1. gyakorlat, szeptember 8.

A (*)-gal jelölt feladatokat mindenképpen oldjuk meg gyakorlaton! A (**)-gal jelölt feladatok szerepeltek előadáson. Az (N) jelű feladatok kicsit nehezebbek. Amire nem marad idő, azokat adjuk fel házi feladatnak! Jó munkát!

I. Logikai feladatok

Az alábbi feladatokban a \land jelöli az "ÉS", \lor a "VAGY", \neg a "negálás" műveletét. Igazoljuk a következő azonosságokat!

1. (**)
$$p \Leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

2. (*)
$$\neg (p \Leftrightarrow q) \equiv (p \lor q) \land (\neg p \lor \neg q)$$

3. (*)
$$(p \land q \land r) \Rightarrow s \equiv p \Rightarrow [q \Rightarrow (r \Rightarrow s)]$$

4.
$$[\neg p \land (p \Rightarrow q)] \Rightarrow \neg p \equiv 1$$

5. (N)
$$\neg [((p \land q) \lor r) \Rightarrow p] \Leftrightarrow q \equiv (p \lor q \lor \neg r) \land (p \lor \neg q \lor r) \land (\neg p \lor \neg q)$$

Irjuk fel az alábbi állítások tagadását! A szöveges feladatoknál formalizáljuk az állításokat logikai műveletek és kvantorok segítségével!

- 1. (*) Minden ajtón van kilincs.
- 2. (*) A házban ∃ ablak, ami nyitva van.
- 3. (*) A házban \exists emelet, ahol \forall ablak nyitva van.
- 4. (*) \forall emeleten \forall ablak nyitva van.
- 5. (*) A villamos kar bármely szak minden évfolyamán van lány hallgató.
- 6. (*) A villamos karon létezik olyan szak, amelyiknek van olyan évfolyama, amelyben minden hallgató lány. (Hol?)
- 7. $\forall \varepsilon > 0$ esetén $\exists \ \delta > 0$, hogy $\forall x \in \mathbb{R}$ számra, ha $|x a| < \delta$, akkor $|f(x) f(a)| < \varepsilon$.

II. Egyenlőtlenségek igazolása

Emlékeztetünk a harmonikus, mértani és számtani közepek közti egyenlőtlenségre (bizonyítás előadáson, kicsit később): Ha $n \geq 2$ természetes szám és a_1, a_2, \ldots, a_n pozitív valós számok, akkor

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \le \sqrt[n]{a_1 a_2 \dots a_n} \le \frac{a_1 + a_2 + \dots + a_n}{n}.$$

Egyenlőség pontosan akkor áll fenn, ha $a_1 = a_2 = \cdots = a_n$. Igazoljuk a következő egyenlőtlenségeket! Mikor van egyenlőség?

1.
$$|a+b| \le |a| + |b|, a, b \in \mathbb{R}$$

2.
$$||a| - |b|| \le |a - b|, \quad a, b \in \mathbb{R}$$

3.
$$(*)$$
 $(1+\frac{1}{n})^n < 4, n \in \mathbb{N}$

4. (*)
$$(1+\frac{1}{n})^n < (1+\frac{1}{n+1})^{n+1}, n \in \mathbb{N}$$

5. (*)
$$2^n > 1 + n\sqrt{2^{n-1}}$$
, $(n = 2, 3, ...)$

6. $n \in \mathbb{N}, a_1, a_2, \dots, a_n$ pozitív valósak,

$$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1} \ge n$$

7. $n \in \mathbb{N}, a_1, a_2, \dots, a_n$ pozitív valósak,

$$a_1 a_2 \cdots a_n \le \frac{a_1^n + a_2^n + \cdots + a_n^n}{n}$$

8. Oldjuk meg a következő egyenleteket a valós számok körében! A két egyenletnek ugyanazok a megoldásai?

(a)
$$2x + \sqrt{(2x-1)x^2} = x^2$$

(b)
$$2x - \sqrt{(2x-1)x^2} = x^2$$

III. Halmazalgebra

Legyenek A, B, C halmazok. Bizonyítsuk be a következő azonosságokat! Felülvonás jelöli a komplementum képzést.

