

(11)Publication number:

2002-161211

(43)Date of publication of application: 04.06.2002

(51)Int.CI.

C08L101/00 C08K 5/521 C08K 5/5313

(21)Application number: 2000-357999

(71)Applicant: DAICEL CHEM IND LTD

(22)Date of filing:

24.11.2000

(72)Inventor: ASANO TAKAYUKI

(54) FLAME-RETARDANT RESIN COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a flame-retardant resin composition from which a molding having a good balance of flame retardancy, heat resistance and impact resistance is obtained. SOLUTION: This flame-retardant resin composition comprises (A) one or more selected from a polyester-based resin, a polystyrene-based resin, a polyamide-based resin, a polycarbonate-based resin and a polyphenylene ether-based resin and (B) a flame retardant. Both (B-1) a phosphinate and (B-2) phosphoric acid or its derivative are used together as the flame retardant (B).

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-161211 (P2002-161211A)

(43)公開日 平成14年6月4日(2002.6.4)

(51) Int.Cl.7

酸別記号

FΙ

テーマコート*(参考)

C 0 8 L 101/00 C 0 8 K 5/521

5/5313

C 0 8 L 101/00 C 0 8 K 5/521 $4\ J\ 0\ 0\ 2$

5/5313

審査請求 未請求 請求項の数11 OL (全 6 頁)

(21)出願番号

特顧2000-357999(P2000-357999)

(71)出願人 000002901

ダイセル化学工業株式会社

大阪府堺市鉄砲町1番地

(22)出顧日 平成12年11月24日(2000.11.24)

(72)発明者 浅野 隆幸

兵庫県姫路市網干区余子浜1903-3-336

(74)代理人 100063897

弁理士 古谷 磐 (外4名)

最終頁に続く

(54) 【発明の名称】 難燃性樹脂組成物

(57)【要約】

【課題】 難燃性、耐熱性及び耐衝撃性をバランスよく 備えた成形品が得られる難燃性樹脂組成物の提供。

【解決手段】 (A)ポリエステル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂及びポリフェニレンエーテル系樹脂から選ばれる1又は2以上と(B) 難燃剤を含有しており、(B) 難燃剤として(B-1)ポスフィン酸塩と(B-2) 燐酸又はその誘導体を併用している難燃性樹脂組成物。

【特許請求の範囲】

(A) 熱可塑性樹脂と(B) 難燃剤を含 【請求項1】 有しており、(B) 難燃剤として(B-1) ホスフィン 酸塩と(B-2)燐酸又はその誘導体を併用している難 燃性樹脂組成物。

【請求項2】 (A)熱可塑性樹脂が、ポリエステル系 樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリカ ーボネート系樹脂及びポリフェニレンエーテル系樹脂か ら選ばれる1又は2以上のものである請求項1記載の難 燃性樹脂組成物。

【請求項3】 (A)熱可塑性樹脂が、(A-1)ポリ エステル系樹脂及び/又は(A-3)ポリアミド系樹脂 を50重量%以上含むものである請求項1又は2記載の 難燃性樹脂組成物。

【請求項4】 (A)熱可塑性樹脂が、(A-1)ボリ エステル系樹脂及び/又は(A-2)ポリスチレン系樹 脂を70重量%以上含むものである請求項1又は2記載 の難燃性樹脂組成物。

(A)熱可塑性樹脂が、(A-3)ポリ 【請求項5】 を70重量%以上含むものである請求項1又は2記載の 難燃性樹脂組成物。

【請求項6】 (A-2)ポリスチレン系樹脂がAS樹 脂及び/又はABS樹脂である請求項2、4又は5記載 の難燃性樹脂組成物。

【請求項7】 (B-1) ホスフィン酸塩が、下記の一 般式(I)及び(II)で表されるものから選ばれる1又は 2以上のものである請求項1~6のいずれか1記載の難 燃性樹脂組成物。

