2013 年全国硕士研究生招生考试试题

一、选择题(本题共8小题,每小题4分,共32分.	在每小题给出的四个选项	中,只有一项符合题目
要求,把所选项前的字母填在题后的括号内.)		
(1)已知极限 $\lim_{x\to 0} \frac{x - \arctan x}{x^k} = c$,其中 k , c 为常数,	且 $c\neq 0$,则()	
$(A)k = 2, c = -\frac{1}{2}.$	(B) $k = 2, c = \frac{1}{2}$.	
$(C)k = 3, c = -\frac{1}{3}.$	(D) $k = 3$, $c = \frac{1}{3}$.	
(2) 曲面 $x^2 + \cos(xy) + yz + x = 0$ 在点(0,1,-1)	处的切平面方程为()	
(A)x - y + z = -2.	(B)x + y + z = 0.	
(C)x - 2y + z = -3.	(D)x - y - z = 0.	
(3)设 $f(x) = \left x - \frac{1}{2} \right , b_n = 2 \int_0^1 f(x) \sin n\pi x dx$ (n =	$=1,2,\cdots$). $\Leftrightarrow S(x) = \sum_{n=1}^{\infty} b$	$_{n}\sin n\pi x$,则 $S\left(-\frac{9}{4}\right)=$
	tt = 1	,
$(A)\frac{3}{4}.$ $(B)\frac{1}{4}.$	$(C) - \frac{1}{4}$.	(D) $-\frac{3}{4}$.
(4) $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$,L_4:2x^2+y^2=2$ 为四条逆	时针方向的平面曲线.
$i \exists I_i = \oint_{L_i} \left(y + \frac{y^3}{6} \right) dx + \left(2x - \frac{x^3}{3} \right) dy (i = 1, 2, 3, 4)$	4),则 $\max\{I_1,I_2,I_3,I_4\}=$	()
$(A)I_{1}.$ $(B)I_{2}.$	$(C)I_3.$	(D) I_4 .
(5)设 A , B , C 均为 n 阶矩阵,若 $AB = C$,且 B 可题	逆,则()	
(A)矩阵 C 的行向量组与矩阵 A 的行向量组	等价.	
(B)矩阵 C 的列向量组与矩阵 A 的列向量组	等价.	
(C)矩阵 C 的行向量组与矩阵 B 的行向量组	等价.	
(D)矩阵 C 的列向量组与矩阵 B 的列向量组	等价.	
$\begin{pmatrix} 1 & a & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \end{pmatrix}$		
(6)矩阵 $\begin{pmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{pmatrix}$ 与 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 相似的充分必要	条件为()	
$\begin{pmatrix} 1 & a & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$		
(A) a = 0, b = 2.	(B)a=0,b 为任意常	常数.
(C)a = 2, b = 0.	(D)a=2,b 为任意常	常数.
(7) 设 X_1, X_2, X_3 是随机变量,且 $X_1 \sim N(0,1), X_2$	$\sim N(0,2^2), X_3 \sim N(5,3^2)$	$,p_i=P\{-2\leq X_i\leq 2\}$
(i=1,2,3),则 $($		
$(A)p_1 > p_2 > p_3.$	$(B)p_2 > p_1 > p_3.$	
$(C)p_3 > p_1 > p_2.$	(D) $p_1 > p_3 > p_2$.	
(8) 设随机变量 $X \sim t(n)$, $Y \sim F(1,n)$, 给定 $\alpha(0 < \alpha < 0)$	(0.5) ,常数 c 满足 $P\{X>c\}=\alpha$	μ ,则 $P\{Y>c^2\}=($

 $(C)2\alpha$.

 $(A)\alpha$.

 $(B)1 - \alpha$.

二、填空题(本题共6小题,每小题4分,共24分,把答案填在题中横线上.)

- (9) 设函数 y = f(x) 由方程 $y x = e^{x(1-y)}$ 确定,则 $\lim_{n \to \infty} n \left[f\left(\frac{1}{n}\right) 1 \right] = ____.$
- (10)已知 $y_1 = e^{3x} xe^{2x}$, $y_2 = e^x xe^{2x}$, $y_3 = -xe^{2x}$ 是某二阶常系数非齐次线性微分方程的 3 个解,则该方程的通解为 y =.

