14.05.2015. MATEMATIČKA ANALIZA

PREDISPITNE OBAVEZE

1. GRANIČNE VREDNOSTI:

a)
$$\lim_{n \to \infty} \left(\frac{n^2 + 3}{n^2 - 4} \right)^{4n^2} =$$

b)
$$\lim_{n \to \infty} \frac{2^n + 7^{n+2}}{7^{n+1} + 2^{n+3}} =$$

- c) Kada za niz $\{a_n\}$ u metričkom prostoru $\mathbb R$ kažemo da teži ∞ , kada $n \to \infty$?
- d) Navesti četiri osobine konvergentnih realnih nizova:
 - 1)
 - 2)
 - 3)
 - 4)
- e) Neka su dati metrički prostori (X, d_x) i (Y, d_y) . Dati definiciju neprekidnosti funkcije $f: D \to Y, D \subset X$, u tački $a \in D$:

2. FUNKCIJE JEDNE PROMENLJIVE (6 poena):

- a) Odrediti prvi izvod y'_x funkcije $y = x^{e^x}$.
- b) Odrediti prvi izvod y_x' funkcije $y=t^2+3,\, x=\ln t+t^2.$
- c) Kada je funkcija $f:D\to\mathbb{R},\,D\subset\mathbb{R}$ monotono rastuća nad intervalom $I\subset D$ (dati definiciju)?
- d) Kada za funkciju f(x) definisanu nad intervalom (a,b) kažemo da je diferencijabilna u tački $x \in (a,b)$ (dati definiciju)? Šta je diferencijal funkcije f(x)? Napisati diferencijal funkcije $f(x) = \sin x$.
- e) Napisati Maklorenov polinom $P_4(x)$ četvrtog stepena za funkciju $f(x) = \cos x$:

3. FUNKCIJE VIŠE PROMENLJIVIH:

a) Odrediti totalni diferencijal drugog reda funkcije $f(x,y) = x^y + xy$ u tački A(2,2).

- b) Za funkciju z=z(x,y) zadatu sa $3x^3-2y^2+z^3=xe^z$ odrediti $\frac{\partial z}{\partial x}.$
- c) Ako je f(t) dva puta diferencijabilna funkcija i $z(x,y)=(x^2+y^2)f(x^2y)$, odrediti $\frac{\partial^2 z}{\partial x^2}$.
- d) Za funkciju $f(x)=\left\{ egin{array}{ll} \dfrac{x^2y}{x^2+y^2}+3x &, & (x,y)\neq (0,0)\\ 0 &, & (x,y)=(0,0) \end{array}
 ight.$ odrediti $\dfrac{\partial f}{\partial x}(0,0).$

e) Da li je tačka $A\left(\frac{1}{2},\frac{1}{2}\right)$ stacionarna tačka funkcije $z=x^2+y^2$ pod uslovom da je x+y=1? Objasniti.

ISPIT

1. GRANIČNE VREDNOSTI:

- a) Odrediti $\lim_{n\to\infty} a_n$, ako je $a_n = \frac{1}{\sqrt[4]{16n^8+1}} + \frac{1}{\sqrt[4]{16n^8+2}} + \frac{1}{\sqrt[4]{16n^8+3}} + \ldots + \frac{1}{\sqrt[4]{16n^8+4n^2}}$
- b) Ukoliko je moguće, odrediti konstante A i B tako da funkcija $f(x) = \begin{cases} 7 + \frac{1}{x}e^{\frac{1}{x}} &, & x < 0 \\ A &, & x = 0 \\ \frac{\sin 3x}{\sin Bx} &, & x > 0 \end{cases}$ bude neprekidna.

