Definability & separability of regular languages in first-order logic

MPRI internship defense

Rémi Morvan École normale supérieure Paris-Saclay under the supervision of Thomas Colcombet & Sam van Gool IRIF, CNRS & Université de Paris

September 3, 2021

First-order logic (FO)

Overview •000

Let $w \in A^*$ where $A = \{a, b, c, ...\}.$

Overview •000

Let
$$w \in A^*$$
 where $A = \{a, b, c, ...\}.$

$$w \models \exists x. \exists y. x < y \land a(x) \land b(y)$$

First-order logic (FO)

Overview •000

Let
$$w \in A^*$$
 where $A = \{a, b, c, ...\}.$

$$w \models \exists x. \exists y. x < y \land a(x) \land b(y)$$

Overview •000

Let
$$w \in A^*$$
 where $A = \{a, b, c, ...\}$.

$$w \models \exists x. \exists y. x < y \land a(x) \land b(y)$$

iff
$$w = \begin{bmatrix} \cdots & a & \cdots & b & \cdots \\ x & & y & \end{bmatrix}$$

R. Morvan 1/15

First-order logic (FO)

Overview •000

Let $w \in A^*$ where $A = \{a, b, c, \ldots\}$.

$$w \models \exists x. \exists y. x < y \land a(x) \land b(y)$$

iff
$$w = \begin{bmatrix} \cdots & a & \cdots & b & \cdots \\ x & & y & \end{bmatrix}$$

i.e. $w \in A^* a A^* b A^*$.

R. Morvan 1/15

Fo-definability

FO-DEFINABILITY:

L regular language Input:

Question: Is *L* definable by a first-order formula?

R. Morvan 2/15

Fo-definability

FO-DEFINABILITY:

Input: L regular language

Question: Is *L* definable by a first-order formula?

• Non-trivial: (aa)* is not Fo-definable.

Fo-definability

FO-DEFINABILITY:

L regular language Input:

Question: Is *L* definable by a first-order formula?

• Non-trivial: (aa)* is not Fo-definable.

• Decidable: [Schützenberger '65 & McNaughton-Papert '71].

R. Morvan 2/15

 L_1 and L_2 are FO-separable whenever there exists $\varphi \in$ FO s.t. for all $w \in L_1$, $w \models \varphi$ and for all $w \in L_2$, $w \not\models \varphi$.

R. Morvan 3/15

 L_1 and L_2 are FO-**separable** whenever there exists $\varphi \in$ FO s.t. for all $w \in L_1$, $w \models \varphi$ and for all $w \in L_2$, $w \not\models \varphi$.

Example: $b^+(aa)^+$ and $(aa)^+$ can be separated by $\exists x. b(x)$.

 L_1 and L_2 are Fo-separable whenever there exists $\varphi \in$ Fo s.t. for all $w \in L_1$, $w \models \varphi$ and for all $w \in L_2$, $w \not\models \varphi$.

Example: $b^+(aa)^+$ and $(aa)^+$ can be separated by $\exists x. b(x)$.

FO-SEPARABILITY:

Input: L_1, L_2 regular languages

Question: Are L_1 and L_2 Fo-separable?

R. Morvan 3/15

 L_1 and L_2 are FO-separable whenever there exists $\varphi \in FO$ s.t. for all $w \in L_1$, $w \models \varphi$ and for all $w \in L_2$, $w \not\models \varphi$.

Example: $b^+(aa)^+$ and $(aa)^+$ can be separated by $\exists x. b(x)$.

FO-SEPARABILITY:

Input: L_1, L_2 regular languages

Question: Are L_1 and L_2 Fo-separable?

FO-DEFINABILITY:

Input: L regular language

Question: Is L definable by a first-order formula?

R Morvan 3/15

 L_1 and L_2 are FO-separable whenever there exists $\varphi \in FO$ s.t. for all $w \in L_1$, $w \models \varphi$ and for all $w \in L_2$, $w \not\models \varphi$.

Example: $b^+(aa)^+$ and $(aa)^+$ can be separated by $\exists x. b(x)$.

