CÁC BÀI TOÁN PHƯƠNG TRÌNH HÀM TRONG TOÁN HỌC TUỔI TRỂ GẦN ĐÂY

File này đã được Update từ đầu năm 2009 đến hết năm 2011

I. NHỮNG BÀI TOÁN CỦA NĂM 2009

Bài T11/375: - THTT tháng 1/2009 tr25

Cho hàm số $f: \mathbb{R} \longrightarrow \mathbb{R}$ thỏa mãn hai điều kiện:

f(0) = 0 và $\frac{f(t)}{t}$ là hàm đồng biến trên $\mathbb{R} \setminus \{0\}$. CMR với các số dương x, y, z ta luôn có:

$$x.f(y^2 - zx) + y.f(z^2 - xy) + z.f(x^2 - yz) \ge 0$$
 (1)

W

Theo giả thiết thì hàm số $\frac{f(t)}{t}$ là hàm đồng biến trên $\mathbb{R}\setminus\{0\}$, nên tồn tại các giới hạn:

 $\lim_{t\to 0^-}\frac{f(t)}{t}\ v\grave{a}\lim_{t\to 0^+}\frac{f(t)}{t}.\ \ Chọn\ d\in R\ sao\ cho: \lim_{t\to 0^-}\frac{f(t)}{t}\leq d\leq \lim_{t\to 0^+}\frac{f(t)}{t}\ \ \text{ta thu được hàm}$

$$g(x) = \begin{cases} \frac{f(t)}{t} & \text{n\'eu } t \neq 0 \\ d & \text{n\'eu } t = 0 \end{cases}$$

 $D\tilde{a}t: y^2 - zx = a; z^2 - xy = b; x^2 - yz = c \ thi \ xa + yb + zc = 0.$

Không mất tính tổng quát có thể giả sử: $a = \max\{a,b,c\}$

$$Do: a+b+c = x^2 + y^2 + z^2 - xy - yz - zx \ge 0 \ n\hat{e}n \ a \ge 0.$$

Do
$$xa + yb + zc = 0$$
 $n\hat{e}n$ $yb = -xa - zc$ $v\hat{a}$ $zc = -xa - yb$

Ta biến đổi vế trái của (1):

$$T = x.f(a) + y.f(b) + z.f(c) = xag(a) + ybg(b) + zcg(c)$$
 đưới dạng

$$T = xag((a) - g(b)) + zc(g(c) - g(b))$$
 (2)

$$T = xa(g(a) - g(c)) + yb(g(b) - g(c))$$
 (3)

Nếu
$$T < 0$$
 thì từ (2), suy $ra : c(g(c) - g(b)) < 0$ (4)

$$T\dot{u}(3)$$
 suy $ra:b(g(b)-g(c))<0$ (5)

$$Tù(4)$$
 và (5) thu được : $(b-c)(g(b)-g(c))<0$ mâu thuẫn vì $g(x)$ đồng biến trên R

$$V \hat{a} y : T \ge 0$$

 $\text{B}^{3}_{ang} \text{ thức } x^{3}_{ay} \text{ ra khi } x = y = z.$

Bài T10/376: - THTT tháng 2/2009 tr24

Cho hàm số f liên tục trên R, thỏa mãn hai điều kiện:

$$f(2010) = 2009 \ va\ f(x).f_4(x) = 1, \ \forall x \in \mathbb{R}, \ ki \ hiệu \ f_4(x) = f(f(f(f(x)))).$$
 Tính $f(2008)$

Gọi D_f là tập giá trị của hàm số f(x). Theo giả thiết thì: $2009 \in D_f$.

$$T \hat{u} f(x). f_4(x) = 1, \forall x \in \mathbb{R} \text{ suy } ra: f_4(2010) = \frac{1}{2009} \in D_f \text{ và } x f_3(x) = 1, \forall x \in D_f$$

Do f liên tục trên
$$D := \left\lceil \frac{1}{2009}; 2009 \right\rceil \subset D_f$$
 nên $f_3(x) = \frac{1}{x}, \forall x \in D$

Từ đó suy ra f là đơn ánh trên D và do f là hàm liên tục trên R nên suy ra f là hàm nghịch biến trên D.

 $Gi\mathring{a} \ s\mathring{u} \ \exists x_0 \in D \ sao \ cho \ f(x_0) > \frac{1}{x_0}.$

Do f nghịch biến nên $f_2(x_0) < f(\frac{1}{x_0})$ (1) và $\frac{1}{x_0} = f_3(x_0) > f_2(\frac{1}{x_0})$.

Từ đây suy ra: $f(\frac{1}{x_0}) < f_3(x_0) = x_0$ (2)

Từ (1) và (2) suy ra: $x_0 > f_2(x_0)$ hay $f(x_0) < f_3(x_0) = \frac{1}{x_0}$, mâu thuẫn với điều đã giả thiết.

Vậy không tồn tại $x_0 \in D$ để $f(x_0) > \frac{1}{x_0}$

Lập luận tương tự, ta cũng CM được không tồn tại $x_0 \in D$ để $f(x_0) < \frac{1}{x_0}$

Vậy nên: $f(x) = \frac{1}{x}, \forall x \in D. \, Mặt \, khác, \, do \, 2008 \in D \, nên \, suy \, ra: f(2008) = \frac{1}{2008}$

Bài T10/377: - THTT tháng 3/2009 tr24

Tìm tất cả các hsố $f: \mathbb{R} \longrightarrow \mathbb{R}$ thỏa mãn: $f(x^3 - y) + 2y(3f^2(x) + y^2) = f(y + f(x)), \forall x, y \in \mathbb{R}$ (1)

W

Thay $y = x^3 \text{ vào } (1)$, ta được: $f(0) + 2x^3 (3f^2(x) + x^6) = f(x^3 + f(x)), \forall x \in \mathbb{R}$ (2)

Tiếp tục thay y = - f(x) vào (1), ta thu được: $f(x^3 + f(x)) + 2f(x)(3f^2(x) + f^2(x)) = f(0), \forall x \in \mathbb{R}$

Hay $f(x^3 + f(x)) = 8f^3(x) + f(0), \forall x \in \mathbb{R}$ (3)

Từ các (2) và (3), ta suy ra: $f(0) + 2x^3(3f^2(x) + x^6) = 8f^3(x) + f(0), \forall x \in \mathbb{R}$

 $Hay: (f(x) - x^3)(4f^2(x) + f(x)x^3 + x^6) = 0, \forall x \in \mathbb{R}$ (4)

Nhận xét rằng: $4f^2(x) + f(x)x^3 + x^6 = (2f(x) + \frac{x^3}{4})^2 + \frac{15x^6}{16} > 0, \forall x \neq 0$

Do đó: (4) \Leftrightarrow $f(x) = x^3, \forall x \in \mathbb{R}$

Thử hàm này vào điều kiện bài toán, ta thấy thỏa mãn.

Vậy hàm số cần tìm có dạng: $f(x) = x^3, \forall x \in \mathbb{R}$

Bài T10/378: - THTT tháng 4/2009 tr23

Tìm tất cả các hàm số f, g, h $\,$ xác định và liên tục trên $\,$ R $\,$ và thỏa mãn điều kiện:

 $f(x+y) = g(x) + h(y), \forall x, y \in \mathbb{R}$ (1)

W

Trong (1) lần lượt cho y = 0 và x = 0 ta thu được:

 $g(x) = f(x) - a, \forall x \in \mathbb{R}, v \acute{o}i \ a = h(0)$ (2)

 $h(y) = f(y) - b, \forall y \in \mathbb{R}, \ v \acute{o}i \ b = g(0)$ (3)

Thay các giá trị từ (2) và (3) vào (1), ta được: $f(x+y) = f(x) + f(y) - (a+b), \forall x, y \in \mathbb{R}$

Hay: $\varphi(x+y) = \varphi(x) + \varphi(y), \forall x, y \in \mathbb{R}, v \acute{\sigma} i \varphi(t) = f(t) - (a+b)$ (4)

Đây là PT hàm Cauchy đối với hàm liên tục trên R nên (4) có nghiệm $\varphi(x) = cx$.