2. FUNKCIJE JEDNE PROMENLJIVE:

- a) Detaljno ispitati funkciju $f(x) = \frac{1 \ln x^2}{1 + \ln x^2}$ i nacrtati njen grafik.
- b) Da li jednačina $\frac{1}{3(e-1)} = \frac{1}{x(1+\ln x^2)^2}$ ima rešenje nad intervalom (1,e)? Objasniti.
- 3. FUNKCIJE VIŠE PROMENLJIVIH: Odrediti ekstremne vrednosti funkcije $f(x, y, z) = (x^2 + y^2 + z^2)^2$ uz uslov x + y + z = 3.

13.06.2015. MATEMATIČKA ANALIZA I - ZADACI

1. INTEGRALI:

- a) Izračunati $\int \left(\frac{x^2 + 3}{\sqrt{x^2 + 4x + 5}} + \frac{1}{x(\ln^2 x + 4)^2} \right) dx$.
- b) Izračunati površinu ograničenu parabolom $y = x^2 2x$, pravama x = -2, x = 1 i x-osom.

2. DIFERENCIJALNE JEDNAČINE:

- a) Odrediti opšte rešenje diferencijalne jednačine $\left(3x^2y^2 + \frac{1}{y}\right)dx + \left(2x^3y + 8y^3 \frac{x}{y^2}\right)dy = 0.$
- b) Prelaskom na inverznu funkciju pokazati da se diferencijalna jednačina

$$-y'y''' + 3(y'')^{2} + 3y''(y')^{2} - (y - 2 + \sin 3y)(y')^{5} = 0.$$

svodi na jednačinu $x''' - 3x'' = y - 2 + \sin 3y$ i odrediti njeno opšte rešenje.

13.06.2015. MATEMATIČKA ANALIZA I - ZADACI

1. INTEGRALI:

- a) Izračunati $\int \left(\frac{x^2 + 3}{\sqrt{x^2 + 4x + 5}} + \frac{1}{x(\ln^2 x + 4)^2} \right) dx$.
- b) Izračunati površinu ograničenu parabolom $y = x^2 2x$, pravama x = -2, x = 1 i x-osom.

2. DIFERENCIJALNE JEDNAČINE:

- a) Odrediti opšte rešenje diferencijalne jednačine $\left(3x^2y^2 + \frac{1}{y}\right)dx + \left(2x^3y + 8y^3 \frac{x}{y^2}\right)dy = 0.$
- b) Prelaskom na inverznu funkciju pokazati da se diferencijalna jednačina

$$-y'y''' + 3(y'')^2 + 3y''(y')^2 - (y - 2 + \sin 3y)(y')^5 = 0.$$

svodi na jednačinu $x''' - 3x'' = y - 2 + \sin 3y$ i odrediti njeno opšte rešenje.

13.06.2015. MATEMATIČKA ANALIZA I - ZADACI

1. INTEGRALI:

- a) Izračunati $\int \left(\frac{x^2 + 3}{\sqrt{x^2 + 4x + 5}} + \frac{1}{x(\ln^2 x + 4)^2} \right) dx$.
- b) Izračunati površinu ograničenu parabolom $y = x^2 2x$, pravama x = -2, x = 1 i x-osom.

2. DIFERENCIJALNE JEDNAČINE:

- a) Odrediti opšte rešenje diferencijalne jednačine $\left(3x^2y^2 + \frac{1}{y}\right)dx + \left(2x^3y + 8y^3 \frac{x}{y^2}\right)dy = 0.$
- b) Prelaskom na inverznu funkciju pokazati da se diferencijalna jednačina

$$-y'y''' + 3(y'')^2 + 3y''(y')^2 - (y - 2 + \sin 3y)(y')^5 = 0.$$

svodi na jednačinu $x''' - 3x'' = y - 2 + \sin 3y$ i odrediti njeno opšte rešenje.

13.06.2015. MATEMATIČKA ANALIZA I - ZADACI

1. INTEGRALI:

- a) Izračunati $\int \left(\frac{x^2 + 3}{\sqrt{x^2 + 4x + 5}} + \frac{1}{x(\ln^2 x + 4)^2} \right) dx$.
- b) Izračunati površinu ograničenu parabolom $y=x^2-2x$, pravama $x=-2,\,x=1$ i x-osom.

