高運®科技 GENTOP®

GT31L16M1Y80 标准点阵汉字库芯片

一产品规格书一

V1.1 2015-5

www.genitop.com

版本修订记录

版本号	修改内容	日期	备注
VER 1.0I_A	字库芯片说明书的制定	2012-08	字库定制
VER1.0I_B	增加状态寄存器的说明	2012-03	6
VER1.0I_C	增加自由读写空间对应烧录器中的型号	2013-06	
VER1.0I_D	字库芯片说明书格式修改	2015-05	

目 录

1 概述	5
1.1 芯片特点	5
1.2 芯片内容	6
1.3 字型样张	7
1.3.1 汉字字符	7
1.3.2 其它点阵字符	7
2 操作指令	11
2.1 Instruction Parameter(指令参数)	11
2.2 Read Data Bytes(一般读取)	11
2.3 Read Data Bytes at Higher Speed(快速读取点阵数据)	12
2.4 Write Enable(写使能)	13
2.5 Write Disable(写非能)	13
2.6 Page Program (页写入)	13
2.7 Sector Erase(扇区擦除)	14
2.8 Block Erase(64K)(块擦除)	
2.9 Chip Erase (芯片擦除)	14
2.10 读芯片状态时序	14
2.11 芯片状态寄存器以及说明	15
2.12 读取芯片状态寄存器的命令说明	15
3 自由可读写空间描述	16
3.1 存储组织	16
3.2 存储块、扇区结构	
4 引脚描述与电路连接	17
4.1 引脚配置	17
4.2 引脚描述	17
4.3 SPI 接口与主机接口参考电路示意图	19
5 电气特性	20
5.1 绝对最大额定值	20
5.2 DC 特性	20
5.3 AC 特性	20
6 封装尺寸	22

7 字库排置(竖置横排)	23
7.1 点阵排列格式	23
7.2 15X16 点汉字排列格式举例	
7.3 16 点阵不等宽 ASCII 方头(Arial)字符排列格式	
8 点阵数据验证(客户参考用)	

1 概述

GT31L16M1Y80是一款16x16点阵字库芯片,支持GB18030国标汉字(同时支持UNICODE编码)。排列格式为竖置横排。用户通过字符内码,利用用户手册提供的方法计算出该字符点阵在芯片中的地址,可从该地址连续读出字符点阵信息。

GT31L16M1Y80除含有上述字库以外,还提供客户1M字节的可自由读写空间,包括256个扇区,每个扇区4K字节或16页,每页256字节,可自由读写空间地址范围为: 0x000000~0Xffffff,该自由读写空间在各厂商烧录器中的型号为GT16G80,在烧录器的上位机软件中选择该型号即可烧录,可重复擦写10万次以上。

1.1 芯片特点

- 数据总线: SPI 串行总线接口
- 点阵排列方式: 竖置横排
- 时钟频率: 120MHz (max.) @3.3V
- 工作电压: 2.7V~3.6V
- 电流:

工作电流: 12mA 待机电流: 5uA

- 工作温度: -40℃~85℃
- 封装: SOP8-B
- 字符集:

中文 GB18030 兼容 UNICODE

● 字号: 16x16 点阵

1.2 芯片内容

字符集	字库	字号	字符数	字体	排列方式	
	ASCII	5x7	96	标准	Y-竖置横排	
	ASCII	7x8	96	标准	Y-竖置横排	
	ASCII	7x10	96	打印机字体	Y-竖置横排	
	ASCII	7x12	96	打印机字体	Y-竖置横排	
ASCII	ASCII	8x16	96	标准	Y-竖置横排	
字符集	ASCII	8x16	96	粗体	Y-竖置横排	
	ASCII	16x32	96	标准	Y-竖置横排	
	ASCII	16x32	96	粗体	Y-竖置横排	
	ASCII	16 点阵不等宽	96	方头(Arial)	Y-竖置横排	
GB18030	GB18030 汉字	16x16	27484	宋体	Y-竖置横排	
字符集	GB18030 字符	16x16	1038	宋体	Y-竖置横排	
Unicode -> GBK 转	00000 - 4000					
码表	20902 + 1038					
BIG5->	12469					
GBK 转码表			13468			

1.3 字型样张

1.3.1 汉字字符

16x16 点阵 GB18030 汉字

1.3.2 其它点阵字符

5x7 点阵 ASCII 标准字符

7x8 点阵 ASCII 标准字符

8x16 点阵 ASCII 标准字符

8x16 点阵 ASCII 粗体字符

16x32 点阵 ASCII 标准字符

16x32 点阵 ASCII 粗体字符

16 点阵不等宽 ASCII 方头 (Arial)

