AMATÉRSKÁ ELEKTRONIKA V DOMÁCNOSTI A PŘI REKREACI

M. ARENDÁŠ M. RUČKA

Ing. Miroslav Arendáš Ing. Milan Ručka

AMATÉRSKÁ ELEKTRONIKA V DOMÁCNOSTI A PŘI REKREACI I

Druhé, nezměněné vydání

PRAHA 1989

SNTL - NAKLADATELSTVÍ TECHNICKÉ LITERATURY

Kniha přináší množství schémat a návodů aplikovaných na různé přístroje použitelné v domácnosti, na chatě, v garáži a jinde. Kniha je určena všem zájemoům o elektroniku, zejména radioamatérům.

Lektor: Ing. František Smolík

Redakce elektrotechnické literatury Hlavní redaktor Ing. Josef Říha Odpovědná redaktorka Ing. Marie Hauptvogelová

🔘 Ing. Miroslav Arendáš, Ing. Milan Ručka, 1984 🕆

Obsah

	Předmluva	8
I.	Základní pokyny pro konstrukci elektronických přístrojú	9
1. 2. 3. 4. 5.	Spolelilivost součástek Zvětšováni spolehlivosti	9 21 23 26 30
II.	Přistroje a pomůcky	32
6. 7. 8. 9. 10. 11. 12.	Přístroj pro kontrolu mezizávitových zkratů Jednoduchý bzučák vestavěný do telefonní vložky Jednoduchý jednoučelový stroboskop Stroboskop Otáč koměr Přistroj ke zjišťování kovových předmětů	32 35 36 37 37 39 41 42
14. 15. 16. 17. 18. 19.	čem Měření teploty na nevyváženém termistorovém můstku	43 44 45 48 50 53
III.	Napájeci zdroje a měniče napěti	56
20, 21, 22, 23, 24, 25,	Stabilizační diody a tranzistory jako vyhlazovací členy	56 59 64 65 70
26. 27.	transformátoru Nabiječ akumulátoru s regulaci na primární straně transformátoru Nabiječ s jednoduchou triakovou regulaci na primární straně transformátoru	72 73 74
28. 29.	Nabiječ akumulátorů s automatickým omezením nabijecího proudu Skupinové nabijení akumulátorů s omezením proudu rozevírací	75
30. 31. 32.	tlumivkon. Zdvojovač napěti k automobilovému akumulátoru Napáječ 9 V k automobilovému akumulátoru 12 V Elektromechanický stabilizátor sítového napěti	77 80 81 81
33.	Stabilizace světla žárovky ve zvětšovacím přístrojí	87

IV.	Řizeni střidavého proudu tyristory a triaky		,			90
34.	Součástky k regulaci střidavého prondu Zdroj signálu s operačním zesilovačem pro řízení tyristorů		÷			93
35.	Zdroj signelu s gnerečnim zesilovačem pro řízení tyzistorů		•	•		102
36.	Stmivač s tyristorem			•		102
37.	Elektrické topení a elektronická klimatizace	•		•	•	104
	Elektricke topeni a elektronicka klimatizace	•	•	-	•	104
38.	Stabilizace sitového napětí triakem	•				112
39.	Časový spinač se stmivačem					113
40.	Pozvolné rozsvěcování a zhasinání světla					116
41.	Regulátor pro univerzální motory					118
42.	Regulátor pro univerzální motory					119
43.	Cyklově řizený spinač			ï	Ċ	120
v.	Optoelektronika					123
	Thurbon and a label and alote to a control of a faith adout and					100
44.	Druhy optoelektronických součástek a jejich vlastnosti .		•	•	•	123
45.	Světelné snímače	•				131
46.	Samočinný spinač osvětlení					136
47.	Generator dennich impulsů					136
48.	Indikator dýmu	٠.				138
49.	Generátor kmitočtu řízený světlem					138
	d and the state of	•	•	•	•	
VI.	Elektronická zabezpečovaci zařízení					140
50.	Zabezpečovaci zařízení proti vloupání		_			140
51.	Elektronické zámky		-	-		145
52.	Ordádáni dvoři dombu	•	•	•	•	159
53.	Ovládání dveří domku	•	•	•	•	102
	Automaticke oteviram uveri	•	-	-	•	107
54.	Rozsvěcování žárovky zvukem zvonku telefonu	•	-			158
55.	Záznamník telefoniekých hovorů Měření a regulace výšky hladiny kapaliny					159
56.	Měření a regulace výšky hladiny kapaliny					161
57.	Přímeukazujíci měřiče výšky hladiny kapaliny					165
58.	Kapacitní meření výšky hladiny kapaliny					168
59.	Elektronické odpojování čerpadla	Ċ	Ċ	Ċ	Ċ	176

VII.	Prostředky automatizace v domácnosti					
6 0.	Časový spinač					179
61.	Jednoduchý časový spinač					181
62.	Jiny typ časového sninače.					182
63.	Vypinač se zpožděným rozepnutím		•	•	•	182
64.	Znošděná supinání vantilátom	•	•	•	•	102
	Zpožděné vypinání ventilátoru Ventilátor se samočinným spináním	•	•	•	•	100
65.	ventilator se sainocinnym spinanim			•		184
66.	Elektronické řízení teploty s předvolbou různých teplot		-	-		186
67.	Regulator teploty					187
68.	Zvonek s melodii					188
69.	Elektronický metronom					189
70.	Připojeni zvonku GONG	•	•	•	•	190
71.	Congraphic with the stances	•	•	•	•	101
	Gong's mlutivibrátorem	•	•	•	•	191
72.	miasite reprodukovani telefonnich novoru	•		•		192
73.	Paralelni spojeni dvou telefonních přistrojů	•		•	-	194
VIII.	Číslicová technika					195
74.	Rozsvěcování a zhasináni světel zvukovým signálem					100
75.	Postupné zapinani zárovek	•				198
101	x continue religion	-		•	•	100

76.	Číslicový zvonek s melodií			÷	ī,					ï	ī.							×	,			-	201
77.	Číslicový časový spínač	٠	٠	٠	٠	٠	٠	٠	٠.	٠		ŕ		٠	٠	٠	٠	1	-	•		-	206
IX.	Zahrada a chovatelství .			J.						٠,											ı		210
78.	Přístroj k plašení ptactva				٠.					·											-		210
79.	Přístroj k odhánění zvěře																						
80.	Deratizační přístroj																						
81.	Elektronický sběrač včelího																						
82.	Topení v akváriu																						
	Převodní tabulky pro staré	a	F U)V	6 c	12T	ıač	ov	ár	ıf j	m	BD.	ov	ity	ýcl	a h	100	luc	t				
	odporů a kapacit	-	٠	٠.										٠	٠	٠	٠		٠		٠	٠	220
	Literatura																	١.				÷	221

Předmluva

V této knize předkládáme radioamatérům a všem zájemcům o elektroniku celou řadu návodů k výrobě elektronických přístrojů. Mají společného jmenovatele — jsou vhodné k vylepšení domácnosti, chaty, garáže, dílny nebo pracoviště. Naší snahou je, aby všechny návody byly srozumitelné a realizovatelné s tuzemskými součástkami a aby jejich popis byl natolik srozumitelný a jasný, že činnost pochopí i méně zkušení čtenáři.

Všem čtenářům přejeme, aby je naše kniha nezklamala a aby jim přinesla poučení, inspiraci k novým konstrukcím a vylepšením a v neposlední řadě

i trochu radosti nad samotnou konstrukční prací,

Autoři

1. Základní pokyny pro konstrukci elektronických přístrojů

ZÁKLADNÍ ELEKTROTECHNICKÉ NORMY A BEZPEČNOSTNÍ PŘEDPISY

Československé normy, předpisy a vyhlášky týkající se obsluhy, práce a projektování elektrických zařízení jsou v porovnání s jinými zeměmi poměrně přísné a dokonalé. Vyhláška Českého úřadu bezpečnosti práce a Českého úřadu báňského číslo 50/1978 Sb. o odborné způsobilosti v elektrotechnice stanoví stupně odborné způsobilosti pracovníků, kteří elektrická zařízení obsluhuji, pracují na nich, práci na nich řídí, tato zařízení projektují nebo řídí projektování a kteří tato zařízení revidují. Elektrickými zařízeními se rozumějí zařízení, u kterých může dojít k ohrožení života, zdraví nebo majetku elektrickým proudem, a zařízení určená k ochraně před účinky atmosférické nebo statické elektřiny.

Pro amatérské konstruktéry zde není vyhrazeno žádné místo. Pokud se tedy někdo amatérsky pustí do výroby jakéhokoliv elektrického zařízení, měl by mít kvalifikaci předepsanou příslušnou vyhláškou. Žádné výjimky tato vyhláška nepřipouští.

Technická normalizace (zákon č. 96/64 Sb.)

Účelem technické normalizace je výběr nejvhodnějších řešení technických úkolů. zejména z hlediska hospodárnosti, jakosti a bezpečnosti. V oboru elektrických zařízení technická normalizace určuje, sjednocuje, zjednodušuje nebo zevšeobecňuje zejména:

- druhy výrobků a jejich typy (např. elektrické motory):
- charakteristické údaje výrobků, jejich částí a sestav. umožňující jejich vyměnitelnost (např. zásuvky — vidlice);
- způsob výpočtů, projektování, konstruování (např. výpočet zkratové odolnosti zařízení);
- metody zkoušení (např. zkoušky výrobků prováděné státní autorizovanou zkušebnou);
- výrobní a pracovní postupy, způsoby montáže, provozu. údržby zařízení (např. pracovní a provozní předpisy ČSN 34 3100 aj.),
 - opatření pro bezpečnost a ochranu zdraví při práci.
- značky, symboly, názvy, měrové jednotky, veličiny apod. (např. značení krytí elektrických předmětů atd.)

Normy se označují zkratkou (ČSN, ON), číslem a názvem.

Podle ČSN 34 0000 je elektrotechnickým předpisovým normám vyhrazena třída 34 s podskupinou 34 00 až 34 31. Jsou označovány skupinovým názvem Elektrotechnické předpisy ČSN. Zařizovací normy navazují na Elektrotechnické předpisy ČSN a jsou zařazeny do podskupin 37 50 až 37 90, popř. do třídy 38. Ve třídách 35,36 a 37 až do podskupiny 37 50 jsou zařazeny předmětové elektrotechnické normy.

V současné době má být provedena postupná přestavba elektrotechnických předpisů. Nově upravené předpisy budou zařazovány do třídy 33.

Normy se člení na články označované arabskými číslicemi. Články se v případě potřeby dělí na odstavce, označené písmeny malé abecedy.

Základní elektrotechnické normy jsou uvedeny v literatuře na straně 220.

Úrazy způsobené elektrickým proudem

Elektrický proud působí na každý organismus, tedy i na člověka, který je vodivě spojen s dvěma předměty rozdílného potenciálu. To se může stát:

při jednopolovém dotyku živých částí (dotyk – přiblížení s živými

částmi s nebezpečným napětím proti zemi),

při dvoupólovém dotyku živých částí (současný dotyk -- přiblížení

s živými částmi různé polarity),

— při dotyku neživých (kovových) částí, které normálně nemají napětí, ale které je dostaly z nějaké poruchové příčiny, nejčastěji v důsledku poškození izolace.

Dotyk živých částí je nebezpečný, jakmile používané napětí přesahuje bezpečné napětí. Lze tedy říci, že dotyk živých částí v rozvodném systému

nízkého napětí je vždy nebezpečný.

Posuzujeme-li nebezpečí dotyku, přihlížíme k cestě proudu tělem. Dotyk částí s rozdílem napětí oběma rukama (dvoupólový dotyk) je nebezpečnější než dotyk částí s napětím člověka stojícího na zemi, nebot v cestě proudu je za dotyku ruka — nohy zařazen odpor obuvi, a tělový proud je tedy menší.

K úrazu elektrickým proudem dochází, prochází-li tělem postiženého proud s fyziologickými účinky škodlivými pro organismus. Účinky proudu jsou buď přímé, kdy nebezpečný proud prochází tělem člověka nebo některou jeho částí, nebo nepřímé, kdy elektrický proud neprochází sice tělem člověka, ale jeho účinky bezprostředně působí škodlivě na lidský organismus, např. prostřednictvím elektrického oblouku nebo působením škodlivého ionizačního nebo světelného záření.

Poškodí-li procházející elektrický proud vnitřní orgány jen tak, že na místě vstupu a výstupu nezanechá znatelné stopy, mluvíme o elektrické ráně. Zpravidla jde o bezprostřední dotyk s částí pod napětím, zejména pod napětím do 1000 V v okamžiku, kdy elektrický odpor lidského těla je ještě veliký a procházející proud malý. Objevují se příznaky slabšího stahování svalstva, prstů a rukou. Nebezpečí úrazu elektřinou bývá v těchto případech často podceňováno. Přitom je třeba si uvědomit, že pro elektrickou ránu, která může způsobit smrtelný úraz, je charakteristické:

- a) malý proud procházející lidským tělem (25 až 100 mA);
- b) nízké dotykové napětí,

c) úměrně dlouhá doba průchodu proudu (několik sekund),

d) nepatrný výkon (asi 20 W).

Při průchodu proudu sidským tělem se objeví tyto příznaky: zvonění v uších, záblesky světeí a jasných míst před očima, pocit tepla, bolestivé stahy svaístva vedoucí až k dočasnému ochrnutí, nepravidelný srdeční tep, který může přejít až k rozkmitání srdečních komor (fibrisace), bledost, rozechvěnost, pocení apod. Průchod většího proudu těsem způsobuje přehřátí svalstva a rychlé odpaření vody, které způsobí roztržení kůže.

Dojde-li při průchodu proudu k poškození vnějších částí íidského těía bezprostřední blízkostí ejektrického oblouku, nepřímým působením ejektrického proudu tavícího ochranné kryty nebo stykem člověka s nadměrně ohřátými částmi elektrického zařízení, dojde k popáleninám.

Při přímém působení elektrického proudu na lidský organismus rozhodují

o závažnosti a následcích tyto faktory:

a) Velikost elektrického proudu procházejícího tělem postiženého v závislosti na dotykovém napětí, jež je vlastně úbytkem napětí v lidském těle. Dotykové napětí je zase závislé na odporu lidského těía a na ostatních přechodových odporech. Odpor íidského těla je ovlivňován stupněm vlhkosti pokožky, konzistencí kůže, víhkostí dotykové plochy a tlakem dotyku.

b) Čas, po který proud prochází lidským těíem. Po krátkodobém působení (méně než 0,2 s) většinou ustanou křeče, dýchací ústrojí a srdce začnou pracovat normáíně, takže k závažnějším poruchám na zdraví nedojde. Při déletrvajícím průchodu proudu může dojít k híubokému bezvědomí, při němž je naděje na záchranu tím větší, čím kratší doba uplyne do poskytnutí první pomoci umělým dýcháním. Díouhodobé účinky proudu způsobují

vnitřní a vnější popáleniny.

c) Druh proudu, jeho průběh a kmitočet, neboť ceíkový odpor kůže je přímo závislý na kmitočtu. Při vyšším kmitočtu se zmenšuje ceíkový odpor kůže. Zmenšení celkového odporu vlivem kmitočtu znamená sice zvětšení procházejícího proudu, ale možnost úrazu se nezvětšuje, ale zmenšuje. Příčinou je různé působení proudu s různým kmitočtem na buňky živé tkáně. Např. práh vnímání průchodu střídavého proudu s kmitočtem 50 Hz až 60 Hz je asi 1 mA, při 10 kHz asi 12 mA a při 50 kHz asi 100 mA.

Průchod stejnosměrného proudu má elektrofytické účinky a vyvolává pocity brnění až bolestivého pálení. Při každém zapnutí vzniká bolestivé

stažení svalstva.

Ochrana před nebezpečným dotykovým napětím

Z híediska nebezpečí úrazu elektrickým proudem dělíme prostory:

 a) s prostředím bezpečným, které svým víivem snižují nebezpečí úrazu elektrickým proudem;

 b) s prostředím nebezpečným, v nichž je stálé nebo přechodné nebezpečí úrazu elektrickým proudem;

c) s prostředím zvlášť nebezpečným, které svým vlivem zvyšují nebezpečí úrazu eíektrickým proudem.

Jednotlivá prostředí jsou členěna do uvedených skupin z hlediska ČSN 34 1010 Všeobecné předpisy pro ochranu před nebezpečným dotykovým napětím. Takto roztříděným prostředím jsou zároveň nrčeny stupně ochrany, bezpečná napětí a dovolená dotyková napětí.

Za bezpečné napětí z hlediska ochrany před nebezpečným dotykovým

napětím je považováno napětí:

v prostorech s prostředím bezpečným střídavé napětí do $50~\mathrm{V}$ nebo stejnosměrné napětí do $100~\mathrm{V}$;

v prostorech s prostředím nebezpečným střídavé napětí do 24 V nebo steinosměrné napětí do 60 V:

v prostorech s prostředím zvlášť nebezpečným střídavé napětí do 12 V nebo stejnosměrné napětí do 24 V.

Rozumí se zde napětí proti zemi u uzemněné rozvodné soustavy nebo se zde uvažuje napětí mezi krajními vodiči. U stejnosměrných napětí je přípustné zvlnění maximálně 10 %.

Za bezpečný proud se považuje stejnosměrný proud 25 mA. u zdroje střídavého napětí s kmitočtem 10 Hz až 1000 Hz se za bezpečný považuje proud 10 mA. Rozumí se tím celkový proud, který projde lidským tělem při dotyku.

Ochrana před nebezpečným dotykovým napětím není nutná, je·li napětí živých částí bezpečné a jsou·li splněny tyto podmínky: napětí vestavěného zdroje je nižší než napětí bezpečné, primární napětí vestavěného zdroje není vyšší než 500 V a zdroj má galvanicky oddělené obvody, které vyhovují požadavkům na zvýšenou izolaci, čímž se rozumí např. oddělovací transformátor.

Z hlediska velikosti rozlišuji prováděcí předpisy pro jednotlivá elektrická zařízení tato napětí:

malé napětí (mn), do 50 V (proti zemi),

nízké napětí (nn), od 50 V do 300 V (proti zemi).

vysoké napětí (vn). od 300 V do 38 000 V (proti zemi),

velmi vysoké napětí (vvn), od 38 000 V (proti zemi).

Pevné zásuvky v rozvodech nn musí mít vždy ochranné kontakty (kolíky). V prostorech bezpečných lze používat vidlice i bez ochranného kontaktu. Ochranný kontakt musí být spojen vždy s ochrannou soustavou. Zásuvky musí být instalovány tak, aby ochranný kontakt byl nahoře, v levě zdířce musí být připojen fázový vodič a v pravé nulovací vodič. Při ochraně nulováním se musí nulovací vodič připojit vždy nejdříve na svorku ochranného kontaktu — kolíku. Zásuvky pro malé napětí nesmějí být zaměnitelné se zásuvkami pro nízké napětí.

Pohyblivý přívod bez ochranného vodiče s vidlicí bez ochranného kontaktu, hodící se pro zásuvky s ochranným kolíkem, smí být v rozvodu nízkého napěti použit jen k připojení elektrických přenosných předmětů třídy II (viz dále) a předmětů jim rovnocenných z hlediska bezpečnosti. Pohyblivý přívod s ochranným vodičem a s vidlicí s ochranným kolíkem se používá k připojení elektrických spotřebičů a předmětů třídy I. Qchranný vodič

uvnitř spotřebiče nebo předmětu musí být připojen na zdířku kolíku vidlice a na kostru chráněného elektrického předmětu. U trojfázových pohyblivých přívodů, u nichž je potřebná tzv. pracovní nula a u nichž je použita ochrana zemněním, je třeba použít pětižilové přívodní vodiče. Tři fázové vodiče se připojují k vidlici na svorky označené Ll, L2, L3 (dříve R, S, T). Pracovní nulovací vodič (modré barvy) se připojí na svorku N a ochranný vodič (barva zelená/žlutá) se připojí na svorku PEN.

Rozdělení elektrických předmětů do tříd

Do tříd se rozdělují elektrické předměty podle toho, jakou ochranu před nebezpečným dotykovým napětím vyžadují.

Předmět třídy 0 má všude alespoň pracovní izolaci nebo kovový kryt oddělený od elektrické části jen pracovní izolací. Takový předmět není bezpečný proti nebezpečnému dotyku, nelze k němu připojit ochranný vodič. Bývá chráněn zejména polohou nebo zábranou, a proto musí být pevně umístěn a pevně připojen.

Předmět třídy I musí mít zařízení pro připojení ochranného vodiče bez

ohledu na druh izolace nebo na jmenovité napětí.

Předmět třídy II nemá žádné zařízení pro připojení ochranného vodiče, protože je před dotykem dokonale chráněn dvojitou nebo alespoč zesílenou izolácí.

Předmět třídy III se smí připojit jen ke zdroji malého napětí, a nepotřebuje tedy žádnou další ochranu.

Přehled ochran před nebezpečným dotykovým napětím

Ochrana polohou

Ochrana elektrického předmětu polohou spočívá v takovém umístění živých částí zařízení, že bez použití pomůcek je dotyk s nimi vyloučen. Minimální vzdálenosti, které je třeba dodržet, jsou závislé na druhu zařízení, na provozním napětí a na kvalifikaci pracovníků majících k zařízení přístup. Jejich umístění současně závisí i na druhu prostoru, ve kterém je elektrický předmět umístěn.

Ochrana zábranou

Ochrana zábranou znemožňuje dotyk nebo brání v dotyku živých částí zařízení, popř. zabraňuje přiblížení se živým částem elektrických předmětů. Zábrana není součástí elektrického předmětu.

Ochrana krytím

Ochrana krytím je konstrukční opatření, tvořící součást elektrického předmětu. Může to být kryt, víko nebo jiná část elektrického předmětu. U továrně vyráběných předmětů se stupeň krytí vyznačuje na typovém štítku mezinárodně platnou značkou.

Značku tvoří písmena IP a dvojčíslí. První číslice může být 0 až 6. Jednotlivé číslice mají tento význam:

0 předmět bez ochrany (bez krytí),

- 1 ochrana proti vniknutí předmětů větších než 50 mm (dlaň),
- 2 ochrana proti vniknutí předmětů větších než 12,5 mm (prst),
- 3 ochrana proti vniknutí předmětů větších než 2,5 mm (nástroj),
- 4 ochrana proti vniknutí předmětů větších než 1 mm,
- 5 ochrana proti vniknutí jakýchkoli předmětů,

6 prachutěsný.

Druhá číslice označuje stupeň odolností elektrického předmětu před vníkáním vody. Múže být 0 až 8. Jednotlivé číslice mají tento význam:

0 předmět bez ochrany,

- 1 ochrana proti kapalině srážené v kapkách,
- 2 ochrana proti kapající vodě,
- 3 ochrana proti šikmo dopadající vodě (déšť),
- 4 ochrana proti stříkající vodě,
- 5 ochrana proti tryskající vodě,
- 6 ochrana při zaplavení,
- 7 ochrana při ponoření,
- 8 ochrana při ponoření a proti kapalině pod stanoveným tlakem,

Předmět, který nemá žádné krytí, je tedy označen IP 00, nejlépe krytý předmět má stupeň IP 68.

Kryt musí být samozřejmě mechanicky pevný a musí odolávat vlivům daného prostředí.

Ochrana izolaci

Ochrana izolací spočívá v zabezpečení živých částí takovou izolací, která znemožní nebezpečný dotyk živých částí zařízení. Za izolaci ve smyslu ochrany před nebezpečným dotykem se nepovažuje smaltování, lakování, vrstvy kysličníkú a obaly z vláknitých hmot (i když jsou napuštěny různými roztoky).

Ochrana doplňkovou izolací

Ochrana doplňkovou izolací spočívá v umístění elektrického předmětu na izolačním stanovišti a v použití dodatečných ochranných pomúcek (dielektrické rukavice, vypínací tyče, galoše apod.) Předpisy zakazují použití doplňkové izolace pracovníky bez odborné elektrotechnické kvalifikace.

Ochrany používající ochranný vodič

Ochranný vodič vyžadují ochrany nulováním, zemněním, napěťovým chráničem, proudovým chráničem a pospojováním. Aby se ochranný vodič neuvolnil aby neoxidoval nebo aby nepřivedl na chráněný předmět nebezpečné dotykové napětí tím, že by se náhodně dostal do styku s jiným vodičem, u něhož je proražena izolace, platí pro ochranný vodič tyto hlavní

zásady: V obvodu ochranného vodiče nesmí být ani vypínač, ani pojistky. Počet spojů ochranného vodiče musí být co nejmenší, spoje musí být zajištěny před samovolným uvolněním. Pro ochranný vodič jsou předepsány minimální průřezy a způsob uložení. Proti jeho záměně s jiným vodičem je předepsáno barevné označování.

Ochranný vodič musí splňovat tyto podmínky:

- a) Ochranný vodič musí být chráněn před možností poškození a musí vzdorovat vlivům prostředí.
- b) Ochranný vodič se musí rozpojovat současně se všemi ostatními živými přívody. U zásuvek se musí rozpojovat později než ostatní vodiče.
- c) Všechny spoje ochranného vodiče a především spoje s náhodným ochranným vodičem musí být prokazatelně dobře vodivé.
 - d) Ochranný vodič musí mít barvu zelenou/žlutou.
- e) Ochranný vodič jako svod k zemniči musí mít zkušební svorku a musí být chráněn proti mechanickému poškození.
- f) Jako ochranný vodič vyhoví také náhodný vodič, což je např. kovové potrubí, kovová konstrukce budovy nebo např. i vodovod. Při připojení ochranného vodiče na vodovod musí být překlenut vodoměr. Pro připojení ochranného vodiče na vodovod platí norma ČSN 35 7705.
- g) Jako ochranný vodič lze použít i kovový plášť kabelu, je li chráněn proti korozi, má li předepsaný průřez a nehrozí li nebezpečí bludných proudů. Ochranný vodič může být někdy současně i pracovním vodičem. Není-li vodičem pracovním, může být holý.
- h) Je li z provozních důvodů nutné pravidelně měřit izolační odpor, nesmí se pracovní nulovací vodič použít zároveň jako ochranný vodič.
- i) U pohyblivého přívodu musí být ochranný vodič vždy společně v jedné šňůře s ostatními vodiči. Výjimku může tvořit pouze takový ochranný vodič, který je využit pro společné pospojování elektrických předmětů.
 - j) Ochranný vodič se připojuje ke svorce označené zemnicí značkou.

Má-li elektrický předmět několik izolovaných kovových částí. spojují se mezi sebou jedním vodičem zakončeným na zemnicí svorce. Zemnicí svorka nesmí být umístěna na snímatelné části elektrického předmětu.

Jako náhodný ochranný vodič se nesmějí používat zábradlí, žebříky, ploty, nosné napínací dráty a všechny konstrukce, které mohou být snadno a kdykoli rozebrány nebo odstraněny.

Ochrana nulováním

Princip ochra ny spočívá v tem, že všechny neživé části spotřebiče (včetně např. krytu) mu sí být spojeny s nulovacím vodičem, spojeným s nulovým bodem zdroje. Dostane-li se z vadné části elektrického předmětu elektrické napětí do styku s neživou vodivou částí, uzavře se proudový obvod s malým odporem a vzniklý proud přetaví pojistku v přívodu, a tím rozpojí celý nebezpečný obvod. K s polehlivé funkci této ochrany je nutné zajistit, aby byly dodrženy zásady platné pro ochranný vodič. Je třeba si také uvědomit, že impedance vypínacího obvodu musí být tak malá, aby proud vzniklý

v obvodu spolehlivě a včas přetavil nejbližší předřazenou pojistku. Zároveň je nutné dbát, aby přechodový odpor pracovního uzemnění nulového bodu byl v předepsané toleranci. Přechodový odpor nemá být větší než 5 Ω . V případě, že se jedná o ztížené půdní podmínky, je možné, aby přechodový odpor byl větší, to je až do 15 Ω . Celkový přechodový odpor nulovacích vodičů vycházejících z transformační stanice nesmí být větší než 2 Ω .

Ochrana zemněním v síti s uzemněným nulovým bodem

Ochrana zemněním spočívá ve spojení neživých vodivých součástí elektrického předmětu se zemí. Země se používá ke zpětnému vedení poruchového proudu k uzlům zdroje.

V sítích s ochranou zemněním se nesmějí neživé součásti elektrických předmětů připojovat na nulovací vodič. Také je zakázáno oba způsoby ochrany kombinovat. Jako doplňkové ochrany se používají napětové nebo proudové chrániče.

Ochrana pospojováním

Podstatou ochrany pospojováním je vodivé propojení všech neživých vodivých částí elektrického zařízení se zemí a se všemi kovovými vodivými částmi v okolí.

Ochrana oddělením obvodů

Podstatou této ochrany je dokonalé izolování proudového obvodu od obvodu rozvodné sítě pro jeden spotřebič. Pracovní obvod jednotlivého spotřebiče se oddělí od rozvodné sítě oddělovacím transformátorem s dvojitou izolací. Tím dostaneme vlastní izolovaný rozvod s nepatrným kapacitním a svodovým proudem, takže vznik nebezpečného zemnicího proudu je vyloučen. Tuto ochranu lze použít jen v sítích do 500 V. Sekundární napětí oddělovacího transformátoru nesmí překročit 380 V, spotřebič může odebírat proud nejvýše 16 A. Sekundární obvod transformátoru se již nesmí spojovat s žádným ochranným vodičem ani se zemí.

Je li chráněný předmět připojen ke zdroji prostřednictvím zásuvky, musí mít zásuvka ochranný kolík, který však nesmí být spojen s kostrou transformátoru, ani s jeho primárním nebo sekundárním vinutím. Tento ochranný kolík používáme při práci ve zvlášť nebezpečných prostorách, kde předpisy vyžadují, aby kostra spotřebiče byla dokonale spojena ochranným vodičem s pracovním místem. Např. je-li takto připojena vrtačka, kterou se vrtá do uzemněné konstrukce, má být spojena kostra vrtačky s konstrukcí.

Ochrana bezpečným napětím

Podstata této ochrany spočívá v tom, že elektrický předmět nepoužívá jiné napětí než bezpečné a toto napětí se nezvýší ani při chodu napřázdno. Toto napětí lze získat použitím transformátoru se zvýšenou izolací nebo

z nezávislých zdrojů (baterie, generátory apod.). Baterie se při provozu nesmějí dobíjet, kromě případu, že i napětí nabíječe je bezpečné. Při použití tohoto způsobu ochrany se musí dodržet tyto zásady:

Kovové pláště předmětů v sekundárním obvodu se nesmějí spojovat s neživými částmi předmětů primárního obvodu. Vidlici na straně bezpečného napětí nesmí být možné zasunout do normalizované zásuvky nn.

Při práci v kotlích, kovových nádržích apod. se musí transformátor umístit vně nebezpečného nebo zvlášť nebezpečného prostoru.

V prostorách zvlášť nebezpečných se nesmějí ani kostry předmětů chráněných malým napětím dostat do styku s uzemňovací soustavou, s nulovacím vodičem neho zemí.

Všechny typy ochran lze vzájemně kombinovat. Normy uvádějí termín zvýšená ochrana, což je ochrana spočívající právě v kombinaci dvou nebo více ochran v případě, že jedna ochrana v určitém prostoru nestačí. Jak jsme již uvedli, jediným omezením je zákaz kombinace ochrany nulováním a ochrany zemněním.

Značení vodičů

Při konstrukcích elektrických zařízení je nutné dodržovat předepsané barvy vodičů. Tím se předejde mnohým nedorozumněním i možným úrazům.

Značení izolovaných vodičů

Stejnosměrný rozvod

+ kladný pôl
záporný pól
M (N) střední vodič

vodič barvy červené vodič barvy tmavě modré vodič barvy světle modré

Jednofázový rozvod

fázový nebo krajní	vodič
ochranný vodič	
střední vodič	

černá, popř. hnědá barva zelená/žlutá barva světle modrá barva

Trojfázový rozvod

Ll (R) l. fáze	černá, popř. hnědá barva
L2 (S) 2. fáze	černá, popř. hnědá barva
L3 (T) 3. fáze	černá, popř. hnědá barva

U několikažilových vodičů a kabelů s více fázovými (krajními) vodiči je určující žíla označena hnědou barvou. To umožňuje rozlišit ostatní fázové (krajní) žíly, označené černou barvou (podle jejich polohy).

Do 31. 12. 1978 bylo možné v těchto vodičích a kabelech používat také označování ochranného vodiče zelenou barvou (viz čl. 103 ČSN 34 0165). Toto ustanovení se již nevztahuje na pohyblivé přívody, kde na označení ochranného vodiče je povolena pouze kombinace barev zelená/žlutá.

Vypínání spotřebičů

Všechny pracovní obvody spotřebičů musí být možné spolehlivě vypnout. U drobných spotřebičů připouštějí normy skupinové vypínání. Jestliže by jiné než napájecí vedení zavedlo na přístroj větší napětí než bezpečné (např. signalizační napětí, ovládací napětí atd.), musí se zároveň s napájecím napětím odpojovat i toto vedení. V rozvodném zařízení musí mít jednotlivé odpojitelné větve vlastní vypínač, pojistku a odpojovač. U zařízení nn může pojistka nahradit odpojovač.

Malé přenosné spotřebiče je možné vypínat také pouhým vytažením

vidlice ze zásuvky.

Jednopólové vypínače se smějí používat pouze v obvodech s pevným nezaměnitelným přívodem, v bezpečném prostředí. Musí být zaručeno, že se jednopólovým vypínačem nevypíná ochranný nebo nulovací vodič. Spínače a vypínače volíme podle velikosti spínaného proudu a napětí. Spínače musí u spotřebiče odpojovat všechny body s napětím proti zemi.

Pohyblivé přívody a šňůry

Pohyblivé přívody musí být připojeny na pevný rozvod pouze pomocí zásuvky a vidlice. Pouze výjimečně je možné pohyblivý přívod připojit na pevný rozvod pomocí rozvodky, a to tehdy, když se stanoviště elektrického předmětu nebude měnit. Předměty s kovovým krytem musí být připojeny přívodem obsahujícím ochranný vodič.

K mechanické ochraně pohyblivých přívodů se nesmějí používat kovové

hadice bez izolační vložky.

Pohyblivé šňůry a přívody se nesmějí prodlužovat jinak než zásuvkou a vidlicí. Zejména jsou zakázána jakákoliv amatérská spojování dvou šňůr nebo přetržené šňůry.

Zásuvky

Zásuvky bez ochranného kolíku se nesmějí používat. Instalují se v bezpečných prostorech nekryté nejníže 20 cm od podlahy tak, aby přívodní šňůry zapojených spotřebičů nepřekážely a nepoškozovaly se. Do podlahy se smějí montovat zásuvky chráněné před mechanickým poškozením.

Zásuvky s vypínaným výkonem větším než 3 kW (tj. 250 V/15 A) musí být tzv. blokové, tj. musí obsahovat vnitřní vypínač, s nímž lze vytáhnout vidlici jen tehdy, je li vypnut proud.

Zásuvky do jiných než bezpečných prostorů musí být speciálně upraveny.

Montáž a umístění elektrických spotřebičů

Elektrické spotřebiče mají být vždy snadno přístupné, nemají se umístovat do nepřistupných těsných prostorů. Teplo nesmí ohrožovat okolí. V místnostech s vlhkou podlahou nesmí být pohyblivý přívod trvale na podlaze nebo v kapalném prostředí.

Spotřebiče, které přicházejí do styku s částmi lidského těla, nesmějí být

na napětí větší než 250 V. Kovové části musí být od lidského těla odděleny dvojitou izolací nebo celý přístroj musí být napájen napětím jen 50 V přes oddělovací transformátor.

Hračky mohou mít maximální napětí 24 V. Části, na nichž je napětí větší než 50 V proti zemi, musí být chráněny krytem proti samovolnému dotyku. Kryt musí být možné sejmout pouze nástrojem.

Elektrické ruční nářadí může v provozu pracovat s napětím až do 250 V proti zemi. Nemá-li dvojitý izolační kryt, musí mít pracovník ochranné pryžové rukavice. Pro nebezpečné prostředí má být elektrické nářadí na malé napětí.

Akumulátorovny

Akumulátorovna musí být zřízena, mají li baterie větší napětí než 65 V a výkon větší než 500 VA. Akumulátorovna musí být oddělená místnost, dobře větraná, vyhřívaná, chráněná proti vnikání prachu a nečistot. Dveře akumulátorovny musí být označeny bezpečnostními tabulkami.

Při práci v akumulátorovně musí být přerušeno nabíjení. Pracovníci musí používat ochranné pemůcky, tj. pryžové zástěry, rukavice, brýle vzdorující kyselině a pryžovou obuv, a podlaha má mít izolační podložku.

Ruční nářadí musí mít izolované rukojeti. Je zakázáno používat delší kovové předměty, např. kovová měřítka apod.

V akumulátorovně musí být vyvěšeny bezpečnostní předpisy, požární a poplachové směrnice a návod k obsluze akumulátorů.

Zásady elektrického rozvodu

Pojistky a jištění vedení

Pojistky nebo jističe, popř. jisticí relé, se mají volit tak, aby byly splněny tyto podmínky:

- a) Jádro jištěného vodiče nebo kabelu se nemá při zkratu nebo nebezpečném zatížení přehřát. Velikost tavné pojistky se určí z tabulek vzhledem k materiálu a k průřezu jištěného vodiče.
- b) Při normálním provozu musí jisticí prvky působit jen žádoucím způsobem.
- c) Jisticí prvky mají při svém působení pokud možno odpojit pouze postiženou část zařízení.

Pojistky jsou podle jmenovitého proudu děleny do tzv. pojistkových stupňů. Řada jmenovitých pojistkových stupňů u tavných pojistkových vložek je: 6, 10, 16, 20, 25, 32, 35, 40, 50, 63, 80, 100. 125, 160, 200, 225, 250, 300. 350, 400, 630, 800, 1000 A. Výpočty a návrhy pojistek a jištění jsou uvedeny v ČSN 38 0411 a ČSN 38 1754.

Pojistka nebo jistič musí bezpečně vypnout zkratový proud v místě svého nmístění. Teprve druhotným úkolem je jistit stroje, přístroje nebo jiné spotřebiče připojené na vedení. Jen takzvané motorové jističe, nastave

né na jmenovitý proud motoru. jistí především motor a teprve potom přívod k němu.

Normy dovolují jistit kabel nebo vedení pouze proti zkratu tehdy, je-li na svém konci u spotřebiče jištěn před přetížením a jestliže vlastnosti spotřebiče zaručují, že vodič nemůže být přetížen. V takovém případě se povoluje volba vyšších stupňů pojistek — až třikrát vyšší stupeň než při běžném jištění proti přetížení.

Pojistky se v elektrickém rozvodu umísťují všude tam, kde by již předcházející jištění nevyhovovalo (podle tabulky) dalšímu zmenšenému průřezu vodičů. Je to tedy zejména v místech změny, zeslabení průřezu vodiče nebo při odbočení s menším průřezem. Není-li možné splnit zásadu, že umístíme pojistku hned u odbočení, lze pojistku umístit dále, ale musí se až k pojistce vėst vodič s původním průřezem (až 3 m od místa odbočení).

Spojovací vedení mezi akumulátory a příslušným rozváděčem i vedení k vodičům akumulátorů se může jistit až na konci vedení v rozváděči za předpokladu, že rozváděč je unústěn v místnosti přiléhající k akumulátorovně a že spojovací vedení v této místnosti není delší než 10 m. Toto vedení však musí vyhovět dynamickým účinkům zkratových proudů. Vedení musí být uloženo tak, aby při zkratu nemohl vzniknout požár.

Jištění lze vynechat v těchto případech:

- a) Na začátku vedení a v místě, kde se průřez zmenšuje, jistí-li předřazená pojistka i vedení s menším průřezem.
- b) Ve spojovacím vedení nn mezi transformátorem a jeho pojistkou, je-li vedení z holých pásů a vyhovuje-li tepelným a dynamickým účinkům zkratových proudů nebo je-li kabelové vedení kratší než 30 m a je-li uloženo mimo budovu.
- c) Ve vedení v obvodech sekundárního vinutí měřicích a jisticích transformátorů.
- d) V sekundárních obvodech nabíječů akumulátorů, svářeček a metalurgických zařízení. Důvodem je značně proudové namáhání. Vodiče však musí být dostatečně dimenzovány.
- e) V bytových rozvodech se nejistí každá zásuvka zvlášť, je-li jištěn celý zásuvkový obvod.
- f) Ve vedení mezi generátorem a rozváděčem, vydrží-li vedení zkratový proud do doby, než se generátor odbudí.

Jištění zásuvkových a světelných rozvodů

Několik odboček elektrického vedení vnitřního světelného i zásuvkového obvodu může mít společné jištění, jsou-li jím tato vedení jištěna před přetížením.

Jsou-li na rozvodné vedení jištěné před přetížením připojeny odbočky určené pouze pro jednotlivé, trvale připevněné spotřebiče, které mohou být v provozu přetíženy (např. svítidla apod.), mohou být tyto spotřebiče připojeny pohyblivým přívodem k pevnému rozvodu. Odbočky k takovýmto

spotřebičům nebo odbočky k zásuvkám a pohyblivé přívody k těmto spotřebičům mohou být jištěny pouze před zkratem (mimo prostředí s nebezpečím požáru a výbuchu).

Nejistí se střední a ochranný vodič. je-li použit jako nulovací, uzemňovací nebo chráničový. Musí vyhovět účinkům zkratových proudů po dobu. než je zkrat pojistkou odpojen. U stávajících zařízení, kde je možná-záměna středního vodiče a fázovým. se musí střední vodič iistit.

Normy nedovolují žádné opravy tavných pojistek. Vložky se smějí opravovat pouze výjimečně a pouze specializovanými závody. Jakákoliv amatérská oprava tavné vložky pojistky není dovolena.

Přetavené vložky tavných pojistek se vyměňují v elektrickém obvodu při odpojeném zatížení a (pokud to lze) i bez napětí. U jističů se doporučuje (při jejich opětovném zapnutí po výpadku) odpojovat zátěž.

. 2. DIAGNOSTIKA

Diagnostika je nové odvětví v elektronice a zejména v moderní číslicové technice. Její význam se neustále zvětšuje a začínají se s ní setkávat amatéři. V moderní elektronice není diagnostika jen teoretický obor, ale stala se praktickou disciplínou. Co všechno do pojmu diagnostika zahrnujeme? Patří sem spolehlivost, zvětšování spolehlivosti, opravárenství, zejména způsoby vyhledávání závad, diagnostické testy správné nebo poruchové funkce, prevence, údržba přístroje, pomůcky a plánování opravárenské činnosti. Je samozřejmé, že pro amatéry je vhodná pouze část toho, co si nyní řekneme. Nicméně i amatéři si musí své výrobky opravovat, testovat a kontrolovat. Diagnostické testování a diagnostická kontrola nabývají na významu zejména v souvislosti s postupným zaváděr m a používáním číslicové techniky.

Většinu závad na elektronických zařízeních, at už jde o rozhlasový přijímač, amatérsky vyrobený přístroj nebo složitý počítač, musíme lokalizovat měřením. Proč termín lokalizovat? Pro účely opravárenství určujeme závadu většinou pouze s určitou přesností. Najdeme přerušený odpor, vyměníme jej a nestaráme se, zda ho lze ještě opravit nebo ne, ačkoliv může být pouze uvolněná čepička. Opravář televizoru vymění celý vysokonapětový transformátor a nezabývá se převíjením zničené cívky. U pračky vymění opravář celý programátor, u velkého počítače se při poruše vymění celý modul.

U starších elektronkových typů televizorů, kde většina závad byla způsobena poškozenou elektronkou, mnohdy stačilo k odstranění velmi velkého množství závad mít rezervní elektronku a zkusmo postupnou výměnou najít elektronku vadnou. Odkoukáním této diagnostické metody a tím, že pronikla do povědomí veřejnosti, vzniká mnoho nedobrého. V opravnách se např. vyskytují telefonické dotazy typu: "Prosím Vás, mám na obrazovce televizoru pouze vodorovnou bílou čáru, ale jinak mi zvuk jde dobře. Řekněte mi, co je to za elektronku, já si ji sám vyměním a ušetřím opravářovi cestu." Přitom se při podrobnějším zkoumání takovéhoto dotazu často

zjistí, že zvídavý zákazník má televizor celotranzistorový. Zde již uvedenou metodu pochopitelně použít nelze. Poškozený tranzistor můžeme bezpečně identifikovat pouze měřením.

Zaváděním nové, stále složitější (zejména číslicové) elektroniky se celý problém stává složitějším. Pro ilustraci uvádíme známý příklad z kombinatoriky. Máme provést kontrolu správnosti funkce 32bitové sčítačky. Přivádíme-li na její vstupy všechny možné informace, existuje obecně 2^{2n} , což je $2^{64} = 1,8.10^{19}$ vstupních kombinací. Máme velmi rychlé zkoušecí zařízení, které je schopno přivést na vstup a vyhodnotit 10^6 informací za sekundu, což je rychlost kontroly 1 MHz. Přesto je ale k vyhodnocení celého testu třeba $1,8.10^{13}$ sekund, což je více než půl miliónu let. Objem pamětového média potřebného pro zápis takového testu by byl $12.1,8.10^{19} = 2.10^{20}$ slabik, což je bilión běžných magnetických disků.

Tento příklad je samozřejmě pouze akademický. Je známo, že k úplné kontrole správnosti sčítačky realizované paralelním spojením jednobitových úplných sčítaček stačí 8 až 10 kombinací vstupních informací. Nicméně při použití takového testu se teoreticky mohou vyskytnout poruchy, které jsou velmi nepravděpodobné a které nelze tímto testem odhalit.

Toto velice drastické zkrácení diagnostického testu je možné v zásadě ze dvou příčin. Jednak se vyloučí poruchy, které jsou statisticky velmi málo pravděpodobné, a jednak se využije toho, že všechny stupně mají přímý výstup a mohou být testovány současně. Uvedme ještě jeden příklad, který názorně ukazuje, že diagnostika se dostává do nové úrovně poznávání a že nestačí pouhé přístroje a jednoduchá měření. Ukazuje, že je nutné mít vypracovaný správný opravárenský postup, tj. správný a úsporný diagnostický test. Tente banální případ se na rozdíl od předcházejícího může stát každému z nás. Kupujete si obyčejný kalkulátor a chcete si zkontrolovat všechny jeho funkce. Budete-li postupovát metodou úplné kontroly, nebude vám na úplný test (při němž byste kontrolovali všechno, tj. např. při násobení všechny možné kombinace, počínaje násobením 0,1 až do úplných možností kalkulátoru) i při jednoduchém typu kalkulátoru stačit celý život. Sami výrobci kalkulátorů ve velké většině výstupní kontrolu zkracují na minimum a raději riskují případné reklamace. Pro ilustraci uvedeme, že jedna série kalkulátorů Polytron neuměla vypočítat dekadický logaritmus čísla, které vzniklo např. tím, že jsme štovku dělili třemi a opětovně trojkou násobili. Každému je jasné, že pokud bychom chtěli nějakým testem všechny takovéto závady úplně vyloučit, nebude test ani krátký, ani jednoduchý. Navíc čím bude kalkulátor složitější, tím bude složitější i zkušební test. Počet možných kombinací případných možných závad neroste aritmetickou, ale geometrickou řadou.

Filozofie způsobů testování číslicových zařízení a systémů (může jít třeba o jedeň integrovaný obvod, modulovou výměnnou desku nebo celé zařízení, např. počítač) je v zásadě podobná. Metodika se pak zaměřuje na:

1. Volbu správných a výkonných diagnostických pomůcek, přístrojů nebo samotestovacích postupů (tj. u programovatelných zařízení, zejména počí-

tačů, do kterých lze zavádět samotestovací programy), s jejichž pomocí lze provést testování v minimálním reálném čase.

- 2. Zúžení množiny možných poruch zejména tím, že vyloučíme poruchy málo pravděpodobné.
- 3. Sestavení diagnostického testu tak, aby byl schopen identifikovat poruchu s potřebnou přesností. Tím se u velkých počítačů obvykle rozumí přesnost na jeden nebo na dva výměnné moduly.

Nejvíce jsou v současné době rozvinuty diagnostické metody pro kontrolu a opravárenství velkých typů počítačů. Bez diagnostických programů a zabezpečení opravárenské činnosti dnes není žádný větší počítač prodejný. U velkých počítačů je už patrná jistá podobnost s medicínskou diagnostikou. Lidský sen podle některých výzkumů plní i funkci diagnostického testu, který se provádí těsně před probuzením. Náš mozek se aktivuje a připravuje se na modelové situace, které bude po probuzení patrně nucen řešit. Právě tak navrhují dnešní konstruktéři diagnostické programy, které před zahájením práce počítače zkontrolují jcho celkový stav. Jak jsme již uvedli, specifikou zařízení s vlastní operační pamětí je schopnost nebo spíše možnost v prvních diagnostických krocích se obejít bez přídavných technických zařízení. Lze provést taková vlastní opatření, že závada se s určitou přesností odhalí systémem samokontroly, kdy se počítače nechají pracovat podle vypracovaných diagnostických testů. Některé počítače si dokonce dovedou při poruchách samy připnout záložní díl.

Výměnné desky se obvykle opravují mimo vlastní zařízení. Existují speciální testovací zařízení, která jsou do jisté míry univerzální a s kterými pak lze na příslušné desce najít závadu, opět s pomocí diagnostického testu, s přesností na vyměnitelnou součástku. Takovéto testovací zařízení např. vyrábí TESLA Brno. Není ovšem jednoduché a levné a vlastnit ho mohou pouze specializované opravárenské provozy. Základem testovacího stroje pro běžné počítačové výměnné desky je opět počítač střední velikosti. Drahé je nejen zkušební zařízení, ale i vytvoření a sestavení zkušebního programu pro konkrétní kontrolu.

To, že jde o nový obcr, jehož některé výsledky lze již nyní převádět (sice skromně, ale přece jen) přímo do amatérské praxe, dokazuje i to, že některé firmy zvolily diagnostiku za svůj výrobní program. U nás je to vedle TESLA Brno např. METRA Blansko. ze zahraničních např. firma Hewlett-Packard. Z drobných pomůcek pro amatéry, které tyto firmy vyrábějí, jsou známy zejména nejrůznější sondy. pomůcky pro kontrolu integrovaných obvodů, logické komparátory apod.

3. SPOLEHLIVOST SOUČÁSTEK

Teoretickou spolehlivost zařízení lze určit podle známých zásad. Výsledná hodnota intenzity poruch každé součástky se stanoví ze vztahu

$$k_s = k_0 o_z o_p$$

kde k_s je výsledná hodnota intenzity poruch součástky, která je upravena o činitele zahrnující okolni teplotu a provozní podmínky,

- ko základní číselná hodnota intenzity poruch určité součástky,
- oz opravný součinitel pro zvolené zatížení na okolní teplotu,
- o_p opravný součinitel pro zvolené provozní prostředí.

Výsledná spolehlivost je aritmetickým součtem spolehlivosti jednotlivých dílů.

Hodnotu k_0 lze většinou zjistit u výrobce součástek nebo z pramenů, které vydává Státní zkušební ústav ESČ. Pro ilustraci uvedeme hodnotu k_0 pro některé typické součástky používané v číslicové technice.

Pájený spoj na konektoru	$7,13.10^{-9}h^{-1}$
Ovíjený spoj na konektoru	$5.56 \cdot 10^{-9} h^{-1}$
Uhlíkový rezistor 4.7 kΩ, 1 W, typ TR 146	$9,44 \cdot 10^{-7} h^{-1}$
Rezistor s kovovou vrstvou 220 k Ω , 0.25 W, typ TR 151	$2,56.10^{-6}h^{-1}$
Stabilní rezistor metalizovaný 120 kΩ, 0,025 W, typ TR 161	1,72.10-6h-1
Drátový rezistor 100 Ω, 1 W, typ TR 635	$2.7 \cdot 10^{-7} h^{-1}$
Kondenzátor MP zastříknutý, 15 nF až 2 µF, při jmenovitém	
napětí 100 V, typ TC 180	$4,44 \cdot 10^{-7} h^{-1}$
Kondenzátor elektrolytický. 1000 µF, při jmenovitém napětí	
12 V. typ TC 530a	$4,65.10^{-7}h^{-1}$
Kondenzátor keramický. 15 pF. při jmenovitém napětí 350 V	•
typ TK 672	$1,3 \cdot 10^{-5}h^{-1}$
Kondenzátor keramický trubkový, 120 nF, při jmenovitém	
napětí 250 V. typ TK 409	$2,34.10^{-5}h^{-1}$
Kondenzátor keramický průchodkový bez armatury, 1 nF.	
při jmenovitém napětí 250 V, typ TK 564	$2,3 \cdot 10^{-4} h^{-1}$
Tranzistor germaniový GC 507 při zatížení $P_{\rm c}=1.25~{\rm mW}$	
a při teplotě okolí 35 °C až 38 °C	$4.2 \cdot 10^{-6} h^{-1}$
Tranzistor křemíkový KC 508 při zatížení $P_c = 120 \text{ mW}$	
a při teplotě okolí 80 °C	$2,54.10^{-5}h^{-1}$
Tranzistor křemíkový KF 508 při zatížení $P_{\rm c}=320~{ m mW}$	
a při teplotě okolí 80 °C	3,44.10 ⁻⁴ h ⁻¹
Tranzistor křemíkový KSY 71 při zatížení $P_{\rm c}=330~{\rm mW}$	
a při teplotě okolí 35 °C	$2,54.10^{-6}h^{-1}$
Integrovaný obvod MH 7420 při teplotě okolí 70 °C a při	
mezních napájecích hodnotách	$3,83.10^{-6}h^{-1}$
Přepínač jednopôlový. 11 poloh, APM 111	$1,18.10^{-5}$
	/cyklus
Telefonní relė plochė	1,13.10 ⁻⁶ h ⁻¹
Relé jazýčkové	108 cyklů
•	*

Stanovení opravného součinitele oz vychází z předpokladu, že u polovodičových součástek je logaritmus intenzity poruch funkcí záporné reciproké absolutní hodnoty teploty polovodičového přechodu. Pro stanovení tohoto součinitele byly vytvořeny poměrně složité vztahy, většinou vyjádřené graficky, v nichž se tento součinitel pohybuje od $o_z = 0,1$ do $o_z = 3$ podle toho, jak je polovodičová součástka teplotně namáhána. To závisí na hodnotě tepelného odporu mezi přechodem a okolím (který je tím menší, čím větší je dovolený ztrátový výkon tranzistoru), na tepelném elektrickém zatížení tranzistoru, na okolní teplotě a na velikosti chladiče, popř. na způsobu chlazení.

Pro ostatní součástky platí téměř obecně, že vliv elektrického namáhání a namáhání okolní teplotou lze zahrnout pod jeden opravný součinitel, neboť u většiny součástek platí vzájemný vztah mezi vnitřními ztrátami a okolní teplotou. Intenzita poruch součástí se zvětšuje s elektrickým namáháním a se vzrůstající okolní teplotou. Vliv obou namáhání se sčítá. Úplně odlehčená součástka má součinitel obvykle v hodnotě 0,1 při jmenovitém elektrickém namáhání $o_z = 1$. Při přetížení se tato hodnota může zvětšit až na $o_z = 10$ až 20, jsou ovšem i výjimky, např. u některých rezistorů, které nejsou plně elektricky namáhány, ale intenzita poruch je velká, protože rezistor je málo odolný proti navlhání.

Druhý opravný součinitel, o_p, který má vyjádřit vliv provozního prostředí, se v laboratorních podmínkách pohybuje od 0,7 (relé) do 0,95 (diody). Pro pevná pozemní zařízení se pro všechny součástky rovná jedné.

Rozborem uváděných čísel získáme některé překvapivé poznatky. Křemíkové tranzistory nejsou obecně spolehlivější než tranzistory germaniové, takže ani zařízení, ve kterých byly použity pouze křemíkové součástky, nejsou spolehlivější (ovšem pouze při nízkých provozních teplotách). Relé, která považujeme za málo spolehlivé prvky, patří podle výsledků testů mezi prvky velmi spolehlivé. Platí to ovšem pouze pro ideální prostředí a ideální provoz. V praxi (zejména v prašných provozech) patří relé většinou ke slabinám zařízení. Zajímavé je, že ovíjený spoj není spolehlivější než spoj pájený. Jedním z nejméně spolehlivých prvků je kondenzátor-V číslicové technice je dokonce běžné, že mnohdy je skutečná spolehlivost větší než spolehlivost vypočítaná. Je to proto, že např. tranzistor se při zkouškách intenzity poruch považuje za zničený, klesne-li hodnota jeho zesilovacího činitele o 30 %; germaniový tranzistor se považuje za zničený také tehdy, zvětší-li se klidový proud dvacetkrát. Snížíme-li kritérium pro zničený tranzistor o 50 %, klesne intenzita poruch téměř desetkrát. Přitom v mnoha zapojeních může klesnout zesilovací činitel až na desetinu původní hodnoty a zařízení je neustále v chodu.

Nesprávným používáním elektronického zařízení lze naopak jeho spolehlivost zhoršit, zejména, použijeme-li jej v nesprávném prostředí.

Vezměme opět příklad z našich domácností a z běžné praxe. Televizor, který umístíme do obývací stěny tak, že zamezíme přirozenému větrání okolního vzduchu kolem zadních větracích otvorů, se přehřívá a bude mít větší poruchovost. Např. TESLA Multiservis na základě zkušeností z praxe již ve smlouvě toto umístění televizoru zakazuje. Stejná situace nastane, umístíme-li stolní rozhlasový přijímač na koberec s vysokým vlasem.

Přístrojům vadí i prudké střídání teplot. Je známo, že např. elektronická

zařízení umístěná v automobilu jsou méně spolehlivá a mají menší životnost než stejné zařízení zkoušené v laboratorních podmínkách.

