

Content

- Background
- NLP Model Training
 - Overview
 - Data Cleaning
 - Exploratory Data Analysis
 - Base Model Benchmarking and Selection
 - Feature Engineering
 - Hyperparameter Tuning
- Production Model
 - Performance
 - Error Analysis
 - Deployment and Recommendations
- Conclusion

Background

Problem Statement

As an aspiring entrepreneur embarking on a new custom Gaming/Enthusiast Desktop PC startup, which desktop CPU brand should I carry to minimize dead stock/slow moving inventory?

Key Considerations

- Low initial capital
 - Parts brought in need to be quickly sold to obtain more funds to grow the business.
- AMD vs. Intel in the PC Hardware Ecosystem
 - Choice of CPU brand will dictate other parts like motherboard, DRAM etc. and are not interchangeable.
- Target market group
 - PC Gamers and Enthusiasts (PC Master Race)

Background

AMD vs. Intel (All CPUs)

BUT! Include Server, Laptop, Desktop CPUs for both Consumer and Enterprise customers

How then can I know which CPU brand to choose?

Overview

10,000 posts each from r/AMD and r/Intel were scraped to train the model.

some advice? This is the place to ask!

r/buildapc

r/Intel

10,000 posts from r/BuildaPC will be used to quantify which brand is more popular.

Data Cleaning

Subreddits r/AMD vs. r/Intel

Following was done to clean the reddit title and posts:

- 1. Links were removed from the posts. Regex selector = r"http:: $+[^{\land}\s]+[^{\w}]$ ".
- 2. Markdown codes such as '​', '<', '>', /n were removed.
- 3. Common words were excluded from model using the spaCy (https://spacy.io/) list of English stopwords.
- 4. Dead giveaway words like AMD and Intel were excluded as well.
- 5. Reddit posts and titles were merged into one 'Text' column.

Exploratory Data Analysis

Comparing Top Words r/AMD

r/Intel

Exploratory Data Analysis

Comparing Top Bigrams r/AMD

r/Intel

Base Model Benchmarking and Selection

Parameters

Vectorizers	County/ortonings/	'max_features': [5000],		
	CountVectorizer()	'n_gram_range': [(1,1)]		
	TfidfVectorizer()	'stop_words' : [new_spacy],		
Classifiers	LogisticRegression()			
	MultinomialNB()	Default		
	RandomForestClassifier()			

Model Performance

	Acc	curacy Score			
Vectorizer	Classifier	Cross-Val Score	Train Score	Test Score	
CountVectorizer(stop_words=['amd', 'intel'])	LogisticRegression()	91.58%	98.62%	91.66%	
CountVectorizer(stop_words=['amd', 'intel'] + spaCy))	LogisticRegression()	91.95%	98.51%	92.21%	
CountVectorizer(stop_words=['amd', 'intel'] + spaCy]))	MultinomialNB()	91.42%	92.86%	91.06%	
CountVectorizer(stop_words=['amd', 'intel'] + spaCy))	RandomForestClassifier()	92.11%	99.87%	91.96%	
TfidfVectorizer(stop_words=['amd', 'intel'] + spaCy))	LogisticRegression()	92.74%	95.71%	92.91%	
TfidfVectorizer(stop_words=['amd', 'intel'] + spaCy))	MultinomialNB()	91.00%	92.58%	91.51%	
TfidfVectorizer(stop_words=['amd', 'intel'] + spaCy))	RandomForestClassifier()	91.94%	99.87%	92.46%	

Feature Engineering

E.g. Words Dropped from				
<u>Mode</u>	<u>l</u>			
	12			
Numbers	120			
	1200			
	add			
Non Doscriptivo	experience			
Non-Descriptive	feel			
	hard			
	youtube			
Other Brands	creative			
Other Brands	crucial			
	evga			

		Acc	uracy Score	
Vectorizer	Classifier	Cross-Val Score	Train Score	Test Score
TfidfVectorizer(stop_words=['amd', 'intel'] + spaCy)	LogisticRegression()	92.74%	95.71%	92.91%
TfidfVectorizer() w/ added Stop-Words	LogisticRegression()	93.41%	96.20%	93.11%

