

Decizie și Estimare în Prelucrarea Informației

Capitolul II. Elemente de teorie statistică a detecției

Introducere

- Detecția semnalelor = a decide care semnal este prezent dintre două sau mai multe posibilități
 - ▶ inclusiv că nu există nici un semnal (este 0)
- Avem la dispoziție observații cu zgomot
 - semnalele sunt afectate de zgomot
 - zgomotul este aditiv (se adună la semnalul original)

Schema bloc a detecției semnalelor

Figure 1: Signal detection model

Continut:

- ightharpoonup Sursa de informație: generează mesajele a_n cu probabilitățile $p(a_n)$
- Generator: generează semnalele diferite $s_1(t), \dots s_n(t)$
- Modulator: transmite semnalul $s_n(t)$ la mesajul a_n
- Canal: adaugă zgomot aleator
- **E**santionare: ia esantioane din semnalul $s_n(t)$
- ightharpoonup Receptor: **decide** ce mesaj a_n s-a fost receptionat
- Utilizator: primește mesajele recuperate

Scenarii practice

- Transmisie de date
 - ▶ nivele constante de tensiune (de ex. $s_n(t)$ = constant 0 sau 5V)
 - modulație PSK (Phase Shift Keying): $s_n(t) = \text{cosinus cu aceeași}$ frecvență dar faze inițiale diferite
 - modulație FSK (Frequency Shift Keying): $s_n(t) = \text{cosinus cu frecvențe}$ diferite
 - modulație OFDM (Orthogonal Frequency Division Multiplexing): caz particular de FSK

Radar

- se emite un semnal; în cazul unui obstacol, semnalul se reflectă înapoi
- receptorul așteaptă posibilele reflecții ale semnalului emis și decide
 - nu este prezentă o reflecție -> nici un obiect
 - semnalul reflectat este prezent -> obiect detectat

- ▶ Decizie între mai mult de două semnale
- Numărul de eșantioane (observații):
 - un singur eșantion
 - mai multe esantioane
 - observarea întregului semnal continuu, pentru un timp T

Detecția unui semnal cu 1 eșantion

- ► Cel mai simplu caz: detecția unui semnal afectat de zgomot, folosind un singur eșantion
 - ▶ două mesaje a₀ și a₁
 - mesajele sunt modulate cu semnalele $s_0(t)$ și $s_1(t)$
 - **pentru** a_0 : se transmite $s(t) = s_0(t)$
 - **p**entru a_1 : se transmite $s(t) = s_1(t)$
 - \triangleright peste semnal se suprapune zgomot aditiv, alb, n(t)
 - ightharpoonup se receptionează un semnal cu zgomot, r(t) = s(t) + n(t)
 - ightharpoonup eșantionarea preia un singur eșantion la timpul t_0 , $r(t_0)$
 - decizie: pe baza $r(t_0)$, care semnal a fost cel transmis?

Ipoteze și decizii

- Există două ipoteze:
 - $ightharpoonup H_0$: semnalul adevărat este $s(t) = s_0(t)$ (s-a transmis a_0)
 - $ightharpoonup H_1$: semnalul adevărat este $s(t) = s_1(t)$ (s-a transmis a_1)
- Receptorul poate lua una din două decizii:
 - \triangleright D_0 : receptorul decide că semnalul corect este $s(t) = s_0(t)$
 - ▶ D_1 : receptorul decide că semnalul corect este $s(t) = s_1(t)$

Rezultate posibile

- Există 4 situații posibile:
 - 1. **Rejecție corectă**: ipoteza corectă este H_0 , decizia este D_0
 - Probabilitatea este $P_r = P(D_0 \cap H_0)$
 - 2. **Alarmă falsă** (detecție falsă): ipoteza corectă este H_0 , decizia este D_1
 - Probabilitatea este $P_{af} = P(D_1 \cap H_0)$
 - 3. **Pierdere** (rejecție falsă): ipoteza corectă este H_1 , decizia este D_0
 - Probabilitatea este $P_p = P(D_0 \cap H_1)$
 - 4. **Detecție corectă**: ipoteza corectă este H_1 , decizia este D_1
 - Probabilitatea este $P_d = P(D_1 \cap H_1)$

Originea termenilor

- Terminologia are la origine aplicații radar (prima aplicație a teoriei detecției)
 - un semnal se emite de către sursă
 - semnal recepționat = o posibilă reflecție din partea unei ținte, puternic afectată de zgomot
 - $ightharpoonup H_0 = \text{nu există un obiect, nu există semnal reflectat (doar zgomot)}$
 - $ightharpoonup H_1 = ext{există un obiect, există un semnal reflectat}$
 - de aceea numele celor 4 scenarii sugerează "detecția unui obiect"

Zgomotul

- În general se consideră zgomot aditiv, alb, staționar
 - ► aditiv = zgomotul se adună ci semnalul
 - ► alb = două eșantioane distincte sunt necorelate
 - staționar = are aceleași proprietăți statistice la orice moment de timp
- \triangleright Semnalul de zgomot n(t) este necunoscut
 - este o realizare a unui proces aleator
 - se cunoaște doar distribuția sa, nu și valorile particulare

Eșantionul preluat la recepție

- La recepție se primește semnalul r(t) = s(t) + n(t)
 - $ightharpoonup s(t) = \text{semnalul original, fie } s_0(t), \text{ fie } s_1(t)$
 - ightharpoonup n(t) = semnalul de zgomot necunoscut
- lacktriangle Valoarea eșantionului luat la momentul t_0 este $r(t_0)=s(t_0)+n(t_0)$
 - $ightharpoonup s(t_0) = \text{fie } s_0(t_0), \text{ fie } s_1(t_0)$
 - $ightharpoonup n(t_0)$ este un eșantion din semnalul de zgomot

Eșantionul preluat la recepție

- Eșantionul $n(t_0)$ este o variabilă aleatoare
 - fiind un eșantion de zgomot (un eșantion dintr-un proces aleator)
 - presupunem o v.a. continuă, adică intervalul valorilor posibile e continuă
- $ightharpoonup r(t_0) = s(t_0) + n(t_0 = ext{o constant} + ext{o variabilă aleatoare})$
 - este de asemenea o variabilă aleatoare
 - $ightharpoonup s(t_0)$ este o constantă, egală fie cu $s_0(t_0)$, fie cu $s_1(t_0)$
- ► Care e distribuția lui $r(t_0)$?
 - o constantă + o v.a. = aceeași distribuție ca v.a., dar translată cu valoarea constantei

Funcții de plauzibilitate

- Fie distribuția zgomotului w(x), cunoscută
 - aceasta este distribuția v.a. n(t₀)
- lacksquare Distribuția lui $r(t_0)=s(t_0)+n(t_0)=w(x)$ translată cu $s(t_0)$
- lacktriangledawn În ipoteza H_0 , distribuția eșantionului este $w(r|H_0)=w(x)$ translată cu $s_0(t_0)$
- $lack {f \hat I}$ n ipoteza H_1 , distribuția eșantionului este $w(r|H_1)=w(x)$ translată cu $s_1(t_0)$
- Distribuțiile $w(r|H_0)$ și $w(r|H_1)$ se numesc distribuții condiționate sau funcțiile de plauzibilitate
 - "|" înseamnă "condiționat de", "dat fiind"
 - adică dat fiind una sau cealaltă dintre ipoteze
 - r reprezintă necunoscuta funcției

Criteriul plauzibilității maxime (Maximum Likelihood)

- Cum se decide care ipoteză este adevărată, pe baza eșantionului observat $r = r(t_0)$?
- **Criteriul plauzibilității maxime**: se alege ipoteza care este **cea mai plauzibilă** a fi generat eșantionul observat $r = r(t_0)$
 - ightharpoonup se alege valoarea maximă dintre $w(r(t_0)|H_0)$ și $w(r(t_0)|H_1)$
 - în engleză: Maximum Likelihood (ML)
- Criteriul ML exprimat la un raport de plauzibilitate:

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

riteriul este evaluat pentru eșantionul observat $r = r(t_0)$

Exemplu: zgomot gaussian

- ► Fie cazul în care zgomotul are distribuție normală
- ► La tablă:
 - schiță a celor două distribuții condiționate $w(r|H_0)$ și $w(r|H_1)$
 - discuție: ce decizie se ia pentru diferite valori ale lui r
 - discuție: care este pragul T pentru decizii

Zgomot cu distribuție normală (AWGN)

- lacktriangle Caz particular: zgomotul are distribuția normală $\mathcal{N}(0,\sigma^2)$
 - zgomot de tip AWGN
- ► Raportul de plauzibilitate este $\frac{w(r|H_1)}{w(r|H_0)} = \frac{e^{-\frac{(r-s_1(t_0))^2}{2\sigma^2}}}{e^{-\frac{(r-s_0(r_0))^2}{2\sigma^2}}} \underset{H_0}{\overset{H_1}{\gtrsim}} 1$
- Pentru distribuția normală, e preferabil să aplicăm logaritmul natural
 - logaritmul este o funcție monoton crescătoare, deci nu schimbă rezultatul comparatiei
 - ▶ dacă A < B, atunci log(A) < log(B)
- Valoarea log-likelihood al unui observații = logaritmul plauzibilității (likelihood)
 - de obicei se folosește logaritmul natural, dar poate fi în orice bază

