

Análisis Matemático Conexidad - Parte (2)

Manuela Bastidas Olivares

Universidad Nacional de Colombia

26 de marzo de 2024

Topología en \mathbb{R}^n - conexidad (continuación).

Teorema (las funciones continuas mandan conexos en conexos).

Sea $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$ una función continua y A es un subconjunto conexo de \mathbb{R}^n , entonces f(A) es un subconjunto conexo de \mathbb{R}^m .

Demostración:

Supongamos por reducción al absurdo que f(A) es un subconjunto disconexo de \mathbb{R}^n , entonces existen abiertos U y V en \mathbb{R}^m tales que

$$\begin{cases} f(A) \cap U \neq \emptyset \text{ y } f(A) \cap V \neq \emptyset, \\ f(A) \subseteq U \cup V, \\ U \cap V = \emptyset. \end{cases}$$

Como f es continua, se tiene que $f^{-1}(U)$ y $f^{-1}(V)$ son conjuntos abiertos en A, y por tanto existen abiertos L y M en \mathbb{R}^n tales que $f^{-1}(U) = L \cap A$ y $f^{-1}(V) = M \cap A$. Si $a,b \in A$ satisfacen que $f(a) \in U$ y $f(b) \in V$ (esto es posible ya que $f(A) \cap U \neq \emptyset$ y $f(A) \cap V \neq \emptyset$), entonces

$$\begin{cases} a \in f^{-1}(U) = L \cap A \ y \ b \in f^{-1}(V) = M \cap A, \\ A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V) = (A \cap L) \cup (A \cap M) \subseteq L \cup M, \\ \emptyset = f^{-1}(\emptyset) = f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V) = A \cap L \cap M. \end{cases}$$

De lo anterior, tenemos que A satisface las siguientes condiciones

$$\begin{cases} A \cap L \neq \emptyset \text{ y } A \cap M \neq \emptyset, \\ A \cap L \cap M = \emptyset, \\ A \subseteq L \cup M \end{cases}$$

de donde, por (problema 3 - clase 12) tenemos que A debe ser un conjunto disconexo, lo cual va en contra de nuestra hipótesis. Así, es necesario que f(A) sea un subconjunto conexo de \mathbb{R}^m .

Corolario (teorema del valor intermedio).

Sea $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$ una función continua y sean $a, b \in A$ tales que f(a) < r < f(b). Si A es un subconjunto conexo de \mathbb{R}^n , entonces existe $x_0 \in A$ tal que $f(x_0) = r$.

Demostración:

Por el teorema previo tenemos que f(A) es un subconjunto conexo de números reales y además por un teorema anterior tenemos que los únicos subconjuntos conexos de $\mathbb R$ son los intervalos de números reales. Así, tenemos que f(A) es un intervalo de números reales el cual satisface que $r \in [f(a), f(b)] \subseteq f(A)$, lo cual implica que existe $x_0 \in A$ tal que $f(x_0) = r$.

Problemas.

- (1) Sea $A \subseteq \mathbb{R}^n$. Demostrar que A es un subconjunto conexo de \mathbb{R}^n si y sólo sí no existe una función continua $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$ tal que $f(A) = \{f(a) \in \mathbb{R} : a \in A\} = \{0,1\}$.
- (2) Sea $f:[0,1]\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ una función continua la cual satisface que f([0,1])=[0,1]. Demostrar que existe $x\in[0,1]$ tal que f(x)=x.

Ayuda:

Consideremos la función $g:[0,1]\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ definida como

$$g(x) = x - f(x)$$

para cada $x \in [0,1]$. Entonces es fácil notar que

$$\begin{cases} g(0) = 0 - f(0) = -f(0) \le 0, \\ g(1) = 1 - f(1) \ge 0. \end{cases}$$

Por otro lado, tenemos que

- * Si g(0) = 0, entonces f(0) = 0.
- * Si g(1) = 0, entonces f(1) = 1.

- * Si $g(0) \neq 0$ y $g(1) \neq 0$, entonces g(0) < 0 < g(1) lo cual implica por el teorema del valor intermedio que existe $x_0 \in [0,1]$ tal que $g(x_0) = 0$, pero esto es equivalente a tener que $f(x_0) = x_0$.
- De esta manera, el anterior análisis muestra que existe $x \in [0,1]$ tal que f(x) = x.
- (3) Sea $A \subseteq \mathbb{R}^n$ un conjunto arco conexo y sea $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$ una función continua. Demostrar que f(A) es un conjunto arco conexo en \mathbb{R}^n .

