Resultados obtidos através da execução do algoritmo de Dijkstra (utilizando um minheap) em grafos **aleatórios** de 100, 1.000, 10.000 e 100.000 vértices

n	m	Tempo (ms)	Distância	Arestas
100	495	1,755	124,00	4
1 000	4 995	3,489	173,00	9
10 000	49 995	22,152	166,00	15
100 000	499 995	130,410	282,00	11

Resultados obtidos através da execução do algoritmo de Dijkstra (utilizando um minheap) em grafos em formato de **grid** (grafo cujos vértices estão dispostos em uma malha retangular de linhas X colunas, de modo que cada vértice conecta-se apenas aos seus vizinhos "ortogonais" (acima, abaixo, à esquerda e à direita)) de 100, 1.000, 10.000 e 100.000 vértices

n	m	Tempo (ms)	Distância	Arestas
100	180	1,485	593,00	16
1 000	1 936	4,057	1 518,00	57
10 000	19 800	12,482	4 422,00	187
100 000	199 367	73,091	12 382,00	519

Como podemos observar baseado nos gráficos, o crescimento se mostra próximo a linear, e em grafos mais esparsos, o tempo de execução é mais eficiente							