# Sisyphe Reference Manual

**Otto Mattic** 

Version 7.2
December 29, 2016



### **AVERTISSEMENT / CAUTION**

L'accès à ce document, ainsi que son utilisation, sont strictement limités aux personnes expressément habilitées par EDF.

EDF ne pourra être tenu responsable, au titre d'une action en responsabilité contractuelle, en responsabilité délictuelle ou de tout autre action, de tout dommage direct ou indirect, ou de quelque nature qu'il soit, ou de tout préjudice, notamment, de nature financier ou commercial, résultant de l'utilisation d'une quelconque information contenue dans ce document.

Les données et informations contenues dans ce document sont fournies "en l'état" sans aucune garantie expresse ou tacite de quelque nature que ce soit.

Toute modification, reproduction, extraction d'éléments, réutilisation de tout ou partie de ce document sans autorisation préalable écrite d'EDF ainsi que toute diffusion externe à EDF du présent document ou des informations qu'il contient est strictement interdite sous peine de sanctions.

-----

The access to this document and its use are strictly limited to the persons expressly authorized to do so by EDF.

EDF shall not be deemed liable as a consequence of any action, for any direct or indirect damage, including, among others, commercial or financial loss arising from the use of any information contained in this document.

This document and the information contained therein are provided "as are" without any warranty of any kind, either expressed or implied.

Any total or partial modification, reproduction, new use, distribution or extraction of elements of this document or its content, without the express and prior written consent of EDF is strictly forbidden. Failure to comply to the above provisions will expose to sanctions.

# Contents

| 1    | Detail list of keywords                                  | 10 |
|------|----------------------------------------------------------|----|
| 1.1  | ACTIVE LAYER THICKNESS                                   | 10 |
| 1.2  | B VALUE FOR THE BIJKER FORMULA                           | 10 |
| 1.3  | BED LOAD                                                 | 10 |
| 1.4  | BED ROUGHNESS PREDICTION                                 | 10 |
| 1.5  | BED ROUGHNESS PREDICTOR OPTION                           | 11 |
| 1.6  | BED-LOAD TRANSPORT FORMULA                               | 11 |
| 1.7  | BETA                                                     | 11 |
| 1.8  | BINARY OF THE PREVIOUS SEDIMENTOLOGICAL COMPUTATION FILE | 11 |
| 1.9  | BOTTOM TOPOGRAPHY FILE                                   | 12 |
| 1.10 | BOUNDARY CONDITIONS FILE                                 | 12 |
| 1.11 | C-VSM DYNAMIC ALT MODEL                                  | 12 |
| 1.12 | C-VSM FULL PRINTOUT PERIOD                               | 12 |
| 1.13 | C-VSM MAXIMUM SECTIONS                                   | 12 |
| 1.14 | C-VSM PRINTOUT SELECTION                                 | 13 |
| 1.15 | CHECKING THE MESH                                        | 13 |
| 1.16 | COHESIVE SEDIMENTS                                       | 13 |
| 1.17 | COMPUTATION CONTINUED                                    | 13 |
| 1.18 | CONCENTRATION PER CLASS AT BOUNDARIES                    | 13 |
| 1.19 | CONSOLIDATION MODEL                                      | 14 |
| 1.20 | CONSTANT ACTIVE LAYER THICKNESS                          | 14 |
| 1.21 | CONSTANT FLOW DISCHARGE                                  | 14 |
| 1.22 | CONTROL SECTIONS                                         | 14 |
| 1.23 | CORRECTION ON CONVECTION VELOCITY                        | 14 |
| 1.24 | CPU TIME                                                 | 15 |
| 1.25 | CRITERION TO UPDATE THE FLOW                             | 15 |

| 1.26 | CRITICAL EROSION SHEAR STRESS OF THE MUD         | 15 |
|------|--------------------------------------------------|----|
| 1.27 | CRITICAL EVOLUTION RATIO                         | 15 |
| 1.28 | CRITICAL SHEAR VELOCITY FOR MUD DEPOSITION       | 15 |
| 1.29 | D90                                              | 16 |
| 1.30 | DEBUGGER                                         | 16 |
| 1.31 | DEFAULT EXECUTABLE                               | 16 |
| 1.32 | DEFAULT PARALLEL EXECUTABLE                      | 16 |
| 1.33 | DESCRIPTION OF LIBRARIES                         | 16 |
| 1.34 | DICTIONARY                                       | 17 |
| 1.35 | DIFFUSION                                        | 17 |
| 1.36 | DISPERSION ACROSS THE FLOW                       | 17 |
| 1.37 | DISPERSION ALONG THE FLOW                        | 17 |
| 1.38 | EFFECT OF WAVES                                  | 17 |
| 1.39 | EQUILIBRIUM INFLOW CONCENTRATION                 | 17 |
| 1.40 | FINITE VOLUMES                                   | 18 |
| 1.41 | FLUXLINE                                         | 18 |
| 1.42 | FLUXLINE INPUT FILE                              | 18 |
| 1.43 | FORMULA FOR DEVIATION                            | 18 |
| 1.44 | FORMULA FOR SLOPE EFFECT                         | 18 |
| 1.45 | FORMULATION FOR DEPOSITION AND EROSION           | 19 |
| 1.46 | FORTRAN FILE                                     | 19 |
| 1.47 | FREE INTEGER 1                                   | 19 |
| 1.48 | FREE INTEGER 2                                   | 19 |
| 1.49 | FREE LOGICAL 1                                   | 19 |
| 1.50 | FRICTION ANGLE OF THE SEDIMENT                   | 19 |
| 1.51 | FRICTION COEFFICIENT                             | 20 |
| 1.52 | GEL CONCENTRATION                                | 20 |
| 1.53 | GEOMETRY FILE                                    | 20 |
| 1.54 | GEOMETRY FILE BINARY                             | 20 |
| 1.55 | GEOMETRY FILE FORMAT                             | 20 |
| 1.56 | GRAIN-FEEDING                                    | 21 |
| 1.57 | GRAPHIC PRINTOUT PERIOD                          | 21 |
| 1.58 | GRAPHIC SOFTWARE                                 | 21 |
| 1.59 | GRAPHIC SOFTWARE OF THE HYDRODYNAMIC COMPUTATION | 21 |
| 1.60 | GRAVITY ACCELERATION                             | 21 |
| 1.61 | HIDING FACTOR FOR PARTICULAR SIZE CLASS          | 22 |

| 1.62 | HIDING FACTOR FORMULA                                  | 22 |
|------|--------------------------------------------------------|----|
| 1.63 | HYDRODYNAMIC CODE                                      | 22 |
| 1.64 | HYDRODYNAMIC FILE                                      | 22 |
| 1.65 | HYDRODYNAMIC FILE BINARY                               | 22 |
| 1.66 | HYDRODYNAMIC FILE FORMAT                               | 23 |
| 1.67 | INITIAL FRACTION FOR PARTICULAR SIZE CLASS             | 23 |
| 1.68 | INITIAL SUSPENSION CONCENTRATIONS                      | 23 |
| 1.69 | LAW OF BOTTOM FRICTION                                 | 23 |
| 1.70 | LIBRARIES                                              | 23 |
| 1.71 | LIQUID BOUNDARIES FILE                                 | 24 |
| 1.72 | LIST OF FILES                                          | 24 |
| 1.73 | LISTING PRINTOUT PERIOD                                | 24 |
| 1.74 | MASS CONCENTRATION                                     | 24 |
| 1.75 | MASS TRANSFER PER LAYER                                | 25 |
| 1.76 | MASS-BALANCE                                           | 25 |
| 1.77 | MASS-LUMPING                                           | 25 |
| 1.78 | MATRIX STORAGE                                         | 25 |
| 1.79 | MATRIX-VECTOR PRODUCT                                  | 25 |
| 1.80 | MAXIMUM CONCENTRATION                                  | 26 |
| 1.81 | MAXIMUM NUMBER OF BOUNDARIES                           | 26 |
| 1.82 | MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES     | 26 |
| 1.83 | MAXIMUM NUMBER OF ITERATIONS FOR SOLVER                | 26 |
| 1.84 | MAXIMUM NUMBER OF ITERATIONS FOR SOLVER FOR SUSPENSION | 26 |
| 1.85 | MEAN DIAMETER OF THE SEDIMENT                          | 27 |
| 1.86 | MEMORY SPACE CRAY                                      | 27 |
| 1.87 | MESHING                                                | 27 |
| 1.88 | MINIMAL VALUE OF THE WATER HEIGHT                      | 27 |
| 1.89 | MINIMUM DEPTH FOR BEDLOAD                              | 27 |
| 1.90 | MIXED SEDIMENT                                         | 28 |
| 1.91 | MORPHOLOGICAL FACTOR                                   | 28 |
| 1.92 | MPM COEFFICIENT                                        | 28 |
| 1.93 | MUD CONCENTRATION PER LAYER                            | 28 |
| 1.94 | MUD CONSOLIDATION                                      | 28 |
| 1.95 | NAMES OF DIFFERENTIATORS                               | 28 |
| 1.96 | NAMES OF PRIVATE VARIABLES                             | 29 |
| 1 97 | NESTOR                                                 | 29 |

| 1.98  | NESTOR ACTION FILE                                | 29 |
|-------|---------------------------------------------------|----|
| 1.99  | NESTOR POLYGON FILE                               | 29 |
| 1.100 | NESTOR RESTART FILE                               | 29 |
| 1.101 | NESTOR SURFACE REFERENCE FILE                     | 29 |
| 1.102 | NON COHESIVE BED POROSITY                         | 30 |
| 1.103 | NUMBER OF BED LOAD MODEL LAYERS                   | 30 |
| 1.104 | NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES     | 30 |
| 1.105 | NUMBER OF DIFFERENTIATORS                         | 30 |
| 1.106 | NUMBER OF ITERATIONS FOR TELEMAC                  | 30 |
| 1.107 | NUMBER OF LAYERS OF THE CONSOLIDATION MODEL       | 31 |
| 1.108 | NUMBER OF PRIVATE ARRAYS                          | 31 |
| 1.109 | NUMBER OF SIZE-CLASSES OF BED MATERIAL            | 31 |
| 1.110 | NUMBER OF SUB-ITERATIONS                          | 31 |
| 1.111 | NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES       | 31 |
| 1.112 | NUMBER OF TIDES OR FLOODS                         | 32 |
| 1.113 | NUMBER OF TIME STEPS                              | 32 |
| 1.114 | OPTION FOR THE DIFFUSION OF TRACER                | 32 |
| 1.115 | OPTION FOR THE DISPERSION                         | 32 |
| 1.116 | OPTION FOR THE TREATMENT OF NON ERODABLE BEDS     | 32 |
| 1.117 | OPTION FOR THE TREATMENT OF TIDAL FLATS           | 33 |
| 1.118 | ORIGIN COORDINATES                                | 33 |
| 1.119 | ORIGINAL DATE OF TIME                             | 33 |
| 1.120 | ORIGINAL HOUR OF TIME                             | 33 |
| 1.121 | PARALLEL PROCESSORS                               | 33 |
| 1.122 | PARAMETER FOR DEVIATION                           | 34 |
| 1.123 | PARTHENIADES CONSTANT                             | 34 |
| 1.124 | PARTITIONING TOOL                                 | 34 |
| 1.125 | PASSWORD CRAY                                     | 34 |
| 1.126 | PERMEABILITY COEFFICIENT                          | 34 |
| 1.127 | PRECONDITIONING                                   | 34 |
| 1.128 | PRECONDITIONING FOR SUSPENSION                    | 35 |
| 1.129 | PRESCRIBED SOLID DISCHARGES                       | 35 |
| 1.130 | PREVIOUS SEDIMENTOLOGICAL COMPUTATION FILE        | 35 |
| 1.131 | PREVIOUS SEDIMENTOLOGICAL COMPUTATION FILE FORMAT | 35 |
| 1.132 | PVM1 LIBRARY                                      | 36 |
| 1.133 | PVM2 LIBRARY                                      | 36 |

| 1.134 | RATIO BETWEEN SKIN FRICTION AND MEAN DIAMETER | 36 |
|-------|-----------------------------------------------|----|
| 1.135 | REFERENCE CONCENTRATION FORMULA               | 36 |
| 1.136 | REFERENCE FILE                                | 36 |
| 1.137 | REFERENCE FILE BINARY                         | 37 |
| 1.138 | REFERENCE FILE FORMAT                         | 37 |
| 1.139 | RELEASE                                       | 37 |
| 1.140 | RESULTS FILE                                  | 37 |
| 1.141 | RESULTS FILE BINARY                           | 37 |
| 1.142 | RESULTS FILE FORMAT                           | 38 |
| 1.143 | SCHEME OPTION FOR ADVECTION                   | 38 |
| 1.144 | SECONDARY CURRENTS                            | 38 |
| 1.145 | SECONDARY CURRENTS ALPHA COEFFICIENT          | 38 |
| 1.146 | SECTIONS INPUT FILE                           | 38 |
| 1.147 | SECTIONS OUTPUT FILE                          | 39 |
| 1.148 | SEDIMENT DENSITY                              | 39 |
| 1.149 | SEDIMENT DIAMETERS                            | 39 |
| 1.150 | SEDIMENT SLIDE                                | 39 |
| 1.151 | SETTLING LAG                                  | 39 |
| 1.152 | SETTLING VELOCITIES                           | 39 |
| 1.153 | SHIELDS PARAMETERS                            | 40 |
| 1.154 | SKIN FRICTION CORRECTION                      | 40 |
| 1.155 | SLOPE EFFECT                                  | 40 |
| 1.156 | SOLVER                                        | 40 |
| 1.157 | SOLVER ACCURACY                               | 41 |
| 1.158 | SOLVER ACCURACY FOR SUSPENSION                | 41 |
| 1.159 | SOLVER FOR SUSPENSION                         | 41 |
| 1.160 | SOLVER OPTION                                 | 41 |
| 1.161 | SOLVER OPTION FOR SUSPENSION                  | 41 |
| 1.162 | STARTING TIME OF THE HYDROGRAM                | 42 |
| 1.163 | STATIONARY MODE                               | 42 |
| 1.164 | STEADY CASE                                   | 42 |
| 1.165 | STEERING FILE                                 | 42 |
| 1.166 | SUPG OPTION                                   | 42 |
| 1.167 | SUSPENSION                                    | 43 |
| 1.168 | TETA                                          | 43 |
| 1.169 | TETA SUSPENSION                               | 43 |

| 1.170 | TIDAL FLATS                                   | 43 |
|-------|-----------------------------------------------|----|
| 1.171 | TIDE PERIOD                                   | 43 |
| 1.172 | TIME STEP                                     | 44 |
| 1.173 | TITLE                                         | 44 |
| 1.174 | TREATMENT OF FLUXES AT THE BOUNDARIES         | 44 |
| 1.175 | TYPE OF ADVECTION                             | 44 |
| 1.176 | USER CRAY                                     | 44 |
| 1.177 | VALIDATION                                    | 45 |
| 1.178 | VARIABLES FOR GRAPHIC PRINTOUTS               | 45 |
| 1.179 | VARIABLES TO BE PRINTED                       | 45 |
| 1.180 | VECTOR LENGTH                                 | 45 |
| 1.181 | VERTICAL GRAIN SORTING MODEL                  | 45 |
| 1.182 | WATER DENSITY                                 | 46 |
| 1.183 | WATER VISCOSITY                               | 46 |
| 1.184 | WAVE FILE                                     | 46 |
| 1.185 | WAVE FILE FORMAT                              | 46 |
| 1.186 | ZERO                                          | 46 |
| 2     | List of keywords classified according to type | 47 |
| 2.1   | BED MATERIAL                                  | 47 |
| 2.2   | BED-LOAD                                      | 47 |
| 2.3   | C-VSM                                         | 47 |
| 2.4   | COHESIVE SEDIMENT                             | 48 |
| 2.5   | COMPUTATION ENVIRONMENT                       | 48 |
| 2.6   | COMPUTATIONAL INFORMATION                     | 48 |
| 2.7   | CONSOLIDATION                                 | 48 |
| 2.8   | DATA FILES                                    | 48 |
| 2.9   | EQUATIONS, ADVECTION                          | 48 |
| 2.10  | EQUATIONS, BOUNDARY CONDITIONS                | 49 |
| 2.11  | FRICTION                                      | 49 |
| 2.12  | GENERAL                                       | 49 |
| 2.13  | INITIAL CONDITIONS                            | 49 |
| 2.14  | INPUT-OUTPUT, FILES                           | 50 |
| 2.15  | INPUT-OUTPUT, GRAPHICS AND LISTING            | 50 |
| 2.16  | INPUT-OUTPUT, INFORMATION                     | 50 |
| 2 17  | MESH GENERATOR                                | 50 |

|      |                         | 9  |
|------|-------------------------|----|
| 2.18 | MISCELLANEOUS           | 50 |
| 2.19 | NAMES                   | 51 |
| 2.20 | NONEQUILIBRIUM BED LOAD | 51 |
| 2.21 | NUMERICAL               | 51 |
| 2.22 | NUMERICAL PARAMETERS    | 51 |
| 2.23 | PHYSICS                 | 51 |
| 2.24 | RESULTS                 | 52 |
| 2.25 | SEDIMENT TRANSPORT      | 52 |
| 2.26 | SEDIMENTOLOGY           | 52 |
| 2.27 | SLOPE EFFECT            | 52 |
| 2.28 | SOLVER                  | 52 |
| 2.29 | SUSPENSION              | 52 |
| 2.30 | TIME                    | 53 |
| 2.31 | USELESS                 | 53 |
| 3    | Glossary                | 55 |
| 3.1  | English/French glossary | 55 |
| 3.2  | French/English glossary | 60 |
|      | Bibliography            | 66 |

