Intégrale avec des fonctions trigonométriques

Q Savoir calculer explicitement une intégrale dépendant d'une ou plusieurs fonctions trigonométriques, circulaires ou réciproques, en utilisant à bon escient l'exponentielle complexe ou les techniques de linéarisation.

Remarque sur le corrigé. Certaines intégrales de cette banque peuvent se calculer via une double intégration par parties (toute intégrale de la forme $\int_I \cos(ax)e^{-bx} \mathrm{d}x$ ou $\int_I \sin(ax)e^{-bx} \mathrm{d}x$, par exemple). Je n'utiliserai jamais cette technique dans ce contexte, puisque je ne la trouve ni efficace ni conceptuellement instructive.

Exercice 1.

- 1. Montrer que l'intégrale $\int_{-\frac{1}{\kappa}}^{+\infty} x^2 e^{(-x)} \sin(x)^2 dx$ converge.
- 2. Calculer l'intégrale : $\int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} \sin{(x)}^2 dx.$

Exercice 2. Calculer l'intégrale : $\int_{\frac{1}{3}\pi}^{\frac{1}{2}\pi} \sin(x)^6 dx.$

- **Exercice 3.** Calculer l'intégrale : $\int_{-4}^{-2} \sinh(10 x)^2 \sinh(x) dx$.
- **Exercice 4.** Calculer l'intégrale : $\int_0^1 \sinh(2x)^3 \sinh(x)^2 dx$.
- **Exercice 5.** Calculer l'intégrale : $\int_0^{\frac{1}{2}\pi} \cos(x)^6 dx$.
- **Exercice 6.** Calculer l'intégrale: $\int_{-13}^{1} \cosh(x)^{2} \sinh(2x)^{3} dx.$
- **Exercice 7.** Calculer l'intégrale : $\int_{-5}^{0} \sinh (4 x)^{2} \sinh (x)^{4} dx.$
- **Exercice 8.** Calculer l'intégrale : $\int_{-14}^{4} \cosh(x)^{2} \sinh(x)^{4} dx.$
- **Exercice 9.** Calculer l'intégrale : $\int_{\frac{1}{2}\pi}^{\pi} \cos(x)^{3} \sin(x)^{3} dx.$
- **Exercice 10.** Calculer l'intégrale : $\int_{-3}^{0} \cosh(2x)^{2} \cosh(x) dx.$
- **Exercice 11.** Calculer l'intégrale : $\int_{-4\pi}^{\frac{1}{2}\pi} \cos(3x) \sin(121x)^4 dx.$
- **Exercice 12.** Calculer l'intégrale: $\int_{-17\pi}^{-3\pi} \cos(x)^2 e^{(4x)} dx.$
- **Exercice 13.** Calculer l'intégrale: $\int_{-\pi}^{\frac{1}{4}\pi} \cos(11x)^2 e^{(-12x)} dx.$

Exercice 14.

 \rightarrow page 10

 \rightarrow page 10

 \rightarrow page 11

 \rightarrow page 11

 \rightarrow page 11

 \rightarrow page 12

 \rightarrow page 12

 \rightarrow page 13

 \rightarrow page 13

 \rightarrow page 13

 \rightarrow page 14

 \rightarrow page 14

 \rightarrow page 15

 \rightarrow page 15

- 1. Montrer que l'intégrale $\int_{-\frac{1}{\varepsilon}\pi}^{+\infty} x^2 e^{(-2x)} \sin(x) dx$ converge.
- 2. Calculer l'intégrale: $\int_{-\frac{1}{\varepsilon}}^{+\infty} x^2 e^{(-2x)} \sin(x) dx.$
- **Exercice 15.** Calculer l'intégrale: $\int_0^{\frac{1}{2}\pi} \cos(x) e^x dx$.

 \rightarrow page 16

Exercice 16. Calculer l'intégrale : $\int_0^1 \sinh(x)^5 dx$.

 \rightarrow page 16

 \rightarrow page 16

Exercice 17.

- 1. Montrer que l'intégrale $\int_{\frac{5}{3}\pi}^{+\infty} \cos(4x) e^{(-x)} dx$ converge.
- 2. Calculer l'intégrale: $\int_{\frac{5}{3}\pi}^{+\infty} \cos(4x) e^{(-x)} dx$.
- **Exercice 18.** Calculer l'intégrale : $\int_{-8}^{24} \cosh(7x)^2 \sinh(9x)^2 dx.$

 \rightarrow page 17

Exercice 19. Calculer l'intégrale : $\int_{-\frac{2}{3}\pi}^{\frac{1}{3}\pi} e^{(-x)} \sin(3x) dx.$

 \rightarrow page 17

 \rightarrow page 17

Exercice 20.

- 1. Montrer que l'intégrale $\int_{-\pi}^{+\infty} x^2 e^{(-21\,x)} \sin{(x)} \, \mathrm{d}x$ converge.
- 2. Calculer l'intégrale: $\int_{-\pi}^{+\infty} x^2 e^{(-21x)} \sin(x) dx.$
- **Exercice 21.** Calculer l'intégrale: $\int_{2\pi}^{4\pi} e^{(-x)} \sin(x) dx.$
- \rightarrow page 18

Exercice 22. Calculer l'intégrale: $\int_{-\frac{1}{3}\pi}^{\frac{1}{6}\pi} \cos(8x)^3 \cos(2x)^2 dx.$

 \rightarrow page 18

Exercice 23. Calculer l'intégrale : $\int_{-\frac{1}{4}\pi}^{7\pi} e^x \sin(4\pi x)^2 dx.$

 \rightarrow page 18

Exercice 24. Calculer l'intégrale : $\int_{-\frac{3}{2}\pi}^{0} e^{(2\pi)} \sin(7\pi) dx.$

 \rightarrow page 19

Exercice 25.

- 1. Montrer que l'intégrale $\int_{-2\pi}^{+\infty} x^2 \cos(x)^2 e^{(-5x)} dx$ converge.
- 2. Calculer l'intégrale: $\int_{-2\pi}^{+\infty} x^2 \cos(x)^2 e^{(-5x)} dx.$

 \rightarrow page 19

- Exercice 26.
 - 1. Montrer que l'intégrale $\int_0^{+\infty} e^{(-7x)} \sin(x) dx$ converge.
 - 2. Calculer l'intégrale: $\int_0^{+\infty} e^{(-7x)} \sin(x) dx.$

 \rightarrow page 20

Exercice 27. Calculer l'intégrale: $\int_{-\pi}^{\pi} x \cos(4x) e^{(-x)} dx$.

 \rightarrow page 20

Exercice 28. Calculer l'intégrale: $\int_{-\frac{3}{4}\pi}^{25\pi} \cos(2x)^4 \sin(x) dx.$

 \rightarrow page 21

Exercice 29. Calculer l'intégrale : $\int_{-\frac{3}{3}}^{\frac{4}{3}\frac{\pi}{\pi}} xe^x \sin(x) dx.$

 \rightarrow page 21

Exercice 30. Calculer l'intégrale: $\int_{-\frac{2}{\pi}}^{3\pi} e^x \sin(6x) dx.$

 \rightarrow page 21

Exercice 31.

 \rightarrow page 21

1. Montrer que l'intégrale $\int_{-\frac{1}{4}\pi}^{+\infty} x \cos(x)^2 e^{(-2x)} dx$ converge.

2. Calculer l'intégrale : $\int_{-\frac{1}{4}\pi}^{+\infty} x \cos(x)^2 e^{(-2x)} dx.$

 \rightarrow page 22

Exercice 32.

1. Montrer que l'intégrale $\int_0^{+\infty} x \cos(x) e^{(-x)} dx$ converge.

2. Calculer l'intégrale: $\int_0^{+\infty} x \cos(x) e^{(-x)} dx$.

 \rightarrow page 23

Exercice 33. Calculer l'intégrale : $\int_{-1}^{0} \sinh(6x) \sinh(2x)^{3} dx.$

 \rightarrow page 23

Exercice 34.

1. Montrer que l'intégrale $\int_0^{+\infty} e^{(-x)} \sin(x)^2 dx$ converge.

2. Calculer l'intégrale: $\int_0^{+\infty} e^{(-x)} \sin(x)^2 dx.$

 \rightarrow page 24

Exercice 35. Calculer l'intégrale : $\int_{-1}^{1} \cosh(8x) \cosh(x)^2 dx$.

 \rightarrow page 24

Exercice 36.

1. Montrer que l'intégrale $\int_{-\frac{2}{3}\pi}^{+\infty} x e^{(-x)} \sin(x) dx$ converge.

2. Calculer l'intégrale: $\int_{-\frac{2}{3}\pi}^{+\infty} x e^{(-x)} \sin(x) dx.$

Exercice 37. Calculer l'intégrale : $\int_{-\frac{1}{2}\pi}^{2\pi} \sin(5x)^2 \sin(x)^4 dx.$

 \rightarrow page 25

Exercice 38. Calculer l'intégrale : $\int_{-\frac{7}{4}\pi}^{\pi} \cos(2x)^2 e^{(2x)} dx.$

 \rightarrow page 25

Exercice 39.

 \rightarrow page 26

1. Montrer que l'intégrale $\int_{\frac{1}{2}\pi}^{+\infty} x^2 e^{(-x)} \sin(x) dx$ converge.

2. Calculer l'intégrale : $\int_{\frac{1}{2}\pi}^{+\infty} x^2 e^{(-x)} \sin(x) \, \mathrm{d}x.$

Exercice 40.

- 1. Montrer que l'intégrale $\int_0^{+\infty} x e^{(-x)} \sin(12x)^2 dx$ converge.
- 2. Calculer l'intégrale: $\int_0^{+\infty} x e^{(-x)} \sin(12x)^2 dx.$

Exercice 41.

- 1. Montrer que l'intégrale $\int_0^{+\infty} x \cos{(3x)^2} e^{(-4x)} dx$ converge.
- 2. Calculer l'intégrale: $\int_0^{+\infty} x \cos(3x)^2 e^{(-4x)} dx.$
- **Exercice 42.** Calculer l'intégrale : $\int_{-\frac{1}{4}\pi}^{0} \cos{(2x)} e^{x} dx.$

Exercice 43.

- 1. Montrer que l'intégrale $\int_{-\pi}^{+\infty} e^{(-x)} \sin(x) dx$ converge.
- 2. Calculer l'intégrale : $\int_{-\pi}^{+\infty} e^{(-x)} \sin(x) dx.$

Exercice 44.

- 1. Montrer que l'intégrale $\int_{\frac{11}{3}\pi}^{+\infty} x e^{(-x)} \sin{(2 x)^2} dx$ converge.
- 2. Calculer l'intégrale: $\int_{\frac{11}{2}\pi}^{+\infty} x e^{(-x)} \sin(2x)^2 dx.$
- **Exercice 45.** Calculer l'intégrale : $\int_0^{\frac{1}{4}\pi} x e^{(-3x)} \sin(2x)^2 dx.$

Exercice 46.

- 1. Montrer que l'intégrale $\int_{-\frac{1}{3}\pi}^{+\infty} \cos(x)^2 e^{(-x)} dx$ converge.
- 2. Calculer l'intégrale: $\int_{-\frac{1}{3}\pi}^{+\infty} \cos{(x)}^2 e^{(-x)} dx.$
- Exercice 47. Calculer l'intégrale : $\int_{-\frac{1}{6}\pi}^{0} \cos(x)^{4} \sin(2x)^{2} dx.$
- **Exercice 48.** Calculer l'intégrale : $\int_{-\frac{1}{3}\pi}^{0} x e^{(-3x)} \sin(x) dx.$

Exercice 49.

- 1. Montrer que l'intégrale $\int_{-\frac{1}{3}\pi}^{+\infty} \cos{(x)^2} e^{(-3x)} dx$ converge.
- 2. Calculer l'intégrale : $\int_{-\frac{1}{3}\pi}^{+\infty} \cos{(x)^2} \, e^{(-3x)} \mathrm{d}x.$

 \rightarrow page 26

 \rightarrow page 27

 \rightarrow page 28

 \rightarrow page 28

 \rightarrow page 28

 \rightarrow page 29

 \rightarrow page 30

 \rightarrow page 31

 \rightarrow page 31

 \rightarrow page 31

Exercice 50. Calculer l'intégrale : $\int_{-\pi}^{\frac{3}{4}\pi} \cos(5x) \cos(x)^3 dx.$

 \rightarrow page 32

Exercice 51. Calculer l'intégrale: $\int_{-\frac{1}{3}\pi}^{\frac{5}{6}\pi} e^{(-4x)} \sin(6x)^2 dx.$

 \rightarrow page 32

Exercice 52. Calculer l'intégrale : $\int_{\frac{1}{2}\pi}^{5\pi} \cos(107 x)^2 \sin(12 x)^2 dx.$

 \rightarrow page 33

Exercice 53.

 \rightarrow page 33

1. Montrer que l'intégrale $\int_{\frac{1}{6}\,\pi}^{+\infty}x\cos\left(2\,x\right)^2e^{(-2\,x)}\mathrm{d}x$ converge.

2. Calculer l'intégrale : $\int_{\frac{1}{6}\pi}^{+\infty}x\cos{(2\,x)^2}\,e^{(-2\,x)}\mathrm{d}x.$

Exercice 54.

 \rightarrow page 34

1. Montrer que l'intégrale $\int_0^{+\infty} x^2 e^{(-7x)} \sin(3x) dx$ converge.

2. Calculer l'intégrale : $\int_0^{+\infty} x^2 e^{(-7x)} \sin(3x) dx.$

 \rightarrow page 34

Exercice 55.

1. Montrer que l'intégrale $\int_{-\pi}^{+\infty} x \cos(4x)^2 e^{(-7x)} dx$ converge.

2. Calculer l'intégrale : $\int_{\pi}^{+\infty} x \cos(4x)^2 e^{(-7x)} dx.$

 \rightarrow page 35

Exercice 56.

1. Montrer que l'intégrale $\int_{32\pi}^{+\infty} \cos{(4x)^2} e^{(-x)} dx$ converge.

2. Calculer l'intégrale : $\int_{32\pi}^{+\infty} \cos(4x)^2 e^{(-x)} dx.$

Exercice 57. Calculer l'intégrale : $\int_{-\pi}^{\frac{1}{3}\pi} e^{(2x)} \sin(11x) dx.$

 \rightarrow page 36

Exercice 58. Calculer l'intégrale: $\int_{-\pi}^{\frac{2}{3}\pi} \sin(11 x)^3 \sin(x)^2 dx.$

 \rightarrow page 36

Exercice 59.

 \rightarrow page 36

1. Montrer que l'intégrale $\int_{\frac{1}{2}\pi}^{+\infty} \cos(5x)^2 e^{(-12x)} dx$ converge.

2. Calculer l'intégrale : $\int_{\frac{1}{6}\pi}^{+\infty} \cos(5x)^2 e^{(-12x)} dx.$

 \rightarrow page 37

Exercice 60. Calculer l'intégrale : $\int_{-\frac{7}{4}\pi}^{\frac{1}{3}\pi} e^{(-x)} \sin(5x)^2 dx.$

 \rightarrow page 38

Exercice 61. Calculer l'intégrale: $\int_{2}^{51} \cosh(x)^{4} \sinh(2x)^{2} dx.$

Exercice 62. Calculer l'intégrale : $\int_{-3}^{2} \sinh(9 x)^{2} \sinh(2 x)^{2} dx.$

 \rightarrow page 38

 \rightarrow page 38

Exercice 63.

1. Montrer que l'intégrale $\int_{\frac{4}{3}\pi}^{+\infty} x^2 \cos(2x) e^{(-3x)} dx$ converge.

2. Calculer l'intégrale : $\int_{\frac{4}{3}\pi}^{+\infty} x^2 \cos{(2\,x)}\,e^{(-3\,x)}\mathrm{d}x.$

 \rightarrow page 39

Exercice 64. Calculer l'intégrale : $\int_0^{\pi} \sin(x)^4 dx$.

 \rightarrow page 39

Exercice 65. Calculer l'intégrale : $\int_{\frac{1}{6}\pi}^{\pi} e^x \sin(2x) dx.$

 \rightarrow page 40

Exercice 66. Calculer l'intégrale : $\int_{\pi}^{\frac{5}{3}\pi} \cos(x)^2 \sin(3x)^3 dx.$

 \rightarrow page 40

Exercice 67. Calculer l'intégrale : $\int_{-\frac{1}{2}\pi}^{\frac{3}{4}\pi} \sin(65x)^4 \sin(x)^2 dx.$

 \rightarrow page 40

Exercice 68.

1. Montrer que l'intégrale $\int_0^{+\infty} x \cos(2x)^2 e^{(-x)} dx$ converge.

2. Calculer l'intégrale : $\int_0^{+\infty} x \cos(2x)^2 e^{(-x)} dx.$

 \rightarrow page 41

Exercice 69. Calculer l'intégrale : $\int_{-\frac{2}{3}\pi}^{0} \cos(x)^{3} dx.$

 \rightarrow page 41

Exercice 70.

1. Montrer que l'intégrale $\int_0^{+\infty} \cos(3x)^2 e^{(-x)} dx$ converge.

2. Calculer l'intégrale : $\int_0^{+\infty} \cos(3x)^2 e^{(-x)} dx.$

 \rightarrow page 42

Exercice 72. Calculer l'intégrale: $\int_{-\frac{1}{2}\pi}^{-\frac{1}{4}\pi} \sin(2\pi)^3 \sin(x)^3 dx.$

Exercice 71. Calculer l'intégrale : $\int_{-1}^{0} \cosh(2x)^{3} \sinh(4x)^{3} dx$.

 \rightarrow page 42

Exercice 73. Calculer l'intégrale : $\int_{-1}^{3} \cosh(x)^{3} \sinh(x)^{2} dx$.

 \rightarrow page 43

Exercice 74.

 \rightarrow page 43

1. Montrer que l'intégrale $\int_{-\frac{1}{2}\pi}^{+\infty} \cos(x) e^{(-x)} dx$ converge.

2. Calculer l'intégrale : $\int_{-\frac{1}{2}\pi}^{+\infty} \cos(x) e^{(-x)} dx.$

 \rightarrow page 44

Exercice 75. Calculer l'intégrale: $\int_{-4\pi}^{2\pi} \cos(6x) e^{(9x)} dx.$

Exercice 76.

- 1. Montrer que l'intégrale $\int_0^{+\infty} x^2 e^{(-x)} \sin(x)^2 dx$ converge.
- 2. Calculer l'intégrale: $\int_0^{+\infty} x^2 e^{(-x)} \sin(x)^2 dx.$

Exercice 77. Calculer l'intégrale : $\int_{-\frac{1}{3}\pi}^{3\pi} \cos(x) \sin(3x)^3 dx.$

\rightarrow page 45

 \rightarrow page 45

 \rightarrow page 44

Exercice 78.

- 1. Montrer que l'intégrale $\int_{-\frac{1}{6}\pi}^{+\infty}\cos{(5\,x)^2}\,e^{(-42\,x)}\mathrm{d}x$ converge.
- 2. Calculer l'intégrale : $\int_{-\frac{1}{6}\pi}^{+\infty} \cos(5x)^2 e^{(-42x)} dx.$

 \rightarrow page 46

Exercice 79.

- 1. Montrer que l'intégrale $\int_0^{+\infty} xe^{(-3x)} \sin(11x)^2 dx$ converge.
- 2. Calculer l'intégrale: $\int_0^{+\infty} x e^{(-3x)} \sin(11x)^2 dx.$

Exercice 80. Calculer l'intégrale : $\int_{-\frac{1}{6}\pi}^{\frac{3}{2}\pi} x e^x \sin(3x) dx.$

 \rightarrow page 46

 \rightarrow page 46

Exercice 81.

- 1. Montrer que l'intégrale $\int_{\pi}^{+\infty} e^{(-4x)} \sin(13x)^2 dx$ converge.
- 2. Calculer l'intégrale : $\int_{\pi}^{+\infty} e^{(-4x)} \sin(13x)^2 dx.$

 \rightarrow page 47

- Exercice 82.
 - 1. Montrer que l'intégrale $\int_0^{+\infty} xe^{(-x)} \sin(2x) dx$ converge.
 - 2. Calculer l'intégrale : $\int_0^{+\infty} x e^{(-x)} \sin{(2\,x)} \, \mathrm{d}x.$

Exercice 83. Calculer l'intégrale : $\int_{-\frac{1}{2}\pi}^{18\pi} \sin(24x)^2 \sin(x)^2 dx.$

 \rightarrow page 48

Exercice 84.

- 1. Montrer que l'intégrale $\int_{3\pi}^{+\infty} x^2 \cos(x) e^{(-2x)} dx$ converge.
- 2. Calculer l'intégrale : $\int_{3\pi}^{+\infty} x^2 \cos(x) \, e^{(-2x)} \mathrm{d}x.$

 \rightarrow page 48

Exercice 85.

- 1. Montrer que l'intégrale $\int_{\frac{1}{6}\pi}^{+\infty} x^2 \cos(28x) e^{(-x)} dx$ converge.
- 2. Calculer l'intégrale: $\int_{\frac{1}{x}}^{+\infty} x^2 \cos(28x) e^{(-x)} dx.$

 \rightarrow page 49

Exercice 86. Calculer l'intégrale : $\int_{-\frac{1}{4}\pi}^{\frac{5}{3}\pi} x \cos(x) e^{(-2x)} dx.$

 \rightarrow page 49

Exercice 87.

 \rightarrow page 49

- 1. Montrer que l'intégrale $\int_{\frac{1}{6}\pi}^{+\infty} x^2 \cos(2x)^2 e^{(-x)} dx$ converge.
- 2. Calculer l'intégrale : $\int_{\frac{1}{6}\pi}^{+\infty} x^2 \cos{(2x)}^2 e^{(-x)} dx.$

Exercice 88. Calculer l'intégrale : $\int_{-1}^{1} \sinh(12x)^{2} \sinh(3x)^{3} dx$.

 \rightarrow page 50

Exercice 89. Calculer l'intégrale : $\int_{-7}^{5} \sinh(44 x) \sinh(3 x)^{3} dx.$

 \rightarrow page 51

 \rightarrow page 51

Exercice 90.

- 1. Montrer que l'intégrale $\int_{\pi}^{+\infty} x^2 e^{(-5x)} \sin(4x) dx$ converge.
- 2. Calculer l'intégrale : $\int_{\pi}^{+\infty} x^2 e^{(-5x)} \sin(4x) dx.$

Exercice 91. Calculer l'intégrale : $\int_{-\pi}^{0} \sin(5x)^{4} \sin(x) dx.$

 \rightarrow page 52

Exercice 92. Calculer l'intégrale : $\int_{-1}^{2} \cosh(3x)^{3} \sinh(x) dx.$

 \rightarrow page 52

Exercice 93. Calculer l'intégrale: $\int_{-\pi}^{\frac{1}{4}\pi} x \cos(x) e^{(-x)} dx.$

 \rightarrow page 52

Exercice 94. Calculer l'intégrale : $\int_0^1 \cosh(2x)^2 \cosh(x) dx$.

 \rightarrow page 53

Exercice 95.

- 1. Montrer que l'intégrale $\int_0^{+\infty} \cos(x) e^{(-x)} dx$ converge.
- 2. Calculer l'intégrale : $\int_0^{+\infty} \cos(x) e^{(-x)} dx$.

 \rightarrow page 53

Exercice 96. Calculer l'intégrale : $\int_0^1 \cosh{(3\,x)} \sinh{(x)}^3 \,\mathrm{d}x.$

 \rightarrow page 53

Exercice 97. Calculer l'intégrale : $\int_{-\pi}^{0} \cos(3x) \sin(2x)^{2} dx.$

 \rightarrow page 54

Exercice 98. Calculer l'intégrale : $\int_0^{\frac{14}{3}\pi} \cos(x)^2 \sin(x)^3 dx.$

 \rightarrow page 54

Exercice 99. Calculer l'intégrale : $\int_{-6\pi}^{0} \cos(6x)^{4} \cos(x) dx.$

 \rightarrow page 54

Exercice 100.

 \rightarrow page 55

- 1. Montrer que l'intégrale $\int_{2\pi}^{+\infty} \cos(3x) e^{(-x)} dx$ converge.
- 2. Calculer l'intégrale : $\int_{2\pi}^{+\infty} \cos(3x) e^{(-x)} dx$.

