行列式

行列式计算

2阶、3阶行列式计算:

行列式变换:

- $r_i \leftrightarrow r_j$ 、 $c_i \leftrightarrow c_j$ 变号

- •行列式可以按任一行(列)展开

Crammer法则

方程组 Ax=b: 当 $|A|\neq 0$ 时,有唯一解: $x_i=D_i/|A|$, 其中 D_i 为第i列替换成b后的行列式

$$\begin{cases} 3x_1 + 4x_2 = 2, \\ 5x_1 + 9x_2 = 1. \end{cases}$$

行列式特殊公式

• 块三角行列式
$$\begin{vmatrix} A & * \\ O & B \end{vmatrix} = |A| \cdot |B|$$
 , $\begin{vmatrix} A & O \\ * & B \end{vmatrix} = |A| \cdot |B|$

• 范德蒙德行列式

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

$$= (x_2 - x_1)(x_3 - x_1) \cdots (x_n - x_1)(x_3 - x_2) \cdots (x_n - x_{n-1})$$

矩阵

矩阵的算术运算

计算 AB, Ab 其中
$$A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 1 & -1 \\ 2 & -1 & 3 \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

基本逆矩阵

$$E^{-1}$$
, $(kE)^{-1}$, diag $(a_{11},a_{22},...,a_{nn})^{-1}$, $E(i,j)^{-1}$, $E(i(k))^{-1}$, $E(i,j(k))^{-1}$

公式求逆

当 $|A|\neq 0$ 时,A可逆, $A^{-1}=|A|^{-1}A^*$,

其中
$$A^* = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

初等变换特点

- A进行初等行(列)变换⇔左(右)乘相应初等矩阵
- A进行一系列初等行(列)变换⇔左(右)乘可逆矩阵

求矩阵的秩:

初等行变换化为行梯形,计算非零行数 求秩: 3 1 -1 1 2 3 3 1 2 3 1 2 3

求矩阵的逆:

解矩阵方程:

解
$$AX=B$$
,即求 $X=A^{-1}B$
 $(A,B) \xrightarrow{r} (E,A^{-1}B)$
解 $\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} X = \begin{pmatrix} 3 & 3 \\ 5 & 2 \end{pmatrix}$

解 YA=B, 即求 Y=BA-1
$$\begin{pmatrix} A \\ B \end{pmatrix} \xrightarrow{c} \begin{pmatrix} E \\ BA^{-1} \end{pmatrix}$$
解 Y $\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 5 & 2 \end{pmatrix}$

向量相关性

线性相关

判断线性相关:

- 定义: $k_1\alpha_1+...+k_n\alpha_n=\theta$, 解方程组有非零解⇔相关
- •矩阵的秩: $r(\alpha_1,...,\alpha_n) < n \Leftrightarrow 相关$
- ・性质: 个数>维数=>相关; |α₁,...,αₙ|=0⇔相关

已知:
$$\alpha_1 = \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -4 \\ 0 \\ 1 \end{pmatrix}$,

分别(1)用定义;(2)用秩;(3)用行列式判断相关性.

线性相关性质:

- 向量组相关⇔必有向量可由其它向量表示
- 无关向量组加新向量后相关,则新向量可由向量组唯一表示
- 初等行变换不改变列向量组的相关性和组合关系

极大无关组

判断极大无关组:

- 准则1: (1) 无关(2) 加其它向量相关
- 准则2: (1) 无关(2)可表示其它向量

计算极大无关组:用初等行变换简化列向量组

已知:
$$\alpha_1 = \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -9 \\ -6 \\ 9 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -4 \\ 0 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$

求一个极大无关组,并用极大无关组表示其它向量.

极大无关组和矩阵秩的性质:

- • $\alpha_1,...,\alpha_n$ 可被 $\beta_1,...,\beta_m$ 表示,则r $\{\alpha_1,...,\alpha_n\} \le r\{\beta_1,...,\beta_m\}$
- 等价向量组秩相等
- 行秩=列秩=矩阵的秩
- $r(A+B) \le r(A) + r(B)$
- $r(A)+r(B)-n \le r(AB) \le \min\{r(A),r(B)\}$

答案:

行列式计算: 2、3阶行列式: 2,12

行列式变换:90

Crammer法则:

$$x_1 = 14/7 = 2$$
, $x_2 = -7/7 = -1$

行列式特殊公式: 36, -120

矩阵的算术运算: (1 0 0 0 1 8) (1 8 9)

公式求逆: $\begin{pmatrix} -2 & -1 \\ -7 & -3 \end{pmatrix}$

求矩阵的秩:

求矩阵的逆:

解矩阵方程:

$$r=2$$

$$\begin{pmatrix} -2 & -1 & 5 \\ 1 & 1 & -3 \\ -1 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 4 & 7 \\ -1 & -4 \end{pmatrix}, \begin{pmatrix} 3 & 0 \\ 11 & -3 \end{pmatrix}$$

(1)
$$\alpha_1 + \alpha_2 + \alpha_3 = \theta$$
, (2) $r\{\alpha_1, \alpha_2, \alpha_3\} = 2 < 3$, (3) $|\alpha_1, \alpha_2, \alpha_3| = 0$

计算极大无关组:
$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \rightarrow \begin{pmatrix} 1 & -3 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 α_1, α_3 为一个极大无关组, $\alpha_2 = -3\alpha_1, \alpha_4 = -\alpha_1 - \alpha_3$