1

gate 8

EE24Btech11041 - Mohit

load are shown in the figure. If the incremental cost of supplying the common load is Rs. 7400 per MWh, then the common load in MW is______ (rounded off to the nearest integer). (EE 2024)

9) A forced commutated thyristorized step-down chopper is shown in the figure. Neglect the ON-state drop across the power devices. Assume that the capacitor is initially charged to 50 V with the polarity shown in the figure. The load current (I_l) can be assumed to be constant at 10 A. Initially, Th_M is ON and Th_A is OFF. The turn-off time available to Th_M in microseconds, when Th_A is triggered, is ___ (rounded off to the nearest integer). (EE 2024)

- 10) Consider a vector $\mathbf{u} = 2\hat{x} + \hat{y} + 2\hat{z}$, where \hat{x} , \hat{y} , \hat{z} represent unit vectors along the coordinate axes x, y, zrespectively. The directional derivative of the function $f(x, y, z) = 2 \ln(xy) + 3 \ln(yz) + 3 \ln(xz)$ at the point (x, y, z) = (1, 1, 1) in the direction of **u** is (EE 2024)
 - a) 0
 - b) $\frac{7}{5\sqrt{2}}$ c) 7
- 11) The input x(t) and the output y(t) of a system are related as (EE 2024)

$$y(t) = e^{-t} \int_{-infty}^{t} e^{\tau} x(\tau) d\tau, \qquad -\infty < t < \infty.$$
 (2)

The system is (EE 2024)

a) nonlinear.

- b) linear and time-invariant.
- c) linear but not time-invariant.
- d) noncausal.
- 12) Consider the discrete-time systems T_1 and T_2 defined as follows:

$$\{T_1 x\}[n] = x[0] + x[1] + \dots + x[n] \tag{3}$$

$$\{T_2x\}[n] = x[0] + \frac{1}{2}x[1] + \dots + \frac{1}{2^n}x[n]$$
 (4)

Which one of the following statements is true?

(EE 2024)

- a) T_1 and T_2 are BIBO stable.
- b) T_1 and T_2 are not BIBO stable.
- c) T_1 is BIBO stable and T_2 is not BIBO stable.
- d) T_1 is not BIBO stable and T_2 is BIBO stable.
- 13) If the Z-transform of a finite-duration discrete-time signal x[n] is X(z), then the Z-transformation of the signal y[n] = x[2n] is (EE 2024)
 - a) $Y(z) = X(z^2)$
 - b) $Y(z) = \frac{1}{2}[X(z^{-\frac{1}{2}}) + X(-z^{-\frac{1}{2}})]$

 - c) $Y(z) = \frac{1}{2}[X(z^{\frac{1}{2}}) + X(-z^{\frac{1}{2}})]$ d) $Y(z) = \frac{1}{2}[X(z^2) + X(-z^2)]$