SUBJECT: ISM 6359 DATA MINING

TOPIC: Employee Attrition

To build a machine learning model to predict the causes of

Employee Attrition in IBM.

Tool: WEKA

BUSINESS REASON: Employee Attrition in

IBM

- The goal of this project is to identify the causes of employee attrition with respect to IBM
- Human resource analytics (HR analytics) applying analytic processes to the human resource department
- improving employee performance and getting a better return on investment
- ► HR department- act quickly to address the issue and stop attrition.

Tool: WEKA

- WEKA is an open-source software provides tools for data preprocessing
- On the top, you will see several tabs as listed here:
- ☐ Preprocess
- ☐ Classify
- ☐ Cluster
- ☐ Associate
- ☐ Select Attributes
- ☐ Visualize

Data Preparation

- Loading the data
- Rename
- AddID
- Split data
- Cross Validation
- Set Role (ClassAssigner)

- **Discretize** Discretize by Binning for different attributes like Age, Monthly Income Frequency (**PKI Discretize**) for Education, Department. Although there is no option to discretize by User Specification. We can generate attribute by building an equation for the same.
- RemoveMisclassified in WEKA Incorrectly classified instances, useful for removing outliers

Name: Age Missing: 3 (0%)		Distinct: 8	Type: Nominal Unique: 0 (0%)
No.	Label	Co	ount Weight
1	'(-inf-21.5]'	656	656
2	'(21.5-26.5]'	1924	1924
3	'(26.5-27.5]'	773	773
4	'(27.5-29.5]'	1826	1826
5	'(29.5-33.5]'	3944	3944
6	'(33.5-57.5]'	13826	13826
7	'(57.5-58.5]'	224	224
8	'(58.5-inf)'	241	241

Attribute Name	Values with Outliers	Values after removing outliers
Department	Sales, Research & Development, Human Resources, 1296	Sales, Research & Development, Human Resources
Gender	Male, Female, 1, 2	Male, Female
Marital Status	Single, Married, Divorced, 1, 2	Single, Married, Divorced
Overtime	Yes, No, Y	Yes, No
Employee source	Referral, Company Website, Indeed, GlassDoor, LinkedIn, Adzuna, Seek, Recruit.net, Jora, Test, 15, 1	Referral, Company Website, Indeed, GlassDoor, LinkedIn, Adzuna, Seek, Recruit.net, Jora

Rename Nominal Values: Here in Weka, we do not have Nominal to numeric. We require all numeric values for complex models like Neural Networks, SVM etc.

Example: Age, Business travel, Department, JobRole

JobSatisfaction, WorkLifeBalance, Employee source etc

- NominaltoBinary- convert Binary to numeric Gender, Overtime
- Normalize huge magnitude of data to common numeric scale.

JobSatisfaction, PerformanceRating, RelationshipSatisfaction, WorkLifeBalance, JobInvolvement, EnvironmentSatisfaction

Add Expression: This works like generate attribute creates a new attribute by applying a mathematical expression to existing attributes

debug False

doNotCheckCapabilities False

expression JobSatEval

name (a7+a10+a13+a20+a21+a25)/6

Open... Save... OK Cancel

- **Select Attributes:** (Principal Component Attributes) In WEKA two ways:
 - Preprocessing stage
 - Select Attributes tab

Accuracy of Correctly Classified Data in %

	Model	Split Data 70%-30%	Cross-Validation 10 fold
	Decision Tree	97.8078 %	98.868 %
/	Random Forest 1000 trees	98.7758 %	99.4192 %
	Sequential Minimal Optimization (SVM)	84.2135 %	84.1696 %
	K Nearest Neighbor K=20	99.3594 %	99.4876 %
	Neural Network	85.3808 %	84.9639 %

Voting - Ensemble Method

Test Mode: Cross Validation – 10 folds
Correctly Classified Instances = 23258 which gave 99.321%
accuracy
Incorrectly Classified Instances = 159 with 0.679 %
Total Number of Instances = 23417

```
    Y: True Positive Rate (Num)

 X: False Positive Rate (Num)
 Colour: Threshold (Num)

∨ Select Instance

                                             Open
Plot (Area under ROC = 0.9795)
0.5
 lass colour
```

```
=== Confusion Matrix ===

a b <-- classified as

3557 150 | a = Voluntary Resignation
9 19701 | b = Current employee
```

Analysis of the Output

- 1. From the above analysis, We found that cross validation has better accuracy than splitting the data.
 - Decision tree 97.807%
 - Random Forest 99.41%
 - > SVM- 84.16%
 - ➤ KNN 99.48%
 - ➤ Neural Network 84.96%
- 2. Although the highest result is from Knn with K value 20, I have performed an Ensemble method to derive the best result for this model.
- 3. The Area under Curve is the highest for Knn Model which is 99.97%
- 4. From the Voting Algorithm I could determine that the Correctly Classified Instances have 99.321% accuracy and the Area under curve is 98%. This technique created multiple models and then combined them to produce improved results.
- 5. Every model makes a prediction (votes) for each test instance and the final output prediction is the one that receives more than half of the votes, this is the final prediction
- 6. After building the final model and determining the accuracy, this can be used by the organization to implement in determining whether a given employee is likely to resign or stay in the company.

3 W's

■ What went well?

Topics taught in class could be easily related to the business problem I was solving.

Video lectures helped me simultaneously work on a new tool as we kept learning new features.

WEKA is an open source; I could find many learning materials from the University of Waikato which made it easier to understand the tool.

https://www.youtube.com/@WekaMOOC

► What did not go well?

The run time of the algorithms like SMO and Neural Network were taking too much heap space, at times the screen wasn't responding.

■ What would you use Differently Next Time?

If given more time to explore, I would use new algorithms to know more about the tool.

Data Source

Initially I found this data on Kaggle.com

https://www.kaggle.com/datasets/rushikeshghate/capstone-projectibm-employee-attrition-prediction/code

The data is made available publicaly under the following license agreements:

https://developer.ibm.com/patterns/data-science-life-cycle-in-action-to-solve-employee -attrition-problem//?mhsrc=ibmsearch_a&mhq=attrition

https://github.com/IBM/employee-attrition-aif360/blob/master/data/emp_attrition.csv