

Surface Area and volume of A Right Circular cylinder Ex 19.2 Q28 Answer:

Given data is as follows:

Area of cross-section of the pipe = 5 cm^2

Speed of water = 30 cm/sec

We have to find the volume of water that flows through the pipe in 1 minute.

Volume of water that flows through the pipe in one second = $\pi r^2 h$

Here, πr^2 is nothing but the cross section of the pipe and h is 30 cm.

Therefore, we have,

Volume of water that flows through the pipe in one second = 5×30

 $= 150 \text{ cm}^3$

Volume of water that flows through the pipe in one minute = 150×60

 $= 9000 \text{ cm}^3$

We know that $1000 \text{ cm}^3 = 1 \text{ liter}$. Therefore,

Volume of water that flows through the pipe in one minute = 9 liters

Hence, the volume of water that flows through the given pipe in 1 minute is 9 liters.

Surface Area and volume of A Right Circular cylinder Ex 19.2 Q29

Answer:

Given data is as follows:

$$h + r = 37$$
 cm

Total surface area of the cylinder = 1628 cm2

We have to find the volume of the cylinder.

It is given that,

Total surface area = 1628 cm²

That is.

$$2\pi rh + 2\pi r^2 = 1628$$

$$2\pi r(h+r) = 1628$$

But it is already given in the problem that,

$$h + r = 37$$
 cm

Therefore.

$$2\pi r \times 37 = 1628$$

$$2 \times \frac{22}{7} \times r \times 37 = 1628$$

$$r = 7 \text{ cm}$$

Since
$$h+r=37$$
 cm

We have,

$$h + 7 = 37$$
 cm

$$h = 30 \text{ cm}$$

Now that we know both height and radius of the cylinder, we can easily find the volume.

Volume = $\pi r^2 h$

$$Volume = \frac{22}{7} \times 7 \times 7 \times 30$$

Volume = 4320 cm^3

Hence, the volume of the given cylinder is 4620 cm3.

********* END *******