Generalized Linear Models

Mark Andrews Psychology Department, Nottingham Trent University

► The Poisson distribution is a discrete probability distribution over the non-negative integers 0, 1, 2....

Shown here is a Poisson distribution with $\lambda = 3.5$.

- ▶ The Poisson distribution is used to model the probability of a given number of events occurring in a fixed interval of time, e.g. the number of emails you get per hour, the number of shark attacks on Bondi beach every summer, etc.
- It has a single parameter λ, known as the *rate*.
- If x is a Poisson random variable whose, its probability mass function is

$$P(x = k|\lambda) = \frac{e^{-\lambda}\lambda^k}{k!}.$$

- ightharpoonup The mean of a Poisson distribution is equal to its rate parameter λ .
- lts variance is also equal to λ .

As λ increases, so too does the variance.

- ► The Poisson distribution can be seen as the limit of a Binomial distribution as $N \to \infty$, and $\lambda = pN$.
- Shown are (left) Binomial(N, $p = \lambda/N$) where N $\approx 10^3$ and $\lambda = 7.5$, and (right) Poisson(λ).

Poisson Regression

- ▶ In any regression problem, our data are $(y_1, x_1), (y_2, x_2) \dots (y_n, x_n)$, where each y_i is modelled as a stochastic function of x_i .
- In Poisson regression, we assume that each y_i is a Poisson random variable rate λ_i and

$$\log(\lambda_i) = \beta_0 + \sum_{k=1}^K \beta_k x_{ki},$$

or equivalently

$$\lambda_i = e^{\beta_0 + \sum_{k=1}^K \beta_k x_{ki}}.$$

Poisson Regression

- As an example of Poisson regression, we can look at the number visits to a doctor in a fixed period as a function of predictors such as gender.
- ▶ Using a data-set of over 5000 people, we estimate (using mle) that

$$log(\lambda_{i}) = 1.65 + 0.43 \times x_{i}$$

where $x_i = 1$ for a female, and $x_i = 0$ for a male.

Poisson Regression

Using this example, we see that for a female

$$\lambda_{Female} = e^{1.65 + 0.43} = 8.004$$

and for males

$$\lambda_{Male}=e^{1.65}=5.2$$

▶ In other words, the expected value for females is 8.2 and for males it is 5.2.

Coefficients

- ► In Poisson regression, coefficients can be understood as follows.
- ► In the previous example,

$$\begin{split} \lambda_{Female} &= e^{1.65 + 0.43}, \\ &= e^{1.65} e^{0.43}, \\ \lambda_{Male} &= e^{1.65}. \end{split}$$

- ▶ This means that the exponent of the gender coefficient, i.e. $e^{0.43}$, signifies the multiplicative increase to the average rate of doctor visits for women relative men.
- ▶ In other words, women visit doctors on average $e^{0.43} = 1.53$ times more than men.

Coefficients

In an arbitrary example with a single continuous predictor variable,

$$\lambda = e^{\alpha + \beta x_i},$$
$$= e^{\alpha} e^{\beta x_i},$$

If we increase x_i by 1, we have

$$\begin{split} \lambda^+ &= e^{\alpha + \beta (x_i + 1)}, \\ &= e^{\alpha + \beta x_i + \beta}, \\ &= e^{\alpha} e^{\beta x_i} e^{\beta}, \end{split}$$

As $\lambda^+ = \lambda e^{\beta}$, we see that e^{β} is the multiplicative effect of an increase in one unit to the predictor variable.

Example

```
doc df <- read csv(here('data/DoctorAUS.csv')) %>%
  mutate(gender = ifelse(sex == 1, 'female', 'male'))
M <- glm(doctorco ~ gender,
         data = doc df,
         family = poisson)
doc df new <- tibble(gender = c('female', 'male'))</pre>
doc_df_new %>%
  add predictions(M)
doc_df_new %>%
  add_predictions(M, type='response')
```

Model comparison

- ► In some problems, the length of time during which events are measured varies across individuals.
- ▶ In the doctor visits example, we might have recordings of number of visits per year for some people and number of visits per 9 months, etc, for others.
- These situations are dealt with using an exposure term for each individual.

