계산이론

2022년 1학기 이은주

2장 유한 오토마타 유한 오토마타에서의 상태의 수 축소* 출력이 있는 유한 오토마타

유한 오토마타에서의 상태의 수 축소*

• 예제 2.14(70 page) : 기억 공간의 효율성

유한 오토마타에서의 상태의 수 축소*

- [정의 2.8] (75 page)
 - 임의의 dfa에서의 두 상태 p와 q에 대해, 이들이 모든 문자열 $w \in \Sigma^*$ 에 대해 다음 조건을 만족하는 경우 : 구분불가능(indistinguishable)

$$\delta^*(p, w) \in F \text{ implies } \delta^*(q, w) \in F,$$

 $\delta^*(p, w) \notin F \text{ implies } \delta^*(q, w) \notin F.$

• 다음 조건을 만족하는 문자열 $w \in \Sigma^*$ 가 존재하는 경우 : 상태 p와 q는 문자열 w에 의해 구분가능(distinguishable)

$$\delta^*(p, w) \in F$$
 implies $\delta^*(q, w) \notin F$, $\delta(p, w) \notin F$ implies $\delta(q, w) \in F$.

유한 오토마타에서의 상태의 수 축소*

- 구분불가능성은 동치관계 (equivalence relation)
 - 상태 p와 q가 구분불가능이고, 상태 q와 r 또한 구분불가능이면, 상태 p와 r도 구분불가능 : 세 상태 모두 구분불가능
- 임의의 dfa에서 상태의 수를 줄이는 한 가지 방법
 - 구분불가능 상태들을 찾아내어 이들을 병합하는 것

procedure : mark (모든 구분가능한 쌍들을 마크하는 알고리즘)

- 1. 모든 도달 불가능 상태들 제거
 - dfa의 그래프에서 초기 상태로부터의 모든 단순 경로들 열거
 - 경로 상에 나타나지 않는 상태들은 도달 불가능한 것
- 2. 모든 상태 쌍 (p, q)에 대해 p ∈ F and q ∉ F or p ∉ F and q ∈ F인 경우 :(p, q)는 구분가능 마크
- 3. 이전에 마크되지 않은 상태 쌍이 더 이상 마크되지 않을 때까지 다음을 계속
 - 모든 쌍 (p, q)와 모든 $a \in \Sigma$ 에 대해, $\delta(p, a) = p_a$ 와 $\delta(q, a) = q_a = 계산$
 - (p_a, q_a) 쌍이 구분가능으로 마크되어 있으면, (p, q)를 구분가능으로 마크

- 상태 q_i 와 q_j 가 길이 n인 문자열에 의해 구분가능하기 위한 필요충분 조건
 - 어떤 $a \in \Sigma$ 에 대해 다음과 같은 전이가 존재하고,

$$\delta(q_i, a) = q_k$$

$$\delta(q_i, a) = q_l$$

• 이때, q_k 와 q_l 이 길이가 n-1인 문자열들에 의해 구분가능해야 함

- 예제 2.15 (77 page) : 프로시저 mark의 단계 2에서, 상태들의 집합을 승인 상태와 비승인 상태로 분할
 - 두 개의 동치 부류 $\{q_0, q_1, q_3\}$ 와 $\{q_2, q_4\}$ 를 얻음
 - 다음 단계에서 다음을 계산하면, $\delta(q_0,0) = q_1$, $\delta(q_1,0) = q_2$
 - q_0 와 q_1 는 구분가능함 : 서로 다른 동치 부류에 속하게 됨
 - {q₀, q₁, q₃}이 {q₀} 과 {q₁, q₃} 로 분리
 - $\delta(q_2,0)=q_1$ 과 , $\delta(q_4,0)=q_4$ 이므로, $\{q_2,q_4\}$ 는 $\{q_2\}$ 와 $\{q_4\}$ 로 분리
 - 나머지 계산에서 더 이상 분리가 없음

