1 Deskriptive Statistik

- **1.1.** Berechne für eine gegebene Stichprobe zu den Klassengrenzen ... alle relativen Häufigkeiten und zeichne ein skaliertes Histogramm mit relativen Häufigkeiten, wobei der Flächeninhalt der Balken den Häufigkeiten entsprechen soll.
- **1.2.** Gegeben ist eine Häufigkeitstabelle. Berechne das arithmetische Mittel, die Standardabweichung, den Median, das n. Quartil und den Modus.
- **1.3.** Wie hängt das empirische Quantil mit der empirischen Verteilungsfunktion zusammen?

2 Korrelation und Regression

- **2.1.** Berechne aus einer zweidimensionalen Stichprobe den Korrelationskoeffizienten und die Regressionsgerade (*a*, *b*). Zeichne den Scatterplot und dort die Regressionsgerade ein.
- **2.2.** Was ist der Unterschied zwischen linearer Regression und einem linearen Regressionsmodell?
- **2.3.** Zeige: Die Lösung einer linearen Regression ergibt sich aus der Lösung des linearen Gleichungssystems Ca = b, wobei a der Vektor der m Parameter a_1, a_2, \ldots ist, C eine $m \times m$ Matrix und b ein m-Vektor ist mit

$$C_{k,l} = \sum_{i=1}^{n} f_k(x_i) f_l(x_i), \qquad b_k = \sum_{i=1}^{n} y_i f_k(x_i).$$

3 Ereignis- und Wahrscheinlichkeitsraum

- **3.1.** Zeige, dass $(\Omega, \Sigma) = (\{1, 2, 3, 4\}, \{\emptyset, \{1, 2\}, \{3, 4\}, \{1, 2, 3, 4\}\})$ ein Ereignisraum ist.
- **3.2.** Für (Ω, Σ) wie in 3.1 und $P(\{1,2\}) = 0.3$, vervollständige P, so dass (Ω, Σ, P) ein Wahrscheinlichkeitsraum ist.
- **3.3.** Beweise den Additionssatz.

4 Kombinatorik

Siehe PS-Beispiele.

5 Bedingte Wahrscheinlichkeit

- **5.1.** Beispiel zu totaler Wahrscheinlichkeit und Entscheidungsbaum (ähnlich zu Glühlampenkartons aus PS).
- **5.2.** Beispiel zu Bayes (siehe PS).
- **5.3.** Formuliere und beweise den Satz von Bayes für Bedingung/Gegenbedingung B, \bar{B} .

6 Zufallsvariablen

- **6.1.** Erwartungswert und Varianz einer konkreten (neuen aber einfachen) diskreten oder stetigen Verteilung ausrechnen.
- **6.2.** Definiere die Binomial-/geometrische Verteilung und leite Erwartungswert und Varianz her.
- **6.3.** Erwartungswert herleiten für Poissonverteilung $f_X(k) = \frac{\lambda^k}{k!} e^{-\lambda}$.
- **6.4.** Erwartungswert herleiten für Normalverteilung. Hinweis: zuerst Dichtefunktion differenzieren.
- **6.5.** Definiere die Exponentialverteilung. Leite Verteilungsfunktion und Erwartungswert her.
- **6.6.** Beispiel zur Poissonapproximation.
- **6.7.** Beispiel zur Normalapproximation.
- **6.8.** Definiere die Student- t/χ^2 /F-Verteilung. Welche Parameter besitzt die Verteilung? Wo wird diese Verteilung verwendet?
- **6.9.** Beispiel ähnlich zu: Widerstände aus verschiedenen Schachteln ausgewählt mit gleichem Widerstand innerhalb und verschiedenem Widerstand zwischen Schachteln, aber gleichem Erwartungswert und gleicher Standardabwichung. Gesucht: Gesamterwartungswert und -standardabweichung. Siehe PS.
- **6.10.** Definiere die Kovarianz zweier Zufallsvariablen. Für X und Y unabhängig mit der gleichen Verteilung, zeige: V(X + Y) = 2V(X), aber V(2X) = 4V(X).
- **6.11.** X und Y unabhängig mit selber spezieller einfacher Dichtefunktion. Berechne f_{X+Y} .

7 Zentraler Grenzwertsatz

- **7.1.** Zeige: Wenn $X \sim N_{0,1}$, dann ist $\varphi_X = e^{-\frac{\omega^2}{2}}$. Vorgehensweise: Dichtefunktion ableiten, dann zeigen, dass $e^{-\frac{\omega^2}{2}}$ die dabei entstehende Differentialgleichung erfüllt.
- **7.2.** Zeige: Es sei $Y_n:=\frac{1}{\sqrt{n}}(X_1+X_2+\ldots+X_n)$ mit $X_k\sim N_{0,1}$ und unabhängig. Dann gilt $\varphi_{Y_n}(\omega)\xrightarrow{n\to\infty}e^{-\frac{\omega^2}{2}}$. Vorgangsweise: Zeige $\varphi_{Y_n}=\varphi_{\frac{X}{\sqrt{n}}}^n$, setze die Exponentialreihe ein, behalte nur die ersten drei Glieder, erkläre, warum die anderen zu vernachlässigen sind, lasse dann unter Verwendung von $(1+\frac{a}{n})^n\xrightarrow{n\to\infty}e^a$ das n nach unendlich gehen.

8 Schätzer

- **8.1.** Schätzer entwickeln für spezielle einfache Verteilung mit Maximum Likelihood- oder Momentenmethode.
- 8.2. Speziellen Schätzer auf Erwartungstreuheit überprüfen.
- **8.3.** Zeige, dass s^2 ein erwartungstreuer Schätzer für V(X) ist.

9 Konfidenzintervalle

Die Formeln für die Konfidenzintervalle stehen auf dem Angabeblatt.

- 9.1. Für bestimme Stichprobe einer Normalverteilung Konfidenzintervall für μ und/oder σ ausrechnen, wobei σ bekannt/unbekannt sein kann. Siehe PS-Beispiele.
- **9.2.** Konfidenzintervall für bestimmte Stichprobe eines Bernoulli-Experiments ausrechnen. Siehe PS-Beispiele.

9.3. Zeige:
$$\frac{n-1}{\sigma^2} s^2 \sim \chi_{n-1}^2$$
.

9.4. Zeige:
$$\frac{\bar{x}-\mu}{s/\sqrt{n}} \sim t_{n-1}$$
.

10 Tests

Die Formeln für die Annahmebereiche stehen auf dem Angabeblatt.

- 10.1. Leite den Annahmebereich für den ein-/zweiseitigen t-Test her.
- **10.2.** t-Test/ANOVA/Binomialtest/ χ^2 -Anpassungstest/ χ^2 -Unabhängigkeitstest auf bestimmter Stichprobe durchführen. Siehe PS-Beispiele.
- **10.3.** Wie funktioniert der Kolmogorow-Smirnow-Test? Was ist die Nullhypothese?

11 Simulation

- **11.1.** Berechne Zufallszahlen mit dem additiven Kongruenzgenerator. Parameter und Seed sind gegeben, die Formel nicht.
- **11.2.** Formuliere die Methode der inversen Transformation für nicht-gleichverteilte Zufallsvariablen und beweise sie.
- 11.3. Methode der inversen Transformation anwenden für einfache Verteilung.
- 11.4. Was ist eine Monte-Carlo-Methode?
- 11.5. Erkläre kurz die Vorgangsweise bei der Simulation zeitlicher Prozesse.