ĐỀ THI THỬ - MI1111 - KÌ 20241

Các câu hỏi có một đáp án đúng

Bài 1. Giải bất phương trình $\operatorname{arccot} x + 1 > 0$.

A.
$$x \in (-\infty, \cot(-1))$$
.

C. $x \in \mathbb{R}$.

B.
$$x \in (\cot(-1), +\infty)$$
.

D. Vô nghiệm.

Bài 2. Dãy $(u_n)_n$ nào sau đây hội tụ?

A.
$$u_n = n \sin n$$
.

$$C. u_n = \frac{\sin n}{n}, n \ge 1.$$

B.
$$u_n = n \cos n$$
.

$$D. u_n = \frac{n}{\cos n}.$$

Bài 3. Cho hàm số $f:(-1,1)\to\mathbb{R}$. Mệnh đề nào sau đây chắc chắn suy ra được f(x) liên tục tại $x_0=0$.

A. Tồn tại dãy
$$(x_n)_n \subset (-1,1)$$
 thỏa mãn $\lim_{n\to\infty} x_n = 0$ và $\lim_{n\to\infty} f(x_n) = f(0)$.

B.
$$\forall \varepsilon > 0, \exists \delta > 0$$
 thỏa mãn nếu $x \in (-1,1), |x| < \delta$ thì $|f(x)| < \epsilon$.

C.
$$\forall \varepsilon > 0, \exists \delta > 0$$
 thỏa mãn nếu $x,y \in (-1,1), |x-y| < \delta$ thì $|f(x)-f(y)| < \epsilon$.

D. Với mọi dãy
$$(x_n)_n \subset (-1,1)$$
 thỏa mãn $\lim_{n\to\infty} x_n = 0$ thì dãy $(f(x_n))_n$ hội tụ.

Bài 4. Cho hàm số
$$f(x) = \begin{cases} x^3 \sin \frac{1}{x^2}, x > 0 \\ 0, x = 0 \\ x^2 \cos \frac{1}{x^3}, x < 0 \end{cases}$$
. Tính $f'(0)$.

A. Hàm số không có đạo hàm tại
$$x=0$$
.

C.
$$f'(0) = 2$$
.

B.
$$f'(0) = 0$$
.

D.
$$f'(0) = 3$$
.

Bài 5. Hàm nào sau đây có gián đoạn bỏ được tại x = 1.

A.
$$y = \frac{\sin x}{x}$$
.

C.
$$y = \arccos \frac{1}{x-1}$$
.

B.
$$y = (x - 1) \ln |x - 1|$$
.

D.
$$y = e^{\frac{1}{x-1}}$$
.

Bài 6. Tính khai triển Maclaurin của hàm số $y = \sqrt{1+2x}$ đến x^2 .

A.
$$y = 1 + \frac{x}{2} - \frac{x^2}{8} + o(x^2)$$
.

C.
$$y = 1 + x + \frac{x^2}{2} + o(x^2)$$
.

B.
$$y = 1 + x - \frac{x^2}{2} + o(x^2)$$
.

D.
$$y = 1 + \frac{x}{2} + \frac{x^2}{8} + o(x^2)$$
.

Bài 7. Tính $\int \frac{dx}{2x^2 + 2x + 1}$.

A.
$$\arctan(2x+1)+C, C \in \mathbb{R}$$
.

C.
$$\arctan(x+\frac{1}{2})+C, C \in \mathbb{R}$$
.

B.
$$\frac{1}{2}\arctan(2x+1)+C, C \in \mathbb{R}$$
.

D.
$$\frac{1}{2}\arctan(x+\frac{1}{2})+C, C \in \mathbb{R}$$
.

Bài 8. Cho hàm số $f \colon \mathbb{R} \to \mathbb{R}, f(x) = 1 + x^3 + e^{x-1}$ có hàm số ngược $f^{-1} \colon \mathbb{R} \to \mathbb{R}$. Tính $(f^{-1})'(3)$.

A.
$$(f^{-1})'(3) = 4$$
.

C.
$$(f^{-1})'(3) = \frac{1}{3}$$
.

B.
$$(f^{-1})'(3) = 3$$
.

D.
$$(f^{-1})'(3) = \frac{1}{4}$$
.

Các câu hỏi có nhiều đáp án đúng

Bài 9. Giới hạn nào có giá trị bằng giá trị của $\lim_{x \to +\infty} \frac{x^2 - \cos x}{x^2 + \sin x}$?

A. $\lim_{x \to +\infty} \frac{2x + \sin x}{x^2 + \sin x}$.

C. $\lim_{x \to +\infty} \frac{\cos x}{x^2 + \sin x}$.

A.
$$\lim_{x \to +\infty} \frac{2x + \sin x}{2x + \cos x}.$$

C.
$$\lim_{x \to +\infty} \frac{\cos x}{x^2 + \sin x}$$

B.
$$\lim_{x \to +\infty} \frac{2 + \cos x}{2 - \sin x}.$$

D.
$$\lim_{x \to +\infty} \frac{x^2}{x^2 + \sin x}.$$

Bài 10. Hàm số nào sau đây là hàm số tuần hoàn?

A.
$$y = \arcsin(\sin x)$$
.

D.
$$y = \sin(2x)$$
.

B.
$$y = \sin(\arcsin x)$$
.

$$E. y = \cos(x) + \sin(3x).$$

C.
$$y = \sin(x^2)$$
.

F.
$$y = \sin x + \arcsin x$$
.

Bài 11. Hàm số nào sau đây là đơn điệu trên \mathbb{R} ?

A.
$$y = \ln x$$
.

C.
$$y = \operatorname{arccot} x$$
.

E.
$$y = \cosh x$$
.

B.
$$y = e^{2x^3 - 3x^2 + 6x}$$
.

D.
$$y = \sinh x$$
.

F.
$$y = \arctan x$$
.

Bài 12. Đồ thị của hàm số nào sau đây có tiệm cận đứng?

$$A. \ y = \frac{\sqrt{x^2 + 1}}{x}.$$

$$D. \ y = x \sin \frac{1}{x+1}.$$

B.
$$y = \frac{\sqrt{x^2 + 1} - 1}{x}$$
.

E.
$$y = \frac{\sin x}{x}$$

$$C. \ y = x \sin \frac{1}{x}.$$

$$F. \ y = \frac{x}{\sin x}$$

Các câu hỏi tư luân

Bài 13. Tính khai triển Taylor đến $(x-1)^2$ của hàm số $y=\cos x$.

Bài 14. Tìm cực trị của hàm số $y = x \ln(x+1)$.

Bài 15. Viết phương trình tiếp tuyến của đường cong cho trong tọa độ cực $(r;\theta)$ bởi phương trình $r = 1 + \cos \theta, \theta \in [0, 2\pi)$ tại điểm có tọa độ Decartes (x, y) = (0, 1).