적대적 학습을 통한 다양한 안티포렌식에 강인한 딥페이크 탐지 모델 개발

한밭대학교 김지수, 김민지, 민지민, 장한얼

목차

서론

- 개발 배경 및 목적
- 핵심 해결 방법

본론

- 학습 네트워크 구조
- train 데이터셋 구축
- test 데이터셋 구축
- 모델 학습 기법

결론

● 실험 결과 및 분석

딥페이크는 사회적으로 <u>악영향</u>을 끼치는 기술

딥페이크 사용의 96% -> 포르노그라피

전세계 딥페이크 피해자 중 25% -> 한국인

<u>딥페이크 탐지 모델에 대한 필요성 -> 연구 활발</u>

출처: The State of Deepfakes: Landscape, Threats, and Impact, Henry Ajder, Giorgio Patrini, Francesco Cavalli, and Laurence Cullen, September 2019.

딥페이크 탐지 모델의 <u>무력화</u>

• 간단한 이미지 편집(ex. Sharpening, additive noise) 적용한 경우 탐지 모델 -> 무력화

원본 데이터셋 학습 모델 성능

편집된 이미지에 대한 정확도

탐지 기술 무력화 -> 안티 포렌식

적대적 데이터셋을 생성하는 안티 포렌식 공격

- <u>화이트 박스 공격</u>(White-Box Attacks)
- 공격자가 **탐지 모델에 대한 정보를 모두 안다**는 전제
- 비현실적 조건
- 공격 성공률 100% 가까움
- <u>블랙 박스 공격</u>(Black-Box Attacks)
- 공격자가 **원본 이미지에 특정 노이즈 추가 -> 오분류 유도**
- 실제 화이트 박스 공격보다 많이 시도됨

두 가지의 블랙 박스 공격

- Adversarial Attack
 - 데이터셋에 네트워크를 교란시키는 노이즈를 추가
 - 초보자가 쉽게 공격할 수 있는 방법 X
- 이미지 편집 기법
 - 데이터셋에 이미지 편집을 가함
 - 초보자가 쉽게 공격할 수 있는 방법 O

⇒ <u>두 방법 모두</u> 딥페이크 탐지기 무력화 가능

전문가가 아니더라도 공격할 수 있는 이미지 편집 기법 기반의 블랙 박스 공격에 대응할 기술 필요

<u>이미지 편집 기법을 이용한 블랙 박스 공격에 대응</u>

⇒ 학습 데이터셋에 안티 포렌식 데이터셋 추가하는 적대적 학습 수행

적대적 공격을 방어할 수 있도록 네트워크를 훈련시키는 방법

→ <u>공격 패턴 학습</u>하여 강인한 모델 생성

→ 다양한 유형의 안티포렌식 공격을 랜덤하게
 적용한 데이터셋을 적대적 학습에 사용
 → 강인한 모델 개발

Xception 네트워크

→ 경험적으로 좋은 성능

네트워크 구조

[딥페이크 변조영상에 대한 탐지율]

Accuracies	DF	F2F	FS	NT	Real	Total
Xcept. Full Image	74.55	75.91	70.87	73.33	51.00	62.40
Steg. Features	73.64	73.72	68.93	63.33	34.00	51.80
Cozzolino et al.	85.45	67.88	73.79	78.00	34.40	55.20
Rahmouni et al.	85.45	64.23	56.31	60.07	50.00	58.10
Bayar and Stamm	84.55	73.72	82.52	70.67	46.20	61.60
MesoNet	87.27	56.20	61.17	40.67	72.60	66.00
XceptionNet	96.36	86.86	90.29	80.67	52.40	70.10

출처: Rossler, Andreas, et al. "Faceforensics++:
Learning to detect manipulated facial images."
Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2019.

네트워크 구조 이미지 출처:

https://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html

<u> 안티포렌식 데이터셋 구축</u>

- Sharpening
- Median blur
- GoogLeNetPerturbation
- Gaussian Noise
- JPEG Compression

안티포렌식 데이터셋 생성

Median Blur를 사용한 이유

원본 fake 이미지

⇒ 딥페이크 변조 이미지는 합성된 부분에서 blurry**한 특징**

real 이미지에 median blur만 적용하여 실험해본 결과

⇒ <u>추가된 blur로 인해 real 이미지를 fake로 오인</u>

⇒ 따라서 blurry한 real 이미지가 fake 이미지로 판별되지 않도록 하기위해 Median Blur를 학습에 적용

<u>안티포렌식 데이터셋</u>

- train 데이터셋은 모든 이미지 편집 기법 적용
- → 랜덤한 파라미터 수치로 적용

Gaussian Noise	Median Blur	Sharpening	GoogleNet Perturbation	JPEG Compression
30 ~ 210	3 ~ 15	0.5 ~ 3.5	0.05 ~ 0.35	90 ~ 35

- median blur는 noise를 제거할 수 있다고 판단하여 제일 첫순서로 적용
- JPEG Compression은 이미지의 최종 출력 형태가 JPEG 확장자이기 때문에 마지막으로 적용
- 남은 3가지 공격의 순서 → **랜덤**

