ME 417 - Homework #1

Control of Mechanical Systems - Summer 2020

Homework Due: Sun, 18 Oct 2020 23:59

Complete the following problems and submit a hard copy of your solutions. You are encouraged to work together to discuss the problems but submitted work **MUST** be your own. This is an **individually** submitted assignment.

Problem 1

System Modeling (25pts)

Given the following system

- a. Derive the equations of motion for the system
- b. Find the transfer function that relates M to $\dot{\theta}$
- c. Find the pole locations of the transfer function derived in part (b)

Given: $l = 1m, m_r = 2.5kg$

Problem 2

System Modeling (25pts)

Given the following system

- a. Derive the equations of motion for the system
- b. Find the transfer function that relates T to θ_2
- c. Find the steady state value of θ_2 given a step-input T(t)=2

Given: $I_1 = 0.5kg \cdot m^2$, $I_2 = 0.25kg \cdot m^2$, $K_1 = 200N/m$, $K_2 = 300N/m$, $f_v = 50N \cdot s/m$

Problem 3

System Modeling (25pts)

Consider a simplified quadrotor pitch control model. The Thrust F is a function of the rotor's speed $F = k_T \omega^2$, where k_T is the thrust constant

- a. Derive the equation of motion for the system governing the pitch angle dynamics only
- b. Find the transfer function that relates $\Delta F = F_1 F_2$ to $\dot{\theta}$
- c. Find the steady state value of $\dot{\theta}$ given a step-input $\omega_1 = 250 rad/s$, $\omega_2 = 150 rad/s$

Given: $I_G = 0.5kg \cdot m^2$, $K_T = 0.15kg \cdot m$, r = 30.0cm, $f_v = 0.25N \cdot s$

Problem 4

Transfer Function Components (25pts)

For each of the following 3rd order systems, perform a partial fraction expansion, then cancel the third pole term if it is real magnitude is five times or higher than the real magnitude of the other two poles

a.
$$G(s) = \frac{10}{(s+1)(s^2+2s+2)}$$

b. $G(s) = \frac{23}{(s+2)(s+3)(s+20)}$
c. $G(s) = \frac{2}{(s+10)(s^2+6s+8)}$
d. $G(s) = \frac{1}{(s+40)(s^2+2s+100)}$
e. $G(s) = \frac{5}{(s+10)(s^2+8s+20)}$