

COMP26120: Introducing Complexity Analysis (2019/20)

Lucas Cordeiro

lucas.cordeiro@manchester.ac.uk

Introducing Complexity Analysis

Textbook:

- Algorithm Design and Applications, Goodrich, Michael
 T. and Roberto Tamassia (Chapter 1)
- Introduction to Algorithms, Cormen, Leiserson, Rivest,
 Stein (Chapters 2 and 3)

Motivating Example

What does this code fragment represent? What is its complexity?

```
for(i = 0; i < N-1; i++) {
   for(j = 0; j < N-1; j++) {
     if (a[j] > a[j+1]) {
       t = a[j];
       a[j] = a[j+1];
       a[j+1] = t;
```

- This is bubble sort
- There are two loops
- Both loops make n-1 iterations so we have (n-1)*(n-1)
- The complexity is $O(n^2)$

Perform worst case analysis and ignore constants

Intended Learning Outcomes

- Define asymptotic notation, functions, and running times
- Analyze the running time used by an algorithm via asymptotic analysis
- Provide examples of asymptotic analysis using the insertion sorting algorithm

Asymptotic Performance

- In this course, we care most about asymptotic performance
 - We focus on the infinite set of large n ignoring small values of n
 - o The best choice for all, but minimal inputs
- How does the algorithm behave as the problem size gets huge?
 - Running time
 - Memory/storage requirements
 - Bandwidth/power requirements/logic gates/etc.

Asymptotic Notation

- By now, you should have an intuitive feel for asymptotic (big-O) notation:
 - What does O(n) running time mean? O(n²)? O(log n)?
 - How does asymptotic running time relate to asymptotic memory usage?
- Our first task is to define this notation more formally

Search Problem (Arbitrary Sequence)

Input

- sequence of numbers $(a_1, ..., a_n)$
- search for a specific number (q)

Output

index or NIL

Linear Search

```
j=1
while j<=length(A) and A[j]!=q
    do j++
if j<=length(A) then return j
else return NIL</pre>
```

- Worst case: f(n)=n, average case: n/2
- Can we do better using this approach?
 - this is a lower bound for the search problem in an arbitrary sequence

A Search Problem (Sorted Sequence)

Input

- sequence of numbers $(a_1 \le a_2, ..., a_{n-1} \le a_n)$
- search for a specific number (q)

$$a_1, a_2, a_3, \dots, a_n; q$$

$$\xrightarrow{} 2 \quad 4 \quad 5 \quad 7 \quad 10; \quad 10$$

$$2 \quad 4 \quad 5 \quad 7 \quad 10; \quad 8$$

Output

index or NIL

Did the sorted sequence help in the search?

Binary Search

 Assume that the array is sorted and then perform successive divisions

```
left=1
right=length(A)
do
    j=(left+right)/2
    if A[j]==q then return j
    else if A[j]>q then right=j-1
    else left=j+1
while left<=right
return NIL</pre>
```

Binary Search Analysis

- How many times is the loop executed?
 - At each interaction, the number of positions n is cut in half
 - How many times do we cut in half n to reach 1?
 - o $lg_2 n$

$$\lg_2 n = x \Leftrightarrow n = 2^x$$

$$1g_2 8 = 3$$

Analysis of Algorithms (COMP15111)

- We perform the analysis concerning a computational model
- We will usually use a generic uniprocessor random-access machine (RAM)
 - All memory equally expensive to access
 - Instructions executed one after another (no concurrent operations)
 - All reasonable instructions take unit time
 o Except, of course, function calls
 - Constant word size
 - o Unless we are explicitly manipulating bits

Input Size

- Time and space complexity
 - This is generally a function of the input size
 - o E.g., sorting, multiplication
 - How we characterize input size depends:
 - o Sorting: number of input items
 - o Multiplication: total number of bits
 - o Graph algorithms: number of nodes and edges
 - o Etc.

Running Time

- Number of primitive steps that are executed
 - Except for time of executing a function call most statements roughly require the same amount of time

```
o f = (g + h) - (i + j)
o y = m * x + b
o c = 5 / 9 * (t - 32)
o z = f(x) + g(y)
```

We can be more exact if needed

```
add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1
```

Analysis

Worst case

- Provides an upper bound on running time
- An (absolute) guarantee

Average case

- Provides the expected running time
- Very useful, but treat with care: what is "average"?
 - o Random (equally likely) inputs
 - o Real-life inputs

```
InsertionSort(A, n) {
 for i = 2 to n {
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
          A[j+1] = A[j]
          j = j - 1
     A[j+1] = key
```



```
i = \emptyset j = \emptyset key = \emptyset

A[j] = \emptyset A[j+1] = \emptyset
```

```
InsertionSort(A, n) {
  for i = 2 to n {
      key = A[i]
      j = i - 1;
      while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
      A[j+1] = key
```



```
i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 30
```



```
i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
    while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
\mathbf{i} = 2 \mathbf{j} = \mathbf{0} \text{key} = 10

\mathbf{A}[\mathbf{j}] = \emptyset \mathbf{A}[\mathbf{j}+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i=2 j=0 key=10

A[j]=\varnothing A[j+1]=30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 2 j = 0 key = 10
A[j] = \emptyset A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3  j = 0  key = 10

A[j] = \emptyset  A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 0 key = 40

A[j] = \emptyset A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 0 key = 40

A[j] = \emptyset A[j+1] = 10
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
    }
    A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 40

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 20
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 20
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 30
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 20
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```



