

$Homework\ 1-{\rm Randomized\ matrix\ computations,\ Fall'24}$

Prof. D. Kressner H. Lam

Sciper:	Name:

Please read the following instructions carefully

- $\bullet\,$ This homework consists of 3 questions, and the submission deadline is October 18 at 23h59.
- You can either typeset or scan your handwritten solution. Please also include this page with your signature.
- Submit your homework by email to hysan.lam@epfl.ch.
- The submitted homework must be your own personal work and must not be copied from elsewhere.

Your signature:

$1 \triangleright \text{Power method}$

The power method is a simple algorithm used to approximate the largest (in magnitude) eigenvalue of a matrix:

Algorithm 1 Power method

- 1: **Input:** Matrix $A \in \mathbb{R}^{n \times n}$.
- 2: **Output:** Approximate eigenpair $(\mu^{(k)}, x^{(k)})$ of matrix A.
- 3: Choose starting vector $x^{(0)} \in \mathbb{R}^n$.
- 4: k = 0.
- 5: repeat
- 6: Set k := k + 1.
- 7:
- Compute $y^{(k)} := Ax^{(k-1)}$. Normalize $x^{(k)} := y^{(k)} / \|y^{(k)}\|_2$. $\mu_k := (x^{(k)})^\top Ax^{(k)}$.
- 10: until convergence is detected
 - a) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive semi-definite matrix with eigenvalues $\lambda_1 \geq 1$ $\lambda_2 \geq \cdots \geq \lambda_n \geq 0$ and an associate orthonormal basis of eigenvectors u_1, \ldots, u_n . Suppose that k steps of the power method with starting vector $x^{(0)} \in \mathbb{R}^n$, $||x^{(0)}||_2 = 1$, are carried out, leading to the approximation μ_k of λ_1 . Prove that

$$\lambda_1 \ge \mu_k \ge \lambda_1 \langle x^{(0)}, u_1 \rangle^{1/k}$$
.

Hint: Express μ_k in terms of $x^{(0)}$ and apply Jensen's inequality.

b) Suppose n = 14400 and we use the random starting vector $x^{(0)} = z/\|z\|_2$ where $z \sim N(0, I_n)$. Using a result from the lecture, how many iterations are required to guarantee that

$$\lambda_1 \ge \mu_k \ge \frac{1}{2}\lambda_1$$

holds with probability at least 99.99%?

2 ► Outer product of Gaussian random vectors

a) Let x be a chi-square random variable with k degrees of freedom, i.e., $x = \sum_{i=1}^k z_i^2$ where z_i are independent standard Gaussian random variables. Using the Chernoff bound, prove that for $\gamma > 1$ and t/k < 1/2, it holds that

$$\mathbb{P}\{x > k\gamma\} \le (1 - 2t/k)^{-k/2} e^{-t\gamma}.$$

Furthermore, prove that

$$\mathbb{P}\{x>k\gamma\}\leq (\gamma e^{1-\gamma})^{\frac{k}{2}}.$$

b) Let $x \sim N(0, I_n)$ and $y \sim N(0, I_n)$ be independent standard Gaussian random vectors. Using part a), prove that the Frobenius norm of the outer product of x and y is not too large: For $\gamma > 1$, it holds that

$$\mathbb{P}\{\|xy^{\top}\|_{F} > n\gamma\} \le 2\exp(-n(\gamma - \ln \gamma - 1)/2).$$

Bonus question: Try to improve the bound in (b).

3 ► Method of characteristic function

An important tool in probability theory is the characteristic function. For a random variable z, the characteristic function is defined as

$$\varphi_z(t) := \mathbb{E}[\exp(itz)], \quad i := \sqrt{-1}.$$

The characteristic function characterizes the probability distribution. A way to see this property is through the Lévy's theorem (you can use it without proof):

Theorem 1 (Lévy) For a random variable z, let $\varphi_z(t)$ denote its characteristic function and F_z denote its cumulative distribution function. Assume that $\varphi_z(t)$ and the density of z are integrable, then for h > 0, we have

$$F(x+h) - F(x-h) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin(ht)}{t} e^{-ixt} \varphi_z(t) dt.$$

Using this result, the following problems establish relations between the bilinear random form $x^{\top}Ay$ and the Frobenius norm of a general (square) matrix A.

a) Suppose that x_1, \ldots, x_n are independent real random variables (over the same probability space). Given (fixed) real numbers $\alpha_1, \ldots, \alpha_n$, prove that

$$\varphi_{(\alpha_1 x_1 + \dots + \alpha_n x_n)}(t) = \prod_{j=1}^n \varphi_{x_j}(a_j t_j).$$

b) Let $A \in \mathbb{R}^{n \times n}$ and consider independent random Gaussian vectors $x \sim N(0, I_n)$ and $y \sim N(0, I_n)$. Show that

 $\mathbb{E}[(x^{\top} A y)^2] = ||A||_F^2.$

c) Let $A \in \mathbb{R}^{n \times n}$ and consider independent random Gaussian vectors $x \sim N(0, I_n)$ and $y \sim N(0, I_n)$. Show that

$$\mathbb{P}\{\|A\|_F > \gamma \cdot x^{\top} A y\} = \Pr\left\{ (x^{\top} A y)^2 < \frac{\|A\|_F^2}{\gamma^2} \right\} \le \frac{2}{\pi} \int_0^{\infty} \frac{|\sin(t/\gamma)|}{t} \frac{1}{\sqrt{1+t^2}} dt$$

holds for $\gamma > 1$. Furthermore, using the bound

$$|\sin(t)| \le \begin{cases} t \text{ for } t \in [0,1], \\ 1 \text{ elsewhere,} \end{cases}$$

conclude that

$$\mathbb{P}\{\|A\|_F > \gamma \cdot x^\top A y\} \le \frac{2}{\pi} \gamma^{-1} (2 + \ln(1 + 2\gamma)). \tag{1}$$

Hint: The characteristic function of the product of two independent standard Gaussian random variables is $1/\sqrt{1+t^2}$.

Bonus: Explore the tightness of the bound (1) numerically for different A (with small and large stable ranks).