Correction

Partie I

- 1.a $\mathbb{Z}[i] \subset \mathbb{C}$, $1 = 1 + 0.i \in \mathbb{Z}[i]$ et $\forall u, v \in \mathbb{Z}[i]$, on peut écrire u = a + ib, v = c + id avec $a, b, c, d \in \mathbb{Z}$ On a $u - v = (a - c) + i(b - d) \in \mathbb{Z}[i]$ (car $a - c, b - d \in \mathbb{Z}$), et $uv = (ac - bd) + i(ad + bc) \in \mathbb{Z}[i]$ car $ac - bd, ad + bc \in \mathbb{Z}$.
 - Ainsi $\mathbb{Z}[i]$ est un sous anneau de $(\mathbb{C},+,\times)$.
- 1.b $\forall u, v \in \mathbb{Z}[i], \ N(uv) = uv\overline{uv} = u\overline{u}v\overline{v} = N(u)N(v)$ $\forall u \in \mathbb{Z}[i], \text{ on peut \'ecrire } u = a + ib \text{ avec } a, b \in \mathbb{Z} \text{ donc } N(u) = u\overline{u} = a^2 + b^2 \in \mathbb{N}.$
- $\begin{array}{ll} \text{1.c} & \text{Supposons} \ \ u \in \mathbb{Z}\big[i\big] \ \ \text{inversible et introduisons} \ \ v \in \mathbb{Z}\big[i\big] \ \ \text{tel que} \ \ uv=1 \ . \\ & \text{On a} \ \ N(uv) = N(1) = 1 \ \ \text{et} \ \ N(uv) = N(u)N(v) \ \ \text{donc} \ \ N(u)N(v) = 1 \ \ \text{avec} \ \ N(u), N(v) \in \mathbb{N} \ . \\ \end{aligned}$

On peut écrire u = a + ib avec $a, b \in \mathbb{Z}$.

Par suite N(u) = N(v) = 1.

 $N(u) = a^2 + b^2 = 1$ donne (a,b) = (1,0), (-1,0), (0,1) ou (0,-1) donc $u = \pm 1$ ou $u = \pm i$.

Inversement, ses éléments sont inversibles car $1 \times 1 = 1$, $(-1) \times (-1) = 1$, $i \times (-i) = 1$ et $(-i) \times i = 1$. $U = \{1, i, -1, -i\}$.

- 2.a Si $u \mid v$ et $v \mid w$ alors il existe $s,t \in \mathbb{Z}[i]$ tel que v=su et w=tv. On a alors w=(st)u avec $st \in \mathbb{Z}[i]$ et par suite $u \mid w$.
- 2.b Si $u\,|\,v$ et $v\,|\,u$ alors il existe $s,t\in\mathbb{Z}\big[i\big]$ tel que v=su et u=tv . Par suite u=(ts)u .

Si $u \neq 0$, on obtient ts = 1 donc t est inversible et alors $t = \pm 1$ ou $t = \pm i$.

Par suite $u = \pm v$ ou $u = \pm iv$.

Si u = 0 alors v = su = u et donc u = v.

- 2.c Si $u \mid v$ alors il existe $s \in \mathbb{Z}[i]$ tel que v = su. On a alors N(v) = N(su) = N(s)N(u) avec $N(s) \in \mathbb{N}$ donc $N(u) \mid N(v)$.
- 2.d N(1+i) = 2 et $Div(2) \cap \mathbb{N} = \{1,2\}$.

Si u divise 1+i alors N(u)=1 ou N(u)=2.

Si N(u) = 1 alors $u = \pm 1$ ou $u = \pm i$.

Si N(u) = 2 alors u = 1 + i, 1 - i, -1 + i ou -1 - i.

Inversement, les nombres proposés sont diviseurs de 1+i.

N(1+3i) = 10 et $Div(10) \cap \mathbb{N} = \{1, 2, 5, 10\}$.

- Si N(u) = 1 alors $u = \pm 1$ ou $u = \pm i$.
- Si N(u) = 2 alors u = 1 + i, 1 i, -1 + i ou -1 i.
- Si N(u) = 5 alors u = 1 + 2i, 1 2i, -2 + i ou -2 i.
- Si N(u) = 10 alors u = 1 + 3i, 1 3i, -3 + i ou -3 i.

Inversement, les nombres proposés sont diviseurs de 1+3i.

3.a Soit a et b les entiers respectivement les plus proches de Re(z) et Im(z).

