

## **PCT**

#### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| (51) International Patent Classification 5:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11) International Publication Number: WO 99/42118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A61K 38/00, C07K 1/00, 16/00, C12Q A2 1/68, C12P 19/34, C07H 21/02, 21/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43) International Publication Date: 26 August 1999 (26.08.99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (21) International Application Number: PCT US99 03265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (74) Agents: CORUZZI, Laura, A. et al.; Pennie & Edmonds LLP,<br>1155 Avenue of the Americas, New York, NY 10036 (US).                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (22) International Filing Date: 17 February 1999 (17.02.99)  (30) Priority Data: 09/024.753 18 February 1998 (18.02.98) US 09/072.596 5 May 1998 (05.05.98) US  (71) Applicant: CORIXA CORPORATION (US US): 11-24 Columbia Street, Seattle, WA 98104 (US).  (72) Inventors: REED, Steven, G., 2843-122nd Place N.E., Belleviac, WA 98005 (US). SKEIKY, Yasir, A., W., 8327-25th Street, Seattle WA 98107 (US). DILLON, Davin, C., 21607 N.E. 24th Street, Redmond, WA 98053 (US). CAMPOS-NETO, Antonio, 9308 Midship Court N.E., Bainbridge Island, WA 98110 (US). HOUGHTON, Raymond; 2636-242nd Place S.E., Botheli, WA 98021 (US). VEDVICK, Thomas, S., 124 South 300th Place, Federal Way, WA 98003 (US). TWARDZIK, Daniel, R., 10195 South Beach Drive, Bainbridge Island, WA 98110 (US). I ODES, Michael, J., 9223-36th Avenue S.W., Seattle, WA 98126 (US). HENDRICKSON, Ronald, C., 4114 S.W. Charlestown Street, Seattle, WA 98116 (US). | KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IF, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NF, SN, TD, TG).  Published  With declaration under Article 17 (2010) Without abstract title not checked by the International Nearching Authority |

#### FOR THE PURPOSES OF INFORMATION ONLY

Colles used to identify States party to the PCT on the front panel of pamphlets paids surgeniterrational applications under the PCT

| M    | S. 6. 4 6             | 1.8   | ,41-411      | 1.5  | Local their      | 81        | Society              |
|------|-----------------------|-------|--------------|------|------------------|-----------|----------------------|
| VM   | See                   | FT    | 4 (4 e/s)    | FI   | Let ear          | SK        | 5 5 6 6              |
| 1.7  |                       | FR    | * contract   | 1.1  | to receive       | **        | × · · ·              |
| 1.1  | and the second second | C. A  |              | 1.3  |                  | <b>\/</b> |                      |
| 17   |                       | Cdi   | •,           | *16  | N1 -             | 1.0       | 4 4                  |
| F. X | a to the second       | (,)   |              | 1131 | 38 cm (4.5)      | 16.       |                      |
| 1313 |                       | 0.11  |              | 110. | the second       | 1.1       |                      |
| 1.1  |                       | 6.5   |              | k    |                  | 131       | * *                  |
| 333  |                       | € 32  |              |      | 19 A             | TR        |                      |
| 1944 | 4 4                   | 110   | i resista    | MI   | 1.1              | 1.1       | en light of the      |
| 13.1 | 4.00                  | 11    | 2. Te 4      | MN   | M*               | UN        | Factor               |
| BR   | April 2               | 11    | 1 media      | MR   | Marrier          | t G       | 1 gamita             |
| 33   | 1                     | 18    | The second   | -177 | 2.f -> s         | 1 ×       | and the state of the |
|      | 1.1                   | 1.1   | The grade of | 313  | Nf ×             | 17        | 44 (14)              |
| ← }  | 1,4 (4.5) Let         | 111   | Eq. (        | 541  | National Control | 1.        | Section 1            |
| 1.1, |                       | K)    | S            | 1    | * en en en en    | Y I       |                      |
| 14   |                       | 163.5 |              | 5.0  | 4.1              | 7.17      |                      |
|      | 1                     | F. 1  | 1            | •./  |                  |           |                      |

į

REVISED VERSION

## PATENT COOPERATION TREATY

# **PCT**

DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT

(PCT Article 17(2)(a) and Rule 39)

| Applicant's or agent's file reference 9532-023-228                      | IMPORTANT DECLARATION                                                                    | 22 JUNE 1999                                |  |  |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------|--|--|
| International application No.                                           | International filing date (day/month/year)                                               | (Earliest) Priority Date (day/month/yeur)   |  |  |
| PC17/US99/03265                                                         | 17 FEBRUARY 1999                                                                         | 18 FEBRUARY 1998                            |  |  |
| International Patent Classification (IPC Please See Continuation Sheet. | or both national classification and IPC                                                  |                                             |  |  |
| Applicant<br>CORIXA CORPORATION                                         |                                                                                          | •                                           |  |  |
| be established on the international ap                                  | hereby declares, according to Article 17(2)(a) plication for the reasons indicated below | ), that no international search report will |  |  |
|                                                                         | ernational application relates to:                                                       |                                             |  |  |
| a. scientific theories                                                  |                                                                                          |                                             |  |  |
| b. mathematical theory                                                  | ics.                                                                                     |                                             |  |  |
| c. plant varieties.                                                     |                                                                                          |                                             |  |  |
| d. animal varieties.                                                    | al processes for the production of plants and anii                                       | mals, other than microbiological processes  |  |  |
| e. essentially biological and the products of                           |                                                                                          |                                             |  |  |
| f. schemes, rules or i                                                  | nethods of doing business.                                                               |                                             |  |  |
| g schemes, rules or i                                                   | methods of performing purely mental acts                                                 |                                             |  |  |
| h. schemes, rules or                                                    | methods of playing games.                                                                |                                             |  |  |
| i. methods for treatm                                                   | ent of the human body by surgery or therapy                                              |                                             |  |  |
| j methods for treatm                                                    | ent of the animal body by surgery or therapy                                             |                                             |  |  |
| k. diagnostic methods                                                   | practiced on the human or animal body                                                    |                                             |  |  |
| 1 mere presentations                                                    |                                                                                          |                                             |  |  |
| in Computer program                                                     | s for which this International Searching Auth-                                           | onty is not equipped to search prior at     |  |  |
| The tailure of the following preamingful scare is from bei              | grants of the international application to compare carried out                           | pla with prescribed requirements prevents a |  |  |
| [ ] the tescription                                                     | [] the claims                                                                            | ] the drawmas                               |  |  |
| The failure of the micleonid one wanging scarcin from the               | e and or animo acid sequence asting to our product correct our                           | wenth, projected to passwate a toward.      |  |  |
| 💢 a does not comply                                                     | with the prescribed standard                                                             |                                             |  |  |
| t is not in the pre                                                     | scribed machine readable is im                                                           |                                             |  |  |
| t long sameats                                                          |                                                                                          |                                             |  |  |
|                                                                         |                                                                                          |                                             |  |  |

Market Same

The second secon

# L'ECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT

International application No-PCT/US99/03265

The International Patent Classification (IPC) or National Classification and IPC are as listed below:

IPC(5): A61K 38/00; C07K 1/00; C07K 16/00; C12Q 1/68; C12P 19/34; C07H 21/02, 21/04 US C1. 530/300, 350, 387.1; 435/6, 91.1, 91.2; 536/23.1, 24.3, 24.31, 24.32,21.33

to inhibit *M. tuberculosis* infection. Furthermore, it is known that IFN-y stimulates human macrophages to make 1,25-dihydroxy-vitamin D3. Similarly, IL-12 has been shown to play a role in stimulating resistance to *M. tuberculosis* infection. For a review of the immunology of *M. tuberculosis* infection see Chan and Kaufmann, in *Tuberculosis: Pathogenesis. Protection and Control*, Bloom (ed.), ASM Press, Washington, DC, 1994.

Accordingly, there is a need in the art for improved diagnostic methods for detecting tuberculosis. The present invention fulfills this need and further provides other related advantages.

## SUMMARY OF THE INVENTION

20

Briefly stated, the present invention provides compositions and methods for diagnosing tuberculosis. In one aspect, polypeptides are provided comprising an antigenic portion of a soluble *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. In one embodiment of this aspect, the soluble antigen has one of the following N-terminal sequences:

- (a) Asp-Pro-Vai-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gin-Val-Vai-Ala-Ala-Leu (SEQ ID NO: 115);
- (b) Ala-Val-Giu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID NO: 116);
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Glv-Asp-Glv-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID NO: 117);
- d) Torolly (Arpedlys-Pro-Gly-Glin-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro/SEQ ID NO) 118);
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val (SEQ ID NO 119).
- 1 Ata-Glu-Giu-Ser-Ile Ser-Thr Kaa-Glu Kaa Ile Val-Pro (SEQ ID

20

- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEQ ID NO: 122);
- (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn (SEQ ID NO: 123);
- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-He-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID NO: 129)
- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID NO: 130) or
- (I) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID NO: 131)

wherein Xaa may be any amino acid.

In a related aspect, polypeptides are provided comprising an immunogenic portion of an *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and or modifications, the antigen having one of the following N-terminal sequences:

- (m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Giy-ile-Val-Pro-Giy-Lyslle-Asn-Val-His-Leu Vai: (SEQ ID NO: 132) or
- (n) Asp-Pro-Pro-Asp-Pro-His-Gin-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe: (SEQ ID NO: 124)

wnerein Xaa may be anv amino acid.

In another embodiment, the soluble M substrations antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID NOS:1, 2, 4-10, 13-25, 52, 94 and 96, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS:1, 2, 4-10, 13-25, 52, 94 and 96 or a complement thereof under moderately stringent conditions.

substitutions and/or modifications, wherein the antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 26-51, 133, 134, 158-178, 184-188, 194-196, 198, 210-220, 232, 234, 235, 237-242, 248-251, 256-271, 287, 288, 290-293 and 298-337, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS: 26-51, 133, 134, 158-178, 184-188, 194-196, 198, 210-220, 232, 234, 235, 237-242, 248-251, 256-271, 287, 288, 290-293 and 298-337, or a complement thereof under moderately stringent conditions.

In related aspects, DNA sequences encoding the above polypeptides, recombinant expression vectors comprising these DNA sequences and host cells transformed or transfected with such expression vectors are also provided.

In another aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, an inventive polypeptide and a known *M. suberculosis* antigen.

In further aspects of the subject invention, methods and diagnostic kits are provided for detecting tuberculosis in a patient. The methods comprise:

(a) contacting a biological sample with at least one of the above polypeptides; and (b) detecting in the sample the presence of antibodies that bind to the polypeptide or polypeptides, thereby detecting M. superculosis infection in the biological sample. Suitable biological samples include whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine. The diagnostic kits comprise one or more of the above polypeptides in combination with a detection reagent.

The present invention also provides methods for detecting Multiprovious infection comprising an obtaining a biological sample from a patient, the contacting the sample with at least one oligonucleotide primer in a polymerase chain reaction, the oligonucleotide primer being specific for a DNA sequence encoding the above polypeptides, and (c) detecting in the sample a DNA sequence that amplifies in the presence of the first and second origonucleotide primers. In one embodiment, the

: 5

In a further aspect, the present invention provides a method for detecting *M. tuberculosis* infection in a patient comprising: (a) obtaining a biological sample from the patient; (b) contacting the sample with an oligonucleotide probe specific for a DNA sequence encoding the above polypeptides; and (c) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe. In one embodiment, the oligonucleotide probe comprises at least about 15 contiguous nucleotides of such a DNA sequence.

In yet another aspect, the present invention provides antibodies, both polyclonal and monocional, that bind to the polypeptides described above, as well as methods for their use in the detection of *M. tuberculosis* infection.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

### BRIEF DESCRIPTION OF THE DRAWINGS AND SEQUENCE IDENTIFIERS

Figure 1.A and B illustrate the stimulation of proliferation and interferon-production in T cells derived from a first and a second *M. tunerculosis*-immune donor, respectively, by the 14 Kd, 20 Kd and 26 Kd antigens described in Example 1.

Figures 2A-D illustrate the reactivity of antisera raised against secretory M suberculosis proteins, the known M suberculosis antigen 85b and the inventive antigens Tb38-1 and TbH-9, respectively, with M suberculosis liviate lane 2), M suberculosis secretory proteins (lane 3), recombinant Tb38- (lane 4), recombinant TbH-) (lane 5) and recombinant 85b (lane 5)

Figure 3A illustrates the stimulation of proliferation in a TbH-9-specific 1 cell clone by secretory *M. tuberculosis* proteins, recombinant TbH-9 and a control antigen, TbRa11

Figure 3B illustrates the stimulation of interteron-coroduction in a Toli-

WO 99 42118 PCT US99 03265

Figure 4 illustrates the reactivity of two representative polypeptides with sera from *M. tuberculosis*-infected and uninfected individuals, as compared to the reactivity of bacterial lysate.

Figure 5 shows the reactivity of four representative polypeptides with sera from *M. tuberculosis*-infected and uninfected individuals, as compared to the reactivity of the 38 kD antigen.

Figure 6 shows the reactivity of recombinant 38 kD and TbRa11 antigens with sera from *M. tuberculosis* patients, PPD positive donors and normal donors.

Figure 7 shows the reactivity of the antigen TbRa2A with 38 kD negative sera.

:0

Figure 8 shows the reactivity of the antigen of SEQ ID NO: 60 with sera from *M. tuberculosis* patients and normal donors.

Figure 9 illustrates the reactivity of the recombinant antigen TbH-29 (SEQ ID NO: 13") with sera from *M. tuberculosis* patients, PPD positive donors and normal donors as determined by indirect ELISA.

Figure 10 illustrates the reactivity of the recombinant antigen TbH-33 (SEQ ID NO: 140) with sera from M, ruberculosis patients and from normal donors, and with a pool of sera from M, ruberculosis patients, as determined both by direct and indirect ELISA

Figure 11 illustrates the reactivity of increasing concentrations of the recombinant antigen TbH-23 (SEO ID NO) 140) with sera from M suberculosis patients and from normal donors as determined by ELISA.

Figures 12A-F illustrate the reactivity of the recombinant antigens MO-1, MO-2, MO-4, MO-28 and MO-29, respectively, with sera from *M tuberculosis* patients and from normal donors as determined by ELISA.

|                | SEQ. ID NO. 4 is the DNA sequence of TbRa12.  |
|----------------|-----------------------------------------------|
|                | SEQ. ID NO. 5 is the DNA sequence of TbRa13.  |
|                | SEQ. ID NO. 6 is the DNA sequence of TbRa16.  |
|                | SEQ. ID NO. 7 is the DNA sequence of TbRa17.  |
| 5              | SEQ. ID NO. 8 is the DNA sequence of TbRa18.  |
|                | SEQ. ID NO. 9 is the DNA sequence of TbRa19.  |
|                | SEQ. ID NO. 10 is the DNA sequence of TbRa24. |
|                | SEQ. ID NO. 11 is the DNA sequence of TbRa26. |
|                | SEQ. ID NO. 12 is the DNA sequence of TbRa28. |
| (1)            | SEQ. ID NO. 13 is the DNA sequence of TbRa29. |
|                | SEQ. ID NO. 14 is the DNA sequence of TbRa2A. |
|                | SEQ. ID NO. 15 is the DNA sequence of TbRa3.  |
|                | SEQ. ID NO. 16 is the DNA sequence of TbRa32. |
|                | SEQ. ID NO. 17 is the DNA sequence of TbRa35. |
| , <del>-</del> | SEQ. ID NO. 18 is the DNA sequence of TbRa36. |
|                | SEQ. ID NO. 19 is the DNA sequence of TbRa4.  |
|                | SEQ. ID NO. 20 is the DNA sequence of TbRa9.  |
|                | SEQ. ID NO. 21 is the DNA sequence of TbRaB.  |
|                | SEQ. ID NO. 22 is the DNA sequence of TbRac.  |
| •              | SEQ. ID NO. 23 is the DNA sequence of TbRaD.  |
|                | SEQ ID NO 24 is the DNA sequence of YYWCPG    |
|                | SEQ. ID NO $25$ is the DNA sequence of AAMK   |
|                | SEO ID NO 26 is the DNA sequence of Tbl (23)  |
|                | SEQ ID NO 27 is the DNA sequence of TbL-24    |
| .5             | SEQ. ID NO 28 is the DNA sequence of TbL 25   |
|                | SEQ ID NO. 29 is the DNA sequence of Tb1 -28. |
|                | SEQ. ID NO. 30 is the DNA sequence of Tb1, 29 |

SEO ID NO  $(2)^{\circ}$  is the DNA sequence of TSFAs.

11

- SEQ. ID NO. 34 is the DNA sequence of TbM-1.
- SEQ. ID NO. 35 is the DNA sequence of TbM-3.
- SEQ. ID NO. 36 is the DNA sequence of TbM-6.
- SEQ. ID NO. 37 is the DNA sequence of TbM-7.
- SEQ. ID NO. 38 is the DNA sequence of TbM-9.
- SEQ. ID NO. 39 is the DNA sequence of TbM-12.
- SEQ. ID NO. 40 is the DNA sequence of TbM-13.
- SEQ. ID NO. 41 is the DNA sequence of TbM-14.
- SEQ. ID NO. 42 is the DNA sequence of TbM-15.
- SEQ. ID NO. 43 is the DNA sequence of TbH-4.
- SEQ. ID NO. 44 is the DNA sequence of TbH-4-FWD.
- SEQ. ID NO. 45 is the DNA sequence of TbH-12.
- SEQ. ID NO. 46 is the DNA sequence of Tb38-1.
- SEQ. ID NO. 47 is the DNA sequence of Tb38-4.
- SEQ. ID NO. 48 is the DNA sequence of TbL-17.
- SEQ. ID NO. 49 is the DNA sequence of TbL-20.
- SEQ. ID NO. 50 is the DNA sequence of TbL-21
- SEQ. ID NO. 51 is the DNA sequence of TbH-16.
- SEQ. ID NO. 52 is the DNA sequence of DPEP.
- SEQ ID NO. 53 is the deduced amino acid sequence of DPEP
  - SEQ. ID NO. 54 is the protein sequence of DPV N-terminal Antigen.
  - SFO ID NO 55% the protein sequence of AVGS N-terminal Antigen
  - SEC ID-NC . For it the protein sequence of AAMK N-terminal Antigen
  - SEQ. ID NO. 57 is the protein sequence of YYWC N-terminal Antigen.
  - SEQ ID MG 58 is the protein sequence of DIGS N-terminal Antigen.
  - SEQ ID NO 59 to the protein sequence of AEES N-terminal Antigen.
  - SEQ. ID NO 50 is the protein sequence of DPFP N-terminal Antigen.
  - SEQ ID NO 600, the protein sequence of APKT N-terminal Antigen

|     | SEQ. III NO. 64 is the deduced amino acid sequence of TbRa1. |
|-----|--------------------------------------------------------------|
|     | SEQ. ID NO. 65 is the deduced amino acid sequence of TbRa10  |
|     | SEQ. ID NO. 66 is the deduced amino acid sequence of TbRa11  |
|     | SEQ. ID NO. 67 is the deduced amino acid sequence of TbRa12  |
| 5   | SEQ. ID NO. 68 is the deduced amino acid sequence of TbRa13. |
|     | SEQ. ID NO. 69 is the deduced amino acid sequence of TbRa16. |
|     | SEQ. ID NO. 70 is the deduced amino acid sequence of TbRa17. |
|     | SEQ. ID NO. 71 is the deduced amino acid sequence of TbRa18. |
|     | SEQ. ID NO. 72 is the deduced amino acid sequence of TbRa19  |
| 10  | SEQ. ID NO. 73 is the deduced amino acid sequence of TbRa24. |
|     | SEQ. ID NO. 74 is the deduced amino acid sequence of TbRa26. |
|     | SEQ. ID NO. 75 is the deduced amino acid sequence of TbRa28. |
|     | SEQ. ID NO. 76 is the deduced amino acid sequence of TbRa29. |
|     | SEQ. ID NO. T is the deduced amino acid sequence of TbRa2A.  |
| 1.5 | SEQ. ID NO 78 is the deduced amino acid sequence of TbRa3.   |
|     | SEQ. ID NO. 79 is the deduced amino acid sequence of TbRa32. |
|     | SEQ. ID NO. 80 is the deduced amino acid sequence of TbRa35. |
|     | SEQ. ID NO. 31 is the deduced amino acid sequence of TbRa36. |
|     | SEQ. ID NO 32 is the deduced amino acid sequence of TbRa4    |
| 29  | SEQ. ID NO. 83 is the deduced amino acid sequence of TbRa9   |
|     | SEQ. ID NO. 34 is the deduced amino acid sequence of TbRaB   |
|     | SEO ID NO 55 is the deduced amino acid sequence of TbRac     |
|     | SEQ ID NO so is the deduced amino acid sequence of TbRaD     |
|     | SEQ ID NO ST is the deduced amino acid sequence of YYWCP0    |
| 25  | SEQ. ID NO SS is the deduced amino acid sequence of TbAAMK   |
|     | SEQ ID NO 39 is the deduced amino acid sequence of Tb38-1    |
|     | SEQ ID NO 90 is the deduced amino acid sequence of TbH-4     |
|     | SEO ID NO 97 is the deduced amino acid sequence of ThH s     |
|     |                                                              |

- SEQ. ID NO. 94 is the DNA sequence of DPAS.
- SEQ. ID NO. 95 is the deduced amino acid sequence of DPAS.
- SEQ. ID NO. 96 is the DNA sequence of DPV.
- SEQ. ID NO. 97 is the deduced amino acid sequence of DPV.
- 5 SEQ. ID NO. 98 is the DNA sequence of ESAT-6.
  - SEQ. ID NO. 99 is the deduced amino acid sequence of ESAT-6.
  - SEQ. ID NO. 100 is the DNA sequence of TbH-8-2.
  - SEQ. ID NO. 101 is the DNA sequence of TbH-9FL.
  - SEQ. ID NO. 102 is the deduced amino acid sequence of TbH-9FI
- SEQ. ID NO. 103 is the DNA sequence of TbH-9-1.
  - SEQ. ID NO. 104 is the deduced amino acid sequence of TbH-9-1.
  - SEQ. ID NO. 105 is the DNA sequence of TbH-9-4.
  - SEQ. ID NO. 106 is the deduced amino acid sequence of TbH-9-4.
  - SEQ. ID NO. 107 is the DNA sequence of Tb38-1F2 IN.
- SEQ. ID NO. 108 is the DNA sequence of Tb38-1F2 RP.
  - SEQ. ID NO 109 is the deduced amino acid sequence of Tb37-FL.
  - SEQ. ID NO.  $110~\rm is$  the deduced amino acid sequence of Tb38-IN.
  - SEQ. ID NO. 111 is the DNA sequence of Tb38-1F3.
  - SEQ. ID NO. 112 is the deduced amino acid sequence of Tb38-4F3.
- SEQ. ID NO. 113 is the DNA sequence of Tb38-1F5
  - SEQ. ID NO. 114 is the DNA sequence of Tb38-1F6.
  - SFQ\_ID\_NO. 115 is the deduced N-terminal amino acid sequence of DPV
  - SEQ. (D NO). To is the deduced N-terminal amino acid sequence of AVGS
  - SEQ. ID N() 117 % the deduced N-terminal amino acid sequence of  $\Lambda AMK$
  - SEQ. ID NO. 118 is the deduced N-terminal amino acid sequence of YYWC
    - SEQ. ID NO 119 is the deduced N-terminal amino acid sequence of DIGS.
    - SE() ID N() 17 (is the deduced N-terminal amino acid sequence of AAES
    - SEQ. ID NO. 121 on the destroyed N-forminal animo and sequence of DPEP

SEQ. ID NO. 124 is the protein sequence of DPPD N-terminal Antigen.

SEQ ID NO. 125-128 are the protein sequences of four DPPD cyanogen bromide fragments.

SEQ ID NO. 129 is the N-terminal protein sequence of XDS antigen.

5 SEQ ID NO. 130 is the N-terminal protein sequence of AGD antigen.

SEQ ID NO. 131 is the N-terminal protein sequence of APE antigen.

SEQ ID NO. 132 is the N-terminal protein sequence of XYI antigen.

SEQ ID NO. 133 is the DNA sequence of TbH-29.

SEQ ID NO. 134 is the DNA sequence of TbH-30.

SEQ ID NO. 135 is the DNA sequence of TbH-32.

SEQ ID NO. 136 is the DNA sequence of TbH-33.

SEQ ID NO. 137 is the predicted amino acid sequence of TbH-29.

SEQ ID NO. 138 is the predicted amino acid sequence of TbH-30.

SEQ ID NO. 139 is the predicted amino acid sequence of TbH-32.

SEQ ID NO. 140 is the predicted amino acid sequence of TbH-33.

SEQ ID NO: 141-146 are PCR primers used in the preparation of a fusion protein containing TbRa3, 38 kD and Tb38-1.

SEQ ID NO: 147 is the DNA sequence of the fusion protein containing TbRa3. 38 aD and Tb38-1

SEQ ID NO: 148 is the amino acid sequence of the fusion protein containing TbRa3, 38 kD and Tb38-1.

SEQ ID NO -1490 sine DNA sequence of the M. tuberculosis antigen 38 kD.

SEQ ID NO. Two is the immo acid sequence of the M tubercures is antigen  $^{\rm SS}$  kD.

SEQ ID NO 151 is the DNA sequence of XP14

SEQ ID NO: 152 is the DNA sequence of XP24

ShQ ID NO 157 is the DNA sequence of NP31

SEQ ID NO 114 combo 51 DNA segmence of VD11

- SEQ ID NO: 157 is the predicted amino acid sequence encoded by the reverse complement of XP14.
- SEQ ID NO: 158 is the DNA sequence of XP27.
- SEQ ID NO: 159 is the DNA sequence of XP36.
- 5 SEQ ID NO: 160 is the 5' DNA sequence of XP4.
  - SEQ ID NO 161 is the 5' DNA sequence of XP5.
  - SEQ ID NO: 162 is the 5' DNA sequence of XP17.
  - SEQ ID NO: 163 is the 5' DNA sequence of XP30.
  - SEQ ID NO: 164 is the 5' DNA sequence of XP2.
- SEQ ID NO: 165 is the 3" DNA sequence of XP2.
  - SEQ ID NO: 166 is the 5' DNA sequence of XP3.
  - SEQ ID NO: 167 is the 3' DNA sequence of XP3.
  - SEQ ID NO: 168 is the 5' DNA sequence of XP6.
  - SEQ ID NO: 169 is the 3' DNA sequence of XP6.
- SEQ ID NO: 170 is the 5' DNA sequence of XP18.
  - SEQ ID NO: 171 is the 3' DNA sequence of XP18.
  - SEQ ID NO: 172 is the 5' DNA sequence of XP19.
  - SEQ ID NO: 173 is the 31 DNA sequence of XP19.
  - SEQ ID NO. 174 is the 51 DNA sequence of XP22.
- SEQ ID NG: 175 is the 31 DNA sequence of XP22.
  - SEQ ID NO: 176 is the 51 DNA sequence of XP25.
  - SEQ ID NO: 177 is the 31 DNA sequence of XP25.
  - SEQ ID NO: 178 is the full-length DNA sequence of ThH4-XP1.
  - SEQ ID NOT 1.79 is the predicted amino acid sequence of TbH4-XP1.
- SEQ ID NO 180 is the predicted amino acid sequence encoded by the reverse complement of TbH4-XP1.
  - SEQ ID NO: 181 is a first predicted amino acid sequence encoded by XP36
  - SEQ ID NO. 182 is a second predicted amino acid sequence encoded by XP36.

```
SEQ ID NO: 184 is the DNA sequence of RDIF2.
```

SEQ ID NO: 185 is the DNA sequence of RDIF5.

SEQ ID NO: 186 is the DNA sequence of RDIF8.

SEQ ID NO: 187 is the DNA sequence of RDIF10.

5 SEQ ID NO: 188 is the DNA sequence of RDIF11.

SEQ ID NO: 189 is the predicted amino acid sequence of RDIF2.

SEQ ID NO: 190 is the predicted amino acid sequence of RDIF5.

SEQ ID NO: 191 is the predicted amino acid sequence of RDIF8.

SEQ ID NO: 192 is the predicted amino acid sequence of RDIF10.

SEQ ID NO: 193 is the predicted amino acid sequence of RDIF11.

SEQ ID NO: 194 is the 5' DNA sequence of RDIF12.

SEQ ID NO: 195 is the 3' DNA sequence of RDIF12.

SEQ ID NO: 196 is the DNA sequence of RDIF7.

SEQ ID NO: 197 is the predicted amino acid sequence of RDIFT.

SEQ ID NO: 198 is the DNA sequence of DIF2-1

SEO ID NO: 199 is the predicted amino acid sequence of DIF2-1.

SEO ID NO: 200-207 are PCR primers used in the preparation of a fusion protein containing TbRa3, 38 kD. Tb38-1 and DPEP (hereinafter referred to as Tbir-2).

SEQ ID NO: 208 is the DNA sequence of the fusion protein TbF-2.

SEQ ID NO: 209 is the amino acid sequence of the fusion protein TbF-2.

SFO ID NO 210 is the 51 DNA sequence of MO 1

SEQ ID NO+211 is the SIDNA sequence for MO+2

SEQ ID NO: 212 is the FIDNA sequence for MO-4.

SEQ ID NO 213 is the 5° DNA sequence for MO-8.

SEQ ID NOt 214 to the 51 DNA sequence for MO-9.

SEQ ID NO: 215 is the 51 DNA sequence for MO-26

SFQ ID NO 226 is the SI DNA sequence for MO-28

|    | SEQ ID NO: 219 is the 51 DNA sequence for MO-34.                         |
|----|--------------------------------------------------------------------------|
|    | SEQ ID NO: 220 is the 5° DNA sequence for MO-35.                         |
|    | SEQ ID NO: 221 is the predicted amino acid sequence for MO-1.            |
|    | SEQ ID NO: 222 is the predicted amino acid sequence for MO-2.            |
| 5  | SEQ ID NO. 223 is the predicted amino acid sequence for MO-4.            |
|    | SEQ ID NO: 224 is the predicted amino acid sequence for MO-8.            |
|    | SEQ ID NO: 225 is the predicted amino acid sequence for MO-9             |
|    | SEQ ID NO 226 is the predicted amino acid sequence for MO-26.            |
|    | SEQ ID NO 227 is the predicted amino acid sequence for MO-28.            |
| 10 | SEQ ID NO: 228 is the predicted amino acid sequence for MO-29.           |
|    | SEQ ID NO: 229 is the predicted amino acid sequence for MO-30.           |
|    | SEQ ID NO: 230 is the predicted amino acid sequence for MO-34.           |
|    | SEQ ID NO: 231 is the predicted amino acid sequence for MO-35.           |
|    | SEQ ID NO: 232 is the determined DNA sequence for MO-10.                 |
| 15 | SEQ ID NO: 233 is the predicted amino acid sequence for MO-10.           |
|    | SEQ ID NO: 234 is the 31 DNA sequence for MO-27.                         |
|    | SEQ ID NO: 235 is the full-length DNA sequence for DPPD                  |
|    | SEQ ID NO: 236 is the predicted full-length amino acid sequence for DPPD |
|    | SEQ ID NO: 237 is the determined 5° eDNA sequence for LSER-10            |
| 2. | SEQ ID NO. 238 is the determined 5" cDNA sequence for LSER-11            |
|    | SEQ ID NO: 239 is the determined 5° cDNA sequence for LSER-12            |
|    | SEQ ID NO 240 is the determined 51 aDNA sequence for LSER-13             |
|    | SEQ ID NO 241 is the determined 51 aDNA sequence for LSER-16             |
|    | SEQ ID NO 242 is the determined 51 eDNA sequence for LSER 25             |
| 25 | SEQ ID NO 243 is the predicted amino acid sequence for LSER-10           |
|    | SEQ ID NO: 244 is the predicted amino acid sequence for LSER-12          |
|    | SEQ ID NO 245 is the predicted amino acid sequence for LSER-13           |

SEQ ID NO  $^{\circ}$  46 is the predicted amino acid sequence for LSER-16.

|      | SEQ ID NO: 249 is the determined cDNA sequence for LSER-23               |
|------|--------------------------------------------------------------------------|
|      | SEQ ID NO: 250 is the determined cDNA sequence for LSER-24               |
|      | SEQ ID NO: 251 is the determined cDNA sequence for LSER-27               |
|      | SEQ ID NO: 252 is the predicted amino acid sequence for LSER-18          |
| 5    | SEQ ID NO: 253 is the predicted amino acid sequence for LSER-23          |
|      | SEQ ID NO: 254 is the predicted amino acid sequence for LSER-24          |
|      | SEQ ID NO: 255 is the predicted amino acid sequence for LSER-27          |
|      | SEQ ID NO 256 is the determined 5° eDNA sequence for LSER-I              |
|      | SEQ ID NO: 257 is the determined 5" cDNA sequence for LSER-3             |
| .0   | SEQ ID NO: 258 is the determined 5° cDNA sequence for LSER-4             |
|      | SEQ ID NO: 259 is the determined 51 cDNA sequence for LSER-5             |
|      | SEQ ID NO: 260 is the determined 5° cDNA sequence for LSER-6             |
|      | SEQ ID NO: 261 is the determined 5° cDNA sequence for LSER-8             |
|      | SEQ ID NO: 262 is the determined 5° cDNA sequence for LSER-14            |
| :5   | SEQ ID NO: 263 is the determined 51 cDNA sequence for LSER-15            |
|      | SEQ ID NO: 264 is the determined 5° cDNA sequence for LSER-1" $$         |
|      | SEQ ID NO: 265 is the determined 51 cDNA sequence for LSER-19.           |
|      | SEQ ID NO: 200 is the determined 51 cDNA sequence for LSER 20 $^{\circ}$ |
|      | SEQ ID NO: 267 is the determined 51 cDNA sequence for USER-22 $^{\circ}$ |
| `: 1 | SEQ ID NO 268 is the determined 51 cDNA sequence for LSER-26 $^{\circ}$  |
|      | SEQ ID NO: 269 is the determined 51 cDNA sequence for LSER-28            |
|      | SEQ ID NO $276\mathrm{ns}$ the determined 51 JDNA sequence for LSER-29 . |
|      | SEQ ID NO 27% is the determined 5% cDNA sequence for LSER-30 $^{\circ}$  |
|      | SEQ ID NOv 272 is the predicted amino acid sequence for ESER-1           |
| 28   | SEQ ID NO 273 is the predicted amino acid sequence for LSER-3            |
|      | SEQ ID NOv 274 is the predicted amino acid sequence for LSER-5           |
|      | SEO ID NO 275 is the predicted amino acid sequence for USER-6            |
|      | SEQ ID NO 1275 is the predicted arrange and continuous to 1 SER as a     |

: 5

|                  |       |         |     |        |           |         |      |          | •   | 1 250   |       |
|------------------|-------|---------|-----|--------|-----------|---------|------|----------|-----|---------|-------|
| CEC              | 1111  | 1.7.1   | 7-1 | ic tha | productod | ORIGINA | 3010 | CAUTANCO | tor | 1 N H R | _ 1 . |
| ari.             | , ,,, | . 11.7. | 7   | is uic | Diculticu | JIIIIII | 3010 | sequence | 101 |         | - 1 / |
| $\sim \sim \sim$ | -     |         |     |        | F         |         |      |          |     |         |       |

- SEQ ID N(): 280 is the predicted amino acid sequence for LSER-19
- SEQ ID NO: 281 is the predicted amino acid sequence for LSER-20
- SEO ID NO: 282 is the predicted amino acid sequence for LSER-22
- SEQ ID NO: 283 is the predicted amino acid sequence for LSER-26
- SEQ ID NO: 284 is the predicted amino acid sequence for LSER-28
- SEQ ID NO: 285 is the predicted amino acid sequence for LSER-29
- SEQ ID NO: 286 is the predicted amino acid sequence for LSER-30
- SEQ ID NO: 287 is the determined cDNA sequence for LSER-9
- SEQ ID NO: 288 is the determined cDNA sequence for the reverse complement of LSER-o
- SEQ ID NO: 289 is the predicted amino acid—sequence for the reverse complement of LSER-6
- SEQ ID NO: 290 is the determined 5° cDNA sequence for MO-12
- SEQ ID NO: 291 is the determined 5' cDNA sequence for MO-13.
- SEQ ID NO: 292 is the determined 51 cDNA sequence for MO-19.
- SEQ ID NO: 293 is the determined 51 cDNA sequence for MO-39.
- SEQ ID NO 294 is the predicted amino acid sequence for MO-12
- SEQ ID Nov 205 is the predicted amino acid sequence for MO-13
- SEQ ID NO: 296 is the predicted amino acid sequence for MO-19.
- SEQ ID NO: 297 is the predicted amino acid sequence for MO-39.
- SEQ ID NG 298 is the letermined 51 cDNA sequence for Erasn-1
- SEQ ID NO: 299 is the determined 51 aDNA sequence for Erdsn-2
- SEQ ID No. 300 is the determined of aDNA sequence for brasn-4.
- SEQ ID NO 301 is the determined 51 cDNA sequence for Erasn-5.
- SEQ ID NO: 302 is the letermined 51 cDNA sequence for Erdsn-o
- SFO ID NO: 303 is the determined 51 cDNA sequence for Erdsn-7
- SEQ ID ISC 304 is the determined 5 2DNA sequence for hirdsn-8

|            | SEQ 10 NO. 30% Is the determined 5° cDNA sequence for Erdsn-12  |
|------------|-----------------------------------------------------------------|
|            | SEQ ID NO: 308 is the determined 5' cDNA sequence for Erdsn-13  |
|            | SEQ ID NO: 309 is the determined 5" cDNA sequence for Erdsn-14  |
|            | SEQ ID NO: 310 is the determined 5' cDNA sequence for Erdsn-15  |
| 5          | SEQ ID NO: 311 is the determined 5' cDNA sequence for Erdsn-16  |
|            | SEQ ID NO: 312 is the determined 5° cDNA sequence for Erdsn-17  |
|            | SEQ ID NO: 313 is the determined 5' cDNA sequence for Erdsn-18  |
|            | SEQ ID NO: 314 is the determined 5° cDNA sequence for Erdsn-21  |
|            | SEQ ID NO: 315 is the determined 5' cDNA sequence for Erdsn-22  |
| <u>;</u> 6 | SEQ ID NO: 316 is the determined 5° cDNA sequence for Erdsn-23  |
|            | SEQ ID NO: 317 is the determined 5° cDNA sequence for Erdsn-25  |
|            | SEQ ID NO: 318 is the determined 3' cDNA sequence for Erdsn-1   |
|            | SEQ ID NO: 319 is the determined 3' cDNA sequence for Erdsn-2   |
|            | SEQ ID NO: 320 is the determined 3' cDNA sequence for Erdsn-4   |
| 1.5        | SEQ ID NO: 321 is the determined 31 cDNA sequence for Erdsn-5   |
|            | SEQ ID NO: 322 is the determined 31 cDNA sequence for Erdsn-7   |
|            | SEQ ID NO: 323 is the determined 3" eDNA sequence for Erdsn-8   |
|            | SEO ID NO: 324 is the determined 31 cDNA sequence for Erdsn-4   |
|            | SEQ ID NO. 325 is the determined 31 cDNA sequence for Erdsn-10  |
| 20         | SEQ ID NOt 326 is the determined 31 cDNA sequence for Erdsn-12  |
|            | SEQ ID NO: 327 is the determined 31 eDNA sequence for Erdsn-13  |
|            | SEQ ID NO: 328 is the determined 2 cDNA sequence for hirash-14  |
|            | SEQ ID NO 32% is the determined 21 aDNA sequence for Frdsn-15   |
|            | SEQ ID NO 230 is the determined 21 aDNA sequence for Erdsh 46   |
| 28         | SEQ ID NO: 331 is the determined 31 cDNA sequence for Erdsn-17  |
|            | SEQ ID NO: 332 is the determined 31 cDNA sequence for Erdsn-18  |
|            | SEQ ID NO 333 is the determined 21 cDNA sequence for british-21 |
|            | SECTORO TEL GRADAMINA CONTRA                                    |

:5

SEQ ID NO: 337 is the determined cDNA sequence for Erdsn-24

SEQ ID NO: 338 is the determined amino acid sequence for a M. tuberculosis

85b precursor homolog

SEQ ID NO: 339 is the determined amino acid sequence for spot 1

5 SEQ ID NO: 340 is a determined amino acid sequence for spot 2

SEQ ID NO: 341 is a determined amino acid sequence for spot 2

SEQ ID NO: 342 is the determined amino acid seq for spot 4

SEQ ID NO: 343 is the sequence of primer PDM-157

SEQ ID NO: 344 is the sequence of primer PDM-160

SEQ ID NO: 345 is the DNA sequence of the fusion protein TbF-6

SEQ ID NO: 346 is the amino acid sequence of fusion protein TbF-6

SEQ ID NO: 347 is the sequence of primer PDM-176

SEQ ID NO: 348 is the sequence of primer PDM-175

SEQ ID NO: 349 is the DNA sequence of the fusion protein TbF-8

SEQ ID NO: 350 is the amino acid sequence of the fusion protein TbF-8

# DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for diagnosing tuberculosis. The compositions of the subject invention include polypeptides that comprise at least one antigenic portion of a M. tuberculosis antigen, or a variant of such an antigen that differs only in conservative substitutions and or modifications. Polypeptides within the scone of the present invention include, but are not limited to, soluble M. tuberculosis antigens. A "soluble M tuberculosis antigen" is a protein of M. tuberculosis origin that is present in M. tuberculosis culture filtrate. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins (10), antigens), wherein the amino acid residues are linked by towalent proteins (10), antigens).

be derived from the native *M. tuberculosis* antigen or may be heterologous, and such sequences may (but need not) be antigenic.

An "antigenic portion" of an antigen (which may or may not be soluble) is a portion that is capable of reacting with sera obtained from an *M. tuberculosis*-infected individual (*i.e.*, generates an absorbance reading with sera from infected individuals that is at least three standard deviations above the absorbance obtained with sera from uninfected individuals, in a representative ELISA assay described herein). An "*M. tuberculosis*-infected individual" is a human who has been infected with *M. tuberculosis* (*e.g.*, has an intradermal skin test response to PPD that is at least 0.5 cm in diameter). Infected individuals may display symptoms of tuberculosis or may be free of disease symptoms. Polypeptides comprising at least an antigenic portion of one or more *M. tuberculosis* antigens as described herein may generally be used, alone or in combination, to detect tuberculosis in a patient.

The compositions and methods of the present invention also encompass variants of the above polypeptides and DNA molecules. A polypeptide "variant," as used herein, is a polypeptide that differs from the recited polypeptide only in conservative substitutions and/or modifications, such that the therapeutic, antigenic and/or immunogenic properties of the polypeptide are retained. Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity to the identified polypeptides. For polypeptides with immunoreactive properties, variants may, alternatively, be identified by modifying the amino acid sequence of one of the above polypeptides, and evaluating the immunoreactivity of the modified polypeptide. For polypeptides useful for the generation of diagnostic binding agents, a garrant may be identified by evaluating a modified polypeptide for the ability to generate antibodies that detect the presence or absence of tuberculosis. Such modified sequences may be prepared and tested using, for example, the representative procedures described herein

As used herein, a "conservative substitution" is one in which an amino

hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

Variants may also, or alternatively, contain other modifications, including the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

A nucleotide "variant" is a sequence that differs from the recited nucleotide sequence in having one or more nucleotide deletions, substitutions or additions. Such modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. (*DNA*, 2:183, 1983). Nucleotide variants may be naturally occurring alielic variants, or non-naturally occurring variants. Variant nucleotide sequences preferably exhibit at least about 70%, more preferably at least about 80% and most preferably at least about 90% adentity to the recited sequence. Such variant nucleotide sequences will generally hypothesize to the recite nucleotide requence under stringent conditions. As used herein, "stringent conditions," refers to prewashin that solution of pX SSC, 1.2% SDS, hybriding at p5.7C, pX SSC = 2% SDS exempeliate followed by two washes of 30 minutes each in 1X SSC, 0.1% SDS at p5.7C and two washes of 30 minutes each in 0.2X SSC, 0.1% SDS at p5.7C.

In a related aspect, combination, or fusion, polypeptides are disclosed. A

joined directly (i.e., with no intervening amino acids) or may be joined by way of a linker sequence (e.g., Gly-Cys-Gly) that does not significantly diminish the antigenic properties of the component polypeptides.

In general, M. tuberculosis antigens, and DNA sequences encoding such antigens, may be prepared using any of a variety of procedures. For example, soluble antigens may be isolated from M. tuberculosis culture filtrate by procedures known to those of ordinary skill in the art, including anion-exchange and reverse phase chromatography. Purified antigens may then be evaluated for a desired property, such as the ability to react with sera obtained from an M. tuberculosis-infected individual. Such screens may be performed using the representative methods described herein. Antigens may then be partially sequenced using, for example, traditional Edman chemistry. See Edman and Berg, Eur. J. Biochem. 80:116-132, 1967.

Antigens may also be produced recombinantly using a DNA sequence that encodes the antigen, which has been inserted into an expression vector and expressed in an appropriate host. DNA molecules encoding soluble antigens may be isolated by screening an appropriate *M. tuberculosis* expression library with anti-sera (e.g., rabbit) raised specifically against soluble *M tuberculosis* antigens. DNA sequences encoding antigens that may or may not be soluble may be identified by icreening an appropriate *M. tuberculosis* genomic or aDNA expression library with sera obtained from patients infected with *M. tuberculosis*. Such screens may generally be performed using techniques well known in the art, such as those described in Sambrook at al., *Molecular Cloning*. A Laboratory, Manual, Fold Spring Harbor Laboratories, Fold Spring Harbor, NY, 1989.

DNA sequences encoding soluble antigens may also be obtained by screening an appropriate *M suberculosis* eDNA or genomic DNA library for DNA sequences that hybridize to degenerate oligonucleotides derived from partial amino acid sequences of isolated soluble antigens. Degenerate oligonucleotide sequences for use in such a screen may be designed and synthesized, and the screen may be designed, as

• • • • • •

therein). Polymerase chain reaction (PCR) may also be employed, using the above oligonucleotides in methods well known in the art, to isolate a nucleic acid probe from a cDNA or genomic library. The library screen may then be performed using the isolated probe.

Regardless of the method of preparation, the antigens described herein are "antigenic." More specifically, the antigens have the ability to react with sera obtained from an *M. tuberculosis*-infected individual. Reactivity may be evaluated using, for example, the representative ELISA assays described herein, where an absorbance reading with sera from infected individuals that is at least three standard deviations above the absorbance obtained with sera from uninfected individuals is considered positive.

Antigenic portions of *M. tuberculosis* antigens may be prepared and identified using well known techniques, such as those summarized in Paul, *Fundamental Immunology*, 3d ed., Raven Press, 1993, pp. 243-247 and references cited therein. Such techniques include screening polypeptide portions of the native antigen for antigenic properties. The representative ELISAs described herein may generally be employed in these screens. An antigenic portion of a polypeptide is a portion that, within such representative assays, generates a signal in such assays that is substantially similar to that generated by the full length antigen. In other words, an antigenic portion of a *M. tuberculosis* antigen generates at least about 20%, and preferably about 100%, of the signal induced by the full length antigen in a model ELISA as described herein.

Portions and other variants of *W. tanorcidosis* antigens may be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing immo acid chain. See Merrifield 5, the Share No. 55 2149-2146, 1963.

10

15

according to the manufacturer's instructions. Variants of a native antigen may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis. Sections of the DNA sequence may also be removed using standard techniques to permit preparation of truncated polypeptides.

Recombinant polypeptides containing portions and/or variants of a native antigen may be readily prepared from a DNA sequence encoding the polypeptide using a variety of techniques well known to those of ordinary skill in the art. For example, supernatants from suitable host vector systems which secrete recombinant protein into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant protein.

Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides as described herein. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line, such as COS or CHO. The DNA sequences expressed in this manner may encode naturally occurring antigens, portions of naturally occurring antigens, or other variants thereof

In general regardless of the method of preparation, the polypeptides disclosed herein are prepared in substantially pure form. Preferably, the polypeptides are at least about 30%, pure, more preferably at least about 90% pure and most preferably at least about 90% pure. For use in the methods described herein, however, such substantially pure polypeptides may be combined.

The surgery operation and character that primary in many in these gas

15

20

antigen (or a variant of such an antigen), where the antigen has one of the following N-terminal sequences:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu (SEQ ID NO: 115);
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID NO: 116);
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID NO: 117);
- (d) Tyr-Tyr-Typ-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Typ-Gly-Pro (SEQ ID NO: 118);
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gin-Gln-Xaa-Ala-Vai (SEQ ID NO: 119);
- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID NO: 120);
- (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser (SEQ ID NO: 121);
- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEQ ID NO: 122);
- (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gin-Gin-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn (SEQ ID NO: 123);
- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-He-ilys-Vai-Thr-Asp-Ala-Ser: SEO ID NO (20)
- (k) Ala-Gly-Asp-Thr Xaa-Ile-Tyr-Ile-Vai-cily-Asp-Leu-Thr-Ala-Asp; (SEQ ID NO: 130) or
- (l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly Thr-Val-Gln-Ala-Gly (SEQ ID NO. 131)

wherein Xaa may be any amino acid, preferably a systeme residue. A DNA sequence

encoding the antigen identified as (a) above is provided in SEQ ID NO: 96; its deduced amino acid sequence is provided in SEQ ID NO: 97. A DNA sequence corresponding to antigen (d) above is provided in SEQ ID NO: 24, a DNA sequence corresponding to antigen (c) is provided in SEQ ID NO: 25 and a DNA sequence corresponding to antigen (I) is disclosed in SEQ ID NO: 94 and its deduced amino acid sequence is provided in SEQ ID NO: 95.

In a further specific embodiment, the subject invention discloses polypeptides comprising at least an immunogenic portion of an *M. tuberculosis* antigen having one of the following N-terminal sequences, or a variant thereof that differs only in conservative substitutions and/or modifications:

- (m) Xaa-Tyr-lle-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-lle-Val-Pro-Gly-Lyslle-Asn-Val-His-Leu-Val; (SEQ ID NO: 132) or
- (n) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID NO: 124)
- wherein Xaa may be any amino acid, preferably a cysteine residue. A DNA sequence encoding the antigen of (n) above is provided in SEQ ID NO: 235, with the corresponding predicted full-length amino acid sequence being provided in SEQ ID NO: 236

In other specific embodiments, the subject invention discloses polypeptides comprising at least an antigenic portion of a soluble *M. tuberculosis* antigen (or a variant of such an antigen) that comprises one or more of the amino acid sequences encoded by (a) the DNA sequences of SEQ ID NOS 1, 2, 4 19, 13-25, 52, 34 and 36, (b) the complements of such DNA sequences, or reciDNA sequences substantially homologous to a sequence in (a) or (b).

In further specific embodiments, the subject invention discloses polypeptides comprising at least an antigenic portion of a *M tuberculosis* antigen for a variant of such an antigen), which may or may not be soluble that comprises one or

242, 248-251, 256-271, 287, 288, 290-293 and 298-337, (b) the complements of such DNA sequences or (c) DNA sequences substantially homologous to a sequence in (a) or (b).

In a related aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, a polypeptide of the present invention and a known *M. tuberculosis* antigen, such as the 38 kD antigen described in Andersen and Hansen, *Inject Immun.* 57:2481-2488, 1989, (Genbank Accession No. M30046) or ESAT-6 (SEQ ID NOS: 98 and 99), together with variants of such fusion proteins. The fusion proteins of the present invention may also include a linker peptide between the first and second polypeptides.

A DNA sequence encoding a fusion protein of the present invention is constructed using known recombinant DNA techniques to assemble separate DNA sequences encoding the first and second polypeptides into an appropriate expression vector. The 3' end of a DNA sequence encoding the first polypeptide is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide so that the reading frames of the sequences are in phase to permit mRNA translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.

A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well-known in the art. Suitable peptide linker sequences may be chosen based on the following factors. Containing structure adopt a flexible extended conformation: (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or enarged residues that might react with the polypeptide functional epitopes. Prefeired peptide linker sequences contain Gly. Asn and Ser residues. Other near neutral improved to the author. The art Allegan is second as the residues.

Natl. Acad. Sci. USA 83:8258-8562, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. Peptide linker sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric hindrance.

In another aspect, the present invention provides methods for using the polypeptides described above to diagnose tuberculosis. In this aspect, methods are provided for detecting *M. tuberculosis* infection in a biological sample, using one or more of the above polypeptides, alone or in combination. In embodiments in which multiple polypeptides are employed, polypeptides other than those specifically described herein, such as the 38 kD antigen described in Andersen and Hansen, *Inject. Immun.* 57:2481-2488, 1989, may be included. As used herein, a "biological sample" is any antibody-containing sample obtained from a patient. Preferably, the sample is whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid or urne. More preferably, the sample is a blood, serum or plasma sample obtained from a patient or a blood supply. The polypeptide(s) are used in an assay, as described below, to determine the presence or absence of antibodies to the polypeptide(s) in the sample, relative to a predetermined out-off value. The presence of such antibodies indicates previous sensitization to mycobacterial antigens which may be indicative of tuberculosis.

In embodiments in which more than one polypeptide is employed, the polypeptides used are preferably complementary (i.e., one component polypeptide will rend to detect infection in samples where the infection would not be detected by another component polypeptide). Complementary polypeptides may generally be identified by using each polypeptide individually to evaluate serum samples obtained from a series of patients known to be infected with M. tuberculosis. After determining which samples test positive (as described below) with each polypeptide, combinations of two or more polypeptides may be formulated that are capable of detecting infection in most, or all, of the samples tested. Such polypeptides are complementary. For example, approximately

polypeptides may, therefore, be used in combination with the 38 kD antigen to improve sensitivity of a diagnostic test.

There are a variety of assay formats known to those of ordinary skill in the art for using one or more polypeptides to detect antibodies in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988, which is incorporated herein by reference. In a preferred embodiment, the assay involves the use of polypeptide immobilized on a solid support to bind to and remove the antibody from the sample. The bound antibody may then be detected using a detection reagent that contains a reporter group. Suitable detection reagents include antibodies that bind to the antibody/polypeptide complex and free polypeptide labeled with a reporter group (e.g., in a semi-competitive assay). Alternatively, a competitive assay may be utilized, in which an antibody that binds to the polypeptide is labeled with a reporter group and allowed to bind to the immobilized antigen after incubation of the antigen with the sample. The extent to which components of the sample inhibit the binding of the labeled antibody to the polypeptide is indicative of the reactivity of the sample with the immobilized polypeptide.

The solid support may be any solid material known to those of ordinary skill in the art to which the antigen may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as giass, fibergiass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5.359,681

The polypeptides may be bound to the solid support using a variety of techniques known to those of ordinary skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "bound" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the

be achieved by contacting the polypeptide, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of polypeptide ranging from about 10 ng to about 1 µg, and preferably about 100 ng, is sufficient to bind an adequate amount of antigen.

Covalent attachment of polypeptide to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxvl or amino group, on the polypeptide. For example, the polypeptide may be bound to supports having an appropriate polymer coating using benzoquinone or by condensation of an aidehyde group on the support with an amine and an active hydrogen on the polypeptide (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

In certain embodiments, the assay is an enzyme linked immunosorbent assay (ELISA). This assay may be performed by first contacting a polypeptide antigen that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that antibodies to the polypeptide within the sample are allowed to bind to the immobilized polypeptide. Unbound sample is then removed from the immobilized polypeptide and a detection reagent capable of binding to the immobilized antibody-polypeptide complex is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific detection reagent.

More specifically, once the polypeptide is immonifized on the support as rescribed above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20<sup>TM</sup> (Sigma Chemical Co., St. Louis, MO) may be employed. The immobilized polypeptide is then incubated with the sample, and antibody is allowed to bind to the antigen. The sample may be diluted with a suitable

detect the presence of antibody within a *M. tuberculosis*-infected sample. Preferably, the contact time is sufficient to achieve a level of binding that is at least 95% of that achieved at equilibrium between bound and unbound antibody. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20<sup>TM</sup>. Detection reagent may then be added to the solid support. An appropriate detection reagent is any compound that binds to the immobilized antibody-polypeptide complex and that can be detected by any of a variety of means known to those in the art. Preferably, the detection reagent contains a binding agent (such as, for example, Protein A, Protein G, immunoglobulin, lectin or free antigen) conjugated to a reporter group. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups, biotin and colliodal particles, such as colloidal gold and selenium. The conjugation of binding agent to reporter group may be achieved using standard methods known to those of ordinary skill in the art. Common binding agents may also be purchased conjugated to a variety of reporter groups from many commercial sources (e.g., Zymed Laboratories, San Francisco, CA, and Pierce, Rockford, IL).

The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound antibody. An appropriate amount of time may generally be determined from the manufacturer's instructions or by assaying the level of binding that occurs over a period of time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic

radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of anti-M. tuberculosis antibodies in the sample, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cutoff value. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antigen is incubated with samples from an uninfected patient. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for tuberculosis. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., Clinical Epidemiology: A Basic Science for Clinical Medicine, Little Brown and Co., 1985, pp. 106-107. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate out-off value, and a sample generating a signal that is higher than the out-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a aignal that is higher than the cut-off value determined by this method is considered positive for tunerculosis.

In a related embodiment, the assay is performed in a rapid flow-through or strip test format, wherein the antigen is immobilized on a membrane, such as nitroceilulose. In the flow-through test, antibodies within the sample bind to the immobilized polypeptide as the sample passes through the membrane. A detection reagent (e.g., protein A colloidal rold) then briefs to the intibodic polypeptide complex.

PCT/US99-03265

strip test format, one end of the membrane to which polypeptide is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing detection reagent and to the area of immobilized polypeptide. Concentration of detection reagent at the polypeptide indicates the presence of anti-M. tuberculosis antibodies in the sample. Typically, the concentration of detection reagent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of polypeptide immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of antibodies that would be sufficient to generate a positive signal in an ELISA, as discussed above. Preferably, the amount of polypeptide immobilized on the membrane ranges from about 25 ng to about 1  $\mu$ g, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount (a g, one drop) of patient serum or blood.

Of course, numerous other assay protocols exist that are suitable for use with the polypeptides of the present invention. The above descriptions are intended to be exemplary only.

In yet another aspect, the present invention provides antibodies to the inventive polypeptides. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. Sev. e.g., Harlow and Lane, Antibodies of Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In one such technique, an immunogen comprising the antigenic polypeptide is initially injected into any of a wide variety of maminals (e.g., mice, rats, rabbits, sheep and goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is foined to a carrier protein, such as boying serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal most, preferably according to a predetermined schedule incorporating one or more booster immunications, and the animals are bled periodically. Polyclonal antibodies

Monoclonal antibodies specific for the antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol. 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, zel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process and for example, an affinity chromatography step

Antibodies may be used in diagnostic tests to detect the presence of *M. tuberculosis* antigens using assays similar to those detailed above and other techniques well known to those of skill in the art, thereby providing a method for detecting *M. tuberculosis* infection in a patient

PCT/US99/03265

thereof. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify *M. nuberculosis*-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for a DNA molecule encoding a polypeptide of the present invention. The presence of the amplified cDNA is then detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes specific for a DNA molecule encoding a polypeptide of the present invention may be used in a hybridization assay to detect the presence of an inventive polypeptide in a biological sample.

As used herein, the term "oligonucleotide primer probe specific for a DNA molecule" means an oligonucleotide sequence that has at least about 80%. preferably at least about 90% and more preferably at least about 95%, identity to the DNA molecule in question. Oligonucleotide primers and/or probes which may be usefully employed in the inventive diagnostic methods preferably have at least about 10-40 nucleotides. In a preferred embodiment, the oligonucleotide primers comprise at least about 10 contiguous nucleotides of a DNA molecule encoding one of the polypeptides disclosed herein. Preferably, oligonucleotide probes for use in the inventive diagnostic methous comprise at least about 15 contiguous oligonucleotides of a DNA molecule encoding one of the polypeptides disclosed herein. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al. Ibid; Ehrlich, Ibid). Primers or probes may thus be used to detect M. imperculosis-specific sequences in biological samples. DNA probes or onmers emprising disjonucleotide sequences described above may be used alone, in combination with each other, or with previously identified sequences, such as the 38 kD antigen discussed above

The following Examples are offered by way of illustration and not by way of limitation

36

#### **EXAMPLES**

#### EXAMPLE 1

## PURIFICATION AND CHARACTERIZATION OF POLYPEPTIDES FROM M. TUBERCULOSIS CULTURE FILTRATE

This example illustrates the preparation of *M. tuberculosis* soluble polypeptides from culture filtrate. Unless otherwise noted, all percentages in the following example are weight per volume.

M. suberculosis (either H37Ra, ATCC No. 25177, or H37Rv, ATCC No. 25618) was cultured in sterile GAS media at 37°C for fourteen days. The media was then vacuum filtered (leaving the bulk of the cells) through a 0.45  $\mu$  filter into a sterile 2.5 L bottle. The media was then filtered through a 0.2  $\mu$  filter into a sterile 4 L bottle. NaN<sub>3</sub> was then added to the culture filtrate to a concentration of 0.04%. The bottles were then placed in a 4°C cold room.

The culture filtrate was concentrated by placing the filtrate in a 12 L reservoir that had been autoclaved and feeding the filtrate into a 400 ml Amicon stir cell which had been rinsed with ethanol and contained a 10,000 kDa MWCO membrane. The pressure was maintained at 60 psi using nitrogen gas. This procedure reduced the 12 L volume to approximately 50 ml.

The culture filtrate was then dialyzed into 0.1% ammonium bicarbonate using a 5.000 kDa MWCO cellulose aster membrane, with two changes of ammonium, bicarbonate solution. Protein inncentration was then determined by a commercially twallable BCA assay. Pierce, Rockford, IL.

The draighted culture filtrate was then lyophilized, and the polypeptides resuspended in distrilled water. The polypeptides were then draighted against 0.01 mM 1.3 bisitns(hydroxymethyl) methylaminojpropane, pH 7.5 (Bis-Tris propane buffer), the initial conditions for union exchange the military against a propagation of the military conditions for union exchange the military and the polypeptides.

WO 99 42118

Bis-Tris propane buffer pH 7.5. Polypeptides were eluted with a linear 0-0.5 M NaCl gradient in the above buffer system. The column eluent was monitored at a wavelength of 220 nm.

The pools of polypeptides eluting from the ion exchange column were dialyzed against distilled water and lyophilized. The resulting material was dissolved in 0.1% trifluoroacetic acid (TFA) pH 1.9 in water, and the polypeptides were purified on a Delta-Pak C18 column (Waters, Milford, MA) 300 Angstrom pore size, 5 micron particle size (3.9 x 150 mm). The polypeptides were eluted from the column with a linear gradient from 0-60% dilution buffer (0.1% TFA in acetonitrile). The flow rate was 0.75 ml/minute and the HPLC eluent was monitored at 214 nm. Fractions containing the eluted polypeptides were collected to maximize the purity of the individual samples. Approximately 200 purified polypeptides were obtained.

The purified polypeptides were then screened for the ability to induce T-cell proliferation in PBMC preparations. The PBMCs from donors known to be PPD skin test positive and whose T cells were shown to proliferate in response to PPD and crude soluble proteins from MTB were cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 µg/mi gentamicin. Purified polypeptides were added in duplicate at concentrations of 0.5 to 10 µg/mL. After six days of culture in 96-well round-bottom plates in a volume of 200 al, 50 al of medium was removed from each well for determination of IFN-v levels, as described below. The plates were then pulsed with 1 µCl well of tritiated thymidine for a further 18 hours, harvested and intium uptake tetermined using a gas scintillation counter bractions that resulted in proinferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone were considered positive.

IFN-y was measured using an enzyme-linked immunosorbent assay (ELISA). ELISA plates were coated with a mouse monoclonal antibody directed to human IFN-y (Chemicon) in PBS for four hours at room temperature. Wells were then blocked with PBS containing 5% - W.V.) non-tar-freed mith for 5 hour at 1889.

room temperature. The plates were again washed and a polyclonal rabbit anti-human IFN-y serum diluted 1:3000 in PBS/10% normal goat serum was added to each well. The plates were then incubated for two hours at room temperature, washed and horseradish peroxidase-coupled anti-rabbit IgG (Jackson Labs.) was added at a 1:2000 dilution in PBS/5% non-fat dried milk. After a further two hour incubation at room temperature, the plates were washed and TMB substrate added. The reaction was stopped after 20 min with 1 N sulfuric acid. Optical density was determined at 450 nm using 570 nm as a reference wavelength. Fractions that resulted in both replicates giving an OD two fold greater than the mean OD from cells cultured in medium alone, plus 3 standard deviations, were considered positive.

For sequencing, the polypeptides were individually dried onto Biobrene<sup>TM</sup> (Perkin Elmer/Applied BioSystems Division, Foster City, CA) treated glass fiber filters. The filters with polypeptide were loaded onto a Perkin Elmer/Applied BioSystems Division Procise 492 protein sequencer. The polypeptides were sequenced from the amino terminal and using traditional Edman chemistry. The amino acid sequence was determined for each polypeptide by comparing the retention time of the PTH amino acid derivative to the appropriate PTH derivative standards.

Using the procedure described above, antigens having the following N-terminal sequences were isolated:

- (a) Asp-Pro-Vai-Asp-Aia-Vai-ile-Asn-Thr-Thr-Xaa-Asn-Tyr-Gly-Gln-Vai-Val-Ala-Ala-Leu (SEQ ID NO: 54);
- (b) Ma-Val-Glu-Ser Giv-Met Leu Ala-Leu-Gly Thr Pro Ala-Pro-Ser (SE) ID NO: 55).
- (c) Att-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID NO: 50);
- (d) Tyt-Tyt-Trp-Cys-Pro-Gly-Clin-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SEO ID NO: 57).
- (e) Asp Ile-Gly-Ser Glu Ser Thr Glu-Asp Glin Glin Xaa Ala Val

- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID NO: 59);
- (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Ala-Ala-Ala-Ala-Pro-Pro-Ala (SEQ ID NO: 60); and
- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEQ ID NO: 61);

wherein Xaa may be any amino acid.

An additional antigen was isolated employing a microbore HPLC purification step in addition to the procedure described above. Specifically, 20 ul of a fraction comprising a mixture of antigens from the chromatographic purification step previously described, was purified on an Aquapore C18 column (Perkin Elmer/Applied Biosystems Division, Foster City, CA) with a 7 micron pore size, column size 1 mm x 100 mm, in a Perkin Elmer Applied Biosystems Division Model 172 HPLC. Fractions were eluted from the column with a linear gradient of 1%/minute of acetonitrile (containing 0.05% TFA) in water (0.05% TFA) at a flow rate of 80 µL/minute. The eluent was monitored at 250 nm. The original fraction was separated into 4 major peaks plus other smaller components and a polypeptide was obtained which was shown to have a molecular weight of 12.054 Kd (by mass spectrometry) and the following N-terminal sequence.

(I) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Gln-Thr-Ser-Leu-Leu-Asn-Asn-Leu-Ala-Asp-Pro-Asp-Val-Ser-Phe-Ala-Asp (SEQ ID NO) 52)

This polypertide was mown to induce proliferation and IFN production in PBMC preparations using the assays described above.

Additional soluble antigens were isolated from *M. tuberculosis* culture filtrate as follows. *M. tuberculosis* culture filtrate was prepared as described above. Following marysis against Bis-Tris propane buffer, at pH 5.5, fractionation was performed using an in pichanese chromatography on a Poros (1) tolumn 4 6 x 100 mm.

were eluted with a linear 0-1.5 M NaCl gradient in the above buffer system at a flow rate of 10 ml/min. The column eluent was monitored at a wavelength of 214 nm.

The fractions eluting from the ion exchange column were pooled and subjected to reverse phase chromatography using a Poros R2 column 4.6 x 100 mm (Perseptive Biosystems). Polypeptides were eluted from the column with a linear gradient from 0-100% acetonitrile (0.1% TFA) at a flow rate of 5 ml/min. The eluent was monitored at 214 nm.

Fractions containing the eluted polypeptides were lyophilized and resuspended in 80 µl of aqueous 0.1% TFA and further subjected to reverse phase chromatography on a Vydac C4 column 4.6 x 150 mm (Western Analytical, Temecuia, CA) with a linear gradient of 0-100% acetonitrile (0.1% TFA) at a flow rate of 2 ml/min. Eluent was monitored at 214 nm.

The fraction with biological activity was separated into one major peak plus other smaller components. Western blot of this peak onto PVDF membrane revealed three major bands of molecular weights 14 Kd, 20 Kd and 26 Kd. These polypeptides were determined to have the following N-terminal sequences, respectively:

- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-He-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID NO: (29)
- (k) Ala-Gly-Asp-Thr-Naa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID NO: 130) and
- (I) Aia-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly, (SEQ ID NO) 13.1, wherem Xia may be any amino acid

Figure the assays described above, these polypeptides were shown to induce proliteration and IFN-y production in PBMC preparations. Figs. IA and B show the results of such assays using PBMC preparations from a first, and a second donor, respectively.

DNA sequences that encode the antigens designated as (a), (c), (d) and (g) above were obtained by screening a M suberculosis genomic library using <sup>12</sup>P and

corresponding to antigen (a) above identified a clone having the sequence provided in SEQ ID NO: 96. The polypeptide encoded by SEQ ID NO: 96 is provided in SEQ ID NO: 97. The screen performed using a probe corresponding to antigen (g) above identified a clone having the sequence provided in SEQ ID NO: 52. The polypeptide encoded by SEQ ID NO: 52 is provided in SEQ ID NO: 53. The screen performed using a probe corresponding to antigen (d) above identified a clone having the sequence provided in SEQ ID NO: 24, and the screen performed with a probe corresponding to antigen (c) identified a clone having the sequence provided in SEQ ID NO: 25.

The above amino acid sequences were compared to known amino acid sequences in the gene bank using the DNA STAR system. The database searched contains some 173,000 proteins and is a combination of the Swiss, PIR databases along with translated protein sequences (Version 87). No significant homologies to the amino acid sequences for antigens (a)-(h) and (l) were detected.

The amino acid sequence for antigen (i) was found to be homologous to a sequence from *M. leprae*. The full length *M. leprae* sequence was amplified from genomic DNA using the sequence obtained from GENBANK. This sequence was then used to screen an *M. tuberculosis* library and a full length copy of the *M. tuberculosis* homologue was obtained (SEQ ID NO: 94).

The amino acid sequence for antigen (j) was found to be homologous to a known M, tuberculosis protein translated from a DNA sequence. To the best of the inventors' knowledge, this protein has not been previously shown to possess T-cell stimulatory activity. The amino acid sequence for antigen (k) was found to be related to a sequence from M separate.

in the proliferation and (FN > assays described above, using three PPD positive donors, the results for representative antigens provided above are presented in Table 1.

TABLE 1

RESULTS OF PBMC PROLIFERATION AND IFN-y ASSAYS

| Sequence | Proliferation | IFN-y       |
|----------|---------------|-------------|
| (a)      | +             | 2.11-7      |
| (C)      | +++           |             |
| (d)      | ++            | <del></del> |
| (g)      | +++           |             |
| (h)      |               | <del></del> |
| (11)     | <del></del>   |             |

In Table 1, responses that gave a sumulation index (SI) of between 2 and 4 (compared to cells cultured in medium alone) were scored as +, as SI of +8 or 2-4 at a concentration of 1 µg or less was scored as + and an SI of greater than 8 was scored as +. The antigen of sequence (i) was found to have a high SI (----) for one donor and lower SI (---- and -) for the two other donors in both proliferation and IFN-y assays. These results indicate that these antigens are capable of inducing proliferation and/or interferon-y production.

EXAMPLE 2
USE OF PATIENT SERA TO ISOLATE M. TOBERCY LOSIS ANTIGENS

This example illustrates the isolation of antigens from M tuperculosis is sate by screening with serum from M, tuberculosis-intected individuals.

Dessicated M. tuperculosis H37Ra (Difco Laboratories) was added to a 2% NP40 solution, and alternately homogenized and sonicated three times. The resulting suspension was centrifuged at 13,000 rpm in microfuge tubes and the supernatant put through a 0.2 micron syringe filter. The filtrate was bound to Macro Prep DEAE beads (BioRad, Hercules, CA). The beads were extensively a plant and

DNase and RNase at 0.05 mg/ml for 30 min. at room temperature and then with  $\alpha$ -D-mannosidase, 0.5 U/mg at pH 4.5 for 3-4 hours at room temperature. After returning to pH 7.5, the material was fractionated via FPLC over a Bio Scale-Q-20 column (BioRad). Fractions were combined into nine pools, concentrated in a Centriprep 10 (Amicon, Beverley, MA) and screened by Western blot for serological activity using a serum pool from *M. tuberculosis*-infected patients which was not immunoreactive with other antigens of the present invention.

The most reactive fraction was run in SDS-PAGE and transferred to PVDF. A band at approximately 85 Kd was cut out yielding the sequence:

10

15

25

(m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Giy-Ile-Vai-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID NO: 132), wherein Xaa may be any amino acid.

Comparison of this sequence with those in the gene bank as described above, revealed no significant homologies to known sequences.

A DNA sequence that encodes the antigen designated as (m) above was obtained by screening a genomic *M. tuberculosis* Erdman strain library using labeled degenerate oligonucleotides corresponding to the N-terminal sequence of SEQ ID NO:137. A clone was identified having the DNA sequence provided in SEQ ID NO: 198. This sequence was found to encode the amino acid sequence provided in SEQ ID NO: 199. Comparison of these sequences with those in the genebank revealed some similarity to sequences previously identified in *M. tuberculosis* and *M. hovis*.

#### EXAMPLE 3

## PREPARATION OF DNA SEQUENCES, ENCOPING ACCUMENT OF A STREET

This example illustrates the preparation of DNA sequences encoding M suberculosis untigens by screening a M suberculosis expression library with sera obtained from patients infected with M subspaces.

## A. PREPARATION OF M. TUBERCULOSIS SOLUBLE ANTIGENS USING RABBIT ANTI-SERA RAISED AGAINST M. TUBERCULOSIS SUPERNATANT

Genomic DNA was isolated from the *M. tuberculosis* strain H37Ra. The DNA was randomly sheared and used to construct an expression library using the Lambda ZAP expression system (Stratagene, La Jolla, CA). Rabbit anti-sera was generated against secretory proteins of the *M. tuberculosis* strains H37Ra, H37Rv and Erdman by immunizing a rabbit with concentrated supernatant of the *M. tuberculosis* cultures. Specifically, the rabbit was first immunized subcutaneously with 200 µg of protein antigen in a total volume of 2 ml containing 100 µg muramyl dipeptide (Calbiochem, La Jolla, CA) and 1 ml of incomplete Freund's adjuvant. Four weeks later the rabbit was boosted subcutaneously with 100 µg antigen in incomplete Freund's adjuvant. Finally, the rabbit was immunized intravenously four weeks later with 50 µg protein antigen. The anti-sera were used to screen the expression library as described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the *M. tuberculosis* clones deduced.

Finity two clones were purified. Of these, 25 represent sequences that have not been previously identified in *M. tuberculosis*. Proteins were induced by IPTG and purified by gel ciution, as described in Skerky et al., *J. Exp. Med. 187*:1527-1537, 1995. Representative partial sequences of DNA molecules identified in this screen are provided in SEQ ID NOS 1-25. The corresponding predicted amino acid sequences are shown in SEQ ID NOS 194-88.

On comparison of these sequences with known sequences in the gene bank using the databases described above, it was found that the clones referred to hereinafter as TbRA2A. TbRA16, TbRA18, and TbRA29 (SEQ ID NOS 77, 69, 71, 75) show some homotogy to sequences previously identified in *Myconacterium leprac* but not in *M suborquess*. TbRA2A and consistentified in *Myconacterium leprac* 

previously identified in *M. tuberculosis*. No significant homologies were found to TbRA1, TbRA3, TbRA4, TbRA9, TbRA10, TbRA13, TbRA17, TbRA19, TbRA29, TbRA32, TbRA36 and the overlapping clones TbRA35 and TbRA12 (SEQ ID NOS: 64, 78, 82, 83, 65, 68, 76, 72, 76, 79, 81, 80, 67, respectively). The clone TbRa24 is overlapping with clone TbRa29

# B. <u>Use of Sera from Patients having Pulmonary or Pleural Tuberculosis</u> <u>TO IDENTIFY DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS</u>

The genomic DNA library described above, and an additional H37Rv library, were screened using pools of sera obtained from patients with active tuberculosis. To prepare the H37Rv library, M. tuberculosis strain H37Rv genomic DNA was isolated, subjected to partial Sau3A digestion and used to construct an expression library using the Lambda Zap expression system (Stratagene, La Jolla, Ca). Three different pools of sera, each containing sera obtained from three individuals with active pulmonary or pleural disease, were used in the expression screening. The pools were designated TbL, TbM and TbH, referring to relative reactivity with H37Ra lysate (i.e., TbL = low reactivity, TbM = medium reactivity and TbH - high reactivity) in both ELISA and immunobiot format. A fourth pool of sera from seven patients with active pulmonary tuberculosis was also employed. All of the sera lacked increased reactivity with the recombinant 38 kD M. superculosis H37Ra phosphate-binding protein.

All pools were pre-adsorbed with *E. coli* lysate and used to screen the H3TRa and H3TRy expression libraries, as described in Sambrook et al., *Morecular Toning*—1 Laborator, Manual, Fold Spring Harbor Laboratories, Cold Spring Harbor NY, 1989—Bacteriophage plaques expressing immunoreactive antigens were purified Phagemid from the plaques was rescued and the nucleotide sequences of the *M. suberculosis* clones deduced.

Thirty two clones were purified. Of these, 21 represented sequences that had not been previously identified in human 17 months. In the previously identified in human 17 months.

NO. 43) and TbH-4-FWD (SEQ. ID NO. 44) are non-contiguous sequences from the same clone. Amino acid sequences for the antigens hereinafter identified as Tb38-1, TbH-4, TbH-8, TbH-9, and TbH-12 are shown in SEQ ID NOS.: 89-93. Comparison of these sequences with known sequences in the gene bank using the databases identified above revealed no significant homologies to TbH-4, TbH-8, TbH-9 and TbM-3, although weak homologies were found to TbH-9. TbH-12 was found to be homologous to a 34 kD antigenic protein previously identified in *M. paratuberculosis* (Acc. No. S28515). Tb38-1 was found to be located 34 base pairs upstream of the open reading frame for the antigen ESAT-6 previously identified in *M. bovis* (Acc. No. U34848) and in *M. tuberculosis* (Sorensen et al., *Infec. Immun.* 63:1710-1717, 1995).

Probes derived from Tb38-1 and TbH-9, both isolated from an H37Ra library, were used to identify clones in an H37Rv library. Tb38-1 hybridized to Tb38-1F2, Tb38-1F3, Tb38-1F5 and Tb38-1F6 (SEQ. ID NOS: 107, 108, 111,-113, and 114). (SEQ ID NOS: 107 and 108 are non-contiguous sequences from clone Tb38-1F2.) Two open reading frames were deduced in Tb38-1F2; one corresponds to Tb37FL (SEQ. ID. NO. 109), the second, a partial sequence, may be the homologue of Tb38-1 and is called Tb38-IN (SEQ. ID NO. 110). The deduced amino acid sequence of Tb38-1F3 is presented in SEQ. ID NO. 112. A TbH-9 prope identified three clones in the H37Rv library: TbH-9-FL (SEQ. ID NO. 101), which may be the homologue of TbH-9 (R37Ra), TbH-9-1 (SEQ. ID NO. 103), and TbH-8-2 (SEQ. ID NO. 105) is a partial clone of TbH-8. The deduced amino acid sequences for these three clones are presented in SiG ID NOS. 102, 104 and 106.

Further screening of the *M invercinesis* genomic DNA library as described above, resulted in the recovery of ten additional reactive clones, representing seven different genes. One of these genes was identified as the 38 Kd antigen discussed above, one was determined to be identical to the 14Kd alpha crystallin heat shock protein previously shown to be present in *M. inberculiusis*, and a third was determined

[+)

TbH-33) are provided in SEQ ID NO: 133-136, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 137-140, respectively. The DNA and amino acid sequences for these antigens were compared with those in the gene bank as described above. No homologies were found to the 5' end of TbH-29 (which contains the reactive open reading frame), although the 3' end of TbH-29 was found to be identical to the *M. tuberculosis* cosmid Y227. TbH-32 and TbH-33 were found to be identical to the previously identified *M. tuberculosis* insertion element IS6110 and to the *M. tuberculosis* cosmid Y50, respectively. No significant homologies to TbH-30 were found.

Positive phagemid from this additional screening were used to infect *E. coli* XL-1 Blue MRF', as described in Sambrook et al., *supra*. Induction of recombinant protein was accomplished by the addition of IPTG. Induced and uninduced lysates were run in duplicate on SDS-PAGE and transferred to nitrocellulose filters. Filters were reacted with human *M. tuberculosis* sera (1:200 dilution) reactive with TbH and a rabbit sera (1:200 or 1:250 dilution) reactive with the N-terminal 4 Kd portion of lacZ. Sera incubations were performed for 2 hours at room temperature. Bound antibody was detected by addition of <sup>125</sup>I-labeled Protein A and subsequent exposure to film for variable times ranging from 16 hours to 11 days. The results of the immunoblots are summarized in Table 2.

TABLE 2

| Antigen | Human M. to<br>Sets | \mi-lac.<br><u>Sers</u> |  |
|---------|---------------------|-------------------------|--|
| TbH=29  | 45 KJ               | 48 FLd                  |  |
| ТьН-30  | No reactivity       | 20 Ed                   |  |
| T5H-32  | 12 Kd               | 12 FG                   |  |
| 75Н 👙   | io Ka               | 16 H.J                  |  |

the human *M. tuberculosis* sera is directed towards the fusion protein. Antigens reactive with the anti-lacZ sera but not with the human *M. tuberculosis* sera may be the result of the human *M. tuberculosis* sera recognizing conformational epitopes, or the antigen-antibody binding kinetics may be such that the 2 hour sera exposure in the immunoblot is not sufficient.

Studies were undertaken to determine whether the antigens TbH-9 and Tb38-1 represent cellular proteins or are secreted into *M. tuberculosis* culture media. In the first study, rabbit sera were raised against A) secretory proteins of *M. tuberculosis*. B) the known secretory recombinant *M. tuberculosis* antigen 85b, C) recombinant Tb38-1 and D) recombinant TbH-0, using protocols substantially as described in Example 3A. Total *M. tuberculosis* lysate, concentrated supernatant of *M. tuberculosis* cultures and the recombinant antigens 85b, TbH-9 and Tb38-1 were resolved on denaturing gels, immobilized on nitrocellulose membranes and duplicate blots were probed using the rabbit sera described above.

The results of this analysis using control sera (panel I) and antisera (panel II) against secretory proteins, recombinant 85b, recombinant Tb38-1 and recombinant TbH-9 are shown in Figures 2A-D, respectively, wherein the lane designations are as follows: 1) molecular weight protein standards: 2) 5 ag of *M suberculosis* lysate; 3) 5 ag secretory proteins; 4) 50 ng recombinant Tb38-1, 5) 50 ng recombinant TbH-9; and 6) 50 ng recombinant 85b. The recombinant antigens were engineered with six terminal histidine residues and would therefore be expected to migrate with a mobility approximately 1 kD larger that the native protein. In Figure 2D, recombinant TbH-3 is lacking approximately 10 kD of the full length 42 kD antigen, hence the significant difference in the size of the immunoreactive native TbH-9 antigen in the lysate lane (indicated by an arrow). These results demonstrate that Tb38-1 and TbH-9 are intracellular antigens and are not actively secreted by *M. suberculosis*.

The finding that TbH-9 is an intracellular antigen was confirmed by determining the reactivity of TbH-9-specific human Total done to continue to the

The proliferative response of 131TbH-9 to secretory proteins, recombinant TbH-9 and a control *M. tuberculosis* antigen, TbRa11, was determined by measuring uptake of tritiated thymidine, as described in Example 1. As shown in Figure 3A, the clone 131TbH-9 responds specifically to TbH-9, showing that TbH-9 is not a significant component of *M. tuberculosis* secretory proteins. Figure 3B shows the production of IFN-y by a second TbH-9-specific T cell clone (designated PPD 800-10) prepared from PBMC from a healthy PPD-positive donor, following stimulation of the T cell clone with secretory proteins, PPD or recombinant TbH-9. These results further confirm that TbH-9 is not secreted by *M. tuberculosis*.

:0

15

### C. Use of Sera From Patients having Extrapulmonary Tuberculosis to Identify DNA Sequences Encoding M. Tuberculosis Antigens

Genomic DNA was isolated from M tuberculosis Erdman strain, randomly sheared and used to construct an expression library employing the Lambda ZAP expression system (Stratagene, La Jolla, CA). The resulting library was screened using pools of sera obtained from individuals with extrapulmonary tuberculosis, as described above in Example 3B, with the secondary antibody being goat anti-human IgG - A + M (H+L) conjugated with alkaline phosphatase.

Eighteen clones were purified. Of these, 4 clones thereinafter referred to as XP14, XP24, XP31 and XP32) were found to bear some similarity to known sequences. The determined DNA sequences for XP14, XP24 and XP31 are provided in SEQ ID NOS, 151-153, respectively, with the stand 37 DNA sequences for XP32 heim provided in SEQ ID NOS 154 and 155, respectively. The predicted imuno acid sequence for XP14 is provided in SEQ ID NO: 156. The reverse complement of XP14 was found to encode the amino acid sequence provided in SEQ ID NO: 157.

Comparison of the sequences for the remaining 14 clones (heremafter referred to as XP1-XP6, XP17-XP19, XP22, XP25, XP27, XP30 and XP30) with those

NOS: 158 and 159, respectively, with the 5' sequences for XP4, XP5, XP17 and XP30 being shown in SEQ ID NOS: 160-163, respectively, and the 5' and 3' sequences for XP2, XP3, XP6, XP18, XP19, XP22 and XP25 being shown in SEQ ID NOS: 164 and 165; 166 and 167; 168 and 169; 170 and 171; 172 and 173; 174 and 175; and 176 and 177, respectively. XP1 was found to overlap with the DNA sequences for TbH4, disclosed above. The full-length DNA sequence for TbH4-XP1 is provided in SEQ ID NO: 178. This DNA sequence was found to contain an open reading frame encoding the amino acid sequence shown in SEQ ID NO: 179. The reverse complement of TbH4-XP1 was found to contain an open reading frame encoding the amino acid sequence shown in SEQ ID NO: 180. The DNA sequence for XP36 was found to contain two open reading frames encoding the amino acid sequence shown in SEQ ID NO: 181 and 182, with the reverse complement containing an open reading frame encoding the amino acid sequence shown in SEQ ID NO: 181 and 182, with the reverse complement containing an open reading frame encoding the amino acid sequence shown in SEQ ID NO: 183.

Recombinant XP1 protein was prepared as described above in Example 3B, with a metal ion affinity chromatography column being employed for purification. Recombinant XP1 was found to stimulate cell proliferation and IFN-y production in T cells isolated from an *M. tuberculosis*-immune donors.

# D. USE OF A LYSA TE POSITIVE SERUM POOL FROM PATIENTS HAVING TUBERCYLOSIS TO IDENTIFY DNA SEQUENCES ENCODING M. TUBERCYLOSIS ANTIGENS

Genomic DNA was isolated from *M. superculosis*. Bridman strain, randomic sheared and used to construct an expression library employing the Lambda screen expression system (Novagen, Madison, WI), as described below in Example of Pooled serum obtained from *M. suberculosis*-infected patients and that was shown to react with *M. suberculosis* lysate but not with the previously expressed proteins 38kD. Th38-1, Th8a3. Th14, DPEP and ThRa11, was used to screen the expression library as described above in Example 3B, with the secondary antiboty, page 1, 50.

(hereinafter referred to as LSER-10, LSER-11, LSER-12, LSER-13, LSER-16, LSER-18, LSER-23, LSER-24, LSER-25 and LSER-27). The determined 5' cDNA sequences for LSER-10, LSER-11, LSER-12, LSER-13, LSER-16 and LSER-25 are provided in SEQ ID NO: 237-242, respectively, with the corresponding predicted amino acid sequences for LSER-10, LSER-12, LSER-13, LSER-16 and LSER-25 being provided in SEQ ID NO: 243-247, respectively. The determined full-length cDNA sequences for LSER-18, LSER-23, LSER-24 and LSER-27 are shown in SEQ ID NO: 248-251, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 252-255. The remaining seventeen clones were found to show similarities to unknown sequences previously identified in M. tuberculosis. The determined 5° cDNA sequences for sixteen of these clones (hereinafter referred to as LSER-1, LSER-3, LSER-4, LSER-5, LSER-6, LSER-8, LSER-14, LSER-15, LSER-17, LSER-19, LSER-20, LSER-22, LSER-26, LSER-28, LSER-29 and LSER-30) are provided in SEQ ID NO: 256-271, respectively, with the corresponding predicted amino acid sequences for LSER-1, LSER-3, LSER-5, LSER-6, LSER-8, LSER-14, LSER-15, LSER-17, LSER-19, LSER-20, LSER-22, LSER-26, LSER-28, LSER-29 and LSER-30 being provided in SEQ ID NO: 272-286, respectively. The determined full-length cDNA sequence for the clone LSER-9 is provided in SEQ ID NO: 287. The reverse complement of LSER-6 (SFQ ID NO: 288) was found to encode the predicted amino acid sequence of SEQ ID NO: 289

### E. PREPARATION OF M. TUBERCYLOSIS SOLUBLE ANTIGENS USING RABBIT ANTI-SERA PAISED AGAINST M. TUBERCYLOSIS FRACTIONALED PROTEINS

With prevailosis lysate was prepared as described above in Example 2. The resulting material was fractionated by HPLC and the fractions screened by Western blot for serological activity with a serum pool from Mituherculosis-infected patients which showed little or no immunoreactivity with other antigens of the present invention. Rabbit antigens was a remarked to the present invention.

\_```

Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the *M. tuberculosis* clones determined.

Ten different clones were purified. Of these, one was found to be TbRa35, described above, and one was found to be the previously identified M. tuberculosis antigen, HSP60. Of the remaining eight clones, six (hereinafter referred to as RDIF2, RDIF5, RDIF8, RDIF10, RDIF11 and RDIF12) were found to bear some similarity to previously identified M. tuberculosis sequences. The determined DNA sequences for RDIF2, RDIF5, RDIF8, RDIF10 and RDIF11 are provided in SEQ ID NOS. 184-188, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NOS. 189-193, respectively. The 5' and 3' DNA sequences for RDIF12 are provided in SEQ ID NOS: 194 and 195, respectively. No significant homologies were found to the antigen RDIF-7. The determined DNA and predicted amino acid sequences for RDIF7 are provided in SEQ ID NOS: 196 and 197, respectively. One additional clone, referred to as RDIF6 was isolated, however, this was found to be identical to RDIF5

Recombinant RDIF6, RDIF8, RDIF10 and RDIF11 were prepared as described above. These antigens were found to stimulate cell proliferation and IFN- $\gamma$  production in T cells isolated from M suberculosis-immune donors

#### EXAMPLE 4

## PURIFICATION AND CHARACTERS IN TION OF A POLICEPRING FROM TUBER OF IN PURIFICE PROTEIN DERIVATIVE

An M suberculosis polypeptide was isolated from tunerculin purified protein derivative (PPD) as follows

PPD was prepared as published with some modification (Seibert, F. et

Ry strain was grown for 6 weeks in synthetic medium in roller bottles at 37°C. Bottles containing the bacterial growth were then heated to 100°C in water vapor for 3 hours. Cultures were sterile filtered using a 0.22 µ filter and the liquid phase was concentrated 20 times using a 3 kD cut-off membrane. Proteins were precipitated once with 50% ammonium sulfate solution and eight times with 25% ammonium sulfate solution. The resulting proteins (PPD) were fractionated by reverse phase liquid chromatography (RP-HPLC) using a C18 column (7.8 x 300 mM; Waters, Milford, MA) in a Biocad HPLC system (Perseptive Biosystems, Framingham, MA). Fractions were eluted from the column with a linear gradient from 0-100% buffer (0.1% TFA in acetonitrile). The flow rate was 10 ml/minute and eluent was monitored at 214 nm and 280 nm.

Six fractions were collected, dried, suspended in PBS and tested individually in *M. tuberculosis*-infected guinea pigs for induction of delayed type hypersensitivity (DTH) reaction. One fraction was found to induce a strong DTH reaction and was subsequently fractionated further by RP-HPLC on a microbore Vydac C18 column (Cat. No. 218TP5115) in a Perkin Elmer/Applied Biosystems Division Model 172 HPLC. Fractions were eluted with a linear gradient from 5-100% buffer (0.05% TFA in acetomtrile) with a flow rate of 80 µl/minute. Eluent was monitored at 215 nm. Eight fractions were collected and tested for induction of DTH in *M. tuberculosis*-infected guinea pigs. One traction was found to induce strong DTH of about 10 mm induration. The other fractions did not induce detectable DTH. The positive fraction was submitted to SDS-PAGE gel electrophoresis and found to contain a single protein band of approximately 12 kD molecular weight

This polypeptide, herein after referred to as DPPD, was sequenced from the amino terminal using a Perkin Elmer Applied Biosystems Division Procise 492 protein sequencer as described above and found to have the N terminal sequence shown in SEQ ID NO-124. Comparison of this sequence with known sequences in the gene bank as described above revealed no known homologies. Four cyanogen bromide fragments of DPPD were isolated and found to have the sequences shown in SEO ID.

sequence with a sequence present within the *M. tuberculosis* cosmid MTY21C12. An open reading frame of 336 bp was identified. The full-length DNA sequence for DPPD is provided in SEQ ID NO: 235, with the corresponding full-length amino acid sequence being provided in SEQ ID NO: 236.

5

#### EXAMPLE 5

# USE OF SERA FROM TUBERCULOSIS-INFECTED MONKEYS TO IDENTIFY DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS

10

Genomic DNA was isolated from *M. tuberculosis* Erdman strain, randomly sheared and used to construct an expression library employing the Lambda ZAP expression system (Stratagene, La Jolla, CA). Serum samples were obtained from a cynomolgous monkey 18, 33, 51 and 56 days following infection with *M. tuberculosis* Erdman strain. These samples were pooled and used to screen the *M. tuberculosis* genomic DNA expression library using the procedure described above in Example 3C.

Twenty clones were purified. The determined 5' DNA sequences for the clones referred to as MO-1, MO-2, MO-4, MO-8, MO-9, MO-26, MO-28, MO-29, MO-30, MO-34 and MO-35 are provided in SEO ID NO 210-220, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO 221-231. The full-length DNA sequence of the clone MO-10 is provided in SEQ ID NO: 232, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 233. The 3' DNA sequence for the clone MO-27 is provided in SEQ ID NO: 234.

Clones MO-1, MO-30 and MO-38 were found to show a high degree of relatedness and showed some homology to a previously identified unknown *M tuberculosis* sequence and to cosmid MTCl23" MO-2 was found to show some homology to aspartokinase from *M. tuberculosis*. Clones MO-3, MO-7 and MO-27 were found to be identical and to show which legree of relatedness to MO-5.

and MO-34 were found to show some homology to cosmid SCY21B4 and M. smegmatis integration host factor, and were both found to show some homology to a previously identified, unknown M. tuberculosis sequence. MO-6 was found to show some homology to M. tuberculosis heat shock protein 65. MO-8, MO-9, MO-10, MO-26 and MO-29 were found to be highly related to each other and to show some homology to M. tuberculosis dihydrolipamide succinyltransferase. MO-28, MO-31 and MO-32 were found to be identical and to show some homology to a previously identified M. tuberculosis protein. MO-33 was found to show some homology to a previously identified 14 kDa M. tuberculosis heat shock protein

Further studies using the above protocol resulted in the isolation of an additional four clones, hereinafter referred to as MO-12, MO-13, MO-19 and MO-39. The determined 5' cDNA sequences for these clones are provided in SEQ ID NO: 290-293, respectively, with the corresponding predicted protein sequences being provided in SEQ ID NO: 294-297, respectively. Comparison of these sequences with those in the gene bank as described above revealed no significant homologies to MO-39. MO-12, MO-13 and MO-19 were found to show some homologies to unknown sequences previously isolated from *M. tuberculosis*.

#### EXAMPLE o

# ISOLATION OF DNA SEQUENCES ENCODING M. TUBERCY LONS AN FIGENS BY SCREENING OF A NOVEL EXPRESSION LIBRARY

This example illustrates isolation of DNA sequences incoding M intervalosis antigens by screening of a novel expression library with sera from M intervalosis-infected patients that were shown to be unreactive with a panel of the recombinant M intervalosis antigens FbRa11, TbRa3, Tb38-1, TbH4, TbF and 38 kD.

Genomic DNA from M intervalosis bridman strain was randomly sneared to an average size of 2 kb, and blunt ended with Klenow polymer is a few months.

ŧ.

extract (Novagen). The resulting library was screened with sera from several M. tuberculosis donors that had been shown to be negative on a panel of previously identified M. tuberculosis antigens as described above in Example 3B.

A total of 22 different clones were isolated. By comparison, screening of the λZap library described above using the same sera did not result in any positive hits. One of the clones was found to represent TbRa11, described above. The determined 5' cDNA sequences for 19 of the remaining 21 clones (hereinafter referred to as Erdsn1, Erdsn2, Erdsn4-Erdsn10, Erdsn12-18, Erdsn21-Erdsn23 and Erdsn25) are provided in SEQ ID NO: 298-317, respectively, with the determined 3' cDNA sequences for Erdsn1, Erdsn2, Erdsn4, Erdsn5, Erdsn7-Erdsn10, Erdsn12-Erdsn18, Erdsn21-Erdsn23 and Erdsn25 being provided in SEQ ID NO: 318-336, respectively. The complete cDNA insert sequence for the clone Erdsn24 is provided in SEQ ID NO: 337. Comparison of the determined cDNA sequences with those in the gene bank revealed no significant homologies to the sequences provided in SEQ ID NO: 304, 311, 313-315, 317, 319, 324, 326, 329, 331, 333, 335 and 337. The sequences of SEQ ID NO: 298-303, 305-310, 312, 316, 318, 320-321, 324-326, 328, 330, 332, 334 and 336 were found to show some homology to unknown sequences previously identified in *M. suberculosis*.

#### EXAMPLE ~

## ISCLATION OF SOLUBLE M. TUBERCULOSIS ANTIGENS USING MASS SPECTROMETRY

This example illustrates the use of mass spectrometry to identify soluble M tuperculosis antigens.

In a first approach, M. suberculosis culture filtrate was screened by Western analysis using serum from a tuberculosis-infected individual. The reactive hands were excised from a silver stained get and the amino acid sequences determined

1.5

25

the gene bank revealed homology to the 85b precursor antigen previously identified in M. tuberculosis.

In a second approach, the high molecular weight region of M. tuberculosis culture supernatant was studied. This area may contain immunodominant antigens which may be useful in the diagnosis of M. tuberculosis infection. Two known monoclonal antibodies, IT42 and IT57 (available from the Center for Disease Control, Atlanta, GA), show reactivity by Western analysis to antigens in this vicinity, although the identity of the antigens remains unknown. In addition, unknown high-molecular weight proteins have been described as containing a surrogate marker for M. cuberculosis infection in HIV-positive individuals (Jnl. Infect. Dis., 176:133-143, 1997). To determine the identity of these antigens, two-dimensional get electrophoresis and two-dimensional Western analysis were performed using the antibodies IT57 and IT42. Five protein spots in the high molecular weight region were identified, individually excised, enzymatically digested and subjected to mass spectrometric analysis.

The determined amino acid sequences for three of these spots (referred to as spots 1, 2 and 4) are provided in SEQ ID NO: 339, 340-341 and 342, respectively. Comparison of these sequences with those in the gene bank revealed that spot I is the previously identified PeK-1, a phosphoenolpyruvate kinase. The two sequences isolated from spot 2 were determined to be from two DNAks, previously identified in 20 M suberculosis as heat shock proteins. Spot 4 was determined to be the previously identified M. tuberculosis protein Kat G. To the best of the inventors knowledge, neither PcK-1 nor the two DNAks have previously been shown to have utility in the immosis of M. tunercraws a miection

#### EXAMPLE 3

#### SYNTHESIS OF SYNTHETIC POLYPEPTIDES

Polypeptides may be synthesized on a Millipore 2050 peptide

attached to the amino terminus of the peptide to provide a method of conjugation or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray mass spectrometry and by amino acid analysis.

This procedure was used to synthesize a TbM-1 peptide that contains one and a half repeats of a TbM-1 sequence. The TbM-1 peptide has the sequence GCGDRSGGNLDQIRLRRDRSGGNL (SEQ ID NO: 63).

15

10

#### EXAMPLE 9

#### USE OF REPRESENTATIVE ANTIGENS FOR SERODIAGNOSIS OF TUBERCULOSIS

This Example illustrates the diagnostic properties of several representative antigens.

Assays were performed in 96-well plates were coated with 200 ng antigen diluted to 50 mL in carbonate coating buffer, pH 9.6. The wells were coated overnight at 4°C for 2 nours at 3°C. The plate contents were then removed and the wells were plocked for 2 hours with 200 aL of PBS.1° a BSA. After the blocking step, the wells were washed five times with PBS/0.1° a Tween 20° = 50 aL sera, diluted 1:100 in PBS.0.1° a Tween 20° = 0.1° a BSA, was then added to each well and incubated for 30 minutes at room temperature. The plates were then washed again five times with PBS/0.1° a Tween 20° =

μL of the diluted conjugate was added to each well and incubated for 30 minutes at room temperature. Following incubation, the wells were washed five times with PBS/0.1% Tween 20<sup>TM</sup>. 100 μL of tetramethylbenzidine peroxidase (TMB) substrate (Kirkegaard and Perry Laboratories, Gaithersburg, MD) was added, undiluted, and incubated for about 15 minutes. The reaction was stopped with the addition of 100 μL of 1 N H<sub>2</sub>SO<sub>4</sub> to each well, and the plates were read at 450 nm.

Figure 4 shows the ELISA reactivity of two recombinant antigens isolated using method A in Example 3 (TbRa3 and TbRa9) with sera from *M. tuberculosis* positive and negative patients. The reactivity of these antigens is compared to that of bacterial lysate isolated from *M. tuberculosis* strain H37Ra (Difco, Detroit, MI). In both cases, the recombinant antigens differentiated positive from negative sera. Based on cut-off values obtained from receiver-operator curves, TbRa3 detected 56 out of 87 positive sera, and TbRa9 detected 111 out of 165 positive sera.

