به نام خدا

نام و نام خانوادگی:سید فرهاد حسینی

شماره دانشجویی : ۹۶۱۲۳۵۸۰۱۶

نام درس: مبانی بینایی ماشین

استاد مربوطه : دکترختنلو

• تمرین ۱ :

تصوير اصلى:

تصویر در حوزه فرکانس :(شیفت نیافته):

(البته لگاریتم آن گرفته شده): Spectrum-magnitude

بخش پایانی سوال:

: Spectrum-phase

:phase only

:Magnitude only

فایل های کد این تمرین و تصاویر در پوشه Q1 قرار دارد .

• تمرین ۲:

در این تمرین ۴ فیلتر با پارامتر های مختلف داده شده که ابتدا آنها را مشاهده میکنیم:

: Order=1 , cutoffFrequency=50

: Order=1 , cutoffFrequency=150

: Order=5, cutoffFrequency=50

: Order=5 , cutoffFrequency=150

هر چه میزان فرکانس کات آف بیشتر باشد شکل فیلتر آن در حوزه مکان بزرگ تر است .

هر چه order کمتر باشد شکل فیلتر نرم تر بوده و آهسته تر از سفید به مشکی میرود و باعث کاهش پدیده رینگینگ میشود . و زمانی که order افزایش یابد فیلتر به ideal نزدیک تر میشود و فرکانس ها ناگهانی تر حذف میشوند و این باعث افزایش رینگینگ میشود .

اکنون تصویر اصلی را به حوزه فرکانس میبریم :

اعمال فيلتر h1:

اعمال فيلتر h2 :

اعمال فيلتر h3 :

اعمال فيلتر h4:

تصویر اصلی در حوزه مکان :

اعمال فیلتر h1 بر تصویر :

اعمال فيلتر h2 بر تصوير :

اعمال فيلتر h3 بر تصوير :

ia3

اعمال فیلتر h4 بر تصویر :

هر چه میزان فرکانس کات آف بیشتر باشد شکل فیلتر آن در حوزه مکان بزرگ تر است . هر چه میزان فرکانس کات آف بیشتر باشد شکل فیلتر نرم تر بوده و آهسته تر از سفید به مشکی میرود و باعث کاهش پدیده رینگینگ میشود . و زمانی که order افزایش یابد فیلتر به ideal نزدیک تر میشود و فرکانس ها ناگهانی تر حذف میشوند و این باعث افزایش رینگینگ میشود .

فایل های کد این تمرین و تصاویر در پوشه Q2 قرار دارد .

• تمرین ۳:

تصویر ورودی:

تصویر در حوزه فرکانس:

spectrum magnitude

نقاط نورانی که در اطراف تصویر دیده میشوند همان نویز های فرکانسی اند که در خود تصویر هم بشکل منظم . با یک الگوی خاص خود را نشان میدهند .

پس بایستی یک فیلتر مناسب در حوزه فرکانس بر روی تصویر اعمال شود .

تصویر حوزه فرکانس بعد از اعمال فیلتر:

spectrum magnitude

تصویر نویز ها در حوزه فرکانس:

spectrum magnitude of noise

تصویر نویز در حوزه مکان :

تصوير بعد از اعمال فيلتر:

فایل های کد این تمرین و تصاویر در پوشه Q3 قرار دارد .

• تمرین ۴:

تصویر نویزی ورودی:

تصویر در حوزه فرکانس:

spectrum magnitude

نقاط نورانی که در اطراف تصویر دیده میشوند همان نویز های فرکانسی اند که در خود تصویر هم بشکل منظم . با یک الگوی خاص خود را نشان میدهند .

پس بایستی یک فیلتر مناسب در حوزه فرکانس بر روی تصویر اعمال شود .

حذف نويزها:

spectrum magnitude after filter

تصویر باز سازی شده :

pic after filter

تصوير اصلى:

محاسبه ی مقدار PSNR:

PSNR value of image 37.9324038 dB >>

در محاسبه ی psnr اگر دو تصویر ورودی را مشابه بدهیم حاصل بینهایت میشود . فایل های کد این تمرین و تصاویر در پوشه Q4 قرار دارد .

تمرین سوم مبانی بینایی ماشین
70