Suy ra nghiệm của (1) có dạng: $\begin{cases} f(x) = cx + a + b \\ g(x) = cx + b \\ h(x) = cx + a \end{cases}$ (5), trong đó a, b, c tùy ý.

Trang: 2

Thử lại, ta thấy các hàm trong (5) thỏa mãn bài ra.

Biên tập GV: HQH - TN http://sites.google.com/site/toantintrangchu/

Bài T12/379: - THTT tháng 5/2009 tr24

Tìm tất cả các hsố f(x) xác định và liên tục trên [0;1], có đạo hàm trong (0;1) và thỏa 2 điều kiện: $a/(20.f'(x)+11f(x)+2009 \le 0, \forall x \in (0;1)$

b/
$$f(0) = f(1) = \frac{-2009}{11}$$

Giả sử tồn tại hàm số f(x) thỏa mãn các điều kiện bài ra. Xét hàm số:

$$g(x) = e^{\frac{11}{20}x} \left(f(x) + \frac{2009}{11} \right) tr\hat{e}n \ [0;1]$$

Vì f(x) liên tục trên [0; 1] và có đạo hàm trong (0; 1), suy ra g(x) là hàm số hàm số liên tục trên [0; 1] và có đạo hàm trong (0; 1), suy ra g(x) là hàm số liên tục trên [0; 1] có đạo hàm trong (0; 1).

Ta có:
$$g'(x) = \frac{11}{20}e^{\frac{11}{20}x} \left(f(x) + \frac{2009}{11} \right) + e^{\frac{11}{20}x} \cdot f'(x) = \frac{11}{20}e^{\frac{11}{20}x} \left(20f'(x) + 11f(x) + 2009 \right)$$

Từ a/ suy ra $g'(x) \le 0, \forall x \in (0,1)$. Vậy g(x) là hàm đơn điệu giảm trong khoảng (0,1). Mặt khác, ta

có:
$$f(0) = f(1) = -\frac{2009}{11}$$
 nên $g(0) = g(1) = 0$

Suy ra:
$$g(x) = 0$$
 trên [0;1] và $f(x) = -\frac{2009}{11}$

Thử lại, ta thấy hàm số này thỏa mãn các điều kiện bài ra.

Bài T11/380: - THTT tháng 6/2009 tr23

Tìm tất cả các hàm số $f: \mathbb{R} \longrightarrow \mathbb{R}$ thỏa mãn: $f(n^2) = f(m+n).f(n-m) + m^2, \forall m, n \in \mathbb{R}$ (1)

Thay m = 0; n = 0 vào (1), ta được f(0) = 1 hoặc f(0) = 0

Thay n = 2 và m = 2 và o(1), ta được $o(4) = o(4) \cdot f(0) + 4$ nên $o(4) \neq 1$. Do $o(4) \neq 1$.

Thay m = t; n = t vào (1), ta được: $f(t^2) = f(2t).f(0) + t^2 = t^2$, tức là f(x) = x, $\forall x \ge 0$ (2)

 $X\acute{e}t \ n = 0 \ v\grave{a} \ m = t > 0.$

Thế vào điều kiện (1), ta được: $f(0) = f(t).f(-t) + t^2$, hay $0 = t.f(-t) + t^2$, $\forall t \in \mathbb{R}^+$

Suy ra: $f(-t) = -t, \forall t \in \mathbb{R}^+$ (3)

Từ (2) và (3) suy ra: $f(x) \equiv x$. Thử lại điều kiện (1), ta thấy hàm này thỏa mãn Kết luận: $f(x) \equiv x$.

Bài T4/THPT (Thi 45 năm THTT): - THTT tháng 8/2009 tr26

Hãy xác định tất cả các hàm số $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ thỏa mãn điều kiện:

$$f(xy).f(yz).f(zx).f(x+y).f(y+z).f(z+x) = 2009$$
 (1) $\forall x, y, z \in \mathbb{R}_{+}$

Cho x = y = z = t, từ (1) ta thu được:
$$f(2t).f(t^2) = \sqrt[3]{2009}$$
 (2)

Tiếp theo, cho x = y = t, z = 1, ta được: $f(t^2).f(2t)(f(t).f(t+1))^2 = 2009$

Kết hợp với (2), ta suy ra:
$$(f(t).f(t+1))^2 = \sqrt[3]{2009^2}$$
 hay $f(t).f(t+1) = \sqrt[3]{2009}$ (3)

Tiếp theo thay t = t + 1 trong (3) rồi lại kết hợp với (3) ta suy ra: $f(t+2) = f(t), \forall t \in \mathbb{R}$ (4)

Trong (1) chọn z = 1 và kết hợp với (3), ta thu được:
$$f(xy).f(x+y) = \sqrt[3]{2009}$$
 (5)

Lần lượt thay y = 2 và y = 4 trong (5), ta nhận được:

$$f(2x).f(x+2) = \sqrt[3]{2009}$$

$$f(4x).f(x+4) = \sqrt[3]{2009}$$
(6)

Kết hợp với (4), suy ra f(2x) = f(4x) hay $f(2t) = f(t), \forall t \in \mathbb{R}$ (7)

Từ (4), (6), và (7) cho ta $(f(x))^2 = \sqrt[3]{2009}$ hay $f(x) = \sqrt[6]{2009}$, do f(x) > 0, $\forall x \in \mathbb{R}_+$

Thử lại, ta thấy hàm f(x) = thỏa mãn điều kiện đề bài.

Lập luận tương tự, ta cũng chứng minh được nghiệm của bài toán tổng quát:

"Cho a>0, xác định tất cả các hàm số $f:\mathbb{R}_{_{+}}\longrightarrow\mathbb{R}_{_{+}}$ thỏa mãn điều kiện:

$$\prod_{i>j;i,j=1}^n f(x_ix_j).f(x_i+x_j) = a, \ \forall x_i \in \mathbb{R}_+ \ c\acute{o} \ nghiệm \ duy \ nhất \ là \ hàm hằng \ f(x) \equiv a^{\frac{1}{n(n-1)}}$$

Bài T7 THPT (Thi 45 năm THTT): - THTT tháng 10/2009 tr26

Cho hàm số $f: \mathbb{N} \longrightarrow \mathbb{N}$ thỏa mãn các tính chất:

$$\begin{cases} (f(2n) + f(2n+1) + 1).(f(2n+1) - f(2n) - 1) = 3(1 + 2f(n)) \\ f(2n) \ge f(n) \end{cases}$$

với mọi số tự nhiên n. Hãy tìm các số tự nhiên n sao cho $f(n) \le 2009$

Do 3(1+2f(n)) là số nguyên dương lẻ, suy ra f(2n+1) - f(2n) - 1 là số nguyên dương lẻ, do đó:

 $f(2n+1) \ge f(2n) + 2 > f(2n) \ge f(n)$ đúng với mọi số tự nhiên n

Bởi vậy: $f(2n+1)+f(2n)+1 \ge 2f(2n)+3 > 1+2f(n), \forall n \in \mathbb{N}$

$$T \grave{u} \, d\acute{o} \, ta \, c\acute{o} : \begin{cases} f(2n+1) - f(2n) - 1 = 1 \\ f(2n+1) + f(2n) + 1 = 3(1+2f(n)) \end{cases}, \, \forall n \in \mathbb{N}$$

Suy ra $\forall n \in \mathbb{N}$ thì f(2n+1) = f(2n) + 2; f(2n) = 3f(n)

Tiếp theo ta sẽ CM bằng quy nạp theo $\forall n \in \mathbb{N}$ rằng: f(n) < f(n+1) (2)

Từ (1) ta có: f(1) = f(0) + 2 > f(0) (f(0) = 3f(0) = > f(0) = 0)

Giả sử đã có $f(0) < f(1) < ... < f(k), k \in \mathbb{N}^*$

Nếu k chắn, $k = 2m \ (m \in \mathbb{N}^*)$ thì: f(k+1) = f(2m+1) = f(2m) + 2 > f(2m) = f(k)

