Diffie-Hellman Problem and Elgamal Encryption Scheme

Yu Zhang

Harbin Institute of Technology

Cryptography, Autumn, 2020

Outline

1 Cyclic Groups and Discrete Logrithms

2 Diffie-Hellman Assumptions and Applications

3 The Elgamal Encryption Scheme

Content

1 Cyclic Groups and Discrete Logrithms

2 Diffie-Hellman Assumptions and Applications

3 The Elgamal Encryption Scheme

Cyclic Groups and Generators

 $\mathbb{G} \text{ is finite and } g \in \mathbb{G}, \ \langle g \rangle \stackrel{\mathsf{def}}{=} \{g^0, g^1, \dots, \} = \{g^0, g^1, \dots, g^{i-1}\}.$

- The **order** of g is the smallest positive integer i with $g^i = 1$.
- \mathbb{G} is a **cyclic group** if $\exists g$ has order $m = |\mathbb{G}|$. $\langle g \rangle = \mathbb{G}$, g is a **generator** of \mathbb{G} .
- Is \mathbb{Z}_6^* , \mathbb{Z}_7^* , or \mathbb{Z}_8^* with '·' cyclic?
- **Lagrange's theorem**: $\langle g \rangle$ is a subgroup of \mathbb{G} , and $|\langle g \rangle| \mid |\mathbb{G}|$.
- For proof, see https://brilliant.org/wiki/lagranges-theorem/.

Discrete Logarithm

If $\mathbb G$ is a cyclic group of order q, then \exists a generator $g\in\mathbb G$ such that $\{g^0,g^1,\dots,g^{q-1}\}=\mathbb G.$

- $\blacksquare \ \forall h \in \mathbb{G}, \ \exists \ \mathsf{a} \ \mathsf{unique} \ x \in \mathbb{Z}_q \ \mathsf{such that} \ g^x = h.$
- $\blacksquare x = \log_q h$ is the discrete logarithm of h with respect to g.
- $\blacksquare \text{ If } g^{x'} = h \text{, then } \log_g h = [x' \bmod q].$
- $\log_g 1 = 0$ and $\log_g (h_1 \cdot h_2) = [(\log_g h_1 + \log_g h_2) \bmod q].$

Show an instance of DL problem in \mathbb{Z}_7^*

Overview of Discrete Logarithm Algorithms

- Given a generator $g \in \mathbb{G}$ and $y \in \langle g \rangle$, find x such that $g^x = y$.
- Brute force: $\mathcal{O}(q)$, $q = \operatorname{ord}(g)$ is the order of $\langle g \rangle$.
- Baby-step/giant-step method [Shanks]: $\mathcal{O}(\sqrt{q} \cdot \mathsf{polylog}(q))$.
- **Pohlig-Hellman** algorithm: when q has small factors.
- Index calculus method: $\mathcal{O}(\exp(\sqrt{n \cdot \log n}))$.
- The best-known algorithm is the **general number field sieve** with time $\mathcal{O}(\exp(n^{1/3} \cdot (\log n)^{2/3}))$.
- Elliptic curve groups vs. \mathbb{Z}_p^* : more efficient for the honest parties, but that are equally hard for an adversary to break. (Both 1024-bit \mathbb{Z}_p^* and 132-bit elliptic curve need 2^{66} steps.)

Using Prime-Order Groups

Theorem 1

If $\mathbb G$ is of prime order, then $\mathbb G$ is cyclic. All $g\in \mathbb G$ except the identity are generators.

It is proved from Lagrange's theorem.

Why using prime-order groups?

- The discrete logarithm problem is hardest in such groups.
- Finding a generator in such groups is trivial.
- Any non-zero exponent will be invertible modulo the order.
- A necessary condition for the DDH problem to be hard is that $DH_g(h_1,h_2)$ by itself should be indistinguishable from a random group element. This is (almost) true for such groups.

Generating Prime-Order (Sub)Groups in \mathbb{Z}_p^*

- $y \in \mathbb{Z}_p^*$ is a quadratic residue modulo p if $\exists x \in \mathbb{Z}_p^*$ such that $x^2 \equiv y \pmod{p}$. (Q: show QRs in \mathbb{Z}_7^*)
- The set of QR is a subgroup with order (p-1)/2 $(x^2 \equiv (p-x)^2 \pmod{p})$.
- **•** p is a **strong prime** if p = 2q + 1 with q prime.

