Data Driven Project Management Predicting the Development Time

Marko Prelevikj

Faculty of Computer and Information Science
University of Ljubljana
Ljubljana, Slovenia
Email: mp2638@stuent.uni-lj.si

Statistic	dayss	hours	hours-filtered-30	hours-filtered-10
unit	days	hours	hours	hours
count	2935.000	2935.000	2771.000	2472.000
mean	8.536	205.252	95.229	57.273
std	28.265	678.103	130.036	59.080
min	0.000	2.000	2.000	2.000
25%	1.000	15.000	13.000	12.000
50%	2.000	49.000	44.000	33.000
75%	6.000	148.000	121.000	86.000
max	625.000	15003.000	719.000	240.000

Table 1. DATASET CHARACTERISTICS.

Abstract—Predicting development time is hard. In this paper we are trying to explain all the difficulties encountered on the journey to predicting time with as low

1. Introduction

explain PMO's problems

2. Model data

JIRA data briefly and what the model is consisted of

3. Testing model quality

Present different the results (MAE, RMSE, R2) obtained by different regressors. As the variance lowers, so do the metrics of quality of the models.

4. Model Explainability

Write about feature importance and how to explain the made decisions.

5. Conclusion

Quick recap of the problem and how we solved it. XGBoost [?], SHAP [2].

Figure 1. Simulation results for the network.

References

- [1] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in *Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining*, 2016, pp. 785–794.
- [2] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb, N. Bansal, and S.-I. Lee, "From local explanations to global understanding with explainable ai for trees," *Nature Machine Intelligence*, vol. 2, no. 1, pp. 2522–5839, 2020.

Figure 2. Simulation results for the network.

DataSet	Method	RMSE	MAE	R^2
1	boost	33.476	11.307	-0.073
	naive	53.129	40.126	-1.702
	forest	41.136	10.392	-0.620
	SVM	33.079	7.988	-0.047
1*	boost	32.974	10.581	-0.041
	naive	69.530	48.106	-3.628
1.	forest	34.364	9.683	-0.130
	SVM	33.020	7.961	-0.044
	XGBoost	809.712	281.738	-0.091
2	GaussianNB	890.796	381.685	-0.321
2	RandomForest	1021.232	280.129	-0.736
	SVM	792.962	193.070	-0.046
	XGBoost	792.284	255.451	-0.045
2*	GaussianNB	941.595	411.579	-0.475
2"	RandomForest	897.283	267.935	-0.340
	SVM	792.589	191.877	-0.045
	boost	135.966	89.841	-0.026
3	naive	263.943	209.445	-2.865
3	forest	170.992	103.386	-0.622
	SVM	144.008	79.159	-0.150
	boost	135.020	90.459	-0.011
3*	naive	279.474	232.818	-3.333
3	forest	180.686	113.533	-0.811
	SVM	143.295	79.605	-0.139
4	XGBoost	54.720	41.941	0.050
	GaussianNB	122.290	105.834	-3.744
4	RandomForest	75.167	54.669	-0.792
	SVM	59.238	40.390	-0.113
	XGBoost	53.706	42.230	0.085
4*	GaussianNB	124.868	109.788	-3.946
4.	RandomForest	78.889	56.857	-0.974
	SVM	58.114	39.974	-0.071

Table 2. Performance of different methods on the variations of the dataset. The * symbol indicates that the dataset does not contain all the initial attributes, thus it is more realistic.