# 1. Detail list of keywords

### 1.1 ACTIVE LAYER THICKNESS

Type: Real
Dimension: 0
Mnemo ELAY0
DEFAULT VALUE: 10000

French keyword: EPAISSEUR DE COUCHE ACTIVE

Thickness for bed stratification. Composition of first layer is used to compute bed load transport rate. If you do not want a stratification, use a large value

### 1.2 B VALUE FOR THE BIJKER FORMULA

Type: Real
Dimension: -1
Mnemo BIJK
DEFAULT VALUE: 2.D0

French keyword: COEFFICIENT B DE LA FORMULE DE BIJKER

b value for the Bijker formula

### 1.3 BED LOAD

Type: Logical Dimension: -1

Mnemo

DEFAULT VALUE: YES

French keyword: CHARRIAGE

TODO: WRITE HELP FOR THAT KEYWORD

# 1.4 BED ROUGHNESS PREDICTION

Type: Logical Dimension: 0

Mnemo KSPRED DEFAULT VALUE: NO

French keyword: PREDICTION DE LA RUGOSITE

The bed roughness is predicted according to the selected BED ROUGHNESS PREDICTOR

OPTION. In case of coupling with Telemac2d, the calculated bed roughness is sent to Telemac. The FRICTION COEFFICIENT and FRICTION LAW are no longer used (KFROT is set to 5)

### 1.5 BED ROUGHNESS PREDICTOR OPTION

Type: Integer
Dimension: 1
Mnemo IKS
DEFAULT VALUE: 1

French keyword: OPTION DU PREDICTEUR DE RUGOSITE 1: Flat bed, 2: Rippled bed, 3: Dunes and mega ripples (Method of Van Rijn)

### 1.6 BED-LOAD TRANSPORT FORMULA

Type: Integer
Dimension: -1
Mnemo ICF
DEFAULT VALUE: 1

French keyword: FORMULE DE TRANSPORT SOLIDE

10 bed-load or total load transport formulas are implemented in SISYPHE. The formula Ne3, Ne30 and Ne9 should not be used in the case of coupling with the suspension. The formula Ne4, Ne5, Ne8 and Ne9 model the transport under the combined action of currents and waves: 1: MEYER-PETER (bed load) 2: EINSTEIN-BROWN (bed load) 3: ENGELUND-HANSEN + CHOLLET AND CUNGE (VERSION 5.3) 30: ENGELUND-HANSEN (total) 4: BIJKER (bed load + suspension) 5: SOULSBY - VAN RIJN (bed load + suspension) 6: HUNZIKER (only for sand grading) IN THIS CASE HIDING FACTOR KEYWORD DISCARDED And Hunziker formula used 7: VAN RIJN (bed load) 8: BAILARD (bed load + suspension) 9: DIBAJNIA ET WATANABE (total) Users can also program other formulas (subroutine QSFORM.f) setting this key word to zero: 0: FORMULA PROGRAMMED BY USER Warning: it is not then possible to choose the option VARIABLE TIME-STEP

### **1.7 BETA**

Type: Real Dimension: -1

Mnemo

DEFAULT VALUE: 1.3 French keyword: BETA

Specifies the value of the beta coefficient used in the Koch and Flokstra slope effect formulation.

### 1.8 BINARY OF THE PREVIOUS SEDIMENTOLOGICAL COMPUTATION FILE

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: 'STD'

French keyword: STANDARD DU FICHIER PRECEDENT SEDIMENTOLOGIQUE Binary file type used for writing the previous sedimentological computation results file. This type depends on the machine on which the file was generated. The possible values are the same as for the geometry file.

### 1.9 BOTTOM TOPOGRAPHY FILE

Type: String Dimension: -1

Mnemo SIS\_FILES(SISFON)

DEFAULT VALUE:

French keyword: FICHIER DES FONDS

Name of the possible file containing the bathymetric data.

### 1.10 BOUNDARY CONDITIONS FILE

Type: String Dimension: -1

Mnemo SIS\_FILES(SISLIM)

DEFAULT VALUE: '

French keyword: FICHIER DES CONDITIONS AUX LIMITES

Name of the file containing the types of boundary conditions. This file is filled automatically by the mesh generator through colours that are assigned to the computation domain boundary nodes.

### 1.11 C-VSM DYNAMIC ALT MODEL

Type: Integer Dimension: 0

Mnemo ALT\_MODEL

DEFAULT VALUE: 5

French keyword: C-VSM DYNAMIC ALT MODEL

MODEL FOR ACTIVE LAYER THICKNESS 0 = ELAY0 (Keyword: ACTIVE LAYER THICKNESS) 1 = Hunziker & Günther 2 = Fredsoe & Deigaard (1992) 3 = van RIJN (1993) 4 = Wong (2006) 5 = Malcherek (2003) 6 = 3\*d50 within last time steps ALT

### 1.12 C-VSM FULL PRINTOUT PERIOD

Type: Integer Dimension: 0

Mnemo CVSMPPERIOD

DEFAULT VALUE: 0

French keyword: C-VSM FULL PRINTOUT PERIOD

Number of Timesteps to next printout of the full C-VSM. These printouts are highly time and disc consuming. 0 = Coupled to GRAPHIC PRINTOUT PERIOD >0 = Own printout period for the C-VSM

### 1.13 C-VSM MAXIMUM SECTIONS

Type: Integer Dimension: 0

Mnemo PRO\_MAX\_MAX

DEFAULT VALUE: 200

French keyword: C-VSM MAXIMUM SECTIONS

Defines the maximum discretisation of the Continous Vertical Sorting Model: Should be bigger than 8xNumber of Fractions. The bigger the higher the RAM requirements, but the faster and accurater the bookkeeping of the sediments.

### 1.14 C-VSM PRINTOUT SELECTION

Type: String Dimension: 13

Mnemo CVSMOUTPUT

DEFAULT VALUE: '0:0:0:0:0:0:0:0:0:0:0:0:0:0

French keyword: C-VSM PRINTOUT SELECTION

Printout the C-VSM for the whole model as SELAFIN or / and for some nodes as .VSP.CSV file. Give Up to 100 INTEGER numbers separated by ";" 0 = Full model .-> .RES N = 1,2...NPOINT;

2D-ID of a SELFIN MESH POINT ->.CSV

### 1.15 CHECKING THE MESH

Type: Logical Dimension: 0

Mnemo CHECK\_MESH

DEFAULT VALUE: NO

French keyword: VERIFICATION DU MAILLAGE

if this key word is equal to yes, a call to subroutine checkmesh will look for errors in the mesh, superimposed points, etc.

### 1.16 COHESIVE SEDIMENTS

Type: Logical
Dimension: 10
Mnemo SEDCO

DEFAULT VALUE: 0;0;0;0;0;0;0;0;0;0

French keyword: SEDIMENTS COHESIFS TODO: WRITE HELP FOR THAT KEYWORD

### 1.17 COMPUTATION CONTINUED

Type: Logical
Dimension: 0
Mnemo DEBU
DEFAULT VALUE: NO

French keyword: SUITE DE CALCUL

Determines whether the computation under way is an independent result or is following an earlier result. NO: It is the first run for this computation and a whole set of initial conditions should be defined. YES: It follows a former computation: the initial conditions consist in the last time step of the PREVIOUS COMPUTATION FILE in the steering file used for submitting the computation. All the data from the steering file may be defined once again, which provides an opportunity to change, for example, the time step. It is also possible to define new boundary conditions.

### 1.18 CONCENTRATION PER CLASS AT BOUNDARIES

Type: Real Dimension: 2

Mnemo CBOR\_CLASSE

**DEFAULT VALUE:** 

French keyword: CONCENTRATIONS PAR CLASSE AUX FRONTIERES

In case of suspension, will be used to initialize the value of volume concentration for each class and each boundary order: boundary 1 (class 1, class 2, etc., then boundary 2, etc.

### 1.19 CONSOLIDATION MODEL

Type: Integer
Dimension: 1
Mnemo ITASS
DEFAULT VALUE: 1

French keyword: OPTION DU MODELE DE TASSEMENT

1: Multilayer model of Walther, 2: Thiebot, 3: Lenormant

### 1.20 CONSTANT ACTIVE LAYER THICKNESS

Type: Logical Dimension: -1

Mnemo CONST ALAYER

DEFAULT VALUE: YES

French keyword: EPAISSEUR DE COUCHE ACTIVE CONSTANTE

constant active layer thickness or not

### 1.21 CONSTANT FLOW DISCHARGE

Type: Logical Dimension: -1

Mnemo LCONDIS

DEFAULT VALUE: NO

French keyword: CONSTANT FLOW DISCHARGE

constant flow discharge or not

### 1.22 CONTROL SECTIONS

Type: Integer Dimension: 3

Mnemo CTRLSC

**DEFAULT VALUE:** 

French keyword: SECTIONS DE CONTROLE

Couples of points (global numbers in the mesh) defining sections where the instantaneous and cumulated discharges will be given

# 1.23 CORRECTION ON CONVECTION VELOCITY

Type: Logical Dimension: 0

Mnemo CORR\_CONV

DEFAULT VALUE: NO

French keyword: CORRECTION DU CHAMP CONVECTEUR

Modification of 2D convection velocities to account for velocity and concentration profiles

1.24 CPU TIME

### 1.24 CPU TIME

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: '10'

French keyword: TEMPS MACHINE CRAY

C.P.U. time (in seconds) allowed for making the computation. Please note that this keyword is a string of characters.

### 1.25 CRITERION TO UPDATE THE FLOW

Type: Real Dimension: -1

Mnemo CRIT\_CFD

DEFAULT VALUE: 0.1

French keyword: CRITERE POUR METTRE A JOUR L'HYDRODYNAMIQUE Criterion (Bottom height>CRIT\_CFD\*Water depth) in order to update the flow. To use with the option constant flow discharge

### 1.26 CRITICAL EROSION SHEAR STRESS OF THE MUD

Type: Real Dimension: 10

Mnemo TOCE VASE

DEFAULT VALUE: 0.01;0.02;0.03;0.04;0.05;0.06;0.07;0.08;0.09;1.

French keyword: CONTRAINTE CRITIQUE D'EROSION DE LA VASE

Critical erosion shear stress of the mud per layer (N per m2)

### 1.27 CRITICAL EVOLUTION RATIO

Type: Real Dimension: -1

Mnemo

DEFAULT VALUE: 1.

French keyword: RAPPORT D'EVOLUTION CRITIQUE

Specifies the moment when the SISYPHE extrapolation current filed is no more valid. This value set the maximum ratio between evolutions and the water depth. Generally, it is considered that an evolution lower than 0,1 time the water depth does not perceptibly modify the current field distribution.

# 1.28 CRITICAL SHEAR VELOCITY FOR MUD DEPOSITION

Type: Real
Dimension: -1
Mnemo VITCD
DEFAULT VALUE: 1000.

French keyword: VITESSE CRITIQUE DE DEPOT DE LA VASE

Critical shear velocity for deposition (m/s)

### 1.29 D90

Type: Real
Dimension: 10
Mnemo FD90

DEFAULT VALUE: .01;.01;.01;.01;.01;.01;.01;.01;.01

French keyword: D90

Sets value of diameter d90 for particular size class. If the keyword is not in the sterring file, the default value is the value of the mean diameter of the sediment.

### 1.30 DEBUGGER

Type: Integer
Dimension: 0
Mnemo DEBUG

DEFAULT VALUE: 0

French keyword: DEBUGGER

If 1, calls of subroutines will be printed in the listing

### 1.31 DEFAULT EXECUTABLE

Type: String Dimension: 1

Mnemo EXEDEF

DEFAULT VALUE: 'builds|PPP|bin|sisypheMMMVVV.exe'

French keyword: EXECUTABLE PAR DEFAUT

Default executable for SISYPHE

### 1.32 DEFAULT PARALLEL EXECUTABLE

Type: String Dimension: 1

Mnemo EXEDEFPARA

DEFAULT VALUE: 'builds|PPP|bin|sisypheMMMVVV.exe'

French keyword: EXECUTABLE PARALLELE PAR DEFAUT

Default executable for SISYPHE

### 1.33 DESCRIPTION OF LIBRARIES

Type: String Dimension: 7

Mnemo LINKLIBS

DEFAULT VALUE: 'builds|PPP|lib|sisypheMMMVVV.LLL;

builds|PPP|lib|nestorMMMVVV.LLL; builds|PPP|lib|biefMMMVVV.LLL; builds|PPP|lib|damoMMMVVV.LLL; builds|PPP|lib|paralle|MMMVVV.LLL; builds|PPP|lib|specia|MMMVVV.LLL;

French keyword: DESCRIPTION DES LIBRAIRIES

SISYPHE LIBRARIES description

1.34 DICTIONARY

### 1.34 DICTIONARY

Type: String
Dimension: -1

Mnemo

DEFAULT VALUE: 'sisyphev6p2.dico' French keyword: DICTIONNAIRE

Key word dictionary.

### 1.35 DIFFUSION

Type: Logical
Dimension: 0
Mnemo DIFT
DEFAULT VALUE: YES

French keyword: DIFFUSION

If yes, diffusion of the concentration of suspended sediment is done

### 1.36 DISPERSION ACROSS THE FLOW

Type: Real Dimension: 0

Mnemo

DEFAULT VALUE: 1.E-2

French keyword: DISPERSION TRANSVERSALE

TODO: WRITE HELP FOR THAT KEYWORD

### 1.37 DISPERSION ALONG THE FLOW

Type: Real Dimension: 0

Mnemo

DEFAULT VALUE: 1.E-2

French keyword: DISPERSION LONGITUDINALE

TODO: WRITE HELP FOR THAT KEYWORD

### 1.38 EFFECT OF WAVES

Type: Logical
Dimension: -1
Mnemo HOULE
DEFAULT VALUE: NO

French keyword: PRISE EN COMPTE DE LA HOULE

Takes into account the effect of waves

# 1.39 EQUILIBRIUM INFLOW CONCENTRATION

Type: Logical Dimension: 0

Mnemo IMP\_INFLOW\_C

DEFAULT VALUE: NO

French keyword: CONCENTRATION D'EQUILIBRE EN ENTREE

impose the equilibrium concentration for the inflow and at t=0 in the whole domain thanks to

the formula of Fredsoe for non cohesive sediments

### 1.40 FINITE VOLUMES

Type: Logical Dimension: 0 Mnemo VF DEFAULT VALUE: NO

French keyword: VOLUMES FINIS

Finite volumes method or not

### 1.41 FLUXLINE

Type: Logical Dimension: 1

Mnemo DOFLUX DEFAULT VALUE: NO

French keyword: FLUXLINE Use Fluxline to compute flux over lines

### 1.42 FLUXLINE INPUT FILE

Type: String Dimension: -1

Mnemo SIS\_FILES(SISFLX)

DEFAULT VALUE:

French keyword: FICHIER DE FLUXLINE

Name of the Fluxline file

### 1.43 FORMULA FOR DEVIATION

Type: Integer
Dimension: -1
Mnemo DEVIA

DEFAULT VALUE: 1

French keyword: FORMULE POUR LA DEVIATION

1: Koch and Flokstra 2: formula of Talmon et al. 1995, JHR 33(4) formulas (1) and (17) linked

keyword: BETA2

### 1.44 FORMULA FOR SLOPE EFFECT

Type: Integer Dimension: -1

Mnemo SLOPEFF

DEFAULT VALUE:

French keyword: FORMULE POUR EFFET DE PENTE

1: formula of Koch et Flokstra, modification of bed load linked keyword: BETA 2: formula of Soulsby, modification critical shear stress, can only be used with a threshold fomula linked keyword: FRICTION ANGLE OF THE SEDIMENT

### 1.45 FORMULATION FOR DEPOSITION AND EROSION

Type: Integer Dimension: 0

Mnemo

DEFAULT VALUE: 2

French keyword: FORMULATION POUR DEPOT ET EROSION

TODO: WRITE HELP FOR THAT KEYWORD

### 1.46 FORTRAN FILE

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: 'DEFAUT'

French keyword: FICHIER FORTRAN Name of FORTRAN file to be submitted.

