Derivation of the Variance-Covariance Matrix of $\widehat{\beta}$, i.e., $\mathrm{Var}(\widehat{\beta})$, in Matrix Form

What do we know?

Population equation: $y = X\beta + u$

Sample equation: $y = X\hat{\beta} + \hat{u}$

Regression assumptions, MLR.1 - MLR.6

OLS Estimator: $\hat{\beta} = (X'X)^{-1}X'y$

 $var - cov \ matrix \ of \ true \ errors = Var(u) = E(uu') = \sigma^2 I_n$

 $u \sim Normal(0, \sigma^2 I_n)$

E(u) = 0 and $E(y) = X\beta$

$$Var(\hat{\beta}) = E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)']$$

1.
$$\hat{\beta} = (X'X)^{-1}X'y$$

2.
$$\hat{\beta} = (X'X)^{-1}X'(X\beta + u)$$

3.
$$\hat{\beta} = (X'X)^{-1}X'X\beta + (X'X)^{-1}X'u$$

4.
$$\hat{\beta} = I\beta + (X'X)^{-1}X'u$$

5.
$$\hat{\beta} = \beta + (X'X)^{-1}X'u$$

6.
$$\hat{\beta} - \beta = (X'X)^{-1}X'u$$

7.
$$(\hat{\beta} - \beta)(\hat{\beta} - \beta)' = [(X'X)^{-1}X'u][(X'X)^{-1}X'u]'$$

8.
$$(\hat{\beta} - \beta)(\hat{\beta} - \beta)' = [(X'X)^{-1}X'u][u'X((X'X)^{-1})']$$

9.
$$(\hat{\beta} - \beta)(\hat{\beta} - \beta)' = [(X'X)^{-1}X'u][u'X((X'X)')^{-1}]$$

10.
$$(\hat{\beta} - \beta)(\hat{\beta} - \beta)' = [(X'X)^{-1}X'u][u'X(X'X)^{-1}]$$

11.
$$E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)'] = E[(X'X)^{-1}X'uu'X(X'X)^{-1}]$$

12.
$$E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)'] = (X'X)^{-1}X'E(uu')X(X'X)^{-1}$$

13.
$$E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)'] = (X'X)^{-1}X'\sigma^2IX(X'X)^{-1}$$

14.
$$E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)'] = \sigma^2(X'X)^{-1}X'X(X'X)^{-1}$$

15.
$$E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)'] = \sigma^2 I(X'X)^{-1}$$

$$16. Var(\hat{\beta}) = E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)'] = \sigma^2 (X'X)^{-1}$$