

CRIDC 2025

NLP-DRIVEN STUDENT SURVEY ANALYSIS IN LARGE COURSES Ayushi Chakrabarty (achakrabarty8@gatech.edu), Greg Mayer (greg.mayer@gatech.edu)

Georgia Institute of Technology

Introduction

Rationale:

- Large-scale MOOCs (1000-2000+ students) rely on start-of semester and mid-semester surveys to understand student needs.[1,2]
- Open-ended responses offer valuable qualitative insights but are challenging to analyze manually due to their volume leading to delayed response times and potentially overlooked student concerns.

Hypothesis:

 Natural Language Processing (NLP) can automate the analysis of open-ended survey responses by offering context-aware insights and significantly reducing response time.

Justification:

- Limitations in existing solutions:
 - Manual review is time-intensive and lacks scalability.
 - Keyword-based search is prone to missing nuanced insights.
 - Sentiment analysis is limited in understanding context and meaning.^[5]

The growing demand in the **EdTech industry** for scalable and effective tools to enhance the learning experience in large-scale MOOCs makes this project highly relevant.

Data Categories

- Utilizes start/mid semester survey data collected from large-scale MOOCs.
- The dataset contains 8000 samples in total with almost equivalent data samples for each category. These were manually labelled into four categories.

Code	Description	Example
AC	Academic Concern	The exams since they are given such a large weight.
PC	Personal Concern	Could you reschedule the exam as I am sick?
TC	Technical Concern	Technological issues with the gatech instructure portal.
NC	No Concerns	There is nothing in particular!

Design Flowchart

FEEDBACK FUSION

Methods

Modeling approach:

• Three **BERT-based** model variants fine-tuned on survey feedback data to allow for flexibility in choosing a model based on the trade-off between computational efficiency and classification performance.

System Design:

- Backend: Python-based NLP pipeline using transformers & scikit-learn.
- Frontend: Streamlit-powered UI for easy instructor interaction to allow intructors to download categorized responses, highlight sensitive personal concerns, and visualize the distribution of concerns across categories.

Evaluation:

• Assess model performance using classification accuracy, F1-score and latency.

Results

LLM-powered first-of-its-kind demonstrates classification system that complies with FERPA empowering instructors with intelligent analysis of student feedback while advancing UN SDG 4 (Quality Education).

Key Findings:

- BERT Base and DistilBERT had similar 80% accuracy, but DistilBERT was 2x faster at 4.2ms latency.
- Tiny BERT had lower 76% accuracy but **fastest 2ms latency**.

Scientific Rigor & Congruence:

- Assessed on consistent performance metrics and validated across multiple iterations to confirm stability and reliability.
- Results align with expected performance-efficiency tradeoffs in BERT model compression.
- Class imbalance impacts mirror challenges in educational data mining literature.

	Model	Avg. Accuracy (%)	Avg. Latency (ms)
	BERT Base	80.13	8.30
	DistilBERT	79.67	4.22
	TinyBERT	75.12	2.32

Limitations & Future Directions

- The model struggles with minority classes as constrained by the original dataset diversity where augmentation replicates limited patterns.
- Expand to diverse MOOC data for generalization.
- Real-world deployment validation.
- Multilingual support.

References

[1] Richardson, J. T. (2005). Instruments for obtaining student feedback: A review of the literature. Assessment & evaluation in higher education, 30(4), 387-415.

[2] Angelo, T. A., & Cross, K. P. (2012). Classroom assessment techniques. Jossey Bass Wiley.

[3] Morgan, M., Nylén, A., Butler, M., Eckerdal, A., Thota, N., & Kinnunen, P. (2017, November). Examining manual and semi-automated methods of analysing MOOC data for computing education. In Proceedings of the 17th Koli Calling International Conference on Computing Education Research (pp. 153-157).

[4] Jiang, Z., Miao, C., & Li, X. (2017). Application of keyword extraction on MOOC resources. International Journal of Crowd Science, 1(1), 48-70.

[5] Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731-5780.