Diferenciación e integración numéricas

Derivadas e integrales

Concepto de derivada

$$\frac{\Delta y}{\Delta x} = \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$
 Cociente incremental

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

Derivada

Derivadas e integrales

Concepto de integral

$$I = \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} f(x) dx = \lim_{\substack{\Delta x \to 0 \\ n \to \infty}} \sum_{i=1}^{n} f(x_{i}) \Delta x$$

Suma de Riemann

Suma de Riemann

Derivadas e integrales

Relación entre derivadas e integrales: posición versus velocidad

$$v(t) = \frac{d}{dt} y(t)$$

$$y(t) = \int_{0}^{t} v(t) dt$$

Casos

Casos:

Función continua simple (polinomio, exp., trigon., etc.) --> métodos analíticos

Función continua complicada --> metodos numericos

Función tabulada --> metodos numericos

Métodos sin computadora

Métodos sin computadora

Métodos sin computadora

Aplicaciones

Aplicaciones

Cálculo de la media para variable:

Discreta:

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

continua:

$$\bar{x} = \frac{\int_{a}^{b} f(x) dx}{b - a}$$

Diferencias

Métodos analíticos: cambian según el tipo de función --> tablas de derivadas e integrales

Métodos numéricos: se plican de igual forma a todas las funciones

Orientación

Fórmulas de integración de Newton-Cotes

Se basan en reemplazar el integrando por un polinomio:

$$I = \int_{a}^{b} f(x) dx \approx \int_{a}^{b} P_{n}(x) dx$$

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n$$

Fórmulas de integración de Newton-Cotes

Aplicación múltiple (fórmula compuesta)

Formas cerradas y abiertas

La regla del trapecio

Considerando P(x) un polinomio de grado 1:

$$P_{1}(x) = \frac{x - b}{a - b} f(a) + \frac{x - a}{b - a} f(b) = \dots$$

$$P_{1}(x) = f(a) + \frac{f(b) - f(a)}{b - a} (x - a)$$

$$p_{1}(x) = f(a) + \frac{f(b) - f(a)}{b - a} (x - a)$$

$$I = \int_{a}^{b} P_{1}(x) dx = \int_{a}^{b} f(a) + \frac{f(b) - f(a)}{b - a} (x - a) = \dots = \frac{(b - a) \frac{f(a) + f(b)}{2}}{2}$$

La regla del trapecio

Integral _ ancho x altura promedio

Error de la regla del trapecio*

Partiendo de la serie de Taylor:

$$f(x)=f(a)+f'(a)(x-a)+f''(a)\frac{(x-a)^2}{2}+...$$

Sustituyendo a z = x - a, dz = dx, e integrando

$$\int_{a}^{b} f(x) dx = \int_{0}^{b-a} f(z+a) dz = f(a) \int_{0}^{b-a} dz + f'(a) \int_{0}^{b-a} z dz + f''(a) \int_{0}^{b-a} \frac{z^{2}}{2} dz + \dots$$

reemplazando la primera derivada por una diferencia finita dividida hacia adelante:

$$f'(a) = \frac{f(b) - f(a)}{(b-a)} - f''(a) \frac{(b-a)}{2!} + \dots$$

Se llega a
$$E_t = -\frac{1}{12} f''(\xi) (b-a)^3$$

Ejemplo 21.1 pág. 634

Integrar, desde a = 0 a b = 0.8,

$$f(x) = 0.2 + 25 x - 200 x^2 + 675 x^3 - 900 x^4 + 400 x^5$$

La solución exacta es

$$\int 400 x^{5} - 900 x^{4} + 675 x^{3} - 200 x^{2} + 25 x + 0.2 d x$$

$$\frac{200 x^{6}}{3} - 180 x^{5} + \frac{675 x^{4}}{4} - \frac{200 x^{3}}{3} + \frac{25 x^{2}}{2} + 0.2 x$$

$$I = \frac{3076}{1875} \approx 1.64053333333333333$$

Ejemplo 21.1 pág. 634

$$f(0)=0.2$$
; $f(0.8)=0.232 \Rightarrow I=0.8 \frac{0.2+0.232}{2}=0.1728$
 $E_t=1.640533-0.1728=1.467733 \Rightarrow \varepsilon_t=89.5\%$

