ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

6. Trees

Review

First half of class

- Introduced analysis of algoritihms.
- Surveyed basic mathematics needed for scientific studies.
- Introduced analytic combinatorics.

1	Analysis of Algorithms
2	Recurrences
3	Generating Functions
4	Asymptotics
5	Analytic Combinatorics

Note: Many applications beyond analysis of algorithms.

Orientation

Second half of class

- Surveys fundamental combinatorial classes.
- Considers techniques from analytic combinatorics to study them .
- Includes applications to the analysis of algorithms.

chapter	combinatorial classes	type of class	type of GF
6	Trees	unlabeled	OGFs
7	Permutations	labeled	EGFs
8	Strings and Tries	unlabeled	OGFs
9	Words and Mappings	labeled	EGFs

Note: Many more examples in book than in lectures.

PART ONE

http://aofa.cs.princeton.edu

6. Trees

- Trees and forests
- Binary search trees
- Path length
- Other types of trees

6a.Trees.Trees

Anatomy of a binary tree

Definition. A binary tree is an external node or an internal node and two binary trees.

Binary tree enumeration (quick review)

How many binary trees with N nodes?

Symbolic method: binary trees

How many binary trees with N nodes?

Class	T, the class of all binary trees
Size	t , the number of internal nodes in t
OGF	$T(z) = \sum_{t \in T} z^{ t } = \sum_{N \ge 0} T_N z^N$

Atoms

type	class	size	GF
external node	Z_{\square}	0	1
internal node	Z_{ullet}	1	Z

Construction

$$T = Z_{\square} + T \times Z_{\bullet} \times T$$

OGF equation

$$T(z) = 1 + zT(z)^2$$

$$[z^N]T(z) = \frac{1}{N+1} {2N \choose N} \sim \frac{4^N}{\sqrt{\pi N^3}}$$

"a binary tree is an external node or an internal node connected to two binary trees"

Forest and trees

Each forest with N nodes corresponds to

Anatomy of a (general) tree

Definition. A *forest* is a sequence of disjoint trees.

Definition. A tree is a node (called the root) connected to the roots of trees in a forest.

Forest enumeration

How many forests with N nodes?

Tree enumeration

How many trees with N nodes?

Symbolic method: forests and trees

How many forests and trees with N nodes?

Class	F, the class of all forests
Size	f , the number of nodes in f
Class	C the close of all twee
Class	G, the class of all trees
Size	g , the number of nodes in g

toms	type	

Α

type	class	size	GF
node	Z	1	Z

$$F = SEQ(G)$$
 and $G = Z \times F$

$$F(z) = \frac{1}{1 - G(z)}$$
 and $G(z) = zF(z)$

$$F(z) - zF(z)^2 = 1$$

Extract coefficients
$$F_N = T_N = \frac{1}{N+1} \binom{2N}{N} \sim \frac{4^N}{\sqrt{\pi N^3}}$$
 $G_N = F_{N-1} \sim \frac{4^{N-1}}{\sqrt{\pi N^3}}$

Forest and binary trees

Each forest with N nodes corresponds to

- left child
- right sibling

Aside: Drawing a binary tree

Approach 1:

• y-coordinate: height minus node depth

• x-coordinate: inorder node rank

Design decision:

Reduce visual clutter by omitting external nodes

Problem: distracting long edges

Aside: Drawing a binary tree

Approach 2:

• y-coordinate: height minus node depth

• x-coordinate: centered and evenly spaced by level

Drawing shows tree profile

Typical random binary tree shapes (400 nodes)

PART ONE

http://aofa.cs.princeton.edu

6. Trees

- Trees and forests
- Binary search trees
- Path length
- Other types of trees

6b.Trees.BSTs

Binary search tree (BST)

Fundamental data structure in computer science:

- Each node has a key, with comparable values.
- Keys are all distinct.
- Each node's left subtree has smaller keys.
- Each node's right subtree has larger keys.

Section 3.2

BST representation in Java

Java definition: A BST is a reference to a root Node.

A Node is comprised of four fields:

- A Key and a Value.
- A reference to the left and right subtree.

smaller keys

larger keys

```
private class Node
{
   private Key key;
   private Value val;
   private Node left, right;
   public Node(Key key, Value val)
   {
      this.key = key;
      this.val = val;
   }
}
```

Notes:

- Key and Value are generic types.
- Key is Comparable.

