Phân tích & Thiết kế thuật toán (Algorithms Design & Analysis)

L/O/G/O

GV: HUYNH THỊ THANH THƯƠNG

Email: thuonghtt@uit.edu.vn

CHƯƠNG 1: TỔNG QUAN

L/O/G/O

www.themegallery.com

Nội dung

00

- 1. Vấn đề và xác định vấn đề
- 2. Thuật toán
- 3. Phân tích thuật toán
- 4. Độ phức tạp

Đặt vấn đề

 Giả sử bạn đang thiết kế 1 trang web để xử lý số liệu (VD số liệu tài chính). Ta có 2 chương trình có thể xem xét:

$$T_1(n)=30n+8$$

$$T_2(n)=n^2+1$$

Ban sẽ chọn chương trình nào nếu muốn phục vụ cho n = 1 000 000 người?

So sánh 2 thuật toán

- Cách tốt nhất: xác định chính xác thời gian thực hiện T(n) (the exact running time) của 2 GT rồi so sánh chúng
- Thực tế:
 - Rất khó để tính T(n) chính xác

x=(n-i)(i-3n);

i = 1; count = 0;

while $(i \le 4n)$

Giải phương trình đệ quy để tìm T(n)

Dùng kỹ thuật toán "Xét dấu hàm" để xử lý if...else

So sánh 2 thuật toán

Cách tốt nhất: xác định chính xác thời gian thực hiện - T(n) của 2 GT rồi so sánh chúng

Thực tế:

- Rất khó để tính T(n) chính xác
- Nếu tính được T(n) rồi thì có thể gặp khó khăn khác khi so sánh 2 hàm số với nhau

Nếu hàm T(n) đơn giản thì vẽ hình và quan sát hoặc xét dấu hàm

Compare 2 algorithms

Đặt vấn đề

$$T(n) = 3n^2\log(n) - 12n^2 + 19$$

$$T(n) = 3e^n - 10000n^2 + 2$$

Giải thuật nào nhanh hơn?

- So sánh "độ lớn" của T1, T2 thay vì chính bản thân T1,T2

Compare 2 algorithms

Mục tiêu mới:

- 1. So sánh tương đối: hàm không sai biệt nhiều thì xem như sấp xỉ nhau về độ lớn
- 2. Chỉ quan tâm đến những giá trị n đủ lớn -->lớn như thế nào?
- ❖ 3. Khi n càng lớn (tiến tới ∞) thì hàm nào sẽ lớn hơn?

Compare 2 algorithms

❖ Khi n càng lớn (tiến tới ∞) thì hàm nào sẽ lớn hơn?

* "nếu f (x) tăng nhanh hơn g(x) thì f(x) luôn lớn hơn g(x) ở ∞"

Cách đo tốc độ tăng của hàm số

Khái niệm:

- Growth rate: rate of growth of functions (tạm dịch: tỷ suất tăng)
- Order of growth of the running time of an algorithm (tạm dịch: bậc tăng trưởng)
- Hàm có bậc tăng trưởng lớn hơn → tăng nhanh hơn

Áp dụng trong phân tích TT

00

- Thường là quan tâm đến "order of growth" của T(n) thay vì chính xác bản thân T(n)
- Order of growth:

Ước lượng "cấp độ lớn" của T(n) dựa trên những hàm f(n) đã biết

Ví dụ:

$$1,000,001 \approx 1,000,000$$

$$3n^2 + 5 \approx n^2$$

Aymptotic Notation

- *Ký hiệu/ký pháp tiệm cận: Ο, Ω, Θ
 - "Nâng cấp" của bậc tăng trưởng
 - Cho ta 1 phương pháp để phân loại các hàm "chặt chẽ hơn" dựa theo bậc tăng trưởng của chúng

Độ phức tạp

9

- Ý nghĩa chung:
 - Phân lớp "cấp độ lớn" của hàm
 T(n) khi n đủ lớn
 - GT nào có độ phức tạp ở phân lớp thấp hơn thì hiệu quả hơn

- Độ phức tạp của GT: được xác định thông qua các ký hiệu tiệm cận O, Ω,
 - --> có 3 loại độ phức tạp phổ biến

Khi n tăng, T(n) tăng không nhanh hơn Cf(n), Cf(n) là chặn trên (asymptotic upper bound) của T(n)

Big-Ω

Big-Θ

Big-O notation (upper bound)

