EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

07022601

PUBLICATION DATE

24-01-95

APPLICATION DATE

23-06-93

APPLICATION NUMBER

05151672

APPLICANT: SONY CORP;

INVENTOR: MATSUNO TOMOYUKI;

INT.CL.

: H01L 27/148 H04N 5/335

TITLE

MANUFACTURE OF

SEMICONDUCTOR DEVICE

ABSTRACT :

PURPOSE: To make constant a substrate voltage between semiconductor substrates by a method wherein a dose of impurity is corrected by an ion implantation so as to make a stored electric charge amount in an electric charge store part a set value by measuring resistivity of the semiconductor substrate.

CONSTITUTION: Resistivity of a sheet of wafer in a lot to be initially processed is measured. Next, a dose of n-type impurity of a wafer is calculated based on a measured value. Next, a dose of p-type impurity of a p well 2 is decided from the dose of the n-type impurity of the wafer. The dose of the p-type impurity is decided according to the relation of potential and a photodiode 5 formed in the p well 2, and decided so that an electric charge store amount in an electric charge store part can be made constant. Next, an ion implantation is controlled to form the p well so that the entire wafer of lots can become an appropriate dose. Thus, a substrate voltage can be non-regulated and also stabilized.

COPYRIGHT: (C)1995,JPO

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-22601

(43)公開日 平成7年(1995)1月24日

(51) Int.Cl.⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

H01L 27/148 H 0 4 N 5/335

Z

審査請求 未請求 請求項の数1 OL (全 4 頁)

		BI ZEPITI	, , , , , , , , , , , , , , , , , , ,
(21)出旗番号	特顧平5-151672	(71)出顧人	000002185
			ソニー株式会社
(22)出願日	平成5年(1993)6月23日		東京都品川区北品川6丁目7番35号
		(72)発明者	松野知之
			長崎県諫早市津久葉町1883-43 ソニー長
			崎株式会社内
		(74)代理人	弁理士 志賀 富士弥 (外1名)

(54)【発明の名称】 半導体装置の製造方法

(57)【要約】

【目的】 基板電圧(V.ab)無調整化できる半導体装 置の製造方法を提供する。

【構成】 ウェルをイオン注入で形成する前に、ロット のうち1枚のウェハの抵抗率を測定し、その測定値に基 づいて、ウェハの適性ドーズを算出する。この算出ドー ズ量となるように、全ウェハのウェルのイオン往入を行 う。他のロットも同様のことを行う。このようにするこ とにより、ウェハの基板電圧を安定化することが可能と なる。

(2)

【特許請求の範囲】

【請求項1】 半導体基板にイオン注入を行ってウェル を形成し、該ウェルに電荷蓄積部を形成する半導体装置 の製造方法において、

前記半導体基板の抵抗率を測定し、該抵抗率の測定値に 基づいて、該電荷蓄積部の蓄積電荷量が設定量になるよ うに、前記イオン注入よる不純物のドーズ量に補正を加 えてウェルを形成することを特徴とする半導体装置の製

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、半導体装置の製造方 法に関し、特に、半導体基板にウェルが形成される半導 体装置の製造分野で利用することができる。

[0002]

【従来の技術及び発明が解決しようとする課題】従来、 ウェルが形成される半導体装置として例えば固体撮像デ バイスがある。図3は、n型半導体ウェハに形成され た、縦型オーパーフロードレイン構造をもつCCDイメ ージセンサの断面説明図である。同図中、1はn型の半 20 導体ウェハであり、このウェハ1にはイオン注入によっ てpウェル2が形成されている。また、pウェル2の表 面には、絶縁膜(図示省略する)を介してポリシリコン 電極3, AI電極4が所定のパターンに形成されてい る。そして、pウェル2の、電極パターンの間の領域 に、受光部としてのフォトダイオード5が形成されてい る。このフォトダイオード5は、pウェル2の表面側か ら内部に向けてp型領域5Aとn型領域5Bとが順次形 成されてなる。フォトダイオード5の一側部には、チャ ネルストップ6が形成されている。また、ボリシリコン 30 電極3の下方には、チャネルストップ6に隣接して電荷 転送部7が形成されている。図4は、図3に示す線X-Yで切った部分のポテンシャルプロファイルを示してい る。この図から判るように、図3に示すn型領域5Bに 電荷が蓄積するようになっている。ここで、図4に示す ように、pウェル2部分のポテンシャルエネルギーをφ 0 年8 とし、図 5 に示すように、各接合部の空乏領域の容 量をC1, C2, C3とする。従来、Φ012は、蓄積電荷量 Qsを一定化するため、このoorsをチップ毎に基板電圧 なパラメータは、図5に示す容量Czである。この容量 C:を決定する要因は2つある。一つは、pウェル2の 不純物のドーズ量であり、他の一つは、n型半導体ウェ ハ (n, **) 1 の不純物のドーズ量である。このうち、 pウェル2のドーズ量は、イオン注入によって制御され ているのに対し、より空乏層の広がるn型半導体ウェハ 1のドーズ量は値に幅をもっており、基板電圧 (V.11) の安定化という点では管理されていないに等 しかった。図6に示すように、引き上げたインゴットi

