PROJECT

Background Information

A regular strictly convex polygon is a polygon that has the following characteristics:

- all interior angles are less than 180°
- all sides have equal length

Background Information

For a regular strictly convex polygon with

- n edges (= n vertices)
- R circumradius

interior angle =
$$(n-2) \times \frac{180}{n}$$

edge length
$$s = 2 R \sin\left(\frac{\pi}{n}\right)$$

apothem
$$a = R \cos\left(\frac{\pi}{n}\right)$$

$$area = \frac{1}{2}n s a$$

perimeter =
$$n s$$

Goal 1

Create a Polygon class:

Initializer

- number of edges/vertices
- circumradius

Properties

- # edges
- # vertices
- interior angle
- edge length
- apothem
- area
- perimeter

Functionality

- a proper representation (<u>repr</u>)
- implements equality (==) based on #
 vertices and circumradius (__eq__)
- implements > based on number of vertices only (__gt__)

Goal 2

Implement a **Polygons** sequence type:

Initializer

- number of vertices for largest polygon in the sequence
- common circumradius for all polygons

Properties

max efficiency polygon: returns the Polygon with the highest area: perimeter ratio

Functionality

- functions as a sequence type (<u>__getitem__</u>)
- supports the len() function (__len__)
- has a proper representation (<u>repr</u>__)