Nouvelle algèbre courageuse

David KERN

Laboratoire Angevin de REcherche en MAthématiques — Séminaire doctoral

5 novembre 2019

Sommaire - Section 1 : Opérades

- Opérades
 - Définitions
 - Construction d'opérades
- Résolutions d'algèbres associatives
 - Version k-linéaire
 - \mathcal{A}_{∞} -algèbres dans leur habitat naturel
 - Version topologique
- Cas symétrique : les opérades de petits disques
 - \bullet Algèbres \mathcal{E}_n
 - Interprétation dans les ∞-opérades

Sommaire - Section 1 : Opérades

- Opérades
 - Définitions
 - Construction d'opérades
- Résolutions d'algèbres associatives
- Cas symétrique : les opérades de petits disques

2/38

Idée

Soit $(\mathfrak{V}, \otimes, 1)$ la catégorie des k-modules (avec \otimes_k et 1 = k), ou des espaces topologiques (ou des ensembles, ...).

Une opérade permet d'encoder une structure algébrique sur les objets de \mathfrak{V} , c'est-à-dire une collection d'opérations d'arité n pour tous $n \in \mathbb{N}$ et leurs compositions partielles.

Definition

- ▶ Un \mathbb{N} -module est une collection $\mathcal{O} = \{\mathcal{O}(n)\}_{n \in \mathbb{N}}$ d'objets de \mathfrak{V} : les objets d'opérations n-aires
- ▶ Un S-module est un N-module \mathcal{O} dont chaque $\mathcal{O}(n)$ est muni d'une action de \mathbb{S}_n (permutation des entrées)

3/38

Composition

Une **opérade** (resp. **symétrique**) est un \mathbb{N} -module (resp. \mathbb{S} -module) \mathcal{O} muni d'applications

$$\circ \colon \mathcal{O}(n) \otimes \bigotimes_{i=1}^n \mathcal{O}(k_i) \to \mathcal{O}\left(\sum_{i=1}^n k_i\right) \tag{1}$$

associatives (et S-équivariantes).

4/38

Compositions partielles

Il est utile de représenter o par les

$$\circ_i \colon \mathcal{O}(n) \otimes \mathcal{O}(k_i) \to \mathcal{O}(n+k_i-1)$$
 (2)

qui se doivent de vérifier l'associativité séquentielle et parallèle :

sont définis sans ambiguïté.

Représentations d'opérades

Soit X un objet de \mathfrak{V} .

Opérade d'endomorphismes

$$\mathcal{E}nd(X)(n) = \underline{\mathsf{hom}}(X^{\otimes n}, X) \qquad (\circlearrowleft \mathbb{S}_n \ \mathsf{par} \ (\sigma \cdot f)(x_1, \dots, x_n) = f(x_{\sigma(1)}, \dots, x_{\sigma(n)}))$$
 Composition : $g \circ_i f = g(-, \dots, -, \underbrace{f(-, \dots, -)}_{\mathsf{place} \ i}, -, \dots, -)$

Une **représentation** de \mathcal{O} sur X est un morphisme d'opérades $r \colon \mathcal{O} \to \mathcal{E}nd(X)$.

$$\implies \mathcal{O}(n) \ni \sigma \mapsto (r(\sigma) \colon X^{\otimes n} \to X)$$

Une \mathcal{O} -algèbre dans \mathfrak{V} est un objet muni d'une action de \mathcal{O} .

Exemples

Lemme

L' \mathcal{O} -algèbre libre sur X est $\coprod_{n\geq 0} \mathcal{O}(n)\otimes X^{\otimes n}$.

Démonstration.

C'est la formule donnant la monade correspondant à \mathcal{O} .

ightharpoonup L'opérade associative est $\mathcal{A}(n)=1$

Cas symétrique

La \mathcal{O} -algèbre libre sur X est $\coprod_{n\geq 0}\mathcal{O}(n)\otimes_{\mathbb{S}_n}X^{\otimes n}=\coprod_{n\geq 0}\left(\mathcal{O}(n)\otimes X^{\otimes n}\right)_{\mathbb{S}_n}$

- ightharpoonup L'opérade commutative est $\mathcal{C}(n)=1$ avec l'action triviale de \mathbb{S}_n
- ightharpoonup L'opérade (symétrique) associative est $\mathcal{A}s(n)=\mathbb{1}[\mathbb{S}_n]$, la représentation régulière

Sommaire - Section 1 : Opérades

- Opérades
 - Définitions
 - Construction d'opérades
- Résolutions d'algèbres associatives
- Cas symétrique : les opérades de petits disques

Opérades libres

Soit $\mathcal M$ un $\mathbb N$ -module. On lui associe $\mathcal T(\mathcal M)$ où

$$\mathcal{T}(\mathcal{M})(n) = \left\{ egin{array}{l} ext{arbres enracin\'es planaires \'a } n ext{ feuilles} \ ext{nœud de valence } k ext{ d\'ecor\'e par } \in \mathcal{M}(k)
ight\} \end{array}$$

et la composition est le collage d'arbres (et l'identité la branche simple |).

