0.1 Curvas elípticas

En esta sección repasamos algunas definiciones y resultados que vamos a requerir acerca de las curvas elítpicas. No demostramos todas las propiedades para mantener esta sección breve, pero habrá referencias para las pruebas omitidas.

0.1.1 Definiciones preliminares

Definición 1. Una curva elíptica E=(E,O) es una curva proyectiva suave de género 1 con un punto distinguido $O \in E$. Decimos que E está definido sobre un campo K, si E está definido sobre K como variedad proyectiva; esto lo denotamos por E/K. Una función no constante $\varphi: E \to E'$ entre curvas elípticas sobre K es una isogenia si φ es un morfismo de variedades sobre K tal que $\varphi(O) = O'$.

A cada curva elíptica se le puede asociar una ecuación de la forma

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

donde, si E está definido sobre K, $a_i \in K$. De hecho, la homogenización de esta ecuación es el polinomio que define la imagen de E bajo un encaje $E \hookrightarrow \mathbb{P}^2(K)^*$, es decir E se puede encajar como una curva cúbica suave en $\mathbb{P}^2(K)$ con ecuación

$$y^2z + a_1xyz + a_3yz^2 = x^3 + a_2x^2z + a_4xz^2 + a_6z^3.$$

Si la característica de K es distinto de 2 o 3, entonces hay un cambio de coordenadas que cambia la ecuación de Weierstrass a la siguiente forma:

$$y^2 = x^3 + Ax + B.$$

Definición 2. Sea E una curva elíptica sobre K. El discriminante (denotado por Δ) y el j-invariante (denotado por j(E)) de la curva E se definen como:

$$\Delta = -16(4A^3 + 27B^2)$$
 $j(E) = -1728\frac{64A^3}{\Delta}$.

El j-invariante obtiene su nombre gracias al siguiente teorema importante:

Teorema 1. Sean E y E' curvas elípticas definidas sobre un campo K algebraicamente cerrado. Entonces

$$E \cong E' \iff j(E) = j(E').$$

(cf. [?, §3.1, proposición 1.4] o [?, capítulo IV, teorema 4.1] para una prueba usando herramientas de geometría algebraica)

Los puntos de E forman un grupo abeliano (cf. [?, §3.2]). La operación se define de la siguiente manera: sean $P,Q \in E$ y tomamos la recta $L \subset \mathbb{P}^2$ que une ambos puntos (o la recta tangente si P = Q). Como la ecuación de E es cúbica, L interseta a E en exactamente tres puntos (en dos puntos distintos cuando P = Q) P, Q y un tercer punto $R \in E$; esto se sigue del famoso teorema

^{*}El espacio proyectivo de dimensión n sobre K se define como el espacio cociente $(K^{n+1} - \{0\})/K^*$ donde la acción $K^* \curvearrowright (K^{n+1} - \{0\})$ es por multiplicación escalar $(\lambda, v) \mapsto \lambda v$.

de Bezout. Ahora toma $L' \subset \mathbb{P}^2$ como la recta que une R y O. Otra vez existe un tercer punto sobre $L' \cap E$ y este lo definimos como P + Q.

El neutro de la operación es $O \in E$. Esta definición es exclusivamente geométrico y por eso es difícil probar que esta operación es una operación de grupo; la asociatividad es particularmente difícil. Lo bueno de esta definición es que se puede generalizar fácilmente a curvas elípticas definidas sobre cualquier campo K.

Otra manera de definir la suma de E es con divisores:

Definición 3. Un divisor D de E es un elemento del grupo libre abeliano generado por los puntos de E, es decir D es una suma formal de la forma:

$$D = \sum_{P \in E} n_p(P)$$

donde $n_P \in \mathbb{Z}$ y $n_P = 0$ para casi toda $P \in E$. Aquí estamos escribiendo (P) como el divisor asociado al punto P (i.e. donde $n_Q = 0$ para toda $Q \neq P$ y $n_P = 1$). Al conjunto de todos los divisores de E lo denotamos Div(E).

Por ejemplo, si f es una función racional de E, es decir un elemento de K(E) distinto de cero, entonces podemos definir un divisor:

$$\operatorname{div}(f) := \sum_{P \in E} \nu_P(f)(P)$$

donde ν_P es la valoración asociada a $K[E]_P$, la localización de K[E] (el anillo de coordenadas de E) en el ideal maximal $\mathfrak{m}_P = \{ f \in K[E] \mid f(P) = 0 \}$. Recuerda que como E es suave, $K[E]_P$ es un anillo de valoración discreto. De esta manera, para un $f \in K[E]_P$ la valoración $\nu_P(f)$ se define como el único entero n tal que $f \in \mathfrak{m}_P^n$ pero $f \notin \mathfrak{m}_P^{n+1}$.

Definición 4. Un divisor D de E es principal si existe una función racional $f \in K(E)$ distinto de cero tal que D = div(f). Además hay una relación de equivalencia sobre Div(E): decimos que D y D' son linealmente equivalentes, i.e. $D \sim D'$, si D - D' es un divisor principal. El conjunto de clases de equivalencia es un grupo abeliano, se llama el grupo de Picard de E y se denota por Pic(E).

