Linear Regression

Vahid Partovi Nia

Lecture 02: Simple and Multiple Linear Regression

30 October 2018

Outline

Terminology

Advertisement

Simple Linear Regression

Multiple Linear Regression

- 1 Terminology
- 2 Advertisement
- **3** Simple Linear Regression
- Multiple Linear Regression
- 6 Education

Equivalent terminologies

Terminology

Advertisement

Simple Linear Regression

Multiple Linear Regression

- *y*: dependent variable, response variable, output variable
- *x*: independent variable, explanatory variable, input variable, feature.

Supervised Learning

Terminology

Advertisement

Simple Linear Regression

Multiple Linear Regression

- ullet Regression: y is continuous
- Classification: y is discrete

Advertisement

Simple Linear Regression

Multiple Linear Regression

$$y_1 = 22, \quad y_2 = 10, \quad y_3 = 9, \quad y_4 = 18$$

 $y_i = \beta_0 + \varepsilon_i$

- What is \hat{y}_i ?
- What is $\hat{\beta}_0$?
- Least squares: $\min \frac{1}{5} \{ (22 \beta_0)^2 + \dots + (18 \beta_0)^2 \}$

•
$$\hat{\beta}_0 = \frac{1}{5}(22 + \dots + 18)$$

Advertisement

Terminology

Advertisement

Simple Linear Regression

Multiple Linear Regression

Education

Suppose we have a fixed budget of advertisement to increase sales.

Problem:

How do you distribute advertisement budget between different advertisement methods?

Advertisement

Terminology

Advertisement

Simple Linear Regression

Multiple Linear Regression

Education

Suppose we have a fixed budget of advertisement to increase sales.

Problem:

How do you distribute advertisement budget between different advertisement methods?

TV, Radio, Newspaper, Online, etc.

Question:

- Does advertisement affect sale?
- How do we predict sale?
- What is y what is x?
- Is it a regression or a classification?

sales vs ad

Terminology

Advertisement

Simple Linear Regression

Multiple Linear Regression

Education

TV: x_1

Radio: x_2

Newspaper: x_3

Learning: Sales $\approx f(\text{TV}, \text{Radio}, \text{Newspaper}) + \varepsilon$

Sale prediction simplification

Terminology

Advertisement

Simple Linear Regression

Multiple Linear Regression

Education

Sales
$$\approx f(\text{TV}, \text{Radio}, \text{Newspaper})$$
 \downarrow

Sales $\approx f_1(\text{TV}) + f_2(\text{Radio}) + f_3(\text{Newspaper})$

Sales
$$\approx f_1(TV)$$

$$\Downarrow$$

$$y \approx \beta_0 + \beta_1 \text{TV}$$

$$y \approx \beta_0$$

Advertisement

Simple Linear Regression

Multiple Linear Regression

Education

Step 1

- Load "Advertising.csv"
 - path='/Users/Desktop/datafiles/'
 - filename=path+'Advertising.csv'
- import pandas as pd
- import numpy as np
- Take the mean of "sales"

Advertisement

Simple Linear Regression

Multiple Linear Regression

Education

```
import pandas as pd
path='data/'
filename = path+'Advertising.csv'
advertising = pd.read_csv(filename)
import numpy as np
np.mean(advertising['sales'])
```


10/19 YCBS255

Simple linear regression

Terminology

Advertisement

Simple Linear Regression

Multiple Linear Regression

Education

$$y_1 = 22$$
 $y_2 = 10$ $y_3 = 9$ $y_4 = 18$
 $x_{11} = 230$ $x_{12} = 44$ $x_{13} = 17$ $x_{14} = 151$

$$y_i = \beta_0 + \beta_1 x_{1i} + \varepsilon_i$$

What is \hat{y}_i ?