Estimación del error

$$f''(x) = 8000 x^{3} - 10800 x^{2} + 4050 x - 400$$

$$\int_{0.8}^{0.8} 8000 x^{3} - 10800 x^{2} + 4050 x - 400 dx$$

$$f''(x) = \frac{0}{0.8 - 0} = -60$$

$$E_a = -\frac{1}{12}(-60)(0.8)^3 = 2.56$$

Ejemplo 21.1 pág. 634

La regla del trapecio de aplicación múltiple (regla compuesta)

La regla del trapecio de aplicación múltiple (regla compuesta)

Se divide el intervalo (a;b) en n segmentos:

$$I = \int_{x_0}^{x_1} f(x) dx + \int_{x_1}^{x_2} f(x) dx + \dots + \int_{x_{n-1}}^{x_n} f(x) dx$$

$$I = h \frac{f(x_0) + f(x_1)}{2} + h \frac{f(x_1) + f(x_2)}{2} + \dots + h \frac{f(x_{n-1}) + f(x_n)}{2}$$

$$I = \frac{h}{2} \left[f(x_0) + \sum_{i_1}^{n-1} f(x_i) + f(x_n) \right]$$

La regla del trapecio de aplicación múltiple (regla compuesta)

Error

$$E_{t} = -\frac{(b-a)^{3}}{12n^{3}} \sum_{i=1}^{n} f''(\xi_{i})$$

considerando

$$f'' = \frac{\sum_{i=1}^{n} f''(\xi_i)}{n}$$

Se tiene

$$E_a = -\frac{(b-a)^3}{12n^2} f^{-}$$

$$x_0 = a x_n = b$$

Ejemplo 21.2, pag. 628

Usar la regla del trapecio con 2 segmentos para calcular la intergral entre a = 0 y b = 0.8 de

$$f(x)=0.2+25 x-200 x^2+675 x^3-900 x^4+400 x^5$$

Solución. Para n = 2, h = 0.4:

$$f(0)=0.2$$
; $f(0.4)=2.456$; $f(0.8)=0.232$

$$I = 0.8 \frac{0.2 + 2(2.456) + 0.232}{4} = 1.0688$$

$$E_t = 1.640533 - 1.0688 = 0.57173$$
; $\varepsilon_t = 34.9\%$

$$E_a = -\frac{0.8^3}{12(2)^2}(-60) = 0.64$$

Algoritmo

Código en Octave: trapecio.m

Solución en planilla de cálculo: trapecio.ods

Ejemplo 21.3 pag. 629

Calcular la distancia recorrida por el paracaidista en 10 s

Parámetros
$$g=9.8 \frac{m}{s^2}$$
; $m=68.1 \, kg$; $c=12.5 \frac{kg}{s}$

$$d = \int_{0}^{t} v(t) dt = \frac{g m}{c} \int_{0}^{t} \left| 1 - e^{-\frac{c}{m}t} \right| dt$$

Código en octave: p21 3.m

Código en Python: p21 3.py

Reglas de Simpson

Regla 1/3 de Simpson: P(x) de segundo grado Regla 3/8 de Simpson: P(x) de tercer grado

f(x) f(x) x a) b)

Regla 1/3 de Simpson

Se integra un polinomio de 2do grado:

$$P_{2}(x) = \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} f(x_{0}) + \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} f(x_{1}) + \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} f(x_{2})$$

$$I = \int_{x_0}^{x_2} \left[\frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2) \right] dx$$

Integrando y sustituyendo a $x_2 = x_1 + h$, $x_0 = x_1 - h$:

$$I = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] = \underbrace{(b-a)}_{ancho} \underbrace{\frac{f(x_0) + 4f(x_1) + f(x_2)}{6}}_{altura\ promedio}$$

Error de la regla 1/3 de Simpson*

Partiendo de la serie de Taylor:

$$f(x)=f(x_1)+f'(x_1)(x-x_1)+f''(x_1)\frac{(x-x_1)^2}{2}+...$$

Sustituyendo a $z = x - x_1$, dz = dx, e integrando entre -h y h

$$\int_{a}^{b} f(x) dx = \int_{-h}^{h} f(z+x_1) dz = f(x_1) \int_{-h}^{h} dz + f'(x_1) \int_{-h}^{h} z dz + f''(x_1) \int_{-h}^{h} \frac{z^2}{2} dz + \dots$$

reemplazando la primera derivada por una diferencia finita dividida hacia adelante:

$$f''(x_1) = \frac{f(x_0) - 2f(x_1) + f(x_2)}{h^2} - f^{IV}(\xi) \frac{h^2}{12}$$
Se llega a
$$E_t = -\frac{1}{9}h^{\circ} f^{IV}(\xi) = -\frac{(b-a)^{\circ}}{12}f^{IV}(\xi)$$

