problem by adding a layer of indirection and building a common layer on top of the different networks. In either case, the devices are placed at the boundaries between networks.

Early on, Cerf and Kahn (1974) argued for a common layer to hide the differences of existing networks. This approach has been tremendously successful, and the layer they proposed was eventually separated into the TCP and IP protocols. Almost four decades later, IP is the foundation of the modern Internet. For this accomplishment, Cerf and Kahn were awarded the 2004 Turing Award, informally known as the Nobel Prize of computer science. IP provides a universal packet format that all routers recognize and that can be passed through almost every network. IP has extended its reach from computer networks to take over the telephone network. It also runs on sensor networks and other tiny devices that were once presumed too resource-constrained to support it.

We have discussed several different devices that connect networks, including repeaters, hubs, switches, bridges, routers, and gateways. Repeaters and hubs just move bits from one wire to another. They are mostly analog devices and do not understand anything about higher layer protocols. Bridges and switches operate at the link layer. They can be used to build networks, but only with minor protocol translation in the process, for example, between 10, 100 and 1000 Mbps Ethernet switches. Our focus in this section is interconnection devices that operate at the network layer, namely the routers. We will leave gateways, which are higher-layer interconnection devices, until later.

Let us first explore at a high level how interconnection with a common network layer can be used to interconnect dissimilar networks. An internet comprised of 802.11, MPLS, and Ethernet networks is shown in Fig. 5-39(a). Suppose that the source machine on the 802.11 network wants to send a packet to the destination machine on the Ethernet network. Since these technologies are different, and they are further separated by another kind of network (MPLS), some added processing is needed at the boundaries between the networks.

Because different networks may, in general, have different forms of addressing, the packet carries a network layer address that can identify any host across the three networks. The first boundary the packet reaches is when it transitions from an 802.11 network to an MPLS network. 802.11 provides a connectionless service, but MPLS provides a connection-oriented service. This means that a virtual circuit must be set up to cross that network. Once the packet has traveled along the virtual circuit, it will reach the Ethernet network. At this boundary, the packet may be too large to be carried, since 802.11 can work with larger frames than Ethernet. To handle this problem, the packet is divided into fragments, and each fragment is sent separately. When the fragments reach the destination, they are reassembled. Then the packet has completed its journey.

The protocol processing for this journey is shown in Fig. 5-39(b). The source accepts data from the transport layer and generates a packet with the common network layer header, which is IP in this example. The network header contains the

Figure 5-39. (a) A packet crossing different networks. (b) Network and link layer protocol processing.

ultimate destination address, which is used to determine that the packet should be sent via the first router. So the packet is encapsulated in an 802.11 frame whose destination is the first router and transmitted. At the router, the packet is removed from the frame's data field and the 802.11 frame header is discarded. The router now examines the IP address in the packet and looks up this address in its routing table. Based on this address, it decides to send the packet to the second router next. For this part of the path, an MPLS virtual circuit must be established to the second router and the packet must be encapsulated with MPLS headers that travel this circuit. At the far end, the MPLS header is discarded and the network address is again consulted to find the next network layer hop. It is the destination itself. Since the packet is too long to be sent over Ethernet, it is split into two portions. Each of these portions is put into the data field of an Ethernet frame and sent to the Ethernet address of the destination. At the destination, the Ethernet header is stripped from each of the frames, and the contents are reassembled. The packet has finally reached its destination.

Observe that there is an essential difference between the routed case and the switched (or bridged) case. With a router, the packet is extracted from the frame and the network address in the packet is used for deciding where to send it. With a switch (or bridge), the entire frame is transported on the basis of its MAC address. Switches do not have to understand the network layer protocol being used to switch packets. Routers do.

Unfortunately, internetworking is not as easy as we have made it sound. In fact, when bridges were introduced, it was intended that they would join different types of networks, or at least different types of LANs. They were to do this by translating frames from one LAN into frames from another LAN. However, this

did not work well, for the same reason that internetworking is difficult: the differences in the features of LANs, such as different maximum packet sizes and LANs with and without priority classes, are hard to mask. Today, bridges are predominantly used to connect the same kind of network at the link layer, and routers connect different networks at the network layer.

Internetworking has been very successful at building large networks, but it only works when there is a common network layer. There have, in fact, been many network protocols over time. Getting everybody to agree on a single format is difficult when companies perceive it to their commercial advantage to have a proprietary format that they control. Examples besides IP, which is now the near-universal network protocol, were IPX, SNA, and AppleTalk. None of these protocols are still in widespread use, but there will always be other protocols. The most relevant example now is probably IPv4 and IPv6. While these are both versions of IP, they are not compatible (or it would not have been necessary to create IPv6).

A router that can handle multiple network protocols is called a **multiprotocol router**. It must either translate the protocols, or leave connection for a higher protocol layer. Neither approach is entirely satisfactory. Connection at a higher layer, say, by using TCP, requires that all the networks implement TCP (which may not be the case). Then, it limits usage across the networks to applications that use TCP (which does not include many real-time applications).

The alternative is to translate packets between the networks. However, unless the packet formats are close relatives with the same information fields, such conversions will always be incomplete and often doomed to failure. For example, IPv6 addresses are 128 bits long. They will not fit in a 32-bit IPv4 address field, no matter how hard the router tries. Getting IPv4 and IPv6 to run in the same network has proven to be a major obstacle to the deployment of IPv6. (To be fair, so has getting customers to understand why they should want IPv6 in the first place.) Greater problems can be expected when translating between fundamentally different protocols, such as connectionless and connection-oriented network protocols. Given these difficulties, conversion is only rarely attempted. Arguably, even IP has only worked so well by serving as a kind of lowest common denominator. It requires little of the networks on which it runs, but offers only best-effort service as a result.

5.5.3 Tunneling

Handling the general case of making two different networks interwork is exceedingly difficult. However, there is a common special case that is manageable even for different network protocols. This case is where the source and destination hosts are on the same type of network, but there is a different network in between. As an example, think of an international bank with an IPv6 network

in Paris, an IPv6 network in London and connectivity between the offices via the IPv4 Internet. This situation is shown in Fig. 5-40.

Figure 5-40. Tunneling a packet from Paris to London.

The solution to this problem is a technique called **tunneling**. To send an IP packet to a host in the London office, a host in the Paris office constructs the packet containing an IPv6 address in London, and sends it to the multiprotocol router that connects the Paris IPv6 network to the IPv4 Internet. When this router gets the IPv6 packet, it encapsulates the packet with an IPv4 header addressed to the IPv4 side of the multiprotocol router that connects to the London IPv6 network. That is, the router puts a (IPv6) packet inside a (IPv4) packet. When this wrapped packet arrives, the London router removes the original IPv6 packet and sends it onward to the destination host.

The path through the IPv4 Internet can be seen as a big tunnel extending from one multiprotocol router to the other. The IPv6 packet just travels from one end of the tunnel to the other, snug in its nice box. It does not have to worry about dealing with IPv4 at all. Neither do the hosts in Paris or London. Only the multiprotocol routers have to understand both IPv4 and IPv6 packets. In effect, the entire trip from one multiprotocol router to the other is like a hop over a single link.

An analogy may make tunneling clearer. Consider a person driving her car from Paris to London. Within France, the car moves under its own power, but when it hits the English Channel, it is loaded onto a high-speed train and transported to England through the Chunnel (cars are not permitted to drive through the Chunnel). Effectively, the car is being carried as freight, as depicted in Fig. 5-41. At the far end, the car is let loose on the English roads and once again continues to move under its own power. Tunneling of packets through a foreign network works the same way.

Tunneling is widely used to connect isolated hosts and networks using other networks. The network that results is called an **overlay** since it has effectively been overlaid on the base network. Deployment of a network protocol with a new feature is a common reason, as our "IPv6 over IPv4" example shows. The disadvantage of tunneling is that none of the hosts on the network that is tunneled over can be reached because the packets cannot escape in the middle of the tunnel.

Figure 5-41. Tunneling a car from France to England.

However, this limitation of tunnels is turned into an advantage with **VPNs** (**Virtual Private Networks**). A VPN is simply an overlay that is used to provide a measure of security. We will explore VPNs when we get to Chap. 8.

5.5.4 Internetwork Routing

Routing through an internet poses the same basic problem as routing within a single network, but with some added complications. To start, the networks may internally use different routing algorithms. For example, one network may use link state routing and another distance vector routing. Since link state algorithms need to know the topology but distance vector algorithms do not, this difference alone would make it unclear how to find the shortest paths across the internet.

Networks run by different operators lead to bigger problems. First, the operators may have different ideas about what is a good path through the network. One operator may want the route with the least delay, while another may want the most inexpensive route. This will lead the operators to use different quantities to set the shortest-path costs (e.g., milliseconds of delay vs. monetary cost). The weights will not be comparable across networks, so shortest paths on the internet will not be well defined.

