Folding of a simplified protein model by a Monte Carlo algorithm

Rousseau Baptiste
M2 BI - Université de Paris Cité
16/09/2022

based on: A replica exchange Monte Carlo algorithm for protein folding in the HP model.

Thachuk et al. 2007

The algorithm

Monte Carlo

Replica Exchange Monte Carlo

Fig.1: Monte Carlo and Replica Exchange Monte Carlo algorithms

Moves

Fig.2: VSHD moves

Fig.3: pull moves

from: A replica exchange Monte Carlo algorithm for protein folding in the HP model.

Thachuk et al. 2007

Class dependencies

Class dependencies

Results

ID	E^*	MC	REMO
S 1	-9	-4	-4
S 2	-9	-4	-3
S 3	-8	-3	-1
S 4	-14	-3	-1

Table 1: Results of runs on benchmarking proteins

```
Running test case: HPHPPHHPHPHPHPHPH with optimal energy: -9
Running MC with parameters: n-steps=5000, temperature=200
Final lattice with energy of -4
         PΡ
 PH
 НННРННРНР
  PP PP H
Running REMC with parameters: n-replica=5, energy-cutoff=-9,
max-steps=1000, local-steps=100, temperature-min=160,
temperature-max=220
Final lattice with energy of -4
  PH
            PΡ
 НННРНРРНРННН
                                   Fig.6: Example of a run on protein S1
```

Discussion

Bad performances:

- runs takes a long time
- need a lot of iterations
- obtained energy far from expected optimal energy

Possible improvements:

- add tests (pytest) and reproductible examples (non-random)
- calculate runtime
- the lattice data structure