tak ako podla toho z akeho pohladu do beries Link na najnovsi dokument pre rok 2015/2016

https://docs.google.com/document/d/1eU-0XFfY02uPWKR R4dyn2PoOa1Gccma1iUnFLJz60pk/edit

Uvidíme se 27 . Šlapal. Ne se všemi, ale s většinou.

Logika

Prenexní tvar:

```
pro \circ in (\rightarrow, \lor, \land) : (s(x) \circ \forall xz(x)) \Rightarrow \forall x(s(x) \circ z(x)) - tedy zůstává stejnej implikace : (\forall xs(x) \rightarrow z(x)) \Rightarrow \exists x(s(x) \rightarrow z(x)) - mění se negace: neg (A \rightarrow B) = A \land neg(B) neg( \exists x A) = \forall x neg(A)
```

Grafy

Obyčejný graf - (U,H) - jakýkoliv graf

• U - uzly

Prenexní tvar:

pro in (,,):(s(x)xz(x))x(s(x)z(x)) - tedy zůstává stejnej

implikace: (xs(x)z(x))x(s(x)z(x)) - mění se

negace: neg(AB) = A neg(B)

neg(xA) = xneg(A)

Grafy

• H - hrany

// neni to pro uplny graf?

// asi jo, obecne to je pod tim tou sumou

// pozor, ne pro **uplny** graf, ale pro graf, ve kterem ma **kazdy vrchol stejny stupen**

// coz v grafovych ulohach MATu vetsinou byva

stupen_uzlu*pocet_uzlu=pocet_hran*2

 Σ deg(u) u∈U = 2n

- suma stupnu vsech uzlu = 2 * pocet hran
- počet koster uplného grafu je n^{n-2}
- počet koster kružnice

Sled - jakákoliv posloupnost uzel - hrana - uzel ...

• může se opakovat všechno

Tah

- uzly se mohou opakovat
- hrany se neopakují

Cesta

Neopakují se ani hrany ani uzly

Kružnice

 Cesta, kde je stejný výchozí a cílový uzel (nebo tah, kde se neopakují uzly až na poč. a koncový)

Souvislý graf

mezi každými dvěma body existuje cesta (nevím jak s orientovanými)

Faktor grafu

- podgraf obsahující všechny uzly nadgrafu U´ = U
- myslim ze to (veta nad touto) je chybne: faktor je podgraf, pre ktory plati, ze pokial nadgraf obsahuje medzi dvomi uzlami hranu, a podgraf tieto dva uzly obsahuje, musi aj podgraf obsahovat tuto hranu
- nezdá se mi http://sk.wikipedia.org/wiki/Faktor grafu

Komponenta

• uzlově max. souvislý indukovaný podgraf grafu

1 graf - 4 komponenty

 hrana, po jejímž oddělání se budou uzly které spojuje nacházet v různých komponentách

Stupeň uzlu

• Počet hran spojených s tímto uzlem

Strom

Graf bez kružnice

Kostra grafu

- Faktor grafu bez kružnice (všechny uzly, žádné cykly)
- toto (hore) vychadza zo zlej definicie faktoru (vid vyssie)
- podgraf obsahujuci vsetky uzly, ktory je zaroven stromom

Oceněný graf / cena grafu

• hrany mají cenu - cena grafu je suma cen hran

Minimální kostra

- kostra c nejmenší možnou cenou grafu
- https://www.fit.vutbr.cz/.../GAL/public/gal-slides.pdf

Kruskalův algoritmus

// pozor, v prubehu algoritmu na sebe pridavane hrany nemusi "navazovat", Kruskal obecne vytvari disjunktni casti kostry, ktere se ale nekdy v prubehu algoritmu spoji

Při Kruskalově algoritmu se tedy kostra vytváří postupným přidáváním předem setříděných hran počínaje hranou s nejmenší cenou. Vznikla-li by přidáním nějaké hrany kružnice, hrana "se přeskočí".