Worse yet, one operator may not want another operator to even know the details of the paths in its network, perhaps because the weights and paths may reflect sensitive information (such as the monetary cost) that represents a competitive business advantage.

Finally, the internet may be much larger than any of the networks that comprise it. It may therefore require routing algorithms that scale well by using a hierarchy, even if none of the individual networks need to use a hierarchy.

All of these considerations lead to a two-level routing algorithm. Within each network, an **intradomain** or **interior gateway protocol** is used for routing. ("Gateway" is an older term for "router.") It might be a link state protocol of the kind we have already described. Across the networks that make up the internet, an **interdomain** or **exterior gateway protocol** is used. The networks may all use different intradomain protocols, but they must use the same interdomain protocol.

In the Internet, the interdomain routing protocol is called **BGP** (**Border Gateway Protocol**). We will describe it in the next section.

There is one more important term to introduce. Since each network is operated independently of all the others, it is often referred to as an **AS** (**Autonomous System**). A good mental model for an AS is an ISP network. In fact, an ISP network may be comprised of more than one AS, if it is managed, or, has been acquired, as multiple networks. But the difference is usually not significant.

The two levels are usually not strictly hierarchical, as highly suboptimal paths might result if a large international network and a small regional network were both abstracted to be a single network. However, relatively little information about routes within the networks is exposed to find routes across the internetwork. This helps to address all of the complications. It improves scaling and lets operators freely select routes within their own networks using a protocol of their choosing. It also does not require weights to be compared across networks or expose sensitive information outside of networks.

However, we have said little so far about how the routes across the networks of the internet are determined. In the Internet, a large determining factor is the business arrangements between ISPs. Each ISP may charge or receive money from the other ISPs for carrying traffic. Another factor is that if internetwork routing requires crossing international boundaries, various laws may suddenly come into play, such as Sweden's strict privacy laws about exporting personal data about Swedish citizens from Sweden. All of these nontechnical factors are wrapped up in the concept of a **routing policy** that governs the way autonomous networks select the routes that they use. We will return to routing policies when we describe BGP.

5.5.5 Packet Fragmentation

Each network or link imposes some maximum size on its packets. These limits have various causes, among them

- 1. Hardware (e.g., the size of an Ethernet frame).
- 2. Operating system (e.g., all buffers are 512 bytes).
- 3. Protocols (e.g., the number of bits in the packet length field).
- 4. Compliance with some (inter)national standard.
- 5. Desire to reduce error-induced retransmissions to some level.
- 6. Desire to prevent one packet from occupying the channel too long.

The result of all these factors is that the network designers are not free to choose any old maximum packet size they wish. Maximum payloads for some common technologies are 1500 bytes for Ethernet and 2272 bytes for 802.11. IP is more generous, allows for packets as big as 65,515 bytes.

Hosts usually prefer to transmit large packets because this reduces packet overheads such as bandwidth wasted on header bytes. An obvious internetworking problem appears when a large packet wants to travel through a network whose maximum packet size is too small. This nuisance has been a persistent issue, and solutions to it have evolved along with much experience gained on the Internet.

One solution is to make sure the problem does not occur in the first place. However, this is easier said than done. A source does not usually know the path a packet will take through the network to a destination, so it certainly does not know how small packets must be to get there. This packet size is called the **Path MTU** (**Path Maximum Transmission Unit**). Even if the source did know the path MTU, packets are routed independently in a connectionless network such as the Internet. This routing means that paths may suddenly change, which can unexpectedly change the path MTU.

The alternative solution to the problem is to allow routers to break up packets into **fragments**, sending each fragment as a separate network layer packet. However, as every parent of a small child knows, converting a large object into small fragments is considerably easier than the reverse process. (Physicists have even given this effect a name: the second law of thermodynamics.) Packet-switching networks, too, have trouble putting the fragments back together again.

Two opposing strategies exist for recombining the fragments back into the original packet. The first strategy is to make fragmentation caused by a "small-packet" network transparent to any subsequent networks through which the packet must pass on its way to the ultimate destination. This option is shown in Fig. 5-42(a). In this approach, when an oversized packet arrives at GI, the router breaks it up into fragments. Each fragment is addressed to the same exit router, G2, where the pieces are recombined. In this way, passage through the small-packet network is made transparent. Subsequent networks are not even aware that fragmentation has occurred.

Transparent fragmentation is straightforward but has some problems. For one thing, the exit router must know when it has received all the pieces, so either a count field or an "end of packet" bit must be provided. Also, because all packets must exit via the same router so that they can be reassembled, the routes are constrained. By not allowing some fragments to follow one route to the ultimate destination and other fragments a disjoint route, some performance may be lost. More significant is the amount of work that the router may have to do. It may need to buffer the fragments as they arrive, and decide when to throw them away if not all of the fragments arrive. Some of this work may be wasteful, too, as the packet may pass through a series of small packet networks and need to be repeatedly fragmented and reassembled.

The other fragmentation strategy is to refrain from recombining fragments at any intermediate routers. Once a packet has been fragmented, each fragment is

Figure 5-42. (a) Transparent fragmentation. (b) Nontransparent fragmentation.

treated as though it were an original packet. The routers pass the fragments, as shown in Fig. 5-42(b), and reassembly is performed only at the destination host.

The main advantage of nontransparent fragmentation is that it requires routers to do less work. IP works this way. A complete design requires that the fragments be numbered in such a way that the original data stream can be reconstructed. The design used by IP is to give every fragment a packet number (carried on all packets), an absolute byte offset within the packet, and a flag indicating whether it is the end of the packet. An example is shown in Fig. 5-43. While simple, this design has some attractive properties. Fragments can be placed in a buffer at the destination in the right place for reassembly, even if they arrive out of order. Fragments can also be fragmented if they pass over a network with a yet smaller MTU. This is shown in Fig. 5-43(c). Retransmissions of the packet (if all fragments were not received) can be fragmented into different pieces. Finally, fragments can be of arbitrary size, down to a single byte plus the packet header. In all cases, the destination simply uses the packet number and fragment offset to place the data in the right position, and the end-of-packet flag to determine when it has the complete packet.

Unfortunately, this design still has problems. The overhead can be higher than with transparent fragmentation because fragment headers are now carried over some links where they may not be needed. But the real problem is the existence of fragments in the first place. Kent and Mogul (1987) argued that fragmentation is detrimental to performance because, as well as the header overheads, a whole packet is lost if any of its fragments are lost, and because fragmentation is more of a burden for hosts than was originally realized.

Figure 5-43. Fragmentation when the elementary data size is 1 byte. (a) Original packet, containing 10 data bytes. (b) Fragments after passing through a network with maximum packet size of 8 payload bytes plus header. (c) Fragments after passing through a size 5 gateway.

This leads us back to the original solution of getting rid of fragmentation in the network, the strategy used in the modern Internet. The process is called **path MTU discovery** (Mogul and Deering, 1990). It works as follows. Each IP packet is sent with its header bits set to indicate that no fragmentation is allowed to be performed. If a router receives a packet that is too large, it generates an error packet, returns it to the source, and drops the packet. This is shown in Fig. 5-44. When the source receives the error packet, it uses the information inside to refragment the packet into pieces that are small enough for the router to handle. If a router further down the path has an even smaller MTU, the process is repeated.

Figure 5-44. Path MTU discovery.

The advantage of path MTU discovery is that the source now knows what length packet to send. If the routes and path MTU change, new error packets will be triggered and the source will adapt to the new path. However, fragmentation is still needed between the source and the destination unless the higher layers learn the path MTU and pass the right amount of data to IP. TCP and IP are typically implemented together (as "TCP/IP") to be able to pass this sort of information. Even if this is not done for other protocols, fragmentation has still been moved out of the network and into the hosts.

The disadvantage of path MTU discovery is that there may be added startup delays simply to send a packet. More than one round-trip delay may be needed to probe the path and find the MTU before any data is delivered to the destination. This begs the question of whether there are better designs. The answer is probably "Yes." Consider the design in which each router simply truncates packets that exceed its MTU. This would ensure that the destination learns the MTU as rapidly as possible (from the amount of data that was delivered) and receives some of the data.

5.6 THE NETWORK LAYER IN THE INTERNET

It is now time to discuss the network layer of the Internet in detail. But before getting into specifics, it is worth taking a look at the principles that drove its design in the past and made it the success that it is today. All too often, nowadays, people seem to have forgotten them. These principles are enumerated and discussed in RFC 1958, which is well worth reading (and should be mandatory for all protocol designers—with a final exam at the end). This RFC draws heavily on ideas put forth by Clark (1988) and Saltzer et al. (1984). We will now summarize what we consider to be the top 10 principles (from most important to least important).

