Cinemática de Manipuladores

Erick Nathan Martins Alves

 ${\sf CEFET\text{-}MG} \mid {\sf Campus} \ {\sf V} \mid {\sf Divin\acute{o}polis\text{-}MG}$

maio, 2023

Organização do Documento

- Conceitos Importantes
- 2 Modelagem Cinemática Direta
- Modelagem Cinemática Inversa
- 4 Jacobiano de Velocidades
- Singularidades

Posição de um Ponto

Orientação de um Frame

Matriz de Rotação

$$R_1^0 = \begin{bmatrix} x_1 \cdot x_0 & y_1 \cdot x_0 & z_1 \cdot x_0 \\ x_1 \cdot y_0 & y_1 \cdot y_0 & z_1 \cdot y_0 \\ x_1 \cdot z_0 & y_1 \cdot z_0 & z_1 \cdot z_0 \end{bmatrix}$$

Ângulos de Euler

$$\begin{array}{lll} R_{ZYZ} & = & R_{z,\phi}R_{y,\theta}R_{z,\psi} \\ & = & \begin{bmatrix} c_{\phi} & -s_{\phi} & 0 \\ s_{\phi} & c_{\phi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix} \begin{bmatrix} c_{\psi} & -s_{\psi} & 0 \\ s_{\psi} & c_{\psi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ & = & \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix} \end{array}$$

Roll, Pitch, Yaw

$$\begin{array}{lll} R_{XYZ} & = & R_{z,\phi}R_{y,\theta}R_{x,\psi} \\ & = & \begin{bmatrix} c_{\phi} & -s_{\phi} & 0 \\ s_{\phi} & c_{\phi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\psi} & -s_{\psi} \\ 0 & s_{\psi} & c_{\psi} \end{bmatrix} \\ & = & \begin{bmatrix} c_{\phi}c_{\theta} & -s_{\phi}c_{\psi} + c_{\phi}s_{\theta}s_{\psi} & s_{\phi}s_{\psi} + c_{\phi}s_{\theta}c_{\psi} \\ s_{\phi}c_{\theta} & c_{\phi}c_{\psi} + s_{\phi}s_{\theta}s_{\psi} & -c_{\phi}s_{\psi} + s_{\phi}s_{\theta}c_{\psi} \\ -s_{\theta} & c_{\theta}s_{\psi} & c_{\theta}c_{\psi} \end{bmatrix} \end{array}$$

Matriz de Rotação

$$R_1^0 = \begin{bmatrix} x_1 \cdot x_0 & y_1 \cdot x_0 & z_1 \cdot x_0 \\ x_1 \cdot y_0 & y_1 \cdot y_0 & z_1 \cdot y_0 \\ x_1 \cdot z_0 & y_1 \cdot z_0 & z_1 \cdot z_0 \end{bmatrix}$$

Transformação Homogênea: Pose

$$H = \left[\begin{array}{c|c} R_{3\times3} & d_{3\times1} \\ \hline f_{1\times3} & s_{1\times1} \end{array} \right] = \left[\begin{array}{c|c} Rotation & Translation \\ \hline perspective & scale factor \end{array} \right]$$

Parâmetros de Denavit Hartenberg

- θ_i : Rotação, em z_{i-1} , de x_{i-1} até x_i
- d_i : Translação, em z_{i-1} , de x_{i-1} até x_i
- a_i : Translação, em x_i , de z_{i-1} até z_i
- α_i : Rotação, em x_i , de z_{i-1} até z_i

Atribuição de Frames

- lacktriangle Identificar os eixos z_i , de acordo com os sentidos de rotação da respectiva junta
- ② Posicionar o_i na interseção de z_{i-1} com z_i ; ou na interseção da perpendicular comum de z_{i-1} e z_i , com z_i . Se z_{i-1} e z_i forem paralelos, escolher de forma que fique mais simples.
- **3** Estabelecer x_i ao longo da perpendicular comum de z_{i-1} e z_i a partir de o_i ; ou na direção normal ao plano de z_{i-1} e z_i , se eles se interceptarem.
- Estabelecer y_i para que o sistema fique destrógiro.
- **5** Estabelecer o *frame n* final da ferramenta. Se tiver garra, usar a convenção de garra. Se não tiver ferramenta, repetir o *frame n* -1.
- Estabelecer o *frame* 0 (zero) da base de forma que fique mais simples. Isso se esse *frame* já não tiver sido proposto.

Convenções de Denavit Hartenberg

Exigências da convenção

- DH1: x_i deve ser perpendicular a z_{i-1}
- DH2: x_i deve interceptar z_{i-1}
- Se não houver ferramenta, mas a repetição do frame n-1 não cumprir DH1 e DH2, repetir o eixo z_{n-1} e escolher x_n de forma a cumprir e poder aplicar D-H.
- Se houver alguma perda de link após o frame 0, ou a inclusão da ferramenta descumprir os requisitos DH1 e DH2, obtenha a transformação homogênea de um frame para o outro. [Spong et al., 2006].

