

1	CGCGGTGAAC	AGCACGAGGG	GGAGCGCTTG	GCACGCGGAG	CCAGAGCCGG
51	AGCTGCAGCC	GCAGCGGGAG	CCGGGGGAGC	TCAGGGGCCG	CAGGAGCCGG
101	GCCGGAGTGA	GCGCACCTCG	CGGGGCCCTC	GGGGCAGGTG	GGTGAGCGCC
151	ACCCGGAGTC	CCGCGCGCAA	CTTTCAGGGC	GCACTCGGCG	GGGCGGCTGC
201	GCGGCTGCCG	GGACTCGGCG	CGGGACTGCA	TGGAGGCCAA	GGAGAAGCAG
251	CATCTGTTGG	ACGCCAGGCC	GGCAATCCGG	TCATACACGG	GATCTCTGTG
301	GCAGGAAGGG	GCTGGCTGGA	TTCCTCTGCC	CCGACCTGGC	CTGGACTTGC
351	AGGCCATTGA	GCTGGCTGCC	CAGAGCAACC	ATCACTGCCA	TGCTCAGAAG
401	GGTCCTGACA	GTCACTGTGA	CCCCAAGAAG	GGGAAGGCCC	AGCGCCAGCT
451	GTATGTAGCC	TCTGCCATCT	GCCTGTTGTT	CATGATCGGA	GAAGTCGTTG
501	GTGGGTACCT	GGCACACAGC	TTGGCTGTCA	TGACTGACGC	AGCACACCTG
551	CTCACTGACT	TTGCCAGCAT	GCTCATCAGC	CTCTTCTCCC	TCTGGATGTC
601	CTCCCGGCCA	GCCACCAAGA	CCATGAACTT	TGGCTGGCAG	AGAGCTGAGA
651	TCTTGGGAGC	CCTGGTCTCT	GTACTGTCCA	TCTGGGTCGT	GACGGGGGTA
701	CTGGTGTACC	TGGCTGTGGA	GCGGCTGATC	TCTGGGGACT	ATGAAATTGA
751	CGGGGGGACC	ATGCTGATCA	CGTCGGGCTG	CGCTGTGGCT	GTGAACATCA
801	TAATGGGGTT	GACCCTTCAC	CAGTCTGGCC	ATGGGCACAG	CCACGGCACC
851	ACCAACCAGC	AGGAGGAGAA	CCCCAGCGTC	CGAGCTGCCT	TCATCCATGT
901	GATCGGCGAC	TTTATGCAGA	GCATGGGTGT	CCTAGTGGCA	GCCTATATTT
951	TATACTTCAA	GCCAGAATAC	AAGTATGTAG	ACCCCATCTG	CACCTTCGTC
1001	TTCTCCATCC	TGGTCCTGGG	GACAACCTTG	ACCATCCTGA	GAGATGTGAT
1051	CCTGGTGTTG	ATGGAAGGGA	CCCCCAAGGG	CGTTGACTTC	ACAGCTGTTC
1101	GTGATCTGCT	GCTGTCGGTG	GAGGGGGTAG	AAGCCCTGCA	CAGCCTGCAT
1151	ATCTGGGCAC	TGACGGTGGC	CCAGCCTGTT	CTGTCTGTCC	ACATCGCCAT
1201	TGCTCAGAAT	ACAGACGCCC	AGGCTGTGCT	GAAGACAGCC	AGCAGCCGCC
1251	TCCAAGGGAA	GTTCCACTTC	CACACCGTGA	CCATCCAGAT	CGAGGACTAC
1301	TCGGAGGACA	TGAAGGACTG	TCAGGCATGC	CAGGGCCCCT	CAGACTGACT
1351	GCTCAGCCAG	GCACCAACTG	GGGCATGAAC	AGGACCTGCA	GGTGGCTGGA
1401	CTGAGTGTCC	CCCAGGCCCA	GCCAGGACTT	TGCCTACCCC	AGCTGTGTTA
1451	TAAACCAGGT	CCCCCTCCTG	ACCTCTGCCC	CACTCCAGGA	ATGGAGCTCT
1501	TCCCAGCCTC	CCATCTGACT	ACAGCCAGGG	TGGGGACTCA	GCGGGTATAA
1551	AGCTAGTGTG	ACCCTGAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA

FEATURES:

1601 AAAAAAAAA AAATGTT

ij.

