MSO202- INTRODUCTION TO COMPLEX ANALYSIS

1. Assignment 4

Notation: Let C_r denotes the circle with radius r and centre at origin and oriented anticlockwise, with $C := C_1$.

(1) Let a be a positive real number and Γ be the rectangle with vertices $0, a, a + 2\pi i$, and $2\pi i$. Explicitly compute the integral

$$\int_{\Gamma} e^z dz$$

and verify the Cauchy's Theorem.

(2) Let L be a path which consists of the half circle $z = Re^{it}$, $0 \le t \le \pi$ and the straight line segment: $-R \le \Re z \le R$, Imz = 0. Find the integral

$$\int_{I} |z|^2 \overline{z} dz.$$

(3) Evaluate the contour integral $\int_L f(z)dz$ using the parametric representation of L, where

$$f(z) = \frac{z^2 - 1}{z}$$
 and $L = (i)$ the semicircle $z = 2e^{i\theta}, \ 0 \leqslant \theta \leqslant \pi$.

$$L=(ii) \ the \ semicircle \ z=2e^{i\theta}, \ \pi\leqslant \theta\leqslant 2\pi. \quad L=(iii)z=2e^{i\theta}, \ 0\leqslant \theta\leqslant 2\pi.$$

Also, calculate the integral using an anti-derivative of f(z).

(4) Show that

$$f(R) := \left| \int_{C_R} \frac{Log(z^2)}{z^2} dz \right| \leqslant 2\pi \left(\frac{\pi + 2\log R}{R} \right).$$

Conclude that $\lim_{R\to\infty} f(R) = 0$.

(5) Let L be a path and \overline{L} the path which is the image of L by the function $z \to \overline{z}$. Let f be a continuous function on L. Prove that the function $z \to \overline{f(\overline{z})}$ is continuous on L and

$$\overline{\int_{L} f(z)dz} = \int_{\overline{L}} \overline{f(\overline{z})}dz.$$

(6) Evaluate

$$\int_{L} \left(e^{z} + \frac{1}{z} \right) dz,$$

where L is the lower half of the circle with radius 1, centre 0, negatively oriented. Also evaluate by finding an antiderivative.

(7) Let |a| < r < |b|, prove that

$$\int_{C_r} \frac{1}{z - a} dz = 2\pi i \quad and \quad \int_{C_r} \frac{dz}{(z - a)(z - b)} = 2\pi i / (a - b).$$

(8) Evaluate

(i)
$$\int_{C_5} \frac{\sin z}{(z+1)^7} dz$$
 (ii) $\int_{C_5} \frac{\cos(\pi z^2)}{(z^2-1)(z-2)(z+3)} dz$ (iii) $\int_{C_5} \frac{e^{2z}}{z(z+1)^4} dz$.

(9) Evaluate the integral

$$\int_{L} \frac{dz}{(z^2 - 1)(z + 3)} dz$$

for all possible contour which does not passes through $z = \pm 1, \pm i, 2, 3$.

(10) Suppose f(z) is analytic and satisfies the relation |f(z)-2|<1 in a region Ω . Show that

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 0$$

for every closed curve γ in Ω .

- (11) Show that $\int_{\gamma} \overline{f(z)} f'(z) dz$ is purely imaginary where γ is any curve in a region Ω and f is holomorphic in Ω .
- (12) Let f be analytic on a region Ω and let C be a circle with interior contained in Ω . For any $a \in \Omega$ not on C show that

$$\int_C \frac{f'(\xi)}{(\xi - a)} d\xi = \int_C \frac{f(\xi)}{(\xi - a)^2} d\xi.$$

- (13) Show that successive derivatives of an analytic function f at a point z_0 can never satisfy the inequality $|f^{(n)}(z_0)| > n^n n!$ for all $n \in \mathbb{N}$.
- (14) Let τ be a complex number which is not real. Suppose that f is an entire function such that f(z+1) = f(z) and $f(z+\tau) = f(z)$. Then show that f is a constant. (This exercise says that a doubly periodic entire function is constant.)
- (15) Let f be an entire function satisfying $|f(z)| \ge 1$ for all $z \in \mathbb{C}$. Show that f is constant.
- (16) The Bernoulli numbers B_n are defined by the series power series

$$\frac{z}{e^z - 1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} z^n.$$

Show that $\frac{z}{e^z-1}+\frac{z}{2}=\frac{z}{2}\coth\frac{z}{2}$. Conclude that $B_1=-\frac{1}{2}$ and $B_{2n+1}=0,\ n\geq 1$. Deduce that

$$z \cot z = \sum_{n=0}^{\infty} (-1)^n \frac{B_{2n}}{(2n)!} z^{2n}.$$