## Course 8: From the Short to the Medium Run: The IS-LM-PC Model

Intermediate Macroeconomics, Econ 102

François Geerolf

**UCLA** 

April 25, 2018

#### Where are we?

- During lectures 2 to 5, we looked at the equilibrium in the goods and financial markets, and how output is determined in the short run:
  - ▶ Lecture 2: The Goods Markets
  - Lecture 3: Financial Markets
  - Lecture 4: The IS-LM Model
  - ▶ <u>Lecture 5</u>: Financial Markets, Aggregate Demand and the Crisis
- During lectures 6 and 7, we started looking at what happens in the medium run:
  - Lecture 6: The Labor Market
  - ▶ Lecture 7: The Phillips Curve
- This closing lecture puts the two parts together. (or attempts to) The
  resulting IS-LM-PC (PC for Phillips curve) model is meant to
  characterize the behavior of output both in the short run and the
  medium run.
- Although it has its problems and limitations, the inflation-unemployment trade-off framework is <u>used</u> by central banks around the world.

## Outline

- The IS-LM-PC Model
- 2 Dynamics and the Medium Run Equilibrium
- Fiscal Consolidation Revisited
- 4 The Effects of an Increase in the Price of Oil
- Conclusions

- The IS-LM-PC Model
- 2 Dynamics and the Medium Run Equilibrium
- Fiscal Consolidation Revisited
- 4 The Effects of an Increase in the Price of Oil
- Conclusions

• Remember the equation for the (IS) curve:

$$Y = C(Y - T) + I(Y, r + x) + G.$$

- In the short-run, output is indeed demand determined.
- In the previous lecture, we saw that the relation between inflation and unemployment is called the Phillips curve:

$$\pi - \pi^e = -\alpha(u - u_n).$$

- This reflects that:
  - When the unemployment rate is lower than the natural rate, inflation turns out to be higher than expected.
  - ▶ If the unemployment is higher than the natural rate, inflation turns out to be lower than expected.
- One relationship is written in terms of <u>output</u>, the other in terms of unemployment.

 By definition, the unemployment rate is equal to unemployment divided by the labor force:

$$u \equiv \frac{U}{L} = \frac{L-N}{L} = 1 - \frac{N}{L} \quad \Rightarrow \quad N = L(1-u).$$

• Turning to output, we shall maintain for the moment the simplifying assumption that output is simply equal to employment, and therefore:

$$Y=N=L(1-u).$$

- When the unemployment rate is equal to the natural rate  $u_n$ , employment is given by  $N_n = L(1 u_n)$  and output is equal to  $Y_n = L(1 u_n)$ . This is called **potential output**.
- It follows that we may express the deviation of employment from its natural level as:

$$Y - Y_n = L((1 - u) - (1 - u_n)) = -L(u - u_n).$$

• The difference between output and potential output is called the **output gap**.



- The first panel shows that a lower policy rate leads to a higher output, through the (IS) relation: a lower interest rate stimulates investment (and remember, probably consumption through intertemporal substitution and redistributive effects from borrowers to lenders, who have a higher MPC).
- The second panel shows that a higher output leads to a larger change in inflation.
- When monetary policy is more expansionary, output is stimulated, but inflation increases. (the economy is "overheating")

• Thus, we have an expression for the output gao on the one hand:

$$Y - Y_n = -L(u - u_n)$$

 On the other hand, we have an expression for inflation, given by the Phillips Curve:

$$\pi - \pi^{e} = -\alpha \left( u - u_{n} \right)$$

.

• Replacing  $u - u_n$  out gives:

$$\pi - \pi^{e} = \frac{\alpha}{L} (Y - Y_{n})$$

• If we assume that wage setters expect inflation this year to be the same last year, then  $\pi^e = \pi(-1)$ :

$$\pi - \pi(-1) = \frac{\alpha}{L} (Y - Y_n).$$

• When output is above potential (positive output gap), inflation increases, and vice versa.

## Okun's Law



### Okun's Law

 Okun's law can be written as the change in the unemployment that is approximately equal to the negative of the growth rate of output:

$$u-u(-1)\approx -g_{x}$$

The regression that fits the points the previous Figure is:

$$u - u(-1) = -0.4(g_x - 3\%)$$

- Annual output growth has to be at least 3% to prevent the unemployment rate from rising.
- Output growth 1% above normal leads only to a 0.4% reduction in the unemployment rate due to such factors as labor hoarding and discouraged workers.
- The coefficient (0.4) is called the Okun coefficient.

