Analysis and Differential Equations Individual Overall

Please solve the following problems.

- **1.** Let f be an analytic function in a neighborhood of \bar{U} where $U = \{|z| < 1\}$. Show that if f is real on ∂U , then f must be constant.
- 2. Find the Green's function for

$$-u'' = f$$

$$u(0) = u(1), u'(0) = u'(1)$$

$$\int_{0}^{1} u = 0, \int_{0}^{1} f = 0$$

3. Let $B_R(0) = \{x \in \mathbb{R}^n : |x| < R\}$ for n > 2 and R > 0. Prove that there exists a constant C independent of R such that

$$\int_{B_R(0)} \frac{|v(x)|^2}{|x|^2} dx \le C \int_{B_R(0)} (|v_r|^2 + R^{-2}v^2) dx$$

for any function $v \in C^{\infty}(B_R(0))$, where $v_r(x) = \frac{x \cdot \nabla v}{|x|}$.