Сервер точного времени. Метроном IEEE 1588-2008 (PTPv2) Grandmaster Clock.

Руководство по эксплуатации.

версия 12.2014

Оглавление

1.Введение	3
2.Комплектация	5
3.Меры безопасности	6
4.Правила и условия эксплуатации	7
5. Краткая инструкция по работе с сервером	8
6. Установка и включение сервера	10
7.Индикаторы контроля состояния сервера	14
8.Просмотр состояния сервера через WEB-интерфейс	15
9. Контроль состояния и управление сервером через WEB-интерфейс	18
Просмотр и изменение параметров сетевого соединения	19
Подключение внешних NTP серверов	21
Просмотр и изменение аппаратной конфигурации сервера	23
Просмотр расширенной информации об аппаратной конфигурации и состоян	ии
РТР сервера	
10. Контроль состояния и управление сервером через текстовый терминал	26
Подключение к серверу по протоколу Telnet	26
Подключение к серверу через порт USB	27
Подключение к серверу через порт RS-232-0.	31
Просмотр сетевых настроек	
Изменение сетевых настроек.	33
Изменение пароля защищенных страниц WEB-интерфейса	
Подключение внешних NTP серверов	34
11. Аппаратная конфигурация сервера	36
Выбор сигналов синхронизации 1PPS и NMEA	38
Внешние выходы сигналов синхронизации	39
Аппаратная конфигурация по умолчанию	40
12.Обновление программного обеспечения	
13. Типовые неисправности и их устранение	43
14. Технические характеристики.	
Основные характеристики и условия эксплуатации	
Режимы синхронизации поддерживаемые сервером:	46
Сетевые протоколы и функции	
Сетевые протоколы мониторинга и конфигурирования	
Органы управления и индикации	46
Внешние порты	
15.Приложения	49
Цоколевка разъемов RS-232	
Схемы кабелей RS-232	
Цоколевка разъемов реле и питания	51

1. Введение.

Сервер точного времени Метроном IEEE 1588-2008 (РТР v2) Grandmaster Clock (далее РТР сервер) представляет собой сервер часов верхнего уровня (Grandmaster) с поддержкой протокола IEEE 1588-2008 или РТРv2 (Precision Time Protocol version 2). Типовая точность синхронизации ± 100 нсек.

Возможно исполнение с поддержкой протоколов IEEE 1588-2008 и NTP одновременно.

В сервере установлен высокостабильный термостатированный опорный генератор. Встроенный приемник GPS/ГЛОНАСС используется для подстройки частоты опорного генератора и синхронизации часов сервера со всемирным координированным временем Universal Coordinated Time (UTC).

Для контроля синхронизации сервер имеет выходы импульсов 1PPS и опорного генератора 10МГц.

Для подключения к сети используется порт Ethernet 10/100Base-T.

Аппаратная поддержка протокола РТР осуществляется программируемой логической интегральной микросхемой (ПЛИС). ПЛИС также фиксирует количество принятых и переданных РТР пакетов, что позволяет контролировать работу сервера. По отдельному заказу, прошивка ПЛИС может дополнена функциями фильтрации нежелательных входных пакетов, например, с определенными МАС или IP адресами..

Сервер имеет два порта RS-232 которые используются для вводавывода сигналов точного времени 1PPS и NMEA или для работы в режиме терминала (один порт).

Два релейных выхода предназначены для вывода сигнала аварии и синхроимпульсов точного времени: 1PPS (один импульс в секунду) и 1PPM (один импульс в минуту). В схеме применены твердотельные реле с электронной защитой от перегрузки по току и практически неограниченным ресурсом работы.

Светодиодные индикаторы на передней панели позволяют визуально контролировать состояние сервера. Для удаленного контроля и управления по сети Ethernet используется WEB-интерфейс и протокол TELNET (командная строка).

Образ операционной системы и программа хранятся на встроенной

SD карте. Копия программного обеспечения также хранится в памяти типа NAND и используется для восстановления системы при повреждении программы на SD.

Сервер выполнен в корпусе размером 46х118х127 мм с креплением на DIN-рейку. При необходимости, сервер можно установить в горизонтальном положении на полке в 19"-ой стойке.

Питание сервера осуществляется от источника постоянного тока с напряжением 12..24В. Возможны варианты исполнения с напряжением питания 18..60В или 110..230В переменного тока.

Сервер разработан и производится в России. Используются модули GPS/ГЛОНАСС российской разработки (КБ Навис) и открытое программное обеспечение (ОС Linux).

Внимание. Тестовая версия hw 0.1.2 sw 4.1. имеет ограниченную поддержку протокола PTP:

- Транспортный протокол: UDP/IPv4
- Режим синхронизации: End-To-End, Two-Step.
- Pабота только с одним устройством Slave Clock. Подключение нескольких оконечных устройств возможно через граничный коммутатор Boundary Clock.

Внимание. В тестовой версия hw 0.1.2 sw 4.1. не выводятся на контакты реле импульсы 1PPM.

Внимание. При затенении антенны GPS/ГЛОНАСС (установка на стене здания, в окне и т.п) возможно увеличение отклонения Offset. Для получения стандартных характеристик (среднеквадратичное отклонение Offset не более 25нс) антенна должна быть установлена на открытом пространстве (свободный горизонт, Open Sky).

Замечание. Протокол PTP может работать в обычной локальной сети с обычными коммутаторами. При подключении сервера Grandmaster Clock и клиента Slave Clock через один стандартный коммутатор синхронизация будет установлена, но отклонение offset увеличиться до величины ±500нс примерно.

2. Комплектация.

1.	Сервер точного времени Метроном.	- 1 шт.
2.	Адаптер электропитания на ~ 220В.	- 1 шт.
3.	Антенный кабель 20м.	- 1 шт.
4.	Руководство по эксплуатации.	- 1 шт.
5.	Антенна ГЛОНАСС/GPS (опция)	- 1 шт.

3. Меры безопасности.

- 1. Сервер точного времени Метроном соответствует общим требованиям безопасности по ГОСТ Р 51350-99.
- 2. По способу защиты человека от поражения электрическим током сервер соответствует классу III по ГОСТ Р 51350-99.
- 3. Испытания, наладка, ввод в эксплуатацию и эксплуатация сервера должны производиться с учетом требований безопасности, изложенных в ГОСТ 12.3.019.
- 4. При эксплуатации сервера должны выполняться общие требования пожарной безопасности.
- 5. Качество воздуха рабочей зоны при эксплуатации сервера должно соответствовать требованиям ГОСТ 12.1.005.

4. Правила и условия эксплуатации.

- 1. До начала работы с сервером внимательно изучите настоящее руководство, назначение кнопок и индикаторов, внешних разъемов.
- 2. Необходимо оберегать сервер от ударов, попадания влаги и пыли, длительного воздействия прямых солнечных лучей.
- 3. Если сервер подвергался воздействию низких температур, то перед включением необходимо выдержать его в нормальных условиях не менее двух часов.
- 4. Сервер может эксплуатироваться при электропитании от сети постоянного или переменного тока (зависит от варианта исполнения).
- 5. Сервер должен быть заземлен через контакт заземления на разъеме питания.
- 6. При установке антенны вне помещений, необходимо подключать антенну через разрядник грозозащиты.