2. DIFERENCIJALNE JEDNAČINE:

- a) Odrediti opšte rešenje diferencijalne jednačine $\left(3x^2y^2 + \frac{1}{y}\right)dx + \left(2x^3y + 8y^3 \frac{x}{y^2}\right)dy = 0.$
- b) Prelaskom na inverznu funkciju pokazati da se diferencijalna jednačina

$$-y'y''' + 3(y'')^2 + 3y''(y')^2 - (y - 2 + \sin 3y)(y')^5 = 0.$$

svodi na jednačinu $x''' - 3x'' = y - 2 + \sin 3y$ i odrediti njeno opšte rešenje.

20.06.2015. MATEMATIČKA ANALIZA

I KOLOKVIJUM

1. (10 poena) GRANIČNE VREDNOSTI

a) Odrediti
$$A$$
 i B tako da funkcija $f(x) = \begin{cases} e^{\frac{1}{x}} + \frac{x^2 + 4x}{x} &, x < 0 \\ A + 3\cos x &, x = 0 \text{ bude neprekidna u } x = 0. \\ B\frac{\operatorname{tg} 6x}{\operatorname{tg} 3x} &, x > 0 \end{cases}$

b) Pokazati da je niz
$$\{b_n\}$$
 sa opštim članom $b_n = \frac{\sin 4}{4} + \frac{\sin 4^2}{4^2} + \dots + \frac{\sin 4^n}{4^n}$ Košijev.

2. (12 poena) FUNKCIJE JEDNE PROMENLJIVE

Detaljno ispitati funkciju $f(x) = \sqrt[3]{3x^2 - x^3}$ i nacrtati njen grafik.

3. (8 poena) FUNKCIJE VIŠE PROMENLJIVIH

Odrediti ekstremne vrednosti funkcije u(x, y, z) = x - 2y + 2z pod uslovom da je $x^2 + y^2 + z^2 = 1$.

II KOLOKVIJUM

1. 1. (15 poena) INTEGRALI

a) Izračunati
$$\int \left(\frac{x^3}{\sqrt{1-x^2}} + \frac{\sin x}{(4-\cos^2 x)(1+\cos^2 x)}\right) dx.$$

b) Odrediti dužinu luka krive $y = \ln x$, $2\sqrt{2} \le x \le 2\sqrt{6}$.

2. (15 poena) **DIFERENCIJALNE JEDNAČINE**

- a) Odrediti opšte rešenje diferencijalne jednačine $xy' 4y = x^2 \sqrt{y}$.
- b) Odrediti opšte rešenje diferencijalne jednačine $y'' \frac{x}{x-1}y' + \frac{1}{x-1}y = e^x(x-1)$, ako je $y_1 = e^x$ jedno rešenje njenog homogenog dela.

- 1. (10 poena) GRANIČNE VREDNOSTI
 - a) Koristeći princip monotonije pokazati da je niz $\{a_n\}$ dat sa $a_1 = 3$, $a_{n+1} = \frac{9a_n + 4}{a_n + 6}$ konvergentan i odrediti njegovu graničnu vrednost.
 - b) Pokazati da niz $\{b_n\}$ sa opštim članom

$$b_n = \frac{1}{\sqrt[4]{81n^4 + 1}} + \frac{1}{\sqrt[4]{81n^4 + 2}} + \dots + \frac{1}{\sqrt[4]{81n^4 + 7n}}$$

konvergira i naći njegovu graničnu vrednost.

2. (12 poena) FUNKCIJE JEDNE PROMENLJIVE

Detaljno ispitati funkciju $f(x) = \frac{\sqrt[3]{x^2}}{x+1}$ i nacrtati njen grafik.

3. (8 poena) FUNKCIJE VIŠE PROMENLJIVIH

Naći tri pozitivna realna broja čiji je proizvod 27 tako da zbir kvadrata recipročnih vrednosti bude minimalan.

