Chapter 7

Memory and Programmable Logic

Introduction

- Memory
 - information storage
 - a collection of cells storing binary information
- RAM Random Access Memory
 - read operation
 - write operation
- ROM Read Only Memory
 - read operation only
 - a programmable logic device

Programmable Logic Device (PLD)

- ROM
- PLA programmable logic array
- PAL programmable array logic
- FPGA field-programmable gate array
 - programmable logic blocks
 - programmable interconnects

Random-Access Memory

- A memory unit
 - stores binary information in groups of bits (words)
 - 8 bits (a byte), 2 bytes, 4 bytes
- Block diagram

1024 × 16 Memory

Memory address

Binary	Decimal	Memory content
0000000000	0	1011010101011101
0000000001	1	1010101110001001
0000000010	2	0000110101000110
	•	• • •
1111111101	1021	1001110100010100
1111111110	1022	0000110100011110
1111111111	1023	1101111000100101

Fig. 7.3 Contents of a 1024 × 16 memory

Write and Read Operations

- Write operation
 - Apply the binary address to the address lines
 - Apply the data bits to the data input lines
 - Activate the *write* input
- Read operation
 - Apply the binary address to the address lines
 - Activate the *read* input

Table 7.1Control Inputs to Memory Chip

Memory Enable	Read/Write	Memory Operation
0	X	None
1	0	Write to selected word
1	1	Read from selected word

Timing Waveforms

- The operation of the memory unit is controlled by an external device
- The access time
 - the time required to select a word and read it
- The cycle time
 - the time required to complete a write operation
- Read and write operations must synchronized with an external clock

A Write Cycle

• CPU clock – 50 MHz, access/cycle time < 50 ns

A read cycle

Types of RAM

- Static RAM (cache memory)
 - Information are stored in latches
 - remains valid as long as power is applied
 - short read/write cycle
- Dynamic RAM
 - Information are stored in the form of charges on capacitors
 - the stored charge tends to discharge with time
 - need to be refreshed (read and write back)
 - reduced power consumption
 - Larger memory capacity

<u>Memory</u>

- Volatile
 - lose stored information when power is turned off
 - SRAM, DRAM
- Non-volatile
 - Retains its stored information after the removal of power
 - ROM
 - EPROM, EEPROM
 - Flash memory

Memory Decoding

- A memory unit
 - the storage components
 - the decoding circuits to select the memory word
- A memory cell

A4x4RAM

Output data

Coincident Decoding

- A two-dimensional selection scheme
 - reduce the complexity of the decoding circuits

Error Detection And Correction

- Improve the reliability of a memory unit
- A simple error detection scheme
 - a parity bit (Sec. 3-9)
 - a single bit error can be detected, but cannot be corrected
- An error-correction code
 - generates multiple parity check bits
 - the check bits generate a unique pattern, called a syndrome
 - the specific bit in error can be identified

Hamming Code

• *k* parity bits are added to an *n*-bit data word

$$(2^k-1 \ge n+k)$$

- The bit positions are numbered in sequence
 from 1 to n + k
- Those positions numbered as a power of 2
 are reserved for the parity bits
- The remaining bits are the data bits

Hamming Code

- 8-bit data word 11000100
 - Include 4 parity bits and the 8-bit word ⇒ 12 bits

$$2^{k}-1 \ge n+k, n=8 \Rightarrow k=4$$
Bit position: 1 2 3 4 5 6 7 8 9 1011 12
 $P_{1} P_{2} 1 P_{4} 1 0 0 P_{8} 0 1 0 0$

Calculate the parity bits: even parity—assumption

```
P_1 = XOR \text{ of bits } (3, 5, 7, 9, 11) = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 0
P_2 = XOR \text{ of bits } (3, 6, 7, 10, 11) = 1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 = 0
P_4 = XOR \text{ of bits } (5, 6, 7, 12) = 1 \oplus 0 \oplus 0 \oplus 0 = 1
P_8 = XOR \text{ of bits } (9, 10, 11, 12) = 0 \oplus 1 \oplus 0 \oplus 0 = 1
```

