POLITECHNIKA WROCŁAWSKA

INDUKCYJNE METODY ANALIZY DANYCH

Ćwiczenie 4 - Algorytm klasyfikacji k-najbliższych sąsiadów

Marcel Cielinski Index: 236747

prowadzący dr inż. PAWEŁ MYSZKOWSKI

Wprowadzenie

1.1 Problem

Celem ćwiczenia było zapoznanie się z metodą klasyfikacji k-najbliższych sąsiadów (ang. k-nearest neighbours, k-nn). Do składowych zadania zalicza się implementację wspomnianego algorytmu w jednym z dwóch wybranych języków: R lub Python. Następnie należało przeprowadzić badania na czterech, ustalonych na potrzeby ćwiczenia, zbiorach danych. Przedmiotem testów miło być zbadanie wpływu parametrów takich jak: wielkość wartości k (mówiącej o ilości rozpatrywanych sąsiadów), sposób głosowania oraz definicja miary odległości. Zadbać należało także o zastosowanie operacji na danych, które je ujednolicą (standaryzacja lub normalizacja) oraz zbadanie dwóch rodzajów walidacji krzyżowej do oceny skuteczności algorytmu poprzez obserwację metryk mówiących o jakości klasyfikatora. Ostatnim poleceniem jest porównanie otrzymanych rezultatów z wynikami klasyfikatorów z poprzednich ćwiczeń.

1.2 Algorytm k-najbliższych sąsiadów

Algorytm k-najbliższych sąsiadów (ang. k-nearest neighbours, k-nn) jest metodą stosowaną zarówno do rozwiązywania zadań regresji, jak i klasyfikacji. Należy ona do grupy algorytmów uczenia "leniwego", tzn. funkcja jest aproksymowana tylko lokalnie oraz proces uczenia jest wykonywany dopiero w momencie, gdy (dla zadania klasyfikacji) chcemy nowemu obiektowi nadać etykietę. Sama klasyfikacja zaś odbywa się na zasadzie głosowania wybranej liczby, najbliższych obiektowi, sąsiadów. O ilości sąsiadów, oddających głos, mówi parametr zamieszczony w nazwie algorytmu - k - jest to równocześnie wskazanie, na bazie jakiego lokalnego zbioru punktów, podejmowana będzie decyzja o etykiecie. Pozostałe dwa parametry, których odpowiedni dobór może być kluczowy dla uzyskania dobrych rezultatów to:

- sposób głosowania mówi o tym jaka waga zostania nadana konkretnej instancji sąsiada waga posłuży jako stopień w udziale podjęcia decyzji o klasyfikacji rozpatrywanego, nowego punktu. W ćwiczeniu zbadano następujące trzy podejścia ważenia głosów:
 - $-\ uniform$ równou prawnione - wszyscy sąsiedzi oddający głos mają równy wpływ na decyzję
 - distance ważone odległością wagi odwrotnie proporcjonalne do ich odległości (bliżsi sąsiedzi modelowanego punktu mają większy wpływ na decyzję, niż ustanowieni w większej odległości)
 - $-\ random$ losowe wagi są przyporządkowywane sąsiadom w sposób losowy
- definicja miary odległości mówi o tym w jaki sposób liczona będzie odległość rozpatrywanych sąsiadów do badanego punktu. W ćwiczeniu zbadano następujące trzy metody pomiaru odległości:
 - manhattan odległość Manhattan suma bezwzględnych różnic współ-

rzędnych; Wzór 1

$$dist_{manh}(p,q) = \sum_{i=1}^{d} |p_i - q_i|$$
 (1)

euclidean - odległość euklidesowa - "zwykła" liniowa odległość pomiędzy dwoma punktami w przestrzeni euklidesowej; Wzór 2

$$dist_{eucl}(p,q) = \sqrt{\sum_{i=1}^{d} (p_i - q_i)^2}$$
 (2)

 - chebyshev - odległość Czebyszewa - największa różnica współrzędnych; Wzór 3

$$dist_{cheb}(p,q) = \max_{i=1..d} |p_i - q_i|$$
(3)

Implementacja

Wybranym przeze mnie środowiskiem jest język *Python*. Do implementacji algorytmu *k*-najbliższych sąsiadów, który był przedmiotem ćwiczenia, użyto biblioteki uczenia maszynowego *sklearn*. Konkretniej, wykorzystano klasyfikator KNeighborsClassifier z pakietu *sklearn.neighbors*. Pozwala on na ustawienie wszystkich interesujących nas parametrów (wielkość wartości *k - n_neighbors*, sposób głosowania - *weights* oraz definicja miary odległości - *metric*) W kodzie wykorzystano także takie biblioteki jak: *pandas*, *matplotlib*, *numpy*, *scipy* oraz *seaborn*.

2.1 Ocena jakości

Do oceny jakości klasyfikatora stosuje się metryki związane, bądź wynikające z macierzy błędów (ang. Confusion matrix). Po wykonaniu zadania klasyfikacji, możliwe jest zbadanie prawidłowości dopasowań, analizując rzeczywiste etykiety. Właśnie w tym celu posługujemy się tablicą pomyłek, która zestawia liczebność instancji prawidłowo i nieprawidłowo oznaczonych przez klasyfikator. Podstawowe takie metryki to:

- Accuracy dokładność jak dobre są ogólne predykcje klasyfikatora. Jest to stosunek dobrze oznaczonych klas do wszystkich oznaczeń.
- *Precission* precyzja mówi o precyzyjności klasyfikatora. Jest to zdolność klasyfikatora do nie oznaczania negatywnych próbek jako pozytywne.
- Recall czułość jak dobrze klasyfikator radzi sobie ze znajdywaniem pozytywnych próbek. Jest to stosunek próbek dobrze zaklasyfikowanych jako pozytywne przez wszystkie rzeczywiście pozytywne.
- \bullet F1-score oznaczane jako FSC jest to w istocie średnia harmoniczna czułości oraz precyzji.

