Math 104, HW10

Tianshuang (Ethan) Qiu November 13, 2021

1 Q1: Ross 33.7

1.1 a

Let P be an arbitrary partition such that $P = \{a = t_1 < t_2 < ... < t_n = b\}$. Now consider

$$U(f^{2}, P) - L(f^{2}, P) = (M[t_{1}, t_{2}] - m[t_{1}, t_{2}])(t_{2} - t_{1}) + \dots + (M[t_{n-1}, t_{n}] - m[t_{n-1}, t_{n}])(t_{n} - t_{n-1})$$

Since RHS and LHS has the same partition P, each t_k is also the same on the RHS. We consider just $P_1 = [t_1, t_2]$:

Let the
$$M(f^2, P_1) = f(x_0)^2, m(f^2, P_1) = f(x_1)^2$$

$$U(f^2,P_1) - L(f^2,P_1) = (f(x_0)^2 - f(x_1)^2)(t_2 - t_1) = (f(x_0) + f(x_1))(f(x_0) - f(x_1))(t_2 - t_1) = (f(x_0)^2 - f(x_1)^2)(t_2 - t_1) = (f(x_0) + f(x_1))(f(x_0) - f(x_1))(t_2 - f(x_1)(t_2)(t_2)(t_2 - f(x_1)$$

Now consider the same partition for f:

$$U(f, P_1) - L(f, P_1) = (M(f, P_1) - m(f, P_1))(t_2 - t_1)$$

Since $B \geq f(x)$ for all $x \in [a, b]$, we have $2B \geq (f(x_0) + f(x_1))$. Since $M(f, P_1)$ is the maximum of the function over this interval and $m(f, P_1)$ is the minimum, their difference is greater than any other differences in this interval P_1 , namely $M(f, P_1) - m(f, P_1) \geq (f(x_0) - f(x_1))$.

Therefore we have $U(f^2, P_1) - L(f^2, P_1) \le 2B(U(f, P_1) - L(f, P_1))$. Now we can repeat this with all intervals of $[t_k, t_k - 1]$ where $2 \le k \le n$, thus we have shown that

$$U(f^2, P) - L(f^2, P) \le 2B(U(f, P) - L(f, P))$$

for any partition P

1.2 b

Since f is integrable, for any $\epsilon > 0$, there exists a partition P such that $U(f,P) - L(f,P) < \epsilon$. Now for any $\epsilon > 0$, choose $\epsilon_0 = \epsilon \times 4B$ where B is the absolute bound for f, since f is integrable we find P_0 that the difference between the Darboux sums is less than ϵ_0

Now consider $U(f^2, P_0) - L(f^2, P_0)$, from part(a) we know that $U(f^2, P_0) - L(f^2, P_0) \le 2B(U(f, P_0) - L(f, P_0)) \le \frac{\epsilon}{2} < \epsilon$ Therefore f^2 is integrable.

2 Q1, Ross 33.8

By our theorem we know that the sum(difference) of two integrable functions is integrable. Therefore we know that (f+g) and (f-g) are integrable. By 33.7 we know that $(f+g)^2$, $(f-g)^2$ are integrable. Now we simply take the difference: $(f+g)^2-(f-g)^2=4fg$. We apply the integrability theorem again and we know that this is integrable as well. Thus fg must be integrable/

3 Q2

3.1 a

The function is only continuous at x = 0. Let $\epsilon > 0$, pick $\delta = /4$. When