

Università degli Studi di Padova

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE

Corso di Laurea in Ingegneria Aerospaziale

Tesi di Laurea

Raccolta e analisi dei dati di volo per un velivolo a controllo remoto

Relatore:
Prof. Francesco Picano

Laureando: Emanuele Cason 1219779

Anno Accademico 2022/2023

Introduzione

Nell'ambito del progetto LiftUp del Dipartimento di Ingegneria Industriale, per la partecipazione all'Air Cargo Challenge 2022, è stato progettato e costruito un velivolo a controllo remoto, candidato poi dal nostro team alla competizione. Tutto il processo di progettazione e realizzazione del drone, di seguito denominato UAS (Unmanned Aerial System), secondo la nomenclatura adottata dal legislatore europeo, si è basato sul regolamento di gara, e in particolare sui requisiti di sistema e sui criteri di attribuzione del punteggio. Di tali criteri, la porzione più rilevante è stata dedicata dalla giuria alle prestazioni in volo dell'aeromobile. Ne è nata la necessità di integrare un sistema di registrazione e trasmissione dei dati di volo dei sensori, al fine di valutare le prestazioni durante il collaudo, individuare le migliori condizioni di manovra e prevedere i punteggi conseguenti alle singole esercitazioni di preparazione svolte nei mesi precedenti alla gara.

Sistema di telemetria - versione 1

La scelta di implementare una prima versione di sistema di telemetria è stata conseguente alla necessità immediata di ottenere i dati fondamentali già dalle prime uscite in campo di volo. Si è quindi selezionato un modulo di logging dei dati (SM-Modellbau GPS-Logger 3), integrante un ricevitore GNSS (Global Navigation Satellite System), accelerometro a tre assi e barometro, con registrazione su scheda microSD. La scelta del componente è derivata da vari fattori considerati: i valori di risoluzione e velocità di aggiornamento dei dati relativamente alti, la compatibilità con i sistemi a bordo dell'aeromodello e di radiocontrollo, la consistenza dei dati con quelli che sarebbero stati raccolti in competizione (dove da regolamento, la giuria utilizza lo stesso modulo per calcolare i punteggi di gara), e non ultimo il basso costo.

Implementazione del modulo

Da un punto di vista di compatibilità con il sistema aeromodello, il modulo utilizzato, permette di essere alimentato con tensioni all'interno del range tra 3.6 V e 8.5 V, dispone di un ingresso PWM per leggere il segnale di un canale del modulo ricevente ed è compatibile con il protocollo Smart Port che utilizza il radiocomando, permettendo di trasmettere a quest'ultimo i dati

di telemetria, che a seguito della programmazione necessaria li rende visibili nel suo display. Per minimizzare l'effetto radio schermante della fibra di carbonio di cui è largamente composto il velivolo, si è posizionato il ricevitore in un'apposita baia, nella zona superiore della fusoliera. Di conseguenza, il modulo è stato implementato secondo lo schema seguente:

Criteri di attribuzione del punteggio di volo

I tre fattori principali per l'attribuzione del punteggio del singolo volo, come da regolamento ^[1], sono stati:

- Payload trasportato durante il volo, misurato in termini di massa.
- Altitudine raggiunta a 60 secondi del tempo di volo.
- Distanza coperta durante i primi 180 secondi del tempo di volo.

Dove l'inizio della misura del tempo di volo è stato definito in corrispondenza del raggiungimento di 5 km/h di velocità rispetto al suolo (misurata dal modulo GPS), durante la fase di decollo.

Bibliografia

 $[1] \ \ Air \ Cargo \ \ Challenge \ \ 2022 \ - \ Participation \ \ handbook.$