【化1】

$$\begin{bmatrix}
R_2 & R_1 \\
0 & R_2
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

$$\begin{bmatrix}
R_1 & R_2 \\
0 & R_3
\end{bmatrix}$$

(式中、R,及びR,は水素原子、炭素数1~16のアル 40 キル基、炭素数1~16のエーテル結合を含むアルキル 基、アリール基、アラルキル基、シクロアルキル基を示 し、R.は2価の有機基を示し、nは1以上の整数を示 し、Mは塩を形成する原子又は有機基を示す。)

【請求項8】 一般式(I)及び(II)中のMがアルミニ ウム、カルシウム、アミド基、アンニウム基、アルキル アンモニウム基及びメラミン由来の基から選ばれる1又 は2以上のものである請求項1~7のいずれか1記載の 難燃性樹脂組成物。

【請求項9】 (B-2) 燐酸又はその誘導体が280 °Cでの加熱分解残渣が99%以上のものである請求項1 ~7のいずれか1記載の難燃性樹脂組成物。

【請求項10】 更に(C) 難燃助剤として、窒素含有 化合物、金属酸化物、金属水酸化物、珪素含有化合物、 ホウ素含有化合物及びフッ素含有化合物から選ばれる1 又は2以上を含有しており、(A)熱可塑性樹脂100 重量部に対して(C) 難燃助剤を1~20重量部配合す る請求項1~9のいずれか1記載の難燃性樹脂組成物。 【請求項11】 請求項1~10のいずれか1記載の難 10 燃性樹脂組成物を射出成形して得られる成形品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、難燃性、耐熱性及 び耐衝撃性をバランスよく備えた成形品が得られる難燃 性樹脂組成物に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】熱可塑 性樹脂の非ハロゲン系の難燃剤として、トリフェニルフ ォスフェート等の有機リン酸エステルが良く知られてい アミド系樹脂及び/又は(A-2)ポリスチレン系樹脂 20 るが、これらをポリエステル、ポリアミド等を含むアロ イの難燃剤として用いても満足のいく難燃性は得られ ず、可塑化により成形品の耐熱性を低下させるほか、加 工時に難燃剤由来のガスが発生するため安全性の点でも 問題がある。

> 【0003】特開平10-298395号公報等に示さ れている赤リンは、難燃効果が優れているため難燃剤と して汎用されているが、ペレットや成形品の着色、ハン ドリングの悪さ、加工時に難燃剤由来のガスが発生する という問題がある。また、ポリリン酸アンモニウムは難 30 燃性が悪く、かつ加工時に分解、吸湿するという問題が ある。

【0004】特開昭49-74736号公報には、アル キル基やアリール基等で置換されたホスフィン酸金属塩 を難燃剤として使用することが記載されており、特開平 8-73720号公報や特開平9-241395号公報 にもホスフィン酸金属塩が例示されている。これらは難 燃性に優れているものの、製造工程がやや煩雑でコスト がかかること、樹脂中で無機物として存在するため、成 形品を脆くする場合があるという問題を抱えている。

【0005】本発明は、以上のような従来技術の有する 難燃性、耐熱性、安全性等の問題を解決できる難燃性樹 脂組成物を提供することを目的とする。

[0006]

【課題を解決するための手段】本発明は、上記課題の解 決手段として、(A)熱可塑性樹脂と(B)難燃剤を含 有しており、(B) 難燃剤として(B-1) ホスフィン 酸塩と(B-2)燐酸又はその誘導体を併用している難 燃性樹脂組成物を提供する。

[0007]

【発明の実施の形態】本発明で用いる(A)成分の熱可

40

3

塑性樹脂は特に制限されるものではないが、(A-1) ボリエステル系樹脂、(A-2)ボリスチレン系樹脂、(A-3)ボリアミド系樹脂、(A-4)ボリカーボネート系樹脂、(A-5)ボリフェニレンエーテル系樹脂 から選ばれる 1 又は 2 以上が好ましい。

