VLSI LAB REPORT

MID SEMESTER

Submitted by
A.Anand Menon (08EC01)
Dilip Kushwaha(08EC21)

Experiment 1:

Study the V-I characteristics of NMOS Transistor

Objective:

Study the input and output characteristics of NMOS Transistor, effects of L, W, VTO, LAMBDA, VSB and temperature on the behavior of the transistor.

DC Sweep

 I_d vs V_{ds}

With increase in the values of V_{dd} and Vgs, the drain current increases.

LAMBDA = 0.1

 I_d vs V_{gs}

 I_d vs V_{ds}

Value of current for Vgs=10V at Vdd=8V is 6

 I_d vs V_{gs}

Value of current for Vgs=10V at Vdd=8V is 11

I_d vs V_{ds}

LAMBDA = 0.5

 I_d vs V_{gs}

Value of current for Vgs=10V at Vdd=8V is 15

$$I_d$$
 vs V_{ds}

Conclusion:

As the value of Lambda increases, the current also increases. This holds true for both Vdd sweep as well as Vgg sweep.

Hence, current is directly proportional to Lambda.

$$I_d$$
 vs V_{gs}

$$TEMP = 0$$

$$I_d$$
 vs V_{ds}

$$I_d$$
 vs V_{gs}

$$TEMP = 25$$

$$I_d$$
 vs V_{ds}

$$I_d$$
 vs V_{gs}

$$TEMP = 50$$

$$I_d$$
 vs V_{ds}

Conclusion:

As the value of temperature increases, the current decreases. This holds true for both Vdd sweep as well as Vgg sweep.

Hence, the current is inversely proportional to the temperature.

Variation with V_{sb}

$$V_{sb} = 0.2 V$$

$$V_{sb} = 0.4 V$$

Variation with V_{sb}

$V_{sb} = 0.6 V$

Conclusion:

As the value of $V_{\rm sb}$ increases, the current decreases. This holds true for both Vdd sweep as well as Vgg sweep.

Hence, the current is inversely proportional to $V_{\rm sb}$.

Variation with V_{To}

 I_d vs V_{ds}

 $I_d \, vs \, V_{gs}$

Variation with V_{To}

Conclusion:

As the value of V_{To} increases, the current decreases. This holds true for both Vdd sweep as well as Vgg sweep.

Hence, the current is inversely proportional to V_{To} .

Variation with length

Conclusion:

As the value of length increases, the current decreases. This holds true for both Vdd sweep as well as Vgg sweep.

Hence, the current is inversely proportional to length.

Variation with width

Conclusion:

As the value of width increases, the current increases. This holds true for both Vdd sweep as well as Vgg sweep.

Hence, the current is directly proportional to width.

Experiment 2:

Study of MOS inverter with passive resistive load

Objective:

Study the transfer function, Noise margin, effect on rise time, fall time, propagation delay, power and energy consumed of a MOS Inverter for various L, W of the transistor, load capacitance and rise/fall time of input

Vout vs Vin for an NMOS with resistive load

```
*nmos inverter with passive resistive load .include tsmc_o25_level3.model
*spice netlist
mi drain vin o o cmosn l=.25u w= .75u
*resistance
ri drain vd 2ok
*supply source
vdd vd o dc 5
vgg vin o dc 5
*responses
.dc vgg o 5 o.1
*vgg pulse (o 5 o o.1ns o.1ns 5ons 10ons)
```

.control
run
Setplot dc1
Plot drain vin
.endc
.end

Transient response for inverter with variation in length

With decrease in length we have stronger ON

Transient response for NMOS with varying length

 \Box Graph shows that V_{ih} increases with increase in width

Transient response with varying resistance

- ☐With increase in resistance Noise Margin Low also decreases
- ☐But gain increases

Effect of change resistance on rise time and fall time

□Rise time decreases with increase in Resistance

Effect of change in W/L ratio on rise time and fall time 1. Fall time

2. Rise time

Output capacitance

1. Vout across capacitance for square wave input

2. Vout across capacitance for low to high input

3. Vout across capacitance for high to low input

Experiment 3:

Study of MOS Inverter with active load – NMOS and PMOS

Objective:

For a MOS Inverter with active load – NMOS and PMOS, study the Noise Margin, effect on rise time, fall time, propagation delay, power and energy consumed with variation in L and W.

Current Variation with NMOS Load

Transient Analysis with NMOS Load (Fall)

Transient Analysis with NMOS Load (Rise)

Transient Analysis with PMOS Load (Fall)

Transient Analysis with PMOS Load (Rise)

VTC for NMOS Load

VTC for PMOS Load

Experiment 4:

Study of CMOS Inverter

Objective:

Study the Transfer function, Noise Margin, effect on rise time, fall time, propagation delay, power and energy consumed of a CMOS inverter with variation in L and W.

Transfer Function

Variation in current with W/L

Fall time

Variation in power with W/L

Power Dissipation for pulse input

Experiment 5:

Study of CMOS Gates

Objective:

Study the Behavior Transfer function, Noise Margin, effect on rise time, fall time, propagation delay, power and energy consumed of CMOS gates like NAND, NOR functions like AOI and XOR with variation in L and W.

NAND Output

NAND DC Analysis

NAND Propagation Delay

NOR Output

NOR DC Analysis

XOR Output

AOI Hazard

