

planetmath.org

Math for the people, by the people.

proof of Desargues' theorem

 ${\bf ProofOfDesargues Theorem}$ Canonical name

Date of creation 2013-03-22 13:47:51 Last modified on 2013-03-22 13:47:51

drini (3) Owner drini (3) Last modified by

Numerical id 5

drini (3) Author Entry type Proof

Classification msc 51A30 The claim is that if triangles ABC and XYZ are perspective from a point P, then they are perspective from a line (meaning that the three points

$$AB \cdot XY$$
 $BC \cdot YZ$ $CA \cdot ZX$

are collinear) and conversely.

Since no three of A,B,C,P are collinear, we can lay down homogeneous coordinates such that

$$A = (1,0,0)$$
 $B = (0,1,0)$ $C = (0,0,1)$ $P = (1,1,1)$

By hypothesis, there are scalars p, q, r such that

$$X = (1, p, p)$$
 $Y = (q, 1, q)$ $Z = (r, r, 1)$

The equation for a line through (x_1, y_1, z_1) and (x_2, y_2, z_2) is

$$(y_1z_2 - z_1y_2)x + (z_1x_2 - x_1z_2)y + (x_1y_2 - y_1x_2)z = 0$$
,

giving us equations for six lines:

$$AB : z = 0$$
$$BC : x = 0$$

$$CA$$
 : $y = 0$

$$XY$$
: $(pq - p)x + (pq - q)y + (1 - pq)z = 0$

$$YZ$$
: $(1-qr)x + (qr-q)y + (qr-r)z = 0$

$$ZX$$
 : $(rp - p)x + (1 - rp)y + (rp - r)z = 0$

whence

$$AB \cdot XY = (pq - q, -pq + p, 0)$$

$$BC \cdot YZ = (0, qr - r, -qr + q)$$

$$CA \cdot ZX = (-rp + r, 0, rp - p)$$

As claimed, these three points are collinear, since the determinant

$$\begin{vmatrix} pq-q & -pq+p & 0\\ 0 & qr-r & -qr+q\\ -rp+r & 0 & rp-p \end{vmatrix}$$

is zero. (More precisely, all three points are on the line

$$p(q-1)(r-1)x + (p-1)q(r-1)y + (p-1)(q-1)rz = 0$$
.)

Since the hypotheses are self-dual, the converse is true also, by the principle of duality.