Philip Dixon

10 July 2020

- Combine ideas from non-linear models and linear mixed effect models
- Very powerful, can be very difficult (theoretically and practically)
- Software is making more and more possible
- Outline:
 - Linear mixed effect models
 - Non-linear models
 - Non-linear mixed effect models
 - Alternatives: meta analysis
 - Alternatives: Bayesian

Linear mixed effect models

- Use random effects to describe clusters of data
 - Random effects also describe correlation between observations
- Number of sea turtles nesting on 7 beaches over time
- Cluster = beach
- Goals:
 - Estimate trend over time
 - Is trend consistent on all beaches

Sea turtle data

Sea turtle data

- Building up a model, i indexes Year; j indexes beach
 - linear regression, log count vs time

$$Y_{ij} = \beta_0 + \beta_1 X_i + \varepsilon_{ij}$$

Allow intercept to vary by beach

$$Y_{ij} = \beta_{0j} + \beta_1 X_i + \varepsilon_{ij}$$

Make intercept a random effect

$$\begin{array}{lcl} Y_{ij} & = & \beta_0 + u_{0j} + \beta_1 X_i + \varepsilon_{ij} \\ u_{0j} & \sim & N(0, \ \sigma_{beach}^2) \\ Y_{ij} & = & u_{0j} + \beta_1 X_i + \varepsilon_{ij} \\ u_{0j} & \sim & N(\beta_0, \ \sigma_0^2) \end{array}$$

Sea turtle data

Add a slope random effects, assume independent of intercept RE

$$\begin{array}{rcl} Y_{ij} & = & u_{0j} + u_{1j}X_i + \varepsilon_{ij} \\ u_{0j} & \sim & N(\beta_0, \ \sigma_0^2) \\ u_{1j} & \sim & N(\beta_1, \ \sigma_1^2) \end{array}$$

Make intercept and slope RE correlated

$$\begin{array}{rcl} Y_{ij} & = & u_{0j} + u_{1j}X_i + \varepsilon_{ij} \\ \left[\begin{array}{c} u_{0j} \\ u_{1j} \end{array} \right] & \sim & N\left(\left[\begin{array}{c} \beta_0 \\ \beta_1 \end{array} \right], \left[\begin{array}{cc} \sigma_0^2 & \sigma_{01} \\ \sigma_{01} & \sigma_1^2 \end{array} \right] \right) \end{array}$$

- Practical issue:
 - Intercept is predicted log count in year 0, far from the data
 - Redefine intercept as year 1990, or 2000

Linear mixed effect models

• The linear mixed effect model:

$$Y = X\beta + Zu + \varepsilon$$

 $Y \mid u \sim N(X\beta + Zu, \sigma_e^2)$

- Need marginal distribution of Y to construct a likelihood
- Y ~ ??
- In general, need to integrate: $f(Y) = \int f(Y \mid u)f(u)du$
- When u and ε are normally distributed, statistical magic happens:

$$Y \sim N(X\beta, ZGZ' + R)$$

 $Var u = G$
 $Var \varepsilon = R$

Linear mixed effect models

Random effects result in correlations between observations

$$Var Y = ZGZ' + R$$

- Intercept RE only: Var Y is compound symmetric
- both RE: Var Y more complicated
- "Easy" to fit: Y is a large multivariate normal distribution
- Iterative algorithm:
 - Use REML to estimate random effect parameters given fixed effect parameters
 - Condition on those estimated RE parameters → Var Y
 - Use generalized least squares to estimate fixed effect parameters

Non-linear models

Relax the assumption of linear effects:

$$Y_i = f(\theta, X_i) + \epsilon_i$$

Exponential growth model

$$Y_i = Y_0 e^{rX_i} + \epsilon_i$$

Differences between two models for sea turtles

	$ \log Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i $	$Y_i = Y_0 e^{rX_i} + \epsilon_i$
Fixed model	Same, $\beta_0 = \log Y_0$	$\beta_1 = r$
error variance	constant for $\log Y_i$	constant for Y_i
error distrib.	normal for $\log Y_i$	normal for Y_i

Non-linear models

- Can rewrite models using more interpretable parameters
- Quadratic response model

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{2}X^{2} + \varepsilon_{i}$$

$$Y_{i} = \beta_{0} + \beta_{2} (X_{i} - X_{m})^{2} + \varepsilon_{i}$$

- X_m is location of maximum / minimum, β_0 is height at that max/min
- Two parameter logistic curve

$$Y_{i} = \frac{1}{1 + \exp(\beta_{0} + \beta_{1}X_{i})} + \varepsilon_{i}$$

$$Y_{i} = \frac{1}{1 + \exp[\beta_{1}(X_{i} - LC_{50})]} + \varepsilon_{i}$$

LC₅₀ is X at which response is 0.5

- Clusters of observations
 - individuals followed over time
 - plots with multiple individuals with different X values
 - blocks with multiple treatments
- Could:
 - Fit one NL model to all clusters probably violating independence
 - Fit separate NL models to each cluster
 - Combine NL and LME ideas: some or all NL parameters get distributions
- NLME allow inference to new individuals in the population

