Minimum Spanning Trees

Tree

 A connected acyclic graph is called a tree. In other words, a connected graph with no cycles is called a tree.

• A tree with 'n' vertices has 'n-1' edges. If it has one more edge extra than 'n-1', then the extra edge should obviously has to pair up with two vertices which leads to form a cycle. Then, it becomes a cyclic graph which is a violation for the tree graph.

Weighted Graphs/Trees

Vertices or edges in the graph have assigned weights.

Minimum Spanning Tree

Spanning Tree: Given an undirected and connected graph G = (V, E), a spanning tree of the graph G is a tree that spans G (that is, it includes every vertex of) and is a subgraph of G (every edge in the tree belongs to G)

Minimum Spanning Tree

Spanning Tree: Given an undirected and connected graph G = (V, E), a spanning tree of the graph G is a tree that spans G (that is, it includes every vertex of) and is a subgraph of G (every edge in the tree belongs to G)

- The cost of the spanning tree is the sum of the weights of all the edges in the tree.
 There can be many spanning trees.
- Minimum Spanning Tree: is the spanning tree where the cost is minimum among all the spanning trees. There also can be many minimum spanning trees.

• Spanning forest: If a graph is not connected, then there is a spanning tree for each connected component of the graph

Applications of MST

- Constructing highways or railroads spanning several cities
- Laying pipelines connecting offshore drilling sites, refineries and consumer markets.
- Find the least expensive way to connect a set of cities, terminals, computers, etc.

Greedy Algorithms

- A greedy algorithm is a simple, intuitive algorithm that is used in optimization problems.
- The algorithm makes the optimal choice at each step as it attempts to find the overall optimal way to solve the entire problem
- A greedy strategy does not produce an optimal solution

Find the path with the largest sum:

Find the path with the largest sum

Find the path with the largest sum

Find the path with the largest sum

Find the path with the largest sum:

Actual answer

Greedy Algorithms

- If both of the properties below are true, a greedy algorithm can be used to solve the problem.
 - Greedy choice property: A global (overall) optimal solution can be reached by choosing the optimal choice at each step.
 - Optimal substructure: A problem has an optimal substructure if an optimal solution to the entire problem contains the optimal solutions to the sub-problems.

Minimum Spanning Trees

Input: A connected, weighted undirected graph:

- A weight w(u, v) on each edge $(u, v) \in E$

Output: A tree T which connects all vertices such that $w(T) = \sum_{(u, v) \in E}^{W(u, v)} V(u, v)$ Is minimized

 Kruskal's Algorithm builds the spanning tree by adding edges one by one into a growing spanning tree. Kruskal's algorithm follows greedy approach as in each iteration it finds an edge which has least weight and add it to the growing spanning tree

Algorithm:

- Sort the graph edges with respect to their weights.
- 2. Start adding edges to the MST from the edge with the smallest weight until the edge of the largest weight.
- Only add edges which doesn't form a cycle, edges which connect only disconnected components.

Time Complexity?

Time Complexity?

O(|E|log|E|)

- 1. Create a set MSTVertices that keeps track of vertices already included in MST.
- 2. Assign a key value to all vertices in the input graph. Initialize all key values as INFINITE. Assign key value as 0 for the first vertex so that it is picked first.
- 3. While MSTVertices doesn't include all vertices
 - a. Pick a vertex *u* which is not there in *MSTVertices* and has minimum key value.
 - b. Include *u* to *MSTVertices* .
 - c. Update key value of all adjacent vertices of u. To update the key values, iterate through all adjacent vertices. For every adjacent vertex v, if weight of edge u-v is less than the previous key value of v, update the key value as weight of u-v

