STAT 443: Lab 1

Aronn Grant Laurel Y.

10 January, 2025

Question 1

(a)

```
# this is where your R code goes

passengers <- read.csv("dat_Passengers.csv")
# head(passengers, 5)

plot(passengers$DOMESTIC)</pre>
```


Using the plot function on the DOMESTIC column, we see that it plots it against the index.

Ideally, I would like to have visualisation of Domestic Flights plotted against the Year or Month instead of the Index. Furthermore, I would extend the y-axis more as the range is a lot higher and I would prefer smaller points such that we have less overlapping data points.

(b)

Total Number of Passengers Over Time

If we plot time series object, we can see that plot() will use a line graph and it extends its y-axis range more. Now, we can easily identify if there's a clear trend, if there's seasonal variation.

Question 2

(a)

```
# this is where your R code goes
set.seed(100)

x2 <- rnorm(500)

x2_ts <- ts(x2)
is.ts(x2_ts)

## [1] TRUE

(b)

# this is where your R code goes
plot(x2_ts,
    main = "Time Series from Standard Normal Distribution",
    ylab = "Values",
    xlab = "Time")

# Add lines + / - 1
abline(h = 1, col = "red")
abline(h = -1, col = "red")</pre>
```

Time Series from Standard Normal Distribution


```
# Expected outside + / - 1 range
2* (1 - pnorm(1)) * 500

## [1] 158.6553

sum(abs(x2_ts) > 1)

## [1] 159

159/500 # Or 2* (1 - pnorm(1))

## [1] 0.318

I would expect 31.8% or 159 out of the 500 observation to be outside of the + / - 1 range
(c)

# this is where your R code goes
```

Sample Autocorrelation Function for Time Series

acf(x2_ts, main="Sample Autocorrelation Function for Time Series")

The lag 0 autocorrelation will be 1, with majority of all the other lag values close to value 0 and staying between the confidence boundary line. We can say lag 0, 5, and 8 is outside the boundary line, therefore statistically significant.

More information on R Markdown

This is an R Markdown document, which can be used as a template for STAT 443 labs and assignments. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)

```
##
                        dist
        speed
                        : 2.00
##
          : 4.0
   Min.
                   Min.
##
   1st Qu.:12.0
                   1st Qu.: 26.00
                   Median : 36.00
##
   Median:15.0
   Mean
##
           :15.4
                   Mean
                        : 42.98
##
   3rd Qu.:19.0
                   3rd Qu.: 56.00
   Max.
           :25.0
                          :120.00
                   Max.
```

Using the function kable, it produces a nicer table

kable(summary(cars))

speed	dist
Min.: 4.0 1st Qu.:12.0	Min.: 2.00 1st Qu.: 26.00
Median :15.0	Median: 36.00
Mean :15.4 3rd Qu.:19.0	Mean: 42.98 3rd Qu.: 56.00
Max. :25.0	Max. :120.00

Including Plots

You can also embed plots, for example:

plot(pressure)

Note that specifying echo = FALSE parameter would prevent printing of the R code that generated the plot. This is something you may want to do for larger reports that would not require display of the R code.

You can also modify the size and alignment of the figure.

plot(pressure)

Figure 1: title