Algorithm 1: A group generation algorithm \mathcal{G}

input: Security parameter 1^n

output: Cyclic group \mathbb{G} , its order q, and a generator g

- 1 **generate** a random (n+1)-bit strong prime p
- q := (p-1)/2
- **3 choose** an arbitrary $x \in \mathbb{Z}_p^*$ with $x \neq \pm 1 \mod p$
- $\mathbf{4} \ g := x^2 \bmod p$
- 5 return p, q, g

The Discrete Logarithm Assumption

The discrete logarithm experiment $\mathsf{DLog}_{\mathcal{A},\mathcal{G}}(n)$:

- I Run a group-generating algorithm $\mathcal{G}(1^n)$ to obtain (\mathbb{G},q,g) , where \mathbb{G} is a cyclic group of order q (with $\|q\|=n$), and g is a generator of \mathbb{G} .
- **2** Choose $h \leftarrow \mathbb{G}$. $(x' \leftarrow \mathbb{Z}_q \text{ and } h := g^{x'})$
- **3** \mathcal{A} is given \mathbb{G}, q, g, h , and outputs $x \in \mathbb{Z}_q$.
- 4 $\mathsf{DLog}_{\mathcal{A},\mathcal{G}}(n) = 1$ if $g^x = h$, and 0 otherwise.

Definition 2

The discrete logarithm problem is hard relative to $\mathcal G$ if \forall PPT algorithm $\mathcal A$, \exists negl such that

$$\Pr[\mathsf{DLog}_{\mathcal{A},\mathcal{G}}(n) = 1] \leq \mathsf{negl}(n).$$

Content

1 Cyclic Groups and Discrete Logrithms

2 Diffie-Hellman Assumptions and Applications

3 The Elgamal Encryption Scheme

Diffie-Hellman Assumptions

■ Computational Diffie-Hellman (CDH) problem:

$$\mathsf{DH}_g(h_1,h_2) \stackrel{\mathsf{def}}{=} g^{\log_g h_1 \cdot \log_g h_2}$$

Decisional Diffie-Hellman (DDH) problem: Distinguish $DH_g(h_1, h_2)$ from a random group element h'.

Definition 3

DDH problem is hard relative to \mathcal{G} if \forall PPT \mathcal{A} , \exists negl such that

$$\begin{split} |\Pr[\mathcal{A}(\mathbb{G},q,g,g^x,g^y,g^z) = 1] - \Pr[\mathcal{A}(\mathbb{G},q,g,g^x,g^y,g^{xy}) = 1]| \\ \leq \mathsf{negl}(n). \end{split}$$

Intractability of DL, CDH and DDH

DDH is easier than CDH and DL.

Secure Key-Exchange Experiment

The key-exchange experiment $KE_{\mathcal{A},\Pi}^{eav}(n)$:

- I Two parties holding 1^n execute protocol Π . Π results in a **transcript** trans containing all the messages sent by the parties, and a **key** k that is output by each of the parties.
- 2 A random bit $b \leftarrow \{0,1\}$ is chosen. If b=0 then choose $\hat{k} \leftarrow \{0,1\}^n$ u.a.r, and if b=1 then set $\hat{k}:=k$.
- $oldsymbol{3}$ \mathcal{A} is given trans and \hat{k} , and outputs a bit b'.
- 4 $\mathsf{KE}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1$ if b' = b, and 0 otherwise.

Definition 4

A key-exchange protocol Π is secure in the presence of an eavesdropper if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr[\mathsf{KE}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1] < \frac{1}{2} + \mathsf{negl}(n).$$

Diffie-Hellman Key-Exchange Protocol

$$(\mathbb{G},q,g) \leftarrow \mathcal{G}$$

$$x \leftarrow \mathbb{Z}_q$$

$$h_1 := g^x \xrightarrow{\mathbb{G}, q, g, h_1}$$

$$y \leftarrow \mathbb{Z}_q$$

$$h_2 := g^y$$

$$k_A := h_2^x \qquad k_B := h_1^y$$

Q:
$$k_A = k_B = k = ?$$

 $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}$ denote an experiment where if b=0 the adversary is given $\hat{k} \leftarrow \mathbb{G}$.

