

GNSS Outlines for RPD Challenge TECH DAY, RPD Challenge 2020 7th NOV 2020

Dinesh Manandhar

Center for Spatial Information Science

The University of Tokyo

Contact Information: dinesh@csis.u-tokyo.ac.jp

What is GNSS?

Global Navigation Satellite System (GNSS) is the standard generic term for all navigation satellites systems like GPS, GLONASS, GALILEO, BeiDou, QZSS, NAVIC.

- Global Constellation
 - GPS USA
 - GLONASS, Russia
 - Galileo, Europe
 - BeiDou (COMPASS) / BDS, China

- Regional Constellation
 - QZSS, Japan
 - NAVIC (IRNSS), India

GPS L1C/A Signal Structure

- Carrier Signal
 - It defines the frequency of the signal
 - For example:
 - GPS L1 is 1575.42MHz, L2 is 1227.60MHz and L5 is 1176.45MHz
- PRN Code
 - Used to identify satellite ID in CDMA
 - Requires to modulate the data
 - Should have good auto-correlation and cross-correlation properties
- Navigation Data
 - Includes satellite orbit related data (ephemeris data)
 - Includes satellite clock related information (clock errors etc)

GPS, QZSS L1C/A Signal Structure

GNSS Architecture

GPS Signals

Band	Frequency, MHz	Signal Type	Code Length msec	Chip Rate, MHz	Modulation Type	Data / Symbol Rate, bps/sps	Notes
	1575.42	C/A	1	1.023	BPSK	50	Legacy Signal
L1		C_Data	10	1.023	BOC(1,1)	50 / 100	From 2014
LI		C_{Pilot}	10	1.023	ТМВОС	No Data	BOC(1,1) & BOC(6,1)
		P(Y)	7 days	10.23	BPSK		Restricted
	1227.60 1176.45	CM	20	0.5115	DDC!/	25 / 50	Modulated by TDM of
L2		CL	1500	0.5115	BPSK	No Data	(L2CM xor Data) and L2CL
		P(Y)	7days	10.23	BPSK		
L5		I	1	10.23	BPSK	50 / 100	Provides Higher Accuracy
LJ		Q	1	10.25		No Data	

Multi-GNSS Signals

GPS Skyplots: Tokyo, Jakarta and Maputo Tokyo-A Base-Station Tokyo-A Base-Station Maputo Base-Station

Data Formats: NMEA, RINEX, RTCM

References: https://www.nmea.org/

http://freenmea.net/docs

National Marine Electronics Association (NMEA) Format

- NMEA is format to output measurement data from a sensor in a predefined format in ASCII
- In the case of GPS, It outputs GPS position, velocity, time and satellite related data
- NMEA sentences (output) begins with a "Talker ID" and "Message Description"
 - Example:
 - \$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47
 - Position, Time and Fix Status Data
 - "\$GP" is Talker ID
 - "GGA" is Message Description to indicate for Position Data
 - \$GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A
 - Position, Velocity and Time Data

NMEA Data Format

GGA - Fix data which provide 3D location and accuracy data. \$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47

Where: GGA Global Positioning System Fix Data

123519 Fix taken at 12:35:19 UTC 4807.038, N Latitude 48 deg 07.038' N Longitude 11 deg 31.000' E

1 Fix quality:

0 = invalid,

1 = GPS fix (SPS),

2 = DGPS fix,

3 = PPS fix,

4 = Real Time Kinematic

5 = Float RTK

6 = estimated (dead reckoning) (2.3 feature)

7 = Manual input mode

8 = Simulation mode

Number of satellites being tracked

0.9 Horizontal dilution of position

545.4,M Altitude, Meters, above mean sea level

46.9,M Height of geoid (mean sea level) above WGS84 ellipsoid

(empty field) time in seconds since last DGPS update (empty field) DGPS station ID number

*47 the checksum data, always begins with *

NMEA Data Format

RMC - Fix data which provide 3D location and accuracy data. \$GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A

