DMA

15. Huffmanův kód 16. Automorfismy grafu 17. Př. homomorfismů grafu

TYPOVÉ PŘÍKLADY (DMA)								
1. Grupa		Τ		\Box	Г		Г	*
2. Těleso			(2)			02		
3. Graf relace								
4. Hasseův diagram								
5. Booleova funkce								
6. Zbytek při dělení		T]
7. Vektory LN, LZ (modulo)								
8. Vektory generující v. pr.								
9. Hodnot matice (modulo)								
10. Soustava rovnic (modulo)								
11. Determinant (modulo)								
12. Počet koster grafu								
13. Grafová posloupnost								
14. Prostor kružnic								

1. a) Najděte množinu reálných čísel takovou, že tato množina vybavená danou operací tvoří grupu

$$a \oplus b = a + b + ab$$

 $a \oplus b = a + b - ab$

$$a \oplus b = a + b - 2ab$$

$$a \oplus b = a + b + \frac{1}{2}ab$$

7♦

Q

$$a \oplus b = a + b + 2ab$$

$$a \oplus b = a + b - \frac{1}{2}ab$$

b) Ukažte, že množina nenulových reálných čísel daného tvaru vybavená operací <u>násobení</u> tvoří grupu

$$a + b\sqrt{2}$$

$$a, b \in Q$$

$$a + b\sqrt{3}$$

$$a + b\sqrt{5}$$

$$a, b \in Q$$

2. Ukažte, že množina reálných čísel tvaru x, kde a, b Q vybavená operacemi sčítání a násobení tvoří <u>těleso</u>

$$a + b\sqrt{2}$$

$$a - b\sqrt{2}$$

$$a + b\sqrt{3}$$

3. Najděte graf následující relace a rozhodněte, jestli je reflexivní, symetrická nebo tranzitivní

$$(x, y) \subset RxR; |x+|y|| \le 2$$

2♦

$$(x, y) \subset RxR$$
; $\sin x \cdot \sin y \ge 0$

$$(x, y) \subset RxR; |x-|y|| \le 1$$
 8 \heartsuit

$$(x, y) \subset RxR; x + y \subset \mathbb{N}$$

$$(x,y) \subset RxR; \mid \mid x \mid - \mid y \mid \mid \leq 1$$

$$(x, y)$$
 ⊂ RxR; $x + y$ ⊂ \mathbb{Z}

80

$$(x, y) \subset RxR; |x - y^2| \le 1$$

 $(x, y) \subset RxR$; $1 \le |x| - |y| \le 2$

$$(x, y) \subset RxR; |x|-|y| \subset \mathbb{N}$$

$$(x, y) \subset RxR; |x|-|y| \subset \mathbb{Z}$$
 10.

4. Následující číselné množiny jsou uspořádány dělitelností. Najděte jejich Hasseův diagram, rozhodněte, zda se jedná o svaz a v případě kladné odpovědi jestli je svaz distributivní či komplementární

$$M_1 = \{1, 2, 3, 4, 12, 16, 48\},\$$

$$M_1 = \{1, 2, 3, 4, 12, 10, 40\},$$

 $M_2 = \{1, 2, 3, 4, 6, 12, 16, 48\}.$

$$M_2$$
 je množina všech dělitelů čísla 24 6

$$M_1 = \{1, 2, 3, 4, 6, 12, 16, 48\},\$$

$$M_1 = \{1, 2, 3, 12, 18, 24, 72\},$$

 $M_1 = \{2, 3, 4, 12, 18, 24, 48\},$

$$M_1 = \{1, 3, 6, 12, 18, 24, 72\},$$

$$M_2$$
 je množina všech dělitelů čísla 105

$$M_1 = \{1, 3, 4, 24, 36, 72\},$$

$$M_{\scriptscriptstyle 2}$$
 je množina všech dělitelů čísla 72

$$M_1 = \{1, 3, 4, 24, 36, 48, 72\},$$

 $M_1 = \{1, 3, 5, 15, 25, 30, 75, 150\},$

$$M_1 = \{1, 2, 3, 4, 12, 18, 30, 90\},$$

 $M_1 = \{1, 2, 3, 4, 5, 6, 12, 15, 30, 60\},\$

M₂ je množina všech dělitelů čísla 108

$$\overline{\overline{A} \vee (B\&C)} \Longrightarrow (A \Leftrightarrow (B \vee C))$$