MSTVertices={} source : a

key	a	b	С	d	е	f	g	h	i
value	0	8	8	∞	∞	8	8	8	8

key	а	b	С	d	е	f	g	h	i
value	0	∞	8	∞	∞	8	8	8	8

MSTVertices={a} source : a

- Pick a vertex u which is not there in MSTVertices and has minimum key value
- Include u to MSTVertices.
- Update key value of all adjacent vertices of u. To update the key values, iterate through all adjacent vertices.
 For every adjacent vertex v, if weight of edge u-v is less than the previous key value of v, update the key value as weight of u-v

key	а	b	С	d	е	f	g	h	i
value	0	8	8	8	8	8	8	8	8

MSTVertices={a} source : a

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

key	а	b	С	d	е	f	g	h	i
value	0	5	9	∞	8	8	8	8	8

MSTVertices={a} source : a

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

key	а	b	С	d	е	f	g	h	i
value	0	5	9	8	8	8	8	8	8

MSTVertices={a, b} source : a

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

key	а	b	С	d	е	f	g	h	i
value	0	5	9	9	8	8	8	8	8

MSTVertices={a, b} source : a

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

key	а	b	С	d	е	f	g	h	i
value	0	5	9	9	∞	8	8	∞	8

MSTVertices={a, b} source : a

While MSTVertices doesn't include all vertices

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

v(c) won't be updated because 12 > 9

key	а	b	С	d	е	f	g	h	i
value	0	5	9	9	8	8	8	8	8

MSTVertices={a, b} source : a

While MSTVertices doesn't include all vertices

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- o Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

Pick either c or d and add it to MSTvertices

key	а	b	С	d	е	f	g	h	i
value	0	5	9	9	8	8	8	∞	8

MSTVertices={a, b, c} source : a

While MSTVertices doesn't include all vertices

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- o Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v.key$$

 $v.key = w(u,v)$

Pick either c or d and add it to MSTvertices

key	а	b	С	d	е	f	g	h	i
value	0	5	9	9	8	2	8	8	8

MSTVertices={a, b, c} source : a

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

key	а	b	С	d	е	f	g	h	i
value	0	5	9	9	8	2	8	8	8

MSTVertices={a, b, c, f} source : a

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

key	а	b	С	d	е	f	g	h	i
value	0	5	9	9	7	2	8	3	8

MSTVertices={a, b, c, f} source : a

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

key	а	b	С	d	е	f	g	h	i
value	0	5	9	9	7	2	8	3	8

MSTVertices={a, b, c, f, h} source: a

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- o Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

key	а	b	С	d	е	f	g	h	i
value	0	5	9	9	7	2	8	3	8

MSTVertices={a, b, c, f, h} source : a

While MSTVertices doesn't include all vertices

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- o Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

Update value of d!

key	а	b	С	d	е	f	g	h	i
value	0	5	9	5	7	2	15	3	11

MSTVertices={a, b, c, f, h} source : a

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

key	а	b	С	d	е	f	g	h	i
value	0	5	9	5	7	2	15	3	11

MSTVertices={a, b, c, f, h} source : a

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- o Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

key	а	b	С	d	е	f	g	h	i
value	0	5	9	5	7	2	15	3	11

MSTVertices={a, b, c, f, h, d} source: a

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- o Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

key	а	b	С	d	е	f	g	h	i
value	0	5	9	5	3	2	8	3	11

MSTVertices={a, b, c, f, h, d} source : a

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

key	а	b	С	d	е	f	g	h	i
value	0	5	9	5	3	2	8	3	11

MSTVertices={a, b, c, f, h, d, e} source: a

While MSTVertices doesn't include all vertices

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- o Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

Pick the next min

key	а	b	С	d	е	f	g	h	i
value	0	5	9	5	3	2	8	3	11

MSTVertices={a, b, c, f, h, d, e, g} source : a

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

key	а	b	С	d	е	f	g	h	i
value	0	5	9	5	3	2	8	3	10

MSTVertices={a, b, c, f, h, d, e, g, i} source: a

- Pick a vertex u which is not there in MSTVertices and has minimum key value.
- o Include u to MSTVertices.
- Update key value of all adjacent vertices of u.

