ΜΕΤΑΤΡΟΠΕΣ ΑΡΙΘΜΩΝ

Έχω ένα αριθμό μεταξύ 0 και 255. Για να υπολογίζω το δυαδικό, πρέπει να έχω υπόψιν μου το παρακάτω πινακάκι

128	64	32	16	8	4	2	1
2^{7}	2^{6}	2^5	2^{4}	2^{3}	2^2	2^1	2^0

Από τον αριθμό που έχω, αφαιρώ τον δεκαδικό αριθμό κάθε στήλης. Αν μπορεί να γίνει η αφαίρεση, βάζω 1 στο κουτάκι. Αν δεν γίνεται βάζω μηδέν και προχωρώ παρακάτω. Παράδειγμα έχω τον αριθμό 205.

$$205 - 128 = 77$$

$$77 - 64 = 13$$

$$13 - 32$$

$$0$$

$$13 - 16$$

$$0$$

$$13 - 8 = 5$$

$$5 - 4 = 1$$

$$1 - 2$$

$$1 - 1 = 0$$

$$1$$

Άρα ο αριθμός μου είναι 11001101

Εναλλακτικά (ίσως και πιο γρήγορα) μπορώ να κάνω πρόσθεση.

128 + 64 = 192 (έχω 1 στο 128 και στο 64)

192 + 32 = 224 > 205 άρα όχι 32 (έχω 0 στο 32)

192 + 16 = 208 > 205 άρα όχι 16 (έχω 0 στο 16)

192 + 8 = 200 (έχω 1 στο 8)

200 + 4 = 204 (έχω 1 στο 4)

204 + 2 = 206 > 205 άρα όχι 2 (έχω 0 στο 2)

204 + 1 = 205 (έχω 1 στο 1)

ΥΠΟΔΙΚΤΥΩΣΗ

AITIEΣ:

- Οικονομία διευθύνσεων ΙΡ
- Διαχειριστικοί λόγοι

Μια ΙΡ, είναι ένας 32bit αριθμός και αποτελείται από 2 τμήματα

Χαρακτηρίζει το ΔΙΚΤΥΟ/ΥΠΟΔΙΚΤΥΟ Χαρακτηρίζει τον ΥΠΟΛΟΓΙΣΤΗ Net_ID Host_ID

Παράδειγμα, μια διεύθυνση κλάσης C, 192.168.1.12

192.168.1

Net ID Host ID

24 bit ανήκουν στο δίκτυο 8 bit ανήκουν στον υπολογιστή

Ε: Πόσες διευθύνσεις θα έχει το παραπάνω δίκτυο;

A: Θα έχει $2^8 = 256$ διευθύνσεις

Ε: Πόσες διαθέσιμες διευθύνσεις για τους υπολογιστές θα έχει το παραπάνω δίκτυο;

A: Θα έχει $2^8 - 2 = 256 - 2 = 254$ διευθύνσεις για υπολογιστές

- Η διεύθυνση δικτύου ΔΕΝ δίνεται σε υπολογιστή: 192.168.1.0
- Η διεύθυνση εκπομπής ΔΕΝ δίνεται σε υπολογιστή: 192.168.1.255

ΚΛΑΣΗ	ΑΡΙΘΜΟΣ ΔΙΚΤΥΩΝ	ΑΡΙΘΜΟΣ Η/Υ	CIDR
A	$2^7 = 128$	2 ²⁴ - 2	/8
В	2^{14}	2 ¹⁶ - 2	/16
С	2^{21}	$2^8 - 2 = 254$	/24

ΜΑΣΚΑΔΙΚΤΥΟΥ

Είναι μια IP με συγκεκριμένα χαρακτηριστικά. Δυαδικός αριθμός 32 bits.

Διευκρινίζει ποια ψηφία της διεύθυνσης ανήκουν στο αναγνωριστικό του δικτύου (Net_ID) και ποια στο αναγνωριστικό υπολογιστή (Host_ID).

Πρώτο κομμάτι όλο άσσοι (11111111)

Δεύτερο κομμάτι όλο μηδέν (0000000)

Η πράξη ΑΝΟ (ισοδυναμεί με αριθμητικό επί) δίνει την διεύθυνση δικτύου.

Όπου η μάσκα έχει 1, η ΙΡ παραμένει αναλλοίωτη

Όπου έχει 0 τότε η ΙΡ χάνεται.

