BM20A9200 Mathematics A – Exercise set 3

To be done by 25.–29.9.2023

Text in blue or red is not part of the problem or its solution. It's there as extra information to help you learn.

Exercise 1. Let $X = \{4, 5, 6\}$, $Y = \{a, b, c\}$ and $Z = \{l, m, n\}$. Consider the relations R from X to Y and S from Y to Z defined by:

$$R = \{(4, a), (5, b), (5, c), (6, b), (6, c)\},\$$

$$S = \{(a, l), (a, m), (b, l), (b, m), (b, n), (c, m), (c, n)\}.$$

Find the following compositions of relations:

- (a) RS
- (b) RR^{-1}

Solution.

(a) Let's draw R and S as arrow diagrams side by side:

Then xRSz if and only if there is $y \in Y$ such that xRy and ySz. In other words if in the diagram we can follow arrows from x to z.

We see for example that from 4 we can go to a, and from a to l or m. Hence from 4 we get to l and m. Using similar logic we see that

$$RS = \{(4, l), (4, m), (5, l), (5, m), (5, n), (6, l), (6, m), (6, n)\}.$$

(b) For RR^{-1} let's draw R^{-1} instead of S in the above diagram. R^{-1} is just R with arrows and X, Y flipped the other direction.

Using the method in (a) we see that

$$RR^{-1} = \{(4,4), (5,5), (5,6), (6,5), (6,6)\}.$$

Exercise 2. Let us denote $\mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\}$, that is, \mathbb{R}^+ is the set of all positive real numbers.

- (a) Let us define a binary relation T on \mathbb{R}^+ so that T consists of the pairs (x, x^2) where $x \in \mathbb{R}^+$. What is the inverse relation of T?
- (b) Let us define a binary relation S on \mathbb{R} so that S consists of the pairs (x, x^2) , where $x \in \mathbb{R}$. What is the inverse relation of S?

Solution. The inverse operator is gotten by flipping the first and second component of each pair in the original relation.

(a) Since

$$T = \{(x, x^2) \mid x \in \mathbb{R}_+\}$$

then

$$T^{-1} = \{ (x^2, x) \mid x \in \mathbb{R}_+ \}.$$

(b) Since

$$S = \{(x, x^2) \mid x \in \mathbb{R}\}$$

then

$$S^{-1} = \{ (x^2, x) \mid x \in \mathbb{R} \}.$$

Extra info: Some people want to write this kind of relations as a "graph of a function." That is ok but it is not required here.

To achieve that it means that the pair would have the "free variable" in its first item. Then (a) would become

$$T^{-1} = \{(y, \sqrt{y}) \mid y \in \mathbb{R}_+\}.$$

We have used the symbol y instead of x to show that the new pairs have been gotten from the original ones with the change of variebles $y = \sqrt{x}$ which is allowed when $x \ge 0$.

The same trick cannot be used directly for (b) because to each x^2 there is two values of the second component in S. For example: $(4,2) \in S$ and $(4,-2) \in S$. To avoid this problem we'll need to split $S^{-1} = S_1^{-1} \cup S_2^{-1}$. For example:

$$S_1^{-1} = \{(x^2,x) \mid x \in \mathbb{R}, x \geq 0\}, \qquad S_2^{-1} = \{(x^2,x) \mid x \in \mathbb{R}, x < 0\}.$$

In S_1^{-1} we can write $y=x^2$ and see that then $x=\sqrt{y}$. Hence

$$S_1^{-1} = \{(y, \sqrt{y}) \mid y \in \mathbb{R}, y \ge 0\}.$$

In S_2^{-1} , if $z=x^2$ then $x=-\sqrt{z}$. But pay attention that the condition " $x\in\mathbb{R}$, x<0" changes to " $z\in\mathbb{R},\,z>0$." Using that

$$S_2^{-1} = \{(z, -\sqrt{z}) \mid z \in \mathbb{R}, z > 0\}.$$

Taking $S^{-1} = S_1^{-1} \cup S_2^{-1}$ into account we get

$$S^{-1} = \{ (y, \sqrt{y}) \mid y \in \mathbb{R}, y \ge 0 \} \cup \{ (z, -\sqrt{z}) \mid z \in \mathbb{R}, z > 0 \}.$$

Exercise 3. Let A and B be sets. Suppose that R and S are relations from A to B, that is, $R, S \subseteq A \times B$. Prove that

$$(R \cup S)^{-1} = R^{-1} \cup S^{-1}$$
.

