Министерство высшего образования и науки Российской Федерации Национальный научно-исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Лабораторная работа №2 по дисциплине «Основы профессиональной деятельности».

Вариант №666.

Работу выполнил: Афанасьев Кирилл Александрович, Студент группы Р3106. Преподаватель: Афанасьев Дмитрий Борисович.

Содержание

ЗАДАНИЕ	3
ТЕКСТ ИСХОДНОЙ ПРОГРАММЫ	
ОПИСАНИЕ ПРОГРАММЫ	
ОБЛАСТЬ ПРЕДСТАВЛЕНИЯ И ДОПУСТИМЫХ ЗНАЧЕНИЙ	4
ТАБЛИЦА ТРАССИРОВКИ ВЫПОЛНЕНИЯ КОМАНД	4
ВАРИАНТ С МЕНЬШИМ ЧИСЛОМ КОМАНД	5
вывод	6

Задание

«По выданному преподавателем варианту определить функцию, вычисляемую программой, область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы, предложить вариант с меньшим числом команд. При выполнении работы представлять результат и все операнды арифметических операций знаковыми числами, а логических операций набором из шестнадцати логических значений.»
Вариант 666:

195: + A19F 419D 196: 197: E1A1 198: 0200 199: 319E 19A: 21A1 19B: E1A0 19C: 0100 19D: A19F 19E: 319E 19F: E1A0 1A0: 21A1 1A1: 0200

Рисунок №1: Вариант 666.

Текст исходной программы:

Таблица №1: Текст исходной программы

	1	Π	
Адрес	Код	Мнемоника	Комментарий
	команды		
195	A19F	START: LD	Загрузка в АС значения ячейки 19F.
		0x19F	Является точкой входа в программу.
196	419D	ADD 0x19D	Добавить содержимое ячейки 19D к
			AC
197	E1A1	ST 0x1A1	Сохраняет содержимое АС в ячейку
			1A1
198	0200	CLA	Очищает регистр АС
199	319E	OR 0x19E	Над каждым разрядом регистра АС
			выполняется логическое «ИЛИ» с
			соответствующим разрядом ячейки
			19E.
19A	21A1	AND 0x1A1	Над каждым разрядом регистра АС
			выполняется логическое «И» с
			соответствующим разрядом ячейки
			1A1.

19B	E1A0	ST 0x1A0	Сохраняет содержимое АС в ячейку
			1A0
19C	0100	HLT	Остановка работы программы.
19D	A19F	WORD 0xA19F	Переменная Х
19E	319E	WORD 0x319E	Переменная Ү
19F	E1A0	WORD 0xE1A0	Переменная Z
1A0	21A1	WORD 0x21A1	Результат работы программы будет
			храниться здесь.
1A1	0200	WORD 0x0200	Ячейка для промежуточного
			результата.

Окончание таблицы

Описание программы

- Реализуемая функция: R = Y & (Z + X)
- Назначение программы: складывает 2 числа и выполняет операцию поразрядного умножения с третьим числом.
- Исходные данные должны располагаться в ячейках памяти: Y 19E, Z 19F, X 19D. ОПИ и ОДЗ расписано в следующем пункте.
 - о Исходные данные нужны для подсчета значения результата R в реализуемой программе по формуле.
 - Для хранения промежуточного результата используется ячейка памяти R' – 1A1
- Результат работы программы будет находиться в ячейке 1А0.
- Вся программа располагается в памяти в ячейках между адресами 195 и 1A1 включительно. Первая команда располагается по адресу 195. Последняя 19C.

Область представления и допустимых значений

$$R = Y & (Z + X)$$

ОПИ:

- R набор из 16 логических однобитовых значений.
- Z, X знаковые 16-рязрядные числа.
- Y набор из 16 логических однобитовых значений.

Результат арифметической операции (Z + X) трактуется как логическое значение

• (Z + X) – набор из 16 логических однобитовых значений.

ОДЗ:

$$\begin{aligned} \text{R: } R_i \in \{0,1\}, 0 &\leq i \leq 15 \\ \text{X, Y, Z:} \left\{ \begin{matrix} -2^{14} < = X, Z < = 2^{14} - 1 \\ \left[\begin{cases} -2^{15} < = X < = -2^{14} - 1 \\ 0 < = Z < = 2^{15} - 1 \\ 2^{14} < = X < = 2^{15} - 1 \\ -2^{15} < = Z < = 0 \end{matrix} \right. \\ Y_i \in \{0,1\}, 0 &\leq i \leq 15 \end{aligned} \right. \end{aligned}$$

Таблица трассировки выполнения команд

Таблица №2: Трассировка выполнения команд

Выпол	няемая	Содержимое регистров процессора после выполнения Яч						Ячейка	Ячейка,		
команд	a	команды						содержимое			
										которой	
									изменилось		
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Код
195	A19F	196	A19F	19F	E1A0	0000	0195	E1A0	1000		
196	419D	197	419D	19D	A19F	0000	0196	833F	1001		
197	E1A1	198	E1A1	1A1	A180	0000	0197	833F	1001	1A1	833F
198	0200	199	0200	198	0200	0000	0198	0000	0101		
199	319E	19A	319E	19E	319E	0000	CEA1	319E	0001		
19A	21A1	19B	21A1	1A1	A180	0000	0198	2180	0001		
19B	E1A0	19C	E1A0	1A0	011E	0000	019B	011E	0001	1A0	011E
19C	0100	19D	0100	19C	0100	0000	019C	011E	0001		

Окончание таблицы

Вариант с меньшим числом команд

Вместо того, чтобы очищать аккумулятор и выполнять логическое «ИЛИ», мы можем сразу применить операцию загрузки.

Таким образом, команды 0200 и 319E можно заменить на A19E. Чтобы убрать образовавшиеся пропуски в памяти, часть программы нужно переместить на 1 ячейку вверх в памяти. Таким образом, получаем следующую программу:

Таблица №3: Текст программы с меньшим числом команд

Адрес	Код	Мнемоника	Комментарий
	команды		
195	A19E	START: LD	Загрузка в АС значения ячейки 19Е.
		0x19E	Является точкой входа в программу.
196	419C	ADD 0x19C	Добавить содержимое ячейки 19С к
			AC
197	E1A0	ST 0x1A0	Сохраняет содержимое АС в ячейку
			1A0
198	A19D	LD 0x19D	Загрузка в АС значения ячейки 19D.
199	21A0	AND 0x1A0	Над каждым разрядом регистра АС
			выполняется логическое «И» с
			соответствующим разрядом ячейки
			1A0.
19A	E19F	ST 0x19F	Сохраняет содержимое АС в ячейку
			19F
19B	0100	HLT	Остановка работы программы.
19C	A19F	WORD 0xA19F	Переменная Х
19D	319E	WORD 0x319F	Переменная Ү
19E	E1A0	WORD 0xE1A0	Переменная Z
19F	21A1	WORD 0x21A1	Результат работы программы будет
			храниться здесь.
1A0	0200	WORD 0x0200	Ячейка промежуточного результата.

Окончание таблицы

Вывод

Во время выполнения данной лабораторной работы я ознакомился с базовой структурой ЭВМ, научился определять элементарную функцию, вычисляемую программой, область допустимых значений и представления переменных.