Espace des fonctions mesurables à valeurs dans \mathbb{R} .

Jean Pierre Mansour

Janvier 2022

Le but de ce document d'étudier la structure de l'espace des fonctions mesurables sur espace mesurable (X, \mathcal{T}) à valeurs dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Proposition. Soient (X, \mathcal{T}) et (Y, \mathcal{P}) deux espaces mesurables. On munit \mathbb{R}^2 de sa tribu des boréliens $\mathcal{B}(\mathbb{R}^2)$. Considérons deux application mesurables f_1 , f_2 de X dans \mathbb{R} et l'application mesurable $u: (\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2)) \to (Y, \mathcal{P})$. Alors l'application

$$\phi: (X, \mathcal{T}) \xrightarrow{f} (\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2)) \xrightarrow{u} (Y, \mathcal{P})$$

$$x \xrightarrow{} (f_1(x), f_2(x)) \xrightarrow{u} u(f_1(x), f_2(x))$$

est mesurable.

Preuve. Nous avons par hypothèse que u est mesurable. Il reste à montrer que f est mesurable. En effet, \mathbb{R}^2 est muni de sa tribu de boréliens $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$. Donc f est mesurable si et seulement si f_1 et f_2 sont mesurables. (J'admets ce résultat. Sa démonstration n'est aucunement difficile). Ce qui fait que $\phi = u \circ f$ est mesurable comme étant la composée de deux fonctions mesurables.

Ou bien, montrons que l'image réciproque par f d'une tribu est une tribu. Soit $S = \{I_1 \times I_2 / I_1, I_2 \text{ intervalles de } \mathbb{R}\}$. On a $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}) = \sigma(S)$. Donc on peut se contenter de montrer que $f^{-1}(S) \subset \mathcal{T}$.

Pour cela, soit $I = I_1 \times I_2 \in S$. Par la théorie des ensembles, $f^{-1}(I_1 \times I_2) = f^{-1}(I_1) \cap f^{-1}(I_2)$. On a $f^{-1}(I_1) \in \mathcal{T}$ et $f^{-1}(I_2) \in \mathcal{T}$, alors $f^{-1}(I_1 \times I_2) \in \mathcal{T}$, pour tout $I \in \mathcal{T}$. Donc f est mesurable et parsuite ϕ est mesurable. cqfd

Corollaire. Si f_1 , f_2 sont deux fonction mesurables sur (X, \mathcal{T}) alors $f_1 + f_2$

est mesurable.

Preuve. Prendre $(Y,\mathcal{P})=(\mathbb{R},|.|)$ et u l'opérateur d'addition sur \mathbb{R} . Bien entendu, u est continue donc mesurable. Par la proposition précédente, on obtient que ϕ est mesurable, avec $\phi=f_1+f_2$.