Ejemplo 21.4, pág. 633

Integrar entre a = 0 y b = 0.8

$$f(x) = 0.2 + 25 x - 200 x^2 + 675 x^3 - 900 x^4 + 400 x^5$$

Solución.

$$f(0)=0.2$$
 ; $f(0.4)=2.456$; $f(0.8)=0.232$
 $I=0.8 \frac{0.2+4(2.456)+0.232}{6}=1.367467$
 $E_t=1.640533-1.367467=0.2730667$; $\varepsilon_t=16.6\%$

$$f^{IV}(x) = 48000 x - 21600$$

$$\int_{0.8}^{0.8} (48000x - 21600) dx$$

$$E_a = -\frac{0.8^5}{2880} (-2400) = 0.2730667$$

$$f^{\overline{IV}} = \frac{0}{0.8 - 0} = -2400$$

La regla de Simpson 1/3 de aplicación múltiple

Se divide el intervalo en n partes (n par):

$$h = \frac{b-a}{n}$$

$$I = \int_{x_0}^{x_2} f(x) dx + \int_{x_2}^{x_4} f(x) dx + \dots + \int_{x_{n-2}}^{x_n} f(x) dx$$

$$I = h \frac{f(x_0) + 4f(x_1) + f(x_2)}{3} + h \frac{f(x_2) + 4f(x_3) + f(x_4)}{3} + \dots + h \frac{f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)}{3}$$

La regla de Simpson 1/3 de aplicación múltiple

$$I = \frac{h}{3} \left[f(x_0) + 4 f(x_1) + 2 f(x_2) + \dots + 2 f(x_{n-2}) + 4 f(x_{n-1}) + f(x_n) \right]$$

$$I = \frac{h}{3} \left[f(x_0) + 4 \sum_{i=1,3,5,...}^{n-1} f(x_i) + 2 \sum_{i=2,4,6,...}^{n} f(x_i) + f(x_n) \right]$$

$$I = \underbrace{(b-a)}_{ancho} \underbrace{\int_{i=1,3,5,...}^{n-1} f(x_i) + 2 \sum_{i=2,4,6,...}^{n} f(x_i) + f(x_n)}_{altura\ promedio}$$

Error

$$E_{t} = -\frac{1}{90} h^{5} \sum_{i=2,4,6...}^{n} f^{IV}(\xi_{i})$$

$$f^{\overline{IV}} = \frac{\sum_{i=1}^{n} f^{IV}(\xi_i)}{n/2}$$

$$E_a = -\frac{(b-a)^5}{180 \, n^4} f^{\overline{IV}}$$

Ejemplo 21.5

Integrar entre a = 0 y b = 0.8

$$f(x)=0.2+25 x-200 x^2+675 x^3-900 x^4+400 x^5$$

Solución.

X	f(x)
0	0.2
0.2	1.288
0.2	1.288
0.4	2.456
0.6	3.464

$$I = 0.8 \frac{0.2 + 4(1.288 + 3.464) + 2(2.456) + 0.232}{12} = 1.623467$$

$$E_t = 1.640533 - 1.623467 = 0.017067$$
; $\varepsilon_t = 1.04\%$

$$E_a = -\frac{0.8^5}{180(4)^4}(-2400) = 0.017067$$

Planilla de cálculo: simpson13.ods

Regla 3/8 de Simpson

Se integra un polinomio de 3er grado:

$$P_{3}(x) = \sum_{i=0}^{3} \prod_{\substack{j=0 \ j \neq i}}^{3} \frac{(x - x_{j})}{(x_{i} - x_{j})} \qquad I = \int_{x_{0}}^{x_{2}} \left[\sum_{i=0}^{3} \prod_{\substack{j=0 \ j \neq i}}^{3} \frac{(x - x_{j})}{(x_{i} - x_{j})} \right] dx$$

Integrando y sustituyendo a $x_i = x_0 + ih$:

$$I = \frac{3h}{8} \left[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right] = \underbrace{(b-a)}_{ancho} \underbrace{\frac{f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)}{8}}_{altura\ promedio}$$

