计算机组成原理课程实验

北京邮电大学

计算机学院 (国家示范性软件学院)

实验五 CPU组成与机器指令的执行

实验目的

- □用微程序控制器控制数据通路,将相应的信号线连接,构成一台能够运行测试程序的CPU。
- □执行一个简单的程序,掌握机器指令与微指令的关系。
- □ 理解计算机如何取出指令、如何执行指令、如何在一条指令执行结束之后自动取出下一条指令并执行,从 而牢固建立计算机整机概念。

SWC	SWB	SWA	操作
0	0	0	启动程序运行
0	0	1	写存储器
0	1	0	读存储器
1	0	0	写寄存器
0	1	1	读寄存器

TEC-PLUS模型计算机指令系统

ta sta	助记符	功能	指令格式				
名称	的1044		IR7——IR4	IR3 IR2	IR1 IR0		
加法	ADD Rd,Rs	Rd ← Rd+Rs	0001	Rd	Rs		
减法	SUB Rd,Rs	Rd ← Rd- Rs	0010	Rd	Rs		
逻辑与	AND Rd,Rs	Rd ← Rd and Rs	0011	Rd	Rs		
力口1	INC Rd	Rd ← Rd+1	0100	Rd	XX		
取数	LD Rd,[Rs]	Rd ← [Rs]	0101	Rd	Rs		
存数	ST Rs,[Rd]	$Rs \rightarrow [Rd]$	0110	Rd	Rs		
C条件转移	JC addr	C=1时, PC←@+offset	0111	offset			
Z条件转移	JZ addr	Z=1时, PC ← @+offset	1000	offset			
无条件转移	JMP Rd	PC ← [Rd]	1001	Rd	XX		
输出	OUT Rs	DBUS ← Rs	1010	XX	Rs		
中断返回	IRET	返回断点	1011	XX	XX		
关中断	DI	禁止中断	1100	XX	XX		
开中断	EI	允许中断	1101	XX	XX		
停机	STP	暂停运行	1110	XX	XX		

实验任务

地址	指令	二进制机器代码
00H	LD R0,[R3]	
01H	INC R3	
02H	LD R1,[R3]	
03H	SUB RO,R1	
04H	JZ 0BH	
05H	ST R0,[R2]	
06H	INC R3	
07H	LD R0,[R3]	
08H	ADD R0,R1	
09H	JC 0CH	

地址	指令	二进制机器代码
0AH	INC R2	
0BH	ST R2,[R2]	
0CH	AND R0,R1	
0DH	OUT R2	
0EH	STP	
0FH	85H	
10H	23H	
11H	EFH	
12H	00H	
13H	00H	

实验任务

- □ 预习任务: 完成对给定程序的手工汇编。
- □通过简单的连线构成能够运行程序的TEC-8模型计算机。
- □将程序写入存储器,给寄存器R2、R3赋初值。
- □ 跟踪执行程序,用单拍方式运行一遍,用连续方式运行一遍,详细记录实验过程及结果。
- □用实验台操作检查程序运行结果。

实验步骤

□ 实验准备(不要打开电源 🛕)

- 1. 控制器转换开关: 微程序;
- 2. 编程开关: 正常;
- 3. 数据通路参考连线:

数据通路	IR4-I	IR5-I	IR6-I	IR7-I	C-I	Z-I
电平开关	IR4-0	IR5-O	IR6-O	IR7-O	C-O	Z-O

实验步骤-单拍方式

- □打开电源→
- □通过写存储器操作将手工汇编的程序写入存储器。
- □ 通过读存储器操作,将指令逐条读出,检查写入是否正确。
- □ 通过写寄存器操作,将数12H写入寄存器R2, OFH写入寄存器R3。
- □ 通过读寄存器,检查写入寄存器的数据是否正确。
- □ 将单拍开关DP设置为1,按下复位按钮CLR,在单微指令下运行程序并记录过程数据。
- □ 读取四个寄存器的值并记录;读取存储器12H和13H的值并记录。

实验步骤-连续方式

- □ 将数12H写入寄存器R2, OFH写入寄存器R3。
- □ 将存储器12H号存储单元的值改为00H。
- □ 将单拍开关DP设置为0,按复位按钮CLR,在连续方式下运行程序。 (按一次QD,程序自动运行到STP指令)
- □ 读取四个寄存器的值并记录;读取存储器12H和13H的值并记录。

实验要求

- □ 做好预习: 务必在实验课前,完成对程序的手工汇编!
- □ **填写实验记录表:** 只记录单拍方式下程序执行过程,每 按下QD,记录一条数据。

实验六 中断原理实验

基本概念

中断:在计算机执行程序的过程中, 出现某些急需处理的异常情况或特殊 请求,CPU暂时停止现行程序,而转 去对这些异常情况或特殊请求进行处 理,处理完毕后CPU又自动返回到现 行程序的断点处,继续执行源程序。