### 1.47 FREE INTEGER 1

Type: Integer Dimension: -1

Mnemo

DEFAULT VALUE: 0

French keyword: FREE INTEGER 1 TODO: WRITE HELP FOR THAT KEYWORD

### 1.48 FREE INTEGER 2

Type: Integer Dimension: -1

Mnemo

DEFAULT VALUE: 1

French keyword: FREE INTEGER 2
TODO: WRITE HELP FOR THAT KEYWORD

# 1.49 FREE LOGICAL 1

Type: Logical Dimension: -1

Mnemo

DEFAULT VALUE: NO

French keyword: FREE LOGICAL 1 TODO: WRITE HELP FOR THAT KEYWORD

# 1.50 FRICTION ANGLE OF THE SEDIMENT

Type: Real
Dimension: -1
Mnemo PHISED
DEFAULT VALUE: 40.

French keyword: ANGLE DE FROTTEMENT DU SEDIMENT

Angle of repose of the sediment. Used in the Soulsby formula to take into account the influence

of bed slope on critical shear stress. Use if ...=2

### 1.51 FRICTION COEFFICIENT

Type: Real Dimension: -1

Mnemo

DEFAULT VALUE: 50.

French keyword: COEFFICIENT DE FROTTEMENT

Sets the value of the friction coefficient to calculate the bed shear stress. Depends on the LAW OF BOTTOM FRICTION.

### 1.52 GEL CONCENTRATION

Type: Real Dimension: -1

Mnemo CONC\_GEL DEFAULT VALUE: 310.D0

French keyword: CONCENTRATION GEL

Gel Concentration (Kg/m3)

### 1.53 GEOMETRY FILE

Type: String Dimension: 0

Mnemo SIS\_FILES(SISGEO)

DEFAULT VALUE: '

French keyword: FICHIER DE GEOMETRIE

Name of the file containing the mesh. This file may also contain the topography and the friction coefficients.

### 1.54 GEOMETRY FILE BINARY

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: 'STD'

French keyword: STANDARD DU FICHIER DE GEOMETRIE

Binary file type used for writing the geometry file. This type depends on the machine on which the file was generated. The possible values are as follows: IBM, for a file on an IBM (from a CRAY) I3E, for a file on an HP (from a CRAY) STD, binary type of the machine on which the user is working. The normal READ and WRITE commands are then used.

### 1.55 GEOMETRY FILE FORMAT

Type: String
Dimension: -1
Mnemo ?????

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE GEOMETRIE

Geometry file format. Possible values are: - SERAFIN: classical single precision format in

Telemac; - SERAFIND: classical double precision format in Telemac; - MED : MED format based on HDF5

### 1.56 GRAIN-FEEDING

Type: Logical Dimension: -1

Mnemo LGRAFED

DEFAULT VALUE: NO

French keyword: GRAIN-FEEDING

Now suppressed

### 1.57 GRAPHIC PRINTOUT PERIOD

Type: Integer Dimension: -1

Mnemo

DEFAULT VALUE: 1

French keyword: PERIODE DE SORTIE GRAPHIQUE

Determines, in number of time steps, the printout period for the 'VARIABLES FOR GRAPHIC PRINTOUTS' in the 'RESULTS FILE'.

### 1.58 GRAPHIC SOFTWARE

Type: Integer Dimension: -1

Mnemo

DEFAULT VALUE: 3

French keyword: LOGICIEL DE DESSIN

Specifies the used graphic software for the graphic printouts: 1: LEONARD 2: RUBENS 3:

SELAFIN.

# 1.59 GRAPHIC SOFTWARE OF THE HYDRODYNAMIC COMPUTATION

Type: Integer Dimension: -1

Mnemo

DEFAULT VALUE: 3

French keyword: LOGICIEL DE DESSIN DU CALCUL PRECEDENT

Specifies the used graphic software for the graphic printouts of the previous computation: 1: LEONARD 2: RUBENS 3: SELAFIN.

# 1.60 GRAVITY ACCELERATION

Type: Real Dimension: -1

Mnemo

DEFAULT VALUE: 9.81
French keyword: GRAVITE

Sets the value of the acceleration due to gravity. M/S2

### 1.61 HIDING FACTOR FOR PARTICULAR SIZE CLASS

Type: Real
Dimension: 10
Mnemo HIDI

DEFAULT VALUE: 1:;1:;1:;1:;1:;1:;1:;1:;1.

French keyword: HIDING FACTOR PAR CLASSE GRANULO

Sets value of hiding factor for particular size class.

### 1.62 HIDING FACTOR FORMULA

Type: Integer
Dimension: 0
Mnemo HIDFAC

DEFAULT VALUE: 0

French keyword: HIDING FACTOR FORMULA

4 hiding factor formulas are implemented in SISYPHE 0: const => need to give HIDING FACTOR FOR PARTICULAR SIZE CLASS 1: Egiazaroff 2: Ashida & Michiue : 4: Karim, Holly & Yang

### 1.63 HYDRODYNAMIC CODE

Type: Integer
Dimension: -1
Mnemo HYDRO

DEFAULT VALUE: 1

French keyword: CODE DE CALCUL UTILISE POUR L'HYDRODYNAMIQUE

specifie le code utilise pour modeliser l'hydrodynamique

### 1.64 HYDRODYNAMIC FILE

Type: String Dimension: 0

Mnemo SIS\_FILES(SISHYD)

DEFAULT VALUE:

French keyword: FICHIER HYDRODYNAMIQUE

Name of a file containing the results a previous computation made on the same mesh. The hydrodynamic will be given by the last record of the file if the case is steady or, if the case is unsteady, by the time steps describing the tide or flood. Remark: If the bed-load transport under the combined action of currents and wave is modelled (keyword BED-LOAD TRANSPORT FORMULA set equal to 4), this file must contain not only the hydrodynamic data (water height, velocities) but also the wave data (wave height, wave period). However, the user has also the possibility to give the values of the wave data in the subroutine CONDIM.

### 1.65 HYDRODYNAMIC FILE BINARY

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: 'STD'

French keyword: STANDARD DU FICHIER HYDRODYNAMIQUE

obsolete

### 1.66 HYDRODYNAMIC FILE FORMAT

Type: String
Dimension: -1
Mnemo ?????
DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER HYDRODYNAMIQUE

Previous computation results file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; -

MED: MED format based on HDF5

### 1.67 INITIAL FRACTION FOR PARTICULAR SIZE CLASS

Type: Real
Dimension: 10
Mnemo AVA0

DEFAULT VALUE: 1.;0.;0.;0.;0.;0.;0.;0.;0.;0.

French keyword: FRACTION INITIALE PAR CLASSE SEDIMENTOLOGIQUE

Sets value of initial fraction for particular size class.

### 1.68 INITIAL SUSPENSION CONCENTRATIONS

Type: Real
Dimension: 2
Mnemo CS0

**DEFAULT VALUE:** 

French keyword: CONCENTRATIONS INITIALES EN SUSPENSION

In case of suspension, will be used to initialize the value of volume concentration for each class.

Will not be used if EQUILIBRIUM INFLOW CONCENTRATION=YES

## 1.69 LAW OF BOTTOM FRICTION

Type: Integer
Dimension: 0
Mnemo KFROT

DEFAULT VALUE: 3

French keyword: LOI DE FROTTEMENT SUR LE FOND

Selects the type of formulation used for the bottom friction. To know the possible laws see CHOIX1 above. See FRICTION COEFFICIENT. Beware: in the case of internal coupling with Telemac, the friction coefficient is selected in the Telemac steering file, except when BED ROUGHNESS PREDICTION is set to YES

# 1.70 LIBRARIES

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: 'SISYPHE, TELEMAC, UTIL, DAMO, BIEF, HP'

French keyword: BIBLIOTHEQUES
Used by the start-up procedure at the workstation.

### 1.71 LIQUID BOUNDARIES FILE

Type: String Dimension: -1

Mnemo SIS\_FILES(SISLIQ)

DEFAULT VALUE:

French keyword: FICHIER DES FRONTIERES LIQUIDES

Variations in time of boundary conditions. Data of this file are read on channel SIS\_FILES(SISLIQ)

### 1.72 LIST OF FILES

Type: String Dimension: 20

Mnemo

DEFAULT VALUE: 'GEOMETRY FILE;

**BOUNDARY CONDITIONS FILE;** 

RESULTS FILE;

BOTTOM TOPOGRAPHY FILE;

REFERENCE FILE;

PREVIOUS SEDIMENTOLOGICAL COMPUTATION FILE;

PREVIOUS COMPUTATION FILE;

HYDRODYNAMIC FILE;

WAVE FILE; FORTRAN FILE; STEERING FILE;

NESTOR ACTION FILE; NESTOR POLYGON FILE;

NESTOR SURFACE REFERENCE FILE;

**NESTOR RESTART FI'** 

French keyword: LISTE DES FICHIERS TODO: WRITE HELP FOR THAT KEYWORD

### 1.73 LISTING PRINTOUT PERIOD

Type: Integer Dimension: -1

Mnemo

DEFAULT VALUE: 1

French keyword: PERIODE DE SORTIE LISTING

Determines, in number of time steps, the printout period of the 'VARIABLES TO BE PRINTED'. The results are printed out on the listing file (file cas\_numerodeprocessus.sortie on a worksta-

tion).

### 1.74 MASS CONCENTRATION

Type: Logical Dimension: 0 Mnemo UNIT DEFAULT VALUE: NO

French keyword: CONCENTRATION MASSIQUE

Determines if concentrations (input and output) are mass concentrations in g/l or adimensionnal volume concentrations (default option).

### 1.75 MASS TRANSFER PER LAYER

Type: Real Dimension: 2

Mnemo TRANS\_MASS

**DEFAULT VALUE:** 

French keyword: TRANSFERT DE MASSE PAR COUCHE Mass transfert coefficients of the multilayer consolidation model in s-1

# 1.76 MASS-BALANCE

Type: Logical Dimension: -1

Mnemo

DEFAULT VALUE: NO

French keyword: BILAN DE MASSE

Determines whether a check of the mass-balance over the domain is made or not

### 1.77 MASS-LUMPING

Type: Logical Dimension: -1

Mnemo

DEFAULT VALUE: YES

French keyword: MASS-LUMPING

If this key word is equal to yes, the mass matrix is then condensed on its diagonal. This technique is used to accelerate the computation and also to make it more stable. However, the solutions obtained are smoothed.

### 1.78 MATRIX STORAGE

Type: Integer
Dimension: 0
Mnemo OPTASS

DEFAULT VALUE: 1

French keyword: STOCKAGE DES MATRICES

TODO: WRITE HELP FOR THAT KEYWORD

### 1.79 MATRIX-VECTOR PRODUCT

Type: Integer Dimension: 0

Mnemo

DEFAULT VALUE: 1

French keyword: PRODUIT MATRICE-VECTEUR

TODO: WRITE HELP FOR THAT KEYWORD

### 1.80 MAXIMUM CONCENTRATION

Type: Real Dimension: -1

Mnemo CONC\_MAX DEFAULT VALUE: 364.D0

French keyword: CONCENTRATION MAXIMALE

Maximum Concentration for Thiebot consolidation model(Kg/m3)

### 1.81 MAXIMUM NUMBER OF BOUNDARIES

Type: Integer Dimension: -1

Mnemo MAXFRO

DEFAULT VALUE: 30

French keyword: NOMBRE MAXIMUM DE FRONTIERES

maximal number of boundaries in the mesh. Used for dimensioning arrays. Can be increased if

needed

### 1.82 MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES

Type: Integer Dimension: 0

Mnemo MAXADV

DEFAULT VALUE: 10

French keyword: MAXIMUM D'ITERATIONS POUR LES SCHEMAS DE CONVECTION

Only for schemes 13 and 14

### 1.83 MAXIMUM NUMBER OF ITERATIONS FOR SOLVER

Type: Integer Dimension: 0

Mnemo NITMAX

DEFAULT VALUE: 60

French keyword: MAXIMUM D'ITERATIONS POUR LE SOLVEUR

Since the algorithms used for solving the propagation step are iterative, the allowed number of iterations should be limited. NOTE:Used only if the key-word MASS LUMPING is equal to

false.

### 1.84 MAXIMUM NUMBER OF ITERATIONS FOR SOLVER FOR SUSPENSION

Type: Integer Dimension: 0

Mnemo

DEFAULT VALUE: 50

French keyword: MAXIMUM D'ITERATIONS POUR LE SOLVEUR POUR LA SUSPENSION

TODO: WRITE HELP FOR THAT KEYWORD

### 1.85 MEAN DIAMETER OF THE SEDIMENT

Type: Real
Dimension: 10
Mnemo FDM

DEFAULT VALUE: .01;.01;.01;.01;.01;.01;.01;.01;.01
French keyword: DIAMETRE MOYEN DES GRAINS

Sets value of diameter dm for particular size class.

### 1.86 MEMORY SPACE CRAY

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: '1500000W'

French keyword: PLACE MEMOIRE CRAY

Storage capacity (in words of 8 bytes) reserved in machine for making the computation.

### 1.87 MESHING

Type: Integer Dimension: -1

Mnemo

DEFAULT VALUE: 3

French keyword: MAILLEUR

MESHING 1: LEONARD STANDARD FINITE DIFFERENTS MESH-GENERATOR 2: PABLO 2D STANDARD FINITE ELEMENTS MESH-GENERATOR 3: SELAFIN STANDARD FINITE ELEMENTS MESH-GENERATOR.

### 1.88 MINIMAL VALUE OF THE WATER HEIGHT

Type: Real
Dimension: -1
Mnemo HMIN
DEFAULT VALUE: 1.E-3

French keyword: VALEUR MINIMUM DE H

Sets the minimum value of the water depth. Is used when the keyword TIDAL FLATS is equal

to yes.

### 1.89 MINIMUM DEPTH FOR BEDLOAD

Type: Real Dimension: -1

Mnemo HMIN\_BEDLOAD

DEFAULT VALUE: 1.E-2

French keyword: PROFONDEUR MINIMUM POUR LE CHARRIAGE

To cancel sediment fluxes to and from dry points

### 1.90 MIXED SEDIMENT

Type: Logical
Dimension: 0
Mnemo MIXTE
DEFAULT VALUE: NO

French keyword: SEDIMENT MIXTE

Mixture of cohesive and non cohesive sediment: 2 class only

### 1.91 MORPHOLOGICAL FACTOR

Type: Real
Dimension: -1
Mnemo MOFAC

DEFAULT VALUE: 1.

