Analysis Vorlesung

Stefan Heid, Christopher Jordan November 16, 2012

Inhaltsverzeichnis

1	wen	
	1.1	Definition:
	1.2	Beispiele
	1.3	Definition: Sei M eine Menge und U,V \subseteq M Teilmengen
	1.4	Satz (de Morjensche Regeln)
	1.5	Prinzip der Vollständigen Induktion
	1.6	Satz:
	1.7	Definition:
	1.8	Definition
	1.9	Bemerkung
	1.10	Definition
	1.11	Geometrische Anordnung (Pascalsches Dreieck)
		Satz:
	1.13	Satz (Binomische Formel)
		Definition
	1.15	Satz
2	Die	reellen Zahlen
	2.1	Definition:
	2.2	Beispiele
	2.3	Beispiel
	2.4	Definition
	2.5	Definition:
	2.6	Satz:
	2.7	Satz:
	2.8	Folgerung (Prinzip des Archimedes)
	2.9	Folgerung
	2.10	Satz:
	2.11	Satz:
	2.12	Satz:
	2.13	Definition:
3	_	en und Reihen reeller Zahlen 15
		Satz
		Definition: Reihen
		Satz, Die geometrische Reihe
	3.13	Satz
	3 14	Satz, die harmonische Reihe

1 Mengen

1.1 Definition:

- 1. Eine Menge ist eine Ansammlung verschiedener Objekte
- 2. Die Objekte in einer Menge heißen Elemente

```
Notation: a \in M heißt a ist Element der Menge M a \notin M heißt a ist kein Element der Menge M
```

3. Sei M eine Menge. Eine Menge U heißt Teilmenge von M, von der jedes Element von U auch Element von M ist

```
Notation: U \subseteq M heißt U ist Teilmenge von M
U \not\subseteq M heißt U ist keine Teilmenge von M
```

1.2 Beispiele

Sei M die Menge aller Studierenden in L1
 W die Menge aller weiblichen Studierenden in L1
 F die Menge aller Frauen

Dann gilt:
$$W \subseteq M$$
, $W \subseteq F$, $M \not\subseteq F$, $F \not\subseteq M$

- 2. Die Menge der natürlichen Zahlen $\mathbb{N} = \{1, 2, 3, 4...\}$ G sei die Menge der geraden natürlichen Zahlen $G := \{n \in \mathbb{N} | \text{n ist gerade}\} = \{2m | m \in \mathbb{N}\} = \{2, 4, 6, 8...\}$ Es gilt $G \subseteq \mathbb{N}, \mathbb{N} \subseteq G$
- 3. Die Menge der ganzen Zahlen $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \dots\}$
- 4. Die Menge der rationalen Zahlen $\mathbb{Q} = \{a/b | a, b \in \mathbb{Z}, b \neq 0\}$
- 5. Die Menge ohne Element heißt die leere Menge Symbol: $\emptyset = \{\}$

Bemerkung:

- 1. Für jede Menge M gilt $\setminus \subseteq M$
- 2. $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q}$

1.3 Definition: Sei M eine Menge und $U,V\subseteq M$ Teilmengen

- 1. Die Vereinbarung von U und V ist $U \cup V := \{x \in M \mid x \in Uoderx \in V\}$
- 2. Der Durchschnitt von U und V ist $U \cap V := \{x \in M \mid x \in Uoderx \in V\}$ U und V heißen disjunkt, wenn $U \cap V = \emptyset$
- 3. Die Differenzmenge von U und V ist $U \setminus V := \{x \in U \mid x \in V\}$
- 4. Das Keinhalement von U ist $U^C = M \setminus U = \{x \in M \mid x \notin U\}$ Bsp:

```
 \begin{array}{l} \{1,3\} \cup \{3,5\} = \{1,3,5\} \\ \{1,3\} \cap \{3,5\} = \{3\} \\ \{1,3\} \cap \{2,4,7\} = \emptyset \leftarrow \text{disjunkt} \\ \{1,2,3\} \setminus \{3,4,5\} = \{1,2\} \\ \{1,3,5\}^C = \{2,4,6,7,8,\dots \} \end{array}
```

1.4 Satz (de Morjensche Regeln)

Sei M eine Menge, $U,V \subseteq M$ Teilmengen Dann:

- 1. $(U \cap V)^C = U^C \cup V^C$
- 2. $(U \cup V)^C = U^C \cap V^C$

Beweis:

1. Sei $x \in M$

Es gilt: $\mathbf{x} \in (U \cap V)^C \Leftrightarrow x \notin U \cap V \Leftrightarrow x \notin U \text{ oder } \mathbf{x} \notin V \Leftrightarrow x \in U^C \text{ oder } \mathbf{x} \in V^C \Leftrightarrow x \in U^C \cup V^C$

