ABSTRACT ALGEBRA II EXTENSION FIELDS

MARIO L. GUTIERREZ ABED

Introduction to Extension Fields

 \star

Definition. A field E is called an extension field of a field F if $F \leq E$.

The following important theorem shows that every nonconstant polynomial has a zero:

Theorem (Kronecker's Theorem). Let F be a field and let f(x) be a nonconstant polynomial in F[x]. Then there exists an extension field E of F and an $\alpha \in E$ such that $f(\alpha) = 0$.

Proof. By Theorem 23.20¹, f(x) has a factorization in F[x] into polynomials that are irreducible over F. Let p(x) be an irreducible polynomial in such a factorization. It is clearly sufficient to find an extension field E of F containing an element α such that $p(\alpha) = 0$.

Take the maximal ideal $\langle p(x) \rangle$ in F[x], so that $F[x]/\langle p(x) \rangle$ is a field (we know this from a previous theorem). We claim that F can be identified with a subfield of $F[x]/\langle p(x) \rangle$ in a natural way by use of the map $\psi \colon F \to F[x]/\langle p(x) \rangle$ given by

$$\psi(a) = a + \langle p(x) \rangle$$
 for $a \in F$.

Notice that this map is injective:

$$\begin{split} \psi(a) &= \psi(b) \\ \Longrightarrow a + \langle p(x) \rangle &= b + \langle p(x) \rangle \qquad \text{for some } a, b \in F \\ \Longrightarrow (a - b) \in \langle p(x) \rangle, \end{split}$$

so a-b must be a multiple of the polynomial p(x), which is of degree ≥ 1 . Now $a,b \in F \Longrightarrow a-b \in F$. Thus we must have $a-b=0 \Longrightarrow a=b$.

We defined addition and multiplication in $F[x]/\langle p(x)\rangle$ by choosing any representatives, so we may choose $a\in (a+\langle p(x)\rangle)$. Thus ψ is a homomorphism that maps F injectively onto a subfield of $F[x]/\langle p(x)\rangle$. We identify F with $\{a+\langle p(x)\rangle\mid a\in F\}$ by means of this map ψ . Thus we shall view $E=F[x]/\langle p(x)\rangle$ as an extension field of F. Hence we have manufactured our desired extension field E of F, and all that remains for us to show is that E contains a zero of p(x):

Let us set

$$\alpha = x + \langle p(x) \rangle,$$

so $\alpha \in E$. Consider the evaluation homomorphism $\phi_{\alpha} \colon F[x] \to E$. If $p(x) = a_0 + a_1 x + \cdots + a_n x^n$, where $a_i \in F$, then we have

$$\phi_{\alpha}(p(x)) = a_0 + a_1(x + \langle p(x) \rangle) + \dots + a_n(x + \langle p(x) \rangle)^n$$

¹Here's *Theorem 23.20* for reference:

If F is a field, then every nonconstant polynomial $f(x) \in F[x]$ can be factored in F[x] into a product of irreducible polynomials, the irreducible polynomials being unique expect for order and for unit (that is, nonzero constant) in F.

in $E = F[x]/\langle p(x) \rangle$. But we can compute in $F[x]/\langle p(x) \rangle$ by choosing representatives, and x is a representative of the coset $\alpha = x + \langle p(x) \rangle$. Therefore,

$$p(\alpha) = (a_0 + a_1 x + \dots + a_n x^n) + \langle p(x) \rangle$$

= $p(x) + \langle p(x) \rangle = \langle p(x) \rangle = 0$

in $F[x]/\langle p(x)\rangle$. We have thus found an element $\alpha \in E = F[x]/\langle p(x)\rangle$ such that $p(\alpha) = 0$, and therefore $f(\alpha) = 0$.

