

Business Analytics 2 – Lecture 6: Expected Utility Theory

- Outcomes, lotteries, compound lotteries
- EUT Axioms
- Preference representation with expected utility
- Computation of expected utility
- Uniqueness and positive affine transformations

- Expected utility in Decision trees and Monte Carlo
 Assessing utility functions
 EUT and choice behavior: Allais paradox and framing

Expected Utility Theory (EUT) - Motivation

- Which alternative would you choose:
 - A: You get 10 000 € for sure
 - B: You participate in the following lottery:
 - o 20 000 € p = 0.6
 - o 10 000 € p = 0.3
 - o -5 000 € p = 0.1

- The EMV of B is 14 500 €, yet many people choose A because it's "less risky"
- Thus far we have compared decision alternatives with uncertain outcomes based on their expected monetary values (EMVs)
- EUT: alternatives should be compared based on their expected utility
- Learning objectives:
 - Understand that EUT is based on a set of rationality axioms
 - Ability to elicit utility functions and use expected utility to compare decision alternatives

Expected utility theory

- John von Neumann and Oscar Morgenstern (1944) in Theory of Games and Economic Behaviour:
 - Axioms for preferences over alternatives with uncertain outcomes
 - If the DM follows these axioms, then she selects the alternative with the highest expected utility
 - C.f. Axioms for probability ⇒ Rules for computing with probabilities
- Elements of EUT
 - Set of outcomes and lotteries
 - Preference relation over lotteries satisfying four axioms
 - Representation of the preference relation with expected utility

EUT: Sets of Outcomes and Lotteries

- A set of possible outcomes *T*
 - E.g. Revenue $T = \mathbb{R}$ euros, or demand for a product $T = \mathbb{N}$
- Set of all possible lotteries *L*:
 - A lottery $f \in L$ associates a probability $f(t) \in [0,1]$ with each possible outcome $t \in T$
 - Finite number of outcomes t with a positive probability f(t) > 0
 - Probabilities sum up to one $\sum_t f(t) = 1$
 - Note: deterministic outcomes are modelled as degenerate lotteries
- Basically lotteries are thus discrete PDFs, (decision trees with a single chance node)

a lottery

a degenerate lottery

$$f_Y = \begin{cases} 1 & \text{10000} \\ 0 & \text{elsewhere} \end{cases}$$

EUT: Compound lotteries

- Compound lottery:
 - With probability λ the outcome is some lottery $f_X \in L$ and with probability 1λ the outcome is some other lottery $f_Y \in L$
 - This compound lottery is modelled as lottery $f_Z \in L$ defined by

$$f_Z(t) = \lambda f_X(t) + (1 - \lambda) f_Y(t) \forall t \in T (*)$$

- Notation: $f_Z = \lambda f_X + (1 \lambda) f_Y$
- Example:
 - You have a 50-50 chance of getting a ticket to lottery $f_X \in L$ or to lottery $f_Y \in L$

The EUT Axioms: A1-A4

- Let \geq be a relation among lotteries *L*
 - $f_X \ge f_Y$ means " f_X is weakly preferred to f_Y " or " f_X is at least as good as f_Y "
 - Strict preference $f_X > f_Y$ defined as $\neg (f_Y \ge f_X)$
 - Indifference $f_X \sim f_Y$ defined as $(f_X \ge f_Y)$ and $(f_Y \ge f_X)$
- $(A1) \ge is complete$
 - For any f_X , $f_Y \in L$ either $f_X \ge f_Y$ or $f_Y \ge f_X$ or both
 - Meaning: preference between two lotteries can always be stated either you (i) prefer f_X , (ii) prefer f_Y , or (iii) are indifferent between the two
- $(A2) \ge$ is transitive
 - If $f_X \ge f_Y$ and $f_Y \ge f_Z$, then $f_X \ge f_Z$
 - Example:

The EUT Axioms: A3 and A4

- (A3) Archimedean axiom
 - If $f_X > f_Y > f_Z$, then $\exists \lambda, \mu \in (0,1)$ such that $\lambda f_X + (1-\lambda)f_Z > f_Y$ and $f_Y > \mu f_X + (1-\mu)f_Z$
 - Example:

- (A4) Independence axiom
 - Let $\lambda \in (0,1)$. Then,

$$f_X > f_Y \Leftrightarrow \lambda f_X + (1 - \lambda)f_Z > \lambda f_Y + (1 - \lambda)f_Z$$

- Example:

Axiom implications: Example

Assume the DM follows the independence axiom:

- Let
$$\lambda \in (0,1)$$
. Then, $f_X > f_Y \Leftrightarrow \lambda f_X + (1-\lambda)f_Z > \lambda f_Y + (1-\lambda)f_Z$

If the DM prefers lottery f_X over f_Y ,...

...then she must prefer the top lottery over the bottom one!

Question:

Which of these lotteries would you prefer?

