20		,		٠	2.3					•				
										242	002	ccai	cca	CCC.	cct .	144	
agg	gta	gcg	ggg .	gag	gga	gga	LLG	gat	aca m-	mbm	Dea	ccg	Dro	Dro	Dro	777	
Arg	Val		GIÃ	GIU	GIA	GIY		Asp	THE	THE	PLO	Pro	FIO	ETÓ	FIU		
		35				1	40			,		45					
				*												100	
cca	acg	gca	gat	aca	gtc	gtg	gcg	gga	agg	acg	agt	tta	ggt	gag.	gcg	192	
Pro	Thr	Ala	Asp	Thr	Val	Val,	Ala	Gly	Arg	Thr		Leu	GIA	Glu	Ala		
	50					55		1 -		•	60						
ccc	cct	cct	cgt	cag	cct	cca	cgt	cct	cca	aca	gca	cgg	tgg	tca	gcg	240	٠
Pro	Pro	Pro	Arg	Gln	Pro	Pro	Arg	Pro	Pro	Thr	Ala	Arg	Trp	Ser	Ala		
65			•		70					75					80		
•••																	
atm	aac	aga	ata	atα	tac	aσt	cca	cca	ata	cca	cta	tcg	cgg	agt	aga	288	
Mot	Clu	y x a	Val	Met	Cve	Sor	Dro	Pro	Tle	Pro	Len	Ser	Ara	Ser	Ara		
Mec	GIY	ALG	VAI	. 85	Cys	Jer		11.0	90					95			
				. 65					,								
							-			+~~	202	aco	220	aat.	taa	336	
cta	gcg	CLE	gac	gac	caa	cgu	Lgg	Des	yaı	rgg m	aca mb	acg	Acn	610	DAD.	330	
Leu	Ala	reu		Asp	GIII	Arg	TID		ASP	IID	IIIL	Thr		GLY	ILD		
			100					105					110				
'																304	
cta	agc	atg	aga	ccg	acg	tcc	tcg	cca	aca	agg	cga	att	gac	cca	caa	384	
Leu	Ser	Met	Arg	Pro	Thr	Ser		Pro	Thr	Arg	Arg			PTO	Gln		
		115					120					125					
ggg	gcc	cga	cga	tcc	tca	gtg	tca	cca	gcg	ccg	gtg	aca	acg	ggg	atg	432	
Gly	Ala	Arg	Arg	Ser	Ser	Val	Ser	Pro	Ala	Pro	Val	Thr	Thr	Gly	Met		
	130					135					140						
acc	acc	tct	cgc	act	gac	gat	acg	cta	ata	gag	gca	gag	acc	ggt	cgc	480	
Ala	Thr	Ser	Ara	Thr	Asp	Asp	Thr	Leu	Ile	Glu	Ala	Glu	Thr	Gly	Arg	٠,	
145			· .		150					155					160		
7.47																	
~~~	+			, 222	cas	ato	atc		222	tta	ctt	aaa	gca	agg	gcg	528	
yac	. cgg	mbe	- yee	, aaa	250	Mot	Val	. wgg	LAZE	T.en	Len	Lvs	Ala	Ara	Ala		
ASF	TIP	, 1111	Arg			TICC	V (4.1	9	170			, _		175			
				165	,				170					2,0		*	
															ata	576	
aaa	gac	: tac	aag	gaç	ggg	gga	att	. ycg	yca	. cac	, LLL	ggt	a	. cya	. y.y	3,0	
Lys	Asp	туг			GLy	Gly	TTE			тут	. PDE	: Gly	nen	Arg	val		
	•		180	)				185	,				190	٠.			
cto	g cga	tgo	tac	tog	gagg	ato	gta	ı cga	tcg	ato	, aaa	cgc	: cca	ggc	aac	624	
Let	ı Arg	Cys	з Туі	. Sei	Arg	Ile	• Val	. Arg	Ser	Met	Lys	arg	Pro	Gly	/ Asn		
		19					200				•	205					
tito	ı aas	a tte	e acc	ı ta	c cac	ago	gat	gto	gca	ata	a gco	acc	tto	: ago	ggc	672	
Ter	, 446 1 [37	Dh	o Whi	יט"ר פ	. Arc	, -se	, Jar	Val	A1=	ı Jle	Al:	Thi	Phe	. Ser	Gly		
nei	v na.	- 5111	- 111	y		, 2	,			`							

•	210					215					220	•		•		
aca Thr 225	ggc Gly	aga Arg	atg Met	cag Gln	ctg Leu 230	agt Ser	atg Met	aac Asn	agc Ser	cgt Arg 235	ttg Leu	cga Arg	gtc Val	gag Glu	agc Ser 240	720
ctc Leu	gtg Val	tcc Ser	gcg Ala	ggc Gly 245	cag Gln	agc Ser	gtg Val	gcg Ala	tca Ser 250	ttc Phe	tgc Cys	ctt Leu	ttc Phe	ctg Leu 255	ata Ile	768
tgc Cys	acg Thr	gcg Ala	ccc Pro 260	tcg Ser	gcg Ala	atg Met	cgg Arg	ctg Leu 265	gtt Val	agc Ser	ctt Leu	ctt Leu	aca Thr 270	ctg Leu	acc Thr	816
cca Pro	agc Ser	atg Met 275	acc Thr	tac Tyr	cta Leu	aca Thr	tgc Cys 280	Gly	ctg Leu	gga Gly	tgg Trp	atg Met 285	Thr	gtc Val	gtc Val	864
	ctg Leu 290															912
ggg Gly 305	gga Gly	tgg Trp	cgg Arg	tat Tyr	gcg Ala 310	gca Ala	ctc Leu	gag Glu	gag Glu	cat His 315	aag Lys	acg Thr	gag Glu	ccg	gga Gly 320	960
	aat Asn														Gly	1008
	gtc Val											Val			gca Ala	1056
	aca Thr															1104
							Met								gcg Ala	1152
aat Asn 385	_	aga Arg	ctc Leu	cgc Arg	cag Gln 390	Leu	ctc Leu	cga Arg	tgg Trp	gcg Ala 395	Arg	tac Tyr	cac His	gcg Ala	aac Asn 400	1200
					Ser					Arg					cga Arg	1248
				Cys					Arg					Ala	acg Thr	1296
			Ile					His					Arg		acg Thr	1344

gag Glu	gca Ala 450	gac Asp	acg Thr	acg Thr	cga Arg	cac His 455	gaa Glu	aat Asn	gac Asp	gac Asp	gcc Ala 460	cgg Arg	aag Lys	gtg Val	atg Met	1392
gaa Glu 465	gac Asp	atg Met	gcc Ala	Lys	cga Arg 470	atg Met	gac Asp	gat Asp	agt Ser	agc Ser 475	agt Ser	Gly	agc Ser	acg Thr	ttg Leu 480	1440
agc Ser	acg Thr	ctc Leu	acg Thr	act Thr 485	gac Asp	gag Glu	acg Thr	tac Tyr	cac His 490	acc Thr	acc Thr	acg Thr	gag Glu	gtg Val 495	acc Thr	1488
gat Asp	ttt Phe	gat Asp	tca Ser 500	tct Ser	cca Pro	tcg Ser	tgg Trp	gga Gly 505	cga Arg	tgc Cys	tca Ser	tcg Ser	cgg Arg 510	cgc Arg	ccg Pro	1536
ccg Pro	gcg Ala	ctg Leu 515	ctg Leu	gaa Glu	tcg Ser	aca Thr	ttt Phe 520	cgg Arg	cga Arg	tcc Ser	ccg Pro	aga Arg 525	Gly	tcg Ser	acg Thr	1584
			tgg Trp			tag 535		cggaq	gte a	aggaa	acgti	tg ga	accg	acag	g	1635
tgg	accg	gtt 1	taggg	gcagt	t ga	acggi	tagg	g gt	tgcc	tgac	cag	cctt	gac	gctc	gacago	1695
			100													1726
taa	aaaa	aac (	caaca	aaaa	aa a	aaaa	aaaa	c aa	aaaa	aaaa	а	:		٠.	•	1736
<21 <21 <21	0> 3 1> 5 2> P	6 34 RT		•			aaaa	c aa	aaaa	aaaa	а			* .		1736
<21 <21 <21 <21	0> 3 1> 5 2> P 3> A	6 34 RT rabi	caaca dops:	•			aaaa	c aa	aaaa	aaaa		:	,			1/36
<21 <21 <21 <21	0> 3 1> 5 2> P 3> A 0> 3 Pro	6 34 RT rabi 6	dops	is t	hali Met	ana				Ala		Asp	Ser	Val	Ala	1736
<21 <21 <21 <21 <40 Met	0> 3 1> 5 2> P 3> A 0> 3 Pro	6 34 RT rabi 6 Pro	dops:	is t Lys 5 Ser	hali Met	ana Leu	Pro	Pro	Thr 10	Ala	Arg			15 Arg		1736
<21 <21 <21 <40 Met 1 Gly	0> 3 1> 5 2> P 3> A 0> 3 Pro	6 34 RT rabi 6 Pro	dops Pro Gly 20	is t Lys 5 Ser	hali Met Pro	ana Leu Pro	Pro	Pro Pro 25	Thr 10	Ala Pro	Arg	Pro	Ala 30	15 Arg		1736
<21 <21 <21 <21 <40 Met 1 Gly	0> 3 1> 5 2> P 3> A 0> 3 Pro	6 34 RT rabi 6 Pro Gly Ala 35	dops Pro Gly 20	is to Lys 5 Ser Glu	hali Met Pro Gly	ana Leu Pro Gly	Pro Pro Leu 40	Pro Pro 25	Thr 10 Pro	Ala Pro Thr	Arg Pro	Pro Pro 45	Ala 30	Arg	Trp	1/36
<21 <21 <21 <40 Met 1 Gly Arg	0> 3 1> 5 2> P 3> A 0> 3 Pro Thr Val	6 34 RT rabi 6 Pro Gly Ala 35	dops: Pro Gly 20 Gly Asp	is t Lys 5 Ser Glu	Met Pro Gly Val	Leu Pro Gly Val 55	Pro Pro Leu 40	Pro 25 Asp	Thr 10 Pro Thr	Ala Pro Thr	Arg Pro Pro Ser 60	Pro Pro 45	Ala 30 Pro	15 Arg	Trp	1/36
<21 <21 <21 <40 Met 1 Gly Arg	0> 3 1> 5 2> P 3> A 0> 3 Pro Thr Val	6 34 RT rabi 6 Pro Gly Ala 35 Ala 0 Pro	dops Pro Gly 20 Gly Asp	Lys 5 Ser Glu Thr	Met Pro Gly Val	Leu Pro Gly Val 55	Pro Pro Leu 40 Ala	Pro 25 Asp	Thr 10 Pro Thr Arg	Ala Pro Thx Thx 75	Arg Pro Pro Ser 60	Pro Pro 45 Leu	Ala 30 Pro Gly	15 Arg Pro Glu	Trp Pro Ala Ala 80 Arg	1/36

Leu Ser Met	Arg Pro	Thr Ser	Ser	Pro Thr	Arg	Arg	Ile	Asp	Pro	Gln
115	. •		120				125			•

- Gly Ala Arg Arg Ser Ser Val Ser Pro Ala Pro Val Thr Thr Gly Met 130 140
- Ala Thr Ser Arg Thr Asp Asp Thr Leu Ile Glu Ala Glu Thr Gly Arg 145 150 155 160
- Asp Trp Thr Arg Lys Arg Met Val Arg Lys Leu Leu Lys Ala Arg Ala 165 170 175
- Lys Asp Tyr Lys Glu Gly Gly Ile Ala Ala Tyr Phe Gly Leu Arg Val 180 185 190
- Leu Arg Cys Tyr Ser Arg Ile Val Arg Ser Met Lys Arg Pro Gly Asn 195 200 205
- Leu Lys Phe Thr Cys Arg Arg Asp Val Ala Ile Ala Thr Phe Ser Gly 210 215 220
- Thr Gly Arg Met Gln Leu Ser Met Asn Ser Arg Leu Arg Val Glu Ser 225 230 235
- Leu Val Ser Ala Gly Gln Ser Val Ala Ser Phe Cys Leu Phe Leu Ile 245 250 255
- Cys Thr Ala Pro Ser Ala Met Arg Leu Val Ser Leu Leu Thr Leu Thr 260 265 270
- Pro Ser Met Thr Tyr Leu Thr Cys Gly Leu Gly Trp Met Thr Val Val 275 280 285
- Val Leu Pro Ala Ile Val Val His Cys Tyr Met Arg Arg His Thr Glu 290 295 300
- Gly Gly Trp Arg Tyr Ala Ala Leu Glu Glu His Lys Thr Glu Pro Gly 305 310 315 320
- Arg Asn Glu Lys Ile Thr Arg Ser Arg Arg Asn Ser Ala Phe Gly Gly 325 330 335
- Leu Val Gly Arg Asn Lys Arg Arg Lys Lys Ser Lys Val Ser Gly Ala 340 345 350
- Pro Thr Ala Val Tyr Thr Ala Met Phe Phe Met Phe Ser Thr Ala Ile 355 360 365
- Lys Gly Met Val Val Cys Thr Met Lys Lys Lys Val Lys Lys Ser Ala 370 380
- Asn Arg Arg Leu Arg Gln Leu Leu Arg Trp Ala Arg Tyr His Ala Asn 385 390 395 400
- Ala Phe Leu Leu Cys Ser Leu Ala Cys Ala Arg Phe Ala Ala Ser Arg 405 410 415

PCT/EP99/05652

Thr	Val	Ile	His 420	Cys	Ser	Ile	Tyr	Pro 425	Arg	Phe	Gly	Prọ	Leu 430	Ala	Thr	
Val		Ala 435	Ile	Cys	Leu	Ile	Leu 440	His	Thr	Суѕ	Thr	Tyr 445	Arg	Arg	Thr	
Glu	Ala 450	Asp	Thr	Thr	Arg	His 455	Glu	Asn	Asp	Asp	Ala 460	Arg	Lys	Val	Met	
Glu 465	Asp	Met	Ala	Lys	Arg 470	Met	Asp	Asp	Ser	Ser 475	Ser	Gly	Ser	Thr	Leu 480	
Ser	Thr	Leu	Thr	Thr 485		Glu	Thr	Tyr	His 490	Thr	Thr	Thr	Glu	Val 495		
Asp	Phe	Asp	Ser 500	Ser	Pro	Ser	Trp	Gly 505		Сув	Ser	Ser	Arg 510		Pro	
Pro	Ala	Leu 515		Glu	Ser	Thr	Phe 520		Arg	Ser	Pro	Arg 525		Ser	Thr	
Gly	Arg 530	Arg	Trp	Arg	Glu			•	•							
						,			•							•
-04	٠. ٦	~														
	0> 3 1> 5								•							
	2> I			-										٠.		
<21	3> <i>I</i>	rabi	dops	is t	hali	ana						٠.				
<22	0> .			-		-										
	1> (										٠.					٠
<22	2>	(18).	. (77	)							•					
<22	0>										•					
	1> (		4.5													
<22	2>	(156)	(3	14)												
<22	:0>															
	1> (															٠
<22	:2>	(374)	(4	1931												
	0>															
gaa	agaa	aatc	tato	atc	atg Met 1	caa Gln	gtg Val	gct Ala	gac Asp 5	ata Ile	tcc Ser	tta Leu	cag Gln	ggc Gly 10	gat Asp	50
					•				_							677
		g aaq s Ly:		Ala Ala					S	acgaa	acag	agca	aaaga	atg		97
cc	gctg	aaaa	ttc	tcac	ggc g	gcati	tcta	tc c	cgca	gaact	tįtti	ctga	acca	ctt	gtag	155
					n Cys					s Ala					aag n Lys	

itt g	ggc Gly	cct ( Pro (	gag Glu 40	ctc Leu	cac His	ggt Gly	ctc Leu	ttc Phe 45	ggc Gly	cgc Arg	aag Lys	act   Thr	ggt Gly 50	tcc Ser	gtc Val	251
gct g Ala (	ggc Gly	tac Tyr 55	tca Ser	tac Tyr	acc Thr	gac Asp	gcc Ala 60	aac Asn	aag Lys	cag Gln	aag Lys	ggt Gly 65	atc Ile	gag Glu	tgg Trp	299
aag ( Lys i					gtac	gtca	cg c	cacc	ggaa	g at	tgaa	atgt	ccc	cgag	acc	354
ctcc	gcta	ac a	cgac	acaç	tto Phe	gag Glu 75	ı Tyr	cto Leu	gag Glu	aac Asn	Pro 80	Lys	aag Lys	tac Tyr	att	406
ccc Pro 85	ggt Gly	acc Thr	aag Lys	atg Met	gcc Ala 90	ttc Phe	ggt Gly	ggt Gly	ctc Leu	aag Lys 95	aag Lys	ccc Pro	aag Lys	gac Asp	cgc Arg 100	454
aac Asn	gac Asp	ctc Leu	atc Ile	acc Thr 105	ttc Phe	ctt Leu	gag Glu	gag Glu	gag Glu 110	acc Thr	aaa Lys	taa	gcgt	ctto	jct	503
accc	c,									. •						508
<210 <211 <212 <213	> 11 > PF	l2 RT	lops:	is t	hali	ana										. :
<400 Met 1	)> 38 Gln	3 Val	Ala	Asp 5	Ile	Ser	Leu	Gln	Gly 10	Asp	Ala	Lys	Lys	Gly 15	Ala	
Asn	Leu	Phe	Lys 20		Arg	Cys	Ala	G1n 25		His	Thr	Leu	Lys 30	Ala	Gly	٠
Glu	Gly	Asn 35	Lys	Ile	Gly	Pro	Glu 40		His	Gly	Leu	Phe 45		Arg	Lys	
Thr	Gly 50		Val	Ala	Gly	Tyr 55		Tyr	Thr	Asp	Ala 60	Asn	Lys	Gln	Lys	
Gly 65	Ile	Glu	Trp	Lys	Asp 70		Thr	Leu	Phe	Glu 75		Leu	Glu	Asn	Pro 80	
65		•			70 Gly	٠.				75 Phe					80 Lys	

rangang dan again seringgang penggangan Keramatan Salah Salah Salah Seringgan keranda an seringgan Sering Salah

```
<210> 39
<211> 5156
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (1)..(609)
<220>
<221> CDS
<222> (686) .. (841)
<220>
<221> CDS
<222> (933) . . (1040)
<220>
<221> CDS
<222> (1130)..(1240)
<220>
<221> CDS
<222> (1341)..(2729)
<220>
<221> CDS
<222> (2772)..(2984)
<220>
<221> CDS
<222> (4112)..(4200)
<220>
<221> CDS
<222> (4241)..(4332)
<220>
<221> CDS
<222> (4478)..(4521)
 <220>
 <221> CDS
 <222> (5088)..(5156)
 atg gca ccg aca cca tct tct tca aga tca aat caa act caa tac acc
 Met Ala Pro Thr Pro Ser Ser Ser Arg Ser Asn Gln Thr Gln Tyr Thr
                                       10
                                                            15
 tta atc aga act cca caa aca aaa caa cgt ctc aat ttc cac tca aaa
 Leu Ile Arg Thr Pro Gln Thr Lys Gln Arg Leu Asn Phe His Ser Lys
              20
 acc cca aac cca gac gga tet aaa gat cca tet cca ccg gag cat cca
 Thr Pro Asn Pro Asp Gly Ser Lys Asp Pro Ser Pro Pro Glu His Pro
          35
```

												:		1		
	gaa Glu 50															192
	cct Pro														_	240
aga Arg	gct Ala	gat Asp	gtt Val	ggg Gly 85	tac Tyr	aga Arg	gac Asp	ttc Phe	aca Thr 90	ctc Leu	gac Asp	ggt Gly	gtt Val	ser 95	ttc Phe	288
tcg Ser	gag Glu	caa Gln	gaa Glu 100	ggt Gly	ctt Leu	gaa Glu	gag Glu	ttc Phe 105	tac Tyr	aag Lys	aag Lys	ttt Phe	ata Ile 110	gaa Glu	gag Glu	336
	att												Met			384
	cct Pro 130															432
	cct Pro			_		-		_	_							480
	caa Gln															528
	gag Glu			Tyr												576
	att / Ile		Trp					Ser				aagt	ttc	ttga	ttgata	629
ąci	ttag	tat	acat	tgaa	tt g	gctt	taaa	g gt	gtgt	actt	tgt	tgtt	ttg	ttac	ag gtg Val	688
ag Ar 20	g Leu	gaa Glu	gta Val	atg Met	ggg Gly 210	Lys	aag Lys	gcg	aaa Lys	aac Asn 215	Ala	agt Ser	ttt Phe	att Ile	tct Ser 220	736
	g aca y Thr				Lys					Ile					Lys	784
	g aga g Arq			Lys					Asn					Arg		832
ca	c tg	att	gta	aagaa	cga	tctt	ctte	gat t	gato	tgta	at go	atag	gcttt			881

His Cys Ile 255

atgcagetta tetetgtttt aacttactag tgtggttgtt tetttttgta g atc at Ile Il	
ctt gat gtg cca act gtt ggg gga aga ttg atg ctt gtt gac atg gct Leu Asp Val Pro Thr Val Gly Gly Arg Leu Met Leu Val Asp Met Ala 260 265 270	986
ggt tct gaa aat ata gac caa gct ggg cag act gga ttt gaa gct aag Gly Ser Glu Asn Ile Asp Gln Ala Gly Gln Thr Gly Phe Glu Ala Lys 275 280 285	
atg caa gtaatgtttc ctctctcaat ttgtttgatt ctactaaagt tattgtagtt Met Gln 290	1090
atggatatca actgacttat atctctcatt attcaacag act gct aag atc aac Thr Ala Lys Ile Asn 295	1144
cag gga aat att gca ctg aag cga gtt gtg gaa tct ata gca aat gga Gln Gly Asn Ile Ala Leu Lys Arg Val Val Glu Ser Ile Ala Asn Gly 300 305 310	
gat tct cat gta ccc ttt aga gac agc aag ctg acc atg ctt ctc cag Asp Ser His Val Pro Phe Arg Asp Ser Lys Leu Thr Met Leu Leu Glr 315 320 325	
gtgaaattct tgttccattg ttttatcttc tggaaaatgt tttacgtgtt gcttggtt	tt 1300
cttgaagata tttagtgttg tttctattct ctgaatgcag gac tct ttt gaa gat Asp Ser Phe Glu Asp 330	
gac aag tca aag att cta atg atc ctg tgt gcg agc ccg gat cca aag Asp Lys Ser Lys Ile Leu Met Ile Leu Cys Ala Ser Pro Asp Pro Lys 335 340 345	
gaa atg cac aag act ctc tgt act cta gag tat ggg gca aaa gca aa Glu Met His Lys Thr Leu Cys Thr Leu Glu Tyr Gly Ala Lys Ala Lys 350 360 369	3
tgc ata gtt cgt ggg tct cat act cca aac aaa gat aag tat ggg gg Cys Ile Val Arg Gly Ser His Thr Pro Asn Lys Asp Lys Tyr Gly Gl 370 375 380	
gat gag tot got tot got gtg att ttg gga toa aga ata got goo at Asp Glu Ser Ala Ser Ala Val Ile Leu Gly Ser Arg Ile Ala Ala Me 385 390 395	j 1547 :
gat gag ttc att atc aaa ctc cag tct gag aag aag caa aaa gaa aa Asp Glu Phe Ile Ile Lys Leu Gln Ser Glu Lys Lys Gln Lys Glu Ly 400 405 410	
•	

																:
Glu	Arg 415	Asn	Glu	Ala	Gln	Lys 420		Leu	Lys	Lys	Lys 425	Glu	Glu	Glu	Val	·
				Ser					agg Arg							1691
									gag Glu 455							1739
									tgc Cys			Met				1787
ttt Phe	gtt Val	gag Glu 480	atg Met	gag Glu	aga Arg	agg Arg	aga Arg 485	atg Met	gag Glu	gaa Glu	agg Arg	ata Ile 490	gtt Val	cag Gln	cag Gln	1835
caa Gln	gag Glu 495	gaa Glu	ctg Leu	gag Glu	atg Met	atg Met 500	agg Arg	aga Arg	cgg Arg	Leu	gag Glu 505	gaa Glu	atc Ile	gag Glu	gtt Val	1883
gag Glu 510	ttc Phe	cgc Arg	cgc Arg	tca Ser	aat Asn 515	gga Gly	gga Gly	agt Ser	gtt Val	gat Asp 520	gáa Glu	act	agt Ser	ggg Gly	ttt Phe 525	1931
									gat Asp 535						gtg Val	1979
				Leu					cca Pro							2027
			Val						aac Asn							2075
		Leu							gag Glu			Leu				2123
tat Tyr 590	Pro	gac Asp	cgg Arg	gta Val	tgc Cys 595	Leu	agc Ser	act	gtc Val	ttt Phe 600	Glu	gaa Glu	gaa Glu	gaa Glu	gtt Val 605	2171
gaa Glu	gaa Glu	gag Glu	gaa Glu	gaa Glu 610	Lys	gtg Val	ata Ile	gtç Val	gag Glu 615	Asp	aaa Lys	agc Ser	atc	tgc Cys 620	ttg Leu	2219
				Met					Ser					Lys	gag Glu	2267
															agg Arg	2315

40 645 650

		940					043	•								
Leu	aga Arg 655	att Ile	caa Gln	aac Asn	att Ile	ttc Phe 660	acc Thr	ctt Leu	tgt Cys	ggc Gly	aat Asn 665	cag Gln	aga Arg	gag Glu	ctg Leu	2363
ser 670	Gln ·	cac His	agt Ser	gga Gly	cag Gln 675	gag Glu	gag Glu	gat Asp	caa Gln	gcc Ala 680	aat Asn	att Ile	gca Ala	tca Ser	cct Pro 685	2411
gat Asp	aag Lys	aaa Lys	gac Asp	aat Asn 690	cag Gln	ttc Phe	ttt Phe	tct Ser	att Ile 695	acg Thr	aat Asn	aag Lys	gcc Ala	gaa Glu 700	gca Ala	2459
cta Leu	gca Ala	gta Val	gaa Glu 705	gaa Glu	gca Ala	aag Lys	gaa Glu	aac Asn 710	aat Asn	atc Ile	tca Ser	gtc Val	gat Asp 715	caa Gln	agg Arg	2507
gaa Glu	aac Asn	ggt Gly 720	cag Gln	cta Leu	gat Asp	atc Ile	tat Tyr 725	gtt Val	aaa Lys	tgg Trp	gaa Glu	aca Thr 730	gct	gct Ala	gat Asp	2555
aac Asn	cct Pro 735	cga Arg	aag Lys	ctc Leu	ata Ile	aca Thr 740	aca Thr	ctg Leu	aga Arg	gtt Val	aca Thr 745	Lys	gat Asp	gca Ala	aca Thr	2603
cta Leu 750	gct Ala	gac Asp	ttg Leu	agg Arg	aag Lys 755	ctt Leu	att Ile	gag Glu	atc Ile	tac Tyr 760	Leu	gga Gly	tct Ser	gat Asp	aat Asn 765	2651
cag Gln	gct Ala	ttt Phe	acc Thr	ttt Phe 770	ctc Leu	aag Lys	ctc Leu	ggg	gta Val 775	Ile	aac Asn	ttg Leu	aac Asn	caa Gln 780	Caa Gln	2699
				Phe					Phe		atgo	tct	gatc	ctaa	at	2749
gca	gtta	ttt	caat	gtat	ga a	g ga Gl	a cc u Pr	a to o Cy	rs Gl	y Al	t ca La Gl	ia gt In Va	g gc	a aa .a Ly 80	s Glu	2801
aaa Lys	gaa Glu	tca Ser	aca Thr 805	: Val	caa Gln	gct Ala	acg Thr	g ago Ser 810	Lei	cct Pro	cto Lev	tgo 1 Cys	aac Asr 815	Gly	cac His	2849
gca Ala	tac	Leu 820	ı Ala	act Thi	tto Lei	g aga	cca Pro 825	Gly	a aaq y Lys	g ago	c tca r Sei	ca c Gl: 830	ı His	aaa Lys	a agt s Ser	2897
ctt Lev	caa Glr 835	ı Pro	gea Ala	a ago	c cca	Let 840	ı Pro	a cti	t aat u Asi	t cc	c ata o Ile 849	e Gl	a aad J Asi	ato n Me	g atg E Met	2945
gaa Glu 850	ı Va	t acc	r Pro	c ato	e Sei 85!	r Ly	a gte s Vai	g aca	a cc	g aa o As: 86	n Hi	t ca s Gl	a gti n	tgat	gaat	2994

tttcatcacc caatctcgta gctcatctca gctccactcc attcatcact ctcagaagac 3	054
attagtcgct atgtcttgtt ttctctattc ttcttttgtc tgtccaaagg tagcttttga 3	114
aagatgtagc agcctttgtc tatttctctg tgttgagaaa aaaaaaactc ttatgtacga 3	3174
ccacttttgt agctatatat atgttctacg atgtttcagc agagtggtgt ttatcagaac	3234
gtataactgg tgtttcccaa aggatgctta gttctactta taacatatac ataagtagag	3294
agaatgctgc agccacatag agctacttct tacctctctc tgtcattgta acatatggac :	3354
aaattccaaa agccctattc aattccaacc ccaatatctt tatgatcatc atcataacgt	3414
gaacaccaaa aacaagggca aaaatttcaa aggctcttaa aaataacaat atcccggaag	3474
caaagattac ctgcaactgc aagggaaagc caagccctat tatagaaaag caacttcatt	3534
agttaagccc tatctctcaa tatgctcaca tgcatgcatt gaccaaatgt cttctttat	3594
ctacaggtac tcagtcactt tcttagttac acactagatt aactcaattc ttctgcaacc	3654
tcattatctc caaagtaaaa gaccactgtt attgatgttt ttatggataa tatatgatga	3714
ttcatcttta ttacattagc tgaatacaga acaacaacca attaactcaa ttattttgaa	3774
agatgtatgt agcctgtcta tttctcggtg ttgagaaaaa aaacgctatg tacgaccact	.*
ttcagcagtc aaagtgagtg actagagcca tcagcatgga gtgtttttca agttgtacaa	
caagatttgt caacaaagtc taaaactttc ttttattcga ccataatatg actgactagg	
cacgttggtt ttcgatatac agtttaaaag gttggagaag atgactagat gagataggtt	
ttcatatttt acttccacat cgaagtttta gagaacagaa agaggagaaa attgaagtac	
acatgagaca agttacactt taaagcttta ttaacag att ctt tta aaa aca gag Ile Leu Leu Lys Thr Glu 865	4129
act gag aga ttg gga gag gca gat tac att aac tet ett tet ete tet Thr Glu Arg Leu Gly Glu Ala Asp Tyr Ile Asn Ser Leu Ser Leu Ser 870 875 880	4177
cac ttt ctc atc ttg ttc cca ag gttaaaaaac aattcgagga catgtctttc His Phe Leu Ile Leu Phe Pro Ar 885 890	4230
ctattttcag a gga gag agc cat cag cac cga atg ttg tct ttt cac tct g Gly Glu Ser His Gln His Arg Met Leu Ser Phe His Ser 895 900 905	4280
cat caa act tct cct tcc cta tct tca ttt cct ctt tct aga gcc His Gln Thr Ser Pro Ser Leu Ser Ser Phe Pro Leu Leu Ser Arg Ala	4328

gat g gtaaggaget egaagtttet aatggeatee teatgeecag geettgetge Asp A	4382
agetgeagat teatagetet gtggaaceeg ttgggttgtg geatgaegtg aaceaettga	4442
aaatagtegg ettgagtggt tetegettgg tteag et gat gag eea ggt etg gtg la Asp Glu Pro Gly Leu Val 925	4497
ctt gat atc aca cct ctc ttt gag gtacttccat ttcgagactc gtgctgcaaa Leu Asp Ile Thr Pro Leu Phe Glu 930 935	4551
tgaagccagc aaatcaaaac acacaaactt tctcatgttc tgattcccta cttattctga	4611
gaattacttt ggatcattac aacaagagaa ataacaacac aaactaacca cttccttggc	4671
agaagagggt atatcatcag aagatetgtg tetagagega teaccaagag egeettgget	4731
tgaaacattt cgtctggtga atgcctcaat tgcacctgta aatcttcctc gcaggtcctg	4791
tccgactaaa cagaataggg aaagaagttc tcagtttgag atcttccact attcaacaat	4851
ttaattaaat ctctggacac aaattcaaaa tcttctaagg gaaacaacat atgaatgtta	4911
atatctgaag ggtcaagtga gatagtgcac gtttttcagc acccaaaatt gtcaacactg	4971
tctcataaat ttacaactta aaataaactt tttgatatat ctctttgtat tcgtccctcc	5031
aatataagag acagagaaca tcaatgtacc tgtaggcttt tcagctcttt ctgcag gtg Val	5090
gtc ctg gag ggt cca acg ctg gtc ttg gag ttg gct gtt gta aat gat Val Leu Glu Gly Pro Thr Leu Val Leu Glu Leu Ala Val Val Asn Asp 940 945 950	5138
aga cac ata gca gga taa	515
Arg His Ile Ala Gly 955 960	•
<210> 40 <211> 959 <212> PRT <213> Arabidopsis thaliana	
<400> 40	
Met Ala Pro Thr Pro Ser Ser Ser Arg Ser Asn Gln Thr Gln Tyr Thr  1 5 10 15	
Leu Ile Arg Thr Pro Gln Thr Lys Gln Arg Leu Asn Phe His Ser Lys 20 25 30	
Thr Pro Asn Pro Asp Gly Ser Lys Asp Pro Ser Pro Pro Glu His Pro 35 40 45	

Val Glu Val Ile Gly Arg Ile Arg Asp Tyr Pro Asp Arg Lys Glu Lys

														•	
•	50					55			· · ·.		60	•		,š	
Ser 65	Pro	Ser	Ile	Leu	Gln 70	Val	Asn	Thr	Asp	Asn 75	Gln	Thr	Val	Arg	Val 80
Arg	Ala	Asp	Val	Gly 85	Tyr	Arg	Asp	Phe	Thr 90	Leu	Asp	Gly	Val	Ser 95	Phe
Ser	Glu	Gln	Glu 100	Gly	Leu	Glu	Glu	Phe 105	Tyr	Lys	Lys	Phe	Ile 110	Glu	Glu
Arg	Ile	Lys 115	Gly	Val	Lys	Val	Gly 120	Asn	Lys	Cys	Thr	Ile 125	Met	Met	Tyr .
Gly	Pro 130	Thr	Gly	Ala	Gly	Lys 135	Ser	His	Thr	Met	Phe 140	Gly	Cys	Gly	Lys
Glu 145	Pro	Gly	Ile	Val	Tyr 150	Arg	Ser	Leu	Arg	Asp 155	Ile	Leu	Gly	Asp	Ser 160
Asp.	Gln	Asp	Gly	Val 165	Thr	Phe	Val	Gln	Val 170	Thr	Val	Leu	Glu	Val 175	Tyr
Asn	Glu	Glu	Ile 180	Tyr	Asp	Leu	Leu	Ser 185	Thr	Asn	Ser	Ser	Asn 190		Leu
Gly	Ile	Gly 195	Trp	Pro	Lys	Gly	Ala 200	Ser	Thr	Ĺys	Val	Arg 205	Leu	Glu	Val
Met	Gly 210	Lys	Lys	Ala	Lys	Asn 215	Ala	Ser	Phe	Ile	Ser 220	Gly	Thr	Glu	Ala
Gly 225	Lys	Ile	Ser	Lys	Glu 230	Ile	Val	Lys	Val	Glu 235		Arg	Arg	Ile	Val 240
Lys	Ser	Thr	Leu	Cys 245	Asn	Glu	Arg	Ser	Ser 250		Ser	His	Суѕ	11e 255	Ile
Ile	Leu	Asp	Val 260		Thr	Val	Gly	Gly 265		Leu	Met	Leu	Val 270		Met
Ala	Gly	Ser 275		Asn	Ile	Asp	Gln 280		Gly	Gln	Thr	G1y 285		Glu	Ala
Lys	Met 290		Thr	Ala	Lys	11e 295		Gln	Gly	Asn	300		. Leu	Гуз	Arg
Va1 305		. Glu	. Ser	Ile	Ala 310		Gly	Asp	Ser	His 315		. Pro	) Phe	Arg	320
Ser	Lys	Lev	ı Thr	325		. Lev	Glr	Asp	330		e Glu	ı Ası	) Asp	335	Ser
Lys	: Ile	Le	Met	Ile	e Lev	г Суз	. Ala	Ser		Ası	Pro	Lys	s Glu		His

Lys Thr Leu Cys Thr Leu Glu Tyr Gly Ala Lys Ala Lys Cys Ile Val

		355					360					365			
_	Gly 370	Ser	His	Thr	Pro	Asn 375	Lys	Asp	Lys		Gly 380	Gly	Asp	Glu	Ser
Ala 385	,	Ala	Val	Ile	Leu 390	Gly	Ser	Arg		Ala 395	Ala	Met	Asp	Glu	Phe 400
Ile	Ile	Lys	Leu	Gln 405	Ser	Glu	Lys		Gln 410	Lys	Glu	Lys	Glu	Arg 415	Asn
:			420		Leu			425	•	,			430		
Arg	Ser	Leu 435	Leu	Thr	Gln	Arg	Glu 440	Ala	Cys	Ala	Thr	Asn 445	Glu	Glu	Glu
Ile	Lys 450	Glu	Lys	Val	Asn	Glu 455	Arg	Thr	Gln	Leu	Leu 460	Lys	Ser	Glu	Leu
Asp 465	Lys	Lys	Leu	Glu	Glu 470	Суѕ	Arg	Arg	Met	Ala 475	Glu	Glu	Phe	Val	Glu 480
Met	Glu	Arg	Arg	Arg 485	Met	Glu	Glu	Arg	Ile 490	Val	Gln	Gln	Gln	Glu 495	Glu
Leu	Glu	Met	Met 500	Arg	Arg	Arg	Leu	Glu 505	Glu	Ile	Glu	Val	Glu 510	Phe	Arg
Arg	Ser	Asn 515	Gly	Gly	Ser	Val	Asp 520	Glu	Thr	Ser	Gly	Phe 525	Ala	Lys	Arg
	Arg 530	Ser	Leu	Tyr	Ser	Asp 535		Asp	Pro	Gly	Met 540	Val	Lys	Ser	Met
Asp 545	Leu	Asp	Met	Gly	Asp 550	Pro	Glu	Pro	Val	Lys 555	Gln	Val	Trp	Gly	Ala 560
Val	Ser	His	Gln	Ser 565	Ser	Asn	Thr	Ile	Ser 57.0	Ser	Asn	Phe	Thr	Asn 575	Leu
Leu	Gln	Pro	Lys 580		Ser	Glu	Asn	Met 585	Leu	Thr	Gln		Tyr 590	Pro	Asp
Arg	Val	Cys 595		Ser	Thr	Val	Phe 600		Glu	Glu	Glu	Val 605		Glu	Glu
Glu	Glu 610		Val	Ile	Val	Glu 615		Lys	Ser	Ile	Суs 620	Leu	Ile	Thr	Thr
Pro 625		Pro	Ser	Leu	Asn 630		Glu	Gly	Leu	Gly 635		Glu	Asn	Суз	Phe 640
Asn	Gly	Ala	a Asp	Asr 645	Lys	Glu	ser	Ala	Ser 650		Arg	Arg	Leu	Arg 655	
Glr	Asr	ı Ile	e Phe	Thi	Leu	CVS	Glv	Asn	Gln	Arq	Glu	Leu	Ser	Gln	His

60	665	670

Ser Gly Gln Glu Glu Asp Gln Ala Asn Ile Ala Ser Pro Asp Lys Lys 675 680 685

Asp Asn Gln Phe Phe Ser Ile Thr Asn Lys Ala Glu Ala Leu Ala Val 690 695 700

Glu Glu Ala Lys Glu Asn Asn Ile Ser Val Asp Gln Arg Glu Asn Gly 705 710 715 720

Gln Leu Asp Ile Tyr Val Lys Trp Glu Thr Ala Ala Asp Asn Pro Arg 725 730 735

Lys Leu Ile Thr Thr Leu Arg Val Thr Lys Asp Ala Thr Leu Ala Asp 740 745 750

Leu Arg Lys Leu Ile Glu Ile Tyr Leu Gly Ser Asp Asn Gln Ala Phe
755 760 765

Thr Phe Leu Lys Leu Gly Val Ile Asn Leu Asn Gln Gln Ala Gln Lys
770 775 780

Ala Phe His Phe Tyr Leu Phe Glu Pro Cys Gly Ala Gln Val Ala Lys 785 790 790 800

Glu Lys Glu Ser Thr Val Gln Ala Thr Ser Leu Pro Leu Cys Asn Gly 805 810 815

His Ala Tyr Leu Ala Thr Leu Arg Pro Gly Lys Ser Ser Gln His Lys 820 825 830

Ser Leu Gln Pro Ala Ser Pro Leu Pro Leu Asn Pro Ile Glu Asn Met 835 840 845

Met Glu Val Thr Pro Ile Ser Lys Val Thr Pro Asn His Gln Ile Leu 850 860

Leu Lys Thr Glu Thr Glu Arg Leu Gly Glu Ala Asp Tyr Ile Asn Ser 865 870 870 885

Leu Ser Leu Ser His Phe Leu Ile Leu Phe Pro Arg Gly Glu Ser His 885 890 895

Gln His Arg Met Leu Ser Phe His Ser His Gln Thr Ser Pro Ser Leu 900 905 910

Ser Ser Phe Pro Leu Leu Ser Arg Ala Asp Ala Asp Glu Pro Gly Leu 915 920 925

Val Leu Asp Ile Thr Pro Leu Phe Glu Val Val Leu Glu Gly Pro Thr 930 940

Leu Val Leu Glu Leu Ala Val Val Asn Asp Arg His Ile Ala Gly 945 955

```
<210> 41
<211> 6960
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (147)..(327)
<220>
<221> CDS
<222> (405)..(796)
<220>
<221> CDS
<222> (1426)..(1500)
<220>
<221> CDS
<222> (3486)..(3638)
<220>
<221> CDS
<222> (3754)..(3864)
<220>
<221> CDS
<222> (4030)..(4096)
<220>
<221> CDS
<222> (4252)..(4523)
<220>
<221> CDS
<222> (4732)..(4834)
<220>.
<221> CDS
<222> (6735)..(6907)
<400> 41
cccaaaaagc ttgacctaac ggctatgttt tctttacttt caccataaat aagcacctct 60
tgaggttgca aacacacaca cacacacaca ctcacttcaa aagagttagt aagaagttgg 120
ggtttgatta acgttttgca tcggag atg ggt ttg gtc atg agg ttt gat ctt 173
                              Met Gly Leu Val Met Arg Phe Asp Leu
 tac ctt atg ttt gtg atg ttg atg ggt tta ggg ttt acg ata tca aat
                                                                    221
 Tyr Leu Met Phe Val Met Leu Met Gly Leu Gly Phe Thr Ile Ser Asn
 10
 gga tac aag ttc tat gtt ggt ggg aaa gat ggt tgg gtc ccg act cct
 Gly Tyr Lys Phe Tyr Val Gly Gly Lys Asp Gly Trp Val Pro Thr Pro
```

1.50

30 35 40

							٠,									
tcc Ser	gaa Glu	gat Asp	tat Tyr 45	tct Ser	cat His	tgg Trp	tct Ser	cac His 50	Arg	aac Asn	cgg Arg	ttt Phe	caa Gln 55	gtc Val	aac Asn	317
		ctt Leu 60		aagi	ctat	t tt	cctc	ttct	cta	ctata	ata i	caca	caat	gt		367
gtca	aata	cta a	itgca	atagı	ca at	בנננ	gatti	t tta	acaa					gcc Ala 65		421
														63		
gga	aaa	gat	tca	ata	t.ta	gag	ata	act	даа	caa	αaα	tac	aac	aca	tac	469
Gly	Lys	Asp	Ser 70	Val	Leu	Glu	Val	Thr 75	Glu	Gln	Glu	Tyr	Asn 80	Thr	Cys	403
																•
aac	acg	aca	cac	ccc	ctg	act	tcc	ctc	tca	gac	gga	gac	tct	ctc	ttc	517
Asn	Thr	Thr 85	His	Pro	Leu	Thr	Ser 90		Ser	Asp	Gly	Asp 95	Ser	Leu	Phe	
											٠.					