5. Краткая инструкция по работе с сервером.

Установка сервера.

Подключите источник питания и заземление (сигнальная земля) к разъему питания сервера. Полярность подключения указана на разъеме, а номинальное напряжение питания - на корпусе сервера.

Подключите активную антенну.

Подключите сервер к сети Ethernet.

Включение сервера.

Подайте питание на сервер. После загрузки операционной системы и синхронизации с сигналом GPS/ГЛОНАСС (3..5 минут) все индикаторы на лицевой панели должны гореть зеленым. Индикатор РАБОТА мигает только при приеме сервером РТР-пакетов.

Параметры сетевого соединения.

Настройки по умолчанию параметров сетевого соединения:

Ethernet mode: auto-negotiation

DHCP: off

IP address: 192.168.2.100 Subnet mask: 255.255.255.0 Gateway IP: 192.168.2.1

Изменение параметров сетевого соединения через WEB интерфейс.

Для изменения сетевых настроек запустите WEB-браузер и в строке адреса введите текущий IP-адрес сервера (192.168.2.100 по умолчанию). Вы увидите страницу состояния сервера **Home**.

Нажмите на ссылку Network Setting.

Введите имя пользователя по умолчанию: metronom

Введите пароль по умолчанию: metronom

На странице **Network Setting** установите требуемые параметры сетевого соединения, нажмите панель **Set network setting** и перезагрузите сервер нажав панель **Reboot** в нижней части страницы.

Изменение параметров сетевого соединения через USB или RS-232-0 порты.

Настройки параметров сетевого соединения можно изменить через порты USB или RS-232-0.

Порт USB работает в режиме эмуляции терминала. и использует драйвер "Virtual COM Port" (http://www.ftdichip.com/Drivers/VCP.htm).

Параметры порта USB или RS-232-0: скорость - 115200, бит данных - 8, четность - нет, стоповых бит - 1, управление потоком - нет.

Внимание. При работе через порт RS-232-0, порт USB должен быть отключен.

По умолчанию, на порты USB и RS-232-0 выводятся сообщения NMEA. Для перевода порта в режим терминала нажмите комбинацию клавиш <ctrl>+<c>.

Для изменеия IP адреса NTP сервера выполните команду root@Metronom-M50:~# mconfig -ip <ip-address>,

где <ip-address> вводится в формате 192.168.2.100

Для изменеия маски подсети выполните команду:

root@Metronom-M50:~# mconfig -mask <mask>,

где <mask> вводится в формате 255.255.255.0

Для изменеия IP адреса подсети выполните команду: root@Metronom-M50:~# mconfig -netw <ip-net>,

где <ip-net> вводится в формате 192.168.2.0

Для изменеия IP адреса шлюза выполните команду:

root@Metronom-M50:~# mconfig -gate <ip-gate>, где <ip-gate> вводится в формате 192.168.2.1

Для того, чтобы изменения вступили в силу, необходимо

root@Metronom-M50:~# reboot или кнопкой СБРОС.

перезагрузить сервер командой:

Сброс параметров сетевого соединения в состояние по умолчанию.

Параметры сетевого соединения могут быть сброшены в состояние по умолчанию. Для этого нажмите и удерживайте, до включения желтого индикатора ПИТАНИЕ, кнопку ЗАВ.НАСТР. Отпустите кнопку ЗАВ.НАСТР. и нажмите кнопку СБРОС для перезагрузки сервера.

Внимание. Кнопка ЗАВ. НАСТР. устанавливает в состояние по умолчанию только сетевые настройки и настройки конфигурации РТР. Аппаратная конфигурация сервера (выбор источников синхронизации), имена пользователей и пароли этой кнопкой не сбрасываются.

6. Установка и включение сервера.

Рис. 1. Общий вид РТР сервера.

Определите напряжение питания вашей модификации сервера. Напряжение питания указано на этикетке 1.

Рис. 2. Вид верхней панели.

Подключите к розетке разъема питания провода питания и земли в соответствии с полярностью обозначенной на разъеме ПИТАНИЕ см. рис. 2. Контакт "земля" на разъеме питания соединен с корпусами разъемов и с контактами сигнальной земли разъемов сервера.

Закрепите сервер на DIN-рейке. Сервер также может быть установлен на полке в горизонтальном положении. При установке на полке, сервер рекомендуется закрепить двумя винтами МЗ через гайки 2. Глубина захода винтов в корпус сервера не более 25 мм.

При отключенном источнике питания, подключите розетку разъема питания к вилке питания **3** сервера.

Рис. 3. Вид нижней панели.

Подключите активную антенну к разъему АНТЕННА **4**. При установке антенны вне помещений, необходимо подключать антенну через разрядник грозозащиты.

Рис. 4. Вид лицевой панели.

Подключите патч-кордом порт 10/100-BASE-T сервера **5** к порту коммутатора Ethernet.

Подайте питание на сервер. На лицевой панели расположены индикаторы режима работы **6**. Должен гореть зеленый индикатор ПИТАНИЕ.

После загрузки операционной системы загорается зеленый индикатор АНТЕННА. Индикаторы СИНХРОНИЗАЦИЯ и АВАРИЯ горят красным пока приемник GPS/ГЛОНАСС синхронизируется от сигналов спутников.

Через несколько минут синхронизация GPS приемника завершится, индикатор СИНХРОНИЗАЦИЯ загорится желтым, индикатор АВАРИЯ загорится зеленым и начнется синхронизация часов сервера.

Еще через несколько минут РТР-процесс захватит сигналы NMEA и 1PPS и индикатор СИНХРОНИЗАЦИЯ загорится зеленым.

Ошибка синхронизации часов сервера относительно UTC (offset) сразу после захвата синхронизации может составлять несколько десятков мс. Через несколько часов ошибка синхронизации уменьшится до нормы указанной в технических характеристиках данной модели сервера. Сервер готов к работе.

7. Индикаторы контроля состояния сервера.

На лицевой панели сервера расположены следующие светодиодные индикаторы:

- 1. Индикатор ПИТАНИЕ зеленый при поданном на сервер внешнем питании.
- 2. Индикатор АНТЕННА зеленый при нормальной работе. Красный при отключении антенны, обрыве или замыкании в кабеле антенны. Состояние антенны определяется по отклонению тока питания антенны от номинального значения.
- 3. Индикатор СИНХРОНИЗАЦИЯ зеленый при установившейся синхронизации от встроенного GPS/ГЛОНАСС приемника. Желтый при синхронизации только по сообщениям NMEA (ошибка синхронизации в несколько десятков мс и более). Красный при полной потере синхронизации. Необходимо отметить, что, если после нормальной работы, синхронизация была потеряна, сервер будет продолжать работу, но величина ошибки синхронизации будет со временем возрастать.
- 4. Индикатор АВАРИЯ зеленый при нормальной работе. Красный при потере синхронизации или при неисправностях оборудования . Сигнал индикатора дублирует реле Р0.
- 5. Индикатор РАБОТА мигает зеленым при приходе на порт 10/100 BASE-T сервера хотя бы одного PTP-пакета за секунду (с любым IP и MAC адресами).
- 6. Индикаторы ВКЛ расположенные у разъемов реле Р0 и Р1 загораются зеленым только при замыкании контактов 1-2 соответствующего реле. При перегрузке по току цепей контактов 1-2 или 2-3 эти индикаторы загораются красным.

