Angle-Side Relationship theorem: In a triangle, the side opposite the larger angle is the longer side.

Base Angles theorem: If two sides of a triangle are congruent, then the angles opposite them are congruent.

"The whole is greater than its parts" theorem

Practice Exercises 4.4.1

Complete the following proofs.

1. Given: M is the midpoint of \overline{AD} and \overline{CE}

Prove: $m\angle ECB > m\angle E$

2. Given: D is the midpoint of \overline{AB} $\overline{CD} \cong \overline{BC}$

Prove: AD + CD > AC

3. Given: \overline{CD} bisects $\angle BCE$ $\overline{BC} \cong \overline{YZ}, \overline{AC} \cong \overline{XZ}$ $\triangle AEC \cong \triangle XYZ$

Prove: AB > XY

Activity 4.4.1

Complete the following proofs. 1. Given: M is the midpoint of \overline{AC} and \overline{BE}

Prove: $m\angle ACD > m\angle A$

Proof:

ų.	Statements	Reasons
using BTEX	1. M is the midpoint of \overline{AC} and \overline{BE}	1.
	2. $\overline{AM} \cong \overline{CM}, \overline{BM} \cong \overline{EM}$	2.
Bacolod	3. ∠ <i>AMB</i> ≅ ∠ <i>CME</i>	3.
Rufo	4. $\triangle AMB \cong \triangle CME$	4.
an F	5. ∠A ≅ ∠ <i>ECM</i>	5.
onatl	6. m∠A = m∠ECM	6.
Pypeset by J	7. $m\angle ACD = m\angle ECD + m\angle ECM$	7.
$_{\mathrm{Typ}}$	8. $m\angle ACD = m\angle ECD + m\angle A$	8.
	9. <i>m∠ACD</i> > <i>m∠A</i>	9.

2. Given: B is the midpoint of \overline{CD} $\overline{AB} \cong \overline{BC}$

Prove: AB + BC > AC

Proof:

Statements	Reasons
1. $\overline{AB} \cong \overline{BC}$, B is the midpoint of \overline{CD}	1.
2. $\overline{BC} \cong \overline{DB}$	2.
3. <i>AB</i> ≅ <i>DB</i>	3.
4. ∠D≅ ∠DAB	4.
5. $m\angle DAC = m\angle DAB + m\angle BAC$	5.
6. $m\angle DAC = m\angle D + m\angle BAC$	6.
7. <i>m∠DAC</i> > <i>m</i> ∠ <i>D</i>	7.
8. <i>DC</i> > <i>AC</i>	8.
9. $DC = DB + BC$	9.
10. DC = AB + BC	10.
11. $AB+BC > AC$	11.

3. Given: \overline{AM} bisects $\angle BAG$ $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$ $\triangle AGC \cong \triangle DEF$

Prove: BC > EF

Proof:

Statements	Reasons
1. $\triangle AGC \cong \triangle DEF$	1.
2. $\overline{AG} \cong \overline{DE}, \overline{GC} \cong \overline{EF}$	2.
3. ∠ <i>BAM</i> ≅ ∠ <i>GAM</i>	3.
4. $\overline{AM} \cong \overline{AM}$	4.
5. $\triangle BAM \cong \triangle GAM$	5.
6. <i>BM</i> ≅ <i>GM</i>	6.
7. $CM + GM > GC$	7.
8. $CM + BM > GC$	8.
9. $BC = BM + CM$	9.
10. <i>BC</i> > <i>GC</i>	10.
11. <i>BC</i> > <i>EF</i>	11.

Lesson 4.4.1: Proving Inequalities in a Triangle

Angle-Side Relationship theorem: In a triangle, the side opposite the larger angle is the longer side. Base Angles theorem: If two sides of a triangle are

congruent, then the angles opposite them are congruent.

"The whole is greater than its parts" theorem

Practice Exercises 4.4.1

Complete the following proofs.

1. Given: M is the midpoint of \overline{AD} and \overline{CE}

Prove: $m\angle ECB > m\angle E$

2. Given: D is the midpoint of \overline{AB} $\overline{CD} \cong \overline{BC}$

Prove: AD + CD > AC

3. Given: \overline{CD} bisects $\angle BCE$ $\overline{BC} \cong \overline{YZ}, \overline{AC} \cong \overline{XZ}$ $\triangle AEC \cong \triangle XYZ$

Prove: AB > XY

Activity 4.4.1

Complete the following proofs. 1. Given: M is the midpoint of \overline{AC} and \overline{BE}

Prove: $m\angle ACD > m\angle A$

Proof:

	Statements	Reasons
χ ^Ξ l	1. M is the midpoint of \overline{AC} and \overline{BE}	1.
using MTEX	2. $\overline{AM} \cong \overline{CM}, \overline{BM} \cong \overline{EM}$	2.
	3. ∠ <i>AMB</i> ≅ ∠ <i>CME</i>	3.
Bacolod	4. $\triangle AMB \cong \triangle CME$	4.
	5. ∠A ≅ ∠ <i>ECM</i>	5.
n Rufo	6. <i>m</i> ∠ <i>A</i> = <i>m</i> ∠ <i>ECM</i>	6.
Jonathan	7. $m\angle ACD = m\angle ECD + m\angle ECM$	7.
t by	8. $m\angle ACD = m\angle ECD + m\angle A$	8.
Pypeset	9. <i>m∠ACD</i> > <i>m∠A</i>	9.
H		•

2. Given: B is the midpoint of \overline{CD} $\overline{AB} \cong \overline{BC}$

Prove: AB + BC > AC

Proof:

Statements	Reasons
1. $\overline{AB} \cong \overline{BC}$, B is the midpoint of \overline{CD}	1.
2. <i>BC</i> ≅ <i>DB</i>	2.
3. $\overline{AB} \cong \overline{DB}$	3.
4. ∠D≅ ∠DAB	4.
5. $m\angle DAC = m\angle DAB + m\angle BAC$	5.
6. $m\angle DAC = m\angle D + m\angle BAC$	6.
7. <i>m∠DAC</i> > <i>m</i> ∠ <i>D</i>	7.
8. <i>DC</i> > <i>AC</i>	8.
9. $DC = DB + BC$	9.
10. DC = AB + BC	10.
11. $AB + BC > AC$	11.

3. Given: \overline{AM} bisects $\angle BAG$ $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$ $\triangle AGC \cong \triangle DEF$

Prove: BC > EF

Proof:

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.