Suites vectorielles et réelles définies par une relation de récurrence $u_{n+1} = f(u_n)$. Exemples. Applications à la résolution approchée d'équations.

I - Suites récurrentes

1. Définition et premières propriétés

Définition 1. Soit E un ensemble. On dit qu'une suite (u_n) d'éléments de E est **récurrente** d'ordre $h \in \mathbb{N}^*$ si on peut écrire

$$\forall n \ge h, u_{n+h} = f(u_{n-1}, \dots, u_{n-h})$$
 (*)

où $f: E^h \to E$ et les premières valeurs $u_0, \dots, u_{h-1} \in E$ étant donnés.

Exemple 2. On considère la suite numérique (u_n) définie par

$$\begin{cases} u_0 = 0 \\ u_1 = -1 \\ \forall n \in \mathbb{N}, \ u_{n+2} = 5u_{n+1} - 6u_n \end{cases}$$

et on a,

$$\forall n \in \mathbb{N}, u_n = 2^n - 3^n$$

Exemple 3. On considère les suite numérique (u_n) et (v_n) définies par

$$\begin{cases} u_0 \geq 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{\frac{1+u_n}{2}} \end{cases} \text{ et } \forall n \in \mathbb{N}, \ v_n = \prod_{k=0}^n u_k$$

Alors, pour $u_0 = \cos(\theta)$, on a

$$\forall n \in \mathbb{N}, \ v_n = \prod_{k=1}^n \cos\left(\frac{\theta}{2^k}\right) = \frac{\sin(\theta)}{2^n \sin\left(\frac{\theta}{2^n}\right)}$$

donc

$$\lim_{n \to +\infty} \nu_n = \frac{\sin(\theta)}{\theta}$$

[**DAN**] p. 145

[GOU20]

p. 206

Application 4 (Formule de Viète).

$$\frac{2}{\pi} = \sqrt{\frac{1}{2}} \times \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2}}} \times \dots$$

Exemple 5. La suite de fonctions polynômiales (P_n) définie par récurrence par :

[**FGN3**] p. 160

$$P_0: z \mapsto 1, P_1: z \mapsto z, \text{ et } \forall n \ge 1, z P_n: z \mapsto P_{n-1}(z) - P_{n+1}(z)$$

est une suite bornée si et seulement si $z = \pm 1$.

Théorème 6. Soit (E, d) un espace métrique compact. Soit (u_n) une suite de E telle que $d(u_n, u_{n-1}) \longrightarrow 0$. Alors l'ensemble Γ des valeurs d'adhérence de (u_n) est connexe.

[I-P] p. 116

Corollaire 7 (Lemme de la grenouille). Soient $f:[0,1] \to [0,1]$ continue et (x_n) une suite de [0,1] telle que

$$\begin{cases} x_0 \in [0, 1] \\ x_{n+1} = f(x_n) \end{cases}$$

Alors (x_n) converge si et seulement si $\lim_{n\to+\infty} x_{n+1} - x_n = 0$.

2. Récurrences classiques

Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On fixe (u_n) une suite récurrente d'ordre 1 définie par $u_{n+1} = f(u_n)$ où $f : \mathbb{K} \to \mathbb{K}$.

[**GOU20**] p. 201

Définition 8. — Si f est une translation (ie. f est de la forme $f: x \mapsto x + b$ où $b \in \mathbb{K}$), alors (u_n) est une suite **arithmétique** de raison b.

- Si f est linéaire (ie. f est de la forme $f: x \mapsto ax$ où $a \in \mathbb{K}$), alors (u_n) est une suite **géométrique** de raison a.
- Si f est affine (ie. f est de la forme $f: x \mapsto ax + b$ où $a, b \in \mathbb{K}$), alors (u_n) est une suite **arithmético-géométrique**.
- Si f est homographique (ie. f est de la forme $f: x \mapsto \frac{ax+b}{cx+d}$ où a, b, c, $d \in E$ et $ad-bc \ne 0$), alors (u_n) vérifie une **récurrence homographique**.

Proposition 9. (i) Si (u_n) est arithmétique de raison b, alors $\forall n \in \mathbb{N}$, $u_n = u_0 + nb$.

