Devoir Final 2

Les exercices sont indépendants. Les documents, calculatrices et téléphones sont interdits. Prenez soin de rédiger correctement les questions que vous savez faire! L'épreuve dure 2 heure.

Exercice 1. Pour $t \in \mathbb{R}$, on considére la matrice $M_t = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2-t & t-2 & t \end{pmatrix}$.

1. Calculer le polynôme caractéristique. Facile avec la première ligne! On obtient

$$(1-X)(2-X)(t-X)$$
.

- 2. Pour quelles valeurs de t la matrice M_t est elle diagonalisable ?
 - (a) Si $t \neq 1,2$ alors le polynôme caractéristique est s.r.s donc M_t est diagonalisable.
 - (b) Si t = 1: on a $M_t I_2 = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$ qui est de rang 2 donc le SEP est de dimension 1 donc $m_g(1) < m_a(1)$ et donc M_t n'est pas diagonalisable.
 - (c) Si t=2: on a $M_t-2I_2=\begin{pmatrix} -1&0&1\\-1&0&1\\0&0&0 \end{pmatrix}$ qui est de rang 1 donc $m_q(2)=m_a(2)$, donc M_t est diagonalisable.
- 3. On suppose t=2. Calculer M_2^n pour tout $n\in\mathbb{N}^*$. On a

$$M_2^n = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 2^n \end{pmatrix} P^{-1}$$

avec par exemple pour P:

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \text{ et donc } P^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{pmatrix}. \text{ Un calcul donne alors}$$

$$M_2^n = \begin{pmatrix} 1 & 0 & 2^n - 1 \\ 1 - 2^n & 2^n & 2^n - 1 \\ 0 & 0 & 2^n \end{pmatrix}$$

4. On suppose t = 1. Montrer que M_1 est semblable à

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Une basse (u, v, w) qui va fonctionner est une base formée par u un vecteur propre associé à la vp 2. Ensuite, on choisit w dans $\ker(M_1 - I_2)^2$ mais pas dans $\ker(M_1 - I_2)$ et on pose $v = (M_1 - I_2)w$. Le plus simple est de trouver explicitement ces vecteurs et de vérifier qu'on a bien une base. Par exemple prendre

$$u = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, v = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \text{ et } w = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Exercice 2. Les matrices $A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 0 \\ 2 & 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}$ sont elles semblables ?

Indication: on pourra commencer par montrer que le polynôme caractéristique des matrices A et B peut s'écrire $-(X+2)(X^2-2X-1)$.

L'indication permet de s'assurer que A et B sont diagonalisables avec les mêmes valeurs propres. Ainsi, il existe $P,Q\in GL_3(\mathbb{R})$ telles que $A=PDP^{-1}$ et $B=QDQ^{-1}$. Mais alors

$$A = (PQ^{-1})B(PQ^{-1})^{-1}$$

et $PQ^{-1} \in GL_3(\mathbb{R})$.

Problème. Autour du groupe de Heisenberg. On considère le sous-ensemble de $M_3(\mathbb{R})$ défini par :

$$H_3(\mathbb{R}) := \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}, x, y, z \in \mathbb{R} \right\}.$$

1. Montrer que $H_3(\mathbb{R})$ est un sous-groupe de $GL_3(\mathbb{R})$.

Tout d'abord si $m_{x,y,z} = \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \in H_3(\mathbb{R})$, on a $\det(m_{x,y,z}) = 1$ et donc $m_{x,y,z}$ est inversible.

(a) L'identité est bien dans $H_3(\mathbb{R}) \neq \emptyset$.

(b) Observons que

$$m_{x,y,z}.m_{x',y',z'} = m_{x+x',y+y',z+z'+xy'} \in H_3(\mathbb{R}).$$

(c) Et,

$$m_{x,y,z}^{-1} = m_{-x,-y,-z+xy} \in H_3(\mathbb{R}).$$

.

