CS 321: Homework #4

1.
$$\overline{L(R)} = L((ab + aab) * b)$$

Process:

Regular Expression \rightarrow NFA \rightarrow DFA \rightarrow Modify DFA for Complement \rightarrow NFA \rightarrow Regular Expression Regular Expression:

$$L((ab + aab) * b)$$

NFA:

DFA:

DFA's Complement:

NFA:

Regular Expression:

 $L(R) = L(\varepsilon + a + aa + ab + aab + ba(a + b)^* + aaa(a + b)^* + aba(a + b)^* + aaba(a + b)^* + abba(a + b)^* + abba(a + b)^*)$

2.
$$\varepsilon + a(ba*b + ba)*b$$

Process:

Regular Expression \rightarrow NFA \rightarrow DFA

Regular Expression:

$$\varepsilon + a(ba*b + ba)*b$$

NFA:

DFA:

3.

 $A = \{w \in \{a, b\}^* \mid 10$ th character from the end of w is $b\}$

Prove that DFA *M* has L(M) = A has at least 1024 states.

Hint: Prove the contrapositive: Suppose M has fewer than 1024 states, then show that L(M) disagrees with A (show a string in A that M rejects, or a string not in A the M accepts). Consider $\delta^*(s, w)$ for all strings w of length 10.

Proof:

[Unable to fully complete this problem before the homework deadline...]

4. Prove $\{a^n b^m c^{n-m} \mid n, m \in \mathbb{N} \text{ and } n \ge m\}$ is not regular.

Proof: By the Pumping Lemma game...

1) Adversary picks $p \ge 0$.

2) I choose
$$w = a^p b^{p-1} c^{p-(p-1)} = a^p b^{p-1} c$$

Satisfies:
$$w \in A$$
 and $|w| = 2p - 1 \ge p$

3) Adversary chops w into xyz.

Since $|xy| \le p$, y contains only a's.

4) I choose i = 0.

$$x\;y^i\;z=xz\;$$
 has p - $|y|$ a's
$$\label{eq:spectrum} and\;p-1\;b's$$
 and $1\;c$

since $p - |y| \le p - 1$

 $x y^i z$ is not an element in A, which shows that $\{a^n b^m c^{n-m} \mid n, m \in \mathbb{N} \text{ and } n \geq m\}$ is not regular.