$$(\overline{\underline{\mathsf{A}} \ \mathsf{v} \ \mathsf{C}}) => ((\mathsf{B} \& \mathsf{C}) => \overline{(\overline{\mathsf{A} \& \overline{\mathsf{C}})}})$$

$$(A\&(\overline{B \vee C})) \Longrightarrow (A\&(B \Leftrightarrow C))$$

$$(\overline{A \& B} \Leftrightarrow C) => (A \lor B) \& C$$

$$(A \Rightarrow (B \otimes \overline{C})) \Leftrightarrow A \otimes (B \vee \overline{C})$$

6. Určete zbytek při dělení čísla

2 ¹⁰⁰ číslem 13	6♡	3 ⁹⁰ číslem 2 3	Q
2 ¹²⁰ číslem 13	7 . *	4 ⁸⁰ číslem 13	K♦
2 ¹²⁰ číslem 19	2.	4 ⁸⁰ číslem 19	8\$
3 ¹⁰⁰ číslem 17	J⇔	5 ⁶⁰ číslem 17	5♠
3 ¹⁰⁰ číslem 19	3♦	5 ⁶⁰ číslem 19	10♠

7. Rozhodněte, zda jsou modulo x lineárně závislé či nezávislé vektory

```
mod 5 v_1=(1, 2, 1, 1), v_2=(2, 1, 1, 1), v_3=(2, 1, 1, 1), v_4=(1, 1, 0, 2)
                                                                                    4♡
mod 5 v_1=(1, 2, 1, 3), v_2=(2, 1, 3, 1), v_3=(2, 1, 0, 1), v_4=(1, 3, 0, 2)
                                                                                    10♡
mod 3 v_1=(1, 2, 1, 2), v_2=(2, 1, 0, 1), v_3=(2, 1, 0, 1), v_4=(1, 1, 0, 2)
                                                                                    4♦
mod 3 v_1=(1, 2, 1, 2), v_2=(2, 1, 0, 1), v_3=(2, 1, 0, 1), v_4=(2, 1, 1, 1)
                                                                                    10♦
mod 5 v_1=(1, 4, 1, 2), v_2=(2, 3, 0, 1), v_3=(2, 1, 0, 3), v_4=(0, 3, 1, 1)
                                                                                    3♠
mod 5 v_1=(2, 4, 1, 2), v_2=(2, 3, 0, 1), v_3=(3, 1, 0, 3), v_4=(0, 3, 1, 1)
                                                                                    9.
mod 7 v_1=(2, 4, 5, 2), v_2=(4, 3, 0, 1), v_3=(3, 1, 0, 6), v_4=(2, 1, 5, 2)
                                                                                    3 *
mod 7 v_1=(2, 4, 1, 2), v_2=(2, 3, 0, 1), v_3=(3, 1, 2, 6), v_4=(2, 1, 4, 2)
                                                                                    9.
```

8. Rozhodněte, zda následující vektory generují vektorový prostor nad tělesem \mathbb{Z}_x

\mathbb{Z}_5	v_1 =(1, 3, 2, 1), v_2 =(2, 2, 4, 1), v_3 =(1, 1, 2, 2), v_4 =(1, 2, 3, 1), v_5 =(0, 3, 1, 1)	2♡
\mathbb{Z}_5	v_1 =(1, 3, 2, 1), v_2 =(2, 2, 4, 1), v_3 =(3, 0, 1, 2), v_4 =(1, 2, 3, 1), v_5 =(4, 2, 4, 3)	9♡
\mathbb{Z}_7	v_1 =(1, 3, 6, 1), v_2 =(5, 2, 4, 1), v_3 =(0, 5, 3, 2), v_4 =(1, 2, 3, 1), v_5 =(4, 2, 4, 3)	5♦
\mathbb{Z}_7	v_1 =(1, 3, 6, 1), v_2 =(5, 2, 4, 1), v_3 =(0, 5, 3, 2), v_4 =(1, 2, 3, 1), v_5 =(0, 0, 6, 3)	Q♦
\mathbb{Z}_5	v_1 =(2, 3, 1, 1), v_2 =(0, 2, 4, 1), v_3 =(0, 1, 3, 2), v_4 =(2, 1, 3, 4), v_5 =(1, 0, 2, 3)	7♠
\mathbb{Z}_5	$v_1=(2,3,1,1), v_2=(0,2,4,1), v_3=(0,1,3,2), v_4=(2,1,3,4), v_5=(4,0,2,2)$	A♠