 $\mathcal{T}(\mathcal{M})$ est l'opérade libre sur \mathcal{M} , au sens où pour toute opérade \mathcal{O}

$$\mathsf{hom}_{\mathfrak{Dprd}}(\mathcal{T}(\mathcal{M}),\mathcal{O}) \simeq \mathsf{hom}_{\mathbb{N}-\mathfrak{Mod}}(\mathcal{M},\mathcal{O}).$$

Opérades libres

Soit $\mathcal M$ un $\mathbb N$ -module. On lui associe $\mathcal T(\mathcal M)$ où

$$\mathcal{T}(\mathcal{M})(n) = \left\{ egin{array}{l} ext{arbres enracin\'es planaires \'a } n ext{ feuilles} \ ext{nœud de valence } k ext{ d\'ecor\'e par } \in \mathcal{M}(k)
ight\} \end{array}$$

et la composition est le collage d'arbres (et l'identité la branche simple |).

 $\mathcal{T}(\mathcal{M})$ est l'opérade libre sur \mathcal{M} , au sens où pour toute opérade \mathcal{O}

$$\mathsf{hom}_{\mathfrak{Dprd}}(\mathcal{T}(\mathcal{M}),\mathcal{O}) \simeq \mathsf{hom}_{\mathbb{N}-\mathfrak{Mod}}(\mathcal{M},\mathcal{O}).$$

$\overline{\mathcal{M}}$ -magmas

En prenant $\mathcal{O} = \mathcal{E}nd(X)$, une structure de $\mathcal{T}(\mathcal{M})$ -algèbre est simplement une collection d'opérations $X^{\otimes n} \to X$ indexée par les éléments de $\mathcal{M}(n)$.

Cas symétrique

 $\mathcal{T}^{\mathbb{S}}(\mathcal{M})(n)$ est constitué des arbres non planaires (dans l'espace) avec un ordre sur les feuilles de chaque nœud σ , modulo la relation identifiant :

 $\forall p \in \mathbb{S}_n$

Remarque : Induit un ordre sur les feuilles de l'arbre

$\mathcal{M} = (0,0,\Bbbk\mu,0,\dots)$ avec

 \mathbb{S}_2 -action triviale : Structure commutative

 \mathbb{S}_2 -action par signature : Structure anti-commutative

Relations et idéaux opéradiques

Definition

Un **idéal** d'une opérade (resp. symétrique) \mathcal{O} est un sous- \mathbb{N} -module (resp. \mathbb{S} -module) stable par pré- et post-composition par tout élément de \mathcal{P} .

Propriétés

- ▶ Tout sous- \mathbb{N} -module (resp. \mathbb{S} -module) \mathcal{R} est contenu dans un plus petit idéal (\mathcal{R}) .
- ▶ La composition de \mathcal{P} induit une structure d'opérade sur $(\mathcal{P}(n)/\mathcal{I}(n))_n$.

Une $\mathcal{T}(\mathcal{M})/(\mathcal{R})$ -algèbre est X muni d'opérations indexés par les éléments de \mathcal{M} soumises aux relations \mathcal{R} .

Exemples

L'opérade associative

$$\mathcal{A} = \mathcal{T}(\mathbf{Y})/(\mathbf{Y}-\mathbf{Y})$$

L'opérade (symétrique) commutative

L'opérade (symétrique) de Lie

Sommaire - Section 2 : Résolutions d'algèbres associatives

- Opérades
 - Définitions
 - Construction d'opérades
- Résolutions d'algèbres associatives
 - Version k-linéaire
 - \mathcal{A}_{∞} -algèbres dans leur habitat naturel
 - Version topologique
- 3 Cas symétrique : les opérades de petits disques
 - \bullet Algèbres \mathcal{E}_n
 - Interprétation dans les ∞-opérades

Sommaire - Section 2 : Résolutions d'algèbres associatives

- Opérades
- Résolutions d'algèbres associatives
 - Version k-linéaire
 - A_{∞} -algèbres dans leur habitat naturel
 - Version topologique
- Cas symétrique : les opérades de petits disques

Modules différentiels gradués (dg)

Notation (décalage) $M = \bigoplus_{i \in \mathbb{Z}} M_i$ un \mathbb{R} -module \mathbb{Z} -gradué. M[k] a la graduation $(M[k])_i = M_{k+i}$ (en particulier $M[k]_{-k} = M_0$).

