Math 225A Notes

Sarah Mantell

October 14, 2022

1.1 General Definitions

Definition 1.1.1 (Number field): A number field is a finite field extension over \mathbb{Q} .

Definition 1.1.2 (Algebraic integer): Let K be a number field. An algebraic number $a \in K$ is called integral or an algebraic integer of K if f(a) = 0 for some monic polynomial f with coefficients in \mathbb{Z} . Denote the set of algebraic integers in K by \mathbb{G}_K .

Proposition 1.1.3: Let K be a number field. Then \mathfrak{O}_K is a ring and $K = \operatorname{Frac}(\mathfrak{O}_K)$.

Proposition 1.1.4: The ring \mathfrak{O}_K is Noetherian, integrally closed, and every nonzero prime ideal of \mathfrak{O}_K is maximal.

Notice that the results presented in the proposition above imply that \mathfrak{O}_K is a Dedekind domain, using one of the many equivalent defintions of a Dedekind domain.

Theorem 1.1.5 (Unique Factorization of Ideals): Every nonzero ideal $\mathfrak{a} \nsubseteq \mathfrak{G}_K$ can be uniquely written as

$$\mathfrak{a}=\mathfrak{p}_1^{r_1}\cdots\mathfrak{p}_m^{r_m}$$

where $m \ge 1$, $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ are distinct nonzero prime ideals of \mathfrak{G}_K , and $r_1, \ldots, r_m \in \mathbb{N}$.

Definition 1.1.6 (Trace, Norm): Suppose that $\mathbb{Q} \subseteq K \subseteq L$ is an extension of fields. Let $a \in L$ and view L as a K-vector space to consider the linear transformation

$$T_a:L\to L$$

The notes here about algebraic number theory are very brief – the recommended texts for a more in depth reading are:

- ► Algebraic Number Theory Chapters I, II (Neukirch)
- ► Algebraic Number Theory Notes (Milne)

Theorem ?? is actually true for any Dedekind domain, but we just focus on this specific case here.

$$x \mapsto ax$$
.

Define the trace and norm for *a* as

$$\operatorname{Tr}_{L/K}(a) = \operatorname{Tr}(T_a) \in K$$

and

$$\operatorname{Nm}_{L/K}(a) = \det(T_a) \in K.$$

With trace and norm defined as in Definition ??, we obtain a bi-*K*-linear pairing:

$$\langle \cdot, \cdot \rangle_{L/K} : L \times K \to K$$

given by

$$\langle a, b \rangle_{L/K} = \operatorname{Tr}_{L/K}(ab).$$

Definition 1.1.7: Let $\alpha_1, \ldots, \alpha_n$ be a basis of L over K. The discriminant of $\alpha_1, \ldots, \alpha_n$ is defined as

$$D(\alpha_1,\ldots,\alpha_n) = \det\left(\left(\langle \alpha_i,\alpha_j\rangle\right)_{1\leq i,j\leq n}\right).$$

The discriminant of L/K is denoted by $D_{L/K}$ and is the ideal of \mathfrak{G}_K generated by

$$\{D(\alpha_1,\ldots,\alpha_n):\alpha_1,\ldots,\alpha_n\text{ is a basis of }L/K\text{ contained in }\mathfrak{O}_L\}.$$

For K/\mathbb{Q} , $\mathbb{O}_{\mathbb{Q}}=\mathbb{Z}$ and therefore is a PID. So, \mathbb{O}_K is a free \mathbb{Z} -module of rank $n=[K:\mathbb{Q}]$. For any \mathbb{Z} -basis α_1,\ldots,α_n of \mathbb{O}_K ,

$$D_{K/\mathbb{Q}} = (D(\alpha_1, \ldots, \alpha_n)).$$

Definition 1.1.8 (Ramification index, Residue class degree/Intertia degree): Let L/K be an extension of number fields, $\wp \subseteq \mathfrak{G}_L$ a nonzero prime ideal, and define $\mathfrak{p} = \wp \cap \mathfrak{G}_K \subseteq \mathfrak{G}_K$. Write the prime factorization of $\mathfrak{p}\mathfrak{G}_L$ as

$$\mathfrak{p}\mathfrak{O}_L=\wp_1^{e_1}\cdots\wp_m^{e_m}$$

where $\wp_1 = \wp$. The ramification index of \wp over \mathfrak{p} , denoted by $e(\wp/\mathfrak{p})$, is defined to be e_1 (as given in the prime factorization). The residue class degree, or the intertia degree, of \wp of \mathfrak{p} , denoted by $e(\wp/\mathfrak{p})$, is defined to be $[\mathfrak{G}_L/\wp:\mathfrak{G}_K/\mathfrak{p}]$.