Do badania większości testów posłuży głownie miara FSC. Jest to często wykorzystywana miara, która pozwoli na wymiernie dobre porównanie różnych podejść. W implementacji wykorzystany został pakiet sklearn.metrics, który udostępnia wszystkie powyżej wymienione metryki.

2.2 Ujednolicenie danych

Ujednolicenie danych polega na zastosowaniu operacji takich jak standaryzacja czy normalizacja. Pierwsza z metod opiera się na przemapowaniu wartości atrybutów w taki sposób, by ich średnia skupiała się na wartości 0, a odchylenie standardowe wynosiło 1. Z kolei normalizacja zamienia wielkości atrybutów w taki sposób, aby instancje zachowały wzajemne proporcje między wartościami atrybutów, jednak znalazły się w zakresie [0,1]. Ustalono, że na potrzeby wszystkich testów, atrybuty zbirów danych będą znormalizowane (za pomocą funkcji dostępnej w pakiecie sklearn. preprocessing).

2.3 Kroswalidacja

Kroswalidacja (sprawdzian krzyżowy) jest stosowana w celu lepszej oceny działania modeli, takich jak klasyfikator k-najbliższych sąsiadów. Procedura determinuje podział danych na treningowe i testowe. A jej wykorzystanie tłumaczy się unikaniem overfittingu.

 ${\bf W}$ realizacja zadania wykorzystano dwie metody, dostępne w pakiecie $sklearn.model_selection.$ Są nimi:

- KFold kroswalidacja gdzie całkowity zbiór danych jest dzielony na K równolicznych podzbiorów (parametr n_splits), z których kolejno każdy jest traktowany jako zbiór testowy, kiedy model trenowany jest na połączonych (K-1) pozostałych podzbiorach. Otrzymuje się wówczas K wyników, z których następnie liczona jest średnia.
- StratifiedKFold kroswalidacja stratyfikowana jej działanie jest analogiczne do powyżej opisanego, wariantu zwykłego. Różnica polega na tym, że całkowity zbiór jest dzielony (na K części, także parametrem n_splits) w miarę możliwości na podzbiory o proporcjonalnym rozkładzie klas zgodnie z proporcją istniejącą w całościowym zbiorze.

W badaniach ustawiano parametr shuffle = False w celu wymiernego zbadania różnicy między kroswalidacją podstawową, a stratyfikowaną. Testowany był także wpływ ilości foldów (K) na otrzymywane wyniki, dla obu metod.

2.4 Zbiory danych

Do walidacji zaimplementowanych funkcjonalności wykorzystano łącznie cztery zbiory danych. Te zbiory, to:

- *iris* gdzie liczba atrybutów to 4, a klas 3. Zbiór przedstawia odmiany kwiatów Iris, a atrybuty odpowiadają ich cechom.
- glass gdzie liczba atrybutów to 9, a klas 7. Zbiór przedstawia typy szkła, gdzie atrybuty opisują skład chemiczny.

- wine gdzie liczba atrybutów to 13, a klas 3. Zbiór ten zawiera dane o analizie chemicznej win z tego samego regionu, jednak z 3 różnych upraw.
- seeds gdzie liczba atrybutów wynosi 7, a klas 3. Zbiór ten zawiera miary geometrycznych własności 3 różnych odmian ziaren pszenicy.

Na Rysunkach 1, 2, 3, 4 przedstawiono przykładowe rozkłady klas względem wybranych atrybutów. Z kolei w Tabelach 1, 2, 3, 4 zestawiono rozkład klas dla wszystkich badanych zbiorów.

Rysunek 1: Iris

Rysunek 2: Glass

Klasa	Instancje	% rekordów
Setosa	50	33 (%)
Versicolor	50	33 (%)
Virginica	50	33 (%)

Tablica 1: Klasy zbioru Iris

Klasa	Instancje	% rekordów
1	70	33 (%)
2	76	$36 \ (\%)$
3	17	8 (%)
4	0	0 (%)
5	13	6 (%)
6	9	4 (%)
7	29	13~(%)

Tablica 2: Klasy zbioru Glass

Rysunek 3: Wine

Rysunek 4: Seeds

Klasa	Instancje	% rekordów
1	59	33 (%)
2	71	40 (%)
3	48	27 (%)

Tablica 3: Klasy zbioru Wine

Klasa	Instancje	% rekordów
1	70	33 (%)
2	70	33 (%)
3	70	33 (%)

Tablica 4: Klasy zbioru Seeds

Wyniki eksperymentów

3.1 Zbiór Iris

Poniższe tabelki (Tabela 5, 6, 7, 8, 9, 10) przedstawiają wszystkie przeprowadzone testy na zbiorze Iris, z podziałem na badane wartości parametru k, zastosowane schematy głosowania oraz różne definicje miary odległości. Wszystkie testy zrealizowane zostały przy pomocy sprawdzianów krzyżowych (kroswalidacja "zwykła" oraz stratyfikowana). W kolejnych kolumnach, każdej z wyżej wymienionych Tabel, umieszczone zostały odczyty metryk (o których wspomniano w poprzedniej sekcji).

Dodatkowo na rysunkach: 5 oraz 6 przedstawione są wykresy prezentujące graficznie wpływ parametru k, algorytmu k-nn, na osiągane wartości metryki FSC.

