MOTOR VEHICLE DEATHS IN THE U.S.

An analysis of seasonality, days of the week, and age from 2005-2015

GROUP #3

Amanda Enstad

BARBARA MACGREGOR

Matt Russell

CHI TRAN

WHY THIS

Detailed information, Well-Structured

Significantly Large Dataset

Easily Accessible (Kaggle)

Trustworthy Source

SOURCE

- Dataset: Deaths in the United States (CDC, 2017)
 - Causes of Death from 2005-2015
 - Over 600 source codes (categories) in data set
 - FOCUSED ON MOTOR VEHICLE DEATHS: 12 SOURCE CODES
- CSVs for each year

Secondary Data Source: US Census Data

LIMITATIONS

- Lack of driving & location data
- A LARGE PERCENTAGE OF MOTOR VEHICLES DEATHS WERE "UNSPECIFIED"
 - 45.1% OF MOTOR VEHICLES DEATHS REPORTED WERE CONSIDERED UNSPECIFIED
- SOME STATISTICAL TESTS/HYPOTHESES WE WANTED TO TEST WERE NOT APPLICABLE
 - Data did not have equal variances/distribution in some cases

DATA WRANGLING

STEP 1: MERGE ALL OF THE CSVs INTO A SINGLE DATAFRAME, USING ONLY THE COLUMNS WE NEED

onth_of_death	sex	detail_age	day_of_week_of_death	current_data_year	manner_of_death	358_cause_recode
1	М	32	7	2005	1.0	396
1	М	75	5	2005	1.0	387
1	М	68	7	2005	1.0	396
2	M	21	1	2005	1.0	396
2	М	24	1	2005	1.0	396
	1 1 1 2	1 M 1 M 1 M 2 M	1 M 32 1 M 75 1 M 68 2 M 21	1 M 32 7 1 M 75 5 1 M 68 7 2 M 21 1	1 M 32 7 2005 1 M 75 5 2005 1 M 68 7 2005 2 M 21 1 2005	1 M 32 7 2005 1.0 1 M 75 5 2005 1.0 1 M 68 7 2005 1.0 2 M 21 1 2005 1.0

Step 2: Used Json files to transform our coded dataframe into

SOMETHING READABLE

```
▼ "day of week of death" : { 8 items
   "1" : string "Sunday"
   "2" : string "Monday"
   "3" : string "Tuesday"
   "4" : string "Wednesday"
   "5" : string "Thursday"
   "6" : string "Friday"
   "7" : string "Saturday"
    "9" : string "Unknown"
  "current data year" : { 1 item
    "2008" : string "2008"
"injury at work" : { 3 items
   "Y" : string "Yes"
   "N" : string "No"
   "U" : string "Unknown"
 "manner of death" : { 8 items
    "1" : string "Accident"
```

```
manner of death dict = {
         1: "Accident",
          2: "Suicide".
28
          3: "Homicide",
         4: "Pending investigation",
         5: "Could not determine",
         6: "Self-Inflicted",
         7: "Natural"}
            "Blank": "Not specified" }
34 #
36 cause recode dict = {
         385: " 385- Motor vehicle accidents",
         386: 386- Pedestrian involved in collision with motor vehicle,
         387: 387- Pedalcyclist involved in collision with motor vehicle,
          208: 388- Motorcyclist involved in any accident except collision with railway train,
          9:" 389- Motor vehicle accident involving collision with railway train".
          390: 390- Motorcyclist involved in collision with railway train,
         391: 391- Other motor vehicle accident involving collision with railway train",
         392: 392- Occupant of motor vehicle involved in collision with other (non- motorized) road vehicle, streetcar, animal
         393: "393- Occupant of car, pickup truck or van involved in collision with other motor vehicle",
          394: 394- Occupant of heavy transport vehicle or bus involved in collision with other motor vehicle",
         395: " 395- Occupant of motor vehicle involved in non-collision accident",
         396: 396- Occupant of special-use motor vehicle involved in any accident,
         397: " 397- Other and unspecified motor vehicle accidents",
          398: 398- Streetcar accidents }
51
53 clean df = car death data.replace({"month of death": month dict,
                            "day of week of death": day of week dict,
                            "manner of death": manner of death dict,
56
                            "358 cause recode": cause recode dict})
58 clean df
```

