

Written assessment, October 28, 2021

Last name, First name_

Exercise 1 (value 13)

A mining company is deciding how to operate in a certain area for the next T years. In the area there are n mines, but at most P < n can operate in the same year. Let U_{it} denote the upper limit on the tons of material that can be extracted from mine i = 1, ..., n in year t = 1, ..., T. The revenue of one ton of material depends on the mine: Let g_i denote such revenue for mine i. To use a mine i in one year the company must pay royalties r_i to the mine owner. If a mine is not used in one year, but it will be used in a next year, the royalties must be paid although no material is extracted.

Write a linear MILP model that decides how to use the mines in the given period so as to maximize the profit of the company.

Exercise 2 (value 8)

Given the following LP problem.

$$\min \qquad 56x_1 - 60x_2 + 12x_3$$

$$7x_1 + 2x_2 + 3x_3 \ge 3$$

$$8x_1 + 5x_2 - 4x_3 \ge 1$$

$$x_1, x_3 \ge 0$$

$$x_2 \le 0$$

Write the corresponding dual problem and solve it with the simplex method implementing the Bland's rule. Obtain the optimal primal solution from the optimal dual one.

Exercise 3 (value 7)

Consider a 0-1 knapsack problem with a bin of capacity c = 16 and four items with profits $p_j = (21, 11, 16, 6)$ and weights $w_j = (7, 4, 6, 3)$. Solve it by applying the branch-and-bound method.

Assignment October 28, 2021

Last name, First name_

Exercise 1

Constants

Variables

 $x_{it} = 1$ if mine i is open in year t, 0 otherwise.

 $u_{it} = 1$ if mine i is used in year t, 0 otherwise.

 $q_{it} =$ tons extracted from mine i in year t, 0 otherwise.

Model

$$\max z = \sum_{i=1}^{n} \sum_{t=1}^{T} (g_i q_{it} - r_i x_{it})$$

$$q_{it} \leq U_{it} u_{it} \qquad i = 1, \dots, n, t = 1, \dots, T$$

$$u_{it} \leq x_{it} \qquad i = 1, \dots, n, t = 1, \dots, T$$

$$\sum_{i=1}^{n} u_{it} \leq P \qquad t = 1, \dots, T$$

$$|T| x_{it} \geq \sum_{s=t+1}^{T} x_{is} \qquad i = 1, \dots, n, t = 1, \dots, T - 1$$
alternatively...
$$x_{it} \geq x_{i,t+1} \qquad i = 1, \dots, n, t = 1, \dots, T - 1$$

$$x_{it} \in \{0, 1\}, u_{it} \in \{0, 1\} \qquad i = 1, \dots, n, t = 1, \dots, T$$

$$q_{it} \geq 0 \qquad i = 1, \dots, n, t = 1, \dots, T$$

Exercise 2

$$\begin{array}{llll} \min & 56x_1 - 60x_2 + 12x_3 & \max & 3u_1 + u_2 \\ & 7x_1 + 2x_2 + 3x_3 \geq 3 & 7u_1 + 8u_2 \leq 56 \\ & 8x_1 + 5x_2 - 4x_3 \geq 1 & 2u_1 + 5u_2 \geq -60 \\ & x_1, x_3 \geq 0 & 3u_1 - 4u_2 \leq 12 \\ & x_2 \leq 0 & u_1, u_2 \geq 0 \end{array}$$

		u_5	u_4	u_3	u_2	u_1
-z	0	0	0	0	1	3
u_3	56	0	0	1	8	7
u_4	60	0	1	0	-5	-2
u_5	12	1	0	0	-4	3
•		u_5	u_4	u_3	u_2	$\overline{u_1}$
-z	-12	-1	0	0	5	0
u_3	28	$-\frac{7}{3}$	0	1	$\frac{52}{2}$	0
u_4	68	- 1 323	1	0	$ \begin{array}{r} \frac{52}{2} \\ -\frac{23}{3} \\ -\frac{4}{3} \end{array} $	0
u_5	4	$\frac{1}{4}$	0	0	$-\frac{4}{3}$	1
		u_5	u_4	u_3	u_2	$\overline{}$
-z	$-\frac{261}{13}$	$-\frac{17}{52}$	0	$-\frac{15}{52}$	0	0
u_3	$\frac{21}{13}$ 1045	$-\frac{7}{52}$	0	$\frac{3}{52}$	1	0
u_4	$\frac{1045}{13}$	$ \begin{array}{r} -\frac{52}{19} \\ -\frac{2}{13} \end{array} $	1	$ \begin{array}{r} -\frac{15}{52} \\ \frac{3}{52} \\ \frac{23}{52} \\ \frac{1}{13} \end{array} $	0	0
u_5	$\frac{80}{13}$	$\frac{2}{13}$	0	$\frac{1}{13}$	0	1

The dual solution is $u^* = (\frac{80}{13}, \frac{21}{13})$ with value $z_D^* = \frac{261}{13}$.

$$\begin{cases} (7x_1 + 2x_2 + 3x_3 - 3)u_1 = 0\\ (8x_1 + 5x_2 - 4x_3 - 1)u_2 = 0\\ (7u_1 + 8u_2 - 56)x_1 = 0\\ (12u_1 + 5u_2 + 60)x_2 = 0\\ (3u_1 - 4u_2 + 12)x_3 = 0 \end{cases} \qquad \begin{cases} x_1 = \frac{15}{52}\\ x_2 = 0\\ x_3 = \frac{17}{52} \end{cases}$$

$$x = (\frac{15}{52}, 0, \frac{17}{52}) z_P = \frac{261}{13}$$

Exercise 3

The optimal solution is $x^4 = (1, 0, 1, 1)$ with value $z^4 = 43$.