FO-SEPARABILITY:

 L_1, L_2 regular languages Input:

Question: Are L_1 and L_2 Fo-separable?

FO-DEFINABILITY:

Input: L regular language

Question: Is L definable by a first-order formula?

reduces to $(L \mapsto (L, A^* \setminus L))$

Fo-separability is **decidable**:

[Henckell '88 & Almeida '96], and [Place-Zeitoun '16].

FO-separability is **decidable**:

[Henckell '88 & Almeida '96], and [Place-Zeitoun '16].

What about non-finite words?

Fo-separability is **decidable**:

[Henckell '88 & Almeida '96], and [Place-Zeitoun '16].

What about non-finite words?

Domain	ғо-definability	Fo-separability
(countable linear order)		
ω	dec. [Perrin '84]	dec. [Place-Zeitoun '16]

Fo-separability is **decidable**:

[Henckell '88 & Almeida '96], and [Place-Zeitoun '16].

What about non-finite words?

Domain	го-definability	Fo-separability
(countable linear order)		
ω	dec. [Perrin '84]	dec. [Place-Zeitoun '16]
Ordinals	dec. [Bedon '01]	dec. [my internship!]

Fo-separability is **decidable**:

[Henckell '88 & Almeida '96], and [Place-Zeitoun '16].

What about non-finite words?

Domain (countable linear order)	го-definability	ғо-separability
ω	dec. [Perrin '84]	dec. [Place-Zeitoun '16]
Ordinals	dec. [Bedon '01]	dec. [my internship!]
Scattered	dec. [Bès-Carton '11]	2 [6-1
Countable	dec. [Colcombet-Sreejith '15]	? [future work]

M is **aperiodic** when every group $G \subseteq M$ is trivial.

M is **aperiodic** when every group $G \subseteq M$ is trivial.

M is **aperiodic** when every group $G \subseteq M$ is trivial.

Aperiodic!

 $(aa)^*$

R. Morvan 6/15

Words of even length

$$\varphi: \quad \begin{array}{ccc} \alpha^* & \to & \mathbb{Z}/2\mathbb{Z} \\ & w & \mapsto & |w| \mod 2 \end{array}$$

$$(aa)^* = \varphi^{-1}[\bar{0}]$$

Words of even length

$$(\underline{aa})^* = \varphi^{-1}[\overline{0}]$$

$$\varphi: \quad a^* \quad \to \quad \mathbb{Z}/2\mathbb{Z}$$

$$\quad w \quad \mapsto \quad |w| \mod 2$$

Every monoid recognising (aa)* must contain a non-trivial group \rightsquigarrow not Fo-definable.

$$L_1 = b^+(aa)^+$$

$$L_2 = (aa)^+$$

$$L_3 = (aa)^*a$$

•000

R. Morvan 7/15

$$L_1 = b^+(aa)^+$$

 $L_2 = (aa)^+$
 $L_3 = (aa)^*a$

 L_1 and L_2

$$L_1 = b^+(aa)^+$$

 $L_2 = (aa)^+$
 $L_3 = (aa)^*a$

•000

 L_1 and L_2 are Fo-separated by $\exists x. b(x)$.

R. Morvan 7/15

$$L_1 = b^+(aa)^+$$

 $L_2 = (aa)^+$
 $L_3 = (aa)^*a$

 L_1 and L_2 are Fo-separated by $\exists x. \ b(x)$. L_2 and L_3

$$L_1 = b^+(aa)^+$$

 $L_2 = (aa)^+$
 $L_3 = (aa)^*a$

 L_1 and L_2 are Fo-separated by $\exists x. b(x)$.

 L_2 and L_3 are not FO-separable (Schützenberger-McNaughton-Papert thm).

R. Morvan 7/15 L_1, L_2 recognised by $\varphi: A^* \to M$.

R. Morvan 8/15

0000

Henckell & Almeida

 L_1, L_2 recognised by $\varphi: A^* \to M$.

