Full Name: ANSWERS

Do not put any explanations or work in this answer sheet. Only your answers will be considered.

Problem 1 (8%)

Is the system:

2% (a) Linear? YES NO CAN'T TELL

2% (b) Time-invariant? YES NO CAN'T TELL

2% (c) Causal? YES NO CAN'T TELL

2% (d) Stable? YES NO CAN'T TELL

Problem 2 (4%)

Is the system:

2% (a) Causal? YES NO CAN'T TELL

2% (b) Stable? YES NO CAN'T TELL

Problem 3 (4%)

Is the system:

2% (a) Causal? YES NO CAN'T TELL

2% (b) Stable? YES NO CAN'T TELL

Problem 4 (6%)

$$H_{xy}(z) = \frac{1+3z^{-1}}{1-\frac{1}{2}z^{-1}}$$

$$H_{ey}(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}$$

Problem 5 (5%)

$$H(e^{j\omega}) = \frac{1 + \frac{1}{2}e^{-j\omega}}{1 - \frac{1}{3}e^{-j\omega}}$$

Problem 6 (9%)

$$3\%$$
 (a) $m_y[n] = 0$

3% (b)
$$\phi_{yy}[m] = \frac{1}{3} (2\delta[m] + \delta[m-1] + \delta[m+1])$$

3% (c)
$$P_{yy}(e^{j\omega}) = \frac{2}{3} (1 + \cos \omega)$$

Please turn over

Problem 7 (7%)

$$3\%$$
 (a) $H_2(z) = \frac{1 - \frac{1}{4}z^{-1}}{1 - \frac{1}{2}z^{-1}}$

3% (b) $H_2(z)$ unique within a scalar factor? **YES NO**

3% (c) Are x[n] and y[n] uncorrelated? YES NO

Problem 8 (8%)

The maximum such interval T is: $\frac{\pi}{\Omega_1 + \Omega_2}$

Problem 9 (9%)

5% (a) The largest possible T is: strictly less than 10^{-4}

4% (b) The estimate of A is **EXACT** APPROXIMATE

Problem 10 (8%)

4% (a) $y_c(t)$ is $x_c(t)$ delayed by 3.7 T_1 and then stretched in time by $\frac{T_2}{T_1}$.

4% (b) $y_d[n]$ is the sequence obtained by delaying $x_c(t)$ by 3.7 T_1 and then sampling at period T_1 .

Problem 11 (4%)

Is the overall system LTI? YES NO

Problem 12 (4%)

$$y[n] = \delta[n+1] + 4\delta[n] + 8\delta[n-1] + 8\delta[n-2] + 3\delta[n-3]$$

Problem 13 (8%)

4% (a) (i) Stable? **YES NO CAN'T TELL**

(ii) Causal? YES NO CAN'T TELL

4% (b) (i) Stable? **YES NO CAN'T TELL**

(ii) Causal? YES NO CAN'T TELL

Problem 14 (6%)

$$y(t) = s(t)\cos\left(\Omega_c t + \phi_0\right)$$

Problem 15 (8%)

 $y[n] = (\text{Circle one}) \quad y_1[n] \quad y_2[n] \quad y_3[n] \quad y_4[n] \quad y_5[n] \quad \boxed{y_6[n]} \quad y_7[n] \quad y_8[n]$

Problem 16 (0%)

The best estimate of my grade is: 100