iiiiiii HEAD

Exercice 1

Question 1.1

Supposons que la proposition est vraie, on a

$$\frac{\sqrt{n}(V_n^2 - \sigma^2)}{\sqrt{\bar{\mu}_4 - \sigma^4}} = \mathcal{N}(0, 1)$$

$$(V_n^2 - \sigma^2) = \frac{\sqrt{\bar{\mu}_4 - \sigma^4}}{\sqrt{n}} \mathcal{N}(0, 1)$$

$$(V_n^2 - \sigma^2) = \mathcal{N}(0, \frac{\bar{\mu}_4 - \sigma^4}{n})$$

$$V_n^2 = \sigma^2 + \mathcal{N}(0, \frac{\bar{\mu}_4 - \sigma^4}{n})$$

$$V_n^2 = \mathcal{N}(\sigma^2, \frac{\bar{\mu}_4 - \sigma^4}{n})$$

Donc la proposition est vraie si V_n^2 suit une loi normale. Il faut montrer que $E(V_n^2)=\sigma^2$ et $V(V_n^2)=\frac{\bar{\mu_4}-\sigma^4}{n}$.

$$E(V_n^2) = E\left(\frac{1}{n}\sum_{i=1}^n (X_i - m)^2\right) = \frac{1}{n}\sum_{i=1}^n E\left((X_i - m)^2\right) = \frac{1}{n}\sum_{i=1}^n E(X_i^2 - 2X_i m + m^2) = \frac{1}{n}\sum_{i=1}^n E(X_i^2) - 2E(X_i m) + E(m^2)$$

$$= \frac{1}{n}\sum_{i=1}^n E(X_i^2) - E(X_i)^2 = \frac{1}{n}\sum_{i=1}^n V(X_i) = \frac{1}{n}\sum_{i=1}^n \sigma^2 = \sigma^2$$

et

$$V(V_n^2) = V\left(\frac{1}{n}\sum_{i=1}^n (X_i - m)^2\right) = \frac{1}{n^2}\sum_{i=1}^n V((X_i - m)^2) =$$

????

Question 1.2

$$\hat{\sigma}_n^2 = V_n^2 - (\bar{X}_n - m)^2$$

Question 1.3

Question 1.4

Exercice 2

Question 2.1

Si une variable aléatoire X_i suit une loi normale $\mathcal{N}(\mu, \sigma^2)$ alors sa loi chi deux de degrés n est égale à $\sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2$. Comme on a la variable aléatoire X_i suit une loi normale $\mathcal{N}(5, \sigma^2)$, on a $\sum_{i=1}^n \left(\frac{X_i - 5}{\sigma}\right)^2$ qui suit la loi de chi deux de degrès n.

Question 2.2

Calculons $E(V_n^2)$, si c'est égal à σ^2 , c'est que l'estimateur est non biaisé. D'abord on simplifie:

$$V_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - 5)^2 = \frac{1}{n} \sum_{i=1}^n (X_i^2 - 10X_i + 25) = \frac{1}{n} \sum_{i=1}^n X_i^2 - 10 \frac{1}{n} \sum_{i=1}^n X_i + \frac{1}{n} \sum_{i=1}^n 25$$
$$= \frac{1}{n} \sum_{i=1}^n X_i^2 - 50 + 25 = \frac{1}{n} \sum_{i=1}^n X_i^2 - 25$$

Petit rappel $E(X_i) = \frac{1}{n} \sum_{i=1}^{n} X_i = 5$ la moyenne.

