- 1) Der dargestellte Strom fließt durch einen Kondensator mit $1\mu F$, der zum Zeitpunkt t=0 eine Spannung von 0 Volt besitzt.
 - a) (20P) Berechnen Sie mindestens einen sinnvollen Spannungswert und tragen Sie den Spannungsverlauf incl. Skalierung direkt in das Diagramm ein.

- 2) Ein Kondensator mit einer Kapazität von $100\mu F$ hat eine Spannungsfestigkeit von 100 Volt. Das Dielektrikum hat ein $\varepsilon_r = 10$ und eine Spannungsfestigkeit von 10kV/mm, wobei im Betrieb nur ein Drittel davon erreicht wird.
 - a) Berechnen Sie den Plattenabstand.
 - b) Berechnen Sie die maximale im Kondensator gespeicherte Energie.
- c) Berechnen Sie wie lange ein ungeladener Kondensator mit einem konstanten Strom von 100mA geladen werden muss, um die maximale Spannung zu erreichen. (d=30µm, 500mWs, 100ms)

- 3) (25P) Ein Kondensator mit einer Kapazität von $100\mu F$ hat eine Spannungsfestigkeit von 100 Volt. Das Dielektrikum hat ein $\varepsilon_r = 10$ und eine Durchschlagsfeldstärke von 10kV/mm, wobei im Betrieb nur die Hälfte davon erreicht werden soll.
 - a) (10P) Berechnen Sie den minimalen Plattenabstand.
 - b) (5P) Berechnen Sie die maximale im Kondensator gespeicherte Energie.
 - c) (10P) Berechnen Sie wie lange ein bereits auf 50 Volt geladener Kondensator mit einem konstanten Strom von 100mA geladen werden muss, um die maximale Spannung zu erreichen.
- (30P) Ein Kondensator mit C₁=10μF soll zusammen mit einem zweiten Kondensator C₂ eine Gesamtkapazität von 7μF ergeben.
 - a) (5P) Entscheiden Sie wie diese Kondensatoren zu schalten sind,
 - b) (15P) berechnen Sie die Größe von C2 und
 - c) (10P) wählen Sie diesen so aus der E12-Reihe (10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82), dass die Gesamtkapazität nicht kleiner als die gewünschte Gesamtkapazität wird.
- 5) (25P) Der dargestellte Strom fließt durch einen Kondensator mit 10μF, der zum Zeitpunkt t=0 eine Spannung von 0 Volt besitzt.

Berechnen Sie mindestens einen sinnvollen Spannungswert und tragen Sie den Spannungsverlauf incl. Skalierung direkt in das Diagramm ein.

- 6) (35P) Ein Kondensator mit einer Kapazität von 4700 μ F hat eine Spannungsfestigkeit von 63 Volt. Das Dielektrikum hat ein ε_r = 10 und eine Durchschlagsfeldstärke von 10kV/mm, wobei im Betrieb nur die Hälfte davon erreicht wird.
 - a) (10P) Berechnen Sie den Plattenabstand.
 - b) (15P) Berechnen Sie die Plattenfläche des Kondensators und deren Länge bei einer Breite von 30mm.
 - c) (10P) Berechnen Sie die maximale im Kondensator gespeicherte Energie.