2. 모든 상태 쌍 (p, q)에 대해 p ∈ F and q ∉ F or p ∉ F and q ∈ I (p, q)는 구분가능 마크

• [정의] DFA M = (Q, ∑, δ, q₀, F)

q, q₁, q₂, q_f: 상태, x: 입력스트링

- (q₁,x) ⊢* (q,λ) and (q₂,x) ⊢* (q_f,λ), q ∉ F, q_f ∈ F 입력스트링 x가 상태 q₁과 q₂를 구분(distinguish)
- q₁ = kq₂,
 x(|x| ≤ k)는 q₁과 q₂를 구분할 수 없음
- q₁ = q₂, 어떤 x도 q₁과 q₂를 구분할 수 없음.(q₁과 q₂는 동치(equivalent))

- [정의] **도달할 수 없는**(in-accessible) 상태: 초기상태에서 도달 불가능
- [정의] 최적화 된(최소 상태의) DFA M : 도달할 수 없는 상태가 없고, 어떤 두 개의 상태도 구분할 수 있음
- [알고리즘] **DFA의 최적화**
 - 1. 도달할 수 없는 상태 제거
 - 2. 동치 클래스(equivalent class) 구하기

Let
$$\equiv$$
 to be \equiv^k .

- 3. 최적화된 DFA M' = (Q', Σ, δ', q₀', F') 구성
- (a) Q': 동치 클래스들의 집합

- (b) $\delta'([p], a) = [q] \text{ if } \delta(p, a) = q.$
- (c) q_o' is $[q_o]$
- (d) $F' = \{ [q] | q \in F \}$

- [ex]
 - 1. F, G: 도달할 수 없는 상태, 제거

2. 동치 클래스 구하기

For \equiv °: (A, B, D) (C, E)

For \equiv^1 : (A) (B, D) (C, E)

For ≡²: (A) (B, D) (C, E): 동치 클래스

 $\therefore Q' = \{(A), (B, D), (C, E)\}$

3. 최적화된 DFA M' = (Q', ∑, δ', q₀', F') 구성

(A), (B, D), (C, E) 를 각각 p, q, r 바꾸면.

$$Q' = \{p, q, r\}$$

$$\sum = \{0, 1\}$$

$$q_0' = (A) = p$$

$$F' = \{ (C, E) \} = \{ r \}$$

- 예제 2.16(79 page)
 - 예제 2.15에 계속하여, 그림에서 보여주는 상태들이 생성됨
 - 예로서, 전이 $\delta(q_1,0)=q_2$ 가 있기 때문에, 상태 $_{13}$ 에서 상태 $_{2}$ 로 가는 라벨이 $_{0}$ 인 간선이 존재
 - 나머지 전이들도 쉽게 찾아지며, 최소 dfa를 얻게 됨

- [ex]
 - 서브스트링 bbb를 포함하는 a, b의 string을 인식하는 최소의 상태(4개)를 갖는 DFA를 구하라.

nfa	а	b
초기 1	1	{1,2}
2	_	3
3	_	4
최종 4	4	4

- 초기화 : λ-closure(1) = **{1} = A**
- marking A : a-successor(A) = {1} = A

$$b$$
-successor(A) = $\{1,2\}$ = B

- marking B : a-successor(B) = {1} = A
 b-successor(B) = {1,2,3} = C
- marking C : a-successor(C) = {1} = A
 b-successor(C) = {1,2,3,4} = D
- marking D : a-successor(D) = {1,4} = E
 b-successor(D) = {1,2,3,4} = D
- marking E : a-successor(E) = {1,4} = E
 b-successor(E) = {1,2,4} = F
- marking F : a-successor(F) = {1,4} = E
 b-successor(F) = {1,2,3,4} = D

nfa	a	b
초기 1	1	{1,2}
2	_	3
3	_	4
최종 4	4	4

• [ex] 서브스트링 aabb를 포함하는 a, b의 string을 인식하는 최소의 상태(5개)를 갖는 DFA를 구하라.

