

COURSE DESCRIPTION FORM

INSTITUTION National University of Computers and Emerging Sciences

BS Computer Science

PROGRAM (S) TO BE

EVALUATED

A. Course Description

(Fill out the following table for each course in your computer science curriculum. A filled out form should not be more than 2-3 pages.)

Course Code	CL1002
Course Title	Programming Fundamentals Lab
Credit Hours	1
Prerequisites by Course(s) and Topics	None
Assessment Instruments with Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	Lab Tasks:20 Mid:20 Project:10 Final:50
Course Coordinator	Sir Shahzad
URL (if any)	
Current Catalog Description	
Textbook (or Laboratory Manual for Laboratory Courses)	Name: C How to Program with an Introduction to C Global Edition - 7th Edition Authors: Paul Deitel, Harvey Deitel Publisher: Pearson Name: Problem Solving and Program Design in C - 7th Edition Authors: Maureen Sprankle, Jim Hubbard Publisher: Prentice Hall
Reference Material	Name: Working with C / Let us C

Author(s): YashwantKanetkar Publisher: BPB Publications

Name: Waite Group's Turbo C - Programming for the PC

<u>Authors:</u> Robert Lafore

<u>Publisher:</u> SAMS

Course Goals

A. Course Learning Outcomes (CLOs)	Level
CLO 1: Describe fundamental concepts of structured and procedural programming, use pseudo-codes and simple programs to understand control structures, iterative structures and functions using C language.	C3, PLO1
CLO 2: Examine code writing, compiling, debugging and program execution.	C3, PLO5
CLO 3: Justify problem solving techniques and analytical thinking by identifying the concepts and properties of algorithms.	C5, PLO2
CLO 4: Design basic problems of the real world through small/medium size programs given as course projects.	C6, PLO5

B. Progr	am learning outcor	mes (PLO)	
PLO 1	Computing Knowledge	Apply knowledge of mathematics, natural sciences, computing fundamentals, and a computing specialization to the solution of complex computing problems.	?
PLO 2	Problem Analysis	Identify, formulate, research literature, and analyse complex computing problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and computing sciences.	?
PLO 3	Design/Develop Solutions	Design solutions for complex computing problems and design systems, components, and processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.	
PLO 4	Investigation& Experimentatio n	Conduct investigation of complex computing problems using research-based knowledge and research-based methods	
PLO 5	Modern Tool Usage	Create, select, and apply appropriate techniques, resources and modern computing tools, including	?

		prediction and modelling for complex computing problems.	
PLO 6	Society Responsibility	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal, and cultural issues relevant to context of complex computing problems.	
PLO 7	Environment and Sustainability	Understand and evaluate sustainability and impact of professional computing work in the solution of complex computing problems	
PLO 8	Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of computing practice.	
PLO 9	Individual and Team Work	Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.	
PLO 10	Communication	Communicate effectively on complex computing activities with the computing community and with society at large.	
PLO 11	Project Mgmnt and Finance	Demonstrate knowledge and understanding of management principles and economic decision making and apply these to one's own work as a member or a team.	
PLO 12	Life Long Learning	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological changes.	

C. Relation between CLOs and PLOs (CLO: Course Learning Outcome, PLOs: Program Learning Outcomes) **PLOs** 1 2 3 4 5 6 7 8 9 10 11 12 1 ? 2 ? CL Os 3 ? 4 ?

Topics Covered in the Course, with Number of Lectures on Each

We	eek	Topics	CLO	Assessment

1	Problem solving with sequential		
2	structure using Scratch		
2	Problem solving with the decision and		
_	iterative structures using Scratch		
3	Introduction to IDE and Basic	Announce	
	Programming Constructs	Project	
4	Introduction of operators and math.h		
	library functions		
5	Basic Decision Structure (if, if- else and Switch Statements)		
6	THEORY MID I Examination	I	
7	Nested Decision Structures		
8	Iterative Statements in C		
9	Lab Mid		
D	Nested Iterations, Arrays Multiple		
	Dimension Array (2D,3D) in C		
1	THEORY MID II Examination		
2	Functions, Strings and Recursion		
3	Introduction to Structures & Nested		
	Structure		
4	Introduction to file processing and		
	basic operations on files and		
	Introduction to Pointers		
5	Accessing Arrays using pointer		
	Dynamic Memory Management		
6	Project Submission		

Laboratory Projects/Experime nts Done in the Course

There will be weekly labs starting from the first week.

The following is a summary of the Lab exercises given to Students.

- Introduction to Pseudo code, Algorithm and Flowchart and Programming Fundamentals.
- Introduction To Conditional Statement In C
- Control Structure (Repetition)
- Functions and Recursion.
- Arrays (1D, 2D, 3D)
- String sorting and searching algorithms.
- Pointers
- Dynamic memory allocation
- Structures
- Filing in C

Programming Assignments Done in the Course	Assignment related to Functions, Arrays, Pointers, Structures, Dynamic Memory and File Processing will be done			
Class Time Spent on (in credit hours)	Theory	Problem Analysis	Solution Design	Social
	15%	50%	30%	5%
Oral and Written Communications	Every student is required to submit at least _1_ written reports of typically _2_ pages and to make _1_ oral presentations of typically _10_ minute's duration. Include only material that is graded for grammar, spelling, style, and so forth, as well as for technical content, completeness, and accuracy.			

Instructor Name:	Shaheer Ahmad Khan
Instructor Signatu	ıre
Date	_