8. Просмотр состояния сервера через WEBинтерфейс.

Запустите WEB-браузер и в строке адреса введите IP-адрес сервера (по умолчанию 192.168.2.100). Откроется странница состояния **Home**.

Если страница состояния сервера не открывается:

- 1. Уточните у администратора IP-адрес сервера и сетевые настройки компьютера и локальной сети.
- 2. Подключитесь к серверу через порт USB или RS-232-0 (см. раздел Контроль состояния и управление сервером через текстовый терминал). Проверьте и установите требуемые сетевые настройки.

На главной странице **Ноте** выводится следующая информация:

Строка Revision:hw 0.1.3, sw 4.10, sn 2019 содержит номер версий схемы сервера, номер версии программного обеспечения и заводской номер.

Строки UTC Date: Sep 24 2014 Time: 16:01:15

показывают дату (число, месяц, год) и время UTC (час, минута, секунда) по часам сервера.

Cтроки Current Offset [ns]: 20 Mean Offset [ns]: 1 Jitter [ns]: 41

показываею отклонение фронта импульса 1PPS часов сервера от импульса 1PPS GPS/GLONASS в нс. Причем, current offset показывает текущее значение отклонения, меап offset - среднее отклонение за последнюю 1000 секунд, jitter - среднеквадратичное отклонение за последнюю 1000 сек.

Внимание. Значения offset и Jitter имеют действительные значения только при устойчивом приеме сигнала GPS/GLONASS.

Фаза импульс 1PPS GPS/GLONASS приемника нестабильна во времени. При устойчивом приеме GPS/GLONASS среднеквадратичное отклонение дрожаний фронта импульса (джиттер) составляет около 25нс, а единичные отклонения могут превышать 100нс. Причем, при затенении антенны джиттер увеличивается в несколько раз. Для получения гарантированного значения среднеквадратичного отклонения 25нс антенна GPS/GLONASS должна быть установлена на открытом пространстве (свободная линия горизонта - Open sky). Не допустима установка на вертикальных стенах зданий и контейнеров.

Значение offset зависит от задержке в кабеле антенны и может быть скомпенсировано: см. раздел Просмотр и изменение аппаратной конфигурации сервера.

Строка Reference time: GPS+GLONASS 1PPS показывает состояние синхронизации сервера. Запись GPS+GLONASS указывает на захват спутников GPS/GLONASS и синхронизацию сервера по протоколу NMEA.

Запись **1PPS** указывает, что часы сервера синхронизированы с высокоточным опорным сигналом 1PPS.

Строки Uptime Date: Jun 04 2014 Time: 16:12.55

показывают состояние сервера: uptime - сервер в рабочем состоянии, Alarm - авария (потеря синхронизации). В полях Date и тime указано время перехода сервера в данное состояние.

В строках **PTP packets Request:** выводится число PTP-сообщений (пакетов) Delay-Req с любым IP и MAC адресом пришедших на порт сервера.

В строках **PTP** packets Response: выводится число PTP-сообщений (пакетов) Delay-Resp с любым IP и MAC адресом переданных сервером.

В колонке **Last** выводится кличество пакетов за прошедшую секунду, прошедшую минуту, прошедший час и за прошедшие сутки.

В колонке **Average** выводится среднее количество пакетов в секунду, среднее количество пакетов в минуту и среднее количество пакетов в час.

Строка Antenna показывает состояние антенны. ок - ток питания антенны в норме, оff - антенна отключена, short - замыкание в кабеле или антенне.

Строки Latitude: 55°49' 7.540283''N Longitude: 37°35'44.599915''E

Altitude: 174.3M

показываю координаты (широту, долготу) и высоту над уровнем моря антенны сервера.

Строки Satellite in View:

GLONASS: 3
GPS: 6
SBAS: 0

указываю количество видимых навигационных спутников различных систем. Количество спутников позволяет судить о качестве принимаемого сигнала.

Внимание. Информация о координатах и спутниках обновляется раз в 5 минут. Наиболее достоверные данные о числе спутников отображаются после перезагрузки сервера, так как для захвата сигнала спутников требуется более мощный сигнал, чем для последующего удержания.

9. Контроль состояния и управление сервером через WEB-интерфейс.

Запустите WEB-браузер и в строке адреса введите IP-адрес сервера (по умолчанию 192.168.2.100). Откроется странница состояния **Home**.

Если страница состояния сервера не открывается:

- 1. Уточните у администратора IP-адрес сервера и сетевые настройки компьютера и локальной сети.
- 2. Подключитесь к серверу через порт USB или RS-232-0 (см. раздел Контроль состояния и управление сервером через текстовый терминал). Проверьте и установите требуемые сетевые настройки.

Внимание. Вход на страницы **Network Setting, Configuration, Info** защищен паролем.

Имя пользователя по умолчанию: metronom

Пароль по умолчанию: metronom

Изменение пароля возможно через текстовый терминал (см. раздел Изменение пароля защищенных страниц WEB-интерфейса).

Примечание. Параметры сетевого соединения могут быть сброшены в состояние по умолчанию. Для этого нажмите и удерживайте, до включения желтого индикатора ПИТАНИЕ, кнопку ЗАВ.НАСТР. Отпустите кнопку ЗАВ.НАСТР. и нажмите кнопку СБРОС для перезагрузки сервера.

Внимание. Кнопка ЗАВ. НАСТР. устанавливает в состояние по умолчанию только сетевые настройки и настройки конфигурации РТР. Аппаратная конфигурация сервера (выбор источников синхронизации), имена пользователей и пароли этой кнопкой не сбрасываются.

Просмотр и изменение параметров сетевого соединения. Для просмотра и изменения текущих сетевых настроек нажмите на ссылку **Network Setting.**

В окнах **IP** Address, Network mask, Subnetwork, Gateway указаны текущие сетевые настройки. Для их изменения введите новые значения параметров. Для сохранения введенных значений нажмите панель **Set Ethernet Setting.** Для отмены внесенных изменений нажмите панель **Cancel.**

Для того, чтобы новые значения параметров вступили в силу, перезагрузите сервер нажав панель **Reboot** (расположена внизу окна и не видна на рисунке). Перезагрузить сервер также можно нажав скрытую кнопку СБРОС на передней панели.

Подключение внешних NTP серверов.