1. (*)
$$A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$$

$$2. \ (A \setminus B) \cup B = A \cup B$$

3. (*)
$$(A \setminus B) \setminus C = (A \setminus C) \setminus (B \setminus C)$$

$$4. \ A = (A \cup B) \cap (A \cup \overline{B})$$

5. (*)
$$(A \setminus B) \cup (B \setminus C) \cup (C \setminus A) \cup (A \cap B \cap C) = A \cup B \cup C$$

6. Ha
$$A\subset C,$$
akkor $A\setminus B=A\cap (C\setminus B).$

- 7. (*) $(A \setminus B) \cup B = A$ akkor és csak akkor, ha $B \subset A$.
- 8. (**) $(A \setminus B) \cup C = (A \cup C) \setminus (B \cup C)$ akkor és csak akkor, ha $C = \emptyset$.
- 9. (*) $(A \cup B) \setminus B = A$ akkor és csak akkor, ha $A \cap B = \emptyset$.
- 10. Készíthető-e Venn-diagram négy körrel? Kicsit nehezebb: készíthető-e Venn-diagram tetszőleges számú halmazzal, ha bármilyen alakú alakzatokat használhatunk?
- 11. Adjunk meg négy olyan halmazt, amelyekre teljesül az alábbi feltételek mindegyike:
 - (a) Bármely kettőnek van közös eleme.
 - (b) Bármely három halmaz metszete üres halmaz.
 - (c) A halmazok elemszáma egyenlő.
 - (d) A halmazok elemszáma a lehető legkisebb.

III. Binomiális együtthatók

1. $\binom{*}{k}\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$, mert

$$\frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-k-1)!} = \frac{(k+1)n! + (n-k)n!}{(k+1)!(n-k)!} = \frac{(n+1)!}{(k+1)!(n-k)!}$$

2. (*)
$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \dots + (-1)^n \binom{n}{n} = 0$$

3. (*)
$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \binom{n}{3} + \dots + \binom{n}{n} = 2^n$$

4.
$$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \binom{n}{6} + \dots = 2^{n-1}$$

5.
$$(*) (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
.

IV. Néhány feladat a számossággal kapcsolatban

Az alábbi feladatokban a |A| jelöli A halmaz elemeinek számát. Csak véges halmazok szerepelnek még!

Bizonyítsuk be a következőket!

1. (**)
$$|A \cup B| = |A| + |B| - |A \cap B|$$

2. (**)
$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

3.

$$|A_1 \cup A_2 \cup A_3 \cup A_4| = \sum_{i=1}^4 |A_i| - \sum_{i \neq j} |A_i \cap A_j| + \sum_{i \neq j \neq k \neq i} |A_i \cap A_j \cap A_k| - |A_1 \cap A_2 \cap A_3 \cap A_4|$$

- 4. (*) Egy faluban 1000 ház van. Ezek közül 250-ben van autó, 900-ban hűtőszekrény, 950-ben TV, 990-ben rádió. Legalább hány házban van mind a négy eszköz?
- 5. Egy 33 fős tankörben háromféle idegen nyelven tanulnak. 20 diák tud angolul, 16 németül és 6 franciául. 5 diák tud pontosan két nyelven és két diák tud mindhárom nyelven. Hányan nem tudnak egyetlen idegen nyelven sem és hányan beszélnek pontosan egy idegen nyelvet?

2. gyakorlat, szeptember 22.

I. Teljes indukció

Bizonyítsuk be a következő azonosságokat illetve egyenlőtlenségeket!

1.
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

2. (*)
$$1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$$

$$\sum_{k=1}^{n} (2k-1)^2 = \frac{n(4n^2-1)}{3}$$

4.
$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$

5.

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

6.
$$(1+x)^n \ge 1 + nx$$

7. (N)
$$\sum_{k=1}^{n} k \cdot k! = (n+1)! - 1$$

8.
$$\sqrt{n} < 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} < 2\sqrt{n}$$

9.

$$\frac{n}{2} < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n - 1} < n$$

10. (N)

$$\frac{(2n)!}{(n!)^2} > \frac{4^n}{n+1}$$

11. (N)

$$\sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}} = 2\cos\frac{\pi}{2^{n+1}},$$

ahol a bal oldalon n darab gyökjel van.