nfa	a b
초기 1	{1,2} 1
2	3 -
3	- 4
4	- 5
최종 5	5 5

- 초기화 : λ-closure(1) = **{1} = A**
- marking A : a-successor(A) = {1,2} = B

$$b$$
-successor(A) = $\{1\}$ = A

- marking B : a-successor(B) = {1,2,3} = C
 b-successor(B) = {1} = A
- marking C : a-successor(C) = $\{1,2,3\}$ = C b-successor(C) = $\{1,4\}$ = D
- marking D : a-successor(D) = {1,2} = B
 b-successor(D) = {1,5} = E
- marking E : a-successor(E) = {1,2,5} = F
 b-successor(E) = {1,5} = E
- marking F : a-successor(F) = {1,2,3,5} = G
 b-successor(F) = {1,5} = E
- marking G : a-successor(G) = {1,2,3,5} = G
 b-successor(G) = {1,4,5} = H
- marking H : a-successor(H) = {1,2,5} = F
 b-successor(H) = {1,5} = E

nfa	a b	
초기 1	{1,2} 1	
2	3 -	
3	- 4	
4	- 5	
최종 5	5 5	

dfa	а	b
초기 A	В	Α
В	С	Α
С	C	D
D	В	Ε
최종 E	₽ E	Е
최종 두	G	_ E
최종 G	G	
최종 🖁	F	 E

최소 상태의 dfa	а	b
초기 A	В	A
В	C	A
С	C	D
D	В	E
최종 E	Е	E

- [ex] L = { $aw_1aaw_2a \mid w_1,w_2 \in \{a,b\}^*\}$ 를 인식하는 최소상태의 dfa M을 만들어라.
 - nfa :

- 초기화 : λ-closure(q₀) = {**q₀**} = **A**
- marking A : a-successor(A) = $\{q_1\}$ = B
- marking B : a-successor(B) = $\{q_1, q_2\} = C$ b-successor(B) = $\{q_1\} = B$
- marking C : a-successor(C) = $\{q_1, q_2, q_3\} = D$ b-successor(C) = $\{q_1\} = B$

- marking D : a-successor(D) = $\{q_1, q_2, q_3, q_4\} = E$ b-successor(D) = $\{q_1, q_3\} = F$
- marking E : a-successor(E) = $\{q_1, q_2, q_3, q_4\}$ = E b-successor(E) = $\{q_1, q_3\}$ = F
- marking F : a-successor(F) = $\{q_1, q_2, q_3, q_4\}$ = E b-successor(F) = $\{q_1, q_3\}$ = F

• [정의] **밀리기계**(Mealy Machine, Transition-assigned FSM)

$$M = (Q, \Sigma, \Delta, \delta, \lambda, q_o)$$

Q: 상태의 집합

∑: 입력 기호의 집합

Δ: 출력 기호의 집합

 δ : 전이함수 Q × Σ → Q

 λ : 출력함수 Q × $\Sigma \rightarrow \Delta$

q。: 초기 상태

• 상태가 전이될 때마다 출력함수에 의해 기호가 출력됨.

$$\rightarrow$$
 p \rightarrow a/b **q** \rightarrow

• 상태 전이 때 : 입력 a, 출력 b

$$\delta(p, a) = q$$

$$\lambda(p, a) = b$$

• [ex] Parity Checker

밀리 M	0	1
초기 A	A, 0	B, 1
В	В, 1	A, 0

• 밀리기계 M = ({A,B}, {o,1}, {o,1}, δ, λ, A)

$$\delta: \delta(A, o) = A$$
 $\lambda: \lambda(A, o) = o$

$$\lambda : \lambda(A, o) = o$$

$$\delta(B, o) = B$$

$$\lambda(B, o) = 1$$

$$\delta(A, 1) = B$$

$$\lambda(A, 1) = 1$$

$$\delta(B, 1) = A$$

$$\lambda(B, 1) = 0$$

• [ex] Mod-3 Counter

• 입력스트링 aaaa,

$$\rightarrow \textcircled{A} \rightarrow a/1 \textcircled{B} \rightarrow a/2 \textcircled{C} \rightarrow a/0 \textcircled{A} \rightarrow a/1 \textcircled{B}$$

• [정의] **무어기계**(Moore Machine, State-assigned FSM)

$$M = (Q, \Sigma, \Delta, \delta, \lambda, q_o)$$

 λ : 출력함수 Q $\rightarrow \Delta$

나머지는 Mealy기계와 동일.