Solution. We need to prove that two sets are equal. They are equal if and only if they have the same elements. Let's write out the left-hand side using set notation:

Proof.

$$(R \cup S)^{-1} = \{(x, y) \mid (y, x) \in R \cup S\}$$

$$= \{(x, y) \mid (y, x) \in R \lor (y, x) \in S\}$$

$$= \{(x, y) \mid (y, x) \in R\} \cup \{(x, y) \mid (y, x) \in S\}$$

$$= R^{-1} \cup S^{-1}.$$

The first equality if the definition of the inverse of a relation. The second equality if the definition of the union $R \cup S$. The third equality is the definition of \cup using the set builder notation, for example $\{\ldots \mid P \lor Q\} = \{\ldots \mid P\} \cup \{\ldots \mid Q\}$. The last equality is the definition of the inverse of a relation used twice.

Info: In the exam it will be a good idea to explain each '=' in the proof like above. This will convince me that you know what you are doing. If I have to guess, it is more likely that you will lose points.

Info: Set notation is very powerful. On a course like Mathematics A it is very useful to write the definitions of objects using set builder notation " $\{x \mid \text{condition on } x\}$." After that use definitions and propositional logic (rules of logic, truth tables) to deduce that two different-looking sets are actually the same.

Exercise 4. Let P be the proposition "I think" and Q the proposition "I am". The following table shows a few propositions and their meaning in natural language:

```
P\Rightarrow Q If I think, then I am. (I think, therefore I am –Decartes) \neg Q\Rightarrow \neg P If I am not, then I don't think. P\wedge \neg Q I think and I am not. \neg P\Rightarrow \neg Q If I don't think, then I am not.
```

- (a) Write the truth tables for the sentences.
- (b) Which of the propositions are logically equivalent?
- (c) Using P and Q, invent a few new propositions which are equivalent to some of the propositions above, and prove that they are so using a truth table.

Solution.

(a) The truth tables of the propositions are:

P	Q	$P \Rightarrow Q$	P	Q	$\neg P$	$\neg Q$	$\neg Q \Rightarrow \neg P$
		1					1
1	0	0	1	0	0	1	0
0	1	1				0	
0	0	1	0	0	1	1	1

P	Q	$\neg Q$	$P \land \neg Q$	P	Q	$\neg P$	$\neg Q$	$\neg P \Rightarrow \neg Q$
			0					1
1	0	1	1	1	0	0	1	1
0	1	0	0	0	1	1	0	0
0	0	1	0	0	0	1	1	1

- (b) By looking at the truth tables we see that propositions $P \Rightarrow Q$ and $\neg Q \Rightarrow \neg P$ have the same truth values. No others do. Therefore these are the only two propositions in the exercise that are logically equivalent.
- (c) The proposition $\neg(P \Rightarrow Q)$ is logically equivalent to the proposition $P \land \neg Q$. This means that they have the same truth values:

P	P	$\neg Q$	$P \wedge \neg Q$	P	Q	$P \Rightarrow Q$	$\neg (P \Rightarrow Q)$
1	1	0	0	1	1	1	0
1	0	1	1	1	0	0	1
0	1	0	0	0	1	1	0
0	0	1	0	0	0	1	0

Also, the proposition $P \vee \neg Q$ is logically equivalent to the proposition $\neg P \Rightarrow \neg Q$ because they have the same truth tables:

P	Q	$\neg P$	$\neg Q$	$\neg P \Rightarrow \neg Q$	P	Q	$\neg Q$	$P \vee \neg Q$
1	1	0	0	1	1	1	0	1
1	0	0	1	1				1
0	1	1	0	0				0
0	0	1	1	1	0	0	1	1

Exercise 5. In mathematics, it's often useful to figure out what is the negation of a given proposition. For example if we can't prove some theorem, maybe we can prove its negation. Also, we will need the ability to form the negation of a proposition when studying indirect proof methods later.

(a) Connect each proposition on the left to its negation on the right (and prove why).

$$P_0 \wedge P_1 \qquad P_0 \wedge \neg P_1$$

$$P_0 \vee P_1 \qquad \neg P_0 \wedge \neg P_1$$

$$P_0 \Rightarrow P_1 \qquad \neg P_0 \vee \neg P_1$$

4

- (b) The following propositions say something about an unknown real number x. Write the negation in each case, but do it in such a way that the negation symbol \neg does not appear there. You can use the symbols \leq , <, \geq , \notin etc.
 - 1. $(x^2 = 1) \land (x > 0)$
 - $2. \ (x^2 = 2) \lor (x \in \mathbb{Q})$
 - 3. $(x^2 = 1) \Rightarrow (x > 0)$
 - 4. $(x^2 = 2) \Leftrightarrow (x \in \mathbb{Q})$

Hint: You don't need to try to interpret the propositions to find their negation. Try using (a) as a guide.

