Team5 HW4

Tyler Brassfield

2024-09-20

```
# Required packages
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr
              1.1.4
                                     2.1.5
                        v readr
## v forcats 1.0.0
                        v stringr
                                     1.5.1
## v ggplot2 3.5.1
                        v tibble
                                    3.2.1
## v lubridate 1.9.3
                         v tidyr
                                     1.3.1
## v purrr
              1.0.2
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(dplyr)
library(forcats)
library(ggplot2)
library(knitr)
library(mice)
##
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
##
##
       filter
##
## The following objects are masked from 'package:base':
##
##
       cbind, rbind
library(moments)
library(EnvStats)
##
## Attaching package: 'EnvStats'
## The following objects are masked from 'package:moments':
##
       kurtosis, skewness
##
```

```
##
## The following objects are masked from 'package:stats':
##
##
       predict, predict.lm
library(car)
## Loading required package: carData
## Attaching package: 'car'
## The following object is masked from 'package:EnvStats':
##
##
       qqPlot
##
## The following object is masked from 'package:dplyr':
##
##
       recode
##
## The following object is masked from 'package:purrr':
##
##
       some
— Question 1: Data Quality Report —
######## (a) ########
df <- tibble(read.csv('housingData.csv'))</pre>
df <- df %>%
  dplyr::mutate(age = YrSold - YearBuilt,
                ageSinceRemodel = YrSold - YearRemodAdd,
                ageofGarage = YrSold - GarageYrBlt)
    # Created 3 columns as functions of 3 existing columns within the data
    # based on the above equations
# (b) Create a tibble named "housingNumeric" containing all numeric variables
      from the original housing data
housingNumeric <- df %>%
  dplyr::select(where(is.numeric))
# (c) Create a tibble named "housingNumeric" containing all non-numeric
      variables from the original housing data
housingFactor <- df %>%
  dplyr::transmute(across(where(is.character), as.factor))
# (d) Glimpse into the newly created tables
# glimpse(housingNumeric) # new tibble made up of only "int" data types
# glimpse(housingFactor) # new tibble made up of only factors
head(housingNumeric)
```

```
## # A tibble: 6 x 39
        Id MSSubClass LotFrontage LotArea OverallQual OverallCond YearBuilt
##
##
                <int>
                             <int>
                                     <int>
                                                 <int>
                                                              <int>
                                                                         1966
## 1
                   20
                                     11000
                                                     5
                                                                  6
         1
                                NΑ
## 2
         2
                   20
                                NΑ
                                     36500
                                                     5
                                                                  5
                                                                         1964
## 3
                   20
                                                     5
                                                                  7
         3
                                57
                                      9764
                                                                         1967
## 4
                                                                  7
                   70
                                NA
                                      7500
                                                     6
                                                                         1942
                                80
## 5
         5
                   20
                                      9200
                                                     6
                                                                  6
                                                                         1965
## 6
         6
                   60
                                72
                                     11317
                                                     7
                                                                  5
                                                                         2003
## # i 32 more variables: YearRemodAdd <int>, MasVnrArea <int>, BsmtFinSF1 <int>,
       BsmtFinSF2 <int>, BsmtUnfSF <int>, TotalBsmtSF <int>, X1stFlrSF <int>,
       X2ndFlrSF <int>, LowQualFinSF <int>, GrLivArea <int>, BsmtFullBath <int>,
## #
## #
       BsmtHalfBath <int>, FullBath <int>, HalfBath <int>, BedroomAbvGr <int>,
       KitchenAbvGr <int>, TotRmsAbvGrd <int>, Fireplaces <int>,
## #
## #
       GarageYrBlt <int>, GarageCars <int>, GarageArea <int>, WoodDeckSF <int>,
       OpenPorchSF <int>, EncPorchSF <int>, PoolArea <int>, MiscVal <int>, ...
## #
head(housingFactor)
## # A tibble: 6 x 38
     MSZoning Alley LotShape LandContour LotConfig LandSlope Neighborhood
##
              <fct> <fct>
                                          <fct>
                                                    <fct>
                                                               <fct>
     <fct>
                              <fct>
## 1 RL
              <NA> IR1
                             Lvl
                                          CulDSac
                                                    Gtl
                                                               NAmes
## 2 RL
              <NA>
                    IR1
                             Low
                                          Inside
                                                    Mod
                                                               ClearCr
                                          other
## 3 RL
              <NA>
                    IR1
                             Lvl
                                                    Gtl
                                                               Sawyer
## 4 RL
              <NA> IR1
                             Bnk
                                          Inside
                                                    Gtl
                                                               Crawfor
## 5 RL
              <NA> Reg
                             Lvl
                                          Inside
                                                    G+1
                                                               NAmes
## 6 RL
              <NA> Reg
                             Lvl
                                          Inside
                                                    Gtl
                                                               CollgCr
## # i 31 more variables: Condition1 <fct>, BldgType <fct>, HouseStyle <fct>,
       RoofStyle <fct>, Exterior1st <fct>, Exterior2nd <fct>, MasVnrType <fct>,
       ExterQual <fct>, ExterCond <fct>, Foundation <fct>, BsmtQual <fct>,
## #
       BsmtCond <fct>, BsmtExposure <fct>, BsmtFinType1 <fct>, BsmtFinType2 <fct>,
## #
## #
       Heating <fct>, HeatingQC <fct>, CentralAir <fct>, Electrical <fct>,
## #
       KitchenQual <fct>, Functional <fct>, FireplaceQu <fct>, GarageType <fct>,
## #
       GarageFinish <fct>, GarageQual <fct>, GarageCond <fct>, ...
# (e) Create functions for calculating 1st and 3rd quartiles
Q1 <- function(x, na.rm = TRUE) {
      quantile(x, na.rm = na.rm)[2]
}
Q3 <- function(x, na.rm = TRUE) {
      quantile(x, na.rm = na.rm)[4]
}
    # The above functions compute the quantiles for numeric variables
    # within the data. Because the quantile() function returns a list
    # of 5 numbers, to return the 1st and 3rd quartiles, we extract the
    # 2nd and 4th elements from the list. Additionally, we are choosing
    # to exclude missing values from the quantile calculations.
```

