Introducción a las Bases de Datos Fundamentos de Organización de Datos

Práctica 5

Hashing Estático y Dinámico

- 1. Explique el concepto de función de dispersión. Enumere al menos tres funciones de dispersión y explique brevemente cómo funciona cada una.
- 2. Explique los conceptos de: sinónimo, colisión y registro en saturación.
- 3. Explique brevemente qué es la densidad de empaquetamiento.
- 4. Explique cómo funcionan las siguientes técnicas de resolución de colisiones:
 - Saturación progresiva
 - Saturación progresiva encadenada
 - Saturación progresiva encadenada con área de desborde separada
 - Dispersión doble

Para los siguientes ejercicios debe:

- Indicar las direcciones leídas y escritas en cada operación.
- Justificar cada operación.
- Calcular la densidad de empaquetamiento.

5 -Dado el archivo dispersado a continuación, grafique los estados sucesivos para las siguientes operaciones: +12, +45, +89, +59, +26 $\,$, -45

Técnica de resolución de colisiones: **Saturación progresiva encadenada**.

NOTA: Indicar Lecturas y Escrituras

f(x) = x MOD 11

Dirección	Enlace	Clave
0	-1	
1	-1	78
2	-1	
3	-1	47
4	-1	
5	-1	27
6	-1	
7	-1	51
8	-1	
9	-1	53
10	-1	

6.Dado el archivo dispersado a continuación, grafique los estados sucesivos para las siguientes operaciones: +90, +23, +20, +97, .

Técnica de resolución de colisiones: Saturación progresiva.

$$f(x) = x MOD 11$$

Dirección	Clave	Clave
0	55	
1	78	34
2	57	
3		

4	81	
5	27	
6	50	
7	95	
8		
9	31	
10	32	21

7. Dado el archivo dispersado a continuación, grafique los estados sucesivos para las siguientes operaciones: +20, +55, +36, +45, +50, -39, -29.

Técnica de resolución de colisiones: Saturación progresiva.

$$f(x) = x MOD 19$$

Dirección	Clave
0	19
1	39
2	59
3	
4	23
5	
6	
7	64
8	
9	47

10	29
11	
12	69
13	
14	
15	34
16	
17	
18	56

8.Dado el archivo dispersado a continuación, grafique los estados sucesivos para las siguientes operaciones: +34, +78, +56, +59, +26.

Técnica de resolución de colisiones: Saturación progresiva encadenada.

$$f(x) = x MOD 11$$

Dirección	Enlace	Clave
0	-1	

1	-1	23
2	-1	
3	-1	80
4	-1	
5	-1	38
6	-1	
7	-1	95
8	-1	
9	-1	42
10	-1	

6. Dado el archivo dispersado a continuación, grafique los estados sucesivos para las siguientes operaciones: +81, +69, +27, +51, +45, -56, -9.

Técnica de resolución de colisiones: Saturación progresiva encadenada.

$$f(x) = x MOD 11$$

Dirección	Enlace	Clave
0	-1	
1	3	56
2	-1	24
3	-1	78
4	-1	
5	-1	60
6	-1	
7	-1	
8	-1	74
9	-1	
10	-1	

7. Dado el archivo dispersado a continuación, grafique los estados sucesivos para las siguientes operaciones: +23, +56, +36.

Técnica de resolución de colisiones: Saturación progresiva encadenada.

$$f(x) = x MOD 11$$

Dirección	Clave	Enlace
0	22	-1

1	34	-1
2	46	-1
3		-1
4	59	-1
5		-1
6		-1
7	40	-1
8		-1
9		-1
10		-1

8. Dado el archivo dispersado a continuación, grafique los estados sucesivos para las siguientes operaciones: +23, +48, +47, +67, +59.

Técnica de resolución de colisiones: Saturación progresiva encadenada con área de desborde por separado.

$$f(x) = x MOD 11$$

Dirección	Enlace	Clave
0	-1	44
1	-1	56
2	-1	
3	-1	
4	-1	37
5	-1	
6	-1	
7	-1	29
8	-1	
9	-1	31
10	-1	
Dirección	Enlace	Clave
0	-1	
1	-1	
2	-1	
3	-1	

9. Dado el archivo dispersado a continuación, grafique los estados sucesivos para las

siguientes operaciones: +47, +63, +23, +50, +67, -23, -45.

Técnica de resolución de colisiones: Dispersión Doble

$$f_1(x) = x MOD 11$$

$$f_2(x) = x MOD 7 + 1$$

Dirección	Clave
0	
1	45
2	
3	58
4	26
5	
6	61
7	
8	30
9	
10	

10. Se debe crear y cargar un archivo directo con capacidad para 2 registros con dispersión doble para organizar registros en saturación, con los 9 registros cuyas claves se listan a continuación y de manera que su densidad de empaquetamiento resulte del 75%: +347, +498, +729, +222, +113, +885, +431, +593, +709.

Usar como segunda función de dispersión el módulo 5 más 1.

Dispersión extensible

11. Realice el proceso de dispersión mediante el método de hashing extensible, sabiendo que cada registro tiene capacidad para dos claves. El número natural indica el orden de llegada de las mismas.

1	UNLP	00001011	2	UNSA	01010010
3	UNER	10101110	4	UNS	00011011
5	UNSL	01100100	6	UNLU	11000100
7	UNRN	11100101	8	UNMDP	00111001

12. Realice el proceso de dispersión mediante el método de hashing extensible, sabiendo que cada registro tiene capacidad para dos claves. El número natural indica el orden de llegada de las mismas.

1	Buenos Aires	1001	2	San Juan	0100
3	Entre Ríos	1110	4	Corrientes	0010
5	San Luis	0101	6	Tucumán	0111
7	Rio Negro	0011	8	Jujuy	1111

13. Realice el proceso de dispersión mediante el método de hashing extensible, sabiendo que cada registro tiene capacidad para dos claves. El número natural indica el orden de llegada de las mismas.

1	Nano	1010	2	Mega	01010001
3	Micro	10101100	4	Giga	00011110
5	Mili	01100011	6	Tera	11000110
7	Kilo	11100101	8	Peta	00111001

14. Realice el proceso de dispersión mediante el método de hashing extensible, sabiendo que cada registro tiene capacidad para dos claves. El número natural indica el orden de llegada de las mismas.

1	Alfa	00001001	2	Beta	01110100
3	Gamma	11100010	4	Delta	01011111
5	Epsilon	00110000	6	Rho	01101011
7	Pi	10100110	8	Tau	01101101
9	Psi	01110001	10	Omega	00110111

15. Realice el proceso de dispersión mediante el método de hashing extensible, sabiendo que cada registro tiene capacidad para dos claves. El número natural indica el orden de llegada de las mismas.

1	Alfa	0000001	2	Beta	01100011
3	Gamma	11110101	4	Delta	01010110
5	Epsilon	00101000	6	Rho	00110100
7	Pi	10110010	8	Tau	01111110
9	Psi	01111100	10	Omega	00110000