Использование внешних NTP серверов целесообразно только для резервирования системы при ее синхронизации внешними сигналами 1PPS и NMEA, на случай пропадания сигнала NMEA. Задать список до 4 внешних NTP серверов можно на той же странице изменения текущих сетевых настроек **Network Setting.**

В окнах Server 1...Server 4 укажите IP-адреса внешних NTP

серверов и разрешите их подключение установив галочки в соответствующих окошках **Enable.**

Если внешние NTP сервера находятся в глобальной сети, для доступа к ним укажите в полях **DNS server 1..4** IP-адреса DNS серверов (хотя бы одного) и разрешите их использование, установив галочки в соответствующих окошках **Enable.**

Для сохранения введенных значений нажмите панель **Set Ethernet Setting.** Для отмены внесенных изменений нажмите панель **Cancel.**

Для того, чтобы новые значения параметров вступили в силу, перезагрузите сервер нажав панель **Reboot.** Перезагрузить сервер также можно нажав скрытую кнопку СБРОС на передней панели.

Просмотр и изменение аппаратной конфигурации сервера. Для просмотра и изменения аппаратной конфигурации сервера нажмите ссылку **Configuration.**

Для выбора источника сигнала 1PPS активируйте в списке **Source selection of 1PPS** соответствующую кнопку.

Для выбора источника сигнала NMEA активируйте в списке **Source selection of NMEA** соответствующую кнопку.

Для компенсации задержки в кабеле антенны введите значение задержки в нс в поле **Antenna Delay.** Допустимый диапазон 0...2000 нс.

Для сохранения введенных значений нажмите панель **Set.** Для отмены внесенных изменений нажмите панель **Cancel.**

Для того, чтобы новые значения параметров вступили в силу, перезагрузите сервер нажав панель **Reboot.** Перезагрузить сервер также можно нажав скрытую кнопку СБРОС на передней панели.

Сигналы синхронизации часов сервера (1PPS и NMEA) по умолчанию подаются от встроенного приемника GPS/ГЛОНАСС. Эти сигналы могут быть поданы через порт RS-232-1 извне, от другого сервера с выходами 1PPS и NMEA или внешних эталонных часов. Рекомендуется импульс 1PPS подаваться через 1PPS вход который имеет меньшую задержку по сравнению с портом RS-232.

Не допускается подавать сигналы 1PPS и NMEA от разных эталонных часов. Например, 1PPS от встроенного приемника GPS/ГЛОНАСС, а NMEA с другого внешнего GPS приемника.

Полная информация об аппаратной конфигурации сервера содержится в разделе Аппаратная конфигурация сервера.

Просмотр расширенной информации об аппаратной конфигурации и состоянии РТР сервера.

Информацию об установленной аппаратной конфигурации и список последних аварий можно посмотреть на странице **Info.**

1PPS Source показывает выбранный источник сигнала 1PPS. NMEA Source показывает выбранный источник сигнала NMEA. List of Alarm содержит список последних аварий с указанием времени обнаружения аварии.

10. Контроль состояния и управление сервером через текстовый терминал.

Подключение к серверу в режиме текстового терминала может быть выполнено по сети Ethernet по протоколу Telnet, через порт USB или RS-232-0. В данном руководстве описано подключение для ОС Windows.

Подключение к серверу по протоколу Telnet.

По умолчанию параметры сетевого соединения следующие:

DHCP: off

IP address: 192.168.2.100 Subnet mask: 255.255.255.0 Gateway IP: 192.168.2.1

Ethernet mode: auto-negotiation

Если с этими параметрами, доступ через сеть к серверу невозможен, их можно изменить подключившись через порт USB или порт RS-232-0.

Для подключение по протоколу Telnet, в командной строке Windows (панель Пуск/Все программы/Стандартные/Командная строка) введите команду telnet с указанием в качестве параметра IP-адреса сервера (для примера указан IP-адрес сервера по умолчанию):

C:\Documents and Settings\Admin>telnet 192.168.2.100

Соединение будет установлено и в окне терминала появится приглашение login:

Введите имя пользователя: root

Пароль по умолчанию отсутствует: нажмите <Enter>

Если подключение не удается установить:

- 1. Уточните у администратора IP-адрес сервера и сетевые настройки компьютера и локальной сети.
- 2. Подключитесь к серверу через порт USB или RS-232-0 (см. далее). Проверьте и установите требуемые сетевые настройки.

Примечание. Параметры сетевого соединения могут быть сброшены в состояние по умолчанию. Для этого нажмите и удерживайте, до включения желтого индикатора ПИТАНИЕ, кнопку ЗАВ.НАСТР. Отпустите кнопку ЗАВ.НАСТР. и нажмите кнопку СБРОС для перезагрузки сервера.

Внимание. Кнопка ЗАВ. НАСТР. устанавливает в состояние по умолчанию только сетевые настройки и настройки конфигурации РТР. Аппаратная конфигурация сервера (выбор источников синхронизации), имена пользователей и пароли этой кнопкой не сбрасываются.

Подключение к серверу через порт USB.

Установите на компьютере драйвер "Virtual COM Port". Драйвер можно скачать с сайта http://www.ftdichip.com/Drivers/VCP.htm.

Внимание. Перед подключением кабеля USB необходимо проверить надежность заземления корпусов компьютера и сервера. Как минимум, корпус компьютера и контакт заземления сервера должны быть соединены общим проводом. При использовании ноутбука это не требуется, но рекомендуется проверить отсутствие переменного напряжения между корпусами разъемов USB сервера и компьютера, до подключения кабеля USB.

Подключите кабель USB-A - USB-B к порту USB компьютера и к порту USB сервера, соответственно.

Далее описана работа с программой "HyperTerminal", поставляемой с ОС Windows XP. Можно использовать программу "putty" доступную на сайте http://www.putty.org/.

Запустите на компьютере программу "**HyperTerminal**". В открывшемся окне "**Описание подключения**" введите название нового подключения, например, "Metronom" и нажмите "**OK**".

Откроется следующее окно "Подключение", в котором в строке "Подключаться через:" надо выбрать порт СОМ, к которому подключен сервер. Если в системе несколько СОМ-портов, просмотрите их свойства в окне "Мой компьютер / Панель управления / Система / Оборудование / Диспетчер устройств: Порты (СОМ и LPT)" и найдите номер СОМ порта соответствующий "USB Serial Port (СОМ...)".

В окне "Свойства СОМ.." установите следующие параметры:

Скорость (бит/с): 115200

Биты данных: 8 Четность: нет Стоповые биты: 1

Управление потоком: Нет

Внимание. По умолчанию, на порт USB выводятся сообщения NMEA. Для перевода порта в режим терминала (пользователь root) нажмите комбинацию клавиш <ctrl>+<c>.

В окне терминала появится приглашение root@Metronom-M50:~#

Для перевода порта в режим вывода сообщений NMEA выполните команду окончания работы в режиме терминала: root@Metronom-M50:~# mconfig -term

Подключение к серверу через порт RS-232-0.

Для подключения через порт RS-232-0 требуется "нуль-модем" кабель с розетками DB-9. Цоколевка контактов разъема порта RS-232 сервера и схема кабеля приведены в приложении.

Внимание. Перед подключением кабеля необходимо проверить надежность заземления компьютера и сервера. Как минимум, корпус компьютера и контакт заземления сервера должны быть соединены общим проводом. При подключении кабеля к порту RS-232-0 рекомендуется выключать компьютер и сервер. При использовании нотбука это, как правило, не требуется, но рекомендуется проверить отсутствие переменного напряжения между корпусами разъемов сервера и компьютера, до подключения кабеля.