Dla zbioru *Iris*, przy wykorzystaniu algorytmu k-najbliższych sąsiadów, większość z testów osiąga dobre wyniki. Można zaobserwować, że stosowanie kroswalidacji stratyfikowanej przekłada się na wyższe wskazania metryk. Poza tym, zwykle obliczenie euklidesowej miary odległości jest lepszym rozwiązaniem.

k	ACC	PREC	REC	FSC		k	ACC	PREC	REC	FSC
		2-Fold	l				Str	atified 2	2-Fold	
1	0.32	0.108	0.32	0.162		1	0.927	0.928	0.927	0.927
2	0.327	0.11	0.327	0.164		2	0.94	0.945	0.94	0.94
3	0.313	0.107	0.313	0.159		3	0.953	0.953	0.953	0.953
4	0.327	0.11	0.327	0.164		4	0.967	0.968	0.967	0.967
5	0.32	0.108	0.32	0.162		5	0.953	0.953	0.953	0.953
6	0.32	0.108	0.32	0.162		6	0.953	0.953	0.953	0.953
8	0.32	0.108	0.32	0.162		8	0.96	0.962	0.96	0.96
10	0.313	0.107	0.313	0.159		10	0.96	0.962	0.96	0.96
15	0.307	0.105	0.307	0.156		15	0.953	0.953	0.953	0.953
20	0.293	0.102	0.293	0.151		20	0.947	0.948	0.947	0.947
25	0.3	0.103	0.3	0.154		25	0.933	0.937	0.933	0.933
30	0.293	0.102	0.293	0.151		30	0.887	0.898	0.887	0.885
35	0.28	0.099	0.28	0.146		35	0.88	0.886	0.88	0.879
40	0.28	0.099	0.28	0.146		40	0.873	0.88	0.873	0.872
		5-Fold	l		ĺ		Str	atified 5	-Fold	
1	0.913	0.913	0.913	0.913		1	0.953	0.953	0.953	0.953
2	0.907	0.91	0.907	0.906		2	0.96	0.96	0.96	0.96
3	0.927	0.927	0.927	0.927		3	0.953	0.953	0.953	0.953
4	0.92	0.922	0.92	0.92		4	0.967	0.968	0.967	0.967
5	0.92	0.92	0.92	0.92		5	0.96	0.96	0.96	0.96
6	0.893	0.897	0.893	0.893		6	0.967	0.968	0.967	0.967
8	0.893	0.897	0.893	0.893		8	0.96	0.96	0.96	0.96
10	0.887	0.891	0.887	0.886		10	0.96	0.96	0.96	0.96
15	0.873	0.875	0.873	0.873		15	0.973	0.974	0.973	0.973
20	0.86	0.862	0.86	0.86		20	0.96	0.96	0.96	0.96
25	0.827	0.828	0.827	0.826		25	0.947	0.947	0.947	0.947
30	0.773	0.78	0.773	0.77		30	0.96	0.962	0.96	0.96
35	0.68	0.681	0.68	0.677		35	0.947	0.947	0.947	0.947
40	0.627	0.629	0.627	0.622		40	0.94	0.943	0.94	0.94
		10-Fol	d				Str	atified 1	0-Fold	
1	0.947	0.947	0.947	0.947		1	0.953	0.953	0.953	0.953
2	0.94	0.943	0.94	0.94		2	0.96	0.96	0.96	0.96
3	0.933	0.933	0.933	0.933		3	0.953	0.953	0.953	0.953
4	0.94	0.941	0.94	0.94		4	0.96	0.96	0.96	0.96
5	0.953	0.953	0.953	0.953		5	0.953	0.953	0.953	0.953
6	0.953	0.954	0.953	0.953		6	0.967	0.968	0.967	0.967
8	0.94	0.94	0.94	0.94		8	0.96	0.96	0.96	0.96
10	0.94	0.94	0.94	0.94		10	0.96	0.96	0.96	0.96
15	0.947	0.947	0.947	0.947		15	0.967	0.967	0.967	0.967
20	0.92	0.92	0.92	0.92		20	0.953	0.953	0.953	0.953
25	0.92	0.922	0.92	0.92		25	0.947	0.947	0.947	0.947
30	0.92	0.922	0.92	0.92		30	0.973	0.975	0.973	0.973
35	0.893	0.897	0.893	0.893		35	0.96	0.962	0.96	0.96
40	0.893	0.899	0.893	0.893		40	0.947	0.948	0.947	0.947

Tablica 5: Wpływ k - zbiór Iris - kroswalidacja "zwykła"

Tablica 6: Wpływ k - zbiór Iris - kroswalidacja stratyfikowana

Rysunek 5: Wpływ k - zbiór Iris - kroswalidacja "zwykła"

Rysunek 6: Wpływ k - zbiór Iris - kroswalidacja stratyfikowana

vs	ACC	PREC	REC	FSC	vs	ACC	PREC	REC	FSC		
		2-Fold				Stratified 2-Fold					
dist	0.32	0.108	0.32	0.162	dist	0.953	0.953	0.953	0.953		
uni	0.32	0.108	0.32	0.162	uni	0.953	0.953	0.953	0.953		
rand	0.22	0.103	0.22	0.14	rand	0.66	0.739	0.66	0.648		
		5-Fold			Stratified 5-Fold						
dist	0.92	0.92	0.92	0.92	dist	0.953	0.953	0.953	0.953		
uni	0.92	0.92	0.92	0.92	uni	0.96	0.96	0.96	0.96		
rand	0.62	0.69	0.62	0.599	rand	0.607	0.685	0.607	0.583		
		10-Fold				Stra	tified 10	-Fold			
dist	0.953	0.953	0.953	0.953	dist	0.953	0.953	0.953	0.953		
uni	0.953	0.953	0.953	0.953	uni	0.953	0.953	0.953	0.953		
rand	0.647	0.734	0.647	0.629	rand	0.64	0.77	0.64	0.63		

Tablica 7: Wpływ sposobu głosowania - zbiór Iris - kroswalidacja "zwykła"

