Vakil: Some Category Theory

February 2024

February 12, 2024

Contents

1	Cat	segories and Functors	2
	1.1	Definition of a Category	2
	1.2	Examples	2
	1.3	Functors	3

1 Categories and Functors

1.1 Definition of a Category

A **cagetory** \mathscr{C} is a collection of **objects** and a collection of **morphisms** between pairs of objects. Morphisms are written $f: A \to B$, where A is the **source** of f and B is the **target** of f. A category must further contain a product $\operatorname{Mor}(A,B) \times \operatorname{Mor}(B,C) \to \operatorname{Mor}(A,C)$; if $f \in \operatorname{Mor}(A,B)$ and $g \in \operatorname{Mor}(B,C)$, their composition is denoted $g \circ f \in \operatorname{Mor}(A,C)$. The following properties must also be satisfied:

- 1. Composition of morphisms is associative: $(f \circ g) \circ h = f \circ (g \circ h)$.
- 2. Identity morphisms must exist: If $f: A \to B$, then we must have $\mathrm{id}_B \circ f = f$ and $f \circ \mathrm{id}_A = f$.

Morphisms form a monoid under composition; the identity morphisms are thus unique. The usual types of morphisms have definitions in categories, too:

- 1. A morphism $f: A \to B$ is an **isomorphism** if there exists a morphism $g: B \to A$ such that $g \circ f = \mathrm{id}_A$ and $f \circ g = \mathrm{id}_B$.
- 2. A morphism $f: A \to A$ is an **epimorphism**.
- 3. An isomorphic epimorphism is an automorphism.

We do not impose that the classes of objects and morphisms form sets — for instance, consider the cateogry **Set** of all sets under set mappings. Its objects do not form a set, or else both Cantor's and Russel's paradoxes arise. In general, we will avoid foundational issues by neglecting to perform set theory on classes.

1.2 Examples

Let A be an object in a category \mathscr{C} . The **automorphism group** $\operatorname{Aut}(A)$ of A is the group of all invertible elements of $f \in \operatorname{Mor}(A, A)$. If two objects A and B are isomorphic, then there exists a group isomorphism $\operatorname{Aut}(A) \cong \operatorname{Aut}(B)$.

Two particularly critical examples of categories are \mathbf{Ab} and \mathbf{Mod}_R — the categories of Abelian groups and modules over a (commutative) ring R. These two categories constitute the chief examples of an Abelian category. It is clear that $\mathbf{Mod}_k = \mathbf{Vec}_k$ (the category of vector spaces) when k is a field, and $\mathbf{Mod}_{\mathbb{Z}} = \mathbf{Ab}$.

Familiar categories are **Grp** and **Ring**, groups and rings with homomorphisms, and **Top**, topological spaces with continuous maps.

Recall that a partially ordered set (S, \geq) is a set S endowed with a relation \geq such that

- 1. Reflexivity: $x \ge x$ for all $x \in S$.
- 2. **Antisymmetry**: If $x \ge y$ and $y \ge x$, then x = y.
- 3. Transitivity: If $x \ge y$ and $y \ge z$, then $x \ge z$.

We can describe S as a category — one where objects are the elements of S and where a single morphism $f: x \to y$ exists if and only if $y \ge x$. The reflexivity of \ge ensures the existence of identity mappings, while transitivity ensures composition of morphisms is associative. As an example, here is a partially ordered set with four elements:

in which $x \geq y \geq z$ and $x \geq w \geq z$. A totally ordered set would look like this:

$$\cdots \longrightarrow z \longrightarrow y \longrightarrow x \longrightarrow \cdots$$

in which $x \ge y \ge z$. If X is a set, then the subsets of X are partially ordered by inclusion — thus such a category may be constructed. Most notably, one can construct a category modeling the open sets of a topological space by inclusion.

A **subcategory** \mathscr{A} of a category \mathscr{B} is a category whose objects lie in \mathscr{B} and whose morphisms include the identities of its objects and are closed under composition. For instance, the category $A \to B$ (with identity morphisms ommitted) is a subcategory of $A \to B \to C$. There is also the **inclusion functor** defined as the embedding $i : \mathscr{A} \to \mathscr{B}$.

1.3 Functors

Let \mathscr{A} and \mathscr{B} be categories. A **covariant functor** $\mathcal{F}: \mathscr{A} \to \mathscr{B}$ is a map $\mathcal{F}: \mathrm{obj}(A) \to \mathrm{obj}(B)$ that "preserves morphisms" in the following sense: for all morphisms $f_1: A_1 \to A_2$ and $f_2: A_2 \to A_3$,

- 1. There exists a morphism $\mathcal{F}(f_1):\mathcal{F}(A)\to\mathcal{F}(B)$ in \mathscr{B} .
- 2. \mathcal{F} maps identities in \mathscr{A} to identities: $\mathcal{F}(\mathrm{id}_A) = \mathrm{id}_{\mathcal{F}(A)}$.
- 3. \mathcal{F} preserves morphism structure: $\mathcal{F}(f_2 \circ f_1) = \mathcal{F}(f_2) \circ \mathcal{F}(f_1)$.