Za zvláštnost elektroniky lze považovat skutečnost, že elektronické součástky mají jistou měřitelnou a relativně velkou intenzitu poruch i tehdy, nejsou-li vůbec zatíženy nebo nejsou ani v provozu. Tuto vlastnost mají všechny polovodičové součástky. V praxi se to projevuje zejména tím, že můžeme najít vadnou polovodičovou součástku ve skladu i tehdy, když všechny součástky prošly přísnou vstupní kontrolou. Tato skutečnost se vysvětluje skrytými technologickými vadami, vzniklými zejména při kontaktování, kde malé termoelektrické napětí působí i bez vnějšího napětí, špatným pouzdřením, kdy vlhkost může pronikat až k vnitřnímu systému polovodičové součástky a vytvářet napěťové články, nebo vadami ve struktuře samotné polovodičové vrstvy, které se mohou chemicky šířit i tehdy, když polovodičovou vrstvou neprochází žádný proud. S těmito problémy se setkávají všichni výrobci elektronických součástek na celém světě. Z odborné literatury je známo, že intenzita poruch skladovaných nebo již zaletovaných, ale nepoužívaných polovodičových součástek je asi desetkrát až padesátkrát menší než při plném namáhání. Ale i tak je to relativně vysoké číslo, které zejména u složitých zařízení přináší mnohé potíže.

4. ZVĚTŠOVÁNÍ SPOLEHLIVOSTI

Spolehlivost elektronických zařízení stejně jako spolehlivost každého vyráběného zařízení je jedním ze základních ukazatelů jakosti. Zajímá dnes každého a snaha o vysokou jakost a velkou spolehlivost je nejen celosvětovou módou, ale i technickou nutností. Pro laiky je třeba zdůraznit, že na světě neexistuje absolutně spolehlivé bezporuchové technické zařízení. Spolehlivost každého zařízení lze vyjádřit konečným číslem pravděpodobnosti poruchy, právě tak jako každé technické zařízení má svou konečnou životnost. Některé praktické průmyslové metody zvětšování spolehlivosti lze přenést do amatérské praxe, jiné jsou naopak předmětem základního významu a jejich uplatnění mohou ovlivnit pouze velké koncerny. Obceně lze říci, že velký krok vpřed v této oblasti pomohla elektronice udělat kosmonautika a raketová technika, kde spolehlivost řídicích elektronických součástek je prvotní podmínkou jejich použití.

Základní metody zvětšování spolehlivosti

A. Jak plyne z výpočtů spolehlivosti, je zařízení tím spolehlivější. čím jsou spolehlivější součástky, ze kterých je složeno. Celkový výsledek závisí i na tom, zda v zařízení není součástka, která je použita mnohokrát a která je vzhledem k ostatním součástkám výrazně nespolehlivá.

Pro výrobce elektronických zařízení z toho plyne tato základní zásada: nakupovat co nejspolehlivější součástky.

Amatéry musíme upozornit na skutečnost, že většina vyráběných polovodičových součástek se vyrábí a prodává ve dvou jakostních třídách —

v běžném a v průmyslovém provedení. Průmyslové provedení znamená, že součástka je více předimenzována, má např. vyšší dovolené napětí, někdy je i jinak pouzdřena a chráněna. Má větší spolehlivost a odolnost. Samozřejmě že součástky v průmyslovém provedení jsou i výrazně dražší.

Výrobci číslicových zařízení dnes běžně všechny součástky před pájením do desek s plošnými spoji zkoušejí a dokonale měří. Podle výsledků dodatečných měření se součástky s nejlepšími parametry dávají na nejexponovanější místa v zařízení. Stejně důležitá jsou i mezioperační měření na nehotových kompletech, která včas odhalí i vady, které vznikají v technologickém procesu výroby. Z ekonomického hlediska je odhalení vadného integrovaného obvodu před zahájením výroby středního počítače desetkrát až stokrát levnější než jeho nalezení a opravení závady při oživování nebo dokonce při opravě u zákazníka. Navíc důsledná předvýrobní kontrola i technologická kontrola během výroby mnohokrát zkracuje čas nutný k oživování celého zařízení. Dalším důvodem pro předvýrobní kontrolu je i sku tečnost, že kontrolu na nižším stupni součástek a kontrolu sestavovaných dílů většinou provádějí automatické a poloautomatické jednoduché testery, obsluhované pracovníky s velmi malou kvalifikací. Naopak oživování zařízení je velmi náročná ruční práce, prováděná nejkvalifikovanějšími inženýry. Tato praxe (tj. přezkoušet a přeměřit všechny součástky dříve, než je zapájíme do zařízení) je velmi rozšířená mezi radioamatéry a my ji všem doporučujeme. I zde platí to, co v průmyslu. Vadný tranzistor odhalený před zapájením stojí amatéra mnohonásobně menší úsilí než ten, který se musí vyměnit při oživování.

Běžnou praxí je i tzv. zahořování součástek. Je to poměrně nákladný postup, při němž každou důležitou součástku zapneme na několik hodin do pracovního režimu a teprve potom ji měříme. Někteří výrobci takto zkoušejí (někdy i při vyšší teplotě) po mnoho desítek hodin své fiuální výrobky. Tato relativně velmi stará a velmi nákladná technika zahořování vychází z prakticky ověřeného poznatku, že největší množství poruch, které mohou vzniknout na výrobcích elektroniky a jsou způsobeny technologickými vadami použitých součástek, se projeví v prvních několika desítkách hodin provozu, a to zejména při zvýšené teplotě okolí.

B. Spolehlivost elektronického zařízení velmi ovlivňuje i vlastní konstrukce. Rozborem spolehlivosti zařízení se dochází k tomu, že stejné součástky mohou mít statisticky různou spolehlivost podle toho, jak s nimi projektant naloží. Důležitá je zejména volba správného pracovního režimu každé použité součástky (tj. má-li každá součástka ještě určitou rezervu nebo je-li namáhána až na dovolenou mez). Nevhodné je např. umístit hřející diody těsně vedle elektrolytického kondenzátoru apod. Velmi důležitý je správný oběh teplého vzduchu uvnitř přístroje. Všechny elektronické součástky spotřebovávají elektrickou energii, kterou ve formě tepelných ztrát vyzařují. U integrovaných obvodů TTL je např. průměrný ztrátový výkon na jeden logický člen 10 až 25 mW. Odvedení a správné rozložení takto vzniklého tepla je základním konstrukčním problémem. Přitom je

třeba, aby se nepřehřívalo nejen zařízení jako celek, ale také aby nevznikaly velké tepelné uzly uvnitř, kde by se přehřívaly třeba i jen některé součástky.

Ke konstrukční dokonalosti patří i to, že všechny součásti na plošném spoji musí být mechanicky přípevněny. Platí zásada, že připájení za vývody by nemělo být mechanicky nosnou zatěžovanou konstrukcí. Výjimku samozřejmě tvoří mnohovývodové integrované obvody. Ale již tranzistor by měl mít podložku, dioda by neměla viset ve vzduchu atd. Tím spíše by měly být připevněny nmohawattové hřející rezistory nebo velké a těžké elektrolytické kondenzátory. Cinový spoj má relativně malou mechanickou pevnost a velmi snadno se při otřesech poruší.

Obr. 1. Zvětšení spoleblivostí spinače tzv. čtyřprvkovou redmidancí

Obr. 2. Zpilsob zvětšení spolehlivostí diody

C. Jaké jsou současné způsoby zvětšování spolehlivostí! Jednou z cest zvětšování spolehlivosti je volba co největší integrace. Integrovaný obvod, který někdy nahradí i tisíce nebo desetitisíce součástek (tedy diod a tranzistorů), má mnohdy stejnou spolehlivost jako jednotlivý tranzistor. To je velmi podstatné zjištění a ve svém důsledku to znamená, že čím vyšší je integrace, tim větší je spolehlivost.

Dalšim možným způsobem zvětšení spolehlivosti je redundantní zálohování. Volí se takové sériově paralelní spojování stejných součástek, aby při poruše jedné z nich zústala funkce zařízení zachována bez poruchy. Zálohování je dnes vlastně samostatným vědním odvětvím, rozvíjejícím se zejména na základě nároků, které na spolehlivost klade kosmonautika, raketová technika a letecký průmysl. Ukážeme si alespoň základní směry, kterými se toto odvětví ubírá. Pro výchozí výpočet použijeme to, co jsme již řekli o zálohování náhradními díly. Z hlediska spolehlivosti je nejúčelnější zálohovat na co nejnižším stupni. Lépe je mít v záloze každou jednotlivou součástku než celý sestavený díl; pokryjeme tak daleko větší ninožství možných poruch. Můžeme-li při poruše přepnout celý náhradní díl, pokryjeme při automatickém přepínání pouze jednu poruchu. Je-li ale každá součástka několikrát zálohována, pokryje takováto redundance již velké procento poruch a spolehlivost se nezvětší pouze dvakrát, ale mnohokrát. Potíž je pouze v tom. jak provést automatické přepínání sončástek. Začněme n elementárních případů. Màme -li spínací kontakt relé a přidáme-li paralelně druhý kontakt, vyloučili jsme pouze část poruch, a síce poruchy, které

vznikly, když se u prvního kontaktu neúměrně zvětšil přechodový odpor. Chceme-li vyloučit i vady vzniklé rušením vinutí cívky a spečený kontakt, musíme jedno relé nahradit čtyřmi nezávislými relé. Při poruše jednoho relé pak zůstane funkce celku zachována. Stejný případ nastane, chceme-li zvětšit spolehlivost tlačítka nebo vypínače (obr. 1) nebo diody (obr. 2).*) Vznikne tzv. čtveřicová struktura, při které porucha jedné součástky ještě neznamená závadu funkční, tj. závadu celku. Při jisté konstalaci může systém čtyř součástek pracovat i při poruše dvou nebo dokonce tří součástek. Je ovšem zřejmé, že čtveřicová struktura znamená znásobení ceny celého zařízení a podstatné zvětšení jcho objemu. Částečně může tuto nevýhodu odstranit výrobce součástek, kdy se čtveřice diod již zapouzdří do jednoho pouzdra. Cena takto vyrobené diody není samozřejmě čtyřnásobná, ale mnohem nižší. U funkčních celků s logickými integrovanými obvody lze této automaticky pracující redundance dosáhnout tak, že logické členy pracují paralelně. Ovšem paralelně mohou pracovat nejméně tři prvky. Na výstupu paralelního členu musí být vždy majoritní rozhodovací člen, který rozhoduje většinovou metodou o tom, který výstupní signál je při poruše jednoho členu správný. I takovýto způsob je objemově a finančně velmi nákladný, ale používá se.

D. Poruchovost elektronického zařízení lze částečně ovlivnit i správným uživatelským přístupem. Elektronická zařízení většinou nesnášejí dlouhodobé skladování ve vlhkém a agresívním prostředí. Vlhkost dokáže ve velmi krátké době zničit všechny kontakty u relé, u vypínačů, u tlačítek i u jiných elektromechanických dílů. Na plošných spojích vytváří vlhkost polovodivé můstky a svody.

Zvláštností (v porovnání s ostatní technikou) je, že elektronika (zejména číslicová technika vyrobená na bázi integrovaných obvodů) nepotřebuje žádnou preventivní údržbu. Výjimkou jsou některé elektromechanické části, např. čtečky děrné pásky a děrovače nebo elektrické psací stroje. Samotné elektronické díly je však pouze nutné chránit před prachem a zbavovat je prachu. Žádná jiná preventivní údržba zde není nutná.

Vrátíme se nyní do domácnosti každého z nás. Už jsme řekli, že televizor postavíme tak, aby kolem něho mohl proudit vzduch. Nemáme-li možnost umístit ho jinam než do jedné skříňky dnes tak moderní obývací stěny, musíme tento vzduchový koloběh zajistit. U barevných televizorů obvykle nestačí zadní průduch, ale je nutný umělý oběh studeného vzduchu, který vytvoříme např. ventilátorem Mezaxial, který vhání studený vzduch do zadních větracích otvorů zadní stěny přístroje. Je možné ventilátor zapínat natrvalo nebo ho zapínat bimetalovým kontaktním teploměrem, dosáhne-li teplota uvnitř přístroje 30 °C.

^{*)} Pozn. red.: V knize je ponecháno značení jmenovitých hodnot odporů a kapacit podle ČSN 35 8014 z roku 1968. V současné době se značení mění podle nového znění této normy z roku 1983. Převodní tabulky pro staré a nové značení jmenovitých hodnot odporů a kapacit jsou na str. 220.

5. ELEKTRONIKA V DOMÁCNOSTI A JEJÍ PERSPEKTIVNÍ VÝVOJ

V našich domácnostech se elektronické obvody vyskytovaly pouze v rozhlasových přijímačích, v zesilovačích, v gramofonech a v televizorech. Před několika lety se však začaly montovat tranzistory do nástěnných hodin, tyristory do regulátorů elektrických vysavačů a triaky do stmívačů osvětlení a do elektrických sporáků.

Číslicová technika si do domácností našla cestu později a v současnosti lze číslicové obvody v domácnosti najít ve větší míře v kapesních kalkulátorech a v náramkových nebo nástěnných hodinách. Předpovědi v odborných časopisech však číslicovým obvodům v domácnosti slibují velkou budoucnost. Také pohled do katalogů některých zahraničních firem nazna-

čuje, že tuto prognózu berou mnozí výrobci vážně.

Již několik let se vyrábějí šicí stroje obsahující mikropočítače schopné např. vyšívat monogramy nebo libovolné motivy podle zadaného programu. Mikropočítače instalované do praček umožňují vytvářet téměř libovolný počet programů průběhu praní a sušení prádla. Ve sporácích a v magnetronových troubách lze zase podle receptury uložené v paměti zpracovávat optimálním způsobem pokrmy z hlediska např. správné výživy při dietách nebo z hledisek chuťových a ekonomických. Tato zařízení bývají také vybavena hodinami s programátorem, kterým lze určit čas, kdy má být jídlo připraveno. Při zpracování jídel se využívá tepelných čidel instalovaných do jehel zapíchnutých v pokrmu, vlhkostních čidel a dokonce i čidel rozlišujících správnou barvu povrchu jídla.

Dále se vyrábějí telefonní přístroje s tlačítkovou volbou, které umožňují zapsat do paměti telefonní čísla nejčastěji volaných osob. Potom stačí stisknout pouze příslušné tlačítko s nápisem např. BABIČKA a přístroj již sám zvolí číslo. Takový doplněk je nejen pohodlný pro uživatele, ale je také výhodný z hlediska ekonomického využití obvodů telefonních ústředen, neboť zabraňuje nesprávnému volení čísla a volí číslo s optimální rychlostí.

U kazetových nahrávačů televizního programu můžeme na několik dní dopředu zvolit čas nahrávání a požadovaný televizní vysílač. Také v zařízeních pro dálkové ovládání televizních přijímačů je signál číslicově zpracován.

Číslicovými hodinami s možností naprogramování času sepnutí jsou vybavovány rozhlasové přijímače, kávovary a topná tělesa. Vyrábějí se také vysavače na bateriový provoz, které se přes noc nabíjejí a ráno, když majitel odchází do zaměstnání, začnou pracovat. Dotyková čidla řídí jejich pohyb po pokoji náhodným způsobem tak dlouho, dokud je baterie dostatečně nabita. Jednoduché typy elektrických vysavačů jsou vybavovány čidly, která spustí motor vysavače pouze tehdy, když se pohybuje sací trubice, čímž podstatně zmenšují spotřebu elektrické energie.

Vedle kapesních kalkulátorů se objevilo množství kapesních elektronických her, učících strojů, cizojazyčných slovníků a testovacích přístrojů. Dále se rozšířila výroba širokého sortimentu tzv. televizních her, které místo zobrazovací jednotky používají běžný televizní přijímač. Místo mechanické klávesnice nebo tlačítek lze s těmito přístroji komunikovat prostřednictvím tzv. světelného pera, kterým zadáváme hodnoty nebo kterým píšeme na obrazovce.

Nejnovější generace těchto tzv. televizních her neslouží pouze k hraní, ale některé programy se např. mohou využít pro učcní. Pomocí některých počítačů se lze učit optice, hvězdářství, programátorství a dokonce lze vytvářet hudební kompozice. Tak jako kapesní kalkulátor vytlačil z našich knihoven oblíbené logaritmické tabulky, osobní počítače budoucnosti pravděpodobně vytlačí cizojazyčné slovníky a lexikony. Používání osobních počítačů se stalo novým koníčkem a mikropočítače pronikají dále i do ostatních zálib. V létání balónem a v plachtění se mikropočítače používají k výpočtu optimálních podmínek pohybu. Počítače v poslední době přispěly také k dosažení četných rekordů ve sportovních disciplínách. Modeláři používají počítače při řízení provozu modelů vláčků a modelů letadel. V automobilu nedaleké budoucnosti budou mikropočítače řídit optimální režim spalovacích motorů a dbát o bezpečnost a pohodlí cestujících.

Kvalitativně novou oblastí bude číslicové zpracování zvuku a televizního obrazu, od kterého se v budoucnosti očekává odstranění rušivých vlivů při přenosu rozhlasového a televizního signálu.

Analyzátory a syntezátory řeči umožní nový způsob komunikace mezi člověkem a strojem. Usilovně se pracuje také na vývoji domácích robotů pro běžné domácí práce.

Mnozí mávnou rukou nad těmito úvahami a řeknou si, že takových změn v domácnosti se již nedožijí. Ale nebuďme v tomto směru příliš skeptičtí. Jak dlouho trvalo, než si probojovala své místo v našich domácnostech automatická pračka? S elektronickým kalkulátorem si dnes počítají malé děti. Optimisticky (pro někoho ale pesimisticky) působí ta skutečnost, že ceny polovodičových součástek rychle klesají, zatímco cena lidské práce a energie roste. Jedna z firem nabízí svou pračku kombinovanou se sušičkou, která je vybavena potřebnými snímači a řízena mikroprocesorem. V porovnání s dřívějším typem pračky prý tento typ spotřebuje méně než polovinu elektrické energie pro vyprání a usušení stejného množství prádla. Také účelné využívání sluneční energie v domácnostech si vyžádá složité automatizační obvody, nerealizovatelné bez použití moderních číslicových obvodů.

Při zavádění automatizačních prostředků do domácností nebude rozhodující jen úspora energie. S rozšiřujícími se vlivy techniky přibývá zájemců o tyto prostředky. Výrobcům se při velkých sériích vyplatí investovat potřebné náklady do vývoje, neboť současně s automatizací průmyslu vznikají součástky vhodné i pro použití v domácnosti, a tak se cena těchto výrobků stává dostupnou i pro běžnou domácnost.

II. Přístroje a pomůcky

Každý amatér potřebuje domácí dílnu a celou řadu drobných pomůcek a přístrojů.

Tato kapitola nedává ucelený přehled nutných nebo základních přístrojů, protože ten by vyžadoval daleko větší prostor. Snažili jsme se pouze přinést něco, co je v této oblasti pro amatéry novinkou. Aby zde bylo i něco pro začátečníky a méně pokročilé, zařadili jsme do našeho výběru i jednoduchý zkoušeč tranzistorů. Ti, co si jej postaví, jistě ocení jeho přednosti. Jednoduchý přístroj tohoto typu poslouží nejen začínajícímu pionýrovi se zájmem o elektroniku, ale hodí se i do dobře vybavené elektronické laboratoře. Ne vždy se nám časově vyplatí vyndavat ze skříně složitý profesionální zkoušeč, na němž měření všech parametrů trvá obvykle velmi dlouho. Nejčastěji potřebujeme zjistit, zda je součástka dobrá nebo špatná, rychle a co nejjednodušším způsobem.

Hodně místa budeme v této kapitole věnovat přístrojům a pomůckám ke kontrole a měření teploty. Je v tom jistý záměr. Celosvětový vývoj elektroniky spěje k automatizaci a amatérská technika jej sleduje. Chceme-li cokoliv automatizovat, musíme nejprve převést měřené veličiny na elektrický signál. Měření teploty s elektrickým výstupem je užitečné pro regulaci topení v akváriu, pro regulaci topení v malém skleníku pro kaktusy, pro regulaci topení v místnosti a pro mnoho dalších aplikací.

6. ZKOUŠEČ TRANZISTORŮ

Každý, kdo se chce jen trochu zabývat elektronikou, musí měřit a kontrolovat různé elektronické součástky. K samozřejmým věcem ve výbavě třeba i jen skromného pracoviště patří voltmetr a ampérmetr a v posledních

Obr. 3. Zjednodušené schéma zkoušeče tranzistorů

letech i zkušební přístroj pro měření nebo zkoušení tranzistorů. Existuje celá řada různých návodů a způsobů jak tranzistory kontrolovat a měřit. Nejjednodušší je použít přístroj podle schématu na obr. 3. Jeho princip spočívá v tom, že oba tranzistory (jeden typu NPN a druhý typu PNP) jsou zapojeny v kaskádě, která má přes kondenzátor C kladnou zpětnou vazbu. Jakmile přivedeme napájecí napětí, vzniknou vlivem této vazby oscilace a sluchátko zapojené v kolektoru druhého tranzistoru začne pískat. Nepíská-li, je jeden z tranzistorů poškozen. Oscilátor odebírá velmi malý proud a začne pracovat již při napětí okolo l V. Proto k jeho napájení stačí pouze jedna tužková baterie.

Pro vlastní mechanické provedení přístroje použijeme názornější schéma na obr. 4. Všimněte si také obou fotografií, které ukazují, jak přístroj vypadá uvnitř a jak po sestavení. Základem celého přístroje je bakelitová krabice, která byla původně určena jako elektrická zásuvka na omítku (tzv. vodotěsná) pro napětí 220 V a jednofázový rozvod. Dostanete ji běžně koupit v prodejnách s elektroinstalačním materiálem.

Ze zásuvky odstraníme pryžové těsnění a porcelánový vnitřek s kolíkem. Pilkou na kov odřízneme spodní místo bakelitové misky, ve které původně byla porcelánová vložka s kolíky. Kruhový otvor s průměrem 50 mm ještě pilníkem začistíme, neboť do něho musíme natěsno vsadit telefonní sluchátko 50 Ω. Sluchátko po obvodu potřeme epoxidovým lepidlem a necháme 24 hodin vytvrdnout. Předtím však ještě do vrchního panelu skříňky vyvrtáme dva otvory s průměrem asi 8,2 mm pro dvě zdířky a šest otvorů s průměrem 3,2 mm pro nožové konektory. Konektory poslouží jako vývody vnějších tranzistorů. Nožové konektory lze získat vyjmutím z tzv. zásuvky URS s 2 × 13 vývody, používané běžně v mnoha elektronických zařízení. Také je lze čas od času získat ve výprodejích nebo od starších zkušených radioamatérů. Konektory vsadíme do předvrtaných otvorů s průměrem 3,2 mm

Obr. 6. Vnitřní uspořádání zkoušeče tranzistorů

a zalepíme epoxidovým lepidlem. Jejich konce uvnitř skříňky použijeme jako pájecí body pro součástky zkoušeče. Proto přístroj nemusí mít žádný leptaný plošný spoj.

Uvnitř skříňky budou pouze součástky, které vidíte na druhém schématu ohraničené obdélníkem. Jsou to: rezistory $R_1=100~\mathrm{k}\Omega$ a $R_2=330~\Omega$, oba typu TR 151, kondenzátor $C=20~\mathrm{nF}$ (na fotografii je patrné, že je složen ze dvou paralelně zapojených kondenzátorů 10 nF typu TC 180), telefonní sluchátko 50 Ω , a jedna tužková baterie 1,5 V.

Aby bylo možné přístroj uzavřít poklopem bývalé zásuvky, je nutné víčko upravit. Nejprve vyjmeme hřídel, která tvoří závěs, na kterém se víčko otáčí. Pérka, která víčko trvale přivírají, odstraníme. Hřídel musíme upevnit drátovými závlačkami na horních výstupcích, jak je patrné z fotografie celkové sestavy. Tak se víčko zvedne asi o 7 mm v porovnání s původní polohou a vejdou se pod ně konce nožových vývodů. Pro závlačky však musíme jemným vrtáčkem přímo do hřídele vyvrtat dva otvory s průměrem asi 0,8 mm. Se stejnou roztečí vyvrtáme také otvory do výstupků skříňky. Závlačky na koncích zapilujeme nebo zakápneme epoxidovým lepidlem. Komu se nechce dělat tuto obtížnější práci, může nechat zkoušeč bez víčka, ale výsledný dojem a efekt se ztratí. Jak budeme měřit? Ideální bude, když si obstaráme dva etalonové ocejchované tranzistory, jeden typu NPN, druhý typu PNP. Vhodné jsou například velmi známé germaniové tranzistory 101NU71 a GC 508. Ty necháváme v přístroji trvale. Když pak chceme přístrojem zkoušet, zda je neznámý tranzistor dobrý nebo špatný, pouze jeden z vyzkoušených tranzistorů vyjmeme a nahradíme jej zkoušeným tranzistorem. Takto lze zkoušet téměř všechny typy tranzistorů: germaniové, křemíkové, nízkofrekvenční a vysokofrekvenční, výkonové i malovýkonové. Propojíme-li obě zdířky drátem vně skříňky (tedy jakoby přístroj zapneme), musí ve sluchátku pískat — ovšem pouze tehdy, je-li zkoušený tranzistor v pořádku. Střední kmitočet je asi 900 Hz. Píská li zkoušený tranzistor hlubším tónem než původní — etalonový tranzistor, má větší proudový zesilovací činitel. Naopak píská-li vyšším tónem, má menší proudový zesilovací činitel než původní tranzistor. Takto lze přístrojem orientačně zjišťovat i jakost měřených tranzistorů. Poškozený tranzistor nepíská vůbec. Nevýhodou přístroje je, že nepozná kolektor tranzistoru od emitoru. Zaměníme-li kolektor a emitor, přístroj osciluje a píská, protože při takto malém napětí se tranzistor jeví jako prvek souměrný vzhledem k bázi.

Přístroj lze používat také jako bzučák pro zkoušení zkratů nebo pro orientační kontrolu diody. Když do zdířek A a B připojíme diodu, musí jedním směrem procházet proud a sluchátko píská (samozřejmě, že v měřicích svorkách pro tranzistor musíme mít správně oba etalonové tranzistory). Při přepólování přívodů diody sluchátko nesmí pískat, neboť dioda by neměla vést proud.

7. PŘÍSTROJ PRO KONTROLU MEZIZÁVITOVÝCH ZKRATŮ

Přístroj dovoluje odhalovat mezizávitové zkraty v transformátorech, tlumivkách, cívkách i v jiných součástkách, které mají vinutí. Napájecí napětí je 9 V, výstupní efektivní střídavé napčtí je asi 1,5 V (obr. 7).

Přístroj je běžný nízkofrekvenční generátor v tříbodovém zapojení, s napěťovou zpětnou vazbou přes kondenzátor C_1 . Funkci indukčnosti v obvodu zastává zkoušená cívka. Proměnný rezistor R_4 slouží k nastavení stejnosměrného proudu procházejícího tranzistorem T_1 při změně vnějšího napájecího napětí a zároveň umožňuje jemné nastavení výstupního střídavého napětí.

Funkce přístroje je založena na zmenšení amplitudy výstupního napětí při připojení cívky, která má mezizávitový zkrat. Taková cívka má menší

Obr. 7. Přístroj pro kontrolu mezizávitových zkratů

činitel jakosti Q. Nevýhodou přístroje je, že většinou musíme mít alespoň dvě cívky, jednu porovnávací, o níž víme, že je dobrá, a s níž pak porovnáváme výstupní střídavé napětí zkoušené cívky. Pomocí rezistoru R_4 si nastavíme výstupní napětí na zaokrouhlenou velikost a po zapojení zkoušené cívky nesmíme zaznamenat menší výstupní napětí, než jaké jsme získali při měření s porovnávací cívkou. Nízkofrekvenční střídavé napětí měříme střídavým voltmetrem.

8. JEDNODUCHÝ BZUČÁK VESTAVĚNÝ DO TELEFONNÍ VLOŽKY

Bzučák má velmi jednoduché zapojení a provedení a má různé použití. Využívá se dvou vinutí běžné sluchátkové telefonní vložky s malým odporem. Uvnitř sluchátka jsou dvě cívky, jejichž vinutí lze snadno zapojit jednotlivě a použít jako dvě cívky se vzájemnou vazbou pro tranzistorový oscilátor. Jednu z cívek zapojíme do obvodu kolektoru tranzistoru, druhou do obvodu báze tranzistoru. Kolektorové vinutí má vazbu na vinutí v bázi tranzistoru, kmitočet je asi 600 Hz až 1000 Hz. Konce cívek musíme zapojit tak, aby vazba byla kladná. Pokud nelze určit správné zapojení vývodů, zapojíme obě cívky libovolně a nekmitá-li oscilátor, zaměníme konce vinutí u jedné cívky.

Všechny součástky se vejdou do pouzdra vložky Vl, takže vně zůstane pouze napájecí baterie. Oscilátor kmitá již od napětí 1,2 V, takže je možné jej napájet pouze jedním článkem (např. tužkovou baterií). Obě zapojení na obr. 8 jsou funkčně rovnocenná.

Lze použít libovolný tranzistor, podmínkou je pouze, aby proudový zesilovací činitel tranzistoru byl větší než 60. Vzhledem k rozměrům je vhodný např. tranzistor KC 508.

Použití bzučáku je mnohostranné. Můžeme jej využít jako měřič zkratů, jako jednoduchý akustický indikátor sepnutého kontaktu relé atd. Rozšířené je použití bzučáku v automobilu pro signalizaci zapnutých směrovek. Pro tento účel je vhodné připojit bzučák paralelně k přerušovači. Jakmile se přerušovačem zapojí příslušné žárovky blikače, je bzučák zkratován. Rozpojí-li přerušovač obvod, je bzučák napájen přes žárovky blikače, které mají v porovnání s bzučákem zanedbatelný odpor, a bzučák píská. Při sepnutí přerušovače oscilátor nepracuje. Výsledkem je tón přerušovaný v rytmu spínání žárovek blikače.

Jednoduchost konstrukce má jeden háček. Pouze ojediněle se vyskytují telefonní vložky sestavené pomocí šroubového spoje. Většina vložek má pouzdro zalisované a je třeba jisté dovednosti k tomu, abychom sluchátko bez poškození rozebrali a znovu sestavili.

9. JEDNODUCHÝ JEDNOÚČELOVÝ STROBOSKOP

Na obr. 9 je jednoduchý jednoúčelový stroboskop. Již na první pohled jsou patrné jeho výhody. Jako svítící element se používá běžná žárovka, zapojení neobsahuje transformátor a má relativně málo součástek, takže jej lze provést v poměrně malých, téměř miniaturních rozměrech.

Nevýhodou je relativně malý měřicí rozsah přístroje, od 20 otáček za minutu do asi 350 otáček za minutu. Dále je nevýhodou nutnost dokonalého bezpečného krytu, neboť všechny součástky v zapojení jsou spojeny galvanicky se sítí. Navíc si při konstrukci musíme uvědomit, že stabilizační dioda 1NZ70 a její předřadný srážecí rezistor R_7 jsou značně ohřáty, takže musíme zajistit jejich dobré chlazení. Podstatné je i to, že přístroj je nepřenosný, protože vyžaduje síťové napájecí napětí.

Na vyhlazovacím kondenzátoru C_2 nemá být stejnosměrné napájecí napětí větší než +5.5 V, což musíme zajistit vhodným výběrem stabilizační diody. Na bázi tranzistoru T_1 přichází jednocestně usměrněné střídavé napětí, které se na integračním členu, tvořeném rezistorem R_1 , kondenzátorem C_1 a rezistorem R_2 zapojeném v emitoru tranzistoru T_1 , přemění na impulsy s délkou 2 ms a s opakovacím kmitočtem 20 ms. Těmito impulsy se pak moduluje pomaleji běžící multivibrátor, jehož kmitočet určuje kondenzátor C_3 , rezistor R_6 a zejména proměnný potenciometr P_1 , který opatříme stupnicí.

Přes rezistor R_8 se pomocí spínacího tranzistoru T_4 dostávají řídicí impulsy na řídicí elektrodu tyristoru, který pak v rytmu těchto impulsů rozsvěcuje stroboskopické světlo žárovky.

10. STROBOSKOP

Stroboskopická metoda sc používá např. ke kontrole a seřizování spalovacích motorů. Tato metoda spočívá v tom, že po každém rozepnutí přerušovače se na krátký čas rozsvítí lampa osvětlující rysku na setrvačníku nebo jiné rotující části motoru. Ryska se pohybuje kolem stupnice, na níž je

Obr. 9. Jednoduchý jednoúčelový stroboskop

vyznačena odpovídající poloha válce pro okolí jeho horní úvrati v úhlové míře. Při osvětlování stroboskopickou lampou se ryska vedle stupnice jakoby zastaví v místě, které odpovídá nastavenému předstihu. Osvětlené místo musí být samozřejmě chráněno před rušivým vlivem okolního světla a záblesky lampy musí být krátké. Např. při průměru setrvačníku 30 cm a při 6000 otáčkách za minutu musí být délka záblesku kratší než 5 μs, aby se kontura rysky příliš nerozmazala.

Jako zdroj světla je nutné použít xenonovou výbojku, ke spínání proudu do primárního vinutí ionizačního transformátoru je vhodné použít tyristor. Zapojení stroboskopu je na obr. 10. Stroboskop je napájen ze zdroje napětí 310 V. Toto napětí získáme použitím síťového transformátoru a usměrněním, pro přenosný přístroj pak musíme použít měnič. Získáváme-li napětí z nízkého napětí sítě, musíme dbát na bezpečnost obsluhy, a proto použijeme oddělovací transformátor.

Nulový a vstupní vodič připojujeme paralelně k přerušovači, aby na vstupní elektrodě byly kladné impulsy. Rezistor R_1 omezuje proud do řídicí elektrody tyristoru a dioda D_1 chrání přechod této elektrody proti průrazu zápornými zákmity na zapalovací cívce.

Transformátor Tr generuje ionizační impulsy, které způsobují zapálení výbojky. Jde o běžný typ transformátoru, který se používá v elektronických blescích. Může být např. navinut na feritovém jádru a průměrem 4,5 mm a délkou 26 mm. Primární vinutí má 16 závitů vodiče CuL s průměrem 0,35 mm a sekundární vinutí má 650 závitů vodiče CuL s průměrem 0,1 mm.

11. OTÁČKOMĚR

Popisovaný otáčkoměr je určen k měření otáček spalovacích motorů s přerušovačem. Má lineární stupnici 0 až 10 000 otáček za minutu, je napájen z automobilového akumulátoru 12 V a je vhodný pro automobily se zaporným pólem na kostře. Může být zhotoven buď jako přenosný servisní

přístroj, který se připojí k motoru přívodními šňůrami a krokosvorkami, nebo může být vestavěn přímo do palubní desky automobilu. Schéma otáčkoměru je na obr. 11. Mezi body 1 a 2 zapojíme akumulátor. Bude-li přístroj trvale připevněn na vozidle, bude připojen až na spínací skříňku, paralelně k obvodu zapalování. Body 3 a 1 jsou připojeny paralelně ke kontaktům přerušovače. Otáčkoměr je vlastně měřič kmitočtu, v jehož rytmu spíná proud procházející primárním vinutím cívky.

Obr. 11. Otáčkoměr (diody D₁, D₂, D₃ jsou typu OA9)

Zapalovací impulsy ze vstupních svorek jsou nejprve zpracovány ve filtračních obvodech R_1 , C_1 a R_2 , C_2 . Přes kondenzátor C_3 jsou pak přivedeny na bázi tranzistoru T_1 , který má úlohu tvarovače. Přechod báze — emitor je proti záporným špičkám vznikajícím na indukčnosti zapalovací cívky chráněn diodou D_1 . Signálem z tranzistoru T_1 se spouští monostabilní multivibrátor s tranzistory T_2 a T_3 . Časovou konstantu tohoto obvodu lze nastavit proměnným rezistorem R_9 . Každé sepnutí multivibrátoru, jehož výstupní impulsy jsou vždy stejně široké, vyvolá úbytek napětí na odporu R_{10} a výchylka ručky měřidla mA je přímo úměrná spínacímu kmitočtu přerušovače. To platí samozřejmě pouze tehdy, je-li napájecí napětí konstantní. Proto je v obvodu napájecí napětí stabilizováno diodou D_4 .

Přístroj je nutné ocejchovat tónovým generátorem. Pro cejchování platí tyto vztahy:

Pro čtyřdobý motor

$$f=rac{nV}{120}$$
Pro dvoudobý motor
 $f=rac{nV}{60}$

kde f je cejchovní kmitočet, n otáčky $[\min^{-1}]$, V počet válců motoru.

Tabulka 1. Vztah mezi otáčkami a kmitočtem pro různé druhy motorů

Otáčky [min ⁻¹]	Čtyřdobý motor		Dvoudobý motor	
	4 válce	6 válců 8 válců	l válec 2 válce	3 válce
750	25 Hz	37,5 Hz 50 Hz	12,5 Hz 25 Hz	3 7 ,5 H
1500	50 Hz	75 Hz 100 Hz	25 Hz 50 Hz	75 Hz
3000	100 Hz	150 Hz 200 Hz	50 Hz 100 Hz	$150~\mathrm{Hz}$
4500	150 Hz	225 Hz 300 Hz	75 Hz 150 Hz	$225~\mathrm{Hz}$
6000	200 Hz	300 Hz 400 Hz	100 Hz 200 Hz	$300~\mathrm{Hz}$
7500	250 Hz	375 Hz 500 Hz	125 Hz 250 Hz	375 Hz
9000	300 Hz	540 Hz 600 Hz	150 Hz 300 Hz	450 Hz

Použitý měřicí přístroj má citlivost 1 mA na plnou výchylku

Vztah mezi otáčkami a kmitočtem generátoru je pro nejpoužívanější typy motorů číselně vyjádřen v tab. 1.

12. PŘÍSTROJ KE ZJIŠŤOVÁNÍ KOVOVÝCH PŘEDMĚTŮ

Přístroj, jehož schéma je na obr. 12, slouží ke zjišťování kovového vodovodního potrubí nebo elektrického vedení pod omítkou, za dřevěným obložením, pod podlahovou krytinou atd. Napájecí napětí je stabilizováno diodou D_4 , takže k napájení přístroje mohou být použity baterie a není nutné upravovat citlivost přístroje s ohledem na jejich stav.

Obr. 12. Přístroj ke zjišťování kovových předmětů

Tranzistor T_1 s cívkami a vazebními členy tvoří oscilátor, kmitající na kmitočtu asi 150 kHz. Potenciometry R_1 a R_2 se jemně a hrubě nastavuje pracovní bod, v němž oscilátor začne kmitat. Diody D_1 a D_2 usměrňují střídavě napětí z kolektoru tranzistoru T_1 . Toto napětí je filtrováno kondenzátorem C_4 a řídí tranzistor T_2 . Tranzistory T_2 a T_3 jsou v Darlingtonově zapojení. V kolektoru tranzistoru T_3 je přes ochranný rezistor R_9 zapojena žárovka Ž. Tato žárovka se rozsvítí v okamžiku, kdy při rozladění oscilátor přestane kmitat.

Všechny prvky kromě feritové tyčky, baterie, spínače a žárovky lze umístit na desce s plošnými spoji. Celý přístroj je umístěn ve skříňce z plastu. Aby kovový plášť baterie a ostatní kovové součástky neovlivňovaly citlivost přístroje, je feritová tyčka s vinutím od těchto součástek co nejvíce vzdálena.

Čidlo tvoří feritová tyčka průměru 10 mm a délky 100 mm; vyhoví však i tyčka jiných rozměrů. Při propojování je nutné dávat pozor na správný smysl vinutí. Nerozkmitá-li se oscilátor, je nutné zaměnit vývody jednoho vinutí.

Rezistor R_6 a kondenzátor C_5 tvoří kladnou zpětnou vazbu, která zvětšuje citlivost přístroje. Při přiblížení feritové tyčky ke kovovému předmětu se rezonanční obvod rozladí, oscilátor vysazuje a žárovka začne blikat. Po větším přiblížení zůstává žárovka svítit trvale.

13. ZKOUŠENÍ ZÁŘIVKOVÝCH TĚLES

Při poruše zářivky je mnohdy nesnadné určit, je-li závada v obvodu pro připojení zářivky nebo je-li vadná samotná zářivková trubice. Navíc bývá zářivka umístěna často až u stropu a obvykle je špatně přístupná.

Určit závadu bez měřicích přístrojů pomůže jednoduchý přípravck. Skládá se ze dvou částí. Základem jsou dvě patice ze staré zářivkové trubice. V jedné z nich je připojena žárovka 220 V/25 W se závitem Mignon (patice E14), ve druhé je rezistor 56 Ω pro zatížení minimálně 3 W (na obr. 13 je použit rezistor typu TR 510, 6 W). Na obou paticích je ještě přilepena izolační trubice z PVC nebo z pertinaxu. Nejvhodnějším lepidlem je Epoxy

Obr. 13. Přípravek ke zkoušení zářivkových těles

1200. Izolační trubice má zajistit přípravek tak, aby všechny jeho živé části byly chráněny před náhodným dotykem.

Práce s přípravkem je jednoduchá. Při poruše zářivkového osvětlení (přípravek lze použít i při instalaci nových zářivek) vyjmeme zářivkovou trubici a místo ní zasuneme obě části přípravku (na obr. 13 v bodech A, B a C, D). Po zapnutí sítového napětí při správné funkci přerušovače, správné tlumivce a správném napětí sítě svítí žárovka v přípravku poloviční intenzitou a asi v sekundových intervalech zhasíná, neboť se její světlo přerušuje startérem. Svítí-li žárovka plnou intenzitou, je zpravidla zkrat mezi závity tlumivky. Není-li světlo žárovky přerušováno, je vadný startér.

14. MĚŘENÍ TEPLOTY S TERMOELEKTRICKÝM ČLÁNKEM A OPERAČNÍM ZESILOVAČEM

Na obr. 14 je typické schéma připojení termoelektrického článku k operačnímu zesilovači OZ. Termoelektrický článek je aktivním zdrojem

Obr. 14. Měření teploty termoelektrickým článkem

elektrické energie s téměř nulovým vnitřním odporem a s velmi malým svorkovým napětím. Typický přírůstek svorkového napětí na 100 °C je kolem 5 mV. Teploměr ukazuje závislost tohoto elektrického napětí na teplotě. Stupnice takovéhoto teploměru je s určitou přesností v široké oblasti měření lincární. Připojení operačního zesilovače k termoelektrickému článku sleduje obvykle dva cíle — oddělit a zesílit měřený signál a upravit stupnici měřidla tak, aby ukazovala lineárně až od hodnot teploty, které nás zajímají.

V našem zapojení je zesílení celého stupně dáno poměrem odporů R_7 a R_9 ; potenciometrem R_5 se nastavuje úroveň signálu — tedy teploty, od které je výstupní napětí kladné, tj. počátek měření. Vlastní termoelektrický

článek je kladným koncem výstupního napětí připojen k neinvertujícímu vstupu operačního zesilovače. Přenos je při ideálním operačním zesilovači dán vztahem

$$rac{I_{
m L}}{V_{
m in}} = rac{1}{R_{
m 10} + R_{
m 11}} \cdot rac{R_{
m 7} + R_{
m 9}}{R_{
m 7}}$$

kde $I_{\rm L}$ je proud procházející do připojeného měřidla — miliampérmetru, jehož stupnice je ocejchována ve stupních Celsia,

V_{in} je aktivní výstupní napětí termoelektrického článku Th.

Pro přesné určení teploty platí při použiti termoelektrických článků řada doporučení. Kromě vlastního místa měření (snímače) má termoelektrický článek obvykle ještě termostatové srovnávací místo s konstantní teplotou, s níž vlastně teplotu v měřeném místě srovnáváme, a kompenzační vedení, kterým jsou obě místa mezi sebou propojena.

Vlastní termoelektrický článek je vytvořen bodovým svařením dvou kovů (pásků nebo drátů). Dále uvedeme typické termoelektrické články.

Článek Fe-ko, složený z kovů železo a konstantan.

Je vhodný pro měření teplot od —200 °C do 900 °C. Výstupní napětí při —200 °C ... 0 V, při 100 °C ... 5,37 mV, 200 °C ... 10,95 mV, 300 °C ... 16,56 mV, 500 °C ... 27,85 mV, 900 °C ... 53,07 mV.

Článek ch-k, složený z kovů chromel a kopel.

Je vhodný pro teploty od -50 °C do +600 °C, krátkodobě až do 800 °C. Výstupní napětí při 0 °C ... 0 V, při 100 °C ... 6,95 mV, při 200 °C ... 14,66 mV, při 300 °C ... 22,90 mV, při 500 °C ... 40,15 mV a při 800 °C ... 66,36 mV.

Kromě těchto normovaných termoclektrických článků se používá mnoho jiných typů. Termoelektrické napětí vykazují při vzájemném působení téměř všechny kovy. Pro méně náročná měření a pro amatérské účely se nejvíce používá snadno dostupný termoelektrický článek Fe—Cu (želez o a měď) nebo Cu-ko (měď a konstantan).

Pro měření s termoelektrickými články a pro zacházení s nimi jsou v ČSSR vydány dvě normy:

ČSN 25 8304 — Prevádzkové termoelektrické snímače teploty, 1982 ČSN 25 8010 — Směrnice pro měření teplot v průmyslu, 1975.

15. MĚŘENÍ TEPLOTY NA NEVYVÁŽENÉM TERMISTOROVÉM MŮSTKU

Teplotu lze měřit přímoukazujícím měřicím ručkovým přístrojem, připojeným k nevyváženému termistorovému můstku prostřednictvím operačního zesilovače OZ. Termistory jsou vhodné pro měření nízkých teplot v rozmezí od -40 °C do +150 °C. Všechny součástky zapojené v můstku (oba termistory a oba rezistory) mají stejný odpor $R=120~\Omega$. Jeden z termistorů je v místě měření teploty, druhý má být v místě, které má konstantní (neboli vztažnou) teplotu, vzhledem k níž vlastně teplotu měříme.

Výstupní napětí je dáno přenosem operačního zesilovače

$$U_3 = U_1 \cdot \frac{R_2}{R_1}$$

V konkrétním případě podle obr. 15, kde $R_2=120~{\rm k}\Omega$ a $R_1=1,2~{\rm k}\Omega$, platí pro napětí $U_3=U_1.100.$

V zapojení musíme dodržet tyto obecné zásady:

Odpor rezistoru R_1 má být daleko větší než poloviční odpor R prvků v měřicím můstku. Dále musí platit: $R_1 \doteq R_3$ a $R_2 \doteq R_6$.

Obr. 15. Měření teploty na nevyváženém termistorovém můstku

Nulové výstupní napětí U_3 pro dohodnutou počáteční teplotu nastavíme potenciometrem nebo trimrem R_7 . Pro přímé měření teploty může být stupnice milivoltmetru M ocejchována přímo ve stupních Celsia. Rozsah stupnice upravíme podle potřeby změnami zesílení, tedy nejlépe změnou odporu rezistoru R_2 .

16. OBVODY PŘEVÁDĚJÍCÍ LINEÁRNĚ TEPLOTU NA NAPĚTÍ

Pro rozsah teplot od —30 °C do +130 °C s odchylkou od linearity menší než 1 % lze použít zapojení podle obr. 16. V zapojení je využita lineární závislost napětí báze — emitor křemíkových tranzistorů na teplotě. Tato závislost je asi 2,2 mV/K.

Tranzistor T, který je použit jako teplotní čidlo, připojíme k obvodu stíněnými vodiči. Tranzistor předem vyzkoušíme, několikrát zahřejeme a zchladíme v rozmezí požadovaných měřených teplot a teprve potom vlepíme do sondy. Lze využít libovolný křemíkový tranzistor, avšak vzhledem k tomu, že obvykle požadujeme rychlou reakci obvodu na změnu měřené teploty, použijeme tranzistor malých rozměrů. Proudový zesilovací činitel použitého tranzistoru má být v mezích 100 až 200. Sonda, v níž je tranzistor upevněn, musí tvarem a materiálem odpovídat požadované aplikaci, a proto ji nebudeme podrobněji popisovat. Zásadně by však měla vyhovět požadavku

bezpečnosti při použití sítového zdroje (zejména při aplikaci v lékařství) a nesmí vlivem nadměrného odvádění tepla zhoršit přesnost měření. Její konstrukce samozřejmě ovlivní i teplotní setrvačnost přístroje.

Přístroj je napájen ze zdroje $10~\rm V$. Protože přesnost měření vyžaduje stabilní napájecí napětí, je použit integrovaný stabilizátor napětí MA 7805, který stabilizuje referenční napětí obvodu. Tranzistor T je zapojen v jedné úhlopříčce vstupního můstku operačního zesilovače MAA 741. Při ohřívání tranzistoru se zmenšuje napětí mezi bází a emitorem, avšak působením operačního zesilovače a děliče z rezistorů R_4 a R_5 zůstává napětí $U_{\rm CE}$ na

Obr. 16. Měření teploty pomocí tranzistoru

Obr. 17. Měření teploty pomocí diody

tranzistoru konstantní. Změna napětí mezi kolektorem a bází tranzistoru je úměrná teplotě tranzistoru použitého jako čidlo. Výstupní napětí U je 0 až 2.5 V pro rozsah měřených teplot 0 až 100 °C. Přístroj nastavujeme:

A. Čidlo umístíme do prostředí s teplotou 0 °C (tj. do tajícího ledu) a po ustálení teploty nastavíme potenciometrem R_2 nulové napětí U.

B. Čidlo umístíme do vody 100 °C teplé a potenciometrem R_4 nastavíme napětí 2,5 V.

Postup několikrát opakujeme a teplotu přitom můžeme kontrolovat

jiným teploměrem. Výstup U nesmíme zatěžovat menším odporem než $1 \text{ k}\Omega$ a je vhodné, je-li tento zatěžovací odpor stejný jako odpor později používaného měřidla nebo navazujícího obvodu. Současně zjistíme tepelnou setrvačnost čidla.

Při měření teplot nižších než 0 °C se změní polarita napětí U. Chceme-li k měření teploty používat ručkové měřidlo, je vhodné zvolit na stupnici místo pro teplotu 0 °C přibližně do 1/4 rozsahu (potenciometrem R_2) a stupnici přístroje ocejchovat s použitím přesného teploměru v olejové lázni.

Na obr. 17 je schéma zapojení obvodu, který jako čidlo používá místo tranzistoru diodu. První operační zesilovač typu MAA 748 pracuje jako zdroj konstantního proudu 50 μA, který prochází diodou. Proud procházející do invertujícího vstupu operačního zesilovače lze zanedbat, neboť je přibližně o tři řády menší.

Napětí, které vznikne na diodě, je úměrné teplotě diody. Toto napětí je zesilováno operačním zesilovačem stejného typu. Potenciometrem R_4 nastavujeme nulové napětí při 0 °C a potenciometrem R_6 nastavujeme zesílení druhého operačního zesilovače tak, aby výstupní napětí odpovídalo požadovanému rozsahu teplot. Výhodou tohoto zapojení je vzájemná nezávislost obou potenciometrů, takže není nutné nastavování opakovat. Diodové čidlo je nutné dokonale odstínit, neboť je připojeno k obvodu přes velké odpory a ani jeden z jeho přívodů není uzemněn. Obvod je nutné napájet ze stabilizovaného napájecího zdroje. Lze použít zdroj s integrovaným obvodem typu MAA 723 (obr. 18). Zatěžovací impedance by měla být větší než 10 k Ω .

Obr. 19. Regulátor teploty

17. REGULÁTOR TEPLOTY

Základem regulátoru teploty na obr. 19 je vyvážený termistorový můstek, v jehož diagonále je připojen operační zesilovač OZ. Teplotním čidlem je termistor R_6 , který má zastudena odpor 1,2 k Ω . Přístroj pracuje takto: Požadovaná teplota se zvolí stisknutím jednoho z přepínacích spínačů S_1 až S_4 (konstrukčně nejlepší je typ ISOSTAT, u něhož se po zapnutí jednoho spínače druhý spínač rozepne). Přepínačem se k můstku přiřadí jeden z řady rezistorů R_1 až R_4 . Má-li čidlo (tj. termistor R_6) v této fázi regulace větší odpor, než přísluší požadované teplotě, a můstek je proto rozvážený, objeví se na výstupu operačního zesilovače OZ kladné napčtí a relé Re_1 (Re_2) sepne svými kontakty topení v prostoru, v němž se nachází teplotní čidlo s termistorem R_6 . Zvětší-li se teplota natolik, že dojde k rovnováze v můstku (tj. v diagonále můstku je napětí, které limituje k nule), napětí na výstupu operačního zesilovače OZ klesá, relé Re_1 (Re_2) rozepne.

Je zřejmé, že odpory rezistorů R_1 až R_4 , ke kterým jsou přiřazeny konkrétní teploty, jsou pouze orientační. Přesné nastavení závisí na typu a na druhu termistoru. Vyrovnání můstku se provádí obvykle pro jednu teplotu přesně tak, že např. odpor R_1 necháme orientační, termistorové čidlo umístíme v lázni s teplotou přesně 20 °C a rezistorem R_7 při odpojeném rezistoru R_{10} vyrovnáme můstek na nulové napětí na výstupu operačního zesilovače OZ. Požadujeme-li přesnou úroveň teploty, musíme sepnutí relé Re_1 (Re_2) při ostatních teplotách dostavit změnami odporů R_2 až R_4 . Spínačů S_1 až S_4 a příslušných rezistorů může být samozřejmě neomezené množství. Zajíma-

vé je, že operační zesilovač OZ vykazuje bez zpětné vazby plné zesílení, což zaručuje dostatečnou citlivost zařízení. Zajímavé je také zavedení teplotní hystereze pomocí rezistoru R_{10} . Ten připojíme až po nastavení celého zařízení. Velikost hystereze je v našem zapojení asi 5 °C.

Na obr. 20 je analogie regulátoru teploty s termistorovým můstkem pro jednu teplotu, nastavenou v tomto případě trimrem R_3 . Na tomto zapojení je důležité zejména to, že operační zesilovač OZ není připojen k diagonále můstku oběma svými vstupy, ale pouze jedním, neinvertujícím vstupem. Druhý diagonální výstup z můstku je uzemněn. Citlivost zařízení a úroveň sepnutí se nastavuje trimrem R_6 . Záporná zpětná vazba tvořená tímto trimrem a rezistorem R_7 spolu s kondenzátorem C_1 je zde nutná proto, že druhý neinvertující vstup operačního zesilovače OZ nemůžeme nechat nepřipojený. Pro správnou funkci musí být zesílení celého stupně co největší, takže i poměr odporů R_7/R_6 , který toto zesílení určuje, musí být dostatečně velký.

18. INDIKÁTOR TEPLOTY

Indikátor teploty je jednoduchý měřicí přístroj, zjišťující, je-li v měřeném místě teplota nižší nebo vyšší, než je nastavená hranice teploty. Zelená žárovka signalizuje, že teplota je pod nastavenou hranicí, červená žárovka signalizuje, že teplota je vyšší. Hranici lze nastavit odporovým trimrem v rozmezí 25 °C až 50 °C. Při změně hodnot nastavovacích prvků a odporů ve vstupní části indikátoru lze hranici teploty posouvat až k hodnotě 100 °C. Indikátor je vhodný ke sledování teploty vody v akváriu, teploty ve sklenících, nebo teploty vody v ústředním topení. Zajímavá aplikace je v časopise RADIO SSSR č. 5 z r. 1977. Přístroj byl doplněn speciální sondou z niklové trubky, s držadlem, dlouhou 125 mm, s průměrem 4 mm. Termistor byl umístěn ve špici této trubky v kulatém hrotu. Při nastavené hranici teploty na 39,5 °C se tento speciální přístroj využíval při hromadném veterinárním vyšetřování skotu. Podobných aplikací lze nalézt celé desítky. Přesnost rozlišení hranice teploty je okolo 0,1 °C. Rychlost měření je dána typem použitého termistoru a tepelnými vlastnosti sondy, ve které je termistor umístěn. Doba ustálení měření závisí zejména na tepelné setrvačnosti sondy a termistoru, ale i na výchozí teplotě, ve které byla sonda umístěna před začátkem měření. Při použití perličkového termistoru umístěného v sondě s dobrou tepelnou vodivostí lze orientačně počítat s dobou měření kolem 20 sekund. Princip přístroje a způsob funkce je patrný z obr. 21a. Vstupní část přístroje tvoří odporový můstek tvořený rezistory R_3 , R_4 , $R_8 + R_6$ a R_7 , ke kterému je paralelně připojen termistor R_{12} , umístěný v měřicí sondě. Poměry ve vstupní části jsou lépe patrné ze zjednodušeného schématu na obr. 21b.

Pro měření rozhraní teploty musí být můstek v rovnováze. Rovnováha můstku je určena vztahem $R_{\rm a}R_{\rm d}=R_{\rm b}R_{\rm c}$.

Ve skutečném schématu je
$$R_{\mathrm{a}}=R_{\mathrm{3}};\,R_{\mathrm{b}}=rac{R_{\mathrm{7}}R_{\mathrm{12}}}{R_{\mathrm{7}}+R_{\mathrm{12}}}\,;$$

Obr. 21. Schéma indikátoru teploty: a) celkové schéma, b) zjednodušené schéma vstupní části

 $R_{\rm c}=R_4;\ R_{\rm d}=R_6+R_8.$ Potřebujeme-li poměry v můstku upravit (např. proto, že máme jiný termistor nebo že chceme nastavit vyšší hranici teploty), musíme upravit odpory rezistorů $R_3,\ R_4,\ R_6$ a R_8 tak, aby po dosazení hodnot do vztahu pro rovnováhu můstku platila rovnost. Změnou trimru R_6 můstek rozvažujeme, a tím můžeme měnit indikované rozhraní teploty. Místo trimru R_6 lze použít potenciometr s ocejchovanou stupnicí teploty. Připomeňme ještě, že velikost napájecího napětí není pro poměry ve vyváženém můstku rozhodující. U odporového můstku se velikost napájecího napětí teoreticky vůbec neuplatňuje, v našem případě ovlivňuje změna napájecího napětí příčný proud v můstku a ten ovlivňuje charakteristiku termistoru R_{12} . Proto je stejnosměrné napětí vstupní části indikátoru teploty ještě stabilizováno diodou D_1 .