II KOLOKVIJUM

- 1. (15 poena) INTEGRALI
 - a) Izračunati $\int \left(\frac{1}{(x+1)^3 \sqrt{x^2+2x}} + \frac{x \cos x}{\sin^2 x}\right) dx.$
 - b) Primenom određenog integrala odrediti graničnu vrednost niza $\{a_n\}$ sa opštim članom

$$a_n = \frac{1}{n} \ln \frac{(n+1)(n+2)\cdots(2n)}{n^n}.$$

- 2. (15 poena) **DIFERENCIJALNE JEDNAČINE**
 - a) Pokazati da diferencijalna jednačina

$$xdx + (4y^4 + 4x^2y^2 + y)dy = 0$$

ima integracioni množitelj oblika $h=h(x^2+y^2)$ i odrediti njeno opšte rešenje.

b) Koristeći metod varijacije konstanti rešiti diferencijalnu jednačinu $y'' - y' = \frac{1}{e^x + 1}$.

- 1. (10 poena) GRANIČNE VREDNOSTI
 - a) Pokazati da je niz $\{b_n\}$ dat sa $b_n = \frac{\sin 3}{1 \cdot 2} + \frac{\sin 3^2}{2 \cdot 3} + \dots + \frac{\sin 3^n}{n(n+1)}$ Košijev.
 - b) Izračunati $\lim_{x \to 1} \frac{\sqrt{x^2 + 3} \sqrt[3]{x^3 + x^2 + 6}}{x^2 4x + 3}$.
- 2. (12 poena) FUNKCIJE JEDNE PROMENLJIVE

Detaljno ispitati funkciju $y = \frac{1 + \ln x^2}{\sqrt[3]{x}}$ i skicirati njen grafik.

3. (8 poena) FUNKCIJE VIŠE PROMENLJIVIH

Proveriti da li funkcija $z=x^3+y^3-2xy$ ima u tačkama A(1,1) i B(-1,-1) uslovni ekstrem uz uslov $x^2+y^2=2$.

II KOLOKVIJUM

- 1. (15 poena) INTEGRALI
 - a) Rešiti integral $\int \left(x \ln(x^2 1) + \frac{x}{\sqrt{1 3x^2 x^4}}\right) dx$.
 - b) Data je funkcija $g(x) = (x \frac{3}{2})e^x$. Izračunati površinu ograničenu krivom g(x), pravama x = 1 i x = 2 i x-osom.
- 2. (15 poena) **DIFERENCIJALNE JEDNAČINE**
 - a) Odrediti opšte rešenje diferencijalne jednačine $y' \frac{y}{x} = y^3 \arctan(x^3 + 5)$.
 - b) Smenom $x=t^2$ svesti diferencijalnu jednačinu $2xy''+y'-2y=\frac{x}{2}$ na jednačinu sa konstantnim koeficijentima i odrediti njeno opšte rešenje.

1. (10 poena) GRANIČNE VREDNOSTI

- a) Ispitati ograničenost, supremum, infimum, odrediti tačke nagomilavanja i graničnu vrednost (ukoliko postoji) za niz $\{a_n\}$ sa opštim članom $a_n = \frac{2n-1}{7n+1}$, $n \in \mathbb{N}$.
- b) Odrediti počev od kog člana niza $\{a_n\}$ sa opštim članom $a_n = \frac{2n-1}{7n+1}$, $n \in \mathbb{N}$, se svi naredni članovi nalaze u ε -okolini njegove granične vrednosti, za $\varepsilon = 0, 1$.
- c) Ukoliko je moguće, odrediti vrednost konstante A tako da funkcija $f(x) = \begin{cases} A & , & x = 1 \\ (1-x) \operatorname{tg} \frac{\pi x}{2} & , & x \in (0,1) \end{cases}$ bude neprekidna.