Figure 5 illustrates the ELISA reactivity of representative antigens isolated using method B of Example 3. The reactivity of the recombinant antigens TbH4, TbH12, Tb38-1 and the peptide TbM-1 (as described in Example 4) is compared to that of the 38 kD antigen described by Andersen and Hansen. *Intect. immun.* 57 2481 2488, 1989. Again, all of the polypeptides tested differentiated positive from negative sera. Based on out-off values obtained from receiver-operator curves. TbH4 detected 57 out of 126 positive sera. TbH12 detected 50 out of 125 positive sera. 38-1 detected of out of 101 positive sera and the TbM-1 peptide detected 25 out of 30 positive sera.

The reactivity of four antigens (ThRa), ThRa9, ThH4 and ThH12 with seria from a group of *M. funeroutovia* infected patients with differing reactivity in the acid fast stain of sputum (Smithwick and David, *Tubercie 52*,226, 1971) was also examined, and compared to the reactivity of *M. funeroutosis* (years and the 38 kD antigen. The results are presented in Table 3, below

TABLE 3

REACTIVITY OF ANTIGENS WITH SERA FROM M. TUBERCULOSIS PATIENTS

|              | Acid<br>Fast                            |             |       | ELIS    | A Values | <del></del> |       |
|--------------|-----------------------------------------|-------------|-------|---------|----------|-------------|-------|
| Patient      | Sputum                                  | Lysate      | 38kD  | TbRa9   | Тън12    | TbH4        | TbRa3 |
| Ть01В93І-2   | +++-                                    | 1.853       | 0.634 | 0.998   | 1.022    | 1.03()      | 1.314 |
| Tb01B93I-19  | +                                       | 2.657       | 2.322 | 0.608   | 0.837    | 1.857       | 2.335 |
| Tb01B93I-8   | -                                       | 2.703       | 0.527 | 0.492   | 0.281    | 0.501       | 2.002 |
| Tb01B93I-10  |                                         | 1.565       | 1.301 | 0.685   | 0.216    | 0.448       | O.458 |
| Тъ01В93І-11  |                                         | 2.817       | 0.697 | 0.509   | 0.301    | 0.173       | 2.608 |
| Tb01B93I-15  | ļ <del></del>                           | 1.28        | 0.283 | 0.808   | 0.218    | 1.537       | 0.811 |
| Tb01B93I-16  |                                         | 2.908       | >3    | 0.899   | 0.411    | 0.593       | 1.080 |
| Тъ01В931-25  |                                         | 1).395      | 9.131 | 0.335   | 0.211    | 0.107       | 0.948 |
| Tb01B93I-87  | -                                       | 2.053       | 2.432 | 2.282   | 0.977    | 1.221       | 0.857 |
| Fb01B931-89  |                                         | 1.912       | 2.370 | 2.436   | 0.876    | 9.520       | 0.952 |
| 7b01B94I-108 | -                                       | . 534       | 9.341 | (), "0" | 0.308    | 9.654       | 7.798 |
| Fb01B94I-201 |                                         | 1.721       | 1410  | 0.061   | 0.137    | 0.064       | 0.692 |
| Гb01В93I-88  |                                         | . 930       | 1269  | 2.519   | : 381    | 0.214       | 1.530 |
| 7501B951-02  | -                                       | 1.755       | 2.129 | 2.3     | 5.085    | .).00~      | 353-  |
| [b0]B04[-]00 | - · · · · · · · · · · · · · · · · · · · | 1903        | 0.629 |         | 144;     | -45         | 2.55% |
| b01B94I-210  |                                         |             | 1-3   | (),393  | 0.367    | 1.004       | 1.315 |
| b01B941-224  |                                         | 1.913       | 0.476 | () 25:  | 1.20-    | 1.990       | 0.256 |
| 501B931-1    |                                         | <br>( (s4s) | 1,279 | (),210  | () [4()  | 0 181       | 1.586 |

|              | Acid<br>Fast | i        |       | ELIS   | A Values |       |       |
|--------------|--------------|----------|-------|--------|----------|-------|-------|
| Patient      | Sputun       | n Lysate | 38kD  | TbRa9  | Тънга    | TbH4  | TbRa  |
| Tb01B93I-22  | +            | 0.714    | 0.451 | 2.082  | 0.285    | 0.269 | 1.159 |
| Tb01B93I-31  | +            | 0.956    | 0.490 | 1.019  | 0.812    | 0.176 | 1.293 |
| Tb01B93I-32  | -            | 2.261    | 0.786 | 0.668  | 0.273    | 0.535 | 0.405 |
| Tb01B93I-52  |              | 0.658    | 0.114 | 0.434  | 0.330    | 0.273 | 1.140 |
| Tb01B93I-99  | -            | 2.118    | 0.584 | 1.62   | 0.119    | 0.977 | 0.729 |
| Ть01В94І-130 |              | 1.349    | 0.224 | 0.86   | 0.282    | 0.383 | 2.146 |
| ТьотВ941-131 | -            | 0.685    | 0.324 | 1.173  | 0.059    | 0.118 | 1.431 |
| AT4-0070     | Normal       | 0.072    | 0.043 | 0.092  | 0.071    | 0.040 | 0.039 |
| AT4-0105     | Normal       | 0.397    | 0.121 | 0.118  | 0.103    | 0.078 | 0.390 |
| 3:15/94-1    | Normal       | 0.227    | 0.064 | 0.098  | 0.026    | 0.001 | 0.228 |
| 1-15/93-2    | Normal       | 0.114    | 0.240 | 0.071  | 0.034    | 0.041 | 0.264 |
| 26/94-4      | Normal       | 0.089    | 0.259 | ().096 | 0.046    | 0.008 | 0.053 |
| . 26/94-3    | Normai       | 0.139    | 0.093 | 0.085  | 0.019    | 0.06~ | 0.01  |

Based on cut-off values obtained from receiver-operator curves. TbRa3 intected 23 out of 27 positive sera. TbRa9 detected 22 out of 27. TbH4 detected 18 out of 27 and TbH12 detected 15 out of 27. If used in combination, these four antigens would have a theoretical sensitivity of 27 out of 27, indicating that these antigens should complement each other in the serological detection of *M. tuberculosis* infection. In addition, several of the recombinant antigens detected positive sera that were not detected using the 38 kD antigen, indicating that these antigens may be complementary to the 38 kD antigen.

The results are shown in Figure 6 which indicates that TbRa11, while being negative with sera from PPD positive and normal donors, detected sera that were negative with the 38 kD antigen. Of the thirteen 38 kD negative sera tested, nine were positive with TbRa11, indicating that this antigen may be reacting with a sub-group of 38 kD antigen negative sera. In contrast, in a group of 38 kD positive sera where TbRa11 was reactive, the mean OD 450 for TbRa11 was lower than that for the 38 kD antigen. The data indicate an inverse relationship between the presence of TbRa11 activity and 38 kD positivity.

The antigen TbRa2A was tested in an indirect ELISA using initially 50 u. I of serum at 1:100 dilution for 30 minutes at room temperature followed by washing in PBS Tween and incubating for 30 minutes with biotinylated Protein A (Zymed, San Francisco, CA) at a 1:10,000 dilution. Following washing, 50 µl of streptavidin-horseradish peroxidase (Zymed) at 1:10,000 dilution was added and the mixture incubated for 30 minutes. After washing, the assay was developed with TMB substrate as described above. The reactivity of TbRa2A with sera from M. tuberculosis patients and normal donors in shown in Table 4. The mean value for reactivity of TbRa2A with sera from M. tuberculosis patients was 0.444 with a standard deviation of 0.309. The mean for reactivity with sera from normal donors was 0.109 with a standard deviation of 0.029. Testing of 38 kD negative sera (Figure 7) also indicated that the TbRa2A antigen was capable of detecting sera in this category.

TABLE 4

RESULTIONS OF THREADA AND DEFAUROMM. TOBERCOLOSIS PARTENT, AND FROM MORMAL DONORS

| Serum ID | Status | OD 450 |
|----------|--------|--------|
| Tb85     | TB     | 0.680  |
| Tb86     | TB     | 0.450  |
| Tb8-     | ГB     | 0.263  |

|          | Tb93     | TB     | 0.232 |
|----------|----------|--------|-------|
|          | Tb94     | TB     | 0.333 |
|          | Tb95     | ТВ     | 0.435 |
|          | Tb96     | ТВ     | 0.284 |
|          | Ть97     | TB     | 0.320 |
| ı        | Ть99     | TB     | 0.328 |
|          | Tb100    | TB     | 0.817 |
|          | Ть101    | TB     | 0.607 |
| 1        | Ть102    | TB     | 0.191 |
| 1        | Tb103    | ТВ     | 0.228 |
| L        | Tb107    | ТВ     | 0.324 |
| L        | Tb109    | TB     | 1.572 |
|          | Tb112    | TB     | 0.338 |
| L        | DL4-0176 | Normal | 0.036 |
| L        | AT4-0043 | Normal | 0.126 |
| L        | AT4-0044 | Normal | 0.130 |
| L        | AT4-0052 | Normal | 0.135 |
| L        | AT4-0053 | Normal | 0.133 |
| L        | AT4-0062 | Normal | 0.128 |
|          | AT4-0070 | Normal | 0.088 |
| _        | AT4-0091 | Normal | 0.108 |
| <u>_</u> | AT4-0100 | Normal | 0.106 |
|          | AT4-0105 | Normal | 0.108 |
|          | AT4-0109 | Normal | 0.105 |
|          |          |        |       |

The reactivity of the recombinant antigen (g) (SEQ ID NO: 60) with sera from M. tuberculosis patients and normal donors was determined by ELISA as described above. Figure 8 shows the results of the titration of antigen (g) with four M tuberculosis positive sera that were all reactive with the 35 kD antigen and with four donor sera. All four positive sera were reactive with antigen (g)

The reactivity of the recombinant untigen TbH-29 (SEQ ID NO. 137) with sera from *M. tuberculosis* patients, PPD positive donors and normal donors was determined by indirect ELISA as described above. The results are shown in Figure 9 TbH-29 detected 30 out of 50 *M. subcretilosis* sera. 2 out of 8 PPD positive sera and 2 out of 27 normal sera.

OD 450 was demonstrated to be higher with sera from *M. tuberculosis* patients than from normal donors, with the mean OD 450 being significantly higher in the indirect ELISA than in the direct ELISA. Figure 11 is a titration curve for the reactivity of recombinant TbH-33 with sera from *M. tuberculosis* patients and from normal donors showing an increase in OD 450 with increasing concentration of antigen.

The reactivity of the recombinant antigens RDIF6, RDIF8 and RDIF10 (SEQ ID NOS: 184-187, respectively) with scra from *M. tuberculosis* patients and normal donors was determined by ELISA as described above. RDIF6 detected 6 out of 32 *M. tuberculosis* sera and 0 out of 15 normal sera; RDIF8 detected 14 out of 32 *M. tuberculosis* sera and 0 out of 15 normal sera; and RDIF10 detected 4 out of 27 *M. tuberculosis* sera and 1 out of 15 normal sera. In addition, RDIF10 was found to detect 0 out of 5 sera from PPD-positive donors.

The antigens MO-1, MO-2, MO-4, MO-28 and MO-29 described above in Example 5, were expressed in *E. coli* and purified using a hexahistidine tag. The reactivity of these antigens with both *M. tuberculosis* positive and negative sera was examined by ELISA as described above. Titration curves showing the reactivity of MO-1, MO-2, MO-4, MO-28 and MO-29 at different solid phase coat levels when tested against four *M. tuberculosis* positive sera and four *M. tuberculosis* negative sera are shown in Figs. 12A-E, respectively. Three of the clones, MO-1, MO-2 and MO-29 were further tested on panels of HIV positive/tuberculosis (HIV TB) positive and extrapulmonary sera. MO-1 detected 3.20 extrapulmonary and 2.38 HIV TB sera. On the same sera groups, MO-2 detected 2.20 and 10.38, and MO-29 detected 2.20 ind 8.38 sera. In combination these three clones would have detected 4.20 extrapulmonary sera and 16.38 HIV TB sera. In addition, MO-1 detected 6.17 sera that had previously been shown only to react with *M. tuberculosis* lysate and not with either 38 kD or with other antigens of the subject invention.

#### EXAMPLE 10

## PREPARATION AND CHARACTERIZATION OF M. TUBERCULOSIS FUSION PROTEINS

A fusion protein containing TbRa3, the 38 kD antigen and Tb38-1 was prepared as follows.

Each of the DNA constructs TbRa3, 38 kD and Tb38-1 were modified by PCR in order to facilitate their fusion and the subsequent expression of the fusion protein TbRa3-38 kD-Tb38-1. TbRa3, 38 kD and Tb38-1 DNA was used to perform PCR using the primers PDM-64 and PDM-65 (SEQ ID NO: 141 and 142), PDM-57 and PDM-58 (SEQ ID NO: 143 and 144), and PDM-69 and PDM-60 (SEQ ID NO: 145-146), respectively. In each case, the DNA amplification was performed using  $10~\mu l$ 10X Pfu buffer, 2  $\mu l$  10 mM dNTPs, 2  $\mu l$  each of the PCR primers at 10  $\mu M$ concentration, 81.5 µl water. 1.5 µl Pfu DNA polymerase (Stratagene, La Jolla, CA) and 1 ul DNA at either 70 ng/µl (for TbRa3) or 50 ng/µl (for 38 kD and Tb38-1). For TbRa3, denaturation at 94°C was performed for 2 min, followed by 40 cycles of 96°C for 15 sec and 72°C for 1 min, and lastly by 72°C for 4 min. For 38 kD, denaturation at 96°C was performed for 2 min, followed by 40 cycles of 96°C for 30 sec. 68°C for 15 sec and 72°C for 3 min, and finally by 72°C for 4 min. For Fb38-1 denaturation at 94° C for 2 min was followed by 10 cycles of 96°C for 15 sec, 58°C for 15 sec and 72°C for 1.5 min, 30 cycles of 96°C for 15 sec, 64°C for 15 sec and 72°C for 1.5, and finally by 72°C for 4 min.

The TbRa3 PCR fragment was digested with Ndel and EcoRI and cloned directly into pTT1L2 IL. I vector using Ndel and EcoRI sites. The 38 kD PCR fragment was digested with Sse838TL treated with T4 DNA polymerase to make blunt ends and then digested with EcoRI for direct cloning into the pTT1L2Ra3-1 vector which was digested with StuI and EcoRI. The 38-1 PCR fragment was digested with Eco4TIII and EcoRI and directly subcloned into pTT1L2Ra3-38kD-17 digested with the same enzymes. The whole fusion was then transferred to pFT28b span x N 50 and EcoRI and

The expression construct was transformed to BLR pLys S E. coli (Novagen, Madison, WI) and grown overnight in LB broth with kanamycin (30 µg/ml) and chloramphenicol (34 µg/ml). This culture (12 ml) was used to inoculate 500 ml 2XYT with the same antibiotics and the culture was induced with IPTG at an OD560 of 0.44 to a final concentration of 1.2 mM. Four hours post-induction, the bacteria were harvested and sonicated in 20 mM Tris (8.0), 100 mM NaCl, 0.1% DOC, 20 µg/ml Leupeptin, 20 mM PMSF followed by centrifugation at 26,000 X g. The resulting pellet was resuspended in 8 M urea, 20 mM Tris (8.0), 100 mM NaCl and bound to Probond nickel resin (Invitrogen, Carlsbad, CA). The column was washed several times with the above buffer then eluted with an imidazole gradient (50 mM, 100 mM, 500 mM imidazole was added to 8 M urea, 20 mM Tris (8.0), 100 mM NaCl). The cluates containing the protein of interest were then dialzyed against 10 mM Tris (8.0).

The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbRa3-38 kD-Tb38-1) are provided in SEQ ID NO: 147 and 148, respectively.

A fusion protein containing the two antigens TbH-9 and Tb38-1 (hereinafter referred to as TbH9-Tb38-1) without a hinge sequence, was prepared using a similar procedure to that described above. The DNA sequence for the TbH9-Tb38-1 fusion protein is provided in SEO ID NO. 151.

A fusion protein containing TbRa3, the antigen 38kD, Tb38-1 and DPEP was prepared as follows.

Each of the DNA constructs TbRa3, 38 kD and Tb38-1 were modified by PCR and cloned into vectors essentially as described above, with the primers PDM-69 (SEQ ID NO) 145 and PDM-62 (SEQ ID NO) 200) being used for amplification of the Tb38-1A fragment. Tb38-1A differs from Tb38-1 by a Dral site at the 31 end of the coding region that keeps the final amino acid intact while creating a blunt restriction site that is in frame. The TbRa3 38kD Tb38-1A fusion was then transferred to pET28b using Ndel and EcoR1 sites.

Denaturation at 94 °C was performed for 2 min, followed by 10 cycles of 96 °C for 15 sec, 68 °C for 15 sec, 68 °C for 15 sec and 72 °C for 1.5 min; 30 cycles of 96 °C for 15 sec, 64 °C for 15 sec and 72 °C for 1.5 min; and finally by 72 °C for 4 min. The DPEP PCR fragment was digested with EcoRI and Eco72I and clones directly into the pET28Ra3/38kD/38-

1A construct which was digested with Dral and EcoRI. The fusion construct was confirmed to be correct by DNA sequencing. Recombinant protein was prepared as described above. The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbF-2) are provided in SEQ ID NO: 203 and 204, respectively.

A fusion protein containing TbRa3, the antigen 38kD, Tb38-1 and TbH4 was prepared as follows.

Genomic *M. tuberculosis* DNA was used to PCR full-length TbH4 (FL TbH4) with the primers PDM-157 and PDM-160 (SEQ ID NO: 343 and 344, respectively) and 2 µl DNA at 100 ng/µl. Denaturation at 96 °C was performed for 2 min, followed by 40 cycles of 96 °C for 30 sec, 61 °C for 20 sec and 72 °C for 5 min; and finally by annealing at 72 °C for 10 min. The FL TbH4 PCR fragment was digested with EcoRI and Sca I (New England Biolabs.) and cloned directly into the pET28Ra3/38kD/38-1A construct described above which was digested with DraI and EcoRI. The fusion construct was confirmed to be correct by DNA sequencing. Recombinant protein was prepared as described above. The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbF-6) are provided in SEQ ID NO: 345 and 346, respectively.

A fusion protein containing the untigen TSkD and DPEP separated by a linker was prepared as follows:

25 38 kD DNA was used to perform PCR using the primers PDM-176 and PDM-175 (SEQ ID NO: 347 and 348, respectively), and 1 u1 PET28Ra3/38kD/38-1/Ra2A-12 DNA at 110 ng u1. Denaturation at 96 °C was performed for 2 min. followed by 40 cycles of 96 °C for 30 sec. 71 °C for 18 per mil 72 Color 5 min.

2...

then ramping down to 25 °C slowly at 0.1 °C/sec. DPEP DNA was used to perform PCR as described above. The 38 kD fragment was digested with Eco RI (New England Biolabs) and cloned into a modified pT7\(\Delta\L2\) vector which was cut with Eco 72 I (Promega) and Eco RI. The modified pT7\(\Delta\L2\) construct was designed to have a MGHHHHHH amino acid coding region in frame just 5' of the Eco 72 I site. The construct was digested with Kpn 2I (Gibco, BRL) and Pst I (New England Biolabs) and the annealed sets of phosphorylated primers (PDM-171, PDM-172 and PDM-173, PDM-174) were cloned in. The DPEP PCR fragment was digested with Eco RI and Eco 72 I and cloned into this second construct which was digested with Eco 47 III (New England Biolabs) and Eco RI. Ligations were done with a ligation kit from Panvera (Madison, WI). The resulting construct was digested with NdeI (New England Biolabs) and Eco RI, and transferred to a modified pET28 vector. The fusion construct was confirmed to be correct by DNA sequencing.

Recombinant protein was prepared essentially as described above. The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbF-8) are provided in SEQ ID NO: 349 and 350, respectively.

#### EXAMPLE !!

### USE OF M. TUBERCULOSIS FUSION PROTEINS FOR SERODIAGNOSIS OF TUBERCULOSIS

The effectiveness of the fusion protein TbRa3-38 all Tb38-1, prepared as described above, in the serodiagnosis of tuberculosis infection was examined by ELISA.

The ELISA protocol was as described above in Example 6, with the fusion protein being coated at 200 ng well. A panel of sera was chosen from a group of tuberculosis patients previously shown, either by FLISA with a contraction.

all three epitopes functioned with the fusion protein. As shown in Table 5, all four sera that reacted with TbRa3 only were detectable with the fusion protein. Three sera that reacted only with Tb38-1 were also detectable, as were two sear that reacted with 38 kD alone. The remaining 15 sera were all positive with the fusion protein based on a cutoff in the assay of mean negatives +3 standard deviations. This data demonstrates the functional activity of all three epitopes in the fusion protein.

TABLE 5

REACTIVITY OF TRI-PEPTIDE FUSION PROTEIN WITH SERA FROM M. TUBERCULOSIS
PATIENTS

| Serum ID   | Status | Blot<br>Indi | ELISA and/or Western Blot Reactivity with Individual proteins |          | Fusion<br>Recombinant<br>OD 450 | Fusion<br>Recombinant<br>Status |
|------------|--------|--------------|---------------------------------------------------------------|----------|---------------------------------|---------------------------------|
| 01000      |        | 38kd         | Tb38-1                                                        | TbRa3    |                                 | 0                               |
| 01B93I-40  | TB     | -            | -                                                             | _        | 0.413                           | +                               |
| 01B93I-41  | TB     | -            |                                                               | +        | 0.392                           | +                               |
| 01B93I-29  | TB     | -            | 1                                                             |          | 2.217                           |                                 |
| 01B93I-109 | TB     | <del>-</del> | <u> </u>                                                      | -        | 0.522                           | +                               |
| 01B93I-132 | TB     | <u>-</u>     |                                                               | -        | 0.937                           |                                 |
| 5004       | TB     | ÷ .          | -                                                             | ·        | 1.098                           |                                 |
| 15004      | TB     | ***          | -                                                             |          | 2 ()77                          |                                 |
| 39004      | TB     | -            |                                                               | _        | 1 675                           |                                 |
| 68004      | TB     |              | -                                                             |          | 2.388                           |                                 |
| 990()4     | TB     |              |                                                               |          | 0.60~                           |                                 |
| 107004     | ГВ     |              |                                                               |          |                                 |                                 |
| 92004      | TB     |              |                                                               | 3        |                                 | •                               |
| 97004      | TB     |              |                                                               |          | 1.070                           |                                 |
| 118004     | ТВ     | -            |                                                               | ==       | 1.152                           | +                               |
| 173004     | TB     |              |                                                               | <u> </u> | 2.694                           | -                               |
| 175004     | TB     |              |                                                               |          | 3.258                           | +                               |
| 274004     | TB ·   |              | · · · · · · · · · · · · · · · · · · ·                         |          | 2.514                           |                                 |

|          | 308004        | TB      | <u> </u> | -          | _   | 3.338          | !                                     |
|----------|---------------|---------|----------|------------|-----|----------------|---------------------------------------|
|          | 314004        | ТВ      | -        | -          | -   | 1.362          |                                       |
| ,        | 317004        | TB      | -        | 1 -        | -   | 0.763          | +                                     |
| į        | 312004        | TB      | -        | -          | +   | 1.079          | +                                     |
| Ì        | D176          | PPD     | -        | _          |     | 0.145          |                                       |
|          | D162          | PPD     | -        | -          | -   | 0.073          | -                                     |
| -        | D161          | PPD     | _        |            | -   | 0.097          | -                                     |
| <br>     | D27           | PPD     | _        | -          | -   | 0.082          |                                       |
| -        | A6-124        | NORMAL  | -        | _          | -   | 0.053          | -                                     |
|          | A6-125        | NORMAL  | -        | _          | -   | 0.087          |                                       |
| !        | A6-126        | NORMAL! |          |            | _   | 0.346          |                                       |
|          | <u>Ao-127</u> | NORMAL  |          | -          | - ! | 0.064          | =                                     |
| !        | Ab-128        | NORMAL! | -        |            | - 1 | 0.034          |                                       |
| į<br>į_  | A6-129        | NORMAL  | -        | -          |     | 0.037          |                                       |
| :        | A6-130        | NORMAL  | -        | _          |     | 0.057          | -                                     |
| <u> </u> | A6-131        | NORMAL  | -        |            | - 1 | 0.054          | -                                     |
|          | A6-132        | NORMAL  | -        | -          |     | 0.022          |                                       |
|          | A6-133        | NORMAL  | -        | <b>-</b> : |     | 0.147          |                                       |
|          | Ao-134        | NORMAL  | -        | <u> </u>   | - 1 | 0.101          |                                       |
|          | <u>A6-135</u> | NORMAL  | -        | -          |     | 0.066          |                                       |
| _        | 40-136        | NORMAL  | -        | -          |     | -),054         |                                       |
|          | 40-137        | NORMAL  | -        |            |     | 0.005          |                                       |
|          | Ao-138        | NORMAL  |          | -          |     | 0.041          | · · · · · · · · · · · · · · · · · · · |
| _        | A6-139        | NORMAL  | -        |            | -   | 0.103          |                                       |
|          | Ao-140        | NORMAL  | -        |            |     | 7.172          |                                       |
|          | <u>An-141</u> | NORMAL  |          |            |     | - <del> </del> |                                       |
|          | Ao-142        | NORMAI  |          |            |     | 1.051          | and the second second                 |
|          |               |         |          |            |     | 10000          |                                       |

The reactivity of the fusion protein TbF-2 with sera from M tuberculosis-infected patients was examined by ELISA using the protocol described above. The results of these studies (Table 6) demonstrate that all four intigens function in dependently in the continuous M.

7:

Table 6

Reactivity of TbF-2 Fusion Protein with TB and Normal Sera

| ļ             | D   Stan         | TbF<br>OD450           | Status                                  | TbF-2<br>OD450 | Status        |         | ELISA       | Reactivity  |              |
|---------------|------------------|------------------------|-----------------------------------------|----------------|---------------|---------|-------------|-------------|--------------|
|               |                  |                        | <del> </del>                            | 0.0430         | <del> </del>  | <b></b> |             | •           |              |
| B931-40       | TB               | 0.57                   | -                                       | 0.331          | <del> </del>  | 38 kD   | ToRai       | Тъ38-1      | DPEP         |
| B931→1        | TB               | 0.601                  | +                                       | 0.321          | +             | -       |             | -           | 1            |
| B931-109      | 9   TB           |                        |                                         |                | -             | +       | -           | -           | 1.           |
| B931-132      | $\frac{1}{2}$ TB |                        | _                                       |                | i +           | +       | -           | 1 =         | 1.           |
| 5004          | TB               |                        |                                         |                | -             | +       | +           | -           | 1 =          |
| 15004         | TB               |                        | :                                       | 1.600          | -             |         | <u> </u>    | T-          | 1.           |
| 39004         | i TB             |                        |                                         | 2.468          |               | -       |             | 1-          | † -          |
| 08004         | TB               | $-\frac{2.175}{2.871}$ |                                         |                | -             |         | -           | <del></del> | 1-           |
| 99004         | TB               | 0.691                  | <del></del>                             |                | _             |         | -           |             | <del></del>  |
| 107004        | TB               | 1.075                  |                                         | 0.971          |               | -       | : =         |             |              |
| 92004         | TB               | 1.632                  |                                         |                | :             |         |             |             |              |
| 97004         | TB               | 1.491                  |                                         | 1.394          | -             | -       | <u> </u>    |             | -            |
| 118004        | TB               | 3 182                  |                                         | 1.979          | -             | -       | =           | -           | <del>-</del> |
| 173004        | TB               |                        |                                         |                |               | +       | <u>+</u>    | † <u>-</u>  |              |
| 1-5004        | ТВ               | 3.332                  |                                         |                | -             | -       | +           | -           | <del>-</del> |
| 274004        | ГB               |                        | <u>i</u> _                              | 2.916          | -             | -       |             | -           | <del>-</del> |
| 276004        | TB               | 3.696                  |                                         | 3.716          | -             |         |             |             |              |
| 282004        | TB               |                        |                                         | 2.50           | -             | -       |             |             | -            |
| 289004        | TB               | 1.249                  |                                         |                | - 1           |         |             |             | -            |
| 308004        | TB               |                        |                                         |                | -             |         |             |             |              |
| 14004         | ГВ               | 13.708                 | - + 3                                   | .355           | -             |         |             |             |              |
| 17004         | IB IB            | 663                    |                                         | (00)           |               |         |             |             |              |
| 12004         | TB               | 16)                    |                                         | .92 -          |               |         |             | - 1         | ·<br>        |
| 80004         | TB               | : "A9                  |                                         | .453           |               |         |             |             | ·            |
| :1004         | ГВ               | 10.536                 | - 1                                     | 461            |               |         |             | ·           |              |
| 75004         |                  | . 948                  | ال ا                                    | _              |               |         |             |             |              |
| 10004         | TB               | + 0.188                |                                         | 100 -          |               |         | <del></del> |             | <u>:</u>     |
| 11004         | TB               | 0.384 -                |                                         | 392            |               |         |             |             |              |
| 21004         | LB               | el 306                 |                                         | K-1 -          |               |         | ·           | - 1         |              |
| 28004         | IB               | 1337                   |                                         | 450 T          |               |         |             |             |              |
| 0-5           | IB               | 0.047                  |                                         | l vn           |               |         |             |             |              |
|               | Normai           | 0.094                  | . 1 '                                   | 75:            |               |         | · · ·       |             |              |
| 0-65          | vormai           | F.214                  | -                                       | 10             |               |         |             |             |              |
| <u>0-89</u>   | Normai           | 9/248                  |                                         | 23             |               |         |             |             |              |
| 0-90          | Vormal           | 0.179                  |                                         | 206            | - <del></del> |         |             |             |              |
| 0-91          | `vormal          | 0.135                  |                                         | 3:             |               | ·       |             |             |              |
| 5-92          | Vormai           | 0) ()6-4               | - · · · · · · · · · · · · · · · · · · · |                |               |         |             |             | _            |
| )- <b>)</b> : | ∀ormal           | 0.072                  |                                         | 101            |               |         |             | 1 -         |              |
| 3.44          | `•ormai          | 0.07                   | 13.13                                   |                |               |         |             |             |              |
| 5.05          | Sorma:           | 9:25                   |                                         | 7.7            |               |         |             |             |              |

One of skill in the art will appreciate that the order of the individual antigens within the fusion protein may be changed and that comparable activity would be expected provided each of the epitopes is still functionally available. In addition, truncated forms of the proteins containing active epitopes may be used in the construction of fusion proteins.

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purpose of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

10

### **CLAIMS**

### We claim:

- 1. A polypeptide comprising an antigenic portion of a soluble M. tuberculosis antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:
  - (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu (SEQ ID NO: 115);
  - (b) Ala-Val-Glu-Ser-Glv-Met-Len-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID NO: 116);
  - (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID NO: 17);
  - (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SEQ ID NO: 118);
  - (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val (SEQ ID NO: 119).
  - (f) Ala-Glu-Glu-Ser-ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID NO: 120);
  - (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Vai-Pro-Thr-Thr-Ala-Aia-Ser-Pro-Pro-Ser (SEQ ID NO: 121);
  - (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Giu-Leu-Lys-Giy-Thr-Asp Thr-Gly (SFQ ID NO: 122):
  - (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp Val Pro-Thr-Ala-Ala-Gin-Leu Thr Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asp-Val-Ser-Phe Ala-Asp (SEQ ID NO: 123); and
  - (j) Ala-Pro-Giu-Ser-Giy-Ala-Giv Leu Giy-Gly-Thr Val-Gin-Aia-Gly (SEQ ID NO 131)

wherein Xaa may be any amino acid

- 2. A polypeptide comprising an immunogenic portion of an *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:
  - (a) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID NO: 124) and
  - (b) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID NO: 132), wherein Xaa may be any amino acid.
- 3. A polypeptide comprising an antigenic portion of a soluble M tuberculosis antigen, or a variant of said antigen that differs only in conservative substitutions and or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 1, 2, 4-10, 13-25, 52, 94 and 96, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS: 1, 2, 4-10, 13-25, 52, 94 and 96 or a complement thereof under moderately stringent conditions.
- A polypeptide comprising an antigenic portion of a *M. tupercutosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID NOS 26-51, 123, 134, 158-178, 196, 235, 237–242, 248-251, 296-293, 204, 31, 313-315, 317, 319, 322, 324, 328, 330, 332, 334 and 336, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS 26-51, 133, 134, 158-178, 196, 235, 237-242, 248-251, 296-293, 304, 311, 313-315, 317, 319, 323, 324, 328, 330, 332, 334 and 336, or a complement thereof under moderately stringent conditions

- 6. A recombinant expression vector comprising a DNA molecule according to claim 5.
  - 7. A host cell transformed with an expression vector according to claim 6.
- S. The host cell of claim  $\overline{\ }$  wherein the host cell is selected from the group consisting of  $E.\ coli$ , yeast and mammalian cells.
- 9. A method for detecting M. tuberculosis infection in a biological sample, comprising:
- (a) contacting a biological sample with one or more polypeptides according to any of claims 1-4; and
- (b) detecting in the sample the presence of antibodies that bind to at least one of the polypeptides, thereby detecting M. tuberculosis infection in the biological sample.
- 10. A method for detecting M. tuberculosis infection in a biological sample, comprising:
- (a) contacting a biological sample with a polypeptide having an N-terminal sequence selected from the group consisting of sequences provided in SEQ ID NO: 129 and 130; and
- who detecting in the sample the presence of antibodies that bind to at least one of the polypeptides, thereby detecting M subgroulosis intection in the biological sample
- 11 A method for detecting M. tuberculosis infection in a biological sample, comprising:
- (a) contacting a biological sample with one or more polypeptides encoded by a DNA sequence selected from the proup a magnitude of the contact of the contact

sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337; and

- (b) detecting in the sample the presence of antibodies that bind to at least one of the polypeptides, thereby detecting M. tuberculosis infection in the biological sample.
- 12. The method of any one of claims 9-11 wherein step (a) additionally comprises contacting the biological sample with a 38 kD *M. tuberculosis* antigen and step (b) additionally comprises detecting in the sample the presence of antibodies that bind to the 38 kD *M. tuberculosis* antigen.
- 13. The method of any one of claims 9-11 wherein the polypeptide(s) are bound to a solid support.
- 14. The method of claim 13 wherein the solid support comprises nitrocellulose, latex or a plastic material.
- The method of any one of claims 9-11 wherein the biological sample is selected from the group consisting of whole blood, serum, plasma, saliva, cerebrospinal fluid and urine.
- The method of staim 15 wherein the biological sample is whole blood regrum.
- 17. A method for detecting *M. suberculosis* infection in a biological sample, comprising:
- (a) contacting the sample with at least two oligonucleotide primers in a post-merase chain reaction, wherein at least one of the oligonucleotide primers is specific for a

WO 99/42118 PCT US99 03265

(b) detecting in the sample a DNA sequence that amplifies in the presence of the oligonucleotide primers, thereby detecting *M. tuberculosis* infection.

- 18. The method of claim 17, wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a DNA molecule according to claim 5.
- A method for detecting M tuberculosis infection in a biological sample, comprising:
- (a) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, wherein at least one of the oligonucleotide primers is specific for a DNA sequence selected from the group consisting of SEQ ID NOS. 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337; and
- (b) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers, thereby detecting M. tuberculosis infection.
- 20. The method of claim 19, wherein at least one of the obigonucleotide primers comprises at least about 10 configuous nucleotides of a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 131, 333, 335 and 337.
- 21. The method of draims 17 or 19 wherein the biological lambie selected from the group consisting of whole blood, sputum, serum, plasma, saliva, derebrospinal fluid and urine
  - 22 A method for detecting M subersulosu intection in a piological

- (a) contacting the sample with one or more oligonucleotide probes specific for a DNA molecule according to claim 5; and
- (b) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe, thereby detecting M. tuberculosis injection.
- 23. The method of claim 22 wherein the probe comprises at least about 15 contiguous nucleotides of a DNA molecule according to claim 5.
- 24. A method for detecting M. tuberculosis infection in a biological sample, comprising:
- (a) contacting the sample with one or more offgonucleotide probes specific for a DNA sequence selected from the group consisting of SEQ ID NOS. 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337; and
  - (b) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe, thereby detecting M tuberculosis infection.
- The method of claims 22 or 24 wherein the biological sample is selected from the group consisting of whole blood, sputum, serum, plasma, saliva, are prospinal fluid and urine
  - 27 A method for teterring Manufacture of inflation of a policy of

•••

- (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide according to any one of claims 1-4; and
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting M. tuberculosis infection in the biological sample.
- 28. A method for detecting M. tuberculosis infection in a biological sample, comprising:
- (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide having an N-terminal sequence selected from the group consisting of sequences provided in SEQ ID NO: 129 and 130; and
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting M, tuberculosis infection in the biological sample.
- 29. A method for detecting M tuberculosis infection in a biological sample, comprising:
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting M, suberculosis infection in the biological sample.
- 30). The method of any one of claims 27-79 wherein the binding agent is a monoclonal antibody.

- The method of any one of claims 27-29 wherein the binding agent is a polyclonal antibody.
  - 32. A diagnostic kit comprising:
  - (a) one or more polypeptides according to any of claims 1-4; and
  - (b) a detection reagent.
  - 33. A diagnostic kit comprising:
- (a) one or more polypeptides having an N-terminal sequence selected from the group consisting of sequences provided in SEQ ID NO: 129 and 130; and
  - (b) a detection reagent.
  - 34. A diagnostic kit comprising:
- (a) one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NOS, 2, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-363, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337, and
  - (b) a detection reagent.
- The kit of any one of gains 12-14 wherein the polypeptide (i) are immobilized on a solid support.
- 36. The kit of claim 35 wherein the solid support comprises nitrocellulose, latex or a plastic material

- 38. The kit of claim 37 wherein the binding agent is selected from the group consisting of anti-immunoglobulins, Protein G, Protein A and lectins.
- 39. The kit of claim 37 wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent groups, enzymes, biotin, dye particles and colloidal particles.
- 40. A diagnostic kit comprising at least two oligonucleotide primers, at least one of the oligonucleotide primers being specific for a DNA molecule according to claim 5.
- 41. A diagnostic kit according to claim 40, wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotide of a DNA molecule according to claim 5.
- 42. A diagnostic kit comprising a at least two oligonucleotide primers, at least one of the primers being specific for a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335, and 337.
- 43 A diagnostic kit according to claim 42, wherein at least one of the 54 forugeleotide primers comprises at least about 10 contiguous nucleotide of a DNA sequence selected from the group consisting of SEQ ID NOS, 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 326-322, 325-327, 329, 331, 332, 335 and 337

- 45. A kit according to claim 44, wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA molecule according to claim 5.
- 46. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe being specific for a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337.
- 47. A kit according to claim 46, wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID NOS: 3, 11, 12, 135, 136, 151-155, 184-188, 194-195, 198, 210-220, 232, 234, 256-271, 287, 288, 298-303, 305-310, 312, 316, 318, 320-322, 325-327, 329, 331, 333, 335 and 337
- 48. A monoclonal antibody that binds to a polypeptide according to any of claims 1-4.
- 40. A polyclonal antibody that binds to a polypeptide according to any of claims 1-4.
- $_{\rm SC} = \lambda$  histori protein comprising two or more polypeptides according to any one of claims 14
- A fusion protein comprising one or more polypeptides according to any one of claims 1-4 and ESAT-6 (SFO ID NO 99).

- 53. A fusion protein comprising one or more polypeptides according to any one of claims 1-4 and the *M. tuberculosis* antigen 38 kD (SEQ ID NO: 150).
  - 54. A diagnostic kit comprising:
  - (a) one or more fusion proteins according to any one of claims 50-53; and
  - (b) a detection reagent.

# D7 T Cell Proliferation







FIG. 1.4

2 14











# responds poorly to CSI Tech clone 131TbH9



Antigen

FIG. 3.4

T Cell Clone PPD 800-10 IFNg Production



FIG. 3B





1.1G. 4

BLIBA Honoffelty of Havomblumith and Papilidan obtained withy Haman 10 Born reforming monomi



Bonetlyky of Bocombinant 30kD and 199a. andigons with som from Af. Inborculosis putlents, 14th positive and normal denotes



PCT/US99 03265



Hencilvity of DPEP recombining with 111 positive and negative sera



**-**

TIMI29 ELISA reactivity in Streptavidin-HRP/Protein A-biotin system





FIG. 10

ELISA reactivity of Thisa







# Titration of Mo-2 with TB positive and negative sera



Titration of Mo-4 with TB positive and negative sera



Titration of Mo-28 with TB positive and negative sera



Titration of Mo-29 with TB positive and negative sera



\_ \_ \_ \_ \_ \_

### SEQUENCE LISTING

```
(1) GENERAL INFORMATION:
    (1) APPLICANTS: Reed, Steven G.
                   Skeiky, Yasir A.W.
                   Dillon, Davin C.
                   Campos-Neto, Antonia
                   Houghton, Raymond
                   Vedvick. Thomas S.
                   Twardzik, Daniel R.
                   Lodes, Michael J.
                   Hendrickson, Ronald
   (11) TITLE OF INVENTION: COMPOUNDS AND METHODS FOR DIAGNOSIS OF
                        TUBERCULOSIS
  111. NUMBER OF SEQUENCES: 350
  (17) CORRESPONDENCE ADDRESS:
       (A) ADDRESSEE: SEED and BERRY LLP
        (B) STREET: 6300 Columbia Center, 701 Fifth Avenue
        (C) CITT: Seattle
       (D) STATE: Washington
        E; COUNTRY: USA
        ·F' CIP: 98134-7592
   v COMPUTER READABLE FORM
       'A, MEDIUM TYPE: Floppy disk
        3 JOMPUTER IBM 90 compatible
        D SPERATING SYSTEM: PC DOS/MS-BOS
        F GOFTWARE Patentin Release #1.0, Version #1.30
  V1 JUPRENT APPLICATION DATA.
       A APPLICATION NUMBER
       B FILING DATE: 15-MAY-1998
       7 JUASSIFICATION:
THE ATTORNEY AGENT INFORMATION
       A NAME Maki David -
       I REFERENCE CULTET WIMBER COLLEGE FORCE
 ix TELECOMMUNICATION INFORMATION
      A TELEPHONE 204 622 4909
       B TELEFAX 206 682-6031
```

. UFIPMATION FOR TWO DO NOT

### (D) TOPOLOGY: linear

.x1 - SEQUENCE DESCRIPTION: SEQ ID NO:1:

| CGAGGCACC  | GTAGTTTGA: | N CCAAACGCAC | AATCGACGC   | CAAACGAACG | GAAGAACACA | <b>5</b> 0  |
|------------|------------|--------------|-------------|------------|------------|-------------|
| ACCATGAAGA | TGGTGAAATC | GATCGCCGCA   | GGTCTGACCC  | CCGCCGCTGC | AATCGGCGCC | 120         |
| GCTGCGGCCC | GTGTGACTTC | GATCATGGCT   | . eeseessaa | TCGTATACCA | GATGCAGCCG | 180         |
|            | GCGCGCCACT |              |             |            |            | 240         |
|            | CCAGCCTCCT |              |             |            |            | 300         |
| GGCAGTCTGG | TCGAGGGGGG | CATCGGGGGC   | ACCGAGGCGC  | GCATCGCCGA | CCACAAGCTG | 360         |
|            | CCGAGCACGG |              |             |            |            | 420         |
|            | FTTCGGCCAC |              |             |            | CTCGTCGCCG | 480         |
| GTCACGCAGA | ACGTCACGTT | CGTGAATCAA   | GGCGGCTGGA  | TGCTGTCACG | CGCATCGGCG | 540         |
| ATGGAGTTGC | TGCAGGCCGC | AGGGNAACTG   | ATTGGCGGGC  | CGGNTTCAGC | CCGCTGTTCA | 600         |
| POTACGCCGC | CCSCCTGGTG | ACGCGTCCAT   | GTCGAACACT  | CGCGCGTGTA | GCACGGTGCG | <b>១</b> ៩០ |
| FINTGCGCAG | GGNCGCACGC | ACCECCCCT    | GCNAGCCGTC  | CTCGAGATAG | FTGGTGNCTC | 723         |
| GNCACCAGNG | ANCACCCCCN | NNTOGNOMIT   | TOTOGNTGNT  | GNATGA     |            | ិច់ទ័       |

### C CMFORMATION FOR SECTION NO.2 -

- : GEOVENCE THARACTERIUTICS:
  - A LENGTH 752 base pairs
    B TYPE: nucleic acid
    C. STRANDEDNESS single
    D. TOPOLOGY: linear

### MA DECUENCE DESCRIPTION SECTION OF

|            | ATCAGUATCA           | WAT BAAGE           | COUTAGNOR   | 10A2 <b>cr</b> ccor  |            |       |
|------------|----------------------|---------------------|-------------|----------------------|------------|-------|
|            | COGAGETOGA           | المالة المستطوناتين | Widdoota    | NGBAJAGDI"           | XXXXXXXXX  |       |
| FINGMAGGCC | TCCCGCCGGG           | 77033077773         | PROGRAGICA  | AACGAGGCCC           | CAAJGCCGGA | [8]   |
| TURBURTTO: | TACTOGAICA           | AGCCATCACA          | TESSETTSETE | GGCATCCCGA           | CAGCGACATA | 240   |
| TTTTTTE    | ACGTOACTOT           | PAGECET TOO         | TAT DIT MAT | 770037 <b>77</b> 33A | AAACAACGAA | 3 · · |
|            | 100 <b>387</b> 17030 | 77.100.100          | • • • •     |                      |            |       |

. INFORMATION FOR SECULE MIL.

912

| GCCCCGCGCT GGCCGGGATG TCGATCGGGG CGGTCCTCCG ACCTGCTACG ACCGGATTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 540            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| CCCTGATGTC CACCATCTCC AAGATTCGAT TCTTGGGAGG CTTGAGGGTC NGGGTGACCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 600            |
| COCCGCGGGC CTCATTCNGG GGTNTCGGCN GGTTTCACCC CNTACCNACT GCCNCCCGGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 660            |
| TTGCNAATTC NTTCTTCNCT GCCCNNAAAG GGACCNTTAN CTTGCCGCTN GAAANGGTNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 720            |
| TOONGGGOOD NICOINGAAN COCONTOCCO OT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 752            |
| :2' INFORMATION FOR SEQ ID NO:3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 313 base pairs  B) TYPE: nucleic acid  C: STRANDEDNESS: single  D: TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| .K1. SEQUENCE DESCRIPTION: SEQ ID NO:3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| CATATUCATO ACCATCACCA TCACACTTCT AACCGCCCAG CGCGTCGGGGJ GCGTCGAGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60             |
| JCACGCGACA COGGGCCGGA TCGATCT3CT AGCTTGAGTC TGGTCAGGCA TCGTCGTCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120            |
| CAUCUCGATG COCTATGTTT GTCGTCGACT CAGATATCGC GGCAATCCAA TCTCCCGCCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190            |
| BORGOCGGOG BTGCTGCAAA CTACTCCGGB AUGAATTTCG ACGTGCGCAT CAAGATCTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 240            |
| ATACTGGTCA CGGCTGTCGT TTTGCTCTGT TGTTCGGGTG TGGCCACGGC CGCGCCAA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300            |
| NOCTARTICS AUGNOTTGAA AGGCACOMAT NOCUGCONG JUTGCCAGAT TCAAATOTOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 360            |
| LICETERARE ACABETERA CATCAGETTS FEDERATERACE ACCEPTAGE AAGTEGEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ; <b>2</b> ;   |
| GAAAATTACA TOOGOONGAC GOOOGACNAH TTOOTOAGOO JOGOOACATO STOOACTOOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 480            |
| CONTRACTOR DESCRIBACION TADACCIONA TORRETARIO TYMEDATICE DOOD ARTHOUGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3. <b>4</b> .0 |
| OT A A POR DESCRIPTION OF A PROMETED THE PARTY OF A PORT | 44.2           |
| A MA DITAGA A SI MITUGA ITTI YISA MAA HAAR MUUA AGU MAATAA MITATIGA MAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~ t            |
| TO TO COMBO OF THE ACADOMA TO COCT BODA OF CONTROL OCATTOTTES AAGGTGAACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * O            |
| BABIRAIDECA IGA 1098 BACA ACWESTATOS ATAGONSCUN AATECENSET ITEGAACOMIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190            |
| TBAAATTATO ACAACTTOS: AGTOROMAAA MAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |

### (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CGGTATGAAC ACGGCCGCGT CCGATAACTT CCAGCTGTCC CAGGGTGGGC AGGGATTCGC 60 CATTCCGATC GGGCAGGCGA TGGCGATCGC GGGCCAGATC CGATCGGGTG GGGGGTCACC 120 CACCGITCAT ATCGGGCCTA CCGCCTTCCT CGGCTTGGGT GITGTCGACA ACAACGGCAA 180 CGGCGCACGA GTCCAACGCG TGGTCGGGAG CGCTCCGGCG GCAAGTCTCG GCATCTCCAC 240 TGGCGACGTG ATCACCGCGG TCGACGGCGC TCCGATCAAC TCGGCCACCG TGATGGCGGA 300 ISCSCTTAAC GGGCATCATC SCGGTGACST LATCTCGGTG AACTGGCAAA SCAAGTCGGG 360 COGCACCOCT ACAGOGAACO TOACATTGGC COAGGGACCC CCGGCCTGAT TTCGTCGYCG 420 ATACCACCCG CUGGCCGGCC AATTGGA 447

### 2 INFORMATION FOR SEQ ID NO:5:

- (1) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 604 base pairs
  - B. TYPE: nucleic acid
  - (C) STRANDEDNESS single
  - D: TOPOLOGY, linear

# MI SEQUENCE DESCRIPTION, SEQ ID NO.5

|     |                | GGTGSCGGAG     | FAIGLGGGGG  | AGCAAATGTG | . Tadavadaaa    | GCAACGGAAT | ວ ລົ  |
|-----|----------------|----------------|-------------|------------|-----------------|------------|-------|
|     |                | GACOTINGDAG    | PTTGTCGAAC  | 103003555  | GGAAGTATCS      | GTCCATGCCT | · ·   |
| .`\ | ADDDDDDDDD A   | GGGGGAGCG I    | JGGAATGGCG  | CGAGTGAGGA | GGGGGGAAT       | TTGGCGGGGC | 137   |
| -   | CGGCCACGG      | NGAGCGCCGG     | ACCCCCA     | BTGAGGAGGT | GGNCAGTCAT      | GCCCAGNGTG | 24.0  |
| ``  | TOCARTOAR      | SCESMATTS:     | MUTGNGGON   | CATTIGACA  | AT DIAD ITAD    | TOAGCGCAA  | : •   |
|     | www.sn. xy     | AAAA JII SIING |             | MOTTOTOG   | PTONIAGET       | M Manaras  | 7. ·  |
|     |                |                |             |            |                 | HARACTICS. | i.    |
|     | PANHO INAN     | GGNGTGCNAN     | TEMNNITUE   | TOGNOGANAT | CANANAGNOS      | NUTGATGNGA | 480   |
|     | and the second | JANCAGNMR:     |             |            |                 |            | 540   |
|     | Programa       | Annannar 🕆     | HUTUNGUN (D | mmo.andm   | American Street | MI BATTATT | 'o () |
|     |                |                |             |            |                 |            |       |

| (A. | LENGTH: 633 base pairs |
|-----|------------------------|
| (B) | TYPE: nucleic acid     |
|     | STRANDEDNESS: 2:       |

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

|             |               |              |              |            | CGGTGGCGGC | 60  |
|-------------|---------------|--------------|--------------|------------|------------|-----|
| CGCTCTAGA   | A CTAGTGKATI  | M YYYCKGGCTO | G CAGSAATYCO | GYACGAGCAT | TAGGACAGTC | 120 |
| TAACGGTCC   | C GTTACGGTG   | TCGAATGACC   | GACGACATCO   | TGCTGATCGA | CACCGACGAA | 180 |
| CGGGTGCGAA  | GCCTCACCCT    | CAACCGGCCG   | CAGTCCCGYA   | ACGCGCTCTC | GGCGGCGCTT |     |
| COGGATCGGT  | . miningagagy | GTTGGYCGAC   | GCCGAGGYCG   | ACGACGACAT | CCACCACCAC | 240 |
| ATOOTCACCS  | GYGCCGATCC    | GGTGTTCTGC   | GCCGGACTGG   | ACCTCAAGGT |            | 300 |
| GCAGACCGCG  | CTGCCGGACA    | TOTOLOGGO    | 2777777777   | ATGACCAAGC | AGCTCGCCGG | 360 |
| CGCGATCAAC  | GGCGCCCCCC    | TCACCACA     | areedendeed  | ATGACCAAGO | CGGTGATCGG | 420 |
| 31777777777 | 71.001.00m    | TCACCGGGGG   | GCTCGAACTG   | GCGCTGTACT | GCGACATCCT | 480 |
| JA10300100  | GAGCAUGUCC    | GCTTCGNCGA   | CACCCACGCC   | CGGGTGGGGC | TGCTGCCCAC | 540 |
| UTUUUGACTC  | AGTGTGTGCT    | TGCCGCAAAA   | GCCCGGCATC   | GGNCTGGGCC | GGTGGATGAG | 500 |
| COTGACCGGC  | JACTAUCTGT    | CCGTGACCGA   | CGC          |            |            | 533 |
| 2 2170211   |               |              |              |            |            | 555 |

## 2 INFORMATION FOR SEQ ID NO:7:

- : SEQUENCE MARACTERISTICS
  - A: LENGTH: 1362 base pairs
  - B TYPE nucleic acia
    C' CTPANDEDNESS: Single
    D' TOPOLOGY linear

# KI SECUENCE DESCRIPTION SEQ OF MOVE

| MANUATEAT                               |                                         |              |            | A.700700000   | t a continue to the continue to |     |
|-----------------------------------------|-----------------------------------------|--------------|------------|---------------|---------------------------------|-----|
|                                         | Addagona r                              | SAME SE      | WATER TO   | ACCATATE SA   | (CCCGTTTT)                      | 123 |
| 200 300 <b>0</b> 00                     | 000000000000000000000000000000000000000 | FGTUGUCOAG   | 1/2        | AGUDDCCCCC    |                                 | la; |
| . , , , , , , , , , , , , , , , , , , , |                                         |              | CCOGACGAGE | GACTIGOTICALI | COCCOCCTSC                      | 240 |
|                                         | TOAC ADADDE                             | 7.1.11.130   | Mastagnn.  | 1.300.30.W    | WANGE CO.                       | 3   |
| 100 TEN 13203                           | redemondAu                              | tana esemble | TCCTDGTGC" | TOTA LI IN IA | Waracrath                       |     |

| codocoddae cottogococ adatotogoc     | GCCGAAMAG  |              | 00maa     |      |
|--------------------------------------|------------|--------------|-----------|------|
|                                      |            |              |           | 540  |
| CASTICATES CACGCCTGGT CCTGGTGCTG     |            |              |           | 600  |
| OGCGCCCAAC AGCTCATGCG CCGCGCCGGT (   |            |              |           | 660  |
| GAGCATCGGC CGGGCGGCTC CACCCGGCGGG    |            |              |           | 720  |
| GCATGGGCAA CACCUTCCGA GCCCATAGCA A   |            |              |           | 780  |
| GACACCECEC CGCACCTGCC GCCACCGACT C   |            |              |           | 840  |
| TGGCACGGCG AGCCAATGCC GATGAGCAGT C   |            |              |           | 900  |
| COCCOCCACC TGCACCCCC CACCCCTCTT GC   |            |              |           | 960  |
| OTGACCGACG ACGACGTCGC CGCGGGCCGGA TC |            |              |           | 1020 |
| GGGGGGGTGG GCTGGGGGGG GTTGAGGGGG GG  |            |              |           | 1080 |
| GUGGCCGAGG GCCAGGTGTC GCGGCAAAAC CC  |            |              |           | 1140 |
| TAUGGTGTCA TCGCTGGCCC GAGGGATCTC GC  |            |              |           | 1200 |
| OD AMBODDODDOT TODDTOADDD DDDTDDAADD |            |              |           | 1260 |
| SECONATERS GTCGGCGCG SCCCTTGGCC SA   | AGGTCCAG . | STEAACGTGS S | GTCACCGAA | 1320 |
| RRACCUUACO GTCACCGGGG GTCACCCTGC GCC | GCCCAAGG / | AA           |           | 1360 |
| 2 INFORMATION FOR SEC -5 G.          |            |              |           |      |

## C INFORMATION FOR SEQ ID NO.8.

- 1 SEQUENCE CHARACTERISTICS
  - A LENGTH, 1458 pase pairs
  - B) TYPE: nucleid acid
    C STRANDEDNESS: Single
    D TOPOLOGY: linear

# es sequence description set it was s

| DIDACGA 7015 | )GATATGCCO | JGCAUCCTA:      | MAN TO T    | in ingalmani | A 2 413 1131  |     |
|--------------|------------|-----------------|-------------|--------------|---------------|-----|
| PRATTOACTOR  | CADDACTTE  | ATTIAGOATT      | ' DTGGNGC ' | 109 1000000  | JAA 1 YIJ ITY | 12. |
| TREATGACOT   | GGCCCALGIA | TACATCATT       | AlcadeAdea  | GCGCGCCAAG   | 777910937055  | 180 |
| STAAGGCCTT   | 7          |                 |             |              |               | 240 |
| Tilpagagag   | TTATITUT!  | DA DA A DBA (1) | \$111111;;: | PORCEASTOR   | ACCETTIGATE   | 300 |

WO 99 42118 PCT US99.03265

CGATTGAGGA TTCGCTGCAA TCGATCTTTG UUACGCTGGG ACAGGCCGCC GAGCTGCAGC 540 SGGCTGGAGG CSGCACCGGA TATGCGTTCA SCCACCTGCG ACCCGCCGGG GATCGGGTGG 500 COTTCCACGGG CGGCACGGC AGCGGACCGG TGTCGTTTCT ACGGCTGTAT GACAGTGCCG CGGGTGTGGT CTCCATGGGC GGTCGCCGGC GTGGCGCCTG TATGGCTGTG CTTGATGTGT 720 CGCACCCGGA TATCTGTGAT TTCGTCACCG CCAAGGCCGA ATCCCCCAGC GAGCTCCCGC 780 ATTTCAACCT ATCGGTTGGT GTGACCGACG CGTTCCTGCG GGCCGTCGAA CGCAACGGCC 940 TACACCOGCT GGTCAATCCG CGAACCGGCA AGATCGTCGC GCGGATGCCC GCCGCCGAGC 900 TOTTOGACGO CATOTGCAAA GOOGCOCACG COGGTGGCGA TOCCGGGGCTG STOTTTOTCC 260 ACARCOATCAM TAGGGCAAAC UCCGTGCCGG GGAGAGGCCG CATCGAGGCG ACCAACCCGT 1020 SESSEGAGGT SECACTSETS SETTACGAGT SATGTAATET REGETSGATS AACSTSGESS 1080 SUATGOTOGO OGACGGTOGO GTCGACTGGG ACCGGCTCGA GGAGGTCGCC GGTGTGGCGG 1140 TGUGGTTCCT TGATGACGTC ATCGATGTCA GCCGCTACCC CTTCCCCGAA CTGGGTGAGG 1200 19900000000 CACOCGCAAG ATCGGGOTGG JACTCATGGG TTTGGCGGAA OTGCTTGCCG 1250 UNUTUUGTAT TOOGTACGAC AGTGAAGAAG COOTGOSGTT AGCCACCCGG UTCATGCGTC 1320 BONTACAGON JGCGGCGCAC ACGGCATOUS JGAGGCTGGC CGAAGAGCGG JUCUCATTCC 1390 PROPERTY OF THE TAGGESS TOSCORES TOSCORES TOSCORES TOSCORES TOSCORES TOSCORES TOSCORES TOSCORES TO TOS 144. ADDEDDAK DETEKNITE 1488 INFORMATION FOR JEC ID NO. 4. 1 SEQUENCE CHARACTERISTICS. A LENGTH: 362 Dase pairs TTPE nucleic 4... STRANDEDNESS: PORTOR I ROPOLOGY linear FI SEQUENCE DESCRIPTION SEQ ID NO.9 ACCONTRACT OFFICE GARD COGAACCOC STOCKS OF ACCTACCOAS ATSTACTED Paramwagge artgaecetg accateged : That Lutwat agggateace attacthaths TOWN DESCRIPTION OF THE AND ACCORDING TO AMARINE FOR COMMUNICATION AND THE RESERVE OF THE AND THE RESERVE OF THE AND THE ACCORDING TO THE ACCO

| 2202/10==  |              |            |              |            |            |              |
|------------|--------------|------------|--------------|------------|------------|--------------|
|            |              |            | AAGGGGACGA   |            |            | 360          |
| CCGTCAAAG  | F TTTGACCAAC | GCGCCGCAGT | ACTACGTCGG   | CGACCAGCCG | AAGTTCACCA | 420          |
| TGGTGGTCAC | CAACATCOGC   | CTGGTGTCCT | GTAAACGCGA   | CGTTGGGGCC | GCGGTGTTGG | 480          |
| CCGCCTACGT | TTACTCGCTG   | GACAACAAGC | GGTTGTGGTC   | CAACCTGGAC | TGCGCGCCCT | 540          |
|            |              |            | CCGGTGAGCA   |            |            | 600          |
|            |              |            | CATTGCCGCG   |            |            | 660          |
|            |              |            | TGCGCTCGCT   |            |            | 720          |
| ATCAGCCGCC | geegeegeee   | GGGCCGGTAC | CCGCTCCGGG · | TCCAGCGCAG | GCGCCTCCGC | 780          |
|            |              |            | TGATCGCTGA : |            |            | 3 <b>4</b> 0 |
|            | CGCCTCGTGC   |            |              |            | 3.01       | .•           |
| _          |              |            |              |            |            | 362          |

### .0 INFORMATION FOR SEQ ID NO:10.

## (1) SEQUENCE CHARACTERISTICS:

- A: LENGTH: 522 base pairs
- (B) TYPE: nucleic acid
  (C) STRANDEDNESS: single
  D: TOPOLOGY: linear

# MI SEQUENCE DESCRIPTION: SEQ ID MO:10:

|             | COGGGRAAGGC  | - SAMACAT IIII | POCOTGGGTA  | TG ZAGGTGAC | CAATGACAAA | จัง          |
|-------------|--------------|----------------|-------------|-------------|------------|--------------|
|             |              |                | 719900000T0 | TTACTUCCUC  | SAACGETEGA |              |
|             | ;carcerror   | CACCAAGGTC     | Magacccc    | IGATTAACAG  | CGCGGACGCG | 130          |
| rmagrmades  | CTBBBBBTBBBE | CAAAGCGCCG     | JGCGCCACGG  | TGGCGCTAAC  | UNITCAGGAT | 240          |
| 170777744   | 17AGCC3C1.0  | AGTOCAA ot     | ACCOTTOGGGA | AGGCGGAGCA  | TOATDAAGG  | 111          |
| Macanaaa.   | FIJTTONAA0   | TOMATADA       | Datasakan   | MTGGAAJAJ   | GTOGCGAGT  |              |
| na araannaa | 123330000000 | inganggm 👵     | TT MODATOR  |             | BIGATIANI  | íů.          |
| A MAJAGOGS  | 30 IGUTTGTD  | ACCGAGGTO 1    | TUACCGAGGG  | JGGGTTTGTT  | MOGACOGCO  | ‡æ^          |
| TRATEREGET  | TTCGGUUGAC   | JAGGTCGAJA     | TCCGAAAATGG | GCTGAAJAGA  | JOGGTGATOS | 5 <b>4</b> ` |
|             |              |                | FW to at m  |             |            | oj.          |
|             |              |                |             |             |            |              |

- .A/ LENGTH: 1200 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (X1) SEQUENCE DESCRIPTION: SEQ ID NO:11:

| GGCGCAGCG  | G TAAGCCTGTT         | GGCCGCCGGC       | ACACTGGTGT              | TGACAGCATO   | CGGCGGTGGC    | 60                 |
|------------|----------------------|------------------|-------------------------|--------------|---------------|--------------------|
| ACCAACAGCT | CGTCGTCAGG           | CGCAGGCGGA       | ACGTCTGGGT              | CGGTGCACTG   | CGGCGGCAAG    | 120                |
| AAGGAGCTCC | ACTOCAGOGG           | CTCGACCGCA       | CAAGAAAATG              | CCATGGAGCA   | GTTCGTCTAT    | 180                |
|            | GATCGTGCCC           |                  |                         |              |               | 240                |
|            | AGTTTCTCAA           |                  |                         |              |               | 300                |
|            | GTCAACCTGA           |                  |                         |              |               | 360                |
|            | TCGGCCCGAT           |                  |                         |              |               | 420                |
|            | CCACTACCGC           |                  |                         |              |               | 483                |
|            | CCCTCAACTC           |                  |                         |              |               | 540                |
|            | AGTCCGGTAC           |                  |                         |              |               | 600                |
|            | JCAAAGGCGC           |                  |                         |              |               | 550                |
|            | GAACGTCGGC           | CCTACTGCAG       | ACGACCGACG              | GGTCDATCAC   | CTACAACGAG    | 720                |
|            | COTTOGGTAA           | GCAGTTGAAC       | ATGGCCCAGA              | TCATCACCTC   | GGGGGGTGGG    | *83                |
|            |                      |                  | PSTRAGACNA              |              | CAAGATCATG    | 347                |
|            | ACGACCTGGT           |                  |                         | OKDDOKOKDA   | CCAGCCTGGC    | 30.3               |
| TOTTACCCCA | regractage           | SACCTATGAG       | ATOSTOTO IT             | IGAAATACCC   | 3GATGCGAC3    | 461                |
|            | 1137777.3333         |                  | 1000 AT                 | FILLIA FUCUA | NJAA 3GD NT : | - × <del>-</del> - |
|            | The second second as | TOTAL CONTRACTOR | Partition of the second | NAVATT93.1   | 1300103071    |                    |
| WELL WINDS | STEPACT INS          | TUAAUGGAAT       | TOGÁ TESTUA             | JUJAIGUUGT   | TOOGCAGGTA    | 114.               |
| HIGTOSTAAT | TT 130 120TA (       | TONGUTATES       | addemarma a             | JCD JAGGCGG  | CATOGOCCAG    | 1233               |

CONFIRMATION FOR BECOID NO 12

The state of the s

| , <b>X</b> 1 | SEQUENCE | DESCRIPTION: | SEQ | ID | NO:12: |  |
|--------------|----------|--------------|-----|----|--------|--|
|--------------|----------|--------------|-----|----|--------|--|

| GCAAGCAGCT G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CAGGTCGTG  | CTGTTCGACS  | AACTGGGCAT  | GCCGAAGAC  | C AAACGCACCA | <b>6</b> 0      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-------------|------------|--------------|-----------------|
| AGACCGGCTA C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACCACGGAT  | GCCGACGCGC  | TGCAGTCGTT  | GTTCGACAA  | G ACCGGGCATC | 120             |
| CGTTTCTGCA AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PATCTGCTC  | GCCCACCGCG  | ACGTCACCCG  | GCTCAAGGT  | ACCGTCGACG   | 180             |
| GGTTGCTCCA AG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |             |             |            |              | 240             |
| CCGCGACCGG CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |             |             |            |              | 300             |
| ACGCGGGGCG GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |             |             |            |              | 360             |
| GGGGGGACTA CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |             |             | CCTGTCCGGG | GACGAGGGCC   | 420             |
| TONTOCAGOC ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |             |             |            | CGGGTGTTCG   | ÷80             |
| GTGTGCCCAT CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |             |             |            |              | 540             |
| GBCTGGTTTA CGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |             |             |            |              | 600             |
| AAGOCAACGA GCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |             |             |            |              | 660             |
| GOGCOGTAGT OGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GCGGGGCC C | GCAAGGACG   | CTACACOTC   | GACGGTGCTG | GGCCGTCGCC   | 720             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             | TTCAAGTGCG  |            |              | 7 <b>8</b> 0    |
| CGCTGAACHC 3CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GATECAS S  | GCAGCGCGG ~ | 705ACATCAT  | CAAGGTGGCC | ATGATCCAGG   | 940             |
| TOGACAAGGE BOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAACGAS J  | CACAGETEG ( | IGTTGGGGCAT | GTGCTGCAG  | JTCCACGA DG  | <del>3</del> 01 |
| AGRMGCTSTT TGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AATIIGII T | TOGGTGAAC : | TODEDDBADDI | CGAUGECETS | JTGCGCGAUN   | 36 )            |
| AGATGGGGGA ngg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TTACCCG C  | TCGACGTCC C | GCTGGAGGT . | PROGRESS : | TACGGCGGCA   | 102.            |
| GCTGGGACGT 3GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GGCGCAC TO | SAGTOCOGA 3 | CGTGCATIT . | SGGGGGGAA  | TTCGGCGATT   | 10 <b>8</b> 1   |
| The second secon | 7723033 ng | PRO TRAT    | ings sings  | TO TO TOMO | FTGTA TIDET  | 1 - 4           |
| DA STA SOFF COR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.5        |             |             |            |              |                 |

<sup>.</sup> INFORMATION FOR SEL UP NO 12

. SEQUENCE CHARACTERISTICS

- A LENGTH 1001 base bairs
  B TYPE buckers actd
  C STEANDEDNELS Single
  D TOPOLOGY (Long)

| TOGGGCCTCG GGTTGGCGA     | T CGTCAAACAC | GIGGTGCTC   | ACCACGGCG   | 3 ATTGCTGCGC | 120    |
|--------------------------|--------------|-------------|-------------|--------------|--------|
| ATOGAAGACA COGACOCAG     | G CGGCCAGCCC | CCTGGAACGT  | CGATTTACG   | GCTGCTCCCC   | 180    |
| GGCCGTCGGA TGCCGATTC     | C GCAGCTTCCC | GGTGCGACGG  | creecectee  | G GAGCACGGAC | 240    |
| ATCGAGAACT CTCGGGGTTC    | GGCGAACGTT   | ATCTCAGTGG  | AATCTCAGTC  | CACGCGCGCA   | 300    |
| ACCIAGITGT GCAGITACTO    | TTGAAAGCCA   | CACCCATGCC  | AGTCCACGCA  | TGGCCAAGTT   | 360    |
| GGCCCGAGTA GTGGGCCTAG    | TACAGGAAGA   | GCAACCTAGC  | GACATGACGA  | ATCACCCACG   | 420    |
| STATTEGECA CEGEEGCAGE    | AGCCGGGAAC   | CCCAGGTTAT  | GCTCAGGGGC  | AGCAGCAAAC   | 48C    |
| STACAGCCAG CAGTTCGACT    | GGCGTTACCC   | ACCGTCCCCG  | CCCCCGCAGC  | CAACCCAGTA   | 540    |
| GGGTGAAGGG TAGGAGGGGT    | TGGGTGGTAC   | CCGCCCCGCT  | CTGATACCI   | JUGTGATTCC   | 500    |
| JACCATGACG COCCOTCOTG    | JGATGGTTCG   | CONACCCC    | CGTGCAGGCA  | TGTTGGCCAT   | ร์อ์จิ |
| COGCOCOCTO ACGATAGCOC    | TGGTGTCCGC   | CGGCATCGGC  | GGCGCGGCCG  | CATCCCTGGT   | 72.1   |
| CGGGTTCAAC CGGGCACCCG    | CCGGCCCCAG   | CGGCGGCCCA  | GTGGCTGCCA  | GCGCGGCGCC   | 780    |
| AAGCATCCCC GCAGCAAACA    | TGCCGCCGGG   | GTCGGTCGAA  | CAGGTGGCGG  | CCAAGGTGGT   | 840    |
| GCCCAGTGTC GTCATGTTGG    | AAACCGATCT   | GGGCGCCAG   | TCGGAGGAGG  | GCTCCGGCAT   | 900    |
| CATTOTOTOT GCCGAGGGGC    | TGATCTTGAC   | CAACAACCAC  | GTGATCGCGG  | CGGCCGCCAA   | 960    |
| GECTECECTS GCCAGTCCGC    | CGCCGAAAAC   | GACGGTAACC  | TTCTCTGACG  | GGCGGACCGC   | 1020   |
| Addetreads stagtgaags    | OTGACCCCAC   | CAGTGATATC  | GCCGTCGTCC  | PDOKETTERF   | 1087   |
| ADDODORANT DEGOCOOR      | TOTOCOTOGG   | 77700700723 | GACCTGAGGG  | TESCTEAGES   | 1143   |
| GGTGCTGGCG ATCGGGTCGC    | CGCTCGGTTT   | GGAGGGCACT  | GTGACCACGU  | GGATCGTCAG   | 1200   |
| MOTOTOLAG COTOCAGTOT     | CGACGACCGC   | DGA 3977999 | AA TOAGAACK | .compender.  | 1260   |
| TRI CA PYDAU (ACOGACOCO) | JGATCAACCC   | DBTAACTCC   | 37333333.   | COSTOMACAT   | 111    |
| MACGUTUM TIUBT 190AC     | TRAACTOGGS   | 3.773.73.73 | <b></b>     | AUTUAGUUGA   | 13 a   |
| TREBEAGAGE GOTTOGATEG    |              |             |             |              |        |
| TOTOGRADIAN TIGATOAGCA   |              |             |             |              | lo Ju  |
| TAATTAGAAA GACATIIII     |              |             |             |              | 15+1   |
| HAARRATAA MARAAA EE      |              |             |             |              |        |

## GTGATGAAGG TCGCCGCGCA GTGTTCAAAG C

1771

## (2) INFORMATION FOR SEQ ID NO:14:

## (1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1058 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (x1) SEQUENCE DESCRIPTION: SEQ ID NO:14.

| STOCACOGO    | G GTGGCGGCC       | G CTCTAGAAC                                                                                                    | T AUTGGATCCC | CCGGGGCTGCA   | GGAATT0GG0                              | <b>6</b> 0        |
|--------------|-------------------|----------------------------------------------------------------------------------------------------------------|--------------|---------------|-----------------------------------------|-------------------|
| ACGAGGATC    | C GACGTCGCA       | G GTTGTCGAA                                                                                                    | c ccaccaccac | GGAAGTATCG    | GTCCATGCCT                              | 120               |
| AGCCCCGCG.   | A JGGCGAGCG(      | COGRATGEC                                                                                                      | 7 IGAGTGAGGA | GGGGGGCAAT    | TTGGCGGGGGC                             | 180               |
|              |                   |                                                                                                                | SEDADDADTE A |               |                                         | 240               |
| ATCCAATCA    | COTGCATTCC        | GCCTGCGGGC                                                                                                     | CCATTTGACA   | ATCGAGGTAG    | TGAGCGCAAA                              | 300               |
|              |                   |                                                                                                                | cremmeneer   |               |                                         | 360               |
|              |                   |                                                                                                                | AACCTGATGC   |               |                                         | 420               |
|              |                   |                                                                                                                | TOGCCGAGAT   |               |                                         | 480               |
|              |                   |                                                                                                                | TCCGAACAAC   |               |                                         | 540               |
|              |                   |                                                                                                                | JOGCCAATCT   | JCTCUCGGCS    | AAGGGGGTAT                              | 500               |
| JCN JCTA CNA | CGACGAGCAG        | GGTGTCCCGT                                                                                                     | TTCGGGGTA.7A | AGGCGACIAC .  | NTCTCGUTGA                              | ว่าก็เ            |
| JACTSTTCGA   | COACTOGAGE        | AATUTEGGET                                                                                                     | CGATTTCTGA   | ACTGTCAACT    | TCACGCGTGC                              | <b>~ 2</b> .:     |
| TOGATICIGO   | FIGURGESTS        | AUGCAGCTCC                                                                                                     | TGTCCGGTAT   | TA JOAA JOTTO | IMAGCGCAAG                              | <b>7</b> 80       |
|              | JATAGACTITA       | 5 mm 118 300.                                                                                                  | OANNAT IN    | TITTA CONTO   | 100000000000000000000000000000000000000 | # <b>4</b> .      |
|              | The second second | Proposition and the second | TOMASID      | PETTA COTTO   | 737773000                               | . = =             |
| NEW MINTER   | PCAPCTACTT        | FTT CORGOON                                                                                                    | CATCGACCT    | TROATICIOGG : | CUNTTONGO                               | <del>ર</del> ાઇ ( |
| TENEDONOTO   | GAAATGGAAC        | JAA 1709TCA                                                                                                    | ACCTOBACTA . | GCCGAAGTT J   | COTEGACO (                              | 1020              |
| STTUNTOOAA   | ACGCCCTTGT        | JAANGTOTT                                                                                                      | AACTANAC     |               |                                         | 1058              |

THE RWATION FOR BELLION NO 1

## (D: TOPOLOGY: linear

## (x1) SEQUENCE DESCRIPTION: SEQ ID NO:15:

| GAATTCGGCA | CGAGAGGTGA | TCGACATCAT | CGGGACCAGC | CCCACATCCT | GGGAACAGGC | 60   |
|------------|------------|------------|------------|------------|------------|------|
| GGCGGCGGAG | GCGGTCCAGC | GGGCGCGGGA | TAGCGTCGAT | GACATCCGCG | TCGCTCGGGT | 120  |
| CATTGAGCAG | GACATUGCCG | TGGACAGCGC | CGGCAAGATC | ACCTACCGCA | TCAAGCTCGA | 180  |
| AGTGTCGTTC | AAGATGAGGC | CGGCGCAACC | GCGCTAGCAC | GGGCCGGCGA | GCAAGACGCA | 240  |
| AAATCGCACG | GTTTGCGGTT | GATTCGTGCG | ATTTTGTGTC | TGCTCGCCGA | GGCCTACCAG | 300  |
|            | GGTCCGCGTG |            | CAGGCGTGCA | TCGCGATTCC | GGCGGCCACG | 360  |
| CCGGAGTTAA | TGCTTGGCGT | JGACCCGAAC | TGGGCGATCC | GCCGGNGAGC | TGATCGATGA | 420  |
|            | CCCGTCGATG | TIGMOTITE  | DAAADDAGGG |            |            | 480  |
| AGCGTCCGTA | GGCGGCGGTG | CTGACCGGCT | CTGCCTGCGC | CCTCAGTGC3 | GCCAGCGAGC | 540  |
| GG         |            |            |            |            |            | ,542 |

## 12 INFORMATION FOR SEQ ID NO:16:

- i) SEQUENCE CHARACTERISTICS.
  - (A) LENGTH: 913 base pairs
  - (B TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - D TOPOLOGY linear

## MA SEQUENCE DESCRIPTION: REQ 10 MO:16:

|             | JUCCHTTCG   |                      | raconcedie                             | GCCGATCAGC  | - JCGCATES. | Ţ.,         |
|-------------|-------------|----------------------|----------------------------------------|-------------|-------------|-------------|
| ACUATOACO   | GCCTTTGCCG  | CCGGCACCGC           | pagradedec                             | ggggggggg   | ATGCCACCGC  | 120         |
| TTOACTCTGG  | 2200000000  | TGCCATTG.75          | NUNUAGENCO                             | 10000000000 | MCCGTTACC   | · a         |
| TODICA      | 1007000000  | IGGTGCC3TT           | ************************************** | SAGGCCGNAT  | MACCGCCGG   | 4           |
| .9493220000 | 3003857.755 | TTGCGGCCTT           |                                        | 200000000   | 10000AATTO  | <b>:</b> -  |
| 0074404000  | AMGCACCOTT  | GCCGCCAGCC           | COGCCCCT                               | TAACGGCGCT  | GCCGGGCGCC  | 360         |
| 1003003GAC  | CONTINC     | CGCCGTTCCC           | JTTCGGTGCC                             | CCCCCGTTAC  | cadeaceaee  | 420         |
| 1777 177377 | AADADT 1000 | odo <b>ca</b> ccom i | AJACOTONIS                             | JAGUUNUANT  | Diccoccage  | <b>1</b> 8. |

| cadacacaca | GGACCCACCG      | GTCCCGCCGA | TCCCCCCGTT | 222222     |            |     |
|------------|-----------------|------------|------------|------------|------------|-----|
|            |                 |            |            |            |            | 720 |
| TGGTGCTGCT | GAAGCCGTTA      | GCGCCGGTTC | CGCSGGTTCC | GGCGGTGGCG | CCMTGGCCGC | 780 |
| CGGCCCCGCC | GTTGCCGTAC      | AGCCACCCC  | CGGTGGCGCC | GTTGCCGCCA | TTGCCGCCAT | 840 |
| TGCCGCCGTT | GCCGCCATTG      | CCGCCGTTCC | CGCCGCCACC | GCCGGNTTGG | CCGCCGGCGC | 900 |
| CGCCGGCGGC | CGC             |            |            |            |            |     |
|            |                 |            |            |            |            | 913 |
| 7 INFORMA  | מים מסים ואחדים | 0 50 350   |            |            |            |     |

## 2: INFORMATION FOR SEQ ID NO:17:

- i SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1872 base pairs
  - (B) TYPE: nucleic acid
  - C) STRANDEDNESS: single
  - .D) TOPOLOGY: linear

# M1 SEQUENCE DESCRIPTION: SEQ ID NO:17:

|              |            |                       |                                          |              | CAATTTCTGA | 60          |
|--------------|------------|-----------------------|------------------------------------------|--------------|------------|-------------|
|              |            | GTTACGGGAT            |                                          |              |            | 120         |
|              |            |                       |                                          |              | CGCCGGCCCA | 180         |
|              |            | CGCAGGACCG            |                                          |              |            | 240         |
|              |            |                       |                                          |              | CCAAACTGGG | 300         |
|              |            |                       |                                          |              | STOTEGTGET | 360         |
| MODINIONAC   | CACGTGATCO | TBRGCGCCAC            | TGACATCAAT                               | GOTTCAGCO    | TOGGCTCCGG | <b>:2</b> 5 |
|              | GOCGICGAIG | TESTTESSTA            |                                          |              |            | 483         |
| GCTGCGCGGT   | GCGGTGGCC  | TGCCGTCGGC            | GGCGATCGGT                               | 3GCGGCGTCS   | CGGTTGGTGA | 540         |
|              | 100ATGGCCN | 3/3/17797933          | 173.332.333A                             | A0000000000  | managa (   | 7.2         |
|              |            |                       | ACCOTOCOAT                               | TTT TTOACCS  | TO COMMON  | nie '       |
| MUNICIAAC    | COTACTTODE | AUTTIGATIO            | IGCNATOCAG                               | CCCGGTGATT   | CGGGGGGGCT | 750         |
| TETT TO TAKE | JGCCTACGAC | AGGTGGTTT93           | TATGAACACO                               | JCCGCGTCCG . | ATAACTTOCA | 18.         |
| 17m2m2m2A.)  | JGTRGGCAGG | JATTOGOGAT            | Tilantuggs                               | CAGGCGATGG   | IGATOSCARA | 84          |
| MAATTEAN     | ragadtagaa | Patria de da Artine C | en e | Macan Walas  |            |             |
|              |            |                       |                                          |              |            |             |

WO 99/42118 PCT US99 03265

15

| GATCAACTICS GCGACGGGAA TOGGGGAAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| CATCAACTCG GCCACCGCGA TGGCGGACGC GCTTAACGGG CATCATCCCG GTGACGTCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| CTCGGTGAAC TGGCAAACCA AGTCGGGCGG CACGCGTACA GGGAACGTGA CATTGGCCGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1140 |
| JGGACCCCCG GCCTGATTTG TCGCGGATAC CACCCGCCGG CCGGCCAATT GGATTGGCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1200 |
| CAGCCGTGAT TGCCGCGTGA GCCCCCGAGT TCCGTCTCCC GTGCGCGTGG CATTGTGGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1260 |
| GCAATGAACG AGGCAGAACA CAGCUTTGAG CACCCTCCCG TGCAGGGCAG TTACGTCGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1320 |
| GGCGGTGTGG TCGAGCATCC GGATGCCAAG GACTTCGGCA GCGCCGCCGC CCTGCCGGCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1380 |
| GATCCGACCT GGTTTAAGCA CGCCGTCTTC TACGAGGTGC TGGTCCGGGC GTTCTTCGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1440 |
| GCCAGCGCGG ACGGTTCCGN CGATCTGCGT GGACTCATCG ATCGCCTCGA CTACCTGCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1500 |
| TGGCTTGGCA TUGACTGCAT CTGTTGCCGC GGCTACG ACTCACCGCT GCGCGACGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1566 |
| GTTACGACA TTCGCGACTT CTACAAGGTG CTGCCCGAAT TCGGCACCGT GGACGATTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1620 |
| GTCGCCCTGG TCGACACCCC TCACCGGCGA GGTATCCCCA TCATCACCGA CCTGGTGATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1680 |
| AATCACACCT CGGAGTCGCA CCCCTGGTTT CAGGAGTCCC GCCGCGACCC AGACGGACCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1740 |
| TACGGTGACT ATTACGTGTG GAGCGACACC AGCGAGCGCT ACACCGACGC CCGGATCATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1900 |
| TTEGTEGACA CEGAAGAGTE GAACTGGTEA TTEGATUUTG TEEGGEEGACA GTINETACTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1860 |
| CCACCGATTC TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1022 |
| 2 INFORMATION FOR SEQ ID MO.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1871 |
| E SEQUENCE THARACTERISTICS  A DENGTH: 1482 base dali:  B: TYPE: nucleic acid  C: STRANDEDNESS: single  D: TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| MI DECUENCE CESCRIPTION DEC 15 W 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| CONSTRUCT CARROLLAR TENDETTE CONSAADDAE DOCTORADO AGUERA AAGUERA AAGUE |      |
| COMMINGE DECEMBER OF TOO WARRED TO STEAD TO STEAD ACCASES OF A SECOND OF THE COMMING OF THE COMI | ÷    |
| A SITAGO GENERAL CAGAACAACO GENERAGA CON A CAGETTECH SGUVATTACO AGEGOGATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.  |
| ODADDADDA SAASATES AT STATESEESA AASBUSENTE ESSTAASDOE ESSTULANTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24 * |
| ADDRES TOUGHT TOGGOTACAA DECISACAADA OTOTO NOTEAA ANTOTO DA CAACATODAGOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | }    |
| and the second s |      |

A management of the management of the second of the second

| GCGCCAAGAG TGCAAGGCCG GCGACCGTGT GGATTGCCCA GGACGGCTCG CACCACCTCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 540          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| TECGAGEGAG CATEGACETE GGATEEGGGT EGATTEAGET CAEGCAGTEG AAATGGAAEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500          |
| AACCCGTCAA CGTCGACTAG GCCGAAGTTG CGTCGACGCG ITGCTCGAAA CGCCCTTGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 660          |
| AACGGTGTCA ACGGCACCCG AAAACTGACC CCCTGACGGC ATCTGAAAAT TGACCCCCTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 720          |
| GACCEGGCGG TTGGTGGTTA TTCTTCGGTG GTTCCGGCTG GTGGGACGCG GCCGAGGTCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 <b>8</b> 0 |
| CGGTCTTTGA GCCGGTAGCT GTCGCCTTTG AGGGCGACGA CTTCAGCATG GTGGACGAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 840          |
| CONTENT TO CONTENT AND AND AND AND AND AND CONTENT AND CONTENT OF  | 900          |
| AAGGEETTAT TGGAEGTGAE GATEAAGETG GEECGETCAT ACCGGGAGGA CAECAGETGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 960          |
| AAGAAGAGGT TGGC000CCTC GGGCTCAAAC GGAATGTAAC CGACTTCGTC AACCACCAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1020         |
| AGCGGATAGC GGCCAAACCS GGTGAGTTCG GCGTAGATGC GCCCGGCGTG GTGAGCCTCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1080         |
| GCGAACCGTB CTACCCATTC GGCGGCGGTG GCGAACAGCA CCCGATGACC GGCCTGACAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1140         |
| JEGESTATES CEAGGEEGAE EGEAAGATGA STETTEUEGG TOCCAGGEGG GGEECAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1200         |
| CACGACGTTA TCGCGGGCGG TGATGAAATC CAGGGTGCCC AGATGTGCGA TGGTGTCGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1260         |
| TTTUAGGCCA CGAGCATGCT CAAAGTCGAA CTCTTCCAAC GACTTCCGAA CCGGGAAGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1320         |
| SUCCESSED STREETS CAUCACCATO CONTROL C | 1380         |
| SUAGGOODE AGGTATTOTT CUTGGOTCCA STTCTCGGCG CUGGCGCGAT CGGCCAGCTQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1440         |
| TOAICA OTIGA O ITCA COCAGO TO SUBACCITTO CA A TOCTIOTO GIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1482         |
| 1 INFORMATION FOR SET OF MELSIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |

## I INFORMATION FOR SEQ ID MOS19

# : SEQUENCE CHARACTERISTICS.

- A LENGTH and pase pairs
- H TYPE dominate water
- JTRANDEDNESS Single
- to noncloss chear

# TO SEQUENCE DESCRIPTION SEQUED NOTICE

BAATTITETER USAGOOGGO ATAGITTITI GOOGGOOGO BAGUAGATGO CTOGAGGOTT 85 ACTOCOADAMA CETUCALGEAR TECCOACTOL LABORADAS EDCEUGACOL EGETUTOURGE CONTINATIONS DESCRIPTIONS ACCIONATIONAL CONTROCOCOTES STEERS COACLA ACCOCOCOCOTE

| GATCCCGAGG   | GCGTGCTGGG                                                                              | GGGTATCTAC                                                                                                                                                                      | CGNTATCACG                                                                                                                                                                                                                             | CGGCCACCGA                                                                                                                                                                                                                                                                                                                                               | 360                                   |
|--------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| : AACAAGGNGC | AGATOCTGGC                                                                              | CTCCGGGGTA                                                                                                                                                                      | GCGATGCCCG                                                                                                                                                                                                                             | CSGCGCTGCG                                                                                                                                                                                                                                                                                                                                               | 420                                   |
| ATGCTGGCCG   | CCGAGTGGCA                                                                              | TGTCGCCGCC                                                                                                                                                                      | GACGTGTGGT                                                                                                                                                                                                                             | CGGTGACCAG                                                                                                                                                                                                                                                                                                                                               | 480                                   |
| CTAAACCGCG   | ACGGGGTGGT                                                                              | CATCGAGACC                                                                                                                                                                      | GAGAAGCTCC                                                                                                                                                                                                                             | GCCACCCCGA                                                                                                                                                                                                                                                                                                                                               | 540                                   |
| GGCGTGCCCT   | ACGTGACGAG                                                                              | AGCGCTGGAG                                                                                                                                                                      | AATGCTCGGG                                                                                                                                                                                                                             | GCCCGGTGAT                                                                                                                                                                                                                                                                                                                                               | 600                                   |
| GACTGGATGC   | GCGCGGTCCC                                                                              | CGAGCAGATC                                                                                                                                                                      | CGACCGTGGG                                                                                                                                                                                                                             | TGCCGGGCAC                                                                                                                                                                                                                                                                                                                                               | 660                                   |
| TTGGGCACCG   | ACGGGTTCGG                                                                              | TITTTCCGAC                                                                                                                                                                      | ACTCGGCCCG                                                                                                                                                                                                                             | CCGGTCGTCG                                                                                                                                                                                                                                                                                                                                               | 720                                   |
| ACCGACGCCG   | AATCCCAGGT                                                                              | TGGTCGCGGT                                                                                                                                                                      | TTTGGGAGGG                                                                                                                                                                                                                             | GTTGGCCGGG                                                                                                                                                                                                                                                                                                                                               | 780                                   |
| AATATCGACC   | CATTICTOTOC                                                                             | CGCTCGTGGG                                                                                                                                                                      | 0033000000                                                                                                                                                                                                                             | AGTTACUMEG                                                                                                                                                                                                                                                                                                                                               | 34,0                                  |
| GGTGGGGGT    | TGCGCCCGAN                                                                              | TAAGTT                                                                                                                                                                          |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          | 976                                   |
|              | AACAAGGNGC ATGCTGGCCG CTAAACCGCG GGCGTGCCCT GACTGGATGC TTGGGCACCG ACCGACGCCG AATATCGACC | AACAAGGNGC AGATCCTGGC ATGCTGGCCG CCGAGTGGGA CTAAACCGCG ACGGGGTGGT GGCGTGCCCT ACGTGACGAG GACTGGATGC GCGCGGTCCC TTGGGCACCG ACGGGTTCGG ACCGACGCCG AATCCCAGGT AATATCGACC CATTCGGTGC | AACAAGGNGC AGATCCTGGC CTCCGGGGTA ATGCTGGCCG CCGAGTGGGA TGTCGCCGCC CTAAACCGCG ACGGGGTGGT CATCGAGACC GGCGTGCCCT ACGTGACGAG AGCGCTGGAG GACTGGATGC GCGCGGTCCC CGAGCAGATC TTGGGCACCG ACGGGTTCGG TTTTTCCGAC ACCGACGCCG AATCCCAGGT TGGTCGCGGT | AACAAGGNGC AGATCCTGGC CTCCGGGGTA GCGATGCCCG ATGCTGGCCG CCGAGTGGGA TGTCGCCGCC GACGTGTGGT CTAAACCGCG ACGGGGTGGT CATCGAGACC GAGAAGCTCC GGCGTGCCCT ACGTGACGAG AGCGCTGGAG AATGCTCGGG GACTGGATGC GCGCGGTCCC CGACCAGATC CGACCGTGGG TTGGGCACCG ACGGGTTCGG TTTTTCCGAC ACTCGGCCCG ACCGACGCCG AATCCCAGGT TGGTCGCGGT TTTGGGAGGG AATATCGACC CATTCGGTGC CGCTCGTGGG CCG | 14 GOOLGALGOO GOGGCCOCCC MON LACCHING |

## 2 INFORMATION FOR SEC ID NO:20:

## 1 SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1021 base pairs
- (B) TYPE: nucleic acid
- C: STRANDEDNESS: Single
- D) TOPOLOGY: linear

# X1 SEQUENCE DESCRIPTION SEQ ID NO:20:

| ATCCCCCCCGG | 3CTGCAGGAA     | TTCCCCACCA | PAGACAAAAT  | TCCACGCGTT       | AATGCAGGAA           | 50     |
|-------------|----------------|------------|-------------|------------------|----------------------|--------|
|             | ACGAATTCAC     | 10000CACAA | -MALAIGING  | CGATCGCGGT       | TTATTTCGAC           | 120    |
|             |                |            | TTTTACAGC1  |                  | GGAACGAAAC           | : 90   |
| CATGCAATGA  | TGCTCGTGCA     | AUNCOTOCTO | GACCGCGACC  | TTTGTGTCGA       | AATTCCCGGC           | 240    |
| JTAGACACGG  | TGCGAAACCA     | FFTCGACAGA | 22CCGCGAGA  | TACTGGCGGT       | GCGCTCGAT            | 100    |
| TAJOAACGCA  | CAGTON 12 JA   | 13007 1007 | ngggTgAdin  | 1797330000       | JUACGAGGGC           | 24.    |
| :Mammaamaa  | 303A 307, 50°° | Williams : | TITTOCKS:   | NA MOATTIA       | AGAGGTGGCS           | ÷      |
| TTIATIGCAA  | CCTGGTGGG      | BUTTICOUNT | 10000000003 | CCAACCTGTT       | CGAGCTAGAG           | 4 8 3  |
| AMOTTEGTEG  | CACGTGAAGT     | RGATITIGCC | CCCCCCCC    | CAGGCCCCCC       | GCACGCTGCC           | 540    |
| 13333333300 | TOTAGATOO      | 7999333AT  | DADCDAGTER  | TCCCGTTCGC       | "1737 703 <b>TOT</b> | ກົ ີ : |
| PORNOCENSO  | COTTOGTGC :    | inad tamit | TOWN TOTAL  | المتحاثة المحادد | 30.133.334.          |        |

| GEGGTTGGGC CGACCGCCGT GGCCGCACTG CTGGTCAGGT ATCGGGGGGGT CTTGGCGAGC                                                          |          |
|-----------------------------------------------------------------------------------------------------------------------------|----------|
| AACAACGTUG GCAGGAGGGG TGGAGCCCGC LGGATCCGCA GACCGGGGGG GCGAAAACGA                                                           | 900      |
| CATCAACACO GCACGGGATC GATCTGCGGA GGGGGGTGCG GGAATACCGA ACCGGTGTAG                                                           | 960      |
| GAGCGCCAGC AGTTGTTTTT CCACCAGCGA AGCGTTTTCG GGTCATCGGN GGCNNTTAAG                                                           | 1020     |
| Ţ                                                                                                                           | 1021     |
| (2) INFORMATION FOR SEQ ID NO:21:                                                                                           |          |
| SEQUENCE CHARACTERISTICS:  (A) LENGTH: 321 base pairs  (B) TYPE: nucleic acid  C) STRANDEDNESS: single  D: TOPOLOGY: linear |          |
| MI SEQUENCE DESCRIPTION: SEQ ID NO:21:                                                                                      |          |
| DETECCIONES ANCOGNAGAN CACANCONTS ANGATESTON ANTESATONY COCNOSTOTS                                                          | 63       |
| ACCECCECE CTECAATEES ISCESCIECE SECESCIETEA STREEATEAT GOCTEGEESEN                                                          | 120      |
| UUGGTEGTAT ACCAGATGCA GEEGGTEGTE TTEGGEGGGE CACTGEGGTT GGACEEGGNA                                                           | 180      |
| TABURDOTO ANOTODORO DADOSCOLA TEGACOAGNO TECTOLALCAG NOTOGNOCAT                                                             | 240      |
| TOUARCUTTOT COTTTONGRA CRAGGGNAGT CTCGTCCAGG GNGGNATCGG MGGNANCGAG                                                          | 3.30     |
| TENGNIGHATO ENCGANCACA A                                                                                                    | 321      |
| INFORMATION FOR JEC II MOVEL                                                                                                |          |
| SEQUENCE THARACTERISTICS  A: LENGTH: 173 base pairs  B: TYPE: nucleic word  C: STRANDEDNESS: Single  C: TOPOLOGY linear     |          |
| FERRICE DECIMINATION FROM 1 MAINED                                                                                          |          |
| THE FOLLOWING TO LIGHT TO PROPERTY OF MAINTENANCE SETTING FOR FROM FROM FROM THE MAINTENANCE OF THE FROM FROM               |          |
| MATIBALING BRONBUAGAS STOGASTOCS ATAUTIBUGS ESCINTIGGAS ITDICAGONS :                                                        | <b>.</b> |
| OT SEPTEET GNACTEGOAA EGCGTGAAGG AGCCGTTSNA EACGGGGATS AAEGCGATTS                                                           | 19       |
| THE ADMAN OF CLADEDDEPART OF AND STORY OF AND REPORT OF A SECOND CARDED AND A SECOND OF A SECOND CONTRACT OF A              |          |
|                                                                                                                             |          |

| CTTACCATCG CCG                                                                                                                    | 373        |
|-----------------------------------------------------------------------------------------------------------------------------------|------------|
| 21 INFORMATION FOR SEQ ID NO:23:                                                                                                  |            |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 352 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |            |
| (x1) SEQUENCE DESCRIPTION: SEQ ID NO:23:                                                                                          |            |
| STGACGCCGT SATGGGATTC CTGGGCGGGG CCGGTCCGCT GGCGGTGGTG GATC                                                                       |            |
| TGGTTACCCG GGTGCCGCAA GGCTGGTCGT TTGCTCAGGC AGCCGCTGTG CCGG                                                                       | TGGTGT 120 |
| TOTTGACGGO OMGGTACGGG TTGGCCGATT TAGCCGAGAT CAAGUCGGGC GAATC                                                                      | IGGTGC 180 |
| TRANSCENTOD TOTODES SONOTORE SONOTORE SONOTORE SONOTORE SONOTORES                                                                 | AGTGGG 240 |
| GCGTGGAGGT TTTCGTCACC GCCAGCCGTG GNAAGTGGGA CACGCTGCGC GCCAT                                                                      | NGNGT 300  |
| TTGACGACGA NCCATATOGG NGATTCCCNC ACATNCGAAG TTCCGANGGA GA                                                                         | 352        |
| 2 INFORMATION FOR SEQ ID NO:24: E SEQUENCE CHARACTERISTICS.                                                                       |            |
| A LENGTH: 726 pase pairs  (B) TYPE: nucleic acid  C' STRANDEDNESS: single  D' TOPOLOGY: linear                                    |            |
| X1 SEQUENCE DESCRIPTION: SEQ ID MO:24:                                                                                            |            |
| NAAATOOGGO TTGATTOOGT COGACCAGO GCTGGCGATA ATAGACGAAJ TGATCA                                                                      |            |
| PODGTTOGOG GOGOTATTO PROPAGAGA ADDATATOROS DESTINOCIÓN                                                                            |            |
| STAGOSTOCA STTOCTTSCC ASATOSUTTT SCTAGOSTOA TOSCATOTAS SUSTTO                                                                     |            |
| ) TOUGNUCCT CATGOTTORCO PROVINCENTIAL TOROCOACGOO TOTTOGCOROU PROGOC                                                              | GTCG 24    |
| CONTRACTO COCASTOCAM ACTOR MOSS (COCOCOMOTA) MACTOCTO CONSSISS                                                                    | CAGC       |
| STUTUGACC CGCATGGGGG CODAARTOS; RIOCCTACAC CTGCCATGAC GAGUTU                                                                      |            |
| BUJAUNGCON COGCOCCOAC CACACTOGUS NOTACCCCGG ACCCATOCTO GAAGGT                                                                     | CCCC 420   |
| PREFITANCAN TOOCHGTACT ADGRAAMAN EER MUUUGAATAC AAGTAGCGG MAANTNA                                                                 | CGCT (8)   |
| CONTRACTAR CONTRACTAR CAMPAGES OF CAMPAGES AND ADDRESS OF CAMPAGES                                                                |            |

| GGCGACAGCC CCTCCACCAT CGACATCGAC AAGGTTGTTA CCCCCACACC CGTTCGCCGG                                                                 | ~2         |
|-----------------------------------------------------------------------------------------------------------------------------------|------------|
| ATCSTG                                                                                                                            | 72         |
| (2) INFORMATION FOR SEQ ID NO:25:                                                                                                 | ين من      |
| (1) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 580 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |            |
| X1 SEQUENCE DESCRIPTION: SEQ ID NO:25:                                                                                            |            |
| ISCSACGACG ACGAACGTCS SGCCCACCAC CSCCTATGCG TTGATGCAGG CSACCSGGAT                                                                 | <b>5</b> 0 |
| DDCCCOMACH CTTTTCCADC DARTCASCE TOWCTCOTAL DARCCTATAC CARCCCTATA                                                                  | 120        |
| TODOCCARTS SCENCES GAACTCATTS COCCOGGCT TGTGCACCTG ATGAACCCCA                                                                     | 130        |
| ATAGGGAACA ATAGGGGGGT GATTTGOCAG TTCAATGTCG GGTATGGCTG GAAATCCAMT                                                                 | 240        |
| GGCGGGGCAT GCTCGGCCGCC GACCAGGCTC GCGCAGGCGGG GCCAGCCGGA ATCTGGAGGG                                                               | 300        |
| AGCACTCAAT GGCGGCGATG AAGCCCCGGA CCGGCGACGG TCCTTTGGAA GCAACTAAGG                                                                 | 360        |
| ACCEGCECE CATTETEATE CHACTACCAC TTSAGESTEG CEGTCECCTE STEETCHAGE                                                                  | 420        |
| TGACACCCGA CGAAGCCGCC GCACTGGGTG ACGAACTCAA AGGCGTTACT AGCTAAGACC                                                                 | 480        |
| AGRICAACGO CGAAATGGTCG GCGTTACGCO CACACCTTCC GGTAGATGTC TAGTGTCTGC                                                                | 547        |
| THEGOGATOT ATGCCCAGGA GAACTETTGG VIACAGCGCT                                                                                       | 5 f        |
| CINFORMATION FOR SEC ID NO.26:                                                                                                    |            |
| : SEQUENCE CHARACTERISTICS: A. LENGTH: 160 case pairs B. TYPE nucle: 1012 C. UTRANDEDNESS ::nq.# C. TOPOLOGY ::new.y              |            |
| MI SEQUENCE DESCRIPTION SET TO M LA                                                                                               |            |
| A 130AU JUD - JUGGGGGGGTTT - TGGGGGGGGCC - FFFGCGGTUU - GCGGGAMAGGS - JGGGGGGGGG                                                  | ξ.         |
| TTAITTOUUS JOTTOTTOOG TGTOGGCGGG GAAGGTOUGG JOGGAAGGAAA TAGCATTGGG                                                                | ::         |
| TO THE TABLE STORES OF SASSACACION SECONAL HOUSE                                                                                  | 2.5        |

| (B) TYPE, nucleic acid                                                                                                          |           |
|---------------------------------------------------------------------------------------------------------------------------------|-----------|
| (C) STRANDEDNESS: single (D) TOPOLOGY, linear                                                                                   |           |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:                                                                                        |           |
| GACACCGATA CGATGGTGAT GTACGCCAAC GTTGTCGACA CGCTCGAGGC GTTCACGATC                                                               | 60        |
| CAGCGCACAC CCGACGGCGT GACCATCGGC GATGCGGCCC CGTTCGCGGA GGCGGCTGCC                                                               | 120       |
| AAGGCGATGG GAATCGACAA GCTGCGGGTA ATTCATACCG GAATGGACCC CGTCGTCGCT                                                               | 180       |
| GAACGCGAAC AGTGGGACGA CGGCAACAAC ACGTTGGCGT TGGCGCCCGG TGTCGTTGTC                                                               | 240       |
| GCCTACGAGC GCAACGTACA GACCAACGCC CG                                                                                             | 272       |
| 2 INFORMATION FOR SEQ LD NO:28:                                                                                                 | <b>.•</b> |
| 1 SEQUENCE CHARACTERISTICS:  (A) LENGTH: 317 base pairs                                                                         |           |
| (B TYPE: nucleic acid (C) STRAMDEDNESS: single                                                                                  |           |
| (D) TOPOLOGY: linear                                                                                                            |           |
| X1 SEQUENCE DESCRIPTION: SEQ ID NO:28:                                                                                          |           |
| GCAGCCGGTG STTCTCGGAC TATCTGCGCA CGGTGACGCA GCGCGACGTU CGCGAGCTCA                                                               | 50        |
| AGCGCATCGA GCAGACGGAT CGCCCCCCC GCTACCTCGCCC GCTATCACCG                                                                         | 120       |
| DUCAGGAGGT GAACGTGGCC GAAGCGGCCC GGCCATCGC GGCGACGACGCG GGACGATCC                                                               | 180       |
| SUTTOTIANTE SECTIONING SAGARGUITOT ATTOTISTACA TOUGOTISTES SEWTOSTESC                                                           | 240       |
| GOODANT GOODA CAGAAGAGGGG TAAGAAGAT TO STOOTHAA AGTUUUTTOO TO STOOTHAA AGTUUUTTOO TO STOOTHAA AGTUUUTTOO TO STOOTHAA AGTUUUTTOO | 300       |
|                                                                                                                                 | 317       |
| LINGRMATION FOR DECIT MORELY                                                                                                    |           |
| - Dequencia dearacteristica<br>A Cenote discolare cales                                                                         |           |
| B TYPE nucle: #c10                                                                                                              |           |
| CTRANDEDNESS pingle Compository linear                                                                                          |           |
| AT SECRENCE DESCRIPTION SEC IN NO.23                                                                                            |           |
| ATRITORI TELL MULACOCCIO COLLE MERO O POTTO EACO ACTACLOS TO CAFETEL UM                                                         | •         |
|                                                                                                                                 |           |

| .2. INFORMATION FOR SEQ ID NO:30:                                                                                                                                                                                     |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| : SEQUENCE CHARACTERISTICS:  (A) LENGTH: 308 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                                                       |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:                                                                                                                                                                              |     |
| SATESEGAAG TYTGGTGAGE AGGTGGTCSA CGCGAAAGTE TGGGCGCCTG CGAAGESGGT                                                                                                                                                     | 60  |
| EGGCGTTCAC GAGGCGAAGA CACGCCTGTC CGAGCTGGTG CGGCTCGTCT ACGGCGGGCA                                                                                                                                                     | 120 |
| RAGATTGAGA TTGGCCGCCG CGGCGAGCCG GTAGCAAAGC TTGTGCCGCT GCATCCTCAT                                                                                                                                                     | 180 |
| SAGACTOSSO SGTTAGGCAT TGACCATGGC GTGTACCSCS TGCCCGACGA TTTGGACGCT                                                                                                                                                     | 240 |
| SOCIACETE STOCKTORS ARETERSOCK TYTODOKAGO TOOTROAGOC                                                                                                                                                                  | 30C |
| CSTTTGG                                                                                                                                                                                                               | 308 |
| <pre>1 INFORMATION FOR SEQ ID NO.31: 1 SEQUENCE CHARACTERISTICS: A, LENGTH: 167 base pairs 18 TYPE: nucleic acid .C1 STRANDEDNESS: single D; TOPOLOGY: linear</pre> <pre>x1 SEQUENCE DESCRIPTION: SEQ ID NO.31:</pre> |     |
| TIGATIBADGA BEAACTOACI TIGUATGATGU TEGECAGUAGUGG LATTEGAGGAC GEAGAGAATC                                                                                                                                               | ñ.  |
| TARRODURTO BROATERS BRUDAUTBAT ARTURTUAAS RESERVEDET DAAAR DREEDEE                                                                                                                                                    | 120 |
| DDDDAETETA ADAAAATEDE SUACAATEE: SEETSESSES ETRETTATA AAAAAAA AYSTSESSESSES                                                                                                                                           | 180 |
| Entrepade un lebroadepen internaciation activation and calabanitation apparentation                                                                                                                                   | .:  |
| TOPAL JUGGO VATONAGGO SUTUTOTO                                                                                                                                                                                        |     |
| . INFORMATION FOR BEQUID NO RE                                                                                                                                                                                        |     |
| SEQUENCE CHARACTERISTICS  A DENGTH: 1533 case pairs  B TYPE nucleid acid C STRANDEDNECS alongle C Typilogy linear                                                                                                     |     |

| CGCAGACCAT   | GCGCGCGCTG | GACTGGTTCG                              | AAGTACAGTC | AATTCGAGGC  | CACCTGGTCG | 180                |
|--------------|------------|-----------------------------------------|------------|-------------|------------|--------------------|
| ACGGAGCGGT   | CGCGCACTTC | CAGGTGACTA                              | TGAAAGTCGG | CTTCCGCTGG  | AGGATTCCTG | 240                |
| AACCTTCAAG   | CGCGGCCGAT | AACTGAGGTG                              | CATCATTAAG | CGACTTTTCC  | AGAACATCCT | 300                |
| GACGCGCTCG   | AAACGCGGTT | CAGCCGACGG                              | TGGCTCCGCC | GAGGCGCTGC  | CTCCAAAATC | 360                |
| CCTGCGACAA   | TTCGTCGGCG | GCGCCTACAA                              | GGAAGTCGGT | GCTGAATTCG  | TOGGGTATOT | 420                |
| GGTCGACCTG   | TGTGGGCTGC | AGCCGGA-2GA                             | AGCGGTGCTC | GACGTCGGCT  | GCGGCTCGGG | 480                |
| GCGGATGGCG   | TTGCCGCTCA | CCGGCTAICT                              | GAACAGCGAG | GGACGCTACG  | CCGGCTTCGA | 540                |
| PATCTCGCAG   | AAAGCCATCG | CGTGGTGCCA                              | GGAGCACATE | ACCTCGGCGC  | ACCCCAACTT | 600                |
| PACCITORAG   | STCTCCSACA | TOTA DAA DTO                            | GCTGTACAAC | CCGAAAGGGA  | AATACCAGTC | n <del>đ</del> ()  |
| ACTAGACTIT   | CGCTTTCCAT | ATCCGGATGC                              | STESTTEGAT | GTGGTGTTTC  | TTACCTOGGT | 700                |
| 077724000240 | ATGTTTCCGC | COGA DOTGOA                             | GCACTATCTG | GACGAGATET  | CCCGCGTGCT | 7.80               |
| GAAGCCCGGC   | GGACGATGCC | TGTGCACGTA                              | CTTCTTGCTC | AATGACGAGT  | CGTTAGCCCA | 840                |
| CATCOCOGAA   | GGAAAGAGTG | CGCACAACTT                              | CCAGCATGAG | GGACCGGGTT  | ATCGGACAAT | 900                |
|              |            |                                         |            | ACCTTCGTCA  |            | 960                |
| COCCAACTTC   | GGCCTCGCCG | TGCA IGAACC                             | ATTGCACTAC | GGCTCATGGA  | STGGCCGGGA | 1010               |
|              |            |                                         |            | ACCGCGAGCT  | AGGTTTTTAT | 1980               |
| /COGGGAAGCA  | TOGOGACACO | 37300300004                             | JCGCCGCTGC | 2030A00020  | RDEDDEATTA | : : : :            |
| CAGATTAGCC   |            | 0000301000                              |            | DESTARCES   | STCACCOSCT | 1200               |
| GOADDAATER   | errocacacc | TGGGCGGGGG                              | CCTGCCGGAT | ENGGTGGTAG  | ATOCOGACAA | 1250               |
|              |            | 100000000000000000000000000000000000000 | AWARDON    |             | 137000A107 | 112                |
|              |            |                                         |            | MA JODIN IN |            | 13#                |
| JOS JINTONO  | GTTGCCGATC |                                         |            | NI MAAATTI  |            | , <del>1</del> 4 7 |
|              | ATCCCCCAAA |                                         |            | nAggedegTg  | AUCAGCTICC | 15 %               |
| 1035 W.365   | 273TAT9220 | TOGATOTOGY                              | CTCGTGCC3  |             |            | 15.                |

U INFORMATION FOR BEU 11 M. 33

#### (D) TOPOLOGY: linear

#### xi SEQUENCE DESCRIPTION: SEQ ID NO:33:

| CTGCAGGGTG | GCGTGGATGA  | GCGTCACCGC | GGGGCAGGCC  | GAGCTGACCG | CCGCCCAGGT | 60  |
|------------|-------------|------------|-------------|------------|------------|-----|
| ccgggttgct | GCGGUGGCCT  | ACGAGACGGC | GTATGGCCTG  | ACCCTCCCC  | CGCCGGTGAT | 120 |
| CGCCGAGAAC | CGTGCTGAAC  | TGATGATTCT | GATAGCGACC  | AACCTCTTGG | GCAAAACAC  | 180 |
| CCCGGCGATC | GCGGTCAACG  | AGGCCGAATA | CGGCGAGATG  | TGGGCCCAA3 | ACGCCGCCGC | 243 |
| GATGTTTGGC | TACGCCCCCG  | CGACGGCGAC | GGCGACGGCG  | ACGTTGCTGI | IGTTOGAGGA | 300 |
| ggcgccggAG | ATGACCAGCG  | CGGTGGGCT  | COTOGAGOAG  | accaccaca  | TOGAGGAGGO | 360 |
| TTCCGACACC | GCCGCGCGA   | ACCAGTTGAT | UTETAAUAAE  | CCCCAGGCGC | TGAAACAGTT | 420 |
| Jacachacac | ACGCAGGGEA  | CCACGCCTTC | TTCCAAGCTG  | GGTGGCCTGT | BGAAGACBOT | 483 |
| CTCGCCGCAT | CGSTCGCCSA  | TCAGCAACAT | GGTGTCGATG  | GCJAAGAATT | ACATGTCSAT | 540 |
| GACCAACTCG | GGTGTGTCSA  | TGACCAACAC | STIGAGETES  | ATGTTGAAGJ | GETTTGETEE | 500 |
| )3C33C33TC | GCCCAGGCCG  | TECHANCESC | GGCGCAAAAC  | GGGGTCCGGG | EGATGAGETC | 560 |
| JETGGGCAGC | TCGCTGGGTT  | STTSSGGTST | RESIDENTAGE | GTGGCCGCCA | ACTTGGGTCG | 720 |
| эялдаастар | STACEGTATG  | GTCACCGOGA | TGGCGGAAAA  | TATGCANAGT | CTGGTCGGCG | 780 |
| BARISTINGT | 22332377446 | TTTACCCC   | STTTTTCTGGA | TGCGGTGAAC | TTCGTCLNCG | 34  |
| BAAACAGTTA | ing.        |            |             |            |            | 341 |

#### 1 INFORMATION FOR SEC ID NOTE:40

#### 1 SEQUENCE CHARACTERISTICS.

- A) LENGTH: 254 base pairs
- B TYPE nucleit wolf
  ITPANDEDNESS finite
  COPOLICY linear

#### R) TEQUENCE DESCRIPTION FEE IT NO 4

HATCHATTES GEOGRAATTT NGACCAGATT NECTTOCOGN NATAACINAA TOAATSSANI - 9 CONTRACTOR TOCCHOOK COCCOOKS AND STREET COMMON CONTRACTORS  11 SEQUENCE CHARACTERISTICS.

