PRÁCTICA No. 6

EL TRANSISTOR BIPOLAR EN CONMUTACIÓN

OBJETIVO:

- > Analizar el transistor bipolar en conmutación.
- Analizar los puntos de saturación y corte del transistor bipolar.
- > Implementar alguna aplicación con el transistor en conmutación.
- ➤ Interpretar los resultados obtenidos en los circuitos analizados.

MATERIAL:

- 1 Tablilla de experimentación. (Proto Board)
- 2 TIP41
- 2 2N2222
- 2 Resistencia de 10Ω a 10 W
- 2 Resistencia de 100Ω
- 2 Resistencia de 180 Ω
- 4 Resistencia de 1 k Ω
- 2 Resistencia de $10 \text{ k}\Omega$
- 2 Resistencia de $22 \text{ k}\Omega$
- 2 LED Rojo
- 1 Motor de CD a 12v

EQUIPO:

- 2 Multímetro digital
- 1 Fuente de alimentación
- 1 Osciloscopio de propósito general
- 1 Generador
- 6 Puntas caimán-caimán
- 3 Puntas BNC-Caiman

DESARROLLO EXPERIMENTAL

Análisis del transistor en corte y saturación.

Armar el siguiente circuito

Medir los voltajes y corrientes del circuito colocando en el voltaje de entrada 5 V y posteriormente 0 V.

Voltaje de entrada (V _i)	5 V	0 V
V _{CE}		
I_{B}		
$I_{\rm C}$		

Cambiar la resistencia de $10~k\Omega$ por una de $22~k\Omega$ y medir los voltajes y corrientes del circuito colocando en el voltaje de entrada 5~V y posteriormente 0~V.

Voltaje de entrada (V _i)	5 V	0 V
V_{CE}		
I_{B}		
$I_{\rm C}$		

Análisis de un transistor en conmutación a señal alterna

Armar el siguiente circuito

Introducir una señal cuadrada de 5 V (Salida del generador TTL) a una frecuencia de 1 kHz, colocar el canal 1 del osciloscopio en el voltaje de entrada Vi y el canal 2 en el voltaje de salida y dibujar la señal.

____V/div canal 1 mseg/div

__V/div canal 2

Circuitos Prácticos

Armar el siguiente circuito

Introducir una señal cuadrada de 5 V (Salida del generador TTL) a una frecuencia de 0.5 Hz.

Indicar lo que realiza el circuito.

Armar el siguiente circuito

generador TTL) a una frecuencia de 0.5 Hz.		
Indicar lo que realiza el circuito.		

Introducir una señal cuadrada de 5 V (Salida del

ANÁLISIS TÉORICO

Realizar el análisis teórico de todos los circuitos anteriores.

ANÁLISIS SIMULADO

Realizar el análisis simulado de todos los circuitos anteriores.

COMPARACIÓN DE LOS RESULTADOS TEÓRICOS Y PRÁCTICOS. Analizar todos los valores y dar una explicación de las variaciones ó diferencias que existan en los valores obtenidos tanto en lo teórico, simulado y práctico.

CUESTIONARIO

- 1. ¿Qué es la zona de saturación de un transistor bipolar?
- 2. ¿Qué es la zona de corte de un transistor bipolar?
- 3. ¿Qué diferencia existe entre el transistor 2N2222 y el TIP41?
- 4. Menciona 3 aplicaciones de circuitos en conmutación

CONCLUSIONES

Dar las conclusiones al realizar los experimentos y el análisis teórico de los circuitos anteriores (conclusiones individuales).