Error
$$E_t = -\frac{3}{80}h^5 f^{IV}(\xi) = -\frac{(b-a)^5}{6480}f^{IV}(\xi)$$

Ejemplo 21.6. pag. 637

Integrar entre a = 0 y b = 0.8

$$f(x)=0.2+25 x-200 x^2+675 x^3-900 x^4+400 x^5$$

con la regla de Simpson 3/8

En 5 intervalos, usando las reglas 1/3 y 3/8 de Simpson

a) Se divide en 3 partes iguales

X	f(x)
0	0.2
0.533333	3.487177
0.266667	1.432724
0.8	0.232

$$I = 0.8 \frac{0.2 + 3(3.487177 + 1.432724) + 0.232}{8} = 1.519170$$

$$E_t = 1.640533 - 1.519170 = 0.1213630$$
; $\varepsilon_t = 7.4\%$

$$E_a = -\frac{0.8^5}{6480}(-2400) = 0.1213630$$

Ejemplo 21.6. pag. 637

b) Se divide en 5 segmentos (h = 0.16)

X	f(x)
0	0,200000
0,16	1,296919
0,16	1,296919
0,32	1,743393
0,48	3,186015
0,64	3,181929

$$I = I_1 + I_2 = 1.645077$$

$$E_t = -0.00454383$$

$$\varepsilon_t = -0.28\%$$

Planilla: simpson3_8.ods

$$I_1 = \frac{0.16}{3}(0.2 + 4 \times 1.296919 + 1.743393) = 0.380324$$

$$I_2 = \frac{3}{8}0.16[1.743393 + 3(3.186015 + 3.181929) + 0.232] = 1.264753$$

Algoritmos

Código en Octave regla 1/3 de simpson compuesta: simpson1_3.m

Código en Octave regla 3/8 de simpson compuesta: simpson3 8.m

Otras fórmulas de Newton-Cotes

Fórmulas de Newton-Cotes: integrales.pdf

Integración con segmentos desiguales

Apropiada para datos experimentales

Por ejemplo, con la regla trapezoidal:

$$I = h_1 \frac{f(x_0) + f(x_1)}{2} + h_2 \frac{f(x_1) + f(x_2)}{2} + \dots + h_n \frac{f(x_{n-1}) + f(x_n)}{2}$$

Ejemplo 21.7 pag. 640

Integrar a partir de los datos:

X	f(x)
0,00	0,200000
0,12	1,309729
0,22	1,305241
0,32	1,743393
0,36	2,074903
0,40	2,456000
0,44	2,842985
0,54	3,507297
0,64	3,181929
0,70	2,363000
0,80	0,232000

solución en 21_7.ods

Ejemplo 21.8 pag. 641

X	f(x)
0,00	0,200000
0,12	1,309729
0,22	1,305241
0,32	1,743393
0,36	2,074903
0,40	2,456000
0,44	2,842985
0,54	3,507297
0,64	3,181929
0,70	2,363000
0,80	0,232000

Solución en 21_8.ods

Problemas 21.1 a 21.23 pag. 645

Límite de precisión de las fórmulas de Newton-Cotes

Forma general de la regla del trapecio compuesta:

$$I = I(h) + E(h)$$

Aplicada con dos pasos distintos:

$$I(h_1)+E(h_1)=I(h_2)+E(h_2)$$

Recordando que

$$E \approx -\frac{(b-a)^3}{12n^2} f^{-} = -\frac{(b-a)}{12} h^2 f^{-}$$

Se puede escribir:

$$\frac{E(h_1)}{E(h_2)} \approx \frac{h_1^2}{h_2^2} \Rightarrow E(h_1) \approx E(h_2) \left| \frac{h_1}{h_2} \right|^2$$

Reemplazando,

$$I(h_1) + E(h_2) \left| \frac{h_1}{h_2} \right|^2 \approx I(h_2) + E(h_2)$$

despejando,

$$E(h_2) \approx \frac{I(h_1) - I(h_2)}{1 - |h_1/h_2|^2}$$

reemplazando,

$$I = I(h_2) + E(h_2) \approx ... \approx I(h_2) + \frac{I(h_2) - I(h_1)}{|h_1/h_2|^2 - 1}$$

Se puede demostrar que el error es del orden de O(h⁴)

En el caso en que $h_2 = h_1/2$

$$I \approx I(h_2) + \frac{I(h_2) - I(h_1)}{2^2 - 1} = \dots = \frac{\frac{4}{3}I(h_2) - \frac{1}{3}I(h_1)}{2^2 - 1}$$

Ejemplo 22.1 pag. 652

Integrar entre a = 0 y b = 0.8

$$f(x) = 0.2 + 25 x - 200 x^2 + 675 x^3 - 900 x^4 + 400 x^5$$

De la aplicación de la regla del trapecio,

n	h	1	et(%)
1	0.8000	0.1728	89.5
2	0.4000	1.0688	34.9
4	0.2000	1.4848	9.5

Con 1 y 2 segmentos,

$$I \approx \frac{4}{3} 1.0688 - \frac{1}{3} 0.1728 = 1.367467 \implies \dots \varepsilon_t = 16.6\%$$