(A) LENGTH: 1227 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

| GATCCTGACC     | GAAGCGGCCG   | CCGCCAAGGC   | GAAGTCGCTG                              | TTGGACCAGG   | AGGGACGGGA  | 60    |
|----------------|--------------|--------------|-----------------------------------------|--------------|-------------|-------|
| CGATCTGGCG     | CTGCGGATCG   | CGGTTCAGCC   | GGGGGGTGC                               | GCTGGATTGC   | GCTATAACCT  | 120   |
| TTTCTTCGAC     | GACCGGACGC   | TGGATGGTGA   | CCAAACCGCG                              | GAGTTCGGTG   | GTGTCAGGTT  | 180   |
| GATOGTGGAO     | COGATIAGCI   | CGCCGTATGT   | TGAAJGCGCG                              | TCGATCGATT   | TOGTOGACAC  | . 140 |
| TATTTAGAAG     | CAAGGTTCAC   | CATCGACAAT   | ACCCCAACCCC                             | CONGRETECTS  | 2302733333  | 300   |
| GATTIGTTCA     | ACTGATAAAA   | CGETAGTACS   | Accessagem                              | GCGCAACACG   | TACGAGIAGA  | 360   |
| CCAAGACETG     | ACCGCGCTGG   | AAAAGCAACT   | GAGCGATGCC                              | TTGCACCTGA   | CCGCGT3GCG  | 420   |
| ggccgccggc     | GGCAGGTGTC   | ACITGCATGG   | TGAACAGCAC                              | CTGGGCTTGA   | TATTGCGACC  | 486   |
| AGTACACGAT     | TTTGTCGATC   | GAGGTCACTT   | CGACCTGGGA                              | GAACTGETTG   | CGGAACGCGT  | 540   |
| CGCTGCTCAG     | CTTGGCCAAG   | GCCTGATCGG   | AGCGCTTGTC                              | GCGCACGCG    | TOGTGGATAC  | 600   |
| COCACAGCGC     | ATTGCGAACS   | ATGGTGTGCA   | CATCGCGGTT                              | CTCCAG CGCC  | TTGAGGTATC  | ဗ်ပ်( |
| ICTGNATCGC     | GGTTTTGGCC   | JGTCCCTCCG   | AGAATGTGGG                              | TGCCGTGTTG   | SCTCCSTTSG  | 720   |
| TBCBUNGCCC     | STATATOATO   | GOOGCGTCA    | TAGCCGACAC                              | CAGCGCGAGG   | GOTA JOACNA | 79:   |
| TGCCGATCAG     | CAGCCCCTTC   | TOCCGTEGET   | TOGGGGTAGGA                             | 2A 2CTG 2GGC | GGCACGCCGG  | 340   |
| JATAT90901     | GCCCCCAGC    | ncidiatost   | TTGCCGGTCC                              | COCOCCAAG    | 30033TT03G  | 700   |
|                |              | 7.7723       | 7712333777                              | JTTJJJATDAJ  | 3327233377  |       |
|                | TOROTTOOTS   | Programme in | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | ITOMA MINI   | 355773730   |       |
| TENTOTAGG      | STGCTGGNEG   | JGACCAGCTC   | STAGOGGAC                               | AA COO COOT  | COCOTCAGOO  | 1383  |
| 3000.1117.723  | JUANT DAGGT  | GAGCTCCCTA   | BOCACCOTAC                              | COOMONOCT    | adogranger  | 1140  |
| TOWNSIA        | 13633 139 11 | DE 200000    | ATAATITTIA                              | MONOTROGE    | MACCTTAGAA  | 120   |
| AU IAA JUA III | BABATTTT FT  | A 13A 711    |                                         |              |             |       |

| (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                                                                 |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (X1 SEQUENCE DESCRIPTION: SEQ ID NO:36:                                                                                                              |     |
| GCGGTGTCGG CGGATCCGGC GGGTGGTTGA ACGGCAACGG CGGGGCCGGC GGGGCCGGCG                                                                                    | 60  |
| GACCGGCGC TAACGGTGGT GCCGJCGGCA ACGCCTGGTT GTTCGGGGCC GGCGGGTCCG                                                                                     | 120 |
| GCGGNGCCGG CACCAATGGT GGNGTCGGCG GGTCCGGCGG ATTTGTCTAC GGCAACGGCG                                                                                    | 180 |
|                                                                                                                                                      | 191 |
| 2 INFORMATION FOR SEQ ID NO:37                                                                                                                       |     |
| _ JEQUENCE CHARACTERISTIUS: A LENGTH: 290 pase pairs B' TYPE: nucleic acid C STRANDEDNESS: single :D' TOPOLOGY: linear                               |     |
| EXI SEQUENCE DESCRIPTION: SEQ ID NO:37:                                                                                                              |     |
| CODDDDDDD CODDTOTODCC GGGTGGTTGGTAGA ACGGCAACGG CGGTGTCGGC GGCCGGGGGGG                                                                               | 60  |
| CALACOGO DE PERSONNE DE PROPERTE SUCCESSES ESTADOS PERSONNES DE CALACTE                                                                              | 120 |
| EGGGCGCTTT LACCEGEGGC AACGGCGGTT TTGGCGGGGG GGGCGGTGGC GGAGGCAACT                                                                                    | 180 |
| COECODOTTA REEDBEADD RETROBAKTE COECDARDER TERRITOERS EEGABUUUN                                                                                      | 24( |
| NUNUTURAA 9 0909ACCGGC PTCGGNGGTG ACGGCGGTGA CGGCGGTGAC                                                                                              | 290 |
| INFORMATION FOR SEQUED NO.389                                                                                                                        |     |
| SEQUENCE THARACTERISTICS  A LENGTH: 34 base parid  5 TYPE mudler: word  7 TYPANDEDNESS STORES  D TOPOLOGY Linear  AL SEQUENCE DESCRIPTION ONLY IN IN |     |
| SAM DOWNTON CATOMOROUT STOAGTGOAA SCAT                                                                                                               | 3   |
| : INFORMATION FOR SEQ ID NO:33:                                                                                                                      |     |
| : BEQUENCO HARACTERICTICO<br>A LONGTE: 155 capa califo                                                                                               |     |

| GATOSCIBOT COTOCOCCO TIBOCOCCOCA COCCACCOTTA COCAACAAGO            | 6          |
|--------------------------------------------------------------------|------------|
| TGGCGTGGTC GCCAGCACCC CCGGCACCGCC CGACGCCGGA GTCGAACAAT GGCACCGTCG | 120        |
| TATCCCCACC ATTGCCGCCG GNCCCACCGG CACCG                             | 155        |
| (2) INFORMATION FOR SEQ ID NO:40:                                  |            |
| (i) SEQUENCE CHARACTERISTICS:                                      |            |
| (A) LENGTH: 53 base pairs                                          |            |
| (B) TYPE: nucleic acid                                             |            |
| C' STRANDEDNESS: single                                            |            |
| (D) TOPOLOGY: linear                                               |            |
| K1 SECUENCE DESCRIPTION: SFQ ID MO-40-                             |            |
| NTGCCGTTCN 29GGGCGCCC GGGACCGGGC AGCCCGGNGG GGCCGGGGGGG TGG        | 63         |
| 2 INFORMATION FOR JEQ ID NC:41:                                    |            |
| (1) SEQUENCE CHARACTERISTICS:                                      |            |
| (A) LENGTH: 132 base pairs                                         |            |
| [B TYPE: nucleic acid                                              |            |
| C. STRANDEDNESS: single                                            |            |
| D: TOPOLOGY: linear                                                |            |
| .x1 SEQUENCE DESCRIPTION: SEQ ID NO:41:                            |            |
| PATTCACCSC BENTUCAGAC GOTGCCCCCC GOCGCCCCCCC GACCAGCCCC GACCACCCCC | ે દે       |
| Арарарарат вераварара рамеротерт розлораль вивречили серьегода     | 121        |
| BRROSGONA OS                                                       |            |
|                                                                    | 11.        |
| A INFORMATION FOR SECTION 0:42                                     |            |
| . `EQUENCE CHARACTERISTICS                                         |            |
| A CENGTH out page machine                                          |            |
| H TUPE course: 1 april                                             |            |
| TO STRANT BY NESS ( ) THE FLOOR                                    |            |
| 1 TOPOLOW Linear                                                   |            |
| X1 GEQUENCE DESCRIPTION GEQ 10 NO.42                               |            |
| ATUBBOOGO OGGMACGGNO FRANKOGGOG HUAAGGGOG MAACGGGGGO FOOGMAGADA    | <b>3</b> . |
| INGUCAANA ATOOTTOORNO TOTNOCAATU EUSIGAATGO NGGACAGGGO SUUAACGGOG  |            |
| TAN TOGOCO CA                                                      |            |
|                                                                    |            |

. . .

(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

#### (x1) SEQUENCE DESCRIPTION: SEQ ID NO 43:

| CGGCACGA          | GG ATCGGT   | ACCC CGCGGCATO | CG GCAGCTGCCG | ATTCGCCGGG | TITCCCCACC  | 60  |   |
|-------------------|-------------|----------------|---------------|------------|-------------|-----|---|
| CGAGGAAA          | GC CGCTACO  | AGA TGGCGCTGC  | CC GAAGTAGGGC | GATCCGTTCG | CGATGCCGGC  | 120 |   |
| ATGAACGG          | GC GGCATCA  | AAT TAGTGCAGO  | A ACCTTTCAGT  | TTAGCGACGA | TAATGGCTAT  | 180 |   |
| AGCACTAA          | GG AGGATGA  | NTCC GATATGACS | SC AGTCGCAGAC | CGTGACGGTG | GATCAGCAAG  | 240 |   |
| AGATTTTG          | AA CAGGGCC  | AAC GAGGTGGAG  | G CCCCGATGGC  | GGACCCACCG | ACTGATGTCC  | 300 |   |
| CONTONON          | od gtgdgaa  | CTC ACGGNGUNT  | AAAACGCCGC    | CCAACAGNTG | amming rang | ٥٥٤ | • |
| CCGACAAC          | NT GCGGGAA  | TAC CTGGGGGG   | G GTGCCAAAGA  | GCGGCAGCGT | CTGGCGACCT  | 420 |   |
| cdemacae.         | AA CGCGGCC  | AAG GMGTATGGC  | G AGGTTGATGA  | GGAGGCTGCG | ACCGCGCTGG  | 480 |   |
| ACAACGAC:         | JG CGAAGGA  | ACT GTGCAGGCA  | G AATCGGCCGG  | GGCCGTCGGA | GGGGACAGTT  | 540 |   |
| CGGCCG <b>A</b> A | UT AACCGAT. | ACG CCGAGGGTC  | G CCACGGCCGG  | TGAACCCAAC | TTCATGGATC  | 600 | • |
| TCBAAGAAC         | GC GGCAAGG  | AAG CTCGANAACG | G GCGACCAAGG  | CGCATCGCTC | GCGCACTGNG  | 660 |   |
| 73GAT3GS1         | ng gaacacm  | TNC AUDOTGACG  | TGCAAGGCGA    | 29         |             | 702 |   |
| n istmat          | OWERT ON TO | n ees          |               |            |             |     |   |

#### INFOPMATION FOR SEC 1D NO.44

### SEQUENCE CHARACTERICTICS:

- A LEMGTH 298 base pairs B' TYPE: nucleic acid
- C' STRANDEDNESS single
- D TOPOLOGY linear

## ... TEQUENCE DESCRIPTION (FE, .1 NO 44)

| WARTEN.     | 1007070000  |             | 777 <b>.</b> VW 1111 | 7777777037          | 700000700  |           |
|-------------|-------------|-------------|----------------------|---------------------|------------|-----------|
| 10,000,0000 | Tadaardaaa  | 10000001133 | 772321672            | PIDIOTAAAA          | VTC30TGCC) | *<br>- *- |
| icogorgons  | CTGGTGACAT  | TJCCGGCTTA  | POCCAGGGAA           | %90000 <b>00000</b> | aggaggaga  | 181       |
| 2737323333  | GTGGCATGGG  | AATGCCGATG  | 3577073 1311         | A TOA JIJGAOA       | AGGGGGGG   | 240       |
| MITTIMALI   | JTTCTCAC IA | 10AAGAIDA1  | 177                  | TO PAGGATTO         | 70771223   | 29*       |

- (C) STRANDEDNESS, single
- (D) TOPOLOGY: linear

## (x1) SEQUENCE DESCRIPTION: SEO ID NO:45:

| CGGCACGAGG         | ATCGAATCGC | GTCGCCGGGA  | GCACAGCGTC  | GCACTGCACC | AGTGGAGGAG  | 60           |
|--------------------|------------|-------------|-------------|------------|-------------|--------------|
| CCATGACCTA         | CTCGCCGGGT | AACCCCCGGAT | ACCCGCAAGC  | GCAGCCCGCA | GGCTCCTACG  | 120          |
| GAGGCGTCAC         | ACCCTCGTTC | GCCCACGCCG  | ATGAGGGTGC  | GAGCAAGCTA | CCGATGTACC  | 180          |
| TGAACATCGC         | GGTGGCAGTG | CTCGGTCTGG  | CTGCGTACTT  | CGCCAGCTTC | GGCCCAATGT  | 240          |
| TCACCCTCAG         | TACCGAACTC | SGGGGGGTG   | ATGGCGCAGT  | GTCCGGTGAC | ACTGGGCTGC  | 300          |
| CCCTCCCCCT         | GOTATACTA  | GCTGCGCTGC  | TTGCCGGGGGT | SGTTCTGGTG | CCTAAGGCCA  | 360          |
| AGAGCCATGT         | GACGGTAGTT | scorrectes  | GGGTACTCGG  | COTATTTCTG | ATGGTCTCGG  | 420          |
| CGACGTTTAA         | CAAGCCCAGC | GCCTATTCGA  | CCGGTTGGGC  | ATTGTGGGTT | STSTTGGCTT  | 480          |
| TGATCGTGTT         | CCAGGCGGTT | GCGGCAGTCC  | TGGCGCTCTT  | GGTGGAGACC | GGCGCTATCA  | 540          |
| 3030333336         | 3023033000 | AAGTTOGACO  | CGTATGGACA  | GTACGGGCGG | TACGGGCAGT  | <b>50</b> 0  |
| ACGOGGAGTA         | CGGGGTGCAG | CCGGGTGGGT  | ACTACGGTCIA | GCAGGGTGCT | CAGCAGGCCG  | 560          |
| COUCACTOCA         | GTCGCCCGGC | CCGCAGCAGT  | CTCCGCAGCC  | TCCCGGATAT | GGGTCGCAGT  | 720          |
| ACGGCGGCTA         | TTCGTCCAGT | CCGAGCCAAT  | COCCACTOC   | ATACACTGCT | CAGECCCCCCG | 790          |
| CCMACCGCC          | GCCCCAGTCC | GGTCGCAAC   | AATCGCACCA  | GOCCATCO   | ACGCCACCTA  | 940          |
| COTTTECC           | JAGCTTCAGC | DACCACCAC   | IGGTCARTSC  | 1996AC3993 | TEGCAGGETS  | £1.          |
| FITTUGGGTTCC       | AGTCAACTAT | TCAAACCCCA  | ADDEDDDDD   | SCAGTCSTCS | TTTCCCCGGGG | 2 <b>6</b> 0 |
| 33301003 <b>3T</b> | CTANGEGGGC | ITTCCCGGGT  | 103000305   | amamanadaa | AGAGTGAACA  | 132          |
| 1910/10/42/1       | Wattaggys  | MATCOTOGIC  | TO JAA TTO  |            |             | _ 150 m      |

#### CONTRACTION FOR JEQUID MC.46

- A LENGTH: 327 page pairs
  B TYPE: nucleis acid
  C STRANDEDNESS Single
  T TOPOLOG: linear

- FORENCE DESCRIPTION (SEC. 15 Mo.)

<sup>:</sup> SEQUENCE CHARACTERISTICS.

| AGTGGCGGG CGCGGCGGGG ACGGCCGCCC AGGCCGCGGT GGTGCGCTTC CAAGAAGCAG                                                                  | 180 |
|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| CCAATAAGCA GAAGCAGGAA CTCGACGAGA TCTCGACGAA TATTCGTCAG GCCGGCGTCC                                                                 | 240 |
| AATACTCGAG GGCCGACGAG GAGCAGCAGC AGGCGCTGTC CTCGCAAATG GGCTTCTGAC                                                                 | 300 |
| CCGCTAATAC GAAAAGAAAC GGAGCAA                                                                                                     | 327 |
| (2) INFORMATION FOR SEQ ID NO:47:                                                                                                 |     |
| (1) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 170 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |     |
| x1: SEQUENCE DESCRIPTION: SEQ ID NO:47:                                                                                           |     |
| UGUTUGUGAT GATGGOOTTO TEGAACGTGA GEGATTETGT ACCCCCTTCO TTGAGATGAA                                                                 | 6 C |
| CCAACAACST STTSGCSTCG SCAAATSTSC CSNACCCSTS GATCTCGGTS ATCTTSTTCT                                                                 | 120 |
| TOTTCATCAG GAAGTGCACA COGGCCACCO TGCCCTCGGN TACCTTTCGG                                                                            | 17C |
| D INFORMATION FOR SEQ ID NO-48:                                                                                                   |     |
| SEQUENCE CHARACTERISTITS:  (A) LENGTH: 127 base pairs  B: TYPE: nuclei: acid  C: STRANDEDNESS: single  D: TOPOLOGY: linear        |     |
| K1 - SEQUENCE DESCRIPTION: SEC 1D MO:49:                                                                                          |     |
| BATIOGGIGG BACGGGGGT BOOGGCGGCA BOACCGCTOG CGCTGGCGGC AACGGCGGG                                                                   | 4.5 |
| JOSSGGGTGG CGGCGGAACC JGTGGGTTGJ TOTTCGGGCAA TGGCGGTGCC TGCGGGCACG                                                                |     |
| taundat.                                                                                                                          |     |
| _ INFORMATION OF FORE OF F                                                                                                        |     |
| DEQUENCE MARASTERISTING                                                                                                           |     |
| A LENGTH: 81 base bairs                                                                                                           |     |
| B TYPE, nucleic acid                                                                                                              |     |
| 3 STRAMBEDNESS single                                                                                                             |     |
| D TOPOLOGY: linear                                                                                                                |     |
| wil Requence descalation (180 180 18 %) 4 %                                                                                       |     |

1 SEQUENCE CHARACTERISTICS

| (A) LENGTH: 149 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| GATCAGGGCT GGCCGGCTCC CGCCAGAAGG GCGGTAACGG AGGAGCTGCC GGATTGTTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60         |
| JCAACGGCGG GGCCGGNGGT GCCCGCGCGT CCAACCAAGC CGGTAACGGC GGNGCCGGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120        |
| GAAACGGTGG TGCCGGTGGG CTGATCTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 149        |
| C INFORMATION FOR SEQ ID NO:51:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .•         |
| : SEQUENCE CHARACTERISTICO: A: LENGTH: 155 pase pairs B: TYPE: nucleic acid C STRANDEUNESS: single D: TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| x1 SEQUENCE DESCRIPTION: SEQ ID NO:51:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| GGCACGAGA TCACACCTAC CGAGTGATCU AGATCGTCGG GACCTCGCCC GACGTGTCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>6</b> 0 |
| CBCGGNAAT CORGGCGGT STGGCCCJAG UTGCGCRGAC CRTGCGCGCG STGGACTGGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120        |
| CSAAGTACA STCAATTCGA GGCCACCTGG CCGACGGAGC GGTCGCGCAC TTCCAGGTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 130        |
| TATGAAAGT GGGCTTCGGC GTGGAGGATT GGTGAAGGTT GAAGCGGGGC GGATAAGTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24:        |
| CODDAPTTON CODAMAGEDT: FORANACION ADAMAGED TOTAGED AND TACTAGED CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.        |
| COSTOCTO DECEMBRA ENERTEDAA AATHEMBES ACAATTECTO GECO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 355        |
| CONFORMATION FOR JEC ID MO ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| DESCRIPTION SEQUENCE MARACTERISTING  A LENGTH 000 rade data  E TYPE, audiets data  TOTANDEDNESS states  TOTOPOLOGY linear  EL SEQUENCE DESCRIPTION SEQ ID NO.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| ADDITION OF THE PROPERTY OF TH | *          |

| GCCCCCCA   | . ACACGCCGAA | TGCCCAGCCG | GGCGATCCCA | ACGCAGCACC | TCCGCCGGCC | 300         |
|------------|--------------|------------|------------|------------|------------|-------------|
| GACCCGAACG | CACCGCCGCC   | ACCTGTCATT | GCCCCAAACG | CACCCCAACC | TGTCCGGATC | 360         |
| JACAACCCGG | TTGGAGGATT   | CAGCTTCGCG | CTGCCTGCTG | GCTGGGTGGA | GTCTGACGCC | 420         |
| GCCCACTTCG | ACTACGGTTC   | AGCACTCCTC | AGCAAAACCA | CCGGGGACCC | GCCATTTCCC | 480         |
| GGACAGCCGC | CGCCGGTGGC   | CAATGACACC | CGTATCGTGC | TCGGCCGGCT | AGACCAAAAG | 540         |
| CTTTACGCCA | GCGCCGAAGC   | CACCGACTCC | AAGGCCGCGG | CCCGGTTGGG | CTCGGACATG | 600         |
| SGTGAGTTCT | ATATGCCCTA   | CCCGGGCACC | CGGATCAACC | AGGAAACCGT | CTCGCTCGAC | <b>5</b> 60 |
| GCCAACGGGG | TGTCTGGAAG   | CGCGTCGTAT | TACGAAGTCA | AGTTCAGCGA | TCCGAGTAAG | 720         |
| CCGAACGGCC | AGATCTGGAC   | GGGCGTAATC | GGCTCGCCCG | CGGCGAACGC | ACCGGACGCC | 30          |
| GGGCCCCTC  | AGCGCTGGTT   | TGTGGTATGG | CTCGGGACCG | JCAACAACCC | GGTGGACAAG | <b>34</b> 0 |
| GGCGCGGCCA | AGGCGCTGGC   | CGAATCGATC | CGGCCTTTGG | TOGCCCCGCC | Geeggegeeg | 900         |
| SCACCOGCTC | CTGCAGAGCC   | CGCTCCGGCG | ccadeacada | CCGGGGAAGT | CGCTCCTACC | 960         |
| CCGACGACAC | CGACACCGCA   | GCGGACCTTA | CCGGCCTGA  |            |            | 999         |

## 0 INFORMATION FOR SEQ ID NO.33.

- 1 SEQUENCE CHARACTERISTICS.
  - A LENGTH: 332 amino acids
  - B' TYPE, amino acid
  - C STRANDEDNESS: Single
  - D POPOLOGY .inear
- Mi DEQUENCE DESCRIPTION, DEC ID MO.63

Met His His His His His His Met His Jln Val Asp Pro Asn Leu Thr

And Andrews Income to the Alacker Long Alacker Alacker And Service

A a Ambient Carl Carl Call Ava Carl Carl Ava Carl Ava Carl Ava Asa Ava Asa Fro Av

Fig. 9: A., The Pro Ca. With The The Ala Ala Gen Pro Pro Ser The 51 25 60

As a first As a constant of the Asia first Probability of the first feature of the first probability of the first factor of the first probability of the first factor of the first probability of t

|            |               |            | 100        |            |            |            |            | 105        |            |            |            |            | 110        |            |            |
|------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asn        | Ala           | Pro<br>115 | Gln        | Pro        | Val        | Arg        | Ile<br>120 | Asp        | Asn        | Pro        | Val        | Gly<br>125 | Gly        | Phe        | Ser        |
| Phe        | Ala<br>130    | Leu        | Pro        | Ala        | Gly        | Trp<br>135 | Val        | Glu        | Ser        | Asp        | Ala<br>140 | Ala        | His        | ⊋he        | Asp        |
| Tyr<br>145 | Gly           | Ser        | Ala        | Leu        | Leu<br>150 | Ser        | Lys        | Thr        | Thr        | Gly<br>155 | Asp        | Pro        | Pro        | Phe        | Pro<br>160 |
| Gly        | Gln           | Pro        | Pro        | Pro<br>165 | Val        | Ala        | Asn        | qaA        | Thr<br>170 | Arg        | Ile        | 7al        | Leu        | 31y<br>175 | Arg        |
| Leu        | Asp           | Jln        | Lys<br>180 | Leu        | Tyr        | Ala        | Ser        | Ala<br>195 | Glu        | Ala        | Thr        | Asp        | 3er<br>190 | Lys        | Ala        |
| Ala        | Ala           | Arg<br>195 | Leu        | gly        | Ser        | Asp        | Met<br>100 | aly        | 31u        | Phe        | Tyr        | Met<br>205 | Pro        |            | Pro        |
| Gly        | Thr<br>213    | Arg        | Ile        | Asn        | Gln        | Glu<br>218 | Thr        | Val        | Ser        | Leu        | Asp<br>220 | Ala        | Asn        | Gly        | Val        |
| Ser<br>225 | Gly           | Ser        | Ala        | Ser        | Tyr<br>230 | Tyr        | Slu        | Val        | Lys        | Phe<br>235 | Ser        | Asp        | Pro        | Ser        | Lys<br>240 |
| 520        | Asn           | ЗЗY        | Gln        | Ile<br>345 | Trp        | Thr        | gly        | Val.       | 11e<br>250 | Gly        | Ger        | SLO        | Ala        | Ala<br>255 | Asn        |
| Ala        | Pro           | Asp        | Ala<br>263 | 317        | Pro        | Pro        | 3in        | Arg<br>165 | Trp        | Phe        | Mal        | ∵al        | Tro<br>270 | Leu        | gly        |
| Tar        | A. 1          | Asn<br>375 | Asn        | ero.       | lai        |            | Lvs<br>180 | 1.7        | Azd        | Aud        | JY3        | Ala<br>205 | Leu        | Ala        | 314        |
| det        | 714<br>290    | Arg        | D#^        | Len        | Val        | 70a<br>295 | 920        | Pro        | Pro        | ñad        | Fro<br>300 | À.a        | Pro        | Ala        | Pro        |
|            | 11.           | 1 * *      | Wile.      | ī 🏗        | ALA<br>T   | F 10       | V.d        | , <b>*</b> | V. 1       | 1-11       | )          |            | i          | i yen      | Th:<br>H2  |
| : :        | <b>:</b> :::: | • . •      | ٠          |            | *          | 1.:.       | Nr i       | . ::::     |            | : 50       | 54         |            |            |            |            |

#### .. INFORMATION FOR SEQ ID NO-84

- : SEQUENCE CHARACTERISTICS
  - A LENGTH 1. am.m. 4...io B TYPE am.m. ac.i CTPAMDEDNESS

```
10
                                                      15
     Val Ala Ala Leu
           20
 2) INFORMATION FOR SEQ ID NO:55:
     (i) SEQUENCE CHARACTERISTICS:
         (A) LENGTH: 15 amino acids
         (B) TYPE: amino acid
         (C) STRANDEDNESS:
         .D) TOPOLOGY: linear
    x1: SEQUENCE DESCRIPTION: SEQ ID NO:55:
    Ala Val Glo Ser Gly Mer Ten Ala Leu Gly Thr Pro Ala Pro Sor
    1 10 15
2 INFORMATION FOR SEC ID NO.56:
     1' SEQUENCE CHARACTERISTICS:
        (A) LENGTH: 19 amino acids
         (B) TYPE: amino acid
         C' STRANDEDNESS:
         D TOPOLOGY linear
    MI SEQUENCE DESCRIPTION, SEQ ID NO:56
    Ala Ala Met Lyo Pro Arg Thr Gly Asp Gly Pro New Glw Ala Ala Lys
    alu aly Arg
A INFORMATION FOR SECTION MOSET.
    : SEQUENCE CHARACTERISTICS.
         A LENGTH: 15 amino acido
         5 TYPE: amino acid
         TRANDEDNESS
         Topology (inear
        REQUENTS DESCRIPTION (SEC ID WO FIN
    Ty: Ty: Trp Dys Pro Bly Bin Pro The Asp Pro Ala Trp Bly Pr
CONFIRMATION FOR SELECTION 54
   : PROCENCE CHAPARTER CONTROL
```

```
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:58:
     Asp Ile Gly Ser Glu Ser Thr Glu Asp Gln Gln Xaa Ala Val
 1: INFORMATION FOR SEQ ID NO:59:
     (i) SEQUENCE CHARACTERISTICS:
         (A) LENGTH: 13 amino acids
         (B) TYPE: amino acid
         (C) STRANDEDNESS:
         (D) TOPOLOGY: linear
    X1: SEQUENCE DESCRIPTION: SEQ ID NO:59:
    Ala Glu Glu Ser Ile Ser Thr Yaa Gly Kaa Ile Wal Pro
                        10
  INFORMATION FOR SEQ ID NO:50
    :: SEQUENCE CHARACTERISTICS:
        (A) LENGTH: 17 amino acids
         (B) TYPE: amino acid
         C STRANDEDNESS:
         D TOPOLOGY linear
    MI SEQUENCE DESCRIPTION, SEQ ID NOTHO:
    Asp Pro Giu Pro Ala Pro Pro Val Pro Thr Ala Ala Ala Ala Pro Pro
                  5
2 UNFORMATION FOR SEQ ID NO.51
    . SEQUENCE CHARACTERISTICS
        A LENGTH, 15 amino acids
         B TMPE, amino acid
         TPAMDEDMESS
        : TOFOLDER .inear
   AL SECUENCE DESCRIPTION DEC 10 NO 41
    Ala Pro Lys Thr Tyr Ama Blo Blo Ded Lys Bly Thr Asp Thr Bly
I DIFORMATION FOR SEC IT NO SE
      JESMENCE HAPACTERISTS
```

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Gln Thr Ser 1 5 10 15

Leu Leu Asn Asn Leu Ala Asp Pro Asp Val Ser Phe Ala Asp 20 25 30

- (2) INFORMATION FOR SEQ ID NO:63:
  - i: SEQUENCE CHARACTERISTICS:
    - (A. LENGTH: 24 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear

Gly Gys Gly Asp Arg Ser Gly Gly Ash Leu Asp Gln He Arg Leu Arg 1 5 10 15

Arg Asp Arg Ser Gly Gly Ash Leu 20

- 2 INFORMATION FOR SEQ ID NO:64:
  - 1 SEQUENCE THARACTERISTICS:
    - (A) LENGTH: 187 amino acids
    - B TYPE: amino acid
    - C: STRANDEDNESS: single
    - D TOPOLOGY linear
  - MI SEQUENCE DESCRIPTION SEC ID NO.64

Thr Jly Ser Leu Asn Jln Thr His Asn Arg Arg Ala Asn Glu Arg Dys 1 5 15

Ash Thr Thr Mer Lvc Mer Val Lvc Der Ile Ala Ala Bly Leu Thr Ala

Associated that the Associated Associated State One Office Hero Associated As

Gly Gly Pro Mai Mai Tyr Jin Mer Oin Pro Mai Mai Phe Gly Ala Pro 50 50

Leu Pr. Leu Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Sin

Length: Series to the our were on Ala Aurone of the Marcher Ser See Ali

Ile Ala Asp His Lys Leu Lys Lys Ala Ala Glu His Gly Asp Leu Pro 115 120 125

Leu Ser Phe Ser Val Thr Asn Ile Gln Pro Ala Ala Ala Gly Ser Ala 130 135 140

Thr Ala Asp Val Ser Val Ser Gly Pro Lys Leu Ser Ser Pro Val Thr 145 150 155 160

Gln Asn Val Thr Phe Val Asn Gln Gly Gly Trp Met Leu Ser Arg Ala 165 170 175

Ser Ala Met Glu Leu Leu Gln Ala Ala Gly Kaa 180 - 185

### 2; INFORMATION FOR SEQ ID NO:65:

- 1 SEQUENCE CHARACTERISTICS.
  - (A) LENGTH: 148 amino acids
  - (B) TYPE: amino acid
  - (C) STRAMDEDNESS: single
  - (D: TOPOLOGY: linear

### Exi: SEQUENCE DESCRIPTION: SEQ ID NO:55:

Asp Slu Val Thr Val Slu Thr Thr Ser Val Phe Arg Ala Asp Phe Leu 1 5 15

Ser Siu Leu Asp Ala Pro Ala Gin Ala Gly Thr Giu Ser Ala Val Ser 30

31y Mai 31d 31y Leu Pro Pro 31y Ser Ala Leu Leu Val Val Lys Arg 35 40 48

Gly Pr. Ash Ala Gly Per Arg Phe Leu Leu Ash Gln Ala Tue Thr Ger 50 50

Ala 3ly Arg His Pro Ash Ser Ash lie Phe Leu Ash Ash Val Thr Val

Det Arm Arm His Als 1 . One Arm Seu Blu Ash Ash Giu One Ach Wal

Ful Asp Val Bly Ser Dec Ash Bly Thi Ivi Val Ash Arg Blu Pro Val 100 - 110

Ass Jer Ala Val ben Ala Ash Bly Ash Blu Val din Ite Bly bys ben 115 120 125

Arg Led Val. Pre Led Chr. Slv. Pr. Liv. 415 (F. W.) Asp Asc (F. 5er

#### (2) INFORMATION FOR SEQ ID NO:66:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 230 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

Thr Ser Asn Arg Pro Ala Arg Arg Gly Arg Arg Ala Pro Arg Asp Thr 1 5 10 15

Gly Pro Asp Arg Ser Ala Ser Leu Ser Leu Val Arg His Arg Arg Gln 20 25 30

Gln Arg Asp Ala Leu Cys Leu Ser Ser Thr Gln Ile Sei Arg Gln Ser 35 40 45

Ash Leu Pro Pro Ala Ala Gly Gly Ala Ala Ash Tyr Ser Arg Arg Ash 50 55 60

Phe Asp Val Arg Ile Lys Ile Phe Met Leu Val Thr Ala Val Val Leu 65 70 75 80

Leu Cys Cys Ser Gly Val Ala Thr Ala Ala Pro Lys Thr Tyr Cys Glu 85 90 95

3lu Leu Lys 3ly Th: Asp Thr 3ly 3ln Ala Cys 3ln Ile 3ln Met Ser 106 105 110

Asp Oro Ala Tyr Asp Ile Asp Ile Ser Leu Pro Ser Tyr Tyr Pro Asp Ils 101 105

3in Lv3 Jer Leu Slu Ash Tyr Tle Alu Sln Thr Arg Asp Lys Phe Leu 130 140

Ser Ala Ala Thr Ser Ser Thr Pro Arg Glu Ala Pro Tyr Glu Leu Asn 145 - 150 - 156 - 156

in The Sen Ala The Even Sin Sen Ala Die Sen Den And Sily The Sid 181 - Inc. 182

13 /31 /31 Leu Xau Va. Dyr H.D Ash A.A Jly 31; Thr His Pro Thr
180 185 190

The The Two Dys Ala Phe Asp Trp Asp Glo Ala Tyr Arg Dys Pro lle

The firm Add Che West Tem Olm Alia Add The Adap Prin Less Pro Val. Val.

#### 2' INFORMATION FOR SEC ID NC:67:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 132 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gl $\gamma$  Phe 10

Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser 25

Bly Bly Bly Ser Pro Thr Val His Ile Bly Pro Thr Ala Phe Leu Bly

Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Glm Arg Val 50 55

Val Sly Ser Ala Pro Ala Ala Ser Leu Sly Ile Ser Thr Sly Asp Val

The Thr Ala Val Asp Gly Ala Pro Ile Ash Ser Ala Thr Ala Met Ala

Asp Ala Leu Asm Gly His His Pro Gly Asp Val Ile Ser Val Asm Trp

Bin Thr Lys Ser Bly Bly Thr Ard The Bly Aon Val Thr Leu Ala Bly 125

Gly Pro Pro Ala 130

#### INFORMATION FOR SEC ID NO-68

SECUENCE HAPASTER (STER)

- A LENGTH: 100 amilio acite
- D TYPE amino a i D STRANDEDNESS Single D TOPOLOGY linear
- MI SEQUENCE DESCRIPTION SEQ ID M. AR

Mal Dro Deu Ard Ser Pro Ser Met Der Der Dys Dys Des Ala Ala

Met Ala Arg Val Arg Arg Arg Ala Ile Trp Arg Gly Pro Ala Thr Xaa 50 55 60

Ser Ala Gly Met Ala Arg Val Arg Arg Trp Xaa Val Met Pro Xaa Val 65 70 75 80

Ile Gln Ser Thr Xaa Ile Arg Xaa Xaa Gly Pro Phe Asp Asn Arg Gly 85 90 95

Ser Glu Arg Lys

- .I' INFORMATION FOR SEQ ID NO:69:
  - 1) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 163 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - D: TOPOLOGY: linear
  - (xi SEQUENCE DESCRIPTION: SEQ ID No.59:

Met Thr Asp Asp Ile Leu Leu Ile Asp Thr Asp Glu Arg Val Arg Thr

Leu Thr Leu Ash Arg Pro Gln Ser Arg Ash Ala Leu Ser Ala Ala Leu 20 25 30

Arg Asp Arg Phe Phe Ala Kaa Leu Kaa Asp Ala Siu Kaa Asp Asp Asp  $40^{\circ}$ 

The Asp Mai Mai The Leu Thr My Ala App Pro Mai One Mys Ala Divisio

Led Asp Let Lys Mai Ala Sly Arg Ala Asp Arg Ala Mia Mia Sly His Led 65 70 % 80

Thr Ald Mal II - II - House Ame Min Ala Elm Asp Arm Ard Asp Nin Arm

And Art II. If a real we will see that  $\mathcal{C}_{\rm B}$  , we will see that the second section of the second se

Asp Ard Leu Ard Ala Ard Pro Lem Ard Ard His Ard Ard Dro Bly Bly 111.

Ala Ala Ala Hus Len Blo The Win John Web Len Ala Los Sim Are

- F. (1)

#### 2 INFORMATION FOR SEQ ID NO:70:

- 1 SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 344 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:70:
- Met Lys Phe Val Asn His Ile Glu Pro Val Ala Pro Arg Arg Ala Gly
  1 5 10 15
- Sly Ala Val Ala Slu Val Tyr Ala Slu Ala Arg Arg Glu Phe Gly Arg
- Leu Pro 31u Pro Leu Ala Met Leu Ser Pro Asp 31u 31y Leu Leu Thr 35 40 45
- Ala Gly Trp Ala Thr Leu Arg Glu Thr Leu Leu Val Gly Gln Val Pro 50 55 60
- Arg Gly Arg Lys Glu Ala Val Ala Ala Ala Val Ala Ala Ser Leu Arg 55 70 80
- Tys Pro Trp Cys Val Asp Ala His Thr Thr Met Leu Tyr Ala Ala Gly 85 90 95
- Fig. 70m Thr Asp Thr Ala Ala Ala 11e Leu Ala 31y Thr Ala Pro Ala Ala 100 105 110
- Oli Aso Pro Aso Ala Pro Evr dal Ala Tro Ala Ala Gly The Gly The
- Ero Ala Sly Pro Pro Ala Pro Phe Sly Pro Asp Val Ala Ala Slo Tyr 130 140
- les. 315 The Alas da 3th Phe His Phe Ile Ala Ard Len Va. Len Va.
- ordinate App II. The steel ero in App II. The Arm All dir in Land 165
- Met Arg Arg Ala 31) 31/ Leo Val Phe Ala Arg Lyo Val Arg Ala 310 185 190
- How Ard Pro 31; Ard Sed The Arg Ard Led 31d Pro Arg Thr Led Pro 10

Thr Arg Gln Val Val Arg Arg Val Val Gly Ser Trp His Gly Glu Pro
245 250 255

Met Pro Met Ser Ser Arg Trp Thr Asn Glu His Thr Ala Glu Leu Pro 265 270

Ala Asp Leu His Ala Pro Thr Arg Leu Ala Leu Leu Thr Gly Leu Ala 275 280 285

Pro His Gln Val Thr Asp Asp Asp Val Ala Ala Ala Arg Ser Leu Leu 290 295 300

Asp Thr Asp Ala Ala Leu Val Gly Ala Leu Ala Trp Ala Ala Phe Thr 305 310 315 320

ald Ald Arg Arg Lie Gly Thr Trp Ile Gly Ald Ald Ald Glu Gly Gln 325 330 335

Val Ser Arg 3lm Asm Pro Thr Gly 340

### 12 INFORMATION FOR SEQ ID NO:71:

- 1 GEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 485 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- MI SEQUENCE DESCRIPTION: SEQ ID NO: 11:

Hop App Pro Asp Met Pri Gly Thr Mai Ala Dys Ala Mai Ala Asp Ala

Leu Gly Arg Gly Ile Ala Pro Va. Fly Asp Ile Gln Asp Dys Va. Glu

Number Signature Signature

The Tyr Ard III Ard Ard Ala II. W. Ard The Ala Leu Leu Leu Bi Bi

Dig Mal Arg Asp Glu Leu Lys Leu Ser Leu Ala Ala Mal Chr Mal Leu Ho

Ang The Arg Tyr Dec Dee His Aso The Gin Thy Arg Dro Ala The Ber to 30

The second secon

- Thr Leu Leu Arg Asn Leu Glu Phe Leu Pro Asn Ser Pro Thr Leu Met 130 135 140
- Asn Ser Gly Thr Asp Leu Gly Leu Leu Ala Gly Cys Phe Val Leu Pro 145 150 155 160
- Ile Glu Asp Ser Leu Gln Ser Ile Phe Ala Thr Leu Gly Gln Ala Ala 165 170 175
- Glu Leu Gln Arg Ala Gly Gly Gly Thr Gly Tyr Ala Phe Ser His Leu 180 185 190
- Arg Pro Ala Gly Asp Arg Val Ala Ser Thr Gly Gly Thr Ala Ser Gly
  195 200 205
- Pro Val Ser Phe Leu Arg Leu Tyr Asp Ser Ala Ala Sly Val Val Ser
- Met Gly Gly Arg Arg Gly Ala Cys Met Ala Val Leu Asp Val Ser 235 240
- His Pro Asp Ile Cys Asp Phe Val Thr Ala Lys Ala Glu Ser Pro Ser 245 250 255
- Glu Leu Pro His Phe Asn Leu Ser Val Gly Val Thr Asp Ala Phe Leu 260 265 270
- Arg Ala Val Glu Arg Ash Gly Leu His Arg Leu Val Ash Pro Arg Thr
- Fly Lys Ile Val Ala Arg Met Pro Ala Ala Slu Leu Phe Asp Ala Ile 190 - 295 - 300
- Cys Lys Ala Ala His Ala Gly Gly Asp Pro Gly Leu Val Che Leu Asp 305 - 313 - 313 - 315 - 323
- Thr 11e Asn Arg Ala Asn Pro Val Pro Dly Arg Dly Arg Dla Dlu Ala
- The Nam Per Dim Buy Did Ma. Br. Len Sen Per Dyr Diw Her has Ass.
- unt. My Ser lie Aan Gou Ala Arg Mer Den Ala Asp Sly Ara Mai Asp 355 360 365
- Tip Asp Arg Leu Glu Glu Val Ala Gly Val Ala Val Arg Phe Leu Asp
- Acc Ma. Tie As; Ma. Ser Ard Tyr Dr. Phe Tie William, A. C. L. Ala

Leu Leu Ala Ala Leu Gly Ile Pro Tyr Asp Ser Glu Glu Ala Val Arg 420 425 430

Leu Ala Thr Arg Leu Met Arg Arg Iie Gln Gln Ala Ala His Thr Ala 435 440 445

Ser Arg Arg Leu Ala Glu Giu Arg Gly Ala Phe Pro Ala Phe Thr Asp 450 450

Ser Arg Phe Ala Arg Ser Gly Pro Arg Arg Asn Ala Gln Val Thr Ser 465 470 475 480

Val Ala Pro Thr Gly

#### 2 INFORMATION FOR SEQ ID NO:72:

- 1: SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 267 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

Gly Val Ile Val Leu Asp Leu Glu Pro Arg Gly Pro Leu Pro Thr Glu 1 5 10 15

The Tyr Trp Arg Arg Gly Leu Ala Leu Gly The Ala Mal Mal Mal Wal al 20 55 50

Sly Ala Lwo Dro Mai Ser Ala Aso Lwo Dro Ala Ser Ala Sin Ser His 50 55

Pro Gly Jer Pro Ala Pro Gln Ala Pro Jin Pro Ala Gly Gln Thr Glu

Now Ash Ala Ala Ala Ala Sro eye tin tiv Jin Ash Bro Jiu Thr Pro $_{35}$ 

This Pro line Ala Ala Val Jim Pt., Pro Pr. Ma. Let. Los Jim Jiy Asp 100 105 110

Asp Gys Gro Asp Ger Thr Leu Ala Val Dys Gly Leu Thr Asn Ala Pro

31m Tyr Tyr 7a. 30 App 31m wro 200 Phw Thr Met Val Val Thr Ash

- Ala Tyr Val Tyr Ser Leu Asp Asn Lys Arg Leu Trp Ser Asn Leu Asp 165 170 175
- Cys Ala Pro Ser Asn Glu Thr Leu Val Lys Thr Phe Ser Pro Gly Glu 180 185 190
- Gln Val Thr Thr Ala Val Thr Trp Thr Gly Met Gly Ser Ala Pro Arg 195 205
- Cys Pro Leu Pro Arg Pro Ala Ile Gly Pro Gly Thr Tyr Asn Leu Val 210 220
- Val Gln Leu Gly Asn Leu Arg Ser Leu Pro Val Pro Phe Ile Leu Asn 225 230 235 240
- Gln Pro Pro Pro Pro Gly Pro Val Pro Ala Pro Gly Pro Ala Gln
  245 250 255
- Ala Pro Pro Pro Glu Ser Pro Ala Gin Gly Gly 265
- . INFORMATION FOR SEQ ID NO:73:
  - '1' SEQUENCE CHARACTERISTICS:
    - 'A: LENGTH: 97 amino acids
    - B TYPE: amino acid
    - C: STRANDEDNESS: single
    - D TOPOLOGY: linear
  - MI SEQUENCE DESCRIPTION: SEQ ID NO-73:

  - Thr Asn Asp Lyo Asp Thr Pro Gly Ala Lys (18 Mai 3.5 Mai Mai Ala 20 25
  - Gly Gly Ala Ala Ala Ash Ala Gly Val Pro Evo Gly Val Val Val Thr
  - LVD Mai, Apr. Apr. Apr. Pro Tion Apr. Der Alla Apr. Alia Apr. Alia Alia Alia Alia Dinamentari
  - Tal Ari Ser Lyn Ala Fro Gly Ala Thi Dal Ala Leu Thi Phe Yil Asi 65 70 75 80
  - Pro Ser Bly Bly Ser Ard Thr Val Bln Val Thr Leu Bly Lys Ala Blo 85

i.n

- (A) LENGTH: 364 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (x1) SEQUENCE DESCRIPTION: SEQ ID NO:74:

Gly Ala Ala Val Ser Leu Leu Ala Ala Gly Thr Leu Val Leu Thr Ala 1 5 10 15

Cys Gly Gly Gly Thr Asn Ser Ser Ser Ser Gly Ala Gly Gly Thr Ser 20 25 30

Jly Ser Val His Cys Gly Gly Lys Lys Glu Leu His Ser Ser Gly Ser 35 40 45

Thr Ala Gln Jlu Asn Ala Met Glu Gln Phe Val Tyr Ala Tyr Val Arg 50 55 50

Ser Cys Pro Gly Tyr Thr Leu Asp Tyr Asn Ala Asn Gly Ser Gly Ala 65 70 75 80

Gly Val Thr Gln Phe Leu Asn Asn Glu Thr Asp Phe Ala Gly Ser Asp 95 95

Val Pro Leu Asn Pro Ser Thr Gly Gln Pro Asp Arg Ser Ala Glu Arg

Cys Gly Ser Pro Ala Orp Asp Leu Pro Thr Val Phe Gly Pro Ile Ala 115 120 125

The Thr Tyr Ash lie bys Gly Val Ger Thr Leu Ash Leu Asp Gly Pro 130 140

The The Ala Lys lie Phe Ash Gly The Cle The Val Trp Ash Asp Pro 145 150 150 160

Glo The Glo Ala Leu Asn Ser Gly Thr Asp Neu Pro Dro Thr Pro Ile

Ger Mal Ile Poe Aris Ger Aspluys Ger Alm Tom Ger Abr Asplone Glo 180

Lyo Tyr Leu Asp 3., Ta. Ser Ash Gly Wla Trp Gly Lyo Gly Ala Ger 195 200 205

Gld Thr Phe Ser Gly Gly Wal Gly Val Hip Ald Ser Gly Ash Ash Gly 212 215

The Ser Ala Let Lev. 316. The The Acq of a ser the The tor ken 319

Ser Ala Gly Pro Asp Pro Val Ala Ile Thr Thr Glu Ser Val Gly Lys 260 265 270

Thr Ile Ala Gly Ala Lys Ile Met Gly Gln Gly Asn Asp Leu Val Leu 275 280 285

Asp Thr Ser Ser Phe Tyr Arg Pro Thr Gln Pro Gly Ser Tyr Pro Ile 290 295 300

Val Leu Ala Thr Tyr Glu Ile Val Cys Ser Lys Tyr Pro Asp Ala Thr 305 310 315 320

Thr Gly Thr Ala Val Arg Ala Phe Met Gln Ala Ala Ile Gly Pro Gly 325 330 335

31n Glu 31y Leu Asp Gln Tyr Gly Ser Ile Pro Leu Pro Lys Ser Phe 340 345 350

Gln Ala Lys Leu Ala Ala Ala Val Ash Ala Ile Ser 355 - 360

## 1 INFORMATION FOR SEQ ID NO:75:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 309 amino acids
- (B) TYPE: amino acid
- C' STRANDEDNESS, single
- D) TOPOLOGY: linear

## X1 SEQUENCE DESCRIPTION, SEC ID NC:75:

Jin Ala Alu Ala Gly Arg Ala Val Arg Arg Thr Gly His Ala Glu Asp

Fin Thr His Jin Asp Ard Leu His His Gly Cys Arg Arg Ala Ala Val

Val Val Arg Olm App Arg Ala Ser Val Ser Ala Thr Ser Ala Arg Pro-35 40 45

Pro And Ard His Pro Ala Min Mo His Ard Ard Ard Va. Ala Er. Per

Aly Gu, Ard Ard Arg Pro His Pro His His Mai Cln Pro Asp Asp Arg e5 75 80

Ary Asp Arg Pro Ala Leu Leu Asp Arg Thr Sin Pro Ala Glu His Pro

Asso Pro Hos Ard Act 3. Pro Ala Asp Pro Cly Ard Val Arg 3.9 Ard

Ala Asp His Gly Ala Pro Val Arg Gly Arg Gly Pro His Arg Gly Val 135 Glm His Arg Gly Gly Pro Val Phe Val Arg Arg Val Pro Gly Val Arg 150 155 Cys Ala His Arg Arg Gly His Arg Arg Val Ala Ala Pro Gly Gln Gly 170 Asp Val Leu Arg Ala Gly Leu Arg Val Glu Arg Leu Arg Pro Val Ala 185 190 Ala Val Glu Asn Leu His Arg Gly Ser Gln Arg Ala Asp Gly Arg Val 200 Phe Arg Pro lle Arg Arg Gly Ala Arg Leu Pro Ala Arg Arg Ger Arg 215 220 Ala Sly Pro Blm Bly Arg Leu His Leu Asp Sly Ala Sly Pro Ber Pro 230 235 Leu Pro Ala Arg Ala Gly Gin Gin Bro Ser Ser Ala Gly Gly Arg 245 250 Arg Ala Sly Sly Ala Slu Arg Ala Asp Pro Sly Gin Arg Gly Arg His 265 His Gln Gly Gly His Asp Pro Gly Arg Gln Gly Ala Gln Arg Gly Thr Ala Bly Val Ala Hib Ala Ala Ala Bly Pro Arg Arg Ala Ala Cal Arg 0.95 300 Gan Ary Pro Ary Ara-INFORMATION FOR SEC 10 MO: 76. . SEQUENCE CHARACTER COTICE A LENGTH THE ADDR & ID. B TYPE amin & 11.1 I STRANDEDNESS Single D TOPOLOGY ..near AL SEQUENCE DESCRIPTION SEQ ID NO 16 Jer Ala Ma. Trp Typ Lew App Bly Phe Thr Bly Arg His Arg His Gl,

ord Dys Arg Ma. And Mas Ser D. offen Art Ser Ber Ash Art Tep Dyn

- Ser
   Pro So
   Leu Glu Arg
   Arg
   Phe So
   Thr Cys
   Cys
   Ser
   Pro Ala Val Gly Cys
   Cys
   Ser
   Pro Ala Val Gly Cys
   Cys
   Ser
   Pro Ala Val Gly Cys
   Cys
   Arg
   Arg
   Arg
   Arg
   Arg
   Leu Ala Leu Gly Ala Leu Gly Ala Reg
   Thr Leu Gly Val Arg
   Arg
   Thr Leu Gly Val Arg
   Arg
   Thr Leu Gly Ser
   Arg
   Arg
   Thr Leu Gly Ser
   Arg
   Arg</t
- Pro Thr Gln Tyr Arg Gln Pro Tyr Glu Ala Leu Gly Gly Thr Arg Pro 180 185 190

Tyr Ser Cln Gln Phe Asp Trp Arg Tyr Pro Pro Ser Pro Pro Pro Gln

165 170

- Gly Leu Ile Pro Gly Val Ile Pro Thr Met Thr Pro Pro Pro Gly Met 195 200 205
- Val Arg Jin Arg Pro Arg Ala Bly Mer Leb Ala Tle Bly Ala Val Thr
- Tie Ala Val Val der Ala 31v Tie 71y 71y Alu Ala Ala der Dem Mal 230 - 235 - 236 - 236
- Riy Phe Ash Arg Ala Pro Ala Riv Pro Ser Bly Riy Pro Val Ala Ala 245 - 250 - 250
- For all Ala off own 1.0 ff. Ala Ala Agn Mer bes we give be data where the  $\sim 21 \, \gamma$  begins a  $\sim 261 \, \rm cm^{-3}$
- GLU GLO MAI ALA Ala Uno Mai Mai Men Ger Mai Mai Men Des mis mbr Des 183
- Asp Leu Sly Arg Sln Ser Slu Slu Sly Set Sly I.e IIe Leu Ser Ala 1991 - 295 - 301

|            | 340        |                     |              |            |            |            | 345          |            |                                        |              |            | 350        |            |             |            |
|------------|------------|---------------------|--------------|------------|------------|------------|--------------|------------|----------------------------------------|--------------|------------|------------|------------|-------------|------------|
| Ile        | Ala        | 7 <b>a</b> l<br>355 | Val          | Arg        | Val        | Gln        | Gly<br>360   |            | Ser                                    | Gly          | Leu        | Thr<br>365 |            | Ile         | Se         |
| Leu        | Gly<br>370 | Ser                 | Ser          | Ser        | Asp        | Leu<br>375 | Arg          | Val        | Gly                                    | Gln          | Pro<br>380 | Val        | Leu        | Ala         | Ilε        |
| Gly<br>385 | Ser        | Pro                 | Leu          | Gly        | Leu<br>390 | Glu        | Gly          | Thr        | Val                                    | Thr<br>395   | Thr        | Gly        | Ile        | Val         | Ser        |
| Ala        | Leu        | Asn                 | Arg          | Pro<br>405 | Va!        | Ser        | Thr          | Thr        | Gly<br>410                             | Glu          | Ala        | Gly        | Asn        | Gln<br>415  | Asn        |
| Thr        | Val        | Leu                 | Asp<br>420   | Ala        | Tle        | Gln        | Thr          | Asp<br>425 | Ala                                    | Ala          | Ile        | Asn        | Pro<br>430 | Gly         | Asn        |
| Jer        | Gly        | 31y<br>435          | Ala          | Leu        | Val        | Asn        | Met<br>440   | Asn        | Ala                                    | 31n          | Leu        | 7a1<br>445 | 31y        | Val         | Asn        |
| Ser        | Ala<br>450 | Ile                 | Ala          | Thr        | Leu        | Gly<br>455 | Ala          | Asp        | Ser                                    | Ala          | Asp<br>460 | Ala        | Gln        | Ser         | dly        |
| Ser<br>465 | Ile        | Gly                 | Leu          | Gly        | Phe<br>470 | Ala        | Ile          | Pro        | 7al                                    | Asp<br>475   | Gln        | Ala        | Lys        | Arg         | Ile<br>480 |
| A.a        | Āsp        | Gla                 | Leu          | Ilo<br>485 | Ser        | Thr        | 317          | Lys        | Ala<br>490                             | Ser          | Н13        | Ala        | Ser        | Leu<br>495  | gly        |
| Val        | Glm        | Val                 | Thr<br>500   | Asn        | aaA        | Lvs        | Asp          | Thr<br>305 | Pro                                    | gly          | Ala        | Lys        | Ile<br>510 | Val         | 3lu        |
| Ja.        | √a.        | жұй<br>913          | 320          | 31 y       | 313        | Alu        | A. a.<br>523 | лыn        | Ala                                    | aly          | ∵a_        | Pro<br>525 | Lys        | 31y         | ∵al        |
| "al        | Val<br>520 | Ming an             | ∵.s          | a.         |            | Asp<br>535 | lar a        | تيز        | Tie                                    | Asn          | Ser<br>S40 | Ala        | Asp        | Alu         | Leu        |
| 1 . ·      | Ala        | ma f                | Ta I         | Ars        | Ser<br>Phi |            | Ž, i         | ***        | 117                                    | 7.2.4<br>2.1 | Tar        | Va.        | 4la        | Let.        | Tm:<br>.e. |
| t the      | *.*.       | AST                 | 7277         | 3et<br>55- | ئىدۇ.<br>- | 1. *       | 91           | vr I       | :::::::::::::::::::::::::::::::::::::: |              | Hr.        | T. i       | Thr        | Den.<br>371 | <b>:</b>   |
| 1          | Al+        |                     | 71::<br>58:: |            |            |            |              |            |                                        |              |            |            |            |             |            |

CONFORMATION FOR SECURD NO DO

SECTION CHARACTER (CT) (C)

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:
- Met Asn Asp Gly Lys Arg Ala Val Thr Ser Ala Val Leu Val Val Leu 1 5 10 15
- Gly Ala Cys Leu Ala Leu Trp Leu Ser Gly Cys Ser Ser Pro Lys Pro 20 25 30
- Asp Ala Glu Glu Gln Gly Val Pro Val Ser Pro Thr Ala Ser Asp Pro 35 40 45
- Ala Leu Leu Ala Glu Ile Arg Glm Ser Leu Asp Ala Thr Lys Gly Leu 50 55 60
- Thr Ser Val His Val Ala Val Arg Thr Thr Gly Lys Val Asp Ser Leu 65 70 75 80
- Leu dly Ile Thr Ser Ala Asp Val Asp Val Arg Ala Asp Pro Leu Ala 95 90 95
- Ala Lys Gly Val Cys Thr Tyr Asn Asp Glu Gln Gly Val Pro Phe Arg
- Val Sln Sly Asp Asm Ile Sor Val Lys Leu Phe Asp Asp Trp Ser Asm 115 120 125
- Leu Sly Ser Ile Ser Slu Leu Ser Thr Ser Arg Val Leu Asp Pro Ala 130 140
- Ala Gly Val Thr Gln Leu Leu Ger Gly Val Thr Ash Leu Gln Ala Gln 145 150 150 158
- Buy Thi dim Mai file Ast Buy The Ger The The Lys lie The dim The LGS  $$1.00\,{\rm cm}$$
- The Pro Ala Ser Ser Val Lys Met Leu Aso Pro Sty Ala Lys Se: Ala 180 185 190
- Avg Pro Ala Thr Val Tee Tie Ala Ein am Tiv Jer Hil Hil Lei Val 13e
- And Ala Ser Ilm Abroller, Almoser Also Ser Los Dur Les Missons des Aey Ul. 215
- Lws Tre Ash 3ld Pau Val Ash Mal Asp 205 221

INFORMATION FOR SEC ID NOTES

EQUENCE CHARACTERISTICS

```
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:78:
      Val Ile Asp Ile Ile Gly Thr Ser Pro Thr Ser Trp Glu Gln Ala Ala
     Ala Glu Ala Val Gln Arg Ala Arg Asp Ser Val Asp Asp Ile Arg Val
                 20
                                   25
     Ala Arg Val Ile Glu Gln Asp Met Ala Val Asp Ser Ala Gly Lys Ile
                                40
     Thr Tyr Arg Ile Lys Leu Glu Val Ser Phe Lys Met Arg Pro Ala Gln
                     5.5
     Pro Arg
     55
   INFORMATION FOR SEQ IL NO: 19:
      1 - SEQUENCE CHARACTERISTICS:
         (A' LENGTH: 69 amino acids
          (B) TYPE: amino acid
          (C) STRANDEDNESS: single
          D' TOPOLOGY linear
    M1 SEQUENCE DESCRIPTION SEQ ID NO:79:
    Val Pro Pro Ala Pro Pro Leu Pro Pro Leu Pro Pro Ser Pro Ile Ser
    Typ Ala Ser Pro Pro Ber Pro Den Leu Pro Pro Ala Pro Pro Val Ala
    Pro 11v Pro Pro Met Pro Prv. (wo Asp Pro 1rp Pro Pro Ala Pro Pro
    Leu Pro Tyr Ger Thr Pro Pro Bly Ala Pro Leu Pro Pro Ser Pro Pro
    At the tree was
. INFORMATION FOR SEC IN MO ()
```

. GEQUENCE THARACTERISTICS

B TYPE amino idia STRANDEDNESS single

Topology Linear

A LENGTH: 355 amino acids

- Val Leu Ala Ala Val Gly Leu Gly Leu Ala Thr Ala Pro Ala Glm Ala 20 25 30
- Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe Ala Asp Phe Pro Ala Leu 35 40 45
- Pro Leu Asp Pro Ser Ala Met Val Ala Gln Val Ala Pro Gln Val Val
  50 55 60
- Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn Ala Val Gly Ala Gly Thr
- Gly Ile Val Ile Asp Pro Asn Gly Val Val Leu Thr Asn Asn Ris Val
- File Ala Gly Ala Thr Asp File Asn Ala Phe Ser Val Gly Ser Gly Gin
- Thr Tyr Gly Val App Val Val Gly Tyr Asp Arg Thr Gln Asp Val Ala
- Val Leu Glm Leu Arg Gly Ala Gly Gly Leu Pro Ser Ala Ala Ile Gly
  130 135 140
- Gly Gly Val Ala Val Gly Glu Pro Val Val Ala Met Gly Asn Ser Gly
  145 150 155
- Gly Glm Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val Ala Leu 165 170 175
- 31y 31m Thr Val 71m Ala Ser Aud Ser Leu Thr 31y Ala 31u 31u Thr
- Let Ash dim Let 714 31h Phe Ash Ala Ala 71e 31h Phm 31y Ash Ser 193 - 201 - 208
- Giv Gly Pro Val Val Ash Gly Leu Gly Gin Val Val Gly Met Ash Thr
- Nig Ala Ori Agu Agn Ohe fin Leu Gor Jin Biv dig Jin Jiv Ohe Xii 225 - 240 - 24
- The Dro Ti + Ti | Sin Ala War Ala Lie Ala Sie Bin lie Arg Swr Sie 349 | 25 |
- 31y 31y 3er 3r; Th: Val B... The 31v Pro Thr A.a Phe Deu 31y Deu 253
- 31: Cal Va. Acc Acc Acc 31 Acc 31: Acc 31: Als Acc Va. 31: Acc Val Val Co

305

310

320

315

Ala Leu Asn Gly H:s H:s Pro Gly Asp Val Ile Ser Val Asn Trp Gln 325 330 Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly Pro Pro Ala 355 (2) INFORMATION FOR SEC ID NO:81: (1) SEQUENCE CHARACTERISTICS: (A) LENCTH: 205 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single D) TOPOLOGY: linear .x1 SEQUENCE DESCRIPTION: SEQ ID No:81. Ser Pro Lys Pro Asp Ala Glu Glu Gln Gly Val Pro Val Ser Pro Thr Ala Ser Asp Pro Ala Leu Leu Ala Glu Ile Arg Gln Ser Leu Asp Ala 25 Thr Lys Gly Leu Thr Ser Val His Val Ala Val Arg Thr Thr Sly Lys 4.0 Wal Asp Ser Leu Leu Bly Tie Thr Ser Ala Asp Wal Asp Wal Ard Ala Agn Pro Jen Ala Ala Lyd Ply Val Jyd Thr Tyr Aon Add 3.0 310 310 50 - 75 - 30 Wal Pro Phe Arg Wal 71n 31y Asp Asn Ite Ser Wal Dys Leu Phe Asp Let  $Ast,\ \forall r\in A, a\in \mathbb{N},\ a\in \mathbb{N},$  the Thir Min let Let set My saw this asn Let. 31n Ala Gin Bly Thr 310, Val. 1.8 Asp 31y 11e Ser Thr Thr Dys 135 140 lle Thi lly Thr lle Pri Ala Sei Jer Ma. Lyb Mer Leu Air Pr. 117 1.35

180

185

190

Leu Thr Gln Ser Lys Trp Asn Glu Pro Val Asn Val Asp 195 200 205

## 2 INFORMATION FOR SEQ ID NO:82:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 286 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- x1: SEQUENCE DESCRIPTION: SEQ ID NO:82:
- Gly Asp Ser Phe Trp Ala Ala Ala Asp Gin Met Ala Arg Gly Phe Val
- Leu Gly Ala Thr Ala Gly Arg Thr Thr Leu Thr Gly Glu Gly Leu Gln 25 30
- His Ala Asp Gly His Ser Led Led Led Asp Ala Thr Ash Pro Ala Val 35 40 45
- Val Ala Tyr Asp Pro Ala Phe Ala Tyr Glu fle Gly Tyr fle Xaa Glu 50 55 50
- Ser Gly Leu Ala Arg Met Cys Gly Glu Asn Pro Glu Asn Ile Phe Phe 65
- Tyr lie Thr Val Tyr Asn Sin Pro Tyr Val Sin Pro Pro Sin Pro Glu 85 90 44
- Ash Phe Asp Dro 310 Min Val Led 317 319 Tie Tyr Ard Tyr Hid Ale
- Ala Thr Glu Gln Ard Thr Ash Dys Maa Bin ile Den Ala Ber Gly Mal 115 120 105
- Also were size that the law Arm Also the discussion were denoted a XLA for the first term of  $14.7\,$
- AGE THE ALERGE ASE ALL THE DEPOSIT THE THE THE THE TO THE HEADE THE
- Ang Asn Buy Mal Wal lie Glu Thr Did Dys Ded Ang Hid Pro Asn Ang 100 105
- Pro Ala Bly Car PM Cym Za. Thr Ard Ala Leu B., Ash Ala Ard Bly 18 19 19 -

210 215 220

Gly Phe Ser Asp Thr Arg Pro Ala Gly Arg Arg Tyr Phe Asn Thr Asp 225 230 235 240

Ala Glu Ser Gln Val Gly Arg Gly Phe Gly Arg Gly Trp Pro Gly Arg 245 250 255

Arg Val Asn Ile Asp Pro Phe Gly Ala Gly Arg Gly Pro Pro Ala Gln 260 265 270

Leu Pro Gly Phe Asp Glu Gly Gly Gly Leu Arg Pro Xaa Lys

#### INFORMATION FOR SEQ ID NO:83:

#### 1 SEQUENCE CHARACTERISTICS:

- A/ LENGTH: 173 amino acids
- B) TYPE: amino acid
- C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## MI. SEQUENCE DESCRIPTION: SEQ ID NO:83:

Thr Lys Phe His Ala Leu Met Gln Glu Gln Ile His Asn Glu Phe Thr

Ala Ala Jin Gin Tyr Val Ala Ile Ala Val Tyr Phe Asp Ser Giu Asp

Leu Pro Aln Leu Ala Lvo His Phe Tyv Ser 31m Ala Val 31u 31u Arg 85 40 45

ABD His Ala Met Met Leu Val III. His Leu Leu Asp Arg Asp Leu Arg

Tal Did tie Dro Gly Val Asp Thr Val Arg Ash Din Phe Asp Arg Prons

And the seasons have been also to also the the are the table as

Fig. 14. May Argues The Ala Ma. Ala Arm Ash Mid Bly Aug Phe Dec. 105

1., 31. 31n 3nm Men Jin Trp She Leu 31n 31u 31n 11e 31u 31u Vai

Als Del Men (N.) The Den Mai Nor Mai Ala Abe Ang Ala Niy Ala Abe 13 165 170

## I' INFORMATION FOR SEQ ID NO:84:

- i SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 107 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (x1: SEQUENCE DESCRIPTION: SEQ ID NO:84:
- Arg Ala Asp Glu Arg Lys Asn Thr Thr Met Lys Met Val Lys Ser Ile
  1 10 15
- Ala Ala Gly Leu Thr Ala Ala Ala Ala Ile Gly Ala Ala Ala Gly 20 25 30
- Val Thr Ser lie Met Ala Sly Sly Pro Va: Val Tvr Gln Met Gln Pro 35 40 45
- Val Val Phe Gly Ala Pro Leu Pro Leu Asp Pro Xaa Ser Ala Pro Xaa 50 55 60
- Val Pro Thr Ala Ala 31m Trp Thr Xaa Leu Leu Asn Xaa Leu Xaa Asp 30 90
- Pro Asn Val Ser Phe Xaa Asn Lys Bly Ser Leu Val Glu Gly Gly Ile 85 90 95
- Bly Bly Kaa Blu Bly Kaa Kaa Arg Arg Kaa Gln
- DE ENFORMATION FOR JEQ ID NO.88.
  - JEQUENCE CHARACTERISTICS.
    - A: LENGTH: 125 amino acids
    - -B) TYPE: amino acid
    - C) STRANDEDNESS: Single
    - D) TOPOLOGY: linear
  - Will Dequence Legaription (E. 1990 %)
  - Callinguages allower Calling April 200 (end for Augusta April and April 200 (end for Augusta April and April 200 (end for April
  - or Ded Bly Bln Pro Lee App Blo Arg Bly App Va. Ast Ber Ast Thr Do 25
  - And Arg Ala Dev 31, Lew 31m Ala Pro Ser Val Val Kaa Arg 31m 31y  $$4.1 \end{tabular}$

65 70 75 80

Gly Lys Asn Arg Arg Leu Cys Arg Thr Pro Ser Ser Asn Gln Arg Glu 85 90 95

Glu Leu Gly Val Arg Trp Ile Pro Arg Ser Arg Cys Ala Cys Val Tyr

Val Gly His Ary Ala Arg Arg Gly Thr Tyr His Arg Arg 115 120 125

- (D) INFORMATION FOR SEQ ID NO:86.
  - i, SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 117 amino acids
    - (B) TYPE: amino acid
    - C: CTRANDEDNESS: Single
    - D: TOPOLOGY: linear
  - X1 SEQUENCE DESCRIPTION: SEQ ID NO:86:

Cys Asp Ala Val Met Gly Phe Lou Gly Gly Ala Gly Pro Leu Ala Val 1 5 10 15

Val Asp Gln Gln Leu Val Thr Arg Val Pro Gln Gly Trp Ser Phe Ala 20 25 30

Gin Ala Ala Ala Val Pro Val Val Phe Leu Thr Ala Trp Tyr Bly Leu 35 40 45

Ala Asp Leu Ala Glu Tie Lys Ala Giv Glu Ser Val Leu Tie His Ala 50 55 60

Gly Thr Gly Gly Val Gly Mer Ala Ala Val Glo Deu Ala Alg Glo Trp 65

Sly Val Glu Val Phe Val Thr Ala Ser Arg 31v Lys Trp Asp Thr Leu 85 90 95

Art Nia Xaa Xaa Phe Ast Ast like Dr. Oor No Cas Che Pro Hi likes 100 - 110

Ard Ger Cer Maa Gly 118

- DO INFORMATION FOR SEQUID NOVED
  - : SEQUENCE CHARACTERICTICS
    - A DEMOTH 100 amino accus
    - B TYPE: amino abid B TYPANDEDMEST 1008

Met Tyr Arg Phe Ala Cys Arg Thr Leu Met Leu Ala Ala Cys Ile Leu 1 5 10 15

Ala Thr Gly Val Ala Gly Leu Gly Val Gly Ala Gln Ser Ala Ala Gln 20 25 30

Thr Ala Pro Val Pro Asp Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp 35 40 45

Pro Ala Trp Gly Pro Asn Trp Asp Pro Tyr Thr Cys His Asp Asp Phe 50 60

His Arg Asp Ser Asp Gly Pro Asp His Ser Arg Asp Tyr Pro Gly Pro 65

Ile Leu Glu Gly Pro Val Leu Asp Asp Pro Gly Ala Ala Pro Pro Pro 35 90 95 ⋅ ♣

Pro Ala Ala Gly Gly Gly Ala 100

- 12 INFORMATION FOR SEQ ID NO:88:
  - 1) SEQUENCE THARACTERISTICS
    - (A) LENGTH, 98 amino acids
    - B) TYPE: amino acid
    - C) STRANDEDNESS, single
    - D) TOPOLOGY: linear
  - x: SEQUENCE DESCRIPTION, SEC ID NO.88
  - Fig. 31n Cvs Arg (a) Trp Leu Glu Fly 31n Trp Arg Hy Met Leu 31y
  - Ala Asp 31n Ala Arg Ala 31y 31y bro Ala Arg 11e 3rp Arg 31m His 25 30
  - Ser Mer Ala Ala Met Lvo Pro Ang Thi Tly Asp Gly Pro Leu Blu Ala
  - The Lya South Arabit Model as Man Arabita, 496 Dec 311 Ang Man
  - ਹੈ। Arg Selvis, ਵਿੱਚ ਸ਼ਹਮ Sed Thr Pro Aug 31. Ava Ava Ava Sed diy ਰੱਲੇ 75 - 30

Ass 31s les the Signar Thr Ser

U CHROPMATION FOR SPING NO NO 80

#### (D) TOPOLOGY, linear

# (x1) SEQUENCE DESCRIPTION: SEQ ID NO:89:

Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly Asn Phe Glu Arg Ile

1 10 15

Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala Gly

Ser Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln Ala 35 40 45

Ala Val Val Arg Phe Gin Glu Ala Ala Asn Lys Gln Lys Gln Glu Leu 50 60

Asp Glu lie Ser Thr Ash lie Arg Jin Ala Dly Val Gln Tyr Ser Arg

Ala Asp Glu Glu Glu Glu Glu Ala Leu Ser Ser Glu Met Gly Phe

## D: INFORMATION FOR SEQ ID NO:90:

## 1 SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 166 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## KL SEQUENCE DESCRIPTION: SEQ ID MO:90:

Met Thr Jin Ser Jin Thr Val Thr Val Asp Jin Jin Glu 11e Leu Asn

Arg Ala Ash Blu Va. Blu Ala Pro Mer Ala Asp Pro Pro Thr Asp Val 20 25 30

To lie Throre Ivo Tid Leu Thi Day Kaa Los Ash Ala Ala Jin Jin

una a la composition Associato Adam Memorario (1777) democia espacifico Adam espacifica

TWO Blu Arg Sin Arg Leu Ala Thr Ser Leu Arg Asn Ala Ala Lys Kaa As

Two Sig Sig Tal Adm File Bid Ala Ala Thr Ala Leu Asp Adm Adm Sig

the transfer of the second second

```
Asn Phe Met Asp Leu Lys Glu Ala Ala Arg Lys Leu Glu Thr Gly Asp 130 135 140
```

Gln Gly Ala Ser Leu Ala His Xaa Gly Asp Gly Trp Asn Thr Xaa Thr 145 150 155 160

Leu Thr Leu Gln Gly Asp 165

## '2' INFORMATION FOR SEQ ID NO:91:

- (i) SEQUENCE THARACTERISTICS:
  - (A) LENGTH: 5 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - D' TOPOLOGY, linear
- x: SEQUENCE DESCRIPTION: SEQ ID NO:91:

Arg Ala Glu Arg Met 1 5

## 2 INFORMATION FOR SEC ID NO:92:

- i SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 063 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- M1 JEQUENCE DESCRIPTION: SEQ 1D NO:90.
- Val Ala Trp Met Ser Val Thr Ala Sly Sin Ala Sin Leu Thr Ala Ala
- Glm Val Arg Val Ala Ala Ala Ala Ala Tyr Blu Thr Ala Tyr Gly Leu Thr 20 25 30
- a. Pro the Dru Was lim Ala C i Ash And Ala diu Leu Men ile Sec.  $\frac{1}{4} \, {\rm C} \, = \, \frac{1}{4} \, = \, \frac{$
- Liv Ala The Agn All Dev. Bl. Ash The Pro Ala Liv Ala Tal Ash bl
- Bid Ala Bid Tyr Div Bid Met Trp Ala Bid Asp Ala Ala Ala Met Phw 85 70 75 80
- Bly Tyr Ale A.4 A.4 Thr Ala Thr Ale Thr Ale Thr Den Sen Sen Pre

115 120 125

Asn Asn Val Pro Gln Ala Leu Lys Gln Leu Ala Gln Pro Thr Gln Gly 135 140

Thr Thr Pro Ser Ser Lys Leu Gly Gly Leu Trp Lys Thr Val Ser Pro 155

His Arg Ser Pro Ile Ser Ash Met Val Ser Met Ala Ash Ash His Met 170

Ser Met Thr Asn Ser Gly Val Ser Met Thr Asn Thr Leu Ser Ser Met 185

Leu Lys Gly Phe Ala Pro Ala Ala Ala Ala Gln Ala Val Gln Thr Ala 195 200

Ala Glm Ash Gly Val Arg Ala Met Ber Ser Leu Gly Ser Ser Leu Gly

Ser Ser Gly Leu Gly Gly Gly Val Ala Ala Asn Leu Gly Arg Ala Ala 225

Ser Val Arg Tyr Gly His Arg Asp Gly Gly Lys Tyr Ala Xaa Ser Gly

Arg Arg Asn Gly Gly Pro Ala 260

## INFORMATION FOR SEQ ID NO:93:

- 1 JEQUENCE CHARACTERISTICS:
  - A LENGTH: 303 amino acids
  - B TYPE, amino acid C STRAMDEDNESS, single
  - D TOPOLOGY: linear

# K1 SEQUENCE DESCRIPTION SEC IN NO.93.

More than then Jer Green tow April 18 1 18 19 19 19 18 18 Alia 41 18 18 Alia

dig tax for the dig tax the Store endine Alasels Alas Asp dig dly

Ala Ser Dys Leu Pro Met Dys Leu Ash Tle Ala Va. Ala Val Leu Sly

Let Ala A a for Phe Ala Ser The 31. Pho Mer Phe Thr Let Ser Thr

35 90 Pro Lys Ala Lys Ser His Val Thr Val Val Ala Val Leu Gly Val Leu 100 105 Gly Val Phe Leu Met Val Ser Ala Thr Phe Asn Lys Pro Ser Ala Tyr Ser Thr Gly Trp.Ala Leu Trp Val Val Leu Ala Phe Ile Val Phe Cln 130 135 Ala Val Ala Ala Val Leu Ala Leu Leu Val Glu Thr Gly Ala Ile Thr 150 Ala Pro Ala Pro Arg Pro Lys Phe Asp Pro Tyr Gly Gln Tyr Gly Arg 165 Tyr 3ly 3ln Tyr 3ly 3ln Tyr 3ly Val 3ln Pro 3ly 3ly Tyr Tyr 3ly 190 Gln Gln Gly Ala Gln Gln Ala Ala Gly Leu Gln Ser Pro Gly Pro Gln Gin Ser Pro Gin Pro Pro Gly Tyr Gly Ser Gin Tyr Gly Gly Tyr Ser 215 Ser Ser Pro Ser Glm Ser Gly Ser Gly Tyr Thr Ala Glm Pro Pro Ala 225 230 235 31n Pro Pro Ala 31n Ser Gly Ser Gin Gln Ser His Gln Gly Pro Ser 250 The Pro Pro Thi II. Phe Pro Ser Pne Ser Pro Pro Pro Dro Dro Dai Jer 260 ...65 Ala Bly Thr Bly Ser Bln Ala Bly Ser Ala Pro Val Asn Tyr Ser Asn 271 280 285 Pro Jer Blv Blv Blo Blo Ser Ser Jer Pro Bly Blv Ala Oro Wal INFORMATION FOR SEC 3D NO 44 - DEQUENCE MHARASTERICTICS A LENGTH, 50% pase pairs B TYPE, nucleus acid C STRANDEDNESS single D TOPOLOGY linear

BUT BUTTER IN THE INTENTION OF IN MY 94

| GTCTTC                                        | 3GCG              | CGC                          | CACTO                            | SCC (                       | STTGG     | ACCO                    | IG G       | CATCO     | GCCC      | CTC       | IACG:     | rccc       | GAC         | GCC       | GCC        | 180 |
|-----------------------------------------------|-------------------|------------------------------|----------------------------------|-----------------------------|-----------|-------------------------|------------|-----------|-----------|-----------|-----------|------------|-------------|-----------|------------|-----|
| CAGTTGA                                       | ACCA              | GCCT                         | rgcro                            | AA C                        | AGCC      | TCGC                    | C G        | ATCCC     | 'AACG     | TGT       | CGT1      | TGC        | GAAC        | :AAG(     | <b>G</b> C | 240 |
| AGTCTGG                                       | TCG               | AGGG                         | SCGGC                            | AT C                        | :GGGG     | GCAC                    | C GA       | \GGCG     | CGCA      | TCG       | CCGA      | CCA        | CAAG        | CTGA      | AG         | 300 |
| AAGGCCG                                       | CCG               | AGCA                         | .CGGG                            | GA T                        | CTGC      | CGCT                    | G TC       | GTTC      | AGCG      | TGA       | CGAA      | CAT        | CCAG        | CCGG      | CG         | 360 |
| GCCGCCG                                       |                   |                              |                                  |                             |           |                         |            |           |           |           |           |            |             |           |            | 420 |
| ACGCAGA                                       | ACG               | TCAC                         | GTTC                             | JT G                        | AATC      | AAGG(                   | C GG       | CTGG      | ATGC      | TGT       | CACG      | CGC .      | ATCG        | GCGA'     | TG         | 480 |
| GAGTTGC                                       | TGC .             | AGGC                         | CGCA                             | BG GA                       | AACTO     | JA                      |            |           |           |           |           |            |             |           |            | 507 |
| 2) INFO                                       | ORMA?             | TION                         | FOR                              | SEÇ                         | ID N      | 10 : 95                 | i :        |           |           |           |           |            |             |           |            |     |
|                                               | . Æ<br>. E<br>. C | A LE<br>B TY<br>C ST<br>C TO | ENGTH<br>(PE:<br>(RAND)<br>(POLO | : 16<br>amin<br>EDNE<br>GY: | TERI      | ino<br>id<br>sing<br>ar | acio<br>le |           | · as .    |           |           |            |             |           |            |     |
|                                               |                   |                              |                                  |                             |           |                         |            |           |           |           |           |            |             |           |            |     |
| Met<br>1                                      | Lys               | Met                          | Val                              | Lys<br>5                    | Ser       | Tie                     | Ala        | Ala       | 31y<br>10 | Leu       | Thr       | Ala        | Ala         | Ala<br>15 | Ala        |     |
| <u>. 1                                   </u> | gly               | Ala                          | Ala<br>20                        | Ala                         | Ala       | Sly                     | Val        | Thr<br>25 | Sei       | Ile       | Met       | Ala        | Gly<br>30   | gly       | Pro        |     |
| Val                                           | Tal               | 7777<br>33                   | 31n                              | Met                         | Jin       | Tro                     | 7a.<br>41  | ∵a_       | Phe       | 317       | Ala       | 210<br>45  | Leu         | Pro       | Leu        | •   |
| Ast                                           | P:0<br>50         | Ala                          | Ser                              | Ala                         | 200       | Авр<br>55               | ∵ā.        | Pro       | The       | Alu       | Ala<br>50 | Gln        | Seu         | Thr       | Ser        |     |
| Leu<br>55                                     | Leu               | Asn                          | áer                              | Seu                         | Ala<br>Tu | ASD                     | Pro        | Asn       | ∵a:       | Jer<br>75 | Phe       | Ala        | Asn         | Lys       | 31y<br>40  |     |
| ··:                                           | Leu               | i.                           | ١                                | :<br>40                     | 3. ;      | **                      | ·          |           | 7         | :         | A. a      | Ara        | 1           | A. 1      | Asp        |     |
| ilij                                          | Lys               | Degra                        | ⊒73<br>130                       | Sy i                        | Ã:        | <b>\.</b> 1             | ;          | H1:       | :14       | Ann       | Ses       | Pti        | Der.<br>113 | ]         | D) var     |     |
| Ser                                           | Wal               | Thr<br>115                   | Asn                              | ile.                        | 3.5       | 0+                      | Ala<br>120 | Ali       | Ala       | 1.7       | Je:       | Ala<br>125 | Thr         | Āļā       | Asp        |     |

A. Ser Va. Ser I. Production Det Der De Va. Throlon Admiral List.

| Glu | Leu | Leu | Gln | Ala | Ala | Gly | Asn |
|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     |     |     | 165 |     |     |     |

## (2) INFORMATION FOR SEQ ID NO:96:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 500 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

| CGTGGCAATG  | TCGTTGACCG | TCGGGGCCGG | GGTCGCCTCC | GCAGATCCCG | TGGACGCGGT  | 50  |
|-------------|------------|------------|------------|------------|-------------|-----|
| CATTAACACC  | ACCTGCAATT | ACGGGCAGGT | AGTAGCTGCG |            | CGGATCCGGG  | 120 |
| JGCTGCCGCA  | CAGTTCAACG | CCTCACCGGT | GGCGCAGTCC |            | ATTTCCTCGC  | 190 |
| 190ACCGCCA  | CCTCAGCGCG | CTGCCATGGC | CGCGCAATTG | CAAGCTGTGC | CGGGGGGCGGC | 240 |
| ACAGTACATO  | GGCCTTGTCG | AGTCGGTTGC | свастестве | AACAACTATT | AAGCCCATGC  | 300 |
| JGJCCCCATC  | CCGCGACCCG | GCATCGTCGC | CGGGGCTAGG | CCAGATTGCC | CCGCTCCTCA  | 360 |
| ACGGGGGGGCA | TCCCGCGACC | CGGCATCGTC | GCCGGGGCTA | GGCCAGATTG | CCCCGCTCCT  | 420 |
| CAACGGGGCCG | CATCTCGTGC | CGAATTCCTG | CAGCCCGGGG | GATCCACTAG | TTCTAGAGCG  | 480 |
| GCCGCCACCG  | CGGTGGAGCT |            |            |            |             | 500 |

# D INFORMATION FOR SEQ ID NO:97:

- . REQUENCE CHARACTERISTICS
  - .A/ LENGTH: 96 amino acids
  - B) TYPE: amino acid
  - 0: OTPANDEDNESS: single D: TOPOLOGY: linear
- ... JEQUENCE DESCRIPTION SEC 11 NO 90
- Tau Ala Met Jer Gee Through No. Ala Mil Mal Ala Fer Ala App Pro
- Tal Asp Ala Val 110 Asn Thr Thr Dys Asn Tyr 31y 31s Val Val Ala 20 30
- Ala Deu Ash Ala Thi Asp Pro Gly Ala Ala Ala Gln Phe Ash Ala Sei 35 45
- Pro Dal Ale Tim Cor Too Succeeding the Control of t

```
Gln Tyr Ile Gly Leu Val Glu Ser Val Ala Gly Ser Cys Asn Asn Tyr
                                        90
  [2] INFORMATION FOR SEQ ID NO:98:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 154 base pairs
          (P) TYPE: nucleic acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (x1) SEQUENCE DESCRIPTION: SEQ ID NO:98:
ATGACAGAGC AGCAGTGGAA TTTCGCGGGT ATCGAGGCCG CGGCAAGCGC AATCCAGGGA
ANTOTOACOT COATTONITO COTOCTTOAC GAGGGGAAGC AGTOCCTOAC GAACCTCGCA
GOGGCCTGGG GCGGTAGCGG TTCGGAAGCG TACC
                                                                     154
 D INFORMATION FOR SEQ ID NO:99:
      i sequence characteristics:
         (A) LENGTH: 51 amino acids
         (B) TYPE: amino acid
         (C) STRANDEDNESS: single
         (D) TOPOLOGY- linear
    (X1 SEQUENCE DESCRIPTION: SEQ ID NC:99:
    Met Thr Glu Gln Gln Trp Asn Pho Ala Gly Ile Glu Ala Ala Ala Ser
    Ala Tie Bin Bis Ash Mai Thr Ser die His Ser Leu Leu Ash Bis Bly
    Ews 31n Ser Leu Thr Lys Cen Ala Ala Ala Trp 31y Siy Ser 31y Ser
    Dar Ala Tvr
   INFORMATION ON ONE OF THE
     . SEQUENCE CHARACTERISTICS
         A LENGTH 181 pase pairs
          B' TYPE: nucleic acid
         C' STRANDEDNESS single
         D TOPOLOW: Linear
    M. GEOMETRIE DECIPIONIN FEC IN MOLINI
```

| GCTCGAAACG | CGGCACAGCC | GACGGTGGCT | CCGNCGAGGC | GOTGNOTOCA | AAATCCTTGA | 18  |
|------------|------------|------------|------------|------------|------------|-----|
| GACAATTCGN | caegegeace | TACAAGGAAG | TCGGTGCTGA | ATTCGNCGNG | TATCTGGTCG | 240 |
| ACCTGTGTGG | TCTGNAGCCG | GACGAAGCGG | TGCTCGACGT | CG         |            | 281 |

## (2) INFORMATION FOR SEQ ID NO:101:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3058 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# x1) SEQUENCE DESCRIPTION: SEQ ID NO:101.

| JATOGTACCO    | GTGCGAGTGC  | TEGGGCCGTT  | TGAGGATGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JTGCACOTGT  | CTTTCGT3AT                              | ร์ง                |
|---------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------|--------------------|
| GGCATACCCA    | GAGATGTTGG  | CGGCGGCGCC  | TGACACCCTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CAGAGCATCS  | GTGCTACCAC                              | 120                |
| TGTGGCTAGC    | AATGCCGCTG  | CGGCGGCCCC  | GACCACTGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GTGGTGCCCC  | CCGCTGCCGA                              | 180                |
| TGAGGTGTCG    | GCGCTGACTG  | CGGCGCACTT  | CGCCGCACAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GCGGCGATGT  | ATCAGTCCGT                              | 240                |
| RAGESETEGG    | GCTGCTGCGA  | TTCATGACCA  | GTTCGTGGCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ACCOTTOCCA  | GCAGCGCCAG                              | 300                |
| CTCGTATGCG    | GCCACTGAAG  | TCGCCAATGC  | ggggggggg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AGCTAAGCCA  | GGAACAGTCE                              | 360                |
| GCACGAGAAA    | CCACGAGAAA  | TAGGGACACS  | TAATGGTGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TTTCGGGGGG  | TTACCACCGG                              | 420                |
| AGATCAACTC    | SGCGAGGATG  | TACGCCGGGCC | JGGGTTCJGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PREDETEGTS  | acceceeans                              | 480                |
| AGATGTGGGA    | CAGCOTGGCG  | AGTGACCTGT  | 7770330000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INCOGCOTTT  | CAGTOGGTOS                              | 540                |
| TOTGGGGTCT    | JACGGT933G  | TCGTGGATAG  | STINGINGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JGGTGTGATG  | этэрэээээ                               | 500                |
| TOTOJOOGTA    | TGTGGCGTGG  | ATGAGCGTCA  | TESEGGGGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JGCCGAGCTT  | ACCGCCCCCCC                             | ร์ดีป              |
| Various set   | Tantacades  | POSTACOAGA  | na namama j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Proacour)   | 170000000000000000000000000000000000000 |                    |
| TURTUUCCUA    | JAACCOTO IT | BAACTGATGA  | 100 Table 1 200 Ta | A TORACOT   | 53333                                   | 147                |
| 1.22.2020000  | DATE JOSSTA | AAJGAGGGG   | MTA 13311M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MTGTGGGC.   | ZAASA (S.123                            | 34                 |
| 10000ATOTT    | TGGGTACGCG  | JCGGCGACGG  | JGACGGCGA "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BGCGACGTTS  | 2732237773                              | #0°                |
| AUUAUUUUU     | BOAGATGACC  | ACCGCGGGTG  | 3GCTCCTCGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GCAGGGGGGG  | 3033T13A03                              | <b>46</b> 0        |
| A JULIOTTICOA | MUCGCCCCC   | Japhadoadt  | TGATGAACAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TETTGCCCCAG | GEOUT FOLA                              | 4 . 4 %<br>4 . 7 % |

| CGATGACCA    | A CTCGGGTGT  | G TCGATGACCA | ACACCTTGAC | G CTCGATGTT           | G AAGGGCTTTG | 1200          |
|--------------|--------------|--------------|------------|-----------------------|--------------|---------------|
| CTCCGGCGG    | C GGCCGCCCA  | GCCGTGCAAA   | CCGCGGCGC  | AAACGGGGT             | CGGGCGATGA   | 1260          |
| GCTCGCTGG    | G CAGCTCGCTC | GGTTCTTCGG   | GTCTGGGCGG | TGGGGTGGCC            | GCCAACTTGG   | 1320          |
| GTCGGGCGG    | C CTCGGTCGG1 | TEGTTGTEGG   | TGCCGCAGGC | CTGGGCCGCC            | GCCAACCAGG   | 1380          |
| CAGTCACCC    | C GGCGGCGCGG | GCGCTGCCGC   | TGACCAGCCT | GACCAGCGCC            | GCGGAAAGAG   | 1440          |
|              | A GATGCTGGGC |              |            |                       |              | 1500          |
| GGCTCAGTG    | F TGTGCTGCGT | GTTCCGCCGC   | GACCCTATGT | GATGCCGCAT            | TCTCCGGGGG   | 1560          |
| CCGGCTAGGX   | A GAGGGGGGGG | AGACTGTCGT   | TATTTGACCA | GTGATCGGCG            | GTCTCGGTGT   | 1620          |
| TTGGGGGGGG   | goothtoheh   | ACAGTCAATS   | TGCATGACAA | GTTACAGGTA            | TTAGGTCCAG   | -0 <b>8</b> 0 |
| GTTCAACAAC   | GAGACAGGCA   | ACATGGCCTC   | ACGTTTTATG | ACGGATCCGC            | ACGCGATGCG   | 1740          |
| GGACATGGCG   | GGCCGTTTTG   | AGGTGCACGC   | CCAGACGGTG | GAGGACGAGG            | CTCGCCGGAT   | 1800          |
| STGGGGGTCC   | GEGCAAAACA   | TTTCCGGTGC   | GGGCTGGAGT | GGCATGGCCG            | AGGCGACCTC   | 1860          |
| GCTAGACACC   | ATGGCCCAGA   | TGAATCAGGC   | GTTTEGCAAC | ATESTSAACA            | TGCTGCACGG   | 1920          |
| GGTGCGTGAC   | GOGETGGTTS   | GCGACGCCAA   | CAACTACGAG | TAGCAAGAGC            | AGGCCTCCCA   | 1980          |
| JONGAROCTO   | AGCAGCTAAC   | STCAGCCGCT   | GCAGCACAAT | ACTTTTACAA            | GCGAAGGAGA   | 2040          |
| ACACOTTOGA   | TGACCATCAA   | CTATCAATTC   | GGGATGTCG  | ACGCTCACGG            | CGCCATGATC   | 217^          |
| JGCGCTCAGG   | JUGGGTTGCT   | GGAGGCCGAG   | CATCAGGCCA | TCATTCGTGA            | TGTGTTGACC   | มีโสก         |
| HIGAGTGACT   | ninggedese   | CGCCCGTTCC   | GEGGEETGEE | AGGGGTTCAT            | TACCCAGTTG   | 2220          |
| PROCESTAACT  | TADTECACOT   | STACGAGCAG   | GCCAACGCCC | ACGGGCAGAA            | GGTGCAGGCT   | 2280          |
| NICOMACA     | ACATGGCGCA   | MODGACAOT    | Jecoreager | t <b>c.</b> vartraaga | TTGACACCAG   | 2340          |
|              | REMODITATI   |              |            |                       |              | 7 t           |
|              | A FORTTHANG  |              |            | 1000077077            | JOGTGCTGGT   | 40.           |
| rante tracti | 73937772663  | NGAGGACOTT   | DOKOCCOEK  | TAGGUCCGTC            | TTTCGATCCA   | 2520          |
| TECTOCOTOT   | TOTTTGGGGA   | RGACGGCT1:   | JACGAGGGGG | ATCATCGAGG            | CGCGGTCGGG   | 2580          |
| HAAGATIICC   | Angadamnyn   |              | DACID TODA | 77783337777           | COTTOGGGCTT  | 2540          |
| 2000 M       | ,            |              |            |                       | 101,1000     |               |

| GGTC | SCGC         | ACC            | CACG                    | GCCA                 | GG A                  | GGGC                                    | TTCG               | G GG               | rggc      | rgcc      | ATC        | AGAT       | TGG        | arga      | GTAG       | TG         |
|------|--------------|----------------|-------------------------|----------------------|-----------------------|-----------------------------------------|--------------------|--------------------|-----------|-----------|------------|------------|------------|-----------|------------|------------|
| JUTI | CTG          | CAG            | cgcr                    | GCCA                 | GG C                  | CGCT                                    | GCGG               | G CAC              | GGT(      | GCG       | CCG        | ATCG       | CGG        | CCAC      | CAGG       | CC         |
| GGCG | TGG          | GCG 1          | rcgc                    | TGGT                 | GA C                  | CAGC                                    | GCGA               | e ccc              | CGGA      | CAGG      | CCG        | CGGG       | CGA (      | CCAG      | STCG       | EG .       |
| GAAG | AACO         | GCC 1          | AGCC                    | AGCC                 | GG C                  | ccca                                    | CCTO               | G GG               | CGGAC     | GTG       | ACC.       | rgga:      | rgc (      | CCAG      | GATC       |            |
| (2)  | INF          | ORMA           | ATIO                    | V FOR                | SE(                   | Q ID                                    | NO : 1             | 102:               |           |           |            |            |            |           |            |            |
|      | ( <b>i</b> ) | (A<br>(B<br>(C | l) LE<br>1) TY<br>1) ST | ingth<br>PE:<br>Rand | I: 39<br>amin<br>EDNE | TTERI<br>01 am<br>10 ac<br>155:<br>line | nino<br>nd<br>sing | acıd               | s         |           |            |            |            |           |            |            |
|      | X1           | SEÇ            | UENC                    | E DE                 | SCRI                  | PTIO                                    | N: 3               | EQ 1               | D 110     | :102      | :          |            |            |           |            |            |
|      | Met<br>1     | Val            | Asp                     | Phe                  | Gly<br>5              | Ala                                     | Leu                | Pro                | Pro       | 31u<br>10 | Ile        | Asn        | ser        | Ala       | Arq<br>15  | Met        |
|      | Tyr          | Ala            | Gly                     | 20<br>20             | gly                   | Ser                                     | Ala                | 3er                | Leu<br>25 | Val       | Ala        | Ala        | Ala        | Gln<br>30 | Met        | Trp        |
|      | Asp          | Ser            | Val<br>35               | Ala                  | 5er                   | Asp                                     | Leu                | ₽ <u>n</u> #<br>40 | Ser       | Ala       | Ala        | Ser        | Ala<br>45  | Phe       | Gln        | Ser        |
|      | Val          | Val<br>50      | Trp                     | Gly                  | Leu                   | Thr                                     | 7al<br>55          | gl,                | Ser       | Trp       | Ile        | Gly<br>50  | Ser        | Ser       | Ala        | Gly        |
|      | Leu<br>55    | Met            | Val                     | Ala                  | £1£                   | Ald<br>nj                               | je:                | Ptil               | Tyr.      | Val       | N.La<br>⊓e | Trp        | Met        | Jer       | Val        | Phr<br>Phr |
|      | маа          | aly            | Iln                     | Ala                  | 31a<br>35             | leu                                     | The                | Ala                | Ala       | 31n<br>90 | · a :      | Arg        | ia.        | Àla       | A. 4<br>35 | Ala        |
|      | Ala          | Tyr            | Glu                     | Thr<br>100           | Ala                   | īyx.                                    | Jly                | Seu                | Th:       | Wal       | Pro        | Pro        | وعو        | Val       | Ile        | Ala        |
|      |              | ASD            | arg<br>III              | A.u                  | 3                     | Let.                                    | Àu.                |                    | ueti      | 11.       | ā.a        | Thir       | Ass<br>111 | See.      | , a.,      | 311        |
|      | 7.5          | Aan<br>131     | n la er                 | Pr ·                 | A., i                 | 1.4                                     | A. 1<br>135        | Wit.               | Van       | 114.      | Ali        | 3).<br>140 | Žerij.     |           | ·•         | Marie      |
| -    | T:p<br>148   | Ala            | 31n                     | Asp                  | Ala                   | Ala<br>Isl                              | Ala                | Met                | Phe       | Зly       | Tyr<br>158 | А. э       | Ala        | Ala       | Thr        | Ala<br>160 |

The Ala The A  $_{\rm A}$  The Lett Lev. We. Due 114 3.4 Ata Fro 114 Mem The  $_{\rm C}$ 

- Asp Thr Ala Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu 195 200 205
- Gln Gln Leu Ala Gln Pro Thr Gln Gly Thr Thr Pro Ser Ser Lys Leu 210 215 220
- Gly Gly Leu Trp Lys Thr Val Ser Pro His Arg Ser Pro Ile Ser Asn 230 235 236
- Met Val Ser Met Ala Asn Asn His Met Ser Met Thr Asn Ser Gly Val
- Ser Met Thr Asn Thr Leu Ser Ser Met Leu Lys Gly Phe Ala Pro Ala 260 265 270
- Ala Ala Ala Gln Ala Val Gln Thr Ala Ala Gln Asn Gly Val Arg Ala 280 285
- Val Ala Ala Ash Leu Gly Arg Ala Ala Ser Val Gly Ser Leu Ser Val 305 310 315 320
- Pro Gin Ala Trp Ala Ala Ala Asn Gin Ala Val Thr Pro Ala Ala Arg
- Ala Leu Pro Leu Thr Ser Leu Thr Ser Ala Ala Glu Arg Gly Pro Gly 340 345
- 31n Met Leu Gly Gly Leu Pro Val Gly Gln Met Gly Ala Arg Ala Gly 355 360 360
- 31, 3.4 Lett Ser 31v Val Lett Arg Val Pro Pro Arg Pro Tyr Val Met 373 380

Pro His Ser Pro Ala Ala Bly 385 - 390

A INFORMATION FOR DEVICE NO. 11.