Corrigé 1. \leftarrow page 1

1. L'application $x\mapsto x^2e^{(-x)}\sin{(x)}^2$ est continue sur $[-\frac{1}{6}\pi,+\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x\in[-\frac{1}{6}\pi,+\infty[$, on a:

$$0 \leqslant x^2 e^{(-x)} \sin(x)^2 \leqslant x^2 e^{(-x)}$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-x)} = x^4 e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^2 e^{(-x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2} \right).$$

Or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} x^2 e^{(-x)} \mathrm{d}x$ converge, et donc $\int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} \mathrm{d}x$ converge aussi par continuité sur le segment $[-\frac{1}{6}\pi,1]$. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} \sin{(x)}^2 \mathrm{d}x$ converge : d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a :

$$\int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} \sin(x)^2 dx = \int_{-\frac{1}{6}\pi}^{+\infty} \left(-\frac{1}{2} x^2 (\cos(2x) - 1) e^{(-x)} \right) dx$$
$$= -\frac{1}{2} \int_{-\frac{1}{6}\pi}^{+\infty} x^2 \cos(2x) e^{(-x)} dx + \frac{1}{2} \int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\int_{-\frac{1}{6}\pi}^{+\infty} x^2 \cos(2x) e^{(-x)} dx = \text{Re}\left(\int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{((2i-1)x)} dx\right),$$

et on calcule cette intégrale en intégrant par parties deux fois: on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas:

$$\int_{-\frac{1}{6}\pi}^{+\infty} x^2 \cos(2x) e^{(-x)} dx = \operatorname{Re}\left(-\left(\frac{1}{360}i - \frac{1}{180}\right) \sqrt{3}\pi^2 e^{\left(\frac{1}{6}\pi\right)} + \left(\frac{1}{180}i + \frac{1}{360}\right) \pi^2 e^{\left(\frac{1}{6}\pi\right)} - \left(\frac{1}{50}i + \frac{2}{75}\right) \sqrt{3}\pi e^{\left(\frac{1}{6}\pi\right)} - \left(\frac{2}{75}i + \frac{2}{75}\right) \pi^2 e^{\left(\frac{1}{6}\pi\right)} + \left(\frac{1}{180}i + \frac{1}{360}\right) \pi^2 e^{\left(\frac{1}{6}\pi\right)} - \left(\frac{1}{50}i + \frac{2}{75}\right) \pi^2 e^{\left(\frac{1}{6}\pi\right)} + \left(\frac{1}{180}i + \frac{1}{360}\right) \pi^2 e^{\left(\frac{1}{6}\pi\right)} - \left(\frac{1}{50}i + \frac{2}{75}\right) \pi^2 e^{\left(\frac{1}{6}\pi\right)} + \left(\frac{1}{180}i + \frac{1}{360}\right) \pi^2 e^{\left(\frac{1}{6}\pi\right)} + \left(\frac{1}{180}i + \frac{1}{360}i + \frac{1}{36$$

et donc:

$$\int_{-\frac{1}{6}\,\pi}^{+\infty} x^2 \cos{(2\,x)}\,e^{(-x)}\mathrm{d}x = \frac{1}{180}\,\sqrt{3}\pi^2 e^{\left(\frac{1}{6}\,\pi\right)} + \frac{1}{360}\,\pi^2 e^{\left(\frac{1}{6}\,\pi\right)} - \frac{2}{75}\,\sqrt{3}\pi e^{\left(\frac{1}{6}\,\pi\right)} + \frac{1}{50}\,\pi e^{\left(\frac{1}{6}\,\pi\right)} - \frac{2}{125}\,\sqrt{3}e^{\left(\frac{1}{6}\,\pi\right)} - \frac{11}{125}\,e^{\left(\frac{1}{6}\,\pi\right)}.$$

On calcule de même $\int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient : $\int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} dx = -\frac{1}{36} \left(12\pi - \pi^2 - 72\right) e^{\left(\frac{1}{6}\pi\right)}$. On peut conclure :

$$\int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} \sin{(x)}^2 dx = -\frac{1}{360} \sqrt{3} \pi^2 e^{\left(\frac{1}{6}\pi\right)} + \frac{1}{80} \pi^2 e^{\left(\frac{1}{6}\pi\right)} + \frac{1}{75} \sqrt{3} \pi e^{\left(\frac{1}{6}\pi\right)} - \frac{53}{300} \pi e^{\left(\frac{1}{6}\pi\right)} + \frac{1}{125} \sqrt{3} e^{\left(\frac{1}{6}\pi\right)} + \frac{261}{250} e^{\left(\frac{1}{6}\pi\right)}.$$

Corrigé 2. Commençons par linéariser, en écrivant $\sin(x)$ en fonction d'exponentielles grâce aux formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

← page 1

$$\sin(x)^{6} = \frac{1}{-64} \left(e^{(ix)} - e^{(-ix)} \right)^{6}$$

$$= \frac{1}{-64} \left(e^{(6ix)} - 6e^{(4ix)} + 15e^{(2ix)} + 15e^{(-2ix)} - 6e^{(-4ix)} + e^{(-6ix)} - 20 \right)$$

$$= -\frac{1}{32} \cos(6x) + \frac{3}{16} \cos(4x) - \frac{15}{32} \cos(2x) + \frac{5}{16}.$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{\frac{1}{3}\pi}^{\frac{1}{2}\pi} \sin(x)^{6} dx = \int_{\frac{1}{3}\pi}^{\frac{1}{2}\pi} \left(-\frac{1}{32} \cos(6x) + \frac{3}{16} \cos(4x) - \frac{15}{32} \cos(2x) + \frac{5}{16} \right) dx$$
$$= \left[\frac{5}{16} x - \frac{1}{192} \sin(6x) + \frac{3}{64} \sin(4x) - \frac{15}{64} \sin(2x) \right]_{\frac{1}{3}\pi}^{\frac{1}{2}\pi}$$
$$= \frac{5}{96} \pi + \frac{9}{64} \sqrt{3},$$

d'où le résultat.

Corrigé 3. Commençons par linéariser, en écrivant $\sinh(x)$ et $\sinh(10 x)$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 1

$$\begin{split} \sinh{(10\,x)}^2 \sinh{(x)} &= \frac{1}{8} - \left(e^{(10\,x)} - e^{(-10\,x)}\right)^2 \left(e^{(-x)} - e^x\right) \\ &= \frac{1}{8} \left(e^{(21\,x)} - e^{(19\,x)} + 2\,e^{(-x)} + e^{(-19\,x)} - e^{(-21\,x)} - 2\,e^x\right) \\ &= \frac{1}{4} \sinh{(21\,x)} - \frac{1}{4} \sinh{(19\,x)} - \frac{1}{2} \sinh{(x)} \,. \end{split}$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-4}^{-2} \sinh(10 x)^{2} \sinh(x) dx = \int_{-4}^{-2} \left(\frac{1}{4} \sinh(21 x) - \frac{1}{4} \sinh(19 x) - \frac{1}{2} \sinh(x)\right) dx$$

$$= \left[\frac{1}{84} \cosh(21 x) - \frac{1}{76} \cosh(19 x) - \frac{1}{2} \cosh(x)\right]_{-4}^{-2}$$

$$= -\frac{1}{84} \cosh(84) + \frac{1}{76} \cosh(76) + \frac{1}{84} \cosh(42) - \frac{1}{76} \cosh(38) + \frac{1}{2} \cosh(4) - \frac{1}{2} \cosh(2),$$

d'où le résultat.

Corrigé 4. Commençons par linéariser, en écrivant $\sinh(2x)$ et $\sinh(x)$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 1

$$\sinh (2x)^{3} \sinh (x)^{2} = \frac{1}{32} \left(e^{(2x)} - e^{(-2x)} \right)^{3} \left(e^{(-x)} - e^{x} \right)^{2}$$

$$= \frac{1}{32} \left(e^{(8x)} - 2e^{(6x)} - 2e^{(4x)} + 6e^{(2x)} - 6e^{(-2x)} + 2e^{(-4x)} + 2e^{(-6x)} - e^{(-8x)} \right)$$

$$= \frac{1}{16} \sinh (8x) - \frac{1}{8} \sinh (6x) - \frac{1}{8} \sinh (4x) + \frac{3}{8} \sinh (2x).$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_0^1 \sinh(2x)^3 \sinh(x)^2 dx = \int_0^1 \left(\frac{1}{16} \sinh(8x) - \frac{1}{8} \sinh(6x) - \frac{1}{8} \sinh(4x) + \frac{3}{8} \sinh(2x) \right) dx$$

$$= \left[\frac{1}{128} \cosh(8x) - \frac{1}{48} \cosh(6x) - \frac{1}{32} \cosh(4x) + \frac{3}{16} \cosh(2x) \right]_0^1$$

$$= \frac{1}{128} \cosh(8) - \frac{1}{48} \cosh(6) - \frac{1}{32} \cosh(4) + \frac{3}{16} \cosh(2) - \frac{55}{384},$$

d'où le résultat.

Corrigé 5. Commençons par linéariser, en écrivant $\cos(x)$ en fonction d'exponentielles grâce aux formules d'Euler.

On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

$$\cos(x)^{6} = \frac{1}{64} \left(e^{(ix)} + e^{(-ix)} \right)^{6}$$

$$= \frac{1}{64} \left(e^{(6ix)} + 6e^{(4ix)} + 15e^{(2ix)} + 15e^{(-2ix)} + 6e^{(-4ix)} + e^{(-6ix)} + 20 \right)$$

$$= \frac{1}{32} \cos(6x) + \frac{3}{16} \cos(4x) + \frac{15}{32} \cos(2x) + \frac{5}{16}.$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_0^{\frac{1}{2}\pi} \cos(x)^6 dx = \int_0^{\frac{1}{2}\pi} \left(\frac{1}{32} \cos(6x) + \frac{3}{16} \cos(4x) + \frac{15}{32} \cos(2x) + \frac{5}{16} \right) dx$$
$$= \left[\frac{5}{16} x + \frac{1}{192} \sin(6x) + \frac{3}{64} \sin(4x) + \frac{15}{64} \sin(2x) \right]_0^{\frac{1}{2}\pi}$$
$$= \frac{5}{32} \pi,$$

d'où le résultat.

Corrigé 6. Commençons par linéariser, en écrivant $\sinh(2x)$ et $\cosh(x)$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 1

$$\begin{split} \cosh{(x)^2} \sinh{(2\,x)^3} &= \frac{1}{32} \Big(e^{(2\,x)} - e^{(-2\,x)} \Big)^3 \Big(e^{(-x)} + e^x \Big)^2 \\ &= \frac{1}{32} \left(e^{(8\,x)} + 2\,e^{(6\,x)} - 2\,e^{(4\,x)} - 6\,e^{(2\,x)} + 6\,e^{(-2\,x)} + 2\,e^{(-4\,x)} - 2\,e^{(-6\,x)} - e^{(-8\,x)} \right) \\ &= \frac{1}{16} \, \sinh{(8\,x)} + \frac{1}{8} \, \sinh{(6\,x)} - \frac{1}{8} \, \sinh{(4\,x)} - \frac{3}{8} \, \sinh{(2\,x)} \,. \end{split}$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-13}^{1} \cosh(x)^{2} \sinh(2x)^{3} dx = \int_{-13}^{1} \left(\frac{1}{16} \sinh(8x) + \frac{1}{8} \sinh(6x) - \frac{1}{8} \sinh(4x) - \frac{3}{8} \sinh(2x) \right) dx$$

$$= \left[\frac{1}{128} \cosh(8x) + \frac{1}{48} \cosh(6x) - \frac{1}{32} \cosh(4x) - \frac{3}{16} \cosh(2x) \right]_{-13}^{1}$$

$$= -\frac{1}{128} \cosh(104) - \frac{1}{48} \cosh(78) + \frac{1}{32} \cosh(52) + \frac{3}{16} \cosh(26) + \frac{1}{128} \cosh(8) + \frac{1}{48} \cosh(6) - \frac{1}{32} \cosh(6)$$

d'où le résultat.

Corrigé 7. Commençons par linéariser, en écrivant $\sinh(x)$ et $\sinh(4x)$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 1

$$\sinh (4x)^{2} \sinh (x)^{4} = \frac{1}{64} \Big(e^{(4x)} - e^{(-4x)} \Big)^{2} \Big(e^{(-x)} - e^{x} \Big)^{4}$$

$$= \frac{1}{64} \Big(e^{(12x)} - 4e^{(10x)} + 6e^{(8x)} - 4e^{(6x)} - e^{(4x)} + 8e^{(2x)} + 8e^{(-2x)} - e^{(-4x)} - 4e^{(-6x)} + 6e^{(-8x)} - 4e^{(-10x)} \Big)$$

$$= \frac{1}{32} \cosh (12x) - \frac{1}{8} \cosh (10x) + \frac{3}{16} \cosh (8x) - \frac{1}{8} \cosh (6x) - \frac{1}{32} \cosh (4x) + \frac{1}{4} \cosh (2x) - \frac{3}{16}.$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-5}^{0} \sinh(4x)^{2} \sinh(x)^{4} dx = \int_{-5}^{0} \left(\frac{1}{32} \cosh(12x) - \frac{1}{8} \cosh(10x) + \frac{3}{16} \cosh(8x) - \frac{1}{8} \cosh(6x) - \frac{1}{32} \cosh(4x) + \frac{1}{4} \cosh(2x) - \frac{3}{16} \sinh(10x) + \frac{3}{128} \sinh(8x) - \frac{1}{48} \sinh(6x) - \frac{1}{128} \sinh(4x) + \frac{1}{8} \sinh(4x) + \frac{1}{8} \sinh(6x) - \frac{1}{128} \sinh(6x) - \frac{1}{128} \sinh(6x) - \frac{1}{128} \sinh(6x) - \frac{1}{128} \sinh(10x) - \frac{1}{128$$

d'où le résultat.

Corrigé 8. Commençons par linéariser, en écrivant $\sinh(x)$ et $\cosh(x)$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 1

$$\cosh(x)^{2} \sinh(x)^{4} = \frac{1}{64} \left(e^{(-x)} + e^{x} \right)^{2} \left(e^{(-x)} - e^{x} \right)^{4}$$

$$= \frac{1}{64} \left(e^{(6x)} - 2e^{(4x)} - e^{(2x)} - e^{(-2x)} - 2e^{(-4x)} + e^{(-6x)} + 4 \right)$$

$$= \frac{1}{32} \cosh(6x) - \frac{1}{16} \cosh(4x) - \frac{1}{32} \cosh(2x) + \frac{1}{16}.$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-14}^{4} \cosh(x)^{2} \sinh(x)^{4} dx = \int_{-14}^{4} \left(\frac{1}{32} \cosh(6x) - \frac{1}{16} \cosh(4x) - \frac{1}{32} \cosh(2x) + \frac{1}{16} \right) dx$$

$$= \left[\frac{1}{16} x + \frac{1}{192} \sinh(6x) - \frac{1}{64} \sinh(4x) - \frac{1}{64} \sinh(2x) \right]_{-14}^{4}$$

$$= \frac{1}{192} \sinh(84) - \frac{1}{64} \sinh(56) - \frac{1}{64} \sinh(28) + \frac{1}{192} \sinh(24) - \frac{1}{64} \sinh(16) - \frac{1}{64} \sinh(8) + \frac{9}{8},$$

d'où le résultat.

Corrigé 9. Commençons par linéariser, en écrivant $\sin(x)$ et $\cos(x)$ en fonction d'exponentielles grâce aux formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 1

$$\cos(x)^{3} \sin(x)^{3} = \frac{1}{-64i} \left(e^{(ix)} + e^{(-ix)} \right)^{3} \left(e^{(ix)} - e^{(-ix)} \right)^{3}$$
$$= \frac{1}{-64i} \left(e^{(6ix)} - 3e^{(2ix)} + 3e^{(-2ix)} - e^{(-6ix)} \right)$$
$$= -\frac{1}{32} \sin(6x) + \frac{3}{32} \sin(2x).$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{\frac{1}{2}\pi}^{\pi} \cos(x)^3 \sin(x)^3 dx = \int_{\frac{1}{2}\pi}^{\pi} \left(-\frac{1}{32} \sin(6x) + \frac{3}{32} \sin(2x) \right) dx$$
$$= \left[\frac{1}{192} \cos(6x) - \frac{3}{64} \cos(2x) \right]_{\frac{1}{2}\pi}^{\pi}$$
$$= -\frac{1}{12},$$

d'où le résultat.

Corrigé 10. Commençons par linéariser, en écrivant $\cosh(2x)$ et $\cosh(x)$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 1

$$\cosh(2x)^{2}\cosh(x) = \frac{1}{8} \left(e^{(2x)} + e^{(-2x)} \right)^{2} \left(e^{(-x)} + e^{x} \right)$$

$$= \frac{1}{8} \left(e^{(5x)} + e^{(3x)} + 2e^{(-x)} + e^{(-3x)} + e^{(-5x)} + 2e^{x} \right)$$

$$= \frac{1}{4} \cosh(5x) + \frac{1}{4} \cosh(3x) + \frac{1}{2} \cosh(x).$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi

obtenus, et on en déduit:

$$\int_{-3}^{0} \cosh(2x)^{2} \cosh(x) dx = \int_{-3}^{0} \left(\frac{1}{4} \cosh(5x) + \frac{1}{4} \cosh(3x) + \frac{1}{2} \cosh(x)\right) dx$$
$$= \left[\frac{1}{20} \sinh(5x) + \frac{1}{12} \sinh(3x) + \frac{1}{2} \sinh(x)\right]_{-3}^{0}$$
$$= \frac{1}{20} \sinh(15) + \frac{1}{12} \sinh(9) + \frac{1}{2} \sinh(3),$$

d'où le résultat.

Corrigé 11. Commençons par linéariser, en écrivant $\cos(3x)$ et $\sin(121x)$ en fonction d'exponentielles grâce aux formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 $\cos(3x)\sin(121x)^{4} = \frac{1}{32} \left(e^{(121ix)} - e^{(-121ix)} \right)^{4} \left(e^{(3ix)} + e^{(-3ix)} \right)$ $= \frac{1}{32} \left(e^{(487ix)} + e^{(481ix)} - 4e^{(245ix)} - 4e^{(239ix)} + 6e^{(3ix)} + 6e^{(-3ix)} - 4e^{(-239ix)} - 4e^{(-245ix)} + e^{(-481ix)} + e^$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-4\pi}^{\frac{1}{2}\pi} \cos(3x) \sin(121x)^4 dx = \int_{-4\pi}^{\frac{1}{2}\pi} \left(\frac{1}{16} \cos(487x) + \frac{1}{16} \cos(481x) - \frac{1}{4} \cos(245x) - \frac{1}{4} \cos(239x) + \frac{3}{8} \cos(3x) \right) dx$$

$$= \left[\frac{1}{7792} \sin(487x) + \frac{1}{7696} \sin(481x) - \frac{1}{980} \sin(245x) - \frac{1}{956} \sin(239x) + \frac{1}{8} \sin(3x) \right]_{-4\pi}^{\frac{1}{2}\pi}$$

$$= -\frac{1714168307}{13716333085},$$

d'où le résultat.

Corrigé 12. Commençons par linéariser le terme trigonométrique. On a :

 $\int_{-17\pi}^{-3\pi} \cos(x)^2 e^{(4x)} dx = \int_{-17\pi}^{-3\pi} \left(\frac{1}{2} (\cos(2x) + 1) e^{(4x)} \right) dx$ $= \frac{1}{2} \int_{-17\pi}^{-3\pi} \cos(2x) e^{(4x)} dx + \frac{1}{2} \int_{-17\pi}^{-3\pi} e^{(4x)} dx.$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-17\pi}^{-3\pi} \cos\left(2\,x\right) e^{(4\,x)} \mathrm{d}x = \operatorname{Re}\left(\int_{-17\pi}^{-3\,\pi} e^{((2i+4)\,x)} \mathrm{d}x\right) = \operatorname{Re}\left(\left[\frac{1}{2i+4} e^{((2i+4)\,x)}\right]_{-17\,\pi}^{-3\,\pi}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{2i+4}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{-17\pi}^{-3\pi} \cos(2x) e^{(4x)} dx = \operatorname{Re}\left(-\left(\frac{1}{10}i - \frac{1}{5}\right) e^{(-12\pi)} + \left(\frac{1}{10}i - \frac{1}{5}\right) e^{(-68\pi)}\right),\,$$

et donc:

$$\int_{-17\pi}^{-3\pi} \cos(2x) e^{(4x)} dx = \frac{1}{5} e^{(-12\pi)} - \frac{1}{5} e^{(-68\pi)}.$$

On calcule de même $\int_{-17\pi}^{-3\pi} e^{(4x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_{-17\pi}^{-3\pi} e^{(4x)} dx = \frac{1}{4} e^{(-12\pi)} - \frac{1}{4} e^{(-68\pi)}$. On peut conclure:

$$\int_{-17\pi}^{-3\pi} \cos(x)^2 e^{(4x)} dx = \frac{9}{40} e^{(-12\pi)} - \frac{9}{40} e^{(-68\pi)}.$$

Corrigé 13. Commençons par linéariser le terme trigonométrique. On a :

 \leftarrow page 1

$$\int_{-\pi}^{\frac{1}{4}\pi} \cos(11x)^2 e^{(-12x)} dx = \int_{-\pi}^{\frac{1}{4}\pi} \left(\frac{1}{2} (\cos(22x) + 1) e^{(-12x)} \right) dx$$
$$= \frac{1}{2} \int_{-\pi}^{\frac{1}{4}\pi} \cos(22x) e^{(-12x)} dx + \frac{1}{2} \int_{-\pi}^{\frac{1}{4}\pi} e^{(-12x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\pi}^{\frac{1}{4}\pi} \cos(22 x) e^{(-12 x)} dx = \operatorname{Re} \left(\int_{-\pi}^{\frac{1}{4}\pi} e^{((22i-12) x)} dx \right) = \operatorname{Re} \left(\left[\frac{1}{22i-12} e^{((22i-12) x)} \right]_{-\pi}^{\frac{1}{4}\pi} \right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{22i-12}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{-\pi}^{\frac{1}{4}\pi} \cos(22x) e^{(-12x)} dx = \text{Re}\left(\left(\frac{11}{314}i + \frac{3}{157}\right) e^{(12\pi)} + \left(\frac{3}{157}i - \frac{11}{314}\right) e^{(-3\pi)}\right),\,$$

et donc:

$$\int_{-\pi}^{\frac{1}{4}\pi} \cos(22x) e^{(-12x)} dx = \frac{3}{157} e^{(12\pi)} - \frac{11}{314} e^{(-3\pi)}.$$

On calcule de même $\int_{-\pi}^{\frac{1}{4}\pi} e^{(-12x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient : $\int_{-\pi}^{\frac{1}{4}\pi} e^{(-12x)} dx = \frac{1}{12} e^{(12\pi)} - \frac{1}{12} e^{(-3\pi)}$. On peut conclure :

$$\int_{-\pi}^{\frac{1}{4}\pi} \cos(11\,x)^2 \, e^{(-12\,x)} \, \mathrm{d}x = \frac{193}{3768} \, e^{(12\,\pi)} - \frac{223}{3768} \, e^{(-3\,\pi)}.$$

Corrigé 14.

 \leftarrow page 1

1. L'application $x\mapsto x^2e^{(-2\,x)}\sin{(x)}$ est continue sur $[-\frac{1}{6}\,\pi,+\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x\in[-\frac{1}{6}\,\pi,+\infty[$, on a :

$$\left| x^2 e^{(-2x)} \sin(x) \right| \leqslant x^2 e^{(-2x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-2x)} = x^4 e^{(-2x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^2 e^{(-2x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2} \right).$$

Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} x^2 e^{(-2\,x)} \mathrm{d}x$ converge, et donc $\int_{-\frac{1}{6}\,\pi}^{+\infty} x^2 e^{(-2\,x)} \mathrm{d}x$ converge aussi par continuité sur le segment $[-\frac{1}{6}\,\pi,1]$. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-\frac{1}{6}\,\pi}^{+\infty} x^2 e^{(-2\,x)} \sin{(x)} \, \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{(-2x)} \sin(x) dx = \operatorname{Im} \left(\int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{((i-2)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties deux fois : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{1}{3}\pi}^{+\infty} x^2 e^{(-2x)} \sin(x) dx = \operatorname{Im}\left(\left(\frac{1}{360}i + \frac{1}{180}\right) \sqrt{3}\pi^2 e^{\left(\frac{1}{3}\pi\right)} - \left(\frac{1}{180}i - \frac{1}{360}\right) \pi^2 e^{\left(\frac{1}{3}\pi\right)} - \left(\frac{2}{75}i + \frac{1}{50}\right) \sqrt{3}\pi e^{\left(\frac{1}{3}\pi\right)} + \left(\frac{1}{50}i - \frac{1}{180}i - \frac{1}{1$$

et donc:

$$\int_{-\frac{1}{3}\pi}^{+\infty} x^2 e^{(-2\,x)} \sin{(x)} \, \mathrm{d}x = \frac{1}{360} \sqrt{3} \pi^2 e^{\left(\frac{1}{3}\,\pi\right)} - \frac{1}{180} \, \pi^2 e^{\left(\frac{1}{3}\,\pi\right)} - \frac{2}{75} \, \sqrt{3} \pi e^{\left(\frac{1}{3}\,\pi\right)} + \frac{1}{50} \, \pi e^{\left(\frac{1}{3}\,\pi\right)} + \frac{11}{125} \, \sqrt{3} e^{\left(\frac{1}{3}\,\pi\right)} - \frac{2}{125} \, e^{\left(\frac{1}{3}\,\pi\right)}.$$

Corrigé 15. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

 \leftarrow page 2

$$\int_0^{\frac{1}{2}\pi} \cos(x) e^x dx = \text{Re}\left(\int_0^{\frac{1}{2}\pi} e^{((i+1)x)} dx\right) = \text{Re}\left(\left[\frac{1}{i+1}e^{((i+1)x)}\right]_0^{\frac{1}{2}\pi}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{i+1}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{0}^{\frac{1}{2}\pi} \cos(x) e^{x} dx = \text{Re}\left(\left(\frac{1}{2}i + \frac{1}{2}\right) e^{\left(\frac{1}{2}\pi\right)} + \frac{1}{2}i - \frac{1}{2}\right),\,$$

et donc:

$$\int_0^{\frac{1}{2}\pi} \cos(x) e^x dx = \frac{1}{2} e^{\left(\frac{1}{2}\pi\right)} - \frac{1}{2}.$$

Corrigé 16. Commençons par linéariser, en écrivant $\sinh(x)$ en fonction d'exponentielles , en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 2

$$\sinh(x)^{5} = \frac{1}{32} - \left(e^{(-x)} - e^{x}\right)^{5}$$

$$= \frac{1}{32} \left(e^{(5x)} - 5e^{(3x)} - 10e^{(-x)} + 5e^{(-3x)} - e^{(-5x)} + 10e^{x}\right)$$

$$= \frac{1}{16} \sinh(5x) - \frac{5}{16} \sinh(3x) + \frac{5}{8} \sinh(x).$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_0^1 \sinh(x)^5 dx = \int_0^1 \left(\frac{1}{16} \sinh(5x) - \frac{5}{16} \sinh(3x) + \frac{5}{8} \sinh(x) \right) dx$$
$$= \left[\frac{1}{80} \cosh(5x) - \frac{5}{48} \cosh(3x) + \frac{5}{8} \cosh(x) \right]_0^1$$
$$= \frac{1}{80} \cosh(5) - \frac{5}{48} \cosh(3) + \frac{5}{8} \cosh(1) - \frac{8}{15},$$

d'où le résultat.

