## **Laporan Progress Avif Maulana Azis**

| No | Tanggal                  | Jenis Kegiatan                                                                                                                                                          | Hasil                                                                      | Keterangan                                                                                          |
|----|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 1  | 22-30 September<br>2021  | Mulai mencoba sensor dengan microcontroller esp32,<br>sensornya masih menggunakan SW1801P dan mencoba<br>analogreadnya                                                  | Laporan skripsi.docx                                                       |                                                                                                     |
| 2  | 28 September 2021        | Sidang Usulan Penelitian                                                                                                                                                | Telah dilaksanakan                                                         |                                                                                                     |
| 3  | 4-8 Oktober 2021         | Mencoba membuat sketsa rangkaian mikrokontroler dan sensor menggunakan KiCad                                                                                            | Tugas<br>Pendahuluan.docx                                                  |                                                                                                     |
| 4  | 11-15 Oktober 2021       | Mencoba merangkai mikrokontroler esp 32 dengan sensor piezoelektrik                                                                                                     | Laporan skripsi.docx<br>laporan instrumentasi<br>geofisika lanjut 1.docx   |                                                                                                     |
| 5  | 18-22 Oktober 2021       | Merangkai sensor dengan rangkaian pembagi tegangan                                                                                                                      | Laporan skripsi_1.docx                                                     |                                                                                                     |
| 6  | 25-29 Oktober 2021       | Pembelajaran bagaimana cara membaca sensor kemudian menyimpan datanya dalam memori internal ESP32 melalui SPIFFS.                                                       | Laporan skripsi_1.docx<br>laporan instrumentasi<br>geofisika lanjut 2.docx | Intsruksi selanjutnya yaitu mencoba tes<br>Iora. Namun untuk percobaan kodingnya<br>belum berhasil. |
| 7  | 1 – 16 November<br>2021  | Menunggu device LoRa serta antenanya                                                                                                                                    | ,                                                                          |                                                                                                     |
| 8  | 22-26 November<br>2021   | Mencoba rangkaian mengirimkan data sensor via LoRa                                                                                                                      |                                                                            |                                                                                                     |
| 9  | 29 Nov - 3 Des 2021      | Mencoba ESP8266 + sensor getar. Mengartikan sekaligus<br>mempelajari kodenya. Mencari tau mengenai Dragino dan<br>sistematika pengiriman data via WLAN.                 | Gempa-arti.docx                                                            | Masih ada beberapa line kode yang bingung. Membaca manual dari dragino.                             |
| 10 | 6 -10 Desember<br>2021   | Merangkai ESP8266 yang dapat terhubung ke server.<br>Mempelajari kembali kodenya. Mulai dikenalkan dengan<br>perangkat mikrokontroler LoRa32u4 RA02 RA-02.              | laporan instrumentasi<br>geofisika lanjut 3.docx                           |                                                                                                     |
| 11 | 13 - 17 Desember<br>2021 | Merangkai LoRa32U4 II, mencoba mencocokan dengan<br>Dragino namun lebih cocok jika receivernya LoRa32U4 II itu<br>ESP8266 (gateway modif), mengecor badan sensor(Pipa). | data dari sender dapat<br>terikirim dengan baik.<br>Acklora.ino.           | Belum dapat program receivernya.<br>(Solved), bisa di cek di github pak Yudi<br>(Rosandi).          |
| 12 | 20-23 Desember<br>2021   | Presentasi FGD dengan ITS dan merapihkan laporan-<br>laporan instrumentasi lanjut dan skripsi                                                                           |                                                                            |                                                                                                     |