9. Určete hodnost matice modulo x

10. Řešte modulo x soustavu rovnic

mod 5	$x_1 2x_2 x_3 x_4 x_5 = 1$	mod 5	$x_1 \mid 2x_2 \mid 3x_3 \mid x_4 \mid x_5 = 2$
	$2x_1 x_2 x_3 2x_4 x_5 = 2$		$2x_1 x_2 3x_3 2x_4 x_5 = 3$
3♡	$x_1 \mid 2x_2 \mid 2x_3 \mid 3x_4 \mid 2x_5 = 1$	80	$x_1 2x_2 3x_3 3x_4 2x_5 = 4$
	$2x_1 x_2 2x_3 2x_4 2x_5 = 3$		$2x_1 x_2 3x_3 2x_4 2x_5 = 3$
mod 7	$x_1 2x_2 3x_3 5x_4 x_5 = 6$	mod 7	$x_1 2x_2 3x_3 5x_4 x_5 = 5$
	$2x_1 x_2 6x_3 2x_4 x_5 = 2$		$2x_1 3x_2 5x_3 2x_4 x_5 = 6$
2♦	$x_1 2x_2 5x_3 3x_4 2x_5 = 1$	6♦	$3x_1 \mid 2x_2 \mid 5x_3 \mid 3x_4 \mid 2x_5 = 1$
	$2x_1 x_2 4x_3 x_4 x_5 = 3$		$2x_1 x_2 3x_3 x_4 x_5 = 1$

mod 5
$$x_1 \mid 2x_2 \mid x_3 \mid x_4 \mid x_5 = 2$$

 $2x_1 \mid x_2 \mid 2x_3 \mid 2x_4 \mid x_5 = 3$
Ka $x_1 \mid 2x_2 \mid 4x_3 \mid x_4 \mid 4x_5 = 4$
 $4x_1 \mid 2x_3 \mid 4x_4 \mid x_5 = 4$

mod 7
$$x_1 \mid 2x_2 \mid 3x_3 \mid 5x_4 \mid x_5 = 1$$

 $2x_1 \mid x_2 \mid 6x_3 \mid 2x_4 \mid x_5 = 2$
 $x_1 \mid 2x_2 \mid 5x_3 \mid 3x_4 \mid 2x_5 = 1$
 $2x_1 \mid x_2 \mid 4x_3 \mid x_4 \mid x_5 = 3$

mod 3
$$x_1 \mid x_2 \mid 2x_3 \mid x_4 \mid 2x_5 = 1$$

 $2x_1 \mid 2x_2 \mid x_3 \mid 2x_4 \mid x_5 = 2$
 $4 x_1 \mid 2x_2 \mid 2x_4 \mid 2x_5 = 1$
 $2x_1 \mid 2x_2 \mid x_3 \mid x_4 \mid x_5 = 1$

mod 7
$$x_1 \mid 2x_2 \mid 3x_3 \mid 5x_4 \mid x_5 = 5$$

 $2x_1 \mid 3x_2 \mid 5x_3 \mid 2x_4 \mid x_5 = 6$
Jacob 3x 1 | 3x 2 | 5x 3 | 3x 4 | 2x 5 = 1
 $6x_1 \mid x_2 \mid 6x_3 \mid 3x_4 \mid 4x_5 = 1$

mod 7
$$x_1 \mid 2x_2 \mid 3x_3 \mid 5x_4 \mid x_5 = 6$$

 $2x_1 \mid x_2 \mid 6x_3 \mid 2x_4 \mid x_5 = 2$
8. $x_1 \mid 2x_2 \mid 5x_3 \mid 3x_4 \mid 2x_5 = 1$
 $2x_1 \mid x_2 \mid 4x_3 \mid x_4 \mid x_5 = 2$

