Motion

Computer Vision I CSE 252A Lecture 15

CSE 252A, Fall 2014

nnuter Vision

Announcements

- Read Trucco and Verri
 - · Course reserves
- Homework 3 is due Dec 4, 11:59 PM

CSE 252A Fall 2014

Computer Vision

Structure-from-Motion (SFM)

Goal: Take as input two or more images or video w/o any information on camera position/motion, and estimate camera position and 3-D structure of scene.

Two Approaches

- 1. Discrete motion (wide baseline)
 - 1. Orthographic (affine) vs. Perspective
 - 2. Two view vs. Multi-view
 - 3. Calibrated vs. Uncalibrated
- 2. Continuous (Infinitesimal) motion

SE 252A, Fall 201

Computer Vision

Discrete Motion: Some Counting

Consider *M* images of *N* points, how many unknowns?

- 1. Affix coordinate system to location of first camera location: (M-1)*6 Unknowns
- 2. 3-D Structure: 3*N Unknowns
- 3. Can only recover structure and motion up to scale. Why?

Total number of unknowns: (M-1)*6+3*N-1Total number of measurements: 2*M*NSolution is possible when $(M-1)*6+3*N-1 \le 2*M*N$

SE 252A, Fall 2014

Computer Vision

Sketch of Two View SFM Algorithm

Input: Two images

- 1. Detect feature points
- 2. Find 8 matching feature points (easier said than done)
- 3. Compute the Essential Matrix E using Normalized 8-point Algorithm
- 4. Compute R and T (recall that E=RS where S is skew symmetric matrix)
- Perform stereo matching using recovered epipolar geometry expressed via E.
- 6. Reconstruct 3-D geometry of corresponding points.

SE 252A, Fall 2014 Compu

Essential Matrix

- Number of point correspondences and solutions
 - 5 point correspondences, up to 10 (real) solutions
 - 6 point correspondences, 1 solution
 - 7 point correspondences, 1 or 3 real solutions (and 2 or 0 complex ones)
 - 8 or more point correspondences, 1 solution

252A, Fall 2014 Computer Vision

Fundamental Matrix

- Number of point correspondences and solutions
 - 7 point correspondences, 1 or 3 real solutions (and 2 or 0 complex ones)
 - 8 or more point correspondences, 1 solution

SE 252A, Fall 2014 Computer Vision

Comments

- · Greedy Algorithm:
 - Given feature in one image, find best match in second image irrespective of other matches.
 - OK for small motions, little rotation, small search window
- Otherwise
 - Must compare descriptor over rotation
 - Can't consider O(n8) potential pairings (way too many), so
 - Manual correspondence (e.g., façade, photogrametry).
 - use random sampling (RANSAC)
 - More descriptive features (line segments, SIFT, larger regions, color).
 - Use video sequence to track, but perform SFM $\ensuremath{w/}$ first and last image.

252A, Fall 2014 Computer Vision I

RANSAC

Slides shamelessly taken from Frank Dellaert and Marc Pollefeys and modified

SE 252A, Fall 2014

nputer Vision

Motivation

- Estimating motion models
- Typically: points in two images
- Candidates:
 - Translation
 - Affine
 - Homography

all 2014 Computer Vision

Discard Outliers

- No point with d>t
- RANSAC:
 - RANdom SAmple Consensus
 - Fischler & Bolles 1981
 - Copes with a large proportion of outliers

E 252A, Fall 2014 Computer Vision I

Main Idea

- Select 2 points at random
- Fit a line
- "Support" = number of inliers
- Line with most inliers wins

CSE 252A, Fall 2014 Computer Vision 1

Best Line has most support

• More support -> better fit

SE 252A, Fall 2014 Computer Vision

RANSAC

<u>Objective</u>

Robust fit of model to data set S which contains outliers

Algorithm

(i) Randomly select a sample of s data points from S and instantiate the model from this subset.

- (ii) Determine the set of data points S_i which are within a distance threshold t of the model. The set S_i is the consensus set of samples and defines the inliers of S.
- (iii) If the size of S_i is greater than some threshold \mathcal{T} , reestimate the model using all the points in S_i and terminate
- (iv) If the size of S_i is less than T, select a new subset and repeat the above.
- After N trials the largest consensus set S_i is selected, and the model is re-estimated using all the points in the subset S_i

CSE 252A, Fall 2014 Computer Vision I

How many samples?

Choose N (number of samples) so that, with probability p, at least one random sample is free from outliers. e.g. p=0.99

$$(1 - (1 - e)^{s})^{N} = 1 - p$$

$$N = \log(1 - p)/\log(1 - (1 - e)^{s})$$

- e: proportion of outliers
- s: Number of points needed for the model

	proportion of outliers e						
s	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177,

Acceptable consensus set?

• Typically, terminate when inlier ratio reaches expected ratio of inliers

$$T = (1 - e)N$$

Fall 2014 Computer Vision I

Using RANSAC to estimate the Fundamental Matrix

- What is the model?
- How many "points" are needed, and where do they come from?
- What distance do we use to compute the consensus set?
- How often do outliers occur

CSE 252A, Fall 2014 Computer Vision

Is motion estimation inherent in humans? Demo http://michaelbach.de/ot/cog-hiddenBird/index.html

252A, Fall 2014 Computer Vision

Small Motion

CSE 252A, Fall 2014 Computer Vision

Motion

"When objects move at equal speed, those more remote seem to move more slowly."

- Euclid, 300 BC

What causes a motion field?

- 1. Camera moves (translates, rotates)
- 2. Object's in scene move rigidly
- 3. Objects articulate (pliers, humans, animals)
- 4. Objects bend and deform (fish)
- 5. Blowing smoke, clouds

CSE 252A, Fall 2014 Computer Vision

