Definición de ecuación diferencial. Definición de orden de una ecuación diferencial.

Jorge Ruiz López

Facultad de Ingeniería UNAM

Marzo 2022

Definición de una ecuación diferencial 1.

Definición 1.1 Una ecuación diferencial [1] es aquella ecuación que contiene derivadas o diferenciales.

Si tenemos: $\frac{d^2x}{d^2y} = x$ la llamamos ecuación diferencial de **segundo orden.** Integrando: $\frac{dx}{dy} = \frac{x^2}{2} + c_1$

Si volvemos a integrar: $y=\frac{x^3}{6}+c_1x+c_2$ obtenemos una **función-solución** que podemos comprobar al instante: derivando: $\frac{dy}{dx}=\frac{x^3}{2}+c_1$ derivando de nuevo con respecto a x: $\frac{d^2x}{d^2y}=x$

Definición 1.2 Orden de una ecuación diferencial es el de la derivada más alta contenida en ella.

Definición 1.3 Grado de una ecuación diferencial es la potencia a la que está elevada la derivada más alta, siempre y cuando la ecuación diferencial esté dada en forma polinomial.

2. Clasificación de las ecuaciones diferenciales

Tipo:

Ordinarias: La ecuación diferencial contiene derivadas de una o más variables dependientes con respecto a una sola variable independiente.

Parciales: La ecuación diferencial contiene derivadas parciales de una o más variables dependieiites con respecto a dos o más variables independientes.

Orden:

Primer orden: f(x, y, y') = 0

Segundo orden: f(x, y, y', y'') = 0

Orden n: $f(x, y, y', ..., y^n) = 0$

Grado:

Lineales:

a) La variable dependiente y y todas sus derivadas son de 1er grado.

b)Cada coeficiente de y y sus derivadas depende solamente de la variable independiente x (puede ser constante).

3. Ejemplo de ecuaciones diferenciales:

Ecuación	Tipo	Orden	Grado	Lineal
$\frac{dx}{dy} = 2e^{-x}$	Ordinaria	1	1	Si
$yy'' + x^2y = x$	Ordinaria	2	1	No
$\frac{\partial y}{\partial t} + \frac{\partial^2 y}{\partial^2 t} = c$	Parcial	2	1	Si
$y' + y = \frac{x}{y}$	Ordinaria	1	1	No
sen(y') + y = 0	Ordinaria	1	1	No

Referencias

 $[1] \quad \text{Isabel Carmona Jover}. \ \textit{Ecuaciones Diferenciales}. \ \text{Longman de M\'exico Editores}, 1998. \ \text{ISBN: } 9684441509.$