Raportul "log-likelihood" în cazul ML

Aplicarea logaritmului natural la ambii termeni ai relației conduce la:

$$-(r-s_1(t_0))^2+(r-s_0(t_0))^2 \stackrel{H_1}{\underset{H_0}{\gtrless}} 0$$

► Care este echivalent cu:

$$|r-s_0(t_0)| \stackrel{H_1}{\underset{H_0}{\gtrless}} |r-s_1(t_0)|$$

- Notă: $|r A| = \text{distanța dintre } r \neq A$
 - |r| = distanța de la r la 0
- lacktriangle Aşadar, se alege distanța minimă dintre $r(t_0)$ și $s_1(t_0)$ sau $s_0(t_0)$

Criteriul ML pentru zgomot gaussian

- Criteriul ML **pentru zgomot gaussian**: ipoteza se alege pe baza **celei mai apropiate** valori dintre $s_0(t_0)$ și $s_1(t_0)$ față de eșantionul $r = r(t_0)$
 - principiul cel mai apropiat vecin ("nearest neighbor")
 - un principiu foarte general, întâlnit în multe alte scenarii
 - un receptor ce folosește ML se mai numește receptor de distanță minimă ("minimum distance receiver")

Etape pentru decizia pe baza ML

- 1. Se schițează cele două distribuții condiționate $w(r|H_0)$ și $w(r|H_1)$
- 2. Se determină care dintre cele două funcții este mai mare în dreptul valorii eșantionului observat $r = r(t_0)$

Etape pentru decizia pe baza ML, zgomot gaussian

- ▶ Doar dacă zgomotul este gaussian, identic pentru toate ipotezele:
 - 1. Se determină $s_0(t_0)=$ valoarea semnalului original, în absența zgomotului, în cazul ipotezei H_0
 - 2. Se determină $s_1(t_0)$ = valoarea semnalului original, în absența zgomotului, în cazul ipotezei H_1
 - 3. Se compară cu eșantionul observat $r(t_0)$, se alege cea mai apropiată valoare

Decizie pe bază de prag

- Alegerea valorii celei mai apropiate = identic cu compararea r cu un prag $T = \frac{s_0(t_0) + s_1(t_0)}{2}$
 - ▶ i.e. dacă cele doup valori sunt 0 și 5, decidem prin compararea lui r cu 2.5
- În general, pragul = punctul de intersecție al celor două distribuții conditionate

Exercițiu

- ▶ Un semnal poate avea două valori posibile, 0 sau 5. Semnalul este afectat de zgomot alb, gaussian, cu distribuția \mathcal{N} ($\mu=0,\sigma^2=2$). Receptorul ia un singur eșantion, cu valoarea r=2.25
 - 1. Scrieți expresiile celor două distribuții condiționate, și reprezentați-le
 - 2. Ce decizie se ia pe baza criteriului plauzibilității maxime?
 - 3. Dar dacă semnalul 0 este afectat de zgomot gaussian $\mathcal{N}(0,0.5)$, iar semnalul 5 de zgomot uniform $\mathcal{U}[-4,4]$?
 - 4. Repetati b. si c. dacă valoarea 0 se înlocuieste cu -1

Regiuni de decizie

- ▶ **Regiuni de decizie** = intervalul de valori ale eșantionului *r* pentru care se ia o anumită decizie
- Regiunea de decizie R_0 = intervalul de valori ale lui r care conduc la decizia D_0
- Regiunea de decizie $R_1=$ intervalul de valori ale lui r care conduc la decizia D_1
- Regiunile de decizie acoperă întreg domeniul de valori ale lui r (toată axa reală)
- Exemplu: indicați regiunile de decizie la exercițiul anterior
 - $ightharpoonup R_0 = [-\infty, 2.5]$
 - ▶ $R_1 = [2.5, \infty]$

Funcția de plauzibilitate

- Să notăm în mod generic ipotezele cu H_i , și semnalele $s_i(t)$, unde i este 0 sau 1
- ▶ Să considerăm distribuția condiționată $w(r|H_i)$
 - fie cea de le exemplul anterior:

$$w(r|H_i) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(r-s_i(t_0))^2}{2\sigma^2}}$$

- Care este variabila necunoscută în această expresie?
 - ▶ nu r, din moment ce acesta ni se dă în problemă
 - i este necunoscuta

Terminologie: probabilitate și plauzibilitate

- ▶ În aceeași expresie matematică a funcției de distribuție:
 - ▶ dacă se cunosc parametrii statistici (de ex. μ , σ , H_i), și necunoscuta este valoarea însăși (de ex. r, x) atunci funcția reprezintă densitatea de **probabilitate**
 - ▶ dacă se cunoaște valoarea însăși (de ex. r, x), și necunoscuta o reprezintă un parametru statistic (de ex. μ , σ , i), atunci avem o funcție de plauzibilitate

Funcția de plauzibilitate

- ▶ În cazul detecției semnalelor, funcția $w(r|H_i) = f(i)$ este o funcție de plauzibilitate
 - necunoscuta este i
- Funcția este definită doar pentru i = 0 și i = 1
 - ightharpoonup sau, în general, pentru i= câte ipoteze are problema
- ► Criteriul ML = se alege *i* pentru care această funcție este maximă

Decizia
$$D_i = \arg \max_i w(r|H_i)$$

- ► Notatie:
 - ightharpoonup arg max f(x) = argumentul x pentru care funcția f(x) este maximă
 - $ightharpoonup \max f(x) = \text{valoarea maximă a funcției } f(x)$
 - a se vedea exemplul grafic la tablă
- Criteriul plauzibilității maxime înseamnă "se alege i care maximizează funcția de plauzibilitate $f(i) = w(r|H_i)$ "

- Dacă zgomotul are altă distribuție?
 - Se schiţează distribuţiile condiţionate
 - ▶ Se evaluează pentru $r = r(t_0)$
 - ► Criteriul ML = se alege cea mai mare funcție $w(r|H_i)$ în punctul r dat
- Regiunile de decizie sunt date de punctețe de intersecție ale distributiilor conditionate
 - Pot fi mai multe intersectări, în general, deci mai multe praguri

- Dacă zgomotul are distribuție diferită în ipoteza H_0 față de ipoteza H_1 ?
- Similar:
 - ► Se schițează distribuțiile condiționate
 - ightharpoonup Se evaluează pentru $r = r(t_0)$
 - lacktriangle Criteriul ML = se alege cea mai mare funcție $w(r|H_i)$ în punctul r dat

- ▶ Dacă cele două semnale $s_0(t)$ și $s_1(t)$ sunt constante / nu sunt constante?
- Nu contează forma semnalelor
 - Tot ce contează sunt valorile celor două semnale la momentul de esantionare t_0 :
 - $ightharpoonup s_0(t_0)$
 - $ightharpoonup s_1(t_0)$

- Dacă avem mai mult de 2 ipoteze?
- ► Se extinde rationamentul la *n* ipoteze
 - Avem *n* semnale posibile $s_0(t), \ldots s_{n-1}(t)$
 - Avem *n* valori diferite $s_0(t_0)$, ... $s_{n-1}(t_0)$
 - Avem *n* distribuții condiționate $w(r|H_i)$
 - Pentru $r = r(t_0)$ dat, se alege valoarea maximă dintre cele n valori $w(r|H_i)$

- Dacă se iau mai multe eșantioane din semnale?
- ▶ Va fi tratat separat într-un subcapitol ulterior

Exercițiu

▶ Un semnal poate avea patru valori posibile: -6, -2, 2, 6. Fiecare valoare durează timp de o secundă. Semnalul este afectat de zgomot alb cu distribuție normală. Receptorul ia un singur eșantion pe secundă. Folosind criteriul plauzibilității maxime, decideți ce semnal s-a transmis, dacă receptorul primește eșantioanele următoare:

$$4, 6.6, -5.2, 1.1, 0.3, -1.5, 7, -7, 4.4$$

Probabilități condiționate

- Putem calcula probabilitățile condiționate ale celor 4 rezultate posibile
- ► Fie regiunile de decizie:
 - ▶ R_0 : dacă $r \in R_0$, decizia este D_0 ▶ R_1 : daca $r \in R_1$, decizia este D_1
- Probabilitatea conditionată a rejectiei corecte
 - ightharpoonup = probabilitatea de a lua decizia D_0 când ipoteza este H_0
 - ightharpoonup = probabilitatea ca r să fie în R_0 , calculată pe distribuția $w(r|H_0)$

$$P(D_0|H_0) = \int_{R_0} w(r|H_0)dx$$

- ▶ Probabilitatea conditionată a alarmei false
 - ightharpoonup = probabilitatea de a lua decizia D_1 când ipoteza este H_0
 - ightharpoonup = probabilitatea ca r să fie în R_1 , calculată pe distribuția $w(r|H_0)$

$$P(D_1|H_0) = \int_{P_0} w(r|H_0) dx$$

Probabilități condiționate

- Probabilitatea condiționată de pierdere
 - ightharpoonup = probabilitatea de a lua decizia D_0 când ipoteza este H_1
 - ightharpoonup = probabilitatea ca r să fie în R_0 , calculată pe distribuția $w(r|H_1)$

$$P(D_0|H_1) = \int_{R_0} w(r|H_1) dx$$

- ▶ Probabilitatea condiționată a detecției corecte
 - lacktriangle = probabilitatea de a lua decizia D_1 când ipoteza este H_1
 - ightharpoonup = probabilitatea ca r să fie în R_1 , calculată pe distribuția $w(r|H_1)$

$$P(D_1|H_1) = \int_{R_1} w(r|H_1) dx$$

Probabilități condiționate

- ► Relații între probabilitățile condiționate
 - suma rejecție corectă + alarmă falsă = 1
 - ▶ suma pierdere + detecție corectă = 1
 - De ce? Justificați.