Nếu k lẻ, k = 2m + 1 ($m \in \mathbb{N}$) thì:

$$f(k+1) = f(2m+2) = 3f(m+1) \ge 3(f(m)+1) > 3f(m) + 2 = f(2m) + 2 = f(2m+1) = f(k)$$

(Chú ý: k = 2m + 1 => m + 1 ≤ k => f(m) < f(m+1) => f(m) + 1 ≤ f(m+1) do tất cả các số ở đây đều là các số nguyên)

Như vậy trong mọi Trường hợp, ta có: f(k+1) > f(k), tức là khẳng định (2) đúng

Từ (1) ta đã có: f(0) = 0; f(1) = 2

Do đó:

$$f(2) = 3f(1) = 6$$
; $f(3) = f(2) + 2 = 8$; $f(13) = f(12) + 2 = f(2^2.3) + 2 = 3^2.f(3) + 2 = 74$

$$f(27) = f(2.13+1) = 3.f(13) + 2 = 224$$

$$f(53) = f(2^2.13+1) = 3^2.f(13) + 2 = 668$$

$$f(108) = f(2^2.27) = 3^2. f(27) = 2016$$

$$f(107) = f(2.53+1) = 3.f(53) + 2 = 2006$$

Bởi vậy: f(107) < 2009 < f(108). Kết hợp với (2) ta có kết luận $f(n) \le 2009 \Leftrightarrow n \in \{0,1,2,...,107\}$

II. NHỮNG BÀI TOÁN CỦA NĂM 2010

Bài T10/387: - THTT tháng 1/2010 tr23

Có tồn tại hay không hàm số $f: \mathbb{R} \longrightarrow \mathbb{R}$ thỏa mãn đồng thời 2 tính chất:

b/
$$f(x+2008).(f(x)+\sqrt{2009}) = -2010, \forall x \in \mathbb{R}$$
?

Giả sử tồn tại hàm số f liên tục trên R và thỏa mãn điều kiện:

$$f(x+2008).(f(x)+\sqrt{2009}) = -2010, \forall x \in \mathbb{R}$$
 (1)

Khi đó: $f(x) \neq 0$ và $f(x) \neq 2009$ trên \mathbb{R} . Vì f liên tục trên \mathbb{R} nên chỉ có thể xảy ra một trong 3 thợp đối với miền giá trị của f (kí hiệu là Imf) như sau:

$$\operatorname{Im} f \subset (-\infty; -\sqrt{2009}); \operatorname{Im} f \subset (-\sqrt{2009}; 0); \operatorname{Im} f \subset (0; +\infty).$$

*
$$N\acute{e}u \text{ Im } f \subset (-\infty; -\sqrt{2009}) \text{ thi } f(x+2008).(f(x)+\sqrt{2009}) > 0 > -2010, \forall x \in \mathbb{R}$$

*
$$N\acute{e}u \text{ Im } f \subset (-\sqrt{2009}; 0) \text{ } thi - \sqrt{2009} < f(x + 2008) < 0$$

$$n\hat{e}n\sqrt{2009} > \left| f(x+2008) \right| v\hat{a} \left| f(x) \right| < \sqrt{2009}, \forall x \in \mathbb{R}$$

kéo theo:
$$\left| f(x+2008).(f(x)+\sqrt{2009}) \right| < 2009 < 2010, \forall x \in \mathbb{R}$$
 (2)

$$Ti(2)$$
 suy $ra: f(x+2008).(f(x)+\sqrt{2009}) > -2010, \forall x \in \mathbb{R}$

*Nếu Im
$$f \subset (0; +\infty)$$
 thì $f(x + 2008).(f(x) + \sqrt{2009}) > 0 > -2010, \forall x \in \mathbb{R}$

Kết luận: Không tồn tại hàm số thỏa mãn điều kiện bài ra.

Bài T11/388: - THTT tháng 2/2010 tr24

Cho hàm số $f: \mathbb{R} \longrightarrow \mathbb{R}$ thỏa mãn các tính chất:

a/
$$f(0) = 1$$
; b/ $f(x) \le 1 \ v \acute{\sigma} i \ \forall x \in \mathbb{R}$;

c/
$$f\left(x + \frac{11}{24}\right) + f(x) = f\left(x + \frac{1}{8}\right) + f\left(x + \frac{1}{3}\right)$$
. Đặt $F(x) = \sum_{n=0}^{2009} f(x+n)$. Hãy tính $F(2009)$

Từ tính chất c/ suy ra:
$$f(x) - f\left(x + \frac{1}{3}\right) = f\left(x + \frac{1}{8}\right) - f\left(x + \frac{11}{24}\right)$$
 (*)

Từ (*) suy ra:
$$f(x+\frac{1}{3}) - f\left(x+\frac{2}{3}\right) = f\left(x+\frac{11}{24}\right) - f\left(x+\frac{19}{24}\right)$$

$$f(x+\frac{2}{3})-f(x+1)=f(x+\frac{19}{24})-f(x+\frac{9}{8})$$

Do đó:
$$f(x) - f(x+1) = f(x+\frac{1}{8}) - f(x+\frac{9}{8}) \Leftrightarrow f(x) - f(x+\frac{1}{8}) = f(x+1) - f(x+\frac{9}{8})$$
 (**)

$$T\dot{u}$$
 (**) suy ra: $f(x+\frac{1}{8}) - f\left(x+\frac{2}{8}\right) = f\left(x+\frac{9}{8}\right) - f\left(x+\frac{10}{8}\right)$

$$f(x+\frac{2}{8})-f\left(x+\frac{3}{8}\right)=f\left(x+\frac{10}{8}\right)-f\left(x+\frac{11}{8}\right)$$

.....

$$f(x+\frac{7}{8})-f(x+1)=f(x+\frac{15}{8})-f(x+2)$$

Do $d\phi$: f(x) - f(x+1) = f(x+1) - f(x+2) (***)

Trong (***) cho x = -1, và do f(0) = 1 ta thu được:

f(-1) + f(1) = 2, nên từ giả thiết b/ suy ra f(-1) = f(1) = 1.

Do do:f(0) = f(1) = f(2) = f(3) = ... = f(2.2009) = 1 và vì vậy <math>f(2009) = 2010.

Bổ đề: Cho cặp số thực dương a, b sao cho ab là số hữu tỉ và hàm số f(x) bị chặn thỏa mãn điều kiện: $f(a+b+x)+f(x)=f(x+a)+f(x+b), \forall x \in \mathbb{R}$ thì hàm số f(x) là hàm số tuần hoàn. (CM theo pp quy nap)

Bài T10/390: - THTT tháng 4/2010 tr23

Với số nguyên dương cho trước, hãy xác định tất cả các hàm số $f: \mathbb{N} \longrightarrow \mathbb{N}$ sao cho với mọi $x, y \in \mathbb{N}$ ta có:

Kí hiệu:
$$\underbrace{f(f(f(...(f(x) + f(y)))...))) = f_m(x) \text{ và } f_1(x) = f(x); f_0(x) = x}_{\text{gồm m lần } f}$$

Từ điều kiện giả thiết 1/ suy ra: Nếu: $f_n(x) = f_n(y) v \dot{\sigma} i \ n \ge 1 \ thì \ x = y$

Trong 2/ thay x bởi x+ y; y bởi 0, ta thu được:

$$f_m(f(x+y)+f(0))=x+y=f_m(f(x)+f(y)), \forall x,y\in\mathbb{N}$$

Suy ra, theo
$$1/\operatorname{co}: f(x+y) + f(0) = f(x) + f(y), \forall x, y \in \mathbb{N}$$
 (1)

Đặt
$$f(0) = a$$
, thì (1) có dạng: $f(x+y) + a = f(x) + f(y)$, $\forall x, y \in \mathbb{N}$ (2)

Thế x = 0; y = 0 vào 2/ ta thu được $f_m(2a) = 0$

Tiếp tục thế $x = f_{m-1}(2a)$; y = 0 vào 2/, ta thu được: $f_m(f_m(2a) + f(0)) = f_{m-1}(2a)$

Suy ra:
$$f_m(a) = f_{m-1}(2a)$$
 hay $f(a) = 2a$ (3)

Từ (2) và (3), bằng quy nạp, ta thu được: $f_m(2a) = (m+2)a$. Suy ra = 0

Vậy (2) có dạng:
$$f(x+y) = f(x) + f(y), \forall x, y \in \mathbb{N}$$
 (4)

Từ đây suy ra
$$f(0) = 0$$
 và $f(x+1) = f(x) + f(1) = f(x-1) + 2f(1) = \dots = f(0) + (x+1)f(1) = (x+1).f(1)$

Đặt
$$f(1) = b$$
 thì $f(x) = bx$, $\forall x \in \mathbb{N}$ và $f_m(f(x) + f(y)) = b^m(bx + by)$ $n\hat{e}n$ $b^m(bx + by) = x + y$, $\forall x, y \in \mathbb{N}$

Suy ra:
$$b^{m+1} = 1$$
 nên $b = 1$ (do $m \ge 1, b \in \mathbb{N}$)

Vây:
$$f(x) = x, \forall x \in \mathbb{N}$$

Thử lại, ta thấy hàm số này thỏa mãn.

