Теоретические ("малые") домашние задания

Математическая логика, ИТМО, МЗ232-МЗ239, весна 2023 года

Задание №1. Знакомство с исчислением высказываний.

При решении заданий вам может потребоваться теорема о дедукции (будет доказана на второй лекции): $\Gamma, \alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \to \beta$. Например, если было показано существование вывода $A \vdash A$, то тогда теорема гарантирует и существование вывода $\vdash A \to A$.

- 1. Докажите:
 - (a) $\vdash (A \rightarrow A \rightarrow B) \rightarrow (A \rightarrow B)$
 - (b) $\vdash \neg (A \& \neg A)$
 - (c) $\vdash A \& B \rightarrow B \& A$
 - (d) $\vdash A \lor B \to B \lor A$
 - (e) $A \& \neg A \vdash B$
- 2. Докажите:
 - (a) $\vdash A \rightarrow \neg \neg A$
 - (b) $\neg A, B \vdash \neg (A \& B)$
 - (c) $\neg A, \neg B \vdash \neg (A \lor B)$
 - (d) $A, \neg B \vdash \neg (A \rightarrow B)$
 - (e) $\neg A, B \vdash A \rightarrow B$
- 3. Докажите:
 - (a) $\vdash (A \rightarrow B) \rightarrow (B \rightarrow C) \rightarrow (C \rightarrow A)$
 - (b) $\vdash (A \to B) \to (\neg B \to \neg A)$ (правило контрапозиции)
 - (c) $\vdash A \& B \rightarrow \neg(\neg A \lor \neg B)$
 - (d) $\vdash \neg(\neg A \lor \neg B) \to (A \& B)$
 - (e) $\vdash (A \rightarrow B) \rightarrow (\neg A \lor B)$
 - (f) $\vdash A \& B \rightarrow A \lor B$
 - $(g) \vdash ((A \rightarrow B) \rightarrow A) \rightarrow A$ (закон Пирса)
- 4. Следует ли какая-нибудь расстановка скобок из другой: $(A \to B) \to C$ и $A \to (B \to C)$? Предложите вывод в исчислении высказываний или докажите, что его не существует (например, воспользовавшись теоремой о корректности, предложив соответствующую оценку).
- 5. Предложите схемы аксиом, позволяющие добавить следующие новые связки к исчислению.
 - (а) связка «и-не» («штрих шеффера», "|"): $A \mid B := \neg (A \& B)$. Новые схемы аксиом должны давать возможность исключить конъюнкцию и отрицание из исчисления (то есть, при замене $\neg \alpha$ на $\alpha \mid \alpha$ все схемы аксиом для отрицания должны стать теоремами, то же и для конъюнкции).
 - (b) связка «или-не» («стрелка пирса», " \downarrow "): $A \downarrow B := \neg (A \lor B)$. Новые схемы аксиом должны давать возможность исключить дизъюнкцию и отрицание из исчисления.
 - (c) Нуль-местная связка «ложь» (" \bot "). Мы ожидаем вот такую замену: $\neg A := A \to \bot$. Аналогично, аксиомы для отрицания в новом исчислении должны превратиться в теоремы.
- 6. Достаточно ли лжи и «исключённого или» $(A \oplus B \text{ истинно, когда } A \neq B)$ для выражения всех остальных связок?
- 7. Даны высказывания α и β , причём $\vdash \alpha \to \beta$ и $\not\vdash \beta \to \alpha$. Укажите способ построения высказывания γ , такого, что $\vdash \alpha \to \gamma$ и $\vdash \gamma \to \beta$, причём $\not\vdash \gamma \to \alpha$ и $\not\vdash \beta \to \gamma$.
- 8. Покажите, что если $\alpha \vdash \beta$ и $\neg \alpha \vdash \beta$, то $\vdash \beta$.