Len	Len	Ser	Hie	Car	ggt	COT	Tac	בבנ	Dho	att	agt	ggc	aac	tct Ser	caa	565
Deu	100	Ser	niis	261	GIY	105	TYL .	FIIE	rne	TIE	110	GIA	Asn	ser	Gin	
aac	tat	ctt	aaa	aat	cad	ааσ	cta	acc	atc	280	atc	++~	tan	acc	ata	613
Asn	Cys	Leu	Lys	Gly	Gln	Lvs	Leu	Ala	Val	Lvs	Val	Leu	Ser	Thr	Vel	013
115	-		-		120	_,				125			DCI		130	
cac	cac	agc	cac	tct	cct	cgt	cat	acc	tct	ccc	tcc	ccg	tct	ccg	atc	661
His	His	Ser	His	Ser	Pro	Arg	His	Thr	Ser	Pro	Ser	Pro	Ser	Pro	Val	
		•		135			•		140		-	:		145		
cat	cag	gag	ttg	tct	tcg	ccg	ggg	cct	tct	сса	gga	gtg	gaa	cca	tca	709
His	Gln	Glu	Leu 150	Ser	Ser	Pro	Gly	Pro 155	Ser	Pro	Gly	Val.	Glu 160	Pro	Ser	·
+	~~+					· 										
Cor	gat.	Cox	aac	COT	cgt	gtt	cca	gct	cca	gga	ccg	gct	aca	gct	CCC	757
per		165	ASII	per	ALG	vai	170	Ala	PIO	GIÀ	Pro	175	Thr	Ala	Pro	
aat	tcg	qcc	aat	tta	att	aat	cca	aaa	atσ	ata	att	ctt	ata	attat	.us	806
Asn	Ser 180	Ala	Gly	Leu	Val	Gly 185	Pro	Gly	Met	Val	Val 190	Leu	,	accai		,000
taag	ttct	ct c	tttt	gagg	gg gt	ttat	atat	: tgt	cgct	agt	catt	aaat	:tt	gtgag	ggtat	866
taat	tact	ct a	accat	tgaç	gt tt	cata	attta	a tgt	geet	ttt	tatt	tgta	atg	tttga	agcat	926
.cttg	gtaac	ccc a	attt	taat	g tt	tcc	gctgt	cto	gttt	ttg	ttct	tact	aa .	agaaa	atatt	986
taag	gatgt	tt t	tttg	jtatt	g at	taga	atgc	g aat	gttt	tta	tttt	gtgt	tt	taatt	atgat	1046
caca	ctaa	ata t	gaat	atat	a co	jacga	atat	t gta	agagt	tca	cata	gcto	at	gcaat	aaaac	1106
ttct	ccac	cac a	aact	aaaa	at ct	tgtt	gaaa	a cat	ataa	ata	gato	ttat	ac	acttt	ttgta	1166

catataagaa tggtttgaac aatttaactt taatcaatat attaaaccgg tacaccgaaa 1226
tccaatagag agaatatgtc aaggagttaa caaaaaaaat atactaccgc cgtctgtggg 1286
gatcgaaccc acggcctcgt gggtaaaagc cacgcgctct accactgagc taagacggct 1346
atatgacaaa aaatttaaat tatgttaatt attgtatgtt tttgcagatc aaattaccaa 1406
tgaaatagtt ggtatttag gtt gtt aac tca atc ata aag ccg att gac tct 1458
Val Val Asn Ser Ile Ile Lys Pro Ile Asp Ser
195 200

ttt ttg ttg aag agc ttg cct ctt gtt gtg gat gtg gct gtt Phe Leu Leu Lys Ser Leu Pro Leu Val Val Asp Val Ala Val 205 210 215 1500

gtaagactaa taccagccct tgggtcgaaa gttgaaagtt tgattctgga tctctaatgt 1560 ctctagtatg gacgctcctg tttggaagtc ttttgtttgg aatatgatat agattcataa 1620 aaatgegggt atetactace atttgetatt gaccateaaa aaaacaacaa agtetettaa 1680 ctatcttaaa attttattag gagattttca tgcgactaga acaagatttt caagcagtgg 1740 atgataagac aaaactgata ggccaacaac ttgatgaaat gggcaatatt atgaaataat 1800 acacaagtat agcttccacc tccaaccacc taaggacctc taataaattt acccaccaaa 1860 ggtggtggga ctccgtcaca gagccgtgcc tcaaggcaaa agaaagaaac attcgcctac 1920 gtcctcaaat ttttgaaaaa aacttaggag catatatttt tacaagataa ctttagtttc 1980 ataggtttaa tattgacaaa tcacttacat ttacctaaat aataaaaata tagaattaaa 2040 aatagaaaaa tattcacaga ataaataaat aaaacagaac aaagcattat aaatttaggt 2100 taaagcattc gatatagaat tggttaaaaa aattaacttt gaatcttttg tcatatgaca 2160 atttattttt gtaaacactt ttacttctat tattataagc atctttgctt gtgaattggg 2220 gcaaatttca tttggccgcc tccggcaacc attgaccttg gcacggctct gctccgtcac 2280 ctcttatatt tgctgcaatg gcacagagaa gagaaattag ttgctggtgt tgatccctaa 2340 tatgtgctag ttcatcatct acatgtccaa atctaaatct catcccttct cctatcgcac 2400 ggacctgcaa gtgtagaaag caaaaacatc aacatatttt aataataatt acaaaacaca 2460 ttaggttctt aaacttatca aaactaatta cttcaaaaaa tatctttcta aaagttaata 2520 atccataaaa taaattttaa taagctctta ctaattaaac ataagataaa acaatattat 2640 taatttctca acaatcaaat gtggatagaa accaaaaaga taaaataaac tcggatgtca 2700

ta	ggcccat	a atcca	gcctt 1	ttctcaaa	gc tta	aacgtaa	cgggctcgg	c ccaaatttgg	2760
tç	tgttcat	c atctt	cccca (	caaaacct	aa ttt	tgtttct	tcagtagta	c tgtagcttca	2820
gā	atgcaact	c ctcga	aaacc	cgtagaac	cg gca	ttgagcc	aatcgttta	c attctctgat	2880
to	catatect	t agcgt	tttca	gaaacaaa	at ggt	gggttgg	aagaggaat	t tgcaga <b>ct</b> gt	2940
tá	attcgtca	a gttgg	tagaa	gagtgaag	aa cag	rtcacatt	tctacagca	a attactcttc	3000
t۱	ctactcg	g aattt	agaat	ccctttc	tc aca	aggttga	ctttttgat	c atttccgaaa	3060
to	ctagtgtg	t ttett	agtgg	gtctttca	aa ggg	catgtgt	tatctggtc	t tcgtgtttgt	3120
ga	aattgtgt	g tttga	gttga	gtttttt	gc tgg	tgattat	aggttactt	g cagagtctcc	3180
, t	gagaccat	c ctact	cctcc	agaccact	gt ato	catcatct	acaacaact	g gtaatgcatt	3240
t	gaatcgac	a tttct	tttgt	gttttact	ga gat	tggagtt	tcttgtttc	c tgatatagça	3300
a	atttgttg	c tgcat	tgaaa	aatcgaat	tt caa	aatttgg	gaagtgaga	a tgttgctagt	3360
g	ggagacta	t atct	ttatc	catgtga	itt agg	gcgaagag	actcatctt	t tggaactat	3420
C	gtctctag	t caact	taggg	acctgtad	ett tag	ggtatga	aatttcaat	t tgggtatgti	3480
t								gag cct gta Glu Pro Val 230	
		_			-		Ser Gly I	aa gaa gaa ys Glu Glu <b>4</b> 5	3578
	lu Gln I			to Lys A				tc ctc aag al Leu Lys	3626
	ct ata a er Ile I 265		gtgtct	tctt ta	actcct	ag aacag	rttta cttt	tcagat	3678
g	atctgct	c attt	cgttta	atatttt	tcc at	ctcaatct	agttatata	a tgtgcccaa	c, 3738
c	ttgcttg	tt ttca	g agt o Ser I	ect aag Pro Lys 270	aag gt Lys Va	c aac ct l Asn Le	g gtt gca eu Val Ala 275	gca cta gtc Ala Leu Val	3789
P			Val G				Leu Gln	tc aca gtc Val Thr Val 295	3837
	aa cga Lys Arg	-					ctg agatco	cgagt	3884

ataactttcc tcatctaatg atacttagca tacaacttgt tttgttaata caatgcttaa	4004
aggagttaaa tacattatac tgcag gtt atc cac gct gcc cgg gca aat gct Val Ile His Ala Ala Arg Ala Asn Ala 305 310	4056
act cat aac cat gga cta gat cct gac cgt ctc ctt gtt g gtatgtaaaa Thr His Asn His Gly Leu Asp Pro Asp Arg Leu Leu Val A 315 320 325	4106
ctgattctgg atccctgatt tccttgtttt acatttaaaa agagaacgtg atattttaga	4166
gagttcgccg attggtactt taaggaagca aacatgatat gccagaacga tgtatttcat	4226
ctaagcttgt gatatgtgat tgcag cg gaa gca ttt gtt ggg aag gga ctg la Glu Ala Phe Val Gly Lys Gly Leu 330 335	4277
ttt ggg aag aag gta gct tac cat gca aaa gga aga agc ggg att ata Phe Gly Lys Lys Val Ala Tyr His Ala Lys Gly Arg Ser Gly Ile Ile 340 345 350	4325
tca ata ccc cgg tgt cgc cta aca gtc ata gtt aga gag acg act cca Ser Ile Pro Arg Cys Arg Leu Thr Val Ile Val Arg Glu Thr Thr Pro 355 360 365	4373
gag gaa gaa gct gag att gca agg ctc aaa gtt cac aat ttt aag aag Glu Glu Glu Ala Glu Ile Ala Arg Leu Lys Val His Asn Phe Lys Lys 370 375 380	4421
aaa agc aaa cgg gag aga cag ctt gta cca cac aag ctc atc gag aca Lys Ser Lys Arg Glu Arg Gln Leu Val Pro His Lys Leu Ile Glu Thr 385 390 395	4469
agt cca ata tgg aac cgc aga ggt acc aaa gcc aat cat cgg tcc tca Ser Pro Ile Trp Asn Arg Arg Gly Thr Lys Ala Asn His Arg Ser Ser 400 405 410 415	4517
gag ttg gtacggtcgt ctcactagta tctttgttcc cgcaattgca acaagagctt Glu Leu	4573
ctctgttatg gtaaattgct tttttttttg gttttggttt gatattgtat tggaactcta	4633
taggacctgt ttgcttcttg tattcaataa acatgttccc agagaggaaa cttcacttaa	4693
caaaagcgtc tctgtttttc tccattctgt ttctggag gtg tta aca atc att ttg Val Leu Thr Ile Ile Leu 420	
gat gta act tgt gtt gga aac atg gaa aaa aat cgt ctg gat aat ttg Asp Val Thr Cys Val Gly Asn Met Glu Lys Asn Arg Leu Asp Asn Leu 425 430 435	4797
acg aat caa aac aac att tat cat cat aat ccc gaa g gtccataatt Thr Asn Gln Asn Asn Ile Tyr His His Asn Pro Glu G 440 445 450	4844

tttatcagtt tgttccactt cttaatgcaa tttttggata ttaaaaagaat aaatgaatga 4904 atatacatat gcattttgtt tgttgagaat atttatttag tcatttattt aagaaattta 4964 tattttaatt ttttattatt aatatgatat ttgttttgtc actatgttac aacataattc 5024 aattttaata toattataat tgatagtaat aataataaat aacagtcaca ggcccctacc 5084 atcatcccaa aatgattcat gcaatttagt catcaaatac atacaatctt atatacaaaa 5144 gaatcacaca gcatgtataa actaatagta tagaaattcg attaaaaaat actcccaggc 5204 tagttttttc accttccatg aagaatagaa tcataagttt ggaaggaatt agaataagaa 5264 gacgaattcc atacatcttg gaacgtggga tgttgttgtc tgcttccctc accagtttcc 5324 aacaagtaag agetetteae teteteeaac aagettattt eeettteace accateetee 5384 actaatctcc cttgttccaa tatctgcacc acttgtctca tcttcggacg cactctcgga 5444 tcaggatgca cacacaacag tcctattctc agagccatct ccacttcctc gaccacgaac 5504 actccattcg cctttattct ctcgtctaaa ccatcaacca ctttgtcttt ctccattagt 5564 ccccatatcc attccactat cccttctctt ccttcctcta ttggcctcct tccacacact 5624 acctccaaca caaacactcc aaaqctatac acatcggttt gcgctgatgc tctccctgtc 5684 ttaaccaact caggcgccat ataacccgct gttccaacaa catgtgtcgt gctaaccatc 5744 tetttactag tgttetgeaa ettageeaac eeaaaateac etaccetege gtteatatee 5804 ttgtcaagca acacattgct tgactttata tctctatgta acacctttgt ctcccaccct 5864 tegtgtagat acaacateec tgaggetagg tetettatea eteteattet tteeteecaa 5924 ttcaacatct cgttacaatc aaatatccgc ttatcgacac ttccattctc catatactcg 5984 taaatcaata tcagactete teeteettte ttagaccaac ettttagtee aactatatte 6044 ttgtgtctca acctccctaa gctcgagacc tcagctaaga actcactcgt cgcgccaacg 6104 ctctctcgag gactcatcat tattctctta accgcaactt ctttaccttc caacactccc 6164 ctgtacactt tagaattccc tccgtatccg atcatgttct catcggaaaa cccttttgtt 6224 qcttccaaaa catctttgta ttgcactctg tgaggccaat actctgtttc ccaatcttcc 6284 acgteteett etagtetetg eettegaege ettacaaegt agaaacagag gageecaata 6344 acagagacta acaacacaac accactagag accccagcaa tgaagccttt agacttcaaa 6404 acagagtcac ctgacaattt aaacgaaggt agattcctag tgatcaaagc atcaccaatg 6464 gagaaattgg agttactaaa actccatgag agaatcctat ggctctgcac tagttgtcct 6524

The state of the second section is the second secon

gtggaggcag tgaatccaac gaacatatca tcaagtaaga ctccagtgag atttaatgga 6584 atgcttatga gtggtcttat gggctttcta gagctagctc tagccatcgt gacattgatc 6644 gctgacccat taaactcgat ccacgcctga taattctcgc cactgttaag cttcagctcc 6704 gtgaatetet ggeegtetet geeteeatag aa acc tgc agt tte aga tgc aac lu Thr Cys Ser Phe Arg Cys Asn gga agt gag aga att gac gtc gac gcc gac gtg gtt gtc gtt gat gtc 6805 Gly Ser Glu Arg Ile Asp Val Asp Ala Asp Val Val Val Asp Val 470 465 gtt gaa ctc ttg gtt agc gaa aac atc gaa ttc aac ggc gaa gat tcg 6853 Val Glu Leu Leu Val Ser Glu Asn Ile Glu Phe Asn Gly Glu Asp Ser 480 485 gct att ggg gtc acc gtt att ggt gaa gtt gaa gag gcc gag atg ctg 6901 Ala Ile Gly Val Thr Val Ile Gly Glu Val Glu Ala Glu Met Leu 495 500 aga tga gcttgcggcg gaggtttcgg agaaaggaag gaagacgaag gcgaagccgt 6957 6960 ggc <210> 42 <211> 508 <212> PRT <213> Arabidopsis thaliana <400> 42 Met Gly Leu Val Met Arg Phe Asp Leu Tyr Leu Met Phe Val Met Leu Met Gly Leu Gly Phe Thr Ile Ser Asn Gly Tyr Lys Phe Tyr Val Gly Gly Lys Asp Gly Trp Val Pro Thr Pro Ser Glu Asp Tyr Ser His Trp 40 Ser His Arg Asn Arg Phe Gln Val Asn Asp Thr Leu His Phe Lys Tyr Ala Lys Gly Lys Asp Ser Val Leu Glu Val Thr Glu Gln Glu Tyr Asn Thr Cys Asn Thr Thr His Pro Leu Thr Ser Leu Ser Asp Gly Asp Ser 90 Leu Phe Leu Leu Ser His Ser Gly Ser Tyr Phe Phe Ile Ser Gly Asn

Ser Gln Asn Cys Leu Lys Gly Gln Lys Leu Ala Val Lys Val Leu Ser

Thr Val His His Ser His Ser Pro Arg His Thr Ser Pro Ser Pro Ser 135 Pro Val His Gln Glu Leu Ser Ser Pro Gly Pro Ser Pro Gly Val Glu Pro Ser Ser Asp Ser Asn Ser Arg Val Pro Ala Pro Gly Pro Ala Thr 170 Ala Pro Asn Ser Ala Gly Leu Val Gly Pro Gly Met Val Val Leu Val 185 180 Val Asn Ser Ile Ile Lys Pro Ile Asp Ser Phe Leu Leu Lys Ser Leu 200 Pro Leu Val Val Asp Val Ala Val Gly Ile Ser Thr Ser Arg Gln Leu Gln Ala Ser Glu Glu Pro Val Ser Ser Pro Leu Ser Ser Pro Ala Leu 235 230 Leu Gly Ser Gly Lys Glu Glu Glu Gln Lys Ile Ile Pro Lys Arg Gln 250 Lys Val Gln Ala Val Leu Lys Ser Ile Lys Gln Ser Pro Lys Lys Val 265 Asn Leu Val Ala Ala Leu Val Arg Gly Met Arg Val Glu Asp Ala Leu 280 Ile Gln Leu Gln Val Thr Val Lys Arg Ala Ala Gln Thr Val Tyr Arg Val Ile His Ala Ala Arg Ala Asn Ala Thr His Asn His Gly Leu Asp 315 310 Pro Asp Arg Leu Leu Val Ala Glu Ala Phe Val Gly Lys Gly Leu Phe Gly Lys Lys Val Ala Tyr His Ala Lys Gly Arg Ser Gly Ile Ile Ser 345 Ile Pro Arg Cys Arg Leu Thr Val Ile Val Arg Glu Thr Thr Pro Glu Glu Glu Ala Glu Ile Ala Arg Leu Lys Val His Asn Phe Lys Lys Lys Ser Lys Arg Glu Arg Gln Leu Val Pro His Lys Leu Ile Glu Thr Ser 390 Pro Ile Trp Asn Arg Arg Gly Thr Lys Ala Asn His Arg Ser Ser Glu Leu Val Leu Thr Ile Ile Leu Asp Val Thr Cys Val Gly Asn Met Glu 425

	Lys	Asn	Arg 435	Leu	Asp	Asn	Leu	Thr 440	Asn	Gln	Asn	Asn	Ile 445	Tyr	His	His	
,	Asn	Pro 450	Glu	Glu	Thr	Cys	Ser 455	Phe	Arg	Суз	Asn	Gly 460		Glu	Arg	Ile	
	Asp 465	Val	Asp	Ala	Asp	Val 470	Val	Val	Val	_	Val 475	Val	Glu	Leu	Leu	Val 480	
	Ser	Glu	Asn		Glu 485	Phe	Asn	Gly	Glu	Asp 490	Ser	Ala	Ile	Gly	Val 495		•
	Val	Ile	Gly	Glu 500	Val	Glu	Glu	Ala	Glu 505	Met	Leu	Arg					
						٠.										,	
		)> 43 L> 72				•		*									
		2> DI 3> Ai		dops	is tl	nalia	ana	:									
,	<22(															*	
	<223	L> CI		. (71	B)												
	<400	)> 4:	3						·.				. :				
	ctgo	egge	acc (	ggcg	tegga	ag ti	tgcg				aac Asn						52
		_	-		_			_		-	gcc Ala 20	_			-		100
											ggc Gly						148
											atc Ile					aaa Lys	196
	tct Ser	cct	tgt Cys 60	Pro	gcg Ala	tcc Ser	gga Gly	tcc Ser 65	gaa Glu	cca Pro	tgg Trp	agc Ser	tca Ser 70	gtt Val	atc	tct Ser	244
			Leu							_	tct Ser	-					292
		Ala					Thr				gat Asp 100	. –			-		340
	tgc	gta	att	tgc	tgc	ttg	gcg	aag	aac	aga	gag	ttc	act	cca	gtg	gac	388

Cys	Val ·	Ile	Cys	Cys 110	Leu	Ala	Lys	Asn	Arg 115	Gļu	Phe	Thr	Pro	Val 120	Asp	
atc Ile	atg Met	ccg Pro	gga Gly 125	ggc Gly	tcg Ser	atg Met	Lys	atc Ile 130	gtt Val	aga Arg	gag Glu	acg Thr	ccg Pro 135	acg Thr	tcg Ser	43
			Arg							gaa Glu						48
										gga Gly						53
										gtt Val 180						58
			_		_	_		_	_	aaa Lys			_	_		62
				Thr		_			Trp	gac Asp				_		67
										gaa Glu						71
aggt	gta	aac.	t					•								72
<211 <212	0> 44 L> 2: 2> P1 3> A:	30 RT	dops	is t	hali	ana										
<400	0> 4	4					÷		٠,						-	
Met 1	Phe	Ala	Asn	Lys 5		Pro	Gly	Val	Tyr 10	Ala	Ala	Thr	Суѕ	Leu 15	Ser	
Val	Glu	Asp	Ala 20		Asn	Ala	Arg	Ser 25		Ser	Asn	Cys	Asn 30		Leu	-
Ala	Phe	Ser 35		Ile	Lys	Thr	Ser 40		Glu	Thr	Ala	Leu 45		Ile	Phe	
Asp	Ala 50	_	Ile	Lys	Thr	Pro 55		Lys	Ser	Pro	Cys 60		Ala	Ser	Gly	
Ser 65		Pro	Trp	Ser	Ser 70		Ile	Ser	Ser	Phe 75		Asp	Asn	Ser	Leu 80	
Ser	Glu	Met	Ser	Gln 85		: Gly	Lys	Ser	Thr 90	Ala	Gly	Asp	Şer	Thr 95		

Lys	Lys	Ile	Asp 100	Glu	Thr	Thr	Ala	Ser 105	Cys	Val	Ile	Cys	Cys 110	Leu	Ala	
Lys	Asn	Arg 115	Glu	Phe	Thr	Pro	Val 120	_	Ile	Met		Gly 125	Gly	Ser	Met	** - 1
Lys	11e 130	Val	Arg	Glu	Thr	Pro 135	Thr	Ser	Ala	Ile	Val 140		Phe	Lys	Ala	
Gly 145	Ser	Val	Glu	Pro	Ala 150	His	His	His	Thr	Phe 155	Gly	His	Asp	Leu	Val 160	
Va1	Ile	Lys	Gly	Lys 165	Lys	Ser	Val	Trp	Asn 170	Leu	Ser	Lys	Lys	Glu 175	Arg	
Ala	Asp	Leu	Val 180	Asp	Gly	Asp	Tyr	Leu 185	Phe	Thr	Pro	Ala	Gly 190	Asp	Val	
His	Arg	Val 195	Lys	Tyr	His	Glu	Asp 200	Thr	Glu	Phe	Phe	Ile 205	Thr	Trp	Asp	
Gly	His 210	Trp	Asp	Ile	Phe	Leu 215	Asp	Glu	Asp		Glu 220	Thr	Ala	Lys	Lys	
Ala 225	Ile	Glu	Glu	Glu	Ala 230								•			
									•			. ;				
<21	0> 4 1> 1 2> D	203														
	3> A		dops	is t	hali	ana										
	0> 1> C 2> (		. (11	93)												
<40	0> 4	5					*				•					
agg	aaag	aga					g As:					r Le			a caa s Gln	
		Ser					Gln					Tyr	cca Pro		ccg Pro	98
	Asn					Trp					Lev				tgt Cys 45	146
tta Lev	gto Val	att Ile	cag Glr	ata Ile 50	Val	act Thr	ggc	gtt Val	ttt Phe 55	Leu	gct	atg Met	cat His	tac Tyr 60	aca	194
cct	cat	gtg	g gat	. tta	gct	ttc	aac	ago	gta	gaa	cac	att	atg	aga	gat	242

	Pro	His	Val	Asp 65		Ala	Phe	Asn	Ser 70	Val	Glu	His	Ile	Met 75	Arg	Asp	
•	gtt Val	gaa Glu	80 GJA āāā	ggc	tgg Trp	ttg Leu	ctc Leu	cgt Arg 85	tat Tyr	atg Met	cat His	gct Ala	aat Asn 90	ggg	gca Ala	agt Ser	290
	atg Met	ttt Phe 95	ctt Leu	att Ile	gtg Val	gtt Val	tac Tyr 100	ctt Leu	cat His	att Ile	ttt Phe	cgt Arg 105	ggt Gly	cta Leu	tat Tyr	cat His	338
	gcg Ala 110	agt Ser	tat Tyr	agc Ser	agt Ser	cct Pro 115	agg Arg	gaa Glu	ttt Phe	gtt Val	tgg Trp 120	tgt Cys	ctt Leu	gga Gly	gtt Val	gta Val 125	386
	atc Ile	ttc Phe	cta Leu	tta Leu	atg Met 130	att Ile	gtg Val	aca Thr	gct Ala	ttt Phe 135	ata Ile	gga Gly	tat Tyr	gta Val	cta Leu 140	cct Pro	434
	tgg Trp	ggt Gly	cag Gln	atg Met 145	agc Ser	ttt Phe	tgg Trp	gga Gly	gct Ala 150	aca Thr	gta Val	att Ile	aca Thr	agc Ser 155	tta Leu	gct Ala	482
														ctt Leu			530
	ggt Gly	ttc Phe 175	tcc Ser	gtg Val	gac Asp	aat Asn	gcc Ala 180	acc Thr	tta Leu	aat Asn	cgt Arg	ttt Phe 185	ttt Phe	agt Ser	ctt Leu	cat His	578
	cat His 190	tta Leu	ctc Leu	ccç Pro	ttt Phe	att Ile 195	tta Leu	gta Val	ggc Gly	gcc Ala	agt Ser 200	ctt Leu	ctt Leu	cat His	ctg Leu	gcc Ala 205	626
														cat His			674
														gat Asp 235		gtt Val	722
	ggt Gly	tgg Trp	gta Val 240	Ala	ttt Phe	gct Ala	atc Ile	ttt Phe 245	Phe	tct Ser	att Ile	tgg Trp	att Ile 250	ttt Phe	tat Tyr	gct Ala	770
			Val					Asp					Ala	aat Asn			818
	tcc Ser 270	Thr	ccg	cct Pro	cat His	att Ile 275	· Val	ccg	gaa Glu	tgg Trp	tat Tyr 280	Phe	cta Leu	ccg Pro	atc	cat His 285	866
																ata Ile	914

290 295 300

gca cca gtt ttt ata tgt ctc ttg gct tta cct ttt ttt aaa agt atg 962 Ala Pro Val Phe Ile Cys Leu Leu Ala Leu Pro Phe Phe Lys Ser Met 310 305 tat gtg cgt agt tca agt ttt cga ccg att cac caa gga atg ttt tgg 1010 Tyr Val Arg Ser Ser Ser Phe Arg Pro Ile His Gln Gly Met Phe Trp 325 ttg ctt ttg gcg gat tgc tta cta cta ggt tgg atc gga tgt caa cct 1058 Leu Leu Leu Ala Asp Cys Leu Leu Cly Trp Ile Gly Cys Gln Pro 340 345 gtg gag gct cca ttt gtt act att gga caa att tct cct ttg gtt ttc Val Glu Ala Pro Phe Val Thr Ile Gly Gln Ile Ser Pro Leu Val Phe 355 360 ttc ttg ttc ttt gcc ata acg ccc att ctg gga cga gtt gga aga gga Phe Leu Phe Phe Ala Ile Thr Pro Ile Leu Gly Arg Val Gly Arg Gly 370 375 att cct aat tct tac acg gat gag act gat cac acc tga tcagtgaaaa Ile Pro Asn Ser Tyr Thr Asp Glu Thr Asp His Thr

<210> 46 <211> 393 <212> PRT <213> Arabidopsis thaliana

<400> 46
Met Thr Ile Arg Asn Gln Arg Phe Ser Leu Leu Lys Gln Pro Ile Ser
10

390

Ser Thr Leu Asn Gln His Leu Val Asp Tyr Pro Thr Pro Ser Asn Leu 20 25 30

Ser Tyr Trp Gly Phe Gly Pro Leu Ala Gly Ile Cys Leu Val Ile 35 40

Gln Ile Val Thr Gly Val Phe Leu Ala Met His Tyr Thr Pro His Val 50 60

Asp Leu Ala Phe Asn Ser Val Glu His Ile Met Arg Asp Val Glu Gly 65 70 75 80

Gly Trp Leu Leu Arg Tyr Met His Ala Asn Gly Ala Ser Met Phe Leu 85 90 95

Ile Val Val Tyr Leu His Ile Phe Arg Gly Leu Tyr His Ala Ser Tyr 100 105 110

Ser Ser Pro Arg Glu Phe Val Trp Cys Leu Gly Val Val Ile Phe Leu 115 120 125

Leu Met Ile Val Thr Ala Phe Ile Gly Tyr Val Leu Pro Trp Gly Gln 135 Met Ser Phe Trp Gly Ala Thr Val Ile Thr Ser Leu Ala Ser Ala Ile 155 Pro Val Val Gly Asp Thr Ile Val Thr Trp Leu Trp Gly Gly Phe Ser 165 170 Val Asp Asn Ala Thr Leu Asn Arg Phe Phe Ser Leu His His Leu Leu 185 Pro Phe Ile Leu Val Gly Ala Ser Leu Leu His Leu Ala Ala Leu His 200 Gln Tyr Gly Ser Asn Asn Pro Leu Gly Val His Ser Glu Met Asp Lys 215 220 Ile Ala Phe Tyr Pro Tyr Phe Tyr Val Lys Asp Leu Val Gly Trp Val Ala Phe Ala Ile Phe Phe Ser Ile Trp Ile Phe Tyr Ala Pro Asn Val Leu Gly His Pro Asp Asn Tyr Ile Pro Ala Asn Pro Met Ser Thr Pro 265 Pro His Ile Val Pro Glu Trp Tyr Phe Leu Pro Ile His Ala Ile Leu 280 Arg Ser Ile Pro Asp Lys Ala Gly Gly Val Ala Ala Ile Ala Pro Val Phe Ile Cys Leu Leu Ala Leu Pro Phe Phe Lys Ser Met Tyr Val Arg 310 315 Ser Ser Ser Phe Arg Pro Ile His Gln Gly Met Phe Trp Leu Leu 325 330 Ala Asp Cys Leu Leu Gly Trp Ile Gly Cys Gln Pro Val Glu Ala 345 Pro Phe Val Thr Ile Gly Gln Ile Ser Pro Leu Val Phe Phe Leu Phe Phe Ala Ile Thr Pro Ile Leu Gly Arg Val Gly Arg Gly Ile Pro Asn 375 380 Ser Tyr Thr Asp Glu Thr Asp His Thr 385 390

<210> 47

<211> 1194

<212> DNA

<213> Arabidopsis thaliana

<220> <221> CDS <222> (1)(1194)																
<400 atg Met 1	aga	aaa														48
cga Arg																96
caa Gln																144
											agt Ser 60					192
Ile 65	Phe	Gly	Glu	Gly	Ser 70	Ser	Leu	Val	Asp	Gln 75	atg Met	Pro	Cys	Lys	Val 80	240
Tyr	Val	Ala	Phe	His 85	Lys	Glu	Ser	Tyr	Cys 90	Ser	ctt Leu	Thr	Gly	Leu 95	Ser	288
Lys	Arg	Gly	Val 100	Ala	Ile	Asn	Glu	Ala 105	Ser	Leu	Ser	Leu	Val 110	Gly	Ile	336
Thr	Lys	Val 115	Arg	Ala	Pro	Val	Gly 120	Asn	Thr	Val	gga Gly	Ala 125	Glu	Ala	Thr	384
Val	Tyr 130	Ile	Gly	Ser	Pro	Lys 135	Pro	Tyr	Thr	Glu	tgt Cys 140	Ser	Thr	Pro	Asn	432
											gca Ala					480
										Arg	cgt Arg					528
				Thr							aaa Lys					576
			Pro					Thr			cgt Arg		Met		att Ile	624

									1.	<b>1</b> ,						
cct Pro	ctc Leu 210	gat Asp	gct Ala	act Thr	ctc Leu	att Ile 215	aaa Lys	gta Val	tgg Trp	act Thr	ggg Gly 220	gaa Glu	gta Val	aaa Lys	aaa Lys	672
gcg Ala 225	ata Ile	gtt Val	tcc Ser	cgg Arg	cct Pro 230	gca Ala	aaa Lys	att Ile	ttc Phe	aat Asn 235	agc Ser	gta Val	gga Gly	aat Asn	tta Leu 240	720
gaa Glu	cgt Arg	cct Pro	tca Ser	att Ile 245	tcg Ser	cat His	tct Ser	tgt Cys	gga Gly 250	caa Gln	ggt Gly	ttg Leu	Asp	gaa Glu 255	gct Ala	768
gcc Ala	gct Ala	tat Tyr	atc Ile 260	aag Lys	ggt Gly	aga Arg	ctt Leu	tct Ser 265	Pro	atc Ile	gtt Val	aaa Lys	gca Ala 270	gaa Glu	aga Arg	816
att Ile	aaa Lys	gtt Val 275	ttg Leu	gtt Val	aaa Lys	gac Asp	gag Glu 280	cac His	gaa Glu	gaa Glu	gta Val	aaa Lys 285	Glu	ctt Leu	ctt Leu	864
caa Gln	gaa Glu 290	ggt Gly	tac Tyr	gaa Glu	gaa Glu	atc Ile 295	gtc Val	ggt Gly	gag Glu	tct Ser	cca Pro 300	agt Ser	ttc Phe	aat Asn	tta Leu	912
gca Ala 305	caa Gln	gaa Glu	gcg Ala	tgg Trp	gaa Glu 310	Lys	gct Ala	gaa Glu	aga Arg	cga Arg 315		aaa Lys	ggt Gly	cag Gln	tcc Ser 320	960
ccg Pro	tgc Cys	agt Ser	gcg Ala	gca Ala 325	Lys	gca Ala	aac Asn	ctt Leu	gca Ala 330	Thr	tac Tyr	tat Tyr	ttt Phe	tca Ser 335	aca Thr	1008
ggt Gly	gat Asp	ttc Phe	gaa Glu 340	Lys	tca Ser	att Ile	aaa Lys	ctc Leu 345	Tyr	gaa Glu	gaa Glu	cct Pro	atg Met 350	Gly	ttg Leu	1056
aaa Lys	gat Asp	act Thr 355	Asp	aag Lys	ago Ser	tat Tyr	ctg Leu 360	Arg	gaa Glu	cgt Arg	aga Arg	aaa Lys 365	Arg	gta Val	gag Glu	1104
gct	act Thr 370	Thr	ttg Lev	g cgt 1 Arg	gca Ala	Pro	Phe	gtg Val	gtc Val	cac Glr	ctg Leu 380	Thr	gtg Val	g cgt Arg	agt Ser	1152
cgt Arg 385	Thr	aco Thi	ato Met	g ato	gcc Ala 390	a Val	ggt Gly	gaa Glu	ago Ser	aac Asr 395	gca n Ala 5	aac Asn	tga 1	· .		1194

<210> 48
<211> 397
<212> PRT

<213> Arabidopsis thaliana

<400> 48

Met Arg Lys Val Ser Ser Val Ile Ser Val Val Asp Pro Val Ile Phe

1		•		5					10					15	
Arg	Gly	Asn	Tyr 20		Ala	Thr	Leu	Asp 25	Val	Ser	Tyr	Pro	Val 30	Phe	Pro
Gln	Asn	Lys 35	Asp	Gly	Arg	Ala	Leu 40	Gln	Lys	Val	Leu	Gly 45	Thr	Ile	Àrg
Asn	Gly 50	Asp	Leu	Ala	Val	Ser 55	Ala	Pro	Lys	Thr	Ser 60	Leu	Arg	Ala	Gly
Ile 65	Phe	Gly	Glu	Gly	Ser 70	Ser	Leu	Val	Asp	Gln 75	Met	Pro	Cys	Lys	Val 80
Tyr	Val	Ala	Phe	His 85		Glu	Ser	Tyr	Суs 90	Ser	Leu	Thr	Gly	Leu 95	Ser
Lys	Arg	Gly	Val 100	Ala	Ile	Asn	Glu	Ala 105	Ser	Leu	Ser	Leu	Val 110	Gly	Ile
Thr	Lys	Val 115	Arg	Ala	Pro	Val	Gly 120	Asn	Thr	Val	Gly	Ala 125	Glu	Ala	Thr
Val	Tyr 130	Ile	Gly	Ser	Pro	Lys 135	Pro	Tyr	Thr	Glu	Cys 140	Ser	Thr	Pro	Asn
Lys 145	Met	Tyr	Ala	Val	Ala 150	Ala	Gly	Phe	Lys	Val 155	Ala	Ser	Phe		Ala 160
Ser	Thr	Cys	Val	Arg 165	Pro	Pro	Ala	Arg	Ala 170	Arg	Arg	Thr	Leu	Thr 175	Val
Thr	Ser	Thr	Val 180		Leu	Ser	Met	Ala 185	Thr	Gly	Lys	Cys	Val 190	Asn	Thr
Gly	Asn	Glu 195		Val	Ser	Lys	Pro 200	Thr	Gly	Val	Arg	Met 205	Met	Leu	Ile
Pro	Leu 210		Ala	Thr	Leu	Ile 215	Lys	Val	Trp	Thr	Gly 220	Glu	Val	Lys	Lys
Ala 225		Val	Ser	Arg	Pro 230		Lys	Ile	Phe	Asn 235	Ser	Val	Gly	Asn	Leu 240
Glu	Arg	Pro	Ser	1le 245		His	Ser	Cys	Gly 250		Gly	Leu	Asp	Glu 255	
Ala	Ala	Tyr	11e 260		Gly	Arg	Leu	Ser 265		Ile	Val	Lys	Ala 270	Glu	Arg
Ile	Lys	Val 275		val	Lys	Asp	Glu 280		Glu	Glu	Val	Lys 285	Glu	Leu	Leu
Gln	Glu 290		туг	Glu	Glu	11e 295		Gly	Glu	Ser	Pro 300		Phe	Asn	Leu
7 T -		C3.		, Tr	. C1:	Tare	กใจ	G1 ₁	· >>>	. Ara	בוג	Laze	Gly	Gln	Ser

305					310				· :	315		,		·. ·	320	
Pro	Cys	Ser	Ala	Ala 325		Ala	Asn	Leu	Ala 330	Thr	Tyr	Tyr	Phe	Ser 335	Thr	. •
Gly	Asp	Phe	Glu 340	Lys	Ser	Ile	Lys	Leu 345	Tyr	Glu	Glu	Pro	Met 350	Gly	Leu	
Lys	Asp	Thr 355	Asp	Lys	Ser	Tyr	Leu 360	Arg	Glu	Arg	Arg	Lys 365	Arg	Val	Glu	
Ala	Thr 370	Thr	Leu	Arg	Ala	Pro 375	Phe	Val	Val	Gln	Leu 380	Thr	Val	Arg	Ser	
Arg 385	Thr	Thr	Met	Ile	Ala 390	Val	Gly	Glu	Ser	Asn 395	Ala	Asn				
							:					•				
	0> 49											•		٠.		
	1> 6: 2> Di															-
<21	3> A:	rabio	lops:	is th	nalia	ana				<i>:</i>						
<22			,				٠.		•				•	. •		
	1> CI 2> (!	-	(601)	)											· .	
		_							•							
<40	U> 4:	,														
	a at	ato													gtc	49
	a at	ato									r Se				gtc Val 15	49
gaa gtc	a ato	g ato	e Val	l Le gtc	ı Sei gcg	r Val	ctt	y Sei	ttc	Ser 10 tac	r Sei ) ttc	r Sei tct	r Pro		Val 15	49 97
gaa gtc	a ato	g ato	e Val	l Le gtc	ı Sei gcg	r Val	ctt	y Sei	ttc	Ser 10 tac	r Sei ) ttc	r Sei tct	r Pro	act	Val 15	
gtc Val	a ato Me gtc Val	g ato E Ile I ttt Phe	tcc Ser	gtc Val 20 tgt	gcg Ala	ctt Leu	ctt Leu aat	ctg Leu ggc	ttc Phe 25	tac Tyr	ttc Phe	tct Ser gtg	gaa Glu agg	act Thr	tct Ser	
gtc Val cta Leu	gtc Val	ttt Phe gct	tcc Ser cct Pro	gtc Val 20 tgt Cys	gcg Ala	ctt Leu atc	ctt Leu aat Asn	ctg Leu ggc Gly 40	ttc Phe 25 ttg Leu	tac Tyr cca	ttc Phe atc	tct Ser gtg Val	gaa Glu agg Arg	act Thr 30	tct Ser att	97
gtc Val cta Leu	gtc Val gga Gly	ttt Phe gct Ala	tcc Ser cct Pro 35	gtc Val 20 tgt Cys	gcg Ala ccc Pro	ctt Leu atc Ile	ctt Leu aat Asn	ctg Leu ggc Gly 40 gga Gly	ttc Phe 25 ttg Leu	tac Tyr cca Pro	ttc Phe atc Ile	tct Ser gtg Val	gaa Glu agg Arg 45	act Thr 30 aat	tct Ser att Ile	97 145
gtc Val cta Leu agt Ser	gtc Val gga Gly gac Asp	ttt Phe gct Ala ctt Leu 50 gct	tcc Ser cct Pro 35 cct	gtc Val 20 tgt Cys cag Gln	gcg Ala ccc Pro gat Asp	ctt Leu atc Ile aac Asn	ctt Leu aat Asn tat Tyr 55	ctg Leu ggc Gly 40 gga Gly	ttc Phe 25 ttg Leu aga Arg	tac Tyr cca Pro cca Pro	ttc Phe atc Ile ggt Gly	tct Ser gtg Val ctt Leu 60 gtt	gaa Glu agg Arg 45 tcc Ser	act Thr 30 aat Asn	e Val 15 tct Ser att Ile atg Met	97 145
gaaa gtc Val cta Leu agt Ser act	gtc Val gga Gly gac Asp gtt Val 65	tttt Phe gct Ala ctt Leu 50 gct Ala aca	tcc Ser cct Pro 35 cct Pro Ggc Gly	gtc Val 20 tgt Cys cag Gln tcc Ser	gcg Ala ccc Pro gat Asp gta Val	c Valoria ctt Leu atc Ile aac Asn ttg Leu 70 ggt	ctt Leu aat Asn tat Tyr 55 cat His	ctg Leu ggc Gly 40 gga Gly gga Gly	ttc Phe 25 ttg Leu aga Arg atg	tac Tyr  cca Pro  cca Pro  cca Pro  cca Cyr  cca	ttc Phe atc Ile ggt Gly gag Glu 75 att	tct Ser gtg Val ctt Leu 60 gtt Val	gaa Glu agg Arg 45 tcc Ser gaa Glu	act Thr 30 aat Asn cac	e Val 15 tct Ser att Ile atg Met tgg Trp	97 145 193

gct Ala	gaa Glu	aca Thr	cat His 115	gga Gly	aat Asn	ttc Phe	Pro	ggg Gly 120	aaa Lys	cca Pro	atc Ile	gaa Glu	Phe 125	Pro	Ile	385	
ttt Phe	gcc Ala	aac Asn 130	agt Ser	aca Thr	att Ile	cat His	att Ile 135	ccg Pro	atc Ile	aat Asn	gat Asp	gct Ala 140	cat His	cag Gln	gtc Val	433	
aaa Lys	aac Asn 145	acc Thr	ggt Gly	cat His	gag Glu	gac Asp 150	ctg Leu 	cag Gln	gtg Val	ttg Leu	gtt Val 155	atc Ile	ata Ile	tct Ser	cgg	481	
ccg Pro 160	cct Pro	att Ile	aaa Lys	atc Ile	ttc Phe 165	atc Ile	tac Tyr	gaa Glu	gac Asp	tgg Trp 170	Phe	atg Met	cca Pro	cac His	act Thr 175	529	
gct Ala	gca Ala	agg Arg	ctg Leu	aag Lys 180	ttc Phe	cct Pro	tac Tyr	tat Tyr	tgg Trp 185	gat Asp	gag Glu	caa Gln	tgc Cys	att Ile 190	caa Gln	577	
gaa Glu				-		ctt Leu	taa	agca	aaagt	cc	· . ·					611	
<212	> 19 PP	98	dops	is tl	halia	ana							•				
<400	)> 5(	)															
Met 1	Ile	Val	Leu	Ser 5	Val	Gly	Ser	Ala	Ser 10	Ser	Ser	Pro	Ile	Val 15	Val		
Val	Phe	Ser	Val 20	Ala	Leu	Leu	Leu	Phe 25	Tyr	Phe	Ser	Glu	Thr 30	Ser	Leu		
Gly	Ala	Pro 35	Cys	Pro	Ile	Asn	Gly 40	Leu	Pro	Ile	Val	Arg 45	Asn	Ile	Ser		
Asp	Leu 50		Gln	Asp	Asn	Tyr 55	Gly	Arg	Pro	Gly	Leu 60	Ser	His	Met	Thr	. •	
Val .65	Ala	Gly	Ser	Val	Leu 70		Gly	Met	Lys	Glu 75	Val.	Glu	Ile	Trp	Leu 80		•
Gln	Thr	Phe	Ala	Pro 85		Ser	Glu	Thr	Pro 90		His	Arg	His	Ser 95			
Glu	Glu	Val	Phe 100		Val	Leu	Lys	Gly 105		Gly	Thr	Leu	Tyr 110		Ala		
Glu	Thr	His 115		Asn	Phe	Pro	Gly 120		Pro	Ile	Glu	Phe 125		Ile	Phe		٠
Ala																	

Asn 145	Thr	Gly	His	Glu	Asp 150	Leu	Gln	Val	Leu	Val 155		Ile	Ser	Arg	Pro 160		
Pro	Ile	Lys	Ile	Phe 165	Ile	Tyr	Glu		Trp 170	Phe	Met	Pro	His	Thr 175			
Ala	Arg	Leu	Lys 180	Phe	Pro	Tyr		Trp 185	Asp	Glu	Gln	Суs	Ile 190	Gln	Glu		
Ser	Glņ	Lys 195	Asp	Glu	Leu		•		٠.				:				
						: .								·			
<211	0> 51 L> 13 2> DN	398							· .								
			lops	is th	nalia	na											
	l> CI				٠								•				
	2> (1	·	(139)	B)					•	:			<i>.</i>			•	
atg		cgt													cag Gln	48	
	tat	ana	ממכ	geg	tca	atc	act	ana		cta	cat	gac	cat		cca	96	
				Ala										Arg			
				atc Ile												144	
		Ser		ccc Pro											gcc Ala	192	
	Ala			agc Ser												240	
				tgc Cys 85												288	
				ttc Phe										Leu		336	
att Ile	caa Gln	gat Asp 115	Gly	gta Val	aaa Lys	gct Ala	gcg Ala 120	Glu	gaa Glu	tat Tyr	gct Ala	aaa Lys 125	tct Ser	gga Gly	aaa Lys	384	

					•												
	1									gct Ala						ctt Leu	432
	e									gat Asp							480
										gag Glu 170						Val	528
										tgt Cys			Leu				576
										agc Ser							624
										ctc Leu							672
Aı										ggc							720
										gct Ala 250							768
					Gln					caa Gln					Gly	agt Ser	816
		Val		Thr					Val	tca Ser							864
			Thr							atg Met						cga Arg	912
M							Val			att Ile		Arg					960
						Leu				cct Pro 330	Gly					Thr	1008
					Thr										Arg	ggt	1056
a	tc	att	gto	c cca	a. gcc	gaç	999	ı cgt	cto	atg	acg	atg	gga	tgc	gcç	act	1104

Ile	Ile	Val 355	Pro	Ala	Glu	Gly	Arg 360	Leu	Met	Thr	Met	Gly 365	Cys	Ala	Thr	
									tct Ser							1152
									agc Ser							1200
			-			_			gag Glu 410	_	_	-	-	-	ctt Leu	1248
							Arg		act Thr							1296
									ggt Gly							1344
									ctg Leu							1392
tag	taa		:				·	,							,	1398
465												•			٠.	
<21:	0> 5: 1> 4: 2> Pi	64 RT														
	3> A:		aops	IS C	nall	ana										
	0> 5: Pro		Arg	Arg 5	Thr	Cys	Cys	Arg	Arg 10	Glu	Phe	Gly	Pro	Thr 15	Gln	
Pro	Cys	Arg	Gly 20		Ser	Ile	Thr	Gly 25	Ser	Leu	Arg	Asp	Arg 30	Arg	Pro	
Thr	Ala	Ile 35	Leu	Ile	Gly	Thr	Leu 40		Ala	Leu	Gly	Gly 45	Gly	Val	Arg	
Cys	Gly 50		Суз	Pro	Ser	Val 55		Arg	Cys	Gly	His 60	Ala	Ser	Ala	Ala	
11e 65		Arg	Asp	Ser	Cys 70		Val	Phe	Ala	Trp 75	_	Arg	Gly	Thr	Arg 80	
Gln	Glu	Tyr	Trp	Cys 85		Thr	Glu	Pro	Thr 90	Leu	Asp	Trp	Gly	Pro 95		
Gly	Gly	Pro	Asp	Phe	Asp	Cys	Asp	) Asp	Gly	Gly	Asp	Asp	Pro	Leu	Leu	

105

110

Ile Gln Asp Gly Val Lys Ala Ala Glu Glu Tyr Ala Lys Ser Gly Lys 115 120 125

Val Pro Asp Pro Ser Cys Thr Asp Asn Ala Glu Phe Gln Val Val Leu 130 135 140

Ile Ile Ile Arg Glu Gly Leu Lys Thr Asp Pro Leu Lys Tyr Thr Lys 145 150 155 160

Arg Pro Ser Cys Leu Val Gly Val Ser Glu Glu Thr Thr Thr Gly Val 165 170 175

Lys Arg Ser Tyr Gln Met Gln Pro Lys Cys Thr Leu Leu Leu His Ala 180 185 190

Thr Asp Val Cys Asp Thr Val Ile Lys Ser Lys Ile Asp Asn Leu Tyr 195 200 205

Gly Cys Arg His Ser Leu Ser Asp Gly Leu Met Arg Ala Thr Asp Val 210 215 220

Arg Arg Pro Cys Lys Val Ala Leu Val Gly Gly Tyr Gly Asp Val Phe 225 230 235 240

Lys Gly Trp Val Ala Ala Leu Lys Gln Ala Gly Ala Arg Val Ile Val 245 250 255

Thr Glu Ile Pro Gln Ile Cys Ala Val Gln Ala Thr Met Glu Gly Ser 260 265 270

Ser Val Leu Thr Leu Glu Asp Val Val Ser Asp Val Asp Arg Phe Val 275 280 285

Thr Thr Gly Asn Lys Asp Leu Ile Met Val Asp His Met Arg Arg 290 295 300

Met Lys Asn Gln Ala Ile Val Cys Asn Ile Arg Arg Phe Asp Asn Glu 305 310 315 320

Ile Asp Met Arg Ser Leu Glu Thr Phe Pro Gly Val Lys Arg Ile Thr 325 330 335

Ile Lys Ala Gln Thr Asp Arg Trp Val Phe Arg Asp Thr Asn Arg Gly 340 345 350

Ile Ile Val Pro Ala Glu Gly Arg Leu Met Thr Met Gly Cys Ala Thr 355 360 365

Gly His Pro Ser Phe Arg Thr Ser Cys Ser Phe Thr Asn Gln Val Ser 370 380

Ser Gln Leu Glu Leu Trp Arg Glu Lys Ser Thr Gly Lys Tyr Glu Lys 385 390 395 400

Lys Val Tyr Val Phe Pro Lys His Leu Glu Lys Lys Val Ala Ala Leu

405 410 415

His Leu Val Lys Leu Gly Ala Arg Leu Thr Lys Leu Ser Arg Cys Thr 420 425 430

Leu Leu Cys Thr Asp Asp Pro Val Glu Gly Arg Lys Glu Pro Pro His
435 440 445

Arg Ala Gly Ser Pro Glu Pro Cys Gln Leu Gln Leu Thr Val Phe Arg
450 455 460

<210> 53

<211> 771

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(537)

<400> 53

atg ccg cgt aac gtt gct ggt atg tgc gtt gcg tta gaa cga gtc ttc

Met Pro Arg Asn Val Ala Gly Met Cys Val Ala Leu Glu Arg Val Phe

1 1 5 15

gac gtc gat gaa att gtc agg tta agg aag agg ttt ttc aag ttg gac 96 Asp Val Asp Glu Ile Val Arg Leu Arg Lys Arg Phe Phe Lys Leu Asp 20 25 30

aga gat tgt tca gga tca gaa ctt gga agt gag ttc atg agt ttg cct 144
Arg Asp Cys Ser Gly Ser Glu Leu Gly Ser Glu Phe Met Ser Leu Pro
35 40

caa gtt agt tcg aac cct ctt cgg atg cgt gag atg cgt aat ttc gat 192
Gln Val Ser Ser Asn Pro Leu Arg Met Arg Glu Met Arg Asn Phe Asp
50 55

aat gat tgc gta ggg agt gtg gat ttt atc gag ttc atc aat gga cgt 240 Asn Asp Cys Val Gly Ser Val Asp Phe Ile Glu Phe Ile Asn Gly Arg 65 70 80

tcc agt ttc agt act gtc ggg cag aag aat gct aaa ttg aga ttt gca 28 Ser Ser Phe Ser Thr Val Gly Gln Lys Asn Ala Lys Leu Arg Phe Ala 85 90 95

ccg att atc tat gat tgc gat aaa gat gga cct ata tca aac ggt gag
Pro Ile Ile Tyr Asp Cys Asp Lys Asp Gly Pro Ile Ser Asn Gly Glu
100 105 110

tta ttt agg gtg ttg cgt att atg gtt cat gac aat ctg agt gat aat
Leu Phe Arg Val Leu Arg Ile Met Val His Asp Asn Leu Ser Asp Asn
115 120 125

cag ctg cag cag cgt tgc gat tgc acg cgt agt ggc gga gat aat gac 432 Gln Leu Gln Gln Arg Cys Asp Cys Thr Arg Ser Gly Gly Asp Asn Asp

	130					135					140					
ggg Gly 145	gat Asp	ggt Gly	cga Arg	ggt Gly	gcg Ala 150	aaa Lys	aac Asn	agc Ser	ttt Phe	gag Glu 155	gaa Glu	ttt Phe	tac Tyr	Gly	cgt Arg 160	480
		gct Ala														528
gat Asp	_	taa	agtt	cagt	gc a	ccgt	gacc	g to	gaged	tgga	ago	ctga	aacg			577
ctga	caag	cc c	ttaa	igcca	a aa	aatt	ggct ·	gag	gcct	gat	geco	tgaç	gat g	gccas	aggct	637
tttt	aggc	tt t	taga	ıgaaa	a ag	gcta	aaaa	aaa	agget	aga	aaaa	aagg	jct d	cttag	ggcctg	697
cttg	agcc	tg a	gcct	gago	c tg	atcg	atca	aaa	aaaa	agg	agco	tttt	tt t	tttt	agctaa	757
aaaa	aaaa	ag c	taa													771
<211 <212	> 54 > 17 > PR > Ar	8	lopsi	is th	nalia	ına							,			
	> 54 Pro	Arg	Asn	Val 5	Ala	Gly	Met	Cys	Val	Ala	Leu	Glu	Arg	Val 15	Phe	
Asp	Val	Asp	Glu 20	Ile	Val	Arg	Leu	Arg 25	Lys	Arg	Phe	Phe	Lys 30	Leu	Asp	
Arg	Asp	Cys 35	Ser	Gly	Ser	Glu	Leu 40	Gly	Ser	Glu	Phe	Met 45	Ser	Leu	Pro	
Gln	Val 50	Ser	Ser	Asn	Pro	Leu 55	Arg	Met	Arg	Glu	Met 60	Arg	Asn	Phe	Asp	
Asn 65	Asp	Cys	Val	Gly	Ser 70	Val	Asp	Phe	Ile	Glu 75	Phe	Ile	Asn	Gly	Arg 80	
Ser	Ser	Phe	Ser	Thr 85	Val	Gly	Gln	Lys	Asn 90	Ala	Lys	Leu	Arg	Phe 95	Ala	
Pro	Ile	Ile	Tyr 100	Asp	Cys	Asp	Lys	Asp 105		Pro	Ile	Ser	Asn 110		Glu	·
Leu	Phe	Arg 115		Leu	Arg	Ile	Met 120	Val	His	Asp	Asn	Leu 125		Asp	Asn	
Gln	Leu 130	Gln	Gln	Arg	Cys	Asp 135	Cys	Thr	Arg	Ser	Gly 140	_	Asp	Asn	Asp	
Gly	Asp	Gly	Arg	Gly	Ala	Lys	Asn	Ser	Phe	Glu		Phe	Tyr	Gly	Arg	

Leu Pro Ala Thr Val Arg Arg Pro Tyr Arg Thr Leu Val Ser Gly
165 170 175

Asp Val

<210> 55 <211> 1617 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (10) .. (1557) <400> 55 cgctacggt atg cgt acg tca aga aca gga ttt cgg atg cca ttg ggg ccc 51 Met Arg Thr Ser Arg Thr Gly Phe Arg Met Pro Leu Gly Pro tgg gcg gtg aac ccc tgc ttc att gct tcc tgt tcc tgt ctc ctc gtt Trp Ala Val Asn Pro Cys Phe Ile Ala Ser Cys Ser Cys Leu Leu Val 15 20 25 gge tte gge gae gea ate tte tae gag teg tte gee ggg gat ttt gat Gly Phe Gly Asp Ala Ile Phe Tyr Glu Ser Phe Ala Gly Asp Phe Asp 35 gca cgc tgg att tta tcc ggc tca aag tgt ctc tcg gat tcg gcc aag Ala Arg Trp Ile Leu Ser Gly Ser Lys Cys Leu Ser Asp Ser Ala Lys 55 aat get ggg ttt gat gat tat gga ett ett gtg ggt gaa eaa gee agg Asn Ala Gly Phe Asp Asp Tyr Gly Leu Leu Val Gly Glu Gln Ala Arg aag cet eet ata gte aag gaa ett gee gag tet ete agt eta aag gae 291 Lys Pro Pro Ile Val Lys Glu Leu Ala Glu Ser Leu Ser Leu Lys Asp gga aga gtt gtt ctt gag tgt gag act cgc ctt gac cat ggc atc gac 339 Gly Arg Val Val Leu Glu Cys Glu Thr Arg Leu Asp His Gly Ile Asp 100 105 tgt gga ggt ccc tgt att aga tat ctt cga acc cag gag agc gga tgg 387 Cys Gly Gly Pro Cys Ile Arg Tyr Leu Arg Thr Gln Glu Ser Gly Trp 115 120 aaa ttt gac agc tcc acc atg ttt ggt gct gct aag tat ggc gcg agg Lys Phe Asp Ser Ser Thr Met Phe Gly Ala Ala Lys Tyr Gly Ala Arg 130 135 140 agg acc cag ttc ttc ggg ggc cac ccc cag aac cca aac agt ggt gag Arg Thr Gln Phe Phe Gly Gly His Pro Gln Asn Pro Asn Ser Gly Glu 150

•		•													
_	gtt Val 160	-		_		-		_				_	-		531
-		_	_				_	_		-		-		cag Gln 190	579
	ttg Leu														627
	gac Asp			Pro											675
_	tcg Ser	_			 _	_	_	_		_					723
	agt Ser 240			-		-	-	_		_	_			-	771
	tta Leu														819
-	aaa Lys	-	_	-	_									_	867
	-						_		_		_			Gly aaa	
	gcc Ala						Glu	_		Thr	-	Ile			963
	tat Tyr 320					-				-					1011
	g aaa b Lys 5														1059
	gct Ala								Met						1107
	ato / Ile			Asp											1155

														aag Lys		1203
_	_	_	_				-				-	_		tca Ser		1251
														ccc Pro		1299
_	-				_	-		Phe	_	Leu				gag Glu 445		1347
_	_	-		-	_		_							ggt Gly	tca Ser	1395
			-									-		aac Asn	_	1443
												Ser		att Ile	gaa Glu	1491
														gct Ala		1539
-	-	ccc Pro		-	tga	taa	ttaa	atc (	cgat	ccgt	ec t	ttaa	cccc	c		1587
gtt	gttc	aat a	accg	tttt	tt t	Ļtta	ttta	<b>a</b> .								1617
<21:	0> 5 1> 5 2> P 3> A	15	dops	is t	hali	ana	. •		· .		· .					
