Problem 2.1

Complete the Proof of <u>Theorem 2.1</u>.

Model $M = \langle W, R, V \rangle$. If R has the property on the left side, every instance of the formula on the right side is true in M.

$\begin{array}{l} \underline{\mathbf{D}} \colon \Box p \to \diamond p \\ \overline{\Box} A \text{ holds for every } w \in W \ (M, w \Vdash A, \ \forall w \in W) \\ \text{, because of serial hypothesis we know } \forall w \in W \text{ there has to be a } Rww' \text{ with } w' \in W \text{ with } M, w' \Vdash A \text{ (because of } \Box A) \text{ so } M, w \Vdash \diamond A \text{ holds.} \end{array}$
$\underline{\mathbf{T}} \colon \Box p \to p$ $\overline{\Box} A$ golds for every world $w \in W$ $(M, w \Vdash A)$, because of reflexivity hypothesis we know for every $w \in W$ there is Rww, so $M, w \Vdash A$ because of the antecedent $\Box A$.
4: $\Box p \to \Box \Box p$ Suppose $\Box A \to \Box \diamond A$ is an instance of (4). Let a world be an arbitrary $w \in W$ with $M, w \Vdash \Box A$. We need to show that for every $w' \in W$ such that Rww' and every $w'' \in W$ such that $Rw'w''$ we have $M, w'' \Vdash A$, i.e. $M, w \Vdash \Box \Box A$. But if Rww' and $Rw'w''$ then Rww'' since transitivity, and together with $M, w \Vdash \Box A$ we have then $M, w'' \Vdash A$. Hence $M, w \Vdash \Box \Box A$.

Problem 2.3

Let $M = \langle W, R, V \rangle$ be a model. Show that if R satisfies the left-hand properties of <u>table 2.2</u>, every instance of the corresponding right-hand formula is true in M.

Partially functional:

Relation R with $\forall w \forall u \forall v ((Rwu \land Rwv) \rightarrow u = v) : <math>\diamond p \rightarrow \Box p, \ w, u, v \in W$, with an arbitrary world $w \in W$ with $M, w \Vdash \diamond A$. Now suppose we have Rww' with $w' \in W$ and Rww'' with $w'' \in W$ where $M, w'' \Vdash A$ because of $M, w \Vdash \diamond A$. But with the properties w'' = w', hence $M, w' \Vdash A$, $M, w \Vdash \Box A$.

Modal Logic Exercise 01

13-123-922 Elias WIPFLI 16-124-836 Marcel ZAUDER

Functional:

Relation R with $\forall w \exists v \forall u ((Rwu \leftrightarrow u = v) : \diamond p \leftrightarrow \Box p, \ w, u, v \in W, \text{ suppose arbitrary world } w \in W \text{ with } M, w \Vdash \Box A.$ Suppose we have Rww' with $M, w' \Vdash A$ and Rww'' with $M, w'' \Vdash A$. So we have $M, w \Vdash \diamond A$, but $Rww' \rightarrow w' = w'' \text{ (sp } \diamond p \rightarrow \Box p \text{ proof as above)}.$