P89V51RB2/RC2/RD2 器件手册

目录

第1	章	概述	1
第 2	2 章	特性	2
第3	章	订购信息	3
	3.1	定购选项	3
第~	章	功能框图	4
第 5	章	管脚信息	5
	5.1	管脚	5
		管脚描述	
		特殊功能寄存器	
第7		功能描述	
	7.1	存储器结构	13
		7.1.1 Flash 程序存储器	
		7.1.2 上电复位代码的执行	
		7.1.3 软件复位	
		7.1.4 掉电检测复位	
		7.1.5 看门狗复位	
		7.1.6 数据 RAM 存储器	
		7.1.7 扩展数据 RAM 寻址	
		7.1.8 双数据指针	
	7.2	Flash 存储器在应用中编程	
		7.2.1 Flash 结构	
		7.2.2 引导块(模块 1)	
		7.2.3 在系统编程(ISP)	
		7.2.4 使用在系统编程	
		7.2.5 使用序列号	
		7.2.6 在应用中编程的方法	
	7.3	定时/计数器 0 和 1	
		7.3.1 模式 0	25
		7.3.2 模式 1	
		7.3.3 模式 2	
		7.3.4 模式 3	
	7.4	定时器 2	
		7.4.1 捕获模式	
		7.4.2 自动重装模式(递增或递减计数器)	
		7.4.3 可编程时钟输出	
		7.4.4 波特率发生器模式	
	_	7.4.5 波特率公式小结	
	7.5	UART	
		7.5.1 模式 0	32

7.5.2 模式 1	32
7.5.3 模式 2	33
7.5.4 模式 3	33
7.5.5 帧错误	34
7.5.6 更多有关 UART 模式 1 的信息	34
7.5.7 更多有关模式 2 和模式 3 的信息	34
7.5.8 多机通信	34
7.5.9 自动地址识别	35
7.6 串行外围接口	36
7.6.1 SPI 接口	36
7.6.2 SPI 描述	36
7.7 看门狗定时器	38
7.8 可编程计数器阵列(PCA)	39
7.8.1 PCA 捕获模式	43
7.8.2 16 位软件定时器模式	43
7.8.3 高速输出模式	44
7.8.4 脉宽调节模式	44
7.8.5 PCA 看门狗定时器	45
7.9 保密位	46
7.10 中断优先级和查询序列	46
7.11 节电模式	49
7.11.1 空闲模式	49
7.11.2 掉电模式	50
7.12 系统时钟和时钟选项	50
7.12.1 时钟输入选项和振荡器电容值的选取	50
7.12.2 时钟加倍模式选项	51
第8章 极限参数	53
第9章 建议工作条件	54
第 10 章 静态特性	55
第 11 章 动态特性	57
11.1 符号说明	
第 12 章 封装外形	
第 13 章 修订记录	
附录 A 周立功公司相关信息	67

第1章 概述

P89V51RB2/RC2/RD2 是一款 80C51 微控制器, 包含 16/32/64kB Flash 和 1024 字节的数据 RAM。

P89V51RB2/RC2/RD2 的典型特性是它的 X2 方式选项。利用该特性,设计工程师可使应用程序以传统的 80C51 时钟频率(每个机器周期包含 12 个时钟)或 X2 方式(每个机器周期包含 6 个时钟)的时钟频率运行,选择 X2 方式可在相同时钟频率下获得 2 倍的吞吐量。从该特性获益的另一种方法是将时钟频率减半而保持特性不变,这样可以极大地降低电磁干扰(EMI)。

Flash 程序存储器支持并行和串行在系统编程(ISP)。并行编程方式提供了高速的分组编程(页编程)方式,可节省编程成本和上市时间。ISP 允许在软件控制下对成品中的器件进行重复编程。应用固件的产生/更新能力实现了 ISP 的大范围应用。

P89V51RB2/RC2/RD2 也可采用在应用中编程(IAP),允许随时对 Flash 程序存储器重新配置,即使是应用程序正在运行也不例外。

第2章 特性

- 80C51 核心处理单元;
- 5V的工作电压,操作频率为0~40MHz;
- 16/32/64kB 的片内 Flash 程序存储器,具有 ISP(在系统编程)和 IAP(在应用中编程)功能;
- 通过软件或 ISP 选择支持 12 时钟(默认)或 6 时钟模式;
- SPI(串行外围接口)和增强型 UART;
- PCA (可编程计数器阵列), 具有 PWM 和捕获/比较功能;
- 4个8位 I/O口,含有3个高电流P1口(每个I/O口的电流为16mA);
- 3 个 16 位定时器/计数器;
- 可编程看门狗定时器(WDT);
- 8个中断源,4个中断优先级;
- 2 个 DPTR 寄存器;
- 低 EMI 方式 (ALE 禁能);
- 兼容 TTL 和 CMOS 逻辑电平;
- 掉电检测;
- 低功耗模式
 - 一 掉电模式,外部中断唤醒;
 - 空闲模式;
- DIP40, PLCC44 和 TQFP44 的封装;

第3章 订购信息

表 1 订购信息

型号		封装	μ _⊆ _ <u>↓</u> -
型	名称	描述	版本
P89V51RB2BA	PLCC44	塑料行间芯片运载,44 脚	S0T187-2
P89V51RB2BBC	TQFP44	塑料小型方块扁平封装; 44 脚	S0T376-1
P89V51RC2FA	PLCC44	塑料行间芯片运载,44 脚	S0T187-2
P89V51RC2FBC	TQFP44	塑料小型方块扁平封装; 44 脚	S0T376-1
P89V51RC2BN	DIP40	塑料双列直插; 40 脚(600mi1)	S0T129-1
P89V51RD2FA	PLCC44	塑料行间芯片运载,44 脚	S0T187-2
P89V51RD2FBC	TQFP44	塑料小型方块扁平封装; 44 脚	S0T376-1
P89V51RD2BN	DIP40	塑料双列直插; 40 脚	S0T129-1

3.1 定购选项

表 2 定购选项

型号	Flash 存储器	温度范围	频率
P89V51RB2BA	16kB	0℃~+70℃	
P89V51RB2BBC	16kB	0℃~+70℃	
P89V51RC2FA	32kB	-40°C∼+85°C	
P89V51RC2FBC	32kB	-40°C∼+85°C	0∼40MHz
P89V51RC2BN	32kB	0℃~+70℃	U [*] ~ 40MITZ
P89V51RD2FA	64kB	-40°C∼+85°C	
P89V51RD2FBC	64kB	-40°C∼+85°C	
P89V51RD2BN	64kB	0℃~+70℃	

第4章 功能框图

图 1 P89V51RB2/RC2/RD2 功能框图

第5章 管脚信息

5.1 管脚

图 2 PLCC44 管脚配置

图 3 DIP40 管脚配置

图 4 TQFP44 管脚配置

5.2 管脚描述

表 3 P89V51RB2/RC2/RD2 管脚描述

<i>h</i> tr 🗆		管脚		사는 교 네	4/44		
符号	DIP40	TQFP44	PLCC44	类型	描述		
P0.0~P0.7	39~32	37~30	43~36	I/O	P0口: P0口是一个8位开漏双向 I/O口。写入'1'时 P0口悬浮,可用作高阻态输入。当访问外部程序和数据存储器时,P0口复用为低位地址和数据总线。应用中P0口利用强内部上拉来发送'1'电平。P0口可在外部主机模式编程过程中接收代码字节和在外部主机模式校验过程中发送代码字节。P0口用作程序校验或通用 I/O口时均需连接一个外部上拉电阻。		
P1.0~P1.7	1~8	40~44,1~3	2~9	I/O 带 内部 上拉	P1 口: P1 口是一个带内部上拉的 8 位双向口。写入'1'时 P1 口被内部上拉拉高,可用作输入。用作输入时,由于内部上拉的存在,P1 口被外部器件拉低时将吸收电流(I _{IL})。此外,P1.5,P1.6,P1.7还有 16mA 的高电流驱动能力。在外部主机模式编程和校验中,P1 口也可接收低位地址字节。		
P1.0	1	40	2	I/O	T2: 定时器/计数器 2 的外部计数输入或时钟输出。		
P1.1	2	41	3	Ι	T2EX: 定时器/计数器 2 捕获/重装触发和方向控制。		
P1.2	3	42	4	I	ECI: 外部时钟输入。PCA 的外部时钟输入。		
P1. 3	4	43	5	I/0	CEXO: PCA 模块 0 的捕获/比较外部 I/0 口。每个捕获/比较模块连接一个 P1 口用作外部 I/0 口。该口线不被 PCA 占用时仍可用作标准 I/0 口。		
P1. 4	5	44	6	I/0	SS: SPI 从机选择输入。 CEX1: PCA 模块 1 的捕获/比较外部 I/0 口。		
P1. 5	6	1	7	I/0	MOSI: SPI 主机输出从机输入端。 CEX2: PCA 模块 2 的捕获/比较外部 I/0 口。		
P1. 6	7	2	8	1/0	MISO: SPI 主机输入从机输出端。 CEX3: PCA 模块 3 的捕获/比较外部 I/0 口。		
P1. 7	8	3	9	I/0	SCK: SPI 主机输出从机输入端。 CEX4: PCA 模块 4 的捕获/比较外部 I/0 口。		
P2.0~P2.7	21~28	18~25	24~31	I/O 带 内部 上拉	P2 口: P2 口是一个带内部上拉的 8 位双向口。写入'1'时 P2 口被内部上拉拉高,可用作输入。用作输入时,由于内部上拉的存在,P2 口被外部器件拉低时将吸收电流(I _{IL})。在取指外部程序存储器或访问 16 位地址(MOVX @DPTR)的外部数据存储器时,P2 口发送高位地址。应用中 P2 口利用强内部上拉来发送'1'。在外部主机模式编程和校验中,P2 口可接收一些控制信号和部分高地址位。		

续上表...

		管脚				
符号	DIP40	TQFP44	PLCC44	- 类型	描述	
P3.0~P3.7	10~17	5,7~13	11,13~19	I/O 带 内部 上拉	P3 口: P3 口是一个带内部上拉的 8 位双向口。写入'1'时 P3 口被内部上拉拉高,可用作输入。用作输入时,由于内部上拉的存在,P3 口被外部器件拉低时将吸收电流(I _{IL})。在外部主机模式编程和校验中,P3 口可接收一些控制信号和部分高地址位。	
P3. 0	10	5	11	I	RxD: 串口输入。	
P3. 1	11	7	13	0	TxD: 串口输出。	
P3. 2	12	8	14	I	INT0: 外部中断 0 输入	
P3. 3	13	9	15	I	INT1: 外部中断 1 输入	
P3. 4	14	10	16	Ι	T0: 定时器/计数器 0 的外部计数输入。	
P3. 5	15	11	17	I	T1: 定时器/计数器 1 的外部计数输入。	
P3. 6	16	12	18	0	WR: 外部数据存储器写选通信号。	
P3. 7	17	13	19	0	RD : 外部数据存储器读选通信号。	
PSEN	29	26	32	I/O	程序选通使能: PSEN 是外部程序存储器的读选通信号。PSEN 在执行内部程序存储器的程序时无效(高电平),执行外部程序存储器时每个机器周期内两次有效,但当访问外部数据存储器时两个有效PSEN 脉冲将被跳过。当 RST 输入引脚的高电平时间大于 10 个机器周期时,向 PSEN 脚强制输入一个高电平到低电平的跳变将使器件进入外部主机模式编程。	
RST	9	4	10	I	复位 :振荡器工作时,该引脚上 2 个机器周期的高电平逻辑状态将使器件复位。当 RST 输入引脚为高电平时,如果 PSEN 脚输入一个高电平到低电平的跳变,器件将进入外部主机模式。否则进入正常工作模式。	
EA	31	29	35	I	外部访问使能: 若器件要对外部程序存储器取指, \overline{EA} 就必须与 V_{SS} 相连。器件执行内部程序存储器的程序时 \overline{EA} 必须与 V_{DD} 相连。然而,4 个安全锁定电平可将 \overline{EA} 禁能,使器件只能执行内部程序存储器的程序。 \overline{EA} 脚可承受 $12V$ 的高压。	
ALE/ PROG	30	27	33	I/O	地址锁存使能: ALE 是一个输出信号,在访问外部存储器时将地址低字节锁存。该引脚也用作Flash 的编程脉冲输入(PROG)。通常,ALE ^[1] 在1/6的振荡频率 ^[2] 时输出,可用作外部定时或外部时钟。每次访问外部数据存储器时都有一个ALE 脉冲被跳过。但是,只要 AO 被置 1, ALE 就被禁能。	

续上表...

符号		管脚		类型	描述
17 7	DIP40	TQFP44	PLCC44	火 型	油 坯
NC	-	6,17,28,39	1,12,23,34	I/O	不连
XTAL1	19	15	21	Ι	晶振 1 : 反相振荡放大器的输入和内部时钟发生电路的输入。
XTAL2	18	14	20	О	晶振 2 : 反相振荡放大器的输出。
V_{DD}	40	38	44	I	电源
V _{SS}	20	16	22	I	地

- [1] ALE 负载: 如果复位时 ALE 脚驱动较大的负载(>30pF),微控制器可能进入正常工作模式以外的其它工作模式。解决的方法是在管脚上(如 ALE 脚)增加一个连接到 V_{DD} 的 $3k\Omega\sim50k\Omega$ 的上拉电阻。
- [2] 6 时钟模式下,ALE 信号在 1/3 振荡频率时输出。

第6章 特殊功能寄存器

备注: 对特殊功能寄存器 (SFR) 的访问必须遵循以下方式:

- 用户不要试图访问任何未经定义的 SFR 地址。
- 对任何已定义的 SFR 的访问必须符合 SFR 的功能。
- 标注为'-','0'或'1'的 SFR 位只能以如下方式读或写:
 - 一 '-',除非另有说明,否则必须写入 0,但在读出时可以返回任意值(即使向其写入 0)。这是一个保留位,作为将来功能扩展之用。
 - 一'0'必须写入0,并且在读出时返回0。
 - 一'1'必须写入1,并且在读出时返回1。

表 4 特殊功能寄存器

*表明寄存器可进行位寻址

kt #hr	描述	cen MA	SFR 地址							
名称	有你 		MSB							
		位地址	E7	E6	E5	E4	E3	E2	E1	E0
ACC*	累加器	ЕОН								
AMXR	辅助功能寄存器	8EH	-	-	-		-		EXTRA	AM AO
AMXR1	辅助功能寄存器 1	А2Н	-	-	-		GF2	0	-	DPS
		位地址	F7	F6	F5	F4	F3	F2	F1	F0
B*	B寄存器	F0H								
ССАР0Н	模块0捕获高字节	FAH								
CCAP1H	模块1捕获高字节	FBH							•	
ССАР2Н	模块 2 捕获高字节	FCH								
ССАР3Н	模块 3 捕获高字节	FDH								
ССАР4Н	模块4捕获高字节	FEH								
CCAP0L	模块0捕获低字节	EAH								
CCAP1L	模块1捕获低字节	EBH								
CCAP2L	模块 2 捕获低字节	ECH								
CCAP3L	模块3捕获低字节	EDH								
CCAP4L	模块4捕获低字节	EEH								
CCAPM0	模块0模式	DAH	-	ECOM_0	CAPP_0	CAPN_0	MAT_0	TOG_0	PWM_0	ECCF_0
CCAPM1	模块1模式	DBH	-	ECOM_1	CAPP_1	CAPN_1	MAT_1	TOG_1	PWM_1	ECCF_1
CCAPM2	模块 2 模式	DCH	-	ECOM_2	CAPP_2	CAPN_2	MAT_2	TOG_2	PWM_2	ECCF_2
CCAPM3	模块3模式	DDH	-	ECOM_3	CAPP_3	CAPN_3	MAT_3	TOG_3	PWM_3	ECCF_3
CCAPM4	模块4模式	DEH	-	ECOM_4	CAPP_4	CAPN_4	MAT_4	TOG_4	PWM_4	ECCF_4
		位地址	DF	DE	DD	DC	DB	DA	D9	D8
CCON*	PCA 计数器控制	D8H	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0
СН	PCA 计数器高字节	F9H								
CL	PCA 计数器低字节	Е9Н								

续上表...