Matrizes A_i

$$A_{i} = Rot_{z,\theta_{i}} Trans_{z,d_{i}} Trans_{x,a_{i}} Rot_{x,\alpha_{i}}$$

$$= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\times \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

MCD de um Manipulador

$$T_6^0 = A_1 \cdots A_6$$

$$= \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_x \\ r_{21} & r_{22} & r_{23} & d_y \\ r_{31} & r_{32} & r_{33} & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exemplo 1.1: SCARA

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	θ^{\star}
2	a_2	180	0	θ^{\star}
3	0	0	d^{\star}	0
4	0	0	d_4	θ^{\star}

^{*} joint variable

Exemplo 1.1: SCARA

$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} c_{2} & s_{2} & 0 & a_{2}c_{2} \\ s_{2} & -c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & -s_{4} & 0 & 0 \\ s_{4} & c_{4} & 0 & 0 \\ 0 & 0 & 1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_4^0 = A_1 \cdots A_4$$

$$= \begin{bmatrix} c_{12}c_4 + s_{12}s_4 & -c_{12}s_4 + s_{12}c_4 & 0 & a_1c_1 + a_2c_{12} \\ s_{12}c_4 - c_{12}s_4 & -s_{12}s_4 - c_{12}c_4 & 0 & a_1s_1 + a_2s_{12} \\ 0 & 0 & -1 & -d_3 - d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Tabela de DH - PUMA 260

i	θ_i	di	aį	α_i
1	$ heta_1^*$	13	0	90°
2	$ heta_2^*$	3	8	0°
3	$\theta_{3}^{*} + 90^{\circ}$	0	0	90°
4	$ heta_{ extsf{4}}^{*}$	8	0	-90°
5	$ heta_5^* - 90^\circ$	0	0	-90°
6	$ heta_{6}^{*}$	4	0	0°

* variável

$$A_{1} = \begin{bmatrix} c_{1} & 0 & s_{1} & 0 \\ s_{1} & 0 & -c_{1} & 0 \\ 0 & 1 & 0 & 13 \\ 0 & 0 & 0 & 1 \end{bmatrix} A_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & 8c_{2} \\ s_{2} & c_{2} & 0 & 8s_{2} \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} A_{3} = \begin{bmatrix} -s_{3} & 0 & c_{3} & 0 \\ c_{3} & 0 & s_{3} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & 8 \\ 0 & 0 & 0 & 1 \end{bmatrix} A_{5} = \begin{bmatrix} s_{5} & 0 & c_{5} & 0 \\ -c_{5} & 0 & s_{5} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} A_{6} = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $H_6^0 = \begin{bmatrix} c_6 \left(c_1 c_{23} c_5 + s_5 \left(-c_1 c_4 s_{23} + s_1 s_4 \right) \right) - s_6 \left(c_1 s_{23} s_4 + c_4 s_1 \right) \\ -c_6 \left(-c_{23} c_5 s_1 + s_5 \left(c_1 s_4 + c_4 s_1 s_{23} \right) \right) - s_6 \left(-c_1 c_4 + s_1 s_{23} s_4 \right) \\ c_{23} s_4 s_6 + c_6 \left(c_{23} c_4 s_5 + c_5 s_{23} \right) \end{bmatrix}$

 $\begin{array}{l} -c_6\left(c_1s_{23}s_4+c_4s_1\right)-s_6\left(c_1c_{23}c_5+s_5\left(-c_1c_4s_{23}+s_1s_4\right)\right)\\ -c_6\left(-c_1c_4+s_1s_{23}s_4\right)+s_6\left(-c_{23}c_5s_1+s_5\left(c_1s_4+c_4s_1s_{23}\right)\right)\\ c_{23}c_6s_4-s_6\left(c_{23}c_4s_5+c_5s_{23}\right) \end{array}$

 $-c_1c_{23}s_5+c_5\left(-c_1c_4s_{23}+s_1s_4\right)\\-c_{23}s_1s_5-c_5\left(c_1s_4+c_4s_1s_{23}\right)\\c_{23}c_4c_5-s_{23}s_5$

 $8c_1c_2-4c_1c_{23}s_5+8c_1c_{23}+4c_5\left(-c_1c_4s_{23}+s_1s_4\right)+3s_1\\-3c_1+8c_2s_1-4c_{23}s_1s_5+8c_{23}s_1-4c_5\left(c_1s_4+c_4s_1s_{23}\right)\\4c_{23}c_4c_5+8s_2-4s_{23}s_5+8s_{23}+13$