II. Relációk, függvények

1. Injektívek illetve szürjektívek-e az alábbi hozzárendelések? Függvények-e egyáltalán?

- (a) f hozzárendeli minden emberhez az édesanyját.
- (b) g hozzárendeli minden édesanyához a legidősebb gyermekét.
- (c) $h: \mathbb{R} \to \mathbb{R}, x \mapsto [x]$, ahol [x] jelöli x egészrészét.
- (d) i minden másodfokú polinomhoz hozzárendeli a legnagyobb valós gyökét.
- (e) $j: (-1,1) \to \mathbb{R}, \quad x \mapsto \frac{x}{1-|x|}$.
- 2. (N) Az alábbi relációk közül melyek függvények?
 - (a) $R \subset \mathbb{N} \times \mathbb{N}$ és xRy pontosan akkor, ha x|y (x osztója y-nak).
 - (b) $R \subset P \times P$ és xRy pontosan akkor, ha x|y, ahol P a prímszámok halmaza.
 - (c) $A = \{0, 3, 5\}, B = \{1, 2, 5\}, R_1 \subset A \times B$, és xRy pontosan akkor, ha xy = 0, illetve $R_2 \subset B \times A$, és xRy pontosan akkor, ha xy = 0.
- 3. Mutassuk meg, hogy az alábbi valós függvények invertálhatók és adjuk meg az inverzüket! (Deriválni még nem tudunk!)
 - (a) $f(x) = \frac{x+1}{x-2}, x \neq 2.$
 - (b) $f(x) = x^3 + 6x^2 + 12x, x \in \mathbb{R}$.
 - (c) $f(x) = \frac{1}{2x+3}$, $D_f = \mathbb{R} \setminus \{-\frac{3}{2}\}$.
 - (d) $f(x) = x^2$, $D_f = (-\infty, -1]$.
 - (e) (N) $f(x) = x^3 3x^2 + 3x + 4$
 - (f) (N)

$$f(x) = \begin{cases} \frac{7x-5}{3}, & \text{ha } -1 \le x < 1\\ \frac{2}{1+x}, & \text{ha } 1 \le x \le 2. \end{cases}$$

(g) (N) Mely α értéknél lesz

$$f(x) = \begin{cases} \alpha x^2, & \text{ha } -1 \le x < 0\\ 2\alpha - x, & \text{ha } 0 < x \le 1. \end{cases}$$

invertálható? Adjuk meg az inverz függvény értelmezési tartományát és értékkészletét!

III. Korlátos számhalmazok

1. Határozza meg a

$$H = \left\{ \frac{2x+2}{3x+5} \in \mathbb{R} : x \in [-1, +\infty) \right\}$$

halmaz supremumát. Van-e H-nak maximális eleme?

2. Határozza meg a

$$H = \left\{ \sqrt{x+1} - \sqrt{x} : x \in (0, +\infty) \right\}$$

halmaz infimumát. Van-eH-nak minimális eleme?

3. Korlátos-e alulról, illetve felülről a H halmaz? Ha igen, adjuk meg sup H-t és inf H-t!

(a)
$$H = \left\{ \frac{x^2+1}{3x^2+2} \in \mathbb{R} : x \in [0, +\infty) \right\}$$

(b)
$$H = \left\{ \frac{|x|-2}{|x|+2} \in \mathbb{R} : x \in \mathbb{R} \right\}$$

(c)
$$H = \left\{ \frac{x}{y} \in \mathbb{R} : x \in (0,1), y \in (0,x) \right\}$$

(d)
$$H = \left\{ x \in \mathbb{R} : \frac{|x-2|}{x} > x \right\}$$

3. gyakorlat, szeptember 29.

I. Komplex számok

- 1. Hozzuk algebrai alakra a következő kifejezéseket és adjuk meg az abszolút értéküket!
 - (a) $\frac{2}{(1-i)(3+i)}$, $\frac{i}{(1-i)(1-2i)(1+2i)}$, $\frac{(3+4i)(2+i)}{(1+2i)(4+3i)}$.
 - (b) $(1+i)^{12}$, $(\sqrt{3}+i)^7$, $(1+i)^4(1-\sqrt{3}i)^6$, $(1/\sqrt{2}-1/\sqrt{2}i)^{-6}$.
- 2. Határozzuk meg az alábbi z komplex számok n-dik gyökét!