夕椒	描述	SFR 地址				位功能和	地址			
名称	抽 处	SFK 地址	MSB							LSB
CMOD	PCA 计数器模式	D9H	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF
DPTR	数据指针(2字节)									
DPH	数据指针高字节	83H								
DPL	数据指针低字节	82H								
FST	Flash 状态寄存器	В6Н	-	SB	-	-	EDC	-	-	-
		位地址	AF	AE	AD	AC	AB	AA	A9	A8
IEN0*	中断使能 0	A8H	EA	EC	ET2	ES0	ET1	EX1	ET0	EX0
		位地址	EF	EE	ED	EC	EB	EA	E9	E8
IEN1*	中断使能 1	E8H	-	-	-	-	EBO			
		位地址	BF	BE	BD	BC	BB	BA	В9	В8
IP0*	中断优先级	В8Н	-	PPC	PT2	PS	PT1	PX1	PT0	PX0
IP0H	中断优先级 0 高字节	В7Н	-	PPCH	PT2H	PSH	PT1H	PX1H	РТОН	PX0H
	•	位地址	FF	FE	FD	FC	FB	FA	F9	F8
IP1*	中断优先级 1	F8H	-	-	-	-	PBO			
IP1H	中断优先级 1 高字节	F7H	-	-	-	-	РВОН			
FCF		В1Н	-	-	-	-	-	-	-	BSEL
		位地址	87	86	85	84	83	82	81	80
P0*	Р0 🏻	80H	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
		位地址	97	96	95	94	93	92	91	90
P1*	Р1 🗆	90H	CEX4/S	PICLK CE	EX3/MISO	CEX2/MOSI		CEX0 EC1	T2EX	T2
		位地址	A7	A6	A5	A4	A3	A2	A1	A0
P2*	Р2 □	АОН	A15	A14	A13	A12	A11	A10	A9	A8
		位地址	В7	В6	В5	B4	В3	B2	B1	В0
P3*	Р3 🗆	ВОН	— RD	WR	T1	ТО	INT1	INT0	TxD	RxD
PCON	电源控制寄存器	87H	SMOD	1 SMOD0	BOF	POF	GF1	GF0	PD	IDL
		位地址	D7	D6	D5	D4	D3	D2	D1	D0
PSW*	程序状态字	D0H	CY	AC	F0	RS1	RS0	OV	F1	P
RCAP2H	定时器 2 捕获高字节	СВН								
RCAP2L	定时器 2 捕获低字节	САН								
	•	位地址	9F	9E	9D	9C	9B	9A	99	98
SCON*	串口控制	98H	SM0/F	E_ SM1	SM2	REN	TB8	RB8	TI	RI
SBMF	串口数据缓冲寄存器	99H								
SADDR	串口地址寄存器	А9Н								
SADEN	串口地址使能	В9Н								
	•	位地址	87 ^[1]	86 ^[1]	85 ^[1]	84 ^[1]	83 ^[1]	82 ^[1]	81 ^[1]	80 ^[1]
SPCTL	SPI 控制寄存器	D5H	SPIE	SPEN	DORD	MSTR	CPOL	СРНА	PSC1	PSC0
SPCFG	SPI 配置寄存器	ААН	SPIF	SPWCOL	-	-	-	-	-	-
SPDAT	SPI 数据	86H								
SP	堆栈指针	81H								

续上表...

Et Ilu	44.44	con that	位功能和地址							
名称	描述	SFR 地址	MSB					I	SB	
		位地址	8F	8E	8D	8C	8B	8A	89	88
TCON*	定时器控制寄存器	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
		位地址	CF	CE	CD	CC	СВ	CA	C9	C8
T2CON*	定时器 2 控制寄存器	С8Н	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2
T2MOD	定时器 2 模式控制	С9Н	-	-	ENT2				T2OE	DCEN
TH0	定时器 0 高字节	8CH								
TH1	定时器 1 高字节	8DH								
TH2	定时器 2 高字节	CDH								
TL0	定时器0低字节	8AH								
TL1	定时器 1 低字节	8BH								
TL2	定时器 2 低字节	ССН								
TMOD	定时器 0 和 1 模式	89H	GATE	C/T	M1	M0	GATE	C/T	M1	M0
WDTC	看门狗定时器控制	СОН	-	-	-	WDOUT	WDRE	WDTS	WDT	SWDT
WDTD	看门狗定时器数据/重装	85H								

^[1] SFR 中的无效位(标有"-"的位)总是为"X"(未知)。除非特别指明,否则不要向这些位写入 1,因为它们可能在用于将来扩展其它功能。这些位的复位值均为 0,读出来的值不可知。

第7章 功能描述

7.1 存储器结构

P89V51RB2/RC2/RD2 器件具有独立的程序存储器和数据存储器地址空间。

7.1.1 Flash 程序存储器

P89V51RB2/RC2/RD2 器件含有 2 个内部 Flash 存储模块。模块 0 为 16/32/64k 字节,分成 128/256/512 个扇区,每个扇区含有 128 个字节。模块 1 用来存放 IAP/ISP 程序,可以通过使能模块 1 来覆盖用户代码存储器的前 8k 字节。这种覆盖功能是由 FCF.1 软件复位位(SWR)和 FCF.0 存储单元选择位(BSEL)共同控制的。这两个位的组合以及指令所使用的存储器如表 5 所示。

SWR(FCF.1)	BSEL (FCF.0)	地址: 0000h~1FFFFh	地址:高于1FFFh
0	0	启动代码(模块1)	用户代码(模块0)
0	1	用户代码(模块0)	
1	0		
1	1		

表 5 程序存储器单元选择

只要 SWR 位(FCF.1)清零,我们就可以通过清零 FCF 寄存器的 BSEL 位来访问模块 1 中的 IAP 程序。上电后,自动执行启动代码,并且将波特率自动设置成和主机相同。如果 在大约 400ms 时间内自动设置波特失败,并且 SoftICE 标志没有置位,那么控制权将交给用户代码。这种控制权的转换由软件复位来完成,并且最终 SWR 位将保持置位。因此,为了访问模块 1 中的 IAP 程序,用户代码必须清零 SWR 位。但是在动态修改 BSEL 位时要非常小心。由于 BSEL 位的改变将造成不同的物理存储器都映射到逻辑程序地址空间,因此,当在执行 0000H~1FFFH 地址范围内的用户代码时用户不能清零 BSEL 位。

7.1.2 上电复位代码的执行

初始上电后,端口管脚的状态不确定,直至振荡器稳定起振和内部复位逻辑将所有管脚微弱拉高。无有效复位的器件上电会使 MCU 从一个不确定的地址开始执行程序。这种未定义的状态可能一不小心就会破坏 Flash 中的代码。在器件运行时系统复位不会影响片内 1kB RAM。但是,上电时片内 RAM 的内容是不确定的。

器件通电后,RST 管脚上的高电平除了要保持有效上电复位所需的两个机器周期外,还要保持一段时间,以便振荡器稳定起振(低频振荡器通常需要几个毫秒)。下面给出一种延长 RST 信号的方法: 将 RST 管脚通过一个 10F 的电容和 V_{DD} 相连,再通过一个 8.2KW 的电阻和 V_{SS} 相连。如图 5 所示。注意: 如果使用了 RC 电路,要确保 V_{DD} 的上升时间不超过 1ms,振荡器的起振时间小于 10ms。

对于起振时间较长的低频振荡器,必须延长复位信号的时间以满足长时间起振的要求。这种方法应当维护 V_{DD} 和 RST 之间的必然关系,以避免在不确定的地址上编程,而造成 Flash 的代码破坏。可设计一个用作初始上电的上电检测电路,该电路在电压达到掉电检测电平之前工作。PCON 寄存器的 POF 标志指示初始上电的条件。POF 标志将一直有效,直到被软件清零。

上电或外部复位后,P89V51RB2/RC2/RD2 将 SWR 和 BSEL 位(FCF[1:0])强制变为 00。这样,启动模块将映射到程序存储器的低 8kB 内,器件执行启动模块中的 ISP 程序,并自动将波特率设置成和主机一样。如果自动设置波特率成功,那么器件将保持为 ISP 模式。如果大约 400ms 后自动设置波特率没有成功,那么启动代码会检查 SoftICE 标志是否置位(通过之前的编程操作)。如果置位,器件将进入 SoftICE 模式。如果清零,那么启动代码将执行软件复位操作,该软件复位将使得器件从 0000h 开始的模块 0 开始执行用户代码。注意: RST 管脚上外部复位的效果与上电复位相同。

图 5 上电复位电路图

7.1.3 软件复位

软件复位是通过将 SWR 位(FCF.1)从 '0'变为'1'来实现的。软件复位后,程序计数器指向 0000H 地址,并将 SWR 和 BSEL 位(FCF[1:0])强制变为 10。这样,用户代码存储器的低 8kB 将会映射到用户代码存储器空间内。如此一来,用户程序将从地址 0000h处开始执行。软件复位后,WDTC.2或 RAM 数据保持不变。其他 SFR 都被设置成各自的复位值。

7.1.4 掉电检测复位

器件包含一个掉电检测电路,可保护系统免受电源电压大纹波的影响。 P89V51RB2/RC2/RD2 的掉电检测的阈值电压为 2.35V。当 V_{DD} 低于该阈值电压时,掉电检测将触发电路产生一个掉电中断,但是 CPU 仍然继续运行,直至电源电压返回到掉电检测电压 V_{BOD} 。掉电检测默认下会引发一次处理器复位。

 V_{DD} 必须保持低于 V_{BOD} 值,并且这种状态在掉电检测电路响应前至少要持续 4 个振荡时钟周期。

通过置位 EBO 位 (IEA.3) 可以使能掉电中断。如果 EBO 位置位并且检测到掉电条件,则产生掉电中断,程序从 004BH 单元开始执行。EBO 位必须在进入掉电中断服务程序后通过软件清零。掉电条件有效时清除 EBO 位将使器件正确复位。如果掉电中断没有被使能,掉电条件将复位程序,使之恢复到从 0000H 单元开始执行。掉电检测复位后,BSEL 位 (FCF.0) 会清零,但 SWR 位 (FCF.1) 保持不变,这样就不会改变用户程序存储空间的低 8kB 单元的内容。

7.1.5 看门狗复位

和掉电检测复位一样,看门狗定时器复位后,BSEL 位(FCF.0)将清零,但是 SWR 位 (FCF.1) 保持不变,并因此不会改变用户程序存储空间的低 8kB 单元的内容。

经过各种不同类型的复位后,SWR 和 BSEL 位的状态以及相应的程序存储器单元选择 如 $\underline{\mathbf{x}}$ 6 所示。

复位源	SWR位(FCF.1)	BSEL 位(FCF.0)	地址: 0000h 到 1FFFh	地址:高于1FFFh
	结果	结果		
外部复位	0	0	启动代码(模块1)	用户程序(模块0)
上电复位	U	U		
看门狗复位			保持 SWR 位的状态。如	
			果 SWR, BSEL=00, 那	
转由松测有总	X	0	么使用启动程序。如果	
掉电检测复位			SWR, BSEL=10, 那么	
			使用用户程序。	
软件复位	1	0	用户程序(模块0)	

表 6 复位源对单元选择的影响

7.1.6 数据 RAM 存储器

数据 RAM 含有 1024 字节的内部存储器。器件也可对高达 64kB 的外部数据存储器进行 寻址。

7.1.7 扩展数据 RAM 寻址

P89V51RB2/RC2/RD2 有 1kB 的 RAM。见图 6"内部和外部数据存储器结构"。 器件的内部数据存储器由 4 部分组成:

- 1. 低 128 字节 RAM (00H~7FH), 可直接和间接寻址。
- 2. 高 128 字节 RAM (80H~FFH), 可间接寻址。
- 3. 特殊功能寄存器(80H~FFH),只可直接寻址。
- 4. 扩展的 768 字节 RAM(00H \sim 2FFH),通过 MOVX 指令和清除 EXTRAM 位来间接寻址。(见第 6 节"特殊功能寄存器"中的辅助寄存器(AUXR))

由于高 128 字节和 SFR 占用相同的地址,因此 RAM 空间必须进行间接寻址。尽管 RAM 和 SFR 的地址相同,但它们在物理上是独立的。

表7 AMXR-辅助寄存器(地址: 8EH)的位分配

不可位寻址; 复位值为00H

位	7	6	5	4	3	2	1	0
符号	-	-	-	-	ı	-	EXTRAM	AO

位	符号	描述
7~2	-	保留为将来之用。通过用户程序将其清零。
1	EXTRAM	使用 MOVX @Ri/@DPTR 来访问内部/外部 RAM。该位为 0 时, CPU 访问 MOVX 指令指定的内部 XRAM 空间。如果指令中提供的地址超出片内 XRAM 的范围,则选择片外 XRAM 空间进行访问。 该位为 1 时, MOVX @Ri/@DPTR 默认下访问外部数据存储器。
0	AO	ALE 断开:禁止/使能 ALE。AO=0 时, 1/2 振荡器频率时输出 ALE。AO=1 时, ALE 仅在 MOVX 或 MOVC 时有效。

表 8 AMXR-辅助寄存器(地址: 8EH)的位描述

当使用指令来访问高 128 字节空间时 (7FH 之上), MCU 根据指令类型来决定访问 SFR 或 RAM 空间。如果指令采用间接寻址,访问 RAM;如果指令采用直接寻址,访问 SFR。见以下例子。

间接寻址:

MOV @R0,#data; R0 的内容是 90H

寄存器 R0 指向高地址范围内的 90H 单元。将'#data'中的数据写入 90H RAM 单元,而非 P1 口。

直接寻址:

MOV 90H,#data; 向 P1 口写入数据

将'#data'中的数据写入 P1 口。直接写地址单元的指令相当于写 SFR。

将 EXTRAM 清零,使用 MOVX 指令来访问扩展 RAM。外部 768 字节的存储器在物理上位于片内,逻辑上占用的是外部存储器的前 768 字节(地址 000H~2FFH)。

当 EXTRAM=0,扩展 RAM 通过 MOVX 指令和选定寄存器区的 R0、R1 寄存器或 DPTR 间接寻址。对扩展 RAM 的访问不会影响 P0 口、P3.6(WR)、P3.7(RD)或 P2 口。有关 EXTRAM=0 时扩展 RAM 的访问,见下面的实例。

扩展 RAM 访问(只能间接寻址):

MOVX @DPTR,A DPTR 指向 0A0H 单元

DPTR 指向 0A0H 单元, 'A'的内容写入到扩展 RAM(而非外部存储器)的 0A0H 地址单元。利用 MOVX 指令来访问高于 2FFH 单元(0300H~FFFFH)的外部存储器,整个过程的执行方法与标准 8051 器件完全相同: P0 和 P2 口用作数据/地址总线, P3.6 和 P3.7 分别用作写和读信号。

当 EXTRAM=1 时,MOVX @Ri 和 MOVX @DPTR 的用法与标准 8051 类似。MOVX @Ri 提供一个 8 位的地址,此时 P0 口还复用为数据总线。由其它输出端口管脚输出高地址位。这就提供了一种外部分页功能。MOVX @DPTR 产生一个 16 位地址,允许对高达 64kB 的外部存储器进行访问。由 P2 口提供高 8 位地址(DPH),P0 口复用为低 8 位地址(DPL)总线和数据总线。MOVX @Ri 和 MOVX @DPTR 均可产生必需的读和写信号(P3.6- \overline{WR} ,P3.7- \overline{RD}),供外部存储器使用。表 9 所示为 EXTRAM 位状态给定时外部数据存储器的 \overline{RD} 和 \overline{WR} 操作。

堆栈指针(SP)可以位于内部 RAM(低 128 字节和高 128 字节) 256 字节内的任何位置。但不允许位于扩展 RAM 中。

AMXR	MOVX @DPTR,A	或 MOVX A,@DPTR	MOVX @Ri,A 或 MOVX A,@RI		
AWAK	ADDR<0300H	ADDR≥0300H	ADDR=任何值		
EXTRAM=0	RD / WR 无效		RD / WR 无效		
EXTRAM=1					

表 9 EXTRAM 位状态给定时外部数据存储器的 RD 和 WR 操作

[1] 访问限制在 0~0FFH 的 ERAM 地址内;不能访问 100H~02FFH 单元。

图 6 内部和外部数据存储器结构

7.1.8 双数据指针

P89V51RB2/RC2/RD2 器件含有 2 个 16 位的数据指针。AMXR1 寄存器的 DPTR 选择位 (DPS) 用来选择使用的数据指针。DPS=0 时,选择 DPTR0; DPS=1 时,选择 DPTR1。通过对 AMXR1 执行一条简单的 INC 指令就可实现 2 个数据指针的快速切换(见图 7)。

图 7 双数据指针的结构

表 10 AMXR1一辅助寄存器 1 的位分配(地址: A2H)

不可位寻址; 复位值为00H

位	7	6	5	4	3	2	1	0
符号	-	-	-	-	GF2	0	-	DPS

表 11 AMXR1-辅助寄存器 1 的位描述(地址: A2H)

