Al Accelerator Design Automation: From Network to RTL

Team members: Wen-Cong Huang, Zih-Sing Fu

Advisor: Prof. Chia-Hsiang Yang

Technical Highlights

❖ A flexible Al accelerator

An engine for flexible network inference, including highly configurable descriptor, ISA and hardware co-design

❖ An easy-to-use Al accelerator

Support complete inference flow of arbitrary network architecture with provided model descriptor and weight

❖ Technical focus

- ☐ Model compiler from custom model descriptor
- ☐ Software and hardware co-design for AI applications
- ☐ Optimal data scheduling for multi-core processing
- Optimal tensor partition strategy exploration

Design Automation and User-friendly Workflow

Flexible Model Descriptor

- Sequential model descriptor
- Supported operations
 - ☐ 2D convolutional layer
 - Arbitrary input feature shape
 - Flexible activation/bias toggle
 - ☐ Fully-connected layer
 - Max pooling layer
 - □ ReLU activation

model descriptor

- 1 ifdim 1,28,28
 2 conv 1,16,3,1 noact bias
 3 conv 16,16,3,1 noact bias
 4 conv 16,16,3,1 relu bias
 5 maxpool
 6 conv 16,32,3,1 noact nobias
 7 conv 32,32,3,1 noact nobias
 8 conv 32,32,3,1 relu nobias
 9 maxpool
 10 conv 32,64,3,1 noact bias
 11 conv 64,64,3,1 noact bias
 12 conv 64,64,3,1 relu bias
 13 maxpool
 14 flatten
 15 fc 576,10 relu nobias
 - compiled instructions

Memory Scheduling and Optimization

- Support for arbitrary feature size require tensor partitioning
- Memory access and on-chip memory should be minimized
- Data scheduling strategies
 - 1. Baseline (no partition reuse)
 - 2. ICP: Input channel partition
 - 3. FPRW: Feature partition (reload weight)
 - 4. FPRF: Feature partition (reload feature)

ISA and Instruction Generation

- Instruction Set Architecture
 - ☐ 32-bit RISC ISA
 - ☐ 19 instructions
- Instruction generation

Al Accelerator Design

Core Architecture

- System Specifications
 - 4-core architecture for bandwidth improvement
 - Configurable memory options for performance tweaking
- Memory Estimation

Memory size	Estimated area
~25 KB	$175000 \mu m^2$
~18.5 KB	129500 μm^2
~73.7 KB	$515900 \mu m^2$
~128B	$896 \mu m^2$
~120KB	$840000 \mu m^2$
	~25 KB ~18.5 KB ~73.7 KB ~128B

Research Outcomes

- Practical: from network model to RTL in minutes
- **Efficient**: more than 60% less external memory access
- * Reconfigurable: different memory size for different scenarios
- Ongoing tasks: AXI-compatibility, higher external throughput
- 1. Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks," JSSC, Jan. 2017.
- 2. Lee, Jinmook, et al. "UNPU: A 50.6 TOPS/W unified deep neural network accelerator with 1b-to-16b fully-variable weight bit-precision," *ISSCC*, Feb. 2018. 3. Shin, Dongjoo, et al. "14.2 DNPU: An 8.1 TOPS/W reconfigurable CNN-RNN processor for general-purpose deep neural networks," *JSSC*, Feb. 2017.
- 4. Cheng-Hsun Lu et al., "A Fully-Programmable Deep Learning Processor with Adaptable Intelligence"