# Algorithms for Dynamic Right-Sizing in Data Centers

Kevin Kappelmann

July 24, 2017

Technical University of Munich

**Motivation and Problem Statement** 

#### **Data Centers' Costs**

Fast-growing demand for data collection, processing, and storage

#### **Data Centers' Costs**

Fast-growing demand for data collection, processing, and storage



#### **Data Centers' Costs**

Fast-growing demand for data collection, processing, and storage



ullet  $m\in\mathbb{N}$  ... Number of homogeneous servers

- $m \in \mathbb{N}$  ... Number of homogeneous servers
- $T \in \mathbb{N}$  ... Number of time slots

- $m \in \mathbb{N}$  ... Number of homogeneous servers
- $T \in \mathbb{N}$  ... Number of time slots
- ullet  $eta \in \mathbb{R}_{\geq 0}$  ... Switching costs of a server

- $m \in \mathbb{N}$  ... Number of homogeneous servers
- $T \in \mathbb{N}$  ... Number of time slots
- ullet  $eta \in \mathbb{R}_{\geq 0}$  ... Switching costs of a server
- $\bullet$   $\mathit{f}:[0,1] \to \mathbb{R}$   $\dots$  Convex operating cost function of a server

- $m \in \mathbb{N}$  ... Number of homogeneous servers
- $T \in \mathbb{N}$  ... Number of time slots
- ullet  $eta \in \mathbb{R}_{\geq 0}$  ... Switching costs of a server
- ullet  $f:[0,1] 
  ightarrow \mathbb{R} \ldots$  Convex operating cost function of a server
- $\lambda_1, \ldots, \lambda_T \in [0, m] \ldots$  Arrival rates

- $m \in \mathbb{N}$  ... Number of homogeneous servers
- $T \in \mathbb{N}$  ... Number of time slots
- ullet  $eta \in \mathbb{R}_{\geq 0}$  ... Switching costs of a server
- ullet  $f:[0,1] 
  ightarrow \mathbb{R} \ldots$  Convex operating cost function of a server
- $\lambda_1, \ldots, \lambda_T \in [0, m] \ldots$  Arrival rates
- $x_1, \ldots, x_T \in \{0, \ldots, m\}$  ... Numbers of active servers

#### **Problem Statement**

Operating costs for one time step

$$c_{op}(x_t,\lambda_t) \coloneqq \begin{cases} \infty, & \text{if } \lambda_t > x_t & \text{//too few servers} \\ x_t f(\lambda_t/x_t), & \text{if } x_t \neq 0 \land \lambda_t \leq x_t \text{//even distribution} \\ 0, & \text{if } x_t = \lambda_t = 0 & \text{//no active servers} \end{cases}$$

#### **Problem Statement**

Operating costs for one time step

$$c_{op}(x_t,\lambda_t) \coloneqq \begin{cases} \infty, & \text{if } \lambda_t > x_t & \text{//too few servers} \\ x_t f(\lambda_t/x_t), & \text{if } x_t \neq 0 \land \lambda_t \leq x_t \text{//even distribution} \\ 0, & \text{if } x_t = \lambda_t = 0 & \text{//no active servers} \end{cases}$$

#### Goal: Minimize total costs

minimize 
$$\sum_{t=1}^{T} \left( \underbrace{c_{op}(x_t, \lambda_t) + \beta \max\{0, x_t - x_{t-1}\}}_{c(x_{t-1}, x_t, \lambda_t)} \right)$$

**Optimal Offline Algorithm** 

Fundamental idea: reduce problem to shortest path problem

Fundamental idea: reduce problem to shortest path problem



Fundamental idea: reduce problem to shortest path problem



Time complexity:  $\Theta(Tm)$ 

Fundamental idea: reduce problem to shortest path problem



Time complexity:  $\Theta(Tm)$ 

...only  $log_2(m)$  bits required to encode m.

Offline Approximation Algorithm

# 2-Optimal Linear-Time Algorithm

Use logarithmic steps to reduce number of nodes

# 2-Optimal Linear-Time Algorithm

Use logarithmic steps to reduce number of nodes



# 2-Optimal Linear-Time Algorithm

Use logarithmic steps to reduce number of nodes



Claim: Shortest Path in graph corresponds to 2-optimal schedule.

#### **Proof Idea**

Take a schedule and transform periods between two powers of 2

#### **Proof Idea**

Take a schedule and transform periods between two powers of 2



# **Approximative Scheduling**

Shortest Path in graph corresponds to 2-optimal schedule.

# **Approximative Scheduling**

Shortest Path in graph corresponds to 2-optimal schedule.

Time complexity:  $\Theta(T \log_2(m))$ 

# **Approximative Scheduling**

Shortest Path in graph corresponds to 2-optimal schedule.

Time complexity:  $\Theta(T \log_2(m))$ 

Approach can be generalized to allow for arbitrary precisions with time complexity  $\Theta \left( T \log_{1+\varepsilon}(m) \right)$ 

**Summary and Prospects** 

# **Summary**

We reduced the scheduling problem to the shortest path problem of acyclic graphs.

# Summary

We reduced the scheduling problem to the shortest path problem of acyclic graphs.

Optimal Offline Algorithm with runtime  $\Theta(Tm)$ 

# **Summary**

We reduced the scheduling problem to the shortest path problem of acyclic graphs.

Optimal Offline Algorithm with runtime  $\Theta(Tm)$ 

$$\begin{array}{c} (1+\varepsilon)\text{-}\mathsf{Optimal\ Offline\ Algorithm\ with\ runtime}\\ \Theta\big(T\log_{1+\varepsilon}(m)\big) = \Theta\left(T\frac{\log(m)}{\log(1+\varepsilon)}\right) \end{array}$$

Can our approach be modified to ...

Can our approach be modified to ...

• deal with more than one homogeneous server collection?

Can our approach be modified to ...

- deal with more than one homogeneous server collection?
- deal with multiple sleep states?

Can our approach be modified to ...

- deal with more than one homogeneous server collection?
- deal with multiple sleep states?
- work as an online algorithm?

Can our approach be modified to ...

- deal with more than one homogeneous server collection?
- deal with multiple sleep states?
- work as an online algorithm?

Open question: Is there a polynomial optimal algorithm or is it an  ${\bf NP}$  problem?

Thanks for your attention!

Any questions?

# Image Sources I

- Data center: datacentervoice.com/wp-content/ uploads/2015/12/data-center.jpg
- Data center costs: perspectives.mvdirona.com/2008/11/ cost-of-power-in-large-scale-data-centers/