Mapping Reductions

- A function $f: \Sigma_1^* \to \Sigma_2^*$ is called a **mapping reduction** from A to B iff
 - For any $w \in \Sigma_1^*$, $w \in A$ iff $f(w) \in B$.
 - *f* is a computable function.
- Intuitively, a mapping reduction from *A* to *B* says that a computer can transform any instance of *A* into an instance of *B* such that the answer to *B* is the answer to *A*.

- Theorem: If $B \in \mathbf{R}$ and $A \leq_{\mathrm{M}} B$, then $A \in \mathbf{R}$.
- Theorem: If $B \in \mathbf{RE}$ and $A \leq_{\mathrm{M}} B$, then $A \in \mathbf{RE}$.
- Theorem: If $B \in \text{co-RE}$ and $A \leq_{\text{M}} B$, then $A \in \text{co-RE}$.
- Intuitively: $A \leq_{M} B$ means "A is not harder than B."

- Theorem: If $A \notin \mathbf{R}$ and $A \leq_{\mathrm{M}} B$, then $B \notin \mathbf{R}$.
- Theorem: If $A \notin \mathbf{RE}$ and $A \leq_{\mathrm{M}} B$, then $B \notin \mathbf{RE}$.
- Theorem: If $A \notin \text{co-RE}$ and $A \leq_{\text{M}} B$, then $B \notin \text{co-RE}$.
- Intuitively: $A \leq_{\mathrm{M}} B$ means "B is at at least as hard as A."

If this one is "easy" (R, RE, co-RE)... $A \leq_{\mathsf{M}} B$ then this one is "easy" (R, RE, co-RE) too.

If this one is "hard" (not R, not RE, or not co-RE)...

 $A \leq_{\mathrm{M}} B$

... then this one is "hard" (not R, not RE, or not co-RE) too.

The Limits of Computability

What problems can be

solved by a computer?

What problems can be

solved **efficiently** by a computer?

Where We've Been

- The class ${f R}$ represents problems that can be solved by a computer.
- The class **RE** represents problems where "yes" answers can be verified by a computer.
- The class co-**RE** represents problems where "no" answers can be verified by a computer.
- The mapping reduction can be used to find connections between problems.

Where We're Going

- The class **P** represents problems that can be solved *efficiently* by a computer.
- The class **NP** represents problems where "yes" answers can be verified *efficiently* by a computer.
- The class co-NP represents problems where "no" answers can be verified *efficiently* by a computer.
- The *polynomial-time* mapping reduction can be used to find connections between problems.

The Traveling Salesman Problem - NP

A Decidable Problem

- **Presburger arithmetic** is a logical system for reasoning about arithmetic.
 - $\forall x. \ x + 1 \neq 0$
 - $\forall x. \ \forall y. \ (x + 1 = y + 1 \rightarrow x = y)$
 - $\forall x. \ x + 0 = x$
 - $\forall x. \ \forall y. \ (x + y) + 1 = x + (y + 1)$
 - $\forall x. ((P(0) \land \forall y. (P(y) \rightarrow P(y+1))) \rightarrow \forall x. P(x)$
- Given a statement, it is decidable whether that statement can be proven from the laws of Presburger arithmetic.
- Any Turing machine that decides whether a statement in Presburger arithmetic is true or false has to move the tape head at least $2^{2^{cn}}$ times on some inputs of length n (for some fixed constant c).

For Reference

• Assume c = 1.

```
2^{2^0} = 2
                           2^{2^1} = 4
                           2^{2^2} = 16
                          2^{2^3} = 256
                        2^{2^4} = 65536
             2^{2^5} = 18446744073709551616
2^{2^6} = 340282366920938463463374607431768211456
```

The Limits of Decidability

- The fact that a problem is decidable does not mean that it is *feasibly* decidable.
- In **computability theory**, we ask the question

Is it **possible** to solve problem L?

• In **complexity theory**, we ask the question

Is it possible to solve problem *L* **efficiently**?

• In the remainder of this course, we will explore this question in more detail.

All Languages

Undecidable Languages

The Setup

- In order to study computability, we needed to answer these questions:
 - What is "computation?"
 - What is a "problem?"
 - What does it mean to "solve" a problem?
- To study complexity, we need to answer these questions:
 - What does "complexity" even mean?
 - What is an "efficient" solution to a problem?

Measuring Complexity

- Suppose that we have a decider *D* for some language *L*.
- How might we measure the complexity of *D*?

Measuring Complexity

- Suppose that we have a decider *D* for some language *L*.
- How might we measure the complexity of *D*?
 - Number of states.
 - Size of tape alphabet.
 - Size of input alphabet.
 - Amount of tape required.
 - Number of steps required.
 - Number of times a given state is entered.
 - Number of times a given symbol is printed.
 - Number of times a given transition is taken.
 - (Plus a whole lot more...)

