ชื่อ-สกุล	รหัส	ข้อสอบ หน้า1/7 _เลขที่นั่งสอบ			
้ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี					
การสอบปลายภาคการศึกษา 2/2550 ข้อสอบวิชา ENE 104 ทฤษฎีวงจรไฟฟ้า Electric Circuit Theory .					
ข้อสอบวิชา ENE 104 ทฤษฎีวงจรไฟฟ้า	Flectric Circuit	Theory.			
นักศึกษาชั้นปีที่ 1 ภาควิชาวิศวกรรมอิเล็ก	ทรอนิกส์ และโทรคมนาคม				
สอบวันพุธที่ 5 มีนาคม พ.ศ. 2551		เวลา 9:00-12:00 น.			

คำสั่ง

- 1) ไม่อนุญาตให้นำเอกสาร ตำราต่าง ๆ เข้าห้องสอบ
- 2) อนุญาตให้ใช้เครื่องคิดเลข
- 3) ให้ทำในข้อสอบทั้งหมด
- 4) ให้เขียนชื่อ-นามสกุล และรหัสประจำตัวนักศึกษา ลงในกระดาษที่ต้องการให้ตรวจทุกแผ่น
- 5) ถ้าข้อสอบมีการตกหลุ่น ให้พิจารณาเอง และเขียนโน้ตลงด้วย
- 6) ข้อสอบทั้งหมด 5 ข้อ รวม 100 คะแนนเต็ม

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาที่ทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

ข้อที่	คะแนนเต็ม	คะแนนที่ได้
1	20	
2	20	
3	20	
4	20	
5	20	
คะแนนรวม	100	

ออกร้อสอบโดย อ. เคชวุฒิ ชาวปริสุทธิ์ โทร. 02-470-9070

ข้อสอบนี้ได้ผ่านการประเมินจากภาควิชาวิศวกรรมอิเล็กทร**ชัมว**ิล์ จนล้ว

ผศ.ดร.วุฒิชัย อัศวินชัยโชติ หัวหน้าภาควิชาฯ 1.] ในวงจร ตามรูป จงหา (20 คะแนน)

- 1.2.) กระแสที่ไหลผ่านตัว inductor ที่เวลา $t=0^-$ มีค่า = _______ A.
- 1.3.) i_{x} และ v_{R} สำหรับเวลา t>0

ชื่อ-สกุล ______ เลขที่นั่งสอบ_____

$$\alpha = \frac{1}{2RC} \qquad \omega_0 = \frac{1}{\sqrt{LC}}$$
$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$\alpha = \frac{R}{2L} \qquad \omega_0 = \frac{1}{\sqrt{LC}}$$

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

Damping	Natural Response Equations	Coefficient Equations Overdamped
Overdamped	$x(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$	$x(0) = A_1 + A_2$
$(\alpha > \omega_0)$		$\left \frac{dx}{dt} \right _{t=0^+} = A_1 S_1 + A_2 S_2$
Critically	$x(t) = e^{-\alpha t} \left(B_1 t + B_2 \right)$	$x(0) = B_2$
$\begin{array}{c} \mathbf{damped} \\ (\alpha = \omega_0) \end{array}$		$\left \frac{dx}{dt} \right _{t=0^+} = B_1 - \alpha B_2$
Underdamped	$x(t) = e^{-\alpha t} (C_1 \cos \omega_d t + C_2 \sin \omega_d t)$	$x(0) = C_{i}$
$(\alpha < \omega_0)$	Note: $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$	$\left \frac{dx}{dt} \right _{t=0^+} = -\alpha C_1 + \omega_d C_2$

Damping	Step Response Equations	Coefficient Equations Overdamped
Overdamped	$x(t) = X_f + A_1 e^{s_1 t} + A_2 e^{s_2 t}$	$x(0) = X_f + A_1 + A_2$
$(\alpha > \omega_0)$		$\left \frac{dx}{dt} \right _{t=0^+} = A_1' s_1 + A_2' s_2$
Critically	$x(t) = X_f + e^{-ct} \left(B_1 t + B_2 \right)$	$x(0) = X_f + B_2'$
$(\alpha = \omega_0)$		$\left \frac{dx}{dt} \right _{t=0^+} = B_1' - \alpha B_2'$
Underdamped	$x(t) = X_f + e^{-\alpha t} (C_1 \cos \omega_d t + C_2 \sin \omega_d t)$	$x(0) = X_f + C_1'$
$(\alpha < \omega_0)$	Note: $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$	$\left \frac{dx}{dt} \right _{t=0^+} = -\alpha C_1' + \omega_d C_2'$

ชื่อ-สกุล______ รหัส_____ เลขที่นั่งสอบ_____

2.] จากวงจร ตามรูป ถ้า $\,i_{
m s}({
m t}) = 5{
m cos}(10{
m t} + 40^o)$ ให้หา $i_{
m o}$ (20 คะแนน)

do dos	and a	10000010000	
ชื่อ-สกล	รหัส	เลขที่นั่งสอบ	

3.] ให้หาค่าที่อ่านได้โดย Wattmeter ในวงจรของรูปข้างล่าง (20 คะแนน)

4.] จงหา line currents (${f I}_a$, ${f I}_b$, ${f I}_c$) ในวงจร ${f Y}-\Delta$ ตามรูป (20 คะแนน)

 $\mathbf{Z}_{\Delta} = 60 \angle 45^{\circ}\Omega$

ชื่อ-สกุล รหัส เลขที่นั่งสอบ_____

5.] ให้หาค่า [y] parameters ของวงจร two-port ตามรูป (20 คะแนน)

$$\mathbf{I}_1 = \mathbf{y}_{11}\mathbf{V}_1 + \mathbf{y}_{12}\mathbf{V}_2$$

$$\mathbf{I}_2 = \mathbf{y}_{21}\mathbf{V}_1 + \mathbf{y}_{22}\mathbf{V}_2$$