





## Fairness Issues in Machine Learning

Say we want to estimate the risk of violent crimes in given population



- This is obviously a very ethically sensitive (and questionable) task
- ...Since our model may easily end up discriminating some social groups
- This makes it a good test case to discuss fairness in data-driven methods

#### Fairness in Data-Driven Methods

#### Fairness in data-driven methods is very actual topic

- As data-driven systems become more pervasive
- They have the potential to significantly affect social groups

#### Once you deploy an AI model, performance is not enough

- You might have stellar accuracy and efficient inference
- ...And still end up causing all sort of havoc

#### This is so critical that the topic is about starting to be regulated

- The EU has drafted <u>Ethics Guidelines for Trustworthy AI</u>
- In some fields, in a few years, models that do not comply with specific rules
- ...May be simply forbidden from being deployed





## **Loading and Preparing the Dataset**

#### We will run an experiment on the "crime" UCI dataset

We will use a pre-processed version made available by our support module:

In [2]: data = util.load communities data(data folder) data Out[2]: pct12- pct12pct16pct65up pctUrban ... pctForeignBorn pctBornStateR communityname state fold pop race **1008** EastLampetertownship PA 5 11999 0 0.1203 0.2544 0.1208 0.1302 0.5776 ... 0.0288 0.8132 **1271** EastProvidencecity 0.2459 0.1159 1.0000 50380 0.1171 0.1660 ... 0.1474 0.6561 0.0804 **1936** Betheltown 17541 0.1356 0.2507 0.1138 0.8514 ... 0.0853 0.4878 CT 9 0 0.1506 0.2587 0.1234 0.0000 0.0029 **1601** Crowleycity LA 13983 0.1302 0.9314 293 Pawtucketcity 72644 0.1230 0.2725 0.1276 0.1464 1.0000 ... 0.1771 0.6363 0.1454 0.2653 0.1247 0.1190 **1758** RockyMountcity NC 48997 1.0000 ... 0.0077 8 0 0.8138 **1822** Amarillocity TX 9 157615 0 0.1391 0.2660 0.1244 0.1085 1.0000 0.0412 0.6651 **2207** WestHaventown 0.1186 0.2772 0.1318 0.1339 1.0000 CT 54021 0.0837 0.7031 10 ()12060 0.1545 0.3184 0.1530 0.0719 1.0000 0.0638 **1081** Humblecity TX 0.5983 **1867** VanBurencity 1.0000 0.0210 AR 9 14979 0.6810 1993 rows × 101 columns

Thetarget is "violentPerPop" (number of violent offenders per 100K people)

## **Loading and Preparing the Dataset**

#### We start to prepare the data by identifying all numerical attributes

```
In [4]:
attributes, target = data.columns[3:-1], data.columns[-1]

nf = [a for a in attributes if a != 'race'] + [target]
```

- The only categorical input is "race" (0 = primarily white, 1 = primarily black)
- ...And this is also the attribute that we will use to check for discrimination

#### The we standardize all numeric attributes as usual

```
In [6]: tr_frac = 0.8 # 80% data for training
    tr_sep = int(len(data) * tr_frac)
    tmp = data.iloc[:tr_sep]

sdata = data.copy()
    sdata[nf] = (sdata[nf] - tmp[nf].mean()) / (tmp[nf].std())

sdata[attributes] = sdata[attributes].astype(np.float32)
sdata[target] = sdata[target].astype(np.float32)
```





## **Loading and Preparing the Dataset**

## Finally, we separate the training and test set

```
In [7]: tr = sdata.iloc[:tr_sep]
ts = sdata.iloc[tr_sep:]
tr.describe()
```

#### Out[7]:

|                     | fold        | рор         | race        | pct12-21      | pct12-29      | pct16-24    | pct65up       | pctUrban      | medInc  |
|---------------------|-------------|-------------|-------------|---------------|---------------|-------------|---------------|---------------|---------|
| count               | 1594.000000 | 1594.000000 | 1594.000000 | 1.594000e+03  | 1.594000e+03  | 1594.000000 | 1.594000e+03  | 1.594000e+03  | 1.5940  |
| mean                | 5.515056    | 0.000000    | 0.031995    | -1.196580e-09 | -2.393160e-09 | 0.000000    | -2.393160e-09 | 1.555554e-08  | -3.5897 |
| std                 | 2.912637    | 1.000000    | 0.176042    | 1.000000e+00  | 1.000000e+00  | 1.000000    | 1.000000e+00  | 9.999999e-01  | 1.0000  |
| min                 | 1.000000    | -0.196135   | 0.000000    | -2.175701e+00 | -2.922249e+00 | -1.572079   | -2.139933e+00 | -1.562290e+00 | -1.5451 |
| 25%                 | 3.000000    | -0.177169   | 0.000000    | -4.967758e-01 | -5.304008e-01 | -0.460043   | -6.478973e-01 | -1.562290e+00 | -7.508  |
| 50%                 | 5.000000    | -0.141106   | 0.000000    | -1.909697e-01 | -1.486426e-01 | -0.253682   | -3.945406e-02 | 6.843710e-01  | -2.1368 |
| 75%                 | 8.000000    | -0.045777   | 0.000000    | 2.007248e-01  | 2.358963e-01  | 0.052345    | 5.321295e-01  | 6.843710e-01  | 5.6754  |
| max                 | 10.000000   | 32.775719   | 1.000000    | 8.726096e+00  | 6.657856e+00  | 7.807232    | 8.473559e+00  | 6.843710e-01  | 6.6732  |
| 8 rows × 99 columns |             |             |             |               |               |             |               |               |         |





