CS2040S Data Structures and Algorithms

(e-learning edition)

Graphs! (Part 1)

Roadmap

Today: Graph Basics

- What is a graph?
- Modeling problems as graphs.
- Graph representations (list vs. matrix)
- Searching graphs (DFS / BFS)

Roadmap

Next: Searching Graphs

- Searching graphs
- Shortest path problem
- Bellman-Ford Algorithm
- Dijkstra's Algorithm

Roadmap

Next next:

- Connected component problem
 - Union-Find data structure
- The Minimum Spanning Tree Problem
 - Kruskal's Algorithm
 - Prim's Algorithm

What is a graph?

- ✓ 1. Yes
 - 2. No.

- ✓ 1. Yes
 - 2. No.

1. Yes

- ✓ 1. Yes
 - 2. No.

- ✓ 1. Yes
 - 2. No.

- ✓ 1. Yes
 - 2. No.

1. Yes

- 1. Yes 2. No.

What is a graph?

Graph consists of two types of elements:

- Nodes (or vertices)
 - At least one.

- Edges (or arcs)
 - Each edge connects two nodes in the graph
 - Each edge is unique.

What is a hypergraph?

Graph consists of two types of elements:

- Nodes (or vertices)
 - At least one.

- Edges (or arcs)
 - Each edge connects >= 2 nodes in the graph
 - Each edge is unique.

What is a multigraph?

Graph consists of two types of elements:

- Nodes (or vertices)
 - At least one.

- Edges (or arcs)
 - Each edge connects two nodes in the graph
 - Two nodes may be connected by more than one edge.

(Rare in CS2040S.)

What is a graph?

Graph
$$G = \langle V, E \rangle$$

- V is a set of nodes
 - At least one: |V| > 0.

- E is a set of edges:
 - $E \subseteq \{ (v,w) : (v \in V), (w \in V) \}$
 - e = (v,w)
 - For all e_1 , $e_2 \in E : e_1 \neq e_2$

Connected:

Every pair of nodes is connected by a path.

Connected:

Every pair of nodes is connected by a path.

Disconnected:

Some pair of nodes is not connected by a path.

Two connected components.

Disconnected:

Some pair of nodes is not connected by a path.

Two connected components.

Degree of a node:

Number of adjacent edges.

Degree of a graph:

Maximum number of adjacent edges.

Diameter:

 Maximum distance between two nodes, following the shortest path.

Star

One central node, all edges connect center to edges.

Degree of n-node star is:

- 1. 1
- 2. 2
- 3. n/2
- 4. n-2
- **✓**5. n-1
 - 6. n

Star

One central node, all edges connect center to edges.

Diameter of n-node star:

- 1. 1
- **✓**2. 2
 - 3. n/2
 - 4. n-2
 - 5. n-1
 - 6. n

Star

One central node, all edges connect center to edges.

Special Graphs diameter = 1 degree = n-1Clique (Complete Graph)

All pairs connected by edges.

Line (or path)

diameter = n-1 degree = 2

Cycle

diameter = n/2 or diameter = n/2-1

degree = 2

Bipartite Graph

Nodes divided into two sets with no edges between nodes in the same set.

Max. diameter of n-node bipartite graph is:

- 1. 1
- 2. 2
- 3. n/2
- 4. n-2
- **✓**5. n-1
 - 6. n

Bipartite Graph

Nodes divided into two sets with no edges between nodes in the same set.

- ✓1. Yes
 - 2. No

- ✓1. Yes
 - 2. No

1. Yes

1. Yes

Bipartite Graph

Nodes divided into two sets with no edges between nodes in the same set.

Puzzle

Connect each house to all three utilities (water, electricity, gas). Do not let any of the cables or pipes cross. (Or show that it is impossible.)