Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$

Example 2.

∆=0

 $t_{1,2}=3,3$

Case3: △<0

 $\triangle = -1600 < 0$

e(0) = -500 e-intercept.

Case1: △>0 $t_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a}$ computes the t-intercepts of multiplicity 1. e(0) = c computes the single e-intercept.

Given a quadratic $e(t) = at^2 + bt + c$ compute its discriminant \triangle :

$$c_{1,2} = \frac{1}{2a}$$
 computes the t-intercepts of muttipticity 1.
e(0) = c computes the single e-intercept.

e(t)=-2 t^2 - 11 t + 21 compute its discriminant \triangle : △=289>0

$$t_{1,2} = \frac{3}{2}$$
, -7
 $e(0) = 21$ e -intercept.

 t -intercept 1

 e -intercept 1

 e -intercept 1

-100 -200 -300 Case2: △=0 $t_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single t-intercept of multiplicity 2.

-300

 $e(t) = -2t^2 + 12t - 18$ compute its discriminant \triangle :

 $\sqrt{\,\mathsf{b}^2\,_-\,\mathsf{4}\,\mathsf{ac}}$ has no value in Real Numbers. Therefore there are no t-intercepts. However there is a e-intercept. Example 3.

 $e(t) = -4t^2 + 80t - 500$ compute its discriminant \triangle :

-10e-intercept -1000 -1500 -2000