Probabilități condiționate

Figure 2: Probabilităti conditionate

- Ignorați textul, contează zonele colorate
- ► [sursa: hhttp://gru.stanford.edu/doku.php/tutorials/sdt]*

Probabilitățile celor 4 rezultate

- Probabilitățile condiționate sunt calculate dat fiind una sau alta dintre ipoteze
- Nu includ și probabilitățile ipotezelor înselor
 - ▶ adică, $P(H_0)$ = probabilitatea de a avea ipoteza H_0
 - $ightharpoonup P(H_1) = ext{probabilitatea de a avea ipoteza } H_1$
- Pentru a le lua în calcul, se multiplică cu $P(H_0)$ sau $P(H_1)$
 - $P(H_0)$ și $P(H_1)$ se numesc probabilitățile **inițiale** (sau **a priori**) ale ipotezelor

Reamintire (TCI): regula lui Bayes

► Reamintire (TCI): regula lui Bayes

$$P(A \cap B) = P(B|A) \cdot P(A)$$

- Interpretare
 - Probabilitatea P(A) este extrasă din P(B|A)
 - ightharpoonup P(B|A) nu mai conține nici o informație despre P(A), șansele ca A chiar să aibă loc
 - Exemplu: $P(gol \mid sut \mid a poartă) = \frac{1}{2}$. Câte goluri se înscriu?

Exercițiu

- ▶ Un semnal constant poate avea două valori posibile, 0 sau 5. Semnalul este afectat de zgomot gaussian \mathcal{N} ($\mu=0,\sigma^2=2$). Receptorul decide pe baza criteriului plauzibilității maxime, folosind un singur eșantion din semnal.
 - 1. Calculați probabilitatea condiționată a alarmei false
 - 2. Calculați probabilitatea condiționată de pierdere
 - 3. Dacă $P(H_0) = \frac{1}{3}$ și $P(H_1) = \frac{2}{3}$, calculați probabilitatea rejecției corecte și a detecției corecte (nu cele condiționate)

Dezavantaje ale criteriului plauzibilității maxime

- Criteriul ML compară distribuțiile condiționate ale eșantionului observat
 - ► condiționate de ipotezele H₀ sau H₁
- ightharpoonup Condiționarea de ipotezele H_0 și H_1 ignoră probabilitatea celor două ipoteze H_0 și H_1
 - Decizia e aceeași indiferent dacă $P(H_0) = 99.99\%$ și $P(H_1) = 0.01\%$, sau invers
- ▶ Dacă $P(H_0) > P(H_1)$, am vrea să împingem pragul de decizie înspre H_1 , și vice-versa
 - Pentru că este mai probabil ca semnalul să fie $s_0(t)$
 - ightharpoonup și de aceea vrem să "favorizăm"/"încurajăm" decizia D_0
- Avem nevoie de un criteriu mai general . . .

Criteriul probabilității minime de eroare

- Se iau în calcul probabilitățile $P(H_0)$ și $P(H_1)$
- Se urmărește minimizarea probabilității totale de eroare P_e
 - ► erori = alarme false si ratări
- ► Trebuie să găsim regiunile de decizie R₀ și R₁

Probabilitatea de eroare

Probabilitatea unei alarme false

$$P(D_1 \cap H_0) = P(D_1|H_0) \cdot P(H_0)$$

$$= \int_{R_1} w(r|H_0) dx \cdot P(H_0)$$

$$= (1 - \int_{R_0} w(r|H_0) dx \cdot P(H_0)$$

Probabilitatea unei ratări

$$P(D_0 \cap H_1) = P(D_0|H_1) \cdot P(H_1)$$

= $\int_{P_0} w(r|H_1) dx \cdot P(H_1)$

Suma lor este

$$P_e = P(H_0) + \int_{-\infty}^{T} [w(r|H_1) \cdot P(H_1) - w(r|H_0) \cdot P(H_0)] dx$$

Probabilitatea de eroare minimă

- lacktriangle Urmărim minimizarea P_e , adică să minimizăm integrala
- Pentru a minimiza integrala, se alege R_0 astfel încât pentru toți $r \in R_0$, termenul din integrala este **negativ**
 - ▶ integrarea pe întregul interval în care o funcție este negativă conduce la valoarea minimă
- Aşadar, când $w(r|H_1) \cdot P(H_1) w(r|H_0) \cdot P(H_0) < 0$ avem $r \in R_0$, adică decizia D_0
- ▶ Invers, dacă $w(r|H_1) \cdot P(H_1) w(r|H_0) \cdot P(H_0) > 0$ avem $r \in R_1$, adică decizia D_1
- Astfel

$$w(r|H_{1}) \cdot P(H_{1}) - w(r|H_{0}) \cdot P(H_{0}) \underset{H_{0}}{\overset{H_{1}}{\gtrless}} 0$$

$$\frac{w(r|H_{1})}{w(r|H_{0})} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} \frac{P(H_{0})}{P(H_{1})}$$

Interpretare

- Similar cu criteriul plauzibilității maxime, dar depinde de probabilitățile celor două ipoteze (cazuri, simboluri)
 - Când una dintre ipoteze este mai probabilă decât cealaltă, pragul este împins în favoarea sa, înspre cealaltă ipoteză
- De asemenea bazat pe raportul de plauzibilitate, ca și primul criteriu

Criteriul probabilității minime de eroare - zgomot gaussian

ightharpoonup Presupunând că zgomotul este gaussian (normal), $\mathcal{N}(0,\sigma^2)$

$$w(r|H_1) = e^{-\frac{(r-A)^2}{2\sigma^2}}$$

 $w(r|H_0) = e^{-\frac{r^2}{2\sigma^2}}$

► Se aplică logaritmul natural

$$-\frac{(r-A)^2}{2\sigma^2} + \frac{r^2}{2\sigma^2} \underset{H_0}{\overset{H_1}{\geqslant}} \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

Echivalent

$$2rA - A^{2} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} 2\sigma^{2} \cdot \ln\left(\frac{P(H_{0})}{P(H_{1})}\right)$$

$$r \underset{H_{0}}{\overset{H_{1}}{\gtrless}} \frac{A^{2} + 2\sigma^{2} \cdot \ln\left(\frac{P(H_{0})}{P(H_{1})}\right)}{2A}$$

Regiuni de decizie

- ightharpoonup Se compară eșantionul tot cu un prag T, dar valoarea acestuia este împinsă înspre ipoteza mai puțin probabilă
 - ► T depinde de raportul $\frac{P(H_0)}{P(H_1)}$
- Regiuni de decizie
 - $ightharpoonup R_0 = (-\infty, T]$
 - $ightharpoonup R_1 = [T, \infty)$
 - pot fi diferite pentru alte tipuri de zgomot

Exerciții

- O sursă de informație furnizează două mesaje cu probabilitățile $p(a_0)=\frac{2}{3}$ și $p(a_1)=\frac{1}{3}$. Mesajele se transmit prin semnale constante cu valorile -5 (a_0) și 5 (a_1) . Semnalele sunt afectate de zgomot alb cu distribuție gaussiană $\mathcal{N}(0,\sigma^2=1)$ Receptorul ia un singur eșantion cu valoarea r. Decizia se face prin compararea valorii r cu un prag T, astfel: dacă r < T se decide că s-a transmis mesajul a_0 , altfel se decide mesajul a_1 .
 - 1. Să se găsească valoarea pragului $\mathcal T$ conform criteriul probabilității minime de eroare
 - 2. Dar dacă semnalul 5 este afectat de zgomot uniform $\mathcal{U}[-4,4]$?
 - 3. Calculați probabilitatea unei alarme false și a unei ratări

Criteriul riscului (costului) minim

- Dacă ne afectează mai mult un anume tip de erori (de ex. alarme false) decât celelalte?
- Criteriul riscului (sau costului) minim: deciziile au un cost, se minimizează costul mediu
 - $ightharpoonup C_{ij} = {\sf costul}$ deciziei D_i când ipoteza adevărată este H_j
 - $ightharpoonup C_{00} = {\sf costul}$ unei rejecții corecte
 - $ightharpoonup C_{10} = costul unei alarme false$
 - $ightharpoonup C_{01} = \text{costul unei ratări}$
 - $ightharpoonup C_{11} = \text{costul unei detecții corecte}$
- ▶ Definim **riscul** = costul mediu

$$R = C_{00}P(D_0 \cap H_0) + C_{10}P(D_1 \cap H_0) + C_{01}P(D_0 \cap H_1) + C_{11}P(D_1 \cap H_1)$$

