@Author: Mudigonda Himansh

RegID: AP19110010169

```
In [20]:
import re
from os import listdir
\textbf{from} \text{ os.path } \textbf{import} \text{ join, abspath}
from nltk.tokenize import word tokenize
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
In [24]:
import nltk
nltk.download('stopwords')
In [25]:
data_dir = './'
DATA_SET_DIR = abspath(data_dir)
files = listdir(DATA_SET_DIR)
files = filter(lambda x: re.match(r'.*\.txt$', x, re.I), files)
In [42]:
# define stemming mechanism and stop words
ps = PorterStemmer()
nltk_stop_words = set(stopwords.words('english'))
In [48]:
corpus = []
for f in files:
    strm = open(DATA_SET_DIR + '/' + f, 'r')
    # using nltk word tokenizer to split file into word list
    words = word_tokenize(strm.read())
    # using filter to remove stop words from word list
    words = filter(lambda w: w not in nltk_stop_words, words)
    # using map to stem words in word list
    words = map(lambda w: ps.stem(str(w)), words)
    # joining words into string and adding to corpus list
    corpus.append(' '.join(words))
In [51]:
# Using sklearn's tfidfvectorizer to construct tfidf matrix
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(corpus)
#terms = vectorizer.get_feature_names()
In [54]:
# Using sklearn's cosine_similarty to calculate cosine similarity between all documents
cos_sim_matrix = cosine_similarity(tfidf_matrix)
#print('\nPrinting cosine similarity matrix:
#print('\t Doc1 Doc2 Doc3 Doc4')
csres = []
for idx, row in enumerate(cos_sim_matrix):
    csres.append(str(row))
In [57]:
import csv
with open('../IRL/csres.txt', 'w') as f:
    for line in csres:
        f.write(f"{line}\n")
```