2操作指令

2.1 Instruction Parameter(指令参数)

Instruction	Description	Instruction Code(One-Byte)		Address Bytes	Dummy Bytes	Data Bytes
Read	Read Data Bytes	0000 0011	03 h	3	_	1 to ∞
Fast Read	Read Data Bytes at Higher Speed	0000 1011	0B h	3	1	1 to ∞
WREN	Write Enalbe	0000 0110	06 h	_	_	_
WRDI	Write Disable	0000 0100	04 h			
PP	Page Program	0000 0010	02 h	3	_	1 to256
SE	Sector Erase	0010 0000	20 h	3	_	_
BE	Block Erase(64K)	1101 1000	D8 h	3	_	_
CE	Chip Erase	0110 0000/ 1100 0111	60 H/ C7 H	_	_	_

2.2 Read Data Bytes (一般读取)

Read Data Bytes 需要用指令码来执行每一次操作。READ 指令的时序如下(图):

- 首先把片选信号(CS#)变为低,紧跟着的是 1 个字节的命令字(03 h)和 3 个字节的地址和通过串行数据输入引脚(SI)移位输入,每一位在串行时钟(SCLK)上升沿被锁存。
- 然后该地址的字节数据通过串行数据输出引脚(SO)移位输出,每一位在串行时钟(SCLK)下降沿被移出。
- 读取字节数据后,则把片选信号(CS#)变为高,结束本次操作。 如果片选信号(CS#)继续保持为底,则下一个地址的字节数据继续通过串行数据输出引脚 (SO)移位输出。

图: Read Data Bytes (READ) Instruction Sequence and Data-out sequence:

11

2.3 Read Data Bytes at Higher Speed (快速读取点阵数据)

Read Data Bytes at Higher Speed 需要用指令码来执行操作。READ_FAST 指令的时序如下(图):

- 首先把片选信号(CS#)变为低,紧跟着的是 1 个字节的命令字(0B h)和 3 个字节的地址以及一个字节 Dummy Byte 通过串行数据输入引脚(SI)移位输入,每一位在串行时钟(SCLK)上升沿被锁存。
- 然后该地址的字节数据通过串行数据输出引脚(SO)移位输出,每一位在串行时钟(SCLK)下降沿被移出。
- 如果片选信号(CS#)继续保持为底,则下一个地址的字节数据继续通过串行数据输出引脚(SO)移位输出。例:读取一个15x16点阵汉字需要32Byte,则连续32个字节读取后结束一个汉字的点阵数据读取操作。

如果不需要继续读取数据,则把片选信号(CS#)变为高,结束本次操作。

图: Read Data Bytes at Higher Speed (READ_FAST) Instruction Sequence and Data-out sequence:

2.4 Write Enable (写使能)

Write Enable 指令的时序如下(图): CS#变低-→发送 Write Enable 命令—>CS#变高

2.5 Write Disable (写非能)

Write Enable 指令的时序如下(图): CS#变低-→发送 Write Disable 命令—>CS#变高

2.6 Page Program (页写入)

Page Program 指令的时序如下(图): CS#变低-→发送 Page Program 命令→发送 3 字节地址—>发送数据—>CS#变高

13

2.7 Sector Erase (扇区擦除)

Sector Erase 指令的时序如下(图): CS#变低-→发送 Sector Erase 命令→发送 3 字节地址—>CS#变高

2.8 Block Erase(64K)(块擦除)

Block Erase 指令的时序如下(图):

CS#变低-→发送 64K Block Erase 命令→发送 3 字节地址—>CS#变高

2.9 Chip Erase (芯片擦除)

Chip Erase 指令的时序如下(图): CS#变低-→发送 Chip Erase 命令—>CS#变高

2.10 读芯片状态时序

14

2.11 芯片状态寄存器以及说明

Status Register

В7	В6	B5	B4	В3	B2	B1	В0
BP0	SP4	SP3	SP2	SP1	SP0	WSL	WIP

判断芯片是否在忙状态,使用寄存器 B0,当 B0 位的 WIP 位为 1 的时候,为忙状态,当 WIP 位为 0 的时候芯片处于空闲状态。

2.12 读取芯片状态寄存器的命令说明

发送命令 05H, 然后读取芯片状态寄存器的 B7-B0 位。判断 WIP 位的状态来判断芯片是否在忙状态。

3 自由可读写空间描述

3.1 存储组织

每设备	每块	每扇区	每页	
1M	64K	4K	256	字节
4K	256	16		页
256	16			扇区
16				块

3.2 存储块、扇区结构

块	扇区	地址剂	5围
	255	0x0FF000	0x0FFFFF
15			
	240	0x0F0000	0x0F0FFF
	239	0x0EF000	0x0EFFFF
14		• • • • •	
	224	0x0E0000	0x0E0FFF
	47	0x02F000	0x02FFFF
2	•••••	• • • • •	•••••
	32	0x020000	0x020FFF
	31	0x01F000	0x01FFFF
1	•••••	• • • • •	•••••
	16	0x010000	0x010FFF
	15	0x00F000	0x00FFFF
0		• • • • •	
	0	0x000000	0x000FFF