Start: 230 Stop: 1346

HOMOLOGOUS PROTEINS: Top BLAST Hits: Score E 583 e-166 gi|6981714|ref|NP 037022.1| zink transporter 2 >gi|8134839|sp|Q... gi|8134844|sp|P97441|ZNT3_MOUSE ZINC TRANSPORTER 3 (ZNT-3) >gi|... 390 e-107 gi|4508043|ref|NP_003450.1| zinc transporter 3 >gi|8134847|sp|Q... 379 e-104 349 gi|6755552|ref|NP_035903.1| solute carrier family 30 (zinc tran... 327 1e-88 gi|7507918|pir||T24963 hypothetical protein T18D3.3 - Caenorhab... 310 1e-83 qi|7297930|gb|AAF53175.1| (AE003635) CG17215 gene product [Dros... gi|7019533|ref|NP 037441.1| solute carrier family 30 (zinc tran... 279 4e-74 gi|7106411|ref|NP_035904.1| solute carrier family 30 (zinc tran... 275 7e-73 274 9e-73 gi|7509701|pir||T26757 hypothetical protein Y39E4A.2b - Caenorh... gi|7509700|pir||T26756 hypothetical protein Y39E4A.2a - Caenorh... 274 1e-72 gi|8134837|sp|055174|ZNT4_RAT ZINC TRANSPORTER 4 (ZNT-4) (DRI 2... 273 3e-72 gi|7630076|emb|CAB88298.1| (AL353032) zinc transporter-like pro... 246 2e-64 qi|7485763|pir||T02681 hypothetical protein F19D11.8 - Arabidop... 238 7e-62 EST: Score Ε gi|5661927|gb|AI925963.1|AI925963 wh12g11.x1 NCI CGAP_Kid11 Hom... 143 1e-31 gi|5434480|emb|AL046404.1|AL046404 DKFZp434N107_r1 434 (synonym... EXPRESSION INFORMATION FOR MODULATORY USE: library source: Expression information from BLAST EST hits: gi|5661927|gb|AI925963.1 Human kidney ų. gi|5434480|emb|AL046404.1 Human testis 4]] Expression information from PCR-based tissue screening panels 20 = Human Kidney Human Heart Human Placenta 21 2 Human Small intestine Human Liver ... las k ų)

1

```
1 MEAKEKQHLL DARPAIRSYT GSLWQEGAGW IPLPRPGLDL QAIELAAQSN
51 HHCHAQKGPD SHCDPKKGKA QRQLYVASAI CLLFMIGEVV GGYLAHSLAV
101 MTDAAHLLTD FASMLISLFS LWMSSRPATK TMNFGWQRAE ILGALVSVLS
151 IWVVTGVLVY LAVERLISGD YEIDGGTMLI TSGCAVAVNI IMGLTLHQSG
201 HGHSHGTTNQ QEENPSVRAA FIHVIGDFMQ SMGVLVAAYI LYFKPEYKYV
251 DPICTFVFSI LVLGTTLTIL RDVILVLMEG TPKGVDFTAV RDLLLSVEGV
301 EALHSLHIWA LTVAQPVLSV HIAIAQNTDA QAVLKTASSR LQGKFHFHTV
351 TIQIEDYSED MKDCQACQGP SD
```

FEATURES:

Functional domains and key regions:

<u>InterPro</u>	Results of FPrintScan against PRINTS	<u>HMMPfam</u>	 Results of ProfileScan against PROSITE profiles
IPR002524 Cation efflux family		PF01545 [127-358]	

Membrane spanning structure and domains:

