Programming with Big Data

Tim Savage

June 22, 2017

New York City

De-Mystifying the Un-Mystical

Like a hammer and nails, these are just tools

My Background

- I started in the pre-digital age using small, administrative data.
- NLSY79: 3,000 young men tracked annually for about 20 years.
- Complicated algorithm to examine whether early adverse labor market outcomes affected their "lives".
- The data was cheap, but the computation was very expensive.

Programming Languages

- Fortran
- SAS/Stata
- R
- Python
- Julia (in order to use a single, open-source forecasting tool from the Federal Reserve)

Core Takeaways

- 1. If it can be **digitized**, it can be analyzed. And now **everything** is digitized.
- 2. The incremental cost of store has been **effectively zero** for a decade, so everything has been stored. Does this have any **business intelligence value**?
- 3. The open source computing community **defeated** Gresham's "law". Without open source, there would be **no big data** analytics.
- 4. There is a reason **Google** won the search engines wars: MapReduce and Hadoop. **Apache Spark** has brought clustered computing to the masses.

What is Big Data?

- "Big Data" is data whose scale, distribution, diversity, and/or timeliness requires the use of new computing architectures and analytical tools that did not exist 10 years ago.
- Organizations are beginning to derive benefit from analyzing ever larger and more complex data sets in real time.

Key Characteristics

- **Volume**, which has increased nearly 44 times since 2009.
 - Awash in the digital exhaust of human activity.
- Variety of different data structures to mine and analyze.
 - Structured, semi-structured, and unstructured.
 - Processing complexity because of changing data structures.
- Veracity and integrity.

Business Drivers (Good and Bad)

- Identifying potential risks from customer churn or fraud.
- Predicting new opportunities or ventures.
- Complying with regulation (and the battle with open source).
- Optimizing operations for profitability and efficiency.
 - First degree price discrimination and the elimination of consumer surplus.

Big Data = Big Challenges

- Valuable data is hard to reach and properly leverage.
- It sits in fragmented "puddles" without a proper data "lake".
- Predictive analytics are the last step in the value chain.
 - Such data is often proprietary, which complicates its use.
- A large share remains data preprocessing.

Big Data Analytics Lifecycle

- 1. Preparing: Is there enough good data to be potentially useful.
- 2. Planning: There are many ML models to choose from. Which one(s) to use?
- **3. Building**: Is the model robust? How well does it predict out of sample?
- **4. Operationalizing**: Scale the model(s) for deployment using the ideas discussed in this presentation.

Common Big Data Challenges

Volume and Velocity (Veracity)

Volume

- Too much data to process conventionally.
- Reduce processing time by using distributed and parallel computing.
 - Performing OCR on thousands of articles simultaneously.
- Too big to fit into memory when no clustered resources available.
 - Given 30GB of NYC taxi data, how would one calculate the average or median fare?

Velocity

- Massive data arrives in real time, as in high frequency trading or detailed transactional data.
- Cannot be stored or processed in real time without expensive computational operations.
 - What's expensive?

How Do We Deal With This?

Henry Ford's Assembly Line

- 100 year-old invention that revolutionized manufacturing.
- Took an older concept and improved it using moving platforms on a conveyor system.
- Exactly the conceptual framework you should consider for the remainder of this talk.

Common Big Data Challenges

Volume and Velocity

The Volume Problem: Parallelization

- Utilize parallel computing architectures, such as multiple cores, multiple processors or clusters of machines.
 - Multiple cores for video processing.
 - Multiple processors for web servers and video games.
 - Multiple clusters for simulation and Bayesian inference. (What I do.)

Task Parallelism

- Distributing tasks to run simultaneously, achieving efficiency if the number of tasks is large.
 - Data cleaning.
 - Running linear regression or algorithms that can be distributed, such as decision trees/random forests.
- The assembly line:
 - A bunch of boxes at FedEx need both shipping labels and barcode scanning. One worker can stamp the shipping labels, while the other scans the boxes.

Pipeline Parallelism

- Explicitly allocating resources for each phase of the data processing pipeline, achieving efficiency when the number of phases is large.
- Processes must communicate throughout the pipeline, so it is a combination of both the task and the streaming.
- The assembly line:
 - Pass the boxes by the stamper and then by the scanner.

Data Parallelism

 Distributing data to different processors that run simultaneously, achieving efficiency based on the number of processor nodes.

The assembly line:

- Leave all boxes on the ground, where each worker can both stamp and scan a single box.
- Get more workers.

The Velocity Problem: Scaling

- Scale up by making the process scalable on a single computer.
 - Reduce the amount of data processed or the resources needed to perform the processing.
 - Increase the computing resources using parallel processing and faster memory and/or storage.
 - Improve the efficiency and/or performance of the process by, for example, better coding.
- Scale out by adding more computing resources through the networking of multiple computers.

Too Much Data

- Scale up with "streaming".
- An active area of research among "computing scientists."
- Started in the 1970's, but now very popular because of its successful application to massive data processing.
- Big data world adopts the stream processing model.
 - Process data as soon as it arrives.
 - Continuous and incremental processing.

