EXERCISES

1 Polynomials

Exercise 1 — Find the polynomial of degree 3 which has a root at -1, a double root at 3 and whose value at x = 2 is 12.

Exercise 2 — Find the solutions of the following equations.

1.
$$4x^4 - x^2 - 18 = 0$$
,

2.
$$x^3 - 8 = 0$$
,

3.
$$8x^3 - 27 = 0$$
,

4.
$$x^4 - 1 = 0$$
.

5.
$$81x^4 - 64 = 0$$
.

Exercise 3 — Verify that $(x^4 - 2x^3 + x^2 + x - 1)$ has of factor (x - 1).

Exercise 4 — Given that x-2 is a factor of the polynomial $x^3 - kx^2 - 24x + 28$, find k and the roots of this polynomial.

Exercise 5 — Find the remainder of the following division $(x^5 - 2x^2 - 3) \div (x - 1)$

Exercise 6 — Carry out the following divisions and write your answer in the form p(x) = f(x)q(x) + r(x).

1.
$$(3x^3 - x^2 + 4x + 7) \div (x + 2)$$

2.
$$(3x^3 - x^2 + 4x + 7) \div (x^2 + 2)$$

3.
$$(x^4 - 3x^2 - 2x + 4) \div (x - 1)$$

4.
$$(5x^4 + 30x^3 - 6x^2 + 8x) \div (x^2 - 3x + 1)$$

Exercise 7 — Show that the set $\mathbb{R}[X]$ carries a ring structure.

2 Lagrange Interpolation and Hermite interpolation

Exercise 8 — Find the unique Lagrange polynomial P(x) of degree 2 that satisfies

$$P(1) = 1, P(2) = 4, P(3) = 10.$$

Compute P(1.6).

Exercise 9 — Find the Lagrange polynomial passing through the points:

- 1. (1,3), (4,5).
- 2. (1,-1), (3,2), (4,7).
- 3. (0,-1), (2,2), (3,9), (5,6).

Exercise 10 — Given ln(529) = 6.270988 and ln(530) = 6.272977, compute ln(529.62).

Exercise 11 — Let f be a function defined by $f(x) = \frac{1}{1+x^2}$.

- 1. Find the Lagrange interpolating polynomial P on points x = 0, 1, 3, 5.
- 2. Compute P(4) and compare to f(4).

recall that the error is given by the formula

$$E_n = f(x) - P_n(x) = (x - x_0) \cdots (x - x_n) \frac{f^{n+1}(\xi)}{(n+1)!}$$

where $\xi \in [x_0, x_n]$.

Exercise 12 — Find the Hermite interpolating polynomial P that satisfies

$$P(0) = 1,$$
 $P'(0) = -0.5,$
 $P(1) = 1,$ $P'(0) = -2,$
 $P(2) = 3,$ $P'(2) = 2,$

3 Bezier curves

Exercise 13 — Consider the control polygon determined by the sequence of points

$$P_0(2,2), P_1(0,1), P_2(3,-1), P_3(4,1).$$

- 1. Establish the De Casteljau scheme and find the corresponding Bezier curve.
- 2. Find the Bezier curve using Bernstein polynomials.
- 3. Find the tangents at extremal points and graph the curve together with the control polygon.
- 4. Find and graph the hodograph (curve corresponding to the derivative)

Exercise 14 — Same exercise with the following sequence of points

$$P_0(0,-2), P_1(4,0), P_2(0,2).$$

 $P_0(0,0), P_1(2,1), P_2(3,-2), P_3(4,0).$
 $P_0(0,0), P_2(3,-2), P_1(2,1), P_3(4,0).$