- : SEQUENCE CHARACTERICTICS
  - A DENGTH: 1/15 base balro
  - B TYPE nucleic acts
  - C STRANDEDNESS single
  - D TOPOLOGY linear
- Mi SEQUENCE DESCRIPTION, SEQ ID MO.103

| CGTGTTGGGG TCGATTTGGC CGGACCAGTC GTCACCAACG CTTGGCGTGC GCGCCAGGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 246  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| GGCGATCAGA TCGCTTGACT ACCAATCAAT CTTGAGCTCC CGGGCCGATG CTCGGGCTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300  |
| ATGAGGAGGA GCACGCGTGT CTTTCACTGC GCAACCGGAG ATGTTGGCGG CCGCGGCTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 360  |
| CGAACTTCGT TCCCTGGGGG CAACGCTGAA CGCTAGCAAT GCCGCCGCAG CCGTGCCGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 420  |
| BACTGGGGTG GTGCCCCCG CIGCJGACGA GGTGICGCTG CTGCTTGCCA CACAATTCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 480  |
| TACGCATGCG GCGACGTATC AGACGGCCAG CGCCAAGGCC GCGGTGATCC ATGAGCAGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 540  |
| TGTGACCACG CTGGCCACCA GCGCTAGTTC ATATGCGGAC ACCGAGGCCG CCAACGCTGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 600  |
| GGTCACCGGC TAGCTGACCT GACGGTATTC GAGCGGAAGG ATTATCGAAG TGGTGGATTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 660  |
| COMOGRACITA CONCIDENCA TENNETECCO GAGGATETAC SCOGGECCUGG STICEGECTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72.0 |
| GCTGGTGGCC GCCGCGAAGA TGTGGGACAG TGTGGCGAGT GACCTGTTTT JGGCCGCGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 780  |
| SGCSTTTCAG TCGGTGGTCT GGGGTCTGAC GGTGGGGTCG TGGATAGGTT 2GTCGGCGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 840  |
| TOTGATGGCG GCGGCGCCT CGCCGTATGT GGCGTGGATG AGCGTCACCG CGGGGCAGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 900  |
| CCAGCTGACC GCCGCCCAGG TCCGGGTTGC TGCGGCGGCC TACGAGACAG CGTATAGGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 960  |
| GACGGTGCCC CCGCCGTGA TCGCCGAGAA CCGTACCGAA CTGATGACGC TGACCGCGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1020 |
| CAACCTCTTG GGGCAAAACA CGCCGGCGAT CGAGGCCAAT CAGGCCGCAT ACAGCCAGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1080 |
| STUGGGGCONA GACGCGGAGG CGATGTATGG STAUGCCGCC ACGGCGGCGA TGGCGACCGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1140 |
| WWW.magaa amaasaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :200 |
| PROCESSOR STOCKAGERGE CONTOCKACH PROCESSOR AACCAGTTEA TEAACANTET  PROCEARGE TTGCHACAGE TEGCCCAGES AGEBUAUGGE STCCTAGETT STTCCAAGET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1250 |
| TOROGRAPH TOROGRAPH SECURISES TOTOGRAPH SECURISES TOROGRAPH STUDGESTEER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1320 |
| The state of the s | 1.45 |
| DATTOTOTA - GROUNDAGOTO COCCOCCO CONSISTENCE GAARACCO COCAAAAACCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 144  |
| TOTOCONTO TOTOCOTO TOTOCONO ENTRESENTE ENTRESENTE DESTRUCA (FERENTE TOTOCONO DE LA CONTRESENTE DEL CONTRESENTE DE LA CONTRESENTE DEL CONTRESENTE DE LA CONTR | 150  |
| 333 Manuagn angadeuduk Actracenca Jacaennin urebatreat toteaaraec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1560 |
| BOOMBOATED FOOTS OF NOA ACCARGOOMS IN ACCARGOOMS IN ACCARGOOMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 162) |
| TARE TOTAL ARTON THE TOTAL AND INCOME THE TARE THE THE TARE THE TA | 1680 |

- (A) LENGTH: 359 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear
- :x1 SEQUENCE DESCRIPTION: SEQ ID NO:104:
- Val Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met I 5 10 15
- Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Lys Met Trp 20 25 30
- Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Jln Ser 35 40 45
- Val Val Trp Gl; Leu Thr Val Gly Ser Prp De Gly Ser Ser Ala Gly 50 55
- Len Met Ala Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr 65 70 75 80
- Ala Gly Gln Ala Gln Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala Ala 90 95
- Ala Tyr Glu Thr Ala Tyr Arg Leu Thr Val Pro Pro Pro Val Ile Ala
- Glu Ash Arg Thr Glu Leu Met Thr Lou Thr Ala Thr Ash Leu Leu Gly
- ilo Asn Thi Pri Ala ile Giu Ala Aon Jin Ala Ala Tyr Jer Gli Met 130 - 135 - 140
- Orb 31y 31n Asp Ala 31u Ala Mer Dyr 31y Tyr Ala Ala Thr Ala Ala 145 - 150 - 155 - 160
- The Ala The Blu Ala Leu Leu Pro Phe Blu Asp Ala Pro Leu Ile The
- Adminer (\$10 31) decided the fire Analysis Analysis the Alastic 197
- Asr The Ala Ala Ala Adr. 100 dec Mer Asr Asr Val Pro Din Ala Dec 198 200 205
- Jun Jin Leu Ala lin Pro Ala Jin Niy Val Val Pro Jer Ger Dys Leu 213 - 225 - 220
- ing My wew Tro End Ali da. Ber on His Den Ber Pro well der Ash

| Ser        | Met        | Thr        | Asn<br>260 | Thr        | Leu        | His        | Ser        | Met<br>265 | Leu        | Lys        | Gly        | Leu        | Ala<br>270 | Pro | Ala        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|------------|
| Ala        | Ala        | Gln<br>275 | Ala        | Val        | Glu        | Thr        | Ala<br>280 | Ala        | Glu        | Asn        | Gly        | Val<br>285 | Trp        | Ala | Met        |
| Ser        | Ser<br>290 | Leu        | Gly        | Ser        | Gln        | Leu<br>295 | Gly        | Ser        | Ser        | Leu        | Gly<br>300 | Ser        | Ser        | Gly | Leu        |
| Gly<br>305 | Ala        | Gly        | Val        | Ala        | Ala<br>310 | Asn        | Leu        | Gly        | Arg        | Ala<br>315 | Ala        | Ser        | Val        | Gly | Ser<br>320 |
| Leu        | Ser        | Val        | Pro        | Pro<br>325 | Ala        | Trp        | Ala        |            | Ala<br>330 | Asn        | Gln        | Ala        |            | Thr | Pro        |
| lia        | Ala        | Arg        | Ala<br>340 | Leu        | Pro        | Leu        | Thr        | Ser<br>345 | Leu        | Thr        | Ser        |            | Ala<br>350 | Gln | Thr        |

#### 1 INFORMATION FOR SEQ ID NO:105:

355

Ala Pro Gly His Met Leu Gly

- .i sequence characteristics:
  - A LENGTH: 3027 base pairs
  - 'B' TYPE: nucleic acid
  - C' STRANDEDNESS: single
  - D TOPOLOGY: linear
- xi SEQUENCE DESCRIPTION, SEQ ID NO:105:

| AUTTCAGTCS   | AGAATBATAS | TGACGGGCTG    | TATCCACGAT   | GGCTGAGACA        | ACCGAACCA." | ri i  |
|--------------|------------|---------------|--------------|-------------------|-------------|-------|
| TGTTTGGACGT  | JGGGACATOR | TAAGCCGACG    | TGATOGGGTT   | GGCGGCGAA         | GCCGAAGCCC  | :21   |
| DOGAAGOOGA   | AGCGCTGGCC | 30030GGGGG    | 3GGCCCCTGC   | CCGTGCCGCC        | CGGTTGAAGC  | 1.80  |
| STGAGGCGCT   | GGGATGGCF  | TOAGCOGAGG    | ACGAGAACCT   | TCCCCAGGAT        | ATGCAGACTG  | 240   |
| DAABACTT)    | JAAGACTATT | A TOA TTATOA  | Garanana)    | MATCH MORE TO THE | AGGAGGCCG:  |       |
| ALIBETTEGETA | TERTOGUSAU | 33777777 30 t | ATTITIOTTI.  | ICNAUA TTOT       | CACCATTO    | ٠٠,   |
| Danared:     | JUANTESTER | TONTOTO TO E  | ATTIN 200003 | TTDAGCGGAT        | ACATTOTOTO  | 420   |
| CURACACCAT   | GAGGCCACTG | AACGCCAGCA    | 3230300000   | 100TT00000        | COGGAGCCAA  | 480   |
| JCAAGGTGTG   | ATCAACATGA | CCTCGCTGGA    | CTTCAACAAG   | JCCAAAGAAA        | ACCTOCOCCC  | 540   |
|              | Addrodadii | GCGAATTCA;    | FGAT FACTOR  | 2AG 2AG 23GG      | AGCCGATTT   | ร์ติว |

| TTCCGCTGGG GCGAAAGACG AACCACGTG          | C GTGGCGGCTC     | AAAGTGACCS | TGACCGAAGA  | 780                |
|------------------------------------------|------------------|------------|-------------|--------------------|
| GGGGGGACAG TACAAGATGT CGAAAGTTG          | A GTTCGTACCS     | TGACCGATGA | CFTACGCGAC  | 840                |
| GTCAACACCG AAACCACTGA CGCCACCGA          | A GTCGCTGAGA     | TCGACTCAGC | CGCAGGCGAA  | 900                |
| GCCGGTGATT CGGCGACCGA GGCATTTGAC         | ACCGACTCTG       | CAACGGAATC | TACCGCGCAG  | 960                |
| AAGGGTCAGC GGCACCGTGA CCTGTGGCGA         | A ATGCAGGTTA     | CCTTGAAACC | CUTTCCGGTG  | 1020               |
| ATTOTCATOO TGOTCATGTT GATOTCTGGO         | GGCGCGACGG       | GATGGCTATA | CCTTGAGCAA  | 1080               |
| TACGACCCGA TCAGCAGACG GACTCCGGCC         | CCGCCCGTGC       | TGCCGTCGCC | GCGGCGTCTG  | 1140               |
| ACGGGACAAT CGCGCTGTTG TGTATTCACC         |                  |            |             | 1200               |
| AGGTEGEACC TEGEOGRACAA TITTEETGTEE       |                  |            |             | 1260               |
| CAAAADTOADT DAAAAAAA CODDODOOTC          |                  |            |             | 1320               |
| CGGAGCTACA TOOGGATTOG GCCGTCGTTC         |                  |            |             | 1380               |
| AGGACAGCCC CAATCCGTCG ATGGCGGCCA         |                  |            |             | 1440               |
| ACGGCAATTG GCTGATCACC AAGTTCACCC         |                  |            |             | 1500               |
| TOTGACGGGG GCGCGGTGG OTGCTCGTGC          |                  |            |             | 1560               |
| GCCCGACCTC AAACAGATCT CGGCCGCTGT         |                  | GGGTTATTTA | AGATTAGTTG  | 7,620              |
| CONCTRINTT TACCTRATCT TRACATTOTT         |                  |            |             | 1580               |
| TEGTECHETT TOCATOTEGG STITCTGACTA        |                  |            |             | 7740               |
|                                          | GCCGAGCGGA       |            |             | 1800               |
| PTTDWWGGGG TTACCACCGG AGATCAACTC         |                  |            | CG3GTTCG3C  | 1860               |
| TOTALTERSTO STOCOCOCCA AGATOTOCCA        |                  | ADTOACCTOT | TTT 0000000 | . <del>9</del> 773 |
| TO BE SECTION ON STUDIED BY CONTRESPONDE |                  |            |             | 1341               |
| TERMINATE RESERVES START TEEL            |                  |            |             |                    |
| 33070A37T3 AZCSCUGGGG AUGTROWGGT         |                  |            |             |                    |
| POTRA CERTA CONTROLETA APTEC             |                  |            |             |                    |
| BAUTAAUTTI TOOGGGBAAA ADA 10000) 1       |                  |            |             |                    |
| TATE TO BEET 1 CANDACTOR OF THE COMME    | # 12 3# <b>4</b> |            |             | egra :             |

| TGTGCCCCAA | . GCGCTGCAAC | AACTGGCCCA | GCCCACGAAA | AGCATCTGGC          | CGTTCGACCA | 2460 |
|------------|--------------|------------|------------|---------------------|------------|------|
| ACTGAGTGAA | CTCTGGAAAG   | CCATCTCGCC | GCATCTGTCG | CCGCTCAGCA          | ACATCGTGTC | 2520 |
| GATGCTCAAC | AACCACGTGT   | CGATGACCAA | CTCGGGTGTG | TCGATGGCCA          | GCACCTTGCA | 2580 |
| CTCAATGTTG | AAGGGCTTTG   | CTCCGGCGGC | GGCTCAGGCC | GTGGAAACCG          | CGGCGCAAAA | 2640 |
| CGGGGTCCAG | GCGATGAGCT   | CGCTGGGCAG | CCAGCTGGGT | TCGTCGCTCG          | GTTCTTCGGG | 2700 |
| TCTGGGCGCT | GGGGTGGCCG   | CCAACTTGGG | TCGGGCGGCC | TCGGTCGGTT          | CGTTGTCGGT | 2760 |
| GCCGCAGGCC | TGGCCGCGG    | CCAACCAGGC | GCCCCCC    | gcggcgcg <b>c</b> g | cacraccacr | 2820 |
| GACCAGCCTG | ACCAGCGCCG   | CCCAAACCGC | TOCOGGACAC | ATGCTGGGCG          | GGCTACCGCT | 2880 |
| GGGGCAACTG | ACCAATAGCG   | REGEGEGETT | nggcogggmm | AGCAATGCGT          | TGCGGATGCC | 0940 |
| seegegggcg | TACGTAATGC   | CCCGTGTGCC | ngccsccsgg | TAACGCCGAT          | CCGCACGCAA | 3000 |
| rgegggeeer | CTATGCGGGG   | AGCGATC    |            |                     |            | 3027 |

## I INFORMATION FOR SEQ ID NO:136:

- 1 SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 396 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - D: TOPOLOGY: linear
- Mi SEQUENCE DESCRIPTION DEC 10 MC.126.
- Tal Mai Asp Phe 31: Wa Let Tro Pro 31th Tie Ash Ser Nia Arg Met
- Tyr Ala Bly Bro Bly Ger Ala Ger Leu Val Ala Ala Ala Lys Met Trp 30 25 30
- and Ser Jac Ala en kur ses the Ser Asa Ala Ser Asa She Ulin Ser  $\mathbb{R}^{n}$
- cal Mai Tri (t) ( e) or this to the free lie die der der Ala die Bi
- Led Met Val Vis A ( A.) ser Gro Do: VA. Ala Tro Met Ger Val Thr 93 90
- Ala Ilo Inn Ala Ilo Del Tel Wia Ala Inn Ma. Are Mi. Ala Ala Ala 95

|            |            | 115        | 5          |            |            |            | 120        | !          |            |            |            | 125        |            |            |                 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------------|
| Glr        | 130        | Thi        | r Pro      | Ala        | ı Ile      | 135        | Val        | Asn        | Glu        | Ala        | 140        |            | - Gly      | Glu        | Met             |
| Trp<br>145 | Ala        | Gln        | Asp        | Ala        | Ala<br>150 | Ala        | Met        | Phe        | Gly        | Tyr<br>155 | Ala        | Ala        | Thr        | Ala        | Ala<br>150      |
| Thr        | Ala        | Thr        | Glu        | Ala<br>165 | Leu        | Leu        | Pro        | Phe        | Glu<br>170 |            | Ala        | Pro        | Leu        | Ile<br>175 | Thr             |
| Asn        | Pro        | Gly        | Gly<br>180 | Leu        | Leu        | Glu        | Gln        | Ala<br>185 | Val        | Ala        | Val        | Glu        | Glu<br>190 | Ala        | Ile             |
| Asp        | Thr        | Ala<br>195 | Ala        | Ala        | Asn        | Gln        | Leu<br>200 | Met        | Asn        | Asn        | Val        | Pro<br>205 | Gln        | Ala        | Leu             |
| 31n        | Gln<br>Cl0 | Leu        | Ala        | Gln        | Pro        | Th:<br>215 | Lys        | Ser        | ïle        | Trp        | Pro        | Phe        | Asp        | Jin        | Leu             |
| Ser<br>225 | Glu        | Leu        | Trp        | Lys        | Ala<br>230 | Ile        | Ser        | Pro        | His        | Leu<br>235 | Ser        | Pro        | Leu        | ser        | Asn<br>240      |
| Ile        | Val        | Ser        | Met        | Leu<br>245 | Asn        | Asn        | His        | Val        | Ser<br>250 | Mec        | Thr        | Asn        | Ser        | Gly<br>255 | Val             |
| Ser        | Met        | Ala        | Ser<br>260 | Thr        | Leu        | H13        | Ser        | Met<br>265 | Leu        | Lys        | Gly        | Phe        | Ala<br>270 | Pro        | Ala             |
| Ala        | Ala        | 31n<br>275 | Ala        | Val        | 31u        | Thr        | Ala<br>280 | Ala        | Gln        | Asn        | Gly        | Val<br>285 | Gln        | Ala        | Met             |
| ;=:        | Ser<br>190 | Leu        | Jiy        | ser        | Jln        | Leu<br>195 | glv        | Jer        | Jer        | Leu        | 31y<br>300 | Ser        | Ser        | 31y        | Leu             |
| 31;<br>105 | Åid        | ily.       | Val        | Āla        | Ala<br>310 | Asn        | Leu        | Gly        |            | Ala<br>315 | Ala        | Jer        | ∀a.        | Bly        | Ser<br>320      |
| ,eu        | Ser        | ∵a !       | Sto        | Jin<br>Pas | είΑ        | Trp.       | Ala        |            | A1a<br>-37 | Aon        | lln        | Ala        | Va.        | Thir       | Pro             |
| :          | N          | Aru        | Ala<br>340 | Įm ;       | * were     | 1991       | Onr        | Jer<br>24: | Leu        | în:        | Jers       |            | \1         | 1.1.       | Thr             |
| cia.       | Pro        | 31;<br>355 | His        | Мет        | len:       | 317        | 11y<br>360 | Leu        | Pro        | Leu        | αlγ        | 31n<br>365 | leu        | Tnr        | Asn             |
| er         | alv<br>sma | 31y        | 317        | Pne        | 31.y       | Gly<br>ans | a.         | Ser        | Asn        | A. 1       | Leu .      | Arg        | Mes        | Pro        | <sup>n</sup> rc |

And A.4 Two Map Maps of C App Maps on the A.4 difference of  $\hat{A}_{1}(\hat{a})$  and  $\hat{A}_{2}(\hat{a})$ 

#### ii sequence characteristics.

- (A) LENGTH: 1616 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

| CATCGGAGGG           | AGTGATCACC           | ATGCTGTGGC                              | ACGCAATGCC                             | ACCGGAGTAA           | ATACCGCACG          | €٥          |
|----------------------|----------------------|-----------------------------------------|----------------------------------------|----------------------|---------------------|-------------|
| GCTGATGGCC           | GGCGCGGGTC           | CGGCTCCAAT                              | GCTTGCGGCG                             | GCCGCGGGAT           | GGCAGACGCT          | 120         |
| TTCGGCGGCT           | CTGGACGCTC           | AGGCCGTCGA                              | GTTGACCGCG                             | CGCCTGAACT           | CTCTGGGAGA          | 180         |
| AGCCTGGACT           | JGAGGTGGCA           | GCGACAAGGC                              | GCTTGCGGCT                             | GCAACGCCGA           | TGGTGGTCTG          | 240         |
| COAAABATOE           | JEGTCAACAC           | AGGCCNAGAC                              | COSTGCGATG                             | CAGGCGACGG           | cachinacasa         | 200         |
| GGCATACACC           | CAGGCCATGG           | JCACGACGCC                              | GTCGCTGCCG                             | GAGATCGCCG           | CCAACCACAT          | 350         |
| CACCCAGGCC           | GTCCTTACGG           | GCACCAACTT                              | STTESSTATE                             | AACACJATCC           | CGATCGCGTT          | 423         |
| GACCGAGATG           | GATTATTTCA           | TECHTATETS                              | GAACCAGGCA                             | GCCCTGGCAA           | TGGAGGTCTA          | 480         |
|                      | ACCGCGGTTA           |                                         |                                        |                      |                     | 540         |
|                      | GCGAGCCAGA           | GCACGACGAA                              | CCCGATCTTC                             | GGAATGCCCT           | CCCCTGGCAG          | 500         |
|                      |                      |                                         | GGCTACCCAG                             | ACCCTCGGCC           | AACTGGGTGA          | 660         |
| JATGAGGGGC           | JOGATGCAGC           | AGCTGACCCA                              | TOTGETTGCAG                            | CAGGTGACGT           | CONTROTTONO         | 720         |
|                      |                      | GCGGCAACCC                              | AGCCGAGGAG                             | CDDDCCCDAAG          | AGATGGGGGT          | 730         |
|                      |                      |                                         | 30TROCTCCT                             | 3GATCA6GCC           | 207303030           | <b>34</b> 0 |
| 1303630079           | CTGCGCGCGG           |                                         | TGGCGCAGGT                             | GGTCGTTGA            | COUGCACGOU          | ЭJ、         |
| 'CTGATOTCT           | TAGCTGATCG           | TODDDDAAAA                              | T300300700                             | TTSATGCCG3           | Baaracra;           | 950         |
|                      | CCAUGGGT 1           | Mudacacta :                             | 13771377107                            | MAGCTATES            | 1778/13773          | . ' -       |
| 11277777             | MOTOCNETA            | 111703000                               | \$ 77 G 1. NG                          | ANA MARTHA           | 13174.134.171       | . "         |
| TUANGAAGAC           | GACGAGGACS           | ACTGGGACGA                              | AGAJGACGAC                             | TGGTGAGCTG           | 100TAATGAC          | 1147        |
| .N. 2.N. G. A. CTT C | coggochees           | HOCCGGAAG                               | ACTTGCCAAC                             | ATTTTGGCG4           | 33AAGGT <b>AA</b> A | 127         |
| AA JA JAAA 31        | AUTOCAGOAT           | 100A0ACATS                              | AAGACCGATG                             | 27002 <b>7A</b> 0000 | 13.272A(\$3A.)      | 125         |
| AMBUTANT             | 70 <b>3A</b> 37133A1 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | ************************************** | ARTORA TOS           | Samura Arman        | +2          |

| AATATTOGTO AGGCCGGCGT CCAATACTCG AGGGCCGACG AGGACCAGCA GCAGGCGCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1500                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| TECTEGEAAA TGGGETTETG ACCEGETAAT ACGAAAAGAA ACGGAGCAAA AACATGACAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1560                                    |
| AGCAGCAGTG GAATTTCGCG GGTATCGAGG CCGCGGCAAG CGCAATCCAG GGAAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1616                                    |
| (2) INFORMATION FOR SEQ ID NO:108:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 432 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| %10 SEQUENCE DESCRIPTION: SEQ ID NO:108:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • • • • • • • • • • • • • • • • • • • • |
| CTAGTGGATG GGACCATGGC CATTTTCTGC AGTCTCACTG CCTTCTGTGT TGACATTTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                                      |
| JEACGEGGG GGAAACGAAG CACTGGGGTC GAAGAACGGC TGCGCTGECA TATEGTEEGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120                                     |
| AGETTECATA COTTECTOS GEOGGAAGAG CTTGTEGTAG TEGEOOGEGA TGAEAACCTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180                                     |
| TOAGAGTOS STOAAACSTA TAAACACBAG AAAGGGGGAG ACCGACGGAA GGTCGAACTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 243                                     |
| GCCCGATCCC GTGTTTCGCT ATTCTACGCG AACTCGGCGT TGCCCTATGC GAACATCCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300                                     |
| PEGACGITGC CITCOGCICA AGCCATTGCC TGACCGGCTT CGCTGATCGI CCGCGCCAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 360                                     |
| CTCTGCAGCC CGTTGTTCAG CTCGGTAGCC GTGGCGTGCC ATTTTTGCTG GACACCCTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 420                                     |
| TALESCOTOCS AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 422                                     |
| L DECEMBATION FOR SEQ ID NO.104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| DEQUENCE CHARACTERISTICS:  A: LENGTH: 368 amino acido  B: TYPE: amino acid  C: STRANDEUNESS sindle  L: 009000000nea:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
| RECMEMBED IN FRANCISCO CONTROL OF THE CONTROL OF TH |                                         |
| Men Seu Trp Hou Ala Met Pro Pro Sou waa Ash Ini Ala Arg Seu Met<br>10 - 10 - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Ala Bly Ala Bly Pr. Ala Dro Met Leu Ala Ala Ala Ala Bly Try Bln<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
| The Lew Ser Aga Aga Lew the Aga to Aga was 310 Dec Tor Aga Arg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |

| Leu<br>65   | Ala         | Ala        | Ala        | Thr        | Pro<br>70  | Met        | Val              | Val        | Trp          | Leu<br>75  | Gln        | Thr            | Ala        | Ser          | Thr<br>80  |
|-------------|-------------|------------|------------|------------|------------|------------|------------------|------------|--------------|------------|------------|----------------|------------|--------------|------------|
| Gln         | Ala         | Lys        | Thr        | Arg<br>85  | Ala        | Met        | Gln              | Ala        | Thr<br>90    | Ala        | Gln        | Ala            | Ala        | Ala<br>95    | Tyr        |
| Thr         | Gln         | Ala        | Met<br>100 | Ala        | Thr        | Thr        | Pro              | Ser<br>105 | Leu          | Pro        | Glu        | Ile            | Ala<br>110 | Ala          | Asn        |
| His         | Ile         | Thr<br>115 | Gln        | Ala        | Val        | Leu        | Thr<br>120       | Ala        | Thr          | Asn        | Phe        | Phe<br>125     | Gly        | Ile          | Asn        |
| Thr         | Ile<br>130  | Pro        | Ile        | Ala        | Leu        | Thr<br>135 | Glu              | Met        | Ąsp          | Tyr        | Phe<br>140 | Ile            | Arg        | Met          | Trp        |
| Asn<br>145  | Gln         | Ala        | Ala        | Leu        | Ala<br>'50 | Met        | Glu              | Val        | Tyr          | Gln<br>155 | Ala        | Glu            | Thr        | Ala          | Val<br>160 |
| Asn         | Thr         | Leu        | Pne        | 31u<br>165 | Lýs        | Leu        | Jiu              | Fro        | Met<br>170   | Ala        | Ser        | Tie            | Leu        | Asp<br>175   | Pro        |
| Gly         | Ala         | Ser        | Gln<br>180 | Ser        | Thr        | Thr        | Asn              | Pro<br>185 | Ile          | Phe        | Gly        | Met            | Pro<br>190 | Ser          | Pro        |
| jly         | Ser         | Ser<br>195 | The        | Pro        | 7al        | зlу        | Gln<br>200       | Leu        | Pro          | Pro        | Ala        | Ala<br>205     | Thr        | Gln          | Thr        |
| Leu         | Gly<br>210  | Glm        | Len        | Sly        | 31 u       | Mec<br>215 | Set              | 31y        | Pro          | Met        | Gln<br>220 | Gln            | Leu        | Thr          | Sin        |
| 5***<br>115 | Leu         | 3ln        | 311.       | ∵ā.        | Thr<br>230 | Jer        | Lett             | Phe        | 3er          | 31n<br>235 | Val        | aly            | 317        | Thr          | 31y<br>240 |
| #* ,        | 117         | Asī.       | 355        | A.a<br>243 | Asp        | Blu        | 3.4              | Ala        | Ala<br>250   | 31n        | Met        | 31             | Leu        | Leu<br>283   | gty        |
| Thi         | Ser         | Pro        | Leu<br>260 | Jer        | Asn        | Ніз        | Pro              | Leu<br>365 | Ala          | 31y        | giy        | Ser            | 317<br>270 | Pro          | Jer        |
| r v d       | 3. 1        | 3.1        | ì.         | Leri       | Ler.       | No s       | `                | ī          | ,101         | Leu        | irto       | 34 ()<br>5 8 % |            | 1            | #11        |
|             | 00%<br>0.30 | Thr        | M.4        | 7:::       | Dr         | <br>295    | Maria.           | Jer        | l. n         | Des        | 11.0       | )<br>)         | ugii)      | r I''        | ∵1.        |
| Ala<br>119  | Fro         | Jer        | 7.4.       | Mer.       | Pro<br>310 | ALI        | λ <sub>e</sub> a | λia        | A. a         | 3.7<br>315 | ser        | o#:            | Ali        | Thi          | 31y<br>321 |
| 1.7         | À.a         | A. i       | Pir        | . 1.       | 317        | ÅΣα        | JI y             | Ala        | Merc<br>To a |            | il:        | 311            | A.) 4      | 71 :<br>11 : | Je:        |

|       | 355                                                                                                                                                                 |                |                |                                                |                         |                              |                       | 360            |           |           | 365       |           |           |           |           |           |     |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|------------------------------------------------|-------------------------|------------------------------|-----------------------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----|
| .2.   | INFO                                                                                                                                                                | RMAT           | ION            | FOR                                            | SEQ                     | ID N                         | 0:11                  | 0:             |           |           |           |           |           |           |           |           |     |
|       | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 100 amino acids  (B) TYPE: amino acid  (C) STRANDEDNESS:  (D) TOPOLOGY: linear  (X1 SEQUENCE DESCRIPTION: SEQ ID NO:110: |                |                |                                                |                         |                              |                       |                |           |           |           |           |           |           |           |           |     |
|       | *                                                                                                                                                                   |                |                |                                                |                         |                              |                       |                |           |           |           |           |           |           |           |           |     |
|       | Met<br>1                                                                                                                                                            | Ala            | Glu            | Met                                            | Lys<br>5                | Thr                          | Asp                   | Ala            | Ala       | Thr<br>10 | Leu       | Ala       | Gln       | Glu       | Ala<br>15 | gly       |     |
|       | Asn                                                                                                                                                                 | Phe            | Jlu            | Arg<br>20                                      | lie                     | Ser                          | Зly                   | Asp            | Leu<br>25 | Lys       | Thr       | Gin       | lle       | Asp<br>30 | Jin       | .ai       |     |
|       | 31u                                                                                                                                                                 | ser            | Thr<br>35      | Ala                                            | Зlγ                     | Ser                          | Leu                   | Jln<br>40      | Gly       | Glm       | Trp       | Arg       | Gly<br>45 | Ala       | Ala       | gly       |     |
|       | Thr                                                                                                                                                                 | Ala<br>50      | Ala            | Gln                                            | Ala                     | Ala                          | Val<br>55             | Val            | Arg       | Phe       | Gln       | Glu<br>60 | Ala       | Ala       | Asn       | Lys       |     |
|       | 31n<br>45                                                                                                                                                           | lys            | Gla            | glu                                            | Leu                     | Asp<br>70                    | 314                   | ile            | ser       | Thr       | Asn<br>TS | Tle       | Arg       | 31n       | Ala       | Gly<br>BC |     |
|       | Val                                                                                                                                                                 | 3ln            | Tyr            | Ser                                            | Arg<br>85               | Ala                          | Asp                   | Slu            | Glu       | Gln<br>90 | Glm       | Gln       | Ala       | Leu       | Se:<br>95 | Ser       |     |
|       | lin                                                                                                                                                                 | Met            | 317            | Phe<br>100                                     |                         |                              |                       |                |           |           |           |           |           |           |           |           |     |
|       | DEF                                                                                                                                                                 | RMAT           | CION           | FOR                                            | SEC                     | := :                         | IC : 1 :              |                |           |           |           |           |           |           |           |           |     |
|       | i                                                                                                                                                                   | JEQU<br>A<br>B | LEN<br>TYP     | IGTH:<br>PE::::::::::::::::::::::::::::::::::: | : 396<br>nusle<br>EDNE: | TERIS<br>5 pas<br>10 .<br>10 | se pa<br>lolo<br>long | 4175           |           |           |           |           |           |           |           |           |     |
|       |                                                                                                                                                                     | JEQ.           | ENCE           | CEC                                            | CRI:                    |                              | : Ji                  | i. ::          | . 15.     | 11.       |           |           |           |           |           |           |     |
| : A   | 7230                                                                                                                                                                | 10 JA          | .00 <b>T</b> 0 | JAAA/                                          | ¥ 000                   | CAGA:                        | TCGA                  | 2 <b>22</b> .0 | XTEE      | iag t     | DIGA:     | :ggc.     | ka ar     | rrogr     | rtga      | `.        | ċ   |
| 33373 | AJT                                                                                                                                                                 | 10 00          | cado           | acac                                           | 3 030                   | GGA                          | 2333                  | :300           | CAGO      | CC .      | 30007     | 337       | 10 Y      | ·***      | ::NG/     | ί.        | 120 |

ACTACIONATI NACIONANGO ACCACATOCA (CAGATOTEC ACCACTATTO CONGCOCC)

| CTT   | GACGA                                                                                                                           | GG G      | GAAG              | CAGT                                    | c cc                    | TGAC                | CAAG                                  | cre       | GCA          |           |           |           |             |           |           |           | 396   |
|-------|---------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|-----------------------------------------|-------------------------|---------------------|---------------------------------------|-----------|--------------|-----------|-----------|-----------|-------------|-----------|-----------|-----------|-------|
| (2)   | (2) INFORMATION FOR SEQ ID NO:112:                                                                                              |           |                   |                                         |                         |                     |                                       |           |              |           |           |           |             |           |           |           |       |
|       | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 80 amino acids  (B) TYPE: amino acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |           |                   |                                         |                         |                     |                                       |           |              |           |           |           |             |           |           |           |       |
|       | (xi)                                                                                                                            | SEQ       | UENC:             | E DE                                    | SCRI                    | PTIO                | N: S                                  | EQ II     | D NO         | : 112     | :         |           |             |           |           |           |       |
|       | Ile<br>1                                                                                                                        | Ser       | Gly               | Asp                                     | Leu<br>5                | Lys                 | Thr                                   | Gln       | lle          | Asp<br>10 | Gln       | Val       | Glu         | Ser       | Thr<br>15 | Ala       |       |
|       | 317                                                                                                                             | Ser       | Leu               | Jin<br>30                               | dly                     | Jin                 | Crp                                   | Arg       | 31y<br>25    | Ala       | aia       | sly       | Inr         | Ala<br>30 | яіа       | Gln       |       |
|       | Ala                                                                                                                             | Ala       | Val<br>35         | 7al                                     | yrg                     | Phe                 | Gln                                   | Glu<br>40 | Ala          | Ala       | Asn       | Lys       | Glm<br>45   | Lys       | Gln       | Glu       |       |
|       | Leu                                                                                                                             | Asp<br>50 | Glu               | Ile                                     | Ser                     | Thr                 | Asn<br>55                             | Ile       | Arg          | Gln       | Ala       | Gly<br>60 | Vai         | Gln       | Tyr       | Ser       |       |
|       | Arg<br>65                                                                                                                       | Ala       | dst.              | Glu                                     | 3lu                     | Gin<br>70           | Gln                                   | Jin       | Ala          | Leu       | Ser<br>75 | Ser       | Gln         | Met       | Gly       | Phe<br>80 |       |
| 2     | INFOR                                                                                                                           | T'AMS     | ION :             | FOR :                                   | EÇ :                    | id no               | 0:11.                                 | i :       |              |           |           |           |             |           |           |           |       |
|       | -                                                                                                                               | A<br>B    | LEI<br>TY:<br>DTI | E JHI<br>NGTH<br>PE :<br>RANDI<br>POLCO | · 387<br>Nucle<br>Ednes | - pas<br>-17<br>-33 | se pa<br>acid<br>sing                 | airs      |              |           |           |           |             |           |           |           |       |
|       | ж1                                                                                                                              | SEÇ!      | JENC              | E DE                                    | SCP II                  | PTIO                | 4: 3                                  | EÇ 51     | o no         | . 113     |           |           |             |           |           |           |       |
|       |                                                                                                                                 | ** 1      | *******           | منتثن                                   |                         |                     | · · · · · · · · · · · · · · · · · · · | 7         | 7754         |           | 1777      | 7         | ··.         | 777       | 7747      | ,         |       |
|       | ia vitov                                                                                                                        | \? *      | 7777              | . <del></del> .                         | : :T:                   | TTAA.               | 1777                                  |           | 1 (1 mm /1)  | ,         | 1177      |           | 77 %        |           |           | 7         | ·     |
|       |                                                                                                                                 | 13 22     | NJCG              | carr                                    | 7 77                    | 23.327              | raga                                  | TAL       | 707 <b>7</b> | 75        | 77.77     | DA TIT    | <del></del> | 7077      | 3A. 34    |           | 1.3   |
| ::773 | STAC                                                                                                                            | 3C 3      | rada              | AACC:                                   | 3 373                   | RICE/               | 2230                                  | A-JO:     | cccc         | rdd       | BAGC      | rrgg'     | In A        | JGGA:     | crac      | <b>:</b>  | 343   |
| 1000  | 1077007                                                                                                                         | 70 A      | AJJA.             | GGGA.                                   | t TG/                   | ATK                 | GACT                                  | TGA       | CATT         | 700       | ntgg/     | ATTG(     | CG 2        | TTGC      | caca      | 3         | 3 0 0 |

THE TREE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TARABLE TO TARABLE TOTAL

i | SEQUENCE CHARACTERISTICS:

| <ul><li>(A) LENGTH: 272 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul> |     |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:                                                                                                 |     |
| CGGCACGAGG ATCICGGTTU GCCCAACGGC GCTGGCGAGG GCTCCGTTCC GGGGGCGAGC                                                                         | 60  |
| TGCGCGCGGG ATGCTTCCTC TGCCCGCAGC CGCGCCTGGA TGGATGGACC AGTTGCTACC                                                                         | 120 |
| TTCCCGACGT TTCGTTCGGT GTCTGTGCGA TAGCGGTGAC CCCGGGCGCGC ACGTCGGGAG                                                                        | 130 |
| CAGACGGAACG CAGACGGGACG CAGACGGCGCGCGCGC                                                                                                  | 240 |
| GCGGGGGTT CGCCGATTGG CATCTTTGCC CA                                                                                                        | 277 |
| I INFORMATION FOR SEQ ID NO:115:                                                                                                          |     |
| (i SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 amino acids  (B) TYPE: amino acid  (C) STRANDEDNESS:  (D) TOPOLOGY: linear                   |     |
| EXI SEQUENCE DESCRIPTION: SEQ ID NO:115:                                                                                                  |     |
| Asp Pro Val Asp Ala Val Ile Ash Thr Thr Cys Ash Tyr Gly Gln Val                                                                           |     |
| Val Ala Ala Leu<br>20                                                                                                                     |     |
| I INFORMATION FOR SEQ ID MOSTIFE                                                                                                          |     |
| : SEQUENCE CHARACTERISTICS:  A. LENGTH: 15 amino acids  B. TYPE. amino acid  C. TERANDEDNESC  D. TOPOLOGY linear                          |     |
| AL SEQUENCE DESCRIPTION SECTION 1:1-                                                                                                      |     |
| Ala Mai Slu Ser Gly Met Leu Ala Den Sly Thr Pro Ala Pro Ser<br>L S L                                                                      |     |
| U INFORMATION FOR SEQ ID NO.117.                                                                                                          |     |
| : SEQUENCE CHARACTERIONIOS  TO OMOTE SELECTIONIOS                                                                                         |     |

```
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:117:
```

Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala Ala Lys 10

Glu Gly Arg

## (2) INFORMATION FOR SEQ ID NO:118:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 15 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear

# MAN SEQUENCE DESCRIPTION: SEQ TO NO:118:

Tyr Tyr Trp Cys Pro Gly Glin Pro Phe Asp Pro Ala Trp Gly Pro 10

- 10 INFORMATION FOR SEQ ID NO:119:
  - 11 SEQUENCE CHARACTERISTICS
    - (A) LENGTH: 14 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS.
    - (D) TOPOLOGY: linear
  - MI SEQUENCE DESCRIPTION: SEQ ID NO:119:

Asp lie Bly Ber Blu Ber Thr Blu Asp Bin Bin Kaa Ala Val

- INFORMATION FOR SEQ 10 MO:120.
  - 1 SEQUENCE CHARACTERISTICS.
    - (A) LENGTH: 13 amino acids
    - B TYPE aming agid
      TRANUEDNESS
      TOPOLOGY Chear
  - AL SECMENTY DESCRIPTION OF LINK 120

Ala Siu Siu Der lie Ger Thr Kaa Jiu Kaa lie Va. Pro

- 1 INFORMATION FOR SEC ID NO.111
  - JEQUENCE THARACTERICTICS

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

```
Asp Pro Glu Pro Ala Pro Pro Val Pro Thr Thr Ala Ala Ser Pro Pro
    1 5 10
    Ser
(2) INFORMATION FOR SEQ ID NO:122:
    (i) SEQUENCE CHARACTERISTICS:
       (A) LENGTH: 15 amino acids
        B) TYPE: amino acid
        C'STRANDEDNESS:
        (D) TOPOLOGY: linear
    x: SEQUENCE DESCRIPTION: SEQ ID NO:122:
    Ala Pro Lys Thr Tyr Xaa Glu Glu Leu Lys Gly Thr Asp Thr Gly
    1 5
D INFORMATION FOR SEQ ID NO:123:
    : SEQUENCE CHARACTERISTICS:
        (A) LENGTH: 30 amino acids
        -B) TYPE: amino acid
         C: STRANDEDNESS:
        D: TOPOLOGY: linear
   MI SEQUENCE DESCRIPTION: SEQ ID NO:123:
   App Pro Ala Ser Ala Pro App Ja. Pro Thr Ala Ala Glin Leu Thr Ser
                          13
    Lau Leu Ash Ser Leu Ala Asp Pro Ash Tal Ser Phe Ala Ash
                   2.5
  INFORMATION FOR SEQ ID NO. 114
    SEQUENCE CHARACTERISTIC
        A LENGTH II aming a trac
         B CYPE amino acti-
        D TheoLogy linear
    MI SEQUENCE DESCRIPTION SET ID NO. 1, 4
    Asp Pro Pro Asp Pro His Blo Blo Mad Asp Mer Through Bly Tyr Too Pro
```

```
1 SEQUENCE CHARACTERISTICS:
          (A) LENGTH: " amino acids
          (B) TYPE: amino acid
          (C) STRANDEDNESS:
          (D) TOPOLOGY: linear
    (X1) SEQUENCE DESCRIPTION: SEQ ID NO:125:
     Asp Pro Gly Tyr Thr Pro Gly
(2) INFORMATION FOR SEQ ID NO:126:
     (1) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 10 amino acids
          (B) TYPE: amino acid
          -C) STRANDEDNESS
           L TOPOLOGY linear
    .1X/ FEATURE:
         (D) OTHER INFORMATION: /note= "The Second Residue Can Be Either a
Pro or Thr"
    X1. SEQUENCE DESCRIPTION: SEQ ID NO:126:
     Kaa Kaa Gly Phe Thr Gly Pro Gln Phe Tyr
 D INFORMATION FOR SEQ ID NO:127
      : SEQUENCE CHARACTERISTICS
          A- LENGTH: 3 amino adids
           B. TYPE, amino acid
           G STRANDEDNESS
D TOPOLOGY, linear
     1x; FEATURE:
      D: OTHER INFORMATION: note: "The Third Residue Jan Be Either a
     KI SECTENCE DESCRIPTION DEC 12 NO 12
     had Dro Had Vec Thr Ald Tyr Ala to
 I INFORMATION FOR SEC 12 HORIDS
      : SEQUENCE THAFAUTERISTICS
           A LENGTH - amino acits
           B TMPF amino and a nide of otherwises
```

Kaa Kaa Kaa Glu Lys Pro Phe Leu Arg 1 5

- (2) INFORMATION FOR SEQ ID NO:129
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS:
    - (D) TOPOLOGY: linear
  - (x1) SEQUENCE DESCRIPTION: SEQ ID NO:129:

Kaa Asp Ser Glu Lys Ser Ala Thr Ile Lys Val Thr Asp Ala Ser 10

- " "MEGRMATION FOR SEQ ID NO:130:
  - 1 SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 15 amino acids
    - (B TYPE: amino acid
    - (C. STRANDEDNESS
    - (D) TOPOLOGY: linear
  - RI SEQUENCE DESCRIPTION, SEQ ID NO:130.

Ala Gly Asp Thr Kaa Ile Tyr Ile Val Gly Asn Leu Thr Ala Asp 10

- 2 INFORMATION FOR SEQ ID NO:131
  - . JEQUENCE CHARACTERISTICS:
    - A: LENGTH: 15 amino acido
    - B TYPE: amino acid

    - C CTRANDEDNESS
      D TOPOLOGY linear
  - KI SEQUENCE DESCRIPTION: SEQ ID MO:131.

Als Fro Jud Ser Bly Als And Let Duy the the Car Win Als Als

- DESIGNATION OF SECTION OF
  - : SEQUENCE CHARACTERISTICS
    - A LENGTH 1. amino detas
    - B TYPE amino acid
    - 3 STRANDEDNESS
    - D. TOPOLOGY linear
  - WILL SECTEMENT DEDOCATED IN THE THE WORLD

Asn Val His Leu Val 20

## .2. INFORMATION FOR SEQ ID NO:133:

## (1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 882 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (ii- MCLECULE TYPE: DNA (genomic)

## (X1) SEQUENCE DESCRIPTION: SEQ ID NO:133:

| GCAACGCTGT CG   | TGGCCTTT    | GEGGTGATCG  | GTTTCGCCTC | SCTGGCSGTG   | GCGGTGGCGG   | රිම  |
|-----------------|-------------|-------------|------------|--------------|--------------|------|
| TCACCATCCG AC   | CGAC 3GCG   | DAAAADTDDD  | COCTAGAGGG | A DAGENAAAC  | GCCCAGGCAG   | 120  |
| GGAAGTTCAT GC   | COTTOTTO    | CCGACCCAAC  | AGCAGGCGCC | GGTCCCGCCG   | CCTCCGCCCC   | 130  |
| ATGATCCIAC CC   | CTGGATTC    | CAGGGGGGA   | CCATTCCGGC | TGTAGAGAAC   | GTGGTGDDGA   | 240  |
| GGCCGGGTAC CT   | CACCCGGG    | GTGGGTGGGA  | CGCCGGCTTC | deergesees   | GAAGCGCCCG   | 300  |
| COCTOCCCGG TG   | TTGTGCCT    | GUCCCGGTGC  | CAATCCCGGT | COCGATCATC   | ATTCCCCCCT   | 360  |
| TECEGGGTT3 GC   | AGCCTGGA    | ATGCCGACCA  | TOCCCACCGC | A DOG DOGACO | ACGCCGGTGA   | 420  |
| TONCOTOGGO GA   | DODUDADO    | CCGACCACGC  | CGCCGACCAC | GEEGGTGACC   | ACCCCCCCAA   | 480  |
| ndAcqqqqqq JA   | ETT CUADD   | TTGACTAGGC  | TGCCAACGAC | GETGECGACC   | ACCCCCCTCA   | 54 C |
| DOMEGEORACE AA  | NCGACTSTC   | JECCCHACGA  | lagragaaaa | GACGACGGTC   | JOTGOGACCA   | 500  |
| idat dadada GA  | CCACTGTC    | GETECAGERA  | TOGOCACGCC | GACGACCGTC   | Jemodgenod   | 663  |
| ggadggagga go   | MICACICAA   | CAACCAACCC  | AACAGATGCC | AACCCAGCAG   | CAGACCGTGG   | 720  |
| 0000000AAA 7 30 | enden per e | HOTTODBOAGO | 7900070030 | TGGCCGCAAC   | RECAGESSES   | 19   |
| : FFF GARTH A   | 77747333    | TTTTTTTT    | HTTT DOTT  | TONOTACOOT   | 1708 338 D.T | 44   |
| narraatakt 30   | GGTGACGO    | TOOTSUTOON  | TTTTTTTAKC | 3å           |              | 981  |

# THEORMATION FOR UEQ ID NO 184

- SEQUENCE CHARACTERISTICS
  - A LENGTH 81% base baird B TYPE numbers and COTRANDEDNESS since.

| , X2       | i s        | EQUENCE DE                     | SCRIPTION: 3                                                          | SEQ ID NO:13 | 4:          |             |      |
|------------|------------|--------------------------------|-----------------------------------------------------------------------|--------------|-------------|-------------|------|
| CCATCA     | CCA        | ACCGCTCGC                      | g codeceded                                                           | CGCCGGATCC   | GCCGTCGCCC  | CCACGCCCGC  | 60   |
| CGGTGCC    | TCC        | GGTGCCCCC                      | TTGCCGCCGT                                                            | свесвессте   | GCCGCCGACC  | GGCTGGGTGC  | 120  |
| CTAGGGC    | GCT        | GTTACCGCCC                     | TGGTTGGCGG                                                            | GGACGCCGCC   | GGCACCACCG  | GTACCGCCGA  | 180  |
| TGGCGCC    | GTT        | - GCCGCCGGCC                   | GCACCGTTGC                                                            | CACCGTTGUC   | ACCGTTGCCA  | CCGTIGCCGA  | 240  |
| CCAGCCA    | CCC        | GCCGCGACCA                     | CCGGCACCGC                                                            | CGGCGCCCC    | CGCACCGCCG  | GCGTGCCCGT  | 300  |
| TCGTGCC    | CGT        | ACCGCCGGCA                     | COCCCTTGC                                                             | CGCCGTCACC   | GCCGACGGAA  | CTACCGGCGG  | 360  |
| ACGCGGC    | CTG        | coccccccccc                    | CCCCCCCCAC                                                            | CGCCATTGGC   | ACCGCCGTCA  | CCGCCGGCTG  | 420  |
| GGAGTGC    | CGC        | GATTAGGGCA                     | CTGACCGGCG                                                            | TAACCAGCGC   | AAGTACTCTC  | GGTCACCGAG  | 480  |
| daetted    | AGA        | CGACACCACA                     | GCACGGGGTT                                                            | JTCGGCGGAC   | TGGGTGAAAT  | GGCAGCCGAT  | 540  |
| AGCGGCT    | AGC        | TGTCGGCTGC                     | GGTCAACCTC                                                            | GATCATGATG   | TCGAGGTGAC  | CGTGACCGCG  | 630  |
| 2022233    | AAG        | GAGGCGTTGA                     | ACTCGGCGTT                                                            | GAGCCGATCG   | GCGATCGGTT  | GGGGCAGTGC  | 660  |
| CCAGGCC    | AAT        | ACGGGGATAC                     | CGGGTGTCNA                                                            | AGCCGCCGCG   | AGCGCAGCTT  | CGGTTGCGCG  | 720  |
| ACNGTGG:   | rag        | gggragiera                     | TTACGCCGTT                                                            | GTCTTCGAAC   | ACGAGTAGCA  | GGTCTGCTCC  | 780  |
| JGCGAJG(   | <b>GCA</b> | TOCACCACGC                     | GTTGCGTCAG                                                            | STEGT        |             |             | 815  |
| 2 INF      | ORMA       | MION FOR 3                     | EÇ ID NO.139                                                          | ÷            |             |             |      |
|            |            | A LENGTH: B TYPE: n C: STRANDE | RACTERISTICS<br>1130 base y<br>ucleic acid<br>DNESS singl<br>Yolinear | pairs        |             |             |      |
| 11         | МО         | LECULE TYP                     | E DNA deno                                                            | mic          |             |             |      |
| A.         | JE         | QUENCE DES                     | CPlitton. it                                                          | Ş 12 NO 12.  |             |             |      |
| . 113.122. | 102        | JOCTTAGGTO                     | TONOATONOA                                                            | MOTOTOOGO    | AUTOAU 3000 | 1000TTCAG0  | '3 C |
|            | ЖĴ         | AAJAAGTGCT                     | JANGATOOTO                                                            | GCCCCCGAAA   | CAGGCCCTGA  | TTTGACGCTG  | 120  |
| CACIACC    | GT         | TOAA JOAQQA                    | JATOATOOGG                                                            | CACATTOATA   | rdddAddddT  | GGGCTAACAC  | 130  |
| T 3737A.   | k.PA       | T 3 3 T 3 CA 3 2 T             | TAT TOTAL                                                             | AUTOOGTOT    | 2323627223  | ammagaagh a | 14.0 |

SO THE SETTER THE THE SET OF A RIADIT OF RESIDENCE AND TOTAL COMMANDER SETTER SET

| ACACCCGACG | TGTCATACGC | GCCGCGGCTC | COTCAGCAAG | TTCACCGCAC | CGACGATCCT | 480        |
|------------|------------|------------|------------|------------|------------|------------|
| GCGTTCTGCC | TGTCGTTAAG | CAAGCGGATC | GTGTCGAGGA | AGATCCTGAA | TCAGCAGGCC | 540        |
| TTGATTCGGG | CACACACGTC | GGGGCAAGAC | GTTGCTGAGA | GCATCCGCAC | GATGAAGCAC | 500        |
| TCGCTGGCCT | GGGTCGATCG | ATCGGGCTCC | CTGGCGGAGT | TGAACGGGTT | CGAGGGAAAT | 660        |
| GCCGCAAAGG | CATACTTCAC | CGCGCTGGGG | CATCTCGTCC | CGCAGGAGTT | CGCATTCCAG | 720        |
| GGCCGCTCGA | creeceeee  | GTTGGACGCC | TTCAACTCGA | TGGTCAGCCT | CGGCTATTCG | 780        |
| CTGCTGTACA | AGAACATCAT | AGGGGCGATC | JAGCGTCACA | GCCTGAACGC | GTATATCGGT | 840        |
| TTCCTACACC | AGGATTCACG | AGGGCACGCA | ACGTCTCGTG | CCGAATTCGG | CACGAGCTCC | 900        |
| SCTGAAACCG | craccasacr | JCTCAGTGCC | IGTACGTAAT | COGCTGCGCC | CAGGCCGGCC | 960        |
| COCCGGCCGA | ATACCAGCAG | ATCGGACAGC | GAATTGCCGC | CCAGCCGGTT | GGAGCCGTGC | 1023       |
| ATACCGCCGG | CACACTOACS | GGCAGCGAAC | AGGCCTGGCA | CCGTGGCGGC | GCCGGTGTCC | 1080       |
| 3CGTCTACTT | CGACACCGCC | CATCACGTAG | TGACACGTCG | GCCCGACTTC | CATTGCCTGC | 1140<br>.: |
| TTTCGGCACG | AG         |            |            |            |            | 1152       |
|            |            |            |            |            |            |            |

## [2] INFORMATION FOR SEQ ID NO:136.

- : SEQUENCE CHARACTERISTICS.
  - A. LENGTH. 688 base pairs
  - B' TYPE, nucleic acid
  - C STRANDEDNESS, Single
  - D. TOPOLOGY. linear
- .. MOLECULE TYPE, DNA genomic
- K: SEQUENCE DESCRIPTION, SEQ ID MO:136:

|            | TTCGG 2A333  |              | 137337777AN                            | TTTTTCATTAG | 7777387387  | ÷     |
|------------|--------------|--------------|----------------------------------------|-------------|-------------|-------|
|            | NJAACA JCA 1 |              | 73.7.137.137.1                         | ALCOUNTE    | 17730330AT  |       |
|            |              |              | mm ja i maa                            |             |             | 1.3   |
|            | CGCCATTATS   |              | jaaraajaaa                             | JCCGGTATGG  | CCGAANGTCG  | 24.   |
|            | CCGAGATACG   | JOT OTTOTOCA | AGUTTTTTGA                             | GCGTCGCGCG  | GGCAGCTTC   | 30:   |
| 3000000777 | STACTA FEGA  | JAAGTOTOGE   | : :::::::::::::::::::::::::::::::::::: | TOTGACCGAA  | FTCGCT3 202 | 3 = 3 |

| rece  | GACG       | CT G       | GTCG              | CGGT                   | T GC                   | GCCG                                      | CGAA                 | AGC       | gaca       | GGT       | CGGG:      | rgca      | AT C          | AGGA.      | ATGC      | <u> </u>   | 540 |
|-------|------------|------------|-------------------|------------------------|------------------------|-------------------------------------------|----------------------|-----------|------------|-----------|------------|-----------|---------------|------------|-----------|------------|-----|
| TCAC  | CGCC       | 3C G       | GCAC              | TGCA                   | c gg:                  | CCAG                                      | rgcc                 | gege      | GCGA?      | rgt -     | CAGC       | CATC      | <b>3</b> G 3. | ACAT:      | CATG      | 2          | 600 |
| TCGCC |            |            |                   |                        |                        |                                           |                      |           | AGCT       | CGA '     | TTCC       | CGGA      | EC G          | CCCA       |           |            | 655 |
| (2) 1 | LNFOI      | KMAT.      | LON               | FOR :                  | SEQ 1                  | LD N                                      | د ـ: د               | / :       |            |           |            |           |               |            |           |            |     |
|       | (i)        | (A)<br>(B) | LEI<br>TYI<br>STI | NGTH<br>PE: a<br>RANDI | : 26<br>amino<br>:DNES | reris<br>7 ami<br>5 aci<br>6S: s<br>Linea | ino a<br>id<br>singl | cids      | 5          |           |            |           |               |            |           |            |     |
|       | 11)        | MOLE       | ECUL              | E TYP                  | PE: p                  | epti                                      | de                   |           |            |           |            |           |               |            |           |            |     |
|       | ж.         | JEQU       | JENCI             | CEC                    | CRI                    | TID:                                      | I: 31                | eq II     | : 00       | 137       |            |           |               |            |           |            |     |
|       | Asn<br>I   | Ala        | Val               | Val                    | Ala<br>5               | Phe                                       | Ala                  | Val       | Île        | aly<br>10 | Phe        | Ala       | Ser           | Leu        | Ala<br>15 | Val        |     |
|       | Ala        | Val        | Ala               | Val<br>20              | Ther                   | Tle                                       | Arg                  | Pio       | Thr<br>25  | Ala       | Ala        | Ser       | Lys           | Pro<br>30  | Val       | Glu        |     |
|       | gly        | His        | Gln<br>35         | Asn                    | Ala                    | Gln                                       | Pro                  | 31y<br>40 | Lys        | Phe       | Met        | Pro       | Leu<br>45     | Leu        | Pro       | Thr        |     |
|       | Gln        | Gln<br>50  | Gln               | Ala                    | Sio                    | Val                                       | Pro<br>55            | Pro       | Pro        | Pro       | Pro        | Asp<br>60 | Asp           | Pro        | Thr       | Ala        |     |
|       | 31.7<br>45 | ohe        | Sin               | gly                    | 317                    | Thr                                       | lle                  | Pro       | Ala        | \al       | Gln<br>75  | Asn       | Val           | Va:        | Pro       | Arg<br>30  |     |
|       | Piu        | 31 y       | Thr               | Jer                    | 2ro<br>45              | 31v                                       | ∵a.                  | 31        | 319        | Tnr<br>90 | Pro        | Ala       | Se:           | Pro        | Ala<br>as | Pro        |     |
|       | Hu         | Ala        | Pro               | Ala<br>100             |                        | Pro                                       | шу                   | Va.       | Va.<br>105 | Pro       | Ala        | Pro       | Val           | Pro<br>110 | 114       | 250        |     |
|       | W.A.,      | Prv        | 110<br>113        |                        |                        | * * *                                     | Pr                   | ne<br>    | 77         | 1.7       | 1 975      | Un        |               | 327        | Мен       | Dţ ·       |     |
|       | 7112       | 1.e<br>: · | Ero               | T::::                  | .X                     | : .                                       | erro<br>Vice         |           |            | . • 5     | .1 .       | Th:       | 71.1          | še÷1       | Ā. i      | 7:::       |     |
|       | 7nr<br>145 |            | Pro               | Tni                    | erby pr                | 811 T                                     |                      | *****     | Thr        | Pro       | Va.<br>185 |           | The           | Pro        | Pit       | Tnr<br>160 |     |
|       | Thr        | Pri        | r 🏗 i             |                        | īn:                    | :                                         |                      | 7311      | 711.1      | 5**       | F:         | 755       | Thi           | Pio        | Pro       | Thr        |     |

195 200 205

Ala Thr Ala Thr Pro Thr Thr Val Ala Pro Gln Pro Thr Gln Gln Pro 210 215 220

Thr Gln Gln Pro Thr Gin Gln Met Pro Thr Gln Gln Gln Thr Val Ala 225 230 235 240

Pro Gln Thr Val Ala Pro Ala Pro Gln Pro Pro Ser Gly Gly Arg Asn 245 250 255

Gly Ser Gly Gly Gly Asp Leu Phe Gly Gly Phe 265

## 1: INFORMATION FOR SEQ ID NO:138:

- i: SEQUENCE JHARACTERISTICS:
  - A) LENGTH: 174 amino acids
  - B: TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D' TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:

The Asn Gln Pro Leu Ala Pro Pro Ala Pro Pro Asp Pro Pro Ser Pro
1 5 10 15

Pro Arg Pro Pro Val Pro Pro Val Pro Pro Leu Pro Pro Ser Pro Pro 20 25 30

Ser Pro Pro Thi Gly Trp Val Pro Ang Ala Deu Leu Pro Pro Trp Leu 35 48

Aka Siy Thr Pro Pro Ala Pro Pro Val Pro Pro Met Ala Pro Leu Pro 50

Pro Ala Ala Dro Leu Pro Pro Leu Pro Pro Leu Pro Pro Leu Pro Thr

ome Bud (fro Into Arm Dro Tell Ava Dell Fro Ala Tell Tro Ala Tro Fro Bi

Ala Cvs Pro Pne Val Pro Val Pro Pro Ala Pro Pro Leu Pro Pro Ser

Pro Pro Thr III Leu Pro Ala App Ala Ala dvo Pro Pro Ala Pro Pro 115 - 125

Alla Brown Community of the Service Service Service Service Alla Com

Leu Pro Asp Asp Thr Thr Ala Arg Gly Cys Arg Arg Thr Gly 165 170

#### 2 INFORMATION FOR SEQ ID NO:139:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 35 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (11: MOLECULE TYPE: peptide
- .xi SEQUENCE DESCRIPTION: SEQ ID NO:139:

Sin Pro Pro Ala Glu Val Ser Asp Sin Arg Val Ser Gly New Thr Sly

1 5 10 15

Ala Val Glm Pro Ser Pro Arg Thr Thr Ala Glu Asp Pro Arg Pro Arg 20 25 30

Asn Arg Arg 35

#### INFORMATION FOR SEQ ID NO:140:

- 1 SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 104 amino acids
  - (B) TYPE: amino acid
  - C' STRANDEDNESS: single
  - D TOPOLOGY: linear
- il MOLECULE TYPE: peptide
- KO SEQUENCE DESCRIPTION DEQ ID MORIAU:

arg Ala Asp Ser Ala Sly Sys Thr Sys Arg Trp Sys Xaa Pro His Hu

Type Highert Pro Note Methodric Alb Glob His Gly Ser Ard Ger Thr Thi

Pr. Rt. 3. 195 Art Mo Art Service 4 Art Mo. Art Pr. My Art Len 35 40 45

PRH Pri Trp Ala 31, Ser Ser Aup Mai Phe Pro Pro Trp Phe Ala Ala 80 - 60

Tim Met Pro Ala Arg Arg Val Dio Ard Pro Val Vig Pro Kaa Val Asp 80 Gly Gln Leu Arg Arg Gln Phe Tyr 100

## .23 INFORMATION FOR SEQ ID NO:141:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 53 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (li) MOLECULE TYPE: other nucleic acid
  - (A) DESCRIPTION: /desc = "PCR primer"
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Mycobacterium suberculosis
- K1 SEQUENCE DESCRIPTION: SEC ID MO:141:

# GGATCCATAT GGGCCATCAT CATCATCATC ACGTGATCGA CATCATCGGG ACC

53

• .

- 12 INFORMATION FOR SEC ID NO:142:
  - i SEQUENCE CHARACTERISTICS
    - (A) LENGTH: 42 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - 11 MOLECULE TYPE: other nucleic acid
    - A. DESCRIPTION: 'desc = "PCR Primer"
  - WIL DRIGINAL SCURCE.
    - A PRGANISM Mycopacterium tuperquiosis
  - KI SEQUENCE DESCRIPTION, SEQ ID MO:142:

## DIFFARITTON AGCOTOGGTT SIGNOGGCT CATOTTONNO GN

4.2

- . INFORMATION FOR SECTION NO 149
  - FEGUENCE PHARACTERICTICS
    - A DEMOTES .. mase pairs
    - B TYPE muclate were
    - 0 STRANDEDNESS single
    - D TOPOLOGY linear
  - i: MOLECULE TYPE, other number acid
    - A DESCRIPTION less proper
    - TRICINAL ATTROE

| GGAT  | CCCTGCA GGCTCGAAAC CACCGAGCGG T                                                                          | 31  |
|-------|----------------------------------------------------------------------------------------------------------|-----|
| (2    | INFORMATION FOR SEQ ID NO:144:                                                                           |     |
|       | (1) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single |     |
|       | (D) TOPOLOGY: linear                                                                                     |     |
|       | (ii) MOLECULE TYPE: other nucleic acid  (A) DESCRIPTION: /desc = "PCR primer"                            |     |
|       | (vi) ORIGINAL SOURCE:                                                                                    |     |
|       | (A) ORGANISM: Mycobacterium tuberculosis                                                                 |     |
|       | X1. SPOURMOR DESCRIPTION: SEQ ID NO:144:                                                                 |     |
| 3737  | SAATTO AGOGOTOGAA ATOSTOSOSA T                                                                           | 3.1 |
| 2     | INFORMATION FOR SEQ ID NO:145:                                                                           |     |
|       | SEQUENCE CHARACTERISTICS:                                                                                |     |
|       | (A) LENGTH: 33 base pairs                                                                                |     |
|       | (B) TYPE: nucleic acid                                                                                   |     |
|       | VC: STRANDEDNESS: single                                                                                 |     |
|       | :D TOPOLOGY: linear                                                                                      |     |
|       | ii MCLECULE TYPE: other nucleic acid                                                                     |     |
|       | <pre>&gt; (A. DESCRIPTION: /desc = 'PCR primer"</pre>                                                    |     |
|       | vi ORIGINAL JOURCE.                                                                                      |     |
|       | A CRGANISM. Mycobacterium tuberculosis                                                                   |     |
|       | %1 SEQUENCE DESCRIPTION: SEC 12 NO.145.                                                                  |     |
| JGATO | COAJCO ITGAUATGAA BACCGATBCC BCT                                                                         | 3.3 |
| 2     | INFORMATION FOR SEC ID NO-144                                                                            |     |
|       | CEQUENCE CHARACTER COTTO                                                                                 |     |
|       | A LENGTH DI Base walls                                                                                   |     |
|       | B - TYPE: Audiels vol:                                                                                   |     |
|       | I STRANDEDNESS single                                                                                    |     |
|       | D TOPOLOGY Linear                                                                                        |     |
|       | 1. MOLECULE TYPE: other nucleic acid                                                                     |     |
|       | A DEUCRIPTION dest - 'POR primer'                                                                        |     |
|       | mil Lab (GTMA). Rome is                                                                                  |     |
|       | <pre>b</pre>                                                                                             |     |

| <br>INFORMATION   | FOR  | SEO | ΤD | NO - 1 | 17.        |
|-------------------|------|-----|----|--------|------------|
| <br>THE CHURT TON | - 01 | 350 | 12 | NO: I  | <b>4</b> : |

| - ' |          | CHARACTERISTICS - |
|-----|----------|-------------------|
| -   | 3EUUENLE | -CARACIERISIIIS:  |

(A) LENGTH: 1993 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS, single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: DNA (genomic)

# vi; ORIGINAL SOURCE:

.A ORGANISM: Mycobacterium tuberculosis

## 1X) FEATURE:

(A) NAME/KEY: CDS

B' LOCATION: 150...1273

# x2 SEQUENCE DESCRIPTION: SEQ ID NO:140:

| TGTTCTTCGA                                        | CGGCAGGCTG GTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GAGGAAG GGCCCA                         | CCGA ACAGCTGTTC                          | TCCTCGCCGA 60                |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|------------------------------|
| AGCATGCGGA                                        | AACCGCCCGA TAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GTCGCCG GACTGT                         | IGGG GGACGTCAAG                          | GACGCCAAGC 120               |
| GCGGAAATTG                                        | AAGAGCACAG AAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | AAA ATT CGT TTG<br>Lys Ile Arg Leu<br>5  |                              |
| CTG TTG GCC<br>Leu Leu Ala<br>10                  | . Mai Leu Thr A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CT GCG CCG CTG<br>la Ala Pro Leu<br>15 | CTG CTA GCA GCG<br>Leu Leu Ala Ala<br>20 | GCG GGC 220<br>Ala Gly       |
| TOT 3GO TOS<br>245 319 Ger<br>25                  | . Tha Sic Sic 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GC BGT TGG GGT<br>er Bly Jer Pro<br>30 | JAA ACG GGC GCC<br>314 Thr Gly Ala<br>35 | 330 300 U46<br>3.y Ala       |
| GOT ACT GTG<br>Gly Thr Val                        | GOO ACT ACC C<br>Ala Thr Thr P<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | od Jod Tod Tod<br>ro Ala Ser Ser       | CCG GTG ACG TTG<br>Pro Val Thr Leu<br>CC | 903 3AG 318<br>Ala 310<br>35 |
| kdd ddf A <b>d</b> d<br>ldd acgola <del>d</del> i | Note that the first of the Lett Lett of the Lett Lett of the Lett | AS SOU STO THO<br>YE IF West Dae<br>48 | AAC ITG TGG GGT<br>ABH Len ITT 1.9       | 773 307 194<br>Pro V. 1      |
| CTT DAG GAG<br>Phy His Glu                        | AJG TAT JEG A<br>Arg Tyr Pro A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ad GTO ACG ATC<br>sn Val Thr Tie<br>BT | ACC SCT CAG SGC<br>Thr Ala Sin Siy       | Add GGT 412<br>Thr Gly       |
| TOT 37T 370<br>1941 37T 4.4                       | 733 ATT 307 2<br>7.7 1 + A.a. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AG GUI BIL BED<br>In Ala Ala Ala       | 300 ACC STO AAC<br>309 Thr Val. Acc      | ATT 500 46<br>110 31y        |

| CTC<br>Let<br>120 | ATG<br>Met        | AAC<br>Asn        | : ATC             | GCG<br>Ala        | CTA<br>Leu<br>125 | GCC<br>Ala          | ATC<br>Ile        | TCC               | GCT<br>Ala        | CAG<br>Gln<br>130  | CAG<br>Gln         | GTC<br>Val        | AAC<br>Asn        | TAC<br>Tyr        | AAC<br>Asn<br>135 | 55   | 6 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|--------------------|--------------------|-------------------|-------------------|-------------------|-------------------|------|---|
| CTC<br>Leu        | CCC<br>Pro        | GGA<br>Gly        | GTG<br>Val        | AGC<br>Ser<br>140 | GAG<br>Glu        | CAC<br>His          | CTC<br>Leu        | AAG<br>Lys        | CTG<br>Leu<br>145 | AAC<br>Asn         | GGA<br>Gly         | AAA<br>Lys        | GTC<br>Val        | CTG<br>Leu<br>150 | GCG<br>Ala        | 60   | 4 |
| GCC<br>Ala        | ATG<br>Met        | TAC<br>Tyr        | CAG<br>Gln<br>155 | GGC<br>Gly        | ACC<br>Thr        | ATC<br>Ile          | AAA<br>Lys        | ACC<br>Thr<br>160 | TGG<br>Trp        | GAC<br>Asp         | GAC<br>Asp         | CCG<br>Pro        | CAG<br>Gln<br>165 | ATC<br>Ile        | GCT<br>Ala        | 65   | 2 |
| JCG<br>Ala        | CTC<br>Leu        | AAC<br>Asn<br>170 | CCC<br>Pro        | GGC<br>Gly        | GTG<br>Val        | AAC<br>Asn          | CTG<br>Leu<br>175 | CCC<br>Pro        | GGC<br>Gly        | ACC<br>Thr         | GCG<br>Ala         | GTA<br>Val<br>180 | GTT<br>Val        | CCG<br>Pro        | CTS<br>Leu        | 700  | С |
| JAC<br>His        | 090<br>Arg<br>185 | TCT<br>Ser        | GAC<br>Asp        | 3GG<br>3ly        | TCC<br>Ser        | GGT<br>Gly<br>190   | GAC<br>Asp        | ACC<br>Thr        | TTC<br>Phe        | TTG<br>Leu         | TTC<br>Phe<br>195  | ACC<br>Thr        | CAG<br>Gln        | TAC<br>Tyr        | CTG<br>Leu        | 748  | 3 |
| T00<br>Ser<br>200 | AAG<br>Lys        | CAA<br>Gln        | GAT<br>Asp        | ccc<br>Pro        | GAG<br>Glu<br>205 | GGC<br>Gly          | TGG<br>Trp        | GGC<br>Gly        | AAG<br>Lys        | TCG<br>Ser<br>210  | CCC<br>Pro         | GGC<br>Gly        | TTC<br>Phe        | GGC<br>Gly        | ACC<br>Thr<br>215 | 79€  | 5 |
| ACC<br>Thr        | GTC<br>Val        | JAC<br>Asp        | Phe               | CCG<br>Pro<br>220 | GCG<br>Ala        | gTg<br>Val          | CCG<br>Pro        | GGT<br>Gly        | GCG<br>Ala<br>225 | STS<br>Leu         | GGT<br>Gly         | GAG<br>Glu        | AAC<br>Asn        | GGC<br>Gly<br>230 | AAC<br>Asn        | 844  | ł |
| 314<br>300        | 3GC               | Met               | GTG<br>Val<br>235 | ACC<br>Thr        | ggr<br>3ly        | TGC<br>Zys .        | Ala               | GAG<br>Glu<br>240 | ACA<br>Thr        | OCG<br>Pro         | 3GC<br>31 y        | TGC<br>Ovs        | GTG<br>7al<br>245 | gcc<br>Ala        | TAT<br>Tyr        | 992  |   |
| NTT<br>11 r       | JIV<br>JGC        | NTO<br>11e<br>250 | AGC<br>Ser        | he<br>TTC         | CTC<br>Leu        | Asp                 | JAG<br>Jln<br>DSC | JCC<br>Ala        | AGT<br>Se:        | CAA<br>Gln         | Arg                | 3GA<br>31y<br>260 | ata<br>Leu        | age<br>aly        | 3AG<br>31.        | 94.0 | ) |
| 1.1               | TAA<br>Blo<br>Jar | OTA<br>Leu        | 3GC<br>31H .      | AAT<br>Agn        | Jer               | TCT .<br>Jer<br>201 | GGC<br>Glv        | AAT<br>Aan        | TTC<br>Par        | TTG<br>Leu         | TTG<br>Leb<br>LT : | CCC<br>Pij        | JAC<br>Asp        | gcg<br>Ala        | CAA<br>Gla        | 988  |   |
| .e.*              | TT<br>Le          | )in               | فليمك             | `a                | N.A<br>265        | ă.a.ā               | 31.7              | Fhe               | A.a               | 3 <b>er</b><br>290 | lvs                | Time              | Pro .             | Ala .             | Asn<br>195        | 1114 |   |
| Jin               | A.a               |                   | ser!              | Met<br>300        | lle.              | Asp :               | Jly<br>-          | Pro               | Ala<br>305        | Pro .              | Asp                | 31y               | Tyr:              | P#3<br>313        |                   | 1064 |   |
| : <del></del>     | 74.A              | TAI               | 3A3               | 7A *              | 311.              | ٠                   | J.                | AA I              | W.T               | 330                | CAA .              | AA.J              | JAC .             | GCC ·             | 300               | ::33 |   |

| 330                                               | 339                                                   | ;                        | 340                                                     |      |
|---------------------------------------------------|-------------------------------------------------------|--------------------------|---------------------------------------------------------|------|
| AAC AAG GCC TCG TTC<br>Asn Lys Ala Ser Phe<br>345 | CTC GAC CAG<br>Leu Asp Gln<br>350                     | GTT CAT T                | CC CAG CCG CTG CCG CCC<br>ne Gln Pro Leu Pro Pro<br>355 | 1228 |
| GCG GTG GTG AAG TTG<br>Ala Val Val Lys Leu<br>360 | TCT GAC GCG<br>Ser Asp Ala<br>365                     | TTG ATC GC<br>Leu Ile Al | a Thr Ile Ser Ser                                       | 1273 |
| TAGCCTCGTT GACCACCA                               | EG CGACAGCAA                                          | C CTCCGTCGG              | G CCATCGCGCT GCTTTGCGG                                  | 1333 |
| GCATGCTGGC CCGTGCCGG                              | FT GAAGTCGGC                                          | C GCGCTGGCC              | C GGCCATCCGG TGGTTGGGTC                                 | 1393 |
| GGATAGGTGC GGTGATCCC                              | G CTGCTTGCGC                                          | I TGGTCTTGG              | T GCTGGTGGTG CTGGTCATCG                                 | 1453 |
| MCCCCATCCC TCCCATCAC                              | C CTCAACGGG                                           | TGCATTTCT                | T CACCGCCACC GAATGGAATC                                 | 1513 |
| CAGGCAACAC STACGGCGA                              | A ACCOTTOTCA                                          | COCCACCCCT               | G GCCCATCCGG TCGGCGCCTA                                 | 1573 |
| CTACGGGGGG TTGCCGCTG                              | A TOGTOGGGAC                                          | GCTGGCGAC                | TOGGCAATOG COCTGATOAT                                   | 1633 |
| CGCGGTGCCG GTCTCTGTA                              | G GAGCGGCGCT                                          | GGTGATCGTC               | G GAACGGCTGC CGAAACGGTT                                 | 1693 |
| GGCCGAGGCT GTGGGAATA                              | G TCCTGGAATT                                          | . Buildeada              | A ATCCCCAGCG TGGTCGTCGG                                 | 1753 |
| TTTGTGGGGG GCAATGACG                              | T TOGGGCCGTT                                          | · CATOGOTOA:             | CACATOGCTO CGGTGATOGO                                   | 1813 |
| TOAGAACGCT COCGATGTG                              | C CGGTGCTGAA                                          | OTACTTGCGC               | GGCGACCCAG GCAACGGGGA                                   | 1873 |
| sedektatta atateedot                              | C TGGTGTTGGC                                          | GOTGATGGT                | GTTCCCATTA TCGCCACGAC                                   | 1933 |
| INCTENTANC STATTACCA                              | 2 AGGTGCCGGT                                          | - GTTGCCCCC              | GAGGGCGCGA TCGGGAATTN                                   | 1993 |
| DESCRIPTION FOR .                                 | SEQ ID NO.14                                          | ਰੇ :                     |                                                         |      |
| B TYP!                                            | CHARACTERIST  GTH: 374 ami  S: amino adi  CLOSY - con | no acids<br>d            |                                                         |      |

- ii Maleaule Type brotain
- AS SEQUENCE DESCRIPTION DEC 10 No 149

Fig. by o 1.9 Arg Leu His Thr Leu Leu Ala Val Leu Thr Ala Ala Pro $^{-5}$ 

THI CHI LHO ALE ALE ALE BLY Dys Sty Ser Dvo Pro Pro Ser Jim Des D 50 55 60

Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn Val Thr 55 70 75 80

Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln Ala Ala 85 90 95

Ala Gly Thr Val Asn 11e Gly Ala Ser Asp Ala Tyr Leu Ser Glu Gly 100 105 110

Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser 115 120 125

Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His Leu Lys
130 140

Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr 11e Lys Thr 145 150 155 160

Trp Asp Asp Pro Gln He Ala Ala Leu Asn Pro Gly Val Asn Leu Pro 165 170 175

Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr

Phe Leu Phe Thr Gln Tyr Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly 195 200 205

Lys Ser Pro 3ly Phe Gly Thr Thr Val Asp Phe Pro Ala Val Pro 3ly 215 220

Also Lew 31% 31% Ash 31% Ash 31% 31% Met Val Thr 31% CVs Ala 31% 32% 235

Thr Pro Gly Tys Val Ala Tyr IIe Gly Ile Ger Phe Leu Asp Gln Ala 245 250 255

Run lin Arg Tiw Lew Bly Tim Ala Tin Lew Tiw Ash Ser Ser Gly Ash 2000 - 200

The Ser, Let 3: Ast A.a. Sin Ser Die Sin A.. Aka A.a Ala Siv Ene 200

Ala Ser Lys Thi Pro Ala Ash Sin Ala ile Ser Met ile Asp Gly Pro 290 295 300

Ala Pri Asp 3.7 Tyr Pro II+ II+ Asn Dyr Glu Tyr Ala II+ Val Asn 30: 310 315

Anni And Clin Com Art Ala And the real and the term of the second of the second

His Phe Gln Pro Leu Pro Pro Ala Val Val Lys Leu Ser Asp Ala Leu 355 360 365

Ile Ala Thr Ile Ser Ser 370

## (2) INFORMATION FOR SEQ ID NO:149:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1993 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# MI! SEQUENCE DESCRIPTION: SEQ ID NO:149:

| TGTTCTTCGA CGGCAGGCTS        | GTGGAGGAAG    | GGCCCACCGA   | ACAGCTGTTC  | TEETEGECCA | 50                                    |
|------------------------------|---------------|--------------|-------------|------------|---------------------------------------|
| AGCATGCGGA AACCGCCCGA        | TACGTCGCCG    | GACTGTCGGG   | GGACGTCAAG  | GACGCCAAGC | 120                                   |
| GCGGAAATTG AAGAGCACAG        | AAAGGTATGG    | CGTGAAAATT   | CGTTTGCATA  | CGUTGTTGGC | 180                                   |
| COTOTTGACC GCTGCGCCGC        | TGCTGCTAGC    | AGCGGCGGGC   | TGTGGCTCGA  | AACCACCGAG | 240                                   |
| OGGTTCGCCT GAAACGGGCG        | deggeggegga   | TACTGTCGCG   | ACTACCCCC   | CGTCGTCGCC | 300                                   |
| JGTGACGTTG GCGGAGACCG        | GTAGLACGCT    | GCTCTACCCG   | CTGTTCAACC  | TGTGGGGTCC | 360                                   |
| BGCCTTTCAC GAGAGGTATC        | CGAACGTCAC    | GAT CACCGCT  | CAGGGCACCG  | GTTCTGGTGC | 420                                   |
| DOGODATOGGG JAGGGGGGG        | CCCCACGCT     | JAACATT963   | GCCTCCGACG  | COTATCTGTC | 480                                   |
| UGAAAGGTGAT ATGGCCGCCC       | ACAAGGGCT     | JATJAACNTO   | ACCORTOCOR  | TOTOCOCTCA | 540                                   |
| JUNGGTCAAG FACTACCTGC        | CADTEADEDC    | IGAGCACCTC   | AAGCTGAACG  | FAAAAGTCCT | <b>63</b> 0                           |
| PROGRESATO TACCAGGGCA        | CONTONIANO    | TTGGGACGAC   | CCGCAGATCC  | CTGCGCTCAA | 56C                                   |
| 1711 / JUNT 3 - WALETE 2003  | 201023030T    | votrededere  | Macgerees   | AdgGGTCCGG | ****                                  |
|                              | NJTA 201717   | IMAGGMAGAT   | MICAGGGCT   | HOOGENAGTE | а.                                    |
| 1 113 1277 1 33 W. (M. 2.1.) | NUM TTT 100   | Concernation | IOTGCGCTTGG | JTGAGAACGG | 44.7                                  |
| TAA 1331333 AT37T3ACCS       | TTGCJCCGA     | 3202225AC    | TOCOTEGECT  | ATATCGGCAT | 950                                   |
| TA POTTO TO GAGGAGHOTA       | STCAACGGGG    | ACTEGGEGAG   | GCCCAACTAG  | SCAATAGGTS | 367                                   |
|                              | A THI BINAAAU | INT FINAGOS  | JCGGCGGGTTC | 3277032170 | · · · · · · · · · · · · · · · · · · · |

| GACCTTGCA  | G GCATTTCTG( | ACTGGGGGAT   | CACCGACGGC   | AACAAGGCCT   | CGTTCCTCGA | 1200 |
|------------|--------------|--------------|--------------|--------------|------------|------|
| CCAGGTTCA  | TTCCAGCCGC   | : TGCCGCCCGC | GGTGGTGAAG   | TTGTCTGACG   | CGTTGATCGC | 1260 |
| GACGATTTC  | AGCTAGCCTC   | GTTGACCACC   | ACGCGACAGC   | AACCTCCGTC   | GGGCCATCGG | 1320 |
| GCTGCTTTGC | GGAGCATGCT   | GGCCCGTGCC   | GGTGAAGTCG   | GCCGCGCTGG   | CCCGGCCATC | 1380 |
| CGGTGGTTGG | GTGGGATAGG   | TGCGGTGATC   | ccccrccrrc   | CGCTGGTCTT   | GGTGCTGGTG | 1440 |
| GTGCTGGTCA | TCGAGGCGAT   | GGGTGCGATC   | AGGCTCAACG   | GGTTGCATTT   | CTTCACCGCC | 1500 |
| ACCGAATGGA | ATCCAGGCAA   | CACCTACGGC   | GAAACCGTTG   | TCACCGACGC   | GTCGCCCATC | 1560 |
| CGGTCGGCGC | CTACTACGGG   | GCGTTGCCGC   | TGATCGTCGG   | GACGCTGGCG   | ACCTCGGCAA | 1620 |
| Tedecordin | CATCCCCGTG   | CCGGTCTCTG   | TAGGAGCOGC   | JCTGGTGATC   | GTGGAACGGC | 1580 |
| TGCCGAAACG | GTTGGCCGAG   | GCTGTGGGAA   | TAGTCCTGGA   | ATTGCTCGCC   | GGAATCCCCA | 1746 |
| JCSTSGTCGT | CGGTTTGTGG   | GGGGCAATGA   | carreageec - | GTTCATCGCT   | CATCACATCG | 1800 |
| CTCCGGTGAT | CGCTCACAAC   | GCTCCCGATG   | TGCCGGTGCT   | GAACTACTTG ( | CGCGGCGACC | 1860 |
| CGGGCAACGG | GGAGGGCATG   | TTGGTGTCCG   | GTCTGGTGTT ( | GGCGGTGATG ( | GTCGTTCCCA | 1920 |
| TTATCGCCAC | CACCACTCAT   | GACCTGTTCC   | GCAGGTGCC:   | GGTGTTGCCC ( | CGGGAGGGCG | 1980 |
| COATCGGGAA | TTC          |              |              |              |            | 1993 |

- 1 IMPORMATION FOR SEQ ID NO.150:
  - : JEQUENCE THARACTERISTICS:
    - A. LENGTH: 304 amino actus
    - B. TYPE: amino acid
    - C: STRANDEDNESS:
    - D: TOPOLOGY: linear
  - KI SEQUENCE DESCRIPTION, SEC ID WO IS a
  - wer bys lie and led Hid Throley Led Ala Valober ThroAla Ala Dro
  - Let Sen Sen Ria Ala Nia Siy Syn Biy Gen Sys In Sin Sen Bly Sen 23 23 30
  - Pro No. Thr Dly Ala Buy Ald Bly Thr Val Ala Thr Thr Pro Ala Ser
  - Ter Fr. Val. Thr 14. N. & Blue Thr Blue Der Thr Len Leu Tyn Sen Dag

- Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln Ala Ala 85 90 95
- Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser Glu Gly
- Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser 115 120 125
- Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His Leu Lys
  130 140
- Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr Ile Lys Thr 150 155 160
- Trp Asp Asp Pro 3ln Ile Ala Ala Leu Asn Pro 3ly Val Asn Leu Pro 155 175
- Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr
- Phe Leu Phe Thr Gli Tyr Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly 195 200 205
- Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val Pro Gly 210 215 220
- Ala Leu Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys Ala Glu 225 230 235 240
- Thr Pro Gly Dyo Mai Ala Tyr Ile Glv Ile Ser Phe Leu Asp Gln Ala 248 250 255
- Ser 3in Arg Gly Leu Bly Blu Ala 3in Leu Bly Ash Ser 3er 3ly Ash 265 270
- Phe Leu Deu Pro Asp Ala Bin Ger Ile Bin Ala Ala Ala Ala Gly Phe
- Ala Ser Wo Thi in Nia Asi Nin Ala Ile Ser Met Ile Asi Nin Asi 198
- Ava Pro Ast (3.5 Dyr ero lie lie Ash Dyr Dli Dyr Ava De Ma. Ash 325 - 31 - 325
- Ash Arg 31c Dys Asp Ala Ala Thr Ala 31c Thr Leu 31c Ala Phe Deu 325 - 330 - 335
- His Trr Als 1.4 Thr Asp 31y Ash Dvs Ala Ser Phe Deu Ash 31h Va. 350

370

# (2) INFORMATION FOR SEQ ID NO:151:

# .1. SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1777 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:

| GGTCTTGACC | ACCACCTGGG                  | TGTCGAAGTC | GGTGCCCGGA   | TTGAAGTCCA           | GGTACTCGTG   | 60      |
|------------|-----------------------------|------------|--------------|----------------------|--------------|---------|
| GGTGGGGCGG | GCGAAACAAT                  | AGCGACAAGC | ATGCGAGCAG   | CCGCGGTAGC           | CETTGACGGT   | 120     |
| GTAGCGAAAC | GGCAACGCGG                  | cccccrrccc | CACCTTGTTC   | AGCGCTGATT           | TGCACAACAC   | 180     |
| STOSTOGAAG | GTGATGCCGT                  | CGAATTGTGG | CGCGCGAACG   | CTGCGGACCA           | GGCCCATCCS   | 240     |
| STGCAACCCG | GCAGCGCCCG                  | TOGTCAACGG | GCATCCCGTT   | CACCGCGACG           | gattgccagg   | 300     |
| CCCAACGCAT | ACCATTATTC                  | GAACAACCGT | TCTATACTTT   | GTCAACGCTG           | GEOGETACEG   | 36℃     |
| AGCGGCGCAC | AGGATGTGAT                  | ATGCCATCTC | TGCCCGCACA   | GACAGGAGCC           | AGGCCTTATG   | 420     |
| ACAGCATTCG | GCGTCGAGCC                  | CTACGGGCAG | CCGAAGTACC   | TAGAAATCGC           | CGGGAAGTGC   | 480     |
| ATGGCGTATA | TCGACGAAGG                  | CAAGGGTGAC | CCCATCITT    | TTCAGCACGG           | CAACCCCACG   | 540     |
| TEGTETTAGT | TGTGGIGCAA                  | CATCATGCCG | CACTTGGAAG   | GGCTGGGCCG           | SCTGGTGGCC   | 600     |
| TOCGATOTGA | TOGGGATGGG                  | CADDOTEDDE | ANGCTOAGCC   | CATCGGGACC           | CGACCGCTAT   | 500     |
| AGCTATGGCG | AGCAACGAGA                  | STTTPTSTTS | GCGCTCTGGG   | ATGCCCTCGA           | CCTCGGCGAC   | 120     |
| CACGTGGTAC | TGGTGCTGCA                  | CGACTGGGGG | TCGGCGCTCG   | GCTTCGACTG           | GGCTAACCAG   | 780     |
| CATCGCGACC | GACTGCAGGG                  | GATEGEGTTE | ATGGAAGCJA   | TOSTCACCOO           | GATGACGTGG   | 840     |
| FIGGACTIGG | 130000001017                | COGGGTTT   | modajoj m    | TETTO ATTOGOT        | TUAAGGCJAG   | -4 (× · |
| . margalar | COGAGINONA                  | Arching.   | BAACGGGTAT   | 73 13 <b>030</b> 003 | JATO ITTICOA | વર્ણ    |
| Maarahaca  | AUB <b>A</b> OGAAAT         | JANUTA JAN | 2302031117.1 | rdatgAACG)           | 133.79AG3A.1 | 1323    |
| UTCCCCCA   | <b>3377</b> 373 <b>37</b> 3 | GOCKOGAAAG | CTTCCAATC3   | ACGCTGACCI           | DECCAGGTO    | 1080    |
| 3703037733 | TCAACGAGTA                  | COGAGTTOG  | CTCCAGGAAA   | COGACATGO            | RAACTSTTC    | 1140    |
| ATCAACGCCS | 4000000000                  | BATCATCASC | GG7030%mo.   | TOTA TRATET          | CAGGAGCTGG   | 120     |

| GACCAAGAAT GTGATTTCCG GCGAAGGCGG CGCCCTGCTT GTCAACTCAT AAGACTTCCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1380       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| GCTCCGGGCA GAGATTCTCA GGGAAAAGGG CACCAATCGC AGCCGCTTCC TTCGCAACGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1440       |
| GGTCGACAAA TATACGTGGC AGGACAAAGG TCTTCCTATT TGCCCAGCGA ATTAGTCGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1500       |
| GCCTTTCTAT GGGCTCAGTT CGAGGAAGCC GAGCGGATCA CGCGTATCCG ATTGGACCTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1560       |
| TGGAACCGGT ATCATGAAAG CTTCGAATCA TTGGAACAGC GGGGGCTCCT GCGCCGTCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1620       |
| ATCATCCCAC AGGGCTGCTC TCACAACGCC CACATGTACT ACGTGTTACT AGGGCCCAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1680       |
| GCCGATCGGG AGGAGGTGCT GGCGCGTCTG ACGAGCGAAG GTATAGGCGC GGTCTTTCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1740       |
| TACGTGCCGC TTCACGATTC GCCGGCCGGG CGTCGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1777       |
| 2 INFORMATION FOR SEQ ID MO-152:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 324 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| - xi - SEQUENCE DESCRIPTION: SEQ ID NO:152:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| GAGATTGAAT COTACCOGTC TOOTTAGCGG CTCCGTCCCG TGAATGCCCA TATCACGCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>6</b> 0 |
| SUCUATOTTO TOGOTOTOGA TOTTOGOCOC ATGCCCOGGAC STTGGTAAAC TOAGGGTTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120        |
| A MERUTAATT DEGGGGACG GTTGCGGGAA GGCGGCCAGG ATGTGCGTGA GCGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lä.        |
| NUMBERTOGOD NAMBORACCO PROBATBORO AGOCCOGOTO COGCORGOTA BOCAGOGTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.        |
| PROBLEMENT STOCKENETS STREETSCORE SACGREGOGG SGEGGTGEET REGTERAGAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300        |
| COTUA COGAC UCCOCCDATT CAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 324        |
| MEGRMATION FOR GET TO MC 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| TRQUENCE THARAUTURIUTION  A DENGTH Liss dase parro  B TYPE dupler word  C STRANDEDNESS single  D TOPOLOGY linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| AL SEQUENCE DESCRIPTION SEQ ID NO.153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| COCOMO DE COMO DE CONTROLA E DESCRIBIRA E EUTOTA COA E COMO TRANSPORTO DE COMO | 9          |

104

GCACGACTTC CAGCCCGACT CGATCGGCGT GCTGACCCGT CCTGTCGCTA TGGCTGCCTG 240 GGAAGCTCGC GTTCGGAAGC GATTTGCGTT CCTCACTGAC CTCGACGCCG ACGAGCAGCG 300 STGGGCCGCC TGCGACGAAC GGCACCGCCG CGAAGTGGAG AACGCGCTGG CGGTGCTGCG 360 GTECTGATEA ACCTGEEGGE GATEGTGEEG TICCGETGGE ACGGTTGEGG ETGGACGEGG 420 CTGAATCGAC TAGATGAGAG CAGTTGGGCA CGAATCCGGC TGTGGTGGTG AGCAAGACAC SAGTACTGTC ATCACTATTS GATGCACTGG ATGACCGGCC TGATTCAGCA GGACCAATGG 540 AACTGCCCGG GGCAAAACGT CTCGGAGATG ATCGGCGTCC CCTCGGAACC CTGCGGTGCT 500 SGCGTCATTC GGACATCGGT CCGGCTCGCG GGATCGTGGT GACGCCAGCG CTGAAGGAGT 560 BGAGGGGGGG GGTGFAFGGG TTGCTGGACC BCCCCCAQAC GGTGCTGCTG CGTAAGGCCT 20 SGATCGGCGA GAAGCGCTTC GAGGTGGCGG CCCACGAGTT CTTGTTGTTC CCGACGGTCC 780 CGCACAGCCA CGCCGAGCGG GTTCGCCCCG AGCACCGCGA CCTGCTGGGC CCGGCGGCCG COGNONGONO CONCONGTOT GTGCTACTGC GGGCCGCAGC GAAAGTTGTT GCCGCACTGC 900 DGGTTAACCG GCCAGAGGGT CTGGACGCCA TCGAGGATCT GCACATCTGG ACCGCCGAGT 960 COOTGCCCC CGACCOGCTC GACTTTCGCC CCAAGCACAA ACTGGCCCTC TTGGTGGTCT 1020 COGCOATCCC GCTGGCCGAG CCGGTCCGGC TGGCGCGTAG GCCCGAGTAC GGCGGTTGCA 1080 TENGETGGGT GERGETGEEG GTGACGEEGA EGTTGGGGGE GEOGGTGEAC GACGAGGEEG 1140 TGOTTOGOCGA JOTTOGOCGCC TWGGTCCGCG AGCCCGTGGG TTGACTGGCC GGCATCGCTT BOSTOTORGO TOTROGOCCIN STOSCOCCTS OGRAFIGATOT GOTSTOSOTT OGGTCCCTGC 1260 TUGUETTUAAT TGAEGGCCCC GGCAACAGCA GCATTGGCGG GGCCATCUTG GGCGGGCCG 1320 ICGCCCNCCG CTACAACC 1 1 1 4

CONTRACTION FOR THE TO MODIFF

. GEQUENCE CHARACTERISTICS

- A LENGTH but base pair
- B TYPE, nucleic acid
- 7 STRANDEDNESS single
- (D TOPOLOGY linear

MI REQUENCE DESCRIPTION SEC 15 NO 154

the straight conducted to DASTANIA to the contract of the cont

| GCACCGGCGG TGCCGGCGGC GCCGGCAACG ACGCCGGCAG CACCGGCAAT GCCGGCGGTA                                                                 | 240        |
|-----------------------------------------------------------------------------------------------------------------------------------|------------|
| AUGGCGGCGA CGGCGGGATC GGCGGTGCCG GCGCGGGCGCG GGCACCGGCA                                                                           | 300        |
| ACGGCGGCCA TGCCGGCAAC C                                                                                                           | 321        |
| (2) INFORMATION FOR SEQ ID NO:155:                                                                                                |            |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 492 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |            |
| X1: SEQUENCE DESCRIPTION: SEQ ID NO:155:                                                                                          |            |
| GAAGACCCGG CCCCGCCATA TCGATCCGCT CGCCGACTAC TTTCCCCGAA CGTGCACGCG                                                                 | <b>5</b> 0 |
| SEGGEGTEGG GETGATEATE ACEGGTGGET ACGEGCTEAA SEGGACEGGA TGGETGETGE                                                                 | 120        |
| CGTTCGCCTC CGAACTCGTC ACTTCGGCGC AAGCCCGACG GCACCGCCGA ATCACCAGGC                                                                 | 180        |
| IGGTICIACGA TICGGGTGCA AAGATOOTGO TGCAAATOOT GCACGCCGGA IGCTACGCCT                                                                | 240        |
| ACCACCCACT TGCGGTCAGC GCCTCGCCGA TCAAGGCGCC GATCACCCCG TTTCGTCCGC                                                                 | 300        |
| JAGCACTATO JOCTOGOGGG STOGAAGOGA CONTOGOGGA TTTOGOCOGO TGCGOGCAGT                                                                 | 360        |
| TOCCCCCCA TGCCCGCTAC GACGGCGTCS AAATCATGGG CAGCGAAGGG TATCTGCTCA                                                                  | 420        |
| NTONGTTOOT GGGGGGGGG NCCAACAAGG GGACGGACTG GTGGGGGGGGG ACACGGGCGA                                                                 | 480        |
| VICETTIGUES ST                                                                                                                    | 492        |
| L INFORMATION FOR SEQ ID NO:186                                                                                                   |            |
| : SEQUENCE THARACTERISTICS:  A' LENGTH: F36 mino icids  E TYPE mino ici:  J STPANDEDNESS  L TOPILOGYpar                           |            |
| A: SECHEMOR DECORPORATION SEC 12 MG 184                                                                                           |            |
| Free A.a Fin His Den Val Sil ily App Ala Val Sil Den Erp Ard Ala<br>I II                                                          |            |
| Ash Ala Ala Ash Rob Ala Rap Pro Deu Bin Dro Blo Ger Ala Ara Arg<br>B                                                              |            |

|              | 50                   |            |            |            |            | 5 <b>5</b> |            |                    |            |             | 60           |            |              |             |            |
|--------------|----------------------|------------|------------|------------|------------|------------|------------|--------------------|------------|-------------|--------------|------------|--------------|-------------|------------|
| Ser<br>65    | Ala                  | a Ala      | a Glr      | ı Asp      | 70         | Ile        | Суз        | His                | Leu        | Cys         | Pro          | His        | Arg          | Gl:         | Glu<br>80  |
| Pro          | Gly                  | ' Lei      | Met        | Thr        | Ala        | Phe        | Gly        | Val                | Glu<br>90  | Pro         | Tyr          | Gly        | Gln          | Pro<br>95   | Lys        |
| Tyr          | Leu                  | Glu        | Ile<br>100 | Ala        | Gly        | Lys        | Arg        | <b>Me</b> t<br>105 | Ala        | Tyr         | Ile          | Asp        | Glu<br>110   | Gly         | Lys        |
| Gly          | Asp                  | Ala<br>115 | Ile        | Val        | Phe        | Gln        | His<br>120 | Gly                | Asn        | Pro         | Thr          | Ser<br>125 | Ser          | Tyr         | Leu        |
|              | 130                  |            |            |            | Pro        | 135        |            |                    |            |             | 140          |            |              |             |            |
| -43          |                      |            |            |            | Met<br>150 |            |            |                    |            | 155         |              |            |              |             | 160        |
|              |                      |            |            | _ c        | Ty:        |            |            |                    | 170        |             |              |            |              | 175         |            |
|              |                      |            | 180        |            | Leu        |            |            | 195                |            |             |              |            | 190          |             |            |
| ıb           | Gly                  | Ser<br>195 | Ala        | Leu        | Gly        | Phe        | Asp<br>200 | Trp                | Ala        | Asn         | Gln          | His<br>205 | Arg          | Asp         | Arg        |
| ∵al          | Gln<br>210           | Gly        | Ile        | Ala        | Phe        | Met<br>215 | Glu        | Ala                | Tle        | Val         | Thr<br>age   | Pro        | Met          | Thr         | Trp        |
| Ala<br>Jis   | Asp                  | Trp        | Pro        | 9¥0        | A13<br>23: | ∵a.        | Arş        | ii.v               | Vâ⊾        | Phie<br>035 | 31n          | пy         | Pne          | Ara         | Ser<br>Sau |
| 350          | Jin                  | шу         | 31u        | Pro<br>245 | Met        | Ala        | Leu        | Glu                | His<br>250 | Asn         | fle          | Phe        |              | 11::<br>155 | Arg        |
| Wal          | Leu                  | Pro        | 317<br>    | Ald        | 119        | Leu        | Ara        | Nin<br>No          | Leu        | 3ar         | ist          | Hu         | 31           | Maar        | Asn        |
| His          | Tyrr                 | Ard<br>Joh | Ārģ        | Fr         | -an        | 11.        | Nan<br>Ja  | 3144               | 1.         | 1.5         |              | Arg<br>285 | Ai i         | . :         | Thir       |
| leu.         | 3 <b>-2</b> 2<br>393 | Trp        | Pro        | Arş        | Aon (      | 1eu<br>195 | Pro        | ile.               | Ast        | 31y         | 31u :<br>300 | Pro .      | Ala          | 31.1        | Val        |
| Mal 2<br>30e | Ala                  | Len        | Val        | Aan        | 314<br>111 | NT /       | Arş .      | je:                | Trp        | Leu<br>113  | 3lu √        | 3lu '      | Thr .        |             | Met<br>323 |
| i ir i       |                      | Len        | Pho        |            | `          |            | J          | 17-4               | . ,        |             | -            |            | <del>-</del> |             |            |

- Pro Gly Val His Phe Val Gln Glu Asp Ser Asp Gly Val Val Ser Trp
- Ala Gly Ala Arg Gln His Arg Arg Pro Gly Ser Ala Leu Ile Ser Arg 370 375 380
- Asr Gln Glu Cys Asp Phe Arg Arg Arg Arg Pro Ala Cys Gln Leu 385 390 395 400
- Ile Arg Leu Pro Ala Pro Gly Arg Asp Ser Gln Gly Lys Gly His Gln
  405 410 415
- Ser Glm Pro Leu Pro Ser Glm Arg Gly Arg Glm Tle Tyr Val Ala Gly
  420 425 430
- 31h Arg Ser Ser Tyr Leu Pro Ser 31u Leu Val Ala Ala Phe Leu Trp 435 440 445
- Ala Sin Phe Siu Siu Ala Giu Arg Ile Thr Arg Ile Arg Leu Asp Leu 450 460
- Trp Asn Arg Tyr His Glu Ser Phe Glu Ser Leu Glu Gln Arg Gly Leu 465 470 480
- Leu Arg Arg Pro Ile Ile Pro Gin Gly Cys Ser His Ash Ala His Met 485 490 490
- Tyr Tyr Val Leu Leu Ala Pro Ser Ala Asp Arg Glu Glu Val Leu Ala 500 505 510
- Ard Leu Thr Ser Glu Gly 714 Glv Ala Val Phe Hib Tyr Val Dro Leu 515 525
- His Asp Ser Pro Ala Bly Arg Arg 530
- 2 INFORMATION FOR JEQ ID NO:155
  - SEQUENCE CHARACTERISTICS
  - A LENGTH 0384 amino accude
  - B TYPE, amino icii
  - J STRANDEDNESS:
  - L TOPOLOGY: linear
  - MI SEQUENCE DESCRIPTION SEQ ID MOULET
  - Ash Glu Ser Ala Pro Arq Ser Pro Met Det. Pro Ser Ala Arg Dro Arg 1
  - The Algorithm of the Committee of the Co

- Gly Asp Asp Arg Ala Gly Leu Gly Val Asp Glu Gln Phe Arg His Val
- Gly Phe Leu Glu Pro Ala Pro Val Leu Val Asp Gln Arg Asp Asp Leu 7.0 75
- Gly Gly Leu Thr Val Asp Trp Lys Val Ser Trp Pro Arg Gln Arg Gly 85 90
- Ala Thr Val Leu Ala Ala Val His Glu Trp Pro Pro Ile Val Val His 105
- Phe Leu Val Ala Glu Leu Ser Gln Asp Arg Pro Gly Gln His Pro Phe
- Asp Dys Asp Val .al Leu 31m Arg His Trp Leu Ala Leu Arg Arg Ser 135
- 3lu Thr Leu Glu Hid Thr Pro His Gly Arg Arg Pro Val Arg Pro Arg 150
- His Arg Bly Asp Asp Arg Phe His Glu Arg Asp Pro Leu His Ser Val
- Ala Met Leu Val Ser Pro Val Glu Ala Glu Aig Arg Ala Pro Val Val
- Gln His Gln Tyr His Val Val Ala Glu Val Glu Arg Ile Pro Glu Arg 200
- Glu Glm Dys Mal Ser Deu Deu Ald Ile Ala Ile Ala Wai Gly Ser Arg
- Orp Ala Blu Leu Mai Arg Arg Ala Him Dro Asp Bln fle Ala Bly Him
- Bin Pro Ala Bin Pro Phe Bin Ma. Arm His Amp Mai Ala Pro Bin Mai
- ers Ars Ara May Mal Ala Ma. The Low Low Acr Mor May Ma. The Low Ala
- ne fal Aun Ile Arg H., A.a Jeu er Gry Aun Ine 280
- INFORMATION FOR SEQ ID NO-158
  - . SEQUENCE THARACTERISTICS
    - A LENGTH 284 base pairs Type by the control of

| ALGAACATG.   | r careaaraan                                                | · GGGTCGCAA0                                         | GCCTTTGCGC   | GATTCGCCGG                              | JTACTCCTCC                             | 60            |
|--------------|-------------------------------------------------------------|------------------------------------------------------|--------------|-----------------------------------------|----------------------------------------|---------------|
| GCCATGCACC   | G CGATCGCCGG                                                | TTTCTCCGA                                            | : GCGTTGCGCC | AAGAGCTGCG                              | GGGTAGCGGA                             | 120           |
| ATCGCCGTCT   | CGGTGATCCA                                                  | . ccccccccc                                          | ACCCAGACAC   | CGCTGTTGGC                              | CAACGTCGAC                             | 180           |
| CCCGCCGACA   | TGCCGCCGCC                                                  | GTTTCGCAGC                                           | : CTCACGCCCA | TTCCCGTTCA                              | CTGGGTCGCG                             | 240           |
| GCAGCGGTGC   | : TTGACGGTGT                                                | GGCG                                                 |              |                                         |                                        | 264           |
| .2 INFORM    | MATION FOR 3                                                | EQ ID NO:15                                          | 9 :          |                                         |                                        |               |
|              | EQUENCE CHA (A) LENGTH: (B) TYPE: n (C) STRANDE: D: TOPOLOG | 1171 base<br>ucleic acid<br>DNESS: sing<br>Y: linear | pairs<br>le  | <b>.</b>                                |                                        |               |
|              | CGATGACUTT                                                  |                                                      |              |                                         | 0220100100                             |               |
|              |                                                             |                                                      |              |                                         |                                        | 60            |
|              | GATCCTTACC                                                  |                                                      |              |                                         |                                        | 120           |
| ASSACTUTGA   | CACGATGTAG                                                  | IGIGCGCTGT                                           | GCTCCATTCC   | GCGTTGGGAA                              | TTGGCGATAC                             | 180           |
| TOSTOSSTOA   | TGTAGCGGGT                                                  | 3GCCCCCTCA                                           | TTTATCGACT   | GGCTGGATTC                              | GCCGGACTCG                             | 240           |
| COATTOGACO   | COTCATTGGT                                                  | TAGCAGCCTC                                           | TTGAATGCGG   | TTTCGTGCGG                              | CGCTGAGTCG                             | 300           |
| naddadagaga  | IATCGG CGAG                                                 | FTEGEGGGAAC                                          | GGCAGCAGGT   | JUACOTOGAT                              | 3CCGTCCGGA                             | 360           |
| Audagraara   | BACCCCCCCC                                                  | GGRAACCTCC                                           | TGGGAJGAGC   | JCAGGTCGGC                              | AACG FCGGTG                            | 42.           |
| ATROCOMOCO   | GGCGCAGCGT                                                  | TGCCTCTCGT                                           | GCCGAATTCC   | GCACGAGGCT                              | GGCGAGCCAC                             | 43            |
| TOGGENTERS   | TAAGCAACGC                                                  | TTGCTTAGTA                                           | CGGATCGTCA   | TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT | JGGCAGACCA                             | 5 <b>4</b> ↓  |
|              | 33777377777                                                 | 13.1AT00000                                          |              | N MIGAACH)                              | :::::::::::::::::::::::::::::::::::::: |               |
| 11100000000  | ATOGGA PART                                                 | JAACII JOOGA                                         |              | WATEFIE                                 | 30321371231                            | 17.           |
| NOOT TOOM    | 1777223323                                                  | JTCGCGGTAT                                           | TOA PODA BOD | MangAlamama                             | JA I JAACTOO                           | 7. :          |
| INTAICTAA    | .1302.030.03T                                               | AGCTCCCGGC                                           | GTGACGCGGA   | GGATCGGGGG                              | 3T3ATTTTT                              | <b>⁻</b> a, · |
| 233 27 27 27 | 797A333377                                                  | PATCCACCGC                                           | TTCGCGGTGC   | CGGCGGGGAG                              | 3003ATCAGC                             | 340           |
| 77777A277    | 030000000000000000000000000000000000000                     | TGA DGG D <b>A</b> AG                                | 0733333333T  | Togregadam                              | IAA IAACTOO                            | <b>∌</b> 1.   |

| CGCACCACCO TCGGTTCGCA CGTACGGACC GGGTCCGACA CCATGTTCGT GGCCCCAGTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1080 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ACCATEGGEG ACGGEGETA TACEGGGGEE GGCACAGTGG TGCGGGAGGA TGTEECGGEEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1140 |
| GGGGCGCTGG CAGTGTCGGC GGGTCCGCAA C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1171 |
| (2) INFORMATION FOR SEQ ID NO:160:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 227 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| xi) sequence description: seq ID No:160:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| SCHAAGGCGG CACCGGCGGG GCCGGCATGA ACAGCCTCGA CCCCCTGCTA GCCCCCAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60   |
| ACCICCACA AGGEOGRACE GEOGRACES SEGGRAACES COGEOCOSE SECACEAGET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120  |
| TOACCOAAGG CGCCGACGGC AACGOOGGCA ACGCCGTGA CGGCGGGGTC GGCGGCAACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180  |
| BIGGAAACGG CGGAAACGGC GCAGACAACA CCACCACCGC CGCCGCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 227  |
| INFORMATION FOR SEQ ID NO:161:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| i. SEQUENCE CHARACTERISTICS:  (A) LENGTH: 304 base pairs  (B) TYPE: nucleic acti  (C) STRANDEDNESS: single  D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| X1 REQUENCE DESCRIPTION: SEQ ID MO 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| ICTOGCCACO ATGGGCGGGC AUGGCCGGTAU ICGTGGCGCC GGCTCTACCC LAGGCGCCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | άĴ   |
| BOSCOCCOAC BOCTTCACTC CAACCAGCGB 1990GACGGC BGCGACGGCG BCAACGGCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120  |
| NACTOCONA STORTOGGO SCAACGGOGG TSACGGOGGC NATHGGOGGCA ACGGOGGCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180  |
| TENDEDING STREETERS OF CLASSES & CRESSES ES SAACCES CONTRACTOR SAACCES CONTRACTOR OF C | 2.4  |
| DA MISTADO NASESTECTE AAAASSON MAASSTAAN IMMOGEBISA AMGGTAIGGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ; ;  |
| 2332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 304  |
| L INFORMATION FOR SEQ ID MO-160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| : SEQUENCE CHARACTERISTICS<br>A LENGTH 1934 page buind<br>B COPE controlled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |

| GTGGGACGC.         | I GCCGAGGCTO | TATAACAAGG    | ACAACATCGA  | CCAGCGCCGG  | CTCGGTGAGC  | ٥٥          |
|--------------------|--------------|---------------|-------------|-------------|-------------|-------------|
| TGATCGACCT         | : ATTTAACAGT | . GCGCGCTTCA  | GCCGGCAGGG  | CGAGCACCGC  | G CCCGGGATC | 120         |
| TGATGGGTGA         | GGTCTACGAA   | TACTTCCTCG    | GCAATTTCGC  | TCGCGCGGAA  | GGGAAGCGGG  | 180         |
| GTGGCGAGTI         | CTTTACCCCG   | CCCAGCGTGG    | TCAAGGTGAT  | CGTGGAGGTG  | CTGGAGCCGT  | 240         |
| CGAGTGGGCG         | GGTGTATGAC   | CCGTGCTGCG    | GTTCCGGAGG  | CATGTTTGTG  | CAGACCGAGA  | 300         |
| AGTTCATCTA         | CGAACACGAC   | GGCGATCCGA    | AGGATGTCTC  | GATCTATGGC  | CAGGAAAGCA  | 360         |
| TTGAGGAGAC         | CTGGCGGATG   | GCGAAGATGA    | ACCTCGCCAT  | CCACGCCATC  | GACAACAAGG  | 420         |
| GGCTCGGCGC         | CCGATGGAGT   | GATACCTTCG    | CCCGCGACCA  | GCACCCGGAC  | GTGCAGATGG  | ÷80         |
| ACTACGTGAT         | BGCCAATCCG   | COGTTCAACA    | TCAAAGACTO  | GGCCCGCAAC  | JAGGAAGACC  | 54 O        |
| CACGCTGGCG         |              |               |             | CTACGCATGG  |             | 500         |
|                    | CTTGGCGCCG   |               |             |             |             | <b>6</b> 50 |
|                    | CAACGGCAAG   |               | GCGCGCAAAT  | CGTGGAGGCS  | GATTTGGTTT  | 720         |
| COTGCATGGT         | CGCGTTACCC   | ACCCAGCTGT    | TOOGCAGCAC  | CGGAATCCCG  | GTGTGCCTGT  | 780         |
| GGTTTTTCGC         | CAAAAACAAG   | GCGGCAGGTA    | AGCAAGGGTC  | TATCAACCGG  | TGCGGCAGG   | 840         |
| TOOTGTTCAT         |              |               | ACCTAGTOGA  | CCGGGCCGAG  | CGGGGGGTGA  | 900         |
| 10AACCAGGA         | MATCGTCCGC   | ATCGGGGATA    | TOTTOCACGC  | GAGCACGACU  | ACCGGCAACG  | 960         |
| 13934712000        | TGGTGUCGGC   | JGTAATGGGG    | ROACTOSCOT  | TAATOGCGCS  | DUCGGTCCTU  | 1023        |
| 10337333033        | TOGCAACOCO   | GGTGTCGCCG    | GCGTGTCCTT  | COCCAACOCT  | BTBGGRIGES  | 1080        |
| AUGGCGGCAA         |              |               | geggegaegg  | CACGACGGGC  | 3903003903  | 2.1.4 C     |
| They fold distinct | 7440550440   | NGCOGTGGGT    | 11730113000 | #14mapoote  | AARTTATTA   |             |
|                    |              | NCAATGGGT     |             | IAA 1300TTT | 1178887     | 1200        |
|                    |              |               |             |             | יין גמרטעני |             |
|                    |              |               |             |             | T030600773  |             |
| TRAAMSTEAS         |              |               |             | TOGOAA IGHO | 33CAA0307   | 1434        |
| . THORMA           | TION FOR SE  | 11 11 15 15 1 |             |             |             |             |

| (D) TOPOLOGY: linear                                                                                                                                                                                                                                                        |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| x1; SEQUENCE DESCRIPTION: SEQ ID NO:163:                                                                                                                                                                                                                                    |          |
| SGSCCGGCGG GGCCGGATTT TCTCGTGCCT TGATTGTCGC TGGGGGATAAC GGCGGTGATG                                                                                                                                                                                                          | 60       |
| GTGGTAACGG CGGGATGGGC GGGGCTGGCG GGCCTGGCGG GCCGGCGGC                                                                                                                                                                                                                       | 120      |
| TGATCAGCUT GCTGGGCGGC CAAGGCGCCG GCGGGGCCGG CGGGACCGGC GGGGCCGGCG                                                                                                                                                                                                           | 180      |
| GTGTTGGCGG TGACGGCGGG GCCGGCGGCC CCGGCAACCA GGCCTTCAAC GCAGGTGCCG                                                                                                                                                                                                           | 240      |
| GCGGGGCCGG CGGCCTGATC AGCCTGCTGG GCGGCCAAGG CGCCGGCGGG GCCGGCGGA                                                                                                                                                                                                            | 30C      |
| CCGGCGGGGG CGGCGGTGTT JJCGGTGAC                                                                                                                                                                                                                                             | 329      |
| 2 INFORMATION FOR SEQ ID NO. 164.                                                                                                                                                                                                                                           |          |
| : SEQUENCE CHAPACTERISTICS:  .A) LENGTH: 8) base pairs  (B) TYPE: nucle:c acid  (C. STRANDEDNESS: single  (D: TOPOLOGY: linear                                                                                                                                              |          |
|                                                                                                                                                                                                                                                                             |          |
| M1 SEQUENCE DESCRIPTION: SEQ ID NO:164:                                                                                                                                                                                                                                     |          |
| X1 SEQUENCE DESCRIPTION: SEQ ID NO:164:  3CAACGGTGG CAACGGCGGC ACCAGCACGA COGTGGGGGAT GGCCGGAGGT AACTGTGGTG                                                                                                                                                                 | 60       |
|                                                                                                                                                                                                                                                                             | 60<br>80 |
| BCAACGGTGG CAACGGCGGC ACCAGCACGA COGTGGGGGAT GGCCGGAGGT AACTGTGGTG                                                                                                                                                                                                          |          |
| SCAACGGTGG CAACGGCGGC ACCAGCACGA COGTGGGGAT GGCCGGAGGT AACTGTGGTG                                                                                                                                                                                                           |          |
| 3CAACGGTGG CAACGGCGGC ACCAGCACGA COGTGGGGAT SGCCGGAGGT AACTGTGGTG  CCGCCGGGCT GATCGGCAAC  L SEQUENCE MARACTERISTICS. A. LENGTH: 302 case pairs E TYPE nucleic acid C' STRAMDEDNESS single                                                                                   |          |
| JOAACGGTGG CAACGGCGGC ACCAGCACGA COGTGGGGAT GGCCGGAGGT AACTGTGGTG  CCGCCGGGGT GATCGGCAAC  L INFORMATION FOR JEQ ID NO.158.  L JEQUENCE HARACTERISTICS.  A. LENGTH: 100 pase pairs  B TYPE nucleic acid  C JTRANDEDNESS single  D TOPOLOGY: linear                           |          |
| 3CAACGGTGG CAACGGCGGC ACCAGCACGA COGTGGGGAT GGCCGGAGGT AACTGTGGTG  CCGCCGGGCT GATCGGCAAC  L SEQUENCE MARACTERISTICS. As LENGTH: 300 case pairs B TYPE, nucleic acid C' STRAMDEDNESS single D COPOLOGY: linear  8- SEQUENTE DESCRIPTION SEC TO NOWIES                        | 80       |
| SCAACGGTGG CAACGGCGGC ACCAGCACGA COGTGGGGAT GGCCGGAGGT AACTGTGGTG  CCGCCGGGCT GATCGGCAAC  L SEQUENCE MARACTERISTICS.  A: LENGTH: 300 case pairs  B: TYPE: nucleic acid  C' STRANDEDNESS single  D: COPOLOGY: linear  %: SEQUENTE DESCRIPTION SEQUENCE: HOUSESAAT ATTCAGGTTA | 80       |

TA THAT THAT IS TO TAKE AN ARTICUSTO CONTINUES AND CONTINUES AND CONTINUES.

|                                                                                                                           | EQUENCE CHA<br>(A) LENGTH:<br>(B) TYPE: n<br>(C) STRANDE<br>(D) TOPOLOG | 535 base p<br>ucleic acid<br>DNESS: sing | airs               |               |            |     |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------|--------------------|---------------|------------|-----|
| (xi) S                                                                                                                    | EQUENCE DES                                                             | CRIPTION: SI                             | EQ ID NO:16        | 6 :           |            |     |
| ACCGGCGCCA                                                                                                                | CCGGCGGCAC                                                              | CGGGTTCGCC                               | GGTGGCGCCG         | GCGGGGCCGG    | CGGGCAGGGC | 60  |
| JGTATCAGCG                                                                                                                | JTGCCGGCGG                                                              | CACCAACGGC                               | TCTGGTGGCG         | CTGGCGGCAC    | CGGCGGACAA | 120 |
| JGCGGCGCG                                                                                                                 | GGGGCGCTGG                                                              | cggggccggc                               | GCCGATAACC         | CCACCGGCAT    | cedecedec  | 180 |
| JGCGGCACCG                                                                                                                | JCGGCACCGG                                                              | CGGAGCGGCC                               | GGAGCCGGCG         | GGGCCGGTGG    | CCCCATCGCT | 240 |
| ACCGGCGGCA                                                                                                                | coggoggogg                                                              | GGTGGGCAGC                               | JTCGGTAACG         | CCGGGATCGG    | COGTACCGGC | 300 |
| GGTACGGGTG                                                                                                                | GTGTCGGTGG                                                              | TGCTGGTGGT                               | JCAGGTGCGG         | CTGCGGCCGC    | TGGCAGCAGC | 360 |
| GCTACCGGTG                                                                                                                | GCGCCGGGTT                                                              | caccaacaac                               | 3239353383         | AAGGCGGACC    | GGGCGGCAAC | 420 |
| AGCGGTGTGG                                                                                                                | GCGGCACCAA                                                              | CGGCTCCGGC                               | adcaccadca         | GTGCAGGCGG    | CAAGGGCGGC | 480 |
| ACCGGAGGTG                                                                                                                | CCGGCGGGTC                                                              | CGGCGCGGAC                               | AACCCCACCG         | STGCTGGTTT    | CGCCG      | 535 |
| 1 INFORM                                                                                                                  | ATION FOR SE                                                            | Q ID NO:167                              |                    |               |            |     |
| 1 JEQUENCE CHARACTERISTICS:  A: LENGTH: 690 base pairs  B: TYPE: nucleic acid C: STRANDEDNESS: single D: TOPOLOGY: linear |                                                                         |                                          |                    |               |            |     |
| XI 3E                                                                                                                     | EQUENCE DESC                                                            | RIPTION: JE                              | Q ID NO.141        |               |            |     |
| 100ACCTCCC                                                                                                                | IGGGGCGATA                                                              | CGGCGCTCAC                               | COACTACTAC         | ATCATCCGCA    | CCGAGAATCG | 50  |
| 1000000000                                                                                                                | MACCOCTOC                                                               | GGGCGGTGC                                | FOTTATCGGA         | JATICCCTTG    | COGACOTGAT |     |
| TIA BITTGAAC                                                                                                              | TGMAGGTGA                                                               | TOTOMOTE                                 | JODUTAÇBB 1        | MUCICAACT     | ACCOCTACTO | .8. |
| FALLAGOTAL                                                                                                                | GCCGATGTTTC                                                             | MACGCCCTT                                | TOCOCTOTOS         | COGRACGIEC    | SGCCTCAGGT | 241 |
| MINGCOJAT                                                                                                                 | JUDOTGACCO                                                              | COGGMAGACA                               | AGNAGGCATC         | CTTGACTTCA    | CGGCCGACCT | 302 |
| o caugedecte                                                                                                              | reegedeaac                                                              | CGCTCACGCT                               | COCCACATA          | CAGCTGCCGC    | AACCCGCCGA | 353 |
| n (m 3 30 3 3 4 5 )                                                                                                       | 3733773777                                                              | DO GOALINGA                              | : : :::;;;;aaa;: : | am samos e se | 12272000   |     |

| ATCAACGCGA TCGGCTATCC CCTGGCGGCC ACCSTAGGTT TAGGCACGAT CGATAGCGGG                                                                | 600   |
|----------------------------------------------------------------------------------------------------------------------------------|-------|
| CGGCGTGGAA TTGCTCACCC TCCTCGCGGC GGCCTCGGAC ACCGTTCGAA ACATCGAGGG                                                                | 660   |
| CCTCGTCACC TAACGGATTC CCGACGGCAT                                                                                                 | 590   |
| (2) INFORMATION FOR SEQ ID NO:168:                                                                                               |       |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 407 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY linear |       |
| (x1) SEQUENCE DESCRIPTION: SEQ ID NO:168:                                                                                        |       |
| ACGGTGACGG CGGTACTGGC GGCGCCACG GCGCAACGG CGGGAATCCC GGGTGGCTC                                                                   | £ (*) |
| TSSSCACAGE CGGGGGTGGC GGCAACGGTG GCGCCGCAG CACCGGTACT GCAGGTGGCG                                                                 | 120   |
| GOTOTGGGGG CACCGGCGGC GACGGCGGGA CCGGCGGGCG TGGCGGCCTG TTAATGGGCG                                                                | 180   |
| COGGCGCOGG COGGCACGGT GGCACTGGCG GCCGGGGGGG TGCCGGTGTC GACGGTGGCG                                                                | 240   |
| BOGCOGGEG GGCCGGGG GCCGGCGCA ACGGCGGGC CGGGGGTCNA GCCGCCCTGC                                                                     | 300   |
| TGTTCGGGCG CGGCGGCACC GGCGGGGCCG GCGGGCGATGGC GGTGGCGGCC                                                                         | 360   |
| STGACSGCTT CGACGGCACG ATGGCCGGCC TGGUTGGTAC CGGTGGC                                                                              | 40-   |
| INFORMATION FOR SEQ ID NO:169:                                                                                                   |       |
| . SEQUENCE CHARACTERISTICS.  A LENGTH: 468 base pairs  B TYPE, nucleic acid  C STRANDEDNESS, single  (D) TOPOLOGY, linear        |       |
| MI DEQUENCE DESCRIPTION: SEC ID NO. 149                                                                                          |       |
| NATIONATIONS RECONTENDED INGOOGGENA RESANTENCES RETURNADOR AASAACNICS                                                            | 12 .  |
| TO DIA PROBLEM TO CONTRACTO DE L'ESTRETENTE DE L'ESTRETENTE DE L'ESTRETA POR L'ESTRETA POR L'ESTRETA POR L'EST                   |       |
| ACAGCONGTO STTGGCGGGC ISCOAGGCGA ACACGTCGGT GTCACCGGTG TAGATCACCG                                                                | : 4 ~ |
| SUATURREGE UTURGERAAR BEATTEREGE ARGEREGEGE GTOTTTGTGA TGCTRGACGA                                                                | 240   |
| nowed and executed reported accyclococol edecadory actions of the cococy executive.                                              | 300   |
| ADADDBOBA: BTODBALGG: NOOTOGTOGO TOATSTADOB BOYCABOGOT SOBBOBOBAL                                                                | A     |

| 12 INFORM                                                                                                                                                                  | ATION FOR SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O ID NO:1/0                                                                        | y -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                      |                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|---------------------------------|
|                                                                                                                                                                            | EQUENCE CHAR<br>(A) LENGTH:<br>(B) TYPE: nu<br>(C) STRANDED<br>(D) TOPOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 219 base pa<br>cleic acid<br>DNESS: singl                                          | airs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                      |                                 |
| (xi) SI                                                                                                                                                                    | EQUENCE DESC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RIPTION: SE                                                                        | EQ ID NO:170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>)</b> :                                             |                                                      |                                 |
| GGTGGTAACG                                                                                                                                                                 | GCGGCCAGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TGGCATCGGC                                                                         | GGCGCCGGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGAGAGGCGC                                             | CGACGGCGCC                                           | 60                              |
| GGCCCCAATG                                                                                                                                                                 | CTAACGGCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AAACGGCGAG                                                                         | AACGGCGGTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GCGGTGGTAA                                             | CGGTGGCGAC                                           | 120                             |
| GGGGGGGGG                                                                                                                                                                  | GCGGCAATGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cedcacaede                                                                         | JGCAACGCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGGCGGCCGG                                             | GTACACCGAC                                           | 180                             |
| GGGGCGACGG                                                                                                                                                                 | GCACCGGCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COACGOCGGC                                                                         | MACGGCGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                      | 219                             |
| 0 INFORM                                                                                                                                                                   | ATION FOR SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q ID NO:171                                                                        | <b>:</b> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |                                                      |                                 |
| (1) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 494 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  X1 SEQUENCE DESCRIPTION: SEQ ID NO:171: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                      |                                 |
|                                                                                                                                                                            | YDOLCGOT C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : linear                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>1</b> :                                             |                                                      |                                 |
| xi. Si                                                                                                                                                                     | YDOLOGOT C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : linear                                                                           | EQ ID NO:IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | GCGTCGGCGG                                           | 60                              |
| X1. SI                                                                                                                                                                     | YDOLGGOT G,<br>DESC EDMANÇE<br>ADDODDDDAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Elinear  RIPTION: SE                                                               | EQ ID NO:17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GGCGGTGACG                                             | GCGTCGGCGG                                           |                                 |
| X1. SI<br>TAGCTCCCCC                                                                                                                                                       | YDOLOGOT G, DESC EDMENÇE ADDUDUDDDDDAC DAADDDAADTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Elinear  ERIPTION: SE AGGGCGGCGA  GCGGCAGCGG                                       | EQ ID NO:17<br>CGGTGGCCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GGCGGTGACG                                             |                                                      | 120                             |
| X1. SI<br>TAGCTCCCCC<br>INACACTTCC<br>CAGCCCCTTT                                                                                                                           | YDOLOGOT G, DESC EDMENÇE ADDUDUDDDDDAC DAADDDAADTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Helinear AGGGCGGCGA                                                                | EQ ID NO:IT<br>COGCOGCCAC<br>COGCOGCCAC<br>COGCOGCCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GGCGGTGACG<br>GGCGGCGGCG<br>GGCGGTCAGG                 | GCGCCGGCGAA                                          | 120                             |
| X1. SI TAGCTCCCCC INACACTTCC CAGCCCCTTT CCCCCCCCCCCCCCCCCCCC                                                                                                               | YBOLOGOT G, DEGUENCE DESC ADBEDEBBAE DAAGEDATE ADBEDEBETT ADBEDEBTEGGA ADBEDTEGGA ADBEDTEGGA ADBETTGGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Elinear  RIPTION: SE AGGGGGGGA  GGGGGAGGGG  AGGGGGGGGTTT  CCGTGGGGGG               | EQ ID NO:ITT  CONTROL  CONTROL | GGCGGTGACG<br>GGCGCCGGCG<br>GGCGGTCAGG<br>AACGGCGGTG   | GCGCCGGCGAA                                          | 120<br>180<br>040               |
| X1. SI TAGCTCCCCC TAGCAGTTCC TAGCCCCTTT JEGCCCCCGTTT JEGCCCCCGCCCCCC                                                                                                       | YBOLOGOT C, YBOLOGODBBAE ADBCDDBCTT ADBCDDBCTT ADBCTCDCCA ADBCTCTCCCCCA CTTTCTCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Elinear  RIPTION: SE AGGGCGGCGA  JCGGCAGCGG  AGGGCGGCTT  CCGTGGCCGG                | EQ ID NO:IT<br>CAGTGGCCAC<br>CAGTGGCGGC<br>CAGGGGGGGAC<br>CAGGCGAGGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GGCGGTGACG GGCGGCGGCG AACGGCGGTG GGCCTCGGTG            | 30390000AA<br>T039000000                             | 120<br>180<br>340<br>300        |
| X1. SI TAGCTCCCCC CAGCGCCTTT CCCCCCCCCCCCCCCCC                                                                                                                             | YBOLOGOT D. YBOLOGOT D. YBOLOGOT DAGGEORGE ACCOUNTS ACCOU | AGGGCGGCGA  JCGGCAGCGG  AGGGCGGCTT  CCGTGGCCGG  JCGGCCAGCGG                        | EQ ID NO:IT<br>CEGTEGECAC<br>CEGTEGECEAC<br>CEGEGEGECAC<br>TEGECEAGGEC<br>CEGECTAGGEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GGCGGTGACG GGCGGTCAGG AACGGCGGTG GGCCTCGGTG GGCCCCGGTG | GCGCCGGCGG<br>GCGGCCCGAA<br>TCGGCGGCCG<br>GCCAGGGCGG | 120<br>180<br>240<br>300        |
| X1. SI TAGCTCCGGC ZAGCGGCTTT JGGCGGGGGT GGGCGGGGGCAC MATGGCGGGGAC MATGGCGGG                                                                                                | YBOLOGOT D.  YBOLOGOT D.  ADBEDBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TRIPTION: SE AGGGCGGCGA  JCGGCAGCGG AGGGCGGCTT  CCGTGGCCGG  CCGGTCCCGG AATCCGCGCCT | EQ ID NO:IT<br>TEGTEGGEAC<br>TEGEGGGEAC<br>TEGEGGGGAC<br>TEGEGGAGGGC<br>TEGECAAGGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GGCGGTGACG GGCGGGTGAGG AACGGCGGTG GGCCTCGGTG GGCCCGGTG | GCGCCGGCGG GCGGGGGGGGGGGGGGGGGGGGGGGGG               | 120<br>180<br>240<br>300<br>361 |

\_ INFORMATION FOR SEC ID NO 100

. SEQUENCE CHARACTERINGING

A LENGTH 22% base bairs

| (X1) SEQUENCE DESCRIPTION: SEQ ID NO:172:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| GGGCCGGTGG TGCCGCGGGC CAGCTCTTCA GCGCCGGAGG CGCGGCGGGT GCCGTTGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60           |
| TTGGCGGCAC CGGCGGCCAG GGTGGGGCTG GCGGTGCCGG AGCGGCCGGC GCCGACGCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120          |
| CCGCCAGCAC AGGTCTAACC GGTGGTACCC GGTTCGCTGG CGGGGCCGGC GGCGTCGGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180          |
| GCCACAGCGC CAACGCCATT GCCGGCGGCA TCAACGGCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 220          |
| (2) INFORMATION FOR SEQ ID NO:173:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 388 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| X1 SEQUENCE DESCRIPTION: SEQ ID NO:173.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
| ATGGCGGCAA CGGGGGCCCC GGCGGTGCTG GCGGGGCCGG CGACTACAAT TICCAACGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60           |
| SGGCAGGGTG GTGCCGGCGG CCAAGGCGGC CAAGGCGGCC TGGGCGGGGC AAGCACCACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120          |
| TGATCGGCCT AGCCGCACCC GGGAAAGCCG ATCCAACAGG CGACGATGCC GCCTTCCTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180          |
| COCCUTTING CONGCCOGG ATCACCTACS CTGACCCAGG CCACGCCATA ACGCCCGCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 240          |
| AGGCGATGTG TGGGCTGTGT GCTAACGGCG TAACAGGTCT ACAGCTGGTC GCGGACCTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300          |
| BOOKSTACAN COCCOGGCTT ACCATGGACA GCGCGCCCNA GTTCGCTGCC ATCGCATGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 360          |
| SOBOSTACTO COCCGAACAC CTGGAACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 388          |
| 0 INFORMATION FOR SEQ ID NO.174.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| : JEQUENCE CHARACTERISTICS: (A) LENGTH: 400 base pairs (B) TYPE: nucleic acid C STRANDEDNESS: single F MOROLOGY (inear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| REL REQUENCE DESCRIPTION: JEQ 11 N . 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
| FLANAGGEGG GACEGGEGGG CECEGGENTEN NEADE TITTA TOPGETGETA GEOGECENAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>.</u> . ` |
| AUDUMBRICA AGGEGGEACE GGEGGEACED GCGGUNAUM, MGG MGGGCGGE GGCACEAGET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :2:          |
| TEACHDAAGS CGCCGACCCC MACCCCGGCA ACGGCGGTGA CGGCGGGGTC GGCGGCAACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 133          |
| PRINCALACIO DECENDACIONO ACAMBANA CARLALIA (DECIMARDES CESTAMAS CONTRACIONES CONTRA | 2 + 1        |

# (D) TOPOLOGY: linear

# x1: SEQUENCE DESCRIPTION: SEQ ID NO:177:

| AGCAGCGCTA  | CCGGTGGCGC          | CGGGTTCGCC   | GGCGGCGC   | GCGGAGAAGG | CGGAGCGGGC | 60    |
|-------------|---------------------|--------------|------------|------------|------------|-------|
| GGCAACAGCG  | GTGTGGGCGG          | CACCAACGGC   | TCCGGCGGCG | CCGGCGGTGC | AGGCGGCAAG | 120   |
| GGCGGCACCG  | GAGGTGCCGG          | CGGGTCCGGC   | GCGGACAACC | CCACCGGTGC | TGGTTTCGCC | 180   |
| ggTggcgccg  | GCGGCACAGG          | TGGCGCGGCC   | GGCGCCGGCG | GGGCCGGCGG | GGCGACCGGT | 240   |
| ACCGGCGGCA  | CCGGCGGCGT          | TGTCGGCGCC   | ACCGGTAGTG | CAGGCATCGG | cagaaccaac | 3 O C |
| 3000000000  | GTGACGGCGG          | CGATGGGGCC   | AGCGGTCTCG | GCCTGGGCCT | CTCCGGCTTT | 360   |
| JMCJJGCGGCC | AAGGCGGCCA          | AGGCCCCCC    | JGCGGCAGCG | ccaacaccaa | CGGCATCAAC | 420   |
| Jagaccadca  | GGGCCGGCGG          | CAACCOCCOC   | DDDDDDAE   | ACGGCGCAAC | CGGTGCCGCA | 480   |
| ggrereggeg  | ACAACGGCGG          | GGTCGGCGGT   | GACGGTGGGG | CIGGTGGCIC | CGCCGGCAAC | 540   |
| JGCGGCAACG  | CGGGCGTCGG          | CCTGA-CAG-CC | AAGGCCGGCG | ACGGCGGCGC | CGCGGGCAAT | 600   |
| JGCGGCAACG  | GGGGGGCGG           | CGGTGTTGGC   | GGGGCCGGCC | ACAACAATTT | CAACGGCGGC | 660   |
| CAGGGTGGTG  | doggeggeea          | AGGCGGCCAA   | 3GCGGCTTGG | GCGGGGCAAC | CACCACCTGA | 720   |
| TOBBLOTAGE  | CGCACCIGGG          | AAAGCCGATC   | CAACAGGCGA | CCDCDCTATC | TTCCTTGCCG | 780   |
| TITTIGACIA  | 3000302 <b>AT</b> 0 | ACCTACGCTG   | Accenagean | COCCATAACG | GCCCCCAAGG | 840   |
| HATOTOTOG   | GCTGTGTGCT          | AACTGCGTAA   | AGGTOTACA  | Janggragas | GACCTGCGGG | 30 f  |
| RAINCAATCC  | IGGOCTGACC          | ATGGACAGCG   | 33300AA3TT | COCTOCONTO | GCATCAGGCG | 460   |
| CONTROL     | CGAACACCTG          | JAACA        |            |            |            | 385   |

# . INFORMATION FOR SEQ ID WO INF

. SEQUENCE CHARACTERISTICS

- A CENGTE: 213% Dasw pairs
- B TYPE: nucle: 40:3 C STRANDEDNESS 3:ng; F D TOPOLOGY linear

# MI SEQUENCE DESCRIPTION SEC ID NO 178

| TITE TO TAKE TO | ATCOUTAGES | Jacascatos | advauldinda | ###################################### | TTTCCCCATC |  |
|-----------------|------------|------------|-------------|----------------------------------------|------------|--|
|                 |            |            |             |                                        |            |  |

| GCGGCGACGG TGCACTCTCA GGCAGCACCG GTGGTGCCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (2) INFORMATION FOR SEQ ID NO:175:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| (1) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 538 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| GGCAACGGCG GCAACGGCGG CATCGCCGGC ATTGGGCGGC AACGGCGTTC CGGGACGGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>6</b> 0 |
| AGCGGCAACG GCGGCAGCGG CGGCAACGCCG GCAACGCCG GCATGGGCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120        |
| CAACAGCGGC ACCGGCAGGG GCGACGGCGG TGCCGGCGGG AACCGCGGGCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 180        |
| JGGCGGCACC GGCGGCGACG GCGGCCTCAC CGGTACTGGC GGCACCGGCG GCAGCGGTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 240        |
| CACCGGCGGT GACGGCGGTA ACGGCGGCAA CGGGGCAGAT AACACGGCAA ACATGACTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300        |
| SCAGGESGGE SGTGACGGTG GCAACGGEGG CGACGGTGGE TTUGGEGGGG GGGCCGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 360        |
| IGGEGGEGGT GGCTTGACCG CTGGCGCCAA IGGCACCGGC GGGCAAGGIG GCGCCGGCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 420        |
| CGATGGCGGC AACDGGGGCA TCGGCGGCCA CGGCCCACTC ACTGACGACC CCGGCGGCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 480        |
| TUGGGGCACC GGCCCCAACG GCGGCACCGGG GGCACCGGC GGCGCGGG LA TCGGCAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 538        |
| U INFORMATION FOR SEQ ID NO.176:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| 1 SEQUENCE CHARACTERISTICS: A LENGTH: 239 pase pairs B TYPE: nucleic acid C' STRANDEDNESS: single D TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| No REQUENCE DESTRIPTION RECORD More.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| radornyminin madogogggo (Naritotti II.) HodoogoMaaa (Sooria Haadi Goriada)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| TO BE OBTAINED THE STEEL BELLEVIEW OF THE SECRET OF THE SE |            |
| DOGCOAGOAN AGOTOTAACO GOTOGTACOO GOTTOGOTOG DOGGOOGOO GOOTOGOOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180        |
| SECA EGGEGG TAAGETTATT GEEGGEGGA TEAAGGGETT ISGTSITGEE GGEGGARM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 230        |
| L INFORMATION FOR DEL 11 NO 1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |

| AGATTTTGAZ                              | A CAGGGCCAAC | GAGGTGGAGC    | CCCCGATGGC  | GGACCCACCG  | ACTGATGICC  | 300           |
|-----------------------------------------|--------------|---------------|-------------|-------------|-------------|---------------|
| CCATCACAC                               | GTGCGAACTC   | ACCCCCCCCTA   | AAAACGCCGC  | CCAACAGCTG  | STATTSTCCS  | 360           |
| CCGACAACAT                              | GCGGGAATAC   | CTGGCGGCCG    | GTGCCAAAGA  | GCGGCAGCGT  | CTGGCGACCT  | 420           |
| CGCTGCGCAA                              | CGCGGCCAAG   | GCGTATGGCG    | AGGTTGATGA  | GGAGGCTGCG  | ACCGCGCTGG  | 430           |
| ACAACGACGG                              | CGAAGGAACT   | GTGCAGGCAG    | AATCGGCCGG  | GGCCGTCGGA  | GGGGACAGTT  | 540           |
| CGGCCGAACT                              | AACCGATACG   | CCGAGGGTGG    | CCACGGCCGG  | TGAACCCAAC  | TTCATGGATC  | 600           |
| TCAAAGAAGC                              | GGCAAGGAAG   | CTCGAAACGG    | GCGACCAAGG  | CGCATCGCTC  | GCGCACTTTG  | 560           |
| CAGATGGGTG                              | GAACACTTTC   | AACCTGACGC    | TGCNAGGCGA  | CGTCAAGCGG  | TTCCGGGGGT  | 720           |
| TTGAGAACTG                              | GGAAGGCGAT   | GCGGCTACCG    | CTTGCGAGGC  | TTCGCTCGAT  | CAACAACGGC  | 78C           |
| AATGGATACT                              | CCACATGGCC   | AAATTGAGCG    | CTGCGATGGC  | CAAGCAGGCT  | CAATATGTCG  | 34C           |
| CGCAGCTGCA                              | CGTGTGGGCT   | AGGCGGGAAC    | ATCCGACTTA  | TGAAGACATA  | GTCGGGGCTCG | 900           |
| AACGGCTTTA                              | CGCGGAAAAC   | CCTTCGGCCC    | GCGACCAAAT  | TCTCCCGGTG  | TACGCGGAGT  | 1, 960        |
| ATCAGCAGAG                              | GTCGGAGAAG   | GTGCTGACCS    | AATACAACAA  | CAAGGCAGCC  | CTGGAACCGG  | 1320          |
| TAAACCCCCC                              | GAAGCCTCCC   | CCCGCCATCA    | AGATOGACCO  | GCCCCGCCT   | COGCAAGAGG  | 1080          |
| AGGGATTGAT                              | cocragatio   | CTGATGCCGC    | CGTCTGACGS  | CTCCGGCTGTG | ACTCCCGGTA  | 1140          |
| 100007AT000                             | AGCCGCACCG   | ATGGTTGCGC    | CTACTGGATC  | accosomosm  | 79.20720033 | .200          |
| TTOMONOGGO                              | JGCGCAGCTG   | ACGTCGGCTG    | 3GCGGGAAGI  | adcadagerra | TOGGGGGAIG  | .26.          |
| TOGCOGTONA                              | AGCGGCATCG   | CTCGGTGGCG    | GTGGAGGCGG  | CGGGGTGCCG  | TAGGAGCOGT  | 1329          |
| TGGGATCCGC                              | PATCGGGGGGC  | GECTAADOOD    | Tadadeeeat  | TGGCGCTGGT  | GACATTGCCG  | 1390          |
| 100000000000000000000000000000000000000 | FFFAAGGGCC   | 1303603627    | .0303013333 | dagrarraga  | ATGGGAATGG  | .4            |
| JAT 133T3U                              | DICTERNO     | 2GACIM-2003   | Machaath    | Magggttat   | TABTA KIAAT | As a state of |
| v Bagg tam                              | TTA INJOGNO  | GNTCCCCCAT    | JJACCUAGGE  | CUTCATTGGT  | AAGURTURGU  | . 56          |
| JODAG GAZAG                             | TAAGGAGT00   | AAJTGAJCAT    | JGACGAATTS  | JACCCCCATS  | TOGCCCGGGC  | 1521          |
| POT BARROTS                             | 303903030T   | PTCAGTCGGC    | CCTAGACOGG  | ACGCTCAATC  | AGAT GAACAA | 1681          |
| 12 2017                                 | 1377774371   | A TIJAAG 103A | MCCTT IOAA  | JTGACGATCA  | ATGUNCACJA  | 174           |

| cgc  | GGC       | GGGC          | GAG                            | CAGC                                   | TGA                          | CCGC                           | TGCG               | II A       | TCGG       | CCAT      | J TC       | ccc        | GCGA      | TGA  | ACGA.     | AGG        |
|------|-----------|---------------|--------------------------------|----------------------------------------|------------------------------|--------------------------------|--------------------|------------|------------|-----------|------------|------------|-----------|------|-----------|------------|
| AAT  | GGC       | TTAA          | GCC                            | CATTO                                  | IT :                         | gc <b>g</b> g:                 | IGGT!              | AG C       | GACTZ      | \CGCZ     | . cc       | BAAT       | GAGC      | GCCC | GCAA:     | rgc        |
| JGT! | CATI      | 'CAG          | CGCC                           | cccc                                   | JAC A                        | ACGG(                          | CGTGA              | IG TA      | ACGC       | TTGT      | CAA        | TGT        | TTG       | ACAT | GGA       | CG         |
| GCC  | GGGT      | TCG           | GAGC                           | GCGC                                   | CA 1                         | TAGTO                          | CTGG               | T CO       | CCAA       | TATT      | . GCC      | GCAC       | CTA       | GCTG | GTCI      | TA         |
| GGTT | CGG       | TTA           | CGCI                           | GGTI                                   | 'AA 1                        | TATO                           | ACGT               | C CG       | TTAC       | CA        |            |            |           |      |           |            |
| (2)  | INF       | ORMA          | TION                           | FOR                                    | SEQ                          | ID                             | NO:1               | 79:        |            |           |            |            |           |      |           |            |
|      |           | ()<br>()<br>: | A) L<br>B) T<br>C) S'<br>D) T: | CE C<br>ENGT<br>YPE:<br>TRANI<br>DPOLO | H: 4<br>ami<br>DEDN:<br>DGI: | 60 am<br>no am<br>ESS:<br>line | mino<br>cid<br>ear | aci        |            |           |            |            |           |      |           |            |
|      |           |               |                                |                                        |                              |                                |                    |            |            |           |            |            |           |      |           |            |
|      | Met<br>1  | Thi           | : Glr                          | : Ser                                  | Glr<br>5                     | n Thr                          | r Val              | Thr        | - Val      | Asp<br>10 | Gln        | Glr        | : Glu     | lle  | Leu<br>15 | Asn        |
|      | Arg       | Ala           | . Asn                          | : Glu<br>20                            | . Val                        | . Glu                          | Ala                | Pro        | Met<br>25  | Ala       | Asp        | Pro        | Pro       | Thr  | qeA       | 7al        |
|      | Pro       | Ile           | Thr<br>35                      | Pro                                    | ⊋ys                          | : 3lu                          | Leu                | Thr<br>40  | Ala        | Ala       | Lys        | Asn        | Ala<br>45 | Ala  | Jln       | Gln        |
|      | Leu       | 7al<br>50     | Leu                            | 3er                                    | Ala                          | . Asp                          | Asn<br>55          | Met        | Arg        | Slu       | Tyr        | Leu<br>60  | Ala       | Ala  | gly       | Ala        |
|      | Lys<br>as | 714           | Ara                            | Iln                                    | Arş                          | 1.40<br>70                     | Ala                | Thr        | 3er        | Leu       | Arg<br>75  | Asn        | Ala       | Ald  | 1,75      | A.a.<br>80 |
|      | Tyrr      | Jry           | ole                            | 7al                                    | Asp<br>35                    | Gla                            | 31::               | Ala        | Ala        | Thr<br>90 | Ala        | Leu        | Asp       | Asn  | Asp<br>95 | 31 y       |
|      | Hu        | 117           | 77                             | Va.<br>198                             | Ni.                          | Sad                            | ??.                | lay        | Ala<br>Lin | ;.··      | Nia        | ··         | Пy        | 3.3  | Aaş       | (Pr        |
|      |           | N. a          | 3<br>                          | Sea                                    | Titt                         | \5 <u>;</u> .                  | 7:::               | 977<br>120 | At a       | 'a.       | X. A       | Inr        | A. i      | 710  | 1         | ₽:.        |
| :    | Nan       | Phe<br>13.    | Met                            | Asp                                    | Leu                          | Lys                            | 91u<br>135         | Ala        | Ali        | Ārģ       | ۵∵s        | Len<br>140 | Glu       | Thr  | 7ly       | Asp        |
| :    | 71n<br>45 | ЗГА           | Ala                            | ser                                    | Leu                          | A13<br>157                     | His                | Phe        | \$14       | Aup.      | Jir<br>Var | Frp        | Adn       | Thr  | Phe       | Asn<br>161 |

- Gln Trp Ile Leu His Met Ala Lys Leu Ser Ala Ala Met Ala Lys Gln 195 200 205
- Ala Gln Tyr Val Ala Gln Leu His Val Trp Ala Arg Arg Glu His Pro 210 215 220
- Thr Tyr Glu Asp Ile Val Gly Leu Glu Arg Leu Tyr Ala Glu Asm Pro 225 230 235 240
- Ser Ala Arg Asp Gln Ile Leu Pro Val Tyr Ala Glu Tyr Gln Gln Arg
- Ser Glu Lys Val Leu Thr Glu Tyr Asn Asn Lys Ala Ala Leu Glu Pro 260 265 270
- Val Asn Pro Pro Lys Pro Pro Pro Ala Ile Lys Ile Asp Pro Pro Pro Pro 235
- Pro Pro Gln Glu Gln Gly Leu Ile Pro Gly Phe Leu Met Pro Pro Ser 290 295 300
- Asp Gly Ser Gly Val Thr Pro Gly Thr Gly Met Pro Ala Ala Pro Met 305 310 315 320
- Val Pro Pro Thr Gly Ser Pro Gly Gly Leu Pro Ala Asp Thr Ala 325 330 335
- Ala Glm Leu Thr Ser Ala Sly Arg Glu Ala Ala Ala Leu Ser Gly Asp 340 345 350
- Val Ala Val Lys Ala Ala Ber Leo Bly Bly Bly Bly Bly Bly Bly Bly Bly Val
- Ono Ser Ala Pro Leu Sly Ser Ala Tie Sly Sly Ala Siu Ser Val Arg
- Pro Ala Bly Ala Bly Ash The Ala Bly Led Bly Bln Bly Arg Ala Bly 385 495 400
- In the Ala Ala Leg 3.7  $\pm$  1 , where for Mer. Per Mer. Jun Ala 413
- Ala His Jin Jiv Sin Gly Gly Ala Lys Ser Lys Gly Ser Jin Glu 420 425 430
- Asp Glu Ala Leu Tur Thr Glu Asp Arg Ala Trp Thr Glu Ala Val Ile 435 44. 445
- The App Ard Ard Ard Bun App has the top has the

- (A) LENGTH: 277 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:
- Ala Gly Asn Val Thr Ser Ala Ser Gly Pro His Arg Phe Gly Ala Pro 1 5 10 15
- Asp Arg Gly Ser Gln Arg Arg Arg His Pro Ala Ala Ser Thr Ala 20 25 30
- Thr Glu Arg Cys Arg Phe Asp Arg His Val Ala Arg Gln Arg Cys Gly
  35 40 45
- Phe Pro Pro Ser Arg Arg Sin Leu Arg Arg Arg Val Ser Arg Siu Ala 50 55 60
- Thr Thr Arg Arg Ser Oly Arg Arg Ash His Arg Cys Gly Trp His Pro 65 70 75 80
- Gly Thr Gly Ser His Thr Gly Ala Val Arg Arg Arg His Gln Glu Ala 95 90 95
- Arg Asp Glm Ser Leu Leu Leu Arg Arg Gly Arg Val Asp Leu Asp
- Sly Sly Sly Arg Leu Arg Arg Val Tyr Arg Phe Gin Gly Cys Leu Val
- Wal Wal Phe Gly Glm His Leu Leu Arg Pro Leu Leu Ile Leu Arg Wal 135 140
- His Arg Glu Ash Len Val Ala Siy Arg Arg Val Phe Arg Val Lyo Pro 145 150 156
- Phe 3lu Pro Asp Tyr Mal Phe Ile Ser Arg Met Phe Pro Pro Ser Pro
- Hip Mal Blu Deu Ard Abn De Den Ber Den Den Bly Hib Arg Ber Ala 180 - 186 - 196
- Jun The Bly His Val Bl. Tyr Pr., Lev. Cr. Des Les ile Bin Arg Ser 195 200 235
- Let Ala Ser Gly Ser Arg tie Ala Phe Pro Mal Mat Lys Pro Pro 312 213 220
- Pro Lev App Mai Ala Lev Bin Aig Bin Mai Bin Ber Mai Pro Pro Ile Din

Cys Arg Phe Phe Glu Ile His Glu Val Gly Phe Thr Gly Arg Gly His 260 265 270

Pro Arg Arg Ile Gly 275

#### (2) INFORMATION FOR SEQ ID NO:181:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 192 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- K1 SEQUENCE DESCRIPTION: SEQ ID NO:181:
- Ary Val Ala Ala Ser Phe Ile Asp Str Deu Asp Ser Pro Asp Ser Pro 15 15
- Leu Asp Pro Ser Leu Val Ser Ser Leu Leu Asp Ala Val Ser Cys Gly 20 25 30
- Ala Glu Ser Ser Ala Ser Ser Ser Ala Arg Ser Gly Ash Gly Ser Arg 35 40 45
- Trp Thr Ser Met Pro Ser Gly Thr Arg Pro Gly Pro Arg Arg Ala Thr 50 55 60
- Ser Arg Asp Asp Arg Arg Ser Ala Thr Ser Val Ile Pro Ser Arg Arg
- Ser Val Ala Gro Arg Ala Glu Dhe Gly Thr Ard Leu Ala Ger His Ard
- Ala Ser Pro Ser Ash Ala Dyo Pro Cal Arg He Mau Thr Ser Ala Ser 100 100 100
- 317 Arg Pro 11e Ser Ser Pro Pro 11e Val Arg Ser Arg Ser Ovs Val
- Abt Live Adm (1) Star Ard Sym All er (1) Sym Ard Ard Leb Adm Ard (1) Live (1)
- Ava Arg Ser Ser Ser See Com Ava V c Ang Sya Arg Dar vice Sky Dar Phe 140 - 150 - 1eb - 1eb - 1eb
- Arm Arg Ser Arg Tor Ser Ala SH: Men Arg Cal Ser Thr Ash Ser Pro 185 : 179 : 178
- for Val Throdon to Val Ald Fro Eq. Val Throdog Architecture

- (i SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 196 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:

Glm Glu Arg Pro Glm Met Cys Glm Arg Val Ser Glu Ile Glu Pro Arg 1 5 10 15

Thr Gln Phe Phe Asn Arg Cys Ala Leu Pro His Tyr Trp His Phe Pro 20 25 30

Ala Val Ala Val Phe Ser Lys His Ala Ser Leu Asp Glu Leu Ala Pro 35 40 45

Arg Ash Pro Arg Arg Ser Ser Ard Arg Asp Ala Glu Asp Arg Arg Val

Ile Phe Ala Ala Thr Leu Val Ala Val App Pro Pro Leu Arg Gly Ala 65 75 80

Gly Gly Glu Ala Asp Gln Leu Ile Asp Leu Gly Val Cys Arg Arg Gln 85 90 95

Ald Gly Arg Val Arg Arg Gly Gln Glu Leu His His Arg His Arg His 100 105 110

3ln 3ly Ala Ala Pro Asp Leu Arg Arg Arg Arg His Arg Arg Val

3in 3in Hio Awg Arg Den 3in Arg Cal Arg Gin Leu Arg Arg Tyr Cal 133 140

Gln Thr Ala His His Arg Arg Dhe Ala Arg Thr Asp Arg Val Arg His

His Val Ard Siv Pro Ser Ash His Ard Ard Ard Ard Ard In. Dom Ard Siv 188

And Had Over the Ala Siverily the second of the Ala Signature and the second of the se

Gly Gly Ser Ala 198

L INFORMATION FOR DEQ ID NO.183

JEQUENCE CHARACTERICTICS A LEMOTH COLORNOL AND SECTION

- x1: SEQUENCE DESCRIPTION: SEQ ID NO:183.
- Val Arg Cys Gly Thr Leu Val Pro Val Pro Met Val Glu Phe Leu Thr
  1 10 15
- Ser Thr Asn Ala Pro Ser Leu Pro Ser Ala Tyr Ala Glu Val Asp Lys 20 25 30
- Leu Ile Gly Leu Pro Ala Gly Thr Ala Lys Arg Trp Ile Asn Gly Tyr 35 40 45
- Glu Arg Gly Gly Lys Asp His Pro Pro Ile Leu Arg Val Thr Pro Gly 50 55 60
- Ala Thr Pro Trp Val Thr Trp 3ly 3lu Phe Val Glu Thr Arg Met Leu 55
- Ala Glu Tyr Arg Asp Arg Arg Lys Val Pro lle Val Arg Gln Arg Ala 95 90 95
- Ala Ile Glu Glu Leu Arg Ala Arg Phe Ash heu Arg Tyr Pro Leu Ala 100 105 110
- His Leu Arg Pro Phe Leu Sor Thr His Glu Arg Asp Leu Thr Met Gly 115 120 125
- Gly Glu Glu Tie Gly Leu Pro Asp Ala Glu Val Thr Tie Arg Thr Gly 130 140
- Tin Ala Leu Leu Gly Asp Ala Art Tro Leu Ala Ser Leu Val Pro Ash
- Ser Ala Arg Bly Ala Thr Leu Arg Arg Deu Gly Tie Thr Asp Mal Ala 185 - 177 - 178
- Asp Len Arg Ser Ser Arg 310 Val Alu Arg Arg 31y Pro 31y Arg Val 180 185 190
- or Ash Gly Ile Ash (a) His Lew Jan Dat One Dat Ash Lew Ala Ash
- Aug Add Ala Aug Asy Ger Ala et Hid tollter Ala the Lya Ard Deu Dit
- Deu Thr Ash Asp 31y Ser Ash 31m 31. Ser 31y 31d Ser 3er 31h 3er 321 235 235
- lle Ran Asp Ala Ala Thr Arg Tyr Men Thr Asp 31% Twr Arg 31m Phe 249 - 35
- in The Arg Arg (), is a second of a substitution of  $\frac{1}{2} (x_1, x_2, \dots, x_n)$

Arg Thr Gly Phe Val Val Ala Leu Val Leu Glu Ala Val Gly Leu Asp 290 295 300

Arg Asp Val Ile Val Ala Asp 305 310

# (2) INFORMATION FOR SEQ ID NO:184:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2072 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- .D) TOPOLOGY: linear

# x1. SEQUENCE DESCRIPTION: SEQ ID NO:184:

| CTCGTGCCGA    | TTCGGCACGA  | GCTGAGCAGC   | CCAAGGGGCC  | GTTCGGCGAA   | GTCATCGAGG | 50                                      |
|---------------|-------------|--------------|-------------|--------------|------------|-----------------------------------------|
| CATTCGCCGA    | cadactacc   | GGCAAGGGTA   | AGCAAATCAA  | UACCACGCTG   | AACAGCCTGT | 120                                     |
| ngcaggogry    | GAACGCCTTG  | AATGAGGGCC   | GCGGCGACTT  | CTTCGCGGTG   | GTACGCAGCC | 180                                     |
| TGGCGCTATT    | CGTCAACGCG  | CTACATCAGG   | ACGACCAACA  | GTTCGTCGCG   | TTGAACAAGA | 240                                     |
| ACCTTGCGGA    | STTCACCGAC  | AGGTTGACCC   | ACTCCGATGC  | GGACCTGTCG   | AACGCCATCC | 300                                     |
| AJCAATTOGA    | CAGCTTGCTC  | GCCGTCGCGC   | GCCCGTTCTT  | CGCCAAGAAC   | CGCGAUGTGC | 360                                     |
| TGACGCATGA    | CGTCAATAAT  | CTCGCGACCC   | TGACCACCAC  | GTTGCTGCAG   | TEEGATEEGT | 420                                     |
| TRGATOGOTT    | GGAGACCGTC  | CTGCACATCT   | TOCOGREGOT  | GGCGGCGAAC   | ATTAACCAGC | 18C                                     |
| TTTACCATCC    | JACACACGGT  | GGCGTGGTGT   | COCTTTCCCC  | GTTCACGAAT   | TTCGCTAACC | 54€                                     |
| TOATEGAGTT    | MATCTGCAGE  | TOGATTCAGG   | CCCDATTOCCC | GCTCGGTTAT   | CAAGAGTOGG | 500                                     |
| PEGAACTETS    | TGCGCAGTAT  | TTTTGCCCCAG  | TCCTCGATGC  | GATCAAGTTC   | AACTACTTTC | ອໍຄວິ                                   |
| .DTTnguart    | DAAJOTGGCC  | 30 2A 00000  | COACACTOUR  | TAAASAGATT   | 2000000000 | • •                                     |
|               | MAGGGGGG    | AA TERRET AA | NOGRANCON:  | PATRICICEGOS | 3777703737 | 18.                                     |
| MATADICT      | ITTGTTCACAC | amaaanaaa h  | AGCTCTCTT)  | HUTGUTGGGA   | TOOSHOATGO | # <del>4</del>                          |
| WAJIGOTTON    | JGTGGGACCG  | ATCACGCAGG   | GTTTGCTGAC  | GCCGGAGTCC   | STSCCCGAAC | <del>3</del> 0€                         |
| TUNTGGGTGG    | TCCCCATATC  | GCCCCTCCAT   | TOTCAGOGCT  | GCAMACCCCC   | SCCOGACCCC | 960                                     |
| DEWN DE DOTTE | CATOAGOAGO  | 200373777    | nammaary);  | TTTACAGICT   | JOACAGGTGC | * * * * * * * * * * * * * * * * * * * * |

| TOTTGTTGC       | T GTEGEEGGG                                                            | S STGGCGACC                              | TCCTGTTCGC   | G GGTGTCATC | AGCCCCGCCC | 1200 |
|-----------------|------------------------------------------------------------------------|------------------------------------------|--------------|-------------|------------|------|
| GTGGAACGA       | T GGCCGATCGC                                                           | CACGTGTTG                                | A TACCGGCGAT | CACCGGCCTC  | GCGTTGATCG | 1260 |
| CGGCATTCG       | r cgcacattec                                                           | TGGTACCGC                                | CAGAACATCC   | GCTCATAGAC  | ATGCGCTTGT | 1320 |
| TCCAGAACC       | AGCGGTCGCG                                                             | CAGGCCAACA                               | TGACGATGAC   | GGTGCTCTCC  | CTCGGGCTGT | 1380 |
| TIGGCTCCTI      | CTTGCTGCTC                                                             | CCGAGCTACC                               | TCCAGCAAGT   | GTTGCACCAA  | TCACCGATGC | 1440 |
| AATCGGGGGT      | GCATATCATC                                                             | CCACAGGGCC                               | TCGGTGCCAT   | GCTGGCGATG  | CCGATCGCCG | 1500 |
| GAGCGATGAT      | GGACCGACGG                                                             | GGACCGGCCA                               | AGATCGTGCT   | GGTTGGGATC  | ATGCTGATCG | 1560 |
| CTGCGGGGTT      | GGGCACCTTC                                                             | gccTTTggTg                               | TCGCGCGGCA   | AGCGGACTAC  | TTACCCATTC | 1620 |
| TGCCGACCGG      | GCTGGCAATC                                                             | ATGGGCATGG                               | GCATGGGCTG   | CTCCATGATG  | CCACTGTCCG | 1680 |
| GGGGGGCAGT      | JCAGACCCTG                                                             | GCCCCACATO                               | AGATOGOTOG   | JGGTTCGACG  | CTGATCAGCG | 1740 |
| TCAACCAGCA      | GGTGGGCGGT                                                             | TOGATAGGGA                               | CIGCACTGAT   | GTCGGTGCTG  | CTCACCTACC | 1800 |
| AGTTCAATCA      | CAGCGAAATC                                                             | ATCGCTACTG                               | CAAAGAAAGT   | SGCACTGACC  | CCAGAGAGTG | 1860 |
| acaccaaasa      | ggggggggg                                                              | GTTGACCCTT                               | CTTCGCTACC   | SCSCCAAACC  | AACTTOGOGG | 1920 |
| JOCANCTGCT      | GCATGACCTT                                                             | TOGCACGCCT                               | ACGCGGTGGT   | ATTCGTGATA  | GCGACCGCGC | 1980 |
| TAGTGGTCTC      | GACGCTGATC                                                             | CCCGCGGCAT                               | TCCTGCCGAA   | ACAGCAGGCT  | AGTCATCGAA | 2040 |
| JAGCACCOTT      | GOTATOCOCA                                                             | TGACGTCTGC                               | TWT:         |             |            | 3072 |
| 1 INFORM        | ATION FOR SE                                                           | e id Molias                              | · .          |             |            |      |
| : 3             | EQUENCE CHAP<br>A LENGTH:<br>B) TYPE: nu<br>C) STRANDED<br>C) TOPOLOGY | 1903 base p<br>coleic acid<br>NESS: bind | Cairs        |             |            |      |
| ** .            | Elvende desc                                                           | Planton ot                               | SQ ID NO Le. |             |            |      |
|                 | MASTISTI                                                               | BRIGA NACO                               | 777A 18722A  | TOBETSTOS   | ATGGTCGAGA | •    |
| n sa so smiser? | GARCOAGGAD                                                             | AAGTACGCCC                               | TONAJATOOO   | DACDAGGAC   | creacessie | 120  |
| racarianat      | COSTGACSTT                                                             | IT IGUUTACA                              | TOCAGAAGOT   | 19AGGAAGAA  | AACCCGGAGG | 180  |

ERROTTEAGRE STITSCHOOMS AARATTRAUT ERRAUANDER TUATROOMSA OGAGONUATE 243

THE PROPERTY AS ICALIATOR ON A CONTRACT ASSOCIATION IN CURRENT ASSOCIATION (1997)

| GAGTTGGCGG   | GGGCCGAATT   | GCGGCATTGC   | GTCGAAGGCC    | AGCGGATCCC       | GGCGCCCGCC  | 480               |
|--------------|--------------|--------------|---------------|------------------|-------------|-------------------|
| CGGCGTGGCT   | GGTGTTTTGG   | GCCGCCGGAT   | GGCCACGACG    | AGAACGACGA       | TGGCGGCGAT  | 540               |
| JAACAGCGCC   | ACGGCAATCA   | CGACCAGCAG   | ATTTCCCACG    | CATACCCTCT       | CGTACCGCTG  | 600               |
| CGCCGCGGTT   | GGTCGATCGG   | TCGCATATCG   | ATGGCGCCGT    | TTAACGTAAC       | AGCTTTCGCG  | 660               |
| GGACCGGGGG   | TCACAACGGG   | CGAGTTGTCC   | GGCCGGGAAC    | CCGGCAGGTC       | TCGGCCGCGG  | 720               |
| TCACCCCAGC   | TCACTGGTGC   | ACCATCCGGG   | TGTCGGTGAG    | CGTGCAACTC       | AAACACACTC  | 780               |
| AACGGCAACG   | GTTTCTCAGG   | TCACCAGCTC   | AACCTCGACC    | CGCAATCGCT       | CGTACGTTTC  | 340               |
| HACCGCGCGC   | AGGTCGCGAG   | TCAGCAGCTT   | TGCGCCGGCA    | GCTTTCGCCG       | TGAAGCCGAC  | 900               |
| CAGGGCATCS   | TAGGTTGCGC   | CACCGGTGAC   | ATCGTGETEG    | GCGAGGTGGT       | CGGTCAAGCC  | 960               |
| GCJATATGAG   | CAGGCATCCA   | GTGCCAGGTA   | GTTGCTGGAG    | GTGATGTCCG       | CCAAGTAGGC  | 1026              |
| STESSACGGCA  | ACAGGGGCAA   | TACGATGCGG   | CGGTGGTAGC    | CGGGTCAAGA       | CCGAATAGGT  | 1080              |
| TTOCACAGCC   | GCGTGCGCGA   | TCAGATGGAC   | GCCACGGTTG    | AGCGCGCGCA       | CGGCGGCCTC  | 1140              |
| GTGCCCTTCG   | TGCCAGGTCG   | CGAATCCGGC   | AACCAGCACG    | CTGGTGTCTG       | GTGCGATCAC  | 1200              |
| DGBCGTGTGC   | GATCGAGCGT   | TTCCCCAACC   | ATTTOGTCGG    | DEDDEDAACT       | CAGGGGACGT  | 1260              |
| TETEGGCCGTG  | CGACGAGAAC   | CGAGCCTTCC   | CGAACGAGTT    | CUACACOGGT       | COGGGGCCGGC | 1320              |
| FUNATOTOGA   | TGCGGGGATC   | BEGETCGGTG   | ATGTGGACGT    | JETCOTTCCC       | GCGCNAGCCN  | 1383              |
| Addescress   | JAAT033CTT   | JOGAATCACC   | CTDDTCDAEA    | IGNONTIGAT       | JOTTGTTCGC  | _44               |
| ATOGTAGGAA   | ATTTABLATC   | GENEGITEEN   | TAGGCGTGTC    | CTGCGCGGGA       | TOTTCGEGACE | 1500              |
| ATCCCCTAGC   | JTATEGAACG   | ATTGTTTCGG   | AAATGGCTGA    | 33GAGC9TGC       | 36TGCGGGT3  | 156.              |
| NT 13577723  | ATCCC 330TT  | JACCCGATGT   | id latutana   | TO DESCRIPTION ( |             | 14.2              |
| . 1283.773   | 113111111334 | ratopadati   | TT TO TOWN    | 113773           | 300000000   | ] +- <del>-</del> |
|              | 73977377A3   | TRATTOCOST 1 | RAGINSTEE)    | TO TATA TATOON   | TOATTORACT  | *****             |
| IT FITTISTEA | TERRELAARET  | TTTTTCAG     | TTTMCTTTA     | CACOGTIAT        | 3000A00000  | 1400              |
| 13,13000301  | TOTT TATTOR  | 2000000000   | RITTAAA DET G | NT NT TGAZOT     | 30ATTTOOAT  | 1961              |
| A 11777XX    | AJGTURA KO 1 | 10099TDATT   | 19 DAN SETT   | 11111343434      | BEAT AGGT   | 1 +1              |

|  | : | SEQUENCE | CHARACTERISTICS |  |
|--|---|----------|-----------------|--|
|--|---|----------|-----------------|--|

(A) LENGTH: 1055 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

| CTGGCGTGCC  | AGTGTCACCG   | GCGATATGAC   | GTCGGCATTC | AATTTCGCGG | CCCCGCCGGA  | 60    |
|-------------|--------------|--------------|------------|------------|-------------|-------|
| CCCGTCGCCA  | CCCAATCTGG   | ACCACCCGGT   | CCGTCAATTG | CCGAAGGTCG | CCAAGTGCGT  | 120   |
| GCCCAATGTG  | GTGCTGGGTT   | TCTTGAACGA   | AGGCCTGCCG | TATCGGGTGC | CCTACCCCCA  | 180   |
| AACAACGCCA  | GTCCAGGAAT   | CCGGTCCCGC   | GCGGCCGATT | CCCAGCGGCA | TOTGOTAGOO  | 240   |
| 1000NTOCTT  | CNOACGTAAC   | DATEGETTEE   | STSSAAACCC | JCGCCAGGGC | CGCTGGACGG  | 300   |
| JUTUATUGCA  | GCGAAATTAG   | AAAACCCCCCC  | ATATTGTCCG | CGGATTGTCA | TACGATGCTG  | ٦٥٤   |
| AGTGUTTGGT  | GGTTCGTGTT   | TAGCCATTGA   | GTGTGGATGT | GTTGAGACCC | TGGCCTGGAA  | 420   |
| GGGGACAACG  | TGCTTTTGCC   | TCTTGGTCCG   | CCTTTGCCGC | CCGACGCGGT | GGTGGCGAAA  | 480   |
| ISSSCTGAGT  | CGGGAATGCT   | CGGCGGGTTG   | TEGGTTEEGE | TCAGCTGGGG | AGTGGCTGTG  | 540   |
| CCACCCGATG  | ATTATGACCA   | TTGGGCGCCT   | GOACCGGACG | ACGGCGCCGA | TGTCGATGTC  | 500   |
| CAGGCGGCCG  | AAGGGGCGGA   | TERAGAGGCC   | GCGGCCATGG | ACGAGTGGGA | TGAGTGGCAG  | 560   |
| BCGTGGAACG  | AGTGGGTGGC   | TOAGAADGOT   | JAACCCCGCT | TTGAGGTGCC | ACGGAGTAGC  | 72.0  |
| AGCAGCGTGA  | TTCCGIATTC   | massansaca   | FGUTAGGAGA | BGGGGGCAG  | ACTGTGGTTA  | 79.   |
| ITTGACCAGT  | GATCGGCGGT   | TTCGGTGTT)   | 2230346234 | CTATGACAAC | AGTCAATOTO  | 840   |
| CATGACAAGT  | TACAGGTATT   | AGGTOCAGGT   | TCNACAAGGA | JACAGGCAAC | ATGGCAACAC  | 300   |
| TTTTTATGAG  | REATECOUR T  | i nghamaga i | VINTGOODS) | TTTTTGAG   | 17902.30000 | ••    |
| NGACOBTOGA  | JJACOAGOTT   | 130003A7777  | 1111372131 | CAMMANTO   | 2003000000  | * * * |
| 77.00.07.30 | IATTICCTIA : | 379AUUTO3    | TAVAC      |            |             | 1054  |

# 1 INFORMATION FOR DEC ID NOT187

. SEQUENCE JHAPACTERISTICS

- A LENGTH 353 pase pair.
- B TYPE mucleic acid
  C STRANDEDNECC single
  C TOPOLICON COMME

| TOCGGGGTGA CCACCGGGAT CGCCGAACCA TOCGAGATCA CCTCGCAATG ATCCACCTCG                                                                | 120 |   |
|----------------------------------------------------------------------------------------------------------------------------------|-----|---|
| CGCAGCTGGT CACCCAGCCA CCGGGCGGTG TGCGACAGCG CCTGCATCAC CTTGGTATAG                                                                | 180 |   |
| COSTOSCOCO COAGCOGCAG GAAGTTGTAG TACTOGCOCA CCACCTGGTT ACCGGGACGG                                                                | 240 |   |
| GAGAAGTTCA GGGTGAAGGT CGGCATGTCG CCGCCGAGGT AGTTGACCCG GAAAACCAGA                                                                | 300 |   |
| TECTECGGCA GGTGETEGGG CCCGCGCCAC ACGACAAACC CGACGCCGGG ATAGGTCAG                                                                 | 359 |   |
| (2) INFORMATION FOR SEQ ID NO:188:                                                                                               |     |   |
| 1. SEQUENCE CHARACTERISTICS:  (A) LENGTH: 350 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: Single  (D: TOPOLOGY: linear |     | • |
| X1 SEQUENCE DESCRIPTION: SEQ ID NO:188:                                                                                          |     |   |
| AACGGGCCG TGGGCACCGC TCCTCTAAGG GCTCTCGTTU GTCGCATGAA GTGCTGGAAG                                                                 |     |   |
| SATGCATOTT GGCAGATTOC CGCCAGAGCA AAACAGCCGC TAGTCCTAGT CCGAGTCGCC                                                                |     |   |
| OGCAAAGTTC CTCGAATAAC TCCGTACCCS GAGCGCCAAA CCGGGTCTCC TTCGCTAAGC                                                                |     |   |
| TGCGCGAACC ACTTGAGGTT CCGGGGACTCC TTGACGTCCA GACCGATTCG TTCGAGTGGC                                                               |     |   |
| TUATICOUTTO GOOGGESTEG OGCGAATOOG DOGCGGAGGG GGGTGATGTO AACCCAGTGG                                                               | 300 |   |
| PTGGGGTGA AGAGGTGCTC TACGAGGTGT STGGGATCGA IGACTTCTGC                                                                            | 350 |   |
| D INFORMATION FOR JEQ ID MC.189:                                                                                                 |     |   |
| 1 SEQUENCE CHARACTERISTICS                                                                                                       |     |   |
| A LENGTH: 679 amino acids                                                                                                        |     |   |
| By TYPE, amino acid                                                                                                              |     |   |
| © FTRANDEDNESS.                                                                                                                  |     |   |
| D ToPoludy linear                                                                                                                |     |   |
|                                                                                                                                  |     |   |

K. SHOUPHOE DEDOPINTS IN SEQ. (1)  $\Phi_{\rm c} (14.4)$ 

Six Sin or high divite the Gry Sir War lie thicknesses Ala Aug 1  $_{\odot}$  =  $_{\odot}$  =  $_{\odot}$  =  $_{\odot}$  = 15  $_{\odot}$  = 15

Ny Leu Ala Ny Lys Sky Lys Sin Ile Ash Thr Th: Leu Ash Ser Leu 20 - 30

Ser Min Ala Ten Adn Ala Deu Adn Diu Tin Ard Sin Adt Phe Phe Ala

- Gln Gln Phe Val Ala Leu Asn Lys Asn Leu Ala Glu Phe Thr Asp Arg 70 75 80
- Leu Thr His Ser Asp Ala Asp Leu Ser Asn Ala Ile Gln Gln Phe Asp 85 90 95
- Ser Leu Leu Ala Vai Ala Arg Pro Phe Phe Ala Lys Asn Arg Glu Val
- Leu Thr His Asp Val Asn Asn Leu Ala Thr Val Thr Thr Leu Leu 115 120 125
- Gln Pro Asp Pro Leu Asp Gly Leu Glu Thr Val Leu His Ile Phe Pro 130 135 140
- Thr Len Ala Ala Asn Ile Asn Gln Leu Tyr His Pro Thr His Gly Gly 145 150 155 160
- Val Val Ser Geu Ser Ala Phe Thr Ash Phe Ala Ash Pro Met Glu Phe 155 170 175
- The Cym Ser Ser The Gin Ala Gly Ser Arg Leu Gly Tyr Gin Glu Ser 180 185 190
- Ala Glu Leu Cys Ala Gln Tyr Leu Ala Pro Val Leu Asp Ala Ile Lys 195 200 205
- Phe Ash Tyr Phe Pro Phe Gly Leu Ash Val Ala Ser Thr Ala Ser Thr 210 225 220
- Leu Pro Lys Blu lle Ala Tyr Ser Blu Pro Arg Deu Glo Pro Pro Asn 225 230 235 240
- Gly Tyr Lvo Aob Thr Thr Val Pro Gly Ile Trp Val Pro Asp Thr Pro C45 250 250
- Leu Ger Hid Arg Asn Thr Bln Pro Bly Trp Val Val Ala Pro Bly Met 260 265 270
- The decoder law Va. No Pro 1.6 Throthe the five Lev. Throthe 311  $^{-2.5}$
- Termilen Ala Mil Ler Mer Gir Gly on Amp Lee Ala Prodon Jen Ser Lee 195
- Fig. Let 31n Thr Pro Pro Gly Pro Pro Ash Ala Tyr Asp 31n Tyr Pro
- Ta Cel Pro Pro Ile Dy Deu Glo Ala Fro din Val Pro Ile Dro Pro 379 - 339

|            |            | 35         | 5          |            |            |              | 360        |                |            |             |            | 365        |             |            |            |
|------------|------------|------------|------------|------------|------------|--------------|------------|----------------|------------|-------------|------------|------------|-------------|------------|------------|
| Ası        | 370        | : Met      | i Gly      | Leu        | Leu        | Leu<br>375   |            | Ser            | Pro        | Gly         | Leu<br>380 | Ala        | Thr         | Phe        | Leu        |
| Phe<br>385 | : Gly      | Val        | . Ser      | Ser        | Ser<br>390 |              | Ala        | Arg            | Gly        | Th.r<br>395 |            | Ala        | Asp         | Arg        | His<br>400 |
| Val        | Leu        | Ile        | Pro        | Ala<br>405 | Ile        | Thr          | Gly        | Leu            | Ala<br>410 | Leu         | Ile        | Ala        | Ala         | Phe<br>415 | Val        |
| Ala        | His        | Ser        | Trp<br>420 | Tyr        | Arg        | Thr          | Glu        | His<br>425     | Pro        | Leu         | Ile        | Ąsp        | Met<br>430  | Arg        | Leu        |
| Phe        | Gln        | Asn<br>435 | Arg        | Ala        | Val        | Ala          | Gln<br>440 | Ala            | Asn        | Met         | Thr        | Met<br>445 | Thr         | Val        | Leu        |
| Ser        | Leu<br>150 | Эlү        | Leu        | Phe        | 3ly        | 3er<br>455   | Phe        | Leu            | Leu        | Leu         | Pro<br>460 | Ser        | Tyr         | Seu        | Oln        |
| Gln<br>465 | Val        | Leu        | His        | Gln        | Ser<br>470 | Pro          | Met        | Glm            | Ser        | Gly<br>475  | Val        | His        | Ile         | Ile        | Pro<br>483 |
| Jin        | Gly        | Leu        | Gly        | Ala<br>485 | Met        | Leu          | Ala        | Met            | Pro<br>490 | Tie         | Ala        | 3ly        | Ala         | Met<br>495 | Met        |
| Asp        | Arg        | Arg        | G1y<br>500 | Pro        | Ala        | Lys          | Ile        | Val<br>505     | Leu        | Val         | Gly        | ile        | Met<br>510  | Leu        | Ile        |
| ala        | Ala        | Gly<br>515 | leu        | 31y        | Thr        | Phe          | Ala<br>523 | Phe            | 3.7        | Val         | Ala        | Arq<br>525 | 31n         | Ala        | Asp        |
| 771        | Leu<br>530 | Pro        | 112        | Leti       |            | Thr          | 327        | ett            | ÀLÀ        |             | Mes<br>340 | J.y        | Met         | 317        | Met        |
| 31y<br>545 | Çγs        | 3e:        | Met        | Мет        | Pro<br>550 | Leu          | ser        | Jly            |            | Ala<br>555  | Va_        | Jin        | Thr         | Leu        | Ala<br>560 |
| F# 27 7    | H13        | 31n        | 7. 2 m     | Ala<br>Ses | Ara        | 31           | ler        | Pmr            | Len:       | 1.0         | 1427       | Va.        | Aon         | 7.n        | Mn         |
| .a.        | 1.         | )].        | åer<br>Jel | Ly         | 1          | ٠.,.         |            | <br>           | Mag =      | ::17        | . 1.       |            | Jeti<br>Jan | Par        | Pyr.       |
| 31:.       | Phe        | Asn<br>998 | Hii        | Ser        | glu        | Ile•         | 11e<br>600 | Ala            | Thi        | Ala         |            | Lys<br>nds | Val         | Ala        | Leu        |
| Thr        | Pro<br>510 | 31:        | Ser        | 31∵        | Ala        | 319 .<br>517 | Aro        | 3.1 <u>;</u> ; | Ä. 1       |             |            | Asp        | Pro         | Jer        | ser        |

Thr Leu Ile Pro Ala Ala Phe Leu Pro Lys Gln Gln Ala Ser His Arg 665

Arg Ala Pro Leu Leu Ser Ala 675

## (2) INFORMATION FOR SEQ ID NO:190:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 120 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

'x1' SEQUENCE DESCRIPTION: SEQ ID NO:190:

Thr Pro 3lu Lys Ser Phe Val Asp Asp Leu Asp Tle Asp Ser Leu Ser

Met Val Glu Ile Ala Val Gln Thr Glu Asp Lys Tyr Gly Val Lys Ile

Pro Asp Glu Asp Leu Ala Gly Leu Arg Thr Val Gly Asp Val Val Ala

Tyn lle Glm Lys Lem Glm Glm Glm Asn Pro Glm Ala Ala Glm Ala Lem

Arg Ala Dys Ile Glu Ser Glu Ash Pro Asp Ala Ala Arg Ala Asp Arg

Dys Mal Ser Pro The Ser Bin Ala Arg Asp Ala Arg Arg Pro Deu Ala

Arm Ser Ala Arg Leu Ala Typ Arg Arg Leu Pro Ala Ser Wal Pro Thr 100 105

The Ard Ard Asp Pro Arg 11, No.

