

Pandas 4 - Data Visualization

Data analysis process

Data Understanding

Descriptive statistics

• Types of data (numerical/categorical)

Data Preprocessing

Basic operations

Subset selection and data consolidation

Missing data handling

Calculation (Modeling)

Basic calculation

Data aggregation

Data Visualization

- Univariate chart
- Bivariate chart
- Multivariate chart

Outline

- Pivot
- X-axis with categorical data
 - (Line chart)
 - Bar chart
 - Area chart
 - Pie chart
- Numerical data
 - Histogram
 - Scatter plot
 - Hexagon plot

Wide-form and Long-form

- Long-form: Each row is one time point per target. The data of a target can have multiple rows.
- Wide-form: A target's repeated responses will be in a single row, and each response is in a separate column.

Target: ID

		LAGIII	000.0
0	S01	Exam-1	95
1	S02	Exam-1	75
2	S03	Exam-1	70
3	S04	Exam-1	65
4	S05	Exam-1	85
5	S01	Exam-2	85
6	S02	Exam-2	70
7	S03	Exam-2	90
8	S04	Exam-2	55
9	S05	Exam-2	60

Exam Score

ID

Exam	Exam-1	Exam-2
ID		
S01	95	85
S02	75	70
S 03	70	90
\$04	65	55
S 05	85	60

Wide-form

Long-form

Pivot

The pivot() function is used to reshaped a DataFrame by passing arguments: index, columns and values.

	ID	Exam	Score
0	S01	Exam-1	95
1	S02	Exam-1	75
2	S03	Exam-1	70
3	S04	Exam-1	65
4	S05	Exam-1	85
5	S01	Exam-2	85
6	S02	Exam-2	70
7	S03	Exam-2	90
8	S04	Exam-2	55
9	S05	Exam-2	60
			Lon

<pre>score_df.pivot(index = "ID", column</pre>	s = "Exam", values = "Score")

Exam	Exam-1	Exam-2
ID		
S01	95	85
S02	75	70
S 03	70	90
S 04	65	55
S 05	85	60

Wide-form

Pivot

Change the target.

	ID	Exam	Score
0	S01	Exam-1	95
1	S02	Exam-1	75
2	S03	Exam-1	70
3	S04	Exam-1	65
4	S05	Exam-1	85
5	S01	Exam-2	85
6	S02	Exam-2	70
7	S03	Exam-2	90
8	S04	Exam-2	55
9	S05	Exam-2	60

<pre>score_df.pivot(index = "ID", columns = "Exam", values = "Score")</pre>			
score at.pivot(index = 10, columns = Exam, Values = "Score")	dC -:]	""
	score_af.pivot(index = "ID",	columns = Exam, Val	les = "Score")

Exam	Exam-1	Exam-2
ID		
S01	95	85
S02	75	70
S03	70	90
S 04	65	55
S05	85	60

ID	S01	S02	S03	S04	S05
Exam					
Exam-1	95	75	70	65	85
Exam-2	85	70	90	55	60

Pivot table: https://pandas.pydata.org/docs/reference/api/pandas.pivot_table.html

Melt: https://pandas.pydata.org/docs/reference/api/pandas.melt.html

Pivot

Example

	Product	Quarter	Month	Sales
0	Α	Q1	Jan	67
1	Α	Q1	Feb	57
2	Α	Q1	Mar	87
3	Α	Q2	Apr	50
4	Α	Q2	May	97
5	Α	Q2	Jun	68
6	В	Q1	Jan	78
7	В	Q1	Feb	102
8	В	Q1	Mar	113
9	В	Q2	Apr	98
10	В	Q2	May	80
11	В	Q2	Jun	84

Long-form

Target: Month

Outline

- Pivot
- X-axis with categorical data
 - (Line chart)
 - Bar chart
 - Area chart
 - Pie chart
- Numerical data
 - Histogram
 - Scatter plot
 - Hexagon plot

Line chart - Series

- Both Series and DataFrame have a plot() method to make some basic plot types. By default, plot() makes line charts
- Line chart is usually used to visualize the trend of data over a period of time.

