Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 1, zadanie nr 4

Piotr Chachuła, Cezary Dudkiewicz, Piotr Roszkowski

Spis treści

	1. Projekt	
1.	1. Weryfikacja punktu pracy	
	1.1. Opis postępowania	
2.	2. DMC	
3.	3. Przekształcenie odpowiedzi skokowej	
4.	4. Odpowiedzi skokowe	
	4.1. Wyznaczanie odpowiedzi skokwych	
	4.2. Wyznaczanie charakterystyki statycznej procesu	$\ldots \ldots \ldots \ldots 2^{2}$
	4.3. Wzmocnienie statyczne	

Część I

Projekt

1. Weryfikacja punktu pracy

1.1. Opis postępowania

W celu sprawdzenia poprawności wartości sygnałów $U_{\rm pp}$ i $Y_{\rm pp}$ pobudzono obiekt sterowaniem o wartości $U_{\rm pp}=2,0$ i sprawdzeniu czy stabilizuje się on w punkcjie pracy $Y_{\rm pp}=0,8$. Do symulacji wyjscia obiektu użyto udostępnionej funkcji symulacja_obiektu4Y. Do testów napisano skrypt PROJ1_1.m. Wyniki przedstawiono poniżej.

1.2. Wyniki

Zgodnie z przewidywaniami wyjscie obiektu ustaliło się na wartości $Y_{\rm pp}=2,0.$ Punkt pracy ustalony jest więc poprawnie.

Rys. 1.1. Odpowiedź obiektu na sterowanie
i $U_{\rm pp}=0.8$

```
function [ error ] = doDMC( paras ) % Tylko dla auto
manual=1;
% Tylko dla auto
N=round(paras(1));
Nu=round(paras(2));
lambda=paras(3);
load StepResponse.mat;
% Tylko dla manual
\% \text{ eNs=linspace}(25,100,4);
\% \text{ eNus} = [\text{linspace}(5, 20, 4)];
\% \text{ lambdas} = [0.2, 1, 5];
% Ucinamy moment 0 zeby latwiej było operowac
stepResp=stepResp(2:end);
% Pobieramy horyzont dynamiki obiektu
D=length(stepResp);
% paras = [N, Nu, lambda]
% Wartosci s zaokr glane , zeby fmincon zwraca warto Żci ca Ćkow<mark>i</mark>te
% N=round(N);
% Nu=round(Nu);
% Tylko dla manual
\% for i=1:length(eNs)
%
      N=eNs(i);
%
      for j=1:length(eNus)
%
           Nu=eNus(j);
%
           for k=1:length(lambdas)
%
               lambda=lambdas(k);
error = 0;
% Inicjalizacja macierzy M
M≡zeros (N, Nu);
for j=1:Nu
for i=j:N
M(i, j) = stepResp(i-j+1);
end
end
% Inicjalizacja macierzy Mp
Mp=zeros(N,D-1);
for i=1:N
```

```
for j = 1:D-1
if (i+j) \le D
Mp(i, j) = stepResp(i+j) - stepResp(j);
else
Mp(i, j) = stepResp(end) - stepResp(j);
end
end
end
% Liczymy macierze K, Ke, Ku
K=(M'*M+lambda*lambda*eye(Nu))^(-1)*M';
Ke=sum(K(1,:));
Ku=K(1,:)*Mp;
% Inicjalizujemy macierze przechowujace zmienne
sim_len=1200;
dUp=zeros(D-1,1);
Y=zeros(sim_len,1);
U=zeros(sim_len,1);
du=zeros(sim_len,1);
e=zeros(sim_len,1);
y=zeros(sim_len,1);
u=zeros(sim_len,1);
Yzad=zeros (sim_len, 1);
kk=linspace(1,sim_len,sim_len);
% Tworzymy horyzont wartości zadanej
Yzad(1:D+11)=0.8;
Yzad(D+12:sim len/3-1)=1.0;
Yzad(sim\_len/3:2*sim\_len/3-1)=0.6;
Yzad(2*sim\_len/3:sim\_len) = 0.7;
% Ustalamy wartości przed rozpoczeciem symulacji na wartości w punktu pracy
Ypp = 0.8;
Upp = 2.0;
Y(1:D+11)=0.8;
U(1:D+11)=2.0;
% Wprowadzamy ograniczenia
Umin = 1.2;
Umax = 2.8:
deltaumax = 0.25;
deltaumin = -0.25;
umin=Umin-Upp;
umax=Umax-Upp;
% Poczatek symulacji – zaczynamy w tej chwili w celu uproszczenia
% pozyskiwania wektora dUp
for k=D+12:sim_len
% Symulujemy wyjscie obiektu
Y(k)=symulacja obiektu4Y(U(k-10),U(k-11),Y(k-1),Y(k-2));
% Rzutujemy wartosc wyjscia wzgledem punktu pracy
y(k)=Y(k)-Ypp;
% Liczymy uchyb i uaktualniamy wspolczynnik bledu
e(k)=Yzad(k)-Y(k);
error=error+e(k)^2;
% Pozyskujemy wektor dUp z wektora du
```

```
dUp=du(k-D+1:k-1);
dUp=flip (dUp);
% Liczymy wartosc zmiany sterowania
 du_wyliczone=Ke*e(k)-Ku*dUp;
% Rzutowanie ograniczen na wartosc sterowania
 if du_wyliczone<deltaumin
 du_wyliczone=deltaumin;
 elseif du_wyliczone>deltaumax
 du wyliczone=deltaumax;
 end
% Rzutowanie ograniczen na wartosc zmiany sterowania
 if du_wyliczone+u(k-1)<umin
 du wyliczone=umin-u(k-1);
 elseif du_wyliczone+u(k-1)>umax
 du_wyliczone=umax-u(k-1);
 \quad \text{end} \quad
du(k)=du_wyliczone;
% Liczymy wartosc sterowania i ja rzutujemy wzgledem punktu pracy
 u(k)=u(k-1)+du(k);
 U(k)=u(k)+Upp;
 end
 plot(Y);
 hold on;
 \operatorname{plot}(\operatorname{Yzad}, '--');
 hold on;
 title (num2str(error));
% plot (U);
 hold off;
Tb=table(kk, Yzad);
 writetable (Tb, 'PROJ1_4_YzadDMC', 'WriteVariableNames', false, 'Delimiter', 'space
T=table(kk,Y);
TT=table(kk,U);
 if manual==1
 name = "APROJ1\_DMC\_EXP\_N = "+string(N) + "\_Nu = "+string(Nu) + "\_lambda = "+string(lambda) + string(lambda) + string(Nu) + "\_lambda = "+string(Nu) + "-string(Nu) + "-str
 writetable (T, char (name), 'WriteVariableNames', false, 'Delimiter', 'space');
 name2="APROJ1_DMC_EXP_STER_N="+string(N)+"_Nu="+string(Nu)+"_lambda="+string(Nu)+"_string(Nu)+"_lambda="+string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_string(Nu)+"_stri
 writetable (TT, char (name2), 'WriteVariableNames', false, 'Delimiter', 'space');
 end
```