When using an exposure term, we use the original count data as before, but treat

$$y_i \sim Poisson(\lambda_i/u_i)$$
,

where $u_{\mathfrak{i}}$ is a term signifying the relative exposure time for person $\mathfrak{i}.$

► According to this,

$$log(\lambda_i/u_i) = \alpha + \beta x_i,$$

$$log(\lambda_i) = \alpha + \beta x_i + log(u_i)$$

In other words, $y_i \sim Poisson(\lambda_i/u_i)$ is equivalent to $y_i \sim Poisson(\lambda_i)$, where $log(\lambda_i) = \alpha + \beta x_i + log(u_i)$.

- ▶ For example, suppose we monitor people's drinking at social occasions. We find that three people drink 12, 7 and 3 drinks over the course of 7, 5 and 2 hours, respectively.
- ► If we are trying to predict drinking as a function of predictor variables, we ought to calibrate by the different time frames.
- ► Treating e.g. 12 as a draw from Poisson($\lambda_i/7$) where $\log(\lambda_i/7) = \alpha + \beta x_i$ is identical to treating 12 as a draw from Poisson(λ_i) where $\log(\lambda_i) = \alpha + \beta x_i + \log(7)$.

- ▶ In general, exposure terms are treated as fixed offsets.
- If our data is $(y_1, x_1), (y_2, x_2) \dots (y_n, x_n)$ with exposures $u_1, u_2 \dots u_n$, then we treat

$$y_i \sim Poisson(\lambda_i)$$
,

where

$$\log(\lambda_i) = \log(u_i) + \beta_0 + \sum_{k=1}^{K} \beta_k x_{ki}.$$

Example

- ightharpoonup The mean of a Poisson distribution is equal to its rate parameter λ .
- lts variance is also equal to λ .

As λ increases, so too does the variance.

Means and variances in a Poisson distribution:

- ► In a Poisson distribution, the variance of a sample should be approximately the same as the mean of a sample.
- Example 1:

```
x <- rpois(25, lambda = 5)
c(mean(x), var(x), var(x)/mean(x))
#> [1] 5.4400000 5.42333333 0.9969363
```

Example 2:

```
x <- rpois(25, lambda = 5)
c(mean(x), var(x), var(x)/mean(x))
#> [1] 5.400000 6.416667 1.188272
```

Overdispersion

- ▶ If the variance of a sample is greater than would be expected according to a given theoretical model, then we say the data is *overdispersed*.
- ► In count data, if the variance of a sample is much greater than its mean, we say it is overdispersed.
- Using a Poisson distribution in this situation, this is an example of model mis-specification.
- ► It will also usually underestimate the standard errors in the Poisson model.

Overdispersion

In the bioChemists data set, we have counts of the number of articles published by PhD students in the last three years (publications):


```
var(publications)/mean(publications)
#> [1] 2.191358
```

Overdispersion

This leads standard errors to be underestimated if we use a Poisson model:

Fixing overdispersion using a Quasi-poisson model

A quasi Poisson model allows us to correct over-dispersion

```
M <- glm(publications ~ 1, family=quasipoisson)
summary(M)$coefficients
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.5264408 0.03761239 13.99647 1.791686e-40
```

- ► It does so by calculating an overdispersion parameter (roughly, the ratio of the variance to the mean) and multiplying the standard error by its square root.
- ▶ In this example, the overdispersion parameter is 2.1913892 and so its square root is 1.4803341.
- Alternatively, a negative binomial regression is an alternative to Poisson regression that can be used with overdispersed count data.

- A negative binomial distribution is a distribution over non-negative integers.
- ► To understand the negative binomial distribution, we start with the binomial distribution:
- If, for example, we have a coin whose probability of coming up heads is θ , then the number of Heads in a sequence of n flips will follow a binomial distribution.
- ▶ In this example, an outcome of Heads can be termed a *success*.

► Here is a binomial distribution where n = 25 and $\theta = 0.75$.

- ► A *negative* binomial distribution gives the probability distribution over the number of *failures* (e.g. Tails) before r *successes* (e.g. r Heads).
- For example, here we have the number of Heads (*successes*) that occur before we observe r = 2 Tails (*failures*), when the probability of Heads is $\theta = 0.75$:

► Here, we have the number of Tails (*failures*) that occur before we observe r = 3 Heads (*successes*), when the probability of Heads is $\theta = 0.5$:

The probability mass function for the negative binomial distribution is:

$$P(x = k | r, \theta) = {r + k - 1 \choose k} \theta^{r} (1 - \theta)^{k}$$

or more generally

$$P(x = k|r, \theta) = \frac{\Gamma(r+k)}{\Gamma(r)k!} \theta^{r} (1-\theta)^{k},$$

where $\Gamma()$ is a Gamma function ($\Gamma(n) = (n-1)!$).