(f) Create a summary for our numeric variables

```
myNumericSummary <- function(x){</pre>
  c(length(x), n_distinct(x), sum(is.na(x)), mean(x, na.rm = TRUE),
  min(x, na.rm = TRUE), Q1(x, na.rm = TRUE), median(x, na.rm = TRUE),
  Q3(x, na.rm = TRUE), max(x, na.rm = TRUE), sd(x, na.rm = TRUE))
}
# (g) Create a tibble of summary statistics for the numerical data
numericSummary <- housingNumeric %>%
  summarize(
    across(everything(), myNumericSummary)
## Warning: Returning more (or less) than 1 row per 'summarise()' group was deprecated in
## dplyr 1.1.0.
## i Please use 'reframe()' instead.
## i When switching from 'summarise()' to 'reframe()', remember that 'reframe()'
     always returns an ungrouped data frame and adjust accordingly.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
# (h) Create column names for clarity/tidiness
numericSummary <- cbind(</pre>
                  Statistic = c("n", "unique", "missing", "mean", "min",
                                "Q1", "median", "Q3", "max", "sd"),
                  numericSummary)
glimpse(numericSummary)
## Rows: 10
## Columns: 40
                     <chr> "n", "unique", "missing", "mean", "min", "Q1", "median~
## $ Statistic
## $ Id
                     <dbl> 1000.0000, 1000.0000, 0.0000, 500.5000, 1.0000, 250.75~
                     <dbl> 1000.00000, 13.00000, 0.00000, 57.18500, 20.00000, 20.~
## $ MSSubClass
## $ LotFrontage
                     <dbl> 1000.00000, 102.00000, 207.00000, 68.74527, 21.00000, ~
                     <dbl> 1000.000, 760.000, 0.000, 10424.881, 1477.000, 7500.00~
## $ LotArea
                     <dbl> 1000.000000, 10.000000, 0.000000, 5.979000, 1.000000, ~
## $ OverallQual
                     <dbl> 1000.000000, 8.000000, 0.000000, 5.638000, 2.000000, 5~
## $ OverallCond
## $ YearBuilt
                     <dbl> 1000.00000, 108.00000, 0.00000, 1969.83600, 1875.00000~
## $ YearRemodAdd
                     <dbl> 1000.00000, 61.00000, 0.00000, 1984.10800, 1950.00000,~
## $ MasVnrArea
                     <dbl> 1000.00000, 249.00000, 4.00000, 95.41767, 0.00000, 0.0~
## $ BsmtFinSF1
                     <dbl> 1000.0000, 490.0000, 0.0000, 438.6860, 0.0000, 0.0000,~
                     <dbl> 1000.000, 107.000, 0.000, 44.296, 0.000, 0.000, 0.000,~
## $ BsmtFinSF2
                     <dbl> 1000.0000, 598.0000, 0.0000, 535.0780, 0.0000, 208.000~
## $ BsmtUnfSF
                     <dbl> 1000.0000, 549.0000, 0.0000, 1018.0600, 0.0000, 793.00~
## $ TotalBsmtSF
## $ X1stFlrSF
                     <dbl> 1000.0000, 581.0000, 0.0000, 1131.2510, 334.0000, 868.~
                     <dbl> 1000.0000, 306.0000, 0.0000, 346.2790, 0.0000, 0.0000,~
## $ X2ndFlrSF
## $ LowQualFinSF
                     <dbl> 1000.00000, 15.00000, 0.00000, 4.99100, 0.00000, 0.000~
## $ GrLivArea
                     <dbl> 1000.000, 664.000, 0.000, 1482.521, 334.000, 1110.750,~
## $ BsmtFullBath
                     <dbl> 1000.0000000, 3.0000000, 0.0000000, 0.4270000, 0.00000~
## $ BsmtHalfBath
                     <dbl> 1000.0000000, 2.0000000, 0.0000000, 0.0590000, 0.00000~
## $ FullBath
                     <dbl> 1000.0000000, 4.0000000, 0.0000000, 1.5290000, 0.00000~
```

```
<dbl> 1000.0000000, 3.0000000, 0.0000000, 0.3840000, 0.00000~
## $ HalfBath
## $ BedroomAbvGr
                     <dbl> 1000.0000000, 7.0000000, 0.0000000, 2.8650000, 0.00000~
                     <dbl> 1000.0000000, 3.0000000, 0.0000000, 1.0410000, 1.00000~
## $ KitchenAbvGr
## $ TotRmsAbvGrd
                     <dbl> 1000.000000, 11.000000, 0.000000, 6.410000, 2.000000, ~
                     <dbl> 1000.0000000, 4.0000000, 0.0000000, 0.6180000, 0.00000~
## $ Fireplaces
## $ GarageYrBlt
                     <dbl> 1000.00000, 94.00000, 53.00000, 1976.93770, 1906.00000~
## $ GarageCars
                     <dbl> 1000.0000000, 5.0000000, 0.0000000, 1.7200000, 0.00000~
                     <dbl> 1000.0000, 353.0000, 0.0000, 458.3290, 0.0000, 318.750~
## $ GarageArea
                     <dbl> 1000.0000, 226.0000, 0.0000, 94.5550, 0.0000, 0.0000, ~
## $ WoodDeckSF
## $ OpenPorchSF
                     <dbl> 1000.00000, 169.00000, 0.00000, 43.61000, 0.00000, 0.0~
## $ EncPorchSF
                     <dbl> 1000.0000, 122.0000, 0.0000, 40.6410, 0.0000, 0.0000, ~
## $ PoolArea
                     <dbl> 1000.00000, 3.00000, 0.00000, 1.22400, 0.00000, 0.0000~
                     <dbl> 1000.0000, 14.0000, 0.0000, 27.2100, 0.0000, 0.0000, 0~
## $ MiscVal
                     <dbl> 1000.000000, 12.000000, 0.000000, 6.207000, 1.000000, ~
## $ MoSold
## $ YrSold
                     <dbl> 1000.00000, 5.00000, 0.00000, 2007.91900, 2006.00000, ~
                     <dbl> 1000.00, 477.00, 0.00, 174560.61, 39300.00, 130000.00,~
## $ SalePrice
## $ age
                     <dbl> 1000.00000, 115.00000, 0.00000, 38.08300, 1.00000, 10.~
## $ ageSinceRemodel <dbl> 1000.00000, 61.00000, 0.00000, 23.81100, 0.00000, 6.00~
                     <dbl> 1000.00000, 97.00000, 53.00000, 30.97254, 0.00000, 9.0~
## $ ageofGarage
```