10000€

Main Result: Preference representation with EU

■ \geqslant satisfies axioms A1-A4 if and only if there exists a real-valued utility function $u: T \to \mathbb{R}$ over the set T of outcomes such that

$$f_X \ge f_Y \Longleftrightarrow \sum_{t \in T} f_X(t) u(t) \ge \sum_{t \in T} f_Y(t) u(t)$$

- Implication: a DM following axioms A1-A4 selects the alternative with the highest expected utility

$$E[u(X)] = \sum_{t \in T} f_X(t)u(t)$$

- With more sophisticated mathematics, a similar result could be obtained for continuous distributions:
 - $f_X \ge f_Y \Leftrightarrow E[u(X)] \ge E[u(Y)]$, where the expected utility is computed as the integral $E[u(X)] = \int f_X(t)u(t)dt$

Computation of expected utility

- Example: Joe has the following utility function for the number of oranges u(1)=2, u(2)=5, u(3)=7
 - Would he take
 - two oranges for certain (X) or
 - a 50-50 gamble between 1 and 3 oranges (Y)?
- Example: Jane's utility function for profits is $u(t) = t^2$
 - Which investment would she prefer?

X: 50-50 gamble between 3 and 5 M£?

Y: Profits in M£ following UNI(3,5) distribution

$$E[u(X)] = 1u(2) = 5$$

$$E[u(Y)] = 0.5u(1) + 0.5u(3)$$

= 0.5 * 2 + 0.5 * 7 = 4.5

$$E[u(X)] = 0.5u(3) + 0.5u(5)$$

$$= 0.5 * 9 + 0.5 * 25 = 17$$

$$E[u(Y)] = \int_{3}^{5} f_{Y}(t) u(t) dt = \int_{3}^{5} \frac{1}{2} t^{2} dt$$

$$= \frac{1}{6} 5^{3} - \frac{1}{6} 3^{3} = 16.3333$$

Computation of expected utility

- Question: Joe has the following utility function for the number of oranges u(1)=2, u(2)=3, u(3)=8
 - What are the expected utilities from the following alternatives?
 - two oranges for certain (*X*) or
 - a 50-50 gamble between 1 and 3 oranges (Y)?
- Question: Jane's utility function for profits is $u(t) = 1 e^{-0.5t}$
 - What are the expected utilities from the following investments?
 - X: 50-50 gamble between 3 and 5 M£?
 - Y: Profits in M£ following UNI(3,5) distribution

Computation of expected utility

■ Joe:

- Two oranges for certain: E[u(X)] = 1u(2) = 3
- 50-50 gamble between 1 and 3 oranges: E[u(Y)] = 0.5u(1) + 0.5u(3) = 0.5 * 2 + 0.5 * 8 = 5
- Jane's utility function for profits is $u(t) = 1 e^{-0.5t}$
 - 50-50 gamble between 3 and 5 M£: $E[u(X)]=0.5u(3)+0.5u(5)=0.5*(1-e^{-1.5})+0.5*(1-e^{-2.5})=0.85$
 - Profits in M£ following UNI(3,5) distribution: $E[u(Y)] = \int_3^5 f_Y(t) u(t) dt = \int_3^5 \frac{1}{2} (1 e^{-0.5t}) dt = \frac{1}{2} (5 3) + (e^{-2.5} e^{-1.5}) = 0.86$

Utility function is unique up to positive affine tranformations

- Example: Jane's utility function for profits is $u(t) = t^2$
 - Which investment would she prefer?

X: 50-50 gamble between 3 and 5 M£?

Y: Profits in M£ following UNI(3,5) distribution

- For both investments, utilities range between 9 and 25.
- What would the range of utilities be, if Jane's utility function was

$$u(t) = \frac{t^2 - 9}{25 - 9}$$
?

Utility function is unique up to positive affine tranformations

• The two utility functions $u_1(t)$ and $u_2(t) = \alpha u_1(t) + \beta \ (\alpha > 0)$ establish the same preference ordering among any lotteries:

$$E[u_2(X)] = E[\alpha u_1(X) + \beta] = \alpha E[u_1(X)] + \beta$$

- 1. Any linear utility function $u_L(t) = \alpha t + \beta \ (\alpha > 0)$ is a positive affine transformation of the identity function $u_I(t) = t$
 - Hence, a linear utility function establishes the same preference order among any lotteries as expected value:

$$\mathrm{E}[u_L(X)] = E[\alpha u_I(X) + \beta] = \alpha \mathrm{E}[u_I(X)] + \beta = \alpha E[X] + \beta$$

- 2. Utilities for two outcomes can be chosen:
 - E.g. Scale u_1 so that $u_2(t^*) = 1$ and $u_2(t^0) = 0$:

$$u_2(t) = \frac{u_1(t) - u_1(t^0)}{u_1(t^*) - u_1(t^0)} = \frac{1}{u_1(t^*) - u_1(t^0)} u_1(t) + \frac{-u_1(t^0)}{u_1(t^*) - u_1(t^0)}$$