### INFORMATION FOR DEC 12 NO 1945

- . SEQUENCE CHARACTERIUTICS
  - A LENGTH: 89 amino acido

  - B TYPE amino acid C STRANDEDNESS: D TOPOLOGY linear
- NO REGRESSION DESCRIPTION DESCRIPTION DES

20 25 30

Ile Ala Glu Gly Arg Gln Val Arg Ala Gln Cys Gly Ala Gly Phe Leu 35 40 45

Glu Arg Arg Pro Ala Val Ser Gly Ala Leu Pro Pro Asn Asn Ala Ser 50 55 60

Pro Gly Ile Arg Ser Arg Ala Ala Asp Ser Gln Arg His Leu Leu Ala 65 70 75 80

Gly Asp Gly Ser Asp Val Thr Val Gly 85

## (2) INFORMATION FOR SEQ ID NO:192:

- 1 SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 119 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear
- X1: SEQUENCE DESCRIPTION: SEQ ID NO:192:

Ala Ser Leu Leu Ala Tyr Ser Ala Ala Ala Ala Ser Thr Ala Leu Ala 1 5 10 15

Val Ala Cys Val Arg Ala Asp His Arg Asp Arg Arg Thr Ile Arg Asp 25 30

His Leu Ala Met Ile His Leu Ala 31n Leu Val Thr 31n Pro Pro Glv  $\frac{35}{40}$   $\frac{45}{40}$ 

Ny Val Arg 31m Ary New Mis His Dem Sly De Ala Va. Als Pro Sin 50 55

Pro Glm Glm Val Val Lem Ala His His Lem Val Thr Gly HS 80

Die Mai Gebruik bestellt eine Minne der Augentie von Auge

Tou Ash Jin Tie Deu Ary Jin Ma. New Tip Orn Ala erh His Ash Dys 137 - 138 - 138 - 139

Pro Asp Ala Bly Tie Bly Bla 115

. INFORMATION FOR SEC 10 NO 193

|      | (X1)      | SEQ        | UENC       | E DE                 | SCRI      | PTIO                | N: 3                | EQ I      | D NO       | :193      | ;                 |           |           |            |           |             |
|------|-----------|------------|------------|----------------------|-----------|---------------------|---------------------|-----------|------------|-----------|-------------------|-----------|-----------|------------|-----------|-------------|
|      | Arg<br>1  | Ala        | Arg        | Gly                  | His<br>5  | Arg                 | Ser                 | Ser       | Lys        | Gly<br>10 | Ser               | Arg       | Trp       | Ser        | His<br>15 | <b>3</b> 1: |
|      | Val       | Leu        | Glu        | G1y                  | Суѕ       | Ile                 | Leu                 | Ala       | Asp<br>25  | Ser       | Arg               | Gln       | Ser       | Lys<br>30  | Thr       | Ala         |
|      | Ala       | Ser        | Pro<br>35  | Ser                  | Pro       | Ser                 | Arg                 | Pro<br>40 | Gln        | Ser       | Ser               | Ser       | Asn<br>45 | Asn        | Ser       | Val         |
|      | Pro       | Gly<br>50  | Ala        | Pro                  | Asn       | Arg                 | Val<br>55           | Ser       | Phe        | Ala       | Lys               | Leu<br>60 | Arg       | Glu        | Pro       | Leu         |
|      | 31u<br>55 | Val        | Pro        | 31y                  | Leu       | Leu<br>To           | qzA                 | 7al       | Jln        | Thr       | Asp<br>7 <u>5</u> | Ser       | Phe       | Glu        | Trp       | Leu<br>BC   |
|      | lle       | 317        | Ser        | Pro                  | Arg<br>85 | Trp                 | Arg                 | Jlu       | Ser        | Ala<br>90 | Ala               | 7lu       | Arg       | Зly        | Asp<br>95 | Va.         |
|      | Asn       | Pro        | Val        | 31y<br>100           | Gly       | Leu                 | Glu                 | Glu       | Val<br>105 | Leu       | Tyr               | Glu       | Leu       | Ser<br>110 | Pro       | Ile         |
|      | 3lu       | Asp        | Phe<br>115 | Ser                  |           |                     |                     |           |            |           |                   |           |           |            |           |             |
| .2 I | NFOR      | MATI       | ON F       | OR S                 | EÇ I      | D NO                | :194                | :         |            |           |                   |           |           |            |           |             |
|      | 1         | <b>A</b> : |            | GTH.<br>E. n<br>ANDE | 311       | bas<br>10 1<br>3. 3 | e pa<br>cid<br>ingl | irs       |            |           |                   |           |           |            |           |             |

xi GEQUENCE DESCRIPTION: SEQ ID MO.194.

| TGCTACGCAG  | CAATCGCTTT  | GGTGACAGAT                             | JTGGATGCCG | JCGTCGCTGC    | TGGCGATGGC | 60    |
|-------------|-------------|----------------------------------------|------------|---------------|------------|-------|
| 1000000     | COACOTOTT   | 12000234771                            | INGGAGAACA | TOBAACTGOT    | CANANGGOTT | :2    |
| 7770000000  |             | 1277007057.1                           | DAGCOCACCT | 3010301010    | TO Market  | 1.6   |
| 1222220000  | JOTT GOODTT | TSAGTTSTCA                             | TGACGGTGCT | GCTGACCGGC    | JCGCCGGCT  | 4 .   |
| TONTOGGGTO  | GCGCGTGGAT  | SCGGGGGTTAU                            | COCCTCCCC  | TCACGACGTG    | STOGGCGTCS | 3 C . |
| ACCCCTCCT   | 3000300303  | aveagaserv                             | Accessract | GCACCGGGC     | TGCCAGCGGG | 36    |
| nimad indus | DADIDAJ     | :::::::::::::::::::::::::::::::::::::: | DTT TTO 3. | THET FOU JACT |            | ÷     |

| TGGTGCTGGC GTC  | GTCGATG GTGGTTTACG  | GGCAGGGGCG | CTATGACTGT | CCCCAGCATG | 500 |
|-----------------|---------------------|------------|------------|------------|-----|
| GACCGGTCGA CCC  | GCTGCCG CGGCGGCGAG  | CCGACCTGGA | CAATGGGGTC | TTCGAGCACC | 650 |
| GTTGCCCGGG GTGC | CGGCGAG CCAGTCATCT  | GGCAATTGGT | CGACGAAGAT | JCCCCGTTGC | 720 |
| GCCCGCGCAG CCTC | GTACGCG GCAGCAAGAC  | CGCGCAGGAG | CACTACGCGC | TGGCGTGGTC | 780 |
| GGAAACSAAT GGC  | GGTTCCG TGGTGGCGTT  | G          |            |            | 811 |
| (2) INFORMATION | N FOR SEC ID NO-195 | 1 -        |            |            |     |

#### 1 | SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 966 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- -D: TOPOLOGY: linear

## MI. SEQUENCE LESCRIPTION: SEQ ID NO:195:

| JTUCCGCGAT         | GTGGCCGAG:                                        | ATGACTITCG           | JCAACACCGG   | CGTAGTAGTC  | JAAGATATCG   | 50    |
|--------------------|---------------------------------------------------|----------------------|--------------|-------------|--------------|-------|
| GACTTTGTGG         | TOCCGGTGGC                                        | GGGATAGAGC           | ACCTGTCGGC   | GTTGGTCAGC  | GTCACCCGTT   | 120   |
| JETEGGACGE         | CGAACCCATS                                        | STTTCAACGT           | AGCCTGTCGG   | TCACACAAGT  | TGCGAGCGTA   |       |
| AUSTCACGGT         | CAAATATCGC                                        | STGGAATTIC           | GCCGTGACGT   | TCCGCTCGCA  | JACAATCAAG   | 240   |
| SASTACTOAC         | TTACATOCGA                                        | GCCATTTGGA           | CGGGTTCGAT   | CGCCTTCGGG  | TTGGTGAACG   | 3 0 0 |
| TGCCGGTCAA         | GGTGTACAGC                                        | GCTACCGCAG           | ACCACGACAT   | CAGGTTCCAC  | CAGGTGCACG   | 360   |
| CCAACGACAA         | DBGALGCATC                                        | JESTACAAGS           | GCGTCTGCGA   | 3G IGTGTGGC | JACGTGGTCG   | 420   |
| ACCECCATOR         | TETTECCCGG                                        | JOCTACGAGT           | ICGGCGACGG   | COMATGGTO   | GCGATCACCG   | 480   |
| ACGACGACAT         | cdccagcma                                         | CCTGAAGAAC           | BCAGCCGGGA   | GATCGAGGTG  | TTGGAGTTCG   | 540   |
| Tacadadaa          | CAECTECAEC                                        | ICCATGATGT           | TOGACOGCAG   | PACTTTTTG   | GAGCCTGATT   | 66.5  |
| JAMETOJTO          | JAAATTIITAT                                       | ivia <b>ro</b> era i | TRABACART    | DICTORGAC!  | W.0000000    | Æ     |
| 22877777           | 7227777                                           | FOOCOTOANT           | PONCOANANI.  | 7W 14011111 | TA TOOK CANT | * **  |
| TEESCEETESA        | CATEGORITAG                                       | TOCOAMEAL            | AGAACGATCS   | AGACATTCCC  | JAJCTGAAGT   | **a   |
| 3333C33TNT         | AGAAGCCCCT                                        | ITGCGCGATT           | ATCAAACGCA   | AAATACCCTT  | ACTOATGCCA   | 340   |
| "1337 <b>337</b> 3 | TCN0703AT1                                        | ISACGTTTT            | 10011.000000 | ACCCCCTCCC  | GCCCCACCTC   | 302   |
| NATOGGGAT          | aria na na la | TTTTTTTT             | W 1.77mmga   | 2003207070  |              | ¥ »   |

: SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2367 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:

| CCGCACCGCC                              | GGCAATACCG   | CCAGCGCCAC                             | CGTTACCGCC          | GTTTGCGCCG       | TTGCCCCCGT  | 50           |
|-----------------------------------------|--------------|----------------------------------------|---------------------|------------------|-------------|--------------|
| TGCCGCCCGT                              | caaaaaaaaa   | CCGCCGATGG                             | AGTTCTCATC          | GCCAAAAGTA       | CTGGCGTTGC  | 120          |
| CACCOGAGCC                              | GCCGTTGCCG   | CCGTCACCGC                             | CAGCCCCGCC          | GACTCCACCG       | GCCCCACCGA  | 180          |
| STEEGEEGET                              | JCCACCGTTG   | CCGCCGTTGC                             | CGATCAACAT          | GCCGCTGGCG       | CCACCCTTGC  | 248.         |
| andddadddd                              | ACCGGCTCCG   | COCACCOCC                              | CGACACCAAG          | CGAGCTGCCG       | CCGGAGCCAC  | 3 C C        |
| CATCACCACC                              | TACGCCACCG   | ACCGCCCAGA                             | CACCACCGAC          | COCOTCTTCS       | TGAAACGTCG  | 360          |
| CUSTBCCACC                              | ACCECCECCE   | TTACCGCCAA                             | CCCCACCGGC          | AACGCCGGCG       | CCGCCATCCC  | 420          |
| 3320330000                              | GGCGTTGCCG   | COSTTGCCGC                             | CGTTGCCGAA          | CAACAACCCG       | cadacacac   | 480          |
| tattaccacr                              | agagaagaas   | GTCCCGCCGG                             | CCCCCCCCAC          | GCCNAGGCCG       | CTGCCGCCCT  | 540          |
| TORROGATO                               | ACCACCCTTS   | COGCOGACCA                             | CATCGGGTTC          | TGCCTCGGG        | TCTGGGCTGT  | 600          |
| CAAACCTCGC                              | GATGCCAGCG   | TTGTCGCCGC                             | TTTCCCCCGGG         | JCCCCCCGTG       | GCGCCGTCAC  | ē 6€         |
| INUCGATACC                              | Accededect   | TOSGCGCCAC                             | IBTTTGCCGCC         | ATTACTGAAT       | AGCAACCCGC  | 12.          |
| JUNUGUCACC                              | ATTGCCGCCA   | ACTICOCCCTS                            | 19723.00072         | 39030033A3       | JCGGCACTGG  | ` <b>:</b> . |
| Madddddtt                               | ACCACCGAAA   | JCGCCGCTAC                             | TACCOGGTAGA         | ISTGGCAGTI       | GCGATGTGTA  | 942          |
| CODDOAAAGCGCC                           | JOSTGCGGCG   | CCGCCCCTAC                             | TACCOCCACT          | Readdersact      | ACACCOTOGG  | 901          |
| . POPOTTT BOO                           | 1/20000000   | ************************************** | 707 38777           | And desired      | A TOTATOTA  | **           |
| *************************************** | 1000000000   | 101/10000A()                           | in in think in      | מריי גרודיריייני |             |              |
| 11 T 1000T                              | 2000GAGCCT   | 3033703030                             | Trains state        | 10080000         |             | ٠            |
| :"0T003030                              | AGTGCCATGG   | codeccarac                             | 29 19 17 17 20 00 C | GCCGGTTTBA       | TCACCGATGT  | 114          |
| JBCACACATTC                             | TGCCCGCCTC   | TOCCCCCTTC                             | Tagoggggg           | JOGGGGGGTA       | GOSATTOACCO | 120:         |
| 1177771112                              | FFF AND ICCO | 12202300012                            | TALLIA 1000 °       | anto duanto.     | JOJAANAGI 1 | 125          |

| CGCCGGTAC   | a Accededad | G CCGTTGCCGC | CGTTGCCGA  | CAACCCGGC  | GCGCCTCCGC  | 1440 |
|-------------|-------------|--------------|------------|------------|-------------|------|
| TGCCGCCGG   | TTGACCGAAC  | CCGCCAGCCG   | CGCCGTTGCC | ACCGTTGCC  | AACAGCAACC  | 1500 |
| caccaaccac  | GCCAGGCTGC  | CCGGGTGCCG   | TCCCGTCGGC | GCCGTTTCCG | ATCAACGGGC  | 1560 |
| GCCCCAAAAG  | CGCCTCGGTG  | GGCGCATTCA   | CCGCACCCAG | CAGACTCCGC | TCAACAGCGG  | 1620 |
| CTTCAGTGCT  | GGCATACCGA  | CCCGCGGCCG   | CAGTCAACGC | CTGCACAAAC | TGCTCGTGAA  | 1680 |
| ACGCTGCCAC  | CTGTACGCTG  | AGCGCCTGAT   | ACTGCCGAGC | ATGGGCCCCG | AACAACCCCG  | 1740 |
| CAATCGCCGC  | CGACACTTCA  | TOGGCAGCCG   | CAGCCACCAC | TTCCGTCGTC | GGGATCGCCG  | 1800 |
| CGGCCGCATT  | AGCCGCGCTC  | ACCTGCGAAC   | CAATAGTCGA | TAAATCCAAA | JCCGCAGTTG  | 1360 |
| CONCONCOTO  | CGGCGTCGCG  | ATCACCAAGG   | ACACCTCGCA | COTCOGGATA | CCCCATATCG  | 1920 |
| CTEDDAGDEDL | TCCCCAGCGG  | CCACGTGACC   | TTTGGTCGCT | GGCTGGCGGC | ICTGACTATO  | 1980 |
| GCCGCGACGG  | CCCTCGTTCT  | GATTCGCCCC   | GGCGCGCAGC | TTGTTGCGCG | agttgaaga:: | 2040 |
| GGGAGGACAG  | GCCGAGCTTG  | GTGTAGACGT   | GGGTCAAGTG | GGAATGCACG | GTCCGCGGCG  | 2100 |
| AGATGAATAG  | GCGGACGCCG  | ATCTCCTTGT   | TGCTGAGTCC | CTCACCGACC | AGTAGAGCCA  | 2160 |
| CCTCAAGCTC  | TGTCGGTGTC  | AACGCGCCCC   | AGCCACTTGT | CGGGCGTTTC | CGTGCACCGC  | 2220 |
| GGCCTCGTTG  | CGCGTACGCG  | ATCGCCTCAT   | CGATCGATAA | CGCAGTTCCT | TOGGOCCAGG  | 2280 |
| TATCOTCOAA  | /DTCCCCCCC  | SCCATCGATT   | TTCGAAGGGT | GGCTAGCGAC | BAGTTACAGC  | 2340 |
| TOGOCOTOGTA | JATOCCCAAG  | GGGACCG      |            |            |             | 2367 |

# INFORMATION FOR SEQ ID NOTION

- : REQUENCE CHARACTERISTICS.
  - A. LENGTH: 376 amino 12105
  - P TYPE amino acin
  - ToPOLOGY Linear
- A. REQUENCE DESCRIPTION (BC OF NO 195)
- Glm Pro Ala GlM Ala Thr 110 Ala Ala Gor Ger Pro Nos Ala Thr Val
- Bly Ala Bly Bly Bly Thr Bly Ber Pro Va. The Thr Blu Thr Ala Ala
- The The Art of the Art

Val Ala Thr lle Thr Ala Lys Gly Ala Arg Asn Val Ala Leu Arg Asp Ser Ala Val Ala Ala Val Ala Ala Ala Ala Thr Gly Ser Gly Gly Thr Ala Val Thr Thr Gly Thr Ala Gly Gly Leu Ala Arg Ala Cys Arg Arg 105 Gly Gly Thr Val Ala Ala Gly Ala Thr Gly Arg Arg Ala Gly Ser Ala 120 Met Ala Ala Arg Ala Ala Val Ala Ala Gly Leu Ile Thr Asp Ala Gly His The Cys Arg Ala Mal Pro Gly Ala Gly Arg Gly Ala Gly Arg Gly The Asp Pro Val Cys Pro Gly Glu Ala Gly Ala Ala Gly Thr Thr Gly Ala Ala Met Ala Glu Gln Pro Gly Val Ala Ala Val Thr Ala Arg Thr 130 185 Oro App Ala Cys Gly His Ala Gly Ala Ala Asp Thr Ala Val Ala Ala 195 200 Wal Ala Pro Gin Pro Pro Pro Wal Pro Thr Gly Thr Ala Gly Arg Ala 210 ' Bly Thr Thr Bly Pro Ala Val Ala Ala Val Ala Asp Bin Pro Bly Arq 230 Ala Ser Ala Ala Ala Bly Leu Thr Glu Pro Ala Ser Arg Ala Val Ala Thr Mal Ala Lys 3in 3in Pro Ala Gly Arg Ala Arg Leu Pro 3ly Cys 245 Sign of the Tim New Group Ben App Bin Ang Alicent Fin Lys And Dec The Signal of His Ard This Son Sun Thropic Lett Authority the 795 Ser Ala 31/ 11e Pro Thr Arg 31/2 Arg Ser 31h Arg Leu His Lyn Leu 305 3.7.5

Des Mass Lyo Ard For How Des Typ Ald to FArg Des 11e Des Pro Ser

Arg Ser His His Phe Arg Arg Arg Asp Arg Arg Gly Arg Ile Ser Arg 355 \$360\$

Ala His Leu Arg Thr Asm Ser Arg 370 375

# (2) INFORMATION FOR SEQ ID NO:198:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2852 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# .x1' SEQUENCE DESCRIPTION: SEQ ID NO:198:

| 3GCCAAAACG   | CCCCGGCGAT           | CACAGECACE  | TROBODOBAS     | ACGACCAGAI                              | JTGGGCCCAG  | ร์ง              |
|--------------|----------------------|-------------|----------------|-----------------------------------------|-------------|------------------|
| GACGTGGCGG   | CGATGTTTGG           | CTACCATGCC  | 3GGGCTTCGG     | CGGCCGTCTC                              | GGCGTTGACA  | 125              |
|              | AGGCGCTGCC           |             |                |                                         |             | 180              |
|              | CCACGCGGGT           |             |                |                                         | CGAGGGCAAC  | 240              |
|              | GTAATGTCCG           |             |                |                                         | CAACGGCAAC  | 300              |
|              | GCAACATCGG           |             |                |                                         | TCCTGGGTTG  | 360              |
|              | TGAACAACAT           |             |                |                                         |             | 420              |
|              | GCAACAACAT           | COGGTTCGGC  | AATNOCOGAG     | ACGGCAAGGG                              | AGGTATCGGG  | 480              |
|              | ACGGTTTGTT           |             | 3GCCTGAACT     | CGGGGACCGG                              | MACATOGGT   | 541              |
|              | DGGGGACCGG           |             |                | 13GGTACCOG                              |             | 60.              |
|              | JGGGCAACAG           |             |                |                                         | IGCCAACAIG  | 553              |
|              | ACTCCGGAMT           |             |                |                                         | TACAMCACC   | 7.3              |
|              | AJCCCGGGCMA          |             |                |                                         |             | **.;;            |
|              | ALACCICAM            |             | IS TITESINA    | NOTES TO THE                            | TOTONACACE  | -: `             |
| 17.797.1771A | TTAUTGGGAA           | CAADANDTTL  | 330TT0TT9T     | RGCCCCCGA                               | CODDAACCA   | 9.0              |
|              | RGAGCCCCGG           | THETTOME    | TOGACCAGTO     | ggcarcarn                               | GGGATTCTTC  | <del>3</del> 6., |
| AADABO SSTS  | 7777 <b>77</b> 83000 | JT000GCTT7  | PTOAACTCO:     | OTO ICAA IAA                            | TT TTGGCTTC | 1.33             |
| TT DATE      | 77777773030          | DATE OFFICE | - 10 januara - | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |             |                  |

| TTCGGTGGC    | CACCGGTCT    | CAATSTEEG     | C CTGGCAAACC    | GGGGCGTCG      | T GAACATTOTO | 1260 |
|--------------|--------------|---------------|-----------------|----------------|--------------|------|
| GGCAACGCC    | A ACATOGGCAA | TTACAACAT     | r cresseagee    | GAAACSTCG      | F TGACTTCAAC | 1320 |
| ATCCTTGGC    | GCGGCAACCT   | . CGGCYGCCY   | A AACATOTTGG    | GCNGCGGCN      | COTCOCCAGC   | 1380 |
| TTCANTATCO   | GCAGTGGNAA   | . CAICGGAGT:  | R ITCAATGTUG    | GTTCCGGAAC     | CCTGGGAAAC   | 1440 |
| TACAACATCG   | GATCCGGAAA   | CCTCGGGATC    | TACAACATCG      | GTTTTGGAAA     | CGTCGGCGAC   | 1500 |
|              |              |               |                 |                | CACCGGCAAC   | 1560 |
| AACAACATCG   | GGTTCGCCAA   | CACCGGCAAC    | AACAACATCG      | GCATCGGGCT     | GTCCGGCGAC   | 1620 |
| AACCAGCAGG   | GCTTCAATAT   | TGCTAGCGGC    | TGGAACTCGG      | GCACCGGCAA     | CAGCGGCCTG   | 1680 |
| TTCNATTCGG   | GCACCAATAA   | CGTTGGCATC    | TTCAACGCGG      | GCACCGGAAA     | IGTEGGGATE   | 1740 |
|              |              |               | GGGAACCCGG      |                |              | 1900 |
|              |              |               | CTCMAGGGGG      |                |              | 1860 |
|              |              |               | TTCAACGTC3      |                |              | 1920 |
|              |              |               | TATAACCCGG      |                |              | 1980 |
|              |              |               | TTCGACACGG      |                |              | 2040 |
|              |              |               | GCCATCGATC      |                | CACTCCATTC   | 2100 |
| ATTOCORTAX   | N 19AGCAGAT  | JGTCA: TGAC   | JTAGNGNACC      | TAATGAGGTT     | COGCCGCAAC   | 2160 |
| STRATCACOR   |              |               | TTCCCCCMA       |                |              | 222: |
| FTCTTCTTCC   | RECESSIONA   | TOTOROGOUR    | TOCALOCTOA      | COGTTOCGAC     | GATCACCCTC   | 2290 |
| ACCATOGGCG   | JACCGACGGT   | RADISTOCCO    | ATCAGCATTG      | TEGGTGETET     | GGAGAGCCGC   | 2340 |
| (DATTAINT    |              | MAT MITS TO   | ngg grwyn i     | MAATTIGA!      | 230224.000   | 14.  |
| 1007 1003 07 | TOTTOMOTO    | 100.1% (Tam)  | ALTA WEST       | JULI TOUR TOUR | 37030233     | 2450 |
|              |              |               | ARTA (Br. 1996) |                |              | 152  |
| AAGETEGSET   |              |               | AAPTTGGGLA      |                |              | 2583 |
| AACA JCAGTA  |              |               |                 |                |              | 2647 |
|              | 3333337377   | 22.1.2.17.2.1 | A 10 COMA 114   | TTT WALL.      | 373          | 2    |

#### STAAGCGAAT AAACCGAATG GCGGCCTGTC AT

2852

#### (2) INFORMATION FOR SEQ ID NO:199:

- (1) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 943 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear

## (X1) SEQUENCE DESCRIPTION: SEQ ID NO:199:

Gly Gln Asn Ala Pro Ala Ile Ala Ala Thr Glu Ala Ala Tyr Asp Gln 1 5 10 15

Met Trp Ala 3ln Asp Val Ala Ala Met Phe 3ly Tyr His Ala 3ly Ala 20 25

Ser Ala Ala Val Ser Ala Leu Thr Pro Phe Gly Gln Ala Leu Pro Thr 35 40 45

Val Ala Gly Gly Gly Ala Leu Val Ser Ala Ala Ala Ala Gln Val Thr 50 55 60

Thr Arg Val Phe Arg Asn Leu Gly Leu Ala Asn Val Arg Glu Gly Asn 55 75 80

Val Arg Ash Gly Ash Val Arg Ash Phe Ash Leu Gly Ser Ala Ash Ile 85 90

Gly Ash Gly Ash The Gly Ser Gly Ash The Gly Ser Ser Ash The Gly 100 105 110

Phe Gly Ash Ma. Gly Pro Gly Len Thr Ala Ala Leu Ash Ash [19 Gly 125 125

Phe Gly Asn Thr Gly Ser Asn Asn Tle Gly Phe Gly Asn Thr Gly Ser

Ash Ash Cle 41, The 31 Aan The Siv Ash 31v Ash Ard 31v Cla 31v 14

Tem Thr 31% em 31% Len Lei 31% bhe 31, 31, Len Aan Ger 31, mhr 185 - 186 - 186

| 210 Apr | 18 | 310 Let Phe Apr Ser 31y Thr 31y Apr Val 31y | 18 | 190 | 190

Asn Ser Gly Thi Gly Asn Tro Gly 114 315 Asi, Ser Gly Asn Ser Tyr 195 200

| 225                 | 3          |            |            |                        | 230        | >            |            |            |                  | 235        | ,          |            |            |              | 240        |
|---------------------|------------|------------|------------|------------------------|------------|--------------|------------|------------|------------------|------------|------------|------------|------------|--------------|------------|
| Gly                 | se:        | Tyr        | Asn        | 245                    |            | ' Asn        | . Ser      | Asn        | Thr<br>250       |            | Gly        | Phe        | Asn        | . Met<br>255 | Gly        |
| Gln                 | Tyr        | Asn        | Thr<br>260 | Gly                    | Tyr        | Leu          | Asn        | Ser<br>265 |                  | Asn        | Tyr        | Asn        | Thr<br>270 | Gly          | Leu        |
| Ala                 | Asn        | Ser<br>275 | Gly        | Asn                    | Val        | Asn          | Thr<br>280 |            | Ala              | Phe        | Ile        | Thr<br>285 | Gly        | Asn          | Phe        |
| Asn                 | Asn<br>290 | Gly        | Phe        | Leu                    | Trp        | Arg<br>295   | Gly        | Asp        | His              | Gln        | Gly<br>300 | Leu        | Ile        | Phe          | Gly        |
| Jer<br>305          | Pro        | Зly        | Phe        | Phe                    | Asn<br>310 | Ser          | Thr        | Ser        | Ala              | Pro<br>315 | Ser        | Ser        | Gly        | Phe          | Phe        |
| Asn                 | Ser        | Зlγ        | Ala        | 31 <sub>7</sub><br>325 | Ser        | Ala          | Ser        | Jly        | Phe              | Leu        | Asn        | 3er        | Gly        | Ala<br>335   | Asn        |
| Aun                 | Ser        | Gly        | Phe<br>340 | Phe                    | Asn        | Ser          | Ser        | Ser<br>315 | Gly              | Ala        | Tle        | gly        | Asn<br>350 | Ser          | Gly        |
| Leu                 | Ala        | Asn<br>355 | Ala        | βlγ                    | Val        | Leu          | 7a1<br>360 | Ser        | Gly              | Va:        | Ile        | Asn<br>365 | Ser        | Sly          | Asn        |
| Thr                 | Val<br>370 | Ser        | 31y        | Leu                    | Phe        | Asn<br>375   | Met        | Ser        | Leu              | 7al        | Ala<br>380 | Tie        | Thr        | Thr          | Pro        |
| Ala<br>385          | Leu        | Tie        | 3e:        | 31 y                   | Phe<br>390 | Phe          | Asn        | Thr        | Зly              | 3er<br>195 | Asn        | Met        | Ser        | Gly          | Phe<br>400 |
| Pne                 | 3ly        | gly        | Pro        | 2mg<br>405             | Val        | Phe          | Asn        | Leu        | 01.7<br>11.1     | Leu        | à, î       | Asn        |            | 31y<br>41s   | 'a.        |
| a                   | Asn        | 114        | Leu<br>420 | 5ly                    | Asn        | Ala          | Asn        | 116<br>425 | 317              | Asn        | Tyr        | Asn        | ile<br>430 | Leu          | шy         |
| je:                 | Ny.        | Asn<br>+3  | ∵al        | 31v                    | Ast        | 254          | Nan<br>H   | * 'n       | Sess             | aly        | jer        | dly<br>++> | Asn        | Leu          | 31 y       |
| <i>.</i> ••••       | na<br>is   | Aan        |            | Deri.                  |            | ja+<br>+1, 1 | 1          |            | • ;              |            |            | Spe        | vii T.     | <u>,</u> .   | 1.;        |
| ب <u>د</u> ل<br>۱۳۰ | Jiy        | Aun        | lle        | 317                    | 7a.<br>4≘: | Phe          | Asn        | Va.        | 31. <sub>7</sub> | 3et<br>475 | 71 y       | 347        | Cen        |              | Asn<br>480 |
| 177                 | ASN        | Ile        | Sly        | Ser<br>185             | 31y        | Asn.         | Leu        | dly        | 11e<br>490       | Tyi        | Ast.       | Ile.       |            | Phe          | Gly        |
| kur.                | ١.         | 11:        | Ast        | ****                   | Ast.       | V.,          | 1.         | n pu       | 31 /             | Ag-        | 5.1 1      | 1,         | <b>.</b>   |              | A (1)      |

- Gly Asn Asn Asn Ile Gly Ile Gly Leu Ser Gly Asp Asn Gln Gln Gly 530 540
- Phe Asn Ile Ala Ser Gly Trp Asn Ser Gly Thr Gly Asn Ser Gly Leu 545 550 555 560
- Phe Asn Ser Gly Thr Asn Asn Val Gly Ile Phe Asn Ala Gly Thr Gly 565 570 575
- Asn Val Gly Ile Ala Asn Ser Gly Thr Gly Asn Trp Gly Ile Gly Asn 580 585 590
- Pro Gly Thr Asp Asn Thr Gly Tle Leu Asn Ala Gly Ser Tyr Asn Thr 595 600 605
- Thy The Lou Asm Ala Gly Asp the Asm Thr Gly Phe Tyr Asm Thr Gly 610 615 620
- Ser Tyr Asn Thr Gly Gly Phe Asn Val Gly Asn Thr Asn Thr Gly Asn 625 630 635 640
- Phe Asn Val Gly Asp Thr Asn Thr Gly Ser Tyr Asn Pro Gly Asp Thr 645 550 655
- Asn Thr Gly Phe Phe Asn Pro Gly Asn Val Asn Thr Gly Ala Phe Asp 660 665 670
- Thr Gly Asp Phe Asn Asn Gly Phe Leu Val Ala Gly Asp Asn Gln Gly 675 580 585
- Tim Tie Ala Tie Asp Leu Ser Mal Thr Thr Pro Phe Tie Pro Tie Ash 690 - 695 - 700
- Glu Gln Met Val Cla Asp Val His Asp Val Met Enr Phe Gla Gla Asp 105 - 710 - 715 - 720
- Met lie Thr Val Thr 31m Ala Ser Thr Val Phe Pro Gin Thr Phe Tyr
- Led Jer Bly Leu Phy Phy Phy Bly Phy Bro Wal Ash Leu Ser Nia Jer Thr 74:
- Del Thr Mal Pr. Thr (le Th) Dev. Th: (le Gly Gly Pro Thr Mal Th: 755 765
- Val Pro Ile Ser (le Val Gly Ala Den Glo Ser Arg Thr (le Thr Phe 700 740
- Dec Dys 11e App 1: Ala Pro 3.7 1.8 3.7 App Set The The App Pro 188

REQUENTS THAP A STORES STORE ST

|      | Asn        | Val         | Gly                      | 31y<br>820                                           | 317                        | Ser                          | Ser                          | Зlү        | Val<br>825      | Trp        | Asn        | Ser        | Gly           | Leu<br>830 | Ser        | Ser        |     |
|------|------------|-------------|--------------------------|------------------------------------------------------|----------------------------|------------------------------|------------------------------|------------|-----------------|------------|------------|------------|---------------|------------|------------|------------|-----|
|      | Ala        | Ile         | Gly<br>835               | Asn                                                  | Ser                        | Gly                          | Phe                          | Gln<br>840 | Asn             | Leu        | Gly        | Ser        | Leu<br>845    | Gln        | Ser        | Gly        |     |
|      | Trp        | Ala<br>850  | Asn                      | Leu                                                  | Gly                        | Asn                          | Ser<br>855                   | Val        | Ser             | Gly        | Phe        | Phe<br>860 | Asn           | Thr        | Ser        | Thr        |     |
|      | Val<br>865 | Asn         | Leu                      | Ser                                                  | Thr                        | Pro<br>870                   | Ala                          | Asn        | Val             | Ser        | Gly<br>875 | Leu        | Asn           | Asn        | Ile        | Gly<br>880 |     |
|      | Thr        | Asn         | Leu                      | Ser                                                  | 31 <sub>7</sub><br>885     | Val                          | ₽he                          | Arg        | Gly             | Pro<br>890 | Thr        | Gly        | Thr           | Tle        | Phe<br>895 | Asn        |     |
|      | Ala        | Gly         | Leu                      | Ala<br>300                                           | Asn                        | Leu                          | Gly                          | Gln        | Leu<br>305      | Asn        | fle        | Gly        | Ser           | Ala<br>310 | Ser        | Cys        |     |
|      | Arg        | lle         | Arg<br>915               | His                                                  | Glu                        | Sen                          | Asp                          | Thr<br>920 | Val             | 3er        | Thr        | Tie        | Ile<br>925    | Ser        | Ala        | Phe        |     |
|      | Cys        | Gly<br>930  | Se:                      | Ala                                                  | Se:                        | Asp                          | Glu<br>935                   | Ser        | Asn             | Piu        | Gly        | Ser<br>940 | Val           | Ser        | Glu        |            |     |
| 2    | INFOR      | LTAM        | ON F                     | OR S                                                 | SEÇ I                      | D NO                         | 200                          | ) :        |                 |            |            |            |               |            |            |            |     |
|      | *1*        | (A)<br>(B)  | LEN<br>TYF<br>STF        | E CHA<br>NGTH:<br>PE: F<br>NAMDE<br>POLOC            | 53<br>nucle<br>IDNES       | base<br>ic a                 | e pai<br>sid<br>singl        | rs         |                 |            |            |            |               |            |            |            |     |
|      | жі         | JEQU        | ENCI                     | DEC                                                  | CRIE                       | TIC                          | l: JE                        | sq is      | NC:             | 200        |            |            |               |            |            |            |     |
| GGAT | CCATA      | \T 30       | GCC.                     | ATCAI                                                | IA?                        | CAT                          | MTC                          | ACCT       | GATC            | IGA J      | MTC        | TCGC       | <b>3</b> 3 A0 | C          |            |            | 5.3 |
| 2    | INFOR      | TAMS        | ion E                    | FOR E                                                | EQ I                       | D NO                         | :201                         |            |                 |            |            |            |               |            |            |            |     |
|      | 1<br>X1    | 01 01 02 02 | UEN<br>TVI<br>UTF<br>TOR | E CHA<br>IGTH -<br>PE - F<br>RANDE<br>POLOC<br>E DES | 42<br>NGC S<br>IDNES<br>IV | page<br>113 :<br>33<br>:ines | r bi.<br>Maid<br>Minu.<br>Mi | . : "      | 0 <b>31</b> 0 - | :201       |            |            |               |            |            |            |     |
| 3373 | AATTO      | ZA K        | CCT.                     | JJGTT                                                | 320                        | 300 <b>3</b> .               | jeet                         | JAT        | ittg:           | ia.        | iÀ         |            |               |            |            |            | ÷.  |
|      |            | amami       |                          |                                                      | : 2000                     |                              |                              |            |                 |            |            |            |               |            |            |            |     |

| (xi) SEQUENCS DESCRIPTION: SEQ ID NO:202:     |    |
|-----------------------------------------------|----|
| GGATCCTGCA GGCTCGAAAC CACCGAGCGG T            | 31 |
| 2; INFORMATION FOR SEQ ID NO:203:             |    |
| (i) SEQUENCE CHARACTERISTICS:                 |    |
| (A) LENGTH: 31 base pairs                     |    |
| (B) TYPE: nucleic acid                        |    |
| (C) STRANDEDNESS: single (D) TOPOLOGY: linear |    |
| ···                                           |    |
| :X1: SEQUENCE DESCRIPTION: SEQ ID NO:203:     |    |
| TTCTGAATTC AGCGCTGGAA ATCGTCGCGA T            | 31 |
| THEODMANTON TOD ONE TO NO DO                  |    |
| 2 INFORMATION FOR SEC ID NO:204:              |    |
| SI SEQUENCE CHARACTERISTICS:                  |    |
| (A) LENGTH: 33 base pairs                     |    |
| (B) TYPE: nucleic acid                        |    |
| (C) STRANDEDNESS: single (D) TOPOLOGY: linear | -  |
| .b/ toronour. Ithear                          |    |
| X1/ SEQUENCE DESCRIPTION: SEQ ID NO:204:      |    |
| JUATICIAGOS ITGAGATGAA GACCGATGCC GCT         | 33 |
| U INFORMATION FOR SEQ ID NO:205:              |    |
| : SEQUENCE UHARACTERISTICS:                   |    |
| A LENGTH: 38 base pairs                       |    |
| Be TYPE: nucleic acid                         |    |
| T STRANDEDNESS: Single D: TOPOLOGY: linear    |    |
| D .OFOLOG: Timea:                             |    |
| x1   SEQUENCE DESCRIPTION: SEQ 1D MO:205:     |    |
| MATENTITIO AGAATTCAGG TITAAAGILA ATTIONGA     | ·· |
| IMPORMATION FOR SEC ID NO 1884                |    |
| SEQUENCE CHARACTERISTICS                      |    |
| A LENGTH: 30 base pairs                       |    |
| B TYPE: nucleic acid                          |    |
| C STRANDEDNESS single                         |    |
| C TOPOLOGY linear                             |    |

AL SEQUENCE DESCRIPTION SEQUENCED MO CON

(1 SEQUENCE CHARACTERISTICS:

|                       | (A) LENGTH: (B) TYPE: n (C) STRANDE (D) TOPOLOG                             | ucleic acid<br>DNESS: sing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l            |             |                                        |                 |
|-----------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|----------------------------------------|-----------------|
| (xi) S                | EQUENCE DES                                                                 | CRIPTION: S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EQ ID NO:20  | 7:          |                                        |                 |
| CTTCATGGAA            | TTCTCAGGCC                                                                  | GGTAAGGTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GCTGCGG      |             |                                        | 37              |
| (2) INFORM            | ATION FOR S                                                                 | EQ ID NO:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 :          |             |                                        |                 |
|                       | EQUENCE CHAI<br>(A) LENGTH:<br>(B) TYPE: no<br>(C) STRANDEI<br>(D) TOPOLOGY | 7676 base ;<br>ucleic acid<br>DNESS: sing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pairs        |             |                                        |                 |
| .x1, 3                | EQUENCE DES                                                                 | ERIPTION: 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EQ [D MO:208 | 3 :         |                                        |                 |
| TGGCGAATGG            | GACGCGCCCT                                                                  | GTAGCGGCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ATTAAGCGCG   | GCGGGTGTGG  | TGGTTACGCG                             | 60              |
| CAGCGTGACC            | GCTACACTT3                                                                  | CCAGCGCCCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGCGCCCCCT   | COTTTCGCTT  | TOTTCCCTTC                             | 120             |
| CTTTCTCGCC            | ACGTTCGCCG                                                                  | GCTTTGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TCAAGCTCTA   | AATCGGGGGC  | TCCCTTTAGG                             | 180             |
| GTTCCGATTT            | AGTGGTTTAC                                                                  | GGCACCTCGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CCCCAAAAAA   | CTTGATTAGG  | GTGATGGTTC                             | 240             |
| ACCTACTGGG            | CCATCGCCCT                                                                  | GATAGACCCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TTTTCGCCCT   | TTGACGTTGG  | AGTCCACGTT                             | 300             |
| TTTTNATAGE            | GGACTCTTGT                                                                  | TOCAAACTOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AACAACACTC   | AACCCTATCT  | 19379TATTC                             | 360             |
| TTTTGATTTA            | TAAGGGATTT                                                                  | TGGGGATTTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BOCCTATTGG   | TTAAAAAATG  | ACCTGATTTA                             | <b>+2</b> 0     |
| COMMATT               | AACGCGAATT                                                                  | TTAACAAAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ATTAACGTTT   | ACAATTTCAG  | JT303ACTTT                             | <b>48</b> 0     |
| TOUGGGAAAT            | JTGCGCUGAA                                                                  | 1000TATTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | TAAATACATT  | CAAATATOTA                             | 540             |
|                       | AATTAATTOT                                                                  | TAGAAAAACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MTC MCCAT    | CAAATGAAAC  | TOCAATTTAT                             | <del>5</del> 00 |
| 1000077A33            | arranosana<br>arranosana                                                    | The state of the s | WWW.JCC3     | TTTCTGTAAT  | MAGGAGAAA                              | 56.1            |
| VIII W 113 <b>A</b> 3 | PARTTOONT                                                                   | ADDATED DAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ars          | 7000707003  | NTT 200ACTC                            | ***             |
| ET CTAAGATT           | AATAGAAGCT                                                                  | ATTAATTTOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COTCOTOMA    | AATAAGGTTA  | TCAAGTGAGA                             | ⇒gj             |
| ratioacid <b>at</b> o | AGTGACGACT                                                                  | GAATIIGGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGAATGCTAA   | AAGTTTATGC  | ATTTCTTTCC                             | <b>54</b> 0     |
| ABACTT ITTC           | AACAGGCAA                                                                   | 77X772777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OTTATTAAA    | ATCACTOCCA  | DJAAGCAAAG                             | <b>3</b> 0.1    |
|                       | POSTGATTOS                                                                  | 30770241015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75.772AA73.  | TO TAKE THE | ************************************** | 1               |

| TGGTGAGTAA    | CCATGCATCA  | TCAGGAGTAC  | GGATAAAATG  | CTTGATGGTC | : GGAAGAGGCA | 1140 |
|---------------|-------------|-------------|-------------|------------|--------------|------|
| TAAATTCCGT    | CAGCCAGTTT  | AGTCTGACCA  | TCTCATCTGT  | AACATCATTS | GCAACGCTAC   | 1200 |
| CTTTGCCATG    | TTTCAGAAAC  | AACTCTGGCG  | CATCGGGCTT  | CCCATACAAT | CGATAGATTG   | 1260 |
| TCGCACCTGA    | TTGCCCGACA  | TTATCGCGAG  | CCCATTTATA  | CCCATATAAA | TCAGCATCCA   | 1320 |
| TGTTGGAATT    | TAATCGCGGC  | CTAGAGCAAG  | ACGTTTCCCG  | TTGAATATGG | CTCATAACAC   | 1380 |
| CCCTTGTATT    | ACTGTTTATG  | TAAGCAGACA  | GTTTTATTGT  | TCATGACCAA | AATCCCTTAA   | 1440 |
| CGTGAGTTTT    | CGTTCCACTG  | AGCGTCAGAC  | CCCGTAGAAA  | AGATCAAAGG | ATCTTCTTGA   | 1500 |
| GATCCTTTTT    | TTCTGCGCGT  | AATCTGCTGC  | TTGCAAACAA  | AAAAACCACC | GCTACCAGCG   | 1560 |
| GTGGTTTGTT    | TGCCGGATCA  | AGAGCTACCA  | ACTCTTTTTC  | CGAAGGTAAC | TGGCTTCAGC   | 1620 |
| AGAGCGCAGA    | TACCAAATAC  | TGTCCTTCTA  | STGTAGCCGT  | AGTTAGGCCA | CCACTTCAAG   | 1680 |
| AACTCTGTAG    | CACCGCCTAC  | ATACCTCGCT  | CTGCTAATCC  | TGTTACCAGT | GGGTGCTGCC   | 1740 |
| AGTGGCGATA    | AGTIGTGTCT  | TACCGGGTTG  | GACTCAAGAC  | GATAGTTACC | GGATAAGGCG   | 1800 |
| CAGCGGTCGG    | GCTGAACGGG  | GGGTTESTAS  | ACACAGOCCA  | GCTTGGAGCG | AACGACCTAC   | 1860 |
| ACCGAACTGA    | GATACCTACA  | GCGTGAGCTA  | TGAGAAAGCG  | CCACGCTTCC | CGAAGGGAGA   | 1920 |
| AAGGCGGACA    | GGTATCCGGT  | AAGCGGCAGG  | GTCGGAACAG  | GAGAGCGCAC | GAGGGAGCTT   | 1980 |
| CONGGGGGAA    | ACGCCTGGTA  | TCTTTATAGT  | COTOTOGGGT  | TTCGICACCT | CTGACTTGAG   | 2041 |
| TGTCGATTTT    | TGTGATGCTC  | GTCAGGCGGC  | JGGAGCCTAT  | JGAAAAACGC | CAGCAACGCG   | 213  |
| COSTTTTTAC    | JGTTGGTGGG  | STTTTGCTGG  | acrerra are | ACATGTTCTT | TOUTGOUTTA   | 216: |
| TOCCCTCATT    | CTGTGGATAA  | CCGTATTACC  | GCCTTTGAGT  | JAGCTGATAC | CGCTCGCCGC   | 2223 |
| 1.30000000000 | TECHOCOCAG  | TOAOT MOTO  | AGCGAGGAAG  | IDGAAGAGCO | JETGATGC93   | J29  |
|               | TTACGAATCT  | TORGITATE   | POACATORICA | PATATOGTGC | ACTOTOAGTA   | 2.34 |
| LARTOTOOTLO   | DJA POCCOCA | TAGTTAAG 10 | AOTATACACT  | COSTRATOGO | TAGGTGAGTT   | 34.  |
| IGTUATUGUT    | JJJCCCCCAC  | CAACCCCCA   | ACCOGCTGAL  | gagadatgwa | GGGCTTGTGT   | 246  |
| JUTUU JUGUA   | PRUGETTACA  | MCAAGCTGT   | JACCOTOTOL  | DOGRECTOCA | TOTOTCAGAG   | 2523 |
| TTTTTATA      | 7 A7 A 12 W | AANDOOOGAD  | 3030770777  | TAAAGETEAT | CNOCOTOCTO   | 2581 |

7 . T

| GGTCACTGAT          | GCCTCCGTGT | AAGGGGGATT    | TOTGTTCATG | GGGGTAATGA        | AADTADCOAT .    | 2760         |
|---------------------|------------|---------------|------------|-------------------|-----------------|--------------|
| ACGAGAGAGG          | ATGCTCACGA | TACGGGTTAC    | TGATGATGAA | CATGCCCGGT        | TACTGGAACG      | 2820         |
| TTGTGAGGGT          | AAACAACTGG | CGGTATGGAT    | GCGGCGGGAC | CAGAGAAAAA        | TCACTCAGGG      | 2880         |
| TCAATGCCAG          | CGCTTCGTTA | ATACAGATGT    | AGGTGTTCCA | CAGGGTAGCC        | AGCAGCATCC      | 2940         |
| TGCGATGCAG          | ATCCGGAACA | TAATGGTGCA    | GGGCGCTGAC | TTCCGCGTTT        | CCAGACTTTA      | 3000         |
| CGAAACACGG          | AAACCGAAGA | CCATTCATGT    | TGTTGCTCAG | GTCGCAGACG        | TTTTGCAGCA      | 3060         |
| JCAGTCGCTT          | CACGTTCGCT | CGCGTATCGG    | TGATTCATTC | TGCTAACCAG        | TAAGGCAACC      | 3120         |
| CCGCCAGCCT          | AGCCGGGTCC | TCAACGACAG    | GAGCACGATC | ATGCGCACCC        | STGGGGCCGC      | 3180         |
| CATOCOGGCG          | ATAATGGCCT | SCTTCTCGCC    | CAMACGTTTG | GTGGCGGGAC        | CAGTGACGAA      | 3240 .       |
| GGCTTGAGCG          | AGGGCGTGCA | AGATTCCGAA    | TACCGCAAGC | GACAGGCCGA        | TCATCGTCGC      | 3300         |
|                     |            |               | GACCCAGAGC |                   |                 | 3360         |
|                     |            |               | TGCGCGACG  |                   | CCCGCGCCCA      | 3420         |
|                     |            |               | CAAGGGCATC |                   | CCGGTGCCTA      | 3480         |
| ATGAGTGAGC          | TAACTTACAT | TAATTGCGTT    | GCGCTCACTI | CCCGCTTTCC        | AGTCGGGAAA      | 3540         |
| COTOTOTO            |            | AATGAATCGG    | CCANCGEGG  | GGGAGAGGEG        | GTTTGCGTAT      | 3600         |
| TEGGTETEAG          | 3GT3GTTTTT | TTTTTCACCA    | UTUNGACCCC | CAACAGCTGA        | TTGCCCTTCA      | 3660         |
| :73:17 <b>13327</b> | STBAGAGAGT | TGCAGCAAGC    | JGTQCACGCT | 3GTTTGCCCC        | AGCAGGCGAA      | 375          |
| BATOSTOTT           | JATGGTGGTT | AACGGCGGGA    | TATAACATGA | GCTGTCTTCG        | JTATEGTEGT      | 3733         |
| ATCCCACTAC          | CGAGATATCC | GCACCAACGC    | GCAGTTTTGA | ITCGGTAATG        | JOGCOCATTO      | 3840         |
| 17/17/146/090       | CATCTGATCG | TTGGCAAGCA    | FCATCUCAGT | SGGAAUSATS        | COTTOATTOA      | 3900         |
|                     |            | AAACCOGACA    | Total Tour |                   | BTTCCBCTA       | 396.         |
|                     |            |               |            |                   | AJACJOJOCO      | 40.          |
| AGACAGAACT 1        |            |               |            |                   |                 | <b>4</b> 08. |
|                     |            |               |            |                   | ATGGGTGTCT      | 4 1 4 1      |
|                     |            |               |            |                   | ACAGCAATGG      | 4000         |
|                     | ATCCAGCGGA | TA TUTAA 1034 |            | 17 and common and | ייעני אבר לבי ל | 4.5-         |

| GGGCCAGAC  | GGAGGTGGC  | ACGCCAATCA  | . <b>GCAA</b> CG <b>A</b> CTG            | TTTGCCCGCC          | AGTTGTTGTG            | 4440         |
|------------|------------|-------------|------------------------------------------|---------------------|-----------------------|--------------|
| CCACGCGGTT | GGGAATGTAA | TTCAGCTCCG  | CCATCGCCGC                               | TTCCACTTT           | TCCCGCGTTT            | <b>4</b> 500 |
| TCGCAGAAAC | GTGGCTGGCC | TGGTTCACCA  | CGCGGGAAAC                               | GGTCTGATAA          | GAGACACCGG            | 4560         |
| CATACTCTGC | GACATCGTAT | AACGTTACTG  | GTTTCACATT                               | CACCACCCTG          | AATTGACTCT            | 4620         |
| CTTCCGGGCG | CTATCATGCC | ATACCGCGAA  | AGGTTTTGCG                               | CCATTCGATG          | GTGTCCGGGA            | 4680         |
| TOTOGACGOT | CTCCCTTATG | CGACTCCTGC  | ATTAGGAAGC                               | AGCCCAGTAG          | TAGGTTGAGG            | 4740         |
| CCGTTGAGCA | ccgccgccgc | AAGGAATGGT  | GCATGCAAGG                               | AGATGGCGCC          | CAACAGTCCC            | 4800         |
| CCGGCCACGG | GGCCTGCCAC | CATACCCACG  | CCGAAACAAG                               | CGCTCATGAG          | CCCGAAGTGG            | 4860         |
| JGAGCCCGAT | CTTCCCCATC | JGTGATGTCG  | JCGATATAGG                               | CGCCAGCAAC          | CGCACCTGTG            | 4920         |
| GEGEEGTGA  | TGCCGGCCAC | GATGCGTCCG  | GCGTAGAGGA                               | TCGAGATCTC          | JATCCCGCGA            | 4980         |
| AATTAATACG | ACTCACTATA | GGGGAATTGT  | GAGCGGATAA                               | CAATTOCCCT          | CTAGAAATAA            | 5040         |
| TTTTGTTTAA | CTTTAAGAAG | GAGATATACA  | TATGGGCCAT                               | CATCATCATC          | ATCACGTGAT            | 5100         |
| CGACATCATO | GGGACCAGCC | CCACATCCTG  | GGAACAGGCG                               | GCGGCGGAGG          | CCOACCTOR             | 5160         |
| GGCGCGGGAT | AGCGTCGATG | ACATCCGCGT  | cacrosaare                               | ATTGAGCAGG          | ACATGGCCGT            | 5220         |
| 3GACAGCGCC | GGCAAGATCA | CCTACCGCAT  | CAAGCTCGAA                               | GTGTCGTTCA          | AGATGAGGCC            | 5280         |
| 39090AA009 | AGGGGCTCGA | AACCACCGAG  | nggrregeer                               | G <b>AAA</b> CGGGCG | 00336000000           | 534:         |
| TACTOTCGCG | ACTACCCCCC | IGTCGTCGCC  | ROTGACGTTG                               | GTGGAGACCG          | ITAGUACCOT            | 5 <b>4</b> 0 |
| BOTOTACCCG | TTGTTCLACC | TETEGGGTCC  | GOCCTTTCAC                               | JAGAGGTATC          | COMMODITANO           | 5460         |
| GATCACCGCT | CAGGGCACCG | STTSTGGTGC  | CODECTABOR                               | CAGGCCGCCG          | CCGGGACGGT            | 5520         |
| MAGATTIGG  | ROCTOCGACG |             | 79AA 307 'A'''                           | <b>ב</b> לברבבבב    | A MAGRICOTT           | tas.         |
| MTGMAJATO  | ROCONTOCON | FORGERSTON  | PAROTTERAC                               | TA (AACCTO)         | TOTA TOTAL            | · 15 4       |
|            |            | JAAAAOTOOT  |                                          |                     |                       | 5000         |
|            |            | TTGGGGCTGAA |                                          |                     |                       | 5761         |
|            |            | ACGGGTCCGG  |                                          |                     |                       | 5820         |
|            |            | 30000M0m1   | XXII 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 310A01A003          | 7 3/A (1777 / 2 (1 )) | 5881         |
|            |            |             |                                          |                     |                       |              |

| ACTCGGCGAG    | GCCCAACTAG  | GCAATAGCTC          | TGGCAATTTC   | TTGTTGCCCG     | ACGCGCAAAG | 6060 |
|---------------|-------------|---------------------|--------------|----------------|------------|------|
| CATTCAGGCC    | GCGGCGGCTG  | GCTTCGCATC          | GAAAACCCCC   | GCGAACCAGG     | CGATTTCGAT | 6120 |
| GATCGACGGG    | cccaccccaa  | ACGGCTACCC          | GATCATCAAC   | TACGAGTACG     | CCATCGTCAA | 618C |
| CAACCGGCAA    | AAGGACGCCG  | CCACCGCGCA          | GACCTTGCAG   | GCATTTCTGC     | ACTGGGCGAT | 6240 |
| CACCGACGGC    | AACAAGGCCT  | CGTTCCTCGA          | CCAGGTTCAT   | TTCCAGCCGC     | TGCCGCCCGC | 6300 |
| GGTGGTGAAG    | TTGTCTGACG  | CGTTGATCGC          | GACGATTICC   | AGCGCTGAGA     | TGAAGACCGA | 6360 |
| TGCCGCTACC    | CTCGCGCAGG  | AGGCAGGTAA          | TTTCAAGCGG   | ATCTCCGGCG     | ACCTGAAAAC | 6420 |
| CCAGATCGAC    | CAGGTGGAGT  | CGACGGCAGG          | TTCGTTGCAG   | GGCCAGTGGC     | GCGCCGCC   | 6480 |
| RUGGAUGGCC    | GCCCAGGCCG  | COSTORTOR           | AADAATOMIT   | RCAGCCAATA     | AGCAGAAGCA | 5540 |
| JGAACTIGAC    | GAGATOTOGA  | CGAATATTCG          | TCAGGCCGGC   | GTCCAATACT     | CGAGGGCCGA | 5600 |
| CSAGSAGCAG    | CAGCAGGCGC  | TGTCCTCGIA          | AATGGGCTTT   | GTGCCCACAA     | CGGCCGCCTC | 6660 |
| SCCGCCGTCG    | ACCGCTGCAG  | CGCCACCCGC          | ACCOCICACA   | CCTGTTGCCC     | CCCCACCACC | 6720 |
| 3GCC3CCGCC    | AACACGCCGA  | ATGCCCAG 30         | GGGCGATCCC   | AACGCAGCAC     | CTCCGCCGGC | 6780 |
| CGACCCGAAC    | GCACCGCCGC  | CACCTGTCAT          | TGCCCCAAAC   | GCACCCCAAC     | CTGTCCGGAT | 5840 |
| CGACAACCCG    | GTTGGAGGAT  | TCAGCTTC3C          | 3CTGC3TGCT   | GGCTGGGTGG     | AGTCTGACGC | 6900 |
| ggcccherro    | SACTACSOTT  | CAGGACTEST          | CAGCAAAA CC  | ACCGGGGGACC    | CGCCATTTCC | 5960 |
| COORACACCC    | CCCCCCCTCC  | 0044704040          | CCGTATCGTG   | CTCGGGGGGG     | TAGACCAAAA | 7020 |
| jetttilegge   | AGCGCGGAAO  | CRACTOMETE          | DEDDDDDDAAG  | 303033TT33     | GCTCGGACAT | 1083 |
| GOGTGACTTC    | TATATGCCCT  | ACCCCCCCAAC         | COCCATCAAC   | CAGGAAACCG     | TCTCGCTTGA | 7140 |
| DDDSAASSDT    | TGTGTGGAA   | nadadamaann         | TTACGAAGTC   | AACTTCAGCO     | ATCCGAGTAA | 7200 |
| 1001M/1000    | CNONTETION  | 0303037741          | 1000700000   | DOBARDODEOL    | CACCGGACGC | 726  |
| .3            |             | TTOTO OTATO         | 12T0GGGA22   | 1000000000     | JUSTGGACAA |      |
|               |             |                     |              | rragadadad     |            | 7390 |
| BB CAC DGG CT | CONSCAURAGE | 10007 10000         | 3003300303   | JCCGGGGAAG     | TOGOTOGTAC | 7447 |
| 00 00A 03A 3A | 000A0A000   | AGGG <b>GA</b> CCTT | ACTOSC TTOM  | SAATTOT SCA    | GATATCCATC | 7077 |
|               |             | 4.75.125.25         | 223 15 77 26 | FAT 2013 F3T 1 | TAACAAA3C  | * 0" |

## (2) INFORMATION FOR SEQ ID NO:209:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 802 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:209:

Met Gly His His His His His His Val Ile Asp Ile Ile Gly Thr Ser I 5 10 15

Pro Thr Ser Trp Glu Gln Ala Ala Ala Glu Ala Val Gln Arg Ala Arg 20 25 30

Asp Ser Val Asp Asp Ile Arg Val Ala Arg Val Ile Glu Gln Asp Met 35 40 45

Ala Val Asp Ser Ala Gly Lys Ile Thr Tyr Arg Ile Lys Leu Glu Val 50 60

Ser Phe Lys Met Arg Pro Ala Gln Pro Arg Gly Ser Lys Pro Pro Ser

Gly Ser Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro 85 90 95

Ala Ser Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr

Pro Leu Phe Ash Leu Trp Gly Pro Ala Phe His Glu Ard Tvr Pro Ash 125 120 120

Val Thr The Thr Ala Gim Gly Thr Gly Ser Gly Ala Gly Tie Ala Gim

Ala Ala Ala Bly Thr Mal Ash IIH Bly Ala Her Ash Ala Dur Leu Ber 145

Fig. Fly Ask Men Ala Ala Hinnups fix des Men Ask line Via deu Ala 165 - 175

Tie Ger Ala Gin Gin Val Ash Tyr Ash Leu Pro Hy Val Ger Glu His 180 196

Leu Lyo Leu Ash Gly Lyo Val Leu Ala Ala Met Tyr Gin Gly Thr Ile 195 - 200 - 205

The Three Three Area Agencies of the control of the

| qeA        | Thr        | Phe        | Leu        | Phe<br>245 | Thr        | Gln                | Tyr        | Leu        | Ser<br>250 | Lys              | Gln         | Asp        | Pro                                                                                                                | Glu<br>255   | Gly              |
|------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------------|-------------|------------|--------------------------------------------------------------------------------------------------------------------|--------------|------------------|
| Trp        | Gly        | Lys        | Ser<br>260 | Pro        | Gly        | Phe                | Gly        | Thr<br>265 | Thr        | Val              | Asp         | Phe        | Pro<br>270                                                                                                         | Ala          | Val              |
| Pro        | Glγ        | Ala<br>275 | Leu        | Gly        | Glu        | Asn                | Gly<br>280 | Asn        | Gly        | Gly              | Met         | Val<br>285 | Thr                                                                                                                | ${\tt Gl}_Y$ | Cys              |
| Ala        | Glu<br>290 | Thr        | Pro        | Gly        | Cys        | Val<br>295         | Ala        | Tyr        | Ile        | Gly              | Ile<br>300  | Ser        | Phe                                                                                                                | Leu          | Asp              |
| Gln<br>305 | Ala        | Ser        | Gln        | Arg        | Gly<br>310 | Leu                | 31y        | Glu        | Ala        | Gln<br>315       | Leu         | Gly        | Asn                                                                                                                | Ser          | Ser<br>320       |
| 317        | Asn        | Phe        | Leu        | Leu<br>325 | Pro        | Ąsp.               | 4)a        | מיב        | 330        | م <sub>ا</sub> ت | Gla         | A` a       | 41a                                                                                                                | 335          | 7.) a            |
| Gly        | Phe        | Ala        | Ser<br>340 | Lys        | Thr        | Pro                | Ala        | Asn<br>345 | Gln        | Ala              | Ile         | Ser        | Met<br>350                                                                                                         | lle          | Дsp              |
| Gly        | Pro        | Ala<br>355 | Pro        | Asp        | Gly        | Tyr                | Pro<br>360 | Ile        | Ile        | Asn              | Tyr         | Glu<br>365 | Tyr                                                                                                                | Ala          | Ile              |
| Val        | Asn<br>370 | Asn        | Arg        | Gln        | Lys        | <b>As</b> p<br>375 | Ala        | Ala        | Thr        | Ala              | Gln<br>380  | Thr        | Leu                                                                                                                | Gln          | Ala              |
| Phe<br>385 | Leu        | H13        | Trp        | Ala        | 11e<br>390 | Thr                | Asp        | 31y        | Asn        | Lys<br>395       | Ala         | Ser        | Phe                                                                                                                | Leu          | Asp<br>400       |
| 31m        | Val        | His        | Phe        | 31n<br>405 | Pro        | Leu                | Pro        | Pro        | A10        | ∵al              | 7al         | Lys        | Leu                                                                                                                | Ser<br>415   | Asp              |
| Ala        | Leu        | Ile        | A24<br>120 | Thr        | Tie        | Ser                | Jer        | Ala<br>425 | Glu        | Met              | Lys         | The        | Asp<br>430                                                                                                         | Ala          | Ala              |
| Thr        | Leu        | Ala<br>(35 | Gin        | Glu        | λia        | 31y                | Asn<br>440 | Phe        | Gla        | Arg              | 11e         | 3er<br>443 | зіу                                                                                                                | Asp          | 5 <del>e</del> u |
| 272        | Thr<br>is: | ili        |            | ASE        | jur.       | 7a.<br>455         | j          | 3er        | "h;        | A. t             | 3.;<br>in 1 | i.e.;      | المعالم .<br>المعالم المعالم المعا | Min          | 3                |
| 31m<br>4pp | 17-12      | Arq        | Jan        | 4. i       | Ala<br>471 | 3                  | Thr        | 4.1        | 3. :       | 315<br>475       | \$1.5       | Ala        |                                                                                                                    | Tal          | Ar7              |
| Phe        | Jin        | 31.1       | Ala        | Ala<br>485 | Asn        | Lys                | Jin        | Ly a       | 31n<br>490 | 1111             | Leu         | Asp        | 31u                                                                                                                | Ile<br>495   | Jer              |
| The        | Air        | 114        | Ar i       | ;          | A . 1      | 3.3                | ∵ i        | 7.1.<br>s  | 771        | Se:              | Arj         | Alt        | Asp<br>Till                                                                                                        | 31           | JI.              |

| A.       | _a se<br>53        |              | ) Pro       | ser        | inr        | 535        |             | Ala         | . Pro      | Pro        | 540        |            | Ala               | Thr        | . 510      |      |
|----------|--------------------|--------------|-------------|------------|------------|------------|-------------|-------------|------------|------------|------------|------------|-------------------|------------|------------|------|
|          | al Ala<br>15       | a Pro        | Pro         | Pro        | Pro<br>550 |            | Ala         | Ala         | Asn        | Thr<br>555 |            | Asn        | Ala               | Gln        | Pro<br>560 |      |
| G.       | ly Asi             | Pro          | Asn         | Ala<br>565 | Ala        | Pro        | Pro         | Pro         | Ala<br>570 | Asp        | Pro        | neA        | Ala               | Pro<br>575 | Pro        |      |
| Pr       | o Pro              | o Val        | Ile<br>580  | Ala        | Pro        | Asn        | Ala         | Pro<br>585  | Gln        | Pro        | Val        | Arg        | Ile<br>590        | Asp        | Asn        |      |
| Pr       | o Val              | . Gly<br>595 | Gly         | Phe        | Ser        | Phe        | Ala<br>600  | Leu         | Pro        | Ala        | Gly        | Trp<br>605 | Val               | Glu        | Ser        |      |
| As       | p Ala<br>510       |              | His         | Phe        | Asp        | Tyr<br>515 | gly         | Ser         | Ala        | Leu        | Leu<br>570 | Ser        | Lys               | Thr        | Thr        |      |
| G1<br>62 | y <b>As</b> p<br>5 | Pro          | Pro         | Phe        | Pro<br>630 | Gly        | gla         | Pro         | Pro        | Pro<br>635 | Va.        | Ala        | Asn               | Asp        | Thr<br>640 |      |
| Ar       | g Ile              | Val          | Leu         | Gly<br>645 | Arg        | Leu        | Asp         | Gln         | Lys<br>650 | Leu        | Tyr        | Ala        | Ser               | Ala<br>655 | Glu        |      |
| Al       | a Thr              | Asp          | Ser<br>660  | Lys        | Ala        | Ala        | Ala         | Arg<br>555  | Leu        | Gly        | Ser        | Asp        | <b>Met</b><br>670 | Gly        | Glu        | **•- |
| Ph       | e Tyr              | Me:<br>675   | Pro         | Tyr        | Pro        | Gly        | Thr<br>680  | Arg         | lle        | Asn        | Gln        | Glu<br>685 | Thr               | Val        | Ser        |      |
| Le       | 4 <b>59</b> 0      | Ala          | Asn         | Gly        | Val        | 3e:<br>595 | 71.y        | Ser.        | Ala        | Ser        | Tyr<br>Tod | Tyr        | Slu               | Val.       | Lvs        |      |
| Ph.      | e Jer<br>S         | Asp          | ⊃r3         | ser        | 1уз<br>110 | Pro        | Aan         | gly         | 3ln        | 11d<br>715 | Trp        | Thi        | 31y               | ∵a.        | 11e<br>720 |      |
| 31       | y 3er              | Pro          | Ala         | Ala<br>725 | Asn        | Ala        | Pro         | Asp         | Ala<br>T30 | Jly        | Pro        | Piu        | 3ln               | Arg<br>735 | Tip        |      |
| an:      | e Mal              | Wal          | Tro<br>Nati | Leu        | Пv         | 75.        | . i         | %i.<br>*‡.: | 341.       | 5; ;       | ∵a.        |            | 175<br>75         | 11.        | NI.        |      |
| <b>*</b> | a Contra           | 31.4<br>755  | 10%         | Alia       | 714        | Ju:        | . 1<br>14.7 | Na a        | F: .       | ωe**.      | Va.        | A.a<br>7.5 | Pr                | : " ]"     | Pro        |      |
| Al       | 1773<br>1773       | Äid          | Pro         | Ala        | Pro        | Ala<br>Tib | 314         | iri         | Ala        | Pro        | Ala<br>180 | Pro        | Ala               | Pro        | Alu        |      |
| 3.5      | 7                  | Va.          | /A = 1      | Pr         | Thr        | Pro        | Tni         | Thi         | Orc        | Ti.:       | Pro        | 3lm        | Ara               | Thi        | Leu<br>300 |      |

```
(1) SEQUENCE CHARACTERISTICS:
         (A) LENGTH: 454 base pairs
         (B) TYPE: nucleic acid
        (C) STRANDEDNESS: single
        (D) TOPOLOGY: linear
      (ii) MOLECULE TYPE: Genomic DNA
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO:210:
GTGGCGGCGC TGCGGCCGGC CAGCAGAGCG ATGTGCATCC GTTCGCGAAC CTGATCGCGG
                                                                      6.0
TEGACGATGA GEGEGEGAA EGEEGGGACG ACGAAGAACG TEAGGAAGCE GTECAGCAGE
                                                                      120
GEGGTEEGEG CEGTGACGAA GETGACCCCG TEGCAGATCA GEAGCACCCC CGCGATGGCG
                                                                     180
CCGACCAATG TCGACCGGCT GATCCGCCGC ACGATCCGCA CCACCAGCGC CACCAGGACC
                                                                     240
ACACCCAGCA GGGGGCGGT GAACCGCCAG CCGAATCCGT TGTGACCGAA GATGGCCTCC 300
CCGATCGCGA TCAGCTGCTT ACCGACCGGC GGGTGAACCA CCAGGCCGTA CCCGGGGTTG 360
TOTTCCACCO CATGGTTGTT CAGCACCTGC CAGGCCTGGC GGTGCGTAAT GCTTCTCGTC
                                                                     420
                                                                           ....
BAAGATGGGG GTGCCGGCAT CCGTCACCGA GCCC
                                                                     154
1 INFORMATION FOR SEQ ID NO:211:
      (1) SEQUENCE CHARACTERISTICS:
        (A) LENGTH: 470 base pairs
        (B) TYPE: nucleic acid
        'C' STRANDEDNESS: single
       (D) TOPOLOGY: linear
      .11 MOLECULE TYPE: Genomic DNA
      TBCAGAAGTA CGGCGGATCC TCGGTGGCCG ACGCCGAACS GATTCGCCGC GTCGCCGAAC
                                                                      5C
BONTOGTOGO CACCAAGAAG CAAGGCAATS ACGTOGTOGT CGTCGTOTOT BOCATGGGGG
                                                                     120
ATACCACCOA COACCTGCTS SATCTSGCTC AGCAGGTGTS CCCGGCGCCCC CCGCCTCGGG
                                                                     1.80
ACCIDARAT SCIENTIACO SCORTGAAC GCATOTOGAA TOCGITTGGTS SCCATGGCCA
                                                                     240
TOGAGTOGOT COGCOCCAT SCCCGGTCGT TCACCGGTTC GCAGGCCGGG GTGATCACCA
                                                                     300
DODDODARKO DTODDODDOD CODOKOTODA ECTROTRARA DODDARADDOD RODDADDOD
                                                                     360
TTSAGGAAGG 3CGGGTGGTG TTGGTGGGCG GATTCGAAGG GGTCAGCCAG GACACCAAGG
                                                                     420
ATGTCACGAC STTGGGGGGG GGGGGGGTGGG ACACGACGG GGTGGGGATG
U INFORMATION FOR JEQ 15 NO.215
       . DEQUENCE "HAPACTERICTION
```

- A LENGTH, 279 base bairs
- B TYPE, nucleic acid
- U STRANDEDNESS: Single
- D TOPOLUGY: linear
- ii MCLETULE TYPE, Jenomia DNA
- RI SEQUENCE DESCRIPTION SEQ ID NO 210

| CCCAGGTCCT    | T CAAGGACGCG GAGAGCGATG AAGTCTTGGG CAAAATGAAG GTG  | TCTGCGC 240              |
|---------------|----------------------------------------------------|--------------------------|
| TGCTTGAGGC    | C CTTGCCAAAG GTGGGCAAGG TCCAGGCGC                  | 279                      |
| (             | (2) INFORMATION FOR SEQ ID NO:213:                 |                          |
|               |                                                    |                          |
| (1)           | SEQUENCE CHARACTERISTICS:                          |                          |
| (A            | A) LENGTH: 219 base pairs                          |                          |
|               | B) TYPE: nucleic acid                              |                          |
|               | C) STRANDEDNESS: single                            |                          |
| (D)           | O) TOPOLOGY: linear                                |                          |
| (11)          | MOLECULE TYPE: Genomic DNA                         |                          |
| ( <b>x</b> 1) | SEQUENCE DESCRIPTION: SEQ ID NO:213:               |                          |
| ACACGGTCGA    | ACTEGACGAG CEECTEGTGG AGGTGTEGAC EGACAAGGTE GACA   | .CCGAAA 60               |
| TCCCTCGCCG    | GCCGCGGGGTG TGCTGACCAA GATCATCGCC CAAGAAGATG ACAC  | GGTCGA 100               |
| TGTCGGCGGC    | SAGCTOTOTO TEATTGGCGA CGCCCATGAT GCCGGCGAGG CCGC   | GGTCCC 180               |
| JGCACCCCAG    | AAAGTCTCTG CCGGCCCAAC CCGAATCCA                    | 213                      |
| ( 2           | 2) INFORMATION FOR SEQ ID NO:214:                  |                          |
| (i) S         | SEQUENCE CHARACTERISTICS:                          |                          |
|               | LENGTH: 342 base pairs                             |                          |
| (B)           | TYPE: nucleic acid                                 |                          |
|               | STRANDEDNESS: single                               |                          |
|               | TOPOLOGY: linear                                   |                          |
| .11           | MOLECULE TYPE: Genomic DNA                         |                          |
| Хl            | SEQUENCE DESCRIPTION: SEQ ID NO:214:               |                          |
| TEGETGEEGA    | CATOGGOGGO GOGGOGGOO COAAGCCCGO ACCCAAGCCC STOCC   | agatos s                 |
| CAGCGCCGAC    | GCCGAAGGCC GAACCCGCAC TATCGCCGGC GGCGGCCCAG TCAGC  | CCGAGC 50<br>CCGGTU 120  |
| CGGCCGAGGG    | CGCACCGTAC GTGACGCGG TGGTGGGAAA GCTGGCGTGG GAAAA   | ACAACA 180               |
| DESTESSACE    | COORDINATE SECRECISES TRANSPORTED CATCOSCAAA CAGGA | ATGTGC 240               |
| CGGCCGCGGC    | TGAACAAAAG AAGCGGGGA AAGCACCGGC GCCGGCCGCC CAGGC   | 100000 100<br>110100 140 |
| CCCCCCCCCCC   | CCCGAAAGCG CCGCCTGAAG ATCCGATGCC 3C                | 342                      |
| ÷             | I INFORMATION FOR BEG IN MO 218                    |                          |
| , 1           | TEQUENCE THARACTERIUTION                           |                          |
|               | JENOTH 515 case terry                              |                          |
|               | TYPE: nucleic acid                                 |                          |
|               | STRANDEDNESS: single                               |                          |
|               | TOPOLOGY linear                                    |                          |
| 11            | MOLECULE TYPE: Genomic DNA                         |                          |
|               |                                                    |                          |
| * 1           | RETARRACE (FREINIBLION OSC ID NO DIE               |                          |

| CGGAAAACAA CATCGACCTC GCCGGGGTGA CCGGCACCGG AGTGGGTGGT CGCATCCGCA<br>AACAGGATGT GCTGGCCGCG GCTGAACAAA AGAAGCGGGC GAAAGCACCG GCGCCTTGAG<br>CGCTTCATCA CCCGGTTAAC CAGCTTGCCC CAGAAGCCGG CTTCGACCTC TTCGCGGGTC<br>TTGGTCCGCT GCAGGCGGTC GGCGAGCCAG TTCAGGTTAG GCGGCCGAAA TCTTCCAGTT<br>CGCCAGGAAG GGCACCCGGA ACAGGGTCCG CACCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 360                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| (2) INFORMATION FOR SEQ ID NO:216:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 557 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |
| (ii) MOLECULE TYPE: Genomic DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| TITE. GENERAL SINA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |
| MAR SEQUENCE DESCRIPTION: SEQ ID NORDIG:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |
| TOSACCICAA  GGCGGGGGAA  GGCGGGGGAA  GGCGGGGGAA  GGCGGGGGAA  AAGGTTCAGG  AAGGTTCAGG  ACCAGCGTCA  ATTGAGAT  CGAACCAGC  GGACTCGAA  AAGGTTCAGG  ACCAGCGTCA  ATTGAGAT  CGAACCAGC  CGCGCGCGGAA  ACCAGCGTCA  ATTGAGAT  CGAACCAAGC  CGCGCGCGGAA  ACCAGCGTCA  ACCAGCGCCA  ACGCCGCCGAGC  ACGCCGCGAGC  ACGCCGCGAGC  ACGCCGCGAGC  ACGCCGCGAGC  ACGCCCGAGC  ACGCCCGAGC  ACGCCCGAGC  ACGCCCGAGC  ACGCCCCAAGC  CGAACCAAGC  CGAACCAAGC  CGCCAGCTGAT  TTGCGGCCGA  GCTCAGGCCA  GCTCCAGCCA  GCTCCAGCCCA  GCTCCAGCCA  GCTCCAGCCA  GCTCCAGCCCA  GCTCCAGCCCA  GCTCCAGCCA  GCTCCAGCCCA  GCTCCAGCCCA  GCTCCAGCCCA  GCTCCAGCCCA  GCTCCAGCCCA  GCTCCAGCCCA  GCTCCAGCCCA  GCCCCACCCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>557 |
| 11 MOLECULE TYPE: Genomic DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             |
| HI GEOVENOR DESCRIPTION OFF. HOW, LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |
| NUBARANGT TTOGARATOR ACCTAGOTTO OFFA CORRECT REPRESENT STRATAGOOD FARMATORS TOGARAGA TOGARAGA TOGARAGA TOGARAGA SUUTTOTOGA CORRECTOR TAGARAGA SUUTTOTOGA CORRECTA CORRECTA SUUTTARRES SUUTT | 181<br>223                                                  |
| 2 INFORMATION FOR SECTIONS ON A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |

2 INFORMATION FOR SEC II NO 218

A LENGTH CHARACTERISTICS A LENGTH CORP. THE LARGE PAUL SEE TYPE DUGLE CLASSES

## (x1) SEQUENCE DESCRIPTION: SEQ ID NO:218:

| AAGAAGTACA   | TCTGCCGGTC | GATGTCGGCG | AACCACGGCA | GCCAACCGGC | GCAGTAGCCG | 60  |
|--------------|------------|------------|------------|------------|------------|-----|
| ACCAGGACCA   | CCGCATAACG | CCAGTCCCGG | CGCACAAACA | TACGCCACCC | CGCGTATGCC | 120 |
| AGGACTGGCA   | CCCCCAGCCA | CCACATCGCG | GGCGTGCCGA | CCAGCATCTC | GGCCTTGACG | 180 |
| CACGACTGTG   | CGCCGCAGCC | TGCAACGTCT | TGCTGGTCGA | TGGCGTACAG | CACCGGCCGC | 240 |
| AACGACATGG   | GCCAGGTCCA | CGGTTTGGAT | TCCCAAGGGT | GGTAGTTGCC | TGCGGAATTC | 300 |
| GTCAGGCCCG   | CGTGGAAGTG | GAACGCTTTG | GCGGTGTATT | GCCAGAGCGA | GCGCACGGCG | 360 |
| TCGGGCAGCG   | GAACAACCGA | GTTGCGACCG | ACCECTTGAC | CGACCGCATG | CCGATCGATC | 420 |
| GCGGTCTCGG   | ACGCGAACCA | CGGAGCGTAG | GTGGCCAGAT | AGACCGCGAA | CCCCATCAAC | 480 |
| GGG1.GGGG1.M | 10000000   |            | GIGGCCAGAI | AGACCGCGAA | COCCATCAMC | 480 |
| CUÇAGCGCAT   | ACCCGCTGGG | AAGCACGTCA | CGCCGCACTG | TTCCCAGCCA | CGGTCTTTGC | 540 |
| ACTTGGTATG   | AACGTCGCGC | CGCCACGTCA | ACGCCAGC   |            |            | 578 |

### (2) INFORMATION FOR SEQ ID NO:219:

- 1: SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 484 pase pairs
- B TYPE: nucleic acid
- (D) TOPOLOGY: linear
- :ii: MOLECULE TYPE: Genomic DNA
- .x1 SEQUENCE DESCRIPTION: SEQ ID NO:219:

| ACAACGATCG  | ATTGATATCG | ATGAGAGACG | GAGGAATCGT | GGCCCTTCCC  | CAGTTGACCG | 60  |
|-------------|------------|------------|------------|-------------|------------|-----|
| ACGAGCAGCG  | CGCGGCCGCG | TTGGAGAAGG | CTGCTGCCGC | ACGTCGAGCG  | CGAGCAGAGC | 120 |
| TCAAGGATCG  | GCTCAAGCGT | GGCGGCACCA | ACCTCACCCA | GGTCCTCAAG  | GACGCGGAGA | 180 |
| GCGATGAAGT  | CTTGGGCAAA | ATGAAGGTGT | CTGCGCTGCT | TGAGGCCTTG  | CCAAAGGTGG | 240 |
| JCAAGGTCAA  | GGCGCAGGAG | ATCATGACCG | AGCTGGAAAT | TGCGCCCCAC  | CCCGCCGCCT | 300 |
| regrademe   | GGTGACCGTC |            |            |             |            | 360 |
| 00000000000 |            | COGGAAGGCC | TGTGGTGGGC | GTACCCCCCGC | ATACOGGGGA | 420 |
| TAAGCGGGCCT | GACAGGGCCA | GCTCACAATT | CAGGCCGAAC | JCCCCGGTGG  | GGGGAACCC  | 480 |
| 3000        |            |            |            |             |            | 484 |

### 2 INFORMATION FOR SEQ ID NO:220:

- 1 SEQUENCE CHARACTERISTICS
  - A LENGTH, 337 pase pairs
  - B TMPE nucleus acid
  - 3 STRANDEDNESS sing, "
  - D TOPOLOGY, linear
- ii MOLECULE TYPE, Jenomia DNA
- MI SEQUENCE DESCRIPTION, SEQ ID MS 220

| AUDAL JUJUA | <br>       | アントラック・ロック | CONCALLIC  | GGCCTTGACG | <b>5</b> 0 |
|-------------|------------|------------|------------|------------|------------|
|             | TGCAMBOTOT | TGCTGGTCGA | TEGESTACAG | CACCGGCCGC |            |
| MACJACATGG  |            |            |            |            | 195        |
|             |            |            |            |            |            |

ACTIGGTACT GACGICGGG CGCCACGICG AACGCCAGGG CCATCGCGCC GAAGAACAGC 480 ACGAAGIACA CGCCGGACCA CITGGIGGG CAAGCCAAIC CCAAGCAGCA CCCCGGC 537

- (2) INFORMATION FOR SEQ ID NO:221:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 135 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:221:

Sly Gly Ala Ala Ala Gly Gln Gln Ser Asp Val His Pro Phe Ala Asn

Leu île Ala Val Asp Asp Slu Arg Ala Slu Arg Arg Asp Asp Glu Glu 20 35 30

Arg 3ln Glu Ala Val 3ln 3ln Arg 3ly pro Arg 3ly Asp Glu Ala Asp 35 40 45

Pro Val Ala Asp Gln Gln His Pro Gly Asp Gly Ala Asp Gln Cys Arg
50 55 60

Pro Ala Asp Pro Pro His Asp Pro His H:s 3ln Arg His Gln Asp His 45 70 75 80

Thr Gln Gln Gly Ala Gly Glu Pro Pro Ala Glu Ser Val Val Thr Glu 85 90 95

Asp Gly Leu Pro Asp Arg Asp Gln Leu Leu Thr Asp Arg Arg Val Asn 100 105 110

His Bin Ala Val Pro Blw Val Val Phe His Pro Met Val Val Bln His

Leu Pro Gly Leu Ala Va. Arg

- U INFORMATION FOR SEQ ID NO:222.
  - E SEQUENCE CHARACTERISTICS:
  - A. LENGTH: 156 amino acids
  - B TYPE: amino acid
  - 1 STRANDEDNESS Single
  - 1 POPOLLGY ..near
  - ii. Molacula muk protein
  - WI SEQUENCE DESCRIPTION, SEQ ID MO:222

55 70 75 Glu Ser Leu Gly Ala His Ala Arg Ser Phe Thr Gly Ser Gln Ala Gly 85 90 95 Val Ile Thr Thr Gly Thr His Gly Asn Ala Lys Ile Ile Asp Val Thr 100 105 110 Pro Gly Arg Leu Gln Thr Ala Leu Glu Glu Gly Arg Val Val Leu Val 115 120 125 Ala Gly Phe Gln Gly Val Ser Gln Asp Thr Lys Asp Val Thr Thr Leu 130 135 140 Gly Arg Gly Gly Ser Asp Thr Thr Ala Val Ala Met 150 155

- (2) INFORMATION FOR SEQ ID NO:223:
- 1: SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 92 amino acids
- B) TYPE: amino acid
- C: STRANDEDNESS: Single
- D: TOPOLOGY: linear
- 11 MOLECULE TYPE: protein
- :X1: SEQUENCE DESCRIPTION: SEQ ID NO:223:

Pro Ala Tyr Pro Ala Gly Thr Asn Asn Asp Arg Leu Ile Ser Met Arg 5 10 15 Asp Sly Gly Ile Val Ala Leu Pro Gln Leu Thr Asp Glu Gin Arg Ala 2.0 25 30 Ala Ala Leu Glu Lys Ala Ala Ala Ala Arg Arg Ala Arg Ala Glu Leu 40 45 Lyo Asp Arg Leu Lys Arg Gly Gly Thr Ash Leu Thr Gln Val Leu Lys 5.5 Aso Ala Glu Ser Aso Glu Mai Deu Gly Dys Met Dys Mal Ser Ala Deu 7 (; Leu Glu Ala Leu Pro Dys Mai Gly Dys Mai Oln Ala

- INFORMATION FOR SEQ ID NO 224
  - . SEQUENCE CHAPACTERISTICS
    - A LENGTH 70 amon and in

    - B TYPE: amin: actif C STRANDEDNESS single
    - S TOFOLOGY linear
  - il Molecule Type, protein
  - MI SEQUENCE DESCRIPTION SEC ID NO 224
- Our Cal Blu Del Agr Bl. Pro Del Mal Bl. Mal Der The App Dys Mal The state of the s

Gly Asp Ala His Asp Ala Gly Glu Ala Ala Val Pro Ala Pro Gln Lys 50 55 60 Val Ser Ala Gly Pro Thr Arg Ile 65 70

- (2) INFORMATION FOR SEQ ID NO:225:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 113 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- xi) SEQUENCE DESCRIPTION: SEQ ID NO:225:

Ala Ala Asp Tle Gly Ala Ala Pro Ala Pro Lys Pro Ala Pro Lys Pro 15

Wal Pro Glu Pro Ala Pro Thr Pro Lys Ala Glu Pro Ala Pro Ser Pro 20

Pro Ala Ala Gln Pro Ala Gly Ala Ala Ala Glu Gly Ala Pro Tyr Val Thr 35

Pro Leu Val Arg Lys Leu Ala Ser Glu Asn Asn Ile Asp Leu Ala Gly 50

Wal Thr Gly Thr Gly Val Gly Gly Arg Ile Arg Lys Gln Asp Val Leu 55

Ala Ala Ala Gln Gln Lys Lys Arg Ala Lys Ala Pro Tyr Ala Ala Ala Ala Ala Ala Ala Pro Ala Pro Byr Ala Pro Pro Glu Asp Pro Met 100

Pro

- 2. INFORMATION FOR SEQ ID NO:226:
- : SEQUENCE CHARACTERISTICS
- A) LENGTH: 118 amino acids
- B) TYPE: amino acid
- 0 STRANDEDNESS single
- TOPOLOGY .inear
- .: MCLECULE TYPE, protein
- MI SEQUENCE DESCRIPTION, SEQ 15 MG.225.