- (ii) Si (u_n) est géométrique de raison a, alors $\forall n \in \mathbb{N}$, $u_n = a^n u_0$.
- (iii) Si (u_n) est arithmético-géométrique et si $1-a\neq 0$, en posant $r=(1-a)^{-1}b$, on a $\forall n\in\mathbb{N},\ u_n=a^n(u_0-r)+r.$

Proposition 10. Supposons que (u_n) vérifie une récurrence homographique. On considère l'équation

$$f(x) = x \iff cx^2 - (a - d)x - b = 0 \tag{E}$$

Alors:

- 1. Si (E) admet deux racines distinctes r_1 et r_2 , on a $\forall n \in \mathbb{N}$, $\frac{u_n r_1}{u_n r_2} = k^n \frac{u_0 r_1}{u_0 r_2}$ où $k = \frac{a r_1 c}{a r_2 c}$.
- 2. Si (E) admet une racine double r, on a $\forall n \in \mathbb{N}$, $\frac{1}{u_n r} = \frac{1}{u_0 r} + kn$ où $k = \frac{c}{a rc}$.

Remarque 11. Ces formules permettent de décider s'il existe un rang n tel que le dénominateur de f s'annule, auquel cas les termes ultérieurs de la suite ne sont pas définis.

Exemple 12. Pour la relation $u_{n+1} = \frac{2u_n+1}{u_n+2}$, l'équation (*E*) admet ±1 pour solutions, donc $\frac{u_n+1}{u_n-1} = 3^n \frac{u_0+1}{u_0-1}$.

3. Suites récurrentes vectorielles

Proposition 13 (Déterminant circulant). Soient $n \in \mathbb{N}^*$ et $a_1, ..., a_n \in \mathbb{C}$. On pose $\omega = e^{\frac{2i\pi}{n}}$. Alors

$$\begin{vmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_0 & \dots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_0 \end{vmatrix} = \prod_{j=0}^{n-1} P(\omega^j)$$

où $P = \sum_{k=0}^{n-1} a_k X^k$.

Application 14 (Suite de polygones). Soit P_0 un polygone dont les sommets sont $\{z_{0,1},\ldots,z_{0,n}\}$. On définit la suite de polygones (P_k) par récurrence en disant que, pour tout $k \in \mathbb{N}^*$, les sommets de P_{k+1} sont les milieux des arêtes de P_k .

Alors la suite (P_k) converge vers l'isobarycentre de P_0 .

II - Outils pour étudier les suites récurrentes

1. Stabilité de l'intervalle et continuité

Soient $I \subseteq \mathbb{R}$ un intervalle de \mathbb{R} . On fixe (u_n) une suite récurrente d'ordre 1 définie par $u_{n+1} = f(u_n)$ [AMR11] où $f: I \to \mathbb{R}$.

[**GOU21**] p. 153

[I-P]

p. 389

[DEV]

Théorème 15 (Caractérisation séquentielle de la continuité). En reprenant les notations précédentes, une fonction $g: I \to \mathbb{R}$ est continue si et seulement si pour toute suite réelle convergente $(v_n) \in I^{\mathbb{N}}$ dont on note ℓ la limite, $g(v_n) \longrightarrow_{n \to +\infty} \ell$.

Corollaire 16. Si une suite récurrente d'ordre 1 (dont on note f la fonction) converge vers ℓ , alors $f(\ell) = \ell$.

Exemple 17. La suite (u_n) définie par $u_0 \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et $\forall n \ge 1$, $u_{n+1} = \sin(u_n)$ converge vers 0.

Proposition 18. (i) Si f est croissante, alors (u_n) est monotone et son sens de monotonie est donnée par le signe de $u_1 - u_0$.

[**GOU20**] p. 200

(ii) Si f est décroissante, alors (u_{2n}) et (u_{2n+1}) sont monotones et leur sens de monotonie est opposé.

Exemple 19. La suite réelle (u_n) définie par récurrence par :

$$u_0 \in [0, 1[\text{ et } \forall n \ge 0, u_{n+1} = \frac{1}{2 - \sqrt{u_n}}$$

est une suite qui converge vers 1.

2. Équation caractéristique

Définition 20. Une suite (u_n) à valeurs dans $\mathbb C$ vérifie une **récurrence linéaire homogène** d'ordre h si

$$\forall n \in \mathbb{N}, \quad u_{n+h} = a_{h-1}u_{n+h-1} + \dots + a_0u_0$$
 (*)

où $a_1, \ldots, a_h \in \mathbb{C}$.