Corrigé 17.

 \leftarrow page 2

1. L'application $x \mapsto \cos(4x) e^{(-x)}$ est continue sur $\left[\frac{5}{3}\pi, +\infty\right[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in \left[\frac{5}{3}\pi, +\infty\right[$, on a:

$$\left|\cos\left(4\,x\right)e^{(-x)}\right| \leqslant e^{(-x)},$$

et on sait que l'intégrale $\int_{\frac{5}{3}\pi}^{+\infty}e^{(-x)}\mathrm{d}x$ converge (c'est une intégrale de référence). Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{5}{3}\pi}^{+\infty}\cos\left(4\,x\right)e^{(-x)}\mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{\frac{5}{3}\pi}^{+\infty} \cos(4x) e^{(-x)} dx = \text{Re}\left(\int_{\frac{5}{3}\pi}^{+\infty} e^{((4i-1)x)} dx\right) = \text{Re}\left(\left[\frac{1}{4i-1}e^{((4i-1)x)}\right]_{\frac{5}{3}\pi}^{+\infty}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{4i-1}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{\frac{5}{3}\pi}^{+\infty} \cos\left(4\,x\right) e^{(-x)} \mathrm{d}x = \mathrm{Re}\left(\left(\frac{1}{34}i - \frac{2}{17}\right)\,\sqrt{3}e^{\left(-\frac{5}{3}\,\pi\right)} - \left(\frac{2}{17}i + \frac{1}{34}\right)\,e^{\left(-\frac{5}{3}\,\pi\right)}\right),$$

et donc:

$$\int_{\frac{5}{3}\pi}^{+\infty} \cos(4x) e^{(-x)} dx = -\frac{2}{17} \sqrt{3} e^{\left(-\frac{5}{3}\pi\right)} - \frac{1}{34} e^{\left(-\frac{5}{3}\pi\right)}.$$

Corrigé 18. Commençons par linéariser, en écrivant $\sinh{(9 x)}$ et $\cosh{(7 x)}$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 2

$$\begin{split} \cosh{(7\,x)}^2 \sinh{(9\,x)}^2 &= \frac{1}{16} \Big(e^{(9\,x)} - e^{(-9\,x)} \Big)^2 \Big(e^{(7\,x)} + e^{(-7\,x)} \Big)^2 \\ &= \frac{1}{16} \left(e^{(32\,x)} + 2\,e^{(18\,x)} - 2\,e^{(14\,x)} + e^{(4\,x)} + e^{(-4\,x)} - 2\,e^{(-14\,x)} + 2\,e^{(-18\,x)} + e^{(-32\,x)} - 4 \right) \\ &= \frac{1}{8} \cosh{(32\,x)} + \frac{1}{4} \cosh{(18\,x)} - \frac{1}{4} \cosh{(14\,x)} + \frac{1}{8} \cosh{(4\,x)} - \frac{1}{4}. \end{split}$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-8}^{24} \cosh{(7 x)^2} \sinh{(9 x)^2} dx = \int_{-8}^{24} \left(\frac{1}{8} \cosh{(32 x)} + \frac{1}{4} \cosh{(18 x)} - \frac{1}{4} \cosh{(14 x)} + \frac{1}{8} \cosh{(4 x)} - \frac{1}{4}\right) dx$$

$$= \left[-\frac{1}{4} x + \frac{1}{256} \sinh{(32 x)} + \frac{1}{72} \sinh{(18 x)} - \frac{1}{56} \sinh{(14 x)} + \frac{1}{32} \sinh{(4 x)}\right]_{-8}^{24}$$

$$= \frac{1}{256} \sinh{(768)} + \frac{1}{72} \sinh{(432)} - \frac{1}{56} \sinh{(336)} + \frac{1}{256} \sinh{(256)} + \frac{1}{72} \sinh{(144)} - \frac{1}{56} \sinh{(112)} + \frac{1}{56} \sinh{(144)} - \frac{1}{56} \sinh{(144)} - \frac{1}{56} \sinh{(112)} + \frac{1}{56} \sinh{(144)} - \frac{1}{56} \sinh{(144)} -$$

d'où le résultat.

Corrigé 19. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

 $\leftarrow \text{page 2}$

$$\int_{-\frac{2}{3}\pi}^{\frac{1}{3}\pi} e^{(-x)} \sin(3x) dx = \operatorname{Im} \left(\int_{-\frac{2}{3}\pi}^{\frac{1}{3}\pi} e^{((3i-1)x)} dx \right) = \operatorname{Im} \left(\left[\frac{1}{3i-1} e^{((3i-1)x)} \right]_{-\frac{2}{3}\pi}^{\frac{1}{3}\pi} \right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{3i-1}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{-\frac{2}{3}\pi}^{\frac{1}{3}\pi} e^{(-x)} \sin{(3x)} dx = \operatorname{Im}\left(\left(\frac{3}{10}i + \frac{1}{10}\right) e^{\left(\frac{2}{3}\pi\right)} + \left(\frac{3}{10}i + \frac{1}{10}\right) e^{\left(-\frac{1}{3}\pi\right)}\right),\,$$

et donc:

$$\int_{-\frac{2}{3}\pi}^{\frac{1}{3}\pi} e^{(-x)} \sin(3x) dx = \frac{3}{10} e^{(\frac{2}{3}\pi)} + \frac{3}{10} e^{(-\frac{1}{3}\pi)}.$$

Corrigé 20.

 \leftarrow page 2

1. L'application $x \mapsto x^2 e^{(-21\,x)} \sin(x)$ est continue sur $[-\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [-\pi, +\infty[$, on a:

$$\left| x^2 e^{(-21\,x)} \sin\left(x\right) \right| \leqslant x^2 e^{(-21\,x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-21\,x)} = x^4 e^{(-21\,x)} \xrightarrow[x \to +\infty]{} 0$, donc :

$$x^{2}e^{(-21 x)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^{2}}\right).$$

Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} x^2 e^{(-21\,x)} \mathrm{d}x$ converge, et donc $\int_{-\pi}^{+\infty} x^2 e^{(-21\,x)} \mathrm{d}x$ converge aussi par continuité sur le segment $[-\pi,1]$. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-\pi}^{+\infty} x^2 e^{(-21\,x)} \sin{(x)} \, \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\pi}^{+\infty} x^2 e^{(-21x)} \sin(x) dx = \operatorname{Im} \left(\int_{-\pi}^{+\infty} x^2 e^{((i-21)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties deux fois : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\pi}^{+\infty} x^2 e^{(-21\,x)} \sin\left(x\right) dx = \operatorname{Im}\left(-\left(\frac{1}{442}i + \frac{21}{442}\right) \pi^2 e^{(21\,\pi)} + \left(\frac{21}{48841}i + \frac{220}{48841}\right) \pi e^{(21\,\pi)} - \left(\frac{661}{21587722}i + \frac{4599}{21587722}\right) e^{(21\,\pi)} + \left(\frac{21}{48841}i + \frac{220}{48841}i + \frac{220}{48841}i + \frac{220}{21587722}i + \frac{4599}{21587722}i + \frac{4599}{2158722}i + \frac{459}{2158722}i + \frac{459}{2158722}i + \frac{459}{2158722}i + \frac{459}{2158722}$$

 $\int_{-\pi}^{+\infty} x^2 e^{(-21\,x)} \sin\left(x\right) \mathrm{d}x = -\frac{1}{442} \,\pi^2 e^{(21\,\pi)} + \frac{21}{48841} \,\pi e^{(21\,\pi)} - \frac{661}{21587722} \,e^{(21\,\pi)}.$

Corrigé 21. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

 $\leftarrow \text{page 2}$

$$\int_{2\,\pi}^{4\,\pi} e^{(-x)} \sin{(x)} \,\mathrm{d}x = \mathrm{Im}\left(\int_{2\,\pi}^{4\,\pi} e^{((i-1)\,x)} \mathrm{d}x\right) = \mathrm{Im}\left(\left[\frac{1}{i-1} e^{((i-1)\,x)}\right]_{2\,\pi}^{4\,\pi}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{i-1}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{2\pi}^{4\pi} e^{(-x)} \sin(x) dx = \operatorname{Im}\left(\left(\frac{1}{2}i + \frac{1}{2}\right) e^{(-2\pi)} - \left(\frac{1}{2}i + \frac{1}{2}\right) e^{(-4\pi)}\right),\,$$

et donc:

$$\int_{2\pi}^{4\pi} e^{(-x)} \sin(x) dx = \frac{1}{2} e^{(-2\pi)} - \frac{1}{2} e^{(-4\pi)}.$$

Corrigé 22. Commençons par linéariser, en écrivant $\cos(8x)$ et $\cos(2x)$ en fonction d'exponentielles grâce aux \leftarrow page formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

$$\begin{aligned} \cos\left(8\,x\right)^{3}\cos\left(2\,x\right)^{2} &= \frac{1}{32}\Big(e^{(8i\,x)} + e^{(-8i\,x)}\Big)^{3}\Big(e^{(2i\,x)} + e^{(-2i\,x)}\Big)^{2} \\ &= \frac{1}{32}\left(e^{(28i\,x)} + 2\,e^{(24i\,x)} + e^{(20i\,x)} + 3\,e^{(12i\,x)} + 6\,e^{(8i\,x)} + 3\,e^{(4i\,x)} + 3\,e^{(-4i\,x)} + 6\,e^{(-8i\,x)} + 3\,e^{(-12i\,x)} + e^{(-20i\,x)} + e^$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-\frac{1}{3}\pi}^{\frac{1}{6}\pi} \cos(8x)^3 \cos(2x)^2 dx = \int_{-\frac{1}{3}\pi}^{\frac{1}{6}\pi} \left(\frac{1}{16} \cos(28x) + \frac{1}{8} \cos(24x) + \frac{1}{16} \cos(20x) + \frac{3}{16} \cos(12x) + \frac{3}{8} \cos(8x) + \frac{3}{16} \cos(4x) \right) dx$$

$$= \left[\frac{1}{448} \sin(28x) + \frac{1}{192} \sin(24x) + \frac{1}{320} \sin(20x) + \frac{1}{64} \sin(12x) + \frac{3}{64} \sin(8x) + \frac{3}{64} \sin(4x) \right]_{-\frac{1}{3}\pi}^{\frac{1}{6}\pi}$$

$$= 0,$$

d'où le résultat.

Corrigé 23. Commençons par linéariser le terme trigonométrique. On a :

$$\begin{split} \int_{-\frac{1}{4}\pi}^{7\pi} e^x \sin(4x)^2 dx &= \int_{-\frac{1}{4}\pi}^{7\pi} \left(-\frac{1}{2} (\cos(8x) - 1) e^x \right) dx \\ &= -\frac{1}{2} \int_{-\frac{1}{4}\pi}^{7\pi} \cos(8x) e^x dx + \frac{1}{2} \int_{-\frac{1}{4}\pi}^{7\pi} e^x dx. \end{split}$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a

$$\int_{-\frac{1}{4}\pi}^{7\pi} \cos\left(8\,x\right) e^x \mathrm{d}x = \operatorname{Re}\left(\int_{-\frac{1}{4}\pi}^{7\pi} e^{((8i+1)\,x)} \mathrm{d}x\right) = \operatorname{Re}\left(\left[\frac{1}{8i+1}e^{((8i+1)\,x)}\right]_{-\frac{1}{4}\pi}^{7\pi}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{8i+1}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{-\frac{1}{4}\pi}^{7\pi} \cos(8x) e^x dx = \operatorname{Re}\left(-\left(\frac{8}{65}i - \frac{1}{65}\right) e^{(7\pi)} + \left(\frac{8}{65}i - \frac{1}{65}\right) e^{\left(-\frac{1}{4}\pi\right)}\right),$$

et donc:

$$\int_{-\frac{1}{4}\pi}^{7\pi} \cos(8x) e^x dx = \frac{1}{65} e^{(7\pi)} - \frac{1}{65} e^{\left(-\frac{1}{4}\pi\right)}.$$

On calcule de même $\int_{-\frac{1}{4}\pi}^{7\pi} e^x dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_{-\frac{1}{4}\pi}^{7\pi} e^x dx = e^{(7\pi)} - e^{(-\frac{1}{4}\pi)}$. On peut conclure:

$$\int_{-\frac{1}{4}\pi}^{7\pi} e^x \sin(4x)^2 dx = \frac{32}{65} e^{(7\pi)} - \frac{32}{65} e^{(-\frac{1}{4}\pi)}.$$

Corrigé 24. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{3}{2}\pi}^{0} e^{(2x)} \sin(7x) dx = \operatorname{Im} \left(\int_{-\frac{3}{2}\pi}^{0} e^{((7i+2)x)} dx \right) = \operatorname{Im} \left(\left[\frac{1}{7i+2} e^{((7i+2)x)} \right]_{-\frac{3}{2}\pi}^{0} \right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{7i+2}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{-\frac{3}{2}\pi}^{0} e^{(2x)} \sin(7x) dx = \operatorname{Im}\left(\left(\frac{2}{53}i + \frac{7}{53}\right) e^{(-3\pi)} - \frac{7}{53}i + \frac{2}{53}\right),\,$$

et donc:

$$\int_{-\frac{3}{2}\pi}^{0} e^{(2x)} \sin(7x) dx = \frac{2}{53} e^{(-3\pi)} - \frac{7}{53}.$$

Corrigé 25.

1. L'application $x \mapsto x^2 \cos(x)^2 e^{(-5x)}$ est continue sur $[-2\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [-2\pi, +\infty[$, on a :

$$0 \leqslant x^2 \cos(x)^2 e^{(-5x)} \leqslant x^2 e^{(-5x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-5\,x)} = x^4 e^{(-5\,x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^2 e^{(-5x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} x^2 e^{(-5\,x)} \mathrm{d}x$ converge, et donc $\int_{-2\,\pi}^{+\infty} x^2 e^{(-5\,x)} \mathrm{d}x$ converge aussi par continuité sur le segment $[-2\,\pi,1]$. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-2\,\pi}^{+\infty} x^2 \cos{(x)}^2 e^{(-5\,x)} \mathrm{d}x$ converge : d'où le résultat.

 \leftarrow page 2

2. Commençons par linéariser le terme trigonométrique. On a:

$$\int_{-2\pi}^{+\infty} x^2 \cos(x)^2 e^{(-5x)} dx = \int_{-2\pi}^{+\infty} \left(\frac{1}{2} x^2 (\cos(2x) + 1) e^{(-5x)} \right) dx$$
$$= \frac{1}{2} \int_{-2\pi}^{+\infty} x^2 \cos(2x) e^{(-5x)} dx + \frac{1}{2} \int_{-2\pi}^{+\infty} x^2 e^{(-5x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a

$$\int_{-2\pi}^{+\infty} x^2 \cos(2x) e^{(-5x)} dx = \text{Re}\left(\int_{-2\pi}^{+\infty} x^2 e^{((2i-5)x)} dx\right),\,$$

et on calcule cette intégrale en intégrant par parties deux fois: on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas:

$$\int_{-2\pi}^{+\infty} x^2 \cos(2x) e^{(-5x)} dx = \operatorname{Re}\left(\left(\frac{8}{29}i + \frac{20}{29}\right) \pi^2 e^{(10\pi)} - \left(\frac{80}{841}i + \frac{84}{841}\right) \pi e^{(10\pi)} + \left(\frac{284}{24389}i + \frac{130}{24389}\right) e^{(10\pi)}\right),$$

et donc:

$$\int_{-2\pi}^{+\infty} x^2 \cos(2x) e^{(-5x)} dx = \frac{20}{29} \pi^2 e^{(10\pi)} - \frac{84}{841} \pi e^{(10\pi)} + \frac{130}{24389} e^{(10\pi)}.$$

On calcule de même $\int_{-2\pi}^{+\infty} x^2 e^{(-5x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe

à prendre en compte), et on obtient: $\int_{-2\pi}^{+\infty} x^2 e^{(-5x)} dx = \frac{4}{5} \pi^2 e^{(10\pi)} - \frac{4}{25} \pi e^{(10\pi)} + \frac{2}{125} e^{(10\pi)}.$ On peut conclure:

$$\int_{-2\,\pi}^{+\infty} x^2 \cos{(x)}^2 \, e^{(-5\,x)} \mathrm{d}x = \frac{108}{145} \, \pi^2 e^{(10\,\pi)} - \frac{2732}{21025} \, \pi e^{(10\,\pi)} + \frac{32514}{3048625} \, e^{(10\,\pi)}.$$

Corrigé 26.

 \leftarrow page 2

1. L'application $x \mapsto e^{(-7x)} \sin(x)$ est continue sur $[0, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [0, +\infty[$, on a:

$$\left| e^{(-7x)} \sin(x) \right| \leqslant e^{(-7x)},$$

et on sait que l'intégrale $\int_0^{+\infty} e^{(-7x)} dx$ converge (c'est une intégrale de référence). Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^{+\infty} e^{(-7x)} \sin(x) dx$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\int_0^{+\infty} e^{(-7x)} \sin(x) \, \mathrm{d}x = \mathrm{Im} \left(\int_0^{+\infty} e^{((i-7)x)} \, \mathrm{d}x \right) = \mathrm{Im} \left(\left[\frac{1}{i-7} e^{((i-7)x)} \right]_0^{+\infty} \right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{i-7}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_0^{+\infty} e^{(-7x)} \sin(x) dx = \text{Im}\left(\frac{1}{50}i + \frac{7}{50}\right),$$

et donc:

$$\int_0^{+\infty} e^{(-7x)} \sin(x) \, \mathrm{d}x = \frac{1}{50}.$$

Corrigé 27. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\pi}^{\pi} x \cos(4x) e^{(-x)} dx = \text{Re}\left(\int_{-\pi}^{\pi} x e^{((4i-1)x)} dx\right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\pi}^{\pi} x \cos\left(4\,x\right) e^{(-x)} \mathrm{d}x = \mathrm{Re}\left(-\left(\frac{4}{17}i + \frac{1}{17}\right)\,\pi e^{\pi} - \left(\frac{4}{17}i + \frac{1}{17}\right)\,\pi e^{(-\pi)} + \left(\frac{8}{289}i - \frac{15}{289}\right)\,e^{\pi} - \left(\frac{8}{289}i - \frac{15}{289}\right)\,e^{(-\pi)}\right),$$

et donc:

$$\int_{-\pi}^{\pi} x \cos(4x) e^{(-x)} dx = -\frac{1}{17} \pi e^{\pi} - \frac{1}{17} \pi e^{(-\pi)} - \frac{15}{289} e^{\pi} + \frac{15}{289} e^{(-\pi)}.$$

Corrigé 28. Commençons par linéariser, en écrivant $\cos(2x)$ et $\sin(x)$ en fonction d'exponentielles grâce aux \leftarrow page 3 formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

$$\begin{split} \cos\left(2\,x\right)^4 \sin\left(x\right) &= \frac{1}{32i} \Big(e^{(2i\,x)} + e^{(-2i\,x)} \Big)^4 \Big(e^{(i\,x)} - e^{(-i\,x)} \Big) \\ &= \frac{1}{32i} \left(e^{(9i\,x)} - e^{(7i\,x)} + 4\,e^{(5i\,x)} - 4\,e^{(3i\,x)} + 6\,e^{(i\,x)} - 6\,e^{(-i\,x)} + 4\,e^{(-3i\,x)} - 4\,e^{(-5i\,x)} + e^{(-7i\,x)} - e^{(-9i\,x)} \Big) \\ &= \frac{1}{16} \, \sin\left(9\,x\right) - \frac{1}{16} \, \sin\left(7\,x\right) + \frac{1}{4} \, \sin\left(5\,x\right) - \frac{1}{4} \, \sin\left(3\,x\right) + \frac{3}{8} \, \sin\left(x\right). \end{split}$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\begin{split} \int_{-\frac{3}{4}\,\pi}^{25\,\pi} \cos{(2\,x)^4} \sin{(x)} \, \mathrm{d}x &= \int_{-\frac{3}{4}\,\pi}^{25\,\pi} \left(\frac{1}{16}\,\sin{(9\,x)} - \frac{1}{16}\,\sin{(7\,x)} + \frac{1}{4}\,\sin{(5\,x)} - \frac{1}{4}\,\sin{(3\,x)} + \frac{3}{8}\,\sin{(x)}\right) \mathrm{d}x \\ &= \left[-\frac{1}{144}\,\cos{(9\,x)} + \frac{1}{112}\,\cos{(7\,x)} - \frac{1}{20}\,\cos{(5\,x)} + \frac{1}{12}\,\cos{(3\,x)} - \frac{3}{8}\,\cos{(x)}\right]_{-\frac{3}{4}\,\pi}^{25\,\pi} \\ &= \frac{1}{630}\,\sqrt{2}\Big(107\,\sqrt{2} - 128\Big), \end{split}$$

d'où le résultat.

Corrigé 29. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

 $\leftarrow \text{page } 3$

$$\int_{-\frac{3}{4}\pi}^{\frac{4}{3}\pi} x e^x \sin(x) dx = \operatorname{Im} \left(\int_{-\frac{3}{4}\pi}^{\frac{4}{3}\pi} x e^{((i+1)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{3}{4}\pi}^{\frac{4}{3}\pi} x e^x \sin(x) dx = \operatorname{Im}\left(-\left(\frac{1}{3}i + \frac{1}{3}\right) \sqrt{3}\pi e^{\left(\frac{4}{3}\pi\right)} - \frac{3}{8}\sqrt{2}\pi e^{\left(-\frac{3}{4}\pi\right)} + \left(\frac{1}{3}i - \frac{1}{3}\right) \pi e^{\left(\frac{4}{3}\pi\right)} + \frac{1}{4}\sqrt{3}e^{\left(\frac{4}{3}\pi\right)} + \left(\frac{1}{4}i - \frac{1}{4}\right)\sqrt{2}e^{\left(-\frac{3}{4}\pi\right)} - \frac{1}{4}\operatorname{supp}\left(-\frac{3}{4}\pi\right) + \left(\frac{1}{3}i - \frac{1}{3}\right) \operatorname{supp}\left(-\frac{3}{4}\pi\right) + \left(\frac{3}{4}\pi\right) + \left(\frac{3}{4}\pi\right) \operatorname{supp}\left(-\frac{3}{4}\pi\right) + \left(\frac{3}{4}\pi\right) \operatorname{supp}\left(-\frac{3}{4}\pi\right) + \left(\frac{3}{4}\pi\right) \operatorname{supp}\left(-\frac{3}{4}\pi\right) + \left(\frac{3}{4}\pi\right) + \left(\frac{3}{4}\pi\right) \operatorname{supp}\left(-\frac{3}{4}\pi\right) + \left(\frac{3}{4}\pi\right) + \left(\frac{3}{4}\pi\right) \operatorname{supp}\left(-\frac{3}{4}\pi\right) + \left(\frac{3}{4}\pi\right) + \left(\frac{3}{4}\pi$$

et donc:

$$\int_{-\frac{3}{4}\pi}^{\frac{4}{3}\pi} x e^x \sin(x) dx = -\frac{1}{3} \sqrt{3}\pi e^{\left(\frac{4}{3}\pi\right)} + \frac{1}{3}\pi e^{\left(\frac{4}{3}\pi\right)} + \frac{1}{4} \sqrt{2} e^{\left(-\frac{3}{4}\pi\right)} - \frac{1}{4} e^{\left(\frac{4}{3}\pi\right)}.$$

Corrigé 30. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

 \leftarrow page 3

$$\int_{-\frac{2}{3}\pi}^{3\pi} e^x \sin(6x) dx = \operatorname{Im} \left(\int_{-\frac{2}{3}\pi}^{3\pi} e^{((6i+1)x)} dx \right) = \operatorname{Im} \left(\left[\frac{1}{6i+1} e^{((6i+1)x)} \right]_{-\frac{2}{3}\pi}^{3\pi} \right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{6i+1}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{-\frac{2}{3}\pi}^{3\pi} e^x \sin(6x) \, \mathrm{d}x = \operatorname{Im}\left(-\left(\frac{6}{37}i - \frac{1}{37}\right) e^{(3\pi)} + \left(\frac{6}{37}i - \frac{1}{37}\right) e^{\left(-\frac{2}{3}\pi\right)}\right),\,$$

et donc:

$$\int_{-\frac{2}{3}\pi}^{3\pi} e^x \sin(6x) \, \mathrm{d}x = -\frac{6}{37} e^{(3\pi)} + \frac{6}{37} e^{\left(-\frac{2}{3}\pi\right)}.$$

Corrigé 31. \leftarrow page 3

1. L'application $x\mapsto x\cos\left(x\right)^2e^{(-2\,x)}$ est continue sur $\left[-\frac{1}{4}\,\pi,+\infty\right[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x\in\left[-\frac{1}{4}\,\pi,+\infty\right[$, on a :

$$\left| x \cos(x)^2 e^{(-2x)} \right| \leqslant x e^{(-2x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-2x)} = x^3e^{(-2x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc :

$$xe^{(-2x)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} x e^{(-2\,x)} \mathrm{d}x$ converge, et donc $\int_{-\frac{1}{4}\,\pi}^{+\infty} x e^{(-2\,x)} \mathrm{d}x$ converge aussi par continuité sur le segment $[-\frac{1}{4}\,\pi,1]$. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-\frac{1}{2}\,\pi}^{+\infty} x \cos{(x)^2} \, e^{(-2\,x)} \mathrm{d}x$ converge absolument donc converge: d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a :

$$\int_{-\frac{1}{4}\pi}^{+\infty} x \cos(x)^2 e^{(-2x)} dx = \int_{-\frac{1}{4}\pi}^{+\infty} \left(\frac{1}{2} x (\cos(2x) + 1) e^{(-2x)} \right) dx$$
$$= \frac{1}{2} \int_{-\frac{1}{4}\pi}^{+\infty} x \cos(2x) e^{(-2x)} dx + \frac{1}{2} \int_{-\frac{1}{4}\pi}^{+\infty} x e^{(-2x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\int_{-\frac{1}{4}\pi}^{+\infty} x \cos(2\pi) e^{(-2\pi)} dx = \text{Re}\left(\int_{-\frac{1}{4}\pi}^{+\infty} x e^{((2i-2)\pi)} dx\right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{1}{4}\pi}^{+\infty} x \cos(2\pi) e^{(-2\pi)} dx = \text{Re}\left(\left(\frac{1}{16}i - \frac{1}{16}\right) \pi e^{\left(\frac{1}{2}\pi\right)} + \frac{1}{8} e^{\left(\frac{1}{2}\pi\right)}\right),\,$$

et donc:

$$\int_{-\frac{1}{4}\pi}^{+\infty} x \cos(2\pi) e^{(-2\pi)} dx = -\frac{1}{16} \pi e^{\left(\frac{1}{2}\pi\right)} + \frac{1}{8} e^{\left(\frac{1}{2}\pi\right)}.$$

On calcule de même $\int_{-\frac{1}{4}\pi}^{+\infty} x e^{(-2x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à

prendre en compte), et on obtient: $\int_{-\frac{1}{4}\pi}^{+\infty} x e^{(-2x)} dx = -\frac{1}{8} (\pi - 2) e^{(\frac{1}{2}\pi)}$. On peut conclure:

$$\int_{-\frac{1}{4}\pi}^{+\infty} x \cos(x)^2 e^{(-2x)} dx = -\frac{3}{32} \pi e^{\left(\frac{1}{2}\pi\right)} + \frac{3}{16} e^{\left(\frac{1}{2}\pi\right)}.$$

Corrigé 32.

