Security in application layer protocols

2024/25 Q2

Jaime Delgado

DAC - UPC

Security in application layer protocols

Protocols:

```
- Web (HTTP)

TLS

QUIC

- E-mail (S/MIME)
```

- Web (HTTP):
 - HTTPS: Secure transport (TCP) connection
 - → Transport Layer Security (TLS) / Secure Sockets Layer (SSL)

Application
Security
Transport
IP Network

• E-mail

- Web (HTTP):
 - HTTPS: Secure transport (TCP) connection
 - → Transport Layer Security (TLS) / Secure Sockets Layer (SSL)

Application data encrypted?

Application
Security
Transport
IP Network

• E-mail

HTTPS: TLS/SSL handshake (v1.2)

TLS (Transport Layer Security) protocol

• Versions:

Still available: TLSv1.2 (RFC5246, 2008)

New: TLSv1.3 (RFC8446, Aug. 2018, started 2014)

- Handshake protocol phase:
 - Authentication one or both sides (usually the server)
 - Negotiation: "cipher suites" (only Elliptic Curve Diffie-Hellman key exchange algorithms, in v1.3)
- Record protocol phase:
 - Carries and encapsulates data
 - Adds a MAC, encrypts application protocol data and adds a TLS header (5 bytes)

TLS (Transport Layer Security) protocol

• Versions:

Still available: TLSv1.2 (RFC5246, 2008)

New: TLSv1.3 (RFC8446, Aug. 2018, started 2014)

- Handshake p
 - Authenticati
 - Negotiation:Hellman key
- Record proto

Work going on (since August 2020) in a replacement: **RFC8446bis**Current version (12) Febr. 2025

https://datatracker.ietf.org/doc/ draft-ietf-tls-rfc8446bis/

- Carries and encapsulates data
- Adds a MAC, encrypts application protocol data and adds a TLS header (5 bytes)

HTTPS: TLSv1.3 handshake & record

TLSv1.3 protocol

TLSv1.3 protocols details

Handshake

- Agree a cipher suite.
- Agree a master secret.
- Authentication using certificate(s).

Application Data

- Symmetric key encryption.
- AEAD cipher modes.
- Typically HTTP.

Alerts

- Graceful closure, or
- Problem detected.

TLSv1.3 cipher suites

```
TLS_AES_128_GCM_SHA256

Protocol AEAD Cipher HKDF Hash Algorithm
```

- TLS v1.3 supports 5 cipher suites.
 - TLS_AES_128_GCM_SHA256
 - TLS_AES_256_GCM_SHA384
 - TLS_CHACHA20_POLY1305_SHA256
 - TLS_AES_128_CCM_SHA256
 - TLS_AES_128_CCM_8_SHA256

TLSv1.3 cipher suites

- AEAD: Authenticated Encryption with Associated Data
- HKDF: Key Derivation Function (KDF) based on a Hash-based Message Authentication Code (HMAC)

AEADs:

- GCM: AES Galois Counter Mode
- CCM: Counter with CBC (Cipher Block Chaining) MAC mode
- ChaCha: a stream cipher
- Poly1305: cryptographic MAC
 (Message Authentication Code)

- Web (HTTP):
 - HTTPS: Secure transport (TCP) connection
 - → Transport Layer Security (TLS) / Secure Sockets Layer (SSL)

Application data encrypted?

Application
Security
Transport
IP Network

– Alternative to TLS → QUIC (HTTP/3)

QUIC

- "Quick UDP Internet Connections"
- Originally (2014): Protocol between Google services and Chrome.
- Standardization (IETF):
 - IETF QUIC WG October 2016
 - HTTP as initial application

- draft-ietf-quic-transport-34 (Jan. 2021); Expires: July 2021 →
 - → RFC9000 (Proposed Standard) May 2021
- https://www.rfc-editor.org/rfc/rfc9000.html
- QUIC:

A UDP-Based Multiplexed and Secure Transport

QUIC features

- New encrypted Internet transport protocol
- Improvements to accelerate HTTP traffic and make it more secure
- Runs on top of UDP!!
- Objective: replacing TCP and TLS on the web?
- Main goal: Improve perceived performance of connection-oriented web applications

los des estan conviviendo, no here el objetio de reemplateurlo.

QUIC "transport"

- https://www.rfc-editor.org/rfc/rfc9000.html
- QUIC, RFC9000 (Proposed Standard) (May 2021)
- "This document defines the core of the QUIC transport protocol. QUIC provides applications with flow-controlled streams for structured communication, low-latency connection establishment, and network path migration. QUIC includes security measures that ensure confidentiality, integrity, and availability in a range of deployment circumstances. Accompanying documents describe the integration of TLS for key negotiation, loss detection, and an exemplary congestion control algorithm."

QUIC – the standard

- Multiplexed and secure transport protocol that runs on top of UDP
- Reduced connection and transport latency
- Bandwidth estimation in each direction to avoid congestion
- Mechanisms for connection establishment, stream multiplexing, stream and connectionlevel flow control, and data reliability
- Additionally: loss recovery, congestion control, use of TLS 1.3 for key negotiation

QUIC architecture

Authenticated and encrypted header and payload

- Secure-by-default transport protocol
- Authentication and encryption
- TLS 1.3

HTTP/3 vs. QUIC

- https://datatracker.ietf.org/doc/html/draft-ietf-quichttp-34, Internet-Draft, February 2021
 - → RFC 9114, June 2022
- Hypertext Transfer Protocol Version 3 (HTTP/3)
- "The QUIC transport protocol has several features that are desirable in a transport for HTTP, such as stream multiplexing, perstream flow control, and low-latency connection establishment. This document describes a mapping of HTTP semantics over QUIC. This document also identifies HTTP/2 features that are subsumed by QUIC, and describes how HTTP/2 extensions can be ported to HTTP/3."

HTTP/3 vs. QUIC

- https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34, Internet-Draft, February 2021
 - → RFC 9114, June 2022
- Hypertext Transfer Protocol Version 3 (HTTP/3)
- "The QUIC transport protocol has several features that are desirable in a transport for HTTP, such HTsTP/3mistiplexing, perstream flow control, and low-latency connection HTTP Over Oblicacument describes a mapping of HTTP semantics over QUIC. This document also identifies HTTP/2 features that are subsumed by QUIC, and describes how HTTP/2 extensions can be ported to HTTP/3."

Security in applications

Protocols:

```
Web (HTTP)TLSQUICE-mail (S/MIME)
```

Web (HTTP)

- E-mail:
 - S/MIME (Secure / Multipurpose Internet Mail Extensions)
 - MIME over pkcs#7 (enveloped)
 - IETF RFC 8551 (2019): "Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 4.0 Message Specification" (Version 3 (1st for IETF) started in RFC 2633, 1999)

– PGP: Signature

Web (HTTP)

- E-mail:
 - S/MIME (Secure / Multipurpose Internet Mail Extensions)
 - MIME over pkcs#7 enveloped)
 - IETF RFC 8551 (2019): "Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 4.0 Message Specification" (Version 3 (1st for IETF) started in RFC 2633, 1999)

– PGP: Signature

S/MIME

RFC 8551

Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 4.0 - Message Specification

- Different messages built over pkcs7/CMS:
 - Envelope-Only
 - Authenticated Envelope-Only
 - Signed-Only