Observa que el conjunto de divisores principales es un subgrupo de Div(E) y Pic(E) es el grupo cociente con el subgrupo de divisores principales. Enunciamos una caracterización de ser divisor principal:

Proposición 1. Sea E una curva elíptica y $D = \sum n_P(P)$ un divisor de E. Entonces D es principal si y solo si $\sum n_P = 0$ y $\sum [n_p]P = O$ (la segunda suma es en E).

(cf. [?, capítulo III, $\S 3$, corolario 3.5])

Ahora regresamos a la operación algebraica de E. Para $P,Q \in E$ se puede probar que P+Q es el único punto $R \in E$ tal que $(P) + (Q) \sim (R) + (O)$.

[†]Por definición, un punto x en una variedad X es no-singular si el anillo local $\mathcal{O}_{x,X}$ es un anillo regular (i.e. el $(\mathcal{O}_{x,X}/\mathfrak{m}_{x,X})$ -espacio vectorial $\mathfrak{m}_{x,X}/\mathfrak{m}_{x,X}^2$ es de dimensión $\dim(\mathcal{O}_{x,X})$). Como las curvas elípticas son de dimensión 1, ser regular es equivalente a ser un anillo de valoración discreta (cf. [?, §9,proposición 9.2]).

Como E es un grupo abeliano, E es un \mathbb{Z} -módulo, es decir hay multiplicación por $N \in \mathbb{Z}$. Más precisamente, existen los morfismos de multiplicación:

$$[N]: E \longrightarrow E \quad \text{definido por} \quad [N]P = \underbrace{P + \dots + P}_{N \, \text{veces}} \quad (N > 0).$$

Si N < 0 definimos [N]P := -([|N|]P) y si N = 0 definimos [0]P = O. La múltiplicación por $N \in \mathbb{Z}$ nos permite estudiar el grupo de torsión de E.

Definición 5. Al subgrupo de elementos de E/K de orden N lo denotamos por:

$$E[N] = \ker[N] = \{ P \in E(K) \mid [N]P = O \}.$$

El grupo de torsión de E es simplemente la unión de todas las E[n]. De la misma manera, definimos

$$E[N](\overline{K}) = \{ P \in E(\overline{K}) \mid [N]P = O \}.$$

La estructura de E[N] es relativamente sencilla:

Proposición 2. Sea E una curva elíptica sobre K y sea c = char(K), entonces:

$$E[N] \cong \frac{\mathbb{Z}}{N\mathbb{Z}} \times \frac{\mathbb{Z}}{N\mathbb{Z}}$$

 $si \ c = 0 \ o \ si \ c \nmid N \ cuando \ c > 0.$

Proof. Nada más probamos el caso cuando $K \subseteq \mathbb{C}$. Por el teorema de uniformización (teorema 3), existe una latiz tal que $E(\mathbb{C}) \cong \mathbb{C}/\Lambda$ pero este cociente es isomorfo a $\mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$. Por lo tanto E[N] es un subgrupo de $E[N](\mathbb{C}) = \{P \in E(\mathbb{C}) \mid [N]P = O\}$ que a su vez es un subgrupo (cuyos elementos son de orden N) de $\mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$. El único subgrupo que cumple esto es $\mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$. \square

En particular, si ℓ es un número primo, entonces $[\ell]: E \to E$ se restringe a un morfismo de grupos $[\ell]: E[\ell^{m+1}] \to E[\ell^m]$ para toda m > 1. La familia de morfismos

$$\cdots \longrightarrow E[\ell^{m+2}] \xrightarrow{[\ell]} E[\ell^{m+1}] \xrightarrow{[\ell]} E[\ell^m] \xrightarrow{[\ell]} \cdots \xrightarrow{[\ell]} E[\ell]$$

es un sistema inverso. Por lo tanto existe su límite inverso:

Definición 6. Sea E/K una curva elíptica y ℓ un número primo distinto de la característica de K. El m'odulo de Tate ℓ -'adico de E se define como:

$$T_{\ell}(E) = \varprojlim_{m} E[\ell^{m}]$$

Observa que \mathbb{Z}_{ℓ} , los enteros ℓ -ádicos, son el límite inverso de los cocientes $\mathbb{Z}/\ell^m\mathbb{Z}$, entonces:

$$T_{\ell}(E) \cong \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell} \quad (\operatorname{char}(K) \neq \ell).$$

En particular $T_{\ell}(E)$ es un \mathbb{Z}_{ℓ} -módulo libre de rango 2. Si elegimos una \mathbb{Z}_{ℓ} -base, entonces todos los $v \in T_{\ell}(E)$ se pueden expresar como $v = (v_1, v_2) \in \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}$. Entonces el determinante det : $T_{\ell}(E) \times T_{\ell}(E) \to \mathbb{Z}_{\ell}$, definido por

$$\det(v, v') := \det\begin{pmatrix} v_1 & v_1' \\ v_2 & v_2' \end{pmatrix} = v_1 v_2' - v_1' v_2$$

es una función bilineal no-degenerada y alternante sobre el módulo de Tate (y es independiente de la elección de la \mathbb{Z}_{ℓ} -base). Hay otra función bilineal no-degenerada alternante sobre $T_{\ell}(E)$ que resulta más útil que el determinante: el emparejamiento de Weil. Para poder definirlo, necesitamos regresar a E[m], construir ahí el emparejamiento de Weil y después pasar al límite inverso.

