

1º DAM/DAW Sistemas Informáticos

U5. Redes

4 - Servicio SSH

Modelo cliente-servidor

- La mayor parte de las aplicaciones que funcionan en un entorno de red, siguen el **modelo** cliente-servidor.
- Este modelo está formado por **dos componentes que se comunican entre sí**, la parte cliente y la parte servidor.
- Habitualmente el cliente realiza una petición y el servidor proporciona una respuesta o resultado.

Modelo cliente-servidor

- La parte cliente se ejecuta en el host o dispositivo que realiza la petición de un servicio.

 Puede iniciarla un usuario o una aplicación y finaliza cuando termina el servicio.
- La parte servidor se ejecuta en otro host, de la LAN o de Internet, que recibe la petición y
 puede ofrecer servicio a múltiples clientes.
- Habitualmente, el objetivo es que el servidor ofrezca sus servicios de manera ininterrumpida y continuada.

Modelo cliente-servidor

 Por ejemplo, nosotros podemos tener un navegador web (Chrome, Firefox, Safari, etc.) que actúa como cliente mediante el protocolo HTTP, realizando peticiones a servidores web en ubicaciones geográficas dispares. Estos servidores web, además de procesar respuestas para nuestro cliente, también se comunican con otros clientes, ubicados también de forma dispar, que solicitan peticiones a estos sitios web.

Modelo cliente-servidor. Puertos

- Se denomina **puerto** a **cada uno de los tipos específicos de interfaces** a través de las que se puede **enviar y/o recibir** diferentes tipos de **datos**.
- Una **interfaz** es un concepto más general que **describe cómo interactúan** dos entidades: sistemas, programas, dispositivos, componentes, ..., o un sistema y un usuario.

Modelo cliente-servidor. Puertos

- Los puertos pueden ser de 2 tipos:
 - **Puertos físicos**: todo aquel hardware (cableado o inalámbrico) que permite una conexión física de entrada y/o salida de datos en un dispositivo.
 - Por ejemplo: USB, RJ45 (Red o LAN), PCI, HDMI,...

• Puertos lógicos: son unas zonas de memoria que gestiona el sistema operativo y se usan para el intercambio de información. Serán de los que hablemos en esta unidad.

Servicio simplificado de correo electrónico

 Cada uno de los diferentes procesos, petición y respuesta, que se está ejecutando en los hosts cliente y servidor, tiene asignado un número de puerto.

- Los puertos comprendidos entre el 0 y el 1023 se denominan puertos conocidos, y se asignan desde el sistema operativo, por convenio, a ciertas aplicaciones particulares o servicios de carácter universal. IANA (Internet Assigned Numbers Authority) determina dichas asignaciones.
- Los puertos comprendidos **entre el 1024 y el 49151** son **puertos accesibles** por otros procesos y usuarios.
- En el ámbito de redes, los puertos son valores que se integran en cada paquete, en la capa de transporte del modelo TCP/IP.

- Unido al concepto de puerto, nos referimos como socket de un proceso al par formado por la dirección IP del host donde se está ejecutando dicho proceso y el puerto del proceso.
- Los sockets **permiten establecer conexiones virtuales** entre un proceso en ejecución en un host cliente y un proceso en ejecución en un host servidor.
- Los sockets favorecen el intercambio de datos de forma fiable y eficiente.

Socket = IP:puerto

• En la imagen se ve un ejemplo, en el que tenemos un host cliente con la IP 177.41.72.6 que realiza una petición a un host servidor que tiene la IP 41.199.222.31

- La petición HTTP se envía al número de puerto conocido 80, que es el puerto reservado para el servicio HTTP en el servidor.
- Por tanto, el socket de este servicio es 41.199.222.3:80
- Cuando la petición HTTP llega al host servidor, se entrega en el puerto 80, y, por tanto, será tratada por el servidor HTTP.