Bài T10/392: - THTT tháng 6/2010 tr23

Hãy xác định tất cả các hàm số liên tục $f: \mathbb{R} \longrightarrow \mathbb{R}$ thỏa mãn điều kiện:

$$f(2010x - f(y)) = f(2009x) - f(y) + x, \forall x, y \in \mathbb{R}$$
 (1)

Thay (x;y) = (0;0) vào (1), ta được:f(-f(0)) = 0

Tiếp tục thay (x;y) = (t; -f(0)) vào (1) và sử dụng đẳng thức f(-f(0)) = 0, ta được: f(2010t) = f(2009t) + t, $\forall t \in \mathbb{R}$ (1')

$$hay: g(2010t) = g(2009t) + t, \forall t \in \mathbb{R} \ (2), \ v \acute{o}i \ g(t) = f(t) - t$$

Viết lại (2) dưới dạng:
$$g(x) = g\left(\frac{2009}{2010}x\right), \forall x \in \mathbb{R}$$

Biên tập GV: HQH - TN http://sites.google.com/site/toantintrangchu/

Suy ra, với mọi
$$n \in \mathbb{N}^*$$
, ta có: $g(x) = g\left(\left(\frac{2009}{2010}\right)^n x\right), \forall x \in \mathbb{R}$ (3)

Theo gthiết, hsố f(x) liên tục trên R nên g(x) cũng là hàm số liên tục trên R. Từ (3) ta thu được:

$$g(x) = g\left(\lim_{n \to +\infty} \left(\frac{2009}{2010}\right)^n x\right) = f(0), \forall x \in \mathbb{R}$$

Hay $g(x) = c, \forall x \in \mathbb{R}$, tức là f(x) = x + c, với hằng số c tùy ý.

Thử lại, ta thấy hàm số f(x)=x+c, với hằng số c tùy ý, thỏa mãn điều kiện bài toán.

Bài T12/393: - THTT tháng 7/2010 tr24

Hãy xác đinh tất cả các hàm số liên tục $f: \mathbb{R} \longrightarrow \mathbb{R}$ thỏa mãn điều kiện:

$$f(x+f(y)) = 2y + f(x), \forall x, y \in \mathbb{R}$$
 (1)

Nhận xét rằng f là một đơn ánh. Thật vậy, nếu $f(y_1) = f(y_2)$ thì ứng với mỗi x ta có:

$$f(x+f(y_1)) = f(x+f(y_2))$$
 hay $2y_1 + f(x) = 2y_2 + f(x)$, tức $y_1 = y_2$

Tiếp theo, từ đk (1) của bài ra, ta có tập giá trị của hàm f (nếu tồn tại) là R, nên tồn tại a thuộc R để f(a) = 0

Từ (1), ứng với y = a, ta thu được:

$$f(x+f(a)) = 2a + f(x)$$
 hay $f(x) = 2a + f(x)$, tức $a = 0$ và $f(0) = 0$

Từ (1), ứng với x = 0, ta thu được:

$$f(f(y)) = 2y + f(0) = 2y \text{ hay } f(f(y)) = 2y, \forall y \in \mathbb{R}$$
 (2)

Tiếp tục thay x = f(t) trong (1) và sử dụng (2), ta thu được:

$$f(f(t)+f(y)) = 2y + f(f(t)) = 2y + 2t = 2(y+t) = f(f(y+t))$$

Hay:
$$f(x+y) = f(x) + f(y), \forall x, y \in \mathbb{R}$$
 (3) (do tính đơn ánh của f)

Từ đó (3) là PT hàm Cauchy cộng tính và liên tục, nên có nghiệm f(x) = bx. Thế vào (1), ta thu được: $b^2x = 2x, \forall x \in \mathbb{R}$, $nên\ b = \pm \sqrt{2}$. Thử lại, ta thấy hai hàm số $f(x) = \pm \sqrt{2}x$ thỏa mãn bài ra.

Bài T11/394: - THTT tháng 8/2010 tr25

Hãy xác định tất cả các hàm $f: \mathbb{R} \longrightarrow \mathbb{R}$ thỏa mãn: f(f(x) + y) = f(x + y) + xf(y) - xy - x + 1 (1)

Từ (1) cho y = 0 ta được:
$$f(f(x)) = f(x) + xf(0) - x + 1, \forall x \in \mathbb{R}$$
 (2)

Trong (2) cho x = 0 ta được:
$$f(f(0)) = f(0) + 1$$
 (3)

Tiếp tục, từ (1) thay y bởi f(y) và sử dụng (2) ta thu được:

$$f(f(x) + f(y)) = f(x + f(y)) + xf(f(y)) - xf(y) - x + 1$$

$$= (f(x+y) + yf(x) - xy - y + 1) + x(f(y) + yf(0) - y + 1) - xf(y) - x + 1$$

$$Hay: f(f(x) + f(y)) = f(x+y) + yf(x) + xyf(0) - 2xy - y + 2, \forall x, y \in \mathbb{R}$$
 (4)

Hoán vị vai trò của x và y trong (4), ta thu được:

$$f(f(x) + f(y)) = f(x+y) + xf(y) + xyf(0) - 2xy - x + 2, \forall x, y \in \mathbb{R}$$
 (5)

Từ (4) và (5) suy ra:
$$yf(x) - y = xf(y) - x$$
, $\forall x, y \in \mathbb{R}$ (6)

Trong (6) cho x = 0, y = 1 thì f(0) = 1. Thay vào (3) ta được f(f(0)) = 2

Từ (6) thay y = 1 và sử dụng hệ thức f(f(0)) = 2, ta thu được hàm số f(x) = x + 1

Thử lại, thấy hàm số này thỏa đ
k $\left(1\right)$

Kết luận: Hàm số cần tìm là f(x) = x + 1

Biên tập GV: HQH - TN http://sites.google.com/site/toantintrangchu/

Bài T11/397: - THTT tháng 11/2010 tr24

Cho hàm số f liên tục trên R và thỏa mãn 2 điều kiện:

$$\begin{cases} f(2012) = 2011 \\ f(x).f_4(x) = 1, \ \forall x \in R \end{cases}. \ Ki \ hi\hat{e}u: f_n(x) = \underbrace{f(f(...f(x))...)}_{n \ l\hat{a}n \ f}. \ Tinh \ f(2010)$$

Gọi D_f là tập giá trị của hàm số f(x). Theo giả thiết thì: $2011 \in D_f$.

$$T \dot{u} f(x). f_4(x) = 1, \forall x \in \mathbb{R} \text{ suy } ra: f_4(2012) = \frac{1}{2011} \in D_f \text{ và } x f_3(x) = 1, \forall x \in D_f$$

Do f liên tục trên
$$D := \left[\frac{1}{2011}; 2011\right] \subset D_f$$
 nên $f_3(x) = \frac{1}{x}, \forall x \in D$

Từ đó suy ra f là đơn ánh trên D và do f là hàm liên tục trên R nên suy ra f là hàm nghịch biến trên D

$$Gi\mathring{a} \ s\mathring{u} \ \exists x_0 \in D \ sao \ cho \ f(x_0) > \frac{1}{x_0}.$$

Do f nghịch biến nên
$$f_2(x_0) < f(\frac{1}{x_0})$$
 (1) và $\frac{1}{x_0} = f_3(x_0) > f_2(\frac{1}{x_0})$.