Solution.

(a) Let's write the truth tables:

	P_0	$P_1 \mid P_0 \wedge P_1$		P_0	$P_1 \mid -$	$P_1 \mid P$	$P_0 \wedge \neg P_1$
	1	1 1		1	1	0	0
	1	$0 \mid 0$		1	0	1	1
	0	$1 \mid 0$		0	1	0	0
	0	0 0		0	0	1	0
P_0	P_1	$P_0 \vee P_1$	P_0	P_1	$\neg P_0$	$\neg P_1$	$\neg P_0 \wedge \neg P_1$
1	1	1	1	1	0	0	0
1	0	1	1	0	0	1	0
0	1	1	0	1	1	0	0
0	0	0	0	0	1	1	1
P_0	P_1	$P_0 \Rightarrow P_1$	P_0	P_1	$ \neg P_0 $	$\neg P_1$	$\neg P_0 \lor \neg P_1$
1	1	1	1	1	0	0	0
1	0	0	1	0	0	1	1
0	1	1	0	1	1	0	1
0	0	1	0	0	1	1	1

According to the truth tables:

$$\neg (P_0 \land P_1) \Leftrightarrow \neg P_0 \lor \neg P_1 \neg (P_0 \Rightarrow P_1) \Leftrightarrow P_0 \land \neg P_1 \neg (P_0 \lor P_1) \Leftrightarrow \neg P_0 \land \neg P_1.$$

(b) Using (a) for 1.-3., we get

$$\neg((x^2 = 1) \land (x > 0)) \Leftrightarrow (x^2 \neg 1) \lor (x \le 0)$$
$$\neg((x^2 = 2) \lor (x \in \mathbb{Q})) \Leftrightarrow (x^2 \neg 2) \land (x \notin \mathbb{Q})$$
$$\neg((x^2 = 1) \Rightarrow (x > 0)) \Leftrightarrow (x^2 = 1) \land (x < 0).$$

For the last one, we notice that the equivalence \Leftrightarrow is false if and only if one of the sentences is true and the other is false. This way,

$$\neg \big((x^2 = 2) \Leftrightarrow (x \in \mathbb{Q}) \big) \quad \Leftrightarrow \quad \big((x^2 = 2) \land (x \notin \mathbb{Q}) \big) \lor \big((x^2 \neq 2) \land (x \in \mathbb{Q}) \big).$$

Exercise 6. In lectures it was shown that $P \Rightarrow Q$ is logically equivalent to $\neg P \lor Q$. In other words, the operation \Rightarrow can be defined by using \lor and \neg .

- (a) Define \vee using \neg and \Rightarrow .
- (b) Define \land using \neg and \lor .

Prove the correctness of your answer by using truth tables.

Solution. Info: There are two ways for finding these. One is to try things until they almost work, and then make small adjustments. The other is to use the properties of \wedge and \vee to give us a guess, and then check & prove it with truth tables.

For \vee using \neg and \Rightarrow :

- $A \vee B$ is false only when both A = 0 and B = 0.
- $C \Rightarrow D$ is false only when C = 1 and D = 0.

This suggests trying $C = \neg A$ and D = B, which gives the correct guess $\neg A \Rightarrow B$. For \land using \neg and \lor :

- $A \wedge B$ is true only when both A = 1 and B = 1.
- $C \vee D$ is false only when both C = 0 and D = 0.

This suggests selecting $C = \neg A$, $D = \neg B$ and adding a negation in front: $\neg(\neg A \lor \neg B)$.

(a) The correct answer is that $A \vee B$ is equivalent to $\neg A \Rightarrow B$ (or $\neg B \Rightarrow A$).

Proof. We see that they are logically equivalent from the following truth table:

A	B	$\neg A$	$\neg A \Rightarrow B$	$A \lor B$
0	0	1	0	0
0	1	1	1	1
1	0	0	1	1
1	1	0	1	1

(b) The answer is $A \wedge B$ is equivalent to $\neg(\neg A \vee \neg B)$.

Proof. They are logically equivalent by the following truth table

A	B	$\neq A$	$\neg B$	$\neg A \lor \neg B$	$\neg(\neg A \lor \neg B)$	$A \wedge B$
0	0	1	1	1	0	0
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1			0	1	1

Info: Proving things makes mathematicians convinced. However convincing humans is a different matter. If you want to convince yourself, try these with the example A: "it is raining", B: "it looks pretty outside" and consider the different truth values of A and B and the propositions. For example, "it is not raining and it is pretty outside" has the opposite message than "it is raining or it's an ugly weather outside".