Definition

Un \mathbb{k} -module dg est un \mathbb{k} -module \mathbb{N} -gradué $M=\bigoplus_{i\leq 0}M_i$ muni d'un endomorphisme d de degré 1 (*i.e.* morphisme gradué $d\colon M\to M[-1]$) nilpotent d'ordre 2.

On peut le voir comme une collection de k-modules $(M_i)_{i\leq 0}$ et d'applications $(d_i\colon M_i\to M_{i+1})_i$ telles que $d_i\circ d_{i-1}=0$ (i.e. $\operatorname{im}(d_{i-1})\subset \ker(d_i)$).

Décalage

M[k] est muni de $d_i^{M[k]} = (-1)^k d_{i+k}^M$.

Exemples

Produit tensoriel

$$(M\otimes N)_i=igoplus_{k=0}^iM_k\otimes_{\Bbbk}N_{i-k}$$
, et $d^{M\otimes N}(m\otimes n)=d^Mm\otimes n+(-1)^{\deg m}m\otimes d^Nn$

Hom interne

$$\underline{\mathsf{hom}}(M,N)_i = \mathsf{hom}(M,N[-i]), \text{ et } d(f) = d^N \circ f - (-1)^{\deg f} f \circ d^M$$

Remarque : $\underline{\mathsf{hom}}(M,N) = M^{\vee} \otimes N$, où $M^{\vee} = \underline{\mathsf{hom}}(M,\mathbb{k})$

(Co)homologie

Le *n*-ième module de cohomologie de (M,d) est $H^n(M) = \ker(d_n)/\operatorname{im}(d_{n-1})$.

On obtient un module gradué $H^{\bullet}(M)$, avec différentielle nulle.

Théorie homotopique des modules dg

Definition (Quasi-isomorphismes)

Un morphisme de modules dg $f: M \to N$ est un **qis** si $H^i(f): H^i(M) \xrightarrow{\simeq} H^i(N)$ pour tout i

(M,d) et $(H^{\bullet}M,0)$ ont même cohomologie, mais ne sont en général pas reliés un qis.

Théorie homotopique des modules dg

Definition (Quasi-isomorphismes)

Un morphisme de modules dg $f: M \to N$ est un **qis** si $H^i(f): H^i(M) \xrightarrow{\simeq} H^i(N)$ pour tout i

(M,d) et $(H^{\bullet}M,0)$ ont même cohomologie, mais ne sont en général pas reliés un qis.

Point de vue homotopique

Les modules dg ne doivent être considérés qu'à qis près : la théorie homotopique marche « comme si » les gis étaient inversibles.

 \implies Les éléments **exacts** (de la forme d(m)) sont « négligeables »

Un élément exact dans $\underline{\mathsf{hom}}(M,N)_{-1}$ est appelé une $\underline{\mathsf{homotopie}}: f,g \in \underline{\mathsf{hom}}(M,N)_0$ sont homotopes (égaux dans $H^0(\underline{\mathsf{hom}}(M,N))$) s'il existe h tel que $f-g=d(h)=d^N\circ h+h\circ d^M$.

Résolution d'opérades dg

Definition

Un morphisme d'opérades dg $f: \mathcal{O} \to \mathcal{P}$ est un qis si chaque $f_n: \mathcal{O}(n) \to \mathcal{P}(n)$ en est un. Une résolution de \mathcal{O} est toute opérade dg quasi-isomorphe à \mathcal{O} .

Remarque : On demande généralement qu'une résolution ait de meilleures propriétés, e.g. quasi-libre : l'opérade graduée sous-jacente est libre.

On note \mathcal{O}_{∞} une résolution quasi-libre de \mathcal{O} .

Résolution bar-cobar

Toute opérade $\mathcal O$ admet une résolution fonctorielle (mais très large)

 $\mathcal{O}_{\infty}\simeq\mathcal{T}\Big(\mathcal{T}^cig(\mathcal{O}[-1]ig)[1]\Big)$, où \mathcal{T}^c est la co-opérade colibre, avec des (co)dérivations déterminées en étendant la (co)mposition.