Tabela de DH - Comau Smart5 SiX

i	θ_i	di	a _i	α_i
1	$ heta_{1}^{*}$	0	150	90°
2	$ heta_2^* - 90^\circ$	0	590	180°
3	$\theta_3^* + 90^{\circ}$	0	130	-90°
4	$ heta_{ extsf{4}}^{*}$	-647,07	0	-90°
5	$ heta_{5}^{*}$	0	0	90°
6	$ heta_6^*$	-95	0	0°

$$H_{0}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 450 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad H_{2}^{6} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} c_{1} & 0 & s_{1} & 150c_{1} \\ -s_{1} & 0 & c_{1} & -150s_{1} \\ 0 & -1 & 0 & 450 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{2} = \begin{bmatrix} s_{2} & -c_{2} & 0 & 590s_{2} \\ -c_{2} & -s_{2} & 0 & -590c_{2} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} -s_{3} & 0 & -c_{3} & -130s_{3} \\ c_{3} & 0 & -s_{3} & 130c_{3} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & -647.07 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{5} = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{6} = \begin{bmatrix} -c_{6} & -s_{6} & 0 & 0 \\ -s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & -1 & -95 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $-c_k(c_1s_1s_2, c_1 + c_2(-c_1c_2c_2, c_1 + s_1s_1)) - s_k(c_1c_2, c_2s_1 + c_1s_1)$ $-c_4\left(c_5\left(c_1s_4+c_4c_{(2-3)}s_1\right)-s_1s_5s_{(2-3)}\right)+s_6\left(-c_1c_4+c_{(2-3)}s_1s_4\right)$ $-c_{4}\left(c_{4}c_{5}s_{12...11}+c_{12...1184}\right)+s_{4}s_{4}s_{12...11}$

 $c_{0}\left(c_{1}c_{2},...,s_{4}+c_{4}s_{1}\right)-s_{6}\left(c_{1}s_{1}s_{2},...,s_{4}+c_{5}\left(-c_{1}c_{4}c_{2},...+s_{4}s_{4}\right)\right)$ $-c_6\left(-c_1c_4+c_{(2-3)}s_1s_4\right)-s_4\left(c_5\left(c_1s_4+c_4c_{(2-3)}s_1\right)-s_1s_5s_{(2-3)}\right)$ $-c_0s_4s_{(2..3)} - s_0 (c_4c_5s_{(2..3)} + c_{(2..3)}s_5)$

 $c_1c_2s_3, \ldots, s_n \left(-c_1c_2c_3, \ldots, +s_1s_4\right)$ $-c_1s_1s_{(2-3)} - s_1(c_1s_4 + c_4c_{(2-3)}s_1)$ $-c_4s_1s_{(2..3)} + c_5c_{(2..3)}$

 $95c_1c_2s_{22...n} + c_1\left(-130.0c_{22...n} + 590.0s_1 + 647.07s_{22...n} + 150.0\right) - 95s_1\left(-c_1c_2c_{22...n} + s_1s_4\right)$ $-95c_5s_1s_{(2-3)} - s_1\left(-130.0c_{(2-3)} + 590.0s_2 + 647.07s_{(2-3)} + 150.0\right) - 95s_5\left(c_1s_4 + c_4c_{(2-3)}s_1\right)$ $590.0c_2 - 95.0c_4s_4s_{(2\dots 3)} + 95.0c_5c_{(2\dots 3)} + 647.07c_{(2\dots 3)} + 130.0s_{(2\dots 3)} + 450.0$

Definição e Objetivos

- Deseja-se encontrar as soluções angulares que levam o manipulador à pose desejada
- Haverão várias soluções para uma mesma pose, a depender do manipulador em questão
- Métodos: Analítico X Geométrico X Numérico

O Punho Esférico

Link	a_i	α_i	d_i	θ_i
4	0	-90	0	θ_4^*
5	0	90	0	θ_5^*
6	0	0	d_6	θ_6^*

^{*} variable

O Punho Esférico

$$A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{5} = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{6} = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{lll} T_6^3 & = & A_4 A_5 A_6 \\ & = & \left[\begin{array}{ccc} R_6^3 & o_6^3 \\ 0 & 1 \end{array} \right] \\ & = & \left[\begin{array}{cccc} c_4 c_5 c_6 - s_4 s_6 & -c_4 c_5 s_6 - s_4 c_6 & c_4 s_5 & c_4 s_5 d_6 \\ s_4 c_5 c_6 + c_4 s_6 & -s_4 c_5 s_6 + c_4 c_6 & s_4 s_5 & s_4 s_5 d_6 \\ -s_5 c_6 & s_5 s_6 & c_5 & c_5 d_6 \\ 0 & 0 & 0 & 1 \end{array} \right] \end{array}$$

Desacoplamento Cinemático

Desacoplamento Cinemático

Para Posição:

$$o_c^0 = o - d_6 R \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = \begin{bmatrix} o_x - d_6 r_{13} \\ o_y - d_6 r_{23} \\ o_z - d_6 r_{33} \end{bmatrix}$$

Para Orientação:

$$R_6^3 = (R_3^0)^{-1}R = (R_3^0)^T R$$

Função atan2()

- As soluções angulares serão da forma: $\theta = atan2(x, y) = Atan2(c_{\theta}, s_{\theta})$
- O uso das funções arccos e arcsin poderiam gerar resposta incorreta para a configuração desejada, devido à ambiguidade de soluções para um mesmo valor de seno ou cosseno
- A função *arctan* também não é indicada, pois retorna o ângulo no intervalo $\left]-\frac{\pi}{2},\frac{\pi}{2}\right]$, por possuir apenas um argumento

