Stable	Marriage	Problem	(SMP)
		43 COMMON	1000

- There is a list of women & w, wz, ..., wh}

 Lege is a list of women & w, wz, ..., wh}
- Each woman (resp. man) has a ranking of preference of men (resp. women).
- We want to find a matching such that the marriages are stable -
- Defn: Matching T is an unstable marriage if I women w, w' & their men T(w), T(w') 8.t.

W prefers T(w') over T(w)L T(w') " W over w'.

 $W = \pi \pi(w)$ $W' = \pi \pi(w')$

- This problem has huge applicability
in large scale: (Math/cs/2conomics)
1) Assignment of medical students to
hospitals (eg. USA).
2) JEE Counselling Since 2016.
(~20 x 110 "institutes" vs. 200,000 students)
3) Assigning users to servers in a large
distributed internet service.
(10 ⁵ servers vs. 10 ⁹ users)
<u></u>
Theorem: LGale-Shapley 62] It is always
possible to find a stable marriage;
Theorem: [Gale-Shapley 62] It is always possible to find a stable marriage; doable in $O(n^2)$ -time, [J.e. linear-time!]
- In 2012, Shapley & Roth got the
- In 2012, Shapley & Roth got the Nobel prize for "market design".
- Idea: Man proposes, Woman disposes.
Or, deferred acceptance algorithm.) - On: Who is happy?
- On: Who is happy?

- Single Man m proposes to a Woman w. W accepts in (temporarily) if she prefers him over her existing choice m'; in that case w rejects m'.

for each man Input: Men M, Women W. Ordered lists L & P. for each woman Output: Perfect matching M > W.

SMP: $S \leftarrow M$; While $(S \neq \phi)$ { m < 2xtract (S); W < next (L(m)); //m prefers w m proposes to w; m' = mate (W); // m' may be null if (w prefers mover m'; in P(w)) 2 w rejects m'; S←SU{m'}; mate (w) < m; Remove w from L(m);
else { " " L(m); S=SU\{m\};}

3 OUTPUT matching;

Qh	Does the algorithm terminate? Yes, in O(n2) iterations!
1	> Yes, in O(n²) iterations!
Pt:	
_5	· In each iteration, some 4(m) decrements ⇒ In O(n²) iterations, S = \$!
	$\Rightarrow 9n O(n^2)$ iterations, $S = \phi 1$
	Extra properties:
1)	A man never proposes to the same worm
	A man never proposes to the same worm twice.
2	A woman once non-single, never becomes single.
	single.
3)	A woman gets a better mate with each engagement.
	engagement.
4)	Among all possible stable marriages,
	the output-matching is best for man m. lid(m):= \w \(\frac{1}{3}\pi, \pi(m)=w\\ \) & best among them is best(m).
fn: va	tid(m):=) w FT, T(m)=w? & best among them is
	vesicm).

Ihm: Algorithm is Men optimal, Women pessimal. f: · Suppose m is natched m'-----w'
to w' by T in SMP-algo.

But, m prefers w over w! m---T--w'

Subbose 7 stable massive That T' Proof: · Suppose m is notched · Suppose I stable marriage II's.t. I(n)=W) · When m proposed to w, she must have rejected (& preferred say m'). (all this event X. Let this be the first time when a valid partner rejected a man. (=> before this the best accepted all!) By time X: (1) m' was rejected by every woman in L(m) before w Li-proposals (2) m' has not been rejected by w'. [Note: w'is a valid partner; invoke the defn of X.] => m' prefers w over w' [:-(1) &(2)] => T'is unstable, y