(a)
$$z = 1, n = 3$$
. (b) $z = -1, n = 7$. (c) $z = i, n = 2$. (d) $z = -2 + 2i, n = 3$.

- 3. Az alábbi sokszögeknek komplex számokkal megadjuk néhány csúcsát. Határozzuk meg a hiányzó csúcsokat!
 - (a) $z_1 = 1 + 4i, z_2 = 5 + i$ csúcspontú szabályos háromszög.
 - (b) $z_1 = -4 + i$, $z_2 = 3 3i$ csúcspontú négyzet.
 - (c) i középpontú és $z_1 = 3 4i$ csúcsú szabályos ötszög.
 - (d) $z_1 = 0$, $z_2 = 1 2i$ és $z_3 = 2 + 3i$ csúcsú paralelogramma.
- 4. Határozzuk meg az alábbi egyenletek gyökeit a komplex számok körében.
 - (a) z + 2 2iz 5 = 0.
 - (b) $z^2 (2+3i)z 1 + 3i = 0$
 - (c) $z^2 + (5-2i)z + 5(1-i) = 0$
 - (d) $z^4 + 6z^2 + 25 = 0$
 - (e) $z^3 + 2z^2 3 = 0$.
 - (f) (N) $\overline{z} = z^n$, $n \in \mathbb{N}$.

II. Vektoralgebra

- 1. Milyen z szám esetén lesz $\mathbf{a} = (6, -2, z)$ vektor merőleges a $\mathbf{b} = (2, -3, 1)$ vektorra?
- 2. Ha az $\mathbf{a} + 3\mathbf{b}$ vektor merőleges a $7\mathbf{a} 5\mathbf{b}$ vektorra, az $\mathbf{a} 4\mathbf{b}$ pedig merőleges a $7\mathbf{a} 2\mathbf{b}$ vektorra, akkor mekkora az \mathbf{a} illetve \mathbf{b} által bezárt szögek koszinusza?

- 3. Legyen $|\mathbf{a}| = 2$, $|\mathbf{b}| = 5$ és a két vektor szöge 120 fok. A t paraméter mely értékeire lesz merőleges $t \mathbf{a} + 17 \mathbf{b}$ és $3 \mathbf{a} \mathbf{b}$?
- 4. Legyen $\mathbf{a} = (1,0,1), \mathbf{b} = (1,2,2), \mathbf{c} = (-1,2,1)$. Mi lesz a \mathbf{c} vektor \mathbf{a} illetve \mathbf{b} vektorok egyenesére vett merőleges vetülete és mi az az összegük?
- 5. Legyen $\mathbf{a}=(7,-1,0), \mathbf{b}=(3,-4,5), \mathbf{c}=(4,3,5)$. Melyik \mathbf{x} egységvektor zár be mindhárom vektorral ugyanolyan szöget?
- 6. Legyen $\mathbf{a}=(1,0,1), \mathbf{b}=(1,2,2), \mathbf{c}=(-1,2,1).$ Számoljuk ki a vektoriális szorzatukat!

4. gyakorlat, szeptember 29.