- Easy to write down the model
- Hard to fit it to data, estimate parameters
- Conditional distribution given by the NL model

$$Y \mid u = f(X, \beta + u) + \varepsilon$$

- Want f(Y), need to integrate out the random effects
- Almost never an analytic solution
 - No nice multivariate normal distribution for Y

- Three computational approaches
 - Linearize the model: pseudolikelihood methods
 - Approximate the integral:
 - Laplace approximation or (adaptive) Gaussian quadrature
 - Add prior distributions, simulate samples from the posterior:
 Bayesian MCMC
- As far as I can tell:
 - nlme() linearizes the model to estimate fixed effects
 - nlmer() uses a Laplace approximation
- And a fourth idea: focus on the experimental unit (eu)
 - Fit NL model to each eu, extract estimate and se
 - Use meta-analysis to estimate overall estimate and precision
 - And estimate heterogeneity among eu's
 - Use meta-regression to evaluate fixed effect models

Comparison of approaches

- All methods:
 - Provides estimates, se's and inference for fixed effects
 - Provides estimates of variability
 - Predictions with se's, e.g. to interpolate for a subject
- Frequentist mixed effects
 - Can predict for new subjects
 - Can pool information for some parameters, separately est. others
 - Inference based on normal approximations for estimates
 - Use AIC, BIC or LR tests to do model selection on random effects
- What do I mean by "partial pooling"?
 - Quadratic response model, 3 parameters: β_0 , β_2 , and X_m
 - All groups have same β_2 , but differ in β_0 and X_m
 - Model has random effects for β_0 and X_m , not for β_2

nlme or nlmer?

	nlme	nlmer
Fitting fixed effects	easy	cumbersome
Starting values	SS function	have to specify
Predict Y for new subjects	easy	
Nonconstant variance	easy-ish	not possible
Autocorrelated errors	easy-ish	not possible
Crossed RE	no	yes
Se/CI for predictions	??	bootMer()
Graphics	nice	do yourself
Maintenance	yes	yes
Active development	no	no

Comparisons

- Bayesian mixed effects
 - Predictions with se's for old and new subjects
 - Can pool information for some parameters, separately est. others
 - se's and ci's for RE variances
 - Inference based directly on posterior distribution
 - Can use Bayesian model selection tools
 - Have to specify prior distributions requires thought
 - Lots of traps for the unaware
- "Non-linear models are incredibly flexible and powerful, but require much more care with respect to model specification and priors than typical generalized linear models." (from brms vignette)

Comparisons

- Meta analysis
 - Probably the easiest to fit complicated FE models
 - Can not partially pool information
 - Start with separate fits to each group
 - Ignores a group when model doesn't fit

Examples: Leaf Fire Moisture Content

- Data in nlraa package (lfmc)
- Paper in Ecology and Evolution, 2019, Oddi et al.
 - Available at https://doi.org/10.1002/ece3.5543
- Four species, measured multiple times during fire season
- 2 sites, each with 6 plots
- Destructively sampled 3 plants per plot each time
- Oddi et al. fit 4 parameter logistic curves to each plot.
- Oddi et al. code in their supplemental material.

Examples: Leaf Fire Moisture Content

- My example: one species S. bracteolactus, in 1 site, 3 plots
- Goals
 - Which parameters appear to vary among plots?
 - What is the typical curve?
- My code in nlme.r and with comments in nlme.Rmd
 - Using nlme(): non-linear ME model
 - Using nlmer(): non-linear ME model
 - Using stan_nlmer(): Bayesian NL ME
 - Fernando prefers brms
 - More difficult to set up
 - But requiring more thinking is a good thing here
 - Using metafor(): meta analysis

Examples: Leaf Fire Moisture Content

Examples: N leaching, from Gina

- N leaching (kg/ha) as a function of N fertilizer applied (kg/ha)
 - 9 sites, 20 years, 2 crop rotations at each site/year
 - 7 N rates, same N for all site years.
 - leaching derived from a crop model
- Goals
 - Choose a non-linear model
 - Estimate difference between cropping systems for each parameter
 - Correlation among parameters?
 - Variation between sites? between years?
 - Which sites have highest year-year variation in leaching?

Examples: N leaching, 2010 data