Přístroj pracuje takto: Je-li indikovaná teplota nižší než nastavené rozhraní teploty, je na vstupu 2 operačního zesilovače kladnější napětí než na vstupu 3, takže na výstupu 6 operačního zesilovače je záporné napětí. Je to způsobeno tím, že termistor má v chladnějším prostředí větší odpor než při zahřátí. Záporné napětí je z výstupu 6 vedeno před rezistor R_{13} na báze spínacích tranzistorů T_1 a T_2 . Tranzistor T_1 je typu NPN a na toto napětí nereaguje. Tranzistor T₂ je typu PNP, záporným napětím na bázi se otevře a jeho kolektorový proud rozsvítí zelenou žárovku \mathbb{Z}_2 . Jakmile na termistoru R_{12} začne stoupat teplota, začne jeho odpor klesat a napětí mezi vstupy 2 a 3 operačního zesilovače se vyrovnává. Zesilovač je zapojen v diagonále můstku (jako při můstkových měřeních galvanometr). Protože operační zesilovač má velké zesílení, změní se záporné napětí na výstupu 6 na kladné hned v okamžiku, když se vstup 3 stane jen o málo kladnějším než vstup 2. Kladným napětím na výstupu 6 operačního zesilovače se otevře tranzistor T_1 , který svým kolektorovým proudem rozsvítí červenou žárovku Z_1 . Zelená žárovka samozřejmě zhasne.

Z výkladu vyplývá, že nastavení hranice rozlišování teploty se mění změnou poměrů ve vstupní části indikátoru jiným nastavením poměrů v odporovém můstku trimrem R_6 . Trimr nastavujeme při oživování přístroje tak, že termistor s celou sondou umístíme v termostatu nebo alespoň v dokonale promíchané kapalině s ustálcnou teplotou. Jakmile v termostatu nebo v kapalině dosáhneme potřebné hraniční teploty, natočíme trimr R_6 tak, aby žárovky právě přepnuly. Další trimr R_9 je zapojen v záporné zpětné vazbě zesilovače a nastavuje se jím citlivost celého přístroje. Orientačně lze uvést, že při změně teploty 0+0.3 °C se změní výstupní napětí zesilovače v bodě 6 asi 0+3 V.

Přístroj má dva alternativní způsoby napájení — ze sítě nebo ze čtyř plochých baterií. Odběr proudu je asi 100 mA až 200 mA, použijeme-li žárovky 6,3 V/50 mA. Rezistory označené hvězdičkou volíme podle potřebného proudu pro stabilizační diody D_1 , D_5 , D_6 . Orientační hodnoty jsou R_1 , $R_2 = 100 \Omega$, R_{16} , $R_{17} = 56 \Omega$, R_{18} , $R_{19} = 820 \Omega$. Rezistory R_{14} a R_{15} jsou předřadné rezistory k žárovkám; volíme je podle typů žárovek a s ohledem na to, budeme-li přístroj používat častěji se síťovým zdrojem nebo šetříme-li

proud baterií a spokojíme-li se s menší svítivostí žárovek. Odpor rezistorů

 R_{14} a R_{15} je asi 33 Ω .

Přístroj může sloužit nejenom k hlídání teploty, ale i k přímé regulaci teploty, např. tak, že místo žárovek připojíme vinutí relé, která spínají větrák (červená žárovka) nebo topení (zelená žárovka). Operační zesilovač je při takovémto použití přístroje vhodné vybavit tzv. hysterezí. Změní se tím poněkud přesnost přístroje, ale zabrání se kmitání spínacích relé v době, kdy teplota v hlídaném prostoru kolísá kolem nastavené hodnoty. Hystereze zde znamená zavedení kladné zpětné vazby z výstupu 6 operačního zesilovače na vstup 3. Tato kladná zpětná vazba způsobí, že při stoupání teploty zesilovač překlopí a tranzistor T_1 sepne při jiné teplotě, než je obvyklé, když teplota klesá. Z hlediska operačního zesilovače to znamená, že na jeho vstupech je nutný jiný rozdíl napčtí při stoupání vstupního napětí a jiný při klesání vstupního napětí.

Označíme-li tento rozdíl $U_{\rm H}$, lze jej vyjádřit vztahem

$$U_{\rm H} = \frac{R_{\rm x}}{R_{\rm x} + R_{\rm y}} \; U_{\rm vyst}$$

Z tohoto vztahu pak snadno určíme konkrétní odpory R_x a R_y (hodnotu napětí U_{vyst} odhadneme).

19. PŘEVODNÍK PRO MĚŘENÍ EFEKTIVNÍ HODNOTY STŘÍDAVÉHO NAPĚTÍ

Určit efektivní hodnotu střídavého napětí, které má průběh odlišný od běžného sinusového průběhu, není obvykle snadné. V amatérském vysílání se tento problém běžně vyskytuje např. tehdy, chceme-li měřit proud přicházející do vysílací antény. K měření se v tomto případě pou vají ampérmetry s termoelektrickým článkem.

Většina běžných měření efektivní hodnoty nesinusových průběhů je založena na měničích, které využívají skutečnosti, že efektivní hodnota střídavého proudu je přímo úměrná tepelným účinkům, které tento proud vyvolává.

Obr. 22. Měření efektivní hodnoty střídavého napětí

Jednou z velmi používaných metod je využití operačního zesilovače a nepřímo žhavených termistorů zapojených podle obr. 22. Má-li operační zesilovač OZ nekonečné zesílení, je můstek v rovnováze (můstek je složen z rezistorů R_1 a R_2 a z nepřímo žhavených termistorů R_{t1} , R_{t2}), platí-li

$$\frac{R_1}{R_{\rm t1}} = \frac{R_2}{R_{\rm t2}}$$

V praxi se obvykle volí $R_1 = R_2$. Oba nepřímo žhavené termistory se volí také stejné, $R_{t1} = R_{t2}$. Efektivní hodnota střídavého napětí U_1 na vstupu se potom rovná stejnosměrnému výstupnímu napětí U_3 .

Rezistorem R_3 nastavíme kompenzační napětí a zároveň nulovou výstupní úroveň napětí U_3 pro nulové vstupní napětí U_1 . K napájení operačního zesilovače OZ lze v tomto případě použít nesouměrný zdroj s napětím $2U_N$, takže všechna tři napětí, U_N , U_1 a U_3 , mohou mít v tomto případě jeden společný uzemnčný bod.

Přesnost měření efektivní hodnoty je dána stálostí parametrů termistorů, souběhem jejich teplotních součinitelů a shodností tzv. topných průběhů. Pro amatéry je použití nepřímo žhavených termistorů obtížné, neboť nejsou na tuzemském trhu pasívních součástek k dispozici. Amatérsky lze takový termistor zhotovit tak, že běžný termistor vyhříváme odporovým vinutím na tělese termistoru. Lze ovšem očekávat, že dosažená přesnost měření bude relativně horší.

Podstatně větší přesnosti výsledků lze při použití popisované metody dosáhnout s použitím termistorů se dvěma vinutími (žhavicími vlákny). Tak vznikne tzv. kompenzovaný můstkový měnič (obr. 23). Jde vlastně o stejné zapojení ako na obr. 22, pouze obvod můstku je doplněn operačním zesilovačem s O , který napájí kompenzační žhavicí vlákna termistorů. Kompenzační napájení měniče určuje a udržuje teplotu termistorů na konstantní velikosti, a tím potlačuje změny odporů v závislosti na změnách střídavého napětí. Z toho důvodu není třeba vybírat termistory se shodnou převodní charakteristikou. Teplotní kompenzace zvětšuje přesnost určení efektivní hodnoty střídavého napětí.

Obr. 23. Měření efektivní hodnoty s nepřímo žhavenými termistory

Předností tepelných metod určení efektivní hodnoty střídavého napětí (proudu) je široký kmitočtový rozsah měření a malý vliv činitele tvaru měřeného napětí na přesnost převodu. Nevýhodou je poměrně velká časová konstanta, daná teplotním ustálením, a malá přetížitelnost měniče.

Tyto a podobné obvody mají význam nejen při pouhém měření, ale i tehdy, potřebujeme-li regulovat nebo ve zpětné vazbě stabilizovat střídavý proud řízený tyristorovými měniči, a v dalších aplikacích, zejména v regulaci proudů a napětí nesinusových průběhů.

III. Napájecí zdroje a měniče napětí

Napájecí zdroje jsou základem všech přístrojů a pomůcek, které ke své činnosti potřebují elektrickou energii. Rozvoj elektroniky si přímo vynucuje i rozvoj napájecích zdrojů, měničů napětí, různých zdvojovačů, násobičů apod. S napájecími zdroji se proto setkáváme téměř všude. Buď můžeme použít některý druh chemického článku (baterie nebo akumulátor), nebo jako zdroje energie použijeme síťové napětí. Střídavé napětí sítě však musíme upravit, obvykle transformovat, usměrnit, filtrovat nebo i stabilizovat. Někdy je situace zase opačná. Máme jako zdroj elektrické energie baterie nebo akumulátor a potřebujeme napájet přístroj, který vyžaduje síťové napětí.

Když vyšla naše kniha Nabíječe a nabíjení, která obsahovala návody na stavbu nejrůznějších typů nabíječů, uvědomili jsme si, jak velké je množství zájemců o tuto problematiku. Nejenom že kniha byla brzy vyprodána, ale přišlo velké množství různých připomínek a dotazů. Vysvětlujeme si to tím, že není takový zájemce o elektroniku, který by nějaký nabíječ akumulátoru ve svém životě nepostavil, af pro sebe nebo pro někoho jiného. Proto jsme i do této knihy zařadili (sice nepoměrně kratší, ale zato novější) návody na stavbu několika typů nabíječů.

20. STABILIZAČNÍ DIODY A TRANZISTORY JAKO VYHLAZOVACÍ ČLENY

Amatéři se při stavbě jakéhokoliv zařízení obvykle snaží s co nejmenším množstvím vynaložených prostředků dosáhnout co nejlepšího výsledku. Lidové přísloví charakterizuje tuto snahu slovy: za málo peněz hodně muziky. Proto se mnozí při stavbě napájecích zdrojů spokojí s pouhým

Obr. 24. a) Zapojení stabilizační diody, b) náhradní obvod

usměrněním a filtrací a stabilizaci, třeba i jednoduchou, považují za přepych, který má oprávnění jen tehdy, je-li stabilizace nutná pro funkci přístroje. Je velmi málo známo, že stabilizační dioda i tranzistor zapojený jako sériový regulační člen mají tak velké filtrační účinky, že nahradí velké a drahé filtrační kondenzátory. Pochopitelně to platí s jistými omezeními pouze v určité oblasti, velmi přibližně ohraničené napětím od 5 V do 50 V a odběrem proudu do 1 A. Na celém světě se ceny elektronických součástek vyvíjejí tak, že ceny polovodičových součástek (tj. v našem případě diod a tranzistorů) překvapivě klesají, zatímco ceny ostatních součástek (zde kondenzátorů) zůstávají po mnoho let stejné nebo mírně stoupají. Stabilizační dioda ZD v zapojení podle obr. 24 stabilizuje napětí. Tuto vlastnost vyjádříme stabilizačním činitelem, tj. poměrem změny vstupního napětí $(\Delta U_1/U_1)$ k relativní změně výstupního napětí $(\Delta U_0/U_0)$. Má-li stabilizační dioda vnitřní dynamický odpor $r_{\rm Z}$, je změna výstupního napětí

$$\Delta U_0 = \Delta U_1 \frac{r_Z}{R_S + r_Z}$$

Z toho stabilizační činitel je

$$S_{\mathbf{u}} = \frac{U_{\mathbf{0}}}{U_{\mathbf{1}}} \left(1 + \frac{R_{\mathbf{S}}}{r_{\mathbf{Z}}} \right)$$

Odpor R_8 se stanoví ze vztahu

$$R_{\mathbf{S}} = \frac{U_{\mathbf{i}} - U_{\mathbf{0}}}{|I_{\mathbf{Z}}|}$$

Tyto vztahy jsou běžné pro výpočet stabilizačních účinků. Je třeba si uvědomit, že na vstupu stabilizačního členu nemáme většinou pouze stejnosměrnou úroveň napětí U_1 , ale i střídavou složku $u_i(t)$.

Analogicky je potom na výstupu nejen stejnosměrné napětí U_0 , ale i střídavá složka u_0 (t). Protože dioda stabilizuje a snižuje poměr $\Delta U_1/U_1$ k poměru $\Delta U_0/U_0$, potlačuje ve stejném poměru i střídavé složky. Potom vyhlazovací činitel je

$$F = \frac{u_{\rm l}(t)}{u_{\rm o}(t)} \doteq \frac{r_{\rm z}}{R_{\rm S}}$$

platí-li, že r_z je daleko větší než $R_{\rm S}$. Porovnáme-li tento vztah se vztahem pro vyhlazovací činitel náhradního obvodu z obr. 24b

$$F=rac{1}{\omega CR_{
m S}}$$

vyplývá z toho, že stabilizační dioda se chová jako kondenzátor s kapacitou

$$C = \frac{10^6}{2\pi r_z} \; [\mu \mathrm{F; Hz, } \Omega]$$

Například pro kmitočet 50 Hz a vnitřní dynamický odpor stabilizační diody

$$r_{\rm Z} = 20~\Omega$$
 je kapacita $C = \frac{10^6}{314.20} = 160~\mu{\rm F},$

pro 50 Hz a $r_{\rm Z}=2~\Omega$ (což je také obvyklé; je již $C=1600~\mu{\rm F},$ pro 1 Hz a $r_{\rm Z}=20~\Omega$ je $C=8000~\mu{\rm F}.$

Uvědomíme-li si, kolik stojí kondenzátor, jistě se vyplatí stabilizační diodu použít. Je však nutné upozornit na odlišné vlastnosti vyhlazovacího obvodu se stabilizační diodou v porovnání s běžným vyhlazením kondenzátorem:

- a) Vyhlazovací obvod se stabilizační diodou (jak plyne ze schématu na obr. 24) je nezávislý na kmitočtu, takže oproti kondenzátoru je při nízkém kmitočtu mnohem výhodnější. Pro kmitočet sítě je jeho výhoda velmi výrazná.
- b) Stabilizační dioda přestane pracovat, klesne-li napětí k nule. To nastane, přivedeme-li na stabilizační diodu pouze impulsový proud bez stejnosměrné složky. Protože dioda nemá žádnou setrvačnost, její dynamický odpor v místech poklesu proudu rychle vzroste a celý vyhlazovací účinek je pak nulový. Z toho plyne, že i při použití stabilizační diody se neobejdeme bez prvního vyhlazovacího kondenzátoru, připojeného ihned za usměrňovačem, na kterém se vytvoří potřebná stejnosměrná složka napětí U_1 (obr. 24).

Filtrovat napájecí napětí lze i tranzistorem. Principiálně jde o trochu

Obr. 25. a) Zapojení tranzistorového zdroje,

b) náhradní obvod,

c) kombinace tranzistorového zdroje se stabilizační diodou

jiný případ než při filtraci stabilizační diodou. Probereme případ, kdy je tranzistor zapojen jako sériový regulační člen, což je obvyklé u mnoha typů tranzistorových stabilizátorů napětí. Takto zapojený tranzistor pracuje podobně jako indukčnost u vyhlazovacího filtru LC (obr. 25).

Pro stejnosměrný proud má indukčnost malou impedanci, pro střídavou složku stejnosměrného proudu má impedanci velkou. Principiálně si lze tento jev představit tak, že tranzistor se otevírá úměrně napětí na bázi, které je filtrované, takže regulační člen má vlastně jiný odpor pro stejnosměrný proud a pro střídavý proud.

Je-li dynamický odpor r pro střídavý proud určen poměrem

$$r = \frac{\Delta U_{\text{CE}}}{\Delta I_0} [\Omega; V, A]$$

je ekvivalentní indukčnost L dána vztahem

$$L = \frac{r}{\omega}$$
 [H; Ω , Hz]

kde $\omega = 2\pi f$ a f je kmitočet střídavé složky napětí U_1 .

V některých extrémních případech vychází náhradní indukčnost přímo neuvěřitelně velká. Například v knize V. M. Catuneanu Polovodiče ve sdělovací technice se uvádí příklad, kdy pro $R_1 = 90~\Omega$, $C_2 = 60~\mu\text{F}$, f = 100~Hz, $U_0 = 150~\text{V}$ při odběru proudu $I_0 = 50~\text{mA}$ a zvlnění na vstupu $U_1 = 8~\text{V}$ je zvlnění na výstupu pouze 0.04~V (!) při $U_{\text{CE}} = 20~\text{V}$. Použit byl regulační tranzistor s proudovým zesilovacím činitelem 30. Ekvivalentní indukčnost by musela mít hodnotu $L \doteq 50~\text{H}$.

Z uvedeného příkladu plyne jednoznačný závěr. Použití stabilizační diody a regulačního tranzistoru má své oprávnění i tehdy, potřebujeme-li filtrovaný zdroj a nezáleží-li nám na přílišné stabilizaci. Typickým připadem jsou sítové napáječe pro různé tranzistorové rozhlasové přijímače a zesilovače. V praxi se kombinuje používání stabilizační diody a tranzistoru, většinou se používá zapojení podle obr. 25c, které úmyslně uvádíme bez hodnot. Výstupní napětí U_0 se zde určuje druhem stabilizační diody D_5 , maximální odběr proudu je dán dovoleným ztrátovým výkonem regulačního tranzistoru, vinutím a velikostí transformátoru a také druhem použitých diod D_1 až D_4 . Zvlnění na výstupu se obvykle přibližuje vypočítaným hodnotám.

21. MĚNIČE NAPĚTÍ

Měniče napětí mají svou historii. Přenosné zařízení napájené z baterie bylo touhou a v některých oborech, např. vojenství, i nutností již v samých počátcích elektroniky. Tehdejší měniče byly dvojího druhu. Prvním byly tzv. vibrátory, což jsou elektromechanická zařízení, která obsahují kmitající kontakty. Kontakty přerušují stejnosměrný proud baterie a přerušovaný proud s vhodným kmitočtem lze téměř libovolně transformovat. Druhou kategorií byly rotační měniče. Ty se v menší míře používají dodnes. Vibrá-

tory jsou již překonány, funkci spínacích kontaktů převzaly tranzistory nebo i tyristory.

Měničů se podle účelu používá mnoho typů. Nejjednodušší měniče jsou většinou určeny pro jednoduchá použití s malým nestabilizovaným odběrem. Výkonové měniče se používají pro napájení zařízení s velkým výkonem, dále se používají měniče se stabilizací výstupního napětí apod. Na obr. 26 je jeden z nejjednodušších měničů. Napájecí napětí z baterie se přeměňuje na nestabilizované napětí 150 V až 450 V podle velikosti odebíraného proudu. Maximální dovolený výstupní výkon je 1 W. Při proudu 5 mA je

Obr. 26. Jednoduchý měnič 28 V/250 V

Obr. 27. Měnič použitý jako indikátor napětí 8 až 12 V

výstupní napětí asi 250 V. Účinnost zařízení je vzhledem k jednoduchosti překvapivě velká, kolem 75 %. Do této hodnoty ovšem není zahrnuta energetická ztráta na potřebném multivibrátoru. Měnič pracuje podle schématu na obr. 26. Budicí impulsy z multivibrátoru, s obdélníkovým průběhem, střídou l : l a kmitočtem 1000 Hz se přivádějí na spínací tranzistor. Ten se v rytmu kmitočtu 1000 Hz zavírá a otevírá. Impulsy vzniklé na indukčnosti cívky L se pak usměrňují a akumulují kondenzátorem C_2 . Indukčnost cívky L má být kolem 600 μ H.

Na obr. 27 je složitější měnič stejnosměrného napětí. Jako indikační prvek se používá doutnavka Dt. Odběr proudu ze stejnosměrného zdroje je kolem $200~\mu\text{A}$. Základ tvoří jednoduchý nízkofrekvenční oscilátor s kmitočtem asi 5~kHz, tvořený tranzistorem T_1 . Kmitočet oscilátoru je určen jednak

převodem transformátoru Tr, jednak kondenzátorovým děličem C_2 , C_3 . Změnou C_2 lze najít ekonomicky nejvýhodnějši kmitočet, při kterém indikační doutnavka ještě svítí, ale ze zdroje se odebírá minimální proud. Transformátor je na feritovém jádru typu EI, vinutí I je tvořeno 50 závity vodiče s průměrem 0,3 mm, vinutí II je tvořeno 500 závity vodiče s průměrem 0,1 mm.

Napětím na vinutí II se přes rezistor R_3 a diodu D nabíjí postupně kondenzátor C_4 , který se po dosažení zapalovacího napětí doutnavky Dt vybije a doutnavka se rozsvítí. Kondenzátor C_4 se částečně vybije a doutnavka zhasne. Doba rozsvícení indikačního světla závisí na typu doutnavky, na účinnosti přeměny energie měniče a na nabíjecí konstantě C_4R_3 . Volíme doutnavku s co nejmenším zapalovacím napětím. Za ekonomický se považuje indikační záblesk doutnavky při kmitočtu rozsvícení

3 s až 5 s. Indikátor je vhodný jako ukazovatel zapnutí přenosných přístrojů, např. vysílače pro řízení modelů apod. Výstupní napětí je vhodné pro napájení spotřebičů s velmi malým odběrem proudu.

Na obr. 28 je jednoúčelový měnič napětí 12 V/220 V pro holicí strojek. Základem měniče je blokovací oscilátor s tranzistorem T, kmitající s kmitočtem přibližně 50 Hz. Transformátor Tr je složen z plechů EI 32×32 (mm), cívka L_1 je tvořena 75 závity vodiče s průměrem 0.8 mm, L_2 35 závity vodiče s průměrem 0.2 mm, L_3 1400 závity vodiče s průměrem 0.2 mm, odběr proudu naprázdno je 0.8 A, odběr proudu při zatížení holicím strojkem je 1.5 A. Napětí naprázdno může být v rozsahu 350 V až 600 V. Měnič je vhodný napájet z automobilového akumulátoru. Pro připojení v osobním automobilu můžeme přívod napájecího napětí měniče zakončit konektorem určeným pro montážní svítilnu, pro který má většina osobních automobilů pod palubní deskou vyveden konektor. Z mechanického hlediska je třeba upozornit na nutnost umístit tranzistor KU 605 na chladič.

Jako hospodárné svítidlo do chaty se vzhledem k účinnosti přeměny elektrické energie na světelnou jeví zářivka. Výhodou zářivky je i to, že dobře svítí, i když neodebírá jmenovitý výkon ze zdroje, což je velmi vhodné

pro úsporná svícení na chatě nebo v garáži (dokonce se vyskytují i návrhy na použití malých zářivek pro svícení v interiéru automobilu).

Na obr. 29 je jednodušší řešení měniče napětí 12 V/220 V, určeného pro malou zářivku 20 W. Základem je výkonový blokovací oscilátor s tranzistorem KD 602. Jeho pracovní bod je nastaven drátovým trimrem R_1 (na zkušebním vzorku měl rezistor R_1 nastaven odpor 2 $k\Omega$).

Obr. 29. Měnič 12 V/220 V pro zářivku 20 W

Transformátor Tr má tyto údaje: L_1 má 14 závitů vodiče s průměrem 0,3 mm, L_2 má 105 závitů vodiče s průměrem 0,3 mm, L_3 má 6 závitů vodiče s průměrem 0,3 mm, L_3 má 6 závitů vodiče s průměrem 0,45 mm. Feritové jádro je typu EI 10×10 (mm). Vinuta je nejprve cívka L_1 a následují cívky L_2 , L_3 , vrchní vinutí je L_4 . Mnohdy je třeba při oživování měnit kapacitu kondenzátoru C_2 . Výhodou je, že zářivka nemusí mít startér, předřadnou omezovací tlumivku, ani startovací kondenzátor. Podobný typ měniče jako je měnič pro zářivku 20 W je na obr. 31 a 32. Je určen pro zářivku 8 W.

Obr. 30. Měmě pro zářivku 20 W

Obr. 31. Zapojení měniče 12 V/220 V pro zářivku 8 W

Také zde není potřeba žádné běžné přizpůsobení zářivky — žádná tlumivka, startér ani kondenzátor.

U zkušebního vzorku měl drátový trimr nastaven odpor asi 500 Ω (polovina rozsahu), čímž se zmenšil odběr proudu z akumulátoru na 500 mA až 600 mA. Samozřejmě, že zářivka nepotřebovala plných 8 W. Tranzistor KD 602 byl umístěn na chladiči s plochou 200 cm². Transformátor Tr má feritové hrníčkové vodiče, jádro typu AL $4200/\varnothing$ 26 mm, cívka L_1 má 14 závitů vodiče s průměrem 0,3 mm, L_2 má 105 závitů vodiče s průměrem 0,3 mm, L_3 má 10 závitů vodiče s průměrem 0,45 mm. Stejně jako v předcházejícím případě je mnohdy třeba měnit kapacitu kondenzátoru C_2 .

Další z typů měničů určených pro zářivky je měnič na obr. 33. Je určen pro zářivku 40 W, běžného typu. Napájen je z akumulátoru 12 V. Dva výkonové tranzistory pracují střídavě do dvou vinutí (L_1 a L_2). Na sekundární vinutí transformátoru Tr je připojena zářivka vždy přes jeden z vývodů na koncích trubice. Na každé straně trubice zářivky zůstane vždy jeden

Obr. 32. Měmě pro zářivku 8 W

libovolný vývod volný. Ani tato zářivka nemusí mít startér, tlumivku ani kondenzátor. Jestliže měnič špatně nasazuje k oscilacím, je vhodné přiřadit mezi báze tranzistorů T_1 a T_2 doplňkový kondenzátor C_2 s kapacitou kolem 68 nF. Nezapomeneme oba tranzistory připevnit na chladiče. Rezistory R_1 a R_2 použijeme drátové, alespoň 1 W; vhodný typ je TR 520. Transformátor má tyto údaje: vinutí L_1 , L_2 (2 × 7 V) má 2 × 21 závitů vodiče s průměrem (0,8 až 1) mm, vinutí L_3 je navinuto přes vinutí L_1 a L_2 (220 V) a má 750 závitů vodiče s průměrem 0,4 mm. Jádro transformátoru je typu EI 32 × 32 (mm). Všechny typy měničů určených pro zářivkové osvětlení pracují na kmitočtech 1000 Hz až 10 000 Hz. Při těchto kmitočtech se zářivka bezpečně rozsvěcuje i bez startéru.

Obr. 33. Měnič 12 V/220 V pro zářivku 40 W

Nevýhodou zářivek je menší životnost při častém zapínání a vypínání. TESLA Holešovice u svých výrobků uvádí, že životnost zářivky se zmenší o 40 %, jestliže ji zapínáme na hodinu provozu a na půl hodiny ji vypínáme. Dále je třeba upozornit na to, že při nízkých teplotách (pod +5 °C) je nutné používat speciální typy zářivek (výrobce je označuje NT).

22. VÝKONOVÝ MĚNIČ NAPĚTÍ S TYRISTORY

Popisované zařízení je určeno k přeměně stejnosměrného napětí 12 V na střídavé napětí 220 V pro výkon až 500 W. Schéma je na obr. 34. Kmitočet výstupního napětí závisí na kmitočtu generátoru, který se skládá z tranzistorů T_1 a T_2 . Přes transformátor Tr_1 se postupně spínají tyristory Ty_1 a Ty_2 , připojující k primárnímu vinutí transformátoru Tr_2 střídavě zdroj napětí 12 V v obou polaritách. Na sekundárním vinutí Tr_2 se vytváří střídavé napětí 220 V.

Kmitočet výstupního napětí je asi 200 Hz. Kondenzátor s kapacitou 180 μ F umožňuje vypínání tyristoru, který právě nepracuje. Rezistor R_3 chrání zdroj proti zkratu v okamžiku, kdy se činnost obou tyristorů překrývá.

Nahradíme-li generátor tvořený tranzistory T_1 a T_2 generátorem s plynulou regulací kmitočtu, můžeme obvod s tyristory využít k plynulému řízení otáček synchronních motorů do výkonu 500 W. Regulace je možná asi v roz-

sahu 50 Hz až 400 Hz. Transformátor Tr_1 je na jádru 16×10 (mm) a má vinutí

 $I-2 \times 40$ závitů drátu s průměrem 0,8 mm,

II – 2×10 závitů drátu s průměrem 0,2 mm,

III — 2×20 závitů drátu s průměrem 0,2 mm.

Transformátor ${\rm Tr}_2$ je na jádru 50 imes 64 (mm) a má vinutí

I-2 imes 40 závitů drátu s průměrem 3 mm,

II — 440 závitů drátu s průměrem 1 mm.

Obr. 34. Výkonový měnič s tyristory

23. METODY NABÍJENÍ AUTOMOBILOVÝCH AKUMULÁTORŮ

Motorismus je dnes nemoc — podle statistiky jí podlehlo více než tři čtvrtiny aktivního dospělého mužského obyvatelstva. Proto stále stoupá zájem o to jak udržovat a nabíjet akumulátor v automobilu, neboť právě zanedbávaný akumulátor je příčinou většiny zimních nesnází s provozem automobilu. Téměř každý z radioamatérů se setkal s některým z nesčetných typů automobilových nabíječů nebo ho přímo stavěl; svědčí o tom obrovský zájem o nejrůznější návody na jejich stavbu.

S vývojem elektromobilů a s hledáním nových nabíjecích postupů se přišlo na nový způsob nabíjení akumulátorů — tzv. rychlonabíjením. Nabíječ má sběrnici, na kterou se připojuje jeden nebo více olověných akumulátorů se stejným jmenovitým napětím, např. 12 V, paralelně. Nabíjí se ze zdroje, který má přesně (obvykle lépe než na 1 %) stabilizované napětí, což je pro olověný akumulátor se imenovitým napětím 12 V hodnota 14,4 V. Tomu odpovídá napětí 2,4 V na jeden článek akumulátoru. Vybitým akumulátorem začne procházet maximální proud, jaký je nabíječ schopen dodat. Nabíječ tedy musí mít kromě napětové stabilizace ještě proudové omezení. Velikost maximálního proudu je dána technickými schopnostmi nabíječe, nabíječ se nesmí tímto maximálním proudem poškodit. Je běžné, že proudové omezení lze elektronicky řídit a jeho velikost lze na panelu nabíječe nastavit. U průmyslového nabíječe takovéto konstrukce — TAN

250, výrobec ČKD Praha Polovodiče, je velikost tohoto proudu nastavitelná v rozmezí 5 A až 250 A. V první fázi (obr. 35) se akumulátor nabíjí velkým konstantním proudem až do okamžiku, kdy napětí na akumulátoru dosáhne plynovací úrovně akumulátoru, což je právě napětí 14,4 V. Akumulátor se velkým proudem nepoškodí, neboť ještě neplynuje a elektrolyt se nezačal rozkládat na vodík a kyslík — nezačal se tzv. vařit. Takto můžeme paralelně nabíjet i více akumulátorů se stejným jmenovitým napětím. V prvním stupni nabíjení lze za relativně velmi krátkou dobu nabít akumulátor na 50 % až 70 % kapacity. Při tzv. rychlonabíjení je nutné hlídat teplotu elektrolytu; poškozený článek se obvykle začne nadměrně ohřívat, což se projeví

prudkým vzrůstem teploty elektrolytu. Nebezpečná hranice je již při 40 °C až 45 °C. Po dosažení napětí 14,4 V končí první stupeň a nabíjení automaticky přechází do druhého stupně. Proud již sám začne klesat až do okamžiku, kdy plně nabitý akumulátor odebírá ze zdroje konstantního napětí proud limitující k nulové hodnotě. Pro amatérské použití z toho vyplývá dvojí poučení:

a) K nabíjení olověného automobilového akumulátoru je vhodný i zdroj konstantního stabilizovaného napětí, který má dobrou a nastavitelnou stabilizaci výstupní úrovně a proudové omezení.

b) Není třeba hlídat konec nabíjení. Při nastavené výstupní napěťové úrovni nabíječe na hodnotu 14,4 V pro akumulátor 12 V nastavíme pouze proudové omezení pro první fázi nabíjení a přechod na druhou fázi a konec nabíjení proběhne automaticky.

Jednou z velmi diskutovaných metod je nabíjení olověných akumulátorů nesymetrickým pulsujícím proudem. V literatuře se tato metoda nazývá také nabíjení se současným zpětným vybíjením. Podstatou je totiž současné nabíjení a částečné vybíjení akumulátoru. Svorkami prochází pulsující proud, u nčhož nabíjecí část periody je větší než vybíjecí část. Časový průběh takového pulsujícího proudu je na obr. 36b. Vybíjecí proud svými depolari-

začními účinky na elektrodách zvětšuje (nebo spíše obnovuje) ztracenou kapacitu akumulátoru a navrací akumulátoru jeho účinnost. Třemi nabíjecími cykly, při kterých se akumulátor nabíjel nesymetrickým střídavým proudem, se zvětšila kapacita 12 V akumulátoru 56 A ze 40 % na 80 % jmenovité hodnoty. Toto nabíjení probíhalo tak, že se akumulátor nejprve nabil pulsujícím proudem s efektivní hodnotou 3 A, potom se vybil do odporové zátěže proudem 5 A a dále následovalo nabití a vybití za stejných podmínek. Nakonec se akumulátor nabil již zvětšeným pulsujícím proudem 8 A.

Pro nabíjení pulsujícím proudem použijeme nabíječ, který má jednocestné usměrnění střídavého proudu bez vyhlazení. Do akumulátoru dodává nabíjecí impulsový proud, odpovídající polovině periody střídavého proudu. Paralelně ke svorkám nabíječe je připojen vybíjecí rezistor, popř. automobilová žárovka. Nabíjecí a vybíjecí cyklus se rozdělují kmitočtem sítě do dvou etap, rovnajících se vždy polovině periody. V první etapě dává nabíječ impulsový proud, který se rozdělí tak, že část proudu prochází připojeným rezistorem a větší část tvoří nabíjecí proud akumulátoru. V druhé etapě nedává nabíječ žádné napětí, neboť jde o jednocestné usměrnění a akumulátor se vybíjí do paralelně připojeného vybíjecího rezistoru R. Uvádí se, že nejvhodnějším poměrem nabíjecího proudu do akumulátoru $I_{\rm N}$ k proudu, kterým se akumulátor současně vybíjí do paralelního rezistoru $I_{\mathbb{R}}$, je hodnota $p = I_{\rm N}/I_{\rm R} = 10$. Tato hodnota se běžnými prostředky přesně zjišťuje jen obtížně. Při praktickém dobíjení se zpravidla spokojíme s hodnotou odhadnutou. Například nabíječ dodává do akumulátoru 12 V proud 6 A. Připojíme-li paralelně k akumulátoru rezistor s odporem 12 Ω , prochází do akumulátoru proud 5 A a zpětný vybíjecí proud je 0,5 A. Poměr nabíjecího a vybíjecího proudu je pak přibližně 10/1.

Tuto metodu lze uplatnit i u nabíječů s dvojcestně usměrněným průběhem nabíjecího proudu. Musí jít o pulsující průběh, tedy o průběh bez vyhlazení. Skutečné proudové poměry lze nejlépe analyzovat osciloskopem, kterým snímáme průběh nabíjecího proudu na malém odporu vřazeném do série

s nabíjeným akumulátorem.

Mnoho čtenářů se ptá, zda je nebo není nutné při nabíjení vyjmout aku-

Obr. 36. a) Principiální schéma nabíječe s nesymetrickým proudem, b) časový průběh nabíjecího proudu

mulátor z motorového vozidla a zda se přitom musí odpojit akumulátor od elektrického rozvodu. Čtenář např. píše: "V návodu k vozidlu jsem četl, že lze připojením poškodit alternátor. Na dovolené v Itálii jsem ale viděl u benzínové pumpy dobíjet akumulátor ve vozidle tak, že nabíječ se připojil konektorem pro montážní svítilnu a na vozidle nie nerozpojovali."

Pravda je, že s nabíjením akumulátoru ve vozidle se přes četná varování stále setkáváme. Obvyklé je i pomocné elektrické startování ze speciálních zdrojů, které je z tohoto hlediska ještě nebezpečnější, ačkoliv se stále více propaguje a zavádí. Při těchto postupech je vždy elektrické příslušenství vozidla připojeno. Nabíjení ve vozidle je nebezpečné zejména pro možnost vzniku požáru, a to jak od zkratu, tak od neopatrného připojení nabíječe, kdy se připojovací svorky mohou sesmeknout nebo se někde mohou dotýkat kostry. Při plynování akumulátoru při nabíjení se uvolňuje kyslík a vodík, které již při malých koncentracích tvoří velmi silně třaskavou směs. Proto je nutné akumulátor nabíjet ve větraném prostoru. Obvykle se doporučuje nabíjet i menším proudem, aby se elektrolyt "nevyvařil" prudce a nestříkal do okolí akumulátoru. Jak je to s poškozením alternátoru? Lze alternátor při nabíjení akumulátoru poškodit nebo ne? Podíváme-li se na obr. 37, kde je elektrické schéma obvodu alternátoru s regulátorem PAL, používaného ve vozidlech ŠKODA 100 až 120 a ŠKODA 1202 a 1203, vidí-

me, že regulátor alternátoru je odpojen, je-li vozidlo v klidu a není-li zasunut klíček v zapalování. Samotné vinutí alternátoru je odděleno šesticí alternátorových diod, které jsou pólovány tak, že vzhledem k akumulátoru a nabíječi jsou zapojeny ve zpětném směru. K tomu, abychom je poškodili, by musel při připojení nabíječe vzniknout takový napěťový impuls, který by měl větší napětí, než je skutečné závěrné napětí používaných alternátorových diod. Výrobce alternátorů, n. p. PAL, používá diody TESLA, a to KYZ 70 až 74 a KYZ 75 až 79. Katalog připouští mezní případ, kdy diody typu KYZ 70 a KYZ 75 mohou mít napětí $U_{\rm KA}=50$ V. Při zjišťování poměrů při nabíjení akumulátorů paměťovým osciloskopem jsme při připojování různých typů nabíječů nikdy na akumulátoru, který je vlastně připojen k alternátoru paralelně, nenaměřili nějaký podstatný napětový skok. Nebezpečný stav může nastat pouze v případě, že některá dioda v alternátoru má technologickou vadu a v průběhu jejího používání klesá její závěrné napětí pod dovolenou mez. Protože je obvyklé, že nabíječ má špičkové napětí naprázdno okolo 20 V až 25 V, je zřejmé, že při nabíjení dojde k většímu impulsovému namáhání, než je běžné při dobíjení a provozu z alternátoru. Na závěr lze říci, že jsou-li v alternátoru diody, které mají katalogové hodnoty, a nemá-li nabíječ větší špičkové napětí naprázdno než 25 V, není teoretický důvod k tomu, aby se alternátorové diody při nabíjení akumulátoru ve vozidle a při připojeném alternátoru poškodily.

Pro indikaci nabíjecího proudu se u většiny typů nabíječů používá ampérmetr. Používáme-li nabíječ, který pracuje jako zdroj konstantního proudu, není zpravidla nutné proud vůbec měřit. Stačí ocejchovaný nastavovací prvek (stupnice potenciometru nebo zadávání pomocí přepínačů a jednoduchá žárovková indikace, že akumulátor je připojen a že proud prochází). Jako indikátor je ampérmetr zbytečný. Chtěli bychom upozornit na případy, kdy se jako indikační prvek na výstupu nabíječe používá voltmetr. Je-li nabíječ připojen k akumulátoru a ještě není připojen do sítě, ukazuje voltmetr stav akumulátoru před nabíjením. Voltmetr lze opatřit barevnými pruhy, které určují stav nabití akumulátoru jednak naprázdno, jednak při nabíjení. Pro případ bez nabíjecího proudu platí pro akumulátor 12 V tato napětí: napětí 0 až 1,6 V na článek, pro všechny články dohromady celkové napětí 0 až 9,6 V, určuje oblast vybití akumulátoru; tak by akumulátor neměl být nikdy vybit. V oblasti napětí 1,6 až 2 V, tj. celkové napětí 9,6 až 12 V, je akumulátor částečně vybit. Plně nabitý akumulátor má napětí 2,1 V na článek, tj. celkové napětí 12,6 V. Zapneme-li nabíjecí proud, začne napětí na akumulátoru vlivem elektrochemických procesů stoupat a musíme tyto oblasti v souladu s nabíjecí charakteristikou akumulátoru označit jinak. Oblast vybití je pak až do napětí 2,2 V na článek, tj. do celkového napětí 13,2 V. V oblasti napětí 2,2 až 2,4 V (celkové napětí 13,2 až 14,4 V) jde o první stupeň nabíjení, kdy akumulátor ještě neplynuje. Druhý stupeň nabíjení je od napětí 2,4 V do (2,6 až 2,8) V (podle teploty elektrolytu); tehdy akumulátor již plynuje. Konec nabíjení nastane, když napětí na akumulátoru již nestoupá. Lze použít běžný voltmetr s rozsahem 0 až

20 V nebo lépe 0 až 18 V. Chceme-li lépe využít stupnici přístroje, je vhodný přístroj elektromagnetický s potlačenou nulou nebo běžnější přístroj elektrodynamický, kde nulu potlačíme tím, že do série s přístrojem přidáme stabilizační diodu (obr. 38). Stupnici přístroje cejchujeme v hodnotách napětí $U_{\rm C}$; přístroj začne ukazovat až při překročení napětí $U_{\rm Z}$. Nevýhodou je, že pro každou výměnu stabilizační diody musíme vypočítat a navrhnout jiný předřadný rezistor $R_{\rm p}$. Někdy je nutné upravit stupnici, protože referenční napětí je u každé diody stejného typu různé.

Ještě připomeňme, že některé firmy (např. MAZ, VOLVO) montují do některých typů automobilů kontrolní voltmetry s potlačenou nulou. Odborníci tvrdí, že takto upravený kontrolní voltmetr je výhodnější než ampérmetr, protože dává daleko lepší obraz o stavu nabití akumulátoru a o funkci

nabíjecích obvodů.

Obr. 38. Voltmetr s potlačenou nulou

24. JEDNODUCHÝ REGULOVANÝ ZDROJ JAKO NABÍJEČ 0 AŽ 6 A

Na obr. 39 je univerzální zdroj vhodný pro nabíjení automobilových akumulátorů proudem 0 až 6 A. Používá se v laboratořích, doma jako napáječ autodráhy nebo kolejiště modelových lokomotiv. Výhodou je, že může být velmi malý, jeho velikost určuje pouze velikost sítového transformátoru. Ampérmetr, výstupní svorky, vypínač, přepínač a regulační prvek proudu (tj. potenciometr R_1) jsou v předním panelu přístroje. Obě diody (D_1 a D_2) a oba kondenzátory (C_1 a C_2) zaujímají velmi malý prostor a jsou umístěny na pomocné montážní desce (30×50 mm). Tranzistory T_1 a T_2 jsou součástí celého krytu přístroje, který je pro ně zároveň chladičem (oba kolektory, záporný vývod zdroje a výstupní svorka jsou zemněny).

Hlavní nevýhodou je malá odolnost proti zkratovému proudu. Při zkratu se obvykle ozve charakteristické lupnutí, které signalizuje zničení tranzistoru.

Princip činnosti je velmi jednoduchý. Oba výkonové tranzistory vykonávají dvě funkce. Jednak usměrňují, jednak regulují. Každý tranzistor je v činnosti jednu polovinu periody střídavého proudu. Otevírání tranzistorů umožňuje nezávislý zdroj přes potenciometr R_1 . Protože regulace nemá žádnou zpětnou vazbu, nabíjecí proud akumulátoru při nabíjení postupně klesá v závislosti na stoupajícím napětí na akumulátoru.

Obr. 39. Regulovaný zdroj 0 až 6 A

Seznam součástek

Transformátor Tr

jádro: plechy EI, 40×40 (mm)

primární vinutí L_1 1000 závitů vodiče CuL s průměrem 0,35 mm, sekundární vinutí L_2 , L_3 4 × 50 závitů vodiče CuL s průměrem 1,5 mm, sekundární vinutí L_4 2 × 50 závitů vodiče CuL s průměrem 0,35 mm,

A ampérmetr 0 až 10 A

T₁, T₂ KU 607

 D_1 , D_2 KA 502

 C_1 , C_2 TE 986, 20 $\mu F/35 \text{ V}$

 R_1^{1} TP 680, 470 Ω

Po síťová pojistka, trubičková, 0,5 A

S páčkový sítový spínač

Př páčkový přepínač dvoupólový

25. NABÍJEČ S JEDNODUCHOU TYRISTOROVOU REGULACÍ NA SEKUNDÁRNÍ STRANĚ TRANSFORMÁTORU

Nabíječ je určen pro nabíjení šestivoltových a dvanáctivoltových akumulátorů proudem 0.5 A až 6 A. Proud se plynule nastavuje potenciometrem R_7 , který umístíme na předním panelu nabíječe. Protože regulace proudu nemá zpětnou vazbu, je třeba nabíjecí proud akumulátoru neustále měřit — se vzrůstajícím napětím na akumulátoru (tedy s jeho postupným nabíjením) proud neustále klesá. Takováto nabíjecí charakteristika se označuje W. Stupeň nabítí je nutné kontrolovat voltmetrem nebo hustoměrem.

Funkce nabíječe je jednoduchá a je patrná ze schématu na obr. 40. V Graetzově můstku, který tvoří diody D_1 a D_2 spolu s tyristory Ty_1 a Ty_2 , se napětí ze sekundárního vinutí transformátoru usměrňuje a řídí velikost proudu. Tyristory se otevírají kladnými řídicími impulsy, které se z emitoru tranzistoru T_2 vedou přes omezovací rezistory R_1 a R_2 na řídicí elektrody tyristorů. Fázové posunutí řidicích impulsů způsobuje člen tvořený kondenzátorem C_1 , potenciometrem R_7 a rezistorem R_2 . Změnou odporu rezistoru R_7 se zpoždění impulsů mění, a řídí se tak velikost nabíjecího proudu. Rozsah regulace lze omezit změnou odporu R_2 .

Maximální nabíjecí proud akumulátoru je omezen malým sériovým re-

Obr. 40. Nabíječ s regulací na sekundární straně transformátoru

zistorem R_8 , který je značně zatěžován (zahřívá se). Při nabíjení proudem 6 A se na odporu R_8 ztrácí výkon $P=I^2R=36.0,5=18$ W. Proto rezistor R_8 umístíme co nejdále od polovodičových součástek a od chladičů, na kterých jsou diody D_1 a D_2 s tyristory Ty_1 a Ty_2 .

Chceme-li nabíječ používat pro nabíjení akumulátorů 6 V i 12 V, je nutné mít na sekundárním vinutí transformátoru odbočku (6 V) a přepínačem Přepínat polohy B (akumulátor 12 V) nebo A (akumulátor 6 V).

Seznam součástek

```
Transformátor Tr
  plechy EI, 40 \times 40 (mm)
  L_1 (220 V) 630 závitů vodiče CuL s průměrem 0,5 mm,
  L_2 (50 V) 160 závitů vodiče CuL s průměrem 0,5 mm,
  L_3 (9 V) 28 závitů vodiče CuL s průměrem 1,8 mm,
  L_4 (9 V) 28 závitů vodiče CuL s průměrem 1,8 mm.
Polovodičové součástky
D_1, D_2 dioda KY 708
D_3 až D_6 dioda KA 502
\mathbf{T_1}
          tranzistor KF 517
          tranzistor KF 506
T_2
Ty<sub>1</sub>, Ty<sub>2</sub> tyristor KT 710
Kondenzátory
          TC 180, 100 nF
C_1
Rezistory
R_1, R_2 TR 151, 560 \Omega
R_3
          TR 151, 3,3 k\Omega
R_4, R_5
         TR 151, 1,2 k\Omega
R_{\mathbf{6}}
          TR 152, 220 \Omega
Potenciometr
          TP 280, 250 k\Omega
R_7
         omezovací odpor 0,5 Ω, tantalový drát na keramickém tělísku
R_{8}
Ostatní součástky
          dvoupolohový přepínač (5 A)
Př
\mathbf{A}
          ampérmetr 0 až 10 A
\mathbf{S}
          sítový spínač
         pojistka s držákem
Po
```

26. NABÍJEČ AKUMULÁTORŮ S REGULACÍ NA PRIMÁRNÍ STRANĚ TRANSFORMÁTORU

Regulovat nabíjecí proud do akumulátoru 12 V v rozsahu 0,5 A až 6 A lze i na primární straně transformátoru. Polovodičové součástky na primární straně transformátoru, diody D_1 až D_5 (obr. 41) a tyristor Ty, jsou bez chladiče. Chladiče mají pouze usměrňovací diody D_6 až D_9 na sekundární

straně transformátoru. Princip regulace je takovýto: Potenciometrem R_3 se zpožďují impulsy, které se přivádějí na řídicí elektrodu tyristoru Ty. Zátěží tyristoru je primární vinutí transformátoru Tr, takže změnou nastavení potenciometru měníme proud v primárním vinutí tohoto transformátoru. Velkou změnu proudu na sekundární straně transformátoru ovlivňujeme podstatně menší změnou proudu na primární straně transformátoru.

Obr. 41. Nabíječ s regulací na primární straně transformátoru

Nabíječ má také nabíjecí charakteristiku W, což znamená, že vlivem nestabilizovaného výstupního napětí neustále klesá proud do akumulátoru (vlivem stoupajícího napětí na článcích, způsobeného postupným nabíjením). Nelze tedy pomocí ampérmetru a doby nabíjení zjistit množství energie, kterou jsme do akumulátoru dodali, a konec nabíjení musíme určit buď odhadem, dojde-li k velkému plynování článků, nebo změřením napětí akumulátoru voltmetrem, nebo změřením hustoty elektrolytu hustoměrem.

27. NABÍJEČ S JEDNODUCHOU TRIAKOVOU REGULACÍ NA PRIMÁRNÍ STRANĚ TRANSFORMÁTORU

Tento nabíječ je pouze alternativou předcházejícího zapojení. Místo diodového můstku s tyristorem v diagonále je použit triak s diakem v jeho spouštěcím obvodu, ve známém a vyzkoušeném zapojení (obr. 42). Platí všechny zásady uvedené u předcházejícího nabíječe.

- a) Regulace pracuje dobře pouze při připojeném akumulátoru; zdroj nepoužíváme pro jiné zátěže. Může však docházet k nežádoucím rezonancím a k jevům obvyklým při triakové regulaci do indukční zátěže, není-li připojen nabíjený akumulátor.
- b) Proud regulujeme v rozsahu 1 A až 6 A; horní mez proudu je určena druhem transformátoru Tr.
- c) Nabíječ má své ekonomické opodstatnění tchdy, mohou-li mít polovodičové součástky na primární straně malý výkon (v našem případě triak

Tc KT 205/600) a jsou-li levnější, než kdybychom regulaci provedli na sekundární straně transformátoru.

d) Další podstatnou výhodou regulace na primární straně transformátoru je úspora na chladičích. Tyristory na primární straně není třeba při běžných proudech nutných pro nabíjení akumulátoru chladit.

28. NABÍJEČ AKUMULÁTORŮ S AUTOMATICKÝM OMEZENÍM NABÍJECÍHO PROUDU

V poslední době je velmi populární dobíjet akumulátor přímo v automobilu bez odpojování a vyjmutí. Samozřejmě, že takovéto dobíjení si mohou dovolit pouze ti, kteří mají garáž. Při takovémto dobíjení je třeba dodržovat zásady bezpečnosti. Akumulátor musíme při dobíjení otevřít, tj. odzátkovat a dolít destilovanou vodou. Pokud se chceme na takovéto dobíjení trvale zařídit, je vhodné vyvést obě svorky připojené k akumulátoru na konektor umístěný pevně na karosérii, např. v zavazadlovém prostoru automobilu. Je možné použít i koncktor pro montážní svítilnu, kterým bývá vybaven téměř každý automobil. Dobíjení provádíme zásadně ve větrané garáži. Při plynování akumulátoru se vlivem rozkladu vody uvolňuje vodík a kys-

Obr. 43. Nabíječ akumulátorů s automatickým omezením nabíjecího proudu

lík, což je při určité koncentraci velmi třaskavá směs plynu. Doporučuje se dobíjet malým proudem, 1/4 až 1/2 jmenovitého nabíjecího proudu. U akumulátorů používaných v běžných osobních automobilech je to proud 1 A až 2 A. Je vhodné, aby nabíječ měl automatické omezení nabíjecího proudu na konci nabíjení, aby se akumulátor zbytečně, "nevařil". Jako vhodný typ pro tyto účely doporučujeme nabíječ na obr. 43. Princip činnosti je zřejmý ze schématu na obrázku. Síťové napětí se transformuje síťovým transformátorem, desetiampérové diody D₁ a D₂, umístěné na chladiči, zajišťují dvojcestné usměrnění. Nabíjecí stejnosměrný proud pak prochází přes omezovací žárovku Ž, která způsobuje, že nabíjecí proud se vzrůstajícím napětím na akumulátoru stabilizuje (studená žárovka s wolframovým vláknem má menší odpor než teplá). Jednoduchý elektronický obvod zajistí vypnutí nabíjecího proudu, jakmile na akumulátoru vzroste napětí na nastavenou mez. Je-li na akumulátoru menší napětí než na bázi tranzistoru T_1 , je tranzistor T_1 (a tím i tranzistor T_2) otevřen, na řídicí elektrodu tyristoru Ty, přichází kladné napětí, a tyristor je tedy také otevřen. Jakmile se však napětí na akumulátoru zvětší natolik, že je akumulátor nabitý, tj. pro akumulátor 12 V na 15,5 V a pro akumulátor 6 V na 7,75 V, uzavře se tranzistor T_1 , a tím i tranzistor T_2 . Na řídicí elektrodu tyristoru nepřichází žádné napětí. Protože nabíjecí proud je pouze dvojsměrně usměrněný a je pulsující (bez vyhlazovacího kondenzátoru), tyristor se rozepne a akumulátor se přestane nabíjet. Napětí na bázi tranzistoru T_1 se nastavuje potenciometrem R_2 .

Zařízení je možné realizovat s poměrně malými rozměry, vzhledem k malému nabíjecímu proudu. Transformátor s plechy EI má průřez 32×32 (mm). Pokud nabíjecí proud nepřekročí trvale proud 2 A, nemusí mít obě diody ($\dot{D_1}$ a $\dot{D_2}$) chladič a stačí kovová úchytka. Chladicí plech (asi 10 cm²) by měl mít pouze tyristor Ty_1 .

Seznam součástek

pro a	kumulátor 6 V	pro akumulátor 12 V
	220 V, $2 \times 10 \text{ V/2 A}$	$220 \text{ V}, 2 \times 18 \text{ V/1,5 A}$
D, D	₂ KY 708	KY 708
	5 KY 701 a	KY 701
	5NZ 70	2 imes 4NZ 70 v sérii
Ty_1	KT 710 asi 2 Ω, např. 6 V/18 W	KT 710
Ž	asi 2 Ω, např. 6 V/18 W	asi 3 Ω, např. 12 V/24 W
	6 V/15 W	12 V/25 W
C_1	500 μF/15 V, TE 984	$500 \ \mu F/35 \ V, \ TE \ 986$
R_1	$330~\Omega~\mathrm{TR}~152$	$470~\Omega~\mathrm{TR}~152$
R_2^{-}	$1 \text{ k}\Omega$, TP 018	$2.5 \text{ k}\Omega$, TP 018
R_3^-	160Ω , TR 635	330Ω , TR 636
$R_{f 4}$	$1 \text{ k}\Omega$, TR 151	$2,2 \mathrm{~k}\Omega, \mathrm{~TR~}151$
T_1	KC 508	KC 508
$\mathbf{T_2}$	KF 517	KF 517

29. SKUPINOVÉ NABÍJENÍ AKUMULÁTORŮ S OMEZENÍM PROUDU ROZEVÍRACÍ TLUMIVKOU

Běžné malé nabíječe amatérského provedení jsou většinou stavěny pro nabíjení jednoho šestivoltového nebo dvanáctivoltového akumulátoru. To pro soukromou potřebu automobilisty stačí. Mnohdy však potřebujeme nabíjet více akumulátorů společným proudem tak, že jednotlivé akumulátory řadíme do série tak dlouho, dokud součet jejich napětí nepřesáhne výstupní napětí nabíječe. V různých klubech Svazarmu, sportovních klubech soustřeďujících majitele sportovních člunů, ve stavebních družstvech i jinde, kde nemají na poměrně drahý profesionální nabíječ akumulátorů, mohou použít nabíječ postavený podle tohoto návodu. Konstrukčně, elektricky i z hlediska obsluhy je velmi jednoduchý, a to ho předurčuje právě ke klubovému používání.

Nabíječ má omezen nabíjecí proud nárazovou rozevírací tlumivkou. Ta dokáže nabíjecí proud akumulátorů nejen omezit, alc částečně i stabilizovat. Pracuje na tomto principu: Začne-li tlumivkou procházet střídavý proud, je zpočátku úbytek na tlumivce úměrný střídavému proudu a platí přibližně

 $U = I\omega L$

 $kde \omega = 2\pi f,$ f je kmitočet sítě, L indukčnost tlumivky.

Jakmile se však proud I procházející tlumivkou zvětšuje, nastane nelineární stav, způsobený magnetickým přesycením jádra tlumivky, který způsobí, že napěťový úbytek na tlumivce se zvětšuje při stále stoupajícím proudu jen nepatrně. Hranice proudu, při kterém se jádro tlumivky začíná přesycovat, závisí kromě jiného i na velikosti vzduchové mezery mezi plechy tlumivky. Tuto mezeru lze vrážením klínu měnit, a tím lze regulovat nabíjecí proud. Změnou mezery témčř od nuly do 8 mm lze regulovat proud v poměru 1 : 2 až 1 : 3. Kromě toho můžeme proud do akumulátoru měnit skokem přepnutím přepínače Př — "malý a velký" proud.