Streaming Computation

- Given a data series of n elements, [a₁, a₂, ..., a_n], that can only be examined in a limited number of passes, typically one.
- Compute a function of the stream, such as an average, a median, or a histogram.
- Primary constraints:
 - Limited working memory of size m (m << n).
 - Elements are accessed sequentially.

Handling Data Streams

- There are many flavors of the streaming model:
 - Time series: price data in high frequency trading.
 - Cash register: storing incremental counts and totals.
 - Turnstile: arrival-departure summarization.
 - Sliding window: keeping a continuous but fixed subset of the input.
- There are many classes of techniques to process data elements:
 - Sampling: data input reduction.
 - Sketching: data aggregation.
 - Counting: data compression.

Picturing the Sliding Window

Example: Detecting Omission

- There are 11 football players, numbered 1 to 11, walking from the locker room to the field.
- Only 10 arrive: 8, 2, 6, 1, 10, 3, 5, 11, 9, and 7.
- How to determine the missing number in the "stream" of players?
- Given the constraints:
 - We can only look at <u>one</u> number at a time.
 - We can only store <u>one</u> number in our head.

What Is Omitted?

- It is 4. How?
- The sum of all numbers is fixed.
 - -(1+11)*11/2=66.
- Record only the sum of the numbers as we scan through the stream of players.
 - 8, 10, 16, 17, 27, 30, 35, 46, 55, and 62.
- Our missing number is 66 62 = 4.
- Simple example that highlights many important ideas about processing constraints and exploiting "lazy" knowledge.

Sampling

- Motivation: small random sample of the data can be a good representation. (Hal Varian)
- Action: sample the data based on a probability model, which is a challenge for data streams of unknown size.
- Useful for showing patterns but not at detection deviations from central tendencies.

Sketching

- Motivation: only certain pieces of the data are needed for computation.
- Action: project data into a "sketch" space, progressively building the function of stream.
- Useful for aggregation, but the sketch vector could be very large.

Sketching Examples

- Computing a streaming average by sketching the (sum, count) pair.
 - For each element, add the incremental value to the sum and increase the count.
 - $-[2] \rightarrow (sum + 2, count + 1)$
- Computing a streaming histogram by sketching the count per category.
 - For each element, add to the count of its category.
 - Lions, tigers, and bears.

For Streaming, Use Approximation

- We need to speed up the computation.
 - Brute force approach often takes a too much processing time.
 - As a result, we sacrifice accuracy or granularity for efficiency.
- Common approaches:
 - Memoization for repeated queries or computation.
 - Indexing for quickly retrieving a small subset of data.
 - Data cubes for computing aggregation.

Example: Calculating a Median

- A median is the middle mark and can differ wildly from an average, but tends to be stable.
 Example: median income of your customer.
 - Well-studied problem in streaming algorithms.
 - Lots of methods to approximate the median value within tolerable error bounds.
 - But computationally expensive, needing multiple passes through the data.
- Most of these methods rely on assuming that data are continuous and of large range (such as income).

Example: Calculating a Median

- Build a histogram of values based on bucketed ranges.
- Select the 50th percentile bucket.
- Choose the first bucket that passes the that mark.
- In this case, \$210,000.

Streaming and Big Data Queries

- Exact answers are **not required** for real-time decision making, and results can be precomputed.
- This can be done in a streaming fashion (as the data arrives).
 - Yields more accurate answers than sampling.
 - Storage is not expensive.
- This approach is used at Google, Twitter, and Facebook.

MapReduce Hadoop

Translation: Divide and Conquer

Why the MapReduce Paradigm?

- Big data is too large to handle using conventional means.
- Sooner or later, there are energy limits on scaling up a given machine.
- But we can add more machines by scaling out.
- MapReduce paradigm allows us to scale out.
 - Issue is: what's going to herd all these cats?
 - Google's paradigm won them the search-engine wars (and big bucks).

What is MapReduce?

- A programming paradigm for big data processing.
 - Data is split into distributed chunks.
 - Transformations are performed on the chunks, running in parallel.
- MapReduce is scalable by adding more machines to process distributed chunks.
- It is the foundation for "Hadoop", which is a specific implementation of MapReduce.

Map(and)Reduce

- A programming paradigm that processes data in two phases/operations: map() and then reduce().
- In a nutshell, that is all there is:
 - User provides a data collection of separable records.
 - User applies a map function to each data record, such as a count.
 - User reduces the mapped output with another user-defined function, if needed.

Python Example

Simulation Example: A Circle Within a Square

Area of a circle = πr^2

Area of a square = height * length

A circle with radius one fits inside a square whose height and length are two. This implies the ratio of the areas is $\pi/4$. Therefore, we could simulate the value of π , which is an irrational number.

