基于weka的分类算法研究报告

数据:802_ENGLISH_XLS1.csv

Preprocess

先不考虑TID,SID

credit 数据存在问题

clusterer first

做聚类分析后影响分类的主要因素为

- 1. recurting way
- 2. stype
- 3. sage_in
- 4. sage_out
- 5. delay_year

所以,最明显的结果就是,毕业延迟与博硕,招生方式,入学时间有极大关联.....

对于employment_unit_class影响不大.....

credit 数据存在问题

手工分析 (使用trees.UserClassifier)

employment_unit_class与以下属性存在强相关(不存在的)

唯一比较明显的的特征:

选择属性 (或使用AttributeSelectedClassifier)

weka.attributeSelection.CfsSubsetEval -P 1 -E 1

Selected attributes: 1,2,3,12,20,21,33,34 : 8

YEAR_IN

RECRUITING_WAY

STYPE SAGE_OUT CREDIT GPA

DALEY_YEAR DELAY

使用CVParameterSelection调整参数

分类算法

参见袁梅宇. 数据挖掘与机器学习:WEKA应用技术与实践 (Kindle 位置 1508-1509). 清华大学出版社. Kindle 版本. 8379.

Weka的分类算法按照其功能分为如下七种: bayes(贝叶斯) functions(功能)、lazy(消极),meta(元),misc(杂项),rules(规则) 和trees(树)。

袁梅宇. 数据挖掘与机器学习:WEKA应用技术与实践 (Kindle 位置 8395-8396). 清华大学出版社. Kindle 版本.

不同分类算法的比较(meta,misc算法除外)

用experimenter功能实现以提高效率

全部采用默认参数

分类算法	ned-ned	ed-ned	ned-ed	ed-ed	edTP nedTP		注记
贝叶斯	504	97	102	99	0.492537313	0.838602329	
朴素贝叶斯	515	86	117	84	0.417910448	0.856905158	
逻辑斯蒂回归	522	49	142	59	0.293532338	0.914185639	我觉得functions里的都比较悬
反向传播	492	109	124	77	0.383084577	0.818635607	"很慢很慢
SGD随机梯度下降	568	33	157	44	0.218905473	0.945091514	"nedTP很高
简单逻辑斯蒂	565	36	151	50	0.248756219	0.940099834	
SMO序列最小优化算法	582	19	163	38	0.189054726	0.968386023	

ibk k最近邻分类器	466	135	135	66	0.328358209	0.775374376	
kstar	483	118	136	65	0.323383085	0.803660566	稍慢
lwl局部加权学习	556	45	149	52	0.258706468	0.925124792	
InputMappedClassifier					#DIV/0!	#DIV/0!	
DecisionTable	551	50	146	55	0.273631841	0.916805324	
Jrip	541	60	131	70	0.348258706	0.900166389	
OneR	545	56	171	30	0.149253731	0.906821963	kappa过低不考虑
PART	471	130	126	75	0.373134328	0.783693844	
ZEROR					#DIV/0!	#DIV/0!	_
决策树桩	522	79	128	73	0.36318408	0.868552413	_
J48 C4.5决策树	534	67	139	62	0.308457711	0.888519135	
LMT逻辑斯蒂模型树	565	36	151	50	0.248756219	0.940099834	
随机森林	560	41	143	58	0.288557214	0.931780366	
随机树	460	141	136	65	0.323383085	0.765391015	kappa过低不考虑
REP树	544	57	147			0.90515807	

meta算法中用贝叶斯和J48,决策树桩考虑

元分类算法分析

使用AttributeSelectedClassifier可能提高效果(先进行相关属性选择)

通过CVParameterSelection来调整参数(试参数时用)

AdaboostM1(标称数据),AddictiveRegression:用一种方法迭代提高准确率

Bagging(降方差)

MultiScheme:从多种方法中选择

表现(相对)良好的几种算法

贝叶斯

```
=== Run information ===
             weka.classifiers.bayes.BayesNet -D -Q weka.classifiers.bayes.net.search.local.K2 --
Scheme:
-P 1 -S BAYES -E weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 0.5
Relation: 802_ENGLISH_XLS1re
Instances:
             802
Attributes: 34
Test mode:
             10-fold cross-validation
=== Classifier model (full training set) ===
Bayes Network Classifier
not using ADTree
#attributes=34 #classindex=31
Network structure (nodes followed by parents)
YEAR_IN(1): EMPLOYMENT_UNIT_CLASS
```