(1) Select a series

```
series_A = sales_df[sales_df.Product == "A"].Sales
series_A

0    67
1    57
2    87
3    50
4    97
5    68
Name: Sales, dtype: int64
```

(2) Call plot() function

Line chart - Series

Assign a new index.

```
series_A.index = ["Jan","Feb","Mar","Apr","May","Jun"]
series_A.plot()
```

<AxesSubplot:>

Line chart - DataFrame

Use the arguments x and y to specify the columns used for plotting.

80

70

60

50

Jan

Feb

Mar

Month

Apr

	Product	Quarter	Month	Sales
0	Α	Q1	Jan	67
1	Α	Q1	Feb	57
2	Α	Q1	Mar	87
3	Α	Q2	Apr	50
4	Α	Q2	May	97
5	Α	Q2	Jun	68
6	В	Q1	Jan	78
7	В	Q1	Feb	102
8	В	Q1	Mar	113
9	В	Q2	Apr	98
10	В	Q2	May	80
11	В	Q2	Jun	84

Long-form

```
# Select the rows of product A
sales_df[sales_df.Product == "A"].plot(x = "Month", y = "Sales")
<AxesSubplot:xlabel='Month'>
                                           Sales
 90
```

May

Jun

Line chart - DataFrame

Use wide-form.

Product	Α	В
Month		
Jan	67	78
Feb	57	102
Mar	87	113
Apr	50	98
May	97	80
Jun	68	84

Wide-form

<AxesSubplot:xlabel='Month'>

Line chart - Multiple lines

Pass a list of column names to the argument y to plot multiple lines.

Product	Α	В
Month		
Jan	67	78
Feb	57	102
Mar	87	113
Apr	50	98
May	97	80
Jun	68	84

Line chart - Custom style

Use some arguments to change the style.

Product Month	Α	В
Jan	67	78
Feb	57	102
Mar	87	113
Apr	50	98
May	97	80
Jun	68	84

<AxesSubplot:xlabel='Month'>

- Marker: https://matplotlib.org/stable/api/markers_api.html#module-matplotlib.markers
- Color: https://matplotlib.org/stable/gallery/color/named_colors.html
- Linestyle: https://matplotlib.org/stable/gallery/lines_bars_and_markers/linestyles.html
- Others: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html

Exercise

(A.1) Given the dataframe expense_df . Convert the data frame to the following format (wide-form) and store the result in a new variable named expense_df_wide .

(A.2) Use reindex() to make the dataframe expense_df_wide conform to the new index: ['Jan','Feb','Mar','Apr','May','Jun'].

(A.3) Use the dataframe expense_df_wide obtained in (A.2). Draw a multiple line chart to show the monthly groceries and transportation

(A.4) Import dataset $\ \mbox{fashion.csv}\ \ \mbox{and set the first column as the index.}$

Hint: Use argument index_col=[0].

(A.5) Show the sales trends of Eton , Levi_s , and Tiger_of_Sweden with a multiple line chart. Settings: Use marker = "D", figsize = (12,4).

	month	expense	category
0	Jan	3050	grocery
1	Feb	2800	grocery
2	Mar	2750	grocery
3	Apr	2300	grocery
4	May	3150	grocery
5	Jun	2900	grocery
6	Jan	1050	transportation
7	Feb	900	transportation
8	Mar	1150	transportation
9	Apr	1850	transportation
10	May	1250	transportation
11	Jun	950	transportation

	grocery	transportation
Jan	3050	1050
Feb	2800	900
Mar	2750	1150
Apr	2300	1850
May	3150	1250
Jun	2900	950

expenses.

Bar chart - Series

- Use kind = "bar" to plot vertical bar chart.
- Use kind = "barh" to plot horizontal bar chart.

Bar chart - DataFrame

• Use the arguments x and y to specify the columns used for plotting.

	Product	Quarter	Month	Sales
0	Α	Q1	Jan	67
1	Α	Q1	Feb	57
2	Α	Q1	Mar	87
3	Α	Q2	Apr	50
4	Α	Q2	May	97
5	Α	Q2	Jun	68
6	В	Q1	Jan	78
7	В	Q1	Feb	102
8	В	Q1	Mar	113
9	В	Q2	Apr	98
10	В	Q2	May	80
11	В	Q2	Jun	84

Bar chart - DataFrame

• Use the arguments x and y to specify the columns used for plotting.

