Pluto_MSK_Modem address map

Absolute Address: 0x0Base Offset: 0x0Size: 0x43C00090

Offset Identifier Name

0x43C00000 pluto_msk_regs Pluto MSK Registers

pluto_msk_regs address map

Absolute Address: 0x43C00000Base Offset: 0x43C00000

• Size: 0x90

MSK Modem Configuration and Status Registers

Offset	Identifier	Name
0x00	Hash_ID_Low	Pluto MSK FPGA Hash ID - Lower 32-bits
0x04	Hash_ID_High	Pluto MSK FPGA Hash ID - Upper 32-bits
0x08	MSK_Init	MSK Modem Control 0
0x0C	$MSK_Control$	MSK Modem Control 1
0x10	MSK_Status	MSK Modem Status 0
0x14	Tx_Bit_Count	MSK Modem Status 1
0x18	Tx_Enable_Cour	ntMSK Modem Status 2
0x1C	$Fb_FreqWord$	Bitrate NCO Frequency Control Word
0x20	TX_F1_FreqWo	rdIx F1 NCO Frequency Control Word
0x24	TX_F2_FreqWo	rdIx F2 NCO Frequency Control Word
0x28	RX_F1_FreqWo	rRx F1 NCO Frequency Control Word
0x2C	RX_F2_FreqWo	rRx F2 NCO Frequency Control Word
0x30	LPF_Config_0	PI Controller Configuration and Low-pass Filter
		Configuration
0x34	LPF_Config_1	PI Controller Configuration Configuration Register 1
0x38	Tx_Data_Width	Modem Tx Input Data Width
0x3C	Rx_Data_Width	Modem Rx Output Data Width
0x40	PRBS_Control	PRBS Control 0
0x44	PRBS_Initial_St	aPRBS Control 1
0x48	PRBS_Polynomi	aPRBS Control 2
0x4C	PRBS_Error_Ma	asRRBS Control 3
0x50	PRBS_Bit_Cour	ntPRBS Status 0
0x54	PRBS_Error_Co	oul RBS Status 1
0x58	LPF_Accum_F1	F1 PI Controller Accumulator
0x5C	LPF_Accum_F2	F2 PI Controller Accumulator
0x60	$axis_xfer_count$	MSK Modem Status 3
0x64	Rx_Sample_Disc	caRdx Sample Discard

Offset	Identifier	Name
0x68	LPF_Config_2	PI Controller Configuration Configuration Register 2
0x6C	f1_nco_adjust	F1 NCO Frequency Adjust
0x70	f2_nco_adjust	F2 NCO Frequency Adjust
0x74	f1_error	F1 Error Value
0x78	f2_error	F2 Error Value
0x7C	Tx_Sync_Ctrl	Transmitter Sync Control
0x80	Tx_Sync_Cnt	Transmitter Sync Duration
0x84	lowpass_ema_alp	olfatponential Moving Average Alpha
0x88	lowpass_ema_alp	olæ⊋ponential Moving Average Alpha
0x8C	rx_power	Receive Power

Hash_ID_Low register

• Absolute Address: 0x43C00000

• Base Offset: 0x0

• Size: 0x4

	Bits	Identif	ier	Access	Reset	Name		_
31:0	hash_	_id_lo	r	0xAAAA	5555	Hash ID	Lower	32-bits

Hash_ID_High register

• Absolute Address: 0x43C00004

• Base Offset: 0x4

• Size: 0x4

	Bits	Identif	ier	Access	Reset	Name		-
31:0	hash_	_id_hi	r	0x5555A.	AAA	Hash ID	Upper	32-bits

hash_id_hi field Upper 32-bits of Pluto MSK FPGA Hash ID

MSK_Init register

• Absolute Address: 0x43C00008

• Base Offset: 0x8

• Size: 0x4

Synchronous initialization of MSK Modem functions, does not affect configuration registers.