Rys. 2.1. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 5, $\lambda = 0.2$

Rys. 2.2. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 5, $\lambda=1$

Rys. 2.3. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 5, $\lambda = 5$

Rys. 2.4. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 10, $\lambda = 0.2$

Rys. 2.5. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 10, $\lambda=1$

Rys. 2.6. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 10, $\lambda=5$

Rys. 2.7. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 15, $\lambda = 0.2$

Rys. 2.8. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 15, $\lambda=1$

Rys. 2.9. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 15, $\lambda=5$

Rys. 2.10. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 20, $\lambda = 0.2$

Rys. 2.11. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 20, $\lambda=1$

Rys. 2.12. Przebieg oraz sterowanie dla parametrów N = 25, Nu = 20, $\lambda=5$

Rys. 2.13. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 5, $\lambda = 0.2$

Rys. 2.14. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 5, $\lambda=1$

Rys. 2.15. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 5, $\lambda = 5$

Rys. 2.16. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 10, $\lambda = 0.2$

Rys. 2.17. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 10, $\lambda=1$

Rys. 2.18. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 10, $\lambda = 5$

Rys. 2.19. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 15, $\lambda = 0.2$

Rys. 2.20. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 15, $\lambda=1$

Rys. 2.21. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 15, $\lambda = 5$

Rys. 2.22. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 20, $\lambda = 0.2$

Rys. 2.23. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 20, $\lambda=1$

Rys. 2.24. Przebieg oraz sterowanie dla parametrów N = 50, Nu = 20, $\lambda=5$

Rys. 2.25. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 5, $\lambda = 0.2$

Rys. 2.26. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 5, $\lambda=1$

Rys. 2.27. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 5, $\lambda = 5$

Rys. 2.28. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 10, $\lambda = 0.2$