#### Baseline

#### Let's establish a baseline by tackling the task via Linear Regression

In [8]: nn = util.build\_nn\_model(input\_shape=len(attributes), output\_shape=1, hidden=[], output\_activati
history = util.train\_nn\_model(nn, tr[attributes], tr[target], loss='mse', batch\_size=32, epochs=
util.plot\_training\_history(history, figsize=figsize)

2022-11-28 10:22:32.013117: I tensorflow/core/platform/cpu\_feature\_guard.cc:193] This TensorFl ow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following C PU instructions in performance-critical operations: AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.







Final loss: 0.3252 (training), 0.3655 (validation)

#### **Baseline Evaluation**

#### ...And let's check the results

```
In [9]: tr_pred = nn.predict(tr[attributes], verbose=0)
    r2_tr, mae_tr = r2_score(tr[target], tr_pred), mean_absolute_error(tr[target], tr_pred)
    ts_pred = nn.predict(ts[attributes], verbose=0)
    r2_ts, mae_ts = r2_score(ts[target], ts_pred), mean_absolute_error(ts[target], ts_pred)
    print(f'R2 score: {r2_tr:.2f} (training), {r2_ts:.2f} (test)')
    print(f'MAE: {mae_tr:.2f} (training), {mae_ts:.2f} (test)')

R2 score: 0.67 (training), 0.60 (test)
    MAE: 0.39 (training), 0.46 (test)
```

- They are definitely not <u>PreCrime</u> level, but they are not bad
- Some improvements (not much) can be obtained with a Deeper model

## Linear Regression is an interpretable ML model

- In particular, we can have evaluate the importance of each input attribute
- This can be done in LR by inspecting the weights
- We could try this approach to check for discrimination

Important Attributes in Linear Regression





## Important Attributes in Linear Regression

#### Let's plot the weights by decreasing (absolute) value

- If all attributes are standardized/normalized (so they have similar ranges)
- ...Then the larger the (absolute) weight, the larger the impact

```
In [11]: | lr weights = nn.get weights()[0].ravel()
      util.plot lr weights(lr weights, attributes, figsize=figsize)
       0.1
       0.0
       -0.1
       -0.2
       -0.3
```





## Important Attributes in Linear Regression

#### Let's plot the weights by decreasing (absolute) value

- If all attributes are standardized/normalized (so they have similar ranges)
- ...Then the larger the (absolute) weight, the larger the impact





Infortunately, itthere are many large-ish weights

#### Lasso

#### We can fix this by adding an L1 regularizer to obtain LASSO (Regression)

The regularizer penalizes weight magnitudes via a fixed rate  $\alpha$ , i.e.:

$$f(x, \theta) = \theta^T x + \alpha \|\theta\|_1$$

- Attributes for which the loss reduction does not match the regularization rate...
- ...Will be kept at zero, resulting in a sparse weight vector

# Lasso is available in scikit-learn, and can be implemented in Keras/Tensorflow

We just need to add L1 regularization over the output neuron:



#### Lasso

#### We can train the Lasso model as usual

```
In [12]: nn2 = util.build_nn_model(input_shape=len(attributes), output_shape=1, hidden=[], output_activat
                                     kernel regularizers=[regularizers.l1(l1=1e-2)])
         history = util.train nn model(nn2, tr[attributes], tr[target], loss='mse', batch size=32, epochs
         util.plot training history(history, figsize=figsize)
          2.25
                                                                                                         val loss
          2.00
          1.75
          1.50
          1.25
          1.00
           0.75
          0.50
                                  20
                                                                                                     100
                                                             epochs
          Final loss: 0.3658 (training), 0.3968 (validation)
```