Donc

$$E(V_n^2) = E\left(\frac{1}{n}\sum_{i=1}^n (X_i - 5)^2\right) = E\left(\frac{1}{n}\sum_{i=1}^n X_i^2 - 25\right) = \frac{1}{n}\sum_{i=1}^n E(X_i^2) - 25 = \frac{1}{n}\sum_{i=1}^$$

Mais on a $\sigma^2 = V(X_i) = E(X_i^2) - E^2(X_i)$ donc $E(X_i^2) = \sigma^2 + E^2(X_i)$. Dans notre cas $E(X_i) = 5$ donc $E(X_i^2) = \sigma^2 + 25$.

$$\frac{1}{n}\sum_{i=1}^{n}E(X_{i}^{2})-25=\frac{1}{n}\sum_{i=1}^{n}\left(\sigma^{2}+25\right)-25=\sigma^{2}+25-25=\sigma^{2}$$

 V_n^2 est un estimateur non biaisé donc $B(V_n^2) = 0$.

Le risque quadratique est défini par

$$R(V_n^2) = B^2(V_n^2) + V(V_n^2) = V(V_n^2) = V\left(\frac{1}{n}\sum_{i=1}^n (X_i - 5)^2\right) = \frac{1}{n^2}\sum_{i=1}^n V((X_i - 5)^2)$$

????

Question 2.3

======

Exercice 5

Question 5.A.1

$$\int_{-\infty}^{+\infty} \frac{m\theta^m}{x^{m+1}} 1_{\lceil \theta, \infty \rceil}(x) dx = \int_{-\infty}^{\theta} \frac{m\theta^m}{x^{m+1}} 1_{\lceil \theta, \infty \rceil}(x) dx + \int_{\theta}^{+\infty} \frac{m\theta^m}{x^{m+1}} 1_{\lceil \theta, \infty \rceil}(x) dx$$
$$0 + \int_{\theta}^{+\infty} \frac{m\theta^m}{x^{m+1}} dx = \left[\frac{\theta^m}{x^m}\right]_{\theta}^{+\infty} = \frac{\theta^m}{\theta^m} - \frac{\theta^m}{\infty^m} = 1 - 0 = 1$$

Question 5.A.2

$$\forall t \ge \theta, P(X \ge t) = \forall t \ge \theta, 1 - P(X < t) = 1 - \int_{\theta}^{t} \frac{m\theta^{m}}{x^{m+1}} dx = 1 - \left[\frac{\theta^{m}}{x^{m}}\right]_{\theta}^{t} = \left(\frac{\theta}{t}\right)^{m}$$

Question 5.A.3

$$E(X) = \int_{-\infty}^{+\infty} x \frac{m\theta^m}{x^{m+1}} 1_{\lceil \theta, \infty \rceil}(x) dx = 0 + \int_{\theta}^{+\infty} x \frac{m\theta^m}{x^{m+1}} dx = m\theta^m \int_{\theta}^{+\infty} \frac{1}{x^m} dx = m\theta^m \left[-\frac{1}{(m-1)x^{m-1}} \right]_{\theta}^{+\infty} = -\frac{m\theta^m}{m-1} \left(0 - \frac{1}{\theta^{m-1}} \right) = \frac{m\theta}{m-1}$$

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} \frac{m\theta^{m}}{x^{m+1}} 1_{\lceil \theta, \infty \rceil}(x) dx = 0 + \int_{\theta}^{+\infty} x^{2} \frac{m\theta^{m}}{x^{m+1}} dx = m\theta^{m} \int_{\theta}^{+\infty} \frac{1}{x^{m-1}} dx = m\theta^{m} \left[-\frac{1}{(m-2)x^{m-2}} \right]_{\theta}^{+\infty} = -\frac{m\theta^{m}}{m-2} \left(0 - \frac{1}{\theta^{m-2}} \right) = \frac{m\theta^{2}}{m-2}$$

Question 5.A.3

$$V(X) = E(X^{2}) - E(X)^{2} = \frac{m\theta^{2}}{m-2} - \left(\frac{m\theta}{m-1}\right)^{2} = \frac{m(m-1)^{2} - m^{2}(m-2)}{(m-2)(m-1)^{2}}\theta^{2} = \frac{m}{(m-2)(m-1)^{2}}\theta^{2}$$