RMC Position, Velocity and Time Data

123519 Fix taken at 12:35:19 UTC

A Status A = Active or V = Void

4807.038, N Latitude 48 deg 07.038' N

01131.000, E Longitude 11 deg 31.000' E

O22.4 Speed over the ground in knots

084.4 Track angle in degrees (True)

230394 Date (DDMMYY)

003.1 Magnetic variation in degrees

*6A the checksum data, always begins with *

RINEX Data Format

- RINEX: Receiver Independent Exchange Format is a data exchange format for raw satellite data among different types of receivers.
 - Different types of receivers may output position and raw data in proprietary formats
 - For post-processing of data using DGPS or RTK it is necessary to use data from different types of receivers. A common data format is necessary for this purpose.
 - Example: How to post process data from Trimble, Novatel and Septenrtio receivers to compute a position?
- RINEX only provides Raw Data. It does not provide position output.
 - User has to post-process RINEX data to compute position
 - Raw data consists of Pseudorage, Carrierphase, Doppler, SNR
- RINEX basically consists of two data types
 - "*.*N" file for Satellite and Ephemeris Related data.
 - Also called Navigation Data
 - "*.*O" file for Signal Observation Data like Pseudorange, Carrier Phase, Doppler, SNR
 - Also called Observation Data
- The latest RINEX version is 3.04, 23 NOV 2018
 - Note: Not all the software and receivers are yet compatible with the latest version
 - Make sure which version of RINEX works the best with your software

RINEX "N" File for GPS

2.11 NAVIGATION DATA	GPS (GPS)	RINEX VERSION / TYPE
cnvtToRINEX 2.90.0 convertToRINEX OPR	05-Jul-17 03:38 UTC	PGM / RUN BY / DATE
		COMMENT
0.8382D-08 0.2235D-07 -0.5960D-07 -	0.1192D-06	ION ALPHA
0.8602D+05 0.6554D+05 -0.1311D+06 -	0.4588D+06	ION BETA
-0.931322574615D-09-0.355271367880D-1	.4 405504 1947	DELTA-UTC: A0,A1,T,W
18		LEAP SECONDS
		END OF HEADER
32 17 05 01 00 00 0.0-0.400723423809D-0	3-0.110276232590D-1	0.040000000000000000000000000000000000
0.37000000000D+02-0.80625000000D+0	1 0.455840416154D-0	8-0.192420920137D+01
-0.353902578354D-06 0.111064908560D-0	2 0.826455652714D-0	5 0.515371503258D+04
0.86400000000D+05-0.782310962677D-0	7 0.675647076441D-0	1-0.838190317154D-07
0.958529124300D+00 0.221156250000D+0	3-0.265074890978D+0	1-0.796390315710D-08
-0.389659088008D-09 0.10000000000D+0	1 0.194700000000D+0	4 0.00000000000D+00
0.2400000000D+01 0.0000000000D+0	0 0.465661287308D-0	9 0.37000000000D+02
0.79512000000D+05 0.4000000000D+0	1 0.000000000000D+0	0.040000000000000000000000000000000000
24 17 05 01 00 00 0.0-0.341213308275D-0	4-0.454747350886D-1	2 0.00000000000D+00
0.10000000000D+02 0.78781250000D+0	2 0.459340561950D-0	8 0.167267059468D+01
0.404566526413D-05 0.564297637902D-0	2 0.102464109659D-0	4 0.515370226479D+04
0.86400000000D+05-0.782310962677D-0	7 0.108986675687D+0	1 0.484287738800D-07
0.945651423640D+00 0.170906250000D+0	3 0.490563049326D+0	0-0.815641117584D-08
-0.128933942045D-09 0.10000000000D+0	1 0.19470000000D+0	4 0.00000000000D+00
0.2400000000D+01 0.0000000000D+0	0 0.279396772385D-0	8 0.10000000000D+02
0.79218000000D+05 0.4000000000D+0	1 0.000000000000D+0	0.000000000000000000000000000000000000

