Set-Membership Proof

Using Bulletproofs

Set Membership

- Goal: Prove that a secret value v is in a public set S.
 - For example: v = "DK" and S = {"DE", "DK", "UK", "FR", "UK"}
 - The efficiency of the proof will depend on ISI.

Finite field, + and * are mod q

$$\mathbb{F}_q = \{0, \dots, q-1\}$$

Very large **prime number**

Numbers

Everything is a number,
- "DK" -> 0x444b

$$\mathbf{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{F}_q^n$$

A list of n number in 0..q-1

Vectors

Ordered lists of numbers

Inner Product

Sum

$$\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{i=1}^{n} a_i b_i \in \mathbb{F}_q$$

Vector

Number

$$\left\langle \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 4\\5\\6 \end{pmatrix} \right\rangle = 1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 = 32$$

q is very large

Hadamard Product

$$\mathbf{a} \circ \mathbf{b} = egin{pmatrix} a_1b_1 \ dots \ a_nb_n \end{pmatrix} \in \mathbb{F}_q^n$$
 Vector

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \circ \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 4 \\ 10 \\ 18 \end{pmatrix}$$

q is very large

Bulletproofs

At the core an inner product proof

Interlude: Commit-and-Proof

Commitment ~ Envelope with value inside

Commitments

Something with Pedersen

[&]quot;I can open the given commitments to values such that they satisfy the inner product relation."

"I can open the given commitments to values such that they satisfy the inner product relation."

Set-membership - Construction Idea

$$v \in S \iff \langle \mathbf{a}, \mathbf{b} \rangle = c$$

Set-membership - Converter

$$v, S \longrightarrow \text{Magic} \\ v \in S \longrightarrow \text{Converter} \longrightarrow \langle \mathbf{a}, \mathbf{b} \rangle = c$$

$$S$$
 $C_{\mathbf{v}}$
 $C_{\mathbf{a}}, C_{\mathbf{b}}, C_{c}$
 v, r_{v}
 $\mathbf{a}, \mathbf{b}, c \ r_{\mathbf{a}}, r_{\mathbf{b}}, r_{c}$

Number
$$P(X) = a_n X^n + \dots + a_1 X + a_0$$

Finding Nemo Roots

$$P(X) = 0$$

Unless P is zero-polynomial

There are at most n roots.

Example

$$X^{2} - 4$$

2 is a root

Coefficients Vector

$$\begin{pmatrix} 1 \\ 0 \\ -4 \end{pmatrix}$$

Polynomials

This is where X comes into play

A very large number (mod q)

Schwartz-Zippel Lemma

$$P(X) = a_n X^n + \dots + a_1 X + a_0 \in \mathbb{F}_q[X]$$

$$y \overset{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathbb{F}_q$$
 random number

P not zero-polynomial

small

 $Pr[P(y) = 0] \le \frac{n}{|\mathbb{F}_q|} = \frac{n}{q}$

P zero polynomial

$$Pr[P(y) = 0] = 1$$

very unlikely

very large

Main Trick

Check if

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \stackrel{?}{=} \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

 $y \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathbb{F}_q$

S.Z.

zero polynomial

coefficients vector

Equivalent to original equation w.h.p.

$$\sum_{i=1}^{n} a_i y^{i-1} \stackrel{?}{=} 0 = \sum_{i=1}^{n} 0 y^{i-1}$$

Polynomial evaluation at y

Main Trick

Set-membership Proof

Set-Membership - Reduction to Inner Product

$$v \in S = \{s_1, \dots, s_n\}$$
 $v = s_i$

"I know v is in S"

Vectorize

$$\mathbf{s} = (s_1, \dots, s_n)^{\top}$$

$$\langle \mathbf{s}, \mathbf{a}_L \rangle = v$$

at position i $\mathbf{s} = (s_1, \dots, s_n)^{\top}$ $\mathbf{a}_L = (0, \dots, 1, \dots, 0)^{\top}$

"I know the index i such that
$$v = si$$
"

Set-Membership - Reduction to Inner Product

$$v \in S$$

$$\mathbf{s} = (s_1, \dots, s_n)^{ op}$$

 $(\mathbf{a}_L - \mathbf{1}) - \mathbf{a}_B = \mathbf{0}$

$$\mathbf{s} = (s_1, \dots, s_n)^{\top}$$
 $\mathbf{a}_L = (0, \dots, 1, \dots, 0)^{\top}$ $\langle \mathbf{s}, \mathbf{a}_L \rangle = v$

secret → untrusted

at position i

Consistency checks for a_L // zero vector with exactly one 1 ${\bf a}_R:={\bf a}_L-{\bf 1}$ $\langle {\bf a}_L,{\bf 1}\rangle=1 // \text{coefficients sum up to 1}$ ${\bf a}_L\circ {\bf a}_R={\bf 0} // \text{for each coordinates one of them is zero}$