Подключите кабель к COM-порту компьютера и к порту RS-232-0 сервера.

Запустите программу "HyperTerminal" и установите соединение аналогично подключению по USB. Параметры порта по умолчанию: Скорость (бит/с): 115200

Биты данных: 8 Четность: нет Стоповые биты: 1

Управление потоком: Нет

Внимание. По умолчанию, на порт RS-232-0 выводятся сообщения NMEA. Для перевода порта в режим терминала (пользователь root) нажмите комбинацию клавиш <ctrl>+<c>.

В окне терминала появится приглашение root@Metronom-M50:~#

Для перевода порта в режим вывода сообщений выполните команду окончания работы в режиме терминала:
root@Metronom-M50:~# mconfig -term

Внимание. При использовании порта RS-232-0 в качестве терминала, порт USB должен быть отключен. При подключении порта USB происходит автоматическое переключение входного потока с порта RS-232-0 на порт USB.

Просмотр сетевых настроек.

Подключитесь к серверу через порты USB, RS-232-0 или Ethernet.

При подключении через Ethernet, на запрос login введите: меtronom-м50 login: root

В ответ на запрос пароля введите пароль.

Пароль по умолчанию не установлен (просто нажмите <Enter>). Рекомендуется установить пароль командой Linux passwd.

Внимание. По умолчанию, на порт выводятся сообщения NMEA. Для перевода порта в режим терминала (пользователь root) нажмите комбинацию клавиш <ctrl>+<c>.

Для перевода порта обратно в режим вывода сообщений NMEA выполните команду:

root@Metronom-M50:~# mconfig -term

Внимание. При использовании порта RS-232-0, порт USB должен быть отключен. При подключении порта USB происходит автоматическое переключение входного потока с порта RS-232-0 на порт USB.

Для просмотра текущих сетевых параметров выполните команды Linux ifconfig и route:

root@Metronom-M50:~# ifconfig

eth0 Link encap:Ethernet HWaddr 00:17:EB:27:A9:B8

inet addr:192.168.2.100 Bcast:0.0.0.0 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:2348 errors:0 dropped:0 overruns:0 frame:0
TX packets:31 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000 RX bytes:232961 (227.5 KiB) TX bytes:2996 (2.9 KiB)

Interrupt:67

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:83597 errors:0 dropped:0 overruns:0 frame:0

TX packets:83597 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:10812768 (10.3 MiB) TX bytes:10812768 (10.3 MiB)

root@Metronom-M50:~# route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface 192.168.2.0 * 255.255.255.0 U 0 0 0 eth0 default 192.168.2.1 0.0.0.0 UG 0 0 0 eth0

Изменение сетевых настроек.

Установите требуемые сетевые настройки командой настройки конфигурации mconfig с соответствующими параметрами (для примера в командах указаны значения по умолчанию).

Для вызова справки команды mconfig:

root@Metronom-M50:~# mconfig -h

Установка IP адреса NTP сервера:

root@Metronom-M50:~# mconfig -ip 192.168.2.100

Установка маски подсети:

root@Metronom-M50:~# mconfig -mask 255.255.255.0

Установка IP адреса подсети:

root@Metronom-M50:~# mconfig -netw 192.168.2.0

Установка IP адреса шлюза:

root@Metronom-M50:~# mconfig -gate 192.168.2.1

Вышеуказанные команды изменяют содержимое файла /etc/network/interfaces.

Для того, чтобы изменения вступили в силу, необходимо перезагрузить сервер командой: root@Metronom-M50:~# reboot или кнопкой СБРОС.

Для отмены изменений внесенных в конфигурационные файлы, включая конфигурационные файлы PTP, возврата к настройкам по умолчанию и перезагрузки сервера выполните команды:

root@Metronom-M50:~# mconfig -default

root@Metronom-M50:~# reboot

или нажмите и удерживайте кнопку ЗАВ.НАСТР. до включения желтого индикатора ПИТАНИЕ и, затем, перезагрузите сервер кнопкой СБРОС.

Изменение пароля защищенных страниц WEB-интерфейса.

Для изменения пароля введите команду:

root@Metronom-M50:~# htpasswd -c .htpasswd metronom

В ответ на запрос нового пароля введите новый пароль для защищенных страниц WEB-интерфейса

Выполните команду:

root@Metronom-M50:~# cp .htpasswd /srv/www/pages/.htpasswd

Внимание. Команда mconfig -default или кнопка ЗАВ. НАСТР. устанавливает в состояние по умолчанию только сетевые настройки и настройки конфигурации РТР. Аппаратная конфигурация сервера (выбор источников синхронизации), имена пользователей и пароли этой кнопкой не сбрасываются.

Подключение внешних NTP серверов.

Использование внешних NTP серверов целесообразно только для резервирования системы при ее синхронизации внешними сигналами 1PPS и NMEA, на случай пропадания сигнала NMEA.

Внешних серверов может быть подключено до 4. Их список можно посмотреть в файле конфигурации /etc/ntp.conf после строки #User

```
root@Metronom-M50:~# cat /etc/ntp.conf
...

#User server:
server 91.226.136.136

MTP server 1 - enable
#server 88.147.254.232

MTP server 2 - disable
#server 109.195.19.73

MTP server 3 - disable
#server 88.147.254.234

MTP server 4 - disable
```

Измененение конфигурации выполняется командой mcogfig справка по которой вызывается опцией -h:
root@Metronom-M50:~# mconfig -h

Komahdoй mconfig с опцией -srv, ключом с номером внешнего сервера -s1(-s2,-s3,-s4) и IP адресом или именем сервера, можно переопределить имя внешнего NTP сервера, например: root@Metronom-м50:~# mconfig -srv -s1 88.147.254.232

Команда mconfig c опцией -srvdis запрешает, а с опцией -srven разрешает использование внешнего сервера с номером -s1(-s2,-s3,-s4), например:

```
root@Metronom-M50:~# mconfig -srvdis -s1
root@Metronom-M50:~# mconfig -srven -s2
```

Для доступа к внешним серверам необходимо определить хотя бы один DNS сервер. Список DNS серверов можно посмотреть в файле конфигурации /etc/resolv.conf:

root@Metronom-M50:~# cat /etc/resolv.conf

 nameserver 208.67.220.220
 DNS server 1 - enable

 #nameserver 208.67.222.222
 DNS server 2 - disable

 #nameserver 8.8.8.4
 DNS server 3 - disable

 #nameserver 8.8.8.8
 DNS server 4 - disable

Командой mconfig с опцией -dns, ключом с номером внешнего сервера -s1(-s2,-s3,-s4) и IP адресом или именем сервера, можно переопределить DNS сервер, например:
root@Metronom-M50:~# mconfig -dns -s1 208.67.220.220

Kоманда mconfig c опцией -dnsdis запрещает, а с опцией -dnsen разрешает использование внешнего DNS сервера с номером -s1(-s2,-s3,-s4), например:

```
root@Metronom-M50:~# mconfig -dnsdis -s1
root@Metronom-M50:~# mconfig -dnsen -s2
```

Вышеуказанные команды только изменяют содержимое конфигурационных файлов. Для того, чтобы изменения вступили в силу, необходимо перезагрузить сервер командой: root@Metronom-M50:~# reboot или нажать кнопку СБРОС.