- La aplicación de navegación en el host cliente tiene asignado también otro puerto de origen, en este caso, por ejemplo, el 3022.
- Cuando el servidor termina y envía la respuesta, en última instancia será entregada por el router correspondiente al host cliente en el puerto 3022.
- Por tanto, el socket origen de esta petición es 177.41.72.6:3022

Servicios de la capa de aplicación - FTP

- Ya hemos conocido algunos de los servicios de la capa de aplicación del modelo TCP/IP,
 como son el servicio DNS y el servicio DHCP.
- Además de estos dos servicios, existen un conjunto de servicios adicionales que usamos frecuentemente y que conviene conocer.
- El servicio FTP (File transfer protocol) permite a los clientes enviar y recibir ficheros de un servidor que esté ejecutando este servicio. Este servicio no es dependiente de ningún sistema operativo, por lo que permite el intercambio entre distintas plataformas.

Servicios de la capa de aplicación - FTP

- La pila de protocolos TCP/IP incluye una utilidad FTP que permite el uso de comandos para este servicio.
- El protocolo FTP consta principalmente y por defecto de dos puertos, el puerto 21, utilizado para conectarse de forma remota a un servidor y autenticarse en él y el puerto 20, que se utiliza para las transferencias de archivos una vez autenticado.

Servicios de la capa de aplicación - HTTP

- El protocolo **HTTP** (**Hypertext transfer protocol**) es el que gestiona la mayor parte del tráfico de Internet.
- Cuando un usuario solicita un recurso web, esta solicitud se realiza mediante HTTP.
- Por ejemplo, cuando accedemos a una URL, el servicio DNS resuelve la IP, y después, se envía una solicitud "get" al servidor web, el cuál devuelve un "send", ambas operaciones usando HTTP.
- HTTP hace uso del protocolo TCP y por defecto opera en el puerto 80.

Servicios de la capa de aplicación - HTTP

- El protocolo **HTTPS** (**Hypertext transfer protocol secure**) se utiliza para realizar transacciones de datos seguras vía web.
- Este protocolo utiliza una tecnología basada en certificados digitales para asegurar una autenticación mutua entre cliente y servidor.
- Además, HTTPS encripta todos los paquetes de datos, lo que garantiza su confidencialidad.
- HTTPS utiliza también TCP y por defecto opera en el puerto 443.

Servicios de la capa de aplicación - POP3, IMAP, SMTP

• POP3 (Post office protocol v3) es un servicio de recepción de correo electrónico que proporciona al usuario el acceso a su carpeta de mensajes entrantes. POP3 se encarga de contactar con un servidor de correo y descargar en un dispositivo local los mensajes recibidos en el servidor de correo, en la cuenta del usuario.

POP3 utiliza TCP y opera por defecto en el puerto 110.

• IMAP (Internet message access protocol) permite acceder al servidor de correo electrónico desde cualquier dispositivo. Mediante este protocolo los mensajes no se descargan en un dispositivo local.

IMAP utiliza TCP y el puerto 143 por defecto.

• **SMTP (Simple mail transport protocol)** se encarga de gestionar el envío de correo electrónico. Los mensajes se envían desde un servidor SMTP a otro. Para ello, cada servidor utiliza el servicio DNS.

SMTP utiliza TCP y por defecto opera en el puerto 25.

Servicios de la capa de aplicación - TELNET

- TELNET (Teletype network) permite conectar un cliente con un servidor remoto. Este protocolo proporciona comunicación bidireccional entre cliente y servidor.
- Nos permite acceder o iniciar sesión en otra máquina con el objetivo de manejarla de forma remota.
- Mediante este servicio, la información viaja expuesta, es decir, no viaja cifrada.
- Este protocolo también utiliza TCP y opera en el puerto 23 por defecto.

Servicios de la capa de aplicación - SSH

- SSH (Secure Shell) es un protocolo de red para establecer comunicaciones seguras entre dos hosts, siguiendo el modelo cliente-servidor.
- Podríamos decir que es similar a TELNET, pero estableciendo una conexión segura, es decir,
 la información viaja cifrada.
- Un cliente SSH se conecta con un servidor SSH a través del puerto 22.

