

- 许多情况下集合的元素之间存在某种关系
- 集合的元素之间的关系被表示成一种结构,这种结构叫做关系
- 关系可以解决一些计算机领域的问题
- 用两个元素构成的<mark>有序对</mark>表示集合的元素之间的 关系. 比如 5>3可表示成<5,3>,<4,2>表示成4>2.
- 有序对的集合称为二元关系

有序对(ordered pair)

■ 有序对:

$$= \{ \{a\}, \{a,b\} \}$$

其中, a 是第一元素, b 是第二元素.
 a,b 可以相同也可以不同

- 定理2.1 有序对公理: $\langle a,b\rangle = \langle c,d\rangle \Leftrightarrow a=c \land b=d$
- 推论: $a \neq b \Rightarrow \langle a,b \rangle \neq \langle b,a \rangle$

思考: 可以如下定义有序对吗?
$$\langle a,b \rangle = \{a,\{b\}\}$$

定理2.1的证明--引理1

引理1: $\{x,a\}=\{x,b\} \Leftrightarrow a=b$

证明: (←) 显然.

(⇒) 分两种情况.

- (1) x=a. $\{x,a\}=\{x,b\} \Rightarrow \{a,a\}=\{a,b\}$ $\Rightarrow \{a\}=\{a,b\} \Rightarrow a=b$.
- $(2) x \neq a. a \in \{x,a\} = \{x,b\} \Rightarrow a = b.$

定理2.1的证明--引理2

引理2: 若 $A=B\neq\emptyset$, 则

- (1) $\cup A = \cup B$
 - (2) $\cap A = \cap B$
- 证明: (1) $\forall x, x \in \cup A \Leftrightarrow \exists z (z \in A \land x \in z)$

 $\Leftrightarrow \exists z (z \in B \land x \in z) \Leftrightarrow x \in \cup B.$

(2) $\forall x, x \in \cap A \Leftrightarrow \forall z (z \in A \to x \in z)$

 $\Leftrightarrow \forall z (z \in B \to x \in z) \Leftrightarrow x \in \cap B.$

定理2.1的证明

定理1:
$$\langle a,b \rangle = \langle c,d \rangle \Leftrightarrow a = c \land b = d$$

证明: (⇐) 显然.

(⇒) 由引理2,

$$\langle a,b \rangle = \langle c,d \rangle \Leftrightarrow \{\{a\},\{a,b\}\} = \{\{c\},\{c,d\}\}\}$$

$$\Rightarrow \cup \{\{a\},\{a,b\}\}=\cup \{\{c\},\{c,d\}\}$$

$$\Rightarrow \{a,b\} = \{c,d\}. \tag{1}$$

$$\{\{a\},\{a,b\}\}=\{\{c\},\{c,d\}\}$$

$$\Rightarrow \cap \{\{a\}, \{a,b\}\} = \cap \{\{c\}, \{c,d\}\} \Rightarrow \{a\} = \{c\}$$

$$\Leftrightarrow a=c.$$

由(1)(2)及引理1, 得b=d.

推论的证明

推论: $a \neq b \Rightarrow \langle a,b \rangle \neq \langle b,a \rangle$

证明: (反证)

 $\langle a,b\rangle = \langle b,a\rangle \Leftrightarrow a=b,$

与 $a\neq b$ 矛盾.

4

有序n元组(ordered triple)

有序n(≥2)元组:

$$< a_1, a_2, ..., a_n > = < < a_1, a_2, ..., a_{n-1} > , a_n >$$
定理2.2: $< a_1, a_2, ..., a_n > = < b_1, b_2, ..., b_n >$
 $\Leftrightarrow a_i = b_i, i = 1, 2, ..., n.$

例: $\langle a,b,c \rangle = \langle \langle a,b \rangle,c \rangle$ 有序3元组

注意: $\langle a_1, a_2, ..., a_n \rangle \neq \langle a_1, \langle a_2, ..., a_n \rangle \rangle$

■ 卡氏积:

$$A \times B = \{ \langle x, y \rangle | x \in A \land y \in B \}.$$

■ 令A为某大学所有学生的集合,B为该大学所有课程的集合,A和B的笛卡尔积表示什么?

求A×B, B×A, A×A, B×B

例:
$$A = \{\emptyset, a\}, B = \{1, 2, 3\}.$$

$$A \times B = \{ < \varnothing, 1 >, < \varnothing, 2 >, < \varnothing, 3 >, < a, 1 >, < a, 2 >, < a, 3 > \}.$$
 $B \times A = \{ < 1, \varnothing >, < 1, a >, < 2, \varnothing >, < 2, a >, < 3, \varnothing >, < 3, a > \}.$
 $A \times A = \{ < \varnothing, \varnothing >, < \varnothing, a >, < a, \varnothing >, < a, a > \}.$
 $B \times B = \{ < 1, 1 >, < 1, 2 >, < 1, 3 >, < 2, 1 >, < 2, 2 >, < 2, 3 >, < < 3, 1 >, < 3, 2 >, < 3, 3 > \}.$

卡氏积的性质

- (1) $A \times B = B \times A = \emptyset \Leftrightarrow A = \emptyset \lor B = \emptyset$.
- (2) 非交换: $A \neq B$, $A \neq \emptyset$, $B \neq \emptyset$ 时, $A \times B \neq B \times A$
- (3) 非结合: $A \neq B$, $A \neq \emptyset$, $B \neq \emptyset$ 时, $(A \times B) \times C \neq A \times (B \times C)$
- (4) 分配律: 对于并或交运算

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

$$(B \cup C) \times A = (B \times A) \cup (C \times A)$$

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

$$(B \cap C) \times A = (B \times A) \cap (C \times A)$$

思考: $A \cup (B \times C) = (A \cup B) \times (A \cup C)$ 成立吗?