中断向量:中断服务程序的入口地址。

中断屏蔽: 关闭中断

TEC-PLUS模型计算机中断系统相关指令

名称	助记符 功能	T₩Á₽	指令格式			
白彻		IR7—IR4	IR3 IR2	IR1 IR0		
关中断指令	DI	禁止中断	1100	XX	XX	
开中断指令	EI	允许中断	1101	XX	XX	
中断返回	IRET	返回断点	1011	XX	XX	

实验电路

中断向量

通过数据

开关提供

中断地址 寄存器

当LIAR=1时,在T3 的上升沿,将PC保 存在IAR中。 当IABUS=1时, IABUS 中保存的PC 送数据总线DBUS

实验原理

- □ 在时序发生器中,设置了一个允许中断触发器EN_INT
 - ① 当它为1时,允许中断
 - ② 当它为0时,禁止中断
 - ③ 复位脉冲CLR#使EN_INT复位为0
- □ EN_INT为1,允许中断时,按下PULSE按钮产生的中断请求,INT=1

低电平有 效的复位 脉冲 主时 钟信 号 允许 中断 信号 禁止 中断 信号 按下PULSE 按钮产生的 中断请求

```
□ 使用VHDL 语言描述的TEC-8中的中断触发器如下:
```

```
INT_EN_P: process(CLR# MF INTEN INTDI PULSE, EN_INT)
        begin
            if CLR# = '0' then
                  EN INT <= '0';
            elsif MF'event and MF = '1' then
                  EN_INT <= INTEN or (EN_INT and (not
INTDI));
            end if:
           INT <= EN_INT and PULSE;
end process;
                   时序发生电路向微程序控制
                   器输出的中断程序执行信号
```

实验任务

主程序机器代码

地址	指令	二进制机器代码
00H	EI/DI	
01H	INC R0	
02H	INC R0	
03H	INC R0	
04H	INC R0	
05H	INC R0	
06H	INC R0	
07H	INC R0	
08H	INC R0	
09H	JMP [R1]	

中断服务程序机器代码

地址	指令	二进制机器代码
45H	ADD R0,R0	
46H	EI	
47H	IRET	

实验任务

- □ 理解中断相关指令,以及每个信号的意义和变化条件
- □ 将主程序和中断服务程序手工汇编成二进制机器代码
- □ 通过简单的连线构成能够运行程序的TEC-8模型计算机。
- □ 将主程序和中断服务程序装入存储器,给寄存器R1赋初值01H,R0赋初值0。
- □ 执行三遍主程序和中断服务程序,详细记录中断有关信号变化情况,特别记录好断点和R0的值。
- □ 将主程序中地址为00H的EI指令改为DI, 重新运行程序, 记录现象。

实验步骤

□ 实验准备(不要打开电源 🛕)

- 1. 控制器转换开关: 微程序;
- 2. 编程开关:正常;
- 3. 数据通路参考连线:

数据通路	IR4-I	IR5-I	IR6-I	IR7-I	C-I	Z-I
电平开关	IR4-O	IR5-O	IR6-O	IR7-O	C-O	Z-O

实验步骤

□打开电源→

- □ 通过控制台写存储器操作,将主程序和中断服务程序写入存储器。
- □ 执行3遍主程序和中断子程序
- ① 通过控制台写寄存器操作将R0设置为00H,将R1设置为01H。
- ② 单拍开关DP=0,按复位按钮CLR。按QD按钮,启动程序从00H开始执行。
- ③ 按PULSE按钮,产生一个中断请求信号PULSE,中断主程序的运行。记录下这时的断点PC、R0(指示灯A7~A0上显示)的值。
- 单拍开关DP=1,在数据开关上设置中断服务程序的入口地址45H。按QD按钮, 一步步执行中断服务程序,直到返回到断点为止。
- ⑤ 按照步骤(1)~(4), 再重复做2遍。
- □ 将存储器00H的指令改为DI,按照步骤3,重做一遍,记录发生的现象。

实验要求

- □ 做好预习:
 - ① 务必在实验课前,完成对程序的手工汇编!
 - ② 读懂VHDL语言描述的中断控制器
- □填写实验记录表

拓展要求

- □ 对实验五的程序进行改造,在**不改变其逻辑、功能、指令执行顺序的前提下**,使之成为**主程序**完成中断功能,结合实验六的中断服务程序, 将两个实验综合起来一并完成。
 - 可以根据需要改变寄存器的操作数,但不能改变原程序的执行顺序。
 - 可以根据需要在主程序中加入一些中断相关指令,但不能改变原程序的逻辑。
 - 可以根据需要改变原程序最后几个地址单元的数据。
 - · 通过JMP指令, 使主程序处于循环状态。

• • • • • •