0.0.1 Approche probabiliste

Soient $E_n := \{k \in N^* \mid k < n\}$ l'ensemble des entiers inférieurs à $n, P_n := \{k \in E_n \mid k \text{ est premier}\}$ l'ensemble des nombres premiers inférieurs à n, et la fonction $\pi(n) := \#P_n$, le nombres de premiers inferieurs à n.

 $\pi(n) := \#P_n$, le nombres de premiers inferieurs à n. On a vu que la fonction $\operatorname{Li}(x) = \int_2^x \frac{dt}{\log t}$ donne une bonne approximation de $\pi(x)$.

Cette fonction peut être approximée par la somme de Riemann de pas constant égal à 1.

$$S\left(\frac{1}{\log x}\right) = \sum_{k=0}^{n-1} \frac{1}{\log(2+k)} = \frac{1}{\log 2} + \sum_{k=3}^{n-1} \frac{1}{\log k}$$
 (1)

La fonction $x \mapsto \frac{1}{\log x}$ est une fonction continue, décroissante et positive sur l'interval $[2, \infty[$. L'erreur entre Li(x) et la fonction en escalier ci-dessus est donc bornée.

$$\left| S(\frac{1}{\log x}) - Li(x) \right| \leq \left| \sum_{k=2}^{n-1} \frac{1}{\log k} - \frac{1}{\log(k+1)} \right| = \frac{1}{\log(2)} - \frac{1}{\log(n)} < \frac{1}{\log 2} < 2$$

Ensembles aléatoires

Nous allons utiliser (1) pour générer des ensembles aléatoires $R_k \subset N, k \in \{1, ..., 100\}$, de sorte que chaque entier n ait une probabilité de $1/\log(n)$ d'appartenir à l'ensemble.

$$\forall i \in N, P(i \in R_k) = \begin{cases} 0 & \text{si } i = 1\\ 1 & \text{si } i = 2\\ \frac{1}{\log i} & \text{si } i \ge 3 \end{cases}$$

Ces ensembles seront construits jusqu'à $i = 10^7$: on a donc $R_k \subset \{1, ..., 10^7\}$. Il est à noter deux cas particuliers:

- Le nombre 1 est exclu. En effet, $\frac{1}{\log 1}$ n'est pas défini. Par définition, 1 n'est pas un nombre premier.
- Le nombre 2 est inclus par défaut. En effet, $P(2 \in R_k) = 1$ car $\frac{1}{\log 2} > 1$. De plus, le nombre 2 est par définition, un nombre premier.

La fonction $\sigma_{R_k}(n) := \#\{i \in R_k | i < n\}$ mesure donc la taille des ensembles jusqu'à un certain n. Cette fonction est donc une variable aléatoire strictement inférieure à n dont l'espérance, que nous noterons $\sigma_R(n)$, est donnée par:

$$\sigma_R(n) = \sum_{i=1}^{n-1} 1 \cdot P(i \in R_k) = 1 + \sum_{i=3}^{n-1} \frac{1}{\log i}$$

L'erreur entre $\sigma_R(n)$ et la somme de Riemann (1) est constante, égale à $\frac{1}{\log 2} - 1 < 1$.

Les ensembles aléatoires générés de cette manière suivront donc une distribution similaire à Li(x), et donc à $\pi(x)$ (voir figures ?? et ??).