Miniproject - Algebraic Geometry

Simon Pohmann

Definition 1. Let V be a vector space. Then define the d-th exterior power as

$$\bigwedge^{d}(V) := V^{\otimes d} / \sum_{i=1}^{d-1} V^{\otimes (i-1)} \otimes \left\{ v \otimes v' + v' \otimes v \mid v, v' \in V \right\} \otimes V^{\otimes (d-i-1)}$$

Use the notation $v_1 \wedge ... \wedge v_d := [v_1 \otimes ... \otimes v_d] \in \bigwedge^k(V)$.

Lemma 2. Let $v_1, ..., v_d \in V$. Have for $\pi \in S_d$ that

$$v_{\pi(1)} \wedge \ldots \wedge v_{\pi(k)} = \operatorname{sgn}(\pi)(v_1 \wedge \ldots \wedge v_d)$$

Furthermore if $v_i = v_j$ for some $i \neq j$, then

$$v_1 \wedge ... \wedge v_d = 0$$

Proof. Note that

$$u \otimes v \otimes v' \otimes w = -(u \otimes v' \otimes v \otimes w)$$

for all $u \in \bigwedge^{i-1}(V), w \in \bigwedge^{(d-i-1)}(V), v, v' \in V$.

Every $\pi \in S_d$ has a decomposition $\pi = \xi_1...\xi_n$ into transpositions ξ_i . Applying this inductively, we find that

$$v_1 \wedge ... \wedge v_d = \operatorname{sgn}(\xi_i...\xi_n)(v_{(\xi_i...\xi_n)(1)} \wedge ... v_{(\xi_i...\xi_n)(k)})$$

and so

$$v_1 \wedge ... \wedge v_d = \operatorname{sgn}(\pi)(v_{\pi(1)} \wedge ... \wedge v_{\pi(k)})$$

Furthermore, we find that

$$u \otimes v \otimes v \otimes w = -(u \otimes v \otimes v \otimes w) = 0$$

must be zero. Hence, if $v_1, ..., v_d \in V$ with $v_i = v_j$ for some $i \neq j$, then there is a permutation $\pi \in S_d$ with $\pi(1) = i, \pi(2) = j$ and

$$v_1 \wedge ... \wedge v_d = (\operatorname{sgn}(\pi))(v_i \wedge v_j \wedge v_{\pi(3)} \wedge ... \wedge v_{\pi(k)}) = \operatorname{sgn}(\pi)0 = 0$$

Lemma 3 (1a). Let dim $(V) \leq 3$. Then every element of $\bigwedge^k(V)$ is decomposable.

Proof. Now let v_1, v_2, v_3 be a set of generators of V. Consider $u_1 = \sum \lambda_i v_i, u_2 = \sum_i \mu_i v_i, u_3 = \sum_i \rho_i v_i$. Then by applying Lemma 2, we see that

$$u_{1} \wedge u_{2} = \sum_{i,j} \lambda_{i} \mu_{j} \underbrace{(v_{i} \wedge v_{j})}_{= 0 \text{ if } i = j} = \sum_{i < j} \lambda_{i} \mu_{j} (v_{i} \wedge v_{j}) - \sum_{i > j} \lambda_{i} \mu_{j} (v_{i} \wedge v_{j})$$

$$= \sum_{i < j} (\lambda_{i} \mu_{j} - \lambda_{j} \mu_{i}) (v_{i} \wedge v_{j}) = \alpha (v_{1} \wedge v_{2}) + \beta (v_{1} \wedge v_{3}) + \gamma (v_{2} \wedge v_{3})$$

$$= \begin{cases} \beta v_{1} + \gamma v_{2} \wedge \frac{\alpha}{\beta} v_{2} + v_{3} & \text{if } \beta \neq 0 \\ \alpha v_{1} - \gamma v_{3} \wedge v_{2} & \text{otherwise} \end{cases}$$

and

$$u_{1} \wedge u_{2} \wedge u_{3} = \sum_{i,j,l} \lambda_{i} \mu_{j} \rho_{l} \underbrace{\left(v_{i} \wedge v_{j} \wedge v_{l}\right)}_{= 0 \text{ unless } i,j,l \text{ pairwise distinct}}$$

$$= \sum_{\pi \in S_{3}} \lambda_{\pi(1)} \mu_{\pi(2)} \rho_{\pi(3)} \left(v_{\pi(1)} \wedge v_{\pi(2)} \wedge v_{\pi(3)}\right)$$