Primův alg. na min. kostru

- easy, zacnu kdekoliv, pridavam hranu s nejmensim ohodnocenim tak, aby netvořila kružnici
- len pozn.: hranu nemusim pridavat vzdy len k NOVEMU uzlu, ale k lubovolnemu, v ktorom som uz bol (logicky, moze sa stat ze pridem k novemu uzlu ktory je "konecny" a nemal by som tak kam dalej ist)

Planarita grafu

- m ≤ 3n-6
- n-m+p = 2
- n uzly, m hrany, p bunky ("oblasti" grafu, vratane "vonkajsej"), pre graf hore (v primovi) je pocet buniek 5, ak sa nemylim

Algebry - pojmy, co zvyraznil na cvikach / mohly by se objevit

- podalgebra
 - o operace nesmí vybočit z množiny hodnot algebry

- homomorfismus
 - o druhy morfismu
 - zachovává všechny operace včetně nulárních
 - f(x+y) = f(x) + f(y)
 - Algebra s nulární operací 1, zobrazení f: R->R ,f(x) = x+1
 - není homomorf. protože 1 se nezobrazí na 1 (cvika podalgebry 2013 13:00)
- generovani
 - <a> .. pohoda
 - zoberiem prvok "a", pridam pripadne prvky vzniknute nularnymi operaciami, a nasledne na tieto prvky aplikujem vsetky operatory (unarne, binarne...), pri binarnych a vyssich mozem pouzit ten isty prvok na viacerych miestach (a * a), aplikovanim operatorov vznikaju potencialne nove prvky, tie opat zaradim do mnoziny a iterativne dalej aplikujem operatory na vsetky prvky mnoziny a vsetky kombinacie prvkov mnoziny, az kym neminiem vsetky moznosti
- kongruence pi
 - $\circ \quad A \sim B \Rightarrow pi(A) \sim pi(B)$
 - // rovnost determinantu na grupe(?) s operaci +
 - A~B a C~D => (A+C)~(B+D)
 - ekvivalence
 - symetrie
 - reflexivita
 - transitivita
 - rozklad na třídy ekvivalence
- jadro fce f // + nevim co s funkcema pro vice promennychdvojice prvku, pro ktere ma operace stejny vysledek (f(x)=f(y))

```
■ mod3 - {{(0,3)(0,0)(0,6)...}}
{ ... }
{ ... }} // zapisem si nejsem jistej
```

- faktoralgebra (faktorova grupa) podle kongruence π
 - rozklad podle ekvivalence dane zobrazenim π (rozkladam podle kongruence π)
- normalni podgrupa (podalgebra?)
 - rozklad grupy podle tridy ekvivalence
 - podgrupa (trida rozkladu dana tou kongruenci) obsahujici neutralni prvek je normalni podgrupa
 - pro operaci nasobeni a determinant matice je to trida rozkladu dana maticema s determinant 1

Příklady

https://fituska.eu/download/file.php?id=11895

1.1

budou to: (b,c),(c,e),(b,d),(a,f),(d,f),(f,g),(f,h) se součtem 7

Hovoris o tomto priklade?

1.1 Příklad – Rok: 2007, Termín: 1. Skupina: A, Číslo příkladu: 7

Zadání

Je dán graf G=(U,H), kde $U=\{a,b,c,d,e,f,g,h\}$ a H má 13 prvků, s oceněním $v:H\to\mathbb{N}$ takovým, že $v\{a,b\}=2,$ $v\{a,d\}=5,$ $v\{a,f\}=1,$ $v\{b,c\}=0,$ $v\{c,d\}=5,$ $v\{c,e\}=1,$ $v\{d,e\}=10,$ $v\{d,f\}=0,$ $v\{e,g\}=3,$ $v\{e,h\}=3,$ $v\{f,g\}=1,$ $v\{f,h\}=2,$ $v\{g,h\}=6.$ Určete cenu minimální kostry tohoto grafu a jednu jeho minimální kostru nakreslete.