1. L'application $x \mapsto x \cos(x) e^{(-x)}$ est continue sur $[0, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [0, +\infty[$, on a :

$$\left| x \cos(x) e^{(-x)} \right| \leqslant x e^{(-x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-x)} = x^3e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc :

$$xe^{(-x)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} x e^{(-x)} \mathrm{d}x$ converge, et donc $\int_0^{+\infty} x e^{(-x)} \mathrm{d}x$ converge aussi par continuité sur le segment [0,1]. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^{+\infty} x \cos(x) \, e^{(-x)} \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_0^{+\infty} x \cos(x) e^{(-x)} dx = \operatorname{Re} \left(\int_0^{+\infty} x e^{((i-1)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_0^{+\infty} x \cos(x) e^{(-x)} dx = \operatorname{Re}\left(\frac{1}{2}i\right),\,$$

et donc:

$$\int_0^{+\infty} x \cos(x) e^{(-x)} dx = 0.$$

Corrigé 33. Commençons par linéariser, en écrivant $\sinh{(2\,x)}$ et $\sinh{(6\,x)}$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 3

$$\sinh (6x) \sinh (2x)^3 = \frac{1}{16} \left(e^{(6x)} - e^{(-6x)} \right) \left(e^{(2x)} - e^{(-2x)} \right)^3$$

$$= \frac{1}{16} \left(e^{(12x)} - 3e^{(8x)} + 3e^{(4x)} + 3e^{(-4x)} - 3e^{(-8x)} + e^{(-12x)} - 2 \right)$$

$$= \frac{1}{8} \cosh (12x) - \frac{3}{8} \cosh (8x) + \frac{3}{8} \cosh (4x) - \frac{1}{8}.$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\begin{split} \int_{-1}^{0} \sinh{(6\,x)} \sinh{(2\,x)}^3 \, \mathrm{d}x &= \int_{-1}^{0} \left(\frac{1}{8} \cosh{(12\,x)} - \frac{3}{8} \cosh{(8\,x)} + \frac{3}{8} \cosh{(4\,x)} - \frac{1}{8}\right) \mathrm{d}x \\ &= \left[-\frac{1}{8} \, x + \frac{1}{96} \sinh{(12\,x)} - \frac{3}{64} \sinh{(8\,x)} + \frac{3}{32} \sinh{(4\,x)}\right]_{-1}^{0} \\ &= \frac{1}{96} \sinh{(12)} - \frac{3}{64} \sinh{(8)} + \frac{3}{32} \sinh{(4)} - \frac{1}{8}, \end{split}$$

d'où le résultat.

Corrigé 34.

 $\leftarrow \text{page } 3$

1. L'application $x \mapsto e^{(-x)} \sin(x)^2$ est continue sur $[0, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [0, +\infty[$, on a:

$$0 \leqslant e^{(-x)} \sin(x)^2 \leqslant e^{(-x)},$$

et on sait que l'intégrale $\int_0^{+\infty} e^{(-x)} dx$ converge (c'est une intégrale de référence). Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^{+\infty} e^{(-x)} \sin(x)^2 dx$ converge : d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a

$$\int_0^{+\infty} e^{(-x)} \sin(x)^2 dx = \int_0^{+\infty} \left(-\frac{1}{2} (\cos(2x) - 1) e^{(-x)} \right) dx$$
$$= -\frac{1}{2} \int_0^{+\infty} \cos(2x) e^{(-x)} dx + \frac{1}{2} \int_0^{+\infty} e^{(-x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\int_0^{+\infty} \cos(2x) e^{(-x)} dx = \text{Re}\left(\int_0^{+\infty} e^{((2i-1)x)} dx\right) = \text{Re}\left(\left[\frac{1}{2i-1}e^{((2i-1)x)}\right]_0^{+\infty}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{2i-1}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_0^{+\infty} \cos(2x) e^{(-x)} dx = \operatorname{Re}\left(\frac{2}{5}i + \frac{1}{5}\right),\,$$

et donc:

$$\int_0^{+\infty} \cos(2x) e^{(-x)} dx = \frac{1}{5}.$$

On calcule de même $\int_0^{+\infty} e^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_0^{+\infty} e^{(-x)} dx = 1$. On peut conclure:

$$\int_0^{+\infty} e^{(-x)} \sin(x)^2 dx = \frac{2}{5}.$$

Corrigé 35. Commençons par linéariser, en écrivant $\cosh(x)$ et $\cosh(8x)$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 3

 \leftarrow page 3

$$\cosh(8x)\cosh(x)^{2} = \frac{1}{8} \left(e^{(8x)} + e^{(-8x)} \right) \left(e^{(-x)} + e^{x} \right)^{2}$$

$$= \frac{1}{8} \left(e^{(10x)} + 2e^{(8x)} + e^{(6x)} + e^{(-6x)} + 2e^{(-8x)} + e^{(-10x)} \right)$$

$$= \frac{1}{4} \cosh(10x) + \frac{1}{2} \cosh(8x) + \frac{1}{4} \cosh(6x).$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-1}^{1} \cosh(8x) \cosh(x)^{2} dx = \int_{-1}^{1} \left(\frac{1}{4} \cosh(10x) + \frac{1}{2} \cosh(8x) + \frac{1}{4} \cosh(6x) \right) dx$$
$$= \left[\frac{1}{40} \sinh(10x) + \frac{1}{16} \sinh(8x) + \frac{1}{24} \sinh(6x) \right]_{-1}^{1}$$
$$= \frac{1}{20} \sinh(10) + \frac{1}{8} \sinh(8) + \frac{1}{12} \sinh(6),$$

d'où le résultat.

Corrigé 36.

1. L'application $x\mapsto xe^{(-x)}\sin{(x)}$ est continue sur $[-\frac{2}{3}\pi,+\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x\in[-\frac{2}{3}\pi,+\infty[$, on a:

$$\left| xe^{(-x)}\sin\left(x\right) \right| \leqslant xe^{(-x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-x)} = x^3e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc :

$$xe^{(-x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} x e^{(-x)} \mathrm{d}x$ converge, et donc $\int_{-\frac{2}{3}\pi}^{+\infty} x e^{(-x)} \mathrm{d}x$ converge

aussi par continuité sur le segment $[-\frac{2}{3}\pi,1]$. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-\frac{2}{3}\pi}^{+\infty} xe^{(-x)}\sin(x) dx$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{2}{3}\pi}^{+\infty} x e^{(-x)} \sin(x) dx = \operatorname{Im} \left(\int_{-\frac{2}{3}\pi}^{+\infty} x e^{((i-1)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties: on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas:

$$\int_{-\frac{2}{3}\pi}^{+\infty} x e^{(-x)} \sin(x) dx = \operatorname{Im}\left(\left(\frac{1}{6}i - \frac{1}{6}\right) \sqrt{3}\pi e^{\left(\frac{2}{3}\pi\right)} + \left(\frac{1}{6}i + \frac{1}{6}\right) \pi e^{\left(\frac{2}{3}\pi\right)} + \frac{1}{4}\sqrt{3}e^{\left(\frac{2}{3}\pi\right)} - \frac{1}{4}i e^{\left(\frac{2}{3}\pi\right)}\right),$$

et donc:

$$\int_{-\frac{2}{3}\pi}^{+\infty} x e^{(-x)} \sin(x) \, \mathrm{d}x = \frac{1}{6} \sqrt{3} \pi e^{\left(\frac{2}{3}\pi\right)} + \frac{1}{6} \pi e^{\left(\frac{2}{3}\pi\right)} - \frac{1}{4} e^{\left(\frac{2}{3}\pi\right)}.$$

Corrigé 37. Commençons par linéariser, en écrivant $\sin(5x)$ et $\sin(x)$ en fonction d'exponentielles grâce aux \leftarrow page 5 formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

$$\sin(5x)^{2}\sin(x)^{4} = \frac{1}{-64} \left(e^{(5ix)} - e^{(-5ix)}\right)^{2} \left(e^{(ix)} - e^{(-ix)}\right)^{4}$$

$$= \frac{1}{-64} \left(e^{(14ix)} - 4e^{(12ix)} + 6e^{(10ix)} - 4e^{(8ix)} + e^{(6ix)} - 2e^{(4ix)} + 8e^{(2ix)} + 8e^{(-2ix)} - 2e^{(-4ix)} + e^{(-6ix)} - 4e^{(6ix)} - 4e^{(-6ix)} -$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-\frac{1}{2}\pi}^{2\pi} \sin(5x)^{2} \sin(x)^{4} dx = \int_{-\frac{1}{2}\pi}^{2\pi} \left(-\frac{1}{32} \cos(14x) + \frac{1}{8} \cos(12x) - \frac{3}{16} \cos(10x) + \frac{1}{8} \cos(8x) - \frac{1}{32} \cos(6x) + \frac{1}{16} \cos(4x) - \frac{1}{4} \cot(12x) - \frac{1}{16} \cos(10x) + \frac{1}{16} \sin(10x) + \frac{1}$$

d'où le résultat.

Corrigé 38. Commençons par linéariser le terme trigonométrique. On a :

$$\begin{split} \int_{-\frac{7}{4}\pi}^{\pi} \cos{(2\,x)^2} \, e^{(2\,x)} \mathrm{d}x &= \int_{-\frac{7}{4}\pi}^{\pi} \left(\frac{1}{2} \left(\cos{(4\,x)} + 1 \right) e^{(2\,x)} \right) \mathrm{d}x \\ &= \frac{1}{2} \int_{-\frac{7}{4}\pi}^{\pi} \cos{(4\,x)} \, e^{(2\,x)} \mathrm{d}x + \frac{1}{2} \int_{-\frac{7}{4}\pi}^{\pi} e^{(2\,x)} \mathrm{d}x. \end{split}$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{7}{4}\pi}^{\pi} \cos(4x) e^{(2x)} dx = \operatorname{Re} \left(\int_{-\frac{7}{4}\pi}^{\pi} e^{((4i+2)x)} dx \right) = \operatorname{Re} \left(\left[\frac{1}{4i+2} e^{((4i+2)x)} \right]_{-\frac{7}{4}\pi}^{\pi} \right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{4i+2}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{-\frac{7}{2}\pi}^{\pi} \cos(4x) e^{(2x)} dx = \operatorname{Re}\left(-\left(\frac{1}{5}i - \frac{1}{10}\right) e^{(2\pi)} - \left(\frac{1}{5}i - \frac{1}{10}\right) e^{\left(-\frac{7}{2}\pi\right)}\right),\,$$

et donc:

$$\int_{-\frac{7}{4}\pi}^{\pi} \cos(4x) e^{(2x)} dx = \frac{1}{10} e^{(2\pi)} + \frac{1}{10} e^{\left(-\frac{7}{2}\pi\right)}.$$

On calcule de même $\int_{-\frac{7}{4}\pi}^{\pi}e^{(2\,x)}\mathrm{d}x$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_{-\frac{7}{4}\pi}^{\pi}e^{(2\,x)}\mathrm{d}x=\frac{1}{2}\,e^{(2\,\pi)}-\frac{1}{2}\,e^{\left(-\frac{7}{2}\,\pi\right)}$. On peut conclure:

$$\int_{-\frac{7}{4}\pi}^{\pi} \cos(2\pi)^2 e^{(2\pi)} dx = \frac{3}{10} e^{(2\pi)} - \frac{1}{5} e^{\left(-\frac{7}{2}\pi\right)}.$$

Corrigé 39.

1. L'application $x \mapsto x^2 e^{(-x)} \sin(x)$ est continue sur $[\frac{1}{2}\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [\frac{1}{2}\pi, +\infty[$, on a:

$$\left| x^{2}e^{(-x)}\sin(x) \right| \leqslant x^{2}e^{(-x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-x)} = x^4 e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^2 e^{(-x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2} \right).$$

Or l'intégrale de Riemann $\int_{\frac{1}{2}\pi}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{2}\pi}^{+\infty} x^2 e^{(-x)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{2}\pi}^{+\infty} x^2 e^{(-x)} \sin{(x)} \, \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{\frac{1}{2}\pi}^{+\infty} x^2 e^{(-x)} \sin(x) dx = \operatorname{Im} \left(\int_{\frac{1}{2}\pi}^{+\infty} x^2 e^{((i-1)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties deux fois: on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas:

$$\int_{\frac{1}{2}\pi}^{+\infty} x^2 e^{(-x)} \sin{(x)} \, \mathrm{d}x = \mathrm{Im}\left(\left(\frac{1}{8}i - \frac{1}{8}\right) \, \pi^2 e^{\left(-\frac{1}{2}\pi\right)} - \frac{1}{2} \, \pi e^{\left(-\frac{1}{2}\pi\right)} - \left(\frac{1}{2}i + \frac{1}{2}\right) \, e^{\left(-\frac{1}{2}\pi\right)}\right),$$

et donc:

$$\int_{\frac{1}{2}\pi}^{+\infty} x^2 e^{(-x)} \sin(x) \, \mathrm{d}x = \frac{1}{8} \pi^2 e^{\left(-\frac{1}{2}\pi\right)} - \frac{1}{2} e^{\left(-\frac{1}{2}\pi\right)}.$$

Corrigé 40.

1. L'application $x \mapsto xe^{(-x)}\sin(12x)^2$ est continue sur $[0, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [0, +\infty[$, on a :

$$0 \le xe^{(-x)}\sin(12x)^2 \le xe^{(-x)}$$
.

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-x)} = x^3e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$xe^{(-x)} = \mathop{o}\limits_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} x e^{(-x)} \mathrm{d}x$ converge, et donc $\int_{0}^{+\infty} x e^{(-x)} \mathrm{d}x$ converge aussi par continuité sur le segment [0,1]. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{0}^{+\infty} x e^{(-x)} \sin{(12\,x)^2} \, \mathrm{d}x$ converge : d'où le résultat.

 $\leftarrow \text{page } 3$

2. Commençons par linéariser le terme trigonométrique. On a :

$$\int_0^{+\infty} x e^{(-x)} \sin(12x)^2 dx = \int_0^{+\infty} \left(-\frac{1}{2} x (\cos(24x) - 1) e^{(-x)} \right) dx$$
$$= -\frac{1}{2} \int_0^{+\infty} x \cos(24x) e^{(-x)} dx + \frac{1}{2} \int_0^{+\infty} x e^{(-x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_0^{+\infty} x \cos(24x) e^{(-x)} dx = \operatorname{Re} \left(\int_0^{+\infty} x e^{((24i-1)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_0^{+\infty} x \cos(24x) e^{(-x)} dx = \text{Re}\left(\frac{48}{332929}i - \frac{575}{332929}\right),$$

et donc:

$$\int_0^{+\infty} x \cos(24x) e^{(-x)} dx = -\frac{575}{332929}.$$

On calcule de même $\int_0^{+\infty} xe^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient : $\int_0^{+\infty} xe^{(-x)} dx = 1$. On peut conclure :

$$\int_0^{+\infty} x e^{(-x)} \sin(12x)^2 dx = \frac{166752}{332929}$$

Corrigé 41.

1. L'application $x \mapsto x \cos(3x)^2 e^{(-4x)}$ est continue sur $[0, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [0, +\infty[$, on a :

$$0 \leqslant x \cos(3x)^2 e^{(-4x)} \leqslant x e^{(-4x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-4\,x)} = x^3e^{(-4\,x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc :

$$xe^{(-4x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} x e^{(-4\,x)} \mathrm{d}x$ converge, et donc $\int_0^{+\infty} x e^{(-4\,x)} \mathrm{d}x$ converge aussi par continuité sur le segment [0,1]. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^{+\infty} x \cos{(3\,x)^2} \, e^{(-4\,x)} \mathrm{d}x$ converge : d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a :

$$\int_0^{+\infty} x \cos(3x)^2 e^{(-4x)} dx = \int_0^{+\infty} \left(\frac{1}{2} x (\cos(6x) + 1) e^{(-4x)}\right) dx$$
$$= \frac{1}{2} \int_0^{+\infty} x \cos(6x) e^{(-4x)} dx + \frac{1}{2} \int_0^{+\infty} x e^{(-4x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_0^{+\infty} x \cos(6x) e^{(-4x)} dx = \text{Re} \left(\int_0^{+\infty} x e^{((6i-4)x)} dx \right),$$

27

 \leftarrow page 4

et on calcule cette intégrale en intégrant par parties: on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas:

$$\int_{0}^{+\infty} x \cos(6x) e^{(-4x)} dx = \text{Re}\left(\frac{3}{169}i - \frac{5}{676}\right),\,$$

et donc:

$$\int_0^{+\infty} x \cos(6x) e^{(-4x)} dx = -\frac{5}{676}.$$

On calcule de même $\int_0^{+\infty} x e^{(-4x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient : $\int_0^{+\infty} x e^{(-4x)} dx = \frac{1}{16}$. On peut conclure :

$$\int_0^{+\infty} x \cos(3x)^2 e^{(-4x)} dx = \frac{149}{5408}.$$

Corrigé 42. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{1}{4}\pi}^{0} \cos(2x) e^{x} dx = \operatorname{Re} \left(\int_{-\frac{1}{4}\pi}^{0} e^{((2i+1)x)} dx \right) = \operatorname{Re} \left(\left[\frac{1}{2i+1} e^{((2i+1)x)} \right]_{-\frac{1}{4}\pi}^{0} \right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{2i+1}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{-\frac{1}{4}\pi}^{0} \cos(2x) e^{x} dx = \operatorname{Re}\left(\left(\frac{1}{5}i + \frac{2}{5}\right) e^{\left(-\frac{1}{4}\pi\right)} - \frac{2}{5}i + \frac{1}{5}\right),\,$$

et donc:

$$\int_{-\frac{1}{4}\pi}^{0} \cos(2x) e^{x} dx = \frac{2}{5} e^{\left(-\frac{1}{4}\pi\right)} + \frac{1}{5}.$$

Corrigé 43.

1. L'application $x \mapsto e^{(-x)} \sin(x)$ est continue sur $[-\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [-\pi, +\infty[$, on a:

$$\left| e^{(-x)} \sin\left(x\right) \right| \leqslant e^{(-x)},$$

et on sait que l'intégrale $\int_{-\pi}^{+\infty} e^{(-x)} dx$ converge (c'est une intégrale de référence). Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-\pi}^{+\infty} e^{(-x)} \sin(x) dx$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\pi}^{+\infty} e^{(-x)} \sin(x) \, \mathrm{d}x = \mathrm{Im} \left(\int_{-\pi}^{+\infty} e^{((i-1)x)} \, \mathrm{d}x \right) = \mathrm{Im} \left(\left[\frac{1}{i-1} e^{((i-1)x)} \right]_{-\pi}^{+\infty} \right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{i-1}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{-\pi}^{+\infty} e^{(-x)} \sin(x) dx = \operatorname{Im} \left(-\left(\frac{1}{2}i + \frac{1}{2}\right) e^{\pi} \right),$$

et donc:

$$\int_{-\pi}^{+\infty} e^{(-x)} \sin(x) \, \mathrm{d}x = -\frac{1}{2} e^{\pi}.$$

Corrigé 44. \leftarrow page 4

1. L'application $x\mapsto xe^{(-x)}\sin{(2\,x)}^2$ est continue sur $[\frac{11}{3}\,\pi,+\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x\in[\frac{11}{3}\,\pi,+\infty[$, on a:

$$0 \leqslant xe^{(-x)}\sin(2x)^2 \leqslant xe^{(-x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-x)} = x^3e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc :

$$xe^{(-x)} = \mathop{o}\limits_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{\frac{11}{3}\pi}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{11}{3}\pi}^{+\infty} xe^{(-x)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{11}{3}\pi}^{+\infty} xe^{(-x)} \sin{(2\,x)^2} \, \mathrm{d}x$ converge: d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a

$$\int_{\frac{11}{3}\pi}^{+\infty} x e^{(-x)} \sin(2x)^2 dx = \int_{\frac{11}{3}\pi}^{+\infty} \left(-\frac{1}{2} x (\cos(4x) - 1) e^{(-x)} \right) dx$$
$$= -\frac{1}{2} \int_{\frac{11}{2}\pi}^{+\infty} x \cos(4x) e^{(-x)} dx + \frac{1}{2} \int_{\frac{11}{2}\pi}^{+\infty} x e^{(-x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\int_{\frac{11}{3}\pi}^{+\infty} x \cos(4x) e^{(-x)} dx = \text{Re}\left(\int_{\frac{11}{3}\pi}^{+\infty} x e^{((4i-1)x)} dx\right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{\frac{11}{3}\pi}^{+\infty} x \cos(4x) e^{(-x)} dx = \operatorname{Re}\left(\left(\frac{11}{102}i - \frac{22}{51}\right) \sqrt{3}\pi e^{\left(-\frac{11}{3}\pi\right)} - \left(\frac{22}{51}i + \frac{11}{102}\right) \pi e^{\left(-\frac{11}{3}\pi\right)} - \left(\frac{15}{578}i + \frac{4}{289}\right) \sqrt{3}e^{\left(-\frac{11}{3}\pi\right)} - \left(\frac{4}{289}i + \frac{11}{289}i + \frac{4}{289}i + \frac$$

et donc:

$$\int_{\frac{11}{3}\pi}^{+\infty} x \cos(4x) e^{(-x)} dx = -\frac{22}{51} \sqrt{3}\pi e^{\left(-\frac{11}{3}\pi\right)} - \frac{11}{102} \pi e^{\left(-\frac{11}{3}\pi\right)} - \frac{4}{289} \sqrt{3} e^{\left(-\frac{11}{3}\pi\right)} + \frac{15}{578} e^{\left(-\frac{11}{3}\pi\right)}.$$

On calcule de même $\int_{\frac{11}{3}\pi}^{+\infty} xe^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à

prendre en compte), et on obtient : $\int_{\frac{11}{2}\pi}^{+\infty} x e^{(-x)} dx = \Gamma\left(2, \frac{11}{3}\pi\right)$. On peut conclure :

$$\int_{\frac{11}{3}\pi}^{+\infty} x e^{(-x)} \sin(2x)^2 dx = \frac{1}{3468} \left(187\pi \left(4\sqrt{3} + 35 \right) + 24\sqrt{3} + 1689 \right) e^{\left(-\frac{11}{3}\pi \right)}.$$

Corrigé 45. Commençons par linéariser le terme trigonométrique. On a :

$$\int_0^{\frac{1}{4}\pi} x e^{(-3x)} \sin(2x)^2 dx = \int_0^{\frac{1}{4}\pi} \left(-\frac{1}{2} x (\cos(4x) - 1) e^{(-3x)} \right) dx$$
$$= -\frac{1}{2} \int_0^{\frac{1}{4}\pi} x \cos(4x) e^{(-3x)} dx + \frac{1}{2} \int_0^{\frac{1}{4}\pi} x e^{(-3x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_0^{\frac{1}{4}\pi} x \cos(4\pi) e^{(-3\pi)} dx = \text{Re}\left(\int_0^{\frac{1}{4}\pi} x e^{((4i-3)\pi)} dx\right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_0^{\frac{1}{4}\pi} x \cos(4x) e^{(-3x)} dx = \operatorname{Re}\left(\left(\frac{1}{25}i + \frac{3}{100}\right) \pi e^{\left(-\frac{3}{4}\pi\right)} + \left(\frac{24}{625}i - \frac{7}{625}\right) e^{\left(-\frac{3}{4}\pi\right)} + \frac{24}{625}i - \frac{7}{625}\right),$$

et donc:

$$\int_0^{\frac{1}{4}\pi} x \cos(4\pi) e^{(-3\pi)} dx = \frac{3}{100} \pi e^{\left(-\frac{3}{4}\pi\right)} - \frac{7}{625} e^{\left(-\frac{3}{4}\pi\right)} - \frac{7}{625}.$$