Proposition 21. Si on note r_1, \ldots, r_q les racines du polynôme caractéristique de (*) (de multiplicités respectives $\alpha_1, \ldots, \alpha_q$), alors l'ensemble des suites vérifiant (*) est l'ensemble des suites (u_n) telles que :

$$u_n = P_1(n)r_1^n + \dots + P_q(n)r_q^n$$

où $\forall i \in [1, q]$, P_i est un polynôme de degré strictement inférieur à α_i .

Exemple 22. Soit (u_n) la suite définie par $\forall n \in \mathbb{N}$, $u_n = au_{n-1} + bu_{n-2}$. Son polynôme caractéristique est $P = X^2 - aX - b$.

- 1. Si P a deux racines distinctes r_1 et r_2 , alors $\forall n \in \mathbb{N}$, $u_n = \lambda r_1^n + \mu r_2^n$ où λ et μ sont tels que $u_0 = \lambda + \mu$ et $u_1 = \lambda r_1 + \mu r_2$.
- 2. Si P a une racine double r, alors $\forall n \in \mathbb{N}$, $u_n = (\lambda n + \mu) r^n$ où λ et μ sont tels que $u_0 = \mu$ et $u_1 = (\lambda + \mu) r$.

Exemple 23. Soit (F_n) la suite de Fibonacci définie par $F_0=0$, $F_1=1$ et $\forall n\geq 2$, $F_n=F_{n-1}+F_{n-2}$. Alors,

[AMR11] p. 47

$$\forall\,n\in\mathbb{N},\,F_n=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n\right)$$

Exemple 24. La suite (u_n) définie par $u_0=1$ et $u_{n+2}=u_n-u_{n+1}$ est à termes positifs si et seulement si $u_1=\frac{1-\sqrt{5}}{2}$.

3. Développement asymptotique

Définition 25. À toute suite numérique (u_n) on y associe sa suite (v_n) des **moyennes de Cesàro** où

 $\forall n \in \mathbb{N}, v_n = \frac{1}{n} \sum_{k=1}^n u_k$

Théorème 26. Si (u_n) converge vers $\ell \in \mathbb{K}$, alors sa suite des moyennes de Cesàro converge vers ℓ . On dit que (u_n) converge **au sens de Cesàro**.

Proposition 27. Soit f une application continue définie au voisinage de 0^+ admettant un développement asymptotique en 0 de la forme $f(x) = x - ax^{\alpha} + o(x^{\alpha})$, où $\alpha > 0$ et $\alpha > 1$. Alors pour $u_0 > 0$ assez petit, la suite (u_n) définie par $u_{n+1} = f(u_n)$ pour $n \in \mathbb{N}$ vérifie

[**FGN3**] p. 142

p. 53

$$u_n \sim \frac{1}{(na(\alpha-1))^{\frac{1}{\alpha-1}}}$$

Exemple 28. Si $f = \sin$ et (u_n) est définie par $u_0 \in [0, 2\pi]$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$, on a l'équivalent en $+\infty$:

$$u_n \sim \sqrt{\frac{3}{n}}$$

[GOU20] p. 228 **Proposition 29.** En reprenant les notations précédentes, on a, pour $u_0 \in \left[0, \frac{\pi}{2}\right]$,

$$u_n = \sqrt{\frac{3}{n}} - \frac{3\sqrt{3}}{10} \frac{\ln(n)}{n\sqrt{n}} + o\left(\frac{\ln(n)}{n\sqrt{n}}\right)$$

Exemple 30. On définit (u_n) par $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}$, $u_{n+1} = u_n + e^{-u_n}$, on a l'équivalent en $+\infty$:

[**FGN3**] p. 148

 $u_n = n + \frac{\ln(n)}{2n} + o\left(\frac{\ln(n)}{n}\right)$

III - Applications à la résolution approchée d'équations

1. Point fixe et itération

Théorème 31 (Point fixe de Banach). Soient (E, d) un espace métrique complet et $f: E \to E$ une application contractant (ie. $\exists k \in]0,1[$ tel que $\forall x,y \in E, d(f(x),f(y)) \leq kd(x,y)$). Alors,

 $\exists ! x \in E \text{ tel que } f(x) = x$

De plus la suite des itérés définie par $x_0 \in E$ et $\forall n \in \mathbb{N}, x_{n+1} = f(x_n)$ converge vers x.

Théorème 32 (Point fixe dans un compact). Soit (E, d) un espace métrique compact et $f: E \to E$ telle que

$$\forall x,y \in E, \, x \neq y \implies d(f(x),f(y)) < d(x,y)$$

alors f admet un unique point fixe et pour tout $x_0 \in E$, la suite des itérés

$$x_{n+1} = f(x_n)$$

converge vers ce point fixe.