French keyword: FACTEUR MORPHOLOGIQUE

Amplification for the morphological time scale

### 1.92 MPM COEFFICIENT

Type: Real
Dimension: -1
Mnemo MPM
DEFAULT VALUE: 8.0E-00

French keyword: MPM COEFFICIENT

Meyer-Peter Mueller Coefficient(-)

### 1.93 MUD CONCENTRATION PER LAYER

Type: Real Dimension: 2

Mnemo CONC\_VASE

**DEFAULT VALUE:** 

French keyword: CONCENTRATIONS DU LIT DE VASE

Concentrations of the mud-bed in g per l (per layer)

### 1.94 MUD CONSOLIDATION

Type: Logical Dimension: 0 Mnemo TASS DEFAULT VALUE: NO

French keyword: TASSEMENT DU LIT COHESIF

consolidation of the mud or sand mud-mixture sediment bed accounted for

# 1.95 NAMES OF DIFFERENTIATORS

Type: String Dimension: 2

Mnemo NAME\_ADVAR

DEFAULT VALUE: '

French keyword: NOMS DES DIFFERENTIATEURS

Name of user differentiators in 32 characters, 16 for the name, 16 for the unit.

### 1.96 NAMES OF PRIVATE VARIABLES

Type: String Dimension: 2

Difficusion. 2

Mnemo NAMES\_PRIVE

DEFAULT VALUE: '

French keyword: NOMS DES VARIABLES PRIVEES

Name of private variables in 32 characters, 16 for the name, 16 for the unit. They are stored in the block PRIVE and can be read in the geometry file if they are here with their name

### 1.97 NESTOR

Type: Logical Dimension: 0

Mnemo NESTOR
DEFAULT VALUE: NO
French keyword: NESTOR
For coupling with NESTOR

### 1.98 NESTOR ACTION FILE

Type: String Dimension: -1

Mnemo SIS\_FILES(SISMAF)

DEFAULT VALUE: '

French keyword: FICHIER DE NESTOR ACTION

Name of the Nestor steering file

### 1.99 NESTOR POLYGON FILE

Type: String Dimension: -1

Mnemo SIS\_FILES(DSIPDS)

DEFAULT VALUE:

French keyword: FICHIER DE NESTOR POLYGON

Name of the Nestor polygon file

### 1.100 NESTOR RESTART FILE

Type: String Dimension: -1

Mnemo SIS\_FILES(DSCFG1)

DEFAULT VALUE: '

French keyword: FICHIER DE NESTOR RESTART

Name of the Nestor file phydef-cf.cfg.ds

## 1.101 NESTOR SURFACE REFERENCE FILE

Type: String Dimension: -1

Mnemo SIS\_FILES(DSRWSP)

DEFAULT VALUE: '

French keyword: FICHIER DE NESTOR DE SURFACE REFERENCE

Name of the Nestor file which contains the reference water surface

### 1.102 NON COHESIVE BED POROSITY

Type: Real
Dimension: 1
Mnemo XKV
DEFAULT VALUE: 0.4

French keyword: POROSITE DU LIT NON COHESIF

The bed volume concentration CSF=(1-porosity) is used to calculate the bed evolution of non-cohesive sand transport.

### 1.103 NUMBER OF BED LOAD MODEL LAYERS

Type: Integer

Dimension:

Mnemo NOMBLAY

DEFAULT VALUE: 2

French keyword: NOMBRE DE COUCHES POUR GRANULO ETENDUE

This is the given allocation limit, secure default NOMLAY=2

### 1.104 NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES

Type: Integer Dimension: 0

Mnemo NCO DIST

DEFAULT VALUE: 1

French keyword: NOMBRE DE CORRECTIONS DES SCHEMAS DISTRIBUTIFS

For predictor-corrector options

### 1.105 NUMBER OF DIFFERENTIATORS

Type: Integer Dimension: 0

Mnemo NADVAR

DEFAULT VALUE: 0

French keyword: NOMBRE DE DIFFERENTIATEURS

Defines the number of user differentiators

### 1.106 NUMBER OF ITERATIONS FOR TELEMAC

Type: Integer Dimension: -1

Mnemo NCONDIS
DEFAULT VALUE: 500

French keyword: NOMBRE D'ITERATIONS POUR TELEMAC

Number of iteration to do wtih telemac in order to obtain a new quasi-stationary flow. To use with the option constant flow discharge

### 1.107 NUMBER OF LAYERS OF THE CONSOLIDATION MODEL

Type: Integer Dimension: 0

Mnemo NCOUCH\_TASS

DEFAULT VALUE: 1

French keyword: NOMBRE DE COUCHES POUR LE TASSEMENT

Vertical bed structure - The number of layers should be less than 10

### 1.108 NUMBER OF PRIVATE ARRAYS

Type: Integer
Dimension: 0
Mnemo NPRIV

DEFAULT VALUE: 1

French keyword: NOMBRE DE TABLEAUX PRIVES

Number of arrays for own user programming

### 1.109 NUMBER OF SIZE-CLASSES OF BED MATERIAL

Type: Integer
Dimension: 0
Mnemo NSICLA

DEFAULT VALUE: 1

French keyword: NOMBRE DE CLASSES GRANULOMETRIQUES

Sets value of number of size classes of bed materials.

### 1.110 NUMBER OF SUB-ITERATIONS

Type: Integer
Dimension: 0
Mnemo NSOUS

DEFAULT VALUE: 1

French keyword: NOMBRE DE SOUS-ITERATIONS

enable to realize sub-iteration inside a time step (this key word is not used if the key word VARIABLE TIME-STEP is set equal to yes). It could be useful for a non steady case be useful for a non steady case when the time step which is fixed by the graphic printout period of the HYDRODYNAMIC FILE is too large.

### 1.111 NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES

Type: Integer Dimension: 0

Mnemo NSP\_DIST

DEFAULT VALUE: 1

French keyword: NOMBRE DE SOUS-PAS DES SCHEMAS DISTRIBUTIFS

Only for implicit scheme with predictor-corrector

### 1.112 NUMBER OF TIDES OR FLOODS

Type: Integer Dimension: -1

Mnemo NMAREE

DEFAULT VALUE: 1

French keyword: NOMBRE DE MAREES OU CRUES

For an unsteady case, specifies the number of tides or floods performed when running the code.

For a steady case, this keyword is not used.

### 1.113 NUMBER OF TIME STEPS

Type: Integer Dimension: -1

Mnemo

DEFAULT VALUE: 1

French keyword: NOMBRE DE PAS DE TEMPS

Specifies, for a steady case, the number of time steps performed when running the code. For an unsteady case, this keyword is not used.

### 1.114 OPTION FOR THE DIFFUSION OF TRACER

Type: Integer

Dimension: 0

Mnemo OPDTRA

DEFAULT VALUE: 1

French keyword: OPTION POUR LA DIFFUSION DU TRACEUR

1: Diffusion in the form div( nu grad(T) ) 2: Diffusion in the form 1/h div ( h nu grad(T) )

### 1.115 OPTION FOR THE DISPERSION

Type: Integer
Dimension: 0
Mnemo OPTDIF

**DEFAULT VALUE:** 

French keyword: OPTION POUR LA DISPERSION

1 les mots cles dispersion longitudinale et dispersion transversale permettent d affecter une valeur constante, 2 K1=alphal u\*h et K2=alphat u\*h affectent les valeurs alphal et alphat (par default alphal=6 et alphat=0.6, 3 dipersion fournie par telemac2d

### 1.116 OPTION FOR THE TREATMENT OF NON ERODABLE BEDS

Type: Integer
Dimension: 0
Mnemo CHOIX

DEFAULT VALUE: 0

French keyword: OPTION DE TRAITEMENT DES FONDS NON ERODABLES

This parameters determines the method used to treat the non erodable bottoms: 0 = EROD-ABLE BOTTOMS EVERYWHERE 1 = MINIMISATION OF THE SOLID DISCHARGE 2 = NUL SOLID DISCHARGE 3 = MINIMISATION OF THE SOLID DISCHARGE IN FE / MASS-LUMPING 4 = MINIMISATION OF THE SOLID DISCHARGE IN FINITE VOLUMES When the rigid bed can be reached during the computation, it is advised to use the method 3 or the method 4

### 1.117 OPTION FOR THE TREATMENT OF TIDAL FLATS

Type: Integer Dimension: -1

Mnemo

DEFAULT VALUE: 1

French keyword: OPTION DE TRAITEMENT DES BANCS DECOUVRANTS Used if 'TIDAL FLATS' is true 1 : EQUATIONS SOLVED EVERYWHERE WITH CORRECTION ON TIDAL FLATS 2 : DRY ELEMENTS FROZEN It is recommended to choose 1 since it ensures mass conservation.

### 1.118 ORIGIN COORDINATES

Type: Integer Dimension: 2

Mnemo I\_ORIG,J\_ORIG

DEFAULT VALUE: 0;0

French keyword: COORDONNEES DE L'ORIGINE

Value in metres, used to avoid large real numbers, added in Selafin format, but so far no other

treatment

### 1.119 ORIGINAL DATE OF TIME

Type: Integer Dimension: 3

Mnemo

DEFAULT VALUE: 0;0;0

French keyword: DATE DE L'ORIGINE DES TEMPS

Give the date of the time origin of the model when taking into account the tide generating force.

### 1.120 ORIGINAL HOUR OF TIME

Type: Integer Dimension: 3

Mnemo

DEFAULT VALUE: 0;0;0

French keyword: HEURE DE L'ORIGINE DES TEMPS

Give the time of the time origin of the model when taking into account of the tide generator

force.

### 1.121 PARALLEL PROCESSORS

Type: Integer
Dimension: 0
Mnemo NCSIZE

DEFAULT VALUE: 0

French keyword: PROCESSEURS PARALLELES

NUMBER OF PROCESSORS FOR PARALLEL PROCESSING 0: 1 machine, compiling without parallel library 1: 1 machine, compiling with a parallel library 2: 2 processors or machines in parallel etc....

### 1.122 PARAMETER FOR DEVIATION

Type: Real
Dimension: -1
Mnemo BETA2
DEFAULT VALUE: 0.85

French keyword: PARAMETRE POUR LA DEVIATION Parameter pour la deviation pour la formule de Talmon et al.

### 1.123 PARTHENIADES CONSTANT

Type: Real Dimension: -1

Mnemo PARTHENIADES

DEFAULT VALUE: 1.E-03

French keyword: CONSTANTE DE PARTHENIADES constant of the Krone and Partheniades erosion law (Kg/m2/s)

### 1.124 PARTITIONING TOOL

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: 'METIS'

French keyword: PARTITIONNEUR

PARTITIONING TOOL SELECTION 1: METIS 2: SCOTCH 3: PARMETIS 4: PTSCOTCH

etc...

### 1.125 PASSWORD CRAY

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: '

French keyword: MOT DE PASSE CRAY

Password related to USER CRAY.

### 1.126 PERMEABILITY COEFFICIENT

Type: Real Dimension: -1

Mnemo COEF\_N DEFAULT VALUE: 8.D0

French keyword: COEFFICIENT DE PERMEABILITE

Coefficient of permeability for consolidation model

### 1.127 PRECONDITIONING

Type: Integer Dimension: 0

Mnemo PRECON

DEFAULT VALUE: 2

French keyword: PRECONDITIONNEMENT

Choice of the preconditioning in the resolution of the linear system that the convergence is speeded up when it is being solved (Used only if the key-word MASS LUMPING is equal to false). 0: no preconditioning 2: diagonal preconditioning 3: diagonal preconditioning with the condensed matrix 7: Crout's preconditioning per element (not implemented). Some operations (either 2 or 3 diagonal preconditioning) can be performed concurrently with the others. Only prime numbers are therefore kept to denote the preconditioning operations. When several of them are to be performed concurrently, the product of relevant options shall be made.

### 1.128 PRECONDITIONING FOR SUSPENSION

Type: Integer Dimension: 0

Mnemo

DEFAULT VALUE: 2

French keyword: PRECONDITIONNEMENT POUR LA SUSPENSION

TODO: WRITE HELP FOR THAT KEYWORD

### PRESCRIBED SOLID DISCHARGES 1.129

Type: Real Dimension:

**SOLDIS** Mnemo

**DEFAULT VALUE:** 

French keyword: DEBITS SOLIDES IMPOSES

Values of prescribed solid discharges at the inflow boundaries (m3/s without voids). One value per liquid boundary

### 1.130 PREVIOUS SEDIMENTOLOGICAL COMPUTATION FILE

Type: String Dimension: 0

Mnemo SIS FILES(SISPRE)

DEFAULT VALUE:

French keyword: FICHIER PRECEDENT SEDIMENTOLOGIQUE

Name of a file containing the results of an earlier sedimentological computation which was made on the same mesh. The last recorded time step will provide the initial conditions for the new computation.

### PREVIOUS SEDIMENTOLOGICAL COMPUTATION FILE FORMAT 1.131

Type: String Dimension: -1 ????? Mnemo

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER PRECEDENT SEDIMENTOLOGIQUE Previous computation results file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; -MED: MED format based on HDF5

### 1.132 PVM1 LIBRARY

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: '

French keyword: BIBLIOTHEQUE PVM1

Utilise par la procedure de lancement sur station de travail

### 1.133 PVM2 LIBRARY

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: '

French keyword: BIBLIOTHEQUE PVM2

Utilise par la procedure de lancement sur station de travail

### 1.134 RATIO BETWEEN SKIN FRICTION AND MEAN DIAMETER

Type: Real Dimension: -1

Mnemo KSPRATIO

DEFAULT VALUE: 3.0

French keyword: RATIO ENTRE LA RUGOSITE DE PEAU ET LE DIAMETRE MOYEN

Ratio for the computation of skin friction. skin roughness = ratio \* mean diameter (for the mixture of sand, the mean diameter used is a value per node which is computed thanks to the fraction and the mean diameter of each sediment for each node of the mesh) if KSPRATIO =0: use skin friction prediction from Van Rijn (2007) for currents and the Wiberg and Harris method for waves

### 1.135 REFERENCE CONCENTRATION FORMULA

Type: Integer
Dimension: -1
Mnemo ICQ
DEFAULT VALUE: 1

French keyword: FORMULE POUR LA CONCENTRATION DE REFERENCE

1 : Zysderman and Fredsoe, equilibrium formula 2: Bijker method. The near bed concentration is related to the bedload . This option cannot be used without bedload transport 3: Van Rijn formula 4: Soulsby\_van Rijn formula

### 1.136 REFERENCE FILE

Type: String Dimension: 0

Mnemo SIS\_FILES(SISREF)

DEFAULT VALUE: '

French keyword: FICHIER DE REFERENCE

Name of the file used to validate the computation. If VALIDATION = YES, the results of the computation will be compared with the values of this file. The comparison is made by the subroutine VALIDA.

#### 1.137 REFERENCE FILE BINARY

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: 'STD'

French keyword: STANDARD DU FICHIER DE REFERENCE

Binary file type used for writing the reference file. This type depends on the machine on which the file was generated. The possible values are the same as for the geometry file.

#### 1.138 REFERENCE FILE FORMAT

Type: String
Dimension: -1
Mnemo ?????
DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE REFERENCE

Previous computation results file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; -

MED: MED format based on HDF5

#### 1.139 RELEASE

Type: String
Dimension: -1

Mnemo

DEFAULT VALUE: 'V7P2'

French keyword: NUMERO DE VERSION

Release of the libraries used by SISYPHE.

#### 1.140 RESULTS FILE

Type: String Dimension: 0

Mnemo SIS\_FILES(SISRES)

DEFAULT VALUE:

French keyword: FICHIER DES RESULTATS

Name of the file into wich the computation results shall be written, the periodicity being given by the keyword GRAPHIC PRINTOUT PERIOD.

#### 1.141 RESULTS FILE BINARY

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: 'STD'

French keyword: STANDARD DU FICHIER RESULTAT

Binary file type used for writing the results file. This type depends on the machine on which the file was generated. The possible values are the same as for the geometry file.