- Dịnh nghĩa (phân tích GT):
 - T(n) = O(f(n)) nếu tồn tại hằng số dương c ∈ ℝ⁺
 và n₀ ∈ ℕ sao cho:

$$T(n) \le cf(n) \text{ v\'oi } \forall n \ge n_0$$

Ta nói: T(n) có bậc tăng trưởng là f(n), T(n) có độ phức tạp là O của f(n)

- Ký hiệu: T(n) = O(f(n)). Bản chất: T(n) ∈ O(f(n))
- Chú ý:
 - Dấu = chỉ là ký hiệu hình thức
 - O(f(n)) là tập hợp

```
O(f(n)) = \{t : N^* \to N^* \mid \exists c \in R^+, \exists n_0 \in N, \forall n \ge n_0, t(n) \le cf(n)\}
```

```
O(f(n)) = \{t(n) : \exists \text{ positive constants } c \text{ and } n_0, \text{ such that } \forall n \ge n_0, \text{ we have } 0 \le t(n) \le cf(n) \}
```


Lưu ý:

- Có thể đánh giá ĐPT bằng ký hiệu tiệm cận khác như Ω,
 Θ → nên kèm theo ký hiệu khi nói đến ĐPT. VD: "GT có ĐPT O(n²)"
- f(n) chỉ là 1 hàm chặn trên của T(n), vẫn có thể có cách ước lượng chặt hơn
- Luôn tìm được f(n) và cần tìm f(n) nhỏ nhất có thể

00

- ❖ Ta thấy: Với T(n) = 10n
 - T(n) = O(n), $T(n) = O(n^2)$, $T(n) = O(n^3)$
 - 10n ∈ O(n)? O(n²)? O(n³) (Hỏi: dùng ký hiệu gì thay cho? là đúng)
- ❖ Ví dụ 1: Xét T(n) = $3n^2 + 5n + 4$. Tìm f(n) để T(n) = O(f(n)) ?

Ta có:

$$T(n) = 3n^2 + 5n + 4 \le 3n^2 + 5n^2 + 4n^2, \forall n \ge 1$$

 $\Rightarrow T(n) \le 12n^2 \forall n \ge 1.$

Chọn c=12, n_0 = 1, theo định nghĩa của Big-O, ta có dccm, $T(n) = O(n^2)$

 $Vi du 2: n^2 + n = O(n^3)$

Chứng minh:

- Dễ thấy rằng, khi n ≥ 1 thì n ≤ n³ và n² ≤ n³
 (Tổng quát, nếu a ≤ b, thì n² ≤ n⁵ khi n ≥ 1)
- Vì vậy, $n^2 + n \le n^3 + n^3 = 2n^3$
- Nên, $n^2 + n \le 2n^3$ với mọi $n \ge 1$
- Theo định nghĩa của Big-O, xét c = 2 và n_o= 1, ta
 có đccm

Big- Ω notation

Dịnh nghĩa:

 $T(n) = \Omega$ (f(n)) nếu và chỉ nếu tồn tại các hằng số dương c $\in \mathbb{R}^+$, n₀ $\in \mathbb{N}$ sao cho:

 $T(n) \ge c.f(n) \text{ v\'oi } \forall n \ge n_0$

Định nghĩa:

$$\Omega(f(n)) = \{t: N \to N^* \mid \exists c \in R^+, \exists n_0 \in N, \\ \forall n \geq n_0, t(n) \geq cf(n)\}$$

Tính chất:

```
Cho f, g: N \rightarrow N^*, Ta có:

f(n) \in O(g(n)) \Leftrightarrow g(n) \in \Omega (f(n))
```


Dịnh nghĩa:

T(n) = Θ (f(n)) nếu và chỉ nếu tồn tại các hằng số dương $c_1, c_2 \in \mathbb{R}^+$ và $n_0 \in \mathbb{N}$ sao cho:

$$c_1 f(n) \le T(n) \le c_2 f(n) \text{ v\'oi } \forall n \ge n_0$$

Ký hiệu Tiệm cận 😑

Định nghĩa:

$$f(n) = \Theta(g(n))$$
 nếu và chỉ nếu
$$f(n) = O(g(n)) \text{ và } g(n) = O(f(n))$$
 $\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$

o-notation and ω-notation

$$o(g(n)) = \{ f(n) : \text{ for any constant } c > 0, \\ \text{ there is a constant } n_0 > 0 \\ \text{ such that } 0 \le f(n) < cg(n) \\ \text{ for all } n \ge n_0 \}$$

EXAMPLE:
$$2n^2 = o(n^3)$$
 $(n_0 = 2/c)$

$$\lim_{n\to\infty} [f(n) / g(n)] = 0$$

o-notation and ω-notation


```
\omega(g(n)) = \{ f(n) : \text{ for any constant } c > 0, \\ \text{ there is a constant } n_0 > 0 \\ \text{ such that } 0 \le cg(n) < f(n) \\ \text{ for all } n \ge n_0 \}
```