Dualité de Koszul

Si $\mathcal O$ admet une présentation quadratique 1 , on peut lui associer sa co-opérade duale de Koszul $\mathcal O^i$

On également une opérade $\mathcal{O}^!$ (un décalage arité par arité du dual linéaire de \mathcal{O}^i)

- $ightharpoonup \mathcal{A}$ est auto-duale de Koszul : $\mathcal{A}^! \simeq \mathcal{A}$
- $ightharpoonup \mathcal{C}^! = \mathcal{L} \ ext{et} \ \mathcal{L}^! = \mathcal{C} \ ext{(on a toujours } (\mathcal{O}^!)^! \simeq \mathcal{O})$

Sous des hypothèses de Koszulité, on a un qis entre \mathcal{O}^{i} et la construction bar de \mathcal{O}

 $\implies \mathcal{O}_{\infty}$ est la construction cobar de \mathcal{O}^{i}

Corollaire

 \mathcal{A}_{∞} est la construction cobar de la co-opérade duale de \mathcal{A} (décalée de n-1 en arité n)

^{1.} par des relations consistant en des composées de 2 générateurs

Sommaire - Section 2 : Résolutions d'algèbres associatives

- Opérades
- Résolutions d'algèbres associatives
 - Version k-linéaire
 - ullet \mathcal{A}_{∞} -algèbres dans leur habitat naturel
 - Version topologique
- Cas symétrique : les opérades de petits disques

L'opérade \mathcal{A}_{∞}

 \mathcal{A}_{∞} est engendrée par le \mathbb{N} -module $(\mathbb{k}\mu_n)_n$: une opération n-aire μ_n de degré n-2, avec différentielle

$$d\mu_{n} = \sum_{\substack{p,r \geq 0, q > 1 \\ n = p + q + r}} (-1)^{p + qr} \mu_{p+1+r} \circ (id^{\otimes p} \otimes \mu_{q} \otimes id^{\otimes r}) = \sum_{\substack{p,r \geq 0, q > 1 \\ n = p + q + r}} (-1)^{p + qr} \mu_{p+r+1} \circ_{p+1} \mu_{q}$$

$$d\mu_3=\mu_2\circ(\mu_2\otimes id)-\mu_2\circ(id\otimes\mu_2)=\mathsf{Assoc}(\mu_2): l'associateur\ de\ \mu_2\ est\ \text{``négligeable''}$$

Interprétation : En chaque arité n, on ajoute un générateur μ_n dont la différentielle compensera les différentes compositions des μ_k , k < n.

\mathcal{A}_{∞} -algèbres

Une \mathcal{A}_{∞} -algèbre est un \Bbbk -module dg A avec des $\mu_n\colon A^{\otimes n} \to A[n-2]$ tq

$$\sum_{p+q+r=n} (-1)^{p+qr} \mu_{p+1+r} \circ (\mathsf{id}^{\otimes p} \otimes \mu_q \otimes \mathsf{id}^{\otimes r}) = 0$$

ou

$$\sum_{p+q+r=n} (-1)^{\textcircled{@}} \mu_{p+r+1}(a_1, \dots, a_p, \mu_q(a_{p+1}, \dots, a_{p+q}), a_{p+q+1}, \dots, a_n) = 0 \text{ avec } \textcircled{@} = p + \sum_{i=1}^p |a_i|.$$

Pour n=1: $\mu_1\circ\mu_1=0$: différentielle

Pour n=2: $\mu_1 \circ \mu_2 - \mu_2 \circ (id \otimes \mu_1) - \mu_2 \circ (\mu_1 \otimes id) = 0$: Leibniz

Observation Soient μ : $A \otimes A \to A$ une \mathcal{A} -algèbre dg, et $A \overset{p}{\rightleftharpoons} M$ un isomorphisme de modules dg. Alors $p \circ \mu \circ (i \otimes i)$ est une structure d' \mathcal{A} -algèbre sur M

Observation Soient μ : $A \otimes A \to A$ une \mathcal{A} -algèbre dg, et $A \overset{p}{\underset{i}{\rightleftarrows}} M$ un isomorphisme de modules dg. Alors $p \circ \mu \circ (i \otimes i)$ est une structure d' \mathcal{A} -algèbre sur M

Supposons maintenant que *ip* et *pi* ne soient qu'homotopes à l'identité :

$$\exists h: M \to M[1], ip - \mathrm{id}_M = d^M h - h d^M \text{ et } \exists k: A \to A[1], pi - \mathrm{id}_A = d^A k - k d^A$$

Dans ce cas

Observation Soient μ : $A \otimes A \to A$ une \mathcal{A} -algèbre dg, et $A \overset{p}{\underset{i}{\rightleftarrows}} M$ un isomorphisme de modules dg. Alors $p \circ \mu \circ (i \otimes i)$ est une structure d' \mathcal{A} -algèbre sur M

Supposons maintenant que *ip* et *pi* ne soient qu'homotopes à l'identité :

$$\exists h: M \to M[1], ip - \mathrm{id}_M = d^M h - h d^M \text{ et } \exists k: A \to A[1], pi - \mathrm{id}_A = d^A k - k d^A$$

Dans ce cas la différentielle de

est Assoc($p\mu(i \otimes i)$)