STYPE(3): EMPLOYMENT_UNIT_CLASS MAJOR(6): EMPLOYMENT_UNIT_CLASS NATION(2): EMPLOYMENT_UNIT_CLASS SEX(2): EMPLOYMENT_UNIT_CLASS SAGE_IN(2): EMPLOYMENT_UNIT_CLASS CPP_MEMBER(2): EMPLOYMENT_UNIT_CLASS INTERVIEW_SCORE_01(1): EMPLOYMENT_UNIT_CLASS INTERVIEW_SCORE_CLASS(4): EMPLOYMENT_UNIT_CLASS 985_211(3): EMPLOYMENT_UNIT_CLASS SAGE_OUT(2): EMPLOYMENT_UNIT_CLASS CONTINUOUS_EDUCATION(2): EMPLOYMENT_UNIT_CLASS CHANGE_MAJOR(2): EMPLOYMENT_UNIT_CLASS TAGE_SIN(1): EMPLOYMENT_UNIT_CLASS TCPP_MEMBER(2): EMPLOYMENT_UNIT_CLASS TTITLE(3): EMPLOYMENT_UNIT_CLASS TDUTY(2): EMPLOYMENT_UNIT_CLASS EXPERT(2): EMPLOYMENT_UNIT_CLASS CREDIT(3): EMPLOYMENT_UNIT_CLASS GPA(2): EMPLOYMENT_UNIT_CLASS GPA_CLASS(4): EMPLOYMENT_UNIT_CLASS GPA_01(1): EMPLOYMENT_UNIT_CLASS GPA_MAIN(1): EMPLOYMENT_UNIT_CLASS GPA_CLASS_MAIN(4): EMPLOYMENT_UNIT_CLASS GPA_MAIN_01(1): EMPLOYMENT_UNIT_CLASS PROPOSAL_GRADE(3): EMPLOYMENT_UNIT_CLASS MID_GRADE(3): EMPLOYMENT_UNIT_CLASS JUDGING_GRADE(2): EMPLOYMENT_UNIT_CLASS ANSWERING_GRADE(2): EMPLOYMENT_UNIT_CLASS TIME_TO_PROPOSAL(1): EMPLOYMENT_UNIT_CLASS EMPLOYMENT_UNIT_CLASS(2): DALEY_YEAR(2): EMPLOYMENT_UNIT_CLASS DELAY(2): EMPLOYMENT_UNIT_CLASS LogScore Bayes: -16390.47907741949 LogScore BDeu: -16519.331041720074 LogScore MDL: -16528.285518975586 LogScore ENTROPY: -16224.02207731766 LogScore AIC: -16315.02207731766 Time taken to build model: 0 seconds === Stratified cross-validation === === Summary === Correctly Classified Instances 603 75.187 % Incorrectly Classified Instances 199 24.813 % Kappa statistic 0.3339 Mean absolute error 0.2683 Root mean squared error 0.4803 Relative absolute error 71.3496 % Root relative squared error 110.8278 % Total Number of Instances 802 === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.839 0.507 0.832 0.839 0.835 0.334 0.672 0.822 NO_EDUCATION_RESEARCH 0.161 0.505 0.493 0.499 0.334 0.672 0.439 0.493 EDUCATION_RESEARCH 0.421 0.750 0.752 0.751 0.334 0.672 0.726 Weighted Avg. 0.752 === Confusion Matrix ===

RECRUITING_WAY(5): EMPLOYMENT_UNIT_CLASS

```
a b <-- classified as
504 97 | a = NO_EDUCATION_RESEARCH
102 99 | b = EDUCATION_RESEARCH
```

但是..... 贝叶斯的结果真的要多简洁有多简洁/滑稽

weka.classifiers.trees.J48 -C 0.25 -M 2

这是此分类器默认的参数设置, 对于J48分类器,很少需要为获得良好的性能而更改这些参数。 袁梅宇. 数据挖掘与机器学习:WEKA 应用技术与实践 (Kindle 位置 1508-1509). 清华大学出版社. Kindle 版本.