variable	n	missing	missing_	_p a tniqu	e unique_	_pctmean	min	Q1	median	Q3	max	sd
$\overline{\operatorname{Id}}$	1000	0	0.0	1000	100.0	500.500	1	251	500	750.2	1000	288.819
MSSubClass	1000	0	0.0	13	1.3	57.185	20	20	50	70.0	190	41.875
LotFrontage	1000	207	20.7	102	10.2	68.745	21	58	68	80.0	313	23.198
LotArea	1000	0	0.0	760	76.0	10424.88	11477	7500	9422	11423.5	21524	5 9940.619
OverallQual	1000	0	0.0	10	1.0	5.979	1	5	6	7.0	10	1.310
OverallCond	l 1000	0	0.0	8	0.8	5.638	2	5	5	6.0	9	1.114
YearBuilt	1000	0	0.0	108	10.8	1969.836	1875	1954	1971	1998.0	2009	29.119
YearRemod	AHDDO	0	0.0	61	6.1	1984.108	1950	1967	1992	2002.0	2010	20.116
MasVnrArea	1000	4	0.4	249	24.9	95.418	0	0	0	146.2	1600	177.318
BsmtFinSF1	1000	0	0.0	490	49.0	438.686	0	0	400	700.0	1880	405.837
BsmtFinSF2	2 1000	0	0.0	107	10.7	44.296	0	0	0	0.0	1127	150.493
BsmtUnfSF	1000	0	0.0	598	59.8	535.078	0	208	441	779.2	2153	417.944
TotalBsmtSl	F1000	0	0.0	549	54.9	1018.060	0	793	962	1223.5	3206	403.641
X1stFlrSF	1000	0	0.0	581	58.1	1131.251	334	868	1060	1327.2	3228	350.862
X2ndFlrSF	1000	0	0.0	306	30.6	346.279	0	0	0	735.0	1872	426.395
LowQualFin	S11000	0	0.0	15	1.5	4.991	0	0	0	0.0	528	45.295
$\operatorname{GrLivArea}$	1000	0	0.0	664	66.4	1482.521	334	1111	1442	1735.0	4316	490.566