11. Vypočtěte determinant modulo x

12. Určete počet koster grafu (nějaké typy)

2♥, 6♥, 5♦, 9♦, J♦, 4♠, 10♠, J♠, 6♣, A♣

13. Rozhodněte, zda následující posloupnost je grafová a v případě kladné odpovědi nakreslete příslušný graf

(nějaké posloupnosti)

3♥, 7♥, 3♦, 7♦, 5♠, 5♣, 9♣

6, 5, 5, 4, 3, 3, 3, 2, 1

14. Najděte prostor kružnic následujícího grafu (nějaké typy)

15. Abeceda je dána následující frekvenční tabulkou. Najděte optimální Huffmanův kód, spočtěte jeho váhu a zakódujte dané slovo. (nějaké typy)

3♥, 7♥, 3♦, 7♦, 5♠, 5♣, 9♣

A-20, B-6, D-10, E-20, L-12, N-15, P-8, S-4 **BEDNA**

A-25, D-10, E-10, L-30, O-15, I-8, T-4 **LOLITA** A-15, B-6, D-10, E-20, M-12, O-15, L-8, R-12 **MODLA**

16. Najděte automorfismy následujícího grafu (nějaké typy)

17. Najděte nějaké příklady homomorfismů mezi následujícími grafy (pokud existují)

9♡, 4♦, Q♦, 7♠, 2♣, 10♣

18. Pomocí fundamentální matice řezů najděte prostor řezů následujícího grafu (nějaké typy)

2♦, 8♦, 10♦, A♦, 2♠, 8♠, A♠, J♣, K♣

19. Najděte ω-distanční matici následujícího grafu (nějaké typy)

2♡, 8♡, J♡, 2♦, 3♦, 9♦, 10♦, A♦, 4♠, 6♠, Q♠, 4♣, 9♣

ohodnocení hran:

w(1,2)=4	w(1,6)=12
w(2,4)=2	w(2,6)=6
w(3,6)=4	w(2,3)=1
w(4,1)=1	w(3,4)=1
w(4,6)=3	w(4,5)=1

w(5,6)=1

20. Určete matici vzdálenosti následujícího grafu (nějaké typy)

3♥, 4♥, 5♦, J♦, 8♠, 3♣, Q♣

21. Určete počet sledů délky x mezi vyznačenými vrcholy (nějaké typy)

 $5\heartsuit$, $6\heartsuit$, $9\heartsuit$, $K\heartsuit$, $4\diamondsuit$, $8\diamondsuit$, $Q\diamondsuit$, $3\spadesuit$, $7\spadesuit$, $J\spadesuit$, $2\spadesuit$, $6\spadesuit$, $10\spadesuit$, $A\clubsuit$

7♥, 10♥, 6♦, 2♠, 5♠, K♠, A♠, 7♣, J♣, K♣

22. Pomocí Dijkstrova algoritmu určete vzdálenost mezi vyznačenými vrcholy

Ohodnocení hran:
$$w(u,1) = 4, \ w(1,2) = 5, \ w(2,3) = 3, \ w(3,4) = 4, \\ w(4,5) = 5, \ w(5,6) = 4, \ w(6,v) = 3, \ w(u,2) = 7, \\ w(1,3) = 6, \ w(2,4) = 8, \ w(3,5) = 6, \ w(4,6) = 7, \\ w(5,v) = 6, \ w(u,3) = 12, \ w(1,4) = 11, \ w(2,5) = 13, \\ w(3,6) = 14, \ w(4,v) = 11$$

23. Sestrojte graf následujícího projektu a najděte kritickou cestu

В 5 С 2 D 4 A, B Ε 7 C, D F 6 l D G 3 D 5 | E, F 7 G 6 Н

4 | H, I

Q♡, A♡, 7♦, K♦, 9♠, 10♠, 5♣, 8♣