Lovász 局部引理

施朱鸣

12月18日

Outline

用概率方法解决问题

Lovász 局部引理

用概率方法解决问题

概率工具

某事件发生的概率非零,则发生该事件的情形存在。

$$P(X)>0\Rightarrow \exists X$$

Ramsey 数

定理: $\forall p, q \geq 2$,存在 R(p,q),使得 $\forall n \geq R(p,q)$,任意将完全图 K_n 的边进行红蓝染色,都会产生一个蓝色 K_p 或一个红色 K_q ,这里的 R(p,q) 称为 Ramsey 数

Erdos 定理

定理: 如果 $C_n^k 2^{1-C_k^2} < 1$ 那么 R(k,k) > n

证明: 随机地给 K_n 的每条边红蓝着色。

- ・对任意 k 阶完全子图 S,S 单色这一事件记作 A_S ,则 $P(A_S) = 2^{1-C_k^2}$
- $\cdot P(\cup_S A_S) \leq C_n^k 2^{1-C_k^2}$
- $P(\cap_S \bar{A}_S) \ge 1 C_n^k 2^{1 C_k^2} > 0$
- · 存在一种红蓝着色后的 K_n ,其中存在既非全红也非全蓝的 k 阶完全子图
- ·这样的 n 不够大,即 n < R(k,k)

5

Turan 定理

定理: $\forall G = (V, E), n = |V|, k = \frac{2|E|}{n}, \alpha(G) > \frac{n}{2k}$

证明:

- · 以 p 的概率随机选取边生成子图 S
- · S 的顶点数 $X = \sum_{v \in V} 1_v \Rightarrow E(X) = np$
- · S 的边数 $Y = \sum_{e \in E} 1_e \Rightarrow E(Y) = p^2 |E| = nk \frac{p^2}{2}$
- ・在 S 中每条边上都删除一个顶点,剩下的图 S' 至少有 X Y 个顶点,且这些点之间没有边相连。 $E(X Y) = np nk\frac{p^2}{2}$,当 $p = \frac{1}{k}$ 时取到最大值 $\frac{n}{2k}$
- $\exists S, |S| > \frac{n}{2k} \Rightarrow \alpha(G) > \frac{n}{2k}$

Lovász 局部引理

基本概念

- ·条件概率: P(B) > 0 时 $P(A|B) = \frac{P(AB)}{P(B)}$
- ・Bayes 定理: $P(A|B) = \frac{P(A)P(B|A)}{P(B)}$
- ・事件独立性: P(AB) = P(A)P(B), 当 P(B) > 0 时有 P(A|B) = P(A)

Lovász 局部引理

Lovász **局部引理**:若事件序列 $\{A_i\}(1 \le i \le n)$ 满足以下条件:

- $\forall i, P(A_i) \leq p$
- ・∀i, Ai 与至多 d 个其他事件不独立
- · $ep(d+1) \le 1$, 其中 e 指自然对数

则 $P(\wedge_{i=1}^n \overline{A_i}) > 0$,即存在非 0 概率使得所有事件不发生

证明工具

公式:

$$P(\wedge_{i=1}^{n}\overline{A_{i}}) = \prod_{i=1}^{n} P(\overline{A_{i}}|\wedge_{j=i+1}^{n}\overline{A_{j}})$$

证明: 当 n=1 时, 等式显然成立

假设对于 $\forall k < n$, 等式成立. 考虑 n

$$\prod_{i=1}^{n} P(\overline{A_i}| \wedge_{j=i+1}^{n} \overline{A_j}) = P(\overline{A_n}) P(\overline{A_{n-1}}|\overline{A_n}) \prod_{i=1}^{n-2} P(\overline{A_i}| \wedge_{j=i+1}^{n} \overline{A_j})$$

$$= P(\overline{A_n} \wedge \overline{A_{n-1}}) \prod_{i=1}^{n-2} P(\overline{A_i}| \wedge_{j=i+1}^{n} \overline{A_j})$$