Binary search tree

BST implementation (search)

```
public class BST<Key extends Comparable<Key>, Value>
   private Node root;
  private class Node
  { /* see previous slide */ }
  public Value get(Key key)
     Node x = root;
     while (x != null)
        int cmp = key.compareTo(x.key);
            (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
      return null;
   public void put(Key key, Value val)
   { /* see next slide */ }
```


BST implementation (insert)

recursive code

Key fact

The shape of a BST depends on the order of insertion of the keys.

search cost guaranteed ~lg N

Average search cost?

Average search cost $\sim N/2$ (a problem)

Reasonable model: Analyze BST built from inserting keys in *random* order.

Typical random BSTs (80 nodes)

Challenge: characterize analytically (explain difference from random binary trees)

BST shape

is a property of permutations, not trees (!)

Note: Balanced shapes are more likely.

Mapping permutations to trees via BST insertion

Q. How many permutations map to this tree?

"result in this tree shape when inserted into an initially empty BST"

A. 2

Q. How many permutations map to *this* tree?

root must be 4

4	2	1	3	5	6	4	2	3	1	5	6	
4	2	1	5	3	6	4	2	3	5	1	6	
4	2	1	5	6	3	4	2	3	5	6	1	
4	2	5	1	3	6	4	2	5	3	1	6	
4	2	5	1	6	3	4	2	5	3	6	1	
4	2	5	6	1	3	4	2	5	6	3	1	
4	5	2	1	3	6	4	5	2	3	1	6	
4	5	2	1	6	3	4	5	2	3	6	1	
4	5	2	6	1	3	4	5	2	6	3	1	
4	5	6	2	1	3	4	5	6	2	3	1	

Mapping permutations to trees via BST insertion

Q. How many permutations map to a general binary tree t?

A. Let P_t be the number of perms that map to t

first element must be $|t_L|$ smaller $|t_R|$ larger elements

much, much larger when $t_L \approx t_R$ than when $t_L \ll t_R$ (explains why balanced shapes are more likely)

Two binary tree models

that are fundamental (and fundamentally different)

BST model

- Balanced shapes much more likely.
- Probability root is of rank k: 1/N.

Catalan model

- Each tree shape equally likely.
- Probability root is of rank *k*:

$$\frac{\frac{1}{k} {2k-2 \choose k} \frac{1}{N-k+1} {2N-2k \choose N-k}}{\frac{1}{N+1} {2N \choose N}}$$

Catalan distribution

Probability that the root is of rank *k* in a randomly-chosen binary tree with *N* nodes.

Note: Small subtrees are extremely likely.

Aside: Generating random binary trees

```
public class RandomBST
   private Node root;
   private int h;
   private int w;
   private class Node
      private Node left, right;
      private int N;
      private int rank, depth;
   public RandomBST(int N)
   { root = generate(N, 0); }
   private Node generate(int N, int d)
   { // See code at right. } -
   public static void main(String[] args)
      int N = Integer.parseInt(args[0]);
      RandomBST t = new RandomBST(N);
      t.show();
      stay tuned
```

Note: "rank" field includes external nodes: x.rank = 2*k+1

```
Node x = new Node();
x.N = N; x.depth = d;
if (h < d) h = d;
if (N == 0) x.rank = w++; else
{
   int k = // internal rank of root
   x.left = generate(k-1, d+1);
   x.rank = w++;
   x.right = generate (N-k, d+1);
}
return x;
}</pre>
```

```
random BST: StdRandom.uniform(N)+1
random binary tree: StdRandom.discrete(cat[N]) + 1;
```

Aside: Drawing binary trees

```
public void show()
{ show(root); }
private double scaleX(Node t)
{ return 1.0*t.rank/(w+1); }
private double scaleY(Node t)
{ return 3.0*(h - t.depth)/(w+1); }
private void show(Node t)
  if (t.N == 0) return;
   show(t.left);
   show(t.right);
   double x = scaleX(t):
   double y = scaleY(t);
   double xl = scaleX(t.left);
   double yl = scaleY(t.left);
   double xr = scaleX(t.right);
   double yr = scaleY(t.right);
   StdDraw.filledCircle(x, y, .005);
   StdDraw.line(x, y, xl, yl);
   StdDraw.line(x, y, xr, yr);
}
```


Exercise: Implement "centered by level" approach.