variable n	missin	ng missing_	_p a tnique	unique_	_pctmean	min	Q1	mediar	n Q3	max	sd
BsmtFullBath000	0	0.0	3	0.3	0.427	0	0	0	1.0	2	0.509
BsmtHalfBat h 000	0	0.0	2	0.2	0.059	0	0	0	0.0	1	0.236
FullBath 1000	0	0.0	4	0.4	1.529	0	1	2	2.0	3	0.531
HalfBath 1000	0	0.0	3	0.3	0.384	0	0	0	1.0	2	0.501
BedroomAbv 10 000	0	0.0	7	0.7	2.865	0	2	3	3.0	6	0.791
KitchenAbvGh000	0	0.0	3	0.3	1.041	1	1	1	1.0	3	0.203
TotRmsAbvQ1000	0	0.0	11	1.1	6.410	2	5	6	7.0	12	1.562
Fireplaces 1000	0	0.0	4	0.4	0.618	0	0	1	1.0	3	0.642
GarageYrBlt 1000	53	5.3	94	9.4	1976.938	1906	1960	1977	1999.0	2009	23.592
GarageCars 1000	0	0.0	5	0.5	1.720	0	1	2	2.0	4	0.714
GarageArea 1000	0	0.0	353	35.3	458.329	0	319	470	572.0	1356	197.780
WoodDeckSF1000	0	0.0	226	22.6	94.555	0	0	0	168.0	857	127.144
OpenPorchSH000	0	0.0	169	16.9	43.610	0	0	22	64.0	547	61.915
EncPorchSF 1000	0	0.0	122	12.2	40.641	0	0	0	0.0	508	82.139
PoolArea 1000	0	0.0	3	0.3	1.224	0	0	0	0.0	648	27.403
MiscVal 1000	0	0.0	14	1.4	27.210	0	0	0	0.0	3500	190.707
MoSold 1000	0	0.0	12	1.2	6.207	1	4	6	8.0	12	2.626
YrSold 1000	0	0.0	5	0.5	2007.919	2006	2007	2008	2009.0	2010	1.318
SalePrice 1000	0	0.0	477	47.7	174560.6	0 3 9300	13000	0160000	205000.	075500	0 69329.319
age 1000	0	0.0	115	11.5	38.083	1	10	37	55.0	135	29.109
ageSinceRemb@l	0	0.0	61	6.1	23.811	0	6	16	41.2	60	20.033
ageofGarage 1000	53	5.3	97	9.7	30.973	0	9	30	48.0	102	23.563

```
# (j) Create report for the factor data
#### Create mode name and frequency retrieval functions ####
getmodenames <- function(v, type = 1) {</pre>
 tbl <- table(v)
 m1 <- which.max(tbl)</pre>
  if (type == 1) {
       return (names(m1))
                                          # 1st mode
  }
  else if (type == 2) {
        return (names(which.max(tbl[-m1]))) # 2nd mode
  else if (type == -1) {
        return (names(which.min(tbl)))
                                              # least common mode
  else {
        stop("Invalid type selected")
  }
getmodes <- function(v, type = 1) {</pre>
 tbl <- table(v)</pre>
 m1 <- which.max(tbl)</pre>
```

```
if (type == 1) {
       return (max(tbl))
                              # 1st mode frequency
 else if (type == 2) {
       return (max(tbl[-m1]))
                              # 2nd mode frequency
 else if (type == -1) {
       return (min(tbl))
                             # least common frequency
 }
 else {
   stop("Invalid type selected")
 }
}
myFactorSummary <- function(x){</pre>
   c(length(x), n_distinct(x), sum(is.na(x)), getmodenames(x, type = 1),
     getmodes(x, type = 1), getmodenames(x, type = 2), getmodes(x, type = 2),
     getmodenames(x, type = -1), getmodes(x, type = -1))
}
factorSummary <- housingFactor %>%
   summarize(
     across(everything(), myFactorSummary)
## Warning: Returning more (or less) than 1 row per 'summarise()' group was deprecated in
## dplyr 1.1.0.
## i Please use 'reframe()' instead.
## i When switching from 'summarise()' to 'reframe()', remember that 'reframe()'
## always returns an ungrouped data frame and adjust accordingly.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
factorSummary <- cbind(Statistic = c("n", "unique", "missing",</pre>
                                  "1st mode", "1st mode freq",
                                  "2nd mode", "2nd mode freq",
                                  "least common", "least common freq"),
                                   factorSummary)
glimpse(factorSummary)
## Rows: 9
## Columns: 39
## $ Statistic
                <chr> "n", "unique", "missing", "1st mode", "1st mode freq", "2~
                <chr> "1000", "4", "0", "RL", "803", "RM", "151", "RH", "10"
## $ MSZoning
                <chr> "1000", "3", "938", "Grvl", "40", "Pave", "22", "Pave", "~
## $ Alley
              <chr> "1000", "4", "0", "Reg", "633", "IR1", "330", "IR3", "7"