Question 5.B.1

Méthode des moments de niveau 1, $M_1 = \frac{1}{n} \sum_{i=1}^n X_i$, et $E(X) = M_1$ donc

$$M_1 = \frac{m\theta}{m-1}$$

Donc l'estimateur est

$$\hat{\theta_1} = \frac{m-1}{m} M_1 = \frac{m-1}{m} \frac{1}{n} \sum_{i=1}^{n} X_i$$

Comme m=3, on a

$$\hat{\theta_1} = \frac{2}{3} \frac{1}{n} \sum_{i=1}^n X_i$$

TBC

Question 5.B.2.a

Méthode du maximum de vraissemblance, on a

$$L_{\theta}(X) = \prod_{i=1}^{n} \frac{3\theta^{3}}{x_{i}^{4}} 1_{[\theta,\infty[}(x_{i}) = 3^{n}\theta^{3n} \prod_{i=1}^{n} \frac{1}{x_{i}^{4}} 1_{[\theta,\infty[}(x_{i})$$

On traite 2 cas:

- Lorsque $\theta > \min\{x_i\}$, la fonction $1_{[\theta,\infty]}(x) = 0$ pour $x = \min\{x_i\}$. Donc, on a $L_{\theta}(X) = 0$.
- Lorsque $\theta \leq \min\{x_i\}$, la fonction $1_{[\theta,\infty[}(x)=1, \forall x\in\{x_i\}$. Donc, on a $L_{\theta}(X)>0$.

La fonction de vraissemblance de $L_{\theta}(X) = C\theta^3 n$ où C est un terme constant dependant de X. Par conséquent, Le maximum de vraissemblance correspond à la plus grande valeur possible de θ . Donc $\hat{\theta}_2 = \min\{x_i\}$.

Question 5.B.2.b

La fonction de répartition de $\hat{\theta}_2$ est $F(t) = P(\min_{1 \le i \le n} X_i \le t)$. Donc

$$P(\min_{1 \le i \le n} X_i < t) = 1 - P(\min_{1 \le i \le n} X_i \ge t) = 1 - P(x_1 \ge t, \dots, x_n \ge t)$$

Les variables x_i étant indépendentes et de même loi, on a

$$=1-\prod_{i=1}^{n}P(x_{i}\geq t)=1-\prod_{i=1}^{n}\left(\frac{\theta}{t}\right)^{3}1_{[\theta,\infty[}(t)=1-\left(\frac{\theta}{t}\right)^{3n}1_{[\theta,\infty[}(t)=P(3n,\theta)$$

Question 5.B.2.c

La fonction de répartition de $\hat{\theta_2}$ suit une loit de Pareto $P(3n,\theta)$, l'espérance et la variance de la loi de Pareto $P(m,\theta)$ sont resp. $\frac{m\theta}{m-1}$ et $\frac{m}{(m-2)(m-1)^2}\theta^2$ (voir questions préliminaires), donc

$$E[\hat{\theta_2}] = \frac{3n}{3n-1}\theta$$

et

$$V[\hat{\theta_2}] = \frac{3n}{(3n-2)(3n-1)^2}\theta^2$$

Question 5.B.2.d

$$B(\hat{\theta_2}, \theta) = E[\hat{\theta_2} - \theta)] = E[\hat{\theta_2}] - E[\theta)] = \frac{3n}{3n - 1}\theta - \theta = \frac{\theta}{3n - 1}$$

- Première méthode: convergence en probabilité, $\lim_{n\to\infty}P(|\hat{\theta_2}-\theta|>\epsilon)=0$
- Seconde méthode: Utiliser le critère de faible consistance. c.a.d. si le risque quadratique $R(\hat{\theta}_2, \theta)$ converge vers 0 quand $n \to \infty$.