- 1. **Make sure it works.** Do not finalize the design or standard until multiple prototypes have successfully communicated with each other. All too often, designers first write a 1000-page standard, get it approved, then discover it is deeply flawed and does not work. Then they write version 1.1 of the standard. This is not the way to go.
- 2. Keep it simple. When in doubt, use the simplest solution. William of Occam stated this principle (Occam's razor) in the 14th century. Put in modern terms: fight features. If a feature is not absolutely essential, leave it out, especially if the same effect can be achieved by combining other features.
- 3. **Make clear choices.** If there are several ways of doing the same thing, choose one. Having two or more ways to do the same thing is looking for trouble. Standards often have multiple options or modes

- or parameters because several powerful parties insist that their way is best. Designers should strongly resist this tendency. Just say no.
- 4. Exploit modularity. This principle leads directly to the idea of having protocol stacks, each of whose layers is independent of all the other ones. In this way, if circumstances require one module or layer to be changed, the other ones will not be affected.
- 5. **Expect heterogeneity.** Different types of hardware, transmission facilities, and applications will occur on any large network. To handle them, the network design must be simple, general, and flexible.
- 6. **Avoid static options and parameters.** If parameters are unavoidable (e.g., maximum packet size), it is best to have the sender and receiver negotiate a value rather than defining fixed choices.
- 7. Look for a good design; it need not be perfect. Often, the designers have a good design but it cannot handle some weird special case. Rather than messing up the design, the designers should go with the good design and put the burden of working around it on the people with the strange requirements.
- 8. **Be strict when sending and tolerant when receiving.** In other words, send only packets that rigorously comply with the standards, but expect incoming packets that may not be fully conformant and try to deal with them.
- 9. **Think about scalability.** If the system is to handle millions of hosts and billions of users effectively, no centralized databases of any kind are tolerable and load must be spread as evenly as possible over the available resources.
- 10. Consider performance and cost. If a network has poor performance or outrageous costs, nobody will use it.

Let us now leave the general principles and start looking at the details of the Internet's network layer. In the network layer, the Internet can be viewed as a collection of networks or **ASes** (**Autonomous Systems**) that are interconnected. There is no real structure, but several major backbones exist. These are constructed from high-bandwidth lines and fast routers. The biggest of these backbones, to which everyone else connects to reach the rest of the Internet, are called **Tier 1 networks**. Attached to the backbones are ISPs (Internet Service Providers) that provide Internet access to homes and businesses, data centers and colocation facilities full of server machines, and regional (mid-level) networks. The data centers serve much of the content that is sent over the Internet. Attached

to the regional networks are more ISPs, LANs at many universities and companies, and other edge networks. A sketch of this quasihierarchical organization is given in Fig. 5-45.

Figure 5-45. The Internet is an interconnected collection of many networks.

The glue that holds the whole Internet together is the network layer protocol, IP (Internet Protocol). Unlike most older network layer protocols, IP was designed from the beginning with internetworking in mind. A good way to think of the network layer is this: its job is to provide a best-effort (i.e., not guaranteed) way to transport packets from source to destination, without regard to whether these machines are on the same network or whether there are other networks in between them.

Communication in the Internet works as follows. The transport layer takes data streams and breaks them up so that they may be sent as IP packets. In theory, packets can be up to 64 KB each, but in practice they are usually not more than 1500 bytes (so they fit in one Ethernet frame). IP routers forward each packet through the Internet, along a path from one router to the next, until the destination is reached. At the destination, the network layer hands the data to the transport layer, which gives it to the receiving process. When all the pieces finally get to the destination machine, they are reassembled by the network layer into the original datagram. This datagram is then handed to the transport layer.

In the example of Fig. 5-45, a packet originating at a host on the home network has to traverse four networks and a large number of IP routers before even getting to the company network on which the destination host is located. This is

not unusual in practice, and there are many longer paths. There is also much redundant connectivity in the Internet, with backbones and ISPs connecting to each other in multiple locations. This means that there are many possible paths between two hosts. It is the job of the IP routing protocols to decide which paths to use.

5.6.1 The IP Version 4 Protocol

An appropriate place to start our study of the network layer in the Internet is with the format of the IP datagrams themselves. An IPv4 datagram consists of a header part and a body or payload part. The header has a 20-byte fixed part and a variable-length optional part. The header format is shown in Fig. 5-46. The bits are transmitted from left to right and top to bottom, with the high-order bit of the *Version* field going first. (This is a "big-endian" network byte order. On little-endian machines, such as Intel x86 computers, a software conversion is required on both transmission and reception.) In retrospect, little endian would have been a better choice, but at the time IP was designed, no one knew it would come to dominate computing.

Figure 5-46. The IPv4 (Internet Protocol) header.

The *Version* field keeps track of which version of the protocol the datagram belongs to. Version 4 dominates the Internet today, and that is where we have started our discussion. By including the version at the start of each datagram, it becomes possible to have a transition between versions over a long period of time. In fact, IPv6, the next version of IP, was defined more than a decade ago, yet is only just beginning to be deployed. We will describe it later in this section. Its use will eventually be forced when each of China's almost 2³¹ people has a desktop PC, a laptop, and an IP phone. As an aside on numbering, IPv5 was an experimental real-time stream protocol that was never widely used.

Since the header length is not constant, a field in the header, *IHL*, is provided to tell how long the header is, in 32-bit words. The minimum value is 5, which applies when no options are present. The maximum value of this 4-bit field is 15, which limits the header to 60 bytes, and thus the *Options* field to 40 bytes. For some options, such as one that records the route a packet has taken, 40 bytes is far too small, making those options useless.

The Differentiated services field is one of the few fields that has changed its meaning (slightly) over the years. Originally, it was called the Type of service field. It was and still is intended to distinguish between different classes of service. Various combinations of reliability and speed are possible. For digitized voice, fast delivery beats accurate delivery. For file transfer, error-free transmission is more important than fast transmission. The Type of service field provided 3 bits to signal priority and 3 bits to signal whether a host cared more about delay, throughput, or reliability. However, no one really knew what to do with these bits at routers, so they were left unused for many years. When differentiated services were designed, IETF threw in the towel and reused this field. Now, the top 6 bits are used to mark the packet with its service class; we described the expedited and assured services earlier in this chapter. The bottom 2 bits are used to carry explicit congestion notification information, such as whether the packet has experienced congestion; we described explicit congestion notification as part of congestion control earlier in this chapter.

The *Total length* includes everything in the datagram—both header and data. The maximum length is 65,535 bytes. At present, this upper limit is tolerable, but with future networks, larger datagrams may be needed.

The *Identification* field is needed to allow the destination host to determine which packet a newly arrived fragment belongs to. All the fragments of a packet contain the same *Identification* value.

Next comes an unused bit, which is surprising, as available real estate in the IP header is extremely scarce. As an April Fool's joke, Bellovin (2003) proposed using this bit to detect malicious traffic. This would greatly simplify security, as packets with the "evil" bit set would be known to have been sent by attackers and could just be discarded. Unfortunately, network security is not this simple.

Then come two 1-bit fields related to fragmentation. DF stands for Don't Fragment. It is an order to the routers not to fragment the packet. Originally, it was intended to support hosts incapable of putting the pieces back together again. Now it is used as part of the process to discover the path MTU, which is the largest packet that can travel along a path without being fragmented. By marking the datagram with the DF bit, the sender knows it will either arrive in one piece, or an error message will be returned to the sender.

MF stands for More Fragments. All fragments except the last one have this bit set. It is needed to know when all fragments of a datagram have arrived.

The Fragment offset tells where in the current packet this fragment belongs. All fragments except the last one in a datagram must be a multiple of 8 bytes, the

elementary fragment unit. Since 13 bits are provided, there is a maximum of 8192 fragments per datagram, supporting a maximum packet length up to the limit of the *Total length* field. Working together, the *Identification*, *MF*, and *Fragment offset* fields are used to implement fragmentation as described in Sec. 5.5.5.

The *TtL* (*Time to live*) field is a counter used to limit packet lifetimes. It was

The *TtL* (*Time to live*) field is a counter used to limit packet lifetimes. It was originally supposed to count time in seconds, allowing a maximum lifetime of 255 sec. It must be decremented on each hop and is supposed to be decremented multiple times when a packet is queued for a long time in a router. In practice, it just counts hops. When it hits zero, the packet is discarded and a warning packet is sent back to the source host. This feature prevents packets from wandering around forever, something that otherwise might happen if the routing tables ever become corrupted.

When the network layer has assembled a complete packet, it needs to know what to do with it. The *Protocol* field tells it which transport process to give the packet to. TCP is one possibility, but so are UDP and some others. The numbering of protocols is global across the entire Internet. Protocols and other assigned numbers were formerly listed in RFC 1700, but nowadays they are contained in an online database located at *www.iana.org*.