Exemplo 2.1.1: 2R Planar

Link	$ a_i $	α_i	d_i	$ heta_i$
$\frac{1}{2}$	$\begin{vmatrix} a_1 \\ a_2 \end{vmatrix}$	0	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	$ heta_1^* \ heta_2^*$

* variable

Exemplo 2.1.1: 2R Planar

$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & a_{2}c_{2} \\ s_{2} & c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{1}^{0} = A_{1}$$

$$T_{2}^{0} = A_{1}A_{2} = \begin{bmatrix} c_{12} & -s_{12} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12} & c_{12} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exemplo 2.1.1: 2R Planar

$$\theta_1 = atan2(x, y) - atan2\left(\frac{a_2s_2}{a_1 + a_2c_2}\right)$$

$$c_2 = \frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1a_2}$$

$$heta_2 = \pm atan2\left(c_2, \sqrt{1-c_2^2}
ight)$$

Exemplo 2.1.2: Manipulador Cartesiano

Exemplo 2.1.2: Manipulador Cartesiano

$$d_1=z-l_1$$

$$d_2 = x - l_2$$

$$d_3 = -y - l_3$$

Exemplo 2.1.3: 3R Cotovelar

Exemplo 2.1.3: 3R Cotovelar

Exemplo 2.1.4: 3R Cotovelar + deslocamento em Y

Exemplo 2.1.4: 3R Cotovelar + deslocamento em Y

Exemplo 2.1.4: 3R Cotovelar + deslocamento em Y

Exemplo 2.1.5: RRPR com link angulado

Orientação Generalizada pelo Punho Esférico

$$R_6^3 = \begin{bmatrix} c_4c_5c_6 - s_4s_6 & -c_4c_5s_6 - s_4c_6 & c_4s_5 \\ s_4c_5c_6 + c_4s_6 & -s_4c_5s_6 + c_4c_6 & s_4s_5 \\ -s_5c_6 & s_5s_6 & c_5 \end{bmatrix}$$

$$R_6^3 = (R_3^0)^T R$$

Exemplo 2.2.1: SCARA

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	θ^{\star}
2	a_2	180	0	θ^{\star}
3	0	0	d^{\star}	0
4	0	0	d_4	θ^{\star}

 * joint variable

$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} c_{2} & s_{2} & 0 & a_{2}c_{2} \\ s_{2} & -c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & -s_{4} & 0 & 0 \\ s_{4} & c_{4} & 0 & 0 \\ 0 & 0 & 1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_4^0 = A_1 \cdots A_4$$

$$= \begin{bmatrix} c_{12}c_4 + s_{12}s_4 & -c_{12}s_4 + s_{12}c_4 & 0 & a_1c_1 + a_2c_{12} \\ s_{12}c_4 - c_{12}s_4 & -s_{12}s_4 - c_{12}c_4 & 0 & a_1s_1 + a_2s_{12} \\ 0 & 0 & -1 & -d_3 - d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exemplo 2.2.1: SCARA

$$c_2 = \frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1a_2}$$

$$heta_2 = ext{atan2}\left(c_2, \sqrt{1-c_2^2}
ight)$$

$$\theta_1 = \mathit{atan2}\left(x,y\right) - \mathit{atan2}\left(a_1 + a_2c_2, a_2s_2\right)$$

$$\theta_4 = \theta_1 + \theta_2 - atan2(r_{11}, r_{12})$$

$$d_3 = z - d_4$$

Tabela de DH - PUMA 260

:	θ_i	٨.	2.	0,,
'	Ui	di	a _i	α_i
1	$ heta_{1}^{*}$	13	0	90°
2	$ heta_2^*$	3	8	0°
3	$\theta_{3}^{*} + 90^{\circ}$	0	0	90°
4	$ heta_{ extsf{4}}^{*}$	8	0	-90°
5	$ heta_5^* - 90^\circ$	0	0	-90°
6	$ heta_6^*$	4	0	0°

* variável

$$A_{1} = \begin{bmatrix} c_{1} & 0 & s_{1} & 0 \\ s_{1} & 0 & -c_{1} & 0 \\ 0 & 1 & 0 & 13 \\ 0 & 0 & 0 & 1 \end{bmatrix} A_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & 8c_{2} \\ s_{2} & c_{2} & 0 & 8s_{2} \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} A_{3} = \begin{bmatrix} -s_{3} & 0 & c_{3} & 0 \\ c_{3} & 0 & s_{3} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & 8 \\ 0 & 0 & 0 & 1 \end{bmatrix} A_{5} = \begin{bmatrix} s_{5} & 0 & c_{5} & 0 \\ -c_{5} & 0 & s_{5} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} A_{6} = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $H_{6}^{0} = \begin{bmatrix} c_{6}\left(c_{1}c_{23}c_{5} + s_{5}\left(-c_{1}c_{4}s_{23} + s_{1}s_{4}\right)\right) - s_{6}\left(c_{1}s_{23}s_{4} + c_{4}s_{1}\right) \\ -c_{6}\left(-c_{23}c_{5}s_{1} + s_{5}\left(c_{1}s_{4} + c_{4}s_{1}s_{23}\right)\right) - s_{6}\left(-c_{1}c_{4} + s_{1}s_{23}s_{4}\right) \\ c_{23}s_{4}s_{6} + c_{6}\left(c_{23}c_{4}s_{5} + c_{5}s_{23}\right) \end{bmatrix}$