Con 2 y 4 segmentos,

$$I \approx \frac{4}{3} 1.4848 - \frac{1}{3} 1.0688 = 1.623467 \implies \dots \varepsilon_t = 1.0\%$$

A partir de dos estimaciones de O(h²),

$$I = \frac{4}{3}I(h_2) - \frac{1}{3}I(h_1) + O(h^4)$$

A partir de dos estimaciones de $O(h^4)$ ($h_2 = h_1/4$),

$$I = \frac{16}{15}I(h_2) - \frac{1}{15}I(h_1) + O(h^6)$$

A partir de dos estimaciones de $O(h^6)$ ($h_2 = h_1/8$),

$$I = \frac{64}{63}I(h_2) - \frac{1}{63}I(h_1) + O(h^8)$$

Ejemplo 22.2 pag. 653

Obtener una estimación de O(h₆) a partir del ejemplo 22.1:

$$I = \frac{16}{15} \cdot 1.623467 - \frac{1}{15} \cdot 1.367467 = 1.640533$$

Algoritmo de Romberg

En general,

$$I_{j,k} = \frac{4^{k-1}I_{j+1,k-1} - I_{j,k-1}}{4^{k-1} - 1}$$

k: nivel de integración

j: estimación

Dar siample nara k-2 vi -1

$$I_{1,2} = \frac{4^{2-1}I_{2,1} - I_{1,1}}{4^{2-1} - 1} = \frac{4I_{2,1} - I_{1,1}}{3}$$

Algoritmo de Romberg

La iteración continúa hasta que

$$|\varepsilon_a| = \left| \frac{I_{1,k} - I_{1,k-1}}{I_{1,k}} \right| 100\% < \varepsilon_s$$

Planilla de cálculo: romberg.ods

Código en Octave: romberg.m

Integrales impropias

Se resuelven con una sustitución:

$$\int_{a}^{b} f(x) dx = \int_{1/b}^{1/a} \frac{1}{t^{2}} f \left| \frac{1}{t} \right| dt , \quad ab > 0$$

Es decir cuando a >0 y b $\rightarrow +\infty$, o a $\rightarrow -\infty$ y b < 0. Si a·b < 0, se puede hacer:

$$\int_{-\infty}^{b} f(x) dx = \int_{-\infty}^{-A} f(x) dx + \int_{-A}^{b} f(x) dx$$

Integrales impropias

Se deben usar fórmulas abiertas, o combinar fórmulas abiertas con fórmulas cerradas:

$$\int_{x_0}^{x_n} f(x) dx = h \left[\frac{3}{2} f(x_i) + \sum_{i=2}^{n-2} f(x_i) + \frac{3}{2} f(x_{n-1}) \right]$$

Regla del trapecio + regla del punto medio

O desarrollar una fórmula semiabierta:

$$\int_{x_0}^{x_n} f(x) dx = h \left| \frac{3}{2} f(x_i) + \sum_{i=2}^{n-1} f(x_i) + \frac{1}{2} f(x_n) \right|$$

Integrales impropias

Regla extendida del punto medio:

$$\int_{x_0}^{x_n} f(x) dx = h \left[f(x_{1/2}) + f(x_{3/2}) + \dots + f(x_{n-3/2}) + f(x_{n-1/2}) \right]$$

Ejemplo 22.6 pag. 664

Distribución normal

$$N(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx$$

donde
$$x = \frac{y - \mu_y}{\sigma_y}$$

Calcular N(1)

Ejemplo 22.6 pag. 664

Solución.

$$N(1) = \frac{1}{\sqrt{2\pi}} \left| \int_{-\infty}^{-2} e^{-x^2/2} dx + \int_{-2}^{1} e^{-x^2/2} dx \right|$$

La primera integral se calcula como

$$\int_{-\infty}^{-2} e^{-x^2/2} dx = \int_{-1/2}^{0} \frac{1}{t^2} e^{-1/(2t^2)dt}$$

Usando al regla extendida del punto medio (h = 1/8):

$$\int_{-1/2}^{0} \frac{1}{t^2} e^{-1/(2t^2)dt} \approx \frac{1}{8} \left[f \left| -\frac{7}{16} \right| + f \left| -\frac{5}{16} \right| + f \left| -\frac{3}{16} \right| + f \left| -\frac{1}{16} \right| \right]$$