Servicios de la capa de aplicación - SSH

- SSH ofrece confidencialidad e integridad de los datos en redes inseguras, como puede ser Internet.
- La aplicación más común de este servicio es el acceso remoto al shell de sistemas Linux.
- Es decir, acceder a otras máquinas Linux a través de la red y trabajar con ellas como si estuviésemos en local.
- También ofrece más funcionalidades, como la transferencia de ficheros (SFTP).

Servicios de la capa de aplicación - SSH - Parte servidor

- Para usar este servicio, lo haremos mediante la herramienta OpenSSH.
- La podemos instalar mediante:

sudo apt-get install openssh-server

• La herramieta SSH se instala en /etc/ssh, donde podemos encontrar los siguientes ficheros:

```
sshd_config: archivo de configuración del servidor SSH

ssh_config: archivo de configuración del cliente SSH

ssh_host_*_key: clave privada de la máquina (* puede ser rsa, dsa o ecdsa)

ssh_host_*_key.pub: clave pública de la máquina (idem a anterior).
```


Servicios de la capa de aplicación - SSH - Parte servidor

- Al instalar OpenSSH en Ubuntu, el servicio SSH arranca automáticamente.
- Si el servicio SSH estuviera detenido, necesitaremos arrancarlo para que escuche las peticiones entrantes ejecutando:

sudo service ssh start

- Otras opciones que podemos utilizar sobre este servicio son:
 - # sudo service ssh stop (para pararlo)
 - # sudo service ssh status (para ver el estado)
 - # sudo service ssh restart (para reiniciarlo).

Servicios de la capa de aplicación - SSH - Parte servidor

• Además de "# sudo service ssh status", podemos confirmar que el servicio SSH está escuchando peticiones de mediante la ejecución de:

\$ netstat -ltu

```
pmartinez@Ubuntu20:~$ netstat -ltu
Conexiones activas de Internet (solo servidores)
Proto Recib Enviad Dirección local
                                            Dirección remota
                                                                    Estado
                  0 localhost:domain
                                            0.0.0.0:*
tcp
                                                                     ESCUCHAR
                  0 0.0.0.0:ssh
                                            0.0.0.0:*
tcp
                                                                     ESCUCHAR
                  0 localhost:ipp
                                            0.0.0.0:*
                                                                     ESCUCHAR
tcp
                  0 [::]:ssh
                                            [::]:*
                                                                     ESCUCHAR
tcp6
tcp6
                  0 ip6-localhost:ipp
                                            [::]:*
                                                                     ESCUCHAR
udp
                  0 localhost:domain
                                            0.0.0.0:*
udp
                  0 0.0.0.0:631
                                            0.0.0.0:*
udp
                                            0.0.0.0:*
                  0 0.0.0.0:55974
udp
                  0 0.0.0.0:mdns
                                            0.0.0.0:*
udp6
                  0 [::]:41507
                                            [::]:*
                  0 [::]:mdns
                                             [::]:*
omartinez@Ubuntu20:~S
```


Servicios de la capa de aplicación - SSH

- Es interesante destacar que, a nivel práctico, podemos entender que el **servicio SSH es multiplataforma**. Es decir, podríamos tener cualquier plataforma tanto en el host servidor como en el host cliente.
- El host cliente puede acceder al host servidor mediante el uso de consola y comandos, aunque también existen aplicaciones en modo gráfico.
- Inicialmente vamos a pensar en este esquema:
 - Servidor: máquina virtual Linux.
 - Cliente: nuestra máquina física. Modo gráfico (Windows, Mac, etc.).

• Por ejemplo, podemos usar la aplicación PuTTY para establecer la conexión

desde el host cliente:

 Nos mostrará una alerta de seguridad indicando que no tenemos registrada la clave de seguridad del servidor. Si aceptar la clave quedará registrada.