 $\begin{matrix} -c_6 \left(c_1 s_{23} s_4 + c_4 s_1\right) - s_6 \left(c_1 c_{23} c_5 + s_5 \left(-c_1 c_4 s_{23} + s_1 s_4\right)\right) \\ -c_6 \left(-c_1 c_4 + s_1 s_{23} s_4\right) + s_6 \left(-c_{23} c_5 s_1 + s_5 \left(c_1 s_4 + c_4 s_1 s_{23}\right)\right) \\ c_{23} c_6 s_4 - s_6 \left(c_{23} c_4 s_5 + c_5 s_{23}\right) \end{matrix}$

 $-c_1c_{23}s_5 + c_5 (-c_1c_4s_{23} + s_1s_4)$ $-c_{23}s_1s_5 - c_5 (c_1s_4 + c_4s_1s_{23})$ $c_{23}c_4c_5 - s_{23}s_5$ $\begin{array}{l} 8c_1c_2-4c_1c_{23}s_5+8c_1c_{23}+4c_5\left(-c_1c_4s_{23}+s_1s_4\right)+3s_1\\ -3c_1+8c_2s_1-4c_{23}s_1s_5+8c_{23}s_1-4c_5\left(c_1s_4+c_4s_1s_{23}\right)\\ 4c_{23}c_4c_5+8s_2-4s_{23}s_5+8s_{23}+13 \end{array}$

$$r^{2} = x_{c}^{2} + y_{c}^{2} + 3^{2}$$

$$\theta_{1} = atan2(x_{c}, y_{c}) \pm atan2(r, 3)$$

$$c_{3} = \frac{r^{2} + (z_{c} - 13)^{2}}{128} - 1$$

$$\theta_{3} = \pm atan2(c_{3}, \sqrt{1 - c_{3}^{2}})$$

$$\theta_{2} = atan2(r, (z_{c} - 13)) - atan2(8(1 + c_{3}), 8s_{3})$$

$$s_{5} = -c_{1}c_{23}r_{13} - c_{23}s_{1}r_{2,3} - s_{23}$$

$$heta_5 = atan2(1-\sqrt{1-s_5^2})$$

$$c_6 = \frac{c_1c_{12}r_{11}+c_{23}s_1r_{21}+s_{23}r_{31}}{c_5}$$

$$heta_6 = atan2(c_6,\sqrt{1-c_6^2})$$

$$s_4 = \frac{s_1r_{13}-c_1r_{23}}{c_5}$$

$$heta_4 = atan2(1-\sqrt{1-s_4^2})$$

Tabela de DH - Comau Smart5 SiX

i	θ_i	di	a _i	α_i
1	$ heta_{1}^{*}$	0	150	90°
2	$ heta_2^* - 90^\circ$	0	590	180°
3	$\theta_3^* + 90^{\circ}$	0	130	-90°
4	$ heta_{ extsf{4}}^{*}$	-647,07	0	-90°
5	$ heta_{5}^{*}$	0	0	90°
6	$ heta_6^*$	-95	0	0°

$$H_{0}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 450 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad H_{2}^{6} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} c_{1} & 0 & s_{1} & 150c_{1} \\ -s_{1} & 0 & c_{1} & -150s_{1} \\ 0 & -1 & 0 & 450 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{2} = \begin{bmatrix} s_{2} & -c_{2} & 0 & 590s_{2} \\ -c_{2} & -s_{2} & 0 & -590c_{2} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} -s_{3} & 0 & -c_{3} & -130s_{3} \\ c_{3} & 0 & -s_{3} & 130c_{3} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & -647.07 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{5} = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{6} = \begin{bmatrix} -c_{6} & -s_{6} & 0 & 0 \\ -s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & -1 & -95 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $H_0^{\mathcal{O}} = \begin{bmatrix} -c_6 \left(c_1 s_5 s_2 c_{2-3}\right) + c_5 \left(-c_1 c_2 c_{2-3}\right) + s_1 s_1\right) - s_4 \left(c_1 c_{2-3} s_4 + c_4 s_1\right) \\ -c_6 \left(c_5 \left(c_1 s_4 + c_4 c_{2-3} s_1\right) - s_1 s_5 s_{2-3}\right) + s_6 \left(-c_1 c_4 + c_{2-3} s_1 s_1\right) \\ -c_6 \left(c_5 c_5 s_2 c_{2-3} + c_{2-3} s_1\right) + s_4 s_6 s_{2-3}\right) \end{bmatrix}$