Première méthode. On a

$$(|\hat{\theta}_2 - \theta| > \epsilon) = (\hat{\theta}_2 - \theta > \epsilon) \cap (\hat{\theta}_2 > \theta) \cup (\theta - \hat{\theta}_2 > \epsilon) \cap (\hat{\theta}_2 < \theta)$$

On sait d'après la fonction de répartition que l'événement $(\hat{\theta_2} < \theta) = 0$ et que l'événement $(\hat{\theta_2} > \theta) = 1$. Donc

$$P(|\hat{\theta}_2 - \theta| > \epsilon) = P(\hat{\theta}_2 - \theta > \epsilon) = P(\hat{\theta}_2 > \epsilon + \theta) = \left(\frac{\theta}{\theta + \epsilon}\right)^{3n}$$

Comme ϵ est positif, on a

$$\lim_{n \to \infty} \left(\frac{\theta}{\theta + \epsilon} \right)^{3n} = 0$$

Donc l'estimateur $\hat{\theta}_2$ est consistant.

Seconde méthode.

$$R(\hat{\theta_2}, \theta) = V(\hat{\theta_2}) - B^2(\hat{\theta_2}, \theta) = \frac{3n}{(3n-2)(3n-1)^2} \theta^2 - \frac{1}{(3n-1)^2} \theta^2 = \frac{2\theta^2}{(3n-1)^2} \theta^2$$

et

$$\frac{2\theta^2}{(3n-1)^2} \to_{n\to\infty} 0$$

Donc l'estimateur $\hat{\theta}_2$ est consistant.

Question 5.B.3

On cherche un estimateur sans biais $\hat{\theta_3}$ donc par définition $E[\hat{\theta_3}] = \theta$. On a trouvé à la question précédente que $B(\hat{\theta_2}, \theta) = \frac{\theta}{3n-1}$ donc que

$$E[\hat{\theta_2}] = B(\hat{\theta_2}, \theta) - E[\theta] = B(\hat{\theta_2}, \theta) - \theta = \frac{\theta}{3n-1} - \theta = \frac{3n\theta}{3n-1}$$

Ce qui fait $\theta = \frac{3n-1}{3n}E[\hat{\theta_2}]$ et $E[\hat{\theta_3}] = \frac{3n-1}{3n}E[\hat{\theta_2}]$. Si on définit $\hat{\theta_3} = \frac{3n-1}{3n}\hat{\theta_2}$, il est facile de montrer que $E[\hat{\theta_3}] = \theta$ car

$$E[\hat{\theta_3}] = E\left[\frac{3n-1}{3n}\hat{\theta_2}\right] = \frac{3n-1}{3n}E[\hat{\theta_2}] = \frac{3n-1}{3n}\frac{3n}{3n-1}\theta = \theta$$

Pour montrer sa consistence, il faut montrer que son risque quadratique tend vers 0 quand n tend vers l'infini, on a

$$R(\hat{\theta}_3, \theta) = V(\hat{\theta}_3) - B(\hat{\theta}_3, \theta) = V(\hat{\theta}_3) = V\left(\frac{3n-1}{3n}\hat{\theta}_2\right) = \left(\frac{3n-1}{3n}\right)^2 V(\hat{\theta}_2)$$

$$= \left(\frac{3n-1}{3n}\right)^2 \frac{3n}{(3n-2)(3n-1)^2} \theta^2 = \frac{\theta^2}{3n(3n-2)}$$

$$\frac{\theta^2}{3n(3n-2)} \to_{n\to\infty} 0$$

 et

Donc l'estimateur $\hat{\theta_3} = \frac{3n-1}{3n}\hat{\theta_2}$ est sans biais et est consistant.

Question 5.B.4

Des questions précedentes on a

$\hat{\theta}$	$B(\hat{\theta}, \theta)$	$R(\hat{\theta}, \theta)$
$\hat{ heta_1}$	0	$\frac{\theta^2}{3n}$
$\hat{ heta_2}$	$\frac{\theta}{3n-1}$	$\frac{3n}{(3n-2)(3n-1)^2}\theta^2$
$\hat{ heta_3}$	0	$\frac{\theta^2}{3n(3n-2)}$