2. Sei $x \in M$

Es gilt: $\mathbf{x} \in (U \cup V)^C \Leftrightarrow x \notin U \cup V \Leftrightarrow x \notin U \text{ und } \mathbf{x} \notin V \Leftrightarrow x \in U^C \text{ und } \mathbf{x} \in V^C \Leftrightarrow x \in U^C \cap V^C$

1.5 Prinzip der Vollständigen Induktion

Für jedes $n \in \mathbb{N}$ sei eine Aussage A(n) gegeben

Ziel: Beweisen, Dass A(n) für jedes $n \in \mathbb{N}$ mehr ist dafür reicht es zu zeigen

- 1. Induktionsanfang (IA): A(1) ist wahr
- 2. Induktionsschrit (IS): Wenn für ein $n \in \mathbb{N}$ A(n) wahr ist, dann ist auch A(n+1) wahr

1.6 Satz:

Für jede natürliche Zahl n gilt: $1+2+3+4+5+\ldots+n=\frac{n(n+1)}{2}$

Probe:

n	1	2	3	4
1+2+3+n	1	3	6	10
$\frac{n(n+1)}{2}$	1	3	6	10

Beweis des Satzes mit Induktion

Abkürzung: S(n) := 1 + 2 + 3 + ... + n Aussage: A(n): $S(n) = \frac{n(n+1)}{2}$

1. Induktionsanfang (IA): n=1 $S(1) = 1 = \frac{1 \cdot 2}{2}$

2. Induktionsschritt (IS): $n \rightarrow n + 1$

Annahme: A(n) gilt:
$$S(n) = \frac{n(n+1)}{2}$$

Zu zeigen: A(n+1) gilt:
$$S(n+1) = \frac{(n+1)\cdot(n+2)}{2}$$

Annahme: A(n) git:
$$S(n) = \frac{1}{2}$$
Zu zeigen: A(n+1) gilt: $S(n+1) = \frac{(n+1)\cdot(n+2)}{2}$

$$S(n+1) = S(n) + n + 1 = \frac{n(n+1)}{2} + \frac{2(n+1)}{2} = \frac{(n+2)(n+1)}{2}$$
Das beendet den Beweis

Das beendet den Beweis

Zur Vereinfachung der Notation:

Seien $a_1, a_2, a_3, ..., a_n$ Zahlen $n \in \mathbb{N}$

Setze:
$$\sum_{k=1}^{n} a_k := a_1 + a_2 + a_3 + \dots + a_n$$

Allgemeiner: Sei $l, m \in \mathbb{N}, l \leq m \leq n$ $\sum_{k=l}^{m} a_k = a_l + a_{l+1} + \ldots + a_m$

$$\sum_{k=l}^{m} a_k = a_l + a_{l+1} + \dots + a_m$$

Aussage des Satzes:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Kombinatorik (mathematisches Zählen)

8.10.2012

1.7 Definition:

Seien A, B Mengen. Das kartesische Produkt von A und B ist definiert als $A \times B := \{(a,b) | a \in A, b \in B\}$ Die Elemente von $A \times B$ heißen geordnete Paare

Bsp.:
$$\{1,7\} \times \{2,3\} = \{(1,2),(1,3),(7,2),(7,3)\}$$

Allgemeiner: Gegeben seien Mengen A_1, \ldots, A_k mit $k \in \mathbb{N}$. Das kartesische Produkt von A_1, \ldots, A_k ist $A_1 \times \ldots \times A_k = \{(a_1, \ldots, a_k) | a \in A, \text{für } i = 1, \ldots, k\}$

Elemente von $A_1 \times \ldots \times A_k$ heißen k-Tupel

Falls
$$A_1 = A_2 = \dots = A_k = A$$
, schreibe $\underbrace{A \times \dots \times A}_{k-mal} = A^k$

1.8 Definition

Eine Menge A ist endlich, wenn A nur endlich viele Elemente hat. Dann bezeichnet $\#A = \{|A|\}$ die Anzahl der Elemente von A und somit dessen Kardinalität oder Mächtigkeit. Wenn A nicht endlich ist, so schreibe: $\#A = \infty$

Bsp.:
$$\#\emptyset = 0, \#\mathbb{N} = \infty, \#\{1, 3, 5\} = 3$$

1.9 Bemerkung

- 1. Sei A endliche Menge. $U,V\subseteq A$ disjunkte Teilmengen Dann $\#(U\cup V)=\#U+\#V$
- 2. Seien $A_1, ..., A_k$ endliche Mengen $k \in \mathbb{N}$ Dann: $\#(A_1 \times ... \times A_k) = (\#A_1)(\#A_2)...(\#A_k)$

1.10 Definition

- 1. Für $n \in \mathbb{N}$ setze $n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n = \prod_{k=1}^{n} k$ Setze 0! = 1
- 2. Für $k, n \in \mathbb{Z}$ mit $0 \le k \le n$ sei $\binom{n}{k} := \frac{n!}{k! \cdot (n-1)!} \leftarrow$ Binomialkoeffizient $\frac{n \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6}{n! \mid 1 \mid 1 \mid 2 \mid 6 \mid 24 \mid 120 \mid 720}$

Beispiel:

Wiederholung

Sei M Menge.