れるウェハにおけるドーズ量は微妙に異なっている。こ れは、ドーズ量がある幅で分布するためである。1つの インゴットから作成されるウェハの抵抗率と基板電圧 (V***) との関係を示したグラフである。このグラフ から判るように、抵抗率に誤差幅をもっている。例え ば、n型不純物のドーズ量が低い場合は、抵抗率が大き くなり、基板電圧(Vioo)値は大きくなる。このよう に、このドーズ量により、基板電圧が変化し、Vini値 が不安定となる問題があった。

【0003】この発明が解決しようとする課題は、基板 電圧の安定した半導体装置を製造するには、どのような 手段を講じればよいかという点にある。

[0004]

【課題を解決するための手段】この発明は、半導体基板 にイオン注入を行ってウェルを形成し、該ウェルに電荷 蓄積部を形成する半導体装置の製造方法において、前記 半導体基板の抵抗率を測定し、該抵抗率の測定値に基づ いて、該電荷蓄積部の蓄積電荷量が設定量になるよう に、前記イオン注入よる不純物のドーズ量に補正を加え てウェルを形成することを、解決手段としている。

[0005]

【作用】この発明においては、半導体基板の抵抗率の測 定値からウェルのドーズ量が決定され、電荷蓄積部の蓄 積電荷量が設定量となる。この設定量は、半導体基板間 で同じであり、ウェルのイオン注入を制御することで作 ることができる。このため、半導体基板間で基板電圧 (V,,,) を一定にすることができる。

[0006]

【実施例】以下、この発明に係る半導体装置の製造方法 を図面に示す実施例に基づいて説明する。

【0007】本実施例は、半導体装置としてのCCDイ メージセンサの製造に本発明を適用した例である。先 ず、本実施例の方法では、図1に示すように、インゴッ トから切り出された例えばn型のウェハ(半導体基板) を1ロット25枚として複数のロットをイオン注入装置 に投入するために待機させる。(ステップSi)。

【0008】次に、最初に処理するロットのうち1枚の ウェハの抵抗率を測定する (ステップS₂)。次に、こ の測定値に基づいて、ウェハのn型不純物のドーズ量を $(V_{1,1})$ で調節している。この $\phi_{0,1}$ に対する最も大き 40 算出する。そして、ウェハのn型不純物のドーズ量から 図3に示すpウェル2のp型不純物のドーズ量を決定す る (ステップS $_{\mathfrak{s}}$)。この p型不純物のドーズ量は、pウェル2に形成されるフォトダイオード5とのポテンシ ャルの関係で決定され、電荷蓄積部(n型領域5B)の **若稍電荷量を一定(設定値)にするように決める。**

【0009】図2は、ウェハどうしの抵抗がa>bであ り、基板電圧(V,,,) がa>bの2つのCCDイメー ジセンサのポテンシャルプロファイルを示したものであ る。この図から判るように、a=bつまりVsub値を の下端側A、中間部B,上端側Cの部分からスライスさ 50 同じにするには、pウェルの不純物ドーズ量を下げれば

よい。

【0010】このようにしてpウェルの適正ドーズ量を 算出した後、そのロットのウェハ全部を適性ドーズ型と なるように、イオン注入を制御して行ってpウェルを形 成する (ステップS1)。 1 つのインゴットからは、約 200~300枚のウェハがスライスできるため、1口 ット25枚程度の範囲では、不純物の分布はほぼ均一で あるため、1ロットのうち1枚のウェハを測定すればよ

【0011】次に処理するロットも同様に1枚のウェハ 10 の抵抗率を測定し、その測定値に基づいて、全部のウェ ハのイオン注入を制御すればよい。

【0012】以上、実施例について説明したが、この発 明は、CCDイメージセンサ以外の半導体装置に適用す ることが勿論可能である。

【0013】また、上記実施例においては、ウェハの抵 抗率をロット毎に1枚を測定したが、インゴットから速 統的に切り出された2ロット毎に一枚測定してもよく、 または、インゴットの下端側、中間部、上端側の3つの 領域で1枚ずつ測定してもよい。さらには、全ウェハを 20 5…フォトダイオード 1 枚毎に抵抗率を測定してもよい。

【0014】さらに、上記実施例においては、n型のウ ェハを用いたが、逆の導電型でも勿論適用可能である。 [0015]

【発明の効果】以上の説明から明らかなように、この発 明によれば、従来1チップ毎に蓄積電荷量を設定量にな るように調整していた基板電圧(V...)を無調整化で きる効果がある。このため、基板電圧値が安定化でき

【図面の簡単な説明】

【図1】この発明の実施例を示すフローチャート。

【図2】この発明の実施例のポテンシャルプロファイル を示すグラフ。

【図3】 CCDイメージセンサの断面説明図。

【図4】図3のX-Y方向のポテンシャルプロファイル を示すグラフ。

【図5】 CCDイメージセンサの等価回路図。

【図6】インゴットの側面説明図。

【図7】引き上げインゴット内のウェハの抵抗率と基板 電圧との関係を示すグラフ。

【符号の説明】

1…半導体ウェハ

2…pウェル

5 A…p型領域

5 B…n型領域

Qs····蓄積電荷量

