(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 14. Oktober 2004 (14.10.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/087367 A2

(51) Internationale Patentklassifikation7:

B23P

(21) Internationales Aktenzeichen: PCT/EP2

PCT/EP2004/002280

(22) Internationales Anmeldedatum:

5. März 2004 (05.03.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 15 419.1

4. April 2003 (04.04.2003) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): THYSSENKRUPP AUTOMOTIVE AG [DE/DE]; Alleestrasse 165, 44793 Bochum (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): VONDRACEK, Hans [DE/DE]; Am Bollwerk 4, 58339 Brekerfeld (DE). DZIEMBALLA, Hans [DE/DE]; Im Markenfeld 25, 58642 Iserlohn (DE). MANKE, Lutz [DE/DE]; Brucknerstr. 58, 58097 Hagen (DE). BOROWIKOW, Alexander [DE/DE]; Bernauer Weg 5, 16230 Sydower Fliess (DE).
- (74) Anwalt: ADAMS, Steffen; ThyssenKrupp Automotive AG, Recht und Patente, Alleestrasse 165, 44793 Bochum (DE).

- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Erklärung gemäß Regel 4.17:

Erfindererklärung (Regel 4.17 Ziffer iv) nur für US

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: METHOD FOR PRODUCING HELICAL SPRINGS OR STABILISERS
- (54) Bezeichnung: VERFAHREN ZUM HERSTELLEN VON SCHRAUBENFEDERN ODER STABILISATOREN
- (57) Abstract: The invention relates to a method for producing helical springs or stabilisers consisting of steel. According to said method, the parent material is heated to a temperature in excess of the re-crystallisation temperature, the structure is austenitised, held at an equalised temperature and then formed and subsequently quenched to form martensite and tempered. Round steel bars, whose re-crystallisation temperature is adjusted over the bar length in a compensation furnace, constitute the parent material. The round steel bars are subsequently re-modelled by cross-rolling, remaining substantially straight and after the critical deformation degree has been exceeded are subjected to dynamic re-crystallisation processes. The round steel bars are then subjected to a post-heating process above the Ac3 temperature, in order to undergo a complete static re-crystallisation, are wound to form a helical spring or bent to form a stabiliser and are finally quenched from the austenitic state to form martensite and tempered.
- (57) Zusammenfassung: Verfahren zum Herstellen von Schraubenfedern oder Stabilisatoren aus Stahl, wobei das Ausgangsmaterial auf eine Temperatur oberhalb der Rekristallisationstemperatur aufgeheizt, das Gefüge austenitisiert, temperaturausgleichend gehalten, danach verformt und abschließend zu Martensit abgeschreckt und angelassen wird, wobei das Ausgangsmaterial durch Rundstahlstäbe gebildet wird, deren Rekristallisationstemperatur in einem Ausgleichsofen, über die Stablänge gesehen, angeglichen wird, die Rundstahlstäbe danach durch Schrägwalzen, im Wesentlichen gerade bleibend, umgeformt werden, wobei nach Überschreitung des kritischen Umformgrades dynamische Rekristallisationsprozesse ablaufen, darauffolgend die Rundstahlstäbe zur vollständigen statischen Rekristallisation einer Nachwärmung oberhalb der Ac3Temperatur unterzogen, danach zu einer Schraubenfeder gewickelt oder zu einem Stabilisator gebogen und abschließend von Austenit zu Martensit abgeschreckt und angelassen werden.

