Architecture de réseaux

- Logiciel de réseau
- Modèle OSI
- 3. Architecture TCP/IP

Fonctions d'un logiciel de réseau

- le dialogue entre processus,
- le choix d'un chemin pour l'acheminement de l'information,
- l'utilisation d'un réseau,
- les procédures,
- les reprises en cas d'erreur,
- etc...

Découpage en couches

- Créer des couches distinctes pour traiter les fonctions différentes
- Créer une couche lorsque le traitement se fait à un niveau d'abstraction différent
- Permettre des changements dans une couche sans affecter les autres couches.

Service, entité, protocole,

• • •

Exemples de services

- Connexion
- Echange de données
- déconnexion

Primitives

- Une demande de service se fait par le biais d'une primitive.
- Exemples de primitives:

Requête (REQUEST)

Confirmation (CONFIRM)

Indication (INDICATION)

Réponse (RESPONSE)

Un service à connexion simple

- CONNECT request
- CONNECT indication
- CONNECT response
- CONNECT confirm
- DATA request
- DATA indication
- DISCONNECT request
- DISCONNECT indication

Exemple d'utilisation

Vous invitez votre Mamie Nova

- CONNECT Request: faire le numéro de Mamie Nova
- 2. <u>CONNECT Indication</u>: ça sonne chez elle
- 3. <u>CONNECT Response</u>: elle décroche son téléphone
- 4. <u>CONNECT Confirm</u>: Vous entendez l'arrêt de la sonnerie
- 5. <u>DATA Request</u>: Vous l'invitez pour le goûter
- 6. DATA Indication: Elle entend votre invitation
- 7. DATA Request: Elle dit qu'elle serait ravie de venir
- 8. <u>DATA Indication</u>: Vous entendez qu'elle accepte
- 9. <u>DISCONNECT Request</u>: Vous raccrochez
- 10. <u>DISCONNECT Indication</u>: Elle l'entend et raccroche également

Objectifs du modèle OSI* de l'ISO**

- Permettre l'interconnexion de systèmes hétérogènes (systèmes ouverts)
- Définir une norme
- Faciliter l'implémentation
- Fournir une Spécification
 (un ensemble de spécifications)
- *: OSI: Open Systems Interconnection
- **: ISO: International Standard Organization

Résultats: 7 couches

Echange d'informations entre entités

Dialecte du modèle OSI...

- T = Transport (couche transport),
- N = Network (couche réseau),
- L = Link (couche liaison),
- Exemples
 - N_SDU (paquet pour X25.3)
 - L_SDU (trame pour HDLC)
 - P_SDU (suite de bits)

AH : En-tête d'application NH : En-tête de réseau PH : En-tête de présentation DH : En-tête de liaison de données SH : En-tête de session DT : Délimiteur de fin de trame

TH : En-tête de transport

Fig. 1.17 — Exemple d'utilisation du modèle OSI. Certains des en-têtes peuvent être nuls (Source : H.C. Folts).

Les Couches Physique, Liaison et Réseau

- Physique : transmission de séquences de bits
- Liaison : transfert sans erreur de trames
- Réseau : acheminement et routage de paquets à travers différents réseaux

La Couche Transport Fonctions du transport ISO

Offre un réel service bout-en-bout avec :

- Détection d'erreurs
- Reprise sur erreur
- Contrôle de flux
- Multiplexage/Démultiplexage:

La Couche Transport Classification des réseaux

- Réseaux de type A: taux faible d'erreurs non signalées (ou résiduelles), taux faible d'erreurs signalées.
- Réseaux de type B: taux faible d'erreurs non signalées, taux élevé d'erreurs signalées.
- Réseaux de type C: taux élevé des deux catégories d'erreurs.

La Couche Transport Classes de transport

	Classe 0	Classe 1	Classe 2	Classe 3	Classe4
Reprise sur erreur signalée		oui		oui	oui
Multiplexage			oui	oui	oui
Contrôle de flux			oui/non	oui/non	oui/non
Reprise sur erreur non signalée					oui

La Couche Transport Les primitives

- la connexion
 - T-CONNECT REQUEST,
 - T-CONNECT INDICATION,
 - T-CONNECT RESPONSE,
 - T-CONNECT CONFIRM.
- le transfert de données normales
 - T-DATA REQUEST
 - T-DATA INDICATION
- la libération de connexion
 - T-DISCONNECT REQUEST
 - T-DISCONNECT INDICATION

Les 3 phases d'une connexion transport

La Couche Session

- établissement et maintient des connexions entre processus.
- synchronisation.
- gestion du droit de parole au moyen de jetons.
- pas de contrôle ou de reprise en cas d'erreur, (c'est le rôle de la couche transport)

La Couche Présentation

Syntaxe et sémantique des informations.

- le code utilisé (EBCDIC, ASCII, ...)
- la taille des mots : (16, 32, ...)
- la représentation des valeurs négatives (complément à 1, complément à 2).
- la numérotation des bits
- cryptage / compression des données

La Couche Application

Des services utiles aux utilisateurs avec des protocoles précis.

- Les messageries (X400).
- Le transfert de fichiers (FTAM).
- Le terminal virtuel (VTS: Virtual Terminal Service).
- ...

Une application veut dialoguer...

Demande de connexion pour la couche transport

PHYSIQUE

La couche réseau demande une connexion

PHYSIQUE

Etablissement d'une connexion liaison

Réception d'un paquet d'appel

Connexion au niveau 3 établie

Connexion au niveau transport établie

Connexion au niveau session établie

Echange de données entre les deux applications