RINEX "O" File GPS, GLONASS, GALILEO, QZSS, SBAS

cnvt'		11 RINEX 2	2.90.0			DATA			(ED) 7 03:38	RINEX VERSION / TYPE PGM / RUN BY / DATE COMMENT
KMBA										MARKER NAME
KMBA										MARKER NUMBER
DM				UT						OBSERVER / AGENCY
55361	R50	102		TRIME	BLE NET	rR9	5.20			REC # / TYPE / VERS
				UNKNO	OWN EXT					ANT # / TYPE
-39	555	10.898	32 335	7111.6	5791 3	3697796	.5495			APPROX POSITION XYZ
		0.000	00	0.0	0000	0	.0000			ANTENNA: DELTA H/E/N
	1	1	0							WAVELENGTH FACT L1/2
	8	C1	C2	C3	L1	L2	L3	P1	P2	# / TYPES OF OBSERV
	1.	000								INTERVAL
201	17	5	1	0	0	0.0	000000	G	SPS	TIME OF FIRST OBS
201	17	5	1	23	59	59.0	000000	G	SPS	TIME OF LAST OBS
	0									RCV CLOCK OFFS APPL
:	18									LEAP SECONDS
,	59									# OF SATELLITES
G(01	23351	23350	0	23350	46694	0	0	23344	PRN / # OF OBS
G(02	22293	0	0	22293	22286	0	0	22286	PRN / # OF OBS
		19633			19632		0		19627	PRN / # OF OBS
		25303		_	25299		0		25297	PRN / # OF OBS
		24709		_	24709		0		24703	PRN / # OF OBS
G(07	27766	27764	0	27764	55505	0	0	27741	PRN / # OF OBS

RINEX "O" File, Continued from previous slide

S37 86400	0 0 86400	0 0 0	0 PRN	/ # OF OBS
S40 56700	0 0 56700	0 0 0	0 PRN	/ # OF OBS
CARRIER PHASE MEA	ASUREMENTS: PHASE	SHIFTS REMOVED	COM	MENT
			END	OF HEADER
17 5 1 0 0	0.0000000 0 19G	10G12G14G15G18G	24G25G31G32R01R	02R03
	R	11R12R13S28S29S	37 S 40	
21375379.406 7	21375388.078 9		112328384.475	7 87528640.180 9
		21375388.41448		
20991588.469 7	20991594.418 9		110311559.942	7 85957091.970 9
		20991594.71548		
23097788.500 6			121379711.146	6 94581624.25147
		23097793.85247		
24539464.648 6	24539473.480 8		128955722.954	6 100484989.893 8
		24539473.66046		
21890081.000 6			115033147.870	6 89636240.02147
		21890086.53547		
22760846.398 6	22760855.313 9		119609048.681	6 93201876.319 9
		22760854.86347		
20303284.266 7	20303294.227 9		106694510.219	7 83138615.317 9
		20303294.01248		
23440741.258 6	23440748.211 8		123181935.734	6 95985961.100 8
		23440748.62147		
21395760.742 7	21395769.145 9		112435502.496	7 87612113.685 9
		21395769.30548		

RTCM

- RTCM: Radio Technical Commission for Maritime Services
 - An internationally accepted data transmission standard for base-station data transmission to a rover defined. The standards are defined and maintained by RTCM SC-104
- RTCM SC-104 (Special Committee 104)
 - Defines data formats for Differential GPS and
 - RTK (Real-Time Kinematic Operations)
- The Current Version is RTCM-3 (10403.3)
- Refer https://www.rtcm.org/ for detail information and document
 - Documents are not free
 - A normal user does not need RTCM document.
 - GNSS receivers with base-station capabilities will setup necessary messages for RTK
 - If you are developing a system or application you may need it

Coordinate Systems

Satellite

Geodetic Coordinate System

ECEF (Earth Centered, Earth Fixed)

ECEF Coordinate System is expressed by assuming the center of the earth coordinate as (0, 0, 0)

Coordinate Conversion from ECEF to Geodetic and vice versa

Geodetic Latitude, Longitude & Height to ECEF (X, Y, Z)

$$X = (N + h) \cos \varphi \cos \lambda$$

$$Y = (N + h) \cos \varphi \sin \lambda$$

$$Z = [N(1 - e^2) + h] \sin \varphi$$

$$\varphi = Latitude$$
 $\lambda = Longitude$
h = Height above Ellipsoid

ECEF (X, Y, Z) to Geodetic Latitude, Longitude & Height

$$\varphi$$
=atan $\left(\frac{Z+e^2b \sin^3\theta}{p-e^2a\cos^3\theta}\right)$

$$\lambda$$
=atan2(y , x)

$$h = \frac{P}{\cos \varphi} - N(\varphi)$$

$$P = \sqrt{x^2 + y^2}$$

$$\theta = atan\left(\frac{Za}{Pb}\right)$$

$$N(\varphi) = \frac{a}{\sqrt{1 - e^2 \sin^2 \varphi}}$$

Geodetic Datum: Geometric Earth Model

GPS uses WGS-84 Datum

But, topographic maps and many other maps use different datum. Before using GPS data on these maps, its necessary to convert GPS coordinates from WGS-84 to local coordinate system and datum. Many GPS software have this tool. Also, GPS receivers have built-in datum selection capabilities.