Bits	Identifier	Ac	ccess	Reset	Name
0	txrxinit	rw	0x1	Tx/Rx	: Init Enable
1	txinit	rw	0x1	Tx Ini	t Enable
2	rxinit	rw	0x1	Rx Ini	t Enable

txrxinit field 0-> Normal modem operation 1-> Initialize Tx and Rx

txinit field $0 \rightarrow Normal Tx operation <math>1 \rightarrow Initialize Tx$

rxinit field $0 \rightarrow \text{Normal Rx operation } 1 \rightarrow \text{Initialize Rx}$

MSK_Control register

• Absolute Address: 0x43C0000C

• Base Offset: 0xC

• Size: 0x4

MSK Modem Configuration and Control

Bits	Identifier	Acce	ess Re	set Name
0	ptt	rw	0x0	Push-to-Talk Enable
$\frac{1}{2}$	loopback_ena rx_invert	rw rw	0x0 0x0	Modem Loopback Enable Rx Data Invert Enable
3	clear_counts	rw	0x0	Clear Status Counters
4	diff_encoder_loo	pbawk	0x0	Differential Encoder -> Decoder Loopback Enable

ptt field $0 \rightarrow PTT$ Disabled $1 \rightarrow PTT$ Enabled

 ${\bf loopback_ena}$ field $\ 0 -> {\bf Modem}$ loopback disabled 1 -> ${\bf Modem}$ loopback enabled

rx_invert field 0 -> Rx data normal 1 -> Rx data inverted

 $\label{lem:coder_loopback} \begin{array}{ll} \textbf{diff_encoder_loopback field} & 0 -> \text{Differential Encoder} -> \text{Decoder loopback} \\ \text{disabled 1 -> Differential Encoder} -> \text{Decoder loopback enabled} \end{array}$

MSK_Status register

• Absolute Address: 0x43C00010

• Base Offset: 0x10

• Size: 0x4

Modem status bits

Bits	Identifier	Access	Reset	Name
0	demod_sync_le	oak	0x0	Demodulator Sync Status
1	tx_enable	r	0x0	AD9363 DAC Interface Tx Enable Input
2	rx_enable	r	0x0	Active AD9363 ADC Interface Rx Enable Input Active
3	tx_axis_valid	\mathbf{r}	0x0	Tx S_AXIS_VALID

 ${\bf demod_sync_lock\ field} \quad {\rm Demodulator\ Sync\ Status\ -\ not\ currently\ implemented}$

tx_enable field 1-> Data to DAC Enabled 0-> Data to DAC Disabled

 \mathbf{rx} _enable field 1-> Data from ADC Enabled 0-> Data from ADC Disabled

 $\label{eq:tx_axis_valid} \textbf{tx_axis_valid field} \quad 1 -> \\ \text{S_AXIS_VALID Enabled} \quad 0 -> \\ \text{S_AXIS_VALID Disabled}$

$Tx_Bit_Count register$

• Absolute Address: 0x43C00014

• Base Offset: 0x14

• Size: 0x4

Modem status data

Bits	Identifier	Access		Reset	Name
31:0	$tx_bit_$	counter	r	0x0	Tx Bit Count

 $tx_bit_counter$ field Count of data requests made by modem

$Tx_Enable_Count register$

• Absolute Address: 0x43C00018

• Base Offset: 0x18

• Size: 0x4

Modem status data

Bits	Identifi	er Acce	ess	Reset	Name
31:0	tx_ena_	_counter	r	0x0	Tx Enable Count

tx_ena_counter field Number of clocks on which Tx Enable is active

Fb_FreqWord register

• Absolute Address: 0x43C0001C

• Base Offset: 0x1C

• Size: 0x4

Set Modem Data Rate

	Bits	s Ide	ntifier	Ac	cess	Reset	Name	
31:0	0	config	_data	rw	0x0	Frequ	ency Con	trol Word

config_data field Sets the center frequency of the NCO as FW = Fn * 2^32/Fs, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

$TX_F1_FreqWord\ register$

• Absolute Address: 0x43C00020

• Base Offset: 0x20

• Size: 0x4

Set Modulator F1 Frequency

В	its	Ide	ntifier	Ac	cess	Reset	Name	
31:0	co	nfig_	_data	rw	0x0	Frequ	ency Contr	ol Word

<code>config_data field</code> Sets the center frequency of the NCO as FW = Fn * $2^32/Fs$, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