| 13  | 10 Januari-15 Januari | Merapihkan draft bab 1, mempelajari fungsi fix_fft,                     |              |                                          |
|-----|-----------------------|-------------------------------------------------------------------------|--------------|------------------------------------------|
| 1.4 | 2022                  | mempelajari koding LoRa Device, memulai Bab 3                           | Camanantha   |                                          |
| 14  | 17 – 22 Januari 2022  | Memasang LoRa HUB menghubungkan ke dragino,                             | Server ttn.  |                                          |
|     |                       | menghubungkan dengan solar panel sebagai source                         |              |                                          |
|     |                       | energynya, mengurus server ttn. Mengkoneksikan Dragino<br>ke Server ttn |              |                                          |
| 15  | 22.20 Januari 2022    | ke Server tin<br>hiatus                                                 |              | Inite (natural CINA)                     |
| 15  | 23-30 Januari 2022    |                                                                         |              | Izin (ngurus SIM)                        |
| 16  | 31 Jan- 4 Feb         | Menghubungkan node ke server ttn, memulai desain 3d                     |              |                                          |
| 4.7 | 74451                 | tempat alat                                                             |              |                                          |
| 17  | 7-11 Februari         | Node terhubung ke server, namun datanya belum muncul.                   |              |                                          |
| 18  | 12-26 Februari        | Menyelesaikan problem pengiriman data ke server                         |              |                                          |
| 19  | 28 Feb – 4 Maret      | Desain casing alat dan mencoba print                                    |              |                                          |
| 20  | 2-8 Maret             | hiatus                                                                  |              | sakit                                    |
| 21  | 9-11 Maret            | Problem saat upload sketch code arduiono, bahwa sketch                  |              | Solusi pertama : telah memaksimalkan     |
|     |                       | memorynya over. 31245 byte dari yang seharusnya                         |              | sizenya mencapai 31700 bytes, namun      |
|     |                       | maksimal sizenya 28672 bytes.                                           |              | software Microcontrolernya jadi error.   |
|     |                       |                                                                         |              | Solusi kedua : mengganti                 |
|     |                       |                                                                         |              | microcontrolernya menjadi ESP32          |
| 22  | 12 Maret              | Sedang mengusahakan agar coding bisa dirun dengan                       |              |                                          |
|     |                       | microcontroler ESP32 + Ebyte Lora.                                      |              |                                          |
| 23  | 13 – 18 Maret         | Karena esp32 + ebyte tidak support TTN, maka beralih                    |              |                                          |
|     |                       | menggunakan TTGO ESP32. Kemudian mengedit script                        |              |                                          |
|     |                       | program awal karena menyesuaikan dengan MCU baru.                       |              |                                          |
| 24  | 20 - 25 Maret         | Membuat casing, uji coba alat akhir, mecoba                             |              | Penelitian sistem program selesai. Mulai |
|     |                       | mensinkronasi data ttn dengan webhook untuk mengirim                    |              | enchance hardware                        |
|     |                       | warning.                                                                |              |                                          |
| 25  | 28 Maret – 1 April    | Casing selesai dibuat, webhook mengirim peringatan                      |              |                                          |
|     |                       | dengan jelas. Pengajuan Komprehensif                                    |              |                                          |
| 26  | 4 -15 April           | Ujian Komprehensif                                                      |              | Predikat A dengan nilai 84               |
| 27  | 18 April – 12 Mei     | Penulisan Draft Skripsi                                                 |              |                                          |
| 28  | 16-20 Mei             | SEMINAR HASIL, UHUY                                                     | Computer     | Catatan dari pak kusna coba webhook      |
|     |                       |                                                                         | Hardwarepptx | Gravi                                    |

|    |           |                                         | Draft skripsi.docx | catatan dari Pak Im, ambang batasnya<br>diperlejas dasar penentuannya.               |
|----|-----------|-----------------------------------------|--------------------|--------------------------------------------------------------------------------------|
| 29 | 25 Mei    | Revisi dari Pak Imran selesai dilakukan |                    | Jadi intinya dimasukin ke saran aja<br>mengenai metode pemilihan ambang<br>batasnya. |
| 30 | 23-27 Mei | Mengerjakan revisi dari Pak Kusna       |                    |                                                                                      |
| 31 | 6 Juni    | Memberikan hasil revisi 1 ke pak Kusna  |                    |                                                                                      |

## List Pertanyaan:

- 1. Apakah ada tahapan storaging data baik ke server (dock.unpad) atau sd card?
- 2. Untuk perangkat peringatan dininya bagimana ya ? apakah cukup dengan lampu / bunyi bel (buzzer) ?
- 3. Boleh minta koding receivernya ga pak?
- 4. Nama antenna?
- 5. Alatnya ngirim data terus atau ngirim saat ada getaran aja?

