MÉTODOS MATEMÁTICOS DE LA INFORMÁTICA

6. La integral. Cálculo de Primitivas

6.1. Para las funciones siguientes, determina si existe su integral y en su caso calculala, usando la definición de integral (o el criterio de Integrabilidad de Riemann).

a)
$$f(x) = \begin{cases} 1 & \text{si} \quad x \in [0,2] \setminus \{1\} \\ 2 & \text{si} \quad x = 1 \end{cases}$$
 b) $f(x) = \begin{cases} 1 & \text{si} \quad x \in [0,2] \setminus \{\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\} \\ 2 & \text{si} \quad x = \frac{k}{5}, \quad k = 1, 2, 3, 4. \end{cases}$

6.2. Calcula la integral de las siguientes funciones; antes dibuja las gráficas de las mismas.

a)
$$f(x) = \begin{cases} 1 & \text{si } x \in [0, 1] \\ 2x - 1 & \text{si } x \in [1, 2] \\ 3x - 3 & \text{si } x \in [2, 3] \end{cases}$$

- b) Si [x] es la parte entera de $x \in \mathbb{R}$ (el mayor entero menor que x), se considera f(x) = x[x]. Calcula $\int_{0}^{n} f(x)dx$.
- **6.3.** Supongamos que $f \ge 0$ y que f es contina en [a,b]. Si $\int_a^b f = 0$, prueba que f(x) = 0, para todo $x \in [a, b]$.
- **6.4.** Prueba que $\frac{\pi}{2} \leq \int_0^{\pi} \sin x dx \leq \pi$.

Encuentra cotas superiores e inferiores para las siguientes integrales: a) $\int_0^{\pi} \sin^8 x dx$ b) $\int_0^1 \sqrt{1-x^2} dx$ c) $\int_0^1 \sqrt{1+x^2} dx$.

6.5. Usa argumentos geométricos para determinar si las siguientes expresiones son ciertas o

- a) $\int_{0}^{\frac{\pi}{4}} x dx \le \int_{0}^{\frac{\pi}{4}} \sin x dx$. b) $\int_{0}^{1} \sqrt[3]{x} dx = 1 \int_{0}^{1} x^{3} dx$.
- c) Sea y = f(x) la tangente a la curva $y = -x^2 + 4$ por el punto $(\frac{1}{2}, 4 \frac{1}{4})$. Se considera la expresión $\int_{-\infty}^{1} f(x)dx \ge \int_{-\infty}^{1} -x^2 + 4dx$.
- **6.6.** Sea $F(x) = \int_0^x f(t)dt$. En los siguientes casos encuentra una expresión explícita de la función F

a)
$$f(x) = \begin{cases} 1 & \text{si} \quad x \in [0, \frac{1}{2}] \\ 2 & \text{si} \quad x \in (\frac{1}{2}, \frac{2}{3}] \\ 3 & \text{si} \quad x \in (\frac{2}{3}, 1] \end{cases}$$
 b) $f(x) = \begin{cases} 1 - x & \text{si} \quad x \in [0, \frac{1}{2}] \\ 2 - x & \text{si} \quad x \in (\frac{1}{2}, \frac{2}{3}] \\ 3 - x & \text{si} \quad x \in (\frac{2}{3}, 1] \end{cases}$

En ambos casos, ¿es F una función continua?

1)
$$F(x) = \int_0^{\ln(x+1)} \sqrt{t^2 + 1} dt$$
. 2) $F(x) = \int_0^{x^2 + 1} \frac{1 + t}{1 + t^2} dt$.

$$2)F(x) = \int_0^{x^2+1} \frac{1+t}{1+t^2} dt.$$

3)
$$F(x) = \int_{\sin x}^{\cos x} \frac{t}{t^2 + 1} dt$$

3)
$$F(x) = \int_{\sin x}^{\cos x} \frac{t}{t^2 + 1} dt$$
. 4) $F(x) = \int_{x^2}^{\ln(x+1)} \sqrt{1 + t^2} dt$

- **6.8.** Sean $f,g:[a,b]\to\mathbb{R}$ dos funciones continuas. Si $\int_a^b f(x)dx=\int_a^b g(x)dx$, prueba que existe $c \in [a, b]$ de modo que f(c) = g(c).
- 6.9. Representa las gráficas de las funciones:

a)
$$F(x) = \int_0^x -3t^2 + 24t - 45dt$$
, $x \in \mathbb{R}$. b) $F(x) = \int_0^{\ln(x+1)} e^{t^2} dt$, $x \ge 0$.

b)
$$F(x) = \int_0^{\ln(x+1)} e^{t^2} dt$$
, $x \ge 0$.

