Prove goToRear's VC3:

VC3:
$$(A0 ^ A1 ^ A2 ^ A3) \rightarrow q3 = q0[1, |q0|) * q0[0, 1)$$

Direct Proof

- 1. Assume facts on left hand side of implication are true (1st 2 rows of truth table where p = true)
- 2. Must show right hand side (rhs) of implication cannot be false (where q = false), i.e., show row 2 of truth table cannot happen
- 3. For the rhs to not be false we must show that the equality in the rhs holds:

$$q3 = q0[1, |q0|) * q0[0,1)$$

Recall our Facts – the highlighted facts (in this list) are used in the proof steps below:

A0: |q0| > 0

A1: T.Init(y1) $^q1 = q0$

A2: $\langle y2 \rangle$ is prefix of q1 ^ q2 = q1[1, |q1|)

A3: $q3 = q2 * < y2 > ^ T.Init(y3)$

TABLE 5 The Truth Table for the Conditional Statement $p \rightarrow q$.		
р	q	$p \rightarrow q$
T T F F	T T F	T F T T

© 2012 by The McGraw-Hill Companies, Inc.

Proof Steps – Using a *backwards sweep* approach

Which means we start with q3 on the lhs of the equals sign and use substitution to transform the lhs into something that is similar to the rhs

```
Step 1. q3 = q0[1, |q0|) * q0[0,1)
```

Start with consequent side of VC3

Step 2. $q2 * \langle y2 \rangle = q0[1, |q0|) * q0[0,1)$

By substitution for q3 from Step 1 using facts A3

Step 3. q1[1,|q1|) * < y2> = q0[1,|q0|) * q0[0,1)

By substitution for q2 from Step 2 using facts A2

Step 4. q0[1,|q0|) * < y2> = q0[1,|q0|) * q0[0,1)

By substitution for q1 from Step 3 using facts A1

Note: from Step 4 the following highlighted parts are equal:

$$q0[1,|q0|)$$
 * = $q0[1,|q0|)$ * $q0[0,1)$

At this point if we can show $\langle y2 \rangle = q0[0,1)$, we will have successfully completed the proof

Step 5.
$$\langle y2 \rangle = q0[0,1)$$

Continue with this portion of the equation

Step 6. <y2> is prefix of q1

Fact from A2

Step 7. <y2> is prefix of q0

By substitution for q1 from Step 6 using facts A1

Step 8. $\langle y2 \rangle = q0[0,1)$

Lemma: proof is based on definition of prefix

That successfully completes the proof, since the lhs and rhs of equals sign are equal (from Step 1)