Store the 12-bit composite word in memory.

```
Bit position: 1 2 3 4 5 6 7 8 9 1011 12 0 0 1 1 1 1 0 0 1 0 0 0
```

<u>Hamming Code</u>

- When the 12 bits are read from the memory
 - Check bits are calculated

$$C_1 = XOR \text{ of bits } (1, 3, 5, 7, 9, 11)$$

$$C_2 = XOR \text{ of bits } (2, 3, 6, 7, 10, 11)$$

$$C_4 = XOR \text{ of bits } (4, 5, 6, 7, 12)$$

$$C_8 = XOR \text{ of bits } (8, 9, 10, 11, 12)$$

□ If no error has occurred
Bit position: 1 2 3 4 5 6 7 8 9 1011
12
0 0 1 1 1 0 0 1 0 1 0 0 $\Rightarrow C = C_8 C_4 C_2 C_1 = 0000$

Hamming Code

One-bit error

- error in bit 1
 - $C_1 = XOR \text{ of bits } (1, 3, 5, 7, 9, 11) = 1$
 - $\cdot C_2 = XOR \text{ of bits } (2, 3, 6, 7, 10, 11) = 0$
 - $\cdot C_4 = XOR \text{ of bits } (4, 5, 6, 7, 12) = 0$
 - \cdot C₈ = XOR of bits (8, 9, 10, 11, 12) = 0
 - $\cdot C_8 C_4 C_2 C_1 = 0001$
- error in bit 5
 - $\cdot C_8 C_4 C_2 C_1 = 0101$

Read-Only Memory

- Store permanent binary information
- $2^k \times n \text{ ROM}$
 - k address input lines
 - enable input(s)
 - three-state outputs

32 x 8 ROM

- 5-to-32 decoder
- 8 OR gates
 - · each has 32 inputs
- 32x8 internal programmable connections

Programmable Interconnections32

Table 7 3

- · close (two lines are connected)
- · or open
- · A fuse that can be blown by applying a high voltage pulse

Inputs					Outputs							
I ₄	<i>I</i> ₃	I ₂	<i>I</i> 1	I ₀	A ₇	A 6	A ₅	A_4	A ₃	A ₂	A 1	A 0
0	0	0	0	0	1	0	1	1	0	1	1	0
0	0	0	0	1	0	0	0	1	1	1	0	1
0	0	0	1	0	1	1	0	0	0	1	0	1
0	0	0	1	1	1	0	1	1	0	0	1	0
		:							:			
1	1	1	0	0	0	0	0	0	1	0	0	1
1	1	1	0	1	1	1	1	0	0	O	1	0
1	1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	0	0	1	1	0	0	1	- 1

Types of ROM

- Types of ROM
 - mask programming ROM
 - · IC manufacturers
 - is economical only if large quantities
 - PROM: Programmable ROM
 - fuses
 - · universal programmer
 - EPROM: erasable PROM
 - floating gate
 - · ultraviolet light erasable
 - EEPROM: electrically erasable PROM (E²PROM)
 - · longer time is needed to write
 - limited times of write operations
 - Flash (like EEPROM)

Combinational PLDs

- Programmable two-level logic
 - an AND array and an OR array

Fig. 7.13
Basic configuration of three PLDs

Sequential PLDs

Three types of sequential PLDs

• Simple programmable logic device (SPLD)

Complex programmable logic device

(CPLD)

Field programmable gate array (FPGA)

SPLD A typical SPLD contains 8-10 macrocells

Field-Programmable Gate Arrays

- Logic blocks
 - To implement combinational and sequential logic
- Interconnect
 - Wires to connect inputs and outputs to logic blocks
- I/O blocks
 - Special logic blocks at periphery of device for external connections
- Key questions:
 - How to make logic blocks programmable?
 - How to connect the wires?
 - After the chip has been fabbed

