Exemple d'ACP : Les données

	math	scie	fran	lati	d-m
jean	6.0	6.0	5.0	5.5	8
aline	8.0	8.0	8.0	8.0	9
annie	6.0	7.0	11.0	9.5	11
monique	14.5	14.5	15.5	15.0	8
didier	14.0	14.0	12.0	12.5	10
andré	11.0	10.0	5.5	7.0	13
pierre	5.5	7.0	14.0	11.5	10
brigitte	13.0	12.5	8.5	9.5	12
evelyne	9.0	9.5	12.5	12.0	18
Moy.	9.67	9.83	10.22	10.05	11

Données initiales

math	scie	fran	lati	dess
-3.67	-3.83	-5.22	-4.55	-3
-1.67	-1.83	-2.22	-2.05	-2
-3.67	-2.83	0.78	-0.55	0
4.83	4.67	5.28	4.95	-3
4.33	4.17	1.78	2.45	-1
1.33	0.17	-4.72	-3.05	2
-4.17	-2.83	3.78	1.45	-1
3.33	2.67	-1.72	-0.55	1
-0.67	-0.33	2.28	1.95	7
0	0	0	0	0

Données centrées

Calcul des axes

S	=	$\frac{1}{9}X'X$
_		9/1/1

		math	scie	fran	lati	dess
-	math	11.389				
9	scie	9.917	8.944			
1	fran	2.657	4.120	12.062		
I	lati	4.824	5.481	9.293	7.914	
(dess	0.111	0.056	0.389	0.667	8.667

Matrice de variance S

Inertie	% d'inertie	% d'inertie
expliquée	expliquée	cumulée
28.2533	57.69	57.69
12.0747	24.65	82.34
8.6157	17.59	99.94
0.0217	0.04	99.98
0.0099	0.02	100.00

u_1	u_2	из	И4	и5
0.51	0.57	-0.05	0.29	-0.57
0.51	-0.37	-0.01	-0.55	0.55
0.49	0.65	0.11	-0.39	-0.41
0.48	0.32	0.02	0.67	0.45
0.03	0.11	-0.99	-0.03	-0.01

Valeurs propres

Axes factoriels

2 / 16

	1	2	3	4	5
jean	0.89	0.03	0.08	0.00	0.00
aline	0.80	0.03	0.17	0.00	0.00
annie	0.46	0.53	0.00	0.00	0.00
monique	0.89	0.00	0.11	0.00	0.00
didier	0.88	0.10	0.02	0.00	0.00
andré	0.24	0.58	0.19	0.00	0.00
pierre	0.03	0.91	0.07	0.00	0.00
brigitte	0.17	0.74	0.09	0.00	0.00
evelyne	0.05	0.20	0.75	0.00	0.00

	1	2	3	4	5
jean	0.30	0.03	0.09	0.11	0.15
aline	0.06	0.00	0.04	0.04	0.02
annie	0.04	0.11	0.00	0.15	0.00
monique	0.37	0.00	0.14	0.15	0.11
didier	0.15	0.04	0.02	0.03	0.40
andré	0.03	0.20	0.09	0.00	0.25
pierre	0.00	0.36	0.04	0.07	0.02
brigitte	0.02	0.15	0.03	0.30	0.00
evelyne	0.01	0.11	0.56	0.14	0.04

Contributions relatives des axes aux individus

Contributions relatives des individus aux axes

3 / 16

	1	2	3	4	5
jean	-8.70	-1.70	2.55	0.16	0.11
aline	-3.94	-0.72	1.81	0.09	-0.04
annie	-3.22	3.47	0.29	-0.18	-0.02
monique	9.75	0.22	3.54	0.18	-0.09
didier	6.37	-2.17	0.96	-0.07	0.18
andré	-2.97	-4.65	-2.64	0.02	-0.16
pierre	-1.05	6.21	1.67	-0.11	-0.04
brigitte	1.99	-4.07	-1.41	-0.25	0.00
evelyne	1.77	3.40	-6.62	0.15	0.07

	F1	F2	F3	F4	F 5			
math	0.81	-0.58	-0.04	0.01	-0.02			
scie	0.90	-0.43	-0.01	-0.03	0.02			
fran	0.75	0.65	0.09	-0.02	-0.01			
lati	0.92	0.40	0.02	0.04	0.02			
d-m	0.06	0.13	-0.99	0.00	0.00			
\triangle Analyse dans \mathbb{R}^n								