 $c_{0}\left(c_{1}c_{(2-3)}s_{4}+c_{4}s_{1}\right)-s_{6}\left(c_{1}s_{1}s_{(2-3)}+c_{5}\left(-c_{1}c_{4}c_{(2-3)}+s_{1}s_{4}\right)\right)\\ -c_{6}\left(-c_{1}c_{4}+c_{(2-3)}s_{1}s_{4}\right)-s_{6}\left(c_{5}\left(c_{1}s_{4}+c_{4}c_{(2-3)}s_{4}\right)-s_{1}s_{5}s_{(2-3)}\right)\\ -c_{6}s_{4}s_{(2-3)}-s_{6}\left(c_{4}c_{5}s_{(2-3)}+c_{(2-3)}s_{5}\right)$

 $\begin{array}{c} c_1c_1s_{\{2-3\}} - s_5 \left(-c_1c_4c_{\{2-3\}} + s_1s_4 \right) \\ -c_3s_1s_{\{2-3\}} - s_3 \left(c_1s_4 + c_4c_{\{2-3\}}s_1 \right) \\ -c_4s_3s_{\{2-3\}} + c_5c_{\{2-3\}} \\ 0 \end{array}$

 $\begin{array}{l} 95c_{(C6R_{(2-3)}+c_1)} - c_1 \left(-130.0c_{(2-3)} + 590.0s_2 + 647.07s_{(2-3)} + 150.0\right) - 95s_3 \left(-c_{(C6C_{(2-3)}+s)s_4} \right) \\ - 95c_{(3s_1s_{(2-3)}-s_1)} - s_1 \left(-130.0c_{(2-3)} + 590.0s_2 + 647.07s_{(2-3)} + 150.0\right) - 95s_3 \left(c_{(1s_4+c_4c_{(2-3)}s_4)} \right) \\ 590.0c_2 - 95.0c_{(4s_1s_{(2-3)}+95.0c_3c_{(2-3)}+647.07c_{(2-3)} + 130.0s_{(2-3)} + 450.0 \end{array}$

O Jacobiano

$$\xi = J(q)\dot{q}$$

$$\xi = egin{bmatrix} v_x \ v_y \ v_z \ \omega_x \ \omega_y \ \omega_z \end{bmatrix} \quad e \quad \dot{q} = egin{bmatrix} q_1 \ q_2 \ dots \ q_n \end{bmatrix} \quad e \quad J(q) = egin{bmatrix} J_{
u}(q) \ J_{\omega}(q) \end{bmatrix}$$

Jacobiano de Velocidades Lineares

$$J_{
m v}(q) = \left[egin{array}{cccc} rac{\partial x}{\partial q_1} & rac{\partial x}{\partial q_2} & \cdots & rac{\partial x}{\partial q_n} \ rac{\partial y}{\partial q_1} & rac{\partial y}{\partial q_2} & \cdots & rac{\partial y}{\partial q_n} \ rac{\partial z}{\partial q_1} & rac{\partial z}{\partial q_2} & \cdots & rac{\partial z}{\partial q_n} \end{array}
ight]$$

Jacobiano de Velocidades Angulares

$$J_{\omega_i}=z_{i-1}$$
, se a junta é rotacional.

$$J_{\omega_i} = [0,0,0]^T$$
, se a junta é prismática.

Jacobiano Completo

$$J(q) = \begin{bmatrix} J_{\nu}(q) \\ J_{\omega}(q) \end{bmatrix}$$

$$J_{i} = \begin{cases} \begin{bmatrix} z_{i-1} \times (o_{n} - o_{i-1}) \\ z_{i-1} \end{bmatrix} & \text{if joint i is revolute} \\ \begin{bmatrix} z_{i-1} \\ 0 \end{bmatrix} & \text{if joint i is prismatic} \end{cases}$$

Jacobiano Inverso e Velocidades Articulares

$$\dot{q} = J^{-1}(q)\xi$$

$$\xi = egin{bmatrix} v_x \ v_y \ v_z \ \omega_x \ \omega_y \ \omega_z \end{bmatrix} \quad e \quad \dot{q} = egin{bmatrix} q_1 \ q_2 \ dots \ q_n \end{bmatrix} \quad e \quad J(q) = egin{bmatrix} J_{
u}(q) \ J_{\omega}(q) \end{bmatrix}$$

Inversão de Matrizes

A partir de uma matriz A:

- Calcular det(A)
- ② Obter a matriz de cofatores C, onde $c_{ii} = (-1)^{i+j} |a_{ii}|$
- **3** Obter a matriz adjunta: $\bar{A} = C^T$
- **1** Obter a matriz inversa: $M^{-1} = \frac{1}{\det(A)}\bar{A}$

Exemplo 3.1: SCARA

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	θ^{\star}
2	a_2	180	0	θ^{\star}
3	0	0	d^{\star}	0
4	0	0	d_4	θ^{\star}