EXAMPLE:
$$\sqrt{n} = \omega(\lg n)$$
 $(n_0 = 1 + 1/c)$

$$\lim_{n\to\infty} [f(n) / g(n)] = \infty$$

Tóm tắt

Asymptotic notations

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c \cdot g(n) \text{ for all } n \ge n_0\}, \text{ e.g. 8 lg } n = O(n).$

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le c \cdot g(n) \le f(n) \text{ for all } n \ge n_0\}, \text{ e.g. } 26n^7 + 2013 = \Omega(n^5).$

 $\Theta(g(n))=\{f(n): \text{ there exist positive constants } c_1,c_2 \text{ and } n_0 \text{ such that } 0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \text{ for all } n \geq n_0\}, \text{ e.g. } 5 \cdot 2^n + n^6 - 10^{10} = \Theta(2^n).$

 $o(g(n)) = \{f(n) : \text{ for any positive constant } c, \text{ there exists a constant } n_0 \text{ such that } 0 \le f(n) < c \cdot g(n) \text{ for all } n \ge n_0 \}.$

If g(n) > 0 for large n, this means $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$, e.g. $10^5 \cdot 2^n = o(3^n)$.

 $\omega(g(n)) = \{f(n) : \text{ for any positive constant } c \text{ there exists a constant } n_0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0\}.$

If g(n) > 0 for large n, this means $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$, e.g. $2^n = \omega(n^3)$.

Dùng lim để suy ra quan hệ

Sử dụng các giới hạn để suy ra quan hệ

Nếu
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c \neq 0 \ (c < +\infty)$$

$$\Leftrightarrow$$
 O(f(n)) = O(g(n)) nghĩa là f(n) = O(g(n)) và g(n) = O(f(n)) (hoặc f(n) = $\Theta(g(n))$)

Dùng lim để suy ra quan hệ

Nếu
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c < +\infty$$

$$\Rightarrow$$
 f(n) = O(g(n))

Nếu
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$

$$\Rightarrow$$
 O(f(n)) \subset O(g(n)) = O(g(n)± f(n))
nghĩa là f(n) = O(g(n)) nhưng g(n) \neq O(f(n))

Dùng lim để suy ra quan hệ

Limits

- $\bullet \lim_{n \to \infty} [f(n) / g(n)] = 0 \Rightarrow f(n) \in o(g(n))$
- $\lim_{n\to\infty} [f(n)/g(n)] < \infty \Rightarrow f(n) \in O(g(n))$
- $0 < \lim_{n \to \infty} [f(n) / g(n)] < \infty \Rightarrow f(n) \in \Theta(g(n))$
- $0 < \lim_{n \to \infty} [f(n) / g(n)] \Rightarrow f(n) \in \Omega(g(n))$
- $\lim_{n\to\infty} [f(n)/g(n)] = \infty \Rightarrow f(n) \in \omega(g(n))$
- $\lim_{n\to\infty} [f(n)/g(n)]$ undefined \Rightarrow can't say

Classification of algorithms

5	
3	

			Dạng O	Tên Phân loại	ni e
			O(1)	Hằng	
			$O(\log_2(n))$	logarit	
			$O(\sqrt{n})$		
		$O(\sqrt[3]{n})$	C* .1.		
			***	Căn thức	
	Thường		$O(\sqrt[m]{n})$		
	nói đến		O(n)	Tuyến tính	
	O(2 ⁿ)		O(n ²)	Bình phương	
		ĺ	O(n ³)	Bậc ba	Đa thức
	O				
		0	O(nm)	Đa thức	Chấp nhận được
	Vét cạn, lớn hơn	C	O(c ⁿ), với c>1	Mũ	Park of the later of the later
KHÔ	TÁT TO THẬN ĐƯ	ľợc	O(n!)	Giai thừa	Độ phức tạp lớn

So sánh

n							
Function	10	100	1,000	10,000	100,000	1,000,000	
1	1	1	1	1	1	1	
log ₂ n	3	6	9	13	16	19	
n	10	10^{2}	10^{3}	104	105	106	
n ∗ log₂n	30	664	9,965	105	106	107	
n²	10 ²	104	106	108	1010	1012	
n³	10³	10^{6}	10 ⁹	1012	1015	1018	
2 ⁿ	10³	10^{30}	1030	1 103,01	10 ³⁰ ,	103 10301,030	

So sánh