$$c)F(x) = \int_{x}^{2x} \sin^{8} t dt, \quad x \in [0, \pi].$$

6.10. Si la función f es continua en [0,1], prueba que: $\lim_{n\to\infty} \left(\frac{1}{n}\sum_{k=1}^n f(k/n)\right) = \int_0^1 f(k/n)$

Utiliza lo anterior para calcular $\int_0^1 x dx$ y $\int_0^1 x^2 dx$. (Indicación: usa el ejercicio 1.2. de la

6.11. Utiliza el ejercicio anterior para expresar cada uno de los siguientes límites como una integral. Resuelvelos usando primitivas.

a)
$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{\ln(k+n) - \ln(n)}{n} \right)$$
 b) $\lim_{n \to \infty} \frac{1}{n^3} \left(\sum_{k=1}^{n} (k+n)(k-n) \right)$ c) $\lim_{n \to \infty} \frac{1}{n^2} \left(\sum_{k=1}^{n} \sqrt{n^2 - k^2} \right)$.

6.12. Calcula las siguientes primitivas elementales.

- a) $\int x dx$ b) $\int x^3 dx$ c) $\int 3x^5 + 2x^3 + 7dx$ d) $\int (x-2)^2 dx$
- e) $\int \cos x dx$ f) $\int \sin x dx$ g) $\int 3 \cos x + 2 \sin x dx$ h) $\int 2x \cos x^2 dx$

i)
$$\int \frac{1}{x} dx$$
 j) $\int \frac{1}{x^k} dx$ con $k \in \mathbb{N} \setminus \{1\}$ k) $\int e^x dx$ l) $\int \frac{2x}{(x^2 - 1)^3} dx$

m) $\int \cosh x dx$ n) $\int \sinh x dx$ ñ) $\int 3 \cosh x + 2 \sinh x dx$ o) $\int \cosh x \cosh(\sinh x) dx$

$$\mathrm{p)}\,\int\frac{1}{x-1}dx \quad \mathrm{q)}\,\int\frac{1}{x+1}dx \quad \mathrm{r)}\,\int\frac{1}{x^2+1}dx \quad \mathrm{s)}\,\int\frac{1}{\sqrt{1-x^2}}dx \quad \mathrm{t)}\,\int\frac{1}{\sqrt{1+x^2}}dx.$$

6.13. Calcula las siguientes primitivas usando la Regla de Integración por Partes.

- 1) $\int xe^x dx$ 2) $\int x \sin x dx$ 3) $\int x \cos x dx$ 4) $\int \frac{x}{e^x} dx$
- 5) $\int \frac{\lg x}{r^3} dx$ 6) $\int e^x \sin x dx$ 7) $\int \arctan \lg x dx$ 8) $\int \arctan x dx$.

6.14. Demuestra las siguientes fórmulas de reducción:

1)
$$\int \sin^n x dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x dx, \quad n > 2 \text{ y par.}$$

2)
$$\int \cos^n x dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x dx, n > 2 \text{ y par.}$$

3)
$$\int \frac{dx}{(x^2+1)^n} = \frac{1}{2n-2} \frac{x}{(x^2+1)^{n-1}} + \frac{2n-3}{2n-2} \int \frac{dx}{(x^2+1)^{n-1}}$$

6.15. Comprueba las siguientes primitivas:

a)
$$\int \frac{dx}{\sin x} = \ln|\tan\frac{x}{2}|$$
 b)
$$\int \frac{dx}{\cos x} = \ln|\tan(\frac{x}{2} + \frac{\pi}{4})|$$

6.16. Obtén, mediante un cambio de variable, una primitiva en los casos siguientes: 1)
$$\int x \sqrt[5]{5-x^2} dx$$
 2) $\int xe^{-x^2} dx$ 3) $\int \frac{dx}{x\sqrt{e^x}} dx$ 4) $\int \frac{1-\sin x}{x+\cos x} dx$

5)
$$\int \frac{x^2}{\sqrt[3]{x^3 + 1}} dx$$
 6) $\int \frac{\arccos\frac{x}{2}}{\sqrt{4 - x^2}} dx$ 7) $\int \frac{\sqrt[3]{1 + \ln x}}{x} dx$

8)
$$\int \tan(\sqrt{x-1}) \frac{dx}{\sqrt{x-1}}.$$
 9)
$$\int x^2 \cosh(x^3 + 3) dx.$$

6.17. Calcula las siguientes primitivas con el cambio de variable que se indica.

a)
$$\int \frac{dx}{x(1-x)}$$
; $(x = \sin^2 t, y \text{ usa 7.1.}).$ b) $\int \frac{dx}{\sqrt{x^2-2}} dx$; $(x = \frac{1}{t}).$

c)
$$\int \frac{dx}{e^x + 1} dx$$
; $(x = -\ln t)$. d) $\int \frac{xdx}{\sqrt{x+1}} dx$; $(t = \sqrt{x+1})$.

e)
$$\int \frac{\sqrt{x^2 + 1}}{x^2} dx$$
; $(x = \tan x, y \text{ usa } 7.1.)$. f) $\int \sqrt{a^2 + x^2} dx$; $(x = a \operatorname{senh} t, \text{ usa } 4.5.)$.

