Savoir calculer des probabilités avec la loi normale

Soit *X* une variable aléatoire suivant la loi normale $\mathcal{N}(\mu; \sigma)$, avec $\mu = 5$ et $\sigma = 2$. Calculer les probabilités suivantes avec une calculatrice.

- **a.** $P(-1 \le X \le 11)$ **b.** $P(X \le 3)$
- c. $P(X \leq 9)$
- **d.** P(X > 9)

→ Résolution

a. On saisira -1, 11, 5 et 2 dans l'ordre indiqué. Avec la calculatrice TI-83 PremiumCE

Avec la calculatrice Casio Gaph35+

Menu STAT puis DIST puis NORM puis Ncd

- **b.** Comme $3 < \mu$ puisque $\mu = 5$, on a $P(X \le 3) = 0.5 P(3 \le X \le 5)$. On calcule $P(3 \le X \le 5) \approx 0.341$ 3 et on en déduit $P(X \le 3) \approx 0.158$ 7.
- **c.** Comme 9 > μ , on a $P(X \le 9) = 0.5 + P(5 \le X \le 9) \approx 0.977$ 2.
- **d.** On a P(X > 9) = 1 P(X ≤ 9). De la question c, on déduit $P(X > 9) \approx 0.0228$.

Méthode

- On identifie les paramètres μ et σ de la loi normale étu-
- On utilise la calculatrice ou le tableur pour obtenir les probabilités de type : $P(c \leq X \leq d)$.
- on utilise les formules adaptées pour les probabilités de type $P(X \le d)$ ou P(X > c).

XERCICES D'APPLICATION 14 à 17

Savoir utiliser les probabilités d'intervalles remarquables avec la loi normale

Soit *X* une variable aléatoire suivant la loi normale $\mathcal{N}(\mu; \sigma)$, avec $\mu = 10$.

- 1. Dans cette question uniquement, on suppose que $\sigma = 2$. Donner des valeurs approchées des probabilités suivantes.
- **a.** $P(8 \le X \le 12)$
- **b.** $P(6 \le X \le 14)$
- c. $P(4 \le X \le 16)$
- 2. a. Déterminer une valeur approchée de σ pour que : $P(4 \le X \le 16) \approx 0.95$.
- b. Retrouver ce résultat à l'aide du graphique ci-contre.

→ Résolution

1. a. On a $\mu = 10$ et $\sigma = 2$.

On en déduit : $P(8 \le X \le 12) = P(\mu - \sigma \le X \le \mu + \sigma) \approx 0,683$.

- **b.** De façon analogue $P(6 \le X \le 14) = P(\mu 2\sigma \le X \le \mu + 2\sigma) \approx 0.954$.
- c. De même : $P(4 \le X \le 16) = P(\mu 3\sigma \le X \le \mu + 3\sigma) \approx 0.997$.
- 2. a. On a $\mu = 10$ et σ est inconnu. On sait que σ vérifie

 $P(10 - 2\sigma \le X \le 10 + 2\sigma) \approx 0.95$. En cherchant σ tel que $10 - 2\sigma \approx 4$ et

 $10 + 2\sigma \approx 16$, on obtient $2\sigma \approx 6$, et donc $\sigma \approx 3$.

b. D'après le graphique, $P(7 \le X \le 13) = P(\mu - 3 \le X \le \mu + 3) \approx 0,683$. Or $P(\mu - \sigma \le X \le \mu + \sigma) \approx 0,683$, donc $\sigma \approx 3$.

Méthode

- On identifie les paramètres μ et σ de la loi normale étudiée.
- On remarque que tous les événements considérés sont de la forme :

 $(\mu - t\sigma \leq X \leq \mu + t\sigma).$

- on utilise les probabilités connues pour ce type d'intervalle avec la loi normale.
- n utilise la lecture graphique d'une probabilité de type $P(c \leq X \leq d)$.

EXERCICES D'APPLICATION 18 à 21