The maximization procedure involves afternating between two steps to steps t=0,1,2 equivalent steps t=0,1,2I Φ = augmax $\Theta(\Phi^{(t+1)}) = \Phi(\Phi^{(t+1)}) = \Phi(\Phi^$ We know the purposety of G function that G(Q,Q) < L(D) that means $G(Q, e^{(t)}) \leq L(e^{(t)})$ Now, if we substitute a a matrix with elements $\Theta_{i,y} = P_{\underline{e}} \left[Y = y_i \middle| X = X_i \right] \quad \text{in } G(\underline{\alpha},\underline{e})$ G(Q, P) = \(\frac{\times}{\times} \) \(\left(\text{Qi,y log Po}[x=\text{Xi, Y=yi}] - \text{Qi,y log Qi,y} \)
\(\text{A} \)
\(\text{A} \)
\(\text{Po}[x=\text{Xi, Y=yi}] - \text{Qi,y log Qi,y} \)
\(\text{B} \) $= \sum_{i=1}^{m} \sum_{y_{i}=1}^{x} Q_{i,y} \log \frac{P_{e}\left[x=x_{i}, Y=y_{i}\right]}{Q_{i,y}} \frac{A}{P(x,y)} = P(y|x) P(y|x$ $= \sum_{i=1}^{m} \sum_{y_{i}=1}^{k} \left[\log \left[y = y_{i} \right] \times = x_{i} \right] \log \left[\log \left[x = x_{i} \right] \right]$ $= \sum_{i=1}^{m} \log \left[\log \left[x = x_{i} \right] \right] \sum_{y_{i}=1}^{k} \log \left[\log \left[x = x_{i} \right] \right]$ $= \sum_{i=1}^{m} \log \left[\log \left[x = x_{i} \right] \right] \sum_{i=1}^{k} \log \left[\log \left[x = x_{i} \right] \right]$ $= \sum_{i=1}^{m} \log \left[\log \left[x = x_{i} \right] \right] \sum_{i=1}^{k} \log \left[\log \left[x = x_{i} \right] \right]$

Thus, substituting Qi,y = Po [Y=yi | X=xi] advienes the maximum value of the G(Q, Q) function when Q is fixed. : We write $Q = \underset{Q}{\text{argmax}} G(Q, Q)$ has elements $Q_{i,y} = P_{\theta}(x) \left[y = y_i \mid x = 2i \right]$ The iterative procedure to maximize the G function is called Expectation Maximization.

The first step is the E step and the second step in the Maximization. is the M step. The EM procedure ensures that the observed data log likelihood never decreases. $L\left(\frac{\theta}{\theta}\right) > L\left(\frac{\theta}{\theta}\right)$ $L\left(\frac{t+1}{Q}\right) = G\left(\frac{t+2}{Q}, \frac{t+1}{Q}\right) > G\left(\frac{t+1}{Q}, \frac{t}{Q}\right) = L\left(\frac{Q}{Q}\right)$ $\circ \circ G(Q^{(t+1)}, Q^{(t+1)}) > G(Q^{(t+1)}, Q^{(t+1)})$ > G(Q1, Q(+))

