

Two cables tied together at C are loaded as shown. Knowing that Q = 60 lb, determine the tension (a) in cable AC, (b) in cable BC.

SOLUTION

$$\Sigma F_y = 0: \quad T_{CA} - Q\cos 30^\circ = 0$$

$$Q = 60 \text{ lb}$$

$$T_{CA} = (60 \text{ lb})(0.866)$$

$$T_{CA} = 52.0 \text{ lb} \blacktriangleleft$$

$$\Sigma F_x = 0: \quad P - T_{CB} - Q\sin 30^\circ = 0$$

$$P = 75 \, \text{lb}$$

$$T_{CB} = 75 \text{ lb} - (60 \text{ lb})(0.50)$$

or $T_{CB} = 45.0 \text{ lb} \blacktriangleleft$

Two cables tied together at C are loaded as shown. Determine the range of values of Q for which the tension will not exceed 60 lb in either cable.

Have

or

Then for

or

From

or

For

or

Thus,

Therefore,

 $\Sigma F_x = 0: \quad T_{CA} - Q\cos 30^\circ = 0$

 $T_{CA} = 0.8660 \text{ Q}$

 $T_{CA} \le 60 \text{ lb}$

0.8660Q < 60 lb

 $Q \le 69.3 \text{ lb}$

 $\Sigma F_y = 0$: $T_{CB} = P - Q \sin 30^\circ$

 $T_{CB} = 75 \text{ lb} - 0.50Q$

 $T_{CB} \le 60 \text{ lb}$

 $75 \text{ lb} - 0.50Q \le 60 \text{ lb}$

 $0.50Q \ge 15 \text{ lb}$

 $Q \ge 30 \text{ lb}$

 $30.0 \le Q \le 69.3 \text{ lb} \blacktriangleleft$

A welded connection is in equilibrium under the action of the four forces shown. Knowing that $F_A=8\,\mathrm{kN}$ and $F_B=16\,\mathrm{kN}$, determine the magnitudes of the other two forces.

SOLUTION

Free-Body Diagram of Connection

With

$$\Sigma F_x = 0$$
: $\frac{3}{5}F_B - F_C - \frac{3}{5}F_A = 0$

$$F_A = 8 \text{ kN}, \ F_B = 16 \text{ kN}$$

$$F_C = \frac{4}{5} (16 \text{ kN}) - \frac{4}{5} (8 \text{ kN})$$

 $F_C = 6.40 \text{ kN} \blacktriangleleft$

$$\Sigma F_y = 0$$
: $-F_D + \frac{3}{5}F_B - \frac{3}{5}F_A = 0$

With F_A and F_B as above:

$$F_D = \frac{3}{5} (16 \text{ kN}) - \frac{3}{5} (8 \text{ kN})$$

 $F_D = 4.80 \text{ kN} \blacktriangleleft$

A welded connection is in equilibrium under the action of the four forces shown. Knowing that $F_A=5\,\mathrm{kN}$ and $F_D=6\,\mathrm{kN}$, determine the magnitudes of the other two forces.

SOLUTION

Free-Body Diagram of Connection

$$\Sigma F_y = 0$$
: $-F_D - \frac{3}{5}F_A + \frac{3}{5}F_B = 0$

$$F_B = F_D + \frac{3}{5}F_A$$

$$F_A = 5 \text{ kN}, \ F_D = 8 \text{ kN}$$

$$F_B = \frac{5}{3} \left[6 \text{ kN} + \frac{3}{5} \left(5 \text{ kN} \right) \right]$$

 $F_B = 15.00 \text{ kN} \blacktriangleleft$

$$\Sigma F_x = 0$$
: $-F_C + \frac{4}{5}F_B - \frac{4}{5}F_A = 0$

$$F_C = \frac{4}{5} \big(F_B - F_A \big)$$

$$=\frac{4}{5}\big(15\ kN-5\ kN\big)$$

 $F_C = 8.00 \text{ kN} \blacktriangleleft$

Collar A is connected as shown to a 50-lb load and can slide on a frictionless horizontal rod. Determine the magnitude of the force **P** required to maintain the equilibrium of the collar when (a) x = 4.5 in., (b) x = 15 in.

SOLUTION

Free-Body Diagram of Collar

Triangle Proportions

$$\Sigma F_x = 0$$
: $-P + \frac{4.5}{20.5} (50 \text{ lb}) = 0$

or $P = 10.98 \text{ lb} \blacktriangleleft$

Triangle Proportions

$$\Sigma F_x = 0$$
: $-P + \frac{15}{25} (50 \text{ lb}) = 0$

or $P = 30.0 \text{ lb} \blacktriangleleft$

Collar A is connected as shown to a 50-lb load and can slide on a frictionless horizontal rod. Determine the distance x for which the collar is in equilibrium when P=48 lb.

SOLUTION

Free-Body Diagram of Collar

Triangle Proportions

Hence:

$$\Sigma F_x = 0: \quad -48 + \frac{50\hat{x}}{\sqrt{400 + \hat{x}^2}} = 0$$

or

$$\hat{x} = \frac{48}{50} \sqrt{400 + \hat{x}^2}$$

$$\hat{x}^2 = 0.92 \, \text{lb} \Big(400 + \hat{x}^2 \Big)$$

$$\hat{x}^2 = 4737.7 \text{ in}^2$$

 $\hat{x} = 68.6 \text{ in.} \blacktriangleleft$

A frame ABC is supported in part by cable DBE which passes through a frictionless ring at B. Knowing that the tension in the cable is 385 N, determine the components of the force exerted by the cable on the support at D.