#### 1.142 RESULTS FILE FORMAT

Type: String
Dimension: -1
Mnemo ?????
DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DES RESULTATS

Results file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; - MED: MED format

based on HDF5

#### 1.143 SCHEME OPTION FOR ADVECTION

Type: Integer Dimension: 1

Mnemo OPTADV

DEFAULT VALUE: 1

French keyword: OPTION DU SCHEMA POUR LA CONVECTION

If present replaces and has priority over: OPTION FOR CHARACTERISTICS (not yet implemented) SUPG OPTION IF PSI SCHEME: 1=explicit 2=predictor-corrector for tracers

#### 1.144 SECONDARY CURRENTS

Type: Logical Dimension: 0

Mnemo SECCURRENT

DEFAULT VALUE: NO

French keyword: COURANTS SECONDAIRES using the parametrisation for secondary currents

#### 1.145 SECONDARY CURRENTS ALPHA COEFFICIENT

Type: Real
Dimension: -1
Mnemo ALPHA
DEFAULT VALUE: 1.0E-00

French keyword: SECONDARY CURRENTS ALPHA COEFFICIENT

Alpha coefficient of secondary current(-), Should be chosen between 0.75 (rough bottom) and

1 (smooth bottom)

#### 1.146 SECTIONS INPUT FILE

Type: String
Dimension: -1

Mnemo SIS\_FILES(SISSEC)

DEFAULT VALUE:

French keyword: FICHIER DES SECTIONS DE CONTROLE

sections input file, partitioned

#### 1.147 SECTIONS OUTPUT FILE

Type: String Dimension: -1

Mnemo SIS\_FILES(SISSEO)

DEFAULT VALUE:

French keyword: SECTIONS OUTPUT FILE

sections output file, written by the master

#### 1.148 SEDIMENT DENSITY

Type: Real Dimension: -1

Mnemo

DEFAULT VALUE: 2650.

French keyword: MASSE VOLUMIQUE DU SEDIMENT

sets the value of the sediment density en Kg/m3

#### 1.149 SEDIMENT DIAMETERS

Type: Real
Dimension: 10
Mnemo FDM

DEFAULT VALUE: .01;.01;.01;.01;.01;.01;.01;.01

French keyword: DIAMETRES DES GRAINS Sets value of diameter dm for particular size class.

#### 1.150 SEDIMENT SLIDE

Type: Logical Dimension: 0
Mnemo SLIDE DEFAULT VALUE: NO

French keyword: GLISSEMENT DU SEDIMENT

If yes, the key-word FRICTION ANGLE OF THE SEDIMENT is taken into account for slope

stability

#### 1.151 SETTLING LAG

Type: Logical Dimension: -1

Mnemo SET\_LAG

DEFAULT VALUE: NO

French keyword: SETTLING LAG

(-)

#### 1.152 SETTLING VELOCITIES

Type: Real
Dimension: 10
Mnemo XWC

**DEFAULT VALUE:** 

French keyword: VITESSES DE CHUTE

The default value is not given. If the user does not give a value, the subroutine vitchu-sisyphe is used: Stockes, Zanke or Van Rijn formulae depending on the grain size

#### 1.153 SHIELDS PARAMETERS

Type: Real
Dimension: 10
Mnemo AC

**DEFAULT VALUE:** 

French keyword: PARAMETRES DE SHIELDS

Used to determine the critical bed shear stress value (non-cohesive sediments). For multi grain size, the shields parameter needs to be specified for each class. If only one value is specified, the shields parameter will be considered constant. The default option (no shields given in parameter file) is to calculate the shields parameter as a function of sand grain diameter (see logical CALAC).

#### 1.154 SKIN FRICTION CORRECTION

Type: Integer
Dimension: -1
Mnemo ICR
DEFAULT VALUE: 1

French keyword: CORRECTION FROTTEMENT DE PEAU

formula to predict the skin bed roughness (see also KSPRATIO) 0: NO correction (TAUP=

TOB) 1 : Flat bed (KSP= KSPRATIO \* D50) 2 : Ripple correction factor

#### 1.155 SLOPE EFFECT

Type: Logical
Dimension: 0
Mnemo EFFPEN
DEFAULT VALUE: YES

French keyword: EFFET DE PENTE

If yes, slope effect taken into account: deviation + modification of critical shear stress. NO will cancel the key-words FORMULA FOR SLOPE EFFECT and FORMULA FOR DEVIATION

#### **1.156 SOLVER**

Type: Integer Dimension: 0

Mnemo METHOD

DEFAULT VALUE: 3

French keyword: SOLVEUR

Makes it possible to select the solver used for solving the bottom evolution equation (Used only if the key-word MASS LUMPING is equal to false). All the currently available methods are variations of the Conjugate Gradient method. They are as follows: 1: conjugate gradient 2: conjugate residual 3: conjugate gradient on a normal equation 4: minimum error 5: conjugate gradient squared (not implemented) 6: conjugate gradient squared stabilised (cgstab) 7: gmres (see option for solver)

#### 1.157 SOLVER ACCURACY

Type: Real
Dimension: 0
Mnemo EPSI
DEFAULT VALUE: 1.E-7

French keyword: PRECISION DU SOLVEUR

Required accuracy for solving the linear system (used only if the key word MASS LUMPING

is equal to false).

#### 1.158 SOLVER ACCURACY FOR SUSPENSION

Type: Real Dimension: 0

Mnemo

DEFAULT VALUE: 1.E-8

French keyword: PRECISION DU SOLVEUR POUR LA SUSPENSION

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.159 SOLVER FOR SUSPENSION

Type: Integer Dimension: 0

Mnemo

DEFAULT VALUE: 3

French keyword: SOLVEUR POUR LA SUSPENSION

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.160 SOLVER OPTION

Type: Integer Dimension: 0

Mnemo METHOD

DEFAULT VALUE: 2

French keyword: OPTION DU SOLVEUR

WHEN GMRES (7) IS CHOSEN, DIMENSION OF THE KRYLOV SPACE TRY VALUES

BETWEEN 2 AND 15. Used only if the key-word MASS LUMPING is equal to false

#### 1.161 SOLVER OPTION FOR SUSPENSION

Type: Integer Dimension: 0

Mnemo

DEFAULT VALUE: 2

French keyword: OPTION DU SOLVEUR POUR LA SUSPENSION

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.162 STARTING TIME OF THE HYDROGRAM

Type: Real
Dimension: -1
Mnemo TPREC
DEFAULT VALUE: -1000.

French keyword: TEMPS D'ORIGINE DE L'HYDROGRAMME

this key word specifies the time when SISYPHE computation begins except when a computation is continued (the initial time is then read on the "previous sendimentological file". For an unsteady case, it moreover specifies the time which corresponds to the 1st record to be read in the "previous computation file" (the file which contains the hydrodynamic data).

#### 1.163 STATIONARY MODE

Type: Logical Dimension: -1

Mnemo STAT\_MODE

DEFAULT VALUE: NO

French keyword: STATIONARY MODE

(-)

#### 1.164 STEADY CASE

Type: Logical Dimension: -1

Mnemo

DEFAULT VALUE: NO

French keyword: CAS PERMANENT

Specifies steady or unsteady case. If this keyword is equal to YES, the last record of the previous computation file will give the values of h,u,v and eventually wave height and period to be considered.

#### 1.165 STEERING FILE

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: "

French keyword: FICHIER DES PARAMETRES

Name of the file containing the parameters of the computation. Could be written by the user with EDAMOX.

#### 1.166 SUPG OPTION

Type: Integer Dimension: 0

Mnemo

DEFAULT VALUE: 2

French keyword: OPTION DE SUPG TODO: WRITE HELP FOR THAT KEYWORD

1.167 SUSPENSION 43

#### 1.167 SUSPENSION

Type: Logical Dimension: -1

Mnemo

DEFAULT VALUE: NO

French keyword: SUSPENSION

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.168 TETA

Type: Real Dimension: -1

Mnemo

DEFAULT VALUE: 0. French keyword: TETA

Specifies the implicitation coefficient of the numerical scheme.

#### 1.169 TETA SUSPENSION

Type: Real Dimension: 0

Mnemo TETA\_SUSP

DEFAULT VALUE: 1.

French keyword: TETA SUSPENSION

implicitation factor for the deposition flux and the diffusion. for teta =0, the deposition flux is only explicit.

#### 1.170 TIDAL FLATS

Type: Logical Dimension: -1

Mnemo

DEFAULT VALUE: YES

French keyword: BANCS DECOUVRANTS

When no, the specific treatments for tidal flats are by-passed. This spares time, but of course you must be sure that you have no tidal flats

#### 1.171 TIDE PERIOD

Type: Real Dimension: -1

Mnemo

**DEFAULT VALUE:** 

French keyword: PERIODE DE LA MAREE

Sets the period of the event (tide or flood) for an unsteady case.

#### **1.172 TIME STEP**

Type: Real Dimension: -1

Mnemo

DEFAULT VALUE: 1.

French keyword: PAS DE TEMPS

Specifies the time step in seconds in steady case. For an unsteady case, this time step is fixed by the graphic printout period of the previous computation file, except if no name is given for the 'HYDRODYNAMIC FILE' in the steering file. Remark: If the keyword 'VARIABLE TIME STEP' is set equal to yes, the time step required for a correct resolution is computed in the code and sub-iterations are performed

#### 1.173 TITLE

Type: String
Dimension: -1

Mnemo

DEFAULT VALUE: '

French keyword: TITRE

Title of the case being considered. This title shall be marked on the printouts.

#### 1.174 TREATMENT OF FLUXES AT THE BOUNDARIES

Type: Integer

Dimension: 0

Mnemo DIRFLU

DEFAULT VALUE: 2

French keyword: TRAITEMENT DES FLUX AUX FRONTIERES

Used so far only with the PSI and N schemes. With option 2, Dirichlet prescribed values are not obeyed, but the fluxes are correct

#### 1.175 TYPE OF ADVECTION

Type: Integer
Dimension: 0
Mnemo RESOL
DEFAULT VALUE: 1

French keyword: FORME DE LA CONVECTION

Scheme used for advection of suspended sediment: 1: characteristics 2: semi-implicit SUPG 3 et 4: N scheme 5: psi scheme 6: non conservative psi scheme 7: non conservative N scheme 13 et 14: Edge-based N scheme (recommended for tidal flats)

#### **1.176 USER CRAY**

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: "

French keyword: USER CRAY

User's identity on CRAY.

1.177 VALIDATION 45

#### 1.177 VALIDATION

Type: Logical Dimension: -1

Mnemo

DEFAULT VALUE: NO

French keyword: VALIDATION

This option is primarily used for the validation documents. If this keyword is equal to YES, the REFERENCE FILE is then considered as a reference which the computation is going to be compared with. The comparison is made by the subroutine VALIDA, which can be modified so as to include, for example, a comparison with an exact solution.

#### 1.178 VARIABLES FOR GRAPHIC PRINTOUTS

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: 'U,V,H,S,B,R,E'

French keyword: VARIABLES POUR LES SORTIES GRAPHIQUES

Names of variables the user wants to write into the graphic results file. Each variable is represented by a letter. See CHOIX1 above. One can use \*, \*A\* means all fractions

#### 1.179 VARIABLES TO BE PRINTED

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: '

French keyword: VARIABLES A IMPRIMER

Names of variables the user wants to write on the listing. Each variable is represented by a letter in the same manner as it is done in the graphic results file.

#### 1.180 VECTOR LENGTH

Type: Integer Dimension: -1

Mnemo

DEFAULT VALUE: 1

French keyword: LONGUEUR DU VECTEUR

vector length on vector machines.

#### 1.181 VERTICAL GRAIN SORTING MODEL

Type: Integer Dimension: 0

Mnemo VSMTYPE

DEFAULT VALUE: 0

French keyword: VERTICAL GRAIN SORTING MODEL

Defines the model of the vertical grain sorting: 0 = HR-VSM = Layer Model (Classic Hirano /

Ribberink approach) 1 = C-VSM (Continous Vertical Grain Sorting Model)

#### 1.182 WATER DENSITY

Type: Real Dimension: -1

Mnemo

DEFAULT VALUE: 1000.

French keyword: MASSE VOLUMIQUE DE L'EAU

sets the value of water density.

#### 1.183 WATER VISCOSITY

Type: Real
Dimension: -1
Mnemo VCE
DEFAULT VALUE: 1.E-6

French keyword: VISCOSITE CINEMATIQUE EAU

Specifies the water kinematic viscosity. M/S2

#### 1.184 WAVE FILE

Type: String Dimension: 0

Mnemo SIS FILES(SISCOU)

DEFAULT VALUE:

French keyword: FICHIER DE HOULE

Name of a file containing the results a previous TOMAWAC computation made on the same mesh. The wave data (wave height, wave period, wave angle) will be given by the last record of the file. The user has to verify that both informations (wave and current data) are consistent. Remark: The wave data can also be specified in the hydrodynamic file. the user has also the possibility to give the values of the wave data in the subroutine CONDIM. This is recommended for non-steady flow simulation.

#### 1.185 WAVE FILE FORMAT

Type: String
Dimension: -1
Mnemo ?????
DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE HOULE

Wave file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; - MED: MED format based on HDF5

#### 1.186 **ZERO**

Type: Real Dimension: -1

Mnemo

DEFAULT VALUE: 1.E-10
French keyword: ZERO
Sets the zero of the code.

# 2. List of keywords classified according to type

#### 2.1 BED MATERIAL

ACTIVE LAYER THICKNESS
C-VSM DYNAMIC ALT MODEL
C-VSM FULL PRINTOUT PERIOD
C-VSM MAXIMUM SECTIONS
C-VSM PRINTOUT SELECTION
COHESIVE SEDIMENTS
CONSTANT ACTIVE LAYER THICKNESS
D90
HIDING FACTOR FOR PARTICULAR SIZE CLASS
HIDING FACTOR FORMULA
INITIAL FRACTION FOR PARTICULAR SIZE CLASS
NUMBER OF SIZE-CLASSES OF BED MATERIAL
SEDIMENT DIAMETERS
VERTICAL GRAIN SORTING MODEL

#### 2.2 BED-LOAD

B VALUE FOR THE BIJKER FORMULA BED LOAD BED-LOAD TRANSPORT FORMULA

#### 2.3 C-VSM

C-VSM DYNAMIC ALT MODEL
C-VSM FULL PRINTOUT PERIOD
C-VSM MAXIMUM SECTIONS
C-VSM PRINTOUT SELECTION
VERTICAL GRAIN SORTING MODEL

#### 2.4 COHESIVE SEDIMENT

CRITICAL EROSION SHEAR STRESS OF THE MUD MUD CONCENTRATION PER LAYER

#### 2.5 COMPUTATION ENVIRONMENT

DICTIONARY

#### 2.6 COMPUTATIONAL INFORMATION

DEFAULT EXECUTABLE
DEFAULT PARALLEL EXECUTABLE
DESCRIPTION OF LIBRARIES
MINIMUM DEPTH FOR BEDLOAD
MORPHOLOGICAL FACTOR
RELEASE
TITLE

#### 2.7 CONSOLIDATION

CONSOLIDATION MODEL

GEL CONCENTRATION

MASS TRANSFER PER LAYER

MAXIMUM CONCENTRATION

MUD CONSOLIDATION

NUMBER OF LAYERS OF THE CONSOLIDATION MODEL

PERMEABILITY COEFFICIENT

#### 2.8 DATA FILES

BOTTOM TOPOGRAPHY FILE
BOUNDARY CONDITIONS FILE
FORTRAN FILE
HYDRODYNAMIC FILE FORMAT
REFERENCE FILE
REFERENCE FILE FORMAT
SECTIONS INPUT FILE
WAVE FILE
WAVE FILE FORMAT