Since the header carries vital information such as addresses, it rates its own checksum for protection, the *Header checksum*. The algorithm is to add up all the 16-bit halfwords of the header as they arrive, using one's complement arithmetic, and then take the one's complement of the result. For purposes of this algorithm, the *Header checksum* is assumed to be zero upon arrival. Such a checksum is useful for detecting errors while the packet travels through the network. Note that it must be recomputed at each hop because at least one field always changes (the *Time to live* field), but tricks can be used to speed up the computation.

The Source address and Destination address indicate the IP address of the source and destination network interfaces. We will discuss Internet addresses in the next section.

The *Options* field was designed to provide an escape to allow subsequent versions of the protocol to include information not present in the original design, to permit experimenters to try out new ideas, and to avoid allocating header bits to information that is rarely needed. The options are of variable length. Each begins with a 1-byte code identifying the option. Some options are followed by a 1-byte option length field, and then one or more data bytes. The *Options* field is padded out to a multiple of 4 bytes. Originally, the five options listed in Fig. 5-47 were defined.

The Security option tells how secret the information is. In theory, a military router might use this field to specify not to route packets through certain countries the military considers to be "bad guys." In practice, all routers ignore it, so its only practical function is to help spies find the good stuff more easily.

The Strict source routing option gives the complete path from source to destination as a sequence of IP addresses. The datagram is required to follow that

Option	Description		
Security	Specifies how secret the datagram is		
Strict source routing	Gives the complete path to be followed		
Loose source routing	Gives a list of routers not to be missed		
Record route	Makes each router append its IP address		
Timestamp	Makes each router append its address and timestamp		

Figure 5-47. Some of the IP options.

exact route. It is most useful for system managers who need to send emergency packets when the routing tables have been corrupted, or for making timing measurements.

The Loose source routing option requires the packet to traverse the list of routers specified, in the order specified, but it is allowed to pass through other routers on the way. Normally, this option will provide only a few routers, to force a particular path. For example, to force a packet from London to Sydney to go west instead of east, this option might specify routers in New York, Los Angeles, and Honolulu. This option is most useful when political or economic considerations dictate passing through or avoiding certain countries.

The *Record route* option tells each router along the path to append its IP address to the *Options* field. This allows system managers to track down bugs in the routing algorithms ("Why are packets from Houston to Dallas visiting Tokyo first?"). When the ARPANET was first set up, no packet ever passed through more than nine routers, so 40 bytes of options was plenty. As mentioned above, now it is too small.

Finally, the *Timestamp* option is like the *Record route* option, except that in addition to recording its 32-bit IP address, each router also records a 32-bit timestamp. This option, too, is mostly useful for network measurement.

Today, IP options have fallen out of favor. Many routers ignore them or do not process them efficiently, shunting them to the side as an uncommon case. That is, they are only partly supported and they are rarely used.

5.6.2 IP Addresses

A defining feature of IPv4 is its 32-bit addresses. Every host and router on the Internet has an IP address that can be used in the *Source address* and *Destination address* fields of IP packets. It is important to note that an IP address does not actually refer to a host. It really refers to a network interface, so if a host is on two networks, it must have two IP addresses. However, in practice, most hosts are on one network and thus have one IP address. In contrast, routers have multiple interfaces and thus multiple IP addresses.

Prefixes

IP addresses are hierarchical, unlike Ethernet addresses. Each 32-bit address is comprised of a variable-length network portion in the top bits and a host portion in the bottom bits. The network portion has the same value for all hosts on a single network, such as an Ethernet LAN. This means that a network corresponds to a contiguous block of IP address space. This block is called a **prefix**.

IP addresses are written in **dotted decimal notation**. In this format, each of the 4 bytes is written in decimal, from 0 to 255. For example, the 32-bit hexadecimal address 80D00297 is written as 128.208.2.151. Prefixes are written by giving the lowest IP address in the block and the size of the block. The size is determined by the number of bits in the network portion; the remaining bits in the host portion can vary. This means that the size must be a power of two. By convention, it is written after the prefix IP address as a slash followed by the length in bits of the network portion. In our example, if the prefix contains 2⁸ addresses and so leaves 24 bits for the network portion, it is written as 128.208.0.0/24.

Since the prefix length cannot be inferred from the IP address alone, routing protocols must carry the prefixes to routers. Sometimes prefixes are simply described by their length, as in a "/16" which is pronounced "slash 16." The length of the prefix corresponds to a binary mask of 1s in the network portion. When written out this way, it is called a **subnet mask**. It can be ANDed with the IP address to extract only the network portion. For our example, the subnet mask is 255.255.255.0. Fig. 5-48 shows a prefix and a subnet mask.

Figure 5-48. An IP prefix and a subnet mask.

Hierarchical addresses have significant advantages and disadvantages. The key advantage of prefixes is that routers can forward packets based on only the network portion of the address, as long as each of the networks has a unique address block. The host portion does not matter to the routers because all hosts on the same network will be sent in the same direction. It is only when the packets reach the network for which they are destined that they are forwarded to the correct host. This makes the routing tables much smaller than they would otherwise be. Consider that the number of hosts on the Internet is approaching one billion. That would be a very large table for every router to keep. However, by using a hierarchy, routers need to keep routes for only around 300,000 prefixes.

While using a hierarchy lets Internet routing scale, it has two disadvantages. First, the IP address of a host depends on where it is located in the network. An Ethernet address can be used anywhere in the world, but every IP address belongs to a specific network, and routers will only be able to deliver packets destined to that address to the network. Designs such as mobile IP are needed to support hosts that move between networks but want to keep the same IP addresses.

The second disadvantage is that the hierarchy is wasteful of addresses unless it is carefully managed. If addresses are assigned to networks in (too) large blocks, there will be (many) addresses that are allocated but not in use. This allocation would not matter much if there were plenty of addresses to go around. However, it was realized more than two decades ago that the tremendous growth of the Internet was rapidly depleting the free address space. IPv6 is the solution to this shortage, but until it is widely deployed there will be great pressure to allocate IP addresses so that they are used very efficiently.

Subnets

Network numbers are managed by a nonprofit corporation called **ICANN** (**Internet Corporation for Assigned Names and Numbers**), to avoid conflicts. In turn, ICANN has delegated parts of the address space to various regional authorities, which dole out IP addresses to ISPs and other companies. This is the process by which a company is allocated a block of IP addresses.

However, this process is only the start of the story, as IP address assignment is ongoing as companies grow. We have said that routing by prefix requires all the hosts in a network to have the same network number. This property can cause problems as networks grow. For example, consider a university that started out with our example /16 prefix for use by the Computer Science Dept. for the computers on its Ethernet. A year later, the Electrical Engineering Dept. wants to get on the Internet. The Art Dept. soon follows suit. What IP addresses should these departments use? Getting further blocks requires going outside the university and may be expensive or inconvenient. Moreover, the /16 already allocated has enough addresses for over 60,000 hosts. It might be intended to allow for significant growth, but until that happens, it is wasteful to allocate further blocks of IP addresses to the same university. A different organization is required.

The solution is to allow the block of addresses to be split into several parts for internal use as multiple networks, while still acting like a single network to the outside world. This is called **subnetting** and the networks (such as Ethernet LANs) that result from dividing up a larger network are called **subnets**. As we mentioned in Chap. 1, you should be aware that this new usage of the term conflicts with older usage of "subnet" to mean the set of all routers and communication lines in a network.

Fig. 5-49 shows how subnets can help with our example. The single /16 has been split into pieces. This split does not need to be even, but each piece must be

aligned so that any bits can be used in the lower host portion. In this case, half of the block (a /17) is allocated to the Computer Science Dept, a quarter is allocated to the Electrical Engineering Dept. (a /18), and one eighth (a /19) to the Art Dept. The remaining eighth is unallocated. A different way to see how the block was divided is to look at the resulting prefixes when written in binary notation:

Here, the vertical bar (I) shows the boundary between the subnet number and the host portion.

Figure 5-49. Splitting an IP prefix into separate networks with subnetting.

When a packet comes into the main router, how does the router know which subnet to give it to? This is where the details of our prefixes come in. One way would be for each router to have a table with 65,536 entries telling it which outgoing line to use for each host on campus. But this would undermine the main scaling benefit we get from using a hierarchy. Instead, the routers simply need to know the subnet masks for the networks on campus.

When a packet arrives, the router looks at the destination address of the packet and checks which subnet it belongs to. The router can do this by ANDing the destination address with the mask for each subnet and checking to see if the result is the corresponding prefix. For example, consider a packet destined for IP address 128.208.2.151. To see if it is for the Computer Science Dept., we AND with 255.255.128.0 to take the first 17 bits (which is 128.208.0.0) and see if they match the prefix address (which is 128.208.128.0). They do not match. Checking the first 18 bits for the Electrical Engineering Dept., we get 128.208.0.0 when ANDing with the subnet mask. This does match the prefix address, so the packet is forwarded onto the interface which leads to the Electrical Engineering network.