Wenn M endlich: $\#M = Anzahl\ Elemente \in M$

Wenn M unendlich: $\#M = \infty$

Für $n \in \mathbb{N} := \{1, 2, 3, \ldots\}$

$$n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot n \qquad 0! = 1$$

Binomialkoeffizient: Für $0 \le k \le n$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

$$\binom{n}{0} = \frac{n!}{0! \cdot (n-0)!} = \binom{n}{n} = \frac{n!}{n! \cdot (n-n)!} = 1$$

1.10.1 Lemma

Für 0 < k < n gilt:

$$\binom{n}{k} = \binom{n-1}{1} + \binom{n-1}{k}$$

Beweis:

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(k-1)! \cdot (n-k)!} + \frac{(n-1)!}{(k-1)! \cdot (n-1-k)!} = \frac{k(n-1)! + (n-k) \cdot (n-1)!}{k! \cdot (n-k)!} = \frac{n(n-1)!}{k! \cdot ($$

1.11 Geometrische Anordnung (Pascalsches Dreieck)

$$\begin{pmatrix} \binom{0}{0} \\ \binom{1}{0} \binom{1}{1} \\ \binom{2}{0} \binom{2}{1} \binom{2}{2} \\ \binom{3}{0} \binom{3}{1} \binom{3}{2} \binom{3}{3} \end{pmatrix}$$

 $\begin{array}{c} 1 \\ 1 \ 1 \\ 1 \ 2 \ 1 \\ 1 \ 3 \ 3 \ 1 \end{array}$

Folge $\binom{n}{k} \in \mathbb{N}$ für alle $0 \le k \le n$

1.12 Satz:

Sei A endliche Menge. #A = n

Sei $k \in \mathbb{Z}$ mit $0 \le k \le n$

 $P_k(A) := \{U \subseteq A | \#U = k\}$ (Menge aller k-elementigen Teilmengen von A)

Dann gilt $\#P_k(A) = \binom{n}{k}$

Beispiel:

$$A = \{1, 2, 3, 4\}$$
 $n = 4$ $k = 2$

2-elementige Teilmengen von A:
$$\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \rightarrow 6$$
 $\binom{4}{2} = 6$

Beweis:

Vorüberlegung: Sei $k = 0 \lor k = n$

$$P_0(A) = 1 = \binom{n}{0} \# P_n(A) = 1 = \binom{n}{n}$$

Jetzt: Induktionsbeweis nach n

IA:
$$n=0$$
 Dann $k=0$
IS: $n \to n+1$ Sei $\#A=n+1 \Rightarrow 0 \le k \le (n+1)$ Falls $k=0 \lor k=n+1$

Sei also: o < k < n+1

Wähle $a \in A$

Sei $B = A \setminus \{a\}$

Dann $A = B \cup \{a\}, \#B = n$

Man kann die Wahl einer k-elementigen Teilmenge von A so strukturieren

1. Entscheiden, ob $a \in U \lor a \notin U$

- a) Wenn $a \notin U$: Wähle k Elemente aus B
 - b) Wenn $a \in U$: Wähle k-1 Elemente aus B

$$\Rightarrow \#P_k(A) = \#P_k(B) + \#P_{k-1}(B) \stackrel{IV}{=} \binom{n}{k} + \binom{e}{-1} \stackrel{1.11}{=} \binom{n+1}{k}$$

1.13 Satz (Binomische Formel)

Seien a, b Zahlen, $n \in \mathbb{N}$

Dann
$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + b^n$$

Beispiel:

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$
$$(a+b)^2 = a^2 + 2ab + b^2$$

Beweis:

Schreibe
$$(a+b)^n = \underbrace{(a+b)(a+b)(a+b)(a+b)\dots(a+b)}_{n-Faktoren}$$

Ausmultiplizieren

Halte Terme der Form $a^{n-k}b^k$ mit $0 \le k \le n$

Häufigkeit von $a^{n-k}b^k$ = Anzahl der Möglichkeiten aus n-Faktoren k mal b zu wählen. Das ist $\binom{n}{k}$ (Satz 1.13)

Folgerung

Setze
$$a = b = 1$$
 $a^{n-k}b^k = 1$ $(a+b)^n = 2^n = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}$

Beispiel:

$$1+4+6+4+1=16=2^4$$

1.14 Definition

Sei A endliche Menge

Eine Anordnung von A ist ein n-Tupel

 $(a_1, a_2, a_3, a_4, \dots, a_n)$ mit $a \in A$ für alle i und $a_i \neq a_j$ wenn $i \neq j$

Beispiel:

Anordnung von
$$\{1, 2, 3\} = (1, 2, 3)(1, 3, 2)(2, 1, 3)(2, 3, 1)(3, 1, 2)(3, 2, 1) \rightarrow 6$$

1.15 Satz

Sei Aendliche Menge, $\#A=n\geq 1$

Dann ist die Anzahl der Anordnungen von A gleich n!