Ayuda:

Sean $x,y \in f(A)$, entonces existen $a,b \in A$ tales que f(a) = x y f(b) = y. Como A es arco conexo, existe una función continua $\alpha: [0,1] \subseteq \mathbb{R} \longrightarrow \mathbb{R}^n$ tal que

$$\begin{cases} \alpha([0,1]) = \{\alpha(t) \in \mathbb{R}^n : t \in [0,1]\} \subseteq A, \\ \alpha(0) = a \text{ y } \alpha(1) = b. \end{cases}$$

Definimos $r = f \circ \alpha$, entonces es fácil notar que

$$\begin{cases} r([0,1]) = (f \circ \alpha)([0,1]) = f(\alpha([0,1])) \subseteq f(A), \\ \\ r(0) = (f \circ \alpha)(0) = f(\alpha(0)) = f(a) = x \ y \ r(1) = (f \circ \alpha)(1) = f(\alpha(1)) = f(b) = y. \end{cases}$$

De esta manera, tenemos que f(A) es un conjunto arco conexo en \mathbb{R}^n .

◆ロト ◆御ト ◆注ト ◆注ト 注 り

(4) Sean $A ext{ y } B$ subconjuntos cerrados de \mathbb{R}^n . Si $f: A \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$ y $g: B \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$ son funciones continuas en $A ext{ y } B$ respectivamente las cuales satisfacen que f(x) = g(x) para cada $x \in A \cap B$. Demostrar que la función $h: (A \cup B) \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$ definida como

$$h(x) = \begin{cases} f(x) & \text{si } x \in A, \\ g(x) & \text{si } x \in B \end{cases}$$

es una función continua en A∪B.

Ayuda:

Primero es sencillo notar que h está bien definida (es decir que en efecto h es una función). Por otro lado, para probar que h es continua en $A \cup B$ es suficiente probar que para cada conjunto cerrado D en \mathbb{R}^m se tiene que $h^{-1}(D)$ es un conjunto cerrado en \mathbb{R}^n por (problema 4 - clase 7). De esta manera, si D es un subconjunto cerrado de \mathbb{R}^m , entonces

(a)
$$h^{-1}(D) \cap A = f^{-1}(D)$$
.

(b)
$$h^{-1}(D) \cap B = g^{-1}(D)$$

(c)
$$h^{-1}(D) = [h^{-1}(D)] \cap [A \cup B] = [h^{-1}(D) \cap A] \cup [h^{-1}(D) \cap B] = f^{-1}(D) \cup g^{-1}(D)$$
.

De lo anterior se tiene que $h^{-1}(D) = f^{-1}(D) \cup g^{-1}(D)$ para todo conjunto cerrado D en \mathbb{R}^m , además como f y g son continuas, se tiene que $f^{-1}(D)$ y $g^{-1}(D)$ son conjuntos cerrados en \mathbb{R}^n y por tanto $h^{-1}(D) = f^{-1}(D) \cup g^{-1}(D)$ es cerrado en \mathbb{R}^n (la unión finita de conjuntos cerrados es un conjunto cerrado).

Definición (camino en un subconjunto de \mathbb{R}^n): Sea $A \subseteq \mathbb{R}^n$ y $a,b \in A$. Entonces un camino en A de a hasta b es una función continua $\alpha:[0,1]\subseteq\mathbb{R}\longrightarrow\mathbb{R}^n$ tal que $\alpha(0)=a,\ \alpha(1)=b$ y $\alpha([0,1])\subseteq A$.

(5) Sean $A \subseteq \mathbb{R}^n$ y $\alpha : [0,1] \subseteq \mathbb{R} \longrightarrow \mathbb{R}^n$ es un camino en A con $\alpha(0) = a$ y $\alpha(1) = b$. Demostrar que la función $\beta : [0,1] \subseteq \mathbb{R} \longrightarrow \mathbb{R}^n$ definida como

$$\beta(t) = \alpha(1-t)$$

con $t \in [0,1]$, es un camino en A desde b hasta a.