The subnet divisions can be changed later if necessary, by updating all subnet masks at routers inside the university. Outside the network, the subnetting is not visible, so allocating a new subnet does not require contacting ICANN or changing any external databases.

CIDR—Classless InterDomain Routing

Even if blocks of IP addresses are allocated so that the addresses are used efficiently, there is still a problem that remains: routing table explosion.

Routers in organizations at the edge of a network, such as a university, need to have an entry for each of their subnets, telling the router which line to use to get to that network. For routes to destinations outside of the organization, they can use the simple default rule of sending the packets on the line toward the ISP that connects the organization to the rest of the Internet. The other destination addresses must all be out there somewhere.

Routers in ISPs and backbones in the middle of the Internet have no such luxury. They must know which way to go to get to every network and no simple default will work. These core routers are said to be in the **default-free zone** of the Internet. No one really knows how many networks are connected to the Internet any more, but it is a large number, probably at least a million. This can make for a very large table. It may not sound large by computer standards, but realize that routers must perform a lookup in this table to forward every packet, and routers at large ISPs may forward up to millions of packets per second. Specialized hardware and fast memory are needed to process packets at these rates, not a generalpurpose computer.

In addition, routing algorithms require each router to exchange information about the addresses it can reach with other routers. The larger the tables, the more information needs to be communicated and processed. The processing grows at least linearly with the table size. Greater communication increases the likelihood that some parts will get lost, at least temporarily, possibly leading to routing instabilities.

The routing table problem could have been solved by going to a deeper hierarchy, like the telephone network. For example, having each IP address contain a country, state/province, city, network, and host field might work. Then, each router would only need to know how to get to each country, the states or provinces in its own country, the cities in its state or province, and the networks in its city. Unfortunately, this solution would require considerably more than 32 bits for IP addresses and would use addresses inefficiently (and Liechtenstein would have as many bits in its addresses as the United States).

Fortunately, there is something we can do to reduce routing table sizes. We can apply the same insight as subnetting: routers at different locations can know about a given IP address as belonging to prefixes of different sizes. However, instead of splitting an address block into subnets, here we combine multiple small

prefixes into a single larger prefix. This process is called **route aggregation**. The resulting larger prefix is sometimes called a **supernet**, to contrast with subnets as the division of blocks of addresses.

With aggregation, IP addresses are contained in prefixes of varying sizes. The same IP address that one router treats as part of a /22 (a block containing 2¹⁰ addresses) may be treated by another router as part of a larger /20 (which contains 2¹² addresses). It is up to each router to have the corresponding prefix information. This design works with subnetting and is called **CIDR** (**Classless Inter-Domain Routing**), which is pronounced "cider," as in the drink. The most recent version of it is specified in RFC 4632 (Fuller and Li, 2006). The name highlights the contrast with addresses that encode hierarchy with classes, which we will describe shortly.

To make CIDR easier to understand, let us consider an example in which a block of 8192 IP addresses is available starting at 194.24.0.0. Suppose that Cambridge University needs 2048 addresses and is assigned the addresses 194.24.0.0 through 194.24.7.255, along with mask 255.255.248.0. This is a /21 prefix. Next, Oxford University asks for 4096 addresses. Since a block of 4096 addresses must lie on a 4096-byte boundary, Oxford cannot be given addresses starting at 194.24.8.0. Instead, it gets 194.24.16.0 through 194.24.31.255, along with subnet mask 255.255.240.0. Finally, the University of Edinburgh asks for 1024 addresses and is assigned addresses 194.24.8.0 through 194.24.11.255 and mask 255.255.252.0. These assignments are summarized in Fig. 5-50.

University	First address	Last address	How many	Prefix
Cambridge	194.24.0.0	194.24.7.255	2048	194.24.0.0/21
Edinburgh	194.24.8.0	194.24.11.255	1024	194.24.8.0/22
(Available)	194.24.12.0	194.24.15.255	1024	194.24.12.0/22
Oxford	194.24.16.0	194.24.31.255	4096	194.24.16.0/20

Figure 5-50. A set of IP address assignments.

All of the routers in the default-free zone are now told about the IP addresses in the three networks. Routers close to the universities may need to send on a different outgoing line for each of the prefixes, so they need an entry for each of the prefixes in their routing tables. An example is the router in London in Fig. 5-51.

Now let us look at these three universities from the point of view of a distant router in New York. All of the IP addresses in the three prefixes should be sent from New York (or the U.S. in general) to London. The routing process in London notices this and combines the three prefixes into a single aggregate entry for the prefix 194.24.0.0/19 that it passes to the New York router. This prefix contains 8K addresses and covers the three universities and the otherwise unallocated 1024 addresses. By using aggregation, three prefixes have been reduced to one, reducing

Figure 5-51. Aggregation of IP prefixes.

the prefixes that the New York router must be told about and the routing table entries in the New York router.

When aggregation is turned on, it is an automatic process. It depends on which prefixes are located where in the Internet not on the actions of an administrator assigning addresses to networks. Aggregation is heavily used throughout the Internet and can reduce the size of router tables to around 200,000 prefixes.

As a further twist, prefixes are allowed to overlap. The rule is that packets are sent in the direction of the most specific route, or the **longest matching prefix** that has the fewest IP addresses. Longest matching prefix routing provides a useful degree of flexibility, as seen in the behavior of the router at New York in Fig. 5-52. This router still uses a single aggregate prefix to send traffic for the three universities to London. However, the previously available block of addresses within this prefix has now been allocated to a network in San Francisco. One possibility is for the New York router to keep four prefixes, sending packets for three of them to London and packets for the fourth to San Francisco. Instead, longest matching prefix routing can handle this forwarding with the two prefixes that are shown. One overall prefix is used to direct traffic for the entire block to London. One more specific prefix is also used to direct a portion of the larger prefix to San Francisco. With the longest matching prefix rule, IP addresses within the San Francisco network will be sent on the outgoing line to San Francisco, and all other IP addresses in the larger prefix will be sent to London.

Conceptually, CIDR works as follows. When a packet comes in, the routing table is scanned to determine if the destination lies within the prefix. It is possible that multiple entries with different prefix lengths will match, in which case the entry with the longest prefix is used. Thus, if there is a match for a /20 mask and a /24 mask, the /24 entry is used to look up the outgoing line for the packet. However, this process would be tedious if the table were really scanned entry by entry.

Figure 5-52. Longest matching prefix routing at the New York router.

Instead, complex algorithms have been devised to speed up the address matching process (Ruiz-Sanchez et al., 2001). Commercial routers use custom VLSI chips with these algorithms embedded in hardware.

Classful and Special Addressing

To help you better appreciate why CIDR is so useful, we will briefly relate the design that predated it. Before 1993, IP addresses were divided into the five categories listed in Fig. 5-53. This allocation has come to be called **classful** addressing.

Figure 5-53. IP address formats.

The class A, B, and C formats allow for up to 128 networks with 16 million hosts each, 16,384 networks with up to 65,536 hosts each, and 2 million networks (e.g., LANs) with up to 256 hosts each (although a few of these are special). Also supported is multicast (the class D format), in which a datagram is directed to multiple hosts. Addresses beginning with 1111 are reserved for use in the future. They would be valuable to use now given the depletion of the IPv4 address space.

Unfortunately, many hosts will not accept these addresses as valid because they have been off-limits for so long and it is hard to teach old hosts new tricks.

This is a hierarchical design, but unlike CIDR the sizes of the address blocks are fixed. Over 2 billion addresses exist, but organizing the address space by classes wastes millions of them. In particular, the real villain is the class B network. For most organizations, a class A network, with 16 million addresses, is too big, and a class C network, with 256 addresses is too small. A class B network, with 65,536, is just right. In Internet folklore, this situation is known as the **three bears problem** [as in *Goldilocks and the Three Bears* (Southey, 1848)].

In reality, though, a class B address is far too large for most organizations. Studies have shown that more than half of all class B networks have fewer than 50 hosts. A class C network would have done the job, but no doubt every organization that asked for a class B address thought that one day it would outgrow the 8-bit host field. In retrospect, it might have been better to have had class C networks use 10 bits instead of 8 for the host number, allowing 1022 hosts per network. Had this been the case, most organizations would probably have settled for a class C network, and there would have been half a million of them (versus only 16,384 class B networks).

It is hard to fault the Internet's designers for not having provided more (and smaller) class B addresses. At the time the decision was made to create the three classes, the Internet was a research network connecting the major research universities in the U.S. (plus a very small number of companies and military sites doing networking research). No one then perceived the Internet becoming a massmarket communication system rivaling the telephone network. At the time, someone no doubt said: "The U.S. has about 2000 colleges and universities. Even if all of them connect to the Internet and many universities in other countries join, too, we are never going to hit 16,000, since there are not that many universities in the whole world. Furthermore, having the host number be an integral number of bytes speeds up packet processing" (which was then done entirely in software). Perhaps some day people will look back and fault the folks who designed the telephone number scheme and say: "What idiots. Why didn't they include the planet number in the phone number?" But at the time, it did not seem necessary.

