Розв'язування задачі Діріхле-Неймана для рівняння Лапласа

Бугрії Богдан, Середович Віктор

Львівський національний університет імені Івана Франка Факультет прикладної математики та інформатики

7 грудня 2020 р.

Зміст

- 1 Мішана задача у двозв'язній області
 - Постановка задачі
 - Коректність
- 2 Зведення до системи інтегральних рівнянь
 - Подання розв'язку ІР
 - Коректність системи ІР
- З Чисельне розв'язування
 - Параметризація та виділення особливостей
 - Метод квадратур
 - Похибка
- Чисельні експеременти

Постановка задачі

Нехай $D_1\subset\mathbb{R}^2$ — обмеженна область з гладкою границею $\Gamma_1\subset C^2$ та $D_2\subset\mathbb{R}^2$ — обмеженна область з гладкою границею $\Gamma_2\subset C^2$. Тоді двозв'язна область $D=D_2\setminus\overline{D}_1$ матиме вигляд:

Рис.: Двоз'вязна область D

Рівняння Лапласа:

$$\Delta u = 0 \quad \text{B} \quad D \tag{1.1}$$

Оправичні умови:

$$u = f_1$$
 на Γ_1 , (1.2)

$$\frac{\partial u}{\partial \nu} = f_2$$
 на Γ_2 , (1.3)

де $\nu = \nu(x)$ - одиничний вектор зовнішньої нормалі, (1.2) є умовою Діріхле, а (1.3) є умовою Неймана.

Коректність

Подання розв'язку ІР

Коректність системи ІР

Припустимо, що криві Γ_1 та Γ_2 задані в параметричному вигляді:

$$\Gamma_i := \{x_i(t) = (x_{i1}(t), x_{i2}(t)), \ t \in [0, 2\pi]\}, \quad i = 1, 2$$
 (3.1)

де $x_i:\mathbb{R}\to\mathbb{R}^2$, 2π періодична $\forall t \ |x'(t)|>0$ Подамо систему ref в параметричному вигляді

$$\begin{cases} &\frac{1}{2\pi}\int\limits_{0}^{2\pi}\psi_{1}(\tau)K_{11}(t,\tau)d\tau+\frac{1}{2\pi}\int\limits_{0}^{2\pi}\psi_{2}(\tau)K_{12}(t,\tau)d\tau=g_{1}(t)\\ &-\frac{\psi_{2}(t)}{|x_{2}'(t))|}+\frac{1}{\pi}\int\limits_{0}^{2\pi}\psi_{1}(\tau)K_{21}(t,\tau)d\tau+\frac{1}{\pi}\int\limits_{0}^{2\pi}\psi_{2}(\tau)K_{22}(t,\tau)d\tau=2g_{2}(t) \end{cases}$$

$$\text{ as } \psi_{i}(t)=\varphi(x_{i}(t))\cdot|x_{i}'(t)|,\ g_{i}=f_{i}(x_{i}(t)),\ i=1,2;\ t\in[0,2\pi] \end{cases}$$

8 / 17

$$\begin{split} & K_{11}(t,\tau) = \ln \frac{1}{|x-y|} \bigg|_{\substack{x = x_1(t) \\ y = x_1(\tau)}} &, \quad t \neq \tau \\ & K_{12}(t,\tau) = \ln \frac{1}{|x-y|} \bigg|_{\substack{x = x_1(t) \\ y = x_2(\tau)}} &; \\ & K_{21}(t,\tau) = \frac{(y-x) \cdot \nu(x)}{r^2} \bigg|_{\substack{x = x_2(t) \\ y = x_1(\tau)}} &; \\ & K_{22}(t,\tau) = \frac{(y-x) \cdot \nu(x)}{r^2} \bigg|_{\substack{x = x_2(t) \\ y = x_2(\tau)}} &; \\ & t \neq \tau \end{split}$$

$$K_{11}(t, au) = K_{11}^{(1)} \ln\left(rac{4}{e}\sin^2rac{t- au}{2}
ight) + K_{11}^{(2)}(t, au)$$

$$K_{11}{}^{(1)}(t, au) = -rac{1}{2}; \quad a \quad K_{11}{}^{(2)}(t, au) = rac{1}{2} \ln rac{rac{4}{e} \sin^2 rac{t- au}{2}}{|x_1(t)-x_1(au)|^2}, \quad t
eq au;$$

Для того щоб довизначити $K_{11}^{(2)}$, знайдему границю за правилом Лопіталя і в результаті отримаємо:

$$K_{11}^{(2)}(t, au) = \left\{ egin{array}{l} rac{4}{2} \ln rac{rac{4}{e} \sin^2 rac{t- au}{2}}{\left|x_1(t)-x_1(au)
ight|^2}, & t
eq au \ rac{1}{2} \ln rac{1}{e \left|x_1'(t)
ight|^2}, & t = au \end{array}
ight.$$

Виділимо сингулярну особливість ядра K_{22} . Знайдемо границю при au o t

$$\lim_{\tau \to t} \frac{\partial \Phi(x_2(t), x_2(\tau))}{\partial \nu(t)} = \frac{x_2''(\tau) \cdot \nu(x_2(t))}{2|x_2'(t)|^2}$$

Отримаємо наступне параметризованне подання ядра:

$$\mathcal{K}_{22}(t, au) = \left\{ egin{array}{ll} rac{(x_2(au) - x_2(t)) \cdot
u(x_2(t))}{|x_2(t) - x_2(au)|^2}, & t
eq au \ & & \ rac{x_2''(au) \cdot
u(x_2(t))}{2|x_2'(t)|^2}, & t
eq au \end{array}
ight.$$

$$u(x) = \frac{1}{2\pi} \int_0^{2\pi} \psi_1(\tau) K_1(x,\tau) d\tau + \frac{1}{2\pi} \int_0^{2\pi} \psi_2(\tau) K_2(x,\tau) d\tau, \quad x \in D$$

де відповідні ядра K_1 і K_2 мають вигляд:

$$K_1(x,\tau) = \ln \frac{1}{|x - x_1(\tau)|}$$
 $\tau_2(x,\tau) = \ln \frac{1}{|x - x_2(\tau)|}$

Метод квадратур

Похибка

Чисельні експеременти

Література

- Kress R. Linear Integral Equations, 2nd. ed. / R. Kress. New-York: Springer-Verlag, 1989. 367 c.
- Абрамовиц М. Справочник по специальным функциям / М. Абрамовиц, И. Стиган. М.: Наука, 1979. 832 с.
- Chapko R., Johansson B.T. An alternating boundary integral based method for inverse potential flow around immersed bodies, No. 1, 2009

Table

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Табл.: Table caption