Theorem [Henckell '88 & Almeida '96]: There exists a computable submonoid $Sat(M) \subseteq \mathcal{P}(M)$ such that:

 L_1 and L_2 are Fo-separable

IFF

for every $m_1 \in \varphi[L_1]$ and $m_2 \in \varphi[L_2]$, we have $\{m_1, m_2\} \notin Sat(M)$.

Henckell & Almeida

 L_1, L_2 recognised by $\varphi: A^* \to M$.

Theorem [Henckell '88 & Almeida '96]: There exists a computable submonoid $Sat(M) \subseteq \mathcal{P}(M)$ such that:

 L_1 and L_2 are FO-separable

IFF

for every $m_1 \in \varphi[L_1]$ and $m_2 \in \varphi[L_2]$, we have $\{m_1, m_2\} \notin Sat(M)$.

Henckell's theorem: "Sat(M) is the collection of subsets of M whose points cannot be distinguished by FO (pointlikes)".

Henckell & Almeida

 L_1, L_2 recognised by $\varphi: A^* \to M$.

Theorem [Henckell '88 & Almeida '96]: There exists a computable submonoid $Sat(M) \subseteq \mathcal{P}(M)$ such that:

 L_1 and L_2 are FO-separable

IFF

for every $m_1 \in \varphi[L_1]$ and $m_2 \in \varphi[L_2]$, we have $\{m_1, m_2\} \notin Sat(M)$.

Henckell's theorem: "Sat(M) is the collection of subsets of M whose points cannot be distinguished by FO (pointlikes)".

Corollary: Fo-separability is decidable.

$$L_1 = b^+(aa)^+$$

 $L_2 = (aa)^+$
 $L_3 = (aa)^*a$

Henckell's theorem: "Sat(M) is the collection of subsets of M whose points cannot be distinguished by Fo (pointlikes)".

R. Morvan 9/15

$L_1 = b^+(aa)^+$ $L_2 = (aa)^+$ $L_3 = (aa)^*a$

are recognised by

Henckell's theorem: "Sat(M) is the collection of subsets of M whose points cannot be distinguished by Fo (pointlikes)".

$$L_1 = b^+(aa)^+$$

 $L_2 = (aa)^+$
 $L_3 = (aa)^*a$

are recognised by

Henckell's theorem: "Sat(M) is the collection of subsets of M whose points cannot be distinguished by Fo (pointlikes)".

FO-separability 0000

$$Sat(M) = {$$

$$L_1 = b^+(aa)^+$$

 $L_2 = (aa)^+$
 $L_3 = (aa)^*a$

are recognised by

Henckell's theorem: "Sat(M) is the collection of subsets of M whose points cannot be distinguished by Fo (pointlikes)".

Definition of Sat(M):

Singletons cannot be distinguished.

$$Sat(M) = \{$$

$$L_1 = b^+(aa)^+$$

 $L_2 = (aa)^+$
 $L_3 = (aa)^*a$

are recognised by

Henckell's theorem: "Sat(M) is the collection of subsets of M whose points cannot be distinguished by Fo (pointlikes)".

FO-separability 0000

Definition of Sat(M):

Singletons cannot be distinguished.

R. Morvan

$$L_1 = b^+(aa)^+$$

 $L_2 = (aa)^+$
 $L_3 = (aa)^*a$

are recognised by

Henckell's theorem: "Sat(M) is the collection of subsets of M whose points cannot be distinguished by Fo (pointlikes)".

FO-separability 0000

- Singletons cannot be distinguished.
- Elements of a group cannot distinguished.

$$L_1 = b^+(aa)^+$$

 $L_2 = (aa)^+$
 $L_3 = (aa)^*a$

are recognised by

Henckell's theorem: "Sat(M) is the collection of subsets of M whose points cannot be distinguished by Fo (pointlikes)".

FO-separability 0000

- Singletons cannot be distinguished.
- Elements of a group cannot distinguished.

$$Sat(M) = \{\{1\}, \{b\}, \{a\}, \{aa\}, \{ba\}, \{baa\}, \{0\}, \{a, aa\}, \{a, aa$$

$$L_1 = b^+(aa)^+$$

 $L_2 = (aa)^+$
 $L_3 = (aa)^*a$

are recognised by

Henckell's theorem: "Sat(M) is the collection of subsets of M whose points cannot be distinguished by Fo (pointlikes)".