To handle these problems, subnets were introduced to flexibly assign blocks of addresses within an organization. Later, CIDR was added to reduce the size of the global routing table. Today, the bits that indicate whether an IP address belongs to class A, B, or C network are no longer used, though references to these classes in the literature are still common.

To see how dropping the classes made forwarding more complicated, consider how simple it was in the old classful system. When a packet arrived at a router, a copy of the IP address was shifted right 28 bits to yield a 4-bit class number. A 16-way branch then sorted packets into A, B, C (and D and E) classes, with eight of the cases for class A, four of the cases for class B, and two of the cases for class C. The code for each class then masked off the 8-, 16-, or 24-bit network

number and right aligned it in a 32-bit word. The network number was then looked up in the A, B, or C table, usually by indexing for A and B networks and hashing for C networks. Once the entry was found, the outgoing line could be looked up and the packet forwarded. This is much simpler than the longest matching prefix operation, which can no longer use a simple table lookup because an IP address may have any length prefix.

Class D addresses continue to be used in the Internet for multicast. Actually, it might be more accurate to say that they are starting to be used for multicast, since Internet multicast has not been widely deployed in the past.

There are also several other addresses that have special meanings, as shown in Fig. 5-54. The IP address 0.0.0.0, the lowest address, is used by hosts when they are being booted. It means "this network" or "this host." IP addresses with 0 as the network number refer to the current network. These addresses allow machines to refer to their own network without knowing its number (but they have to know the network mask to know how many 0s to include). The address consisting of all 1s, or 255.255.255.255—the highest address—is used to mean all hosts on the indicated network. It allows broadcasting on the local network, typically a LAN. The addresses with a proper network number and all 1s in the host field allow machines to send broadcast packets to distant LANs anywhere in the Internet. However, many network administrators disable this feature as it is mostly a security hazard. Finally, all addresses of the form 127.xx.yy.zz are reserved for loopback testing. Packets sent to that address are not put out onto the wire; they are processed locally and treated as incoming packets. This allows packets to be sent to the host without the sender knowing its number, which is useful for testing.

Figure 5-54. Special IP addresses.

NAT—Network Address Translation

IP addresses are scarce. An ISP might have a /16 address, giving it 65,534 usable host numbers. If it has more customers than that, it has a problem.

This scarcity has led to techniques to use IP addresses spaningly. One approach is to dynamically assign an IP address to a computer when it is on and using the network, and to take the IP address back when the host becomes inactive. The IP address can then be assigned to another computer that becomes active. In this way, a single /16 address can handle up to 65,534 active users.

This strategy works well in some cases, for example, for dialup networking and mobile and other computers that may be temporarily absent or powered off. However, it does not work very well for business customers. Many PCs in businesses are expected to be on continuously. Some are employee machines, backed up at night, and some are servers that may have to serve a remote request at a moment's notice. These businesses have an access line that always provides connectivity to the rest of the Internet.

Increasingly, this situation also applies to home users subscribing to ADSL or Internet over cable, since there is no connection charge (just a monthly flat rate charge). Many of these users have two or more computers at home, often one for each family member, and they all want to be online all the time. The solution is to connect all the computers into a home network via a LAN and put a (wireless) router on it. The router then connects to the ISP. From the ISP's point of view, the family is now the same as a small business with a handful of computers. Welcome to Jones, Inc. With the techniques we have seen so far, each computer must have its own IP address all day long. For an ISP with many thousands of customers, particularly business customers and families that are just like small businesses, the demand for IP addresses can quickly exceed the block that is available.

The problem of running out of IP addresses is not a theoretical one that might occur at some point in the distant future. It is happening right here and right now. The long-term solution is for the whole Internet to migrate to IPv6, which has 128-bit addresses. This transition is slowly occurring, but it will be years before the process is complete. To get by in the meantime, a quick fix was needed. The quick fix that is widely used today came in the form of NAT (Network Address Translation), which is described in RFC 3022 and which we will summarize below. For additional information, see Dutcher (2001).

The basic idea behind NAT is for the ISP to assign each home or business a single IP address (or at most, a small number of them) for Internet traffic. Within the customer network, every computer gets a unique IP address, which is used for routing intramural traffic. However, just before a packet exits the customer network and goes to the ISP, an address translation from the unique internal IP address to the shared public IP address takes place. This translation makes use of three ranges of IP addresses that have been declared as private. Networks may use them internally as they wish. The only rule is that no packets containing these addresses may appear on the Internet itself. The three reserved ranges are:

```
10.0.0.0 - 10.255.255.255/8 (16,777,216 hosts)
172.16.0.0 - 172.31.255.255/12 (1,048,576 hosts)
192.168.0.0 - 192.168.255.255/16 (65,536 hosts)
```

The first range provides for 16,777,216 addresses (except for all 0s and all 1s, as usual) and is the usual choice, even if the network is not large.

The operation of NAT is shown in Fig. 5-55. Within the customer premises, every machine has a unique address of the form 10.x.y.z. However, before a packet leaves the customer premises, it passes through a **NAT box** that converts the internal IP source address, 10.0.0.1 in the figure, to the customer's true IP address, 198.60.42.12 in this example. The NAT box is often combined in a single device with a firewall, which provides security by carefully controlling what goes into the customer network and what comes out of it. We will study firewalls in Chap. 8. It is also possible to integrate the NAT box into a router or ADSL modem.

Figure 5-55. Placement and operation of a NAT box.

So far, we have glossed over one tiny but crucial detail: when the reply comes back (e.g., from a Web server), it is naturally addressed to 198.60.42.12, so how does the NAT box know which internal address to replace it with? Herein lies the problem with NAT. If there were a spare field in the IP header, that field could be used to keep track of who the real sender was, but only 1 bit is still unused. In principle, a new option could be created to hold the true source address, but doing so would require changing the IP code on all the machines on the entire Internet to handle the new option. This is not a promising alternative for a quick fix.

What actually happens is as follows. The NAT designers observed that most IP packets carry either TCP or UDP payloads. When we study TCP and UDP in Chap. 6, we will see that both of these have headers containing a source port and a destination port. Below we will just discuss TCP ports, but exactly the same story holds for UDP ports. The ports are 16-bit integers that indicate where the TCP connection begins and ends. These ports provide the field needed to make NAT work.

When a process wants to establish a TCP connection with a remote process, it attaches itself to an unused TCP port on its own machine. This is called the **source port** and tells the TCP code where to send incoming packets belonging to this connection. The process also supplies a **destination port** to tell who to give

the packets to on the remote side. Ports 0–1023 are reserved for well-known services. For example, port 80 is the port used by Web servers, so remote clients can locate them. Each outgoing TCP message contains both a source port and a destination port. Together, these ports serve to identify the processes using the connection on both ends.

An analogy may make the use of ports clearer. Imagine a company with a single main telephone number. When people call the main number, they reach an operator who asks which extension they want and then puts them through to that extension. The main number is analogous to the customer's IP address and the extensions on both ends are analogous to the ports. Ports are effectively an extra 16 bits of addressing that identify which process gets which incoming packet.

Using the *Source port* field, we can solve our mapping problem. Whenever an outgoing packet enters the NAT box, the 10.x.y.z source address is replaced by the customer's true IP address. In addition, the TCP *Source port* field is replaced by an index into the NAT box's 65,536-entry translation table. This table entry contains the original IP address and the original source port. Finally, both the IP and TCP header checksums are recomputed and inserted into the packet. It is necessary to replace the *Source port* because connections from machines 10.0.0.1 and 10.0.0.2 may both happen to use port 5000, for example, so the *Source port* alone is not enough to identify the sending process.

When a packet arrives at the NAT box from the ISP, the *Source port* in the TCP header is extracted and used as an index into the NAT box's mapping table. From the entry located, the internal IP address and original TCP *Source port* are extracted and inserted into the packet. Then, both the IP and TCP checksums are recomputed and inserted into the packet. The packet is then passed to the customer router for normal delivery using the 10.x.y.z address.

Although this scheme sort of solves the problem, networking purists in the IP community have a tendency to regard it as an abomination-on-the-face-of-the-earth. Briefly summarized, here are some of the objections. First, NAT violates the architectural model of IP, which states that every IP address uniquely identifies a single machine worldwide. The whole software structure of the Internet is built on this fact. With NAT, thousands of machines may (and do) use address 10.0.0.1.

Second, NAT breaks the end-to-end connectivity model of the Internet, which says that any host can send a packet to any other host at any time. Since the mapping in the NAT box is set up by outgoing packets, incoming packets cannot be accepted until after outgoing ones. In practice, this means that a home user with NAT can make TCP/IP connections to a remote Web server, but a remote user cannot make connections to a game server on the home network. Special configuration or NAT traversal techniques are needed to support this kind of situation.

