- 6.4.11 Are there any Boolean algebras with only 3 elements?

 No, they must be isomorphic to Bn with 2th clements.
- 6.4.8 b c is isomorphic to B2 01 10, and is therefore a Boolean algebra.
- 6.4.9 D385: 385 = 5.77 = 5.7.11. Since no prime divides 385 more than once, then

 D385 is a Boolean algebra.
- 6.4.10 D_{60} : $60 = 2 \cdot 3 \cdot 5$, so D_{60} is not a Boolean algebra.
- 6.4.27 Let A= {a,b,c,d,e,f,g,h} and R be defined by

If Brolean, then (A,R) is isomorphic to $(B_{3,5})$, because there are $8=2^3$ elements.

The diagrams are not isomorphic, so (1,R) is not a Booken algebra.

6.5.3 Consider $p(x_1y_1,z) = (x \wedge y') \vee (y \wedge (x' \vee y))$. If $B = \{0,1\}$ compute the truth table of $f: B_3 \rightarrow B$.

×	۱ ۷	Z	P (2, y, 2)
O	٥	٥	٥
٥	٥	ı	٥
0	ι	٥	l l
ι	٥	٥	l
o	1	ı	ι
t	o	ι	1
i	ι	0	ı
ι Ι	.	ι	ţ

$$(2 \vee y) \wedge (2 \vee y); y \qquad (2 \vee y) \wedge (2 \vee y) = (y \vee 2) \wedge (y \vee 2)$$

$$= (y \vee (2 \wedge 2))$$

6.5.17 Logic diagram for f.

(a)
$$f(x,y,z) = (x \vee (y' \wedge z)) \vee (x \wedge (y \wedge 1)).$$

$$(b) \quad f(x,y,z) = \ (x \vee (y \vee z')) \wedge \ \big((x' \wedge z)' \wedge (y' \vee 0) \big).$$

6.5.18 Boolean function described by the diagram.

6.5.19 Boolean function described by the diagram.

Determine if R is a tree, and if so determine the root. 7.1.1-2

1. A = -n - and $R = \{ (a,b), (b,e), (c,d), (d,b), (c,a) \}.$

Two paths from c to b, so R B not a tree (Thm. 2(c)).

7.1.4 A={1,...,6} and R={(2,1), (3,4), (5,2), (6,5), (6,3)}.

7.1.28 Draw all possible unordered trees on S={a,b,c}.