► Criteriul riscului minim: se minimizează riscul R

Calcule

- Demonstrație la tablă
 - se folosește regula lui Bayes
- Concluzie: regula de decizie este

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \frac{(C_{10} - C_{00})p(H_0)}{(C_{01} - C_{11})p(H_1)}$$

Interpretare

- Similar cu primele două criterii, bazat tot pe raportul de plauzibilitate
- ► Atât probabilitățile cât și costurile pot împinge pragul *T* într-o parte sau alta
- ▶ Caz particular: dacă $C_{10} C_{00} = C_{01} C_{11}$, se reduce la criteriul probabilității de eroare minime
 - de ex.: dacă $C_{00} = C_{11} = 0$ și $C_{10} = C_{01}$

În zgomot gaussian

- Dacă zgomotul este gaussian (normal), se aplică logaritmul natural, ca la celelalte criterii
- ► Se obține valoarea pragului *T*:

$$-(r-A)^{2} + r^{2} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} \underbrace{2\sigma^{2} \cdot \ln\left(\frac{(C_{10} - C_{00})p(H_{0})}{(C_{01} - C_{11})p(H_{1})}\right)}_{C}$$

$$r \underset{H_{0}}{\overset{H_{1}}{\gtrless}} \underbrace{\frac{A^{2} + 2\sigma^{2} \cdot \ln\left(\frac{(C_{10} - C_{00})p(H_{0})}{(C_{01} - C_{11})p(H_{1})}\right)}_{2A}}_{2A}$$

În zgomot gaussian

▶ În general, pentru un raport de plauzibilitate comparat cu K, $\frac{w(r|H_1)}{w(r|H_0)} \underset{L}{\overset{H_1}{\geqslant}} K$, pragul este

$$T = \frac{A^2 + 2\sigma^2 \cdot \ln K}{2A}$$

Exemplu

lacktriangle Exemplu la tablă: 0 / 5, zgomot alb $N(0,\sigma^2)$, un eșantion

Criteriul Neymar-Pearson

- ▶ Criteriul Neymar-Pearson: se maximizează probabilitatea de detecție $(P(D_1 \cap H_1))$ păstrând probabilitatea alarmei false sub o limită fixată $(P(D_1 \cap H_0) \leq \lambda)$
- ▶ Se deduce pragul T din constrângerea la limită $P(D_1 \cap H_0) = \lambda$

Exercițiu

- O sursă de informație produce două mesaje cu probabilitățile $p(a_0) = \frac{2}{3}$ și $p(a_1) = \frac{1}{3}$.
- Mesajele sunt codate ca semnale constante cu valorile -5 (a_0) și 5 (a_1) .
- ▶ Semnalele sun afectate de zgomot alb cu distribuție triunghiulară în intervalul [-5,5].
- ightharpoonup Receptorul ia un singur eșantion r.
- ▶ Decizia se ia prin compararea r cu un prag T: dacp r < T se decide că mesajul este a_0 , altfel este a_1 .
 - 1. Găsiți pragul T conform criteriului Neymar-Pearson, pentru $P_{fa} \leq 10^{-2}$
 - 2. Care este probabilitatea de detecție corectă?

Două nivele de semnal nenule

- Dacă semnalul $s_0(t)$ nu este 0, ci are o altă valoare constantă $s_0(t) = B$?
- Distribuția zgomotului $w(r|H_0)$ va fi centrată pe B în loc de 0
- ▶ În rest, totul rămâne la fel
- Performanțele sunt determinate de diferența dintre cele două valori (A-B)
 - ightharpoonup cazul $s_0=0$, $s_1=A$ este identic cu cazul $s_0=-\frac{A}{2}$, $s_1=\frac{A}{2}$
- ► Valabil pentru toate criteriile de decizie

Semnale diferențiale sau unipolare

- ► Semnal unipolar: o valoare este 0, cealaltă este nenulă
 - $ightharpoonup s_0 = 0, \ s_1 = A$
- ➤ Semnal diferențial: două valori nenule cu semne contrare, aceeași valoare absolută
 - $s_0 = -\frac{A}{2}$, $s_1 = \frac{A}{2}$
- Care metodă este mai bună?

Semnale diferențiale sau unipolare

- ► Cu aceeași diferență între nivele, performanțele deciziei sunt identice
- Dar puterea medie a semnalelor diferă
- Pentru semnale diferențiale: $P = \left(\pm \frac{A}{2}\right)^2 = \frac{A^2}{4}$
- Pentru semnale unipolare: $P = P(H_0) \cdot 0 + P(H_1)(A)^2 = \frac{A^2}{2}$
 - ightharpoonup presupunând probabilități egale $P(H_0)=P(H_1)=rac{1}{2}$
- Semnalul diferențial necesită putere la jumătate față de cel unipolar (mai bine)

Sumar: criterii de decizie

- Am văzut: decizie între două nivele constante, bazată pe 1 eșantion r
- Toate criteriile au la bază un test al raportului de plauzibilitate

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

- Criterii diferite conduc la valori diferite pentru K (pragul de plauzibilitate)
- ▶ În funcție de distribuția zgomotului, axa reală este împărțită în regiuni
 - regiunea R_0 : dacă r este aici, se decide D_0
 - regiunea R_1 : dacă r este aici, se decide D_1
 - ightharpoonup de ex. $R_0=(-\infty,\frac{A+B}{2}],\ R_1=(\frac{A+B}{2},\infty)$ (pentru crit. plauz. max)
- Pentru zgomot gaussian, pragul este $T = \frac{A^2 + 2\sigma^2 \cdot \ln K}{2A}$

Caracteristica de operare a receptorului (ROC)

- Performanța unui receptor este ilustrată cu un grafic numit "Caracteristica de operare a receptorului" ("Receiver Operating Characteristic", ROC)
- Reprezintă probabilitatea detecției corecte $P_d = P(D_1 \cap H_1)$ în funcție de probabilitatea alarmei false $P_{fa} = P(D_1 \cap H_0)$

Caracteristica de operare a receptorului (ROC)

- ightharpoonup Există întotdeauna un **compromis** între P_d și P_{fa}
 - ightharpoonup creșterea P_d implică și creșterea P_{fa}
 - Pentru a fi siguri că nu ratăm nici un semnal (creșterea P_d), plătim prin creșterea probabilității de alarme false
- Criterii diferite = diferite praguri K = diferite puncte pe grafic = compromisuri diferite
- Cum să creștem performanțele unui receptor?
 - ightharpoonup adică să creștem P_D menținând P_{fa} la aceeași valoare

Performanțele detecției în zgomot alb gaussian

- Considerăm probabilități egale $P(H_0) = P(H_1) = \frac{1}{2}$
- ▶ Deciziile se iau pe baza raportului de plauzibilitate

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

Probabilitatea detecției corecte este

$$P_{d} = P(D_{1}|H_{1})P(H_{1})$$

$$= P(H_{1}) \int_{T}^{\infty} w(r|H_{1})$$

$$= P(H_{1})(F(\infty) - F(T))$$

$$= \frac{1}{4} \left(1 - erf\left(\frac{T - A}{\sqrt{2}\sigma}\right)\right)$$

$$= Q\left(\frac{T - A}{\sqrt{2}\sigma}\right)$$

Performanțele detecției în zgomot alb gaussian

► Probabilitatea alarmei false este

$$egin{aligned} P_{\mathit{fa}} = & P(D_1|H_0)P(H_0) \ = & P(H_0)\int_{T}^{\infty} w(r|H_0) \ = & P(H_0)(F(\infty) - F(T)) \ = & rac{1}{4}\left(1 - erf\left(rac{T-0}{\sqrt{2}\sigma}
ight)
ight) \ = & Q\left(rac{T}{\sqrt{2}\sigma}
ight) \end{aligned}$$

- Rezultă că $\frac{T}{\sqrt{2}\sigma} = Q^{-1}(P_{fa})$
- ightharpoonup Înlocuind în P_d se obține

$$P_d = Q\left(\underbrace{Q^{-1}(P_{fa})}_{constant} - \frac{A}{\sqrt{2}\sigma}\right)$$

Raportul semnal zgomot

- ► Raportul semnal zgomot (SNR) =

 puterea semnalului original puterea zgomotului
- Puterea medie a unui semnal = valoarea pătratică medie = $\overline{X^2}$
 - Puterea semnalului original este $\frac{A^2}{2}$
 - lacktriangle Puterea zgomotului este $\overline{X^2}=\sigma^2$ (pentru valoare medie nulă $\mu=0$)
- În cazul nostru, $SNR = \frac{A^2}{2\sigma^2}$

$$P_d = Q\left(\underbrace{Q^{-1}(P_{fa})}_{constant} - \sqrt{SNR}\right)$$

- Pentru P_{fa} de valoare fixă, P_d crește odată cu SNR
 - Q este o functie monoton descrescătoare

