Lab 7 The Orbit of Mercury

Names:

Exercise #1: Fill-in the Data Table.

Table 7.1: Elongation Data For Mercury

#	Date	Elongation Angle	Julian Date	Days	Degrees
1	Sep. 1, 2002	27.2°E	2452518	-	-
2	Oct. 13, 2002	18.1°W	2452560	42	42
3	Dec. 26, 2002	19.9°E	2452634		
4	Feb. 4, 2003	25.4°W	2452674		
5	Apr. 16, 2003	19.8°E	2452745		
6	Jun. 3, 2003	24.4°W	2452793		
7	Aug. 14, 2003	27.4°E	2452865		
8	Sep. 27 2003	17.9°W	2452909		
9	Dec. 09, 2003	20.9°E	2452982		
10	Jan. 17, 2004	23.9°W	2453021		
11	Mar. 29, 2004	18.8°E	2453093		
12	May 14, 2004	26.0°W	2453139		
13	Jul. 27, 2004	27.1°E	2453213		

(10 points)

Exercise #2: Plotting your data. (28 points).

Exercise #3: Connecting the dots.

1) Is Mercury's orbit circular? Describe its shape. (4 points)

Exercise #4: Finding the semi-major axis of Mercury's orbit.

2) Mercury's semi-major axis: _____(mm).

Earth's semi-major axis: _____(mm).

Divide the semi-major axis of Mercury by that of the Earth: _____AU. (4 points)

3) Perihelion (p) = _____ mm.

Aphelion (q) = _____mm.

e = (q - p)/(p + q) =_____(4 points)

4) The eccentricity for the Earth's orbit is e = 0.017. How does your value of the
eccentricity for Mercury compare to that of the Earth? Does the fact that we used a
circle for the Earth's orbit now seem justifiable? (5 points)

Estimate how long you think it wou	ld take Mercury to complete one orbit around the _ days. (2 points)
Kepler's third law says that the orb major axis: $P^2 = a^3$.	ital period squared is proportional to the cube of the semi-
a ³ = a × a × a =	
$P = \sqrt{a^3} =$	<u></u>
P _{orb} (Mercury) =	days. (4 points)

5) How does the orbital period you just calculated using Kepler's laws compare to the one you estimated from your plot at the beginning of this exercise? (4 points)