2. (12 poena) FUNKCIJE JEDNE PROMENLJIVE

Detaljno ispitati i nacrtati grafik funkcije

$$f(x) = \sqrt{\frac{x^3 - 2x^2}{x - 3}}.$$

3. (8 poena) FUNKCIJE VIŠE PROMENLJIVIH

Odrediti ekstremne vrednosti funkcije $z(x,y) = x^4 + 16y^4 - 4(x+2y)^2$.

II KOLOKVIJUM

1. (15 poena) INTEGRALI

a) Izračunati
$$\int \left(\frac{dx}{x(\ln^2 x + 4)^2} + \frac{dx}{\sqrt{x}(4 - \sqrt[3]{x})}\right).$$

b) Primenom definicije određenog integrala odrediti graničnu vrednost niza $\{a_n\}$ sa opštim članom

$$a_n = \frac{1}{n^2} \left(e^{\frac{n+1}{n}} + 2e^{\frac{n+2}{n}} + 3e^{\frac{n+3}{n}} + \dots + ne^2 \right).$$

2. (15 poena) **DIFERENCIJALNE JEDNAČINE**

- a) Odrediti opšte rešenje diferencijalne jednačine (ysinx-1)dx + cosxdy = 0.
- b) Pokazati da diferencijalna jednačina $x^2(\ln x 1)y'' xy' + y = 0$ ima partikularno rešenje u obliku normiranog polinoma prvog stepena i odrediti njeno opšte rešenje.

1. (10 poena) GRANIČNE VREDNOSTI

a) Odrediti
$$\lim_{n\to\infty} a_n$$
, ako je $a_n = \frac{1}{\sqrt[3]{8n^9+1}} + \frac{1}{\sqrt[3]{8n^9+2}} + \frac{1}{\sqrt[3]{8n^9+3}} + \dots + \frac{1}{\sqrt[3]{8n^9+4n^3}}$;

b) U zavisnosti od realnih parametara a, b i $c, a \ge 0$ odrediti kada će za niz $\{d_n\}$ sa opštim članom

$$d_n = n - 3 - \sqrt{an^2 + bn + c}$$

važiti da je

- 1) $\lim_{n \to \infty} d_n = \infty$, 2) $\lim_{n \to \infty} d_n = -\infty$, 3) $\lim_{n \to \infty} d_n = 0$, 4) $\lim_{n \to \infty} d_n = k$, $k \neq 0$.
- 2. (12 poena) FUNKCIJE JEDNE PROMENLJIVE

Detaljno ispitati funkciju $f(x) = |x+1|e^{-\frac{1}{x}}$ i nacrtati njen grafik.

3. (8 poena) FUNKCIJE VIŠE PROMENLJIVIH

Odrediti lokalne ekstremne vrednosti za funkciju $z = \ln((x+y)(3x^2+3y^2-2))$.

II KOLOKVIJUM

1. (15 poena) INTEGRALI

a) Izračunati
$$\int (\frac{3x^2 + 2x + 3}{x^3 + x^2 + x + 1} + \frac{\sin 2x}{\sqrt{-\sin^2 x + 2\sin x}}) dx$$
.

- b) Odrediti površinu ravnog lika ograničenog krivom $y = \frac{x^2}{\sqrt[3]{x^3 4}}$ i pravama y = 0, x = -1 i x = 0.
- 2. (15 poena) **DIFERENCIJALNE JEDNAČINE**
 - a) Odrediti opšte rešenje diferencijalne jednačine $dx = \frac{x+y^3}{y}dy$.
 - b) Odrediti opšte rešenje jednačine

$$x^3y''' + 3x^2y'' + 2xy' = x + \ln x.$$

- 1. (10 poena) GRANIČNE VREDNOSTI
 - a) Pokazati da je niz $\{b_n\}$ sa opštim članom $b_n = \frac{\sin 2}{2} + \frac{\sin 2^2}{2^2} + \dots + \frac{\sin 2^n}{2^n}$ Košijev.
 - b) Ukoliko je moguće, odrediti konstante A i B tako da funkcija $f(x) = \begin{cases} 4 + \frac{1}{x}e^{\frac{1}{x}} &, & x < 0 \\ A &, & x = 0 \\ \frac{\sin 2x}{\sin Bx} &, & x > 0 \end{cases}$ bude neprekidna.
- 2. (12 poena) FUNKCIJE JEDNE PROMENLJIVE

Detaljno ispitati funkciju $f(x) = (x-2)e^{-\frac{1}{x}}$ i nacrtati njen grafik.

