

Calcolo integrale — Scheda di esercizi n. 2 7 Marzo 2023 — Compito n. 00032

Istruzioni: le prime due caselle (V / F)	Nome:		
permettono di selezionare la risposta vero/falso. La casella "C" serve a correggere eventuali errori invertendo la risposta data. Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes o \boxtimes).	Cognome: Matricola:		
Punteggi : 1 punto per ogni risposta esatta, 0 pun	ti per risposte sbagliate o lasciate in bianco.		
V	2D 3A 3B 3C 3D 4A 4B 4C 4D		
1) Sia $a_k > 0$ una successione tale che	3) Dire se le seguenti affermazioni sono vere o false		
$\lim_{k o +\infty} a_k = 0 .$	3A) La serie di termine generico $\frac{(-1)^k}{k!}$ convergente.		
1A) La serie di termine generico a_k converge. 1B) La serie di termine generico $\frac{a_k+6}{a_k+7}$ è divergente. 1C) Se $b_k \geq a_k+5$, la serie di termine generico b_k è divergente. 1D) La serie di termine generico $\frac{e^{-2a_k}}{k^2}$ è convergente.	3B) La serie di termine generico $\frac{\cos(k\pi/2)}{k+3}$ di indeterminata. 3C) La serie di termine generico $k! \sin(5k\pi)$ di convergente. 3D) La serie di termine generico $(-1)^k \frac{6^k}{k!}$ di indeterminata.		
2) Dire de la germanti effermacioni deno vene e fela	4) Dire se le seguenti affermazioni sono vere o false		
 2) Dire se le seguenti affermazioni sono vere o false. 2A) La serie di termine generico sin(^{6k}/_{k!}) è convergente. 2B) La serie di termine generico arctg(³/_k?) è 	4A) La serie di termine generico $\frac{(-1)^k}{k^3}$ converge semplicemente e assolutamente. 4B) La serie di termine generico $\frac{(-1)^k}{k+3}$ converge semplicemente ma non assolutamente.		

Docente:	

divergente. **2D)** La serie di termine generico $\frac{1}{\sqrt[6]{k}} \ln(2 + \frac{2^k}{k!})$ è $\frac{2^k}{n!}$ De $a_k \ge 0$ è tale che la serie di termine generico a_k è convergente, la serie di termine generico a_k è converge semplicemente e assolutamente.

in determinata.

 ${\bf 4C)}$ La serie di termine generico

convergente.

2C) La serie di termine generico $k^3(\frac{2}{3})^k$ è

$$\sum_{k=0}^{+\infty} a_k \, 4^k \, .$$

- a) Si studi la convergenza della serie se $a_k = \frac{(-1)^k}{8^k}$. b) Si studi la convergenza della serie se $a_k = \frac{k^7}{k!}$. c) Si studi la convergenza della serie se $a_k = 1$ se $k \le 10^{100}$ e $a_k = 0$ se $k > 10^{100}$. d) Si studi la convergenza della serie se $a_k = \sin(\frac{1}{(k+1)^7 4^k})$.

Cogn	nome Nome	Matricola	Compito 00032
------	-----------	-----------	---------------

$$\sum_{k=0}^{+\infty} \frac{A^k}{(k+1)^3} \, .$$

- a) Si studi la convergenza della serie per A=1.
- b) Si studi la convergenza semplice e assoluta della serie per A=-1. c) Si studi la convergenza semplice e assoluta della serie per -1 < A < 1.
- d) Si studi la convergenza della serie per A>1.

Soluzioni del compito 00032

1) Sia $a_k > 0$ una successione tale che

$$\lim_{k \to +\infty} a_k = 0.$$

1A) La serie di termine generico a_k converge.

Falso: Essendo la serie a termini positivi, la serie può o convergere, o divergere positivamente. Senza ulteriori condizioni, però, il solo fatto che la successione a_k tenda a zero **non è sufficiente** a stabilire quale delle due eventualità si verifica. Ad esempio, se $a_k = \frac{1}{k}$ la serie diverge, mentre se $a_k = \frac{1}{k^2}$ la serie converge.

1B) La serie di termine generico $\frac{a_k+6}{a_k+7}$ è divergente.