	0> 5		<b>0</b>	3	mb	<b>0</b> 1	nh a		Wak	Dana	<b>T</b>	01	Dwa		37-	
met 1	Arg	THE	Ser	A1 9 5	THE	СТЙ	Pne	Arg	10		neu	GIĀ	PIO	15	Ala	•
Val	Asn	Pro	Cys 20		Ile	Ala	Ser	Cys 25		Cys	Leu	Leu	Val		Phe	
Gly	Asp	Ala 35		Phe	Tyr	Glu	Ser 40		Ala	Gly	Asp	Phe 45		Ala	Arg	
Trp	Ile 50		Ser	Gly	Ser	Lys 55		Leu	Ser	Asp	Ser 60		Lys	Asn	Ala	

Gly 65	Phe	Asp	Asp	Tyr	Gly 70	Leu	Leu _.	Val	Gly	Glu 75	Gln	Ala	Arg	Lys ·	Pro 80
Pro	Ile	Val.	Lys	Glu 85	Leu	Ala	Glu	Ser	Leu 90	Ser	Leu	Lys	Asp	Gly 95	Arg
Val	Val	Leu	Glu 100	Cys	Glu	Thr	Arg	Leu 105	Asp	His	Gly	Ile	Asp 110	Cys	Gly
Gly	Pro	Cys 115	Ile	Arg	Tyr	Leu	Arg 120	Thr	Gln	Glu	Ser	Gly 125	Trp	Lys	Phe
Asp	Ser 130	Ser	Thr	Met	Phe	Gly 135	Ala	Ala	Lys	Tyr	Gly 140	Ala	Arg	Arg	Thr
Gln 145	Phe	Phe	Gly	Gly	His 150	Pro	Gln	Asn	Pro	Asn 155	Ser	Gly	Glu	Cys	Val 160
Asp	His	Asp	His	Asn 165	Gln	Arg	Ala	Ser	Leu 170	Thr	Ser	Asp	Lys	Val 175	Pro
Arg	Leu	Tyr	Thr 180	Gly	Ile	Leu	Ser	Pro 185	Glu	Asn	Glu	Phe	Gln 190	Ile	Leu
Ile	Asp	Arg 195	Gly	Leu	Glu	Thr	Lys 200	Ala	Lys	Ile	Phe	Pro 205	Cys	Glu	Asp
Phe	Glu 210	Pro	Pro	Val	Ile	Pro 215	Ser	Lys	Arg	Ser	Pro 220	Asp	Asn	Pro	Ser
Lys 225	Arg	Thr	Glu	Asp	Ser 230	Asp	Glu	Lys	Ala	Lys 235	Ile	Pro	Gly	Pro	Ser 240
Ala	Leu	Lys	Arg	Gln 245		Ser	Asp	Glu	Asp 250		Asn	Arg	Glu	11e 255	Leu
His	Glu	Glu	Ala 260	Gly	Arg	Arg	Ser	Ser 265	Asp	Val	Gly	Ala	His 270	Ala	Lys
Asp	Gln	Ala 275	His	Glu	Pro	Glu	Pro 280	Lys	His	Trp	Gly	Ala 285	Glu	Lys	Asp
Gly	Glu 290	Cys	Ala	Pro	Pro	Lys 295		Glu	Asn	Ala	Lys 300	Arg	Gly	Ala	Ala
Pro 305	Ser	Cys	Gly	Val	Ser 310	Glu	Arg	Gln	Thr	Lys 315	Ile	Ser	Pro	Asn	Tyr 320
Lys	Gly	Lys	Pro	Ser 325		Gly	Pro	Asn	Val 330	Tyr	Gln	Gly	Ile	Trp 335	Lys
Pro	Arg	Glu	Met 340		. Asn	Pro	Gly	Ser 345		Gln	Ile	Ala	Lys 350	Pro	Ala
Cys	Glu	Pro 355		Ala	Gly	Ile	Gly 360	Met	Glu	Ile	Arg	Lys 365		Gly	Ile

Leu	370	Asp	Tnr	vaı	vaı	375	vai	Arg	GIĀ	Asp	380		GIU		ıyı	
Gly 385	Glu	Thr	Pro	Leu	Lys 390	Thr	Thr	Cys	Thr	Val 395	Glu	Lys	His	Ser	Leu 400	٠.
Gln	Ala	Gln	Glu	Ala 405	Arg	Thr	Arg	Ser	Asp 410	Ala	Gly	Ser	Pro	Tyr 415		÷ .
Arg	Tyr	Val	Ser 420	Lys	Ile	Pro	Gly	Lys 425	Ala	Asp	Asn	Pro	Phe 430	Ser	Ser	
Glu	His	Lys 435	Cys	Lys	Asn	Phe	Asp 440	Leu	Ile	Glu	Ala	Glu 445		Gln	Cys	•• .
Ala	Asn 450	Ala	Val	Ile	Leu	Gly 455	Val	Val	Val	Asn	Ser 460	Gly	Ser	Ile	Asn	
Ser 465	Val	Val	Ser	Trp	Gly 470	Tyr	Lys	Pro	Gly	Thr 475	Val	Asn	Lys	Asn	Gln 480	
Glu	Arg	Arg	Ala	Pro 485	Ser	Gln	Arg	Arg	Ser 490	Ser	Glu	Ile	Glu	Gly 495	Thr	
Gln	Asp	Arg	Arg 500	-	Gln	Asp	Val	Gly 505		Arg	Gln	Ala	Ala 510	Ser	Ser	
Pro	Arg	Arg 515									٠.					÷.
									٠,				÷			
	0> 5 1> 1				-							: •				
<21	2> D	NA	dops	is t	hali	ana			•							
<22	0>	•				٠.	:									
<22	1> C		. (12	66)					•					•	•	
<40	0> 5	7		-								÷				
gct	ccgc	tcg	ct a	tg a et S 1	gt t er T	gg c	ga c rg P	ro A	gg a rg L	ag a ys A	ac g sn V	al P	cg a ro M 10	tg a et L	aa aca ys Thr	51
cgg Arg	gtg Val	. Thr	agg Arg	gac Asp	ggt Gly	tcg Ser 20	Gly	ccc	gga Glý	aaa Lys	acc Thr 25	Gly	gtc Val	aca Thr	cgc Arg	99
	Sei					Trp					•				ggg Gly 45	147
					Thi					Gli					ata Ile	195

200															
_		Ser		cgc Arg	-		_		 _	_	_				243
				aag Lys										tac Tyr	291
				gaa Glu											339
	Leu			aaa Lys											387
			_	ttt Phe 130			-	_		-		-		-	435
_	- ,			aat Asn			-								483
				gaa Glu						_					531
			-	tgg Trp				-	_	-		_	-	_	579
	_			ctt Leu	-	_	_	_				_	_	cga Arg 205	627
		-		agc Ser 210	_	_							-	_	675
_	_	_		cac His	-		•	_				-	Gly	cac His	723
			Pro	gcg Ala											771
				cga Arg							Gly				819

														ccc Pro 300	act Thr	915
														gca Ala	gca Ala	963
														aac Asn		1011
														aaa Lys		1059
aag Lys 350	gtg Val	gca Ala	aac Asn	acc Thr	acg Thr 355	acc Thr	gag Glu	ctc Leu	aac Asn	gac Asp 360	gga Gly	cgc Arg	gac Asp	gcc Ala	gga Gly 365	1107
_						_		-	-	_	_			aaa Lys 380		1155
														tcg Ser		1203
cgc Arg	acc Thr	ggg Gly 400	gag Glu	ctg Leu	gcc Ala	acc Thr	ccg Pro 405	gtg Val	acg Thr	atg Met	ctg Leu	cct Pro 410	gat Asp	ccg Pro	ttg Leu	1251
		Pro			aat	cgcc	tga	tgcc	t							1281
<21	0> 5 1> 4 2> P	17														
			dops	is t	hali	ana										
			Arg	Pro	_	Lys	Asn	Val	Pro 10		Lys	Thr	Arg	Val 15	Thr	
Arg	Asp	Gly	Ser 20	-	Pro	Gly	Lys	Thr 25	_	Val	Thr	Arg	Gly 30		Ser	
Pro	) Met	Arg		) Ala	Trp	Lys	Arg 40		Gln	Ala	Val	Gly 45		Ser	Thr	
Ala	Arg		Trp	Phe	: Gly	Thr 55		Asn	Gln	Lys	Gly 60		Thr	Thr	Ser	
Thi 65		, Ala	Arç	g Arg	7 Tyr		val	. Ser	Ala	Lys 75		Pro	Arg	Leu	Ser 80	

- Asn Lys Gly Lys Asp Tyr Met Arg Cys Val Leu Gln Tyr Thr Val Lys 85 90 95
- Asn Glu Gln Lys Val Asp Cys Gly Gly Ser Tyr Ile Lys Leu Pro 100 105 110
- Ser Lys Leu Arg Thr Gly Asp Gly Asp Gly Val Ser Glu Tyr Ser Ile 115 120 125
- Met Phe Gly Pro Asp Ser Thr Gly Ala Ser Arg Thr Val Arg Arg Ala 130 135 140
- Arg Asn Tyr Lys Gly Lys Arg His Leu Arg Lys Lys Glu Gln Asn Lys 145 150 155 160
- Val Glu Thr Asp Gln Leu Thr His Gln Tyr Thr Thr Ser Trp Ser Pro
- Asp Trp Thr Tyr Asn Val Leu Val Asp Asn Lys Glu Ser Gln Ala Gly 180 ' 185 190
- Asn Leu Ala Asp Asp Cys Glu Leu Leu Pro Gln Lys Arg Ile Phe Arg 195 200 205
- Pro Ser Cys Arg Lys Gln Ser Lys Pro Val Thr Cys Val Asp Val Lys 210 215 220
- His His Ala Pro Arg Arg Asn Val Lys Pro Ala Gly His Asp Asp Ile 225 230 235 240
- Pro Ala Arg Arg Thr Thr Pro Glu Ala Val Arg Lys Gly Arg Thr Asn 245 250 255
- Glu Arg Pro Asp Arg Thr Trp Ala Thr Gly Thr Thr Pro Arg Pro Arg 260 265 270
- Arg Tyr Lys Gly Glu Thr Lys Ala Lys Lys His Pro Arg Pro Glu Tyr 275 280 285
- Lys Gly Thr Trp Val Thr Pro Leu Gln Asp Asn Pro Thr Pro Ala Pro 290 295 300
- Pro Asn Asp Leu Tyr Leu Phe Leu Asp Leu Gly Ala Ala Gly Thr Arg 305 310 315 320
- Thr Trp Thr Val Lys Ser Gly Ser Ile Thr Asn Asn Met Ile Val Thr 325 330 335
- Thr Ser Val Glu Thr Ala Thr Asp Phe Ser Glu Lys Thr Lys Val Ala 340 345 350
- Asn Thr Thr Glu Leu Asn Asp Gly Arg Asp Ala Gly Thr Gly Ile 355 360 365
- Gly Ala Glu Arg His Cys Ala Asp Glu Arg Trp Lys Glu Thr Thr Val 370 380

Ala 385	Pro	qeA	Cys	Ala	Val 390	Ser	Ala	Ala	Asn	Ala 395	Ser	Arg	Arg	Thr	Gly 400	
Glu	Leu	Ala	Thr	Pro 405	Val	Thr	Met	Leu	Pro 410	Asp	Pro	Leu	Tyr	Gly 415	Pro	
Glu														٠		
				-							•				÷.	
<210	)> 59	)														
	l> 41 2> DN				. •	1.								٠.		
<213	3> A1	cabio	lopsi	is th	nalia	ına										
<220	0>				٠.				: :			٠.,			•	:
	1> CI 2> (1		(411)	)												
-40	0> 59													٠.	•	
aag	gaa	gct							_	ggc	_		_			48
Lys 1	Glu	Ala	Phe	Ser 5	Leu	Phe	Asp	Lys	Asp 10	Gly	Asp	Gly	Cys	Ile 15	Thr	
			-			-	_	-		cta Leu						96
1111	Dy 3	GIU	20	013		VUL	,	25		LCu	GLY	0111	30			
										gtt						144
Glu	Ala	Glu 3,5	Leu	Gln	Asp	Met	11e 40	Asn	Glu	Val	Asp	Ala 45	Asp	GLY	Asn	
ggc	act	atc	gac	ttc	ccc	gag	ttc	ctg	aac	ctg	atg	gct	aag	aag	atg	192
			_					_		Leu		_	_			
										gaa						240
Lys 65	_	Thr	Asp	Ser	70	Glu	GIU	Leu	Lys	75	Ala	Pne	Arg	Val	Phe 80	
										gct Ala						288
	-3-			85					90					95		•
										gaa						336
Met	Thr	Asn	100		Glu	Lys	Leu	105	Asp	Glu	Glu	Val	Glu 110		Met	
ato Tle	cgt	gag Glu	gct	gat	gtt Val	gat	gga Glv	gat	ggt Glv	cag Gln	att Ile	aac	tat Tvr	gaa Glu	gag Glu	384
		115			- <b>-</b>		120		3			125				
	gto Val	Lys		_	_	_	Lys	_	ttt	gat		٠				417

WO 00/08187 PCT/EP99/05652

```
<210> 60
<211> 136
<212> PRT
<213> Arabidopsis thaliana
Lys Glu Ala Phe Ser Leu Phe Asp Lys Asp Gly Asp Gly Cys Ile Thr
                5 10
Thr Lys Glu Leu Gly Thr Val Met Arg Ser Leu Gly Gln Asn Pro Thr
            20
                             - 25
Glu Ala Glu Leu Gln Asp Met Ile Asn Glu Val Asp Ala Asp Gly Asn
                           40
Gly Thr Ile Asp Phe Pro Glu Phe Leu Asn Leu Met Ala Lys Lys Met
Lys Asp Thr Asp Ser Glu Glu Glu Leu Lys Glu Ala Phe Arg Val Phe
Asp Lys Asp Gln Asn Gly Phe Ile Ser Ala Ala Glu Leu Arg His Val
                                    90
Met Thr Asn Leu Gly Glu Lys Leu Thr Asp Glu Glu Val Glu Met
Ile Arg Glu Ala Asp Val Asp Gly Asp Gly Gln Ile Asn Tyr Glu Glu
Phe Val Lys Ile Met Met Ala Lys
                    135
<210> 61
<211> 6069
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (34)..(173)
<220>
<221> CDS
<222> (282)..(492)
<220>
<221> CDS
<222> (539)..(1135)
```

<220> <221> CDS

<222> (1224)..(1320)

WO 00/08187 PCT/EP99/05652

```
<220>
<221> CDS
<222> (1404)..(1585)
<220>
<221> CDS
<222> (1663)..(1778)
<220>
<221> CDS
<222> (1891)..(1993)
<220>
<221> CDS
<222> (2114)..(2266)
<220>
<221> CDS
<222> (2376)..(2522)
<220>
<221> CDS
<222> (2608)..(2808)
<220>
<221> CDS
<222> (3071)..(3235)
<220>
<221> CDS
<222> (3315)..(3419)
<220>
<221> CDS
<222> (3519)..(3656)
<220>
<221> CDS
<222> (3742)..(3936)
<220>
<221> CDS
<222> (4061) .. (4187)
<220>
<221> CDS
<222> (4268)..(4470)
<220>
<221> CDS
<222> (4556)..(4738)
<220>
<221> CDS
<222> (4809)..(4904)
<220>
```

	.> CI !> (4	_	(5	5188)	ı		•								٠.	
	.> CI		(5	5780)	ı			··.								
,	> CI		(6	5059)			*									
	)> 61 itcta		caat	ctct	c tt	ttt	ttc	g ggt		Gli					c agt y Ser	54
											gtc Val					102
tct Ser	tct Ser 25	tgc Cys	ttc Phe	tat Tyr	gtt Val	ccc Pro	Asn	ccc Pro	tct Ser	gga Gly	acc Thr 35	gat Asp	ttc Phe	gat Asp	gcc Ala	150
			tct Ser					gtaaç	jtett	ic t	tgaa	attti	taa	aaaa	catt	203
cact	ctct	tg c	tgct	gtct	c to	gttga	atcct	tet	tctt	tga	aaat	ttga	aaa a	acati	cttag	263
tcto	ctcgc	ete t	gtca	acag			o A					la Le			t cct le Pro	
											cgc Arg 70					363
											tct Ser				cgt Arg 90	411
ggc Gly	ttc Phe	ttc Phe	tat Tyr	tcc Ser 95	aaa Lys	aag Lys	tcc Ser	tct Ser	ggc Gly 100	tcc Ser	aat Asn	gtc Val	cgc Arg	gag Glu 105	cgc Arg	459
			gag Glu 110								gtti	ttte	tt (	cccc	ccctt	512
ctt	ccca	att (	gaca	atcca	at t	gact				r Lei					c ctt e Leu 5	565
											aac Asn					613

																4.5
agc Ser	cgt Arg	gct Ala 145	acc Thr	aag Lys	ttg Leu	ttt Phe	cat His 150	Leu	atc Ile	tta Leu	aaa Lys	tat Tyr 155	atg Met	ggt Gly	gtt Val	661
gat Asp	tca Ser 160	tct Ser	gat Asp	cga Arg	tct Ser	acg Thr 165	cct Pro	ccc Pro	agt Ser	tta Leu	gat Asp 170	gaa Glu	cgc Arg	att Ile	gac Asp	709
ctc Leu 175	gtt Val	gga Gly	aag Lys	ctc Leu	ttc Phe 180	aaa Lys	aaa Lys	act Thr	ttg Leu	aag Lys 185	cgt Arg	gtt Val	gaa Glu	ctc Leu	agg Arg 190	757
gac Asp	gaa Glu	ctt Leu	ttt Phe	gcc Ala 195	caa Gln	atc Ile	tcc Ser	aaa Lys	cag Gln 200	act Thr	aga Arg	cat His	aat Asn	cct Pro 205	gac Asp	805
agg Arg	caa Gln	tac Tyr	ttg Leu 210	atc Ile	aaa Lys	gct Ala	tgg Trp	gaa Glu 215	ttg Leu	atg Met	tac Tyr	Leu	tgt Cys 220	gcc Ala	tcc Ser	853
tct Ser	atg Met	cct Pro 225	cct	agc Ser	aaa Lys	gat Asp	atc Ile 230	Gly	gga Gly	tat Tyr	cta Leu	tct Ser 235	Glu	tat Tyr	att Ile	901
cat His	aat Asn 240	Val	gca Ala	cac His	Asp	gca Ala 245	act Thr	att Ile	gaa Glu	ccg Pro	gat Asp 250	gct Ala	cag Gln	gtt Val	ctt Leu	949
gct Ala 255	Val	aac Asn	act Thr	ttg Leu	aaa Lys 260	Ala	tta Leu	aag Lys	cgc Arg	tct Ser 265	Ile	aaa Lys	gct Ala	ggt Gly	cct Pro 270	997
agg Arg	cac	acc Thr	aca Thr	cct Pro 275	Gly	cgt Arg	gaa Glu	gaa Glu	att Ile 280	Glu	gcc Ala	ctt Leu	ttg Lev	acc Thr 285	ggt	1045
aga Arg	aag Lys	ctc Leu	aca Thr	Thr	att Ile	gtc Val	ttc Phe	ttt Phe 295	Leu	gat Asp	gaa Glu	act Thr	ttt Phe	Glu	gaa Glu	1093
att Ile	tca Ser	tat Tyr	Asp	atg Met	get Ala	aco Thr	aca Thr	Val	tct Ser	gat Asr	gct Ala	gtt Val	. Glı	j 1		1135
gta	tctt	ctt	gctt	tett	tt t	tcat	aatt	t ac	cgct	gato	ata	ttct	tgt	ccct	ttttc	t 1195
cto	acto	gcat	tgad	catct	gt t	tcag	gag				aca Thr 320					1247
gct Ala 32!	a Phe	c tcl	age c Sei	e tti r Phe	t agt e Sei 33(	c Le	g tti ı Phe	gaa e Glu	a tgt ı Cys	cgi Arg	g Lys	a gti s Va.	gt:	t tca l Sei	a agt r Ser 340	1295
tc: Se:	t aa r Ly:	a tca s Se:	a tc r Se:	t gai	t cco	gg Gl	a aa y Asi	tgg n.G	gtate	gett	tc a	tatga	actg	g		1340

cttc	gtca	ta t	atto	gtgaa	ig ta	atao	caac	a tta	atcg	atca	ttt	ttct	atc	tgtg	cactt	1400
cag	lu C	jaa t Slu T 150	at a	ita (	gga t Sly I	eu 1	at Asp 355	gat a Asp 1	aac Asn	aag Lys	tat Tyr	att Ile 360	gga Gly	gat Asp	ctc Leu	1447
ctc Leu	gca Ala 365	gaa Glu	ttt Phe	aaa Lys	gct Ala	att Ile 370	aaa Lys	gac Asp	cga Arg	aat Asn	aaa Lys 375	Gly	ı gaç 7 Glu	g ata 1 Ile	cta Leu	1495
cac His 380	tgc Cys	aaa Lys	ctg Leu	gta Val	ttt Phe 385	aaa Lys	aaa Lys	aaa Lys	tta Leu	ttc Phe 390	Arc	a gag g Glu	tct Sei	gat Asp	gaa Glu 395	1543
gct Ala	gta Val	aca Thr	gat Asp	ctg Leu 400	atg Met	ttt Phe	gtg Val	caa Gln	ctt Leu 405	Ser	tat Tyr	gtt Val	caa L Glr	1 1		1585
gtga	gcat	tt t	ctto	catto	gg to	gacai	ttta	t tto	ccac	acaa	aaç	ggctt	gcc	tttc	gttgci	1645
gaca	caca	ita t	atgo	1				gac ( Asp '	Tyr							1695
gtt Val	ggg Gly	agg Arg	gac Asp	gat Asp 425	gct Ala	gca Ala	cag Gln	ctt Leu	tgt Cys 430	Ala	tto Le	g caa 1 Glr	a ati	ctt Leu 435	gtt Val	1743
								gag Glu 445					agtti	tc		1788
ttaa	gcto	cg o	cati	tgac	tt ta	attt	tagt	t gt	ccga	tact	tta	attti	tcc	aatt	ttcct	c 1848
cctt	aaca	aat a	atcai	ttc	ct tt	tete	aatg	t at	caca	tato	ag:	•	sp T	_	a tca r Ser	1903
			Arg					Gln					r Ar		aag Lys	1951
cgt Arg	gaa Glu 470	tgg Trp	gaa Glu	ttg Leu	gat Asp	atc Ile 475	Leu	gct Ala	cgc Arg	tac Tyr	cg1	g Se	a atq	j E		1993
gtag	gaai	tag 1	ttct	atgc	at gi	tgga	ttgt	c tt	ccc	tttc	: tag	gata	cctt	tggc	aaata	a 2053
aaac	cca	ttg a	aagt	gatg	gc al	tggt	aaaa	t ga	tatt	tcgt	ato	gtgta	atgt	gggc	atgta	g 2113
								Arg					u Ar		ctg Leu	2161
aag	gca	ctg	cca	tac	ggg	aat	tca	gtt	ttt	ttt	ag	c gta	a cg	c aag	ata	2209

Lys Ala Leu Pro Tyr Gly Asn Ser Val Phe Phe Ser Val Arg Lys Ile 500 505 510	
gat gat ccg atc ggt ctt tta cct ggg cga atc att ttg ggt atc aac 225 Asp Asp Pro Ile Gly Leu Leu Pro Gly Arg Ile Ile Leu Gly Ile Asn 515 520 525 530	57
aaa cgt ggg gttgtctcaa tataaatgtt atacattatg actttaaaaa 230 Lys Arg Gly	06
aactgttatt gttgtttgga attcaaatct atgttgttgg atttgaattt gttgtttgct 236	66.
ttettgtag gtt cae ttt ttt ega eeg gtt eet aaa gaa tat etg eae tet 241 Val His Phe Phe Arg Pro Val Pro Lys Glu Tyr Leu His Ser 535 540 545	17
gct gaa cta cgt gac atc atg caa ttt ggc agc agt aac act gct gtc 246 Ala Glu Leu Arg Asp Ile Met Gln Phe Gly Ser Ser Asn Thr Ala Val 550 555 560	65
ttt ttc aaa atg aga gtc gct ggt gtt ctt cac ata ttt cag ttc gag 251 Phe Phe Lys Met Arg Val Ala Gly Val Leu His Ile Phe Gln Phe Glu 565 570 575	13
aca aaa cag gtttaaacat cactatttgt ggatcattat attatgaage 256 Thr Lys Gln 580	62
aatteettat gagatattea attigggtaa ettigtatigti tigtag gga gaa gaa att 261 Gly Glu Glu Ile 585	19
tgt gtt gct ttg caa aca cat ata aat gat gtc atg ttg cgt cgt tac  Cys Val Ala Leu Gln Thr His Ile Asn Asp Val Met Leu Arg Arg Tyr  590  595  600	67
tee aaa get ega tet get gee aat tge ttg gtt aat gga gat att tet 271 Ser Lys Ala Arg Ser Ala Ala Asn Cys Leu Val Asn Gly Asp Ile Ser 605 610 615	15
tgt tgt tct aag ccg caa aat ttt gaa gtg tat gaa aaa cgt ttg caa 276 Cys Cys Ser Lys Pro Gln Asn Phe Glu Val Tyr Glu Lys Arg Leu Gln 620 625 630	63
gat ttg tct aag gct tat gaa gag tcc caa aag aag att gag aag Asp Leu Ser Lys Ala Tyr Glu Glu Ser Gln Lys Lys Ile Glu Lys 635 640 645	80
gtacacattc taacaaattt cttatttatt cttcaatgta aaattgaata taatagaggg 286	68
aggetgatet ttgtttaaat acatgaaata aettattgta gttggatttt tteatggttt 292	28
ttatgcttgg tagtcttgag atatttcagt atatatcacc ctcctatctt atgttattgt 298	88
atgtagaatg ttataccatg acctettttg ttttagagtg geatgetgat gaactatteg 304	48
tatgttttat gttgttgtat ag ttg atg gat gaa caa caa gag aaa aat cag 310	00

					•	Le: 650		aa.	Gli	ı Glr	655		Lys	. Asr	Gln	
caa Gln 660	gaa Glu	gtt Val	act Thr	ctg Leu	cgt Arg 665	gaa Glu	gag Glu	tta Leu	gaa Glu	gct Ala 670	ata Ile	cac His	aat Asn	ggt Gly	ttg Leu 675	3148
gag Glu	ctt. Leu	gaa Glu	agg Arg	aga Arg 680	aaa Lys	ttg Leu	ttg Leu	gag Glu	gtt Val 685	act Thr	tta Leu	gac Asp	cga Arg	gat Asp 690	aaa Lys	3196
	agg Arg		_	Cys	_		_						gtta	igtta	ıta	3245
acc	taac	ttt 1	gtc	ttct	t t	gato	gette	ggtt	gaag	ıtta	ttta	atga	itt t	atto	tatat	3305
atg	ctat	Se	er Le				lu Le	eu Ar		-	_	u Āl	a Ar		g gca au Ala	3356
		70	)5				. 71	LO				71	.5			
	tcg Ser 720						Ser									3404
	atg Met				gtga	aatal	ta t	tg <b>t</b> gt	ttaa	aa to	ctaat	tcat	tgt:	aato	att	3459
gag	ttgt	tgt 1	ttt	tgtto	CC C	atto	tgct	t tto	ctt	gac	aatç	aatt	tt a	agto	acag	3518
	Leu			Ile											ttg Leu 755	3566
	gtc Val															3614
	gag Glu	Gln												. •		3656
gtg	aatt	cta:	tgta	ttag	at t	tatt	gaag	a tti	caaa	attg	agaa	gtat	ca a	aatad	ttgcg	3716
tat	tgtt	gac (	atct	catt	at t	tcag	-	_			caa Gln 790	_	_		_	3768
	gaa Glu					Lys										3816
	gaa Glu				Gln			Asp								3864

•																
_	-											Leu		gaa Glu :	ctt Leu	3912
	Glu	Leu		gaa Glu		Lys	Glu	gtaa	tggt	ac t	cttt	tgtc	t to	ttca	ttat	3966
ttaa		.845 .gt t	tctg	ytttg	ra at		850 ataa	ı tgt	attt	tcg	cgat	tcca	aa t	tgaa	gtaga	4026
ggga	tgtg	gtt t	acat	tcca	a tt	tcat	tttc	: tta						rs As	t gag n Glu	4081
		_	_							_			Ala	gag Glu		4129
														tat Tyr		4177
		gaa Glu		taaca	ataat	get	caa	gtat	gtac	aatg	rat g	rttca	ttgo	et .	. :	4227
ttt	aaaa	aag (	att	ttact	ta ao	catti	tta	t ttg	gatto	gtag		let I		ggg a Gly L		4281
	_	_		_	_		_				_		Glu	agt Ser		4329
		Glu												gtt Val		4377
	Ala						-	_					_	cgc Arg		4425
	-	_	_				-	-			-	-		aag Lys 960		4470
gta	ttat	tga	tatg	taac	tg t	gttc	attt	a cc	tttc	atcc	ttt	gttai	ttt	tcttg	gtggtt	4530
act	aaca	itcg	ttt	cctt	tt a	acag			-	_	_	_	_	gat Asp		4582
•	Ası	_	_			Ala								aaa Lys		4630
tto	act	ata	tat	ggg	cat	gag	ago	aat	cct	gga	ctc	aca	cct	cga	gct	4678

Phe	Thr	Ile	Tyr	Gly 990	His	Glu	Ser	Asn	Pro 995	Gly	Leu	Thr		Arg L000	Ala	
		Glu					Leu					Lys		ttt Phe		4726
		cta	_	gtaa	atttg	gtt _e a	tcçt	aata	ig at	gato	gtgat	aaa	aga	ttat		4778
		1020	_	,	1							•				
gaca	tcaa	act (	gacta	acaa	aa aq	yttat 	gcag			Met		l Glu			caa Gln	4832
	Thr			Asp					Lys					ttg Leu 1		4880
			Lys		gat Asp			gtai	tgt	gag a	atat	atcta	at t	ttaac	tagg	4934
ttai	taac	tag a	attg	taga	ca c	gtaa	gttt	g ato	ctta	tgca	taa	aatai	tt	tctca	ag gga Gly	4993
	Val			Glu					Ile					ttg Leu		5041
			Met		Leu			Gly					His	gtt Val 1085		50 <b>89</b>
gga Gly	aca Thr	Asn	atg Met 1090	Asn	gaa Glu	gaa Glu	Ser	tca Ser 1095	aga Arg	tct Ser	cac His	Leu	ata Ile 1100	tta Leu	tca Ser	5137
	Val		Glu			Asp		Gln			Ser			agg Arg		5185
aag Lys		acaa	aat	tcac	tatg	tt t	ttct	ttat	t ga	ctca	ttat	cat	tttt	cac		5238
agg	attt	agt	agca	ttta	gg g	attt	taag	g aa	atag	gagt	ttc	ttta	gat	tttc	atgctt	5 <b>298</b>
agt	ctac	cga	agaa	aaat	at a	gtaa	catt	a at	cttg	ttta	aga	gaga	tat	tatt	ttacag	5358
ctc	aaat	ctt	tggt	ctgg	ta c	aaaa	tgtt	a aa	cctt	tatg	tac	acaa	tcc	atat	tattag	5418
tca	atga	tat	gccc	tcca	att g	ttaa	acco	a ta	tcac	ctga	tca	tggt	ggt	atct	tctaca	5478
ata	ttct	:gaa	tttt	tgtt	tg t	tatt	tgca	ig ct Le 112	u Se	rt tt er Ph	t gt ie Va	g ga 1 As	t ct p Le 112	u Al	t ggt a Gly	5532

•																1 1
	gag Glu					Ser		Ser			Cys		Leu			5580
		1130				4						140	•		٠.	
Ala	caa Gln 1145				Lys					Leu.						5628
															· :	•
	tta Leu O			Gly					Pro					Lys		5676
	•				•								· 1			
	atg Met		Met					Gly					Thr			5724
			~-~			~~~	~~~	+			~~ ~	~~~	200	+ > 0	225	5772
	gtt Val	Asn				-	Glu			_		Glu				3112
																5000
	Leu		gtaag	gtcat	cg aç	jtte	cata	i tat	catat	caac	ataa	atca	aaa 1	tatgo	cttagt	5830
ata	aaaa	taa a	ataat	tccat	a tt	att	tttt	tto	ctc	ettt	gatt	cca	ra (	tat d	rca	5885
3.00		-33		,							<b>3</b>			ryr l		
									•			12	210	-3		
tcg	, aga	gtg	aga	acg	atc	gtg	aat	gat	ccc	agc	aaa	cat	ata	tca	tcc	5933
Ser	Arg	Val 1215	Arg	Thr	Ile		Asn 1220	Asp	Pro	Ser		His L225	Ile	Ser	Ser	
		_	_		-		_		_	-					caa	5981
Lys	Glu		Val	Arg		_	Lys	Leu	Val			Trp	гуs	GIU	GIn	•
	1230				-	1235					1240					
	· 													~~~	~~ t	6020
	ggt															6029
	Gly	гÀЗ	гая		1250	GIU	GIU	ASp		vai 1255	Asp	TTE	GIU		.ASD 1260	
124				•	1230					1233					1200	
cat	aca	cas		rat	aaa	aca	mat-	ant	tas	202	aarri	toa i	·			6070
_	Thr	_		_		_	_	_	cga	aga	aage	Lyu .	-			5575
Λ£,	,	ni g	_	1265	014	ma	nop		1270							
											•					
<2	LO> 6	2														
	11> 1															
	12> P										٠.			•		
	13> A		agob	is t	hali	ana										
			• -	_		-										
<41	00> 6	2														
	t Glu		Gln	Arg	Gly	Ser	Asn	Ser	Ser	Leu	Ser	Ser	Gly	Asn	Gly	
	1	-		5					10					15		
Th	r Glu	ı Val	Ala	Thr	Asp	Val	Ser	Ser	Cys	Phe	Tyr	Val	Pro	Asn	Pro	
			20	1				25					30			٠.