The matrix

$$\left(\langle\alpha_i,\alpha_j\rangle\right)_{1\leq i,j\leq n}$$

is an $n \times n$ matrix, with entries in K.

Definition 1.1.9 (Ramified): Let L/K be an extension of number fields and $\mathfrak{p} \subseteq \mathbb{O}_K$ a nonzero prime ideal. We say \mathfrak{p} is ramified in L or L/K is ramified at \mathfrak{p} if $e(\wp/\mathfrak{p}) > 1$ for some $\wp \subseteq \mathbb{O}_L$ satisfying $\mathfrak{p} = \wp \cap \mathbb{O}_K$. We say \mathfrak{p} is unramified in L or L/K is unramified at \mathfrak{p} if $e(\wp/\mathfrak{p}) = 1$ for every $\wp \subseteq \mathbb{O}_L$ where $\mathfrak{p} = \wp \cap \mathbb{O}_K$.

Definition 1.1.10 (Splits, Splits completely): Let L/K be an extension of number fields and $\mathfrak{p} \subseteq \mathfrak{O}_K$ a nonzero prime ideal. We say \mathfrak{p} splits or splits completely in L if $e(\wp/\mathfrak{p}) = f(\wp/\mathfrak{p}) = 1$ for every $\wp \subseteq \mathfrak{O}_L$ with $\wp \cap \mathfrak{O}_K = \mathfrak{p}$.

Definition 1.1.11 (Inert): Let L/K be an extension of number fields and $\mathfrak{p} \subseteq \mathfrak{O}_K$ a nonzero prime ideal. We say that \mathfrak{p} is inert in L if $\mathfrak{p}\mathfrak{O}_L$ is a prime ideal of \mathfrak{O}_L .

From these definitions, one can derive the following identity: if $\mathfrak{p}\mathbb{G}_L = \mathscr{D}_1^{e_1} \cdots \mathscr{D}_m^{e_m}$ then

$$[L:K] = \sum_{j=1}^{m} e(\wp_j/\mathfrak{p}_j) f(p_j/\mathfrak{p}_j).$$

Theorem 1.1.12: The extension L/K is unramified at $\mathfrak{p} \subseteq \mathfrak{G}_K$ if and only if \mathfrak{p} does not divide $D_{L/K}$. That is, $D_{L/K} \nsubseteq \mathfrak{p}$ if and only if \mathfrak{p} and $D_{L/K}$ are coprime $(\mathfrak{p} + D_{L/K} = \mathfrak{G}_K)$.

Theorem 1.1.13 (Minkowski): \mathbb{Q} has non nontrivial extension that is unramified at all primes. Equivalently, every $D_{K/\mathbb{Q}} \neq \pm 1$.

Note that Theorem **??** is not true for a general number field *K*:

Example 1: Let $K = \mathbb{Q}(\sqrt{-5})$ and $L = K(\sqrt{-1})$ so that L/K is an extension of number fields. Then, $\mathbb{O}_K = \mathbb{Z}[\sqrt{-5}]$ and $L = K(\sqrt{5})$. To see that L/K is unramified at all primes, we apply Theorem ?? and show that $D_{L/K} = \mathbb{O}_K$.

The remainder of this example is just some computations regarding the discriminant and two different *K*-bases of *L*.

Definition 1.1.14 (Fractional ideal): A fractional ideal of K is a nonzero finitely generated \mathfrak{O}_K -submodule of K.

One can define a multiplication on the collection of fractional ideals of K: if $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ are all fractional ideals of K, then the product is the \mathfrak{G}_K -submodule of K generated by $\{a_1 \cdots a_n | a_j \in \mathfrak{a}_j\}$.

Proposition 1.1.15: The collection of fractional ideals of K forms an abelian group under the multiplication of fractional ideals. With this structure, the identity is \mathfrak{G}_K and the inverse of \mathfrak{a} is $\mathfrak{a}^{-1} = \{x \in K | x\mathfrak{a} \subseteq \mathfrak{G}_K\}$.

Proposition 1.1.16: Let K be a number field. Every fractional ideal $\mathfrak a$ of K can be written uniquely in the form

$$\mathfrak{a} = \prod_{\mathfrak{p}} \mathfrak{p}^{r_{\mathfrak{p}}}$$

where the product is taken over all the nonzero prime ideals of \mathfrak{G}_K , each $r_{\mathfrak{p}} \in \mathbb{Z}$, and almost every $r_{\mathfrak{p}}$ is zero.

Remark 1 With these definitions, I_K is the free abelian group on the set of nonzero prime ideals of \mathfrak{O}_K .