Product Month	Α	В
Apr	50	98
Feb	57	102
Jan	67	78
Jun	68	84
Mar	87	113
May	97	80

Bar chart - Multiple bars

Pass a list of column names to the argument y to plot multiple lines.

Product Month	Α	В
Jan	67	78
Feb	57	102
Mar	87	113
Apr	50	98
May	97	80
Jun	68	84

Bar chart - Stacked bar chart

Stacked bar chart

- Each bar is stacked by multiple data series.
- Stacked bar charts can be used to break down and compare parts of the whole.

Area chart

- An area chart is similar to a line chart, except that the area between the drawn line and the x-axis is shaded with color.
- Use kind = "area" to plot area chart. By default, stacked = True.

Pie chart

• The pieces of the pie chart are proportional to the fraction of the whole in each category.

Add up the total sales of each product.

Product	
Α	426
В	555

Exercise

Exercise.B

(B.1) Use the dataframe expense_df_wide obtained in (A.2). Draw a multiple bar chart to show the monthly groceries and transportation expenses.
(B.2) Use the dataframe expense_df_wide obtained in (A.2). Draw a stacked area chart to show the monthly groceries and transportation expenses.
(B.3) Import dataset melbourne.csv . Select the properties (rows) located in the following suburbs: Reservoir, Richmond, Bentleigh East, Preston. Hint: DataFrame.Column.isin()
(B.4) Group the data by the column Suburb and count the number of properties in each suburb. Hint: size()
(B.5) Display the results obtained in (B.2) with a pie chart.

Outline

- Pivot
- X-axis with categorical data
 - (Line chart)
 - Bar chart
 - Area chart
 - Pie chart
- Numerical data
 - Histogram
 - Scatter plot
 - Hexagon plot

Histogram - Series

- A histogram is an approximate representation of the distribution of numerical data
 - Step1: Divide the entire range of values into a series of intervals.
 - Step2: Count how many values fall into each interval.

			, <u>-</u>	
	Pregnancies	Glucose	BloodPressure	SkinThickness
0	6	148	72	35
1	1	85	66	29
2	8	183	64	0
3	1	89	66	23
4	0	137	40	35
763	10	101	76	48
764	2	122	70	27
765	5	121	72	23
766	1	126	60	0
767	1	93	70	31
			`	

By default, the number of bins is 10.

width of bins = (max - min)/number of bins = (122-24)/10 = 9.8

Histogram - Series

- Use the arugument "bins" to customize the number of bins.
 - Integer: bins = 15.
 - A sequence of bin edges: bins = [0,5,10,..,130]

<AxesSubplot:ylabel='Frequency'>

<AxesSubplot:ylabel='Frequency'>

Histogram - DataFrame

Use the arguments y to specify the column used for plotting.

```
diabetes_df.plot(kind = "hist", y = "BloodPressure", edgecolor = "black")
<AxesSubplot:ylabel='Frequency'>
```


Scatter plot

- Scatter plots are used to observe the relationship between two variables.
 - Each dot indicates an individual data point (observation).

Positive correlation

Negative correlation

Scatter plot

Color points based on the third variable.

Hexagon plot

- A hexagon plot combines nearby data points into a hexagon, and then displays the density (the number of data points) in color.
- Hexagon plots can solve the problem that many points begin to overlap.

Exercise

(C.1) Import dataset wine.csv and set the first column as the index. Display the first 5 rows.
(C.2) Use the following criteria to select a subset.
 Select wines (rows) from Spain, Italy or France (use column country). Select wines (rows) with a price of less than 200(use column price).
(C.3) Use a histogram to show the cost distribution of French wines. Hint: Use column price.
(C.4) Use a scatter plot to show the relationship between wine cost and the number of points recieved in the review. Hint: Use column price and points.
(C.5) Use a hexagon plot to show the relationship between wine cost and the number of points recieved in the review. Hint: Use gridsize = 20.

Summary

Bivariate chart

Multivariate chart