Observation Soient μ : $A \otimes A \to A$ une \mathcal{A} -algèbre dg, et $A \overset{p}{\underset{i}{\rightleftarrows}} M$ un isomorphisme de modules dg. Alors $p \circ \mu \circ (i \otimes i)$ est une structure d' \mathcal{A} -algèbre sur M

Supposons maintenant que *ip* et *pi* ne soient qu'homotopes à l'identité :

$$\exists h: M \to M[1], ip - \mathrm{id}_M = d^M h - h d^M \text{ et } \exists k: A \to A[1], pi - \mathrm{id}_A = d^A k - k d^A$$

Dans ce cas la différentielle de

 $p\mu(i\otimes i)$ est la composante binaire d'une structure \mathcal{A}_{∞} (et i s'étend à un \mathcal{A}_{∞} -morphisme)

Sommaire - Section 2 : Résolutions d'algèbres associatives

- Opérades
- Résolutions d'algèbres associatives
 - Version k-linéaire
 - \mathcal{A}_{∞} -algèbres dans leur habitat naturel
 - Version topologique
- Cas symétrique : les opérades de petits disques

Théorie homotopique des opérades topologiques

Rappel: groupes d'homotopie

 \triangleright X espace topologique. $\pi_0 X$ est l'ensemble de ses composantes connexes.

Théorie homotopique des opérades topologiques

Rappel: groupes d'homotopie

- \blacktriangleright X espace topologique. $\pi_0 X$ est l'ensemble de ses composantes connexes.
- (X,x) espace pointé. $\Omega_x X$ est l'espace des morphismes $(S_1,*) \to (X,x)$: « lacets basés en x ». Espaces de lacets itérés $\Omega_x^k X = \Omega_{\rm cst}(\cdots \Omega_{\rm cst}(\Omega_x X))$
- $\blacktriangleright \pi_k(X,x) = \pi_0 \Omega_x^k X$: groupe si $k \ge 1$, abélien si $k \ge 2$

Intuition : Ω est un « décalage » des groupes d'homotopie

Théorie homotopique des opérades topologiques

Rappel: groupes d'homotopie

- \triangleright X espace topologique. $\pi_0 X$ est l'ensemble de ses composantes connexes.
- (X,x) espace pointé. $\Omega_x X$ est l'espace des morphismes $(S_1,*) \to (X,x)$: « lacets basés en x ». Espaces de lacets itérés $\Omega_x^k X = \Omega_{\rm cst}(\cdots \Omega_{\rm cst}(\Omega_x X))$
- $\blacktriangleright \pi_k(X,x) = \pi_0 \Omega_x^k X$: groupe si $k \ge 1$, abélien si $k \ge 2$

Intuition : Ω est un « décalage » des groupes d'homotopie

Une équivalence faible d'homotopie est une fonction continue $f\colon X\to Y$ telle que $f_*\colon \pi_{\bullet}(X,x)\stackrel{\simeq}{\longrightarrow} \pi_{\bullet}(Y,f(x))$ pour tout x.

Un morphisme d'opérades topologiques est une équivalence faible si chacune de ses composantes l'est.

Les syzygies \mathcal{A}_{∞}

En toute arité n, $\mathcal{A}(n)$ est un point. Une opérade \mathcal{A}_{∞} est donc toute opérade avec $\mathcal{A}_{\infty}(n)$ contractile pour tout n.

On va construire \mathcal{A}_{∞} en ajoutant successivement des générateurs en chaque arité

$$\blacktriangleright \ \mathcal{A}(2) = \{\mu\} \ \text{et} \ \mathcal{A}_{\infty}(2) = \{\mu_2\}$$

Les syzygies \mathcal{A}_{∞}

En toute arité n, $\mathcal{A}(n)$ est un point. Une opérade \mathcal{A}_{∞} est donc toute opérade avec $\mathcal{A}_{\infty}(n)$ contractile pour tout n.

On va construire \mathcal{A}_{∞} en ajoutant successivement des générateurs en chaque arité

$$\blacktriangleright \ \mathcal{A}(2) = \{\mu\} \ \text{et} \ \mathcal{A}_{\infty}(2) = \{\mu_2\}$$

$$ightharpoonup \mathcal{A}_{\infty}(3) =
ightharpoonup ^+ \qquad ^+
ightharpoonup ^+ \operatorname{si} \mathcal{A}_{\infty} = \mathcal{T}(\mu_2)$$

Les syzygies \mathcal{A}_{∞}

En toute arité n, $\mathcal{A}(n)$ est un point. Une opérade \mathcal{A}_{∞} est donc toute opérade avec $\mathcal{A}_{\infty}(n)$ contractile pour tout n.