Sean $P, Q \in E[m]$ (donde posiblemente P = Q). Elige $g \in \overline{K}(E)$ tal que:

$$div(g) = [m]^*(Q) - [m]^*(O)$$

donde

$$[m]^*: \operatorname{Div}(E) \to \operatorname{Div}(E)$$
 se define en generadores como $(R) \mapsto \sum_{S \in [m]^{-1}(R)} e_{[m]}(S)(S)$

donde $e_{[m]}(R)$ es el índice de ramificación de $[m]: E \to E$ en $R \in E$. Con esto definimos el emparejamiento de Weil como:

$$e_m : E[m] \times E[m] \to \mu_m$$
 definido por $e_m(P,Q) = \frac{g(X+P)}{g(X)}$

donde $\mu_m \subset \mathbb{C}$ es el grupo de raices m-ésimas de la unidad y $X \in E$ es un punto elegido de tal manera que g está bien definido en X + P y en X. La función e_m está bien definida y no depende de la elección de g ni de X (cf. [?, capítulo III, §8]). La función e_m cumple las siguientes propiedades:

Proposición 3. El emparejamiento de Weil e_m es una función bilineal, alternante, no-degenerada, invariante bajo la acción del grupo de Galois $Gal(\overline{K}|K)$ y cumple:

$$e_{mm'}(P,Q) = e_m([m']P,Q) \tag{1}$$

cf. [?, capítulo III, proposición 8.1]).

Ahora fijamos un primo ℓ (distinto de la característica de K). Recuerde que los grupos μ_{ℓ^n} , junto con los morfismos $\mu_{\ell^{n+1}} \to \mu_{\ell^n}$ (definidos por $\zeta \mapsto \zeta^{\ell}$) forman un sistema inverso: definimos

$$T_{\ell}(\mu) = \varprojlim_{n} \mu_{\ell^{n}}.$$

Para ver que podemos tomar límites inversos de ambos lados de $e_{\ell^n}: E[\ell^n] \times E[\ell^n] \to \mu_{\ell^n}$, debemos probar que el diagrama

$$E[\ell^{n+1}] \times E[\ell^{n+1}] \xrightarrow{[\ell] \times [\ell]} E[\ell^n] \times E[\ell^n]$$

$$\downarrow^{e_{\ell^{n+1}}} \downarrow^{e_{\ell^n}}$$

$$\downarrow^{e_{\ell^n}}$$

$$\downarrow^{e_{\ell^n}}$$

$$\downarrow^{e_{\ell^n}}$$

es conmutativo: sean $P,Q \in E[\ell^{n+1}]$, entonces

$$(e_{\ell^{n+1}}(P,Q))^{\ell} = e_{\ell^{n+1}}(P,[\ell]Q) = e_{\ell^n}([\ell]P,[\ell]Q),$$

donde la primera igualdad es por la linealidad en la segunda variable (escrita multiplicativamente) y la segunda igualdad es por la fórmula (1); esto prueba la conmutatividad del diagrama anterior.

Por lo tanto e_{ℓ^n} pasa al límite y obtenemos una función:

$$e_{\ell}: T_{\ell}(E) \times T_{\ell}(E) \to T_{\ell}(\mu)$$

que hereda las propiedades de las e_{ℓ^n} , es decir e_{ℓ} es bilineal, no-degenerada, alternante e invariante bajo la acción del grupo de Galois G_K .

La ventaja de usar módulos de Tate y el aparejamiento de Weil, es que podemos calcular los grados de una isogenia. Sea $\varphi: E \to E$ una isogenia. Como φ es además un homomorfismo de grupos, induce un homomorfismo $\varphi_{\ell^n}: E[\ell^n] \to E[\ell^n]$ y pasando al límite inverso obtenemos una función \mathbb{Z}_{ℓ} lineal $\varphi_{\ell}: T_{\ell}(E) \to T_{\ell}(E)$. En general tenemos una función $\operatorname{End}(E) \to \operatorname{End}(T_{\ell}(E))$. Con esta notación tenemos:

Proposición 4. Sea $\varphi \in \text{End}(E)$ y $\varphi_{\ell} \in \text{End}(T_{\ell}(E))$ el morfismo inducido, entonces

$$\det \varphi_{\ell} = \deg \varphi$$
 y $\operatorname{tr} \varphi_{\ell} = 1 + \deg \varphi - \deg(1 - \varphi)$

Proof. cf. [?, capítulo III, §8, proposición 8.6]

