量子信息与量子密码 第五次作业

姓名: 刘炼 学号: 202128013229021

	No.
22. 全 rx=px-qx, 全U为金值.	
my max p(s)-9(s) = max \(\bar{z}\) px -\(\bar{z}\) 9x	
$= \max_{x \in S} \left \sum_{x \in S} (p_x - q_x) \right $	
= max \(\sum_{\text{xes}} \) \(\text{Y}_{\text{N}} \)	
可格众中的值的为西部为,为公元,不仅人口	
$\sum_{X \in S} Y_X = \sum_{X \in S} Y_X + \sum_{X \in S} Y_X = 0$ $\sum_{X \in S} Y_X = \sum_{X \in S} Y_X + \sum_{X \in S} Y_X = 0$	
$\Rightarrow \bigvee_{x \in S_{+}} Y_{x} = -\sum_{x \in S_{-}} Y_{x} = \bigvee_{x \in S_{-}} max$	$\left \sum_{\mathbf{x}\in\mathcal{S}} \mathcal{V}_{\mathbf{x}}\right $
$\mathbb{P}(p_x, q_x) = \frac{1}{2} \sum_{x \in V} p_x - q_x $	765
$= \frac{1}{2} \sum_{x \in \mathcal{U}} Y_x $	
= \frac{\sum_{\colored} \colored{\color	
$= \frac{1}{2} \sum_{x \in S^1} Y_x - \frac{1}{2} \sum_{x \in S} Y_x$	
= Xect ×	
= max \(\sum_{\times} \gamma_{\times} \rangle \gamma_{\times} \gamm	
FI max \(\bar{\gamma} \) \(\	
$\Rightarrow D(p_x, q_x) = max(p_a(s) - q(s)) = max(z)$	res px - \(\sigma g \) \(\times \)
得记	

```
23. 证明:

- 根据保護的基本证义,有 F(1\phi>, \sigma) = \int \langle \psi | \sigma | \psi \rangle

- : 1 - \int_{-\infty}^{2} (1\psi>, \sigma) = 1 - \langle \psi | \sigma | \psi \rangle

- : \partial_{x} \psi = \partial_{x
```

$$24.
\overline{MMMT}:$$

$$D(UPU^{\dagger o}, U\sigmaU^{\dagger}) = \overline{\pm} tV \left(U(P-\sigma)U^{\dagger}\right)$$

$$= \overline{\pm} tV \int U(P-\sigma)^{\dagger} (P-\sigma)U^{\dagger}$$

$$= \overline{\pm} tV \left(U(P-\sigma)^{\dagger} (P-\sigma)U^{\dagger}\right)$$

$$= \overline{\pm} tV \left(U(P-\sigma)U^{\dagger}\right)$$

$$= \overline{$$

Date
29. Wingon 7.
CU 名《A的特征值,则可为解为:
$A = T^{-1} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} T$
to 11A1= max <u a1u> </u a1u>
= max (xu17-1 (1);) 7 (u)
特加ンがあ: ルンニをQilXi>、其中IXi为T配第元台、至Qii=1
勝の人以お解的: の人以二号的·Kyil,其中人yil为下向露面,至的三
120 Tiur = 200 (an) (an) (b1, bn)
: . A = max [airibi . , \(\frac{1}{2} \) (airibi) . , \(\frac{1}{2} \) (airibi) =
故 IIAII \$ \$ > max 毫 at (\right) = 《入.
以知AT=A,则A为正规的经际,A=T+(A)
M A = max & ailxel
= max [li]
二人.

	No.	
	Date · ·	
30. \$BIAD是一个纯点,一		
M S(A,B) = 0		
.: S(B A) = -S(A) =0		
且仅多A为独态的,S(A)=0		
故。花花:		
新性 0号 (AB>为纠缠底, 则 S(A) +0 + S	(BIA) = - S(A) < 0	
题20 数 S(B A)<0, = · S(A)<0 = S(A	1 = 0 : 1 AB > + 4 W (B)	