 $^{^{*}}$ joint variable

Exemplo 3.1: SCARA

$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} c_{2} & s_{2} & 0 & a_{2}c_{2} \\ s_{2} & -c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & -s_{4} & 0 & 0 \\ s_{4} & c_{4} & 0 & 0 \\ 0 & 0 & 1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_4^0 = A_1 \cdots A_4$$

$$= \begin{bmatrix} c_{12}c_4 + s_{12}s_4 & -c_{12}s_4 + s_{12}c_4 & 0 & a_1c_1 + a_2c_{12} \\ s_{12}c_4 - c_{12}s_4 & -s_{12}s_4 - c_{12}c_4 & 0 & a_1s_1 + a_2s_{12} \\ 0 & 0 & -1 & -d_3 - d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exemplo 3.1: SCARA

$$J = \begin{bmatrix} -a_1s_1 - a_2s_{12} & -a_2s_{12} & 0 & 0 \\ a_1c_1 + a_2c_{12} & a_2c_{12} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & -1 \end{bmatrix}$$

Tabela de DH - PUMA 260

:	θ_i	٨.	2.	0,,
'	Ui	di	a _i	α_i
1	$ heta_{1}^{*}$	13	0	90°
2	$ heta_2^*$	3	8	0°
3	$\theta_{3}^{*} + 90^{\circ}$	0	0	90°
4	$ heta_{ extsf{4}}^{*}$	8	0	-90°
5	$ heta_5^* - 90^\circ$	0	0	-90°
6	$ heta_6^*$	4	0	0°

* variável

$$A_{1} = \begin{bmatrix} c_{1} & 0 & s_{1} & 0 \\ s_{1} & 0 & -c_{1} & 0 \\ 0 & 1 & 0 & 13 \\ 0 & 0 & 0 & 1 \end{bmatrix} A_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & 8c_{2} \\ s_{2} & c_{2} & 0 & 8s_{2} \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} A_{3} = \begin{bmatrix} -s_{3} & 0 & c_{3} & 0 \\ c_{3} & 0 & s_{3} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & 8 \\ 0 & 0 & 0 & 1 \end{bmatrix} A_{5} = \begin{bmatrix} s_{5} & 0 & c_{5} & 0 \\ -c_{5} & 0 & s_{5} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} A_{6} = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $H_6^0 = \begin{bmatrix} c_6 \left(c_1 c_{23} c_5 + s_5 \left(-c_1 c_4 s_{23} + s_1 s_4 \right) \right) - s_6 \left(c_1 s_{23} s_4 + c_4 s_1 \right) \\ - c_6 \left(-c_{23} c_5 s_1 + s_5 \left(c_1 s_4 + c_4 s_1 s_{23} \right) \right) - s_6 \left(-c_1 c_4 + s_1 s_{23} s_4 \right) \\ c_{23} s_4 s_6 + c_6 \left(c_{23} c_4 s_5 + c_5 s_{23} \right) \end{bmatrix}$

 $\begin{array}{l} -c_6\left(c_1s_{23}s_4+c_4s_1\right)-s_6\left(c_1c_{23}c_5+s_5\left(-c_1c_4s_{23}+s_1s_4\right)\right)\\ -c_6\left(-c_1c_4+s_1s_{23}s_4\right)+s_6\left(-c_{23}c_5s_1+s_5\left(c_1s_4+c_4s_1s_{23}\right)\right)\\ c_{23}c_6s_4-s_6\left(c_{23}c_4s_5+c_5s_{23}\right) \end{array}$

 $-c_1c_{23}s_5+c_5\left(-c_1c_4s_{23}+s_1s_4\right)\\-c_{23}s_1s_5-c_5\left(c_1s_4+c_4s_1s_{23}\right)\\c_{23}c_4c_5-s_{23}s_5$

 $\begin{aligned} &8c_1c_2-4c_1c_{23}s_5+8c_1c_{23}+4c_5\left(-c_1c_4s_{23}+s_1s_4\right)+3s_1\\ &-3c_1+8c_2s_1-4c_{23}s_1s_5+8c_{23}s_1-4c_5\left(c_1s_4+c_4s_1s_{23}\right)\\ &4c_{23}c_4c_5+8s_2-4s_{23}s_5+8s_{23}+13\end{aligned}$