Define a subgroup of I_K by

$$P_K = \left\{ (a) = a \mathcal{O}_K : a \in K^\times \right\}.$$

Definition 1.1.17 (Ideal class group, Class group): The ideal class group or class group of *K* is defined as

$$Cl(K) = I_K/P_K$$
.

Theorem 1.1.18: For any number field K, the class group Cl(K) is finite.

Definition 1.1.19 (Class number): The class number of a number field K is the order of the class group Cl(K).

The proof that the class number of a given number field is indeed finite uses Minkowski Theory.

For a number field K, let r_k denote the number of real embeddings of K into \mathbb{R} and s_k denote the number of pairs of complex embeddings of K into \mathbb{C} . Here we are assuming that s_k is counting the pairs of embeddings that are not strictly contained in \mathbb{R} . Note that the complex embeddings occur in pairs through complex conjugation.

Theorem 1.1.20 (Dirichlet's Unit Theorem): Suppose that K is a number field and $\mu(K)$ is the finite group of roots of unity that are contained in K. Then,

$$\mathbb{O}_K^\times \cong \mathbb{Z}^{r_k+s_k-1} \times \mu(K).$$

Definition 1.1.21 (Decomposition group): Suppose that L/K is a Galois extension of number fields, $\wp \subseteq L$ is a prime ideal, and $\mathfrak{p} = \wp \cap \mathfrak{G}_K$. The decomposition group of \wp is the set

$$G_{\emptyset} = \{ \sigma \in \operatorname{Gal}(L/K) : \sigma(\wp) = \wp \}.$$

Definition 1.1.22 (Inertia group): Let $\kappa = \mathbb{O}_K/\mathfrak{p}$ and $\lambda = \mathbb{O}_L/\wp$. The kernel of the map

$$G_{\wp} \to \operatorname{Aut}(\lambda/\kappa)$$

is the inertia group of \wp and is denoted by I_{\wp} .

Need to check the assumptions here – where is \wp living? Nonzero?

1.2 Valuations and Absolute Values

In general, assume hereafter that p denotes some prime number.

Definition 1.2.1 (p**-adic absolute value,** p**-adic norm):** The p-adic absolute value or norm of \mathbb{Q}

$$|\cdot|_p:\mathbb{Q}\to\mathbb{R}$$

is defined by

$$\left| p^m \frac{a}{b} \right|_p = p^{-m}$$

where both a and b are coprime to p. Set $|0|_p = 0$.

Proposition 1.2.2: The p-adic norm is indeed a norm. That is:

- 1. $|a|_p > 0$ for all $a \in \mathbb{Q}^{\times}$
- 2. $|ab|_p = |a|_p |b|_p$
- 3. $|a+b|_p \le |a|_p + |b|_p$

The p-adic norm actually satisfies a stronger version of the triangle inequality: $|a+b|_p \le \max\{|a|_p,|b|_p\}$. Since we have now equipped $\mathbb Q$ with a norm, it can be viewed as a topological space and thus there is a notion of convergence and Cauchy sequences. In particular, we are interested in studying the completion of $\mathbb Q$ with respect to a given p-adic norm.

Definition 1.2.3 (*p***-adic numbers):** Let \mathbb{Q}_p be the completion of \mathbb{Q} with respect to the *p*-adic norm. The elements of \mathbb{Q}_p are called the *p*-adic numbers.

Using properties of limits and the fact that every element of \mathbb{Q}_p can be represented as the limit of a sequence of points in \mathbb{Q} , the addition and multiplication of \mathbb{Q} can be naturally extended to \mathbb{Q}_p . Likewise, the norm $|\cdot|_p$ can be extended to a norm on \mathbb{Q}_p . With these operations, \mathbb{Q}_p is a field that contains \mathbb{Q} as a subfield.

Definition 1.2.4 (*p***-adic integers):** Define the ring of *p*-adic integers to be the subset of \mathbb{Q}_p given by

$$\mathbb{Z}_p = \left\{ a \in \mathbb{Q}_p : |a|_p \le 1 \right\}.$$

One can easily see that the set of units is $\mathbb{Z}_p^{\times} = \{a \in \mathbb{Q}_p : |a|_p = 1\}.$

Example 2: The polynomial $x^{p-1} - 1$ is solvable of \mathbb{Q}_p .

Definition 1.2.5 (p**-adic valuation):** The p-adic valuation of $\mathbb Q$ is given by

$$\nu_v: \mathbb{Q} \to \mathbb{R} \cup \{\infty\}$$

where $\nu_p(p^m \frac{a}{b}) = m$ and both a and b are coprime to p. The p-adic valuation can be extended to \mathbb{Q}_p by letting $\nu_p(p^m a) = m$ where $a \in \mathbb{Z}_p^{\times}$.