Se	r Gly	/ Thr	Asp	Phe	Asp	Ala	Glu	Ser	Ser	Ser	Leu	Pro	Pro	Leu	Ser	

		35					40			•		45			
Pro	Ala 50	Pro	Gln	Val	Ala	Leu 55	Ser	Ile	Pro	Ala	Glu 60	Leu	Ala	Ala	Ala
Ile 65	Pro	Leu	Ile	Asp	Arg 70	Phe	Gln,	Val	Glu	Ala 75	Phe	Leu	Arg	Leu	Met 80
Gln	Lys	Gln	Ile		Ser	Ala	Gly	Lys	Arg 90	_	Phe	Phe	Tyr	Ser 95	Lys
Lys	Ser	Ser	Gly 100	Ser	Asn	Val	Arg	Glu 105	Arg	Phe	Thr	Phe	Glu 110	Asp	Met
Leu	-	Phe 115	Gln	Lys	Asn	Met	Ser 120	Leu	Ser	Pro	Ser	Phe 125	Leu	Gln	Asp
Pro	Ile 130	Pro	Thr	Ser	Leu	Leu 135	Lys	Ile	Asn	Ser	Asp 140	Leu	Val	Ser	Arg
Ala 145	Thr	Lys	Leu	Phe	His 150	Leu	Ile	Leu	Lys	Tyr 155		Gly	Val	Asp	Ser 160
Ser	Asp	Arg	Ser	Thr 165	Pro	Pro	Ser	Leu	Asp 170	Glu	Arg	Ile	Asp	Leu 175	Val
Gly	Lys		Phe 180	Lys	Lys	Thr	Leu	Lys 185	Arg	Val	Glu	Leu	Arg 190	Asp	Glu
Leu	Phe	Ala 195	Gln	Ile	Ser		Gln 200	Thr	Arg	His	Asn	Pro 205	Asp	Arg	Gln
Tyr	Leu 210	Ile	Lys	Ala	Trp	Glu 215	Leu	Met	Tyr	Leu	Cys 220	Ala	Ser	Ser	Met
Pro 225	Pro	Ser	Lys	Asp	Ile 230	Gly	Gly	Tyr	Leu	Ser 235	Glu	Tyr	Ile	His	Asn 240
Val	Ala	His	Asp	Ala 245	Thr	Ile	Glu	Pro	Asp 250	Ala	Gln	Val	Leu	Ala 255	Val
Asn	Thr	Leu	Lys 260		Leu	Lys	Arg	Ser 265	Ile	Lys	Ala	Gly	Pro 270	Arg	His
Thr	Thr	Pro 275	_	Arg	Glu	Glu	11e 280		Ala	Leu	Leu	Thr 285		Arg	Lys
Leu	Thr 290		Ile	Val	Phe	Phe 295		Asp	Glu	Thr	Phe 300		Glu	Ile	Ser
Tyr 305		Met	Ala	Thr	Thr 310		Ser	Asp	Ala	Val 315		Leu	Ala	Gly	Thr 320

Ile Lys Leu Ser Ala Phe Ser Ser Phe Ser Leu Phe Glu Cys Arg Lys 325 330 335

Val Val Ser Ser Ser Lys Ser Ser Asp Pro Gly Asn Glu Glu Tyr Ile

340		345	350
J T V	,	,343	J - V 1

Gly Leu Asp Asp Asn Lys Tyr Ile Gly Asp Leu Leu Ala Glu Phe Lys 355 360 365

Ala Ile Lys Asp Arg Asn Lys Gly Glu Ile Leu His Cys Lys Leu Val 370 375 380

Phe Lys Lys Leu Phe Arg Glu Ser Asp Glu Ala Val Thr Asp Leu 385 390 395 400

Met Phe Val Gln Leu Ser Tyr Val Gln Leu Gln His Asp Tyr Leu Leu
405 410 415

Gly Asn Tyr Pro Val Gly Arg Asp Asp Ala Ala Gln Leu Cys Ala Leu
420 425 430

Gln Ile Leu Val Gly Ile Gly Phe Val Asn Ser Pro Glu Ser Cys Ile 435 440 445

Asp Trp Thr Ser Leu Leu Glu Arg Phe Leu Pro Arg Gln Ile Ala Ile 450 455 460

Thr Arg Ala Lys Arg Glu Trp Glu Leu Asp Ile Leu Ala Arg Tyr Arg 465 470 475 480

Ser Met Glu Asn Val Thr Lys Asp Asp Ala Arg Gln Gln Phe Leu Arg 485 490 495

Ile Leu Lys Ala Leu Pro Tyr Gly Asn Ser Val Phe Phe Ser Val Arg 500 505 510

Lys Ile Asp Asp Pro Ile Gly Leu Leu Pro Gly Arg Ile Ile Leu Gly 515 520 525

Ile Asn Lys Arg Gly Val His Phe Phe Arg Pro Val Pro Lys Glu Tyr 530 540

Leu His Ser Ala Glu Leu Arg Asp Ile Met Gln Phe Gly Ser Ser Asn 545 550 555 560

Thr Ala Val Phe Phe Lys Met Arg Val Ala Gly Val Leu His Ile Phe 565 570 575

Gln Phe Glu Thr Lys Gln Gly Glu Glu Ile Cys Val Ala Leu Gln Thr 580 585 590

His Ile Asn Asp Val Met Leu Arg Arg Tyr Ser Lys Ala Arg Ser Ala 595 600 605

Ala Asn Cys Leu Val Asn Gly Asp Ile Ser Cys Cys Ser Lys Pro Gln 610 615 620

Asn Phe Glu Val Tyr Glu Lys Arg Leu Gln Asp Leu Ser Lys Ala Tyr 625 630 635 640

Glu Glu Ser Gln Lys Lys Ile Glu Lys Leu Met Asp Glu Gln Glu

Lys Asn Gln Glu Val Thr Leu Arg Glu Glu Leu Glu Ala Ile His 660 665 670

Asn Gly Leu Glu Leu Glu Arg Arg Lys Leu Leu Glu Val Thr Leu Asp 675 680 685

Arg Asp Lys Leu Arg Ser Leu Cys Asp Glu Lys Gly Thr Pro Ile Gln 690 700

Ser Leu Met Ser Glu Leu Arg Gly Met Glu Ala Arg Leu Ala Lys Ser 705 710 715 720

Gly Asn Thr Lys Ser Ser Lys Glu Thr Lys Ser Glu Leu Ala Glu Met
725 730 735

Asn Asn Gln Ile Leu Tyr Lys Ile Gln Lys Glu Leu Glu Val Arg Asn 740 745 750

Lys Glu Leu His Val Ala Val Asp Asn Ser Lys Arg Leu Leu Ser Glu 755 760 765

Asn Lys Ile Leu Glu Gln Asn Leu Asn Ile Glu Lys Lys Lys Glu
770 780

Glu Val Glu Ile His Gln Lys Arg Tyr Glu Gln Glu Lys Lys Val Leu 785 790 795 800

Lys Leu Arg Val Ser Glu Leu Glu Asn Lys Leu Glu Val Leu Ala Gln 805 810 815

Asp Leu Asp Ser Ala Glu Ser Thr Ile Glu Ser Lys Asn Ser Asp Met 820 825 830

Leu Leu Glu Glu Asn Asn Leu Lys Glu Leu Glu Glu Leu Arg Glu Met 835 840 845

Lys Glu Asp Ile Asp Arg Lys Asn Glu Gln Thr Ala Ala Ile Leu Lys 850 860

Met Gln Gly Ala Gln Leu Ala Glu Leu Glu Ile Leu Tyr Lys Glu Glu 865 870 875 880

Gln Val Leu Arg Lys Arg Tyr Tyr Asn Thr Ile Glu Asp Met Lys Gly 885 890 895

Lys Ile Arg Val Tyr Cys Arg Ile Arg Pro Leu Asn Glu Lys Glu Ser 900 905 910

Ser Glu Arg Glu Lys Gln Met Leu Thr Thr Val Asp Glu Phe Thr Val 915 920 925

Glu His Ala Trp Lys Asp Asp Lys Arg Lys Gln His Ile Tyr Asp Arg 930 935 940

Val Phe Asp Met Arg Ala Ser Gln Asp Asp Ile Phe Glu Asp Thr Lys

945	950

960

Tyr Leu Val Gln Ser Ala Val Asp Gly Tyr Asn Val Cys Ile Phe Ala 965 970 975

Tyr Gly Gln Thr Gly Ser Gly Lys Thr Phe Thr Ile Tyr Gly His Glu 980 985 990

Ser Asn Pro Gly Leu Thr Pro Arg Ala Thr Lys Glu Leu Phe Asn Ile 995 1000 1005

Leu Lys Arg Asp Ser Lys Arg Phe Ser Phe Ser Leu Lys Ala Tyr Met 1010 1015 1020

Val Glu Leu Tyr Gln Asp Thr Leu Val Asp Leu Leu Leu Pro Lys Ser 025 1030 1035 1040

Ala Arg Arg Leu Lys Leu Glu Ile Lys Lys Asp Ser Lys Gly Met Val 1045 1050 1055

Phe Val Glu Asn Val Thr Thr Ile Pro Ile Ser Thr Leu Glu Glu Leu 1060 1065 1070

Arg Met Ile Leu Glu Arg Gly Ser Glu Arg Arg His Val Ser Gly Thr  $1075 \hspace{1cm} 1080 \hspace{1cm} 1085 \hspace{1cm}$ 

Asn Met Asn Glu Glu Ser Ser Arg Ser His Leu Ile Leu Ser Val Val 1090 1095 1100

Ile Glu Ser Ile Asp Leu Gln Thr Gln Ser Ala Ala Arg Gly Lys Leu 105 1110 1115 1120

Ser Phe Val Asp Leu Ala Gly Ser Glu Arg Val Lys Lys Ser Gly Ser 1125 1130 1135

Ala Gly Cys Gln Leu Lys Glu Ala Gln Ser Ile Asn Lys Ser Leu Ser 1140 1145 1150

Ala Leu Gly Asp Val Ile Gly Ala Leu Ser Ser Gly Asn Gln His Ile 1155 1160 1165

Pro Tyr Arg Asn His Lys Leu Thr Met Leu Met Ser Asp Ser Leu Gly 1170 1175 1180

Gly Asn Ala Lys Thr Leu Met Phe Val Asn Val Ser Pro Ala Glu Ser 185 1190 1195 1200

Asn Leu Asp Glu Thr Tyr Asn Ser Leu Leu Tyr Ala Ser Arg Val Arg 1205 1210 1215

Thr Ile Val Asn Asp Pro Ser Lys His Ile Ser Ser Lys Glu Met Val 1220 1225 1230

Arg Leu Lys Lys Leu Val Ala Tyr Trp Lys Glu Gln Ala Gly Lys Lys 1235 1240 1245

Gly Glu Glu Glu Asp Leu Val Asp Ile Glu Glu Asp Arg Thr Arg Lys

1250 1255 1260

Asp Glu Ala Asp Ser 265

<210> 63 <211> 2105 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(1947) <400> 63 atg aat aca gat aaa atg acc aag atg gat cta acg ggg tcc aat aac Met Asn Thr Asp Lys Met Thr Lys Met Asp Leu Thr Gly Ser Asn Asn gtg ccc att aat cca ccg acc act aag cgt gat ctt aga cag aat gat Val Pro Ile Asn Pro Pro Thr Thr Lys Arg Asp Leu Arg Gln Asn Asp aat aat aac cct aag agt cat aat agt cat aat agc aat ggg atg act Asn Asn Asn Pro Lys Ser His Asn Ser His Asn Ser Asn Gly Met Thr 40 ggt aac agg aac aat aat aat aaa aat gcc ggc gga gtt gaa act agt Gly Asn Arg Asn Asn Asn Lys Asn Ala Gly Gly Val Glu Thr Ser aaa aaa gcg cgc tca cga ctg gaa aca cat ccc cga gat aat gag aat Lys Lys Ala Arg Ser Arg Leu Glu Thr His Pro Arg Asp Asn Glu Asn 65 aat tac aga cta gct aca agt gcc ggt acg aaa gga ggt gcg cga acc Asn Tyr Arg Leu Ala Thr Ser Ala Gly Thr Lys Gly Gly Ala Arg Thr gtt gac gta cca gtc ata tta agt acc cgg gaa tca caa ggc aca cgt 336 Val Asp Val Pro Val Ile Leu Ser Thr Arg Glu Ser Gln Gly Thr Arg 100 105 110 tca gta aat gca aca agt aaa att aga tgc ccg gat tcc act gca att Ser Val Asn Ala Thr Ser Lys Ile Arg Cys Pro Asp Ser Thr Ala Ile 115 120 tgc gag tgg ttc gcc acg ccc acg gat cct caa aga cca gga gtt tat Cys Glu Trp Phe Ala Thr Pro Thr Asp Pro Gln Arg Pro Gly Val Tyr 130 135 aac cac aag aac ggc gac aaa aac aac aga gat acc ggg aac att aat 480 Asn His Lys Asn Gly Asp Lys Asn Asn Arg Asp Thr Gly Asn Ile Asn 150 155

•																
	gtt Val	_			Met			_								528
	att Ile															576
	cca Pro	_														624
_	aaa Lys 210	Asn						_							aag Lys	672
	tcg Ser										Gly					720
	cct Pro															768
	ggt Gly	_	_		_	-					7		_	_	_	816
	tac Tyr	-	_	-				_					Thr			864
	gta Val 290															912
	acc Thr										Ile					960
	gag Glu				Asn		-									1008
	acc Thr			Gln					Tyr						aca Thr	1056
	ggc		Ile				_	Val	_				_	_		1104
	atg Met 370	Asn					Ile					Leu			atg Met	1152
gca	ttt	cta	gtg	, tta	caa	ggt	cgg	att	tac	gtt	cac	aga	aag	ttc	gat	1200

Ala 385	Phe	Leu	Val	Leu	Gln 390	Gly	Arg	Ile	Tyr	Val 395	His	Arg	Lys	Phe	Asp 400	
	tgc Cys														aac Asn	1248
	gaa Glu														tta Leu	1296
	cat His				_	-	-		-	-					cgt Arg	1344
cgt Arg	agt Ser 450	ggt Gly	agg Arg	tct Ser	tat Tyr	ggt Gly 455	ttc Phe	gat Asp	cga Arg	gat Asp	att Ile 460	tgg Trp	agt Ser	gat Asp	ggt Gly	1392
	aca Thr															1440
	cca Pro															1488
caa Gln	caa Gln	aaa Lys	cga Arg 500	ccg Pro	gcg Ala	tta Leu	caa Gln	cca Pro 505	aag Lys	caa Gln	gaa Glu	caa Gln	ccg Pro 510	gaa Glu	gta Val	1536
gag Glu	aaa Lys	cac His 515	Arg	tta Leu	caa Gln	ata Ile	cca Pro 520	cgt Arg	caa Gln	aat Asn	tta Leu	gct Ala 525	Val	tat Týr	aat Asn	1584
agt Ser	aat Asn 530	His	gat Asp	ata Ile	tgg Trp	aat Asn 535	aat Asn	cgc Arg	aat Asn	aga Arg	gat Asp 540	aaa Lys	tat Tyr	att	att Ile	1632
	aac Asn					Arg					Asn					1680
cta Le	a agc ı Ser	agt Ser	ggc	gag Glu 565	Leu	ggt Gly	gaa Glu	agt Ser	cgt Arg 570	Glu	gtt Val	gtg Val	cca Pro	gac Asp 575	Gly	1728
Ile	c ggg e Gly	ttg Leu	gag Glu 580	val	ctt Leu	cta Leu	gat Asp	tct Ser 585	Ile	gta Val	aaa Lys	gaa Glu	gag Glu 590	Val	cga Arg	1776
			Ser		_	-	_	Glu					Ile		gaa Glu	1824
tg Cy	t tta s Lev	a cga a Arg	a aac g Asr	gat n Asp	gca Ala	act Thr	gaa Glu	aga Arg	caa Glr	aca Thr	gct Ala	tca Ser	aac Asn	tta Lev	gta Val	1872

PCT/EP99/05652

610 615 620

aat cac gaa ttt gta aag aaa tat caa aag tac aat cgt gaa aaa tgg 1920 Asn His Glu Phe Val Lys Lys Tyr Gln Lys Tyr Asn Arg Glu Lys Trp 625 630 635 640

acc gca gat tta caa agg tgg caa taa aaatcgcctt cacgcctgat Thr Ala Asp Leu Gln Arg Trp Gln 1967

cgctgacgct cgacgcctgc ccccagcctg cagctcgccc agctcgccca ggctcgccca 2027

geotgeocae cageetgeee caeegeteea egeetaaata ataaaaattt ttaaaaaaaa 2087

aaaaaaaaa aaaccgct

2105

<210> 64

<211> 648

<212> PRT

<213> Arabidopsis thaliana

<400> 64

Met Asn Thr Asp Lys Met Thr Lys Met Asp Leu Thr Gly Ser Asn Asn 1 5 10 15

Val Pro Ile Asn Pro Pro Thr Thr Lys Arg Asp Leu Arg Gln Asn Asp
20 25 30

Asn Asn Asn Pro Lys Ser His Asn Ser His Asn Ser Asn Gly Met Thr
35 40

Gly Asn Arg Asn Asn Asn Lys Asn Ala Gly Gly Val Glu Thr Ser 50 60

Lys Lys Ala Arg Ser Arg Leu Glu Thr His Pro Arg Asp Asn Glu Asn 65 70 75 80

Asn Tyr Arg Leu Ala Thr Ser Ala Gly Thr Lys Gly Gly Ala Arg Thr 85 90 95

Val Asp Val Pro Val Ile Leu Ser Thr Arg Glu Ser Gln Gly Thr Arg 100 105 110

Ser Val Asn Ala Thr Ser Lys Ile Arg Cys Pro Asp Ser Thr Ala Ile 115 120 125

Cys Glu Trp Phe Ala Thr Pro Thr Asp Pro Gln Arg Pro Gly Val Tyr 130 135 140

Asn His Lys Asn Gly Asp Lys Asn Asn Arg Asp Thr Gly Asn Ile Asn 145 150 155 160

Thr Val Ser Ser Leu Met Asp Asn Ala Arg Gly Pro Asn Pro Arg Ser 165 170 175

Gly Ile Ser Ile Pro Thr Pro Thr Ser Arg Gln Ser Pro Ser Glu Thr

180

185

190

- Pro Pro Asp Pro Leu Gln Asn Pro Asn Asn Tyr Thr Arg Tyr His Asn 195 200 205
- Asp Lys Asn Ser Lys Asn Ser Asn Arg Asn Tyr Asn Lys Arg Asn Lys 210 220
- Asn Ser Thr Thr Phe Asn Asn Ser Asp Leu Pro Gly His Asn Arg Ser 225 230 235 240
- Ser Pro Ala Ile Asn Ala Val Lys Ser Ala Ser Asn Arg Ser Ser Ala 245 250 255
- Ile Gly Ser Arg Asn Ser Asp Leu Asn Asn Ala Ala Asn Asp Glu Arg 260 265 270
- His Tyr Ala Arg Ser Gly Thr Tyr Gln Ile Asn Ala Val Thr Val Leu 275 280 285
- Arg Val Leu Gly Arg Gly Ala Arg Arg Asp Val Lys Ser Ala Tyr His 290 295 300
- Gly Thr Cys Gly Thr Gly Pro Arg Met Lys Val Ile Thr Leu Ala Val 305 310 315 320
- Gln Glu Asn Ile Arg Asn Arg Ile Ile Leu Glu Leu Arg Thr Leu His 325 330 335
- Lys Thr Ser Tyr Gln Tyr Ile Val Pro Tyr Tyr Asp Gly Ile Tyr Thr 340 345 350
- Glu Gly Ser Ile Phe Ile Arg Met Val Glu Leu Gly Trp Val Thr Asn 355 360 365
- Ile Met Asn Lys Thr Ala Thr Ile Arg Ala Pro Val Leu Gly Thr Met 370 380
- Ala Phe Leu Val Leu Gln Gly Arg Ile Tyr Val His Arg Lys Phe Asp 385 390 395 400
- Lys Cys Pro Ser Lys Arg Asp Ile Lys Pro Ser Asp Ile Leu Val Asn
  405
  410
  415
- Asn Glu Gly Arg Ala Lys Ile Ala Gly Phe Gly Val Ser Gly Gln Leu 420 425 430
- Gln His Thr Leu Ser Lys Asp Val Thr Ser Val Glu Ser Pro Glu Arg 435 440 445
- Arg Ser Gly Arg Ser Tyr Gly Phe Asp Arg Asp Ile Trp Ser Asp Gly 450 460
- Ile Thr Arg Val Ser Cys Ala Ile Gly Arg Phe Pro Tyr Ala Cys Asn 465 470 475 480
- Tyr Pro Gln Gln Leu Pro Gln Ala Ser Gln His Gln Leu Gln Gln Gln

485 490 495

Gln Gln Lys Arg Pro Ala Leu Gln Pro Lys Gln Glu Gln Pro Glu Val 500 505 510

Glu Lys His Arg Leu Gln Ile Pro Arg Gln Asn Leu Ala Val Tyr Asn 515 520 525

Ser Asn His Asp Ile Trp Asn Asn Arg Asn Arg Asp Lys Tyr Ile Ile 530 540

Ser Asn Asn Pro Asn Asn Arg Asn Asn Asn Asn Thr Val Cys Asp 555 560

Leu Ser Ser Gly Glu Leu Gly Glu Ser Arg Glu Val Val Pro Asp Gly
565 570 575

Ile Gly Leu Glu Val Leu Leu Asp Ser Ile Val Lys Glu Glu Val Arg 580 585 590

Met Glu Pro Ser Thr Val Ser Lys Glu Phe Arg Ser Ile Ile Ser Glu 595 600 605

Cys Leu Arg Asn Asp Ala Thr Glu Arg Gln Thr Ala Ser Asn Leu Val 610 615 620

Asn His Glu Phe Val Lys Lys Tyr Gln Lys Tyr Asn Arg Glu Lys Trp 625 630 635 640

Thr Ala Asp Leu Gln Arg Trp Gln 645

<210> 65

<211> 920

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (26)..(907)

<400> 65

acacagttat tggccgtcgg attca atg gaa gga tta gct atc aga gca tct 52

Met Glu Gly Leu Ala Ile Arg Ala Ser

1

cga ccg tcg gtt ttc tgt tct att cca ggt ctc ggc ggc gat tcc cac 100 Arg Pro Ser Val Phe Cys Ser Ile Pro Gly Leu Gly Gly Asp Ser His 10 20 25

cga aaa cct cca agt gac ggt ttc ctc aag ctg cct gcg tcg tct att 148
Arg Lys Pro Pro Ser Asp Gly Phe Leu Lys Leu Pro Ala Ser Ser Ile
30 35 40

ccg gcg gac agc cga aaa tta gta gcg aat tct act tcc ttt cat cca 196

	Pro	Ala	Asp	Ser 45	Arg	Lys	Leu	Val	Ala 50	Asn	Ser	Thr	Ser	Phe 55	His	Pro	
	atc Ile	tca Ser	gcc Ala 60	gtt Val	aac Asn	gtc. Val	tct Ser	gct Ala 65	caa Gln	gct Ala	tcc Ser	ctc Leu	acc Thr 70	gct Ala	gat Asp	ttt Phe	244
	ccc Pro	gcc Ala 75	ctt Leu	tca Ser	gaa Glu	act Thr	ata Ile 80	ctg Leu	aaa Lys	gag Glu	gga Gly	aga Arg 85	Asn	aac Asn	gga Gly	aaa Lys	292
								tgg Trp							Arg		340
. '	gac Asp	aga Arg	caa Gln	caa Gln	ctt Leu 110	Leu	caa Gln	caa Gln	aag Lys	ggt Gly 115	Cys	gtc Val	gtt Val	tgg Trp	atc Ile 120	act Thr	388
								agc Ser									436
								ctt Leu 145									484
	gtc Val	cgt Arg 155	cac His	ggc Gly	ctt Leu	aac Asn	cgt Arg 160	gac Asp	ctc Leu	act Thr	ttc Phe	aaa Lys 165	gca Ala	gag Glu	cac His	ege Arg	532
	acc Thr 170	gaa Glu	aac Asn	att Ile	aga Arg	aga Arg 175	att Ile	ggt Gly	gag Glu	gtg Val	gct Ala 180	aag Lys	ttg Leu	ttt Phe	gct Ala	gac Asp 185	580
								agt Ser									628
			Ala					tta Leu									676
	ttc Phe	atg Met	gac Asp 220	gtt Val	cct Pro	ctt Leu	cat His	gtg Val 225	tgc Cys	gag Glu	tcg Ser	aga Arg	gat Asp 230	cca Pro	aag Lys	Gly	724
	ttg Leu	tac Tyr 235	aag Lys	ctt Leu	gca Ala	cgt	gca Ala 240	ggc Gly	aaa Lys	atc Ile	aaa Lys	ggc Gly 245	ttc Phe	act Thr	gga Gly	atc Ile	772
								gtg Val				Val					820
	aca Thr	gga Gly	gac Asp	gac Asp	gag Glu	tcg Ser	tgt Cys	tcg Ser	cca Pro	cgt Arg	cag Gln	atg Met	gct Ala	gag Glu	aac Asn	atc Ile	868

270

275

280

atc tct tac ctg caa aac aaa ggt tat ctt gag ggc taa gtcaaagtcg 917 Ile Ser Tyr Leu Gln Asn Lys Gly Tyr Leu Glu Gly 285 290

gaa

920

<210> 66

<211> 293

<212> PRT

<213> Arabidopsis thaliana

<400> 66

Met Glu Gly Leu Ala Ile Arg Ala Ser Arg Pro Ser Val Phe Cys Ser 1 5 10 15

Ile Pro Gly Leu Gly Gly Asp Ser His Arg Lys Pro Pro Ser Asp Gly 20 25 30

Phe Leu Lys Leu Pro Ala Ser Ser Ile Pro Ala Asp Ser Arg Lys Leu 35 40

Val Ala Asn Ser Thr Ser Phe His Pro Ile Ser Ala Val Asn Val Ser 50 60

Ala Gln Ala Ser Leu Thr Ala Asp Phe Pro Ala Leu Ser Glu Thr Ile 65 70 75 80

Leu Lys Glu Gly Arg Asn Asn Gly Lys Glu Lys Ala Glu Asn Ile Val 85 90 95

Trp His Glu Ser Ser Ile Cys Arg Cys Asp Arg Gln Gln Leu Leu Gln
100 105 110

Gln Lys Gly Cys Val Val Trp Ile Thr Gly Leu Ser Gly Ser Gly Lys 115 120 125

Ser Thr Val Ala Cys Ala Leu Ser Lys Ala Leu Phe Glu Arg Gly Lys 130 135 140

Leu Thr Tyr Thr Leu Asp Gly Asp Asn Val Arg His Gly Leu Asn Arg 145 150 155 160

Asp Leu Thr Phe Lys Ala Glu His Arg Thr Glu Asn Ile Arg Ile 165 170 175

Gly Glu Val Ala Lys Leu Phe Ala Asp Val Gly Val Ile Cys Ile Ala

Ser Leu Ile Ser Pro Tyr Arg Arg Asp Arg Asp Ala Cys Arg Ser Leu 195 200 205

Leu Pro Asp Gly Asp Phe Val Glu Val Phe Met Asp Val Pro Leu His 210 215 220

Val 225	Суз	Glu	Ser	Arg	230	Pro	rAa	GIA	ren	235	Lys	ren	AIA	Arg	240	
Gly	Lys	Ile	Lys	Gly 245	Phe	Thr	Gly	Ile	Asp 250	Asp	Pro	Tyr	Glu	Ala 255	Pro	
Val	Asn	Cys	Glu 260	Val	Val	Leu	Lys	His 265	Thr	Gly	Asp	Asp	Glu 270	Ser	Cys	
Ser	Pro	Arg 275	Gln	Met	Ala	Glu	Asn 280	Ile	Ile	Ser	Tyr	Leu 285	Gln	Asn	Lys	
Gly	Tyr 290	Leu	Glu	Gly			. •									
						,										
<211 <212	> 67 > 12 > DI	257 NA									•	:				-
		abio	lopsi	.s th	nalia	ana					•					
	> CI	os L3).	. (124	15)			•									
	)> 67 tacto											al Ly			ag ago lu Sei	
aatt	gga	gcg Ala	Me agt	et G 1 acg	ly I aag	Le C	ys Le	eu Se 5 gcc	er A.	la Gl gat	ln Va	al Ly	ys A. 10 agt	la G	lu Sei	
tca Ser	gga Gly 15	gcg Ala	agt Ser	acg Thr	aag Lys gtg	tat Tyr 20	gac Asp	gcc Ala	aaa Lys	gat Asp agc	ata Ile 25	gga Gly cga	ys Al 10 agt Ser	la G	ggg Gly ggt	<b>r</b>
tca Ser agc Ser 30	gga Gly 15 aag Lys	gcg Ala gct Ala	agt Ser tcg Ser	acg Thr tct Ser	aag Lys gtg Val 35	tat Tyr 20 tct Ser	gac Asp gta Val	gcc Ala aga Arg	aaa Lys cca Pro	gat Asp agc Ser 40 ttt Phe	ata Ile 25 cct Pro	gga Gly cga Arg	ys A 10 agt Ser act Thr	ctt Leu gag	ggg Gly ggt Gly 45	99
tca Ser agc Ser 30 gag Glu	gga Gly 15 aag Lys atc Ile	gcg Ala gct Ala tta Leu	agt Ser tcg Ser cag Gln	acg Thr tct Ser tct Ser 50	aag Lys gtg Val 35 cca Pro	tat Tyr 20 tct Ser aat Asn	gac Asp gta Val ctc Leu	gcc Ala aga Arg Lys	aaa Lys cca Pro agt Ser 55	gat Asp agc Ser 40 ttt Phe	ata Ile 25 cct Pro agc Ser	gga Gly cga Arg ttt Phe	ys A. 10 agt Ser act Thr gct Ala	ctt Leu gag Glu gag Glu	ggg Gly ggt Gly 45 ctt Leu	99 147
tca Ser agc Ser 30 gag Glu aaa Lys	gga Gly 15 aag Lys atc Ile tca Ser	gcg Ala gct Ala tta Leu gca Ala	agt Ser tcg Ser cag Gln acc Thr 65	acg Thr tct Ser tct Ser 50 agg Arg	aag Lys gtg Val 35 cca Pro aat Asn	tat Tyr 20 tct Ser aat Asn	gac Asp gta Val ctc Leu aga Arg	gcc Ala aga Arg aag Lys cca Pro 70	aaa Lys cca Pro agt Ser 55 gac Asp	gat Asp agc Ser 40 ttt Phe agt Ser	ata Ile 25 cct Pro agc Ser gtg Val	gga Gly cga Arg ttt Phe ctt Leu	ys A. 10 agt Ser act Thr gct Ala ggt Gly 75	ctt Leu gag Glu gag Glu 60	ggg Gly ggt Gly 45 ctt Leu ggt Gly	99 147 195
tca Ser agc Ser 30 gag Glu aaa Lys	gga Gly 15 aag Lys atc Ile tca Ser	gcg Ala gct Ala tta Leu gca Ala ggt Gly 80 aga Arg	agt Ser tcg Ser cag Gln acc Thr 65 tgt Cys	acg Thr tct Ser tct Ser 50 agg Arg	aag Lys gtg Val 35 cca Pro aat Asn	tat Tyr 20 tct Ser aat Asn ttt Phe	gac Asp gta Val ctc Leu aga Arg gga Gly 85	gcc Ala aga Arg Lys cca Pro 70 tgg Trp gtt	aaa Lys cca Pro agt Ser 55 gac Asp att Ile	gat Asp agc Ser 40 ttt Phe agt Ser gat Asp	ata Ile 25 cct Pro agc Ser gtg Val gag Glu	gga Gly cga Arg ttt Phe ctt Leu aagg Lys 90	ys A. 10 agt Ser act Thr gct Ala ggt Gly 75 tct Ser aag	ctt Leu gag Glu gag Glu 60 gaa Glu	ggg Gly ggt Gly 45 ctt Leu ggt Gly act Thr	99 147 195 243

110					115				• :	120				٠.	125	
	ggt Gly	_				_				_						435
	gag Glu															483
_	ttg Leu		Asn					-		-					tta Leu	531
	tgg Trp 175	Lys			_		-	_			-		_			579
-	ttt Phe												-		_	627
	tct Ser															675
	GJA aaa									_					tct Ser	723
	cga Arg												Tyr		gca Ala	771
	ggt Gly 255					_	-	-	-		_				gtc Val	819
	Leu														cca Pro 285	867
	gga									Lys					Asn	915
	aga Arg	_		Phe		-		-	Asn	_		-		Gln	tac Tyr	963
			Glu					Ala					Arg		ctc Leu	1011
		Glu		_	_	_	Pro		_	_		Val	-	_	cac His	1059

ctc Leu 350	gaa Glu	cac His	att Ile	cag Gln	tct Ser 355	tta Leu	aat Asn	gct Ala	gct Ala	ata Ile 360	gga Gly	gga Gly	aat Asn	atg Met	gat Asp 3.65	1107
				aga Arg 370												1155
				ggt Gly											gtt Val	1203
				cgc Arg				Ser						,		1245
ata	gggti	taa a	ac									•				1257
<21:	0> 68 l> 4: 2> Pi 3> A:	lo RT	lops:	is tl	nalia	ına										•
	0> 68 Gly		Cys	Leu 5	Ser	Ala	Gln	Val	Lys 10	Ala	Glu	Ser	Ser	Gly 15		
Ser	Thr	Lys	Tyr 20	Asp	Ala	Lys	Asp	Ile 25	Gly	Ser	Leu	Gly	Ser 30	Lys	Ala	
Ser	Ser	Val 35	Ser	Val	Arg	Pro	Ser 40	Pro	Arg	Thr	Glu	Gly 45	Glu	Ile	Leu	•
Gln	Ser 50		Asn	Leu	Lys	Ser 55	Phe	Ser	Phe	Ala	Glu 60	Leu	Lys	Ser	Ala	
Thr 65	Arg	Asn	Phe	Arg	Pro 70	Asp	Ser	Val	Leu	Gly 75	Glu	Gly	Gly	Phe	Gly 80	
Суз	Val	Phe	Lys	Gly 85	Trp	Ile	Asp	Glu	Lys 90		Leu	Thr	Ala	Ser 95	Arg	
Pro	Gly	Thr	Gly 100	Leu	Val	Ile		Val 105		Lys	Leu		Gln 110		Gly	
Trp	Gln	Gly 115		Gln	Glu	Trp	Leu 120	Ala	Glu	Val	Asn	Tyr 125		Gly	Gln	
Phe	Ser 130		Arg	His	Leu	Val 135	Lys	Leu	Ile	Gly	Tyr 140	Cys	Leu	Glu	Asp	
Glu 145		Arg	Leu	Leu	Val 150	Tyr	Glu	Phe	Met	Pro 155	Arg	Gly	Ser	Leu	Glu 160	
Asn	His	Leu	Phe	Arg	Arg	Gly	Leu	Tyr	Phe	Gln	Pro	Leu	Ser	Trp	Lys	

165 170 175

Leu Arg Leu Lys Val Ala Leu Gly Ala Ala Lys Gly Leu Ala Phe Leu 180 185 190

His Ser Ser Glu Thr Arg Val Ile Tyr Arg Asp Phe Lys Thr Ser Asn 195 200 205

Ile Leu Leu Asp Ser Glu Tyr Asn Ala Lys Leu Ser Asp Phe Gly Leu 210 215 220

Ala Lys Asp Gly Pro Ile Gly Asp Lys Ser His Val Ser Thr Arg Val 225 230 235 240

Met Gly Thr His Gly Tyr Ala Ala Pro Glu Tyr Leu Ala Thr Gly His 245 250 255

Leu Thr Thr Lys Ser Asp Val Tyr Ser Phe Gly Val Val Leu Leu Glu 260 265 270

Leu Leu Ser Gly Arg Arg Ala Val Asp Lys Asn Arg Pro Ser Gly Glu 275 280 285

Arg Asn Leu Val Glu Trp Ala Lys Pro Tyr Leu Val Asn Lys Arg Lys 290 295 300

Ile Phe Arg Val Ile Asp Asn Arg Leu Gln Asp Gln Tyr Ser Met Glu 305 310 315 320

Glu Ala Cys Lys Val Ala Thr Leu Ser Leu Arg Cys Leu Thr Thr Glu 325 330 335

Ile Lys Leu Arg Pro Asn Met Ser Glu Val Val Ser His Leu Glu His 340 345 350

Ile Gln Ser Leu Asn Ala Ala Ile Gly Gly Asn Met Asp Lys Thr Asp 355 360 365

Arg Arg Met Arg Arg Arg Ser Asp Ser Val Val Ser Lys Lys Val Asn 370 380

Ala Gly Phe Ala Arg Gln Thr Ala Val Gly Ser Thr Val Val Ala Tyr 385 390 395 400

Pro Arg Pro Ser Ala Ser Pro Leu Tyr Val 405 410

<210> 69

WO 00/08187

<211> 3240

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (69)..(236)

```
<220>
<221> CDS
<222> (420) .. (506)
<220>
<221> CDS
<222> (581)..(822)
<220>
<221> CDS
<222> (907) .. (1126)
<220>
<221> CDS
<222> (1276)..(1355)
<220>
<221> CDS
<222> (1442)..(1526)
<220>
<221> CDS
<222> (1684)..(1815)
<220>
<221> CDS
<222> (1911) .. (2024)
<220>
<221> CDS
<222> (2196)..(2243)
<220>
<221> CDS
<222> (2734)..(2818)
<220>
<221> CDS
<222> (2928)..(2984)
<220>
<221> CDS
<222> (3079)..(3191)
<400> 69
ctttcgtgtg aacttccgtc catatcctta gctctttgtt tggtatttac atttcataca 60
gacgcaaa atg cta gag aaa aaa tta gct gct gca gaa gtc tct gag gaa 110
         Met Leu Glu Lys Lys Leu Ala Ala Ala Glu Val Ser Glu Glu
                                               10
gag caa aat aac ttg cta aag gat ttg gag atg aag gaa act gaa tat
                                                                    158
Glu Gln Asn Asn Leu Leu Lys Asp Leu Glu Met Lys Glu Thr Glu Tyr
15
                     20
                                          25
atg cgc cgt cag agg cat aaa atg gga gct gat gac ttt gag cca ttg
```

Met	Arg	Arg	Gln	Arg 35	His	Lys	Met	Gly	Ala 40	Asp	Asp	Phe	Glu	Pro 45	Leu	
			ggg Gly 50							gtaa	cato	etc t	ttt	taga	it	256
cata	gtct	gt t	acto	tgtt	t, to	ctcag	ccto	tca	ttgg	gcat	gcat	cato	ett (	gaaat	gttct	316
ctgt	gato	gca t	cctt	ctto	ja aa	aggto	ttct	taç	gcca	attt	ttt	taco	cac a	agcta	atttt	376
tcaa	aaaa	agt a	tggo	atgo	t aa	tttt	tete	: ttt	ctct	ttg	cag	-		atc Ile		431
							_		-	_	_	-		aag Lys 75		479
			ctt Leu 80						ttta	aaatt	ce t	tcaa	agtg	gc		526
ttt	cgtti	ga (	catt	gtt	a gt	tggt	tgat	gte	gaato	gtgg	aato	tgai	ttt _. !	cag	gtg Val	583
						-				_	_	-		agc Ser		631
													Tyr	ttg Leu		679
									-	_				ctt Leu		727
	Lys													Gly		775
		-							_					cac His 165		822
gtc	agtg	aag	caga	atat	at g	attt	agtt	c ta	gctc	ccat	tgt	tatt	ttg	ttct	aaacgt	882
ctt	tttt	tct	ccaa	tgtg	at a		-			_	o As				a ctt u Leu 175	934
										Phe				aaa Lys 190		982
tta	gac	tgt	agt	aat	ctt	caa	gag	aaa	gac	ttt	aca	gtt	gca	aga	aac	1030

	Leu	Asp	Cys	Ser 195	Asn	Leu	Gln	Glu	Lys 200	_	Phe	Thr	Val	Ala 205	Arg	Asn	
•			ggg Gly 210									Val					1078
			caa Gln			Leu											1126
	gtaa	igttt	ca c	ttat	tect	c at	ctt	tct	cca	agaga	tgt	ggaç	gtagi	cc a	acagt	atcca	1186
	gtai	att	cg t	tatt	gaaa	ıg ca	aatt	ctct	cca	attga	tat	agad	atc	cat	gttag	gatatg	1246
	acti	acta	igg t	taag	gtca	it ta	ctt	cag	_		tcc Ser		-				1299
	-		att Ile 250	-		-	-	_	_						_	_	1347
•	-	gat Asp 265		gtago	gtgaa	ag co	aaco	ctati	c cc1	tatti	gtg	gtc	tttga	att	tctti	ggtgt	1405
	aaa	taaat	taa t	atg	ggtga	aa ta	aatci	ttga	g at	ttag				eu G		cc att la Ile	1460
			gaa Glu 275													cca Pro	1508
	-		act Thr	-			gta	atta	atc (	catto	cctt	tt t	gaat	cttt	c		1556
	att	ttaa	tat 1	tgaa	ggca	ga ci	tggc	gatt	t ca	agtc	ttac	att	taat	ttt	agtc	tttttg	1616
	tat	atat	ttg (	gtaa	ttct	aa t	gtgg	aaac	t ta	cctc	ttct	cga	ttca	tta	tctt	cccct	1676
	tat	gcag	ata Ile 295	_					Tyr	_	aaa Lys			-		_	1725
	aga Arg	cta Leu 310	tca Ser	cca Pro	gaa Glu	gcc Ala	aag Lys 315	gat Asp	ctt Leu	att Ile	tgt Cys	agg Arg 320	ctt Leu	tta Leu	tgc Cys	aat Asn	1773
		Glu	caa Gln				Thr					Glu					1815
	gtg	ttgt	atg	cgtt	gttc	aa c	tttg	agat	t ca	aagt	tece	tta	tgta	aga	tcat	tgtgtg	1875

caattettaa aaacgatttg actggtttet tteag ggt cae eet tgg ttt aga Gly His Pro Trp Phe Arg 340	1928
ggc aca gaa tgg gga aaa ttg tat caa atg aaa gct gcc ttt att ccc Gly Thr Glu Trp Gly Lys Leu Tyr Gln Met Lys Ala Ala Phe Ile Pro 345 350 350 360	1976
Caa gtt aat gat gag ttg gac acc caa aat ttt gag aaa ttt gaa gag Gln Val Asn Asp Glu Leu Asp Thr Gln Asn Phe Glu Lys Phe Glu Glu 365 370 375	2024
gtaacacact gatactatca gctaatgatg tctatagtga aatattggtg caatatatgc	2084
caccaaatga tgtggcatga tgtatatact gaaatattgg tatcacagat gatttttatg	2144
ctcctgataa ggaaaataat gtatactctt ctttgattcc ttctggaaca g act gac ${ m Thr}$ Asp	2201
aag caa gtt cca aag tca gcc aag tca ggt cca tgg aga aag Lys Gln Val Pro Lys Ser Ala Lys Ser Gly Pro Trp Arg Lys 380 385 390	2243
gtacagcata agcactgact ttttggcatt atgtaccatc aagcttttt tttttatcta	2303
atagaagagt gatcatactt caaaatttat ctataagtgg gttccttgag atatgttgtt	2363
ctttgatgat actacagacg tagcttaaaa tattacatgc aacaaagagc tcagaatgat	2423
gaaattggct cagtttctgt cacaggcgtt tctatctttg tactatattc acaaaaacgt	2483
gattcactct tttaggttca aattttctta tggtaattta gaatttggag ctgattggga	2543
tgctactaac agaattatgt tgttaatctg ccagttctgc atgttgacgt gtgttagatg	2603
aatcacttat ctttttggac caacatgata taacttagaa cctgttctgt caatagaatt	2663
tatgtcatga accaaaagga ttcttgtgaa tttcataaca tgacgctggc tttcttttt	2723
Met Leu Ser Ser Lys Asp Ile Asn Phe Val Gly Tyr Thr 395 400 405	2772
tac aag aac gta gaa atc gta aat gat gac caa ata cca ggg ata g Tyr Lys Asn Val Glu Ile Val Asn Asp Asp Gln Ile Pro Gly Ile A 410 415 420	2818
gtaattcact taacccccct tccgttgctg aggaagaagc aacaatacta gattaccttg	2878
tgattatcat cgcatgtttg ctgcatttgt aatttgtttt attgtgcag ct gag ttg la Glu Leu G	2935
aag aag aag agc aat aag cca aaa agg ccg tct att aaa tct ctc ttt g Lys Lys Lys Ser Asn Lys Pro Lys Arg Pro Ser Ile Lys Ser Leu Phe G 425 430 435	2984 140

gtaaatcatc tgtttgtatg ctatttgtaa aatcaagatg attacgatcc atgtttgatt 3044 ctctctaacc aaactgtgga aactaaatta acag aa gac gaa aca tct ggt ggg lu Asp Glu Thr Ser Gly Gly aca aca acc cac caa gga agc ttt ttg aat cta cta ccg acg cag att 3146 Thr Thr Thr His Gln Gly Ser Phe Leu Asn Leu Leu Pro Thr Gln Ile 450 455 gaa gat cca gag aaa gaa ggt agt aag tcg agc tca tcc ggg tga 3191 Glu Asp Pro Glu Lys Glu Gly Ser Lys Ser Ser Ser Ser Gly 470 atttcatttg acacattgca cagcctgaac cagaagactc ttgttatat 3240 <210> 70 <211> 476 <212> PRT <213> Arabidopsis thaliana <400> 70 Met Leu Glu Lys Lys Leu Ala Ala Ala Glu Val Ser Glu Glu Glu Gln Asn Asn Leu Leu Lys Asp Leu Glu Met Lys Glu Thr Glu Tyr Met Arg Arg Gln Arg His Lys Met Gly Ala Asp Asp Phe Glu Pro Leu Thr Met 40 Ile Gly Lys Gly Ala Phe Gly Glu Val Arg Ile Cys Arg Glu Lys Gly 55 Thr Gly Asn Val Tyr Ala Met Lys Lys Leu Lys Lys Ser Glu Met Leu Arg Arg Gly Gln Val Val Glu His Val Lys Ala Glu Arg Asn Leu Leu Ala Glu Val Asp Ser Asn Cys Ile Val Lys Leu Tyr Cys Ser Phe Gln 105 Asp Glu Glu Tyr Leu Tyr Leu Ile Met Glu Tyr Leu Pro Gly Gly Asp 115 120 Met Met Thr Leu Leu Met Arg Lys Asp Thr Leu Thr Glu Asp Glu Ala Arg Phe Tyr Ile Gly Glu Thr Val Leu Ala Ile Glu Ser Ile His Lys 155 His Asn Tyr Ile His Arg Asp Ile Lys Pro Asp Asn Leu Leu Leu Asp Lys Asp Gly His Met Lys Leu Ser Asp Phe Gly Leu Cys Lys Pro Leu

•																
				180					185.	•		•		190		
	Asp	Cys	Ser 195	Asn	Leu	Gln	Glu	Lys 200		Phe	Thr	Val	Ala 205	Arg	Asn	Val
	Ser	Gly 210	Ala	Leu	Gln	Ser	Asp 215	Gly	Arg	Pro	Val	Ala 220	Thr	Arg	Arg	Thr
	Gln 225	Gln	Glu	Gln	Leu	Leu 230	Asn	Trp	Gln	Arg	Asn 235	Arg	Arg	Met	Leu	Ala 240
	Tyr	Ser	Thr	Val	Gly 245	Thr	Pro	Asp	Tyr	Ile 250	Ala	Pro	Glu	Val	Leu 255	Leu
	Lys	Lys	Gly	Tyr 260	Gly	Met	Glu	Cys	Asp 265	Trp	Trp	Ser	Leu	Gly 270	Ala	Ile
	Met	Tyr	Glu 275	Met	Leu	Val	Gly	Phe 280		Pro	Phe	Tyr	Ser 285	Asp	Asp	Pro
	Met	Thr 290	Thr	Cys	Arg	Lys	Ile 295	Val	Asn	Trp	Arġ	Asn 300	Tyr	Leu	Lys	Phe
	Pro 305	Asp	Glu	Val	Arg	Leu 310	Ser	Pro	Glu	Ala	Lys 315	Asp	Leu	Ile	Cys	Arg 320
	Leu	Leu	Cys	Asn	Val 325	Glu	Gln	Arg	Leu	Gly 330	Thr	Lys	Gly	Ala	Asp 335	Glu
	Ile	Lys	Gly	His 340	Pro	Trp	Phe	Arg	Gly 345	Thr	Glu	Trp	Gly	Lys 350	Leu	Tyr
	Gln	Met	Lys 355	Ala	Ala	Phe	Ile	Pro 360	Gln	Val	Asn	Asp	Glu 365	Leu	Asp	Thr
	Gln	Asn 370	Phe	Glu	Lys	Phe	Glu 375	Glu	Thr	Asp	Lys	Gln 380	Val	Pro	Lys	Ser

Phe Val Gly Tyr Thr Tyr Lys Asn Val Glu Ile Val Asn Asp Asp Gln 405 410 415

Ala Lys Ser Gly Pro Trp Arg Lys Met Leu Ser Ser Lys Asp Ile Asn

Ile Pro Gly Ile Ala Glu Leu Lys Lys Lys Ser Asn Lys Pro Lys Arg
420 425 430

Pro Ser Ile Lys Ser Leu Phe Glu Asp Glu Thr Ser Gly Gly Thr Thr 435 440 445

Thr His Gln Gly Ser Phe Leu Asn Leu Leu Pro Thr Gln Ile Glu Asp 450 455 460

Pro Glu Lys Glu Gly Ser Lys Ser Ser Ser Ser Gly 465 470 475

390

385

```
<210> 71
<211> 979
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (28) ... (843)
<400> 71
acgaaaacca ccgttagcta taggctg atg ata tgt agg atc cga ctc ggg tcg 54
                              Met Ile Cys Arg Ile Arg Leu Gly Ser
atg aac ggt gac gaa tgc gcg aac gtt gcg acg tgc tgg gtt act tct
Met Asn Gly Asp Glu Cys Ala Asn Val Ala Thr Cys Trp Val Thr Ser
                     15
                                         20
cta gct tgt gta gtt gac gcc gga cga tat acg aaa aag gta tcc cac
Leu Ala Cys Val Val Asp Ala Gly Arg Tyr Thr Lys Lys Val Ser His
gac cgg cga acg agg tgg ccc gcc tgg aaa gca cga cgg gat cgt cat
Asp Arg Arg Thr Arg Trp Pro Ala Trp Lys Ala Arg Arg Asp Arg His
agt gtc cga agt gat agc ggc cta gac agt cat gca ctt gaa ggt gga
Ser Val Arg Ser Asp Ser Gly Leu Asp Ser His Ala Leu Glu Gly Gly
                             65
aaa cga cgt gag tca tgc gta tca cta gct cac gaa cga gat tat gca
Lys Arg Arg Glu Ser Cys Val Ser Leu Ala His Glu Arg Asp Tyr Ala
                         80
cta acg gca cgg tgg gat cgt agc att gca atg acg gat gac acg aac
                                                                   342
Leu Thr Ala Arg Trp Asp Arg Ser Ile Ala Met Thr Asp Asp Thr Asn
 90
cca caa acc caa cgt aaa ttt gag aaa cat act cgg gat gta gaa gct
Pro Gln Thr Gln Arg Lys Phe Glu Lys His Thr Arg Asp Val Glu Ala
                110
                                     115
gtt cga ttt tct cca cga gat cgt cta att gta tct gcg ggt gca gat
Val Arg Phe Ser Pro Arg Asp Arg Leu Ile Val Ser Ala Gly Ala Asp
            125
                                130
ggg gta att gca gta tgt ccg gtt gct ggt gaa tgt gat gat gac gat
Gly Val Ile Ala Val Cys Pro Val Ala Gly Glu Cys Asp Asp Asp Asp
        140
                            145
ged egt gat ggt cat gaa gat tgt gtt agt agt att tge ttt tea cea
Ala Arg Asp Gly His Glu Asp Cys Val Ser Ser Ile Cys Phe Ser Pro
tca cta gaa cac ccg atc ctc ttt tct ggt agt tgt atc tac ttt att
                                                                   582
Ser Leu Glu His Pro Ile Leu Phe Ser Gly Ser Cys Ile Tyr Phe Ile
```

				175					180				e ⁴	185	
gtg Val	tgg Trp	aat Asn	gtc Val 190	aat Asn	gga Gly	aag Lys	aaa Lys	tgt Cys 195	agg Arg	acg Thr	ccg Pro	cta Leu	aaa Lys 200	aag Lys	630
agt Ser	aat Asn	ccc Pro 205	gta Val	tct Ser	aca Thr	cgg Arg	aca Thr 210	cag Gln	tca Ser	gaa Glu	gag Glu	gga Gly 215	agg Arg	cta Leu	678
gca Ala	aaa Lys 220	ggt Gly	ggt Gly	aaa Lys	agc Ser	ggt Gly 225	gca Ala	cgg Arg	cta Leu	cta Leu	ccc Pro 230	gat Asp	cta Leu	agt Ser	726
cag Gln 235	gaa Glu	caa Gln	cta Leu	ccc Pro	aaa Lys 240	att Ile	aat Asn	caa Gln	gaa Glu	aac Asn 245	cct Pro	att Ile	aat Asn	caa Gln	774
gct Ala	ttt Phe	tca Ser	cct Pro	agt Ser 255	ccg Pro	ttc Phe	gtc Val	gtc Val	acg Thr 260	tgc Cys	caa Gln	acg Thr	gaa Glu	aga Arg 265	822
cta Leu	tct Ser	caa Gln	acg Thr 270	tgg Trp	tga	ccgt	gcad	cg g	cac	gtga	aa aa	agto	egaco	<b>:</b>	873
cgad	cg a	ccga	aaago	ec to	gcteg	gctgg	g aca	aaaa	aaag	agct	tttt	ag g	geett	teget	933
ttga	ag a	aaaa	aggo	et co	gcgaa	aaaa	a aaa	aaago	ctcg	aaat	ca				979
l> 27 2> PI	/1 RT	long i	ic +1											• •	
		iops.	LS CI	lallo	illa .										