$$= \sum_{\pi \in S_{3}} \lambda_{\pi(1)} \mu_{\pi(2)} \rho_{\pi(3)} \operatorname{sgn}(\pi) \left(v_{1} \wedge v_{2} \wedge v_{3}\right)$$

$$= \left(v_{1} \wedge v_{2} \wedge v_{3}\right) \sum_{\pi \in S_{3}} \lambda_{\pi(1)} \mu_{\pi(2)} \rho_{\pi(3)} \operatorname{sgn}(\pi)$$

are decomposable. Further, it is easy to see from Lemma 2 that $\bigwedge^k(V) = \{0\}$ for $k \geq 4$, which is trivially decomposable.

Example 4 (1b). Consider $V = k^4$. Then the element $w := (e_1 \wedge e_2) + (e_3 \wedge e_4) \in \bigwedge^2(V)$ is not decomposable.

Proof. Assume it was, then there are $a, b \in k^4$ such that

$$w = \sum_{i} a_i e_i \wedge \sum_{j} b_j e_j = \sum_{i < j} (a_i b_j - a_j b_i) (e_i \wedge e_j)$$

In other words

$$a_1b_2 - a_2b_1 = 1$$
, $a_3b_4 - a_4b_3 = 1$, $a_ib_j - a_jb_i = 0$ for all $(i, j) \neq (1, 2), (3, 4)$

Clearly $a_1b_2 \neq 0$ or $a_2b_1 \neq 0$. Similarly, have $a_3b_4 \neq 0$ or $a_4b_3 \neq 0$. As all expressions are symmetric w.r.t swapping a_1, b_2 with a_2, b_1 and a_3, b_4 with a_4, b_3 , we may assume wlog that $a_1b_2, a_3b_4 \neq 0$.

Have $a_1b_4=a_4b_1$ and $a_2b_4=a_4b_2$. We know that $a_1b_4\neq 0$ and so

$$\frac{a_2}{a_1} = \frac{a_2b_4}{a_1b_4} = \frac{a_4b_2}{a_4b_1} = \frac{b_2}{b_1} \implies a_2b_1 = a_1b_2$$

This contradicts $a_1b_2 - a_2b_1 = 1$.

Lemma 5 (1c). Let d be even. An element $\omega \in \bigwedge^d V$ is decomposable if and only if $\omega \wedge \omega \in \bigwedge^{2d} V$ is zero.

Proof. The direction \Rightarrow even holds generally. Assume $\omega = v_1 \wedge ... \wedge v_d$. Then

$$\omega \wedge \omega = v_1 \wedge ... \wedge v_d \wedge v_1 \wedge ... \wedge v_d = 0$$

by Lemma 2. The other direction is more interesting.

Let $\omega = v_1 + ... + v_t$ for linearly independent decomposable vectors $v_i \in \bigwedge^2 V$. Then

$$0 = \omega \wedge \omega = \sum_{i,j} v_i \wedge v_j = \sum_{i < j} (v_i \wedge v_j) + (v_j \wedge v_i)$$
$$= \sum_{i < j} 2(v_i \wedge v_j) = 2\sum_i v_i \wedge \left(\sum_{j > i} v_j\right)$$

Here we used that the permutation $(1\ 2d)(2\ (2d-1))...(d\ (d+1)) \in S_{2d}$ has always sign 1 (since d is even).

Note that for any nonzero decomposable vector

$$u_1 \wedge u_2 \in \left(\bigwedge^2 \operatorname{span}\{v_2, ..., v_t\} \right) \setminus \{0\}$$

find

$$u_1, u_2 \in \text{span}\{v_2, ..., v_t\}$$

In particular, we know that

$$v_1 \wedge \left(\sum_{j>i} v_j\right) \in \bigwedge^2 \operatorname{span}\{v_2, ..., v_t\}$$

and so $v_1 \in \text{span}\{v_2, ..., v_t\}$ unless $\sum_{j>i} v_j = 0$. We assumed that the v_i are linearly independent, so the former would give a contradiction. Hence $\sum_{j>i} v_j = 0$ and thus t=1, i.e. $\omega = v_1$ is decomposable.