证明工具

定义事件序列
$$\{B_i\}$$
,当 $1 \le i \le n-2$ 时, $\overline{B_i} = \overline{A_i}$,此外 $\overline{B_{n-1}} = \overline{A_n} \wedge \overline{A_{n-1}}$,则

$$\prod_{i=1}^{n} P(\overline{A_i}| \wedge_{j=i+1}^{n} \overline{A_j}) = \prod_{i=1}^{n-1} P(\overline{B_i}| \wedge_{j=i+1}^{n-1} \overline{B_j})$$
(由归纳假设) = $P(\wedge_{i=1}^{n-1} \overline{B_i})$
= $P(\wedge_{i=1}^{n} \overline{A_i})$

主命题

主命题: 当满足洛瓦兹局部引理的条件时,

$$\forall S \forall i, P(A_i | \land_{j \in S} \overline{A_j}) \leq \frac{1}{d+1}$$

证明:用数学归纳法.

 $S = \emptyset$ 时,命题显然成立.

设 |S| < n 时命题成立,考虑 |S| = n

定义 $S_i = \{j | A_j = A_i$ 不独立 $\}$,不妨设 $S_i \cap S = \{1, 2, ..., k\}$

主命题

令
$$B = \wedge_{j \in S_i \cap S} \overline{A_j}, C = \wedge_{j \in \overline{S_i} \cap S} \overline{A_j},$$
 则
$$P(A_i | \wedge_{j \in S} \overline{A_j}) = P(A_i | BC)$$

$$= \frac{P(A_i BC)}{P(BC)}$$

$$= \frac{P(A_i B|C)}{P(B|C)}$$

$$\leq \frac{P(A_i | C)}{P(B|C)}$$

$$= \frac{P(A_i)}{P(B|C)} \quad (A_i = C独立)$$

主命题

由乘法公式得

$$P(B|C) = P(\bigwedge_{j \in S_i \cap S} \overline{A_j}|C)$$

$$= \prod_{i=1}^k P(\overline{A_i}| \bigwedge_{j=i+1}^k \overline{A_j}C)$$

$$= \prod_{i=1}^k (1 - P(A_i| \bigwedge_{j=i+1}^k \overline{A_j}C))$$

$$\geq (1 - \frac{1}{d+1})^k \quad (曲均納假设P(A_i| \bigwedge_{j=i+1}^k \overline{A_j}C)) \leq \frac{1}{d+1})$$

$$\geq (1 - \frac{1}{d+1})^d \geq e^{-1}$$

由已知条件 $ep(d+1) \le 1$, 得

$$P(A_i| \land_{j \in S} \overline{A_j}) \le \frac{P(A_i)}{P(B|C)} \le ep \le \frac{1}{d+1}$$

$$(1-\frac{1}{d+1})^d \ge e^{-1}$$

因为

$$(1 + \frac{1}{n})^{n} = \sum_{i=0}^{n} \binom{n}{i} \frac{1}{n^{i}}$$

$$= \sum_{i=0}^{n} \frac{1}{i!} \prod_{j=0}^{i-1} (1 - \frac{j}{n})$$

$$\leq \sum_{i=0}^{n} \frac{1}{i!} \prod_{j=0}^{i-1} (1 - \frac{j}{n+1}) + \frac{1}{(n+1)!} \prod_{j=0}^{n} (1 - \frac{j}{n+1})$$

$$= (1 + \frac{1}{n+1})^{n+1}$$

得
$$(1+\frac{1}{n})^n$$
 单调递增. 我们已知 $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$ 由 $(1-\frac{1}{n+1})^n = (1+\frac{1}{n})^{-n}$,得 $(1-\frac{1}{d+1})^d \ge e^{-1}$

Lovász 局部引理证明

由乘法公式,得

$$P(\wedge_{i=1}^{n}\overline{A_{i}}) = \prod_{i=1}^{n} [1 - P(A_{i}|\wedge_{j=i+1}^{n}\overline{A_{j}})]$$

由主命题,得,

$$\prod_{i=1}^{n} [1 - P(A_i | \wedge_{j=i+1}^{n} \overline{A_j})] \ge (1 - \frac{d}{d+1})^n > 0$$

致谢

致谢

祝大家期末顺利,谢谢聆听!