Beweis:

 $\begin{array}{c} \underset{\mathrm{IS:}}{\operatorname{Indul}} \stackrel{n}{\underset{\longrightarrow}{\operatorname{indp}}} \underset{n}{\operatorname{nach}} \underset{\#}{\operatorname{nach}} \stackrel{\mathrm{IA}}{\underset{\#}{\operatorname{IA}}} A = n+1 \end{array}$

Wahl einer Anordnung von A kann man so unterteilen:

- 1. Wähle 1 Element $a_1 \in A$ (n+1 Möglichkeiten)
- 2. Wähle Anordnungen von $A \setminus \{a_1\}$ $\#(A\setminus\{a_1\})=n\Rightarrow n!$ Möglichkeiten bei 2 Insgesamt $(n+1) \cdot n! = (n+1)!$

Bemerkung:

(Zusammenhang zwischen Anordnung und Teilmengen)

Sei A endliche Menge, $\#A = n, \ 0 \le k \le n$

Sei (a_1, \ldots, a_n) Anordnung von A

 \leadsto Teilmenge $U := \{a_1, \dots, a_n\}$

Dann $U \subseteq A$, #U = k $U \in P_k(A)$

Jedes $U \in P_k(A)$ entsteht so, aber mehrfach:

Anordnungen von
$$A=n!=\#P_k(A)\cdot k!\,(n-k)!\,\Rightarrow\#P_k(A)=\frac{n!}{k!\cdot (n-k)!)}=\binom{n}{k}$$

2 Die reellen Zahlen

Was sind die reellen Zahlen?

Präzise Konstruktion ist umfangreich, daher Axiomatischer Zugang Beschreibung der reellen Zahlen durch ihre Eigenschaften (Axiome):

- 1. Grundrechenarten \rightarrow Körper
- 2. Ungleichungen \rightarrow angeordneter Körper
- 3. Lückenlosigkeit \rightarrow Vollständigkeit

Körper

2.1 Definition:

Ein Körper ist eine Menge K mit 2 Rechenoperationen: Addition (+) und Multiplikation (\cdot) , so dass folgende 9 Eigenschaften erfüllt sind:

Addition

- 1. (a+b)+c=a+(b+c) für alle $a,b,c\in K$ (Assotiativgesetz)
- 2. a+b=b+a für alle $a,b\in K$ (Kommutativgesetz)
- 3. Es gibt ein $0 \in K$ so dass 0 + a = a
- 4. Für jedes $a \in K$ gibt es ein $b \in K$ mit a + b = 0

Bemerkung:

 $0 \in K$ ist eindeutig

Beweis:

Wenn $0' \in K$ mit 0' + a = a, dann 0 = 0' + 0 = 0 + 0' = 0'

Bemerkung:

Das b in 4. ist auch eindeutig.

Notation: b = -a (Negatives von a)

Beweis:

Angenommen b' + a = 0

$$b = b + 0 = b + (a + b') = (b + a) + b' = 0 + b' = b'$$

Multiplikation

- 5. $a(b \cdot c) = (a \cdot b)c \quad \forall a, b, c \in K$
- 6. $a \cdot b = b \cdot a \quad \forall a, b \in K$
- 7. Es gibt ein $1 \in K$ mit $1 \neq 0$, so dass $1 \cdot a = a$ $\forall a \in K$
- 8. Für alle $a \in K$, $a \neq 0$, gibt es ein $b \in K$ mit $a \cdot b = 1$

Bemerkung:

 $1 \in K$ ist eindeutig, b in 8. ist eindeutig Beziehung $b = a^{-1}$

Beweis:

Wie eben

9. $a(a+c) = a \cdot b + a \cdot c$ $\forall a, b, c \in K$ (Distributivgesetz)

Weitere Bezeichnungen:

$$a - b := a + (-b), \ \frac{a}{b} = a \cdot b^{-1}, \text{ wenn } b \neq 0$$

Bemerkung:

Die üblichen Rechenregeln folgen aus diesen Axiomen 1.-9.