- 2. Montrer que $H_3(\mathbb{R})$ n'est pas commutatif. Il suffit de donner deux matrices de $H_3(\mathbb{R})$ qui ne commutent pas. Prendre $m_{1,1,0}$ et $m_{2,1,0}$ par exemple...
- 3. Montrer que tous ses éléments sont d'ordre infini. Remarquons que $m^n_{x,y,z} = m_{x^n,y^n,z^n+\alpha_n(x,y)}$. Donc, $m^n_{x,y,z} = m_{0,0,0}$ implique x=0 et y=0. Il faut s'assurer que $\alpha_n(0,0)=0$. Dès lors, on a aussi z=0.
- 4. Considérons l'application

$$\pi: \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \in H_3(\mathbb{R}) \mapsto (x, y) \in (\mathbb{R}^2, +).$$

(a) Montrer que π est un morphisme de groupes.

On a bien

$$\pi(m_{x,y,z}m_{x',y',z'}) = \pi(m_{x+x',y+y',*}) = (x+x',y+y') = (x,y) + (x',y') = \pi(m_{x,y,z}) + \pi(m_{x',y',z'}).$$

- (b) Montrer que π est surjective. Étant donné (x, y) il suffit de prendre $m_{x,y,0}$ pour avoir $\pi(m_{x,y,0}) = (x, y)$.
- (c) Calculer le noyau de π . $\ker \pi = \{m_{0,0,z}, z \in \mathbb{R}\} \subset H_3(\mathbb{R}).$
- 5. Le centre d'un groupe G, noté Z(G), est défini comme

$$Z(G) = \{ g \in G | gh = hg, \forall h \in G \}.$$

- (a) Montrer que Z(G) est un sous-groupe de G. Vérifier que $e \in Z(G)$ et que $gh \in Z(G)$ et $g^{-1} \in Z(G)$ lorsque $g, h \in Z(G)$.
- (b) Calculer Z(G) pour $G = H_3(\mathbb{R})$. On a $Z(H_3(\mathbb{R})) = \ker \pi$.
- 6. On définit pour $t \in \mathbb{R}^*$, l'application

$$\delta_t: \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \in H_3(\mathbb{R}) \mapsto \begin{pmatrix} 1 & tx & t^2z \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{pmatrix} \in H_3(\mathbb{R}).$$

(a) Montrer que pour tout $t \in \mathbb{R}^*$, l'application δ_t est un automorphisme du groupe $H_3(\mathbb{R})$.

Une façon de le voir est de remarquer que $\delta_t(m_{x,y,z}) = Pm_{x,y,z}P^{-1}$

où
$$P = \begin{pmatrix} t & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & t^{-1} \end{pmatrix}$$
. Sinon, vérifier la définition d'un automorphisme.

(b) Montrer que pour tout $t \in \mathbb{R}^*$, il existe un automorphisme θ_t du groupe $(\mathbb{R}^2, +)$ tel que

$$\pi \circ \delta_t = \theta_t \circ \pi$$
.

Il faut définir

$$\theta_t(x,y) = (tx,ty),$$

et vérifier que c'est bien un automorphisme de $(\mathbb{R}^2, +)$ et vérifier la relation ci-dessus.

Exercice Bonus. Notons $C^{\infty}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions définies sur \mathbb{R} à valeurs dans \mathbb{R} , indéfiniment dérivables. Soit $d: f \in C^{\infty}(\mathbb{R}) \mapsto f' \in C^{\infty}(\mathbb{R})$, l'endomorphisme de dérivation sur $C^{\infty}(\mathbb{R})$. Montrer qu'il n'existe pas de polynôme non-nul annulateur de d.

On remarque que, pour tout $\lambda \in \mathbb{R}$ la fonction $v_{\lambda} : x \mapsto e^{\lambda x}$ est un vecteur propre de d associé à la vp λ . Ainsi une formule du cours assure que pour tout polynôme P on a $P(d)v_{\lambda} = P(\lambda)v_{\lambda}$ et ce pour tout λ . Si P est annulateur, alors $P(\lambda) = 0$ pour tout λ . Le polynôme P a alors une infinité de racines et donc P = 0!