		Arg	Ile 5	Arg	Leu	Gly	Ser	Met 10	Asn	Gly	Asp	Glu	Cys 15	Ala	•••••
		20					25		٠.			30			•
	35					40					45			,	
50	•				55					60					
Asp	Ser	His	Ala	Leu 70	Glu	Gly	Gly	Lys	Arg 75	Arg	Glu	Ser	Cys	Val 80	
		. •													
			85					90					Asp 95 Lys		•
	yal agt Ser gca Ala cag Gln 235 gct Ala cta Leu ccgac ttga > 72 > 72 > PF 3> Ar Ile Val Arg Trp 50	yal Trp  agt aat Ser Asn  gca aaa Ala Lys 220  cag gaa Gln Glu 235  gct ttt Ala Phe  cta tct Leu Ser  ccgaccg a cttgaag a cttg	agt aat ccc Ser Asn Pro 205  gca aaa ggt Ala Lys Gly 220  cag gaa caa Gln Glu Gln 235  gct ttt tca Ala Phe Ser  cta tct caa Leu Ser Gln  ccgaccg accga cttgaag aaaaa  cttgaag aaaaa  cttgaag aaaaa  cy 72 cy 271 cy PRT cy Arabidopsi cy 272 cy 12 Cys Arg  Val Ala Thr 20  Arg Tyr Thr 35  Trp Lys Ala 50	agt aat ccc gta Ser Asn Pro Val 205  gca aaa ggt ggt Ala Lys Gly Gly 220  cag gaa caa cta Gln Glu Gln Leu 235  gct ttt tca cct Ala Phe Ser Pro  cta tct caa acg Leu Ser Gln Thr 270  ccgaccg accgaaagc ttgaag aaaaaaaggc ttgaag aaaaaaggc  cttgaag ttgaag aaaaaaggc  cttgaag aaaaaaggc  cttgaag ttgaag aaaaaaggc  cttgaag aaaaaaggc  cttgaag ttgaag aaaaaaggc  cttgaag aaaaaaggc  cttgaag aaaaaaggc  cttgaag ttgaag aaaaaaggc  cttgaag aaaaaaggc  cttgaag aaaaaaggc  cttgaag ttgaag aaaaaaggc  cttgaag aaaaaaaggc  cttgaag aaaaaaaaggc	gtg tgg aat gtc aat Val Trp Asn Val Asn 190  agt aat ccc gta tct Ser Asn Pro Val Ser 205  gca aaa ggt ggt aaa Ala Lys Gly Gly Lys 220  cag gaa caa cta ccc Gln Glu Gln Leu Pro 235  gct ttt tca cct agt Ala Phe Ser Pro Ser 255  cta tct caa acg tgg Leu Ser Gln Thr Trp 270  ccgaccg accgaaagct ccttgaag aaaaaaggct ccttgaag aaaaaaaggct ccttgaag aaaaaaaaggct ccttgaag aaaaaaaaaggct ccttgaagaagaaaaaaaaggct ccttgaagaagaaaaaaaaaa	gtg tgg aat gtc aat gga Val Trp Asn Val Asn Gly 190  agt aat ccc gta tct aca Ser Asn Pro Val Ser Thr 205  gca aaa ggt ggt aaa agc Ala Lys Gly Gly Lys Ser 220  cag gaa caa cta ccc aaa Gln Glu Gln Leu Pro Lys 235  cta tct caa acg tgg tga Leu Ser Gln Thr Trp 270  ccgaccg accgaaagcc tgctcc cttgaag aaaaaaggct cgcgaa cttgaag aaaaaaaggct cgcgaa cttgaag aaaaaaaggct cgcgaa cy 72 12 PRT 35 Arabidopsis thaliana  0> 72 11e Cys Arg Ile Arg Leu 5  Val Ala Thr Cys Trp Val 20  Arg Tyr Thr Lys Lys Val 35  Trp Lys Ala Arg Arg Asp 50  Asp Ser His Ala Leu Glu	gtg tgg aat gtc aat gga aag Val Trp Asn Val Asn Gly Lys 190  agt aat ccc gta tct aca cgg Ser Asn Pro Val Ser Thr Arg 205  gca aaa ggt ggt aaa agc ggt Ala Lys Gly Gly Lys Ser Gly 220  cag gaa caa cta ccc aaa att Gln Glu Gln Leu Pro Lys Ile 235  gct ttt tca cct agt ccg ttc Ala Phe Ser Pro Ser Pro Phe 255  cta tct caa acg tgg tga ccgt Leu Ser Gln Thr Trp 270  ccgaccg accgaaagec tgctcgctgc cttgaag aaaaaaggct cgcgaaaaaa  cttgaag aaaaaaggct cgcgaaaaaa  cttgaag aaaaaaggct cgcgaaaaaa  cttgaag aaaaaaggct cgcgaaaaaa  color 72 ccgaccg accgaaaggct tgctcgctgc cttgaag aaaaaaaggct cgcgaaaaaaa  color 72 ccgaccg Arg Ile Arg Leu Gly 5  Val Ala Thr Cys Trp Val Thr 20  Arg Tyr Thr Lys Lys Val Ser 35  Asp Ser His Ala Leu Glu Gly	gtg tgg aat gtc aat gga aag aaa Val Trp Asn Val Asn Gly Lys Lys 190  agt aat ccc gta tct aca cgg aca Ser Asn Pro Val Ser Thr Arg Thr 205  gca aaa ggt ggt aaa agc ggt gca Ala Lys Gly Gly Lys Ser Gly Ala 225  cag gaa caa cta ccc aaa att aat Gln Glu Gln Leu Pro Lys Ile Asn 240  gct ttt tca cct agt ccg ttc gtc Ala Phe Ser Pro Ser Pro Phe Val 255  cta tct caa acg tgg tga ccgtgcac Leu Ser Gln Thr Trp 270  ccgaccg accgaaagcc tgctcgctgg aca cttgaag aaaaaaaggct cgcgaaaaaa aaa 20> 72 1> 271 2> PRT 3> Arabidopsis thaliana  0> 72 11e Cys Arg Ile Arg Leu Gly Ser 5  Val Ala Thr Cys Trp Val Thr Ser 20  Arg Tyr Thr Lys Lys Val Ser His 35  Asp Ser His Ala Leu Glu Gly Gly	gtg tgg aat gtc aat gga aag aaa tgt Val Trp Asn Val Asn Gly Lys Lys Cys 190  agt aat ccc gta tct aca cgg aca cag Ser Asn Pro Val Ser Thr Arg Thr Gln 205  gca aaa ggt ggt aaa agc ggt gca cgg Ala Lys Gly Gly Lys Ser Gly Ala Arg 220  cag gaa caa cta ccc aaa att aat caa Gln Glu Gln Leu Pro Lys Ile Asn Gln 235  gct ttt tca cct agt ccg ttc gtc Ala Phe Ser Pro Ser Pro Phe Val Val 255  cta tct caa acg tgg tga ccgtcaccg g Leu Ser Gln Thr Trp 270  ccgaccg accgaaagcc tgctcgctgg acaaaaa cttgaag aaaaaaaggct cgcgaaaaaa aaaaaagg  cttgaag aaaaaaaggct cgcgaaaaaa aaaaaagg  cy 72 1> 72 1> PRT 3> Arabidopsis thaliana  cy 72 11e Cys Arg Ile Arg Leu Gly Ser Met 5  Val Ala Thr Cys Trp Val Thr Ser Leu 20  Arg Tyr Thr Lys Lys Val Ser His Asp 35  Asp Ser His Ala Leu Glu Gly Gly Lys	gtg tgg aat gtc aat gga aag aaa tgt agg 190 Nan Gly Lys Lys Cys Arg 190 Ser Asn Pro Val Ser Thr Arg Thr Gln Ser 205 Ser Asn Pro Val Ser Thr Arg Thr Gln Ser 210 Ser Asn Cys Gly Lys Ser Gly Ala Arg Leu 220 Ser Asn Gly Lys Ser Gly Ala Arg Leu 220 Ser Cys Arg 195 Ser Cys Arg 195 Ser Gly Ala Arg Leu 220 Ser Cys The Asn Gln Glu 235 Ser Pro Lys Ile Asn Gln Glu 240 Ser His Asn Gln Glu 240 Ser Gly Thr Trp 270 Ser Pro Phe Val Val Thr 250 Ser Gly Ala Arg Leu 255 Ser Pro Phe Val Val Thr 250 Ser Pro Phe Val Val Thr 250 Ser Pro Phe Val Val Thr 250 Ser Gly Ala Arg Leu 250 Ser Gly Ala Arg Leu 225 Ser Pro Phe Val Val Thr 260 Ser Gln Thr Trp 270 Ser Pro Phe Val Val Thr 250 Ser Gly Thr Trp 270 Ser Pro Ser Pro Phe Val Val Thr 260 Ser Gln Thr Trp 270 Ser Gly Ala Arg Leu Gly Ser Met Asn 10 Ser Pro Ser Pro Ser Pro Ser Pro Phe Val Val Thr 260 Ser Gln Thr Trp 270 Ser Ser Pro Phe Val Val Thr 260 Ser Gln Thr Trp 270 Ser Ser Pro Phe Val Val Thr 260 Ser Gln Thr Trp 270 Ser Ser Gln Thr Trp 270 Ser	gtg tgg aat gtc aat gga aag aaa tgt agg acg Val Trp Asn Val Asn Gly Lys Lys Cys Arg Thr 190  agt aat ccc gta tct aca cgg aca cag tca gaa Ser Asn Pro Val Ser Thr Arg Thr Gln Ser Glu 210  gca aaa ggt ggt aaa agc ggt gca cgg cta cta Ala Lys Gly Gly Lys Ser Gly Ala Arg Leu Leu 220  cag gaa caa cta ccc aaa att aat caa gaa aac Gln Glu Gln Leu Pro Lys Ile Asn Gln Glu Asn 240  gct ttt tca cct agt ccg ttc gtc gtc acg tgc Ala Phe Ser Pro Ser Pro Phe Val Val Thr Cys 260  cta tct caa acg tgg tga ccgtgcaccg gcacggtga Leu Ser Gln Thr Trp 270  ccgaccg accgaaagcc tgctcgctgg acaaaaaaaa agctcg aaat cttgaag aaaaaaaggct cgcgaaaaaa aaaaaagctcg aaat cttgaag aaaaaaaggct cgcgaaaaaaa aaaaagctcg aaat cttgaag aaaaaaaggct cgcgaaaaaaa aaaaagctcg aaat cttgaag aaaaaaaaggct cgcgaaaaaaa aaaaaagctcg aaat caa cg tgc PRT Ser PRT Ser Leu Ala Cys 25	gtg tgg aat gtc aat gga aag aaa tgt agg acg ccg ly ly lys Lys Cys Arg Thr Pro 190  agt aat ccc gta tct aca cgg aca cag tca gaa gag gca ly lys Lys Cys Arg Thr Pro 205  gca aaa ggt ggt aaa agc ggt gca cgg cta cta ccc Ala Lys Gly Lys Ser Gly Ala Arg Leu Leu Pro 220  agga caa caa cta ccc aaa att aat caa gaa aac cct Gln Glu Gln Leu Pro Lys Lys Ite Asn Gln Glu Asn Pro 240  gct ttt tca cct acc gtg tcg gc gca cgg cta cta ccc Ala Phe Ser Pro Ser Pro Phe Val Val Thr Cys Gln Cys Gln Cag ccg cta Cta ccc Ala Phe Ser Pro Ser Pro Phe Val Val Thr Cys Gln Cag ccg accggtgaa acc Leu Ser Gln Thr Trp 270  ccgaccg accgaaagcc tgctcgctgg acaaaaaaaag agctttt cttgaag aaaaaaggct cgcgaaaaaa aaaaagctcg aaatca  lo 72  272  11e Cys Arg Ile Arg Leu Gly Ser Met Asn Gly Asp 10  Val Ala Thr Cys Trp Val Thr Ser Leu Ala Cys Val 20  Arg Tyr Thr Lys Lys Val Ser His Asp Arg Arg Thr 50  Asp Ser His Ala Leu Glu Gly Gly Lys Arg Arg Glu	gtg tgg aat gtc aat gga aag aaa tgt agg acg ccg cta Val Trp Asn Val Asn Gly Lys Lys Cys Arg Thr Pro Leu 190  agt aat ccc gta tct aca cgg aca cag tca gaa gag gga Ser Asn Pro Val Ser Thr Arg Thr Gln Ser Glu Glu Gly 205  gca aaa ggt ggt aaa agc ggt gca cgg cta cta ccc gat Ala Lys Gly Lys Ser Gly Ala Arg Leu Leu Pro Asp 220  cag gaa caa cta ccc aaa att aat caa gaa aac cct att Gln Glu Gln Leu Pro Lys Ile Asn Gln Glu Asn Pro Ile 240  gct ttt tca cct agt ccg ttc gtc gtc acg tgc caa acg Ala Phe Ser Pro Ser Pro Phe Val Val Thr Cys Gln Thr 255  cta tct caa acg tgg tga ccgtgcaccg gcacggtgaa aaagtc Leu Ser Gln Thr Trp  ccgaccg accgaaagcc tgctcgctgg acaaaaaaaag agcttttag gcttgaag aaaaaaaggct cgcgaaaaaa aaaaagctcg aaatca  30> 72  12> 271  29 PRT  30 Arg Tyr Thr Lys Lys Val Ser His Asp Arg Arg Thr Arg 35  Arg Tyr Thr Lys Lys Val Ser His Asp Arg Arg Glu Ser Asp 50  Asp Ser His Ala Leu Glu Gly Gly Lys Arg Arg Glu Ser	gtg tgg aat gtc aat gga aag aaa tgt agg acg ccg cta aaa agg aat ccc gta tct aca cgg aca cag tca gaa gag gga agg Ser Asn Pro Val Ser Thr Arg Thr Gln Ser Glu Glu Gly Arg 205  gca aaa ggt ggt aaa agc ggt gca cgg cta cta ccc gat cta Ala Lys Gly Gly Lys Ser Gly Ala Arg Leu Leu Pro Asp Leu 220  cag gaa caa cta ccc aaa att aat caa gaa aac cct att aat Gln Glu Gln Leu Pro Lys Ile Asn Gln Glu Gln Asn Pro Ile Asn 235  gct ttt tca cct agt ccg ttc gtc gtc acg tcy Gln Thr Glu 255  gct ttt tca cct agt ccg ttc gtc gtc acg tcy Gln Thr Glu 255  cta tct caa acg tgg tga ccgtgcaccg gcacggtgaa aaagtcgacc Leu Ser Gln Thr Trp 270  ccgaccg accgaaagcc tgctcgctgg acaaaaaaaag agctttttag gcctt ctgaag aaaaaaaggct cgcgaaaaaa aaaaagctcg aaatca  30> 72  12> 271  29 PRT  Anabidopsis thaliana  30> 72  11e Cys Arg Ile Arg Leu Gly Ser Met Asn Gly Asp Glu Cys SPRT  Arabidopsis thaliana  30> 72  11e Cys Arg Thr Lys Lys Val Ser His Asp Arg Arg Thr Arg Trp Asp Ser His Ala Leu Glu Gly Gly Lys Arg Arg Glu Ser Cys Asp Ser His Ala Leu Glu Gly Gly Lys Arg Arg Glu Ser Cys Asp Ser His Ala Leu Glu Gly Gly Lys Arg Arg Glu Ser Cys Asp Ser His Ala Leu Glu Gly Gly Lys Arg Arg Glu Ser Cys Asp Ser His Ala Leu Glu Gly Gly Lys Arg Arg Glu Ser Cys Asp Ser His Ala Leu Glu Gly Gly Lys Arg Arg Glu Ser Cys	gtg tgg aat gtc aat gga aag aaa tgt agg acg ccg cta aaa aag Val Trp Asn Val Asn Gly Lys Lys Cys Arg Thr Pro Leu Lys Lys Lys 195  agt aat ccc gta tct aca cgg aca cag tca gaa gag gga agg cta Ser Asn Pro Val Ser Thr Arg Thr Gln Ser Glu Glu Gly Arg Leu 205  gca aaa ggt ggt aaa aagc gga cag cgg cta cta ccc gat cta agt Ala Lys Gly Gly Lys Ser Gly Ala Arg Leu Leu Pro Asp Leu Ser 220  cag gaa caa cta ccc aaa att aat caa gaa aac cct att aat caa Gln Glu Gln Leu Pro Lys Ile Asn Gln Glu Asn Pro Ile Asn Gln 245  gct ttt tca cct agt ccg ttc gtc gtc acg tgc caa acg gaa aga Ala Phe Ser Pro Ser Pro Phe Val Val Thr Cys Gln Thr Glu Arg 265  cta tct caa acg tgg tga ccgtgcaccg gcacggtgaa aaagtcgacc Leu Ser Gln Thr Trp 270  ccgaccg accgaaagcc tgctcgctgg acaaaaaaaag agctttttag gcctttcgct cttgaag aaaaaaaggct cgcgaaaaaa aaaaagctcg aaatca  30> 72  12 271  29 PRT  30 Arabidopsis thaliana  30> 72  11e Cys Arg Ile Arg Leu Gly Ser Met Asn Gly Asp Glu Cys Ala 15  Val Ala Thr Cys Trp Val Thr Ser Leu Ala Cys Val Val Asp Ala 20  Arg Tyr Thr Lys Lys Val Ser His Asp Arg Arg Thr Arg Trp Pro 40  Trp Lys Ala Arg Arg Asp Arg His Ser Val Arg Ser Asp Ser Gly 50  Asp Ser His Ala Leu Glu Gly Gly Lys Arg Arg Glu Ser Cys Val

```
Glu Lys His Thr Arg Asp Val Glu Ala Val Arg Phe Ser Pro Arg Asp
                            120
Arg Leu Ile Val Ser Ala Gly Ala Asp Gly Val Ile Ala Val Cys Pro
    130
                        135
Val Ala Gly Glu Cys Asp Asp Asp Asp Ala Arg Asp Gly His Glu Asp
                                        155
Cys Val Ser Ser Ile Cys Phe Ser Pro Ser Leu Glu His Pro Ile Leu
                165
                                    170
Phe Ser Gly Ser Cys Ile Tyr Phe Ile Lys Val Trp Asn Val Asn Gly
                           185
Lys Lys Cys Arg Thr Pro Leu Lys Lys His Ser Asn Pro Val Ser Thr
                          200
Arg Thr Gln Ser Glu Glu Gly Arg Leu Cys Ala Lys Gly Gly Lys Ser
                        215
Gly Ala Arg Leu Leu Pro Asp Leu Ser Thr Gln Glu Gln Leu Pro Lys
                    230
Ile Asn Gln Glu Asn Pro Ile Asn Gln Ile Ala Phe Ser Pro Ser Pro
                245
Phe Val Val Thr Cys Gln Thr Glu Arg Ser Leu Ser Gln Thr Trp
                                265
<210> 73
<211> 1260
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (101)..(155)
<220>
<221> CDS
<222> (254)..(660)
<220>
<221> CDS
<222> (750)..(1193)
<400> 73
gctcaattat gtttacaaca ttgttgtaat ttcaaaactt cataagaatt tctctgataa 60
```

Met Lys Arg Leu Ser

taaagaaaaa gctggagtag aactatttta aagtgtcatc atg aag aga cta agc

agc Ser	tca Ser	gat Asp	tca Ser	atg Met 10	tgt Cys	ggt Gly	cta Leu	atc Ile	tcc Ser 15	act Thr	tct Ser	aca Thr	g gt A	tctt	atta	165
ccat	cttt	gt t	cttt	ctac	t tt	ttgc	taat	gto	agac	aaa	acco	atgt	ga t	cctt	tcttc	225
actt	tcca	ct g	ittto	tttt	a tt	gaca		p Se					ir Th		at gaa sp Glu	279
														gaa Glu		327
tac Tyr	gat Asp 45	gaa Glu	gat Asp	gct Ala	aca Thr	cta Leu 50	atc Ile	gag Glu	gaa Glu	tat Tyr	tcc Ser 55	ggc Gly	aac Asn	cac His	cac His	375
cac His 60	atg Met	ggt Gly	cta Leu	tcg Ser	gag Glu 65	aag Lys	aag Lys	aga Arg	aga Arg	tta Leu 70	aaa Lys	gtt Val	gac Asp	caa Gln	gtc Val 75	423
aaa Lys	gct Ala	ctt Leu	gag Glu	aag Lys 80	aat Asn	ttc Phe	gaa Glu	ctt Leu	gag Glu .85	aat Asn	aaa Lys	ctc Leu	gaa Glu	cct Pro 90	gag Glu	471
agg Arg	aaa Lys	act Thr	aaa Lys 95	Leu	gca Ala	caa Gln	gag Glu	ctt Leu 100	gga Gly	ctt Leu	caa Gln	cct. Pro	cgt Arg 105	caa Gln	gta Val	519
gct Ala	gtt Val	tgg Trp 110	ttt Phe	cag Gln	aac Asn	cgt Arg	cgt Arg 115	gca Ala	cgg Arg	tgg Trp	aaa Lys	aca Thr 120	aaa Lys	cag Gln	ctt Leu	567
gaa Glu	aaa Lys 125	gat Asp	tac Tyr	ggt Gly	gtt Val	ctt Leu 130	aag Lys	ggt Gly	caa Gln	tac Tyr	gat Asp 135	tct Ser	ctc Leu	cgc Arg	cac His	615
aat Asn 140	ttc Phe	gat Asp	tct Ser	ctc Leu	cgc Arg 145	cgt Arg	gac Asp	aat Asn	gat Asp	tcc Ser 150	ctt Leu	ctc Leu	caa Gln	gag Glu		660
gtad	caata	att a	agaga	ctti	ca aa	accat	aaaa	att	gaaa	actt	caga	igacç	gaa a	aatgo	caaaaa	720
ggtt	ttgat	ctt t	taaa	agtt	t to	ggttg	gcag							aag L <u>y</u> s		773
aac Asn	ggt Gly	gaa Glu 165	gaa Glu	gat Asp	aac Asn	aac Asn	aac Asn 170	aac Asn	aaa Lys	gct Ala	att Ile	acg Thr 175	gag Glu	ggt Gly	gtt Val	821
aag Lys	gaa Glu 180	gag Glu	gaa Glu	gtt Val	cac His	aag Lys 185	acg Thr	.gat Asp	tcg Ser	att Ile	cct Pro 190	tcg Ser	tct Ser	cct Pro	ctg Leu	869
cad	ttt	cta	ra a	cat	tee	tct	aat	+++	220	tac	~~~		200	++-	201	017

Gln Phe Leu 195		Ser Ser Gl	y Phe Asn	Tyr Arg 205	Arg Ser	Phe Th	_ *
gac ctc cgt Asp Leu Arg	gac ctt c Asp Leu L 215	ta ccg aa eu Pro As	t tcc acc n Ser Thr 220	gtt gtc Val Val	gag gct Glu Ala	gga to Gly Se: 225	965
tcc gat agt Ser Asp Ser							
gat aac gga Asp Asn Gly 245			Val Thr				
tta cag ttt Leu Gln Phe 260					Glu Asp		
agc ggt gaa Ser Gly Glu 275	Glu Ala C	gt ggt tt Cys Gly Ph	c ttc tcc e Phe Ser	gat gaa Asp Glu 285	cag ccg Gln Pro	ccg tca Pro Se: 29	r .
ctt cat tgg Leu His Trp					gaattgt	ta .	1203
tcaaattggt	gctctgttta	gtctcaat	gg gaaaac	agag aag	agggcaa a	aggtgga	1260
<210> 74 <211> 301 <212> PRT <213> Arabi	dopsis tha	aliana					
<211> 301 <212> PRT	dopsis tha	aliana					
<211> 301 <212> PRT <213> Arabi	_		p Ser Met 10	Cys Gly			c .
<211> 301 <212> PRT <213> Arabi <400> 74 Met Lys Arg	Leu Ser S	Ser Ser As	10	Cys Gly	Leu Ile	Ser Th	
<211> 301 <212> PRT <213> Arabi <400> 74 Met Lys Arg 1	Leu Ser S 5 Ser Phe G 20 Asn Tyr G	Ser Ser As	10 r Thr Asp 25 t Leu Glu	Cys Gly Glu Gln	Leu Ile Ser Pro 30	Ser Th. 15 Arg Gl	,
<pre>&lt;211&gt; 301 &lt;212&gt; PRT &lt;213&gt; Arabi &lt;400&gt; 74 Met Lys Arg</pre>	Leu Ser S 5 Ser Phe G 20 Asn Tyr G	Ser Ser As Sly Tyr Th Gln Ser Me 4	Thr Asp 25 t Leu Glu	Cys Gly Glu Gln Gly Tyr	Leu Ile Ser Pro 30 Asp Glu 45 Met Gly	Ser Th 15 Arg Gl	<b>7</b>
<pre>&lt;211&gt; 301 &lt;212&gt; PRT &lt;213&gt; Arabi &lt;400&gt; 74 Met Lys Arg</pre>	Leu Ser S 5 Ser Phe G 20 Asn Tyr G	Ger Ser As Gly Tyr Th Gln Ser Me 4 Tyr Ser Gl 55	Thr Asp 25 t Leu Glu 0 y Asn His	Cys Gly Glu Gln Gly Tyr His His	Leu Ile Ser Pro 30 Asp Glu 45 Met Gly	Ser Th. 15 Arg Gl Asp Al.	Y a C
<pre>&lt;211&gt; 301 &lt;212&gt; PRT &lt;213&gt; Arabi &lt;400&gt; 74 Met Lys Arg 1 Ser Thr Asp  Tyr Gly Ser</pre>	Leu Ser S 5 Ser Phe G 20 Asn Tyr G Glu Glu T Arg Arg I	Ger Ser As  Gly Tyr Th  Gln Ser Me  4  Tyr Ser Gl  55  Leu Lys Va  70	Thr Asp 25 t Leu Glu 0 y Asn His	Cys Gly Glu Gln Gly Tyr His His 60 Val Lys 75 Glu Arg	Leu Ile Ser Pro 30 Asp Glu 45 Met Gly Ala Leu	Ser Th. 15 Arg Gl Asp Al Leu Se	r S O

Asn	Arg	Arg 115	Ala	Arg	Trp	Lys	Thr 120	Lys	Gln	Leu	Glu	Lys 125	Asp	Tyr	Gly	
Val	Leu 130	Lys	Gly	Gln	Tyr	Asp 135	Ser	Leu	Arg	His	Asn 140	Phe	Asp	Ser	Leu	
Arg 145	.Arg	Asp	Asn	Asp	Ser 150	Leu	Leu	Gln	Glu	11e 155	Ser	Lys	Ile	Lys	Ala 160	
Lys	Val	Asn	Gly	Glu 165	Glu	Asp	Asn	Asn	Asn 170		Lys	Ala	Ile	Thr 175	Glu	
Gly	Val	Lys	Glu 180	Glu	Glu	Val	His	Lys 185	Thr	Asp	Ser	Ile	Pro 190	Ser	Ser	• • .
Pro	Leu	Gln 195	Phe	Leu	Glu	His	Ser 200	Ser	Gly	Phe	Asn	Tyr 205		Arg	Ser	:
Phe	Thr 210	Asp	Leu	Arg	Asp	Leu 215	Leu	Pro	Asn	Ser	Thr 220	Val	Val	Glu	Ala	
Gly 225	Ser	Ser	Asp	Ser	Cys 230	Asp	Ser	Ser		Val 235	Leu	Asn	Asp	Glu	Thr 240	
Ser	Ser	Asp	Asn	Gly 245	Arg	Leu	Thr	Pro	Pro 250	Val	Thr	Val	Thr	Gly 255	Gly	·.
Ser	Phe	Leu	Gln 260	Phe	Val	Lys	Thr	Glu 265	Gln	Thr	Glu	Asp	His 270	Glu	Asp	
Phe	Leu	Ser 275	Gly	Glu	Glu	Ala	Cys 280	Gly	Phe	Phe	Ser	Asp 285	Glu	Gln	Pro	
Pro	Ser 290		His	Trp	Tyr	Ser 295		Ser	Asp	His	Trp 300	Thr				
															•	
	0 > 7!															
	1> 1:															
	2> DI 3> A:		3050	1	h n 1 i .											
\Z.I.	J- A.	Labi	uops.	15 (1	Iditio	ana										
<22	0>															•
<22	1> C	DS														
<22	2> (	22).	. (11	22)												
	a									•		,				
	0> 7:		- ~+ ~·	~~++	- <del>.</del> .											r4 ·
	tagc	caa e	ague	cgtt	Ly a									Arg		51
anc	tcg	atc	cat	taa	+++	acc	220	CG2	++=	at~	a~+	~~+	200	~+~		0.0
Ser	Ser	Ile	Arg	Trp 15	Phe	Ala	Asn	Arg	Leu 20	Val	Ser	Gly	Ser	Leu 25	Leu	99
tta	tat	get	aac	acc	tac	agt	cat	·cat	act	ccc	aca	tee	. ממת	acc	aca	147

					•								_				
	Leu	Cys	Ala	Asn 30	Ala	Tyr	Ser	Arg	Arg 35	Thr	Pro	Ala	Ser	Gly 40	Ala	Ala	
	tta Leu	cag Gln	cag Gln 45	atg Met	aac Asn	cgt Arg	gcc Ala	agt Ser 50	cag Gln	tca Ser	gtg Val	aat Asn	tac Tyr 55	cga Arg	cga Arg	cgt Arg	195
	gag Glu	ctg Leu 60	tca Ser	tta Leu	atc Ile	agc Ser	ggc Gly 65	cgg Arg	aaa Lys	cag Gln	ggt Gly	gtc Val 70	Gln	tct Ser	ctg Leu	ggt Gly	243
	tat Tyr 75	aga Arg	ctt Leu	gca Ala	cgc Arg	ctc Leu 80	gat Asp	aac Asn	cgc Arg	gct Ala	ctt Leu 85	gca Ala	caa Gln	ttg Leu	ttg Leu	cac His 90	291
	agg Arg	gat Asp	Gly	cag Gln	ccc Pro 95	gag Glu	gaa Glu	gtg Val	gta Val	cag Gln 100	cgc Arg	ggc Gly	aat Asn	gaa Glu	atc Ile 105	agc Ser	339
	tat Tyr	ttc Phe	gaa Glu	acg Thr 110	gga Gly	ctt Leu	gaa Glu	ccg Pro	acc Thr 115	acg Thr	ctt Leu	aga Arg	cgt Arg	gtg Val 120	cgc Arg	gat Asp	387
	tgt Cys	gtt Val	gtt Val 125	gcc Ala	gct Ala	ctg Leu	cca Pro	acc Thr 130	gtt Val	atc Ile	tat Tyr	acc Thr	gga Gly 135	ttc Phe	aaa Lys	cgt Arg	435
•	gtt Val	tct Ser 140	cct Pro	tac Tyr	tac Tyr	gaa Glu	ttt Phe 145	atc Ile	tcc Ser	gtc Val	Gly	cgc Arg 150	Thr	agg Arg	gtt Val	gct Ala	483
	gat Asp 155	cgt Arg	ctt Leu	agc Ser	gaa Glu	gtc Val 160	acg Thr	caa Gln	gtg Val	gtt Val	ccc Pro 165	Arg	gat Asp	gat Asp	aca Thr	cgc Arg 170	531
	tac Tyr	gtc Val	tac Tyr	atc Ile	gtg Val 175	tgg Trp	cgg Arg	gaa Glu	tcc Ser	gaa Glu 180	cga Arg	tcg Ser	aaa Lys	tta Leu	gag Glu 185	gcg Ala	579
	cgg Arg	G1A aaa	gat Asp	ctc Leu 190	cgt Arg	gat Asp	cgc Arg	gat Asp	ggt Gly 195	gaa Glu	acg Thr	ctg Leu	Glu	aag Lys 200	ttt Phe	cgc Arg	627
	gtg Val	att Ile	gct Ala 205	ttt Phe	aac Asn	gtc Val	acg Thr	ctg Leu 210	gat Asp	atc Ile	agc Ser	agc Ser	agt Ser 215	atg Met	gag Glu	ccg Pro	675
	ctg Leu	gcg Ala 220	aag Lys	gga Gly	gat Asp	ttg Leu	ccg Pro 225	ccg Pro	ttg Leu	ctt Leu	gct Ala	gtt Val 230	cct Pro	gta Val	ggt Gly	gaa Glu	723
	caa Gln 235	gct Ala	aga Arg	ttc Phe	agc Ser	ttg Leu 240	acg Thr	cca Pro	acc Thr	tgg Trp	ttg Leu 245	cca Pro	cag Gln	ggt Gly	cgt Arg	agc Ser 250	771
	gat Asp	gtt Val	tcc Ser	agt Ser	agt Ser	cga Arg	cgt Arg	ggg Gly	cta Leu	ccg Pro	cgg Arg	atg Met	gac Asp	aaa Lys	gtg Val	cct Pro	819

255 260

atc gaa tcc cgt ctc tcg acc gac gga gta ttc agc ttc tcg gta aac Ile Glu Ser Arg Leu Ser Thr Asp Gly Val Phe Ser Phe Ser Val Asn 270 275 gtt aac ggc gct acg cca tcg agg tgg gat cag atg ttg cgc acc gga Val Asn Gly Ala Thr Pro Ser Arg Trp Asp Gln Met Leu Arg Thr Gly 290 963 cgc agg ccc gtc agt aga agc gta cgt gat gtc gcc gaa aac acc att Arg Arg Pro Val Ser Arg Ser Val Arg Asp Val Ala Glu Asn Thr Ile 305 gge ggt gaa ctg ccg cgt agc tgc tcg cga ccc gat ccg ttg acc 1011 Gly Gly Glu Leu Pro Pro Arg Ser Cys Ser Arg Pro Asp Pro Leu Thr 325 320 315 get gae ege ega ege tge get age etg age etg eec age etg eea get 1059 Ala Asp Arg Arg Cys Ala Ser Leu Ser Leu Pro Ser Leu Pro Ala 335 340 cga cag ccc tcc caa acg gag aaa cgc att gtc gag aat att aag tac 1107 Arg Gln Pro Ser Gln Thr Glu Lys Arg Ile Val Glu Asn Ile Lys Tyr 350 355 1122 ggg gca gcg cca tga

Gly Ala Ala Pro 365

<210> 76 <211> 366 <212> PRT <213> Arabidopsis thaliana

<400> 76

Met Asn Gln Arg Ala Asp Arg Asp Arg Ala Ser Ser Ile Arg Trp Phe 10

Ala Asn Arg Leu Val Ser Gly Ser Leu Leu Leu Cys Ala Asn Ala Tyr

Ser Arg Arg Thr Pro Ala Ser Gly Ala Ala Leu Gln Gln Met Asn Arg

Ala Ser Gln Ser Val Asn Tyr Arg Arg Glu Leu Ser Leu Ile Ser 55

Gly Arg Lys Gln Gly Val Gln Ser Leu Gly Tyr Arg Leu Ala Arg Leu

Asp Asn Arg Ala Leu Ala Gln Leu Leu His Arg Asp Gly Gln Pro Glu

Glu Val Val Gln Arg Gly Asn Glu Ile Ser Tyr Phe Glu Thr Gly Leu 105

Glu Pro Thr Thr Leu Arg Arg Val Arg Asp Cys Val Val Ala Ala Leu 115 120 125

Pro Thr Val Ile Tyr Thr Gly Phe Lys Arg Val Ser Pro Tyr Tyr Glu 130 135 140

Phe Ile Ser Val Gly Arg Thr Arg Val Ala Asp Arg Leu Ser Glu Val 145 150 155 160

Thr Gln Val Val Pro Arg Asp Asp Thr Arg Tyr Val Tyr Ile Val Trp
165 170 175

Arg Glu Ser Glu Arg Ser Lys Leu Glu Ala Arg Gly Asp Leu Arg Asp 180 185 190

Arg Asp Gly Glu Thr Leu Glu Lys Phe Arg Val Ile Ala Phe Asn Val 195 200 205

Thr Leu Asp Ile Ser Ser Ser Met Glu Pro Leu Ala Lys Gly Asp Leu 210 215 220

Pro Pro Leu Leu Ala Val Pro Val Gly Glu Gln Ala Arg Phe Ser Leu 225 230 235 240

Thr Pro Thr Trp Leu Pro Gln Gly Arg Ser Asp Val Ser Ser Ser Arg 245 250 255

Arg Gly Leu Pro Arg Met Asp Lys Val Pro Ile Glu Ser Arg Leu Ser 260 265 270

Thr Asp Gly Val Phe Ser Phe Ser Val Asn Val Asn Gly Ala Thr Pro 275 280 285

Ser Arg Trp Asp Gln Met Leu Arg Thr Gly Arg Arg Pro Val Ser Arg 290 295 300

Ser Val Arg Asp Val Ala Glu Asn Thr Ile Gly Gly Glu Leu Pro Pro 305 310 315 320

Arg Ser Cys Ser Arg Pro Asp Pro Leu Thr Ala Asp Arg Arg Cys 325 330 335

Ala Ser Leu Ser Leu Pro Ser Leu Pro Ala Arg Gln Pro Ser Gln Thr 340 345 350

Glu Lys Arg Ile Val Glu Asn Ile Lys Tyr Gly Ala Ala Pro 355 360 365

<210> 77

<211> 1650

<212> DNA

<213> Arabidopsis thaliana

<220>

```
<221> CDS
<222> (21)..(203)
<220>
<221> CDS
<222> (291)..(482)
<220>
<221> CDS
<222> (633)..(838)
<220>
<221> CDS
<222> (1044)..(1605)
<400> 77
attcagagaa gaactcaccg atg agt atg gat ttt tca cct ttg tta acg gtt 53
                      Met Ser Met Asp Phe Ser Pro Leu Leu Thr Val
ctt gag gga gat ttc aac aag gat aat act tct tct gca aca gaa att
                                                                   101
Leu Glu Gly Asp Phe Asn Lys Asp Asn Thr Ser Ser Ala Thr Glu Ile
             15
                                 20
gat act tta gag aac tta gat gac act agg cag ata agt aaa gga aaa
Asp Thr Leu Glu Asn Leu Asp Asp Thr Arg Gln Ile Ser Lys Gly Lys
                             35
cct ccg agg cac ctc aca agc agt gct act agg ctg cag ctt gca gcc
                                                                   197
Pro Pro Arg His Leu Thr Ser Ser Ala Thr Arg Leu Gln Leu Ala Ala
                         50
aat gcg gtaatatact tgaccctgct ttttctttt ccttttcttt gttacaatgg
                                                                   253
Asn Ala
gattcgaatg atgtaactgg tttctgtttg tgcgcag gat gtg gat gtt tgt aac
                                                                   308
                                         Asp Val Asp Val Cys Asn
ttg gtt atg aag tca ctt gat gac aaa tca gag ttt cta cct gta tac
                                                                   356
Leu Val Met Lys Ser Leu Asp Asp Lys Ser Glu Phe Leu Pro Val Tyr
                             75
cga tca gga agt tgt gct gag caa ggg gca aaa cag ttc atg gaa gat
                                                                   404
Arg Ser Gly Ser Cys Ala Glu Gln Gly Ala Lys Gln Phe Met Glu Asp
                         90
gaa cac att tgc atc gat gat ctt gtt aat cat ctt ggt gca gct att
Glu His Ile Cys Ile Asp Asp Leu Val Asn His Leu Gly Ala Ala Ile
100
                    105
                                        110
caa tgc tct tct ctt gga gcc ttc tat ggg gtgagtttat cttccaatct
Gln Cys Ser Ser Leu Gly Ala Phe Tyr Gly
                120
```

tacccaaaga agcataaaag caattcacta gcctgattct tctttcttct cctctttgt 562

actagtacga tataagaggt attacttcaa aaactcttct aacatttgtt gattgtgtgt	622
CCTTTGGCAG GTA TTT GAT GGC CAC GGT GGC ACA GGT GCA GCA CAC TTT  Val Phe Asp Gly His Gly Gly Thr Asp Ala Ala His Phe  130  135	671
gtt aga aag aac att ctg aga ttc att gta gag gac tcc tcc ttc cca Val Arg Lys Asn Ile Leu Arg Phe Ile Val Glu Asp Ser Ser Phe Pro 140 145 150	719
cta tgc gta aag aaa gca att aag agt gct ttc tta aaa gct gat tat Leu Cys Val Lys Lys Ala Ile Lys Ser Ala Phe Leu Lys Ala Asp Tyr 155 160 165 170	767
gaa ttt gca gat gat tct tct ctt gac atc tct tct ggg acc act gcg Glu Phe Ala Asp Asp Ser Ser Leu Asp Ile Ser Ser Gly Thr Thr Ala 175 180 185	815
ctt aca gct ttt att ttt gga cg gtaagagcat ttaaattcgt atttatgaac Leu Thr Ala Phe Ile Phe Gly Ar 190	868
ttgggaaget atatatgtta teacetgtat aateateaat aettateagg ttgeetgtgt	928
gtataagata gagaataagg cttagtgtaa agacttatgt aacgggctgt tttaccatgt	988
ttctttgtag ttttgatgtg attttgaata gaattgctac tttctttctt tacag g g	1044
agg ttg ata att gca aat gct ggt gat tgc cga gca gta ctg ggg aga Arg Leu Ile Ile Ala Asn Ala Gly Asp Cys Arg Ala Val Leu Gly Arg 195 200 205 210	1092
aga ggt agg gca att gag ttg tcc aaa gat cac aaa cca aac tgc aca Arg Gly Arg Ala Ile Glu Leu Ser Lys Asp His Lys Pro Asn Cys Thr 215 220 225	1140
gcc gag aaa gta aga ata gaa aag tta ggt gga gtt gtg tat gac ggt Ala Glu Lys Val Arg Ile Glu Lys Leu Gly Gly Val Val Tyr Asp Gly 230 235 240	1188
tac ctc aac ggg caa cta tca gtt gca cgt gcc att gga gac tgg cac Tyr Leu Asn Gly Gln Leu Ser Val Ala Arg Ala Ile Gly Asp Trp His 245 250 255	1236
atg aaa ggt ccc aaa ggc tct gct tgt ccg cta agc cca gag cca gag Met Lys Gly Pro Lys Gly Ser Ala Cys Pro Leu Ser Pro Glu Pro Glu 260 265 270	1284
ttg caa gag aca gac ctg agt gaa gac gag ttc ttg ata atg gga Leu Gln Glu Thr Asp Leu Ser Glu Asp Asp Glu Phe Leu Ile Met Gly 275 280 285 290	1332
tgt gat ggt ctg tgg gat gtg atg agc agc cag tgc gct gtg aca ata Cys Asp Gly Leu Trp Asp Val Met Ser Ser Gln Cys Ala Val Thr Ile 295 300 305	1380

														•		
gc Al	t agg a Arg	aag Lys	gaa Glu 310	ctg Leu	atg Met	att Ile	cat His	aat Asn 315	gat Asp	cca Pro	gag Glu	aga Arg	tgc Cys 320	tct Ser	aga Arg	1428
	g ctt u Leu															1476
	g att l Ile 340											Arg				1524
	a atg g Met 5															1572
	a ctc u Leu									tga	gcat	gtta	atg (	ttgta	acgtta	1625
ct	ttgtg	aga (	ctati	gcca	aa gt	tag										1650
<2 <2	10> 7 11> 3 12> P 13> A	80 RT	done	ic +1	nali:										. :	
~2	10- 11		aops.	is ci	10116	ına										
	00> 7		aops.	is ci		ına			•		٠.					
<4 Me		8			÷		Leu	Leu	Thr	Val	Leu	Glu	Gly	Asp 15	Phe	. "
<4 Me	00> 7 t Ser	8 Met	Asp	Phe 5	Ser	Pro	•		10					15		
<4 Me	00> 7 t Ser 1	8 Met Asp	Asp Asn 20	Phe 5 Thr	Ser	Pro Ser	Ala	Thr 25	10 Glu	Ile	Asp	Thr	Leu 30	15 Glu	Asn	
<4 Me As	00> 7 t Ser 1 n Lys	8 Met Asp Asp 35 Ser	Asp Asn 20 Thr	Phe 5 Thr	Ser Ser Gln	Pro Ser Ile	Ala Ser 40	Thr 25 Lys	10 Glu Gly	Ile Lys	Asp Pro	Thr Pro 45	Leu 30 Arg	15 Glu His	Asn Leu	
<44 Me As Le Th	00> 7 t Ser 1 n Lys u Asp	8 Met Asp Asp 35 Ser	Asp Asn 20 Thr	Phe 5 Thr Arg	Ser Ser Gln Arg	Pro Ser Ile Leu 55	Ala Ser 40 Gln	Thr 25 Lys Leu	Glu Gly Ala	Ile Lys Ala	Asp Pro Asn 60	Thr Pro 45 Ala	Leu 30 Arg	15 Glu His Val	Asn Leu Asp	
<44 Mee	00> 7 t Ser 1 n Lys u Asp r Ser 50	8 Met Asp Asp 35 Ser	Asp Asn 20 Thr Ala Leu	Phe 5 Thr Arg Thr	Ser Ser Gln Arg Met 70	Pro Ser Ile Leu 55	Ala Ser 40 Gln Ser	Thr 25 Lys Leu Leu	Glu Gly Ala Asp	Ile Lys Ala Asp 75	Asp Pro Asn 60 Lys	Thr Pro 45 Ala	Leu 30 Arg Asp	15 Glu His Val	Asn Leu Asp Leu 80	
<4 Me Ass Lee Th	00> 7 t Ser 1 n Lys u Asp r Ser 50	8 Met Asp Asp 35 Ser Asn	Asp Asn 20 Thr Ala Leu	Phe 5 Thr Arg Thr Val Ser 85	Ser Ser Gln Arg Met 70 Gly	Pro Ser Ile Leu 55 Lys Ser	Ala Ser 40 Gln Ser Cys	Thr 25 Lys Leu Leu	Glu Gly Ala Asp Glu 90	Ile Lys Ala Asp 75 Gln	Asp Pro Asn 60 Lys	Thr Pro 45 Ala Ser	Leu 30 Arg Asp Glu	15 Glu His Val Phe Gln 95	Asn Leu Asp Leu 80	
<44 Me As Lee Th Va 6	00> 7 t Ser 1 n Lys u Asp r Ser 50 1 Cys	8 Met Asp Asp 35 Ser Asn Tyr	Asp Asn 20 Thr Ala Leu Arg Glu 100 Gln	Phe 5 Thr Arg Thr Val Ser 85	Ser Gln Arg Met 70 Gly Ile	Pro Ser Ile Leu 55 Lys Ser	Ala Ser 40 Gln Ser	Thr 25 Lys Leu Leu Ala Asp 105	Glu Gly Ala Asp Glu 90	Ile Lys Ala Asp 75 Gln	Asp Pro Asn 60 Lys Gly Val	Thr Pro 45 Ala Ser Ala	Leu 30 Arg Asp Glu Lys His 110	15 Glu His Val Phe Gln 95 Leu	Asn Leu Asp Leu 80 Phe	

Arg Phe Ile Val Glu Asp Ser Ser Phe Pro Leu Cys Val Lys Lys Ala 150 · 155 Ile Lys Ser Ala Phe Leu Lys Ala Asp Tyr Glu Phe Ala Asp Asp Ser Ser Leu Asp Ile Ser Ser Gly Thr Thr Ala Leu Thr Ala Phe Ile Phe 180 185 Gly Arg Arg Leu Ile Ile Ala Asn Ala Gly Asp Cys Arg Ala Val Leu 200 Gly Arg Arg Gly Arg Ala Ile Glu Leu Ser Lys Asp His Lys Pro Asn Cys Thr Ala Glu Lys Val Arg Ile Glu Lys Leu Gly Gly Val Val Tyr 230 235 Asp Gly Tyr Leu Asn Gly Gln Leu Ser Val Ala Arg Ala Ile Gly Asp 250 Trp His Met Lys Gly Pro Lys Gly Ser Ala Cys Pro Leu Ser Pro Glu Pro Glu Leu Gln Glu Thr Asp Leu Ser Glu Asp Asp Glu Phe Leu Ile Met Gly Cys Asp Gly Leu Trp Asp Val Met Ser Ser Gln Cys Ala Val Thr Ile Ala Arg Lys Glu Leu Met Ile His Asn Asp Pro Glu Arg Cys 305 310 Ser Arg Glu Leu Val Arg Glu Ala Leu Lys Arg Asn Thr Cys Asp Asn Leu Thr Val Ile Val Val Cys Phe Ser Pro Asp Pro Pro Gln Arg Ile 340 345 Glu Ile Arg Met Gln Ser Arg Val Arg Arg Ser Ile Ser Ala Glu Gly 360 Leu Asn Leu Leu Lys Gly Val Leu Asp Gly Tyr Pro 375

<210> 79 <211> 589

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (18)..(575)

<400> 79

atct	tttt	cc ç	gataa					itc a [le I 5							50
			aag Lys 15											gat Asp	98
_			ttc Phe	-		_		 -		_	_			cca Pro	146
		Thr	ccg Pro		-				_	-		· .			194
			cca Pro												242
-	-	_	agt Ser			_		_		_	-			_	290
			agg Arg 95												338
-			aag Lys											aaa Lys	386
	_		cct Pro			_		-	-			-	_	-	434
	_		gtg Val					_	_	-				_	482
	-		GJÀ aaa			-	_	_							530
			acc Thr 175										taa		575
gaa		atc .	atta	a											590

<210> 80 <211> 185 <212> PRT <213> Arabidopsis thaliana

<400> 80

15

Ala	Thr	Glu	Glu 20	Ser	Ser	Ala	Glu	Val 25	Thr	Asp	Arg	Gly	Leu 30	Phe	Asp	,
Phe	Leu	Gly 35	Lys	Lys	Lys	Asp	Glu 40	Thr	Lys	Pro	Glu	Glu 45	Thr	Pro	Ile	
Ala	Ser 50	Glu	Phe	Ġlu	Gln	Lys 55	Val	His	Ile	Ser	Glu 60	Pro	Glu	Pro	Glu	
Val 65	Lys	His	Glu	Ser	Leu 70	Leu	Glu	Lys	Leu	His 75		Ser	Asp	Ser	Ser 80	
Ser	Ser	Ser	Ser	Ser 85	Glu	Glu	Glu	Gly	Ser 90	Asp	Gly	Glu	Lys	Arg 95	Lys	
Lys	Lys	Lys	Glu 100	Lys	Lys	Lys	Pro	Thr 105	Thr	Glu	Val	Glu	Val 110	Lys	Glu	
Glu	Glu	Lys 115	Lys	Gly	Phe		Glu 120	_	Leu	Lys	Glu	Lys 125	Leu	Pro	Gly	
His	Lys 130	_	Pro	Glu	Asp	Gly 135	Ser	Ala	Val	Ala	Ala 140	Ala	Pro	Val	Val	
Val 145	Pro	Pro	Pro	Val	Glu 150	Glu	Ala	His	Pro	Val 155	Glu	Lys	Lys	Gly	Ile 160	
Leu	Glu	Lys	Ile	Lys 165		Lys	Leu		Gly 170	Tyr	His	Pro	Lys	Thr 175		
Val	Glu	Glu	Glu 180	Lys	Lys	Asp	Lys	Glu 185								
													٠			
	0> 8 1> 1						•							•		
<21	2> D	NA			'. 		•									
<21	3> A	rabi	dops	is t	hali	ana				-						
<22	_	D.C.		٠.								¥				
	1> C 2> (		. (13	66)												
<40	0> 8	1														
ago	aato	gag	aaaa	aagc											a gcc g Ala	
					110	1	u be		עני ק	5	ir my	2 NI			0	
gag	gtt	gcg	gcg	agg	cta	gcg	gct	gag	gac	ttg	cat	gac	att	aac	aaa	100

Glu Val Ala Ala Arg Leu Ala Ala Glu Asp Leu His Asp Ile Asn Lys

tcc ggt ggt gct gat gtc aca atg tat aag gtg acg gag aga aca act

20

15

Met Ala Glu Glu Ile Lys Asn Val Pro Glu Gln Glu Val Pro Lys Val

10 .