#### 2.9 EQUATIONS, ADVECTION

SCHEME OPTION FOR ADVECTION

#### 2.10 EQUATIONS, BOUNDARY CONDITIONS

PRESCRIBED SOLID DISCHARGES

#### 2.11 FRICTION

FRICTION COEFFICIENT
LAW OF BOTTOM FRICTION
RATIO BETWEEN SKIN FRICTION AND MEAN DIAMETER
SKIN FRICTION CORRECTION

#### 2.12 GENERAL

BED ROUGHNESS PREDICTOR OPTION

CHECKING THE MESH

CONSTANT FLOW DISCHARGE

CONTROL SECTIONS

CRITERION TO UPDATE THE FLOW

CRITICAL EVOLUTION RATIO

EFFECT OF WAVES

FLUXLINE

FLUXLINE INPUT FILE

GRAIN-FEEDING

MASS CONCENTRATION

MAXIMUM NUMBER OF BOUNDARIES

MINIMAL VALUE OF THE WATER HEIGHT

MINIMUM DEPTH FOR BEDLOAD

MIXED SEDIMENT

MORPHOLOGICAL FACTOR

NUMBER OF BED LOAD MODEL LAYERS

NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES

NUMBER OF ITERATIONS FOR TELEMAC

NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES

OPTION FOR THE TREATMENT OF NON ERODABLE BEDS

PARTITIONING TOOL

SCHEME OPTION FOR ADVECTION

SECONDARY CURRENTS

SECONDARY CURRENTS ALPHA COEFFICIENT

SHIELDS PARAMETERS

STATIONARY MODE

STEADY CASE

TIDAL FLATS

TREATMENT OF FLUXES AT THE BOUNDARIES

#### 2.13 INITIAL CONDITIONS

COMPUTATION CONTINUED
PREVIOUS SEDIMENTOLOGICAL COMPUTATION FILE

PREVIOUS SEDIMENTOLOGICAL COMPUTATION FILE FORMAT

#### 2.14 INPUT-OUTPUT, FILES

GEOMETRY FILE
GEOMETRY FILE FORMAT
HYDRODYNAMIC FILE
LIQUID BOUNDARIES FILE
LIST OF FILES
NAMES OF DIFFERENTIATORS
NAMES OF PRIVATE VARIABLES
NUMBER OF DIFFERENTIATORS

#### 2.15 INPUT-OUTPUT, GRAPHICS AND LISTING

VARIABLES FOR GRAPHIC PRINTOUTS

#### 2.16 INPUT-OUTPUT, INFORMATION

DEFAULT EXECUTABLE
DEFAULT PARALLEL EXECUTABLE
DESCRIPTION OF LIBRARIES
DICTIONARY
MESHING
RELEASE
TITLE

#### 2.17 MESH GENERATOR

MESHING

#### 2.18 MISCELLANEOUS

DEBUGGER

NESTOR

NESTOR ACTION FILE

NESTOR POLYGON FILE

NESTOR RESTART FILE

NESTOR SURFACE REFERENCE FILE

NUMBER OF PRIVATE ARRAYS

OPTION FOR THE TREATMENT OF TIDAL FLATS

ORIGIN COORDINATES

PARALLEL PROCESSORS

VALIDATION

2.19 NAMES 51

#### **2.19 NAMES**

GEOMETRY FILE
HYDRODYNAMIC FILE
LIQUID BOUNDARIES FILE
LIST OF FILES
NAMES OF DIFFERENTIATORS
NAMES OF PRIVATE VARIABLES
NUMBER OF DIFFERENTIATORS

#### 2.20 NONEQUILIBRIUM BED LOAD

BED ROUGHNESS PREDICTION

#### 2.21 NUMERICAL

FINITE VOLUMES
MASS-LUMPING
MATRIX STORAGE
MATRIX-VECTOR PRODUCT
OPTION FOR THE DIFFUSION OF TRACER
SUPG OPTION
TETA
TYPE OF ADVECTION
ZERO

#### 2.22 NUMERICAL PARAMETERS

BED ROUGHNESS PREDICTOR OPTION

MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES

NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES

NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES

PARTITIONING TOOL

SOLVER FOR SUSPENSION

TREATMENT OF FLUXES AT THE BOUNDARIES

#### 2.23 PHYSICS

GRAVITY ACCELERATION
NON COHESIVE BED POROSITY
SEDIMENT DENSITY
SETTLING LAG
WATER DENSITY
WATER VISCOSITY

#### 2.24 RESULTS

GRAPHIC PRINTOUT PERIOD
LISTING PRINTOUT PERIOD
MASS-BALANCE
RESULTS FILE
RESULTS FILE FORMAT
SECTIONS OUTPUT FILE
VARIABLES TO BE PRINTED

#### 2.25 SEDIMENT TRANSPORT

BED ROUGHNESS PREDICTION

#### 2.26 SEDIMENTOLOGY

SECONDARY CURRENTS ALPHA COEFFICIENT

#### 2.27 SLOPE EFFECT

BETA
FORMULA FOR DEVIATION
FORMULA FOR SLOPE EFFECT
FRICTION ANGLE OF THE SEDIMENT
PARAMETER FOR DEVIATION
SEDIMENT SLIDE
SLOPE EFFECT

#### 2.28 SOLVER

MAXIMUM NUMBER OF ITERATIONS FOR SOLVER
MAXIMUM NUMBER OF ITERATIONS FOR SOLVER FOR SUSPENSION
PRECONDITIONING
PRECONDITIONING FOR SUSPENSION
SOLVER
SOLVER ACCURACY
SOLVER ACCURACY FOR SUSPENSION
SOLVER FOR SUSPENSION
SOLVER OPTION
SOLVER OPTION FOR SUSPENSION

#### 2.29 SUSPENSION

CONCENTRATION PER CLASS AT BOUNDARIES CORRECTION ON CONVECTION VELOCITY CRITICAL SHEAR VELOCITY FOR MUD DEPOSITION 2.30 TIME 53

DIFFUSION

DISPERSION ACROSS THE FLOW

DISPERSION ALONG THE FLOW

EQUILIBRIUM INFLOW CONCENTRATION

FORMULATION FOR DEPOSITION AND EROSION

INITIAL SUSPENSION CONCENTRATIONS

OPTION FOR THE DISPERSION

PARTHENIADES CONSTANT

REFERENCE CONCENTRATION FORMULA

SETTLING VELOCITIES

SOLVER FOR SUSPENSION

SUSPENSION

TETA SUSPENSION

#### 2.30 TIME

NUMBER OF SUB-ITERATIONS

NUMBER OF TIDES OR FLOODS

NUMBER OF TIME STEPS

ORIGINAL DATE OF TIME

ORIGINAL HOUR OF TIME

STARTING TIME OF THE HYDROGRAM

TIDE PERIOD

TIME STEP

#### 2.31 USELESS

BINARY OF THE PREVIOUS SEDIMENTOLOGICAL COMPUTATION FILE

CPU TIME

FREE INTEGER 1

FREE INTEGER 2

FREE LOGICAL 1

GEOMETRY FILE BINARY

GRAPHIC SOFTWARE

GRAPHIC SOFTWARE OF THE HYDRODYNAMIC COMPUTATION

HYDRODYNAMIC CODE

HYDRODYNAMIC FILE BINARY

LIBRARIES

MEAN DIAMETER OF THE SEDIMENT

MEMORY SPACE CRAY

PASSWORD CRAY

PVM1 LIBRARY

PVM2 LIBRARY

REFERENCE FILE BINARY

RESULTS FILE BINARY

STEERING FILE

USER CRAY

VECTOR LENGTH

# 3. Glossary

### 3.1 English/French glossary

| ACTIVE LAYER THICKNESS          | EPAISSEUR DE COUCHE ACTIVE     |
|---------------------------------|--------------------------------|
| B VALUE FOR THE BIJKER FORMULA  | COEFFICIENT B DE LA FORMULE DE |
|                                 | BIJKER                         |
| BED LOAD                        | CHARRIAGE                      |
| BED ROUGHNESS PREDICTION        | PREDICTION DE LA RUGOSITE      |
| BED ROUGHNESS PREDICTOR OPTION  | OPTION DU PREDICTEUR DE        |
|                                 | RUGOSITE                       |
| BED-LOAD TRANSPORT FORMULA      | FORMULE DE TRANSPORT SOLIDE    |
| BETA                            | BETA                           |
| BINARY OF THE PREVIOUS          | STANDARD DU FICHIER PRECEDENT  |
| SEDIMENTOLOGICAL COMPUTATION    | SEDIMENTOLOGIQUE               |
| FILE                            |                                |
| BOTTOM TOPOGRAPHY FILE          | FICHIER DES FONDS              |
| BOUNDARY CONDITIONS FILE        | FICHIER DES CONDITIONS AUX     |
|                                 | LIMITES                        |
| C-VSM DYNAMIC ALT MODEL         | C-VSM DYNAMIC ALT MODEL        |
| C-VSM FULL PRINTOUT PERIOD      | C-VSM FULL PRINTOUT PERIOD     |
| C-VSM MAXIMUM SECTIONS          | C-VSM MAXIMUM SECTIONS         |
| C-VSM PRINTOUT SELECTION        | C-VSM PRINTOUT SELECTION       |
| CHECKING THE MESH               | VERIFICATION DU MAILLAGE       |
| COHESIVE SEDIMENTS              | SEDIMENTS COHESIFS             |
| COMPUTATION CONTINUED           | SUITE DE CALCUL                |
| CONCENTRATION PER CLASS AT      | CONCENTRATIONS PAR CLASSE AUX  |
| BOUNDARIES                      | FRONTIERES                     |
| CONSOLIDATION MODEL             | OPTION DU MODELE DE TASSEMENT  |
| CONSTANT ACTIVE LAYER THICKNESS | EPAISSEUR DE COUCHE ACTIVE     |
|                                 | CONSTANTE                      |
| CONSTANT FLOW DISCHARGE         | CONSTANT FLOW DISCHARGE        |
| CONTROL SECTIONS                | SECTIONS DE CONTROLE           |
| CORRECTION ON CONVECTION        | CORRECTION DU CHAMP CONVECTEUR |
| VELOCITY                        |                                |

| CPU TIME                        | TEMPS MACHINE CRAY              |
|---------------------------------|---------------------------------|
| CRITERION TO UPDATE THE FLOW    | CRITERE POUR METTRE A JOUR      |
| CRITERION TO OFFITE THE FEOW    | L'HYDRODYNAMIQUE                |
| CRITICAL EROSION SHEAR STRESS   | CONTRAINTE CRITIQUE D'EROSION   |
| OF THE MUD                      | DE LA VASE                      |
| CRITICAL EVOLUTION RATIO        | RAPPORT D'EVOLUTION CRITIQUE    |
| CRITICAL SHEAR VELOCITY FOR MUD | VITESSE CRITIQUE DE DEPOT DE LA |
| DEPOSITION                      | VASE                            |
| D90                             | D90                             |
| DEBUGGER                        | DEBUGGER                        |
| DEFAULT EXECUTABLE              | EXECUTABLE PAR DEFAUT           |
| DEFAULT PARALLEL EXECUTABLE     | EXECUTABLE PARALLELE PAR DEFAUT |
| DESCRIPTION OF LIBRARIES        | DESCRIPTION DES LIBRAIRIES      |
| DICTIONARY                      | DICTIONNAIRE                    |
| DIFFUSION                       | DIFFUSION                       |
| DISPERSION ACROSS THE FLOW      | DISPERSION TRANSVERSALE         |
| DISPERSION ALONG THE FLOW       | DISPERSION LONGITUDINALE        |
| EFFECT OF WAVES                 | PRISE EN COMPTE DE LA HOULE     |
| EQUILIBRIUM INFLOW              | CONCENTRATION D'EQUILIBRE EN    |
| CONCENTRATION                   | ENTREE                          |
| FINITE VOLUMES                  | VOLUMES FINIS                   |
| FLUXLINE                        | FLUXLINE                        |
| FLUXLINE INPUT FILE             | FICHIER DE FLUXLINE             |
| FORMULA FOR DEVIATION           | FORMULE POUR LA DEVIATION       |
| FORMULA FOR SLOPE EFFECT        | FORMULE POUR EFFET DE PENTE     |
| FORMULATION FOR DEPOSITION AND  | FORMULATION POUR DEPOT ET       |
| EROSION                         | EROSION                         |
| FORTRAN FILE                    | FICHIER FORTRAN                 |
| FREE INTEGER 1                  | FREE INTEGER 1                  |
| FREE INTEGER 2                  | FREE INTEGER 2                  |
| FREE LOGICAL 1                  | FREE LOGICAL 1                  |
| FRICTION ANGLE OF THE SEDIMENT  | ANGLE DE FROTTEMENT DU SEDIMENT |
| FRICTION COEFFICIENT            | COEFFICIENT DE FROTTEMENT       |
| GEL CONCENTRATION               | CONCENTRATION GEL               |
| GEOMETRY FILE                   | FICHIER DE GEOMETRIE            |
| GEOMETRY FILE BINARY            | STANDARD DU FICHIER DE          |
|                                 | GEOMETRIE                       |
| GEOMETRY FILE FORMAT            | FORMAT DU FICHIER DE GEOMETRIE  |
| GRAIN-FEEDING                   | GRAIN-FEEDING                   |
| GRAPHIC PRINTOUT PERIOD         | PERIODE DE SORTIE GRAPHIQUE     |
| GRAPHIC SOFTWARE                | LOGICIEL DE DESSIN              |
| GRAPHIC SOFTWARE OF THE         | LOGICIEL DE DESSIN DU CALCUL    |
| HYDRODYNAMIC COMPUTATION        | PRECEDENT                       |
| GRAVITY ACCELERATION            | GRAVITE                         |
| HIDING FACTOR FOR PARTICULAR    | HIDING FACTOR PAR CLASSE        |
| SIZE CLASS                      | GRANULO                         |
| HIDING FACTOR FORMULA           | HIDING FACTOR FORMULA           |

| HYDRODYNAMIC CODE               | CODE DE CALCUL UTILISE POUR     |
|---------------------------------|---------------------------------|
|                                 | L'HYDRODYNAMIQUE                |
| HYDRODYNAMIC FILE               | FICHIER HYDRODYNAMIQUE          |
| HYDRODYNAMIC FILE BINARY        | STANDARD DU FICHIER             |
|                                 | HYDRODYNAMIQUE                  |
| HYDRODYNAMIC FILE FORMAT        | FORMAT DU FICHIER               |
|                                 | HYDRODYNAMIQUE                  |
| INITIAL FRACTION FOR PARTICULAR | FRACTION INITIALE PAR CLASSE    |
| SIZE CLASS                      | SEDIMENTOLOGIQUE                |
| INITIAL SUSPENSION              | CONCENTRATIONS INITIALES EN     |
| CONCENTRATIONS                  | SUSPENSION                      |
| LAW OF BOTTOM FRICTION          | LOI DE FROTTEMENT SUR LE FOND   |
| LIBRARIES                       | BIBLIOTHEQUES                   |
| LIQUID BOUNDARIES FILE          | FICHIER DES FRONTIERES LIQUIDES |
| LIST OF FILES                   | LISTE DES FICHIERS              |
| LISTING PRINTOUT PERIOD         | PERIODE DE SORTIE LISTING       |
| MASS CONCENTRATION              | CONCENTRATION MASSIQUE          |
| MASS TRANSFER PER LAYER         | TRANSFERT DE MASSE PAR COUCHE   |
| MASS-BALANCE                    | BILAN DE MASSE                  |
| MASS-LUMPING                    | MASS-LUMPING                    |
| MATRIX STORAGE                  | STOCKAGE DES MATRICES           |
| MATRIX-VECTOR PRODUCT           | PRODUIT MATRICE-VECTEUR         |
| MAXIMUM CONCENTRATION           | CONCENTRATION MAXIMALE          |
| MAXIMUM NUMBER OF BOUNDARIES    | NOMBRE MAXIMUM DE FRONTIERES    |
| MAXIMUM NUMBER OF ITERATIONS    | MAXIMUM D'ITERATIONS POUR LES   |
| FOR ADVECTION SCHEMES           | SCHEMAS DE CONVECTION           |
| MAXIMUM NUMBER OF ITERATIONS    | MAXIMUM D'ITERATIONS POUR LE    |
| FOR SOLVER                      | SOLVEUR                         |
| MAXIMUM NUMBER OF ITERATIONS    | MAXIMUM D'ITERATIONS POUR LE    |
| FOR SOLVER FOR SUSPENSION       | SOLVEUR POUR LA SUSPENSION      |
| MEAN DIAMETER OF THE SEDIMENT   | DIAMETRE MOYEN DES GRAINS       |
| MEMORY SPACE CRAY               | PLACE MEMOIRE CRAY              |
| MESHING                         | MAILLEUR                        |
| MINIMAL VALUE OF THE WATER      | VALEUR MINIMUM DE H             |
| HEIGHT                          |                                 |
| MINIMUM DEPTH FOR BEDLOAD       | PROFONDEUR MINIMUM POUR LE      |
|                                 | CHARRIAGE                       |
| MIXED SEDIMENT                  | SEDIMENT MIXTE                  |
| MORPHOLOGICAL FACTOR            | FACTEUR MORPHOLOGIQUE           |
| MPM COEFFICIENT                 | MPM COEFFICIENT                 |
| MUD CONCENTRATION PER LAYER     | CONCENTRATIONS DU LIT DE VASE   |
| MUD CONSOLIDATION               | TASSEMENT DU LIT COHESIF        |
| NAMES OF DIFFERENTIATORS        | NOMS DES DIFFERENTIATEURS       |
| NAMES OF PRIVATE VARIABLES      | NOMS DES VARIABLES PRIVEES      |
| NESTOR                          | NESTOR                          |
| NESTOR ACTION FILE              | FICHIER DE NESTOR ACTION        |
| NESTOR POLYGON FILE             | FICHIER DE NESTOR POLYGON       |
|                                 |                                 |