卡氏积非交换性(反例)

非交换 $A \neq B$, $A \neq \emptyset$, $B \neq \emptyset$: $A \times B \neq B \times A$

$$A \times B = \{<1,2>\},$$

$$B \times A = {<2,1>}.$$

卡氏积非结合性(反例)

非结合 $A \neq B$, $A \neq \emptyset$, $B \neq \emptyset$: $(A \times B) \times C \neq A \times (B \times C)$ 反例: $A = B = C = \{1\}$. $(A \times B) \times C = \{<<1,1>,1>\}$, $A \times (B \times C) = \{<1,<1,1>>\}$.

卡氏积分配律的证明

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

证明: $\forall \langle x, y \rangle$,
 $\langle x, y \rangle \in A \times (B \cup C)$
 $\Leftrightarrow x \in A \land y \in (B \cup C) \Leftrightarrow x \in A \land (y \in B \lor y \in C)$
 $\Leftrightarrow (x \in A \land y \in B) \lor (x \in A \land y \in C)$
 $\Leftrightarrow (\langle x, y \rangle \in A \times B) \lor (\langle x, y \rangle \in A \times C)$

$$\Leftrightarrow \in (A\times B)\cup (A\times C)$$

$$\therefore A \times (B \cup C) = (A \times B) \cup (A \times C).$$

卡氏积分配律图示

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

例2.1

例2.1: 设A,B,C,D是任意集合,

- (1) 若 $A\neq\emptyset$, 则 $A\times B\subseteq A\times C\Leftrightarrow B\subseteq C$.
- (2) $A \subseteq C \land B \subseteq D \Rightarrow A \times B \subseteq C \times D$,并且

当 $(A=B=\emptyset)$ $V(A\neq\emptyset\land B\neq\emptyset)$ 时,其逆成立

证明: (1) (\Rightarrow) 若 $B=\emptyset$, 则 $B\subseteq C$.

若B≠∅,由A≠∅得∃x,x∈A,

 $\forall y, y \in B \Rightarrow \langle x, y \rangle \in A \times B \Rightarrow \langle x, y \rangle \in A \times C$ $\Leftrightarrow x \in A \land y \in C \Rightarrow y \in C.$

∴B⊆C

例2.1续

(续): (⇐) 已知*B*⊆*C*.

 $若B=\emptyset,则A\times B=\emptyset\subseteq A\times C.$

若 $B\neq\emptyset$,则 $C\neq\emptyset$,又 $A\neq\emptyset$,

则 $A \times B \neq \emptyset$, $A \times C \neq \emptyset$

 $\forall \langle x,y \rangle, \langle x,y \rangle \in A \times B \Leftrightarrow x \in A \land y \in B$

 $\Rightarrow x \in A \land y \in C \Leftrightarrow \langle x,y \rangle \in A \times C$

 $A \times B \subseteq A \times C$.

例2.1的图示

4

例2.1证明A⊆C \land B⊆D \Rightarrow A \times B⊆C \times D

证 当 $A=\emptyset$ 或 $B=\emptyset$ 时, $A\times B=\emptyset$, 显然成立.

否则, $A \times B \neq \emptyset$,则

$$\forall \langle x,y \rangle, \langle x,y \rangle \in A \times B$$

$$\Leftrightarrow x \in A \land y \in B$$

$$\Rightarrow x \in C \land y \in D$$

$$\Leftrightarrow \langle x,y \rangle \in C \times D$$
.

所以
$$A \times B \subseteq C \times D$$

例2.1 (续)

当 $(A=B=\emptyset)$ V $(A\neq\emptyset\land B\neq\emptyset)$ 时, $A\times B\subseteq C\times D\Rightarrow A\subseteq C\land B\subseteq D$.

证 当 $A=B=\emptyset$ 时,显然 $A\subseteq C \land B\subseteq D$ 当 $A\neq \emptyset \land B\neq \emptyset$ 时,则 $A\times B\neq \emptyset$, 又 $A\times B\subseteq C\times D$,则 $C\times D\neq \emptyset$. $\forall x,y,\ x\in A \land y\in B$ $\Rightarrow \langle x,y\rangle \in A\times B \Rightarrow \langle x,y\rangle \in C\times D \Rightarrow x\in C \land y\in D$ 从而 $A\subseteq C \land B\subseteq D$

n维卡氏积

■ n维卡氏积:

$$A_1 \times A_2 \times ... \times A_n = \{ \langle x_1, x_2, ..., x_n \rangle \mid x_1 \in A_1 \land x_2 \in A_2 \land ... \land x_n \in A_n \}$$

- $A^n = A \times A \times ... \times A$
- $|A_i| = n_i, i = 1, 2, ..., n \Rightarrow |A_1 \times A_2 \times ... \times A_n| = \pi_{i=1}^n n_i$
- n维卡氏积性质与2维卡氏积类似.

n维卡氏积(性质)

- $\bullet A \times B \times C = \emptyset \Leftrightarrow A = \emptyset \lor B = \emptyset \lor C = \emptyset.$
- 非交换: $A \times B \times C \neq B \times C \times A$ (A,B,C均非空,且互不相等)
- 非结合: (非2元运算)
- 分配律: 例如

$$A \times B \times (C \cup D) = (A \times B \times C) \cup (A \times B \times D)$$

作业

■ 作业: p53 2,4,7,8