On va construire \mathcal{A}_{∞} en ajoutant successivement des générateurs en chaque arité

$$\blacktriangleright \ \mathcal{A}(2) = \{\mu\} \ \text{et} \ \mathcal{A}_{\infty}(2) = \{\mu_2\}$$

$$\blacktriangleright \ \mathcal{A}_{\infty}(3) = \ \ \, \qquad \ \ \, ^{+} \ \ \, \text{ si } \mathcal{A}_{\infty} = \mathcal{T}(\mu_{2}) \Longrightarrow \text{ On rajoute la 1-cellule } \mu_{3}$$

Les syzygies \mathcal{A}_{∞}

En toute arité n, $\mathcal{A}(n)$ est un point. Une opérade \mathcal{A}_{∞} est donc toute opérade avec $\mathcal{A}_{\infty}(n)$ contractile pour tout n.

On va construire \mathcal{A}_{∞} en ajoutant successivement des générateurs en chaque arité

•
$$A(2) = {\{\mu\} \text{ et } A_{\infty}(2) = {\{\mu_2\}}}$$

$$\blacktriangleright \ \mathcal{A}_{\infty}(3) = \checkmark \leftarrow \checkmark \mu_{3} \checkmark$$

Les syzygies \mathcal{A}_{∞}

En toute arité n, $\mathcal{A}(n)$ est un point. Une opérade \mathcal{A}_{∞} est donc toute opérade avec $\mathcal{A}_{\infty}(n)$ contractile pour tout n.

On va construire \mathcal{A}_{∞} en ajoutant successivement des générateurs en chaque arité

$$\blacktriangleright \ \mathcal{A}(2) = \{\mu\} \ \text{et} \ \mathcal{A}_{\infty}(2) = \{\mu_2\}$$

$$A_{\infty}(3) = \mu_3$$

$$ightharpoonup \mathcal{A}_{\infty}(4) =$$

si $\mathcal{A}_{\infty}=\mathcal{T}(\mu_2,\mu_3) \implies$ On remplit par la 2-cellule μ_4

Les syzygies \mathcal{A}_{∞}

En toute arité n, $\mathcal{A}(n)$ est un point. Une opérade \mathcal{A}_{∞} est donc toute opérade avec $\mathcal{A}_{\infty}(n)$ contractile pour tout n.

On va construire \mathcal{A}_{∞} en ajoutant successivement des générateurs en chaque arité

$$\blacktriangleright \ \mathcal{A}(2) = \{\mu\} \ \text{et} \ \mathcal{A}_{\infty}(2) = \{\mu_2\}$$

$$ightharpoonup \mathcal{A}_{\infty}(4) =$$

26/38

Associaèdres de Tamari-Stasheff et leur réalisation de Loday

 $\mathcal{A}_{\infty}(n)$ est le *n*-ième associaèdre \mathcal{K}_n : polytope convexe dont les sommets sont indicés par les arbres planaires binaires à *n*-feuilles (APB_n).

 \mathcal{K}_5 est le polytope dual du prisme triangulaire triaugmenté.

Coordonées entières (Loday)

 $t \in \mathsf{APB}_n \leadsto P(t) \in \mathbb{N}^{n-1}$ de *i*-ième coordonnée :

#(feuilles de t arrivant à gauche du nœud i) × #(à droite)

Théorème

- \blacktriangleright L'enveloppe convexe des P(t) est une réalisation polytopale de \mathcal{K}_n .
- $ightharpoonup P(t) \in \text{hyperplan } x_1 + \cdots + x_{n-1} = \binom{n}{2}$

Sommaire - Section 3 : Cas symétrique : les opérades de petits disques

- Opérades
 - Définitions
 - Construction d'opérades
- Résolutions d'algèbres associatives
 - Version k-linéaire
 - \mathcal{A}_{∞} -algèbres dans leur habitat naturel
 - Version topologique
- Cas symétrique : les opérades de petits disques
 - Algèbres \mathcal{E}_n
 - Interprétation dans les ∞-opérades

Sommaire - Section 3 : Cas symétrique : les opérades de petits disques

- 🚺 Opérades
- Résolutions d'algèbres associatives
- 🗿 Cas symétrique : les opérades de petits disques
 - Algèbres \mathcal{E}_n
 - Interprétation dans les ∞-opérades

L'opérade des petits disques

 $\mathcal{E}_n(k)$ est l'espace des plongements de k petits n-disques disjoints dans le n-disque unité Composition par insertion de disques et renumérotation

30/38

Exemples

Pour k=1, le seul degré de liberté (à homotopie près) dans le plongement de n petits segments est leur ordre : on obtient $\mathcal{A}s$

 $\mathcal{E}_k(2) \simeq S^{k-1}$: un k-disque percé est une (k-1)-sphère

Extensions

 $\mathcal O$ opérade unitaire \leadsto morphisme $\mathcal O(n+1) \to \mathcal O(n)$ oubliant la dernière entrée. La fibre en $\sigma \in \mathcal O(n)$ est $\mathsf{Ext}(\sigma)$.