4 引脚描述与电路连接

4.1 引脚配置

SOP8-B

4.2 引脚描述

SOP8-B

NO.	名称	I/O	描述
1	CS#	I	片选输入(Chip enable input)
2	SO	0	串行数据输出 (Serial data output)
3	NC		悬空
4	GND		地(Ground)
5	SI	I	串行数据输入 (Serial data input)
6	SCLK	I	串行时钟输入(Serial clock input)
7	HOLD#	Ī	总线挂起(Hold, to pause the device without)
8	VCC		电源(+ 3.3V Power Supply)

串行数据输出(SO): 该信号用来把数据从芯片串行输出,数据在时钟的下降沿移出。

串行数据输入(SI): 该信号用来把数据从串行输入芯片,数据在时钟的上升沿移入。

串行时钟输入(SCLK):数据在时钟上升沿移入,在下降沿移出。

片选输入(CS#): 所有串行数据传输开始于CS#下降沿, CS#在传输期间必须保持为低电平, 在两条指令之间保持为高电平。

该信号用于片选信号有效期间暂停数据传输,在总线挂起期间,串行数据输出信号处于高阻态,芯片不对串行数据输入信号和串行时钟信号进行响应。

当HOLD#信号变为低并且串行时钟信号(SCLK)处于低电平时,进入总线挂起状态。 当HOLD#信号变为高并时串行时钟信号(SCLK)处于低电平时,结束总线挂起状态。

4.3 SPI 接口与主机接口参考电路示意图

SPI 与主机接口电路连接可以参考下图(#HOLD 管脚建议接 2K 电阻 3.3V 拉高)。

SPI 接口与主机接口参考电路示意图

5 电气特性

5.1 绝对最大额定值

Symbol	Parameter	Min.	Max.	Unit	Condition
T _{OP}	Operating Temperature	-40	85	$^{\circ}$ C	
T _{STG}	Storage Temperature	-65	150	$^{\circ}$ C	
VCC	Supply Voltage	-0.3	3.6	V	
V _{IN}	Input Voltage	-0.3	VCC+0.3	V	
GND	Power Ground	-0.3	0.3	V	

5.2 **DC** 特性

Condition: $T_{OP} = -40^{\circ}\text{C}$ to 85°C , GND=0V

Symbol	Parameter	Min.	Max.	Unit	Condition
I _{DD}	VCC Supply Current(active)		12	mA	
I _{SB}	VCC Standby Current		5	uA	
V _{IL}	Input LOW Voltage	-0.3	0.3VCC	V	
V _{IH}	Input HIGH Voltage	0.7VCC	VCC+0.4	V	
V _{OL}	Output LOW Voltage		0.4 (I _{OL} =1.6mA)	V	VCC=2.7~3.6V
V _{OH}	Output HIGH Voltage	0.8VCC (I _{OH} =-100uA)		٧	100 2 0.01
ILI	Input Leakage Current	0	2	uA	
I _{LO}	Output Leakage Current	0	2	uA	

Note: I_{IL}: Input LOW Current, I_{IH}: Input HIGH Current,

 $I_{\text{OL}} \colon$ Output LOW Current, $\ I_{\text{OH}} \colon$ Output HIGH Current,

5.3 AC 特性

Symbol	Alt.	Parameter	Min.	Max.	Unit
Fc	Fc	Clock Frequency	D.C.	120	MHz
tсн	tclh	Clock High Time	4		ns
tcL	tcll	Clock Low Time	4		ns
tclch		Clock Rise Time(peak to peak)	0.2		V/ns
tchcl		Clock Fall Time (peak to peak)	0.2		V/ns
tslch	tcss	CS# Active Setup Time (relative to SCLK)	5		ns
tchsl		CS# Not Active Hold Time (relative to SCLK)	5		ns
tovch	tosu	Data In Setup Time	2		ns
tchdx	tон	Data In Hold Time	2		ns
t CHSH		CS# Active Hold Time (relative to SCLK)	5		ns
t shch		CS# Not Active Setup Time (relative to SCLK)	5		ns
t shsl	tсsн	CS# Deselect Time	20		ns
t shqz	tois	Output Disable Time		6	ns
t clqv	t∨	Clock Low to Output Valid		6.5	ns

t clqx	tно	Output Hold Time	0		ns
--------	-----	------------------	---	--	----

6 封装尺寸

封 装 类 型	封装尺寸				
SOP8-B	5.28mmX7.90mm(206milX311mil)				