Application 33. Soient $a, b \in \mathbb{R}$ et $f : [a, b] \to \mathbb{R}$ dérivable, strictement croissante et telle que f(a) < 0, f(b) > 0 et $0 < m \le f'(x) \le M$ sur [a, b]. On pose $\varphi : x \mapsto x - \frac{1}{M}f(x)$. On considère l'équation :

$$f(x) = 0 \iff \varphi(x) = x \tag{E}$$

Alors:

- (i) (*E*) admet une unique solution x et pour tout point initial $x_0 \in [a, b]$, la suite des itérés (x_n) définie par $\forall n \in \mathbb{N}$, $x_{n+1} = \varphi(x_n)$ converge vers x.
- (ii) La vitesse de convergence est estimée par la suite géométrique $\left(1 \frac{m}{M}\right)$: il faut que les bornes m et M soient proches.

[**DAN**] p. 146

p. 95

Remarque 34. Cela marche aussi dans le cas où f(a) > 0, f(b) < 0 et $-M \le f'(x) \le -m < 0$ (il suffit alors de changer f en -f).

Définition 35. Soient I un intervalle fermé de \mathbb{R} et $\varphi: I \to I$ une application de classe \mathscr{C}^1 . Soit $a \in I$ un point fixe de φ .

- Si $|\varphi'(a)| < 1$, on dit que a est **attractif**. Si de plus $\varphi'(a) = 0$, a est **superattractif**.
- Si $|\varphi'(a)| > 1$, on dit que a est **répulsif**.

Proposition 36. On reprend les notations précédentes et on considère la suite des itérés (x_n) (avec $x_0 \in I$ et $\forall n \in \mathbb{N}$, $x_{n+1} = \varphi(x_n)$). Alors :

(i) Si a est attractif, (x_n) converge à une vitesse géométrique :

$$|x_n - a| \le k^n |x_0 - a|$$

(ii) Si a est superattractif et φ est \mathscr{C}^2 telle que $|\varphi''| < M$ sur I, alors la vitesse de convergence est hypergéométrique:

$$|x_n - a| \le \frac{2}{M} 10^{-2^n}$$

(iii) Si a est répulsif, il existe h>0 tel que $\varphi_{|[a-h,a+h]}$ admette une application réciproque φ^{-1} définie sur $\varphi([a-h,a+h])$ et le point a est attractif pour φ^{-1} .

Exemple 37. Soit $f: x \mapsto x^3 - 4x + 1$. On pose $\varphi: x \mapsto \frac{1}{4}(x^3 + 1)$ et on considère

$$f(x) = 0 \iff \varphi(x) = x \tag{E}$$

Alors (*E*) possède trois solutions réelles $a_1 < a_2 < a_3$ telles que :

- $-a_1 ∈]-2,5;-2[.$ $-a_2 ∈]0;0,5[$ et a_2 est attractif.
- $-a_3 \in]1,5;2[.$

2. Méthode de Newton

[DEV]

Théorème 38 (Méthode de Newton). Soit $f:[c,d] \to \mathbb{R}$ une fonction de classe \mathscr{C}^2 strictement croissante sur [c,d]. On considère la fonction

$$\varphi: \begin{array}{ccc} [c,d] & \to & \mathbb{R} \\ x & \mapsto & x - \frac{f(x)}{f'(x)} \end{array}$$

(qui est bien définie car f' > 0). Alors :

p. 152

- (i) $\exists ! a \in [c, d]$ tel que f(a) = 0.
- (ii) $\exists \alpha > 0$ tel que $I = [a \alpha, a + \alpha]$ est stable par φ .
- (iii) La suite (x_n) des itérés (définie par récurrence par $x_{n+1} = \varphi(x_n)$ pour tout $n \ge 0$) converge quadratiquement vers a pour tout $x_0 \in I$.

Corollaire 39. En reprenant les hypothèses et notations du théorème précédent, et en supposant de plus f strictement convexe sur [c,d], le résultat du théorème est vrai sur I=[a,d]. De plus :

- (i) (x_n) est strictement décroissante (ou constante).
- (ii) $x_{n+1} a \sim \frac{f''(a)}{2f'(a)} (x_n a)^2 \text{ pour } x_0 > a.$

Exemple 40. — On fixe y > 0. En itérant la fonction $F: x \mapsto \frac{1}{2} \left(x + \frac{y}{x} \right)$ pour un nombre de départ compris entre c et d où 0 < c < d et $c^2 < 0 < d^2$, on peut obtenir une approximation du nombre \sqrt{y} .