Beispiel:

$$-(-a) = a$$
, $a(b-c) = a \cdot b + a \cdot c$, $a(-b) = -(a \cdot b)$

1 + 1 = 0

2.2 Beispiele

Qist ein Körper

Zist kein Körper (8. nicht erfüllt)

2.3 Beispiel

 $\mathbb{F}_z = \{0, 1\}$

Definitionen von + und \cdot :

Übung: Prüfe alle Körperaxiome

1 0 1 1

Bemerkung:

Sei K endlicher Körper

Dann gilt $\#K = p^r$ wobei p Primzahl, $r \in \mathbb{N}$

Für jede solche Zahl $q=p^r$ gibt es genau einen Körper

Wiederholung

Ein Körper K ist eine Menge mit + und \cdot , sodass gewisse Eigenschaften erfüllt sind:

Beispiel:

$$\begin{aligned} \mathbb{Q} &= \left\{ \frac{a}{b} | a \in \mathbb{Z}, b \neq 0 \right\} \\ F_1 &= \left\{ 0, 1 \right\} \quad 1 + 1 = 0 \\ Notation: \ Setze \ a^n &= \underbrace{a \cdot a \cdot a \cdot a \cdot \dots \cdot a}_{n - Faktoren} \\ a^0 &= 1 \\ a^{-n} &= (a^{-1})^n \right\} \ wenn \ a \neq 0 \end{aligned}$$

Daraus folgt a^n ist definiert, wenn $a \neq 0$ und $n \in \mathbb{Z}$

Regeln der Potenzgleichung:

$$a^{n+m} = a^n \cdot a^m$$
$$a^{n \cdot m} = (a^n)^m$$

Beweis:

Übung

2.4 Definition

Ein angeordneter Körper ist ein Körper K für dessen Elemente eine "Kleiner als Beziehung" < definiert ist, so dass folgende Eigenschaften erfüllt sind:

- 1. Für alle $a,b \in K$ gilt genau eine von drei Notationen: a < bodera = bodera > b
- 2. Für alle $a,b,c \in K$ gilt wenn a < b und b < c dann a < c (Transitivität)
- 3. Für alle $a, b, c \in K$ gilt wenn a < b dann a + c < b + c
- 4. für $a, b, c \in K$ gilt, wenn a < b und $c \neq 0$ dann $a \cdot c < b \cdot c$

Weitere Beziehungen:

a > b heißt b < a

- 1. Wenn a < 0 dann -a > 0: $a < 0 \Rightarrow a + (-a) > 0 + (-a) \Rightarrow 0 > -a$
- 2. Für jedes $a \in K$ gilt wenn $a \neq 0$, dann $a^2 > 0$

(a)
$$a > 0$$

 $a \cdot a > 0 \cdot a$
 $a^2 > 0$

(b)
$$a < 0$$

 $-a > 0$
 $a^2 = (-a)^2 > 0$

3. 1 > 0 denn $1 = 1^2$

Sei K ein Angeordneter Körper:

$$0 < 1 \Rightarrow 1 < 1 + 1 \Rightarrow 1 + 1 < 1 + 1 + 1$$
 etc.

$$0<1<1+1<1+1+1$$
etc. Für $n\in\mathbb{N}$ setze $underbracen:=1+1+1+1+\ldots+1$

8.10.2012

Wiederholung

Angeordneter Körper:

Menge K mit $+,\cdot,<$

so dass gewisse Eigenschaften erfüllt sind

Beispiel:

Q sind ein angeordneter Körper

Sei K angeordneter Körper, $M\subseteq K$ Teilmenge $a\in K$ ist obere Schranke von M, wenn $U\subseteq a$, d.h.: $x\leq a$? $x\in M$

 $a \in K$ ist kleinste obere Schranke, wenn

Beispiel:

$$K = \mathbb{Q}$$
 $M = \{-\frac{1}{n} | n \in \mathbb{N}\} = \{-1, -\frac{1}{2}, -\frac{1}{3}, ?\}$

Behauptung

$$sup(M) = 0$$

Beweis:

1. Zeige:
$$M \leq 0$$
, d.h.: $\frac{1}{n} < 0$ für alle $n \in \mathbb{N}$

2. Wenn
$$b = \mathbb{Q}$$
, $b < 0$, dann nicht $M \leq b$

Schreibe $b = \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}$

$$b < 0$$
 heißt $m < 0, \ m \le -1$

$$b = \frac{m}{n} \le \frac{-1}{n} \le \frac{-1}{n+1} \in M$$

$$\Rightarrow M \not\leq b \text{ (nicht } M \leq b)$$

Vollständigkeit

2.5 Definition:

Ein angeordneter Körper K heißt Dedekind-vollständig, wenn jede nach oben beschränkte Teilmenge von K eine kleinste obere Schranke hat.