• 출력 기호가 각 상태에 의해 결정됨.

$$\rightarrow$$
 q \rightarrow a q' \rightarrow

$$\delta(q, a) = q'$$

output b b'

$$\lambda(q) = b$$

$$y(d_i) = p_i$$

- 입력스트링의 길이 = n
- 출력스트링의 길이 = n+1

(초기상태에서 입력에 관계없이 출력)

• [ex] 2진 스트링으로 표현된 10진수의 mod-3 값을 출력하는

무어기계 M = (
$$\{q_0, q_1, q_2\}$$
, $\{0,1\}$, $\{0,1,2\}$, δ , λ , q_0)

$$\delta : \delta(q_0, o) = q_0$$
$$\delta(q_1, o) = q_2$$

$$\delta(q_2, 0) = q_1$$

$$\delta(q_0, 1) = q_1$$

$$\delta(q_1, 1) = q_0$$

$$\delta(q_2, 1) = q_2$$

$$\lambda : \lambda(q_0) = 0$$

$$\lambda(q_1) = 1$$

$$\lambda(q_2) = 2$$
 입력스트링 1010, q0 \rightarrow 1 q1 \rightarrow 0 q2 \rightarrow 1 q2 \rightarrow 0 q1 output 0 1 2 2 1

무어 M	0	1	output
초기 q ₀	q_0	q_1	0
q_1	q_2	q_0	1
q_2	q_1	q_2	2

- [정리] 무어기계와 유사한 밀리기계가 항상 존재
- [ex] 무어기계:

밀리기계:

입력스트링 100,

무어기계 : $q_0 \rightarrow^1 q_1 \rightarrow^0 q_1 \rightarrow^0 q_1$ output 1 0 0 0

밀리기계 : $q_0 \rightarrow ^{1/0} q_1 \rightarrow ^{0/0} q_1 \rightarrow ^{0/0} q_1$, output= 000

• [정리] 밀리기계와 유사한 무어기계가 항상 존재

• [ex] 밀리기계 M을 동치인 무어기계 M'로 바꿔라. (Table 이용) 밀리기계:

밀리 M	0	1
초기 A	В, х	C, y
В	С, у	В, у
C	A, y	C, x

무어기계:

밀리 M	0	1
초기 A	В, х	С, у
В	C, y	В, у
С	A, y	C, x

무어 M'	0	1	출력
초기 Ay	Bx	Су	у
Вх	Су	Ву	x
Ву	Су	Ву	у
Сх	Ay	Сх	x
Су	Ау	Сх	y

• [ex] 밀리기계 M을 동치인 무어기계 M'로 바꿔라.

밀리 M	a	b	무어 M'	a	b	출력
초기 P	Q, x	R, y	초기 Pz	Qx	Ry	Z
Q	R, x	Q, z	Qx	Rx	Qz	X
R		Q, y	Qy	Rx	Qz	У
	Γ, Ζ	Q, y	Qz	Rx	Qz	Z
			Rx	Pz	Qy	X
			Ry	Pz	Qy	y

• [ex] 밀리기계 M을 동치인 무어기계 M' 으로 바꿔라.

밀리 M	0	1
초기 q ₀	q _{0,} 1	q ₁ , 1
q_1	q ₁ , 0	q ₀ , 0

무어 M'	0	1	출력
초기 A (q ₀ , 0)	В	D	0
B (q ₀ , 1)	В	D	1
C (q ₁ , 0)	С	A	0
D (q ₁ , 1)	С	A	1