Vero: Dato che

$$\lim_{k \to +\infty} \frac{a_k + 6}{a_k + 7} = \frac{0 + 6}{0 + 7} = \frac{6}{7} \neq 0,$$

la condizione necessaria di convergenza della serie non è verificata. Essendo la serie a termini positivi, o converge o diverge positivamente, e dato che non converge, deve obbligatoriamente divergere.

1C) Se $b_k \ge a_k + 5$, la serie di termine generico b_k è divergente.

Vero: Dato che $a_k > 0$, si ha

$$b_k \ge a_k + 5 > 0 + 5 = 5$$
,

da cui segue che la successione b_k non tende a zero. Dato che la condizione necessaria di convergenza non è soddisfatta, e la serie è a termini positivi, la serie diverge. Analogamente, si ha

$$S_n = \sum_{k=1}^n b_k \ge \sum_{k=1}^n [a_k + 5] > \sum_{k=1}^n 5 = 5 n.$$

Dato che la successione 5n diverge, anche la successione S_n diverge.

1D) La serie di termine generico $\frac{e^{-2a_k}}{k^2}$ è convergente.

Vero: Si ha, dato che $a_k > 0$,

$$0 \le \frac{e^{-2a_k}}{k^2} \le \frac{1}{k^2} \,.$$

Dato che la serie di termine generico $\frac{1}{k^2}$ è convergente (è una serie armonica generalizzata di esponente $\alpha = 2 > 1$), la serie data converge per il criterio del confronto.

2A) La serie di termine generico $\sin(\frac{6^k}{k!})$ è convergente.

Vero: Dato che

$$\lim_{k \to +\infty} \, \frac{6^k}{k!} = 0 \,,$$

e dato che

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1,$$

per il criterio del confronto asintotico la serie data si comporta come la serie

$$\sum_{k=0}^{+\infty} \frac{6^k}{k!} \, .$$

Applicando il criterio del rapporto, si ha

$$\lim_{k \to +\infty} \frac{a_{k+1}}{a_k} = \lim_{k \to +\infty} \frac{6^{k+1}}{(k+1)!} \frac{k!}{6^k} = \lim_{k \to +\infty} \frac{6}{k+1} = 0,$$

e quindi la serie converge.

2B) La serie di termine generico arc $\operatorname{tg}(\frac{3}{k^7})$ è convergente.

Vero: Dato che

$$\lim_{k \to +\infty} \, \frac{3}{k^7} = 0 \,,$$

e che

$$\lim_{x \to 0} \frac{\arctan \operatorname{tg}(x)}{x} = 1,$$

per il criterio del confronto asintotico la serie si comporta come la serie

$$\sum_{k=1}^{+\infty} \frac{3}{k^7} \,,$$

che è convergente essendo (a meno del fattore 3) una serie armonica generalizzata di esponente $\alpha = 7 > 1$.

2C) La serie di termine generico $k^3 \left(\frac{2}{3}\right)^k$ è divergente.

Falso: Applichiamo il criterio della radice. Si ha

$$\lim_{k \to +\infty} \sqrt[k]{k^3 \left(\frac{2}{3}\right)^k} = \lim_{k \to +\infty} \frac{2}{3} \left(\sqrt[k]{k}\right)^3 = \frac{2}{3} \, 1^3 = \frac{2}{3} < 1 \, ,$$

e quindi la serie converge.

2D) La serie di termine generico $\frac{1}{\sqrt[6]{k}} \ln(2 + \frac{2^k}{k!})$ è divergente.

Vero: Osserviamo che, essendo

$$\lim_{k \to +\infty} \frac{2^k}{k!} = 0,$$

si ha

$$\lim_{k \to +\infty} \ln \left(2 + \frac{2^k}{k!} \right) = \ln(2) \neq 0.$$

Pertanto, per il criterio del confronto asintotico, la serie data si comporta come la serie

$$\sum_{k=1}^{+\infty} \frac{1}{\sqrt[6]{k}} = \sum_{k=1}^{+\infty} \frac{1}{k^{\frac{1}{6}}},$$

che diverge essendo una serie armonica generalizzata di esponente $\alpha = \frac{1}{6} < 1$.