0.1.2 Curvas elípticas sobre $\mathbb C$

En el caso "geométrico" $(K = \mathbb{C})$, las curvas elípticas también se pueden describir usando latices. Un subgrupo aditivo $\Lambda \subset \mathbb{C}$ es una retícula si $\Lambda \cong \mathbb{Z}z_1 + \mathbb{Z}z_2$ donde z_1 y z_2 son \mathbb{R} -linealmente independiente o equivalentement $\operatorname{Im}(z_1/z_2) \neq 0$. El cociente \mathbb{C}/Λ es una superficie de Riemann compacta y como es de esperar, el anillo de funciones meromorfas sobre \mathbb{C}/Λ nos dice mucho sobre su estructura como variedad. Recuerda que como grupo aditivos:

$$\frac{\mathbb{C}}{\Lambda} \cong \frac{\mathbb{R} \oplus \mathbb{R}}{\mathbb{Z} \oplus \mathbb{Z}} \cong \frac{\mathbb{R}}{\mathbb{Z}} \times \frac{\mathbb{R}}{\mathbb{Z}}$$

Definición 7. Una función meromorfa $f: \mathbb{C} \to \mathbb{C}$ es *elíptica* (con respecto de Λ) si es Λ -periódica, es decir

$$f(z+\lambda) = f(z) \qquad \forall \lambda \in \Lambda$$

Al conjunto de funciones elípticas lo denotamos $\mathbb{C}(\Lambda)$. Observa que una función elíptica define una función meromorfa sobre \mathbb{C}/Λ

La función elíptica más importante para clasificar curvas elípticas con latices es la función \wp de Weierstrass (asociada a Λ) definida por:

$$\wp_{\Lambda}(z) = \frac{1}{z^2} + \sum_{\lambda \in \Lambda - \{0\}} \left(\frac{1}{(z - \lambda)^2} - \frac{1}{\lambda^2} \right).$$

La función \wp de Weierstrass es una función meromorfa cuyos polos (todos de residuo 0) son exactamente de los puntos de la retícula (cf. [?, §1.6, teorema 1.10] o [?, capítulo 7, §3]). Por lo tanto induce una función meromorfa sobre \mathbb{C}/Λ .

La importancia de \wp es que, junto con su derivada, genera a todas las funciones elípticas. Más precisamente, si escibimos $\mathbb{C}(\wp_{\Lambda}, \wp'_{\Lambda})$ como la \mathbb{C} -subálgebra de $\mathbb{C}(\Lambda)$ generada por \wp_{Λ} y su derivada \wp_{Λ} , entonces tenemos que:

$$\mathbb{C}(\Lambda) = \mathbb{C}(\wp_{\Lambda}, \wp'_{\Lambda}),$$

(cf. [?, capítlo VI, teorema 3.2]).

Además $\wp := \wp_{\Lambda}$ satisface la ecuación diferencial

$$\wp'^2 = 4\wp^3 - g_2\wp - g_3$$

donde $g_2 = g_2(\Lambda)$ y $g_3 = g_3(\Lambda)$ son complejos que dependen de la retícula Λ . Esta ecuación polinomial se parece a la fórmula de Weierstrass simplificada; esto no es una coincidencia:

Teorema 2. Sea $\Lambda \subset \mathbb{C}$ una retícula y sean $g_2 = g_2(\Lambda)$ y $g_3 = g_3(\Lambda)$ los coeficientes de la ecuación diferencial que cumple \wp_{Λ} . Entonces la curva E/\mathbb{C} definida por $y^2 = 4x^3 - g_2x - g_3$ es elíptica (i.e. suave) y $E(\mathbb{C}) \cong \mathbb{C}/\Lambda$ como variedades complejas bajo la función

$$z + \Lambda \mapsto [\wp_{\Lambda}(z), \wp'_{\Lambda}(z), 1] \in \mathbb{P}^2(\mathbb{C})$$

donde estamos identificando a $E(\mathbb{Q})$ con su encaje en $\mathbb{P}^2(\mathbb{C})$. (cf. [?, capítulo VI, proposición 3.6])

Este teorema le asocia a cada retícula Λ una curva elíptica E/\mathbb{C} . El resultado inverso es el teorema de uniformización:

Teorema 3. Sean $A, B \in \mathbb{C}$ tales que $4A^3 - 27B^2 \neq 0$, entonces existe una retícula $\Lambda \subset \mathbb{C}$ tal que $g_2(\Lambda) = A$ y $g_3(\Lambda) = B$. En particular para cada curva elíptica $E : y^2 = x^3 + Ax + B$ existe una retícula Λ tal que $E(\mathbb{C}) \cong \mathbb{C}/\Lambda$ como variedades complejas.

Los isomorfismos en los teoremas 2 y 3 también son homomorfismos de grupo (i.e. de grupos de Lie)

0.1.3 Curvas elípticas sobre campos finitos

Para esta sección fijamos un número primo impar p y fijamos una potencia $q = p^n$ de p. De manera usual, denotamos al campo de Galois de orden q por \mathbb{F}_q . También fijamos una curva elíptica E definida sobre \mathbb{F}_q . Vamos a estar interesados en calcular la cantidad de puntos en $E(\mathbb{F}_q)$.