Tablica 8: Wpływ sposobu głosowania - zbiór *Iris* - kroswalidacja stratyfikowana

mtr	ACC	PREC	REC	FSC	mtr	ACC	PREC	REC	FSC			
		2-Fold				Stratified 2-Fold						
man	0.313	0.107	0.313	0.159	man	0.947	0.947	0.947	0.947			
eucl	0.32	0.108	0.32	0.162	eucl	0.953	0.953	0.953	0.953			
cheb	0.313	0.107	0.313	0.159	cheb	0.947	0.947	0.947	0.947			
		5-Fold			Stratified 5-Fold							
man	0.927	0.927	0.927	0.927	man	0.947	0.947	0.947	0.947			
eucl	0.92	0.92	0.92	0.92	eucl	0.96	0.96	0.96	0.96			
cheb	0.913	0.914	0.913	0.913	cheb	0.96	0.962	0.96	0.96			
		10-Fold				Stra	tified 10	-Fold				
man	0.947	0.947	0.947	0.947	man	0.947	0.947	0.947	0.947			
eucl	0.953	0.953	0.953	0.953	eucl	0.953	0.953	0.953	0.953			
cheb	0.94	0.94	0.94	0.94	cheb	0.96	0.96	0.96	0.96			

Tablica 9: Wpływ miary odl. - zbiór Iris - kroswalidacja "zwykła"

Tablica 10: Wpływ miary odl. - zbiór Iris - kroswalidacja stratyfikowana

3.2 Zbiór Glass

Poniższe tabelki (Tabela 11, 12, 13, 14, 15, 16) przedstawiają wszystkie przeprowadzone testy na zbiorze *Glass*, z podziałem na badane wartości parametru k, zastosowane schematy głosowania oraz różne definicje miary odległości. Wszystkie testy zrealizowane zostały przy pomocy sprawdzianów krzyżowych (kroswalidacja "zwykła" oraz stratyfikowana). W kolejnych kolumnach, każdej z wyżej wymienionych Tabel, umieszczone zostały odczyty metryk (o których wspomniano w poprzedniej sekcji).

Dodatkowo na rysunkach: 7 oraz 8 przedstawione są wykresy prezentujące graficznie wpływ parametru k, algorytmu k-nn, na osiągane wartości metryki FSC.

Dla zbioru Glass, przy wykorzystaniu algorytmu k-najbliższych sąsiadów, zauważamy duży przyrost jakości klasyfikacji przy zastosowaniu kroswalidacji stratyfikowanej, w zestawieniu z jej podstawową odmianą. Raczej niższe ustawienia parametru k przekładają się na wyższe wskazania metryk. Poza tym, zwykle obliczenie miary odległości Manhattan oraz system głosowania distance jest lepszym rozwiązaniem.

k	ACC	PREC	REC	FSC	k	ACC	PREC	REC	FSC
		2-Fold					ratified 2	2-Fold	
1	0.201	0.063	0.094	0.075	1	0.5	0.487	0.449	0.458
2	0.224	0.066	0.105	0.081	2	0.589	0.583	0.479	0.495
3	0.21	0.066	0.099	0.079	3	0.57	0.491	0.454	0.455
4	0.215	0.063	0.101	0.078	4	0.57	0.509	0.436	0.438
5	0.21	0.06	0.099	0.075	5	0.579	0.427	0.433	0.421
6	0.21	0.065	0.099	0.079	6	0.584	0.447	0.441	0.436
8	0.206	0.058	0.096	0.073	8	0.556	0.403	0.407	0.397
10	0.206	0.056	0.096	0.071	10	0.584	0.409	0.415	0.402
15	0.206	0.054	0.096	0.069	15	0.565	0.326	0.371	0.342
20	0.196	0.053	0.092	0.067	20	0.533	0.271	0.343	0.302
25	0.201	0.053	0.094	0.068	25	0.514	0.26	0.333	0.291
30	0.182	0.048	0.086	0.061	30	0.486	0.248	0.321	0.278
35	0.178	0.046	0.083	0.059	35	0.472	0.25	0.293	0.269
40	0.168	0.045	0.079	0.057	40	0.435	0.239	0.254	0.241
		5-Fold	l			Str	atified 5	-Fold	
1	0.35	0.178	0.223	0.19	1	0.607	0.59	0.6	0.594
2	0.416	0.188	0.257	0.211	2	0.626	0.653	0.573	0.577
3	0.383	0.172	0.219	0.189	3	0.626	0.587	0.536	0.529
4	0.299	0.132	0.156	0.142	4	0.617	0.625	0.475	0.486
5	0.318	0.143	0.176	0.155	5	0.631	0.484	0.48	0.477
6	0.28	0.122	0.147	0.133	6	0.626	0.471	0.478	0.47
8	0.28	0.12	0.147	0.131	8	0.617	0.455	0.468	0.457
10	0.271	0.101	0.132	0.114	10	0.589	0.378	0.411	0.39
15	0.266	0.097	0.129	0.11	15	0.589	0.446	0.417	0.406
20	0.238	0.085	0.116	0.097	20	0.617	0.539	0.427	0.42
25	0.224	0.08	0.109	0.092	25	0.565	0.328	0.371	0.34
30	0.201	0.072	0.098	0.083	30	0.575	0.292	0.362	0.321
35	0.164	0.057	0.081	0.067	35	0.547	0.281	0.348	0.308
40	0.164	0.058	0.081	0.067	40	0.547	0.278	0.348	0.308
		10-Fol	$ ule{d}$			Str	atified 1	0-Fold	
1	0.519	0.415	0.405	0.408	1	0.65	0.613	0.638	0.622
2	0.556	0.407	0.403	0.397	2	0.645	0.632	0.577	0.585
3	0.551	0.393	0.386	0.382	3	0.659	0.647	0.62	0.615
4	0.514	0.322	0.319	0.313	4	0.668	0.64	0.587	0.579
5	0.523	0.318	0.324	0.315	5	0.659	0.529	0.553	0.539
6	0.491	0.289	0.304	0.291	6	0.664	0.577	0.536	0.536
8	0.425	0.244	0.231	0.225	8	0.626	0.471	0.479	0.469
10	0.43	0.231	0.229	0.22	10	0.621	0.45	0.454	0.445
15	0.397	0.203	0.209	0.2	15	0.579	0.373	0.396	0.378
20	0.369	0.185	0.191	0.183	20	0.631	0.401	0.42	0.402
25	0.327	0.165	0.171	0.163	25	0.603	0.476	0.4	0.382
30	0.304	0.13	0.156	0.139	30	0.617	0.477	0.396	0.365
35	0.28	0.118	0.145	0.127	35	0.584	0.295	0.366	0.324
40	0.257	0.109	0.134	0.117	40	0.579	0.291	0.364	0.321
							-		