Package

SOP8-B

Dimensions(inch dimensions are derived from the original mm dimensions)

		Α	A1	A2	b	С	D	Е	E1	•	L	S	•
Mm	Min.	ı	0.05	0.75	0.35	0.15	5.18	7.70	5.18		0.50	0.41	0
	Norm.	ı	0.10	0.80	0.42	0.20	5.28	7.90	5.28	1.27	0.65	0.54	5
	Max.	1.0	0.15	0.85	0.48	0.25	5.38	8.10	5.38		0.80	0.67	10
inch	Min.	ı	0.002	0.030	0.014	0.006	0.204	0.303	0.204		0.020	0.016	0
	Norm.	ı	0.004	0.032	0.016	0.008	0.206	0.311	0.206	0.050	0.026	0.021	5
	Max.	0.04	0.006	0.034	0.020	0.010	0.210	0.319	0.210		0.031	0.026	10

7字库排置(坚置横排)

7.1 点阵排列格式

每个汉字在芯片中是以汉字点阵字模的形式存储的,每个点用一个二进制位表示,存 1 的点,当显示时可以在屏幕上显示亮点,存 0 的点,则在屏幕上不显示。点阵排列格式为竖置横排:即一个字节的高位表示下面的点,低位表示上面的点(如果用户按 16bit 总线宽度读取点阵数据,请注意高低字节的顺序),排满一行后再排下一行。这样把点阵信息用来直接在显示器上按上述规则显示,则将出现对应的汉字。

7.2 15X16 点汉字排列格式举例

15X16 点汉字的信息需要 32 个字节(BYTE 0 – BYTE 31)来表示。该 15X16 点汉字的点阵数据是竖置横排的,其具体排列结构如下图:

7.3 16 点阵不等宽 ASCII 方头(Arial)字符排列格式

16 点阵不等宽字符的信息需要 34 个字节(BYTE 0 - BYTE33)来表示。

■ 存储格式

由于字符是不等宽的,因此在存储格式中 BYTE0~ BYTE1 存放点阵宽度数据,BYTE2-33 存放 竖置横排点阵数据。具体格式见下图:

点阵第	宽度数据	ASCII点阵数据				
	\	/				
BYTE 0	BYTE 1	BYTE 2		BYTE 33		
B7 B6 B5 B4 B3 B2 B1 B0	B7 B6 B5 B4 B3 B2 B1 B0	B7 B6 B5 B4 B3 B2 B1 B0		B7 B6 B5 B4 B3 B2 B1 B0		

■ 存储结构

点阵存储宽度固定为 16,根据不同字符,其实际点阵宽度会小于 16,并会出现相应的空白区。根据 BYTE0~BYTE1 所存放点阵的宽度数据,可以对还原下一个字的显示或排版留作参考。

例如: ASCII 方头字符 B

0-33BYTE 的点阵数据是: 00 0C 00 F8 F8 18 18 18 18 18 F8 F0 00 00 00 00 00 00 7F 7F

63 63 63 63 63 67 3E 1C 00 00 00 00 00

其中:

BYTE0~ BYTE1: 00 0C 为 ASCII 方头字符 B 的点阵宽度数据,即: 12 位宽度。字符后面有 4 位空白区,可以在排版下一个字时考虑到这一点,将下一个字的起始位置前移。(见下图)

8点阵数据验证(客户参考用)

客户将芯片内 "A"的数据调出与以下进行对比。若一致,表示 SPI 驱动正常工作;若不一致,请重新编写驱动。

排置: Y(竖置横排)点阵大小 8X16

字母"A"

点阵数据: 00 E0 9C 82 9C E0 00 00 0F 00 00 00 00 00 0F 00

排置:W(横置横排)点阵大小 8X16

字母"A"

点阵数据: 00 10 28 28 28 44 44 7C 82 82 82 82 00 00 00 00

创造文明智能

上海 OFFICE

地址:上海徐汇区宜山路 1388 号民润大厦 2 号楼 2 层

电话: 021-54451588 54451000 54452288

传真: 021-54451589-810 E-mail:Sales@genitop.com

深圳 OFFICE

地址:深圳市福田区车公庙泰然四路 204 栋东座 708-709 室

电话: 0755-83453881 83453855

传真: 0755-83453855-8004