Module 9

AND ITS PROPERTIES

- \mathcal{E} : a given random experiment;
- $(\Omega, \mathcal{P}(\Omega), P)$: probability space associated with \mathcal{E} ;
- $X: \Omega \to \mathbb{R}$: a given random variable;
- $(\mathbb{R}, \mathcal{P}(\mathbb{R}), P_X)$; probability space induced by X;

lacktriangle

$$P_X(A) = P(X^{-1}(A))$$

 $= P(\{\omega \in \Omega : X(\omega) \in A\}), A \in \mathcal{P}(\mathbb{R})$

 \rightarrow induced probability function.

Definition 1: The distribution function (or cumulative distribution function) of a random variable X is a function $F_X : \mathbb{R} \to \mathbb{R}$, defined by

$$F_X(x) = P_X((-\infty, x])$$

$$= P(\{\omega \in \Omega : X(\omega) \le x\}), x \in \mathbb{R}.$$

Remark 1:

- (a) $0 \le F_X(x) \le 1, \ \forall \ x \in \mathbb{R};$
- (b) Clearly the distribution function (d.f.) is determined by induced probability function $P_X(\cdot)$. Using advanced probabilistic arguments it can be shown that the induced probability function $P_X(\cdot)$ is also uniquely determined by d.f. $F_X(\cdot)$. Thus studying induced probability space $(\mathbb{R}, \mathcal{P}(\mathbb{R}), P_X)$ (or induced probability function $P_X(\cdot)$) is equivalent to studying the d.f. $F_X(\cdot)$.

Example 1: Suppose that, for some real constant c, $P({X = c}) = 1$. Then

$$F_X(x) = P(\{X \le x\}) = \begin{cases} 0, & \text{if } x < c \\ & \\ 1, & \text{if } x \ge c \end{cases}$$

Example 2: Suppose

$$P({X = 1}) = P({X = -1}) = \frac{1}{2}.$$

Then

$$F_X(x) = P(\{X \le x\}) = \begin{cases} 0, & \text{if } x < -1 \\ \frac{1}{2}, & \text{if } -1 \le x < 1 \\ 1, & \text{if } x \ge 1 \end{cases}$$

Result 1: Let $F_X(\cdot)$ be the d.f. of a r.v. X. Then

- (a) $F_X(\cdot)$ is non-decreasing;
- (b) $F_X(\cdot)$ is right continuous, i.e., $\lim_{n\to\infty} F_X(x+\frac{1}{n})$ exists and

$$\lim_{n \to \infty} F_X(x + \frac{1}{n}) \doteqdot F_X(x +) = F_X(x), \quad \forall \ x \in \mathbb{R};$$

(c) $F_X(-\infty) \doteq \lim_{n\to\infty} F_X(-n) = 0$ and $F_X(+\infty) \doteq \lim_{n\to\infty} F_X(n) = 1$.

Proof:

(a) Let $-\infty < x < y < \infty$. Then $(-\infty, x] \subseteq (-\infty, y]$, and

 $= F_X(y).$

$$F_X(x) = P(\{X \le x\})$$

$$= P_X((-\infty, x])$$

$$\le P_X((-\infty, y])$$
(probability function is monotone)

(b) Let $x \in \mathbb{R}$ be fixed. Define, for n = 1, 2, ...,

$$A_n = \{X \le x + \frac{1}{n}\} = X^{-1}((-\infty, x + \frac{1}{n}]).$$

Then $A_n \downarrow$ and

$$\bigcap_{n=1}^{n} A_n = X^{-1} \left(\bigcap_{n=1}^{\infty} (-\infty, x + \frac{1}{n}] \right)$$
$$= X^{-1} \left((-\infty, x] \right).$$