- 对于从事教育相关的阳性率达到50%,且假阳性率极低仅为3.2%
- 进行人工集成学习?
- re: cross-v之后只剩30%,10%了......还是不靠谱

实际上,调整到-C 0.1-M 10效果会好一些

=== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2

Relation: 802_ENGLISH_XLS1

Instances: 802

=== Summary ===

694 Correctly Classified Instances 86.5337 % 108 Incorrectly Classified Instances 13.4663 % Kappa statistic 0.5945 Mean absolute error 0.2201 Root mean squared error 0.3318 Relative absolute error 58.559 % Root relative squared error 76.5553 %

Total Number of Instances 802

=== Detailed Accuracy By Class ===

C Area
903
698
852

=== Confusion Matrix ===

a b <-- classified as

582 19 | a = NO_EDUCATION_RESEARCH 89 112 | b = EDUCATION_RESEARCH

weka.classifiers.trees.DecisionStump

数据很好看,但是看下结果就发现......不太靠谱

=== Run information ===

Scheme: weka.classifiers.trees.DecisionStump

Relation: 802_ENGLISH_XLS1re

Instances: 802
Attributes: 34

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Decision Stump

Classifications

STYPE = DOCTOR : EDUCATION_RESEARCH
STYPE != DOCTOR : NO_EDUCATION_RESEARCH
STYPE is missing : NO_EDUCATION_RESEARCH

Class distributions

STYPE = DOCTOR

 NO_EDUCATION_RESEARCH
 EDUCATION_RESEARCH

 0.49246231155778897
 0.507537688442211

STYPE != DOCTOR

STYPE is missing

 NO_EDUCATION_RESEARCH
 EDUCATION_RESEARCH

 0.7493765586034913
 0.2506234413965087

Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 595 74.1895 % Incorrectly Classified Instances 207 25.8105 % Kappa statistic 0.2522 Mean absolute error 0.3325 Root mean squared error 0.4081 Relative absolute error 88.4299 % Root relative squared error 94.1648 % Total Number of Instances 802

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area
Class								
	0.869	0.637	0.803	0.869	0.835	0.256	0.639	0.809
NO_EDUCATION_RESEARCH								
	0.363	0.131	0.480	0.363	0.414	0.256	0.639	0.375
EDUCATION_RESEARCH								
Weighted Avg.	0.742	0.510	0.722	0.742	0.729	0.256	0.639	0.700

=== Confusion Matrix ===

a b <-- classified as

522 79 | a = NO_EDUCATION_RESEARCH 128 73 | b = EDUCATION_RESEARCH

```
weka.classifiers.meta.Vote -S 1 -B "weka.classifiers.bayes.BayesNet -D -Q weka.classifiers.bayes.net.search.local.K2 -- -P 1 -S BAYES -E weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 0.5" -B "weka.classifiers.bayes.NaiveBayes " -B "weka.classifiers.trees.DecisionStump " -B "weka.classifiers.trees.J48 -C 0.25 -M 2" -R AVG
```

```
Time taken to build model: 0.02 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances
                                   608
                                                   75.8105 %
Incorrectly Classified Instances
                                   194
                                                  24.1895 %
Kappa statistic
                                   0.3294
Mean absolute error
                                    0.2948
Root mean squared error
                                    0.4258
Relative absolute error
                                   78.4196 %
Root relative squared error
                                   98.2609 %
Total Number of Instances
                                   802
=== Detailed Accuracy By Class ===
               TP Rate FP Rate Precision Recall F-Measure MCC
                                                                    ROC Area PRC Area
Class
                               0.826
                       0.542
                                         0.859
                                                            0.331
                                                                    0.668
                                                                             0.820
               0.859
                                                  0.842
NO_EDUCATION_RESEARCH
               0.458
                       0.141 0.520
                                         0.458
                                                  0.487
                                                            0.331
                                                                    0.668
                                                                             0.457
EDUCATION_RESEARCH
              0.758
                       0.442 0.749
                                         0.758
                                                  0.753
                                                            0.331
                                                                    0.668
                                                                             0.729
Weighted Avg.
=== Confusion Matrix ===
  a b <-- classified as
516 85 | a = NO_EDUCATION_RESEARCH
109 92 | b = EDUCATION_RESEARCH
```

但是,主要的影响因素还是Doctor/not

Tree的进一步讨论

J48 参见 http://www.cnblogs.com/chamie/p/4523976.html,基于信息增益构建树. 效果拔群,参数简单,而且便于解释.

decision stump 一刀切\单层决策树

http://blog.csdn.net/lanchunhui/article/details/50980635

随机森林 参见 http://www.cnblogs.com/hrlnw/p/3850459.html