FO-separability 0000

- Singletons cannot be distinguished.
- Elements of a group cannot distinguished.
- Closed under product and subsets.

Sat(M) =
$$\{\{1\}, \{b\}, \{a\}, \{aa\}, \{ba\}, \{baa\}, \{0\}, \{a, aa\}, \}$$

$$L_1 = b^+(aa)^+$$

 $L_2 = (aa)^+$
 $L_3 = (aa)^*a$

are recognised by

Henckell's theorem: "Sat(M) is the collection of subsets of M whose points cannot be distinguished by Fo (pointlikes)".

FO-separability 0000

- Singletons cannot be distinguished.
- Elements of a group cannot distinguished.
- Closed under product and subsets.

$$Sat(M) = \{\{1\}, \{b\}, \{a\}, \{aa\}, \{ba\}, \{baa\}, \{0\}, \{a, aa\}, \{ba, baa\} \}$$

Henckell's theorem: "Sat(M) is the collection of subsets of M whose points cannot be distinguished by Fo (pointlikes)".

FO-separability

Definition of Sat(M):

- Singletons cannot be distinguished.
- Elements of a group cannot be distinguished.
- Closed under product and subsets.

$$Sat(M) = \{\{1\}, \{b\}, \{a\}, \{aa\}, \{ba\}, \{baa\}, \{0\}, \{a, aa\}, \{ba, baa\}\}\}$$

R. Morvan 9/15

Proof (correctness): If $X \in Sat(M)$, then the elements of X cannot be distinguished by Fo. (Easy!)

Henckell's theorem: "Sat(M) is the collection of subsets of M whose points cannot be distinguished by Fo (pointlikes)".

FO-separability 0000

Definition of Sat(M):

- Singletons cannot be distinguished.
- Elements of a group cannot be distinguished.
- Closed under product and subsets.

$$Sat(M) = \{\{1\}, \{b\}, \{a\}, \{aa\}, \{ba\}, \{baa\}, \{0\}, \{a, aa\}, \{ba, baa\}\} \}$$

R Morvan 9/15

Proof (correctness):

If $X \in Sat(M)$, then the elements of X cannot be distinguished by Fo. (Easy!)

Proof (completeness):
If the elements of X cannot
be distinguished by Fo, then

 $X \in Sat(M)$. (Not easy!)

Henckell's theorem: "Sat(M) is the collection of subsets of M whose points cannot be distinguished by Fo (pointlikes)".

FO-separability

Definition of Sat(M):

- Singletons cannot be distinguished.
- Elements of a group cannot be distinguished.
- Closed under product and subsets.

$$Sat(M) = \{\{1\}, \{b\}, \{a\}, \{aa\}, \{ba\}, \{baa\}, \{0\}, \{a, aa\}, \{ba, baa\} \}$$

R. Morvan 9/15

$$\varphi: A^* \to M$$

Fo-separability

$$\varphi \colon A^* \to M$$

Proof: by induction on |A| and |Sat(M)|.

$$\varphi: A^* \to M$$

Proof: by induction on |A| and $|\operatorname{Sat}(M)|$. \leftarrow *new!*

$$\varphi: A^* \to M$$

FO-separability 0000

Proof: by induction on |A| and $|\operatorname{Sat}(M)|$. \leftarrow *new!*

Question: When one reads a letter $a \in A$, what does it do on Sat(M)?

$$\varphi\colon A^*\to M$$

Proof: by induction on |A| and $|\operatorname{Sat}(M)|$. \leftarrow new! *Question:* When one reads a letter $a \in A$, what does it do on Sat(M)?

Lemma: Either

- $\varphi(a)$ · Sat(M) \subseteq Sat(M) for some $a \in A$, or
- $Sat(M) \cdot \varphi(a) \subseteq Sat(M)$ for some $a \in A$, or
- Sat(M) has a maximum. ← easy base case!