【0008】(A-1)のポリエステル系樹脂とは、二 価以上のカルボン酸成分又はエステル形成能をもつそれら誘導体、二価以上のアルコール成分及び/又はフェノール成分、エステル形成能をもつそれら誘導体とを公知の方法で重縮合して得られる飽和ポリエステル樹脂であ 10 る。

【0009】ポリエステル系樹脂としては、ポリエチレ ンテレフタレート、ポリブチレンテレフタレート、ポリ ヘキサメチレンテレフタレート、ポリシクロヘキサンジ メチレンテレフタレート、ポリエチレンナフタレート、 ポリブチレンナフタレート等から選ばれる1種以上が挙 げられる。とれらの中でも、特に成形性、耐熱性等の性 能のバランスが優れていることから、ポリエチレンテレ フタレート、ポリブチレンテレフタレートが好ましい。 【0010】(A-2)のポリスチレン系樹脂として は、スチレン及びα置換、核置換スチレン等のスチレン 誘導体の重合体が挙げられる。また、これら単量体を主 として、これらとアクリロニトリル、アクリル酸並びに メタクリル酸のようなビニル化合物及び/又はブタジエ ン、イソプレンのような共役ジェン化合物の単量体から 構成される共重合体も含まれる。例えばポリスチレン、 耐衝撃性ポリスチレン (HIPS) 樹脂、アクリロニト リルーブタジエンースチレン共重合体(ABS)樹脂、 アクリロニトリルースチレン共重合体(AS樹脂)、ス チレン-メタクリレート共重合体(MS樹脂)、スチレ 30 ンーブタジエン共重合体 (SBS樹脂) 等が挙げられ る。

【0011】また、ポリスチレン系樹脂として、ポリアミド系樹脂との相溶性をあげるためのカルボキシル基含有不飽和化合物が共重合されているスチレン系共重合体を含んでもよい。カルボキシル基含有不飽和化合物が共重合されているスチレン系共重合体は、ゴム質重合体の存在下に、カルボキシル基含有不飽和化合物及び必要に応じてこれらと共重合可能な他の単量体を重合してなる共重合体である。成分を具体的に例示すると、

1)カルボキシル基含有不飽和化合物を共重合したゴム質重合体の存在下に、芳香族ビニルモノマーを必須成分とする単量体あるいは芳香族ビニルとカルボキシル基含有不飽和化合物とを必須成分とする単量体を重合して得られたグラフト重合体、

2)ゴム質重合体の存在下に、芳香族ビニルとカルボキシル基含有不飽和化合物とを必須成分とする単量体を共重合して得られたグラフト共重合体、

3)カルボキシル基含有不飽和化合物が共重合されていな の溶液法 いゴム強化スチレン系樹脂とカルボキシル基含有不飽和 50 げられる。

化合物と芳香族ビニルとを必須成分とする単量体の共重 合体との混合物、

4)上記1),2)とカルボキシル基含有不飽和化合物と芳香族ビニルとを必須とする共重合体との混合物、

5)上記1)、2)、3)、4)と芳香族ビニルを必須成分とする 共重合体との混合物がある。

【0012】上記1)~5)において、芳香族ビニルとしてはスチレンが好ましく、また芳香族ビニルと共重合する単量体としてはアクリロニトリルが好ましい。カルボキシル基含有不飽和化合物は(A)成分中、好ましくは0.1~8重量%であり、より好ましくは0.2~7重量%である。