Ejemplo 22.6 pag. 664

$$\dots = \frac{1}{8}[0.3833 + 0.0612 + 0 + 0] = 0.0556$$

La segunda integral se calculas usando la regla 1/3 de Simpson con h = 0.5:

$$\int_{-2}^{1} e^{-x^2/2} dx = [1 - (-2)] \frac{0.1353 + 4(0.3247 + 0.8825 + 0.8825) + 2(0.6065 + 1) + 0.6065}{3 \times 6}$$

$$\int_{-2}^{1} e^{-x^2/2} dx = 2.0523$$

El resultado final es

$$N(1) \approx \frac{1}{\sqrt{2\pi}} (0.0556 + 2.0523) = 0.8409 \implies \varepsilon_t = 0.046\%$$

Problemas

22.1 a 22.3

22.9 a 22.11

22.14 y 22.15

Recordando que a partir de la serie de Taylor:

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \frac{f'''(x_i)}{3!}h^3 + \dots$$

Es posible obtener:

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} - \frac{f''(x_i)}{2}h + O(h^2)$$

Que se puede escribir como:

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} + O(h)$$

Diferencia finita dividida hacia adelante

En forma similar se obtenían

$$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h} + O(h)$$

Primera diferencia finita dividida hacia atrás

y

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} + O(h^2)$$

Primera diferencia finita dividida centrada

Si escribimos

$$f(x_{i+2}) = f(x_i) + f'(x_i) 2h + \frac{f''(x_i)}{2!} (2h)^2 + \frac{f'''(x_i)}{3!} (2h)^3 + \dots$$

Ahora hacemos

$$f(x_{i+2})-2f(x_{i+1})=...=-f(x_i)+f''(x_i)h^2+...$$

despejando,

$$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2} + O(h)$$

Segunda diferencia finita dividida hacia adelante

En forma similar, haciendo $f(x_{i-2})-2f(x_{i-1})$

$$f(x_{i-2}) - 2 f(x_{i-1})$$

$$f''(x_i) = \frac{f(x_i) - 2f(x_{i-1}) + f(x_{i-2})}{h^2} + O(h)$$

Segunda diferencia finita dividida hacia atrás

En forma similar, haciendo

$$f(x_{i+1}) + f(x_{i-1})$$

$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2} + O(h^2)$$

Segunda diferencia finita dividida centrada

Sustituyendo
$$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2} + O(h)$$

En

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} - \frac{f''(x_i)}{2}h + O(h^2)$$

Se llega a

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} - \left[\frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{2h^2} + O(h) \right] h + O(h^2)$$

Es decir

$$f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h} + O(h^2)$$

Fórmulas de diferencias finitas divididas

En forma similar se obtienen las fórmulas indicadas en derivadas.pdf

Ejemplo 23.1 pag. 671

Encontrar la derivada de f(x) en x = 0.5

$$f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

Valor exacto:

$$f'(0.5) = -0.3 \times 0.5^3 - 0.45 \times 0.5^2 - 0.5 - 0.25 = -0.9125$$

Ejemplo 23.1 pag. 671

Con fórmulas de exactitud O(h):

X	f(x)
0	1.2
0.25	1.103516
0.5	0.925
0.75	0.6363281
1	0.2

$$f'(0.5) = \frac{0.925 - 1.103516}{0.25} = -0.714$$
; $\varepsilon_t = 21.7\%$ Diferencia finita dividida hacia atrás

$$f'(0.5) = \frac{0.6363281 - 0.925}{0.25} = -1.155 \; \; ; \; \; \epsilon_t = -26.5 \%$$
 Diferencia finita dividida hacia adelante

Con fórmulas de exactitud O(h²):

$$f'(0.5) = \frac{0.6363281 - 1.103516}{2 \times 0.25} = -0.934 \; ; \; \epsilon_t = -2.4\%$$

Diferencia finita dividida centrada

Ejemplo 23.1 pag. 671

Con fórmulas de exactitud O(h²):

X	f(x)
0	1.2
0.25	1.103516
0.5	0.925
0.75	0.6363281
1	0.2

$$f'(0.5) = \frac{-0.2 + 4 \times 0.6363281 - 3 \times 0.925}{2 \times 0.25} = -0.859375 \quad ; \quad \varepsilon_t = 5.82\%$$