Pour $\sigma \in \mathcal{E}_k(n)$, Ext $(\sigma) \simeq \bigvee_{n=1} S^{k-1}$ est un bouquet de sphères

Résolution de l'opérade commutative

Théorème

Pour tout k, $\mathcal{E}_n(k)$ est (n-2)-connexe.

ldée de démonstration.

On peut remplacer \mathcal{E}_n par un modèle équivalent : l'opérade des petits n-cubes, avec $\mathcal{D}_n(k)$ l'espace des plongements rectilinéaires de k copies de \square_n dans \square_n . On identifie ensuite $\mathcal{D}_n(k)$ à l'espace des configurations de k points dans \square_n .

Corollaire

$$\mathcal{E}_{\infty}\coloneqq \text{lim}(\mathcal{E}_1\to\mathcal{E}_2\to\cdots) \text{ est une opérade } \mathcal{C}_{\infty}.$$

En fait toute opérade avec une « bonne » filtration cellulaire est une opérade \mathcal{C}_{∞} .

Principe de reconnaissance des espaces de lacets

Définition

Une \mathcal{E}_k algèbre topologique X est **groupique** si le monoïde $\pi_0 X$ est un groupe.

Théorème (May)

Un espace topologique X est muni d'une structure \mathcal{E}_k groupique si et seulement si c'est un espace de lacets k fois itérées, i.e. il existe un délaçage pointé (Y,y) tel que $X\simeq \Omega_y^k Y$.

Plus précisément, on a un morphisme de monades $\mathcal{E}_k \to \Omega^k \Sigma^k$ dont les composantes sont des complétions en groupes : $\forall X$, le complété groupique de l' \mathcal{E}_k -algèbre libre sur X est $\Omega^k \Sigma^k X$

Remarque : Par définition $\pi_0(\Omega_y^n Y) = \pi_n(Y,y)$ groupe abélien si $n \geq 2$: toutes les structures $\mathcal{E}_{\geq 2}$ sont vues par π_0 comme des structures commutatives

Sommaire - Section 3 : Cas symétrique : les opérades de petits disques

- Opérades
- Résolutions d'algèbres associatives
- 🗿 Cas symétrique : les opérades de petits disques
 - Algèbres \mathcal{E}_n
 - Interprétation dans les ∞-opérades

« Définition »

Une $(\infty,1)$ -catégorie a des objets, des 1-morphismes entre eux, des 2-morphismes inversibles entre iceux, etc.

« Définition »

Une $(\infty,1)$ -catégorie a des objets, des 1-morphismes entre eux, des 2-morphismes inversibles entre iceux, etc.

 \implies Catégorie (faiblement) enrichie dans les ∞ -groupoïdes (= $(\infty,0)$ -catégories)

X espace topologique $\leadsto \Pi_{\infty} X$ l' ∞ -groupoïde fondamental, d'objets les points de X et morphismes (supérieurs) les chemins et homotopies, capture son type d'homotopie

« Définition »

Une $(\infty, 1)$ -catégorie a des objets, des 1-morphismes entre eux, des 2-morphismes inversibles entre iceux, etc.

Catégorie (faiblement) enrichie dans les ∞ -groupoïdes (= $(\infty, 0)$ -catégories)

X espace topologique $\rightsquigarrow \prod_{\infty} X \mid \infty$ -groupoïde fondamental, d'objets les points de X et morphismes (supérieurs) les chemins et homotopies, capture son type d'homotopie

Hypothèse d'homotopie (Grothendieck)

La théorie des ∞ -groupoïdes est équivalente à celle des tupes d'homotopie d'espaces

On peut modéliser les $(\infty,1)$ -catégories comme des « catégories » \mathfrak{Top} -enrichies avec une composition $\mathcal{A}_{\infty}: \mu_n: \mathsf{hom}(\mathcal{C}_{n-1}, \mathcal{C}_n) \times \cdots \times \mathsf{hom}(\mathcal{C}_0, \mathcal{C}_1) \to \mathsf{hom}(\mathcal{C}_0, \mathcal{C}_n)$

De même, une ∞-opérade est une opérade faible dans les types d'homotopie d'espaces

Rectification et additivité

- ightharpoonup L' ∞ -opérade associative est équivalente à l' ∞ -opérade \mathcal{A}_{∞} (et à \mathcal{E}_1)
- ightharpoonup L' ∞ -opérade commutative est équivalente à l' ∞ -opérade \mathcal{E}_{∞}