Third, NAT changes the Internet from a connectionless network to a peculiar kind of connection-oriented network. The problem is that the NAT box must maintain information (i.e., the mapping) for each connection passing through it.

Having the network maintain connection state is a property of connection-oriented networks, not connectionless ones. If the NAT box crashes and its mapping table is lost, all its TCP connections are destroyed. In the absence of NAT, a router can crash and restart with no long-term effect on TCP connections. The sending process just times out within a few seconds and retransmits all unacknowledged packets. With NAT, the Internet becomes as vulnerable as a circuit-switched network.

Fourth, NAT violates the most fundamental rule of protocol layering: layer k may not make any assumptions about what layer k+1 has put into the payload field. This basic principle is there to keep the layers independent. If TCP is later upgraded to TCP-2, with a different header layout (e.g., 32-bit ports), NAT will fail. The whole idea of layered protocols is to ensure that changes in one layer do not require changes in other layers. NAT destroys this independence.

Fifth, processes on the Internet are not required to use TCP or UDP. If a user on machine A decides to use some new transport protocol to talk to a user on machine B (for example, for a multimedia application), introduction of a NAT box will cause the application to fail because the NAT box will not be able to locate the TCP Source port correctly.

A sixth and related problem is that some applications use multiple TCP/IP connections or UDP ports in prescribed ways. For example, FTP, the standard File Transfer Protocol, inserts IP addresses in the body of packet for the receiver to extract and use. Since NAT knows nothing about these arrangements, it cannot rewrite the IP addresses or otherwise account for them. This lack of understanding means that FTP and other applications such as the H.323 Internet telephony protocol (which we will study in Chap. 7) will fail in the presence of NAT unless special precautions are taken. It is often possible to patch NAT for these cases, but having to patch the code in the NAT box every time a new application comes along is not a good idea.

Finally, since the TCP Source port field is 16 bits, at most 65,536 machines can be mapped onto an IP address. Actually, the number is slightly less because the first 4096 ports are reserved for special uses. However, if multiple IP addresses are available, each one can handle up to 61,440 machines.

A view of these and other problems with NAT is given in RFC 2993. Despite the issues, NAT is widely used in practice, especially for home and small business networks, as the only expedient technique to deal with the IP address shortage. It has become wrapped up with firewalls and privacy because it blocks unsolicited incoming packets by default. For this reason, it is unlikely to go away even when IPv6 is widely deployed.

5.6.3 IP Version 6

IP has been in heavy use for decades. It has worked extremely well, as demonstrated by the exponential growth of the Internet. Unfortunately, IP has become a victim of its own popularity: it is close to running out of addresses. Even

with CIDR and NAT using addresses more sparingly, the last IPv4 addresses are expected to be assigned by ICANN before the end of 2012. This looming disaster was recognized almost two decades ago, and it sparked a great deal of discussion and controversy within the Internet community about what to do about it.

In this section, we will describe both the problem and several proposed solutions. The only long-term solution is to move to larger addresses. **IPv6** (**IP version 6**) is a replacement design that does just that. It uses 128-bit addresses; a shortage of these addresses is not likely any time in the foreseeable future. However, IPv6 has proved very difficult to deploy. It is a different network layer protocol that does not really interwork with IPv4, despite many similarities. Also, companies and users are not really sure why they should want IPv6 in any case. The result is that IPv6 is deployed and used on only a tiny fraction of the Internet (estimates are 1%) despite having been an Internet Standard since 1998. The next several years will be an interesting time, as the few remaining IPv4 addresses are allocated. Will people start to auction off their IPv4 addresses on eBay? Will a black market in them spring up? Who knows.

In addition to the address problems, other issues loom in the background. In its early years, the Internet was largely used by universities, high-tech industries, and the U.S. Government (especially the Dept. of Defense). With the explosion of interest in the Internet starting in the mid-1990s, it began to be used by a different group of people, often with different requirements. For one thing, numerous people with smart phones use it to keep in contact with their home bases. For another, with the impending convergence of the computer, communication, and entertainment industries, it may not be that long before every telephone and television set in the world is an Internet node, resulting in a billion machines being used for audio and video on demand. Under these circumstances, it became apparent that IP had to evolve and become more flexible.

Seeing these problems on the horizon, in 1990 IETF started work on a new version of IP, one that would never run out of addresses, would solve a variety of other problems, and be more flexible and efficient as well. Its major goals were:

- 1. Support billions of hosts, even with inefficient address allocation.
- 2. Reduce the size of the routing tables.
- 3. Simplify the protocol, to allow routers to process packets faster.
- 4. Provide better security (authentication and privacy).
- 5. Pay more attention to the type of service, particularly for real-time data.
- 6. Aid multicasting by allowing scopes to be specified.
- 7. Make it possible for a host to roam without changing its address.
- 8. Allow the protocol to evolve in the future.
- 9. Permit the old and new protocols to coexist for years.

The design of IPv6 presented a major opportunity to improve all of the features in IPv4 that fall short of what is now wanted. To develop a protocol that met all these requirements, IETF issued a call for proposals and discussion in RFC 1550. Twenty-one responses were initially received. By December 1992, seven serious proposals were on the table. They ranged from making minor patches to IP, to throwing it out altogether and replacing it with a completely different protocol.

One proposal was to run TCP over CLNP, the network layer protocol designed for OSI. With its 160-bit addresses, CLNP would have provided enough address space forever as it could give every molecule of water in the oceans enough addresses (roughly 2^5) to set up a small network. This choice would also have unified two major network layer protocols. However, many people felt that this would have been an admission that something in the OSI world was actually done right, a statement considered Politically Incorrect in Internet circles. CLNP was patterned closely on IP, so the two are not really that different. In fact, the protocol ultimately chosen differs from IP far more than CLNP does. Another strike against CLNP was its poor support for service types, something required to transmit multimedia efficiently.

Three of the better proposals were published in *IEEE Network* (Deering, 1993; Francis, 1993; and Katz and Ford, 1993). After much discussion, revision, and jockeying for position, a modified combined version of the Deering and Francis proposals, by now called **SIPP** (**Simple Internet Protocol Plus**) was selected and given the designation **IPv6**.

IPv6 meets IETF's goals fairly well. It maintains the good features of IP, discards or deemphasizes the bad ones, and adds new ones where needed. In general, IPv6 is not compatible with IPv4, but it is compatible with the other auxiliary Internet protocols, including TCP, UDP, ICMP, IGMP, OSPF, BGP, and DNS, with small modifications being required to deal with longer addresses. The main features of IPv6 are discussed below. More information about it can be found in RFCs 2460 through 2466.

First and foremost, IPv6 has longer addresses than IPv4. They are 128 bits long, which solves the problem that IPv6 set out to solve: providing an effectively unlimited supply of Internet addresses. We will have more to say about addresses shortly.

The second major improvement of IPv6 is the simplification of the header. It contains only seven fields (versus 13 in IPv4). This change allows routers to process packets faster and thus improves throughput and delay. We will discuss the header shortly, too.

The third major improvement is better support for options. This change was essential with the new header because fields that previously were required are now optional (because they are not used so often). In addition, the way options are represented is different, making it simple for routers to skip over options not intended for them. This feature speeds up packet processing time.

A fourth area in which IPv6 represents a big advance is in security. IETF had its fill of newspaper stories about precocious 12-year-olds using their personal computers to break into banks and military bases all over the Internet. There was a strong feeling that something had to be done to improve security. Authentication and privacy are key features of the new IP. These were later retrofitted to IPv4, however, so in the area of security the differences are not so great any more.

Finally, more attention has been paid to quality of service. Various half-hearted efforts to improve QoS have been made in the past, but now, with the growth of multimedia on the Internet, the sense of urgency is greater.

The Main IPv6 Header

The IPv6 header is shown in Fig. 5-56. The *Version* field is always 6 for IPv6 (and 4 for IPv4). During the transition period from IPv4, which has already taken more than a decade, routers will be able to examine this field to tell what kind of packet they have. As an aside, making this test wastes a few instructions in the critical path, given that the data link header usually indicates the network protocol for demultiplexing, so some routers may skip the check. For example, the Ethernet *Type* field has different values to indicate an IPv4 or an IPv6 payload. The discussions between the "Do it right" and "Make it fast" camps will no doubt be lengthy and vigorous.

Figure 5-56. The IPv6 fixed header (required).

The Differentiated services field (originally called Traffic class) is used to distinguish the class of service for packets with different real-time delivery

requirements. It is used with the differentiated service architecture for quality of service in the same manner as the field of the same name in the IPv4 packet. Also, the low-order 2 bits are used to signal explicit congestion indications, again in the same way as with IPv4.