On calcule de même $\int_0^{\frac{1}{4}\pi} xe^{(-3x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient : $\int_0^{\frac{1}{4}\pi} xe^{(-3x)} dx = -\frac{1}{36} (3\pi + 4)e^{(-\frac{3}{4}\pi)} + \frac{1}{9}$. On peut conclure :

$$\int_0^{\frac{1}{4}\pi} x e^{(-3x)} \sin(2x)^2 dx = -\frac{1}{22500} \left(1275\pi + 1124\right) e^{\left(-\frac{3}{4}\pi\right)} + \frac{344}{5625}.$$

Corrigé 46

1. L'application $x\mapsto \cos{(x)}^2\,e^{(-x)}$ est continue sur $[-\frac{1}{3}\,\pi,+\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x\in[-\frac{1}{3}\,\pi,+\infty[$, on a:

$$0 \le \cos(x)^2 e^{(-x)} \le e^{(-x)}$$
.

et on sait que l'intégrale $\int_{-\frac{1}{3}\pi}^{+\infty} e^{(-x)} dx$ converge (c'est une intégrale de référence). Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-\frac{1}{3}\pi}^{+\infty} \cos(x)^2 e^{(-x)} dx$ converge : d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a:

$$\int_{-\frac{1}{3}\pi}^{+\infty} \cos(x)^2 e^{(-x)} dx = \int_{-\frac{1}{3}\pi}^{+\infty} \left(\frac{1}{2} (\cos(2x) + 1) e^{(-x)} \right) dx$$
$$= \frac{1}{2} \int_{-\frac{1}{3}\pi}^{+\infty} \cos(2x) e^{(-x)} dx + \frac{1}{2} \int_{-\frac{1}{3}\pi}^{+\infty} e^{(-x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{1}{3}\pi}^{+\infty} \cos(2x) e^{(-x)} dx = \operatorname{Re}\left(\int_{-\frac{1}{3}\pi}^{+\infty} e^{((2i-1)x)} dx\right) = \operatorname{Re}\left(\left[\frac{1}{2i-1}e^{((2i-1)x)}\right]_{-\frac{1}{3}\pi}^{+\infty}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{2i-1}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{-\frac{1}{3}\pi}^{+\infty} \cos{(2\,x)}\,e^{(-x)}\mathrm{d}x = \mathrm{Re}\left(-\left(\frac{1}{10}i - \frac{1}{5}\right)\,\sqrt{3}e^{\left(\frac{1}{3}\,\pi\right)} - \left(\frac{1}{5}i + \frac{1}{10}\right)\,e^{\left(\frac{1}{3}\,\pi\right)}\right),$$

et donc:

$$\int_{-\frac{1}{3}\pi}^{+\infty} \cos(2\pi) e^{(-x)} dx = \frac{1}{5} \sqrt{3} e^{(\frac{1}{3}\pi)} - \frac{1}{10} e^{(\frac{1}{3}\pi)}.$$

On calcule de même $\int_{-\frac{1}{3}\pi}^{+\infty} e^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_{-\frac{1}{3}\pi}^{+\infty} e^{(-x)} dx = e^{\left(\frac{1}{3}\pi\right)}$. On peut conclure:

$$\int_{-\frac{1}{3}\pi}^{+\infty} \cos(x)^2 e^{(-x)} dx = \frac{1}{10} \sqrt{3} e^{\left(\frac{1}{3}\pi\right)} + \frac{9}{20} e^{\left(\frac{1}{3}\pi\right)}.$$

Corrigé 47. Commençons par linéariser, en écrivant $\cos(x)$ et $\sin(2x)$ en fonction d'exponentielles grâce aux formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 4

$$\cos(x)^{4} \sin(2x)^{2} = \frac{1}{-64} \left(e^{(2ix)} - e^{(-2ix)} \right)^{2} \left(e^{(ix)} + e^{(-ix)} \right)^{4}$$

$$= \frac{1}{-64} \left(e^{(8ix)} + 4e^{(6ix)} + 4e^{(4ix)} - 4e^{(2ix)} - 4e^{(-2ix)} + 4e^{(-4ix)} + 4e^{(-6ix)} + e^{(-8ix)} - 10 \right)$$

$$= -\frac{1}{32} \cos(8x) - \frac{1}{8} \cos(6x) - \frac{1}{8} \cos(4x) + \frac{1}{8} \cos(2x) + \frac{5}{32}.$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-\frac{1}{6}\pi}^{0} \cos(x)^{4} \sin(2x)^{2} dx = \int_{-\frac{1}{6}\pi}^{0} \left(-\frac{1}{32} \cos(8x) - \frac{1}{8} \cos(6x) - \frac{1}{8} \cos(4x) + \frac{1}{8} \cos(2x) + \frac{5}{32} \right) dx$$

$$= \left[\frac{5}{32} x - \frac{1}{256} \sin(8x) - \frac{1}{48} \sin(6x) - \frac{1}{32} \sin(4x) + \frac{1}{16} \sin(2x) \right]_{-\frac{1}{6}\pi}^{0}$$

$$= \frac{5}{192} \pi + \frac{9}{512} \sqrt{3},$$

d'où le résultat.

Corrigé 48. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

 \leftarrow page 4

$$\int_{-\frac{1}{3}\pi}^{0} x e^{(-3x)} \sin(x) dx = \operatorname{Im} \left(\int_{-\frac{1}{3}\pi}^{0} x e^{((i-3)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{1}{3}\pi}^{0} x e^{(-3x)} \sin(x) dx = \operatorname{Im}\left(\left(\frac{1}{20}i - \frac{1}{60}\right)\sqrt{3}\pi e^{\pi} - \left(\frac{1}{60}i + \frac{1}{20}\right)\pi e^{\pi} - \left(\frac{1}{25}i - \frac{3}{100}\right)\sqrt{3}e^{\pi} + \left(\frac{3}{100}i + \frac{1}{25}\right)e^{\pi} - \frac{3}{50}i - \frac{2}{25}\right),$$

et donc:

$$\int_{-\frac{1}{6}\pi}^{0} x e^{(-3x)} \sin(x) dx = \frac{1}{20} \sqrt{3}\pi e^{\pi} - \frac{1}{60} \pi e^{\pi} - \frac{1}{25} \sqrt{3}e^{\pi} + \frac{3}{100} e^{\pi} - \frac{3}{50}.$$

Corrigé 49.

 \leftarrow page 4

1. L'application $x\mapsto \cos\left(x\right)^2e^{(-3\,x)}$ est continue sur $\left[-\frac{1}{3}\,\pi,+\infty\right[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x\in\left[-\frac{1}{3}\,\pi,+\infty\right[$, on a :

$$0 \le \cos(x)^2 e^{(-3x)} \le e^{(-3x)}$$

et on sait que l'intégrale $\int_{-\frac{1}{3}\pi}^{+\infty}e^{(-3x)}\mathrm{d}x$ converge (c'est une intégrale de référence). Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-\frac{1}{3}\pi}^{+\infty}\cos\left(x\right)^{2}e^{(-3x)}\mathrm{d}x$ converge : d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a :

$$\int_{-\frac{1}{3}\pi}^{+\infty} \cos(x)^2 e^{(-3x)} dx = \int_{-\frac{1}{3}\pi}^{+\infty} \left(\frac{1}{2} (\cos(2x) + 1) e^{(-3x)} \right) dx$$
$$= \frac{1}{2} \int_{-\frac{1}{2}\pi}^{+\infty} \cos(2x) e^{(-3x)} dx + \frac{1}{2} \int_{-\frac{1}{2}\pi}^{+\infty} e^{(-3x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\int_{-\frac{1}{3}\pi}^{+\infty} \cos(2x) e^{(-3x)} dx = \operatorname{Re}\left(\int_{-\frac{1}{3}\pi}^{+\infty} e^{((2i-3)x)} dx\right) = \operatorname{Re}\left(\left[\frac{1}{2i-3}e^{((2i-3)x)}\right]_{-\frac{1}{3}\pi}^{+\infty}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{2i-3}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{-\frac{1}{3}\pi}^{+\infty} \cos(2x) e^{(-3x)} dx = \text{Re}\left(-\left(\frac{3}{26}i - \frac{1}{13}\right)\sqrt{3}e^{\pi} - \left(\frac{1}{13}i + \frac{3}{26}\right)e^{\pi}\right),$$

et donc:

$$\int_{-\frac{1}{3}\pi}^{+\infty} \cos(2x) e^{(-3x)} dx = \frac{1}{13} \sqrt{3} e^{\pi} - \frac{3}{26} e^{\pi}.$$

On calcule de même $\int_{-\frac{1}{3}\pi}^{+\infty} e^{(-3x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à

prendre en compte), et on obtient: $\int_{-\frac{1}{2}\pi}^{+\infty} e^{(-3x)} dx = \frac{1}{3}e^{\pi}$. On peut conclure:

$$\int_{-\frac{1}{3}\pi}^{+\infty} \cos(x)^2 e^{(-3x)} dx = \frac{1}{26} \sqrt{3}e^{\pi} + \frac{17}{156} e^{\pi}.$$

Corrigé 50. Commençons par linéariser, en écrivant $\cos(5x)$ et $\cos(x)$ en fonction d'exponentielles grâce aux formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 5

 \leftarrow page 5

$$\begin{split} \cos{(5\,x)}\cos{(x)}^3 &= \frac{1}{16}\Big(e^{(5i\,x)} + e^{(-5i\,x)}\Big)\Big(e^{(i\,x)} + e^{(-i\,x)}\Big)^3 \\ &= \frac{1}{16}\left(e^{(8i\,x)} + 3\,e^{(6i\,x)} + 3\,e^{(4i\,x)} + e^{(2i\,x)} + e^{(-2i\,x)} + 3\,e^{(-4i\,x)} + 3\,e^{(-6i\,x)} + e^{(-8i\,x)}\right) \\ &= \frac{1}{8}\cos{(8\,x)} + \frac{3}{8}\cos{(6\,x)} + \frac{3}{8}\cos{(4\,x)} + \frac{1}{8}\cos{(2\,x)} \,. \end{split}$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-\pi}^{\frac{3}{4}\pi} \cos(5x) \cos(x)^3 dx = \int_{-\pi}^{\frac{3}{4}\pi} \left(\frac{1}{8} \cos(8x) + \frac{3}{8} \cos(6x) + \frac{3}{8} \cos(4x) + \frac{1}{8} \cos(2x) \right) dx$$
$$= \left[\frac{1}{64} \sin(8x) + \frac{1}{16} \sin(6x) + \frac{3}{32} \sin(4x) + \frac{1}{16} \sin(2x) \right]_{-\pi}^{\frac{3}{4}\pi}$$
$$= 0.$$

d'où le résultat.

Corrigé 51. Commençons par linéariser le terme trigonométrique. On a :

$$\begin{split} \int_{-\frac{1}{3}\pi}^{\frac{5}{6}\pi} e^{(-4x)} \sin(6x)^2 dx &= \int_{-\frac{1}{3}\pi}^{\frac{5}{6}\pi} \left(-\frac{1}{2} \left(\cos(12x) - 1 \right) e^{(-4x)} \right) dx \\ &= -\frac{1}{2} \int_{-\frac{1}{2}\pi}^{\frac{5}{6}\pi} \cos(12x) e^{(-4x)} dx + \frac{1}{2} \int_{-\frac{1}{2}\pi}^{\frac{5}{6}\pi} e^{(-4x)} dx. \end{split}$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{1}{3}\pi}^{\frac{5}{6}\pi} \cos(12\pi) e^{(-4\pi)} dx = \operatorname{Re}\left(\int_{-\frac{1}{3}\pi}^{\frac{5}{6}\pi} e^{((12i-4)\pi)} dx\right) = \operatorname{Re}\left(\left[\frac{1}{12i-4}e^{((12i-4)\pi)}\right]_{-\frac{1}{3}\pi}^{\frac{5}{6}\pi}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{12i-4}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{-\frac{1}{2}\pi}^{\frac{5}{6}\pi} \cos\left(12\,x\right) e^{(-4\,x)} \mathrm{d}x = \operatorname{Re}\left(\left(\frac{3}{40}i + \frac{1}{40}\right) \, e^{\left(\frac{4}{3}\,\pi\right)} - \left(\frac{3}{40}i + \frac{1}{40}\right) \, e^{\left(-\frac{10}{3}\,\pi\right)}\right),$$

et donc:

$$\int_{-\frac{1}{3}\pi}^{\frac{5}{6}\pi} \cos(12x) e^{(-4x)} dx = \frac{1}{40} e^{(\frac{4}{3}\pi)} - \frac{1}{40} e^{(-\frac{10}{3}\pi)}.$$

On calcule de même $\int_{1}^{\frac{5}{6}\pi} e^{(-4x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_{-\frac{1}{4}\pi}^{\frac{5}{6}\pi} e^{(-4x)} dx = \frac{1}{4} e^{(\frac{4}{3}\pi)} - \frac{1}{4} e^{(-\frac{10}{3}\pi)}$. On peut conclure:

$$\int_{-\frac{1}{2}\pi}^{\frac{5}{6}\pi} e^{(-4x)} \sin(6x)^2 dx = \frac{9}{80} e^{(\frac{4}{3}\pi)} - \frac{9}{80} e^{(-\frac{10}{3}\pi)}.$$

Corrigé 52. Commençons par linéariser, en écrivant $\cos(107x)$ et $\sin(12x)$ en fonction d'exponentielles grâce aux formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

$$\cos(107x)^{2} \sin(12x)^{2} = \frac{1}{-16} \left(e^{(107ix)} + e^{(-107ix)} \right)^{2} \left(e^{(12ix)} - e^{(-12ix)} \right)^{2}$$

$$= \frac{1}{-16} \left(e^{(238ix)} - 2e^{(214ix)} + e^{(190ix)} + 2e^{(24ix)} + 2e^{(-24ix)} + e^{(-190ix)} - 2e^{(-214ix)} + e^{(-238ix)} - 4 \right)$$

$$= -\frac{1}{8} \cos(238x) + \frac{1}{4} \cos(214x) - \frac{1}{8} \cos(190x) - \frac{1}{4} \cos(24x) + \frac{1}{4}.$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit:

$$\int_{\frac{1}{2}\pi}^{5\pi} \cos(107x)^2 \sin(12x)^2 dx = \int_{\frac{1}{2}\pi}^{5\pi} \left(-\frac{1}{8} \cos(238x) + \frac{1}{4} \cos(214x) - \frac{1}{8} \cos(190x) - \frac{1}{4} \cos(24x) + \frac{1}{4} \right) dx$$

$$= \left[\frac{1}{4}x - \frac{1}{1904} \sin(238x) + \frac{1}{856} \sin(214x) - \frac{1}{1520} \sin(190x) - \frac{1}{96} \sin(24x) \right]_{\frac{1}{2}\pi}^{5\pi}$$

$$= \frac{9}{8}\pi,$$

d'où le résultat.

Corrigé 53.

 \leftarrow page 5

1. L'application $x \mapsto x \cos(2x)^2 e^{(-2x)}$ est continue sur $[\frac{1}{6}\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [\frac{1}{6}\pi, +\infty[$, on a:

$$0 \le x \cos(2x)^2 e^{(-2x)} \le x e^{(-2x)}$$
.

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-2x)} = x^3e^{(-2x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc :

$$xe^{(-2x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{\frac{1}{\pi}}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{6}\pi}^{+\infty} xe^{(-2x)} dx$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{\kappa}}^{+\infty} x \cos{(2\,x)^2} \, e^{(-2\,x)} \mathrm{d}x$ converge: d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a:

$$\begin{split} \int_{\frac{1}{6}\pi}^{+\infty} x \cos{(2\,x)^2} \, e^{(-2\,x)} \mathrm{d}x &= \int_{\frac{1}{6}\pi}^{+\infty} \left(\frac{1}{2}\,x (\cos{(4\,x)} + 1) e^{(-2\,x)}\right) \mathrm{d}x \\ &= \frac{1}{2} \int_{\frac{1}{6}\pi}^{+\infty} x \cos{(4\,x)} \, e^{(-2\,x)} \mathrm{d}x + \frac{1}{2} \int_{\frac{1}{6}\pi}^{+\infty} x e^{(-2\,x)} \mathrm{d}x. \end{split}$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a

$$\int_{\frac{1}{6}\pi}^{+\infty} x \cos(4x) e^{(-2x)} dx = \operatorname{Re}\left(\int_{\frac{1}{6}\pi}^{+\infty} x e^{((4i-2)x)} dx\right),$$

et on calcule cette intégrale en intégrant par parties: on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas:

$$\int_{\frac{1}{6}\pi}^{+\infty} x \cos(4x) e^{(-2x)} dx = \operatorname{Re}\left(\left(\frac{1}{120}i - \frac{1}{60}\right) \sqrt{3}\pi e^{\left(-\frac{1}{3}\pi\right)} - \left(\frac{1}{60}i + \frac{1}{120}\right) \pi e^{\left(-\frac{1}{3}\pi\right)} - \left(\frac{3}{200}i + \frac{1}{50}\right) \sqrt{3}e^{\left(-\frac{1}{3}\pi\right)} - \left(\frac{1}{50}i - \frac{1}{50}i - \frac{1}{50}$$

et donc:

$$\int_{\frac{1}{3}\pi}^{+\infty} x \cos(4x) e^{(-2x)} dx = -\frac{1}{60} \sqrt{3}\pi e^{\left(-\frac{1}{3}\pi\right)} - \frac{1}{120} \pi e^{\left(-\frac{1}{3}\pi\right)} - \frac{1}{50} \sqrt{3} e^{\left(-\frac{1}{3}\pi\right)} + \frac{3}{200} e^{\left(-\frac{1}{3}\pi\right)}.$$

On calcule de même $\int_{\frac{1}{6}\pi}^{+\infty} x e^{(-2x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient : $\int_{\frac{1}{2}\pi}^{+\infty} x e^{(-2x)} dx = \frac{1}{12} (\pi + 3) e^{(-\frac{1}{3}\pi)}$. On peut conclure :

$$\int_{\frac{1}{3}\pi}^{+\infty} x \cos(2x)^2 e^{(-2x)} dx = -\frac{1}{120} \sqrt{3}\pi e^{\left(-\frac{1}{3}\pi\right)} + \frac{3}{80} \pi e^{\left(-\frac{1}{3}\pi\right)} - \frac{1}{100} \sqrt{3} e^{\left(-\frac{1}{3}\pi\right)} + \frac{53}{400} e^{\left(-\frac{1}{3}\pi\right)}.$$

Corrigé 54.

1. L'application $x \mapsto x^2 e^{(-7x)} \sin(3x)$ est continue sur $[0, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [0, +\infty[$, on a:

$$\left| x^2 e^{(-7x)} \sin(3x) \right| \le x^2 e^{(-7x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-7x)} = x^4 e^{(-7x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^{2}e^{(-7x)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^{2}}\right).$$

Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} x^2 e^{(-7\,x)} \mathrm{d}x$ converge, et donc $\int_0^{+\infty} x^2 e^{(-7\,x)} \mathrm{d}x$ converge aussi par continuité sur le segment [0,1]. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^{+\infty} x^2 e^{(-7\,x)} \sin{(3\,x)} \, \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_0^{+\infty} x^2 e^{(-7x)} \sin(3x) \, \mathrm{d}x = \operatorname{Im} \left(\int_0^{+\infty} x^2 e^{((3i-7)x)} \, \mathrm{d}x \right),$$

et on calcule cette intégrale en intégrant par parties deux fois : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_0^{+\infty} x^2 e^{(-7x)} \sin(3x) \, dx = \operatorname{Im}\left(\frac{207}{48778}i + \frac{77}{48778}\right),$$

et donc:

$$\int_0^{+\infty} x^2 e^{(-7x)} \sin(3x) \, \mathrm{d}x = \frac{207}{48778}.$$

Corrigé 55.

1. L'application $x \mapsto x \cos(4x)^2 e^{(-7x)}$ est continue sur $[\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [\pi, +\infty[$, on a :

$$0 \leqslant x \cos(4x)^2 e^{(-7x)} \leqslant x e^{(-7x)},$$

 \leftarrow page 5

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-7x)} = x^3e^{(-7x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$xe^{(-7x)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{-}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\pi}^{+\infty} x e^{(-7x)} dx$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-\pi}^{7\pi} x \cos(4x)^2 e^{(-7x)} dx$ converge: d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On

$$\int_{\pi}^{+\infty} x \cos(4x)^2 e^{(-7x)} dx = \int_{\pi}^{+\infty} \left(\frac{1}{2} x (\cos(8x) + 1) e^{(-7x)}\right) dx$$
$$= \frac{1}{2} \int_{\pi}^{+\infty} x \cos(8x) e^{(-7x)} dx + \frac{1}{2} \int_{\pi}^{+\infty} x e^{(-7x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{\pi}^{+\infty} x \cos(8x) e^{(-7x)} dx = \operatorname{Re} \left(\int_{\pi}^{+\infty} x e^{((8i-7)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties: on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas:

$$\int_{\pi}^{+\infty} x \cos(8x) e^{(-7x)} dx = \operatorname{Re}\left(\left(\frac{8}{113}i + \frac{7}{113}\right) \pi e^{(-7\pi)} + \left(\frac{112}{12769}i - \frac{15}{12769}\right) e^{(-7\pi)}\right),$$

et donc:

$$\int_{\pi}^{+\infty} x \cos(8x) e^{(-7x)} dx = \frac{7}{113} \pi e^{(-7\pi)} - \frac{15}{12769} e^{(-7\pi)}.$$

On calcule de même $\int_{-\infty}^{+\infty} xe^{(-7x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_{-\infty}^{+\infty} x e^{(-7x)} dx = \frac{1}{49} (7\pi + 1) e^{(-7\pi)}$. On peut conclure:

$$\int_{\pi}^{+\infty} x \cos(4x)^2 e^{(-7x)} dx = \frac{81}{791} \pi e^{(-7\pi)} + \frac{6017}{625681} e^{(-7\pi)}.$$

Corrigé 56.

1. L'application $x \mapsto \cos(4x)^2 e^{(-x)}$ est continue sur $[32\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [32\pi, +\infty[$, on a:

$$0 \le \cos(4x)^2 e^{(-x)} \le e^{(-x)}$$

et on sait que l'intégrale $\int_{0}^{+\infty} e^{(-x)} dx$ converge (c'est une intégrale de référence). Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{32\pi}^{+\infty} \cos(4x)^2 e^{(-x)} dx$ converge: d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a

$$\int_{32\pi}^{+\infty} \cos(4x)^2 e^{(-x)} dx = \int_{32\pi}^{+\infty} \left(\frac{1}{2} (\cos(8x) + 1) e^{(-x)} \right) dx$$
$$= \frac{1}{2} \int_{32\pi}^{+\infty} \cos(8x) e^{(-x)} dx + \frac{1}{2} \int_{32\pi}^{+\infty} e^{(-x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a

$$\int_{32\,\pi}^{+\infty} \cos\left(8\,x\right) e^{(-x)} \mathrm{d}x = \mathrm{Re}\left(\int_{32\,\pi}^{+\infty} e^{((8i-1)\,x)} \mathrm{d}x\right) = \mathrm{Re}\left(\left[\frac{1}{8i-1}e^{((8i-1)\,x)}\right]_{32\,\pi}^{+\infty}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{8i-1}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{32\pi}^{+\infty} \cos(8x) e^{(-x)} dx = \text{Re}\left(\left(\frac{8}{65}i + \frac{1}{65}\right) e^{(-32\pi)}\right),\,$$

et donc:

$$\int_{32\pi}^{+\infty} \cos(8x) e^{(-x)} dx = \frac{1}{65} e^{(-32\pi)}.$$

On calcule de même $\int_{32\pi}^{+\infty} e^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient : $\int_{32\pi}^{+\infty} e^{(-x)} dx = e^{(-32\pi)}$. On peut conclure :

$$\int_{32\pi}^{+\infty} \cos(4x)^2 e^{(-x)} dx = \frac{33}{65} e^{(-32\pi)}.$$

Corrigé 57. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

 \leftarrow page 5

$$\int_{-\pi}^{\frac{1}{3}\pi} e^{(2x)} \sin(11x) dx = \operatorname{Im} \left(\int_{-\pi}^{\frac{1}{3}\pi} e^{((11i+2)x)} dx \right) = \operatorname{Im} \left(\left[\frac{1}{11i+2} e^{((11i+2)x)} \right]_{-\pi}^{\frac{1}{3}\pi} \right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{11i+2}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{-\pi}^{\frac{1}{3}\pi} e^{(2x)} \sin(11x) dx = \operatorname{Im}\left(-\left(\frac{1}{125}i + \frac{11}{250}\right) \sqrt{3}e^{\left(\frac{2}{3}\pi\right)} - \left(\frac{11}{250}i - \frac{1}{125}\right) e^{\left(\frac{2}{3}\pi\right)} - \left(\frac{11}{125}i - \frac{2}{125}\right) e^{(-2\pi)}\right),$$

et donc:

$$\int_{-\pi}^{\frac{1}{3}\pi} e^{(2x)} \sin(11x) dx = -\frac{1}{125} \sqrt{3} e^{\left(\frac{2}{3}\pi\right)} - \frac{11}{250} e^{\left(\frac{2}{3}\pi\right)} - \frac{11}{125} e^{(-2\pi)}.$$

Corrigé 58. Commençons par linéariser, en écrivant $\sin(x)$ et $\sin(11x)$ en fonction d'exponentielles grâce aux formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

← page 5

$$\sin (11x)^3 \sin (x)^2 = \frac{1}{32i} \left(e^{(11ix)} - e^{(-11ix)} \right)^3 \left(e^{(ix)} - e^{(-ix)} \right)^2$$

$$= \frac{1}{32i} \left(e^{(35ix)} - 2e^{(33ix)} + e^{(31ix)} - 3e^{(13ix)} + 6e^{(11ix)} - 3e^{(9ix)} + 3e^{(-9ix)} - 6e^{(-11ix)} + 3e^{(-13ix)} - e^{(-31ix)} \right)$$

$$= \frac{1}{16} \sin (35x) - \frac{1}{8} \sin (33x) + \frac{1}{16} \sin (31x) - \frac{3}{16} \sin (13x) + \frac{3}{8} \sin (11x) - \frac{3}{16} \sin (9x).$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-\pi}^{\frac{2}{3}\pi} \sin(11x)^3 \sin(x)^2 dx = \int_{-\pi}^{\frac{2}{3}\pi} \left(\frac{1}{16} \sin(35x) - \frac{1}{8} \sin(33x) + \frac{1}{16} \sin(31x) - \frac{3}{16} \sin(13x) + \frac{3}{8} \sin(11x) - \frac{3}{16} \sin(9x) \right) dx$$

$$= \left[-\frac{1}{560} \cos(35x) + \frac{1}{264} \cos(33x) - \frac{1}{496} \cos(31x) + \frac{3}{208} \cos(13x) - \frac{3}{88} \cos(11x) + \frac{1}{48} \cos(9x) \right]_{-\pi}^{\frac{2}{3}\pi}$$

$$= \frac{558671}{14894880},$$

d'où le résultat.