Check your receiver settings before using.

WGS-84 Geodetic Datum Ellipsoidal Parameters
Semi-Minor Axis, b = 6356752.3142m
Semi-Major Axis, a = 6378137.0m
Flattening, f = (a-b)/a
= 1/298.257223563
First Eccentricity Square = e^2 = 2f-f^2
= 0.00669437999013

Ellipsoid, Geoid and Mean Sea Level (MSL)

MSL Height (H) = Ellipsoidal height (h) – Geoid height (N) Geoid Height is negative if its below Ellipsoidal height Example at point (1): h = 1200m, N = -30mH = h - N = 1200 - (-30) = 1200 + 30 = 1230m Example at point (2): h = 300m, N = +15mH = h - N = 300 - 15 = 285m

Height Data Output in u-blox Receiver, NMEA Sentence, \$GNGGA Sentence

\$GNVTG,,T,,M,0.010,N,0.018,K,D*30

MSL (Altitude)

Geoid Height

\$GNGGA,012039.00,3554.18235,N,13956.35867,E,2,12,0.48,54.4,M,39.6,M,0.0,0000*5D

\$GNGSA,A,3,03,04,06,09,17,19,22,28,194,195,02,,0.92,0.48,0.78,1*06

\$GNGSA,A,3,11,12,04,24,19,31,33,,,,,0.92,0.48,0.78,3*00

\$GNGSA,A,3,30,01,03,14,08,28,33,04,02,07,10,13,0.92,0.48,0.78,4*08

\$GPGSV,5,1,17,01,18,076,,02,04,279,36,03,43,045,43,04,34,109,41,1*6C

\$GPGSV,5,2,17,06,38,295,43,09,26,152,40,11,02,107,29,17,74,330,47,1*67

\$GPGSV,5,3,17,19,53,320,45,22,22,048,39,28,36,213,43,41,18,249,39,1*6D

\$GPGSV,5,4,17,50,46,201,40,193,52,172,43,194,16,193,40,195,85,163,46,1*5E

\$GPGSV,5,5,17,199,46,201,37,1*66

\$GAGSV,2,1,07,04,25,175,40,11,28,299,37,12,65,007,43,19,50,105,40,7*72

\$GAGSV,2,2,07,24,27,245,41,31,09,198,36,33,33,082,42,7*43

\$GBGSV,4,1,15,01,48,172,43,02,19,248,36,03,39,225,43,04,44,148,42,1*7C

\$GBGSV,4,2,15,06,00,185,29,07,39,214,41,08,53,305,43,10,44,248,42,1*7C

\$GBGSV,4,3,15,13,33,283,42,14,23,043,38,27,55,323,48,28,61,092,48,1*71

\$GBGSV,4,4,15,30,05,306,36,32,17,206,42,33,48,055,46,1*4F

\$GNGLL,3554.18235,N,13956.35867,E,012039.00,A,D*76

	NMEA - GxGGA (Glob	al Positioning Syst	em Fix Data)	
		9.1	11.5	D 18
N	Parameter	Value	Unit	Description
	LUIC .	012040.00	hhmmss.sss	Universal time coordinated
	Lat	3554.18235	ddmm.mmmm	Latitude
	Northing Indicator	N		N=North, S=South
	Lon	13956.35868	dddmm.mmmm	Longitude
	Easting Indicated	Ε		E=East, W=West
	Status	2		0=Invalid, 1=2D/3D, 2=DGNSS, 4=Fixed RTK, 5=Float RTK, 6=Dead Reckoning
	SVs Used	12		Number of SVs used for Navigation
	HDOP	0.48		Horizontal Dilution of Precision
	Alt (MSL)	54.4	m	Altitude (above means sea level)
	Unit	М		M=Meters
	Geoid Sep.	39.6	m	Geoid Separation = Alt(HAE) - Alt(MSL)
Е	Unit	М		M=Meters
니	Age of DGNSS Corr	0.0	\$	Age of Differential Corrections
	DGNSS Ref Station	0000		ID of DGNSS Reference Station

The NMEA sentences in this figure are from u-blox receiver.

