A Cyclic Permutation Problem

1. How many ways may 5 boys and 3 girls be seated around a table, if each individual is distinct and no girl sits next to another girl?

Solution 1 Arrange the 5 boys cyclically in (5-1)! ways. Now select 3 of the 5 locations between the boys to seat a girl. Order the girls in 3! ways to sit in these 3 seats. Total count is $4!3!\binom{5}{3}$

Solution 2/Wrong Arrange 5 boys in a line. Select 3 of the boys and seat a girl to the immediate left of each. There are $5!3!\binom{5}{3}$ ways to do this. Now to account for rotations, divide by 8. Total count is $\frac{5!3!\binom{5}{3}}{8}$

Solution 3/Right Permute boys and girls as in Solution 2. Let S be the set of permutations resulting from the process listed above. $|S| = 5!3!\binom{5}{3}$. Select any member $s \in S$. It is *not* the case that s and its 7 rotations $s = s_1, s_2, \ldots, s_8$. are all in S. In fact, 3 of the rotations s_x, s_y, s_z will result in a permutation with a girl at the far right end, to the left of no one. There are only 4 rotations that are valid. This means each equivalence group has size 5. So the final count is $\frac{5!3!\binom{5}{3}}{5} = 4!3!\binom{5}{3}$.

Example: Let s = 1a2b3cde where 1,2,3 are girls and a,b,c,d,e are boys. Then the 8 rotations are

- s_1 1a2b3cde
- s_2 a2b3cde1
- s_3 2b3cde1a
- s_4 b3cde1a2
- s_5 3cde1a2b
- s_6 cde1a2b3
- s_7 de1a2b3c
- s_8 e1a2b3cd

And we see s_2, s_4, s_6 are each not in S.