Tabela de DH - Comau Smart5 SiX

i	θ_i	di	a _i	α_i
1	$ heta_{1}^{*}$	0	150	90°
2	$ heta_2^* - 90^\circ$	0	590	180°
3	$\theta_{3}^{*} + 90^{\circ}$	0	130	-90°
4	$ heta_{ extsf{4}}^{*}$	-647,07	0	-90°
5	$ heta_5^*$	0	0	90°
6	$ heta_6^*$	-95	0	0°

$$H_{o}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 450 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad H_{s}^{6} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} c_{1} & 0 & s_{1} & 150c_{1} \\ -s_{1} & 0 & c_{1} & -150s_{1} \\ 0 & -1 & 0 & 450 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{2} = \begin{bmatrix} s_{2} & -c_{2} & 0 & 590s_{2} \\ -c_{2} & -s_{2} & 0 & -590c_{2} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} -s_{3} & 0 & -c_{3} & -130s_{3} \\ c_{3} & 0 & -s_{3} & 130c_{3} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & -647.07 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{5} = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{6} = \begin{bmatrix} -c_{6} & -s_{6} & 0 & 0 \\ -s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & -1 & -95 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $-c_k(c_1s_1s_2, c_1 + c_2(-c_1c_2c_2, c_1 + s_1s_1)) - s_k(c_1c_2, c_2s_1 + c_1s_1)$ $-c_4\left(c_5\left(c_1s_4+c_4c_{(2-3)}s_1\right)-s_1s_5s_{(2-3)}\right)+s_6\left(-c_1c_4+c_{(2-3)}s_1s_4\right)$ $-c_{4}\left(c_{4}c_{5}s_{12...11}+c_{12...1184}\right)+s_{4}s_{4}s_{12...11}$

 $c_{0}\left(c_{1}c_{2},...,s_{4}+c_{4}s_{1}\right)-s_{6}\left(c_{1}s_{1}s_{2},...,s_{4}+c_{5}\left(-c_{1}c_{4}c_{2},...+s_{4}s_{4}\right)\right)$ $-c_6\left(-c_1c_4+c_{(2-3)}s_1s_4\right)-s_4\left(c_5\left(c_1s_4+c_4c_{(2-3)}s_1\right)-s_1s_5s_{(2-3)}\right)$ $-c_0s_4s_{(2..3)} - s_0 (c_4c_5s_{(2..3)} + c_{(2..3)}s_5)$

 $c_1c_2s_3s_3s_4 - s_5\left(-c_1c_4c_3s_3s_4 + s_1s_4\right)$ $-c_1s_1s_{(2-3)} - s_1(c_1s_4 + c_4c_{(2-3)}s_1)$ $-c_4s_1s_{(2..3)} + c_5c_{(2..3)}$

 $95c_1c_2s_{22...n} + c_1\left(-130.0c_{22...n} + 590.0s_1 + 647.07s_{22...n} + 150.0\right) - 95s_1\left(-c_1c_2c_{22...n} + s_1s_4\right)$ $-95c_5s_1s_{(2-3)} - s_1\left(-130.0c_{(2-3)} + 590.0s_2 + 647.07s_{(2-3)} + 150.0\right) - 95s_5\left(c_1s_4 + c_4c_{(2-3)}s_1\right)$ $590.0c_2 - 95.0c_4s_4s_{(2\dots 3)} + 95.0c_5c_{(2\dots 3)} + 647.07c_{(2\dots 3)} + 130.0s_{(2\dots 3)} + 450.0$

Questão de Prova: Soldagem em Plano Inclinado

Calcular as velocidades máximas de cada junta durante a soldagem do arco \overline{AB} .

- $o_n^0 = [-5, 3, 2]^T$
- O comprimento do arco de solda $\overline{AB} = \frac{3}{4}a$
- a = 3

Singularidades

- Singularidades representam configurações a partir das quais certas direções de movimento tornam-se restringidas.
- Em singularidades, as velocidades limitadas do efetor final podem corresponder a ilimitadas velocidades das juntas.
- Nas singularidades, as forças e torques limitados do efetor final podem corresponder a torques de junta ilimitados.
- Singularidades geralmente (mas nem sempre) correspondem a pontos no limite do espaço de trabalho do manipulador, ou seja, aos pontos de alcance máximo do manipulador.
- Singularidades correspondem a pontos no espaço de trabalho do manipulador que podem ser inacessível sob pequenas perturbações dos parâmetros do link, como comprimento, deslocamento, etc.
- Perto de singularidades não existirá solução única para a cinemática inversa problema. Em tais casos pode não haver solução ou pode haver infinitas soluções.

Desacoplamento de Singularidades

$$\det(J(q)) = 0$$
 $J = [J_P \mid J_O] = \left[\frac{J_{11}}{J_{21}} \mid \frac{J_{12}}{J_{22}} \right]$ $\det(J) = \det(J_{11})\det(J_{22})$

Tipos de Singularidades

Singularidades Internas

Ocorre quando há diversas soluções para um mesmo ângulo, na cinemática inversa.

Singularidades Externas

Ocorre quando, a partir de uma posição atual, há alguma restrição de movimento, em alguma direção.

Singularidades de Punho

Singularidades de Braço

Singularidades em Manipuladores Cotovelares

Singularidades em Manipuladores Cotovelares

Singularidades em Manipuladores Cotovelares

Singularidades em Manipuladores Esféricos

Singularidades no Manipulador SCARA

Referências

Spong, M. W., Hutchinson, S., and Vidyasagar, M. (2006).

Robot Modeling and Control.

Wiley, 2nd edition.