Lemma 6 (2a). Let $A = (a_{ij}) \in GL_d(k)$ and $v_1, ..., v_d \in V$. Then

$$\left(\sum_{j} a_{1j} v_{j}\right) \wedge \dots \wedge \left(\sum_{j} a_{dj} v_{j}\right) = \det(A)(v_{1} \wedge \dots \wedge v_{d})$$

Proof. By a direct computation using Lemma 2, we find

$$\left(\sum_{j} a_{ij}v_{j}\right) \wedge \dots \wedge \left(\sum_{j} a_{dj}v_{j}\right) = \sum_{j_{1},\dots,j_{d}} a_{1j_{1}}\dots a_{dj_{d}}(v_{j_{1}} \wedge \dots \wedge v_{j_{d}})$$

$$= \sum_{\pi \in S_{d}} a_{1\pi(1)}\dots a_{d\pi(d)}(v_{\pi(1)} \wedge \dots \wedge v_{\pi(d)})$$

$$= \sum_{\pi \in S_{d}} a_{1\pi(1)}\dots a_{d\pi(d)}\operatorname{sgn}(\pi)(v_{1} \wedge \dots \wedge v_{d})$$

$$= (v_{1} \wedge \dots \wedge v_{d}) \sum_{\pi \in S_{d}} \operatorname{sgn}(\pi) \prod_{j=1}^{d} a_{j\pi(j)} = \det(A)(v_{1} \wedge \dots \wedge v_{d})$$

where the last equality holds due to the Leibniz determinant formula.

We see that if there are two bases $v_1, ..., v_d$ and $u_1, ..., u_d$ of a d-dimensional vector space U, then there exists a basis change matrix $A = (a_{ij}) \in GL_d(k)$ with

$$u_i = \sum_j a_{ij} v_j$$

So by the Lemma, it follows that

$$u_1 \wedge ... \wedge u_d = \det(A)(v_1 \wedge ... \wedge v_d)$$

As $v_1, ..., v_d$ resp. $u_1, ..., u_d$ are bases, they are linearly independent and in particular, we see that

$$v_1 \wedge ... \wedge v_d \neq 0$$
 and $u_1 \wedge ... \wedge u_d \neq 0$

Hence they have well-defined images $[v_1 \wedge ... \wedge v_d]$ resp. $[u_1 \wedge ... \wedge u_d]$ in the projective space $\mathbb{P}(\bigwedge^d V)$. By the above, find

$$[v_1 \wedge \ldots \wedge v_d] = [u_1 \wedge \ldots \wedge u_d]$$

This allows us to study the Grassmanian Gr(d, V) of a fixed vector space V.

Definition 7. Define the map

$$\phi: \operatorname{Gr}(d,V) \to \mathbb{P}(\bigwedge^d V), \quad \operatorname{span}\{v_1,...,v_d\} \mapsto [v_1 \wedge ... \wedge v_d]$$

which is well-defined by Lemma 6 as described above.

Lemma 8 (1a). We have

$$\operatorname{im} \phi = D := \{ [v] \in \mathbb{P}(\bigwedge^d V) \mid v \text{ decomposable} \}$$

Proof. First of all, note that the set D is well-defined, as v is decomposable if and only if λv is decomposable, for all $\lambda \in k^*$.

By definition of ϕ , we can directly observe that $\operatorname{im}\phi \subseteq D$. So consider an element $[v] \in D$. As v is decomposable, it follows that $v = v_1 \wedge ... \wedge v_d$ for $v_i \in V$. Not it suffices to show that the v_i are linearly independent, then clearly $\operatorname{span}\{v_1, ..., v_d\}$ is a well-defined d-dimensional vector subspace of V, thus an element of $\operatorname{Gr}(d, V)$.

Assume not, then there is a nonzero vector $a_1 \in k^d$ with $\sum a_{1i}v_i = 0$. Clearly, we can extend a_1 to a basis $a_1, ..., a_d$ of k^d , which gives a matrix $A = (a_{ij}) \in GL_d(k)$.

However by Lemma 6 we now get

$$0 = 0 \land \left(\sum_{j} a_{2j} v_{j}\right) \land \dots \land \left(\sum_{j} a_{dj} v_{j}\right) = \left(\sum_{j} a_{1j} v_{j}\right) \land \dots \land \left(\sum_{j} a_{dj} v_{j}\right)$$
$$= \det(A)(v_{1} \land \dots \land v_{d})$$

and so $v = v_1 \wedge ... \wedge v_d = 0$ as $\det(A) \neq 0$. However, v was a representative of a point in $\mathbb{P}(\bigwedge^d V)$, a contradiction. The claim follows.