Fonctions trigonométriques réciproques

a) Fonction arcsinus : $\widetilde{\sin}:\left[-\frac{\pi}{2},\frac{\pi}{2}\right] \to [-1,1]$ est une bijection.

Sa réciproque est appelée \arcsin et notée \arcsin . Elle est continue sur [-1,1]

Ainsi, si $x \in [-1, 1]$, $\arcsin(x)$ est l'unique réel de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ dont le sinus vaut x:

De plus, on a l'équivalence, pour $x \in [-1,1]$ et $\theta \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$:

$$\sin \theta = x \iff \theta = \arcsin x$$

Mises en garde: 1. $\arcsin x$ n'a AUCUN SENS si $x \notin [-1, 1]$

2. On n'a la simplification $\arcsin{(\sin{\theta})} = \theta$ **QUE** lorsque $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

3. On n'a l'équivalence $\sin \theta = x \iff \theta = \arcsin x$ QUE pour $x \in [-1, 1]$ et $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

Valeurs remarquables: $\arcsin 0 = 0$ $\arcsin 1 = \frac{\pi}{2}$ $\arcsin (-1) = -\frac{\pi}{2}$ $\arcsin \frac{1}{2} = \frac{\pi}{6}$

Dérivabilité: on montre que \arcsin est dérivable sur]-1,1[et :

$$\forall x \in]-1,1[, \arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$$

De plus, si u est une fonction dérivable sur un intervalle I et à valeurs dans]-1,1[, alors $\arcsin(u)$ est dérivable sur I de dérivée

$$\left[\arcsin(u)\right]' = \frac{u'}{\sqrt{1 - u^2}}$$

Propriété : arcsin est impaire

b) Fonction arccosinus: $\widetilde{\cos}:[0,\pi]\to[-1,1]$ est une bijection.

Sa réciproque est appelée **arccosinus** et notée arccos. Elle est **continue sur** [-1, 1]

Ainsi, si $x \in [-1, 1]$, $\arccos(x)$ est l'unique réel de $[0, \pi]$ dont le cosinus vaut x:

$$\arccos(x) \in [0, \pi]$$
 et $\cos(\arccos(x)) = x$

De plus, on a l'équivalence, pour $x \in [-1, 1]$ et $\theta \in [0, \pi]$:

$$\cos \theta = x \iff \theta = \arccos x$$

Mises en garde: 1. $\arccos x$ n'a AUCUN SENS si $x \notin [-1, 1]$

2. On n'a la simplification $\arccos\left(\cos\theta\right)=\theta$ **QUE** lorsque $\theta\in[0,\pi]$

3. On n'a l'équivalence $\cos \theta = x \iff \theta = \arccos x$ **QUE** pour $x \in [-1, 1]$ et $\theta \in [0, \pi]$

Valeurs remarquables : $\arccos 0 = \frac{\pi}{2}$ $\arccos 1 = 0$ $\arccos (-1) = \pi$ $\arccos \frac{1}{2} = \frac{\pi}{3}$

Dérivabilité: on montre que \arccos est dérivable sur]-1,1[et :

$$\forall x \in]-1,1[, \arccos'(x) = \frac{-1}{\sqrt{1-x^2}}]$$

1

c) Fonction arctangente: $\widetilde{\tan}: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to \mathbb{R}$ est une bijection.

Sa réciproque est appelée arctangente et notée \arctan . Elle est continue sur $\mathbb R$

Ainsi, si $x\in\mathbb{R},\arctan\left(x\right)$ est l'unique réel de $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ dont la tangente vaut x :

$$\arctan(x) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ et } \tan(\arctan(x)) = x \right]$$

De plus, on a l'équivalence, pour $x \in \mathbb{R}$ et $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$:

$$\tan \theta = x \iff \theta = \arctan x$$

Mises en garde: 1. arctan x est défini POUR TOUT REEL

- 2. On n'a la simplification $\arctan(\tan \theta) = \theta$ **QUE** lorsque $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$
- 3. On n'a l'équivalence $\tan \theta = x \iff \theta = \arctan x$ **QUE** pour $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$

 $\left| \arctan 1 = \frac{\pi}{4} \right| \left| \arctan (-1) = -\frac{\pi}{4} \right| \left| \arctan \sqrt{3} = \frac{\pi}{3} \right|$ *Valeurs remarquables :* $\arctan 0 = 0$

 $\emph{D\'erivabilit\'e}:$ on montre que \arctan est dérivable sur $\mathbb R$ et :

$$\forall x \in \mathbb{R}, \arctan'(x) = \frac{1}{1+x^2}$$

De plus, si u est une fonction dérivable sur un intervalle I, alors $\arctan(u)$ est dérivable sur I de dérivée

$$\left[\arctan(u)\right]' = \frac{u'}{1+u^2}$$

Propriété : arctan est impaire

Limites: on montre que $\lim_{+\infty} \arctan = \frac{\pi}{2}$ et $\lim_{-\infty} \arctan = -\frac{\pi}{2}$

d) Formulaire:

- 1. $\forall x \in [-1, 1], \quad \sin(\arccos x) = \sqrt{1 x^2}$ 2. $\forall x \in [-1, 1], \quad \cos(\arcsin x) = \sqrt{1 x^2}$
- 3. $\forall x \in \mathbb{R}$, $\cos(\arctan x) = \frac{1}{\sqrt{1+x^2}}$ et $\sin(\arctan x) = \frac{x}{\sqrt{1+x^2}}$
- 4. $\forall x \in [-1, 1], \left[\arccos(x) + \arcsin(x) = \frac{\pi}{2}\right]$
- 5. $\forall x \in [-1, 1], \boxed{\arccos(x) + \arccos(-x) = \pi}$
- 6. $\forall x \neq 0$, $\arctan x + \arctan \frac{1}{x} = \text{signe}(x) \cdot \frac{\pi}{2}$. On a posé signe π on a posé signe π of π and π is π of π on a posé signe π of π or π or

e) <u>Courbes</u>:

• Celle d'arcsinus admet pour tangente en O la droite d'équation y=x, et des tangentes verticales en -1 et 1

Courbe d'arcsinus

• Celle d'arccosinus admet des tangentes verticales en -1 et 1 et le point $\Omega\left(0,\frac{\pi}{2}\right)$ pour centre de symétrie

Courbe d'arccosinus

• Celle d'arctangente admet pour tangente en O la droite d'équation y=x, et des asymptotes d'équations $y=\frac{\pi}{2}$ et $y=-\frac{\pi}{2}$

Courbe d'arctangente