Từ đây suy ra:
$$f(\frac{1}{x_0}) < f_3(x_0) = x_0$$
 (2)

Từ (1) và (2) suy ra:
$$x_0 > f_2(x_0)$$
 hay $f(x_0) < f_3(x_0) = \frac{1}{x_0}$, mâu thuẫn với điều đã giả thiết.

Vậy không tồn tại
$$x_0 \in D$$
 để $f(x_0) > \frac{1}{x_0}$

Lập luận tương tự, ta cũng CM được không tồn tại
$$x_0 \in D$$
 để $f(x_0) < \frac{1}{x_0}$

Vậy nên:
$$f(x) = \frac{1}{x}, \forall x \in D.$$
 Mặt khác, do $2010 \in D$ nên suy $ra: f(2010) = \frac{1}{2010}$

Bài T10/398: - THTT tháng 12/2010 tr22

Tìm tất cả các hàm số $f: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ thỏa mãn các điều kiện:

$$f(f^{2}(m)+2.f^{2}(n)) = m^{2}+2n^{2}, \forall m; n \in \mathbb{N}^{*}$$

(là bài toán loại khó, nhưng hay, loại này từng có trong đề các tạp chí, kỳ thi các nước)

Nhận xét: Nếu m_1 ; $m_2 \in \mathbb{N}^*$; $f(m_1) = f(m_2)$, lấy $n \in \mathbb{N}^*$ tùy ý ta có:

$$m_1^2 + 2n^2 = f(f^2(m_1) + 2.f^2(n)) = f(f^2(m_2) + 2.f^2(n)) = m_2^2 + 2n^2$$

$$\Rightarrow m_1 = m_2$$
. Tức $f(n)$ là hàm đơn ánh

* Với
$$m = n = 1$$
, kí hiệu $a = f(1)$, ta nhận được $f(3a^2) = 3$

Ta lại có:
$$(5a^2)^2 + 2(a^2)^2 = 27a^4 = (3a^2)^2 + 2(3a^2)^2$$

$$\Leftrightarrow f(f^2(5a^2) + 2f^2(a^2)) = 27a^4 = f(f^2(3a^2) + 2f^2(3a^2)) = f(27)$$

$$\Rightarrow f^2(5a^2) + 2f^2(a^2) = 27$$

$$Vi~chi~c\acute{o}~2~c\breve{a}p~c\acute{a}c~s\acute{o}~nguy\^en~dương~(x;y)~thổa~m\~an: x^2 + 2y^2 = 27~l\grave{a}: (x;y) = (3;3)~v\grave{a}$$

$$(x;y) = (5;1)$$
 và do $f(5a^2) \neq f(a^2)$ ta suy $ra: f(5a^2) = 5$; $f(a^2) = 1$

Tuong tu:

$$(5a^{2})^{2} + 2(2a^{2})^{2} = 33a^{4} = (a^{2})^{2} + 2(4a^{2})^{2}$$

$$\Rightarrow f^{2}(5a^{2}) + 2f^{2}(2a^{2}) = f^{2}(a^{2}) + 2f^{2}(4a^{2})$$

$$\Rightarrow 2(f^{2}(4a^{2}) - f^{2}(2a^{2})) = f^{2}(5a^{2}) - f^{2}(a^{2}) = 5^{2} - 1 = 24$$

$$\Rightarrow f^{2}(4a^{2}) - f^{2}(2a^{2}) = 12$$

$$C\tilde{u}ng \ nhu \ v\hat{q}y, \ v\hat{v} \ pt \ x^{2} - y^{2} = 12$$

$$\Leftrightarrow (x - y)(x + y) = 12 \Leftrightarrow (x - y) = 2 \ v\hat{a} \ (x + y) = 6$$

$$\Leftrightarrow x = 4; y = 2 \ . \ Suy \ ra: f(4a^{2}) = 4; \ f(2a^{2}) = 2$$

* Với số nguyên dương m tùy ý, vì:

$$(m+4)^2 + 2(m+1)^2 = m^2 + 2(m+3)^2$$

$$n\hat{e}n$$
: $f^2((m+4)a^2) + 2f^2((m+1)a^2) = f^2(ma^2) + 2f^2((m+3)a^2)$

Do đó, nếu ta đã kết luận được $f(ka^2) = k$ với k = 1;2;...;m+3 (ở trên đã cm với k = 1;2;3;4;5) thì ta suy ra khẳng đinh đó cũng đúng với k = m+4

Bởi vậy, bằng PP quy nạp ta có: $f(ka^2) = k, \forall k \in \mathbb{N}^*$. Khi đó:

$$f(a^3) = f(a.a^2) = a = f(1) \Rightarrow a^3 = 1 \Rightarrow a = 1$$

Như vậy $f(k) = k, \forall k \in \mathbb{N}^*$ và rõ ràng hàm số này thỏa mãn điều kiện của bài toán.

III. NHỮNG BÀI TOÁN CỦA NĂM 2011

Bài T11/399: - THTT tháng 1/2011 tr24

Tìm tất cả các hàm số $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ thỏa mãn: f(x+y) + f(xy) = x + y + xy, $\forall x; y \in \mathbb{R}^+$ (1)

W

Thay x = 2; y = 2 vào (1), ta được f(4) = 4

Lần lượt thay (x = 1; y = 1); (x = 2; y = 1); (x = 3; y = 1) vào (1), ta thu được:

$$\begin{cases} f(2) + f(1) = 3 \\ f(3) + f(2) = 5 \\ f(4) + f(3) = 7 \end{cases}$$

Do
$$f(4) = 4$$
, $n\hat{e}n \ f(3) = 3$; $f(2) = 2 \ v\hat{a} \ f(1) = 1$

Thế x = t; y = 1/t vào (1) và sử dụng đẳng ức f(1) = 1, ta thu được:

$$f(t+\frac{1}{t})+f(1)=t+\frac{1}{t}+1; \ \forall t \in \mathbb{R}^+. \ Hay: f(t+\frac{1}{t})=t+\frac{1}{t}; \ \forall t \in \mathbb{R}^+$$
 (2)

Do $t + \frac{1}{t} v \acute{\sigma} i \ t > 0$ nhận mọi giá trị trong $[2; +\infty)$ nên từ (2) suy ra $f(x) = x, \forall x \ge 2$ (3)

$$Ti\acute{e}p \ tục \ th\acute{e}' \ y = 2 \ vào \ (1), \ ta \ thu \ được : f(x+2) + f(2x) = 3x + 2, \ \forall x \in \mathbb{R}^+$$

Sử dụng hệ thức (3) có: $f(x+2) = 2 + x, \forall x \in \mathbb{R}^+$

$$T\dot{u}(4)$$
 to thu $du\phi c: f(2x) = 2x, \forall x \in \mathbb{R}^+$ hay $f(x) = x, \forall x \in \mathbb{R}^+$

Thử lại, ta thấy hàm này thỏa mãn điều kiện (1)

<u>Kết luận</u>: hàm duy nhất thỏa bài toán là: $f(x) = x \ \forall x \in \mathbb{R}^+$

Bài T11/400: - THTT tháng 2/2011 tr23

Tìm tất cả các hàm số $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ thỏa mãn: $f(x).f(y) = \beta.f(x + yf(x))$, (1) $(v \acute{\sigma} i \ \beta \in \mathbb{R}, \beta > 1 \ cho \ trước)$

(Là bài khó, không có dùng tính liên tục)

 $N\acute{e}u\ f(x) = c\ thỏa\ (1)\ thì\ c = \beta$

Ta chứng min h $f(x) \ge 1$, $\forall x \in \mathbb{R}^+$

Thật vậy, giả sử tồn tại $x_0 \in \mathbb{R}^+$ mà $f(x_0) \in (0;1)$

thì khi thay
$$x = x_0; y = \frac{x_0}{1 - f(x_0)}$$
 vào (1), ta được: $f(x_0).f\left(\frac{x_0}{1 - f(x_0)}\right) = \beta.f\left(\frac{x_0}{1 - f(x_0)}\right)$