#### **Lasso Evaluation**

#### The results are on par with Linear Regression

```
In [13]: tr_pred2 = nn2.predict(tr[attributes], verbose=0)
    r2_tr2, mae_tr2 = r2_score(tr[target], tr_pred2), mean_absolute_error(tr[target], tr_pred2)
    ts_pred2 = nn2.predict(ts[attributes], verbose=0)
    r2_ts2, mae_ts2 = r2_score(ts[target], ts_pred2), mean_absolute_error(ts[target], ts_pred2)

    print(f'R2 score: {r2_tr2:.2f} (training), {r2_ts2:.2f} (test)')
    print(f'MAE: {mae_tr2:.2f} (training), {mae_ts2:.2f} (test)')

    R2 score: 0.66 (training), 0.61 (test)
    MAE: 0.39 (training), 0.45 (test)
```

- The L1 term actually acts also as a traditional regularizer...
- ...And may therefore help to prevent overfitting





## **Important Attributes in Lasso**

#### The main difference between LR and Lasso is in the weight vector

Lasso weights are sparse, i.e. only a few attributes will have a significant impact







## **Important Attributes in Lasso**

#### Let's zoom in on the 15 most important attributes







## **Important Attributes in Lasso**

#### Let's zoom in on the 15 most important attributes



#### The attribute "race" is nowhere to be seen!

This is looks reassuring for our potential discrimination concerns

...But in fact it is not (and we will proceed to check it)







#### **Fairness Metrics**

#### Measuring fairness is complicated

- As with all things related to metrics, measuring is per-se questionable
- ...But if we want to obtain algorithms, it's a necessary step

#### Several fairness metrics have been proposed

Here we will focus on the idea of disparate treatment

- We will check whether different groups
- ...As defined by the value of a protected attribute ("race" for us)
- Are associated to different predictions





## **Disparate Treatment**

### Our model treats the groups differently

... Even if race is not an important attribute

```
In [17]: protected={'race': (0, 1)}
         util.plot pred by protected(tr, tr pred, protected={'race': (0, 1)}, figsize=figsize)
           -1
           -2
                                                            race=0
                                                                                            race=1
```





## **Disparate Treatment**

### Our model treats the groups differently

... Even if race is not an important attribute



This would happen even if removed the "race" attribute





#### **Discrimination Indexes**

#### Therefore, checking the important attributes is not enough

- We need to measure disparate treatment for the trained model
- ...And as we mentioned there are alternative metrics to do that

#### We will use the one from thi AAAI paper

- lacksquare Given a set of categorical protected attribute (indexes)  $J_p$
- ...The Disparate Impact Discrimination Index (for regression) is given by:

$$DIDI_{r} = \sum_{j \in J_{p}} \sum_{v \in D_{j}} \left| \frac{1}{m} \sum_{i=1}^{m} y_{i} - \frac{1}{|I_{j,v}|} \sum_{i \in I_{j,v}} y_{i} \right|$$

- lacksquare Where  $oldsymbol{D}_j$  is the domain of attribute  $oldsymbol{j}$
- lacksquare ...And  $I_{j,v}$  is the set of example such that attribute j has value v





#### DIDI

## Let's make some intuitive sense of the $\mathrm{DIDI}_r$ formula

$$\sum_{j \in J_p} \sum_{v \in D_j} \left| \frac{1}{m} \sum_{i=1}^m y_i - \frac{1}{|I_{j,v}|} \sum_{i \in I_{j,v}} y_i \right|$$

- $\blacksquare$   $\sum_{i=1}^{m} y_i$  is just the average predicted value
- ...For examples where the protected attribute takes specific values
- $lacksquare \frac{1}{|I_{i.v}|} \sum_{i \in I_{j,v}} y_i$  is the average prediction for a social group

## We penalize the group predictions for deviating from the global average

- Obviously this is not necessarily the best definition, but it is something
- In general, different tasks will call for different discrimination indexes
- ...And don't forget the whole "can we actually measure ethics" issue ;-)

#### DIDI

#### We can compute the DIDI via the following function

```
def DIDI_r(data, pred, protected):
    res, avg = 0, np.mean(pred)
    for aname, dom in protected.items():
        for val in dom:
            mask = (data[aname] == val)
            res += abs(avg - np.mean(pred[mask]))
    return res
```

protected contains the protected attribute names with their domain

#### For our original Linear Regression model, we get

```
In [18]: tr_DIDI = util.DIDI_r(tr, tr_pred, protected)
  ts_DIDI = util.DIDI_r(ts, ts_pred, protected)
  print(f'DIDI: {tr_DIDI:.2f} (training), {ts_DIDI:.2f} (test)')
DIDI: 1.94 (training), 2.13 (test)
```

## Improving the DIDI

#### We will try to improve over this baseline

This is not a trivial task:

- Discrimination arises from a form of bias in the training set
- ...And bias is not necessarily bad

#### In fact, ML works because of bias

I.e. because the training distribution contains information about the test one

- Improving fairness requires to get rid of part of this bias
- ...Which will lead to some loss of accuracy (hopefully not too much)

#### We will see one method to achieve this result