Diferencia finita dividida hacia adelante

$$f'(0.5) = \frac{3 \times 0.925 - 4 \times 1.103516 + 1.2}{2 \times 0.25} = -0.878125$$
; $\varepsilon_t = 3.77\%$

Diferencia finita dividida hacia atrás

Con fórmulas de exactitud O(h⁴):

$$f'(0.5) = \frac{-0.2 + 8 \times 0.6363281 - 8 \times 1.1035156 + 1.2}{12 \times 0.25} = -0.9125 \; \; ; \; \; \epsilon_t = 0 \%$$

Diferencia finita dividida centrada

También se puede aplicar a las derivadas (O(h²)):

$$D \approx D(h_2) + \frac{D(h_2) - D(h_1)}{\left|h_1/h_2\right|^2 - 1}$$

Si $h_2 = h_1/2$:

$$D \approx \frac{\xi}{\tau} D(h_{\tau}) - \frac{\gamma}{\tau} D(h_{\gamma})$$

Se puede usar el algoritmo de Romberg

Ejemplo 23.2 pag 672

Calcular la primera derivada en x = 0.5

$$f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

Con fórmulas centradas, pasos 0.5 y 0.25:

$$f'(0.5) = \frac{0.2 - 1.2}{2 \times 0.5} = -1.0 \; ; \; \varepsilon_t = -9.6\%$$

$$f'(0.5) = \frac{0.6363281 - 1.103516}{2 \times 0.25} = -0.934375 \; ; \; \varepsilon_t = -2.4\%$$

extrapolando,

$$f'(0.5) = \frac{4}{3}(-0.934375) - \frac{1}{3}(-1) = -0.9125$$
; $\varepsilon_t = 0\%$

Derivadas de datos irregularmente espaciados

Datos experimentales y/o de campo

Ajustar un polinomio de Lagrange de grado 2 a 3 puntos adyacentes

$$f'(x) = f(x_{i-1}) \frac{2x - x_i - x_{i+1}}{(x_{i-1} - x_i)(x_{i-1} - x_{i+1})} + f(x_i) \frac{2x - x_{i-1} - x_{i+1}}{(x_i - x_{i-1})(x_i - x_{i+1})} + f(x_i) \frac{2x - x_{i-1} - x_i}{(x_i - x_{i-1})(x_i - x_{i+1})}$$

Ejemplo 23.3 pag. 673

Cálculo del flujo de calor en la sup. del suelo

Ley de Fourier

$$q(z=0)=-k \rho C \left| \frac{dT}{dz} \right|_{z=0}$$

Parámetros

$$k = 3.5 \times 10^{-7} \frac{m^{2}}{s}$$

$$\rho = 1800 \frac{kg}{m^{3}} \quad C = 840 \frac{J}{kg \cdot {}^{\circ}C}$$

Ejemplo 23.3 pag. 673

Solución.

$$f'(x)=13.5 \frac{2(0)-1.25-3.75}{(0-1.25)(0-3.75)} + 12 \frac{2(0)-0-3.75}{(1.25-0)(1.25-3.75)} + 10 \frac{2(0)-0-1.25}{(3.75-0)(3.75-1.25)} = -1.3333333 °C/cm$$

$$q(z=0) = -3.5 \times 10^{-7} \frac{m^2}{s} 1800 \frac{kg}{m^3} 840 \frac{J}{kg \cdot {}^{\circ}C} \left| -133.33333 \cdot \frac{C}{m} \right|$$

$$q(z=0)=70.56\frac{W}{m^2}$$

Derivadas e integrales para datos con errores

Datos empíricos

La diferenciación numérica tiende a amplificar los

errores

Se prefiere aiustal La integración (por ser una suma) tiende a compensar los errores y es

Uso de Octave

quad

trapz

diff

Problemas 23.1 a 23.27 pag. 679

Estudio de casos

Determinación de la cantidad total de calor

El calor necesario para incrementar la temperatura de un material es

$$\Delta H = m c \Delta T$$

Donde la capacidad calorífica c puede variar con la temperatura:

$$c(T) = 0.132 + 1.56 \times 10^{-4} T + 2.64 \times 10^{-7} T^{2}$$

Calcular el calor necesario para elevar la temperatura de 1000 g de ese material desde -100 a 200 °C.