Proud do akumulátorů je částečně stabilizován tlumivkou (jejím přesycováním). Činitel stabilizace proudu není velký — lze říci, že při nabíjení olověných akumulátorů s napětím baterie 48 V poklesne nabíjecí proud mezi začátkem nabíjení téměř vybité baterie vzhledem ke konci nabíjení, kdy baterie vykazuje znaky plného nabití, asi o 1/3.

Celkové schéma nabíječe je na obr. 44. Proud ze sítě je veden přes jistič J 10 A a přes síťový dvojpólový spínač. Kontrolní žárovka ZSE (transformátor 220/24 V a žárovka Ž) indikuje stav zapnutí. Následuje převodní transformátor Tr₁, 220 V/110 V. (Zařízení bylo postaveno i pro síťové napětí 120 V, takže transformátor TR₁ nebyl zapotřebí. Pak je ovšem nutné v akumulátorovně důkladně zajistit bezpečnost, neboť oba konce nabíjené baterie, tj. kladný i záporný pól, jsou spojeny s fází sítě a mají fázové napětí

Obr. 44. Nabíječ s rozevírací tlumivkou

proti zemi.) Ve schématu pak následuje rozevírací tlumivka, která (jak bylo uvedeno) omezuje nabíjecí proud, a můstkové zapojení usměrňovacích diod D_1 až D_4 . Diody jsou umístěny na chladičích. Důležitou částí je kontrolní ampérmetr. Při této příležitosti upozorňujeme, že pokud někdo z finančních důvodů vynechá ampérmetr a kontroluje nabíjecí proud vnějším univerzál-

Obr. 45. Sestava rozevírací tlumivky

ním přístrojem, musí si uvědomit, že většina univerzálních měřicích přístrojů nesnáší trvalé proudové zatížení.

Sestava rozevírací tlumivky je na obr. 45, kde

- 1, 2 jsou svorníky se závity M6, stažené maticemi a spojené dvěma stahovacími pružinami 3,
- 4 je svorník M6, uložený v trubičce; tvoří osu vyklápění plechů I,
- 5 jsou dva svorníky M6 stahující plechy E,
- 6 je klín vyrobený z textilitu, tloušťka 10 mm,
- 7 zajišťovací podložka nasazená v osazení šroubu 11,
- 8 kovové vedení klínu,
- 9 vodicí závit,
- 10 regulační knoflík proudu,
- šroub M6, jehož otáčením ve vodicím závitu se klín posouvá, a tím se mění vzduchová mezera tlumivky,
- 12 jsou připevňovací šrouby M4 × 12 vodicího závitu,
- 13 je nosný hranol (z textilitu, rozměry $50 \times 35 \times 20$ mm),
- 14 jsou rozpěrky,
- plechy E, tloušíka 0.5 mm, pro transformátor 50×50 , 100 ks,
- plechy I, tloušíka 0.5 mm, pro transformátor 50×50 , 100 ks.

Nabíječ je částečně zkratuvzdorný, zkratový proud i v nejnepříznivějším případě nemá přesáhnout hodnotu 20 A a pokud ji přesáhne, měl by odepnutí nabíječe zajistit jistič. Práce s nabíječem je jednoduchá. Lze nabíjet baterie až do celkového napětí 80 V. Akumulátory se přiřazují k nabíječi stále do série, je libovolné, zda je akumulátor šestivoltový, dvanáctivoltový nebo dvacetičtyřvoltový. Lze nabíjet proudem od 0,5 A do 10 A. Z hlediska bezpečnosti obsluhy je třeba si uvědomit, že jde o zařízení, které má napětí větší než 65 V a výkon větší než 500 VA. Proto se musí zřídit zvláštní nabíjecí pracoviště — akumulátorovna. Akumulátorovna musí být oddělená, dobře větratelná místnost se stálou teplotou, chráněná proti vnikání prachu a nečistot. Má být zabezpečena proti nepovolaným osobám a opatřena výstražnými tabulkami. Pracovníci musí mít při práci v akumulátorovně ochranné pomůcky, zejména pryžové zástěry a rukavice, brýle vzdorující kyselině a pryžovou obuv. Podlaha akumulátorovny musí mít izolační podložku.

Při práci v akumulátorovně a zejména při manipulaci s akumulátory musí být přerušeno nabíjení. Ruční nářadí musí mít izolované rukojeti (zejména kleště, šroubováky atd.). Je zakázáno používat delší kovové předměty, např. kovová měřítka.

V akumulátorovně musí být vyvčšeny bezpečnostní předpisy, požární a poplachové směrnice a návod k obsluze nabíječe. Protože (jak je z výkladu zřejmé) bezpečnostní předpisy nejsou jednoduché, doporučujeme případným zájemcům kromě vlastní výroby nabíječe prostudovat ještě československé státní normy třídy 33 a 34, týkající se jednak akumulátoroven, jednak montáže elektrických zařízení vůbec.

Seznam součástek

Tlumivka Tl, plechy EI 50×50 (mm), vodič CuL s průměrem 1,8 mm, celkem 350 závitů, odbočka po 240 závitech.

Transformátor Tr, plechy EÍ 64×64 (mm), 220/110 V/10 A D₁ až D₄ KY 712

30. ZDVOJOVAČ NAPĚTÍ K AUTOMOBILOVÉMU AKUMULÁTORU

Mnohé spotřebiče (např. tranzistorové rozhlasové přijímače a magnetofony) jsou konstruovány pro napájecí napětí 9 V až 12 V. Při použití akumulátoru 6 V je nutné takovému spotřebiči předřadit nějaký měnič napětí. Jsou známy rotační měniče nebo měniče využívající transformátory. Méně známá jsou zapojení, v nichž se elektronicky přepínají kondenzátory tak, že výstupní napětí je téměř dvojnásobné. Příklad takového zapojení je na obr. 46.

Z multivibrátoru, tvořeného tranzistory T_1 a T_2 , jsou přepínány postupně dvě větve výkonových tranzistorů T_3 až T_6 a na emitorech jednotlivých dvojic tranzistorů je střídavě napětová úroveň blížící se nule a plnému napětí akumulátoru. V okamžiku, kdy se napětová úroveň blíží nule, se nabije odpovídající kondenzátor na plné napětí zdroje. V následujícím časovém intervalu je záporný pól tohoto kondenzátoru připojen přes tranzistory k plnému napětí akumulátoru. Správná činnost je zajištěna diodovými výhybkami D_1 až D_4 , takže na výstupních svorkách je téměř dvojnásobné napětí. Skutečné napětí je asi 10 V, neboť část zdvojeného napětí se ztrácí na polovodičových přechodech diod a tranzistorů.

Multivibrátor s tranzistory T_1 a T_2 má klasické provedení. Jeho kmitočet je asi 4 kHz; vyšší kmitočet není vhodné používat vzhledem k vlastnostem použitých tranzistorů a elektrolytických kondenzátorů. Multivibrátor musí být osazen tranzistory stejných vlastností, aby byl symetrický a aby jedna větev výstupních tranzistorů nebyla namáhána více. Symetričnost je vý-

Obr. 46. Zdvojovač napětí k automobilovému akumulátoru

hodná a žádaná také z hlediska velikosti výstupního napětí a zvlnění. Nemá-li spotřebič vlastní filtr, je vhodné na výstup připojit filtrační kondenzátor.

31. NAPÁJEČ 9 V K AUTOMOBILOVÉMU AKUMULÁTORU 12 V

Mnohé spotřebiče (např. magnetofony a rozhlasové přijímače) vyžadují napájecí napětí 9 V. Chceme-li je použít v automobilu s akumulátorem 12 V, je nutné před spotřebič zařadit obvod, který zmenší toto napětí na požadované. Zenerovy diody nebo několik diod v sérii se spotřebičem zcela nevyhoví, neboť při chodu motoru palubní napětí kolísá a při poruše v elektrickém rozvodu hrozí nebezpečí, že napětí z dynama nebo alternátoru zničí spotřebič. Kolísání napětí zároveň rušivě ovlivňuje reprodukci přijímače nebo magnetofonu.

Zapojení vhodného napáječe je na obr. 47 a 48. V zapojení podle obr. 47 jsou použity tři tranzistory; maximální proud napáječe je 0,5 A. Stabilizační dioda D_1 musí mít referenční napětí rovnající se velikosti požadovaného výstupního napětí. Rozdíl mezi napětím akumulátoru a potřebným napětím se vytvoří na tranzistoru T_3 . Na tomto tranzistoru vzniká tedy při maximálním proudu 0,5 A výkonová ztráta 1,5 W, která se při chodu motoru může zvětšit až asi na 3 W. Proto je nutné tento tranzistor umístit na chladič.

Jednodušší zapojení je na obr. 48. Na emitoru tranzistoru T_1 se udržuje napětí, které je na stabilizační diodě, zmenšené o napětí $U_{\rm BE}$ tohoto tranzistoru.

32. ELEKTROMECHANICKÝ STABILIZÁTOR SÍŤOVÉHO NAPĚTÍ

Stabilizace a regulace sítového napětí není jednoduchá. Je pravda, že zavedením tyristorů a triaků se podařilo téměř vytlačit těžké a drahé trans-

Obr. 47. Napáječ 9 V k automobilovému akumulátoru 12 V

Obr. 48. Jednodušší typ napáječe 9 V

duktorové regulátory, ale všechny problémy vyřešcny nebyly. Zvláště se to projevuje v místech s nepravidelným kolísáním napětí, tam kde jde o zvláště velká zmenšení napětí a kde zároveň potřebujeme výstupní napětí bez rušivých harmonických kmitočtů, tj. sinusové. Dále popisovaný přístroj má mnohé výhody. Lze jej zapojit nejen jako stabilizátor, ale i jako stabilizovaný regulátor sítového napětí 40 V až 250 V, dálkově ovládaný zdroj nebo i jako stabilizátor trojfázového napětí tak, že měříme chybové napětí v jedné fázi a spojíme mechanicky tři stejné transformátory na jednu otočnou osu, kterou otáčí jeden motor přes jednu převodovku. Možné je i tři stejná zařízení sdružit tak, aby se chybové napětí vyhodnocovalo v každé fázi a aby každá fáze měla svůj regulační transformátor. Na výsledné trojfázové napětí je možné zapojit trojfázový spotřebič jak v zapojení do hvězdy, tak v zapojení do trojúhelníku. Je zřejmé, že podle toho, jde-li o stabilizátor nebo o regulátor sítového napětí, musíme otočit regulační transformátor. Použijeme-li zařízení jako stabilizátor síťového napětí 120 V nebo 220 V, připojíme síťové napětí na výstup jezdce (tak, jak je to na schématech Používáme-li zařízení jako regulátor se stabilizona obr. 49 a obr. 50). vaným výstupem, je výhodné zapojit síťové napětí na příslušnou odbočku 120 V nebo 220 V a sekundární napětí odebírat z jezdce regulačního transformátoru. U regulátoru podle obr. 49 je třeba změnit odpory R_2 a R_2 , popř. použít stabilizační diody D₄ a D₅ s menším napětím.

Základní zapojení stabilizátoru sítového napětí je na obr. 50. Stabilizuje napětí 120 V, 220 V a 250 V podle jmenovitých napětí z výstupů (nebo podle původního použití ze vstupů) regulačního transformátoru Tr. Proudové zatížení je určeno typem použitého regulačního transformátoru Tr. V ČSSR existují regulační transformátory typu Křižík; výrobcem regulačních transformátorů v ČSSR je ZPA. Přesnost stabilizace není velká, pohybuje se od ±2 % do ±4 %. Nepřesnost je určena citlivostí použitého polarizovaného relé Re a jeho hysterezí. Chybové napětí z výstupu 0 V a 120 V přes rezistor R_1 , potenciometr P a diodu D_1 nabíjí kondenzátor C_1 , na kterém je stejnosměrné napětí. Tímto napětím je napájen speciální můstek, složený ze dvou předřadných rezistorů a dvou stabilizačních diod $(R_2, R_3 \text{ a } D_4, D_5)$. Jakmile se napájecí napětí na kondenzátoru zvětší nebo zmenší, můstek se rozváží. V úhlopříčce můstku je připojeno polarizované relé Re, které je nesepnuté, je-li můstek vyvážený. Zvětší-li se chybové napětí, relé sepne tzv. na jednu stranu. Zmenší-li se chybové napětí, je v úhlopříčce můstku napětí opačné polarity a polarizované relé sepne tzv. na druhou stranu. Polarizované relé spíná kontaktem re, napájecí napětí (tj. střídavé napětí 30 V) přes diodu D₂ nebo D_3 a omezovací rezistor R_4 pro stejnosměrný motor. Ten se točí podle polohy polarizovaného relé buď na jednu stranu, nebo na druhou stranu. Hřídel motorku pohání přes převod 1: 100 hřídel regulačního transformátoru.

Zmenší-li se chybové napětí, zmenší se napětí na kondenzátoru C_1 . Tím se rozváží můstek, sepne polarizované relé, přes kontakt re $_1$ se připojí motor, ten se roztočí, a tím přes převod otáčí regulačním transformátorem tak

Obr. 49. a) Elektromechanický stabilizátor síťového napětí, b) připojení motoru RD 09

dlouho, dokud se chybové napětí nezvětší na původní úroveň. Pak se můstek vyváží a v jeho úhlopříčce je nulové napětí. Relé Re odpadne a motorek se zastaví. Naopak zvětší-li se chybové napětí, vytvoří se v úhlopříčce můstku opačné napětí, relé sepne tzv. do druhé polohy, kontakt re₁ připojí druhou diodu a motorek otáčí hřídelí regulačního transformátoru Tr opačným směrem do té doby, dokud relé Re opět nerozepne.

Můstek složený ze dvou stabilizačních diod a předřadných rezistorů lze rozvážit příčným proudem na obě strany. Proto lze potenciometrem P nastavit úroveň výstupního stabilizovaného napětí. Přesnost výstupního napětí (tedy činitel stabilizace) záleží na citlivosti použitého polarizovaného relé Re. Bylo použito sovětské relé RPS-5 s citlivostí 0,12 mA až 0,18 mA. Na obr. 49b je analogické zapojení s jiným motorem, jehož smysl točení lze měnit týmž kontaktem re₁ relé Re. Jde o reverzibilní asynchronní motor RD-09 sovětské výroby. Funkce je stejná, jako když použijeme stejnosměrný motor. Kondenzátory C_4 , C_5 a rezistory R_5 , R_6 plní funkci odrušovacích členů, kondenzátor C_3 zajišťuje funkci motoru RD-09.

Pro zkušenější amatéry je určeno zlepšené zapojení na obr. 50. Zde je nutné použít jako zdroj chybového napětí oddělovací transformátor Tr2 $120 \text{ V/2} \times 24 \text{ V}$; 6 A, který je připojen na výstupní stabilizované napětí. Mezi schématy na obr. 49 a obr. 50 je zřejmá analogie. Chybové napětí, úměrné změně síťového napětí, se po usměrnění objeví na kondenzátorech C_1 a C_2 . Odtud je přes rezistory R_1 a R_2 napájen stejný můstek, složený ze dvou stabilizačních diod, D_6 a D_7 , s předřadnými rezistory R_3 a R_4 . Můstek lze rozvažovat příčným proudem, který se mění potenciometrem R_2 ; ten tedy nastavuje výstupní napětí. V úhlopříčce můstku jsou oba vstupy operačního zesilovače MAA 502. Rezistor R_6 je pouze omezovací ochranný rezistor a obě antiparalelně zapojené křemíkové diody (D_{11} a D_5 , typu KY 701) ochraňují vstupy operačního zesilovače před zničením, objeví-li se v úhlopříčce můstku velké napětí. Součástky R_8 , D_8 a R_5 , D_{12} tvoří stabilizační členy pro napájení zesilovače. Zesilovač má zápornou zpětnou vazbu tvořenou odpory R_9 , R_{11} a R_{12} , kterou lze optimalizovat trimrem R_{11} . Na výstupu operačního zesilovače jsou připojeny tranzistory T_1 a T_2 , k jejichž emitorům je připojen stejnosměrný motor 24 V. Motor se točí buď na jednu stranu, nebo na druhou stranu, podle toho, je-li v úhlopříčce můstku napětí kladné nebo záporné. Aby motor nekmital při častých změnách polarity napětí v úhlopříčce můstku, má zesilovač zavedenu umělou hysterezi, která mu dává vlastnosti podobné vlastnostem polarizovaného relé.

Přes rezistor R_{13} se zavede na vstup 3 operačního zesilovače kladná zpětná vazba, která způsobí, že k zpětnému překlopení je třeba poněkud jiné napětí na vstupu 3, než bylo to, které způsobilo na výstupu změnu z kladného napětí na záporné a naopak.

Mechanická část stabilizátoru je stejná jako v předcházejícím případě; zájemce je možné odkázat na popis podobného zařízení v časopisu RADIO (SSSR) 6/1969 (čl. Elektromechanický stabilizátor, autoři Apinjan a Koloskov). Závěrem lze podotknout, že složitější zařízení s operačním zesilovačem

Obr. 50. Jiné provedení elektromechanického stabilizátoru sítového napětí

Obr. 51. Stabilizace světla žárovky

má asi dvakrát lepší stabilizační účinky. Přesnost výstupního napětí je ± 1 % až ± 2 % a regulace by měla být i spolehlivější.

33. STABILIZACE SVĚTLA ŽÁROVKY VE ZVĚTŠOVACÍM PŘÍSTROJI

Při osvětlování pozitivních fotografických materiálů zvětšovacím přístrojem se u barevných materiálů vyžaduje velká stabilita světla, a to jak krátkodobá, tak dlouhodobá. Nestabilita světla je způsobena kolísáním sítového napětí. Vlivem této nestability nejsou barvy věrné a jsou patrné rozdíly v provedení (např. při práci odpoledne, večer nebo pozdě v noci). Již běžný rozptyl síťového napětí o 10 % způsobuje tak velikou chybu, že pravdivý odstín barev lze obtížně zajistit. Proto se před zvětšovací přístroje zařazují stabilizátory síťového napětí. Ty mají pro fotoamatéry mnohé nevýhody. Většinou již nepracují při podpětích sítě, tj. pod 200 V, jsou drahé a jejich amatérská výroba je složitá a nesnadná. Výhodou uvedeného zařízení je i použití stejnosměrného napájení žárovky, které zaručuje klidné, neblikající světlo. Žárovku 220 V nahradíme žárovkou 24 V, kterou napájíme stabilizovaným stejnosměrným napětím. Žárovky 24 V se vyrábějí ve stejných velikostech jako žárovky 220 V. Používají se v nebezpečných a vlhkých provozech, např. na stavbách nebo v dolech. Vyrábějí se jak čiré, tak opálové nebo matové.

Největší přesnosti stability výstupního napětí se dosahuje tranzistorovými stabilizátory. Schéma přesného a výkonného stabilizátoru je na obr. 51. Proud ze sítě prochází přes pojistku Po s hodnotou 1 A a přes omezovací rezistor R_1 na primární vinutí sítového transformátoru. Omezovací rezistor R_1 má chránit regulační tranzistor T_3 před proudovým přetížením ve chvíli, kdy je vlákno žárovky při zapřnutí ještě studené. Rezistor R_1 omezuje vznik proudové špičky. Síťový transformátor převádí síťové napětí 220 V na napětí 28 V. Maximální sekundární proud je 3,5 A až 4 A. Kondenzátor C_1 filtruje výstupní napětí. Pro toto použití stabilizátoru není funkčně nutný, ale uklidňuje svit žárovky. Základem stabilizace je zdroj referenčního napětí, které se vytváří na stabilizační diodě D_6 . Referenční stabilizované napětí se z této diody přivádí na vstup 2 operačního zesilovače. Na druhý vstup 3 téhož operačního zesilovače je přivedeno chybové napětí, jehož velikost je úměrná výstupnímu napětí, přiváděnému na žárovku Ž. Zvětší-li se toto chybové napětí více než referenční napětí, začne na výstupu 6 operačního zesilovače napětí klesat. Stabilizační dioda D_5 posune (tj. zmenší) úroveň stejnosměrného napětí přicházejícího na bázi tranzistoru T₁. Na výstupu 6 opcračního zesilovače je nulové napětí nebo až napětí 10 V, na bázi tranzistoru T_1 je napětí zmenšené o referenční napětí diody D_5 . Rezistor R_3 plní funkci omezovacího rezistoru. Tranzistor T_1 pracuje jako invertor a zesilovač, kterým se řídí oba regulační tranzistory, T₂ a T₃, zapojené v Darlingtonově zapojení. Tranzistory T_2 a T_3 tvoří regulační člen; jejich zavíráním a otevíráním se mění úbytek napětí mezi emitorem a kolektorem tranzistoru T₁ tak, že výstupní napětí, kterým je napájena žárovka, je

konstantní. Součástky R_5 a D_7 tvoří teplotně kompenzační člen. Součástky R_3 a C_2 zabraňují vysokofrekvenčním oscilacím celé soustavy. Kondenzátory C_3 a C_4 a rezistor R_6 tvoří kmitočtovou kompenzaci samotného operačního zesilovače. Rezistory R_9 a R_{11} omezují možnosti nastavení výstupního napětí trimrem R_{10} . Chceme-li regulační rozsah zvětšit, musíme jejich hodnoty

upravit.

Natěťová stabilizace pracuje tak, že jakmile se i nepatrně zvýší chybové natětí, tj. zvýší se i natětí na žárovce, poklesne napětí na výstupu 6 operačního zesilovače. To má za následek zvýšení napětí na bázi tranzistoru T_2 , tím se oba tranzistory (T_2 a T_3) otevřou natolik, aby vzniklý úbytek napětí vyrovnaly a aby natětí měla původní velikost. Výstupní napětí nastavíme trimrem R_{10} . Na obr. 52 je voltampérová charakteristika žárovky POLAM 24 V/100 W s vyznačeným možným regulačním rozsahem. V bodě A již žárovka přijatelně svítí a má tepelnou ztrátu asi 40 W. V bodě B má tepelnou ztrátu 64 W, bod C odpovídá jmenovitému napětí 24 V a na žárovce vzniká tepelná ztráta asi 84 W. V bodě D, kdy je výstupní napětí 30 V, dosahuje tepelná ztráta již 120 W. Pro expoziční účely je lépe vlákno žárovky více rozžhavit, aby žárovka vyzařovala bělejší světlo, které má rovnoměrnější spektrum. Podžhavené vlákno žárovky má maximum vyzářeného spektra posunuto více k červenému záření.

Tranzistor T₃ musí odvést relativně velké množství tepla a zároveň musí mít jistou rezervu, aby se nezničil při zapnutí žárovky, neboť vlákno žárovky má za studena malý odpor, a proto po zapnutí projde tranzistorem

Obr. 52. Voltampérová charakteristika žárovky 24 V/100 W

poměrně značný proudový náraz. Tranzistor T_3 musí být umístěn na velkém chladiči. Při trvalém připnutí žárovky s charakteristikou podle obr. 52 lze odhadnout, jaký tepelný výkon vzniká na chladiči tranzistoru T_3 , a jaké teplo je tedy nutné z chladiče odvést. Pro úvahu předpokládáme, že na kondenzátoru C_1 je napětí 35 V. V bodě A na charakteristice z obr. 52 je P = UI = 15. .2,7 \doteq 40 W, v bodě D dosahuje P = 120 W. V ostatních bodech se velikost tepelné ztráty pohybuje mezi těmito hodnotami. Hodnoty použitých součástek jsou patrné z celkového schématu na obr. 51. Samotná konstrukce nemá žádné záludnosti. Je jen třeba upozornit, že použijeme-li ke spínání běžný časový spínač, musíme se přesvědčit, zda spínací kontakt K je dostatečně proudově dimenzovaný.

IV. Řízení střídavého proudu tyristory a triaky

Střídavý proud lze téměř bezeztrátově řídit elektronickými spínači, mezi které patří tyristory a triaky. Tyto součástky obsahují polovodičové přechody, které lze prostřednictvím řídicí elektrody v požadovaném okamžiku uvést z nevodivého stavu do stavu vodivého. Tento vodivý stav samočinně zaniká, zmenší-li se proud, který součástkou prochází, pod určitou hodnotu. Zaniká tedy vždy při průchodu střídavého proudu hodnotou blízkou nule.

Tyto polovodičové součástky našly hlavní použití v řízení střídavého proudu. Proto se uplatňují i při řízení proudu v běžných domácích spotřebičích. Řídí svit žárovek, příkon topných těles, otáčky motorů atd.

Obr. 53. Obvod s tyristorem

Obr. 54. Obvod se dvěma tyristory

Rozdíl mezi tyristorem a triakem je v tom, že tyristor je vnitřní strukturou jednodušší a umožňuje spínat proud pouze v jednom směru. Na obr. 53a je schematické znázornění tyristoru v obvodu spotřebiče a na obr. 53b je průběh proudu, který tímto spotřebičem prochází. Tyristor je v okamžiku i spínán z řídicího obvodu impulsem do řídicí elektrody G. Z toho vyplývá, že řídicími impulsy, které fázově posouváme vzhledem k průběhu sítového

napětí, lze řídit proud v rozsahu 0 až 50 % maximální hodnoty. Aby bylo možné řídit proud v celém rozsahu, tedy od 0 % do 100 %, je nutné použít dva tyristory se dvěma řídicími obvody (obr. 54a) nebo můstkové zapojení s diodami (např. podle obr. 55), kde tyristor spíná v obou polovinách periody sítového napětí. Idealizovaný průběh proudu procházejícího spotřebičem je na obr. 54b.

Triak umožňuje spínání v obou polovinách period sítového napětí. Jeho schematické znázornění a zapojení v obvodu zátěže je na obr. 56a. Idealizovaný průběh proudu je na obr. 56b.

Řídicí obvod přivádí na řídicí elektrodu spínací impuls nebo série spínacích impulsů. Čelo impulsů musí odpovídat požadovanému úhlu fázového řízení spínače. Řídicí obvod musí být schopen posouvat tyto impulsy v rozsahu požadovaného řízení výkonu do zátěže. Vstupní veličinou řídicího obvodu je napětí z potenciometru nebo napětí z regulačního obvodu.

Hlavním problémem při návrhu řídicího obvodu je zajištění spolehlivého sepnutí spínací součástky v potřebné době. Energie impulsů do řídicí elek-

Obr. 56. Obvod s triakem

Obr. 57. Charakteristika triaku

Obr. 58. Charakteristika diaku

trody musí být dostatečně velká a nesmí docházet k posouvání impulsů vlivem značného rušení, které při řízení těmito spínacími součástkami vzniká.

Řízení výkonu v odporové zátěži není provázeno žádnými problémy. Při zátěži indukčního charakteru dochází k zákmitům, jejichž vlivem může spínací součástka sepnutý obvod rozepnout, a narušit tak jeho činnost. Teoretické rozbory v takovém případě připouštějí pouze určitý rozsah spolehlivého řízení výkonu.

Voltampérová charakteristika triaku (obr. 57) je souměrná podle počátku. Je složena ze dvou charakteristik tyristorů, přiložených zrcadlově k sobě.

Obr. 59. Obvod pro řízení proudu do spotřebiče

Ve skutečnosti se obě charakteristiky od sebe mírně liší a také se liší proud vstupující do řídicí elektrody, potřebný k sepnutí kladné a záporné poloviny periody.

Je-li na triaku mezivrcholové střídavé napětí menší, než je napětí $U_{\rm D}$, neprochází do zátěže žádný proud. Přivedeme-li na řídicí elektrodu G napětí $U_{\rm GT}$ (spínací napětí řídicí elektrody), triak sepne a chová se jako dioda v přímém směru.

Pro spínání tyristorů a triaků se používají speciální součástky — diaky. Voltampérová charakteristika diaku je na obr. 58. V určité oblasti této charakteristiky je diferenciální odpor diaku záporný. Zvětší-li se napětí na diaku nad hodnotu $U_{\rm BO}$, prochází diakem proud, jehož velikost určují vnější součástky obvodu. Použití diaku je patrné ze zapojení obvodu pro řízení proudu spotřebičem na obr. 59.

Na kondenzátoru je napětí, které je fázově posunuto oproti napětí na triaku. Velikost fázového posunutí lze měnit potenciometrem R_2 . Má-li napětí na tomto kondenzátoru velikost součtu napětí $U_{\rm BO}$ diaku a $U_{\rm GT}$ triaku, vybije se část energie nahromaděné v kondenzátoru do řídicí elektrody triaku, který sepne. V následující polovině periody se děj opakuje, avšak proudy procházejí v opačném směru.

Při sepnutí tyristoru nebo triaku se vedením šíří poměrně značné rušení, které by mohlo ohrozit správnou funkci obvodu a rušit příjem rozhlasových přijímačů. Proto je nutné do obvodu zařadit odrušovací filtr.

34. SOUČÁSTKY K REGULACI STŘÍDAVÉHO PROUDU

K regulaci střídavého proudu vyrábí VHJ TESLA tyto základní stavební prvky:

- A. Integrovaný obvod MAA 436.
- B. Triaky.
- C. Tyristory.
- D. Odrušovací prvky.

A. Integrovaný obvod MAA 436

Integrovaný obvod MAA 436 je určen pro fázové řízení triaků nebo tyristorů. Nepotřebuje zvláštní napájení, potřebné napětí usměrňuje a stabilizuje sám ze střídavého napětí, které spolu s připojeným triakem nebo tyristorem reguluje. Buď může pracovat jako pouhý regulátor, nebo může být zapojen ve zpětnovazební smyčce. Výstupní kladné impulsy se fázově posouvají v rozsahu od 160° do 20°, v závislosti na změně stejnosměrného napětí na vstupu.

Systém je v plastovém pouzdru se čtrnácti vývody (dual-in-line), rozměry pouzdra jsou stejné jako rozměry pouzdra číslicových integrovaných obvodů. Na obr. 60 je základní zapojení integrovaného obvodu MAA 436 s rozkresleným vnitřním uspořádáním. Systém obsahuje 11 bipolárních tranzistorů, 8 diod, 1 stabilizační diodu, 2 tyristory a 8 rezistorů. Je vyroben

epitaxní technologií na monokrystalu křemíku. Vlastní destička systému má rozměr $1,3 \times 1,3$ (mm). Na obr. 60 je zároveň základní zapojení vnějších součástek při prosté regulaci proudu procházejícího triakem pomocí potenciometru P. Údaje součástek uvedené v závorkách platí pro případ, že regulujeme síťové napětí 220 V do zátěže R_z , která nemá menší odpor než 22Ω , tj. kterou neprojde větší proud než 10 A.

Obr. 61. Zapojení integrovaného obvodu MAA 436 určené k jeho měření

Měření a katalogové údaje integrovaného obvodu MAA 436

Doporučené zapojení pro zkoušení IO MAA 436 je na obr. 61. Mezní údaje při okolní teplotě 25 °C jsou tyto:

Špičkový napájecí proud na vstupech 5 a 6 $\pm I_{5.6 ext{max}} = 36 ext{ mA}$.

Výstupní spínací impuls $\pm I_{3 \text{ max}} = 150 \text{ mA}$.

Špičkový vybavovací proud $\pm I_{9\text{max}} = 2 \text{ mA}$.

Rozsah pracovních teplot okolí je - 40 °C až +85 °C.

Charakteristické údaje při teplotě +25 °C:

Špičkové napájecí napčtí (mezi svorkami 5, 6) $\pm U_{5,6} = 13,5$ V až 19,5 V (měří se při maximálním proudu $\pm I_{5,6}$ a při odpojeném potenciometru P a rezistoru R_0).

Výstupní spínací impuls při $R_0=91\,\Omega$ a $\alpha=90^\circ\pm I_3=100$ mA až 150 mA. Špičkový vybavovací proud $\pm I_9=100~\mu\text{A}$ až 230 μA .

Špičkové napájecí napětí $U_{14,10}=6$ V až 10 V (měří se při odpojeném potenciometru P a rezistoru R_0 , zároveň jsou mezi vstupy 10 až 14 připojeny členy $R_{\rm F}$ a $C_{\rm F}$).

Špičkové napětí $U_{1,10}$ při odpojeném potenciometru P a zátěži R_0 je 6,5 V až 10 V.

Proudové zesílení $A=\frac{I_{13}}{I_{12}}$ je větší než 30 (měří se při odpojeném P, $R_{\mathbf{0}}$

a $R_{\rm G}$ a při $I_{12} = 1 \, \mu {\rm A}$ a $I_{5,6} = 15 \, {\rm mA}$).

Proud I_{13} do báze Darlingtonova zapojení je menší než 3 μ A.

(Měří se při odpojených P, R_0 a R_G při proudu $I_{5,6} = 15$ mA.

Ampérmetr se zapojí místo kondenzátoru C_{G} .)

Referenční úroveň $K_{\rm R}=\frac{U_{2,10}}{U_{1,10}}$ je v rozmezí 0,3 V až 0,36 V (měří se při od pojeném P a R_0).

Stupeň nevyvážení B je menší než 7 %.

Stupeň nevyvážení je definován jako poměr stejnosměrného napětí na zátěži a střídavého napětí

$$B = \frac{U_0}{U_{ef}}.100 \quad [\%]$$

Návrh vnějších součástek

Omezovací rezistor $R_{\rm S}$ (obr. 60). Jeho odpor musí být tak velký, aby byl zajištěn dostatečný proud vnitřní stabilizační diodou $D_{\rm g}$. Ta tvaruje průběh napájecího napětí a proud pro vnější zatížení mezi vývody 1—10 a 14—10.

Minimální odpor je dán podílem špičkového napájecího napětí a maximálního dovoleného napájecího proudu. Pro síťové napětí 220 V se doporučuje $R_{\rm S}=18~{\rm k}\Omega.$

Kondenzátor C_8 . Kondenzátor svým nábojem zajišťuje dostatek energie ke spouštění vnějšího triaku nebo tyristoru. Pro triaky nebo tyristory do 20 A vyhovuje kapacita $C_8 = 0.1 \ \mu F$.

 $Ochranný rezistor R_0$. Odpor omezuje špičkový vybíjecí proud, a proto

musí být zvolen tak, aby proud I_3 byl menší než 150 mA.

Rezistor $R_{\rm H}$. Odpor musí dovolit průchod takového proudu, který stačí pro otevření hradlovacího obvodu. Minimální odpor $R_{\rm H}$ je určen podílem špičkového napájecího napětí a maximálního dovoleného proudu $I_{\rm 9}$. Pro sítové napětí 200 V se doporučuje $R_{\rm H}=470~{\rm k}\Omega$.

Rezistor $R_{\rm G}$ a kondenzátor $C_{\rm G}$. Volí se podle požadovaného zesílení. Tyto součástky určují amplitudu zdvihového napětí. Obvykle se používá $R_{\rm G}=10~{\rm k}\Omega$ až 200 k Ω , kondenzátor $C_{\rm G}=0.1~{\rm \mu F}$ až 10 nF.

Amplitudu zdvihového napětí lze určit ze vztahu

$$U_{\mathbf{Z}} = rac{2I_{\mathbf{13}}}{\omega C_{\mathrm{G}}} \cdot rac{10^{\mathbf{4}}}{R_{\mathrm{G}}}$$

kde I_{13} je proudová špička sinusového zdvihu při $R_{\rm G}=10~{\rm k}\Omega$. Po dosazení typického proudu I_{13} a kmitočtu sítového napětí se vztah zjednoduší na

$$U_{\mathbf{Z}} = rac{4500}{C_{\mathrm{G}}R_{\mathrm{G}}} \quad \mathrm{[V; nF, k}\Omega\mathrm{]}$$

K této střídavé amplitudě zdvihu se musí ještě připočítat lineární amplituda zdvihu, která je tvořena průchodem bázového proudu

$$U_{
m Z} = rac{7I_{
m 13}}{C}.10^{
m 3}$$

Po dosazení typického proudu I_{13} bude

$$U_{\mathbf{z}} = \frac{3.5}{C}$$
 [V; nF, k Ω]

Odporový dělič na vstupu. Je tvořen rezistory $R_{\rm A}$, $R_{\rm B}$, popř. potenciometrem P. Obvykle je odporový dělič ($R_{\rm A}+R_{\rm B}$) 10 k Ω až 200 k Ω . Menší odpory zbytečně zatěžují napájecí obvod. Větší odpory než 200 k Ω mohou omezit nabíjecí proud časovacího kondenzátoru a změnit nastavení úhlu zapnutí, zvláště při menších proudových zesíleních dvou vstupních tranzistorů

$$A_{\rm i} = \frac{I_{13}}{I_{14}}$$

Je-li použit aktivní zdroj řídicího signálu (např. tachogenerátor), musí být signál dobře filtrován. Výstupní impedance zdroje řídicího signálu má být v rozsahu $2 \text{ k}\Omega$ až $100 \text{ k}\Omega$. Je-li k vytvoření signálu k dispozici potřebný stejnosměrný napěťový zdroj, je možné zapojit mezi vývody $14 \text{ a } 10 \text{ filtrační kondenzátor. Zátěž tohoto kondenzátoru by měla být větší než <math>10 \text{ k}\Omega$, aby byl zajištěn minimální nabíjecí proud. Při použití filtračního kondenzátoru je třeba zajistit, aby řízení nepracovalo dříve, než bude kondenzátor nabit v každé polovině periody na napětí stabilizační diody D_9 . Tuto podmínku lze obecně splnit správnou volbou vybavovacího proudu (tj. volbou rezistoru $R_{\rm H}$) nebo přidáním kondenzátoru s malou kapacitou mezi vývody 9 a 6. Kondenzátor způsobí malé fázové posunutí vybavovacího proudu I_9 . Doporučené odpory R_8 a $R_{\rm H}$ pro různá napájecí napětí jsou:

Napájecí napětí

[V]	$R_{ m S}\left[{ m k}\Omega ight]$	$R_{ m H}\left[{ m k}\Omega ight]$
24	1,2	47
60	4,7	120
120	10	220
220	18	470

Popis funkce integrovaného obvodu MAA 436

Činnost obvodu popíšeme podle schématu na obr. 61 a podle průběhů napětí na obr. 62.

Vstupní signál se porovnává s referenčním napětím vytvářeným v integrovaném obvodu. Fázový úhel řídicích impulsů se získává porovnáním tzv. zdvihového napětí a tzv. napětí základny. Obvod pracuje s kladnou

Obr. 62. Napěťové úrovně MAA 436

napěťovou úrovní, s kladnou referenční úrovní a se záporným kosinovým zdvihem. Kladný vstupní signál vytváří základní úroveň, řídicí impuls vzniká v okamžiku, kdy se zdvihové napětí zmenšuje pod referenční úroveň. Menší vstupní signál vytváří menší základní úroveň, a tedy spouštěcí impulsy vznikají dříve (úhel zapnutí α je menší). Menší úhel α znamená větší výkon na zátěži, protože triak je otevřen po větší část periody střídavého proudu.

Celkovou činnost integrovaného obvodu lze pochopit ze schématu na obr. 60. Provozní napájecí napětí se získává ze střídavé sítě přes rezistor $R_{\rm S}$ a můstkový usměrňovač. Je omezeno stabilizační diodou $D_{\rm 9}$ a tranzistorem T_{13} . Usměrněné a omezené napětí se používá jako základní napájecí i referenční napětí a je vyvedeno na svorky 1 a 10. Všechen proud integrovaného obvodu prochází rezistorem $R_{\rm 7}$ a diodou $D_{\rm 7}$ a má tvar dvojcestně usměrněné sinusovky.

Stejnosměrným vstupním signálem přicházejícím do vstupu 12 (např. z děliče R_A , R_B) se přes emitorový sledovač s tranzistorem T_{12} v Darlingtonově zapojení s tranzistorem T_{11} a s proudovým omezením rezistorem R_6 nabíjí vnější časovací kondenzátor C_G . Kondenzátor C_G se zároveň nabíjí půlvlnným sinusovým proudem přes tranzistor T_{10} a vnější emitorový rezistor R_G . Zdvihové napětí se získává jako úbytek napájecího napětí na odporu R_7 a tento úbytek je přiveden na bázi tranzistoru T_{10} . Amplituda zdvihového nabíjecího proudu je dána vnějším emitorovým zpětnovazebním rezistorem R_G ; odpor R_G tedy určuje velikost zdvihového napětí. Dioda D_7 kompenzuje úbytek napětí U_{BE} tranzistoru T_{10} . Referenční napětí se získává přímo z napájecího napětí. Referenční napětí je vyvedeno na vývod 2 integrovaného obvodu. Pokud je to nutné, může se v jistých mezích měnit vnějšími rezistory, zapojenými mezi vývody 1 a 2 nebo 2 a 10.

Rozdílový zesilovač (komparátor) tvořený tranzistory T₃, T₄ a T₅ porovnává napětí na kondenzátoru $C_{\rm G}$ s referenčním napětím. Darlingtonovo zapojení tranzistorů T₄ a T₅ má dvě funkce; jednak umožňuje dosáhnout velké impedance pro připojení kondenzátoru C_{G} , jednak se na přechodu báze — emitor vytváří tzv. ofsetové napětí pro kompenzaci zmenšené úrovně vstupního signálu napětím $U_{\rm BE}$ na emitorovém sledovači T_{12} . Zdánlivá referenční úroveň (tj. napětí požadované na vývodu 12 a určené pro řízení na začátku zdvihu) se liší od skutečné referenční úrovně na vývodu 2 pouze o nepatrné rozdíly v napětích $U_{\rm BE}$ tranzistorů T_3 , T_4 a T_{12} . Společný emitorový proud komparátoru procházející diodou D_5 a rezistorem R_4 je řízen hradlovacím obvodem (dioda D_6 a tranzistory T_7 , T_8 , T_9). Prochází-li zatěžovací proud triakem, je nedostatečným bázovým předpětím tranzistorů T, a T, znemožněn průchod společného emitorového proudu komparátorem, protože ten je blokován a nemůže vytvářet vstupní signál pro spouštění. Přestane-li procházet zatěžovací proud, objeví se na triaku napětí a proudem přes vnější rezistor $R_{\rm H}$ se uvolní hradlovací obvod a umožní normální funkci komparátoru. Odpor R_{H} stanoví napětí požadované k uvedení komparátoru do činnosti.

Řídicí impulsy vznikají na tyristorech Ty_1 a Ty_2 při vybíjení vnějšího kondenzátoru C_8 do řídicí elektrody triaku. Jeden z dvojice tyristorů je otcvřen signálem z tranzistoru T_3 , zmenší-li se zdvihové napětí pod referenční úroveň, avšak pouze tehdy, může-li společný emitorový proud komparátoru procházet hradlovacím obvodem.

Protože řídicí impulsy mění svou polaritu stejně jako střídavé napájecí napětí, jsou vhodné k přímému řízení triaků. K řízení dvojice tyristorů v antiparalelním zapojení se musí řídicí elektroda připojit přes transformátor s převodním poměrem 1:1.

Abychom zabránili přenosu informace z jedné poloviny periody do druhé, musí být kondenzátor C_G na konci každé poloviny periody střídavého řízení napětí nabit na stále stejnou úroveň napětí; to zajišťuje tranzistor T_6 , Kondenzátor C_G se vybíjí až na napětí U_{BE} tohoto tranzistoru.

B. Triaky do 15 A
Tabulka 2. Přehled triaků vyráběných v TESLA Rožnov, k. p.

•	Střední proud [A]		Maximální spínací proud řídicí elektrody [mA	
			1	
KT 205/200	3	200	40	
KT 205/400	3	400	40	
KT 205/600	3	600	40	
KT 207/200	5	200	80	
KT 207/400	5	400	80	
KT 207/600	5	600	80	
KT 772	6	200	80	
KT 773	6 .	400	80	
KT 774	6	600	80	
KT 730/700	6	700	80	
KT 730/800	6	800	80	
KT 730/900	6	900	80	
KT 782	. 10	200	80	
KT 783	10	400	80	
KT 784	10	600	80	
KT 729/700	10	700	80	
KT 729/800	10	800	80	
KT 729/900	10	900	80	
KT 728/400	15	400	100	
KT 728/600	15	600	100	
KT 728/800	15	800	100	

C. Tyristory

Tabulka 3. Přehled tyristorů vyráběných v TESLA Rožnov, k. p.

	Střední proud[A]	Závěrné napětí [V]	Spínací proud řídicí elektrody [mA]	
KT 501	1 50 10		10	
KT 502	l	100	10	
KT 503	l	200	. 10	
KT 504]	300	10	
KT 505	l	400	10	
KT 506	l	400	l	
KT 508/50	0,8	5 0	2	
KT 508/100	0,8	100	2	
KT 508/200	0,8	200	2	
KT 508/300	0,8	300	$oldsymbol{2}$	
KT 508/400	0,8	400	$oldsymbol{2}$	
KT 511	0,8	400	25	
KT 710	3	50	15	
KT 711	3	100	15	
KT 712	3	200	15	
KT 713	3	300	15	
KT 714	3	400	15	
KT 701	15	50	40	
KT 702	15	100	40	
KT 703	15	200	40	
KT 704	15	300	40	
KT 705	15	400	40	
KT 706	15	500	40	
KT 707	15	600	40	
KT 708	15	700	40	
KT 206/200	3	200	10	
KT 206/400	3	400	10	
KT 206/600	3	600	10	
KT 401/50	ľ	5 0	10	
KT 401/100	l	100	10	
KT 401/200	l	200	10	
$KT \ 401/300$	ī	300	10	
KT 401/400	ī	400	$\overline{10}$	
$KT \ 401/500$	ī	500	10	
KT 401/600	1	600	10	
KT 401/700	l	700	10	

D. Odrušovací prvky

Pro odrušení tyristorových a triakových obvodů jsou nejvhodnější odrušovací filtry, které obsahují odrušovací tlumivky a kondenzátory.

V k. p. TESLA Lanškroun se vyrábějí tyto součástky: Odrušovací filtr WN 85202, určený pro maximální proud 4 A a pro napětí 220 V/50 Hz. Vnitřní zapojení filtru je na obr. 63a, rozměrový náčrtek je na obr. 63b.

Obr. 64. Odrušovací filtr WK 050 03.1

Obr. 65. Odrušovací tlumivky

Tabulka 4. Odrušovací tlumivky

Prove-	m	Rozměr [mm]		Indukčnost	Proud	
dení	\mathbf{Typ}	\boldsymbol{A}	B	C	[mH]	[A]
1	WN 682 01	22	18	17,5	2 imes2,5	k
1	WN 682 02	26	21	21	2 imes2,5	1,6
1	WN 682 03	33,5	26	27	2 imes2,5	2,5
1	WN 682 05	56,5	4 5	56, 5	2 imes 2.5	10
1	WN 682 06	26	21	21	2×6.3	1
1	WN 682 07	33,5	26	27	2×6.3	1,6
1	WN 682 08	44	34	42,5	2 imes 6.3	4
ī	WN 682 09	$\overline{56}$	45	56,5	2×6.3	6
1	WN 682 14	44	34	45,5	$2 \times 6,3$	4
		$oldsymbol{L}$	arphi d			
2	WN 682 11	30	0,6		2 imes 4	2,5
2	WN 682 12	30	0,45		2×10	1,6
$ar{f 2}$	WN 682 13	30	0,45		2 imes 10	1,6
$\overline{3}$	WN 682 19	viz ná	,		$f{2} \stackrel{\frown}{ imes} f{2,5}$	1

Odrušovací filtr WK 050 03.1, určený pro maximální proud 1,6 A a pro napětí 220 V/50 Hz. Vnitřní zapojení filtru je na obr. 64a, rozměrový náčrtek na obr. 64b.

Dále se vyrábějí odrušovací tlumivky, které lze využít v obvodech v kombinaci s kondenzátory nebo se speciálními odrušovacími kondenzátory. Typy, rozměry a elektrické vlastnosti těchto odrušovacích tlumivek uvádíme v tabulce 4. Uvedené typy se konstruují pro napětí 220 V/50 Hz. Rozměrové náčrtky a schéma zapojení jsou na obr. 65.

35. ZDROJ SIGNÁLU S OPERAČNÍM ZESILOVAČEM PRO ŘÍZENÍ TYRISTORU

Na obr. 66 je zdroj fázově posouvatelných impulsů pro tyristorovou regulaci nebo ovládání. Na zapojení je zajímavé zejména to, že ačkoli se řídicí impulsy do tyristoru fázově posouvají v závislosti na stejnosměrném řídicím vstupním napětí, neobsahuje zapojení jako zpožďovací členy kondenzátory. Fázové zpoždění vzniká tím, že se porovnává polovina periody střídavého řízeného napětí, přivedená na neinvertující vstup operačního zesilovače OZ, se stejnosměrným řídicím signálem, který se získá z optoelektrického členu a přivádí se na invertující vstup operačního zesilovače OZ. Fázové zpoždění výstupního signálu vznikne proto, že se na výstupu OZ objeví kladný výstupní signál až v době, kdy je střídavé napětí na neinvertujícím vstupu OZ větší než stejnosměrné napětí, určené řídicím vstupním napětím na invertujícím vstupu OZ. Dělič tvořený diodou D_1 a rezistory R_1 a R_2 určuje velikost jednocestně usměrněného napětí na neinvertujícím vstupu OZ.

Výhodou celého zapojení je to, že optoelektrický člen zajišťuje galvanické oddělení řídicího vstupního stejnosměrného signálu 0 až 3 V od síťové části a výkonových členů.

Obr. 66. Obvod s operačním zesilovačem pro řízení tyristoru

Rezistor R_4 tvoří spolu s optoelektrickým členem zápornou zpětnou vazbu. Diody D_2 a D_3 zajišťují, aby se na řídicí elektrodu tyristoru náhodně nedostalo záporné napětí. Diody D_1 i D_2 , D_3 jsou běžné křemíkové usměrňovací diody. Použitý optoelektrický člen je typu WK 164 13 a WK 164 14. Jako operační zesilovač OZ lze použít integrovaný obvod TESLA MAA 741. Při napájení celého zařízení střídavým napětím 120 V se používají tyto pasívní součástky: $R_1 = 2.5 \text{ M}\Omega$, $R_2 = R_3 = 1 \text{ k}\Omega$, $R_5 = 50 \Omega$ a $R_6 = 1 \text{ k}\Omega$. Na obr. 66 je zařízení použito k řízení otáček běžného univerzálního motorku; místo něho však může být zapojen jiný spotřebič.

36. STMÍVAČ S TYRISTOREM

Jedno z nejjednodušších zapojení stmívače určeného pro žárovku 200 W je na obr. 67. Tyristor pracuje v obou polovinách periody sítového napětí, neboť je zapojen v úhlopříčce Graetzova můstku. V řídicí elektrodě t yristoru jsou zapojeny dva tranzistory, které nahrazují spínací součástku typu

Obr. 67. Stmívač s tyristorem

UJT. Kondenzátor C se každou polovinu periody nabíjí přes rezistory R_5 a R_4 . V okamžiku, kdy je napětí na tomto kondenzátoru asi o 0,5 V větší než napětí na rezistoru R_3 , dojde ke vzájemnému sepnutí tranzistorů T_2 a T_1 . Náboj z kondenzátoru C se vybije do řídicí elektrody tyristoru, který sepne. Následující polovinu periody se děj opakuje, neboť tyristor při průchodu síťového napětí nulovou hodnotu vždy rozepne. Rychlost nabíjení kondenzátoru C závisí na nastavení potenciometru R_5 . Pro lineární průběh tohoto potenciometru získáme téměř lineární subjektivní odezvu jasu na natočení hřídele potenciometru.

Na vstupu obvodu je jednoduchý filtr, který zabraňuje vyzařování rušivých kmitočtů do obvodu sítě. Lze však použít i jiný průmyslově vyráběný filtr.

37. ELEKTRICKÉ TOPENÍ A ELEKTRONICKÁ KLIMATIZACE

Vyhřívací jednotka

Vyhřívací jednotka je základní částí celé popisované vyhřívací soustavy. Stručně ji lze charakterizovat jako ventilátor s topným tělesem. Princip přístroje je jednoduchý, ovšem provedení má některá konstrukční úskalí. Protože předpokládáme, že si čtenáři upraví přístroj podle svých potřeb, budeme při popisu uvádět i důvody, proč byla použita uvedená součástka.

Základním dílem je ventilátor typu Mezaxial 3108 (výrobce MEZ Náchod), který je běžně na našem maloobchodním trhu. Ventilátor má synchronní motor 30 W, 2600 min⁻¹. Tento ventilátor je velmi tichý a lze říci, že hluk při chodu celé vyhřívací jednotky je způsoben pouze narážením proudu vzduchu na topná tělesa. Výhodou uvedeného typu ventilátoru je zejména to, že celý, včetně vrtule, je vyroben jako hliníkový odlitek. V porovnání s ventilátory z plastů je tedy odolnější proti vnějšímu oteplení a je mechanicky pevnější. Vrtule je dobře mechanicky vyvážena. Před ventilátorem je umístěna samonosná šroubovice z odporového drátu s průměrem 0,8 mm. Její tvar je na obr. 71. Je uchycena v porcelánových svorkovnicích. Šroubovice (topné těleso) má odpor 22 Ω, takže připojením k síti 220 V jí prochází proud 10 A a její plný topný výkon je P = IU = 10.220 = 2200 W. Tento poměrně velký maximální výkon jsme zvolili úmyslně, neboť předpokládáme, že vyhřívací jednotku budeme používat s jedním z dále uvedených regulátorů, takže skutečný odběr proudu bude vždy úměrně menší. Dimenzovat vyhřívací jednotku na ještě větší výkon je již obtížné, neboť se jednak přehřívá skříňka, ve které je jednotka umístěna, a jednak máme jen zřídka možnost přivádět z jednofázového přívodu sítě do spotřebiče proud větší než 10 A. Zásuvky v domácnostech a jednofázové rozvody jsou obvykle dimenzovány na maximální proud 10 A a také jsou jištěny jističi nebo pojistkami 10 A.

Délka odporového drátu topného tělesa se vypočítá ze vztahu

$$l = \frac{R}{\varrho} S$$

kde l je délka vodiče v [m],

R žádaný odpor $[\Omega]$,

φ měrný elektrický odpor [Ωm],

S průřez vodiče [m²].

Měrný elektrický odpor ρ lze pro různé typy odporových drátů určit z tabulek; např. konstantan má měrný elektrický odpor

 $\rho = 0.5 \cdot 10^{-6} \,\Omega \text{m}$

chromnikl

$$\varrho=1.10^{-6}\,\Omega\mathrm{m}$$

manganin

 $\varrho=0.43.10^{-6}~\Omega \mathrm{m}$ apod.

V popisovaném přístroji byl použit chromniklový drát s průřezem 0,64 mm²; takže jeho délka (pro proud 10 A při napětí 220 V) je

$$l = \frac{R}{\rho} S = \frac{22}{1.10^{-6}} .0,64.10^{-6} = 14,08 \text{ m}$$

Odporový drát je stočen do šroubovice s průměrem 14 mm. Ta je rozdělena do deseti sériově spojených sekcí. Jednotlivé sekce jsou upevněny ve čtyřech keramických svorkovnicích. Šroubovici nemusíme rozstřihávat, jednotlivé sekce můžeme propojit odporovým drátem. Šroubovici vineme závit vedle závitu. Při upevnění mezi svorkovnice ji pak musíme mírně roztáhnout. Je vhodné, není-li hustota závitů (stoupání závitů) všude stejná. V místech, kde ventilátor fouká méně (tj. ve středu lopatek), má být šroubovice řidší; k okrajům lopatek se rychlost (a množství) hnaného vzduchu zvětšuje, a proto tam volíme hustotu závitů šroubovice největší. Správně volená a umístěná šroubovice musí mít při pozorování ve tmě při chodu větráku tmavě červenou barvu a její teplota (barva) musí být co nejrovnoměrnější. Samozřejmé je, že ideálního stavu nedosáhneme, avšak zejména změnou hustoty závitů šroubovice a jejím umístěním lze dosáhnout dobrého tepelnýho využití a zabránit zbytečnému přehřívání určitých míst topného tělesa a celé vyhřívací jednotky.

Teplo ve vyhřívací jednotce se musí rozložit tak, aby od větráku dozadu (tj. v prostoru, v němž je motor a elektrické přívody) nebyla větší teplota než asi 30 °C až 40 °C. Nadměrná teplota by neměla být ani v přední části jednotky, ve které je šroubovice a ze které fouká horký vzduch. V žádném případě se nesmí pálit a měnit svou barvu vypalovací lak (po vypálení), kterým jsou všechny díly vyhřívací jednotky natřeny. Přívod elektrické energie a její rozvod v tzv. studené části vyhřívací jednotky končí na svorkovnici. Přívody do tzv. horké části jednotky jsou zhotoveny z holého měděného drátu s průměrem 1 mm, na němž jsou navlečeny keramické korálky. Mezi šroubovici a větrák, do proudu ještě studeného vzduchu,

umístíme tepelnou pojistku Po (obr. 68). Konstrukce pojistky je na obr. 69, kde 1 je kroužek ze snadno tavitelného Woodova kovu, 2 je deska s plošnými spoji s fólií odleptanou tak, aby na desce zbyly pouze dva pásky fólie pro připájení dvou pružin (3) z beryliového bronzu. Pásky jsou napruženy, takže kroužek z Woodova kovu mezi nimi dobře drží. Kroužek z Woodova kovu lze na kraje pružin i připájet. Vývody pružin jsou pod dvěma maticemi na šroubech M4 (4), jejichž hlavy jsou zespodu zapuštěny do desky s plošnými spoji (popř. jsou zakápnuty epoxidovým lepidlem) a zapilovány. Pojistka je přišroubována dvěma šrouby M3 do základny celé jednotky a je podložena izolační slídovou, mikanitovou nebo textilitovou destičkou. Podobné tepelné pojistky se používají např. u transformátorů. Jejich úkol je zřejmý — Woodův kov se neroztaví zvětšeným proudem, ale při prudkém přehřátí

Obr. 69. Tepelná pojistka vyhřívací jednotky

celé jednotky, k němuž může dojít zejména tehdy, když se z nějakého důvodu zastaví ventilátor a topné těleso pracuje s plným tepelným výkonem. Teplota se pak může zvětšit natolik, že hrozí i nebezpečí požáru. Tepelná pojistka však topné těleso odpojí již při teplotě 65 °C až 70 °C, což je teplota, při níž taje Woodův kov. Woodův kov je slitina sedmi až osmi dílů vizmutu, čtyř dílů olova, dvou dílů cínů a jednoho až dvou dílů kadmia.

