MP-1 TUTORIAL-6 PRELAB

Problem 1:Consider the transportation problem presented in the following table:

Factory	Warehouse			Supply
	$W_{\scriptscriptstyle 1}$	W_2	W_3	
F ₁	16	20	12	200
F ₂	14	8	18	160
F ₃	26	24	16	90
Demand	180	120	150	450


```
Code:
def minimum(a,n):
  minpos = a.index(min(i for i in a if i>0))
  return minpos
def Row Minima(supply,demand,costs):
  r=len(costs)
  c=len(costs[0])
  i=0
  j=0
  bfs=[]
  total=0
  while i<r:
    i=0
    while j<c and supply[i]!=0:</pre>
      m=minimum(costs[i],len(costs[i]))
      if(supply[i]>=demand[m] and demand[m]!=0):
        total = total+demand[m]*costs[i][m]
        bfs.append(((i,m),demand[m]))
        supply[i]=supply[i]-demand[m]
        demand[m]=0
        for k in range(i,r):
          costs[k][m]=0
      elif(supply[i]<=demand[m]and demand[m]!=0):
        total = total+supply[i]*costs[i][m]
        bfs.append(((i,m),supply[i]))
        demand[m]=demand[m]-supply[i]
        supply[i]=0
        costs[i][m]=0
      j=j+1
    i=i+1
  print "Basic Feasible solution is ",bfs
  print "Total cost=",total
  return
supply=[200,160,90]
demand=[180,120,150]
costs=[[16,20,12],[14,8,18],[26,24,16]]
Row_Minima(supply,demand,costs)
```

190031187

NERELLA VENKATA RADHAKRISHNA

INLAB

Problem 1:

The Ushodaya departmental store has three plants located throughout a state with production capacity 80, 60 and 70 kilo grams of rice. Each day the firm must furnish its four retail shops R_1 , R_2 , R_3 , & R_4 with at least 40, 60, 50, and 60 gallons respectively. The transportation costs (in Rs.) are given below.

Store		Cummbe			
	1	2	3	4	Supply
1	3	5	7	6	80
2	2	5	8	2	60
3	3	6	9	2	70
Demand	40	60	50	60	

Inlab

store		Retail shop			
	1	2	3	4	supply
4	3	5	7	6	80
2_	2	5	8	2	60
3	3	6	9	2	70
Dem and	40	60	10	60	


```
Code:
def minimum(a,n):
  minpos = a.index(min(i for i in a if i>0))
  return minpos
def Row Minima(supply,demand,costs):
  r=len(costs)
  c=len(costs[0])
  i=0
  j=0
  bfs=[]
  total=0
  while i<r:
    i=0
    while j<c and supply[i]!=0:</pre>
      m=minimum(costs[i],len(costs[i]))
      if(supply[i]>=demand[m] and demand[m]!=0):
        total = total+demand[m]*costs[i][m]
        bfs.append(((i,m),demand[m]))
        supply[i]=supply[i]-demand[m]
        demand[m]=0
        for k in range(i,r):
           costs[k][m]=0
      elif(supply[i]<=demand[m]and demand[m]!=0):
        total = total+supply[i]*costs[i][m]
        bfs.append(((i,m),supply[i]))
        demand[m]=demand[m]-supply[i]
        supply[i]=0
        costs[i][m]=0
      j=j+1
    i=i+1
  print "Basic Feasible solution is ",bfs
  print "Total cost=",total
  return
supply=[80,60,70]
demand=[40,60,50,60]
costs=[[3,5,7,6],[2,5,8,2],[3,6,9,2]]
Row_Minima(supply,demand,costs)
```

190031187

NERELLA VENKATA RADHAKRISHNA

POSTLAB

Problem 1:

The distribution manager of a company needs to minimize global transport costs between a set of three factories (supply points) S1, S2, and S3, and a set of four distributors (demand points) D1, D2, D3, and D4. The following table shows the transportation cost from each supply point to every demand point, the supply of the product at the supply points, and the demand of the product at the demand points

					1
F/D	D1	D2	D3	D4	Supply
S1	19	30	50	10	7
S2	70	30	40	60	9
S3	40	8	70	20	18
Demand	5	8	7	14	34


```
Code:
def minimum(a,n):
  minpos = a.index(min(i for i in a if i>0))
  return minpos
def Row Minima(supply,demand,costs):
  r=len(costs)
  c=len(costs[0])
  i=0
  j=0
  bfs=[]
  total=0
  while i<r:
    i=0
    while j<c and supply[i]!=0:</pre>
      m=minimum(costs[i],len(costs[i]))
      if(supply[i]>=demand[m] and demand[m]!=0):
        total = total+demand[m]*costs[i][m]
        bfs.append(((i,m),demand[m]))
        supply[i]=supply[i]-demand[m]
        demand[m]=0
        for k in range(i,r):
          costs[k][m]=0
      elif(supply[i]<=demand[m]and demand[m]!=0):
        total = total+supply[i]*costs[i][m]
        bfs.append(((i,m),supply[i]))
        demand[m]=demand[m]-supply[i]
        supply[i]=0
        costs[i][m]=0
      j=j+1
    i=i+1
  print "Basic Feasible solution is ",bfs
  print "Total cost=",total
  return
supply=[7,9,18]
demand=[5,8,7,14]
costs=[[19,30,50,10],[70,30,40,60],[40,8,70,20]]
Row Minima(supply,demand,costs)
```

190031187

NERELLA VENKATA RADHAKRISHNA