【0013】(A-3)のポリアミド系樹脂としては、 ジアミンとジカルボン酸とから形成されるポリアミド樹 脂及びそれらの共重合体、具体的にはナイロン66、ポ リヘキサメチレンセバカミド(ナイロン6・10)、ボ リヘキサメチレンドデカナミド (ナイロン6・12)、 ポリドデカメチレンドデカナミド (ナイロン121 2)、ポリメタキシリレンアジパミド(ナイロンMXD 20 6)、ポリテトラメチレンアジパミド(ナイロン46) 及びこれらの混合物や共重合体;ナイロン6/66、6 T成分が50モル%以下であるナイロン66/6T(6 T:ポリヘキサメチレンテレフタラミド)、6 I 成分が 50 モル%以下であるナイロン66/61(61:ポリ ヘキサメチレンイソフタラミド)、ナイロン6T/6I /66、ナイロン6T/6I/610等の共重合体;ポ リヘキサメチレンテレフタルアミド (ナイロン6T)、 ポリヘキサメチレンイソフタルアミド (ナイロン6 I)、ポリ(2-メチルペンタメチレン)テレフタルア ミド (ナイロンM5T)、ポリ (2-メチルペンタメチ レン) イソフタルアミド (ナイロンM51)、ナイロン 6T/6I、ナイロン6T/M5T等の共重合体が挙げ られ、そのほかアモルファスナイロンのような共重合ナ イロンでもよく、アモルファスナイロンとしてはテレフ タル酸とトリメチルヘキサメチレンジアミンの重縮合物 等が挙げられる。

【0014】更に、環状ラクタムの開環重合物、アミノカルボン酸の重縮合物及びこれらの成分からなる共重合体、具体的には、ナイロン6、ポリーωーウンデカナミド(ナイロン11)、ボリーωードデカナミド(ナイロン12)等の脂肪族ポリアミド樹脂及びこれらの共重合体、ジアミン、ジカルボン酸とからなるポリアミドとの共重合体、具体的にはナイロン6T/6、ナイロン6T/11、ナイロン6T/12、ナイロン6T/61/12、ナイロン6T/61/610/12等及びこれらの混合物が挙げられる。

【0015】(A-4)のポリカーボネート系樹脂としては、2価フェノールとカーボネート前駆体とを、周知の溶液法又は溶融法により反応させて得られるものが挙げられる。

4

【0016】2価フェノールは、2、2-ビス(4-ヒ ドロキシフェニル)プロパン(ビスフェノールA)、ビ ス(4-ヒドロキシフェニル)メタン、1,1-ビス (4-ヒドロキシフェニル) エタン、2,2-ビス(4 2, 2-ビス(4-ヒドロキシ-3, 5-ジブロモフェ

-ヒドロキシ-3,5-ジメチルフェニル)プロパン、 ニル)プロパン、2,2-ピス(4-ヒドロキシ-3-メチルフェニル)プロパン、ビス(4-ヒドロキシフェ ニル) サルファイド、ビス (4-ヒドロキシフェニル) スルホン等から選ばれる1種以上が挙げられる。これら 10 の中でもピス(4-ヒドロキシフェニル)アルカン系の ものが好ましく、特にビスフェノールAが好ましい。 【0017】カーボネート前駆体は、ジフェニルカーボ ネート等のジアリルカーボネート、ジメチルカーボネー ト、ジエチルカーボネート等のジアルキルカーボネー ト、ホスゲン等のカルボニルハライド、2価フェノール のジハロホルメート等のハロホルメート等から選ばれる 1種以上が挙げられる。

【0018】ポリカーボネート系樹脂の数平均分子量は 特に限定されるものではないが、組成物から得られる成 20 形体に実用上要求される機械的強度を付与するために は、約17000~32000の範囲が好ましい。

【0019】(A-5)のポリフェニレンエーテル系樹 脂としては、下記の単独重合体及び共重合体が挙げられ

【0020】単独重合体としては、ポリ(2,6-ジメ チルー1、4-フェニレン) エーテル、ポリ(2-メチ ルー6-エチルー1, 4-フェニレン) エーテル、ポリ (2, 6-ジエチル-1, 4-フェニレン) エーテル、 ポリ(2-x + y - 6 - y - y - 1) 4 - フェニ 30 レン) エーテル、ポリ(2,6-ジーn-プロビルー 1, 4-フェニレン) エーテル、ポリ(2-メチル-6 -n-ブチル-1, 4-フェニレンエーテル)、ポリ (2-エチルー6-イソプロプル-1, 4-フェニレ ン) エーテル、ポリ (2-メチル-6-ヒドロキシエチ ルー1, 4-フェニレン) エーテル等が挙げられ、これ ちの中でもポリ(2,6-ジメチル-1,4-フェニレ ン) エーテルが好ましい。