Jako přívodní sítovou šňůru volíme třížilovou šňůru s běžnou sítovou vidlicí, používáme-li vyhřívací jednotku pouze k jednoduchému přitápění bez regulace nebo s jednoduchou nespojitou regulací, při níž se současně vypíná větrák i topné těleso. Zvolíme-li některý z dále popisovaných regulátorů proudu, je nutné použít čtyřžilovou šňůru s čtyřkolíkovou kulatou vidlicí a regulátor musí mít čtyřkolíkovou zásuvku (běžná pro trojfázový rozvod). Je ovšem možné umístit regulátor i uvnitř vyhřívací jednotky. Mechanická sestava je na obr. 70 a 71.

Základem je duralový plech tloušíky 8 mm a rozměrů 350×200 mm (obr. 70). Je na čtyřech nožkách z duralu nebo hliníku. Nožky jsou podlepeny pryží tloušíky asi 1 mm. Na základovou desku je připevněna vnitřní sestava vyhřívací jednotky. Vnitřní sestava je na obr. 71, kde 1 je základová

deska, 2 mříž chránící přední prostor, 3 spodní a horní plechový kryt, 4 tzv. horký prostor vyhřívací jednotky, 5 svorkovnice pro připevnění vyhřívací šroubovice, 6 svislé vyhřívací šroubovice, 7 tavná pojistka z Woodova kovu, 8 vodorovné vyhřívací šroubovice, 9 ventilátor, 10 svorkovnice přívodu elektrické energie, 11 tzv. studený prostor vyhřívací jednotky, 12 zadní ochranná mříž vyhřívací jednotky.

Základová deska, kryt a nožky jsou ehráněny světlým vypalovacím lakem, celá vnitřní sestava je natřena černým lakem. Je vhodné všechny součásti lakovat a nechat je vytvrdit v peci. Stříkání laky málo odolnými proti teplotě se nevyplácí. Zejména prostor kolem topného tělesa je ohrožen nejvíce a běžný acetonový lak v tomto místě odprýskává a pálí se.

Obr. 71. Sestava vyhřívací jednotky

Přední ochranné mříže můžeme zhotovit z ocelových tyčí vysokých asi 190 mm, s průměrem 3 mm. Mříže jsou důležitou ochranou. Zabraňují vniknutí cizího předmětu do přístroje a zabraňují náhodnému dotyku se součástkami, na nichž je životu nebezpečné napětí.

Vkládáme-li do tzv. studeného prostoru vyhřívací jednotky ještě další předniěty (např. regulátory), dbáme, aby nebránily řádnému proudční nasávaného studeného vzduchu.

Vyhřívací jednotku není vhodné zmenšovat a jakékoli změny tvaru musíme důkladně uvážit. Využíváme-li totiž jednotku na plný výkon (tj. 2,2 kW), vadí každá změna proudční vzduchu v jednotce celému tepelnému režimu. Víření vzduchu uvnitř jednotky většinou znamená, že se vyhřívací jednotka začne přehřívat. Účelem však je postavit zařízení, které je samo o sobě co nejstudenější, ale které předává co největší množství tepla svému okolí.

Prostá vyhřívací jednotka (obr. 68) je schopna trvalého provozu, má však velký tepelný výkon. Bez regulátoru je vhodná pouze k přídavnému ohřívání místnosti po krátkou dobu, např. chceme-li koupat malé dítě apod. Při trvalém provozu vyhřívací jednotky je třeba její tepelný výkon zmenšovat.

Jednoduchý triakový regulátor bez zpětné vazby

Vyhřívací jednotku máme připojenu podle obr. 68 a spojíme ji s regulátorcm proudu podle obr. 72. Regulátor je v zásadě možné umístit trojím

způsobem: můžeme ho dát přímo do vyhřívací jednotky, do jejího studeného prostoru, nebo do zvláštní samostatné krabice. Doporučuje se i umístění do větší krabice pod zásuvku přímo do zdi. Nad zásuvkou pak umístíme i regulační potenciometr. Regulátor nemusíme vypínat, neboť vlastní spotřeba proudu je dána pouze příčným proudem členu RC a je zanedbatelná. Zásuvku můžeme používat i pro jiné spotřebiče, např. pro stmívání světla připojeného svítidla, k řízení světla zvětšovacího přístroje apod. Při odpojení regulátoru spínačem potenciometru můžeme zásuvku používat i pro ostatní libovolné spotřebiče. Neodpojujeme-li regulátor, musíme chránit spotřebiče před zkratem, neboť triak většinou neochráníme před zničením tavnou pojistkou nebo poměrně pomalým elektromagnetickým jistěním. Při zkratu se tedy obvykle nejdříve zničí polovodičová součástka — triak.

Je-li triak v nevodivém stavu, neprochází jím téměř žádný proud. Po sepnutí se na triaku tvoří poměrně malý úbytek napětí. Regulační ztrátový výkon je dán součinem tohoto napěťového úbytku a procházejícího proudu. Tuto ztrátu musí pak vyzářit (nebo lépe řečeno na tuto ztrátu musí být dimenzován) chladič, na němž je triak připevněn. Např. pro triak typu KT 783 nebo KT 784 je maximální napěťový úbytek $U_{\rm T}$ při 10 A asi 1,5 V, takže v nejpříznivějším případě je na triaku ztrátový výkon $P = U_{\rm T}I = 1,5.10 = 15$ W. Vzhledem k tomu, že regulujeme výkon na zátěži, tj. topném tělese ve vyhřívací jednotce s maximálním výkonem 2200 W, je ztrátový výkon na triaku zanedbatelný.

Regulátor se spojitou regulací tepla a zpětnou vazbou

Zařízení na obr. 73 je celá klimatizační jednotka. Základem teplotního čidla je termistor R_7 . Je nutné, aby termistor měl při pracovní teplotě (tj. asi kolem 25 °C) odpor asi 4,7 k Ω . Tento odpor není kritický, je možná tolerance i více než 50 %. Pak je ovšem nutné změnit odpor potenciometru

 R_6 . Požadovanou teplotu v místnosti nastavíme potenciometrem R_6 , který bychom měli opatřit stupnicí ve stupních Celsia. Přesnost nastavení teploty závisí při krátkodobém nastavení na umístění teplotního čidla a na celkovém provedení a umístění vyhřívací jednotky ve vyhřívaném prostoru (neměly by vznikat různé nerovnoměrnosti v rozložení teploty apod.). Při dlouhodobém provozu závisí přesnost nastavení teploty na vlastnostech použitého termistoru (na stálosti jeho odporu na určité konstantní teplotě).

V celém zapojení jsou pouze dvě polovodičové součástky. Jako výkonový člen pracuje triak typu KT 784, který byl zvolen s ohledem na maximální regulovaný proud 10 A a na napětí, na které je namáhán, tj. 380 V. Triak musíme umístit na chladič, jehož plochu odhadneme ze skutečnosti, že maximální ztrátový výkon, který musí chladič odvést z triaku, je asi 15 W. Druhou polovodičovou součástkou je speciální integrovaný obvod MAA 436 z k. p. TESLA Rožnov, který je určen pro fázové řízení triaků nebo tyristorů. Jeho napájení je odvozeno přímo ze střídavého napětí (v tomto případě střídavého napětí sítě). Na jeho výstupu 3 jsou fázově se posouvající řídicí impulsy pro ovládání triaku. Fázový posuv impulsů se řídí velikostí stejnosměrného napětí na vstupu 12. Impulsy lze fázově posouvat v rozmezí od 160° do 20°, což je změna výkonu na zátěži od 1 % do 99 %.

Regulátor se spojitou regulací a zpětnou vazbou pracuje v zásadě tak, že se při zvýšení okolní teploty zmenší odpor teplotně závislého termistoru R_7 (obr. 73). To má za následek, že se zmenší napětí na vstupu 12 integrovaného obvodu MAA 436. To se projeví na výstupu 3 jako fázový posuv řídicích impulsů do triaku. Proud procházející triakem a vyhřívacím topným tělesem se zmenší. Vyhřívací jednotka začne méně topit a teplota ve vyhřívaném prostoru se sníží. Termistor tvořící základ teplotního čidla musí být, jak již bylo uvedeno při popisu předcházející regulace (2. způsobu regulace), v místě s požadovanou teplotou místnosti. Teplotní čidlo lze umístit i mimo vlastní regulátor a spojit jej s regulátorem dvoužilovým kabelem. Regulátor podle schématu na obr. 73, spojený s vyhřívací jednotkou podle obr. 68b, pracuje jako jednoduchá klimatizace. Je tedy nutné, aby vyhřívací jednotka nasávala studený čerstvý vzduch z prostoru mimo vyhřívanou místnost. Jakmile je teplota v místnosti nižší než teplota zvolená nastavením běžce potenciometru R_6 , vhání se do místnosti horký vzduch. Je-li však teplota vyšší, proud topným tělesem neprochází, protože triak je v uzavřeném stavu. Motor ventilátoru však běží trvale a vhání do místnosti pouze studený čerstvý vzduch. V ideálním případě dodává klimatizace do místnosti pouze mírně ohřátý vzduch, jehož teplota odpovídá zvolené teplotě v místnosti. Ve zcela uzavřené místnosti vznikne mírný přetlak, což zajišťuje i trvalé větrání. Přepneme-li přepínač Př₁ (obr. 73) do polohy B, vyřadíme termistor a rozpojíme celou teplotní zpětnou vazbu. Potenciometrem R_6 pak můžeme nastavit libovolný proud procházející topným tělesem (téměř od 0 do 10 A), a tím nezávisle na teplotě v místnosti ovládat teplotu ohřívaného vzduchu.

Obr. 73. Spojitá regulace teploty

38. STABILIZACE SÍŤOVÉHO NAPĚTÍ TRIAKEM

Na obr. 74 a obr. 75 jsou dvě možná řešení stabilizace sítového napětí. Na obr. 74 je stabilizace vhodná pro případ, že se mění sítové napětí, druhé řešení se používá při kolísajícím odběru. Stabilizátor stabilizuje sít na napětí, které je o 10 V až 20 V nižší, než je nejmenší pokles sítového napětí. Např. klesá-li sítové napětí až na 180 V, může být maximální stabilizované napětí asi 160 V až 170 V.

Obr. 75. Druhá možnost zapojení síťového stabilizátoru, vhodná pro zátěže s proměnným odběrem

Podobná zapojení se objevila i v doporučených zapojeních, která vydávají výrobci polovodičových součástek. Většinou však tato zapojení používají prvek převádějící změnu proudu na změnu odporu. Jde o čtyřpól, jehož vstup je galvanicky oddělen od výstupu a převod se děje např. prostřednictvím světla. Na vstupní straně je např. žárovka, která osvětluje fotorezistor na výstupní straně. Výhodou je, že světlo žárovky je úměrné efektivní hodnotě řízeného proudu nezávisle na průběhu tohoto proudu. Potom je také změna výstupního odporu úměrná efektivní hodnotě proudu. My jsme použili žárovku a fotorezistor, které umístíme v izolační černé trubičce a zalijeme Dentacrylem. Vhodná je malá automobilová žárovka 6 V/1,5 W a fotorezistor TESLA typ WK 650 37.

Činnost stabilizátoru na obr. 74. Žárovka Ž, která má proud a tím i pracovní bod stabilizace nastavený potenciometrem R_2 , osvětluje fotorezistor. Ten je součástí členu C_2 , R_3 , kterým se řídí přes diak fázově zpožděný úhel zapnutí triaku. Změnou odporu R_3 se mění velikost stabilizovaného výstupního napětí. Poklesne-li sítové napětí na vstupu, změní se světlo žárovky, zvětší se odpor fotorezistoru a změní se fázové zpoždění zapínání triaku, takže napětí na zátěži R_z zůstane stejné, jako bylo před poklesem sítového napětí. Odrušovací člen C_1 R_4 troří zároveň tzv. plovoucí přepětovou ochranu. Při použití tohoto stabilizátoru je nutné zařadit do sítového přívodu odrušovací filtr LC. Činnost stabilizátoru uvedeného na obr. 75 je obdobná.

39. ČASOVÝ SPÍNAČ SE STMÍVAČEM

Časový spínač patří k standardní výbavě fotoamatérů. Dále popíšeme provedení časového spínače využívajícího vlastnosti triaku a diaku. Přístroj je víceúčelový, využívá prvek triak také jako spínač nebo regulátor, vhodný k řízení výkonu osvětlovacích těles. Funkce přístroje se změní přepnutím přepínače Př.

Činnost popíšeme podle obr. 76.

Po stisknutí spínače S sepne tyristor Ty_1 a obvodem od kladné svorky napájecího napětí přes rezistor R_3 , tranzistor T_1 , tyristor Ty_1 , řídicí elektrodu triaku T_c , na zdířku 0 V prochází proud. Tranzistor T_1 je otevřen (malý odpor rezistoru R_7 v bázi). Spotřebičem R_z v zásuvce K_2 začne procházet proud (obvod síťového napětí, triak T_c ve vodivem stavu).

Přes rezistor R_2 a proměnný rezistor R_A se nabíjí kondenzátor C_2 . Je-li napětí na tomto kondenzátoru větší než spínací napětí diaku D_c , prochází v obvodu kondenzátoru C_2 proud. Tento proud prochází obvodem od kladné elektrody kondenzátoru C_2 přes D_{c_1} , R_4 , D_1 na zápornou elektrodu kondenzátoru C_2 a je větší než proud procházející rezistorem R_7 do báze tranzistoru T_1 . Úbytek napětí na diodě D_1 pak na okamžik uzavře tranzistor T_1 . Je-li po odstartování časového spínače spínač S opět uvolněn, neprochází řídicí elektrodou Ty_1 proud. Tranzistor T_1 trvale přeruší proud tyristorem, neboť se dostane do nevodivé části charakteristiky. Tím je také trvalc přerušen řídicí proud triaku D_{c_1} a spotřebič R_z v zásuvce je elektricky odpojen od sítě. Časový spínač je tak připraven k dalšímu použití.

Zůstane-li spínač S sepnut, prochází do řídicí elektrody Ty, proud trvale a je zkratován kondenzátor C_2 , takže se nemůže nabíjet. Spotřebič v zásuvce K₂ je trvale připojen přes triak k sítovému napětí. Časový spínač se tedy uvádí do chodu krátkým sepnutím spínače S.

V době, v níž se přístroj nepoužívá jako časový spínač, využije se jako regulátor výkonu. Ke změně funkce přístroje dojde při přepnutí přepínače Př do druhé polohy. Regulátor lze použít v obvodech s převážně odporovou zátěží, např. k regulaci osvětlení žárovkami a k regulaci výkonu topných těles. Nelze s ním samozřejmě regulovat synchronní a asynchronní motory, u nichž otáčky závisejí na kmitočtu síťového napětí. Také se nehodí k regulaci spotřebičů s typicky indukčním charakterem, neboť impulsy vznikající na indukčnosti těchto spotřebičů narušují správnou činnost triaku.

K plynulé regulaci výkonu se používá obvod složený z rezistoru R_{10} , potenciometru $R_{\rm B}$, kondenzátorů $C_{\rm 3}$, $C_{\rm 4}$, rezistorů $R_{\rm 11}$, $R_{\rm 12}$ a diaku $D_{\rm c2}$. Kondenzátory C_3 a C_4 se nabíjejí přes rezistory R_{10} a R_B tak, že napětí na diaku D_{c2} dosáhne velikosti nutné k jeho sepnutí s nastavitelným časovým zpožděním po průběhu sinusovky síťového napětí počátkem. V okamžiku sepnutí diaku D_{c2} projde část náboje kondenzátoru C_4 do řídicí elektrody triaku T_c . Triak sepne a zůstane sepnut od konce příslušné poloviny periody sítového napětí. Děj se stále opakuje (stokrát za sekundu). Do série se spotřebičem je vhodné zapojit tlumivku zamezující pronikání signálů rušivých kmitočtů do sítového přívodu. Filtrační člen složený z C_5 a R_{13} zlepšuje regulační vlastnosti triaku.

Konstrukce přístroje

Při konstrukci je nutné dbát na bezpečnost obsluhy. Přístroj byl proto vestaven společně se zdrojem do krabičky slepené z textilitu tloušťky 4 mm (lepidlem Epoxy 1200). Povrch byl upraven samolepicí tapetou. Kovové části, jichž se lze při obsluze dotknout, je nutné připojit na ochrannou objímku přívodu, stejně jako ochranný kolík zásuvky pro spotřebič. Knoflík dvojitého potenciometru nesmí být kovový a nesmí mít ani kovové části. Nejvhodnější jsou knoflíky typu WF 243 09 (výrobce TESLA Lanškroun), které jsou na trhu dostupné.

Podle požadavku spínacího výkonu musíme zajistit chlazení triaku. Triak bez chladiče nesmí řídit výkon větší než asi 500 W. K napájení přístroje je nutné použít zdroj s napětím minimálně 40 V — napájecí napětí závisí na spínacím napětí diaku D_c . Odebíraný proud je maximálně 30 mA až 40 mA. Zdroj je výhodné realizovat se síťovým transformátorem (obr. 77); vystačíme však i se zdrojem podle obr. 78. Z rezistoru R_1 je však třeba odvést tepelný výkon asi 5 W. Stabilizace zdroje stabilizačními diodami je nutná z hlediska reprodukovatelnosti nastavených spínacích časů. V provedení zdroje podle obr. 78 je použití stabilizačních diod nevyhnutelné.

Obr. 77. Zdroj napájecího napětí s transformátorem

Obr. 78. Zdroj napájecího napětí bez transformátoru

Kapacita kondenzátoru C_2 spolu s odpory R_A a R_2 určuje časovou konstantu časového spínače, a proto musí být kondenzátor C_2 kvalitní. Jeho kapacita i svodový proud nesmějí být teplotně ani časově závislé. Je výhodné použít svitkový kondenzátor na větší napětí. Z prostorových důvodů byl v popisovaném přístroji použit elektrolytický kondenzátor typu TE 990. Jeho svodový proud je při 40 V menší než 2 μ A.

40. POZVOLNÉ ROZSVĚCOVÁNÍ A ZHASÍNÁNÍ SVĚTLA

Protože okamžité zapnutí a vypnutí elektrického osvětlení působí někdy rušivě, používá se např. v divadlech a v kinech pozvolné rozsvěcení a zhasínání světel. Podobný způsob lze využít i v domácnosti. Jde zejména o zhasínání světla v dětské ložnici, při promítání filmů, při loutkovém divadle apod. Pozvolné rozsvěcování a zhasínání světel ve stájích zamezí plašení dobytka, a je-li doba rozsvěcování a zhasínání dosti dlouhá, lze tímto způsobem v chovatelství měnit i denní cyklus.

K řízení elektrické energie dodávané do žárovek je výhodné používat — tyristory a triaky. Od obvodu řízení budeme požadovat snadnou obsluhu, to znamená, že pouze sepneme nebo rozepneme spínač a dále se o obvod nemusíme starat.

Jedno z možných zapojení je na obr. 79. V zapojení je opět využit integrovaný obvod MAA 436 pro fázové řízení tyristorů a triaků.

Při spínání proudu tyristory nebo triaky se šíří z obvodu do síťového vedení značné rušení. Toto rušení působí v rozsazích běžných rozhlasových a televizních přijímačů, a proto je musíme dostatečně omezit. Použijeme filtry, které se připojují do obou vodičů síťového přívodu. Lze použít např. typy WN 852 02 (do proudu 4 A) a WK 050 03.1 (do proudu 1,6 A).

Celkové zapojení obvodu včetně umístění filtru je na obr. 79. Rezistor R_1 je omezovací rezistor. Musí být zvolen tak, aby stabilizační diodou uvnitř in-

Obr. 79. Obvod pozvolného rozsvěcování a zhasínání světla

tegrovaného obvodu MAA 436 procházel dostatečný proud a aby se kondenzátor C_1 nabíjel na dostatečné napětí. Energie nahromaděná v tomto kondenzátoru musí totiž spolehlivě spínat výkonový tyristor nebo triak. Výrobce doporučuje odpor R_1 18 k Ω . Při použití triaků pro větší spínací proudy se však vzhledem k nesymetrii vnitřní struktury může stát, že bude nutné odpor zmenšit. Nevhodná volba odporu se projeví tím, že světlo rozsvěcované nebo zhasínané žárovky bliká. Závada se projevila např. u triaku typu KT 774 a odpor R_1 bylo nutné zmenšit na 15 k Ω .

Tranzistor T v zapojení podle obr. 79 řídí příkon žárovky. Je-li tento tranzistor otevřen, žárovka Ž svítí. Běžec potenciometrického trimru R_5 je nutné nastavit tak, aby žárovka Ž svítila při otevřeném tranzistoru T naplno, ale aby při dalším znicnšování odporu R_5 zhasínala.

Obr. 80. Úprava obvodu pro prodloužení doby rozsvěcování a zhasínání světla

Sepneme-li spínač S, začne se přes rezistor R_7 nabíjet kondenzátor C_3 a napětí z tohoto kondenzátoru začne otevírat tranzistor. Nevýhodou zapojení je, že se poněkud liší průběh napětí na kondenzátoru C_3 při nabíjení a při vybíjení. Pokud by se tedy kondenzátor nabíjel a vybíjel přes stejný odpor, byla by doba rozsvěcování a doba zhasínání různá. Proto se kondenzátor vybíjí vnitřními obvody integrovaného obvodu a spínač S se pouze rozpojí. Tím se dosáhne přibližně stejné nabíjecí a vybíjecí doby.

Dále je nutné k zápornému pólu kondenzátoru C_3 připojit určité kladné předpětí, vzniklé na diodách D_1 , a D_2 průchodem proudu rezistorem R_8 . Účelem tohoto předpětí je, aby se začal tranzistor T otevírat bezprostředně po sepnutí spínače. Diody D_1 a D_2 je tedy nutné vybrat podle použitého tranzistoru, popř. upravit jejich počet, ne bo změnit odpor R_8 . Malé předpětí na těchto diodách způsobí, že se žárovka Z začne rozsvěcovat až za dlouhou dobu, což může být při některých aplikacích nevhodné. Velké předpětí naopak otevírá tranzistor trvale a žárovkou potom prochází proud i při vypnutí.

Doba rozsvěcování žárovky je určena časovou konstantou členů R_7 a C_3 ; jejich změnou lze tedy tuto dobu měnit. V zapojení je nejdelší doba rozsvěcování a zhasínání omezena na několik desítek sekund. Chceme-li dosáhnout delších časů, musíme doplnit zapojení o tranzistor typu MOS (obr. 80).

Tímto způsobem lze prodloužit časovou konstantu obvodu až na několik desítek hodin. Vstupní odpor tranzistoru MOS je větší než $10^{13}\,\Omega$ a nezatěžuje tolik obvod. Výsledek tedy závisí pouze na rezistoru R_7 a kondenzátoru C_3 . Kondenzátor C_3 musí mít co nejmenší svodový odpor. Spínač S je zde nahrazen přepínačem. Odpor R je nutné nastavit tak, aby proud procházející tranzistorem T_2 při vybitém kondenzátoru C_3 ještě neotevíral tranzistor T_1 .

Obr. 81. Náhrada triaku dvěma tyristory

Lze samozřejmě i zvětšit příkon žárovek Ž oproti příkonu uvedenému na obr. 79. Znamená to použít triaky a filtry pro větší proudy a použít odpovídající chladiče. Obvykle je také nutné zmenšit odpor R_3 , který omezuje proud do řídicí elektrody triaku; rezistorem R_3 však nesmí procházet proud větší než 150 mA.

Chceme-li místo triaků použít tyristory, musíme zapojit obvod žárovky podle obr. 81. Tyristor Ty₂ je spínán přes vinutí transformátoru Tr, jehož převod je 1 : 1.

Před celý obvo je nutné zařadit sítový spínač, nebot obvod odebírá proud i po zhasnutí žárovky.

41. REGULÁTOR PRO UNIVERZÁLNÍ MOTORY

Univerzální motory, které jsou konstruovány jako tzv. sériové motory, se používají v převážné většině domácích spotřebičů pro provoz ze sítě (mixéry, šlehače, vrtačky atd.). Tyto motory lze napájet také stejnosměrným proudem, který získáme regulátorem s jedním tyristorem. Na svorkách sériového motoru vzniká vlivem zbytkové magnetické indukce při odpojení zdroje (uzavřený tyristor) protinapětí, jehož velikost je úměrná otáčkám motoru. Toto protinapětí lze využít k regulaci otáček. Zapojení je na obr. 82.

Úhel fázového řízení tyristoru závisí na rozdílu vznikajícího protinapětí a na napětí na běžci potenciometru P. Toto uspořádání zavádí zpětnou vazbu, která kompenzuje účinky zatížení motoru, a motor má velký točivý moment v širokém rozsahu otáček.

Při nejnižších otáčkách u nezatížených motorů se projevuje vliv zpětné vazby trhavým pohybem, který zmizí po zatížení. Záleží zde na konstrukci přístroje s motorem. U přístrojů vybavených převodovkou, která motor trvale zatěžuje, se tato závada nevyskytuje. Částečně lze trhavý pohyb

Obr. 82. Regulátor pro univerzální motory

odstranit změnou velikosti kapacity kondenzátoru a odporu rezistoru v řídicí elektrodě tyristoru. Obvod je doplněn páčkovým přepínačem Př, kterým lze v poloze II vyřadit regulátor a připojit motor přímo k sítovému napětí. Tento přepínač využijeme, nevyhovují-li nám maximální otáčky nastavené regulačním potenciometrem P.

Obvod je vhodné vestavět buď přímo do spotřebiče, nebo do pevné, pokud možno izolované krabice, opatřené zásuvkou pro spotřebič. Samozřejmě je nutné dbát na bezpečnost obsluhy dokonalým izolováním obvodu. Regulátor je totiž galvanicky spojen se sítí! Toto upozornění platí také pro hřídel potenciometru. Je nutné vyrobit ji z izolantu nebo použít takový knoflík, který vyhoví bezpečnosti obsluhy.

42. OCHRANA MOTORKŮ PROTI PŘETÍŽENÍ

Jen velmi málo motorků spotřebičů (jako jsou vrtačky, elektrické pily, kuchyňské roboty apod.) je chráněno proti zničení vinutí vlivem přetížení. K ochraně se přitom obvykle používají tepelné pojistky, buď tavné, nebo s bimetalem (dvojkovem). Účinnost těchto ochran je vlivem značného zpoždění malá.

U motorků, které lze napájet dvojcestně usměrněným proudem ze sítě 220 V, dosáhneme daleko příznivějších účinků, kontrolujeme-li proud, který motorkem prochází. Velikost tohoto proudu je úměrná zatížení. Takovou pojistku musíme samozřejmě upravit tak, aby v okamžiku záběru po určitou krátkou dobu nepůsobila, neboť v tomto okamžiku prochází vinutím proud značně větší, než je jmenovitý proud.

Zapojení je na obr. 83. Proud prochází do motorku přes diody D_1 až D_4 , tyristor Ty_1 a rezistor R_4 . Tyristor se otevře proudem procházejícím přes rezistory R_1 , R_2 , R_3 a diodu D_5 do řídicí elektrody. Na odporu R_4 vzniká úbytek napětí, který je úměrný proudu procházejícímu motorkem. Potenciometrem P nastavíme proud, při kterém pojistka sepne. Je-li proud větší než jmenovitý, začne přes rezistor R_5 procházet do báze tranzistoru T proud

a tento tranzistor otevře tyristor Ty_2 , který přeruší činnost tyristoru Ty_1 . Tím se motor elektricky odpojí od sítě a nerozběhne se, dokud nestiskneme

spínač S po odstranění příčiny přetížení.

Rezistor R_5 s kondenzátorem C_1 tvoří článek RC, který zamezí odpojení motorku při zapnutí nebo při krátkém, tzv. záběrovém přetížení při běžné činnosti přístroje. Pro údaje uvedené ve schématu lze potenicometrem nastavit výkon v rozsahu 80 W až 200 W.

Obr. 83. Ochrana motorku proti přetížení

43. CYKLOVĚ ŘÍZENÝ SPÍNAČ

V literatuře se uvádí velké množství regulátorů střídavého proudu, jak jednoduchých, tak složitých, jak s tyristory, tak nověji s triaky. Většinou jsou založeny na tzv. fázovém řízení. Ze síťového průběhu odvodíme impulsy, které na členu RC, blokovacím oscilátoru nebo multivibrátoru můžeme fázově posunovat. Tyto fázově posunuté impulsy zavádíme do řídicí elektrody tyristoru nebo triaku. Výsledkem je pozdější sepnutí tyristoru (triaku), a tím i menší napětí na zátěži, neboť tam přichází tím menší část periody, čím větší je fázové zpoždění spouštěcího impulsu. Zajímavé je, že tento princip není jediný možný, i když je v současné době při řízení střídavého proudu nejobvyklejší.

Na obr. 84 je znázorněn princip cyklově řízeného spínače, který je pro některé účely vhodnější. Doba trvání řídicího impulsu je několik period střídavého síťového napětí. Změnou regulačního prvku se nemění fáze tohoto impulsu, ale jeho délka. Protože tento impuls spouští tyristor, nemění se na zátěži výsek střídavého napětí (jako dříve), ale mění se počet period střídavého proudu, které do zátěže pouštíme. Změna proudu zátěže se reguluje

Obr. 84. Cyklově řízený spínač

tím, že spínací prvek, tj. triak nebo tyristor, se na několik period otevírá a na několik period zavírá. Do zátěže přijde např. 5 celých period střídavého proudu a potom je 5 period mezera. Změnou střídy řidicího impulsu pak změníme tento poměr libovolně, např. na 2:8 nebo obráceně na 8:2 atd.

Z tohoto základního principu plyne i další závažná přednost tohoto řízení. Rušení ostatních spotřebičů je mnohonásobně menší než při fázovém řízení, kdy řídicí prvek spíná každou polovinu periody. Tím klesají i nároky na odrušovací prvky. Dále je možné takto regulovat i zátěž s indukčním charakterem, což při fázovém řízení vyvolává určité obtíže (viz AR 4/77, Ing. M. Arendáš — Velikost kritické induktance u řízených usměrňovačů).

Nyní popíšeme funkci zapojení postupně zleva doprava. Zapojení má odrušovací kondenzátor C_1 a srážecí předřadný rezistor R_1 pro stabilizační diodu D_1 , která na kondenzátoru C_2 stabilizuje napájecí napětí asi 12 V pro tranzistory. Dalším členem je multivibrátor s tranzistory T_1 a T_2 , u něhož se střída výstupních impulsů mění potenciometrem P_1 . Multivibrátor je zcela souměrný. Výstup je veden na oddělovací tranzistor T_3 a kladnými impulsy na jeho kolektoru se řídí tyristor Ty_1 . Tyristor sepne, je-li na jeho anodě kladná polovina periody střídavého proudu a je-li na řídicí elektrodě kladný impuls s tranzistorem T_3 . Triak T_2 se spouští opakovaně v každé periodě přes členy R_{11} , D_7 a D_6 , R_{11} . Jakmile tyristor sepne, jsou obě tyto cesty uzavřeny (zkrat přes D_5 , R_{10} a R_{11}) a triak se na příslušný počet period neotevře. Tento způsob řízení zaručuje, že se triak otevírá vždy při průchodu sinusového střídavého napětí nulou.

Seznam součástek

T₁, T₂ KF 508 T₃ KF 517 Ty₁ tyristor KT 505 Te triak podle velikosti proudu, např.: do 3 A typ KT 205/600, do 5 A typ KT 207/600, do 6 A typ KT 774, do 10 A typ KT 784 atd. D₁ 6NZ70 D₂, D₃, D₄ KA 502 D₅, D₆, D₇ KY 704

V. Optoelektronika

Pojem optoelektronika je poměrně nový a používá se v souvislosti s tzv. optoelektronickými součástkami, tj. součástkami přeměňujícími přímo elektrickou energii na záření (většinou v oblasti světelného záření nebo v její blízkosti) a naopak. V amatérské praxi a ve spotřební elektronice se tyto součástky používají k zobrazování (luminiscenční světelné diody a zobrazovací jednotky), hlídání a počítání předmětů (kombinace světelná dioda — fototranzistor), k měření osvětlení (fotonky a fotorezistory), k předávání zpráv, dálkovému ovládání atd.

44. DRUHY OPTOELEKTRONICKÝCH SOUČÁSTEK A JEJICH VLASTNOSTI

Na našem trhu jsou k dispozici optoelektronické součástky TESLA. Jsou to:

fotorezistory,

křemíkové hradlové fotonky,

křemíkové fotonky pro spínací účely,

luminiscenční světelné diody,

zobrazovací sedmisegmentové jednotky se světelnými diodami, zobrazovací maticové jednotky 5 × 7 bodů ze světelných diod, zobrazovací sedmisegmentové jednotky z kapalných krystalů, světelné diody infračerveně vyzařující, optoelektronické spojovací členy.

Fotorezistory

Fotorezistory jsou polovodičové součástky, které v závislosti na osvětlení mění svůj činný odpor. Vyrábějí se tyto druhy:

plošné fotorezistory,

napařované fotorezistory,

diferenciální fotorezistory,

fotorezistory PbS.

Plošné fotorezistory mají aktivní vrstvu zhotovenu ze sintrovaného sirníku kademnatého. Fotorezistor je hermeticky uzavřen ve skleněném pouzdru. Vyrábějí se tři typy:

WK 650 36a, WK 650 37 a WK 650 49.

Mechanické provedení je zřejmé z obr. 85.

Elektrické vlastnosti uvádíme v tab. 5.

Tabulka 5. Elektrické vlastnosti plošných fotorezistorů

Typové označení	Maximální zatížení [W]	Jmenovité napětí [V]	Jmenovitý proud [mA]	Odpor při 100 lx [Ω]	Odpor při 0 l x [Ω]
WK 650 36a	1	350	80	300 až 2800	3,8.106
WK 650 37	0,15	150	20	400 až 4000	106
WK 650 49	0,1	350	2	5000 až 40 000	107

Velikost odporu je nutné měřit až po určitém čase, neboť tyto fotorezistory mají poměrně značnou časovou konstantu. Velikost této časové konstanty závisí na osvětlení a výrobce zaručuje u fotorezistorů typu WK 650 37 a WK 65 0 49 zvětšení odporu na hodnotu alespoň 100 kΩ za 2 sekundy po jejich zate mnění (0 lx).

Napařovan é fotorezistory mají vrstvu citlivou na světlo napařenou na keramickou po dložku. která je hermeticky uzavřena v kovovém pouzdru se zataveným skleněným okénkem. Vyrábějí se typy WK 650 60, WK 65061, WK 650 67 a WK 650 68. Mechanické provedení je na obr. 86.

Uvedené typy mají tyto vlastnosti:

Jmenovité zatížení

maximálně 0,05 W

Provozní napětí

10 V, stejnosměrné

Nejvyšší dovolené napětí

50 V, stejnosměrné

Relativní spektrální citlivost

maximálně v rozmezí 540 nm až 580 nm

Obr. 85. Plošné fotorezistory

Odpor při osvětlení 100 lx	WK 650 60 WK 650 61	$0.6 \text{ k}\Omega$ až $3.6 \text{ k}\Omega$ $1 \text{ k}\Omega$ až $5 \text{ k}\Omega$
	WK 650 68	$1,2~\mathrm{k}\Omega$ až $2,8~\mathrm{k}\Omega$
při osvětlení 80 lx	WK 650 67	$0.8~\mathrm{k}\Omega$ až $4.7~\mathrm{k}\Omega$
Doba náběhu je asi 8 s při os	světlení 0,5 lx.	

Obr. 86. Napařované fotorezistory a fotorezistory PbS

Diferenciální fotorezistory se vyrábějí pod označením WK 650 65. Aktivní vrstvu tvoří dva stejné fotorezistory, které jsou vytvořeny napařením na keramickou podložku. Oba mají společný jeden vývod, takže z pouzdra jsou vyvedeny tři vývody. Mechanické uspořádání je přibližně stejné jako u napařovaných fotorezistorů. Jmenovité zatížení je maximálně 0,015 W.

Provozní napětí

30 V

Odpor při osvětlení 100 lx

 $8,25~k\Omega$ až $33~k\Omega$

Rozsah maximální spektrální citlivosti 680 nm až 760 nm.

Fotorezistory PbS se vyrábějí ve stejném pouzdru jako napařované fotorezistory. Jejich aktivní vrstva je chemicky vyloučená na skleněné podložce. Označují se WK 650 69. Tyto fotorezistory jsou citlivé a mají malou časovou

Obr. 87. Křemíková hradlová fotonka 1 PP75

konstantu (100 μ s). Maximální napětí je 50 V až 100 V. Parametry značně závisejí na teplotě. Odpor za temna je 50 k Ω až 3000 k Ω . Rozsah spektrální citlivosti je 600 nm až 2600 nm.

Křemikové hradlové fotonky

Fotonky 1 PP 75 jsou určeny pro snímání zvukového záznamu z filmu, pro měření a regulaci. Jejich maximální spektrální citlivost je v oblasti 400 nm až 1100 nm. Mechanické provedení je zřejmé z obr. 87. Kladný pól elektromotorického napětí je na anodě, která je označena červenou tečkou. Při osvětlení 1000 lx je napětí na vývodech větší než 0.3 V a proud, který je fotonka schopna dodávat do zátěže, je větší než $70~\mu\text{A}$. Při zatěžovacím odporu $4~\text{k}\Omega$ a při kmitočtu osvětlení 7~kHz je napětí na fotonce větší než 3.6~mV.

Křemíkové fotonky pro spínací účely

Fotonky KP 101 a KP 102 odpovídají svou strukturou fototranzistorům typu NPN, vyráběným planární technologií. Od těchto tranzistorů s malým výkonem se liší tím, že místo proudu báze je k řízení kolektorového proudu využito světlo. Tyto fotonky jsou několikanásobně citlivější než hradlové fotonky a používají se pro rozsah osvětlení od několika set do několika tisíc luxů. Mechanické provedení je na obr. 88. Fotonka je ve skleněném pouzdru, které vytváří na vrcholu čočku. Touto čočkou prochází světlo působící na systém. Vývod kolektoru je označen červenou tečkou a je kratší. Pro svou velkou citlivost a poměrně značný rozptyl parametrů se fotonka obvykle používá ve spínacím režimu. Hlavní použití našla ve fotoelektrických snímačích děrné pásky. Výjimečně se používá v lineárním provozu a pro měřicí účely.

KP 101 KP 102

Obr. 88. Křemíkové fotonky pro spínací účely KP 101 a KP 102

Tabulka 6. Přehled vlastností luminiscenčních světelných diod

Тур	Svítivost	Maximální	Maximum	Úbytek napětí
	při proudu	proud	vlnové délky	v propustném
	20 mA [mcd]	[mA]	záření [nm]	směru [V]
LQ 100 LQ 110 LQ 113 LQ 114 LQ 190	$\begin{array}{ c c c } 0.8 > 0.2 \\ 1 > 0.4 \\ 1.3 \\ 0.8 \\ 3 > 0.8 \end{array}$	50 30 40 40 35	660 660 660 660 565	$egin{array}{cccccccccccccccccccccccccccccccccccc$

Luminiscenční světelné diody

Tyto diody se většinou používají místo žárovek pro signalizaci stavů. Vyrábějí se diody svítící červeně, zeleně, žlutě a bíle. Existují i diody, jejichž barvu lze prostřednictvím proudu pomocné elektrody měnit. TESLA Rožnov, k. p., vyrábí diody svítící červeně, zeleně, žlutě a bíle.

Červeně svítící diody jsou typu LQ 100, LQ 110, LQ 113, LQ 114, LQ 1101, LQ 1102, LQ 1111, LQ 1112, LQ 1131, LQ 1132, LQ 1212.

Zeleně svítící diody jsou typu LQ 190, LQ 1731, LQ 1732, LQ 1812.

Žlutě svítící diody jsou typu LQ 1431, LQ 1432, LQ 1512.

Mechanické provedení je na obr. 89, vlastnosti uvádíme v tab. 6.

2,5 Ø4,1±0,2 Ø4,1±0,2 V = 0,5×0,5

LQ 110 A = 5,5 mm LQ 111 A = 7,0 mm LQ 112 A = 8,5 mm

Obr. 89. Luminiscenční světelné diody

Zobrazovací sedmisegmentové jednotky se světelnými diodami

Zobrazovací sedmisegmentové jednotky LQ 410 vyzařují červené světlo s vlnovou délkou 660 nm. Uspořádání segmentů umožňuje vhodnou kombinací zobrazit číslice 0 až 9 a desetinnou tečku (na levé straně znaku číslice). Dále lze zobrazit některá písmena a znaky. Uspořádání segmentů a mechanické provedení vidíme na obr. 90. Tyto zobrazovací jednotky jsou určeny pro použití v číslicové elektronice jako výstupní zobrazovací jednotky. Používají se u počítačů, kalkulátorů, měřicích přístrojů apod.

Obr. 90. Zobrazovací sedmisegmentová jednotka se světelnými diodami LQ 410

Lze je zasouvat do objímek určených pro integrované obvody se 14 vývody. Tyto objímky však nesmějí mít převýšené okraje (je nutné je odstranit, nejlépe ubroušením). Úbytek napětí v propustném směru segmentu je od 1,6 V do 2 V (i v desetinné tečce). Maximální proud v propustném směru je 30 mA v segmentu i v desetinné tečce.

Maximální celkový proud jednotky je 240 mA.

Pro převod kódu BCD na kód spínání číslic a znaků v sedmisegmentovém tvaru jsoù určeny integrované obvody typu D 146C a D 147C. Zapojení vývodů

1 — katoda A	8 — katoda D
2 — katoda F	9 — anoda D, C
3 — anoda H, E, F, G	10 — katoda C
4 — volný vývod	11 — katoda G
5 — volný vývod	12 — volný vývod
6 — katoda H	13 — katoda B
7 — katoda E	14 — anoda A, B

Zobrazovací maticové jednotky 5×7 bodů ze světelných diod

Polovodičová zobrazovací jednotka LQ 600 je složena z 36 bodových čipů, tj. matice 5 × 7 bodů a světelné tečky na levé straně znaku. Umožňuje zobrazit číslice, písmena a znaky a je určena pro zobrazovací jednotky počítačů, stolních kalkulátorů atd.

Mechanické provedení je na obr. 91. Tyto zobrazovací jednotky lze také zasunout do objímek pro integrované obvody. Vyzařují červené světlo s vlnovou délkou 660 nm. Maticové uspořádání bodů umožňuje zobrazení 64 znaků v kódu ASCII.

Maximální proud bodu je 7 mA, svítí-li všechny body, a 12,5 mA při zobrazení znaků. Pro převod kódu z počítače na kód matice 5 × 7 se používají pevné paměti ROM MHB 2501 (pro latinskou abecedu) a MHB 2502 (pro azbuku).

Zapojení vývodů (pohled shora)

1. sloupec 2	${f A}$	8. sloupec 3	A
2. řádek 1	${f K}$	9. řádek 7	\mathbf{K}
3. řádek 3	${f K}$	10. řádek 6	K
4. řádek 4	${f K}$	11. řádek-5	K
5. sloupec 1	${f A}$	12. řádek 2	K
6. volný vývod	\mathbf{NC}	13. sloupec 5	\mathbf{A}
7. desetinná tečka	${f A}$	14. sloupec 4	\mathbf{A}

Obr. 91. Zobrazovací maticová jednotka LQ 600

Zobrazovací sedmisegmentové jednotky z kapalných krystalů

Zobrazovací jednotky DR 401 a DT 401 jsou odrazné a prostupné zobrazovací sedmisegmentové jednotky s rozměry znaku 7,6 × 14 mm a se sklonem znaku 10°, u nichž se využívá elektrooptických vlastností nematických kapalných krystalů k zobrazení číslic 0 až 9, desetinné tečky vpravo od čísla a několika písmen. Zobrazovací jednotky jsou polem řízeného typu, a proto pro dokonalé vybuzení vyžadují velmi malý proud (asi 1 μA na segment). Používají se jako číslicový výstup měřicích přístrojů, elektronických počítačů, stolních kalkulátorů a jiných indikátorů. Základní barva znaku je černá.

Provedení je na obr. 92.

Zobrazovací jednotka se skládá ze dvou skleněných destiček, mezi nimiž je vhodným způsobem vytvořen prostor pro naplnění kapalných krystalů. Na destičkách je napařena průhledná vodivá vrstva, tvořící na jedné destičce reliéf požadovaných zobrazených segmentů, na druhé destičce společnou elektrodu. Vývody jednotlivých segmentů a společné elektrody jsou provedeny technikou tlusté kovové vrstvy na skle. Z obou stran zobrazovací jednotky jsou nalepeny polarizační fólie. Bez těchto fólií není zobrazení viditelné.

Protože kapalné krystaly nevyzařují světelnou energii (principem funkce je změna kontrastu působením elektrického pole), potřebují zobrazovací

jednotky DR 401 a DT 401 ke své funkci osvětlení denním nebo umělým světlem.

Zobrazovací součástka DR 401 je provedena jako odrazná (reflexní) — zadní polarizační fólie je upravena jako odrazná a součástka se musí osvětlit zpředu.

Zobrazovací součástka DT 401 je provedena jako prostupná (transmisní) — obě polarizační fólie jsou průhledné a součástka se musí osvětlit zezadu, zpravidla zvláštním světelným zdrojem

Pracovní napětí je střídavé v rozmezí (3,5 až 8) V
Kmitočet napájecího napětí (20 až 200) Hz
Celková kapacita 400 pF
Doba náběhu je menší než 120 ms
Doba doznívání je menší než 350 ms

Kontaktní plošky jsou zapojeny takto:

A, B, ..., G jednotlivé segmenty H desetimá tečka X společná elektroda

Světelné diody infračerveně vyzařující

Diody WK 164 02 nejčastěji používáme jako zdroj infračerveného záření. Polovodičový systém je uložen v kovovém pouzdru. Na čelní straně je čočka z plastu. Vývod kladného pólu je spojen s pouzdrem a celá dioda má průměr 2,1 mm, délku 14 mm a vývody dlouhé 40 mm. Mezní kmitočet je 1 MHz, vlnová délka záření asi 950 nm a maximální proud 100 mA. Jmenovité napětí je menší než 1,7 V.

Optoelektronické spojovací členy

Tyto prvky se používají pro galvanické oddělení elektronických obvodů. Je to mechanicky a opticky spřažená luminiscenční světelná dioda s fototranzistorem v jednom pouzdru. Izolační odpor a průrazné napětí mezi těmito dvěma prvky musí vyhovět požadavku galvanického oddělení.

V ČSSR se vyrábějí optoelektronické spojovací členy typu WK 164 11 až WK 164 13. Oddělovací člen WK 164 11 je v kovovém pouzdru a má izolační odpor 10⁹ Ω. Vzájemná kapacita je asi 3 pF a výstupní proud je 100 mA až 200 mA při vstupním proudu 30 mA.

Oddělovací člen WK 164 13 je vhodný pro navázání na obvody TTL. Je zalit do plastu, což umožňuje dokonalejší galvanické oddělení.

45. SVĚTELNÉ SNÍMAČE

Využití kombinace světelného zdroje a křemíkové fotonky nebo fototranzistoru umožní bezdotykovou indikaci pohybujících se předmětů. Při automatizaci v průmyslu se tento princip používá velmi často. Amatéři takto počítají např. ujeté okruhy na modelech autodráhy, otáčky rotujících předmětů atd. Výhodou světelných bezdotykových snímačů je, že nedochází

k mechanickému pohybu částí spínače, ani k silovému ovlivnění indikované části. Proto lze tento způsob použít i při indikaci těles s malou hmotností, kde selhávají bezdotykové snímače založené na magnetickém nebo elektromagnetickém principu. Nevýhodou je vliv okolního světla, se kterým musíme počítat při návrhu umístění světelného snímače. Vliv okolního světla často značně ovlivní celou konstrukci přístroje.

Obr. 93. Fotoelektrický snímač: a) vidlicový, b) reflexní

Předmět, který chceme indikovat, prochází optickou dráhu mezi zdrojem světla a fotoelektrickým čidlem. Zdrojem světla je obvykle žárovka nebo okolní, třeba i denní světlo. Luminiscenční světelné diody se v amatérské praxi používají málo, ačkoliv mají veľké výhody — dlouhou životnost, vhodnou vlnovou délku a výhodný kmitočtový průběh mezi napájecím napětím a vyzařovaným světlem. Důvodem je jejich nedostupnost na trhu. V zahraničí lze koupit diody, které svítí na vzdálenost několika metrů

Obr. 94. Ovládání relé nebo počitadla světeľným signálem

Obr. 95. Tvarovací obvody pro fototranzistor

a které lze v impulsovém provozu použít i na vzdálenost několika desítek metrů v kombinaci s běžným fototranzistorem. Takové světelné diody se s výhodou používají při dálkovém ovládání spotřebičů a modelů, při přenosu hudby a řeči, ve světelných telefonech apod. Někteří výrobci nabízejí i speciální součástky pro fotoelektrické snímače. Jde o kompaktní snímače se zabudovanou dvojicí světelná dioda — fototranzistor. Tyto snímače mívají tvar vidlice, v jejíž mezeře se pohybuje indikovaný předmět (obr. 93a). Jiné snímače využívají reflexní plochu na indikovaném předmětu, od které se světelný paprsek odráží (obr. 93b) — potom mluvíme o tzv. reflexním čidle.

Signál z fototranzistoru je nutné zesílit, chceme-li jím spínat např. cívku relé nebo mechanického počitadla. Elektrický obvod zesilovače obvykle obsahuje ještě filtr, který zamezí kmitání obvodu. Pokud na fototranzistor navazují číslicové obvody s čítači (např. při počítání ujetých kol u modelu autodráhy), musí se signál z fototranzistoru zesílit a tvarovat, abychom získali impulsy s dostatečně strmými hranami.

Pro spínání relé 24 V nebo cívky počitadla světelným signálem vyhoví zapojení podle obr. 94. Dopadne-li na fototranzistor KP 101 světlo, stane se fototranzistor vodivým a otevře tranzistor T_2 , který je zapojen jako cmitorový sledovač. Napětí z emitoru tranzistoru T_2 sepne tranzistory T_3 a T_4 v Darlingtonově zapojení. Relé nebo cívka počitadla sepnou tedy současně s dopadem světla na fototranzistor. Ke spínání obvykle stačí osvětlení místnosti. Kondenzátor C filtruje střídavé napětí, které by vzniklo při napájení žárovky střídavým proudem.

Na obr. 95 jsou zapojení tvarovacích obvodů, která umožní připojení snímače k číslicovým obvodům TTL. Zapojení podle obr. 95a vyhoví pro méně náročné aplikace, kde je zdroj světla dostatečně výkonný a kde vzdálenost mezi zdrojem světla a fototranzistorem není velká.

Pro zesílení signálu z fototranzistoru využívá zapojení spínací tranzistor KSY 82. Signál pro potřeby dalšího číslicového zpracování tvarují dva invertory TTL. Rezistor, kterým jsou tyto invertory překlenuty, vytváří hysterezi, zmenšující citlivost obvodu na rušivé signály, a zároveň zlepšuje strmost hran výstupních impulsů.

Složitější zapojení, které je na obr. 95b, upravuje i šířku výstupních impulsů. Fototranzistor je připojen k bázi zesilujícího tranzistoru. Dva logické invertory signál tvarově upraví a vazba do emitoru zajistí opět hysterezi obvodu. Člen *RC* vytváří spolu s logickým členem NAND obvod, který při zaclonění fototranzistoru generuje impuls s šířkou asi 5 μs.

Toto zapojení je tedy vhodné pro připojení ke vstupu čítače.

Na obr. 95c je zesilovač, který podstatně zlepšuje citlivost fotoelektrického snímače. V zapojení je použit lineární integrovaný obvod MAA 145. Citlivost zesilovače a úroveň výstupních impulsů lze nastavit trimry R_1 a R_2 . Celý zesilovač lze zapojit místo fototranzistoru na obr. 95b.

Obvod je vhodný pro reflexní snímače a pro případy, kdy je překlenuta velká vzdálenost mezi zdrojem světla a fototranzistorem.

Jedno z možných konstrukčních řešení snímače je na obr. 96. Vnitřní část krytu je natřena matnou černí. Čočka z organického skla je ve své ose provrtána a v otvoru, který je také vyčerněn, je upevněn fototranzistor. Čočka slouží k usměrnění světla ze světelného zdroje, který se nachází v jejím ohnisku.

Obr. 96. Konstrukční uspořádání snímače

Možnost využít světlo jiné vlnové délky, než má světlo používané k osvětlení, znamená doplnit optickou část snímače filtry a používat speciální fotonky. Pro amatérskou výrobu je tento způsob méně vhodný.

Fotoelektrický snímač, na který navazuje některý z tvarovacích obvodů podle obr. 95, můžeme připojit přímo k integrovanému čítači typu MH 7490, na který navazují další dekády tohoto čítače a obvody zobrazující stav čítačů. Schéma takového zapojení je na obr. 97.

Obvod lze použít pro počítání předmětů, počítání ujetých kol při závodech modelů, k indikaci počtu záblesků atd. Impulsy z tvarovacího obvodu jsou přivedeny na vstup čítače nejnižší dekády. Stav tohoto čítače je zobra-

Obr. 97. Obvod pro počítání předmětů

zován sedmisegmentovou zobrazovací jednotkou typu LQ 410, kterou je však nutné připojit přes převodník kódu BCD na kód sedmisegmentových zobrazovacích jednotek typu D 147. Počet potřebných dekád lze libovolně zvětšovat. Úměrně se však také zvětší odebíraný proud ze stabilizovaného zdroje napětí. Jedna dekáda odebírá proud asi 160 mA. Není-li zdroj schopen tento proud dodávat a zachovat si přitom konstantní napětí v rozsahu 4,75 V až 5,25 V, je vhodné napájení obvodů LQ (je uvedeno v kroužku) připojit k nestabilizovanému zdroji napětí 5 V až 10 V. Při stisknutí tlačítka "nulování" se obsah všech dekád nastaví na nulu.

46. SAMOČINNÝ SPÍNAČ OSVĚTLENÍ

Obvod na obr. 98 samočinně spíná světlo při soumraku. Lze jej použít k osvětlení schodišť, výstražných značek atd.

Spínač je napájen přímo ze sítě, bez oddělovacího transformátoru, a je tedy nutné zajistit bezpečnost proti náhodnému dotyku dobrou izolací a umístěním přístroje mimo dosah nepovolané osoby. V napájecí části spínače je použit kondenzátor C_2 , dále jsou v zapojení usměrňovací diody D_2 , D_3 a dioda D_1 pro stabilizaci usměrněného napětí. Vlastní obvod tvoří fotorezistor $R_{\rm f}$ se dvěma tranzistory. V obvodu kolektoru druhého tranzistoru je zapojeno vinutí relé, které spíná obvod osvětlovacích žárovek, poklesne-li okolní osvětlení pod určitou úroveň, kterou můžeme volit proměnným rezistorem R_2 .

47. GENERÁTOR DENNÍCH IMPULSŮ

Často potřebujeme uvést nějaký mechanismus do provozu pouze jednou denně (např. spouštění zálivky pro rostliny nebo domácí květiny, převracení čísel na kalendáři, krmení akvarijních rybek apod.). Uvedeme tedy několik

zapojení, která reagují na denní světlo. Jakmile se osvětlení snímače citlivého na světlo zvětší (nebo zmenší), vznikne elektrický impuls, ovládající příslušný mechanismus. Tímto mechanismem může být i elektromotor ovládající dávkovací zařízení nebo pumpu, nebo relé, jehož kontakt spíná časovač. Časovač potom ovládá mechanismus po určitou dobu.

Obr. 99. Generátor denních impulsů s diakem

Pro krmení akvarijních rybek suchým krmivem se osvědčil mechanismus vyrobený ze starého mlýnku na mák. Hřídel mlýnku je poháněna stejnosměrným motorkem s převodem do pomala. Při každém elektrickém impulsu do motorku se natočí hřídel mlýnku o určitý úhel, jehož velikost je určena šířkou tohoto impulsu. Změnou jeho šířky lze tedy měnit velikost dávky krmiva, kterou mlýnek vytlačí. Zásobník tvoří prostor uvnitř mlýnku a zásoba stačí na krmení rybek během dovolené.

Na obr. 99 je zapojení obvodu generátoru, v němž je použit tyristor KT 501. Součástkou citlivou na světlo je fotorezistor. Jakmile se kondenzátor C nabije na napětí, při kterém spíná diak (v rozsahu 22 V až 30 V), přenese se do řídicí elektrody tyristoru proudový impuls omezený odporem R_2 a tyristor sepne. Okamžik sepnutí je tedy určen napětím na kondenzátoru C

Obr. 100. Jednodušší generátor denních impulsů

a toto napětí závisí na osvětlení rezistoru, který s proměnným rezistorem R_1 tvoří napěťový dělič. Zaměníme-li vzájemně rezistor R_1 a fotorezistor R_ℓ , dostaneme obvod, který generuje impuls v okamžiku, kdy se osvětlení zmenší pod určitou mez. Mez sepnutí nastavujeme volbou odporu R_1 .

Místo vinutí relé Re může být samozřejmě přímo zapojen nějaký akční elektromechanický člen. Volbou kapacity kondenzátoru C lze upravit šířku

požadovaného proudového impulsu.

Na obr. 100 je zapojení, které sice nevyniká takovou teplotní stálostí jako předcházející obvod, ale které je značně jednodušší, neboť nepotřebuje diak. Proud z fotorezistoru spíná přímo tyristor po dosažení odpovídající úrovně osvětlení. I u tohoto zapojení lze převrátit činnost záměnou rezistoru R_1 a fotorezistoru R_1 . Místo fotorezistoru lze v obou zapojeních použít fotonku typu KP 101. K napájení opět stačí jednocestně usměrněné napětí bez filtrace. Lze použít transformátor k signální žárovce 220 V/24 V (1,5 až 2 V.A).