// a_R is really a_L - 1

Set-Membership - Reduction to Inner Product $v \in S$ $\mathbf{s} = (s_1, \dots, s_n)^{\top}$ $\mathbf{a}_L = (0, \dots, 1, \dots, 0)^{\top}$ $\mathbf{a}_R \coloneqq \mathbf{a}_L - \mathbf{1}$

Equations:

$$\langle \mathbf{s}, \mathbf{a}_L
angle = v$$
 $y \overset{\$}{\leftarrow}$ $\langle \mathbf{a}_L, \mathbf{1}
angle = 1$ $\mathbf{a}_L \circ \mathbf{a}_R = \mathbf{0}$ $\langle \mathbf{a}_L - \mathbf{1}
angle - \mathbf{a}_R = \mathbf{0}$

$$y \overset{\$}{\leftarrow} \mathbb{F}_q$$
 $\langle \mathbf{a}_L, \mathbf{s}
angle = v,$ $\langle \mathbf{a}_L, \mathbf{1}
angle = 1,$ $\langle \mathbf{a}_L, \mathbf{a}_R \circ \mathbf{y}^n
angle = 0,$ $\langle \mathbf{a}_L, \mathbf{a}_R, \mathbf{y}^n
angle = 0.$

Set-Membership - Reduction to Inner Product

$$\mathbf{s} = (s_1, \dots, s_n)^{ op} \quad \mathbf{a}_L = (0, \dots, 1, \dots, 0)^{ op} \quad \mathbf{a}_R \coloneqq \mathbf{a}_L - \mathbf{1}$$

$$egin{aligned} \langle \mathbf{a}_L, \mathbf{s}
angle &= v, & z & & \mathbb{F}_q \ \langle \mathbf{a}_L, \mathbf{1}
angle &= 1, \ \langle \mathbf{a}_L, \mathbf{a}_R \circ \mathbf{y}^n
angle &= 0, \ \langle \mathbf{a}_L - \mathbf{1} - \mathbf{a}_R, \mathbf{y}^n
angle &= 0. \end{aligned}$$
 S.Z. $z^3 + z^2 v = z^3 \langle \mathbf{a}_L, \mathbf{1}
angle + z^2 \langle \mathbf{a}_L, \mathbf{s}
angle + z \langle \mathbf{a}_L - \mathbf{1} - \mathbf{a}_R, \mathbf{y}^n
angle + \langle \mathbf{a}_L, \mathbf{a}_R \circ \mathbf{y}^n
angle$

$$z^3 + z^2 v = z^3 \langle \mathbf{a}_L, \mathbf{1}
angle + z^2 \langle \mathbf{a}_L, \mathbf{s}
angle + z \langle \mathbf{a}_L - \mathbf{1} - \mathbf{a}_R, \mathbf{y}^n
angle + \langle \mathbf{a}_L, \mathbf{a}_R \circ \mathbf{y}^n
angle$$

 $v \in S$

Set-Membership - Reduction to Inner Product

$$v \in S$$

$$\mathbf{s} = (s_1, \dots, s_n)^ op \quad \mathbf{a}_L = (0, \dots, 1, \dots, 0)^ op \quad \mathbf{a}_R \coloneqq \mathbf{a}_L - \mathbf{1}$$

$$z^3 + z^2 v = z^3 \langle \mathbf{a}_L, \mathbf{1} \rangle + z^2 \langle \mathbf{a}_L, \mathbf{s} \rangle + z \langle \mathbf{a}_L - \mathbf{1} - \mathbf{a}_R, \mathbf{y}^n \rangle + \langle \mathbf{a}_L, \mathbf{a}_R \circ \mathbf{y}^n \rangle$$

Set-membership - Construction Idea

$$v \in S \iff \langle \mathbf{a}, \mathbf{b} \rangle = c$$

Set-Non-Membership

$$v
otin S = \{s_1, \dots, s_n\}$$
 "I know v is not in S"

$$\Leftrightarrow$$

$$\forall i \quad v \neq s_i$$
 "I know v is not si for any i "

 \Leftrightarrow

 $\forall i \quad v - s_i \neq 0$ "I know the difference of v and s_i is not zero for any i"

← Finite field

 $orall i \; \exists a_i \; \; a_i(v-s_i)=1$ "I know the multiplicative inverse of (v-si) for any i"

Set-Non-Membership

$$v \not\in S = \{s_1, \dots, s_n\}$$
 "I know v is not in S "

$$\Leftrightarrow$$

$${\bf a}_L = (a_0, \dots, a_{n-1}) \text{ and } {\bf a}_R = v{\bf 1}$$

$$\mathbf{a}_L \circ (\mathbf{a}_R - \mathbf{s}) = \mathbf{1},$$

$$\mathbf{a}_R = v\mathbf{1}$$
.