Αταξική δρομολόγηση (CIDR): 192.168.1.18 /24

Τα πρώτα 24 bits αντιστοιχούν στο δίκτυο και τα υπόλοιπα 8 στον υπολογιστή

- ΔΙΕΥΘΥΝΣΗ ΔΙΚΤΥΟΥ: προκύπτει αν στο Host ID τοποθετήσω 0 (δυαδική μορφή)
- ΔΙΕΥΘΥΝΣΗ ΕΚΠΟΜΠΗΣ: προκύπτει αν στο Host ID τοποθετήσω 1 (δυαδική μορφή)

ΠΑΡΑΔΕΙΓΜΑ:

192.168.1.18 /28

Πόσα bits για τους υπολογιστές; 32-28 = 4bits

Πόσες ΙΡ για τους υπολογιστές; $2^4 - 2 = 16 - 2 = 14$ υπολογιστές

 $MA\Sigma KA$: 11111111.11111111111111111111110000 = 255.255.255.240

11110000 = 128 + 64 + 32 + 16 + 0 + 0 + 0 + 0 = 240

- ΔΥΟ ΙΡ ΓΙΑ ΝΑ ΑΝΗΚΟΥΝ ΣΤΟ ΙΔΙΟ ΔΙΚΤΎΟ, ΠΡΕΠΕΙ ΝΑ ΕΧΟΎΝ ΤΗΝ ΙΔΙΑ ΔΙΕΥΘΎΝΣΗ ΔΙΚΤΎΟΥ/ΥΠΟΔΙΚΤΎΟΥ

ΠΑΡΑΔΕΙΓΜΑ: Ανήκουν οι διευθύνσεις στο ίδιο δίκτυο;

192.168.31.12/22

192.168.47.13/22

Για να ανήκουν στο ίδιο δίκτυο, πρέπει να έχουν την ίδια διεύθυνση δικτύου.

MAΣKA 255.255.252.0 (11111111.11111111.11111100.00000000)

192.168.[00011111].[00001100]

255.255.[11111100].[00000000]

----- AND

192.168.[00011100].[00000000]

ΑΡΑ η διεύθυνση δικτύου είναι 192.168.28.0

192.168.[00101111].[00001101]

255.255.[11111100].[00000000]

----- AND

192.168.[00101100].[00000000]

ΑΡΑ η διεύθυνση δικτύου είναι 192.168.44.0

Οι υπολογιστές δεν ανήκουν στο ίδιο δίκτυο διότι οι διευθύνσεις δικτύου δεν είναι ίδιες.

ΠΡΟΒΛΗΜΑΤΑ ΥΠΟΔΙΚΤΥΩΣΗΣ:

1. Θα δίνεται μια IP και η μάσκα (με την μορφή CIDR). Χρειάζομαι τουλάχιστον X υποδίκτυα με τουλάχιστον Y υπολογιστές το καθένα (ζητάει συνήθως να φτιαχτούν X υποδίκτυα με Y κόμβους το κάθε υποδίκτυο).

ΒΗΜΑΤΑ ΛΥΣΗΣ

- 1. Αρχικά γράφουμε το Net_ID και Host_ID (σε δυαδικό αριθμό, τουλάχιστον στο Host_ID).
- 2. Ανάλογα με το πόσα υποδίκτυα (ζητάει Χ), βλέπουμε στον πίνακα

Host_ID	Δύμανη του 2	Υποδίκτυα
1	2^1	2
2	2^2	4
3	2^3	8
4	2^4	16
5	2^5	32
6	2^6	64
7	2^7	128
8	2^8	256

Τα πιο συχνά θα είναι 3, 4, 5, 6 με 8, 16, 32, 64 αντίστοιχα

- 3. Δίνουμε τόσους άσσους από το Host_ID στο Net_ID όσους χρειάζεται για να δημιουργηθούν τα υποδίκτυα.
- 4. Γράφουμε τα νέα Net_ID, Subnet_ID και Host_ID. Το νέο Net_ID = Net_ID + Subnet_ID
- 5. Βρίσκω τη νέα μάσκα υποδικτύου.
- 6. Υπολογίζω ως εξής:

$$2^{\text{Host_ID}} = \mathbf{M}$$

(το Μ - 2 πρέπει να είναι μεγαλύτερο από το Υ για να δώσουμε θετική απάντηση)

Μ είναι οι διευθύνσεις του υποδικτύου. Η πρώτη (διεύθυνση δικτύου) και η τελευταία (διεύθυνση εκπομπής) είναι δεσμευμένες, οπότε έχουμε Μ – 2 διαθέσιμες διευθύνσεις για τους Η/Υ. Αν ζητήσει πινακάκι με διευθύνσεις, απλά προσθέτουμε στη διεύθυνση εκπομπής (.0) άλλες Μ-1 διευθύνσεις (επειδή μετράμε και το 0 ως διεύθυνση και συνήθως μας ξεφεύγει).

Παράδειγμα:

Δίνεται η ΙΡ 192.168.3.0/24.

- 1. Να δημιουργήσετε τουλάχιστον 6 υποδίκτυα.
- 2. Χωράνε 20 κόμβοι σε κάθε υποδίκτυο; (Αλλιώς: Να δώσετε για κάθε υποδίκτυο πόσες είναι οι διαθέσιμες ΙΡ για υπολογιστή).
- 3. Να δώσετε τις διευθύνσεις δικτύου και εκπομπής για κάθε υποδίκτυο.