SOLUTION

The force in cable DB can be written as the product of the magnitude of the force and the unit vector along the cable. That is, with

$$\overline{DB} = (480 \text{ mm})\mathbf{i} - (510 \text{ mm})\mathbf{j} + (320 \text{ mm})\mathbf{k}$$

$$DB = \sqrt{(480)^2 + (510)^2 + (320)^2} = 770 \text{ mm}$$

$$\mathbf{F} = F \lambda_{DB} = F \frac{\overline{DB}}{DB} = \frac{385 \text{ N}}{770 \text{ mm}} \Big[(480 \text{ mm})\mathbf{i} - (510 \text{ mm})\mathbf{j} + (320 \text{ mm})\mathbf{k} \Big]$$

$$\mathbf{F} = (240 \text{ N})\mathbf{i} - (255 \text{ N})\mathbf{j} + (160 \text{ N})\mathbf{k}$$

$$F_x = +240 \text{ N}, \ F_y = -255 \text{ N}, \ F_z = +160.0 \text{ N} \blacktriangleleft$$

A frame *ABC* is supported in part by cable *DBE* which passes through a frictionless ring at *B*. Determine the magnitude and direction of the resultant of the forces exerted by the cable at *B* knowing that the tension in the cable is 385 N.

SOLUTION

The force in each cable can be written as the product of the magnitude of the force and the unit vector along the cable. That is, with

$$\overline{BD} = -(0.48 \text{ m})\mathbf{i} + (0.51 \text{ m})\mathbf{j} - (0.32 \text{ m})\mathbf{k}$$

$$BD = \sqrt{(-0.48 \text{ m})^2 + (0.51 \text{ m})^2 + (-0.32 \text{ m})^2} = 0.77 \text{ m}$$

$$\mathbf{T}_{BD} = T\lambda_{BD} = T_{BD} \frac{\overline{BD}}{BD} = \frac{T_{BD}}{0.77 \text{ m}} \Big[-(0.48 \text{ m})\mathbf{i} + (0.51 \text{ m})\mathbf{j} - (0.32 \text{ m})\mathbf{k} \Big]$$

$$\mathbf{T}_{BD} = T_{BD} \left(-0.6234\mathbf{i} + 0.6623\mathbf{j} - 0.4156\mathbf{k} \right)$$

and

$$\overline{BE} = -(0.27 \text{ m})\mathbf{i} + (0.40 \text{ m})\mathbf{j} - (0.6 \text{ m})\mathbf{k}$$

$$BE = \sqrt{(-0.27 \text{ m})^2 + (0.40 \text{ m})^2 + (-0.6 \text{ m})^2} = 0.770 \text{ m}$$

$$\mathbf{T}_{BE} = T\lambda_{BE} = T_{BE} \frac{\overline{BD}}{BD} = \frac{T_{BE}}{0.770 \text{ m}} \Big[-(0.26 \text{ m})\mathbf{i} + (0.40 \text{ m})\mathbf{j} - (0.6 \text{ m})\mathbf{k} \Big]$$

$$\mathbf{T}_{BE} = T_{BE} (-0.3506\mathbf{i} + 0.5195\mathbf{j} - 0.7792\mathbf{k})$$

Now, because of the frictionless ring at B, $T_{BE} = T_{BD} = 385 \text{ N}$ and the force on the support due to the two cables is

$$\mathbf{F} = 385 \text{ N} (-0.6234\mathbf{i} + 0.6623\mathbf{j} - 0.4156\mathbf{k} - 0.3506\mathbf{i} + 0.5195\mathbf{j} - 0.7792\mathbf{k})$$
$$= -(375 \text{ N})\mathbf{i} + (455 \text{ N})\mathbf{j} - (460 \text{ N})\mathbf{k}$$

PROBLEM 2.139 CONTINUED

The magnitude of the resultant is

$$F = \sqrt{F_x^2 + F_y^2 + F_z^2} = \sqrt{(-375 \text{ N})^2 + (455 \text{ N})^2 + (-460 \text{ N})^2} = 747.83 \text{ N}$$

or $F = 748 \text{ N} \blacktriangleleft$

The direction of this force is:

$$\theta_x = \cos^{-1} \frac{-375}{747.83}$$

or
$$\theta_x = 120.1^{\circ} \blacktriangleleft$$

$$\theta_y = \cos^{-1} \frac{455}{747.83}$$

or
$$\theta_y = 52.5^{\circ} \blacktriangleleft$$

$$\theta_z = \cos^{-1} \frac{-460}{747.83}$$

or
$$\theta_z = 128.0^{\circ} \blacktriangleleft$$

A steel tank is to be positioned in an excavation. Using trigonometry, determine (a) the magnitude and direction of the smallest force \mathbf{P} for which the resultant \mathbf{R} of the two forces applied at A is vertical, (b) the corresponding magnitude of \mathbf{R} .

SOLUTION

Force Triangle

$$\therefore P = (425 \text{ lb})\cos 30^{\circ}$$

or
$$\mathbf{P} = 368 \text{ lb} \longrightarrow \blacktriangleleft$$

$$R = (425 \text{ lb})\sin 30^{\circ}$$

or
$$R = 213 \text{ lb} \blacktriangleleft$$