148

Ser	Gly	Gly 30	Ala	Asp	Val	Thr	Met 35	Tyr	Lys	Val	Thr	Glu 40	Arg	Thr.	Thr	
_		cca Pro		-												196
-		gtc Val					_			_	_	_		_		244
		cac His														292
		aaa Lys				_	_	_	-		_			_	_	340
		gct Ala 110						_						_		388
		gat Asp														436
		act Thr														484
		gcg Ala													aag Lys	532
		gaa Glu														580
		acg Thr 190														628
		ggt Gly													gct Ala	676
	Asp	tac Tyr				Lys										724
		act Thr														772
		gat Asp														820

				•												
			255		٠			260					265			
		aca Thr 270														868
gag Glu	gcc Ala 285	aaa Lys	gga Gly	aaa Lys	gct Ala	gtg Val 290	gag Glu	acc Thr	aaa Lys	gat Asp	act Thr 295	gcc Ala	aag Lys	gaa Glu	aac Asn	916
atg Met 300	gag Glu	aaa Lys	gct Ala	gga Gly	gaa Glu 305	gta Val	aca Thr	aga Arg	caa Gln	aag Lys 310	atg Met	gag Glu	gaa Glu	atg Met	aga Arg 315	964
		ggt Gly														1012
gca Ala	tct Ser	caa Gln	aag Lys 335	act Thr	agg Arg	gag Glu	agt Ser	act Thr 340	gag Glu	tcg Ser	gga Gly	gct Ala	caa Gln 345	aaa Lys	gcc Ala	1060
Glu	Glu	acc Thr 350	Lys	Asp	Ser	Pro	Ala 355	Val	Arg	Gly	Asn	Glu 360	Ala	Lys	Gly	1108
Thr	11e 365	ttt Phe	Gly	Ala	Leu	Gly 370	Asn	Val	Thr	Glu	Ala 375	Ile	Lys	Ser	Lys	1156
Leu 380	Thr		Pro	Ser	Asp 385	Ile	Val	Glu	Glu	Thr 390	Arg	Ala	Ala	Arg	Glu 395	1204
His	Gly	GJA aaa	Thr	Gly 400	Arg	Thr	.Val	Val	Glu 405	Val	Lys	.Val	Glu	Asp 410	Ser	1252
Lys	Pro	ggt Gly	Lys 415	Val	Ala	Thr	Ser	Leu 420	Lys	Ala	Ser	Asp	Gln 425	Met	Thr	1300
		aca Thr 430														1348
-	_	gga Gly	_	-	tga	gaat	tacta	aga								1376

<210> 82 <211> 448 <212> PRT <213> Arabidopsis thaliana <400> 82

Met	Ala	Ser	Asp	Lys	Gln	Lys	Ala	Glu	Arg	Ala	Glu	Val	Ala	Ala	Arg
1				5					10					15	

- Leu Ala Ala Glu Asp Leu His Asp Ile Asn Lys Ser Gly Gly Ala Asp 20 25 30
- Val Thr Met Tyr Lys Val Thr Glu Arg Thr Thr Glu His Pro Pro Glu 35 40 45
- Gln Asp Arg Pro Gly Val Ile Gly Ser Val Phe Arg Ala Val Gln Gly 50 55 60
- Thr Tyr Glu His Ala Arg Asp Ala Val Val Gly Lys Thr His Glu Ala 65 70 75 80
- Ala Glu Ser Thr Lys Glu Gly Ala Gln Ile Ala Ser Glu Lys Ala Val 85 90 95
- Gly Ala Lys Asp Ala Thr Val Glu Lys Ala Lys Glu Thr Ala Asp Tyr 100 105 110
- Thr Ala Glu Lys Val Gly Glu Tyr Lys Asp Tyr Thr Val Asp Lys Ala 115 120 125
- Lys Glu Ala Lys Asp Thr Thr Ala Glu Lys Ala Lys Glu Thr Ala Asn 130 135 140
- Tyr Thr Ala Asp Lys Ala Val Glu Ala Lys Asp Lys Thr Ala Glu Lys 145 150 155 160
- Ile Gly Glu Tyr Lys Asp Tyr Ala Val Asp Lys Ala Val Glu Ala Lys 165 170 175
- Asp Lys Thr Ala Glu Lys Ala Lys Glu Thr Ser Asn Tyr Thr Ala Asp 180 185 190
- Lys Ala Lys Glu Ala Lys Asp Lys Thr Ala Glu Lys Val Gly Glu Tyr 195 200 205
- Lys Asp Tyr Thr Val Asp Lys Ala Val Glu Ala Arg Asp Tyr Thr Ala 210 215 220
- Glu Lys Ala Ile Glu Ala Lys Asp Lys Thr Ala Glu Lys Thr Gly Glu 225 230 235 240
- Tyr Lys Asp Tyr Thr Val Glu Lys Ala Thr Glu Gly Lys Asp Val Thr 245 250 255
- Val Ser Lys Leu Gly Glu Leu Lys Asp Ser Ala Val Glu Thr Ala Lys 260 265 270
- Arg Ala Met Gly Phe Leu Ser Gly Lys Thr Glu Glu Ala Lys Gly Lys 275 280 285
- Ala Val Glu Thr Lys Asp Thr Ala Lys Glu Asn Met Glu Lys Ala Gly
  290 295 300

Glu 305	Val	Thr	Arg	Gln	Lys 310	Met	Glu	Glu	Met	Arg 315	Leu	Glu	Gly	Lys	Glu 320	
Leu	Lys	Glu	Glu	Ala 325	Gly	Ala	Lys	Ala	Gln 330	Glu	Ala	Ser	Gln	Lys 335	Thr	
Arg	Glu	Ser	Thr 340	Glu	Ser	Gly	Ala	Gln 345	Lys	Ala	Glu	Glu	Thr 350	Lys	Asp	
Ser	Pro	Ala 355	Val	Arg	Gly	Asn	Glu 360	Ala	Lys	Gly	Thr	11e 365	Phe	Gly	Ala	
	Gly .370	Asn	Val	Thr	Glu	Ala 375	Ile	Lys	Ser	Lys	Leu 380	Thr	Met	Pro	Ser	
Asp 385	Ile	Val	Glu	Glu	Thr 390	Arg	Ala	Ala	Arg	Glu 395	His	Gly	Gly	Thr	Gly 400	
Arg	Thr	Val	Val	Glu 405	Val	Lys	Val	Glu	Asp 410	Ser	Lys	Pro	Gly	Lys 415	Val	-
Ala	Thr	Ser	Leu 420	Lys	Ala	Ser	Asp	Gln 425	Met	Thr	Gly	Gln	Thr 430	Phe	Asn	
Asp	Val	Gly 435	Arg	Met	Asp	Asp	Asp 440	Ala	Arg	Lys	Asp	Lys 445	Gly	Lys	Leu	
							•					:				
<211 <212	)> 8: L> 5: 2> D1	51 NA					,							•		
<21.		rabio	ops:	ls t	halia	ana		. •*								
<22	l> C1	DS 18).	. (54	8)												
	0> 8:		2520		- <del>-</del> -	<del>.</del>				++a ·					<b></b>	50
aacı	·		acac		atg a Met a											30
					ttc Phe											98
			Pro		aaa Lys			Ala			_	_			caa Gln	146
-	_	Leu			cac His		Lys	-	_	_	_	Val		_		194
					gaa Glu									tac Tyr		242

60					65		·			70					75	;
	gaa Glu	_					_	-								290
	gag Glu				_			,	-	-	-		_			338
	gag Glu		Trp		_		-	-			_				aac Asn	386
	tgt Cys 125															434
_	gac Asp	_	_	_			-	-			_	_	_			482
	tat Tyr															530
	caa Gln	_			tag	tga	ttgg	att 1	tta		٠.				•	561
<213 <213	0> 84 l> 17 2> PI 3> A	76 RT	dops	is ti	hali	ana						:	÷			
	0> 84 Asn		Met	Ser 5	Phe	Phe	Gly	Tyr	Ser 10	Phe	Ile	Val	Val	Ala 15		
Phe	Phe	Asp	Leu 20		Gln	Ala	Туr	Arg 25	His	Thr	Pro	Ala	Gln 30	Pro	Pro	
Lys	Ala	Asn 35		Asn	-	Asp		-	Pro	Gln		Thr 45		Val	Val	
His	Asn 50	Lys	Ala	Arg	Ala	Met 55		Gly	Val	Gly	Pro 60		Val	Trp	Asn	
Glu 65		Leu	Ala	Thr	Tyr 70		Gln	Ser	Tyr	Ala 75		Glu	Arg	Ala	Arg 80	
Asp	Cys	Ala	Met	Lys 85		Ser	Leu	Gly	Pro 90		Gly	Glu	Asn	Leu 95	Ala	
Ala	Gly	Trp	Gly 100		Met	Ser	Gly	Pro 105		Ala	Thr	Glu	Tyr 110	_	Met	•

Thr Glu Lys Glu Asn Tyr Asp Tyr Asp Ser Asn Thr Cys Gly Gly Asp 120 Gly Val Cys Gly His Tyr Thr Gln Ile Val Trp Arg Asp Ser Val Arg 135 130 Leu Gly Cys Ala Ser Val Arg Cys Lys Asn Asp Glu Tyr Ile Trp Val 150 Ile Cys Ser Tyr Asp Pro Pro Gly Asn Tyr Ile Gly Gln Arg Pro Tyr 165 <210> 85 <211> 988 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (12) . . (977) <400> 85 tttttaagaa a atg gca gct tct aag cga cta gtt gtc tct tgc ttg Met Ala Ala Ser Lys Arg Leu Val Val Ser Cys Leu Phe tta gtt ttg ttt gct caa gcc aat tcg caa ggt ttg aaa gta ggt Leu Val Leu Leu Phe Ala Gln Ala Asn Ser Gln Gly Leu Lys Val Gly 15 20 ttc tac agc aaa aca tgc cca caa ctc gag ggt ata gtt aaa aag gtc Phe Tyr Ser Lys Thr Cys Pro Gln Leu Glu Gly Ile Val Lys Lys Val gtg ttc gat gcg atg aac aaa gca cca aca ctt ggt gct cct ttg ctt Val Phe Asp Ala Met Asn Lys Ala Pro Thr Leu Gly Ala Pro Leu Leu 50 aga atg ttc ttc cac gac tgc ttc gtt cgg gga tgt gac gga tca gtt Arg Met Phe Phe His Asp Cys Phe Val Arg Gly Cys Asp Gly Ser Val 65 ttg tta gat aaa cca aac aat caa ggt gag aag agt gca gtt cct aac Leu Leu Asp Lys Pro Asn Asn Gln Gly Glu Lys Ser Ala Val Pro Asn 80 85 cta agt ctt cga ggg ttt ggc atc ata gac gat tcc aag gcg gct cta Leu Ser Leu Arg Gly Phe Gly Ile Ile Asp Asp Ser Lys Ala Ala Leu 100 105 gaa aaa gtg tgt ccg gga att gtt tct tgc tct gat atc ttg gca ctt Glu Lys Val Cys Pro Gly Ile Val Ser Cys Ser Asp Ile Leu Ala Leu

115

	gct Ala															434
-	acg Thr		_		_			-					_	- ,		482
-	cca Pro				-				_			_	-			530
	aag Lys 175											Ser				578
	att Ile		_			_			_							626
	acc Thr	-				-			-	Leu	-	_			-	674
_	aag Lys			Lys			_			_	-	_	_	-	cta Leu	722
	atg Met									-		_			-	770
Leu	gtg Val 255	Ala							_	_	-	_	_			818
-	aac Asn							_	_		_		-			866
	tca Ser															914
	act Thr								Gly	_						962
	tct Ser		Asn		gag	atat	aga	aa .								989

<210> 86 <211> 321 <212> PRT <213> Arabidopsis thaliana

<400> 86 Met Ala Ala Ser Lys Arg Leu Val Val Ser Cys Leu Phe Leu Val Leu 10 Leu Phe Ala Gln Ala Asn Ser Gln Gly Leu Lys Val Gly Phe Tyr Ser Lys Thr Cys Pro Gln Leu Glu Gly Ile Val Lys Lys Val Val Phe Asp Ala Met Asn Lys Ala Pro Thr Leu Gly Ala Pro Leu Leu Arg Met Phe - 55 Phe His Asp Cys Phe Val Arg Gly Cys Asp Gly Ser Val Leu Leu Asp Lys Pro Asn Asn Gln Gly Glu Lys Ser Ala Val Pro Asn Leu Ser Leu Arg Gly Phe Gly Ile Ile Asp Asp Ser Lys Ala Ala Leu Glu Lys Val 105 Cys Pro Gly Ile Val Ser Cys Ser Asp Ile Leu Ala Leu Val Ala Arg 120 Asp Ala Met Val Ala Leu Glu Gly Pro Ser Trp Glu Val Glu Thr Gly Arg Arg Asp Gly Arg Val Ser Asn Ile Asn Glu Val Asn Leu Pro Ser 150 155 Pro Phe Asp Asn Ile Thr Lys Leu Ile Ser Asp Phe Arg Ser Lys Gly Leu Asn Glu Lys Asp Leu Val Ile Leu Ser Gly Gly His Thr Ile Gly 185 Met Gly His Cys Pro Leu Leu Thr Asn Arg Leu Tyr Asn Phe Thr Gly 200 Lys Gly Asp Ser Asp Pro Ser Leu Asp Ser Glu Tyr Ala Ala Lys Leu 215 Arg Lys Lys Cys Lys Pro Thr Asp Thr Thr Thr Ala Leu Glu Met Asp 235 Pro Gly Ser Phe Lys Thr Phe Asp Leu Ser Tyr Phe Thr Leu Val Ala 245 Lys Arg Arg Gly Leu Phe Gln Ser Asp Ala Ala Leu Leu Asp Asn Ser

Lys Thr Arg Ala Tyr Val Leu Gln Gln Ile Arg Thr His Gly Ser Met 280

Phe Phe Asn Asp Phe Gly Val Ser Met Val Lys Met Gly Arg Thr Gly

285

300

295

290

Val Leu Thr Gly Lys Ala Gly Glu Ile Arg Lys Thr Cys Arg Ser Ala 315 Asn <210> 87 <211> 650 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (8)..(634) <400> 87 agegaca atg gcg tcg att acg aac ctc gcc tct tct ctc tct tca ctc Met Ala Ser Ile Thr Asn Leu Ala Ser Ser Leu Ser Ser Leu teg tte tee tee caa gtt tet caa aga eet aac ace att tee tte eec Ser Phe Ser Ser Gln Val Ser Gln Arg Pro Asn Thr Ile Ser Phe Pro 25 ege geg aat tea gta tte gea tta eeg geg aaa tee gea ege ege get Arg Ala Asn Ser Val Phe Ala Leu Pro Ala Lys Ser Ala Arg Arg Ala 35 40 tet eta tet ate ace gee acg gta tet get eca eeg gag gag gag gag Ser Leu Ser Ile Thr Ala Thr Val Ser Ala Pro Pro Glu Glu Glu Glu 50 55 ata gtt gaa ctg aag aaa tac gtc aaa tcg agg ctt ccc gga gga ttt 241 Ile Val Glu Leu Lys Lys Tyr Val Lys Ser Arg Leu Pro Gly Gly Phe gct gct cag aag att att ggc act gga cga cgt aag tgc gca atc gct 289 Ala Ala Gln Lys Ile Ile Gly Thr Gly Arg Arg Lys Cys Ala Ile Ala 80 aga gtt gtt ctt cag gaa ggt act ggg aag gtt atc atc aac tat cgt Arg Val Val Leu Gln Glu Gly Thr Gly Lys Val Ile Ile Asn Tyr Arg 95 100 105 gat gcc aag gag tac ctt cag gga aat cca ttg tgg ctt cag tat gtt 385 Asp Ala Lys Glu Tyr Leu Gln Gly Asn Pro Leu Trp Leu Gln Tyr Val 115 120 aaa gta cca ttg gtg act tta gga tat gag aat agc tac gac ata ttt 433 Lys Val Pro Leu Val Thr Leu Gly Tyr Glu Asn Ser Tyr Asp Ile Phe 130 gtg aaa gcc cat gga ggc ggt ctc tca ggt caa gct caa gca att acc Val Lys Ala His Gly Gly Gly Leu Ser Gly Gln Ala Gln Ala Ile Thr

577

625

650

150 155 ttg gga gtc gca cgt gca ctc ctg aag gta agt gca gac cac aga tcg Leu Gly Val Ala Arg Ala Leu Leu Lys Val Ser Ala Asp His Arg Ser 165 170 cct ttg aag aag gaa ggt ttg ctc act aga gat gcg aga gtg gtt gaa Pro Leu Lys Lys Glu Gly Leu Leu Thr Arg Asp Ala Arg Val Val Glu 180 185 aga aag aag gcc ggg ctc aag aag gcg cgt aaa gcc cca caa ttc tcc Arg Lys Lys Ala Gly Leu Lys Lys Ala Arg Lys Ala Pro Gln Phe Ser 200 aag cgt taa gagttttata tatcat Lys Arg <210> 88 <211> 208 <212> PRT <213> Arabidopsis thaliana <400> 88 Met Ala Ser Ile Thr Asn Leu Ala Ser Ser Leu Ser Ser Leu Ser Phe 10 Ser Ser Gln Val Ser Gln Arg Pro Asn Thr Ile Ser Phe Pro Arg Ala 25 Asn Ser Val Phe Ala Leu Pro Ala Lys Ser Ala Arg Arg Ala Ser Leu Ser Ile Thr Ala Thr Val Ser Ala Pro Pro Glu Glu Glu Glu Ile Val Glu Leu Lys Lys Tyr Val Lys Ser Arg Leu Pro Gly Gly Phe Ala Ala Gln Lys Ile Ile Gly Thr Gly Arg Arg Lys Cys Ala Ile Ala Arg Val Val Leu Gln Glu Gly Thr Gly Lys Val Ile Ile Asn Tyr Arg Asp Ala 105 Lys Glu Tyr Leu Gln Gly Asn Pro Leu Trp Leu Gln Tyr Val Lys Val 120

Pro Leu Val Thr Leu Gly Tyr Glu Asn Ser Tyr Asp Ile Phe Val Lys

Ala His Gly Gly Gly Leu Ser Gly Gln Ala Gln Ala Ile Thr Leu Gly

Val Ala Arg Ala Leu Leu Lys Val Ser Ala Asp His Arg Ser Pro Leu

165

Lys Lys Glu Gly Leu Leu Thr Arg Asp Ala Arg Val Val Glu Arg Lys 185 Lys Ala Gly Leu Lys Lys Ala Arg Lys Ala Pro Gln Phe Ser Lys Arg 200 <210> 89 <211> 1223 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (16)..(1215) aacaagtgaa gcaca atg ggg atc atc gaa agg att aaa gaa atc gag gcc Met Gly Ile Ile Glu Arg Ile Lys Glu Ile Glu Ala gag atg gct cgg act cag aag aat aaa gct aca gag tat cat ctt ggt Glu Met Ala Arg Thr Gln Lys Asn Lys Ala Thr Glu Tyr His Leu Gly 15 20 cag ctc aag gca aag att gca aaa ctc agg aca caa ctg ttg gag cct Gln Leu Lys Ala Lys Ile Ala Lys Leu Arg Thr Gln Leu Leu Glu Pro 35 cca aaa ggt gct agt gga ggc ggg gaa ggt ttt gaa gtt acc aag tat 195 Pro Lys Gly Ala Ser Gly Gly Gly Glu Gly Phe Glu Val Thr Lys Tyr 45 55 ggt cat gga cgt gtt gca ctt ata gga ttt cct agt gtc gga aag tcc 243 Gly His Gly Arg Val Ala Leu Ile Gly Phe Pro Ser Val Gly Lys Ser acg ctt ttg act atg tta act gga aca cat tct gaa gca gcc tca tat 291 Thr Leu Leu Thr Met Leu Thr Gly Thr His Ser Glu Ala Ala Ser Tyr 85 gaa ttt aca aca ctt aca tgc atc cct ggt gta att cac tac aac gac 339 Glu Phe Thr Thr Leu Thr Cys Ile Pro Gly Val Ile His Tyr Asn Asp 100 aca aag att cag ett ete gat ett eet ggg att att gaa ggt get teg 387 Thr Lys Ile Gln Leu Leu Asp Leu Pro Gly Ile Ile Glu Gly Ala Ser 110 115 gaa gga aag ggg cga gga agg cag gtt att gct gtt gca aag tct tcc Glu Gly Lys Gly Arg Gly Arg Gln Val Ile Ala Val Ala Lys Ser Ser 130 135 gac ctt gta ttg atg gtt ctt gat gcc tca aaa agc gaa ggc cac agg 483

150

Asp Leu Val Leu Met Val Leu Asp Ala Ser Lys Ser Glu Gly His Arg

145

	•															
		-		_	_		-	-	gtg Val		_	_				531
		_	_					-	aaa Lys	_						579
				_		-			att Ile	-		_		- ,		627
		_		-		_			aat Asn	_					_	675
									gat Asp 230							723
									atc Ile							771
	_	_		_	_				cag Gln					-	_	819
_	-			_				_	aga Arg							867
_	_	_				_	_		tcg Ser	_	-					915
	-		-				_		tca Ser 310		-	-				963
				Phe					cac His							1011
			Ala						agc Ser				Asn		cag Gln	1059
	-	Gly					Leu	_	_	_	-	_	_	_	atc Ile	1107
	Lys					Asp					Gly				tca Ser 380	1155

cac tca aac gcc cct gct aga att gca gac aga gag aaa aaa gct cct 1203 His Ser Asn Ala Pro Ala Arg Ile Ala Asp Arg Glu Lys Lys Ala Pro 385 390 395

ctt aag caa taa gcttttag Leu Lys Gln

1223

400

<210> 90 <211> 399

<212> PRT

<213> Arabidopsis thaliana

<400> 90

Met Gly Ile Ile Glu Arg Ile Lys Glu Ile Glu Ala Glu Met Ala Arg

1 10 15

Thr Gln Lys Asn Lys Ala Thr Glu Tyr His Leu Gly Gln Leu Lys Ala 20 25 30

Lys Ile Ala Lys Leu Arg Thr Gln Leu Leu Glu Pro Pro Lys Gly Ala 35 40 45

Ser Gly Gly Glu Gly Phe Glu Val Thr Lys Tyr Gly His Gly Arg 50 60

Val Ala Leu Ile Gly Phe Pro Ser Val Gly Lys Ser Thr Leu Leu Thr 65 70 75 80

Met Leu Thr Gly Thr His Ser Glu Ala Ala Ser Tyr Glu Phe Thr Thr 85 90 95

Leu Thr Cys Ile Pro Gly Val Ile His Tyr Asn Asp Thr Lys Ile Gln 100 105 110

Leu Leu Asp Leu Pro Gly Ile Ile Glu Gly Ala Ser Glu Gly Lys Gly 115 120 125

Arg Gly Arg Gln Val Ile Ala Val Ala Lys Ser Ser Asp Leu Val Leu 130 135 140

Met Val Leu Asp Ala Ser Lys Ser Glu Gly His Arg Gln Ile Leu Thr 145 150 155 160

Lys Glu Leu Glu Ala Val Gly Leu Arg Leu Asn Lys Thr Pro Pro Gln
165 170 175

Ile Tyr Phe Lys Lys Lys Lys Thr Gly Gly Ile Ser Phe Asn Thr Thr
180 185 190

Ala Pro Leu Thr His Ile Asp Glu Lys Leu Cys Tyr Gln Ile Leu His 195 200 205

Glu Tyr Lys Ile His Asn Ala Glu Val Leu Phe Arg Glu Asn Ala Thr 210 215 220

235

Val Asp Asp Phe Ile Asp Val Ile Glu Gly Asn Arg Lys Tyr Ile Lys

230

225

Cys Val Tyr Val Tyr Ile Lys Ile Asp Val Val Gly Ile Asp Asp Val Asp Arg Leu Ser Arg Gln Pro Asn Ser Ile Val Ile Ser Cys Asn Leu Lys Leu Asn Leu Asp Arg Leu Leu Ala Arg Met Trp Asp Glu Met Gly 280 Leu Val Arg Val Tyr Ser Lys Pro Gln Gly Gln Gln Pro Asp Phe Asp 295 Glu Pro Phe Val Leu Ser Ser Asp Arg Gly Gly Cys Thr Val Glu Asp 310 315 Phe Cys Asn His Val His Arg Thr Leu Val Lys Asp Met Lys Tyr Ala Leu Val Trp Gly Thr Ser Thr Arg His Asn Pro Gln Asn Cys Gly Leu 340 345 Ser Gln His Leu Glu Asp Glu Asp Val Val Gln Ile Val Lys Lys Glu Arg Asp Glu Gly Gly Arg Gly Arg Phe Lys Ser His Ser Asn Ala 375 Pro Ala Arg Ile Ala Asp Arg Glu Lys Lys Ala Pro Leu Lys Gln 390 395 <210> 91 <211> 536 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (12)..(524) <400> 91 aaataaaaac a atg aca agc tcc gat caa tct cca tcg cac gac gtc ttc Met Thr Ser Ser Asp Gln Ser Pro Ser His Asp Val Phe gtc tac ggc agt ttc caa gaa cca gcc gtt gtt aat tta att ctc gaa Val Tyr Gly Ser Phe Gln Glu Pro Ala Val Val Asn Leu Ile Leu Glu tgt gct ccg gtc atg gtt tcc gct caa ctc cac ggc tat cac ttg tat Cys Ala Pro Val Met Val Ser Ala Gln Leu His Gly Tyr His Leu Tyr 30

 $\operatorname{dist}_{\mathcal{A}}(x) = 1$ 

		aaa Lys														194
		aat Asn		Lys												242
		gat Asp 80													gaa Glu	290
-	_	ttg Leu				_		_	_		_	_			-	338
		aac Asn														386
		aag Lys														434
	-	gag Glu		Lys	-					_	-		_			482
	_	ttt Phe 160			_	_			-	-	_	-	tga			524
agaa	agtt	gtt (	ta _,													536
<21:	0> 92 1> 1° 2> Pi 3> A:	70	dops	is tl	halia	ana										
	0. 0.	_														
	0> 9: Thr		Ser	Asp 5	Gln	Ser	Pro	Ser	His 10	Asp	Val	Phe	Val	Туг 15	Gly	
Ser	Phe	Gln	Glu 20	Pro	Ala	Val	Val	Asn 25	Leu	Ile	Leu	Glu	30 30	Ala	Pro	
Val	Met	Val 35	Ser	Ala	Gln	Leu	His 40	Gly	Tyr	His	Leu	Tyr 45	Arg	Leu	Lys	
Gly	Arg 50	Leu	His	Pro	Cys	Ile 55	Ser	Pro	Ser	Asp	Asn 60	Gly	Leu	Ile	Asn	
Gly 65	Lys	Ile	Leu	Thr	Gly 70	Leu	Thr	Asp	Ser	Gln 75	Leu	Glu	Ser	Leu	Asp 80	
Met	Ile	Glu	Gly	Thr	Glu	Tyr	Val	Arg	Lys	Thr	Val	Glu	Val	Vál	Leu	

0 5	0.0	

Thr Asp Thr Leu Glu Lys Lys Gln Val Glu Thr Ile Val Trp Ala Asn 100 105 110

Lys Asp Asp Pro Asn Met Tyr Gly Glu Trp Asp Phe Glu Glu Trp Lys 115 120 125

Arg Leu His Met Glu Lys Phe Ile Glu Ala Ala Thr Lys Phe Met Glu 130 135 140

Trp Lys Lys Asn Pro Asn Gly Arg Ser Arg Glu Glu Phe Glu Lys Phe 145 150 155 160

Val Gln Asp Asp Ser Ser Pro Ala Ser Ala 165 170

<210> 93

<211> 293

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (16)..(71)

<220>

<221> CDS

<222> (197)..(278)

<400> 93

agagaagtaa gagaa atg gca ggt tct aac tgt gga tgt ggc tcc tcc tgc 51 Met Ala Gly Ser Asn Cys Gly Cys Gly Ser Ser Cys 1 5

aaa tgt ggt gat tcg tgc ag gtaaacccta gattctctct tcattaactt 101 Lys Cys Gly Asp Ser Cys Se 15

atcatgcata tatatcctaa tatacatgtg gttacatatt ccttaagata aattttgaaa 161

tettataett etgitgitti titggiaiga caaag t tge gag aag aac tac aac 215 r Cys Glu Lys Asn Tyr Asn 20 25

aag gag tgt gat aac tgt agc tgt gga tca aac tgc agc tgc ggg tca 263 Lys Glu Cys Asp Asn Cys Ser Cys Gly Ser Asn Cys Ser Cys Gly Ser 30 35 40

agc tgt aac tgt tga agaaattatc agcat 293 Ser Cys Asn Cys 45

<210> 94

<212	> PR > Ar	T	lopsi	s th	nalia	na		• .				,		•		
	> 94 Ala		Ser	Asn 5	Cys	Gly	Сув	Gly	Ser 10	Ser	Cys	Lys	Cys	Gly 15	Asp	
Ser	Cys	Ser	Суs 20	Glu	Lys	Asn	Tyr	Asn 25	Lys	Glu	Cys	Asp	Asn 30	Cys	Ser	
Cys	Gly	Ser 35	Asn	Cys	Ser	Cys	Gly 40	Ser	Ser	Cys	Asn	Cys 45	· · . ·	.*		
<211 <212	)> 95 L> 88 2> DN 3> Ar	IA	lopsi	.s tl	nalia	ına		· .		. •						
	)> L> CI ?> (1		. (868	3)									*			
	)> 95 accaa			_	_	-						ctc ( Leu 1		_		49
_		-			-		_	Ser				tct Ser 25		_		97
												tta Leu				145
-	-					_			-			gat Asp	_		_	193
_	-	_	_		_		_			_	_	tgc Cys			-	241
												tat Tyr				289
												agg Arg 105				337
		Leu					Tyr					cag Gln			tca Ser	. 385

aac Asn 125	aca Thr	aag Lys	gtt Val	acg Thr	ttc Phe 130	cct Pro	cta Leu	gtg Val	tgg Trp	act Thr 135	aac Asn	act Thr	tgt Cys	tgc Cys	agc Ser 140	433
			tac Tyr												Gly	481
			gct Ala 160													529
			gta Val												ctg Leu	577
			cct Pro												tac Tyr	625
ttg Leu 205	ctc Leu	ttc Phe	atc Ile	gtg Val	cga Arg 210	gac Asp	gtg Val	aag Lys	gtt Val	caa Gln 215	cca Pro	aac Asn	cca Pro	gat Asp	gaa Glu 220	673
			atc Ile													721
aag Lys	aaa Lys	gca Ala	gat Asp 240	gca Ala	ggt Gly	gag Glu	gaa Glu	ggt Gly 245	ttg Leu	aaa Lys	ctg Leu	tca Ser	cca Pro 250	tgg Trp	ttç Phe	769
			gtg Val													817
			ttg Leu													865
tga	acat	tațti	tt 1	t												880
285								-								
<212	0> 90 1> 20 2> P1 3> A1	84 RT	dops:	is tl	halia	ana										
	0> 9 Ser		Ser	Ser 5	Leu	Phe	Asn	Leu	Pro 10	Leu	Ile	Arg	Leu	Arg 15	Ser	
Leu	Ala	Leu	Ser 20	Ser	Ser	Phe	Ser	Ser 25	Phe	Arg	Phe	Ala	His 30	Arg	Pro	

Leu Ser Ser Ile Ser Pro Arg Lys Leu Pro Asn Phe Arg Ala Phe Ser 40 Gly Thr Ala Met Thr Asp Thr Lys Asp Ala Gly Met Asp Ala Val Gln 55 Arg Arg Leu Met Phe Glu Asp Glu Cys Ile Leu Val Asp Glu Thr Asp 75 Arg Val Val Gly His Asp Ser Lys Tyr Asn Cys His Leu Met Glu Asn 85 90 Ile Glu Ala Lys Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe 105 100 Asn Ser Lys Tyr Glu Leu Leu Gln Gln Arg Ser Asn Thr Lys Val 120 Thr Phe Pro Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr 135 Arg Glu Ser Glu Leu Ile Gln Asp Asn Ala Leu Gly Val Arg Asn Ala 150 Ala Gln Arg Lys Leu Leu Asp Glu Leu Gly Ile Val Ala Glu Asp Val 170 Pro Val Asp Glu Phe Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala Pro 185 Ser Asp Gly Lys Trp Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Ile 200 Val Arg Asp Val Lys Val Gln Pro Asn Pro Asp Glu Val Ala Glu Ile 215 Lys Tyr Val Ser Arg Glu Glu Leu Lys Glu Leu Val Lys Lys Ala Asp 230 Ala Gly Glu Glu Gly Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val 245 250

Asp Asn Phe Leu Met Lys Trp Trp Asp His Val Glu Lys Gly Thr Leu 260 265 270

Val Glu Ala Ile Asp Met Lys Thr Ile His Lys Leu 275 280

<210> 97 <211> 831 <212> DNA <213> Arabidopsis thaliana

<220>

<221> CDS <222> (18)..(821) <400> 97 tgeactacte aacetea atg gee gee tea aca atg get etc tee tee eet Met Ala Ala Ser Thr Met Ala Leu Ser Ser Pro 5 gee the gee ggt aag gee gte aag ett tee eee geg gea tea gaa gte Ala Phe Ala Gly Lys Ala Val Lys Leu Ser Pro Ala Ala Ser Glu Val 15 20 ctt gga agc ggc cgt gtg aca atg agg aag act gtt gcc aag cca aag Leu Gly Ser Gly Arg Val Thr Met Arg Lys Thr Val Ala Lys Pro Lys 35 ggc cca tca ggc agc cca tgg tac gga tct gac cgt gtc aag tac ttg 194 Gly Pro Ser Gly Ser Pro Trp Tyr Gly Ser Asp Arg Val Lys Tyr Leu 50 ggt cca ttc tct ggc gaa tca ccg agc tac ctt acc gga gag ttc ccc 242 Gly Pro Phe Ser Gly Glu Ser Pro Ser Tyr Leu Thr Gly Glu Phe Pro 60 65 gga gac tac gga tgg gac acc gcc gga ctt tca gct gac ccc gag aca Gly Asp Tyr Gly Trp Asp Thr Ala Gly Leu Ser Ala Asp Pro Glu Thr 80 85 ttc gca agg aac cgt gaa cta gaa gtt atc cac agc agg tgg gct atg 338 Phe Ala Arg Asn Arg Glu Leu Glu Val Ile His Ser Arg Trp Ala Met 95 100 105 ctc qqa gcc cta ggc tgc gtc ttc cct qaq ctt ttq qct aqa aac gga Leu Gly Ala Leu Gly Cys Val Phe Pro Glu Leu Leu Ala Arg Asn Gly 115 gtc aag ttc gga gag gcg gtt tgg ttc aag gcc ggt tca cag atc ttc 434 Val Lys Phe Gly Glu Ala Val Trp Phe Lys Ala Gly Ser Gln Ile Phe 130 135 age gat gga ggg ete gat tae ttg gga aac eet age ttg gtt eae get 482 Ser Asp Gly Gly Leu Asp Tyr Leu Gly Asn Pro Ser Leu Val His Ala 145 150 cag age att ttg gee att tgg gee aca caa gtt att ttg atg gga gee 530 Gln Ser Ile Leu Ala Ile Trp Ala Thr Gln Val Ile Leu Met Gly Ala 160 165 gtt gaa ggc tac aga gtc gca gga aat ggg cca ttg gga gag gcc gag 578 Val Glu Gly Tyr Arg Val Ala Gly Asn Gly Pro Leu Gly Glu Ala Glu 175 180 gac ttg ctt tac ccc ggt ggc agc ttc gac cca ttg ggt ttg gct acc 626 Asp Leu Leu Tyr Pro Gly Gly Ser Phe Asp Pro Leu Gly Leu Ala Thr

gac cca gag gca ttc gct gag ttg aag gtg aag gag ctc aag aac gga

_	Pro 205	Glu	Ala	Phe	Ala	Glu 210	Leu	Lys	Val	Lys	Glu 215	Leu	Lys	Asn	Gly	
			atg Met													722
			gga Gly													770
gtt Val	aac Asn	aac Asn	aac Asn 255	gca Ala	tgg Trp	gcc Ala	ttc Phe	gcc Ala 260	acc Thr	aac Asn	ttt Phe	gtt Val	ccc Pro 265	gga Gly	aag Lys	818
tga	gcca	agti	tt	,												831
<210	)> 98	3														
<212	l> 26 2> Pi 3> Ai	RT	dops	is tl	nalia	ana										
<400	)> 98	8											1			
Met 1	Ala	Ala	Ser	Thr 5	Met	Ala	Leu	Ser	Ser 10	Pro	Ala	Phe	Ala	Gly 15		
Ala	Val	Lys	Leu 20	Ser	Pro	Ala	Ala	Ser 25	Glu	Val	Leu	Gly	Ser 30	Gly	Arg	
Val	Thr	Met 35	Arg	Lys	Thr	Val	Ala 40	Lys	Pro	Lys	Gly	Pro 45	Ser	Gly	Ser	•
Pro	Trp 50		Gly	Ser	Asp	Arg 55	Val	Lys	Tyr	Leu	Gly 60	•	Phe	Ser	Gly	•
Glu 65	Ser	Pro	Ser	Tyr	Leu 70		Gly	Glu	Phe	Pro 75		Asp	Tyr	Gly	Trp 80	
Asp	Thr	Ala	Gly	Leu 85		Ala	Asp	Pro	Glu 90		Phe	Ala	Arg	Asn 95		
Glu	Leu	Glu	Val 100		His	Ser	Arg	Trp 105		Met	Leu	Gly	Ala 110		Gly	
Cys	Val	Phe 115		Glu	Leu	Leu	Ala 120		Asn	Gly	Val	Lys 125		Gly	Glu	
Ala	Val	-	Phe	. Lys	Ala	Gly 135		Gln	Ile	Phe	Ser 140		Gly	Gly	Leu	
Asp 145		Leu	Gly	Asn	Pro 150		Leu	Val	. His	Ala 155		Ser	Ile	: Lev	Ala 160	
Ile	Trp	Ala	1 Thr	Gln		. Ile	e Leu	Met	Gly		Val	Glu	Gly	7 Tyr	Arg	

Val Ala Gly Asn Gly Pro Leu Gly Glu Ala Glu Asp Leu Leu Tyr Pro 185 Gly Gly Ser Phe Asp Pro Leu Gly Leu Ala Thr Asp Pro Glu Ala Phe 200 Ala Glu Leu Lys Val Lys Glu Leu Lys Asn Gly Arg Leu Ala Met Phe 215 220 Ser Met Phe Gly Phe Phe Val Gln Ala Ile Val Thr Gly Lys Gly Pro 235 Ile Glu Asn Leu Ala Asp His Leu Ala Asp Pro Val Asn Asn Asn Ala 250 245 Trp Ala Phe Ala Thr Asn Phe Val Pro Gly Lys 260 <210> 99 <211> 855 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (15)..(164) <220> <221> CDS <222> (257)..(305) <220> <221> CDS <222> (416)..(843) <400> 99 cacagtatta acaa atg gca gga atc aaa gtt ttc ggt cac cca gct tcc 50 Met Ala Gly Ile Lys Val Phe Gly His Pro Ala Ser aca gcc act aga aga gtt ctc atc gct ctt cac gag aag aat gtc gac Thr Ala Thr Arg Arg Val Leu Ile Ala Leu His Glu Lys Asn Val Asp 20 ttt gaa ttc gtt cat gtc gag ctc aaa gat ggt gaa cac aag aaa gag Phe Glu Phe Val His Val Glu Leu Lys Asp Gly Glu His Lys Lys Glu 194 cct ttc atc ctt cgc aac gtgagtacat ataacatctg tcaagccaaa Pro Phe Ile Leu Arg Asn atattgtatt tcatctagat actgaatctt ggtcttaaca atcttgaata atgtttttgc 254

ag	Pro	Phe,	Gly	aaa Lys	Val 55	cca Pro	gcc Ala	Phe	gaa Glu	gat Asp 60	gga Gly	gac. Asp	ttc Phe	aag Lys	att Ile 65	301
ttc Phe		jtaaa	taca	a at	atat	atca	tta	tagt	cat	gttt	acaa	at t	tttg	gtt	t	355
atg	atca	ttg	caat	aata	ga a	agca	gaaa	c ac	tcaa	aaat	gtt	tttt	ttt	tggt	gggcag	415
aa lu	tca Ser	aga Arg	gca Ala	att Ile 70	act Thr	caa Gln	tac Tyr	ata Ile	gct Ala 75	cat His	gaa Glu	ttc Phe	tca Ser	gac Asp 80	Lys	462
gga Gly	aac Asr	aac Asn	ctt Leu 85	Leu	tca Ser	act Thr	ggc Glý	aag Lys 90	gac Asp	atg Met	gcg Ala	ato Ile	ata Ile 95	Ala	atg Met	510
ggc Gly	att	gaa Glu 100	ı Ile	gag Glu	tcg Ser	cat His	gag Glu 105	Phe	gac Asp	cca Pro	gtt Val	ggt Gly 110	Ser	aag Lys	ctt Leu	558
gtt Val	tgg Trp 115	Glu	g caa Gln	gtc Val	tta Leu	aag Lys 120	Pro	ttg Leu	tat Tyr	ggt Gly	Met 125	Thr	aca Thr	gac	aaa Lys	606
act Thr 130	Val	gtt Val	gaa Glu	gaa Glu	gaa Glu 135	Glu	gct Ala	aag Lys	cta Leu	gcc Ala 140	Lys	gtc Val	ctc Leu	gat Asp	gtt Val 145	654
tac Tyr	gaa Glu	cac His	agg Arg	ctt Leu 150	Gly	gag Glu	tcc Ser	aag Lys	tat Tyr 155	Leu	gct Ala	Ser	gac Asp	cac His 160	Phe	702
act Thr	ttg Lev	gto Val	gat Asp 165	ctt	cac His	act Thr	atc	Pro 170	gtg Val	att	caa Gln	tac Tyr	tta Leu 175	ctt Leu	gga Gly	750
act Thr	cca Pro	act Thr 180	aag Lys	aaa Lys	ctc Leu	t t c Phe	gac Asp 185	Glu	cgt Arg	cca Pro	cat His	gtg Val 190	Ser	gct Ala	tgg Trp	798
gtt Val	gct Ala 195	Asp	atc Ile	act Thr	tca Ser	agg Arg 200	Pro	tct Ser	gct	cag Gln	aag Lys 205	Val	ctt Leu	taa		843
gtg	aato	tca	aa							÷						855
<21 <21	0> 1 1> 2 2> F	08 RT	.dops	is t	hali	ana										
	0> 1 Ala		, Ile	Lys 5		Phe	: Gly	His	Pro 10		Ser	Thr	Ala	Thr 15	Arg	·

Arg Val Leu Ile Ala Leu His Glu Lys Asn Val Asp Phe Glu Phe Val 25 His Val Glu Leu Lys Asp Gly Glu His Lys Lys Glu Pro Phe Ile Leu Arg Asn Pro Phe Gly Lys Val Pro Ala Phe Glu Asp Gly Asp Phe Lys Ile Phe Glu Ser Arg Ala Ile Thr Gln Tyr Ile Ala His Glu Phe Ser Asp Lys Gly Asn Asn Leu Leu Ser Thr Gly Lys Asp Met Ala Ile Ile Ala Met Gly Ile Glu Ile Glu Ser His Glu Phe Asp Pro Val Gly Ser 105 Lys Leu Val Trp Glu Gln Val Leu Lys Pro Leu Tyr Gly Met Thr Thr Asp Lys Thr Val Val Glu Glu Glu Glu Ala Lys Leu Ala Lys Val Leu 135 Asp Val Tyr Glu His Arg Leu Gly Glu Ser Lys Tyr Leu Ala Ser Asp 150 His Phe Thr Leu Val Asp Leu His Thr Ile Pro Val Ile Gln Tyr Leu 170 Leu Gly Thr Pro Thr Lys Lys Leu Phe Asp Glu Arg Pro His Val Ser 185 Ala Trp Val Ala Asp Ile Thr Ser Arg Pro Ser Ala Gln Lys Val Leu 200 <210> 101 <211> 512 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (12) ... (67) <220>

<222> (241)..(309) <220> <221> CDS

<222> (417)..(492)

<400> 101

<221> CDS

tatctgaaaa a atg tca gag acc aac aag aat gcc ttc caa gcc ggt cag 50

1 5 10	
acc gct ggc aaa gct ga ggtactactc tttctctctt tgacagaact Thr Ala Gly Lys Ala Gl 15	97
cttaaactgg aaaaattgtt gaagctataa ctctttgaaa acagttgaaa cttgatcatt	157
actagaaatt tcagttactt gtttaattta gtttgtcgta attatgtaat tgatgatttt	217
atggttacaa tggttgtcat gta g gag aag agc aat gtt ctg ctg gac aag u Glu Lys Ser Asn Val Leu Leu Asp Lys 20 25	268
gcc aag gat gct gca gct ggt gct gga gct gga gca caa ca ggtaaacaat Ala Lys Asp Ala Ala Ala Gly Ala Gly Ala Gly Ala Gln Gl 30 35 40	319
ccatacacag acacataaca tataatatgt aacgaaataa acgtctttgt aagcttacat	379
gtacgcagat ttctgatatg gttatgtata tgttata g gcg gga aag agt gta n Ala Gly Lys Ser Val 45	432
tcg gat gcg gca gcg gga ggt gtt aac ttc gtg aag gac aag acc ggc Ser Asp Ala Ala Gly Gly Val Asn Phe Val Lys Asp Lys Thr Gly 50 55 60	480
ctg aac aag tag agattcgggt caaatttggg Leu Asn Lys 65	512
<210> 102 <211> 66 <212> PRT	
<213> Arabidopsis thaliana	
<pre>&lt;400&gt; 102 Met Ser Glu Thr Asn Lys Asn Ala Phe Gln Ala Gly Gln Thr Ala Gly</pre>	
Lys Ala Glu Glu Lys Ser Asn Val Leu Leu Asp Lys Ala Lys Asp Ala 20 25 30	
Ala Ala Gly Ala Gly Ala Gly Ala Gln Gln Ala Gly Lys Ser Val Ser 35 40 45	
Asp Ala Ala Ala Gly Gly Val Asn Phe Val Lys Asp Lys Thr Gly Leu 50 55 60	
Asn Lys 65	

•				
<210> 103 <211> 1138 <212> DNA <213> Arabidopsis t	haliana			
<220> <221> CDS <222> (11)(1123)				
<400> 103 aaaacaaaaa atg gcg Met Ala 1		cct cct aat ggg a Pro Pro Asn Gly I 10		9
gaa ggg aag cat tac Glu Gly Lys His Tyr 15				7
act aag tac atg cct Thr Lys Tyr Met Pro 30	_			45
gtc tgc tcc tct gtt Val Cys Ser Ser Val 50	Asn Ser Asp Thr		3	.93
aag att cac aat gtt Lys Ile His Asn Val 65		Ile Asp Ala Leu		41
cgg gag ctc aag ctt Arg Glu Leu Lys Leu 80		_	Val Ile Ala	89
ttg aaa gat gtc atg Leu Lys Asp Val Met 95				137
tat ctt gtt tat gag Tyr Leu Val Tyr Glu 110				85
tet tet eag egt ett Ser Ser Gln Arg Let 130	ı Ser Asn Asp His		Leu Phe Gln	133
ttg ctt cga ggg ctc Leu Leu Arg Gly Leu 145		Ser Ala Asn Ile		181
gat ttg aaa cct gg Asp Leu Lys Pro Gl 160			S	529
ata tgc gat ttt gg Ile Cys Asp Phe Gl 175				577

atg Met 190	act Thr	gaa Glu	tat Tyr	gtt Val	gtg Val 195	act Thr	cgt Arg	tgg Trp	tac Tyr	cga Arg 200	gcc Ala	cca Pro	gag Glu	ctt Leu	ctc Leu 205	625 .