ΛΥΣΗ

Δεδομένα:

IP: 192.168.3.0/24

MAΣKA: 255.255.255.0

Net_ID = 24 bits Host_ID = 8 bits

1. Θέλουμε τουλάχιστον 6 υποδίκτυα. Για να το κάνω αυτό, πρέπει να δώσω 3 bit από το Host_ID στο Net_ID διότι $2^3 = 8$ υποδίκτυα (εμείς θέλουμε 6 υποδίκτυα).

Μετά την υποδικτύωση θα έχουμε:

Net_ID	Subnet_ID	Host_ID
24 bits	3 bits	5 bits
27	bits	5 bits

Άρα η ΙΡ θα γράφεται 192.168.3.0/27

Νέα μάσκα

11111111	11111111	11111111	111 00000
255	255	255	224 (128+64+32)

2. Αριθμός υπολογιστών υποδικτύου:

 $2^5 = 32$ διευθύνσεις στο σύνολο

 $2^{5} - 2 = 32 - 2 = 30$ H/Y για κάθε υποδίκτυο

Άρα χωράνε 20 κόμβοι σε κάθε υποδίκτυο.

3. Οι διευθύνσεις είναι:

Εχοντας την πρώτη διεύθυνση δικτύου, προσθέτω 32 διευθύνσεις (υπολογίζω την .0, άρα 31) και βρίσκω την διεύθυνση εκπομπής. Η αμέσως επόμενη είναι η διεύθυνση δικτύου του επόμενου υποδικτύου κοκ.

ΥΠΟΔΙΚΤΎΟ	Δ/ΣΗ ΔΙΚΤΥΟΥ	Δ/ΣΗ ΕΚΠΟΜΠΗΣ	ΔΙΑΘΕΣΙΜΕΣ Δ/ΣΕΙΣ
1	192.168.3.0	192.168.3.31	.130
2	192.168.3.32	192.168.3.63	.3362
3	192.168.3.64	192.168.3.95	.6594
4	192.168.3.96	192.168.3.127	.97126
5	192.168.3.128	192.168.3.159	.129158
6	192.168.3.160	192.168.3.191	.161190
7	192.168.3.192	192.168.3.223	.192222
8	192.168.3.224	192.168.3.255	.225254

Τα τελευταία 2 δεν χρειάζονται.

2. Θα δίνεται μια IP και η μάσκα (με την μορφή CIDR). Πόσα υποδίκτυα πρέπει να φτιάξω για να έχει κάθε υποδίκτυο Υ υπολογιστές (είναι το ίδιο με το παραπάνω. Η εκφώνηση είναι ίδια. Αν χωράνε οι Υ υπολογιστές σε Χ υποδίκτυα).

ΒΗΜΑΤΑ ΛΥΣΗΣ

- 1. Αρχικά γράφουμε το Net_ID και Host_ID (σε δυαδικό αριθμό, τουλάχιστον στο Host_ID).
- 2. Ανάλογα με το πόσους υπολογιστές (ζητάει Υ), βλέπουμε στον πίνακα

Host_ID	Δύμανη του 2	Υπολογιστές (κόβοι)
1	2^1	2
2	2^2	4
3	2^3	8
4	2^{4}	16
5	2^5	32
6	2^6	64
7	2^7	128
8	2^8	256

Τα πιο συχνά θα είναι 3, 4, 5, 6 με 8, 16, 32, 64 αντίστοιχα

- 3. Κρατάμε όσα bits χρειαζόμαστε στο Host_ID και τα υπόλοιπα τα δίνουμε από το Host_ID στο Net_ID.
- 4. Γράφουμε τα νέα Net_ID, Subnet_ID και Host_ID. Το νέο Net_ID = Net_ID + Subnet_ID
- 5. Βρίσκω τη νέα μάσκα υποδικτύου.
- 6. Υπολογίζω ως εξής:

$$2^{\text{Host_ID}} = \mathbf{M}$$

(το Μ - 2 πρέπει να είναι μεγαλύτερο από το Υ για να δώσουμε θετική απάντηση)

ΕΥΣΤΑΘΙΟΣ ΙΩΣΗΦΙΔΗΣ, DVM

Παράδειγμα:

Δίνεται η ΙΡ: 192.168.17.0/24. Θέλουμε να φτιάξουμε υποδίκτυα που να έχουν τουλάχιστο 50 υπολογιστές.

 $\Lambda Y \Sigma H$

Δεδομένα:

IP: 192.168.17.0/24 MAΣKA: 255.255.255.0

Net_ID = 24 bits Host_ID = 8 bits

Για να μπουν τουλάχιστον 50 Η/Υ πρέπει να ελέγξω ποια δύναμη του 2 περιέχει το 50.

 Δ ηλαδή 2^6 = 64 διευθύνσεις (64 – 2 = 62 διαθέσιμες για H/Y)

Άρα το νέο Host_ID = 6 bits Επομένως το Subnet_ID = 2 bits Άρα θα φτιάξω $2^2 = 4$ υποδίκτυα Η IP γράφεται 192.168.17.0/26

Νέα μάσκα

11111111 11111111 11111111 **11**000000 255 255 255 192 (128+64)