NMEA format uses "Mean Sea Level" for height data (shown in blue texts).

Also it provides Geoid Height (Geoid Separation) value.

GPS by default is Ellipsoidal height and this height is converted to Mean Sea Level height using the geoid Height (shown in red texts).

This means, u-blox receiver uses a built-in database of Geoid Height.

U-blox also outputs Ellipsoidal height in proprietary message \$PUBX,00 (marked as altRef) \$PUBX,00,time,lat,NS,long,EW,altRef,navStat,hAcc,vAcc,SOG,COG,vVel,diffAge,HDOP,VDO P,TDOP,numSvs,reserved,DR,*cs<CR><LF>

altRef → Altitude above user datum ellipsoid

Geoid Separation Geoid Height

MSL (Altitude)

\$GNVTG,,T,,M,0.010,N,0.018,K,D*30

\$GNGGA,012039.00,3554.18235,N,13956.35867,E,2,12,0.48,54.4,M,39.6,M,0.0,0000*5D

\$GNGSA,A,3,03,04,06,09,17,19,22,28,194,195,02,,0.92,0.48,0.78,1*06

\$GNGSA,A,3,11,12,04,24,19,31,33,,,,,0.92,0.48,0.78,3*00

\$GNGSA,A,3,30,01,03,14,08,28,33,04,02,07,10,13,0.92,0.48,0.78,4*08

\$GPGSV,5,1,17,01,18,076,,02,04,279,36,03,43,045,43,04,34,109,41,1*6C

\$GPGSV,5,2,17,06,38,295,43,09,26,152,40,11,02,107,29,17,74,330,47,1*67

\$GPGSV,5,3,17,19,53,320,45,22,22,048,39,28,36,213,43,41,18,249,39,1*6D

\$GPGSV,5,4,17,50,46,201,40,193,52,172,43,194,16,193,40,195,85,163,46,1*5E

\$GPGSV,5,5,17,199,46,201,37,1*66

\$GAGSV,2,1,07,04,25,175,40,11,28,299,37,12,65,007,43,19,50,105,40,7*72

\$GAGSV,2,2,07,24,27,245,41,31,09,198,36,33,33,082,42,7*43

\$GBGSV,4,1,15,01,48,172,43,02,19,248,36,03,39,225,43,04,44,148,42,1*7C

\$GBGSV,4,2,15,06,00,185,29,07,39,214,41,08,53,305,43,10,44,248,42,1*7C

\$GBGSV,4,3,15,13,33,283,42,14,23,043,38,27,55,323,48,28,61,092,48,1*71

\$GBGSV,4,4,15,30,05,306,36,32,17,206,42,33,48,055,46,1*4F

\$GNGLL,3554.18235,N,13956.35867,E,012039.00,A,D*76

NMEA - GxGGA (Glob	MEA - GxGGA (Global Positioning System Fix Data)						
Parameter	Value	Unit	Description				
UTC. Lat	012040.00 3554.18235	hhmmss.sss ddmm.mmmm					
Northing Indicator Lon	N 13956.3586 <u>8</u>	dddmm.mmmm	N=North, S=South Longitude				
Easting Indicates Status	E 2		E=East, W=West 0=Invalid, 1=2D/3D, 2=DGNSS, 4=Fixed RTK, 5=Float RTK, 6=Dead Reckoning				
SVs Used HDOP	12 0.48		Number of SVs used for Navigation Horizontal Dilution of Precision				
Alt (MSL) Unit	54.4 M		Altitude (above means sea level) M=Meters Conid Connection (ANTI ATT) ANTI (Connection)				
Geoid Sep. Unit	39.6 M	m	M=Meters				
Age of DGNSS Corr DGNSS Ref Station	0.0 0000	S	Age of Differential Corrections ID of DGNSS Reference Station				

The NMEA sentences in this figure are from u-blox receiver.

NMEA format uses "Mean Sea Level" for height data (shown in blue texts).