CDC definitions (JSON format)

Replacing coded values in dataframe with new values from dictionaries

Step 2: Used Json files to transform our coded dataframe into something readable

The resulting dataframe is clean, easy to understand & ready for analysis!

	month_of_death	sex	detail_age	day_of_week_of_death	current_data_year	manner_of_death	358_cause_recode
207	January	М	32	Saturday	2005	Accident	396- Occupant of special-use motor vehicle in
208	January	М	75	Thursday	2005	Accident	387- Pedalcyclist involved in collision with
220	January	М	68	Saturday	2005	Accident	396- Occupant of special-use motor vehicle in
234	February	М	21	Sunday	2005	Accident	396- Occupant of special-use motor vehicle in
235	February	М	24	Sunday	2005	Accident	396- Occupant of special-use motor vehicle in
	\$440		2.2	1.2			
2717184	December	М	67	Friday	2015	Accident	397- Other and unspecified motor vehicle acci
2717278	December	F	77	Thursday	2015	Accident	397- Other and unspecified motor vehicle acci
2717674	December	М	73	Wednesday	2015	Accident	397- Other and unspecified motor vehicle acci
2717998	December	М	70	Thursday	2015	Accident	395- Occupant of motor vehicle involved in no
2718169	December	F	63	Thursday	2015	Accident	386- Pedestrian involved in collision with mo

STEP 3: CHECK THE DATA QUALITY & REMOVE ANY INACCURATE OR AMBIGUOUS DATA

```
In [5]: 1 # check quality of data
         2 # list all unique values in each columns
         4 colNames = list(clean df.columns)
         5 for col in colNames:
               print(col)
               print(f"{clean df[col].unique()}")
               print("----")
        month of death
        ['January' 'February' 'March' 'April' 'June' 'May' 'July' 'August'
         'September' 'October' 'November' 'December']
        Sex
        ['M' 'F']
        detail age
        [ 32 75 68 21 24 25 44 49 40 11 14 64 57 18
         27 43 58 46 33 22 13 61 56 16 53 30 23 26 20 83
                1 47 65 72 52 17 28 12 19 48 45 50 66
         59 69 39 37 63 78 80 35 73 36 90 999 82 55 51
         29 91 79 7 84 76 8 5 77 89 74 4 10 88 86 6 3 71
         67 92 101 94 87 93 97 96 102 100 99 95 98 106 104 103 107]
        day of week of death
        ['Saturday' 'Thursday' 'Sunday' 'Tuesday' 'Wednesday' 'Monday' 'Friday'
         'Unknown'
        current data year
        [2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015]
       manner of death
        ['Accident' 'Natural' 'Could not determine' 'Homicide' nan
         'Pending investigation' 'Suicide']
       358 cause recode
       [' 396- Occupant of special-use motor vehicle involved in any accident'
         ' 387- Pedalcyclist involved in collision with motor vehicle'
```


Does the average number of vehicle deaths vary by month?

- 1.) Group the dataframe by month, then sum how many deaths occurred in each month per year
- 2.) LEVENE'S TEST TO TEST FOR EQUAL VARIANCE
- 3.) ANOVA TO DETERMINE IF THERE IS A DIFFERENCE BETWEEN GROUPS IN OUR POPULATION
- 4.) F-ONEWAY TEST TO COMPARE SPECIFIC GROUPS

DOES THE AVERAGE NUMBER OF VEHICLE DEATHS VARY BY SEASON?

1.) SEASON DEFINITIONS

A. Winter: Dec-Feb

B. Spring: March – May

C. Summer: June-Aug

D. Fall: Sept-Nov

2.) Group the dataframe by season, then sum how many deaths occurred in each season per year

3.) Levene's Test to test for equal variance

4.) ANOVA TO DETERMINE IF THERE IS A DIFFERENCE BETWEEN GROUPS IN OUR POPULATION

Does the average number of vehicle deaths vary by season?