PART ONE

http://aofa.cs.princeton.edu

6. Trees

- Trees and forests
- Binary search trees
- Path length
- Other types of trees

6c.Trees.Paths

Path length in binary trees

Definition. A binary tree is an external node or an internal node and two binary trees.

internal path length: $ipI(t) = \sum_{k \ge 0} k \cdot \{\# \text{ internal nodes at depth } k\}$

external path length: $xpl(t) = \sum_{k>0} k \cdot \{\# \text{ external nodes at depth k}\}\$

Path length in binary trees

notation	definition
t	binary tree
<i>t</i>	# internal nodes in t
t	# external nodes in t
t_L and t_R	left and right subtrees of t
ipl(t)	internal path length of t
xpl(t)	external path length of t

Lemma 1. t = |t| + 1*Proof.* Induction.

$$\begin{aligned}
\underline{t} &= \underline{t_L} + \underline{t_R} \\
&= |t_L| + 1 + |t_R| + 1 \\
&= |t| + 1
\end{aligned}$$

recursive relationships

$$|t| = |t_L| + |t_R| + 1$$
 $t = t_L + t_R$
 $ipl(t) = ipl(t_L) + ipl(t_R) + |t| - 1$
 $xpl(t) = xpl(t_L) + xpl(t_R) + t$

Lemma 2. xpl(t) = ipl(t) + 2|t| *Proof.* Induction.

$$xpl(t) = xpl(t_L) + xpl(t_R) + \boxed{t}$$

$$= ipl(t_L) + 2|t_L| + ipl(t_R) + 2|t_R| + |t| + 1$$

$$= ipl(t) + 2|t|$$

Problem 1: What is the expected path length of a random binary tree?

 $Q_{Nk} = \#$ trees with N nodes and ipl k

 $T_N = \# \text{ trees}$

 Q_N = cumulated cost (total ipl)

$$Q_{32} = 1$$
 $Q_{33} = 4$
 $T_3 = 2$
 $Q_3 = 1 \cdot 2 + 4 \cdot 3 = 14$
 $Q_3/T_3 = 2.8$

$$Q_{44} = 4$$
 $T_4 = 14$
 $Q_{45} = 2$ $Q_4 = 4 \cdot 4 + 2 \cdot 5 + 8 \cdot 6 = 74$
 $Q_{46} = 8$ $Q_4/T_4 \doteq 5.286$

Average path length in a random binary tree

T is the set of all binary trees.

|t| is the number of internal nodes in t.

ipl(t) is the internal path length of t.

 T_N is the # of binary trees of size N (Catalan).

 Q_N is the total ipl of all binary trees of size N.

Counting GF.
$$T(z) = \sum_{t \in T} z^{|t|} = \sum_{N \geq 0} T_N z^N = \sum_{N \geq 0} \frac{1}{N+1} \binom{2N}{N} z^N \sim \frac{4^N}{\sqrt{\pi N^3}}$$
 Cumulative cost GF.
$$Q(z) = \sum_{t \in T} \operatorname{ipl}(t) z^{|t|}$$
 Average ipl of a random
$$\frac{[z^N]Q(z)}{[z^N]T(z)} = \frac{[z^N]Q(z)}{T_N}$$

Next: Derive a functional equation for the CGF.

CGF functional equation for path length in binary trees

Counting GF.

$$T(z) = \sum_{t \in T} z^{|t|}$$

CGF.

$$Q(z) = \sum_{t \in T} i p I(t) z^{|t|}$$

empty tree

$$ipl(t) = ipl(t_L) + ipl(t_R) + |t_L| + |t_R|$$

Decompose from definition.

$$Q(z) = 1 + \sum_{t_L \in T} \sum_{t_R \in T} (ipl(t_L) + ipl(t_R) + |t_L| + |t_R|) z^{|t_L| + |t_R| + 1}$$

$$\sum_{t_{L} \in T} ipl(t_{L}) z^{|t_{L}|} \sum_{t_{R} \in T} z^{|t_{R}|} = Q(z)T(z)$$

$$\sum_{t_L \in T} |t_L| z^{|t_L|} \sum_{t_R \in T} z^{|t_R|} = z T'(z) T(z)$$

root

$$= 1 + 2zQ(z)T(z) + 2z^2T'(z)T(z)$$

)

Expected path length of a random binary tree: full derivation

CGF.

$$Q(z) = \sum_{t \in T} i p I(t) z^{|t|}$$

Decompose from definition.

$$Q(z) = 1 + \sum_{t_L \in T} \sum_{t_R \in T} (ipI(t_L) + ipI(t_R) + |t_L| + |t_R|) z^{|t_L| + |t_R| + 1}$$

$$= 2zT(z) (O(z) + zT'(z))$$

Solve.

$$Q(z) = \frac{2z^2T(z)T'(z)}{1 - 2zT(z)}$$

Do some algebra (omitted)

$$zQ(z) = \frac{z}{1 - 4z} - \frac{1 - z}{\sqrt{1 - 4z}} + 1$$

Expand.

$$Q_N \equiv [z^N]Q(z) \sim 4^N$$

$$T(z) = \frac{1 - \sqrt{1 - 4z}}{2z} \quad T_N \sim \frac{4^N}{N\sqrt{\pi N}}$$
$$T'(z) = -\frac{1 - \sqrt{1 - 4z}}{2z^2} + \frac{1}{z\sqrt{1 - 4z}}$$
$$1 - 2zT(z) = \sqrt{1 - 4z}$$

Compute average internal path length.

$$Q_N/T_N \sim N\sqrt{\pi N}$$

Problem 2: What is the expected path length of a random BST?