- 3) Dire se le seguenti affermazioni sono vere o false.
- **3A)** La serie di termine generico $\frac{(-1)^k}{k!}$ è convergente.

Vero: Dato che la successione $b_k = \frac{1}{k!}$ è positiva, decresecente e infinitesima, la serie converge per il criterio di Leibniz.

3B) La serie di termine generico $\frac{\cos(k\pi/2)}{k+3}$ è indeterminata.

Falso: Osserviamo che $\cos(k\pi/2)$ vale zero se k è dispari, mentre vale $(-1)^h$ se k=2h è pari. Pertanto,

$$\sum_{k=0}^{+\infty} \frac{\cos(k\pi/2)}{k+3} = \sum_{h=0}^{+\infty} \frac{(-1)^h}{2h+3},$$

e l'ultima serie è convergente per il criterio di Leibniz (dato che $b_h = \frac{1}{2h+3}$ è positiva, decrescente e infinitesima).

3C) La serie di termine generico $k! \sin(5k\pi)$ è convergente.

Vero: Dato che $\sin(5k\pi) = 0$ per ogni k, la serie è la serie nulla...

3D) La serie di termine generico $(-1)^k \frac{6^k}{k!}$ è indeterminata.

Falso: Osserviamo che la successione $\frac{6^k}{k!}$ è decrescente per ogni $k \geq 5$. Infatti, si ha

$$\frac{6^{k+1}}{(k+1)!} \leq \frac{6^k}{k!} \quad \Longleftrightarrow \quad \frac{6}{k+1} \leq 1 \quad \Longleftrightarrow \quad k \geq 5 \,.$$

Se ne deduce che la serie data converge per il criterio di Leibniz, dato che la successione $b_k = \frac{6^k}{k!}$ è positiva, decrescente e infinitesima.

4A) La serie di termine generico $\frac{(-1)^k}{k^3}$ converge semplicemente e assolutamente.

Vero: Dato che

$$\left|\frac{(-1)^k}{k^3}\right| = \frac{1}{k^3}\,,$$

e che la serie di termine generico $\frac{1}{k^3}$ è convergente (essendo una serie armonica generalizzata di esponente $\alpha = 3 > 1$), la serie data converge assolutamente e quindi anche semplicemente.

4B) La serie di termine generico $\frac{(-1)^k}{k+3}$ converge semplicemente ma non assolutamente.

Vero: Dato che la successione $b_k = \frac{1}{k+3}$ è positiva, decrescente e infinitesima, la serie converge semplicemente per il criterio di Leibniz. D'altra parte, la serie dei moduli diverge essendo la serie armonica, dato che

$$\left| \frac{(-1)^k}{k+3} \right| = \frac{1}{k+3} \,,$$

e quindi la serie non converge assolutamente.

4C) La serie di termine generico $\frac{(-1)^k k}{k+3}$ è indeterminata.

Vero: Dato che

$$\lim_{k\to +\infty}\,\frac{k}{k+3}=1\,,$$

la serie non soddisfa la condizione necessaria; essendo a termini di segno variabile, la serie è indeterminata.

4D) Se $a_k \ge 0$ è tale che la serie di termine generico a_k è convergente, la serie di termine generico $(-1)^k a_k$ converge semplicemente e assolutamente.

Vero: Dato che

$$|(-1)^k a_k| = |a_k| = a_k \,,$$

e dato che per ipotesi la serie di termine generico a_k è convergente, la serie di termine generico $(-1)^k a_k$ converge assolutamente, e quindi anche semplicemente.

$$\sum_{k=0}^{+\infty} a_k 4^k.$$

- a) Si studi la convergenza della serie se $a_k = \frac{(-1)^k}{8^k}$.
- b) Si studi la convergenza della serie se $a_k = \frac{k^7}{k!}$. c) Si studi la convergenza della serie se $a_k = 1$ se $k \le 10^{100}$ e $a_k = 0$ se $k > 10^{100}$. d) Si studi la convergenza della serie se $a_k = \sin(\frac{1}{(k+1)^7 \cdot 4^k})$.

