FISF130020: Introduction to Computer Science

Lecture 9. Cryptograph

Hui Xu xuh@fudan.edu.cn

Outline

- 1. Symmetric Encryption
- 2. Asymmetric Encryption
- 3. Hash Function
- ❖ 3. In-class Practice

1. Symmetric Encryption

Problem: Confidentiality

- How to design a system that ensures information is not leaked to malicious users during network transfer?
- Symmetric encryption: encryption and decryption via the same key

Caesar Cipher

- Each letter in the plaintext is replaced by another letter based on a specific mapping rule.
- For example, using a left shift of 3.

Plaintext: THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG Ciphertext: QEB NRFZH YOLTK CLU GRJMP LSBO QEB IXWV ALD

Scytale

 A transposition cipher where a strip of text is wrapped around a rod of a specific width.

The message is revealed by reading the characters in rows along the

length of the rod.

Sample Cipher: Encryption

CipherText = PlainText \bigoplus Key₀ \boxplus Key₁

⊕: exclusive or

⊞: plus

☐: minus

PlainText: 8-bit

Key: a 16-bit key with two parts [Key₀, Key₁], each of which is 8-bit

e.g., PlainText = 'A', Key="00001111111110000",

CipherText = 01000001 ⊕ 00001111 ⊞ 11110000

CipherText = 01001110 ⊞ 11110000

CipherText = 00111110

Sample Cipher: Decryption

```
PlainText = CipherText \square Key<sub>1</sub>\bigoplus Key<sub>0</sub>
```

PlainText = 00111110 ☐ 11110000 ⊕ 00001111

PlainText = 01001110 ⊕ 00001111

PlainText = 01000001

Guess The Bits of The Key

- Given two pairs of plaintext and ciphertext,
 - PlainText₁ = 01000001, CipherText₁ = 00111110
 - PlainText₂ = 01000010, CipherText₂ = 00111101
- Guess bit value of the Key:

CipherText =
$$01000001 \oplus \text{Key}_0 \boxplus \text{Key}_1 = 00111110$$

CipherText =
$$01000010 \oplus \text{Key}_0 \boxplus \text{Key}_1 = 00111101$$

$$01000001 \oplus \text{Key}_0 \boxplus \text{Key}_1 = 01000010 \oplus \text{Key}_0 \boxplus \text{Key}_1 \boxplus 00000001$$

 $01000001 \oplus \text{Key}_0 = 01000010 \oplus \text{Key}_0 \boxplus 00000001$

$$Key_0 = ******11$$

Information Leakage

Enigma Machine

A cipher device used by Germany during World War II.

Ultimately hacked by Allied forces and impacted the war's outcome.

Kerckhoff Principle

A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.

Commonly-used Ciphers

DES

- Released in 1977, FIPS PUB 46, key space of 2⁵⁶.
- In 1998, DES was cracked within three days using a device costing \$250,000.

3DES

- NIST SP 800-67 (1998), FIPS PUB 46-3 (1999)
- In 1999, NIST designated 3-DES as a transitional encryption standard.
- The 3DES algorithm can continue to be used in sensitive government information systems in the United States until 2030.

AES

Released in 2001, FIPS PUB 197.

Feistel Network used by Ciphers

2. Asymmetric Encryption

Problem

- How to negotiate keys without pre-shared knowledge?
- The key should not be accessible or known by unauthorized parties.

Diffie-Hellman Key Exchange

Discrete logarithm problem: $g^x = y \mod n$

=> x=?

Alice

Shared info p = 23 (prime)

g = 5

Generate private key: $prk_A = 4$

Calculate public key:

puk_A= g ^{prkA} mod p

 $=5^4 \mod 23$

= 4

Calculate Session key:

sk_{AB}=puk_B^{prkA}

 $= 10^4 \mod 23$

= 18

Bob

Generate private key: $prk_B = 3$

Calculate public key:

 $puk_B = g^{prkB} \mod p$

 $= 5^3 \mod 23$

= 10

Calculate Session key:

 $sk_{AB} = puk_A^{prkB}$

 $= 4^{3} \mod 23$

= 18

MITM Attack

Problem

- Anyone can send a message to A, and only A can decrypt it.
- A can send a message to anyone, and the recipient can prove that A
 is the sender of the message.

RSA Algorithm

- In 1977, Rivest, Shamir, and Adleman invented it.
- Security: Based on the integer factorization problem.
 - As long as the key length is sufficiently long (2048 bit), information encrypted with RSA is practically unbreakable.
 - On December 12, 2009, the number RSA-768 (768 bits, 232 digits) was successfully factored.