位	符号	描述
7~4	ı	保留为将来之用。通过用户程序将其清零。
3	GF2	通用用户定义标志位。
2	0	该位包含一个硬件 0。这样就允许通过将 AMXR1 加 1 来使 DPS 位翻转而不影响寄存
2		器的其它位。
1		保留为将来之用。通过用户程序将其清零。
0 DPS 数据指针选择。选择两个数		数据指针选择。选择两个数据指针中的一个。详见文中描述。

7.2 Flash 存储器在应用中编程

7.2.1 Flash 结构

P89V51RB2/RC2/RD2 程序存储器包含一个 64kB 的块。第二个 8kB 块中的在系统编程(ISP)功能允许用户代码通过串口进行在线(in-circuit)编程。有 3 种方法来实现 Flash 存储器的擦除或编程。首先,利用通过一个公共入口来调用低级程序的方法在最终用户应用中进行 Flash 的编程或擦除(IAP)。其次,调用片内的 ISP 引导装载程序。反过来,ISP 引导装载程序也可通过供给最终用户应用的相同公共入口来调用低级子程序。最后,利用支持该器件的商业 EPROM 编程器进行 Flash 的并行编程或擦除。

7.2.2 引导块 (模块 1)

当微控制器要对其自身的 Flash 存储器进行编程时,所有细节操作都通过引导块中的代码来处理,引导块与 Flash 存储器各自独立。所有用户程序只需使用适当的参数调用引导块中的公共入口即可实现所需要的操作。引导块的操作包括以下内容:擦除用户代码、编程用户代码、编程保密位等等。

使用商业并行编程器来擦除芯片。擦除芯片操作将擦除整个引导块的内容。为了运用器件的 ISP 或 IAP 功能,用户有必要利用 Philips 提供的 ISP/IAP 代码对引导块重新编程。可以登陆网站 http://www.semicond "">htt

7.2.3 在系统编程(ISP)

ISP 编程执行时不需要将微控制器从系统中移出。在系统编程特性包含了一系列内部的硬件资源,与内部固件相结合可实现通过串口对 P89V51RB2/RC2/RD2 的远程编程。固件由 PHILIPS 提供并嵌入到每一个 P89V51RB2/RC2/RD2 芯片当中。PHILIPS 的在系统编程特性使嵌入式应用中的在线编程变得可行,并最大限度减少了额外的元件开销和电路板面积。ISP 功能使用芯片的 5 个管脚(V_{DD} 、 V_{SS} 、TxD、RxD 和 RST)。只需要一个小的连接器将应用与一个外部电路连接就可实现该特性的应用。

7.2.4 使用在系统编程

ISP 特性不但允许在应用中广泛使用波特率,而不依赖于振荡器的频率。同样适应于范围宽广的振荡器频率。这是通过对一个接收到的字符中单个位进行位时间测量来实现的。该信息可根据设定的振荡器频率定时器值来对波特率进行编程。为此 ISP 特性要求主机必须向 P89V51RB2/RC2/RD2 发送一个初始化字符(大写的 M)以使芯片对波特率进行设定。ISP 固件提供对接收字节的自动回送。一旦波特率的设定完成之后,ISP 固件将只接受 Intel-Hex 格式的记录。Intel Hex 文件的由表示十六进制数的 ASCII 字符组成。汇总如下:

: NNAAAARRDD..DDCC<crlf>

在 Intel Hex 文件的记录中, 'NN'表示记录中数据字节的个数。P89V51RB2/RC2/RD2 最多可接受 32 个数据字节。'AAAA'字符串表示记录中首字节的地址。如果记录中的字节数为 0, 通常该区域设置为'0000'。'RR'表示记录的类型: '00'表示数据类型, '01'表示文件结束标识。在该应用中,增加额外的记录格式以指示 ISP 应用的命令或数据。

数据字节的最大为 32 (十进制)。ISP 命令见表 12。P89V51RB2/RC2/RD2 收到记录后,将数据保存并计算校验和。在整个记录接收完毕后才执行由记录类型所指示的操作。如果校验和发生错误,P89V51RB2/RC2/RD2 将从串口发出'X'指示校验和出错。如果校验结果与记录相符,将会执行指定的命令操作。在大多数情况下,从串口发出'.'字符表示正确接收。

表 12 在系统编程 (ISP) hex 记录格式

记录类型	命令/数据功能
	编程用户代码存储器
	: nnaaaa00ddddcc
	此处:
	nn=编程字节数
00	aaaa=地址
	dddd=数据字节
	cc=校验和
	例如:
	: 100000000102030405006070809cc
	文件结束 (EOF), 无任何操作
	: xxxxxx01cc
	此处:
01	xxxxxx=必须的字段,但其值'无关'
	cc=校验和
	例如:
	: 00000001FF
	设置 SoftICE 模式
	复位后器件进入 SoftICE 模式。该操作将擦除用户存储器和器件
	序列号
00	: 00000002cc
02	此处:
	xxxxxx=必须的字段,但其值'无关'
	cc=校验和
	例如: : 00000002FE

续上表...

续上表	T					
记录类型	命令/数据功能					
	混合写功能					
	: nnxxxx03ffssddcc					
	此处:					
	nn=记录的字节数					
	xxxx=必须的字段,但其值'无关'					
	ff=子功能代码					
	ss=选择代码					
	dd=数据(如果需要)					
	cc=校验和					
	子功能代码=01 (擦除块0)					
03	ff=01					
	子功能代码=05(编程保密位,加倍时钟)					
	ff=05					
	ss=01 编程保密位					
	ss=05 编程加倍时钟位					
	 子功能代码=08(擦除扇区,128 字节)					
	ff=08					
	ss=扇区地址高字节 (A15:8)					
	dd=扇区地址低字节(A7, A6:0=0)					
	例如:					
	: 0300000308E000F2(擦除 E000h 的扇区)					
	显示器件数据或区域校验					
	: 05xxxx04sssseeeeffcc					
	此处 05=记录的字节数					
	xxxx=必须的字段,但其值'无关'					
	04=显示功能代码或区域校验					
	ssss=起始地址,MSB 在前					
	eeee=结束地址,MSB 在前					
04	ff=子功能					
	00=显示数据					
	01=区域校验					
	cc=校验和					
	子功能代码:					
	例如:					
	: 0500000400001FFF00D9 (从 000h~1FFFh 显示)					
	: 090000040000TLLL00Da (冰 000II、 TLLLII 邓小)					

续上表...

续上表				
记录类型	命令/数据功能			
	混合读功能			
	: 02xxxx05ffsscc			
	此处:			
	02=记录的字节数			
	xxxx=必须的字节,但其值'无关'			
	05=混合读功能代码			
05	ffss=子功能和选择代码			
05	0000=读厂商 id			
	0001=读器件 id			
	0002=读 ISP/IAP 版本号			
	0700=读保密位(00000 SB 0 加倍时钟)			
	cc=校验和			
	例如:			
	: 020000050000F9(显示厂商 id)			
	波特率直接装载			
	: 02xxxx06HHLLcc			
	此处:			
	02=记录字节数			
	xxxx=必须的字段,但其值'无关'			
06	HH=定时器高字节			
	LL=定时器低字节			
	cc=校验和			
	例如:			
	: 02000007FFFFcc (装载 T2=7FFF)			
	复位序列号			
	: xxxxxx07cc			
	此处:			
	xxxxxx=必须的字段,但其值'无关'			
07	07=复位序列号功能			
	cc=校验和			
	例如:			
	: 00000001FF			
	检查序列号			
	: nnxxxx08sssscc			
	此处			
	xxxxxx=必须的字段,但其值'无关'			
08	08=检查序列号功能			
	ssss=序列号内容			
	cc=校验和			
	例如:			
08	08=检查序列号功能 ssss=序列号内容 cc=校验和			

续上表...

记录类型	命令/数据功能
	写序列号
	: nnxxxx09sssscc
	此处
	xxxxxx=必须的字段,但其值'无关'
09	09=写序列号功能
	ssss=序列号内容
	cc=校验和
	例如:
	: 03000009010203EE (写 s/n=010203)
	显示序列号
	: xxxxxx0Acc
	此处:
OA	xxxxxx=必须的字段,但其值'无关'
UA	0A=显示序列号功能
	cc=校验和
	例如:
	: 0000000AF6
	复位并运行用户代码
	: xxxxxx0Bcc
	此处:
0B	xxxxxx=必须的字段,但其值'无关'
UB	0B=复位并运行用户代码
	cc=校验和
	例如:
	: 0000000BF5

7.2.5 使用序列号

器件的 31 字节的序列号和序列号长度 (共 32 字节) 存放在非易失性存储器空间。当器件进入 ISP 模式后,由其序列号长度来判断序列号是否正被使用。如果序列号长度编程为00H 或 FFH,认为序列号未被使用。如果序列号被使用,用户代码存储器或序列号的读、编程或擦除操作将被禁止直到用户发送一个'检查序列号'记录,该记录包含的序列号和序列号长度与原来保存在器件中的序列号和序列号长度相匹配。用户可通过发送'复位序列号'记录将序列号和序列号长度都设置成 0。而且,'复位序列号'记录也可擦除所有的用户代码。

7.2.6 在应用中编程的方法

应用程序通过调用几个在应用中编程(IAP)的子程序,可实现对 Flash 扇区、页、保密位、配置字节和器件 ID 进行选择性擦除、读和编程。所有的调用都是通过一个公共的接口 PGM_MTP 来实现的。在调用位于地址 1FF0H 的 PGM_MTP 之前,通过设置微控制器的寄存器可选择编程的功能。IAP 调用见表 13。

表 13 IAP 功能调用

IAP 功能	IAP 调用参数
读 id	输入参数:
	R1=00h
	DPH=00H
	DPL=00H=厂商 id
	DPL=01H=器件 id 1
	DPL=02H=启动代码版本号
	返回参数:
	ACC=所需参数
擦除块0	输入参数:
	R1=01h
	返回参数:
	ACC=00=通过
	ACC=!00=出错
编程用户代码	输入参数:
	R1=02h
	DPH=存储器地址 MSB
	DPL=存储器地址 LSB
	ACC=编程字节
	返回参数:
	ACC=00=通过
	ACC=!00=出错
读用户代码	输入参数:
	R1=03h
	DPH=存储器地址 MSB
	DPL=存储器地址 LSB
	返回参数:
	ACC=器件数据
编程保密位、加倍时钟	输入参数:
	R1=05h
	DPL=01H=保密位
	DPL=05H=加倍时钟
	返回参数:
	ACC=00=通过
	ACC=!00=出错
读保密位、加倍时钟	输入参数:
	ACC=07h
	返回参数:
	ACC=000 S/N-匹配 0 SB 0 DBL_CLK

续上表...

IAP 功能	IAP 调用参数				
擦除扇区	输入参数:				
	R1=08h				
	DPH=扇区地址的高字节				
	DPL=扇区地址的低字节				
	区回参数:				
	ACC=00=通过				
	ACC=!00=出错				

7.3 定时/计数器 0 和 1

2 个 16 位定时器/计数器: 定时器 0 和定时器 1。两者可配置成定时器或事件计数器(见表 14 和表 15)。

用作'定时器'功能时,每经过一个机器周期,寄存器加 1。因此,可以将一个机器周期看作计数周期。由于一个机器周期由 6 个振荡周期组成,所以,定时器的计数率为 1/6 振荡频率。

用作'计数器'功能时,每当外部计数管脚,T0或T1,发生一次1到0的跳变,寄存器加1。此功能中,外部输入脚每个机器周期被采样一次。

当在一个周期内采样为高而下一个周期内采样为低时,计数值加 1。新的计数值在检测到跳变的周期的下一周期出现在寄存器中。由于识别 1 到 0 的跳变要占用 2 个机器周期 (12 个振荡周期),因此最大计数速率为 1/12 振荡频率。外部输入信号的占空比不受限制,但为了保证给定电平能在改变之前被检测到,外部输入信号的状态至少要保持一个完整的机器周期。除了'定时器'或'计数器'的选择外,定时器 0 和定时器 1 还有 4 种工作模式可供选择。

"定时器'和'计数器'功能通过特殊功能寄存器 TMOD 的 C/T 位来选择。两个定时器/计数器都有 4 种工作模式,由 TMOD 的两位(M1,M0)进行选择。两个定时器/计数器的模式 0,1 和 2 相同,模式 3 不同。4 种工作模式如下所示。

表 14 TMOD-定时/计数器方式控制寄存器的位分配(地址: 89H)

不可位寻址; 复位值: 00000000B; 复位源: 任何复位

位	7	6	5	4	3	2	1	0
符号	T1GATE	T1C/T	T1M1	T1M0	T0GATE	TOC/T	T0M1	T0M0

表 15 TMOD-定时/计数器方式控制寄存器的位描述(地址: 89H)

位	符号	描述			
	T1/T0	定时器 1/定时器 0 的位控制。			
	GATE 该位被置位时为门控位。仅当'INTx'脚为高且'TRx'控制位被置位时使能定时器/计数器'x'。				
		当该位被清零时,只要'TRx'位被置位,定时器 x 就被使能。			
	_	门控定时器或计数器选择器。该位被清零时用作定时器功能(从内部系统时钟输入脉冲)。			
	C/T	该位被置位时用作计数器功能(从'Tx'脚输入脉冲)。			

表 16 TMOD一定时/计数器方式控制寄存器 M1/M0 工作模式(地址: 8	8 9H)
--	---------------

M1	M0	工作模式	描述
0	0	0	8048 定时器, 'TLx'用作 5 位的预分频器
0	1	1	16 位定时器/计数器。'THx'和'TLx'级联;无预分频器。
1	0	2	8位自动重装定时器/计数器。定时器溢出时,'THx'的值重装到'TLx'中。
1	1	3	(定时器 0) TL0 用作 8 位的定时器/计数器,由标准定时器 0 的控制位来控制。 TH0 用作 8 位的定时器,仅受定时器 1 的控制位来控制。
1	1	3	(定时器1)禁能定时器/计数器1。

表 17 TCON一定时/计数器控制寄存器的位分配(地址: 88H)

可位寻址; 复位值: 0000000B; 复位源: 任何复位

位	7	6	5	4	3	2	1	0
符号	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

表 18 TCON-定时/计数器控制寄存器的位描述(地址: 88H)

位	符号	描述
7	mp.1	定时器 1 溢出标志。定时器/计数器溢出时由硬件置位。中断执行时硬件清零,或由软件
/	TF1	清零。
6	TR1	定时器 1 运行控制位。通过软件将其置位/清零来起动/关闭定时器/计数器 1。
5	TF0	定时器 0 溢出标志。定时器/计数器溢出时由硬件置位。中断执行时硬件清零,或由软件
3	110	清零。
4	TR0	定时器 0 运行控制位。通过软件将其置位/清零来起动/关闭定时器/计数器 0。
3	IE1	中断 1 边沿标志。当检测到外部中断 1 边沿/低电平时由硬件置位该标志。中断处理时由
3	IE1	硬件清零,或通过软件清零。
2	IT1	中断1类型控制位,通过软件置位/清零该位来选择外部中断1以下降沿/低电平方式触发。
1	IEO	中断 0 边沿标志。当检测到外部中断 0 边沿/低电平时由硬件置位该标志。中断处理时由
	IE0	硬件清零,或通过软件清零。
0	IT0	中断0类型控制位。通过软件置位/清零该位来选择外部中断0以下降沿/低电平方式触发。

7.3.1 模式 0

工作在模式 0 的定时器类似于一个 8048 定时器,是一个具有固定 32 分配预分频器的 8 位计数器。模式 0 的操作如图 8 所示。

图 8 定时/计数器 0 或 1 工作在模式 0 (13 位计数器)

该模式下,定时器寄存器配置成一个 13 位的寄存器。当计数值由全 1 变成全 0 时,定时器中断标志 TFn 置位。当 TRn=1 和 GATE=0 或 \overline{INTn} =1 (GATE=1 时,外部输入 \overline{INTn} 控制定时器,定时器可用来测量脉冲宽度)时,计数输入使能到定时器。TRn 是特殊功能寄存器 TCON 的一个控制位(图 7)。GATE 是 TMOD 寄存器中的一位。

该 13 位寄存器由 THn 的 8 位和 TLn 的低 5 位组成。TLn 的高 3 位不确定,可被忽略。 置位运行标志(TRn)不会清零寄存器。

定时器 0 和定时器 1 的模式 0 操作相同(见图 8)。有 2 个不同的 GATE 位,一个用于定时器 1 (TMOD.7),一个用于定时器 0 (TMOD.3)。

