Отчет о выполнении лабораторной работы 2.1.3 Определение C_p/C_v по скорости звука в газе

Выполнил: Дедков Денис, группа Б01-109 21.04.2022

Цель работы

Измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу. Определение показателя адиабаты с помощью уравнения состояния идеального газа.

Оборудование и приборы

Звуковой генератор ГЗ; электронный осциллограф ЭО; микрофон; телефон; раздвижная труба; теплоизолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом; газгольдер.

Теоретическое введение

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . На измерении скорости звука основан один из наиболее точных методов определения показателя адиабаты.

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}},$$

где R - газовая постоянная, T - температура газа, а μ его молярная масса. Выразим показатель адиабаты:

$$\gamma = \frac{\mu}{RT}c^2$$

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Звуковые колебания в трубе являются наложением всех отраженных волн и, вообще говоря, очень сложны.

Картина упрощается, если длина трубы L равна целому числу полуволн, то есть когда

$$L = n\frac{\lambda}{2},$$

где λ — длина волны звука в трубе, а n — любое целое число.

Скорость звука с связана с его частотой f и длиной волны λ соотношением:

$$c = \lambda f$$
.

При постоянной длине трубы можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f звукового генератора, а следовательно, и длину звуковой волны λ . Для k-ого резонанса получим:

$$L = (n+k)\frac{\lambda_{k+1}}{2}$$

$$f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_1 + \frac{c}{2L}k.$$

Скорость звука, деленная на 2L, определяется, таким образом, по угловому коэффициенту графика зависимости частоты от номера резонанса.

Экспериментальная установка

Рис. 1: Схема установки

В установке звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном М. Мембрана телефона приводится в движение переменным током звуковой частоты; в качестве источника

переменной ЭДС используется звуковой генератор ГЗ. Возникающий в микрофоне сигнал наблюдается на осциллографе ЭО.

Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчетах оба торца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь.

Установка (См. рис. 1) содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревается водой из термостата. Температура газа принимается равной температуре омывающей трубу воды. На этой установке измеряется зависимость скорости звука от температуры.

Ход работы

Проведём измерения C_p/C_v для воздуха при различных температурах. Для этого будем использовать трубу следующего постоянного размера:

$$L = (800 \pm 1) \text{ MM}.$$

Погрешность измерения температуры примем $\sigma_T = 0.5^{\circ}C$, несмотря на то, что прибор измеряет на порядок точнее. Связано это с тем, что температура, которую измеряет термостат может не полностью соответствовать температуре в трубке.

Для фиксированной температуры будем изменять частоту звукового сигнала, тем самым изменяя и длину волны, так, чтобы мы могли наблюдать последовательные резонансы. Для каждого резонанса будем фиксировать частоту, при которой он возник.

Данные занесем в таблицу 1.

Перейдем к расчету зависимостей. Представим зависимость f(k) в следующем виде:

$$F = f_{k+1} - f_1 = \frac{c}{2L}k. = ax,$$

где обозначено $a = \frac{c}{2L}$.

Откуда легко заключить: зависимость F(k) должна быть линейной. Погрешность вычисления скорости звука и показателя адиабаты оценим с помощью закона накопления ошибок:

$$c \pm \sigma_c = 2La \cdot \left(1 \pm \sqrt{\varepsilon_L^2 + \varepsilon_a^2}\right),$$
$$\gamma \pm \sigma_\gamma = \frac{\mu}{RT}c^2 \left(1 \pm \sqrt{\varepsilon_T^2 + (2 \cdot \varepsilon_c)^2}\right).$$

Статистическая обработка проведена **методом наименьших квад- ратов** и занесена в таблицу 2. Графики зависимостей F(k) расположены на рисунке 3.

T, K	295.8		301.0		311.0		321.0	
k	f , Γ ц	F, Гц						
0	200	0	202	0	204	0	207	0
1	450	250	453	251	460	256	466	259
2	659	459	665	463	675	471	685	478
3	872	672	880	678	894	690	907	700
4	1087	887	1098	896	1115	911	1131	924
5	1303	1103	1315	1113	1336	1132	1357	1150
6	1519	1319	1533	1331	1557	1353	1582	1375
7	1735	1535	1751	1549	1779	1575	1807	1600
8	1951	1751	1969	1767	2000	1796	2031	1824
9	2168	1968	2186	1984	2221	2017	2256	2049
10	2384	2184	2405	2203	2443	2239	2481	2274
11	2601	2401	2624	2422	2664	2460	2706	2499
12	2817	2617	2841	2639	2887	2683	2932	2725
13	3032	2832	3060	2858	3108	2904	3157	2950

Таблица 1: Измерения частоты резонанса

Рис. 2: Зависимость $c(\sqrt{T})$ для воздуха

Рис. 3: Зависимость F(k) для воздуха

<i>T</i> , K	a, c^{-1}	σ_a, c^{-1}	c, m/c	σ_c , m/c	γ	σ_{γ}
295.8	216.44	0.48	346.3	0.9	1.414	0.008
301.0	218.35	0.48	349.4	0.9	1.414	0.007
311.0	221.84	0.50	354.9	0.9	1.413	0.008
321.0	225.40	0.49	360.6	0.9	1.413	0.007

Таблица 2: Результаты вычислений для воздуха

Усредняя по всем сериям получим:

$$\langle \gamma \rangle = 1.413 \pm 0.004$$

Погрешность усредненного показателя адиабаты была оценена по следующей формуле:

$$\sigma_{\langle \gamma \rangle} = \frac{1}{n} \cdot \sqrt{\sum_{i=1}^{n} \sigma_{\gamma_i}^2}$$

Построим также график скорости звука от корня из температуры $c(\sqrt{T})$, для качественной проверки теоретической зависимости (см. рис. 2).

Метод наименьших квадратов

Метод наименьших квадратов в случае обработки линейной зависимости имеет следующий вид:

$$y = ax + b,$$

где

$$a = \frac{r_{xy}}{\sigma_x^2},$$

$$b = \overline{y} - a\overline{x}.$$

Для оценки погрешностей (стандартного отклонения) используем следующие формулы:

$$\sigma_a = t_{n-1,p} \sqrt{\frac{1}{n-2} \left(\frac{\sigma_y^2}{\sigma_x^2} - A^2\right)},$$

$$\sigma_b = \sigma_a \sqrt{\sigma_x^2 + \overline{x}^2},$$

где n - количество измерений, $t_{n-1,p}$ - коэффициент Стьюдента Используя $a=\frac{c}{2L}$ получим значения c. Рассчитаем γ для каждой серии измерений.

Вывод

В ходе работы изучили достаточно точный (погрешность порядка 1%) метод определения показателя адиабаты для воздуха.

Результат, усредненный по четырем сериям имеет следующий вид:

$$\langle \gamma \rangle = 1.413 \pm 0.004$$

Применимость метода наименьших квадратов Измеренные данные соответствуют критериям применимости метод наименьших квадратов. Погрешность отдельного измерения частоты резонанса мала (0.1%), а погрешности порядка (номера) резонанса нет.

Имеет смысл указать некоторую особенность установки, которая может систематически повлиять на окончательную точность эксперимента:

Измерение температуры. Температура измерялась с помощью значения, которое показывал на табло термостат. Но эта температура может не совпадать с точным значением температуры в трубке. Для учета данной ошибки было принято решение взять погрешность измерения температуры порядка $0.5^{\circ}C$.