I. Analitikus térgeometria, egyenesek és síkok megadása

- 1. (*) Egy tetraéder csúcsai: A(2, -4, 3), B(1, -4, 4), C(-3, 2, 0) és D(2, 0, t). t milyen értékére lesz a tetraéder térfogata 4 egység?
- 2. Igazoljuk, hogy a 2x + y z 2 = 0, x 3y + z + 1 = 0, x + y + z 3 = 0 síkok egyetlen pontban metszik egymást.
- 3. Irjuk fel a következő egyenesek paraméteres és paraméter nélküli egyenletrendszerét!
 - (a) (*) Átmegy a P(2, -3, 4) és a Q(2, 4, 6) pontokon.
 - (b) Merőleges az $\mathbf{a} = (-2, 3, 1)$ és a $\mathbf{b} = (2, 0, 1)$ vektorra és átmegy az A(6, -3, 4) ponton.
 - (c) Párhuzamos az x-y-4z=0 és a 2x+y-2z-4=0 síkok metszésvonalával és átmegy az origón.
 - (d) (*) Párhuzamos a 3x + y z + 1 = 0 és az x + y + z = 0 síkkal és az yz síkot a P(0,4,1) pontban metszi.
 - (e) Átmegy a P(-1,2,-3) ponton, merőleges az ${\bf a}=(6,-2,-3)$ vektorra és metszi az $\frac{x-1}{3}=\frac{y+1}{2}=\frac{3-z}{5}$ egyenest.
 - (f) (*) Az x-3y+z+2=0 és a 2x-5y-z+4=0 síkok metszésvonala.
- 4. Irjuk fel a következő síkok egyenletét!
 - (a) (*) Átmegy a P(-2,1,0) ponton és illeszkedik az e: x=t+2, y=3t, z=2 egyenesre.
 - (b) (*) Átmegy a P(3,0,1) ponton és párhuzamos az e: x=1-2t, y=2+t, z=-2t és az $f:\frac{x+2}{2}=y=-z$ egyenesekkel.
 - (c) Illeszkedik az $\frac{x-5}{3}=y-1=z$ egyenesre és merőleges 2x-y+z=0 síkra.
 - (d) Párhuzamos az x=2y=3z egyenessel és áthalad az x+y+z=0 és a 2x-y+3z=0 síkok metszésvonalán.
 - (e) Átmegy a P(1,2,3), a Q(-1,-5,2) és az R(0,0,0,-3) pontokon.

II. Távolságok és szögek

- 1. (*) Adjuk meg azokat a pontokat melyek rajta vannak az $e: \frac{x-1}{2}=-y=\frac{z+3}{3}$ egyenesen és 2 egység távolságra vannak az 2x-2y+z-1=0 síktól!
- 2. (*) Mekkora a 2x 4y + 2z 1 = 0 és az x 2y + z 1 = 0 síkok távolsága?
- 3. Határozzuk meg a z tengelyen azt a pontot, amely egyenlő távolságra van 12x+9y-20z+19=0 és a 16x-12y+15z-9=0 síkoktól!
- 4. Határozzuk meg a P(-2,3,7) pont távolságát a $\frac{x-1}{3}=2-y, z=2$ egyenestől!
- 5. Határozzuk meg az x+y+z-2=0 és az x+2y-z-1=0 síkok metszésvonalán azt a pontot, amely egyenlő távol van az x+2y+z+1=0 és az x+2y+z-3=0 síkoktól!
- 6. Melyek azok a síkok, melyek az x=1,y=3+3t,z=4+4t egyenesre illeszkednek, egységnyi távolságra vannak a P(2,1,3) ponttól? Adjuk meg a hajlásszögük cosinusát!
- 7. Irjuk fel azon síkok egyenletét, melyek átmennek a P(1,1,1) ponton, párhuzamosak az x+2y-z-1=0, 2x-y+z-1=0 síkok metszésvonalával és mindkét síkkal ugyanakkora szöget zárnak be. Mi lesz ezen szög cosinusa?

III. Numerikus sorozatok

Definíció alapján bizonyítsuk be, hogy

1.
$$\lim_{n \to \infty} \left(\frac{n}{n^2 + 1} \right) = 0.$$

2. (*)
$$\lim_{n \to \infty} \left(\frac{n - \sqrt{n} - 1}{n + \sqrt{n} + 1} \right) = 1$$
.

3.
$$\lim_{n \to \infty} (\sqrt{n^2 + 1} - n) = 0.$$

4. (*)
$$\lim_{n \to \infty} (\sqrt{2n+1} - \sqrt{n+3}) = +\infty$$
.

5.
$$\lim_{n \to \infty} \left(\frac{5n^3 + 2n^2 - 1}{2n^3 + n + 1} \right) = \frac{5}{2}$$
.

6.
$$\lim_{n \to \infty} \left(\frac{2-3n^2}{n+1} \right) = -\infty.$$