7.3.2 模式 1

除定时器寄存器为 16 位(THn 和 TLn)外,模式 1 的操作与模式 0 完全相同,如图 9 所示。

图 9 定时/计数器 0 或 1 工作在模式 1 (16 位计数器)

7.3.3 模式 2

模式 2 中,定时器寄存器配置一个 8 位的计数器(TLn),具有自动重装功能,如图 10 所示。TLn 的溢出不仅使 TFn 置位,而且将 THn 的内容重新装入 TLn,THn 的值由软件预先设置。重装时 THn 的内容不变。定时器 0 和定时器 1 的模式 2 操作相同。

图 10 定时器/计数器 0 工作在模式 2 (8 位自动重装)

7.3.4 模式 3

模式 3 中, 定时器 1 停止工作(计数值保持不变)。等效于 TR1=0。

模式 3 中,定时器 0 将 TL0 和 TH0 分成 2 个独立的计数器。模式 3 的逻辑和定时器 0 的工作如图 11 所示。TL0 使用定时器 0 控制位:T0C/T, T0C/T, T0C/T,

模式 3 用在需要一个额外的 8 位定时器的场合。当定时器 0 工作在模式 3 时, P89V51RB2/RC2/RD2 可看成一个拥有额外定时器的器件。

注: 当定时器 0 工作在模式 3 时,定时器 1 可通过进入/退出模式 3 来起动/关闭。定时器 1 还可用作串口的波特率发生器或用在不需要中断的应用中。

图 11 定时器/计数器 0 工作在模式 3 (2 个 8 位计数器)

7.4 定时器 2

定时器 2 是一个 16 位的定时器/计数器,可用作事件定时器或事件计数器,由特殊功能 寄存器 T2CON的 C/T2 位选择。定时器 2 有 4 种工作模式:捕获、自动重装(向上或向下计数)、时钟输出和波特率发生器。工作模式的选择见表 17,需要使用寄存器 T2CON(表 20 和表 21)和 T2MOD(表 22 和表 23)。

RCLK+TCLK TR2 T2OE 模式 CP/RL 2 16 位自动重装 0 1 0 1 1 0 16 位捕获 0 0 1 可编程时钟输出 1 X 波特率发生器 1 1 0 Χ Χ 0 Χ 关闭

表 19 定时器 2 的工作模式

表 20 T2CON-定时器/计数器 2 控制寄存器位分配(地址: C8H)

可位寻址; 复位值: 00H

位	7	6	5	4	3	2	1	0
符号	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T 2	CP/RL 2

表 21 T2CON-定时器/计数器 2 控制寄存器的位描述(地址: C8H)

位	符号	描述
7	TF2	定时器 2 溢出标志。该位在定时器 2 溢出时置位,由软件清零。当 RCLK 或 TCLK=1 或者定
'	1172	时器 2 工作在时钟输出模式时, TF2 将不会置位。
		定时器 2 外部标志。当定时器 2 处于捕获、重装或波特率模式, EXEN2=1 和 T2EX 脚出现
6	EXF2	负跳变时,该位置位。如果定时器 2 中断使能, EXF2=1 时, CPU 将执行定时器 2 中断服务
		程序。EXF2 必须由软件清零。
5	RCLK	接收时钟标志。当该位被置位时, UART 将定时器 2 的溢出脉冲作为模式 1 和 3 的接收时
Э	KCLK	钟。当 RCLK=0 时,定时器 1 的溢出脉冲被用作接收时钟。
4	TCLV	发送时钟标志。该位置位时, UART 将定时器 2 的溢出脉冲作为模式 1 和 3 的发送时钟。
4	TCLK	当 TCLK=0 时, 定时器 1 的溢出脉冲被用作发送脉冲。

续上表...

位	符号	描述
3	EXEN2	定时器 2 外部使能标志。该位置位时,如果定时器 2 不用作串口时钟,当 T2EX 脚上
3	EAEN2	负跳变时,使能定时器的捕获或重装操作。当 EXEN2=0 时,定时器 2 忽略 T2EX。
2	TR2	定时器2的起动/关闭控制位。该位为1时使能定时器2运行。
	C/T2	定时器或计数器选择。(定时器 2)
1		0=内部定时器 (fosc/6)
		1=外部事件计数器(下降沿触发;外部时钟的最大计数速率=fosc/12)
		捕获/重装标志。该位置位时,如果 EXEN2=1, T2EX 上出现负跳变时捕获。该位被清
0	CP/RL 2	零时,如果 EXEN2=1,当定时器 2 溢出或 T2EX 上出现负跳变时自动重装。当 RCLK=1
		或 TCLK=1 时,该位被忽略,定时器 2 溢出时被强制自动重装。

表 22 T2MOD-定时器 2 方式控制寄存器的位分配(地址: C9H)

不可位寻址; 复位值: xx000000B

位	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	-	T2OE	DCEN

表 23 T2MOD-定时器 2 方式控制寄存器的位描述(地址: C9H)

位	符号	描述				
7~2	-	保留为将来之用。通过用户程序将其清零。				
1	T2OE	定时器 2 输出使能位。仅用于可编程时钟输出模式。				
0	DCEN	递减计数使能位。该位置位时,定时器2可配置成递增/递减计数器。				

7.4.1 捕获模式

定时器 2 工作在捕获模式时有两种情况,由 T2CON 的 EXEN2 位来选择。如果 EXEN2 =0,定时器 2 用作一个 16 位的定时器或计数器(由 T2CON 的 C/T 2 位决定),溢出时将置位 TF2(定时器 2 的溢出位)。

捕获模式原理如图 12 所示。

图 12 定时器 2 工作在捕获模式

只要 IEN0 寄存器的定时器 2 中断位被使能,TF2 位就可用来产生中断。如果 EXEN2=1,除上述操作外,定时器 2 还增加了一种特性——外部输入 T2EX 脚上 1 到 0 的跳变将使定时器 2 寄存器——TL2 和 TH2 的当前值分别装载到寄存器 RCAP2L 和 RCAP2H 中。

此外,T2EX 脚的跳变还将置位 T2CON 的 EXF2 位。EXF2 位和 TF2 位一样,也可用来产生中断(两者共用定时器 2 溢出的中断向量)。由此可见,定时器 2 的中断可由 TF2 或 EXF2 产生,由产生中断的事件决定。

这种情况下不会重装 TL2 和 TH2。即使 T2EX 脚出现捕获事件,计数器仍继续对 T2 脚的跳变或 fosc/6 的脉冲进行计数。因为 RCAP2L 和 RCAP2H 重装后其值并不受保护,所以一旦定时器 2 产生中断,中断必须在 T2EX 脚出现新的捕获事件之前进行处理。否则, T2EX 脚上新的下降沿将使 TL2 和 TH2 的当前值重装到 RCAP2L 和 RCAP2H,从而破坏引起中断的 RCAP2L 和 RCAP2H 值。

7.4.2 自动重装模式 (递增或递减计数器)

在 16 位自动重装模式下,定时器 2 可配置成定时器或计数器 (通过 T2CON 的 C/T 2),并可通过编程设定成递增或递减计数。定时器 2 的计数方向由 T2MOD (见表 22 和表 23) 的 DCEN 位(递减计数使能)决定。复位后,DCEN=0,定时器 2 默认为递增计数。如果 DCEN 位被置位,定时器 2 根据 T2EX 脚的状态进行递增或递减计数。

图 13 所示为定时器 2 的自动递增计数模式 (DCEN=0)。

图 13 定时器 2 工作在自动重装模式 (DCEN=0)

定时器 2 工作在自动重装模式时有 2 种情况,由 T2CON 寄存器的 EXEN2 位来选择。如果 EXEN2=0,定时器 2 可计数到 0FFFFH,溢出时置位 TF2(溢出标志)。定时器 2 溢出时,RCAP2L 和 RCAP2H 的 16 位内容将装载到定时器的寄存器中。RCAP2L 和 RCAP2H 的值由软件预先设置。

定时器 2 递增计数的自动重装频率由下式决定:

此处,提供的频率为 fosc $(C/\overline{T2} = 0)$ 或 T2 脚信号的频率 $(C/\overline{T2} = 1)$ 。

如果 EXEN2=1, 定时器的溢出或 T2EX 脚输入的负跳变都将触发 16 位的重装操作。 T2EX 脚的负跳变还会置位 EXF2 位。如果定时器 2 中断使能, TF2 或 EXF2 为'1'时都将产生中断。

微处理器硬件识别 T2EX 上的下降沿和置位 EXF2 需要 3 个连续的机器周期:第1 个机器周期采样 T2EX 为'1':第2 个机器周期采样 T2EX 为'0';第3 个机器周期置位 EXF2。

图 14 所示为 DCEN=1 时定时器 2 的递增或递减计数。该模式允许 T2EX 脚控制计数方向。当 T2EX 脚为'1'时,定时器 2 递增计数。定时器 2 在计数值为 0FFFFH 时溢出,并置位 TF2 标志,产生中断(如果中断被使能)。定时器的溢出也将使 RCAP2L 和 RCAP2H 的 16 位值重装到定时器寄存器 TL2 和 TH2 中。

图 14 定时器 2 工作在自动重装模式 (DCEN=1)。

当 T2EX 脚为'0'时,定时器 2 递减计数。当 TL2 和 TH2 的值与 RCAP2L 和 RCAP2H 的值相等时定时器溢出。定时器 2 的溢出将置位 TF2 标志并将 0FFFFH 重装到定时器寄存器 TL2 和 TH2 中。定时器 2 的下溢或上溢都会使 EXF2 翻转。如果需要,EXF2 位可用作第 17 位。

7.4.3 可编程时钟输出

通过编程,可从 T2 脚 (P1.0) 输出占空比为 50%的时钟信号。P1.0 口,除用作通用 I/O 口外,还含有 2 个附加功能。P1.0 口可编程为:

- 1. 定时器/计数器 2 的外部时钟输入,或者
- 2. 在 16MHz 的工作频率下,输出占空比为 50%的时钟信号,时钟信号的频率范围为 122Hz~8MHz。

通过清零位 C/T 2(位于 T2CON 寄存器)和置位 T2MOD 的 T0E 位来将定时器/计数器 2 配置成一个时钟发生器。通过置位 TR2 位(T2CON.2)就可起动定时器的运行。

时钟输出频率取决于振荡器频率和定时器 2 捕获寄存器 (RCAP2H,RCAP2L)的重装值,见等式 2:

此处,(RCAP2H,RCAP2L) = RCAP2H 和 RCAP2L 的内容,将其看作一个 16 位的无符号整数。

在时钟输出模式中,定时器 2 计数器的循环翻转不会产生中断。这一点与定时器 2 用作波特率发生器时一致。

7.4.4 波特率发生器模式

通过设置 T2CON 的位 TCLK 和/或位 RCLK,定时器 1 或定时器 2 可用来产生 UART 的发送和接收波特率(见 7.5 节 "UART")。当 TCLK=0 时,定时器 1 用作 UART 发送波特率发生器。当 TCLK=1 时,定时器 2 用作 UART 发送波特率发生器。RTCLK 的设置方法与TCLK 类似,但它用来产生接收波特率。利用这两位,UART 可以得到不同的接收和发送波特率——定时器 1 或定时器 2。

图 15 所示为定时器 2 工作在波特率发生器模式:

图 15 定时器 2 工作在波特率发生器

波特率模式和自动重装模式一样,TH2 值的翻转将使得 RCAP2H 和 RCAP2L 的内容重装到定时器 2 寄存器中。RCAP2H 和 RCAP2L 的值由软件预先设置。

UART 模式 1 和 3 的波特率由定时器 2 的溢出速率决定:

模式1和3的波特率=定时器2的溢出速率/16

定时器 2 通过配置可用作'定时器'或'计数器'功能。在大量应用中,它都用作'定时器' (C/T 2=0)。定时器 2 用作定时器时的操作与用作波特率发生器时不同。

正常情况下,定时器 2 用作定时器时,每经过一个机器周期计数值加 1 (即计数频率为 1/6 振荡器频率)。但用作波特率发生器时,定时器 2 每经过一个振荡周期加 1。波特率可由下式得到:

振荡器頻率
模式 1 和 3 的波特率=
$$\frac{(16 \times (65536 - (RCAP2H, RCAP2L)))}{(16 \times (65536 - (RCAP2H, RCAP2L)))}$$
 (3)

此处,(RCAP2H,RCAP2L) = RCAP2H 和 RCAP2L 的内容,将其看作一个 16 位的无符号整数。

仅当 T2CON 寄存器的 RCLK 和/或 TCLK=1 时,定时器 2 的波特率发生器模式才有效。注意:波特率模式中,TH2 值的翻转不会置位 TF2 和产生中断。因此,当定时器 2 工作在波特率发生器模式下时不必禁能定时器 2 中断。而且,当 EXEN2 (T2 外部使能标志)被置位时,T2EX (定时器/计数器 2 触发输入)上的负跳变可将 EXF2 (T2 外部标志)置位,但并不会将 (RCAP2H,RCAP2L)装载到 (TH2,TL2)。因此,当定时器 2 用作波特率发生器时,如果需要,T2EX 可用作一个额外的外部输入。

当定时器 2 处于波特率发生器模式时,不能读或写 TH2 和 TL2 寄存器。因为在该模式下读出或写入的 TH2 或 TL2 值都是不准确的。RCAP2 寄存器可以读,但不能写,因为写操作会将装载值覆盖从而产生写和/或重装错误。在访问定时器 2 或 RCAP2 寄存器之前必须先关闭定时器 (清除 TR2)。表 24 列出了常用的波特率及其由来。

7.4.5 波特率公式小结

定时器 2 工作在波特率发生器模式。外部时钟信号由 T2 (P1.0) 输入,波特率为:

波特率=定时器 2 溢出速率/16

若定时器 2 使用内部时钟信号,波特率为:

波特率=fosc/(16×(65536-(RCAP2H,RCAP2L)))

此处 fosc=振荡器频率。

对上式经过改写,可得出 RCAP2H 和 RCAP2L 的重装值:

RCAP2H,RCAP2L=65536-fosc/(16×波特率)

波特率	O 166 367	定时器 2				
次 行 学	0sc 频率	RCAP2H	RCAP2L			
750K	12MHz	FF	FF			
19. 2K	12MHz	FF	D9			
9. 6K	12MHz	FF	B2			
4.8K	12MHz	FF	64			
2.4K	12MHz	FF	C8			
600	12MHz	FB	1E			
220	12MHz	F2	AF			
600	6MHz	FD	8F			
220	6MHz	F9	57			

表 24 由定时器 2 产生的常用波特率

7.5 UART

P89V51RB2/RC2/RD2 的 UART 除可工作在所有的标准模式之外,还包含一些标准 80C51 UART 的增强特性: 帧错误检测和自动地址识别。

7.5.1 模式 0

串行数据通过 RxD 进出。TxD 输出移位时钟。每次发送或接收都为 8 位,LSB (最低位) 在前。波特率固定为 CPU 时钟频率的 1/6。UART 工作在模式 0 时,不论数据是否通过 RxD 发送或接收,串行时钟信号都从 TxD 输出。

7.5.2 模式 1

TxD 脚发送, RxD 脚接收,每次数据为 10 位: 1 个起始位(逻辑 0), 8 个数据位(LSB 在前)以及 1 个停止位(逻辑 1)。当接收数据时,停止位保存在 SCON 中的 RB8。该模式的波特率可变,由定时器 1/2 的溢出速率决定。

7.5.3 模式 2

TxD 脚发送, RxD 脚接收,每次数据为 11 位: 1 个起始位(逻辑 0), 8 个数据位(LSB 在前),一个可编程第 9 位数据及 1 个停止位(逻辑 1)。发送数据时,第 9 个数据位(SCON 中的 TB8 位)可置为 0 或 1。例如可将奇偶位(PSW 内 P 位)放入 TB8。接收时,第 9 位数据存入 SCON 的 RB8 位,而停止位不会被保存。波特率可编程为 CPU 时钟频率的 1/16 或 1/32,由 PCON 的 SMOD1 位决定。

7.5.4 模式 3

TxD 脚发送, RxD 脚接收,每次数据为 11 位: 1 个起始位(逻辑 0), 8 个数据位(LSB 在前), 1 个可编程的第 9 位数据及 1 个停止位(逻辑 1)。实际上,模式 3 除了波特率外其它均与模式 2 相同。模式 3 的波特率可变并由定时器 1/2 的溢出率决定。

表 25 SCON-串口控制寄存器的位分配(地址: 98H)

