

Avaliação Códigos de Bloco

Sistemas de Comunicação II

Gabriel Luiz Espindola Pedro

Sumário

1	3
1	

1 Questões

Considere o **código de Hamming estendido** (8,4), obtido a apartir do código de Hamming (7,4), adicionando um "bit de paridade global" no final de cada palavra de código. (Dessa forma, todas as palavras-código terão um número par de bits 1.)

a) Determine uma matriz geradora G para o código.

Sabemos que a palavra código do código de Hamming (7,4) é dada por

$$v = [v_1 \ v_2 \ v_3 \ v_4 \ v_5 \ v_6 \ v_7] = [u_1 \ u_2 \ u_3 \ u_4 \ p_1 \ p_2 \ p_3] \tag{1}$$

Onde $u = \begin{bmatrix} u_1 & u_2 & u_3 & u_4 \end{bmatrix}$ é a palavra de informação e $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$ é o vetor de paridade. Onde o vetor de paridade é obtido da seguinte maneira:

$$\begin{cases} p_1 = u_1 + u_2 + u_4 \\ p_2 = u_1 + u_3 + u_4 \\ p_3 = u_2 + u_3 + u_4 \end{cases}$$
 (2)

Sabendo que a matriz geradora G é dada por

$$v = uG \tag{3}$$

Podemos escrever a matriz geradora G do código de Hamming (7,4) como

$$v = \begin{bmatrix} u_1 & u_2 & u_3 & u_4 & u_1 + u_2 + u_4 & u_1 + u_3 + u_4 & u_2 + u_3 + u_4 \end{bmatrix} = uG$$

$$= \begin{bmatrix} u_1 & u_2 & u_3 & u_4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} = uG$$

$$\therefore G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$(4)$$

A partir desta análise do código de Hamming (7,4), devemos alterá-lo de modo a adiconar um bit de paridade global, ou seja:

$$v = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 & v_5 & v_6 & v_7 \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & u_3 & u_4 & p_1 & p_2 & p_3 & p_4 \end{bmatrix}$$
 (5)

onde

$$\begin{cases} p_1 = u_1 + u_2 + u_4 \\ p_2 = u_1 + u_3 + u_4 \\ p_3 = u_2 + u_3 + u_4 \\ p_4 = v_1 + v_2 + v_3 + v_4 + v_5 + v_6 + v_7 \end{cases}$$

$$(6)$$

Ou seja

$$\begin{aligned} p_4 &= (u_1) + (u_2) + (u_3) + (u_4) \\ &+ (u_1 + u_2 + u_4) + (u_1 + u_3 + u_4) + (u_2 + u_3 + u_4) \\ &= u_1 + u_2 + u_3 \end{aligned} \tag{7}$$

Com a definição de p_4 em termos da palavra de mensagem u, podemos escrever a matriz geradora G do código de Hamming estendido (8,4) como

$$v = \begin{bmatrix} u_1 & u_2 & u_3 & u_4 & u_1 + u_2 + u_4 & u_1 + u_3 + u_4 & u_2 + u_3 + u_4 & u_1 + u_2 + u_3 \end{bmatrix} = uG$$

$$= \begin{bmatrix} u_1 & u_2 & u_3 & u_4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix} = uG$$

$$\therefore G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

$$(8)$$

b) Construa uma tabela mensagem \rightarrow palavra-código

Utilizando a linguagem de programação Python, podemos construir uma tabela de mapeamento de mensagens para palavras-código do código de Hamming estendido (8,4).

u	v
0000	00000000
0001	00011110
0010	00100111
0011	00111001
0100	01001011
0101	01010101
0110	01101100
0111	01110010
1000	10001101
1001	10010011
1010	10101010
1011	10110100
1100	11000110
1101	11011000
1110	11100001
1111	1111111

c) Determine a distância mínima e a distribuição de peso das palavras-código

Sabendo que o código de Hamming estendido (8,4) é um código linear podemos obter a distância mínima do código a partir da distribuição de pesos das palavras códigos. A distribuição de pesos das palavras códigos é dada por

Palavra-código								Peso		
	00	0								
		00	4							
	00100111									
00111001							4			
01001011							4			
01010101							4			
		01	101100					4		
		01	110010				4			
10001101								4		
	10010011							4		
		10	101010				4			
		10	110100				4			
		11	.000110				4			
11011000							4			
11100001							4			
1111111							8			
i	0	1	2	3	4	5	6	7	8	
A_{i}	1	0	0	0	14	0	0	0	1	

Com a distribuição de peso das palavras códigos, podemos determinar a distância mínima do código de Hamming estendido (8,4) como sendo $d_{\min}=4$.

d) Determine a matriz de verificação H para o código.

A matriz de verificação é definida como

$$Hv^T = 0 (9)$$

Podemos também relacionar a matriz de verificação H com a matriz geradora G através da relação

$$GH^T = 0 (10)$$

Sabendo que o código de Hamming estendido é um código sistemático, ou seja os bits da mensagem podem ser encontrados inalterados na palavra código, e sabendo que podemos separar a matriz geradora G em duas matrizes I e P onde I é a matriz identidade e P é a matriz de paridade, podemos escrever a matriz de verificação H como

$$G = [I_k P]; (11)$$

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{bmatrix} \\ \therefore P = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \\ \Rightarrow P^T = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$
(12)

sendo m=n-k, logo m=4. Portanto a matriz de verificação é dada por

$$H = [P^T I_m] = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(13)$$

e) Construa uma tabela de síndrome → padrão de erro

Para obtermos a tabela de síndrome \mapsto padrão de erro, devemos considerar que a síndrome é dada por

$$s = He^T (14)$$

Onde e é o vetor de erro, obtendo a matriz e podemos obter a síndrome s. Para definir e precisamos montar o arranjo padrão e pegar a primeira coluna dele. Utilizando python obtemos o seguinte arranjo padrão possível:

Aplicando a equação $s=He^T$ obtemos a tabela de síndrome \mapsto padrão de erro

Síndrome	Padrão de erro
0000	00000000
1101	10000000
1011	01000000
0111	00100000
1110	00010000
1000	00001000
0100	00000100
0010	00000010
0001	00000001
0110	11000000
1010	10100000
0011	10010000
0101	10001000
1001	10000100
1111	10000010

Síndrome	Padrão de erro
1100	10000001

e) Determine a distribuição de peso dos padrões de erro corrigíveis.

Os padrões de erro corrigíveis são os representandes dos cosets do arranjo padrão, ou seja, podemos extrair os padrões de erro corrigíveis a partir da primeira coluna do arranjo padrão. Verificando seus pesos, obtemos a seguinte distribuição de peso dos padrões de erro corrigíveis:

i									
$arepsilon_i$	1	8	7	0	0	0	0	0	0

Escreva um programa que simule o desempenho BER de um sistema de comunicação que utiliza o código de Hamming (8,4) com codificação via síndrome, modulação QPSK (com mapeamento Gray) e canal AWGN. Considere a transmissão de 100000 palavras-código e relação de sinal-ruído de bit (E_b/N_0) variando de -1 a 7 dB. Compare com o caso não codificado.

Utilizando a linguagem de programação Python e a biblioteca komm podemos simular o desempenho BER do código de Hamming (8,4) com codificação via síndrome, modulação QPSK e canal AWGN.

É possível verificar que o desempenho BER do código de Hamming (8,4) é superior ao não codificado para valores de E_b/N_0 maiores que 4 dB.