Bala Dhinesh Muthiah

iIT Madras, Chennai, India

🏓 baladhinesh@smail.iitm.ac.in 🕿 (+91)8610904952 💻 Website 🖸 @BalaDhinesh 🗓 @bala-dhinesh

Education

Indian Institute of Technology Madras

🖓 Chennai, India

B. Tech in Electrical Engineering, Minor in Computing; CGPA 8.66/10

Aug 19 - Present

Achievements

- University Demo Best Demonstration, Honorable Mention, SIGDA Design Automation Conference 2021.
- \$1500 stipend from Google for open-source contribution to FOSSi Foundation through Google Summer of Code, 2021.
- Semi-finalist, Terasic InnovateFPGA design contest 2021 sponsored by Intel, Microsoft and Analog Devices.
- Ranked 2196 (among 170,000 applicants) in Joint Entrance Examination (JEE) Advanced Examination 2019.
- Ranked top 0.4% (among 1 million applicants) in Joint Entrance Examination (JEE) Mains Examination 2019.

Publications

 Bala Dhinesh, Nan Wu, Hanran Wu, Yuan Xie and Cong "Callie" Hao, "When Approximate Computing Meets Graph Neural Networks", Manuscript under review at Design Automation Conference (DAC) 2023

Research Projects

Binary Neural Network (BNN) Inference on FPGA

♀IIT Madras

Bachelor's Thesis | Guide: Prof. Nitin Chandrachoodan | Collab with KLA Advanced Computing Labs
Mov 2022 - Present - Exploring various architectures and algorithms to alleviate the memory bottleneck problem for the UNet Segmentation model.

Approximate Computing on Graph Neural Networks (GNNs)

Remote

Research Internship, Georgia Institute of Technology | Guide: Prof.Cong "Callie" Hao

Feb 2022 - Present

- Replaced the traditional FP32 multipliers in the Graph Convolutional layers with various INT8, INT16 approximate multipliers.
- Reduced the power by 40% and energy by 26% in matrix multiplication | Performance closely similar to FP32 (70x gain).
- Employed **Degree Quant**, a Quantization Aware Training that selectively reduces the precision of multipliers of GNN nodes.
- Examined the effects of approximation component errors | Performed design exploration to determine the Pareto curve between power and GNN accuracy.

Rapid Hardware Prototyping Framework for FPGAs $\mid \square \mid$ Details

♀IIT Madras

Research Project | Guide: Prof. Nitin Chandrachoodan

math display="block">Jan 2022 - July 2022

- Developed a framework that provides a ready-to-use harness for testing user designs on Xilinx ZYNQ FPGAs.
- Interfaced user designs with AXI Lite and Stream protocols | Dynamically determines the maximum operatable frequency.
- Exposed the PYNQ Jupyter Notebook server to the internet, allowing anyone to access the FPGA remotely.
- Employed Partial Reconfiguration, which considerably reduced area overhead and bitstream load time.
- This setup was used for assignments by more than 130 students enrolled in the Computer Organization (EE2003) course.

Virtual FPGA Lab | Details

• Remo

Student Developer, Google Summer of Code 2021 | Mentor: Mr.Steve Hoover

May 2021 - Aug 2021

- Developed an online simulator to visualize FPGA and their peripheral outputs using the VIZ Visualization feature in the Makerchip platform, thereby mimicking the physical lab experience.
- Visualization is implemented in JavaScript | Supports both Transaction-Level Verilog (TL-Verilog) and SystemVerilog.
- Automated the entire Xilinx Vivado flow to run the design in an actual FPGA.

Technical Professional Experience

Qualcomm India Pvt. Ltd.

Pengaluru, India

Hardware Engineering Internship | Mentor: Mr. Sreekumar

∰ May 2022 - Aug 2022

- Automated the development of interrupt-related System Verilog modules for the latest processor.
- Eliminates manually writing of more than 10K lines of code | Script is robust and scalable to any microprocessor.
- Tested the automated Verilog modules after compilation and synthesis to check for functional correctness.

Relevant Projects

Custom Data Prefetcher Algorithm | Details

♀IIT Madras

Course Project | Computer Architecture | Guide: Prof. Madhu Mutyam

MOCt 2022 - Nov 2022

- Replaced Next-Line prefetcher in the IPCP prefetcher with Next or Previous Line prefetcher and simulated using **ChampSim**.

Achieved 0.73% improvement in IPC, up to 5% decrease in MPKC and 60% increase in favoring the custom prefetcher class over IPCP prefetcher on the SPEC benchmarks.

RISC-V Bit Manipulation Extension Support | 🖸 Details

Course Project | CAD for VLSI | Guide: Prof. Kamakoti

- Implemented RISC-V Bit Manipulation extension for RV32 and RV64 in Bluespec SystemVerilog.
- Simulated the design using **Verilator** and **cocotb** is used for writing test benches and verification.