Un resultado famoso, debido a Hasse, dice que $|\#E(\mathbb{F}_q) - q - 1| \le 2\sqrt{q}$ (cf. [?, capítulo V, teorema 1.1]). En esta sección calcularemos $\#E(\mathbb{F}_q)$ usando la traza del mapeo de Frobenius que está definido para cualquier curva elíptica sobre un campo finito.

El mapeo de Frobenius usual $\varphi : \mathbb{F}_q \to \mathbb{F}_q$, definido por $x \mapsto x^q$, induce un automorfismo de E (que denotamos igual) definido en coordenadas afines por $P = (x, y) \mapsto (x^q, y^q)$. Con esto tenemos:

Teorema 4. Sea E/\mathbb{F}_q una curva elíptica, $\varphi: E \to E$ el mapeo de Frobenius de orden q y escribe $a_q(E) := q + 1 - \#E(\mathbb{F}_q)$. Entonces el morfismo inducido $\varphi_\ell: T_\ell(E) \to T_\ell(E)$ en los módulos de Tate $(\ell \neq p)$ tiene polinomio característico $T^2 - a_q(E)T + q$. En particular el mapeo de Frobenius satisface $\varphi^2 - a_q(E)\varphi + q = 0 \in \text{End}(E)$.

Proof. Como el grupo absoluto de Galois $G_{\mathbb{F}_q}$ es generado topológicamente por el mapeo de Frobenius de orden q sobre $\overline{\mathbb{F}}_q$, entonces $P \in E(\mathbb{F}_q)$ si y solamente si $\varphi(P) = \varphi(x,y) = (x^q,y^q) = (x,y) = P$ o equivalentemente $E(\mathbb{F}_q) = \ker(1-\varphi)$.

Ahora como $p \nmid 1$, la isogenia $1 - \varphi$ es separable (cf. [?, capítulo III, corolario 5.5]) y las isogenias separables cumplen que $\# \ker \varphi = \deg \varphi$ (cf. [?, capítulo III, teorema 4.10.c]), tenemos que

$$#E(\mathbb{F}_q) = # \ker(1 - \varphi) = \deg(1 - \varphi). \tag{2}$$

Nota. Como deg $\varphi = q$ y deg : $\operatorname{End}(E) \to \mathbb{Z}$ es una forma cuadrática positiva definida, la desigualdad de Hasse mencionada anteriormente se sigue de la fórmula anterior después de aplicar una versión adecuada de la desigualdad de Cauchy-Schwarz para deg.

Luego aplicamos la proposición 4 a 2 y tenemos que det $\varphi_{\ell} = \deg \varphi = q$ y

$$\operatorname{tr}\varphi_{\ell} = 1 + \operatorname{deg}\varphi - \operatorname{deg}(1 - \varphi) = 1 + q - \#E(\mathbb{F}_q) = a_q(E).$$

Por lo tanto el polinomio característico de φ_{ℓ} es $T^2 - a_q(E)T + q$.

Por el teorema de Cayley-Hamilton, $\varphi_{\ell}^2 - a_q(E)\varphi_{\ell} + q = 0$. Volvemos a aplicar la proposición 4 para concluir que:

$$\deg(\varphi^2 - a_q(E)\varphi + q) = \det(\varphi_\ell^2 - a_q(E)\varphi_\ell + q) = 0.$$

La única isogenia de grado cero es $[0] \in \text{End}(E)$ y acabamos.

Curvas elípticas sobre campos finitas también surgen de curvas elípticas definidas sobre \mathbb{Q} o en general sobre campos locales (i.e. localmente compactos con respecto de una topología no discreta, por ejemplo cualquier extensión finita de \mathbb{Q}_p para algún primo p).

Sea E/\mathbb{Q} una curva elíptica con una ecuación $y^2 = ax^3 + bx^2 + cx + d$ y sea p primo. Entonces bajo el cambio de coordenadas x = ux' + v, y = wy' (para algunas $u, v, w \in \mathbb{Q}$) la nueva curva elíptica E' definida por

$$(y')^{2} = aw^{-2}(ux'+v)^{3} + bw^{-2}(ux'+v)^{2} + cw^{-2}(ux'+v) + dw^{-2} = a'(x')^{3} + b'(x')^{2} + c'x' + d'$$

es isomorfa a E y los números $u, v, w \in \mathbb{Q}$ se pueden tomar de tal manera que los denominadores de los nuevos coeficientes sean primos relativos con p, ie $a', b', c', d' \in \mathbb{Z}_{(p)}$ (la localización de \mathbb{Z} en el ideal primo $p\mathbb{Z}$).

