

Lecture 12 Topic 3 Second Law of Thermodynamics

Topics

3.3 Definition of entropy

Reading:

Ch 6: 6.1 – 6.4 Borgnakke & Sonntag Ed. 8

Ch 7: 7-1 – 7-6 Cengel and Boles Ed. 7

3.3 Revisiting Second Law thus far

Lecture 11: Reversible Processes & Carnot Cycle

- Define maximum possible thermal efficiency
- Heat engine: $\eta_{TH} = 1 \frac{Q_L}{Q_H} \underset{Carnot}{=} 1 \frac{T_L}{T_H}$
- Refrigerator: $\beta = \frac{Q_L}{Q_H Q_L} \underset{Carnot}{=} \frac{T_L}{T_H T_L}$

<u>Lectures 12 – 14</u>

- 2nd law analysis
- Quantitative information about irreversibilities in processes
- Introduction to entropy (s) and entropy balance

3.3.1 Inequality of Clausius

 Q_H

 Q_L

 T_H

 T_L

The second law, is based on the Clausius inequality

$$\oint \frac{\delta Q_{net}}{T} \le 0$$

Consider a heat engine operating between T_H and T_L

$$\bullet \quad \oint \delta Q = Q_H - Q_L > 0$$

For constant T_H and T_L

$$\circ \oint \frac{\delta Q}{T} = \frac{Q_H}{T_H} - \frac{Q_L}{T_L}$$

Carnot: Q's become T's

$$\circ \oint \frac{\delta Q}{T} = \frac{T_H}{T_H} - \frac{T_L}{T_L} = 0$$

• 1st law:
$$W = Q_H - Q_L$$
 (keep Q_H constant)

$$\circ Q_H - Q_{L,irr} < Q_H - Q_{L,rev}$$

$$\circ Q_{L, irr} > Q_{L, rev}$$
 (more heat to T_L)

$$0 \oint \frac{\delta Q}{T} = \frac{Q_H}{T_H} - \frac{Q_{L,irr}}{T_L} < 0$$

<u>Irreversible</u> heat engines

$$\circ \oint \frac{\delta Q}{T} < 0$$

$$0 \quad \oint \frac{\delta Q}{T} = 0$$

3.3.1 Inequality of Clausius

 T_H

The second law, is based on the <u>Clausius inequality</u>

$$\oint \frac{\delta Q_{net}}{T} \le 0$$

Consider a refrigerator operating between T_H and T_L

- $\bullet \quad \oint \delta Q = -Q_H + Q_L < 0$
- For constant T_H and T_L

$$\circ \oint \frac{\delta Q}{T} = \frac{Q_L}{T_L} - \frac{Q_H}{T_H}$$

• Carnot: Q's become T's

$$\circ \oint \frac{\delta Q}{T} = \frac{T_L}{T_L} - \frac{T_H}{T_H} = 0$$

 Q_H

- <u>Irreversible</u>: $W_{irr} > W_{rev}$ (more work required)
- 1st law: $W = Q_H Q_L$ (keep Q_L constant)

$$\circ Q_{H,irr} - Q_L > Q_{H,rev} - Q_L$$

$$Q_{H,irr} > Q_{H,rev}$$
 (more heat to T_H)

$$\circ \oint \frac{\delta Q}{T} = \frac{Q_L}{T_L} - \frac{Q_{H,irr}}{T_H} < 0$$

• <u>Irreversible</u> refrigerators

$$\circ \oint \frac{\delta Q}{T} < 0$$

<u>Reversible</u> refrigerators

$$0 \quad \oint \frac{\delta Q}{T} = 0$$

- Introduction to <u>entropy</u> (S)
- Consider reversible processes along path A-B
- Inequality of Clausius

$$\circ \oint \left(\frac{\delta Q_{net}}{T}\right)_{rev} = 0$$

$$\circ \oint \left(\frac{\delta Q_{net}}{T}\right)_{rev} = \int_1^2 \left(\frac{\delta Q}{T}\right)_A - \int_2^1 \left(\frac{\delta Q}{T}\right)_B = 0$$

Inequality of Clausius

$$\circ \oint \left(\frac{\delta Q_{net}}{T}\right)_{rev} = 0$$

$$\circ \oint \left(\frac{\delta Q_{net}}{T}\right)_{rev} = \int_{1}^{2} \left(\frac{\delta Q}{T}\right)_{C} - \int_{2}^{1} \left(\frac{\delta Q}{T}\right)_{B} = 0$$

$$\int_{1}^{2} \left(\frac{\delta Q}{T} \right)_{A} = \int_{1}^{2} \left(\frac{\delta Q}{T} \right)_{C}$$

