

Presented By: Bhawna Gupta

Loading CSV File

import pandas as pd;
df=pd.read_csv("C:/Users/Folder/Desktop/Projects/Python/Cars Data/Cars Data From Kaggle.csv")

Viewing First 10 Rows

df.head(10)

	S.No.	car_name	car_prices_in_rupee	kms_driven	fuel_type	transmission	ownership	manufacture	engine	Seats	Produc
0	0	Jeep Compass 2.0 Longitude Option BSIV	10.03 Lakh	86,226 kms	Diesel	Manual	1st Owner	1/1/2017	1956 cc	5.0	62837
1	1	Renault Duster RXZ Turbo CVT	12.83 Lakh	13,248 kms	Petrol	Automatic	1st Owner	1/1/2021	1330 cc	5.0	34629
2	2	Toyota Camry 2.5 G	16.40 Lakh	60,343 kms	Petrol	Automatic	1st Owner	1/1/2016	2494 cc	5.0	64168
3	3	Honda Jazz VX CVT	7.77 Lakh	26,696 kms	Petrol	Automatic	1st Owner	1/1/2018	1199 cc	5.0	52540
4	4	Volkswagen Polo 1.2 MPI Highline	5.15 Lakh	69,414 kms	Petrol	Manual	1st Owner	1/1/2016	1199 cc	5.0	63117
6	5	Volkswagen Vento 1.2 TSI Highline AT	7.66 Lakh	49,719 kms	Petrol	Automatic	1st Owner	1/1/2017	1197 cc	5.0	18798
6	6	Volkswagen Vento 1.2 TSI Highline Plus AT	7.58 Lakh	43,688 kms	Petrol	Automatic	1st Owner	1/1/2017	1197 cc	5.0	76782
7	7	Honda WR-V VX Diesel	11.60 Lakh	14,470 kms	Diesel	Manual	1st Owner	1/1/2021	1498 cc	5.0	48059
8	8	Honda City i VTEC CVT SV	6.99 Lakh	21,429 kms	Petrol	Automatic	1st Owner	1/1/2015	1497 cc	5.0	18113
9	9	Renault Duster Petrol RXS CVT	7.53 Lakh	31,750 kms	Petrol	Automatic	1st Owner	1/1/2017	1498 cc	5.0	40454

Viewing Non-Null Count And Datatypes

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5512 entries, 0 to 5511
Data columns (total 11 columns):
    Column
                         Non-Null Count Dtype
    S. No.
                         5512 non-null int64
                         5512 non-null
                                        object
    car_name
    car_prices_in_rupee 5512 non-null
                                        object
    kms_driven 5505 non-null
fuel_type 5501 non-null
                                        object
                                        object
    transmission
                         5501 non-null
                                        object
    ownership
                         5588 non-null
                                        object
    manufacture
                                        object
                         5512 non-null
                         5507 non-null
                                        object
    engine
     Seats
                         5485 non-null
                                        float64
                         5497 non-null
                                        float64
    Product tamber
dtypes: float64(2), int64(1), object(8)
memory usage: 473,8+ KB
```

Viewing Null Values Percentage

```
df.isnull().sum()/df.shape[0]*100
S.No.
                       0.000000
car name
                       0.000000
car prices in rupee
                       0.000000
kms driven
                       0.126996
fuel_type
                       0.199565
transmission
                       0.199565
ownership
                       0.072569
manufacture
                       0.000000
                       0.090711
engine
Seats
                       0.489840
Product Number
                       0.272134
dtype: float64
```

Filling The NA Values

```
df['kms_driven'].fillna(method='ffill', inplace=True, limit=None)
df.fillna(('fuel_type':'Diesel'), inplace=True)
df.fillna(('transmission':'Automatic'), inplace=True)
df.fillna(('ownership':'2nd Owner'), inplace=True)
df['engine'].fillna(method='bfill',inplace=True)
df['seats'].fillna(df['Seats'].mean(), inplace=True)
```

```
#KNNImputer
from sklearn.impute import KNNImputer
impute=KNNImputer()
for i in df.select_dtypes(include='number').columns:
    df[i]=impute.fit transform(df[[i]])
```

Viewing Null Values Percentage Again