Proposition 1.2.6: The *p*-adic valuation satisfies the following:

- 1. $v_p(a) = \infty$ if and only if a = 0
- 2. $v_p(ab) = v_p(a) + v_p(b)$
- 3. $v_p(a+b) = \min\{v_p(a), v_p(b)\}$

Furthermore, the p-adic valuation and p-adic absolute value have the following relation:

$$|a|_p = p^{-\nu_p(a)} \quad \nu_p(a) = -\log_p |a|_p.$$

Definition 1.2.7 (Absolute value, Nonarchimedean): An absolute value, or multiplicative valuation, of a field K is a function $|\cdot|: K \to \mathbb{R}_{\geq 0}$ such that

- (1) |x| = 0 if and only if x = 0
- $(2) |xy| = |x| \cdot |y|$
- (3) $|x + y| \le |x| + |y|$

If instead of ??, the stronger condition

$$|x + y| \le \max\{|x|, |y|\}$$

holds, then $|\cdot|$ is a nonarchimedean absolute value.

Definition 1.2.8 (Equivalent): Two absolute values are equivalent if they induce the same topology.

Using topological properties, one can show that two norms $|\cdot|_1$, $|\cdot|_2$ on K are equivalent if and only if there exists $s \in \mathbb{R}_{>0}$ such that $|x|_1 = |x|_2^s$ for all $x \in K$. In particular, if there exists $x \in K$ where $|x|_1 \ge 1$ and $|x|_2 < 1$ the two norms are *not* equivalent.

Definition 1.2.9 (Additive valuation, Valuation): An additive valuation on a field K is a function $\nu: K \to \mathbb{R} \cup \{\infty\}$ such that

- (1) $v(x) = \infty$ if and only if x = 0
- $(2) \ \nu(xy) = \nu(x) + \nu(y)$
- (3) $v(x + y) \ge \min\{v(x), v(y)\}.$

With these definitions, the collection of valuations and collection of nonar-

chimedean absolute values are related by the exponential and logarithmic functions. With this relationships, we can define the following:

Definition 1.2.10 (Equivalent valuations): Two valuations are equivalent if their corresponding absolute values are equivalent (see Definition ??).

Proposition 1.2.11: Every absolute value of \mathbb{Q} is either the usual Euclidean absolute value or is equivalent to $|\cdot|_p$ for some prime p.

From hereafter, $|\cdot|_{\infty}$ is used to denote the Euclidean absolute value.

Definition 1.2.12 (Residue class field, Valuation ring): Let K be a field with valuation ν . The local ring ¹

$$\emptyset = \{ x \in K : \nu(x) \ge 0 \}$$

is the valuation ring for K. The unique maximal ideal of \emptyset is

$$\mathfrak{p}\left\{x\in K:\nu(x)>0\right\}$$

the units are

$$0^{\times} = \{x \in K : \nu(x) = 0\}$$

The field 0/p is the residue class field of 0.

Definition 1.2.13 (Discrete valuation): A valuation ν on K is called discrete if $\nu(K^{\times}) = s\mathbb{Z}$ for some $s \in \mathbb{R}_{>0}$.

Definition 1.2.14 (Uniformizer): Assume that ν is a discrete valuation with $\nu(K^{\times}) = s\mathbb{Z}$. An element $\varpi \in K$ is a uniformizer if $\nu(\varpi) = s$.

Alternatively, we can think of the uniformizer as follows: ω is a uniformizer if and only if ω generates the unique maximal ideal of the valuation ring.

If ν is a discrete valuation, then it can be normalized to a valuation $\nu'(x) = s^{-1}\nu(x)$. From this definition, ν and ν' are equivalent and $\nu'(K^{\times}) = \mathbb{Z}$. Once normalized, an element ϖ is a uniformizer if and only if $\nu'(\varpi) = 1$.

Proposition 1.2.15: Let K be a field with a discrete valuation. Then, the corresponding valuation ring is a discrete valuation ring 2 .

Completions

Now that a field K can be equipped with a norm, we can construct a completion of K with respect to any p-adic norm. The definition of completeness is the usual:

Definition 1.2.16 (Complete): The pair $(K, |\cdot|)$ is complete if every Cauchy sequence converges in K (with respect to the $|\cdot|$ norm.)

Given any $(K, |\cdot|)$, we can always find a completion \hat{K} and naturally extend $|\cdot|$ to \hat{K} . »»»> 2a2dbcd (More notes.)