1.

(a) $p(x) \log_2(\frac{1}{p(x)})$ = $p(x)(\log_2 1 - \log_2 p(x))$ = $p(x)(-\log_2 p(x))$ Since $p(x) \in [0,1]$ then $-\log_2 p(x) \in [0,+\infty)$ So the multiplication of $p(x) \cdot (-\log_2 p(x))$ is non-negative.

Since $H(x) = \sum_{x} p(x) \log_2(\overline{p(x)})$ which is the sum of non-negative numbers.

So H(x) is non-negative.

(b). KL (PN9) =
$$\sum_{x} p(x) \log_{x} \frac{p(x)}{q(x)} = -\sum_{x} p(x) \log_{x} \frac{q(x)}{p(x)}$$

= $\sum_{x} p(x) \left[-\log_{x} \frac{q(x)}{p(x)} \right]$
= $-E(\log_{x} \frac{q}{p})$
 $= -E(\log_{x} \frac{q}{p})$
 $= -\log_{x} x$ is convex
 $\Rightarrow -\log_{x} \left(\sum_{x} p(x) \frac{q(x)}{p(x)} \right)$
= $-\log_{x} \left(\sum_{x} p(x) \frac{q(x)}{p(x)} \right)$
= $-\log_{x} \sum_{x} q(x)$
= $-\log_{x} \sum_{x} q(x)$
 $= -\log_{x} \sum_{x} q(x)$
So $kL(p|q)$ is non-regative.

1-10)	I(Y; X) = H(Y) - H(Y X)
	= \(\text{P(x)} \log \frac{1}{p(x)} - \text{Ep(y)} \log \(\text{H(x Y=y)} \)
	= I p(x,y) log pux) - I p(x,y) log p(x,y)
	$= \sum_{i} p(x_i, y_i) \log \frac{p(x_i, y_i)}{p(x_i)}$
	2 Wi
	= \(\(\text{P(x, y)} \) \(\text{log p(x) p(y)} \) \(\text{p(x) p(y)} \) \(p(x) p
	= = = D(x,y) log P(x,y)
	$= \overline{z}p(x,y)\log\frac{p(x,y)}{p(x)p(y)}$
	= 1 W esp (04)
	= Kr (b(x,3) b(x) b(3)) = = = = = = = = = = = = = = = = = =
	\$ (no -!) in 3 =

2. $L(h(x),t) = \frac{1}{2}(h(x)-t)^{2} = \frac{1}{2}(\frac{1}{m}\Sigma hi(x)-t)^{2}$ $= \frac{1}{2}(E(hi(x)-t)^{2}$ Since $y = x^{2}$ is convex.

So $\frac{1}{2}(E(hi(x))-t)^{2} = E(\frac{1}{2}(hi(x)-t)^{2})$ $= \frac{1}{m}\Sigma L(hi(x),t)$ So $L(h(x),t) \leq \frac{1}{m}\Sigma L(hi(x),t)$

```
err' = \frac{\subseteq \int \text{in} \text{Wi'}}{\subseteq \int \text{in} \text{Wi'}}
                                                         = <u>Liee Wi'</u>

Liee Wi' + Liee Wi'
          ZiEE Wi = I wi exp {-attib ht (xi))
                                                                                  t " ht(di) = -1 since these are on set E.
                                                                       = [w; exp (dt)
= [w; exp (1/2 log 1-error)] = [w]
                                                                 = [wi (1-err)]
ITEE Wi = E Wi exp (-atti) ho(x")
                                  t(i) h+(xi)=1 since these are in set E
                                                                    = \sum_{\epsilon} w_i \exp(-\alpha +)
= \sum_{\epsilon} w_i \left(\frac{1 - err}{err}\right)^{-\frac{1}{2}}
Tier Wi = 2 Ecwi (1-err) = 

Tier Wi (1-err) = =
      = \frac{\text{err}}{1-\text{err}} \cdot \frac{\sum_{e} w_{i}}{\sum_{e} w_{i}} = \frac{\left(\frac{\sum_{i \in e} w_{i}}{\sum_{i \neq i} w_{i}}\right) \left(\sum_{i \neq i} w_{i}\right) \left(\sum_{i \neq i} w_{i}\right)}{\left(1 - \frac{\sum_{i \in e} w_{i}}{\sum_{i \neq i} w_{i}}\right) \left(\sum_{i \neq i} w_{i}\right)} \cdot \sum_{e} w_{i}} = \frac{\sum_{e} w_{i}}{\sum_{e} w_{i}} \cdot \sum_{e} w_{i}}{\left(1 - \frac{\sum_{i \in e} w_{i}}{\sum_{i \neq i} w_{i}}\right) \left(\sum_{i \neq i} w_{i}\right)} \cdot \sum_{e} w_{i}}{\left(\sum_{i \neq i} w_{i}\right)} \cdot \sum_{e} w_{i}} = \frac{\sum_{e} w_{i}}{\sum_{e} w_{i}} \cdot \sum_{e} w_{i}}{\left(\sum_{i \neq i} w_{i}\right)} \cdot \sum_{e} w_{i}} \cdot \sum_{e} w_{i}} \cdot \sum_{e} w_{i}}{\left(\sum_{i \neq i} w_{i}\right)} \cdot \sum_{e} w_{i}} \sum_{e} w_{i}} \cdot \sum_{e} w_{i}} \sum_{e} w_{i}} \sum_{e} w_{i}} \sum_{e} w_{i}} \cdot \sum_{e} w_{i}} \sum_{e} w_{
```