MATH 1555 – Calculus for the Life Sciences – 4 hours

Brief Description. Taylor approximations, introduction to differential equations, linear algebra and introduction to multivariable calculus. Motivating examples drawn from life sciences.

Text. Such as Calculus for Biology and Medicine, by Neuhauser (3d Ed); Pearson, 2010.

Topics

Taylor approximations: Taylor polynomials and their accuracy.

Infinite series: Convergence. Absolute convergence. Criteria for convergence.

Differential equations: First order separable equations. Equilibria and their stability. Examples: Growth models. Restricted growth: von Bertalanffy Equation. Logistic equation. Homeostasis. Levis model. The Allee effect.

Multivariable calculus: Functions of several variables. Limits and continuity. Partial derivatives. Tangent planes, differentiability and linearization. Systems of difference equations. Examples: Low temperature survival as function of metabolic rate and heat loss. Host-parasitiods models.

Systems of differential equations: Linear systems. Equilibria and their stability. Examples. Nonlinear autonomous systems. *Examples:* Compartment models. Lotka-Volterra model of interspecific competition. Model of neuron activity. Model of enzymatic reactions.

Schedule of topics

Topic	Sections	Lectures
Discrete models, sequences and difference equations	2.1-2	3
L'Hopital's Rule. Antiderivatives	5.5,5.8	2
Integration and the fundamental theorem of calculus	6.1-3	6
Techniques of integration	7.1-4	6
Taylor approximations	7.6	2
Differential equations	8.1-2	6
Multivariable calculus	10.1-4	9
Systems of differential equations	11.1-3	8

Learning Objectives:

Students develop knowledge and skills in:

- (1) Using Taylor polynomials and infinite series
- (3) Techniques of multivariable calculus.
- (4) Solving differential equations.
- (5) Using systems of differential equations in life sciences applications.