Commitment

It allows one to commit to a chosen value while keeping it hidden to others.

However, it can be revealed at a later time when the one opens necessary parameter.

- Hiding; a given *x* and its commitment should be unrelatable.
 - \Rightarrow should reveal no information about x
- Binding; there is no way that different values can result in the same commitment.
 - ⇒ cannot change the value after committing

cf.

- Encryption
- Hash function

Pedersen Commitment [Ped92]

- Setup (1^{λ}) ;
 - \circ Choose a large prime q and p such that p=2q+1
 - \circ Choose $g \leftarrow \mathbb{Z}_q^*$
 - $\circ \;\;$ Choose $s \leftarrow \mathbb{Z}_q^*$ aand compute $h := g^s$
 - \circ Output (p, q, g, h)
- Com(x);
 - \circ Choose $\gamma \leftarrow \mathbb{Z}_q^*$
 - \circ Output $q^x h^{\gamma}$
- Open(Com $(x), x, \gamma$);
 - Check whether c is equal to $g^x h^r$ or not

Note

- ullet Σ -Protocols: to prove knowledge of a committed value, equality of two committed values and so on.
- ullet Since $g^{x_1}h^{\gamma_1}\cdot g^{x_2}h^{\gamma_2}=g^{x_1+x_2}h^{\gamma_1+\gamma_2}$,

$$\mathsf{Com}(x_1,\gamma_1)\cdot\mathsf{Com}(x_2,\gamma_2)=\mathsf{Com}(x_1+x_2,\gamma_1+\gamma_2)$$

- **Linear relatioships** among committed values can be shown through Pedersen commitments.
 - One could show that y = ax + b for some public values a and b, given Com(x) and Com(y).

Example 1. (Σ -protocol for Pedersen Commitment)

Let p be a DL-secure prime and $g, h \leftarrow \mathbb{Z}_n^*$.

Prover and Verifier knows g, h and $y = g^x h^{\gamma}$. $(y = \mathsf{Com}(x))$

Prover claims <u>to know a committed value x and γ .</u>

- 1. [Announcement]
 - $\circ \ \ \mathsf{Choose} \ s,t \leftarrow \mathbb{Z}_q^*$
 - \circ Compute $a = g^s h^t$
 - Send a to Verifier
- 2. [Challenge]
 - \circ Choose $c \leftarrow \mathbb{Z}_q^*$
 - \circ Send c to Prover
- 3. [Response]
 - Compute $r_1 = cx + s$ and $r_2 = c\gamma + t$
 - \circ Send r_1 and r_2 to Verifier
- 4. [Verification]
 - $\circ \;\;$ If $y^c \cdot a = g^{r_1} h^{r_2}$, then Verifier accepts
 - o Otherwise, Verifier rejects

Example 2.

Let p be a DL-secure prime and $g, h \leftarrow \mathbb{Z}_p^*$.

Prover and Verifier knows g,h and $y_1=g^{x_1}h^{\gamma_1}$ and $y_2=g^{x_2}h^{\gamma_2}$.

Prover proves knowledge of x_1 and x_2 such that $x_2=\alpha x_1+\beta$, that is, proving knowledge of x such that

$$\{y_1=\mathsf{Com}(x_1)\wedge y_2=y_1^lpha g^eta\}$$

- 1. [Announcement]
 - \circ Choose $s_1, s_2, t_1, t_2 \leftarrow \mathbb{Z}_q^*$
 - $\circ \;\;$ Compute $a_1=g^{s_1}h^{t_1}$ and $a_2=g^{s_2}h^{t_2}$
 - Send a_1 and a_2 to Verifier
- 2. [Challenge]
 - \circ Choose $c_1, c_2 \leftarrow \mathbb{Z}_q^*$
 - \circ Send c_1 and c_2 to Prover
- 3. [Response]
 - \circ Compute $r_1=c_1x+s_1, r_2=c_1\gamma+t_1, r_3=c_2y+s_2$ and $r_4=\alpha c_2\gamma_1+t_2$
 - \circ Send r_1, r_2, r_3 and r_4 to Verifier
- 4. [Verification]
 - \circ If $y_1^{c_1}\cdot a_1=g^{r_1}h^{r_2}$ and $y_1^{c_2lpha}\cdot a_2\cdot g^{c_2eta}=g^{r_3}h^{r_4}$, then Verifier accepts
 - o Otherwise, Verifier rejects

zkSNARKs

zero-knowledge of Succinct Non-interactive ARguments of Knowledgs

	Σ -Protocol	zkSNARKs
Algebraic Statement	no trusted setup	
	short proof size	
Non-Algebraic Statement	large proof size	succinct proof size
		verifiable computation

• Σ -Protocol

o zkBoo: [GMO16] @ USENIX'16,

Ligero: [AHIV17] @ CCS'17

zkSNARK

Pinocchio: [PGHR13] @ S&P'13Geppetto: [CFH+15] @ S&P'15

Hybrid

• [AGM18] @ CRYPTO'18

Privacy Problem in BTC

- Anonymity: hiding identities of sender and receiver
 - Monero uses a ring signature and a stealth address
 - ZCash uses a zero-knowledge proof
- Confidentially: hiding the amount transferred
 - Monero uses a confidential transaction (CT)
 - every transaction amount is hidden using a commitment to the amount
 - ZCash uses a commitment and a public key encryption

In CT, a zero-knowledge for range proof is used.

- 1. $\sum input \ge \sum output$
- 2. all transferred value ≥ 0

Current Proposals for CT-ZKP

- [PBF+]: large proof size or required a trusted setup
- SNARKs: required a trusted setup
- STARKs: large range proof

 \Rightarrow Bulletproof: [BBB+18] @ S&P'18