Thus,

$$F_X(x) = P(X^{-1}(-\infty, x])$$

$$= P(\bigcap_{n=1}^{\infty} A_n)$$

$$= \lim_{n \to \infty} P(A_n) \quad (P \text{ is continuous})$$

$$= \lim_{n \to \infty} P(\{X \le x + \frac{1}{n}\})$$

$$= \lim_{n \to \infty} F_x(x + \frac{1}{n}) = F_X(x+).$$

(c) Define, for n = 1, 2, ...,

$$B_n = \{ \omega \in \Omega : X(\omega) \le -n \} = X^{-1}((-\infty, -n])$$

and

$$C_n = \{ \omega \in \Omega : X(\omega) \le n \} = X^{-1}((-\infty, n]).$$

Then $B_n \downarrow$, $C_n \uparrow$,

$$\bigcap_{n=1}^{\infty} B_n = X^{-1} (\bigcap_{n=1}^{\infty} (-\infty, -n]) = X^{-1} (\phi) = \phi,$$

and

$$\bigcup_{n=1}^{\infty} C_n = X^{-1}(\bigcup_{n=1}^{\infty} (-\infty, n]) = X^{-1}(\mathbb{R}) = \Omega.$$

Thus

$$0 = P(\phi)$$

$$= P(\bigcap_{n=1}^{\infty} B_n)$$

$$= \lim_{n \to \infty} P(B_n) \quad (P \text{ is continuous})$$

$$= \lim_{n \to \infty} P(\{X \le -n\})$$

Remark 2:

(a) Using advanced mathematical arguments, it can be shown that any function $G(\cdot)$ satisfying properties (a)-(c) of the above theorem (non-decreasing, right continuous,

 $G(-\infty) = 0$, $G(+\infty) = 1$) is a d.f of some r.v.

(b) From the knowledge of calculus we know that any monotone function is either continuous on \mathbb{R} or it has at at at a tunnel number of discontinuities. Thus any d.f $F_X(\cdot)$ is either continuous on \mathbb{R} or has only countable number of discontinuities.

(c) We have, for every $x \in \mathbb{R}$,

$$F_X\left(x - \frac{1}{n}\right) \leq F_X(x) = F_X(x+), \ n \in \mathbb{N}$$

$$\lim_{n \to \infty} F_X\left(x - \frac{1}{n}\right) \leq F_X(x) = F_X(x+)$$
i.e., $F_X(x-) \leq F_X(x) = F_X(x+)$.

(d) For $x \in \mathbb{R}$

$$P(\lbrace X < x \rbrace) = P_X ((-\infty, x))$$

$$= P_X \left(\bigcup_{n=1}^{\infty} \left(-\infty, x - \frac{1}{n} \right] \right)$$

$$= \lim_{n \to \infty} P_X \left(\left(-\infty, x - \frac{1}{n} \right] \right)$$

$$\left(\left(-\infty, x - \frac{1}{n} \right] \uparrow \right)$$

$$= \lim_{n \to \infty} F_X \left(x - \frac{1}{n} \right)$$

$$= F_X(x-).$$

Thus

$$P(\lbrace X < x \rbrace) = F_X(x-), \ \forall \ x \in \mathbb{R}.$$

(e) For $-\infty < a < b < \infty$

$$P(\{X \le b\}) = P(\{X \le a\}) + P(\{a < X \le b\})$$

$$P(\{a < X \le b\}) = P(\{X \le b\}) - P(\{X \le a\})$$

 $= F_X(b) - F_X(a)$.

Thus

$$P(\{a < X \le b\}) = F_X(b) - F_X(a), \ \forall -\infty < a < b < \infty.$$

Similarly, for $-\infty < a < b < \infty$,

$$P(\{a < X < b\}) = P(\{X < b\}) - P(\{X \le a\})$$

$$= F_X(b-) - F_X(a),$$

$$P(\{a \le X \le b\}) = P(\{X \le b\}) - P(\{X < a\})$$

$$= F_X(b) - F_X(a-),$$

$$P(\{a \le X < b\}) = P(\{X < b\}) - P(\{X < a\})$$

$$= F_X(b-) - F_X(a-),$$

$$P(\{X > b\}) = 1 - P(\{X \le b\})$$

$$= 1 - F_X(b),$$

$$P(\{X \ge b\}) = 1 - P(\{X < b\})$$

$$= 1 - F_X(b-).$$

(f) For $x \in \mathbb{R}$

$$P({X = x}) = P({X \le x}) - P({X < x})$$

= $F_X(x) - F_X(x-)$.