Performanța depinde de SNR

Performanța receptorului crește odată cu creșterea SNR

SNR mare: performanță bunăSNR mic: performanță slabă

Figure 4: Performanțele detecției depind de SNR

[sursa: Fundamentals of Statistical Signal Processing, Steven Kay]

Decizii între ipoteze statistice

- ▶ Teoria statistică a detecției este utilă și în alte contexte în afară de detecția unor semnale propriu-zise
 - oriunde avem de ales între două ipoteze
- Decizia se face între două distribuții de probabilitate
 - indiferent ce semnificație au cele două distribuții
- ▶ În cazul detecției unui semnal constant, se alege între două distribuții care diferă doar prin valoarea medie, în general
 - o distribuție are valoarea medie 0, cealaltă A
- Dar se poate face decizie între distribuții care diferă prin alt parametru
 - valoarea medie, sau
 - varianta, or
 - forma distributiei, etc

Decizii între ipoteze statistice

- Exemplu: Un eșantion cu valoarea r=2.5 poate proveni dintr-o distribuție $\mathcal{N}(0, \sigma^2=1)$ (ipoteza H_0) sau dintr-o alta $\mathcal{N}(0, \sigma^2=2)$ (ipoteza H_1). Care ipoteză se consideră adevărată?
 - Ceea ce diferă este varianta, nu valoarea medie
- ► Se pot folosi exact aceleași criterii
 - ► Se desenează cele două distributii
 - ▶ Se calculează plauzibilitățile $w(r|H_0)$ și $w(r|H_1)$ for r
 - ▶ Se decide pe baza raportului de plauzibilitate, conform unui criteriu

II.3 Detecția unui semnal constant cu mai multe eșantioane

Eșantioane multiple dintr-un semnal constant

- Presupunem că avem mai multe eșantioane, nu doar unul
- ► Eșantioanele formează vectorul eșantioanelor

$$\mathbf{r} = [r_1, r_2, ... r_N]$$

- ▶ În ambele ipoteze, semnalul recepționat este un **proces aleator**
 - ► H₀: proces aleator cu valoarea medie 0
 - ► H₁: proces aleator cu valoarea medie A
- ▶ Dacă zgomotul este staționar și ergodic, semnalul recepționat este și el staționar și ergodic (semnalul = o constantă + zgomotul)
- Valorile vectorului **r** sunt descrise de **distribuția de ordin** N a procesului aleator, $w_N(\mathbf{r}) = w_N(r_1, r_2, ... r_N)$
- Dacă zgomotul este alb, momentele de timp când se iau eșantioanele nu contează

Plauzibilitatea vectorului de eșantioane

Se aplică aceleași criterii bazate pe raportul de plauzibilitate în cazul unui singur eșantion

$$\frac{w_N(\mathbf{r}|H_0)}{w_N(\mathbf{r}|H_1)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

- Observatii
 - r este un vector; prin el se consideră plauzibilitatea tuturor eșantioanelor
 - ightharpoonup ipotezele H_0 și H_1 sunt aceleași ca în cazul cu 1 eșantion
 - $w_N(\mathbf{r}|H_0)$ = plauzibilitatea vectorului \mathbf{r} în ipoteza H_0
 - $ightharpoonup w_N(\mathbf{r}|H_1) = \text{plauzibilitatea vectorului } \mathbf{r}$ în ipoteza H_1
 - ▶ valoarea lui K este dată de criteriul de decizie utilizat
- ► Interpretare: se alege ipoteza cea mai plauzibilă de a fi generat datele observate
 - ▶ identic ca la 1 eșantion, doar că acum datele = mai multe eșantioane

Descompunere pe fiecare eșantion

- ▶ Presupunând că zgomotul este alb, eșantioanele r_i sunt realizări independente ale aceleiași distribuții
- ▶ În acest caz, distribuția totală $w_N(\mathbf{r}|H_j)$ se poate descompune ca un produs

$$w_N(\mathbf{r}|H_j) = w(r_1|H_j) \cdot w(r_2|H_j) \cdot ... \cdot w(r_N|H_j)$$

- ▶ Termenii $w(r_i|H_i)$ sunt plauzibilitățile fiecărui eșantion în parte
 - ▶ de ex. plauzibilitatea obținerii vectorului [5.1,4.7,4.9] = plauzibilitatea obținerii lui $5.1 \times$ plauzibilitatea obținerii lui $4.7 \times$ plauzibilitatea obtinerii lui 4.9

Descompunere pe fiecare eșantion

Prin urmare, criteriile bazate pe raportul de plauzibilitate devin

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{w(r_1|H_1)}{w(r_1|H_0)} \cdot \frac{w(r_2|H_1)}{w(r_2|H_0)} ... \frac{w(r_N|H_1)}{w(r_N|H_0)} \underset{H_0}{\overset{H_1}{\gtrsim}} K$$

Raportul de plauzibilitate al unui vector de eșantioane = produsul rapoartelor plauzibilitate ale fiecărui eșantion

Caz particulae: AWGN

- AWGN = "Additive White Gaussian Noise" = Zgomot alb, gaussian, aditiv
- $\hat{I} \text{ in ipoteza } H_1: \ w(r_i|H_1) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(r_i-A)^2}{2\sigma^2}}$
- ▶ În ipoteza H_0 : $w(r_i|H_1) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{r_i^2}{2\sigma^2}}$
- ▶ Raportul de plauzibilitate al vectorului r

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{e^{-\sum_{i}(r_i-A)^2}}{e^{-\sum_{i}(r_i)^2}}$$

Se pot găsi trei interpretări ale raportului de plauzibilitate

Interpretarea 1: media eșantioanelor

▶ Interpretarea 1: media eșantioanelor

$$\frac{w_{N}(\mathbf{r}|H_{1})}{w_{N}(\mathbf{r}|H_{0})} = \frac{e^{-\frac{\sum (r_{i}-A)^{2}}{2\sigma^{2}}}}{e^{-\frac{\sum (r_{i})^{2}}{2\sigma^{2}}}}$$

$$= e^{-\frac{\sum (r_{i}-A)^{2} - \sum (r_{i})^{2}}{2\sigma^{2}}}$$

$$= e^{-\frac{\sum (r_{i}^{2} - 2r_{i}A + A^{2}) - \sum (r_{i})^{2}}{2\sigma^{2}}}$$

$$= e^{-\frac{\sum (-2r_{i}A + A^{2})}{2\sigma^{2}}}$$

$$= e^{-\frac{-2A \sum (r_{i}) + NA^{2}}{2\sigma^{2}}}$$

$$= e^{-\frac{-2A \sum (r_{i}) + A^{2}}{2\sigma^{2}}}$$

$$= e^{-\frac{-2A \sum (r_{i}) + A^{2}}{2\sigma^{2}}}$$

Media a N variabile aleatoare normale

Fie U_r = media aritmetică a esantioanelor r_i

$$U_r = \frac{1}{N} \sum r_i$$

- Care este distributia sa?
- Fie suma $S_r = \sum r_i$ a celor N eşantioane r_i
 - ▶ Din cap.l: suma unor v.a. normale cu distribuția $\mathcal{N}(\mu, \sigma^2)$ este:
 - cu distribuție normală $\mathcal{N}(\mu_S, \sigma_S^2)$, unde:
 - ightharpoonup valoarea medie: $\mu_S = N \cdot \mu$
 - ightharpoonup varianta: $\sigma_s^2 = N \cdot \sigma^2$
- Aşadar $U_r = \frac{1}{N}S_r$, din proprietățile mediei se obține:
 - \triangleright U_r are distributie normală, cu:

 - ▶ valoarea medie = $\frac{1}{N}\mu_S = \frac{1}{N}N\mu = \mu$ ▶ varianta = $\left(\frac{1}{N}\right)^2 \sigma_S^2 = \left(\frac{1}{N}\right)^2 N\sigma_S^2 = \frac{1}{N}\sigma^2$

Media a N variabile aleatoare normale

- Media a N realizări ale unei distribuții normale are tot o distribuție normală, cu
 - aceeasi valoare medie
 - varianta de N ori mai mică
- ▶ Dacă *N* este foarte mare, media aritmetică este un **estimator** foarte bun pentru valoarea medie a distribuției
 - distribuția sa devine foarte "îngustă" în jurul valorii medii

Interpretarea 1: media eșantioanelor

$$\frac{w_{N}(\mathbf{r}|H_{1})}{w_{N}(\mathbf{r}|H_{0})} = e^{-\frac{-2AU_{r}+A^{2}}{2\frac{\sigma^{2}}{N}}}$$

$$= \frac{e^{-\frac{U_{r}^{2}-2AU_{r}+A^{2}}{2\frac{\sigma^{2}}{N}}}}{e^{-\frac{U_{r}^{2}}{2\frac{\sigma^{2}}{N}}}}$$

$$= \frac{e^{-\frac{(U_{r}-A)^{2}}{2\frac{\sigma^{2}}{N}}}}{e^{-\frac{U_{r}^{2}-2\sigma^{2}}{2\frac{\sigma^{2}}{N}}}}$$

$$= \frac{e^{-\frac{(U_{r}-A)^{2}}{2\frac{\sigma^{2}}{N}}}}{e^{-\frac{U_{r}^{2}-2\sigma^{2}}{2\frac{\sigma^{2}}{N}}}}$$

$$= \frac{w(U_{r}|H_{1})}{w(U_{r}|H_{0})}$$

► Raportul de plauzibilitate a *N* eșantioane gaussiene = raportul de plauzibilitate al **mediei esantioanelor**