— En itérant la fonction $F: x \mapsto \frac{x^2+1}{2x-1}$ pour un nombre de départ supérieur à 2, on peut obtenir une approximation du nombre d'or $\varphi = \frac{1+\sqrt{5}}{2}$.

Exemple 41. La méthode de Newton appliquée à la fonction $x \mapsto x^3 - 4x + 1$ dans le but d'approximer ses zéros donne :

ut p. 102

x_0	-2	0	2
x_1	-2,125	0,25	1,875
x_2	-2,114975450	0,254098361	1,860978520
x_3	-2,114907545	0,254101688	1,860805877
x_4	-2,114907541	= <i>x</i> ₃	1,860805853
x_5	$= x_4$		$=x_4$

3. Généralisation à \mathbb{R}^m

Théorème 42 (Méthode de Newton-Raphson). Soit $f: \Omega \to \mathbb{R}^m$ (où $\Omega \subset \mathbb{R}^m$ est un ouvert) de classe \mathscr{C}^1 telle que f(a) = 0. On suppose que $\mathrm{d} f_a$ est inversible. Alors il existe un voisinage U de a dans Ω tel que $\varphi: x \mapsto x - (\mathrm{d} f_x)^{-1}(f(x))$ soit bien définie sur U et la suite des itérés $x_{n+1} = \varphi(x_n)$ converge quadratiquement vers a.

p. 110

Exemple 43. On considère le système

$$\begin{cases} x^2 + xy - 2y^2 = 4\\ xe^x + ye^y = 0 \end{cases}$$
 (S)

On pose $X_0 = \begin{pmatrix} -2 \\ 0, 2 \end{pmatrix}$ et $\Delta(x, y) = (2x + y)(y + 1)e^y - (x - 4y)(x + 1)e^x$ ainsi que :

$$\varphi\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} - \frac{1}{\Delta(x,y)} \begin{pmatrix} (y+1)e^y & -x+4y \\ -(x+1)e^x & 2x+y \end{pmatrix} \begin{pmatrix} x^2 + xy - 2y^2 - 4 \\ xe^x + ye^y \end{pmatrix}$$

Alors la suite des itérés $(X_n) = \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ converge vers l'unique solution de (S) et on a :

n	x_n	y_n
0	-2	0,2
1	-2,130690999	0,205937784
2	-2,126935837	0,206277868
3	-2,126932304	0,206278156

Annexes

FIGURE 1 – La suite de polygones.

[**I-P**] p. 389

Bibliographie

Suites et séries numériques, suites et séries de fonctions

[AMR11]

Mohammed El-Amrani. *Suites et séries numériques, suites et séries de fonctions*. Ellipses, 15 nov. 2011.

https://www.editions-ellipses.fr/accueil/3910-14234-suites-et-series-numeriques-suites-et-series-de-fonctions-9782729870393.html.

Mathématiques pour l'agrégation

[DAN]

Jean-François Dantzer. *Mathématiques pour l'agrégation. Analyse et probabilités.* De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332904-mathematiques-pour-1-agregation-analyse-et-probabilites.

Analyse numérique et équations différentielles

[DEM]

Jean-Pierre Demailly. *Analyse numérique et équations différentielles*. 4^e éd. EDP Sciences, 11 mai 2016.

https://www.uga-editions.com/menu-principal/collections-et-revues/collections/grenoble-sciences/analyse-numerique-et-equations-differentielles-239866.kjsp.

Oraux X-ENS Mathématiques

[FGN3]

Serge Francinou, Hervé Gianella et Serge Nicolas. *Oraux X-ENS Mathématiques. Volume 3.* 3° éd. Cassini, 27 mai 2020.

https://store.cassini.fr/fr/enseignement-des-mathematiques/103-oraux-x-ens-mathematiques-nouvelle-serie-vol-3.html.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

Petit guide de calcul différentiel

[ROU]

François Rouvière. *Petit guide de calcul différentiel. à l'usage de la licence et de l'agrégation.* 4° éd. Cassini, 27 fév. 2015.

 $\verb|https://store.cassini.fr/fr/enseignement-des-mathematiques/94-petit-guide-de-calcul-differentiel-4e-ed.html.|$