## **Chapter 1**

## Appendix B: Supplementary figures highlighting the mechanism of GDP release

The work in this Appendix is published in: SSun, X.\* and Singh, S.\*, Blumer, K.J., and Bowman, G.R., Simulation of spontaneous G protein activation reveals a new intermediate driving GDP unbinding. eLife, 7, October 2018, https://doi.org/10.7554/eLife.38465.001 [?]

## 1.1 Supplementary Figures



Figure 1.1: Free-energy surface from metadynamics simulations of GDP release for the full  $G\alpha q$  (blue) and truncated form (green, without the last five C-terminal residues). Both sets of simulations were run for the same amount of time with identical collective variables. The rate-limiting step as identified from the highest flux pathway is marked with a dashed line. The free-energy difference between the GDP-bound states of the two systems is marked with a bracket.



Figure 1.2: Overlay of representative structures of  $G\alpha q$  when bound to GDP (blue) or across the rate-limiting step (orange).

Table 1.1: Measurements comparing tilting and translation of H5 across PDB structures and MD simulation.

| Construct description  | PDB ID | H5 Tilting   | H5 Vertical              | H5 Tilting       | H5 Translation   |
|------------------------|--------|--------------|--------------------------|------------------|------------------|
|                        |        | Distance (Å) | translation distance (Å) | residues used    | residues used    |
| Gαq-GDP                | 3AH8   | 13.5         | 10.6                     | Tyr325 to Leu349 | Thr334 to Phe341 |
| $G\alpha q$ after rate | N/A    | 15.1         | 11.1                     | Tyr325 to Leu349 | Thr334 to Phe341 |
| limiting step from MD  |        |              |                          |                  |                  |
| Gαi-GDP                | 1GP2   | 10.3         | 10.2                     | Tyr320 to Ile343 | Thr329 to Phe336 |
| Gαi-μOR                | 6DDF   | 14.6         | 13.0                     | Tyr320 to Ile343 | Thr329 to Phe336 |
| Gαi-A1AR               | 6D9H   | 13.8         | 10.1                     | Tyr321 to Ile344 | Thr330 to Phe327 |
| Gαi-Rhodopsin          | 6CMO   | 15.8         | 10.7                     | Tyr320 to Ile343 | Thr329 to Phe336 |
| Gαo-5HT1B              | 6G79   | 13.1         | 14.2                     | Tyr310 to Ile333 | Thr319 to Phe326 |
| Gαs-B2AR               | 3SN6   | 12.8         | 14.6                     | Tyr360 to Ile383 | Thr369 to Phe376 |



Figure 1.3: Changes in the structure (left) and disorder (right) of specific regions across the rate-limiting step. (**A**) Residues that contact the phosphates of GDP, including the salt bridge between Glu49 $^{G.s1h1.4}$  and Arg183 $^{G.hfs2.2}$ , (**B**) the s6h5 loop, (**C**) the  $\pi-\pi$  stacking interaction between Phe194 $^{G.S2.6}$  and His63 $^{G.H1.12}$ , and (**D**) switch 2.



Figure 1.4: Distribution of distances between the side-chains of  $K275^{G.s5hg.1}$  and  $D155^{H.hdhe.5}$  for the GDP-bound state (blue), across the rate-limiting step (orange), and upon GDP dissociation (black).



Figure 1.5: Implied timescales for the Markov state model. (A) Top 10 implied timescales for the 5040 states of  $G\alpha$ . (B) Top 10 implied timescales for the final 221965 states.



Figure 1.6: Probability distribution of the distance between Leu349<sup>*G.H*5.16</sup> on H5 and Phe194<sup>*G.S*2.6</sup> on S2 to monitor the tilting motion of H5 upon GDP release when bound to GDP (blue), across the rate-limiting step (orange), and upon GDP dissociation (black). In the GDP bound state (blue), such a distance is peaked at 15 Å. Across the rate-limiting step (orange), tilting motion of H5 upon GDP release occurs with a peak in distance at 12.5 Å.



Figure 1.7: H5 vertical motion is sampled across GDP release simulations. At each point, the combined population (represented by the color scale) of that state is shown using both GDP-bound and intermediate stages of the GDP release pathway. H5 vertical motion was measured by computing the distance between Thr334 $^{G.H5.1}$  on the s6h5 loop and Phe341 $^{G.H5.8}$  on H5. GDP release distance was measured as the distance from GDP  $\beta$ -phosphate to the center of mass between residues Lys52 $^{G.H1.1}$ , Ser53 $^{G.H1.2}$ , and Thr54 $^{G.H1.3}$  on H1.



Figure 1.8: Allosteric network connecting hNs1 contacts to the P-loop and switch 1 via S4. CARDS data showing communication per residue to a target site (dashed box) is plotted (left) and mapped onto the structure of  $G\alpha q$  (right) for (A) hNs1, (B) S1 (C) S4 (D) the P-loop and (E) Switch 1. Arrows indicate important regions with significant communication to the target site.



Figure 1.9: Global communication of each residue in the Ras-like domain mapped onto the structure of  $G\alpha q$ , colored based on the scale (right). The helical domain (gray) is shown for orientation.



Figure 1.10: Probability distributions of the twist angle between S1 and S3. The dihedral angle is computed by taking the dihedral angle between the CA atoms of Leu45<sup>G.S1.7</sup>, Leu40<sup>G.S1.2</sup>, Val199<sup>G.S3.1</sup>, and Asp205<sup>G.S3.7</sup>, so that the angle measured represents S1/S3 twisting at the GPCR facing side. Twist was computed for GDP bound(blue), intermediate(orange), and GDP dissociated states(black).