Suy ra $f(x_0) = \beta > 1, v\hat{o} \ l\hat{y}$

Tiếp theo ta cm $f(x) \ge \beta$ với mọi $x \in \mathbb{R}^+$

Thật vậy, giả sử tồn tại $y_0 \in \mathbb{R}^+$ mà $f(y_0) \in (1; \beta)$ thì xét dãy số:

$$x_1 > 0; x_{n+1} = x_n + y_0. f(x_n), \forall n \in \mathbb{N}^+$$

$$\textit{K\'e\'t hợp điều kiện (1) ta thu được}: f(x_{n+1}) = f(x_n + y_0.f(x_n)) = \frac{f(y_0)}{\beta} f(x_n) = \ldots = \left(\frac{f(y_0)}{\beta}\right)^n. f(x_1)$$

$$Do \lim_{n \to +\infty} \left(\frac{f(y_0)}{\beta} \right)^n = 0, \ suy \ ra: \lim_{n \to +\infty} f(x_n) = 0, \ m\hat{a}u \ thu \mathring{a}n \ f(x) \ge 1, \forall x \in \mathbb{R}^+$$

 $K\acute{e}t\ hợp\ (1)$, suy $ra: f(x) \leq f(x+yf(x))$, $\forall x,y \in \mathbb{R}^+\ (2)\ tức\ f(x)\ là hàm tăng\ (không\ giảm)\ trên\ \mathbb{R}^+$

Giả sử $f(x) > \beta$, $\forall x \in \mathbb{R}^+$ thì f(x) là hàm đồng biến (tăng ngặt) trên \mathbb{R}^+

Trong (1) đổi vai trò x; y, ta nhận được: $f(x + yf(x)) = f(y + xf(y)), \forall x, y \in \mathbb{R}^+$

$$hay \ x + yf(x)) = y + xf(y), \forall x, y \in \mathbb{R}^+ \Leftrightarrow \frac{f(x)}{x} = \frac{f(y)}{y}, \forall x, y \in \mathbb{R}^+$$

hay $f(x) = \alpha x + 1$. Với mọi hằng số α , hàm này không ỏa mãn (1)

 $V \hat{a} y \ t \hat{o} n \ t \hat{a} i : x_1 \in \mathbb{R}^+ \ d \hat{e}' \ f(x_1) = \beta$

Do f(x) không giảm nên $f(x) = \beta$ với $x \in (0; x_1]$

Trong (1)thay $x = x_1$; $y = x_1$ to the dega: $\beta = f((\beta + 1)x_1)$

Lập luận tương tự, ta thu được: $f(x) = \beta, \forall x \in [x_1; (\beta + 1)x_1]$

Tiếp tục quá trình này, theo nguyên lý quy nap, ta thu được $f(x) = \beta$

Thử lại ta thấy hàm này thỏa (1)

<u>Kết luận</u>: hàm duy nhất thỏa bài toán là $f(x) = \beta, x \in \mathbb{R}^+$

Bài T11/401: - THTT tháng 3/2011 tr23

Tìm tất cả các hàm số $f: \mathbb{R} \longrightarrow \mathbb{R}$ thỏa mãn:

$$f(x+f(y)) = f^{4}(y) + 4x^{3}f(y) + 6x^{2}f^{2}(y) + 4xf^{3}(y) + f(-x), \forall x; y \in \mathbb{R}$$

(Là bài khó, coi chừng thiếu f(x) = 0)

Viết lại điều kiện bài toán dạng: $f(x+f(y))-f(-x)=(x+f(y))^4-x^4$, $\forall x,y \in \mathbb{R}$ (1)

- * Nếu f(x) = a thì từ (1) ta thu được a = 0 và f(x) = 0 thỏa đề bài.
- * Xét $f(x) \neq 0$, tức tồn tại x_0 để $f(x_0) \neq 0$

Thế
$$y = x_0$$
 vào (1), ta thu được $f(x + f(x_0)) - f(-x) = (x + f(x_0))^4 - x^4, \forall x \in \mathbb{R}$ (2)

Vế phải là đa thức bậc 3 theo x nên nó là hàm số có tập giá trị là R. Vậy nên, vế trái cũng là hàm số có tập giá trị là R và với mọi $x \in \mathbb{R}$ đều tồn tại $u; v \in \mathbb{R}$ đề f(u) - f(v) = x

Thay x = 0 vào (1), ta được: $f(f(y)) = (f(y))^4 + a. \forall y \in \mathbb{R}$ (3)

Tiếp tục thay x bởi -f(x) vào (1), ta được:

$$f(f(y) - f(x)) - f(f(x)) = (f(y) - f(x))^{4} - (f(x))^{4}, \forall x; y \in \mathbb{R}$$
 (4)

$$T\dot{u}(3);(4) \ suy \ ra: f(f(y)-f(x)) = (f(y)-f(x))^4 + 4, \ \forall x; y \in \mathbb{R}$$

Suy
$$ra: f(x) = f(f(u) - f(v)) = (f(u) - f(v))^4 + a = x^4 + a, \forall x \in \mathbb{R}$$

Thử lại, ta thấy hàm số này thỏa điều kiện đề

<u>Kết luận</u>: các hàm số cần tìm là: f(x) = 0; $f(x) = x^4 + a$, $\forall a \in \mathbb{R}$

Bài T12/402: - THTT tháng 4/2011 tr25

Tìm tất cả các số thực dương a sao cho tồn tại số thực dương k và hàm số $f: \mathbb{R} \longrightarrow \mathbb{R}$ thỏa mãn:

$$\frac{f(x)+f(y)}{2} \ge f(\frac{x+y}{2}) + k \left| x - y \right|^a; \quad \forall x; y \in \mathbb{R}$$

(Là bài tương tự T10/328)

Giả sử a là số thực dương thỏa mãn đề ra và k, f thỏa mãn điều kiện:

$$\frac{f(x) + f(y)}{2} \ge f\left(\frac{x+y}{2}\right) + k\left|x-y\right|^a, \forall x, y \in \mathbb{R}$$
 (1)

Kí hiệu $\alpha_n = k.2^{n(2-a)}, n \in \mathbb{N}$. Ta CM bất đẳng thức:

$$\frac{f(x)+f(y)}{2} \ge f\left(\frac{x+y}{2}\right) + \alpha_n \left|x-y\right|^a, \forall x, y \in \mathbb{R}, n \in \mathbb{N} \quad (2) \ b \ \ ang \ PP \ quy \ nap$$

Thật vậy, BĐT (2) đúng với n = 0 theo (1). Giả sử BĐT (2) đúng với n = m. Ap dụng liên tiếp BĐT (2) với cặp (x;y) lần lượt được thay bởi cặp:

$$\left(\frac{x+y}{2};y\right);\left(x;\frac{x+y}{2}\right);\left(\frac{3x+y}{4};\frac{x+3y}{4}\right)$$
 rồi cộng các vế tương ứng các BĐT đ1o, thu được:

$$\frac{f(x)+f(y)}{2} \ge f\left(\frac{x+y}{2}\right) + 4\alpha_m \frac{\left|x-y\right|^a}{2^a} = f\left(\frac{x+y}{2}\right) + \alpha_{m+1} \left|x-y\right|^a, \forall x, y \in \mathbb{R}$$

 $V \hat{q} y \ BDT \ (2) \ d \acute{u} ng \ \forall n \in \mathbb{N}$

Nhận xét rằng khi 0 < a < 2 thì $\lim_{x \to +\infty} \alpha_n = +\infty$ nên BDT (2) không thỏa mãn

Xét $a \ge 2$, chọn $f(x) = |x|^a$; $k = \frac{1}{2^a}$. Khi đó BĐT (1) có dạng:

$$\frac{\left|x\right|^{a} + \left|y\right|^{a}}{2} \ge \left|\frac{x+y}{2}\right|^{a} + \left|\frac{x-y}{2}\right|^{a} \tag{3}$$

