Exercícios Redes Neurais Artificiais

- 1) Qual a maneira mais adequada de programar a parada do treinamento de uma rede neural MLP utilizando o algoritmo backpropagation?
- 2) Considerando que será usada uma rede neural MLP treinada com o algoritmo de retropropagação para prever se o tempo ficará nublado no dia seguinte a partir da posição de nuvens em imagens de satélite dos dias anteriores. Estas imagens são usadas diretamente como entradas da rede e tem dimensão 20 pixels x 20 pixels: (1,0)
 - a) Qual será o número de entradas desta rede?
 - b) Qual será o número de saídas desta rede?
 - c) Quantos neurônios devem ser colocados na camada intermediária (escondida)?

3)

Considere um modelo de neurônio artificial conforme mostrado abaixo:

onde v é a soma ponderada das entradas pelos pesos respectivos (incluindo o bias) e a função de ativação de saída é binária, definida conforme apresentado na figura. A rede abaixo é composta por quatro neurônios que seguem o modelo acima, com os pesos e bias ajustados conforme indicado.

Quais são as funções booleanas $y_1(x_1, x_2)$ e $y_2(x_1, x_2)$ que estão sendo implementadas por esta rede neural? Para tanto, preencha a tabela verdade abaixo correspondente ao mapeamento dos valores de entrada (x_1, x_2) para os valores intermediários (i_1, i_2) e destes para os valores de saída (y_1, y_2) .

x_1	x_2	v_1	i_1	v_2	i_2	v_3	y_1	v_4	<i>y</i> ₂
0	0								
0	1								
1	0								
1	1								

Após o treinamento, uma rede neural *perceptron* com 2 sinais de entrada e um neurônio de saída será capaz de classificar quatro indivíduos (I_y , I_y , I_y , I_y , I_y , I_y) em duas classes, conforme o quadro a seguir.

	Professor	Dentista
l ₁	х	
l ₂	Х	
l ₃		X
I ₄		Х

O primeiro passo é codificar as informações em base binária. Os sinais devem ser representados da seguinte forma:

Entrada:
l ₁ = 00
l ₂ = 01
l ₃ = 10
l ₄ = 11

Saída:			
Professor = 0			
Dentista = 1			

Considerando aprendizado supervisionado (com uso do algoritmo de correção de erros), verifique se cada indivíduo é professor (0) ou dentista (1). Considere uma taxa de aprendizagem igual a 1, pesos iniciais iguais a zero para cada entrada e a seguinte função de ativação: Se x > 0, então f(x) = 1, caso contrário f(x) = 0.

O quadro a seguir apresenta a entrada dos dados, a saída calculada pela RNA e a saída esperada.

Indivíduo	Entrada	Saída calculada pela RNA	Saída esperada	W (peso)
				[0,0]
I _s	11	0; f(0) = 0	1	?
I ₆	01	1; f(1) = 1	0	?
I ₇	10	1; f(1) = 1	1	?
I ₈	00	0; f(0) = 0	0	?
I _s	11	1; f(1) = 1	1	?
I ₆	01	0; f(0) = 0	0	?

Com base nas informações apresentadas, conclui-se que a atualização dos pesos a cada nova entrada, no treinamento dessa rede neural, é igual a

- **(a)** [1,1], [1,0], [1,0], [1,0], [1,0], [1,0].
- **3** [1,1], [1,0], [0,0], [0,0], [1,0], [1,0].
- **(9** [1,0], [1,1], [1,1], [1,1], [0,0], [1,0].
- **1** [1,1], [1,0], [1,0], [0,0], [0,0], [1,0].
- **(3** [1,1], [1,0], [1,0], [0,0], [0,0], [0,0].