Interpretarea 1: media eșantioanelor

- ► Raportul de plauzibilitate a *N* eșantioane gaussiene = raportul de plauzibilitate al **mediei eșantioanelor**
 - media are o varianță mai mică, $\frac{1}{N}\sigma^2$, deci este mai precisă
 - e ca și cum distribuția zgomotului devine de N ori mai îngustă (datorită medierii)
- ▶ Detecția unui semnal constant cu N eșantioane este similaru cu detecția cu un singur eșantion, doar că
 - \triangleright se foloseste valoarea medie a esantioanelor r_i
 - distribuția sa este de N ori mai îngustă (varianța e de N ori mai mică)
- Când N crește, probabilitatea erorilor scade => performanțe îmbunătătite

Exercitiu

Exercițiu:

- ▶ Un semnal poate avea două valori, 0 (ipoteza H_0) sau 6 (ipoteza H_1). Semnalul este afectat de AWGN $\mathcal{N}(0, \sigma^2 = 1)$. Receptorul ia 5 eșantioane cu valorile $\{1.1, 4.4, 3.7, 4.1, 3.8\}$.
 - 1. Ce decizie se ia conform criteriului plauzibilității maxime?
 - 2. Ce decizie se ia conform criteriului probabilității minime de eroare. dacă $P(H_0)=2/3$ și $P(H_1)=1/3$?

Interpretarea 2: geometric

- Folositoare în special pentru criteriul plauzibilității maxime
- Raportul de plauzibilitate pentru vectorul r

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{e^{-\frac{\sum (r_i - A)^2}{2\sigma^2}}}{e^{-\frac{\sum (r_i)^2}{2\sigma^2}}} \underset{H_0}{\overset{H_1}{\gtrless}} K$$

La criteriul plauzibilitătii maxime se compară cu 1

$$\frac{e^{-\frac{\sum(r_i-A)^2}{2\sigma^2}}}{e^{-\frac{\sum(r_i)^2}{2\sigma^2}}} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

$$e^{-\frac{\sum(r_i-A)^2}{2\sigma^2} + \frac{\sum(r_i)^2}{2\sigma^2}} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

$$-\sum(r_i-A)^2 + \sum(r_i)^2 \underset{H_0}{\overset{H_1}{\geqslant}} 0$$

$$\sum(r_i)^2 \underset{H_0}{\overset{H_1}{\geqslant}} \sum(r_i-A)^2$$

Interpretarea 2: geometric

- $\sqrt{\sum (r_i)^2}$ este distanța geometrică (Euclidiană) între punctul $\mathbf{r} = [r_1, r_2, ... r_N]$ și punctul $\mathbf{0} = [0, 0, ... 0]$
- $\sqrt{\sum (r_i A)^2}$ este distanța geometrică (Euclidiană) între punctul $\mathbf{r} = [r_1, r_2, ... r_N]$ și punctul $\mathbf{A} = [A, A, ... A]$
- criteriul plauzibilității maxime alege vectorul (punctul) semnalului cel mai apropiat de vectorul (punctul) recepționat, într-un spațiu N-dimensional
 - receptorul se mai numește "receptor de distanță minimă"
 - aceeași interpretare ca în cazul 1-D
- Întrebare: care este interpretarea geometrică pentru celelalte criterii?

Exercițiu

Exercițiu:

- ▶ Un semnal poate avea două valori, 0 (ipoteza H_0) sau 6 (ipoteza H_1). Semnalul este afectat de AWGN $\mathcal{N}(0, \sigma^2 = 1)$. Receptorul ia două eșantioane cu valorile $\{1.1, 4.4\}$.
 - 1. Care este decizia conform criteriului plauzibilității maxime? Utilizați interpretarea geometrică.

Raportul de plauzibilitate al vectorului r

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{e^{-\frac{\sum_{i}(r_i - A)^2}{2\sigma^2}} \underset{H_0}{\overset{H_1}{\geqslant}} K}{e^{-\frac{\sum_{i}(r_i - A)^2}{2\sigma^2}} + \frac{\sum_{i}(r_i)^2}{2\sigma^2}} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

$$-\sum_{i}(r_i - A)^2 + \sum_{i}(r_i)^2 \underset{H_0}{\overset{H_1}{\geqslant}} 2\sigma^2 \ln K$$

$$2\sum_{i}r_i A - NA^2 \underset{H_0}{\overset{H_1}{\geqslant}} 2\sigma^2 \ln K$$

$$\frac{1}{N}\sum_{i}r_i A \underset{H_0}{\overset{H_1}{\geqslant}} \frac{A^2}{2} + \frac{1}{N}\sigma^2 \ln K$$

$$L = const$$

▶ Valoarea de corelație (sau "corelația") a două semnale x and y este

$$\langle x, y \rangle = \frac{1}{N} \sum x[n]y[n]$$

► Este valoarea funcției de corelație în 0

$$< x, y >= R_{xy}[0] = \overline{x[n]y[n+0]}$$

Pentru semnale continue

$$\langle x, y \rangle = \frac{1}{T} \int_{T/2}^{T/2} x(t)y(t)dt$$

▶ $\frac{1}{N} \sum r_i A = \langle \mathbf{r}, \mathbf{A} \rangle$ este corelația vectorului recepționat $\mathbf{r} = [r_1, r_2, ... r_N]$ cu vectorul **țintă** $\mathbf{A} = [A, A, ... A]$

- Dacă valoarea de corelație a vectorului recepționat cu vectorul țintă $\mathbf{A} = [A, A, ... A]$ este mai mare decât un prag L, se decide că semnalul este detectat.
 - ► altfel, semnalul este rejectat
- Decizia este similară cu detecția semnalului cu singur eșantion, unde valoarea eșantionului este < r, A >

Corelația ca măsura a similarității semnalelor

- În domeniul prelucrărilor de semnal, corelația este o formă de a măsura similaritatea a două semnale
- ► Interpretare: verificăm dacă vectorul recepționat este suficient de similar cu semnalul constant *A*
 - ▶ Da: (corelație mare) => semnalul este detectat
 - Nu: (corelație mică) => nu este detectat

Generalizare: două valori nenule

- Generalizare: două valori nenule, B și A
 - ▶ în zgomot Gaussian
- Interpretarea 1: media eșantioanelor
 - se folosește tot media eșantioanelor, cele două distribuții sunt centrate pe B și A
- Interpretarea 2: geometric (crit. plauzib. maxime)
 - se alege minimul distanței dintre $\mathbf{r} = [r_1, r_2, ... r_N]$ și punctele $\mathbf{B} = [B, B, ...]$ și $\mathbf{A} = [A, A, ...]$
- Interpretarea 3: corelația
 - ▶ se calculează $\langle \mathbf{r}, \mathbf{B} \rangle$ and $\langle \mathbf{r}, \mathbf{A} \rangle$, corelația lui \mathbf{r} cu $\mathbf{B} = [B, B, ...]$ și cu $\mathbf{A} = [A, A, ...]$.
 - pe slide-ul următor

Detecția a două valori nenule folosind corelația

$$e^{-\frac{\sum (r_{i}-A)^{2}}{2\sigma^{2}} + \frac{\sum (r_{i}-B)^{2}}{2\sigma^{2}}} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} K$$

$$-\sum (r_{i}-A)^{2} + \sum (r_{i}-B)^{2} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} 2\sigma^{2} \ln K$$

$$2\sum r_{i}A - NA^{2} - 2\sum r_{i}B + NB^{2} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} 2\sigma^{2} \ln K$$

$$\frac{1}{N}\sum r_{i}A - \frac{A^{2}}{2} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} \frac{1}{N}\sum r_{i}B - \frac{B^{2}}{2} + \frac{1}{N}\sigma^{2} \ln K$$

Detecția a două valori nenule folosind corelația

Pentru criteriul plauzibilității maxime (K = 1):

$$<\textbf{r},\textbf{A}>-\frac{<\textbf{A},\textbf{A}>}{2}\mathop{\gtrless}_{H_0}^{H_1}<\textbf{r},\textbf{B}>-\frac{<\textbf{B},\textbf{B}>}{2}$$

- ▶ Dacă valorile sunt opuse, B = -A, se alege cea mai similară cu \mathbf{r} :
 - corelația este o măsură a similarității

$$<\mathbf{r},\mathbf{A}> \stackrel{H_1}{\underset{H_0}{\gtrless}} <\mathbf{r},-\mathbf{A}>$$

► Alte criterii: termen adițional $\frac{1}{N}\sigma^2 \ln K$

Exercițiu

Exercițiu:

- ▶ Un semnal poate avea două valori, -4 (ipoteza H_0) sau 5 (ipoteza H_1). Semnalul este afectat de zgomot alb Gaussian $\mathcal{N}(0, \sigma^2 = 1)$. Receptorul ia trei eșantioane cu valorile $\{1.1, 4.4, 2.2\}$.
 - 1. Care este decizia, conform criteriului plauzibilității maxime? Folosiți toate cele trei interpretări.