• $\oint \left(\frac{\delta Q_{net}}{T}\right)$ is same for reversible processes between states 1 & 2 <

• $\frac{\delta Q}{T}$ is independent of path and is function of end states

•
$$\frac{\delta Q}{T}$$
 is a property

• Entropy:
$$dS \equiv \left(\frac{\delta Q}{T}\right)_{rev} [kJ/K]$$

- Measure of energy no longer available to perform useful work
- Measure of disorder of the system

Entropy change during an internally reversible process:

$$dS = \frac{\delta Q_{net}}{T} \bigg|_{\text{int rev}} \qquad S_2 - S_1 = \int_1^2 \frac{\delta Q_{net}}{T} \bigg|_{\text{int rev}}$$

- Intensive property s, (kJ/kgK)
 - Similar to u, v, h
 - Can be used to define the state

Entropy of a pure substance (e.g. water, refrigerant)

Thermodynamic tables
 Reference value for water:

$$T = 0.01$$
°C, $s_f = 0 \text{ kJ/kgK}$

TABLE B.1.1 (continued)
Saturated Water

		Entropy, kJ/kg-K		
Temp. (°C)	Press. (kPa)	Sat. Liquid s_f	Evap. s_{fg}	Sat. Vapor s_g
0.01	0.6113	0	9.1562	9.1562
5	0.8721	0.0761	8.9496	9.0257
10	1.2276	0.1510	8.7498	8.9007
15	1.705	0.2245	8.5569	8.7813
20	2.339	0.2966	8.3706	8.6671
25	3.169	0.3673	8.1905	8.5579

Property diagrams – T vs. s diagram

TABLE B.1.1 (continued)
Saturated Water

		Entropy, kJ/kg-K		
Temp.	Press.	Sat. Liquid	Evap.	Sat. Vapor
(°C)	(kPa)	s_f	s_{fg}	S_g
0.01	0.6113	0	9.1562	9.1562
5	0.8721	0.0761	8.9496	9.0257
10	1.2276	0.1510	8.7498	8.9007
15	1.705	0.2245	8.5569	8.7813
20	2.339	0.2966	8.3706	8.6671
25	3.169	0.3673	8.1905	8.5579
30	4.246	0.4369	8.0164	8.4533
35	5.628	0.5052	7.8478	8.3530
40	7.384	0.5724	7.6845	8.2569

Draw Processes on T-s diagram

- 1→2 Entropy increase from sat. liquid to sat. vapor at 40°C
- 2→3 Temp decrease to T=15°C under constant s
- 3→4 Entropy decrease to sat. liquid at T = 15°C
- 4→1 T & s increase as sat. liquid to return to state 1 (40C)

Property diagrams – T vs. s diagram

TABLE B.1.1 (continued)
Saturated Water

		En	K	
Temp. (°C)	Press. (kPa)	Sat. Liquid s_f	Evap. s_{fg}	Sat. Vapor s_g
0.01	0.6113	0	9.1562	9.1562
5	0.8721	0.0761	8.9496	9.0257
10	1.2276	0.1510	8.7498	8.9007
15	1.705	0.2245	8.5569	8.7813
20	2.339	0.2966	8.3706	8.6671
25	3.169	0.3673	8.1905	8.5579
30	4.246	0.4369	8.0164	8.4533
35	5.628	0.5052	7.8478	8.3530
40	7.384	0.5724	7.6845	8.2569

Find Δs for each process:

$$1 \rightarrow 2 \quad s_2 - s_1 = s_g - s_f = s_{fg@40C}$$

$$2 \rightarrow 3$$
 $s_3 - s_2 = 0$, isentropic process

$$3 \rightarrow 4$$
 $s_4 - s_3 = s_{f@15C} - s_3 \rightarrow s_{f@15C} - s_{g@40C}$

$$4 \rightarrow 1 \quad s_1 - s_4 = s_{f@40C} - s_{f@15C}$$

Evaluate the change of entropy for reversible processes

$$dS = \int \left(\frac{\delta Q}{T}\right)_{rev}$$

Carnot Cycle

Process 1-2: Reversible isothermal heat addition.

$$S_2 - S_1 = \int_1^2 \left(\frac{\delta Q}{T}\right)_{rev} \to T_H = Const. \to S_2 - S_1 = \frac{Q_H}{T_H}$$

Process 2-3: Reversible, adiabatic expansion. Temp. T_H to T_L .

$$S_3 - S_2 = \int_2^3 \left(\frac{\delta Q}{T}\right)_{rev} \to Q = 0 \to S_3 - S_2 = 0$$

