Ponovljeni pismeni ispit iz OE

- 1.(3) U točkama A i B, udaljenim 10 cm, nalaze se točkasti naboji 4Q (u točki A) i Q (u točki B). Na kojoj udaljenosti od točke A treba na spojnici dvaju točaka postaviti pokusni naboj q da na njega ne djeluje elektrostatska sila?
- A) 5 cm
- B) 6,66 cm
- C) 7,5 cm
- D) 8 cm
- E) 9 cm
- 2. (3) Odredi ukupni kapacitet C_{ab} u spoju prema slici (C = 3 μ F).

- Α) 1 μF
- B) 2 μF
- C) 3 µF
- D) 4 μF
- E) 5 μF
- 3. (2) S porastom temperature od 20 °C do 80 °C otpor R_1 raste od 10 Ω do 30 Ω , dok otpor R_2 raste od 20 Ω do 40 Ω . Koliki je omjer temperaturnih koeficijenata α_1 : α_2 ?
- A) 0,33
- B) 0,5
- C) 1
- D) 2
- E) 3
- 4. (2) Prije zatvaranja sklopke S kondenzatori su bili nenabijeni. Nakon zatvaranja sklopke napon $U_{ab} = +1 \text{ V. }$ Koliki je napon U?
- A) 1,5 V
- B) 2,5 V
- C) 3,5 V
- D) 5 V
- E) 6 V

- 5. (3) Koliki treba biti R₃ da bi struje kroz R₁ i R₂ bile jednake?
- Α) 33,3 Ω
- Β) 50 Ω
- C) 66,6 Ω
- D) 100 Ω
- Ε) 150 Ω

6. (3) Dva svitka $L_1 = 3$ mH i $L_2 = 12$ mH spojena su u seriju s faktorom magnetske veze k = 1. Odredi napon U_{ab} ako struja linearno raste brzinom 10 A/s.

- B) 0 mV
- C) 30 mV
- D) 60 mV
- E) 90 mV

7. (2) Struja se mijenja po sinusnom zakonu i(t) = $I_m \sin(\omega t)$. Frekvencija je 50 Hz. U kojem je trenutku, mjereno od t = 0, vrijednost struje jednaka njezinoj efektivnoj vrijednosti?

- A) 1 ms B) 2,5 ms C) 4 ms D) 5 ms

8. (2) Odredite iznos impedancije Z_{ab} ako je $R = X_L = X_C = 30 \Omega$.

- Α) 15 Ω
- B) 20 Ω
- C) 30 Ω
- D) 45 Ω
- E) 60 Ω

9. (3) Izračunajte kružnu frekvenciju kod koje će struja izvora biti jednaka nuli. Zadano: L =4,8 mH, C = $100 \mu F$.

- A) 1000 s⁻¹
- B) 1500 s⁻¹
- C) 2000 s⁻¹
- D) 2500 s⁻¹
- E) 3000 s⁻¹

10. (3) Izračunajte napon izvora ako je poznato: I = 3 A, $I_1 = I_2 = 2 A$, $R_1 = 40 \Omega$.

- A) U = 1 V
- B) U = 2 V
- C) U = 5 V
- D) U = 7.5 V
- E) U = 10 V

11. (2) Uz otvorenu i uz zatvorenu sklopku S ampermetar u mreži pokazuje istu vrijednost, a vatmetar mjeri P = 1000 W. Odredite ukupnu jalovu snagu spoja kad je sklopka zatvorena.

- A) 0
- B) 500 VAr (ind)
- C) 500 VAr (kap)
- D) 1000 VAr (ind)
- E) 1000 VAr (kap)

12. (3) Odredite vrijednosti naponskog izvora U ako je poznato ϕ_B = -20 V i R = 10 Ω .

- A) 10 V
- B) 25 V
- C) 30 V
- D) 45 V
- E) 50 V

13. (2) Za mrežu prema slici odredite parametre Theveninovog nadomjesnog spoja ($\mathring{U}_{ab} = \mathring{U}_T$ i $\underline{Z}_{ab} =$ \underline{Z}_T) obzirom na stezaljke a i b. Zadano je R = $X_L = X_C = 10 \Omega$.

- A) $\underline{Z}_{ab} = 10$, $\mathring{U}_{ab} = j10$
- B) $\underline{Z}_{ab} = 10$, $\dot{U}_{ab} = -j10$
- C) $\underline{Z}_{ab} = 10 j10$, $\mathring{U}_{ab} = 0$
- D) $\underline{Z}_{ab} = 10 j10$, $\mathcal{\mathring{U}}_{ab} = j10$ E) $\underline{Z}_{ab} = 10 j10$, $\mathcal{\mathring{U}}_{ab} = -j10$

14. (3) U mreži prema slici impedancija Z je odabrana tako da se na njoj razvija maksimalna radna snaga P. Odredite napon koji u tom slučaju mjeri voltmetar. Zadano: R = X_L = X_C.

- A) 0
- B) 50 V
- C) 100 V
- D) 141 V
- E) 200 V

15. (3) Koliku struju mjeri idealni ampermetar u mreži prema slici?

- A) 2 A
- B) 1 A
- C) 3 A
- D) 4 A
- E) 1,41 A

16. (2) Odredi ukupnu radnu snagu P simetričnog trofaznog trošila. Voltmetar mjeri 150 V, a R = 50 Ω .

- A) 100 W
- B) 200 W
- C) 300 W
- D) 600 W
- E) 900 W

17. (3) U trofaznoj mreži prema slici, kada je sklopka S zatvorena, ampermetar mjeri 4A. Koliko će

iznositi napon U_{0'0} ako se sklopka otvori?

- A) 0
- B) 50 V
- C) 100 V
- D) 200 V
- E) 400 V

18. (2) Odredite efektivnu vrijednost napona čiji je valni oblik prikazan na dijagramu.

- A) 4,6 V
- B) 5,0 V
- C) <u>5,66 V</u>
- D) 6,32 V
- E) 7,0 V

19. (3) Odredite radnu snagu P koju daje izvor u(t) = $30\sin(\omega t) + 15\sqrt{2}\sin(2\omega t)$ V. Reaktancije su zadane za kružnu frekvenciju ω .

- A) 45 W
- B) <u>100 W</u>
- C) 150 W
- D) 175 W
- E) 200 W

20. (3) U trenutku t = 0 zatvara se sklopka S i tada je napon na induktivitetu 20 V. Nakon 25 ms od zatvaranja sklopke napon na induktivitetu padne na iznos od 5 V. Ako je zadano L = 2 H i R = 50Ω odredite parametre realnog naponskog izvora (E i R_i).

- A) E = 25 V, $R_i = 50 \Omega$
- B) E = 25 V, $R_i = 86 \Omega$
- C) E = 20 V, $R_i = 50 \Omega$
- D) $E = 20 \text{ V}, R_i = 61 \Omega$
- E) $E = 20 \text{ V}, R_i = 100 \Omega$