RSA: Key Generation

- Select two distinct large prime numbers: p, q
 - \square Compute n = p * q
 - Compute φ(n) = (p 1)(q 1)
- Generate the public key:
 - \square Select an integer e such that $1 < e < \phi(n)$ and $gcd(e, \phi(n)) = 1$
 - ☐ The public key is: (e, n)
- □ Compute $d = e^{-1} \mod \phi(n)$;
 - ☐ Use the extended Euclidean algorithm.
 - The private key is: d

```
Example:

p=13, q=7

n=13*7=91

φ(n)=(13-1)*(7-1)=72

e=11

Publick Key: (11, 91)

d=11<sup>-1</sup> mod 72=59,

Private Key: (59, 91)
```

Calculate Private Key with Extended Euclidean Algo.

```
72 = 11*6 + 6
11 = 6*1 + 5
6 = 5*1 + 1
1 = 6 - 5
1 = 6 - (11-6) = 2*6 - 11
1 = 2*(72-11*6) - 11 = 2*72 - 11*13
d = -13 \mod 72 = 59
```

RSA: Encryption/Decryption

Encryption:

CipherText=PlainText^e mod n

Decryption:

Plaintext=CipherText^d mod n

Example:

Public Key: (11, 91)

Private Key: 59

PlainText: 65

Encryption: $65^{11} \mod 91 = 39$

Decryption: 39⁵⁹ mod 91=65

Proof: med ≡ m mod n

```
m^{ed}
= m^{1+k\phi(n)}
= m^*(m^{\phi(n)})^k
```

According to Euler's theorem: if m and n are coprime, $m^{\phi(n)}$ mod n = 1

```
m^{ed}
\equiv m^*(1)^k \mod n
\equiv m \mod n
```

RSA: Digital Signature

Digital Signature:

sign = PlainText^d mod n

Signature Verification:

PlainText = sign^e mod n

Example:

Public Key: (11, 91)

Private Key: 59

PlainText: 5

Sign: 5⁵⁹ mod 91=73

Verify: 73¹¹ mod 91=5

Security Issue:

Assuming 5^d mod 91=73, 25^d=?

3. Hash Function

Problem

How to prevent data forgery or the data from being tampered?

Requirements for a HASH Function

Practicality:

- H(x) = y can be applied to data xx of any size.
- For any input x, the result y of H(x) = y is of fixed length.
- The computational cost of H(x) = y is low, such as linear complexity.

• One-way function:

• Given the result y, it is infeasible to compute x such that H(x) = y.

Collision resistance:

- Weak collision resistance: Given any x1, it is infeasible to find x2 such that H(x1)
 = H(x2).
- Strong collision resistance: It is infeasible to find any pair (x1,x2) such that H(x1) = H(x2).

Birthday Attack

 Assuming a class has n students, what is the probability that at least two students share the same birthday?

•
$$1 - \frac{365!}{(365-n)! \times 365^n} = 70.63\%$$

$$\sqrt{n} = 2$$
, p = 0.2%

$$\sqrt{n}$$
 = 10, p = 11.7%

$$\sqrt{n}$$
 = 20, p = 41.1%

$$\sqrt{n}$$
 = 40, p = 89.1%

$$\sqrt{n}$$
 = 50, p = 97%

Sample Hash Function

• Let's define the following hash function for a message $M = a_1, ..., a_n$

$$Hash(M) = \left(\sum_{i=1}^{t} a_i\right) \bmod n$$

- Calculate the hash value for m = 70, 117, 100, 97, 110, and n = 256
- Is the hash function safe? i.e., meet the requirements.
 - One-way function?
 - no, because we can easily find a message that produce the same hash value
 - Collision resistance? no

Commonly-used Hash Functions

• MD5:

- Designed by Ron Rivest in 1991
- 128-bit (16-byte) hash value, 64 rounds of computation
- Security: Considered insecure, as collisions can be found within seconds

• SHA-1:

- Defined in FIPS 180 (1993), based on the design of MD4
- 160-bit hash length, 80 rounds
- In 2005, Xiaoyun Wang demonstrated that finding two different inputs with the same hash value in SHA-1 has a complexity of 2⁶⁹-2⁸⁰.
- Enhanced versions include SHA-2 (FIPS 180-3, 2002) and SHA-3 (2007)

3. In-class Practice

In-class Practice

- Given p = 3, q = 11, e = 7,
 - calculate the private key
 - 2) use the private key to encrypt M=5
 - 3) decrypt the previous encrypted data with the public key
- Analyze the security of the following hash function where $M = a_1, ..., a_n$

$$Hash(M) = \left(\sum_{i=1}^{t} a_i^2\right) \bmod n$$