## $ LotShape
## $ LandContour <chr> "1000", "4", "0", "Lvl", "905", "Bnk", "40", "Low", "26"
## $ LandSlope
                <chr> "1000", "3", "0", "Gtl", "946", "Mod", "48", "Sev", "6"
## $ Neighborhood <chr> "1000", "18", "0", "NAmes", "167", "CollgCr", "113", "Tim~
```

```
<chr> "1000", "6", "0", "Norm", "871", "Feedr", "51", "PosA", "~
## $ Condition1
                  <chr> "1000", "5", "0", "1Fam", "837", "TwnhsE", "81", "2fmCon"~
## $ BldgType
                  <chr> "1000", "8", "0", "1Story", "488", "2Story", "310", "2.5F~
## $ HouseStyle
## $ RoofStyle
                  <chr> "1000", "3", "0", "Gable", "795", "Hip", "184", "other", ~
## $ Exterior1st <chr> "1000", "8", "0", "VinylSd", "328", "HdBoard", "175", "Ce~
## $ Exterior2nd <chr> "1000", "9", "0", "VinylSd", "320", "HdBoard", "159", "Br~
                  <chr> "1000", "5", "4", "None", "617", "BrkFace", "313", "BrkCm~
## $ MasVnrType
                  <chr> "1000", "3", "0", "Avg", "657", "AboveAvg", "336", "Below~
## $ ExterQual
                  <chr> "1000", "3", "0", "Avg", "880", "AboveAvg", "103", "Below~<chr> "1000", "4", "0", "CBlock", "463", "PConc", "414", "other~
## $ ExterCond
## $ Foundation
                  <chr> "1000", "4", "31", "AboveAvg", "488", "Avg", "459", "Belo~
## $ BsmtQual
                  <chr> "1000", "4", "31", "Avg", "903", "AboveAvg", "37", "Below~
## $ BsmtCond
## $ BsmtExposure <chr> "1000", "5", "32", "No", "668", "Av", "140", "Mn", "76"
## $ BsmtFinType1 <chr> "1000", "7", "31", "GLQ", "273", "Unf", "265", "LwQ", "52"
## $ BsmtFinType2 <chr> "1000", "7", "32", "Unf", "853", "Rec", "36", "ALQ", "11"
                  <chr> "1000", "2", "0", "GasA", "974", "other", "26", "other", ~
## $ Heating
## $ HeatingQC
                  <chr> "1000", "3", "0", "AboveAvg", "664", "Avg", "300", "Below~
## $ CentralAir
                  <chr> "1000", "2", "0", "Y", "936", "N", "64", "N", "64"
                  <chr> "1000", "5", "1", "SBrkr", "908", "FuseA", "72", "FuseP",~
## $ Electrical
## $ KitchenQual <chr> "1000", "3", "0", "Avg", "534", "AboveAvg", "439", "Below~
                  <chr> "1000", "6", "0", "Typ", "924", "Min2", "26", "Maj2", "4"
## $ Functional
## $ FireplaceQu <chr> "1000", "4", "466", "AboveAvg", "250", "Avg", "240", "Bel~
                  <chr> "1000", "7", "53", "Attchd", "601", "Detchd", "280", "2Ty~
## $ GarageType
## $ GarageFinish <chr> "1000", "4", "53", "Unf", "434", "RFn", "291", "Fin", "22~
                 <chr> "1000", "4", "53", "Avg", "907", "BelowAvg", "33", "Above~
## $ GarageQual
                  <chr> "1000", "4", "53", "Avg", "910", "BelowAvg", "31", "Above~
## $ GarageCond
                  <chr> "1000", "3", "0", "Y", "912", "N", "62", "P", "26"
## $ PavedDrive
                  <chr> "1000", "3", "998", "Fa", "1", "Gd", "1", "Fa", "1"
## $ PoolQC
                  <chr> "1000", "5", "805", "MnPrv", "108", "GdPrv", "40", "MnWw"~
## $ Fence
## $ MiscFeature <chr> "1000", "3", "966", "Shed", "32", "0thr", "2", "0thr", "2"
                  <chr> "1000", "2", "0", "WD", "971", "other", "29", "other", "2~
## $ SaleType
factorSummaryFinal <- factorSummary %>%
    pivot longer("MSZoning":"SaleType", names to = "variable",
                 values_to = "value") %>%
    pivot_wider(names_from = Statistic, values_from = value) %>%
    mutate(missing=as.numeric(missing),
           n = as.numeric(n),
           unique = as.numeric(unique),
           `1st mode freq` = as.numeric(`1st mode freq`),
           `2nd mode freq` = as.numeric(`2nd mode freq`)) %>%
    mutate(missing_pct = 100*missing/n,
           unique_pct = 100*unique/n,
           freqRatio = (`1st mode freq`) / (`2nd mode freq`)) %>%
    select(variable, n, missing, missing pct, unique, unique pct, freqRatio,
           everything())
options(digits = 3)
options(scipen = 99)
factorSummaryFinal %>% kable()
```

