Evaluation

SLP 4.7

https://web.stanford.edu/~jurafsky/slp3/4.pdf

NLP 4.4

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf

Development Test Sets

Training set

Development Test Set

- Dev test set for parameter tuning
- Unseen test set
 - avoid overfitting ('tuning to the test set')
 - more conservative estimate of performance
- Cross-validation over multiple splits
 - Handle sampling errors from different datasets

N-fold -cross validation

Testing

Test Set

Metrics: Precision and Recall

- Accuracy
 - Class imbalance problem → balanced test set
- Precision and recall for each class

Contingency Table

gold standard labels				
	gold positive	gold negative		
system positive	true positive	false positive	$\mathbf{precision} = \frac{tp}{tp + fp}$	
system negative	false negative	true negative		
	$\mathbf{recall} = \frac{\mathbf{tp}}{\mathbf{tp+fn}}$		$accuracy = \frac{tp+tn}{tp+fp+tn+fn}$	
	positive system negative	gold positive system positive system negative false negative	gold positive gold negative system positive system folia positive false positive	

Metrics: F-score

A combined measure that assesses the P/R tradeoff is F measure (weighted harmonic mean):

$$F = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

 F_2 weights recall higher while $F_{0.5}$ weights precision higher

Usually use

$$F_1 = \frac{2PR}{P+R}$$

Metrics: AuC

- ROC (receiver operating characteristic) curve
- AuC(area under the curve): the probability that a randomly- selected positive example will be assigned a higher score by the classifier than a randomly-selected negative example

For AuC, refer to https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

Metrics for multinomial classification

- Macroaveraging computes the performance for each class, and then average over classes
- Microaveraging collects the decisions for all classes into a single contingency table, and then compute precision and recall from that table
- Microaveraged score is dominated by score on common classes

Example: email categorization decision

Classify email as one of urgent, normal, spam

	urgent	normal	spam	
urgent	8	10	1	$\mathbf{precisionu} = \frac{8}{8+10+1}$
system output normal	5	60	50	$\mathbf{precision}_{n} = \frac{60}{5+60+50}$
spam	3	30	200	precision s= $\frac{200}{3+30+200}$
	recallu =	recalln =	recalls =	
	8	60	200	
	8+5+3	10+60+30	1+50+200	

Micro vs. Macro averaging

Class 1: Urgent

true true urgent not system urgent system 340 not

Class 2: Normal

true

	uuc	uuc
	normal	not
system normal	60	55
system not	40	212

true

$$precision = \frac{60}{60 + 55} = .5$$

Class 3: Spam

	true	true	
	spam	not	
system spam	200	33	
system not	51	83	

precision =
$$\frac{200}{200+33}$$
 = .86

Pooled

	true	true	
	yes	no	
system yes	268	99	
system no	99	635	

precision =
$$\frac{8}{8+11}$$
 = .42 precision = $\frac{60}{60+55}$ = .52 precision = $\frac{200}{200+33}$ = .86 microaverage precision = $\frac{268}{268+99}$ = .73

$$\frac{\text{macroaverage}}{\text{precision}} = \frac{.42 + .52 + .86}{3} = .60$$

Confusion Matrix for Error analysis

- Classic Reuters-21578 Data Set: 21,578 docs (each 90 types, 200 tokens)
- 9603 training, 3299 test articles
- 118 categories
 - an article can be in more than one category
 - learn 118 binary category distinctions
- Average document has 1.24 classes
- Only about 10 out of 118 categories are large

Common categories (#train, #test)

- Earn (2877, 1087)
- Acquisitions (1650, 179)
- Money-fx (538, 179)
- Grain (433, 149)
- Crude (389, 189)

- •Trade (369,119)
- Interest (347, 131)
- Ship (197, 89)
- Wheat (212, 71)
- Corn (182, 56)

Reuters Text Categorization data

<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET" OLDID="12981" NEWID="798">

<DATE> 2-MAR-1987 16:51:43.42</DATE>

<TOPICS><D>livestock</D><D>hog</D></TOPICS>

<TITLE>AMERICAN PORK CONGRESS KICKS OFF TOMORROW</TITLE>

<DATELINE> CHICAGO, March 2 - </DATELINE><BODY>The American Pork Congress kicks off tomorrow, March 3, in Indianapolis with 160 of the nations pork producers from 44 member states determining industry positions on a number of issues, according to the National Pork Producers Council, NPPC.

Delegates to the three day Congress will be considering 26 resolutions concerning various issues, including the future direction of farm policy and the tax law as it applies to the agriculture sector. The delegates will also debate whether to endorse concepts of a national PRV (pseudorabies virus) control and eradication program, the NPPC said.

A large trade show, in conjunction with the congress, will feature the latest in technology in all areas of the industry, the NPPC added. Reuter :</BODY></TEXT></REUTERS>

Confusion matrix

- For each pair of classes $\langle c_1, c_2 \rangle$ how many documents from c_1 were incorrectly assigned to c_2 ?
 - o c_{3,2}: 90 wheat documents incorrectly assigned to poultry

Docs in test set	Assigned UK	Assigned poultry	Assigned wheat	Assigned coffee	Assigned interest	Assigned trade
True UK	95	1	13	0	1	0
True poultry	0	1	0	0	0	0
True wheat	10	90	0	1	0	0
True coffee	0	0	0	34	3	7
True interest	-	1	2	13	26	5
True trade	0	0	2	14	5	10

Summary

- Classifiers are trained using distinct training, dev, and test sets, including the use of cross-validation in the training set
- Classifiers are evaluated based on precision, recall, and F-score
- Macro vs. micro averaging for multinomial classification
- Confusion matrix to seek performance improvement