ctc Leu	tgt Cys	tgt Cys	gac Asp	aac Asn 210	tat Tyr	gga Gly	aca Thr	tcc Ser	att Ile 215	gat Asp	gtt Val	tgg Trp	tct Ser	gtt Val 220	ggt Gly	673
tgc Cys	att Ile	ttc Phe	gcc Ala 225	gag Glu	ctt Leu	ctt Leu	ggt Gly	agg Arg 230	aaa Lys	ccg Pro	ata Ile	ttc Phe	caa Gln 235	gga Gly	acg Thr	721
gaa Glu	tgt Cys	ctt Leu 240	aac Asn	cag Gln	ctt Leu	aag Lys	ctc Leu 245	att Ile	gtc Val	aac Asn	att Ile	atc Ile 250	gga Gly	agc Ser	caa Gln	769
aga Arg	gaa Glu 255	gaa Glu	gat Asp	ctt Leu	gag Glu	ttc Phe 260	ata Ile	gtt Val	aac Asn	ccg Pro	aaa Lys 265	gct Ala	aaa Lys	aga Arg	tac Tyr	817
					tac Tyr 275						Leu				tac Tyr 285	865
					ttg Leu											913
					agg Arg											961
					tat Tyr	-	_		_				_		gtt Val	1009
					gta Val											1057
gaa Glu 350	atg Met	ata Ile	tgg Trp	aat Asn	gag Glu 355	atg Met	ctt Leu	cac	tac Tyr	cat His 360	cca Pro	caa Gln	gct Ala	tca Ser	acc Thr 365	1105
		act Thr			tga	gct	caag	tct 1	tg <b>t</b> t1	Ē						1138

<210> 104 <211> 370 <212> PRT

<213> Arabidopsis thaliana

Met Ala Thr Leu Val Asp Pro Pro Asn Gly Ile Arg Asn Glu Gly Lys

1				5					10					15	
His	Tyr	Phe	Ser 20	Met	Trp	Gln	Thr	Leu 25	Phe	Glu	Ile	Asp	Thr 30	Lys	Tyr
Met	Pro	Ile 35	Lys	Pro	Ile	Gly	Arg 40	Gly	Ala	Tyr	Gly	Val 45	Val	Cys	Ser
Ser	Val 50	Asn	Ser	Asp	Thr	Asn 55	Glu	Lys	Val	Ala	Ile 60	Lys	Lys	Ile	His
Asn 65	Val	Tyr	Glu	Asn	Arg 70	Ile	Asp	Ala	Leu	Arg 75	Thr	Leu	Arg	Glu	Leu 80
Lys	Leu	Leu	Arg	His 85	Leu	Arg	His	Glu	Asn 90	Val	Ile	Ala	Leu	Lys 95	Asp
Val	Met	Met	Pro 100	Ile	His	Lys	Met	Ser 105	Phe	Lys	Asp	Val	Tyr 110	Leu	Val
Tyr	Glu	Leu 115	Met	Asp	Thr	Asp	Leu 120	His	Gln	Ile	Ile	Lys 125	Ser	Ser	Gln
Arg	Leu 130	Ser	Asn	Asp	His.	Cys ⁻ 135	Gln	Tyr	Phe	Leu	Phe 140	Gln	Leu	Leu	Arg
Gly 145	Leu	Lys	Tyr	Ile	His 150	Ser	Ala	Asn	Ile	Leu 155	His	Arg	Asp	Leu	Lys 160
Pro	Gly	Asn	Leu	Leu 165	Val	Asn	Ala	Asn	Cys 170	Asp	Leu	Lys	Ile	Cys 175	Asp
Phe	Gly	Leu	Ala 180	Arg	Ala	Ser	Asn	Thr 185	Lys	Gly	Gln	Phe	Met 190	Thr	Glu
Tyr	Val	Val 195	Thr	Arg	Trp	Tyr	Arg 200	Ala	Pro	Glu	Leu	Leu 205	Leu	Cys	Cys
Asp	Asn 210	Tyr	Gly	Thr	Ser	Ile 215	Asp	Val	Trp	Ser	Val 220	Gly	Cys	Ile	Phe
Ala 225	Glu	Leu	Leu	Gly	Arg 230	Lys	Pro	Ile	Phe	Gln 235	Gly	Thr	Glu	Сув	Leu 240
Asn	Gln	Leu	Lys	Leu 245	Ile	Val	Asn	Ile	Ile 250	Gly	Ser	Gln	Arg	Glu 255	Glu
Asp	Leu	Glu	Phe 260	Ile	Val	Asn	Pro	Lys 265	Ala	Lys	Arg	Tyr	Ile 270	Arg	Ser
Leu	Pro	Tyr 275	Ser	Pro	Gly	Met	Ser 280	Leu	Ser	Arg	Leu	Tyr 285	Pro	Cys	Ala
His	Val 290	Leu	Ala	Ile	Asp	Leu 295	Leu	Gln	Lys	Met	Leu 300	Val	Phe	Asp	Pro
Ser	Lys	Arg	Ile	Ser	Ala	Ser	Glu	Ala	Leu	Gln	His	Pro	Tyr	Met	Ala

305	310	315	320
Pro Leu Tyr Asp	Pro Asn Ala Ass 325	n Pro Pro Ala Gln 330	Val Pro Ile Asp 335
Leu Asp Val Asp 340	Glu Asp Leu Are	g Glu Glu Met Ile 345	Arg Glu Met Ile 350
Trp Asn Glu Met 355	Leu His Tyr His	s Pro Gln Ala Ser 0	Thr Leu Asn Thr 365
Glu Leu 370			
<210> 105 <211> 445 <212> DNA			
<213> Arabidops:	is thaliana	•	
<220> <221> CDS <222> (20)(43)	0)		
<400> 105			
aacaacaatt tcaa		gc aaa ggt gga aaa ly Lys Gly Gly Lys 5	
		g gac aaa gac aag s Asp Lys Asp Lys 20	
	Ser Ala Arg Al	t ggt att cag ttt a Gly Ile Gln Phe 5	cca gtt gga cga 148 Pro Val Gly Arg 40
		a gtc tcg gca cat g Val Ser Ala His 55	
		t tca atc ctg gag a Ser Ile Leu Glu 70	=
		nt gcg agc aag gat nn Ala Ser Lys Asp 85	
	Arg His Leu Gl	ng ttg gcg att aga n Leu Ala Ile Arg 100	
		eg att gct gga ggt or Ile Ala Gly Gly .5	

cac atc cac aag tot otc atc aac aaa acc acc aag gag tga 430 His Ile His Lys Ser Leu Ile Asn Lys Thr Thr Lys Glu 125 130 tgtgtagctt tttat <210> 106 <211> 136 <212> PRT <213> Arabidopsis thaliana <400> 106 Met Ala Gly Lys Gly Gly Lys Gly Leu Val Ala Ala Lys Thr Met Ala Ala Asn Lys Asp Lys Asp Lys Asp Lys Lys Pro Ile Ser Arg Ser 25 Ala Arg Ala Gly Ile Gln Phe Pro Val Gly Arg Ile His Arg Gln Leu Lys Thr Arg Val Ser Ala His Gly Arg Val Gly Ala Thr Ala Ala Val Tyr Thr Ala Ser Ile Leu Glu Tyr Leu Thr Ala Glu Val Leu Glu Leu 70 Ala Gly Asn Ala Ser Lys Asp Leu Lys Val Lys Arg Ile Thr Pro Arg 85 His Leu Gln Leu Ala Ile Arg Gly Asp Glu Glu Leu Asp Thr Leu Ile 105 Lys Gly Thr Ile Ala Gly Gly Gly Val Ile Pro His Ile His Lys Ser Leu Ile Asn Lys Thr Thr Lys Glu 130 135 <210> 107 <211> 930 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (14) .. (916) <400> 107 geeteettgg ett atg tae tta eea aaa egt gge aat ttg tte gaa ete Met Tyr Leu Pro Lys Arg Gly Asn Leu Phe Glu Leu

									aca Thr							97	
									gat Asp							145	
Lys 45	Thr	Ile	Ser	Arg	Glu 50	Met	Phe	Phe	ttc Phe	Asn 55	Pro	Phe	Thr	Arg	Glu 60	193	
Leu	Ile	Asn	Val	Pro 65	Lys	Cys	Thr	Leu	tca Ser 70	Tyr	Asp	Ala	Ile	Ala 75	Phe	241	
									gtg Val							289	
Val	Ser	Туr 95	Arg	Ile	Thr	Thr	Thr 100	Ser	act Thr	Cys	His	Pro 105	Lys	Ala,	Thr	337	
Glu	Trp 110	Val	Thr	Glu	Asp	Leu 115	Gln	Phe	cat His	Arg	Arg 120	Phe	Arg	Ser	Glu	385	
Thr 125	Leu	Asn	His	Ser	Asn 130	Val	Val	Tyr	gcc Ala	Lys 135	Arg	Arg	Phe	Tyr	Cys 140	433	
Leu	Asp	Gly	Gln	Gly 145	Ser	Leu	Tyr	Tyr	Phe	Asp	Pro	Ser	Ser	Arg 155	Arg	481	
Trp	Asp	Phe	Ser 160	Tyr	Thr	Tyr	Leu	Leu 165	cca Pro	Cys	Pro	Tyr	Ile 170	Ser	Asp	529	
Arg	Phe	Ser 175	Tyr	Gln	Tyr	Glu	Arg 180	Lys		Lys	Arg	11e 185	Phe	Leu	Ala	577	
Val	Arg 190	Lys	Gly	Val	Phe	Phe 195	Lys	Ile	ttt Phe	Thr	Cys 200	Asp	Gly	Glu	Lys	6 <b>2</b> 5	
ccg Pro 205	ata Ile	gtg Val	cat His	Lys	tta Leu 210	Glu	gat Asp	atc Ile	aat Asn	tgg Trp 215	gag Glu	gag Glu	atc Ile	aat Asn	agt Ser 220	673	
act Thr	acg Thr	att Ile	gat Asp	gga Gly 225	ttg Leu	aca Thr	atc Ile	ttt Phe	acg Thr 230	ggt Gly	ctt Leu	tat Tyr	tcc Ser	tct Ser 235	gag Glu	721	
gtg	aga	ctt	aat	cta	cca	tgg	atg	agg	aat	agt	gtt	tac	ttt	cct	aga	769	

Val	Arg	Leu	Asn 240	Leu	Pro	Trp	Met	Arg 245	Asn	Ser	Val	Tyr	Phe 250	Pro	Arg	
	cgt Arg															817
agg Arg	tat Tyr 270	tat Tyr	ccg Pro	cgg Arg	aag Lys	cag Gln 275	tgg Trp	caa Gln	gaa Glu	cag Gln	gag Glu 280	gat Asp	tta Leu	tgt Cys	cct Pro	865
	gag Glu															913
tga	agat	caaaa	agt a	aatg	•											930
											,					
			•													•
	0> 10 1> 30												•			
<212	2> PI	RТ									٠,			,		
<21:	3> A1	rabio	dops:	is th	nalia	ana				:						
	0> 10 Tyr		Pro	Lys 5	Arg	Gly	Asn	Leu	Phe 10	Glu	Leu	Tyr	Asp	Pro 15	Leu	
His	Gln	Lys	Met 20	Tyr	Thr	Leu	Asn	Leu 25	Pro	Glu	Leu	Ala	Lys 30	Ser	Thr	
Val	Сув	Tyr 35	Ser	Arg	Asp	Gly	Trp 40	Leu	Leu	Met	Arg	Lys 45		Ile	Ser	
Arg	Glu 50	Met	Phe	Phe	Phe	Asn 55	Pro	Phe	Thr	Arg	Glu 60	Leu	Ile	Asn	Val	
Pro 65	Lys	Cys	Thr	Leu	Ser 70	Tyr	Asp	Ala	Ile	Ala 75	Phe	Ser	Суѕ	Ala	Pro 80	••
Thr	Ser	Gly	Thr	Суs 85	Val	Leu	Leu	Ala	Phe 90	Lys	His	Val	Ser	Туг 95	Arg	
Ile	Thr	Thr	Thr 100	Ser	Thr	Суѕ	His	Pro 105	Lys	Ala	Thr	Glu	Trp 110	Val	Thr	•
Glu	Asp	Leu 115	Gln	Phe	His	Arg	Arg 120	Phe	Arg	Ser	Glu	Thr 125	Leu	Asn	His	
Ser	Asn 130	Val	Val	Tyr	Ala	Lys 135	Arg	Arg	Phe	Tyr	Cys 140	Leu	Asp	Gly	Gln	
Gly 145	Ser	Leu	Tyr	Tyr	Phe 150	Asp	Pro	Ser	Ser	Arg 155	Arg	Trp	Asp	Phe	Ser 160	
Tyr	Thr	Tyr	Leu	Leu 165	Pro	Cys	Pro	Tyr	Ile 170	Ser	Asp	Arg	Phe	Ser 175	Tyr	

```
Gln Tyr Glu Arg Lys Lys Arg Ile Phe Leu Ala Val Arg Lys Gly
                               185
Val Phe Phe Lys Ile Phe Thr Cys Asp Gly Glu Lys Pro Ile Val His
                            200
Lys Leu Glu Asp Ile Asn Trp Glu Glu Ile Asn Ser Thr Thr Ile Asp
                        215
Gly Leu Thr Ile Phe Thr Gly Leu Tyr Ser Ser Glu Val Arg Leu Asn
                    230
Leu Pro Trp Met Arg Asn Ser Val Tyr Phe Pro Arg Leu Arg Phe Asn
                245
                                   250
Val Lys Arg Cys Val Ser Tyr Ser Leu Asp Glu Glu Arg Tyr Tyr Pro
            260
                                265
Arg Lys Gln Trp Gln Glu Gln Glu Asp Leu Cys Pro Ile Glu Asn Leu
Trp Ile Arg Pro Pro Lys Lys Ala Val Asp Phe Met
                        295
<210> 109
<211> 2640
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (145)..(981)
<220>
<221> CDS
<222> (1439)..(1727)
<220>
<221> CDS
<222> (1817)..(2126)
<220>
<221> CDS
<222> (2204)..(2330)
<220>
<221> CDS
<222> (2405)..(2518)
<400> 109
tecaeggeta caaaagaaca ttetegacat acacaaaaaa attegaaatt tegagaacte 60
tettgtgeet tettetteat etteetetgt tittaaaaat geaateaage agatteteae 120
```

gat	accta	aaa (	ccaa	atcc:	aa ti					gaa ( Glu <i>i</i>						171
	gca Ala															219
	gaa Glu															267
	tcc Ser															315
gac Asp	gcg Ala	aag Lys 60	aag Lys	act Thr	ata Ile	gag Glu	ctt Leu 65	aaa Lys	cct Pro	gat Asp	tgg Trp	ser 70	aaa Lys	gga Gly	tat Tyr	363
agc Ser	cga Arg 75	tta Leu	ggt Gly	gct Ala	gcg Ala	ttt Phe 80	att Ile	gga Gly	ttg Leu	tcc Ser	aag Lys 85	ttt Phe	gat Asp	gaa Glu	gcg Ala	411
gtt Val 90	gat Asp	tcg Ser	tat Tyr	aag Lys	aaa Lys 95	gga Gly	tta Leu	gag Glu	att Ile	gat Asp 100	ccg Pro	agt Ser	aat Asn	gag Glu	atg Met 105	459
ctt Leu	aaa Lys	tcg Ser	gga Gly	tta Leu 110	gct Ala	gat Asp	gct Ala	tcg Ser	aga Arg 115	tct Ser	agg Arg	gtt Val	tcg Ser	tca Ser 120	aag Lys	507
tcg Ser	aat Asn	cct Pro	ttt Phe 125	gtt Val	gat Asp	gcg Ala	ttt Phe	caa Gln 130	Gly ggg	aag Lys	gag Glu	atg Met	tgg Trp 135	gag Glu	aag Lys	555
ttg Leu	acg Thr	gcg Ala 140	gat Asp	ccg Pro	G1À gaa	act Thr	agg Arg 145	gtt Val	tat Tyr	ttg Leu	gag Glu	cag Gln 150	gat Asp	gat Asp	ttt Phe	603
gtt Val	aag Lys 155	acg Thr	atg Met	aag Lys	gag Glu	att Ile 160	cag Gln	agg Arg	aac Asn	cct Pro	aat Asn 165	aat Asn	ctt Leu	aat Asn	ttg Leu	651
tat Tyr 170	atg Met	aag Lys	gat Asp	aag Lys	aga Arg 175	gtt Val	atg Met	aag Lys	gct Ala	tta Leu 180	ggg Gly	gtt Val	ttg Leu	ttg Leu	aat Asn 185	699
gtg Val	aag Lys	ttt Phe	ggt Gly	gga Gly 190	tct Ser	agt Ser	ggt Gly	gaa Glu	gat Asp 195	act Thr	gag Glu	atg Met	aag Lys	gag Glu 200	gct Ala	747
gat Asp	gag Glu	agg Arg	aaa Lys 205	gag Glu	cct Pro	gaa Glu	ccg Pro	gag Glu 210	atg Met	gaa Glu	cct Pro	atg Met	gag Glu 215	ttg Leu	acg Thr	795
gag	gag	gag	agg	cag	aag	aag	gag	aga	aag	gag	aag	gct	ttg	aag	gag	843

Glu Glu Glu Arg Gln Lys Lys Glu Arg Lys Glu Lys Ala 220 225 230	
aaa ggg gaa gga aat gtt gct tat aag aag aag gat ttt Lys Gly Glu Gly Asn Val Ala Tyr Lys Lys Lys Asp Phe 235 240 245	ggg aga gct 891 Gly Arg Ala
gtt gaa cat tat act aag gcc atg gag ctc gat gat gag Val Glu His Tyr Thr Lys Ala Met Glu Leu Asp Asp Glu 250 255 260	gat att tcg 939 Asp Ile Ser 265
tat ttg acg aat cgt gct gct gtt tat ctt gag atg ggg Tyr Leu Thr Asn Arg Ala Ala Val Tyr Leu Glu Met Gly 270 275	aag 981 Lys
gtattaagtc ttatacttgg cttaaaagtt aaacctttag gtacttt	aag attaaggagg 1041
agatettggg ttettgaagt agettatetg tttagtatag ettgtea	cta gttagtacat 1101
ttgtgatgac cttgatgggt tttgataact ttcatctgct tcttgtt	gga gatttaagag 1161
ttttgaactt aagttttcac ttgtgctgaa agtagttagc tttagat	gag gtagaaattt 1221
agggtttatg gcttcatgat ggagtttatt cacttgttct gtagaag	tgg ttatctttat 1281
tattactgga atcaattaat cttcaagtat cctgagtggt tcaattc	cat tggtctatgt 1341
gttcttgcat tagtcttgtt taattaacag ttggttcatc tggatct	tac tgtatcttgt 1401
	•
gtgatgtttt acttcatttc tcaaatgaaa ttatcag tac gag gag Tyr Glu Glu 280	g tgc att gaa 1456 u Cys Ile Glu 285
Tyr Glu Glu	u Cys Ile Glu 285 tct gac ttc 1504
Tyr Glu Glu 280 gac tgt gac aag gct gtt gaa aga ggc aga gaa ctt cgt Asp Cys Asp Lys Ala Val Glu Arg Gly Arg Glu Leu Arg	tct gac ttc 1504 Ser Asp Phe 300 cta gtg aaa 1552
gac tgt gac aag gct gtt gaa aga ggc aga gaa ctt cgt Asp Cys Asp Lys Ala Val Glu Arg Gly Arg Glu Leu Arg 290 295  aag atg ata gca aga gct ctg act aga aaa gga tct gct Lys Met Ile Ala Arg Ala Leu Thr Arg Lys Gly Ser Ala	tct gac ttc 1504 Ser Asp Phe 300  cta gtg aaa 1552 Leu Val Lys 315  act ttc cag 1600
gac tgt gac aag gct gtt gaa aga ggc aga gaa ctt cgt Asp Cys Asp Lys Ala Val Glu Arg Gly Arg Glu Leu Arg 290 295  aag atg ata gca aga gct ctg act aga aaa gga tct gct Lys Met Ile Ala Arg Ala Leu Thr Arg Lys Gly Ser Ala 305  atg gcg aga tgc tcg aaa gac ttt gag cct gcg att gag Met Ala Arg Cys Ser Lys Asp Phe Glu Pro Ala Ile Glu	tct gac ttc 1504 Ser Asp Phe 300  cta gtg aaa 1552 Leu Val Lys 315  act ttc cag 1600 Thr Phe Gln  aaa ctg aac 1648
gac tgt gac aag gct gtt gaa aga ggc aga gaa ctt cgt Asp Cys Asp Lys Ala Val Glu Arg Gly Arg Glu Leu Arg 290 295  aag atg ata gca aga gct ctg act aga aaa gga tct gct Lys Met Ile Ala Arg Ala Leu Thr Arg Lys Gly Ser Ala 305  atg gcg aga tgc tcg aaa gac ttt gag cct gcg att gag Met Ala Arg Cys Ser Lys Asp Phe Glu Pro Ala Ile Glu 320  325  330  aaa gct ctt aca gag cat cgt aat cca gat aca ttg aag Lys Ala Leu Thr Glu His Arg Asn Pro Asp Thr Leu Lys	tct gac ttc 1504 Ser Asp Phe 300  cta gtg aaa 1552 Leu Val Lys 315  act ttc cag 1600 Thr Phe Gln  aaa ctg aac 1648 Lys Leu Asn

ttacacttac tatcttgaaa cgtgatttga ttttaggatt aagcatttga cacttcttca	1807
ttgatgcag gt aat gga ttc ttt aaa gaa caa aag tat cca gag gca gtg ly Asn Gly Phe Phe Lys Glu Gln Lys Tyr Pro Glu Ala Val 380 385	1857
aag cat tat tca gaa gca atc aaa aga aac ccg aac gac gtg agg gca Lys His Tyr Ser Glu Ala Ile Lys Arg Asn Pro Asn Asp Val Arg Ala 390 395 400 405	1905
tat agc aac aga gct gct tgt tac aca aag tta gga gca tta cca gag Tyr Ser Asn Arg Ala Ala Cys Tyr Thr Lys Leu Gly Ala Leu Pro Glu 410 415 420	1953
gga ttg aaa gat gct gaa aaa tgc att gag ctg gac cca agt ttc acg Gly Leu Lys Asp Ala Glu Lys Cys Ile Glu Leu Asp Pro Ser Phe Thr 425 430	2001
aaa gga tac agt aga aaa gga gct att caa ttt ttc atg aag gaa tac Lys Gly Tyr Ser Arg Lys Gly Ala Ile Gln Phe Phe Met Lys Glu Tyr 440 450	2049
gat aaa gct atg gaa acg tat caa gaa ggg cta aaa cat gat cct aag Asp Lys Ala Met Glu Thr Tyr Gln Glu Gly Leu Lys His Asp Pro Lys 455 460 465	2097
aac cag gag ttc ctt gat ggt gtt aga ag gtttgcaaat tttggcattc Asn Gln Glu Phe Leu Asp Gly Val Arg Ar 470 475	2146
tctctttgtt gtttaacctt gcaaagatcg gtctagtgaa agtgttgttg ttttcag a	
tgt gtg gaa cag ata aac aaa gcg agc cgt ggt gat ctg act cca gaa Cys Val Glu Gln Ile Asn Lys Ala Ser Arg Gly Asp Leu Thr Pro Glu 480 485 490 495	2252
gaa ttg aag gag aga caa gca aag gca atg caa gat cct gaa gtt cag Glu Leu Lys Glu Arg Gln Ala Lys Ala Met Gln Asp Pro Glu Val Gln 500 505 510	2300
aac ata tta tcg gat cca gtg atg aga cag gtaaaagcag tggcaagcat Asn Ile Leu Ser Asp Pro Val Met Arg Gln 515 520	2350
tgtgttctaa ctcgtaagct gtctgtgaga cttgtgtgat gatgtctatt gtag gta Val	2407
cta gtg gac ttt caa gag aat ccg aaa gct gca caa gag cat atg aag Leu Val Asp Phe Gln Glu Asn Pro Lys Ala Ala Gln Glu His Met Lys 525 530 535	2455
aac cca atg gta atg aac aag att cag aag ctg gtt agt gcc gga att Asn Pro Met Val Met Asn Lys Ile Gln Lys Leu Val Ser Ala Gly Ile 540 545 550	2503
gtt cag gtc cgg taa attggttatg ctaaaccgga gtggtatatt gaatcaaacc	2558

Val Gln Val Arg

gaagatgttt ccaaattttc actgcgttct tttgggcttt tgttaaactg atgaaactct 2618
gatttggttt gggtcatgtt tg 2640

<210> 110

<211> 558

<212> PRT

<213> Arabidopsis thaliana

<400> 110

Met Ala Glu Glu Ala Lys Ser Lys Gly Asn Ala Ala Phe Ser Ser Gly
1 5 10 15

Asp Tyr Ala Thr Ala Ile Thr His Phe Thr Glu Ala Ile Asn Leu Ser 20 25 30

Pro Thr Asn His Ile Leu Tyr Ser Asn Arg Ser Ala Ser Tyr Ala Ser 35 40

Leu His Arg Tyr Glu Glu Ala Leu Ser Asp Ala Lys Lys Thr Ile Glu 50 55 60

Leu Lys Pro Asp Trp Ser Lys Gly Tyr Ser Arg Leu Gly Ala Ala Phe 65 70 75 80

Ile Gly Leu Ser Lys Phe Asp Glu Ala Val Asp Ser Tyr Lys Lys Gly
85 90 95

Leu Glu Ile Asp Pro Ser Asn Glu Met Leu Lys Ser Gly Leu Ala Asp 100 105 110

Ala Ser Arg Ser Arg Val Ser Ser Lys Ser Asn Pro Phe Val Asp Ala 115 120 125

Phe Gln Gly Lys Glu Met Trp Glu Lys Leu Thr Ala Asp Pro Gly Thr 130 135 140

Arg Val Tyr Leu Glu Gln Asp Asp Phe Val Lys Thr Met Lys Glu Ile 145 150 155 160

Gln Arg Asn Pro Asn Asn Leu Asn Leu Tyr Met Lys Asp Lys Arg Val 165 170 175

Met Lys Ala Leu Gly Val Leu Leu Asn Val Lys Phe Gly Gly Ser Ser 180 185 190

Gly Glu Asp Thr Glu Met Lys Glu Ala Asp Glu Arg Lys Glu Pro Glu 195 200 205

Pro Glu Met Glu Pro Met Glu Leu Thr Glu Glu Glu Arg Gln Lys Lys 210 225 220

Glu Arg Lys Glu Lys Ala Leu Lys Glu Lys Gly Glu Gly Asn Val Ala

225					230			,		235					240
Tyr	Lys	Lys	Lys	Asp 245	Phe	Gly	Arg	Ala	Val 250	Glu	His	Tyr	Thr	Lys 255	Ala
Met	Glu	Leu	Asp 260	Asp	Glu	Asp	Ile	Ser 265	Tyr	Leu	Thr	Asn	Arg 270		Ala
Val	Tyr	Leu 275	Glu	Met	Gly	Lys	Tyr 280	Glu	Glu	Cys	Ile	Glu 285	Asp	Cys	Asp
Lys	Ala 290	Val	Glu	Arg	Gly	Arg 295	Glu	Leu	Arg	Ser	Asp 300	Phe	Lys	Met	Ile
Ala 305	Arg	Ala	Leu	Thr	Arg 310	Lys	Gly	Ser	Ala	Leu 315	Val-	Lys	Met	Ala	Arg 320
Cys	Ser	Lys	Asp	Phe 325	Glu	Pro	Ala	Ile	Glu 330	Thr	Phe	Gln	Lys	Ala 335	Leu
Thr	Glu	His	Arg 340	Asn	Pro	Asp	Thr	Leu 345	Lys	Lys	Leu	Asn	Asp 350	Ala	Glu
Lys	Val	Lys 355	Lys	Glu	Leu	Glu	Gln 360	Gln	Glu	Tyr	Phe	Asp 365	Pro	Thr	Ile
Ala	Glu 370	Glu	Glu	Arg	Glu	Lys 375	Gly	Asn	Gly	Phe	Phe 380	Lys	Glu	Gln	Lys
Tyr 385	Pro	Glu	Ala	Val	Lys 390	His	Tyr	Ser	Glu	Ala 395	Ile	Lys	Arg	Asņ	Pro 400
Asn	Asp	Val	Arg	Ala 405	Tyr	Ser	Asn	Arg	Ala 410	Ala	Cys	Tyr	Thr	Lys 415	Leu
Gly	Ala	Leu	Pro 420	Glu	Gly	Leu	Lys	Asp 425	Ala	Glu	ГÀЗ	Cys	11e 430	Glu	Leu
Asp	Pro	Ser 435	Phe	Thr	Lys	Gly	Tyr 440	Ser	Arg	Lys	Gly	Ala 445	Ile	Gln	Phe
Phe	Met 450	Lys	Glu	Tyr	Asp	Lys 455	Ala	Met	Glu	Thr	Tyr 460	Gln	Glu	Gly	Leu
Lys 465	His	Asp	Pro	Lys	Asn 470	Gln	Glu	Phe	Leu	Asp 475	Gly	Val	Arg	Arg	Cys 480
Val	Glu	Gln	Ile	Asn 485	Lys	Ala	Ser	Arg	Gly 490	Asp	Leu	Thr	Pro	Glu 495	Glu
Leu	Lys	Glu	Arg 500		Ala	Lys	Ala	Met 505	Gln	Asp	Pro	Glu	Val 510	Gln	Asn
Ile	Leu	Ser 515	Asp	Pro	Val	Met	Arg 520	Gln	Val	Leu	Val	Asp 525	Phe	Gln	Glu
Asn	Pro	Lys	Ala	Ala	Gln	Glu	His	Met	Lys	Asn	Pro	Met	Val	Met	Asn

535 Lys Ile Gln Lys Leu Val Ser Ala Gly Ile Val Gln Val Arg 550 <210> 111 <211> 1560 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (130)..(265) <220> <221> CDS <222> (386)..(515) <220> <221> CDS <222> (622)..(1480) <400> 111 tatataaacc tcacacacgc attatcatac accatcctcc tcattctctt catcatcaac 60 ataagagaga gagaagaaaa aaagaattac aattaataag aacaagatca agaatcaaga 120 atcaagaaa atg gga aga gca ccg tgt tgt gat aag gcc aac gtg aag aaa 171 Met Gly Arg Ala Pro Cys Cys Asp Lys Ala Asn Val Lys Lys ggg cct tgg tct cct gag gaa gac gcc aaa ctc aaa gat tac atc gag Gly Pro Trp Ser Pro Glu Glu Asp Ala Lys Leu Lys Asp Tyr Ile Glu 20 25 aat agt ggc aca gga ggc aac tgg att gct ttg cct cag aaa att g Asn Ser Gly Thr Gly Gly Asn Trp Ile Ala Leu Pro Gln Lys Ile G 35 gtatgtatta cttaaaactc acttttgatt taaaattggc actgagagtt tccaaatagt 325 actttgagac cgtggtcgtg ttaaatttgt gtgttgatga tatttattta catggtatag 385 gt tta agg aga tgt ggg aag agt tgc agg cta agg tgg ctc aac tat ly Leu Arg Arg Cys Gly Lys Ser Cys Arg Leu Arg Trp Leu Asn Tyr 50 ttg aga cca aac atc aaa cat ggt ggc ttc tcc gag gaa gaa gac aac Leu Arg Pro Asn Ile Lys His Gly Gly Phe Ser Glu Glu Glu Asp Asn

525

atc att tgt aac ctc tat gtt act att ggt agc ag gtactatata

Ile Ile Cys Asn Leu Tyr Val Thr Ile Gly Ser Ar

65

80

cttacatata tatcatcata tgcatggatg aatattatta attgacacac ttattcttga 585 cttagagact cactatgtat ctttgtttaa ttctag g tgg tct ata att gct gca 640 g Trp Ser Ile Ile Ala Ala caa ttg ccg gga aga acc gac aac gat atc aaa aac tat tgg aac acg 688 Gln Leu Pro Gly Arg Thr Asp Asn Asp Ile Lys Asn Tyr Trp Asn Thr 100 105 agg ctg aag aag ctt ctg aac aaa caa agg aaa gag ttc caa gaa 736 Arg Leu Lys Lys Leu Leu Asn Lys Gln Arg Lys Glu Phe Gln Glu 120 gcg cga atg aag caa gag atg gtg atg atg aaa agg caa caa caa gga 784 Ala Arg Met Lys Gln Glu Met Val Met Met Lys Arg Gln Gln Gln Gly 135 140 caa gga caa ggt caa agt aat ggt agt acg gat ctt tat ctt aac aac 832 Gln Gly Gln Gly Gln Ser Asn Gly Ser Thr Asp Leu Tyr Leu Asn Asn 145 150 atg ttt gga tca tca cca tgg cca tta cta cca caa ctt cct cct cca Met Phe Gly Ser Ser Pro Trp Pro Leu Leu Pro Gln Leu Pro Pro Pro 160 165 170 cat cat caa ata cct ctt gga atg atg gaa cca aca agc tgt aac tac His His Gln Ile Pro Leu Gly Met Met Glu Pro Thr Ser Cys Asn Tyr 180 185 tac caa acg aca ccg tct tgt aac cta gaa caa aag cca ttg atc aca Tyr Gln Thr Thr Pro Ser Cys Asn Leu Glu Gln Lys Pro Leu Ile Thr 195 200 ctc aag aac atg gtc aag att gaa gaa gaa cag gaa agg aca aac cct 1024 Leu Lys Asn Met Val Lys Ile Glu Glu Glu Glu Glu Arg Thr Asn Pro 215 gat cat cat caa gat tot gto aca aac cot ttt gat tto tot tto 1072 Asp His His His Gln Asp Ser Val Thr Asn Pro Phe Asp Phe Ser Phe 230 tct cag ctt ttg tta gat ccc aat tac tat ctg gga tca gga ggg gga 1120 Ser Gln Leu Leu Asp Pro Asn Tyr Tyr Leu Gly Ser Gly Gly Gly 245 250 gga gaa gga gat ttt gct atc atg agc agc agc aca aac tca cca tta 1168 Gly Glu Gly Asp Phe Ala Ile Met Ser Ser Ser Thr Asn Ser Pro Leu 260 265 cca aac aca agt agt gat caa cat cca agt caa cag caa gag att ctt Pro Asn Thr Ser Ser Asp Gln His Pro Ser Gln Gln Gln Glu Ile Leu 275 caa tgg ttt ggg agc agt aac ttt cag aca gaa gca atc aac gat atg Gln Trp Phe Gly Ser Ser Asn Phe Gln Thr Glu Ala Ile Asn Asp Met

Phe Ile Asn Asn Asn Asn Ile Val 305	aat ctt gag acc atc gag aac 1312 Asn Leu Glu Thr Ile Glu Asn 315
aca aaa gtc tat gga gac gcc tca gta Thr Lys Val Tyr Gly Asp Ala Ser Val 320	gcc gga gcc gct gtc cga gca 1360 Ala Gly Ala Ala Val Arg Ala 330 335
gct ttg ggc gga ggg aca acg agt aca Ala Leu Gly Gly Gly Thr Thr Ser Thr 340	tcg gcg gat caa agt aca ata 1408 Ser Ala Asp Gln Ser Thr Ile 345 350
agt tgg gag gat ata act tct cta gtt Ser Trp Glu Asp Ile Thr Ser Leu Val 355 360	aat tcc gaa gat gca agt tac 1456 Asn Ser Glu Asp Ala Ser Tyr 365
ttc aat gcg cca aat cat gtg taa catt Phe Asn Ala Pro Asn His Val 370 375	ttgttt aaaactttat ttgtacttaa 1510
atacataaag aggggttttc tattttgtat aaa	tctgtgt ctttagggag 1560
<210> 112 <211> 374 <212> PRT <213> Arabidopsis thaliana	
<400> 112	
Met Gly Arg Ala Pro Cys Cys Asp Lys 1 5	Ala Asn Val Lys Lys Gly Pro 10 15
Met Gly Arg Ala Pro Cys Cys Asp Lys 1 5  Trp Ser Pro Glu Glu Asp Ala Lys Leu 20 25	10 15 Lys Asp Tyr Ile Glu Asn Ser 30
Met Gly Arg Ala Pro Cys Cys Asp Lys 1 5  Trp Ser Pro Glu Glu Asp Ala Lys Leu	10 15 Lys Asp Tyr Ile Glu Asn Ser 30
Met Gly Arg Ala Pro Cys Cys Asp Lys  1 5  Trp Ser Pro Glu Glu Asp Ala Lys Leu 20 25  Gly Thr Gly Gly Asn Trp Ile Ala Leu	10 15  Lys Asp Tyr Ile Glu Asn Ser 30  Pro Gln Lys Ile Gly Leu Arg 45
Met Gly Arg Ala Pro Cys Cys Asp Lys 1 5 5 Leu 5 Trp Ser Pro Glu Glu Asp Ala Lys Leu 25 Cly Thr Gly Gly Asn Trp Ile Ala Leu 35 40 Arg Cys Gly Lys Ser Cys Arg Leu Arg	Lys Asp Tyr Ile Glu Asn Ser 30  Pro Gln Lys Ile Gly Leu Arg 45  Trp Leu Asn Tyr Leu Arg Pro 60
Met Gly Arg       Ala       Pro S       Cys       Cys       Asp       Lys         Trp       Ser       Pro Glu Glu Asp       Ala Lys       Leu 25         Gly Thr Gly Gly Asn       Trp Ile Ala Leu 40         Arg       Cys       Gly Lys       Ser       Cys       Arg       Leu Arg 55         Asn       Ile       Lys       His       Gly       Gly       Phe       Ser       Glu	Lys Asp Tyr Ile Glu Asn Ser 30  Pro Gln Lys Ile Gly Leu Arg 45  Trp Leu Asn Tyr Leu Arg Pro 60  Glu Glu Asp Asn Ile Ile Cys 75 80
Met       Gly       Arg       Ala       Pro       Cys       Cys       Asp       Lys         Trp       Ser       Pro       Glu       Glu       Asp       Ala       Lys       Leu       25         Gly       Thr       Gly       Gly       Asp       Trp       Ile       Ala       Leu       25         Arg       Cys       Gly       Lys       Ser       Cys       Arg       Leu       Arg         Asn       Ile       Lys       His       Gly       Gly       Phe       Ser       Glu         Asn       Leu       Tyr       Val       Thr       Ile       Gly       Ser       Arg	Lys Asp Tyr Ile Glu Asn Ser 30  Pro Gln Lys Ile Gly Leu Arg 45  Trp Leu Asn Tyr Leu Arg Pro 60  Glu Glu Asp Asn Ile Ile Cys 75  80  Trp Ser Ile Ile Ala Ala Gln 90 95
Met Gly Arg Ala Pro Cys Cys Asp Lys  Trp Ser Pro Glu Glu Asp Ala Lys Leu 20  Cly Thr Gly Gly Asn Trp Ile Ala Leu 35  Arg Cys Gly Lys Ser Cys Arg Leu Arg 50  Asn Ile Lys His Gly Gly Phe Ser Glu 65  Asn Leu Tyr Val Thr Ile Gly Ser Arg 85  Leu Pro Gly Arg Thr Asp Asn Asp Ile	Lys Asp Tyr Ile Glu Asn Ser 30  Pro Gln Lys Ile Gly Leu Arg 45  Trp Leu Asn Tyr Leu Arg Pro 60  Glu Glu Asp Asn Ile Ile Cys 75  80  Trp Ser Ile Ile Ala Ala Gln 90  Lys Asn Tyr Trp Asn Thr Arg 110

Gly Gln Gly Gln Ser Asn Gly Ser Thr Asp Leu Tyr Leu Asn Asn Met 145 150 155 160

Phe Gly Ser Ser Pro Trp Pro Leu Leu Pro Gln Leu Pro Pro Pro His 165 170 175

His Gln Ile Pro Leu Gly Met Met Glu Pro Thr Ser Cys Asn Tyr Tyr 180 185 190

Gln Thr Thr Pro Ser Cys Asn Leu Glu Gln Lys Pro Leu Ile Thr Leu 195 200 205

Lys Asn Met Val Lys Ile Glu Glu Glu Glu Glu Arg Thr Asn Pro Asp 210 220

His His Gln Asp Ser Val Thr Asn Pro Phe Asp Phe Ser Phe Ser 225 230 235 240

Gln Leu Leu Leu Asp Pro Asn Tyr Tyr Leu Gly Ser Gly Gly Gly Gly 245 250 255

Glu Gly Asp Phe Ala Ile Met Ser Ser Ser Thr Asn Ser Pro Leu Pro 260 265 270

Asn Thr Ser Ser Asp Gln His Pro Ser Gln Gln Gln Glu Ile Leu Gln 275 280 285

Trp Phe Gly Ser Ser Asn Phe Gln Thr Glu Ala Ile Asn Asp Met Phe 290 295 300

Ile Asn Asn Asn Asn Asn Ile Val Asn Leu Glu Thr Ile Glu Asn Thr 305 310 315 320

Lys Val Tyr Gly Asp Ala Ser Val Ala Gly Ala Ala Val Arg Ala Ala 325 330 335

Leu Gly Gly Gly Thr Thr Ser Thr Ser Ala Asp Gln Ser Thr Ile Ser 340 345 350

Trp Glu Asp Ile Thr Ser Leu Val Asn Ser Glu Asp Ala Ser Tyr Phe 355 360 365

Asn Ala Pro Asn His Val

<210> 113

<211> 3790

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (38)..(1597)

<220>

```
<221> CDS
<222> (1717)..(1943)
<220>
<221> CDS
<222> (2052)..(2384)
<220>
<221> CDS
<222> (2468) . . (2714)
<220>
<221> CDS
<222> (2800)..(2928)
<220>
<221> CDS
<222> (3020)..(3203)
<220>
<221> CDS
<222> (3532)..(3773)
<400> 113
ttgtatggtt cgttgttact gatagattac ttaagct atg gtt tgg ttt aga atc
                                         Met Val Trp Phe Arg Ile
ggt tot tot gtg gca aag ott gcc ata aga agg aca ctg tot cag tot
Gly Ser Ser Val Ala Lys Leu Ala Ile Arg Arg Thr Leu Ser Gln Ser
             10
cgt tgt ggt tca tat gcc act aga aca agg gtt ttg cct tgt caa acc
                                                                   151
Arg Cys Gly Ser Tyr Ala Thr Arg Thr Arg Val Leu Pro Cys Gln Thr
                             30
aga tgt ttt cac tct aca ata ctc aaa tca aag gca gag tct gct gca
                                                                   199
Arg Cys Phe His Ser Thr Ile Leu Lys Ser Lys Ala Glu Ser Ala Ala
                         45
cct gtt cca cgt cct gtc cca ctt tct aag cta act gat agc ttc tta
                                                                   247
Pro Val Pro Arg Pro Val Pro Leu Ser Lys Leu Thr Asp Ser Phe Leu
                     60
gat gga aca agc agt gtg tat cta gag gag tta caa aga gct tgg gag
Asp Gly Thr Ser Ser Val Tyr Leu Glu Glu Leu Gln Arg Ala Trp Glu
                 75
gct gat ccc aac agt gtt gat gag tcg tgg gat aac ttt ttt agg aat
                                                                   343
Ala Asp Pro Asn Ser Val Asp Glu Ser Trp Asp Asn Phe Phe Arg Asn
             90
                                 95
ttt gtg ggt cag gct tct aca tcg cct ggt atc tcg ggg caa acc att
Phe Val Gly Gln Ala Ser Thr Ser Pro Gly Ile Ser Gly Gln Thr Ile
                            110
caa gaa agc atg cgt ttg ttg ttg cta gtt aga gct tac cag gtt aat
```

(	Gln	Glu 120	Ser	Met	Arg	Leu	Leu 125	Leu	Leu	Val	Arg	Ala 130	Tyr	Gln	Val	Asn	,
(	ggc Gly 135	cac His	atg Met	aag Lys	gcc Ala	aag Lys 140	ctt Leu	gat Asp	cct Pro	tta Leu	ggt Gly 145	cta Leu	gag Glu	aag Lys	aga Arg	gag Glu 150	487
3	att Ile	cca Pro	gag Glu	gat Asp	ctc Leu 155	acg Thr	cca Pro	ggt Gly	ctt Leu	tat Tyr 160	ggg	ttt Phe	act Thr	gag Glu	gct Ala 165	Asp	535
I	ctt Leu	gat Asp	cgg Arg	gaa Glu 170	ttc Phe	ttt Phe	ctg Leu	ggt Gly	gta Val 175	tgg Trp	agg Arg	atg Met	tcg Ser	ggt Gly 180	ttt Phe	ctc Leu	583
t	ct Ser	gag Glu	aac Asn 185	cgc Arg	ccg Pro	gtt Val	caa Gln	aca Thr 190	ctg Leu	agg Arg	tcg Ser	ata Ile	ctg Leu 195	tcg Ser	agg Arg	ctt Leu	631
9	gag Glu	caa Gln 200	gct Ala	tac Tyr	tgt Cys	Gly	act Thr 205	ata Ile	Gly ggg	tat Tyr	gag Glu	tac Tyr 210	atg Met	cac His	att Ile	gct Ala	679
2	gat Asp 215	agg Arg	gat Asp	aaa Lys	tgt Cys	aac Asn 220	tgg Trp	ttg Leu	aga Arg	gac Asp	aag Lys 225	atc Ile	gag Glu	acc Thr	cca Pro	act Thr 230	727
I	ct Pro	cga Arg	cag Gln	tac Tyr	aat Asn 235	agt Ser	gag Glu	cgt Arg	cgg Arg	atg Met 240	gtt Val	att Ile	tat Tyr	gat Asp	agg Arg 245	ctt Leu	775
7	acc Thr	tgg Trp	agc Ser	aca Thr 250	cag Gln	ttt Phe	gag Glu	aat Asn	ttc Phe 255	ttg Leu	gct Ala	act Thr	aag Lys	tgg Trp 260	acc Thr	acg Thr	823
Į	gct Ala	Lys	agg Arg 265	ttt Phe	gga Gly	ctg Leu	gaa Glu	ggt Gly 270	gct Ala	gaa Glu	tct Ser	ttg Leu	att Ile 275	cct Pro	ggc Gly	atg Met	871
I	aag Lys	gag Glu 280	atg Met	ttc Phe	gat Asp	agg Arg	tct Ser 285	gca Ala	gat Asp	ctc Leu	Gly	gta Val 290	gag Glu	aac Asn	ata Ile	gtt Val	919
1															gtt Val		967
1	aga Arg	aaa Lys	cct Pro	cta Leu	cgc Arg 315	caa Gln	ata Ile	ttc Phe	agc Ser	gag Glu 320	ttt Phe	agc Ser	ggt Gly	ggt Gly	act Thr 325	agg Arg	1015
I	cca Pro	gta Val	gat Asp	gaa Glu 330	gtt Val	Gly ggg	ctt Leu	tac Tyr	acc Thr 335	gga Gly	aca Thr	ggt Gly	gat Asp	gtg Val 340	aaa Lys	tac Tyr	1063
E	cac	ttg Leu	ggt Gly	aca Thr	tct Ser	tat Tyr	gat Asp	cgt Arg	cca Pro	act Thr	aga Arg	gga Gly	ggc Gly	aaa Lys	cat His	ctc Leu	1111

	345		350		•	35!	5		
cac tto His Lev 360	ı Ser Lev	gta gca Val Ala	aat ccc Asn Pro 365	agt c Ser H	ac ttg lis Leu	gaa gca Glu Ala 370	a gta gat a Val Asp	cct Pro	1159
gtt gtg Val Val 375	ata ggt Ile Gly	aaa acc Lys Thr 380	Arg Ala	aaa c Lys G	aa tat In Tyr 385	tac acq Tyr Thi	g aaa gac C Lys Asp	gag Glu 390	1207
aac aga Asn Arq	aca aag Thr Lys	aac atg Asn Met 395	ggt att Gly Ile	Leu I	tc cat le His	ggg gat Gly Ası	ggt ago Gly Ser 405	Phe	1255
gcc gga	caa gga Gln Gly 410	Val Val	tat gaa Tyr Glu	act c Thr L 415	tc cat eu His	ctt agt Leu Sei	gca ctt Ala Leu 420	cct Pro	1303
aac tad Asn Tyr	tgt acc Cys Thr 425	ggt gga Gly Gly	aca gtg Thr Val 430	cac a His I	tt gtg le Val	gtg aat Val Asr 435	aat caa Asn Gln	gtg Val	1351
gct tto Ala Phe 440	Thr Thr	gat ccc Asp Pro	agg gaa Arg Glu 445	gga a Gly A	gg tct rg Ser	tca cag Ser Glr 450	tat tgc Tyr Cys	act Thr	1399
gat gtt Asp Val	gca aag Ala Lys	gct ttg Ala Leu 460	agc gcc Ser Ala	cca a Pro I	tt ttc le Phe 465	cat gto	aat gca Asn Ala	gat Asp 470	1447
gac att	gaa gca Glu Ala	gta gtg Val Val 475	cat gct His Ala	Cys G	ag ctt lu Leu 80	gct gct Ala Ala	gag tgg Glu Trp 485	cgc Arg	1495
cag acg	ttc cat Phe His 490	Ser Asp	gtt gtt Val Val	gtt g Val A 495	at tta sp Leu	gta tgo Val Cys	tac cgt Tyr Arg 500	cgc Arg	1543
ttt ggg Phe Gly	cat aac His Asn 505	gag ata Glu Ile	gac gaa Asp Glu 510	ccg t Pro S	ca ttc er Phe	aca caa Thr Glr 515	cca aaa Pro Lys	atg Met	1591
tac aag Tyr Lys 520		tat tata	tcatcc a	tctctg	tga aat	aatctaa	taaccaa	ttc	1647
aagttto	cat ttca	tacttt to	cttgtact	t tttt	tttgtt	taaaaac	gga tgtt	acttgt	1707
tggtgat	ag gtg a Val I	ta cgc ag le Arg Se	gt cat co er His P: 525	cc tcg ro Ser	tca ct Ser Le	t caa a u Gln I 530	tc tac c	ag gag ln Glu	1758
aag cto Lys Leu 535	ttg caa Leu Gln	tct gga Ser Gly 540	cag gta Gln Val	acc c. Thr G	aa gaa ln Glu 545	gat att Asp Ile	gat aag Asp Lys	att Ile 550	1806
caa aag	aaa gta	agc tct	atc ctc	aat g	aa gaa	tat gag	gca agt	aaa	1854

Gln Ly	rs Lys	Val	Ser 555	Ser	Ilė	Leu	Asn	Glu 560	Glu	Tyr	Glu	Ala	Ser 565	Lys	1.