\*

65 70 75 80

Glu Asn Asn Ile Asp Leu Ala Gly Val Thr Gly Thr Gly Val Gly Gly
85 90 95

Arg Ile Arg Lys Gln Asp Val Leu Ala Ala Glu Gln Lys Lys Arg
100 105 110

Ala Lys Ala Pro Ala Pro

### (2) INFORMATION FOR SEQ ID NO:227:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 185 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- -x1: SEQUENCE DESCRIPTION: SEQ ID NO:227:

Asp Pro Lys Val Gln Ile Gln Gln Ala Ile Glu Glu Ala Gln Arg Thr 1 5 10 His Gln Ala Leu Thr Gln Gln Ala Ala Gln Val Ile Gly Asn Gln Arg 20 25 30 Gln Leu Glu Met Arg Leu Asn Arg Gln Leu Ala Asp Ile Glu Lys Leu 35 40 45 Gin Val Asn Val Arg Glm Ala Leu Thr Leu Ala Asp Glm Ala Thr Ala 50 55 50 Ala Gly Asp Ala Ala Lys Ala Thr Glu Tyr Asn Asn Ala Ala Glu Ala 55 70 75 80 Phe Ala Ala 31m Leu Val Thr Ala 31u 31m Ser Val 31u Asp Leu Lys 95 Thr Leu His Asp Gln Ala Leu Ser Ala Ala Ala Gln Ala Lyo Lyo Ala 100 110 Val Glu Arg Ash Ala Met Val Deu Glh Glh Dvo Tle Ala Glu Arg Thr 120 125 Lys Leu Leu Ser Bin Leu Glu Bin Ala Lys Met Bin Biu Bin Val Ser 130 135 140 Ala Ser Leu Ard Ser Met Ser Hu Leu Ala Ala Pro Hy Ash Thr Pro 150 155 160 . . sem Lem Asp 31. Dal Arg Asp Upo 1.4 Jlu Arg Arg Dyr Ala Asm Ala Sie die emmisslanden ben sig die ber

165

### D INFORMATION FOR SEL ID NOIDE

### . SEQUENCE THARACTERISTICS

- A LENGTH: "1 aming acids
- B TMPE amino aci:

181

I STRANDEDNESS COLLEGE

#### (X1) SEQUENCE DESCRIPTION: SEQ ID NO:228:

 Val
 Ser
 Thr
 Trp
 Val
 Pro
 His
 Pro
 Val
 Arg
 Asp
 Arg
 Val
 Ile

 Gly
 Gln
 Arg
 Trp
 Thr
 Cys
 Ala
 Asp
 Arg
 Arg
 Ser
 Ile
 Glu
 Glu
 Glu
 Ger
 Thr

 Glu
 Met
 Ala
 Phe
 Ser
 Val
 Gln
 Met
 Pro
 Ala
 Leu
 Gly
 Glu
 Ser
 Val
 Thr

 Glu
 Gly
 Thr
 Val
 Thr
 Arg
 Trp
 Leu
 L

#### (2) INFORMATION FOR SEQ ID NO:229:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 182 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:229:

Glu Val His Leu Pro Val Asp Val Gly Glu Pro Arg Gln Pro Thr Gly 10 Ala Val Ala Asp Gln Asp His Arg lle Thr Pro Val Pro Ala His Lys 20 25 30 His Thr Pro Pro Arg Mal Dys Jln Asp Trp His Arg Gln Pro Pro His 40 45 3.5 Ard Gly Arg Ala Ast 3ln His Leu Gly Leu Ast Ala Arg Leu Cys Ala 3.3 60 Ala Ala Cys Ash Val Leu Leu Val Asp Gly Val Gln His Arg Pro Gln **-** 5 Arg His Gly Pro Gly Pro Arg Phe Gly Phe Pro Aig Mal Mal Mal Ala 35 9.0 25 Cys Gly lle Arg Gln Ala Arg Val Glu Val Glu Arg Phe Gly Gly Val 100 105 110 Deu Pro III Arm Ala Will mib Wall My Elm Arit Ash Ash Arg Mai Ala -15 The Asp Arg Lev The Kar Ard Mer Pro Ide Add Arg Now Lev Min Arg 14. din Pro Arg Set Va (E) (B), The the Asp Ara Blu Ara Asp Cln Pro 151 155 Bin Arg Tie Pro Ala Bly Lyo His Val Thr Pro His Cys Ser Gin Pro 1,55 Arg Ser Deu His Leu Val 180

THE CHMAILING TIRE OUT IN THE

- (C) STRANDEDNESS, single
- (D) TOPOLOGY: linear
- (11) MOLECULE TYPE: protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:230:

Asn Asp Arg Leu Ile Ser Met Arg Asp Gly Gly Ile Val Ala Leu Pro 10 Gln Leu Thr Asp Glu Gln Arg Ala Ala Ala Leu Glu Lys Ala Ala Ala 20 25 30 Ala Arg Arg Ala Arg Ala Glu Leu Lys Asp Arg Leu Lys Arg Gly Gly 4.0 Thr Asn Leu Thr Glm Val Leu Lys Asp Ala Glu Ser Asp Glu Val Leu 55 Gly Lys Met Lys Val Ser Ala Leu Leu Glu Ala Leu Pro Lys Val Gly 75 Lys Val Lys Ala 3lm 3lu lle Met Thr Olu Leu 3lu Ile Ala Pro His 90 Pro Ala Ala Phe Val Ala Ser Val Thr Val Ser Ala Arg Pro Cys Trp 100 105 Lys Ser Ser Ala Pro Pro Ash Pro Ala Gly Arg Arg Cys Gly Pro Glu 120 125 3ly Leu Trp Trp Ala Tyr Pro Arg Ile Arg Gly Arg Ser Gly Leu Thr 135 Gly Pro Ala His Asm Ser Gly Arg Thr Pro Arg Trp Gly Gly Thr Arg 150 155

- (2) INFORMATION FOR SEQ ID NO:231.
- 1 SEQUENCE CHARACTERISTICS
  - A: LENGTH, 178 amino acids
  - B TYPE: amino acid
  - C' STRANDEDNESS, single
  - D TOPOLOGY linear
- 11 MOLECULE TYPE: protein
- MI GEOMETICE DESCRIPTION (SEC. 1204) (MA)
- App 317 Val 31. Arm she 317 Out Was Arm 32. Arm Alm App 317 Arm arm Den Central Centra

|                    | 115 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .25                   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Val Thr P          | Pro His Cys Pro Gln Pro Arg Ser Leu His L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eu Val Leu Thr        |
| 130                | 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |
| 145                | Arg His Val Glu Arg Gln Arg His Arg Ala G<br>150 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |
| Clu Val H          | is Ala Gly Pro Leu Gly Gly Ala Ser Gln S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 160<br>er Glm Ala Ala |
|                    | 165 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 175                   |
| Pro Arg            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                    | (2) INFORMATION FOR SEQ ID NO:232:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
| νi.                | SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
| ( A                | A) LENGTH: 271 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
| ı E                | B) TYPE: nucleic acid C) STRANDEDNESS: single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                    | D. TOPOLOGY. Limar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 11                 | MCLECULE TYPE: Senomic DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
| energy.            | SECTION DESCRIPTION OF THE PROPERTY OF THE PRO |                       |
| 1362               | SEQUENCE DESCRIPTION: SEQ ID NO:232:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |
| ATGCCAAGCC         | GARAGE COCGAGOTOS GOGAATOGGT GACOGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GGGG ACCGTCATTC 60    |
| AMD: JUC C         | AAAGAICGGG GATTCGGTTC AGGTTGACGA GGGACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CCTC Checment 100     |
| IDDAKJACO          | . GUACACCGAG ATCCCGTCCC CGGTGGCTGG GGTCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GGTC AGTATCACCC 100   |
| AGATCGGCGC         | CGCCACGGTG CCCGTCGGCG GCGAGTTGGC GCGGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 271                   |
| 7                  | 2 INFORMATION FOR SEQ ID NO:033:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |
| 1                  | JEQUENCE CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| A                  | LENGTH: 39 amine adding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
|                    | - TYPE, amino acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
| 7                  | CTRANDEDNESS, single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |
| <u>.</u>           | TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |
| 11                 | MOLECULE TYPE, protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                    | REQUENCE DESCRIPTION REQUES NO DAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
|                    | t (a. Sec Met Orn Blo Sec Es Es Flu Ber Ma<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | * 5                   |
|                    | r And Try Lew Day Dva Lie di. Asi Gen Ma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . Ph. Va. Asp         |
|                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                     |
| 35                 | 1 Mai Glu Mai Ser Thr Asp Lyo Mai Asu Thi<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gul Ile Pro           |
| Ger Pro Val        | l Ala Gly Val Lew Val Gor Tie Ger Ala Ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GIL ASD Ala           |
| 50<br>Tii: Val 9++ | 2,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |
|                    | n Val. Gly dig die Lee Ala Art fle die val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ala Ala 3             |
|                    | ing the second of the second o | 4.1                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |

(i) SEQUENCE CHARACTERISTICS:

```
(A) LENGTH: 107 base pairs
          (B) TYPE: nucleic acid
         (C) STRANDEDNESS: single
         (D) TOPOLOGY: linear
       (ii) MOLECULE TYPE: Genomic DNA
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:234:
 GAGGTAGCGG ATGGCCGGAG GAGCACCCCA GGACCGCGCC CGAACCGCGG GTGCCGGTCA 60
 TOGATATOTO OGCACOGTTO GTTCCGTCCG CCGAGGTCAT TGACGAT
                                                                     107
          (2) INFORMATION FOR SEQ ID NO:235:
        i) SEQUENCE CHARACTERISTICS:
         (A) LENGTH: 339 base pairs
         (B) TYPE: nucleic acid
         (C) STRANDEDNESS: single
         (D) TOPOLOGY: linear
      (ii) MOLECULE TYPE: Genomic DNA
      (X1) SEQUENCE DESCRIPTION. SEQ ID NO:235:
ATGAAGTTGA AGTTTGCTCG CCTGAGTACT GCGATACTGG GTTGTGCAGC GGCGCTTGTC
TTTCCTGCCT CGGTTGCCAG CGCAGATCCA CCTGACCCGC ATCAGCCGGA CATGACGAAA 120
GGCTATTGCC CGGGTGGCCG ATGGGGTTTT GGCGACTTGG CCGTGTGCGA CGGCGAGAAG 180
TACCCCGACG GCTCGTTTTG GCACCAGTGG ATGCAAACGT GGTTTACCGG CCCACAGTTT 240
TACTTOGATT GTGTCAGCGG CGGTGAGCCC CTCCCCGGCC CGCCGCCACC GGGTGGTTGC 300
SGTGGGGCAA TTCCGTCCGA SCAGCCCAAC SCTCCCTGA
                                                                    339
          2 INFORMATION FOR SEQ ID NO.036
       1 SEQUENCE CHARACTERISTICS
        A) LENGTH: 111 amino acido
         B) TYPE: amino acid
         C) STRANDEDNESS: single
         D: TOPOLOGY linear
       11 MOLECULE TYPE protein
       MI SEQUENCE DESCRIPTION SEQ ID NO 130
Met Dud Deu Dys Phe Ala Arg Deu Ser Thr Ala Ile Deu Bly Cys Ala
Ala Ala Leu Val Phe Pro Ala Ser Val Ala Ser Ala Asp Pro Pro Asp
Pro Hid Gin Pro Ast Met The Lyo Nice Der Ove Pro die Gly Arg Ten
                                                   3.0
is
31 Home die Applement en een verstelen en
```

```
90 95
Pro Gly Gly Cys Gly Gly Ala Ile Pro Ser Glu Glm Pro Asm Ala Pro
          105
```

### 2 INFORMATION FOR SEQ ID NO:237:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 37% base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: dDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:237:

| GTGACCACGG               | TGGGCCTGCC | ACCAACCCGG  | GCAGCGGCAG   | connected                              | REESGESGET               |     |  |
|--------------------------|------------|-------------|--------------|----------------------------------------|--------------------------|-----|--|
| CCGGCGGCAA               | JUGTGGCGCC | BGGGGTAACG  | CON COORDINA | 10000000000000000000000000000000000000 | 36C2GC3CC3               | 50  |  |
| GTGGCAATGG               | CGGTGATGGG | 400mm0ddca  | CT1CCCCCCC   | AGGCGGCAAG                             | ATCGGGGGTCA              | 120 |  |
| CGGGCGCCCC               | CGGCGGCAAC | GGCGGGAACG  | COCCOCCOC    | CCCCCCCTCC                             | ATCGGGGTCA<br>CCCAACGGCT | 180 |  |
| CAGGTGGCGA               | CGGCGGCAAA | GGCGGGAAGG  | GCGGCGCCCGG  | TGGCAGCAAC                             | CCCAACGGCT               | 240 |  |
| CAGGTGGCGA<br>GCGCCAACAG | COCCATCATA | CCCCCCAACG  | eced.tgccgg  | CGGCAACGGG                             | GGCTCGATCG               | 300 |  |
| GCGCCAACAG<br>GAAACGGCAG | COCCATCHIC | Gocagi ICCG | GIGGGGGGG    | TGGCGCTGGC                             | GGCGCCGGCG               | 360 |  |
|                          | ~          |             |              |                                        |                          | 371 |  |

- .2) INFORMATION FOR SEQ ID NO:238:
- 1 GEQUENCE CHARACTERISTICS
- (A) LENGTH: 424 base pairs
- (B) TYPE: nucleic acid
- C. STRANDEDNESS, single
- D) TOPOLOGY: linear
- 1: MOLECULE TYPE: CONA
- M1 SEQUENCE DESCRIPTION: SEQ ID M0:238:

|             | CACCACCGCG  | JOGGGGGGGG    | COTAGOGGG   | 'accessors and                          | 3000000000  |        |
|-------------|-------------|---------------|-------------|-----------------------------------------|-------------|--------|
| TTGACTCGTT  | CAAGAAAAGS  | JOSTTOTGTT    | TOTAGEGGG   | TUTTEGGS                                | ATCGTGACCC  | 50     |
| ATGGGCAACA  | TEGACGTEGA  |               |             |                                         |             | 120    |
| 3GTGGTGA01  | ATTOUTETAI  |               |             |                                         | TEGEOGECCGC | 181    |
| CCGTCGGAG   | 2002200000  |               | Addatthata  |                                         |             | 24     |
| 1000000000  | 2011725     | . J. CC. ACGC | JGTGCTCCGA  | AAGGGGTCGG                              | TCGGGGAACAT | \$ 500 |
| 1211 - 2011 |             | JOSHOGCSG.    | TTTCACCAAG  | 3 C C C C C C C C C C C C C C C C C C C | 13777773337 | 1.5    |
|             | JOSTS SAAUA | alTGGGTGA     | 2AT003331T1 | 3000                                    |             | 111    |
| CAC         |             |               |             |                                         | AUGACGATCC  | 42.    |
|             |             |               |             |                                         |             | 4      |

- 2. INFORMATION FOR SEQ ID NO-239:
- : JEQUENCE THARACTERISTICS
- A LENGTH Fill base pairs
- B TYPE countries acid
  STRAIDEDNESS single

| (X1) SEQUENCE DESCRIPTION: SEQ ID NO:239:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| GCGATGGCGG CCGCGGGTAC CACCGCCAAT GTGGAACGGT TTCCCAACCC CAACGATCCT TTGCATCTG CGTCAATTGA CTTCAGCCCG GCCGATTTCG TCACCGAGGG CCACCGTCTA GGGGCGGATG CGATCCTACT GCGCCGGTACC GACCGGCTGC CTTTCGCCGA GCCGCGGAT GCGACTCGCC ACGATATGCG TCCCGAACTG GCGCGGCGCT CCAAACTCAC CGAATCGCTG CGGCTCTACG ATTCGTC                                                                                                                                                                                                                                                                                                                   | 120<br>180               |
| (2) INFORMATION FOR SEQ ID NO:240:  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 422 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |
| TOGOGTATGO GCTTCGCAGO CGGTGCCGCG TCAACGCGCC GGAGGCAATC GCTTCGCTGC CGAGGAATG GCTTCGCAACG GCGGAAAATC GCTTCGCAACG GCGGAAAATC GCTTCTGGAG GCGGAAAATC GCTTCTGGG GAACGCGCG GGGCCTTAACG GCTCTGGAAG TCGCGGAAAATC GCTTCTGGG GAACGCGCG GGGCCTTCCT TGGCGTCGTC GGACCTCGGT TCGCGGAAATC GCTTCTGGG GAACGCGCGC GGGCCTTCCT TGGCGTCGTC GCACCTCGGT TCGCGGATG ACCGCAAGAT GCCCTGGTC TCTCGGGCAT TCGCGGATG GCAACGTCGT TCCGGGCAT GAACGCCTCGT TCTCGGGCAT GAACGCCTCGT CTTCGGGCAT GAACGCCTCGT CTTCGGGCAT GAACGCCTCGT CTTCGGGCAACACC GCCAAGGTC GCAACGTCGCCA CACGTGGCCG CACGTGGCCG CACGTGGCCG CACGTGGCCG CACGTGGCCG CACGTGGCCC CACGTGGCCC | 120<br>180<br>240<br>300 |
| INFORMATION FOR SEQ ID MOREATE.  1 SEQUENCE CHARACTERISTICS: A LENGTH: 406 base pairs B: Type: nucleic acid C: STRANDEDNESS: Jingle D: TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |

| X ±                                                                                 | JEQUENCE DI | EGCRIPTION | PEU LO M. :                                                                        | .41                                                                                                |                                                        |                                               |
|-------------------------------------------------------------------------------------|-------------|------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|
| FIGUREAU<br>PROCESSES<br>SACCEAGES<br>SATEGECES<br>ASTRICCES<br>ACCIDAGET<br>11703A |             | GGGATGAATG | TA SA TOTTOTT ISA CUATAAG GACTOTOCAG ACAAGTOGAT CEECAAATOU GGAA COECA TOTA TA COEC | IGA CTODGTA<br>GTOGCTAATG<br>CTOGCCGACG<br>CGAATGCATA<br>UTTGATTTCT<br>SATGCCGACA<br>FFA CTOGGI IA | 200AGGTAGA<br>300AGGTTGG<br>3TGGGCTGCA<br>AGCTCGGGTTGG | 12 7<br>18 7<br>24 0<br>3 00<br>3 50<br>4 0 7 |
|                                                                                     |             |            |                                                                                    |                                                                                                    |                                                        | 4.7 %                                         |

11 MOLECULE TYPE CONA

- (B) TYPE: nucleic acid (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:242:

| AGACCGGCGA CGCCGATCAA TCAAAGAAAC CCGAACCCCT TCGACATCAA GGCAACCGAA | GAAGAAGGTT<br>GACCAAGACC<br>ATTCGCCGGA | GCAACGCTAG<br>GCCATGAGCA<br>ACGATCACCC<br>ATCTGTCGCT | GCTTTGGGAT CTGTTGCCGC | ACCCACAGCT<br>CTACGCCGCC | ATGTCGGCGA | 60<br>120<br>180<br>240<br>300 |
|-------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|-----------------------|--------------------------|------------|--------------------------------|
| JOCINCESAN                                                        | - LIACCIGIG                            | GICCCIG                                              |                       |                          |            | 327                            |

- (2) INFORMATION FOR SEQ ID NO:243:
- 1, SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 123 amino acids
- (B. TYPE: amino acid
- (C) STRANDEDNESS: single
- (D TOPOLOGY: linear
- ii MOLECULE TYPE: protein
- .xi. SEQUENCE DESCRIPTION: SEQ ID NO:243:

Asp His Gly Gly Pro Ala Thr Asp Pro Gly Ser Gly Ser Arg Gly Gly 10 Ala Gly Gly Ser Gly Bly Ash Gly Gly Ala Gly Gly Ash Ala Thr Gly 25 3.0 ser Gly Gly tys Gly Gly Ala Gly Gly Ash Gly Gly Asp Gly Ser Phe 40 sly Ala Thr Ser Bly Pro Ala Ser Die Bly Ma. Thr Bly Ala Pro Bly 4.5 30 Blw Ash Glw Gly Lys Gly Gly Ala Gly Gly Ser Ash Pro Ash Gly Ser 70 75 Cly dly Asp dly Gly Dys dly Gly Ash dly Gly Ala Gly dly Ash dly 3.0 Notice the shoulder and he has also to the shy shy ala 100 in the Alacany and Alacane have Ash and see

- 2 INFORMATION FOR SEQ ID NO 244
- 1 SEQUENCE CHARACTERISTICS
  - A LENGTH 104 amino acids
    B TYPE amino 4:11
    CTRANDEDNEOS 104.4

  - TOPOLOGY

Met Ala Ala Gly Thr Thr Ala Asn Val Glu Arg Phe Pro Asn Pro 10 Asn Asp Pro Leu His Leu Ala Ser Ile Asp Phe Ser Pro Ala Asp Phe 20 25 Val Thr Glu Gly His Arg Leu Arg Ala Asp Ala Ile Leu Leu Arg Arg 40 Thr Asp Arg Leu Pro Phe Ala Glu Pro Pro Asp Trp Asp Leu Val Glu 55 Ser Gln Leu Arg Thr Thr Val Thr Ala Asp Thr Val Arg Ile Asp Val 70 75 80 Ile Ala Asp Asp Met Arg Pro Glu Leu Ala Ala Ala Ser Lys Leu Thr 8.5 90 Glu Ger Leu Arg Leu Tyr Asp Ser

- (2) INFORMATION FOR SEQ ID NO:245:
- 1. SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 41 amino acids
- (B' TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- 11. MOLECULE TYPE: protein
- -X1 SEQUENCE DESCRIPTION: SEQ ID NC:245:

Ala Tyr Ala Leu Arg Ser Arg Cys Arg Val Asn Ala Pro Glu Ala Ile 10 Ala Ser Leu Pro Ard Ash Gly Ser Ile Thr Ile Ala Wal Cws Ard Ard 20 2.5 Ala Pro Thr Pro Pro Ser Ash Mal Ash

- I. INFORMATION FOR SEQ ID NO:246:
- : JEQUENCE CHARACTERISTICS
  - A LENGTH: 05 amino acido 8 TYPE, amino acid

  - C STRANDEDNESS single
  - D TOPOLOGY: linear
- ii MOLETTLE TYPE, protein
- xi | SEQUENCE DESCRIPTION, GEQ ID NO-246

Val. Pro Leu Ash Thr Ser Pro Ard Leu Pro Ash Leu Pro Ash Ser Val Allesto Fro Val Ale Ser Leo Des Ser

|          |                           | (B)                | LEN<br>TYP<br>STR<br>TOP | E: a                           | mino<br>DNES                   | acı<br>S:s                       | d<br>ingl                              |           |                 |      |             |           |           |               |                            |              |
|----------|---------------------------|--------------------|--------------------------|--------------------------------|--------------------------------|----------------------------------|----------------------------------------|-----------|-----------------|------|-------------|-----------|-----------|---------------|----------------------------|--------------|
|          | (.                        | ıi)                | MOLE                     | CULE                           | TYP                            | E: p                             | rote                                   | ın        |                 |      |             |           |           |               |                            |              |
|          | ()                        | xi)                | SEÇU                     | ENCE                           | DES                            | CRIP                             | MOIT                                   | : SE      | Q ID            | NO:  | 247:        |           |           |               |                            |              |
| Met<br>1 | Ser                       | Thr                | Val                      | Ala<br>5                       | Ala                            | Tyr                              | Ala                                    | Ala       | Met<br>10       | Ser  | Ala         | Thr       | Glu       | Pro           | Leu                        |              |
| Thr      | Lys                       | Thr                | Thr<br>20                | Ile                            | Thr                            | Arg                              | Arg                                    | Asp<br>25 | Pro             | Gly  | Pro         | His       | Asp<br>30 | Met           | Ala                        |              |
| Ile      | Asp                       | Ile<br>35          | Lys                      | Phe                            | Ala                            | Gly                              | Ile<br>40                              | Cys       | Arg             | Ser  | Asp         | Ile<br>45 | His       | Thr           | Val                        |              |
| Gln      | Thr<br>50                 | Glu                | Trp                      | gly                            | 31n                            | Pro<br>55                        | Asn                                    | Leu       | Pro             | Val  | Val<br>60   | Pro       |           |               |                            |              |
|          |                           | . 2                | INI                      | FORM                           | ATIO                           | N FOI                            | R JE                                   | Q ID      | NO:1            | 248: |             |           |           |               |                            |              |
| ACTA     | X<br>GGAG<br>AAGA<br>ACCA | 1 N<br>1 S<br>00 S | ITIGA<br>NOITI<br>BOBOS  | TULE<br>ENCE<br>NGCGA<br>TGACA | TYPE<br>DESC<br>NO 30<br>NO 30 | E: dI<br>DRIPT<br>STGTO<br>DAACO | ANC<br>TION<br>TION<br>TION<br>TION    | T00       | 3030:<br>3030:  | CATG | TTC         | CGTC      | ca .      | CGT           | AAGTCA<br>AGAAGO<br>TGCTTG | : 12<br>: 18 |
| · a teri |                           |                    |                          |                                |                                |                                  |                                        |           | . NO : 1        | 249: |             |           |           |               |                            | 21           |
|          | 1                         | $A^{\pm}$          |                          | ITH:                           | 367<br>icle:<br>MESI           | base<br>12 10<br>3 21            | e pa:<br>21d<br>ingle                  | irs       |                 |      |             |           |           |               |                            |              |
|          |                           |                    | 10 LE 1                  | TILE                           | TYPE                           | ( 51                             | NA                                     |           |                 |      |             |           |           |               |                            |              |
|          | Х                         | 1 5                | EQTE                     | ENCE                           | DESC                           | IRIPT                            | rien                                   | JE;       | :               | NC · | 34 <i>9</i> |           |           |               |                            |              |
| DT JA    | gerra                     | ct :               | STTC:                    | 33030                          | :7 30                          | 30531                            | rac s                                  | 7 30      | 33331           | :ggg | T 3G0       | Jaca      | 3GC /     | augg/         | ACGGCG                     | 5 5          |
| 3307     | 7307                      | 33 3               | TACCI                    | acco.                          | IG 40                          | 2000                             | GGA.                                   | : All     | age ac          | TDAE | 2333        | 1362      | iac       | 3.3.730       | GATGG                      | : :2         |
| 777      | A 700                     | <b>3</b> -3 (      | 13335                    | 3.7.7.7.                       | 7 30                           | ; 7,7,7/                         | :::::::::::::::::::::::::::::::::::::: | 13        | 2 <b>A</b> A 30 | 3033 | 3 3         | GUT       | X7.       | 7-72          | 3/1A 3/16                  | :            |
| 4737     | 7730                      | 3.° :              | <del>577</del> 33        | 3 <b>373</b> 0                 | FT 40                          |                                  | 133.77                                 | . 736     | 36030           | STA. | 1000        | cacc      | 300       | 77 <b>7</b> 7 | 303033                     | 2.4          |

- (2) INFORMATION FOR SEQ ID NO:250:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 420 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:250:

| AAGGCGTGAT | TGGCAAGGCG | ACCGCGCAGC | GGCCCGTAGC | CGCGGGACGG        | CCCAGGCCCC   | 60  |
|------------|------------|------------|------------|-------------------|--------------|-----|
| GACCGCAGCG | GCCGGTGTCT | GACCGGGTCA | GCGACCAGCG | GCGCTGACCG        | TOCCOCMOCM   | 120 |
| CTACTTCGAC | GCCAGCGCCT | TCGTCAAACT | TCTCACCACC | GAGACAGGGA        | عصبادهستعاد  | 180 |
| GTCCGCTCTA | TGGGACGGCT | GCGACGCCGC | ATTGTCCAAC | CSCCTGGCCT        | a COCCOA NOT | 240 |
| JCGCGCCGCA | CTCGCTGCAA | CGGGCCGCAA | TCACGACCTA | a CCCC a a mode   | Component    | 300 |
| UUCCGAGCGT | GACTGGGAGG | ACTTCTGGGC | CGCACCCGCC | a a ramerou y com | 3300000300   | -   |
| JTTGAACAGC | ACGCCGGGCA | CCTCGCCCGA | ACACATGCCT | TACGCGGACC        | CGACACCOTT   | 360 |
|            |            |            |            | THE SCOUNCE       | - JACACCULL  | 420 |

- (2) INFORMATION FOR SEQ ID NO:251:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 299 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- ii MOLECULE TYPE: cDNA
- X: SEQUENCE DESCRIPTION: SEQ ID NO:251.

| STOTTOTCOG | TGGCATCGGC | GTACCCGCC  | JAAUCGGCGG | CAACGCCGGT | NTGCTCGCCS |     |
|------------|------------|------------|------------|------------|------------|-----|
|            | GGCCGGCCGT | Jedgggggg  | TCAGCTTCAG |            |            |     |
|            | GGCCGGTGGG | TETTCACIA  |            |            | GGTGGGCAGG | 180 |
|            |            |            | 3GGCCGGCGG | STIGITIAGT | GCCGGCGGCA | 240 |
| TGGGCGGGG  | GGGCGGATTC | GGGGATCACG | GAACGCTCGG | CACCGGCGGG | accededed  | 299 |

- 2 INFORMATION FOR SEQ ID NO 252.
- . SEQUENOR MARASTERISTICS
  - A SENGTH / Amino soldo
- B TYPE amin ania
- 1 STRANDEDNESS single
- D TOPOLUGY Linear
- it MOLECULE TYPE, protein
- MI SEQUENCY DESCRIPTION SET IN NO 120

Deck Ind Pro Imp Ser Aut I have to held sur Will Astroper Physical

# (2) INFORMATION FOR SEQ ID NO:253:

## (1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 121 amino acids
- B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: protein

# :X1) SEQUENCE DESCRIPTION: SEQ ID NO:253:

Glu Leu Leu Phe Gly Ala Gly Gly Ala Gly Gly Ala Gly Gly Ala Gly 10 Thr Asp Glv Gly Pro Gly Ala Thr Gly Gly Thr Gly Gly His Gly Gly 25 Valuably Bly Aso Sly Sl, Teo Leu Ala Pro Sly Sly Ala Sly Sly Ala 4 C Bly Cly Glm Gly Gly Ala Gly Gly Ala Arg Ser Asp Gly Gly Ala Leu 55 60 Gly Gly Thr Gly Gly Thr Gly Gly Thr Gly Gly Ala Gly Gly Ala Gly 70 75 Gly Arg Gly Thr Leu Leu Gly Ala Gly Gly Gln Gly Geu Gly 35 Bly Ala Bly Bly Bln Bly Bly Thr Bly Bly Bly Arg Arg Arg Trp Arg 105 Ser 317 31v Cys 31m Tro His Trp Trp 110

# D INFORMATION FOR SEQ ID NC:254:

# SEQUENCE CHARACTERISTICS

- A. LENGTH: 34 amino acids:
- B TYPE, amino acid
- C' STRANDEDNESS: Single
- D' TOPOLOGY: linear

## 11 MOLECULE TYPE: protein

# 2 INFORMATION FOR GEQ ID NO 05%

. DEQUENCI CHARACTERIUTION A LENGTH PROGRAM

- (ii) MOLECULE TYPE, protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:255:

Leu Val Gly Gly Ile Gly Gly Thr Gly Gly Thr Gly Gly Asn Ala Gly 5 10 Met Leu Ala Gly Ala Gly Ala Gly Gly Ala Gly Gly Phe Ser Phe 20 25 Ser Thr Ala Gly Gly Ala Gly Gly Ala Gly Gly Leu Phe 35 40 Thr Thr Gly Gly Val Gly Gly Ala Gly Gly Gln Gly His Thr Gly Gly Ala Sly Gly Ala Gly Ala Gly Gly Leu Phe Gly Ala Sly Gly Met 75 70 Gly Gly Ala Gly Gly Phe Gly Asp His Gly Thr Leu Gly Thr Gly Gly 85 90 Ala Gly Gly

- (2) INFORMATION FOR SEQ ID NO:256.
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 282 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- 11: MOLECULE TYPE: CDNA
- x1. SEQUENCE DESCRIPTION: SEQ ID NO:256:

|            | CGCCGGCGGG  | JIGGGCGGTA    |                                         | CGGTGTGGCA |            |       |
|------------|-------------|---------------|-----------------------------------------|------------|------------|-------|
| 1737277777 | CGGGCCCGGT  | COMMONOR      |                                         |            |            | 50    |
|            |             |               | GGGCCGGTGG                              |            | STCGGTGGGG | 100   |
| CCGGCGGCGC | CGGCGGAATC  |               |                                         |            |            | 0     |
|            |             | 30111 201     | GGAACAGCGG                              |            | TCCGGGGGGT | 180   |
| CCCCCTCCT  | CTGGGGGGGAA |               | 200022222                               |            |            | 120   |
|            |             | 100301001.,   | والمال الماليان                         | TGGGGTCGGG | TOCACTAICG | 240   |
| JCGGTGCCGG | CGGGGGGGGG  | GGCAACGCCA    | 300maamaa-                              |            |            | ~ T U |
|            |             | JOURNA COLLIN | ا الله الله الله الله الله الله الله ال | AA         |            | 282   |
|            |             |               |                                         |            |            |       |

- (2) INFORMATION FOR SEQ ID NO 1257
- : SEQUENCE CHARACTERISTICS
  - A LENGTH: 118 case pairs
  - B TYPE nucleic acid

  - 1 Tupology linear
- 11 MOLECULE TYPE, SDNA
- X1 SEQUENCE DESCRIPTION SEQ ID MC+057

IBGCACGAGO OSTRUTALT: PICAACTOAT BECCTIATTS THARTTYLL BIBLICUKAT 60
LAGISSTTOT GAGGACIGA, BIAATATTOS AAAACGAATO TBGCOROCIA WALGA GATO 1000

| ATGGTGCCAG CCCACTCGAC ACCACCGGTG GCGAACATCG AGGTCAACAC GCCGT                                                                                                                                                                                                                                                                                                                                                                                         | 415                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| (2) INFORMATION FOR SEQ ID NO:258:                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 373 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>                                                                                                                                                                                                                                                                |                                                       |
| (ii) MOLECULE TYPE: cDNA                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:258:                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| TCACCGCGTG AACGGTTCGT AACACTGATA CGTATGCTTG TCAGCGAGCA GATCAAGTCC AGTCCGACCA ATGCCAGGAG ATCATCGCT AGGCTCACGG TTTCGCCTGG GACGAGACGG TATTGAGTTC TGGCCTTCGA CGTCCCCTGT CGGCGTCCAC CGGATCGCTT TCGGAACGTT TCGGAACGTT GCGCAAGCGC GGCCTCACT CGGCGTAGCTG CGCGGCCTCG ATCGGTTTGA ACGTCATCGC AATTCCCGCA ATGGGTGAGT ACCTGACGCT CCT                                                                                                                               | 120 '<br>180<br>140                                   |
| (2) INFORMATION FOR SEQ ID NO:259:                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 403 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  ii: MOLECULE TYPE SDNA                                                                                                                                                                                                                                                                                            |                                                       |
| K1 GEQUENCE DESCRIPTION SEQ 10 MO.059:                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |
| JONAAGGGGA       CAGGGGGGGA       COGAGGGTGG       GAAGTTGGAU       JAGGGTGGU       GCTCCATGTA         JOCAAGGGGT       GACCAGGGG       TAGACAGGAG       ATCCGTGGAT       JGGUGGTGG       JTGTGGTCGG         JCCCGGGTGC       GAATTCGAG       ACCCGAAGGAA       CGCGATCGAA       ACCGGGGTGA         ATGATTGAGT       TTAAACCGGT       TAGCAATAAAA       TAGTATCGGG       CCCGGGGTGAA         TCTTGAGGGC       TTTTTGAGAGGAAAAAAAAAAAAAAAAAAAAAAAAAAA | 60<br>120<br>180<br>240<br>30<br>30<br>30<br>30<br>42 |
| 2 INFORMATION FOR SEC 11 MG 18.                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |
| C SEQUENCE CHARACTERISTICS  A LENGTH 404 base pairs  B CYPE: nucleic acti C STRANDEDNESS coin (); C C Policy consul                                                                                                                                                                                                                                                                                                                                  |                                                       |

| AGTGGCCAGC CGGTCGGCCA ATGCATCCAG CTCCCGGTAC GTCAGCTGAC CATCCGCCCA ACCGAGCCAG GCTGTGCCGC AGCGATTTCG GCGAACCGGG TATGCACCGC GGGTGCCGAC GCGGCAGCCC GGGTGCGGCT GGACCAGGCC GGGTGCGGCT CCACCGGCTG ACCAAGCGCT GTAACACAGC CACCAGCAGCC CTGCCGAGGC CTTCCGGCGC CATCGTGCCC AGCGCACCGT CGAGCACCTC CAACCTCCCCGTTC AGCGCCACCG GAAAGTGCGA CACCCCCGTTT GCGA                                     | 120<br>180<br>240                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| (2) INFORMATION FOR SEQ ID NO:261:                                                                                                                                                                                                                                                                                                                                            |                                                     |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 421 base pairs</li> <li>(B) TYPE. nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>                                                                                                                                                                                         |                                                     |
| ii: MOLECULE TYPE: cDMA                                                                                                                                                                                                                                                                                                                                                       |                                                     |
| X1 SEQUENCE DESCRIPTION: SEQ ID MC:261:                                                                                                                                                                                                                                                                                                                                       |                                                     |
| STOCCTOTEC GCCCGGGGG CACTATTCS ACAACGGCAC CCGCCAATTG CTATTCGATGAC ATGCACGTTG CACCGCGGGT CATTTTTTTG CCGGGGCGGG CAGCCGGGTT GACCAGCGAC GACCACGGCA CGGCGTTCGT TGCCGCCGG GGGGGCACT TCGTGGCCGAC GGTCACACCG CACGAGTGAA TGTCGCTGAC GCAGCGACA CCCATTTTCAC GGGCACTACT TCGTGGCCGA CCTGTCCTCG GGTCACACCG CACGAGTGAA TGTCGCTGAC GCAGCGCACA CCCATTTCACA GGGCACACACACACACACACACACACACACACACA | 50<br>120<br>180<br>240<br>300<br>360<br>420<br>421 |
| C INFORMATION FOR SEC ID MO.360                                                                                                                                                                                                                                                                                                                                               | _                                                   |
| : SEQUENCE CHARACTERISTICS:  A: LENGTH: 40% base pairs  B: TYPE: nucleic acid  C: STRANDEDNESS: single  D: TOPOLOGY: linear                                                                                                                                                                                                                                                   |                                                     |
| At Dequence description of all of Months                                                                                                                                                                                                                                                                                                                                      |                                                     |
| TOTO 3                                                                                                                                                                                                                                                                                                                                                                        | 12<br>187<br>247<br>300<br>457                      |
|                                                                                                                                                                                                                                                                                                                                                                               | <del>i</del> _ ''                                   |

TO THE TRANSPORT OF THE STATE OF THE

```
(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA
```

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:263:

| GTCCTGGTCG ACCATCGAAC GTGCGACCAC GTGCACCTTG GTGCACGTTG GACCACGGCA GGTCACACCG CGCCGCTCCG AAGAACCCGC | TGAGCGGCCA GCCCGGGCGC CACCGCCGT CGGCCTTCCT CACGAGTGAA ACGGCAAGCT | CCCCCGGGCG<br>CGATTCGGCG<br>CATTTTTCTG<br>TGCCGCCCGC<br>TGTCGCTGAC | GCGCCTACTT GCACTATTCG GCACCCGCCA CCGGGCCCGG GGCGGCTACT GCAGCGCACA | CGCAAGACCC<br>ACAACGGCAC<br>GCATCATGGT<br>CAGCCGCGTT<br>TCGTGGCCGA<br>CCGATTTCAC | CCGCCAATTG CTTCGATGAC GACCAGCGAC CCTGTCCTCC | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>521 |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|

# 2. INFORMATION FOR SEQ ID NO:264.

# : SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 739 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- D. Topology: linear
- (11 MOLECULE TYPE: GDNA
- (X1 SEQUENCE DESCRIPTION, SEQ ID NO:264:

| 2000000000      |             |                        |                                             |             |            |       |
|-----------------|-------------|------------------------|---------------------------------------------|-------------|------------|-------|
|                 | - ACCGCCCTT | GGGGGCCCA              | 3000000000                                  |             |            |       |
| ACCCGTGGCC      | TTTAGTGGGG  | 300000-                |                                             | - LAGACCCC  | SUCAAAACCA | 50    |
| TEGGEATETS      | 33.000.00   | 39000000000            | 01556                                       | CGTCGTCGTG  | TTGGGGGGCA |       |
| : 66666         |             | . 30 c c - 1440 C      | CGGTACAGCC                                  | GUCTUAGOOG  |            |       |
| AUCUCE - AU     |             | ITGAACTCCT             | 31311                                       | 30360ma     | OCOGMO!    | 180   |
| CONTIGERACE     | GGGCAAACCT  |                        | -AGAAGTCAA                                  | -odestawa   | GGCTCGTCGT | 24.0  |
| CGGACTGCCA      | 3000000     | TITI 302 000           | - COAC - C                                  | GCCGGTGACG  | STGTCCCTGC | 300   |
| 1000001         | 33337777    | · ^ - 4 - 4 - 440      | AGGATCCGGT                                  | TTATGCCGGC  | : 000000   |       |
| CCATCAA         | -9005A.     | TCATCCGAGC             | CGGGCGACAA                                  |             | TCCCTCLLCC | 560   |
| AAGCCGTCGT      | CGCCTTTCCC  | ACCGCCGACA             |                                             | ACUAACNT    | IGGGTGAACC | 420   |
| ACAMATGGAA      | GAACTGCGCA  | 2225                   | . And C C C G C C C C C C C C C C C C C C C | STTCGTGCAG  | ACTICGGCCG | 480   |
| 101000000000000 | T00001      | .OCANOACO J            | TCACCGTCAC                                  | GAATAAGGCC  | AAGACCTACC |       |
| SS PSGACGTT     | · GCCSMCS   | MAAGGTNJCC             | IGCCGACGAT                                  | 73 270000   | 31010      | 240   |
| WC . DC . DW    | DOGGTTGGGAA | 7777443000             | : :: : : : : : : : : : : : : : : : : : :    | CACOGIGATA  | JACACC CAM | ` ` ` |
| RUUTCAACGO      | ATGCGGGTAH  | 11.01.00               | -WALUAGOST                                  | n unauma.   | GTCGTTGTCG | 4.5   |
| TT HACAMAG      | TOAACAAGG   | 5 #4 117 <b>3</b> .103 | VI VAAGDAG 1                                | ITAGATO LIT | PROMONTOT  | • :   |
|                 |             |                        |                                             |             |            |       |

# 2 INFORMATION FOR SECTION NO. 263

- : GEQUENCE CHARACTER'S DI DO
  - A LENGTH, 69 pase pairs
  - B TYPE nucleus anid
  - FIPANDEDNESS (Single
  - 1 FREEDOT Linear

| GGCGTATGC GAGGCCGCA TEGGCCGCGC CGAAGCCGTT AACCCGGCAC TGAACGCGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (2) TVRODYO TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>6</b> 9 |
| (2) INFORMATION FOR SEQ ID NO:266:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| (i) SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| (A) LENGTH: 523 base pairs (B) TYPE: nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| (C) STRANDEDNESS: single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| (ii) MOLECULE TYPE: cDNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| (X1) SEQUENCE DESCRIPTION: SEQ ID NO:266:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| ACTGCACCCG GCAGGCGCGA CCAACGGATC GGGTCAACTA GCACTGCCGG TGGAGGCGCC'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| TENT TOO ACCOUNTABL WILLIAM CONTROL TO THE TENT TO THE | 50         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180        |
| The state of the s | 240        |
| GEOGGEGGT COGGEGATUS GTCGGGTACT GGCGCTAT ATCGGAGTGT CGGCCAATAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300        |
| The second of the control of the con | 360        |
| AGELIAC STRUCTURE AGELIAC STRUCTURE CONTROL CO | 420        |
| SCTOGGOTOG GTOGGGAAGG TGGTCGTGAC GGCACGGTCG CTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 480<br>523 |
| (2) INFORMATION FOR SEQ ID NO:267:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,          |
| i SEQUENCE CHARACTERISTICS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| A. LENGTH: 024 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| B) TYPE: nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| C: STRANDEDNESS: Single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| D) TOPOLOGY (inear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| TO MODECULE THANK TOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| X1 JEQUENCE DESCRIPTION, SEQ ID NO.267.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| TUTOGGTGT CGTCGGGGTA GGAGCGACTT CCCCGGGCGG CGCCGGCGCC AGAGCGGGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50<br>12   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13         |
| FE FEMOLE CONTROL OF THE STORY  |            |
| Conformation for the the the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| : SEQUENCE CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| A DENOTH: 521 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| B TYPE: nucleic acid C STRANDEDMEGG single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| C Dipology linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| William Total Control of the Control |            |

| TGAACTGCTC TTCGCCATAG CGGGCCTTGG TCTCGGGCCTT GTCCAAACCC TGCAGCGGCGCCGTAGTGGGCG TTCGTTGAGC CGCCAGCTAC GCCGCACGGG AATCCAGAGC CGATCGGCGCCTGGCCAAACGC CAGATGCGCG GTGGTGATCG CGCGCGCAG CAACGAGGTG TAGAGCACGT CGCGGCAATAG GTCGTGTTCC GCGAGCAGCT CGCCGCTTTCG AACCGCCTCT GCCTGGCCCTT CGCCGGCACTC CAGTCGCCCT TGAACAGGTT GAGGGCATTC CAGTCGCTCT CAGTCGCAACACCC CAGCAACACCC CAGCAAAATG CCCGAATTCT CCCTCGGCACGC CGCGCAGCT TCGCCCAGCCG TCGCCCAGCT TCGCCCAGCCG CTCCCGCAACCCC CCCGAATTCT CCCTCGGCCACCCCT AACCGCCCGT TCGCCCAGCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180<br>240<br>300<br>360                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| (1) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 426 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  11. MOLECULE TYPE: SDNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |
| SEQUENCE DESCRIPTION: SEQ ID NO.269:  OTICIASGUTO ATTOGOTUSA ACAAAGCCAC COSGCOSTAC AGOSGACGOC COCATTOOTT  STOSTSATAG TOGOGGTACA GOTGGGCATO GGGCOCTGGA CGAACCTOCS COCAGGGGCA  GOGAACCAGO COCAGGGCATO GGGCOCTGGA CGAACCTCCS CCCAGGGGCA  GOGAACCAGO COCAGGGCATO CGAACCGCC AGTCCCCCC  GOGAACCAGO COCAGGGCATO CGAACCGCC CCCAGGGCCA  GOGAACCAGO COCAGGCCA CGAACCGCC CCCAGGGCCACCCCC  GOGACGAGCCCCC CCCAGGCCCC CCCAGGCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60<br>120<br>180<br>240<br>300<br>360<br>428 |
| DEQUENCE TYPES IDNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |
| AL TEQUENCE LEARFICTION DEC 10 NO 200  COMPANIADES CONCEDENT SCANTINGES CONSCIONS OF CONSCIONAL SACTORING OF CAUGADADES CONCEDENTAL SECRETARIA CONSCIONAL CONCEDENTAL CONSCIONAL CONCEDENT | 18<br>18<br>213                              |

: REQUENCE HARACTERISTING A LENGTH STI base bases

```
(ii) MOLECULE TYPE: cDNA
```

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:271:

| AAGATCATCG | GCGCCGCTCC | TTAGCATCGC | TGCGCTCTGC | ATCGTCGCCG | GCGCGGATCA | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| CGGAGGTCCG | GCCTTGTACC | CCACTCCTCG | AACGGTCAGC | ACCACAGTCG | GGTTCTCGGG | 120 |
| AICCTTTTCG | ACCITGGCCC | GCAGACGCTG | GACATGCACG | TTCACCAGCC | TGGTATCGGC | 180 |
| TGGGTGCCGG | TAACCCCATA | CCTGTTCGAG | CAGCACATCA | CGAGTAAACA | CCTGGCGCGG | 240 |
| CTTGCGCGCC | AATGCGACCA | ACAGGTCGAA | TTCCAGCGGT | GTCAACGAGA | TCTGCTCACC | 300 |
| GTTGCGAGTG | ACCTTGTGCG | CCGGTACGTC | GATTTCTACG | TCGGCGATGG | ACAGCATOTO | 360 |
| GGCGGGTTCG | TCGTCGTTGC | GGCGCAGCCG | CGCCCGCACC | CGCGCAACCA | GCTCCTTGGG | 420 |
| CTTGAACGGC | TTCATGATGT | AGTCGTCGGC | GCCCGACTCC | AGACCCAGCA | CCACATCCAC | 480 |
| GGTGTCGGTC | TTTGCGGTGA | GCATCACGAT | CGGAACACCG | GAATCGGCGC | GCAACACCCC | 540 |
| JCACACGTCG | ATGCCGTTCA | TACCGGGGCA | A          |            |            | 571 |
|            |            |            |            |            |            | +   |

### 2) INFORMATION FOR SEQ ID NO:272:

## .: SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 93 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii MOLECULE TYPE: protein

## x1 SEQUENCE DESCRIPTION: SEQ 1D NO:200:

### I INFORMATION FOR SEC IN YOUR

- . FEQUENCE CHARACTER 10:000
  - A LENGTH OF amino acidu
  - B TYPE, amino acid
  - J STRANDEDNESS Single
  - D POPOLOGY linear
- in Molecule Type protein
- MO SECTEMBE DESCRIPTION OF THE MONEY

25

20

(2) INFORMATION FOR SEQ ID NC:274:

- (1) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 26 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:274:

Lys Pro Asp Arg Pro Ala Ala Thr Val Gly Ser Cys Thr Thr Val Arg 5 Ala Pro Cys Ser 3ln Pro Val Thr Thr Ala Ĵυ

- (2) INFORMATION FOR SEQ ID NO.275:
- i SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 20 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- D) TOPOLOGY: linear
- ii: MOLECULE TYPE: protein
- x1 SEQUENCE DESCRIPTION: SEQ ID MO:205.

Tro Pro Ala Bly Arg Pro Met His Pro Ala Pro Bly Th: Ser Ala Asp Hil Bro Pro Asn

- 2) INFORMATION FOR SEQ ID NO:206:
- 1 SEQUENCE CHARACTERISTICS
  - A LEMBTH 140 amino to do
  - B TUPE amino acid
  - C STRANDEDNESS Single
  - D TOROLOGY ...meir
- 11 MOLETILE TYPE protein
- K1 SEQUENTE DESCRIPTION SEQ IN MORE TH

Va. Lou Val Ala 71. Typ Ger Ser Ash Pro Den Ala Ash The Ala Pro Complete Procedure (1997) to Complete Edition for the Complete Procedure (1997).

| Fig. |

#### D) INFORMATION FOR SEQ ID NO:277:

- (1) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 142 amino acids
  - (B) TYPE: amino acid
  - (C' STRANDEDNESS: single
  - D TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi SEQUENCE DESCRIPTION: SEQ ID NO:277:
- Met His The Thr Leu Asn Ala The Leu Arg Ala The Phe Gly Ala Gly
- 31y Ser 31u Leu Asp Glu Leu Arg Arg Leu Ile Pro Pro Trp Val Thr 20 30
- Led Gly Ser Arg Led Ala Ala Led Pro Lys Pro Lys Arg Asp Tyr Gly 35 45
- Arg Leu Ser Pro Trp Gly Arg Leu Ala Glu Trp Arg Arg 3ln Tyr Asp
- 50 55 60 7hr Val Tie Asp Glu Leu ile Glu Ala Glu Arg Ala Asp Pro Asm Phe
- The said the deposite one are one did not any set as an entire set of the set
- Als Asp Arg Thr Asp Val Leu Ala Leu Met Leu Arg Ser Thr Tyr Asp 35
- Asp Gly Ser lie Met Ser Arg Lys Asp Tie Gly Asp Glu Leu Deu Thr 100 - 100
- and Leu Ala Ala Bly His Blu Thr Thr Ala Ala Thr Trp Ala Bly Arg
- er Nan Lig Ger Throfly The er the Waller Argues Fr
  - 2 INFORMATION FOR REQ IS NO 2014
  - . SEQUENCE CHARACTERISTICS
  - A LENGTH: 163 amino acids
  - B TYPE: amino acid
  - STPANDEDNESS single
  - T TOPOLOGY linear

Val Leu Val Ala Gly Cys Ser Ser Asn Pro Leu Ala Asn Phe Ala Pro 10 15 Gly Tyr Pro Pro Thr Ile Glu Pro Ala Gln Pro Ala Val Ser Pro Pro 20 25 Thr Ser Gln Asp Pro Ala Gly Ala Val Arg Pro Leu Ser Gly His Pro 4.0 Arg Ala Ala Leu Phe Asp Asn Gly Thr Arg Gln Leu Val Ala Leu Arg **5**5 60 Pro Gly Ala Asp Ser Ala Ala Pro Ala Ser Ile Met Val Phe Asp Asp 70 75 Val His Val Ala Pro Arg Val Ile Phe Leu Pro Gly Pro Ala Ala Ala 85 90 Leu Thr Ser Asp Asp His Gly Thr Ala Phe Leu Ala Ala Arg Gly Gly 100 105 110 Tyr Phe Val Ala Asp Leu Ser Ser Gly His Thr Ala Arg Val Asn Val 120 125 Ala Asp Ala Ala His Thr Asp Phe Thr Ala Ile Ala Arg Arg Ser Asp 140 . 35 Gly Lys Leu Val Leu Gly Ser Ala Asp Gly Ala Val Tyr Thr Leu Ala 150 155 Lys Asn Pro

#### (2) INFORMATION FOR SEQ ID NO:279:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 240 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS, single
  - (D) TOPOLOGY: linear
- 11 MOLECULE TYPE, protein
- MIL SEQUENCE DESCRIPTION, SEC 15 NO. 279:

#### (2) INFORMATION FOR SEQ ID NO:280:

- i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 22 amino acids
- -B) TYPE: amino acid
- C: STRANDEDNESS: single
- D) TOPOLOGY: " ----
- ii MOLECULE TYPE: protein
- Exi SEQUENCE DESCRIPTION: SEQ ID NO:280:

Asp Val Val Glu Ala Ala Ile Ala Arg Ala Glu Ala Val Asn Pro Ala i 5 10 15 Leu Asn Ala Leu Ala Tyr 20

- 2 INFORMATION FOR SEQ ID NO:291:
- : SEQUENCE CHARACTERISTICS
  - A. LENGTH: 174 amino acids
  - B: TYPE: amino acid
  - C STRANDEDNESS: Single
  - D' TOPOLOGY .inear
- ii MOLECULE TYPE, protein
- x1 SEQUENCE DESCRIPTION: SEQ ID NO:181:

115 125 120 Trp Asp Ala Gln Ala Val Thr Arg Arg Ala Leu Gly Glu Gln Pro Gln 130 135 140 Val Thr Glu Leu Leu Pro Phe Gly Arg Pro Gln Leu Ala Gly Gly Pro 145 150 155 Leu Gly Ser Val Ala Lys Val Val Val Thr Ala Arg Ser Leu 170

#### (2) INFORMATION FOR SEQ ID NO:282:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 61 amino acids
  - (B) TYPE: amino acid
  - C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- :: MOLECULE TYPE: protein
- X: SEQUENCE DESCRIPTION: SEQ ID NO:282:
- Val Gly Val Val Gly Val Gly Ala Thr Ser Pro Ala Gly Ala Gly Ala 10 Gly Ala Gly Ser Ala Gly Thr Gly Ala Gly Ala Gly Gly Gly Ala Thr 20 25 30 Lys Gly Arg Ile Asp Ser Ala Ser Ala Leu Ala Ala Pro Leu Ser Thr 35 **4**0 **4**5 3ly Leu Leu Ala Val Pro Ser His Thr Thr Ash Gln Arg 50 55 50
  - 2: INFORMATION FOR SEC ID NC:283:
  - : SEQUENCE THARACTERICTICS.
    - A. LENGTH: 133 amino acids

    - B: TYPE: amino acid
      .: STRANDEDNESS: single
    - D: TOPOLOGY: linear
  - 11 MOLECULE TYPE: protein
  - MI SEQUENCE DESCRIPTION DESCRIPTION DESCRIPTION
- Ref. sua Apri This II. Der Lett Wall ber New Nicht Hill Nicht Juli der Nor
- our won Ala Del Wan Deu Phe Thr Bly Trp Val Aun Mac Div Dem Thr 25
- ago lys Sly Blo Ala Bl. Ala Fal Arg Ser Sly Dio Deo Tie Ala Bir 40 4.5
- His Asp New New Pro Asp Mal New Myn Phr Ser New New Arg Arg Ala 5 9
- 1 # Thr Thr Ala His Des A.a Des App Jer Ala App Arg Des Trp 11#
- $\label{eq:continuous_problem} |\mathcal{T}_{ij}\rangle = |\mathcal{T}_{ij}\rangle |\mathcal{T}_{ij}\rangle + |\mathcal{T}_{ij}\rangle |\mathcal{T}_{ij}\rangle$

.

Phe Met Ala Trp Arg Arg Ser Tyr Asp Thr Pro Pro Pro Pro Ile Glu 115 120 125 Arg Gly Ser Gln Phe

- (2) INFORMATION FOR SEQ ID NO:284:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 63 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:284:

 Pro
 31y
 Ser
 Phe
 Ala
 Arg
 Thr
 Lys
 Pro
 Pro
 31y
 Arg
 Thr
 Ala
 Asp
 Ala

 Pro
 Ile
 Arg
 Cys
 Arg
 Asp
 Ser
 Arg
 Gly
 Thr
 Ala
 Gly
 His
 Arg
 Ala
 Leu

 Asp
 Glu
 Pro
 Pro
 Pro
 Arg
 Gly
 Ser
 Glu
 Pro
 Ala
 Arg
 Arg
 Arg
 Arg

 Asp
 Val
 Arg
 Thr
 Val
 His
 Asp
 Ser
 Leu
 Ala
 Ala
 Arg
 Arg
 Val

- (2) INFORMATION FOR SEQ ID NO:285:
- (i) SEQUENCE CHARACTERISTICS:
  - .A: LENGTH: 70 amino acids
  - B, TYPE: amino acid
  - C' STRANDEDNESS: single
  - D TOPOLOGY: linear
- ii MOLECULE TYPE: protein
- MI SEQUENCE DESCRIPTION SEQ ID NO-235:

L INFORMATION FOR SWI II NO 296

| (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (ii) MOLECULE TYPE protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| (X1) SEQUENCE DESCRIPTION: SEQ ID NO:286:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Asp His Arg Arg Ser Leu Ala Ser Leu Arg Ser Ala Ser Ser Pro  1 5 10 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| Ala Arg Ile Thr Glu Val Arg Pro Cys Thr Pro Leu Leu Glu Arg Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Ala Pro Gln Ser Gly Ser Arg Asp Pro Phe Arg Pro Trp Pro Ala Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Ala Gly His Ala Arg Ser Pro Ala Trp Tyr Arg Leu Gly Ala Gly Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Pro Ile Pro Val Arg Ala Ala His His Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 65<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| 2. INFORMATION FOR SEQ ID NO.237.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| A: SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| (A) LENGTH: 174 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| (B) TYPE: nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| (C) STRANDEDNESS: single (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| (b) ToPologi: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| (11) MOLECULE TYPE: cDNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| (X1) SEQUENCE DESCRIPTION: SEQ ID NO:287:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| LOGGREGATA TACCOTGAAT TGAAGGGAGG CGCTGGTCAT GGGCCGATTC TATCCGTGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| SAMOGGIAGACGGCCC GGAGGCCAC COGGCCACC CALARTICATOR CACACAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50  |
| A TANK COULD A LUANALUIGI A TANKA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CC. |
| 2 INFORMATION FOR SEQ ID NO 188.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| SEQUENCE CHARACTERISTICS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| A. LENGTH: :04 base pairs  B: TYPE nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| C STRAMBEDNESS: Single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| 1 TOPOLOGY Inear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| I. MOLECULE TYPE IDMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| MI DEFINER REPUBLICAN RECOLUTION 986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| TOGCNAACGG GGTGACGTTU CUTCOGGTGG CGCTAJAJAG TTUGTCGCAC FTTUCUGGTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| THE TOTAL ACTION WITH THE TOTAL PROPERTY OF  | 5   |
| The state of the s |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | di. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •   |
| TOGGCGAAA D MAGMAGAGAN GAGCMGACT GAGTGGCGCG MAGCAGAGA MATACAGAGAM 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |

```
:1 SEQUENCE CHARACTERISTICS:
         (A) LENGTH: 134 amino acids
         (B) TYPE: amino acid
         (C) STRANDEDNESS: single
         (D) TOPOLOGY: linear
       (ii) MOLECULE TYPE: protein
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:289:
 Ala Asn Gly Val Thr Phe Arg Pro Val Ala Leu Glu Ser Leu Ser His
                                   10
 Phe Pro Val Thr Val Ala Ala His Arg Ser Thr Gly Glu Leu Thr Leu
            2.0
                                25
                                         30
 Leu Val Glu Val Leu Asp Gly Ala Leu Gly Thr Met Ala Pro Glu Ser
                            40
                                        45
 Leu Gly Arg Arg Val Leu Ala Val Leu Gln Arg Leu Val Ser Arg Trp
                                        50
Asp Arg Pro Leu Arg Asp Val Asp Ile Leu Leu Asp Gly Glu His Asp
                    7.0
                                       75
Pro Thr Ala Pro Gly Leu Pro Asp Val Thr Thr Ser Ala Pro Ala Val
                                   90
His Thr Arg Phe Ala Glu Ile Ala Ala Ala Gln Pro Asp Ser Val Ala
                              105
Val Ger Trp Ala Asp Gly Gln Leu Thr Tyr Arg Glu Leu Asp Ala Leu
                           100
Ala Asp Arg Leu Ala Thr
    130
          2 INFORMATION FOR SEQ ID NG:296:
       1 SEQUENCE CHARACTERISTICS
         A LENGTH: 326 base pairs
         B TYPE: nucleic acid
         D' STRANDEDNESS, Single
         D TOPOLOGY: linear
       11 MOLECULE TYPE, SDNA
      KI SEQUENCE DESCRIPTION SEQ ID MORDAY
CONTRODACIO STACHAMING STOTTCTGGG TOGGTTGTGG SGGGGGGTAC PACHAGAS
"TAGAAGA" TECCHAGGCC FTCGCCCGAGC TGCCCGGGT TGCCCGGGGTG AAATAUTTG;
FIGURAGES TERRESTANCE FORMACION AUTOROSCION PROGRESSO AACGAGTTOU
TOTTOCAGIA BUTGGCACAA CAGGCCTTCC AGACCCTGGA CGGTTTCTTC GAGGGTGTGG
ASACHATISA DOSCAAGATU STISICACOI SCOOGCACIS SIIICAACACO AICIGGAAGU 500
AATATOSGIA GETGGGGGGC AACTACACCG TGCTGCACGA CACGCAGCTG CTCAATCGGT 360
TESTERSESA CAASAGGETE STUCCTGTEA STEESGTTTE TEAGGACATE ACETACEAUS
                                                                420
ACCCCTCCTA INTEGGTOSS CACAACAAG TOTACGAGGO ACCACGGGAG OTGATOGGTS
```

INFORMATT NOTICE (E. ) Whenever

TRECOGRESS CARTTAGES GAJATIONS GCCATGCCGA ICGCAG

```
(B) TYPE, nucleic acid
           (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: CDNA
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:291:
  CTCGCCGCCG TGATCTGGCC GGCGAACTTC GTCAGTGCAT CCAGACCCCA ACGATCATCG
 ATCAGGCCGA TGCCCATGAT CACCGCACCG GCCACCAGCA CCGCGGGCAT GCCGGTGGAA
                                                                      60
 TAGACGAACC CCCGGGTGAG TGCCGGAAGC TGGGAGGCAA GAAAGACGGC GCCGACAATG
                                                                      120
 CCCAGGAACA TCGCCAACCC ACCCATCCGA GGGGTAGGCG TGACGTGCAC ATCTCGCTCC
                                                                      180
 CGCGGGTAGG CGACGGCTCC CAGGCGACTG GCCAGCATCC GCACCGGACC GGTCGCAAAA
                                                                      240
 TAGGTGATGA TCGCCGCGGT CAGCCCGACC AGCGCAAGCT CACGCAGCGG GACACCGGCG
                                                                      30C
 CCGCGATAGG ACAGGGCGAG CAAGCCACCG GCAACGCCGG CCACATCGCT GGACACCTCG
                                                                      360
 AGACCGTACT GCACCAACCT GAAGAGCTGA ACACTCGCCG AACGTGCAAC AGCTGCGAAC
                                                                      420
                                                                      180
                                                                      187
           2. INFORMATION FOR SEQ ID NO:292:
       (1) SEQUENCE CHARACTERISTICS:
         (A LENGTH: 528 base pairs
         (B) TYPE: nucleic acid
         .C' STRAMDEDNESS: single
         (D) TOPOLOGY: linear
       ii: MOLECULE TYPE: cDNA
       .x1 SEQUENCE DESCRIPTION SEQ ID NO:292:
ACGAAGCGCS AGAATATGAG CCGGGGCAAC CCGGGCATGTA CGAGCTTGAG TTCCCGGGGC
PTOAGCTGTC GTCGTCCGAC GGCCGTGGTC CGGTGTTGGT GCACGCTTTG GAAGGTTTCT
TEGAUGUEGG COATBUGATO EGGETGGUEG ECGCCCACCT CAAGGUEGGE ETGGACACAG
                                                                   120
AGETGGTCGC GTCCTTCGCG ATCGATGAAC TACTGGACTA SCGCTCGCGG SGGCCATTAA
                                                                     130
TGACTTTCAA GACCGATCAT TTCACCCACT CCGATGATCC TGAGCTAAGC CTGTATGCGC
                                                                     240
TGCGCGACAG CATCGGCACC CCATTTCTGC TGCTGGCGGG TTTGGAGGCG JACCTGAAGT
                                                                     300
GGGAGCGGTT CATCACCGCC STCCGATTGC TGCCCGAGGCG CCTGGGTGTA CGGCAGAACC
ATTERRECTING SCACCOTTOES GATGGEOGSTT SCHOOLOGG GACCGATGAS GATGACCGCT
                                                                    420
PATTEGRACA ACCOGGAGET ATGTGGGATT TYGNAGGGTT GGATGTGG
                                                                    480
                                                                    328
         L INFORMATION FOR SET OF MY 23
```

TEQUENCE THARACTERISTING

- A LENGTH 510 page pairs
- F TYPE: nucleus assu
- " STRANDEDNESS Single
- n Topology: linear
- 1. MOLECULE TYPE COMA

received a second of the

AL SECTEMBE DESCRIPTION OF LANDLY

| CGCCGTTGCC GCCGCTG CCCTTGACCC TTTGGCG AAGCCTCGCC TGCCGCC CCGACGAGAT GATGGGC CGCGGTCACG CATACGC CCAGATCGAG CAGCCGTC GGCGAGCGCA ATATCGGC UGGTTGATGC | GTG TEGATEGESG GCA GEEGECEAAC ACC ACCGGAGEET CGA EGGTGEGEEG GTG CCCAGGGACT | CGTCGATGGA TGTGTCGCGG GCGGCCGTCT CCGCTTCGGA GGGTTAUCCC | TCCGCCGACC<br>CTCCTGCGAT<br>GGGGGAGGCC<br>GATTTGCAGG | ACGACGTGCG<br>TTGGCCCCGG<br>AGCGCGGGTT<br>CTGCGTTGCA | 240<br>300<br>360<br>420<br>480<br>540<br>600 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|

### (2) INFORMATION FOR SEQ ID NO:294:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 164 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- i: MOLECULE TYPE: protein

# (X1) SEQUENCE DESCRIPTION: SEQ ID NO:294:

|     |      |         | Tyr        |      |      |      |       |           |     |     |     |     |         |      |     |
|-----|------|---------|------------|------|------|------|-------|-----------|-----|-----|-----|-----|---------|------|-----|
|     |      |         | Ala<br>20  |      |      | Thr  | Thr   | Lys<br>as | Ala | Va! | Ala |     | Leu     | Phe  |     |
|     |      |         | 7al        |      |      |      | 4 (1) |           |     |     |     |     | Thr     |      |     |
|     |      |         | Ala        |      |      | 2.7  |       |           |     |     | - 0 | Phe |         |      |     |
|     |      |         | Ala        |      |      |      |       |           |     |     |     |     |         |      |     |
|     |      |         | ard        |      |      |      |       |           |     | Pro | ніз |     |         |      | Thr |
|     |      |         | 31u<br>100 |      |      |      | Leu   | 5.v       | āla | Asn |     |     |         | Leu  |     |
|     |      |         | Leu        |      |      |      | Leu   | ∵a.       | Ard | Asp |     | Arg | Leu     |      |     |
|     |      |         | Val        |      |      |      |       |           |     |     | ASD | Pro |         |      |     |
|     |      |         | Asn.       | 1975 | Val. | 7,11 | 71:   |           | ۲1  | Ard | 31. | e   | · · · · | 10.5 |     |
| V V | 1. 1 | Name of | 71.1       |      |      |      |       |           |     | *   |     |     |         |      | . b |

# U INFORMATION FOR SEQ 12 NO.295

### : SEQUENCE CHARACTERISTICS

- A LENGTH, 161 amino acido
- F TYPE amino acid
  TYPANDEDNECT Single
  Consulate linear

Arg Arg Arg Asp Leu Ala Sly Glu Leu Arg Gln Cys Ile Gln Thr Pro 5 10 15 Thr Ile Ile Asp Gln Ala Asp Ala His Asp His Arg Thr Gly His 3ln 2.0 25 30 His Arg Gly His Ala Gly Gly Ile Asp Glu Pro Pro Gly Glu Cys Arg 3.5 40 45 Lys Leu Gly Gly Lys Lyr Asp Gly Ala Asp Asn Ala Gln Glu His Arg 55 60 Gln Pro Thr His Pro Arg Gly Arg Arg Asp Val His Ile Ser Leu Pro 70 75 80 Arg Val Gly Asp Gly Ser Gln Ala Thr Gly Gln His Pro His Arg Thr 85 90 95 Gly Arg Lys Ile Gly Asp Asp Arg Arg Gly Gln Pro Asp Gln Arg Lys 105 Leu Thr Gln Arg Asp Thr Gly Ala Ala Ile Gly Gln Gly Glu Gln Ala 120 Thr Glv Asn Ala Tly His Ilo Ala Gly his Leu Glu Thr Val Leu His 130 135 140 Gln Pro Glu Glu Leu Asn Thr Arg Arg Thr Cys Asn Ser Cys Glu Gln 150 155 Leu

### 12/ INFORMATION FOR SEQ ID NO:096:

- 1) SEQUENCE CHARACTERISTICS:
- (A. LENGTH: 175 amino acids
- (B) TYPE: amino acid
- (C. STRANDEDNESS: single
- D: TOPOLOGY: linear
- 11 MOLECULE TYPE: protein
- MI. SEQUENCE DESCRIPTION: SEC ID NO:296:

145 150 155 160
Phe Gin Gln Pro Gly Ala Ile Ser Asp Phe Gin Pro Phe Asp Leu
165 170 175

#### (2) INFORMATION FOR SEQ ID NO:297:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 178 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: protein

#### xi: SEQUENCE DESCRIPTION: SEQ ID NO:297:

Lys Pro Val Lys Glu Pro Val Pro Ala Leu Pro Pro Val Pro Pro Thr 1.5 1.0 Pro Ala Leu Pro Pro Leu Pro Pro Leu Pro Pro Val Pro Gly Pbe Pro 20 25 Thr Val Pro Pro Pro Gly Ser Met Ala Pro Leu Phe Arg Pro Phe Ser 35 40 Pro Ala Pro Pro Ser Pro Ala Leu Pro Pro Ser Pro Pro Leu Pro Pro 50 55 Leu Val Gly Val Ala Ala Trp Leu Thr Tyr Cys Ser Thr Gly Pro Ala 5.5 70 75 30 leu Asp Pro Leu Ala Val Ser Ile Ala Ala Ser Met Asp Pro Pro Thr 95 90 Thr Thr Cys Glu Ala Ser Pro Ala Ala Ala Ala Ala Gln Leu Cys Arg 100 105 113 Bly Ser Dys Asp Leu Ala Pro Ala Asp Blu Met Met Gly Thr Thr Bly 115 120 125 Ria Dyo Bly Arg Deu Bly Glo Ala Ser Ala Bly Ger Ard Ser Ard Hid 130 135 Thr Arg Arg Cys Ala Ala Ala Ser Glu ile Cyc Ard Leu Arg Cyc Thr 145 155 140 Arg Ber Ber Jer Jly Mal Pro Arg Asp Trp Mal Ber Pro Lew Ala Pro 195 195 175 Pro Leu

### I INFORMATI NOPOS NO 11 NO 1244

SEQUENCE PHAPACTERISTICS

- A LENGTH FD1 base pairs
- P TYPE mucleum acid
- " STRANDEDNESS single
- D TOPOLOGY linear

.. MOLECULE TYPE Prints ONA

| ATTTCAACCC | ANGCAGCTAC | CACACGGGGA | CTCGGAAACA | CCGGCGATTT | TACACCGGCS | 180          |
|------------|------------|------------|------------|------------|------------|--------------|
| CCTTCATCTC | CGGCAGCTAC | AGCAACGGGT | TITGTGGAGT | GGAAATTATO | AGGGCTCATT | 240          |
| GGNTGCACCC | GGSCTTRCGA | ATCCCTCGKG | CCAATTCAAC | TCCTCNACAA | GCTTGCGGCC | 300          |
| JCACTCSAGC | CCGGGTGAAT | GATTGAGTTT | AACCGCTNAN | CAATAACTAG | CATAACCCCT | 360          |
| TKGGGCCTCT | AAACGGGTCT | TGAAGGGTTT | TTTGCTGAAA | GGANGAACTA | TATCCGGATA | 420          |
| ACTGGCGTAN | TACGAAAAGC | CGCACCGATC | GCCTTCCCAA | CAGTTGCGCA | CCKGAATGGC | 480          |
| AATGGACCNC | CCTKTTACCG | GSCATTAACN | CGGGGGTGTN | GGKGTTACCC | CCACGTNACC | 540          |
| GCTACCTTGC | CANNESCCTN | RSGCCGTCTT | TCSTTTCTTC | CTTCCTTCTC | CCMCTTCGCC | 600          |
| GGTTCCCNTC | AGCTCTAAAT | CGGGGNNCCC | TTTMGGGTTC | CAATTATTGC | TTACNGSCCC | 660          |
| CCACCCCAAA | AAYTNATTNG | GGTTAATGTC | CCTTMTTGGG | CNTCCCCCTA | WINANNGTII | 7 <b>2</b> 0 |
| TCCCCCTINA | CTTTGRSTCC | CTTCYTTATW | NTGAMNCTNT | TTCCACYGGA | AAAMNCTCCA | 780          |
| CCNTTYSSGS | TITCCTTTGA | WTTATMRGGR | AATTSCAATY | CCGCYTTKGG | TIMAANTTAA | 840          |
| CYTATITCNA | ATTITCCCGM | TTTTMMNATR | TINSNCKCGM | HNCTCCNRKA | SSGNTTTCCT | 900          |
| CCCCCYTTSS | GKTYCCCCRN | G          |            |            |            | 921          |
|            |            |            |            |            |            |              |

### (2) INFORMATION FOR SEQ ID NC:299:

- SEQUENCE CHARACTERISTICS: (A) LENGTH: 1082 base pairs
  - .B; TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D. TOPOLOGY, linear
- (11) MCLECULE TYPE: Genomic DNA
- x1: SEQUENCE DESCRIPTION: SEQ ID MG:299:

| AATTCGGCAC             | GAGATANGGG                            | 2323,000000         | Toggorage      |                                         |                         |         |
|------------------------|---------------------------------------|---------------------|----------------|-----------------------------------------|-------------------------|---------|
| 10000000               | 1010012121010                         | CUCACCOGGG          | F110304G103    | GIGGGACCGT                              | CGCCAGCACC              | 50      |
| とっていることに               | ACAGCACCAC                            | GGTGGCGTCC          | ANGCAGAGES     | COGCOGTGAT                              | GGCGGCCGAG              | 120     |
| ACGGCRAACA             | CCTGCCGTAG                            | CAGTCGGTGC          | GACTCEGCGC     | TEGETEGANE                              |                         |         |
| 1000000000             | CGAACANGCC                            | 777077077           | 363667833636   |                                         | PATGGCCG CG             | 180     |
|                        |                                       | 1100100700          | ACAGCTTAGC     | CAGCANCCAA                              | ACCGCACCIA              | 4       |
| JAAACCCACA             | CGCCCCCCCC                            | COCGGANACC          | TGCGCCATCG     | KOTGOTGGGG                              | IGANATOCIC              |         |
| · ca a capera campa -  | 23 1/23 7/23 7/2                      | 2.77000000          | 2000000000000  |                                         |                         | 3.50    |
| LJA . CUCLIA           | CHARLY WORK                           | = = 13000GAA        | 3GCCG4ICG4T    | GRETTECGGGG                             | AGCCGCGTGG              | ه د     |
| GCGGGGCAAC             | CCCAAACCCA                            | NGAACACGGC          | 22,002,200,000 | ANCGCAACAG                              | CAATTGTCAA              |         |
| 2000000000             | 100001010                             | 1.3003.0000         | AMOUNDIALC     |                                         | -AM-LOLUMA              | الشائد  |
| JOHNAL JUST            |                                       | AGGGATCTCC          | COGCOCCACA     | COGTOGGMTC                              | TGCAGSGCSA              | 48:     |
| 100 <b>001110001</b> 1 | JGGCGGNCAC                            | مانا کا کا اسلامیات | TOGSTON MOSTN  | 212112                                  | CTTCCCCCCC              |         |
| Translagy              |                                       | - TANTCAAAGA        | AKULADALUNA    | CAGKCTAGGT                              | TTTCGGCCGA              | 540     |
| TATESAAGGN             | JOCAACGGNT                            | TTAAAGCGGGC         | JAAAAAASTC     | TOCCANTOCA                              | TARABETORO              |         |
| IGGGGANCCI             | JOCGTGSCMM                            |                     | · <del>-</del> |                                         | AAAATCAGC               | 50,     |
|                        |                                       | NGTCYCGGKC          | ATTMITTCAAC    | MGGTTTNACG                              | GCGGKTGCNG              | ဗ်ဗ် ပိ |
| GCCHACTKGC             | CAAAMTTAAG                            | KTNOGGGNTY          | 200000000      | ACCGGCNNTH                              | 1100000 <del>0000</del> |         |
|                        | · · · · · · · · · · · · · · · · · · · |                     | JagggggTA      | ACCOUNTANTA                             | GGCCCCTTAA              | ***     |
| MANACCUGINC            | FILLCTKGAT                            | TAMMACCOOM          | 70000000000    | 133KTGKTCC                              | PANGNTYAAC              | 1.3     |
| AMORMODOSS             | MNGGGETGGS                            | 22.2.200000000000   | 221122222      | Minus and Colum                         |                         |         |
| 22222222               |                                       | SAMOULL             | .JNG30077)     | MINGITESTAT                             | AWMCCCCCCCC             | 4       |
| AAACCSGEYG             | NGKTGGCETY                            | SSSMMAGGAN          | MAGINTETT      | ***********                             | POVPAAWGKYM             |         |
| 200000000000000        |                                       | *************       |                | CHAAGGCCAL                              | TOPMANGAT               | • :     |
| LLIGGGAAW              | - HUARLI                              | JAMANA TOTA         | TTMM930cm      | TTYCKRTYN                               | URNGGGAACC              | • • •   |
| 3/10/2012              | WITTEN DE                             | GOTTOGGASMN         |                | 222222222222222222222222222222222222222 |                         |         |
|                        |                                       |                     | . MATCHETTE    | 11111103330                             | STOCMGGSNC              | 1.00    |
| 3GGTHNANAN             | AAASATTTM 1                           | TYTHINANES          | TITTE COSTT    | JUYMGRENRE                              | BMGAACCCGR              |         |
| 3.5                    |                                       |                     |                |                                         | SHOMMCSSOK              | 1087    |
|                        |                                       |                     |                |                                         |                         | 1080    |
|                        |                                       |                     |                |                                         |                         |         |

### 2 INFORMATION FOR SEQ ID NO.322

- . SEQUENTO THAPAUTEPOUT CO
- A LENGTH KAL DARP DALES

```
ii MOLECULE TYPE: Genomic DNA
```

| (X1) SEQUENCE | DESCRIPTION: | SEQ | ID | NO:300: |  |
|---------------|--------------|-----|----|---------|--|
|---------------|--------------|-----|----|---------|--|

| mar maga-   |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IGAICGCG    | CTGAAGCCGG                                                                                                                                                                                                                                                                | TAGCGCGGGT                                                                                                                                                                                                                                                                                   | GGCTCGGGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GTTTGCGAAC                                                                                                                                                                                                                                                | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ANGTGGTC    | TCGGTAGGCG                                                                                                                                                                                                                                                                | GTGTCCANAA                                                                                                                                                                                                                                                                                   | CGGTGGCGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GTGCCGCCG                                                                                                                                                                                                                                                 | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CGGCCGTA    | GTGCACGTCG                                                                                                                                                                                                                                                                | GCGGGCGTGT                                                                                                                                                                                                                                                                                   | GCAGTCCGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GCCGGAATCC                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TTGTACCA (  | GCCGAAGAAC                                                                                                                                                                                                                                                                | CGGTCGCAGT                                                                                                                                                                                                                                                                                   | GCACCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SCCOGNATGC                                                                                                                                                                                                                                                | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TTCGGGAA    | ATCGGGCCGG                                                                                                                                                                                                                                                                | TACTOCARGE                                                                                                                                                                                                                                                                                   | TOTAL COLOR                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CGCCTCGATC                                                                                                                                                                                                                                                | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TOOTSOOTS . |                                                                                                                                                                                                                                                                           | TACTIGAAGG                                                                                                                                                                                                                                                                                   | TCTYGAACTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GGCCTCAGAC                                                                                                                                                                                                                                                | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IGCTGGTG '  | TGCGGGCGTG                                                                                                                                                                                                                                                                | AGTGCGACTT                                                                                                                                                                                                                                                                                   | GGTGACACCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AAGTCGGCCA                                                                                                                                                                                                                                                | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CCGGTTTG (  | GAACTCATCC                                                                                                                                                                                                                                                                | ACAACCCCCG                                                                                                                                                                                                                                                                                   | TCCGCGTCMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GGTCACTTGT                                                                                                                                                                                                                                                | 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                           | TGCCGAYCAN                                                                                                                                                                                                                                                                                   | KCCGCTCGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cy y y y Compace                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GCCNCCAT r  | מאר מכת א א מ                                                                                                                                                                                                                                                             | ) MCTTT COOR                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHANACITES                                                                                                                                                                                                                                                | 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                              | ANAAAANATY                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAAAGAYCAC                                                                                                                                                                                                                                                | 540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                              | CYYTGKKNAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACCCCTNCCA                                                                                                                                                                                                                                                | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CKCCAANA R  | RCYKGGGGGC                                                                                                                                                                                                                                                                | CCCNCCAACC                                                                                                                                                                                                                                                                                   | CCCCKCAAVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WELL & COLUMN 2 2                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WMMNIACO O  | MDICCCCCCV                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MIAMIIIAAA                                                                                                                                                                                                                                                | 560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| manace c    | TAINGGGGCC!                                                                                                                                                                                                                                                               | AAMCGTYYNR                                                                                                                                                                                                                                                                                   | AGGTTTTSCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NAAAGAAASA                                                                                                                                                                                                                                                | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| INTSTACE A  | AAAASCCCK                                                                                                                                                                                                                                                                 | CCMMACCCARC                                                                                                                                                                                                                                                                                  | CRASATTOSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOTSAAWKSA                                                                                                                                                                                                                                                | 790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                              | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GCCNASCCN                                                                                                                                                                                                                                                 | 3 ♣ ≎                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | TOUGNETES                                                                                                                                                                                                                                                                 | CCAMCCYANC :                                                                                                                                                                                                                                                                                 | MGGCCCCYTM                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GKKCCCWKNT                                                                                                                                                                                                                                                | 30 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NNNGGGG W   | GACCCTNGG                                                                                                                                                                                                                                                                 | CCCCMKRRGM :                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                              | IMITOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MKKDNUSTION                                                                                                                                                                                                                                               | 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | CC14C1/C1C41                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           | 990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | ANGIGGTC CGGCCGTA TTGTACCA TTCGGGAA TGCTGGTG CCGGTTTG CCGCTAT CCGCATA CCCCATA CCCCCATA CCCCCATA CCCCCATA CCCCCCCC | ANGIGGTO TOGGTAGGCG CGGCCGTA GTGCACGTCG TTGTACCA GCCGAAGAAC TTCGGGAA ATCGGGCCGG TGCTGGTG TGCGGGCGTG CCGGTTTG GAACTCATCC CNYTGGGC GGCAAGGGTT CCNCCCAAAC LTANCTYC CCYTTTGSTY EKCCAANA RCYKGGGGCC WMMNACC CNNGGGSCCY WTSTACC AAAAASCCCK GCIWNNC CGGCGKKKT CTCCCCM CTCCGNKTCC NNNGGGG WGACCCTNGG | ANGIGGTE TEGGTAGGEG GTGTCCANAA CGGCCGTA GTGCACGTCG GCGGGCGTGT TTGTACCA GCCGAAGAAC CGGTCGCAGT TTCGGGAA ATCGGGCGG TACTTGAAGG TGCTGGTG TGCGGGCGTG AGTGCGACTT CCGGTTTG GAACTCATCC ACAACCCCCG TYTGGGC GGCAAGGGTT TGCCGAYCAN GCNCCAA CANCOCCAAAC AMGTTACGGG ATANCTYC CCYTTTGSTY GGGCCCCCCN CKCCAANA RCYKGGGGCC CCNCCAACC WMMNACC CNNGGGSCCY AAMCGTYYNR CNTSTACC AAAAASCCCK CCNWTCCTTC GCIWNNC CSGCGGKKKT KKGTTNCCCT CTCCGCM CTCCGNKTCC CCAMCCYANC NNNGGGG WGACCCTNGG CCCCMKRRGM | ANGIGGTO TEGGTAGGEG GTGTCCANAA CGGTGGCGCG CGGCCGTA GTGCACGTCG GCGGCGTGT GCACTCCGAT TTGTACCA GCCGAAGAAC CGGTCGCAGT GCACCCGGGC TTCGGGAA ATCGGGCCGG TACTTGAAGG TCTYGAACTG CCGGTTTG GAACTCATCC ACAACCCCCG TCCGCGTCMA TCCGCATCAAC CCCCCG TCCGCCCCCCCCCCCCCCCCC | TITGTACCA GCCGAAGAAC CGGTCGCAGT GCACCCGGGC CGCCTCGATC TCCGGGAA ATCGGGCCGG TACTTGAAGG TCTYGAACTG GGCCTCAGAC TCCGGGTTTG GAACTCATCC ACAACCCCCG TCCGCGTCMA GGTCACTTGT TCCGCGTTGA TCCGCGTTGA TCCGCGTCMA GGTCACTTGT TCCGCGTTGA TCCGCGTCMA GGTCACTTGT TCCGCGTCMA CCACACCCCCG TCCGCGTCMA GGTCACTTGT TCCGCAACA AMGTTACGGG ANAAAANATY CAAAGAYCAC CCYTTTGSTY GGGCCCCCCN CCYTTGKNAT ACCCCTNCCA AMMNACC CNNGGGSCCY AMACGTYYNR AGGTTTTSCT NAAAGAAASA CCNWTNTCCTC CCNWTCCCCC TCCGACC NMRCWMWYTS GGCCNASCON CTCCGNKTCC CCAMCCYANC MGGCCCCCYTM GKKCCCWKNT TCCCNANTGA MCCTCWGNRA |

<sup>(2)</sup> INFORMATION FOR SEQ ID NO:301:

- : SEQUENCE CHARACTERISTICS
  - A. LENCTH: 223 base pairs
- (B) TYPE: nucleic acid
- O: STRANDEDNESS: Single
- D TOPOLOGY: linear
- 11 MOLECULE TYPE: Genomic DNA
- x1 | JEQUENCE DESCRIPTION, JEQ ID NO:301-

| AATTOGGGTG               | 3CAACGCGGG  | CCTGTTCGGC   | AACGGCGGCG | 2020200000 | agamagaaaam        |     |
|--------------------------|-------------|--------------|------------|------------|--------------------|-----|
| 1979575663               | 103303GGG   | GGGCGGTT - a | 10000000   |            | ~ 7.3 F. 20 C.C. * | 3.0 |
| HRTRGTGGC3<br>Haramaaama | TOTANGEC    | CCCCCCTAAC   | 303000.00. | TIGGTCATGG | GGGCGCTGGC         | 120 |
| 1000110012               | 1.91MMG10C  | AGC 2000000  | AACGGTGCTA | CGCCCGGTCA | GGATGGGGCG         | 180 |
| · JUTGTT3                | CCGGGCTCGGA | CRACROTOGT   | BCCGCTCGTG | 700        |                    | 200 |

### CONFORMATION FOR TO TO MO 100

REQUENTE UMARAUTERIOTINI

- A CLENGTH (418 base halfs
- P TYPE nucleic acia
- STPANDEDNESS single
- D TOPOLOGY linear

a min car is a consequence a security

- 11 MOLECULE TYPE: Senomic DNA
- x: SEQUENCE DESCRIPTION SEC ID NO 201

| CAGCACAGGE GTTGGCCCCA GTCAACGCGC CCATCCAGGE CGTGACCGGG CGCCCCTGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| IGGCAACGC CCAACGCIGC CCCGGGCAAC GGGGCCCCCG GCRGCACGG CGGTGGTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300  |
| TTCGGCGGC GAAGGAACGG CGCGTGGGAG GTGAACGG CGGGCACGG CGGGTGGTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 360  |
| TTCGGCGGCG GAAGGAACGG CGGGTCCGGC GTCANCRGCG GGGCGGGCCGG AAATGCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 418  |
| (2) INFORMATION FOR SEQ ID NC:303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| (1) SEQUENCE CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| (A) LENGTH: 1049 base pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| (B) TYPE: nucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| (C) STRANDEDNESS: single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| Table 1 Table 1 Table 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| ii MOLECULE TYPE: Genomic DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| SELECT SCHOOL STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| xi: SEQUENCE DESCRIPTION: SEQ ID NO:303:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| AATTCGGCAC GAGGGGCACG ATCGCATACA GCGCTCGCCC CAGACCCGCC CAATACAGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| JUTUGGCACA GGGGGGGA GAATAGGGG TOTGGCTGTC GGGCTTGARC ACCACGGGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 ]  |
| - ACCOUNTED CAGUGUUGGO ACCOATTOO LOTOOTTA COMPANDOOT TA COMPANDO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| GCGAGATCAC GCGCACCACG CCCTTIGGTT GATAGCACAC GGTGGTCTTG GCTATCCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180  |
| GCAGCAGCGG CTGTGCCTTA CGGGGCTTCA GCAGGTCCAC ACAGACTCGT GCSTTATAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| TNOGGETTEG GCGATCAGAT CGACAATTIL CTCTTGCGCG GCCCATCGGG CCTTGCCCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 303  |
| G. GOGGELIGE AGGAAGTTTA TOTAL  |      |
| JOSGATGACT GCAGCTCGCT CGATNACGGG ACCTTCGCCA GTCGGTCTGC GCCGCCGAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 420  |
| STTOCGOGAA TGCCGCTTCS ACTTCCGCGG NCGTGCCAAC GGAATCNTAT CACGGCTTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 480  |
| GGGTTAAAAC TCCTCAATST NCYGGTCGAA ATTCGGCAAC TTCTTATCCC GGCAGGTRCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 540  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| AACSANNCAA ACCTOGGCAA GGTTAGGMTT TOUUCUCNCTT YCAAAAATNO GGKTTTTGGN<br>CMWATTTOGC CKCNATGKTG MCAAGGMTGT TKWANAAKCG GGGTCYTCTN NTENGKGGAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 560  |
| CAAAMGGET TTGGGGMAGG GERREGGAN GETTER NTCNGKGGAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 720  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| GGGAKKGNGA ATYOVOOSNA NOOCRGGGGG BMMCARATTO TYCCGGMCTO STOKGGAWTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 940  |
| WGMGSTTTOO CAAAAAACEC COCAAATTMM TTTTTOORCN TRITGANACW CTTTTTOARCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90J  |
| MMUSSAARNS ANMONOTOUS SHOTKTOKTH AAAAAAGNAYW JUQQMAAATT TYTAWTTOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 360  |
| TESCSUCION CECNOTUTT TESMMINOTA WAYTHERMOU MMMSNCKSNG KKSSNROCHN<br>TROUSNOCOM AAWYNIKOYN CHIATMAGO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102: |
| THE SECTION OF THE LAST AND AN ACCUMENTATION OF THE SECTION OF THE | 104. |
| A THEODMARKON TON THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 2 IMFORMATION FOR BEQUID UN1984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 1 JEQUENCE CHARACTERISTICS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| A LENGTH 100 pase 54.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| H DIFF mmodal racin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| A TOTAL TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| TO THANDETNEED Simble To The 4350 Simble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| e e e e e e e e e e e e e e e e e e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Mark market and another than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| MIDEOULE TYPE OFREM: DMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| Activities and the second of t |      |
| A SETTENCE LESCRIPTION SET ID NO 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| AATTOOGCAT DANGGALDWAY AND DOOGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| AATTIGGCAT GAGGGAATIG AGAATGGCGG AATGGTGAAG COTTGGTGGTGGU CGGGGTTACO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ÷.   |
| The control of the co |      |
| and the control of th |      |
| 333 1 GATTA AMOTT STIFFS AAC HIGGGAA STOTTON SOON ON THE TOTTON OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |

٠.

# (2) INFORMATION FOR SEQ ID NO:305:

- (1) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1036 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: single
- D. TOPOLOGI: linear
- 11 MOLECULE TYPE: Genomic DNA
- EXI SEQUENCE DESCRIPTION: SEQ ID NO:305:

| AATTIIGGCAC                                                                                                     | GAGATCATGA    | ATAGCGGGCT   | GGTCAGCACC    | GAAGTGGTCG    | 3001 #0#000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
|-----------------------------------------------------------------------------------------------------------------|---------------|--------------|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| JAGCAAGTCT                                                                                                      | CGTCTGCTCG    | CCCAGCAGGA   | 2277          | G1.000000     | GUGATOTOGO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60        |
| TTTGGATGGT                                                                                                      | GTTCLAGTTGC   | AGGTAAGGCC   | - GG FUGGCATC | JATUCUGACA    | ceracawie:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120       |
| RECTETTEGE                                                                                                      | ACGTGACGTA    | ACCAATAACT   | OACUCUUCAU    | CTTTGCTAGC    | AGGGTGTCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180       |
| GGGTACCAGG                                                                                                      | /T7/2/2/2/2/2 | 20010        | コルビンシオビス      | CCAACTCCGG    | CCCTCGATCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 240       |
| GCGATCGAAG                                                                                                      | TAAGAAACCS    | GCCAGCCGTT   | GTGCCCCCTG    | GGCCGAAGGT    | CAGCTGCTGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300       |
| 1001000                                                                                                         | TECTTORIA     | COCCATOCA    |               | ACGACTGACC    | GAGCAAACGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 360       |
| AUGATUUTTG                                                                                                      |               | GGGGGTAATS   |               | ACCGCACGAG    | CCACCAATCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| TERRESERVE                                                                                                      | GCCACTGACC    | GACCAACCGC   | TTGTGCGACA    | CCCCAGCGGA    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.20      |
| و في و زياد الماد الم | COCHAACGG     | AATCANCGSG   | ACGCGCTCGC    | 20112         | AFIGGTGGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 480       |
| CARDMATADI                                                                                                      | GUNTETGES     | CITTANAME    | GGGSTIMIGC    | COARSCANCE    | JUM LANGULIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 340       |
| ICCAATTOUS                                                                                                      | AACHAAAAAA    |              | ARNOTYTEM     | COUTUNGCAA    | COSNAAYNCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 507       |
| TCCCCCCGGG                                                                                                      |               | MMNAAAACGG   |               | - C. WWWW.C C | AWTCCCCITTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 461       |
| CCCTTCTCG                                                                                                       |               |              | CCCWWAANCC    | TESGGGESCE    | CGGGTTRWT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70.       |
| AAAAAYCKNIG                                                                                                     |               |              | GGG CMMTTIWN: | JGGNTGCSCC    | CCCNCNAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180       |
|                                                                                                                 |               |              | ASKTASGSSC    | CCCMARCCCC    | JGKAAKKWWA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34        |
| Miss a manife out                                                                                               |               |              | NGGGNCCTAA    |               | STISTINANG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 900       |
| ARAAAATMTT                                                                                                      | TANATMNSSK    | TTNNAAAAAA   |               | JOURNNERS     | CCAAWFAARP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| TROCTTOGGA                                                                                                      | TIMMSJGGJG    | SEKERETTHOMO | ENGINARET WOR | · Traigrances | . The top to the contract of t | 3m2       |
| TOWN BONGS                                                                                                      | MONON         |              |               | 2 MORGONN     | HARTAELCETTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
|                                                                                                                 |               |              |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * * * * . |

# Designment was six of the con-

- SEQUENCE WARASTERICTICS
- A LENGTH 1361 base bairs
- B TYPE, nucleic acid
- 0 STRANDEDNESS single
- D TOPSIONY inear
- . Mille Male Trade (Jed B. 179)

| GCCATGGCCA | ACGCCTACTC    | GGCCAACCCG   | AATCCATTCG  | GCGTCTCACC   | GCAACCCCCC  | 120         |
|------------|---------------|--------------|-------------|--------------|-------------|-------------|
| AAACCGGCGA | CCGCGGCATG    | GATCAACCCG   | COCACCCCAG  | ATCCGAAATA   | GCAACCCCCG  | 120         |
| AATGAGACAC | TGGCGCAAAG    | AGCTTGACAC   | 3000000000  | AT CCOMMANIA | GCGTCCACAT  | 180         |
|            | AGAAGCGGGT    |              | SCOCCGCACC  | ACGCAAGCTG   | TTAGACGTGT  | 240         |
|            |               |              | AGATCACGCC  | GCCCAAGGGC   | ATCGAGTCAA  | 300         |
| 20022222   | GIM COCCC!    | AACGTCGGCG   | CCGCCAAGAA  | ATGACGGTGC   | GCATTACCAT  | 360         |
| 30         | A L COUNTY TO | GCCACCTGCG   | CACCANAACT  | ATCANCACCO   |             |             |
| ICICOIGGAC | ATCIGGCAGCC   | GCTTCAAAAA   | CTCCTTGTCG  | ACAATECTAT   | TOOMOTIVE   | 420         |
| CCGAATTCTT | NTRCTTGCAA    | SAACACTNCA   | TGTTMCGCCT  | NAACAACCYT   | IGC IGANCCC | 480         |
| ACANCCAATA | TTGAANTCCC    | ANTICCCCCAM  | Chicaggi    | CGGAAGKTGK   | GGTTNGAAAA  | 540         |
| TGKTGCCCAA | AAATCCCCC     | MOOTER       | GAACCINGTIM | CGGAAGKTGK   | TGGGAACGAA  | 600         |
|            |               | NGGIRAAAWW   | CCCNSNATGG  | MSAATTTTSC   | CTNGAACAAM  | 660         |
| AAAAGGTCCA | AGNI CAAAGG   | NGCCCCCCCC   | SGNAAATTGG  | TGAACSCAKA   | WYANDTWCCC  | 720         |
| WWWTNCAAAT | MTTNGGGTCC    | KNNTCCCCWT   | AAANGGGSCN  | CCCCNCCRGG   | CMCTTATAGGG |             |
| NWNMGGGMGN | CYYCSCCCCA    | MMMAAAAAAA   |             | ~~~~~        |             | 780         |
| GKKYTTAAAC | CCGGKGGGTN    | CAAAAAANAN   |             |              | CCSGGTYWGG  | 940         |
| AAGGKKKTKC | SCMACCCCAA    |              | *           | ngggggaaa    | ATTIGNAAWT  | <b>90</b> 0 |
|            |               |              | AWNCCCGMGK  | SARGGGGRNY   | TTMKAGGGMG  | 360         |
| TINITECTOR | ANDEDDEDDE    | NAAYAAAAGK   | NGSNGRGAAT  | NTINITIIGK   | RSSSRNK     | 1020        |
| TYNTCCTYCN | CCMMGNRWWG    | SRAMNTGKTS . | NSSGGGGGGC  |              |             |             |
|            |               |              |             |              |             | 1060        |

# (2) INFORMATION FOR SEQ ID NO:307:

(1: SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1040 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

D. TOPOLOGY: linear

i: MOLECULE TYPE: Genomic DNA

(x: SEQUENCE DESCRIPTION, SEC ID NO:307:

| * * ********                          |                    |                      |                       |                 |                       |             |
|---------------------------------------|--------------------|----------------------|-----------------------|-----------------|-----------------------|-------------|
| AM LL GUUCAC                          | : GAGETTCACC       | AAAGAGCTGA           | 73,770,070,07         | 1 GETTOOCKOKE   |                       |             |
| 701171000                             | 77,000000000000    | -                    |                       | JATGUGACAT      | ' JOCATCGAGG          | ÷0          |
| - JUANTACGGG                          | CATGGATGAL         | CCGAANGGAN           |                       |                 |                       | 2.0         |
| 7011000001                            |                    |                      |                       |                 | ATTACGGTTC            | • • •       |
| CAAGGTGAA                             | ACGCTTTGCC         | 20017770700          | . 222 22 22           |                 | Z Princedoria         | ~ ~         |
|                                       |                    | JCUAAAGAT3           | * JUNCULTTAA          | . DTTGCGCTTPA   | CACCGTGCAA            |             |
| TGTTNGTATS                            | JATOCTOGA:         | 700000000            | •                     |                 | - TWO COLL GOWY       | 180         |
|                                       |                    | GUUUTGAC             | HGATAANGAA            | TTCGCTGGTC      | 30000001.00           | 2           |
| ATCGATGGTC                            | CKSTTTTCMC         |                      |                       |                 | recouded ACM          | 240         |
|                                       |                    | LUUGCSGTTA           | AATTGCSTGT            | TOP WORDS THOMA | 3010000               |             |
| TTCCCGCTAC                            | RCTGCAGCCC         |                      |                       | GUATCATCTG      | GCAGGCTATG            | 3.00        |
|                                       | AC LOCACOLOC       | ATUNINGATS           | TGCGGCTAAC            | GAANAAGTTA      |                       |             |
| IAAGCGAMTC                            | 20003707           |                      |                       | SWWINWO TIV     | TGACATGGCG            | 350         |
| "WYGC GWIL"                           | GGGCATSCNC         | GCGGCAMTTT           | 2003220000            | TOTO TOTO TOTO  |                       | 3 3 0       |
| 20222000000                           | 2000/222200        |                      | _GCAACCTGC            | TGTGTNTGAA      | GCGTMTCAAC            | 420         |
| GAAATGCGGC                            | SULLYAAAAGC        | NGGCTTGCGT           | TGATTMMAAC            |                 |                       |             |
| CONORDAMA                             | 2000000000000      |                      | TARTIMMAC             | CNAACCCNTH      | CNATYCTTTG            | 480         |
| DEGNONMNTG                            | CONTROTOTOO        | AACTOCGKKO           | TVMCC MICCO           | TOD D D/10 TMB  |                       | 11 0 .7     |
| 300000 3 3000 s                       |                    |                      | SITGOMMON             | TGAAACCIMA      | SINCOCCCCCC           | 34)         |
| J. CJGAUTTA                           | MRTHTTTTAAA        | AAMCGGMTHA           | :                     |                 |                       | 3** /       |
|                                       |                    | TARA TO DOM, T. I.M. | - MUUUGAATIIN         | SAA ZOTNOCH     | TCAAANTAMM            |             |
| - AANTEGGGC                           | TTYGGGMFCT         | Transfer of the same | and cross services of |                 |                       | 71.0        |
| · · · · · · · · · · · · · · · · · · · |                    |                      | TERRENGES             | GMNNTYCTCH      | GGTTYNGSCS            |             |
| CAAACHTTTG                            | CORTHOUMN:         | 2000 2 25 140 20     | -                     |                 | 301.1NO303            | 9.9         |
|                                       | ac                 | TIAC.MGGC            | NOMINATION            | RAGICENNAS      | W.Coccaaa             |             |
| THTTTICAAW                            | مستعملات دون وفي س | 20000000             |                       | A. COMMAS       | GWCCCGGGKH            |             |
|                                       | TENENSTEET         | -11111GGGGGGGG       | JGCYGRTRMC            | Attendance -    | 100000000             |             |
| NAAAAMCMSA                            | RRCCMCYGGG         | 22200000000          |                       | No. 998600000   | JGCCCKKMAA            | 7.9%        |
|                                       | 22 C C C 1 (10)    | RECOCCOCCM           | MATMOGGES             | TECPARACAA      | 5 3 0 0 0 0 1 1 1 m n |             |
| DHENSMOGGE                            | SMACCSGNGN         |                      |                       | - Command       | AUCCCNAMRA            | 34.         |
|                                       | SPERCODULE (SE     | FYNAAAKGGT           | TSNSCTMANM            | MECHAIDREAM     |                       | • • •       |
| V.Cmcyccccym                          | TOTAL DIGINAL      |                      |                       | MEGMANNINGT     | SGMSCCMNSN            | 30%         |
| A J. JMGGGRT                          | TTHSIMGARN         | AJANAMEMGGM.         | REGENEGERN            | 3.1.30000       |                       | 5 0         |
| NGASNGWMGN                            | 3717177177         |                      | 11 - 3011 ( 3011)     | JAAAJGGSMS      | GSCKSCNNGN            | <b>36</b> . |
| TOWN DITCHOLL                         | CRMNGANROS         | NCNGYGMMPN           | MNGMMNGMMM            |                 |                       | 202         |
| NSMMMGMMMZ                            | a a                |                      | 4-4-2747414(21/1/41)  | GGGF KONACN     | NMKMCAWSMC -          |             |
| - Alking Children                     | UGYMTNKCGC         |                      |                       |                 |                       |             |
|                                       |                    |                      |                       |                 |                       | 1041        |
|                                       |                    |                      |                       |                 |                       | . U'1       |

I INFORMATION FOR SE. II WY 1000

The second section of the second

3 ^

36

```
(D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: Genomic DNA
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:308:
  AATTCGGCAC GAGACAANGG CGTGAAATGG GATCCGGCCG AGCTGGGGCC CGTCGTCAGC
  GACCTGTTGG CCAAGTCGCG GCCGCCGGTT CCGGTCTATG GGGCCTAGTT ATCTGCGCCG 120
  AGCGTGAACT CAGGGCGAGA TITCGGCCGT TITCTCGCCC TGGCTTCACG TTCGGCGAAG 180
  TKGGGAACGG TCAGGGTTCG CAAACCACGA TCGGGATCGT GCGGTCGGTC CAGGACTGGT 240
  ANTECTGATA CTTKGGTACA TCGTGACCAA CTGTGGNCAA TATTCGGCGC GCTCCTCGTC 300
 NGTCGCGTCC CGCGCGGTAA GGTCCANCAC TTCCTTTTTC TCGTGCCG
                                                                   348
          (2) INFORMATION FOR SEQ ID NO:309:
        1) SEQUENCE CHARACTERISTICS:
         (A) LENGTH: 132 base pairs
         (B) TYPE: nucleic acid
         (C) GTRANDEDNESS: single
         (D) TOPOLOGY: linear
        11 MOLECULE TYPE: Genomic DNA
       x1: SEQUENCE DESCRIPTION: SEQ ID NO.309:
AATTOGGCAC GAGAGACOGG GTCGTTGACC AACGGACGCT TGGGCGCGGG TCCCTTGCGT
 SGCATCAGCC CTTCTCCTTC TTAGCGCCGT AACGGCTGCG TGCCTGTTTG CGGTTCTTGA
                                                                   50
 CACCOTGOGT ATCCAGOGAA COGCGGATGA TOTTGTAGCG CACACCAGGO AGGTCCTTCA
                                                                  120
 COCGGCCCCC GCGCACCAGC ACCATCGAGT GCTCCTGCAG GTTGTGGCCC TCGCCGGGAA
                                                                  180
 TGTACGCCGT GACCTCGAAC TGACTCGTCA CTTCACGCGG GCAACCTTCC GAAGCGCCGA
                                                                  240
 errongerre tresgnaras racereatae es
                                                                  300
          20 INFORMATION FOR DEQ ID NO.313:
       : JEQUENCE JHARACTERISTICS
        (A) LENGTH: 962 pase pairs
        B: TYPE: nucleic acid
         C: STRANDEDNESS, single
         D: TOPOLOGY linear
      .. MOLECULE TYPE lenom. THA
      AT TEQUENCY LEGGRIPTION OF THE TO BE SEEN
AAUTUUGGENE PAGTOGGTEU NGACOGATTU MATRETEUGU UGAGEAGETO GCCACTGCAC
ACCOTOCAGE AAAATTTECT INNTOTOGTT AACGAGCCT TUUAGACGC CACCOCCCC
COGCTGATOG GCAACGGCUU UNACGGCACT COTGGAACCG GGUCTGACCC GGGCCGGCG
ROTEGETSTT EGGCAACEGU JGCMACEGEG GGTCCGEGGET GAACGGMACE AACGGCGGG
                                                                  1.8
```

THINACOCOC CACOGORGO : DUCOGOTCAC COCOMPITTOS PA MYCOGOGA DEPORTAMACOC

| HNTNCYTTKN NATTKGGNNA AAAANCCCTY<br>NTTTYGNCNN CCCGGSNAAM RNTTKATTTC<br>MNRNNKCSCA ANGGGKSNGC NKNNMMNSGT<br>NAAMCNNSNK NGKKKUNKAA ARNNTTWKTN<br>MCWHNAWRNG NNGSNCNCKC NNKMNAAAAA | NGGGGGNTCN TITYCKNMRA HNSCNNNCNN | GGGTKMNNNA<br>MRNWTYKNKN<br>GRRNGVRGGC | AACCCCAAAM<br>NTCNGARSRN | 720<br>780<br>840<br>900<br>960<br>962 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------|--------------------------|----------------------------------------|
| (2) INFORMATION FOR SEQ                                                                                                                                                          | ID NO 311+                       |                                        |                          |                                        |
| (i) SEQUENCE CHARACTERISTIC (A) LENGTH: 323 base pai: (B) TYPE: nucleic acid (C) STRANDEDNESS: single                                                                            | CS:                              |                                        |                          |                                        |

(ii) MOLECULE TYPE: Genomic DNA

(D) TOPOLOGY: linear

X1 SEQUENCE DESCRIPTION: 5EQ ID NO:311:

| AATTCGGCAC       | RAGAAGACGC  | CCGAANGTTT | GCGCTGGCTG     | TACAACTTCL  | TCAARGCGCA  | 50        |
|------------------|-------------|------------|----------------|-------------|-------------|-----------|
| いむしんかりりかい        | AACTTCGGCA  | AGATCTACGT | TOGOTHOCOC     | Cardonnem   | CCIMCGGGG   | • • • • • |
| a race Leight    | GUACISCADG  | GCGAGCTGAC | CCAGGATCCG     | Coccession  | COOMMODAN   | 100       |
| CAGAAGATG        | TCGTTCGAGG  | TGGCCTGGAG | GAminandic 2 M | CCCICCCCC   | TG12 GG0000 | 183       |
| age I I I Ke I G | TUUUGCACTGO | TGCTCACCAC | CCGCGGCACC     | GCGTTGT COT | CGACCGCCGAC | 240       |
| CACCACTCGT       | Googlamagea | 200        | 3230000100     | GCOGACC.    | COMCUMBEL   | 300       |
|                  | 0           | J-J        |                |             |             | 323       |

- 25 INFORMATION FOR GEQ ID NO:112:
- 1 SEQUENCE CHARACTERISTICS.
- A: LENGTH: 1034 base pairs
  B TYPE: nucleic acid
  C STRANDEDNESS: single
  D TOPOLOGY linear
- 11 MOLECULE TYPE: Genomic CNA
- x1 | SEQUENCE DESCRIPTION: SEQ ID NO.310.

| SATTOGGAGT           | JTGTGTGGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TOSTICAGAA                   | GAAGATGATC                              | GCGAACATCG  | SCAGCGCCGC  | 61          |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------|-------------|-------------|-------------|
| TONGGOTATO           | STSCCGGTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRECORACIA                   | GCGGATCATC                              | ACCGGCATAC  | AGCCGGGCGC  |             |
| COLLEGERAL           | ACCACGTTCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TTTACTTTCT                   | TTPCTTTGAGC                             | MAAGCGTGT   | AGACRAACAC  |             |
| VIIMAAGGCG           | ACGGTGACCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JGGGCAGCA                    | 111111111111111111111111111111111111111 | AGGTTCGTGG  | CGCACCATAG  |             |
| CAACAACA             | JAGATCACCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TOWACOTOR                    | 10086770001                             | Acceptition | JGTCGGCACC  |             |
|                      | JUNAGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JOSCOCCOTT                   | COUTTONFOR                              | COTTOTCGAT  | ATCGGCGTCG  | 1.5         |
| JULIA CUAGITI        | OWOCO IOTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3030000000                   | REGUCATIAN                              | CCCCCCGACN  | ANCGTGTTJA  | 4.2         |
| Test of the contract | CCUA.CAA.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3000000000000                | TIGIGCCGCT                              | CGTGCCGAAT  |             | <b>4</b> 80 |
| AACTACATAA           | CONCUCACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CGAACCCGGG                   | TGAATGAWT3                              | DDAAATTTAA. |             | 540         |
| AACYATTICC           | DODDITION OF THE PROPERTY OF T | WAC-3                        | STYYTGAANG                              | GGTTTTTTTGC | TTAAAGGAAG  | <b>600</b>  |
| TTS JUDICTUA         | JUNIANC. JU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CSTTNWTAR                    | GAAAAGGCCC                              | RESEATNEE   | CCTCCACAGT  | <b>5</b> 60 |
| MIDDAMOTEA           | ALUGBAATGG<br>ARTIMMMTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WINCINCOVERIN                | TNGGGNCTTT                              | AAGR GGGGGG | GGNTTTTGKT  | 72          |
|                      | DRIAMN (TYPE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AFINNCNGG.111<br>Afinadoggan | SF CONTINUOR                            |             | WILCOCOCHO. | 9 .         |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - A                          |                                         |             | 23.4        |             |

1.000

500

300

132

**-**'8.`

SCNSNGGKBC CSCC 1034 (2) INFORMATION FOR SEQ ID NO:313: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 331 base pairs (B) TYPE: nucleic acid (C) STRANDFDNESS: single (D) TOPOLOGY: linear (11) MOLECULE TYPE: Genomic DNA (x1) SEQUENCE DESCRIPTION: SEQ ID NO:313: AATTOGGCAC GAGCCCACAT CCGGGGCCGC TCGTTGCATG ACTCGTTCGT CATCGTCGAC 50 RAGGCACAGT CGCTGGAGCG CAATGTGTTG CTGACCGTGC TGTCCCGGTT GGGGACCGGT 120 TOCOGGGTGG TGTTGACCCA CGACATCGCC CAGCGCGACA ACCTGCGGGT CGGCCGCCAC 180 SACGRETTEE COCCOTONIC SAGAAGCICA AAGGICATCO GITGITCGCC CACATCACCI 240 TECTECECAG TGAGCGCTCG CCGATCGCCG CGCTGGTCAC GAGATGCTCG ANGAGATCAC 300 COGGCCGCGC TGAGTGCGCC TCCCGCGAGC A 331 (2) INFORMATION FOR SEQ ID NO:314: : SEQUENCE CHARACTERISTICS: A) LENGTH: 1026 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 11 MOLECULE TYPE: Genomic DNA RI SEQUENCE DESCRIPTION, SEQ ID MO:314: SCTBATBGGS CAGAAGATBG ACCAGGTGCT GCCCATCCCG CCCACCCCAC TGCAGCTGAG MACCOGGATO GCGGTCCTCA GCTAOGGCGA TRAGCTGGTG TTCGGCCATCA CCGCTGACTA 130 TORCOCOGO TOOGRAMATGO AGCAGCTGGT CARCGGTATO GAACTGGGTG TGGCGCGTGT 240 IGTGGCGCTC ANCGACAATT CCGTGCTGCTGTTACAAGGATCGGCSTAA JCGTTCATCC 300 PROGRAMME CONNEGCORD GERGREGGG CGRECTTOTO TRECONNECCO REGRAGERET 360 TACTOACGCC ATCTCCGTCG GIGTTAACCC COTGAGAAGG TGGGTCGTGC GCAAGTTGGG 41. CHORDED ATCHARCORD RECEDENCATOR DECORPORATION OF THE CORRECT CHICAGORD 15. TECCAGGAA STOCKET TOCKET STOCKET AROBACHTMA SOCCORCTE TOCKET PROVIDABACT TOCHATSTIN CEGOGGCCT TERRUSTENC ENCOGEGCCS WICTINGCAA ATCGGGMMAA ATCCCCAMMC AAACCCCCCC GGTCTTGGUJ JCGGGGNGGC GGCCMAWNCC

WARGOOGGO NTTAAANTOT TIGKINGONN GNURGGUNUU NCNAANSCAN COOTTIKGGO NETTOCOCCC COCAWTTTAA COGAROGON AAYOUGAAGY IMMGKCCYCY KWAAAAAAA

AATTTGSSSG SCCCAANTAA ATTGCCNGGC CCVTTGGGGG GGRANCNYNT TTTMCCSNSG TROUBLAAMO NGGANCOSGO KAAYTMMTKO NAAYTOOCON AAMBNTITTO TAANNOOCON

THEOCOGGAMA ATTINAMAAM CMMNKTGSNO GGGGTTTSNI GGKKGRAGGM AMAAMANRSN 260 OF TENMONIN SANMICHSIN: SCONSINDING MINITMONEY TO ASMAAAMCOO JUUGUGASSA

- (A) LENGTH: 324 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY, linear
- (11) MOLECULE TYPE, Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315:

| GTACCTCGGC | GAGAAGACGC<br>AACTTCGGCA<br>GCACCGCACG<br>TCGTTCGAGG | AGATCTACGT<br>GCGAGCTGAC | TCGCTTCCCC               | GAAGCGGTCT               | CGATGCGCCA               | 60<br>120<br>180  |
|------------|------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------|
| 700.1.7010 | TCGTTCGAGG<br>TCCGCACTGC<br>TGCCGCTCGT               | TGCTCACCAC               | GATTTTGCAN<br>CCGCSGCACC | GCGACGCCNG<br>GCGTTGACGC | TNACCGCGAC<br>TCGACCAGCT | 240<br>300<br>324 |

- (2) INFORMATION FOR DEG ID NO:316:
- 1) SEQUENCE CHARACTERISTICS.
- (A) LENGTH: 1010 pase pairs
- (B) TYPE: nucleic acid
- (C) STRAMDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MCLECULE TYPE: Genomic DNA
- (K1) SEQUENCE DESCRIPTION: SEQ ID NC:316:

| AATTCGGCAC         | GANGCGTGCC                             | GCTNAACACC                               | 3,000,000,000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |        |
|--------------------|----------------------------------------|------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|
| 377 3 GMG GG G     | 22222                                  |                                          |               | TGCCAGATAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CCCGGACTCG        | 60     |
| 3 + 40 + 90 - 60   |                                        | 3TTGCTCTCC                               | TGACGGGGGG    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AAGGTCGCTM        |        |
| ATGCCCAGGT         | AGCGGCCCAG                             | STECATOGAU                               | 200100        | TG001 0T0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31.CCTCCCCIN      | 120    |
| ACCCCCAACCT        | 7777777777                             |                                          | 10GATGATGA    | - JCGMC - C - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | URGCTCGCCG        | 180    |
|                    | IGGUATOUGG                             | ····· SATUADO                            | CAGGACGCGT    | AGGACAAGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GATCGAATGC        | 240    |
| - 2 - 110 - 00-C 1 | JUNUAU LUUL                            | IGTGCAMTT9                               | INGEGTGCTC    | CACGGCAAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300               |        |
| DDDDDDTSATT        | TANTOTTOCO                             | GCATCGCCTG                               | 200021        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BUCITOATT         | 300    |
| JAACGGGTCT         | 21.17                                  | 300,41.0C010                             | "WHC"WEDE"    | GGGAACCGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GGATGGCGAC        | 36.    |
| imilia mamaa       | SAMOTORGGT                             |                                          | GCGEACAGTG    | GTCNACANCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GGTA CTCCCC       |        |
| A - AIA - LUU      | COMMANTOS                              | GCROMOGG                                 | TGCCCACNAT    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ** 1   |
| CCCCCCCCCC         | CACCCHAACA                             | ACANCTIGSC                               |               | AANAACGGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 48€    |
| 10222222000        | 70mace                                 | Ma ammound                               | Wrongwr       | GTCCCCANCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STCAANCEGT        | ~ i €  |
| TO DRAWCGCC        |                                        | NACITITIETT                              | UNAWTAACTG    | CCGCTTCCGK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COCTGGNGCA        |        |
| WTAAATGGGA         | AACCCTTRCC                             | CCACCTTGAA                               | Cicicamaamaa  | NATITITIACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | 200    |
| AATTITTCCC         | GANTESSTON                             |                                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 1W4( * * * * 2 | 24     |
|                    | 21000000                               |                                          |               | ACCTINGNAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GGGCGGCCA         |        |
| ~32UII             | aannuudi                               | BAAACCCAA 1                              |               | SACCSCMNAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MYMTTTTYCSG       |        |
| MAAG JONKT         | 30000000000000000000000000000000000000 | IMMOGGGGTM:                              |               | 110.01000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | -      |
| WARG               | 1999999                                | 22 CM 1 CM |               | THE STATE OF THE S | IGGS KNINKTO      | ·- 🕌   |
|                    | ada a ar Araba                         |                                          | 1 July Mark   | ACOMMMMYGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HIGHERINKES       |        |
| I - MMALLI         | MMMR.TV. ITEM:                         | 10.000003na                              |               | MSCCCCCSNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BETEKCCOMN        |        |
| WITH THUMAA        | WMEGGGGGGGGG                           | SIMMISCONGE                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33.GRUUUNN        | • •    |
|                    |                                        |                                          | FELMUGGSNN    | NNAAGMGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | : 2: 2 |

- 2 INFORMATION FOR BEG IT NO 4311
- : SEQUENCE CHARACTERISTICS
- A LENGTH 1:10 page pair.