3. (8 poena) FUNKCIJE VIŠE PROMENLJIVIH

Naći tri pozitivna realna broja čiji je proizvod 8 tako da zbir kvadrata recipročnih vrednosti bude minimalan.

II KOLOKVIJUM

- 1. (15 poena) INTEGRALI
 - a) Odrediti $\int \left(\frac{x^3}{x^7 + x} + \frac{e^{\sqrt{x}} \sin \sqrt{x}}{2\sqrt{x}}\right) dx$.
 - b) Izračunati površinu ograničenu graficima krivih $y=x^2+1,\,y=-x^2+2x$ i pravama y=-2x+4i x=0.
- 2. (15 poena) **DIFERENCIJALNE JEDNAČINE**
 - a) Pokazati da diferencijalna jednačina

$$xdx + (4y^4 + 4x^2y^2 + y)dy = 0$$

ima integracioni množitelj oblika $h = h(x^2 + y^2)$ i odrediti njeno opšte rešenje.

b) Prelaskom na inverznu funkciju pokazati da se diferencijalna jednačina

$$-y'y''' + 3(y'')^{2} + 3y''(y')^{2} - (y - 2 + \sin 3y)(y')^{5} = 0.$$

svodi na jednačinu $x''' - 3x'' = y - 2 + \sin 3y$ i odrediti njeno opšte rešenje.

1. (10 poena) GRANIČNE VREDNOSTI

a) Odrediti
$$\lim_{n\to\infty} a_n$$
, ako je $a_n = \frac{1}{\sqrt[3]{n^6+1}} + \frac{1}{\sqrt[3]{n^6+2}} + \frac{1}{\sqrt[3]{n^6+3}} + \dots + \frac{1}{\sqrt[3]{n^6+19n^2}}$;

b) U zavisnosti od realnih parametara a, b i $c, a \ge 0$ odrediti kada će za niz $\{d_n\}$ sa opštim članom

$$d_n = n - 3 - \sqrt{an^2 + bn + c}$$

važiti da je

- 1) $\lim_{n \to \infty} d_n = \infty$, 2) $\lim_{n \to \infty} d_n = -\infty$, 3) $\lim_{n \to \infty} d_n = 0$, 4) $\lim_{n \to \infty} d_n = k$, $k \neq 0$.
- 2. (12 poena) FUNKCIJE JEDNE PROMENLJIVE

Detaljno ispitati funkciju $f(x) = \frac{\sqrt[3]{x^2}}{x+1}$ i nacrtati njen grafik.

3. (8 poena) FUNKCIJE VIŠE PROMENLJIVIH

Proveriti da li funkcija $z=x^3+y^3-2xy$ ima u tačkama A(1,1) i B(-1,-1) uslovni ekstrem uz uslov $x^2+y^2=2$.

II KOLOKVIJUM

1. (15 poena) INTEGRALI

a) Izračunati
$$\int \left(\frac{x^3}{\sqrt{1-x^2}} + \frac{\sin x}{1-\cos^4 x}\right) dx$$
.

- b) Izračunati $\int_{0}^{5} |2x 6| dx$.
- 2. (15 poena) **DIFERENCIJALNE JEDNAČINE**
 - a) Odrediti opšte rešenje diferencijalne jednačine $dx = \frac{x+y^3}{y}dy$.
 - b) Odrediti opšte rešenje diferencijalne jednačine $y^{IV} 4y''' + 5y'' = 4e^x + x^2 2$.