```
df.isnull().sum()/df.shape[0]*100
S.No.
                       0.0
car name
                       0.0
car prices in rupee
                       0.0
kms driven
                       0.0
fuel type
                       0.0
transmission
                       0.0
ownership
                       0.0
manufacture
                       0.0
engine
                       0.0
Seats
                       0.0
Product Number
                       0.0
dtype: float64
```

Separating Company Name And Product Name In Car Name

```
def com name(x):
    return x[:x.index(" ")]
df['com name']=df['car name'].apply(com name)
df['com_name']
def prod name(x):
    return x[x.index(" ")+1:]
df['prod name']=df['car name'].apply(prod name)
df['prod name']
```

Replacing Commas And Converting Data In Same Units (Numbers)

```
df['car prices in rupee']=df['car prices in rupee'].str.replace('.'.')
def unit change(x):
    p=x.split(' ')
        if p[1]=='Lakh':
            return str(float(p[0])*100000)
        elif p[1]=='Crore':
            return str(float(p[0])*10000000)
    except:
        return x
df['car_prices_in_rupee']=df['car_prices_in_rupee'].apply(unit_change)
df['car_prices in_rupee']=df['car_prices in_rupee'].astype('float64')
```

Replacing Commas And Units Of Other Columns

```
df['kms_driven']=df['kms_driven'].str.replace(',','')
df['kms_driven']=df['kms_driven'].str.replace(' kms','')
df['kms_driven']=df['kms_driven'].astype('int64')

df['engine']=df['engine'].str.replace(' cc','')
df['engine']=df['engine'].astype('int64')
```

Converting Date Format And Extracting Year

```
df['manufacture']=pd.to_datetime(df['manufacture'])
df['Year']=df['manufacture'].dt.year
df.head()
```

Dropping unnecessary/duplicate columns.

```
df.drop(['car name', 'manufacture'], axis=1,inplace=True)
```

Viewing The DataFrame

f.	head((10)										
	S.No.	car_prices_in_rupee	kms_driven	fuel_type	transmission	ownership	engine	Seats	Product Number	com_name	prod_name	Year
٥	0.0	1003000.0	86226	Diesel	Manual	1st Owner	1956	5.0	62837.0	Jeep	Compass 2.0 Longitude Option BSIV	2017
1	1.0	1283000.0	13248	Petrol	Automatic	1st Owner	1330	5.0	34629.0	Renault	Duster RXZ Turbo CVT	2021
2	2.0	1640000.0	60343	Petrol	Automatic	1st Owner	2494	5.0	64168.0	Toyota	Carry 2.5 G	2016
3	3.0	777000.0	26696	Petrol	Automatic	1st Owner	1199	5.0	52540.0	Honda	Jazz VX CVT	2018
4	4.0	515000.0	69414	Petrol	Manual	1st Owner	1199	5.0	63117.0	Volkswagen	Polo 1.2 MPI Highline	2016
5	5.0	766000.0	49719	Petrol	Automatic	1st Owner	1197	5.0	18798.0	Volkswagen	Vento 1.2 TSI Highline AT	2017
6	6.0	758000.0	43688	Petrol	Automatic	1st Owner	1197	5.0	76782.0	Volkswagen	Vento 1.2 TSI Highline Plus AT	2017
7	7.0	1160000.0	14470	Diesel	Manual	1st Owner	1498	5.0	48059.0	Honda	WR-V VX Diesel	2021
8	8.0	699000.0	21429	Petrol	Automatic	1st Owner	1497	5.0	18113.0	Honda	City I VTEC CVT SV	2015

Exploratory Data Analysis (EDA)

f.describe().T										
	count	mean	std	min	25%	50%	75%	max		
S.No.	5512.0	2.755500e+03	1.591322e+03	0.0	1377.75	2755.500000	4133.25	5511.0		
car_prices_in_rupee	5512.0	1.162510e+06	1.969919e+06	35000.0	315000.00	550000.000000	1025750.00	19200000.0		
kms_driven	5512.0	6.314705e+04	4.183638e+04	250.0	33000.00	59000.000000	84226.00	560000.0		
engine	5512.0	1.531607e+03	5.791745e+02	0.0	1197.00	1396.000000	1950.00	5950.0		
Seats	5512.0	5.247949e+00	7.156885e-01	2.0	5.00	5.000000	5.00	8.0		
Product Number	5512.0	4.615872e+04	1.967625e+04	12396.0	29047.75	46158.724759	63200.25	79994.0		
Year	5512.0	2.015456e+03	3.927974e+00	1995.0	2013.00	2016.000000	2018.00	2022.0		

Boxplot to understand outliers