2.6 Satz:

Es gibt genau einen Dedekind-vollständigen, angeordneten Körper ${\cal K}$

Dieser heißt Körper der reellen Zahlen

Bezeichnung: \mathbb{R}

(Beweis ausgelassen)

2.7 Satz:

Die Teilmenge \mathbb{N} von \mathbb{R} ist unbeschränkt

Beweis:

(verwende nur die Axiome)

Indirekter Beweis: Angenommen, IN ist beschränkt

Vollständigkeit:

8.10.2012

 \mathbb{N} hat eine kleinste obere Schranke $a \in \mathbb{R}$

Es gilt $a-1 < a \Rightarrow a-1$ ist kleinste obere Schranke von \mathbb{N} $n \leq a$ $\forall n \in \mathbb{N}$

 $\Rightarrow n+1 \leq a$ $\forall n \in \mathbb{N}$

 $\Rightarrow n \leq a - 1$ $\forall n \in \mathbb{N} \text{ Widerspruch!}$

Also Annahme falsch, d.h. N ist unbeschränkt

= nach oben beschränkt und nach unten beschränkt

unbeschränkt nicht nach oben beschränkt oder nicht nach unten beschränkt

2.8 Folgerung (Prinzip des Archimedes)

Seien $x, y \in \mathbb{R}, x > 0$, Dann gibt es $n \in \mathbb{N}$ mit $n \cdot x > y$ SKIZZE

Beweis:

 $nx > y \Leftrightarrow n > \frac{y}{x} \text{ (weil } x > 0)$

 \mathbb{N} unbeschränkt und nicht nach oben beschränkt $\Rightarrow \frac{y}{x}$ ist keine obere Schranke von \mathbb{N} \Rightarrow es gibt $n \in \mathbb{N}$ mit $n > \frac{y}{x}$

2.9 Folgerung

Sei $x \in \mathbb{R}$, x > 0 Dann gibt es $n \in \mathbb{N}$ mit $\frac{1}{n} < x$ **SKIZZE**

Beweis:

 $\frac{1}{n} < x \Leftrightarrow 1 < n \cdot x \Leftrightarrow \frac{1}{x} < n \text{ (weil } x \text{ positiv)}$ $\frac{1}{x}$ keine obere Schranke von $\mathbb{N} \Rightarrow$ es gibt $n \in \mathbb{N}$ mit $\frac{1}{x} < n$

2.10 Satz:

Seien $x, y \in \mathbb{R}$ mit x < y

Dann gibt es $a \in \mathbb{Q}$ mit x < a < y, man sagt \mathbb{Q} liegen dicht in \mathbb{R} SKIZZE

Beweis:

y-x > 0 Wähle $n \in \mathbb{N}$ mit $\frac{1}{n} < y-x$

Ansatz: $a = \frac{m}{n}$ mit $m \in \mathbb{Z}$

Sei $M := \{m \in \mathbb{Z} | x < \frac{m}{n}\} = \{m \in \mathbb{Z} | nx < m\}$

M ist nach unten beschränkt und nicht leer (wegen Archimedes)

M hat Minimum

Sei m = min(M)

 $\begin{array}{l} m \in M \Rightarrow x < \frac{m}{n} \\ m-1 \not\in M \Rightarrow x \geq \frac{m-1}{n} \\ y-\frac{m}{n} = y-x+x-\frac{m}{n} > \frac{1}{n}+x-\frac{m}{n} = x-\frac{m-1}{n} \geq 0 \\ y > \frac{m}{n} \end{array}$

Wurzeln

2.11 Satz:

Es gibt kein $a \in \mathbb{Q}$ mit $a^2 = 2$

Beweis:

Angenommen $a\frac{m}{n} \in \mathbb{Q}, \ a^2 = 2, \ m, n \in \mathbb{N}$ Kürze den Bruch $\Rightarrow \frac{m}{n}$ teilerfremd

$$a^2 = 2 \Rightarrow \frac{m^2}{n^2} = 2 \Rightarrow m^2 = 2n^2 \Rightarrow m^2 \text{ gerade } \Rightarrow m \text{ gerade } \Rightarrow m = 2q, \ q \in \mathbb{N}$$

 $(2q)^2 = 2n^2 \Rightarrow 4q^2 = 2n^2 \Rightarrow 2q^2 = n^2 \Rightarrow n^2 \text{ gerade } \Rightarrow n \text{ gerade}$

Widerspruch zur Annahme m,n teilerfremd SKIZZE WURZEL $2\Rightarrow\sqrt{2}$ sollte existieren

Bemerkung:

Wenn $n \in \mathbb{N}$, keine Quadratzahl, dann gibt es kein $a \in \mathbb{Q}$ mit $a^2 = n$ (ähnlicher Beweis)

2.12 Satz:

Sei $x \in \mathbb{R}, x \ge 0, n \in \mathbb{N}$ Dann gibt es genau ein $y \in \mathbb{R}, x \ge 0$ mit $y^n = x$ Bezeichnung: $x = \sqrt[n]{x}$

Beweis:

später

<u>Ansatz:</u> $\sup\{a \in \mathbb{Q} | a^n \leq x\} =: y$ (sup existiert weil \mathbb{R} Dedekind-vollständig)

