Barramento USB

Grupo: Caroline Silva Isabela Santos Luan Reis Thiago Machado Histórico

Histórico

- Antigamente para instalar periféricos era necessário abrir a máquina.
- Surgiu então o Pnp(Plug and Play ou ligar e usar) mas tinha falhas.
- Enfim foi criado em 1994, o USB um padrão que facilitasse a conexão de dispositivos ao computador.

→ Versões:

USB 0.7: novembro de 1994;

USB 0.8: dezembro de 1994;

USB 0.9: abril de 1995;

USB 0.99: agosto de 1995;

USB 1.0: janeiro de 1996;

USB 1.1: setembro de 1998;

USB 2.0: abril de 2000;

USB 3.0: novembro de 2008;

USB 3.1: agosto de 2013.

Mais utilizados

USB 1.1

- A primeira versão do USB que se tornou padrão;
- Velocidade de transmissão de dados não é muito alta;
- Na época a velocidade satisfazia, mas com o tempo a necessidade de taxas de transferências ficaram maiores.

USB 2.0

- Velocidades de até 480 Mb/s;
- Caso não consiga, irá trabalhar com 12 Mb/s, ou ainda com 1,5 Mb/s;
- Fabricantes puderam
 adotar o padrão em seus
 produtos sem a
 obrigatoriedade de pagar
 licenças de uso da
 tecnologia.

USB 3.0 e 3.1

- O USB 3.1 é duas vezes mais rápidos que o 3.0;
- Transmissão bidirecional de dados;
- Maior velocidade;
- Alimentação elétrica mais potente;
- Retrocompatibilidade.

USB-A

• É o tipo mais comum e mais utilizado em pendrives.

USB-B

Tipo que pode ser encontrado em dispositivos de porte maior, como impressoras e scanners.

USB-C

É o padrão mais recente, compacto e reversível, ou seja, pode ser encaixado de qualquer lado.

USB Mini

 Utilizado em dispositivos de porte pequeno por ter tamanho reduzido, como câmeras digitais compactas e MP3-players.

USB Micro-A

 Formato mais novo, menor que o Mini-USB, voltado a dispositivos de espessura fina, como em smartphones e tablets.

USB Micro-B

Semelhante ao formato Micro-A, no entanto, seu encaixe é ligeiramente diferente e é mais comum.

Características

Características

Sincronização

- Síncrono
- Tem seu funcionamento controlado por um sinal de relógio gerado por um oscilador.

Frequência de Operação

• 150 Mhz

Taxa de Transferência

Para cada versão do USB existe uma taxa de transferência:

- USB 1.0 = 1,5 Mbit/s à 12Mbit/s
- USB 1.1 = 1,5 Mbit/s à 12Mbit/s
- USB 2.0 = 480 Mbit/s
- USB 3.0 = 5Gbit/s
- USB 3.1 = 10Gbit/s

Características Gerais

- Facilidade de uso para o usuário final
- Um único modelo para o cabeamento e conectores
- Periféricos auto identificáveis, com configuração e seleção de driver automáticas
- Grande variedade de aplicações
- Suporta até 127 dispositivos físicos
- Suporta dispositivos compostos (que possuem diversas funções)
- Dispositivos entram no modo de economia após 3ms de inatividade no barramento
- Flexibilidade
- · Variedade de tamanhos de pacotes
- Permite variação nas taxas de dados dos periféricos
- O protocolo implementa controle de fluxo
- Tratamento e recuperação de erros incluídos no protocolo
- · Adição e remoção de dispositivos percebidos pelo usuário como sendo em tempo real

Arquitetura

Arquitetura

- Arquitetura de tipo série.
- No entanto, é um interface de entrada/saída muito mais rápida do que as portas série padrão.
- A arquitetura de série foi utilizada para este tipo por duas razões principais:
 - oferece ao usuário velocidade muito mais elevada do que a interface paralela, já que não suporta frequências muito altas
 - os cabos série são bem mais baratos que os cabos paralelos.

Processo de Transferência de Dados

Processo de Transferência de Dados

Início:

- O Controlador Host envia um pacote (Token Packet) descrevendo:
- O tipo e a direção da transmissão;
- O endereço do dispositivo USB;
- O referido número de endpoint.

Realização da transmissão:

- O dispositivo USB decodifica o campo de endereço, reconhecendo que o pacote lhe é referente.
- A fonte da transmissão envia um pacote de dados (Data Packet) ou indica que não há dados a transferir.
- O destino responde com um pacote de Handshake (Handshake Packet) indicando se a transferência obteve sucesso.

Processo de Transferência de Dados

Isócrono

- Transmissão contínua:
 - Transferência de dados em tempo real;
 - Praticamente sem interrupções;
- Não há detecção/correção de erros para evitar atrasos;
- Exemplo: Auto-falante.

Bulk

- Recebe grandes blocos de dados;
- Há detecção e correção de erros;
- Exemplo: Impressoras e scanners.

Processo de Transferência de Dados

Interrupção

- Transferência de dados relativamente pequena;
- Exemplo: teclados, mouses e joysticks.

Controle

- Transmissão/verificação de parâmetros de controle e configuração de dispositivos;
- Exemplo: Host.

Modelo de Arbitração

Modelo de Arbitração

- Arbitragem descentralizada: não usa árbitro para controlar o acesso ao barramento
- Quando um dispositivo precisar usar o barramento, ele deve ativar a linha de requisição
- Todos os dispositivos monitoram todas as linhas de requisição, portanto ao final de um ciclo do barramento, cada dispositivo sabe se foi ou não dele a requisição de maior prioridade e, consequentemente, se ele pode ou não usar o barramento do próximo ciclo.