48. INDIKÁTOR DÝMU

V protipožární ochraně nachází uplatnění obvod, který reaguje na přítomnost dýmu. Princip lze využít také např. pro automatické spouštění ventilátoru v zakouřených místnostech. K indikaci se využívá odrazu světla v dýmu.

V trubici, jejíž vnitřní stěny jsou zabarveny matovou černí používanou v optice, je umístěna žárovka s reflektorem a čočkou. Dále je v trubici fototranzistor nebo fototyristor, před kterými prochází světlo žárovky, koncentrované čočkou. Trubice je na obou stranách zahnuta nebo je opatřena světelným labyrintem, aby okolní světlo nepůsobilo rušivě na obvod. Výměna vzduchu uvnitř trubice je zajišťována přirozeným prouděním nebo malým ventilátorem.

Dostane-li se do trubice dým, odrazí se světlo, které dosud pronikalo čirým prostředím a bylo pohlcováno stěnami, a signál z fototranzistoru uvede v činnost signalizační zařízení. Pro větší životnost je výhodné žárovku podžhavit a její činnost trvale indikovat kontrolní žárovkou zapojenou v sérii a umístěnou vně trubice. Zapojení je na obr. 101.

49. GENERÁTOR KMITOČTU ŘÍZENÝ SVĚTLEM

Pro několik účelů lze využít tónový generátor, jehož kmitočet je řízen světlem. Jedním z možných použití je zvuková signalizace blesků, jiným je např. hlídací zařízení. Nejzajímavější je využití přístroje ve funkci jednoduchého radaru pro nevidomé. V kombinaci se světelným zdrojem lze (po určitém zacvičení) identifikovat velikost i vzdálenost předmětů ve tmě, a radar tak těmto osobám umožní orientaci a bezpečný pohyb. Přitom je zapojení značně jednoduché. Schéma je na obr. 102a. Časovací obvod typu NE 555 pracuje jako astabilní multivibrátor, na který je přes transformátor vázán reproduktor nebo sluchátka. Kmitočet multivibrátoru je určen od-

pory rezistorů R_1 a R_3 , kapacitou kondenzátoru C a osvětlením fotorezistoru. Ve tmě má fotorezistor odpor 1 M Ω až 10 M Ω , což odpovídá kmitočtu generátoru několika hertzů. Tento kmitočet se po osvětlení fotorezistoru zvětší přibližně až na 6,5 kHz, neboť odpor tohoto fotorezistoru se zmenší až na asi $100~\Omega$. Kmitočet je od určitého osvětlení určen už jen vlastnostmi součástek R_1 , R_3 a C. Obvod odebírá ze zdroje 9 V proud v závislosti na kmitočtu, v rozsahu 4 mA až 12 mA. Je zvlášť citlivý při malém osvětlení a na krátké světelné záblesky reaguje krátkodobým zvětšením kmitočtu tónu reproduktoru.

Obr. 101. Indikátor dýmu s fototranzistorem

Fotorezistor umístíme na dno trubičky s průměrem fotorezistoru a délkou asi 10 cm až 15 cm. Vnitřek této trubičky je vyčerněn optickou matnou černí a trubička je připevněna ke svítilně, kterou se osvětluje potřebný prostor. Lze použít běžnou bateriovou svítilnu. Celý přístroj lze napájet ze dvou plochých baterií, je však nutné brát v úvahu závislost výsledného tónu na stavu vybití baterií. Lépe je použít stabilizovaný zdroj jak pro osvětlovač, tak pro napájení generátoru.

Místo transformátoru lze použít optoelektrický spojovací člen (obr. 102b), a získáme tak galvanicky oddělený světelný snímač, např. pro účely měření (telemetrii).

Připojíme-li výstupní impulsy ze snímače k čítači a využijeme-li pouze část pracovní oblasti fotorezistoru, kde závislost jeho odporu na osvětlení je lineární, vytvoříme integrátor vhodný např. k určování expozice.

VI. Elektronická zabezpečovací zařízení

50. ZABEZPEČOVACÍ ZAŘÍZENÍ PROTI VLOUPÁNÍ

Zabezpečit nějaký objekt proti vloupání elektronickým zařízením není jednoduché. Cvičeného hlídacího psa lze nahradit různými snímači reagujícími na chvění, dotyk, zvuk nebo přerušení světelného paprsku, zvukovými efekty můžeme nahradit i štěkot psa, ale vyceněné zuby a řemen, který se může co chvíli přetrhnout, lze nahradit těžko. Zákon totiž nedovoluje ohrozit zdraví pachatele a pokud světelné nebo zvukové signály nepřivolají pomoc dříve, než zdroje těchto signálů stačí být poškozeny nebo odpojeny, mine se činnost zabezpečovacího zařízení účinkem.

Známe případ, kdy se majitel chaty rozhodl případného zloděje fotografovat samočinně spouštěným fotoaparátem s bleskem z mříží okénka chaty. Majitel byl zlodějem nejen připraven o fotoaparát s příslušenstvím, ale v hrůze před dopadením mu zloděj málem zbořil chatu, aby se k fotoaparátu dostal. Zabezpečovací zařízení má tedy smysl jen tehdy, je-li schopno přivolat účinnou pomoc.

Obr. 103. Různé principy spínačů

Nejjednodušší zařízení využívají sepnutí mechanického kontaktu, dotkneli se zloděj určitého předmětu. Sem patří dveřní, okenní nebo nášlapné kontakty, kontakty spínané chvěním atd. Mechanické uspořádání závisí na fantazii a schopnostech tvůrce a nebudeme se zde jejich podrobným popisem zabývat. Několik možností jejich realizace je na obr. 103. Na obr. 103a je zařízení, které sepne kontakt, spadne-li kovová kulička do vhodně upraveného trychtýře. Tento spínač lze umístit na předmětech, které jsou pro pachatele zvláště lákavé nebo které mu překážejí v pohybu a musí jimi pohnout.

Obr. 104. Trvalé spínání obvodu s tyristorem

Obr. 105. Hlídání světelným paprskem

Na obr. 103b je spínač, který rovněž reaguje na pohyb, ale po určité době se pružina uklidní; pokud pohyb ustane, kontakt se opět rozpojí. Sepnutí můžeme použít k trvalé signalizaci nebo jen k akustickému nebo optickému varování při dotyku.

Velmi účinné jsou spínače využívající napjaté vlákno ve výšce kolen až pasu dospělé osoby. Vlákna lze za šera stěží postřehnout. Na obr. 103c je znázorněn způsob, při němž tah vlákna uvolňuje izolační vložku mezi kontakty spínače. Způsob podle obr. 103d využívá tenkého vodivého drátu, kterým v klidu prochází proud potřebný k přidržení kotvy malého relé nebo k uzavření tranzistoru (obr. 103e). Po přerušení drátu se uvede v činnost poplašné zařízení. Spínač podle obr. 103f využívá pro sepnutí kontaktu rozcehvění membrány např. zvukeni.

U všech uvedených mechanických snímačů se zapínají elektrické kontakty. Takto lze ovládat další spínací prvek, který uvede v činnost poplašné zařízení. Je to důležité proto, že při poplachu se vetřelec snaží zničit viditelné části poplašného obvodu. Je tedy nutné umístit další spínač a jeho obvody na skryté místo, stejně tak jako baterii napájející celé poplašné zařízení.

Pro trvalé sepnutí celého poplašného zařízení je výhodné použít zapojení s tyristorem (obr. 104). Tyristor sepne při prvním doteku kontaktů mechanického čidla a zůstane sepnut, dokud nestiskneme skryté tlačítko Tl. Potuto dobu je poplašné zařízení v činnosti. Má-li poplašné zařízení indukční

charakter, může se stát, že po zakmitání proudu tyristor opět rozepne a poplach se přeruší. Tentýž případ může nastat, obsahuje-li poplašné zařízení přerušovač (např. automobilová houkačka). Proto je nutné doplnit obvod tyristoru další součástkou (např. žárovkou, rezistorem nebo kondenzátorem), které tomuto přerušení proudu zabrání. Volba těchto součástek závisí na charakteru zátěže.

Na obr. 105 je základní schéma hlídacího zařízení, které využívá světelný paprsek. Světelný paprsek prochází oblastí, v níž by se mohla nežádoucí osoba pohybovat. Chceme-li překlenout světlem delší vzdálenosti, neobejdeme se bez použití různých optických zařízení (reflektorů, čoček, tubusů apod.). Můžeme využít i takové vlnové délky paprsků, na které není lidské oko citlivé. Proto je nutné doplnit část reflektoru žárovky potřebnými filtry nebo použít jiný zdroj. Takovým zdrojem záření mohou být např. diody GaAs. Firma Siemens vyrábí diody LD 241, se kterými lze, (při zajištění vhodného provozu) překlenout vzdálenost i desítek metrů.

Obr. 106. Světelné čidlo

Jako světelné čidlo lze použít zapojení na obr. 106. Fototranzistor T, je osvětlován světelným paprskem. Zdroj světla musí mít dostatečný výkon, aby proud procházející fototranzistorem otevřel tranzistor T2. Tranzistor T_3 pracuje jako emitorový sledovač, který ovládá řídicí elektrodu tyristoru Ty. V okamžiku přerušení světelného paprsku se značně zmenší velikost proudu, který prochází fototranzistorem T₁ (ve tmě prochází proud menší než 100 nA) a tranzistor T_2 přechází do nevodivého stavu. Přes rezistor R_2 se otevírá tranzistor T₃ a spíná tyristor. V obvodu anody tyristoru je zapojeno relé, spínající poplašné zařízení, nebo přímo obvod poplašného zařízení. Aby nedocházelo k samovolnému rozpojení tyristoru vlivem indukčního charakteru zátěže (relé nebo houkačka), je paralelně k této zátěži připojena žárovka Ž₂. Typ tyristoru volíme podle zátěže. Pro běžná relé a dále popsaná akustická zařízení stačí typ KT 501. Pro automobilovou houkačku volíme typ KT 701. Podle velikosti nejmenšího přídržného proudu tyristoru je také nutné volit typ žárovky Ž₂. Přídržný proud pro tyristor KT 501 je 17 mA a pro tyristor typu KT 701 50 mA. Vzhledem k tomu, že přerušení vlákna žárovky by mělo za následek selhání přístroje, volíme žárovku pro větší napětí nebo použijeme drátový rezistor.

Ke zjištění přítomnosti osoby v objektu lze také použít citlivý mikrofon se zesilovačem, který spíná poplašné zařízení. Předpokladem je možnost nastavit optimální citlivost. Málokdy lze však určit maximální hladinu okolního hluku, při kterém ještě nechceme uvést poplašné zařízení do činnosti. Hluk, který vydávají letadla nebo nákladní automobily vezoucí panely kolem vašeho domu, totiž nezpůsobí ani nejnešikovnější lupič.

Na obr. 107 je schéma obvodu citlivého na zvuk. Jako mikrofon lze použít i reproduktor s větší impedancí. Tranzistory T_1 a T_2 tvoří střídavý zesilovač pro mikrofon, jehož celkovou citlivost lze nastavit potenciometrem P_1 v kolektoru druhého tranzistoru. Tranzistor T_3 zde působí jako spínač pro tyristor T_3 . V obvodu tyristoru je zapojeno poplašné zařízení.

Zesilovač s tranzistory T_1 a T_2 má dobrou teplotní stabilitu, zavedenou stejnosměrnou vazbou. Jakmile zesílený střídavý signál z mikrofonu vyvolá na odporu potenciometru P_1 napětí, které stačí k otevření tranzistoru T_3 , sepne tyristor T_3 .

Od zvukového poplašného zařízení obvykle požadujeme, aby zdroj zvuku byl co nejhlasitější a aby zvuk působil jak na vetřelce, tak na okolí, od kterého očekáváme pomoc. Lze použít různé sirény, automobilové houkačky nebo tónové generátory s dostatečně výkonnými zesilovači a reproduktory. K jejich napájení je nutný výkonný zdroj, nezávislý na sítovém napětí (které lze snadno přerušit, a celé poplašné zařízení tak vyřadit z činnosti). Totéž samozřejmě platí o napájení zbývajících obvodů poplašného zařízení. Nejvhodnější je použít akumulátory, které se trvale dobíjejí ze sítového rozvodu nebo (v místech bez sítového rozvodu) např. z větrné elektrárny. Můžeme také kombinovat elektronické hlídání s akustickým zařízením, které je poháněno stlačeným vzduchem z tlakové nádoby, která se např. prodává k hustění automobilových pneumatik.

Na obr. 108 je obvod, který generuje zvuk podobný zvuku mechanické sirény. Obvod obsahuje dva multivibrátory, které kmitají na odlišných kmitočtech. První má kmitočet asi 0,5 Hz (T_1 a T_2). Z kolektoru tranzistoru T_2 je řízen kmitočet druhého multivibrátoru. Aby byla změna kmitočtu plynulá, je obvod doplněn integračním členem tvořeným rezistorem R_5

Obr. 107. Akustické čidlo

a kondenzátorem C_3 . Je-li na kondenzátoru nižší napětí, kmitá multivibrátor s tranzistory T_3 a T_4 s nižším kmitočtem. Se zvyšujícím se napětím se kmitočet zvyšuje. Z výstupu je řízen výkonový zesilovač pro reproduktor; zesilovač je osazen integrovaným obvodem typu MBA 810. Výstupní výkon zesilovače je asi 5 W. Potenciometrem P_1 (obr. 109) nastavíme výkon tak, aby zesilovač dosahoval největšího možného výkonu bez zkreslení. Celý ob-

Obr. 108. Generátor zvuku sirény

vod včetně výkonového zesilovače je připojen do obvodu tyristoru z obr. 107. Tyristor Ty typu KT 701 musí být opatřen chladičem, neboť procházející proud je asi 0,5 A, zatímco tyristor KT 501 má bez chlazení mezní proud 0,4 A. Zapojení vývodů integrovaného obvodu MBA 810 je na obr. 110.

Jednodušší zapojení sirény je na obr. 111. Toto zapojení využívá kombinace tranzistorů typu NPN a PNP. Zvuk nemá periodický charakter. Při poplachu začne reproduktor houkat nízkým tónem, který se zvyšuje a po několika sekundách se ustálí. Zapojení lze napájet ze dvou plochých baterií. Klidový proud tohoto obvodu je asi 2 mA. Při ustálení kmitočtu signálu se proud zvětší asi na 20 mA při napájecím napětí 12 V a s reproduktorem

s impedancí 4Ω . Přestože střední hodnota odebíraného proudu je poměrně malá, nedoporučujeme použít místo tranzistoru T_2 tranzistor s menším kolektorovým ztrátovým výkonem, neboť špičkový proud je značný. Zvuk je slyšet daleko. Nechceme-li použít výkonový zcsilovač MBA 810, lze oba uvedené způsoby kombinovat. Zapojení je na obr. 112. Dosáhneme tak periodického zvuku sirény, neboť tranzistor T_3 řídíme periodickým napětím z multivibrátom (T_1, T_2) .

KF 506 OC 26 R_3 18 k C_1 R_2 4Ω R_2 4k7 R_1 R_2 R_3 R_2 R_3 R_2 R_3 R_2 R_3 R_2 R_3 R_3 R_4 R_5 $R_$

Obr. 110. Zapojení vývodů integrovaného obvodu MBA 810

Obr. 111. Jednodušší zapojení sirény

Obr. 112. Zapojení sirény

51. ELEKTRONICKÉ ZÁMKY

Pod tímto pojmem rozumíme elektronické obvody, které nahrazují mechanický zámek. Tento zámek se otvírá (odblokuje) elektronickou cestou, např. stisknutím správných tlačítek nebo vytočením správného čísla na číselnici. Přitom je nutné zabránit tomu, aby nepovolaná osoba měla možnost zkoušet kombinace zámku tak dlouho, až se jí podaří zámek otevřít.

U většiny těchto zámků se obvykle používají nějaké paměťové prvky, které registrují postupné tisknutí tlačítek s čísly a při omylu v jejich posloupnosti uvedou v činnost signalizační zařízení. V dalším textu popíšeme

čtyři typy číselných elektronických zámků ovládaných tlačítky, z nichž první dva využívají jako paměťový prvek tyristory, třetí kondenzátory a čtvrtý klopné obvody.

Zámky s tyristory

Obvod zámku je na obr. 113. Kódem k otevření tohoto zámku je číslo 123. Tlačítko Tl_1 odpovídá číslici 1, Tl_2 číslici 2 atd. Po stisknutí tlačítka Tl_1 sepne tyristor Ty_1 , protože se na jeho řídicí elektrodu dostane proud z obvodu kladný pól napájecího napětí, R_3 , D_4 , Tl_4 , D_3 . Po stisknutí tlačítka Tl_2 spíná tyristor Ty_2 , protože tyristor Ty_1 je i po rozpojení tlačítka sepnut přes rezistor R_2 . Také tyristor je sepnut i po rozpojení tlačítka a proud obou

Obr. 113. Zámek s tyristory

tyristorů se uzavírá v obvodu kladný pól napájecího napětí, Ty_1 , Ty_2 , R_1 , 0. Stiskneme-li dále ještě tlačítko Tl_3 , uzavře se obvod, v němž je i vinutí elektrického zámku MZ. Zámek přitáhne kotvičku západky a otevře se.

Pořadí jednotlivých tlačítek samozřejmě neodpovídá pořadí čísel kódu. Stiskneme-li všechna správná tlačítka současně, zámek se otevře. Stiskneme-li jiná tlačítka nebo tlačítka v nesprávném pořadí, zůstane zámek uzavřen. Po otevření dveří se rozpojí dveřní kontakt K_1 a v obvodu tyristorů přestane procházet proud. Tyristory se uvedou do nevodivého stavu a po zavření dveří je zámek připraven k další činnosti. Je-li stisknuto nesprávné tlačítko, tj. jedno z tlačítek Tl_4 až Tl_{10} , sepne tyristor Ty_4 . Tento tyristor blokuje činnost ostatních tlačítek, neboť napětí na společném konci tlačítek Tl_1 až Tl_{10} se zmenši na nulu. Dále již nemůžeme sepnout žádný z tyristorů Ty_1 až Ty_3 . Totéž se stane při současném stisknutí všech tlačítek najednou. Tyristor Ty_4 se uvede do nevodivého stavu až po stisknutí tlačítka "zvonek". Potom, je-li sepnut spínač S, začne zvonit zvonek i při nesprávné manipulaci s tlačítky. Sepne-li totiž tyristor Ty_4 , bude procházet proud nejen rezistorem R_3 a diodou D_8 , ale i paralelním zvonkem Zv. Protože zvonek Zv je stejnosměrný zvonek s přerušovačem, zůstává po uvolnění nesprávně

stisknutého tlačítka uzavřen obvod tyristoru Ty₄ (přes rezistor) i v okamžiku přerušení přerušovačem. Po stisknutí tlačítka "zvonek" se obvod přeruší a tyristor Ty₄ se zkratuje. Po uvolnění tlačítka již zvonek nezvoní. Osoba, která neznala kód, je tedy "ohlášena".

Může se stát, že se zámkem bylo špatně manipulováno, avšak zvonek nezvoní. Stane se to tehdy, byla-li stisknuta správná tlačítka, ale v nesprávném pořadí. Budou-li potom stisknuta tlačítka ve správném pořadí, zůstane činnost zámku zachována. Je-li spínač S rozepnut (nechce-li být obsluha obtěžována četnými zájemci experimentujícími s tlačítky), nerozezní se zvonek po sepnutí nesprávného tlačítka, avšak tyristor Ty₄ je sepnut. Když se nepovede osobě znající kód otevřít zámek, musí na krátký okamžik stisknout tlačítko "zvonek" (tím uvede obvod do původního stavu) a pokusit se o štěstí znovu.

Diody D₁ až D₄ chrání řídicí elektrody tyristorů před zničením nesprávnou manipulací. Závěrné napětí tyristorů mezi katodou a řídicí elektrodou bývá totiž asi 6 V. Po překročení tohoto napětí se polovodičový přechod zničí. Je-li např. stisknuto tlačítko Tl₁, sepne tyristor Ty₁ a na jeho katodě je téměř plné napětí zdroje. Stiskneme-li potom některé z nesprávných tlačítek, sepne Ty₄ a na společném vodiči tlačítek Tl₁ až Tl₁₀ je napětí záporného pólu zdroje. Po opětovném stisknutí tlačítka Tl₁ by se toto napětí dostalo na řídicí elektrodu tyristoru Ty₁ a tyristor by se zničil.

Paralelně k elektromagnetu zámku je zapojena žárovka s nápisem "vstupte". Tlačítko Tl_{11} umožňuje otevřít zámek z místa obsluhy. Toto tlačítko musí být tisknuto tak dlouho, dokud se dveře neotevřou. Jeho obvod lze nahradit čárkovaně kresleným zapojením, které se skládá z tlačítka Tl_{13} a z diod D_5 až D_7 . Toto zapojení umožňuje obsluze stisknout pouze krátce tlačítko Tl_{13} otevírající dveře a tyristory podrží magnet zámku sepnutý tak dlouho, dokud není stisknut kontakt. Po celou dobu svítí také nápis "vstupte".

Ovládací panel zámku je řešen tak, že vedle dveří je na panelu umístěna žárovka s nápisem "vstupte" a tlačítka Tl_1 až Tl_{10} a Tl_{12} . Celý elektronický zámek je upevněn šrouby z druhé strany dveří. Šrouby procházejí zdí, a není tedy možný zásah do obvodů nepovolanou osobou. Tlačítek může být libovolné množství a je výhodné jednotlivá tlačítka připojit ke svorkovnici, na níž lze přepájením (nebo přešroubováním) čas od času změnit kód.

Jiný obvod (obr. 114) je vybaven ovládacím tlačítkem Tl₁ a přepínačem Př. Kódovým číslem k otevření zámku je číslo 257. Přepájením přívodů k přepínači lze toto číslo upravit na jinou libovolnou kombinaci tří číslic. Přepínačem Př je nutné postupně nastavovat jednotlivá čísla kódu ve správném pořadí. Po nastavení polohy přepínače stiskneme vždy tlačítko Tl₁.

Po prvním stisknutí tohoto tlačítka (přepínač v poloze 2) sepne tyristor Ty_1 v obvodu stejnosměrného napětí zdroje a začne procházet proud rezistorem R_1 . Jen tehdy může sepnout další tyristor, Ty_2 , neboť se na jeho anodě objeví napětí potřebné pro sepnutí. Tento tyristor sepne po nastavení další číslice kódu (5) a po stisknutí tlačítka Tl_1 . Po nastavení další číslice

se konečně otevře i třetí tyristor (Ty_2) , v jehož obvodu je vinutí elektromagnetu zámku dveří (MZ).

Obvod tyristorů se samočinně přeruší po rozpojení dveřního kontaktu \mathbf{K}_1 při otevření dveří. Paralelně k elektromagnetu je zapojena žárovka $\mathbf{\check{Z}}$, prosvětlující nápis "vstupte".

Pokud byla stisknuta čísla kódu v nesprávném pořadí, zámek se neotevře. Je-li další pokus správný, zámek se otevře. Je-li stisknuto tlačítko Tl₁ a nenachází-li se přepínač v žádné poloze, která odpovídá číslům kódu, sepne tyristor Ty₄. Tento tyristor zapojí obvod zvonku Zv. Paralelně ke zvonku

Obr. 114. Jiné provedení zámku s tyristory

je zapojen rezistor R_7 , který zabrání přerušení obvodu tyristoru při rozpojování přerušovače stejnosměrného zvonku. Zvonek zvoní i po stisknutí zvonkového tlačítka na dveřích (Tl_2) ; po uvolnění tohoto tlačítka však zvonit přestane. Při nesprávné volbě čísel zvoní trvale a lze jej odpojit přerušením kontaktu spínače S, který je umístěn v místě obsluhy, nebo stisknutím tlačítka "zvonek". Někdy je nutné zařadit do série s tlačítkem Tl_2 rezistor s malým odporem asi $100~\Omega$.

Tlačítko Tl_3 umožňuje otevřít zámek z místa obsluhy. Obsluha nemusí držet tlačítko stisknuté delší dobu, stačí jen krátké stisknutí a proud procházející diodami D_1 až D_2 otevře tyristóry Ty_1 až Ty_3 . Zámek zůstane otevřen, dokud se nerozpojí dveřní kontakt K_1 .

Zámek s kondenzátory

Jiné zapojení zámku je na obr. 115. Jsou v něm využity vlastnosti kondenzátorů. Kódem zámku je číslo 123. Stiskneme-li tlačítko Tl₁, nabíjejí se přes rezistor R_1 sériově zapojené kondenzátory C_1 až C_3 . Celkové napětí na kondenzátorech dosáhne během zlomku sekundy plného napětí zdroje. Protože jsou však kondenzátory zapojeny v sérii, rozdělí se napětí v jednotlivých kondenzátorech řetězce v opačném poměru jejich kapacit. Zvolíme-li kapacity kondenzátorů tak, že C_1 je mnohonásobně menší než C_2 , C_2 opět mnohonásobně menší než C_3 , je kondenzátor C_1 nabit na téměř plné napětí napájecího zdroje. Stiskneme-li potom tlačítko Tl₂, nabije se opět sériově zapojená dvojice kondenzátorů C_2 a C_3 a napětí na C_2 se opět téměř rovná napětí zdroje. Po stisknutí Tl_3 se nabije zbývající kondenzátor C_3 na plné napětí zdroje. Na anodě diody D_4 se objeví součet napětí na kondenzátorech, který je větší než velikost Zenerova napětí této diody, a po stisknutí tlačítka Tl₁₂ náboj z kondenzátorů otevře tranzistor T. V kolektorovém obvodu tohoto tranzistoru spíná relé Re a kontaktem re, sepne přidržovací obvod, který zajistí sepnutí relé i po vybití kondenzátorů. Kondenzátory se vybíjejí přes kontakt re₁, diody D_1 až D_3 a rezistor R_2 . Zároveň se sepnutím relé Re se rozsvítí žárovka s nápisem "vstupte" a sepne se kontakt magnetického zámku MZ. Po otevření dveří se rozpojí dveřní kontakt K, a relé odpadne. Zámek je připraven k dalšímu použití.

Použije-li zámek osoba, která nezná jeho kód a stiskne některé z tlačítek Tl_4 až Tl_{10} , nabité kondenzátory se vybijí přes diody D_1 až D_3 a zámek se neotevře. Po stisknutí tlačítka Tl_{12} začne zvonit zvonek Zv, neboť není

Obr. 115. Zámek s kondenzátory

přerušen rozpínací kontakt re₂. Tlačítko Ti₁₂ slouží současně jako spínač zvonku pro návštěvníky, kteří s elektronickým zámkem nehodlají manipulovat.

Jsou-li tlačítka Tl_1 až Tl_3 stisknuta v nesprávném pořadí, nedosáhne sou-čtové napětí na kondenzátorech velikosti potřebné k otevření zámku. Stiskneme-li např. nejprve tlačítko Tl_3 , nabije se kondenzátor C_3 na plné napětí zdroje. Po stisknutí některého z dalších tlačítek se však další kondenzátory již nabíjejí na napětí podstatně menší, neboť napětí kondenzátoru C_3 je stále značné a další kondenzátory se nabíjejí pouze rozdílem mezi napětím zdroje a napětím na C_3 .

Tlačítko Tl₁₁ slouží k otevírání dveří obsluhou zevnitř místnosti. Po jeho stisknutí sepne relé Re a samodržný kontakt zajistí, aby byl zámek v činnosti, dokud nejsou dveře otevřeny (jako v předcházejícím případě). Dioda D₅ chrání tranzistor před napěťovými špičkami vznikajícími na indukčnosti relé po jeho rozpojení. Pro mechanické provedení zámku platí stejné zásady jako pro provedení zámku s tyristory. Kontakty tlačítka Tl₁₂ je vhodné upravit tak, aby nejprve sepnul kontakt v bázi tranzistoru a potom teprve kontakt zvonku. Předejde se tak krátkému zazvonění zvonku při správném otevírání zámku.

Zámek s klopnými obvody

Zámek, jehož schéma je na obr. 116, se skládá ze tří klopných obvodů, pomocného obvodu a zesilovače, jehož úkolem je sepnout elektromagnet zámku, byla-li stisknuta tlačítka zámku ve správném pořadí. První klopný obvod tvoří tranzistory T_1 a T_2 , druhý T_4 a T_5 , třetí T_6 a T_7 . Po zapnutí napájecího napět se nastaví klopné obvody tak, že jsou sepnuty tranzistory T_1 , T_4 a T_6 . Stan se tak působením kondenzátoru C_1 a diod D_1 a D_2 . Napětí na tomto kondenzátoru se pomalu zvětšuje a přes diody jsou jím ovlivněny i následující klopné obvody.

Po stisknutí tlačítka Tl_1 se překlopí první klopný obvod, takže se zvětší napětí na kondenzátoru. Tím je umožněno i překlopení zbývajících dvou klopných obvodů. Stiskneme-li potom tlačítko Tl_2 , překlopí se proudem do báze T_5 druhý klopný obvod. Napětí na kolektoru tranzistoru T_4 se zvětší a tranzistor T_3 je uzavřen. Stisknutím tlačítka Tl_3 překlopíme zbývající klopný obvod — zvětší se napětí na kolektoru T_6 . Toto napětí je přivedeno na bázi tranzistoru T_8 , který je zapojen jako emitorový sledovač. Otevírá se i tranzistor T_9 , spínající proud do elektromagnetu dveřního zámku. Kódem k otevření zámku je tedy číslo 123.

K jiné situaci dojde, stiskneme-li tlačítka v nesprávném pořadí nebo stiskneme-li nesprávné tlačítko. Není-li překlopen první klopný obvod, nemohou se překlopit ani ostatní. Na kolektoru tranzistoru T_1 (jenž je ve vodivém stavu) je napětí blízké nule a přes diody D_1 a D_2 jsou na tuto úroveň napětí připojeny i kolektory tranzistorů T_4 a T_6 . Je-li správně sepnut první klopný obvod, ale potom je stisknuto tlačítko Tl_3 , prochází působením diody D_2 proud sepnutým tranzistorem T_4 , který zabrání překlopení

Obr. 116. Zámek s klopnými obvody

třetího klopného obvodu. Přes pomocný tranzistor T_3 , jehož emitor má nyní menší napětí než báze, se navíc překlápí do počátečního stavu i první klopný obvod.

Je-li stisknuto některé z nesprávných tlačítek Tl_4 až Tl_{10} nebo je-li sepnut dveřní kontakt K_1 , překlopí se také první klopný obvod do původního stavu. Po stisknutí nesprávného tlačítka však zazní zvonek, spínaný paralelním kontaktem tlačítka, a obsluha je upozorněna na nesprávné zacházení se zámkem.

Článek R_1C_1 má časovou konstantu velmi krátkou, takže i při krátkém stisknutí tlačítek reaguje zámek správně. Odpor rezistoru R_{14} je nutné nastavit podle parametrů použitých tranzistorů.

Mechanické provedení je opět podobné jako u zámku s tyristory.

52. OVLÁDÁNÍ DVEŘÍ DOMKU

Již u dveří domku, který hodláte navštívit, se můžete přesvědčit, jak šikovný je jeho majitel. Chcete-li se ohlásit, musíte často využívat vlastních hlasivek až k ochraptění. Obvod zvonku bývá totiž velmi často ve špatném stavu a o případných doplňcích, kterými se budeme v této kapitole zabývat, se často majiteli ani nesní. Schopný amatér ale může realizovat různá žlepšení. Kromě instalace běžného zvonku, dálkově ovládaného zámku a hlasitého telefonu může zabezpečit obsah poštovní schránky elektronickým zámkem, může opatřit jmenovku na dveřích samočinným nočním osvětlením nebo může zajistit osvětlení cestičky k domku na určitou dobu po otevření dveří atd.

Hlídání obsahu poštovní schránky

Ke hlídání lze použít mikrospínač s nástavcem, který umístíme na dno poštovní schránky. Lepší způsob však využívá přerušení světelného paprsku, neboť k sepnutí mikrospínače musí mít zásilka určitou hmotnost a nesmí zůstat vklíněna mezi stěnami schránky.

Zdrojem světla u druhého způsobu může být žárovka nebo světelná dioda (LED). Nevýhodou žárovky je poměrně malá doba života (několik set až

tisíc hodin), zatímco doba života světelných diod se udává ve statisících hodin. Dobu života žárovky lze prodloužit jejím podžhavením, stále však zůstane poruchovým místem celého zařízení. Světelným čidlem je fototranzistor.

Zapojení obvodu se žárovkou je na obr. 117. Žárovka \check{Z}_1 , která je mírně podžhavena, osvětluje fototranzistor T_1 , který je vodivý a uzavírá tranzistor T_2 . Jakmile je paprsek přerušen, tranzistor T_2 se otevře a rozsvítí se signalizační žárovka \check{Z}_2 , umístěná uvnitř domu, nebo se sepne akustický signalizační obvod přes spínací kontakt relé Re. Mechanické uspořádání uvnitř poštovní schránky je patrné z obr. 118. Součástky T_1 , T_2 a R jsou

Obr. 118. Mechanické uspořádání uvnitř poštovní schránky

umístěny na kuprextitové destičce. Všechny části je nutné krýt plechovým krytem, aby se mechanicky nepoškodily. Poštovní schránka musí být chráněna před deštěm. Protože vlivem rozdílných teplot a vlhkosti venkovního prostředí jsou jednotlivé díly vystaveny korozi, je nutné použít těsnění a ochranný lak. K lepšímu směrování světelného paprsku je kryt žárovky doplněn čočkou. Vlákno žárovky je umístěno v malé vzdálenosti za ohniskem této čočky tak, aby světlo bylo soustředěno na optický nástavec fototranzistoru. Vnitřek schránky však musí být ochráněn před okolním světlem, a proto všechny otvory schránky uzavřeme a vnitřek schránky natřeme matovou černí.

Citlivost zařízení závisí na tvaru poštovní schránky a na použitých součástkách. Proto je vhodné nastavit potřebnou citlivost s ohledem na tyto okolnosti při mezních teplotních podmínkách. Citlivost zvětšíme zvětšením napájecího napětí žárovky nebo změnou odporu R. Napájecí zdroj by tedy měl mít možnost regulace napětí.

Jako zdroj pro obvod na obr. 117 lze použít libovolný stejnosměrný zdroj s napětím nastavitelným v rozsahu asi 8 až 10 V. Odebíraný proud je asi 100 mA při použití žárovek \check{Z}_1 a \check{Z}_2 pro 12 V/50 mA.

Zvonkové tlačítko s osvětlením'

Chceme-li přidat ke zvonkovému tlačítku dveří osvětlenou jmenovku,

není nutné vést ke dveřím další drát. Zapojíme-li obvod podle obr. 119,

vystačíme se dvěma vodiči.

V zapojení použijeme běžný zvonkový transformátor, který připojíme ke zvonku přes triak Tc. Spokojíme-li se s menší hlasitostí, stačí použít v zapojení místo triaku tyristor (např. KT 501). Řídicí elektroda těchto součástek je ovládána emitorovým obvodem tranzistoru T₁. Tranzistory T₁ a T₂ jsou napájeny stejnosměrným napětím, které je usměrněno diodou D₁. Obvod zvonku pro střídavý proud s triakem (nebo tyristorem) musí zůstat připojen ke zdroji. Usměrněným proudem je napájena i žárovka Ž. Tato žárovka je podžhavena, neboť při přerušení vlákna žárovky by došlo k poruše obvodu a zvonek by začal trvale zvonit. Do série se žárovkou je zapojeno zvonkové tlačítko Tl, jehož kontakt je v klidu sepnutý a po stisknutí tlačítka se rozpojí.

Obr. 119. Zvonkové tlačítko s osvětlením

Pokud žárovka Ž svítí, prochází diodami D_1 až D_3 proud asi 40 mA. Tento proud způsobí na diodách napěťový úbytek asi 1,4 V. Bází tranzistoru T_2 prochází přes rezistor R_3 proud, takže tranzistor je otevřen. Tranzistor T_1 , který pracuje jako emitorový sledovač, je uzavřen a na jeho emitoru je jen malé napětí, které není schopno přes rezistor R_1 otevřít triak.

Po stisknutí tlačítka Tl napětí na diodách D_2 a D_3 zmizí a tranzistor T_2 se zavře. Na jeho kolektoru se objeví napětí téměř rovné napětí napájecího zdroje a do řídicí elektrody triaku začne procházet proud. Zvonek začne

zvonit.

Aby při případném přerušení vlákna žárovky nezvonil zvonek po celou dobu naší nepřítomnosti, je vhodné obvod zvonku odpojovat. Jednotlivé polovodičové součástky není nutné doplňovat žádnými chladiči.

Třídrátové spojení s dveřmi

Často je pro majitele domku nesnadné propojit vrátka s domkem větším počtem vodičů. Lze však několik přístrojů propojit tak, že použijeme pouze tři vodiče (dva vodiče a ochranný stíněný obal). Tento kabel byl původně použit pouze k připojení zvonku a majitel postupně rozšiřoval jeho využití. Tímto kabelem lze realizovat tyto funkce: ovládání zvonku, dálkové oteví-

Obr. 120. Třídrátové spojení s dveřmi

rání dveří, hlasitý telefon, osvětlení jmenovky na dveřích, samočinné spínání osvětlení cesty po setmění, hlídání správného zavření dveří a hlídání obsahu poštovní schránky. Zapojení je na obr. 120.

Obvod pracuje takto: V základním stavu není na vodiči A žádné napětí. Vodič B je zapojen přes vinutí relé Re_2 (jehož impedance je asi 30 Ω) na napětí +15 V. Na dveřích je upevněn trvalý magnet a v rámu dveří je umístěn kontakt jazýčkového relé re_1 . Kontakt je sepnut pouze tehdy, jsou-li dveře řádně zavřeny. V tomto případě je rozsvícena žárovka \tilde{Z}_1 , která osvět-luje jmenovku na dveřích a fotorezistor umístěný uvnitř poštovní schránky. Světelný paprsek tedy hlídá obsah schránky. Relé Re_2 , které je zapojeno do série s touto žárovkou, však nepřitáhne. Úbytek napětí vznikající na vinutí relé Re_2 však otevírá tranzistor T_3 a tento tranzistor udržuje v nevodivém stavu tranzistor T_4 .

Tlačítko Tl_1 , které je umístěno na dveřích, je zvonkové tlačítko, které po stisknutí zkratuje obvod žárovky \check{Z}_1 a kontakt relé re₁. Tak se připojí napájecí napětí k vinutí relé Re_2 a toto relé přitáhne. Kontakt relé uvede v činnost domovní zvonek nebo gong. Po stisknutí tlačítka Tl_1 zhasne žárovka \check{Z}_1 , ale to není na závadu.

Jsou-li dveře otevřeny, není sepnut dveřní kontakt jazýčkového relé re_1 , průchodem proudu přes vinutí relé Re_2 nevzniká tedy žádný úbytek, tranzistor T_3 je uzavřen, tranzistor T_4 je sepnut a svítí žárovka \mathring{Z}_2 , prosvětlující uvnitř domu nápis "Dveře nejsou zavřeny".

Po otevření dveří se přes diodu D_5 a otevřený tranzistor T_4 nabije kondenzátor C i po stisknutí tlačítka Tl_3 , které je umístěno uvnitř domu. Kondenzátor tvoří spolu s tranzistory T_5 a T_7 časový spínač, který ovládá relé Re_3 , jehož kontakty zapínají osvětlení cestičky k domu. Toto relé zůstane sepnuto po uzavření dveří ještě do té doby, než se kondenzátor vybije proudem procházejícím rezistory R_{11} a R_{12} do báze tranzistoru T_5 , tedy po dobu až několika minut.

Pokud je však fotorezistor R_{18} osvětlen denním světlem, je sepnut tranzistor T_6 , který zkratuje napětí na kolektoru tranzistoru T_5 . Během dne tedy není obvod spínající osvětlení cesty v provozu. Práh sepnutí denním světlem nastavíme zkusmo proměnným rezistorem R_{15} . Dioda D_6 chrání tranzistor T_7 před zničením napěťovou špičkou vznikající na vinutí relé při rozepnutí tranzistoru:

Po sejmutí mikrotelefonu z vidlice (uvnitř domu) sep ne spínač S_2 . Ten připojí napájecí napětí k zesilovači, k jehož vstupu je připojen mikrofon M_2 . Stří davý výstup zesilovače je galvanicky oddělen kondenzátory C_5 a C_1 od stejnosměrných obvodů a střídavý zesílený signál jde do reproduktoru umístěného u vrátek. Současně je také přes rezistor R_{16} , transformátor Tr, ko ntakt tlačítka Tl_2 , vedení A a diody D_1 a D_2 připojen uhlíkový mikrofon M_1 , umí stěný pod reproduktorem, takže je možné oboustranné spojení mezi ob yvate lem domu a návštěvníkem.

Po stisknutí tlačítka $\mathrm{Tl_2}$ se zapojí přes rezistor R_8 a diody $\mathrm{D_3}$ a $\mathrm{D_4}$ elektromagnet dveřního zámku.

Tranzistory T_1 a T_2 tvoří multivibrátor, který se uvede v činnost při přerušení světelného spojení mezi žárovkou Z_1 a fotorezistorem R_{17} , jestliže je nějaká zásilka v poštovní schránce. Také dvířka poštovní schránky jsou opatřena mikrospínačem S_1 , který spíná multivibrátor.

Toto opatření bylo zvoleno proto, že objemnější zásilky (např. noviny) nemusí dosáhnout až ke světelnému paprsku a mohou se ve schránce vzpříčit. Střídavý proud z multivibrátoru je přes oddělovací kondenzátory C_4 a C_6 přiveden k transformátoru sluchátka mikrotelefonu, ze kterého se ozývá tón, upozorňující na to, že poštovní schránka obsahuje zásilku.

53. AUTOMATICKÉ OTEVÍRÁNÍ DVEŘÍ

Automatické otevírání dveří se obvykle používá k otevírání dveří garáže nebo vrat. Může to však být i doplněk elektrického vrátného, je-li elektronika vysílače tak miniaturizována, že tvoří univerzální elektronický klíč.

Vysílač je dvojčinný tranzistorový sinusový oscilátor pracující na kmitočtu kolem 7 kHz. Výstupní proud vytváří rozptylové magnetické pole kolem otevřeného jádra transformátoru, na kterém jsou navinuta obě vinutí, pri-

Obr. 121. Automatické otevírání dveří; a) vysílač, b) přijímač

mární L_1 i sekundární L_2 . Jde o zcela běžné zapojení; při pozorném prohlížení schématu na obr. 121a vidíme, že každý tranzistor je zapojen jako tříbodový oscilátor. Ladicí obvod LC je určen indukčností transformátoru Tra kondenzátorem C_1 zapojeným paralelně k vinutí L_1 . Transformátor Tr je sestaven pouze z plechů I transformátoru EI rozměrů 42×42 (mm). Cívka L_1 má 75 + 25 + 25 + 75 závitů vodiče s průměrem 0,4 mm. Cívka L_2 má 5 + 5 závitů stejného vodiče.

Vysílač musí být umístěn v nekovovém pouzdru. Transformátor musí být umístěn uvnitř pouzdra, a to tak, aby osa cívky, kterou tvoří plechy I, byla při otevírání dveří kolmá na osu přijímací cívky tranzistorového přijímače. Pro otevírání dveří garáže je obvyklé, že vysílací cívka je v nárazníku nebo pod vozem a přijímací cívka je pod dlaždicí. S automobilem musíme najíždět stále na stejné místo a dveře se otevírají jen tehdy, je-li vysílací cívka nad přijímací cívkou.

Přijímací smyčka L_3 (obr. 121b) je zhotovena z měděného izolovaného lanka. Má deset závitů stočených na průměr 500 mm. Může být zapuštěna v malé hloubce v zemi před vjezdem do garáže nebo může být pod betonovou dlaždicí (nemá-li ocelové armování).

Vlastní přijímač může být pochopitelně umístěn mimo přijímací smyčku. Tvoří jej třístupňový tranzistorový zesilovač (121b). První stupeň obsahuje ladicí obvod. Kondenzátorem C_2 jej doladíme na kmitočet vysílače (kolem 7 kHz). Naladěním prvního stupně přibližně na kmitočet vysílače se zabrání tomu, aby přijímač pracoval s jiným, třeba rušivým vstupním signálem. Vazební transformátor přijímače má feritové hrníčkové jádro. Primární cívka, zapojená v kolektoru tranzistoru T_1 , má 420 závitů vodiče s průměrem 0,15 mm a sekundární cívka má 150 závitů stejného vodiče.

Při tomto uspořádání musíme dveře zavírat ručně.

54. ROZSVĚCOVÁNÍ ŽÁROVKY ZVUKEM ZVONKU TELEFONU

Lidé trpící vadou sluchu často nezaslechnou zvonek telefonu. Doma totiž obvykle nepoužívají naslouchadlo, které jim jindy zesiluje zvukové signály. Přístroj, jehož schéma je na obr. 122, umožní přeměnit zvukový signál na optický. Protože není přípustný zásah do obvodu telefonního přístroje, je k vazbě použit pouze zvuk. Místo žárovky lze k přístroji připojit např. elektrickou houkačku nebo sirénu, která nás upozorní na zvonění telefonu při práci v zahradě nebo na odlehlém místě. Nastavíme-li přístroj na větší citlivost, upozorní nás takové zařízení i na jiné zvuky v domě a může pracovat i jako určitý druh poplašného zařízení. V tomto zařízení je použit dynamický mikrofon s malou impedancí.

Pracovní bod tranzistor T_1 se nastaví trimrem R_1 . Jakmile se ozve zvukový signál, napětí generované mikrofonem M na okamžik uzavře tranzistor T_1 . Zvětšené napětí na kolektoru tranzistoru otevře přes diodu D také tranzistor T_2 . Tranzistory T_2 a T_3 tvoří monostabilní klopný obvod, který otevírá tranzistor T_4 po dobu vybití kondenzátoru C_2 přes rezistor R_4 . Tato doba je

asi 1,5 s a odpovídá opakovací době vyzvánění zvonku telefonu. Tranzistor T₄ spíná triak Tc. Pro konstrukci zařízení platí, že musí být celý obvod uzavřen do pevné izolované skříňky, neboť součástky použité v zapojení j sou galvanicky spojeny se sítí včetně napájecího zdroje.

Nevýhodou je, že mikrofon je součástí zařízení a nelze-jej používat odděleně, např. pro magnetofon. Stačí však méně kvalitní mikrofon nebo mikrofon částečně poškozený. Přístroj je umístěn v těsné blízkosti zdroje zvuku. Potřebnou citlivost nastavíme rezistorem R_1 .

Obr. 122. Rozsvěcování žárovky zvukem

55. ZÁZNAMNÍK TELEFONICKÝCH HOVORŮ

Majitelé telefonních přístrojů jsou často nespokojeni s účtem za telefonické hovory. Uskutečněné telefonické hovory můžeme běžně kontrolovat pouze tak, že si hovory zapisujeme. Tento způsob však naráží na potíže u lidí méně důsledných, a protože zúčtovací období telefonických hovorů je dlouhé a není přesně určen jeho začátek ani konec, nemáme obvykle trpělivost tuto kontrolu provádět trvale.

Přípravek, jehož schéma je na obr. 123, zjednoduší způsob zapisování telefonických hovorů. Je však vhodný pouze k záznamu místních hovorů, u nichž je známa cena; meziměstské hovory je nutné registrovat zvlášť.

Protože jakýkoli zásah do elektrických obvodů telefonu není přípustný, je celý přístroj od těchto obvodů galvanicky oddělen.

Na sluchátku telefonního přístroje je upevněn malý permanentní magnet.

Nejvýhodnější je umístit tento magnet na střední část držadla sluchátka a připevnit jej samolepicí páskou nebo tapetou, aby nebyl narušen mechanismus přístroje. V blízkosti magnetu (při zavěšeném sluchátku) je upevněn kontakt jazýčkového relé. Tento kontakt je sepnutý, nachází-li se v magnetickém poli permanentního magnetu. Po zvednutí sluchátka se musí tento kontakt rozpojit a po zavěšení opět spojit.

Sledujeme nyní činnost obvodu podle schématu. V klidovém stavu prochází řídicí elektrodou tyristoru Ty proud asi 1,5 μ A. Tento proud je tak malý, že nestačí k uvedení tyristoru do vodivého stavu a zvonek zapojený do jeho obvodu nemůže zvonit. Po zvednutí sluchátka se rozpojí kontakt jazýčkového relé a kondenzátor C_1 se vybije přes rezistor R_2 . Po opětovném sepnutí kontaktu jazýčkového relé, tj. po zavěšení sluchátka, se kondenzátor C_1 nabije a náboj projde přes rezistor R_3 do řídicí elektrody tyristoru. Tyristor je uveden do vodivého stavu a zvonek začne zvonit. Protože zvonek na stejnosměrný proud obsahuje přerušovač, jehož působením by byl obvod okamžitě přerušen a tyristor by přestal vést proud, je paralelně ke zvonku připojen rezistor R_4 . Proud prochází tyristorem tak dlouho, pokud není stisknuto některé z tlačítek Tl. Tlačítko Tl_2 , označené nápisem "hovor", uvede po stisknutí do činnosti počitadlo hovorů. Pokud se hovor neuskutečnil, stiskneme tlačítko Tl_1 , označené "0", a tím pouze přerušíme činnost zvonku, aniž by byl hovor započítán.

Nemůžeme-li při telefonování dostat volnou linku, tiskneme někdy vidlici přímo rukou. Přitom není sepnut kontakt relé, takže se zvonek nerozezní a není potřeba tisknout žádné z tlačítek. Po uskutečněném hovoru sluchátko zavěsíme.

K napájení zařízení je použita plochá baterie. Celý přístroj s tlačítky je

vestavěn do úzké ploché krabice, připevněné na společném podstavci telefonu (obr. 124).

Celková konstrukce závisí na použitém typu telefonního přístroje. Při konstrukci musíme pamatovat na to, že není přípustný žádný zásah do vlastního telefonního přístroje.

Obr. 124. Pohled na mechanické uspořádání záznamníku telefonických hovorů

56. MĚŘENÍ A REGULACE VÝŠKY HLADINY KAPALINY

Mnohdy potřebujeme měřit nebo doplňovat automaticky řízeným čerpadlem hladinu kapaliny v nádrži, zejména u vyrovnávacích nádrží ústředního topení, v nádržích na naftu, v nádržích naftových kamen, ve studních apod. Pro ty, kteří mají rádi jednoduché konstrukce a raději se vyhnou komplikované elektronice, uvedeme konstrukci kontaktního hladinoměru. Ten je však vhodný pro malé zdvihy hladiny kapaliny (např. v nádržích pro vyrovnání vody v ústředním topení), ale nehodí se k indikaci hladiny v hluboké studni.

Základní sestava je na obr. 125. V nádrži 1 s kapalinou plave plovák 5. Plovákem je dutá plechová vodotěsně uzavřená nádoba nebo kostka bílého pěnového levistenu, který je nesmáčivý, má velkou výtlačnou sílu a osvědčil se např. jako plovák splachovadla na toaletách. Levisten se již nemusí povrchově upravovat. K plováku je dvěma maticemi M5 a podložkami s průměrem 5,2 mm (2 a 3) připevněna zdvihací tyč 4. Tyč má v dolním konci vyříznut závit M5 až do výšky přesahující výšku plováku. Tyč se spolu s plovákem zdvihá při změnách výšky kapaliny v nádrži. Tyč zároveň udržuje plovák tak, aby se na hladině pohyboval pouze vertikálním směrem,

a zabraňuje mu v horizontálním, nekontrolovaném pohybu po hladině. Tyč 4 je vedena v trubici 6, která je ve velké části své délky proříznuta. Ve výřezu je do tyči zavrtán šroub M 2,5, který tvoří zarážku. Pohybuje se v trubici vertikálním směrem. Klesne-li hladina až na jisté minimální množství, sepne přes páku mikrospínač 7 minimální hladiny; zvýší-li se hladina až na maximum, sepne mikrospínač 8 maximální hladiny. Mikrospínače jsou pod izolačním krytem 10. Mechanická úprava mikrospínačů je na obr. 126. Na mikrospínači 12 běžného typu (220 V/2 A) je připevněna otočná

Obr. 125. Mechanická sestava hladinoměru

prodlužovací páka 11. Páka je z mosazného (nebo ocelového) plechu tloušťky 0,5 mm. V díře otvoru 3 páky je závit M3 pro stavěcí šroub M3 × 20 mm se zajišťovací maticí M3. Stavěcí šroub při pohybu páky 11 přímo stiskne tlačítko mikrospínače. Pro lepší vracení páky je na šroubu a tlačítku mikrospínače tlačná pružina 5 s průměrem 3,2 mm, dlouhá asi 10 mm. V montážním otvoru mikrospínače jsou šroubem M3 × 20 mm připevněny dvě bočnice B z mosazného plechu tloušťky 1 mm. Bočnice mají ložiskový otvor 9, v němž drží rozepřený vodicí váleček 7, na kterém je otvory 6 navléknuta páka 11.

Elektrické zapojení je jednoduché (obr. 127). Na obr. 127 je připojení signalizačních žárovek, signalizujících minimální a maximální hladinu. Doléváme-li např. vodu do vyrovnávací nádrže ručně, jistě tento způsob

Obr. 126. Úprava mikrospínače

Obr. 127. Zapojení mikrospínačů pro hlídání minimální a maximální hladiny

stačí. Většinou stačí hlídat pouze minimální hladinu a k žárovce minimální hladiny paralelně připojit akustický indikátor, např. běžný domovní zvonek, který nás na kritické množství vody upozorní. Mikrospínači lze přímo spínat motorek malého čerpadla nebo otevírat elektrický ventil, kterým se voda automaticky doplní.

Na obr. 128 je ještě jednodušší řešení. Máme-li již zavedenu takovou mechanizaci, že se voda automaticky dočerpává, je možné hladinu kapaliny

Obr. 128. Nejjednodušší zapojení hlídače hladiny kapaliny s čerpadlem

udržovat pouze na jedné optimální hladině. K tomu stačí jediný mikrospínač s pákou. Jakmile plovák vystoupí do té výšky, že se mikrospínač pohybem páky sepne, rozpojí se přívod napájení motoru, který doplňoval vodu pomocí čerpadla v nádrži. Jakmile opět hladina klesne a mikrospínač se rozpojí, zapne se motor k novému čerpání vody.

Ačkoli jsou mikrospínače konstruovány na napětí sítě a na poměrně velký spínací proud, nedoporučujeme z bezpečnostních důvodů používat k signalizaci ani pohonu přímo sítové napětí. K signalizaci je možné využít např. bezpečné malé napětí ze zvonkového transformátoru, který je trvale pod napětím a může kromě domovního zvonku napájet i signalizační žárovky. Při ovládání motoru čerpadla pro větší bezpečnost spínáme stykač tohoto motoru malým bezpečným napětím.

Přístroj k hlídání hladiny vody

Tento přístroj slouží k hlídání úrovně hladiny vody v chladiči, avšak vyhoví i v jiných aplikacích. Zapojení je na obr. 129. Je-li sonda ponořena do vody, je proudem procházejícím sondu do báze T_1 udržován tranzistor T_1 ve vodivém stavu. Tranzistory T_2 a T_3 jsou uzavřeny a žárovka nesvítí. Tranzistor T_4 je udržován ve vodivém stavu proudem procházejícím přes žárovku a rezistor R_5 . Po přerušení proudu sondou se uzavírá T_1 a tranzistory T_2 a T_3 se otevírají. Žárovka se rozsvítí a T_4 se zavírá zmenšením napětí na jeho bázi. Po nabití kondenzátoru C_1 se tranzistor T_2 (i T_3) zavírá, žárovka zhasne a po určité době, dané časovou konstantou, kterou vytvářejí rezistory R_2 , R_4 a kondenzátor C_1 , se tranzistor T_2 opět otevírá a celý děj se opakuje.

Tento multivibrátor tedy periodicky rozsvěcuje signalizační žárovku s opakovacím kmitočtem asi 2 Hz.

Kondenzátor C_1 je napěťově namáhán v obou polaritách. Je tedy nutné použít např. kondenzátor MP. Při upevňování sondy je nutné dbát na to,

aby byly zachovány izolační vlastnosti průchodky i při nejvyšší teplotě chladiče. Sondu je nutné zhotovit z nekorodujícího kovu.

Připevníme-li sondu na pryžovou přísavku a místo žárovky použijeme vhodné relé, na jehož kontakt připojíme zvukovou signalizaci, můžeme přístroj použít k hlídání úrovně vody při plnění vany, bazénu apod. Umístíme-li sondu ve studni, můžeme se na dálku přesvědčit, zda hladina vody nepoklesla pod určitou mez.

57. PŘÍMOUKAZUJÍCÍ MĚŘIČE VÝŠKY HLADINY KAPALINY

Na obr. 130 je schéma přímoukazujícího měřiče hladiny kapaliny, vhodného pro různá použití. Měřicí sonda, která je ponořena do měřené kapaliny, využívá změny vlastní kapacity a je bez napětí. Není tedy nebezpečí, že by někdy přeskočila jiskra, takže lze měřit hladinu nafty, benzínu (např. u automobilu Trabant 601, kde není vlastní palivoměr a množství benzínu v nádrži se kontroluje cejchovanou tyčkou) a samozřejmě i vody. Změní-li se rozměry sondy tak, že zůstane přibližně zachována její původní kapacita, je možné měřit hladinu libovolné výšky. Je možné např. použít okraj studně jako zemní část — obal sondy — a jako jádro sondy použít ocelový drát průměru 3 mm nebo 4 mm. Tento "živý" konec je volně ponořen ve studni, ale je dobře mechanicky upevněn.