(g) Let D_X be the set of discontinuity points of F_X . Since F_X is always right continuous,

$$x \in D_X \Leftrightarrow F_X(x) - F_X(x-) > 0$$

 $\Leftrightarrow P(\{X = x\}) > 0.$

Thus a d.f. has only jump discontinuities and

$$D_X = \{x \in \mathbb{R} : P(\{X = x\}) > 0\}.$$

Example 3: Let X be a r.v. with d.f

$$F_X(x) = \begin{cases} 0, & \text{if } x < 0 \\ \frac{x}{3}, & \text{if } 0 \le x < 1 \\ \frac{1}{2}, & \text{if } 1 \le x < 2 \\ \frac{2}{3}, & \text{if } 2 \le x < 3 \\ 1, & \text{if } x \ge 3 \end{cases}$$

Clearly $F_X(\cdot)$ is \uparrow , right continuous, $F_X(-\infty) = 0$, and $F_X(+\infty) = 1$. Also $D_X = \{1, 2, 3\}$.

$$P(\lbrace X = 1 \rbrace) = F_X(1) - F_X(1-) = \frac{1}{2} - \frac{1}{3} = \frac{1}{6},$$

$$P(\lbrace X = 2 \rbrace) = F_X(2) - F_X(2-) = \frac{2}{3} - \frac{1}{2} = \frac{1}{6},$$

$$P(\lbrace X = 3 \rbrace) = F_X(3) - F_X(3-) = 1 - \frac{2}{3} = \frac{1}{3},$$

$$P(\lbrace X < 3 \rbrace) = F_X(3-) = \frac{2}{3},$$

$$P(\lbrace X \ge 1 \rbrace) = 1 - F_X(1-) = 1 - \frac{1}{3} = \frac{2}{3}.$$

For any $c \notin \{1, 2, 3\}$

$$P({X = c}) = 0,$$

$$P({2 < X \le 3}) = F_X(3) - F_X(2) = 1 - \frac{2}{3} = \frac{1}{3},$$

$$P(\{1 < X < 2\}) = F_X(2-) - F_X(1) = \frac{1}{2} - \frac{1}{2} = 0$$

$$P(\{1 \le X < 3\}) = F_X(3-) - F_X(1-) = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}$$

$$P(\{2 \le X \le 4\}) = F_X(4) - F_X(2-) = 1 - \frac{1}{2} = \frac{1}{2}.$$

Let X be a r.v. with d.f.

$$F_X(x) = \begin{cases} 0, & \text{if } x < 1\\ 1 - \frac{1}{x}, & \text{if } x \ge 1 \end{cases}.$$

Let $S = \{1, 2, 3, ...\}$. Find the value of $P(\{X \in S\})$.

Take Home Problem

1. Let $G(\cdot)$ be d.f. of some r.v. Show that

(a)

$$G(x-) \le G(x) = G(x+), \ \forall \ x \in \mathbb{R};$$

(b)

$$G(x+) \le G(y-), \forall -\infty < x < y < \infty.$$

2. Let $F_X(\cdot)$ be continuous on \mathbb{R} and let S be any countable set. Show that $P(\{X \in S\}) = 0$.

Abstract of Next Module

1. We have seen that

$$D_X$$
 = set of discontinuity points of $F_X(\cdot)$
= $\{x \in \mathbb{R} : P(\{X = x\}) > 0\}$
(a countable set)

There may be situations where

$$P({X \in D_X}) = \sum_{x \in D_X} P({X = x}) = 1.$$

We call such r.v.s as discrete r.v.

2. In next module, we will introduce discrete r.v.s and study their properties.

Thank you for your patience