Для отмены изменений внесенных во все конфигурационные файлы, включая конфигурационные файлы сетевой конфигурации, возврата к настройкам по умолчанию и перезагрузки сервера выполните команды: root@Metronom-M50:~# mconfig -default root@Metronom-M50:~# reboot или нажмите и удерживайте до включения желтого индикатора ПИТАНИЕ кнопку ЗАВ.НАСТР. и, затем, нажмите кнопку СБРОС для перезагрузки сервера.

11. Аппаратная конфигурация сервера.

На рисунке показана упрощенная схема сервера.

Сервер содержит приемник GPS/GLONASS формирующий сигналы синхронизации 1PPS и NMEA для часов HARD PTP CLOCK. Часы тактируются от опорного генератора 10МГц, частота которого подстраивается по импульсам 1PPS схемой фазовой автоподстройки частоты PLL. Процессор CPU обеспечивает функционирование протокола PTP, а аппаратный модуль PTP обеспечивает точное измерение времени прихода PTP-пакетов и вставку в пакеты временных меток time-stamp.

Сигналы синхронизации могут быть поданы от внешних эталонных часов через порт RS-232-1 ИЛИ 1PPS вход который имеет меньшую задержку по сравнению с сигналами RS-232.

Задержка сигнала синхронизации 1PPS в кабеле антенны или в цепях внешнего интерфейса может быть скомпенсирована установкой параметра Antenna Delay (см. раздел Просмотр и изменение аппаратной конфигурации сервера.).

Внутренние сигналы синхронизации могут быть выведены через порт RS-232-1 (1PPS и NMEA), порт RS-232-0 (NMEA), порт USB (NMEA) и на 1PPS выход.

Секундные (1PPS) и минутные (1PPM) импульсы длительностью 200мс выводятся на контакты реле 1.

Текущую аппаратню конфигурацию можно посмотреть через WEBинтерфейс на странице **Configuration** или командой: root@Metronom-M50:~# mconfig -info 1PPS Reference: GPS-GLONASS [1PPS Input] [RS-232-1 DCD] NMEA Source: GPS-GLONASS [RS-232-1 RX]

В скобках указаны возможные варианты источников сигналов синхронизации.

1PPS Reference - выбор источника синхросигнала 1PPS:

- gps-glonass от встроенного приемника GPS/GLONASS
- 1PPS Input внешний, с 1PPS входа
- RS-232-1 DCD внешний, со входа DCD разъема RS-232-1

ммеа source - выбор источника синхросигнала NMEA:

- GPS-GLONASS от встроенного приемника GPS/GLONASS
- RS-232-1 RX внешний, со входа RX разъема RS-232-1

Управление выбором сигналов синхронизации выполняется через WEB-интерфейс или командой mconfig (см. далее).

Внимание. Установленные настройки аппаратной конфигурации не сбрасываются командой mconfig -default или кнопкой ЗАВ.НАСТР.

Выбор сигналов синхронизации 1PPS и NMEA.

Внимание. Импульс 1PPS и сообщения NMEA необходимо подавать от одного и того же источника синхронизации.

Выбор источника синхронизации 1PPS выполняется через WEBинтерфейс на странице **Configuration** или командой mconfig:

```
root@Metronom-M50:~# mconfig -lpps -gps - GPS/GLONASS приемник root@Metronom-M50:~# mconfig -lpps -ext - 1PPS вход root@Metronom-M50:~# mconfig -lpps -rs - DCD вход порта RS-232-1
```

Выбор источника сообщений NMEA выполняется через WEB-интерфейс на странице **Configuration** или командой mconfig:

```
root@Metronom-M50:~# mconfig -nmea -gps - GPS/GLONASS приемник root@Metronom-M50:~# mconfig -nmea -rs - порт RS-232-1
```

Порты RS-232-0 и RS-232-1 работают с параметрами:

Скорость (бит/с): 115200

Биты данных: 8 Четность: нет Стоповые биты: 1

Для того, чтобы изменения вступили в силу, необходимо перезагрузить сервер командой:

root@Metronom-M50:~# reboot или кнопкой СБРОС.

Внешние выходы сигналов синхронизации.

Внимание. При использовании порта RS-232-0 или USB для вывода сообщений NMEA, на этот порт не должны не должны подаваться непредусмотренные протоколом символьные последовательности. Дело в том, что приход на порт RS-232-0 или USB любого символа в момент загрузки сервера вызывает остановку загрузки (вход в программу встроенного загрузчика). А при выводе сообщений NMEA, приход комбинации <ctrl>+<c> останавливает вывод. Рекомендуется для подключения к порту RS-232-0 для вывода последовательности NMEA использовать кабель без цепи RX на разъеме сервера.

Сообщения NMEA от выбранного источника (встроенный GPS/GLONASS приемник, порт RS-232-1 или эмулятор) выводятся одновременно на порт RS-232-1, на порт RS-232-0 и на порт USB.

Вывод на порт RS-232-0 и порт USB последовательности NMEA может быть приостановлен и порт может быть переведен в режим терминала (пользователь root), при вводе комбинации <ctrl>++<c>.

Для возврата порта в режим вывода сообщений NMEA введите команду окончания работы в режиме терминала: root@Metronom-M50:~# mconfig -term

Порты RS-232-0 и RS-232-1 работают с постоянными параметрами:

Скорость (бит/с): 115200

Биты данных: 8 Четность: нет Стоповые биты: 1

Импульс 1PPS длительностью 200 мс и с периодом 1 сек замыкает контакты 1-2 РЕЛЕ 1. В момент замыкания включается зеленый индикатор.

Импульс 1PPM длительностью 200 мс и с периодом 1 мин. замыкает контакты 2-3 РЕЛЕ 1 синхронно с импульсом 1PPS, в начале нулевой секунды каждой минуты.

Аппаратная конфигурация по умолчанию.

Синхронизация сервера выполняется от встроенного приемника GPS/ГЛОНАСС.

Строка NMEA выводится на порты RS-232-1, RS-232-0 и USB. Порты RS-232-0 и RS-232-1 работают с параметрами:

Скорость (бит/с): 115200

Биты данных: 8 Четность: нет Стоповые биты: 1

Внимание. При использовании порта RS-232-0 в качестве терминала, порт USB должен быть отключен. При подключении порта USB происходит автоматическое переключение входного потока с порта RS-232-0 на порт USB. Выходной поток (NMEA или ответные сообщения системы при работе в режиме терминала) всегда выводятся на оба порта одновременно.

Внимание. При использовании порта RS-232-0 или USB для вывода сообщений NMEA, на этот порт не должны не должны подаваться непредусмотренные протоколом символьные последовательности. Дело в том, что приход на порт RS-232-0 или USB любого символа в момент загрузки сервера вызывает остановку загрузки (вход в программу встроенного загрузчика). При работе сервера, приход комбинации <ctrl>+<c> останавливает вывод последовательности NMEA. Рекомендуется для подключения к порту RS-232-0 для вывода последовательности NMEA использовать кабель без цепи RX на разъеме сервера.

