

Standards, Precautions & Advances in Ancient Metagenomics Date: 22 Sept. 2020 Chairs: Alex Hübner Anna Fotakis

Session 5: Reuse the Refuse

Applying new analytical methods beyond current practices

Session Scope

- New and exciting methods and approaches for pushing the boundaries of metagenomics analysis
- Ancient metagenomics 'adopting' new protocols for genome-resolved metagenomics and functional analysis with the challenges of ancient datasets
- Encourage novel approaches in data analysis but with caution on the potential pitfalls and limitations when designing and embarking on such a study

A brief summary of concepts

In other words...

Article | OPEN | Published: 11 February 2019

A new genomic blueprint of the human gut microbiota

Alexandre Almeida ¹⁰⁰, Alex L. Mitchell, Miguel Boland, Samuel C. Forster, Gregory B. Gloor, Aleksandra Tarkowska, Trevor D. Lawley & Robert D. Finn ¹⁰⁰

Nature 568, 499-504 (2019) Download Citation ±

New Results

Comment on this paper

The genomic and proteomic landscape of the rumen microbiome revealed by comprehensive genome-resolved metagenomics

Robert D. Stewart, Marc D. Auffret, Amanda Warr, Alan W. Walker, Rainer Roehe, Mick Watson doi: https://doi.org/10.1101/489443

This article is a preprint and has not been peer-reviewed [what does this mean?].

Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle

Edoardo Pasolli • Francesco Asnicar 8 • Serena Manara 8 • ... Christopher Quince • Curtis Huttenhower Nicola Segata 2 9 2 • Show all authors • Show footnotes

Open Access • Published: January 17, 2019 • DOI: https://doi.org/10.1016/j.cell.2019.01.001

Hug et al 2016

https://doi.org/10.1038/nmicrobio 1.2016.48

Some considerations

- ☐ Study design (including laboratory strategy, sequencing depth)
- Validations
- Quality of data (soil vs dental calculus vs bone etc) and the limitations (a good assembly is favoured by long good quality reads)
- Question and application for your study

Further applications

- Novel genome discovery
- Functional analysis
- Pangenomics
- Phylogenetics
- And more...

In summary

- Experimental set-up
- Data quality (combining both assembly and assembly free methods)
- Computational power
- Validating your steps
- Know your samples/data!!!!

Ice breaker speakers

Maxime Borry (PhD - MPI for the Science of Human History) - "A new take on ancient DNA metagenomics assembly and validation"

Antonio Fernandez-Guerra (Assistant Professor, Section for GeoGenetics, Globe Institute, UCPH) - "Microbial Ancient Metagenomics: Beyond who is there"

Standards, Precautions & Advances in Ancient Metagenomics

A new take on ancient DNA metagenomics assembly validation

Maxime Borry

aDNA de novo assembly: is it even possible?

Coverage is key

And you will always get more for you money

Scaling up damage profile inspection

aDNA validation of sequences often involves damage profiles

How to programatically check for aDNA deamination?

The mapdamage2 approach

The HOPS approach

1 CtoT in first 10 bp = ancient

More accurate but Slower

Fast but very Approximate

Jónsson et al. 2013 Hübler et al. 2019

github.com/maxibor/pydamage

Dr. Alexander Huebner

Dr. Adam Ben Rohrlach

What next?

• Damage as extra metric/dimension for binning

Other aDNA contig validation criteria

Standards, Precautions & Advances in Ancient Metagenomics

Microbial Ancient Metagenomics: Beyond who is there

Antonio

- On the complexity of assembling ancient metagenomes

- very short reads
- low coverage
- damage

- Give me functions!

- damage and the amino acid space
- substitution matrices

Let's keep it simple exploring one genome at a time

Synthetic data from *Yersinia pestis* A1122

- different coverage
- mode read length = 40 nt
- with and without damage

Synthetic data from *Yersinia pestis* A1122

- different coverage
- mode read length = 40 nt
- with and without damage

Super-reads?

- careful extension of reads from both ends
- we can gain extra bits of information

Synthetic data from *Yersinia pestis* A1122

- different coverage
- mode read length = 40 nt
- with and without damage

How can I assemble my ancient metaG?

- Which options do I have?
- How can I recover more genes?
- An amino acid centric approach

Assembling your ancient metaG will not always be possible

- in many cases assemblies will be very bad (fragmented)
- assembly only recovers a small fraction
- very low coverage + short reads = worst combination

The coding sequence space of ancient metagenomes

		Second Position									
	T		С	А	G	L					
First Position	Т	TTC Phe TTC Leu	TCT TCC TCA TCG	TAT Tyr TAC STOP TAG STOP	TGT Cys TGC STOP TGG Trp	T C A G					
	С	CTT CTC CTA CTG	CCT CCC CCA CCG	CAT His CAC GIN GIN	CGT CGC CGA CGG	T C A G					
	Α	ATT ATC IIIe	ACT ACC ACA ACG	AAT Asn AAC Lys AAG Lys	AGT Ser AGC Arg	T C A G					
	G	GTT GTC GTA GTG	GCT GCC GCA GCG	GAT Asp GAC GAA GIU	GGT GGC Gly	T C A G					

Codons and damage

what to expect when looking for function

Codons and damage

Third Position

what to expect when looking for function

On the importance of choosing the right

substitution matrix

On the importance of choosing the right

substitution matrix

		, , ,		3
BLOSUM80	10/1	32.0	0.48	104
BLOSUM62	11/1	28.9	0.40	125
VTML140	10/1	28.4	0.44	114
VTML120	11/1	32.1	0.54	93
VTML80	10/1	40.5	0.74	68
VTML40	13/1	64.7	1.92	26
VTML20	15/2	86.1	3.30	15
VTML10	16/2	90.9	3.87	13
PAM70	10/1	33.9	0.58	86
PAM30	9/1	45.9	0.90	56

Gap penalty Similarity (%) Bits/pos. 50 bit length

Yersinia pestis A1122 2M synthetic reads with 50% δs vs Yersinia pestis A1122 proteome

A word of caution

when using modern methods

if you use very short reads...

Discussion Points:

- Ancient de novo assembly validation what we should look out for?
- How to go about designing a de novo assembly study
- Considerations for functional annotations
- Potential of Capture for targeted de novo applications
- Broader future applications including pangenomics or even strain resolution

