- 1) The figure shows a three-dimensional slider crank mechanism. The (x, y, z) axes shown represent a fixed reference frame R. At the instant shown, disk A has angular velocity ${}^{R}\omega_{A} = 10k$ (rad/sec).
- a) If BC is attached to both the disk and the collar with ball-and-socket joints, find ${}^R \omega_{BC}$ and ${}^R v_B$. In this case, assume that ${}^R \omega_{BC}$ is *perpendicular* to BC.
- b) If the ball-and-socket joint at the collar is replaced with the *two-axis joint* shown at the right, find ${}^R \omega_{BC}$ and ${}^R v_B$. In this case, the rod BC rotates relative to collar C about the axis defined by the unit vector n which is perpendicular to the plane BCD, and the collar translates and rotates about the n direction. In this case, ${}^R \omega_{BC}$ is *perpendicular* to the vector $u = j \times n$.

2) The system shown consists of a vertical column, a horizontal axle, and a wheel of radius r. The horizontal arm rotates at a *constant* rate Ω , and the wheel (W) rolls without slipping in a circular arc. Find ω_W and α_W the angular velocity and angular acceleration of the wheel relative to a fixed frame, and find α_W and α_W the velocity and acceleration of point α_W .

3) In the system shown, beveled gear A rolls on beveled gear B. As it rolls on B it spins about the axle AD which is pinned to the vertical shaft DE. If DE rotates at a **constant** angular velocity ω_1 (rad/sec), find $^{AD}\omega_A$ the angular velocity of gear A relative to the axle AD, $^R\omega_A$ the angular velocity of gear A, $^R\alpha_A$ the angular acceleration of gear A, and α_C the acceleration of tooth C of gear A.