Determinación de la cantidad total de calor

Solución. El incremento de temperatura se calcula como r_2

$$\Delta H = m \int_{T_1}^{T_2} c(T) dT$$

Se aplica la regla del trapecio. Solución en caso24 1.m

Fuerza efectiva sobre el mástil de un bote de vela de carreras

Fuerza efectiva sobre el mástil de un bote de vela de carreras

La posición de la fuerza viene dada por:

$$d = \frac{\int_{0}^{30} z f(z) dz}{\int_{0}^{30} f(z) dz}$$

Determinar la fuerza T en el cable

Determinación de F y d en planilla de cálculo: caso24_2.ods

$$F = 1480,56 lb$$

$$d = 13,05 ft$$

Fuerza efectiva sobre el mástil de un bote de vela de carreras

Ecuaciones de equilibrio:

$$\sum F_H = 0 = F - T \sin \theta - H$$

$$\sum F_{V} = 0 = V - T \cos \theta$$

$$\sum M_0 = 0 = 3 V - F d$$

$$V = \frac{Fd}{3} = \frac{1480.6 \times 13.05}{3} = 6440.6 \, lb$$

$$T = \frac{V}{\cos \theta} = \frac{6440.6}{0.995} = 6473 \, lb$$

$$H = F - T \sin \theta = 1480.6 - 6473 \times 0.0995 = 836.54 lb$$

Raíz media cuadrática de la corriente eléctrica

El valor medio de la CA puede ser 0:

$$i = \frac{\int_{0}^{T} \sin\left|\frac{2\pi t}{T}\right| dt}{T - 0}$$

$$i = \frac{-\cos(2\pi) + \cos 0}{T} = 0$$

En su lugar, se calcula

$$I_{RMC} = \sqrt{\frac{1}{T}} \int_{0}^{T} i^{2}(t) dt = \sqrt{\frac{1}{T}} \int_{0}^{T} \left| 10 e^{-t} \sin 2\pi t \right|^{2} dt$$

Raíz media cuadrática de la corriente eléctrica

Se usa la integración de Romberg para calcular la integral

Código en Octave: caso24_3.m

I = 15.41261

La I_{RMS} se calcula como (con T = 1):

$$I_{RMC} = \sqrt{\frac{1}{1}15.41261} = 3.925890 A$$

Trabajo:

$$W = F \times d$$
 Si F es cte

$$W = \int_{x_0}^{x_n} F(x) dx$$

Si θ no es cte:

$$W = \int_{x_0}^{x_n} F(x) \cos[\theta(x)] dx$$

Datos

x, ft	F(x), Ib	θ, rad	$F(x) \cos \theta$
0	0,0	0,50	0,0000
5	9,0	1,40	1,5297
10	13,0	0,75	9,5120
15	14,0	0,90	8,7025
20	10,5	1,30	2,8087
25	12,0	1,48	1,0881
30	5,0	1,50	0,3537

Solución en caso24_4.ods

Por qué la regla del trapecio con 2 tramos da el mejor resultado??

Cómo podría mejorarse la estimación?

Problemas 24.1 a 24.55 pag. 693

Método	Formulación	Interpretación gráfica	Error
Regla del trapecio	$I = b - a \frac{f(a) + f(b)}{2}$	$a \qquad b$	
Regla del trapecio de aplicación múltiple	$f(x_0) + 2\sum_{i=1}^{n-1} f(x_i) + f(x_n)$ $1 = (b-a) - \frac{1}{2n}$	$a = x_0 \qquad b = x_n \qquad x$	_ (b - of in
Regla de Simpson 1/3	$I = \{b - a\} \frac{f(x_0) + 4f(x_1) + f(x_2)}{6}$	$a = x_0 \qquad b = x_2 \qquad x$	- <u>(b - a²</u> 2882
Regla de Simpson 1/3 de aplicación múltiple	$f(x_0) + 4 \sum_{i=1,3}^{n-1} f(x_i) + 2 \sum_{i=2,4}^{n-2} f(x_i) + f(x_n)$ $1 \approx (b-a) \frac{3n}{3n}$	$a = x_0 \qquad b = x_n \qquad x$	- (b - of max
Regla de Simpson 3/8	$I = (b - a) \frac{f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)}{8}$	$a = x_0 b = x_3 x$	- (b - a - 6 48)
Integración de Romberg	$l_{i,k} = \frac{4^{k-1}l_{i+k-1} - l_{i,k-1}}{4^{k-1} - 1}$	$I_{j,k-1} \longrightarrow I_j, k$ $I_{j+1,k-1}$	O(h² ^k }
Cuadratura de Gauss	$I = c_0 f(x_0) + c_1 f(x_1) + \dots + c_{n-1} f(x_{n-1})$	$x_0 \qquad x_1 \qquad x$	≃ f ⁽²ⁿ⁺² Ş