```
i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 20
```

```
InsertionSort(A, n) {
    for i = 2 to n {
        key = A[i]
        j = i - 1;
        while (j > 0) and (A[j] > key) {
            A[j+1] = A[j]
            j = j - 1
        }
        A[j+1] = key
    }
}
```

```
What is the precondition
InsertionSort(A, n) {
                               for this loop?
  for i = 2 to n \in \{
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
           A[j+1] = A[j]
           j = j - 1
     A[j+1] = key
```

```
InsertionSort(A, n) {
  for i = 2 to n \{
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
          A[j+1] = A[j]
     A[j+1] = key
                            How many times will
                            this loop execute?
```

```
InsertionSort(A, n) {
  for i = 2 to n \{
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
          A[j+1] = A[j]
           j = j - 1
     A[j+1] = key
                            What is the post-condition
                            for this loop?
```

```
InsertionSort(A, n) {
 for i = 2 to n \{
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
          A[j+1] = A[j]
          j = j - 1
     A[j+1] = key
```

Invariant: A [1..i-1] consists of the elements originally in A [1..i-1], but in sorted order

```
InsertionSort(A, n) {
  for i = 2 to n \{
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
           A[j+1] = A[j]
           j = j - 1
     A[j+1] = key
    Termination: when i == n+1 we have A[1..i-1]
              which leads to A[1..n]
```

```
Statement
                                                     Effort
InsertionSort(A, n) {
  for i = 2 to n \{
                                                     c_1 n
                                                     c_2(n-1)
       key = A[i]
       j = i - 1;
                                                     c_{3}(n-1)
       while (j > 0) and (A[j] > key) {
                                                    c_4T
               A[j+1] = A[j]
                                                     c_5(T-(n-1))
                                                     c_6(T-(n-1))
               j = j - 1
                                                     0
       A[j+1] = key
                                                     c_7(n-1)
                                                     0
  T = t_2 + t_3 + ... + t_n where t_i is number of while expression
```

evaluations for the ith for loop iteration

Analysing Insertion Sort

- $T(n) = c_1 n + c_2(n-1) + c_3(n-1) + c_4 T + c_5(T (n-1)) + c_6(T (n-1)) + c_7(n-1)$
- What can T be?

■ T(n) = an - b

Best case -- inner loop body never executed

$$T = t_2 + t_3 + \dots + t_n$$

$$\sum_{j=2}^{n} t_j = t_2 + t_3 + \dots + t_n = 1 + 1 + \dots + 1 = n - 1$$

$$T(n) = c_1 n + c_2 (n - 1) + c_3 (n - 1) + c_4 (n - 1) + c_7 (n - 1)$$

$$T(n) = (c_1 + c_2 + c_3 + c_4 + c_7) \cdot n - (c_2 + c_3 + c_4 + c_7)$$

Sum Review

Gaussian Closed Form can be defined as:

$$\sum_{j=1}^{n} j = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Thus, we have:

$$\sum_{j=2}^{n} j = 2 + 3 + \ldots + n = \frac{n(n+1)}{2} - 1$$

Similarly, we obtain:

$$\sum_{j=2}^{n} (j-1) = \dots = \frac{n(n+1)}{2} - n = \frac{n(n+1) - 2n}{2} = \frac{n(n-1)}{2}$$

Analysing Insertion Sort

 Worst case -- inner loop body executed for all previous elements

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 \qquad \qquad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \left(\frac{n(n+1)}{2} - 1\right) + c_5 \left(\frac{n(n-1)}{2}\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 (n-1) = \left(\frac{c_4}{2} + \frac{c_5}{2} + \frac{c_6}{2}\right) n^2 + \left(c_1 + c_2 + c_3 + \frac{c_4}{2} - \frac{c_5}{2} - \frac{c_6}{2} + c_7\right) n - \left(c_2 + c_3 + c_4 + c_7\right)$$

$$o T(n) = an^2 + bn - c$$

Average case

o???

Simplifications

- Abstract statement costs
- Order of growth

Growth Functions

Scheduler

 the scheduler allows one thread to execute at a given time (emulate the execution on a single core)

Thread interleavings:

allow preemptions only before visible statements (global variables and synchronization points)

Exercise: Comparison of Running Times

- For each function f(n) and time t, determine the largest size n of a problem that can be solved in time t
 - the algorithm to solve the problem takes f(n) microseconds

	log n	n ^{1/2}	n	n²	n³	2 ⁿ	n!
1 second							

Exercise: Comparison of Running Times

- For each function f(n) and time t, determine the largest size n of a problem that can be solved in time t
 - the algorithm to solve the problem takes f(n) microseconds

	1 Second	1 Minute	1 Hour	1 Day	1 Month	1 Year	1 Century
$\frac{1}{\log n}$	$2^{1\times10^{6}}$	$2^{6 \times 10^7}$	$2^{3.6 \times 10^9}$	$2^{8.64 \times 10^{10}}$	$2^{2.592 \times 10^{12}}$	$2^{3.1536 \times 10^{13}}$	$2^{3.15576 \times 10^{15}}$
\sqrt{n}	1×10^{12}	3.6×10^{15}	1.29×10^{19}	7.46×10^{21}	6.72×10^{24}	9.95×10^{26}	9.96×10^{30}
\overline{n}	1×10^{6}	6×10^{7}	3.6×10^{9}	8.64×10^{10}	2.59×10^{12}	3.15×10^{13}	3.16×10^{15}
$n \lg n$	62746	2801417	133378058	2755147513	71870856404	797633893349	6.86×10^{13}
n^2	1000	7745	60000	293938	1609968	5615692	56176151
n^3	100	391	1532	4420	13736	31593	146679
2^n	19	25	31	36	41	44	51
n!	9	11	12	13	15	16	17

Assume a 30 day month and 365 day year

Upper Bound Notation

- InsertionSort's runtime is
 O(n²)
 - runtime is in O(n²)
 - Read O as "Big-O"
- In general, a function
 - f(n) is O(g(n)) if there exist positive constants c and n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$

Insertion Sort Is O(n²)

- Proof:
 - Use the formal definition of O to demonstrate that $an^2 + bn + c = O(n^2)$