Corrigé 59.

 \leftarrow page 5

1. L'application $x \mapsto \cos(5x)^2 e^{(-12x)}$ est continue sur $\left[\frac{1}{6}\pi, +\infty\right[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in \left[\frac{1}{6}\pi, +\infty\right[$, on a:

$$0 \leqslant \cos(5x)^2 e^{(-12x)} \leqslant e^{(-12x)}.$$

et on sait que l'intégrale $\int_{\frac{1}{6}\pi}^{+\infty}e^{(-12\,x)}\mathrm{d}x$ converge (c'est une intégrale de référence). Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{6}\pi}^{+\infty}\cos{(5\,x)^2}\,e^{(-12\,x)}\mathrm{d}x$ converge: d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a :

$$\int_{\frac{1}{6}\pi}^{+\infty} \cos(5x)^2 e^{(-12x)} dx = \int_{\frac{1}{6}\pi}^{+\infty} \left(\frac{1}{2} (\cos(10x) + 1) e^{(-12x)} \right) dx$$
$$= \frac{1}{2} \int_{\frac{1}{6}\pi}^{+\infty} \cos(10x) e^{(-12x)} dx + \frac{1}{2} \int_{\frac{1}{6}\pi}^{+\infty} e^{(-12x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{\frac{1}{6}\pi}^{+\infty} \cos\left(10\,x\right) e^{(-12\,x)} \mathrm{d}x = \operatorname{Re}\left(\int_{\frac{1}{6}\pi}^{+\infty} e^{((10i-12)\,x)} \mathrm{d}x\right) = \operatorname{Re}\left(\left[\frac{1}{10i-12}e^{((10i-12)\,x)}\right]_{\frac{1}{6}\pi}^{+\infty}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{10i-12}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{\frac{1}{6}\pi}^{+\infty} \cos\left(10\,x\right) e^{(-12\,x)} \mathrm{d}x = \operatorname{Re}\left(-\left(\frac{3}{122}i - \frac{5}{244}\right)\,\sqrt{3}e^{(-2\,\pi)} + \left(\frac{5}{244}i + \frac{3}{122}\right)\,e^{(-2\,\pi)}\right),$$

et donc:

$$\int_{\frac{1}{6}\pi}^{+\infty} \cos(10 x) e^{(-12 x)} dx = \frac{5}{244} \sqrt{3} e^{(-2 \pi)} + \frac{3}{122} e^{(-2 \pi)}.$$

On calcule de même $\int_{\frac{1}{6}\pi}^{+\infty} e^{(-12x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_{1}^{+\infty} e^{(-12x)} dx = \frac{1}{12} e^{(-2\pi)}$. On peut conclure:

$$\int_{\frac{1}{2}\pi}^{+\infty} \cos(5x)^2 e^{(-12x)} dx = \frac{5}{488} \sqrt{3} e^{(-2\pi)} + \frac{79}{1464} e^{(-2\pi)}.$$

Corrigé 60. Commençons par linéariser le terme trigonométrique. On a :

$$\int_{-\frac{7}{4}\pi}^{\frac{1}{3}\pi} e^{(-x)} \sin(5x)^2 dx = \int_{-\frac{7}{4}\pi}^{\frac{1}{3}\pi} \left(-\frac{1}{2} (\cos(10x) - 1) e^{(-x)} \right) dx$$
$$= -\frac{1}{2} \int_{-\frac{7}{4}\pi}^{\frac{1}{3}\pi} \cos(10x) e^{(-x)} dx + \frac{1}{2} \int_{-\frac{7}{4}\pi}^{\frac{1}{3}\pi} e^{(-x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{7}{4}\pi}^{\frac{1}{3}\pi} \cos(10x) e^{(-x)} dx = \operatorname{Re}\left(\int_{-\frac{7}{4}\pi}^{\frac{1}{3}\pi} e^{((10i-1)x)} dx\right) = \operatorname{Re}\left(\left[\frac{1}{10i-1}e^{((10i-1)x)}\right]_{-\frac{7}{4}\pi}^{\frac{1}{3}\pi}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{10i-1}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{-\frac{7}{4}\pi}^{\frac{1}{3}\pi} \cos\left(10\,x\right) e^{(-x)} \mathrm{d}x = \operatorname{Re}\left(\left(\frac{1}{202}i - \frac{5}{101}\right)\,\sqrt{3}e^{\left(-\frac{1}{3}\,\pi\right)} + \left(\frac{1}{101}i - \frac{10}{101}\right)\,e^{\left(\frac{7}{4}\,\pi\right)} + \left(\frac{5}{101}i + \frac{1}{202}\right)\,e^{\left(-\frac{1}{3}\,\pi\right)}\right),$$

et donc:

$$\int_{-\frac{7}{4}\pi}^{\frac{1}{3}\pi} \cos(10x) e^{(-x)} dx = -\frac{5}{101} \sqrt{3} e^{\left(-\frac{1}{3}\pi\right)} - \frac{10}{101} e^{\left(\frac{7}{4}\pi\right)} + \frac{1}{202} e^{\left(-\frac{1}{3}\pi\right)}.$$

On calcule de même $\int_{-\frac{7}{4}\pi}^{\frac{1}{3}\pi} e^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_{-\frac{7}{4}\pi}^{\frac{1}{3}\pi} e^{(-x)} dx = e^{(\frac{7}{4}\pi)} - e^{(-\frac{1}{3}\pi)}$. On peut conclure:

$$\int_{-\frac{7}{4}\pi}^{\frac{1}{3}\pi} e^{(-x)} \sin(5x)^2 dx = \frac{1}{404} \left(10\sqrt{3} - 203 \right) e^{\left(-\frac{1}{3}\pi\right)} + \frac{111}{202} e^{\left(\frac{7}{4}\pi\right)}.$$

Corrigé 61. Commençons par linéariser, en écrivant $\cosh(x)$ et $\sinh(2x)$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 5

$$\begin{split} \cosh{(x)}^4 \sinh{(2\,x)}^2 &= \frac{1}{64} \Big(e^{(2\,x)} - e^{(-2\,x)} \Big)^2 \Big(e^{(-x)} + e^x \Big)^4 \\ &= \frac{1}{64} \left(e^{(8\,x)} + 4\,e^{(6\,x)} + 4\,e^{(4\,x)} - 4\,e^{(2\,x)} - 4\,e^{(-2\,x)} + 4\,e^{(-4\,x)} + 4\,e^{(-6\,x)} + e^{(-8\,x)} - 10 \right) \\ &= \frac{1}{32} \, \cosh{(8\,x)} + \frac{1}{8} \, \cosh{(6\,x)} + \frac{1}{8} \, \cosh{(4\,x)} - \frac{1}{8} \, \cosh{(2\,x)} - \frac{5}{32}. \end{split}$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{2}^{51} \cosh(x)^{4} \sinh(2x)^{2} dx = \int_{2}^{51} \left(\frac{1}{32} \cosh(8x) + \frac{1}{8} \cosh(6x) + \frac{1}{8} \cosh(4x) - \frac{1}{8} \cosh(2x) - \frac{5}{32}\right) dx$$

$$= \left[-\frac{5}{32} x + \frac{1}{256} \sinh(8x) + \frac{1}{48} \sinh(6x) + \frac{1}{32} \sinh(4x) - \frac{1}{16} \sinh(2x)\right]_{2}^{51}$$

$$= \frac{1}{256} \sinh(408) + \frac{1}{48} \sinh(306) + \frac{1}{32} \sinh(204) - \frac{1}{16} \sinh(102) - \frac{1}{256} \sinh(16) - \frac{1}{48} \sinh(12) - \frac{1}{32} \sinh(16) + \frac{1}{48} \sinh(16) - \frac{1}{48} \sinh(16) + \frac{1}{48$$

d'où le résultat.

Corrigé 62. Commençons par linéariser, en écrivant $\sinh(9x)$ et $\sinh(2x)$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 6

$$\begin{split} \sinh{(9\,x)^2} & \sinh{(2\,x)^2} = \frac{1}{16} \Big(e^{(9\,x)} - e^{(-9\,x)} \Big)^2 \Big(e^{(2\,x)} - e^{(-2\,x)} \Big)^2 \\ & = \frac{1}{16} \left(e^{(22\,x)} - 2\,e^{(18\,x)} + e^{(14\,x)} - 2\,e^{(4\,x)} - 2\,e^{(-4\,x)} + e^{(-14\,x)} - 2\,e^{(-18\,x)} + e^{(-22\,x)} + 4 \right) \\ & = \frac{1}{8} \cosh{(22\,x)} - \frac{1}{4} \cosh{(18\,x)} + \frac{1}{8} \cosh{(14\,x)} - \frac{1}{4} \cosh{(4\,x)} + \frac{1}{4}. \end{split}$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-3}^{2} \sinh(9x)^{2} \sinh(2x)^{2} dx = \int_{-3}^{2} \left(\frac{1}{8}\cosh(22x) - \frac{1}{4}\cosh(18x) + \frac{1}{8}\cosh(14x) - \frac{1}{4}\cosh(4x) + \frac{1}{4}\right) dx$$

$$= \left[\frac{1}{4}x + \frac{1}{176}\sinh(22x) - \frac{1}{72}\sinh(18x) + \frac{1}{112}\sinh(14x) - \frac{1}{16}\sinh(4x)\right]_{-3}^{2}$$

$$= \frac{1}{176}\sinh(66) - \frac{1}{72}\sinh(54) + \frac{1}{176}\sinh(44) + \frac{1}{112}\sinh(42) - \frac{1}{72}\sinh(36) + \frac{1}{112}\sinh(28) - \frac{1}{16}\sin(44)$$

d'où le résultat.

Corrigé 63.

 $\leftarrow \text{page } 6$

1. L'application $x\mapsto x^2\cos\left(2\,x\right)e^{\left(-3\,x\right)}$ est continue sur $\left[\frac{4}{3}\,\pi,+\infty\right[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x\in\left[\frac{4}{3}\,\pi,+\infty\right[$, on a :

$$\left| x^2 \cos(2x) e^{(-3x)} \right| \leqslant x^2 e^{(-3x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-3x)} = x^4 e^{(-3x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^2 e^{(-3x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{\frac{4}{3}\pi}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{4}{3}\pi}^{+\infty} x^2 e^{(-3x)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{4}{3}\pi}^{+\infty} x^2 \cos{(2x)} e^{(-3x)} \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{\frac{4}{3}\pi}^{+\infty} x^2 \cos(2x) e^{(-3x)} dx = \text{Re}\left(\int_{\frac{4}{3}\pi}^{+\infty} x^2 e^{((2i-3)x)} dx\right),$$

et on calcule cette intégrale en intégrant par parties deux fois : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{\frac{4}{3}\pi}^{+\infty} x^2 \cos{(2\,x)} \, e^{(-3\,x)} \mathrm{d}x = \text{Re}\left(\left(\frac{8}{39}i - \frac{16}{117}\right) \sqrt{3}\pi^2 e^{(-4\,\pi)} - \left(\frac{16}{117}i + \frac{8}{39}\right) \pi^2 e^{(-4\,\pi)} + \left(\frac{20}{507}i - \frac{16}{169}\right) \sqrt{3}\pi e^{(-4\,\pi)} - \left(\frac{16}{169}i - \frac{16}{117}i + \frac{16}{39}i - \frac{16}{169}i - \frac{16}{169}$$

et donc:

$$\int_{\frac{4}{3}\pi}^{+\infty} x^2 \cos{(2\,x)} \, e^{(-3\,x)} \mathrm{d}x = -\frac{16}{117} \sqrt{3} \pi^2 e^{(-4\,\pi)} - \frac{8}{39} \, \pi^2 e^{(-4\,\pi)} - \frac{16}{169} \sqrt{3} \pi e^{(-4\,\pi)} - \frac{20}{507} \, \pi e^{(-4\,\pi)} - \frac{46}{2197} \, \sqrt{3} e^{(-4\,\pi)} + \frac{9}{2197} \, e^{(-4\,\pi)}.$$

Corrigé 64. Commençons par linéariser, en écrivant $\sin(x)$ en fonction d'exponentielles grâce aux formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 6

$$\sin(x)^{4} = \frac{1}{16} \left(e^{(ix)} - e^{(-ix)} \right)^{4}$$

$$= \frac{1}{16} \left(e^{(4ix)} - 4e^{(2ix)} - 4e^{(-2ix)} + e^{(-4ix)} + 6 \right)$$

$$= \frac{1}{8} \cos(4x) - \frac{1}{2} \cos(2x) + \frac{3}{8}.$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_0^{\pi} \sin(x)^4 dx = \int_0^{\pi} \left(\frac{1}{8} \cos(4x) - \frac{1}{2} \cos(2x) + \frac{3}{8} \right) dx$$
$$= \left[\frac{3}{8} x + \frac{1}{32} \sin(4x) - \frac{1}{4} \sin(2x) \right]_0^{\pi}$$
$$= \frac{3}{8} \pi,$$

d'où le résultat.

Corrigé 65. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

 \leftarrow page 6

$$\int_{\frac{1}{6}\pi}^{\pi}e^x\sin\left(2\,x\right)\mathrm{d}x = \mathrm{Im}\left(\int_{\frac{1}{6}\pi}^{\pi}e^{\left(\left(2i+1\right)\,x\right)}\mathrm{d}x\right) = \mathrm{Im}\left(\left[\frac{1}{2i+1}e^{\left(\left(2i+1\right)\,x\right)}\right]_{\frac{1}{6}\pi}^{\pi}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{2i+1}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{\frac{1}{\pi}}^{\pi} e^x \sin(2x) \, \mathrm{d}x = \operatorname{Im} \left(-\left(\frac{1}{10}i + \frac{1}{5}\right) \sqrt{3} e^{\left(\frac{1}{6}\pi\right)} - \left(\frac{2}{5}i - \frac{1}{5}\right) e^{\pi} + \left(\frac{1}{5}i - \frac{1}{10}\right) e^{\left(\frac{1}{6}\pi\right)} \right),$$

et donc:

$$\int_{\frac{1}{6}\pi}^{\pi} e^x \sin{(2\,x)} \, \mathrm{d}x = -\frac{1}{10} \, \sqrt{3} e^{\left(\frac{1}{6}\,\pi\right)} - \frac{2}{5} \, e^\pi + \frac{1}{5} \, e^{\left(\frac{1}{6}\,\pi\right)}.$$

Corrigé 66. Commençons par linéariser, en écrivant $\sin(3x)$ et $\cos(x)$ en fonction d'exponentielles grâce aux formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

$$\cos(x)^{2} \sin(3x)^{3} = \frac{1}{-32i} \left(e^{(3ix)} - e^{(-3ix)} \right)^{3} \left(e^{(ix)} + e^{(-ix)} \right)^{2}$$

$$= \frac{1}{-32i} \left(e^{(11ix)} + 2e^{(9ix)} + e^{(7ix)} - 3e^{(5ix)} - 6e^{(3ix)} - 3e^{(ix)} + 3e^{(-ix)} + 6e^{(-3ix)} + 3e^{(-5ix)} - e^{(-7ix)} - 2e^{(-7ix)} - 2e^{(-7ix)} \right)$$

$$= -\frac{1}{16} \sin(11x) - \frac{1}{8} \sin(9x) - \frac{1}{16} \sin(7x) + \frac{3}{16} \sin(5x) + \frac{3}{8} \sin(3x) + \frac{3}{16} \sin(x).$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit:

$$\begin{split} \int_{\pi}^{\frac{5}{3}\pi} \cos{(x)^2} \sin{(3\,x)^3} \, \mathrm{d}x &= \int_{\pi}^{\frac{5}{3}\pi} \left(-\frac{1}{16} \sin{(11\,x)} - \frac{1}{8} \sin{(9\,x)} - \frac{1}{16} \sin{(7\,x)} + \frac{3}{16} \sin{(5\,x)} + \frac{3}{8} \sin{(3\,x)} + \frac{3}{16} \sin{(x)} \right) \mathrm{d}x \\ &= \left[\frac{1}{176} \cos{(11\,x)} + \frac{1}{72} \cos{(9\,x)} + \frac{1}{112} \cos{(7\,x)} - \frac{3}{80} \cos{(5\,x)} - \frac{1}{8} \cos{(3\,x)} - \frac{3}{16} \cos{(x)} \right]_{\pi}^{\frac{5}{3}\pi} \\ &= -\frac{243}{770}, \end{split}$$

d'où le résultat.

Corrigé 67. Commençons par linéariser, en écrivant $\sin(x)$ et $\sin(65x)$ en fonction d'exponentielles grâce aux formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

$$\sin (65 x)^{4} \sin (x)^{2} = \frac{1}{-64} \left(e^{(65 i x)} - e^{(-65 i x)} \right)^{4} \left(e^{(i x)} - e^{(-i x)} \right)^{2}$$

$$= \frac{1}{-64} \left(e^{(262 i x)} - 2 e^{(260 i x)} + e^{(258 i x)} - 4 e^{(132 i x)} + 8 e^{(130 i x)} - 4 e^{(128 i x)} + 6 e^{(2i x)} + 6 e^{(-2i x)} - 4 e^{(-128 i x)} + 8 e^{(-2i x)} + 6 e^{(-2i x)} - 4 e^{(-128 i x)} + 8 e^{(-2i x)} + 6 e^{(-2i x)} - 4 e^{(-2i x)} + 6 e^{(-2i x)} - 4 e^{(-2i x)} + 8 e^{(-2i x)} + 6 e^{(-2i x)} - 4 e^{(-2i x)} + 6 e^{(-2i x)} - 4 e^{(-2i x)} + 6 e^{(-2i x)} + 6 e^{(-2i x)} - 4 e^{(-2i x)} + 6 e$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-\frac{1}{2}\pi}^{\frac{3}{4}\pi} \sin(65x)^4 \sin(x)^2 dx = \int_{-\frac{1}{2}\pi}^{\frac{3}{4}\pi} \left(-\frac{1}{32} \cos(262x) + \frac{1}{16} \cos(260x) - \frac{1}{32} \cos(258x) + \frac{1}{8} \cos(132x) - \frac{1}{4} \cos(130x) + \frac{1}{8} \cos(128x) \right)$$

$$= \left[\frac{3}{16}x - \frac{1}{8384} \sin(262x) + \frac{1}{4160} \sin(260x) - \frac{1}{8256} \sin(258x) + \frac{1}{1056} \sin(132x) - \frac{1}{520} \sin(130x) + \frac{1}{1056} \sin(132x) - \frac{1}{1056} \sin(132x) \right]$$

$$= \frac{15}{64}\pi + \frac{1681483}{17574960},$$

d'où le résultat.

Corrigé 68.

 \leftarrow page 6

1. L'application $x \mapsto x \cos(2x)^2 e^{(-x)}$ est continue sur $[0, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [0, +\infty[$, on a:

$$0 \leqslant x \cos(2x)^2 e^{(-x)} \leqslant x e^{(-x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-x)} = x^3e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$xe^{(-x)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} xe^{(-x)} dx$ converge, et donc $\int_{0}^{+\infty} xe^{(-x)} dx$ converge aussi par continuité sur le segment [0,1]. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^{+\infty} x \cos(2x)^2 e^{(-x)} dx$ converge: d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a :

$$\int_0^{+\infty} x \cos(2x)^2 e^{(-x)} dx = \int_0^{+\infty} \left(\frac{1}{2} x (\cos(4x) + 1) e^{(-x)} \right) dx$$
$$= \frac{1}{2} \int_0^{+\infty} x \cos(4x) e^{(-x)} dx + \frac{1}{2} \int_0^{+\infty} x e^{(-x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\int_0^{+\infty} x \cos(4x) e^{(-x)} dx = \operatorname{Re} \left(\int_0^{+\infty} x e^{((4i-1)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_0^{+\infty} x \cos(4x) e^{(-x)} dx = \text{Re}\left(\frac{8}{289}i - \frac{15}{289}\right),\,$$

et donc:

$$\int_0^{+\infty} x \cos(4x) e^{(-x)} dx = -\frac{15}{289}.$$

On calcule de même $\int_0^{+\infty} xe^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient : $\int_0^{+\infty} xe^{(-x)} dx = 1$. On peut conclure :

$$\int_0^{+\infty} x \cos(2x)^2 e^{(-x)} dx = \frac{137}{289}.$$

Corrigé 69. Commençons par linéariser, en écrivant $\cos(x)$ en fonction d'exponentielles grâce aux formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 6

$$\cos(x)^{3} = \frac{1}{8} \left(e^{(ix)} + e^{(-ix)} \right)^{3}$$

$$= \frac{1}{8} \left(e^{(3ix)} + 3e^{(ix)} + 3e^{(-ix)} + e^{(-3ix)} \right)$$

$$= \frac{1}{4} \cos(3x) + \frac{3}{4} \cos(x).$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-\frac{2}{3}\pi}^{0} \cos(x)^{3} dx = \int_{-\frac{2}{3}\pi}^{0} \left(\frac{1}{4}\cos(3x) + \frac{3}{4}\cos(x)\right) dx$$
$$= \left[\frac{1}{12}\sin(3x) + \frac{3}{4}\sin(x)\right]_{-\frac{2}{3}\pi}^{0}$$
$$= \frac{3}{8}\sqrt{3},$$

d'où le résultat.

Corrigé 70.

 \leftarrow page 6

1. L'application $x \mapsto \cos(3x)^2 e^{(-x)}$ est continue sur $[0, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [0, +\infty[$, on a :

$$0 \le \cos(3x)^2 e^{(-x)} \le e^{(-x)}$$

et on sait que l'intégrale $\int_0^{+\infty} e^{(-x)} dx$ converge (c'est une intégrale de référence). Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^{+\infty} \cos{(3\,x)^2}\,e^{(-x)} dx$ converge : d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a:

$$\int_0^{+\infty} \cos(3x)^2 e^{(-x)} dx = \int_0^{+\infty} \left(\frac{1}{2} (\cos(6x) + 1) e^{(-x)}\right) dx$$
$$= \frac{1}{2} \int_0^{+\infty} \cos(6x) e^{(-x)} dx + \frac{1}{2} \int_0^{+\infty} e^{(-x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_0^{+\infty} \cos(6x) e^{(-x)} dx = \text{Re}\left(\int_0^{+\infty} e^{((6i-1)x)} dx\right) = \text{Re}\left(\left[\frac{1}{6i-1}e^{((6i-1)x)}\right]_0^{+\infty}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{6i-1}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_0^{+\infty} \cos(6x) e^{(-x)} dx = \operatorname{Re}\left(\frac{6}{37}i + \frac{1}{37}\right),$$

et donc:

$$\int_0^{+\infty} \cos(6x) e^{(-x)} dx = \frac{1}{37}.$$

On calcule de même $\int_0^{+\infty} e^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_0^{+\infty} e^{(-x)} dx = 1$. On peut conclure:

$$\int_0^{+\infty} \cos(3x)^2 e^{(-x)} dx = \frac{19}{37}.$$

Corrigé 71. Commençons par linéariser, en écrivant $\cosh(2x)$ et $\sinh(4x)$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 6

$$\begin{split} \cosh{(2\,x)^3} \sinh{(4\,x)^3} &= \frac{1}{64} \Big(e^{(4\,x)} - e^{(-4\,x)} \Big)^3 \Big(e^{(2\,x)} + e^{(-2\,x)} \Big)^3 \\ &= \frac{1}{64} \left(e^{(18\,x)} + 3\,e^{(14\,x)} - 8\,e^{(6\,x)} - 6\,e^{(2\,x)} + 6\,e^{(-2\,x)} + 8\,e^{(-6\,x)} - 3\,e^{(-14\,x)} - e^{(-18\,x)} \right) \\ &= \frac{1}{32} \, \sinh{(18\,x)} + \frac{3}{32} \, \sinh{(14\,x)} - \frac{1}{4} \, \sinh{(6\,x)} - \frac{3}{16} \, \sinh{(2\,x)} \,. \end{split}$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-1}^{0} \cosh(2x)^{3} \sinh(4x)^{3} dx = \int_{-1}^{0} \left(\frac{1}{32} \sinh(18x) + \frac{3}{32} \sinh(14x) - \frac{1}{4} \sinh(6x) - \frac{3}{16} \sinh(2x) \right) dx$$

$$= \left[\frac{1}{576} \cosh(18x) + \frac{3}{448} \cosh(14x) - \frac{1}{24} \cosh(6x) - \frac{3}{32} \cosh(2x) \right]_{-1}^{0}$$

$$= -\frac{1}{576} \cosh(18) - \frac{3}{448} \cosh(14) + \frac{1}{24} \cosh(6) + \frac{3}{32} \cosh(2) - \frac{8}{63},$$

d'où le résultat.

