ETUDE DES DIFFERENTS EFFORTS SUBIS PAR UN CADENAS

BASTIDE Guillaume CPGE TSI

N°Inscription: 47457

Chaîne de puissance

Fonctionnement du système

Diagramme d'exigences

Plan d'étude et Problématiques

Quels sont les différents efforts subis par le cadenas pour différents outils ?

Cette forme de cadenas est-elle optimale pour résister aux différentes contraintes ?

- I. Modélisation des efforts
- II. Mesures et simulations des paramètres
- III. Calculs et simulations des efforts
- IV. Conclusion

I. Positionnement des efforts

1^{ère} Simulation

2^{nde} Simulation

<u>Légende :</u>

>: Encastrement

>: Force

Volume élémentaire dt

I. Modélisation des efforts

Modélisation de la force appliquée par le marteau

$$F_{max} = \sqrt{km}v_i$$

Modélisation de la force appliquée par la pince

$$F_G = \frac{M(g+a)S}{\mu n}$$

II. Détermination des efforts

Marteau:

Principe Fondamental de la Dynamique (PFD) :

$$\sum \vec{F} = m \frac{d\vec{v}}{dt} \leftrightarrow m \frac{dv}{dt} = -F = -k\Delta l$$

De plus, on sait que:

$$\frac{dE_c}{dt} = \frac{-dE_p}{dt} \leftrightarrow E_c + E_p = C^{ste}$$

D'où,

$$\frac{1}{2}mv^2 + \frac{1}{2}k(\Delta l)^2 = C^{ste} = \frac{1}{2}mv_i^2 + 0$$

Détermination de F_{moy} :

$$\int_0^{\tau} m \frac{dV}{dt} dt = \int_0^{\tau} -k\Delta l(t) dt \leftrightarrow m(v_f - v_i) = F\tau$$

Donc,

$$F_{moy} = \frac{4mv_i}{2\pi\sqrt{\frac{m}{k}}}$$

En sachant que :

$$\Delta l_{max} = \sqrt{\frac{m{v_i}^2}{k}}$$

On détermine F_{max} :

$$F_{max} = \sqrt{km} v_i$$

 $F_{max} = 184N$

Tracé de l'accélération (m/s^2) en fonction du temps (s)

III. Simulation des efforts (Marteau)

Limite d'élasticité : 2,827*108 MPa

Simulation de F_{max} sur le U

von Mises (N/m*2) 9.321e+ 006 8.54 6e+ 006 7.771e+ 006 6.996e+ 006 6.222e+ 006 6.447 e+ 006 4.672e+ 006 3.897e+ 006 3.897e+ 006 3.122e+ 006 2.347e+ 006 1.673e+ 006 7.979e+ 005 2.306e+ 004 Limite d'élasticité: 2.827 e+ 008

Simulation de F_{max} sur un volume élémentaire dτ

III. Simulation des efforts (Marteau)

Limite d'élasticité : 282,685 MPa

Simulation de F_{max} sur le I

von Mises (N/mm°2 (MPa)) 0.041 0.037 0.034 0.027 0.024 0.021 0.017 0.014 0.011 0.007 0.004

0.001

Limite d'élasticité: 282.685

Simulation de F_{max} sur un volume élémentaire d τ

III. Simulation des efforts (Marteau)

Simulation de F_{max} sur le Ω

Simulation de F_{max} sur un volume élémentaire d τ

II. Détermination des efforts

Pince:

Principe Fondamental de la Statique (PFS):

$$P = 2F_R = 2F_G\mu \leftrightarrow F_G = \frac{Mg}{2\mu}$$

En généralisant on peut dire que la force de serrage minimum nécessaire est :

$$F_G = \frac{Mg}{2n}$$

En faisant l'hypothèse que la force d'inertie s'additionne au poids, on obtient :

$$F_G = \frac{M(g+a)S}{\mu n}$$

$$F_G = \frac{0,30(9,81+30)2}{0,35*2}$$

$$F_G=34,13N$$

^{*}Source : Techno sans frontière, Philippe TAILLARD

III. Simulation des efforts (Pince)

Simulation de F_G sur le U

Simulation de F_G sur un volume élémentaire dT

Limite d'élasticité : 282,685 MPa

III. Simulation des efforts (Pince)

Limite d'élasticité : 2,827*108 MPa

Simulation de F_G sur le l

von Mises (N/m²) 7.548e+003 6.929e+003 6.310e+003 5.691e+003 5.071e+003 4.452e+003 3.833e+003 3.213e+003 2.594e+003 1.975e+003 1.356e+003 7.363e+002 1.170e+002 Limite d'élasticité: 2.827e+008

Simulation de F_G sur un volume élémentaire dT

III. Simulation des efforts (Pince)

Simulation de F_G sur le Ω

von Mises (N/m²) 1.606e+006 1.472e+006 1.338e+006 1.204e+006 1.071e+006 9.368e+005 8.029e+005 6.691e+005 5,353e+005 4.015e+005 2.676e+005 1.338e+005 3.289e-004 Limite d'élasticité: 2.827e+008

Simulation de F_G sur un volume élémentaire dT

IV. Conclusions

Quels sont les différents efforts subis par le cadenas pour différents outils ?

Cette forme de cadenas est-elle optimale pour résister aux différentes contraintes ?

Objectifs:

- Concevoir un programme Arduino permettant de déverrouiller le cadenas à l'aide du Bluetooth ✓
- Réaliser plusieurs expériences afin de pouvoir connaître la force de choc appliquée par différents outils √
- Simuler ces efforts sur le logiciel Solidworks afin de savoir si la pièce résiste suffisamment face aux contraintes imposées ✓
- Simuler ces efforts sur le logiciel Solidworks sur différentes formes afin de montrer que la forme en U est la plus optimale ✓

IV. Conclusions

	Marteau	Pince
Force	184 N	34,13 N
Cadenas U	Résiste	Résiste
Cadenas I	Résiste	Résiste
Cadenas Ω	Résiste	Résiste