Helix	Begin	End	Score Certainty
1	74	94	1.565 Certain
2	106	126	1.435 Certain
3	141	161	2.047 Certain
4	176	196	1.693 Certain
5	224	244	1.165 Certain
6	250	270	1.954 Certain
7	305	325	1.184 Certain


```
9451 CAGCTGTGCC AACACAAAA ACAACTTTGG CACAGGTGGT GGGCAGGGGG
        9501 TAGAGAGATT TCAGCTTGGG TTCTGCACTA ACAGCCTCCA AGCCCCCTGG
              CACTTCTGTT GCCCTGAGAG TGTCCCAGGG GATTCAGAGT CTCCAGAAAG
             ATATGGCTGG GCCAACTCTG TTGCCTACCT GGCCTGACCC AGTCGGAGCC
              TGACATGGTG GAGGGAAAGG GAGACAAGTG GGGCTGCACT CGGTCCAGAG
              GCCAGCTAGG AGGGAAACCG CAGCTTCCTG GGGCTTGTGT GTGAAGATTC
              CTGACTTAGG GGTGGCTTTT GTTTACAAGA TGCAAGAGGG GAAACCTGTC
        9801
              CCCGACTCAT CGAGACAACA TGCCCAGTTA TCAGGGAGTC CTGTGTCACA
        9851
              AGGTCTGTCT CTGCCATTGT AAGCAAGTGC CTTGGGCGAG CTGGCCTCTG
        9901
              CCCCACAGTC TCATCTGTAC ACCGACAGGG TTGATGCCTC CCTCACAGGG
              TTGAGAACAA GAGCCAGTTG GCCAAGTACC TGTGGTTGTT GAAGATTGGT
        9951
              TACTTTTACC ATCCTGGGGA CAGGGAACTC TGTGGCCCGA GGCTGCCTCA
       10001
       10051 CTGAGGAGTC AGGTGGGCTT CCCAGCCTCC CCAGGGGCAG TGCTGAGTTT
       10101
              GTCTTGACTG TTCTGGCCCA AGGTGGGAGG AGGTGGGTTT GGTCACTTGC
              CTCCCACTTT AAATCTCTGT CTTTCCATCT GTGAAATGAC CTCTTTGTGC
       10201 CTTCCCAGCA CTGTCATCCT GATCGCCTGT GTTCTAGGTA GGTGGGTCCT
       10251 TCAGCCCCTC CAGGTCTGTG AAAAGTCTGT GGAAAGCACT GGCCTGGAGA
       10301 GGGGTGGGG GTTGCTGGTG GGTGCTCCAT TCCACCACAA TCTCAGGGGA
       10351 CTCAACCTCC CCTACCCAAC TACCCCACCC CCACCCAAGC CATGGCAGGC
       10401 CCCAGGAACT TGATCCTGGG CTTTGCCGTA TGCCAAGTCC TTACACCCCT
       10451
             CTCAAGAGAC AGTCATTGGC TGGGCACGGT GGCTCATGCC TGCAATCCCA
       10501
              GCACCTTGGG AGGCTGAGGC AGGCAGATGA CTTGAGGCCA GGAGTTCGAG
       10551
             ACCAGCCTGG CCAATATGGC GAAACCTCAT TTCTACTAAA AATACAAAAA
       10601 CTAACCAGGC GTGGTGGCTT GTGCCTGTAA TCCCAGCTAC TCGGGAGGCT
       10651 GAGGCAGGA AATCGCTTGA ACCGGGGAGG CAGAGGTTGC AGTGAGCTGA
       10701 GATCACACCA CTGCACTCCA GCCTGGGCGA CAGAGCGAGA CTCCAGCTTA
ų)
       10751 AAAAAAAAA AAAAAAAAA AAAAGGAGAC CATCACTGCT GTCCTGCATT
10801 CTTACAGATG AAAAAACAGG CTCAGAGGTT GAATCGTTTT CCTGAAGTCA
       10851 GACAGCCAGT GCAGGCAGGT CTGGGATTTC TGCCTCATTT CGGTAGACCT
41)
       10901 TCCTCTACAG CAGGGTCTGG GGGCCTGTCG GTCTGCGCTG CCTGTTGGTA
1===
       10951 CAATACAAAC CCCTGGGACC AGCAGTGCCC GGCCCATGGG TGAGGACATG
111
       11001 CCAAGGCAGT TCAGTGTCCT GGGTGTCACA GCTGTGATTG GAAAGGTGCC
1 2 h
       11051 TCTTTCACCT GGCTGGGCCT GGCATCCAGC GCCCTCCCCA CCCTGGGAAG
ı, î î
       11101 G
...
    FEATURES:
    Start:
                 2284
    Exon:
                 2284-2333
                 2334-2962
d)
    Intron:
                2963-3183
    Exon:
    Intron:
                3184-3735
    Exon:
                3736-3882
                3883-4629
    Intron:
                 4630-4783
    Intron:
                 4784-5472
                 5473-5632
    Exon:
                 5633-6375
    Intron:
    Exon:
                 6376-6481
    Intron:
                 6482-8088
                 8089-8223
    Exon:
    Intron:
                 8224-8694
                 8695-8840
    Exon:
                 8838
    Stop:
```

12

Bac Accession #: AF153980.1

Human chromosome #: 1

ALLELIC VARIANTS (SNPs):

Position	Major	Minor	Context
406	t	С	gccatctgtgcaatgtgcaggtgccagttgcatgtgccatgcgtgttggc[t/c]gtgagcgtgtgctgttttcgtgtatgtgccatgcacgtatgtgctgcgtg
852	t	С	attcgtgtgcaccgtacacgtgtgccatttgcatgtatgctgtgcacgtg[t/c]ggcatgcatgtgtgtgccgtttgcatgccatgcatgtgttccttgcgtgtgc
897	g	а	acgtgcggcatgcatgtgtgccgtttgcatgccatgcatg
1,433	С	t	cgcaggagtggcccagacggggtcagcagtgtgagtacagctggccatg[c/t]ggttcctacagcttccaggcgtcagactctggcagaagggctgagaccct
5,845	t	С	ggacagagcccaggtggggtggggggtccagcaccacggccagcac[t/c]gaccaccaggaccccggagccagcaccatggacagaaaactgcccaccag
7,028	g	а	cctgtcaattccggggggacggcagccagctcccggacagggggtccccc[g/a]ggtggccccccaccactgtataggccttggtcgtggggtgggggggg

POSITION	Allele 1	Allele 2	
406	t	С	Intron
852	t	С	Intron
897	g	а	Intron
1,433	С	t	Intron
5,845	t	С	Intron
7,028	g	а	Intron