 $C_{Nk} = \#$ permutations resulting in a BST with N nodes and ipl k

N! = # permutations

 C_N = cumulated cost (total ipl)

Recall: A property of permutations.

 $C_3 = 2 \cdot 2 + 4 \cdot 3 = 16$

 $C_3/3! \doteq 2.667$

$$C_{46} = 8$$
 $C_4/4! \doteq 4.833$

Average path length in a BST built from a random permutation

P is the set of all permutations.

|p| is the length of p.

ipl(p) is the ipl of the BST built from p by inserting into an initially empty tree.

 P_N is the # of permutations of size N(N!).

 C_N is the total ipl of BSTs built from all permutations.

Counting EGF.
$$P(z) = \sum_{p \in P} \frac{z^{|p|}}{|p|!} = \sum_{N \geq 0} N! \frac{z^N}{N!} = \frac{1}{1-z}$$
Cumulative cost EGF.
$$C(z) = \sum_{p \in P} \mathrm{ipl}(p) \frac{z^{|p|}}{|p|!}$$
Expected ipl of a BST built from a random permutation.
$$\frac{N![z^N]C(z)}{[z^N]P(z)} = \frac{N![z^N]C(z)}{N!} = [z^N]C(z) \longleftarrow \text{skip a step because counting sequence and EGF normalization are both NI$$

Next: Derive a functional equation for the cumulated cost EGF.

CGF functional equation for path length in BSTs

Cumulative cost EGF.

$$C(z) = \sum_{p \in P} \mathsf{ipl}(p) \frac{z^{|p|}}{|p|!}$$

Counting GF.

$$P(z) = \sum_{p \in P} \frac{z^{|p|}}{|p|!} = \frac{1}{1 - z}$$

$$\binom{|p_L|+|p_R|}{|p_L|}$$

perms lead to the same tree with $\binom{|p_L| + |p_R|}{|p_L|} = \frac{|p_L| + 1 \text{ at the root}}{|p_L| \text{ nodes on the left}}$

 p_R nodes on the right

Decompose.
$$C(z) = \sum_{p_L \in \mathcal{P}} \sum_{p_R \in \mathcal{P}} \binom{|p_L| + |p_R|}{|p_L|} \frac{z^{|p_L| + |p_R| + 1}}{(|p_L| + |p_R| + 1)!} (ipl(p_L) + ipl(p_R) + |p_L| + |p_R|)$$

$$C'(z) = \sum_{p_L \in \mathcal{P}} \sum_{p_R \in \mathcal{P}} \frac{z^{|p_L|}}{|p_L|!} \frac{z^{|p_R|}}{|p_R|!} (ipl(p_L) + ipl(p_R) + |p_L| + |p_R|)$$

$$=2C(z)P(z)+2zP'(z)P(z)=\frac{2C(z)}{1-z}+\frac{2z}{(1-z)^3} \qquad P'(z)=\sum_{p\in P}\frac{z^{|p|-1}}{(|p|-1)!}=\frac{1}{(1-z)^2}$$

$$P(z) = \sum_{p \in P} \frac{z^{|p|}}{|p|!} = \frac{1}{1 - z}$$

$$P'(z) = \sum_{p \in P} \frac{z^{|p|-1}}{(|p|-1)!} = \frac{1}{(1-z)^2}$$

CGF functional equation for path length in BSTs

$$C'(z) = \frac{2C(z)}{1-z} + \frac{2z}{(1-z)^3}$$
 Look familiar?