El anillo $\mathbb{Z}_{(p)}$ tiene un morfismo de reducción módulo p:

$$\mathbb{Z}_{(p)} \xrightarrow{\mod p} \frac{\mathbb{Z}_{(p)}}{p\mathbb{Z}_{(p)}} \cong \frac{\mathbb{Z}}{p\mathbb{Z}} = \mathbb{F}_p.$$

Por lo tanto si tomamos el polinomio $y^2 - ax^3 - bx^2 - cx - d \in \mathbb{Z}_{(p)}[x,y]$ que define E (después de un cambio de coordenadas adecuado) podemos aplicar la reducción módulo p a cada coeficiente, i.e. aplicar el morfismo $\mathbb{Z}_{(p)}[x,y] \twoheadrightarrow \mathbb{F}_p[x,y]$ para obtener un polinomio con coeficientes en \mathbb{F}_p . En ciertos casos, este procedimiento produce una curva elíptica E_p definida sobre un campo finito. Veamos bajo qué condiciones sucede esto.

Definición 8. Sea E/\mathbb{Q} una cuva elíptica y p un primo impar.

- 1. E tiene buena reducción módulo p si existe un cambio de variable tal que la nueva ecuación que define a E cumple $y^2 ax^3 bx^2 cx d \in \mathbb{Z}_{(p)}[x,y]$ y además $a \in \mathbb{Z}_{(p)}^*$, de tal manera que la curva elíptica E_p/\mathbb{F}_p es suave (o equivalentemente que la ecuación $y^2 = ax^3 + bx^2 + cx + d \pmod{p}$ tiene tres raices diferentes).
- 2. E tiene reducción multiplicativa módulo p si existe un cambio de variable tal que la nueva ecuación que define a E cumple $y^2 ax^3 bx^2 cx d \in \mathbb{Z}_{(p)}[x,y]$ y además $a \in \mathbb{Z}_{(p)}^*$, de tal manera que la ecuación $y^2 = ax^3 + bx^2 + cx + d \pmod{p}$ tiene una raiz de multiplicidad dos y otra raiz simple.

3. E tiene reducción aditiva módulo p si existe un cambio de variable tal que la nueva ecuación que define a E cumple $y^2 - ax^3 - bx^2 - cx - d \in \mathbb{Z}_{(p)}[x,y]$ y además $a \in \mathbb{Z}_{(p)}^*$, de tal manera que la ecuación $y^2 = ax^3 + bx^2 + cx + d \pmod{p}$ tiene una raiz de multiplicidad tres.

Decimos que E tiene reducción mala si satisface 2 o 3. Si E tiene reducción multiplicativa, decimos que la reducción es partida si las direcciones de las tangentes en el nodo son elementos de \mathbb{F}_p y decimos que es no-partida en otro caso.

Definición 9. Una curva elíptica E/\mathbb{Q} es semiestable en un primo p si tiene reducción buena en p o reducción multiplicativa partida en p. Decimos que E es semiestable si es semiestable en todo primo.

0.1.4 Curvas modulares y espacios moduli

En esta sección definimos la curva $X_0(N)$ y vemos que parametriza ciertas clases de isomorfismo de curvas elípticas. Fijamos N > 1.

Sea E una curva elíptica sobre el campo $\mathbb{Q}(x)$ tal que j(E)=x. Sea $P\in E$ un punto de orden n y sea $C=\{O,P,2P,\ldots,(N-1)P\}$ el subgrupo de E generado por P. Toma $K\subset\overline{\mathbb{Q}(x)}$ como el campo fijo del subgrupo $H=\{\sigma\in G_{\mathbb{Q}(x)}\mid \sigma(C)=C\}$.

Como $(G_{\mathbb{Q}(x)}: H) < \infty$ (porque C es finito), entonces K es una extensión finita de $\mathbb{Q}(x)$. En particular es una extensión de \mathbb{Q} finitamente generada. Ahora, si $\overline{\mathbb{Q}} \cap K = \mathbb{Q}$ (estamos identificando a $\overline{\mathbb{Q}}$ con su inclusión en \overline{K}) entonces K es una extensión de \mathbb{Q} finitamente generada de grado de trascendencia 1. De esta manera, como la categoría de curvas proyectivas suaves definidas sobre \mathbb{Q} (con morfismos dominantes) y la categoría de extensiones de \mathbb{Q} finitamente generadas de grado de trascendencia 1 (cf. [?, §1.6, corolario 6.12]), podemos asociar a K una curva proyectiva suave definida sobre \mathbb{Q} que llamamos $X_0(N)$.

Hay que probar que la elección de $X_0(N)$ está bien definida, es decir que no depende de E ni de el subgrupo $C \subset E$ y además que efectivamente $\overline{\mathbb{Q}} \cap K = \mathbb{Q}$ para que K realmente sea un campo de funciones de una curva. Estas tres proposiciones se siguen del siguiente teorema:

Sea E una curva elíptica sobre \mathbb{Q} y definimos a $\mathbb{Q}(E[N])$ como la extensión de Galois generada por las coordenadas afines de los puntos de E[N]. La acción natural $G_{\mathbb{Q}(E[N])} \curvearrowright E[N]$ induce una representación $\rho: G_{\mathbb{Q}(E[N])} \to \mathrm{GL}_2(\mathbb{Z}/N\mathbb{Z})$ (gracias a la estructura de E[N] dada en la proposición 2).