II.4 Detecția semnal oarecare cu mai multe eșantioane

Eșantioane multiple dintr-un semnal oarecare

- ▶ Dorim detecția unui semnal oarecare (ne-constant) s(t)
- ► Cele N eșantioane se iau la momentele de timp $\mathbf{t} = [t_1, t_2, ... t_N]$ și formează **vectorul eșantioanelor**

$$\mathbf{r} = [r_1, r_2, ... r_N]$$

Ce diferă față de cazul unui semnal constant?

Ipoteze

- În fiecare ipoteză, semnalul este un proces aleator
 - $ightharpoonup H_0$: proces aleator cu medie 0
 - $ightharpoonup H_1$: proces aleator cu media s(t)
- **E**șantionul r_i , de la momentul t_i , poate fi:
 - \triangleright 0 + zgomot, în ipoteza H_0
 - $ightharpoonup s(t_i) + \operatorname{zgomot}$, în ipoteza H_1
- ▶ Întregul vector al eșantioanelor **r** poate fi
 - \triangleright 0 + zgomot, , în ipoteza H_0
 - $ightharpoonup s(t) + \operatorname{zgomot}$, în ipoteza H_1 , pentru $t = \operatorname{timpii}$ de eșantionare t_i
- ightharpoonup Distribuția vectorului \mathbf{r} este descrisă de o funcție $w_N(\mathbf{r})$

Plauzibilitatea vectorului eșantioanelor

Se folosesc aceleași criterii bazate pe raportul de plauzibilitate ca la semnale constante:

$$\frac{w_N(\mathbf{r}|H_0)}{w_N(\mathbf{r}|H_1)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

- ▶ Diferența este că semnalele "adevărate" sunt acum
 - $ightharpoonup [0, 0, ... 0] în ipoteza <math>H_0$
 - $ightharpoonup [s(t_1), s(t_2), ...s(t_N)]$ în ipoteza H_1

Descompunere

▶ Distribuția vectorială $w_N(\mathbf{r}|H_j)$ se poate descompune ca un produs

$$w_N(\mathbf{r}|H_j) = w(r_1|H_j) \cdot w(r_2|H_j) \cdot \dots \cdot w(r_N|H_j)$$

Toate criteriile de decizie bazate pe raportul de plauzibilitate se pot scrie ca

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{w(r_1|H_1)}{w(r_1|H_0)} \cdot \frac{w(r_2|H_1)}{w(r_2|H_0)} ... \frac{w(r_N|H_1)}{w(r_N|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

- Raportul de plauzibilitate al unui singur eșantion r_i se calculează folosind cele două valori posibile ale semnalului, 0 și $s(t_i)$
 - ▶ la semnale constante, valorile erau 0 și A întotdeauna
 - ightharpoonup acum sunt 0 și $s(t_i)$, în funcție de momentele de eșantionare t_i
 - momentele de eșantionare t_i trebuie alese astfel încât să maximizeze performanțele detecției

Caz particular: zgomot alb Gaussian ("AWGN")

- ► AWGN = "Additive White Gaussian Noise"
- In hypothesis H_1 : $w(r_i|H_1) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(r_i-s(t_i))^2}{2\sigma^2}}$
- ► In hypothesis H_0 : $w(r_i|H_1) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{r_i^2}{2\sigma^2}}$
- Raportul de plauzibilitate al vectorului r

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{e^{-\frac{\sum (r_i - s(t_i))^2}{2\sigma^2}}}{e^{-\frac{\sum (r_i)^2}{2\sigma^2}}}$$

Sunt posibile două interpretări

Interpretarea 1: valoarea medie

- Interpretarea 1: valoarea medie
- Nu mai este valabilă, întrucât valorile $s(t_i)$ nu mai sunt identice

Interpretarea 2: geometric

- Folositoare mai ales în cazul criteriului plauzibilității maxime
- Raportul de plauzibilitate pentru vectorul r

$$\frac{w_N(\mathbf{r}|H_1)}{w_N(\mathbf{r}|H_0)} = \frac{e^{-\frac{\sum (r_i - s(t_i))^2}{2\sigma^2}}}{e^{-\frac{\sum (r_i)^2}{2\sigma^2}}} \underset{H_0}{\overset{H_1}{\gtrless}} K$$

ightharpoonup Criteriul plauzibilitătii maxime: K=1

$$egin{aligned} & rac{e^{-rac{\sum (r_i-s(t_i))^2}{2\sigma^2}}}{e^{-rac{\sum (r_i)^2}{2\sigma^2}}} egin{aligned} & H_1 \ & \gtrless & 1 \end{aligned} \ & e^{-rac{\sum (r_i-s(t_i))^2}{2\sigma^2} + rac{\sum (r_i)^2}{2\sigma^2}} egin{aligned} & H_1 \ & \gtrless & 1 \end{aligned} \ & - \sum (r_i-s(t_i))^2 + \sum (r_i)^2 igwedge_{H_0} & 0 \end{aligned} \ & \sum (r_i)^2 igwedge_{H_0} & \sum (r_i-s(t_i))^2 \end{aligned}$$

Interpretarea 2: geometric

- $\sqrt{\sum (r_i)^2}$ este distanța geometrică (Euclidiană) între punctul $\mathbf{r} = [r_1, r_2, ... r_N]$ și punctul $\mathbf{0} = [0, 0, ... 0]$
- $\sqrt{\sum (r_i s(t_i))^2}$ este distanța geometrică (Euclidiană) între punctul $\mathbf{r} = [r_1, r_2, ... r_N]$ și punctul $\mathbf{s}(\mathbf{t}) = [s(t_1), s(t_2), ... s(t_N)]$
- Criteriul plauz. maxime alege semnalul cel mai apropiat de cel recepționat, într-un spațiu N-dimensional
 - se mai numeste "receptor de distantă minimă"
 - aceeasi interpretare ca în cazul 1-D
- Întrebare: interpretarea geometrică pentru celelalte criterii?

Exercițiu

Exercițiu:

- Fie detecția unui semnal $s(t) = 3\sin(2\pi ft)$ care poate fi prezent (ipoteza H_1) sau absent (ipoteza H_0). Semnalul este afectat de zgomot alb Gaussian $\mathcal{N}(0, \sigma^2 = 1)$. Receptorul ia două eșantioane.
 - 1. Care sunt cele mai bune momente de eșantionare t_1 și t_2 pentru a maximiza performanțele detecției?
 - 2. Receptorul ia două eșantioane $\{1.1, 4.4\}$, la momentele de timp $t_1 = \frac{0.125}{f}$ și $t_2 = \frac{0.625}{f}$. Care este decizia, conform criteriului plauz. maxime? Utilizați interpretarea geometrică.
 - 3. Dar dacă receptorul ia un al treilea eșantion la momentul $t_3 = \frac{0.5}{f}$. Se poate îmbunătăți detecția?

Raportul de plauzibilitate pentru vectorul r

$$\frac{w_{N}(\mathbf{r}|H_{1})}{w_{N}(\mathbf{r}|H_{0})} = \frac{e^{-\frac{\sum (r_{i}-s(t_{i}))^{2}}{2\sigma^{2}}}} e^{-\frac{\sum (r_{i})^{2}}{2\sigma^{2}}} e^{-\frac{\sum (r_{i})^{2}}{2\sigma^{2}}} e^{-\frac{\sum (r_{i}-s(t_{i}))^{2}}{2\sigma^{2}}} e^{-\frac{\sum (r_{i}-s(t_{i}))^{2}}{2\sigma^{2}}} e^{-\frac{\sum (r_{i})^{2}}{2\sigma^{2}}} e^{-\frac{\sum (r_{i}-s(t_{i}))^{2}}{2\sigma^{2}}} e^{-\frac{\sum (r_{i}-s(t_{i}))^{2}}{2\sigma^{2}}} e^{-\frac{\sum (r_{i}-s(t_{i}))^{2}}{2\sigma^{2}}} e^{-\frac{N}{N}} e^{-\frac{N}{N}$$

- ▶ $\frac{1}{N} \sum r_i s(t_i) = \langle \mathbf{r}, \mathbf{s}(\mathbf{t}_i) \rangle$ reprezintă valoarea corelației (sau "corelația") eșantioanelor recepționate $\mathbf{r} = [r_1, r_2, ... r_N]$ cu eșantioanele **țintă** $\mathbf{s}(\mathbf{t}_i) = [s(t_1), s(t_2), ... s(t_N)]$
- Dacă corelația eșantioanelor recepționate \mathbf{r} cu eșantioanele **țintă** $\mathbf{s}(\mathbf{t_i})$ este mai mare decât un prag L, se decide că semnalul este prezent.
 - ► Altfel, se decide că semnalul este absent
 - Corelatia este o măsură a similaritătii a două semnale