If
$$w(u,v) < v$$
.key
 v .key= $w(u,v)$

MSTVertices={a, b, c, f, h, d, e, g, i} source: a

Every node is in MSTVertices set. Done!

key	а	b	С	d	е	f	g	h	i
value	0	5	9	5	3	2	8	3	10

MSTVertices={a, b, c, f, h, d, e, g, i} source: a

Total weight: 45

key	а	b	С	d	е	f	g	h	i
value	0	5	9	5	3	2	8	3	10

MSTVertices={a, b, c, f, h, d, e, g, i} source: a

Time Complexity?

key	а	b	С	d	е	f	g	h	i
value	0	5	9	5	3	2	8	3	10

MSTVertices={a, b, c, f, h, d, e, g, i} source: a

Time Complexity?

O(ElogV)

key	а	b	С	d	е	f	g	h	i
value	0	5	9	5	3	2	8	3	10

Prim Complexity

- It can be implemented efficiently using Binary Heap/Priority Queue H:
- First, insert all edges adjacent to u into H
- At each step, extract the cheapest edge
- If an end-point(vertex), say v, is not in MST, include this edge and v to MST
- Insert all edges adjacent to v into H
- At most O(E) Insert/Extract-Min
- Total Time: O(E log V)

Kruskal algorithm can be implemented similarly: O(E log V)

- A priority queue is a container adaptor that provides constant time lookup of the largest (by default) element, at the expense of logarithmic insertion and extraction.
- #include <queue>
- Syntax of Priority Queue:
 - priority_queue<int> variableName;
- Syntax to create min-heap for the Priority Queue:
 - priority_queue <int, vector<int>, greater<int>> q;

Where vector<int> is a STL container and greater<int> is comparator class.

Inserting elements in a Priority Queue:

```
#include<iostream>
#include<queue>
using namespace std;
int main()
       priority_queue<int> pq;
       pq.push(40);
       pq.push(30);
       pq.push(90);
       while (!pq.empty())
               cout << ' ' << pq.top();
               pq.pop();
```

Inserting elements in a Priority Queue:

```
#include<iostream>
#include<queue>
using namespace std;
int main()
       priority_queue<int> pq;
       pq.push(40);
       pq.push(30);
       pq.push(90);
       while (!pq.empty())
               cout << ' ' << pq.top();
               pq.pop();
```

Output: 90 40 30

MinHeap Implementation using STL

```
#include<iostream>
#include<queue>
using namespace std;
int main()
        // creates a min heap
        priority_queue <int, vector<int>, greater<int> > pq;
          pq.push(45);
          pq.push(10);
          pq.push(72);
          pq.push(40);
          pq.push(32);
                                                                                     Output:
          while (!pq.empty())
                                                                                     10 32 40 45 72
                    cout <<" "<< pq.top() << " ";
                    pq.pop();
  return 0;
```

Inserting elements in a Priority Queue:

```
#include<iostream>
#include<queue>
using namespace std;
int main()
       priority_queue<int> pq;
       pq.push(40);
       pq.push(30);
       pq.push(90);
       while (!pq.empty())
               cout << ' ' << pq.top();
               pq.pop();
```

Prim Implementation using STL

It can be done using priority queue

```
class Graph
  // Number. of vertices
  int V;
 // In a weighted graph, we need to store vertex
 // and weight pair for every edge
  list< pair<int, int> > *adj;
public:
  Graph(int V); // Constructor
 // function to add an edge to graph
  void addEdge(int u, int v, int w);
 // Print MST using Prim's algorithm
  void primMST();
};
```

Prim Implementation using STL

• It can be done using priority queue

```
class Graph
{
  int V;
  list< pair<int, int> > *adj;

public:
  Graph(int V);
  void addEdge(int u, int v, int w);
  void primMST();
};
```

 We need to create a priority queue to store vertices that are being primMST

priority_queue< pair<int, int>, vector <pair<int, int>> , greater<pair<int, int>> > pq;

- Create a vector for keys and initialize all keys as infinite (INF) vector<int> key(V, INF);
- Can you think of the implementation of the algorithm using this?