Also it provides Geoid Height (Geoid Separation) value.

GPS by default is Ellipsoidal height and this height is converted to Mean Sea Level height using the geoid Height (shown in red texts).

This means, u-blox receiver uses a built-in database of Geoid Height.

U-blox also outputs Ellipsoidal height in proprietary message \$PUBX,00 (marked as altRef) \$PUBX,00,time,lat,NS,long,EW,altRef,navStat,hAcc,vAcc,SOG,COG,vVel,diffAge,HDOP,VDO P,TDOP,numSvs,reserved,DR,*cs<CR><LF>

altRef → Altitude above user datum ellipsoid

Points to Be Careful in GPS Survey

Datum

- Which Datum is used for GPS Survey?
- By default, GPS uses WGS-84
- But, your Map may be using different datum like Everest
 - Make Sure that Your Map and Your Coordinates from the GPS are in the same Datum, if not, datum conversion is necessary
 - You can get necessary transformation parameters from your country's survey department

Height

- Which Height is used?
- By default GPS uses Ellipsoidal Height
- But, your Map may be using Mean Sea Level (MSL or Topographic) Height
 - You need to convert from Ellipsoidal Height into MSL Height
 - Use Ellipsoidal and Geoid height Difference Data for your survey region
 - You can get it from your country's survey office

GNSS Errors

Background Information: Accuracy vs. Precision

- Accuracy
 - Capable of providing a correct measurement
 - Measurement is compared with true value
 - Affected by systematic error
- Precision
 - Capable of providing repeatable and reliable measurement
 - Statistical analysis of measurement provides the precision
 - Measure of random error
 - Systematic error has no effect

GNSS Measurement Errors

Measure	Abbreviation	Definition
Root Mean Square	RMS	The square root of the average of the squared errors
Twice Distance RMS	2D RMS	Twice the RMS of the horizontal errors
Circular Error Probable	СЕР	A circle's radius, centered at the true antenna position, containing 50% of the points in the horizontal scatter plot
Horizontal 95% Accuracy	R95	A circle's radius, centered at the true antenna position, containing 95% of the points in the horizontal scatter plot
Spherical Error Probable	SEP	A sphere's radius centered at the true antenna position, containing 50% of the points in the three dimensional scatter plot

Source: GPS Accuracy: Lies, Damn Lies, and Statistics, GPS World, JAN 1998 https://www.gpsworld.com/gps-accuracy-lies-damn-lies-and-statistics/

Commonly Used GNSS Performance Measurements

- TTFF
 - True Time to First Fix
 - · Parameter: Cold Start, Warm Start, Hot Start
- Standard Accuracy
 - Accuracy attainable without any correction techniques
 - Few meters of accuracy, normally within 10m in open sky
- DGPS Accuracy
 - Accuracy attainable by differential correction data
 - Code-phase correction
 - 1 3m accuracy
- RTK / PPK Accuracy
 - Accuracy attainable by differential correction data
 - Use both Code-Phase and Carrier Phase correction
 - Centimeter level accuracy
 - RTK: Real Time Kinematic
 - PPK: Post Processing Kinematic
- PPP Accuracy
 - · Precise Point Positioning
 - Centimeter to decimeter level accuracy
 - Various modes of PPP available
 - QZSS MADOCA PPP
 - 10 20 CM accuracy
 - QZSS CLAS
 - Few centimeter accuracy

TTFF and Typical Example Values

TTFF

- Cold Start : < 36 seconds
 - Time required to output first position data since the receiver power is on
 - No reference data like time or almanac are available
- Warm Start : < 6 seconds
 - Time required to output first position data since the receiver power is on with the latest satellite almanac data in the receiver's memory
 - Time and almanac related reference data are already known
- Hot Start : < 1 second
 - Receiver has already output position data
 - Time to reacquire an already tracked satellite due to temporary blockage by buildings or trees