Teorema 5. Sea E una curva elíptica definida sobre $k = \mathbb{Q}(x)$ tal que j(E) = x. Con la notación del párrafo anterior, la representación ρ es un isomorfismo, es decir:

$$G_{\mathbb{Q}(x,E[N])} \cong \mathrm{GL}_2(\mathbb{Z}/N\mathbb{Z}).$$

Además, $\overline{\mathbb{Q}} \cap \mathbb{Q}(x, E[N]) = \mathbb{Q}(\mu_N)$ donde $\mu_N \subset \mathbb{C}$ es el conjunto de las N-ésimas raices de la unidad.

Nota. Este resultado es una versión débil del caso $k = \mathbb{C}(x)$ donde el isomorfismo es $\operatorname{Gal}(\mathbb{Q}(x, E[N]) \mid \mathbb{Q}(x)) \cong \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})$ (cf. [?, capítulo III, §1, teorema 1 y su corolario])

Ahora explicamos porque la elección $X_0(N)$ está bien definida:

Corolario 6. La curva elíptica $X_0(N)$ sobre \mathbb{Q} existe y no depende de E ni del subgrupo C.

Proof. Como mencionamos antes, basta robar que $\overline{\mathbb{Q}} \cap K = \mathbb{Q}$ para que K efectivamente sea una extensión finitamente generada sobre \mathbb{Q} de grado de trascendencia 1. Sea $P \in E$ el generador de C. Observa que $\{P\} \subset E[N]$ se puede extender a una base ordenada de tal manera que el isomorfismo $G_{\mathbb{Q}(x,E[N])} \cong \mathrm{GL}_2(\mathbb{Z}/N\mathbb{Z})$ del teorema 5 hace que $H' := \{\sigma \in G_{\mathbb{Q}(x,E[N])} \mid \sigma(C) = C\}$ sea isomorfo a las matrices triangulares inferiores, i.e.

$$H \cong \left\{ \begin{pmatrix} a & 0 \\ b & d \end{pmatrix} : a, d \in (\mathbb{Z}/N\mathbb{Z})^*, \ b \in \mathbb{Z}/N\mathbb{Z} \right\}.$$

Ahora, la función determinante det : $GL_2(\mathbb{Z}/N\mathbb{Z}) \to (\mathbb{Z}/N\mathbb{Z})^*$ restringida a H sigue siendo sobre. Por lo tanto $\mathbb{Q}(\mu_N) \cap K = \mathbb{Q}...$ Si sustituimos la igualdad de la segunda parte del teorema 5 en esta fórmula obtenemos:

$$\mathbb{Q} = \left(\overline{\mathbb{Q}} \cap \mathbb{Q}(x, E[N])\right) \cap K = \mathbb{Q}(x, E[N]) \cap \left(\overline{\mathbb{Q}} \cap K\right) = \overline{\mathbb{Q}} \cap K$$

ya que $\overline{\mathbb{Q}} \cap K \subset \mathbb{Q}(x, E[N])$.

Ahora probamos que $X_0(N)$ es independiente de la elección de C. Cambiar de subgrupo C es cambiar de punto P de orden N. Sean $P' \in E$ otro punto de orden N, $C' \subset E[N]$ el subgrupo cíclico generado por P' y H' el subgrupo de $G_{\mathbb{Q}(x,E[N])}$ de fija a C'. De la misma manera extendemos $\{P'\}$ a otra base de E[N]. Este cambio de base modifica el isomorfismo $G_{\mathbb{Q}(x,E[N])} \cong \mathrm{GL}_2(\mathbb{Z}/N\mathbb{Z})$ mediante una conjugación por la matriz de cambio de base. En particular la imagen de H' en $\mathrm{GL}_2(\mathbb{Z}/N\mathbb{Z})$ es un conjugado de la imagen de H. Por lo tanto existe un $\sigma \in G_{\mathbb{Q}(x,E[N])}$ tal que $H' = \sigma H \sigma^{-1}$. Por lo tanto el campo fijo K' de H' es simplemente $\sigma(K)$, es decir $K \cong K'$. Gracias a la equivalencia de categorías mencionada al principio de la sección, $X_0(N)$ es isomorfo a cualquier curva proyectiva suave con campo de funciones K' y por lo tanto $X_0(N)$ es independiente de la elección de C.

Por último probamos que $X_0(N)$ es independiente de la elección de la curva $E/\mathbb{Q}(x)...$

Como consecuencia de este corolario, cada curva proyectiva $X_0(N)$ sobre $\mathbb Q$ tiene asociado una curva elíptica $E/\mathbb Q(x)$ (con j(E)=x) y un subgrupo cíclico $C\subset E$ de orden N tal que el campo de funciones K de $X_0(N)$ es el campo fijo de $H=\{\sigma\in G_{\mathbb Q(x)}\mid \sigma(C)=C\}$. La inclusión $\mathbb Q(x)\hookrightarrow K$ induce un morfismo de curvas $X_0(N)\to\mathbb P^1(\mathbb Q)$. A un punto en la imagen inversa de $\infty\in\mathbb P^1(\mathbb Q)$ se le llama una $c\acute{u}spide$ de $X_0(N)$.

