1. The functions $r^n \cos(n\theta)$, $r^n \sin(n\theta)$ for any nonnegative integer n are solutions of the Laplace equation in polar coordinates. Find the solution to the Dirichlet problem with boundary values

$$F(\theta) = 19.1 - 3\sin(4\theta) + 5\cos(11\theta) + 6\sin(19\theta)$$

on the boundary of the unit disk. That is, find the solution the of the Laplace equation on the unit disk $\{(r,\theta) \mid r < 1\}$ which at the points $\{(1,\theta) \mid -\pi < \theta < \pi\}$ on the boundary of the unit disk has the property $u(1,\theta) = F(\theta)$.

ANS. The solution is:

$$u(r,\theta) = 19.1 - 3r^4 \sin(4\theta) + 5r^{11} \cos(11\theta) + 6r^{19} \sin(19\theta)$$

2. Do Problem 1 with $F(\theta)$ given the following:

$$F(\theta) = \begin{cases} 0 & \text{if } -\pi < \theta < 0 \\ 40 & \text{if } \theta \ge 0 \end{cases}$$

ANS. The solution is:

$$u(r,\theta) = \frac{a_o}{2} + \sum_{n=1}^{\infty} r^n (a_n \cos(n\theta) + b_n \sin(n\theta))$$

where a_0 , a_n , b_n are the Fourier coefficients of $F(\theta)$.

We easily find that $a_0 = \frac{1}{\pi}$ area below graph $= \frac{1}{\pi} 40\pi = 40$. Since $F(\theta) - 20$ is an odd function, we see that all other $a_n = 0$. Finally,

$$b_n = \frac{1}{\pi} \int_{\pi}^{\pi} F(\theta) \sin n\theta \, d\theta$$
$$= \frac{40}{\pi} \int_{0}^{\pi} \sin n\theta \, d\theta$$
$$= \frac{-40}{n\pi} [\cos n\theta]_{0}^{\pi}$$
$$= \frac{40}{n\pi} (1 - \cos n\pi)$$

3. If in Problem 1 $F(\theta)$ is equal to e^{θ} then find the value of u(0,0).

ANS.

$$u(0,0) = \frac{a_0}{2} = \frac{1}{2} \frac{1}{\pi} \int_{-\pi}^{\pi} e^{\theta} d\theta = \frac{1}{\pi} \sinh \pi$$

Or, if one prefers not to invoke sinh, then $u(0,0) = \frac{1}{2\pi} (e^{\pi} - e^{-\pi})$

4. If all we know about $F(\theta)$ in Problem 1 is that $F(\theta) \ge 6$ and that u(0,0) = 6, then determine $u(1/2,\pi/4)$.

ANS. We saw in the Problem 3 that u(0,0) is the average value of $F(\theta)$. If a function has an average value of 6 and it is always ≥ 6 , then it must always be exactly 6. So $F(\theta) = 6$ for all θ . But we know the Fourier series of 6 is 6. Therefore $u(r,\theta) = 6$ for for 0 < r < 1 and $-\pi < \theta \leq \pi$. So $u(1/2,\pi/4) = 6$.

©2009 by Moses Glasner