Soluzione:

a) Se $a_k = \frac{(-1)^k}{8^k}$, la serie diventa

$$\sum_{k=0}^{+\infty} \frac{(-1)^k 4^k}{8^k} = \sum_{k=0}^{+\infty} \left(-\frac{1}{2}\right)^k ,$$

che converge essendo una serie geometrica con $q = -\frac{1}{2}$ appartenente a (-1,1).

b) Se $a_k = \frac{k^7}{k!}$, la serie diventa

$$\sum_{k=0}^{+\infty} \frac{k^7 4^k}{k!}.$$

Applicando il criterio del rapporto, si ha

$$L = \lim_{k \to +\infty} \frac{(k+1)^7 4^{k+1}}{(k+1)!} \frac{k!}{k^7 4^k} = \lim_{k \to +\infty} \left(\frac{k+1}{k}\right)^7 \frac{4}{k+1} = 1^7 \cdot 0 = 0,$$

e quindi la serie converge

c) Sia

$$S_n = \sum_{k=0}^n a_k \, 4^k \, .$$

Se $n=10^{100}$, allora, per la formula sulla somma di una progressione geometrica, e dato che $a_k\equiv 1$ per ogni $k \leq n$,

$$S_{10^{100}} = \sum_{k=0}^{10^{100}} \, 1 \cdot 4^k = \frac{4^{10^{100}+1}-1}{3} = \overline{S} \, .$$

Se $n > 10^{100}$, allora

$$S_n = \sum_{k=0}^{n} a_k 4^k = \sum_{k=0}^{10^{100}} a_k 4^k + \sum_{k=10^{100}+1}^{n} a_k 4^k = \sum_{k=0}^{10^{100}} a_k 4^k = \overline{S},$$

dato che $a_k = 0$ per ogni $k > 10^{100}$. Se ne deduce che la successione S_n è definitivamente uguale a \overline{S} e quindi converge (a \overline{S}).

d) Dato che

$$\lim_{k \to +\infty} \frac{1}{(k+1)^7 4^k} = 0,$$

e dato che

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1,$$

per il criterio del confronto asintotico la serie data si comporta come la serie

$$\sum_{k=0}^{+\infty} \frac{1}{(k+1)^7 4^k} 4^k = \sum_{k=0}^{+\infty} \frac{1}{(k+1)^7},$$

che converge essendo una serie armonica generalizzata di esponente $\alpha = 7 > 1$.

$$\sum_{k=0}^{+\infty} \frac{A^k}{(k+1)^3} \,.$$

- a) Si studi la convergenza della serie per A=1.
- b) Si studi la convergenza semplice e assoluta della serie per A = -1.
- c) Si studi la convergenza semplice e assoluta della serie per -1 < A < 1.
- d) Si studi la convergenza della serie per A > 1.

Soluzione:

a) Se A=1, la serie è

$$\sum_{k=0}^{+\infty} \frac{1}{(k+1)^3} \,,$$

che converge essendo una serie armonica generalizzata di esponente $\alpha = 3 > 1$.

b) Se A = -1, la serie è la serie a segni alterni

$$\sum_{k=0}^{+\infty} \frac{(-1)^k}{(k+1)^3},\,$$

che converge semplicemente (per il criterio di Leibniz, dato che $b_k = \frac{1}{(k+1)^3}$ è una successione positiva, descrescente e infinitesima) e assolutamente (dato che la serie dei moduli è la serie della parte a)).

c) Se -1 < A < 1, si ha $|A^k| \le 1$, e quindi

$$\left| \frac{A^k}{(k+1)^3} \right| = \frac{|A^k|}{(k+1)^3} \le \frac{1}{(k+1)^3}$$
.

Dato che la serie di termine generico $\frac{1}{(k+1)^3}$ è convergente (si veda la parte **a**)), la serie data converge assolutamente (per il criterio del confronto), e quindi converge anche semplicemente.

d) Se A > 1 si ha

$$\lim_{k \to +\infty} \frac{A^k}{(k+1)^3} = +\infty.$$

Dato che la serie è a termini positivi, e non soddisfa la condizione necessaria, la serie è divergente.