Theorem 5

If DDH problem is hard relative to \mathcal{G} , then DH key-exchange protocol Π is secure in the presence of an eavesdropper (with respect to the modified experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}$).

Security

Insecurity against active adversaries (Man-In-The-Middle).

Proof of Security in DH Key-Exchange Protocol

Proof.

$$\begin{split} & \Pr\left[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1\right] \\ & = \frac{1}{2} \cdot \Pr\left[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1 | b = 1\right] + \frac{1}{2} \cdot \Pr\left[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1 | b = 0\right] \end{split}$$

If b=1, then give true key; otherwise give random g^z .

$$\begin{split} &= \frac{1}{2} \cdot \Pr\left[\mathcal{A}(g^x, g^y, g^{xy}) = 1\right] + \frac{1}{2} \cdot \Pr\left[\mathcal{A}(g^x, g^y, g^z) = 0\right] \\ &= \frac{1}{2} \cdot \Pr\left[\mathcal{A}(g^x, g^y, g^{xy}) = 1\right] + \frac{1}{2} \cdot (1 - \Pr\left[\mathcal{A}(g^x, g^y, g^z) = 1\right]) \\ &= \frac{1}{2} + \frac{1}{2} \cdot (\Pr\left[\mathcal{A}(g^x, g^y, g^{xy}) = 1\right] - \Pr\left[\mathcal{A}(g^x, g^y, g^z) = 1\right]) \\ &\leq \frac{1}{2} + \frac{1}{2} \cdot \operatorname{negl}(n) \end{split}$$

Example of DHKE

$$\mathbb{G}=\mathbb{Z}_{11}^*$$

The order q = ?

The set of quadratic residues?

Is g = 3 a generator?

If x = 3 and y = 4, what's the message from Bob to Alice?

How does Alice compute the key?

How does Bob compute the key?

Triparties Key Exchange

DH-based KE in 2 rounds:

 $Key = g^{abc}$.

Joux's KE in 1 round:

 $\text{Key} = e(P, P)^{abc}$ in bilinear map.

Open Problem

How to exchange keys between 4 parties in one round?

Content

1 Cyclic Groups and Discrete Logrithms

2 Diffie-Hellman Assumptions and Applications

3 The Elgamal Encryption Scheme

Lemma on Perfectly-secret Private-key Encryption

Lemma 6

 \mathbb{G} is a finite group and $m \in \mathbb{G}$ is an arbitrary element. Then choosing random $k \leftarrow \mathbb{G}$ and setting $c := k \cdot m$ gives the same distribution for c as choosing random $c \leftarrow \mathbb{G}$. I.e, $\forall g \in \mathbb{G}$:

$$\Pr[k \cdot m = g] = 1/|\mathbb{G}|.$$

where the probability is taken over uniform choice of $k \in \mathbb{G}$.

Proof.

Let $g \in \mathbb{G}$ be arbitrary, then

$$\Pr[k \cdot m = g] = \Pr[k = g \cdot m^{-1}].$$

Since k is chosen u.a.r, the probability that k is equal to the fixed element $g \cdot m^{-1}$ is exactly $1/|\mathbb{G}|$.

The Elgamal Encryption Scheme

An algorithm \mathcal{G} , on input 1^n , outputs a description of a cyclic group \mathbb{G} , its order q (with ||q||=n), and a generator g.

Construction 7

- Gen: run $\mathcal{G}(1^n)$ to obtain (\mathbb{G},q,g) . A random $x\leftarrow \mathbb{Z}_q$ and $h:=g^x$. $pk=\langle \mathbb{G},q,g,h\rangle$ and $sk=\langle \mathbb{G},q,g,x\rangle$
- Enc: a random $y \leftarrow \mathbb{Z}_q$ and output $\langle c_1, c_2 \rangle = \langle g^y, h^y \cdot m \rangle$
- Dec: $m := c_2/c_1^x$

Theorem 8

If the DDH problem is hard relative to G, then the Elgamal encryption scheme is CPA-secure.

