TP: Implémentation du détecteur de Harris

1/ Calcul de I_x et I_v

$$I_y = \frac{\partial I}{\partial y} = \begin{bmatrix} -1\\0\\1 \end{bmatrix} * I \quad \text{et} \quad I_x = \frac{\partial I}{\partial x} = \begin{bmatrix} -1&0&1 \end{bmatrix} * I$$

(utiliser la fonction

scipy.ndimage.filters.convolve)

2/ Calcul de I_x^2 , I_y^2 , I_xI_y

$$(I_x^2)(x,y) = I_x(x,y).I_x(x,y)$$

$$(I_y^2)(x,y) = I_y(x,y).I_y(x,y)$$

$$(I_xI_y)(x,y) = I_x(x,y).I_y(x,y)$$

3/ Calcul de A,B,C

$$A = G_{\sigma} * (I_{x}^{2})$$

$$B = G_{\sigma} * (I_{y}^{2})$$

$$C = G_{\sigma} * (I_{x}I_{y})$$
Choisir σ =0.5

(utiliser la fonction

scipy.ndimage.filters.gaussian filter)

4/ Calcul de l'image R

$$R(x,y) = \det(M(x,y)) - k \cdot (Tr(M(x,y)))^{2}$$

$$\text{avec } M(x,y) = \begin{bmatrix} A(x,y) & C(x,y) \\ C(x,y) & B(x,y) \end{bmatrix} \text{ et k=0,05}$$

5/ Recherche des maxima locaux supérieurs à un certain seuil

6/ Ecrire les points dans un fichier texte

une ligne par point : x y (en coordonnées image)

Visualisation des points détectés :

viewer.exe adresse fichier points adresse image

Appariement:

harris.exe APPARIEMENT adresse_image1 adresse_image2 adresse_points_detectes_image1 adresse_points_detectes_image2 adresse_sauvegarde_resultat_appariement

Visusalisation des appariements :

viewer.exe adresse sauvegarde resultat appariement adresse image1 adresse image2

TP: différents détecteurs de points d'intérêt

Tester les autres détecteurs de points d'intérêt proposés par skimage :

- skimage.feature.corner_harris
- skimage.feature.corner moravec
- skimage.feature.corner_...