(6) Sean $A \subseteq \mathbb{R}^n$ y $\alpha, \beta : [0,1] \subseteq \mathbb{R} \longrightarrow \mathbb{R}^n$ son caminos en A con $\alpha(1) = \beta(0)$. Demostrar que la función $(\alpha * \beta) : [0,1] \subseteq \mathbb{R} \longrightarrow \mathbb{R}^n$ definida como

$$(\alpha*\beta)(t) = \begin{cases} \alpha(2t) & \text{si } 0 \le t \le \frac{1}{2}, \\ \\ \beta(2t-1) & \text{si } \frac{1}{2} \le t \le 1 \end{cases}$$

es un camino en A desde $\alpha(0)$ hasta $\beta(1)$.

Ayuda:

Notemos inicialmente que

* $\alpha * \beta$ está bien definida en $t = \frac{1}{2}$, ya que

$$a\left(2\cdot\left(\frac{1}{2}\right)\right) = a(1) = \beta(0)$$
 y $\beta\left(2\cdot\left(\frac{1}{2}\right) - 1\right) = \beta(0) = a(1)$.

 $\star \alpha * \beta$ está bien definida en [0,1], ya que

$$\begin{cases} \text{si } 0 \leq t \leq \frac{1}{2} \ \Rightarrow \ 0 \leq 2t \leq 1 \ \Rightarrow \ \alpha(2t) \text{ está bien definida}, \\ \\ \text{si } \frac{1}{2} \leq t \leq 1 \ \Rightarrow \ 0 \leq 2t-1 \leq 1 \ \Rightarrow \ \beta(2t-1) \text{ está bien definida} \end{cases}$$

y el único problema de $\alpha*\beta$ es aparentemente $t=\frac{1}{2}$, pero ya vimos previamente que en este punto $\alpha*\beta$ está bien definida.

- * $\alpha * \beta$ es continua en [0,1].
- Para verificar esto, notemos que las funciones $f: \left[0, \frac{1}{2}\right] \subseteq \mathbb{R} \longrightarrow \mathbb{R}^n$ y $g: \left[\frac{1}{2}, 1\right] \subseteq \mathbb{R} \longrightarrow \mathbb{R}^n$ definidas como

$$\begin{cases} f(t)=\alpha(2t) & \text{para } 0 \leq t \leq \frac{1}{2}, \\ \\ g(t)=\beta(2t-1) & \text{para } \frac{1}{2} \leq t \leq 1 \end{cases}$$

son funciones continuas. Además $f\left(\frac{1}{2}\right) = \alpha(1) = \beta(0) = g\left(\frac{1}{2}\right)$ y por lo tanto el problema 2.7.4 nos dice que la función

$$(\alpha*\beta)(t) = \begin{cases} \alpha(2t) & \text{si } 0 \le t \le \frac{1}{2}, \\ \beta(2t-1) & \text{si } \frac{1}{2} \le t \le 1 \end{cases} = \begin{cases} f(t) & \text{si } 0 \le t \le \frac{1}{2}, \\ g(t) & \text{si } \frac{1}{2} \le t \le 1 \end{cases}$$

es una función continua en $\left[0,\frac{1}{2}\right] \cup \left[\frac{1}{2},1\right] = [0,1]$.

- * $\alpha * \beta$ satisface que $(\alpha * \beta)([0,1]) \subseteq A$.
- Este se debe a que los valores de α y β se encuentran en A.

De esta manera, el análisis anterior nos muestra que $\alpha*\beta$ es un camino en A desde $(\alpha*\beta)(0) = \alpha(0)$ hasta $(\alpha*\beta)(1) = \beta(1)$.

- (7) Sea $A \subseteq \mathbb{R}^n$. Demostrar que A es arco conexo si y sólo sí para cada $x,y \in A$ existe un camino en A desde x hasta y.
- (8) Sea $A \subseteq \mathbb{R}^n$ y $a \in A$. Demostrar que A es arco conexo si y sólo sí para cada $x \in A$, existe una camino en A desde a hasta x.

- (9) Sea $A \subseteq \mathbb{R}^n$ y $a \in A$. Demostrar que A es un conjunto arco conexo si y sólo sí $A = \{x \in \mathbb{R}^n : \text{ existe un camino en } A \text{ desde } a \text{ hasta } x\}$.
- (10) Sea A un subconjunto abierto y conexo de \mathbb{R}^n . Demostrar que A es arco conexo.

