Министерство науки и высшего образования Российской Федерации Санкт-Петербургский политехнический университет Петра Великого Физико-Механический институт

«	>>>	2023 г	`
		_ А.М. Кривцов	
Дире	ектор в	высшей школы	
Рабо	та доп	ущена к защите	

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

РАБОТА МАГИСТРА

МОДЕЛИРОВАНИЕ ПЕРЕРАСПРЕДЕЛЕНИЯ ПОТОКОВ МЕЖДУ ТРЕЩИНАМИ ГИДРОРАЗРЫВА ПЛАСТА

по направлению подготовки 01.04.03 Механика и математическое моделирование Направленность (профиль) 01.04.03_04 Математическое моделирование процессов нефтегазодобычи

Выполнил

студент гр. 5040103/10401 А.А. Муравцев

Руководитель

доцент, к.т.н. С.А. Калинин

Консультант

должность, степень И.О. Фамилия

Консультант

по нормоконтролю И.О. Фамилия

СОДЕРЖАНИЕ

Введ	цение	3
Глав	а 1. Общие положения	4
Глав	а 2. Модели трещины гидроразрыва пласта и их основные компоненты	5
2.1	Уравнения баланса жидкости с учётом утечек	6
2.2	Модели жидкости	7
2.3	Уравнения упругости	7
2.4	Условия распространения	7
2.5	Модели транспорта проппанта	7
Глав	ва 3. Анализ результатов	8
Закл	ючение	9
Спи	сок использованных источников	10

введение

глава 1. Общие положения

ГЛАВА 2. МОДЕЛИ ТРЕЩИНЫ ГИДРОРАЗРЫВА ПЛАСТА И ИХ ОСНОВНЫЕ КОМПОНЕНТЫ

В настоящее время в симуляторах для моделирования процесса ГРП нефтяные компании используют модели Pseudo3D, Planar3D и Full3D.

Наиболее общая модель Full3D позволяет моделировать сложные варианты развития трещины, решение проводится численно с применением метода конечных элементов (МКЭ), но эта модель используется редко, так как имеет низкую скорость расчёта.

В модели Planar3D предполагается, что направление минимальных горизонтальных напряжений в пласте не изменяется в зависимости от координаты, то есть трещина распространяется в одной плоскости. В то же время модель Planar3D не использует приближение малости высоты в сравнении с длиной трещины, то есть учитывает двумерное течение жидкости.

Модель Pseudo3D использует предположение о том, что высота трещины много меньше её длины, то есть рассматривается случай одномерного течения жидкости.

Каждая из моделей Pseudo3D, Planar3D и Full3D плохо поддаётся аналитическому анализу. Однако при введении дополнительных предположений и допущений модель Planar3D преобразуется в хорошо известные модели (исторически были изучены раньше модели Planar3D), для которых можно провести аналитический анализ (найти раскрытие, давление в зависимости от координаты и времени). В таблице представлены основные модели трещины ГРП с их допущениями.

Таблица 2.1 Предположения основных моделей трещины ГРП

Модель	Допущения	Схематичный рисунок
Full3D	отсутствуют	тест
Planar3D	распространение в плоскости	тест
Pseudo3D	одномерное течение жидкости	тест
KGD	прямоугольное вертикальное сечение; плоская деформация в горизонтальной плоскости	тест
Радиальная	проверить	тест

Продолжение табл. 2.1

Модель	Допущения	Схематичный рисунок
PKN	эллиптическое вертикальное	тест
	сечение; плоская деформация в	
	вертикальной плоскости	

Любая модель трещины гидроразрыва пласта состоит из нескольких основных компонентов:

- 1) уавнения баланса жидкости с учётом утечек;
- 2) модели жидкости;
- 3) уравнения упругости;
- 4) условия распространения;
- 5) модели транспорта проппанта.

Далее будут представлены уравнения, описывающие компоненты трещины ГРП.

2.1. Уравнения баланса жидкости с учётом утечек

Для планарной трещины (planar3D) верно равенство:

$$w(t+dt)dxdy = w(t)dxdy + q_x(x)dtdy - q_x(x+dx)dtdy +$$

$$+ q_y(y)dtdx - q_y(y+dy)dtdx - 2gdxdydt \quad (2.1)$$

Откуда получаем уравнение баланса жидкости:

$$\frac{\partial w}{\partial t} + \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + 2g = Q_0 \delta(x, y)$$
 (2.2)

Из модели Картера:

$$g = \frac{C_l}{\sqrt{t - t_0(x, y)}}\tag{2.3}$$

- 2.2. Модели жидкости
- 2.3. Уравнения упругости
- 2.4. Условия распространения
- 2.5. Модели транспорта проппанта

ГЛАВА 3. АНАЛИЗ РЕЗУЛЬТАТОВ

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