(11)设
$$\begin{cases} x = \sin t, \\ y = t\sin t + \cos t \end{cases} (t 为参数), 则 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \Big|_{t = \frac{\pi}{4}} = \underline{\qquad}.$$

$$(12) \int_{1}^{+\infty} \frac{\ln x}{(1+x)^{2}} dx = \underline{\qquad}.$$

- (13)设 $A = (a_{ij})$ 是3 阶非零矩阵, |A|为A的行列式, A_{ij} 为 a_{ij} 的代数余子式. 若 a_{ij} + A_{ij} = 0 (i,j = 1,2,3),则|A| = ____.
- (14)设随机变量 Y 服从参数为 1 的指数分布,a 为常数且大于零,则 P{Y≤a +1 | Y>a} = .

三、解答题(本题共9小题,共94分,解答应写出文字说明、证明过程或演算步骤.)

(15)(本题满分10分)

计算
$$\int_0^1 \frac{f(x)}{\sqrt{x}} dx$$
,其中 $f(x) = \int_1^x \frac{\ln(t+1)}{t} dt$.

(16)(本题满分10分)

设数列 $\{a_n\}$ 满足条件: $a_0 = 3$, $a_1 = 1$, $a_{n-2} - n(n-1)a_n = 0$ ($n \ge 2$),S(x)是幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数.

26

- (I)证明 S''(x) S(x) = 0;
- (II)求 S(x)的表达式.

(17)(本题满分10分)

求函数
$$f(x,y) = \left(y + \frac{x^3}{3}\right) e^{x+y}$$
的极值.

淘宝店铺:筑梦教育

(18)(本题满分10分)

设奇函数 f(x) 在[-1,1]上具有二阶导数,且 f(1)=1. 证明:

- (I)存在 $\xi \in (0,1)$,使得 $f'(\xi) = 1$;
- (Ⅱ)存在 $\eta \in (-1,1)$,使得 $f''(\eta) + f'(\eta) = 1$.

(19)(本题满分10分)

设直线 L 过 A(1,0,0) , B(0,1,1) 两点 , 将 L 绕 z 轴旋转一周得到曲面 Σ , Σ 与平面 z=0 , z=2 所围成的立体为 Ω .

- (I)求曲面 Σ 的方程;
- (Ⅱ)求 Ω的形心坐标.

(20)(本题满分11分)

设 $\mathbf{A} = \begin{pmatrix} 1 & a \\ 1 & 0 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ 1 & b \end{pmatrix}$. 当a, b 为何值时, 存在矩阵 \mathbf{C} 使得 $\mathbf{AC} - \mathbf{CA} = \mathbf{B}$, 并求所有矩阵 \mathbf{C} .

27

淘宝店铺:筑梦教育

(21)(本题满分11分)

设二次型 $f(x_1,x_2,x_3) = 2(a_1x_1 + a_2x_2 + a_3x_3)^2 + (b_1x_1 + b_2x_2 + b_3x_3)^2$, 记

$$\boldsymbol{\alpha} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \qquad \boldsymbol{\beta} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

- (I)证明二次型f对应的矩阵为 $2\alpha\alpha^{T} + \beta\beta^{T}$;
- (\mathbb{I}) 若 α,β 正交且均为单位向量,证明 f 在正交变换下的标准形为 $2y_1^2 + y_2^2$.

(22)(本题满分11分)

- (I)求 Y的分布函数;
- (**I**) 求概率 *P*{*X*≤*Y*}.

(23)(本题满分11分)

设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{\theta^2}{x^3} \mathrm{e}^{-\frac{\theta}{x}}, & x > 0, \\ 0, & \text{其中 } \theta \text{ 为未知参数且大于零. } X_1, X_2, \cdots, X_n \end{cases}$

28

为来自总体 X 的简单随机样本.

- (I)求 θ 的矩估计量;
- (\blacksquare) 求 θ 的最大似然估计量.

淘宝店铺:筑梦教育