$TX_F2_FreqWord\ register$

• Absolute Address: 0x43C00024

• Base Offset: 0x24

• Size: 0x4

Set Modulator F2 Frequency

	Bit	S	Ide	ntifier	Ac	cess	Reset	Name	
31:	0	coı	nfig_	_data	rw	0x0	Frequ	ency Control	Word

config_data field Sets the center frequency of the NCO as $FW = Fn * 2^32/Fs$, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

RX_F1_FreqWord register

• Absolute Address: 0x43C00028

• Base Offset: 0x28

• Size: 0x4

Set Demodulator F1 Frequency

	Bit	s Id	entifier	Ac	cess	Reset	Name	
31:	0	config	_data	rw	0x0	Frequ	ency Contr	ol Word

config_data field Sets the center frequency of the NCO as $FW = Fn * 2^32/Fs$, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

$RX_F2_FreqWord$ register

• Absolute Address: 0x43C0002C

• Base Offset: 0x2C

• Size: 0x4

Set Demodulator F2 Frequency

	Bit		Identifier		Access		Reset	Name	
31:0	0	co	nfig_	_data	rw	0x0	Frequ	ency Control Word	

config_data field Sets the center frequency of the NCO as $FW = Fn * 2^32/Fs$, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

LPF_Config_0 register

• Absolute Address: 0x43C00030

• Base Offset: 0x30

• Size: 0x4

Configure PI controller and low-pass filter

	Bits	Identifier	Acc	ess	Reset	Name	_
0	lpf_freeze	rw	0x0	Fre	eze the	accumulator's o	current value
1	lpf_zero	rw	0x0	Ho	d the P	I Accumulator	at zero
7:2	$prbs_reser$	ved w	0x0	—			
31:8	lpf_alpha	rw	0x0	Lov	vpass II	R filter alpha	

 $lpf_freeze field 0 -> Normal operation 1 -> Freeze current value$

 $lpf_zero\ field\ 0 \rightarrow Normal\ operation\ 1 \rightarrow Zero\ and\ hold\ accumulator$

lpf_alpha field Value controls the filter rolloff

LPF_Config_1 register

• Absolute Address: 0x43C00034

• Base Offset: 0x34

• Size: 0x4

Configures PI Controller I-gain and divisor

Bits	Identifier	Access		Reset	Name
				0	al Gain Value
31:24	$_{ m i_shift}$	rw	0x0	Integra	ıl Gain Bit Shift

i_gain field Value m of 0-16,777,215 sets the integral multiplier

i_shift field Value n of 0-32 sets the integral divisor as 2^-n

${\bf Tx_Data_Width\ register}$

• Absolute Address: 0x43C00038

• Base Offset: 0x38

• Size: 0x4

Set the parallel data width of the parallel-to-serial converter

	Bits	Ident	ifier	Acce	ess	Reset	Name	
7:0	data_w	vidth	rw	0x8	Mo	odem in	out/output	data width

data_width field Set the data width of the modem input/output

$Rx_Data_Width register$

• Absolute Address: 0x43C0003C

• Base Offset: 0x3C

• Size: 0x4

Set the parallel data width of the serial-to-parallel converter

	Bits	Ident	ifier	Acce	ess	Reset	Name	
7:0	data_v	width	rw	0x8	Mo	odem inj	out/output data	width

data_width field Set the data width of the modem input/output

PRBS_Control register

• Absolute Address: 0x43C00040

• Base Offset: 0x40

• Size: 0x4

Configures operation of the PRBS Generator and Monitor

	Bits Identifier	Access	Res	et Name
0	prbs_sel	rw	0x0	PRBS Data Select
1	$prbs_error_insert$	\mathbf{w}	0x0	PRBS Error Insert
2	$prbs_clear$	w	0x0	PRBS Clear Counte
3	prbs_manual_sync	w	0x0	PRBS Manual Sync
15:4	$prbs_reserved$	\mathbf{w}	0x0	_
31:16	prbs_sync_threshold	l w	0x0	PRBS Auto Sync T

 $prbs_sel$ field 0 -> Select Normal Tx Data 1 -> Select PRBS Tx Data

prbs_error_insert field $0 \rightarrow 1$: Insert bit error in Tx data (both Normal and PRBS) $1 \rightarrow 0$: Insert bit error in Tx data (both Normal and PRBS)