Performance Measurement of RTK Accuracy

- A fix error and a variable error with respect to base-length is given
 - Such as : x cm + y ppm
 - Example: 2cm + 1ppm
 - There is a fix error of 2cm plus 1ppm error due to base-length between the Base and Rover
 - 1ppm → 1 parts per million
 - 1cm of error in 1 million centimeter distance between the Base and the Rover
 - 1cm of error in 1000000 centimeter distance between the Base and the Rover
 - 1cm of error in 10000 meter distance between the Base and the Rover
 - 1cm of error in 10 kilometer distance between the Base and the Rover
 - -> 1cm of error for every 10Km of distance between the Base and the Rover
 - + 4cm of error for 40Km of distance between the Base and the Rover
 - Thus the total error is: 2cm + 4cm due to 40Km of base length
 - The longer the base-length, the larger the error
 - Do not assume that this error is linear
 - And it may not be valid for longer base-lines
 - Normally the recommended base-length for RTK for a Geodetic Receiver is 40Km

Low-Cost Receiver Systems

High-End Survey Grade Receivers

Multi-frequency

• GPS : L1/L2/L5

• GLONASS : L1/L2/L3

• GALILEO : E1/E5/E6

• BDS : B1/B2/B3

• QZSS : L1/L2/L5/L6

• NAVIC : L5/S

Multi-system

 GPS, GLONASS, GALILEO, BeiDou, QZSS, NAVIC, SBAS etc

 Price varies from \$3,000 to \$30,000 or more

Low-Cost Receivers

L1/I

- Multi-System
 - GPS, GLONASS, GALILEO, BeiDou, QZSS, SBAS etc
- Basically Single Frequency
 - L1/E1/B1-Band
 - Very soon: Multi-System, Multi Frequency, L1/L2 or L1/L5
 - Future trend for Mass Market System will be L1/L5
 - Some chip makers have already announced Multi-System, Multi-Frequency GNSS Chips for Mass Market
- Low Cost:
 - Less than \$300 (Multi-GNSS, L1 Only) including Antenna and all necessary Hardware, Software
 - Our target is within \$100 or less including everything

L1/E1/B1*

*Note: Only one signal type from each system is processed e.g. GPS has L1C/A and L1C in L1, ,but only L1C/A is used in Low-Cost Receiver

Our Definition of Low-Cost Receiver

• Price : \$100 or less

Accuracy : Better than 100cm

• Weight : 100g or less

(Without Battery)

100³ \$100 x 100cm x 100g

Will it be possible?

Question?

Although the Normal Accuracy of GPS is about 10m, why can we get Centimeter Level Accuracy?

GPS Position Accuracy

How to achieve accuracy from few meters to few centimeters?

meter

SPP (Single Point Position)

DGPS (Differential GPS)
Code-phase observation

RTK (Real Time Kinematic) Carrier-phase observation

Errors in GPS Observation (L1C/A Signal)

Error Sources	One-Sigma Error , m		Comments	
	Total	DGPS	Comments	
Satellite Orbit	2.0	0.0	Common errors are removed	
Satellite Clock	2.0	0.0		
Ionosphere Error	4.0	0.4	Common errors are	
Troposphere Error	0.7	0.2	reduced	
Multipath	1.4	1.4		
Receiver Circuits	0.5	0.5		

If we can remove common errors, position accuracy can be increased.

Common errors are: Satellite Orbit Errors, Satellite Clock Errors and Atmospheric Errors (within few km)

Values in the Table are just for illustrative purpose, not the exact measured values. Table Source: http://www.edu-observatory.org/gps/gps accuracy.html#Multipath

Center for Spatial Information Science The University of Tokyo How to Remove or Minimize Common Errors? Use Differential Correction

How to Remove or Minimize Common Errors? Principle of QZSS MADOCA and CLAS Services

Correction Data:

Satellite Orbit Error of GPS and Other Satellites
Satellite Clock Error of GPS and Other Satellites

Correction data for other satellites will also be provided

Base-Station not required

Low-Cost RTK Receiver System

TYPE R2 Type B: Low-Cost, High-Accuracy Receiver System For Post-Processing & Rover Mode Only

TYPE A1 Type C: Low-Cost, High-Accuracy Receiver System Real-Time and Post-Processing, Rover Mode Only

GNSS Antenna Rover

GNSS
Receiver

RTCM for
RTK
Ver.: 1.0

Internet

NTRIP
Caster

TYPE MA

Type D: Low-Cost, High-Accuracy Receiver System
Real-Time and Post-Processing, Rover Mode Only