Lemma: Either

- $\varphi(a) \cdot \operatorname{Sat}(M) \subseteq \operatorname{Sat}(M)$ for some $a \in A$, or
- $Sat(M) \cdot \varphi(a) \subseteq Sat(M)$ for some $a \in A$, or
- Sat(M) has a maximum. ← easy base case!

Fo-separability

Figure 1: Case $\varphi(a)$ · Sat(M) \subseteq Sat(M)

Lemma: Either

- $\varphi(a) \cdot \operatorname{Sat}(M) \subseteq \operatorname{Sat}(M)$ for some $a \in A$, or
- $Sat(M) \cdot \varphi(a) \subseteq Sat(M)$ for some $a \in A$, or
- Sat(M) has a maximum. ← easy base case!

Figure 1: Case $\varphi(a)$ · Sat(M) \subseteq Sat(M)

Lemma: Either

- $\varphi(a) \cdot \operatorname{Sat}(M) \subseteq \operatorname{Sat}(M)$ for some $a \in A$, or
- $Sat(M) \cdot \varphi(a) \subseteq Sat(M)$ for some $a \in A$, or
- Sat(M) has a maximum. ← easy base case!

Figure 1: Case $\varphi(a)$ · Sat(M) \subseteq Sat(M)

Lemma: Either

- $\varphi(a) \cdot \operatorname{Sat}(M) \subseteq \operatorname{Sat}(M)$ for some $a \in A$, or
- $Sat(M) \cdot \varphi(a) \subseteq Sat(M)$ for some $a \in A$, or
- Sat(M) has a maximum. ← easy base case!

• Finite words: a, bca, ccabc, etc.

• Finite words: a, bca, ccabc, etc. (non-exhaustive list)

- Finite words: a, bca, ccabc, etc. (non-exhaustive list)
- Words of length ω : a^{ω} ,

• Finite words: a, bca, ccabc, etc. (non-exhaustive list)

• Words of length ω : a^{ω} , $cabcc(ab)^{\omega}$, etc.

- Finite words: a, bca, ccabc, etc. (non-exhaustive list)
- Words of length ω : a^{ω} , $cabcc(ab)^{\omega}$, etc.
- Transfinite words: all of the above, $a^{\omega}cb^{\omega}ca$, $(ab^{\omega}c)^{\omega}$, etc.

- Finite words: a, bca, ccabc, etc. (non-exhaustive list)
- Words of length ω : a^{ω} , $cabcc(ab)^{\omega}$, etc.
- Transfinite words: all of the above, $a^{\omega}cb^{\omega}ca$, $(ab^{\omega}c)^{\omega}$, etc.

- Finite words: a, bca, ccabc, etc. (non-exhaustive list)
- Words of length ω : a^{ω} , $cabcc(ab)^{\omega}$, etc.
- Transfinite words: all of the above, $a^{\omega}cb^{\omega}ca$, $(ab^{\omega}c)^{\omega}$, etc.

• Example of first-order formula: $\neg \exists x$. last(x).

Generalising Henckell's theorem

• Algebraic notion: *S* finite ordinal semigroup.

R. Morvan 12/15

- Algebraic notion: *S* finite ordinal semigroup.
- Sat^{ord}(S): now closed under ω -power.

Generalising Henckell's theorem

- Algebraic notion: *S* finite ordinal semigroup.
- Sat^{ord}(S): now closed under ω -power.
- Generalisation of Henckell's theorem:

Generalising Henckell's theorem

- Algebraic notion: *S* finite ordinal semigroup.
- Sat^{ord}(S): now closed under ω -power.
- Generalisation of Henckell's theorem: "Sat^{ord}(S) is the collection of subsets of S whose points cannot be distinguished by Fo"

R. Morvan 12/15

Lemma: Fither

- i. $\varphi(a) \cdot \operatorname{Sat}^{\operatorname{ord}}(S) \subseteq \operatorname{Sat}^{\operatorname{ord}}(S)$ for some $a \in A$, or
- ii. $\operatorname{Sat}^{\operatorname{ord}}(S) \cdot \varphi(a) \subseteq \operatorname{Sat}^{\operatorname{ord}}(S)$ for some $a \in A$, or
- iii. $Sat^{ord}(S)$ has a maximum.