I ran this simulation on CUSP's cluster. Let me show you.

```
In [ ]: # The ratio of the unit circle to the unit square is pi/4.
    # MC simulation of the value of pi using two independent draws from uniform.
    from future import print function
    import os
    os.environ['MPLCONFIGDIR'] = '/tmp'
    from pyspark import SparkContext, SparkConf
    from numpy import random, pi
    sc = SparkContext(appName="pipy", environment={'MPLCONFIGDIR' : '/tmp'})
    nSamples = 1000000000
    def sample(n):
        x, y = random.uniform(), random.uniform()
        return 1 if x * x + y * y < 1 else 0
    # This parallelizes an RDD of size, 0 to NUM SAMPLES.
    # Passes this RDD through the sample function using the map transformation.
    # Which creates an RDD of 0's and 1's.
    # Which is aggregated using the reduce action.
    count = sc.parallelize(xrange(0, nSamples)).map(sample).reduce(lambda a, b: a + b)
    print("Size is %i" % (nSamples))
    print("Pi is roughly %f" % (4.0 * count / nSamples))
    print("Pi is exactly %f" % (pi))
```

Input

- Data must be **separable** into records.
 - Lines of text or rows of a spreadsheet.
 - CSV works easily, but not true for other data types, such as JSON and XML.
- Key/value pairs: (key, value).
 - Key = line number or record index.
 - Value = text string or row data.

Phases

- Map phase: transform each input record with a user-defined function.
- Shuffle (and sort) phase: complicated but it amounts to ensuring stuff lines up properly. (This is herding cats).
- Reduce phase: Transform the output of the shuffle phase with another userdefined function. (May or may not be necessary.)

MapReduce Dataflow

When to use MapReduce?

- When there are efficiencies to be gained from the types of parallelization we discussed earlier.
- In other words, whenever you have big data.
- Data must be "split-able" into chunks and records.

Designing MapReduce Algorithms

- User must decide what is to be done by map and separately by reduce.
 - Map can act on individual key-value pairs, but it cannot look at other key-value pairs.
 - Reduce can aggregate data by looking at multiple values, as long as map has properly mapped them.
- Never easy to herd cats.

MapReduce for Big Data

 Data parallelism by scaling out:

- Divide and Conquer
- Distributed computing:
 - Data on different machines

What is Hadoop?

- Hadoop is used in common parlance to describe:
 - 1. The **MapReduce** Paradigm.
 - 2. Massive unstructured data **storage**.
 - 3. HDFS: the Hadoop distributed file system.
- In other words:
 - Hadoop = HDFS + MapReduce.
 - Hadoop = Big Data + Analytics.

(H)DFS

- Files are divided into chunks.
- Chunks are replicated at different compute nodes.
- Chunk size and the degree of replication are chosen by the user.
- A special file (the master node) stores, for each file, the positions of its chunks.
 - So-called "master/slave" architecture.
- This is an important element of properly herding the cats.

Hadoop and MapReduce

Hadoop Tasks at Runtime

- Handles scheduling.
 - Assigns workers to map and reduce tasks.
- Handles data distribution.
 - Gets data to the workers.
- Handles synchronization.
 - Gathers, sorts, and shuffles intermediate data.
- Handles errors and faults.
 - Detects worker failures and restarts.
- Everything happens on top of a distributed file sharing system.

Hadoop Operation Modes

- Java MapReduce Mode.
 - Write Mapper, Combiner, Reducer functions in Java using Hadoop Java APIs.
 - Read records one at a time.
- Streaming Mode.
 - Any statistical computing language, such as Python.
 - Input can be a line at a time or a stream at a time.

How I Use It: Simulation

- One of the most powerful simulation tools is the Markov chain Monte Carlo (MCMC), a technique that can be massively scaled.
 - Like a calendar: I know tomorrow is Friday because today is Thursday and it doesn't matter what yesterday was.
- Re-ignited Bayesian approaches to analysis and inference, rapidly displacing frequentist approaches based on the non-existent idea of "in repeated samples."

Where I Started: Apache Spark

- Brings clustered computing to the masses.
- Native APIs for R, Python and SQL.
- Massively extended the MapReduce paradigm so that folks like us can use it in everyday practice.
- The distributed computing environment is ideal for simulation, including MCMC.

Small Data v. Big Data

- In the old days, data were relatively cheap, but the computation was expensive.
- The reverse is now true. Good data are relatively very expensive, but computation is pocket change.
- Building data lakes is difficult not because of the physical architecture but because of the organizational structure.

Rapidly Developing Environment

- Hard for mere mortals to keep up.
- Spark 0.1 to 2.0 in less than three years.
- Closed source buys its way into open source.
 - Microsoft acquires Revolution Analytics and sticks it in its cloud. Legal protection for developers.
 - IBM acquires Anaconda. Abandons its license-fee approach of SPSS.
- SaaS becomes MLaaS.

A Golden Age of Empiricism

- Despite it all, we live in golden age of empiricism.
- We need to think deeply about empirical causation in a world of digital exhaust.
- We can look to past conversations: Judea Pearl.
- Don't count out the statisticians: Efron and Hastie.

Thank You