Ayuda:

Sea $a \in A$ un punto fijo. Entonces definimos los conjuntos U y V como

$$\begin{cases} U = \{x \in \mathbb{R}^n : \text{ existe un camino en } A \text{ desde } a \text{ hasta } x\}, \\ \\ V = A - U = \{x \in A : \text{ no existe un camino en } A \text{ desde } a \text{ hasta } x\}. \end{cases}$$

De esta manera, afirmamos que

- (a) $U \cup V = A \cup U \cap V = \emptyset$.
- (b) Existe $\delta > 0$ tal que $B(a; \delta) \subseteq U$.
- (c) U es un conjunto abierto.
- (d) V es un conjunto abierto.
- (e) $A = U \vee V = \emptyset$.

Prueba de (a): Es trivial de las definiciones de U y V.

Prueba de (*b*): Como *A* es abierto y $a \in A$, entonces existe $\delta > 0$ tal que $B(a; \delta) \subseteq A$. Ahora, usando el hecho de que $B(a; \delta)$ es arco conexo (problema 2.6.9) y por el problema anterior tenemos que

$$B(a;\delta) = \{x \in \mathbb{R}^n : \text{ existe un camino en } B(a;\delta) \text{ desde } a \text{ hasta } x\} \subseteq \{x \in \mathbb{R}^n : \text{ existe un camino en } A \text{ desde } a \text{ hasta } x\} = U.$$

De esta manera, se tiene que $B(a; \delta) \subseteq U$

Prueba de (c): Sea $x \in U = \{x \in \mathbb{R}^n : \text{ existe un camino en } A \text{ desde } a \text{ hasta } x\}$, entonces existe un camino $r : [0,1] \subseteq \mathbb{R} \longrightarrow \mathbb{R}^n$ en A desde a hasta x. Como A es abierto y $x \in A$, entonces existe $\varepsilon > 0$ tal que $B(x;\varepsilon) \subseteq A$. Entonces afirmamos que $B(x;\varepsilon) \subseteq U$, ya que para cada $z \in B(x;\varepsilon)$, existe un camino $s : [0,1] \subseteq \mathbb{R} \longrightarrow \mathbb{R}^n$ en $B(x;\varepsilon)$ desde x hasta x (esto se debe a que x que para cada $x \in B(x;\varepsilon)$ es arco conexo) y así definimos la función $x : [0,1] \subseteq \mathbb{R} \longrightarrow \mathbb{R}^n$ como

$$\alpha(t) = \begin{cases} r(2t) & \text{si } 0 \le t \le \frac{1}{2}, \\ \\ s(2t-1) & \text{si } \frac{1}{2} \le t \le 1. \end{cases}$$

Entonces por (problema 6 - clase 13) se tiene que α es continua en [0,1] (de hecho $\alpha=r*s$) y además es fácil notar que α es un camino en A de a hasta z. Así, el análisis anterior muestra que $z \in U$ y por tanto $B(x;\varepsilon) \subseteq U$. Esto muestra que U es un conjunto abierto.

Prueba de (d): Sea $x \in V = \{x \in A : \text{ no existe un camino en } A \text{ desde } a \text{ hasta } x\}$, entonces como $x \in A$ y A es abierto, debe existir $\varepsilon > 0$ tal que $B(x;\varepsilon) \subseteq A$. Entonces afirmamos que $B(x;\varepsilon) \subseteq V$, ya si existiera $z \in B(x;\varepsilon)$ tal que $z \notin V$, entonces existiría un camino $r : [0,1] \subseteq \mathbb{R} \longrightarrow \mathbb{R}^n$ en A desde a hasta z y como $B(x;\varepsilon)$ es arco conexo existe un camino $s : [0,1] \subseteq \mathbb{R} \longrightarrow \mathbb{R}^n$ en $B(x;\varepsilon)$ desde z hasta x. Así $\alpha := r*s$ es un camino en A desde a hasta x, lo cual implica que $x \notin V$ $(x \in U)$ lo cual es imposible. Por lo tanto, tenemos que $B(x;\varepsilon) \subseteq V$ y como x es arbitrario, se tiene que V es abierto.

Prueba de (e): Dado que $A = U \cup V$ y $U \cap V = \emptyset$, entonces por la conexidad de A, se tiene que A = U ó A = V. Pero debido a que $B(a; \delta) \subseteq U$, entonces es necesario que A = U.

De lo anterior, tenemos que $A = U = \{x \in \mathbb{R}^n : \text{ existe un camino en } A \text{ desde } a \text{ hasta } x\}$ y (problema 9 - clase 13) nos dice que A tiene que ser arco conexo.

12/12