| NESTOR RESTART FILE             | FICHIER DE NESTOR RESTART         |
|---------------------------------|-----------------------------------|
| NESTOR SURFACE REFERENCE FILE   | FICHIER DE NESTOR DE SURFACE      |
| NESTOR SURFACE REFERENCE FILE   | REFERENCE                         |
| NON COHESIVE BED POROSITY       | POROSITE DU LIT NON COHESIF       |
| NUMBER OF BED LOAD MODEL LAYERS | NOMBRE DE COUCHES POUR GRANULO    |
| NOMBER OF BED LOAD MODEL LATERS | ETENDUE                           |
| NUMBER OF CORRECTIONS OF        | NOMBRE DE CORRECTIONS DES         |
| DISTRIBUTIVE SCHEMES            | SCHEMAS DISTRIBUTIFS              |
| NUMBER OF DIFFERENTIATORS       | NOMBRE DE DIFFERENTIATEURS        |
| NUMBER OF ITERATIONS FOR        | NOMBRE D'ITERATIONS POUR          |
| TELEMAC                         | TELEMAC                           |
| NUMBER OF LAYERS OF THE         | NOMBRE DE COUCHES POUR LE         |
| CONSOLIDATION MODEL             | TASSEMENT                         |
| NUMBER OF PRIVATE ARRAYS        | NOMBRE DE TABLEAUX PRIVES         |
| NUMBER OF SIZE-CLASSES OF BED   | NOMBRE DE CLASSES                 |
| MATERIAL                        | GRANULOMETRIQUES                  |
| NUMBER OF SUB-ITERATIONS        | NOMBRE DE SOUS-ITERATIONS         |
| NUMBER OF SUB-STEPS OF          | NOMBRE DE SOUS-PAS DES SCHEMAS    |
| DISTRIBUTIVE SCHEMES            | DISTRIBUTIFS                      |
| NUMBER OF TIDES OR FLOODS       | NOMBRE DE MAREES OU CRUES         |
| NUMBER OF TIME STEPS            | NOMBRE DE PAS DE TEMPS            |
| OPTION FOR THE DIFFUSION OF     | OPTION POUR LA DIFFUSION DU       |
| TRACER                          | TRACEUR                           |
| OPTION FOR THE DISPERSION       | OPTION POUR LA DISPERSION         |
| OPTION FOR THE TREATMENT OF NON | OPTION DE TRAITEMENT DES FONDS    |
| ERODABLE BEDS                   | NON ERODABLES                     |
| OPTION FOR THE TREATMENT OF     | OPTION DE TRAITEMENT DES BANCS    |
| TIDAL FLATS                     | DECOUVRANTS                       |
| ORIGIN COORDINATES              | COORDONNEES DE L'ORIGINE          |
| ORIGINAL DATE OF TIME           | DATE DE L'ORIGINE DES TEMPS       |
| ORIGINAL HOUR OF TIME           | HEURE DE L'ORIGINE DES TEMPS      |
| PARALLEL PROCESSORS             | PROCESSEURS PARALLELES            |
| PARAMETER FOR DEVIATION         | PARAMETRE POUR LA DEVIATION       |
| PARTHENIADES CONSTANT           | CONSTANTE DE PARTHENIADES         |
| PARTITIONING TOOL               | PARTITIONNEUR                     |
| PASSWORD CRAY                   | MOT DE PASSE CRAY                 |
| PERMEABILITY COEFFICIENT        | COEFFICIENT DE PERMEABILITE       |
| PRECONDITIONING FOR SUSPENSION  | PRECONDITIONNEMENT DOUB IA        |
| PRECONDITIONING FOR SUSPENSION  | PRECONDITIONNEMENT POUR LA        |
| PRESCRIBED SOLID DISCHARGES     | SUSPENSION DEBITS SOLIDES IMPOSES |
| PREVIOUS SEDIMENTOLOGICAL       | FICHIER PRECEDENT                 |
| COMPUTATION FILE                | SEDIMENTOLOGIQUE                  |
| PREVIOUS SEDIMENTOLOGICAL       | FORMAT DU FICHIER PRECEDENT       |
| COMPUTATION FILE FORMAT         | SEDIMENTOLOGIQUE                  |
| PVM1 LIBRARY                    | BIBLIOTHEQUE PVM1                 |
| PVM2 LIBRARY                    | BIBLIOTHEQUE PVM2                 |
|                                 | XX                                |

| RATIO BETWEEN SKIN FRICTION AND | RATIO ENTRE LA RUGOSITE DE PEAU |
|---------------------------------|---------------------------------|
| MEAN DIAMETER                   | ET LE DIAMETRE MOYEN            |
| REFERENCE CONCENTRATION FORMULA | FORMULE POUR LA CONCENTRATION   |
|                                 | DE REFERENCE                    |
| REFERENCE FILE                  | FICHIER DE REFERENCE            |
| REFERENCE FILE BINARY           | STANDARD DU FICHIER DE          |
|                                 | REFERENCE                       |
| REFERENCE FILE FORMAT           | FORMAT DU FICHIER DE REFERENCE  |
| RELEASE                         | NUMERO DE VERSION               |
| RESULTS FILE                    | FICHIER DES RESULTATS           |
| RESULTS FILE BINARY             | STANDARD DU FICHIER RESULTAT    |
| RESULTS FILE FORMAT             | FORMAT DU FICHIER DES RESULTATS |
| SCHEME OPTION FOR ADVECTION     | OPTION DU SCHEMA POUR LA        |
|                                 | CONVECTION                      |
| SECONDARY CURRENTS              | COURANTS SECONDAIRES            |
| SECONDARY CURRENTS ALPHA        | SECONDARY CURRENTS ALPHA        |
| COEFFICIENT                     | COEFFICIENT                     |
| SECTIONS INPUT FILE             | FICHIER DES SECTIONS DE         |
|                                 | CONTROLE                        |
| SECTIONS OUTPUT FILE            | SECTIONS OUTPUT FILE            |
| SEDIMENT DENSITY                | MASSE VOLUMIQUE DU SEDIMENT     |
| SEDIMENT DIAMETERS              | DIAMETRES DES GRAINS            |
| SEDIMENT SLIDE                  | GLISSEMENT DU SEDIMENT          |
| SETTLING LAG                    | SETTLING LAG                    |
| SETTLING VELOCITIES             | VITESSES DE CHUTE               |
| SHIELDS PARAMETERS              | PARAMETRES DE SHIELDS           |
| SKIN FRICTION CORRECTION        | CORRECTION FROTTEMENT DE PEAU   |
| SLOPE EFFECT                    | EFFET DE PENTE                  |
| SOLVER                          | SOLVEUR                         |
| SOLVER ACCURACY                 | PRECISION DU SOLVEUR            |
| SOLVER ACCURACY FOR SUSPENSION  | PRECISION DU SOLVEUR POUR LA    |
|                                 | SUSPENSION                      |
| SOLVER FOR SUSPENSION           | SOLVEUR POUR LA SUSPENSION      |
| SOLVER OPTION                   | OPTION DU SOLVEUR               |
| SOLVER OPTION FOR SUSPENSION    | OPTION DU SOLVEUR POUR LA       |
|                                 | SUSPENSION                      |
| STARTING TIME OF THE HYDROGRAM  | TEMPS D'ORIGINE DE              |
|                                 | L'HYDROGRAMME                   |
| STATIONARY MODE                 | STATIONARY MODE                 |
| STEADY CASE                     | CAS PERMANENT                   |
| STEERING FILE                   | FICHIER DES PARAMETRES          |
| SUPG OPTION                     | OPTION DE SUPG                  |
| SUSPENSION                      | SUSPENSION                      |
| TETA                            | TETA                            |
| TETA SUSPENSION                 | TETA SUSPENSION                 |
| TIDAL FLATS                     | BANCS DECOUVRANTS               |
| TIDE PERIOD                     | PERIODE DE LA MAREE             |
| IINE LEVION                     | LEVIONE NE TY MAKEE             |

| TIME STEP                       | PAS DE TEMPS                 |
|---------------------------------|------------------------------|
| TITLE                           | TITRE                        |
| TREATMENT OF FLUXES AT THE      | TRAITEMENT DES FLUX AUX      |
| BOUNDARIES                      | FRONTIERES                   |
| TYPE OF ADVECTION               | FORME DE LA CONVECTION       |
| USER CRAY                       | USER CRAY                    |
| VALIDATION                      | VALIDATION                   |
| VARIABLES FOR GRAPHIC PRINTOUTS | VARIABLES POUR LES SORTIES   |
|                                 | GRAPHIQUES                   |
| VARIABLES TO BE PRINTED         | VARIABLES A IMPRIMER         |
| VECTOR LENGTH                   | LONGUEUR DU VECTEUR          |
| VERTICAL GRAIN SORTING MODEL    | VERTICAL GRAIN SORTING MODEL |
| WATER DENSITY                   | MASSE VOLUMIQUE DE L'EAU     |
| WATER VISCOSITY                 | VISCOSITE CINEMATIQUE EAU    |
| WAVE FILE                       | FICHIER DE HOULE             |
| WAVE FILE FORMAT                | FORMAT DU FICHIER DE HOULE   |
| ZERO                            | ZERO                         |

## 3.2 French/English glossary

| ANICIE DE EDOMMENIM DI CEDIMENIM | EDICETON ANGLE OF THE ORDINGS  |
|----------------------------------|--------------------------------|
| ANGLE DE FROTTEMENT DU SEDIMENT  | FRICTION ANGLE OF THE SEDIMENT |
| BANCS DECOUVRANTS                | TIDAL FLATS                    |
| BETA                             | BETA                           |
| BIBLIOTHEQUE PVM1                | PVM1 LIBRARY                   |
| BIBLIOTHEQUE PVM2                | PVM2 LIBRARY                   |
| BIBLIOTHEQUES                    | LIBRARIES                      |
| BILAN DE MASSE                   | MASS-BALANCE                   |
| C-VSM DYNAMIC ALT MODEL          | C-VSM DYNAMIC ALT MODEL        |
| C-VSM FULL PRINTOUT PERIOD       | C-VSM FULL PRINTOUT PERIOD     |
| C-VSM MAXIMUM SECTIONS           | C-VSM MAXIMUM SECTIONS         |
| C-VSM PRINTOUT SELECTION         | C-VSM PRINTOUT SELECTION       |
| CAS PERMANENT                    | STEADY CASE                    |
| CHARRIAGE                        | BED LOAD                       |
| CODE DE CALCUL UTILISE POUR      | HYDRODYNAMIC CODE              |
| L'HYDRODYNAMIQUE                 |                                |
| COEFFICIENT B DE LA FORMULE DE   | B VALUE FOR THE BIJKER FORMULA |
| BIJKER                           |                                |
| COEFFICIENT DE FROTTEMENT        | FRICTION COEFFICIENT           |
| COEFFICIENT DE PERMEABILITE      | PERMEABILITY COEFFICIENT       |
| CONCENTRATION D'EQUILIBRE EN     | EQUILIBRIUM INFLOW             |
| ENTREE                           | CONCENTRATION                  |
| CONCENTRATION GEL                | GEL CONCENTRATION              |
| CONCENTRATION MASSIQUE           | MASS CONCENTRATION             |
| CONCENTRATION MAXIMALE           | MAXIMUM CONCENTRATION          |
| CONCENTRATIONS DU LIT DE VASE    | MUD CONCENTRATION PER LAYER    |
| CONCENTRATIONS INITIALES EN      | INITIAL SUSPENSION             |
| SUSPENSION                       | CONCENTRATIONS                 |
| 3                                |                                |

| CONCENIEDATIONS DAD STACED AND                          | CONCENTRATION DED CLACC AT                   |
|---------------------------------------------------------|----------------------------------------------|
| CONCENTRATIONS PAR CLASSE AUX                           | CONCENTRATION PER CLASS AT                   |
| FRONTIERES                                              | BOUNDARIES                                   |
| CONSTANTE DE DADTHENIADES                               | CONSTANT FLOW DISCHARGE                      |
| CONSTANTE DE PARTHENIADES                               | PARTHENIADES CONSTANT                        |
| CONTRAINTE CRITIQUE D'EROSION                           | CRITICAL EROSION SHEAR STRESS                |
| DE LA VASE                                              | OF THE MUD                                   |
| COORDONNEES DE L'ORIGINE CORRECTION DU CHAMP CONVECTEUR | ORIGIN COORDINATES  CORRECTION ON CONVECTION |
| CORRECTION DO CHAMP CONVECTEUR                          | VELOCITY                                     |
| CORRECTION FROTTEMENT DE PEAU                           | SKIN FRICTION CORRECTION                     |
| COURANTS SECONDAIRES                                    | SECONDARY CURRENTS                           |
| CRITERE POUR METTRE A JOUR                              | CRITERION TO UPDATE THE FLOW                 |
| L'HYDRODYNAMIQUE                                        |                                              |
| D90                                                     | D90                                          |
| DATE DE L'ORIGINE DES TEMPS                             | ORIGINAL DATE OF TIME                        |
| DEBITS SOLIDES IMPOSES                                  | PRESCRIBED SOLID DISCHARGES                  |
| DEBUGGER                                                | DEBUGGER                                     |
| DESCRIPTION DES LIBRAIRIES                              | DESCRIPTION OF LIBRARIES                     |
| DIAMETRE MOYEN DES GRAINS                               | MEAN DIAMETER OF THE SEDIMENT                |
| DIAMETRES DES GRAINS                                    | SEDIMENT DIAMETERS                           |
| DICTIONNAIRE                                            | DICTIONARY                                   |
| DIFFUSION                                               | DIFFUSION                                    |
| DISPERSION LONGITUDINALE                                | DISPERSION ALONG THE FLOW                    |
| DISPERSION TRANSVERSALE                                 | DISPERSION ACROSS THE FLOW                   |
| EFFET DE PENTE                                          | SLOPE EFFECT                                 |
| EPAISSEUR DE COUCHE ACTIVE                              | ACTIVE LAYER THICKNESS                       |
| EPAISSEUR DE COUCHE ACTIVE                              | CONSTANT ACTIVE LAYER THICKNESS              |
| CONSTANTE                                               |                                              |
| EXECUTABLE PAR DEFAUT                                   | DEFAULT EXECUTABLE                           |
| EXECUTABLE PARALLELE PAR DEFAUT                         | DEFAULT PARALLEL EXECUTABLE                  |
| FACTEUR MORPHOLOGIOUE                                   | MORPHOLOGICAL FACTOR                         |
| FICHIER DE FLUXLINE                                     | FLUXLINE INPUT FILE                          |
| FICHIER DE GEOMETRIE                                    | GEOMETRY FILE                                |
| FICHIER DE HOULE                                        | WAVE FILE                                    |
| FICHIER DE NESTOR ACTION                                | NESTOR ACTION FILE                           |
| FICHIER DE NESTOR DE SURFACE                            | NESTOR SURFACE REFERENCE FILE                |
| REFERENCE                                               |                                              |
| FICHIER DE NESTOR POLYGON                               | NESTOR POLYGON FILE                          |
| FICHIER DE NESTOR RESTART                               | NESTOR RESTART FILE                          |
| FICHIER DE REFERENCE                                    | REFERENCE FILE                               |
| FICHIER DES CONDITIONS AUX                              | BOUNDARY CONDITIONS FILE                     |
| LIMITES                                                 |                                              |
| FICHIER DES FONDS                                       | BOTTOM TOPOGRAPHY FILE                       |
| FICHIER DES FRONTIERES LIQUIDES                         | LIQUID BOUNDARIES FILE                       |
| FICHIER DES PARAMETRES                                  | STEERING FILE                                |
| FICHIER DES RESULTATS                                   | RESULTS FILE                                 |
|                                                         |                                              |