We now illustrate the construction involved in the proof to the above theorem by an example:

<u>Example</u>: Let $F = \mathbb{R}$, and let $f(x) = x^2 + 1$, which is well known to have no zeroes in \mathbb{R} and thus is irreducible over \mathbb{R} . This in turn implies that $\langle x^2 + 1 \rangle$ is a maximal ideal in $\mathbb{R}[x]$, so $\mathbb{R}[x]/\langle x^2 + 1 \rangle$ is a field. Now identifying $r \in \mathbb{R}$ with $r + \langle x^2 + 1 \rangle \in \mathbb{R}[x]/\langle x^2 + 1 \rangle$, we can view \mathbb{R} as a subfield of $E = \mathbb{R}[x]/\langle x^2 + 1 \rangle$. Let

$$\alpha = x + \langle x^2 + 1 \rangle.$$

Computing in $\mathbb{R}[x]/\langle x^2+1\rangle$, we find

$$\alpha^{2} + 1 = (x + \langle x^{2} + 1 \rangle)^{2} + (1 + \langle x^{2} + 1 \rangle)$$
$$= (x^{2} + 1) + \langle x^{2} + 1 \rangle = 0.$$

Thus α is a zero of $x^2 + 1$.

<u>Remark</u>: As you may have noticed from the above example, it turns out that $\mathbb{R}[x]/\langle x^2+1\rangle\cong\mathbb{C}$.

Definition. An element α of an extension field E of a field F is said to be **algebraic** over F if $f(\alpha) = 0$ for some nonzero $f(x) \in F[x]$. If α is not algebraic over F, then α is said to be **transcendental** over F.

<u>Example</u>: It is easy to see that the real number $\sqrt{1+\sqrt{3}}$ is algebraic over \mathbb{Q} . For if $\alpha=\sqrt{1+\sqrt{3}}$, then

$$\alpha^{2} = 1 + \sqrt{3}$$

$$\Rightarrow \alpha^{2} - 1 = \sqrt{3}$$

$$\Rightarrow (\alpha^{2} - 1)^{2} = 3$$

$$\Rightarrow \alpha^{4} - 2\alpha^{2} - 2 = 0,$$

so α is a zero of $x^4 - 2x^2 - 2$, which is in $\mathbb{Q}[x]$.

Theorem 1. Let E be an extension field of a field F and let $\alpha \in E$. Let $\phi_{\alpha} \colon F[x] \to E$ be the evaluation homomorphism of F[x] into E such that $\phi_{\alpha}(a) = a$ for $a \in F$ and $\phi_{\alpha}(x) = \alpha$. Then α is transcendental over F if and only if ϕ_{α} gives an isomorphism of F[x] with a subdomain of E, that is, if and only if ϕ_{α} is an injective map.

Proof. Note that

$$\alpha$$
 is transcendental over $F\iff f(\alpha)\neq 0$ for all nonzero $f(x)\in F[x]$ $\iff \phi_{\alpha}(f(x))\neq 0$ for all nonzero $f(x)\in F[x]$ $\iff \ker(\phi_{\alpha})=\{0\}$ $\iff \phi_{\alpha} \text{ is injective.}$

<u>Note</u>: Consider the extension field \mathbb{R} of \mathbb{Q} . We know that $\sqrt{2}$ is algebraic over \mathbb{Q} , being a zero of $x^2 - 2$. Of course, $\sqrt{2}$ is also a zero of $x^3 - 2x$ and of $x^4 - 3x^2 + 2 = (x^2 - 2)(x^2 - 1)$. Both of these polynomials having $\sqrt{2}$ as a zero were multiples of $x^2 - 2$. The next theorem shows that this is an illustration of a general situation. This theorem plays a central role in our later work:

Theorem 2. Let E be an extension field of a field F and let $\alpha \in E$, where α is algebraic over F. Then there is an irreducible polynomial $p(x) \in F[x]$ such that $p(\alpha) = 0$. This irreducible polynomial p(x) is uniquely determined up to a constant factor in F and is a polynomial of minimal degree ≥ 1 in F[x] having α as a zero. If $f(\alpha) = 0$ for $f(x) \in F[x]$, then p(x) divides f(x).

Proof. See page 269, Fraleigh's.

