Chapitre

Fonctions

3. Précisions sur les applications réciproques

Une application est bijective de $E \to F$ si $\forall y \in F, \exists ! x \in E, y = f(x)$.

On définit une application, appelée réciproque notée $f^{-1}: F \to F$ et $y \longmapsto x = f^{-1}(y)$, avec $\forall y \in F, x = f^{-1}(y) \iff x \in E$ et y = f(x). f est bijective donc f^{-1} est une application.

Propriétés :

- $f \circ f^{-1}(y) = y = Id_F$
- $f^{-1} \circ f(x) = x = Id_E$
- $f \circ Id_E = f : Id_E$ est le neutre à droite pour o
- $Id_E \circ f = f : Id_E$ est le neutre à gauche pour o

En effet, $f \circ f^{-1}(y) = f(f^{-1}(y)) = f(x) = y$.

Théorème 1.1 : Proposition

Soit $f: E \to F$ une application. S'il existe $g: F \to E$ une application telle que : $g \circ f = Id_E$ et $f \circ g = Id_F$. Alors f est bijective et g est la réciproque de f.

Théorème 1.2 : Corrolaire

Si l'application réciproque existe, elle est unique

Exemple : $Id: R \to R$. $Id_R(\sqrt{2}) = \sqrt{2}$.

Cor

Conséquence

On peut donc montrer qu'une application est bijective en exhibant sa réciproque

π Théorème 1.3 : Proposition

Soit $f:E \to F$ et $g:F\Rightarrow G$ deux applications bijectives. $g\circ f:E\to F\to G$ et $x\longmapsto f(x)\longmapsto g(f(x))$ Alors $g\circ f$ est bijective.

Théorème 1.4 : Proposition

Soit $f:E\to F$ bijective et notons $f^{-1}:F\Rightarrow E$ sa réciproque. Alors f^{-1} est bijective de réciproque f.

3. Généralités sur les fonctions de R dans R

3.2. Ensemble de définition

Théorème 2.1 : Ensemble de définition

Soit f de R dans R une fonction. Le domaine de définition de f est l'ensemble, noté $Df=\{x\in R, f(x) \text{existe}\}$ Alors, $Df\to R$ est une application.

Théorème 2.2 : Proposition

Soit $f:I\to R$, si f est strictement monotone sur I, alors f est injective de I sur R.

3.2. Fonctions majorées et minorées

Soit $f: R \to R$ Soit $I \in D_R$.

f est majorée sur I s'il existe $M \in R, \forall x \in I, f(x) \leq M$.

f est minorée sur I s'il existe $m \in R, \forall x \in I, f(x) \geq m$.

Montrer que la fonction est non majorée

On montre que $\forall M \in \mathbb{R}, \exists x \in I, f(x) > M$.

3.2. Image directe et image réciproque

On se donne $f \in F(R, R)$.

Soit I un intervalle de \mathbb{R} . $f(I) = \{f(x), x \in I\} = \{y \in \mathbb{R}, \exists x \in I, y = f(x)\}.$

Soit J un intervalle de \mathbb{R} . $f^{-1}(J) = \{x \in D_f, f(x) \in J\} = \{y \in \mathbb{R}, \exists x \in I, y = f(x)\}.$

3. Limites d'une fonction en un point ou en l'infini

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction.

3.3. Limite en un point

f doit être définie sur un voisinage épointé de x_0

Voisinage épointé

Voisinage épointé de x_0

Un intervalle ouvert contenant x_0 , privé de x_0 . On le note V_{x_0} . $V_{x_0}=]x_0-\epsilon, x_0+\epsilon[\setminus\{x_0\}$

f a une limite finie si:

elle est définie sur un voisinage épointé de x_0 et pour toute suite (u_n) est convergente vers x_0 et à valeurs de x_0 ,

$$\lim_{\infty} f(u_n) = l$$

avec (u_n) tend vers x_0 .

Cela équivaut à : $\forall \varepsilon > 0, \exists \alpha > 0, \forall x, 0 < |x - x_0| < \alpha \Rightarrow |f(x) - l| < \epsilon$.

Limites infinies

f a une limite valant $+\infty$ si:

 \cdot pour toute suite (u_n) à valeurs dans V_{x_0} et de limite x_0 , on a :

$$\lim_{\infty} f(u_n) = +\infty$$

$$\cdot \forall A > 0, \exists \alpha > 0, 0 < |x - x_0| < \alpha \Rightarrow f(x) > A$$

De même en $-\infty$:

· Pour toute suite (u_n) à valeurs dans V_{x_0} ,

$$\lim_{n \to \infty} f(u_n) = -\infty$$

•
$$\forall A > 0, \exists \alpha > 0, 0 < |x - x_0| < \alpha \Rightarrow f(x) < -A$$
 -

3.3.2imites en + l'infini

On se donne f définie au voisinage de $+\infty:\exists a\in\mathbb{R}$, f est définie sur $]a,+\infty[$.