Kirim ke hub, kemudian buat aplikasi dari the things network. Untuk device mikrokontrolernya pake LoRa32U4 II dengan jaringan LoRa. Sensornya pakai geophone SM4 10 Hz Vertikal.

Untuk Koding pakai aja yang udah ada. Kemudian

## To do list:

- 1. How to get data from dragino.
- 2. Connect dragino to TTN.
  - a. Coba upload script dari <a href="https://www.thethingsnetwork.org/forum/t/connecting-dragino-lg01-gateway/7397/6">https://www.thethingsnetwork.org/forum/t/connecting-dragino-lg01-gateway/7397/6</a>
    - i. Success ga pas upload Arduino sketch?
    - ii. Ping 8.8.8.8 dari openWRT





- iv.
- v. Check EUI Gateway di TTN-nya
- vi. Check gateway kita terkoneksi ke internet ga
- vii. Gateway mac address di gwstat.py itu benar ga
- viii. Python file itu ada di OPENWRT
- ix. IP address dan port gateway di sketch arduinonya benar
- x. /root/data jangan sampai lupa
- xi. Check lagi kesini https://www.thethingsnetwork.org/docs/gateways/troubleshooting/semtech-udp/#gateway-not-detecte
- xii. eu1.cloud.thethings.network--1700 / dock.unpad.ac.id—8080
- xiii. API key 1 = NNSXS.MZRM5LF7D4LQCPUEIIWJF5E2TF6RYRBR3Q4E5SA.OZOZTWM7GTUPHPSNCYXSNVWNNS7XGLKONVQ2MC76H4Q3APP RLJJQ
- xiv. NNSXS.MZRM5LF7D4LQCPUEIIWJF5E2TF6RYRBR3Q4E5SA.OZOZTWM7GTUPHPSNCYXSNVWNNS7XGLKONVQ2MC76H4Q3APP RLJJQ





- 3. Data from server TTN, Make a warning to email / wa.
- 4. Jenis sensor:
  - a. SW-18010P (yang azis beli) tidak bisa detail mendeteksi getaran, kadang terekam, kadang lewat. -shock detector

- b. SW 420 (yang prototype Pak Yudi) shock detector
- c. SM-4 10 Hz
- d. GD-10J Geophone
- e. Geometrician Elemen 10-100Hz Anda Egeomates Peralatan Seismik Refraksi/Refleksi Survei Satu Geometrician & Geometrician String
- 5. Untuk rangkaian masih sama kaya kemarin. Butuh geophone sm4 karena perlu Analisa spektrum kan? kecuali Cuma threshold analogread. Makannya perlu geophone yang bagus. Sistem differensial juga dibutuhkan karena menghilangkan noise. Tinggal dimodifikasi di koding untuk memasukan interrupt dan power sleep. Liat source dari sini <a href="https://www.industrialshields.com/blog/arduino-industrial-1/post/low-power-arduino-library-plc-application-367">https://www.industrialshields.com/blog/arduino-industrial-1/post/low-power-arduino-library-plc-application-367</a>. Terus bikin system peringatannya.
- 6. Perlakukan restart esp32 setiap kali interrupt GPIO karena, saat wake up dilakukan karena IO ini, LMIC Session tidak ter-reset juga, mengakibatkan data yang terekam tidak bisa diterima oleh TTN, oleh karena itu LMIC Sessionnya harus di reset pula dengan mereset ESP32 TTGONya.