- 1.) P-VALUE < 0.05 FROM ANOVA REJECT NULL HYPOTHESIS
- 2.) Pairwise Tukey test to compare different seasons
- 3.) Comparing summer and winter, Pairwise Tukey and F-Oneway have different results

4	В	mean(A)	mean(B)	diff	se	tail	Т	p-tukey	hedges
fall	spring	8441.000	9267.182	-826.182	445.349	two-sided	-1.855	0.252	-0.761
Fall	summer	8441.000	10350.000	-1909.000	445.349	two-sided	-4.287	0.001	-1.758
all	winter	8441.000	9940.455	-1499.455	445.349	two-sided	-3.367	0.005	-1.381
pring	summer	9267.182	10350.000	-1082.818	445.349	two-sided	-2.431	0.076	-0.997
pring	winter	9267.182	9940.455	-673.273	445.349	two-sided	-1.512	0.433	-0.620
summer	winter	10350.000	9940.455	409.545	445.349	two-sided	0.920	0.768	0.377

IS THERE AN INTERACTION BETWEEN AGE AND DAY OF WEEK FOR MOTOR VEHICLE DEATHS?

SPECIFICALLY:

- Do younger people show a stronger tendency toward weekend fatalities?
- \bullet H_O IN ALL CASES IS THAT THERE IS NO EFFECT (WHETHER AGE, DAY OF WEEK, OR BOTH)
- MOTIVATION: POPULAR CULTURE AND HIGH SCHOOL EXPERIENCE

https://en.wikipedia.org/wiki/List_of_car_crash_son

\mathcal{M} otor vehicles deaths by day of week

LEVENE'S TEST

P-Value = 8.27 e-01 (same for stats package and pingouin)

P >= 0.05

> Sample variances similar enough for ANOVA

ANOVA F-ONEWAY

STATISTIC = 7.66

P = 6.62 e-10 (stats package)

P(UNCORR.) = 1.1 1E-14 (PINGOUIN)

REJECT THE NULL HYPOTHESIS THAT THE SAMPLE MEANS ARE EQUAL

Motor vehicle deaths by age group

LEVENE'S TEST

P-VALUE = 5.79 E-09 (PINGOUIN PACKAGE)

P >= 0.05

SAMPLE VARIANCES TOO DISSIMILAR FOR ANOVA

KRUSKAL-WALLIS H-TEST FOR INDEPENDENT SAMPLES

STATISTIC = 183.13

P = 6.84 e-30 (Pingouin package)

REJECT THE NULL HYPOTHESIS THAT THE SAMPLE MEDIANS ARE EQUAL

CAN SOME AGE-GROUP EFFECTS BE ATTRIBUTED TO DIFFERING COHORT SIZES?

MOTOR VEHICLE DEATHS BY AGE GROUP

LINEAR REGRESSION OF MOTOR VEHICLE DEATHS VS. POPULATION SUGGESTS THERE ARE OTHER FACTORS, PARTICULARLY FOR CHILDREN AND YOUNG ADULTS

- AGE-GROUP VARIANCES ARE TOO DISSIMILAR FOR ANOVA
- Can age groups be tested one by one?
- VISUAL IMPRESSION IS THAT ANY WEEKEND EFFECT MAY DISSIPATE WITH AGE