2.13 Definition:

Sei
$$x \in \mathbb{R}, \ x > 0$$

$$\underset{n}{\overset{m}{\in}} \mathbb{Q}$$

$$n \in \mathbb{N}, \ m \in \mathbb{Z}$$

$$x^{\frac{m}{n}} = \sqrt[n]{x^m}$$

$$x^{\frac{1}{n}} = \sqrt[n]{x}$$

Potenzrechnung:

$$x^{(a+b)} = x^a \cdot x^b, \ x^{a \cdot b} = (x^a)^b$$

für $x \in \mathbb{R}, x > 0, a, b \in \mathbb{Q}$

Bemerkung:

Später wir definiert: x^a für $x \in \mathbb{R}, x > 0, a \in \mathbb{R}$

3 Folgen und Reihen reeller Zahlen

Wiederholung

Eine Folge reeller Zahlen (a_n) konvergiert uneigentlich gegen ∞ wenn gilt: Für jedes $C \in \mathbb{R}$ gibt es ein $n \in \mathbb{N}$ mit $a_n > C$ für jedes $n \in \mathbb{N}$

 (a_n) konvergiert uneigentlich gegen $-\infty$ wenn $(-a_n)$ gegen ∞ konvergiert.

Notation:
$$a_n \to \infty$$
 $f\ddot{u}r \ n \to \infty$ $f\ddot{u}r \ n \to \infty$

Beispiel:

$$a_n = n^2 \to \infty$$

$$a_n = -n^2 \to -\infty$$

$$a_n = (-1)^n \cdot n^2$$

(0,-1,4,-9) konvergiert weder gegen ∞ noch gegen $-\infty$

Rechenregeln:

Angenommen $(a_n), (b_n)$ sind konvergente Folgen.

1.
$$(a_n + b_n) \rightarrow a + b$$

2.
$$(a_n \cdot b_n) \to ab$$

$$3. \ \frac{1}{b_n} \to \frac{1}{b}$$

4.
$$c \cdot a_n \to c \cdot a$$

5.
$$a_n - b_n \rightarrow a - b$$

6.
$$\frac{a_n}{b_n} \to \frac{a}{b}$$

Beweis 6:

$$3) \Rightarrow \frac{1}{b_n} \to \frac{1}{b}$$

$$\frac{a_n}{b_n} = a_n \cdot \frac{1}{b}$$

$$\begin{array}{c} b_n & b \\ 2) \Rightarrow a_n \cdot displaystyle \frac{1}{b_n} \to a \cdot \frac{1}{b} = \frac{a}{b} \end{array}$$

Beispiel:

Rechenregel 6 anwenden:

1. Versuch:

$$a_n = \frac{b_n}{c_n}$$

$$b_n = n^2 - n; c_n = 2n^2 + 1$$

 $(b_n)und(c_n)$ sind divergend. Schlecht.

2. Versuch:

$$\frac{n^2 - n}{2n^2 + 1} = \frac{n^2(1 - \frac{1}{n})}{n^2(2 + \frac{1}{n^2})} \text{ für } n \ge 1$$
$$= \frac{1 - \frac{1}{n}}{2 + \frac{1}{n^2}} = \frac{b_n}{c_n} \text{ mit } b_n := 1 - \frac{1}{n}; c_n = 2 + \frac{1}{n^2}$$

$$\frac{1}{n} \to 0$$
 für $n \to \infty$

$$\Rightarrow 1 - \frac{1}{n} \to 1 - 0 = 1 \text{ für } n \to \infty$$

$$\Rightarrow 2 + \frac{1}{n^2} \to 2 + 0 = 2 \text{ für } n \to \infty$$

$$\Rightarrow a_n \to \frac{1}{2} \text{ für } n \to \infty$$

3.10 Satz

Seien $a_n \to a, b_n \to b$ zwei konvergente Folgen reeler Zahlen. wenn $a_n \leq b_n$ für unendlich viele $n \in \mathbb{N}$ dann ist $a \leq b$.

Beweis:

Angenommen: a > b

Wähle
$$\epsilon := \frac{a-b}{2} > 0$$

Es gibt $N \in \mathbb{N}$ so dass: $\begin{vmatrix} a_n - a \mid < \epsilon \\ |b_n - b| < \epsilon \end{vmatrix}$ für $n \ge N$
 $\Rightarrow a_n > a - \epsilon$
 $= a - \frac{a-b}{2} = \frac{a+b}{2} = b + \frac{a-b}{2}$

 $= b + \epsilon > b_n \Rightarrow a_n > b_n \text{ für } n \geq \mathbb{N}$ Widerspruch zur Annahme.

 $a_n \leq b_n$ für unendlich viele $n \in \mathbb{N}$

q.e.d.

3.11 Definition: Reihen

Sei $(a_n)_{n>0}$ eine Folge reeler Zahlen. Bilde eine Folge:

$$s_0 = a_0$$

$$s_1 = a_0 + a_1$$

$$s_2 = a_0 + a_1 + a_2$$

$$\vdots$$

$$s_n = a_0 + a_1 + a_n = \sum_{k=0}^{n} a_k$$

Die Folge $(s_n)_{n\geq 0}$ heißt Reihe mit den Gliedern a_n . s_n heißen die <u>Partialsummen</u> der Reihe.

