图像压缩 Image Compression

Contents

- Preview&Fundamentals
- Image Compression Models
- Image Compression Standards
- Error-Free Compression
- Lossy Compression

Preview

- Why image compression
 - The storage and communication requirements of image data are immense
 - Methods of compression the data prior to storage and/or transmission are of significant practical and commercial interest

Preview

- What is image compression
 - Addresses the problem of reducing the amount of data required to represent a digital image
 - The underlying basis of the reduction process is the removal of redundant data
 - From a mathematical viewpoint, image compression amounts to transforming a 2-D pixel array into a statistically uncorrelated data set

Preview

Applications

- Currently, image compression is recognized as an "enabling technology"
- For example, televideo-conferencing, remote sensing, facsimile transmission (FAX) ...
- An ever-expanding number of applications depend on the efficient manipulation, storage, and transmission of images

Fundamentals

- The term data compression refers to
 - The process of reducing the amount of data required to represent a given quantity of information
- Data and information
 - Data are the means by which information is conveyed
 - Various amounts of data may be used to represent the same amount of information

Fundamentals

Data redundancy

- e.g., if two individuals use a different number of words (data) to tell the same story (information), at least one includes nonessential data
- That is, it contains data (or words) that either provide no relevant information or simply restate that which is already known. It is thus said to contain data redundancy
- Data redundancy is a central issue in digital image compression

Fundamentals

- In digital image compression, three basic data redundancies can be identified and exploited
 - Spatial and temporal redundancy
 - Coding redundancy
 - Psychovisual redundancy
- Data compression is achieved when one or more of these redundancies are reduced or eliminated

Spatial and Temporal Redundancy

Fidelity Criteria

 Removal of psychovisually redundant data results in a loss of real or quantitative visual information

- Two general classes of criteria are used as the basis for such an assessment
 - Objective fidelity criteria
 - Subjective fidelity criteria

Fidelity Criteria

- Objective fidelity criteria: the information loss can be expressed as a function of the original image and the decompressed image
 - root-mean-square (rms) error

$$e_{rms} = \left[\frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[\hat{f}(x,y) - f(x,y) \right]^{2} \right]^{\frac{1}{2}}$$

mean-square signal-to-noise ratio

$$SNR_{ms} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \hat{f}(x,y)^{2} / \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[\hat{f}(x,y) - f(x,y) \right]^{2}$$

rms value of the signal-to-noise ratio

$$SNR_{rms} = \sqrt{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \hat{f}(x,y)^2 / \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[\hat{f}(x,y) - f(x,y) \right]^2}$$

Fidelity Criteria

 Subjective fidelity criteria: measuring image quality by the subjective evaluations of a human observer, since most decompressed images ultimately are viewed by humans

Value	Rating	Description
1	Excellent	An image of extremely high quality, as good as you could desire.
2	Fine	An image of high quality, providing enjoyable viewing. Interference is not objectionable.
3	Passable	An image of acceptable quality. Interference is not objectionable.
4	Marginal	An image of poor quality; you wish you could improve it. Interference is somewhat objectionable.
5	Inferior	A very poor image, but you could watch it. Objectionable interference is definitely present.
6	Unusable	An image so bad that you could not watch it.

Contents

- Preview&Fundamentals
- Image Compression Models
- Image Compression Standards
- Error-Free Compression
- Lossy Compression

Image Compression Models

 A compression system consists of two distinct structural blocks: an encoder and a decoder

Mapper: transforms the input data into a (usually nonvisual) format to reduce spatial and temporal redundancies

Quantizer: reduces the accuracy of the mapper's output to reduce psychovisual redundancies

Symbol coder: creates a fixed- or variable-length code to represent the quantizer output

Image Compression Standards

Contents

- Preview&Fundamentals
- Image Compression Models
- Image Compression Standards
- Error-Free Compression
- Lossy Compression

Error-Free Compression

- In numerous applications error-free compression is the only acceptable means of data reduction
 - Archival of medical or business documents (*legal reasons*)
 - Satellite imagery (both use and cost of collecting)
 - Digital radiography (diagnostic accuracy)
- Error-free compression
 - Composed of mapping and symbol coding operations
 - Normally provide compression ratios of 2 to 10

Contents

- Preview&Fundamentals
- Image Compression Models
- Image Compression Standards
- Error-Free Compression
- Lossy Compression

Lossy Compression

- Some of the data is intentionally discarded during the process to achieve higher compression ratios
 - Eliminating certain information that the human eye is less sensitive to or may not notice
- Transform Coding
- JPEG (Joint Photographic Experts Group)

- In transform coding, linear transform (such as Fourier Transform) is used to map the image into a set of transform coefficients, which are then quantized and coded
 - For most natural images, a significant number of coefficients have small magnitudes and can be coarsely quantized (or discarded entirely) with little image distortion

FIGURE 8.28 A transform coding system: (a) encoder; (b) decoder.

- The goal of transformation process
 - 1) decorrelate the pixels of each subimage
 - 2) pack as much information as possible into the smallest number of transform coefficients

- The quantization stage then selectively eliminates or more coarsely quantizes the coefficients that carry the least information
 - These coefficients have the smallest impact on reconstructed subimage quality

- The choice of a particular transform in a given application depends on
 - 1) the amount of reconstruction error that can be tolerated
 - 2) the computational resources available

 Compression is achieved during the quantization of the transformed coefficients (NOT during the transformation step)

Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

Slides: Efros

JPEG 2000

- Improved coding efficiency
- Full quality scalability
 - From lossless to lossy at different bit rate
- Spatial scalability
- Improved error resilience
- Tiling
- Region of interests
- More demanding in memory and computation time

Slides: Zhu Liu

Spatial Scalability

▲ 18. Example of the progressive-by-resolution decoding for the color image "bike."

JPEG2000 vs. JPEG

▲ 20. Image "watch" of size 512 × 512 (courtesy of Kevin Odhner): (a) original, and reconstructed after compression at 0.2 b/p by means of (b) JPEG and (c) JPEG 2000.

JPEG2000 vs. JPEG

▲ 21. Reconstructed image "ski" after compression at 0.25 b/p by means of (a) JPEG and (b) JPEG 2000.

Summary

- Preview&Fundamentals
- Image Compression Models
- Image Compression Standards
- Error-Free Compression
- Lossy Compression

谢谢大家!