位	7	6	5	4	3	2	1	0
符号	SMO/FE	SM1	SM2	REN	TB8	RB8	TI	RI

表 26 SCON-串口控制寄存器的位描述(地址: 98H)

位	符号	描述		
7	SMO/FE	该位的用途由 PCON 寄存器中的 SMODO 决定。如果 SMODO=0,该位作为 SMO,和 SM1 一		
		起定义串口模式;如果 SMOD0=1,该位作为 FE(帧错误)。当检测到一个无效的停止		
		位时,FE 被接收器置位。一旦置位后,该位不能由有效帧清零,只能通过软件清零。		
		(注: UART 模式位 SMO 和 SM1 应当在 SMODO=1 之前设置)		
6	SM1	和 SMO 定义串行口操作模式 (见下面的 <u>表 27</u>)。		
5	SM2	使能模式 2 和 3 中的多机通信功能。在模式 2 或 3 中,如果 SM2=1 而且接收到的第		
		9位数据(RB8)为0时,则RI不会被激活。在模式1中,如果SM2=1而且未接收		
		到一个有效的停止位时, RI 不会被激活。在模式 0 中, SM2 应当为 0。		
4	REN	使能串行接收。由软件置位以使能接收。软件清零则禁止接收。		
3	TB8	模式2和3中将要发送的第9位数据,可以根据需要由软件置位或清零。		
2	RB8	模式 2 和 3 中接收的第 9 位数据,在模式 1 中(SM2 必须为 0), RB8 是接收到的停		
		止位。在模式 0 中, RB8 未定义。		
1	TI	发送中断标志。模式0中,在第8位数据发送结束时由硬件置位。在其它任何串行		
		发送模式中,在发送停止位时由硬件置位。必须通过软件清零。		
0	RI	接收中断标志,模式0中,第8位接收完成时由硬件置位。在其它串行发送模式中,		
		在接收停止位的中间时刻由硬件置位(例外情况请参考上面的 SM2 描述)。必须通过		
		软件清零。		

表 27 SCON-串口控制寄存器 (地址: 98H) SM0/SM1 串口工作模式的定义

SMO, SM1	UART 模式	波特率
00	0: 移位寄存器	CPU 时钟/6
01	1: 8 位 UART	可变
10	2: 9 位 UART	CPU 时钟/32 或 CPU 时钟/16
11	3: 9位 UART	可变

7.5.5 帧错误

如果 SMOD0(PCON.6)=1, 帧错误(FE)在 SCON.7 位报告。如果 SMOD0=0, SCON.7 作为 SMO。建议在 SMOD0 置位前对 SMO 进行设置。

7.5.6 更多有关 UART 模式 1 的信息

接收在检测到 RxD 端电平负跳变(1 变为 0)时启动,CPU 对 RxD 不断采样,采样速率为波特率的 16 倍。当检测到负跳变时,16 分频计数器立即复位来将其翻转值按接收到的位时间为边界进行分配。

16个计数状态把每个位时间分成 16份。在每个位时间的第7、8、9计数状态时,位检测器对 RxD端的值进行采样。取值为三个采样值中取多数(至少2个)作为读入值,这样做是为了抑制噪声。如果在第一个位时间所接收的位不为0,接收电路复位并等待另一个负跳变的到来。这样可以防止错误的起始位。如果起始位被证明是有效的,则被移入输入移位寄存器,并开始接收这一帧剩余的位。

当且仅当产生最后一位移位脉冲时满足下列条件: (a)RI=0 以及(b)SM2=0 或接收到的停止位=1,数据才会被装入 SBMF 和 RB8,并置位 RI。

上述两个条件中的任何一个不满足,所接收到的数据帧都会丢失。两个条件都满足时, 停止位就进入 RB8,而 8 位数据则进入 SBMF,并且 RI 置位。

7.5.7 更多有关模式 2 和模式 3 的信息

接收的工作方式与模式1相同。

当且仅当产生最后一位移位脉冲时满足下列条件: (a)RI=0,以及(b)SM2=0 或接收到的第9位数据位=1,数据才会被装入 SBMF 和 RB8,并置位 RI。

上述两个条件中的任何一个不满足,所接收到的数据帧都会丢失,RI不被置位。两个条件都满足时,接收到的第9位数据就进入RB8,而前8位数据则进入SBMF。

7.5.8 多机通信

UART 模式 2 及模式 3 有一个专门的应用领域即多机通信。在这些模式时,发送及接收均为 9 位数据。接收时第 9 位数据存入 RB8。UART 可编程为:接收到停止位时,仅当 RB8=1 时串口中断才激活。可通过置位 SCON 内 SM2 位来使能这一特性。下面讲述一种多机系统使用该特性的方法:

当主机需要发送一数据块给某一台从机时,首先发送一个地址字节以识别目标从机。地址字节与数据字节的区别在于第9位数据,地址字节的第9位为1,而数据字节的第9位为0。SM2=1时,数据字节不会使从机产生中断,而地址字节则会使所有从机都产生中断,这样每个从机可以检查接收到的字节并判断是否被寻址。被寻址的从机将清零 SM2 位以准备接收随后的数据字节(数据长度仍是9位)。未被寻址的从机的 SM2 位仍为1,这样就忽略随后的数据继续各自工作。

在模式 0 中 SM2 无效,在模式 1 中 SM2 可用来检测停止位是否有效,尽管该功能通过 检查帧错误标志来实现更好。当 SM2=1 且模式 1 中,UART 接收数据时,接收中断不会激 活除非接收到一个有效的停止位。

7.5.9 自动地址识别

自动地址识别是这样一种特性,它允许 UART 使用硬件进行比较,从串行数据流中识别出特定的地址。这样就不必花费大量软件资源去检查每一个从串口输入的串行地址。将 SCON 内 SM2 置位可使能该特性。在 9 位 UART 模式(模式 2 和模式 3)下,如果接收的字节中包含"给定"地址或"广播"地址,接收中断标志(RI)将自动置位。在 9 位模式下要求第 9 个信息位为 1 以表明该信息内容是地址而非数据。

使用自动地址识别特性时,主机通过调用给定的从机地址选择与一个(或多个)从机通信。使用广播地址可以联系所有的从机。有两个特殊功能寄存器用来定义从机地址: SADDR 和地址屏蔽 SADEN。SADEN 用于定义 SADDR 内哪几位需要使用而哪几位是无关位。 SADEN 可以与 SADDR 逻辑"与"得出给定的地址,主机使用该地址对每一从机进行寻址。 使用给定地址可以识别多个从机而排除另外的从机。

器件使用下面图 16 的方法来检测是否接收到'给定'或'广播'地址。

P89LV51RD2 UART使用该逻辑来检测接收数据中的给定地址"。

P89LV51RD2 UART使用该逻辑来检测接收数据中的广播地址"。

图 16 多机通信使能时 UART 检测'给定'和'广播'地址的方法

下面给出了几个例子来说明上述方法的通用性。

表 28 从机 0 和 1 举例

实例 1		实例 2	
从机 0	SADDR =1100 0000	从机 1	SADDR =1100 0000
	SADEN =1111 1101		SADEN =1111 1110
	给定地址=1100 00X0		给定地址=1100 000X

上例中 SADDR 相同,而 SADEN 的数据用于区分两个从机。从机 0 要求位 0 为 0 而忽略位 1。从机 1 则要求位 1 为 0 而忽略位 0。由于从机 1 要求位 1 必须为 0,从机 0 唯一的地址应当是 1100 0010。由于从机 1 的位 0 必须为 1 来排除从机 0,从机 1 唯一的地址应当为 1100 0001。通过给定一个位 0=0(从机 0)和位 1=0(从机 1)的地址可同时选择两个从机,从而取地址 1100 0000 时两从机都可被寻址。

对于更复杂的系统,可使用下面的实例来选择从机1、2而不选从机0:

表 29 从机 0, 1 和 2 举例

	实例 1		实例 2	实例 3	
从机 0	SADDR =1100 0000	从机 1	SADDR=1110 0000	从机 2	SADDR=1110 0000
	SADEN =1111 1001		SADEN=1111 1010		SADEN=1111 1100
	给定地址=1100 0XX0		给定地址=1100 0X0X		给定地址=1110 00XX

上述三个从地址只有低 3 位不同。从机 0 要求位 0=0,它可通过 1110 0110 单独寻址;从机 1 要求位 1=0,可通过 1110 0101 单独寻址;从机 2 要求位 2 为 0,可通过 1110 0011 单独寻址。由于必须使地址字节的第 2 位为"1"以屏蔽从机 2,因此使用地址 1110 0100 可选择从机 0 和 1 同时屏蔽从机 2。将 SADDR 和 SADEN 相"或"后产生每个从机的"广播"地址,结果为零的位视为无关位。大多数情况下,无关位被解释为 1,这样,"广播"地址为 FFH。复位时 SADDR 和 SADEN 均为 00H,此时产生了一个所有位都是无关位的给定地址,即所有位都"无关"的广播地址。这样有效地禁止了自动寻址模式,允许微处理器使用不带有上述特性的标准 UART 驱动器。

7.6 串行外围接口

7.6.1 SPI 接口

- 主机或从机操作
- 10MHz 位频率(最大)
- 数据传输时 LSB 在前或 MSB 在前
- 4个可编程位速率
- 传输终止(SPIF)
- 写冲突标志保护(WCOL)
- 空闲模式唤醒(仅用于从机模式)

7.6.2 SPI 描述

串行外围接口(SPI)实现了 P89V51RB2/RC2/RD2 和外围器件之间以及多个 P89V51RB2/RC2/RD2 器件之间数据的高速同步传输。图 17 所示为主机和从机 SPI 器件之间的连接。SCK 是主机和从机模式的时钟输入、输出脚。主器件 SPI 数据寄存器的写操作完成后,起动 SPI 时钟发生器。写入的数据便从主器件的 MOSI 脚移出,移入到从器件的 MOSI 脚。一个字节的数据传输结束后,SPI 时钟发生器关闭,SPIF 标志置位。如果 SPI 中断使能位(SPIE)和串口中断使能位(ES)置位,产生 SPI 中断请求。

当外部主机驱动从机选择输入脚, SS /P1[4], 为低电平时, SPI 模块用作从机。如果 SS /P1[4]脚不为低电平,则 SPI 单元不被激活, MOSI/P1[5]只能用作输入口。

CPHA 和 CPOL 位控制着 SPI 时钟的相位和极性。图 18 和图 19 列出了两位的 4 种可能组合。

图 17 SPI 主机一从机之间的连接

表 30 SPCR-SPI 控制寄存器的位分配(地址: D5H)

可位寻址; 复位源: 任何复位; 复位值: 00000000B

	位	7	6	5	4	3	2	1	0
Ī	符号	SPIE	SPE	DORD	MSTR	CPOL	СРНА	SPR1	SPR0

表 31 SPCR-SPI 控制寄存器的位描述(地址: D5H)

位	符号	描述
7	SPIE	如果 SPIE 和 ES 都置 1, SPI 中断使能。
6	SPE	SPI 使能位。该位置位时 SPI 使能。
5	DORD	数据传输顺序。0=MSB 在前; 1=LSB 在前。
4	MSTR	主机/从机选择。1=主机模式,0=从机模式。
3	CPOL	时钟极性。1=空闲时 SCK 为高(低有效); 0=空闲时 SCK 为低(高有效)。
2	СРНА	时钟相位控制位。1=移位在时钟的后沿触发;0=移位在时钟的前沿触发。
1	SPR1	SPI 时钟分频率选择位 1。当器件用作主机时,该位和 SPRO 位一起控制器件 SCK
1	2LV1	的分频率。SPR1 和 SPR0 对从机无影响。见下面的表 32。
0	SPR0	SPI 时钟分频率选择位 0。当器件用作主机时,该位和 SPR1 位一起控制器件 SCK
U	SFKU	的分频率。SPR1 和 SPR0 对从机无影响。见下面的表 32。

表 32 SPCR-SPI 控制寄存器时钟的分频率选择(地址: D5H)

SPR1	SPR0	SCK=fosc 分频
0	0	4
0	1	16
1	0	64
1	1	128

表 33 SPSR-SPI 状态寄存器的位分配(地址: AAH)

可位寻址; 复位源: 任何复位; 复位值: 0000000B

位	7	6	5	4	3	2	1	0
符号	SPIF	WCOL	-	-	-	-	-	-

位	符号	描述
7	SPIF	SPI 中断标志。数据传输结束时,该位被置位。如果 SPIE=1 和 ES=1,产生中断。
'	SPIF	该位由软件清零。
C	g WGOI	写冲突标志。数据传输过程中 SPI 数据寄存器被写入时该位置位。
6 WCOL	该位由软件清零。	
5~0	_	保留为将来之用。通过用户程序将其清零。

表 34 SPSR-SPI 状态寄存器的位描述(地址: AAH)

图 18 SPI 传输格式 (CPHA=0)

图 19 SPI 传输格式 (CPHA=1)

7.7 看门狗定时器

P89V51RB2/RC2/RD2 具有一个可编程的看门狗定时器(WDT),可用于系统故障安全保护,防止软件死锁和自动恢复。

用户软件可以通过在用户定义的时间周期内刷新 WDT 来保护系统来防止软件的死锁。如果用户软件在定义的时间周期内刷新 WDT 失败,如果使能(WDRE=1),则起动内部硬件复位。软件可设计成如果程序运行不正确,WDT 就溢出。

P89V51RB2/RC2/RD2 的 WDT 以系统时钟(XTAL1)为时间基准。所以严格说来,WDT 是一个看门狗计数器,而不是看门狗定时器。每经过 344,064 个振荡周期,WDT 寄存器加 1。时间基准寄存器(WDTD)的高 8 位用作 WDT 的重装寄存器。

WDT 溢出时 WDTS 标志位置位, WDT 复位不能改变 WDTS 位的值。该标志位可通过软件写入'1'清零。

图 20 所示为 WDT 方框图。看门狗定时器操作受到 2 个 SFR(WDTC 和 WDTD)的控制。空闲模式下,WDT 被暂时挂起,当出现中断时从空闲模式中恢复。

WDT 的溢出周期可由下式计算得出:

周期= (255-WDTD) ×344064×1/f_{CLK(XTAL1)}

此处 WDTD 为 WDTD 寄存器的装载值, fosc 是振荡器频率。

图 20 可编程看门狗定时器的方框图

表 35 WDTC-看门狗控制寄存器的位分配(地址: C0H)

可位寻址; 复位值: 00H

位	7	6	5	4	3	2	1	0
符号	_	_	-	WDOUT	WDRE	WDTS	WDT	SWDT

表 36 WDTC-看门狗控制寄存器的位描述(地址: C0H)

位	符号	描述
7~5	-	保留为将来之用。用户程序将其清零。
4	WDOLIT	看门狗输出使能。当该位和 WDRE 置位时,看门狗复位将驱动复位脚在 32 个时钟
4	WDOUT	周期内有效。
3	WDRE	看门狗定时器复位使能。该位置位时,看门狗定时器复位。
0	WDTC	看门狗定时器复位标志。如果该位被置位,表明发生了 WDT 复位。复位由软件产
2	2 WDTS	生。
1	WDT	看门狗定时器刷新。该位通过软件置位,可强制产生一次 WDT 复位。
0	SWDT	起动看门狗定时器。该位被置位时起动 WDT;该位被清零时关闭 WDT。

7.8 可编程计数器阵列 (PCA)

PCA 含有一个特殊的 16 位定时器,有 5 个 16 位的捕获/比较模块与之相连。每个模块可编程工作在 4 种模式下:上升/下降沿捕获、软件定时器、高速输出或脉宽调节器。每个模块都与 P1 口向连。模块 0 连接到 P1.3(CEX0),模块 1 连接到 P1.4(CEX1),依此类推。寄存器 CH 和 CL 的内容是正在自由递增计数的 16 位 PCA 定时器的当前值。PCA 定时器是5 个模块的公共时间基准,可通过编程工作在: 1/6 振荡频率、1/2 振荡频率、定时器 0 溢出或 ECI 脚的输入(P1.2)。定时器的计数源由 CMOD SFR 的 CPS1 和 CPS0 位来确定(见表37 和表 38)。

图 21 PCA 方框图

CMOD SFR 还有 3 位与 PCA 相关。它们分别是: CIDL, 空闲模式下允许关闭 PCA; WDTE, 使能或禁能模块 4 的看门狗功能; ECF, 置位时产生中断和当 PCA 定时器溢出将 PCA 溢出标志 CF(CCON SFR)置位。