También podemos considerar a $X_0(N)$ como una curva proyectiva sobre \mathbb{C} ; en este caso su campo de funciones es $K \otimes_{\mathbb{Q}} \mathbb{C}$. Como en el párrafo anterior, la inclusión $\mathbb{C}(x) \hookrightarrow K \otimes \mathbb{C}$ determina un morfismo $X_0(N)(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$. Sea $S \subseteq \mathbb{P}^1(\mathbb{C})$ un subconjunto y S^c su complemento en $\mathbb{P}^1(\mathbb{C})$. Denotamos $X_0(N)(\mathbb{C})_S$ como la imagen inversa de S^c bajo $X_0(N)(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$.

Estamos en posición de estudiar cómo parametriza $X_0(N)$ a algunas curvas elípticas, pero primero debemos definir una categoría nueva. Los objetos son parejas (E,C) donde E/\mathbb{C} es una curva elíptica y $C \subset E$ es un subgrupo cíclico de orden N. Los morfismos $(E,C) \to (E',C')$ son isomorfismos de curvas $\varphi: E \to E'$ tales que $\varphi(C) = C'$. A la clase de isomofismo de (E,C) la denotamos por [E,C] y al conjunto de clases de isomorfismo lo denotamos por $\mathrm{El}_0(N)(\mathbb{C})$. Además, si $S \subseteq \mathbb{P}^1(\mathbb{C})$ entonces escribimos

$$\mathrm{El}_0(N)(\mathbb{C})_S := \{ [E, C] \in \mathrm{El}_0(N)(\mathbb{C}) \mid j(E) \not\in S \}.$$

Similarmente denotamos por $\operatorname{Toro}_0(N)$ al conjunto de clases de isomorfismo de parejas (T,C) donde T es un toro complejo de dimensión 1 (i.e. $T\cong \mathbb{C}/\Lambda$ para alguna retícula) y $C\subset T$ es un subgrupo cíclico de orden N.

Ahora, sea $x \in X_0(N)(\mathbb{C})$. Como $X_0(N)(\mathbb{C})$ es una curva suave, x determina un anillo de valoración discreta $\mathcal{O}_x \subset K \otimes \mathbb{C}$ con ideal maximal \mathfrak{m}_x . Si E tiene buena reducción en \mathfrak{m}_x , entonces la reducción módulo \mathfrak{m}_x produce una curva elíptica E_x/\mathbb{C} . La restricción de la reducción módulo \mathfrak{m}_x a $E[n] \to E_x[N]$ es inyectiva y así la reducción módulo \mathfrak{m}_x del punto $P \in E[N]$ es un punto $P_x \in E_x[N]$ de orden N que genera un subgrupo cíclico $C_x \subset E_x$ de orden N.

Con estas consideraciones podemos enunciar el resultado más importante de esta sección:

Teorema 7. Sean $E/\mathbb{Q}(x)$ una curva elíptica tal que j(E)=x, $S\subseteq \mathbb{P}^1(\mathbb{C})$ un subconjunto que contiene a todos los lugares donde E tiene mala reducción, $\{Q,P\}$ una $\mathbb{Z}/N\mathbb{Z}$ -base de E[N] y $C\subset E$ el subgrupo cíclico generado por P, entonces tenemos el siguiente diagrama conmutativo de funciones biyectivas:

$$X_0(N)(\mathbb{C})_S \xrightarrow{(i)} \operatorname{El}_0(N)(\mathbb{C})_S$$

$$\downarrow^{(ii)} \qquad \qquad \downarrow^{(iv)}$$

$$\mathbb{H}/\Gamma_0(N) \xrightarrow{(iii)} \operatorname{Toro}_0(N)$$

donde las funciones están dadas por:

- i) $x \mapsto [E_x, C_x]$.
- ii) La restricción del isomorfismo $X_0(N)(\mathbb{C}) \cong \mathbb{H}^*/\Gamma_0(N)$ de superficies de Riemann.
- iii) $[z] \mapsto [\mathbb{C}/\Lambda_z, \langle \frac{1}{N} + \Lambda_z \rangle]$ donde $\Lambda_z := z\mathbb{Z} \oplus \mathbb{Z}$ es una retícula de \mathbb{C} .
- iv) $[E, C] \mapsto [E(\mathbb{C}), C]$.

Proof. La prueba de que (i) es biyectiva se sigue de [?, capítulo III, §1.3, proposición 1], la biyectividad de (ii) se sigue de [?, capítulo III, §1.10, proposición 6], la biyectividad de (iii) se sigue de [?, capítulo III, §1.10, proposición 7] y la biyectividad de (iv) se sigue de [?, capítulo III, §1.8, proposición 5].

Definición 10. Una curva elíptica E/\mathbb{Q} es modular si existe una función holomorfa no constante $X_0(N) \to E$ para alguna N.