```
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(4,3))
sns.boxplot(x='engine', data=df)
plt.show()
```


0 1000 2000 3000 4000 5000 6000 engine

Removing Outlier

```
import numpy as np
q1=np.quantile(df['engine'],0.25)|
q3=np.quantile(df['engine'],0.75)
iqr=q3-q1
min=q1-(1.5*iqr)
max=q3+(1.5*iqr)
```

df=df[df['engine']>min]
df=df[df['engine']<max]</pre>

Scatterplot For Relationship Between Two Continuous Variables

Heatmap For Correlation Between Multiple Variables As A Color-Coded Matrix

Encoding Of Data Using Pandas get_dummies()

if_e=pd.get_dummies(data=df,columns=['fuel_type','transmission'], drop_first=True)
print(df e)

	S.No.	car_pri	ces_in_rupee	kms_driven	ownersh	ip engine	Seats \	
)	0.0		1003000.0	86226	1st Own	er 1956	5.0	
1	1.0		1283000.0	13248	1st Own	er 1330	5.0	
2	2.0		1640000.0	60343	1st Own	er 2494	5.0	
1	3.0		777000.0	26696	1st Own	er 1199	5.0	
1	4.0		515000.0	69414	1st Own	er 1199	5.0	
5507	5507.0		2890000.0	45000	1st Own	er 2995	7.0	
5508	5508.0		6490000.0	29000	2nd Own	er 1968	5.0	
5509	5509.0		1375000.0	90000	2nd Own	er 2755	5.0	
5510	5510.0		2990000.0	79000	3rd Own	er 2967	6.0	
5511	5511.0		3190000.0	42000	2nd Own	er 1991	5.0	
	Product	Number	com name			prod nam	se Year	1
3		62837.0	Jeep	Compass 2.0	Longitud	le Option BSI	V 2017	
		34629.0	Renault		Duster	RXZ Turbo CV	/T 2021	
2		64168.0	Toyota			Camry 2.5	G 2016	
3		52540.0	Honda			Jazz VX CV	/T 2018	
		63117.0	Volkswagen		Polo 1.2	MPI Highlin	ne 2016	

Encoding Of Data Using Sklearn LabelEncoder

from sklearn.preprocessing import LabelEncoder
df e=tabelEncoder()
df['fuel_type']=df_e.fit_transform(df['fuel_type'])

	S.No.	car_prices_in_rupee	kms_driven	fuel_type	transmission	ownership	engine	Seats	Product Number	com_name	prod_name	Year
0	0.0	1003000.0	86226	1	Manual	1st Owner	1956	5.0	62837.0	Jeep	Compass 2.0 Longitude Option BSIV	2017
1	1.0	1283000.0	13248	4	Automatic	1st Owner	1330	5.0	34529.0	Renault	Duster RXZ Turbo CVT	2021
2	2.0	1640000.0	60343	4	Automatic	1st Owner	2494	5.0	64168.0	Toyota	Carry 2.5 G	2016
3	3.0	777000.0	26696	4	Automatic	1st Owner	1199	5.0	52540.0	Honda	Jazz VX CVT	2018
4	4.0	515000.0	69414	4	Manual	1st Owner	1199	5.0	63117.0	Volkswagen	Polo 1.2 MPI Highline	2016

Key Results

- Data Completeness: Understanding the extent of missing values in the dataset and how they were handled. Ensuring a complete dataset for analysis without stonificant gaos.
- Data Quality: Addressing outliers, and inconsistencies, to ensure that the data is of higher quality and more reliable for analysis. Reducing the likelihood of errors and misleading insights.
- Data Consistency: Resolving inconsistencies or discrepancies in the dataset, such as conflicting values or formats to ensure that the data is consistent and can be interpreted correctly.
- Improved Analysis: Conducting more accurate and meaningful analyses with a clean dataset. Trusting the results and insights obtained from the cleaned data to make informed decisions.
- Visualization: Creating clear and informative plots and charts to explore patterns, trends, and relationships in the data. Cleaned data is more suitable for high quality visualizations.