Импульс 1PPS длительностью 1 мс выводится на 1PPS выход и на выход DTR порта RS-232-1.

Импульс 1PPS длительностью 200 мс и с периодом 1 сек замыкает контакты 1-2 РЕЛЕ 1. В момент замыкания включается зеленый индикатор.

Импульс 1РРМ длительностью 200 мс и с периодом 1 мин. замыкает контакты 2-3 РЕЛЕ 1 синхронно с импульсом 1РРS, в начале нулевой секунды каждой минуты.

Реле Ро АВАРИЯ в рабочем состоянии включено: контакты 1-2 замкнуты, 2-3 разомкнуты, горит зеленый индикатор. При аварии реле выключено: контакты 1-2 разомкнуты, 2-3 замкнуты, индикатор не горит.

При перегрузке по току цепи контакта 2 реле срабатывает защита, размыкаются обе пары контактов 1-2 и 2-3 соответствующего реле и зажигается красный. Через 3..5 секунд защита сбрасывается автоматически. Если перегрузка не устранена, схема защиты сработает снова и т.д.

При отключенном питании сервера и сразу после включения питания, до окончания загрузки программы, контакты 1-2 и 2-3 обоих реле разомкнуты.

12. Обновление программного обеспечения.

Обновление программного обеспечения (ПО) может быть выполнено по локальной сети или через интернет. Для передачи файлов обновления используется протокол FTP. FTP-сервер должен быть установлен на компьютере пользователя с которого производится обновление.

- 1. Скопируйте файл обновления, например, patch_2.03_25-07-14.tar.gz, в рабочий каталог FTP на компьютере пользователя.
- 2. Подключитесь к серверу через порт Ethernet по протоколу telnet.
- 3. Запустите на сервере командный файл установки обновления с указанием в качестве параметра IP адреса компьютера на котором в каталоге FTP лежит файл обновления (для примера, указан адрес 192.168.2.110) командой:

root@Metronom-M50:~# /usr/bin/sh M50Update.sh 192.168.2.110

Сервер скопирует файлы обновления с компьютера. После этого, сервер будет перезагружен автоматически.

Установленные параметры сетевой конфигурации (IP адрес и др), конфигурации РТР и аппаратной конфигурации сохраняются, если это не оговорено особо для данного обновления.

13. Типовые неисправности и их устранение.

Нет синхронизации.

WEB-браузер показывает: **Home/Reference time: NULL** Индикатор СИНХРОНИЗАЦИЯ красный.

Возможная причина:

1. Не достаточно времени для синхронизации после перезагрузки сервера, подключения антенны или внешних сигналов синхронизации.

Устранение неисправности:

Подождите 10 минут.

Возможная причина:

2. Нет приема сигнала GLONASS/GPS через 10 минут.

WEB-браузер показывает: Home/Satellite in View:

GLONASS: 0 GPS: 0

Устранение неисправности:

Установите антенну в зону видимости спутников. Замените антенну и кабель на исправную.

Возможная причина:

3. Не подключена или неисправна антенна.

WEB-браузер показывает: **Home/Antenna: Off** или **Short** Индикатор АНТЕННА красный.

Устранение неисправности:

Подключите антенну. Замените кабель и антенну на исправные.

Возможная причина:

4. Выбран внешний источник синхронизации, но сигналы синхронизации не поданы.

WEB-браузер показывает: Configuration:

Source selection of 1PPS: 1PPS INPUT или RS-232-1 Source selection of NMEA: RS-232-1

Устранение неисправности:

Подайте внешние сигналы синхронизации или выберите синхронизацию от GLONASS/GPS.

Не загружается операционная система или не выполняются отдельные функции.

Возможная причина:

Повреждена программа или отдельные программные модули.

Устранение неисправности:

Восстановите образ программы на SD карте с резервной копии на NAND. Для этого:

- 1. Подключитесь в режиме терминала к порту USB или RS-232-0.
- 2. Войдите в начальный загрузчик. Для этого нажмите кнопку RESET и при появлении сообщения

Hit any key to stop autoboot:

и нажмите любую клавишу для передаче управления загрузчику.

- 3. Загрузите операционную систему с NAND командой: AM3517 EVM # run nandboot
- 4. Введите команду для копирования образа с NAND на SD:

```
AM3517 EVM # cd /; sh restore-sdcard.sh
```

- 5. и дождитесь появления сообщения Operation Finished.
- 6. Перезагрузить сервер кнопкой СБРОС.
- 7. На SD будет установлена базовая версия программного обеспечения. Рекомендуется обновить ПО до последней версии (см. раздел Обновление программного обеспечения).
- 8. Выполните команды:

```
root@Metronom-M50:~# mserial -macwr
root@Metronom-M50:~# cd /; sh afterupdate.sh
```

9. Восстановите настройки сетевой конфигурации, конфигурации PTP и аппаратной конфигурации.

14. Технические характеристики.

Основные характеристики и условия эксплуатации.

- Конфигурация: IEEE 1588-2008 (PTPv2) Grandmaster Clock
- Опорный сигнал ГЛОНАСС и/или GPS.
- Максимальная ошибка синхронизации часов сервера относительно UTC при приеме сигнала GPS/ГЛОНАСС:
 - ±250 нс с опорным генератором со стабильностью 50ppb.
 - ± 100 нс с опорным генератором со стабильностью 5 ppb.
- Максимальная ошибка синхронизации часов сервера относительно UTC без сигнала GPS/ГЛОНАСС и и температуре окружающей среды 20 ±15 °C:
 - ±4мс в сутки с опорным генератором со стабильностью 50ppb.
 - ±0.5мс в сутки с опорным генератором со стабильностью 5ppb.
- Напряжение питания: $12...24B \pm 5\%$ постоянного тока (вариант с питанием 24..60B или 110..230B переменного тока поставляется под заказ).
- Потребляемая мощность
 - в режиме прогрева, Вт, не более 12.
 - в рабочем режиме, Вт, не более 7.
- Встроенная батарея для системных часов (ошибка до ±10с в сутки).
- Средняя наработка на отказ, час, не менее 50 000.
- Срок службы, лет, не менее 5.
- Среднее время восстановления (при наличии ЗИП), мин, 60.
- Наличие драгоценных металлов нет.
- Степень зашиты IP20.
- Категория места размещения (климатического исполнения) УХЛ4.1.
- Условия применения, хранения, транспортировки
 - Рабочие условия применения (предельные):
 - диапазон температур воздуха, °C, +15 (0)...+40 (+50).
 - влажность воздуха при температуре 25С, %, не более, 85.
 - Условия хранения (транспортировки):
 - температура окружающей среды, °C, 0(-25)...+50 (+60).
 - относительная влажность воздуха при 25°C, %, не более, 85.
- Габариты: 46х118х127мм.
- Bec: 0.5 κΓ.
- Установка: на DIN-рейку или в горизонтальное положении на полке.