Corrigé 72. Commençons par linéariser, en écrivant $\sin(2x)$ et $\sin(x)$ en fonction d'exponentielles grâce aux formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

$$\sin(2x)^{3} \sin(x)^{3} = \frac{1}{-64} \left(e^{(2ix)} - e^{(-2ix)} \right)^{3} \left(e^{(ix)} - e^{(-ix)} \right)^{3}$$

$$= \frac{1}{-64} \left(e^{(9ix)} - 3e^{(7ix)} + 8e^{(3ix)} - 6e^{(ix)} - 6e^{(-ix)} + 8e^{(-3ix)} - 3e^{(-7ix)} + e^{(-9ix)} \right)$$

$$= -\frac{1}{32} \cos(9x) + \frac{3}{32} \cos(7x) - \frac{1}{4} \cos(3x) + \frac{3}{16} \cos(x).$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-\frac{1}{3}\pi}^{-\frac{1}{4}\pi} \sin(2x)^3 \sin(x)^3 dx = \int_{-\frac{1}{3}\pi}^{-\frac{1}{4}\pi} \left(-\frac{1}{32} \cos(9x) + \frac{3}{32} \cos(7x) - \frac{1}{4} \cos(3x) + \frac{3}{16} \cos(x) \right) dx$$
$$= \left[-\frac{1}{288} \sin(9x) + \frac{3}{224} \sin(7x) - \frac{1}{12} \sin(3x) + \frac{3}{16} \sin(x) \right]_{-\frac{1}{3}\pi}^{-\frac{1}{4}\pi}$$
$$= \frac{45}{448} \sqrt{3} - \frac{11}{252} \sqrt{2},$$

d'où le résultat.

Corrigé 73. Commençons par linéariser, en écrivant $\cosh(x)$ et $\sinh(x)$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 6

$$\cosh(x)^{3} \sinh(x)^{2} = \frac{1}{32} \left(e^{(-x)} + e^{x} \right)^{3} \left(e^{(-x)} - e^{x} \right)^{2}$$

$$= \frac{1}{32} \left(e^{(5x)} + e^{(3x)} - 2e^{(-x)} + e^{(-3x)} + e^{(-5x)} - 2e^{x} \right)$$

$$= \frac{1}{16} \cosh(5x) + \frac{1}{16} \cosh(3x) - \frac{1}{8} \cosh(x).$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\begin{split} \int_{-1}^{3} \cosh{(x)^{3}} \sinh{(x)^{2}} \, \mathrm{d}x &= \int_{-1}^{3} \left(\frac{1}{16} \cosh{(5\,x)} + \frac{1}{16} \cosh{(3\,x)} - \frac{1}{8} \cosh{(x)} \right) \mathrm{d}x \\ &= \left[\frac{1}{80} \sinh{(5\,x)} + \frac{1}{48} \sinh{(3\,x)} - \frac{1}{8} \sinh{(x)} \right]_{-1}^{3} \\ &= \frac{1}{80} \sinh{(15)} + \frac{1}{48} \sinh{(9)} + \frac{1}{80} \sinh{(5)} - \frac{5}{48} \sinh{(3)} - \frac{1}{8} \sinh{(1)}, \end{split}$$

d'où le résultat.

Corrigé 74.

 \leftarrow page 6

1. L'application $x \mapsto \cos(x) e^{(-x)}$ est continue sur $\left[-\frac{1}{2}\pi, +\infty\right[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in \left[-\frac{1}{2}\pi, +\infty\right[$, on a: $\left|\cos(x) e^{(-x)}\right| \leqslant e^{(-x)}$,

et on sait que l'intégrale $\int_{-\frac{1}{2}\pi}^{+\infty}e^{(-x)}\mathrm{d}x$ converge (c'est une intégrale de référence). Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-\frac{1}{2}\pi}^{+\infty}\cos\left(x\right)e^{(-x)}\mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\int_{-\frac{1}{2}\pi}^{+\infty} \cos(x) e^{(-x)} dx = \operatorname{Re} \left(\int_{-\frac{1}{2}\pi}^{+\infty} e^{((i-1)x)} dx \right) = \operatorname{Re} \left(\left[\frac{1}{i-1} e^{((i-1)x)} \right]_{-\frac{1}{2}\pi}^{+\infty} \right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{i-1}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{-\frac{1}{2}\pi}^{+\infty} \cos(x) e^{(-x)} dx = \text{Re}\left(-\left(\frac{1}{2}i - \frac{1}{2}\right) e^{\left(\frac{1}{2}\pi\right)}\right),\,$$

et donc:

$$\int_{-\frac{1}{2}\pi}^{+\infty} \cos(x) e^{(-x)} dx = \frac{1}{2} e^{(\frac{1}{2}\pi)}.$$

Corrigé 75. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

 \leftarrow page 6

 \leftarrow page 7

$$\int_{-4\pi}^{2\pi} \cos\left(6\,x\right) e^{\left(9\,x\right)} \mathrm{d}x = \operatorname{Re}\left(\int_{-4\,\pi}^{2\,\pi} e^{\left(\left(6i+9\right)\,x\right)} \mathrm{d}x\right) = \operatorname{Re}\left(\left[\frac{1}{6i+9}e^{\left(\left(6i+9\right)\,x\right)}\right]_{-4\,\pi}^{2\,\pi}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{6i+9}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{-4\pi}^{2\pi} \cos(6x) e^{(9x)} dx = \operatorname{Re}\left(-\left(\frac{2}{39}i - \frac{1}{13}\right) e^{(18\pi)} + \left(\frac{2}{39}i - \frac{1}{13}\right) e^{(-36\pi)}\right),\,$$

et donc:

$$\int_{-4}^{2\pi} \cos(6x) e^{(9x)} dx = \frac{1}{13} e^{(18\pi)} - \frac{1}{13} e^{(-36\pi)}.$$

Corrigé 76.

1. L'application $x \mapsto x^2 e^{(-x)} \sin(x)^2$ est continue sur $[0, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [0, +\infty[$, on a:

$$0 \le x^2 e^{(-x)} \sin(x)^2 \le x^2 e^{(-x)}$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-x)} = x^4 e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc :

$$x^2 e^{(-x)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} x^2 e^{(-x)} \mathrm{d}x$ converge, et donc $\int_0^{+\infty} x^2 e^{(-x)} \mathrm{d}x$ converge aussi par continuité sur le segment [0,1]. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^{+\infty} x^2 e^{(-x)} \sin{(x)^2} \, \mathrm{d}x$ converge : d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a :

$$\int_0^{+\infty} x^2 e^{(-x)} \sin(x)^2 dx = \int_0^{+\infty} \left(-\frac{1}{2} x^2 (\cos(2x) - 1) e^{(-x)} \right) dx$$
$$= -\frac{1}{2} \int_0^{+\infty} x^2 \cos(2x) e^{(-x)} dx + \frac{1}{2} \int_0^{+\infty} x^2 e^{(-x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\int_0^{+\infty} x^2 \cos(2x) e^{(-x)} dx = \text{Re}\left(\int_0^{+\infty} x^2 e^{((2i-1)x)} dx\right),$$

et on calcule cette intégrale en intégrant par parties deux fois : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_0^{+\infty} x^2 \cos(2x) e^{(-x)} dx = \text{Re}\left(-\frac{4}{125}i - \frac{22}{125}\right),\,$$

et donc:

$$\int_0^{+\infty} x^2 \cos(2x) e^{(-x)} dx = -\frac{22}{125}.$$

On calcule de même $\int_0^{+\infty} x^2 e^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient : $\int_0^{+\infty} x^2 e^{(-x)} dx = 2$. On peut conclure :

$$\int_0^{+\infty} x^2 e^{(-x)} \sin(x)^2 dx = \frac{136}{125}$$

Corrigé 77. Commençons par linéariser, en écrivant $\cos(x)$ et $\sin(3x)$ en fonction d'exponentielles grâce aux formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 7

 \leftarrow page 7

$$\begin{split} \cos{(x)}\sin{(3\,x)^3} &= \frac{1}{-16i} \Big(e^{(3i\,x)} - e^{(-3i\,x)} \Big)^3 \Big(e^{(i\,x)} + e^{(-i\,x)} \Big) \\ &= \frac{1}{-16i} \left(e^{(10i\,x)} + e^{(8i\,x)} - 3\,e^{(4i\,x)} - 3\,e^{(2i\,x)} + 3\,e^{(-2i\,x)} + 3\,e^{(-4i\,x)} - e^{(-8i\,x)} - e^{(-10i\,x)} \right) \\ &= -\frac{1}{8} \sin{(10\,x)} - \frac{1}{8} \sin{(8\,x)} + \frac{3}{8} \sin{(4\,x)} + \frac{3}{8} \sin{(2\,x)} \,. \end{split}$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\begin{split} \int_{-\frac{1}{3}\pi}^{3\pi} \cos(x) \sin(3x)^3 \, \mathrm{d}x &= \int_{-\frac{1}{3}\pi}^{3\pi} \left(-\frac{1}{8} \sin(10x) - \frac{1}{8} \sin(8x) + \frac{3}{8} \sin(4x) + \frac{3}{8} \sin(2x) \right) \mathrm{d}x \\ &= \left[\frac{1}{80} \cos(10x) + \frac{1}{64} \cos(8x) - \frac{3}{32} \cos(4x) - \frac{3}{16} \cos(2x) \right]_{-\frac{1}{3}\pi}^{3\pi} \\ &= -\frac{243}{640}, \end{split}$$

d'où le résultat.

Corrigé 78.

1. L'application $x \mapsto \cos(5x)^2 e^{(-42x)}$ est continue sur $[-\frac{1}{6}\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [-\frac{1}{6}\pi, +\infty[$, on a :

$$0 \leqslant \cos(5x)^2 e^{(-42x)} \leqslant e^{(-42x)},$$

et on sait que l'intégrale $\int_{-\frac{1}{6}\pi}^{+\infty}e^{(-42\,x)}\mathrm{d}x$ converge (c'est une intégrale de référence). Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-\frac{1}{6}\pi}^{+\infty}\cos{(5\,x)^2}\,e^{(-42\,x)}\mathrm{d}x$ converge: d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a:

$$\int_{-\frac{1}{6}\pi}^{+\infty} \cos(5x)^2 e^{(-42x)} dx = \int_{-\frac{1}{6}\pi}^{+\infty} \left(\frac{1}{2} (\cos(10x) + 1) e^{(-42x)} \right) dx$$
$$= \frac{1}{2} \int_{-\frac{1}{6}\pi}^{+\infty} \cos(10x) e^{(-42x)} dx + \frac{1}{2} \int_{-\frac{1}{6}\pi}^{+\infty} e^{(-42x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a

$$\int_{-\frac{1}{6}\pi}^{+\infty} \cos\left(10\,x\right) e^{(-42\,x)} \mathrm{d}x = \operatorname{Re}\left(\int_{-\frac{1}{6}\pi}^{+\infty} e^{((10i-42)\,x)} \mathrm{d}x\right) = \operatorname{Re}\left(\left[\frac{1}{10i-42}e^{((10i-42)\,x)}\right]_{-\frac{1}{6}\pi}^{+\infty}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{10i-42}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{-\frac{1}{6}\pi}^{+\infty} \cos(10 x) e^{(-42 x)} dx = \text{Re}\left(\left(\frac{21}{1864}i - \frac{5}{1864}\right) \sqrt{3}e^{(7\pi)} + \left(\frac{5}{1864}i + \frac{21}{1864}\right) e^{(7\pi)}\right),$$

et donc:

$$\int_{-\frac{1}{\pi}\pi}^{+\infty} \cos(10 x) e^{(-42 x)} dx = -\frac{5}{1864} \sqrt{3} e^{(7 \pi)} + \frac{21}{1864} e^{(7 \pi)}.$$

On calcule de même $\int_{-\frac{1}{6}\pi}^{+\infty} e^{(-42x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à

prendre en compte), et on obtient: $\int_{-\frac{1}{e}\pi}^{+\infty} e^{(-42x)} dx = \frac{1}{42} e^{(7\pi)}$. On peut conclure:

$$\int_{-\frac{1}{6}\pi}^{+\infty} \cos(5x)^2 e^{(-42x)} dx = -\frac{5}{3728} \sqrt{3} e^{(7\pi)} + \frac{1373}{78288} e^{(7\pi)}.$$

Corrigé 79.

 \leftarrow page 7

1. L'application $x \mapsto xe^{(-3x)}\sin(11x)^2$ est continue sur $[0, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [0, +\infty[$, on a :

$$0 \leqslant xe^{(-3x)}\sin(11x)^2 \leqslant xe^{(-3x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-3\,x)} = x^3e^{(-3\,x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc :

$$xe^{(-3x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} x e^{(-3\,x)} \mathrm{d}x$ converge, et donc $\int_{0}^{+\infty} x e^{(-3\,x)} \mathrm{d}x$ converge aussi par continuité sur le segment [0,1]. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{0}^{+\infty} x e^{(-3\,x)} \sin{(11\,x)^2} \, \mathrm{d}x$ converge : d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a:

$$\int_0^{+\infty} x e^{(-3x)} \sin(11x)^2 dx = \int_0^{+\infty} \left(-\frac{1}{2} x (\cos(22x) - 1) e^{(-3x)} \right) dx$$
$$= -\frac{1}{2} \int_0^{+\infty} x \cos(22x) e^{(-3x)} dx + \frac{1}{2} \int_0^{+\infty} x e^{(-3x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a

$$\int_{0}^{+\infty} x \cos(22 x) e^{(-3 x)} dx = \text{Re} \left(\int_{0}^{+\infty} x e^{((22i-3) x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_0^{+\infty} x \cos(22x) e^{(-3x)} dx = \text{Re}\left(\frac{132}{243049}i - \frac{475}{243049}\right),$$

et donc:

$$\int_0^{+\infty} x \cos(22x) e^{(-3x)} dx = -\frac{475}{243049}.$$

On calcule de même $\int_0^{+\infty} xe^{(-3x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_0^{+\infty} xe^{(-3x)} dx = \frac{1}{9}$. On peut conclure:

$$\int_0^{+\infty} xe^{(-3x)} \sin(11x)^2 dx = \frac{123662}{2187441}$$

Corrigé 80. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

 $\leftarrow \text{page } 7$

$$\int_{-\frac{1}{6}\pi}^{\frac{3}{2}\pi} x e^x \sin(3x) \, \mathrm{d}x = \operatorname{Im} \left(\int_{-\frac{1}{6}\pi}^{\frac{3}{2}\pi} x e^{((3i+1)x)} \, \mathrm{d}x \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{1}{6}\pi}^{\frac{3}{2}\pi} x e^x \sin{(3\,x)} \, \mathrm{d}x = \mathrm{Im}\left(\left(\frac{3}{20}i + \frac{9}{20}\right) \, \pi e^{\left(\frac{3}{2}\,\pi\right)} - \left(\frac{1}{60}i + \frac{1}{20}\right) \, \pi e^{\left(-\frac{1}{6}\,\pi\right)} + \left(\frac{2}{25}i - \frac{3}{50}\right) \, e^{\left(\frac{3}{2}\,\pi\right)} + \left(\frac{2}{25}i - \frac{3}{50}\right) \, e^{\left(-\frac{1}{6}\,\pi\right)}\right),$$

et donc:

$$\int_{-\frac{1}{6}\pi}^{\frac{3}{2}\pi} x e^x \sin(3x) \, \mathrm{d}x = \frac{3}{20} \pi e^{\left(\frac{3}{2}\pi\right)} - \frac{1}{60} \pi e^{\left(-\frac{1}{6}\pi\right)} + \frac{2}{25} e^{\left(\frac{3}{2}\pi\right)} + \frac{2}{25} e^{\left(-\frac{1}{6}\pi\right)}.$$

Corrigé 81.

1. L'application $x\mapsto e^{(-4\,x)}\sin\left(13\,x\right)^2$ est continue sur $[\pi,+\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x\in[\pi,+\infty[$, on a :

$$0 \le e^{(-4x)} \sin(13x)^2 \le e^{(-4x)}$$

et on sait que l'intégrale $\int_{\pi}^{+\infty} e^{(-4x)} dx$ converge (c'est une intégrale de référence). Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\pi}^{+\infty} e^{(-4x)} \sin(13x)^2 dx$ converge: d'où le résultat

2. Commençons par linéariser le terme trigonométrique. On a:

$$\int_{\pi}^{+\infty} e^{(-4x)} \sin(13x)^2 dx = \int_{\pi}^{+\infty} \left(-\frac{1}{2} (\cos(26x) - 1) e^{(-4x)} \right) dx$$
$$= -\frac{1}{2} \int_{\pi}^{+\infty} \cos(26x) e^{(-4x)} dx + \frac{1}{2} \int_{\pi}^{+\infty} e^{(-4x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\int_{\pi}^{+\infty} \cos(26 x) e^{(-4 x)} dx = \text{Re} \left(\int_{\pi}^{+\infty} e^{((26i - 4) x)} dx \right) = \text{Re} \left(\left[\frac{1}{26i - 4} e^{((26i - 4) x)} \right]_{\pi}^{+\infty} \right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{26i-4}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{\pi}^{+\infty} \cos(26 x) e^{(-4 x)} dx = \text{Re}\left(\left(\frac{13}{346}i + \frac{1}{173}\right) e^{(-4 \pi)}\right),\,$$

et donc:

$$\int_{\pi}^{+\infty} \cos(26 x) e^{(-4 x)} dx = \frac{1}{173} e^{(-4 \pi)}.$$

On calcule de même $\int_{\pi}^{+\infty} e^{(-4x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient : $\int_{\pi}^{+\infty} e^{(-4x)} dx = \frac{1}{4} e^{(-4\pi)}$. On peut conclure :

$$\int_{\pi}^{+\infty} e^{(-4x)} \sin(13x)^2 dx = \frac{169}{1384} e^{(-4\pi)}.$$

Corrigé 82.

 $\leftarrow \text{page } 7$

1. L'application $x \mapsto xe^{(-x)}\sin(2x)$ est continue sur $[0, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [0, +\infty[$, on a:

$$\left| xe^{(-x)}\sin\left(2\,x\right) \right| \leqslant xe^{(-x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-x)} = x^3e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$xe^{(-x)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} x e^{(-x)} \mathrm{d}x$ converge, et donc $\int_{0}^{+\infty} x e^{(-x)} \mathrm{d}x$ converge aussi par continuité sur le segment [0,1]. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{0}^{+\infty} x e^{(-x)} \sin{(2\,x)} \, \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_0^{+\infty} x e^{(-x)} \sin(2x) dx = \operatorname{Im} \left(\int_0^{+\infty} x e^{((2i-1)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_0^{+\infty} x e^{(-x)} \sin(2x) \, dx = \operatorname{Im} \left(\frac{4}{25} i - \frac{3}{25} \right),$$

et donc:

$$\int_0^{+\infty} x e^{(-x)} \sin(2x) \, \mathrm{d}x = \frac{4}{25}.$$

Corrigé 83. Commençons par linéariser, en écrivant $\sin(x)$ et $\sin(24x)$ en fonction d'exponentielles grâce aux formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 7

$$\sin(24x)^{2}\sin(x)^{2} = \frac{1}{16}\left(e^{(24ix)} - e^{(-24ix)}\right)^{2}\left(e^{(ix)} - e^{(-ix)}\right)^{2}$$

$$= \frac{1}{16}\left(e^{(50ix)} - 2e^{(48ix)} + e^{(46ix)} - 2e^{(2ix)} - 2e^{(-2ix)} + e^{(-46ix)} - 2e^{(-48ix)} + e^{(-50ix)} + 4\right)$$

$$= \frac{1}{8}\cos(50x) - \frac{1}{4}\cos(48x) + \frac{1}{8}\cos(46x) - \frac{1}{4}\cos(2x) + \frac{1}{4}.$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\begin{split} \int_{-\frac{1}{2}\,\pi}^{18\,\pi} \sin{(24\,x)^2} \sin{(x)^2} \, \mathrm{d}x &= \int_{-\frac{1}{2}\,\pi}^{18\,\pi} \left(\frac{1}{8}\,\cos{(50\,x)} - \frac{1}{4}\,\cos{(48\,x)} + \frac{1}{8}\,\cos{(46\,x)} - \frac{1}{4}\,\cos{(2\,x)} + \frac{1}{4}\right) \mathrm{d}x \\ &= \left[\frac{1}{4}\,x + \frac{1}{400}\,\sin{(50\,x)} - \frac{1}{192}\,\sin{(48\,x)} + \frac{1}{368}\,\sin{(46\,x)} - \frac{1}{8}\,\sin{(2\,x)}\right]_{-\frac{1}{2}\,\pi}^{18\,\pi} \\ &= \frac{37}{8}\,\pi, \end{split}$$

d'où le résultat.

Corrigé 84.

 \leftarrow page 7

1. L'application $x \mapsto x^2 \cos(x) e^{(-2x)}$ est continue sur $[3\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [3\pi, +\infty[$, on a :

$$\left| x^2 \cos(x) e^{(-2x)} \right| \le x^2 e^{(-2x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-2x)} = x^4 e^{(-2x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^2 e^{(-2x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2} \right).$$

Or l'intégrale de Riemann $\int_{3\pi}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{3\pi}^{+\infty} x^2 e^{(-2x)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{3\pi}^{+\infty} x^2 \cos(x) \, e^{(-2x)} \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\int_{3\,\pi}^{+\infty} x^2 \cos\left(x\right) e^{\left(-2\,x\right)} \mathrm{d}x = \mathrm{Re}\left(\int_{3\,\pi}^{+\infty} x^2 e^{\left(\left(i-2\right)\,x\right)} \mathrm{d}x\right),$$

et on calcule cette intégrale en intégrant par parties deux fois : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{3\pi}^{+\infty} x^2 \cos(x) e^{(-2x)} dx = \operatorname{Re}\left(-\left(\frac{9}{5}i + \frac{18}{5}\right) \pi^2 e^{(-6\pi)} - \left(\frac{24}{25}i + \frac{18}{25}\right) \pi e^{(-6\pi)} - \left(\frac{22}{125}i + \frac{4}{125}\right) e^{(-6\pi)}\right),$$

et donc:

$$\int_{3\pi}^{+\infty} x^2 \cos(x) e^{(-2x)} dx = -\frac{18}{5} \pi^2 e^{(-6\pi)} - \frac{18}{25} \pi e^{(-6\pi)} - \frac{4}{125} e^{(-6\pi)}.$$

Corrigé 85.

 \leftarrow page 7

1. L'application $x\mapsto x^2\cos\left(28\,x\right)e^{(-x)}$ est continue sur $\left[\frac{1}{6}\,\pi,+\infty\right[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x\in\left[\frac{1}{6}\,\pi,+\infty\right[$, on a:

$$\left| x^2 \cos(28 x) e^{(-x)} \right| \leqslant x^2 e^{(-x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-x)} = x^4 e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc :

$$x^2 e^{(-x)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{\frac{1}{6}\pi}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{6}\pi}^{+\infty} x^2 \cos{(28\,x)}\,e^{(-x)} \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{\frac{1}{6}\pi}^{+\infty} x^2 \cos(28x) e^{(-x)} dx = \operatorname{Re} \left(\int_{\frac{1}{6}\pi}^{+\infty} x^2 e^{((28i-1)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties deux fois : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{\frac{1}{6}\pi}^{+\infty} x^2 \cos(28x) e^{(-x)} dx = \text{Re}\left(\left(\frac{1}{56520}i - \frac{7}{14130}\right)\sqrt{3}\pi^2 e^{\left(-\frac{1}{6}\pi\right)} - \left(\frac{7}{14130}i + \frac{1}{56520}\right)\pi^2 e^{\left(-\frac{1}{6}\pi\right)} - \left(\frac{261}{1232450}i + \frac{28}{1848670}i\right)\right) + \frac{1}{56520}\pi^2 e^{\left(-\frac{1}{6}\pi\right)} + \frac{1}{56520}\pi^2 e^{\left$$

et donc:

$$\int_{\frac{1}{6}\pi}^{+\infty} x^2 \cos(28x) e^{(-x)} dx = -\frac{7}{14130} \sqrt{3}\pi^2 e^{\left(-\frac{1}{6}\pi\right)} - \frac{1}{56520} \pi^2 e^{\left(-\frac{1}{6}\pi\right)} - \frac{28}{1848675} \sqrt{3}\pi e^{\left(-\frac{1}{6}\pi\right)} + \frac{261}{1232450} \pi e^{\left(-\frac{1}{6}\pi\right)} + \frac{21868}{483736625} \pi e^{\left(-\frac{1}{6}\pi\right)} = \frac{1}{1232450} \pi e^{\left(-\frac{1}{6}\pi\right)} + \frac{1}{1232450} \pi e^{\left(-\frac{1}{6}\pi\right)} + \frac{1}{1232450} \pi e^{\left(-\frac{1}{6}\pi\right)} = \frac{1}{1232450} \pi e^{\left(-\frac{1}{6}\pi\right)} + \frac{1}{1232450} \pi e^{\left(-\frac{1}{6}\pi\right)} = \frac{1}{1232450} \pi e^{\left(-\frac{1}{6}\pi\right)} + \frac{1}{1232450} \pi e^{\left(-\frac{1}{6}\pi\right)} = \frac{1$$

Corrigé 86. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

 \leftarrow page 8

$$\int_{-\frac{1}{4}\pi}^{\frac{5}{3}\pi} x \cos(x) e^{(-2x)} dx = \operatorname{Re} \left(\int_{-\frac{1}{4}\pi}^{\frac{5}{3}\pi} x e^{((i-2)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{1}{4}\pi}^{\frac{5}{3}\pi} x \cos\left(x\right) e^{(-2x)} \mathrm{d}x = \operatorname{Re}\left(\left(\frac{1}{40}i - \frac{3}{40}\right)\sqrt{2}\pi e^{\left(\frac{1}{2}\pi\right)} + \left(\frac{1}{3}i - \frac{1}{6}\right)\sqrt{3}\pi e^{\left(-\frac{10}{3}\pi\right)} - \left(\frac{1}{6}i + \frac{1}{3}\right)\pi e^{\left(-\frac{10}{3}\pi\right)} + \left(\frac{1}{50}i + \frac{7}{50}\right)\sqrt{2}e^{\left(\frac{1}{2}\pi\right)}$$

et donc:

$$\int_{-\frac{1}{3}\pi}^{\frac{5}{3}\pi} x \cos(x) e^{(-2x)} dx = -\frac{3}{40} \sqrt{2\pi} e^{(\frac{1}{2}\pi)} - \frac{1}{6} \sqrt{3\pi} e^{(-\frac{10}{3}\pi)} - \frac{1}{3} \pi e^{(-\frac{10}{3}\pi)} + \frac{7}{50} \sqrt{2} e^{(\frac{1}{2}\pi)} - \frac{2}{25} \sqrt{3} e^{(-\frac{10}{3}\pi)} - \frac{3}{50} e^{(-\frac{10}{3}\pi)}.$$

Corrigé 87.