  B TURE quality again.

  TURE property again.

#### (x1) SEQUENCE DESCRIPTION: SEQ ID NO:317:

| AATTCGGCAC | GANGCGTGCC       | GCTNAACACC   | AGCCCGCGGC  | TGCCAGATAT | CCCGGACTCG    | 60          |
|------------|------------------|--------------|-------------|------------|---------------|-------------|
| GTAGTGCCGC | CGGTGGCGTC       | GITGCTCTCC   | TGACGGGGGG  | CGGCGACCAT | AAGGTCGCTM    | 120         |
| ATGCCCAGGT | AGCGGCCCAG       | GTGCATGGAG   |             | TGCGACTCTC |               |             |
| ACCGGGAGCT | TGGCATCGGG       | CCTGATCAGC   |             | AGGACAAGTC |               | 180         |
|            | CCAGAGTGCC       |              |             | CACGGCAAAT |               | 240         |
|            | TANTGTTCCC       |              |             | GGGAACCGCA |               | ´ 3 0 0     |
|            | GANCTCAGGT       |              |             |            |               | 360         |
| ATANATCTGG |                  |              |             |            |               | 420         |
| CCGCCCCGGT |                  |              |             | AANAACGGGC |               | 480         |
|            |                  |              | ATCGGATITT  | GTCCCCANCG | STCAANCSGT    | 540         |
|            | TCNTCCGGCG       |              |             | CCGCTTCCGK | CCCTGGNGCA    | 600         |
| WTAAATGGGA | -                | CACCTTGAA    | GGGGTTGTTG  | NATTTTTACT | GSTAACCCCG    | <b>66</b> 0 |
|            | GANTCGGTCN       | KCCGGGGSTTT  | YSTNTTCCCC  | ACCTINGNAN | GGGCCGGCCA    | 720         |
| AGSTITICIT | SYTGAAGGGG       | GAAACCCAAC   | TTTNTYTYYN  | AACCSCMNAA | MYMTTTYOSG    | 780         |
| MNAASCONKT | CCCTTTAAC        | CAMGGSGGTN   | AACCGKTMNG  | NGGKTAAAAA | GGGSKNNKTG    | 840         |
| NCCCCYMANG | GGGGGGF_A_A_A_A_ | COMMENSATION | WAAAXCODDUL |            | GTGKKKNKSS    | 300         |
| GCSAAATTTT | NMMRAACTKN       | GGGGCCSSGA   |             |            | GSTGFCCCNN    |             |
| NTTTCCNNAA | WMKKGKNWWM       | SNMNSCSNGG   |             | NNAAGMGGGG | SO LOT COCAIN | ≠60<br>•••• |
|            |                  |              |             |            |               | 1010        |

- (2 INFORMATION FOR SEQ ID NO:318:
- (i SEQUENCE CHAPACTERISTICS:
  - (A) LENGTH: 1092 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS single
  - (D) TOPOLOGY: linear
- ii MOLECULE TYPE: Genomic INA
- .xi SEQUENCE DESCRIPTION SEC 10 MO:318:

| TONGGGGWNS   |               | MEACSGGGYW   | WATTGCGGC     | CGCAWCTTGT   | MAASAGATCT   | 5.C       |
|--------------|---------------|--------------|---------------|--------------|--------------|-----------|
| JGAAYTCGGC   |               | CHETMOCHEE   | GOTGTGCAAN    | CCAATRAGGC   | STRATAATTY   | 120       |
| CACTOCACA    | AAAAACCCTT    | STOTGTAYYT   | UCCGRAAATR    | AAGGCGCCGG   | THTCAACWYC   |           |
| JCCGGTKTTY   | CCRATYCCCG    | TETTTTTAMCT  | GCCKGGGTSR    |              |              | 180       |
|              | ACTGCCGGKT    |              |               | AAAYCCCCGG   | TGTTGGAYCC   | 240       |
|              | COCKETTOON    | TJAAACTGCC   | RETETSGCSA    | TCCGGKWATT   | GAMSTCRCGG   | 300       |
|              |               | GOTGSNCGTA   | CCAAATMCGR    | AYCCRATAYC   | SCATGGGGTG   | 360       |
|              | YCCCTACCCA    | AAYCTGGGTA   | 777777773     | FECCIAAAR    | FINAWYCKIG   | 41.5      |
| HOUSY EMMTY  |               | CONAATTTAG   | 73,773,373,37 | TOTTECATA    | ITMAMACNES   |           |
| HITTIGGTWCC  | AGMCCGRAAA    | AAARAATAAT   | PAKAAKGGTE    |              | ACCHCCGCCN   | 4B.       |
| CHAITNON     | ATCCONTNCC    | Macheecean   | 3030TNAAGE    | TATRIY CCAAA |              | · • • · · |
| WAR 2002A    | TAACHTHICIR   | JAAJAAACCC   |               | TYSGGAAYTT   | CCCCAAMMIL   |           |
| PROGRESTE    |               |              | JTYMVC3GGA    | GYCNWNCAAA   | ACASCHTTAT   | 65 `      |
|              | TEGEMWCTOT    | FIRECORDICE. | /CCCAAA2TA    | TTTTYTGGGT   | CCNAGAKAAA   | 723       |
| A COMO BEECH | CAMCOCONAA    | NWIATHTOIT   | KGGCAANCOO    | SSAAACCTTR   | TOMNACONCE   | 780       |
| AIPMTCCCTT   | CCCCCSCAAT    | TOGYCGGRAT   | MCGSMCCYTY    | TCAAAKKKSI   | 1AKWWNNGNG   | 340       |
| REPUNACEMA   | ACCCCAAGTY    | COMNAAAATN   | JKCCCCGCTC    | CNAACACGNK   |              |           |
| ASCIONCOCI   | 2000000000000 | Maccoccan    | PKANTNECCA    |              | TYYTCCSAAA   | 900       |
| ^AAAACMAAAA  |               |              |               | AAAACNYNGK   | 3500000000   | 360       |
|              |               | PMACE COLAMS |               |              | TF CCMR2 CCC |           |
| RAMBTAMWSY   |               | JOANNOP WICE | TOTOANAIN     | TOTOTONYWESW | in gawamana  | 1.39      |
| L. I. IMPORT | •             |              |               |              |              | "         |

35

```
1. SEQUENCE CHARACTERISTICS:
                    (A LENGTH, 1251 base pairs
                   (B) TYPE, nucleic acid
                   C: STRANDEDNESS: single
                   .D. TOPOLOGY, linear
                it MOLECULE TYPE: Genomic DNA
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO:319:
  GGGGGGGNNN NATACATCWT CYGTGYACCG GGGMTCTAKT GGCGGGCCGC AATCINGTCA
  ASAGATETET NAMTTEGGGE ACAAAAACTW GACAAASYMT CGNGCNMTCC GTGTCCTNKA
                                                                                                                                     120
  TOGCAAAACG NGTRACASAC ASACACRTAT GTGTGCCCAC CASCAAYTCK TTGGGACCTC
  SCTRACCSGY TGCCCRNACG CCACGYTGCS CWTCTATCCC RACGCCGGCC ACGGGYGGGG
                                                                                                                                     180
  ATATTCCAGG CACCACGOCC AGTTTGGTGG ACAATGCCCT GGCAKTTTCC TCRAANTTCG
                                                                                                                                     30C
  TGAAACCGAA TTCNSMTTGA ACCNCCAARG CCCCSNCCNR AACARTTGGG WTCCGCGGTT
  STEEGESACES KTTTEEGGGG STNTEGGSAN AANCGCACCE WTGGWTTCTM TENECGCACE
  AGGEGGACNA NICEGGITTES ANTITICERA AYEGGGGCG GGATTESSCA AACGGGTGSS
 JAAASTSTTV YSRAAMASSS GGAKGSSAA TITGSGGGSR ANAAATTTSN YSNCASSAST
                                                                                                                                    480
 SCTTRTACTT COCCGACCGT AACMANTTTC ATCGTCNTNN CCTCTGCCCT TGGGGCAGGG
                                                                                                                                    ⇒40
 CKAAAYACCG CMTTKGGTTT CGCAACCTGC GGCCCAANTC CCNAMCCRCA CTTTCNATTT
                                                                                                                                    600
 GENTICGAATT SOCCOOGST RANAACOSCO NTGGCCNNYT CGGASSAAAA NGGGCCCTNT
                                                                                                                                    660
 KGGCNSCCCC AGTAANACCC TACCNNAYTS CAWTCTTTGC CAAASTTKGG ACGAANSKTG
                                                                                                                                    723
 GONTTOCAGE ATTTYYTTAS GANCNOCUTH TATNAGANTH GAGCOROYNO HOSTRTAKOA
                                                                                                                                   780
 NASSEAYCOS NGNKGGGGGT ACCCUCCTMG GGGGGTTTTT NSSGCCCCCC AWAYGNKSTG
                                                                                                                                   840
 GCCCCCNNGG GGAAKAATWT MWWTMCNSGG GGGAAWTTTT NTSTGGAMCS GGGACYCCCR 960
 BEGGGKTTTT TECCECONCSA MNAWANGGGG GGGGGANAYT NTGNEGNGGG KWNTTTATTT 1020
 YTYYCYCCTM TKACMSGGGG GTTTKKAKNG GGGGGAGAAA ANAAAAAAAA RAKGGYKNTT
                                                                                                                                 1080
 TURNICACNOT GRWNWNWANR NAGAGRTOUT CROROGROUS SNITTOTITT MGNSGSYGGG 1140
 MINIGHIDIAAA ACNIKSRMMAC KOSYTYSSSI SGYCTOSTOS MONGGGGGYGG MGSCGNSTYN 1200
 HINKAREWIA THIMGNOSTH SCOTTONICHO BOKNEHTATO IMPONMYGGG I
                                                                                                                                 1251
                    1 INFORMATION FOR SEC 10 NOTED
              : JEQUENCE CHARACTERISTICS
                 A LENGTH, 1399 base pairs
                 B TMPE: nucleic acid
                 C STRANDEDNESS: sing.e
                 D TOPOLOGY: linear
             LL MOUZOULD TYPE Denom CONA
             who sected the section of the sectio
RANT BURERS MOASTATORD TAANTETENST BENTSANDAA A BEGGAAGOTA TTAOTA SOTT
TARBURA DEPARATION STEERSTAN KITSENDER BURAUTUGG STEERKINAK
CTRANGULUS TUUUTAAGO OTTGATOGOO CAAAGOSTTA TUUTUAUGAG ATCAKCGOOO
AARAARTIBAR UTUUMUUGGA ACCOGGGGYR GNCAATAART DIAAARUUUUT GGCMCTGCTG
                                                                                                                                   16
 TO SAN TO SEE TO STORESCO ANTIGGRACTO ASCOSOMMA TERMAACKA NAACOSTUGI.
                                                                                                                                  24
```

TO SAA TOOTA STOOMAAAAN TOTTOMAGTWON GOODTRACTO TOUTAAACTS STOMOGAGTOMA TOTS SA TOOTS COOKS STOOM COOKAGTIGGT TOTTOGGNOOT TOTT TAMODUM AAAMCAAGTA TOOTS TONT COOKMESSION GOODTOMA

5.5

| CONWATCTGG NGGTCCCNAN KYYGGCGTTC NMAATSAMNA NMNRGGGTYT TSCYACCMMN AACCGKNKG KCCCCMKCTK MANAAAKATT RATCAMKWNG GGNKCKCNCH NAAMACCSCN TMYCSSKWGC GCSMYNANCA SNGGGGAGGW GGSGRMKMCT CTMTCTCNCT ACASMNKTCC GCSCNGCGCH MAAMANRAKA CTAKCCGYGN CTSNNMKMNN TCCWMWNATC NTYYGKKCNN KCTMKATNWC CSCTSKCNCK GGNSTCRCCY TCTMNNTCS AGCKCGSKNC WACNCACACK NGWCTYTTCC WKNNMKCNKM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 780<br>840<br>900<br>960 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| (2) INFORMATION FOR SEQ ID NO:321:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 296 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
| 11 MOLECULE TYPE: Genomic DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |
| TITE SCHORES DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| .X1. SEQUENCE DESCRIPTION: SEQ ID NO:321:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |
| GUGNTATACA TOWOTOTGYA COSAGGATOW ANTDOGGOOG MAAKOTWSTM CAJAGATOTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
| AAAYTOTGCA MGAGCGGCAC AKAKYSTCGT CCMRACCGGG CAYACWCCWG CNCGCCCCWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                       |
| CTTRGACCGG GGCKATASMC ACCGTTGGCC CCGGCNCGCA CCTACACCAC CCACGCCCCWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120                      |
| AGCGCCCCW TRAMCANACC ACCCCCCWTT TAGGCCCCA CCTACACCAC CCACGCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180                      |
| AGGGCCCCW TRAMCAAACC ACCCCGCKTT TACGGCCGCG GCGCCGGGG CCACCACCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 240                      |
| COCCACCOGO: ACCACCOGOGO CCACCACOGO CCACCAGO CCACCACACACACACACACACACACACACACACACACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 296                      |
| D: INFORMATION FOR SEQ ID NO 321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| : SEQUENCE CHARACTERISTICS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |
| A: LENGTH: 1073 pase pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
| B TYPE nucleic acii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
| I STRANDEDNESS Single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| D. TOPOLOGY: .inear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| .: MOLECULE TYPE: Genomic DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |
| KI SEQUENCE DESCRIPTION, SEQ ID MO:300:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| NGNGSGNEMY ATCATONTON DECACOSNES MITCHATTEGG COTSCAATOT TOTMNASAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
| The second of th |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| The first and the first that the fir | 1:1                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                      |
| TAAACCCCCC CGGNTCWTC3 JUGCGCCAA ATYCYTGCC WTKGCNACCA YCCCANCCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 360                      |
| LIGHTATIGGTS RAANCASTSG GOPLACTORN MORRES - WTKGCNACCA VOCCANCETS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 422                      |
| LIGITATEGTS RAANCASTSG SCRAACGGTM MCCSTACCKC TEGGTGATYC KTEGGNTCCS SNAATTEGGG GATTTACGGS SAMGGTTAAY CEAGGYCCCC THTGCVTCKY CNACACGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 490                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~                        |

JNAATTOGGG GATTTACGGS TAMGGTTAAY CCAGGYCCCC TNTGCYTCKY CNACAACCGG 542 ATCMWCNCGG TACCTKTTAA AATTUTTTOT JGTGGAACCC AWYCKAAAAA NMTNTYCGCN 5

TOCAMMOGOG TYTOGAAKKT TNACNTOGET NACCOCTNON TYTOGAASTTT TOTTGNACCO

```
ACCANGGGNG CTCCCGTNCW WGGCTCCCGN SNSMAMAAAN NKCKCCKGGS CKGARRNMNA 1020
 MCTCSNGNGG WTCCCKNKTC NSCNSGNCGS YGGNSASWCC YNYCNCCACA ANG
                  12 INFORMATION FOR SEQ ID NO:323:
              (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 1166 base pairs
                (B) TYPE: nucleic acid
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
              ii) MOLECULE TYPE: Genomic DNA
              xi: SEQUENCE DESCRIPTION: SEQ ID NO:323:
 CGCCCCGTTC TTMMMTTCAY TCATTCACCG GGMTCTAGTG CGGCCGCAAK CTTGTCKACA
 BATCTCGAAY TOGGCAMGAS ACAATSTOGG GTKGGGCAAT GTCNGGTGGG GCAACTTTGG
                                                                                                                                      120
 SETEGGRAAT MEGGGGTTAA COCCGGGTET RATEGGTSTG GGTAATATES SETTTROTTAA 180
 TGCCGGCAGU FACAATTTCG GTTTGGCAAA ATATGGGTGT GGGCAATATN GGGTYCGCTA 240
ACACCGBCAS TGGRAATTYC GGTATTSGGT MACCGGTRAY AAYCTGACCG GGTMCGGTGG 300
TTYCAATACC GGTAACGGGA ATGTSGGTTS YYYACYCCGS GGAACGGNWW YTTNGKTCCT 360
TMMCNCTSSM CCKSAAMTSM KMGGTSTYCT MTYCNNGGAS TAMTYNMCCC CCGWAYCKSC 421
WAYDOCTOOT CATYCOMOMO SGSGYCOTCA MNCCACCYTG NGYYCCOTCO MKMTCYCAYT 480
EMNTECOGOTW COTHIMMNOC CSCHCRYCTC AMCNOTKSOK CACCHATMYC CSACKCHTCT 540
MCYMCSCAKU MTTCCCCTCN CTTYTNNCCA MCMCSCTCTM TCMAACTCKC CCGGYCKCNC 600
MYSTSTCKSS AYNMAASSKE TYSYMSNWYS YMYSKSKSAG WYKNMSTSSW ASTSTMYNTT
                                                                                                                                     660
TOTOTOTOKOO ARMOMAGORO TOTOHOLITO INTURCINIE INTURCINIE INTOTOTOTOKOO MOTOKACSOO OCAJAKAYMO YAWOMIMITOO MOTOKACSOO
                                                                                                                                      720
SYYCNNYCOM NMCWCMTOWC TWNAKOANCH TTOTTOTOTO MMYMTMACKO WCNNTCNCCK
                                                                                                                                     780
SGACCYTCTC ACTYMECCEM TOTCOTTMCK COYMWONTCC MEYNCOCTCC NMTCMTCKYT
                                                                                                                                     840
SETENCHMRY SYYYAKEAKS MMCTSSSSAN KMCAKSTKCT SSSSCAKMKS ACNOKOGOWS 900
TOTTOTTATOS WUTGTUWGTY ATSTOKOTOW SNYTMYMKMO ACNOKOYAYT SNAGTMNMWN
                                                                                                                                     460
 TOANGMETET STRYCTCWCK ASSTYCKCOM STMCKCNYMC NRWCTUROCT SKKCCNCCRN
SUMMCMKCTM STCTCCWMKM FESCHOOGAT STMMKSTCTC KCNCMTCCCT SHKCCNYNYNT
                                                                                                                                    1020
                                                                                                                                    1180
 CONTROL STEED STEED AND ACCORDING TO THE TAKE OF THE TOTAL AND THE STEED STEED
                                                                                                                                    114
AUTOTOTRON SKOSKOMOSK MTGTOS
                                                                                                                                     1155
                    D INFORMATION FOR SEQ 10 MG 324.
              is SEQUENCE CHARACTERISTICS
                 A - LENGTH: 1230 base pairs
                 B TYPE bublet sold
                  TRAMPENHENT COLD CA
                TOPOLIST TEMAR
             OU MULECULE TYPE Sended has
             AL SEQUENCE DESCRIPTION FRO ID Whispa
MONGGNINNT CWTACATOWN TOTNCACOS E MOMTOWATTO OGGROOGGAW MOTTOTMNAS
                                                                                                                                      50
AGAATOTOR: AAFTOGGCA: ANATOTOTTT TOTMTAKTOT GOGGCANO: GAGGCCKTAT
                                                                                                                                      . . .
```

PROSPOSSO BIBLITATAN PAARINGSSS TOTTKIBATA ASSISTENSIS TOTIKSAGATRA

| 7 | recektiess | GGCGCCGCCN | AAAAACCACC | AATYCCGYTG | GGGGTGKYCC | CMCAGGCSGT | 480  |
|---|------------|------------|------------|------------|------------|------------|------|
|   |            |            | AAYYCCCAWT |            |            |            | 540  |
| 3 | LAATTACCCC | INCGGGNAAA | GRRAAAANAA | ATCNTCCNTT | TGCTCGGYCA | YCTTTMTTGG | 600  |
| 3 | AAAAGGGGC  | ATGGCSCGGT | TYYTTTACCT | CAAYCCCCNA | NCANTWACCT | YTCCSCCCGG | 660  |
| 3 | GGGNCANAA  | CGSTINGCIC | CGSGGNAKCC | TKGTMCCCGN | ATCNAAAGGC | CNGAATTTGG | 720  |
| 7 | YYSSTYCNA  | ATTWTWKKKY | CCCCWCNTTG | YAAAAAKCCA | AAASAKCCCK | YCNCAMMYKT | 780  |
| N | GGGGTYSSG  | GCCKNYCTTK | SNMTTAAACC | CYCCCCAAAA | YYNSGGGKKT | TCCGCYNSAT | 840  |
|   |            |            | SAAAAAAAAY |            |            |            | 900  |
|   |            |            | CKYSCNATTC |            |            |            | 960  |
|   |            |            | YNCNANTTYC |            |            |            | 1020 |
|   |            |            | NKTTTYYCTY |            |            |            | 1080 |
| A | KMAAAKAGN  | KEKMTKNNSA | AANCCNCCCC | CTSTYTNYTT | NKTNMNCKCC | CYGGKKNKGM | 1140 |
| 3 | WSWYNTTCT  | NCCCRCCCCC | YNYNKTGANA | AAMMNCYCCS | GGSTMCRNAN | ASNMNTTTCK | 1200 |
| 3 | TSTNGMGCC  | KMBASNANAN | MCAMWKWYCC |            |            |            | 1230 |
|   |            |            |            |            |            |            |      |

#### (2) INFORMATION FOR SEQ ID NO:325:

- 1 SEQUENCE CHARACTERISTICS:
  - A: LENGTH: 1022 base pairs
  - B: TYPE: nucleic acid
  - C STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (1): MOLECULE TYPE: Genomic DNA
- .k: SEQUENCE DESCRIPTION: SEQ ID NO:325:

| NGNGGGKIMA  | TMAYCWTCTC  | ACSSGGTCTA  | TGCGGCGCAW  | CTMGTMAASA  | GATCTCNAAY | 60                                    |
|-------------|-------------|-------------|-------------|-------------|------------|---------------------------------------|
| TOGGCAMNAN  | GCATMTCMMC  | CATATATAAC  | CATTGCGTCS  | GYWTGCAWCT  | CRAAWCTGTC | 120                                   |
|             |             | GTGGMWTGYT  | CWTYCCTRAA  | SCCCTCRATE  | TCKTKTATYC | 180                                   |
| STREGGETYS  |             | RATESCTGCC  | TTKTAYCATT  | RATGUAAWTA  | WTGGYCRAWT | 240                                   |
|             | RACGGCWYCT  | TTTYCCGCRA  | JRACAATIIGA | TTGGAWYCGU  | TYCGCRAGGC | 300                                   |
| COGJCACCAR  | ACCIGGGCNCC | AAAGGYCCGC  | GCAAWTSCCT  | JGKTIJAAAAA | TGGTGCAAAC | 360                                   |
| HAAMCHATCC  | CCGGYTTRAC  | CGCAGYTAMC  | ACAAKAAAAT  | TCCCVTGGCC  | GCACTAWNTH | 420                                   |
| CTY GRATCHY | CWYCCCCACC  | TTRAACTTGK  | YTGCSGTATT  |             | CTCRACAGCM | 48C                                   |
| CONCOCKTOR  | AACCTGCGGT  | GACTCCAACT  | 3GTCTGGYC3  | AASGGGGGTT  |            | 540                                   |
| RACCCCRANN  | TCGCCAAATT  | TTCMCCCCCC  | TYCGGGAAAN  |             | TOSNAACOSA | 500                                   |
| CMGGGNNYTW  | NAACCCTGAA  | CSSSGSNKGA  | MYNSCOSGGA  | AUTTTTCCCT  |            | 56û                                   |
| AAANCCTTTT  | AAGGTACCCC  | KGGNGGGGKG  | lacyymmaga  | AAAACAACCC  |            | 720                                   |
| TGGAAATNTT  | TKCNCCCCCA  | TTCHSGGGGG  | GGGGGGAMG   |             | TOMSCHMTYY | • • • • • • • • • • • • • • • • • • • |
| COMMODGGAAT | TIVYTCGCCSG | GAAYYOGGSM  | .ukakuuma'i | NOCCOMNWGG  | SKYSTOSMAR | n 4                                   |
| FORATMAWWT  | TISTTTTYMO  | addaciniana | 120YARMOUT  |             |            | 3 7                                   |
| U ZNMYMWYT  | TOWNSWRTT   | TNRGGSSNMT  | TYMAAAMMAN  | 1030200000  |            | 960                                   |
| mmir idher  |             |             | MY COLOMBA  |             |            |                                       |
|             |             |             |             |             |            | 102.                                  |
| *           |             |             |             |             |            |                                       |

#### 1 INFORMATION FOR SEQ ID NO.326

- . JEQUENCE CHARACTERISTICS
- A LENGTH 1083 pase pairs

  F TYPE nucleis total

  TYPANDEDNESS Single

#### (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 326 -

| MNCGNNKNTA TAMAYCWYCT NCACCSGGGA TCWATTGCGG CCGCAATCTT STMAASAGAT | 6.3          |
|-------------------------------------------------------------------|--------------|
| CTCKAAYTCG GCAMGANCCG CAWCTATTTG KGTGRASCGC ACCAGCGRGA CCTCGCSGKT | 120          |
| CKTTYCTTGC AGRGAGGCCK TGGGTGGCRC CGGTGGCAAT GCCAACCGCC CCCCAAAACN | 180          |
| CCGCAAATMY CRAAAAACAA CCCSGGGGTA GKTCCSGGCC GCCAAATMAA TAACCGTKTT | 24C          |
| ANCKCAGGEN ACGGCCANCO GGYCCEGCCC AACCAAGENA COTCCCGSCC NATAGGYCCG | 300          |
| GTGGGGGCTG CCKTATYKCC AASTCGTCAY CTCNACGGGM CGGYCCMCWT TCCGCCTCAT | 60 ق         |
| CCGTCTCTCC TTMMATTTTC CRTCCACYKG GCGGGGAACY TTTTTNYCNC CCTTGSCMAN | 420          |
| CACCNAAGGY CNAAAATTNC COMTGCCKYG SNNCAAAYGR GATTGGGGTY CGKXTTTTNT | 480          |
| TENMECMAAC COCCNTTINA OGCCCCMATO COYTWATACC COCWWMCMNS ANGKITGNSA | 540          |
| AAKTNNCCCC AAATRCCAAA MITCITCGCC NTTIMIWMCY YYCCITTCCC CMCCCWNAAA | 600          |
| GGSCCRCCYY TCGGGAANTY TCCCCNCAAA AWTCAMWCCM TTTCCCNCCA AGAAWTTCSG | 660          |
| SACTICITIN TICNGGGNAM ATANATYYTI YCKINGGGSK TICCGMTCNC AMMAATNICC | 720          |
| RGGGKAAMCC AGKNINNICC YYYYCCCCAA NNIYCCYKGG RMCYNNYYCY TIAAANRASR | 760          |
| SAACCCKSGG GKCYNCNCSS TARCCCCCAM KAAAATTTUU CCCSSKTTTC TYYNNKKMRW | 8 <b>4</b> C |
| GCCCCCSAAM ACTMIWAYTT TCCCKCGNNN TITSYCCKC3 KCAMWMWMTG KKNCTTTTTT | 900          |
| YCSCMATAMA CTINGGKCCT NTCNYGSGCG CMAAANAAGG CGCGSITCIN ITCWMAMACA | 960          |
| YNTSGIMMMA SAAKAKWATA AWNNTRXXYK TKNNCCCNCC CKCKCTTSNN TNKCCMCSKS | 1020         |
| GEERMANKER CHCICCHOIC CKCCINCKNY CCKMAIMCCC CCCCRKCCOM NCMINIIIKI | 1080         |
| CCC 1083                                                          |              |

- (2) INFORMATION FOR SEQ ID NO:327:
- (1) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1069 DASE PAIRS
  - (B) TYPE: NUCLEIC ACID
- (C) STRANDEDNESS: SINGLE
- (D) TOPOLOGY: LINEAR
- (II) MOLECULE TYPE: GENOMIC DNA
- (XI) SEQUENCE DESCRIPTION: SEQ ID NO:327.

```
GGGGNNKYAT MCAYCWTCTS YACSGGGMNC TATTGCGGCC GCAWYTNGTM CASAGATCTC
GAAYTCGGCA MGAAAAAAGW GATGTGCTGG ACCTTMCCGC GCGGGACGCR ACCRACANAG 120
RAASCGCGCC ANAATATTGG CCACAKTTGG TCACATATTT ACCCAATTMT AYCAGGGAYT 180
MCCATTOCKG GGACCRACCG CACAATCCCR ATSKTGGTTT GCRAACCCTR ACCGTCCCCA
                                                                   240
MYTYCGCCRA STTGAACCAG GJCFAAAAAA CGGCCRAAWY CTCGCCCTGA NTCCCGCTCS
                                                                   300
GOGENAATAA CTAGGCCCAT TKAACGGAAC CGGNGGCCGC NANTTGGCCA ACAGGTCCTR
                                                                   360
ACAAAGGGGC CCCASYYCGG CCGGWTCCCW TTYCACNCCC TNKTCTCKTG CCGAATYCGG
WTCCRATNYC CCWTGGGCCT TKTCKYCKYC KYCGGTNCCA AWICTNGGTA TNOTATROKG
                                                                   480
TOCCOTAMAT SCANATOTGG GOKYCCATTU NOTGGSNUTG MATTTAMMAN SRRCGGTTCT
                                                                   540
TICKTICORA AACCOSMIGG GECONNMECA AAAAATAATA ATAATAATUK YGSCITTOAA
                                                                   6.21
ACCCCGCCCC CCCATTCRWT CSGTTCCAMC CCCCMGNGGT TAAGKTGGGA ATTTYTNAMC
                                                                   661
YONARGOOCT NATITEERINA NAANOOYOYE GGGYOTEHAA CHENTITITT GEKSENTOGE
                                                                   7.2
SCTORTITISC CHARACOCCAN ATTINTYNYGG GGYCCKTNAN ACMOGGYCRO RODGGAAATT 190
TITYIGGITT AACCCCAACC TITTCAAGCC MITTYTYYT TROCGGCSMN TNGSSGGGNT
ESSUENTICY RARKKOUNAN GEGGGWYCYN CCCCRMNTTT CTTTTTTTTT CCGTNNMAM 900
NGKTTCTICA AASMCCTCCT SCCCCCNSAA ACCCCCTNAA GTTTTYCMMA AANNWYDNGN 960
EMCCCCCCC MENANAAAY YOSOOCGNEH ACSMSNOGGA MCCCCCGGSH NYTEKTYTTT 1020
THEMSGYCCC CORMANYYTT TRAMAMANER GAMNOMITTY TRANSCHONK
```

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1210 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS, single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:328:

| NGNGGGGKWK  | MATACATEWT  | TCTTCACGSG  | GGATCWATTG                              | CGGGCCGCAW  | TCTNGTMCAA | 50          |
|-------------|-------------|-------------|-----------------------------------------|-------------|------------|-------------|
| SAGATCTCGA  | TYTCGGGCAM  | NACCCACCWC  | TCCRAAAAAA                              | ACCCRAAWCT  | CGGGSKCTYC | 120         |
| GARAAGTGTT  | GCCCGCKTTR  | AATTTAACAA  | ATTCAGTGTC                              | ANAGTGTCA   | GGCKTTACWT | 180         |
| YCCCGGCAAA  | GGGGCCACAA  | CCTGCAGRGA  | SCACYCRATG                              | GKTGYTGKT3  | CNCGGGCGGG | 240         |
| CCGGKTNAAG  | GGACCTGCCT  | GGGTKTGCSC  | TMCAAANATC                              | WYCCGCGGGGT | YCGCTGGRAT | 300         |
| MCNCAGGGGT  | GTCAAAAAC   | EGCAAACAGG  | CACSCCANCO                              | NTTTACGGGG  | UTTAAAANGA | 360         |
| AAAAGBGCTG  | ATGCCCCCAA  | GGGGGCCGC   | VCCCAACCTT                              | CCCTTTCTCA  | ACMACCCGGT | ج يُنه      |
| SECTOREC    | RAATCCGRWT  | CCRATNYCMC  | CWTGGCCTTK                              | TCKYCTYST:  | JGGTACCCAA | 4.80        |
| ATCTGGGTAT  | CCTATASTGT  | CCCCTAAWTT  | CCAAATCTGG                              | GCTGTCCATT  | TSCTTGGCNT | 540         |
| TOCANATTTA  | CCANCAA IGU | TTTCTTNCAT  | NCCAAAAACC                              | GNTKGGCKCC  | NRACCCRAAA | 600         |
| AATARETAAA  | TAATAANNGG  | KONNTTYONA  | ACUNCCCCC                               | CCCNATTICA  | TYSNGTTCCA | 660         |
| MMNCCCCCAG  | NGGKTAGGTK  | GGGAAANYYC  | TOMACCYYCA                              | ANCCCTWARS  | TTTTNGRAAT | 720         |
| KAAACICTYC  | YCNGGGTOWW  | TYMAAAAAAMA | NTTATTTGGN                              | NGNTTTCGGG  | MWNCKRENST | <b>78</b> 0 |
| SCCAAAATCC  | MAAATANTTT  | YYTGGTYCNA  | TWAAAAAAMCG                             | YGNCCMNCCC  | GGAAAAWTTT | 840         |
| TTNTGKTTSA  | ACCCCAAAAC  | YTTTTCMNAA  | NC3SKTTTTY                              | CYTTCICICIC | AMNWTGGGYS | 900         |
| GGGNA IKGYG | SCYTNICITA  | TKTKYTYMTW  | IMGGGGGGNN                              | MKMTCMMICC  | CCMTTTYYCY | 960         |
| MYWRTTTTN   | KCCCCCHTNMP | NNRAANNGGN  | YTTSYNANAA                              | AAGCNOCCCC  | SCCKNCCCNA | 1020        |
| AAAAWICCCN  | NNNARAKTNT  | TTMKANNEMN  | SOKONKNOKY                              | ACCCCCCCAC  | YNMNNAAAAA | 1080        |
| AATMY CONCC | RASANMCASM  | NMGGRGNPSC  | COCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC | THITTMINNE  | TTTTTTCSPA | 1140        |
| BAGCKICSCG  | MNNAHMENCY  |             | INGINGIGN                               | GRIGHNORCE  | CONAGAAMWE | 1230        |
| TENET TOOMS |             |             |                                         |             |            | 1210        |
|             |             |             |                                         |             |            |             |

- TO INFORMATION FOR SEC IN MOLICY
- : SEQUENCE CHARACTERISTICS:
- .A: LENGTH: 1105 base pairs
- B) TYPE: nucleic word
- CTPANDEDNESS: single
- D' ToPology linear
- .. MOLLOTULA TURA General INA
- A PRIMING CAUMINGIN OR IN NO. 11.

|                           | TMIRTOWIST |                           |             |             |             | າ    |
|---------------------------|------------|---------------------------|-------------|-------------|-------------|------|
| TOAAYTCGGC                | AAFAHACACC | ACCCCCCTCT                | COSADATATM  | CAAATGTTGT  | JTKTGCCAAAA | 127  |
|                           | 3000300000 |                           |             |             |             | 130  |
|                           | RACCCCCCCA |                           | ACGCTTTAKC  | CAAGRAWYTC  | artagaceae  | 240  |
| Addition to Associate the |            | والمرافق فيافيا والمسارين |             | 77A41230733 |             | 3.7  |
| AMIND TOCON               |            | ACCEPTED :                | COCOMPACC   | 333333333   | TTTGPACGGT  | 2.50 |
|                           |            | مستسد دسالالات            | 32300000000 | 44          | - w         |      |

| ATTTCSGRAA SAACCCTNY CCCGGGTTTT YCCAAAAASGGTC GGNCAAANGG GCMAAAACCCS SACCKNGTTTAA AWKSCCTCYY CTSCCCAAAY TCCGGSSCCCGG CCCGGGGGGA NNTTTTTAMA GKCCGGGSCCCT TTKRWAAAMN KCTSCCCCNG GNCCCGGGGAAAAAAAAAAAAAAAAAAAAAAAA | ACCCMACTT WTTCCRCTIN GGGGGGGCWN 720 CGGKCMAAA NNGRKTTGGK TINGGCNACC 780 STITINITI SCCCCYKAAA NYSCCCCCC 940 KKTYCCCCT CCCCAMAAAA ANACCCCNYC 900 NNGGGGKCM GGKTTATTMT NNNCCSCCC 966 CCCKNCKNC GKAMSMSCGC TCCCYCTCNC 1026 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### (2) INFORMATION FOR SEQ ID NO:330:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 936 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- 111 MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:330:

| NGSNSNKNNN | TAMAYCWYYC | TSCACSNGGA  | ACWANTGCGG  | CCRMAWCTHS  | TMKASAGATO  | 60     |
|------------|------------|-------------|-------------|-------------|-------------|--------|
| TMGAAYTCGG | CAAGAGCGGC | AAGAGTGTGT  | GCATCTGGTC  |             | CRCGGTGCCG  | 120    |
|            |            | NTGCGRACAC  | CAAACCCKTC  | GCGGGYCACC  |             | 180    |
|            | CCAGGCCACC |             | YCTYCTGCAA  | CGCARGCCGT  | TYCGCGGGCCG | 240    |
|            |            | TGCGGTGCCC  |             | CSCAYCAAAA  | CCGCTCCGGG  | 300    |
|            |            | AATTTCNTTC  | CCCTGCGGCT  |             | NTNAAGCCAC  | 360    |
|            | CGGGCKTCTC |             | ATYCGRWTCC  | RATAYCGCCA  | TGGCCTNKTC  | 420    |
|            | GTACCCAAAT |             | STATANTKYC  | CCWAAANRCA  | AWTGTGGGGK  | 4 8 C  |
|            |            | ATTTAMMACA  | MCGGTTTCTT  | TCWTACCAAA  | NACCENTGGG  | 540    |
| CCCCRACCRA |            | TAATAAKGTG  | CWWWCAAAAC  | reageacaca  |             | 500    |
|            |            | AGGTNGGAAT  | DDDDAAMTUT  | JA JCCCATAA |             | ล์ดีอิ |
|            | GGGYMYCAAA | AMMCTTTTTT  | REGMETTOSES |             | AAAACCAAAA  | 523    |
|            | CRWAAAAACC | GCCCNCCCG   | YAAATTTTTT  | GRUAACCCCA  |             | 780    |
| COMMITCAA  | YCCCNSACAA | TNGGSGGNKN  | NGSSCHTTYT  | TWTTTTYYNNA | JJGGGGRRWC  | 340    |
| SNCCCCNAAN | YYCCNAANKG | NKCCCGGNMA  | BAAGAGANTT  | YEMKAAAAAS  | cacararaa   | 300    |
| NAAAYACCCC | MAAAKWTTCM | AAASMSCNING | Y22222      |             | _           | 936    |
|            |            |             |             |             |             |        |

#### 2 INFORMATION FOR THE THE WEST

- JEQUENCE HARACTER 1871 13
- A LENGTH 1941 base mail.
- B TYPE nucleus word
- C STRANDEDNESS single
- 1 POPOLOGY linear
- 10 MOLECULE TYPE Genomic DNA
- A: SETABLE DECOMPOSION RET IN A 1917

CONTROL ATMARING WE SHOW IN THE SERVICE SERVICE SERVICES OF THE SERVICES.

```
SCGGRAASCG GTGCCAACCC RAAACNCKTT GGGCACYCGG KTSRACTTTA AASGGTAATC 300
TERTECTECT GGGCTATGGT GCGCCACAAA CCTSYTGGCG WGGGTCTGGC CCTGGGYCAC 360
CGYCRCNTTT TATNITTCCK YCTACACNCI TKGGTYCAAC CAACCCACTI CACMAAATTG 420
TTTTGGGKTG GGGSSGCCGG YTGTNNCCGK TAATAATCSG NTGKTCSGCC MYCACCGGWA 480
CCATANCETG GEEGGESETG GEAAATTTEE SAAATCATYT CETTETGRAC CCCCACAMRC 540
CTNSAAATCC GRATCAATNC CCCNKGGCTT NTCYCTCTCN GTRCCCAATY TGGTTTCTAT
RKTNCCCYAA TSCAATTGGS TTYCCRTTSC YGSTTCCAAN TTNACAAMAS GGTTTYTCMT
                                                                  600
ACCAAAACCC NTGGSCCNNA CMNAAAAKNA RAAAANAKGG KCTTTYAAAC CCCCCCTAT 720
TCAWYCGGTN CMRNWCCCCG NGKAAGGKGN GAAAYTTHRA CCCAANCCMT ARSTTSGNAK 780
AAACCCYYCG GGGTSMCAAA MKNTWTTSSC CTTCGGMCTT YCCAAATMSA AAATYYTCKK 840
KRMNAAAAMC YGNCCCCSAA ANATTITIGT NAAMCCCKMA YYTRTTWMCC WTTITCCYCC 900
CCMCNNSNSG GNTNCCCTTY TYATTTCYMM MCRNNSGACN CCCCMNTYTT TWTTCKCWCN 960
MMARGSNNYT RGRMMNMNCC CCNCCCCNAK MTCCNCAAAK NTTTNAACNN NNKYCKCCCC 1020
CCCMWMNKNC CCCCMNCMTT TM
                                                                1042
```

#### (2) INFORMATION FOR SEQ ID NO:332:

#### .1, SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1073 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D: TOPOLOGY: linear
- 11 MOLECULE TYPE: Genomic DNA
- (M1. SEQUENCE DESCRIPTION: SEQ ID NO:332:

| NNSGSGMKKK                              |             |             | GMTCWATTGC   | GGCCGMAWTS | TNGTMAASAG      | <i>-</i> <b>-</b> |
|-----------------------------------------|-------------|-------------|--------------|------------|-----------------|-------------------|
| ATCTCGAAYT                              | CGGCAAANAK  | ACCCMAYCTC  | AAGTGTRAYY   |            | TCMTCGCGNG      | 60                |
| TCAACMCCAA                              | AGCCGNGTCA  | CCGYCTCCCT  | GGGGGGCAC    |            |                 |                   |
| CGCGCGCCAC                              | CGYCAAAAGG  | KTCWTTRAGG  | 2020         |            | <del>-</del>    | 190               |
| CACCGITHIT                              | TGGCCCCCCC  | RAWTYCTPAC  | GGGGAAAAGGT  | CAMCAATTOO |                 | 240               |
| MESSETTEGG                              | CAATAAGKTN  |             | CCGCAATWTC   |            |                 | 300               |
| TICKTTAACG                              |             | TTGGGCAACG  | JOGURWICYC   |            | ATTCCCNCAT      | 360               |
| CPNAGCASYY                              | GRIGRACEST  |             | GETYANYEG    | YTYCNTGGGC | GCCYTCGGCC      | 420               |
| TGKTAGCASI                              | CRCTAACGGT  | CMCCAGGCAA  | TACCKTTGGC   | TTTRAACCAC |                 | 480               |
|                                         | 1.000000000 | CIGRAINTTPE | THICHIGRAA   | AANMCCACCI | AACCCGGNTT      | 5 <b>4</b> 0      |
| PATCTGCTTC                              | WICFNCMILL  | JCCGGGTTCT  | GCCGTTTTGR   | AAYCTTNATC |                 |                   |
| STITTAMITTIC                            | CCMANRAATT  | CGGYTTGCCA  | COTTGGCCGS   | GGCTGGTTTM |                 | 600               |
| AMATECNESS                              | GCGGGSAAAN  | AMTTSGGNTT  | SGSCCGGTCC   | CCCGNAATAT | CGMWCCTTRR      | 560               |
| THAAATTGSS                              | GGATCCCC:   | JOGNAYOCCO  | TOWNKIGG FOR | ***        | - C++ - 3(314). | 720               |
| HICCOTTTON                              | RACCCCGGGNC | IGGGGGGTGG  | 2000         | ····CULMU. | TWACAATTU       | 1 € .             |
| 111111111111111111111111111111111111111 | DIRABITTON  | CCCKCNKINT  | 2010 Cartana | COTMYNNAAA | AAGKGTTTGN      | H 4               |
| ASAAANSYY                               |             |             | MILL THANG.  | TYYCAANTTC | CANACCTITA      | 433               |
| TIMGGGTTAN                              |             | TTTTMCG3330 |              | NMSSENCOOS | AAAAAAAGNK      | 960               |
| MENSYCHMAN                              |             | TMKTYCCCCC  | NMWRNSNMC)   | NCBKKCNERY | NGNSNMNCCT      | 1021              |
| · · · · · · · · · · · · · · · · · · ·   | SIMMINIKUGN | JSNCJGMKYM  | "MUNICUGMYE  | NGNKSNNCCC |                 | 1073              |
|                                         |             |             |              | _          | ·               |                   |

D INFURMATION FOR JET ID NO 333

- A LENGTH 1.81 bash bash
- B TYPE nucle: 1 4717

<sup>1</sup> SEQUENCE THARACTERISTICS

# (X1) SEQUENCE DESCRIPTION: SEQ ID NO:333:

| GNGACCRACL TRTCAATYCO CCGCCSGGCA TGGYCAMCNT GRAACCCNAG NAMSGGTTTG TACCCCKTNC CNAATTCCAG | A CCCTGNGTCA CCRASCAKTTA A AWTCGCGCTG GGTGAAGGCC GGAACCCGCGG CCRACNTGGCC CCGGNMCMAC GGCNCCANCT | CCCAAAANAC ACCGTKTUCW CCGGCCGGTN CWWCCGCCNA TAKAANCCGG RAACCGTTTY CYCGGGTNCT | CAACAGCWTC TCRAAGGTGC TCAGCCTGAT AGAACTGGAG CRAAACCRAG CTTGGTCGGC TGKYCCCAAT | GTCKTCAAAY AAATWTCAAG CRAACCAGGC TYCTGACCCT GGCRAATTCC GCCGYTGGCN CTCGGCAACC | GGGCCAGGCC<br>GCCRAGGCSC<br>ACCCAGYTCA<br>RWTCTGTSGG<br>CAGGANCCNA<br>ATTCCNATTA<br>CTGGACCANT<br>GNRANTNGGC | 50<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540 |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| TCTNTYCGGT<br>CGGKCAAAWS<br>AANTTTCSGG                                                  | GGGGCSGGCR<br>NGGGGGGGNA<br>GKTSTMSCGG<br>AMCCGCCSSC<br>SGGKTTCHNC<br>CACCCCCYCK               | ANMYTTOTOT AAGGGCCCC NVTCSCCCCC CCCMAAAAGCC CNCCSGKKGT CGGKCSMNNA            | GCCTMAAWGR<br>CCMTSTTTMM                                                     | CTTAMYCCAN GGGGKKGCCC CCGNGGTTTT RAYTTNKSCC MRCCCTTTGN                       | STTGGSAAAT TTCGSSNTCC CYGGKTTCAA TTTTGAACC CNNAAACSGG GNKTTTTAN RSCCCCCCCNN                                  | 660<br>720<br>730<br>940<br>900<br>960<br>1020             |

# (2) INFORMATION FOR SEQ ID NO:334:

- i SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 986 pase pairs
  - (B) TYPE nucleic acid
  - (C) STRANDEDNESS: single
  - D TOPOLOGY linear
- 11 MCLECULE TYPE: Senomic DNA
- X1 SECUENCE DESCRIPTION: SEC ID MO:334

| JNNGNNNKWN    | ATMCAYCWYY         | TSCACCSGS     | GMTCWATTGC     | 3000              |                                       |        |
|---------------|--------------------|---------------|----------------|-------------------|---------------------------------------|--------|
| ATCTMGAAYT    |                    |               |                |                   |                                       | 50     |
| JUTGCCGCSG    |                    |               | TGTGTGCATC     | TGTGTCANAG        | STGTCAACGC                            | 120    |
| 73.30.30.50   |                    |               | AACACCAAAC     | CCGTCCGCGG        |                                       |        |
| こしょししょうしんれん   |                    | GCCACCYCRA    |                |                   |                                       | 180    |
| JCGGCCGRAT    | CCTGGKYCAS         |               | AACAAYWYCT     | CCTGCAACSC        | ARSCCGTTYC                            | 240    |
| JUTYCGGGRA    |                    |               | JGTGCGCCAA     | GGTACTGGC3        | CWYCRANACC                            | 300    |
| Jelieggew.    |                    | AATSTTGCCN    | AATTTOCITT     | ~~~~~~~~          |                                       |        |
| - in anything | COCKARCOTY         | COCCUTOTO     | 177 C 177 C    |                   | · · · · · · · · · · · · · · · · · · · | 3.5%   |
| TISCOTNKTC    | RYSTYCKNOS         | STMOTONANT    | - CONTROCERA   | WTCCSPWTQC        | RATNYCOCCA                            | 4.2    |
| AT STREETERS  | 7777               | and amount to |                | TATATTGTCC        | STAAATGCAA                            | 43°    |
| : - amm       | a week a swar week | 711 11 - 24MM | TITWAMANCAG    | NGGTTTTTTY        | STICCHAAAC                            |        |
| 3 30/2/2      | CAAVICTHAAA        | AAT JAITNATA  | ATAATGGTGC     | TNTCAAACCC        |                                       | 34 ,   |
| MATTIGKCC     | AMMCCCCRGN         | GGETANEKO     |                |                   | IGENCECATY                            | 501    |
| TANAAAUUT     | немемеется         |               | MAATTOTMM      | AAJCCCAAGT        | JATAASNTTG                            | 660    |
| CMARARACCCA   |                    | JUNAANA.      | NTTNTTGGNY     | <b>JSNTTCGGMN</b> | YCATGGCTNN                            | 720    |
|               | AMERICAN LICE      | JGYCCAATAA    | AAMMMSGGYC     | JAMCCGGAAA        |                                       |        |
| FINAAACCMA    | AAKCCTTTTT         |               | WNTYCCTNCC     |                   | WITTITYTIGN                           | 780    |
| 33377711CCA   | ATGKYCCMAA         |               |                | REREMANTEG        | INSGGARTKI                            | 840    |
| TPMAAAAGG     |                    | ANTHADODUDG   | CUAROCCCAA     | TTCCTNNNTN        | KNIKNOOONST                           | 900    |
|               | PYWCHALLERS        | AASCHOOK      | Marian and the | AARAMOOOM         | AAAGAKNTON                            |        |
| naanaseesi.   | MMMSTTTTT          | CMMMC         |                |                   | AMMONIAL CIT                          | 96°    |
|               |                    |               |                |                   |                                       | ) ii - |

```
(A) LENGTH: 1074 base pairs (B) TYPE: nucleic acid
```

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:335:

| ngngggnkrn  | ATMMAYCWCT  | SATYYACCSN  | GGMNMWATTG | CGGCCRMAWT | CTNGTMKASA | 60   |
|-------------|-------------|-------------|------------|------------|------------|------|
| GATCTMGAAA  | YTCGGCAAAG  | AGYATKCTCG  |            |            |            | 120  |
| ACTTTGCAYW  | TCAACAKTCC  | SGGTGCCCCA  | AAAAAWTCWT | ACCCCCATMC | TYCKTGCASM | 180  |
| ASYTGCGCCC  | RATTRAACAC  | CCGGCCGGCW  | TGCTGCGCCA | GGTATTYCAS | CAGYTCAAAY | 240  |
| YCTTTKTAGK  | TAAAATCCAG  | CSGGCGGCCA  | CNCAGCCGGG | CGGTKTAGGT | GCCTYCRTCA | 300  |
| ATMACCAGCY  | CGCCCAGGGY  | CACCTTGCCC  | AAAAYCTCCT | GGGTCAGCCA | AATTYCCGCS | 360  |
| CCGGCCAACM  | ACCANCOGCA  | TYCTGGCNTC  | AATCYCACCG | GCCCGGTGY  | TAAAMMANMA | 420  |
| BRATCTCKTC  | MANCCCCCAN  | TCAGCSYTNA  | CNGCMACAGC | COGCOTTOTT | CAMACCGCCA | 480  |
| RTACCCCCWT  | CAACCGGGGGG | GTCAAACTUA  | ACAGGCGGNC | AGGCCTCCCC | CGGANSAAAG | 540  |
| GTCTTACSCC  | MNYAANAAAA  | MAAGNTCTGT  | TTTCCCCCTC | CASAASNAAA | AANCCCCSGC | 600  |
| CGGGCCTTCV  | NMMGGGTTTG  | GGGMANANAA  | AARCNCCGGN | GGAACGNATC | CGAAAMCTCC | 560  |
| CAAGTONOMT  | TWAWAACYCN  | NNAACCCCCC  | ANTTTTGGGA | AAGGNTCCCC | NTTMYCCCCC | 720  |
| TTTTASGKTS  | GGGMMYYCTY  | TAAAAAAATT  | CCCCAAAAAG | CCCCGGGAAG | GGTCMAMCTG | 780  |
| GGNAAATTTC  | CAAMCCNWGK  | TTNTTYNGGT  | TMCGGGGGRA | AATTYCNCTC | CCYYNNNGGG | 840  |
| CSSGSNNNAT  | TAYGGMSNMT  | TTTNNAAWTM  | NSGKKTSAMM | YNNKCCMNNN | SNNMSMANNK | 900  |
| TNAMCKCCCN  | CCTCNGNGKY  | DBCYNCCCSG  | GNAGNGGRAS | MKCCNANMAA | AYASGNTTNK | 960  |
| CGGAAMMCNIN | AATKGNNNSC  |             | TMTAAAMKKK | CNCNKCNSNN | AANRGMRACN | 1020 |
| CCCNSNSGMN  | RRGAARMTNY  | ACCCCCCR KW | GKGNKAAAAW | GKYCCCCCCM | AAAG       | 1074 |

- DE INFORMATION FOR SEQ ID NO:336
- : SEQUENCE CHARACTERISTICS:
  - A: LENGTH: 1195 base pairs
  - B TYPE: nucleic acid
  - C STRANDEDNESS: single
  - D TOPOLOGY: linear
- 11 MOLECULE TYPE: Genomic DNA
- x1 SEQUENCE DESCRIPTION, JEQ ID MO1336

|                  | May 1971 CALL | 77 174020000 | The second of the second | JGCCCAAWET  | DTGTGGADAG  |      |
|------------------|---------------|--------------|--------------------------|-------------|-------------|------|
|                  | COADMACCE     | A WITTOUTEN. | Domination.              | MACTOTOGCO  | COTOTACCC   |      |
|                  | CAUGCCCCC     | AUTSANCIAI,  | THENETGGGT               | TOCCOTY TO  | HTTGGGGGGG  | 1::  |
| GGGTCAC36        | INCTSINTET    | PAAGGCWTOU   | JGCACCGCAT               | TCGGTTTTGT  | RAACOCTGGG  | 2.4  |
| AAAWTGGCCA       |               | TOATSGGNTT   | TACGCMCGC                | CNGCCCCCAA  | IRCTTTCTTA  | 330  |
| - MAL            | NTCCTGANCS    | TTTTGAAYCC   | CGGGGGAAGA               | ACTGGTTGGG  | CNEGAYETGE  | 360  |
| TOGAACTTRK       | TONAAATOOS    | GCANAKTGTT   | TCHTAMGYCC               | CMCCGGAAAGC | NGAACSTACT  | 420  |
| TTCNGGWANG       | TCGGCNKCCG    | GCCCTATCA    |                          | ACGGGGAACT  |             | 480  |
|                  | RROCTCAATS    |              | POTTSCGKANIL             | caesaccersk | TY DECNAATE | 54.1 |
| DAAGDODMAG       | JETTAANHEE    |              | PRESENTA                 | aGEWTTYCGG  | MOGANKAMNN  | 5.0  |
| CONFINAMENTE     | TORBNBBBCW    |              | FITTAKAJA                | ANACTYCCEW  | ACCOTNTYSC  | án ` |
| ing the state of |               | and where    | Committee of the species | * *         |             |      |
|                  |               |              |                          |             |             |      |

| TATKSAGMGG  | TKCCGMAGMK | COSCOTTIKT | TKTGANAAMN | MSMRKNKKTG | CGMGYTCTSC | 960  |
|-------------|------------|------------|------------|------------|------------|------|
| GGGNTTTGTA  | GAGTAKTCGS | CSCSSMWGAC | WCSGMCMGNG | AGKNKTNNTS | YANTGARCGY | 1020 |
|             | MSCSCGCGNA |            |            |            |            | 1080 |
| GGCCNCGMINN | MGMGGANMGA | SANNGMGGMR | GGGGGKTGKC | TCKCSCCGNS | CSANGRAGAA | 1140 |
| GKTCNGSCGC  | CGMGGKYGKT | KTKTKNKTGG | YSTCMSSMMM | NAGAAAAGAG | AGGGC      | 1195 |

#### (2) INFORMATION FOR SEQ ID NO:337:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3572 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- ii) MOLECULE TYPE: Genomic DNA
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:337:

| CCATCTGATC   | GTTGGCAAGS       | AGCATCGCAG                  | TGGGAACGAT            | GCCCTCATTC          | AGCATTTGCA  | ກ່ຽ   |
|--------------|------------------|-----------------------------|-----------------------|---------------------|-------------|-------|
| TGGTTTGTTG   | AAAACCGGAC       | ATGGCACTCC                  | AGTCGCCTTC            | CCGTTCCGCT          | ATCGGCTGAA  | 120   |
| TTTGATTGCG   | AGTGAGATAT       | TTATGCCAGC                  | CAGCCAGACG            | CAGACGCGCC          | GAGACAGAAC  | 180   |
| TTAATGGGCC   | CGCTAACAGC       | GCGATTTGCT                  | GGTGACCCAA            | TGCGACCAGA          | TGCTCCACGC  | 240   |
| CCAGTCGCGT   | ACCGTCTTCA       | TGGGAGAAAA                  | TAATACTGTT            | GATGGGTGTC          | TGGTCAGAGA  | 300   |
| CATCAAGAAA   | TAACGCCGGA       | ACATTAGTGC                  | AGGEAGCTTC            | CACAGCAATO          | GCATCCTGGT  | 360   |
| CATCCAGCGG   | ATAGTTAATG       | ATCACCCCAC                  | TGACGCGTTG            | CGCGAGAAGA          | TTGTGCACCG  | 420   |
| CCGCTTTACA   | GGCTTCGACG       | CCCCTTCGTT                  | CTACCATCGA            | CACCACCACG          | CTGGCACCCA  | 480   |
| GTTGATCGGC   | GCGAGATTTA       | ATCGCCGCGA                  | CARTTTGGGA            | CGGCGCGTGC          | AGGGCCAGAC  | 540   |
| TGGAGGTGGC   | AACGCCAATC       | AGCAAGGAGT                  | GTTTGCCCGC            | CAGTTGTTGT          | GCCACGCGGT  | 600   |
| TEGGAATETA   | ATTCAGCTCC       | GCCATCGCCC                  | CTTCCACTTT            | TTCCCGCGTT          | TTCGCAGAAA  | 660   |
| COTTOCCTGGC  | STGGTTCACS       | ACGCGGGAAA                  | CGGTCTGATA            | AGAGACACEG          | GCATACTCTG  | 720   |
| COACATOGTA   | TOATTEDAKT       | GGTTTCACAT                  | TCACCACCCT            | GAATTGACTC          | TOTTCCGGGC  | 786   |
| JOTATOATGO   | CATACCICCA       | AAGGTTTTTGC                 | GCCATTCGAT            | SETETECESES         | ATCTCGACGC  | 340   |
| TOTOCOTTAT   | REGACTECTS       | CAATTAGGAAG                 | RTEADOCCAG            | GTAGGTTGAG          | GEGETTGAGE  | 300   |
| 755555555    | CAAGGAATGG       | TUCATOUANG                  | JAGATGGEGE            | CCAACAGTCC          | CCCCCCCACC  | 360   |
| COCCTOCCA    | CACCCATACCCAC    | GCCGAAACAA                  | CECTCATCA             | CTDAADDDDD          | GCGAGGCCGA  | 1020  |
| THITTOCCAT   | TSSTSATSTS       | GGCGATATAG                  | GCGCCAGGAA            | CCCCACCTCT          | 300000000   | 1080  |
| ATGCCGGCCA   | COATGCGTCC       | GGCGTAGAGG                  | ATCGAGATCT            | COATCOCCC           | SATAATTAAA  | 1140  |
| FACTCACTAT   | AGGGGAATTG       | TGAGCGGATA                  | ACAATTCCCC            | TETAGAAATA          | ATTTTGTTTA  | 1200  |
| ACTITITANGAA | 3GAGATATAC       | ATATGGGCCA                  | TCATCATCAT            | CATCACOTGA          | TOGACATOAT  | 1260  |
| COACDAGEE    | 000303770        | TESAACAGGG                  | .3033033143           | nagamaanac          | addinacdddh | 1323  |
| TAGCCTCGAT   | HACATEEGES       | 7007773337                  | ATT MICAG             | GACATGGGGG          | TOGARIAGEO: | 1380  |
| COCCAAGATT   | ACCTACCOM        | TOWNSTION                   | <pre>~3T3THETTT</pre> | AAGATG <b>A</b> GGC | coacacinoca | 144.  |
| BAGGGGTCG    | AMACCACCOA       | 10 30 <del>111</del> 13 111 | "JAWA 13.3GII         | 0000000000          | GTACTGTCG:  | 150   |
| BACTACCOGG   | 3037037737       | TRATTACOTT                  | . DOGGAGAG            | CGTAGCACGC          | TGCTCTACCC  | 1560  |
| GETGTTCAAC   | STOTAGGGTA       | CORRECTION OF               | IGAGA 33TAT           | COGNACOTOR          | CONTENCCO   | 1621  |
| TCAGGGCACC   | JOTT TTO STR     | TCSGGGATC32                 | 30%3030303            | CCCCCCC             | TOMAZNTTOG  | 1580  |
| JGCCTCCGA:   | JCJTATCTGT       | COGAAGGTGA                  | TATGGGGGG             | CAGAAGGGGC          | TGATGAACAT  | 1740  |
| CGCGCTAGCC   | ATCTCCGCTC       | AGCAGGTCAA                  | TTACAACCTTS           | CCCCGAGTGA          | GCGAGCACCT  | 1800  |
| CAAGCTGAAC   | GGAAAAGTCC       | TGGCGGCCAT                  | TTACTAGGGC            | ACCATCAAAA          | COTGGGACGA  | 1360  |
| DDDGCAGATT   | 3CT3C3CTCA       | ACCCCACCIT                  | 388 107307E2          | ad Jacobood         | TAUTTIOOCT  | 1.3.2 |
| 11A3C37TC2   | 3A 33 33 TO 11   | TTTACACOTT                  |                       | JAUTACUT ET         | TUAAU JAAGA | 1.49  |
| THIOGRAPHIC  | 13 13 3 3 CNA 1T | 79777330mm                  |                       |                     |             |       |
|              |                  |                             |                       |                     |             |       |

```
TBCGGCGGCT GGCTTCGCAT CGAAAACCCC GGCGAACCAG GCGATTTCGA TGATCGACGG 2280
 GCCCGCCCCG GACGGUTACC CGATCATCAA CTACGAGTAC GCCATCGTCA ACAACCGGCA 2340
 AAAGGACGCC GCCACCGCGC AGACCTTGCA GGCATTTCTG CACTGGGCGA TCACCGACGG 2400
 CAACAAGGCC TCGTTCCTCG ACCAGGTTCA TTTCCAGCCG CTGCCGCCCG CGGTGGTGAA 2460
 GTTGTCTGAC GCGTTGATCG CGACGATTTC CAGCGCTGAG ATGAAGACCG ATGCCGCTAC 2520
 CCTCGCGCAG GAGGCAGGTA ATTTCGAGCG GATCTCCGGC GACCTGAAAA CCCAGATCGA 2580
 CGCCCAGGCC GCGGTGGTGC GCTTCCAAGA AGCAGCCAAT AAGCAGAAGC AGGAACTCGA 2700
 CGAGATCTCG ACGAGTATTC GTCAGGCCGG CGTCCAATAC TCGAGGGCCG ACGAGGAGCA 2760
 GCAGCAGGCG CTGTCCTCGC AAATGGGCTT TGGATTCAGC TTCGCGCTGC CTGCTGGCTG 2820
 GGTGGAGTCT GACGCCGCCC ACTTCGACTA CGGTTCAGCA CTCCTCAGCA AAACCACCGG 2880
 GGACCCGCCA TTTCCCGGGAC AGCCGCCGCC GGTGGCCCAAT GACACCCGTA TCGTGCTCGG 2940
 CCGGCTAGAC CAAAAGCTTT ACGCCAGCGC CGAAGCCACC GACTCCAAGG CCGCGGCCCG 3000
STTGGGCTCG GACATGGGTG AGTTCTATAT GCCCTACCCG GGCACCCGGA TCAACCAGGA 3060
AACCGTCTCG CTYGACGCCA ACGGGGTGTC TGGAAGCGCG TCGTATTACG AAGTCAAGTT 3120
CAGCGATCCG AGTAAGCCGA ACGGCCAGAT CTGGACGGGC GTAATCGGCT CGCCCGCGGC 3180
GAACGCACCG GACGCCGGGC CCCCTCAGCG CTGGTWTGTG GTATGGCTCG GGACCGCCAA 3240
CAACCCGGTG GACAAGGGCA CGGCCINICOC GCTGGCCGAA TCGATUUGGC CTTTGGTCGC 3300
COCGCCGCG GCCCGCCG GCGAAGTCGC TCCTACCCCG ACGACACCGA CACCGCAGCG 3360
SACCTTACCS GCCTGAGAAT TCTGCAGATA TCCATCACAC TGGCGGCCGC TCGAGCACCA 3420
CONCONCON CACTORGATO COGCTOCTAR DARAGCCCGA RAGGRAGCTG ACTTGGCTGC 3480
TGCCACCGCT GAGCAATAAC TAGCATAACC CCTTGGGGCC TCTAAACGGC TCTTGAGCGC 3540
TITTTTTCTG AAAGGAGGAA CTATATCCGG AT
                                                                3572
        (2) INFORMATION FOR SEQ ID NO 338:
       1 - SEQUENCE CHARACTERISTICS:
       (A) LENGTH: 20 amino acids
        .B TYPE, amino acid
        -C STRANDEDNESS: single
        D TOPOLOGY linear
      11 MOLECULE TYPE, peptide
      MI SEQUENCE DESCRIPTION, SEC ID NO:338:
Mal Bin Phe Bin Ber Bly Bly Asp Ash Ber Pro Ala Mal Myr Maa Kaa
                              1.0
ASD Bly Kaa Arg
         A INFORMATION FOR SECTION AND REPORT
         PROTECTION TRAFACTOR COTTON
        A LENGTH 1 amin arido
        B TYPE amino acid
        3 STFANDEDNESS single
        D TOPOLLOY linear
      II MOUBTER TYPE cent.ax
```

```
(2) INFORMATION FOR SEQ ID NO:340:
```

- (1) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 10 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:340:

Thr Thr Pro Ser Xaa Val Ala Phe Ala Arg

- (2) INFORMATION FOR SEQ ID NO:341:
- : SEQUENCE CHARACTERISTICS:
- A) LENGTH: 12 amino acids
- (B) TYPE, amino acid
- (C STRANDEDNESS: single
- (D) TOPOLOGY: linear
- 11 MOLECULE TYPE: peptide
- x1 SEQUENCE DESCRIPTION: SEQ ID NO:341:

Asp Ala Gly Lys Xaa Ala Gly Xaa Asp Val Xaa Arg 5 23

- 2 INFORMATION FOR SEC ID NO: 42-
- : SEQUENCE CHARACTERISTICS
  - .A. LENGTH: 18 amino acids

  - 8' TYPE: amino icid C' STRANDEDNESS: Jingle
  - D: TOPOLOGY, Linear

MOLECULE TYPE, pentide

AL SECTIONE DESCRIPTION SECTION 342

One Mad (). () Waa din Nu der Ane Ash der Ala Aka Pro Giv Ash Lai Lys

I INFORMATION FOR GEQ ID NO 34:

JEQUENCE THAPACTED SETTING V DENGTH TO MERCET, HE

730

340

```
(ii) MOLECULE TYPE: Other
        (x1) SEQUENCE DESCRIPTION: SEC ID NO:343:
  CTAGTTAGTA CTCAGTCGCA GACCGTG
                                                                        27
           (2) INFORMATION FOR SEQ ID NO:344:
        (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 25 base pairs
          (B) TYPE. nucleic acid
         (C) STRANDEDNESS: single
         (D) TOPOLOGY: linear
       (ii) MOLECULE TYPE: Other
       x: SEQUENCE DESCRIPTION: SEQ ID NO:344:
 GCAGTGACGA ATTCACTTCG ACTCC
                                                                       25
         (2) INFORMATION FOR SEQ ID MC:345:
       (i) SEQUENCE CHARACTERISTICS:
         (A) LENGTH: 2412 base pairs
         (B) TYPE: nucleic acid
         C: STRANDEDNESS: single
        (D) TOPOLOGY: linear
       ii. MCLECULE TYPE: cDNA
       'X1 SEQUENCE DESCRIPTION SEC ID NO.345
CATATGGGCC ATCATCATCA COATCACCTS ATCGACATCA TCGGGGACCAU CCCCACATCC
TGGGAACAGG GGGGGGGAA GGGGGTCCAG GGGGGGGGGATAGCGTCGA TGACATCCGC
STEGGTGGGG TGATTGAGGA GGACATGGGG STGGACAGGG CCGGGAAGAT CACCTACGGC
                                                                   120
ATCAAGCTCG AAGTGTCGTT CAAGATGAGC CCGGCCCAAC CGAGGGGCTC GAAACCACCG
                                                                   190
AGCOGTTCGC CTGAAACGGG CGCCGGCGCC GGTACTGTCG CGACTACCCC CGCGTCGTCG
COGGTGACGT TGGCGGAGAC COGTAGCACC CTGCTGTACC CGCTGTTCAA CCTGTGGGGGT
DOGGCOTTTO ACGAGAGGTA TOCURACOTO ACGATCACOO TTORAGAGCAU LUGTTOTOCT
                                                                    5.0
SCOGGGATCS SGCAGGCGC TOCCAGGACG STCAACATTS AGGCCTTCSA SGCCTATCTC
CUUGAAGGTG ATATGGOUGO GCACAAGUGG OTGATGAAGA TOGGOGOTAGO MATUTOGGOT
                                                                    187
INGUNGCTON ACTACHACOT RECOGGAUTS ACCCACGES TOAAGETSAA ISSAAAAGTS
COSCOSCIA TOTACCAGGS CACCATCAAA ACCTGGGGACG ACCCGCAGAT ISCTGCGCTC
AACCCCCCC TGAACCTGCC CGGCACCGCU STAGTTCCGC TGCACCGCTT SGACGGTCC
                                                                    560
SUTUACACCT TOTTOTTOAC CCAGTACUTU TOCAAGCAAG ATCCCGAGGG TTGGGGCAAG
                                                                    720
```

TOUGOCOGCT TOUGGACAC COTTO COGGCGGTGC CGGGTGCGCT CGGTGAGAAC

GOCAACOGCO GCATGGTGAC CGGTTGCGCC GAGACACCGG GCTGCGTGGC CTATATCGGC

FORGARAGE JEGOGARCEA EGGGATTT 13 ATTATOGACG BEGOGGEGGG ARATIKITEA (

ATCAGCTTCC TCGACCAGGG CAGTCAACGG GGACTCGGCG AGGCCCAACT AGGCAATAGG GCTTGGCAATT TCTTGTTGCG GGACGCGGAA AGCATTCAGG GCGGGGGGGGG TGGCTTGGCA 1000

| AATTTCGAG  | C GGATCTCCG                           | G CGACCTGAA: | L ACCCACATO                            | 2 10010     | A GTCGACGGCA |      |
|------------|---------------------------------------|--------------|----------------------------------------|-------------|--------------|------|
| GGTTCGTTG  | C AGGGCCAGTO                          | GCGCGGCGC    | : ACCCAGAIC                            | - ACCAGGTGG | A GTCGACGGCA | 1380 |
|            | G AAGCAGCCAA                          |              | CACCACACACACACACACACACACACACACACACACAC | CCGCCCAGG   | CGCGGTGGTG   | 1440 |
| CGTCAGGCC  | G GCGTCCAAma                          | CTCCACAGAAG  | CAGGAACTCC                             | ACGAGATOTO  | GACGAATATT   | 1500 |
| CAAATGGGC  | G GCGTCCAATA                          | 1 LCCCCCCC   | GACGAGGAGC                             | AGCAGCAGGC  | GCTGTCCTCG   | 1560 |
| GCACCGGCGA | TTGTGCCCAC                            | AACGGCCGCC   | TCGCCGCCGT                             | CGACCGCTGC  | AGCGCCACCC   | 1620 |
|            |                                       |              |                                        |             |              | 1680 |
| ATTGCCCCAA | CCAACGCAGC                            | ACCICCGCCG   | GCCGACCCGA                             | ACGCACCGCC  | GCCACCTGTC   | 1740 |
| GCGCTGCCTG | · · · · · · · · · · · · · · · · · · · | MCC IN ICEGG | ATCGACAACC                             | CCCTTCCTACC | > m          | 1800 |
| CTCAGCAAAA |                                       | COMPLETER    | -GCCGCCCACT                            | TOGROTROCO  | TTTC3 CC3    | 1860 |
| ACCCGTATCG | ADDOOD                                | CCCGCCATTT   | CCCGGACAGC                             | CGCCGCCGGT  | 00000        | 1920 |
| TCCAAGGCCG |                                       | GCTAGACCAA   | AAGCTTTACG                             | CCAGCGCCGA  | AGCCACCGAC   | 1980 |
|            | 0000000011                            | GGGCTCGGAC   | ATGGGTGAGT                             | TCTATATGCC  | CTACCCCCCC   | 2040 |
|            | ACCAGGAAAC                            | COLCICGCIC   | GACGCCAACG                             | GGGTGTCTGG  | AAGCGCGTCC   |      |
| TATTACGAAG | TOPICICAG                             | COMPCCOMOL   | AAGCCGAACG                             |             | GACGGGCGTA   | 2100 |
| ATCGGCTCGC | CCGCGGCGAA                            | CGCACCGGAC   | GCCGGGCCCC                             |             | GTTTGTGGTA   | 2160 |
| TGGCTCGGGA | CCGCCAACAA                            |              | AAGGGCGCGG                             |             |              | 2220 |
| 4.5000001  | TGGTCGCCCC                            | GCCGCCGGCG   | CCGGCACCCC                             | CTCCTGCAGA  | GGCCGAATCG   | 2280 |
| 3C3CCCCCCC | CGGCCGGGGA                            | AGTEGETEET   |                                        | CACCGACACC  | Poncected    | 2340 |
| TTACCGGCCT | GA                                    |              | TESTECOA                               | CACCOMCAC.  | JCAGCGGACC   | 2400 |
|            |                                       |              |                                        |             |              | 2412 |

# (2) INFORMATION FOR SEQ ID NO:346:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 802 amino acids
  - (B) TYPE: amino acid
  - C) STRANDEDNESS: single
- (D) TOPOLOGY, linear
- Til. MOLECULE TYPE: protein
- KI SEQUENCE DESCRIPTION: JEQ ID NO:346:

|      |            |            |           |            |     |              |           |                  |          |      | He         |              |            |            |           |
|------|------------|------------|-----------|------------|-----|--------------|-----------|------------------|----------|------|------------|--------------|------------|------------|-----------|
| Pro  | Thr        | Ser        | Trp<br>20 | 314        | Gin | Ala          | à.a       | Al a             | 31.1     | Ala  | . Val      | Gln          | Arg        | 15<br>Ala  | Arg       |
| Asp  | Ser        | Va:<br>35  | Asp       | Asp        | Ile | Arg          | 7a1<br>46 | Ala              | Arg      | 7al  | He         | Glu          | 30<br>Gln  | Asp        | Met       |
| ALA  | Tal        | Asp        | Ser       | Ala        | 31  | Lys          | 11.       | Thr              | n.       | Ara  | fle        | 45<br>Lys    | Leu        | 31::       | ∵al       |
| 191  | Pne        | Lys        | Мет       | 20 T       | P:  | Å. i         | 31:.      | : •              | ar u     | 3.7  | ol<br>Jer  | Lvs          | P: :       | Dy.        | 3er       |
| • :  | Jan        | Pt         | air.      | Tr.r<br>de | 1.7 | ÄLI          | 11.7      | <b>.</b>         | 11:      | inr  | Va.        | Ala          | Thi        | Thr        | 30<br>Pro |
| 1.1  | 0-2 r      | Ser        | P:<br>100 | Va.        |     | 101          | Àla       | J                | Tar      | 317  | Ser        | Thr          | Leu        | as<br>Leu  | Tyr       |
| Pro  | Leu        | Phe<br>115 | Asn       | Len        | Trp | <b>3</b> . ; | Pro       | 105<br>Ala       | Phe      | His  | Glu        | Arq          | 110<br>Tyr | Pro        | Asn       |
| . а. | Thr<br>130 | ile        | Tnr       | A. i       | 3.5 | 11:          | The       | 11) <sub>)</sub> | 3et      | 11.0 | Ala        | 125<br>Jly   | Fle        | Ala        | 711.      |
| 1    | Nula       | Àt         | 11)       |            | · . | s i<br>Ngti  |           | <b>;</b> ,       | <b>,</b> | ٠٠٠  | 14°<br>Asr | 5 <u>1</u> 1 |            | ; <u>.</u> | 3000      |

|              |          |              | 18         |              |                   |            |            | 189        | 5          |       |               |            | 19           | 0            |            |
|--------------|----------|--------------|------------|--------------|-------------------|------------|------------|------------|------------|-------|---------------|------------|--------------|--------------|------------|
| Leu          | : Ly     | s Le         | u As       | n Gl         | y Lys             | Va.        | l Lei      | ı Ala      | a Al.      | a Me  | t Tv          | r Gl       | n G1         | ი<br>-, უ-ს, | 1          |
|              |          | 19           | 5          |              |                   |            | 200        | )          |            |       |               | 2.0        | 5            |              |            |
| Lys          | Th<br>21 | r Tr<br>O    | p Asp      | p As         | p Pro             | Gl:<br>215 | n Ile<br>5 | e Ala      | a Ala      | a Let |               | n Pr       | o Gl         | y Va.        | l Ası      |
| Leu          | Pr       | o Gl         | y Thi      | r Ala        | a Val             | Val        | L Pro      | ı T.e.i    | , H110     | . 120 | 220           | J<br>- 30- | <b>-</b> 31. |              | - 1        |
| 243          |          |              |            |              | 230               |            |            |            |            | 236   |               |            |              |              | ~          |
| Asp          | Th       | r Phe        | e Leu      | 1 Phe<br>245 | Thr               | Glo        | Tyr        | Leu        | Ser<br>250 | Lys   | Glr           | : Asp      | p Pro        |              |            |
| Trp          | Gly      | y Lys        | Ser<br>260 | Pro          | Gly               | Phe        | Gly        | Thr        | Thr        | Val   | Asp           | Phe        |              |              | v<br>Val   |
| Pro          | Gly      | / Ala<br>275 | Leu        |              | Glu               | Asn        | Gly        | 265<br>Asn | Gly        | Gly   | Met           | Val        | 270<br>Thr   | )<br>: Gly   | Cys        |
| Ala          | Glu      | Thr          |            | G1;          | Cys               | Val        | 280<br>Ala | Tyr        | Ile        | Gly   | Ile           | 285<br>Ser | i<br>Phe     | . Leu        | Asp        |
|              |          | ,            |            |              |                   | 295        |            |            |            |       | 300           |            |              |              |            |
|              |          |              |            |              | Gly<br>310        |            |            |            |            | 7 * = |               |            |              |              |            |
|              |          |              |            | 3-3          | 525               |            |            |            | 3.3.0      |       |               |            |              | 2 1 6        | Ala        |
| gly          | Phe      | Ala          | Ser<br>340 | Lys          | Thr               | Pro        | λla        | Asn<br>345 | Gln        | Ala   | Ile           | Ser        |              | lle          | .∕ap       |
| 317          | Pro      | Ala<br>355   | Pro        | Asp          | gly               | Tyr        | Pro        | Ile        | Ile        | Asn   | Тут           |            | 350<br>Tyr   | Ala          | Ile        |
| ∵al          | Asn      | Asn          | Arg        | Jln          | Lys               | Asp        | Ala        | Ala        | ~h~        | 21    | 215           | 365        | T av         | a:_          |            |
|              |          |              |            |              |                   | ٠. ٥       |            |            |            |       | 797           |            |              |              |            |
| 385          |          |              | 2          | 7.4          | 11e 390           | 1111       | azr.       | 4-7        | Asn        | Lys   | Ala           | Ser        | Phe          | Leu          |            |
|              | Val      | His          | Phe        | Gln          | Pro .             | Leu        | Dra        | D=0        | ٦٠-        | 395   | *** *         | _          |              | _            | 40C        |
|              |          |              |            | <b>→</b> U 7 |                   |            |            |            | 410        |       |               |            |              |              |            |
|              |          |              | 7 4 0      |              | Tie:              |            |            | 125        |            |       |               |            |              |              |            |
|              |          | 4 3 3        |            |              | Ala d             |            | 440        |            |            |       |               |            |              |              |            |
|              |          |              |            |              | Jin '             | + > >      |            |            |            |       | 4 . 1 2       |            |              |              |            |
| Jin T<br>isš | Lib      | Arq          | 317        | Alu          | Ala (             | 31 y       | Thr        | Ala        | Mla        | Sln   | Ala           | Ala        | Val          | wa:          | Arg        |
|              |          |              |            |              | * · ./            |            |            |            |            | 175   |               |            |              |              |            |
|              |          |              |            | * C .        | Asn I             |            |            |            | : 40       |       |               |            |              |              |            |
|              |          |              |            |              | Ala n             |            |            |            |            |       |               |            | Asp<br>11.   | 31 :         | 31.1       |
|              |          |              |            |              | ا :ئند            |            |            |            |            |       |               | 200        | Thr          | Inr          |            |
|              |          |              |            |              | Tini A<br>S       | : -        |            |            |            |       | Alu -         | Ero        |              |              |            |
|              |          |              |            |              | -<br>Ero A<br>330 |            |            |            |            | Thr . | Pri           |            |              |              |            |
| 1. j. A      | sp       | 2ro          | Asn :      | Ala )<br>563 | Ala P             | ro E       | Pro        | Pro .      | Ala.       | Asp : | 9 <b>r</b> o. | Asn        |              | Pro :        | 560<br>Pro |
| • * * :      | ::::     | ¥a.          |            | 1.3          | ît: A             | s:. :      | A.a.       | Of a       | 7          | ٧٢ .  | Za.,          | A. t       | : . ·•       | sis<br>Adrii | \sn        |
|              |          |              | 2 O .      |              |                   |            |            | ء د :      |            |       |               |            | 890          |              |            |

34

Gly Asp Pro Pro Phe Pro Gly Gln Pro Pro Pro Val Ala Asn Asp Thr 625 630 635 640 Arg Ile Val Leu Gly Arg Leu Asp Gln Lys Leu Tyr Ala Ser Ala Glu 645 650 Ala Thr Asp Ser Lys Ala Ala Ala Arg Leu Gly Ser Asp Met Gly Glu 660 665 670 Phe Tyr Met Pro Tyr Pro Gly Thr Arg Ile Asn Gln Glu Thr Val Ser 675 680 Leu Asp Ala Asn Gly Val Ser Gly Ser Ala Ser Tyr Tyr Glu Val Lys 690 695 700 Phe Ser Asp Pro Ser Lys Pro Asn Gly Gln Ile Trp Thr Gly Val Ile 705 710 715 720 Gly Ser Pro Ala Ala Asn Ala Pro Asp Ala Gly Pro Pro Gln Arg Trp 725 730 735 Phe Val Val Trp Leu Gly Thr Ala Asn Asn Pro Val Asp Lys Gly Ala 745 750 Ala Lys Ala Leu Ala Glu Ser Ile Arg Pro Leu Val Ala Pro Pro Pro 755 Ala Pro Ala Pro Ala Pro Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala 775 780 Gly Glu Val Ala Pro Thr Pro Thr Pro Thr Pro Gln Arg Thr Leu 785 790 795 800 Pro Ala

- 2) INFORMATION FOR SEQ ID NO:347:
- (1) SEQUENCE CHARACTERISTICS
  - (A, LENGTH: 34 base pairs
  - B: TYPE: nucleic acid
  - C) STRANDEDNESS: Single
  - D: TOPOLOGY linear
- 11 MOLECULE TYPE: Other
- X1 SEQUENCE DESCRIPTION SEQ ID NO.340:

# SGATCCAAAC CACCGAGCSG TTCGCCTGAA ACGG

2 INFORMATION FOR UNC ID NO 14e

JEQUENCE THAPACTERISTICS

- A LENGTH, 37 page pairs
- B TYPE, nucleic sold
- C STRANDEDNESS single
- D TOPOLOGY linear
- 11 MOLECULE TYPE, Other
- MI SEQUENCE DESCRIPTION SEQ ID NO 848

and the second of the second o

- (i) SEQUENCE CHARACTERISTICS.
  - (A) LENGTH: 1962 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - D) TOPOLOGY: linear
- (11) MOLECULE TYPE: cDNA
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:349:

| CATATGGGCC   |              | TCATCACGGA   | TCCAAACCAC              | CGAGCGGTTC  | GCCTGAAACG | 60   |
|--------------|--------------|--------------|-------------------------|-------------|------------|------|
| GGCGCCGGCG   | CCGGTACTGT   | CGCGACTACC   | CCCGCGTCGT              | CGCCGGTGAC  | GTTGGCGGAG | 120  |
| ACCGGTAGCA   | CGCTGCTCTA   | CCCGCTGTTC   | AACCTGTGGG              | GTCCGGCCTT  | TCACGAGAGG | 180  |
| TATCCGAACG   | TCACGATCAC   | CGCTCAGGGC   | ACCGGTTCTG              | GTGCCGGGAT  | CGCGCAGGCC | 240  |
| JCCGCCGGGA   | CGGTCAACAT   | TGGGGCCTCC   | GACGCCTATC              | TGTCGGAAGG  | TGATATGGCC | 300  |
| GCGCACAAGG   | GGCTGATGAA   | CATCGCGCTA   | GCCATCTCCG              | CTCAGCAGGT  | CAACTACAAC | 360  |
| CTGCCCGGAG   | TGAGCGAGCA   | STIGAAGCTS   | AACGGAAAAG              | TCCTGGCGGC  | CATGTACCAG | 420  |
| GGCACCATCA   | RAADOTOGRA   | DASCEDENARY  | ATCCCTGCGC              | TCAACCCCCC  | CUTUAACUTU | ÷80  |
| TOCGGCACCG   | CGGTAGTTCC   | GETGCACEGE   | TOOGACGGGT              | CCGGTGACAC  | CTTCTTCTTC | 540  |
| ACCCAGTACC   | TGTCCAAGCA   | AGATCCCGAG   | GGCTGGGGCA              | AGTCGCCCGG  | CTTCGGCACC | 600  |
| ACCGTCGACT   | TCCIGGCGGT   | GCCGGGTT3CG  | CTGGGTGAGA              | ACGGCAACGG  | CGGCATGGTG | 660  |
| ACCGGTTGCG   | CCGAGAGAGA   | 3330T303T3   | GCCTATATEG              | GCATCAGCTT  | CCTCGACCAG | 720  |
| GCCAGTCAAC   | GGGGACTCGG   | CGAGGCCCAA   | CTAGGCAA TA             | GCTCTGGCAA  | TTTCTTGTTG | 780  |
| CCCGACGCGC   | AAAGCATTCA   | GGCCGCGGCG   | SCTGGCTTCG              | CATCGAAAAC  | CCCGGCGAAC | 840  |
| CAGGCGATTT   | CGATGATCGA   | CGGGCCGGGC   | CCGGACGGCT              | ACCCGATCAT  | CAACTACGAG | 900  |
| TACGCCATCG   | TCAACAACCG   | GCAAAAGGAC   | GCCGCCACCG              | CGCAGACCTT  | GCAGGCATTT | 960  |
| ST3CACT33G   | CGATCACCGA   | CGGCAACAAG   | GCCTCGTTCC              | TOGACCAGGT  | TCATTTCCAG | 1020 |
| CCGCTGCCGC   | CEGEGGGGGT   | GAAGTTGTCT   | GACGCOTTGA              | TEGEGACGAT  | TTCCTCCGGA | 1090 |
| GGTGGCAGTG   | GJGGAGGCTC   | AGGTGJAGGT   | TOTRGOGGGA              | GCGTGCCCAC  | AACGGCCGCC | 1140 |
|              | CSACCSCTSC   | AGCGCCACCC   | GCACCGGCGA              | CACCTGTTGC  | CCCCCACCA  | 1200 |
| 00000000000  | CCBDAACACGCC | JAATGCCCAG   | COGGGGGATC              | CCAACGCAGC  | ACCTCCGCCG | 1260 |
| 3 DOGACOCOA  | ACGCACCCCC   | GCCACCTOTC   | ATT 300 JOAA            | ACCCACCCCA  | ACCTGTCCGG | 1320 |
| ATCGACAACC   | CEACETTEEC   | ATTOAGCTTC   | 3093793679              | TEGGETGGGT  | SGAGTOTGAG | 1380 |
| 300000CA3T   | TOGACTACOG   | TTCAGCACTC   | CTCAGCAAAA              | COACCGGGGA  | 1700004777 | 1447 |
| DEADADDEDE   | COCCOCCAT    | GGCCAATGAC   | ACCCCTATAG              | THOTTOGGCCH | SETAGACCAA | 150% |
| AACCTTTACC   | CTAGCGCCGA   | AGCCAGCGAC   | TCCNAGGCCG              | CGGCCCGGTT  | SEGCTOSCAC | 1560 |
| ATGGGTGAGT   | TOTATATOCC   | CTACCTGGGC   | ACCCGGATCA              | ACCAGGAAAC  | CGTCTCGCTC | 1620 |
| BEAABBEEAE   | SETETEDE     | AAGCGCGTCG   | TATTACGAAG              | TCAAGTTCAG  | CGATCCGAGT | 1680 |
| DDAADDDDAA   | GCCAGATCTG   | GACGGGGGTA   | ATCGGCTCGC              | CCGCGGGGAA  | COCACCOGAC | 1740 |
| 10000000000  | TCAGCGCTG    | ITTTGTGGTA   | TGGCTCGGGA              | 2022774074  | COCCOCC    |      |
| W13353655    | 20AAGGCGGTT  | NETTGAATTCS  | V700300 <del>0011</del> | 7917030000  | 100000011  | 142  |
| 12237122733  | JTCCTCCNSA   | 11/00000000  | 100000000               | 777773332   | 30770000   |      |
| 100017711334 | 27.2002.23   | TIN EDERA DE | TTA MIGGOIT             | lia.        | ••         | * ** |
|              |              |              |                         |             |            |      |

- A INFORMATION FOR 15: 15 No 10:
- : GEQUENCE CHARACTERICTICS
  - A LENGTH 630 amino idida B CYFE amino adid C CTRANDODNESS CONSISS

  - or Tom 2 William near

Met Gly His His His His His Gly Ser Lys Pro Pro Ser Gly Ser 1 10 Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro Ala Ser 20 25 3.0 Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr Pro Leu 35 4.0 45 Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn Val Thr 55 60 Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln Ala Ala 70 75 Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser Glu Gly 90 Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser 105 100 110 Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His Leu Lys 115 120 125 leu Asn Gly Lyo Val Leu Ala Ala Met Cyr Gln Gly Thr Ile Lys Thr 130 135 140 Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly Val Asn Leu Pro 145 150 155 Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr 165 170 175 Phe Leu Phe Thr Glm Tyr Leu Ser Lys Glm Asp Pro Glu Gly Trp Gly 180 185 190 Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val Pro Gly 195 200 205 Ala Leu Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys Ala Glu 210 215 220 Thr Pro Gly Cys Val Ala Tyr Ile 31y Tle Ser Phe Leu Asp 31n Ala 125 230 235 Ser Jin Arg Gly Leu Gly Glu Ala Bin Leu Gly Ash Ser Ber Bly Ash 245 250 285 and led Led Pro App Ala Gln Ger Tie Bin Ala Ala Ala Ala Gly Phe 260 265 Ala Ser Lys Thr Pro Ala Ash Gin Ala Ile Ser Mer Ile Asp Bly Pro 275 280 0.85 Ala Pro Asp Gly Tyr Pro Ile Ile Asn Tyr Glu Tyr Ala Ile Val Asn 290 295 300 Ash Arg Sin Dys Ash Nia Ala Thr Nia Tim Thr Leu Bur Ala Phy Neu 11. 111 dir Trp Ala ile Thr App Bly Aph Dwo Ala Ber Phe Lew App To Ma. 2 2 B n - Por 31n Pro Dec Pru Pro Ala Val Val Dys Let 3er Asp Ala Let 5.4 350 The Ala Thr The Ser Ser Gly Gly Gly Ser Gly Gly Gly Ser Bly Gly 355 363 ily Ser Gly Bly Ser Val Pro Thr Thr Ala Ala Ser Pro Pro Ser Thr 375 330 Als Als Als His pro Ala Pro Ala Thr Pro Val Ala pro Pro Pro Pro 7.3 3.95 San San Alan San Bernell San San San San San San

|            |            | •          | _          |     |            |            | 441        | 1          |            |     |            |            | -          |            | e Ser      |
|------------|------------|------------|------------|-----|------------|------------|------------|------------|------------|-----|------------|------------|------------|------------|------------|
|            |            | -          |            |     |            | 4.5        | ״          |            |            |     |            |            |            |            | : Asp      |
|            |            |            | r Ala      |     |            |            |            |            |            |     |            |            |            |            |            |
|            |            |            | ⊃ Pro      |     |            |            |            |            |            |     |            |            |            |            | Arg        |
|            |            |            | 500        |     |            |            |            |            |            |     |            |            |            | Lys        |            |
|            |            |            |            |     |            |            |            |            |            |     |            |            | Pro        |            |            |
|            | _          |            | Ile        |     |            | ⊃.1 ¬      |            |            |            |     |            | Ala        |            |            |            |
|            |            |            | Ala        |     |            |            |            |            |            |     | Ser        |            |            |            |            |
| Pro        | Asn        | Gly        | Gln        | Ile | Trp        | Thr        | Glγ        | Val        | Ile<br>570 | Gly | Ser        | Pro        | Ala        |            | 560<br>Asn |
| Ala        | Pro        | Asp        | Ala<br>580 | Gly | Pro        | Pro        | Gln        | Arg<br>585 | طعي        | Phe | Val        | Va]        |            | 575<br>Leu | Glγ        |
| Thr        | Ala        | Asn<br>595 | Asn        | Pro | Val        | Asp        | Lys<br>600 | Gly        | Ala        | Ala |            |            | 590<br>Leu | Ala        | Glu        |
| 3er        | Ile<br>610 | Arg        | Pro        | Leu | Val        | Ala<br>615 | Pro        | Pro        | Pro        | Ala | Pro        | 605<br>Ala | Pro .      | Ala.       | Pro        |
| Ala<br>525 | Jlu        | Pro        | Ala        | 9ro | Ala<br>630 | Pro        | Ala        | Pro        | Ala        | Gly | 620<br>Glu | Val.       | Ala :      | ero .      | Thr        |
|            |            |            | Pro        |     | 350        |            |            | Thr        |            |     |            |            |            |            | 940        |

#### PATENT COOPERATION TREATY

# **PCT**

### DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT

(PCT Article 17(2)(a) and Rule 39)

Date of mailing (day/month/year)

| Applicant's or agent's file reference 9532-023-228                             | IMPORTANT DECLARATION                                                                    | Date of mailing (day/month/year) 22 JUNE 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| International application No.                                                  | International filing date (day/month/year)                                               | (Earliest) Priority Date (day/month/year)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| PC17/US99/03265                                                                | 17 FEBRUARY 1999                                                                         | 18 FEBRUARY 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| International Patent Classification (IPC Please See Continuation Sheet.        | or both national classification and IPC                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Applicant CORIXA CORPORATION                                                   |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| This International Searching Authority be established on the international ap- | hereby declares, according to Article 17(2)(a) olication for the reasons indicated below | , that no international search report will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 1. The subject matter of the int                                               | emational application relates to:                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| a. scientific theories.                                                        |                                                                                          | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| b mathematical theor                                                           | es.                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| plant varieties.                                                               |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| d. animal varieties.                                                           |                                                                                          | the state of the s |  |  |  |  |
| e. essentially biologics and the products of                                   | il processes for the production of plants and anir<br>such processes.                    | nais, other than microbiological processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| f schemes, rules or r                                                          | nethods of doing business.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| g schemes, rules or i                                                          | methods of performing purely mental acts                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| h. schemes, rules or i                                                         | nethods of playing games.                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| t methods for treatm                                                           | ent of the human body by surgery or therapy                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| methods for treatm                                                             | ent of the animal body by surgery or therapy                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| k diagnostic methods                                                           | practiced on the human or animal body                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 1 mere presentations                                                           | of information                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| :i) omputer program                                                            | for which this International Searching Author                                            | rity is not equipped to search prior art                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| The tallure of the following nearingful search from bei                        | ; parts of the international application to comp<br>ng carried out;                      | sly with presented requirements prevents a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| [] the description                                                             | the claims                                                                               | ] the drawings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Tyle Trainre of the modestid<br>Cheaningful search from the                    | e and or animo acid sequence listing to the height                                       | with the presents of requirements intowards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| N does n tee implis                                                            | with the prescribed stan lard                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| The section to the pre-                                                        | with the presented standard conted in whose much second table to me                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 1 Eigher on news                                                               |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

# DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/03265

The International Patent Classification (IPC) or National Classification and IPC are as listed below