Rectification et additivité

- ightharpoonup L' ∞ -opérade associative est équivalente à l' ∞ -opérade \mathcal{A}_{∞} (et à \mathcal{E}_1)
- ightharpoonup L' ∞ -opérade commutative est équivalente à l' ∞ -opérade \mathcal{E}_{∞}

Théorème d'additivité de Dunn

Pour toute ∞ -catégorie monoïdale symétrique $\mathfrak V$ et tous n,m>0 on a une équivalence d' ∞ -catégories

$$\mathfrak{Alg}_{\mathcal{E}_n}(\mathfrak{Alg}_{\mathcal{E}_m}(\mathfrak{V})) \simeq \mathfrak{Alg}_{\mathcal{E}_{n+m}}(\mathfrak{V})$$

(venant d'une équivalence d' ∞ -opérades $\mathcal{E}_{n+m} \simeq \mathcal{E}_n \otimes \mathcal{E}_m$).

En particulier, $\mathfrak{Alg}_{\mathcal{E}_n}(\mathfrak{V}) \simeq \mathfrak{Alg}_{\mathcal{E}_1}(\mathfrak{Alg}_{\mathcal{E}_1}(\cdots \mathfrak{Alg}_{\mathcal{E}_1}(\mathfrak{V})))$: une structure \mathcal{E}_n est constituée de n structures associatives compatibles.

lci on inclut toutes les n-catégories dans l' ∞ -catégorie ∞ — \mathfrak{Cat} .

- **1** Une \mathcal{E}_1 -structure sur une 0-catégorie (un ensemble) est une structure associative. Une \mathcal{E}_2 -structure est une structure commutative
 - \leftarrow Argument d'Eckmann-Hilton (*cf.* $\pi_{>1}$) : les monoïdes dans les monoïdes sont des monoïdes commutatifs

lci on inclut toutes les n-catégories dans l' ∞ -catégorie ∞ — \mathfrak{Cat} .

- Une \mathcal{E}_1 -structure sur une 0-catégorie (un ensemble) est une structure associative. Une \mathcal{E}_2 -structure est une structure commutative
 - \leftarrow Argument d'Eckmann-Hilton (*cf.* $\pi_{>1}$) : les monoïdes dans les monoïdes sont des monoïdes commutatifs
- Une \mathcal{E}_1 -structure sur une 1-catégorie est une structure monoïdale. Une \mathcal{E}_2 -structure est un tressage. Une \mathcal{E}_3 -structure le rend symétrique.

lci on inclut toutes les n-catégories dans l' ∞ -catégorie ∞ — \mathfrak{Cat} .

- ullet Une \mathcal{E}_1 -structure sur une 0-catégorie (un ensemble) est une structure associative. Une \mathcal{E}_2 -structure est une structure commutative
 - \leftarrow Argument d'Eckmann-Hilton (*cf.* $\pi_{>1}$) : les monoïdes dans les monoïdes sont des monoïdes commutatifs
- Une \mathcal{E}_1 -structure sur une 1-catégorie est une structure monoïdale. Une \mathcal{E}_2 -structure est un tressage. Une \mathcal{E}_3 -structure le rend symétrique.
- 2 ...

lci on inclut toutes les n-catégories dans l' ∞ -catégorie ∞ — \mathfrak{Cat} .

- lacktriangle Une \mathcal{E}_1 -structure sur une 0-catégorie (un ensemble) est une structure associative. Une \mathcal{E}_2 -structure est une structure commutative
 - \leftarrow Argument d'Eckmann-Hilton (*cf.* $\pi_{>1}$) : les monoïdes dans les monoïdes sont des monoïdes commutatifs
- Une \mathcal{E}_1 -structure sur une 1-catégorie est une structure monoïdale. Une \mathcal{E}_2 -structure est un tressage. Une \mathcal{E}_3 -structure le rend symétrique.
- 2 ...

Hypothèse de stabilisation de Baez-Dolan (Lurie, Gepner-Haugseng)

Sur toute n-catégorie, pour tout $k \geq n+2$, une \mathcal{E}_k -structure équivaut à une \mathcal{E}_{∞} -structure.

 \implies Nécessité des ∞ -catégories pour accéder à toute la hiérarchie $(\mathcal{E}_k)_k$

Fin

- Jean-Louis Loday et Bruno Vallette, Algebraic Operads
- Bruno Vallette, *Algebra+homotopy=operads*
- Martin Markl, Steve Shnider et Jim Stasheff, Operads in Algebra, Topology and Physics
- Yonatan Harpaz, Little cube algebras and factorization homology (cours M2)