 Tablica 11: Wpływ k - zbiór ${\it Glass}$ - kroswalidacja "zwykła"

 Tablica 12: Wpływ k - zbiór Glass - kroswalidacja stratyfikowana

Glass - Stratified 5-Fold - FSC

0.8 0.6 0.4 0.2 0.0 0.1 0.2 0.3 0.4 0.5 0.7 0.8

Rysunek 7: Wpływ k - zbiór Glass - kroswalidacja "zwykła"

Rysunek 8: Wpływ k - zbiór Glass - kroswalidacja stratyfikowana

vs	ACC	PREC	REC	FSC	vs	ACC	PREC	REC	FSC	
		2-Fold			Stratified 2-Fold					
dist	0.206	0.063	0.096	0.076	dist	0.561	0.465	0.431	0.428	
uni	0.21	0.06	0.099	0.075	uni	0.579	0.427	0.433	0.421	
rand	0.164	0.057	0.077	0.065	rand	0.402	0.406	0.306	0.329	
		5-Fold			Stratified 5-Fold					
dist	0.322	0.156	0.199	0.169	dist	0.631	0.539	0.535	0.528	
uni	0.318	0.143	0.176	0.155	uni	0.631	0.484	0.48	0.477	
rand	0.294	0.151	0.198	0.164	rand	0.397	0.337	0.262	0.277	
		10-Fold			Stratified 10-Fold					
dist	0.551	0.394	0.39	0.384	dist	0.696	0.641	0.652	0.632	
uni	0.523	0.318	0.324	0.315	uni	0.659	0.529	0.553	0.539	
rand	0.397	0.329	0.267	0.275	rand	0.5	0.503	0.418	0.439	

Tablica 13: Wpływ sposobu głosowania - zbiór Glass - kroswalidacja "zwykła"

Tablica 14: Wpływ sposobu głosowania - zbiór Glass - kroswalidacja stratyfikowana

mtr	ACC	PREC	REC	FSC	mtr	ACC	PREC	REC	FSC		
		2-Fold			Stratified 2-Fold						
man	0.215	0.066	0.101	0.079	man	0.612	0.463	0.474	0.462		
eucl	0.21	0.06	0.099	0.075	eucl	0.579	0.427	0.433	0.421		
cheb	0.206	0.069	0.096	0.081	cheb	0.519	0.327	0.366	0.343		
		5-Fold			Stratified 5-Fold						
man	0.332	0.152	0.193	0.167	man	0.664	0.541	0.564	0.547		
eucl	0.318	0.143	0.176	0.155	eucl	0.631	0.484	0.48	0.477		
cheb	0.262	0.11	0.137	0.121	cheb	0.589	0.494	0.449	0.455		
		10-Fold				Stra	tified 10	-Fold			
man	0.579	0.353	0.379	0.36	man	0.678	0.574	0.613	0.589		
eucl	0.523	0.318	0.324	0.315	eucl	0.659	0.529	0.553	0.539		
cheb	0.481	0.294	0.292	0.286	cheb	0.607	0.557	0.488	0.501		

Tablica 15: Wpływ miary odl. - zbiór Glass- kroswalidacja "zwykła"

Tablica 16: Wpływ miary odl. - zbiór Glass - kroswalidacja stratyfikowana

3.3 Zbiór Wine

Poniższe tabelki (Tabela 17, 18, 19, 20, 21, 22) przedstawiają wszystkie przeprowadzone testy na zbiorze *Wine*, z podziałem na badane wartości parametru k, zastosowane schematy głosowania oraz różne definicje miary odległości. Wszystkie testy zrealizowane zostały przy pomocy sprawdzianów krzyżowych (kroswalidacja "zwykła" oraz stratyfikowana). W kolejnych kolumnach, każdej z wyżej wymienionych Tabel, umieszczone zostały odczyty metryk (o których wspomniano w poprzedniej sekcji).

Dodatkowo na rysunkach: 9 oraz 10 przedstawione są wykresy prezentujące graficznie wpływ parametru k, algorytmu k-nn, na osiągane wartości metryki FSC.