【0021】共重合体としては、フェニレンエーテル単 位を主たる構成単位とするものであり、前記の単独重合 40 体を形成する単量体(例えば、2,6-ジメチルフェノ ール)と他のフェノール類との共重合体、例えば、2, 6-ジメチルフェノールと2,3,6-トリメチルフェ ノールとの共重合体、2,6-ジメチルフェノールと0 - クレゾールとの共重合体、2,6-ジメチルフェノー ルと2、3、6-トリメチルフェノール及びo-クレゾ ールとの共重合体が挙げられる。

【0022】(A)熱可塑性樹脂としては、(A-1) ポリエステル系樹脂及び/又は(A-3)ポリアミド系 樹脂を50重量%以上含むものが好ましく、60重量% 50 が、炭素数1~10のアルキレン基、−(CH₂)_aC。

以上含むものがより好ましく、残部は上記した他の熱可 塑性樹脂から選択することができる。

【0023】(A)熱可塑性樹脂としては、(A-1) ポリエステル系樹脂及び/又は(A-2)ポリスチレン 系樹脂を70重量%以上含むものが好ましく、60重量 %以上含むものがより好ましく、残部は上記した他の熱 可塑性樹脂から選択することができる。

【0024】(A)熱可塑性樹脂としては、(A-3) ポリアミド系樹脂及び/又は(A-2)ポリスチレン系 樹脂を70重量%以上含むものが好ましく、60重量% 以上含むものがより好ましく、残部は上記した他の熱可 塑性樹脂から選択することができる。

【0025】(A)熱可塑性樹脂として(A-2)ポリ スチレン系樹脂を使用する場合は、AS樹脂及び/又は ABS樹脂が好ましい。

【0026】上記組合せにおける配合割合(重量比) は、(A-1)/(A-3)、(A-1)/(A-2)及び(A-3)/(A-2)が、好ましくは100/0 ~5/95、より好ましくは100/0~10/90、 更に好ましくは100/0~30/70である。この範 囲であれば、難燃性、耐熱性及び耐衝撃性を高いレベル で保持できるので好ましい。

【0027】本発明で用いる(B) 難燃剤は、(B-1) ホスフィン酸塩及び(B-2) 燐酸又はその誘導体 である。

【0028】(B-1)ホスフィン酸塩は、下記の一般 式(I)及び(II)で表されるものから選ばれる1又は2 以上のものが好ましい。

[0029]

【化2】

$$\begin{bmatrix} R_2 & P & O & M & (I) \\ 0 & P & D & D \end{bmatrix}$$

$$M \xrightarrow{\begin{array}{c|c} R_1 & R_2 \\ \hline O & P & R_3 & P & O \\ \hline & 0 & O & D \\ \end{array}} M \qquad (II)$$

【0030】(式中、R1及びR1は水素原子、炭素数1 ~16のアルキル基、炭素数1~16のエーテル結合を 含むアルキル基、アリール基、アラルキル基、シクロア ルキル基を示し、R,は2価の有機基を示し、nは1以 上の整数を示し、Mは塩を形成する原子又は有機基を示

R₁及びR₂は、(B-1)成分中のリン含有量を適正に 保持し、難燃性の付与効果を高めるため、炭素数の平均 値が1~10の範囲にあるアルキル基、アラルキル基が 好ましい。R,は2価の有機基であれば特に制限はない

(5)

H, (CH,)。- (mは0又は1以上の数を示す)が好 ましい。

【0031】一般式(I)及び(II)中のMで示される塩 を形成する原子又は有機基としては、アルミニウム、カ ルシウム、アミド基、アンニウム基、アルキルアンモニ ウム基及びメラミン由来の基から選ばれる1又は2以上 のものが好ましい。Mが前記の原子又は有機基である と、組成物の加工時に難燃剤が分解しにくくなり、燃焼 時においてはMで示される塩を形成する原子又は有機基 により難燃性が向上する。このような効果は、ホスフィ 10 器のハウジングやシャーシの材料として使用できる。 ン酸ナトリウムの金属塩では得ることができない。