Example of Elgamal Encryption

Encoding binary strings:

- the subgroup of quadratic residues modulo a strong prime p=(2q+1).
- a string $\hat{m} \in \{0,1\}^{n-1}$, n = ||q||.
- \blacksquare map \hat{m} to the plaintext $m = [(\hat{m} + 1)^2 \bmod p]$.
- The mapping is one-to-one and efficiently invertible.

$$q = 83$$
, $p = 2q + 1 = 167$, $g = 2^2 = 4 \pmod{167}$, $\hat{m} = 011101$

The receiver chooses secrete key $37 \in \mathbb{Z}_{83}$. The public key is $pk = \langle 167, 83, 4, [4^{37} \mod 167] = 76 \rangle$. $\hat{m} = 011101 = 29, \ m = [(29+1)^2 \mod 167] = 65$. Choose y = 71, the ciphertext is

 $\langle [4^{71} \mod 167], [76^{71} \cdot 65 \mod 167] \rangle = \langle 132, 44 \rangle.$

Decryption: $m = [44 \cdot (132^{37})^{-1}] \equiv [44 \cdot 66] \equiv 65 \pmod{167}$. 65 has the two square roots 30 and 137, and 30 < q, so $\hat{m} = 29$.

Proof of Security of Elgamal Encryption Scheme

Proof.

Idea: Prove that Π is secure in the presence of an eavesdropper by reducing an algorithm D for DDH problem to the eavesdropper \mathcal{A} .

Modify Π to $\tilde{\Pi}$: the encryption is done by choosing random $y\leftarrow \mathbb{Z}_q$ and $z\leftarrow \mathbb{Z}_q$ and outputting the ciphertext:

$$\langle g^y, g^z \cdot m \rangle$$
.

- lacksquare $ilde{\Pi}$ is not an encryption scheme.
- lacksquare g^y is independent of m.
- $\mathbf{g}^z \cdot m$ is a random element independent of m (Lemma 6).

$$\Pr\left[\mathsf{PubK}^{\mathsf{eav}}_{\mathcal{A},\tilde{\Pi}}(n) = 1\right] = \frac{1}{2}.$$

Proof (Cont.)

D receives $(\mathbb{G}, q, g, g^x, g^y, g_3)$ where g_3 equals either g^{xy} or g^z , for random x, y, z:

Proof (Cont.)

Case I: $g_3 = g^z$, ciphertext is $\langle g^y, g^z \cdot m_b \rangle$.

$$\Pr[D(g^x,g^y,g^z)=1] = \Pr\left[\mathsf{PubK}^{\mathsf{eav}}_{\mathcal{A},\tilde{\Pi}}(n)=1\right] = \frac{1}{2}.$$

Case II: $g_3 = g^{xy}$, ciphertext is $\langle g^y, g^{xy} \cdot m_b \rangle$.

$$\Pr[D(g^x,g^y,g^{xy})=1] = \Pr\left[\mathsf{PubK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n)=1\right] = \varepsilon(n).$$

Since the DDH problem is hard,

$$\begin{split} \mathsf{negl}(n) \geq |\mathrm{Pr}[D(g^x, g^y, g^z) = 1] - \mathrm{Pr}[D(g^x, g^y, g^{xy}) = 1]| \\ = |\frac{1}{2} - \varepsilon(n)|. \end{split}$$

CCA in Elgamal Encryption

Constructing the ciphertext of the message $m \cdot m'$.

Given $pk = \langle g, h \rangle$, $c = \langle c_1, c_2 \rangle$, $c_1 = g^y$, $c_2 = h^y \cdot m$, **Method I**: compute $c_2' := c_2 \cdot m'$, and $c' = \langle c_1, c_2' \rangle$.

$$\frac{c_2'}{c_1^x} = ?$$

Method II: compute $c_1'' := c_1 \cdot g^{y''}$, and $c_2'' := c_2 \cdot h^{y''} \cdot m'$.

$$c_1'' = g^y \cdot g^{y''} = g^{y+y''}$$
 and $c_2'' = ?$

so $c'' = \langle c_1'', c_2'' \rangle$ is an encryption of $m \cdot m'$.

Elgamal Implementation Issues

- Sharing public parameters: \mathcal{G} generates parameters \mathbb{G}, q, g .
 - generated "once-and-for-all".
 - used by multiple receivers.
 - each receiver must choose their own secrete values x and publish their own public key containing $h = g^x$.

Parameter sharing

In the case of Elgamal, the public parameters can be shared. In the case of RSA, can parameters be shared?

Summary

- cyclic group, discrete log., baby-step/giant-step
- CDH, DDH, DHKE protocol
- Elgamal encryption, sharing public parameters