CRAFT #3

Mechatronics

Mobile Robotic Platform

OBJECTIVES

Present and describe the robotic configuration.

Hardware work principles.

Highlight the objectives to achieve during the following weeks

INSPIRATION: eSwarBot

• 2 white plastic wheel with rubber tire

Couceiro, M. S., Figueiredo, C. M., Luz, J. M. A., Ferreira, N. M., & Rocha, R. P. (2011). A low-cost educational platform for swarm robotics. *International Journal of Robots*, *Education and Art*, 2(1), 1-15.

INSPIRATION: eSwarBot

Couceiro, M. S., Figueiredo, C. M., Luz, J. M. A., Ferreira, N. M., & Rocha, R. P. (2011). A low-cost educational platform for swarm robotics. *International Journal of Robots, Education and Art*, 2(1), 1-15.

ROBOT LAYOUT

Right side

ROBOT COMPONENTS:

1x YLIDAR 360 Laser

1x Arduino Shield

1x Arduino Mega 2560

1x RaspberryPi 3 B+

1x 7.4V Lithium Battery

1x Power button

ROBOT **COMPONENTS:**

3rd level: 6x Nylon Screw M3 1x ZipTie

Perception

Action

Decision-Making

1st level:

6x Nylon Spacers

- 4x Metal Srew M2.5
- 4x Nylon Screw M3
- 4x Nylon Nut M3

Base level:

2x Castor ball

6x Nylon Spacers

10x Nylon Screw M3 10x Nylon Nut M3

3x Sharp IR Sensors

PERCEPTION - ENCONDERS

Internal Sensors (a.k.a. Proprioceptive)

PERCEPTION - ENCONDERS

Internal Sensors (a.k.a. Proprioceptive)

PERCEPTION - ENCONDERS

Internal Sensors (a.k.a. Proprioceptive)

PERCEPTION – INFRARED DISTANCE

SENSOR

External Sensors (a.k.a. Exteroceptive)


```
void loop()
  int val = analogRead(POT);
                                        //Read potentiometer
                                         //Convert to centimeters
  int dist = map(val, 50, 400, 80, 10);
  Serial.print("Analog Reading
                                    Print raw analog value
  Serial.print(val);
  Serial.print(" Centermet
                                     Print distance
  Serial.print(dist);
                                     //Print centimeter abbrev
  Serial.println("cm");
  delay(1000);
```


PERCEPTION - INFRARED DISTANCE

SENSOR

External Sensors (a.k.a. Exteroceptive)

PERCEPTION — 360º LIDAR

Light Detection And Ranging

PERCEPTION - 360° LIDAR - 2D

Light Detection And Ranging

What can I use this sensor for...?

PERCEPTION - 360° LIDAR - 3D

Light Detection And Ranging

3D Scans for what??

Traction

Label	Number	Description
1	DIR1	M1 Direction Control
2	PWM1	M1 Speed control(PWM)
3	PWM2	M2 Speed control(PWM)
4	DIR2	M2 Direction Control
5	GND	Negative power supply
6	VCC	Power 3.3V-5V or IO port output high
7	M1	A Output 1
8	M1-	A Output 2
9	M2	B Output 1
10	M2-	B Output 2
11	GND	Negative power supply
12	VM(<12V)	Motor drive power 3.3V-12V

DECISION MAKING - LOWLEVEL

Low-level Programming

Microcontroller	ATmega2560
Operating Voltage	5V
Input Voltage (recommended)	7-12V
Input Voltage (limit)	6-20V
Digital I/O Pins	54 (of which 15 provide PWM output)
Analog Input Pins	16
DC Current per I/O Pin	20 mA
DC Current for 3.3V Pin	50 mA
Flash Memory	256 KB
SRAM	8 KB
EEPROM	4 KB
Clock Speed	16 MHz
Length	101.52 mm
Width	53.3 mm
Weight	379

DECISION MAKING - HIGHLEVEL

High-level Programming

DECISION MAKING - HIGHLEVEL

High-level Programming

SoC	Broadcom BCM2837
CPU	4× ARM Cortex-A53, 1.2GHz
GPU	Broadcom VideoCore IV
RAM	1GB LPDDR2 (900 MHz)
Networking	10/100 Ethernet, 2.4GHz 802.11n wireless
Bluetooth	Bluetooth 4.1 Classic, Bluetooth Low Energy
Storage	microSD
GPIO	40-pin header, populated
Ports	HDMI, 3.5mm analogue audio-video jack, 4× USB 2.0, Ethernet, Camera Serial Interface (CSI), Display Serial Interface (DSI)

- 1- Signal
- 2- GND
- 3- Vcc (+5V)

- 1.Motor M2
- 2.Encoder + (3.3V/5V)
- 3.Encoder A Phase
- 4.Encoder B Phase
 - illicouel B Pliase
- 5.Encoder GND 6.Motor M1

Micro Metal Gearmotor 298:1 w/Encoder

Arduino Mega 2560

THREE LAWS OF ROBOTICS (@ROBOTCRAFT)

THREE LAWS OF ROBOTICS (by Isaac Asimov)

1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.

2. A robot must obey orders given it by human beings except where such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

THREE LAWS OF ROBOTICS (@ROBOTCRAFT)

1. Do not connect the battery power without the mentor approval.

2. Follow the datasheets and assembly guides, except where such orders would conflict with the First Law.

3. Leave your workspace clean and tools organized, as long as such task does not conflict with the First or Second Laws.

CONCLUSIONS

- Although simplistic, the platform which will be assembled during the course comprises all relevant components inherent to mobile robots
- Students will start with the mechatronics development of the platform, assembling it, connecting and testing all electronics
- Afterwards, the low-level programming using Arduino Mega will be used mainly for navigation
- This will be followed by the high-level programming using ROS and simple AI routines
- At last, the platforms will be evaluated and compared with each other in competitive tasks

Task - Report 1st Part

Prepare a report, that you should maintain and deliver when fully completed by the 18th August 23h59, starting with a description of the team, the hardware to be integrated (considering this presentation), and how you believe that it will all interconnect as an architecture to solve the maze at the final competition.

Perception

Decision-Making

Environment

Action

 This first part of the report should be delivered by the <u>12th</u> July, <u>23h59</u>

CRAFT #3

Thank you