【0032】一般式(I)及び(II)で表されるホスフィ ン酸塩を併用する場合の重量比は、(I)/(II)が10 /90~30/70であることが好ましい。

【0033】(B-2) 燐酸又はその誘導体は、280 °Cでの加熱分解残渣が99%以上のもの、即ち280°C では殆ど分解しないものが好ましく、燐酸エステルがよ り好ましい。ここで280℃での加熱分解残渣は、TG A (熱重量分析計)を用いて、N,雰囲気下、150℃ で10分間保持して水分等を除去した後、280℃まで 20 20℃/minで昇温した際の残渣を示す。加熱分解残渣 量(重量%)は、(残渣量/初期重量)×100で算出 する。

【0034】(B) 難燃剤において、(B-1)と(B -2)の配合割合(重量比)は、1/99~99/1が 好ましく、5/95~95/5がより好ましく、20/ 80~70/30が更に好ましい。

【0035】(B) 難燃剤の配合量は、(A) 熱可塑性 樹脂100重量部に対して、好ましくは1~70重量 部、より好ましくは5~60重量部、更に好ましくは1 30 PPE:ポリフェニレン系エーテル樹脂(GE Specialit 0~60重量部である。1重量部以上であると難燃性を 高めることができ、70重量部以下であると成形品が脆 くなることを防止できる。

【0036】本発明の組成物には、更に(C)難燃助剤 として、メラミン等のトリアジン環を有する窒素含有化 合物、酸化スズ、酸化ジルコニウム等の金属酸化物、水 酸化カルシウム、ドロマイト、ハイドロタルサイト等の 金属水酸化物、分岐状シリコーン等の珪素含有化合物、 ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム等の フッ素含有化合物から選ばれる1又は2以上を配合する ことができる。

【0037】(C)難燃助剤の配合量は、(A)熱可塑 性樹脂100重量部に対して好ましくは1~20重量 部、より好ましくは1~15重量部、更に好ましくは3 ~15重量部である。

【0038】本発明の組成物には、必要に応じて本発明 の目的を損なわない範囲の他の成分を配合でき、他の成 分としては、熱、光又は酸素に対する安定剤(フェノー

アゾール系化合物、ベンゾフェノン系化合物、サリチル 酸フェニル化合物等の紫外線吸収剤;ヒンダードアミン 系安定剤やスズ化合物、エポキシ化合物等の熱安定剤 等)、可塑剤、ポリジメチルシロキサン等の摺動性改良 剤、滑剤、離型剤、帯電防止剤、着色剤、ガラス繊維、 炭素繊維、ガラス繊維等の各種無機繊維等が挙げられ

【0039】本発明の成形品は、上記難燃性樹脂組成物 を射出成形して得られるものであり、〇A機器、電子機 [0040]

【実施例】以下、実施例により本発明をさらに詳しく説 明するが、本発明はこれらにより限定されるものではな い。以下の実施例、比較例では、下記の各成分を用い

(A-1)成分

PEst:ポリプラスチックス(株)製のポリブチレン テレフタレート(商品名ジュラネックス2000)を使 用した

(A-2)成分

ABS: ABS樹脂: 平均粒子径0. 3μmのポリブタ ジエンラテックス40重量部の存在下に、スチレン74 %、アクリロニトリル26%からなる単量体混合物60 部を乳化重合した。得られたグラフト共重合体ラテック スは硫酸で凝固し、苛性ソーダで中和し、洗浄、濾過、 乾燥してパウダー状の弾性グラフト共重合体を得た。 (A-3)成分

PA:ナイロン6、数平均分子量12,000 (A-4)成分

y Chemicals Inc. BLENDEX HP820)

(B-1)成分

一般式(I)のホスフィン酸塩:M = Ca, n = 2 (太平 化学工業(株)製のものを使用)