Tu ziadna hrana (b,d) neni.

Podla mna riesenie je nasledujuce:

(a,f), (a,d), (a,b), (b,c), (c,e), (f,g), (f,h), sucet je 1 + 5 + 2 + 0 + 1 + 1 + 2 = 12

cele zle...

postupom napriklad Kruskalom:

(b,c), (d,f), (a,f), (c,e), (f,g), (a,b), (f,h) - sucet 0+0+1+1+1+2+2 = 7

tych minimalnych kostier moze byt viac, zalezi na algoritme a na poradi, vsetky su vsak spravne (okrem tej nado mnou, ta hrana (a,d) je prilis draha)

Mas pravdu, pokazil som to.

1.2

1.2 Příklad – Rok: 2008, Termín: 1. Skupina: A, Číslo příkladu: 6

Zadání

Je dán obyčejný graf G=(U,H), kde $U=1,2,\ldots,n$ má uzel i tentýž stupeň n-2. Určete hodnotu čísla n a pak graf G přehledně nakreslete.

Neviem, ci chapem spravne, ale napriklad pre n = 4, kazdy uzel bude mat stupen 2.

suhlasim... pripadne by este mohlo byt n=2, a grafom by potom boli dva nespojene body POZOR: z Fitusky:

"Pozor, tady je špatně přepsáno zadání - chybí údaj o počtu hran - ten má být 12. Stačí znát vzorec: součet stupňů všech uzlů grafu = dvojnásobek počtu hran. V tomto příkladu: n*(n-2) = 2*12, z toho n = 6."

1.3

1.4

1.5 Příklad – Rok: 2008, Termín: 1. Skupina: B, Číslo příkladu: 7

Zadání

Nakreslete graf se pěti uzly, který má právě 3 různé kostry. Tyto kostry vypište.

р

6 (10b)

Uzel v obyčejném grafu se nazývá artikulace, pokud se po jeho odstranění a odstranění s ním incidentních hran zvýší počet komponent grafu. Kolik existuje navzájem neizomorfních lesů o 6 uzlech s právě 1 artikulací? Nakreslete je.

Neni moje riesenie:

// Loňský rok

// Pokud budou ty příklady správně, můžu to hodit (nebo klidně kdokoliv jiný :-D) i na fitušku, ale v těch vláknech je pořád pěknej bordel, když neumožňují paralelní řešení více úloh...

1) Buď jazyk L s predikátovým symbolem p a funkčními symboly f a g. Pak realizace M jazyka L na univerzu N daná takto:

P_M (k,l)⇔2k≤l

f_M (k,l,m)=klm

g_M (k)=2k^3

Platí M \vdash ((p(x,y) \land p(y,z)) \rightarrow (p(g(x),f(x,y,z)) \land p(x,z))) ?

• ANO => $2 * 2x^3 \le x * 2x * 4x (y \ge 2x, z \ge 4x)$ // po rozepsani toho nad tim a vynechani splnene casti za konjunkci

Najděte formuli o proměnných x,y,z, která bude ekvivalentní 4l^2≤km při ohodnocení x->k, y->l, z->m

- $2y \le x \land 2y \le z \Leftrightarrow 4y^2 \le xz$ platí to?? // asi chcou neco jineho
- inspirovan fituskou

$$0 4 * l^2 \le k * m // * l$$

$$0 2*2*l^3 \le k*l*m$$

$$\circ$$
 2 * $g(l) \leq f(k, l, m)$

$$\circ \quad p(g(l), f(k, l, m))$$

$$\circ \quad p(g(y), f(x, y, z))$$

2) Převeďte na prenexní tvar a nalezněte realizaci, kdy bu de splněna:

 $\forall x \forall z (q(x) \rightarrow \exists z \exists yp(z,x)) \rightarrow \forall yp(y,z)$