Để cm BĐT (3), ta chỉ cần CM cho TH a > 2 và x > y > 0 (khi a = 2 hoặc x = y thì (3) chính là hằng đẳng thức). Cố định y > 0, xét hàm số: $f(x) = 2^{a-1}(x^a + y^a) - ((x + y)^a + (x - y)^a)$, với x > y > 0

$$Ta \ có: f'(x) = a.x^{a-1} \left(2^{a-1} - g(\frac{y}{x})\right), trong \ dó \ g(t) = (1+t)^{a-1} + (1-t)^{a-1} \ là hàm \ dống \ biến$$

trong [0;1] $n\hat{e}n \ g(t) \le g(1) = 2^{a-1}, \forall t \in [0;1]$

Do đó $f'(x) \ge 0$, $\forall x > y$ và $f(x) \ge f(y) \ge 0$ (đfcm)

 $K\hat{e}t lu\hat{a}n: a \ge 2$

Bài T11/403: - THTT tháng 5/2011 tr24

Tìm tất cả các hàm số $f: \mathbb{R} \longrightarrow \mathbb{R}$ thỏa mãn:

$$f(f(x-y)) = f(x)f(y) + f(x) - f(y) - xy, \forall x; y \in \mathbb{R}$$
 (1)

(Là bài dựa trên bài 4 Quốc gia 2005 Bảng A: Tìm tất cả các hàm số $f: \mathbb{R} \longrightarrow \mathbb{R}$ thỏa mãn:

$$f(f(x-y)) = f(x)f(y) - f(x) + f(y) - xy, \forall x; y \in \mathbb{R}$$

Đặt f(0) = a. Từ (1) cho x = 0; y = 0 thu được $f(f(0)) = a^2$

Tiếp theo, cho x = t; y = t vào (1), ta được: $(f(t))^2 = t^2 + a^2$ (2)

Từ đây suy ra đẳng thức: $f(x_1) = f(x_2)$ kéo theo $x_1^2 = x_2^2$ Từ (2) ta thu được:

$$(f(-t))^2 = (f(t))^2$$
 hay $(f(x) - f(-x))(f(x) + f(-x)) = 0, \forall x \in \mathbb{R}$ (3)

$$T \dot{u}(1) \ thay \ y = 0, \ ta \ duoc: f(f(x)) = af(x) + f(x) - a, \forall x \in \mathbb{R} \ (4)$$

Tiếp theo thay x = 0, ta có: f(f(-y)) = af(-y) + f(-y) - a

hay
$$f(f(x)) = af(-x) + f(-x) - a, \forall x \in \mathbb{R}$$
 (5)

$$T\dot{u}(4) \ v\dot{a}(5) \ cho \ ta: a(f(x)-f(-x))+f(x)+f(-x)=2a, \forall x \in \mathbb{R} \ (6)$$

GS tồn tại $x_0 \neq 0$ sao cho $f(-x_0) = f(x_0)$

Thế vào (6), ta được
$$f(x_0) = a = f(0)$$
 nên $x_0^2 = 0$, tức $x_0 = 0$ (vô lý)

$$V \hat{a} y \ f(-x) = -f(x), \forall x \in \mathbb{R}$$

Biên tâp GV: HOH - TN

Tù(6) suy $ra: a(1-f(x)) = 0, \forall x \in \mathbb{R}$ $n\hat{e}n$ a = 0 vì $n\acute{e}u$ f(x) = 1 thì mâu thuẫn với điều kiện $f(-x) = -f(x), \forall x \in \mathbb{R}$.

Thê a = 0 vào (2), ta được: $(f(x) - x)(f(x) + x) = 0, \forall x \in \mathbb{R}$

Giả sử tồn tại $x_0 \neq 0$ sao cho $f(x_0) = -x_0$ thì $-x_0 = f(x_0) = f(f(x_0)) = -f(x_0) = x_0$

Suy ra $x_0 = 0$ trái giả thiết

 $V \hat{a} y \ n \hat{e} n \ f(x) = x$

Thử lại, ta thấy hàm f(x) = x, $\forall x \in \mathbb{R}$ thỏa đề bài.

Bài T11/404: - THTT tháng 6/2011 tr24

Tìm tất cả các hàm số $f: \mathbb{R} \longrightarrow (0; 2011]$ thỏa mãn: $f(x) \le 2011 \left(2 - \frac{2011}{f(y)}\right), \forall x > y$

(có thể cm $\lim_{x \to +\infty} f(x) = 2011$ từ đó suy ra f(x) = 2011)

BĐT đã cho tương đương với: $\frac{f(x)}{2011} + \frac{2011}{f(y)} \le 2, \forall x > y \quad (1)$

 $Vi \ f(x) > 0 \ va \ f(y) > 0 \ nen \ theo \ Cauchy: \frac{f(x)}{2011} + \frac{2011}{f(y)} \ge 2.\sqrt{\frac{f(x)}{f(y)}}, \forall x > y \ (2)$

Tù(1) và (2) cho ta: $f(x) \le f(y)$, $\forall x > y$, tức f(t) là hàm đơn điệu giảm trên \mathbb{R}

 $V \hat{a}y \text{ tíng với mỗi } x \in \mathbb{R} \text{ cho trước ta đều có}: \qquad f(x) \leq 2011 \left(2 - \frac{2011}{f(y)}\right) \leq 2011 \left(2 - \frac{2011}{f(x)}\right), \forall x > y,$

Hay $(f(x) - 2011)^2 \le 0 \Leftrightarrow f(x) = 2011$

Vậy f(x) = 2011. Thử lại, ta thấy hàm f(x) = 2011 thỏa mãn bài toán.

<u>Bài T10/405:</u> - THTT tháng 7/2011 tr23

Tìm tất cả các hàm số $f: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ thỏa mãn:

i/ f tăng thật sự

ii/ $f(f(n)) = 4n + 9, \forall n \in \mathbb{N}^*$

iii/ $f(f(n)-n) = 2n+9, \forall n \in \mathbb{N}^*$

Từ điều kiện iii/, ta suy ra: $f(f(2n)-2n)=4n+9, \forall n \in \mathbb{N}^*$ (1)

Sử dụng ii/, từ (1) ta thu được: $f(f(2n)-2n) = f(f(n)), \forall n \in \mathbb{N}^*$ (2)

Do f tăng thực sự trên N^* nên từ (2) suy ra:

$$f(2n) - 2n = f(n), \forall n \in \mathbb{N}^*$$

hay
$$f(2n) = f(n) + 2n, \forall n \in \mathbb{N}^*$$
 (3)

* Tới đây, ta đoán f(n) là CSC với công sai 1; hoặc 2, hoặc ...

Trước hết bác bỏ TH công sai 1

 $Gi\mathring{a} s\mathring{u} \exists n_0 \in \mathbb{N}^* sao cho f(n_0 + 1) = f(n_0) + 1 thì suy ra$:

$$f(n_0) - n_0 = f(n_0 + 1) - (n_0 + 1) \qquad hay: f(f(n_0) - n_0) = f(f(n_0 + 1) - (n_0 + 1))$$

 $m a theo i i i / th i : 2n_0 + 9 = f(f(n_0) - n_0) = f(f(n_0 + 1) - (n_0 + 1)) = 2n_0 + 11 (m a u thu a n)$

 $V \hat{q} y \ n \hat{e} n : f(n+1) \neq f(n) + 1, \forall n \in \mathbb{N}^*$

Do f tăng thực sự trên \mathbb{N}^* nên $f(n+1) \ge f(n) + 2$, $\forall n \in \mathbb{N}^*$

Do $d\delta$: $f(n) + 2n = f(2n) \ge f(2n-1) + 2 \ge f(2n-2) + 4 \ge ... \ge f(n+1) + (2n-2) \ge f(n) + 2n$

suy $ra: f(n+1) = f(n) + 2, \forall n \in \mathbb{N}^*$

 $V \hat{a} y \ d \tilde{a} y \ \{f(n)\} \ l \hat{a} \ CSC \ v \acute{o} i \ c \hat{o} ng \ sai \ l \hat{a} \ 2 \ n \hat{e} n \ f(n) = 2(n-1) + f(1) \ (*)$

Thế vào ii/ f(f(n)) = 4n + 9, ta có:

$$4n+9 = f(2(n-1)+f(1)) = 2(2(n-1)+f(1)-1)+f(1)$$
 (do (*))

suy ra f(1) = 5. Vậy nên f(n) = 2n + 3

Thử lại thấy f(n) = 2n + 3 thỏa đề bài.