Expected path length in BST built from a random permutation: full derivation

CGF.
$$C(z) = \sum_{p \in P} \operatorname{ipl}(p) \frac{z^{|p|}}{|p|!}$$

Decompose.
$$C(z) = \sum_{p_L \in \mathcal{P}} \sum_{p_R \in \mathcal{P}} \binom{|p_L| + |p_R|}{|p_L|} \frac{z^{|p_L| + |p_R| + 1}}{(|p_L| + |p_R| + 1)!} (ipl(p_L) + ipl(p_R) + |p_L| + |p_R|)$$

Differentiate.
$$C'(z) = \sum_{p_L \in \mathcal{P}} \sum_{p_R \in \mathcal{P}} \frac{z^{|p_L|}}{|p_L|!} \frac{z^{|p_R|}}{|p_R|!} (ipl(p_L) + ipl(p_R) + |p_L| + |p_R|)$$

$$= 2C(z)P(z) + 2zP'(z)P(z)$$

$$= 2C(z)P(z) + 2zP'(z)P(z)$$

$$P(z) = \sum_{p \in P} \frac{z^{|p|}}{|p|!} = \frac{1}{1-z}$$

Simplify.
$$= 2C(z)P(z) + 2zP'(z)P(z)$$

$$= \frac{2C(z)}{1-z} + \frac{2z}{(1-z)^3}$$

Solve the ODE (see GF lecture).
$$C(z) = \frac{2}{(1-z)^2} \ln \frac{1}{1-z} - \frac{2z}{(1-z)^2}$$

Expand.
$$C_N = 2(N+1)(H_{N+1}-1) - 2N \sim 2N \ln N$$

 $P'(z) = \sum_{p \in P} \frac{z^{|p|-1}}{(|p|-1)!} = \frac{1}{(1-z)^2}$

BST – quicksort bijection

Average # compares for quicksort

- = average external path length of BST built from a random permutation
- = average internal path length + 2N

Height and other parameters

Approach works for any "additive parameter" (see text). Height requires a different (much more intricate) approach (see text).

Summary:

	typical shape	average path length	height
random binary tree		$\sim \sqrt{\pi N}$	$\sim 2\sqrt{\pi N}$
BST built from random permutation		$\sim 2 \ln N$	$\sim c \ln N$ $c \doteq 4.$

.311

http://aofa.cs.princeton.edu

6. Trees

- Trees and forests
- Binary search trees
- Path length
- Other types of trees

6d.Trees.Other

Other types of trees in combinatorics

Classic tree structures:

- The free tree, an acyclic connected graph.
- The rooted tree, a free tree with a distinguished root node.
- The ordered tree, a rooted tree where the order of the subtrees is significant.

Ex. 5-node trees:

Enumeration? Path length? Stay tuned for Analytic Combinatorics

Other types of trees in algorithmics

Variations on binary trees:

- The *t*-ary tree, where each node has *exactly t* children.
- The t-restricted tree, where each node has at most t children.
- The 2-3 tree, the method of choice in symbol-table implementations.

Enumeration? Path length? Stay tuned for Analytic Combinatorics

An unsolved problem

Balanced trees are the method of choice for symbol tables

- Same search code as BSTs.
- Slight overhead for insertion.
- Guaranteed height < 2lg*N*.
- Most algorithms use 2-3 or 2-3-4 tree representations.

Section 3.3

Ex. LLRB (left-leaning red-black) trees.

Q. Path length of balanced tree built from a random permutation?

a property of permutations, not trees

Balanced tree distribution

Probability that the root is of rank k in a randomly-chosen AVL tree.

Random binary tree

BST built from a random permutation

An unsolved problem

Q. Path length of balanced tree built from a random permutation?

PART ONE

http://aofa.cs.princeton.edu

6. Trees

- Trees and forests
- Binary search trees
- Path length
- Other types of trees
- Exercises

6d.Trees.Other

Exercise 6.6

Tree enumeration via the symbolic method.

Exercise 6.6 What proportion of the forests with N nodes have no trees consisting of a single node? For N=1,2,3, and 4, the answer is 0,1/2,2/5, and 3/7, respectively.

Exercise 6.27

Compute the probability that a BST is perfectly balanced.

Exercise 6.27 For $N=2^n-1$, what is the probability that a perfectly balanced tree structure (all 2^n external nodes on level n) will be built, if all N! key insertion sequences are equally likely?

Exercises 6.43

Parameters for BSTs built from a random permutation.

Answer these questions for BSTs built from a random permutation.

Exercise 5.15 Find the average number of internal nodes in a binary tree of size n with both children internal. \bullet

Exercise 5.16 Find the average number of internal nodes in a binary tree of size n with one child internal and one child external. \bullet

Assignments for next lecture

1. Read pages 257-344 in text.

2. Run experiments to validate mathematical results.

Experiment 1. Generate 1000 random permutations for N = 100, 1000, and 10,000 and compare the average path length and height of the generated trees with the values predicted by analysis.

Experiment 2. Extra credit. Do the same for random binary trees.

ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

6. Trees