# **Alexander-Sadiku**Fundamentals of Electric Circuits

## **Chapter 2 Basic Laws**

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

### Basic Laws - Chapter 2

- 2.1 Ohm's Law.
- 2.2 Nodes, Branches, and Loops.
- 2.3 Kirchhoff's Laws.
- 2.4 Series Resistors and Voltage Division.
- 2.5 Parallel Resistors and Current Division.
- 2.6 Wye-Delta Transformations.

### 2.1 Ohms Law (1)

- Ohm's law states that the voltage across a resistor is directly proportional to the current I flowing through the resistor.
- Mathematical expression for Ohm's Law is as follows:

$$v = iR$$

Two extreme possible values of R:
 0 (zero) and ∞ (infinite) are related with two basic circuit concepts: short circuit and open circuit.



## 2.1 Ohms Law (2)

 <u>Conductance</u> is the ability of an element to conduct electric current; it is the reciprocal of resistance R and is measured in mhos or siemens.

 $G = \frac{1}{R} = \frac{i}{v}$ 

The power dissipated by a resistor:

$$p = vi = i^2 R = \frac{v^2}{R}$$

# 2.2 Nodes, Branches and Loops (1)

- A branch represents a single element such as a voltage source or a resistor.
- A node is the point of connection between two or more branches.
- A loop is any closed path in a circuit.
- A network with b branches, n nodes, and l independent loops will satisfy the fundamental theorem of network topology:

$$b = l + n - 1$$

# 2.2 Nodes, Branches and Loops (2)



How many branches, nodes and loops are there?

# 2.2 Nodes, Branches and Loops (3)

**Example 2** 

Should we consider it as one branch or two branches?



How many branches, nodes and loops are there?

### 2.3 Kirchhoff's Laws (1)

 Kirchhoff's current law (KCL) states that the algebraic sum of currents entering a node (or a closed boundary) is zero.



Mathematically,



$$\sum_{n=1}^{N} i_n = 0$$

## 2.3 Kirchhoff's Laws (2)

#### **Example 4**

 Determine the current I for the circuit shown in the figure below.



$$I + 4-(-3)-2 = 0$$
  
 $\Rightarrow I = -5A$ 

This indicates that the actual current for I is flowing in the opposite direction.

## 2.3 Kirchhoff's Laws (3)

 Kirchhoff's voltage law (KVL) states that the algebraic sum of all voltages around a closed path (or loop) is zero.



$$\sum_{m=1}^{M} v_n = 0$$

## 2.3 Kirchhoff's Laws (4)

#### **Example 5**

Applying the KVL equation for the circuit of the figure below.



$$v_a - v_1 - v_b - v_2 - v_3 = 0$$
 $V_1 = IR_1 \ v_2 = IR_2 \ v_3 = IR_3$ 
 $\Rightarrow v_a - v_b = I(R_1 + R_2 + R_3)$ 

$$I = \frac{v_a - v_b}{R_1 + R_2 + R_3}$$

## 2.4 Series Resistors and Voltage Division (1)

- Series: Two or more elements are in series if they are cascaded or connected sequentially and consequently carry the same current.
- The equivalent resistance of any number of resistors connected in a series is the sum of the individual resistances.

$$R_{eq} = R_1 + R_2 + \dots + R_N = \sum_{n=1}^{N} R_n$$

The voltage divider can be expressed as

$$v_n = \frac{R_n}{R_1 + R_2 + \dots + R_N} v$$

## 2.4 Series Resistors and Voltage Division (1)

#### **Example 3**



## 2.5 Parallel Resistors and Current Division (1)

- Parallel: Two or more elements are in parallel if they are connected to the same two nodes and consequently have the same voltage across them.
- The equivalent resistance of a circuit with N resistors in parallel is:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

• The total current i is shared by the resistors in inverse proportion to their resistances. The current divider can be expressed as:  $i_n = \frac{v}{r} = \frac{iR_{eq}}{r}$ 

## 2.5 Parallel Resistors and Current Division (1)

#### Example 4



### 2.6 Wye-Delta Transformations



#### **Delta -> Star**

$$R_1 = \frac{R_b R_c}{(R_a + R_b + R_c)}$$

$$R_2 = \frac{R_c R_a}{(R_a + R_b + R_c)}$$

$$R_3 = \frac{R_a R_b}{(R_a + R_b + R_c)}$$

#### Star -> Delta

$$R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$$

$$R_b = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

$$R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$$