+0.20%

Hyperparameter Tuning

Hyperparameters Tuned

Vectorizers	TfidfVectorizer()	'max_features': [5000, 10_000, 20_000, 30_000, 40_000, 50_000] 'n_gram_range': [(1,1), (1,2), (1,3)], 'tvecmax_df': np.linspace(0.9,1.0,6) 'tvec_min_df': np.linspace(1,10,10)
Classifiers	LogisticRegression()	'IrC': np.linspace(0.001,1,11)

		Accuracy Score			
Vectorizer	Classifier	Cross-Val Score	Train Score	Test Score	Hyperparameters
					'tvecmax_features' = 5_000, 'tvecn_gram_range'
TfidfVectorizer() w/ added Stop-Words	LogisticRegression()	93.41%	96.20%	93.11%	= (1,1)
					'tvecmax_features' = 30_000,
					'tvecn_gram_range' = (1,1),
TfidfVectorizer() w/ added Stop-Words	LogisticRegression()	93.56%	96.83%	93.71%	'lrC': 1.0

Production Model Performance

		Acc	uracy Score			
Vectorizer	Classifier	Cross-Val Score	Train Score	Test Score	Hyperparameters	
CountVectorizer(stop_words=['amd', 'intel'])	LogisticRegression()	91.58%	98.62%	91.66%	Default	
					'tvecmax_features' = 30_000,	+2.0
					'tvecn_gram_range' = (1,1),	- 2.0
TfidfVectorizer() w/ added Stop-Words	LogisticRegression()	93.56%	96.83%	93.71%	'lrC': 1.0	

Word	LogReg Coeff	Word	LogReg Coeff
ryzen	10.0	i7	-9.3
5800x	6.4	i5	-8.1
5900x	6.1	10900k	-6.8
x570	5.8	i9	-6.5
radeon	5.6	10700k	-6.2
rx	5.3	z490	-6.2
5600x	5.3	12900k	-5.4
xt	5.0	i3	-5.0
5950x	5.0	z690	-5.0
6900xt	4.7	lake	-4.5
b550	4.6	9900k	-4.4
6800xt	4.4	10850k	-4.3
pbo	4.2	12700k	-4.0
6700xt	4.1	10600k	-3.9
fsr	3.7	12600k	-3.9
21	3.5	optane	-3.5
r5	3.3	xeon	-3.4
vega	3.3	xe	-3.3
5600g	3.3	uhd	-3.2

Production Model Error Analysis

Error Analysis on Misclassified Posts

Misclassification Category	Example of Post
Comparison post between AMD products vs Intel Products	"which would you choose between a ryzen 5800x and a 10850k? looking for the best gaming performance and futureproof (not looking to upgrade CPU in the next 3-4years), which option would be the best for me?"
General post that can be applicable to both AMD/Intel	"What do you call Intel's way of advertising? Its for my essay I forgot what its called when they showcase their new products on the stage and a lot of people are watching? is there a term to call this?"
Posts that don't talk about the products at all	"Honestly, this is a way better sub than /r/AMD The difference between this sub and /r/AMD, is that you can criticize Intel here and you won't immediately be called shill, gaslighted or told that you're spreading FUD. Whereas any criticism of AMD anywhere elicits an immediate attacking and scathing response from AMD fanboys, who seem to be extremely insecure."

Production Model Deployment and Recommendations

Deploying on r/BuildaPC

		Accuracy Score		
		Cross-Val		
Vectorizer	Classifier	Score	Train Score	Hyperparameters
				'tvecmax_features' = 20_000,
TfidfVectorizer() w/				'tvecn_gram_range' = (1,1),
added Stop-Words	LogisticRegression()	93.04%	96.82%	'lrC': 1.0

Therefore, I will be choosing to carry AMD CPUs for my custom PC building startup.

Conclusion

Possible Future Works

- Run sentiment analysis to see whether posts are positive or negative against AMD and Intel.
- Do multiclass classification for the GPU market (Nvidia RTX, AMD Radeon, Intel Arc) to see which GPU brand I should carry.
- Explore black-box models/deep learning models to improve accuracy of the model.