6.18. Calcula las siguientes primitivas utilizando las identidades trigonométricas "adecuadas."

- a) $\int \cos^2 x dx$. b) $\int \sin^3 x \cos^4 x dx$. c) $\int \sin^2 x dx$. d) $\int \tan^2 x dx$. e) $\int \frac{dx}{1 + \sin x} dx$. f) $\int \frac{\sin^3 x}{\sqrt{\cos x}} dx$.

6.19. Calcula las primitivas siguientes.

1)
$$\int \frac{dx}{x^2 + 2x + 5}$$
.

$$2) \int \frac{dx}{x^2 + 2x}.$$

$$3) \int \frac{x}{x^2 - 7x + 13} dx$$

4)
$$\int \frac{x^2}{x^2 - 6x + 10} dx$$

1)
$$\int \frac{dx}{x^2 + 2x + 5}$$
. 2) $\int \frac{dx}{x^2 + 2x}$. 3) $\int \frac{x}{x^2 - 7x + 13} dx$.
4) $\int \frac{x^2}{x^2 - 6x + 10} dx$. 5) $\int \frac{e^x}{e^{2x} + 2e^x + 1} dx$.

6.20. Calcula las primitivas de las funciones racionales siguientes.

1)
$$\int \frac{x^3 - 1}{4x^3 - x} dx$$
. 2) \int

2)
$$\int \frac{x^3 + x + 1}{x(x^2 + 1)} dx$$

$$3) \int \frac{x^4}{x^4 - 1} dx.$$

1)
$$\int \frac{x^3 - 1}{4x^3 - x} dx$$
. 2) $\int \frac{x^3 + x + 1}{x(x^2 + 1)} dx$. 3) $\int \frac{x^4}{x^4 - 1} dx$. 4) $\int \frac{dx}{x^4 + 2x^2 + 1}$, (usa 6.14.).

6.21. Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua y de periodo p. Demuestra la igualdad

$$\int_{a}^{a+p} f(t)dt = \int_{0}^{p} f(t)dt$$

6.22. a) Calcula $\int \arcsin x dx$.

b) Análogamente, prueba que si $F = \int f$, entonces

$$\int f^{-1}(x)dx = xf^{-1}(x) - F(f^{-1}(x)).$$

c) Usa lo anterior para calcular $\int \sqrt{x^2 - 1} dx$.

6.23. Calcula una primitiva en los siguientes casos:

$$1) \int \frac{dx}{1 + \sqrt{1 + x}}$$

$$2) \int \frac{dx}{1 + e^x}.$$

$$3) \int \frac{dx}{\sqrt{x} + \sqrt[3]{x}}.$$

$$4) \int \frac{dx}{\sqrt{1+e^x}}. \qquad 5)$$

$$5) \int \frac{dx}{2 + \tan x}.$$

6)
$$\int \sin^3 x \cos^4 x dx.$$

$$7) \int \frac{dx}{\sqrt{\sqrt{x}+1}}.$$

6.23. Calcula una primitiva en los siguientes casos:
$$1) \int \frac{dx}{1+\sqrt{1+x}}. \qquad 2) \int \frac{dx}{1+e^x}. \qquad 3) \int \frac{dx}{\sqrt{x}+\sqrt[3]{x}}. \qquad 4) \int \frac{dx}{\sqrt{1+e^x}}. \qquad 5) \int \frac{dx}{2+\tan x}.$$

$$6) \int \sin^3 x \cos^4 x dx. \qquad 7) \int \frac{dx}{\sqrt{\sqrt{x}+1}}. \qquad 8) \int \frac{\arctan x}{1+x^2} dx. \qquad 9) \int \frac{x^2-1}{x^2+1} dx.$$

$$10) \int \arcsin \sqrt{x} dx. \qquad 11) \int (\sin x \int_0^x \sin t dt) dx.$$

10)
$$\int \arcsin \sqrt{x} dx$$
.

11)
$$\int (\sin x \int_0^x \sin t dt) dx$$