Bezeichnung:

$$\sum_{k=0}^{\infty} a_k \text{ oder } a_0 + a_1 + a_2 + a_3 + \dots$$

Wenn $s_n \to s \in \mathbb{R}$ für $n \to \infty$ dann schreiben wir:

$$\sum_{k=0}^{\infty} a_k = s$$
 Summe der Reihe.

Achtung: Symbol $\sum_{k=0}^{\infty} a_k$ hat <u>zwei</u> Bedeutungen:

- 1. die Folge (s_n) oder
- 2. deren Grenzwert

Beispiel:

1.
$$\sum_{k=1}^{\infty} 1 = 1 + 1 + 1 + \dots$$
ist die Folge $(1, 2, 3, 4, \dots) = (n+1)_{n \in \mathbb{N}_0}$

2.
$$\sum_{k=1}^{\infty} k = 0+1+2+3+\dots$$
 ist die Folge $(1,3,6,10,\ldots) = (\frac{n(n-1)}{2})_{n\in\mathbb{N}}$

$$3. \ \sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots$$
ist die Folge $(\frac{1}{2}, \frac{2}{3}, \frac{3}{4})$

Vorüberlegung

To tablify this.
$$\frac{1}{k(k+1)} = \frac{(k+1)-k}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$

$$s_n := \sum_{k=1}^{\infty} \frac{1}{k(k+1)} = (\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{n} - \frac{1}{n+1})$$

$$= 1 - \frac{1}{n+1}$$
Teleskopsumme

$$\frac{1}{n+1} \to 0$$
 für $n \to \infty$

Summe der Reihe:

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \lim_{n \to \infty} (1 - \frac{1}{n+1}) = 1 \qquad q.e.d.$$

Bemerkung:

Jede Folge kann man auch als Reihe Schreiben. (Differenzen bilden)

z.B.: die Folge der Primzahlen:

(2,3,5,7,11,13,17,19)

ist die Reihe:

$$(2+1+2+4+2+4+2+...)$$

Goldbachsche Vermutung: in dieser Reihe kommt die Zahl 2 unendlich oft vor.

3.12 Satz, Die geometrische Reihe

Sei
$$x \in \mathbb{R}$$

Sei
$$x \in \mathbb{R}$$
 a) $\sum_{\substack{k=0 \ \infty}}^{\infty} x^k = 1 + x^1 + x^2 + x^3 + \dots = \frac{1}{1-x}$ wenn $\mid x \mid < 1$

b)
$$\sum_{k=0}^{\infty} x^k$$
 divergiert wenn $|x| \ge 1$

a wenn
$$|x| < 1$$

dann folgt $\sum k = 0 \infty a_k = \lim_{n \to \infty} \left(\frac{1}{1-x} - \frac{x}{1-x} \cdot x^n \right) = \frac{1}{1-x}$

b wenn
$$|x| > 1$$

dann (x^n) divergent $\Rightarrow (\frac{x}{1-x} \cdot x^n)$ divergent
denn $\frac{x}{1-x} \neq 0$
 $\Rightarrow (\frac{?}{7})$

Beweis:

$$x=1 \sum_{k=0}^{\infty} x^k = (1+1+1+\ldots)$$
divergiert, ok Sei nun $x \neq$

Bekannt aus der Übung:
$$\sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 \dots + x^n = \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x} - \frac{x}{1 - x} \cdot x^n$$

Potenzenwach stum

$$x^n \to 0$$
 für $n \to \infty$ wenn $|x| < 1$
 (x^n) divergiert, wenn $(|x| \ge 1 \text{ und } x \ne 1)$

3.13 Satz

Wenn die Reihe $\sum_{k=0}^{\infty} a_k$ kovergiert, dann ist $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge.

Beweis:

Gegeben sei $\epsilon>0$

Sei
$$a = \sum_{k=0}^{\infty} a_k = \lim_{n \to \infty} (s_n)$$
 mit $s_n = a_0 + \dots + a_n$

Es gibt
$$N$$
 $in\mathbb{N}$ mit $|s_n - a| < \frac{\epsilon}{2}$ für $n \ge N$

$$|a_n| = |s_n - s_{n-1}|$$

$$= |s_n - a + a - s_{n-1}|$$

$$\leq |s_n - a| + |a - s_{n-1}| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

für
$$n \ge N+1$$

$$\Rightarrow a_n \to 0 \text{ für } n \to \infty$$

3.14 Satz, die harmonische Reihe

$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots \text{ divergiert}$$

Beweisidee:

$$\begin{aligned} 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \dots \\ 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \dots \\ 1 + \frac{1}{2} + \frac{2}{4} + \frac{4}{8} + \frac{8}{16} + \dots \\ 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots & = \infty \end{aligned}$$