							1st		2nd	least	least
						1st	mode	2nd	mode	com-	common
variable n	miss	ingmissing	_ pnt qu	eunique_	_frætqRa	timode	freq	mode	freq	mon	freq
MSZoning 000			4	0.4	5.32	RL	803	RM	151	RH	10
Alley 1000		93.8	3	0.3	1.82	Grvl	40	Pave	22	Pave	22
LotShape1000		0.0	4	0.4	1.92	Reg	633	IR1	330	IR3	7
LandContb000	0	0.0	4	0.4	22.62	Lvl	905	Bnk	40	Low	26
LotConfig1000			4	0.4	3.97	Inside	711	Corner	179	other	38
LandSlop∉000	0	0.0	3	0.3	19.71	Gtl	946	Mod	48	Sev	6
Neighborh	0	0.0	18	1.8	1.48	NAmes	167	$\operatorname{CollgCr}$	113	Timber	20
Condition 1000	0	0.0	6	0.6	17.08	Norm	871	Feedr	51	PosA	7
BldgType1000	0	0.0	5	0.5	10.33	1Fam	837	TwnhsE	81	2fmCon	20
HouseStyle000		0.0	8	0.8	1.57	1Story	488	2Story	310	2.5Fin	5
RoofStyle1000	0	0.0	3	0.3	4.32	Gable	795	Hip	184	other	21
Exterior1st000	0	0.0	8	0.8	1.87	VinylSd	328	HdBoard	175	CemntB	d36
Exterior211d00	0	0.0	9	0.9	2.01	VinylSd	320	HdBoard	159	BrkFace	24
MasVnrT ≵pe 0	4	0.4	5	0.5	1.97	None	617	BrkFace	313	BrkCmr	ı 8
ExterQual000	0	0.0	3	0.3	1.96	Avg	657	AboveAv	g 336	BelowAv	/g7
ExterCond000	0	0.0	3	0.3	8.54	Avg	880	AboveAv	g 103	BelowAv	g17
Foundation 1000	0	0.0	4	0.4	1.12	CBlock	463	PConc	414	other	27
BsmtQuall000	31	3.1	4	0.4	1.06	AboveAv	g 488	Avg	459	BelowAv	7g22
BsmtCond000	31	3.1	4	0.4	24.41	Avg	903	AboveAv	g 37	BelowAv	7 g 29
BsmtExpd9000	e 32	3.2	5	0.5	4.77	No	668	Av	140	Mn	76
BsmtFinTly000	1 31	3.1	7	0.7	1.03	GLQ	273	Unf	265	LwQ	52
BsmtFinTly000	2 32	3.2	7	0.7	23.69	Unf	853	Rec	36	ALQ	11
Heating 1000	0	0.0	2	0.2	37.46	GasA	974	other	26	other	26
HeatingQ0000	0	0.0	3	0.3	2.21	AboveAv	g 664	Avg	300	BelowAv	7 g 36
CentralAir000	0	0.0	2	0.2	14.62	Y	936	N	64	N	64
Electrical 1000	1	0.1	5	0.5	12.61	SBrkr	908	FuseA	72	FuseP	2
KitchenQ 1 1000	0	0.0	3	0.3	1.22	Avg	534	AboveAv	g 439	BelowAv	7g27
Functiona 1000	0	0.0	6	0.6	35.54	Тур	924	Min2	26	Maj2	4
Fireplace Q0000	466	46.6	4	0.4	1.04	AboveAv	g 250	Avg	240	BelowAv	7g44
GarageTyl000	53	5.3	7	0.7	2.15	Attchd	601	Detchd	280	2Types	3
GarageFin 1900	53	5.3	4	0.4	1.49	Unf	434	RFn	291	Fin	222
GarageQula100	53	5.3	4	0.4	27.48	Avg	907	BelowAv	g 33	AboveA	v g 7
GarageColt000	53	5.3	4	0.4	29.36	Avg	910	BelowAv	g 31	AboveA	v g 6
PavedDrive00	0	0.0	3	0.3	14.71	Y	912	N	62	P	26
PoolQC 1000	998	99.8	3	0.3	1.00	Fa	1	Gd	1	Fa	1
Fence 1000		80.5	5	0.5	2.70	MnPrv	108	GdPrv	40	MnWw	8
MiscFeatul 1900		96.6	3	0.3	16.00	Shed	32	Othr	2	Othr	2
${\bf Sale Type}1000$	0	0.0	2	0.2	33.48	WD	971	other	29	other	29

```
# This was the same procedure as the preceding summary; however, I needed # to convert a few of the variables to numeric rather than characters!
```