Dla zbioru Wine, przy wykorzystaniu algorytmu k-najbliższych sąsiadów, zauważamy spory przyrost jakości klasyfikacji przy zastosowaniu kroswalidacji stratyfikowanej, w zestawieniu z jej podstawową odmianą przy niskich ilościach foldów. Raczej wyższe ustawienia parametru k przekładają się na niewiele lepsze wskazania metryk. Poza tym, zwykle obliczenie miary odległości Manhattan daje bardziej obiecujące rezultaty.

k	ACC	PREC	REC	FSC		k	ACC	PREC	REC	FSC
		2-Fold	l				Str	atified 2	-Fold	
1	0.354	0.125	0.296	0.176		1	0.944	0.943	0.953	0.945
2	0.354	0.126	0.296	0.176		2	0.933	0.935	0.941	0.935
3	0.354	0.125	0.296	0.176		3	0.938	0.937	0.948	0.939
4	0.348	0.126	0.291	0.176		4	0.938	0.939	0.948	0.94
5	0.348	0.124	0.291	0.174		5	0.933	0.933	0.944	0.934
6	0.337	0.123	0.282	0.171		6	0.944	0.945	0.953	0.946
8	0.337	0.122	0.282	0.17		8	0.933	0.935	0.944	0.935
10	0.343	0.124	0.286	0.173		10	0.944	0.945	0.953	0.946
15	0.331	0.121	0.277	0.168		15	0.966	0.964	0.972	0.967
20	0.326	0.124	0.272	0.17		20	0.961	0.958	0.967	0.961
25	0.331	0.125	0.277	0.173		25	0.961	0.959	0.967	0.962
30	0.303	0.122	0.254	0.164		30	0.955	0.954	0.962	0.956
35	0.32	0.131	0.268	0.176		35	0.955	0.954	0.962	0.956
40	0.315	0.14	0.263	0.183		40	0.961	0.962	0.967	0.962
		5-Fold	l]		Str	atified 5	-Fold	
1	0.91	0.908	0.918	0.911		1	0.944	0.943	0.953	0.945
2	0.882	0.886	0.886	0.882		2	0.933	0.933	0.937	0.934
3	0.904	0.904	0.912	0.905		3	0.949	0.947	0.955	0.95
4	0.899	0.903	0.906	0.901		4	0.938	0.939	0.946	0.94
5	0.91	0.909	0.919	0.911		5	0.955	0.952	0.962	0.955
6	0.893	0.895	0.903	0.895		6	0.949	0.95	0.958	0.951
8	0.91	0.91	0.919	0.911		8	0.955	0.954	0.962	0.956
10	0.91	0.912	0.918	0.913		10	0.949	0.949	0.957	0.951
15	0.921	0.922	0.93	0.924		15	0.961	0.96	0.966	0.962
20	0.893	0.894	0.899	0.894		20	0.972	0.971	0.977	0.973
25	0.854	0.866	0.843	0.848		25	0.961	0.959	0.967	0.962
30	0.747	0.781	0.714	0.702		30	0.944	0.945	0.953	0.946
35	0.725	0.75	0.689	0.674		35	0.966	0.964	0.972	0.967
40	0.691	0.724	0.658	0.646		40	0.972	0.971	0.977	0.973
		10-Fole	d]		Str	atified 1	0-Fold	
1	0.921	0.92	0.93	0.923		1	0.949	0.949	0.955	0.951
2	0.921	0.922	0.928	0.922		2	0.944	0.945	0.949	0.945
3	0.944	0.941	0.949	0.944		3	0.949	0.947	0.955	0.95
4	0.921	0.923	0.93	0.923		4	0.949	0.95	0.955	0.951
5	0.938	0.936	0.946	0.938		5	0.961	0.958	0.967	0.961
6	0.944	0.943	0.951	0.945		6	0.955	0.954	0.962	0.956
8	0.938	0.937	0.946	0.939		8	0.961	0.959	0.967	0.962
10	0.938	0.937	0.945	0.94		10	0.966	0.966	0.972	0.968
15	0.949	0.948	0.957	0.951		15	0.966	0.964	0.971	0.967
20	0.955	0.953	0.962	0.956		20	0.978	0.976	0.981	0.978
25	0.961	0.958	0.967	0.961		25	0.972	0.969	0.977	0.972
30	0.944	0.944	0.952	0.946		30	0.966	0.964	0.972	0.967
35	0.949	0.949	0.957	0.951		35	0.966	0.964	0.972	0.967
40	0.944	0.943	0.95	0.945		40	0.966	0.964	0.972	0.967
					1					

 Tablica 17: Wpływ k - zbiór ${\it Wine}$ - kroswalidacja "zwykła"

Tablica 18: Wpływ k - zbiór Wine - kroswalidacja stratyfikowana

Rysunek 9: Wpływ k - zbiór Wine - kroswalidacja "zwykła"

Rysunek 10: Wpływ k - zbiór Wine - kroswalidacja stratyfikowana

vs	ACC	PREC	REC	FSC	vs	ACC	PREC	REC	FSC		
		2-Fold			Stratified 2-Fold						
dist	0.348	0.124	0.291	0.174	dist	0.944	0.943	0.953	0.945		
uni	0.348	0.124	0.291	0.174	uni	0.933	0.933	0.944	0.934		
rand	0.27	0.126	0.225	0.162	rand	0.612	0.755	0.629	0.602		
		5-Fold			Stratified 5-Fold						
dist	0.91	0.909	0.919	0.911	dist	0.955	0.952	0.962	0.955		
uni	0.91	0.909	0.919	0.911	uni	0.955	0.952	0.962	0.955		
rand	0.596	0.673	0.598	0.581	rand	0.596	0.771	0.605	0.59		
		10-Fold			Stratified 10-Fold						
dist	0.938	0.936	0.946	0.938	dist	0.961	0.958	0.967	0.961		
uni	0.938	0.936	0.946	0.938	uni	0.961	0.958	0.967	0.961		
rand	0.629	0.748	0.618	0.608	rand	0.573	0.731	0.573	0.548		

Tablica 19: Wpływ sposobu głosowania - zbió
r $\it Wine$ - kroswalidacja "zwykła"