- 1 The IS-LM-PC Mode
- 2 Dynamics and the Medium Run Equilibrium
- Fiscal Consolidation Revisited
- 4 The Effects of an Increase in the Price of Oil
- Conclusions

## Medium-Run Output and Inflation



- Over the <u>medium run</u>, the economy converges to the natural level of output and stable inflation.
- At the medium-run equilibrium (point A'), r<sub>n</sub> is called the natural, neutral, or Wicksellian rate of interest.
- If the central bank wants to achieve a constant level of inflation, then the initial boom must be followed by a recession.

## Dynamics and the Medium Run Equilibrium

 Assume instead that the expected inflation rate is a constant, then the previous equation becomes:

$$\pi - \bar{\pi} = \frac{\alpha}{L} (Y - Y_n)$$

- A positive output gap generates a higher level of inflation, rather than an increase in inflation.
- So long as inflation **expectations** remain **anchored**, the central bank does not need to compensate for the initial boom by a recession later.

## The Deflation Spiral



The zero lower bound constraint may make it impossible to achieve a negative real policy rate.

- Deflation spiral or deflation trap occurs at Y' when output is still below potential, and thus inflation is still decreasing.
- Lower output leads to more deflation,
   and more deflation leads to a higher real interest rate and lower output.

## Deflation in the Great Depression

- The economy seemed to be in a deflation trap between 1929 and 1933.
- Monetary policy decreased the nominal interest rate from 5.3% to 2.3% in 1933, but with negative inflation rates, the real rate reached 12.3% in 1931 and 7.8% in 1933.

| Table 1 The Nominal Interest Rate, Inflation, and the Real Interest Rate, 1929–1933 |                          |                              |                                             |                       |                                                 |
|-------------------------------------------------------------------------------------|--------------------------|------------------------------|---------------------------------------------|-----------------------|-------------------------------------------------|
| Year                                                                                | Unemployment<br>Rate (%) | Output<br>Growth Rate<br>(%) | One-Year<br>Nominal<br>Interest Rate (%), i | Inflation Rate (%), π | One-Year<br>Real Interest<br>Rate (%), <i>r</i> |
| 1929                                                                                | 3.2                      | -9.8                         | 5.3                                         | 0.0                   | 5.3                                             |
| 1930                                                                                | 8.7                      | -7.6                         | 4.4                                         | - 2.5                 | 6.9                                             |
| 1931                                                                                | 15.9                     | - 14.7                       | 3.1                                         | -9.2                  | 12.3                                            |
| 1932                                                                                | 23.6                     | -1.8                         | 4.0                                         | -10.8                 | 14.8                                            |
| 1933                                                                                | 24.9                     | 9.1                          | 2.6                                         | -5.2                  | 7.8                                             |

- The IS-LM-PC Mode
- 2 Dynamics and the Medium Run Equilibrium
- Fiscal Consolidation Revisited
- 4 The Effects of an Increase in the Price of Oil
- Conclusions

## Fiscal Consolidation Revisited



- The first panel shows that a fiscal consolidation leads to a decrease in output in the short run.
- As output is too low, and inflation is decreasing, the central bank is likely to react and decrease the policy rate until output is back to potential.
- In the medium run however, output returns to potential, and the interest rate is lower.

- The IS-LM-PC Mode
- 2 Dynamics and the Medium Run Equilibrium
- Fiscal Consolidation Revisited
- 4 The Effects of an Increase in the Price of Oil
- Conclusions

## The Nominal and the Real Price of Oil, 1970-2015



#### The Effects of an Increase in the Price of Oil

- 1970s: OPEC (the Organization of Petroleum Exporting Countries) act as a monopoly and increased oil prices.
- 2000s: The fast growth of emerging economies led a rapid increase in world oil demand, and thus a steady increase in real oil prices.
- 2008: A large recession led to a sudden decrease in the demand for oil, and thus falling oil prices.
- 2014 and after: A combination of increased supply due to the increase in U.S. shale oil production and the partial breakdown of OPEC led to sudden drop in oil prices.

# The Effects of an Increase in the Price of Oil on the Natural Rate of Unemployment



## The Effects of an Increase in the Price of Oil



- If A' is the short-run equilibrium, then if the central bank increases the policy rate to stabilize inflation, then the
   economy moves to its medium-run equilibrium at point A".
  - Stagflation (lower output and higher inflation) occurs along the way.

## The Effects of a 100% Permanent Increase in the Price of Oil on the CPI and on GDP



- 1 The IS-LM-PC Mode
- Oynamics and the Medium Run Equilibrium
- Fiscal Consolidation Revisited
- 4 The Effects of an Increase in the Price of Oil
- Conclusions

#### Conclusions

- Shocks or changes in policy typically have different effects in the short run and in the medium run.
- Disagreements about the effects of various policies depend on how fast you think the economy adjusts to shocks.
- Movements in output around its trend are called output fluctuations (business cycles).
- Economic fluctuations are the results of shocks and their dynamic effects, called the **propagation mechanism**.