

Projekt finansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Programowanie liniowe

Badania Operacyjne Ćwiczenia I

Paweł Obszarski

Zad. 1.

Zakład produkuje dwa wyroby, zużywając do tego celu pewną ilość środków produkcji, z których cztery: energia elektryczna, stal, drewno oraz praca są limitowane. Zużycie środków produkcji na jednostkę wyrobu oraz zasoby poszczególnych środków produkcji są podane w poniższej tabeli.

1 0 0	0 (1			U
	Zużycie środków produkcji na jednostkę wyrobu			
	Energia	Stal	Drewno	Praca
Wyrób I	5	5	6	10
Wyrób II	25	10	0	10
Zasoby środków produkcji	1200	600	420	900

Ile poszczególnych wyrobów powinien produkować zakład, aby zysk jego był maksymalny, jeśli zysk jednostkowy wynosi:

- z produkcji wyrobu I 10 zł,
- z produkcji wyrobu II 20 zł?

Zad. 2.

Pewna wioska starożytna dysponuje czterema rodzajami zasobów: drewnem, linami, smarem i żelazem. Okoliczne miejscowości zainteresowane są dwoma rodzajami produktów, które wioska może wytworzyć: łodziami i wozami. Poniższa tabela przedstawia jakimi ilościami zasobów dysponuje wioska oraz ile zasobów potrzeba do produkcji poszczególnych produktów.

	Łodzie	wozy	Ilość zasobu			
drewno	15	15	525			
liny	2	1	50			
smar	3	6	180			
żelazo	0	5	110			

Wiadomo, że łodzie i wozy można sprzedać po tej samej cenie 17 złotych monet. Ile ile wozów i ile łodzi powinna produkować ta wioska, aby jej zysk był maksymalny. Jaki zysk jest możliwy do osiągnięcia?

Zad. 3.

Dwa gatunki węgla: A i B zawierają zanieczyszczenia fosforem i popiołem. W pewnym procesie przemysłowym potrzeba co najmniej 90 t paliwa zawierającego nie więcej niż 0.03% fosforu i nie więcej niż 4% popiołu. Procent zanieczyszczeń i ceny zakupu poszczególnych gatunków węgla podano w poniższej tablicy.

	Procent	owe zawartości zanieczyszczeń	Cena zakupu 1 tony
Gatunek	fosforu	popiołu	[zt]
A	0.02	3	100
В	0.05	5	80

- 1. Jak zmieszać wymienione dwa gatunki węgla, aby uzyskać paliwo o możliwie najniższym koszcie, spełniające wyżej wymienione wymagania?
- 2. Czy skład paliwa należy zmienić, jeżeli:
 - cena gatunku B wzrośnie do 100 zł?
 - wymagania dotyczące zawartości fosforu i popiołu się nie zmienią, będzie można jednak otrzymać gatunek B (w cenie 80 zł) zawierający 0.03% fosforu i 5% popiołu?

Zad. 4.

Gospodarstwo rolne do hodowli koni wykorzystuje dwa rodzaje paszy. Pasze owe zawierają trzy kluczowe składniki S_1 , S_2 i S_3 , które powinny być dostarczane zwierzętom w odpowiednik ilościach. Wiadomo, że S_1 powinien być dostarczony w ilościach przynajmniej 18kg na dobę. Mieszanka powinna też zawierać przynajmniej 2kg składnika S_2 . S_3 jest szkodliwy i nie powinno być go w paszy więcej jak 5%. Procentowe ilości składników w paszach zamieszczono w tabeli poniżej. Wiadomo, że koszt pozyskania kilograma paszy I jest 6zł a kilograma paszy II 15.

<u> </u>		0	1 0
	Pro	cent	owa zawartość składników w paszy
	S_1	S_2	S_3
Pasza I	50	4	6
Pasza II	60	10	2

Sposobem graficznym oblicz:

- jaki jest minimalny koszt utrzymania koni?
- dla jakich ilości paszy I i II ów minimalny koszt jest osiągany?

Zad. 5.

Tartak otrzymał zamówienie na wykonanie co najmniej 300 kompletów belek. Każdy komplet składa się z 7 belek o długości 0.7 m oraz 4 belek o długości 2.5 m. W jaki sposób powinny być cięte dłużyce o długości 5.2 m, aby odpad powstały w procesie cięcia był minimalny?