Expected Utility in Decision trees

- Go through the nodes from right to left
 - Chance node: compute expected utility
 - Decision node: select the alternative with maximum expected utility

Aalto University
School of Business

ISM-E1004 Business Analytics 2

=5-EXP(-H11/100000)

Reference lottery revisited

- Assume that an expected utility maximizer, whose utility function is *u*, uses a reference lottery to assess the probability of event A
 - p has been adjusted so that she is indifferent about which lottery to participate in:

$$E[u(X)] = E[u(Y)]$$

$$\Leftrightarrow P(A)u(t^{+}) + (1 - P(A))u(t^{-}) = pu(t^{+}) + (1 - p)u(t^{-})$$

$$\Leftrightarrow P(A)u(t^{+}) - P(A)u(t^{-}) + u(t^{-}) = pu(t^{+}) - pu(t^{-}) + u(t^{-})$$

$$\Leftrightarrow P(A)[u(t^{+}) - u(t^{-})] = p[u(t^{+}) - u(t^{-})]$$

$$\Leftrightarrow P(A) = p$$

■ The utility function *u* does not affect the result

Expected Utility in Monte Carlo

- For each sample $x_1, ..., x_n$ of random variable X compute utility $u(x_i)$
- Mean of utility samples $u(x_1), ..., u(x_n)$ provides an estimate for E[u(X)]

ISM-E1004 Business Analytics 2

Utility function assessment

- Utility functions can be assessed by asking the DM to choose between a simple lottery and a certain outcome (i.e., a degenerate lottery)
 - X: Certain return t
 - Y: Return t^+ with probability p and t^- with (1-p)
- General idea: Vary the parameters (p, t, t^-, t^+) until the DM is indifferent between X and Y:

$$E[u(X)] = E[u(Y)] \iff u(t) = p u(t^{+}) + (1 - p) u(t^{-})$$

- Repeat until sufficiently many points for the utility function have been obtained.
- Because *u* is unique up to positive affine transformations, utilities in two points can be chosen
 - Often the most preferred level is set to 1 and the least preferred to 0

Assessment of a utility function: The Certainty Equivalence Approach

= 0.5 * 0 + 0.5 * 0.5

= 0.25

- Example: Assess utility function for the interval [-10,50] euros
 - We can fix two values so let's choose u(-10)=0 and u(50)=1

35

50€

= 0.5 * 0 + 0.5 * 1

= 0.5

Assessment of a utility function: The Certainty Equivalence Approach

 Question: Assess your utility function for the interval [-10,50] euros by defining x,y,z (in that order) in the three decision trees below

		t		U(t)		
		-10		0		
t=y				0.25		
t=x				0.5		
t=z				0.75		
		50		1		
1.2						
1			+			
0.8			+			
0.6			+			
0.4			+			
0.2			+			
• 0						
-10		10	30	5	0	
			-			

Other approaches for utility assesment

- Probability equivalence:
 - The DM assesses p.
- Gain equivalence:
 - The DM assesses t⁺
- Loss equivalence:
 - The DM assesses *t*⁻

- Often in applications the analyst chooses a family of utility functions and then uses the above type questioning to fix the parameter(s)
 - E.g. The exponential utility function (parameter ρ)

$$u(t) = 1 - e^{-t/\rho}, \rho > 0$$

Eliciting utility functions in practice: "Multiple price lists"

Holt, C.A. and Laury, S.K., 2002. Risk aversion and incentive effects. *American Economic Review*, 92(5), pp.1644-1655

Next

Figure 12: Decision screen to elicit certainty equivalents for lotteries

EUT for normative decision support

- In Management Science EUT is mainly used in *normative* decision support models
 - Not descriptive, i.e., describing how people select among alternatives with uncertain outcomes
 - Not predictive in the sense it would predict what alternatives people select
- The four Axioms characterize properties that are required from rational decision support
 - C.f. Probability axioms describe a rational model for uncertainty
 - They <u>are not rules</u> that people follow by instinct when choosing among alternatives with uncertain outcomes
 - Also, people may display decision inconsistency, choosing differently in the same problem presented at two separate times

Allais paradox

Would you rather choose A or B?

Most people choose A, hence E[u(A)] > E[u(B)]: $u(1) > 0.10 \ u(5) + 0.89 \ u(1) + 0.01 \ u(0)$

$$\Rightarrow 0.11 \text{ u(1)} > 0.10 \text{ u(5)} + 0.01 \text{ u(0)}$$

■ What about C or D? $.89 \quad 0M\epsilon$ $C \quad .11 \quad 1M\epsilon$ $.10 \quad .5M\epsilon$

Most people choose D, hence E[u(D)]>E[u(C)]: 0.10 u(5) + 0.90 u(0) > 0.11 u(1) + 0.89 u(0)

$$\Rightarrow$$
 0.11 u(1) < 0.10 u(5)+ 0.01 u(0)

Actual choice behavior not always consistent with EUT

Framing effect

• 400 people are trapped inside a cruise ship and there are two alternatives for rescue plans. Which one would you choose?