Pour
$$u = a + ib \in \mathbb{Z}[i]$$
, on a $N(u - v) = (a - \text{Re}(z))^2 + (b - \text{Im } z)^2 \le \frac{1}{4} + \frac{1}{4} \le \frac{1}{2} < 1$.

Il n'y a pas unicité de u. Par exemple, pour $z = \frac{1+i}{2}$, les quatre complexes 0,1,i et 1+i conviennent.

3.b Soit $q \in \mathbb{Z}[i]$ tel que $N\left(q-\frac{u}{v}\right) < 1$ et $r = u - vq \in \mathbb{Z}[i]$. On a u = vq + r et $N(r) = N(u - vq) = N(v)N\left(\frac{u}{v} - q\right) < N(v)$ (sachant N(v) > 0).

Partie II

- $1. \qquad \delta.\mathbb{Z}[i] \subset \mathbb{Z}[i]. \ 0 = \delta.0 \in \delta.\mathbb{Z}[i] \ . \ \forall x,y \in \delta.\mathbb{Z}[i] \ , \ \text{on peut \'ecrire} \ \ x = \delta.u \ \ \text{et} \ \ y = \delta.v \ \ \text{avec} \ \ u,v \in \mathbb{Z}[i] \ .$ On a $x y = \delta.(u v) \in \delta.\mathbb{Z}[i] \ \text{car} \ \ u v \in \mathbb{Z}[i] \ .$ Ainsi $\delta.\mathbb{Z}[i] \ \text{est un sous groupe de} \ (\mathbb{Z}[i],+) \ .$
- 2.a $u = u.1 + v.0 \in I(u, v)$ et $v = u.0 + v.1 \in I(u, v)$.
- 2.b $A = \{N(w)/w \in I(u,v) \setminus \{0\}\}$ est une partie de \mathbb{Z} , minorée par 1 et non vide car N(u) ou N(v) appartient à cet ensemble (selon que $u \neq 0$ ou $v \neq 0$). Par suite A possède un plus petit élément d > 0.
- $2.c \qquad \delta \in I(u,v) \ \, \text{donc on peut \'ecrire} \ \, \delta = u\xi + v\xi' \ \, \text{avec} \ \, \xi,\xi' \in \mathbb{Z}[i] \, .$ $\forall x \in \delta.\mathbb{Z}[i] \, , \text{ on peut \'ecrire} \ \, x = \delta y \ \, \text{avec} \ \, y \in \mathbb{Z}[i] \, .$ On a alors $x = u(\delta \xi) + v(\delta \xi') \in I(u,v)$. Ainsi $\delta.\mathbb{Z}[i] \subset I(u,v)$. Inversement, soit $x \in I(u,v)$. On peut \'ecrire x = uz + vz' avec $z,z' \in \mathbb{Z}[i]$ Réalisons la division euclidienne de x par $\delta : x = \delta q + r$ avec $N(r) < N(\delta)$. Or $r = x \delta q = u(z \xi q) + v(z' \xi' q) \in I(u,v)$ donc si $r \neq 0$, on a $N(r) \in A$. Ceci contredit la définition de $d = \min A$ car $N(r) < N(\delta) = d$. Nécessairement r = 0 et par suite $x \in \delta.\mathbb{Z}[i]$.
- 3.a $I(u,v) = \delta.\mathbb{Z}[i] = \mathbb{Z}[i]$ car $\delta \in \{\pm 1, \pm i\}$. Or $1 \in \mathbb{Z}[i]$ donc $1 \in I(u,v)$ et par suite $\exists z, z' \in \mathbb{Z}[i]$ tels que 1 = uz + vz'.
- 3.b Supposons $u \mid vw$. On a $w = w \times 1 = uwz + vwz'$, or $u \mid uwz$ et $u \mid vwz'$ donc sans difficultés $u \mid w$.
- 4.a Posons δ un pgcd de u et v. δ est un diviseur de l'élément irréductible u. Si $\delta=\pm u$ ou $\delta=\pm iu$ alors, puisque $\delta\,|\,v$, $u\,|\,v$. Ceci est exclu. Il reste $\delta=\pm 1$ ou $\delta=\pm i$ et donc u et v sont premiers entre eux.
- 4.b Si u divise v: ok Sinon, u est premier avec v et donc puisque $u \mid vw$ on a $u \mid w$ en vertu de II.3b.