Limite finie *l*

$$\forall \epsilon > 0, \exists A > 0, x > A \Rightarrow |f(x) - l| < \epsilon$$

Limite + infinie Limite - infinie

3,3, Bimites en - l'infini

On se donne f définie au voisinage de $-\infty$: $\exists A \in \mathbb{R}$, f est définie sur $]-\infty,A[.$

Limite finie *l*

$$\forall \epsilon > 0, \exists R > 0, x < -R \Rightarrow |f(x) - l| < \epsilon$$

Limite + infinie

Limite - infinie

$$\forall A > 0, \exists R > 0, x < -R \Rightarrow f(x) > A.$$

$$\forall A > 0, \exists R > 0, x < -R \Rightarrow f(x) < -A.$$

3. Fonctions continues

Soit I un intervalle ouvert de \mathbb{R} . Soit $f:I\to\mathbb{R}$, f est définie sur I

Théorème 4.1: Définitions

f est continue en x_0 si

- $\cdot \lim_{x \to x_0} f = f(x_0).$
- $\forall \varepsilon > 0, \exists \alpha > 0, |x x_0| < \alpha \Rightarrow |f(x) f(x_0)| < \varepsilon$
- $\forall (U_n), \lim_{\infty} f(U_n) = f(x_0)$. On a donc : $\lim_{\infty} f(U_n) = f(\lim_{\infty} U_n)$

3. Continuité et opérations

On prend 2 fonctions f et g continues sur I. Alors f+g,fg sont continues sur I et $\frac{f}{g}$ est continue en tout point de I tel que $g(x) \neq 0$.

 $\hat{\pi}$

Théorème 5.1: Continuité des composées

Soient $f:I\to J$ une fonction continue surI, à valeurs dans $I\in\mathbb{R}$ et $g:I\to J\in\mathbb{R}$. Alors $g\circ f$ est continue sur I.

3.5. Théorème des valeurs intermédiaires

Théorème 5.2 : TVI

Soit $f:I\to\mathbb{R}$ une fonction et $(a\leq b)\in I.$ On suppose f continue sur [a,b].

Alors $\forall y_0 \in [f(a), f(b)], \exists x_0 \in [a, b], y_0 = f(x_0).$

π

Théorème 5.3 : Variante du TVI

Il est équivalent à :

si f est continue sur [a,b] et $f(a)\times f(b)\leq 0$, alors $\exists c\in [a,b], f(c)=0$

3.5. Théorème de Heine

Théorème 5.4 : Théorème de Heine

L'image continue d'un intervalle fermé et borné est un intervalle fermé et borné.

Soient $a < b \in \mathbb{R}$ et $f : [a, b] \to \mathbb{R}$, f continue sur [a, b],

 $\exists m \in \mathbb{R}, M \in \mathbb{R}, m \leq M \text{ tels que } f([a,b]=[m,M] \text{ avec } \exists x_0 \in [a,b], f(x_0)=m \text{ et } \exists x_1 \in [a,b], f(x_1)=M$

3.5. Réciproque d'une application continue strictement monotone

Théorème 5.5 :

Si f est continue sur [a,b] et strictement monotone sur [a,b], alors f réalise une bijection de [a,b] dans J=[f(a),f(b)] et $f^{-1}:J\to I$ sa réciproque, de même monotonie sur J

Elle donne plus d'informations que le TVI et est à privilégier. i

3. Fonctions dérivables

Théorème 6.1 : Définitions

Soit $x_0 \in [a, b]$.

f est dérivable en x_0 si

• $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ existe et est finie. On note alors cette limite $f'(x_0)$.

i Info

En effet, le TVI indique qu'il existe x tel que f(x) = c avec c dans l'intervalle de continuité. Ce théorème indique lui qu'il existe une unique solution dans l'intervalle mais il faut que la fonction soit monotone sur l'intervalle considéré.

- $\lim_{x\to 0} \frac{f(a+h)-f(a)}{h}$ existe et est finie.
- $\exists l$ et une fonction $\varepsilon(x)$ dont la limite en a est nulle, tels que $f(x) = f(a) + l(x-a) + (x-a)\varepsilon(x)$.

Théorème 6.2 : Dérivée de la réciproque

On donne un intervalle $I,J\in\mathbb{R}$ et $f:I\to J$. On suppose f dérivable sur I et que f est bijective de $I\to J$. On note $f^{-1}:J\to I$ la réciproque. Elle est dérivable en $y_0\in J\iff f'(f^{-1}(y_0))\neq 0$

On a alors : $(f^{-1})'_{y_0} = \frac{1}{f'(f^{-1}(y_0))} = \frac{1}{f'(x_0)}$ avec $x_0 = f^{-1}(y_0)$.

3. Théorème des accroissements finis et de Rolle

a < b

Théorème 7.1: Théorème des accroissements finis

Soit $f:[a,b]\to\mathbb{R}$. Si f est continue sur [a,b] et dérivable sur]a,b[. Alors $\exists c\in]a,b[,rac{f(b)-f(a)}{b-a}=f'(c)$

Théorème 7.2 : Théorème de Rolle

Soit $f:[a,b]\to\mathbb{R}$. Si f est continue sur [a,b] et dérivable sur]a,b[et f(a)=f(b). Alors $\exists c\in]a,b[,f'(c)=0$