Skriftlig eksamen på Økonomistudiet Vinteren 2016 - 2017

MATEMATIK A

Torsdag den 9. februar 2017

2 timers skriftlig prøve uden hjælpemidler

Dette sæt omfatter 2 sider med 3 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet og blive registeret som syg af vedkommende eksamensvagt. Derefter afleverer du en blank besvarelse i systemet og forlader eksamen. Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitet. Økonomisk Institut

1. årsprøve 2017 V-1A rx

Skriftlig eksamen i Matematik A

Torsdag den 9. februar 2017

2 sider med 3 opgaver.

Løsningstid: 2 timer.

Ingen hjælpemidler må medbringes ved eksamen.

Opgave 1. Logaritme- og eksponentialfunktioner.

- (1) Definer, hvad man forstår ved en logaritmefunktion. (Bl.a. skal logaritmefunktionernes funktionalligning anføres.)
- (2) Hvordan defineres grundtallet e for den naturlige logaritmefunktion \ln ?
- (3) Idet vi erindrer om, at den naturlige logaritmefunktion ln er differentiabel med differentialkvotienten $\frac{d \ln}{dx}(x) = \frac{1}{x}$, skal man udregne følgende differentialkvotienter:

$$\frac{d}{dx}\left(\ln(x^2+7x+5)\right)$$
 og $\frac{d}{dx}\left(\ln(\ln(\ln(x^3+5)))\right)$.

- (4) Indfør grundeksponentialfunktionen exp. (Bl.a. skal funktionalligningen for exp anføres.)
- (5) Vis, at grundeksponentialfunktionen exp er differentiabel, og at det gælder, at $\frac{d\exp}{dx}(x)=\exp x$.
- (6) Udregn følgende differentialkvotienter

$$\frac{d}{dx}(e^{e^x} + e^{x^e})$$
 og $\frac{d}{dx}(e^{2x} + 5e^{7x} - xe^x)$.

Opgave 2. Vi betragter den funktion $f: \mathbb{R}^2 \to \mathbb{R}$, som er defineret ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^3 + x^2y + y^3.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

i et vilkårligt punkt $(x, y) \in \mathbf{R}^2$.

- (2) Bestem Hessematricen f''(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.
- (3) Bestem værdimængden for funktionen f.

Vi betragter funktionen $\phi: \mathbf{R} \to \mathbf{R}$, som er defineret ved forskriften

$$\forall \theta \in \mathbf{R} : \phi(\theta) = f(\cos \theta, \sin \theta).$$

(4) Bestem differentialkvotienten $\phi'(\theta)$.

Opgave 3. Vi betragter den uendelige række

$$\sum_{n=0}^{\infty} e^{2nx}.$$

(1) Bestem mængden

$$K = \{x \in \mathbf{R} \mid (\S) \text{ er konvergent}\}.$$

(2) Bestem en forskrift for sumfunktionen

$$f(x) = \sum_{n=0}^{\infty} e^{2nx}, \quad \forall x \in K.$$

- (3) Bestem differentialkvotienten f'(x) for et vilkårligt $x \in K$.
- (4) Bestem værdimængden for sumfunktionen f.
- (5) Godtgør, at sumfunktionen er bijektiv, og bestem en forskrift for den omvendte funktion f^{-1} .