看门狗定时器功能由PCA的模块4来实现。

CCON SFR 包含 PCA 的运行控制位(CR)和 PCA 定时器标志(CF)以及各个模块的标志(CCF4:0)。通过软件置位 CR 位(CCON.6)来运行 PCA。CR 位被清零时 PCA 关闭。当 PCA 计数器溢出时,CF 位(CCON.7)置位,如果 CMOD 寄存器的 ECF 位置位,就产生中断。CF 位只可通过软件清除。CCON 寄存器的位 0~4 是 PCA 各个模块的标志(位 0对应模块 0,位 1 对应模块 2,依此类推),当发生匹配或比较时由硬件置位。这些标志也只能通过软件清除。所有模块共用一个中断向量。PCA 的中断系统如图 22 所示。

PCA 的每个模块都对应一个特殊功能寄存器。它们分别是:模块 0 对应 CCAPM0,模块 1 对应 CCAPM1,依此类推。特殊功能寄存器包含了相应模块的工作模式控制位。

当模块发生匹配或比较时,ECCF 位(CCAPMn.0,n=0,1,2,3 或 4,由工作的模块决定)使能 CCON SFR 的 CCFn 标志来产生中断(见图 22)。

PWM (CCAPMn.1) 用来使能脉宽调节模式。

当 PCA 计数值与模块的捕获/比较寄存器的值相匹配时,如果 TOG 位(CCAPMn.2)置位,模块的 CEX 输出将发生翻转。

当 PCA 计数值与模块的捕获/比较寄存器的值相匹配时,如果匹配位 MAT(CCAPMn.3)置位, CCON 寄存器的 CCFn 位将被置位。

CAPN (CCAPMn.4) 和 CAPP (CCAPMn.5) 用来设置捕获输入的有效沿。CAPN 位使能下降沿有效,CAPP 位使能上升沿有效。如果两位都置位,则两种跳变沿都被使能,捕获可在两种跳变沿产生。

通过置位 CCAPMn 寄存器的最后一位 ECOM(CCAPMn.6)来使能比较器功能。

每个 PCA 模块还对应另外两个寄存器,CCAPnH 和 CCAPnL。当出现捕获或比较时,它们用来保存 16 位的计数值。当 PCA 模块用在 PWM 模式中时,它们用来控制输出的占空比。

图 22 PCA 中断系统

表 37 CMOD-PCA 计数器方式寄存器的位分配(地址: D9H)

不可位寻址; 复位值: 00H

位	7	6	5	4	3	2	1	0
符号	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF

表 38 CMOD-PCA 计数器方式寄存器的位描述(地址: D9H)

位	符号	描述
7	CIDL	计数器空闲控制: CIDL=0 时,空闲模式下 PCA 计数器继续工作。CIDL=1 时,空
1	CIDL	闲模式下 PCA 计数器禁能。
6	WDTE	看门狗定时器使能: WDTE=0 时,禁止模块 4 的看门狗定时器功能。WDTE=1 时使
0	WDIE	能看门狗定时器。
5~3	- 保留为将来之用。通过用户程序将其清零。	
2~1	CPS1, CPS0	PCA 计数脉冲选择(见下面的表 39)。
0	DOD	PCA 使能计数溢出中断: ECF=1 时,使能寄存器 CCON CF 位的中断。ECF=0 时,禁
0	ECF	止该功能。

表 39 CMOD-PCA 计数方式寄存器的计数脉冲选择(地址: D9H)

CPS1	CPS0	选择 PCA 输入
0	0	0, 内部时钟, fosc/6
0	1	1, 内部时钟, fosc/6
1	0	2, 定时器0溢出
1	1	3, ECI/P1.2 脚的外部时钟(最大速率=fosc/4)

表 40 CCON-PCON 计数器控制寄存器的位分配(地址: 0D8H)

可位寻址; 复位值: 00H

位	7	6	5	4	3	2	1	0
符号	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0

表 41 CCON-PCA 计数器控制寄存器的位描述(地址: 0D8H)

位	符号	描述
7	CF	PCA 计数器溢出标志。计数值翻转时该位由硬件置位。如果 CMOD 寄存器的 ECF 位置
1	Cr	位,CF 标志可用来产生中断。CF 位可通过硬件或软件置位,但只可通过软件清零。
6	CID.	PCA 计数器运行控制位。该位通过软件置位,用来起动 PCA 计数器计数。该位通过软
0	CR	件清零,用来关闭 PCA 计数器。
5	1	保留为将来之用。通过用户程序将其清零。
4	CCF4	PCA 模块 4 中断标志。当出现匹配或捕获时该位由硬件置位。该位必须通过软件清零。
3	CCF3	PCA 模块 3 中断标志。当出现匹配或捕获时该位由硬件置位。该位必须通过软件清零。
2	CCF2	PCA 模块 2 中断标志。当出现匹配或捕获时该位由硬件置位。该位必须通过软件清零。
1	CCF1	PCA 模块 1 中断标志。当出现匹配或捕获时该位由硬件置位。该位必须通过软件清零。
0	CCF0	PCA 模块 0 中断标志。当出现匹配或捕获时该位由硬件置位。该位必须通过软件清零。

表 42 CCAPMn-PCA 模块比较/捕获寄存器(CCAPM0 地址: 0DAH; CCAPM1 地址: 0DBH; CCAPM2 地址: 0DCH; CCAPM3 地址: 0DDH; CCAPM4 地址: 0DEH)的位分配

不可位寻址; 复位值: 00H

位	7	6	5	4	3	2	1	0
符号	-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn

表 43 CCAPMn—PCA 模块比较/捕获寄存器(CCAPM0 地址: 0DAH; CCAPM1 地址: 0DBH; CCAPM2 地址: 0DCH; CCAPM3 地址: 0DDH; CCAPM4 地址: 0DEH)的位描述

位	符号	描述
7	-	保留为将来之用。通过用户程序将其清零。
6	ECOMn	使能比较器。ECOMn=1 时使能比较器功能。
5	CAPPn	正捕获。CAPPn=1 时使能上升沿捕获。
4	CAPNn	负捕获。CAPNn=1 时使能下降沿捕获。
3	14475	匹配。当 MATn=1 时, PCA 计数值与模块的比较/捕获寄存器的值的匹配将置位 CCON 寄存
3	MATn	器的中断标志位 CCFn。
2	TOGn	翻转。当 TOGn=1 时, PCA 计数值与模块的比较/捕获寄存器的值的匹配将使 CEXn 脚翻转。
1	PWMn	脉宽调节模式。当 PWMn=1 时,使能 CEXn 脚用作脉宽调节输出。
0	ECCFn	使能 CCF 中断。使能寄存器 CCON 的比较/捕获标志 CCFn, 用来产生中断。

ECOMn	CAPPn	CAPNn	MATn	T0Gn	PWMn	ECCFn	模块功能
0	0	0	0	0	0	0	无此操作
X	1	0	0	0	0	X	16 位捕获模式,由 CEXn 的上升沿触发
X	0	1	0	0	0	X	16 位捕获模式,由 CEXn 的下降沿触发
X	1	1	0	0	0	X	16 位捕获模式,由 CEXn 的跳变触发
1	0	0	1	0	0	X	16 位软件定时器
1	0	0	1	1	0	X	16 位高速输出
1	0	0	0	0	1	0	8位PWM
1	0	0	1	X	0	X	看门狗定时器

表 44 PCA 模块工作模式 (CCAPMn 寄存器)

7.8.1 PCA 捕获模式

要使一个 PCA 模块工作在捕获模式(<u>图 23</u>),寄存器 CCAPM 的两位(CAPN 和 CAPP)或其中任何一位必须置 1。对模块的外部 CEX 输入(P1 口)的跳变进行采样。当采样到有效跳变时,PCA 硬件就将 PCA 计数器寄存器(CH 和 CL)的值装载到模块的捕获寄存器中(CCAPnL 和 CCAPnH)。

图 23 PCA 捕获模式

如果 CCON SFR 的位 CCFn 和 CCAPMn SFR 的位 ECCFn 位被置位,将产生中断。

7.8.2 16 位软件定时器模式

通过置位 CCAPMn 寄存器的 ECOM 和 MAT 位,可使 PCA 模块用作软件定时器(见图 24)。PCA 定时器的值与模块捕获寄存器的值相比较,当两者相等时,如果位 CCFn (CCON SFR)和位 ECCFn (CCAPMn SFR)都置位,将产生中断。

图 24 PCA 比较模式

7.8.3 高速输出模式

该模式中(<u>图 25</u>),当 PCA 计数器的计数值与模块捕获寄存器的值相匹配时,PCA 模块的 CEX 输出将发生翻转。要激活高速输出模式,模块 CCAPMn SFR 的 TOG,MAT 和 ECOM 位必须都置位。

图 25 PCA 高速输出模式

7.8.4 脉宽调节模式

所有 PCA 模块都可用作 PWM 输出(图 26)。输出频率取决于 PCA 定时器的时钟源。

图 26 PCA PWM 模式

由于所有模块共用仅有的 PCA 定时器,所有它们的输出频率相同。各个模块的输出占空比是独立变化的,与使用的捕获寄存器 CCAPnL 有关。当 PCA CL SFR 的值小于 CCAPnL SFR 时,输出为低,当 PCA CL SFR 的值等于或大于 CCAPnL 时,输出为高。当 CL 的值由 FF 变为 00 溢出时,CCAPnH 的内容装载到 CCAPnL 中。这样就可实现无干扰地更新 PWM。要使能 PWM 模式,模块 CCAPMn 寄存器的 PWM 和 ECOM 位必须置位。

7.8.5 PCA 看门狗定时器

PCA 还具有看门狗定时器功能,该功能的存在实现了在不增加芯片管脚的条件下系统可靠性的提高。看门狗定时器对于对噪声、电源干扰或静电放电敏感的系统很适用。模块 4 是 PCA 模块中惟一可编程用作看门狗的模块。而且,在不需要使用看门狗的情况下,该模块仍可工作在其它模式下。图 26 所示为看门狗工作原理图。比较寄存器的 16 位值由用户预先装载。与其它模式一样,这个 16 位的值将和 PCA 定时器的计数值相比较,如果两者匹配,则产生内部复位。但不会拉高 RST 脚。

用户软件必须定时地改变(CCAP4H,CCAP4L)的内容,防止它与PCA定时器(CH,CL)的内容相匹配。这段代码在下面的WATCHDOG程序中给出。

为了防止内部复位的产生,用户有3种选择:

- 1. 定时地改变比较的值,使之永远不和 PCA 定时器的内容相匹配。
- 2. 定时地改变 PCA 定时器的值, 使之永远不和比较的内容相匹配。
- 3. 匹配发生前通过清除 WDTE 位先将看门狗禁能, 然后再将其使能。

由于看门狗定时器并不能象#3 选项那样被禁能,因此,前两种选择相对来说更可靠。如果程序计数器出错,匹配最终仍会产生,进而导致产生内部复位。当其它 PCA 模块正在使用时,建议大家也不要使用第二种方法,这是因为 PCA 定时器是**所有**模块的时间基准,为了实现模块 4 的看门狗定时器功能而改变其它模块的时间基准的做法并不明智。因此,在大多数应用中,第一种方法是最好的选择。

; 定时地调用下面的 WATCHDOG 程序

CLR EA ; 禁能中断

MOV CCAP4L, #00

MOV CCAP4H, CH

SETB EA ; 重新使能中断

RET

这个程序不能用作中断服务程序,因为一旦程序计数器出错而进入死循环,仍会对中断提供服务和产生看门狗复位。这样,就不能达到使用看门狗定时器的目的。因此,这段程序应该在主程序中调用,在主程序中,PCA定时器应当设置成2¹⁶的计数工作模式(模式1)。

7.9 保密位

保密位可用来防止软件被盗用和并行编程模式下未被授权团体对 flash 的读操作。它也可以避免内部 flash 存储器的偶然擦除和编程引起的代码混乱。

当保密位被激活后,除芯片擦除外的所有并行编程命令都被忽略(这样就不能对器件执行读操作)。但是,只要序列号及其长度未被编程,仍然可以执行用户代码的 ISP 读操作。 所以,当用户要编程保密位时,编程器应当提示用户和程序需要一个序列号才可对器件执行操作。

7.10 中断优先级和查询序列

描述	中断标志	向量地址	中断使能	中断优先级	服务优先级	掉电唤醒
外部中断 0	IE0	0003Н	EX0	PXO/H	1(最高)	能
掉电	-	004BH	EBO	PBO/H	2	不能
T0	TF0	000BH	ET0	PTO/H	3	不能
外部中断1	IE1	0013Н	EX1	PX1/H	4	能
T1	TF1	001BH	ET1	PT1/H	5	不能
PCA	CF/CCFn	0033Н	EC	PPCH	6	不能
UART/SPI	TI/RI/SPIF	0023Н	ES	PS/H	7	不能
T2	TF2, EXF2	002BH	ET2	PT2/H	8	不能

表 45 中断查询序列

图 27 中断结构

表 46 IEN0-中断使能寄存器 0 的位分配(地址: A8H)

可位寻址; 复位值: 00H

位	7	6	5	4	3	2	1	0
符号	EA	EC	ET2	ES	ET1	EX1	ET0	EX0

表 47 IEN0-中断使能寄存器 0 的位描述(地址: A8H)

位	符号	描述
7	EA	中断使能位: EA=1, 允许中断服务; EA=0, 禁能中断服务。
6	EC	PCA 中断使能位。
5	ET2	定时器 2 中断使能。
4	ES	串口中断使能。

续上表...

位	符号	描述	
3	ET1	定时器 1 溢出中断使能。	
2	2 EX1 外部中断 1 使能。		
1	ET0	定时器0溢出中断使能。	
0	EX0	外部中断 0 使能。	

表 48 IEN1-中断使能寄存器 1 的位分配(地址: E8H)

可位寻址; 复位值: 00H

位	7	6	5	4	3	2	1	0
符号	-	-	-	-	EBO	-	-	-

表 49 IEN1-中断使能寄存器 1 的位描述(地址: E8H)

位	符号	描述
7~4	_	保留为将来之用。通过用户程序将其清零。
3	EBO	掉电中断使能。1=使能,0=禁能。
2~0	-	保留为将来之用。通过用户程序将其清零。

表 50 IP0-中断优先级 0 低字节寄存器的位分配(地址: B8H)

可位寻址; 复位值: 00H

位	7	6	5	4	3	2	1	0
符号	-	PPC	PT2	PS	PT1	PX1	PT0	PX0

表 51 IP0-中断优先级 0 低字节寄存器的位描述(地址: B8H)

位	符号	描述			
7	-	保留为将来之用。通过用户程序将其清零。			
6	PPC	PCA 中断优先级低位。			
5	PT2	定时器 2 中断优先级低位。			
4	PS	串口中断优先级低位。			
3	PT1	定时器1中断优先级低位。			
2	PX1 外部中断 1 优先级低位。				
1	PT0	定时器 0 中断优先级低位。			
0	PX0	外部中断 0 优先级低位。			

表 52 IP0H-中断优先级 0 高字节寄存器的位分配(地址: B7H)

不可位寻址; 复位值: 00H

位	7	6	5	4	3	2	1	0
符号	-	PPCH	PT2H	PSH	PT1H	PX1H	РТ0Н	PX0H

表 53 IP0H-中断优先级 0 高字节寄存器的位描述(地址: B7H)

位	符号	描述			
7	_	保留为将来之用。通过用户程序将其清零。			
6	PPCH	PCA 中断优先级高位。			
5	PT2H	定时器 2 中断优先级高位。			
4	PSH	串口中断优先级高位。			
3	PT1H	定时器1中断优先级高位。			
2	PX1H	外部中断 1 优先级高位。			
1	РТ0Н	定时器 0 中断优先级高位。			
0	РХОН	外部中断 0 优先级高位。			

表 54 IP1-中断优先级 1 寄存器的位分配(地址: F8H)

可位寻址; 复位值: 00H

位	7	6	5	4	3	2	1	0
符号	-	-	-	PBO	-	-	-	-

表 55 IP1-中断优先级 1 寄存器的位描述(地址: F8H)

位	符号	描述	
7~5	_	保留为将来之用。通过用户程序将其清零。	
4	PB0	埠电中断优先级位。	
3~0	-	保留为将来之用。通过用户程序将其清零。	

表 56 IP1H一中断优先级 1 高字节寄存器的位分配(地址: F7H)

不可位寻址; 复位值: 00H

位	7	6	5	4	3	2	1	0
符号		-	-	РВОН	-	-	-	-

表 57 IP1H-中断优先级 1 高字节寄存器的位描述(地址: F7H)

