Machine Learning (B20EF0503)

Semester 5 Academic Year 2023-2024

Dept of Computer Science and Engineering

Question bank

Unit -1

- 1. Define Machine learning. Explain the below terms with a suitable example
 - a. Analytics Business Table
 - **b.** Training Dataset
 - c. Testing Dataset
- 2. Explain Overfitting and Underfitting with a suitable example.
- 3. Define Data Quality Issues. Explain in detail about the data quality issues.
- 4. Consider the below dataset. Apply range normalization to the continuous feature 'XYZ' to the new range [0,1].

XYZ 20 33 55 99 135

- 5. Extracting insights from data is the job of data analytics. In this context, define predictive Data Analytics. List any four applications of predictive data analytics and explain about each.
- 6. Illustrate the structure of data quality report for categorical and continuous features with a suitable example.
- 7. With diagram describe the six key phases of the predictive data analytics project lifecycle that are defined by the CRISP-DM.
- 8. Discuss the technique of Normalization in detail and normalize 400, 500, 600, 800, 1200 in the range (0,1) using range normalization and Standard score.
- 9. Outline the different types of data related to the features in the Analytics Base Table.
- 10. List out and describe about the most common data quality issues in detail.
- 11. What Is Predictive Data Analytics? Explain with applications and its tools
- 12. Explain data preparation with its types
- 13. Explain forward Sequential Selection and Backward Sequential Selection with diagram
- 14. With a neat diagram, explain the working of machine learning with a neat diagram.
- 15. Discuss briefly the following with handling strategies:
 - (i) Missing values
 - (ii) Irregular cardinality
 - (iii) Outliers
- 16. Consider the input values [6,10,26,48,24,86,62,94,116, 144, 122,166] generate an equal width binning using 3 bins and equal frequency binning using 3 bins and
- 17. Identify the role of preprocessing in Machine Learning. Explain any three pre-processing steps.
- 18. Calculate Covariance for the given dataset.

Height: 143, 125, 139, 160, 170

Weight: 55, 60, 43, 62,84

19. Differentiate bias and variance with suitable explanation.

Unit-2

1. One of the best known decision tree induction algorithm is Iterative Dichotomizer 3 (ID3) algorithm. Build the Decision Tree using ID3 algorithm for the data set given below:

ID	Stream	Slope	Elevation	Vegetation
1	False	Steep	High	Chapparal
2	True	Moderate	Low	Riparian
3	True	Steep	Medium	Riparian
4	False	Steep	Medium	Chapparal
5	False	Flat	High	Conifer
6	True	Steep	Highest	Conifer
7	True	Steep	High	Chapparal

- 2. Similarity metric measures the similarity between two instances a and b in a dataset. Explain different similarity measures that can replace Euclidean distance.
- 3. Apply ID3 algorithm to construct a decision tree for the below email spam prediction dataset and also make a prediction for new query instance.

Suspicious words	Unknown eSender	Contains Images	Class
true	false	true	Spam
true	true	false	Spam
true	true	false	Spam
false	true	true	ham
false	false	false	ham
false	false	false	ham
False	True	True	?

Query False True ?

4. Explain decision tree with the demonstration of How do we decide which is the best decision tree to use?

- 5. Explain the Shannon's Entropy Model
- 6. Entropy for a type of suit being picked from a pack of (4 different suits) 52 cards. Calculating the entropy of a set of 52 playing cards if we only distinguish between cards based on their suit (heart, club, diamond or spade)
- a) Entropy and Gini index is a measure of randomness/distributions present in the dataset. Apply the following measure for the given dataset.
 - 1. Entropy
 - 2. Gini Index

Height	Weight	Class
9	150	Elephant
10	170	Elephant
6	80	Cow
5	90	Cow
4.5	110	Cow
11	165	Elephant

- 7. Explain Gini index
- 8. One of the best known decision tree induction algorithm is Iterative Dichotomizer 3 (ID3) algorithm. Build the Decision Tree using ID3 algorithm for the data set given below:

Sno	Height	Performance in Class	Class	Playing Cricket
1	5	Above Avearge	X	N
2	5.6	Below Average	X	N
3	4.7	Above Avearge	X	N
4	5.6	Above Avearge	X	Y
5	5.8	Above Avearge	X	N
6	5	Above Avearge	ΧI	Y
7	4.11	Above Avearge	ΧI	Y
8	5.9	Above Avearge	ΧI	Y
9	5.1	Above Avearge	X	N
10	5.6	Above Avearge	ΧI	Y
11	5.9	Below Average	X	Y
12	5.2	Above Avearge	ΧI	N
13	6	Below Average	ΧI	N
14	6.1	Above Avearge	ΧI	Y
15	5.9	Above Avearge	ΧI	Y
16	5.3	Below Average	X	N
17	5.8	Below Average	X	N
18	5.7	Above Avearge	ΧI	Y
19	4.9	Above Avearge	X	N
20	5.9	Below Average	ΧI	Y

- 9. Illustrate handling continuous descriptive features
 - 10. Explain how to Predict the Continuous Targets
 - 11. What is model ensemble? Explain with characteristics and standard approaches
 - 12. Explain the Nearest Neighbouring Algorithm
 - 13. Apply KNN on the dataset of the company which produces tissues for biological science laboratory. Predict the acceptability of the new type of tissue with acid durability being 3 and strength being 7. Consider the case for K=2.

Name	Acid Durabili ty	Streng th	Class
Type 1	7	7	Bad
Type 2	7	4	Bad
Type 3	3	4	Good
Type 4	1	4	Good

- 14. Write K-d tree Algorithm
- 15. Predict Continuous Targets Using K nearest approach
 Need to make prediction of price for the item with age =2 and rating =5 with k=3
 ,considering the target value being continuous
 Take your own data set based on the question
- 16. Explain Cosine Similarity
- 17. Suggest the company whether the new product Prod5, with Attrib1=3 and Attrib2=7 will be accepted or rejected using similarity based learning algorithm by considering 2 nearest neighbors.

Product	Attrib1	Attrib2	Status
Prod1	7	7	Reject
Prod2	7	4	Reject
Prod3	3	4	Good
1Prod4	1	4	Good

18 Apply KNN on the dataset of the company which produces tissues for biological science laboratory. Predict the acceptability of the new type of tissue with durability = 3 and strength = 7. Consider the case for K=3.

Name	Durability	Strength	Class
Type 1	6	6	Bad
Type 2	6	4	Bad
Type 3	3	3	Good
Type 4	2	4	Good

19 Consider the below training dataset and compute distance between the query to all the

dataset distance

	<u> </u>	1	
X	Y	Z	Class
10	40	34	Yes
11	55	39	Yes
60	67	80	No
59	58	99	No

instances of the using Euclidian metrics.

Query 12 46 33