Partie III

- 1.a Si $n \in \Sigma$ alors on peut écrire $n = a^2 + b^2$ avec $a,b \in \mathbb{Z}$ et alors n = N(u) avec $u = a + ib \in \mathbb{Z}[i]$. Inversement, si n = N(u) avec $u \in \mathbb{Z}[i]$, alors on peut écrire u = a + ib avec $a,b \in \mathbb{Z}$ et on a $N(u) = a^2 + b^2 \in \Sigma$.
- 1.b Si $n, n' \in \Sigma$ alors on peut écrire n = N(u) et n' = N(v) avec $u, v \in \mathbb{Z}[i]$. On a alors nn' = N(u)N(v) = N(uv) avec $uv \in \mathbb{Z}[i]$ donc $nn' \in \Sigma$.
- 2.a Puisque p est premier et strictement supérieur à 2, il n'est pas divisible par 2.
 Par suite p ≡ 1 ou p ≡ 3 modulo 4.
 Puisque p ∈ ∑, on peut écrire p = a² + b² avec a, b ∈ Z.
 Or les seuls valeurs possibles de a² modulo 4 sont 0 ou 1 donc p = 0, 1 ou 2 modulo 4.
 Compte tenu de ce qui précède, il reste p = 1 modulo 4.

- 2.b Si p n'est par irréductible alors on peut écrire p=uv avec $u,v\in\mathbb{Z}\big[i\big]\setminus\big\{\pm 1,\pm i\big\}$. On a alors $p^2=N(p)=N(u)N(v)$. Puisque $N(u)\neq 1$, $N(v)\neq 1$ et p premier, on a N(u)=N(v)=p et donc $p\in\Sigma$.
- 3.a Puisque $p \equiv 3 \mod 4$, p n'appartient pas à Σ (via III.2a) et donc p est irréductible (via III.2b) On a $p \mid a^2 + b^2 = (a+ib)(a-ib)$ or p est irréductible donc $p \mid (a+ib)$ ou $p \mid (a-ib)$. Or il est clair que $p \mid z \Rightarrow p \mid \overline{z}$, donc $p \mid (a+ib)$ et $p \mid (a-ib)$.
- 3.b Suite a ce qui précède $p^2 \mid (a+ib)(a-ib) = n$. Cette dernière divisibilité a lieu a priori dans $\mathbb{Z}[i]$, mais puisque n/p^2 est le rapport de deux entiers, sera un entier et donc la divisibilité a lieu dans \mathbb{Z} .
- 4. Soit $n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_N^{\alpha_N}$ de la forme proposée. $\forall 1\leq i\leq N$: Si $p_i=2$ ou $p_i\equiv 1$ modulo 4 alors $p_i\in \Sigma$ (car $2=1^2+1^2$ et par la réciproque admise en III.2a) Par suite $p_i^{\alpha_i}\in \Sigma$ car Σ est stable par produit (III.1.b)

Si $p_i \equiv 3 \mod 4$ alors $\alpha_i = 2\beta_i$ et $p_i^{\alpha_i} = p_i^{2\beta_i} = (p_i^2)^{\beta_i} \in \Sigma$ car $p_i^2 = p_i^2 + 0^2 \in \Sigma$.

Puisque tous les $\ p_1^{\alpha_1},\ldots,p_N^{\alpha_N}$ appartiennent à $\ \Sigma$, $\ n=p_1^{\alpha_1}p_2^{\alpha_2}\ldots p_N^{\alpha_N}$ appartient à $\ \Sigma$.

Inversement : Soit $n \in \Sigma \cap \mathbb{N}^*$. Si n = 1, n est de la forme voulue.

Si $n \geq 2$, introduisons sa décomposition primaire $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_N^{\alpha_N}$.

Pour tout $1 \le i \le N$ tel que $p_i \equiv 3$ modulo 4.

Si $\alpha_i = 0$ alors α_i est pair.

Si $\alpha_i > 0$ alors $p_i \mid n$. Ecrivons $n = a^2 + b^2$ avec $a, b \in \mathbb{Z}$.

Comme vu en III.3a, on a $p_i \mid (a+ib)$ ce qui permet d'écrire $a+ib=p_i(c+id)$.

On a alors $n = p_i^2(c^2 + d^2) = p_i^2 n'$ avec $n' = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_i^{\alpha_i - 2} \dots p_N^{\alpha_N} \in \Sigma$.

On peut alors reprendre la démarche avec n' et, champagne !, α_i est pair.