In R, for any k, r, and θ , we can calculate $P(x = k|r, \theta)$ using dnbinom, e.g. $P(x = k = 2|r = 3, \theta = 0.75)$ is

```
dnbinom(2, 3, 0.75)
#> [1] 0.1582031
```

▶ In the negative binomial distribution, the mean is

$$\mu = \frac{\theta}{1 - \theta} \times r,$$

and so

$$\theta = \frac{r}{r + \mu}$$

and we can generally parameterize the distribution by μ and r.

Why use negative binomial distribution?

► A negative binomial distribution is equivalent as weighted sum of Poissons.

So it is appropriate to use when the data can be seen as arising from a mixture of Poisson distributions, each with different means.

Negative binomial regression

▶ In negative binomial regression, we have observed counts $y_1, y_2 ... y_n$, and some predictor variables $x_1, x_2 ... x_n$, and we assume that

$$y_i \sim NegBinomial(\mu_i, r)$$
,

where NegBinomial($\mu_i,r)$ is a negative binomial with mean μ_i and a dispersion parameter r, and then

$$\log(\mu_i) = \beta_0 + \beta x_i.$$

Example

```
M <- glm.nb(publications ~ gender, data = biochemists_Df)
M1 <- glm.nb(publications ~ gender + married + I(children > 0),
```

Binomial logistic regression

If y_i is the number of "successes" in n_i "trials", we can model this as

$$y_i \sim Binomial(\theta_i, n_i),$$

$$logit(\theta_i) = \beta_0 + \sum_{k=1}^K \beta_k x_{ki}$$

- ▶ If $n_i = 1$ for all i, then this is exactly binary logistic regression.
- In general, it models the probability of something happening in a number of independent trials, and how the probability varies by the values of predictors.

Example

A sample from a Poisson distribution with $\lambda = 5.5$.

Zero inflated Poisson Distribution

A sample from a zero inflated Poisson distribution with $\lambda = 5.5$, with probability of *zero-component* is 0.2.

Poisson regression to Zero-Inflated Poisson regression

- ▶ In Poisson regression (with a single predictor, for simplicity), we assume that each y_i is a Poisson random variable with rate λ_i that is a function of the predictor x_i .
- ► In Zero-Inflated Poisson regression, we assume that each y_i is distributed as a Zero-Inflated Poisson mixture model:

$$y_i \sim \begin{cases} Poisson(\lambda_i) & \text{if } z_i = 0, \\ 0, & \text{if } z_i = 1 \end{cases}$$

where rate λ_i and $P(z_i = 1)$ are functions of the predictor x_i .

Zero-Inflated Poisson regression

Assuming data $\{(x_i, y_i), (x_2, y_2) \dots (x_n, y_n)\}$, Poisson regression models this data as:

$$\begin{aligned} y_i &\sim \begin{cases} Poisson(\lambda_i) & & \text{if } z_i = 0,\\ 0, & & \text{if } z_i = 1 \end{cases},\\ z_i &\sim Bernoulli(\theta_i), \end{aligned}$$

where θ_i and λ_i are functions of x_i .

Zero-Inflated Poisson regression

► The θ_i and λ_i variables are the usual suspects, i.e.

$$log(\lambda_i) = \alpha + \beta x_i,$$

and

$$\log\left(\frac{\theta_{\mathfrak{i}}}{1-\theta_{\mathfrak{i}}}\right) = a + bx_{\mathfrak{i}}.$$

In other words, λ_i is modelled just as in ordinary Poisson regression and θ_i is modelled in logistic regression.

Examples

```
smoking_df <- read_csv(here('data/smoking.csv'))</pre>
M <- glm(cigs ~ educ, data = smoking_df)</pre>
M zip <- zeroinfl(cigs ~ educ, data=smoking df)</pre>
Df_new <- data.frame(educ = seq(20))</pre>
# Predited average smoking rate
Df new %>%
  add predictions(M zip, type='response')
# Predicted average smoking rate of "smokers"
Df new %>%
  add predictions (M zip, type='count')
# Predicted probability of being a "smoker"
Df new %>%
  add predictions (M zip, type='zero') %>%
  mutate(pred = 1-pred)
```