```
O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.
```

If any of a, b, and c are less than 0 replace the constant with its absolute value

```
o 0 \le f(n) \le k \cdot g(n) for all n \ge n_0 (k and n_0 must be positive)
```

$$0 0 \le an^2 + bn + c \le kn^2$$

o
$$0 \le a + b/n + c/n^2 \le k$$

- Question
 - Is InsertionSort O(n)?

Lower Bound Notation

- InsertionSort's runtime is $\Omega(n)$
- In general, a function
 - f(n) is $\Omega(g(n))$ if there exist positive constants c and n_0 such that $0 \le c \cdot g(n) \le f(n) \ \forall \ n \ge n_0$
- Proof:
 - Suppose runtime is an + b

$$0 0 \le cn \le an + b$$

$$0.0 \le c \le a + b/n$$

Asymptotic Tight Bound

- A function f(n) is $\Theta(g(n))$ if there exist positive constants c_1 , c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2$ g(n) for all $n \ge n_0$
- Theorem
 - f(n) is $\Theta(g(n))$ iff f(n) is both O(g(n)) and $\Omega(g(n))$

Exercise: Asymptotic Notation

• Use the formal definition of Θ

```
\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.
```

to demonstrate that
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

Exercise: Asymptotic Notation

■ Use the formal definition of Θ

```
\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.
```

to demonstrate that $6n^3 \neq \Theta(n^2)$

Other Asymptotic Notations

 A function f(n) is o(g(n)) if ∃ positive constants c and n_0 such that

$$f(n) < c g(n) \forall n \ge n_0$$

• A function f(n) is $\omega(g(n))$ if \exists positive constants cand n_0 such that

$$c g(n) < f(n) \forall n \ge n_0$$

- Intuitively,
 - o() is like <

- ω () is like > Θ () is like =
- O() is like \leq Ω () is like \geq

Asymptotic Comparisons

 We can draw an analogy between the asymptotic comparison of two functions f and g and the comparison of two real numbers a and b

```
• f(n) = O(g(n)) is like a \le g
• f(n) = \Omega(g(n)) is like a \ge g
```

•
$$f(n) = \Theta(g(n))$$
 is like $a = g$

•
$$f(n) = o(g(n))$$
 is like $a < g$

■
$$f(n) = \omega(g(n))$$
 is like $a > g$

Abuse of notation:

■
$$f(n) = O(g(n))$$
 indica que $f(n) \in O(g(n))$

Exercise: Asymptotic Notation

Check whether these statements are true:

- a) In the worst case, the insertion sort is $\Theta(n^2)$
- b) $2^{2n} = O(2^n)$
- c) $2^{n+1} = O(2^n)$
- d) $\Theta(n) + \Theta(1) = \Theta(n)$
- e) $O(n^2) + O(n^2) = O(n^2)$
- f) $O(n) \times O(n) = O(n)$

Summary

- Analyse the running time used by an algorithm via asymptotic analysis
 - asymptotic (O, Ω , Θ , o, ω) notations
 - use a generic uniprocessor random-access machine
 - Time and space complexity (input size)
 - Best, average and worst-case