• Después de validarnos en el sistema remoto, nos da acceso a una sesión de terminal, desde la que podemos operar en un host servidor, independientemente de dónde esté instalado.

```
pmartinez@Ubuntu20: ~
  login as: pmartinez
  pmartinez@192.168.0.31's password:
Welcome to Ubuntu 20.04.4 LTS (GNU/Linux 5.13.0-39-generic x86 64)
 * Documentation: https://help.ubuntu.com
 * Management:
                  https://landscape.canonical.com
                  https://ubuntu.com/advantage
 * Support:
Se pueden aplicar 23 actualizaciones de forma inmediata.
Para ver estas actualizaciones adicionales ejecute: apt list --upgradable
Your Hardware Enablement Stack (HWE) is supported until April 2025.
Last login: Mon Apr 11 10:55:10 2022 from 192.168.0.29
pmartinez@Ubuntu20:~$
pmartinez@Ubuntu20:~$
pmartinez@Ubuntu20:~$ hostname
Ubuntu20
pmartinez@Ubuntu20:~$
```

- WinSCP es una utilidad, entre muchas otras, que nos ofrece la cómoda posibilidad de manipular o copiar archivos desde un host cliente a un host servidor y viceversa, en función de nuestros permisos y previa conexión SSH.
- Realmente se trata de una capa gráfica, que ejecuta una serie de comandos internamente.

- Podemos realizar las funciones descritas anteriormente en una conexión SSH, mediante el uso de la línea de comandos, por ejemplo:
 - Iniciar conexión ssh:

\$ ssh [usuario@]IP_ServidorSSH

- El usuario es opcional y si no se indica, el sistema intenta acceder con el usuario de la sesión activa en el cliente.
- Nos pedirá la contraseña del usuario.
- Se nos abre una sesión de consola en el host servidor.

• **Ejemplo:** datos del host servidor SSH

```
pmartinez@Ubuntu20:~$ ifconfig
enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
        inet 192.168.0.27 netmask 255.255.255.0 broadcast 192.168.0.255
        inet6 fe80::bdef:6b9d:bdc5:2ead prefixlen 64 scopeid 0x20<link>
        ether 08:00:27:bd:d2:bc txqueuelen 1000 (Ethernet)
        RX packets 233 bytes 122052 (122.0 KB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 240 bytes 38663 (38.6 KB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
        inet 127.0.0.1 netmask 255.0.0.0
        inet6 ::1 prefixlen 128 scopeid 0x10<host>
        loop txqueuelen 1000 (Bucle local)
        RX packets 194 bytes 17305 (17.3 KB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 194 bytes 17305 (17.3 KB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
pmartinez@Ubuntu20:~$
```


• **Ejemplo:** datos del host cliente

```
pmartinez@Ubuntu12: ~
pmartinez@Ubuntu12:~$ ifconfig
eth0
         Link encap:Ethernet direcciónHW 08:00:27:49:13:24
         Direc. inet:192.168.0.28 Difus.:192.168.0.255 Másc:255.255.25.0
         Dirección inet6: fe80::a00:27ff:fe49:1324/64 Alcance:Enlace
         ACTIVO DIFUSIÓN FUNCIONANDO MULTICAST MTU:1500 Métrica:1
         Paquetes RX:912 errores:0 perdidos:0 overruns:0 frame:0
         Paquetes TX:510 errores:0 perdidos:0 overruns:0 carrier:0
         colisiones:0 long.colaTX:1000
         Bytes RX:462052 (462.0 KB) TX bytes:206656 (206.6 KB)
         Link encap:Bucle local
lo
         Direc. inet:127.0.0.1 Másc:255.0.0.0
         Dirección inet6: ::1/128 Alcance:Anfitrión
          ACTIVO BUCLE FUNCIONANDO MTU:65536 Métrica:1
         Paquetes RX:120 errores:0 perdidos:0 overruns:0 frame:0
         Paquetes TX:120 errores:0 perdidos:0 overruns:0 carrier:0
         colisiones:0 long.colaTX:0
         Bytes RX:10612 (10.6 KB) TX bytes:10612 (10.6 KB)
pmartinez@Ubuntu12:~$
```