位	符号	描述	
7~5	_	呆留为将来之用。通过用户程序将其清零。	
4	РВОН	草电中断优先级位。	
3~0	_	保留为将来之用。通过用户程序将其清零。	

7.11 节电模式

器件提供了2种节电模式,用在将功耗作为重要因素的应用中。这两种节电模式是空闲模式和掉电模式,见<u>表58</u>。

7.11.1 空闲模式

通过置位 PCON 寄存器的 IDL 位来进入空闲模式。在空闲模式下,程序计数器(PC)停止工作。系统时钟继续运行,所有中断和外围功能仍然有效。片内 RAM 和特殊功能寄存器的内容在该模式下保持不变。

系统复位或硬件复位都可将器件从空闲模式唤醒。如果通过系统中断来退出空闲模式,中断开始时就立即将 IDL 位清零,使器件退出空闲模式。退出中断服务程序后,被中断的程序立刻恢复到唤醒空闲模式指令的下条指令开始执行。也可通过硬件复位来重新起动器件,方法与上电复位类似。

7.11.2 掉电模式

通过置位 PCON 寄存器的 PD 位来进入掉电模式。在掉电模式下,时钟停止运行,只有电平触发的外部中断有效。在掉电模式下,SRAM 的内容保持不变,V_{DD}的最低电平为 2.0V。

通过使能电平触发的外部中断或硬件复位来将器件从掉电模式中唤醒。中断开始时立即将 PD 位清零,使器件退出掉电模式。外部中断管脚上的低电平可以使振荡器重新起动,但该信号的低电平必须保持至少 1024 个时钟周期再返回到高电平,从而使器件退出掉电模式。当中断信号恢复到 $V_{\rm H}$ 时,中断服务程序立刻恢复到唤醒掉电模式指令的下条指令开始执行。也可通过硬件复位来重新起动器件,方法与上电复位类似。

为了使器件正确地从掉电模式下退出,复位或外部中断的操作必须在 V_{DD} 恢复到正常工作电压之后执行。为了重新起动振荡器并使之稳定运行,要求 V_{DD} 保持在其正常工作电平足够长的时间(通常大于 10ms)。

模式	起动	MCM 的状态	退出
空闲	软件方式	该模式下,CLK 继续运	通过使能中断或硬件复位可将器件从空闲模
模式	(置位 PCON 的 IDL 位)	行;中断、串口和定时	式唤醒,中断开始时清除 IDL 位,使器件退
	MOV PCON, #01H	器/计数器有效;程序	出空闲模式,执行完 ISR RETI 指令后,程序
		计数器停止工作; ALE	恢复到唤醒空闲模式指令的下条指令开始执
		和 PSEN 信号为高电	行。用户可以考虑在唤醒空闲模式的指令后
		平; 所有寄存器的内容	添加两三条 NOP 指令来消除任何情况出现带
		保持不变。	来的影响。也可通过硬件复位来重新起动器
			件,方法与上电复位类似。
掉电	软件方式	该模式下,CLK 停止运	通过使能电平触发的外部中断或硬件复位可
模式	(置位 PCON 的 PD 位)	行; 片内 SRAM 和 SFR	将器件从掉电模式唤醒。中断开始时清除 PD
	MOV PCON, #02H	的内容保持不变; ALE	位,使器件退出掉电模式。执行完 ISR RETI
		和 PSEN 信号为低电	指令后,程序恢复到唤醒掉电模式指令的下
		平; 只有电平触发的外	条指令开始执行。用户可以考虑在唤醒掉电
		部中断有效(如果中断	模式的指令后添加两三条 NOP 指令来消除任
		被使能)。	何情况出现带来的影响。也可通过硬件复位
			来重新起动器件,方法与上电复位类似。

表 58 节电模式

7.12 系统时钟和时钟选项

7.12.1 时钟输入选项和振荡器电容值的选取

图 28 所示为内部反相放大器的输入和输出(XTAL1,XTAL2),通过配置,它们可用作 片内振荡器。

当器件使用外部时钟源时, XTAL2 脚悬空, XTAL1 脚被驱动。

晶振开始起振时,由于放大器和放大器本身的反馈电容之间的相互作用,外部振荡器的 XTAL1 脚会出现一个较高的容性负载。但是,只要外部信号满足 V_{IL} 和 V_{IH} 的要求,振荡器的电容将不会超过 15pF。

晶振生产商、电源电压以及其它因素都将影响电路特性,使之在各个应用中都不同。在每个设计中,C1 和 C2 都要调节到一个合适的值。表 59 给出了不同晶振类型对应的 C1 和 C2 典型值(可得到不同的频率)。

晶体	C1=C2
石英晶体	20pF~30pF
陶瓷晶体	40pF∼50pF

表 59 不同晶振类型对应的 C1 和 C2 值

更多有关片内振荡器设计的内容请参考 "FlashFlex51 振荡器电路设计注意事项"应用文档。

7.12.2 时钟加倍模式选项

通常情况下,器件每个机器周期运行 12 个时钟(X1 模式)。器件含有一个时钟加倍选项,可以加速器件的运行速度,每个机器周期运行 6 个时钟(见表 60)。时钟加倍模式可通过外部编程器或 IAP 来实现。当该模式被选择时,FST 寄存器的 EDC 位用来指示 6 时钟模式。

时钟加倍模式只可于加倍内部系统时钟和内部 flash 存储器(即 \overline{EA} =1)。在访问外部存储器和外围器件时要特别小心,还要注意晶振的输出(XTAL2)是不能加倍的。

图 28 振荡器特性

表 60 时钟加倍特性

	标准模式	₹ (x1)	时钟加倍模式(x2)		
器件	每个机器周期的时	4个机器周期的时 最大外部时钟频率		最大外部时钟频率	
	钟数	(MHz)	钟数	(MHz)	
P89V51RD2	12	40	6	20	

表 61 FST-Flash 状态寄存器的位分配(地址: B6H)

不可位寻址: 复位值: xxxxx0xxB

位	7	6	5	4	3	2	1	0
符号	-	SB	-	-	EDC	-	-	-

表 62 FST-Flash 状态寄存器的位描述(地址: B6H)

位	符号	描述
7	_	保留为将来之用。通过用户程序将其清零。
6	SB	保密位。
5~4	_	保留为将来之用。通过用户程序将其清零。
3	EDC	使能加倍时钟。
2~0	-	保留为将来之用。通过用户程序将其清零。

第8章 极限参数

表 63 极限参数

遵循绝对最大额定系统规范(IEC 60134)

除非特别说明,表中参数在工作温度范围内有效。所有电压都以Vss 为参考点。

符号	参数	条件	最小	最大	单位
T _{amb(bias)}	工作环境温度		-55	+125	J
$T_{ m stg}$	存储温度范围		-65	+150	$^{\circ}$
$V_{\overline{\scriptscriptstyle EA}}$	EA 管脚电压(相对 Vss)		-0. 5	14	V
V _n	任意管脚对地的 DC 电压		-0.5	V _{DD} +0. 5	V
V _{it}	其它管脚到 Vss 的瞬时电压(<20ns)		-1.0	V _{DD} +1. 0	V
I _{OL} (I/0)	I/0 口 P1. 5, P1. 6, P1. 7 的最大 I _{OL}		-	20	mA
I _{OL} (I/0)	其它 I/0 口的最大 I _{OL}		-	15	mA
Р	每种封装的总功耗	$T_{amb} = 25 ^{\circ}C$	-	1. 5	W
P _{tot(pack)}	通孔焊接温度	10 秒	-	300	$^{\circ}$
	表面安装焊接温度	3 秒	-	240	$^{\circ}$ C
	输出短路电流	[1]	_	50	mA

^[1] 输出短路时间不能超过 1s。一次只能发生一个输出短路。(基于封装热传递的限制,而非器件功耗。)

第9章 建议工作条件

表 64 工作范围

符号	描述	最小	最大	单位
	环境温度			
T_{amb}	商业级	0	+70	$^{\circ}$
	工业级	-40	+85	$^{\circ}$
V_{DD}	电源电压	4. 5	5. 5	V
fosc	振荡器频率	0	40	MHz
TOSC	在应用编程时的振荡器频率	0. 25	40	MHz

表 65 可靠性

符号	参数 最小规范		单位	测试方法
N _{END} [1]	耐久性	10.000	周期	JEDEC Standard A117
$T_{DR}^{[1]}$	数据保持	100	年	JEDEC Standard A103
L _{LTH} [1]	锁定	100+ I _{DD}	mA	JEDEC Standard 78

[1] 该参数在初始条件限制下测得,设计或操作改变后参数值将受影响。

表 66 AC 测试条件^[1]

输入上升/下降时间	10ns
输出负载	\mathbf{C}_{L} =100 pf

[1] 见图 35 和图 37。

表 67 建议系统上电时序

符号	符号 参数		单位
T _{PU-READ} [1]	上电到读操作	100	μѕ
T _{PU-WRITE} [1]	上电到写操作	100	μs

[1] 该参数在初始条件限制下测得,设计或操作改变后参数值将受影响。

表 68 管脚阻抗

 $(V_{DD}=3.3V,\ T_{amb}=25\ C,\ f=1MHz,\ 其它管脚开路)$

参数	描述	测试条件	最大	单位
$C_{I/O}$ [1]	I/0 口电容	$V_{\rm I/O} = 0$ V	15	pF
$C_{IN}^{[1]}$	输入电容	$\mathbf{V}_{\mathrm{IN}} = 0 \mathrm{V}$	12	pF
L_{PIN}	管脚电感		20	nН

[1] 该参数在初始条件限制下测得,设计或操作改变后参数值将受影响。

第10章 静态特性

表 69 DC 电气特性

Image: Control of the problem of the problem in	符号	参数	条件	最小	最大	单位				
V _{HI} 高 电 平 输入电压 (XTAL1, RST) 4.5 V < V _{DD} < 5.5 V 0.7 V _{DD} V _{DD} + 0.5 V _{OL} 低 电 平 输出电压 (P1, P2, P3) (1) V _{DD} = 4.5 V; I _{OL} = 16 mA - 1.0 V _{OL} 低 电 平 输出电压 (P1, P2, P3) (1) V _{DD} = 4.5 V; I _{OL} = 16 mA - 0.3 V _{OL} 低电平输出电压(P0 口, ALE, PSEN) (10) V _{DD} = 4.5 V V _{OH} V 高 电 平 输出电压 (P1, P2, P3, ALE, PSEN) (1) V _{DD} = 4.5 V V _{OH} (P1, P2, P3, ALE, PSEN) (1) I _{OH} = -10 µ A I _{OH} = -30 µ A V _{DD} = 0.3 - N _{OH} 模式的 P0 口) (1) I _{OH} = -200 µ A I _{OH} = -200 µ A V _{DD} = 0.3 - V _{BOD} 持电检测电压 (P1, P2, P3) V _{DD} = 0.3 I _{OH} = -3.2 mA V _{DD} = 0.7 - I _{IL} 逻辑 0 输入电流 (P1, P2, P3) V _{IN} = 0.4 V I _O = 0.5 V I _O = 0.4 V I _O = 0.4 V I _O = 0.5 V I _O = 0.4 V I _O = 0.4 V I _O = 0.5 V I _O = 0.4 V I _O = 0.5 V I _O = 0.4 V I _O = 0.5 V I	$V_{\rm IL}$	低电平输入电压	4. 5V< V _{DD} <5. 5V	-0. 5	0. 2 V _{DD} -0. 1	V				
VHI (XTALI, RST) 4.5 V V V DD (5.5 V) 0.7 V DD (D.5 S) VOL 低 电 平 输 出 电 压 (P1.5, P1.6, P1.7) V DD =4.5 V: I OL =16 mA — 1.0 VOL 低 电 平 输 出 电 压 (P1, P2, P3) m I OL =1.6 mA — 0.3 VOL ALE, PSEN) most I OL =3.5 mA — 0.45 VOH V 高 电 平 输 出 电 压 (P1, P2, P3, ALE, PSEN) most V DD =4.5 V VOH I OH =-10 μ A VDD =0.3 — — VOH 核式的 P0 口) m V DD =4.5 V VOHI 核式的 P0 口) m V DD =4.5 V VBOD I OH = -200 μ A VDD =0.7 — I OH = -200 μ A VDD =0.7 — VBOD I OH = -200 μ A VDD =0.7 — VBOD I OH = -3.2 mA VDD =0.7 — VBOD I UH = -3.2 mA VDD =0.7 — VBOD I UH = -3.2 mA VDD =0.7 — VBOD =0.3 — — ILI ※ 對 0 输 入 电 流 (P1, P2, P3) VIN =0.4V — ILI ※ N = 1 M + M + M + M + M + M + M + M + M + M	V _{IH}	高电平输入电压	4. 5V< V _{DD} <5. 5V	0. 2 V _{DD} +0. 9	V _{DD} +0. 5	V				
Vol. (P1.5, P1.6, P1.7) VDD=4.5V: IOL=16mA - 1.0 Wol. 低电平输出电压(P1, P2, P3) (1) IOL=100 μ A - 0.3 IOL=1.6mA - 0.45 - 0.45 IOL=3.5mA - 1.0 - 0.45 VOL1 ALE, PSEN (2016) VDD=4.5V - 0.3 - VOH EV (P1, P2, P3, ALE, PSEN (2016)) IOH=-10 μ A VDD=0.3 - - VOH (P1, P2, P3, ALE, PSEN (2016)) IOH=-10 μ A VDD=0.3 - - IOH=-30 μ A VDD=0.7 - - - - VOHI 模式的PO (2016) IOH=-200 μ A VDD=0.3 - - IOH=-3.2mA VDD=0.3 - - - - VOHI 模式的PO (2016) IOH=-3.2mA VDD=0.3 - - - VBD -0.7 -	$V_{\rm IH1}$		4. 5V< V _{DD} <5. 5V	0. 7 V _{DD}	V _{DD} +0. 5	V				
Vol	V _{OL}		V_{DD} =4.5V; I_{OL} =16mA	-	1.0	V				
Vol		低电平输出电压	$ m V_{DD}$ =4. 5V							
Tol = 1. 6mA - 0.45 Iol = 3. 5mA - 1.0 Vol ALE, PSEN DID	Vor	(P1, P2, P3) ^[1]	$I_{\rm OL}$ =100 μ A	_	0.3	V				
Ke电平輸出电压(PO □, VDD=4.5V	, OL		$I_{\rm OL}$ =1.6mA	_	0.45	V				
Volton ALE, PSEN			$I_{\rm OL}$ =3.5mA	-	1.0	V				
V 高 电 平 输 出 电 压		低电平输出电压(P0 口,	V_{DD} =4.5V							
VOH V 高 电 平 输 出 电 压 (P1, P2, P3, ALE, PSEN) (4) VDD=4.5V IOH = -30 μ A VDD -0.3 - IOH = -60 μ A VDD -1.5 - IOH = -60 μ A VDD -1.5 - VOH1 模式的 P0 口) (4) IOH = -200 μ A VDD -0.3 - IOH = -200 μ A VDD -0.3 - - IOH = -3.2 mA VDD -0.7 - - VBOD 排电检测电压 3.85 4.15 - IIL 22 年 0 输 入 电 流 (P1, P2, P3) VIN = 0.4V - -75 - ITL 36 入漏电流 (P0) 0.45V (VIN < VDD -0.3V	V_{OL1}	ALE, PSEN) [1][3]	I _{OL} =200 μ A	_	0.3	V				
Voh			$I_{\rm OL}$ =3. 2mA	_	0. 45	V				
VOH I _{OH} =-30 μ A V _{DD} =0.7 - I _{OH} =-60 μ A V _{DD} =1.5 - I _{OH} =-60 μ A V _{DD} =1.5 - V _{OH} =-60 μ A V _{DD} =0.3 - I _{OH} =-200 μ A V _{DD} =0.3 - I _{OH} =-200 μ A V _{DD} =0.3 - I _{OH} =-200 μ A V _{DD} =0.3 - I _{IL} 241 241 - - - I _{IL} 30 242 - - - - - I _{IL} 30 24 - - - - - - I _{OH} 20 24 - - - - - - - - - - - - - - - - <td></td> <td>V 高电平输出电压</td> <td>V_{DD} =4.5V</td> <td></td> <td></td> <td></td>		V 高电平输出电压	V _{DD} =4.5V							
IOH = -30 μ A V _{DD} -0. I - IOH = -60 μ A V _{DD} -1. 5 - IOH = -60 μ A V _{DD} -1. 5 - IOH = -200 μ A V _{DD} -0. 3 - IOH = -200 μ A V _{DD} -0. 7 - IOH = -3. 2mA V _{DD} -0. 7 - V _{BOD} 掉电检测电压 3. 85 4. 15 I _{IL} 逻辑 0 输 入 电 流 (P1, P2, P3)	W	$(P1, P2, P3, ALE, \overline{PSEN})^{[4]}$	I _{OH} =-10 μ A	V _{DD} -0. 3	-	V				
Remain Remain Remains Rema	VOH		I _{OH} =-30 μ A	V _{DD} -0. 7	-	V				
VOHI 模式的 PO □ (1)			I _{OH} =-60 μ A	V _{DD} -1. 5	-	V				
		高电平输出电压(外部总线	V _{DD} =4.5V							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{OH1}	模式的 P0 口) ^[4]	IOH= −200 μ A	V _{DD} -0. 3	-	V				
I _{IL} 逻辑 0 输入电流 (P1, P2, P3) V _{IN} =0.4V - -75 I _{TL} 逻辑 1 到 0 的跳变电流 (P1, P2, P3) (5) V _{IN} =2V - -650 I _{LI} 输入漏电流 (P0) 0.45V V _{IN} < V _{DD} -0.3V - ±10 R _{RST} RST 下拉电阻 40 225 C _{IO} 管脚电容 (6) @1MHz, T _{amb} = 25℃ - 15 电源电流 @40MHz - 11.5 @40MHz - 50 空闲模式 @12MHz - 8.5 @40MHz - 42			IOH= −3.2mA	V _{DD} -0. 7	_	V				
$I_{IL} \qquad (P1, P2, P3) \qquad V_{IN} = 0.4V \qquad - \qquad -75$ $I_{TL} \qquad \overline{\qquad} \qquad \overline{\qquad} \qquad \overline{\qquad} \qquad V_{IN} = 2V \qquad - \qquad -650$ $I_{LI} \qquad \overline{\qquad} \qquad \overline{\qquad}$	V_{BOD}	掉电检测电压		3. 85	4. 15	V				
$I_{TL} \hspace{0.5cm} (P1, P2, P3) \hspace{0.5cm} \stackrel{\text{[5]}}{\text{I}_{LI}} \hspace{0.5cm} \stackrel{\text{(P1, P2, P3)}}{\text{(P1, P2, P3)}} \hspace{0.5cm} \stackrel{\text{(5)}}{\text{(P1, P2, P3)}} \hspace{0.5cm} - \hspace{0.5cm} - \hspace{0.5cm} - \hspace{0.5cm} - \hspace{0.5cm} - \hspace{0.5cm} + \hspace{0.5cm} 10 \hspace{0.5cm} - \hspace{0.5cm} - \hspace{0.5cm} + \hspace{0.5cm} 10 \hspace{0.5cm} - \hspace{0.5cm} - \hspace{0.5cm} 15 \hspace{0.5cm} - \hspace{0.5cm} 15 \hspace{0.5cm} - \hspace{0.5cm} - \hspace{0.5cm} 15 \hspace{0.5cm} - \hspace{0.5cm} - \hspace{0.5cm} 15 \hspace{0.5cm} - 0.5$	I _{IL}		V _{IN} =0. 4V	-	-75	μА				
R _{RST} RST 下拉电阻 40 225 C _{IO} 管脚电容 ^[6] @1MHz, T _{amb} =25℃ - 15 电源电流 激活模式 ————————————————————————————————————	I_{TL}		V _{IN} =2V	-	-650	μА				
C _{IO} 管脚电容 ⁶ @1MHz, T _{amb} = 25℃ - 15 电源电流 激活模式 @12MHz - 11.5 I _{DD} 空闲模式 @40MHz - 50 ©40MHz - 8.5 @40MHz - 42	I_{LI}	输入漏电流 (P0)	0.45 V $<$ V $_{\rm IN}$ $<$ V $_{\rm DD}$ -0.3 V	-	±10	μА				
C _{IO} 管脚电容 ^[6] @1MHz, T _{amb} = 25℃ - 15 电源电流 激活模式 @12MHz - 11.5 [6] Q40MHz - 50 空闲模式 @12MHz - 8.5 @40MHz - 42	R _{RST}	RST 下拉电阻		40	225	kΩ				
激活模式 @12MHz - 11.5 @40MHz - 50 空闲模式 @12MHz - 8.5 @40MHz - 42		管脚电容[6]	@1MHz, T _{amb} =25℃	-	15	pF				
I _{DD} @40MHz - 50 空闲模式 @12MHz - 8.5 @40MHz - 42		电源电流								
I _{DD} 空闲模式 @12MHz - 8.5 @40MHz - 42		激活模式	@12MHz	_	11.5	mA				
@40MHz - 42			@40MHz	-	50	mA				
	I_{DD}	空闲模式	@12MHz	_	8. 5	mA				
損由模式 (最小 VDD=2V) T ,=0°C^+70°C - 80			@40MHz	_	42	mA				
amb of the		掉电模式(最小 VDD=2V)	$T_{amb} = 0^{\circ}C^{\sim} + 70^{\circ}C$	_	80	μА				
T 400° 0700				_	90	μА				