Simple linear regression

Terminology

Advertisement

Simple Linear Regression

Multiple Linear Regression

Education

Step 2: Predict Sales using TV

- Load "LinearRegression" from sklearn
- Initialize the model
- Feed the data
- Scatter plot Sales versus TV
- Add the predicted line

Advertisement

Simple Linear Regression

Multiple Linear Regression

Education

 $\begin{array}{lll} from & sklearn.linear_model & import & LinearRegression \\ Ir & = & LinearRegression () \end{array}$

Advertisement

Simple Linear Regression

Multiple Linear Regression

```
 \begin{array}{lll} from & sklearn.linear\_model & import & LinearRegression \\ Ir & = & LinearRegression () \end{array}
```

```
 lr. fit (X = advertising [ ['TV'] ], y = advertising ['sales']) \\ print (lr. intercept_, lr. coef_)
```


Advertisement

Simple Linear Regression

Multiple Linear Regression

Education

```
from sklearn.linear_model import LinearRegression
Ir = LinearRegression()
Ir.fit(X = advertising['TV']], y = advertising['sales'])
print(|r.intercept_. | |r.coef_|)
import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(advertising.TV, advertising.sales, 'or', mfc='none');
plt.plot(advertising.TV, Ir.intercept_+Ir.coef_*advertising.TV, '-b');
plt.xlabel('TV');
plt.ylabel('sales');
```


YCBS255 13/19

Combine models

Terminology

Advertisement

Simple Linear Regression

Multiple Linear Regression

TV:
$$x_1$$
 Radio: x_2 Newspaper: x_3 Sales = $\beta_0 + \beta_1$ TV + β_2 Radio + β_3 Newspaper + ε

Combine models

Terminology

Advertisement

Simple Linear Regression

Multiple Linear Regression

Education

TV: x_1 Radio: x_2 Newspaper: x_3 Sales = $\beta_0 + \beta_1$ TV + β_2 Radio + β_3 Newspaper + ε

Predict for TV = 250, Radio = 30, Newspaper = 20

Advertisement

Simple Linear Regression

Multiple Linear Regression

Education

Ir = LinearRegression()

Advertisement

Simple Linear Regression

Multiple Linear Regression

Advertisement

Simple Linear Regression

Multiple Linear Regression

Advertisement

Simple Linear Regression

Multiple Linear Regression

Education

```
\label{eq:mport_state} \begin{split} & import_states models.formula.api_as_smf_model = smf.ols(formula='sales_TV+ radio_+ newspaper',\\ & data== advertising)\\ & lr=model.fit()\\ & lr.summary() \end{split}
```


16/19 YCBS255

ols summary

Terminology

Advertisement

Simple Linear Regression

Multiple Linear Regression

Education

Dep. Variable:			sales				F	d: 0	0.897	
Model:			OLS				Adj. F	d: 0	0.896	
Method:			Least Squares				F	c: 5	570.3	
Date: S			at, 31 Mar 2018			F	Prob (F	:): 1.58	1.58e-96	
Time:			17:41:29				Log-L	d: -38	-386.18	
No. Observations:			200					D: 7	80.4	
Df Residuals:			196					D: 7	793.6	
Df Model:					3					
Covariance Type:			nonrobust							
	c	oef	std	err		t	P> t	[0.025	0.975]	
Intercept	2.9	2.9389		312	9.42	2	0.000	2.324	3.554	
TV	0.0	0.0458		.001	32.80	9	0.000	0.043	0.049	
radio	0.1	0.1885		009	21.89	3	0.000	0.172	0.206	
newspaper	-0.0	010	0.	.006	-0.17	7	0.860	-0.013	0.011	
Omnibus:		60.4	60.414 E		urbin-Watson:		tson:	2.084		
Prob(Omnibus):		0.0	D.000 J		rque-Bera ((JB):	151.241		
Skew:		-1.3	-1.327		Prob(JB):		(JB):	1.44e-33	1	
Kurtosis:		6.332			Cond. No.			454.		

17/19 YCBS255

Advertisement

Simple Linear Regression

Multiple Linear Regression

Education

Years of Education: x_1 $y \approx f(x_1, x_2)$

Seniority: x_2

Advertisement

Simple Linear Regression

Multiple Linear Regression

$$y \approx f_1(x_1) + f_2(x_2)$$

$$y \approx \beta_0 + \beta_1 x_1 + \beta_2 x_2$$