一般式(II)のホスフィン酸塩:M=Ca, R=フェニ レン, n=2 (特開11-124466号公報と同様の 方法により製造した)

(B-2)成分

PX200:1, 3-フェニレンビス(2, 6-ジメチ ホウ素含有化合物及びポリテトラフルオロエチレン等の 40 ルフェノールホスフェート),大八化学工業(株)製 (C)成分

> メラミンイソシアヌレート:日産化学(株)製のメラミ ンシアヌレートMC610 (平均粒径 約1μm)を使用し

ポリリン酸アンモニウム:大八化学工業(株)製 その他の成分

ガラス繊維:日本電気硝子(株)製の短繊維状ガラス充 填剤(商品名ECS03T)を使用した。

【0041】実施例1~3、比較例1~3

ル系化合物、リン系化合物等の酸化防止剤;ベンゾトリ 50 表1に示した配合割合〔(A-1)~(A-4)成分は

重量%表示。他は(A)成分100重量部に対する重量 部表示〕で、タンブラーを使ってガラス繊維以外を混合 した後、二軸押出機を用いて溶融混練し、ペレット化し た。シリンダー温度は250℃とし、ガラス繊維は押出 機途中のサイドフィードから混合した。得られたペレッ トを、シリンダー温度250℃、金型温度60℃で射出 成形し、得られた成形品について各評価を行った。結果 を表1に示す。

(1)難燃性

UL94試験法に準拠し、厚み1/8インチの試験片を 10 たものを○とし、発泡があったものを×とした。 使用して評価した。

(2)耐熱性(可塑化の程度)

1/4インチの厚みを持つ射出成形片に対して、AST*

*M D648-82に基づく荷重たわみ試験(1.82 MPa)を行ってHDT(荷重たわみ温度)を求めた。 (3)耐衝撃性

1/4インチの厚みを持つ射出成形片に対して、AST M D256に基づくアイゾット衝撃試験(ノッチ有り サンプル使用)を行い、アイゾット衝撃強度で評価し た。

(4)製造安定性

射出成形時における発泡の有無を観察し、発泡がなかっ

[0042]

【表1】

	実施例			比較例		
	1	2	3	1	2	3
(A-1) PEst	70		70	70	70	70
(A-2) ABS	10	10	10	10	10	10
(A-3) PA		70				
(A-4) PPE	20	20	20	20	20	20
(B-1) ホスフィン酸塩	15	15	15	35		
(B-2) PX200	15	15	10		30	15
木・リリン酸アンモニウム						15
(C) メラミンシアヌレート			5			
ガラス繊維	30	30	30	30	30	30
難燃性	V-0	v-0	v-0	規格外	V-0	v-0
耐熱性 (℃)	200	200	210	210	100	210
耐衝撃性 (J/M)	35	35	30	25	4	15
製造安定性	Q	Q	0	0	0	×

【0043】表1から明らかな通り、実施例1~3の組 成物から得られた成形品は、難燃性、耐熱性及び耐衝撃 30 加熱分解残渣量は99重量%未満であった。 性をバランスよく備えていた。一方、比較例1~3は、 (B-1)又は(B-2)成分を含んでいないため、い ずれかの性質が劣っており、比較例3は、ポリリン酸ア ンモニウムに起因する分解ガスが発生し、発泡が生じ ※

※た。また、このポリリン酸アンモニウムの280°Cでの

[0044]

【発明の効果】本発明の難燃性樹脂組成物は、難燃性、 耐熱性及び耐衝撃性をバランスよく備えた成形品を得る ことができる。

フロントページの続き

Fターム(参考) 4J002 BC031 BC032 BC061 BC062

BC071 BC072 BN151 BN152

BP011 BP012 CF051 CF052

CF061 CF062 CF071 CF072

CF081 CF082 CG011 CG012

CH071 CH072 CL011 CL012

CL031 CL032 CN021 CN022

CN041 CN042 DH026 EW046

EW136 FD030 FD130 FD136

GQ01