Generalizare: două semnale oarecare

- ▶ Generalizare: se decide între **două semnale diferite** $s_0(t)$ și $s_1(t)$
 - în zgomot Gaussian
- ▶ Interpretarea 2: geometric
 - ▶ se alege distanța Euclidiană minimă dintre $\mathbf{r} = [r_1, r_2, ... r_N]$ și punctele $\mathbf{s_0}(\mathbf{t}) = [s_0(t_1), s_0(t_2), ...]$ și $\mathbf{s_1}(\mathbf{t}) = [s_1(t_1), s_1(t_2), ...]$
- ► Interpretarea 3: valoarea corelației
 - ▶ se calculează corelația \mathbf{r} cu $\mathbf{s}_0(\mathbf{t}) = [s_0(t_1), s_0(t_2), ...]$ și $\mathbf{s}_1(\mathbf{t}) = [s_1(t_1), s_1(t_2), ...], < \mathbf{r}, \mathbf{s}_0 > \text{and} < \mathbf{r}, \mathbf{s}_1 > .$
 - pe slide-ul următor

Detecție între două semnale diferite folosind corelația

$$e^{-\frac{\sum (r_{i}-s_{1}(t_{i}))^{2}}{2\sigma^{2}}} + \frac{\sum (r_{i}-s_{0}(t_{i}))^{2}}{2\sigma^{2}} \underset{H_{0}}{\overset{H_{1}}{\geqslant}} K$$

$$-\sum (r_{i}-s_{1}(t_{i}))^{2} + \sum (r_{i}-s_{0}(t_{i}))^{2} \underset{H_{0}}{\overset{H_{1}}{\geqslant}} 2\sigma^{2} \ln K$$

$$2\sum r_{i}s_{1}(t_{i}) - \sum s_{1}(t_{i})^{2} - 2\sum r_{i}s_{0}(t_{i}) + \sum s_{0}(t_{i})^{2} \underset{H_{0}}{\overset{H_{1}}{\geqslant}} 2\sigma^{2} \ln K$$

$$\frac{1}{N}\sum r_{i}s_{1}(t_{i}) - \sum s_{1}(t_{i})^{2} \underset{H_{0}}{\overset{H_{1}}{\geqslant}} \frac{1}{N}\sum r_{i}s_{0}(t_{i}) - \sum s_{0}(t_{i})^{2} + \frac{1}{N}\sigma^{2} \ln K$$

Detecție între două semnale diferite folosind corelația

▶ Criteriul plauz. maxime (K = 1):

$$<\textbf{r},\textbf{s}_{1}>-\frac{<\textbf{s}_{1},\textbf{s}_{1}>}{2}\underset{H_{0}}{\overset{H_{1}}{\geqslant}}<\textbf{r},\textbf{s}_{0}>-\frac{<\textbf{s}_{0},\textbf{s}_{0}>}{2}$$

- Dacă semnalele au aceeași energie: $\sum s_1(t_i)^2 = \sum s_0(t_i)^2$, atunci $< \mathbf{s_1}, \mathbf{s_1} > = < \mathbf{s_0}, \mathbf{s_0} >$, și alegem semnalul **cel mai asemănător cu** r:
 - corelația este o măsură a similarității a două semnale

$$<\mathbf{r},\mathbf{s_1}> \stackrel{H_1}{\geq} <\mathbf{r},\mathbf{s_0}>$$

- Exemple:
 - Modulație BPSK: $s_1 = A\cos(2\pi ft)$, $s_0 = -A\cos(2\pi ft)$
 - Modulație 4-PSK: $s_{n=0,1,2,3} = A\cos(2\pi ft + n\frac{\pi}{4})$

Detecție pe baza corelației

Figure 5: Detecția unui semnal folosind un corelator

[sursa: http://nptel.ac.in/courses/117103018/43]

Detecția a doua semnale

Figure 6: Decizie între două semnale diferite

[sursa: Fundamentals of Statistical Signal Processing, Steven Kay]

ightharpoonup Cum se calculează corelația a două semnale r[n] și s[n] de lungime N?

$$\langle r,s \rangle = \frac{1}{N} \sum r_i s(t_i)$$

- Fie h[n] semnalul h[n] oglindit
 - începând tot de la momentul 0, semnal cauzal

$$h[n] = s[N-1-n]$$

ightharpoonup Convoluția lui r[n] cu h[n] este

$$y[n] = \sum_{k} r[k]h[n-k] = \sum_{k} r[k]h[N-1-n+k]$$

- Rezultatul convoluției la finalul semnalului de intrare, y[N-1] (n=N-1), este chiar corelația
 - până la un factor de scalare $\frac{1}{N}$

$$y[N] = \sum_{k} r[k]s[k]$$

- Pentru detecția unui semnal s[n] se poate folosi un **filtru a cărui răspuns la impuls = oglindirea lui** s[n], luându-se eșantionul de la finalul semnalului de intrare
 - se obtine valoarea corelatiei

$$h[n] = s[N - 1 - n]$$

- ► Filtru adaptat = un filtru proiectat să aibă răspunsul la impuls egal cu oglindirea semnalului care se dorește a fi detectat (eng. "matched filter")
 - ▶ filtrul este *adaptat* semnalului dorit

Figure 7: Detecție folosind un filtru adaptat

[sursa: Fundamentals of Statistical Signal Processing, Steven Kay]

II.5 Detecția unui semnal oarecare cu observare continuă

Observarea continuă a unui semnal oarecare

- Observare continuă = fără eșantionare, se folosește întreg semnalul continuu
 - ightharpoonup similar cazului cu N esantioane, dar cu $N o \infty$
- ▶ Semnalul recepționat este r(t)
- \triangleright Semnalul țintă este s(t)
- Presupunem doar zgomot Gaussian
- Cum are loc detectia?

Detecția semnalelor continue

- ightharpoonup Se extinde cazul precedent cu N eșantioane la cazul unui semnal continuu, $N
 ightharpoonup \infty$
- ▶ Interpretarea 1: media eșantioanelor
 - Nu mai este valabilă, întrucât s(t) nu este constant

Interpretarea 2: geometric

- Interpretarea 2: geometric
- Fiecare semnal r(t), s(t) sau 0 reprezintă un punct într-un spațiu Euclidian infinit dimensional
- Distanța între două semnale este:

$$d(r,s) = \sqrt{\int (r(t) - s(t))^2 dt}$$

- Similar cu cazul N dimensional, dar cu integrală în loc de sumă
- Criteriul plauzibilității maxime:
 - ightharpoonup se calculează distanța d(r,s) între r(t) și s(t)
 - ightharpoonup se calculează distanța d(r,0) între r(t) și 0
 - se alege valoarea minimă

Interpretarea 3: corelația

Corelația a două semnale continue r(t) și s(t) de lungime T

$$<\mathbf{r},\mathbf{s}>=rac{1}{T}\int_0^T r(t)\cdot s(t)dt$$

- Dacă corelația semnalului recepționat cu semnalul căutat $\mathbf{s}(\mathbf{t_i})$ este mai mare decât un prag L, se decide că semnalul este detectat.
 - ► Altfel, se decide că semnalul este absent
 - Corelația este o măsură a similarității a două semnale

Generalizări

- ▶ Detecția între **două semnale** $s_0(t)$ și $s_1(t)$
 - în zgomot Gaussian
- ► Interpretarea 2: geometric
 - > se alege distanța Euclidiană minimă între punctul $\mathbf{r}(\mathbf{t})$ și punctele $\mathbf{s}_0(\mathbf{t})$ si $\mathbf{s}_1(\mathbf{t})$
 - ▶ folosind distanta dintre semnale definită mai sus
- Interpretarea 3: corelaţia
 - ightharpoonup se calculează corelația lui r(t) cu $s_0(t)$ și cu $s_1(t)$.

Detecția între două semnale folosind corelația

▶ Criteriul plauz. maxime (K = 1):

$$<\textbf{r},\textbf{s}_{1}>-\frac{<\textbf{s}_{1},\textbf{s}_{1}>}{2}\underset{H_{0}}{\overset{H_{1}}{\gtrsim}}<\textbf{r},\textbf{s}_{0}>-\frac{<\textbf{s}_{0},\textbf{s}_{0}>}{2}$$

- ▶ Dacă cele două semnale au energii egale: $\int s_1(t)^2 dt = \int s_0(t)^2 dt$, atunci $\langle s_1, s_1 \rangle = \langle s_0, s_0 \rangle$, așadar se alege **semnalul cel mai** asemănător cu r(t):
 - ► Corelatia este o măsură a similarității a două semnale

$$<{\sf r},{\sf s}_1> \stackrel{{\cal H}_1}{\geqslant} <{\sf r},{\sf s}_0>$$

- Exemple
 - Modulația BPSK: $s_1 = A\cos(2\pi ft)$, $s_0 = -A\cos(2\pi ft)$
 - Modulația 4-PSK: $s_{n=0,1,2,3} = A\cos(2\pi f t + n\frac{\pi}{4})$

- Corelația a două semnale se poate calcula cu un filtru adaptat
- ► Filtru adaptat = filtru proiectat să aibă răspunsul la impuls egal cu oglindirea semnalului căutat
 - ▶ filtrul este adaptat semnalului căutat
 - filtru continuu, cu răspuns la impuls continuu
- Pentru detecția unui semnal s(t) se poate folosi un filtru adaptat, luând eșantionul de la ieșire în momentul final al semnalului de intrare
 - se obtine chiar valoarea corelatiei