Measuring Complexity

- Suppose that we have a decider *D* for some language *L*.
- How might we measure the complexity of *D*?

Number of states.

Size of tape alphabet.

Size of input alphabet.

- Amount of tape required.
- Number of steps required.

Number of times a given state is entered.

Number of times a given symbol is printed.

Number of times a given transition is taken.

(Plus a whole lot more...)

Time Complexity

• A **step** of a Turing machine is one event where the TM takes a transition.

Time Complexity

- The number of steps a TM takes on some input is sensitive to
 - The structure of that input.
 - The length of the input.
- How can we come up with a consistent measure of a machine's runtime?

Time Complexity

- The **time complexity** of a TM M is a function (typically denoted f(n)) that measures the *worst-case* number of steps M takes on any input of length n.
 - By convention, *n* denotes the length of the input.
 - If *M* loops on some input of length *k*, then $f(k) = \infty$.
- The previous TM has a time complexity that is (roughly) proportional to n^2 / 2.
 - Difficult and utterly unrewarding exercise: compute the *exact* time complexity of the previous TM.

A Slight Problem

- Consider the following TM over $\Sigma = \{0, 1\}$ for the language $BALANCE = \{ w \in \Sigma^* \mid w \text{ has the same number of 0s and 1s } :$
 - M = "On input w:
 - Scan across the tape until a o or i is found.
 - If none are found, accept.
 - If one is found, continue scanning until a matching 1 or 0 is found.
 - If none is found, reject.
 - Otherwise, cross off that symbol and repeat."
- What is the time complexity of *M*?

A Loss of Precision

- When considering *computability*, using high-level TM descriptions is perfectly fine.
- When considering *complexity*, high-level TM descriptions make it nearly impossible to precisely reason about the actual time complexity.
- What are we to do about this?

The Best We Can

M = "On input w:

- Scan across the tape until a 0 or 1 At most n steps.
 is found.
- If none are found, accept.
- If one is found, continue scanning until a matching 1 or 0 is found.
- If none are found, reject.
- Otherwise, cross off that symbol and repeat."

At most 1 step.

At most *n* more steps.

At most 1 step

At most *n* steps to get back to the start of the tape.

At most 3n + 2 steps.

 \times At most n/2 loops.

At most $3n^2/2 + n$ steps.

At most n/2 loops

An Easier Approach

- In complexity theory, we rarely need an exact value for a TM's time complexity.
- Usually, we are curious with the long-term growth rate of the time complexity.
- For example, if the time complexity is 3n + 5, then doubling the length of the string roughly doubles the worst-case runtime.
- If the time complexity is $2^n n^2$, since 2^n grows much more quickly than n^2 , for large values of n, increasing the size of the input by 1 doubles the worst-case running time.

Big-O Notation

- Ignore *everything* except the dominant growth term, including constant factors.
- Examples:
 - 4n + 4 = O(n)
 - 137n + 271 = O(n)
 - $n^2 + 3n + 4 = O(n^2)$
 - $2^n + n^3 = \mathbf{O(2^n)}$
 - 137 = 0(1)
 - $n^2 \log n + \log^5 n = \mathbf{O}(n^2 \log n)$

Big-O Notation, Formally

- Let $f: \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$.
- Then f(n) = O(g(n)) iff there exist constants $c \in \mathbb{R}$ and $n_0 \in \mathbb{N}$ such that

For any $n \ge n_0$, $f(n) \le cg(n)$

• Intuitively, as n gets "large" (greater than n_0), f(n) is bounded from above by some multiple (determined by c) of g(n).

Properties of Big-O Notation

- **Theorem**: If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then $f_1(n) + f_2(n) = O(g_1(n) + g_2(n))$.
 - Intuitively: If you run two programs one after another, the big-O of the result is the big-O of the sum of the two runtimes.
- Theorem: If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then $f_1(n)f_2(n) = O(g_1(n)g_2(n))$.
 - Intuitively: If you run one program some number of times, the big-O of the result is the big-O of the program times the big-O of the number of iterations.
- This makes it substantially easier to analyze time complexity, though we do lose some precision.

Life is Easier with Big-O

M = "On input w:

- Scan across the tape until a o or 1 is found.
- If none are found, accept.
- If one is found, continue scanning until a matching 1 or 0 is found.
- If none is found, reject.
- Otherwise, cross off that symbol and repeat."

Next Time

- P
 - What problems can be decided efficiently?
- Polynomial-Time Reductions
 - Constructing efficient algorithms.
- **NP**
 - What can we *verify* quickly?