— Question 2: Transformations —

```
par(mfrow = c(1,2))
symbox(housing$SalePrice, data = housing, powers=c(3,2,1,0,-0.5,-1,-2),
       ylab = "Sale Price")
boxcox(housing$SalePrice)
##
## Results of Box-Cox Transformation
                                    PPCC
## Objective Name:
##
## Data:
                                    housing$SalePrice
                                    1000
## Sample Size:
##
## lambda PPCC
     -2.0 0.814
##
     -1.5 0.897
##
     -1.0 0.956
##
     -0.5 0.989
##
      0.0 0.996
##
      0.5 0.979
##
##
      1.0 0.936
##
      1.5 0.864
##
      2.0 0.766
    \# lambda = 0 (logarithmic transformation) reduces the skewness the most
    # for Sales Price
symbox(housing$LotFrontage, data = housing, powers=c(3,2,1,0,-0.5,-1,-2),
      ylab = "LotFrontage")
```


boxcox(housing\$LotFrontage)

```
## Warning in is.not.finite.warning(x): There were 207 nonfinite values in x: 207
## NA's
## Warning in boxcox.default(housing$LotFrontage): 207 observations with
## NA/NaN/Inf in 'x' removed.
## Results of Box-Cox Transformation
##
##
## Objective Name:
                                     PPCC
##
                                     \verb|housing$LotFrontage|
## Data:
##
## Number NA/NaN/Inf's Removed:
                                     207
##
## Sample Size:
                                     793
##
##
    lambda PPCC
##
      -2.0 0.727
##
      -1.5 0.797
##
      -1.0 0.867
      -0.5 0.927
##
```

LotFrontage

```
0.0 0.967
##
       0.5 0.978
##
       1.0 0.946
##
##
       1.5 0.861
       2.0 0.723
##
    # lambda = 0.5 (square root) reduces the skewness the most for Lot Frontage
par(mfrow = c(2,2))
hist(housing$SalePrice, col = "red",
     main = "Before", xlab = "Sale Price") # Visualize skewed variables
                                             # Skewness = 1.96 before
skewness(housing$SalePrice)
## [1] 1.96
housing$SalePrice <- log(df$SalePrice + 1)</pre>
hist(housing$SalePrice, col = "blue",
     main = "After", xlab = "Sale Price")
skewness(housing$SalePrice)
                                             # Skewness = 0.146 after
## [1] 0.146
hist(housing$LotFrontage, col = "red", main = "", xlab = "Lot Frontage")
skewness(housing$LotFrontage, na.rm = TRUE) # Calculate skewness to verify
## [1] 1.91
                                             # Skewness = 1.91 before
housing$LotFrontage <- sqrt(housing$LotFrontage)</pre>
hist(housing$LotFrontage, col = "blue", main = "",
     xlab = "Lot Frontage")
```


skewness(housing\$LotFrontage, na.rm = TRUE) # Skewness reduced to 0.246

[1] 0.246

```
## Warning in predicted + resids: longer object length is not a multiple of
## shorter object length
dftwo$LotFrontage[is.na(dftwo$LotFrontage)] <- imputation</pre>
## Warning in dftwo$LotFrontage[is.na(dftwo$LotFrontage)] <- imputation: number of
## items to replace is not a multiple of replacement length
      # LotFrontage was regressed on all numeric variables, but to ensure
      # the ability for the residuals not to contain NA values, I set
      # na.action to na.omit rather than na.exclude. I then extracted the
      # predicted values, but only for the missing data within LotFrontage
      # to ensure non-missing data wasn't imputed. I used the residuals
      # to estimate error and added them to the predicted values, and then
      # imputed all missing values.
  # iii - Predictive Mean Matching
dfthree <- tibble(read.csv('housingData.csv'))</pre>
imputed <- mice(dfthree, method = 'pmm', m = 5, maxit = 10,</pre>
               seed = 500)
##
##
   iter imp variable
         1 LotFrontage* MasVnrArea* GarageYrBlt*
##
     1
##
        2 LotFrontage* MasVnrArea*
                                      GarageYrBlt*
##
        3 LotFrontage* MasVnrArea* GarageYrBlt*
     1
##
        4 LotFrontage* MasVnrArea* GarageYrBlt*
##
        5 LotFrontage* MasVnrArea* GarageYrBlt*
     1
##
     2
        1 LotFrontage* MasVnrArea* GarageYrBlt*
##
     2
        2 LotFrontage* MasVnrArea* GarageYrBlt*
##
        3 LotFrontage* MasVnrArea* GarageYrBlt*
##
     2
        4 LotFrontage* MasVnrArea* GarageYrBlt*
##
     2
        5 LotFrontage* MasVnrArea* GarageYrBlt*
##
     3
        1 LotFrontage* MasVnrArea* GarageYrBlt*
##
     3
        2 LotFrontage* MasVnrArea* GarageYrBlt*
##
        3 LotFrontage* MasVnrArea* GarageYrBlt*
     3
##
     3
        4 LotFrontage* MasVnrArea* GarageYrBlt*
##
     3
        5 LotFrontage* MasVnrArea* GarageYrBlt*
##
     4
        1 LotFrontage* MasVnrArea*
                                      GarageYrBlt*
        2 LotFrontage* MasVnrArea*
##
     4
                                      GarageYrBlt*
##
     4
        3 LotFrontage* MasVnrArea*
                                      GarageYrBlt*
##
        4 LotFrontage* MasVnrArea*
                                      GarageYrBlt*
##
     4
        5 LotFrontage* MasVnrArea*
                                      GarageYrBlt*
##
     5
        1 LotFrontage* MasVnrArea*
                                      GarageYrBlt*
     5
##
        2 LotFrontage* MasVnrArea* GarageYrBlt*
##
        3 LotFrontage* MasVnrArea*
                                      GarageYrBlt*
```