Screen Shots of RTKDROID and MADROID

Connect GNSS receiver to Android device

(1) RTKDROID :
For RTK or PPK

(2) MADROID:
for MADOCA-PPP,
MADOCA-PPP/AR (future)

Low-Cost MADOCA Receiver Systems: Product Types

	MAD-WIN	MAD-π	MADROID
Platform / OS	Windows	RaspberryPi 3B or 4B	Android Device
GNSS Receiver	Default : u-blox F9P Other: Any dual-frequency Receiver	Default : u-blox F9P only	Default : u-blox F9P Other: Any dual-frequency Receiver
MADOCA Receiver	U-blox D9 only	U-blox D9 only	NA (MADOCA Online Correction Data only)
GNSS Receiver Data Format	UBX, SBF, RTCM3	UBX SBF, RTCM3 (For online GNSS data)	UBX
MADOCA Correction Data Format (Satellite)	UBX only	UBX only	NA
MADOCA Correction Data Format (Online)	Online Services from GPAS, UTokyo (Test Level) UBX or RTCM3	Online Services from GPAS, UTokyo (Test Level) Online Services UBX or RTCM3	GPAS Services, RTCM3 UTokyo Online Service in the next release
System Architecture	Antenna L1/L2 GNSS + MADOCA Decoder (Windows)	Antenna L1/L2 GNSS + MADOCA Decoder Raspberry Pi 3B or 4B	Antenna L1/L2 GNSS + MADOCA Decoder

Low-Cost MADOCA Receiver System: Antenna and Receiver

MAD-WIN and MAD-π Screen Shots

Receiver and MADOCA Correction Data Setup Menu

MADOCA PPP Output Display

Log of MADOCA PPP Solution, Receiver Raw Data and MADOCA Correction Data

MAD-π

MADOCA Receiver based on RaspberryPi / Dual Frequency Receiver + MADOCA Decoder

MADROID Screenshots

MADOCA PPP based on Android Dual Frequency Receiver + Online MADOCA Data

MADROID TEST Results: Tokyo

GNSS Applications

GNSS Applications - 1

- Surveying, Mapping and Geodesy
- Transportation
 - Car Navigation, ITS, ADAS, V2X
 - Railway Network
 - Marine : AIS, VMS
 - Aviation : SBAS / GBAS
 - UAV / DRONE
 - 3-D Mapping without GCP
- Vehicle Accidents / Emergency Services
 - eCall/ ERA-GLONASS / E-911
- Taxation / Insurance
 - Taxation based on location or distance traveled

GNSS Applications - 2

- Legal and Law Enforcement
 - Fishing Zone Management, Illegal Fishing Control
 - Crime Prevention
- Agriculture
 - Precise farming, Auto or Semi-Auto Driving of Tractors
 - Product Supply-Chain Management
- Location Based Applications
 - Services, Entertainment, Advertisement, Gaming, Marketing
- Warning during Disasters
 - EWS of QZSS, SAR of GALILEO
- Geo-Fencing / Geo-Securities
- Robotics
 - Navigation, Actions based on Location
- Scientific Applications
 - Space Weather: Scintillation, Radio Occultation, Plasma Bubble

GNSS Applications - 3

- Telecommunication
 - Synchronize cell towers, microsecond order for CDMA
 - Network Time Protocol, millisecond order
- Power Grid
 - Phase Synchronization between grids is required for higher efficiency and avoid power failures
- Time Stamping of
 - Financial and Banking Transactions
 - Legal, Clerical, Shipping Documents
- Scientific Timing Applications
 - Time stamping of events
 - e. g. Global VLBI Observation, earthquake occurrences, arrival of neutrino in particle physics

Contact and Additional Information

Homepage

Main Page : https://home.csis.u-tokyo.ac.jp/~dinesh/

Webinar Page : https://home.csis.u-tokyo.ac.jp/~dinesh/WEBINAR.htm

https://gnss.peatix.com/

• Training Data etc. : https://home.csis.u-tokyo.ac.jp/~dinesh/GNSS Train.htm

Low-Cost Receiver : https://home.csis.u-tokyo.ac.jp/~dinesh/LCHAR.htm

Facebook : https://www.facebook.com/gnss.lab/

Contact

• E-mail : <u>dinesh@csis.u-tokyo.ac.jp</u>

• Skype : mobilemap