• **Ejemplo:** conexión desde un cliente Linux a un servidor Linux, mediante el comando ssh (el prompt me indica el usuario y el host de la sesión activa en cada momento...)

```
pmartinez@Ubuntu20: ~
pmartinez@Ubuntu12:~$ ssh pmartinez@192.168.0.27
pmartinez@192.168.0.27's password:
Welcome to Ubuntu 20.04.4 LTS (GNU/Linux 5.13.0-40-generic x86 64)
 * Documentation: https://help.ubuntu.com
                   https://landscape.canonical.com
 * Management:
                   https://ubuntu.com/advantage
 * Support:
Se pueden aplicar 45 actualizaciones de forma inmediata.
15 de estas son actualizaciones de seguridad estándares.
Para ver estas actualizaciones adicionales ejecute: apt list --upgradable
The list of available updates is more than a week old.
To check for new updates run: sudo apt update
Your Hardware Enablement Stack (HWE) is supported until April 2025.
Last login: Fri Apr 29 16:20:54 2022 from 192.168.0.28
pmartinez@Ubuntu20:~$
```


• Otro ejemplo: datos del host servidor SSH

```
ſŦ
                                            pascual@Ubuntu24: ~
pascual@Ubuntu24:~$ ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
      valid lft forever preferred lft forever
    inet6 ::1/128 scope host noprefixroute
       valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc fq codel state UP group default glen 1000
    link/ether 08:00:27:c5:e0:71 brd ff:ff:ff:ff:ff
    inet 192.168.1.170/24 brd 192.168.1.255 scope global dynamic noprefixroute enp0s3
      valid lft 84030sec preferred lft 84030sec
    inet6 fe80::a00:27ff:fec5:e071/64 scope link
      valid_lft forever preferred_lft forever
pascual@Ubuntu24:~$
```


• Otro ejemplo: datos del host cliente

```
Adaptador de LAN inalámbrica Wi-Fi:

Sufijo DNS específico para la conexión. . : home
Vínculo: dirección IPv6 local. . . : fe80::a1b3:a771:70a8:1c43%16
Dirección IPv4. . . . . . . . . . : 192.168.1.147
Máscara de subred . . . . . . . . . : 255.255.255.0
Puerta de enlace predeterminada . . . . : 192.168.1.1
```


• Otro ejemplo: conexión desde el cliente Windows al servidor Linux mediante el comando ssh

```
pascual@Ubuntu24: ~

PS C:\Users\pmart> ssh pascual@192.168.1.170

pascual@192.168.1.170's password:
Welcome to Ubuntu 24.04.1 LTS (GNU/Linux 6.8.0-52-generic x86_64)
```

Comando scp:

 Copia segura de ficheros entre hosts. El comando scp se utiliza para copiar ficheros de forma segura entre diferentes hosts, conectados entre sí mediante el protocolo SSH.

\$ scp origen destino

Donde, tanto origen como destino, pueden ser una ruta local o remota.

- Para acceder a un origen o destino local, sólo tengo que indicar la ruta del sistema de archivos local.
- Para acceder a un origen o destino remoto, tengo que indicar un usuario, una IP o nombre de host y la ruta del sistema de archivos remoto.

• Descripción de una ruta remota:

[usuario_remoto@]IP_host_remoto:ruta_remota

Ejemplo para copiar un fichero desde local a remoto:

\$ scp origen.txt usuario@192.168.1.31:/home/pepe/destino.txt

Ejemplo inverso, desde remoto a local:

\$ scp usuario@192.168.1.31:/home/pepe/origen.txt destino.txt

- Desde Windows como origen:
 - Desde una consola en Windows, por ejemplo, Powershell.

scp usuario@servidorSSH:/rutaOrigen/nombreOrigen.xxx c:\rutaDestino\ficheroDestino.xxx

scp C:\rutaOrigen\ficheroOrigen.xxx usuario@servidorSSH:/rutaDestino/ficheroDestino.xxx

```
Windows PowerShell

PS C:\Users\pmart> scp C:\Users\pmart\copiwin.txt pascual@192.168.1.139:/home/pascual/copiwin.txt

pascual@192.168.1.139's password:

copiwin.txt

PS C:\Users\pmart>

100% 0 0.0KB/s 00:00
```

```
pascual@Ubuntu16:~

pascual@Ubuntu16:~$ ls ./copiwin.txt
./copiwin.txt
```