테스트 데이터셋 구축

다양한 공격에 강인한지 보기위해 → 학습에 반영한 공격 + 학습에 반영하지 않은 공격

- 적대적 학습에 반영한 공격
 - Gaussian Noise
 - Median blur
 - Sharpening
 - GoogLeNet Perturbation
 - JPEG Compression

- 적대적 학습에 반영하지 않은 공격
 - Impulse Noise
 - Poisson Noise
 - Unsharp mask filter
 - ResNet Perturbation

<u>안티포렌식 test 데이터셋</u>

• 학습에 반영한 공격 파라미터

Attack Level	Gaussian Noise	Median Blur	Sharpening	GoogLeNet Perturbation	JPEG Compression
1	0.2	3	0.5	0.05	90
2	0.4	5	1.0	0.1	85
3	0.6	7	1.5	0.15	75
4	0.8	9	2.0	0.2	65
5	1	11	2.5	0.25	55
6	1.2	13	3.0	0.3	45
7	1.4	15	3.5	0.35	35
8	1.6	17	4.0	0.4	25
9	1.8	19	4.5	0.445	15
10	2	21	5.0	0.5	5

<u>안티포렌식 test 데이터셋</u>

Gaussian Noise 예시 이미지

Median Blur 예시 이미지

Sharpening 예시 이미지

GoogLeNet Perturbation 예시 이미지

JPEG 예시 이미지

<u>안티포렌식 test 데이터셋</u>

• 학습에 반영하지 않은 공격 파라미터

Attack level	Poisson Noise	Impulse Noise	Unsharp mask filter	ResNet Perturbation
1	0.2	1	0.05	0.05
2	0.4	3	0.1	0.1
3	0.6	5	0.15	0.15
4	0.8	6	0.2	0.2
5	1	7	0.25	0.25
6	1.2	9	0.3	0.3
7	1.4	11	0.35	0.35
8	1.6	13	0.4	0.4
9	1.8	15	0.45	0.45
10	2	17	0.5	0.2

<u>안티포렌식 test 데이터셋</u>

Poisson Noise 예시 이미지

Unsharp Mask 예시 이미지

Impulse Noise 예시 이미지

ResNet Perturbation 예시 이미지

<u> 안티포렌식 데이터셋 생성 시 적용한 사항</u>

- 실제 발생할 수 있는 공격 상황은 예측 불가
 - → 공격(이미지 편집 기법) 별 강도 <u>10단계</u> 설정
- 데이터셋에 적용할 공격 강도의 수준은 PSNR 사용해 조절
 - → PSNR 수치가 28이하인 이미지는 시각적 품질이 많이 떨어져 사용하지 않음
- 안티포렌식 공격의 목표: real 이미지를 fake로 판별, fake 이미지를 real로 판별
 - → 데이터셋의 real 이미지와 fake 이미지에 모두 이미지 편집 적용

학습에 반영한 안티포렌식 데이터셋에 대한 성능 하락 확인

→ 원본 데이터셋만 학습한 모델 사용

원본 데이터셋 학습 모델 성능

공격 강도 별 탐지 모델 성능 매우 하락 => **탐지 모델이 안티 포렌식에 취약**

학습에 반영하지 않은 안티포렌식 데이터셋에 대한 성능 하락 확인

→ 원본 데이터셋만 학습한 모델 사용

원본 데이터셋 학습 모델 성능

공격 강도 별 탐지 모델 성능 매우 하락 => **탐지 모델이 안티 포렌식에 취약**

제안하는 적대적 학습 기법

제안하는 적대적 학습 기법 - 1단계

<안티포렌식 데이터셋 생성>

다양한 유형의 공격들을 <u>random하게 적용한</u> 안티포렌식 데이터셋 생성

제안하는 적대적 학습 기법 - 2단계

<적대적 학습 수행>

원본 데이터셋과 안티포렌식 데이터셋을 학습 데이터셋으로 사용하는 적대적 학습으로 최종모델 도출

<u>하이퍼파라미터 설정</u>

Epoch	10
Batch size	32
Optimizer	Adam
Learning rate	0.001 (초기값)
LR Scheduler	StepLR
Loss	CrossEntropyLoss

데이터셋에 대한성능 반영한 안티포레식

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Googlenet-Perturbation Parameter 'Multiply an Perturbation Array'

0.0

90 85 75 65 55 45 35 25 15 5

JPEG Compression Parameter 'Quality Factor'

⇒ 적대적 학습 전과 비교하여 탐지율 상승확인

결론

학습에 반영하지 않은 안티포렌식 데이터셋에 대한 성능

⇒ 적대적 학습 전과 비교하여탐지율 상승확인

결론

기존: 탐지 정확도가 높은 모델이라도 **간단한 이미지 변형으로 탐지 우회** 가능

적대적 학습 기법 적용 → 안티 포렌식 공격 패턴 학습

학습에 반영한 공격들 뿐만아니라 학습에 반영하지 않은 공격들에 대해서도 높은 탐지 강인성 확인

Q&A