4 LotFrontage* MasVnrArea* GarageYrBlt*

5 LotFrontage* MasVnrArea* GarageYrBlt*

1 LotFrontage* MasVnrArea* GarageYrBlt*

2 LotFrontage* MasVnrArea* GarageYrBlt*
3 LotFrontage* MasVnrArea* GarageYrBlt*

##

##

##

##

##

5

5

6

```
##
        4 LotFrontage* MasVnrArea* GarageYrBlt*
##
        5 LotFrontage* MasVnrArea* GarageYrBlt*
    6
##
        1 LotFrontage* MasVnrArea* GarageYrBlt*
        2 LotFrontage* MasVnrArea* GarageYrBlt*
##
##
    7
        3 LotFrontage* MasVnrArea* GarageYrBlt*
##
    7
        4 LotFrontage* MasVnrArea* GarageYrBlt*
    7
        5 LotFrontage* MasVnrArea* GarageYrBlt*
##
        1 LotFrontage* MasVnrArea* GarageYrBlt*
##
    8
##
    8
        2 LotFrontage* MasVnrArea*
                                      GarageYrBlt*
##
        3 LotFrontage* MasVnrArea*
                                      GarageYrBlt*
    8
##
        4 LotFrontage* MasVnrArea* GarageYrBlt*
        5 LotFrontage* MasVnrArea* GarageYrBlt*
##
    8
        1 LotFrontage* MasVnrArea* GarageYrBlt*
##
    9
##
    9
        2 LotFrontage* MasVnrArea* GarageYrBlt*
##
    9
        3 LotFrontage* MasVnrArea* GarageYrBlt*
##
    9
        4 LotFrontage* MasVnrArea*
                                      GarageYrBlt*
##
        5 LotFrontage* MasVnrArea* GarageYrBlt*
    9
##
        1 LotFrontage* MasVnrArea* GarageYrBlt*
##
        2 LotFrontage* MasVnrArea* GarageYrBlt*
    10
##
    10
        3 LotFrontage* MasVnrArea* GarageYrBlt*
##
    10
        4 LotFrontage* MasVnrArea* GarageYrBlt*
##
         5 LotFrontage* MasVnrArea* GarageYrBlt*
## Warning: Number of logged events: 338
completedData <- complete(imputed, 3)</pre>
dfthree$LotFrontage[is.na(dfthree$LotFrontage)] <- completedData$LotFrontage[
                                                   is.na(dfthree$LotFrontage)]
        # This code was taken mostly from the mice site. We performed
        # predictive mean matching, created 5 different imputed datasets
 # iv - Visualize transformations
par(mfrow = c(2,2))
hist(original $LotFrontage, col = "lightcoral", main = "Original Lot Frontage",
    xlab = "Lot Frontage")
hist(housing$LotFrontage, col = "lightcoral", main = "Mean Imputation",
    xlab = "Lot Frontage")
hist(dftwo$LotFrontage, col = "lightcoral", main = "Regression with Error",
    xlab = "Lot Frontage")
hist(dfthree$LotFrontage, col = "lightcoral", main = "Predictive Mean Matching",
    xlab = "Lot Frontage")
```

Original Lot Frontage

Mean Imputation

Regression with Error

Predictive Mean Matching


```
## [1] "HdBoard" "MetalSd" "VinylSd" "Wd Sdng" "Other"
```

```
# Collapse all factor levels into 5 categories: HdBoard, MetalSd, # VinylSd, WdSdng, and Other to reduce dimensionality in the case # that we create binary dummy variables in pre-processing.
```

Sale Price by Neighborhood

Sale Price by Neighborhood (ordered by median)