Updated: December 15, 2022

Hardware efficient Bitonic Sorting in Verilog | Details

Personal Project

♀ Remote

Apr 2022

Implemented a high-performance Bitonic Parallel sorting algorithm with a reconfigurable number of elements and bitwidth.

Hardware Accelerator for Mandelbrot Fractal Generation | Details

♀IIT Madras

Course Project | Mapping DSP Algorithms to Architectures | Guide: Prof. Nitin Chandrachoodan

Mar 2022 - Apr 2022

- Accelerated Mandelbrot Fractal Generation in FPGA by designing AXI Stream IP design in Vitis HLS.

- Utilized Xilinx PYNQ framework to interact between the PS and PL of the PYNQ-Z2 FPGA.

♀IIT Madras

Course Project | Computer Organisation | Guide: Prof. Nitin Chandrachoodan

Mov 2021 - Dec 2021

Accelerated Standard and two security-enhanced modified 128bit AES encryption by designing custom AXI-Lite IPs in Vivado.

- Interfaced the design with Microblaze soft processor and achieved a 35x speedup in Artix-7 FPGA board over 2.9GHz PC.

- Achieved 16% gain in security performance (Avalanche effect) of the Modified AES versions over the Standard AES.

8-bit signed Carry Save Multiplier (CSM) design | Details

♀IIT Madras

Course Project | Digital IC design | Guide: Prof. Janakiraman

MOCT 2021 - Nov 2021

- Designed the schematic and layout of **8bit signed CSM**, with and without pipelining using **Electric** software.

- Optimized performance by employing various configurations of vector merge, using various full adders (CSA, LCSM).

Validated the DRC & LVS checks, performed RC extraction for the layout and simulated using LTSpice.

RISC-V CPU core | Details

Remote

Personal Project

June 2021

- Implemented a **5-stage pipelined** 32-bit RISC-V ISA processor design in Transaction-Level Verilog (**TL-Verilog**).

- Incorporated **Hazard-detection** and **Data forwarding** units | Tested in Makerchip platform.

Circuit Solver Web Application | Details

Remote

Personal Project

Aug 2020 - Sep 2020

- Developed a circuit solver in JavaScript that avoids manually solving complex circuits with controlled sources.

Used Modified Nodal Analysis (MNA) algorithm. | Automatic node number generation | Implemented using draw2d.js.

Relevant Coursework

- Computer Architecture (G)

- CAD for VLSI Systems (G)

- Digital System Testing and Testable Design (G)

- Digital IC Design (G)

- Microprocessor Theory+Lab

*G - Graduate Level Courses, level 5000 or higher

- Secure Processor Microarchitecture (G)
- Mapping Signal Processing Algorithms to DSP Architectures (G)

- GPU Programming (G)

- Computer Organization & Lab
- Digital Signal Processing

Extra-Curricular Activities

Core, Electronics Club, Center for Innovation (CFI), IIT Madras

May 2021 - Apr 2022

Spearheading a team of 50+ Electronics enthusiasts exploring diverse domains alongside managing the club activities.

- Organized a month-long session for 140+ participants, utilizing our custom in-house MCU and peripheral shields.

Coordinator, Electronics Club, Center for Innovation (CFI), IIT Madras

May 2020 - Apr 2021

- Handled all the club activities | Created and maintained the club website where we post interesting blogs.

- Conducted sessions on Machine Learning on Microcontrollers and MicroPython with our custom ESP32 to 100+ participants.

Skills

Programming Languages: Python, C/C++, Assembly(ARM, RISC-V), Tcl, Bash, MATLAB, HTML, CSS, JavaScript.

HDLs: Verilog, TL-Verilog, SystemVerilog, Bluespec SystemVerilog.

Tools and Softwares: Xilinx Vivado, Vitis, PYNQ, ChampSim, Cachegrind, LT-Spice, Arduino, PyTorch, HLS4ML, cocotb.

Teaching Experience

Teaching Assistant for Prof. Nitin Chandrachoodan, Computer Organisation (EE2003) course

Fall 2022

Classroom responsibilities include weekly sessions for reviewing lecture material and assisting during lab sessions.

- Assignment responsibilities include creating test benches, grading assignments, and addressing students' concerns.

Activities

- Talk on Rapid Hardware Prototyping Framework for FPGA RISC-V MYTH Workshop 2022, VLSI System Design.
- Talk on Hardware efficient Bitonic Sorting Algorithm Mini project seminar, IIT Madras.
- Instructor for the tutorial on Digital Design on FPGA using Makerchip VSDOpen 2021 conference, VLSI System Design.
- Instructor for the workshop on FPGA Programming Building Whack-A-Mole game SHAASTRA 2021, IIT Madras.
- Closely mentored seven junior undergraduate students on Digital Design projects as part of the Electronics Club, IIT Madras.
- Selected among 1000+ applicants on Computer Architecture winter school by the National Supercomputing Mission, India.