Exercise Nr. 2, Summer School on Finite Elements Universidad Nacional Agraria La Molina December, 2018

1. **Study the program:** Study the matlab program provided to you. Some details on the different files:

dirichlet.m This function sets the dirichlet data at the boundary in the point (x, y).

exactsolution.m This function sets the exact solution u(x, y) and its derivatives $\partial_x u(x, y)$ and $\partial_y u(x, y)$ in the point (x, y)

I2error.m This function evaluates the L²-error

$$\|\mathbf{u} - \mathbf{u}_h\|_{\Omega}$$
,

where u is the exact solution from exactsolution. $\tt m$ and u_h the finite element solution.

hlerror.m This function evaluates the H¹-error

$$\|\nabla(\mathbf{u}-\mathbf{u}_h)\|_{\Omega}$$
,

where u is the exact solution from exact solution. m and u_h the finite element solution. 2. Modify the Dirichlet data: Solve the Laplace problem

$$-\Delta u = 1$$
 in $\Omega = (0,1)^2$ and $u(x,y) = \sin(4.5\pi x) * \sin(2.5\pi y)$ on $\partial\Omega$.

Modify the right hand side in righthandside.m and the dirichlet data in dirichlet.m.

3. Discontinuous Dirichlet data: Solve the Laplace problem

$$-\Delta \mathfrak{u} = 1 \text{ in } \Omega = (0,1)^2 \text{ and } \mathfrak{u}(x,y) = \begin{cases} 1 & x < y \\ -1 & x \geqslant y \end{cases} \text{ on the boundary } \partial \Omega$$

Modify the right hand side in righthandside.m and the dirichlet data in dirichlet.m.

4. We want to solve the Laplace problem

$$-\Delta u = f$$
 in Ω and $u = g$ on $\partial \Omega$

such that the exact solution is given by

$$u(x, y) = x^2 + y^2.$$

- a) Compute the right hand side $f = -\Delta u$ and implement it in righthandside.m.
- b) Implement the Dirichlet data

$$g(x,y) = x^2 + y^2$$

in dirichlet.m

c) Compute the derivatives $\partial_x u(x,y)$ and $\partial_y u(x,y)$ and implement the exact solution in exactsolution.m.

Run the program with different values of $M=10, M=20, M=40, \ldots$ and compute the convergence rate h^{α} .

5. **Study of convergence:** Repeat the last exercise but with the less regular exact solution

$$u(x,y) = \left(\psi(x) + \psi(y)\right)^{\frac{1}{4}} \text{ with } \psi(x) = (x - \frac{1}{2})^2$$

Hint: the right hand side is given by

$$f(x,y) = -\Delta u = \frac{1}{4} \left(\psi(x) + \psi(y) \right)^{-\frac{3}{4}},$$

the first derivatives are given by

$$\partial_{x} u(x, y) = \frac{1}{4} (1 - 2x) \left(\psi(x) + \psi(y) \right)^{-\frac{3}{4}},
\partial_{y} u(x, y) = \frac{1}{4} (1 - 2y) \left(\psi(x) + \psi(y) \right)^{-\frac{3}{4}},$$