

UW0 CHEM 1302

Fall 2024, Chapter 5 Notes

Table of Contents

Chapter 5. Entropy and Spontaneous Change

5.1. Entropy

- 5.1.1. 2nd Law of Thermodynamics (Entropy)
- 5.1.2. Factors Affecting Entropy Changes
- 5.1.3. Example
- 5.1.4. Practice
- 5.1.5. Practice

5.2. 3rd Law of Thermodynamics

- 5.2.1. 3rd Law of Thermodynamics
- 5.2.2. Summary of the Laws of Thermodynamics

5. Entropy and Spontaneous Change

5.1 Entropy

5.1.1

2nd Law of Thermodynamics

Entropy (S) is a measure of disorder or randomness in a system.

The **2nd Law of Thermodynamics** states that disorder of the universe increases in a spontaneous process.

In other words, things naturally tend to go towards disorder and the universe is constantly getting more and more disordered!

Entropy Equations

Entropy is defined as:

$$\Delta S_{surr} = rac{q_{surr}}{T}$$

 ΔS_{surr} =entropy of the surroundings (in J/molK) q_{surr} =heat in the surroundings (in J) T=Temperature (in K)

Recall:

$$q_{surr}=-q_{sys}$$

At constant pressure and temperature:

$$\Delta H_{sys} = q_{sys}$$

$$\Delta S_{surr} = -rac{\Delta H_{sys}}{T}$$

The **2nd law of thermodynamics** states that whenever a spontaneous event takes place in the universe, the total entropy of the universe increases:

$$\Delta S_{universe} = \Delta S_{system} + \Delta S_{surroundings} > 0$$

Chemical Reactions

In the same way we can use standard heats of formation to calculate a reaction enthalpy at room temperature and

pressure, we can use S^o (values will be provided to you in a table)

$$\Delta S^o = [(\sum nS^o products) - (\sum nS^o reactants)]$$

Factoring Affecting Entropy Changes

Entropy for Different Phases

Photo by Rice University / CC BY

Entropy When a Higher Pressure is Applied to a Gas

If we have **two gases, and apply a higher pressure to one** of them, will the gas with the higher pressure applied have more or less entropy?

The gas with the higher pressure app	organized molecules and	
therefore there is (more/less)	disorder, meaning there is (more/less)	entropy!

Entropy of a Solid Alone vs Dissolved in a Liquid

Example:

KCl(s) vs KCl(aq)

There is (more/less) _____ entropy when the solid is dissolved in a solvent.

Entropy of a Gas Alone vs Dissolved in a Solvent

Example: Think of shaking a bottle of pop $CO_2(g)$ vs $CO_2(aq)$

The gas would have (more/less) _____ more entropy when dissolved in the solvent.

Entropy of Similar Substances in the Same Physical State

How would entropy change with increasing mass?						
Entropy would (increase/decrease)						
Example:						
$H_2(g)$ (MM=2g/mol) vs Ar(g) (MM=40g/mol) vs $CO_2(g)$ (MM=44g/mol)						
How would entropy change as we increase the number of atoms in the molecule?						
Entropy would (increase/decrease)						
Example:						
$CH_4(g) \text{ vs } C_2H_6(g) \text{ vs } C_{10}H_{22}(g)$						
How would entropy be different if we compared the following two molecules?						
Cyclopentane vs C ₅ H ₁₂						
Would entropy increase or decrease with increasing molecular freedom or flexibility?						

Entropy in a Chemical Equation
Example: $ CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I) $
f we were asked if entropy increases or decreases in this equation, what would you consider?

Therefore, entropy _____ We could also say that ΔS is ____ 0

Example: Qualitatively Estimating Entropy Changes

Determine if the entropy change will be positive or negative for the following reactions:

$$(NH_4)_2Cr_2O_7(s) o Cr_2O_3(s) + 4H_2O(l) + N_2(g)$$

$$2H_2(g)+O_2(g) o 2H_2O(g)$$

$$PCl_5(g) o PCl_3(g) + Cl_2(g)$$

5.1.4

Using the following data, calculate the standard entropy of the reaction shown below. Enter your answer in units of J / (mol*K)

$$2~Al_{(s)} + 3~ZnO_{(s)}
ightarrow Al_2O_{3(s)} + 3Zn_{(s)}$$

$$S^o(Al_{(s)}) = 28.3 \; J \; mol^{-1} K^{-1}$$

$$S^o(Zn_{(s)}) = 41.6 \ J \ mol^{-1} K^{-1}$$

$$S^o(ZnO_{(s)}) = 43.9 \ J \ mol^{-1} K^{-1}$$

$$S^o(Al_2O_{3(s)}) = 51.0 \; J \; mol^{-1}K^{-1}$$

Answer

Using the ΔH^0 of fusion for water 6.03 kJ/mol and the ΔS^0 of fusion for water 22.1 J K⁻¹ mol⁻¹, calculate the ΔS_{univ} for ice melting at -10°C, 0°C and 10°C. Remember: the universe transfers heat in a reversible way.

A ∆Suniv at -10C

B ΔSuniv at 0C

C \(\Delta \)Suniv at 10C

5.2 3rd Law of Thermodynamics

5.2.1

3 rd Law of Thermodynamics

- The Third Law states: All perfect crystals in equilibrium at 0K have the same entropy, defined as 0
- Conceptually this makes sense given our understanding of order and disorder. The system
 described in the third law
 would be the most ordered system imaginable.

Figure 2.2.4

Summary of the Laws of Thermodynamics

WIZE CONCEPT

It is more important to understand each law and the related equations than to memorize what each law is!

<u>Oth Law:</u> 2 bodies that are in thermal equilibrium with a 3rd body are in thermal equilibrium with each other as well! All 3 bodies would be at the same temperature.

<u>1st Law:</u> Energy is conserved and cannot be created and destroyed. Energy can only be transformed into different forms like heat.

$$\Delta U_{surr} = -\Delta U_{sys}$$

$$\Delta U = q + w...where \: w = -P\Delta V$$

<u>2nd Law:</u> Entropy (disorder) in the universe will spontaneously increase. Energy like to be more spread out!

$$egin{aligned} \Delta S^o rxn &= \left[\left(\sum n \Delta S^o_{products}
ight) - \left(\sum n \Delta S^o_{reac an ts}
ight)
ight] \ \Delta G &= \Delta H - T \Delta S \end{aligned}$$

<u>3rd Law:</u> A perfect crystal has 0 entropy at a temperature of 0K (hypothetical temperature that is the absolute lowest temperature). Any temperature higher than this would have entropy and there is more entropy as temperature increases!