1. L'application $x \mapsto x^2 \cos(2x)^2 e^{(-x)}$ est continue sur $\left[\frac{1}{6}\pi, +\infty\right[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in \left[\frac{1}{6}\pi, +\infty\right[$, on a :

$$0 \le x^2 \cos(2x)^2 e^{(-x)} \le x^2 e^{(-x)}$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-x)} = x^4 e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^2 e^{(-x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2} \right).$$

Or l'intégrale de Riemann $\int_{\frac{1}{6}\pi}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{6}\pi}^{+\infty} x^2 \cos{(2\,x)^2}\,e^{(-x)} \mathrm{d}x$ converge: d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a :

$$\int_{\frac{1}{6}\pi}^{+\infty} x^2 \cos(2x)^2 e^{(-x)} dx = \int_{\frac{1}{6}\pi}^{+\infty} \left(\frac{1}{2} x^2 (\cos(4x) + 1) e^{(-x)} \right) dx$$
$$= \frac{1}{2} \int_{\frac{1}{6}\pi}^{+\infty} x^2 \cos(4x) e^{(-x)} dx + \frac{1}{2} \int_{\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{\frac{1}{6}\pi}^{+\infty} x^2 \cos(4x) e^{(-x)} dx = \text{Re}\left(\int_{\frac{1}{6}\pi}^{+\infty} x^2 e^{((4i-1)x)} dx\right),$$

et on calcule cette intégrale en intégrant par parties deux fois : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{\frac{1}{6}\pi}^{+\infty} x^2 \cos(4x) e^{(-x)} dx = \operatorname{Re}\left(\left(\frac{1}{1224}i - \frac{1}{306}\right) \sqrt{3}\pi^2 e^{\left(-\frac{1}{6}\pi\right)} - \left(\frac{1}{306}i + \frac{1}{1224}\right) \pi^2 e^{\left(-\frac{1}{6}\pi\right)} - \left(\frac{5}{578}i + \frac{4}{867}\right) \sqrt{3}\pi e^{\left(-\frac{1}{6}\pi\right)} - \left(\frac{1}{306}i + \frac{1}{1224}\right) \pi^2 e^{\left(-\frac{1}{6}\pi\right)} - \left(\frac{5}{578}i + \frac{4}{867}\right) \pi^2 e^{\left(-\frac{1}{6}\pi\right)} - \left(\frac{1}{306}i + \frac{1}{1224}\right) \pi^2 e^{\left(-\frac{1}{6}\pi\right)} - \left(\frac{5}{578}i + \frac{4}{867}\right) \pi^2 e^{\left(-\frac{1}{6}\pi\right)} - \left(\frac{1}{306}i + \frac{1}{1224}\right) \pi^2 e^{\left(-\frac{1}{6}\pi\right)} - \left(\frac{5}{578}i + \frac{4}{867}\right) \pi^2 e^{\left(-\frac{1}{6}\pi\right)} - \left(\frac{1}{306}i + \frac{1}{1224}\right) \pi^2 e^{\left(-\frac{1}{6}\pi\right)} - \left(\frac{5}{578}i + \frac{4}{867}\right) \pi^2 e^{\left(-\frac{1}{6}\pi\right)} - \left(\frac{1}{306}i + \frac{1}{1224}\right) \pi^2 e^{\left(-\frac{1}{6}\pi\right)} - \left(\frac{5}{578}i + \frac{4}{867}\right) \pi^2 e^{\left(-\frac{1}{6}\pi\right)} - \left(\frac{1}{306}i + \frac{1}{306}i + \frac{1}$$

et donc:

$$\int_{\frac{1}{6}\pi}^{+\infty} x^2 \cos{(4\,x)} \, e^{(-x)} \mathrm{d}x = -\frac{1}{306} \sqrt{3} \pi^2 e^{\left(-\frac{1}{6}\,\pi\right)} - \frac{1}{1224} \, \pi^2 e^{\left(-\frac{1}{6}\,\pi\right)} - \frac{4}{867} \, \sqrt{3} \pi e^{\left(-\frac{1}{6}\,\pi\right)} + \frac{5}{578} \, \pi e^{\left(-\frac{1}{6}\,\pi\right)} + \frac{52}{4913} \, \sqrt{3} e^{\left(-\frac{1}{6}\,\pi\right)} + \frac{47}{4913} \, e^{\left(-\frac{1}{6}\,\pi\right)} + \frac{1}{224} \, \pi^2 e^{\left(-\frac{1}$$

On calcule de même $\int_{\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à

prendre en compte), et on obtient : $\int_{\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} dx = \Gamma\left(3, \frac{1}{6}\pi\right)$. On peut conclure :

$$\int_{\frac{1}{6}\pi}^{+\infty} x^2 \cos{(2\,x)^2} \, e^{(-x)} \mathrm{d}x = -\frac{1}{612} \sqrt{3} \pi^2 e^{\left(-\frac{1}{6}\,\pi\right)} + \frac{11}{816} \, \pi^2 e^{\left(-\frac{1}{6}\,\pi\right)} - \frac{2}{867} \, \sqrt{3} \pi e^{\left(-\frac{1}{6}\,\pi\right)} + \frac{593}{3468} \, \pi e^{\left(-\frac{1}{6}\,\pi\right)} + \frac{26}{4913} \, \sqrt{3} e^{\left(-\frac{1}{6}\,\pi\right)} + \frac{9873}{9826} \, e^{\left(-\frac{1}{6}\,\pi\right)} + \frac{11}{816} \, \pi^2 e^{\left(-\frac{1}{6}\,\pi\right)} + \frac{11}{816}$$

Corrigé 88. Commençons par linéariser, en écrivant $\sinh(12x)$ et $\sinh(3x)$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

$$\begin{split} \sinh{(12\,x)^2} & \sinh{(3\,x)^3} = \frac{1}{32} \Big(e^{(12\,x)} - e^{(-12\,x)} \Big)^2 \Big(e^{(3\,x)} - e^{(-3\,x)} \Big)^3 \\ & = \frac{1}{32} \left(e^{(33\,x)} - 3\,e^{(27\,x)} + 3\,e^{(21\,x)} - e^{(15\,x)} - 2\,e^{(9\,x)} + 6\,e^{(3\,x)} - 6\,e^{(-3\,x)} + 2\,e^{(-9\,x)} + e^{(-15\,x)} - 3\,e^{(-21\,x)} + 3\,e^{(21\,x)} + 2\,e^{(-21\,x)} + 2\,e^{$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-1}^{1} \sinh(12x)^{2} \sinh(3x)^{3} dx = \int_{-1}^{1} \left(\frac{1}{16} \sinh(33x) - \frac{3}{16} \sinh(27x) + \frac{3}{16} \sinh(21x) - \frac{1}{16} \sinh(15x) - \frac{1}{8} \sinh(9x) + \frac{3}{8} \sinh(3x) \right)$$

$$= \left[\frac{1}{528} \cosh(33x) - \frac{1}{144} \cosh(27x) + \frac{1}{112} \cosh(21x) - \frac{1}{240} \cosh(15x) - \frac{1}{72} \cosh(9x) + \frac{1}{8} \cosh(3x) \right]$$

$$= 0.$$

d'où le résultat.

Corrigé 89. Commençons par linéariser, en écrivant $\sinh{(44\,x)}$ et $\sinh{(3\,x)}$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 8

$$\begin{split} \sinh{(44\,x)} \sinh{(3\,x)}^3 &= \frac{1}{16} \Big(e^{(44\,x)} - e^{(-44\,x)} \Big) \Big(e^{(3\,x)} - e^{(-3\,x)} \Big)^3 \\ &= \frac{1}{16} \left(e^{(53\,x)} - 3\,e^{(47\,x)} + 3\,e^{(41\,x)} - e^{(35\,x)} - e^{(-35\,x)} + 3\,e^{(-41\,x)} - 3\,e^{(-47\,x)} + e^{(-53\,x)} \right) \\ &= \frac{1}{8} \cosh{(53\,x)} - \frac{3}{8} \cosh{(47\,x)} + \frac{3}{8} \cosh{(41\,x)} - \frac{1}{8} \cosh{(35\,x)} \,. \end{split}$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-7}^{5} \sinh(44x) \sinh(3x)^{3} dx = \int_{-7}^{5} \left(\frac{1}{8} \cosh(53x) - \frac{3}{8} \cosh(47x) + \frac{3}{8} \cosh(41x) - \frac{1}{8} \cosh(35x)\right) dx$$

$$= \left[\frac{1}{424} \sinh(53x) - \frac{3}{376} \sinh(47x) + \frac{3}{328} \sinh(41x) - \frac{1}{280} \sinh(35x)\right]_{-7}^{5}$$

$$= \frac{1}{424} \sinh(371) - \frac{3}{376} \sinh(329) + \frac{3}{328} \sinh(287) + \frac{1}{424} \sinh(265) - \frac{1}{280} \sinh(245) - \frac{3}{376} \sinh(235x)$$

d'où le résultat.

Corrigé 90.

 \leftarrow page 8

1. L'application $x \mapsto x^2 e^{(-5x)} \sin(4x)$ est continue sur $[\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [\pi, +\infty[$, on a :

$$\left| x^2 e^{(-5x)} \sin(4x) \right| \leqslant x^2 e^{(-5x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-5x)} = x^4 e^{(-5x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^2 e^{(-5x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{\pi}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\pi}^{+\infty} x^2 e^{(-5\,x)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\pi}^{+\infty} x^2 e^{(-5\,x)} \sin{(4\,x)} \, \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{\pi}^{+\infty} x^2 e^{(-5x)} \sin(4x) dx = \operatorname{Im} \left(\int_{\pi}^{+\infty} x^2 e^{((4i-5)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties deux fois: on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas:

$$\int_{\pi}^{+\infty} x^{2} e^{(-5\,x)} \sin(4\,x) \, dx = \operatorname{Im}\left(\left(\frac{4}{41}i + \frac{5}{41}\right) \pi^{2} e^{(-5\,\pi)} + \left(\frac{80}{1681}i + \frac{18}{1681}\right) \pi e^{(-5\,\pi)} + \left(\frac{472}{68921}i - \frac{230}{68921}\right) e^{(-5\,\pi)}\right),$$
 et donc:
$$\int_{\pi}^{+\infty} x^{2} e^{(-5\,x)} \sin(4\,x) \, dx = \frac{4}{41} \pi^{2} e^{(-5\,\pi)} + \frac{80}{1681} \pi e^{(-5\,\pi)} + \frac{472}{68921} e^{(-5\,\pi)}.$$

Corrigé 91. Commençons par linéariser, en écrivant $\sin(x)$ et $\sin(5x)$ en fonction d'exponentielles grâce aux \leftarrow page 8 formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

$$\sin(5x)^{4}\sin(x) = \frac{1}{32i} \left(e^{(5ix)} - e^{(-5ix)} \right)^{4} \left(e^{(ix)} - e^{(-ix)} \right)$$

$$= \frac{1}{32i} \left(e^{(21ix)} - e^{(19ix)} - 4e^{(11ix)} + 4e^{(9ix)} + 6e^{(ix)} - 6e^{(-ix)} - 4e^{(-9ix)} + 4e^{(-11ix)} + e^{(-19ix)} - e^{(-21ix)} \right)$$

$$= \frac{1}{16} \sin(21x) - \frac{1}{16} \sin(19x) - \frac{1}{4} \sin(11x) + \frac{1}{4} \sin(9x) + \frac{3}{8} \sin(x).$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-\pi}^{0} \sin(5x)^{4} \sin(x) dx = \int_{-\pi}^{0} \left(\frac{1}{16} \sin(21x) - \frac{1}{16} \sin(19x) - \frac{1}{4} \sin(11x) + \frac{1}{4} \sin(9x) + \frac{3}{8} \sin(x) \right) dx$$

$$= \left[-\frac{1}{336} \cos(21x) + \frac{1}{304} \cos(19x) + \frac{1}{44} \cos(11x) - \frac{1}{36} \cos(9x) - \frac{3}{8} \cos(x) \right]_{-\pi}^{0}$$

$$= -\frac{10000}{13167},$$

d'où le résultat.

Corrigé 92. Commençons par linéariser, en écrivant $\cosh(3x)$ et $\sinh(x)$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 8

$$\begin{split} \cosh{(3\,x)^3} \sinh{(x)} &= \frac{1}{16} - \left(e^{(3\,x)} + e^{(-3\,x)}\right)^3 \left(e^{(-x)} - e^x\right) \\ &= \frac{1}{16} \left(e^{(10\,x)} - e^{(8\,x)} + 3\,e^{(4\,x)} - 3\,e^{(2\,x)} + 3\,e^{(-2\,x)} - 3\,e^{(-4\,x)} + e^{(-8\,x)} - e^{(-10\,x)}\right) \\ &= \frac{1}{8} \sinh{(10\,x)} - \frac{1}{8} \sinh{(8\,x)} + \frac{3}{8} \sinh{(4\,x)} - \frac{3}{8} \sinh{(2\,x)} \,. \end{split}$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\begin{split} \int_{-1}^{2} \cosh{(3\,x)^3} \sinh{(x)} \, \mathrm{d}x &= \int_{-1}^{2} \left(\frac{1}{8} \sinh{(10\,x)} - \frac{1}{8} \sinh{(8\,x)} + \frac{3}{8} \sinh{(4\,x)} - \frac{3}{8} \sinh{(2\,x)}\right) \mathrm{d}x \\ &= \left[\frac{1}{80} \cosh{(10\,x)} - \frac{1}{64} \cosh{(8\,x)} + \frac{3}{32} \cosh{(4\,x)} - \frac{3}{16} \cosh{(2\,x)}\right]_{-1}^{2} \\ &= \frac{1}{80} \cosh{(20)} - \frac{1}{64} \cosh{(16)} - \frac{1}{80} \cosh{(10)} + \frac{7}{64} \cosh{(8)} - \frac{9}{32} \cosh{(4)} + \frac{3}{16} \cosh{(2)} \,, \end{split}$$

d'où le résultat.

Corrigé 93. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\leftarrow$$
 page 8

$$\int_{-\pi}^{\frac{1}{4}\pi} x \cos(x) e^{(-x)} dx = \text{Re}\left(\int_{-\pi}^{\frac{1}{4}\pi} x e^{((i-1)x)} dx\right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\pi}^{\frac{1}{4}\pi} x \cos(x) e^{(-x)} dx = \operatorname{Re}\left(-\frac{1}{8}i\sqrt{2\pi}e^{\left(-\frac{1}{4}\pi\right)} + \left(\frac{1}{2}i + \frac{1}{2}\right)\pi e^{\pi} - \left(\frac{1}{4}i - \frac{1}{4}\right)\sqrt{2}e^{\left(-\frac{1}{4}\pi\right)} - \frac{1}{2}i e^{\pi}\right),$$

et donc:

$$\int_{-\pi}^{\frac{1}{4}\pi} x \cos(x) e^{(-x)} dx = \frac{1}{2}\pi e^{\pi} + \frac{1}{4}\sqrt{2}e^{(-\frac{1}{4}\pi)}.$$

Corrigé 94. Commençons par linéariser, en écrivant $\cosh{(2\,x)}$ et $\cosh{(x)}$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 \leftarrow page 8

$$\begin{split} \cosh{(2\,x)^2}\cosh{(x)} &= \frac{1}{8} \Big(e^{(2\,x)} + e^{(-2\,x)} \Big)^2 \Big(e^{(-x)} + e^x \Big) \\ &= \frac{1}{8} \left(e^{(5\,x)} + e^{(3\,x)} + 2\,e^{(-x)} + e^{(-3\,x)} + e^{(-5\,x)} + 2\,e^x \right) \\ &= \frac{1}{4} \cosh{(5\,x)} + \frac{1}{4} \cosh{(3\,x)} + \frac{1}{2} \cosh{(x)} \,. \end{split}$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_0^1 \cosh(2x)^2 \cosh(x) dx = \int_0^1 \left(\frac{1}{4} \cosh(5x) + \frac{1}{4} \cosh(3x) + \frac{1}{2} \cosh(x)\right) dx$$
$$= \left[\frac{1}{20} \sinh(5x) + \frac{1}{12} \sinh(3x) + \frac{1}{2} \sinh(x)\right]_0^1$$
$$= \frac{1}{20} \sinh(5) + \frac{1}{12} \sinh(3) + \frac{1}{2} \sinh(1),$$

d'où le résultat.

Corrigé 95.

 $\leftarrow \text{page } 8$

1. L'application $x \mapsto \cos(x) e^{(-x)}$ est continue sur $[0, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [0, +\infty[$, on a :

$$\left|\cos\left(x\right)e^{(-x)}\right| \leqslant e^{(-x)},$$

et on sait que l'intégrale $\int_0^{+\infty} e^{(-x)} dx$ converge (c'est une intégrale de référence). Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^{+\infty} \cos(x) \, e^{(-x)} dx$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_0^{+\infty} \cos(x) \, e^{(-x)} dx = \text{Re}\left(\int_0^{+\infty} e^{((i-1)x)} dx\right) = \text{Re}\left(\left[\frac{1}{i-1} e^{((i-1)x)}\right]_0^{+\infty}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{i-1}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_0^{+\infty} \cos(x) e^{(-x)} dx = \operatorname{Re}\left(\frac{1}{2}i + \frac{1}{2}\right),\,$$

et donc:

$$\int_0^{+\infty} \cos(x) e^{(-x)} dx = \frac{1}{2}.$$

Corrigé 96. Commençons par linéariser, en écrivant $\cosh(3x)$ et $\sinh(x)$ en fonction d'exponentielles, en revenant à la définition des fonctions trigonométriques hyperboliques. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

$$\begin{split} \cosh{(3\,x)} \sinh{(x)}^3 &= \frac{1}{16} - \Big(e^{(3\,x)} + e^{(-3\,x)}\Big) \Big(e^{(-x)} - e^x\Big)^3 \\ &= \frac{1}{16} \left(e^{(6\,x)} - 3\,e^{(4\,x)} + 3\,e^{(2\,x)} - 3\,e^{(-2\,x)} + 3\,e^{(-4\,x)} - e^{(-6\,x)}\right) \\ &= \frac{1}{8} \, \sinh{(6\,x)} - \frac{3}{8} \, \sinh{(4\,x)} + \frac{3}{8} \, \sinh{(2\,x)} \,. \end{split}$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau la définition des fonctions trigonométriques hyperboliques. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_0^1 \cosh(3x) \sinh(x)^3 dx = \int_0^1 \left(\frac{1}{8} \sinh(6x) - \frac{3}{8} \sinh(4x) + \frac{3}{8} \sinh(2x)\right) dx$$
$$= \left[\frac{1}{48} \cosh(6x) - \frac{3}{32} \cosh(4x) + \frac{3}{16} \cosh(2x)\right]_0^1$$
$$= \frac{1}{48} \cosh(6) - \frac{3}{32} \cosh(4) + \frac{3}{16} \cosh(2) - \frac{11}{96},$$

d'où le résultat.

Corrigé 97. Commençons par linéariser, en écrivant $\cos(3x)$ et $\sin(2x)$ en fonction d'exponentielles grâce aux formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

← page 8

$$\cos(3x)\sin(2x)^{2} = \frac{1}{-8} \left(e^{(3ix)} + e^{(-3ix)} \right) \left(e^{(2ix)} - e^{(-2ix)} \right)^{2}$$

$$= \frac{1}{-8} \left(e^{(7ix)} - 2e^{(3ix)} + e^{(ix)} + e^{(-ix)} - 2e^{(-3ix)} + e^{(-7ix)} \right)$$

$$= -\frac{1}{4}\cos(7x) + \frac{1}{2}\cos(3x) - \frac{1}{4}\cos(x).$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_{-\pi}^{0} \cos(3x) \sin(2x)^{2} dx = \int_{-\pi}^{0} \left(-\frac{1}{4} \cos(7x) + \frac{1}{2} \cos(3x) - \frac{1}{4} \cos(x) \right) dx$$
$$= \left[-\frac{1}{28} \sin(7x) + \frac{1}{6} \sin(3x) - \frac{1}{4} \sin(x) \right]_{-\pi}^{0}$$
$$= 0,$$

d'où le résultat.

Corrigé 98. Commençons par linéariser, en écrivant $\sin(x)$ et $\cos(x)$ en fonction d'exponentielles grâce aux formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

 $\leftarrow \text{page } 8$

$$\cos(x)^{2} \sin(x)^{3} = \frac{1}{-32i} \left(e^{(ix)} + e^{(-ix)} \right)^{2} \left(e^{(ix)} - e^{(-ix)} \right)^{3}$$

$$= \frac{1}{-32i} \left(e^{(5ix)} - e^{(3ix)} - 2e^{(ix)} + 2e^{(-ix)} + e^{(-3ix)} - e^{(-5ix)} \right)$$

$$= -\frac{1}{16} \sin(5x) + \frac{1}{16} \sin(3x) + \frac{1}{8} \sin(x).$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\int_0^{\frac{14}{3}\pi} \cos(x)^2 \sin(x)^3 dx = \int_0^{\frac{14}{3}\pi} \left(-\frac{1}{16} \sin(5x) + \frac{1}{16} \sin(3x) + \frac{1}{8} \sin(x) \right) dx$$
$$= \left[\frac{1}{80} \cos(5x) - \frac{1}{48} \cos(3x) - \frac{1}{8} \cos(x) \right]_0^{\frac{14}{3}\pi}$$
$$= \frac{27}{160},$$

d'où le résultat.

Corrigé 99. Commençons par linéariser, en écrivant $\cos(x)$ et $\cos(6x)$ en fonction d'exponentielles grâce aux formules d'Euler. On a pour tout $x \in \mathbb{R}$, en utilisant la formule du binôme de Newton:

$$\cos(6x)^{4}\cos(x) = \frac{1}{32} \left(e^{(6ix)} + e^{(-6ix)} \right)^{4} \left(e^{(ix)} + e^{(-ix)} \right)$$

$$= \frac{1}{32} \left(e^{(25ix)} + e^{(23ix)} + 4e^{(13ix)} + 4e^{(11ix)} + 6e^{(ix)} + 6e^{(-ix)} + 4e^{(-11ix)} + 4e^{(-13ix)} + e^{(-23ix)} + e^{(-25ix)} \right)$$

$$= \frac{1}{16} \cos(25x) + \frac{1}{16} \cos(23x) + \frac{1}{4} \cos(13x) + \frac{1}{4} \cos(11x) + \frac{3}{8} \cos(x).$$

La dernière égalité s'obtient en regroupant les exponentielles dont les arguments sont opposés, et en utilisant à nouveau les formules d'Euler. On sait alors intégrer chacun des termes ainsi obtenus, et on en déduit :

$$\begin{split} \int_{-6\,\pi}^{0} \cos\left(6\,x\right)^{4} \cos\left(x\right) \mathrm{d}x &= \int_{-6\,\pi}^{0} \left(\frac{1}{16}\,\cos\left(25\,x\right) + \frac{1}{16}\,\cos\left(23\,x\right) + \frac{1}{4}\,\cos\left(13\,x\right) + \frac{1}{4}\,\cos\left(11\,x\right) + \frac{3}{8}\,\cos\left(x\right)\right) \mathrm{d}x \\ &= \left[\frac{1}{400}\,\sin\left(25\,x\right) + \frac{1}{368}\,\sin\left(23\,x\right) + \frac{1}{52}\,\sin\left(13\,x\right) + \frac{1}{44}\,\sin\left(11\,x\right) + \frac{3}{8}\,\sin\left(x\right)\right]_{-6\,\pi}^{0} \\ &= 0, \end{split}$$

d'où le résultat.

Corrigé 100.

1. L'application $x \mapsto \cos(3x) e^{(-x)}$ est continue sur $[2\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [2\pi, +\infty[$, on a:

$$\left|\cos(3x)e^{(-x)}\right| \leqslant e^{(-x)},$$

et on sait que l'intégrale $\int_{2\pi}^{+\infty} e^{(-x)} dx$ converge (c'est une intégrale de référence). Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{2\pi}^{+\infty} \cos{(3\,x)}\,e^{(-x)} dx$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\int_{2\pi}^{+\infty} \cos(3x) e^{(-x)} dx = \text{Re}\left(\int_{2\pi}^{+\infty} e^{((3i-1)x)} dx\right) = \text{Re}\left(\left[\frac{1}{3i-1}e^{((3i-1)x)}\right]_{2\pi}^{+\infty}\right),$$

et on en déduit (on met directement sous forme algébrique $\frac{1}{3i-1}$ pour faciliter l'identification de ses parties réelle et imaginaire ensuite):

$$\int_{2\pi}^{+\infty} \cos(3x) e^{(-x)} dx = \text{Re}\left(\left(\frac{3}{10}i + \frac{1}{10}\right) e^{(-2\pi)}\right),\,$$

et donc:

$$\int_{2\pi}^{+\infty} \cos(3x) e^{(-x)} dx = \frac{1}{10} e^{(-2\pi)}.$$