gat ta Asp Ty	it att r Ile	cca Pro 570	caa Gln	aaa Lys	cgt Arg	gac Asp	tgg Trp 575	ctg Leu	gca Ala	agt Ser	cac His	tgg Trp 580	act Thr	gga Gly	1902
ttc aa	g tct vs Ser 585	ccg Pro	gag Glu	cag Gln	att Ile	tct Ser 590	agg Arg	att Ile	cga Arg	aac Asn	acc Thr 595	gg (	gtaaa	aaaaca	1953
ttttta	itttc	attt	agtti	tg to	caat	gccti	t tt	ggcci	ttt	ttc	tttt	ett 1	tttca	aatgta	2013
acattt	tgct (	ggaa	aacta	at to	ccti	gtto	e tti	ttgca		_			gag Glu 600		2067
ttg aa Leu Ly	ig aat vs Asn	gtg Val 605	gga Gly	aag Lys	gca. Ala	atc Ile	tca Ser 610	acc Thr	ttc Phe	cct Pro	gag Glu	aac Asn 615	ttt Phe	aag Lys	2115
cca ca Pro Hi	c aga s Arg 620	gga Gly	gtt Val	aaa Lys	aga Arg	gtt Val 625	tat Tyr	gaa Glu	caa Gln	cgt Arg	gct Ala 630	caa Gln	atg Met	att Ile	2163
gaa to Glu Se 63	r Gly	gaa Glu	ggc Gly	att Ile	gac Asp 640	tgg Trp	gga Gly	ctt Leu	gga Gly	gaa Glu 6 <b>4</b> 5	gca Ala	ctt Leu	gct Ala	ttt Phe	2211
gct ac Ala Th 650	a ctg ir Leu	gtt Val	gtg Val	gaa Glu 655	Gly ggg	aac Asn	cat His	gtt Val	cgg Arg 660	cta Leu	agt Ser	ggt Gly	caa Gln	gat Asp 665	2259
gtt ga Val Gl	a aga u Arg	gga Gly	act Thr 670	ttc Phe	agt Ser	cat His	aga Arg	cac His 675	tca Ser	gtg Val	ctt Leu	cat His	gat Asp 680	caa Gln	2307
gaa ac Glu Th	c ggg r Gly	gag Glu 685	gaa Glu	tat Tyr	tgt Cys	ccc Pro	ctc Leu 690	gat Asp	cac His	cta Leu	atc Ile	aaa Lys 695	aac Asn	caa Gln	2355
gac co	t gaa o Glu 700	atg Met	ttc Phe	act Thr	gtc Val	agc Ser 705	aac Asn	ag g Se	gtate	gcatt	t tt	ttt	aato		2404
tctaga	gatg	ataad	ccact	tc ti	caat	tgtt	t ttl	cacat	gat	cttt	acgt	tg t	ttgt	gtatg	2464
cag c	tcc c r Ser	Leu	ca ga Ser 10	aa ti Glu	t gg Phe	gt gt Gly	Val	c go Leu 15	gt to Gly	cc ga Phe	aa ct Glu	Leu	gt ta Gly 20	at tcg Tyr Se	2513 :
atg ga r Met	Glu A	ccć sn P: 25	aat ro A:	tct sn Se	ctg er Le	gtg eu Va 73	al I	tgg le Ti	gaa np Gl	gct lu Al	cag la Gl 73	n Pi	gga ne Gl	gac Ly As	2561
ttt go p Phe	t aat Ala A	ggc sn G	gca ly A	caa la G	gtt ln Va	atg al Me	ttt et Pl	gat ne As	cag sp G	ttc ln Pl	ata ne Il	agc Le Se	agt er Se	ggg er Gl	2609

750 gaa gcc aaa tgg ctc cgt caa act ggt cta gta gtt tta ctt cct cat 2657 y Glu Ala Lys Trp Leu Arg Gln Thr Gly Leu Val Val Leu Leu Pro Hi gga tat gat ggt cag ggt cct gaa cat tcc agt gga aga ttg gaa cgt 2705 s Gly Tyr Asp Gly Gln Gly Pro Glu His Ser Ser Gly Arg Leu Glu Ar 780 ttc ctt cag gtatattata tgaccgatac ttaccgttaa gattctctcc 2754 g Phe Leu Gln actititigia titigiticoc totoatitiga aaattitaac tigoag atg agt gat gac 2811 Met Ser Asp As 790 aat eet tae gtt ate eet gag atg gae eea aet ett ega aag eag att 2859 p Asn Pro Tyr Val Ile Pro Glu Met Asp Pro Thr Leu Arg Lys Gln Il 800 805 caa gaa tgt aat tgg caa gtt gtt aat gtt act aca cct gcc aac tat e Gln Glu Cys Asn Trp Gln Val Val Asn Val Thr Thr Pro Ala Asn Ty 815 820 ttc cat gtt ctg cgt cgg cag gtaaaatatc tatttatccc aagttcgtaa 2958 r Phe His Val Leu Arg Arg Gln .830 aatgttgtta cttaattttc gtattcttca cactcacatg cttgatatca tccatttgca 3018 g ata cac agg gac ttt cgc aag cct ctt ata gtg atg gcc ccc aaa aac 3067 Ile His Arg Asp Phe Arg Lys Pro Leu Ile Val Met Ala Pro Lys As 835 840 ttg ctt cgt cac aaa cag tgt gta tct aat ctc tcg gaa ttc gat gat n Leu Leu Arg His Lys Gln Cys Val Ser Asn Leu Ser Glu Phe Asp As 850 855

gtt aaa gga cat cct gga ttt gac aag caa gga act cga ttt aaa cgg 3163 p Val Lys Gly His Pro Gly Phe Asp Lys Gln Gly Thr Arg Phe Lys Ar 865 870 875 880

ttg atc aaa gat caa agt ggc cac tct gat ctt gaa gaa g gtatcagacg 3213 g Leu Ile Lys Asp Gln Ser Gly His Ser Asp Leu Glu Glu A 885

tctagtcctc tgctctggga aggtataaaa aaaaagatcc acttttccg tcattaacta 3273
acaaagttcc cacattctga aatttaatac tttaaatgtc aatgaatcag gtctactatg 3333
agcttgacga agagcgaaag aagtctgaaa caaaggatgt agccatttgc agagtagagc 3393
agctttgccc atttccatat gatctcatcc aaaggagaact aaagcgatat ccaagtaggc 3453
gtcgaaaact caagtttgtg ttcaatagtt ttggttgatt atggaattct ttgaaacttt 3513

tgttcttgtg tttaacag at gca gag atc gtg tgg tgt caa gaa gag ccg 3563 sp Ala Glu Ile Val Trp Cys Gln Glu Glu Pro 895 900

- atg aac atg gga gga tac caa tac ata gcc cta agg ctt tgc acc gcg 3611 Met Asn Met Gly Gly Tyr Gln Tyr Ile Ala Leu Arg Leu Cys Thr Ala 905 910 915
- atg aaa gca ctg caa aga gga aac ttc aac gac atc aaa tac gtt ggt 3659 Met Lys Ala Leu Gln Arg Gly Asn Phe Asn Asp Ile Lys Tyr Val Gly 920 925 930 935
- cgt ctt ccc tca gct gct aca gcc aca gga ttt tac cag ctt cat gtt 3707 Arg Leu Pro Ser Ala Ala Thr Ala Thr Gly Phe Tyr Gln Leu His Val 940 945 950
- aag gag cag act gat ctt gtg aag aaa gct ctt caa cct gac ccc atc 3755 Lys Glu Gln Thr Asp Leu Val Lys Lys Ala Leu Gln Pro Asp Pro Ile 955 960 965
- acc ccc gtc atc cct taa aaaaacacag cttgaga
  Thr Pro Val Ile Pro
  970

3790

<210> 114

<211> 947

<212> PRT

<213> Arabidopsis thaliana

<400> 114

- Met Val Trp Phe Arg Ile Gly Ser Ser Val Ala Lys Leu Ala Ile Arg

  1 5 10 15
- Arg Thr Leu Ser Gln Ser Arg Cys Gly Ser Tyr Ala Thr Arg Thr Arg 20 25 30
- Val Leu Pro Cys Gln Thr Arg Cys Phe His Ser Thr Ile Leu Lys Ser
  35 40 45
- Lys Ala Glu Ser Ala Ala Pro Val Pro Arg Pro Val Pro Leu Ser Lys
  50 55 60
- Leu Thr Asp Ser Phe Leu Asp Gly Thr Ser Ser Val Tyr Leu Glu Glu 65 70 75
- Leu Gln Arg Ala Trp Glu Ala Asp Pro Asn Ser Val Asp Glu Ser Trp
  85 90 95
- Asp Asn Phe Phe Arg Asn Phe Val Gly Gln Ala Ser Thr Ser Pro Gly 100 105 110
- Ile Ser Gly Gln Thr Ile Gln Glu Ser Met Arg Leu Leu Leu Val 115 120 125
- Arg Ala Tyr Gln Val Asn Gly His Met Lys Ala Lys Leu Asp Pro Leu 130 135 140

Gly Leu Glu Lys Arg Glu Ile Pro Glu Asp Leu Thr Pro Gly Leu Tyr Gly Phe Thr Glu Ala Asp Leu Asp Arg Glu Phe Phe Leu Gly Val Trp 165 170 Arg Met Ser Gly Phe Leu Ser Glu Asn Arg Pro Val Gln Thr Leu Arg 185 Ser Ile Leu Ser Arg Leu Glu Gln Ala Tyr Cys Gly Thr Ile Gly Tyr 200 Glu Tyr Met His Ile Ala Asp Arg Asp Lys Cys Asn Trp Leu Arg Asp Lys Ile Glu Thr Pro Thr Pro Arg Gln Tyr Asn Ser Glu Arg Arg Met 230 Val Ile Tyr Asp Arg Leu Thr Trp Ser Thr Gln Phe Glu Asn Phe Leu 245 Ala Thr Lys Trp Thr Thr Ala Lys Arg Phe Gly Leu Glu Gly Ala Glu Ser Leu Ile Pro Gly Met Lys Glu Met Phe Asp Arg Ser Ala Asp Leu 280 Gly Val Glu Asn Ile Val Ile Gly Met Pro His Arg Gly Arg Leu Asn 295 Val Leu Gly Asn Val Val Arg Lys Pro Leu Arg Gln Ile Phe Ser Glu 310 Phe Ser Gly Gly Thr Arg Pro Val Asp Glu Val Gly Leu Tyr Thr Gly 330 Thr Gly Asp Val Lys Tyr His Leu Gly Thr Ser Tyr Asp Arg Pro Thr Arg Gly Gly Lys His Leu His Leu Ser Leu Val Ala Asn Pro Ser His 360 Leu Glu Ala Val Asp Pro Val Val Ile Gly Lys Thr Arg Ala Lys Gln Tyr Tyr Thr Lys Asp Glu Asn Arg Thr Lys Asn Met Gly Ile Leu Ile 395 His Gly Asp Gly Ser Phe Ala Gly Gln Gly Val Val Tyr Glu Thr Leu 405 His Leu Ser Ala Leu Pro Asn Tyr Cys Thr Gly Gly Thr Val His Ile 425 Val Val Asn Asn Gln Val Ala Phe Thr Thr Asp Pro Arg Glu Gly Arg

Ser Ser Gln Tyr Cys Thr Asp Val Ala Lys Ala Leu Ser Ala Pro Ile 455 Phe His Val Asn Ala Asp Asp Ile Glu Ala Val Val His Ala Cys Glu 475 Leu Ala Ala Glu Trp Arg Gln Thr Phe His Ser Asp Val Val Val Asp 490 Leu Val Cys Tyr Arg Arg Phe Gly His Asn Glu Ile Asp Glu Pro Ser 500 505 Phe Thr Gln Pro Lys Met Tyr Lys Val Ile Arg Ser His Pro Ser Ser 520 Leu Gln Ile Tyr Gln Glu Lys Leu Leu Gln Ser Gly Gln Val Thr Gln Glu Asp Ile Asp Lys Ile Gln Lys Lys Val Ser Ser Ile Leu Asn Glu 555 Glu Tyr Glu Ala Ser Lys Asp Tyr Ile Pro Gln Lys Arg Asp Trp Leu 570 Ala Ser His Trp Thr Gly Phe Lys Ser Pro Glu Gln Ile Ser Arg Ile Arg Asn Thr Gly Val Lys Pro Glu Ile Leu Lys Asn Val Gly Lys Ala Ile Ser Thr Phe Pro Glu Asn Phe Lys Pro His Arg Gly Val Lys Arg 615 Val Tyr Glu Gln Arg Ala Gln Met Ile Glu Ser Gly Glu Gly Ile Asp 630 Trp Gly Leu Gly Glu Ala Leu Ala Phe Ala Thr Leu Val Val Glu Gly Asn His Val Arg Leu Ser Gly Gln Asp Val Glu Arg Gly Thr Phe Ser His Arg His Ser Val Leu His Asp Gln Glu Thr Gly Glu Glu Tyr Cys 680 Pro Leu Asp His Leu Ile Lys Asn Gln Asp Pro Glu Met Phe Thr Val 695 Ser Asn Ser Ser Leu Ser Glu Phe Gly Val Leu Gly Phe Glu Leu 715 Gly Tyr Ser Met Glu Asn Pro Asn Ser Leu Val Ile Trp Glu Ala Gln 730 Phe Gly Ap Phe Ala Asn Gly Ala Gln Val Met Phe Asp Gln Phe Ile

Ser Ser Gy Glu Ala Lys Trp Leu Arg Gln Thr Gly Leu Val Val Leu 755 760 765

Leu Pro Hs Gly Tyr Asp Gly Gln Gly Pro Glu His Ser Ser Gly Arg
770 775 780

Leu Glu Ag Phe Leu Gln Met Ser Asp Asp Asn Pro Tyr Val Ile Pro
785 790 795

Glu Met Asp Pro Thr Leu Arg Lys Gln Ile Gln Glu Cys Asn Trp Gln 800 805 810

Val Val Asn Val Thr Thr Pro Ala Asn Trp Phe His Val Leu Arg Arg 815 820 825

Gln Ile His Arg Asp Phe Arg Lys Pro Leu Ile Val Met Ala Pro Lys 830 835 840

Asn Leu Leu Arg His Lys Gln Cys Val Ser Asn Leu Ser Glu Phe Asp 845 850 855

Asp Val Lys Gly His Pro Gly Phe Asp Lys Gln Gly Thr Arg Phe Lys 860 865 870

Arg Leu Ile Lys Asp Gln Ser Gly His Ser Asp Leu Glu Glu 875 880 885

Asp Ala Glu Ile Val Trp Cys Gln Glu Glu Pro Met Asn Met Gly Gly 890 895 900

Tyr Gln Tyr Ile Ala Leu Arg Leu Cys Thr Ala Met Lys Ala Leu Gln 905 910 915

Arg Gly Asn Phe Asn Asp Ile Lys Tyr Val Gly Arg Leu Pro Ser Ala 920 925 930

Ala Thr Ala Thr Gly Phe Tyr Gln Leu His Val Lys Glu Gln Thr Asp 935

Leu Val Lys Lys Ala Leu Gln

Pro Asp Pro Ile Thr Pro Val Ile Pro

<210> 115

<211> 1200

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (25)..(151)

<220>

<221> CDS

<222> (257)..(357) <220> <221> CDS <222> (465)..(662) <220> <221> CDS <222> (783)..(1166) <400> 115 tgcattttta ctctcttgac gcta atg ttc att cgg gtt tcc gct cga ccc Met Phe Ile Arg Val Ser Ala Arg Pro gcg aca ttc gtc gag gat ttc aaa gcc gcc tgg tcg gaa tct cac atc 99 Ala Thr Phe Val Glu Asp Phe Lys Ala Ala Trp Ser Glu Ser His Ile 10 15 20 cgt caa atg gaa gac gga aaa gct atc cag ctc gtc ctt gat cag agc Arg Gln Met Glu Asp Gly Lys Ala Ile Gln Leu Val Leu Asp Gln Ser 30 act g gtacaccaac gccacagtta tatttttaaa cggaaacatt ttgaaattaa 201 Thr G tggtgttttt atgtaatata ctctcactgt acatgttcat atttgtcttt taaag ga 258 tgt gga ttt gct tcc aaa aga aaa tat cta ttc gga cga gtg agc atg 306 Cys Gly Phe Ala Ser Lys Arg Lys Tyr Leu Phe Gly Arg Val Ser Met 50 55 aag atc aaa ctc att ccc gga gac tct gcc ggt acg gtc acc gct ttc Lys Ile Lys Leu Ile Pro Gly Asp Ser Ala Gly Thr Val Thr Ala Phe 70 tac gtaagtctat cattttactc cactagtttt gaaattttac acattcacac 407 aataaaaaat aacattttct tgaaacacta acggtcaaat cattgatatg tctatag 464 atg aac tcc gat acg gcc acg gtg aga gac gag cta gat ttt gag ttc Met Asn Ser Asp Thr Ala Thr Val Arg Asp Glu Leu Asp Phe Glu Phe 80 85 ttg gga aac aga agt ggt caa cct tac tca gtg caa aca aac ata ttt 560 Leu Gly Asn Arg Ser Gly Gln Pro Tyr Ser Val Gln Thr Asn Ile Phe 100 gct cat ggc aaa gga gat aga gaa caa aga gtt aat ctt tgg ttc gac 608 Ala His Gly Lys Gly Asp Arg Glu Gln Arg Val Asn Leu Trp Phe Asp 115 120 cca tct atg gat tac cac act tac act atc tta tgg tca cac aaa cac 656 Pro Ser Met Asp Tyr His Thr Tyr Thr Ile Leu Trp Ser His Lys His 125 130 135

att gtg ta Ile Val	agcttttc tct	aattgta ctttc	aacta gaatcaaca	t ttactgtttc	712
aaaacaaaaa	atcaccattt	actgtttaaa aa	aaccttag tttaac	gtgg ggttgttttg	772
gttactcagt	ttt tac gta Phe Tyr Val 145	gac gat gtg Asp Asp Val	cca ata aga gaa Pro Ile Arg Glu 150	tac aaa aac Tyr Lys Asn 155	821
aac gaa gc Asn Glu Al	c aag aac at a Lys Asn Il 160	a gct tac cca e Ala Tyr Pro	aca tca caa cc Thr Ser Gln Pro 165	t atg gga gta o Met Gly Val 170	869
tac tca ac Tyr Ser Th	a tta tgg ga r Leu Trp Gl 175	a gca gat gac u Ala Asp Asp 180	tgg gca aca cgg Trp Ala Thr Arg	t ggt gga tta g Gly Gly Leu 185	917
gag aaa at Glu Lys Il 19	e Asp Trp Se	c aaa gct cca r Lys Ala Pro 195	ttt tat gct ta Phe Tyr Ala Tyr 200	r Tyr Lys Asp	965
ttc gac at Phe Asp Il 205	c gaa ggt tg e Glu Gly Cy	t cct gtt cct s Pro Val Pro 210	gga cca acc tt: Gly Pro Thr Pho 215	t tgt cca tcg e Cys Pro Ser	1013
aac cct ca Asn Pro Hi 220	t aat tgg tg s Asn Trp Tr 22	Glu Gly Tyr	gcc tat cag to Ala Tyr Gln Ser 230	t ctt aac gcc r Leu Asn Ala 235	1061
gtt gaa gc Val Glu Al	t cga cgt ta a Arg Arg Ty 240	c cgg tgg gtt r Arg Trp Val	aga gta aac ca Arg Val Asn His 245	atg gtt tat s Met Val Tyr 250	1109
gat tat tg Asp Tyr Cy	t act gac cg s Thr Asp Ar 255	g tct agg ttt g Ser Arg Phe 260	ect gtc cca cca Pro Val Pro Pro	a ccc gag tgt o Pro Glu Cys 265	1157
Arg Ala	•	atacgtacgt t	gcaatgatc atgt		1200
27	<b>U</b>		•		
<210> 116 <211> 269 <212> PRT					
<213> Arab	idopsis thal	iana			
<400> 116 Met Phe I1 1	e Arg Val Se 5	r Ala Arg Pro	Ala Thr Phe Val	l Glu Asp Phe 15	w.
Lys Ala Al	a Trp Ser Gl 20	u Ser His Ile 25	Arg Gln Met Glu	Asp Gly Lys	
	n Leu Val Le 5	u Asp Gln Ser 40	Thr Gly Cys Gly		

Lys Arg Lys Tyr Leu Phe Gly Arg Val Ser Met Lys Ile Lys Leu Ile .55 60 Pro Gly Asp Ser Ala Gly Thr Val Thr Ala Phe Tyr Met Asn Ser Asp 75 Thr Ala Thr Val Arg Asp Glu Leu Asp Phe Glu Phe Leu Gly Asn Arg Ser Gly Gln Pro Tyr Ser Val Gln Thr Asn Ile Phe Ala His Gly Lys 100 105 Gly Asp Arg Glu Gln Arg Val Asn Leu Trp Phe Asp Pro Ser Met Asp 120 Tyr His Thr Tyr Thr Ile Leu Trp Ser His Lys His Ile Val Phe Tyr 135. Val Asp Asp Val Pro Ile Arg Glu Tyr Lys Asn Asn Glu Ala Lys Asn 150 Ile Ala Tyr Pro Thr Ser Gln Pro Met Gly Val Tyr Ser Thr Leu Trp 170 Glu Ala Asp Asp Trp Ala Thr Arg Gly Gly Leu Glu Lys Ile Asp Trp 185 Ser Lys Ala Pro Phe Tyr Ala Tyr Tyr Lys Asp Phe Asp Ile Glu Gly 200 Cys Pro Val Pro Gly Pro Thr Phe Cys Pro Ser Asn Pro His Asn Trp Trp Glu Gly Tyr Ala Tyr Gln Ser Leu Asn Ala Val Glu Ala Arg Arg 230 Tyr Arg Trp Val Arg Val Asn His Met Val Tyr Asp Tyr Cys Thr Asp Arg Ser Arg Phe Pro Val Pro Pro Pro Glu Cys Arg Ala

<210> 117 <211> 1399 <212> DNA <213> Arabidopsis thaliana

<220> <221> CDS <222> (25)..(1386)

	0> 11 acaaa		gaggt	ttta.	ag aa			gcg t Ala S								51
	cgc Arg										Phe					99
tac Tyr	tta Leu	tca Ser	acc Thr	gcc Ala 30	gct Ala	gct Ala	gcg Ala	acg Thr	gag Glu 35	gtg Val	aat Asn	tac Tyr	gag Glu	gat Asp 40	gaa Glu	147
tcg Ser	att Ile	atg Met	atg Met 45	aaa Lys	gga Gly	gtt Val	cga Arg	att Ile 50	tca Ser	ggt Gly	aga Arg	cct Pro	ctt Leu 55	tac Tyr	tta Leu	195
	atg Met												Asp			243
aat Asn	gct Ala 75	tca Ser	cag Gln	atc Ile	cat His	gag Glu 80	tat Tyr	ggg	aat Asn	cct Pro	cac His 85	tcg Ser	cga Arg	acg Thr	cat His	291
ctc Leu 90	tac Tyr	Gly	tgg Trp	gaa Glu	gct Ala 95	gag Glu	aac Asn	gcc Ala	gtc Val	gag Glu 100	aac Asn	gca Ala	cga Arg	aac Asn	cag Gln 105	339
gtc Val	gcg Ala	aaa Lys	ctg Leu	atc Ile 110	gaa Glu	gct Ala	tca Ser	Pro	aag Lys 115	gag Glu	atc Ile	gta Val	ttc Phe	gtg Val 120	tcc Ser	387
	gca Ala														ttt Phe	435
	aag Lys							Ile								483
tgt Cys	gtg Val 155	ctt Leu	gat Asp	tcg Ser	tgt Cys	agg Arg 160	cat His	ttg Leu	cag Gln	caa Gln	gaa Glu 165	gga Gly	ttt Phe	gag Glu	gta Val	531
act Thr 170	tat Tyr	tta Leu	cct Pro	gtg Val	aaa Lys 175	act Thr	gat Asp	gga Gly	ttg. Leu	gtt Val 180	gat Asp	tta Leu	gag Glu	atg Met	ttg Leu 185	<b>579</b>
aga Arg	gaa Glu	gct Ala	att Ile	agg Arg 190	cca Pro	gac Asp	aca Thr	ggg	cta Leu 195	gtt Val	tct Ser	att Ile	atg Met	gct Ala 200	gtg Val	62.7
aac Asn	aat Asn	gag Glu	att Ile 205	ggt Gly	gtg Val	gtt Val	caa Gln	cct Pro 210	atg Met	gag Glu	gag Glu	att Ile	ggt Gly 215	atg Met	att Ile	675

														gct Ala		723
					_	-	-	-			_	-	_	atg Met		771
														ttg Leu		819
				-	-					_	_	_		ggt Gly 280	Gly	867
														cag Gln	att Ile	915
gtt Val	Gly ggg	ttc Phe 300	ggg Gly	gct Ala	gct Ala	tgt Cys	gag Glu 305	ttg Leu	gct Ala	atg Met	aag Lys	gag Glu 310	atg Met	gag Glu	tat Tyr	963
														Gly		1011
														agt Ser		1059
	-					_	_		_		-	_		gag Glu 360	_	1107
					-	_	-	-			_		_	gct Ala	_	1155
								Tyr						ggt Gly		1203
gat Asp	gaa Glu 395	gac Asp	atg Met	gct Ala	cac His	act Thr 400	tcg Ser	att Ile	agg Arg	ttt Phe	ggg Gly 405	Ile	ggt Gly	agg Arg	ttt Phe	1251
														aaa Lys		1299
gtt Val	gag Glu	aag Lys	ttg Leu	agg Arg 430	gaa Glu	atg Met	agc Ser	ccg Pro	ctt Leu 435	tat Tyr	gaa Glu	atg Met	gtt Val	aaa Lys 440	gaa Glu	1347
ggt	atc	gat	atc	aag	aac	att	caa	tgg	tct	caa	cac	tga	ttc	aaca	gtt	1396

Gly Ile Asp Ile Lys Asn Ile Gln Trp Ser Gln His
445
450

cca 1399

<210> 118

<211> 453

<212> PRT

<213> Arabidopsis thaliana

<400> 118

Met Ala Ser Lys Val Ile Ser Ala Thr Ile Arg Arg Thr Leu Thr Lys

1 10 15

Pro His Gly Thr Phe Ser Arg Cys Arg Tyr Leu Ser Thr Ala Ala Ala 20 25 30

Ala Thr Glu Val Asn Tyr Glu Asp Glu Ser Ile Met Met Lys Gly Val 35 40

Arg Ile Ser Gly Arg Pro Leu Tyr Leu Asp Met Gln Ala Thr Thr Pro 50 55 60

Ile Asp Pro Arg Val Phe Asp Ala Met Asn Ala Ser Gln Ile His Glu 65 70 75 80

Tyr Gly Asn Pro His Ser Arg Thr His Leu Tyr Gly Trp Glu Ala Glu 85 90 95

Asn Ala Val Glu Asn Ala Arg Asn Gln Val Ala Lys Leu Ile Glu Ala 100 105 110

Ser Pro Lys Glu Ile Val Phe Val Ser Gly Ala Thr Glu Ala Asn Asn 115 120 125

Met Ala Val Lys Gly Val Met His Phe Tyr Lys Asp Thr Lys Lys His 130 135 140

Val Ile Thr Thr Gln Thr Glu His Lys Cys Val Leu Asp Ser Cys Arg 145 150 155 160

His Leu Gln Glu Gly Phe Glu Val Thr Tyr Leu Pro Val Lys Thr 165 170 175

Asp Gly Leu Val Asp Leu Glu Met Leu Arg Glu Ala Ile Arg Pro Asp 180 185 190

Thr Gly Leu Val Ser Ile Met Ala Val Asn Asn Glu Ile Gly Val Val 195 200 205

Gln Pro Met Glu Glu Ile Gly Met Ile Cys Lys Glu His Asn Val Pro 210 215 220

Phe His Thr Asp Ala Ala Gln Ala Ile Gly Lys Ile Pro Val Asp Val 225 230 235 240

Lys Lys Trp Asn Val Ala Leu Met Ser Met Ser Ala His Lys Ile Tyr 245 250 255

Gly Pro Lys Gly Val Gly Ala Leu Tyr Val Arg Arg Arg Pro Arg Ile 260 265 270

Arg Leu Glu Pro Leu Met Asn Gly Gly Gly Gln Glu Arg Gly Leu Arg 275 280 285

Ser Gly Thr Gly Ala Thr Gln Gln Ile Val Gly Phe Gly Ala Ala Cys 290 295 300

Glu Leu Ala Met Lys Glu Met Glu Tyr Asp Glu Lys Trp Ile Lys Gly 305 310 315 320

Leu Gln Glu Arg Leu Leu Asn Gly Val Arg Glu Lys Leu Asp Gly Val 325 330 335

Val Val Asn Gly Ser Met Asp Ser Arg Tyr Val Gly Asn Leu Asn Leu 340 345 350

Ser Phe Ala Tyr Val Glu Gly Glu Ser Leu Leu Met Gly Leu Lys Glu 355 360 365

Val Ala Val Ser Ser Gly Ser Ala Cys Thr Ser Ala Ser Leu Glu Pro 370 375 380

Ser Tyr Val Leu Arg Ala Leu Gly Val Asp Glu Asp Met Ala His Thr 385 390 395 400

Ser Ile Arg Phe Gly Ile Gly Arg Phe Thr Thr Lys Glu Glu Ile Asp 405 410 415

Lys Ala Val Glu Leu Thr Val Lys Gln Val Glu Lys Leu Arg Glu Met 420 425 430

Ser Pro Leu Tyr Glu Met Val Lys Glu Gly Ile Asp Ile Lys Asn Ile 435 440 445

Gln Trp Ser Gln His 450

<210> 119

<211> 3180

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (8)..(1781)

<220>

<221> CDS

<222> (1833)..(2609)

<220> <221> CDS <222> (2697)..(3076) <400> 119 caacacg atg ctc acc aat act aat ctc ttc ttc ttt ctc tct tta ctt Met Leu Thr Asn Thr Asn Leu Phe Phe Leu Ser Leu Leu 5 ett ett tet tgt ttt ete caa gtt tet tee aat gga gae get gag ata Leu Leu Ser Cys Phe Leu Gln Val Ser Ser Asn Gly Asp Ala Glu Ile 15 20 ttg agt aga gtt aaa aag acc cga ctt ttc gac ccc gat gga aat tta Leu Ser Arg Val Lys Lys Thr Arg Leu Phe Asp Pro Asp Gly Asn Leu 35 caa gat tgg gtc ata acc gga gat aat cgg agt cca tgt aat tgg acg Gln Asp Trp Val Ile Thr Gly Asp Asn Arg Ser Pro Cys Asn Trp Thr 50 55 gga atc aca tgc cac atc aga aaa ggt agc tcc ctc gcc gtc act acc 241 Gly Ile Thr Cys His Ile Arg Lys Gly Ser Ser Leu Ala Val Thr Thr 70 att gat etc tec gge tat aat ate tee ggt gge ttt eec tae gga tte 289 Ile Asp Leu Ser Gly Tyr Asn Ile Ser Gly Gly Phe Pro Tyr Gly Phe 85 tgt cgt atc cgt aca ctc atc aac atc act ctt tct caa aac aat ctc Cys Arg Ile Arg Thr Leu Ile Asn Ile Thr Leu Ser Gln Asn Asn Leu 100 105 aat ggt acg att gat tot gct cot ctc tcc ctc tgt tot aaa ctt cag Asn Gly Thr Ile Asp Ser Ala Pro Leu Ser Leu Cys Ser Lys Leu Gln 115 120 aat ttg att ctc aat caa aac aac ttc tcc ggt aaa tta ccg gaa ttc 433 Asn Leu Ile Leu Asn Gln Asn Asn Phe Ser Gly Lys Leu Pro Glu Phe 130 135 140 tca ccg gag ttt cgt aaa tta cga gtc ctc gaa ttg gaa tca aac ctc Ser Pro Glu Phe Arg Lys Leu Arg Val Leu Glu Leu Glu Ser Asn Leu 145 150 ttc acc ggt gag att cct caa agt tac ggg aga ctc act gct ctg caa Phe Thr Gly Glu Ile Pro Gln Ser Tyr Gly Arg Leu Thr Ala Leu Gln 160 165 gtt ctg aat ctt aat ggt aac ccg ctc agt gga atc gtt ccg gcg ttt Val Leu Asn Leu Asn Gly Asn Pro Leu Ser Gly Ile Val Pro Ala Phe 175 180 ttg ggt tat ctg act gag tta act cgt ctt gat ctc gct tac atc agt Leu Gly Tyr Leu Thr Glu Leu Thr Arg Leu Asp Leu Ala Tyr Ile Ser 195

ttt Phe	gat Asp	cct	agt Ser 210	ccg Pro	att Ile	cca Pro	tca Ser	acc Thr 215	ttg Leu	Gly	aac Asn	ttg Leu	tcg Ser 220	aat Asn	ctg Leu	673
act	gat Asp	ctt Leu 225	cgg	cta Leu	act Thr	cac His	tcg Ser 230	aac Asn	ctc Leu	gtc Val	gga Gly	gaa Glu 235	att Ile	cct Pro	gat Asp	721
tcg Ser	atc Ile 240	atg Met	aat Asn	ctg Leu	gtg Val	ttg Leu 245	tta Leu	gag Glu	aat Asn	ctt Leu	gat Asp 250	tta Leu	gct Ala	atg Met	aat Asn	769
agt Ser 255	ctc Leu	acc Thr	gga Gly	gaa Glu	ata Ile 260	cct Pro	gag Glu	agt Ser	atc Ile	gga Gly 265	aga Arg	ctc Leu	gaa Glu	tcg Ser	gtt Val 270	817
tac Tyr	cag Gln	att Ile	gag Glu	ctc Leu 275	tac Tyr	gat Asp	aac Asn	cgg	tta Leu 280	Ser	gga Gly	aaa Lys	tta Leu	ccg Pro 285	gag Glu	865
agt Ser	atc Ile	gga Gly	aat Asn 290	tta Leu	acc Thr	gaa Glu	ttg Leu	agg Arg 295	aat Asn	ttt Phe	gat Asp	gtc Val	tcg Ser 300	cag Gln	aat Asn	913
aat Asn	cta Leu	acc Thr 305	ggt Gly	gaa Glu	cta Leu	Pro	gaa Glu 310	aag Lys	atc Ile	gct Ala	gct Ala	ctg Leu 315	caa Gln	ctt Leu	atc Ile	961
tct Ser	ttc Phe 320	aat Asn	ctc Leu	aat Asn	Asp	aat Asn 325	ttc Phe	ttc Phe	acc Thr	gga Gly	gga Gly 330	tta Leu	cca Pro	gat Asp	gtc Val	1009
gta Val 335	gct Ala	ttg Leu	aat Asn	cct Pro	aat Asn 340	ctc Leu	gtt Val	gaa Glu	ttc Phe	aaa Lys 345	atc Ile	ttc Phe	aac Asn	Asn	agt Ser 350	1057
ttc Phe	acg Thr	ggg	acg Thr	tta Leu 355	cca Pro	agg Arg	aat Asn	ctc Leu	ggg 360	aaa Lys	ttc Phe	tca Ser	gaa Glu	atc Ile 365	tct Ser	1105
gaa Glu	ttc Phe	gat Asp	gtc Val 370	tcg Ser	acg Thr	aac Asn	aga Arg	ttc Phe 375	tcc Ser	ggt Gly	gaa Glu	ttg Leu	ccg Pro 380	ccg Pro	tat Tyr	1153
ttg Leu	tgc Cys	tac Tyr 385	aga Arg	aga Arg	aaa Lys	ctt Leu	cag Gln 390	aag Lys	att Ile	atc Ile	acc Thr	ttc Phe 395	agc Ser	aat Asn	caa Gln	1201
tta Leu	agc Ser 400	ggc	gaa Glu	att Ile	ccg Pro	gaa Glu 405	tct Ser	tac Tyr	ggc Gly	gat Asp	tgt Cys 410	cat His	tcg Ser	ctt Leu	aat Asn	1249
tac Tyr 415	att Ile	cgt Arg	atg Met	gcg Ala	gat Asp 420	aac Asn	aaa Lys	ctc Leu	tcc Ser	ggc Gly 425	gaa Glu	gtt Val	ccg Pro	gct Ala	agg Arg 430	1297
ttt	tgg	gaa	ctt	cct	ctt	act	cgt	ctt	gag	cta	gcc	aac	aac	aat	caa	1345

Phe	Trp	Glu	Leu	Pro 435	Leu	Thr	Arg	Leu	Glu 440	Leu	Ala	Asn	Asn	Asn 445	Gln.	•
		ggt Gly														1393
		gaa Glu 465														1441
Leu	-	gat Asp		_	-		_	_		_		_	- ,		_	1489
		gga Gly														1537
_	-	gag Glu					_		_				-	_		1585
		tcg Ser														1633
	_	ggc Gly 545				_	_			-		_	_			1681
		gat Asp														1729
_	_	agg Arg		_						-		-				1777
tat Tyr	7 7	taag	attc	c tt	ctgg	attt	cag	caag	ata	tttt	tcga	cc c	agtt	tctt	aggt ly	
		aat Asn 595	Leu	Cys	Ala	Pro	Asn	Leu	Asp	Pro		Arg	Pro		cga Arg	1882
		cgg Arg														1930
	Ala	cta Leu				Leu					Ile					1978
		aag Lys			Pro					Lys					Gln	2026

															gat Asp	2074
							_		-	-		-	,		ctc Leu	2122
aaa Lys	tca Ser 690	ggt Gly	caa Gln	acg Thr	ctt Leu	gcg Ala 695	gtg Val	aag Lys	aaa Lys	ctc Leu	tgg Trp 700	gga Gly	gaa Glu	acg Thr	ggt Gly	2170
						Ser				tcc Ser 715					ttg Leu 720	2218
										ctt Leu					Asn	2266
ggc Gly	gag Glu	gag Glu	ttt Phe 740	cgg Arg	ttc Phe	tta Leu	gtg Val	tac Tyr 745	gag Glu	ttc Phe	atg Met	gaa Glu	aac Asn 750	Gly	agc Ser	2314
										cat His					cca Pro	2362
ctt Leu	gat Asp 770	tgg Trp	acg Thr	aca Thr	cga Arg	ttt Phe 775	tcg Ser	atc Ile	gcg Ala	gtt Val	ggt Gly 780	gct Ala	gct Ala	caa Gln	gga Gly	2410
										cct Pro 795						2458
										gag Glu					gtc Val	2506
										aga Arg						2554
										gga Gly						2602
	ccg Pro 850		ttcg	aatt	c tt	agct	ctac	aata	atca	aat (	egtti	aaaa	cc c1	tata:	egcaa	2659
gcg	tttt	agt _,	aaca	ttac	tg t	tctt	ctgt	g ga	tgca	g aa lu			tat Tyr			2713

Lys														tta Leu		2761
														gag Glu	aat Asn	2809
aag Lys	gac Asp 890	att Ile	gtt Val	aag Lys	ttt Phe	gca Ala 895	atg Met	gaa Glu	gca Ala	gct Ala	ttg Leu 900	tgt Cys	tac Tyr	cct Pro	tct Ser	2857
cca Pro 905	tca Ser	gca Ala	gaa Glu	gac Asp	gga Gly 910	gcc Ala	atg Met	aat Asn	caa Gln	gat Asp 915	tca Ser	ctt Leu	gga Gly	aac Asn	tat Tyr 920	2905
cga Arg	gat Asp	ctt Leu	agc Ser	aag Lys 925	ctt Leu	gtt Val	gat Asp	cca Pro	aag Lys 930	atg Met	aaa Lys	ctt Leu	tcg Ser	acg Thr 935	aga Arg	2953
gag Glu	tat Tyr	gaa Glu	gag Glu 940	ata Ile	gag Glu	aaa Lys	gtt Val	ctt Leu 945	gac Asp	gtt Val	gca Ala	ttg Leu	ctc Leu 950	tgt Cys	acg Thr	3001
														gag Glu		3049
					tca Ser			tga	ťati	taato	ect a	aggct	ttt	aa		3096
200	970					975										
	970	gct 1	tctai	taato	gt ac			g act	agga	attg	ttad	ctcat	ta '	ttata	agccat	3156
tta	970 ttag	•			gt ac	caaaa		g act	agga	attg	ttac	ctcat	ta '	ttata	agccat	3156 3180
ttai	970 ttagg ttgg: 0> 1:	act 1				caaaa		g act	<u></u> agga	attg	ttac	ctcat	ta:	ttata	agccat	
<pre>cttan aggr &lt;21: &lt;21: &lt;21:</pre>	970 ttagg ttgg 0> 1: 1> 9' 2> Pl	20 76 RT	ttge	tta		caaaa		g act	- <b>a</b> gga	attg	ttac	ctcat	ta	ttata	agccat	
<21 <21 <21 <21	970 ttagg ttgg 0> 1: 1> 9' 2> Pl	20 76 RT	ttge	tta	aa gt	caaaa		g act	ç <b>a</b> gga	attg	ttac	ctcat	ta	ttata	agccat	
<pre>ctta agg &lt;21 &lt;21 &lt;21: &lt;21: &lt;40</pre>	970 ttagg ttgg 0> 1: 1> 9: 2> Pl 3> A: 0> 1:	20 76 RT rabic	ttgc:	tttaa	aa gt	caaaa	atcco						÷	Leu 15		
<21 <21 <21 <21: <21: <40 Met	970 ttage ttgg: 0> 1: 1> 9: 2> Pl 3> A: 0> 1: Leu	20 76 RT rabic	dops:	is the	aa gt nalia Asn	caaaa ctt ana Leu	atcco	Phe	Phe 10	Leu	Ser	Leu	Leu	Leu	Leu	
<pre></pre>	970 tttagg 1ttgg 0> 1: 1> 9' 2> Pl 3> A Leu Cys	20 76 RT rabio Thr	dops Asn Leu 20 Lys	is the Thr 5	nalia Asn	caaaa att ana Leu Ser	Phe Ser	Phe Asn 25	Phe 10 Gly	Leu	Ser	Leu Glu	Leu Ile 30	Leu 15	Leu Ser	
<21: <21: <21: <21: <40: Met  1 Ser	970 tttagg tttgg 0> 1: 1> 9 2> Pl 3> A: Leu Cys	20 76 RT rabic Thr Phe Lys 35	dops Asn Leu 20	is the Thr 5 Gln	nalia Asn Val	caaaa ttt ana Leu Ser	Phe Ser Phe 40	Phe Asn 25 Asp	Phe 10 Gly	Leu Asp	Ser Ala Gly	Leu Glu Asn 45	Leu Ile 30 Leu	Leu 15 Leu	Leu Ser Asp	

Leu	Ser	Gly	Tyr	Asn	Ile	Ser	Gly	Gly	Phe	Pro	Tyr	Gly	Phe	Суs	Arg
				85					90					. 95	

- Ile Arg Thr Leu Ile Asn Ile Thr Leu Ser Gln Asn Asn Leu Asn Gly
  100 105 110
- Thr Ile Asp Ser Ala Pro Leu Ser Leu Cys Ser Lys Leu Gln Asn Leu 115 120 125
- Ile Leu Asn Gln Asn Asn Phe Ser Gly Lys Leu Pro Glu Phe Ser Pro 130 135 140
- Glu Phe Arg Lys Leu Arg Val Leu Glu Leu Glu Ser Asn Leu Phe Thr 145 150 155 160
- Gly Glu Ile Pro Gln Ser Tyr Gly Arg Leu Thr Ala Leu Gln Val Leu 165 170 175
- Asn Leu Asn Gly Asn Pro Leu Ser Gly Ile Val Pro Ala Phe Leu Gly
  180 185 190
- Tyr Leu Thr Glu Leu Thr Arg Leu Asp Leu Ala Tyr Ile Ser Phe Asp 195 200 205
- Pro Ser Pro Ile Pro Ser Thr Leu Gly Asn Leu Ser Asn Leu Thr Asp 210 215 220
- Leu Arg Leu Thr His Ser Asn Leu Val Gly Glu Ile Pro Asp Ser Ile 225 230 235 240
- Met Asn Leu Val Leu Leu Glu Asn Leu Asp Leu Ala Met Asn Ser Leu 245 250 255
- Thr Gly Glu Ile Pro Glu Ser Ile Gly Arg Leu Glu Ser Val Tyr Gln 260 265 270
- Ile Glu Leu Tyr Asp Asn Arg Leu Ser Gly Lys Leu Pro Glu Ser Ile 275 280 285
- Gly Asn Leu Thr Glu Leu Arg Asn Phe Asp Val Ser Gln Asn Asn Leu 290 295 300
- Thr Gly Glu Leu Pro Glu Lys Ile Ala Ala Leu Gln Leu Ile Ser Phe 305 310 315 320
- Asn Leu Asn Asp Asn Phe Phe Thr Gly Gly Leu Pro Asp Val Val Ala 325 330 335
- Leu Asn Pro Asn Leu Val Glu Phe Lys Ile Phe Asn Asn Ser Phe Thr 340 345 350
- Gly Thr Leu Pro Arg Asn Leu Gly Lys Phe Ser Glu Ile Ser Glu Phe 355 360 365
- Asp Val Ser Thr Asn Arg Phe Ser Gly Glu Leu Pro Pro Tyr Leu Cys 370 380

Tyr 385	Arg	Arg	Lys	Leu	Gln 390	Lys	Ile	Ile	Thr	Phe 395	Ser	Asn	Gln	Leu	Ser 400
Gly	Glu	Ile		Glu 405	Ser	Tyr	Gly	Asp	Cys 410	His	Ser	Leu	Asn	Tyr 415	Ile
Arg	Met	Ala	Asp 420	Asn	Lys	Leu	Ser	Gly 425	Glu	Val	Pro	Ala	Arg 430	Phe	Trp
Glu	Leu	Pro 435	Leu	Thr	Arg	Leu	Glu 440	Leu	Ala	Asn	Asn	Asn 445		Leu	Gln
_	Ser 450	Ile	Pro	Pro	Ser	Ile 455	Ser	Lys	Ala	Arg	His 460	Leu	Ser	Gln	Leu
Glu 465	Ile	Ser	Ala	Asn	Asn 470		Ser	Gly	Val	Ile 475	Pro	Val	Lys	Leu	Суз 480
Asp	Leu	Arg	Asp	Leu 485	Arg	Val	Ile	Asp	Leu 490	Ser	Arg	Asn	Ser	Phe 495	Leu
Gly	Ser	Ile	Pro 500	Ser	Сув	Ile	Asn	Lys 505	Leu	Lys	Asn	Leu	Glu 510	Arg	Val
Glu	Met	Gln 515	Glu	Asn	Met	Leu	Asp 520	Gly	Glu	Ile	Pro	Ser 525	Ser	Val	Ser
Ser	Cys 530	Thr	Glu	Leu	Thr	Glu 535	Leu	Asn	Leu		Asn 540	Asn	Arg	Leu	Arg
Gly 545	Gly	Ile	Pro	Pro	Glu 550	Leu	Gly	Asp	Leu	Pro 555	Val	Leu	Asn	Tyr	Leu 560
Asp	Leu	Ser	Asn	Asn 565	Gln	Leu	Thr	Gly	Glu 570	Ile	Pro	Ala	Glu	Leu 575	Leu
Arg	Leu	Lys	Leu 580	Asn	Gln	Phe	Asn	Val 585		Asp	Asn	Lys	Leu 590	Tyr	Gly
Asn	Pro	Asn 595	Leu	Сув	Ala	Pro	Asn 600	Leu	Asp	Pro	Ile	Arg 605		Cys	Arg
Ser	Lys 610	Arg	Glu	Thr	Arg	Tyr 615	Ile	Leu	Pro	Ile	Ser 620	Ile	Leu	Cys	Ile
Val 625		Leu	Thr	Gly	Ala 630		Val	Trp	Leu	Phe 635		Lys	Thr	Lys	Pro 640
Leu	Phe	Lys	Arg	Lys 645		Lys	Arg	Thr	Asn 650	Lys	Ile	Thr	Ile	Phe 655	Gln
Arg	Val	Gly	Phe 660		Glu	Glu	Asp	Ile 665		Pro	Gln	Leu	Thr 670	Glu	Asp
Asn	Ile	Ile 675		Ser	Gly	Gly	Ser 680		Leu	Val	Tyr	Arg 685	Val	Lys	Leu

Lys	Ser 690	Gly	Gln	Thr	Leu	Ala 695		Lys	Lys	Leu	700	Gly	Glu	Thr	Gly
Gln 705	Lys	Thr	Glu		Glu 710	Ser	Val	Phe	Arg	Ser 715	Glu	Val	Glu	Thr	Leu 720
Gly	Arg	Val	Arg	His 725	Gly	Asn	Ile	Val	Lys 730	Leu	Leu	Met	Cys	735	Asn
Gly	Glu	Glu	Phe 740	Arg	Phe	Leu	Val	Tyr 745	Glu	Phe	Met	Glu	Asn 750		Ser
Leu	Gly	Asp 755	'Val	Leu	His	Ser	Glu 760	Lys	Glu	His	Arg	Ala 765	Val	Ser	Pro
Leu	Asp 770	Trp	Thr	Thr	Arg	Phe 775	Ser	Ile	Ala	Val	Gly: 780	Ala	Ala	Gln	Gly
Leu 785	Ser	Tyr	Leu	His	His 790	Asp	Ser	Val	Pro	Pro 795	Ile	Val	His	_	Asp 800
Val	Lys	Ser	Asn	Asn 805	Ile	Leu	Leu	Asp	His 810		Met	Lys	Pro	Arg 815	Val
Ala	Asp	Phe	Gly 820	Leu	Ala	Lys	Pro	Leu 825	Lys	Arg	Glu	Asp	Asn 830	Asp	Gly
Val	Ser	Asp 835	Val	Ser	Met	Ser	Cys 840	Val	Ala	Gly	Ser	Tyr 845	Gly	Tyr	Ile
	850					855		*			860	:	Ser		•
865					870				٠	875		٠	Lys		880
				885				-	890			_	Phe	895	
•			900				•	905			. •		Gly 910		
		915	,				920					925	-		Asp
	930					935				,	940				Val
945					950	_				9 <b>5</b> 5					960
Thr	Met	Arg	Lys	Val 965		Glu	Leu	Leu	Lys 970		Lys	Lys	Ser	Leu 975	Glu

```
<210> 121
<211> 731
<212> DNA
<213> Arabidopsis thaliana
<400> 121
aagtcgagta tgattgtccg tacgtgctcg acggtgcgac cgtacgtacc ctggcagtcg 60
ccctgacgca acttcgaatc tgccctgcgc cctgctcctc ctatggcagt actgcgtact 120
tegacgagea ggagetgaag etgactataa egtgeetggt egaaaageat geeageecat 180
gaaaaaggag atcgagaacg gtatctcgga cttcggcgag gacggctccg ggaacgtcga 240
tttcgagaag tccgtgcaaa tcggtacggc gcggaacggc gagcgccacg cacgcgacga 300
ggtcataaac gaaacccgcc tgttcggcgc acgccaaacc gggacgataa cctgcaacag 360
cctaaaacgc ccggccgagg agctaggcca gggggcggac ccggaggaga tcccgggaac 420
tagaccggac gggcgaccca tccagcctga ccgcttggac ccgtacccgt tgcctgaaat 540
gcctgaattc gcctcgcctt ggatgcctgc tctgaaatgc tcgcctgttg cctgaattcg 600
ctctgaaatc cgttcccccg cctccgcagc tcgtgaccgt ccgaaccgct cgaaccctgc 660
aaacgcctcg c
```

<210> 122 <211> 21 <212> DNA <213> Artificial sequence

<400> 122 aaaaaacaca tacaggaatt c

<210> 123 <211> 21 <212> DNA <213> Artificial sequence <400> 123

agttagctag ctgagctcga g

230