Adiabatic + reversible = isentropic

nsulation

 $(4) \rightarrow (1)$

Process 3-4: Reversible isothermal heat rejection.

$$S_4 - S_3 = \int_3^4 \left(\frac{\delta Q}{T}\right)_{rev} \to T_L = Const. \to S_4 - S_3 = \frac{-Q_L}{T_L}$$

Process 4-1: Reversible adiabatic compression. Temp. T_L to T_H .

$$S_1 - S_4 = \int_4^1 \left(\frac{\delta Q}{T}\right)_{rev} \rightarrow Q = 0 \rightarrow S_1 - S_4 = 0$$

10

Evaluate the change of entropy for reversible processes

Carnot Cycle

Heat Transfer - Area under a T-S Curve

For reversible processes

$$dS = \frac{\delta Q_{net}}{T} \qquad \qquad \delta Q_{net} = TdS$$

- Incremental heat transfer in a reversible process
 - The differential area under the *T-S* diagram.

Carnot Cycle as steam power plant

High Temp. reservoir T_H Heat pump condenser condenser \dot{Q}_H \dot{Q}_H Compressor evaporator \dot{Q}_L \dot{Q}_L

Low Temp. reservoir

Carnot Cycle as refrigerator

3.3.4 Example

Example 3.3: A <u>Carnot Heat Pump</u> is used to cool a house. The heat pump operates with ammonia as the working fluid. Heat is rejected in the condenser as the ammonia changes from a saturated vapour to a saturated liquid at 40°C. Heat is added in the evaporator as the ammonia has a constant temperature of 20°C. Assume the compressor and throttle to be adiabatic and reversible.

- a) Draw this cycle on the T-s diagram
- b) Determine q_H and q_L
- c) Determine the COP for the cycle

3.3.4 Example

Example 3.3: A <u>Carnot Heat Pump</u> is used to cool a house. The heat pump operates with ammonia as the working fluid. Heat is rejected in the condenser as the ammonia changes from a saturated vapour to a saturated liquid at 40°C. Heat is added in the evaporator as the ammonia has a constant temperature of 20°C. Assume the compressor and throttle to be adiabatic and reversible.

- a) Draw this cycle on the T-s diagram
- b) Determine q_H and q_L
- c) Determine the COP for the cycle
- d) Determine the quality of state 2

TABLE B.2.1 (continued)
Saturated Ammonia

		Enthalpy, kJ/kg		Entropy, kJ/kg-K			
Temp. (°C)	Press. (kPa)	Sat. Liquid h_f	Evap. h _{fg}	Sat. Vapor h _g	Sat. Liquid s_f	Evap. s_{fg}	Sat. Vapor
20	857.5	274.30	1185.9	1460.2	1.0408	4.0452	5.0860
25	1003.2	298.25	1165.2	1463.5	1.1210	3.9083	5.0293
30	1167.0	322.42	1143.9	1466.3	1.2005	3.7734	4.9738
35	1350.4	346.80	1121.8	1468.6	1.2792	3.6403	4.9196
40	1554.9	371.43	1098.8	1470.2	1.3574	3.5088	4.8662

TABLE B.2.2 (continued)
Superheated Ammonia

Temp. (°C)	v (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	
	1000 kPa (24.90°C)				
Sat.	0.12852	1334.9	1463.4	5.0304	
20	_	_	_	_	
30	0.13206	1347.1	1479.1	5.0826	
40	0.13868	1369.8	1508.5	5.1778	

Temp. (°C)	v (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)		
_	1200 kPa (30.94°C)					
Sat.	0.10751	1337.8	1466.8	4.9635		
40	0.11287	1360.0	1495.4	5.0564		
50	0.11846	1383.0	1525.1	5.1497		
60	0.12378	1404.8	1553.3	5.2357		

3.3.4 Exercises

Exercise 3-1

Consider a particular power plant where the heat added and rejected both occur at constant temperature. No other processes experience any heat transfer. The heat is added in the amount of $Q_{\rm H} = 3150$ kJ at 440° C and is rejected in the amount of $Q_{\rm L} = 1950$ kJ at 20° C.

- a) Is the Clausius inequality satisfied?
- b) Is the cycle reversible or irreversible?
- c) Find the thermal efficiency of the power plant
- d) How does the thermal efficiency differ if the power plant operated on the Carnot Cycle?

ans:

- a) The Clausius inequality is satisfied
- b) The cycle is irreversible since $\oint \frac{\delta Q}{T} < 0$.
- c) $\eta_{TH} = 38.1\%$
- d) $\eta_{TH} = 58.9\%$