Definition. Let E be an extension field of a field F, and let $\alpha \in E$ be algebraic over F. The unique polynomial p(x) having the property described in Theorem 2 above, is called the **irreducible** polynomial for α over F and will be denoted by $\operatorname{irr}(\alpha, F)$. The degree of $\operatorname{irr}(\alpha, F)$ is the **degree** of α over F, denoted by $\operatorname{deg}(\alpha, F)$.

<u>Remark</u>: Note for instance that $\operatorname{irr}(\sqrt{2},\mathbb{Q}) = x^2 - 2$, with $\operatorname{deg}(\sqrt{2},\mathbb{Q}) = 2$.

Example: Referring back to a previous example, we see that for $\alpha = \sqrt{1+\sqrt{3}} \in \mathbb{R}$, α is a zero of $\overline{x^4-2x^2}-2$, which is in $\mathbb{Q}[x]$. Since x^4-2x^2-2 is irreducible over \mathbb{Q} (this is true by Eisenstein with p=2 for instance), we see that

$$\operatorname{irr}(\sqrt{1+\sqrt{3}}, \mathbb{Q}) = x^4 - 2x^2 - 2.$$

Thus $\sqrt{1+\sqrt{3}}$ is algebraic of degree 4 over \mathbb{Q} .

Note: Consider the following two cases:

- (Case I) Suppose α is algebraic over F. Then the kernel of the evaluation homomorphism ϕ_{α} is $\langle \operatorname{irr}(\alpha, F) \rangle$, and by a previous theorem we have that $\langle \operatorname{irr}(\alpha, F) \rangle$ is a maximal ideal of F[x]. Therefore $F[x]/\langle \operatorname{irr}(\alpha, F) \rangle$ is a field and is isomorphic to the image $\phi_{\alpha}[F[x]] \in E$. This subfield $\phi_{\alpha}[F[x]]$ of E is then the smallest subfield of E containing F and G. We shall denote this field by $F(\alpha)$.
- (Case II) Suppose α is transcendental over F. Then by Theorem 1 above, ϕ_{α} gives an isomorphism of F[x] with a subdomain of E. Thus in this case $\phi_{\alpha}[F[x]]$ is not a field but an integral domain, which we shall denote by $F[\alpha]$. Now by a previous corollary, E contains a field of quotients of $F[\alpha]$, which is thus the smallest subfield of E containing F and E0. As in Case E1 above, we denote this field by E1 above.

Definition. An extension field E of a field F is a **simple extension** of F if $E = F(\alpha)$ for some nonzero $\alpha \in E$.

Note: The next theorem gives us some insight into the nature of the field $F(\alpha)$ in the case where α is algebraic over F:

Theorem. Let E be a simple extension $F(\alpha)$ of a field F, and let α be algebraic over F. Let the degree of $irr(\alpha, F)$ be $n \geq 1$. Then every element β of $E = F(\alpha)$ can be uniquely expressed in the form

$$\beta = b_0 + b_1 \alpha + \dots + b_{n-1} \alpha^{n-1},$$

where the b_i 's are in F.

Proof. See page 270, Fraleigh's.

<u>Note</u>: We can use the above theorem to show that indeed $\mathbb{R}[x]/\langle x^2+1\rangle \cong \mathbb{C}$. As we saw in a previous example, we can view $\mathbb{R}[x]/\langle x^2+1\rangle$ as an extension field of \mathbb{R} . Let

$$\alpha = x + \langle x^2 + 1 \rangle.$$

Then $\mathbb{R}(\alpha) = \mathbb{R}[x]/\langle x^2 + 1 \rangle$ and consists of all elements of the form $a + b\alpha$ for $a, b \in \mathbb{R}$, by the above theorem. But since $\alpha^2 + 1 = 0$, we see that α plays the role of $i \in \mathbb{C}$, and $a + b\alpha$ plays the role of $(a + bi) \in \mathbb{C}$. Thus $\mathbb{R}(\alpha) \cong \mathbb{C}$. This is the elegant algebraic way to construct \mathbb{C} from \mathbb{R} .

