Final Assessment Test (FAT) - JUNE/JULY 2023

B.Tech.	Semester	Winter Semester 2022-23	
DIGITAL SYSTEMS DESIGN	Course Code	BECE102L	
Faculty Name Prof. Mohamed Imran A	Slot	B1+TB1	
	Class Nbr	CH2022232300550	
3 Hours	Max. Marks	100	
	B.Tech. DIGITAL SYSTEMS DESIGN Prof. Mohamed Imran A 3 Hours	Prof. Mohamed Imran A Course Code Slot Class Nbr	

Section I (7 X 10 Marks) Answer All questions

01. For the given Boolean function,

 $F(W, X, Y, Z) = X\bar{Y}Z + \bar{X}\bar{Y}Z + \bar{W}XY + W\bar{X}Y + WXY$

[10]

- (a) Obtain the truth table of F and represent the function with minterms.
- (b) Use Boolean algebra to simplify the function and realize the circuit using NAND gates
- (c) Write a Verilog code to implement the function using structural modelling.
- 02. Design a combinational circuit to generate EVEN parity and ODD parity. Write the truth table [10] with (ABCD) as inputs and X(Even), Y(Odd) as outputs.
 - (a) Implement the output X using 4×1 multiplexer.
 - (b) Implement the output Y using 3 × 8 decoder.
- 03. Comprehend the circuit shown below and find the outputs $(S_1S_2S_1S_0)$, C and V for M=0 and [10] M=1. Assume A=+6 and B=+4. What does V indicate? Validate your answer with the calculations.

- 04. (a) The sequence 1011 is applied to the input of a 4bit shift register(SISO) that is initially cleared. What is the state of the shift register after tree clock pulses? Explain with timing diagram/table.
 - (b) Draw the output states of each flipflop for the da signal given below

- 05. Design and draw the state diagram of a FSM to dete two sequences 1010 and 110 for the following cases:
 - (a) Mealy model with overlapping states
 - (b) Moore model with non overlapping states.

10

[10]

- 06. Design an modulo 8 asynchronous counter using negative edge triggered JK Flip Flop
 - (a) the counter should count with a truncated sequence 2,3,4,5,6.
 - (b) draw the timing diagram and verify the output.
- 07. Derive the state table and the state diagram of the sequential circuit shown below, where x is the input and y is the output.

Answer All questions

08. The arithmetic operation C = A * B is performed on a digital system.

(a) Tabulate the calculation steps using Booth Algorithm, if A=+5 and B=-4

(b) Write the Verilog code for implementing the same operation with Array Multiplier using dataflow modelling.

09. Implement the combinational circuit

[15]

[15]

[10]

 $F1(W, X, Y, Z) = \sum (2, 12, 13),$

 $F2(W, X, Y, Z) = \sum (7, 8, 9, 10, 11, 12, 13, 14, 15).$

 $F3(W, X, Y, Z) = \sum (0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15),$

 $F4(W, X, Y, Z) = \sum (1, 2, 8, 12, 13)$

- (a) using Programmable Logic Array (PLA).
- (b) using Programmable Array Logic (PAL).

