CS 6363.005: Design and Analysis of Algorithms Exam #1.B September 30, 2019 Professor D.T. Huynh

Student Name: KEY

General Remarks. This exam comprises 4 problems:

Problem #1 is assigned 25 points,

Problem #2 is assigned 25 points,

Problem #3 is assigned 25 points, and

Problem #4 is assigned 25 points.

Thus, the maximum score is 100 points.

Unless explicitly stated, *no correctness proofs* are required for your algorithms and (time) complexity means worst-case complexity.

Provide clean answers on the exam booklet. Use aditional paper only when necessary.

This is a **closed-book** exam

Exam time: 10:00 - 11:20 am

Good Luck!

#1	#2	# 3	# 4	Total

Problem # 1.

- 1. Compare the order of magnitude of the following pair of functions. In each case determine whether $f(n) = o(g(n)), f(n) = \omega(g(n))$. Justify your answers!
 - (a) $f(n) = 100n^{1.02} + lgn$, $g(n) = 200n^{1.01}lg^k n$ where k > 0 is a fixed integer. Your justification: $f(n) = \Theta(n^{1.02})$ $g(n) = \Theta(n^{1.01}lg^k n)$ $f(n) = \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{h^{1.02}}{n^{1.01}lg^k n} = \lim_{n \to \infty} \frac{h^{1.01}lg^k n}{n^{1.01}lg^k n} = 0$

Your answer: $f(n) = \omega(g(n))$

(b) $f(n) = (nlgn)^{lgn}, g(n) = (lgn)^n$ Your justification: lg(f(n)) = lgu(lgn + lglgn); lg(g(n)) = m, lglgn = 0 (lg^2n)

Your answer: f(n) = o(g(n))That the Moster Theorem $(g(n)) = lg^2n$ (lglgn = 0)

2. (a) State the Master Theorem, and (b) use it to derive a tight bound for T(n) = $5T(n/3) + n^2$.

(State the Master Theorem on back page and do part (b) here)

here: a=5, b=3, $f(n)=n^2$ $h \log_3 5 = n^{1.0} \Rightarrow f(n) = \Omega(h \log_3 5 + \epsilon)$ (b) Show your work here:

$$\begin{array}{ll}
 & \text{reg}_3 = n \\
 & \text{fin} = \Omega \\
 & \text{fin} = \Omega \\
 & \text{fin} = \frac{5}{9} \\
 & \text{fin} \\
 & \text{fin} = \frac{5}{9} \\
 & \text{fin} \\
 & \text{fin} = \frac{5}{9} \\
 &$$

Your answer: $T(n) = \bigoplus (n^2)$

Statement of Master Theorem: See class notes

Problem # 2. (Maximum Selection Sort)

Max-Selection
$$(A[1..n])$$

 $j = n$
while $j > 1$
 $k = j; max = j; S = A[j]$
while $k > 1$
 $k = k - 1$
if $A[k] > S$ then
 $max = k; S = A[k]$
swap $A[max]$ with $A[j]$
 $j = j - 1$

1. Analyze the worst-case complexity of your algorithm using the Θ notation. On what kind of arrays does Max-Selection perform worst?

2. Draw the decision tree obtained from Max-Selection for an array A[1..3] of size 3.

Problem #3 (Linear Time Selection)

1. Describe the linear selection algorithm.

See class notes

2. The linear time selection algorithm is modified by dividing the input array A into $\lceil n/9 \rceil$ groups of 9 elements each.

For this modified version of Selection let x denote the *median* of the $\lceil n/9 \rceil$ medians of the 9-element groups. Derive (a) a lower bound for the number of elements in A that are greater than x, (b) an upper bound for the number of elements in A that are less than x, and (c) a recurrence for the running time. And, show that (d) the modified version of Select runs in linear time.

$$5\left(\frac{1}{2}\left(\frac{n}{9}\right)^{7}-2\right) > \frac{5n}{18}-10$$

(b)
$$\leq n - \left(\frac{5n}{18} - 10\right) = \frac{13n}{18} + 10$$

(c)

$$T(n) \leqslant \begin{cases} O(1) & \text{for small } n \\ T(\frac{n}{9}) + T(\frac{13n}{18} + 10) + O(n) \end{cases}$$

$$= \text{for suff. large } n$$

(d)

Caim
$$T(n) \le cn$$
 for some c and large n

$$\frac{Pf}{Pf} \cdot T(n) \le c \cdot \frac{\lceil n \rceil}{g} + c \cdot \left(\frac{13n}{18} + 10\right) + c, n$$

$$\le c \cdot \frac{n}{g} + c + \frac{13cn}{18} + 10c + c, n$$

$$= \frac{15 \text{ cn}}{18} + 11 \text{ c} + \text{ c}, n$$

$$= \text{ cn} - \left(\frac{3 \text{ cn}}{18} - \text{ c}, n - 11 \text{ c}\right)$$

$$\leq \text{ cn}$$

$$\geq 0 \text{ for suff. large c}$$

Problem # 4 (Rod Cutting)

1. Describe the $O(n^2)$ dynamic programming algorithm for rod cutting and perform the last iteration to calculate the optimal revenue for the following rod of length 7: (Display all steps of the last iteration!)

J	1	2	3	4	5	6	7		
P(i)	1	4	7	8	10	13	15		
r(i)	1	4	8	9	11	16	(17))	
			7	8		14	(15))	
Ĺ.	- 1	: PC	1]+	r[a	=	Í	+ 16	=17	V
Ĺ	=2	: PE	2] +	-r[5] =	4	+ []	=15	
, i	=3	: Pl	3] +	-r[4] =	7	+9	=16	
	and the second second				3] =		-	1.	
					= [5]				
					口=				
L	= 7	; b]	-11-	+ L L	= [0	15	+0:	=15	

Algorithm

$$n = rod \ length$$
 $p[i...n] = prices$
 $r[o...n] = revenues$
 $r[o] = 0$
 $for j = 1 to n$
 $r[j] = Max { $p[i] + r[j-i]$ }

 $i \le i \le j$$

2. Suppose each cut operation incurs a cost of c. In this case the revenue associate with each solution is (the sum of the prices of the pieces) minus ($c \times$ the number of cut operations). Give a dynamic programming algorithm to solve this modified problem.

As above:
$$n = rod$$
 length

 $P[i : n] = prices$
 $r[o : n] = revenues$
 $c = cost of a cut operation$
 $r[o] = o$; $r[i] = p[i]$

for $j = 2$ to n
 $r[j] = Max$
 $V \ge p[i] + r[j-i] - c \ge U \ge p[i] \ge r[j-i]$
 $cost of cut$

whole at location i
 $i \le i \le j-1$
 $i \le i \le j-1$