 $prbs_clear\ field \quad 0 \rightarrow 1: Clear\ PRBS\ Counters\ 1 \rightarrow 0: Clear\ PRBS\ Counters$

prbs_manual_sync field 0 -> 1: Synchronize PRBS monitor 1 -> 0: Synchronize PRBS monitor

 $\label{eq:continuous_problem} \textbf{prbs_sync_threshold field} \quad 0: \text{ Auto Sync Disabled N} > 0: \text{ Auto sync after N errors}$

PRBS_Initial_State register

• Absolute Address: 0x43C00044

• Base Offset: 0x44

• Size: 0x4

PRBS Initial State

Bits	Id	entifier	Acce	ess	Reset	Name
31	:0	$\operatorname{config}_{_}$	_data	rw	0x0	PRBS Seed

config_data field Sets the starting value of the PRBS generator

PRBS_Polynomial register

• Absolute Address: 0x43C00048

• Base Offset: 0x48

• Size: 0x4

PRBS Polynomial

Bits	Identifier	Access	Res	set	Name
31:0	config_data	ı rw	0x0	PF	RBS Polynomial

 ${f config_data}$ field Bit positions set to '1' indicate polynomial feedback positions

PRBS_Error_Mask register

• Absolute Address: 0x43C0004C

• Base Offset: 0x4C

• Size: 0x4

PRBS Error Mask

Bits	Identifier	Access	Reset		Name
31:0	config_data	rw	0x0	PR	BS Error Mask

config_data field Bit positions set to '1' indicate bits that are inverted when a bit error is inserted

PRBS_Bit_Count register

• Absolute Address: 0x43C00050

• Base Offset: 0x50

• Size: 0x4

PRBS Bits Received

Bits	Identifier	Acce	ess	Reset	Name	
31:0	status_data	r	0x0	PRI	BS Bits R	eceived

status_data field Number of bits received by the PRBS monitor since last BER can be calculated as the ratio of received bits to errored-bits

PRBS_Error_Count register

• Absolute Address: 0x43C00054

• Base Offset: 0x54

• Size: 0x4

PRBS Bit Errors

Bits	Identifier	Access	Res	set Name
31:0	status_da	ata r	0x0	PRBS Bit Errors

status_data field Number of errored-bits received by the PRBS monitor since last sync BER can be calculated as the ratio of received bits to errored-bits

LPF_Accum_F1 register

• Absolute Address: 0x43C00058

• Base Offset: 0x58

• Size: 0x4

Value of the F1 PI Controller Accumulator

	Bits	Identif	ier	Acce	ess	Reset	Name		
31:0	status	_data	r	0x0	ΡI	Control	ler Accui	nulator	Value

status_data field PI Controller Accumulator Value

LPF_Accum_F2 register

• Absolute Address: 0x43C0005C

• Base Offset: 0x5C

• Size: 0x4

Value of the F2 PI Controller Accumulator

	Bits	Identifi	er	Acce	ss	Reset	Name	
31:0	status	$_{ m data}$	r	0x0	PΙ	Control	ler Accumulator	Value

status_data field PI Controller Accumulator Value

axis_xfer_count register

• Absolute Address: 0x43C00060

• Base Offset: 0x60

• Size: 0x4

Modem status data

Bits	Identifier	Acces	ss R	eset	Name
31:0	xfer_cou	nt r	0x0	S_	AXIS Transfers

 $xfer_count field$ Number completed S_AXIS transfers

Rx_Sample_Discard register

• Absolute Address: 0x43C00064

• Base Offset: 0x64

• Size: 0x4

Configure samples discard operation for demodulator

	Bits Identifier	Access	Reset Name	
7:0	rx_sample_discard	rw 0x0	Rx Sample Discard Value	
15:8	$rx_nco_discard$	rw = 0x0	Rx NCO Sample Discard Va	lue

rx_sample_discard field Number of Rx samples to discard

rx_nco_discard field Number of NCO samples to discard

LPF_Config_2 register

• Absolute Address: 0x43C00068

• Base Offset: 0x68

• Size: 0x4

Configures PI Controller I-gain and divisor

Bits	S	Identif	ier	Access	Reset	Name	
23:0	р	_gain	rw	0x0	Proporti	onal Gain	Value
31:24	р	_shift	rw	0x0	Proporti	onal Gain	Bit Shift