Theorem. Let E be an extension field of a field F, and let $\alpha \in E$ be algebraic over F. If $\deg(\alpha, F) = n$, then $F(\alpha)$ is an n-dimensional vector space over F with basis $\{1, \alpha, \dots, \alpha^{n-1}\}$. Furthermore, every element $\beta \in F(\alpha)$ is algebraic over F, and $\deg(\beta, F) \leq \deg(\alpha, F)$.

Proof. See page 280, Fraleigh's.

ALGEBRAIC EXTENSIONS

Definition. An extension field E of a field F is called an **algebraic extension** of F if every element in E is algebraic over F.

Definition. If an extension field E of a field F is of finite dimension n as a vector space over F, then E is a **finite extension of degree** n **over** F. We shall let [E:F] be the degree n of E over F.

<u>Remark</u>: Note that to say that a field E is a finite extension of a field F <u>does not</u> mean that E is a finite field. It just asserts that E is a finite-dimensional vector space over F, i.e. that [E:F] is finite.

Theorem. A finite extension field E of a field F is an algebraic extension of F.

Proof. See page 283, Fraleigh's.

Theorem 3. If E is a finite extension field of a field F, and K is a finite extension field of E, then K is a finite extension of F, and furthermore

$$[K:F] = [K:E][E:F].$$

Proof. See page 284, Fraleigh's.

Corollary 1. If F_i is a field for i = 1, ..., r and F_{i+1} is a finite extension of F_i , then F_r is a finite extension of F_1 , and

$$[F_r:F_1] = [F_r:F_{r-1}][F_{r-1}:F_{r-2}]\cdots [F_2:F_1].$$

Corollary 2. If E is an extension field of F, $\alpha \in E$ is algebraic over F, and $\beta \in F(\alpha)$, then $deg(\beta, F)$ divides $deg(\alpha, F)$.

The following example illustrates a type of argument one often makes using Theorem 3 or its corollaries:

<u>Example</u>: By Corollary 2, there is no element of $\mathbb{Q}(\sqrt{2})$ that is a zero of $x^3 - 2$. Note that $deg(\sqrt{2}, \mathbb{Q}) = 2$, while a zero of $x^3 - 2$ is of degree 3 over \mathbb{Q} , but 3 does not divide 2.

Example 1: Consider $\mathbb{Q}(\sqrt{2})$. By a previous result we know that $\{1, \sqrt{2}\}$ is a basis for $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} . We can easily see that $\sqrt{2} + \sqrt{3}$ is a zero of the polynomial $p(x) = x^4 - 10x^2 + 1$:

To see this, note that

$$\alpha = \sqrt{2} + \sqrt{3} \implies \alpha^2 = (\sqrt{2} + \sqrt{3})^2$$

$$\implies \alpha^2 = 2 + 2\sqrt{2}\sqrt{3} + 3$$

$$\implies (\alpha^2 - 5)^2 = (2\sqrt{2}\sqrt{3})^2$$

$$\implies \alpha^4 - 10\alpha^2 + 25 = 4 \cdot 3 \cdot 2$$

$$\implies \alpha^4 - 10\alpha^2 + 1 = 0.$$

Now, by applying the same method as in *Example 1* from our notes on *Rings & Fields*, we can easily see that p(x) is irreducible in $\mathbb{Q}[x]$. Thus,

$$\operatorname{irr}(\sqrt{2} + \sqrt{3}, \mathbb{Q}) = x^4 - 10x^2 + 1 \implies [\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = 4.$$

As a result we have that $(\sqrt{2} + \sqrt{3}) \notin \mathbb{Q}(\sqrt{2})$, and thus $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$. Consequently, $\{1, \sqrt{3}\}$ is a basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = (\mathbb{Q}(\sqrt{2}))(\sqrt{3})$ over $\mathbb{Q}(\sqrt{2})$. we also have that $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is a basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} .

Theorem. Let E be an algebraic extension of a field F. Then there exists a finite number of elements $\alpha_1, \ldots, \alpha_n$ in E such that $E = F(\alpha_1, \ldots, \alpha_n)$ if and only if E is a finite-dimensional vector space over F, that is, if and only if E is a finite extension of F.

Proof. See page 286, Fraleigh's.