Přístroj se napájí ze sítě 220 V přes trubičkovou pojistku 0,5 A. Napětí z transformátoru se jednocestně usměrňuje diodou D_1 a kondenzátorem C_1 se filtruje. Dioda D₂ toto napětí stabilizuje na úroveň 5 V až 6 V. Proto se tento přístroj může použít pro měření paliva v nádrži automobilu Trabant 601 bez jakýchkoli úprav, neboť Trabant má akumulátor 6 V. Napájení zajistí akumulátor, a proto síťovou část zařízení nepoužijeme. Měřicí kapacitní sonda ponořená do kapaliny je kovová uzemněná trubka vysoká asi 300 mm, se světlostí 15 mm. Trubka je z obou konců otevřená, aby jí kapalina mohla dobře protékat. Uvnitř trubky je elektroda — ocelové jádro s průměrem 1,2 mm až 1,5 mm, která je jedním vodičem (nejlépe stíněním), dlouhým nejvíce 800 mm, připojena k oscilátoru. Jádro je uvnitř trubky upevněno izolovanými středicími kroužky, jejichž mezikruží je ještě provrtáno, aby kapalina mohla sondou volně protékat. Kapacitní sonda je tedy průchozí souosé vedení. Hladina uvnitř této souosé sondy je stejná jako hladina vně sondy, kterou měříme. Změnou hladiny uvnitř sondy se mění vlastní kapacita, změněnou kapacitou se ovládá kmitočet oscilátoru. Měříme-li hladinu kapaliny, která má větší vodivost, např. průmyslovou vodu, je třeba vnitřní část sondy ponořit do izolačního laku.

Princip měření je jednoduchý. Základem je tříbodový oscilátor s tranzistorem T_1 . Kapacitní sonda je připojena k oscilátoru přes oddělovací transformátor Tr_2 a sekundární vinutí L_2 , kondenzátor C_5 a kapacita sondy tvoří jednoduchý můstek LC. Pracovní zdvih oscilátoru (tedy změna kmitočtu oscilátoru při změně od maximální do minimální hladiny) je podle druhu kapaliny asi 100 Hz až 600 Hz. Upravíme-li rozměry sondy (a tím její ka-

Obr. 130. Elektronický měřič výšky hladiny

Obr. 131. Blokové schéma měření výšky kapaliny

pacitu), je třeba úměrně změnit i kapacitu kondenzátoru C_5 . Integrovaný obvod MAA 245 spolu se dvěma diodami (D_3 a D_4) je zapojen jako měřič kmitočtu, takže výchylka ručky měřidla je úměrná změně kmitočtu. Zařízení obsahuje dva nastavitelné potenciometry P_1 a P_2 . Potenciometrem P_1 nastavujeme na stupnici měřidla minimální výchylku pro námi zvolenou nulovou hladinu kapaliny. Potenciometrem P_2 nastavujeme citlivost indikátoru, takže jím lze na stupnici měřidla nastavit údaj odpovídající maximální hladině.

58. KAPACITNÍ MĚŘENÍ VÝŠKY HLADINY KAPALINY

Na obr. 131 je blokové schéma měření výšky kapaliny. Na rozdíl od ostatních popisovaných zařízení je to poměrně složitý přístroj; má však široké použití a je z hlediska měření relativně nejpřesnější. Celé zařízení se skládá z napájecího zdroje (obr. 132), kapacitní sondy s elektrickou částí sondy (obr. 133), převodníku kmitočet — napětí (obr. 135), stejnosměrného zesilovače a z úrovňových komparátorů (obr. 136). Místo stejnosměrného zesilovače a úrovňových komparátorů lze použít stupňový úrovňový vyhodnocovač (obr. 137), chceme-li výšku hladiny indikovat pouze žárovkou.

Kapacitní sonda

V nádrži s indikovanou výškou kapaliny jsou ponořeny dvě elektrody, tvořící kondenzátor (obr. 133). Výška měřené kapaliny se měří pomocí změny kapacity mezi těmito dvěma elektrodami. Rozměry elektrod neuvádíme, předpokládáme, že si je každý určí sám podle zvoleného tvaru sondy

Obr. 132. Napájecí zdroj

Obr. 133. Kapacitní sonda s elektronickou částí

a podle potřebného rozsahu měření výšky kapaliny. Kapacita a plocha elektrod spolu souvisejí podle vztahu

$$C = \frac{\varepsilon_{\mathbf{r}} \varepsilon_{\mathbf{0}} S}{d}$$

kde C je kapacita [F],

S plocha elektrody sondy [m²],

d vzdálenost mezi elektrodami [m],

 ε_0 permitivita vakua [F/m],

$$\varepsilon_0 = \frac{1}{4\pi \cdot 9 \cdot 10^9} = 8,854 \cdot 10^{-12} \text{ F/m}$$

 $arepsilon_{f r}$ poměrná permitivita.

Poměrná permitivita vzduchu je přibližně 1. Stoupá-li kapalina, mění se výsledná poměrná permitivita ε_r a kapacita kondenzátoru tvořeného dvěma elektrodami se zvětšuje. V kapalině jsou ponořeny dvě elektrody: uzemněná elektroda a elektroda od země izolovaná, která je spojena přímo s krystalem Q₁. Kapacita sondy má být v rozmezí od 30 pF do 60 pF. (Máme na mysli celkovou změnu, složenou ze změny poměrné permitivity ε_r mezi elektrodami a změny celkové kapacity, určenou pouze geometrickým uspořádáním elektrod.) V kovové nádobě stačí pouze jedna elektroda. Je dobře, je-li povrch elektrod izolován, aby kondenzátor tvořený oběma elektrodami neměl žádný svod pro případ, že indikovaná kapalina je vodivá.

Spoj mezi izolovanou elektrodou kondenzátorové sondy a krystalem Q₁ by měl být co nejkratší. Z toho plyne omezení, že elektrická část kapacitní sondy musí být umístěna co nejblíže místu měření. Základem jsou dva stejné krystalem řízené oscilátory. Vyzkoušeli jsme kmitočet 5 MHz, lze však jistě použít i jiné krystaly s jinými kmitočty.

Krystalový oscilátor je tvořen krystalem zapojeným v bázi tranzistoru T_1 (T_2) a oddělovacím stupněm T_3 (T_4). Náhradním schématem krystalu je sériový rezonanční obvod LC. Přidáme-li do série ke krystalu kondenzátor s malou kapacitou, lze vlastní kmitočet krystalu ovlivnit a jeden oscilátor vzhledem k druhému lze rozlaďovat o 300 Hz až 500 Hz. Jeden oscilátor lze dolaďovat a pevně nastavit na potřebný kmitočet trimrem C_{16} , druhý oscilátor se rozlaďuje změnou kapacity kondenzátorové sondy. Tranzistor T₅ je zapojen jako směšovač s potlačením vyšších kmitočtů na výstupu, takže na výstupu sondy je pouze rozdílový kmitočet obou oscilátorů. Ten se změnou kapacity C_{16} nebo C_{15} snažíme nastavit asi na 500 Hz až 1000 Hz. Spojovací kabel mezi sondou a převodníkem kmitočet — napětí může být nestíněný a téměř libovolně dlouhý. Protože se změna kapacity projevuje jako změna kmitočtu, nemohou žádná rušení, která jsou většinou pouze amplitudového rázu, ovlivňovat výsledné měření. K tomu, abychom zabezpečili dostatečnou kmitočtovou stálost obou oscilátorů, je třeba elektrickou část kapacitní sondy (nebo alespoň oba krystaly a tranzistory T_1 a T_2) umístit v prostoru, v němž je zaručena stálá teplota, s odchylkou ±1 °C.

Obr. 135. Převodník kmitočet — napětí

To lze realizovat tak, že je umístíme v jednoduchém kontaktním termostatu, jehož elektrické schéma je na obr. 134.

Základem termostatu je bimetalový rozpínací termostatický kontakt TH62, který se při překročení nastavené teploty rozpojí. Termostat TH62 je určen pro tepelnou ochranu elektrické podušky. Je upraven tak, že je vyjmut z porcelánového pouzdra a přímo připevněn na vyhřívaný plášť. Kontakt nastavíme stavěcím šroubem na teplotu vyšší, než je teplota okolí, nejlépe v rozmezí 40 °C až 50 °C. Jakmile se uvnitř termostatu zvýší teplota, kontakt se rozpojí a tranzistorem přestane procházet proud. V termostatu jsou dva vyhřívací prvky — tranzistor KU 605, který je kolektorem připevněn na plášť termostatu, a vyhřívací rezistor R_3 , navinutý z odporového drátu. Termostatem je malá mosazná krabička, spájená z plechu tlouštky 0.5 mm. Uvnitř je tranzistor a rezistor R_3 s kontaktem termostatu B. Ve vyhřívaném prostoru termostatu je elektrická část kapacitní sondy nebo alespoň oba krystaly a tranzistory T_1 a T_2 . Při správné funkci termostatu má kontakt rozpínat a spínat v intervalu asi 1 min až 5 min se střídou rozepnutí a sepnutí asi 1:1. Vyhřívací schopnost termostatu se mění změnou odporu rezistoru R_3 . Je nezbytné, aby plášť termostatu (mosazný obal) byl od okolního prostředí dokonale tepelně izolován. Tento jednoduchý termostat je schopen zabezpečit teplotu uvnitř vyhřívaného prostoru s přesností ±1 °C, což je pro náš účel vyhovující.

Převodník kmitočet—napětí

Jeho úkolem je přeměnit sinusové napětí na vstupu (výstup směšovače sondy) na stejnosměrné napětí, přičemž změna kmitočtu musí být úměrná změně na výstupu. Funkce je jednoduchá (obr. 135). Na vstupu je tvarovací obvod tvořený tranzistorem T_1 . Dioda D_1 má pouze ochrannou funkci. Monostabilní klopný obvod tvořený tranzistory T_1 a T_3 přemění impulsy z emitoru T_1 na impulsy s konstantní šířkou. Ty se pak zesílí a napěťově stabilizují tranzistorem T_4 a diodou D_2 . Integrátor, tvořený kondenzátorem C_5 , rezistorem R_{14} a diodami D_3 a D_4 , dokáže přeměnit impulsy na stejnosměrné napětí, které se objeví na výstupu celého převodníku. Potřebujeme-li zvětšit citlivost převodníku (nebo lépe řečeno upravit napětí na výstupu), je při zvyšujícím se kmitočtu na vstupu třeba zvětšovat kapacitu C_5 nebo odpor R_{14} .

Stejnosměrný zesilov ač a úrovňové komparátory

Na výstupu převodníku kmitočet — napětí je kladné stejnosměrné napětí. Nulové úrovni kapaliny však neodpovídá nulové napětí, ale jistá napětová úroveň. Ta je určena rozdílem kmitočtů obou krystalových oscilátorů, který není nulový. Při stoupání hladiny kapaliny se rozlaďuje oscilátor, mění se kmitočet, a tím se zvětšuje stejnosměrné napětí na výstupu převodníku kmitočet — napětí. Stejnosměrný zesilovač tvořený integrovaným obvodem IO_1 (obr. 136) se otevře až tehdy, je-li napětí přicházející na vstup 2

větší než napětí na vstupu 3. Je-li trimrem P_1 nastavena stejná napěťová úroveň, jaká odpovídá napěťové úrovni při nulové hladině vody, začne se na výstupu otvoru IO_1 objevovat kladné napětí až tehdy, zvětšuje-li se napětí na vstupu nad tuto napěťovou počáteční úroveň. Proto může být milivoltmetr mV ocejchován přímo ve výšce měřené kapaliny — lze dosáhnout téměř lineární stupnice s počáteční nulovou hladinou kapaliny, odpovídající nule na stupnici měřidla. Nulovou hladinu tedy určuje natočení běžce trimru P_1 .

Maximální rozsah lze měnit

- a) změnou citlivosti měřidla mV, tedy změnou předřadného odporu R_6 ;
- b) změnou zesílení zesilovače IO_1 ; při uvedených odporech je zesílení 1; měníme-li odpor R_5 ve zpětné vazbě, mění se i zesílení; zvětšíme-li odpor dvakrát, zvětší se zesílení dvakrát, naopak zmenšíme-li odpor na polovinu, změní se zesílení na polovinu; kondenzátor C_3 ve zpětné vazbě má vliv na setrvačnost měření;
- c) maximální rozsah lze měnit i změnou citlivosti převodníku kmitočet napětí.

Na výstupu integrovaného obvodu IO₁ je tedy stejnosměrné napětí úměrné výšce kapaliny; při výšce hladiny nula je nulové a při stoupající hladině se zvětšuje.

Další dva integrované zesilovače, IO_2 a IO_3 , pracují jako úrovňové komparátory. Překročí-li hladina nastavenou úroveň, sepne příslušné relé. Zcela úmyslně jsou na schématu oba komparátory zapojeny jinak. Na vstup 2 (tj. na invertující vstup) operačního zesilovače se přivádí napětí, jehož úroveň je rozhodující pro sepnutí nebo rozepnutí relé. Na neinvertující vstup 3 operačního zesilovače se z děliče (tedy běžce trimru P_2 nebo P_3) přivádí porovnávací napětí. Dokud je na vstupu 2 operačního zesilovače napětí menší než na vstupu 3 (u obou napětí je úroveň záporná), je na výstupu 6 operačního zesilovače záporné napětí a kontakty relé Re, jsou rozpojeny. Bude-li však napětí na vstupu 2 větší než napětí na vstupu 3, změní se skokem výstupní napětí na výstupu 6 na kladné, tranzistor se otevře a relé sepne. Operační zesilovače ${\rm IO_2}$ a ${\rm IO_3}$ nemají zapojenu žádnou zápornou zpětnou vazbu a zesílení naprázdno je větší než 5.104, takže (odhadem) k tomu, aby se změnilo napětí na výstupu 6 z nuly na 5 V, stačí změna napětí na vstupu 3 v porovnání se vstupem 2 o 10⁻⁴ V. Kontakty relé tvoří výstupy celé soustavy. Integrovaný obvod IO_3 ovládá relé Re_2 . např. při z ýšení hladiny nad minimální úroveň, obvod IO2 ovládá relé Re1, např. při zvýšení hladiny nad maximální úroveň. Kontakty mohou spínat signalizační žárovky, zvonek nebo motor čerpadla nádrže. Úrovně sepnutí se nastavují tak, že vždy stiskneme příslušné tlačítko. Po jeho stisknutí se odpojí vstupy a vnitřní referenční napětí, dříve přiváděné na vstupu 3, se přivede na měřicí přístroj. Na měřicím přístroji mV pak trimry P₃ a P₂ nastavíme přímo napětí, při němž musí příslušné relé (Re, nebo Re2) sepnout.

Oba zesilovače (IO2 i IO3) mají odlišně zapojenou tzv. hysterezi. Úrov-

ňové komparátory jsou nastaveny tak, aby při určitém napětí sepnuly a při trochu nižším napětí, než je nastavené napětí, se rozpojily. Stoupá-li totiž hladina kapaliny velmi pomalu, nastane okamžik, kdy bez použití hystereze vznikne neurčitý stav. Relé při určité úrovni hladiny sepne, pak se např. drobným zčeřením hladiny kapacita kondenzátorové sondy zmenší a relé se zase rozpojí. Je-li použita hystereze, nemůže tento děj nastat. U integrovaného zesilovače IO_2 je hystereze řešena tak, že z výstupu 6 je zavedena zpětná vazba rezistorem R_{12} zpět na vstup 3. Rozdíl napětí mezi sepnutím a rozpojením na vstupu je tzv. hysterezní napětí $U_{\rm H}$, které lze přibližně stanovit ze vztahu

$$U_{\rm H} \doteq U_{\rm v} \, \frac{R_8}{R_8 + R_{12}}$$

U integrovaného zesilovače IO_3 je k vytvoření hystereze použit kontakt relé re $_{21}$ z výstupu soustavy, jímž se zkratuje malý odpor, takže se zmenší porovnávací napětí přiváděné na vstup 3 při sepnutí relé Re_2 . Velikost hysterezního napětí je přímo úměrná odporu R_{11} .

Stupňový úrovňový vyhodnocovač napětí

Stačí-li vyhodnocovat úroveň hladiny měřené kapaliny po stupních a indikovat ji pouze žárovkami, lze místo stejnosměrného zesilovače s úrovňovými komparátory použít vyhodnocovač podle obr. 137. Jeho vstup se připojí přímo na výstup převodníku kmitočet — napětí. Odpor R_{vst} (naznačený na schématu čárkovaně) nemá být větší než 10 kΩ a je nutný, je-li mezi převodníkem kmitočet — napětí a vstupem stupňového úrovňového vyhodnocovače delší vedení. Žárovky \tilde{Z}_1 až \tilde{Z}_4 určují výšky měřené hladiny. Jednotlivé indikované úrovně určuje dělič napětí, tvořený rezistory R_1 až R_4 spolu s trimrem P₁. Obvod vyhodnocení pracuje takto: Zvětší-li se vstupní napětí na vstupu 3 integrovaného obvodu IO₄ tak, že bude větší než napětí na vstupu 2, změní se původně záporné napětí na výstupu integrovaného obvodu na kladné, sepne tranzistor T_4 a rezistor R_{24} i tyristor Ty_4 a jím se připojí a rozsvítí žárovka \mathbf{Z}_4 . To může např. znamenat, že kapalina dosáhla minimální výšky. Stoupá-li kapalina dále a přesáhne-li napětí na vstupu 3 integrovaného obvodu IO₃ úroveň danou děličem určujícím napětí na vstupu 2, sepne analogicky tyristor Ty_3 a svítí pouze žárovka Z_3 , protože žárovka Z_4 je tyristorem Ty₃ zkratována. Vždy tedy svítí pouze jedna žárovka a označuje okamžitou výšku indikované hladiny. Při zvyšování hladiny se postupně rozsvěcuje libovolný počet žárovek. Stupňový vyhodnocovač může mít mnohem více stupňů s příslušným počtem žárovek. Všechny zesilovače mají zavedenou hysterezi (byla popsána dříve, u popisu funkce úrovňových komparátorů).

Zařízení tak, jak jsme ho popsali, je velmi univerzální. Lze ho použít např. pro měření sypkých materiálů a jinde. Pro každý materiál s rozdílnou poměrnou permitivitou ε_r je však nutné upravit některé díly (např. konden-

zátorovou sondu), nastavit správné úrovně napětí na výstupech apod. Pro ilustraci uvádíme poměrné permitivity ε_r některých běžných materiálů: voda 80, olej 2 až 3, nafta a petrolej 2,3, křemenný písek 3,7 až 4,5 atd.

59. ELEKTRONICKÉ ODPOJOVÁNÍ ČERPADLA

Aby se zabránilo chodu čerpadla naprázdno (při poklesu hladiny vody pod úroveň sacího koše), lze použít zapojení podle obr. 138. Čidlem je termistor nebo tranzistor, který se trvale ohřívá průchodem elektrického prou-

Obr. 137. Stupňový úrovňový vyhodnocovač

du. Obklopuje-li voda ochranný obal, v němž je čidlo umístěno, odvádí se teplo a teplota termistoru nebo tranzistoru je jiná, než když čidlo obklopuje vzduch. Změna teploty vyvolá změnu odporu čidla a na tuto změnu reaguje relé spínající čerpadlo.

Obr. 138. Elektronické odpojování čerpadla

Předností tohoto zapojení je, že lze čidlo hermeticky uzavřít do ochranného obalu nebo je zalít i s konci přívodů do plastu, a dlouhodobě tak zabránit jeho korozi. Činnost přístroje nezávisí na způsobu upevnění (na rozdíl od kapacitních sond) a nevyužívá elektrické vodivosti tekutiny, takže přístroj lze použít i pro hlídání hladiny jiných tekutých látek. Podmínkou je, že tyto tekutiny musí být chladnější než ohřívané čidlo. Použití germaniového tranzistoru je omezeno teplotou asi 25 °C.

Nevýhodou přístroje je určité zpoždění při odpojení čerpadla, nebot trvá určitou dobu, než se vynořený termistor nebo tranzistor ohřeje na teplotu, při níž přístroj reaguje. Aby se zvětšila citlivost a aby tato doba byla co nejkratší, je použit operační zesilovač. Při konstrukci je nutné dbát, aby

Obr. 139. Upevnění tranzistoru v sondě pro odpojování čerpadla

tekutina byla v těsném tepelném spojení s přechodem tranzistoru nebo s plochou termistoru. Tloušíka ochranného krytu tedy musí být co nejmenší. Zpoždění potom nepřesáhne několik sekund. Upevnění tranzistoru v sondě je patrné z obr. 139.

Integrovaný obvod MAA 502 tvoří s rezistory R_3 , R_6 , R_7 , R_8 , R_9 a R_{10} Schmittův klopný obvod, jehož bod sepnutí lze nastavit rezistorem R_8 . Obvod tranzistoru T_2 s rezistory R_4 a R_5 zastaví čerpadlo, je-li přerušeno vedení připojující teplotní čidlo. Tranzistor T_3 spíná relé Re, jehož kontakty ovládají čerpadlo. Relé je trvale sepnuté a odpadá pouze tehdy, vynoří-li se tepelné čidlo z kapaliny. Při poruše v napájecím obvodu nebo při selhání relé nehrozí nebezpečí zničení čerpadla.

VII. Prostředky automatizace v domácnosti

Velký zájem o elektroniku se vysvětluje zejména tím, že kromě jistého druhu zábavy a poučení je možné neustále vymýšlet nekonečné množství různých variant přístrojů a pomůcek. Kouzlo těchto přístrojů spočívá v tom, že jsme je sami navrhli a sami je také vyrobili. Navíc je to mnohdy unikát, který nelze koupit.

Do bytu a do domácnosti je zapotřebí mnoho různých pomůcek a přístrojů — časové spínače do fotolaboratoře, vypínače se zpožděným rozepnutím, pro hudebníky elektronický metronom. Velmi populární jsou úpravy zvonků u vchodu na přístroje, které hrají melodii. Automatické vypínání větráku na toaletě šetří elektrickou energii a zaručuje, že větrák nezapomeneme vypnout.

60. ČASOVÝ SPÍNAČ

Pro fotolaboratoř k časovému spínání zvětšovacího přístroje nebo pro jiné účely lze použít časový spínač s časy nastavitelnými po skocích. Časový spínač je univerzální, lze ho použít např. i ke zpožděnému vypínání světel, k zpožděnému vypínání větráku na toaletě apod. V jednodušších, nenáročných případech je možné vyřadit oba přepínače (Př₁ a Př₂) a do bodů A a B připojit potenciometr P₁, kterým lze spínaný čas nastavovat plynule.

Funkce přístroje podle obr. 140 je jednoduchá. Usměrněné napětí (diody D_1 až D_4) se filtruje kondenzátorem C_1 a stabilizuje diodou D_5 . Pracovní výstupní kontakty relé Re jsou znázorněny na obr. 140 v klidu (relé je bez proudu). Stiskneme-li tlačítko Tl, relé Re sepne. Kondenzátor C_2 se začne vybíjet do báze tranzistoru T_1 . Dokud má kondenzátor C_2 nějaký náboj, tranzistor vede a relé Re je sepnuto. Jakmile se kondenzátor C_2 vybije, relé Re odpadne a pracovní kontakty se opět vracejí do klidové polohy. K jemnému nastavování časů se používá dvousegmentový přepínač Př₁. Je-li přepínač Př₂ v poloze A, nastavujeme pomocí přepínače Př₁ časy do 10 s. Je-li přepínač Př₂ v poloze B, nastavujeme přepínačem Př₁ časy do 60 s. Zvětšením C_2 lze tyto časy ještě asi dvakrát nebo až třikrát prodloužit.

Pro kontrolu sepnutého stavu lze přes některé volné kontakty relé Re spínat ještě kontrolní žárovky, které signalizují stav sepnutí nebo rozpojení relé, a tím chod celého přístroje.

Obr. 140. Časový spínač

61. JEDNODUCHÝ ČASOVÝ SPÍNAČ

Někdy potřebujeme časovač, který zpožděně vypne světlo např. na dvoře po našem odchodu nebo v garáži po zavření dveří garáže atd. Časovač je vhodný i do fotolaboratoře. Jeho základní předností je, že nepotřebujeme žádný sítový transformátor. Amatéři z vlastní zkušenosti vědí, jak velká je to přednost. Především se značně zmenší rozměry celého zařízení, takže ho lze např. vestavět do krabice ve zdi. Je třeba si však uvědomit, že pracujeme se sítovým napájením, takže celý časovač musí být uzavřen v krabici s dobrou izolací, aby se obsluha nemohla dotknout různých částí přístroje. Při oživování je třeba mít tuto skutečnost neustále na zřeteli a postupovat rozvážně, opatrně a používat izolované nářadí, nepájet v zařízení, je-li pod napětím, apod.

Obr. 141. Jednoduchý časový spínač (není nakreslen spoj s tlačítkem mezi žárovkou Ž a kontaktem re₁)

V klidu je relé Re rozpojeno a žárovka Ž nesvítí (obr. 141). Jakmile stiskneme tlačítko, rozsvítí se žárovka a sepne relé přes rezistory R_7 a R_5 . Žárovka i relé jsou pod proudem i v okamžiku, když tlačítko uvolníme, neboť to se zkratuje pracovním kontaktem re $_1$ relé Re. Stejnosměrným napětím z kondenzátoru C_2 se začne přes potenciometr P_1 nabíjet kondenzátor C_3 . Jakmile se napětí na kondenzátoru C_3 zvětší na úroveň napětí na emitoru tranzistoru T_1 , sepne tranzistor T_1 a současně sepne i tranzistor T_3 , neboť oba jsou zapojeny v kaskádě (zapojení se vyznačuje velkým zesílením a zároveň velkým vstupním odporem). Tranzistory zkratují relé Re, to odpadne, tím se dosáhne původního stavu a žárovka Ž zhasne. Potenciometrem P_1 lze nastavit časy od 1 s do 160 s. Chceme-li přístroj sestrojit pro delší časy, je možné ještě zvětšit kapacitu kondenzátoru C_3 .

Záleží-li na přesném nastavení času, doporučujeme místo rezistoru R_5

v emitoru tranzistoru T₁ zapojit stabilizační diodu KZZ 75.

62. JINÝ TYP ČASOVÉHO SPÍNAČE

Pro spínání elektrického spotřebiče (např. žárovky) na dobu od zlomku sekundy až do několika hodin lze použít zapojení podle obr. 142. Tlačítkový spínač je v základní poloze 2. Kondenzátor C se nabíjí na napětí stabilizační diody D_1 a přes rezistor R_1 je otevřen tranzistor T_1 . Tranzistor T_2 je uzavřen, neboť do jeho báze neprochází přes diodu D_2 žádný proud. Také řídicí elektrodou triaku neprochází žádný proud a spotřebič je elektricky odpojen od síťového napětí. Po přepnutí tlačítkového spínače do polohy 1 se tranzistor T_1 zavře napětím na kondenzátoru C. Rezistorem 10k přes diodu D_2 prochází do báze tranzistoru T_2 proud a emitorovým proudem tohoto tranzistoru se ovládá řídicí proud pro triak T_2 . Spotřebičem prochází střídavý proud ze sítě.

Obr. 142. Jiný ty časového spínače

Obvod T_1 a T_2 se chová jako klopný obvod, neboť sepne-li tranzistor T_2 , náboj z kondenzátoru C pomáhá zavřít tranzistor T_1 .

Kondenzátor C se začíná nabíjet přes rezistor R_1 a zvětší-li se napětí na elektrodě G tranzistoru T_1 na určitou velikost, potřebnou k otevření tohoto tranzistoru, zmenší se napětí na kolektoru a přes diodu D_2 přestane procházet proud do báze tranzistoru T_2 ; tranzistor se uzavře a vazbou přes kondenzátor C se rychle překlopí obvod do původního stavu. Řídicí elektrodou triaku nebude procházet proud a spotřebič se odpojí od sítě.

Doba překlopení je úměrná časové konstantě R_1C .

Svodový odpor kondenzátoru C musí být mnohonásobně větší než odpor R_1 . Je třeba, aby tento kondenzátor byl např. polystyrénový. Elektrodu G tranzistoru T_1 je třeba upevnit tak, aby svodový odpor byl mnohokrát větší, než je odpor R_1 . Při správné konstrukci lze volit odpor R_1 řádově až $10^{12} \Omega$.

63. VYPÍNAČ SE ZPOŽDĚNÝM ROZEPNUTÍM

Velice často nastává situace, že opouštíme byt (domek, chodbu, garáž atd.) potmě, protože jsme před odchodem vypnuli hlavní vypínače. Vhodné by bylo mít automat, který vypne až za určitou dobu. Podobnou funkci mají i tzv. schodišťové automaty - tlačítkem zapneme na schodišti světlo a po nastaveném čase světlo samo shasne. Schodišťové automaty jsou založeny na různých principech a vyrábějí se mnoho let. Vyráběly se např. elektromagnety, které do sebe vtahovaly kotvu, jejíž pohyb byl silně brzděn. Doba spínání byla dána dobou, po kterou se kotva elektromagnetu vtahovala do magnetického pole cívky. V určité poloze kotvy sepnul nebo rozepnul rtutový spínač, který přímo ovládal světla na schodišti. Tyto elektromagnetické schodišťové automaty byly značně poruchové a nahrazují se daleko spolehlivějšími automaty s hodinovým strojkem a malým elektromotorem. U nich lze snadno nastavit daleko větší rozsah spínaných a rozepínaných časů. Také jejich spolehlivost je daleko větší. Radioamatérům jsou známy různé konstrukce elektronických tranzistorových časovačů. U nich platí, že dobu do asi 120 s lze nastavovat změnou časové konstanty RC v bázi regulačního tranzistoru. Pro delší časy je třeba použít tranzistory MOS s velkým vstupním odporem.

Popisovaný schodišťový automat se v porovnání se všemi popisovanými a dříve známými konstrukcemi vyznačuje mechanickou jednoduchostí. To je výhodné zejména pro radioamatéry, kteří se rádi vyhýbají složitým mechanickým konstrukcím. Demnívéme se, že bude-li pokračovat celosvětové zlevňování elektronických součástek, zejména polovodičových, nahradí takovéto konstrukce schodišťových automatů nyní používané schodišťové automaty, které jsou konstruovány z velké části na mechanických principech. Nevýhodou automatu na obr. 143 je to, že nelze jednoduše regulovat čas rozepnutí. Funkce tohoto automatu je jednoduchá. Při zapnutí spínače S se přes rezistor R_1 dostane kladné usměrněné napětí na řídicí elektrodu tyristoru, takže tyristor je trvale sepnut. Usměrňovací můstek z diod D_2 až D_5 má tento tyristor ve své stejnosměrné větvi, takže síťový obvod je uzavřen. Určité ztráty vznikají pouze úbytkem napětí na usměrňovacích

diodách a na tyristoru Ty. Kondenzátor C_1 se přes rezistor R_2 vybije. Jakmile spínač vypneme, zůstane tyristor ještě sepnut, dokud se kondenzátor C_1 nenabije přes rezistor R_1 na špičkové napětí sítě. Jakmile tyristor nemá na své řídicí elektrodě kladné napětí, rozepne se. Neprochází jím žádný proud, a tím neprochází žádný proud ani diodami D_2 až D_5 . Sítový obvod je přerušen, ztrátový svodový proud je minimální, podle jakosti diod a tyristoru (nemá přesáhnout 10 mA). Podle hodnot součástek (zejména C_1 a R_1) na obr. 143 je doba rozepnutí asi 40 s až 45 s. Chceme-li tuto dobu upravit, neměníme velikost odporu R_1 , ale velikost kapacity kondenzátoru C_1 . Při síťovém napětí 220 V použijeme kondenzátor C_1 na napětí 450 V. Diody D₂ až D₅ a tyristor Ty vybíráme podle velikosti napětí zátěže, tj. podle potřebného příkonu žárovek, které chceme spínat. Pro síťové napětí přicházejí v úvahu tyto typy součástek: D_1 — KA 504, D_2 až D_5 — KY 704 a tyristor — KT 705. Při tomto osazení polovodičovými součástkami může být příkon zátěže (např. žárovky Ž) až 200 W. Při větším příkonu zátěže musíme použít diody D_2 až D_5 a tyristory určené pro větší proudy. Typ diody D_1 zůstává. Doba, po kterou zůstane tyristor sepnutý, nezávisí na velikosti zátěže. Při větší zátěži je ale třeba polovodičové součástky umístit na příslušně velké chladiče. Rozměry zařízení se tím zvětší. Vypínače se zpožděným vypínáním můžeme použít i jako klasický schodišťový automat (ovšem doba rozepnutí závisí na nabití kondenzátoru C_1). Nahradíme pouze spínač S tlačítkem. Vybíjecí doba kondenzátoru C_1 přes rezistor R_1 je krátká. Nemá-li tlačítko přechodový odpor, je doba stisknutí již vždy dostatečně dlouhá a na rozpínací čas nemá podstatný vliv.

64. ZPOŽDĚNÉ VYPÍNÁNÍ VENTILÁTORU

V novostavbách, v nichž se k větrání koupelen a WC používá místo tradičního světlíku vzduchový kanál s ventilátorem, je výhodné spojit funkci běžného světelného spínače se spínačem pro ventilátor. Přitom je vhodné ponechat ventilátor ve funkci ještě několik minut po zhasnutí světla. K tomuto účelu lze použít různé časové spínače s hodinovým strojkem, popř. elektronické časové spínače, které jsou popsány dále. Většinou však

vystačíme s jednoduchým řešením, jehož schéma je na obr. 144. Toto zapo-

jení je neobyčejně spolehlivé.

Funkci časového spínače zde přebírá tepelné relé. Funkce tepelného relé je založena na kontaktu vyrobeném z dvojkovu. Nejvhodnější je použít tepelné relé s kompenzací okolní teploty. Vnější teplota může totiž značně ovlivnit spolehlivost obvodu. Rezistorem R_1 se zahřívá dvojkov a chceme-li dosáhnout delších časů, je nutné volit odpor tohoto rezistoru tak, aby bylo ohřívání pozvolné. Kontakt se však musí spolehlivě rozpojit v rozsahu možných teplot okolního vzduchu.

Obr. 145. Rozpínací kontakt s dvojkovem;

a) bez kompenzace okolní teploty,

b) s kompenzací okolní teploty

Při použití nekompenzovaného relé (obr. 145a) bylo při běžné teplotě okolí (20 °C) sice dosaženo rozpínacího času asi 4 minuty, avšak při poklesu teploty na 10 °C (v zimě) se kontakt nerozpojil vůbec. U kompenzovaného tepelného relé (obr. 145b) zůstává tlak mezi kontakty v širokém rozmezí okolních teplot stálý a nastavený čas 4 minuty při 20 °C se změnil při stejném snížení teploty jako v předcházejícím případě na 5 minut.

Po sepnutí sítového spínače S se rozsvítí žárovka Ž a současně přitáhne kotva relé Re. Kontakty relé spínají ventilátor. Rezistory R_1 a R_2 neprochází zatím žádný proud, neboť jsou zkratovány spínačem S. Po rozpojení tohoto spínače prochází rezistory R_1 a R_2 proud, který stačí k tomu, aby kotva relé zůstala i nadále přitažena. Rezistor R_1 však začne ohřívat dvojkov tepelného relé. Po rozpojení tepelného relé odpadá i kotva relé Re a ventilátor se odpojí. Odpory rezistorů R_1 a R_2 je nutné určit experimentálně. Rezistor R_1 ohřívá dvojkov. Tepelná vazba je realizována tak, že je rezistor ovinut slídou a drátem je připevněn k dvojkovu (obr. 145b). Aby byla zaručena spolehlivost, je nutné použít drátové rezistory s dobrým smaltovaným nebo tmeleným povrchem a s větším jmenovitým příkonem, než jaký naměříme při skutečném provozu.

Nejdříve zjistíme výkon (potřebný ke spolehlivému rozpojení tepelného relé), který se musí ztrácet na rezistoru R_1 při požadované době rozpojení. Tento výkon označíme P_{R_1} . Výkon zjistíme tak, že připevníme k dvojkovu zkušební rezistor a regulačním transformátorem měníme napětí na tomto rezistoru tak dlouho, až dosáhneme žádaného jevu. V konečném zapojení je nutné použít rezistor se stejnými vnějšími rozměry, jako měl zkušební rezistor.

Potom zjistíme největší odpor, který při zařazení do série s relé Re a paralelně zapojenou žárovkou Z spolehlivě udrží přitaženou kotvu relé. Tento odpor označíme R a napětí na tomto odporu označíme U. Přitom musíme uvažovat nejnižší napětí v síti a určitou rezervu. Protože je zařízení galvanicky spojeno se sítí, je nutné dodržovat příslušné zásady.

$$R_{1} = \frac{U^{2}}{P_{R_{1}}}$$
 $R_{2} = \frac{R_{1}R}{R_{1} - R}$

65. VENTILÁTOR SE SAMOČINNÝM SPÍNÁNÍM

Na obr. 146 je schéma zapojení přístroje, který samočinně spíná motor ventilátoru s topným tělesem, poklesne-li teplota místnosti pod stanovenou úroveň. Termistor R_1 , který je umístěn tak, aby jeho teplota odpovídala teplotě okolí, tvoří část můstku R_1 , R_2 , R_3 , R_5 , R_6 . Při poklesu teploty okolí pod určitou mez nastavenou potenciometrem R_2 sepne tranzistor T_1 a začne se nabíjet kondenzátor C_1 . Bude-li napětí na kondenzátoru větší než napětí na děliči R_7 , R_8 , otevřou se tranzistory T_2 a T_3 a tyristor T_3 sepne. Po jeho sepnutí bude stabilizační diodou D_1 procházet proud a přestane se nabíjet kondenzátor C_1 . Během následující poloviny periody se děj opakuje. Pokud

Obr. 146. Ventilátor se samočinným spínáním

je použit ventilátor, u něhož nelze regulovat otáčky motoru tímto způsobem (asynchronní a synchronní motor), lze k regulátoru zapojit pouze topné těleso a motorek nechat běžet trvale.

66. ELEKTRONICKÉ ŘÍZENÍ TEPLOTY S PŘEDVOLBOU RŮZNÝCH TEPLOT

Zařízení se napájí napětím 20 V ± 10 %, maximální regulovaná teplota je 100 °C, přípustná teplota okolí je 0 až 70 °C. Zapojcní na obr. 147 se používá např. při regulaci teploty vody v automatických pračkách, v chemických a laboratorních provozech atd. Rezistory R_1 (nebo R_2 až R_4) spolu s termistorem a rezistory R_7 , R_8 tvoří větve můstku, který je napájen napě-

Obr. 147. Řízení teploty s předvolbou

tím 20 V. Vstupy zesilovače jsou zapojeny v úhlopříčce můstku. Kontakty relé Re spínají vyhřívací těleso. Teplotu, při níž chceme, aby relé přerušilo přívod k topnému tělesu, předvolíme přepnutím přepínače tak, že do můstku zařadíme některý z rezistorů R_1 až R_4 . Jemně lze teplotu volit změnou odporu trimru R_8 . Termistor je umístěn ve vytápěném prostoru. Je-li termistor studený, je můstek rozvážen, na výstupu zesilovače je záporné napětí, tranzistor je otevřen a relé je sepnuto. Ohříváním se odpor termistoru zmenšuje, čímž se zvětšuje napětí na neinvertujícím vstupu 3 zesilovače. Zvětší-li se napětí na vstupu 3 nad velikost kladného napětí na invertujícím vstupu 2, zesilovač změní výstupní napětí na výstupu 6 ze záporného na kladné. Tranzistor T se zavře a relé Re se rozepne. Aby byl okamžik překlopení co nejkratší, je zavedena kladná zpětná vazba z výstupu přes rezistor R_6 na neinvertující vstup. Tranzistor se tedy nemůže otevřít jen částečně a relé přitahuje a odpadá vždy prudce. Tato zpětná vazba způsobuje také hysterezi v nastavení teploty. Relé odpadne při jiné teplotě než při-

táhlo, takže je-li regulovaná teplota v blízkosti meze překročení, nemůže nastat neurčitý stav, při němž by relé spínající topný proud kmitalo. Velikost této teplotní hystereze je určena odporem R_6 (popř. i odporem R_5). Zapojení je můstkové, a proto přesnost nastavení teploty nezávisí příliš na napájecím napětí. Termistor Siemens K 274 má maximální dovolenou teplotu ohřevu $100~^{\circ}$ C, maximální elektrickou zátěž $600~^{\circ}$ C mw a jmenovitý odpor $1,25~^{\circ}$ k Ω při teplotě $60~^{\circ}$ C.

67. REGULÁTOR TEPLOTY

K samočinnému udržování zvolené teploty je určen obvod na obr. 148. Maximální spínaný výkon topných těles je 1200 W. Tělesa jsou spínána triakem a obvod je řešen tak, aby (pro minimální rušení) byla tato tělesa připojována k síti v okamžiku, kdy síťové napětí prochází nulou.

Na stabilizační diodě D_1 vzniká průchodem střídavého proudu napětí obdélníkového průběhu, jehož hrany leží v oblasti, kde je sítové napětí nulové. Diodou D_2 se napětí ze stabilizační diody usměrňuje a filtruje se kondenzátorem C_1 (pro stejnoměrné napájení obvodu). Napětí obdélníkového průběhu se současně přivádí na bázi tranzistoru T_3 . Z kolektoru tohoto tranzistoru se zesílené napětí přivádí přes derivační členy k bázím komplementárních tranzistorů T_1 a T_2 . Tyto tranzistory dodávají do obvodu řídicí elektrody triaku T_2 0 proudové impulsy. Tyto impulsy stačí na začátku každé poloviny periody sepnout triak a ten připojí topná tělesa až do konce poloviny periody k sítovému napětí.

Báze tranzistoru T_3 je však připojena ještě k diferenciálnímu zesilovači, který se skládá z obvodu tranzistorů, T_4 a T_5 , a v jehož jedné větvi je zapojen

Obr. 148. Regulátor teploty

termistor. Sníží-li se teplota termistoru, jehož teplotní součinitel je záporný, zvětší se napětí na bázi tranzistoru T_5 . Tento tranzistor se otvírá a na společném emitorovém rezistoru vznikne úbytek napětí, který zavře tranzistor T_4 . Kondenzátor s kapacitou 20 μF se vybije a impulsy vznikající na diodě D_1 otevírají přes rezistor s odporem 22 $k\Omega$ tranzistor T_3 . Triak je tedy spínán přes tranzistory T_1 a T_2 .

Zvýší-li se teplota termistoru nad určitou mez, tranzistor T_5 se zavře a tranzistor T_4 se otevře. Tímto tranzistorem je potom trvale otevřen tranzistor T_3 a impulsy ze stabilizační diody se neuplatní. Triak pak odpojí topná

tělesa od sítě.

Potřebná teplota se nastavuje potenciometrem P. Termistor musí být umístěn v blízkosti topných těles, aby byla reakce na zvýšení teploty rychlá a aby se dosáhlo dobré teplotní stability.

Odpor termistoru závisí na požadovaném rozsahu teplot. Správná oblast

regulace se nastaví paralelním rezistorem R_p .

68. ZVONEK S MELODIÍ

Tento zvonek je při stisknutí tlačítka schopen zahrát jednu nebo několik melodií. Z hlediska zapojení je to vlastně jednoduchý hudební nástroj, jehož jednotlivé tóny se postupně přepínají mechanickým přepínačem. Přepínač je poháněn malým elektrickým motorkem. Zapojení je na obr. 149. Tónový

Obr. 149. Zvonek s melodií

generátor (tranzistory T_1 a T_2) je zapojen jako nesymetrický multivibrátor.

Napětí je stabilizováno diodou D_1 . Střídavý signál přibližně pilového průběhu je zesílen ve dvoustupňovém zesilovači s tranzistory T_3 až T_5 . Po stisknutí tlačítka Tl se rozeběhne motorek a sepne kontakt K_1 prostřednictvím vačky upevněné na hřídeli motorku. Po uvolnění tlačítka se motorek zastaví (kontakt K_1 se rozpojí). Běžec K_2 postupně spíná jednotlivé body kontaktního pole a generátor sleduje jednotlivé tóny melodie, určené rezistory R_{12} a R_{21} .

Ke zhotovení kontaktního pole lze použít telefonní krokový volič, který má již vestavěn přerušovací kontakt. K pohonu voliče lze využít i vlastní krokovací mechanismus, avšak je třeba zhotovit zdroj impulsů pro ovládání jeho magnetu. Jednotlivá patra kontaktního pole lze využít k "nahrání" různých melodií a pomocí relé lze přepínat jednotlivé běžce. Několik tlačítek pak rozliší vlastní melodii.

69. ELEKTRONICKÝ METRONOM

Elektronický metronom má tyto technické parametry: napájení 9 V, odběr proudu 1,5 mA až 7 mA, kmitočet 40 až 220 kmitů za minutu. Je jednou ze základních pomůcek hudebníků. Zajímavé řešení je na obr. 150. Základem je astabilní multivibrátor, tvořený tranzistory T_1 až T_3 . Na jeho výstupu (tj. na kondenzátoru C_1) jsou impulsy obdélníkového tvaru, jimiž se spíná tranzistor T_4 , který má v kolektoru reproduktor s impedancí 8 Ω . Proudové impulsy do reproduktoru vytvářejí akustické rázy.

Po zapnutí se tranzistor T_1 otevře kladným napětím do báze přes rezistory R_4 , R_8 a R_7 . Otevřený tranzistor T_1 propustí záporné napětí na rezistory R_2 a R_1 . Tranzistor T_2 se otevře až později, nejprve se musí vybít kondenzátor C_2 , který bázi tranzistoru T_2 blokuje kladným napětím. Časovou konstantu vybíjení kondenzátoru C_2 , a tím i zpožděné otevření tranzistoru T_2 řídíme změnou polohy potenciometru R_2 . Potenciometrem R_2 tak regulujeme kmitočet celého metronomu. Otevřením tranzistoru T_2 se dostane kladné

Obr. 150. Elektronický metronom

napětí přes rezistor R_6 na bázi tranzistoru T_3 , ten se otevře, zkratuje bázi tranzistoru T_1 proti zápornému pólu napájecího napětí, a tím se tranzistor T_1 zavře. Děj se cyklicky opakuje. Časová konstanta C_1R_9 musí být tak velká, aby se impulsy obdélníkového tvaru přenesly až na bázi koncového stupně, tvořeného tranzistorem T_4 .

70. PŘIPOJENÍ ZVONKU GONG

Elektrický zvonek GONG nahrazuje běžně používaný dveřní elektrický zvonek. Jeho zvuk je příjemný, a proto se stal jakousi módou. Výrobce (dříve družstvo Mechanika Praha, nyní dovoz z NDR) doporučuje používat k napájení monočlánkovou baterii s napětím 6 V. Druhou možností je napájení z běžného zvonkového transformátoru. Zvonkový transformátor je ovšem měkký zdroj, a úder na gong je proto slabý. Zvuk gongu není dobře slyšet, zejména, je-li gong umístěn (jak je obvyklé) u dveří v předsíni.

Existuje poměrně jednoduché řešení, které činnost gongu napájeného ze zvonkového transformátoru zlepší (obr. 151). Úprava spočívá v přidání zdvojovače napětí. Kondenzátory se nabijí na špičkové napětí zvonkového transformátoru, a to kondenzátor C_1 přes diodu D_1 a kondenzátor C_2 přes diodu D_2 . Protože jsou oba kondenzátory zapojeny v sérii, rovná se výsledné napětí U_v dvojnásobku špičkového napětí zvonkového transformátoru. Po stisknutí zvonkového tlačítka se oba kondenzátory rychle vybijí do cívky elektromagnetu gongu. Intenzita zvuku se velmi podstatně zvětší, aniž by utrpěla jeho kvalita. Zdvojovač je trvale připojen na výstup zvonkového transformátoru a není-li stisknuto zvonkové tlačítko, neodebírá téměř žádný proud (pouze svodové proudy oběma kondenzátory). Podmínkou funkce tedy je, aby zvonkový transformátor byl trvale připojen na síť, což je obvyklé.

Zdvojovač lze umístit hned u domovního zvonkového transformátoru, vejde se však pohodlně do krabice samotného zvonku GONG, do místa určeného pro baterii (pak ale musíme natáhnout nové dráty k tlačítku).

Existují i jiné úpravy. Koupí-li si všichni nájemníci např. v družstevním domě zvonek GONG, je možné používat jeden zdvojovač společně. V novějších domech je zvykem, že zvonek každého z obyvatel je součástí bytové rozvodné desky (spolu s jističi apod.). Zvonková tlačítka bývají dvě — jedno před vchodem do domu, druhé před vchodem do bytu. Pak lze nechat

starý zvonek v jeho původní funkci pro tlačítko před hlavními dveřmi a pro zvonek GONG natáhnout nové vedení od tlačítka u bytových dveří a využít napájení společného zvonkového transformátoru.

71. GONG S MULTIVIBRÁTOREM

Nevýhodou většiny prodávaných dveřních gongů je, že vydávají zvuk pouze při stisknutí a uvolnění zvonkového tlačítka. Nemá-li přicházející návštěva možnost slyšet výsledek svého snažení při tisknutí např. domovního tlačítka, může se domnívat, že navštíveného přivolá rychleji dlouhodobým tisknutím tohoto tlačítka. Proto je vhodné doplnit gong přerušovacím obvodem, který v určitém časovém intervalu spíná magnet gongu i při trvale stisknutém tlačítku.

Zapojení je na obr. 152. Obvod se skládá ze dvou tranzistorů, které spolu s pasívními součástkami tvoří multivibrátor spínající relé. Kontakt relé spíná cívku elektromagnetu gongu. Relé má odpor asi $200\,\Omega$ a musí spolehlivě spínat při napětí 12 V. Lze použít např. relé LUN nebo lze využít kontaktu ve skleněném zátavu z jazýčkových relé. Na skleněnou trubičku jazýčkového relé nasadíme cívku navinutou lakovaným drátem s průměrem asi 0,1 mm a s odporem $200\,\Omega$. Velikostí odporu R_1 a kapacity C_2 lze nastavit rytmus úderů gongu.

Obr. 152. Zvonek GONG s multivibrátorem

72. HLASITÉ REPRODUKOVÁNÍ TELEFONNÍCH HOVORŮ

Někdy je výhodné, máme-li možnost telefonní hovor zesílit tak, aby jej mohli poslouchat i ostatní osoby přítomné v místnosti. Jindy si zase přejeme zaznamenat důležitý telefonní hovor na magnetofon. Provedení přístroje by mohlo být mnohem jednodušší, kdyby bylo možné zesilovač připojit přímo k telefonnímu přístroji. Správa spojů, která nám telefonní přístroj pronajala, to však přímo zakazuje. Připojit se na telefonní linku nebo jakko-

Obr. 153. Hlasité reprodukování telefonických hovorů

liv zasahovat do přístroje není dovoleno. Naštěstí každý telefonní přístroj obsahuje tzv. hovorový transformátor. Ten má poměrně velké rozptylové elektromagnetické pole, takže umístíme-li v jeho blízkosti vhodnou cívku, lze energii tohoto elektromagnetického pole využít a telefonní hovor snímat,

aniž bychom jakkoliv zasáhli do telefonního přístroje.

Schéma zesilovače je na obr. 153. Jde o jednoduchý dvoustupňový zesilovač, velice stabilní, bez sklonu k samokmitání. K potřebnému zesílení druhého stupně obvykle nestačí jeden tranzistor KF 517, a proto jsou použity dva tranzistory (T_2 a T_3) v Darlingtonově zapojení. Přístroj má vyvedenu přípojku MG pro magnetofon. Na obr. 153 jsou dvě varianty (A a B) připojení reproduktorů Re₁ a Re₂. Variantu A použijeme, máme-li reproduktor s větší impedancí než 80 Ω . Máme-li reproduktor s malou impedancí (tj. 4 Ω , 8 Ω nebo 16 Ω), je třeba mít k jeho připojení převodní transformátor s převodem asi 1 : 50 až 1 : 100 (varianta B).

Z výkladu je patrné, že nejdůležitější částí zařízení je indukční snímač L. Musí být umístěn ve vhodné, co nejmenší vzdálenosti od telefonního přístroje. Lze použít cívky s průměrem větším, než je obvod telefonního přístroje, která má na vhodné kostře navinuto 3000 závitů drátem CuL s průměrem 0,1 mm. Telefonní přístroj je umístěn uvnitř této cívky. Nelze vyrobit cívku plochou a přístroj na ni postavit. Ačkoliv jsou moderní přístroje z plastu, mají většinou plechové nebo lépe kovové dno, které působí jako stínění. Je-li ovšem cívka větší, takže telefonní přístroj je celý v ose jejího

vnitřního průměru, toto stínění se neuplatní.

Jako snímač L lze také použít cívku z vyřazeného relé RP 100 na stejnosměrné napětí 24 V. Do jejího jádra jsme umístili krátkou tyčku z feritové antény. Nevýhodou tohoto uspořádání je, že cívku vedle telefonního přístroje nelze zamaskovat tak, aby esteticky nerušila.

73. PARALELNÍ SPOJENÍ DVOU TELEFONNÍCH PŘÍSTROJŮ

Zapojení podle obr. 154 je funkčně jednoduché. Oba účastníci mají běžné telefonní přístroje, Te₁ a Te₂. Každý z nich se může dvojitým přepínačem Př₁ nebo Př₂ připojit na linku. Signalizační žárovka Ž₁ nebo Ž₂ signalizuje, zda druhý telefonní přístroj není právě v činnosti. Žárovky volíme podle napětí baterie místní telefonní ústředny. Navíc je každý účastník vybaven tlačítkem a zvonkem pro vzájemnou signalizaci, aby jeden účastník mohl domluveným signálem upozornit druhého účastníka na předání hovoru.

Je-li volán jiný účastník než ten, který má připojen telefonní přístroj, přepne se nejprve přepínač a hovor mu znovu signalizujeme tlačítkem. Na obr. 154 jsou Zv_1 a Zv_2 běžné telefonní zvonky a Tr je zvonkový síťový transformátor.

Závěrem je třeba zdůraznit, že uvedené zapojení nelze použít u telefonních přístrojů veřejné telefonní sítě. Správa spojů zakazuje jakékoliv změny a zásahy do telefonních přístrojů. Má k tomu právo zejména proto, že většina těchto přístrojů je účastníkům telefonní sítě pouze pronajímána. Z toho plyne, že uvedenou úpravu je možné realizovat pouze u přístrojů domácích nebo u přístrojů, kde majitelem je závod (úřad), který k popsané úpravě dá svolení.

VIII. Číslicová technika

Jak jsme již uvedli v úvodní kapitole, číslicová technika proniká i do našich domácností, a to zejména v podobě kapesních kalkulátorů a číslicových hodin. Jsou to komerční výrobky s obvody velké integrace a použité obvody jsou samostatně pro amatéry těžko dostupné. Přesto se mnoho domácích kutilů a amatérů zabývá stavbou přístrojů, které obsahují číslicové integrované obvody TTL. Konstrukce s těmito obvody jsou však nepoměrně dražší.

Číslicové integrované obvody se používají pro stavbu různých časovačů a hodin. V gramofonech se používají při dělení kmitočtu pro pohon synchronních motorků nebo jako rozdělovače pro krokové motorky nebo pro ovládací obvody zvedající raménko přenosky atd. Číslicové integrované obvody jsou v elektronických hračkách a v některých druzích barevné hudby. Mnoho amatérů si staví i složitá zařízení, včetně počítačů.

Amatérské konstrukce s malým množstvím integrovaných obvodů zase přinášejí jinou nevýhodu. Přístroje sestavené z číslicových integrovaných obvodů TTL vyžadují totiž standardní napájecí napětí 5 V a jsou velice citlivé na překročení předepsaného maximálního napájecího napětí. Toto napětí je u většiny obvodů 5,5 V. Doporučené napájecí napčtí je v rozmezí od 4,75 do 5,25 V. Napájecí zdroj musí být tedy jakostní a spolehlivý. Tento zdroj obsahuje obvykle vedle stabilizačních obvodů ještě dvě pojistky. První pojistka chrání zdroj proti přetížení a zkratu, druhá chrání číslicové integrované obvody proti zničení zvýšeným napětím při selhání zdroje. Cena takového zdroje potom převyšuje cenu ostatních obvodů a to je nutné uvážit.

Vyrábí se však speciální integrovaný obvod obsahující zdroj včetně ochran pro napájení číslicových integrovaných obvodů TTL. Označuje se MA 7805 a je schopen s příslušným chladičem dodávat trvale proud včtší než 1 A a špičkově až 2,2 A.

V této kapitole jsou popsány čtyři konstrukce s číslicovými integrovanými obvody. První konstrukcí je zařízení pro rozsvěcování a zhasínání světel zvukovým signálem. Obsahuje pouze jediný integrovaný klopný obvod, který je napájen pomocí stabilizační diody přímo ze síťového napětí bez transformátoru. Druhá konstrukce je určena pro postupné přepínání čtyř žárovek. Obsahuje pouze tři číslicové integrované obvody a je napájena z podobného zdroje. Třetí konstrukcí je číslicový zvonek s melodií. Je tvořen pouze třemi číslicovými integrovanými obvody. Je vybaven zdrojem MA 7805, neboť je napájen ze zvonkového transformátoru a vedle číslicových

integrovaných obvodů obsahuje ještě další obvody s tranzistory. Čtvrtou konstrukcí je číslicový časový spínač. Tato konstrukce je poměrně složitá, obsahuje 28 číslicových integrovaných obvodů a několik dalších speciálních součástek. Napájecí zdroj řídí integrovaný stabilizátor napětí typu MAA 723 a proud zesiluje tranzistor KU 611. Podobné složité číslicové obvody musí mít zdroj dobře filtrovaný a bývá dobrým zvykem dávat na každý plošný spoj přídavnou filtraci. Tu tvoří elektrolytický kondenzátor 50 až 500 μF/6 V a paralelně v každé řadě číslicových integrovaných obvodů připojené keramické kondenzátory s kapacitou 0,1 μF. Uvedené opatření je nutné proto, že číslicová zařízení pracují se dvěma logickými stavy, které se v rozsahu několika nanosekund mění. Současně se mění i odběr proudu ze zdroje a na indukčnostech plošných spojů a přívodů mohou bez filtrace vznikat zákmity, které by ovlivnily správnou funkci celého obvodu.