 \mathbf{p} _gain field Value m of 0-16,777,215 sets the proportional multiplier

p_shift field Value n of 0-32 sets the proportional divisor as 2^-n

$f1_nco_adjust\ register$

• Absolute Address: 0x43C0006C

• Base Offset: 0x6C

• Size: 0x4

Frequency offet applied to the F1 NCO

Bits	Identi	fier	Acc	ess	Reset	Name
31:0	data	r	0x0	F1	NCO I	Frequency Adjust

data field Frequency offet applied to the F1 NCO

$f2_nco_adjust\ register$

• Absolute Address: 0x43C00070

• Base Offset: 0x70

• Size: 0x4

Frequency offet applied to the F2 NCO

Bits	Identi	fier	Acc	ess	Reset	Name
31:0	data	r	0x0	F2	NCO I	Frequency Adjust

data field Frequency offet applied to the F2 NCO

f1_error register

• Absolute Address: 0x43C00074

• Base Offset: 0x74

• Size: 0x4

Error value of the F1 Costas loop after each active bit period

Bits	Identifier		Access		Reset	Name
	31:0	data	r	0x0	F1 E	rror Value

f2_error register

• Absolute Address: 0x43C00078

• Base Offset: 0x78

• Size: 0x4

Error value of the F2 Costas loop after each active bit period

Bits	Identifier		Ace	ccess Reset N		Name
	31:0	data	r	0x0	F2 E	rror Value

Tx_Sync_Ctrl register

• Absolute Address: 0x43C0007C

• Base Offset: 0x7C

• Size: 0x4

Provides control bits for generation of transmitter synchronization patterns

Bi	ts Identifier	Access	Re	eset	Name
0	tx_sync_ena	rw	0x0	Tx	Sync Enable
1	tx_sync_force	rw	0x0	Tx	Sync Force
2	tx_sync_f1	rw	0x0	Tx	F1 Sync Enable
3	tx_sync_f2	rw	0x0	Tx	F2 Sync Enable

 ${\bf tx_sync_ena}$ field ~0 -> Disable sync transmission 1 -> Enable sync transmission when PTT is asserted

tx_sync_force field 0 : Normal operation) 1 : Transmit synchronization pattern)

 tx_sync_f1 field Enables/Disables transmission of F1 tone for receiver synchronization 0: F1 tone transmission disabled 1: F1 tone transmission enabled Both F1 and F2 can be enabled at the same time

tx_sync_f2 field Enables/Disables transmission of F2 tone for receiver synchronization 0: F2 tone transmission disabled 1: F2 tone transmission enabled Both F1 and F2 can be enabled at the same time

Tx_Sync_Cnt register

• Absolute Address: 0x43C00080

• Base Offset: 0x80

• Size: 0x4

Sets the duration of the synchronization tones when enabled

Bits	Identifier	Access	Reset	Name
23:0	tx_sync_c	nt rw	0x0 '	Tx sync duration

 tx_sync_cnt field Value from $0x00_0000$ to $0xFF_FFFF$. This value represents the number bit-times the synchronization signal should be sent after PTT is asserted.

lowpass_ema_alpha1 register

• Absolute Address: 0x43C00084

• Base Offset: 0x84

• Size: 0x4

Sets the alpha for the EMA

Bits	Identifier		Access	Res	set	Name
	17:0	alpha	rw	0x0	EN	MA alpha

alpha field Value from 0x0 0000 to 0x3 FFFF represent the EMA alpha

lowpass_ema_alpha2 register

• Absolute Address: 0x43C00088

• Base Offset: 0x88

• Size: 0x4

Sets the alpha for the EMA

Bits	Identifier		Access	Res	set Name
	17:0	alpha	rw	0x0	EMA alpha

alpha field Value from 0x0_0000 to 0x3_FFFF represent the EMA alpha

rx_power register

• Absolute Address: 0x43C0008C

• Base Offset: 0x8C

• Size: 0x4

Receive power computed from I/Q s samples

Bits	Identifier	Access	Reset	Name
22:0	rx_power	r	0x0	Receive Power

rx_power field Value that represent the RMS power of the incoming I;