An obvious example of a functor is the **identity functor** id : $\mathcal{A} \to \mathcal{A}$. Some more examples:

- 1. A **forgetful functor** is a functor that loses additional structure of the source category. One example is the functor $\mathbf{Vec}_k \to \mathbf{Set}$ that maps each vector space to its underlying set; another is the mapping $\mathbf{Mod}_R \to \mathbf{Ab}$ by isolating each module's additive structure.
- 2. Let X be a topological space, and select $x_0 \in X$ arbitrarily. The fundamental group functor ϕ_1 maps the topological space X to the group $\phi_1(X, x_0)$, and the i-th homology functor $\mathbf{Top} \to \mathbf{Ab}$ sends all topological spaces X to their i-th homology group $H_i(X, \mathbb{Z})$.
- 3. Suppose A is an object in a category \mathscr{C} . There is a functor $h^A: \mathcal{C} \to \mathbf{Set}$ that sends each object $B \in \mathscr{C}$ to $\mathrm{Mor}(A,B)$ and each morphism $f: B_1 \to B_2$ to $\mathrm{Mor}(A,B_1) \to \mathrm{Mor}(A,B_2)$ described by

$$[g:A\to B_1] \mapsto [f\circ g:A\to B_1\to B_2].$$

This little guy ends up becoming surprisingly important.

The **composition** of functors $\mathcal{F}: \mathcal{A} \to \mathcal{B}$ and $\mathcal{G}: \mathcal{B} \to \mathcal{C}$ is denoted $\mathcal{G} \circ \mathcal{F}: \mathcal{A} \to \mathcal{C}$, and is defined in the obvious way. Composition of functors is associative in an evident sense. The following terms describe the extent to which a covariant functor $\mathcal{F}: \mathcal{A} \to \mathcal{B}$ respects the morphisms of \mathcal{B} :

- 1. \mathcal{F} is **faithful** if the mapping $\operatorname{Mor}_{\mathscr{A}}(A_1, A_2) \to \operatorname{Mor}_{\mathscr{B}}(\mathcal{F}(A_1), \mathcal{F}(A_2))$ is injective.
- 2. \mathcal{F} is **full** if the mapping $\operatorname{Mor}_{\mathscr{A}}(A_1, A_2) \to \operatorname{Mor}_{\mathscr{B}}(\mathcal{F}(A_1), \mathcal{F}(A_2))$ is surjective.
- 3. \mathcal{F} is **fully faithful** if the mapping $\operatorname{Mor}_{\mathscr{A}}(A_1, A_2) \to \operatorname{Mor}_{\mathscr{B}}(\mathcal{F}(A_1), \mathcal{F}(A_2))$ is bijective.

Let $i: \mathscr{A} \to \mathscr{B}$ be a subcategory. Since inclusions are always faithful, we need not use the phrase "faithful subcategory". \mathscr{A} is a **full subcategory** if i is full. For instance, the category of finitely-generated R modules is a full subcategory of \mathbf{Mod}_R ; the mapping $\mathbf{Vec}_k \to \mathbf{Set}$ is faithful but not full.

A contravariant functor $\mathcal{F}: \mathcal{A} \to \mathcal{B}$ is defined equivalently to covariant functors, except morphisms are reversed; a morphism $f: A_1 \to A_2$ induces a morphism $\mathcal{F}(f): \mathcal{F}(A_2) \to \mathcal{F}(A_1)$. The composition law is also reversed: $\mathcal{F}(f_2 \circ f_1) = \mathcal{F}(f_1) \circ \mathcal{F}(f_2)$.

For a category \mathscr{A} , the **opposite category** \mathscr{A}^{opp} of A is the category formed by reversing the arrows of \mathscr{A} . Hence contravariant functors $\mathcal{F}: \mathscr{A}to\mathscr{B}$ are equivalent to covariant functors $\mathcal{F}: \mathscr{A}^{\text{opp}} \to \mathscr{B}$.

For examples: there is a contravariant functor $\mathbf{Top} \to \mathbf{Ring}$ mapping a topological space X to the ring of real-valued functions on X. A morphism of topological spaces $X \to Y$ induces the pullback map from functions on Y to functions on X. In fact the i-th cohomology functor $\mathcal{H}_i(\cdot, \mathbb{Z}) : \mathbf{Top} \to \mathbf{Ab}$ is a contravariant functor.

In the category \mathbf{Vec}_k , taking duals gives the contravariant functor $(\cdot)^{\vee}: \mathbf{Vec}_k \to \mathbf{Vec}_k$. It induces upon each linear transformation $\mathbf{T}: V \to W$ a dual transformation $\mathbf{T}^{\vee}: W^{\vee} \to V^{\vee}$, with $(g \circ f)^{\vee} = f^{\vee} \circ g^{\vee}$.

A critical example is the **functor of points**: suppose A is an object of \mathscr{C} . There is a contravariant functor $h_A : \mathscr{C} \to \mathbf{Set}$ sending each $B \in \mathscr{C}$ to $\mathrm{Mor}(B,A)$, and sending the morphism $f : B_1 \to B_2$ to the morphism $\mathrm{Mor}(B_2,A) \to \mathrm{Mor}(B_1,A)$ via

$$[g:B_2 \to A] \quad \mapsto \quad [g \circ f:B_1 \to B_2 \to A].$$

This looks quite weird, but the examples from linear algebra and the functor $\mathbf{Top} \to \mathbf{Ring}$ are merely special cases of the functor of points. A more natural name would be the "functor of maps", but alas — it is too late to change it.