Financial Econometrics Econ 40357 ARIMA Model Selection AIC, BIC, HQIC

N.C. Mark

University of Notre Dame and NBER

September 2, 2020

Model selection

- Ensure variable is stationary
- Estimate all the candidate models, keep variables with significant t-ratios.
 Not good
- Estimate candidate models, compare their forecasting accuracy. Doesn't work well either.
- Tradeoffs:
 - Underfitting: Omitted variables, produces bad forecasts
 - Overfitting: Additional sampling variability produces bad forecasts
 - Generally, lightly parameterized models produce better forecasts than heavily parameterized ones.
- Information Criteria. Let the data tell us how to specify the model. We use something called information criteria (IC).

A Little Background on Information Criteria

- Our friend maximum likelihood estimation
- Start with model
 - MA(1): $y_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$
 - AR(1): $y_t = \mu(1 \rho) + \rho y_{t-1} + \epsilon_t$
- Let $f(\epsilon_t)$ be the pdf of ϵ_t . If ϵ_t is independent, then the **joint pdf** of $\epsilon_{t,\epsilon_{t-1}}$ is $f(\epsilon_t) f(\epsilon_{t-1})$.
- The product of the pdfs. Hence, the pdf of all the shocks is

$$f(\epsilon_T, \epsilon_{T-1}, ..., \epsilon_1) = f(\epsilon_T) \cdots f(\epsilon_1)$$
.

• Assume that ϵ_t is normally distributed. Independent and identically distributed with zero mean and variance σ_ϵ^2 . Earlier, we showed the joint pdf to be,

$$f(\epsilon_T, ..., \epsilon_1) = \left(\frac{1}{\sqrt{\sigma_{\epsilon}^2 2\pi}}\right)^T e^{\frac{-1}{2\sigma_{\epsilon}^2} \sum_{t=1}^T \epsilon_t^2}$$

Background on Information Criteria

- Solve for ϵ_t in the model. Substitute these expressions into the joint pdf, gives the likelihood function.
- Searching for parameters θ , σ_{ϵ}^2 , μ for the MA(1) or μ , ρ , σ_{ϵ}^2 for the AR(1) to maximize the likelihood function is equivalent to searching parameter values to maximize the logarithim of the likelihood function.
- We call it the log likelihood function.

$$\begin{split} LL &= -T \ln \left(\sigma_{\epsilon}^2\right)^{\frac{1}{2}} - T \ln \left(2\pi\right)^{\frac{1}{2}} - \frac{1}{2\sigma_{\epsilon}^2} \sum_{t=1}^{I} \epsilon_t^2 \\ \text{Divide by } T \quad \frac{LL}{T} \quad = \quad -\ln \left(\sigma_{\epsilon}^2\right)^{\frac{1}{2}} - \ln \left(2\pi\right)^{\frac{1}{2}} - \frac{1}{2\sigma_{\epsilon}^2} \underbrace{\frac{1}{T} \sum_{t=1}^{T} \epsilon_t^2}_{\hat{\sigma}_{\epsilon}^2} \\ &= \quad -\frac{1}{2} \ln \left(\sigma_{\epsilon}^2\right) \underbrace{-\frac{1}{2} \ln \left(2\pi\right) - \frac{1}{2}}_{\text{constant}} \end{split}$$

where it's understood that the ϵ_t represent the model.

Hence, the log likelihood function reduces to

$$LL = -\frac{1}{2} \ln \left(\sigma_{\epsilon}^2 \right)$$

- Suppose we want to choose among ARMA(p,q), for p = 0, ..., 5, q = 0, ..., 5.
- Cannot use the highest likelihood across models for selection because it the maximized log likelihood (usually) continues to increase as you add parameters. Is like how R² keeps increasing when you add variables in regression.
- Solution: attach penalty for adding parameters. Different information criteria have different penalties.
- Maximizing the log likelihood, is to minimize $\ln(\sigma_{\epsilon}^2)$. Information criteria: AIC, BIC, HPIC. The model that gives you the minimum IC is the one you want..
- First to do so was Akaike. False modesty to say A comes first in alphabet.

AIC, BIC, HPIC

Let k be number of parameters (count up the ρ_i , θ_i in ARMA model)

$$\begin{array}{lcl} \textit{AIC} & = & \ln\left(\hat{\sigma}_{\epsilon}^2\right) + \frac{2k}{T} \\ \\ \textit{BIC} & = & \ln\left(\hat{\sigma}_{\epsilon}^2\right) + \frac{k}{T}\ln\left(T\right) \\ \\ \textit{HPIC} & = & \ln\left(\hat{\sigma}_{\epsilon}^2\right) + \frac{2k}{T}\ln\left(\ln\left(T\right)\right) \end{array}$$

In subsequent studies, AIC usualy chooses too many parameters, BIC, too few, HPIC is sort of just right.

How to do this on Eviews?

AIC, BIC, HPIC in Eviews

Dependent Variable: Y4

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 09/21/19 Time: 14:01

Sample: 4 200

Included observations: 197

Convergence achieved after 34 iterations

Coefficient covariance computed using outer product of gradients

Coomoion covanance compated using outer product or gradients				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.012659	0.077638	0.163050	0.8706
Y4(-1)	0.225327	0.090710	2.484035	0.0138
MA(1)	0.694689	0.062778	11.06577	0.0000
SIGMASQ	0.406187	0.038267	10.61443	0.0000
R-squared	0.470562	Mean dependent var		0.015227
Adjusted R-squared	0.462332	S.D. dependent var		0.878134
S.E. of regression	0.643899	Akaike info criterion		1.980890
Sum squared resid	80.01888	Schwarz criterion		2.047554
Log likelihood	-191.1177	Hannan-Quinn criter.		2.007876
F-statistic	57.17918	Durbin-Watson stat		1.828020
Prob(F-statistic)	0.000000			

Automatic ARIMA model selection

- Open the series of interest
- Olick Proc, Automatic ARIMA Forecasting
- In Options tab, choose Model Selection and the Information Criterion you want to use.