Tablica 20: Wpływ sposobu głosowania - zbiór Wine - kroswalidacja stratyfikowana

mtr	ACC	PREC	REC	FSC	mtr	ACC	PREC	REC	FSC		
2-Fold					Stratified 2-Fold						
man	0.354	0.125	0.296	0.176	man	0.944	0.944	0.953	0.945		
eucl	0.348	0.124	0.291	0.174	eucl	0.933	0.933	0.944	0.934		
cheb	0.331	0.149	0.277	0.194	cheb	0.91	0.911	0.924	0.912		
	5-Fold					Stratified 5-Fold					
man	0.921	0.923	0.931	0.924	man	0.966	0.966	0.972	0.968		
eucl	0.91	0.909	0.919	0.911	eucl	0.955	0.952	0.962	0.955		
cheb	0.837	0.84	0.844	0.839	cheb	0.921	0.923	0.93	0.923		
	10-Fold					Stratified 10-Fold					
man	0.949	0.947	0.955	0.95	man	0.972	0.971	0.977	0.973		
eucl	0.938	0.936	0.946	0.938	eucl	0.961	0.958	0.967	0.961		
cheb	0.893	0.894	0.903	0.895	cheb	0.916	0.915	0.923	0.917		

Tablica 21: Wpływ miary odl. - zbiór Wine - kroswalidacja "zwykła"

Tablica 22: Wpływ miary odl. - zbiór Wine - kroswalidacja stratyfikowana

3.4 Zbiór Seeds

Poniższe tabelki (Tabela 23, 24, 25, 26, 27, 28) przedstawiają wszystkie przeprowadzone testy na zbiorze Seeds, z podziałem na badane wartości parametru k, zastosowane schematy głosowania oraz różne definicje miary odległości. Wszystkie testy zrealizowane zostały przy pomocy sprawdzianów krzyżowych (kroswalidacja "zwykła" oraz stratyfikowana). W kolejnych kolumnach, każdej z wyżej wymienionych Tabel, umieszczone zostały odczyty metryk (o których wspomniano w poprzedniej sekcji).

Dodatkowo na rysunkach: 11 oraz 12 przedstawione są wykresy prezentujące graficznie wpływ parametru k, algorytmu k-nn, na osiągane wartości metryki FSC.

Dla zbioru Seeds, przy wykorzystaniu algorytmu k-najbliższych sąsiadów, zauważamy spory przyrost jakości klasyfikacji przy zastosowaniu kroswalidacji stratyfikowanej, w zestawieniu z jej podstawową odmianą przy niskich ilościach foldów. Ustawienia parametru k w okolicach 4-6 przekładają się na najlepsze wskazania metryk. Poza tym, zwykle obliczenie miary odległości euklidesowej daje bardziej obiecujące rezultaty.

k	ACC	PREC	REC	FSC	k	ACC	PREC	REC	FSC	
2-Fold					Stratified 2-Fold					
1	0.31	0.223	0.31	0.259	1	0.919	0.919	0.919	0.919	
2	0.305	0.209	0.305	0.248	2	0.91	0.92	0.91	0.911	
3	0.31	0.226	0.31	0.261	3	0.919	0.919	0.919	0.919	
4	0.31	0.217	0.31	0.255	4	0.929	0.931	0.929	0.929	
5	0.314	0.237	0.314	0.27	5	0.929	0.928	0.929	0.928	
6	0.314	0.234	0.314	0.268	6	0.919	0.919	0.919	0.919	
8	0.314	0.237	0.314	0.27	8	0.919	0.919	0.919	0.919	
10	0.314	0.237	0.314	0.27	10	0.914	0.915	0.914	0.915	
15	0.314	0.244	0.314	0.275	15	0.914	0.914	0.914	0.914	
20	0.295	0.258	0.295	0.276	20	0.91	0.913	0.91	0.91	
25	0.295	0.265	0.295	0.279	25	0.905	0.906	0.905	0.905	
30	0.29	0.261	0.29	0.275	30	0.9	0.902	0.9	0.901	
35	0.29	0.271	0.29	0.28	35	0.9	0.9	0.9	0.9	
40	0.29	0.279	0.29	0.284	40	0.9	0.902	0.9	0.901	
		5-Fold	l			Str	atified 5	-Fold		
1	0.852	0.851	0.852	0.852	1	0.919	0.919	0.919	0.919	
2	0.824	0.833	0.824	0.826	2	0.914	0.921	0.914	0.916	
3	0.867	0.866	0.867	0.865	3	0.914	0.915	0.914	0.913	
4	0.852	0.854	0.852	0.853	4	0.919	0.92	0.919	0.919	
5	0.871	0.871	0.871	0.87	5	0.924	0.924	0.924	0.923	
6	0.867	0.866	0.867	0.866	6	0.929	0.929	0.929	0.929	
8	0.857	0.856	0.857	0.857	8	0.919	0.919	0.919	0.919	
10	0.848	0.847	0.848	0.847	10	0.91	0.909	0.91	0.909	
15	0.862	0.861	0.862	0.861	15	0.919	0.919	0.919	0.919	
20	0.857	0.857	0.857	0.857	20	0.91	0.91	0.91	0.909	
25	0.833	0.833	0.833	0.833	25	0.914	0.914	0.914	0.914	
30	0.824	0.828	0.824	0.825	30	0.905	0.906	0.905	0.905	
35	0.814	0.816	0.814	0.815	35	0.91	0.91	0.91	0.91	
40	0.79	0.793	0.79	0.791	40	0.91	0.911	0.91	0.91	
		10-Fole	$\overline{\mathbf{d}}$			Str	atified 1	0-Fold		
1	0.876	0.877	0.876	0.876	1	0.914	0.914	0.914	0.914	
2	0.843	0.855	0.843	0.845	2	0.89	0.893	0.89	0.891	
3	0.881	0.881	0.881	0.88	3	0.919	0.92	0.919	0.918	
4	0.895	0.896	0.895	0.896	4	0.929	0.929	0.929	0.929	
5	0.89	0.89	0.89	0.89	5	0.914	0.914	0.914	0.914	
6	0.905	0.906	0.905	0.905	6	0.929	0.929	0.929	0.928	
8	0.876	0.876	0.876	0.876	8	0.919	0.919	0.919	0.919	
10	0.886	0.885	0.886	0.885	10	0.924	0.924	0.924	0.924	
15	0.881	0.881	0.881	0.88	15	0.914	0.914	0.914	0.914	
20	0.876	0.876	0.876	0.876	20	0.91	0.91	0.91	0.909	
25	0.876	0.876	0.876	0.876	25	0.914	0.914	0.914	0.914	
30	0.876	0.877	0.876	0.876	30	0.905	0.905	0.905	0.905	
35	0.871	0.872	0.871	0.871	35	0.91	0.91	0.91	0.909	
40	0.867	0.867	0.867	0.867	40	0.91	0.913	0.91	0.91	