Режимы синхронизации поддерживаемые сервером:

- Стандарт: IEEE 1588-2008 (РТРv2)
- Режим работы: Grandmaster
- Транспортный протокол PTP: UDP/IPv4
- Режим синхронизации РТР: End-To-End, Two-Step. Возможна модификация с поддержкой других транспортных протоколов и режимов синхронизации.

Сетевые протоколы и функции.

- IP v4
- TCP. UDP

Сетевые протоколы мониторинга и конфигурирования.

- Telnet
- HTTP (WEB)
- FTP

Органы управления и индикации.

Индикаторы:

- ПИТАНИЕ: зеленый питание полано:
- АВАРИЯ: зеленый нормальная работа, красный неисправность или потеря синхронизации;
- АНТЕННА: зеленый ток питания в норме, красный обрыв или замыкание;
- СИНХРОНИЗАЦИЯ: зеленый или желтый синхронизация от GPS/GLONASS установлена, красный - нет синхронизации;
- РАБОТА: зеленый приход РТР-пакета на сервер;
- РЕЛЕ РО: зеленый -срабатывание, красный перегрузка;
- РЕЛЕ Р1: зеленый -срабатывание, красный перегрузка;

Кнопки:

- СБРОС: аппаратный сброс (скрытая),
- ЗАВ.НАСТР.: установка настроек по умолчанию (скрытая),
- РЕЗЕРВ. ЗАГР.: резервная загрузка с SD карты,
- ТЕСТ: запуск встроенного теста

Внешние порты.

Антенна GPS/ГЛОНАСС:

- входное сопротивление 50 Ом;
- напряжение питания 4.2V, ток питания 5..50 мА;
- защита от короткого замыкания и перегрузки по току питания;
- разъем SMA (BNC под заказ).

Порт Ethernet:

- 10/100 Base-T:
- разъем RJ-45.

Порт RS-232-0:

- выход интерфейса NMEA или терминал;
- уровни по стандарту RS-232 (-5V, +5V);
- разъем DB-9, вилка;
- при подключении порта USB происходит автоматическое переключение потока с порта RS-232-0 на порт USB.

Порт RS-232-1:

- входы/выходы интерфейса NMEA и сигнала 1PPS;
- уровни по стандарту RS-232 (-5V, +5V);
- разъем DB-9, вилка.

Вход сигнала 1PPS:

- входное сопротивление 50 Ом;
- уровень TTL;
- разъем SMA.

Выход сигнала 1PPS:

- выходное сопротивление 50 Ом;
- vровень TTL;
- разъем SMA.

Выход сигнала 10МГц:

- выходное сопротивление 50 Ом;
- vровень TTL;
- разъем SMA.

Порт USB 2.0:

- USB 2.0 Full Speed compatible, режим эмуляции терминала;
- разъем USB-B;
- выход интерфейса NMEA или режим терминал.

Реле 0. один контакт на переключение

- вывод сигнала АВАРИЯ;
- длительность импульса 1PPS 300мс, период следования 1 сек;
- рабочий ток до 120мА; электронная защита от перегрузки по току.
- рабочее напряжение до 230В переменное и до 300В постоянное; ограничитель максимального напряжения контактах (варистор).
- сопротивление замкнутых контактов не более 50 Ом.

Реле 1. два контакта на замыкание, с общим проводом

- вывод сигналов 1РРЅ и 1РРМ;
- длительность импульса 1PPS и 1PPM 200мс, период следования 1 сек и 1 мин. соответственно;
- рабочий ток до 120мА (суммарный для обоих контактов);
 электронная защита от перегрузки по току.
- рабочее напряжение до 230В переменное и до 300В постоянное; ограничитель максимального напряжения контактах (варистор).
- сопротивление замкнутых контактов не более 50 Ом.

Питание:

- напряжение 12..24В ±10% постоянного тока (вариант 18..75В постоянного тока или 220В переменного тока - поставляется под заказ);
- потребляемая мощность не более 7Вт (12 Вт в режиме прогрева генератора);
- электронная защита от перенапряжения и включения с обратной полярностью;
- ограничение пускового тока;
- съемная клемма под винт;
- механический ключ защиты от ошибочного подключения питания к разъемам реле.
- встроенная батарея для системных часов.

15. Приложения

Цоколевка разъемов RS-232.

RS-232-0, DB-9 вилка, выход NMEA, Terminal

	цепь	примечание
1	DCD	вход, не используется
2	RxD	вход, прием данных
3	TxD	выход, передача данных или выход NMEA
4	DTR	выход, не используется, уровень +5В
5	GND	земля
6	DSR	вход, не используется
7	RTS	выход, аппаратный контроль потока (терминал)
8	CTS	вход, аппаратный контроль потока (терминал)
9	RI	вход, не используется

RS-232-1, DB-9 вилка, вход/выход NMEA и 1PPS

конт.	цепь	примечание
1	DCD	вход 1PPS, положительное напряжение - импульс
2	RxD	вход NMEA
3	TxD	выход NMEA
4	DTR	выход, 1PPS положительное напряжение - импульс
5	GND	земля
6	DSR	вход, не используется
7	RTS	выход, не используется, уровень +5В
8	CTS	вход, не используется
9	RI	вход, не используется

Схемы кабелей RS-232.

RS-232-0. Кабель терминала (нуль-модем) без аппаратного управления потоком.

TERMINAL			RS-232-0		
цепь	конт.			конт.	цепь
DCD	1	Н	_	1	DCD
RXD	2	Н		2	RXD
TXD	3	Н		3	TXD
DTR	4	Н	 	4	DTR
GND	5	Н		5	GND
DSR	6	Н	└ <u>└</u>	6	DSR
RTS	7	Н		7	RTS
CTS	8	ш	└ <u>└</u>	8	CTS
RI	9			9	RI
GND	корп.	\vdash		корп.	GND

RS-232-0, RS-232-1 Кабель синхронизации 1PPS и NMEA.

NMEA OUT				NMEA INP	
цепь	конт.		1PPS	конт.	цепь
DCD	1	r -	NMEA	1	DCD
RXD	2	NMEA	INIVIEA	2	RXD
TXD	3	1PPS		3	TXD
DTR	4	IFFS		4	DTR
GND	5			5	GND
DSR	6			6	DSR
RTS	7			7	RTS
CTS	8			8	CTS
RI	9			9	RI
GND	корп.			корп.	GND

Цоколевка разъемов реле и питания.

Реле РО. клемма. вилка. сигнал АВАРИЯ

конт.	цепь	примечание	
1	AOPN	отсутствии АВАРИИ - замкнутый контакт 1-2	
2	COM	общий, контроль максимально-допустимого тока	
3	ACLS	отсутствии АВАРИИ - разомкнутый контакт 2-3	

Реле Р1, клемма, вилка, сигналы 1PPS и 1PPM

конт.	цепь	примечание
1	1PPS	импульс 1PPS - замкнутый контакт 1-2
2	СОМ	общий, контроль максимально-допустимого тока
3	1PPM	импульс 1РРМ - замкнутый контакт 2-3

Питание, клемма, вилка

конт.	цепь	примечание
1	+V	плюс напряжения питания
2	GND	защитная и сигнальная земля, корпуса разъемов
3	-V	минус напряжения питания