|                                   | CECETONG INDIE BILD                    |
|-----------------------------------|----------------------------------------|
| FICHIER DES SECTIONS DE           | SECTIONS INPUT FILE                    |
| CONTROLE                          | EODTDAN ELLE                           |
| FICHIER FORTRAN                   | FORTRAN FILE                           |
| FICHIER HYDRODYNAMIQUE            | HYDRODYNAMIC FILE                      |
| FICHIER PRECEDENT                 | PREVIOUS SEDIMENTOLOGICAL              |
| SEDIMENTOLOGIQUE                  | COMPUTATION FILE                       |
| FLUXLINE                          | FLUXLINE                               |
| FORMAT DU FICHIER DE GEOMETRIE    | GEOMETRY FILE FORMAT                   |
| FORMAT DU FICHIER DE HOULE        | WAVE FILE FORMAT                       |
| FORMAT DU FICHIER DE REFERENCE    | REFERENCE FILE FORMAT                  |
| FORMAT DU FICHIER DES RESULTATS   | RESULTS FILE FORMAT                    |
| FORMAT DU FICHIER                 | HYDRODYNAMIC FILE FORMAT               |
| HYDRODYNAMIQUE                    |                                        |
| FORMAT DU FICHIER PRECEDENT       | PREVIOUS SEDIMENTOLOGICAL              |
| SEDIMENTOLOGIQUE                  | COMPUTATION FILE FORMAT                |
| FORME DE LA CONVECTION            | TYPE OF ADVECTION                      |
| FORMULATION POUR DEPOT ET EROSION | FORMULATION FOR DEPOSITION AND EROSION |
| FORMULE DE TRANSPORT SOLIDE       | BED-LOAD TRANSPORT FORMULA             |
| FORMULE POUR EFFET DE PENTE       | FORMULA FOR SLOPE EFFECT               |
| FORMULE POUR LA CONCENTRATION     | REFERENCE CONCENTRATION FORMULA        |
| DE REFERENCE                      |                                        |
| FORMULE POUR LA DEVIATION         | FORMULA FOR DEVIATION                  |
| FRACTION INITIALE PAR CLASSE      | INITIAL FRACTION FOR PARTICULAR        |
| SEDIMENTOLOGIQUE                  | SIZE CLASS                             |
| FREE INTEGER 1                    | FREE INTEGER 1                         |
| FREE INTEGER 2                    | FREE INTEGER 2                         |
| FREE LOGICAL 1                    | FREE LOGICAL 1                         |
| GLISSEMENT DU SEDIMENT            | SEDIMENT SLIDE                         |
| GRAIN-FEEDING                     | GRAIN-FEEDING                          |
| GRAVITE                           | GRAVITY ACCELERATION                   |
| HEURE DE L'ORIGINE DES TEMPS      | ORIGINAL HOUR OF TIME                  |
| HIDING FACTOR FORMULA             | HIDING FACTOR FORMULA                  |
| HIDING FACTOR PAR CLASSE          | HIDING FACTOR FOR PARTICULAR           |
| GRANULO                           | SIZE CLASS                             |
| LISTE DES FICHIERS                | LIST OF FILES                          |
| LOGICIEL DE DESSIN                | GRAPHIC SOFTWARE                       |
| LOGICIEL DE DESSIN DU CALCUL      | GRAPHIC SOFTWARE OF THE                |
| PRECEDENT                         | HYDRODYNAMIC COMPUTATION               |
| LOI DE FROTTEMENT SUR LE FOND     | LAW OF BOTTOM FRICTION                 |
| LONGUEUR DU VECTEUR               | VECTOR LENGTH                          |
| MAILLEUR                          | MESHING                                |
| MASS-LUMPING                      | MASS-LUMPING                           |
| MASSE VOLUMIQUE DE L'EAU          | WATER DENSITY                          |
| MASSE VOLUMIQUE DU SEDIMENT       | SEDIMENT DENSITY                       |
| MAXIMUM D'ITERATIONS POUR LE      | MAXIMUM NUMBER OF ITERATIONS           |
| SOLVEUR                           | FOR SOLVER                             |

| MAXIMUM D'ITERATIONS POUR LE   | MANTMIN NUMBER OF THERATIONS                           |
|--------------------------------|--------------------------------------------------------|
| SOLVEUR POUR LA SUSPENSION     | MAXIMUM NUMBER OF ITERATIONS FOR SOLVER FOR SUSPENSION |
| MAXIMUM D'ITERATIONS POUR LES  | MAXIMUM NUMBER OF ITERATIONS                           |
|                                |                                                        |
| SCHEMAS DE CONVECTION          | FOR ADVECTION SCHEMES                                  |
| MOT DE PASSE CRAY              | PASSWORD CRAY                                          |
| MPM COEFFICIENT                | MPM COEFFICIENT                                        |
| NESTOR                         | NESTOR                                                 |
| NOMBRE D'ITERATIONS POUR       | NUMBER OF ITERATIONS FOR                               |
| TELEMAC                        | TELEMAC                                                |
| NOMBRE DE CLASSES              | NUMBER OF SIZE-CLASSES OF BED                          |
| GRANULOMETRIQUES               | MATERIAL                                               |
| NOMBRE DE CORRECTIONS DES      | NUMBER OF CORRECTIONS OF                               |
| SCHEMAS DISTRIBUTIFS           | DISTRIBUTIVE SCHEMES                                   |
| NOMBRE DE COUCHES POUR GRANULO | NUMBER OF BED LOAD MODEL LAYERS                        |
| ETENDUE                        |                                                        |
| NOMBRE DE COUCHES POUR LE      | NUMBER OF LAYERS OF THE                                |
| TASSEMENT                      | CONSOLIDATION MODEL                                    |
| NOMBRE DE DIFFERENTIATEURS     | NUMBER OF DIFFERENTIATORS                              |
| NOMBRE DE MAREES OU CRUES      | NUMBER OF TIDES OR FLOODS                              |
| NOMBRE DE PAS DE TEMPS         | NUMBER OF TIME STEPS                                   |
| NOMBRE DE SOUS-ITERATIONS      | NUMBER OF SUB-ITERATIONS                               |
| NOMBRE DE SOUS-PAS DES SCHEMAS | NUMBER OF SUB-STEPS OF                                 |
| DISTRIBUTIFS                   | DISTRIBUTIVE SCHEMES                                   |
| NOMBRE DE TABLEAUX PRIVES      | NUMBER OF PRIVATE ARRAYS                               |
| NOMBRE MAXIMUM DE FRONTIERES   | MAXIMUM NUMBER OF BOUNDARIES                           |
| NOMS DES DIFFERENTIATEURS      | NAMES OF DIFFERENTIATORS                               |
| NOMS DES VARIABLES PRIVEES     | NAMES OF PRIVATE VARIABLES                             |
| NUMERO DE VERSION              | RELEASE                                                |
| OPTION DE SUPG                 | SUPG OPTION                                            |
| OPTION DE TRAITEMENT DES BANCS | OPTION FOR THE TREATMENT OF                            |
| DECOUVRANTS                    | TIDAL FLATS                                            |
| OPTION DE TRAITEMENT DES FONDS | OPTION FOR THE TREATMENT OF NON                        |
| NON ERODABLES                  | ERODABLE BEDS                                          |
| OPTION DU MODELE DE TASSEMENT  | CONSOLIDATION MODEL                                    |
| OPTION DU PREDICTEUR DE        | BED ROUGHNESS PREDICTOR OPTION                         |
| RUGOSITE                       |                                                        |
| OPTION DU SCHEMA POUR LA       | SCHEME OPTION FOR ADVECTION                            |
| CONVECTION                     |                                                        |
| OPTION DU SOLVEUR              | SOLVER OPTION                                          |
| OPTION DU SOLVEUR POUR LA      | SOLVER OPTION FOR SUSPENSION                           |
| SUSPENSION                     |                                                        |
| OPTION POUR LA DIFFUSION DU    | OPTION FOR THE DIFFUSION OF                            |
| TRACEUR                        | TRACER                                                 |
| OPTION POUR LA DISPERSION      | OPTION FOR THE DISPERSION                              |
| PARAMETRE POUR LA DEVIATION    | PARAMETER FOR DEVIATION                                |
| PARAMETRES DE SHIELDS          | SHIELDS PARAMETERS                                     |
| PARTITIONNEUR                  | PARTITIONING TOOL                                      |
| TUVITITIONNEOU                 | T T T T T T T T T T T T T T T T T T T                  |

| PAS DE TEMPS                            | TIME STEP                       |
|-----------------------------------------|---------------------------------|
| PERIODE DE LA MAREE                     | TIDE PERIOD                     |
|                                         | GRAPHIC PRINTOUT PERIOD         |
| PERIODE DE CORTIE LICTING               |                                 |
| PERIODE DE SORTIE LISTING               | LISTING PRINTOUT PERIOD         |
| PLACE MEMOIRE CRAY                      | MEMORY SPACE CRAY               |
| POROSITE DU LIT NON COHESIF             | NON COHESIVE BED POROSITY       |
| PRECISION DU SOLVEUR                    | SOLVER ACCURACY                 |
| PRECISION DU SOLVEUR POUR LA SUSPENSION | SOLVER ACCURACY FOR SUSPENSION  |
| PRECONDITIONNEMENT                      | PRECONDITIONING                 |
| PRECONDITIONNEMENT POUR LA              | PRECONDITIONING FOR SUSPENSION  |
| SUSPENSION                              |                                 |
| PREDICTION DE LA RUGOSITE               | BED ROUGHNESS PREDICTION        |
| PRISE EN COMPTE DE LA HOULE             | EFFECT OF WAVES                 |
| PROCESSEURS PARALLELES                  | PARALLEL PROCESSORS             |
| PRODUIT MATRICE-VECTEUR                 | MATRIX-VECTOR PRODUCT           |
| PROFONDEUR MINIMUM POUR LE              | MINIMUM DEPTH FOR BEDLOAD       |
| CHARRIAGE                               |                                 |
| RAPPORT D'EVOLUTION CRITIQUE            | CRITICAL EVOLUTION RATIO        |
| RATIO ENTRE LA RUGOSITE DE PEAU         | RATIO BETWEEN SKIN FRICTION AND |
| ET LE DIAMETRE MOYEN                    | MEAN DIAMETER                   |
| SECONDARY CURRENTS ALPHA                | SECONDARY CURRENTS ALPHA        |
| COEFFICIENT                             | COEFFICIENT                     |
| SECTIONS DE CONTROLE                    | CONTROL SECTIONS                |
| SECTIONS OUTPUT FILE                    | SECTIONS OUTPUT FILE            |
| SEDIMENT MIXTE                          | MIXED SEDIMENT                  |
| SEDIMENTS COHESIFS                      | COHESIVE SEDIMENTS              |
| SETTLING LAG                            | SETTLING LAG                    |
| SOLVEUR                                 | SOLVER                          |
|                                         |                                 |
| SOLVEUR POUR LA SUSPENSION              | SOLVER FOR SUSPENSION           |
| STANDARD DU FICHIER DE<br>GEOMETRIE     | GEOMETRY FILE BINARY            |
| STANDARD DU FICHIER DE                  | REFERENCE FILE BINARY           |
| REFERENCE                               | REFERENCE FILE BINARI           |
| STANDARD DU FICHIER                     | HYDRODYNAMIC FILE BINARY        |
| HYDRODYNAMIQUE                          |                                 |
| STANDARD DU FICHIER PRECEDENT           | BINARY OF THE PREVIOUS          |
| SEDIMENTOLOGIQUE                        | SEDIMENTOLOGICAL COMPUTATION    |
|                                         | FILE                            |
| STANDARD DU FICHIER RESULTAT            | RESULTS FILE BINARY             |
| STATIONARY MODE                         | STATIONARY MODE                 |
| STOCKAGE DES MATRICES                   | MATRIX STORAGE                  |
| SUITE DE CALCUL                         | COMPUTATION CONTINUED           |
| SUSPENSION                              | SUSPENSION                      |
| TASSEMENT DU LIT COHESIF                | MUD CONSOLIDATION               |
| TEMPS D'ORIGINE DE                      | STARTING TIME OF THE HYDROGRAM  |
|                                         | STARTING TIME OF THE HIDROGRAM  |
| L'HYDROGRAMME                           |                                 |

Bibliography 65

| TEMPS MACHINE CRAY              | CPU TIME                        |
|---------------------------------|---------------------------------|
| TETA                            | TETA                            |
| TETA SUSPENSION                 | TETA SUSPENSION                 |
| TITRE                           | TITLE                           |
| TRAITEMENT DES FLUX AUX         | TREATMENT OF FLUXES AT THE      |
| FRONTIERES                      | BOUNDARIES                      |
| TRANSFERT DE MASSE PAR COUCHE   | MASS TRANSFER PER LAYER         |
| USER CRAY                       | USER CRAY                       |
| VALEUR MINIMUM DE H             | MINIMAL VALUE OF THE WATER      |
|                                 | HEIGHT                          |
| VALIDATION                      | VALIDATION                      |
| VARIABLES A IMPRIMER            | VARIABLES TO BE PRINTED         |
| VARIABLES POUR LES SORTIES      | VARIABLES FOR GRAPHIC PRINTOUTS |
| GRAPHIQUES                      |                                 |
| VERIFICATION DU MAILLAGE        | CHECKING THE MESH               |
| VERTICAL GRAIN SORTING MODEL    | VERTICAL GRAIN SORTING MODEL    |
| VISCOSITE CINEMATIQUE EAU       | WATER VISCOSITY                 |
| VITESSE CRITIQUE DE DEPOT DE LA | CRITICAL SHEAR VELOCITY FOR MUD |
| VASE                            | DEPOSITION                      |
| VITESSES DE CHUTE               | SETTLING VELOCITIES             |
| VOLUMES FINIS                   | FINITE VOLUMES                  |
| ZERO                            | ZERO                            |

- [1] JOLY A., GOEURY C., and HERVOUET J.-M. Adding a particle transport module to telemac-2d with applications to algae blooms and oil spills. Technical Report H-P74-2013-02317-EN, EDF R&D-LNHE, 2013.
- [2] AUTHOR. Title. Journal de Mickey, 666.
- [3] PHAM C.-T., BOURBAN S., DURAND N., and TURNBULL M. Méthodologie pour la simulation de la marée avec la version 6.2 de telemac-2d et telemac-3d. Technical Report H-P74-2012-02534-FR, EDF R&D-LNHE, 2012.
- [4] Sampath Kumar Gurram, Karam S. Karki, and Willi H. Hager. Subcritical junction flow. *Journal of Hydraulic Engineering*, 123(5):447–455, may 1997.
- [5] TSANIS I. Simulation of wind-induced water currents. *Journal of hydraulic Engineering*, 115(8):1113–1134, 1989.
- [6] SMAGORINSKY J. General simulation experiments with the primitive equations. *Monthly Weather Review*, 91(3):99–164, March 1963.
- [7] HERVOUET J.-M. *Méthodes itératives pour la solution des systèmes matriciels*. Rapport EDF HE43/93.049/A, 1996.
- [8] HERVOUET J.-M. Hydrodynamics of Free Surface Flows. Modelling with the finite element method. Wiley, 2007.
- [9] HERVOUET J.-M. Guide to programming in the telemac system version 6.0. Technical Report H-P74-2009-00801-EN, EDF R&D-LNHE, 2009.
- [10] JANIN J.-M., HERVOUET J.-M., and MOULIN C. A positive conservative scheme for scalar advection using the M.U.R.D technique in 3D free-surface flow problems. XI<sup>th</sup> International Conference on Computional methods in water resources, 1996.
- [11] GAUTHIER M. and QUETIN B. Modèles mathématiques de calcul des écoulements induits par le vent. In *17e congrès de l'AIRH*, Baden-Baden, August 1977.
- [12] METCALF M. and REID J. Fortran 90 explained. Oxford Science Publications, 1990.