Prenexný tvar: $\forall x \forall z' \exists y ((q(x) \rightarrow p(z',x)) \rightarrow p(y,z))$

nie skor takto?

$$\exists x \forall z' \forall y ((q(x) \rightarrow p(z', x)) \rightarrow p(y, z))$$
 .. souhlasim

Realizace: $q(x) \equiv x > 0$ $p(x,y) \equiv x^2 + 2 > y$

3)Nakreslete obyčejný graf o 6 uzlech s uzly stupně 1,2,3,4,5. Kolik existuje možností, jak tento graf zakreslit (až na izomorfismus).

// Nie je v zadaní chyba? Nechýba stupeň jedného vrcholu?

- měla by být jen jedna možnost
- 4) Máme algebru A(R^2,+,k,(0,1)), kde + je sčítání po složkách, k(a,b)=(-a,b) a (0,1) je nulární operace. Najděte podalgebru algebry A generovanou z $\langle \{(1,0)\} \rangle$.

Podalgebra = $\{(z, n) | z \in \mathbb{Z} \ n \in \mathbb{N}_0\}$

6) Daná metrika $\rho((x_1,y_1,z_1),(x_2,y_2,z_2))=\max\{|x_1-x_2|,|y_1-y_2|,|z_1-z_2|\}.$ nad R^2×Z. Zakreslete množinu M= $\{(x,y,z)|\rho((x,y,z),(0,0,0))=1\}.$

Povrch kocky s dlzkou strany 2, ktora je centrovana v bode (0,0,0)? Mohol by to niekto potvrdit/ vyvratit?

Víte někdo jak na tento příklad?

- 1. Buď L jazyk s jedním binární predikátovým symbolem p a funkčním symbolem f (ternárním) a g (unárním). Uvažujeme realizaci M jazyka L na univerzu N množiny přirozených čísel, kde $p_M(k,l)$ $\Leftrightarrow 2+k \leq l, f_M(k,l,m)=k+l+m \ a \ g_M(k)=3k.$ Rozhodněte, zda platí $M\mid = \ \forall z \ (\left(p(x,y) \ and \ p(y,z)\right) \rightarrow (p(g(x),f(x,y,z)and \ p(x,z))$ Najděte formuli (jazyka L) o proměnných x,y,z ,která bude v realizaci M při ohodnocení proměnných $x \rightarrow k$, $y \rightarrow l$, $z \rightarrow m$ ekvivaletní podmínce $2(m+1) \leq k+l$
 - 1) asi to bude obdobný jak u příkladu výše...
 - rozepisu si ty p/f/g na ty operace
 - zjistim, ze pro nejvetsi x a y moznym oproti z plati vztah
 - \circ x+2 = y, y+2=z => x+2+2=z
 - dosadim do druhe casti y a z vyjadrene tim x
 - o 2+3*x <= x+2+x+2+2+x
 - \circ 2+3x <= 6+3x
 - x muzeme volit oproti y/z uz pouze nizsi, takze tu levou stranu nemuze nikdy prevazit. Toto je "nejkrajnejsi pripad"
 - tak snad to tak ma byt a neplacam uplne nesmysly :-D
 - 2) Tady bych udelal opacny postup
 - 2m+2 <= k+l bych si prepsal podobne jako v bode 1) na 2m+2 <= (m+1)+(m+1)
 - z toho usoudim, ze k i l by mely byt vetsi nez m+1
 - o m+1<=k AND m+1<= | => 2(m+1) <= k+|

// dle fitusky... asi to dava i vetsi smysl

 $2(m+1) \le k+1$

 $2m+2 \le k+l // +m$ na obidve strany

 $2m + m + 2 \le k+l +m$

 $3m + 2 \le k+l+m$

 $g(m)+2 \le f(k,l,m)$

p(g(m),f(k,l,m))

p(g(z),f(x,y,z))

// zkuste nekdo potvrdit / opravit -- je to OK