^[1] 稳态(非瞬态)条件下, IOL必须受到如下限制:

- a) 每个8位 I/0 口的最大 I_{OL} : 26mA
- b) 所有输出的最大总 I_{OL}: 71mA
- c)如果 I_{OL} 超出测试条件, V_{OH} 也会超出相应的规定。不能保证管脚提供的灌电流大于表中测试条件的列出值。
- [2] P0 和 P2 口的容性负载会在 ALE、P1 和 P3 的 V_{OL} 上产生叠加的寄生噪声。噪声是由于总线操作过程中管脚发生 1 到 0 的跳变时外部总线对 P0 和 P2 口的放电产生的。最坏情况下(容性负载>100pF) ALE 管脚上的噪声脉冲可能大于 0.8V。这时,必须利用施密特触发器或带施密特触发器选通输入的地址锁存器对 ALE 脚的信号进行限制。
- [3] PO 口、ALE 和 PSEN 的负载电容=100pF, 其它输出的负载电容=80pF。
- [4] 当地址位固定时,P0 和 P2 口的容性负载将使 ALE 和 PSEN 的 VOH 暂时低于规定的 V_{DD} -0.7。
- [5] 当 P1、P2 和 P3 口的电平被外部器件从 1 拉到 0 时,由 3 个 I/0 口来提供跳变电流。当 $\mathbf{V_{IN}}$ 接近 2V 时跳变电流达到最大值。
- [6] 管脚电容是一个特性值,并非测试所得。 \overline{EA} =25pF(max)。

图 29 I_{DD} 和频率的对应关系

第11章 动态特性

表 70 AC 特性

工作条件: PO 口、ALE 和PSEN 的负载电容=100pF; 其它输出的负载电容=80pF。

 $T_{amb} = 0 \text{ C} \sim +70 \text{ C}$ Two-40 C $\sim +85 \text{ C}$; $V_{DD} = 4.5 \text{ V} \sim 5.5 \text{ VO40MHz}$; $V_{SS} = 0 \text{ V}$

符号	参数	40MHz (X1 20MHz (X2	模式)	可?	变	单位
		最小	最大	最小	最大	
1/T _{CLCL}	X1 模式振荡器频率	0	40	0	40	MHz
$1/2\mathrm{T_{CLCL}}$	X2 模式振荡器频率	0	20	0	20	MHz
$t_{ m LHLL}$	ALE 脉宽	35	_	2 T _{CLCL} -15	-	ns
t _{AVLL}	地址有效到 ALE 低	10	_	T _{CLCL} -15	-	ns
t_{LLAX}	ALE 变低后地址保持	10	-	T _{CLCL} -15	-	ns
t _{LLIV}	LLIV ALE 低到有效指令输入		55	_	4 T _{CLCL} -45	ns
$t_{ m LLPL}$	ALE 低到 PSEN 低	10	_	T _{CLCL} -15	-	ns
t _{PLPH}	PSEN 脉宽	60	-	T _{CLCL} -15	-	ns
t _{PLIV}	PSEN 低到有效指令输入	-	25	_	3 T _{CLCL} -50	ns
t _{PXIX}	PSEN 后输入指令保持	_	_	0	-	ns
t _{PXIZ}	PSEN 后输入指令悬浮	_	10	_	T _{CLCL} -15	ns
t _{PXAV}	PSEN 到地址有效	17	-	T _{CLCL} -8	-	ns
t _{AVIV}	地址到有效地址输入	-	65	_	5 T _{CLCL} -60	ns
t _{PLAZ}	PSEN 低到地址悬浮	-	10	_	10	ns
t _{RLRH}	RD 脉宽	120	-	6 T _{CLCL} -30	-	ns
$t_{ m WLWH}$	写脉宽(WR)	120	-	6 T _{CLCL} -30	-	ns
t_{RLDV}	RD 低到有效数据输入	-	75	_	5 T _{CLCL} -50	ns
t _{RHDX}	RD 后的数据保持	0	_	0	-	ns
t _{RHDZ}	RD 后的数据悬浮	-	38	=	2 T _{CLCL} -12	ns
t_{LLDV}	ALE 低到有效数据输入	-	150	_	8 T _{CLCL} -50	ns
t_{AVDV}	地址到有效数据输入	-	150	-	9 T _{CLCL} -75	ns
$t_{\rm LLWL}$	ALE 低到 RD 或 WR 低	60	90	3 T _{CLCL} -15	3 T _{CLCL} +15	ns
t_{AVWL}	地址到 RD 或 WR 低	70	-	4 T _{CLCL} -30	-	ns
t _{WHQX}	t _{WHQX} WR 后的数据保持		-	T _{CLCL} -20	_	ns
t _{QVWH}	数据有效到 WR 高	125	-	7 T _{CLCL} -50	-	ns
t _{RLAZ}	RD 低到地址悬浮	-	0	-	0	ns
t _{WHLH}	RD 到 WR 高到 ALE 高	10	40	T _{CLCL} -15	T _{CLCL} +15	ns

^[1] 计算出来的值仅适于 X1 模式。

11.1 符号说明

每个时序符号包含 5 个字母。第一个字母通常是'T'(代表时间)。其它字母根据所处的位置来代表信号的名称或此信号的逻辑状态。下面列出了所有的字母以及它们代表的含意。

- A一地址
- C一时钟
- D-输入数据
- H一逻辑高电平
- I-指令(程序存储器的内容)
- L一逻辑低电平或 ALE
- $P \overline{PSEN}$
- Q一输出数
- R-RD 信号
- T一时间
- V一有效
- W-WR信号
- X一非有效逻辑电平
- Z-高阻抗(悬浮)

例如:

T_{AVLL}=地址有效到 ALE 低的时间

T_{LLPL} = ALE 低到 **PSEN** 低的时间

图 30 外部程序存储器读周期

图 31 外部数据存储器读周期

图 32 外部数据存储器写周期

表 71 外部时钟驱动

		振荡器					
符号	参数	401	MHz	可	单位		
		最小最大		最小	最大		
$1/T_{\rm CLCL}$	振荡器频率	-	-	0	40	MHz	
t _{CLCL}		25	-	-	-	ns	
t _{CHCX}	高电平时间	8. 75	-	0. 35 T _{CLCL}	0. 65 T _{CLCL}	ns	
t _{CLCX}	低电平时间	8. 75	-	0. 35 T _{CLCL}	0. 65 T _{CLCL}	ns	
t _{CLCH}	上升时间	-	10	-	-	ns	
t _{CHCL}	下降时间	-	10	-	-	ns	

图 33 外部时钟驱动波形

表 72 串口时序

		振荡器				
符号	参数	40	MHz	可	单位	
		最小	最大	最小	最大	
t_{XLXL}	串口时钟周期	0.3	-	12 t _{CLCL}	_	μs
t _{QVXH}	输出数据建立到时钟上升沿	117	-	10 t _{CLCL} -133	-	ns
t _{XHQX}	时钟上升沿后的输出数据保持	0	-	2 t _{CLCL} -50	-	ns
t _{XHDX}	时钟上升沿后的输入数据保持	0	-	0	-	ns
t_{XHDV}	时钟上升沿到输入数据有效	_	117	_	10 t _{CLCL} −133	ns

图 34 移位寄存器模式时序波形

注: VHT- VHIGH 测试 VLT- VLOW 测试 VIHT-VINPUT 高电平测试 VILT- VINPUT 低电平测试

测试过程中,当AC输入被驱动到VhH (Vdd -0.5) 时为逻辑1电平;VlLT (0.45V) 时为逻辑0电平。输入和输出的测试参考点分别为VhT (0.2+0.9) 和VLT (0.2Vdd -0.1)。

图 35 AC 测试输入/输出测试波形

出于时序的考虑,端口管脚不再在负载电压发生 100mV变化时悬浮,而是开始在 V_{OH}/V_{OL} 电平发生100mV的变化时悬浮。 $I_{OH}/I_{OL}=\pm20mA$ 。

图 36 悬浮波形

图 37 测试电阻举例

其它管脚都不连

图 38 I_{DD} 测试条件,激活模式

其它管脚都不连

图 39 I_{DD} 测试条件,空闲模式

其它管脚都不连

图 40 I_{DD} 测试条件,掉电模式

第12章 封装外形

DIP40: 塑料双列直插封装,40 脚(60mil)

SOT129-1

0 5 10 mm 刻度

尺寸(英寸尺寸是从原始的毫米尺寸衍生的)

单位	A 最大值	A₁ 最小值	A₂ 最大值	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
亳米	4.7	0.51	4	1.70 1.14	0.53 0.38	0.36 0.23	52.5 51.5	14.1 13.7	2.54	15.24	3.60 3.05	15.80 15.24	17.42 15.90	0.254	2.25
英寸	0.19	0.02	0.16	0.067 0.045	0.021 0.015	0.014 0.009	2.067 2.028	0.56 0.54	0.1	0.6	0.14 0.12	0.62 0.60	0.69 0.63	0.01	0.089

注:

1. 每一边的最大为0. 25mm(0.01英寸)的塑料或金属突出物没有包括在内)

OUTLINE		REFER	ENCES	EUROPEAN	发布日期
VERSION	IEC	JEDEC	JEITA	PROJECTION	汉 和口列
SOT129-1	051G08	MO-015	SC-511-40		99-12-27 03-02-13

图 41 SOT129-1(DIP40)封装外形

TQFP44: 塑料薄型扁平封装; 44 脚,本体大小 10×10×1.0mm

SOT376-1

尺寸(英寸尺寸是从原始的毫米尺寸衍生的)

单位	7	A nax.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	H _D	HE	L	Lp	v	w	у	Z _D ⁽¹⁾	Z _E ⁽¹⁾	θ
亳州	ę 1	1.2	0.15 0.05	1.05 0.95	0.25	0.45 0.30	0.18 0.12	10.1 9.9	10.1 9.9	0.8	12.15 11.85	12.15 11.85	1	0.75 0.45	0.2	0.2	0.1	1.2 0.8	1.2 0.8	7° 0°

注:

1. 每一边的最大为0. 25mm(0.01英寸)的塑料或金属突出物没有包括在内)

OUTLINE	REFERENCES EURO					发布日期
VERSION	IEC	JEDEC	JEITA		PROJECTION	及印口朔
SOT376-1	137E08	MS-026				-00-01-19 02-03-14

图 42 SOT376-1(TQFP44)封装外形

PLCC44: 塑料带引线芯片载体; 44 端

SOT187-2

尺寸(英寸尺寸是从原始的毫米尺寸衍生的)

单位	A	A ₁ min.	A ₃	A ₄ max.	bp	b ₁	D ⁽¹⁾	E ⁽¹⁾	е	e _D	еE	Н _D	уН _Е	k	Lp	v	w		l .	Z _E ⁽¹⁾ max.	β
亳米	4.57 4.19	0.51	0.25	3.05	0.53 0.33	0.81 0.66		16.66 16.51	1.27	16.00 14.99		17.65 17.40	17.65 17.40	1.22 1.07	1.44 1.02	0.18	0.18	0.1	2.16	2.16	45°
英寸	0.180 0.165	0.02	0.01	I N 12	0.021 0.013	l .		0.656 0.650	0.05	0.63 0.59	0.63 0.59		0.695 0.685			0.007	0.007	0.004	0.085	0.085	45

注: 1. 每一边的最大为0. 25 mm (0.01英寸) 的塑料或金属突出物没有包括在内)

OUTLINE		REFER	RENCES	EUROPEAN	发布日期
VERSION	IEC	JEDEC	JEITA	PROJECTION	及仰口朔
SOT187-2	112E10	MS-018	EDR-7319		99-12-27 01-11-14

图 43 SOT187-2 (PLCC44) 封装外形