 Tablica 23: Wpływ k - zbiór Seeds - kroswalidacja "zwykła"

Tablica 24: Wpływ k - zbiór Seeds - kroswalidacja stratyfikowana

Rysunek 11: Wpływ k - zbiór Seeds - kroswalidacja "zwykła"

Rysunek 12: Wpływ k - zbiór Seeds - kroswalidacja stratyfikowana

vs	ACC	PREC	REC	FSC	vs	ACC	PREC	REC	FSC		
	2-Fold					Stratified 2-Fold					
dist	0.314	0.237	0.314	0.27	dist	0.929	0.928	0.929	0.928		
uni	0.314	0.237	0.314	0.27	uni	0.929	0.928	0.929	0.928		
rand	0.262	0.18	0.262	0.213	rand	0.59	0.742	0.59	0.591		
	5-Fold					Stratified 5-Fold					
dist	0.867	0.866	0.867	0.865	dist	0.919	0.92	0.919	0.918		
uni	0.871	0.871	0.871	0.87	uni	0.924	0.924	0.924	0.923		
rand	0.581	0.694	0.581	0.586	rand	0.643	0.775	0.643	0.646		
		10-Fold			Stratified 10-Fold						
dist	0.886	0.886	0.886	0.885	dist	0.91	0.909	0.91	0.909		
uni	0.89	0.89	0.89	0.89	uni	0.914	0.914	0.914	0.914		
rand	0.586	0.737	0.586	0.584	rand	0.605	0.744	0.605	0.606		

Tablica 25: Wpływ sposobu głosowania - zbiór Seeds - kroswalidacja "zwykła"

Tablica 26: Wpływ sposobu głosowania - zbiór Seeds - kroswalidacja stratyfikowana

mtr	ACC	PREC	REC	FSC	mtr	ACC	PREC	REC	FSC		
2-Fold					Stratified 2-Fold						
man	0.31	0.233	0.31	0.266	man	0.914	0.914	0.914	0.914		
eucl	0.314	0.237	0.314	0.27	eucl	0.929	0.928	0.929	0.928		
cheb	0.314	0.268	0.314	0.289	cheb	0.919	0.919	0.919	0.919		
	5-Fold					Stratified 5-Fold					
man	0.838	0.838	0.838	0.838	man	0.9	0.9	0.9	0.9		
eucl	0.871	0.871	0.871	0.87	eucl	0.924	0.924	0.924	0.923		
cheb	0.862	0.861	0.862	0.861	cheb	0.914	0.914	0.914	0.914		
	10-Fold					Stratified 10-Fold					
man	0.876	0.876	0.876	0.876	man	0.905	0.905	0.905	0.904		
eucl	0.89	0.89	0.89	0.89	eucl	0.914	0.914	0.914	0.914		
cheb	0.886	0.887	0.886	0.886	cheb	0.929	0.929	0.929	0.929		

Tablica 27: Wpływ miary odl. - zbiór Seeds - kroswalidacja "zwykła"

Tablica 28: Wpływ miary odl. - zbiór Seeds - kroswalidacja stratyfikowana

Podsumowanie

Zadanie pozwoliło na zaznajomienie się z algorytmem k-najbliższych sąsiadów oraz również z kolejnymi narzędziami służącymi pracy na danych. Pokazane zostało jak wprowadzać dodatkowe funkcjonalności oraz rozszerzenia,które przekładają się na polepszenie oceny modelu. Wreszcie uświadomiło, że nie istnieje jeden sprawdzony przepis na wszystkie problemy, a tworzenie najlepszych rozwiązań jest związane z odszukaniem właściwego podejścia.

Na koniec, w Tabeli 29 zestawiono wyniki klasyfikatora opartego o algorytm k-nn z innymi, zaimplementowanymi w poprzednich zadaniach metodami, rozwiązującymi zagadnienie przyporządkowywania etykiet.

Classifier (params)	ACC	PREC	REC	FSC						
Zbiór Glass										
MultinominalNB (smothing)	0.52	0.68	0.60	0.50						
C4.5 $(C = 0.25, M = 2)$	0.68	0.68	0.80	0.74						
k-nn $(k = 5, distance, minkowski)$	0.70	0.64	0.65	0.63						
Zbiór Wine										
GaussianNB (smothing)	0.94	0.94	0.95	0.95						
C4.5 $(C = 0.25, M = 2)$	0.94	0.97	0.97	0.97						
k-nn $(k = 20, uniform, minkowski)$	0.98	0.98	0.98	0.98						
Zbiór Seeds										
GaussianNB (smothing)	0.89	0.90	0.90	0.90						
C4.5 $(C = 0.10, M = 2)$	0.95	0.92	0.93	0.92						
k-nn $(k = 6, uniform, minkowski)$	0.93	0.93	0.93	0.93						

Tablica 29: Porównanie klasyfikatorów dla zbiorów Glass, Wine, Seeds