VARIANCES
 WITHIN AGE
 GROUPS ARE
 SUITABLE FOR
 ANOVA TEST
 OF DAY-TO-DAY
 DIFFERENCES

	W	pval	equal_var
levene	1.94635	0.085272	True
	W	pval	equal_var
levene	0.882933	0.512125	
	W	pval	
levene	1.078084	0.384021	
	W	pval	
levene	0.933086	0.476952	
	W	pval	
levene	0.661903	0.680509	
10	W	pval	
levene	1.668938	0.141543	
5200000000	W	pval	
levene	0.805239	0.569251	
-40000000000000000000000000000000000000	W	pval	
levene	0.988245	0.440008	
	W	pval	
levene	0.35972	0.901849	True
72	W	pval	
levene	0.830179	0.550596	True
\$2000000	W	pval	equal_var
levene	0.866909	0.523659	
******	W		equal_var
levene	0.565013	0.75671	True
•	W	pval	
levene	0.519195	0.791876	
	W	pval	
levene	0.343863	0.911163	
\$ 12.00 Yester	W	pval	
levene	0.409808	0.870158	
*******	W	pval	
levene	0.563515	0.757874	
levene	W 1.066215	pval 0.391112	
revene	1.066215 W		
1	0.840581		equal_var True
- EDVEDIO	V.54V381	W-3923	T. T. 1149

	p (uncorr.)				
Overall	0				
Age group					
0-4	0.000039				
5-9	0.000002				
10-14	8.33E-07				
15-19	0.000006				
20-24	6.80E-19				
25-29	5.00E-28				
30-34	2.24E-23				
35-39	3.37E-12				
40-44	1.43E-09				
45-49	2.40E-09				
50-54	1.22E-18				
55-59	7.35E-11				
60-64	0.000145				
65-69	0.066528				
70-74	0.000002				
75-79	0.000216				
80-84	0.000015				
85 and over	4.41E-07				

- ONE-WAY ANOVA
 SHOWED SIGNIFICANT
 DIFFERENCES AMONG DAYS
 FOR ALL BUT THE 65-69
 AGE GROUP
 - AT THIS LEVEL OF
 ANALYSIS, YOUNGER
 PEOPLE ARE NOT
 DIFFERENT

Post-hoc tests showed significant differences in motor vehicle fatality counts among all pairs of weekdays and age groups, except those shown here

1	Post-hoc tests corn	ected fo	r multiple-c	and the second second second									
2	Contrast	A	В	Paired	Parametric	T	dof	Tail	p-unc	p-corr	p-adjust	BF10	hedges\#NAME?
3	day_of_week_of_death	Monday	Thursday	TRUE	TRUE	-1.276	197	two-sided	0.204	0.204	fdr_bh	0.177	-0.016\
4 5	day_of_week_of_death	Tuesday	Wednesday	TRUE	TRUE	-1.816	197	two-sided	0.071	0.074	fdr_bh	0.398	-0.024\
6	Age_group	45-49	50-54	TRUE	TRUE	0.229	76	two-sided	0.819	0.819	fdr_bh	0.129	0.023\
7	Age_group	80-84	85 and over	TRUE	TRUE	-1.039	76	two-sided	0.302	0.304	fdr_bh	0.211	-0.134\
8	Age_group	35-39	55-59	TRUE	TRUE	1.368	76	two-sided	0.175	0.178	fdr_bh	0.307	0.166\
9	Age_group	30-34	40-44	TRUE	TRUE	1.493	76	two-sided	0.14	0.142	fdr_bh	0.363	0.085\
10	Age_group	15-19	25-29	TRUE	TRUE	-1.53	76	two-sided	0.13	0.134	fdr_bh	0.383	-0.112\
11													

- Some tendency for age groups to cluster
- No evidence yet to cleanly separate weekends from weekdays
- LIKELY NEXT TEST WOULD BE TO GROUP (SOME) WEEKDAYS VS. WEEKEND
- Analyses to date are easiest with equal sample sizes, so would choose e.g. Sat/Sun vs. Tue/Wed

CONCLUSIONS/ FURTHER QUESTIONS

- There are significant differences in motor vehicle deaths between:
 - SUMMER & WINTER
 - AGE
 - Days of Week

- QUESTIONS WE HAVE AFTER OUR ANALYSES:
 - What is the correlation between auto insurance rates and age of driver?
 - Future Analysis: Will motor vehicle deaths decrease
 with the newly enforced texting and driving laws