Bài T11/407: - THTT tháng 9/2011 tr24

Tìm tất cả các hàm số $f: \mathbb{R} \longrightarrow \mathbb{R}$ thỏa mãn: $f(x+y+f(y)) = f(f(x)) + 2y, \ \forall x; y \in \mathbb{R}$ (1) (*Là dạng quen thuộc*)

W.

- Trước hết, CM f là đơn ánh

Từ đk bài, hoán vị vai trò x; y cho nhau, ta thu được:

$$f(x+y+f(x)) = f(f(y)) + 2x, \ \forall x; y \in \mathbb{R}$$
 (2)

 $Gi\mathring{a} s\mathring{u}$: f(x) = f(y), khi đó từ (1) và (2) suy ra ngay x = y

Vậy f đơn ánh.

Thay y = 0 vào (1), ta thu được: f(x + f(0)) = f(f(x)) với mọi số thực x

Hay f(x) = x + f(0) (do tính đơn ánh của f), tức f(x) = x + a, $a \in \mathbb{R}$

Thử lại trực tiếp, ta thấy hàm số này thỏa mãn điều kiện (1).

Bài T11/409: - THTT tháng 11/2011 tr24

Tìm tất cả các hàm số $f: \mathbb{R} \longrightarrow \mathbb{R}$ liên tục trên \mathbb{R} và thỏa mãn:

$$f(xy) + f(x+y) = f(xy+x) + f(y), \ \forall x; y \in \mathbb{R}$$
 (1)

Viết lại pt (1) dưới dạng: $f(xy+x) - f(xy) = f(x+y) - f(y), \ \forall x; y \in \mathbb{R}$ (2)

- Trong (2) thay y bởi xy, ta thu được: $f(x^2y+x)-f(x^2y)=f(x+xy)-f(xy), \ \forall x,y\in\mathbb{R} \ (3)$

- Từ (2) và (3) suy ra: $f(x^2y+x)-f(x^2y)=f(x+y)-f(y), \ \forall x, y \in \mathbb{R}$ (4)

- Trong (4) tiếp tục thay y bởi xy, ta thu được: $f(x^3y+x)-f(x^3y)=f(x+xy)-f(xy), \ \forall x;y\in\mathbb{R}$ (5)

- Từ (2) và (5) suy ra: $f(x^3y + x) - f(x^3y) = f(x+y) - f(y), \ \forall x, y \in \mathbb{R}$

Bằng pp quy nạp ta chứng minh được với mọi $n \in \mathbb{Z}$, có:

$$f(x^n y + x) - f(x^n y) = f(x + y) - f(y), \ \forall x; y \in \mathbb{R} \ (6)$$

* $X \notin X \in (-1;1) \setminus \{0\}$. Từ giả thiết f là hàm liên tục trên \mathbb{R} , nên từ (6), ta thu được:

$$f(x+y) - f(x) = \lim_{n \to +\infty} \left(f(x+y) - f(x) \right) = \lim_{n \to +\infty} \left(f(x^n y + x) - f(x^n y) \right) =$$

$$= f(\lim_{n \to +\infty} (x^n y + x)) - f(\lim_{n \to +\infty} (x^n y)) = f(x) - f(0)$$

$$n\hat{e}n: f(x+y) = f(x) + f(y) - f(0), \forall y \in \mathbb{R}, x \in (-1;1) \setminus \{0\}$$
 (7)

* Khi $x \in \mathbb{R} \setminus [-1;1]$. Từ giả thiết f là hàm liên tục trên \mathbb{R} , nên từ (6), ta thu được:

$$f(x+y) - f(x) = \lim_{n \to -\infty} \left(f(x+y) - f(x) \right) = \lim_{n \to -\infty} \left(f(x^n y + x) - f(x^n y) \right) = f(x) - f(0)$$

$$n\hat{e}n: f(x+y) = f(x) + f(y) - f(0), \forall y \in \mathbb{R}, x \in \mathbb{R} \setminus [-1;1]$$
 (8)

- Từ (7) và (8), ta thu được: $f(x+y) = f(x) + f(y) f(0), \forall y \in \mathbb{R}, x \in \mathbb{R} \setminus \{-1, 0, 1\}$ (9)
- * Nhận xét rằng, với mỗi y cố định đều tồn tại giới hạn $\lim_{x\to\pm 1} f(x+y)$ nên từ (9) suy ra:

$$f(1+y) = f(1) + f(y) - f(0), \forall y \in \mathbb{R}$$
 (10)

$$v \dot{a} f(-1+y) = f(-1) + f(y) - f(0), \forall y \in \mathbb{R}$$
 (11)

 $T\dot{u}(9)$;(10) $v\dot{a}(11)$ suy ra:

$$f(x+y) = f(x) + f(y) - f(0), \forall x; y \in \mathbb{R}$$
 (12)

Đặt f(x) - f(0) = g(x) thì g cũng là hàm liên tục trên \mathbb{R} và (12) có dạng:

$$g(x+y) = g(x) + g(y), \forall x; y \in \mathbb{R}$$
 (13)

(13) là phương trình hàm Cauchy trong lớp hàm liên tục nên có nghiệm g(x) = ax, suy ra f(x) = ax + b

Thử lại, ta thấy hàm f(x) = ax + b thỏa mãn điều kiện (1) với mọi a; $b \in \mathbb{R}$

Chú ý:

- Tránh nhầm lẫn với bài toán trong lớp hàm có đạo hàm (bài này chỉ liên tục)
- Khi đặt xy = z và xem z là biến độc lập thì không đúng vì khi xét z = 0 thì nhất thiết phải có x = 0 hoặc y = 0.

$M \dot{U} C \ L \dot{U} C$

CÁC BÀI TOÁN PHƯƠNG TRÌNH HÀM TRONG TOÁN HỌC TUỔI TRỂ GẦN ĐẠ	ÂY 1
I. NHỮNG BÀI TOÁN CỦA NĂM 2009	1
Bài T11/375: - THTT tháng 1/2009 tr25	1
Bài T10/376: - THTT tháng 2/2009 tr24	1
Bài T10/377: - THTT tháng 3/2009 tr24	2
Bài T10/378: - THTT tháng 4/2009 tr23	2
Bài T12/379: - THTT tháng 5/2009 tr24	3
Bài T11/380: - THTT tháng 6/2009 tr23	3
Bài T4/THPT (Thi 45 năm THTT): - THTT tháng 8/2009 tr26	3
Bài T7 THPT (Thi 45 năm THTT): - THTT tháng 10/2009 tr26	
II. NHỮNG BÀI TOÁN CỦA NĂM 2010	5
Bài T10/387: - THTT tháng 1/2010 tr23	5
Bài T11/388: - THTT tháng 2/2010 tr24	5
Bài T10/390: - THTT tháng 4/2010 tr23	6
Bài T10/392: - THTT tháng 6/2010 tr23	6
Bài T12/393: - THTT tháng 7/2010 tr24	
Bài T11/394: - THTT tháng 8/2010 tr25	7
Bài T11/397: - THTT tháng 11/2010 tr24	
Bài T10/398: - THTT tháng 12/2010 tr22	
III. NHỮNG BÀI TOÁN CỦA NĂM 2011	
Bài T11/399: - THTT tháng 1/2011 tr24	
Bài T11/400: - THTT tháng 2/2011 tr23	
Bài T11/401: - THTT tháng 3/2011 tr23	
Bài T12/402: - THTT tháng 4/2011 tr25	
Bài T11/403: - THTT tháng 5/2011 tr24	
Bài T11/404: - THTT tháng 6/2011 tr24	
Bài T10/405: - THTT tháng 7/2011 tr23	
Bài T11/407: - THTT tháng 9/2011 tr24	14
DA: T11/400. THTT théma 11/2011 tm24	1.4