MA 562: Notes

Carlos Salinas

January 18, 2016

1 Preliminaries

These set of notes are based off of Boothby's Differential Geometry book, chapters 1 through 6.

Definition 1. A topological space M is a pair (X, \mathcal{T}) , where X is a set, \mathcal{T} is a collection of subsets of X such that

- (a) $\emptyset, X \in \mathfrak{I}$.
- (b) The union of any subcollection of \mathcal{T} is in \mathcal{T} .

$$\{U_{\alpha}\}\subset \mathfrak{T}\quad \Longrightarrow\quad \bigcup_{\alpha}U_{\alpha}\in \mathfrak{T}.$$

(c) Intersection of a finite subcollection of \mathcal{T} is in \mathcal{T} .

$$\{U_1,...,U_k\}\subset \mathfrak{T}\quad \Longrightarrow\quad \bigcap_{j=1}^k U_j\in \mathfrak{T}.$$

 \mathcal{T} is called the *topology* of M. Elements of \mathcal{T} are called the *open sets* of M. By abuse of notation, we sometimes refer to X as M.

Definition 2. (a) A metric on X is a function $d: X \times X \to \mathbf{R}$ such that

- (1) $d(x,y) \ge 0 \ \forall x,y \in X \text{ and } d(x,y) = 0 \iff x = y.$
- (2) d(x,y) = d(y,x).
- (3) $d(x,y) + d(y,z) \ge d(x,z)$ (the triangle inequality).
- (b) $B_d(x,r) = \{ y \in X \mid d(x,y) < r \}.$
- (c) A topological space M is a metric space if the set of balls $B_d(x,r)$ form a basis of M, i.e., any open set of M can be written as a union of open balls $B_d(x,r)$ for some $x \in X$, r > 0.

Definition 3. A topological space X is Hausdorff if for any $x_1 \neq x_2$ in X, there exist open sets $U_1 \ni x_1, U_2 \ni x_2$ such that $U_1 \cap U_2 = \emptyset$.

Definition 4. A topological manifold M of dimension n is a topological space such that

- (a) M is Hausdorff.
- (b) locally Euclidean, i.e., $\forall x \in M$ there exists a neighborhood U of X which is homeomorphic to $V \subset \mathbf{R}^n$ (there exists a map $f \colon U_x \to V \subset \mathbf{R}^n$ such that f is bijective, continuous and f^{-1} is continuous).
- (c) M has a countable basis of open sets.

Theorem 1 (Boothby I.3.6). A topological manifold is metrizable (also locally connected, locally compact, and normal).

Definition 5. (a) A covering of a topological manifold is a collection of open sets $\{U_{\alpha}\}$ such that any $x \in M$ is contained in some U_{α} .

(b) A manifold is *compact* if every open cover contains a finite subcover.

Definition 6. (1) Half space

$$\mathbf{H}^n = \{ x \in \mathbf{R}^n \mid x_n \ge 0 \}.$$

- (2) Manifold with boundary. (Similar to definition 4)
 - (a) M is Hausdorff.
 - (b) M has a countable basis of open sets.
 - (c) For any $x \in M$, there exists U open, $x \in U$ such that:
 - (i) $\varphi \colon U \to V \subset \mathbf{R}^n$ is a homeomorphism, or
 - (ii) $\varphi \colon U \to V \subset \mathbf{H}^n$ is a homeomorphism with x such that $\varphi(x) \in \partial \mathbf{H}^n$ referred to as boundary points.

(3)

Example 1 (Unit Quaternions and Rotations in \mathbb{R}^3).

$$f(v) = z \wedge z^{-1}$$
 $v = (v_1, v_2, v_3) = v_1 i + v_2 j + v_3 k$

where $z = \cos(\alpha/2) + \sin(\alpha/2)\hat{v}$. $\hat{v} = v/||v||$. Quaternion multiplication:

$$ij = k$$
 $ji = -k$ $kj = -i$ $ki = j$ $ik = -j$.

Can check that z and -z correspond to the same rotation.

Topologically, unit quaternions $\simeq S^3 = \{ x \in \mathbf{R}^4 \mid ||x|| = 1 \}$ and rotations $\simeq S^3/\sim, z \sim -z$

$$\mathbf{R}P^3 \approx (\mathbf{R}^4 \setminus \{0\})/x \sim \lambda x.$$

for all $\mathbb{R}^{n+1} \setminus \{0\}$ can always find λ such that λx has norm 1. There are precisely 2 such λ which differ by a sign. Therefore, $\mathbb{R}P^n$ can be constructed by identifying antipodal points of S^n in \mathbb{R}^{n+1} .

2 Functions of Several Variables

Taken from Boothby Chapter 1.

Definition 7. Let $f: U \to \mathbf{R}$ where $U \subset \mathbf{R}^n$ is open, $x = (x^1, ..., x^n)$ (are coordinates).

- (a) $f \in C^1(U)$ (continuously differentiable) iff $\partial f/\partial x^j$ exists and is continuous on U.
- (b) $f \in C^r(U)$ (r-fold continuously differentiable) iff $\partial f/\partial x^j \in C^{r-1}(U)$ for j = 1, ..., n.
- (c) $f \in C^{\infty}(U)$ (smooth) iff $f \in C^{r}(U) \ \forall r \in \mathbf{N}$.
- (d) $f \in C^{\omega}(U)$ (real analytic) iff f can be expressed as a convergent power series on U.

Theorem 2 (Mean-value theorem). Suppose U is star-like w.r.t. $a \in U$ (i.e., $\forall x \in U$, the line segment $\overrightarrow{ab} \subset U$). Then $\forall x \in U$, $\exists 0 < \theta < 1$ s.t.

$$g(x) - g(a) = \left[\sum_{i=1}^{n} \left(\frac{\partial g}{\partial x^i} \right) \Big|_{a+\theta(x-a)} \right] (x^i - a^i).$$

Proof. Consider $f:[0,1] \to \overleftarrow{ax} \subset U$ given by

$$f(t) = \mathbf{a} + t(\mathbf{x} - \mathbf{a}).$$

Then by $g \circ f : [0,1] \to \mathbf{R}$, the usual mean-value theorem implies that $\exists \theta \in (0,1)$ s.t.