Composantes principales

Taille du cerveau et intelligence : données

- Référence: Reference: Willerman, L., Schultz, R., Rutledge, J. N., and Bigler, E. (1991), "In Vivo Brain Size and Intelligence," Intelligence, 15, 223-228.
- Description: 40 étudiants en psychologie et 7 variables
- Sexe
- 3 mesures d'intelligence
 - FSIQ : Full Scale IQ scores based on the four Wechsler (1981) subtests
 - VIQ : Verbal IQ scores based on the four Wechsler (1981) subtests
 - PIQ: Performance IQ scores based on the four Wechsler (1981) subtests
- Weight : taille de l'étudiant
- Height : poids de l'étudiant
- MRI (Magnetic Resonance Imaging): taille du cerveau

Taille du cerveau et intelligence : ACP

Corrélations

	FSIQ	VIQ	PIQ	WEIG	HEIG	MRI
FSIQ	1.00	0.95	0.93	-0.13	-0.10	0.36
VIQ	0.95	1.00	0.78	-0.16	-0.08	0.34
PIQ	0.93	0.78	1.00	-0.05	-0.09	0.39
WEIG	-0.13	-0.16	-0.05	1.00	0.63	0.43
HEIG	-0.10	-0.08	-0.09	0.63	1.00	0.60
MRI	0.36	0.34	0.39	0.43	0.60	1.00

ACP: valeurs propres

	1	2	3	4	5	6
Variance	2.97	2.09	0.453	0.287	0.189	0.0026
Pourc. de variance	49.57	34.90	7.549	4.790	3.146	0.0432
Pourc. de variance Pourcentage cumulé	49.57	84.47	92.021	96.810	99.957	100.0000

ACP (correlation): Taille du cerveau (individus)

ACP (correlation): Taille du cerveau (individus)

Programme R : fichier notes.txt

math scie	e fran	lati d-m			
jean	6.0	6.0	5.0	5.5	8.0
aline	8.0	8.0	8.0	8.0	9.0
annie	6.0	7.0	11.0	9.5	11.0
monique	14.5	14.5	15.5	15.0	8.0
didier	14.0	14.0	12.0	12.5	10.0
andre	11.0	10.0	5.5	7.0	13.0
pierre	5.5	7.0	14.0	11.5	10.0
brigitte	13.0	12.5	8.5	9.5	12.0
evelyne	9.0	9.5	12.5	12.0	18.0

Programme R : ACP directe

```
data <- read.table('../Data/notes.txt')
                                                       # Initialisation des données
Y <- as.matrix(data)
n \leftarrow dim(Y)[1]
X <- Y-matrix(1,n,1)%*% apply(Y,2,mean)</p>
                                                       # Centrage et réduction éventuelle du tableau
#X <- X/matrix(1,n,1)%*% apply(X,2,sd)
S <- (1/n)*t(X)%*%X
                                                       # Calcul de la matrice de covariance ou de correlation
tmp<-eigen(S,symmetric=TRUE)
                                                       # Calcul des valeurs propres et des axes d'inertie
L <- diag(tmp$values)
U <- tmp$vectors
C <- X%*% U
                                                       # Calcul des composantes principales des individus
COR <- diag(1/apply(X^2,1,sum))%*% C^2
                                                       # Calcul des contributions
CTR <- (1/n)*C^2 %*% diag(1/diag(L))
D <- diag(1/(sgrt((n-1)/n)*sd(X))) %*% U %*% sgrt(L)
                                                       # Représentation des variables
                                                       # Tracé des graphiques
plot(-1:1,-1:1,tvpe="n".xlab='Axe 1',vlab='Axe 2')
text(D[,1],D[,2],colnames(data));abline(h=0);abline(v=0)
curve(sgrt(1-x^2),-1,1,add=TRUE)
curve(-sqrt(1-x^2),-1.1.add=TRUE)
plot(-1:1,-1:1,type="n",xlab='Axe 1',ylab='Axe 3')
text(D[.1].D[.3].colnames(data));abline(h=0);abline(v=0)
curve(sgrt(1-x^2),-1,1,add=TRUE)
curve(-sqrt(1-x^2),-1,1,add=TRUE)
plot(C[.1].C[.2].type="n"):text(C[.1].C[.2].rownames(data)):abline(h=0):abline(v=0)
plot(C[,1],C[,3],type="n");text(C[,1],C[,3],rownames(data));abline(h=0);abline(v=0)
```

Programme R: ACP avec la fonction princomp

```
data <- read.table('../Data/notes.txt')
res<-princomp(data)
summary(res)
(res$sdev)^2
res$loadings
res$scores
plot(res)
biplot(res)
biplot(res,c(1,3))
```

- # Initialisation des données
- # Calcul de l'ACP
- # Quleques exemple de sorties

Utilisation de biplot.princomp

ACP