R. Morvan 13/15

Lemma: Fither

- i. $\varphi(a) \cdot \operatorname{Sat}^{\operatorname{ord}}(S) \subseteq \operatorname{Sat}^{\operatorname{ord}}(S)$ for some $a \in A$, or
- ii. $\operatorname{Sat}^{\operatorname{ord}}(S) \cdot \varphi(a) \subseteq \operatorname{Sat}^{\operatorname{ord}}(S)$ for some $a \in A$, or
- iii. $Sat^{ord}(S)$ has a maximum.

R. Morvan

Lemma: Either

- i. $\varphi(a) \cdot \operatorname{Sat}^{\operatorname{ord}}(S) \subseteq \operatorname{Sat}^{\operatorname{ord}}(S)$ for some $a \in A$, or
- ii. $\operatorname{Sat}^{\operatorname{ord}}(S) \cdot \varphi(a) \subseteq \operatorname{Sat}^{\operatorname{ord}}(S)$ for some $a \in A$, or
- iii. Sat^{ord}(S) has a maximum.

Lemma: Either

- i. $\varphi(a) \cdot \operatorname{Sat}^{\operatorname{ord}}(S) \subseteq \operatorname{Sat}^{\operatorname{ord}}(S)$ for some $a \in A$, or
- ii. $\operatorname{Sat}^{\operatorname{ord}}(S) \cdot \varphi(a) \subseteq \operatorname{Sat}^{\operatorname{ord}}(S)$ for some $a \in A$, or
- iii. Sat^{ord}(S) has a maximum.

Lemma: Fither

- i. $\varphi(a) \cdot \operatorname{Sat}^{\operatorname{ord}}(S) \subseteq \operatorname{Sat}^{\operatorname{ord}}(S)$ for some $a \in A$, or
- ii. $\operatorname{Sat}^{\operatorname{ord}}(S) \cdot \varphi(a) \subseteq \operatorname{Sat}^{\operatorname{ord}}(S)$ for some $a \in A$, or
- iii. Sat^{ord}(S) has a maximum.

For ordinals, knowing that $\mathbf{Sat}^{\mathbf{ord}}(S) \cdot \varphi(a) \subseteq \mathbf{Sat}^{\mathbf{ord}}(S)$ for some $a \in A$ is useless.

Magnificent solution!

Lemma: Either

- i. $\varphi(a) \cdot \operatorname{Sat}^{\operatorname{ord}}(S) \subseteq \operatorname{Sat}^{\operatorname{ord}}(S)$ for some $a \in A$, or
- ii. $\operatorname{Sat}^{\operatorname{ord}}(\operatorname{Sat}^{\omega}(S)) \subseteq \operatorname{Sat}^{\operatorname{ord}}(S)$, or
- iii. $Sat^{ord}(S)$ is a \mathcal{L} -trivial \mathcal{R} -class.

R. Morvan 14/15

Conclusion

Domain (countable linear order)	ғо-definability	Fo-separability
Finite	dec. [Schützenberger '65 & McNaughton-Papert '71]	dec. [Henckell '88 & Almeida '96] dec. [Henckell '88 decorporation ← new proof
ω	dec. [Perrin '84]	dec. [Place-Zeitoun '16]
Ordinals	dec. [Bedon '01]	dec. ← <i>new!</i>
Scattered	dec. [Bès-Carton '11]	?? ← future work
Countable	dec. [Colcombet-Sreeiith '15]	

Conclusion

Domain (countable linear order)	го-definability	ғо-separability
Finite	dec. [Schützenberger '65 & McNaughton-Papert '71]	dec. [Henckell '88 & Almeida '96] ← new proof
ω	dec. [Perrin '84]	dec. [Place-Zeitoun '16]
Ordinals	dec. [Bedon '01]	dec. ← <i>new!</i>
Scattered	dec. [Bès-Carton '11]	?? ← future work
Countable	dec. [Colcombet-Sreejith '15]	:: — Tuture work

Transfinite words