74. ROZSVĚCOVÁNÍ A ZHASÍNÁNÍ SVĚTEL ZVUKOVÝM SIGNÁLEM

Na obr. 155 je schéma přístroje, který umožňuje spínat světla zvukovým signálem. Tento přístroj lze využít pro různé světelné efekty, při kouzelnické produkci atd. Ovládá se například hvízdáním. Při prvním zahvízdání se světlo rozsvítí, při následujícím zhasne atd. Nedoporučujeme používat tento přístroj ve fotokomoře, neboť by se mohlo stát, že mikrofon zachytí nějaký zvuk při manipulaci s fotografickým materiálem a nechtěně se rozsvítí světlo.

Obvod může místo žárovky spínat nějaký jiný spotřebič, napájený sítovým napětím 220 V/50 Hz, nemá-li tento spotřebič indukční charakter. Spotřebič indukčního charakteru by se spínal nespolehlivě, neboť napěťové špičky vznikající na jeho indukčnosti po sepnutí triaku způsobí zmenšení proudu procházejícího obvodem a triak se opět rozpojí. Při kritických indukčnostech by se obvod mohl rozkmitat.

Přístroj je citlivý na zvuky vyššího kmitočtu, např. na hvízdání, syknutí

Obr. 155. Rozsvěcování a zhasínání světla zvukovým signálem

apod. Krystalový mikrofon zvuk zachytí a napětí, které na něm vzniká, se zesílí tranzistorem T_1 . Je-li amplituda zesíleného signálu dostatečně velká, střídavé napětí za kondenzátorem C_1 uzavře na okamžik tranzistor T_2 .

Potřebné zesílení se nastaví trimrem R_1 a kmitočtovou charakteristiku lze upravit volbou kapacity kondenzátoru C_1 . Použijeme-li k ovládání zdroj signálů vyšších kmitočtů (např. speciální píšťalku), lze kapacitu kondenzátoru zmenšit. Chceme-li, aby obvod reagoval na nižší kmitočty (např. rozsvěcení a zhasínání světel po úderu do bubnu), je nutné použít kondenzátor s větší kapacitou.

Obr. 156. Časový diagram obvodu pro rozsvěcování a zhasínání světla zvukovým signálem

Tranzistory T_2 a T_3 tvoří monostabilní klopný obvod. Uzavře-li se na okamžik tranzistor T_2 , otevře napětí z jeho kolektoru tranzistor T_3 . Kolektor tranzistoru T_3 je vázán kapacitou kondenzátoru C_2 s bází tranzistoru T_2 . Dokud se tento kondenzátor nenabije, zůstane tranzistor T_2 uzavřen a tranzistor T_3 otevřen. Doba nabití kondenzátoru C_2 na potřebné napětí trvá déle než 10 s a po tuto dobu je přístroj necitlivý na další zvukový signál. Z otevřeného tranzistoru T_3 se přenese na hodinový vstup integrovaného obvodu MH 7472 signál s logickou hodnotou 0. Na výstupu Q tohoto integrovaného obvodu se logická úroveň změní. Časový diagram je na obr. 156.

Pokud je na výstupu Q integrovaného obvodu logická hodnota I, je sepnut triak a žárovka svítí.

K napájení obvodu je použit zdroj, který nemá síťový transformátor. V kladné polovině periody síťového napětí prochází proud rezistorem R_9 , kondenzátorem C_3 a diodou D_2 a nabíjí kondenzátor C_4 . V druhé polovině periody se kondenzátor C_3 vybíjí přes diodu D_1 . Rezistor R_9 chrání diody D_1 a D_2 . Impedance kondenzátoru, rezistory R_9 a R_{10} a dioda D_3 vytvářejí dělič, který chrání kondenzátor C_4 před větším napětím. Tento dělič nelze při zkoušení obvodu rozpojit, neboť by se mohlo napětí na kondenzátoru C_4 zvětšit nad přípustnou mez. Také zátěž zdroje se nesmí příliš měnit s ohledem na přípustný proud stabilizační diodou. Napětí 5 V se ještě filtruje kondenzátorem C_5 . Filtrace zvětšuje spolehlivost celého obvodu, neboť při poruchách sítě by mohl monostabilní klopný obvod generovat falešný impuls, na který by přístroj reagoval.

Vzhledem k tomu, že je celé zařízení napájeno přímo ze sítě, může být

na všech částech přístroje životu nebezpečné napětí. Proto je nutné celý přístroj konstruovat tak, aby nebyl možný dotyk s vodivými částmi obvodu. To platí samozřejmě i o umístění mikrofonu. Mikrofon nelze umístit vně zařízení, neboť ani mikrofonní konektor, ani běžná mikrofonní šňůra, ani konstrukce mikrofonu nedovolují připojení k síťovému napětí. Proto umístíme mikrofon přímo do skříňky přístroje spolu s ostatními obvody. Žárovka se připojuje do síťové zásuvky, upevněné na skříňce. Kolík ochranného vodiče zásuvky je nutné propojit se síťovým ochranným vodičem.

Skříňka musí být zhotovena z mechanicky pevného materiálu (např. kovová nebo novodurová, materiál s tloušťkou 4 až 5 mm) a na povrchu skříňky nesmějí být žádné kovové části spojené s obvody přístroje (upevňovací šrouby apod.). Kovový kryt přístroje a další kovové části na povrchu skříňky musí být propojeny s ochranným vodičem připojovací šňůry. Otvory před mikrofonem a větrací otvory by neměly mít průměr větší než 5 mm a zařízení se musí používat v suchém prostředí. Hřídel trimru R_1 musí být ukončena uvnitř krytu a může být dosažitelná pouze šroubovákem nebo jiným nástrojem z izolačního materiálu. Výjimka z těchto zásad by byla možná pouze tehdy, kdyby nebyla k připojení použita síťová šňůra se zásuvkou, ale pevný přívod, vylučující možnost záměny vodičů.

S uvedenými součástkami lze připojit do zásuvky pro žárovky zátěž s maximálním příkonem 1000 VA. Chladič triaku, umístěný uvnitř skříňky, musí být schopen odvést teplotu z tohoto prvku do okolního prostředí tak, aby jeho teplota nemohla dosáhnout meze, při níž materiál ochranného krytu nebo upevňovacího izolantu ztrácí svou mechanickou pevnost. Chladič tedy musí být umístěn u horního povrchu krytu a celá skříňka musí mít větrací otvory. Dno skříňky musí mít také větrací otvory a musí být opatřeno nožkami. Plocha chladiče triaku by měla mít rozměr asi 100 × 100 (mm).

75. POSTUPNÉ ZAPÍNÁNÍ ŽÁROVEK

Na obr. 157 je zapojení přístroje, který umožňuje postupně spínat čtyři žárovky. Toto zapojení lze použít pro reklamní účely, slavnostní výzdobu, k rozsvěcení žárovek vánočního stromku apod. Výhodou je, že malý odběr proudu nevyžaduje složitý napájecí zdroj pro integrované obvody, a vystačíme tedy pouze se stabilizací napájecího napětí stabilizační diodou. V zapojení není použit ani síťový transformátor. Obvody jsou spojeny galvanicky přímo se sítí, a je tedy nutné dbát na to, aby celé zapojení bylo uzavřeno v izolovaném krytu a aby žárovky byly upevněny v objímkách určených pro příslušné napětí.

Zapojení využívá integrovaného obvodu typu MH 7474, který obsahuje v jediném pouzdru dva samostatné klopné obvody typu D. Zapojení pouzdra i vnitřní zapojení jednoho klopného obvodu vidíme na obr. 158 a 159.

Klopný obvod pracuje takto: Informace v podobě určité logické hodnoty

(0 nebo I), připojená na vstup D klopného obvodu, se přenese na výstup Q s čelem hodinového impulsu, tj. impulsu přivedeného na vstup T. Na tomto výstupu zůstane informace zachována, dokud ncdojde k dalšímu zápisu čelem impulsu. Napěťová úroveň impulsu musí být pro logickou hodnotu 0 menší než 0,8 V a pro logickou hodnotu I větší než 2 V a menší než 5,5 V. To však platí za předpokladu, že vstupy označené, "nastavení" a "nulování" mají logickou hodnotu I. Tyto vstupy umožňují vnější ovládání stavu klopného obvodu. Připojením logické hodnoty 0 ke vstupu "nastavení" se

Obr. 157. Postupné zapínání žárovek

získá na výstupu klopného obvodu logická hodnota I a připojením logické hodnoty 0 ke vstupu "nulování" získá výstup logickou hodnotu 0. Na výstupu Q je opačná logická úroveň než na výstupu Q. Po nastavení nebo nulování klopného obvodu zůstane informace na výstupu zachována až do příchodu dalšího čela zapisovacího impulsu. V obvodu podle obr. 157 je k hodinovému vstupu připojen generátor s velmi nízkým kmitočtem (asi 1 Hz), který ovládá činnost dvou klopných obvodů typu D. Na obr. 160 je časový diagram celého obvodu. Dvouvstupové členy NAND MH 7400 tvoří jednoduchý dekodér pro postupné rozsvěcování žárovek.

Žárovky jsou ovládány tyristory. Tyristory však propouštějí pouze jednu polovinu periody sítového napětí, a proto se nevyužívá celý výkon žárovky. Lze tedy použít žárovky pro nižší napětí (120 V), aby se zvětšila teplota vlákna. Jiné zapojení je na obr. 161. Je v něm místo tranzistoru použit triak. Tento prvek však vyžaduje větší proud do řídicí elektrody než uvede-

ný tyristor, a je tedy nutné k jeho ovládání použít tranzistorový zesilovač

řídicího proudu a upravený zdroj.

Činnost zdroje podle obr. 157 je jednoduchá. V jedné polovině periody sítového napětí se přes kondenzátor C_1 a diodu D_2 nabíjí kondenzátor C_2 . Rezistor R_1 chrání diody D_1 a D_2 . Dioda D_1 vybíjí kondenzátor C_1 v druhé polovině periody. Impedance kondenzátoru, rezistory R_1 , R_2 a stabilizační

dvojitý bistabilní klopný obvod D

Obr. 158. Integrovaný obvod MH 7474

dioda tvoří napětový dělič, který chrání kondenzátor C_2 před větším napětím. Během zkoušení obvodu nelze tedy tento dělič přerušit. Také je vhodné mít současně připojeny integrované obvody, neboť jinak prochází stabilizační diodou větší proud než při běžném provozu. Potenciometr s odporem $4.7~\mathrm{k}\Omega$ v generátoru slouží k nastavení kmitočtu a správné činnosti generátoru a musí být umístěn také pod ochranným krytem, neboť při manipulaci s ním během provozu by mohlo dojít k úrazu elektrickým proudem.

Obr. 160. Časový diagram

Obr. 161. Úprava pro triak

76. ČÍSLICOVÝ ZVONEK S MELODIÍ

Dveřní zvonek lze nahradit obvodem, který po stisknutí tlačítka generuje naši oblíbenou melodii. Blokové schéma takového obvodu je na obr. 162. Po stisknutí zvonkového tlačítka se překlopí klopný obvod KO a začne kmitat multivibrátor MV. Kmitočet tohoto multivibrátoru je zvolen tak, aby odpovídal taktu požadované melodie. V rytmu tohoto kmitočtu se mění obsah čítače Č. Výstupy z tohoto dvojkového čítače jsou dekódovány v dekodéru D a přes maticové pole s potenciometry M je řízen kmitočet oscilátoru O.

Maticovým polem s potenciometry se naladí jednotlivé tóny melodie a nastaví se jejich sled. Aby byl definován začátek a konec melodie, je z dekodéru D ovládán klopný obvod KO tak, aby se po odeznění posledního tónu klopný obvod nastavil do základního stavu. Zůstane-li tlačítko zvonku sepnuté, melodie se opakuje.

Oscilátor O je připojen k zesilovači Z s reproduktorem. Tento zesilovač je blokován z klopného obvodu KO.

Nyní popíšeme zapojení jednotlivých částí obvodu. Celkové schéma je na obr. 163 (vepředu). Obvod je napájen z běžného zvonkového transformátoru, který je konstruován jako oddělovací transformátor a je bezpečný proti zkratu. Obě sekundární napětí jsou zapojena v sérii. Ke stabilizaci napětí je použit integrovaný stabilizátor napětí 5 V, typ MA 7805.

Klopný obvod KO je realizován dvěma logickými členy NAND integrovaného obvodu MH 7400, zapojenými jako klopný obvod RS. Jeden vstup je připojen ke zvonkovému tlačítku a druhý k dekodéru MH 74154. Po stisknutí zvonkového tlačítka se klopný obvod překlopí a uvolní činnost multivibrátoru, který se skládá ze zbývajících dvou logických členů NAND

tlačítko zvonku

Obr. 162. Blokové schéma zvonku s melodií

integrovaného obvodu MH 7400. Tento multivibrátor má kmitočet 3 Hz až 3 kHz. Pokud melodie vyžaduje odlišný rytmus, lze kmitočet zvýšit zmenšením kapacit obou vazebních kondenzátorů nebo naopak zvětšením jejich kapacit lze rytmus zpomalit.

Zvukový signál zvonku by neměl trvat déle než 5 s. Při kmitočtu 3 Hz odpovídá délka melodie patnácti taktům. Proto je jako čítač použit integrovaný obvod MH 7493, což je binární čtyřbitový čítač, který rozeznává 15 stavů. Jako dekodér je použit převodník binárního kódu na kód 1 z 16 — demultiplexor MH 74154. Tento obvod má čtyři adresovací vstupy (A, B, C, D) a dva vybavovací vstupy (špičky 18 a 19). Je-li na některém z těchto vstupů logická hodnota I, je na všech výstupech obvodu logická hodnota I.

Po zapnutí zdroje se čítač samočinně nuluje členem RC, zapojeným na špičkách 2 a 3. Na výstupech z dekodéru je logická hodnota I, kromě výstupu 1. Výstup je přes kapacitní vazbu připojen ke klopnému obvodu. Tím je zajištěno, že se multivibrátor vždy zastaví v okamžiku, kdy se obsah čítače rovná nule.

Protože na vstupu 2 klopného obvodu je paralelně ke zvonkovému tlačítku připojen kondenzátor s kapacitou 50 μF (pro filtrace případných poruch zvonkového rozvodu), nastavil by se tento klopný obvod po zapnutí vždy tak, že by zazněla melodie zvonku. To by mohlo být nepříjemné, kdyby např. v noci na chvíli vypadla sít. Proto je ve druhém vstupu klopného obvodu (špička 4) zapojen kondenzátor s větší kapacitou přes oddělovací diodu. Tento kondenzátor vždy nastaví klopný obvod do základního stavu. Obvod je tedy vždy po zapnutí připraven v počátečním taktu melodie.

Po stisknutí zvonkového tlačítka začne multivibrátor kmitat a čítač mění

svůj stav. Na výstupu z dekodéru se posouvá po jednotlivých sběrnicích propojovací matice logická hodnota 0. Dekodér je oddělen šestnácti diodami od sběrnice, neboť některé tóny melodie se opakují a bez těchto diod by byly výstupy propojeny paralelně ve zkratu. Výrobce povoluje zkratovat pouze jeden výstup integrovaného obvodu. Propojovací matici vytvoříme nejlépe na dvojvrstvovém plošném spoji a to tak, že na jedné straně plošného spoje je vedeno 16 rovnoběžných výstupů z dekodéru a na druhé straně 10 rovnoběžných vodičů, které jsou na výstupy z dekodéru kolmé. V průsečících vodičů vyvrtáme otvory a melodii nastavíme propojením otvorů drátky. Můžeme tak čas od času změnit melodii našeho zvonku.

K deseti vodičům na dřuhé straně plošného spoje je připojeno deset odporových trimrů, jejichž nastavením ladíme jednotlivé tóny melodie. Některé tóny tedy budou propojeny víckrát nebo bude místo v matici vynecháno, a vznikne tak pauza. Nevyžaduje-li melodie tak velké množství tónů, nemusíme trimry osazovat.

Oscilátor, jehož kmitočet je řízen napětím, je připojen na společný konec všech trimrů. Lze jej osadit téměř libovolnými tranzistory PNP s malým kolektorovým ztrátovým výkonem. Mohou se zde použít i germaniové tranzistory.

Tranzistor KC 508 odděluje výkonový tranzistor od oscilátoru, není-li překlopen klopný obvod. Tímto uspořádáním využijeme i první výstup z dekodéru, a máme tedy k dispozici všech 16 taktů. V zapojení podle obr. 166, kdy je blokován dekodér vybavovacími vstupy 18 a 19, se tak zamezí zatěžování výkonové části případnými kmity oscilátoru v neslyšitelné oblasti kmitočtů.

Takto zapojený zvonek lze použít všude, kde je k dispozici samostatné zvonkové tlačítko a vlastní zvonkový transformátor. Ve větších domech je použit společný transformátor a v několikapatrových domech jsou paralelně k dveřním tlačítkům u bytu zapojena tlačítka umístěná u hlavních domovních dveří. V takovém případě musíme použít vlastní zvonkový transformátor a obvody oddělíme od společného zvonkového rozvodu pomocí relé. Minimální úpravy v instalaci vyžaduje zapojení na obr. 164. Místo zvonku zapojíme relé na střídavé napětí asi 8 V. Zapojení podle obr. 165 umožňuje rozlišit, zda bylo stisknuto tlačítko u bytových dveří nebo tlačítko u domovních dveří. Sejmeme kryt tlačítka u bytových dveří a do série s tímto tlačítkem zapojíme diodu KY 130/80. Místo zvonku pak zapojíme relé s diodou (obr. 165a). Stávající zvonek doplníme další diodou. Kontakt relé spíná obvod zvonku s melodií, kdežto při stisknutí tlačítka u domovních dveří zazní zvonek. Protože střídavým zvonkem nyní prochází pulsující proud usměrněný diodou, je nutné zvonek při úpravě mechanicky doladit.

Chceme-li rozlišit tlačítka různou melodií, použijeme obvod podle obr. 165b. Jsou použita dvě relé a kontakty relé pokaždé sepnou jiný obvod zvonku s melodií. Přitom není nutné použít všechny obvody dvakrát. Můžeme využít společný oscilátor s výkonovým stupněm a reproduktorem a stejný multivibrátor s čítačem. Obě melodie pak ovšem budou mít stejný

rytmus. Budou-li v obou melodiích stejné tóny, budou stačit stejné potenciometry v propojovací matici. Společný bude samozřejmě i zdroj. Úprava je na obr. 166. Každým tlačítkem se sepne jiné relé, jehož kontakt nahrazuje zvonkové tlačítko na obr. 163. Každé tlačítko má svůj klopný

Obr. 164. Zapojení zvonku přes relé a připojení k domovnímu rozvodu se společným transformátorem

obvod. Klopné obvody a multivibrátor je nutné oddělit diodami, aby se klopné obvody vzájemně nevázaly. Na výstupy z klopných obvodů jsou připojeny vybavovací vstupy odpovídajícího dekodéru. Adresovací vstupy dekodérů jsou spojeny paralelně, avšak v činnosti je vždy pouze jeden dekodér. Každý z dekodérů má své oddělovací diody (32 diody) a matice je

Obr. 165. Rozlišení domovního a bytového tlačítka (u obrázku a) i b) je do série s domovním tlačítkem zapojena čtvrtá dioda KY 130/80, jejíž katoda je vlevo)

rozšířena na 32 × 10 propojovacích bodů. Každý z klopných obvodů má své vazební kondenzátory pro nulování v základní pozici dekodéru. Výkonový zesilovač je nutné blokovat z klopných obvodů přes oddělovací diody typu KA 501.

77. ČÍSLICOVÝ ČASOVÝ SPÍNAČ

V porovnání s obvyklými spínači má tento spínač mnohem náročnější konstrukci. Dříve popisované spínače jsou založeny na tom, že měříme čas potřebný k nabití nebo vybití kondenzátoru. Tento způsob je jednoduchý, vystačíme s jedním nebo dvěma tranzistory. Rozborem tohoto způsobu přijdeme i na jeho mnohé nevýhody. Takto odměřovaný časový úsek je omezen vstupním odporem tranzistoru, který je připojen k vybíjenému nebo nabíjenému kondenzátoru. Vzhledem k tomu. že pro delší časy je třeba velká nabíjecí nebo vybíjecí konstanta RC, lze takovouto metodou dosáhnout pouze odměřování času několik málo minut. (Tuto nevýhodu lze obejít použitím tranzistoru typu MOS s velkým vstupním odporem, pak lze odměřovat i čas několik hodin.) Ovšem nevýhod je mnohem více. Používané elektrolytické kondenzátory nejsou takové součástky, které by mohly být základem přesnosti přístroje. Jejich kapacita, od níž je pak odvozena doba spínání časovače, je značně závislá veličina, mění se s teplotou, délkou provozu atd. (kondenzátor se tzv. formuje).

Přesnost nastavení časového spínače založeného na tomto principu je proto velmi malá. Při delších nastavených časech se napětí na kondenzátoru zvětšuje velmi pomalu a správnou funkci přístroje může amatér ověřovat velmi obtížně. Cejchování je obtížné a zdlouhavé. Použijeme-li k nastavení času potenciometr (jako proměnný prvek v časové nabíjecí nebo vybíjecí konstantě RC), má přístroj nelineární stupnici. Příčinou je exponenciální nabíjecí křivka kondenzátoru. Její linearizace zase výrazně omezuje časový rozsah přístroje.

V průmyslových automatizovaných provozech je časový spínač běžné zařízení, konstruované podle mnoha nejrůznějších principů. Známý je způsob založený na vtahování elektromagnetu, používaný zejména při konstrukci schodišťových spínačů. Rozsah takovéhoto spínače je malý (řádově minuty). Používají se i časové hodiny (s rozsahem např. 100 000 h), které ukazují např. dobu v hodinách, po jakou byl stroj (zařízení) v provozu. Tyto hodiny pracují na podobném principu jako elektroměr. Je-li stroj zapnut, otáčí se kotouč rovnoměrným pohybem a počet jeho otáček se indikuje mechanickým počitadlem. Nejvíce jsou rozšířeny časové spínače s hodinovým strojkem, jejichž základem je malý synchronní motorek. Pro pouhou indikaci bez spínání se používají různé chemické indikátory, speciálně upravené spínací hodiny s běžným hodinovým strojem apod.

Číslicové řešení časového spínače vyhoví nejnáročnějším podmínkám; spínač je pak univerzální, velmi přesný, s libovolnou rozlišovací schopností, takže předčí všechny ostatní varianty spínačů. Je ale mnohem složitější,

obsahuje 29 integrovaných obvodů, čtyři tranzistory a ještě další drobné součástky, takže je to již středně složité elektronické zařízení poměrně značné ceny. Časový spínač podle obr. 167 (viz vzadu) je navržen tak, aby mohl být použit jako univerzální automatizační prostředek. Např. v domácnosti k automatickému hlídání doby vaření (vajíček, břambor, rýže apod.) nebo i k automatickému odpínání sporáku nebo vařiče. Ve fotokomoře ho lze použít k hlídání časů při vyvolávání negativů apod. Teoreticky ho lze použít i jako budík, nepříjemné je však přepočítávat, za jak dlouho (v sekundách) chceme být probuzeni. Vlastním účelem spínače je programově vypínat a zapínat elektrické spotřebiče spolu s akustickou signalizací.

Popis práce s číslicovým časovým spínačem

Přepínačem Př, "rozsahy" zvolíme základní odměřovanou jednotku, a tím celkový rozsah přístroje. Označení v levé krajní poloze "rozsah 10 s" znamená, že přístrojem lze nastavit čas až do 100 000 s, "rozsah 1 s" znamená čas do 10 000 s, atd., až "rozsah 0,01 s" znamená čas do 100 s. Pátý rozsah přepínače Př, je označen "volný vstup" a v této poloze je vstup do čítače vyveden na konektor K, kam lze přivést impulsy odjinud. Vstup má napěťovou ochranu tvořenou Zenerovou diodou D₆, přesto ale bychom měli dodržovat podmínku, že impulsy mají mít logickou hodnotu I s napětovou úrovní v rozmezí od +2.5 V do +5.5 V. Délka časového úseku, který chceme odměřovat, se předběžně volí na přepínačích Př, až Př, tak, že zvolená odměřovací jednotka (na přepínači Př₅) se určí přepínačem Př₁, další přepínač Př₂ pak určuje čas o řád vyšší atd. Takže např. chceme-li nastavit čas 5466 s, nastavíme na Př₅ polohu 1 s, na Př₁ polohu 5, na Př₂ polohu 4 a na Př₃ a Př₄ polohu 6. Stiskneme nejprve tlačítko Tl₁, "zápis", ale odměřovaný čas se začne čítat až do okamžiku stisknutí tlačítka Tl₂, "start". Barevné žárovky Z_1 a Z_2 indikují činnost časovače. Zapnutím spínače S můžeme připojit zvonek, který zazvoní po uplynutí nastaveného času. Výstupem celého zařízení jsou kontakty re₂, re₃ relé Re, které spínají výstupní zásuvku 220 V pro připojení řízeného spotřebiče.

Přístroj se napájí ze sítě 220 V přes transformátor Tr. Napětí 8 V ze sekundárního vinutí se přivádí na diody D_8 až D_{11} , z nichž se napětí, dvoucestně usměrněné, vede na tvarovací obvod, tvořený tranzistory T_3 a T_4 . Na rezistoru R_{10} jsou pak impulsy s kmitočtem 100 Hz. Šířku impulsů lze upravit změnou odporu rezistoru R_{12} nebo změnou kapacity kondenzátoru C_{10} . Šířka impulsu není ovšem pro naše použití rozhodující. Na přepínač Př₅ jsou přivedeny tyto impulsy a impulsy desetkrát, stokrát a tisíckrát nižšího kmitočtu z čítačů IO_{25} , IO_{26} , IO_{27} , které jsou zapojeny v sérii. Desítkové čítače MH 7490 pracují v kódu BCD. Vstupy $R_{0(1)}$, $R_{0(2)}$, $R_{9(1)}$ a $R_{9(2)}$ nevyužíváme a jsou uzemněny. Základem celého zařízení jsou čtyři čtyřbitové odečítací čítače na deskách D_{58} až D_{50} . Jsou to desky převzaté ze Stavebnice číslicové techniky autora Ing. Tomáše Smutného, popsané v Amatérském radiu 9/1974, str. 346, kde na obr. 59 je schéma zapojení desky D_5 a na obr. 60 nákres desky s plošnými spoji. Obsah čtyřbitového čítače na

desce D_5 se příchodem každého impulsu na vstup H_1 snižuje o jednotku. Čítač je tvořen čtveřicí klopných obvodů (integrované obvody MH 7472). Do vstupu Š je možné zapisovat počáteční stav čítače. Přivedením kombinace logických hodnot 0 a logických hodnot I na vstupy S zapíšeme v každé dekádě počáteční stav, zvolený nastavením přepínače Př. Všechny čítače jsou zapojeny v sérii; vstup další dekády H₁ je připojen na výstup H₂ předcházející dekády. Obsah čítače se snižuje o 1 vždy příchodem každého impulsu až do doby, kdy jsou na výstupech logické hodnoty 0. Výstupy čítače jsou spojeny s komparátory tvořenými porovnávacími logickými členy, takže při nastavených čítačích je na výstupu N₁ z desky D₅ logická hodnota I. Jsou-li vynulovány všechny čítače, změní se úroveň na výstupu N₂ desky D₅ a klopný obvod tvořený integrovaným obvodem IO₂₈ se překlopí do počátečního stavu, kdy je na výstupu Q logická hodnota 0. Kondenzátory C_5 , C_7 , C_8 a C_9 chrání vstupy logických členů před rušivými impulsy. Z výstupu Q klopného obvodu se zablokují hodinové impulsy pro odečítání z čítače (logický člen IO₂₈) a zároveň se stav tohoto výstupu indikuje žárovkami \check{Z}_1 a \check{Z}_2 . Tranzistor T_2 je připojen přímo na výstup $\overline{\mathbf{Q}}$. V jeho kolektoru je relé Re, které spíná příslušné indikační žárovky. Ostatní kontakty jsou vyvedeny ven z přístroje jako výstupy, jejichž signály mohou ovládat přímo spotřebič. Zvonek Z lze odpojit spínačem. Od zvonku nehrozí nebezpečí rušení čítačů a klopných obvodů, neboť zvonek je v činnosti až tehdy, když čítače již nečítají. Relé Re je převinuté relé RP 100 (drát s průměrem 0,35 mm, 3500 závitů). Napájecí zdroj je stabilizovaný, zapojení integrovaného obvodu IO₂₉ je běžné, doporučované výrobcem.

Skutečný odběr proudu přístrojem je maximálně 2 A na sekundární straně sítového transformátoru Tr.

Číslicová technika na dnešní úrovni umožňuje postavit podobný přístroj v mnoha dalších modifikacích. Na statory přepínačů Př v bodech A, B, C, D je možné připojit dekodéry BCD typu MH 74141, které mají dekadický výstup pro spínání digitronů, na nichž lze opticky kontrolovat stav čítačů. Vyprazdňování čítačů lze zjednodušit použitím integrovaných obvodů s větší integrací (např. integrovaný obvod MH 74192, který nahradí čtyři klopné obvody MH 7472 na desce D₅). Integrovaný obvod MH 7492 je dekadický synchronní vratný čítač, který je schopen čítat jak vpřed, tak vzad a jeho počáteční stav je možné předvolit. Rozlišovací přesnost přístroje lze zlepšit tím, žė použijeme impulsy s kmitočtem vyšším než 100 Hz, nebo tak, že rozšíříme počet čítaných dekád přidáním dalších desek D₅. Přesnost přístroje je dobrá, závisí na kmitočtu sítě a ten je poměrně stálý. Přesnost lze zvětšit použitím krystalového oscilátoru. Tím se samozřejmě zařízení poněkud zkomplikuje. Chceme-li zařízení používat např. na chatě nebo pro delší spínané časy, musíme počítat s tím, že dojde-li k výpadku sítě, není již činnost časovače zajištěna. V čítačích zůstane zapsána pouze náhodná informace nebo jsou vlivem náhodného stavu na vstupu pro blokování úplně zablokovány. Řešením je paralelně k výstupu napájecího napětí ze zdroje připojit trvale dobíjený malý akumulátor, nejlépe akumulátor NiFe nebo NiCd. Je třeba upozornit na to, že běžně zapouzdřené akumulátory NiCd nesnášejí trvalé přebíjení a je třeba je elektronicky odpojovat (příklad takovéto konstrukce je v Amatérském radiu, B 4/1976). Trvalé přebíjení bez poškození snášejí otevřené akumulátory NiCd s tekutým elektrolytem anebo zapouzdřené akumulátory NiCd se sintrovanými elektrodami, které jsou schopny chemicky vázat vznikající přebytek plynů. Bohužel akumulátory NiCd se sintrovanými elektrodami jsou nepoměrně dražší a v ČSSR jsou téměř nedostupné.

IX. Zahrada a chovatelství

V amatérské elektronice existují nespočetné nové varianty přístrojů a návodů pro různá použití. Tato kapitola uvádí přístroje, které jsou často unikáty — přístroj na plašení ptactva, přístroj k odhánění zvěře, deratizační přístroj a elektronický sběrač včelího jedu. Jsou to všechno potřebné pří-

stroje, používané v oblasti, kde elektronika je vlastně v začátcích.

Zájem o takovéto přístroje neustále vzrůstá. Jejich zajímavost vidíme i v tom, že jsou téměř elektronickými průkopníky. Jestliže se elektronický sběrač včelího jedu osvědčí, může se stát, že pouhá amatérská výroba nebude stačit. Přístroje založené na stejném principu (např. uvedený deratizační přístroj) se používají k zamezení hnízdění holubů na půdách. Jsou výzkumná pracoviště, která se jimi snaží lákat komáry do pastí. Psychologové zkoumají vliv ultrazvuku na psychiku lidí. Časopis Sdělovací technika otiskl návod na tzv. podněcovač nepokoje, který je jakousi analogií tohoto přístroje, působícího na člověka.

Automatizovat topení v akváriu je dnes nutností, zejména pro ty, kdo pěstují větší množství drahých exotických druhů rybiček, protože ty vyžadují poměrně přísný teplotní režim. Topení do akvária koupíme, ale automatickou regulaci teploty jen stěží. Přitom s automatickou regulací dosáhne-

me i jisté úspory elektrické energie a to je dnes také podstatné.

78. PŘÍSTROJ K PLAŠENÍ PTACTVA

Chceme-li uchránit úrodu třešní, vinných hroznů nebo jiného ovoce před nálety špačků a jiných ptáků, může nám v tom pomoci přístroj, jehož schéma je na obr. 168. Samozřejmě nelze vlastnosti takovýchto akustických zařízení přeceňovat. Ptáci tak jako každý jiný tvor si po čase na nepříjemný

Obr. 168. Přístroj k plašení ptactva

hluk zvyknou a přestane jim vadit v hodování, především je-li pro ně kořist zvláště lákavá. Proto je vhodné používat přístroj pouze v období dozrávání ovoce, měnit charakter zvuků a umístění přístroje a nevylučovat ostatní způsoby ochrany úrody.

Přístroj na obr. 168 je generátor zvukových úderů, které se v pravidelných intervalech opakují. Z napěťového zdroje se přes rezistor R_1 nabíjí kondenzátor C_1 . V okamžiku, kdy je napětí na tomto kondenzátoru větší než spínací napětí diaku Dc, projde do řídicí elektrody tyristoru Ty proud, který tento tyristor otevře a náboj z kondenzátoru C_1 projde cívkou reproduktoru. Membrána reproduktoru vydá zvuk podobný klepnutí na dřevěnou desku. Lze použít i poškozený reproduktor, který se již nehodí ke zpracování kvalitního zvukového signálu, např. reproduktor s proraženou membránou nebo reproduktor, jehož cívka v mezeře mírně drhne.

Jakmile se kondenzátor vybije, projde tyristorem pouze proud omezený odporem $(R_1 + P_1)$. Tento proud je menší než potřebný přídržný proud tyristoru a tyristor se uvede do nevodivého stavu. Napětí na kondenzátoru se opět začne zvětšovat a celý cyklus se opakuje.

K napájení přístroje lze použít baterie nebo sítový transformátor s usměrňovačem. Odběr proudu je nepatrný. Ke konstrukci sítového zdroje je vhodný transformátor 220/24 V, 1,5 W, používaný k napájení signalizačních žárovek. Je vhodné použít diaky s nejmenším spínacím napětím (tj. typ KR 205 se spínacím napětím 26 V ±4 V). Napětí napájecího zdroje musí být totiž o několik voltů vyšší, než je toto spínací napětí.

Svodový proud kondenzátoru C_1 musí být zanedbatelný oproti proudu, který prochází při nabíjení odporem $(R_1 + P_1)$, neboť jinak ovlivní napětí, na které se tento kondenzátor nabije.

Je vhodné použít reproduktor většího průměru, aby zvuková vlna dosáhla potřebného efektu. Součástky lze umístit na desku s plošnými spoji, kterou připevníme přímo ke svorkovnici reproduktoru. Aby byl přístroj chráněn proti dešti, je možné jej zabalit do igelitového sáčku a zavěsit na strom.

Použijeme-li k napájcní sít, je z hlediska bezpečnosti nutné propojit jeden napájecí vodič s ochranným kolíkem zásuvky.

79. PŘÍSTROJ K ODHÁNĚNÍ ZVĚŘE

Chceme-li ochránit zahradu nebo skalku před králíky, zajíci nebo domácími zvířaty, můžeme použít přístroj, který pracuje na podobném principu jako uvedený přístroj k plašení ptactva. Místo reproduktoru zapojíme primární vinutí vysokonapěťové cívky z televizoru nebo zapalovací cívky z motorového vozidla. Napětí ze sekundárního vinutí je přivedeno k holému drátu, který je napnut na izolátorech okolo chráněného objektu v potřebné výšce. Zapojení se liší od předcházejícího pouze kapacitou kondenzátoru C_1 (obr. 169).

Stejný přístroj lze použít jako elektrický ohradník, který hlídá dobytek v prostoru určeném k pastvě. V tomto případě je vhodné volit jinou výšku

drátu nad zemí, popř. napnout několik drátů nad sebou. Při doteku je zvíře elektrickou ranou donuceno vrátit se zpět. Mechanické provedení musí být pevné, aby odolalo síle zvířete v pohybu.

Obr. 169. Přístroj k odhánění zvěře

80. DERATIZAČNÍ PŘÍSTROJ

Boj s drobnými hlodavci je starý jako lidstvo samo. V tomto boji lze využít:

- biologické zbraně (kočky, fretky a jiná domácí zvířata určená k hubení hlodavců),
 - chemické zbraně (jedy, otrávené zrní apod.)
 - přímé mechanické hubení (pasti, nástrahy).

Přes tento soustředěný boj se zdá, že na ideální zbraň se teprve čeká, neboť každá ze starých zbraní má svou slabinu. Téměř v každém sklepě žije nějaký druh hlodavce, s nímž si nevíme rady. V boji proti němu nám může pomoci přístroj, jehož popis se v různých úpravách objevil na stránkách různých elektronických časopisů.

Činnost deratizačního přístroje je založena na skutečnosti, že drobní hlodavci nesnášejí prostředí, v němž je trvale zapnut generátor kmitočtu 10 až 20 kHz. Vysoký kmitočet velmi nepříznivě působí na jejich nervovou soustavu. Místa, kde je přístroj umístěn, hlodavci v houfech opouštějí. Z hlediska úvodního rozdělení jde tedy o psychologickou zbraň, kterou uvítají přátelé nenásilného boje se zvířaty. Většina lidí, zejména starších, tóny o tomto kmitočtu již nevnímá, takže je generátor neruší.

Přístroj je velmi jednoduchý a má malý odběr proudu — jedna napájecí plochá baterie stačí na provoz přístroje v terénu po mnoho dní. Konstrukce přístroje je snadná. Součástky jsou připájeny na plošném spoji s rozměry 60×95 (mm). Deska obsahuje vyleptané obdélníčky s rozměrem 6×9 (mm), vzájemně izolované. Spoje (jsou-li vůbec nutné) jsou provedeny vnějšími vodiči. Zařízení neobsahuje žádný vypínač, napájecí baterie je umístěna pod deskou a je připevněna gumičkou. Má-li být přístroj umístěn ve vlhkém prostředí, je vhodné jej vsunout do igelitového sáčku i za cenu, že zvuk generátoru se poněkud utlumí.

Obr. 170. Deratizační přístroj

Celkové zapojení deratizačního přístroje je na obr. 170. Zařízení obsahuje rozmítací generátor s kmitočtem 3 Hz až 8 Hz, který je tvořen tranzistory T_1 a T_2 . Tímto generátorem se rozmítá základní generátor s kmitočtem 10 Hz až 20 Hz, tvořený tranzistory T_3 a T_4 . Kmitočet se mění s poklesem napětí baterie při vybíjení. Protože však na přesném kmitočtu nezáleží, nemá přístroj žádnou stabilizaci kmitočtu. Kmitočet základního generátoru upravíme za hranici své slyšitelnosti nebo na tuto hranici, ale tak, aby nás přístroj nerušil. Kmitočet upravíme změnou kapacity kondenzátoru C_5 nebo paralelně ke kondenzátoru C_5 přidáme trimr s odporem asi $22 \ ^{1}\Omega$.

Na výstupu je malý reproduktor Rp z tranzistorového řijímače. Reproduktor je buzen tranzistorem T_5 . Vhodným reproduktorem může být typ ARZ 098 s průměrem 38 mm a s impedancí 75 Ω . Použijeme-li jiný reproduktor, s impedancí např. 4Ω nebo 8Ω , je třeba ještě malý výstupní transformátorek. V nutném případě můžeme použít i telefonní sluchátko. Zapojení je nenáročné na výběr součástek, úmyslně jsou voleny nejběžnější typy tranzistorů. Zařízení pracuje až do teploty okolí přesahující +40 °C. Oba generátory i koncový zesilovač by měly pracovat s libovolnými typy tranzistorů, podmínkou je, aby zejména tranzistory T_1 a T_4 měly proudový zesilovací činitel větší než 50.

Přístroj lze také vyrobit technikou spojovaných dutých nýtků. V takovém případě použijeme pertinaxovou destičku s rozměry 60 × 95 (mm), nejlépe tlustou 1 mm až 1,5 mm, a předběžně rozvrhneme umístění součástek. V místech pájecích bodů vyvrtáme otvory, do nichž vsadíme duté mosazné nýtky s průměrem 2 mm a roznýtujeme je. Součástky do nýtků zapájíme, drátové spoje vedeme na opačné straně desky.

Obsahuje-li zapojení sítový napájecí zdroj (obr. 171), je třeba jej daleko lépe zabezpečit. Přístroj musí být v ochranném krytu, musí být zajištěn proti požáru a umístěn v takovém prostředí, kde při náhodném zkratu nemůže vzniknout požár (nejlépe v suchém prostředí s izolovanou nehořlavou podložkou). Má být také zabezpečen proti zneužití a proti úrazu elektrickým

proudem. Nesmějí k němu mít přístup děti.

Napájecí zdroj má mít síťový vypínač a dvě pojistky — jednu na primární (tj. sítové) straně transformátoru, druhou pro jištění samotného napájecího okruhu přístroje. Vzhledem k tomu, že zařízení pracuje trvale bez dozoru, má být zdroj předimenzován. Stabilizační dioda D₂ musí mít chladič, protože proud I_z je větší než 20 mA a je dán velikostí sekundárního napětí transformátoru a velikostí omezovacího odporu rezistoru R_1 . Dioda D_1 je bez chladiče. Jako síťový transformátor lze z výhodou použít zvonkový transformátor, který je běžně v prodeji.

Vyzkoušený přístroj umístíme uprostřed prostoru, který chceme deratizovat. Popisovaný přístroj není ideálním řešením pro hubení drobných hlodavců, ale je to užitečný a zajímavý výsledek současné techniky.

81. ELEKTRONICKÝ SBĚRAČ VČELÍHO JEDU

Mezi unikátní ektronické přístroje bezpochyby patří i elektronický sběrač včelího jedu. Včelí jed je vzácná a cenná surovina. Její sběr je nutné provádět tak, aby se nenarušila kvalita včelstva, zejména aby včela jed pouze vypustila, aniž by si poškodila žihadlo. Sběr se může provádět i pomocí elektronických přístrojů, které dodávají impulsy dráždící včely. Protože se jed sbírá uvnitř úlu, je třeba, aby impulsy včelu dráždily, ale aby neusmrcovaly, nevyrušovaly celé včelstvo a aby působily pouze v místč, kde se sběr jedu provádí. Popisovaný přístroj jsme převzali ze sovětské literatury (časopis RADIO (SSSR) 11/1977) a jeho konstruktérem je žák šesté třídy Jurij Belozerovoj, který jej pod vedením V. Voznjukova vyrobil v laboratoři radioelektroniky Novosibirského oblastního pionýrského domu (rusky Obl. S. J. T., tj. v předkladu Oblastní stanice mladých techniků). Princip činnosti je patrný ze schématu na obr. 172. Základem přístroje je blokovací generátor tvořený tranzistorem T₁ a transformátorem Tr₁. Generátor dává impulsy s kmitočtem přibližně 1 kHz a šířkou 20 μ s až 30 μ s. Na výstupech x má být vrcholové napětí 40 V až 50 V (měřit osciloskopem nebo voltmetrem, schopným měřit vrcholovou hodnotu napětí). Přes vazební kondenzátor C_2 je připojena kontrolní část přístroje. To je v podstatě detektor se zesilovacím stejnosměrným stupněm (tranzistor T2), který má místo zatěžovacího rezistoru zapojen indikační miliampérmetr mA. Miliampérmetr má dvě fun kce:

- 1. indikuje činnost multivibrátoru,
- 2. ukazuje množství a konec odběru včelího jedu.

Jakmile se naplní korýtko včelím jedem, zmenší se výstupní odpor na svorkách x, blokovací oscilátor se zatlumí a ručka miliampérmetru má stále menší nebo až nulovou výchylku.

Obr. 172. Elektronický sběrač včelího jedu

Jednotlivé úly jsou připojeny na výstupních svorkách x; přístroj umožňuje připojení většího množství úlů (autor originálu uvádí až 12). Úly mohou být připojeny k přístroji dvojlinkou až na vzdálenost 25 m. Uvnitř je sběrací rampa, ve které jsou izolovaně nataženy dva holé vodiče, do kterých přivádíme impulsy z výstupů x. Autor přístroje doporučuje přerušovat sběr jedu v jednom úle vždy po 5 minutách.

Použité součástky

Ir transformátorové plec ky EI 12 × 12 (mm)
I. vinutí 60 závitů
II. vinutí 250 závitů
III. vinutí 1200 závitů
mA miliampérmetr 1 mA (nebo až 5 mA)

originální součástky tuzemské součástky vhodné jako náhr ada GC 519 T_1 , T_2 MP 40 D9Ž 0A 5 \mathbf{D} $10 \text{ k}\Omega; \text{TR } 151$ R_1 $10~\mathrm{k}\Omega$ 220 k Ω ; TR 151 R_2 $220~\mathrm{k}\Omega$ $2,2 \text{ k}\Omega; \text{ TR } 151$ R_3 $2,2 \text{ k}\Omega$

 C_1 1 μ F/10 V 1 μ F; TC 986 nebo TE 905 C_2 , C_3 100 nF 100 nF; TC 181

82. TOPENÍ V AKVÁRIU

Každý i začínající akvarista ví, že některé druhy rybek jsou choulostivé na kolísání teploty vody a že navíc obvykle vyžadují, aby teplota byla nejenom stálá, ale i vyšší, než bývá kolísající teplota okolí. Do akvária je proto nutné vestavět přídavné topení.

Při normální teplotě okolí 18 až 20 °C je třeba, aby příkon topného tělesa byl asi 1 W na litr obsahu nádrže akvária. Takže pro běžné 25 litrové akvárium příkon topného tělíska 25 W stěží stačí. Na výrobu topných tělísek existuje mnoho návodů, nicméně se domníváme, že zejména z hlediska bezpečnosti je lépe netopit žádným podomácku vyrobeným odporovým topidlem, ale je třeba použít odborně vyrobené topné těleso. V akváriu je mokré, zvláště dobře vodivé prostředí, kde může velmi snadno dojít k úrazu elektrickým proudem. Také se příliš nedoporučuje používat k přitápění vody ponorné vařiče. Ty jsou sice z hlediska možného úrazu elektrickým proudem dobře zabezpečeny, ale obvykle velký tepelný výkon takovéhoto vařiče znamená nebezpečí velké povrchové teploty, a tak v nádrži vznikají zóny s různě teplou vodou. Navíc při jakémkoliv selhání regulace zahynou rybičky.

Kromě dovážených topných těles lze na našem trhu dostat topná tělesa, která vyrábí DIPRA, družstvo invalidů v Praze. Jejich typy 23-011 se vyrábějí pro výkon 15 W, 25 W, 40 W a 50 W. Tělesa lze paralelně spojovat, takže je lze z hlediska koloběhu vody lépe rozmístit v nádrži akvária. Stejně jako ponorné vařiče nelze ani toto topení zapínat na vzduchu, ale musí být vždy ponořeno vc vodě tak, aby hladina byla mezi ryskami plus a minus. Topné tělísko je ve skleněném válci, a musí se tedy chránit před mechanickými nárazy. Je-li skleněný ochranný kryt poškozen, nesmíme jej dále používat a těleso je třeba vyřadit z provozu.

Automatická regulace topení nahrazuje hlídání teploty, přesto ale teploměr v akváriu zůstává nezbytným doplňkem. Do nádrže akvária je třeba ještě umístit tepelné čidlo, které dodává regulátoru informaci o teplotě vody. V obou našich návodech používáme jako tepelné čidlo perličkový termistor 13NR15, který má při teplotě 25 °C odpor 10 k Ω . Tento termistor musíme zatavit nebo zalepit epoxidovým tmelem do tenké skleněné trubičky.

Schéma jednoduchého regulátoru je na obr. 173. Základem funkce regulátoru je můstkový snímač. V jedné větvi tohoto můstku je v sérii s rezistorem R_2 a s trimry P_2 a P_3 zapojen termistor R_t . Ve druhé větvi jsou rezistory R_9 a R_{10} . Hrubě se můstek vyrovnává trimrem P_2 , jemně trimrem P_3 , kterým na hotovém přístroji nastavujeme výstupní teplotu vody v nádrži. Členy RC, složené ze součástek R_3 , C_1 a R_4 , C_2 , tvoří v bázi tranzistoru T_1 integrační filtr, který omezí vznik oscilací na následujících tranzistorech T_1 a T_2 , zapojených jako stejnosměrný rozdílový zesilovač. Pro zabránění vzniku oscilací je vhodné, aby přívody od termistoru byly co nejkratší. Možné je i připojení stíněným kablíkem, vždy ale s izolací.

V diagonále můstku jsou připojeny báze tranzistorů T, a T2, které jsou

zapojeny jako stejnosměrný rozdílový zesilovač se společným emitorovým rezistorem R_7 . Proto je vhodné, aby oba tranzistory měly přibližně shodný proudový zesilovací činitel. Třetí tranzistor, T_3 , tvoří jenom oddělovací a zesilovací člen, který má ve svém kolektorovém obvodu připojeno relé.

Je-li teplota vody v nádrži akvária menší než nastavená teplota, je na bázi tranzistoru T_1 kladné napětí, které způsobí, že tento tranzistor je otevřený. Protože tranzistor T_3 , připojený do obvodu kolektoru T_1 , je typu PNP, je otevřený i tento tranzistor a relé Re je sepnuto. Jakmile začne ∇ nádrži stoupat teplota, klesá odpor termistoru až do chvíle, kdy se na bázi tran-

Obr. 174. Regulátor topení s tyristorem

zistoru T_1 objeví menší napětí než na bázi tranzistoru T_2 . Pak se začne tranzistor T_1 uzavírat a tranzistor T_2 otevírat. Aby tento proces byl lavinovitý, má zesilovač zavedenu malou kladnou zpětnou vazbu přes potenciometr P_1 . Jakmile se totiž začíná zavírat tranzistor T_3 , klesá kladné napětí přes potenciometr P_1 , až dojde ke skokovému jevu, který způsobí rychlé odpadnutí relé Re. Tato zpětná vazba způsobuje i tzv. hysterezi celé regulace. To znamená, že relé, které svými kontakty spíná napájecí síťové napětí topných těles, sepne při jiné teplotě vody, než při jaké rozepne. Tento rozdíl je nastavitelný právě potenciometrem P_1 , tedy velikostí kladné zpětné vazby, a měl by se pohybovat asi v rozmezí od 0,1 °C do 0,5 °C. Čím těsnější a větší je kladná zpětná vazba, tím rychlejší je překlopení relé a tím větší je rozdíl mezi teplotami. Tato hystereze je nutná proto, aby při dosažení nastavené teploty relé neustále nespínalo a nerozpínalo a aby mezi topnými cykly nastala dostatečná časová prodleva. Při rozepnutí relé se přeruší topný cyklus

a předpokládá se, že voda pozvolna chladne. Perličkový termistor pozvolna zvětšuje svůj odpor a na bázi tranzistoru T_1 stoupá kladné napětí až do okamžiku, kdy je toto napětí větší než napětí na bázi tranzistoru T_2 . Pak se opět otevře tranzistor T_1 , zavře se tranzistor T_2 a lavinovým způsobem přes tranzistor T_3 sepne relé Re, které opět zapne topení.

Základem napájecího zdroje je transformátor navinutý na jádru EI 20×20 (mm). Primární vinutí na napětí 220 V má 2460 závitů vodiče s průměrem 0.18 mm. Sekundární vinutí má napětí 24 V a 306 závitů vodiče s průměrem 0.35 mm. K usměrnění stačí čtyři malé diody KY 130, zapojené do můstku. Stabilizační diody D_2 a D_3 jsou na malých chladičích.

Použité relé typu RP 100 může spínat napětí do 220 V a proud do 5 A. Druhý typ regulátoru je schematicky zobrazen na obr. 174. Jak plyne z porovnání obou obrázků, jde pouze o analogické zapojení. Vlastní zapojení snímacího termistorového perličkového termistoru v můstku je totožné a má stejnou funkci. Teplota se hrubě nastavuje trimrem P_1 a jemně trimrem P_2 . Kladná zpětná vazba je zde nastavena rezistory R_3 a R_{11} . Místo spínacího relé je použit tyristor, kterým přímo spínáme topné těleso. Tyristor i usměrňovací diody D_2 až D_5 musí být dimenzovány tak, aby trvale snesly topný proud do tělesa. Z hlediska chlazení musí být tyristor i diody na chladičích. V nakresleném schématu lze připojit topné těleso až do výkonu 100 W při napájecím napětí 220 V. V síťovém přívodu je nutný odrušovací filtr. Obě cívky (L_1 a L_2) mají po 20 závitech vodiče s průměrem 0,5 mm a jsou navinuty na společném toroidním jádru.

Při rekonstrukci tohoto regulátoru musíme myslet zvláště na to, že všechny jeho součástky jsou galvanicky spojeny se sítí. Jestliže jsme tedy ušetřili relé, které galvanicky oddělovalo sít a sítový transformátor, musíme regulátor provést tak, aby nebylo možné dotknout se žádné jeho živé části.

Převodní tabulky pro staré a nové označování jmenovitých hodnot odporů a kapacit

Odpory

Jmenovitá hodnota	Staré označení	Nové označení
0,15 Ω	j15	R15
$1,5 \Omega$	lj5	1 R 5
15Ω	15	15R
$1~\mathrm{k}\Omega$	lk	1 K 0
$5,6 \ \mathbf{k}\Omega$	5 k 6	$5\mathbf{K}6$
$100~\mathrm{k}\Omega$	M1	100K
$1~\mathrm{M}\Omega$	1 M	1 M O
$3.3 M\Omega$	3M3	3M3
$1.5~\mathrm{G}\Omega$	1G5	1 G 5

Kapacity

Jmenovit á hodnot a	Staré označení	Nové označení
0,15 pF	j15	p15
15 p F	15	1 5p
470 pF	47 0	470 p
l n F	1k	$\mathbf{ln0}$
1,5 nF	1 k 5	1n5
500 nF	M5	500n (μ5)
1,5 μ F	1 M 5	1μ5 ີ່
15 μF	15 M	15μ
100 μF	G1	10ομ
l mÈ	1 G	$1 \text{m} \dot{0}$

Literatura

- [1] Arendáš, M. Ručka, M.: Nabíječe a nabíjení. SNTL, Praha 1978.
- [2] Bém, J. a kol.: Integrované obvody a co s nimi. SNTL, Praha 1977.
- [3] Hrubý, F.: Integrovaný obvod pro fázové řízení triaků a tyristorů MAA 436. Sdělovací technika, 12/1974.
- [4] Slipka, J. Šmaha, J.: Zobrazovací prvky a jejich elektronické obvody. SNTL, Praha 1977.
- [5] Škeřík, J.: Receptář pro elektrotechnika. SNTL, Praha 1982.
- [6] Afinjan Koloskov: Elektromechanický stabilizátor. Časopis Radio (SSSR), 6/1969.
- [7] Smutný, T.: Stavebnice číslicové techniky. Amatérské radio, 9/1974.

Elektrotechnické normy

- ČSN 33 0160 Elektrotechnické předpisy. Značení vodicích svorek elektrických předmětů a zařízení. 1981
- ČSN 33 0300 Elektrotechnické předpisy. Druhy prostředí pro elektrická zařízení. 1980
- ČSN 33 0331 Elektrické přístroje na napětí do 1000 V. Druhy krytí. 1978
- ČSN 33 2610 Elektrotechnické předpisy. Akumulátorové a nabíjecí stanice a stanoviště akumulátorů. 1980
- ČSN 34 0165 Předpisy pro značení holých a izolovaných vodičů barvami nebo číslicemi. 1973
- ČSN 34 0350 Předpisy pro pohyblivé přívody a pro šňůrová vedení. 1965
- ČSN 34 1020 Předpisy pro dimenzování a jištění vodičů a kabelů. 1972
- ČSN 34 1090 Předpisy pro prozatímní elektrická zařízení. 1976
- ČSN 34 3100 Bezpečnostní předpisy pro obsluhu a práci na elektrických zařízeních. 1967
- ČSN 34 3101 Bezpečnostné predpisy pre obsluhu a prácu na elektrických vedeniach. 1967
- ČSN 34 3102 Bezpečnostní předpisy pro obsluhu a práci na elektrických strojích. 1967
- ČSN 34 3103 Bezpečnostní předpisy pro obsluhu a práci na elektrických přístrojích a rozváděčích. 1967
- ČSN 34 3104 Bezpečnostní předpisy pro obsluhu a práci v elektrických provozovnách. 1967
- ČSN 34 3105 Bezpečnostní předpisy pro obsluhu a práci ve zkušebních prostorech. 1967
- ČSN 34 3800 Revize elektrických zařízení a hromosvodů. 1967

Ing. Miroslav Arendáš, Ing. Milan Ručka

AMATÉRSKÁ ELEKTRONIKA V DOMÁCNOSTI A PŘI REKREACI I

DT 621.398:689

Vydalo SNTL — Nakladatelství technické literatury, n. p., Spálená 51, 113 02 Praha 1 v roce 1989 jako svou 10 761. publikaci. Redakce elektrotechnické literatury. Odpovědná redaktorka Ing. Marie Hauptvogelová. Vazbu navrhl Vladimír Jacák. Technická redakce Aleš Poledňák. Vytiskl ofsetem Tisk, knižní výroba, n. p., Brno, závod 1. 224 stran, 174 obrázků, 8 tabulek. Typové číslo L26-A-II-84/52793. Vydání druhé, nezměněné. Náklad 40 000 výtisků. 17,32 AA, 17,60 VA.

05/38Cena vázaného výtisku Kčs35, -510/21,856

Publikace je určena všem zájemcům o elektroniku, zejména radioamatérům.

04-502-89 Kčs 35,—