Rys. 2.29. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 10, $\lambda=1$

Rys. 2.30. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 10, $\lambda=5$

Rys. 2.31. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 15, $\lambda = 0.2$

Rys. 2.32. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 15, $\lambda=1$

Rys. 2.33. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 15, $\lambda=5$

Rys. 2.34. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 20, $\lambda = 0.2$

Rys. 2.35. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 20, $\lambda=1$

Rys. 2.36. Przebieg oraz sterowanie dla parametrów N = 75, Nu = 20, $\lambda=5$

Rys. 2.37. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 5, $\lambda = 0.2$

Rys. 2.38. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 5, $\lambda=1$

Rys. 2.39. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 5, $\lambda = 5$

Rys. 2.40. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 10, $\lambda = 0.2$

Rys. 2.41. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 10, $\lambda=1$

Rys. 2.42. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 10, $\lambda=5$

Rys. 2.43. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 15, $\lambda = 0.2$

Rys. 2.44. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 15, $\lambda=1$

Rys. 2.45. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 15, $\lambda=5$

Rys. 2.46. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 20, $\lambda = 0.2$

Rys. 2.47. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 20, $\lambda=1$

Rys. 2.48. Przebieg oraz sterowanie dla parametrów N = 100, Nu = 20, $\lambda=5$

3. Przekształcenie odpowiedzi skokowej

Aby uzyskać znormalizowaną odpowiedź skokową, należy przerzutować ją względem punktu pracy oraz wielkosci skoku, a także przesuąć chwilę skoku sterowania do chwili k=0 (z chwili k_{skok}). Do tego celu można użyć wzoru:

$$s_i = \frac{s_{i+k_{skok}} - Y_{pp}}{\Delta U} \tag{3.1}$$

Wyznaczono ją przy użyciu skrpytu PROJ1_3.m (dla odpowiedzi skokwej przy $\Delta u=0.5$). Następnie przycięto ją do miejsca w którym osiąga 0,995 swojej maksymalnej wartosci. Długosc tej odpowiedzi jest przyjętym horyzontem dynamiki tego obiektu i jest równy 120. Wynik działania przedstawiony jest na rysunku 3. Odpowiedź ta zostanie użyta do zaprojektowania regulatora DMC.

Rys. 3.1. Postać przeksztal
conej odpowiedzi skokowej symulowanego obiektu ze zmianą sterowania w momencie
 $\mathbf{k}{=}0$

4. Odpowiedzi skokowe

4.1. Wyznaczanie odpowiedzi skokwych

W celu wyznaczenia odpowiedzi skokowej obiekt, znajdujący się w punkcie pracy (tzn. $U_{\rm pp}=2,0,Y_{\rm pp}=0,8$) pobudzoną różną zmianą wartoci sterowań. Rysunek 4.1 przedstawia odpowiedź obiektu na jego różne wartosci.

4.2. Wyznaczanie charakterystyki statycznej procesu

Aby wyznaczyć charakterystykę statyczną procesu przeprowadzono analogiczne działania co w rozdziale 1. Tym razem przy użyciu skryptu PROJ1_2.m dla wielu wartosci $U_{\rm pp}$ wyznaczono odpowiadające im $Y_{\rm pp}$ oraz z ich pomocą utworzono wykres 4.2. Jak widać charakterystyka statyczna obiektu jest liniowa, a co za tym idzie obiekt jest liniowy.

4.3. Wzmocnienie statyczne

Wzmocnienie statyczne, czyli stosunek pomiędzy zmianą wartosci wyjscia i zmianą wartosci sterowania w stanie ustalonym. Aby ją wyznaczyć można na przykład znaleźć nachylenie charakterystyki statycznej do osi OX, czyli np.:

$$K_{\text{stat}} = \frac{y(U_{\text{max}}) - y(U_{\text{min}})}{U_{\text{max}} - U_{\text{min}}}$$

$$\tag{4.1}$$

W przypadku tak wykreślonej charakterystyki, wzmocnienie statyczne jest równe tangensowi kąta α pomiędzy prostą a osią OX.

$$K_{\text{stat}} = \frac{1,239 - 0,361}{2,8 - 1,2} \approx 0,549$$
 (4.2)

4. Odpowiedzi skokowe 25

Rys. 4.1. Odpowiedzi procesu na skokowe zmiany sterowania w momencie k=11 $\,$

4. Odpowiedzi skokowe 26

Rys. 4.2. Charakterystka statyczna $\boldsymbol{y}(\boldsymbol{u})$ symulowanego procesu