The *Flow label* field provides a way for a source and destination to mark groups of packets that have the same requirements and should be treated in the same way by the network, forming a pseudoconnection. For example, a stream of packets from one process on a certain source host to a process on a specific destination host might have stringent delay requirements and thus need reserved bandwidth. The flow can be set up in advance and given an identifier. When a packet with a nonzero *Flow label* shows up, all the routers can look it up in internal tables to see what kind of special treatment it requires. In effect, flows are an attempt to have it both ways: the flexibility of a datagram network and the guarantees of a virtual-circuit network.

Each flow for quality of service purposes is designated by the source address, destination address, and flow number. This design means that up to 2^{20} flows may be active at the same time between a given pair of IP addresses. It also means that even if two flows coming from different hosts but with the same flow label pass through the same router, the router will be able to tell them apart using the source and destination addresses. It is expected that flow labels will be chosen randomly, rather than assigned sequentially starting at 1, so routers are expected to hash them.

The *Payload length* field tells how many bytes follow the 40-byte header of Fig. 5-56. The name was changed from the IPv4 *Total length* field because the meaning was changed slightly: the 40 header bytes are no longer counted as part of the length (as they used to be). This change means the payload can now be 65,535 bytes instead of a mere 65,515 bytes.

The *Next header* field lets the cat out of the bag. The reason the header could be simplified is that there can be additional (optional) extension headers. This field tells which of the (currently) six extension headers, if any, follow this one. If this header is the last IP header, the *Next header* field tells which transport protocol handler (e.g., TCP, UDP) to pass the packet to.

The *Hop limit* field is used to keep packets from living forever. It is, in practice, the same as the *Time to live* field in IPv4, namely, a field that is decremented on each hop. In theory, in IPv4 it was a time in seconds, but no router used it that way, so the name was changed to reflect the way it is actually used.

Next come the *Source address* and *Destination address* fields. Deering's original proposal, SIP, used 8-byte addresses, but during the review process many people felt that with 8-byte addresses IPv6 would run out of addresses within a few decades, whereas with 16-byte addresses it would never run out. Other people argued that 16 bytes was overkill, whereas still others favored using 20-byte addresses to be compatible with the OSI datagram protocol. Still another faction wanted variable-sized addresses. After much debate and more than a few words

unprintable in an academic textbook, it was decided that fixed-length 16-byte addresses were the best compromise.

A new notation has been devised for writing 16-byte addresses. They are written as eight groups of four hexadecimal digits with colons between the groups, like this:

8000:0000:0000:0000:0123:4567:89AB:CDEF

Since many addresses will have many zeros inside them, three optimizations have been authorized. First, leading zeros within a group can be omitted, so 0123 can be written as 123. Second, one or more groups of 16 zero bits can be replaced by a pair of colons. Thus, the above address now becomes

8000::123:4567:89AB:CDEF

Finally, IPv4 addresses can be written as a pair of colons and an old dotted decimal number, for example:

::192.31.20.46

Perhaps it is unnecessary to be so explicit about it, but there are a lot of 16-byte addresses. Specifically, there are 2^{128} of them, which is approximately 3×10^{38} . If the entire earth, land and water, were covered with computers, IPv6 would allow 7×10^{23} IP addresses per square meter. Students of chemistry will notice that this number is larger than Avogadro's number. While it was not the intention to give every molecule on the surface of the earth its own IP address, we are not that far off.

In practice, the address space will not be used efficiently, just as the telephone number address space is not (the area code for Manhattan, 212, is nearly full, but that for Wyoming, 307, is nearly empty). In RFC 3194, Durand and Huitema calculated that, using the allocation of telephone numbers as a guide, even in the most pessimistic scenario there will still be well over 1000 IP addresses per square meter of the entire earth's surface (land and water). In any likely scenario, there will be trillions of them per square meter. In short, it seems unlikely that we will run out in the foreseeable future.

It is instructive to compare the IPv4 header (Fig. 5-46) with the IPv6 header (Fig. 5-56) to see what has been left out in IPv6. The *IHL* field is gone because the IPv6 header has a fixed length. The *Protocol* field was taken out because the *Next header* field tells what follows the last IP header (e.g., a UDP or TCP segment).

All the fields relating to fragmentation were removed because IPv6 takes a different approach to fragmentation. To start with, all IPv6-conformant hosts are expected to dynamically determine the packet size to use. They do this using the path MTU discovery procedure we described in Sec. 5.5.5. In brief, when a host sends an IPv6 packet that is too large, instead of fragmenting it, the router that is unable to forward it drops the packet and sends an error message back to the

sending host. This message tells the host to break up all future packets to that destination. Having the host send packets that are the right size in the first place is ultimately much more efficient than having the routers fragment them on the fly. Also, the minimum-size packet that routers must be able to forward has been raised from 576 to 1280 bytes to allow 1024 bytes of data and many headers.

Finally, the *Checksum* field is gone because calculating it greatly reduces performance. With the reliable networks now used, combined with the fact that the data link layer and transport layers normally have their own checksums, the value of yet another checksum was deemed not worth the performance price it extracted. Removing all these features has resulted in a lean and mean network layer protocol. Thus, the goal of IPv6—a fast, yet flexible, protocol with plenty of address space—is met by this design.

Extension Headers

Some of the missing IPv4 fields are occasionally still needed, so IPv6 introduces the concept of (optional) **extension headers**. These headers can be supplied to provide extra information, but encoded in an efficient way. Six kinds of extension headers are defined at present, as listed in Fig. 5-57. Each one is optional, but if more than one is present they must appear directly after the fixed header, and preferably in the order listed.

Extension header	Description	
Hop-by-hop options	Miscellaneous information for routers	
Destination options	Additional information for the destination	
Routing	Loose list of routers to visit	
Fragmentation	Management of datagram fragments	
Authentication	Verification of the sender's identity	
Encrypted security payload	Information about the encrypted contents	

Figure 5-57. IPv6 extension headers.

Some of the headers have a fixed format; others contain a variable number of variable-length options. For these, each item is encoded as a (*Type, Length, Value*) tuple. The *Type* is a 1-byte field telling which option this is. The *Type* values have been chosen so that the first 2 bits tell routers that do not know how to process the option what to do. The choices are: skip the option; discard the packet; discard the packet and send back an ICMP packet; and discard the packet but do not send ICMP packets for multicast addresses (to prevent one bad multicast packet from generating millions of ICMP reports).

The *Length* is also a 1-byte field. It tells how long the value is (0 to 255 bytes). The *Value* is any information required, up to 255 bytes.

The hop-by-hop header is used for information that all routers along the path must examine. So far, one option has been defined: support of datagrams exceeding 64 KB. The format of this header is shown in Fig. 5-58. When it is used, the *Payload length* field in the fixed header is set to 0.

Next header	0	194	4			
Jumbo payload length						

Figure 5-58. The hop-by-hop extension header for large datagrams (jumbograms).

As with all extension headers, this one starts with a byte telling what kind of header comes next. This byte is followed by one telling how long the hop-by-hop header is in bytes, excluding the first 8 bytes, which are mandatory. All extensions begin this way.

The next 2 bytes indicate that this option defines the datagram size (code 194) and that the size is a 4-byte number. The last 4 bytes give the size of the datagram. Sizes less than 65,536 bytes are not permitted and will result in the first router discarding the packet and sending back an ICMP error message. Datagrams using this header extension are called **jumbograms**. The use of jumbograms is important for supercomputer applications that must transfer gigabytes of data efficiently across the Internet.

The destination options header is intended for fields that need only be interpreted at the destination host. In the initial version of IPv6, the only options defined are null options for padding this header out to a multiple of 8 bytes, so initially it will not be used. It was included to make sure that new routing and host software can handle it, in case someone thinks of a destination option some day.

The routing header lists one or more routers that must be visited on the way to the destination. It is very similar to the IPv4 loose source routing in that all addresses listed must be visited in order, but other routers not listed may be visited in between. The format of the routing header is shown in Fig. 5-59.

Figure 5-59. The extension header for routing.

The first 4 bytes of the routing extension header contain four 1-byte integers. The Next header and Header extension length fields were described above. The Routing type field gives the format of the rest of the header. Type 0 says that a reserved 32-bit word follows the first word, followed by some number of IPv6 addresses. Other types may be invented in the future, as needed. Finally, the Segments left field keeps track of how many of the addresses in the list have not yet been visited. It is decremented every time one is visited. When it hits 0, the packet is on its own with no more guidance about what route to follow. Usually, at this point it is so close to the destination that the best route is obvious.

The fragment header deals with fragmentation similarly to the way IPv4 does. The header holds the datagram identifier, fragment number, and a bit telling whether more fragments will follow. In IPv6, unlike in IPv4, only the source host can fragment a packet. Routers along the way may not do this. This change is a major philosophical break with the original IP, but in keeping with current practice for IPv4. Plus, it simplifies the routers' work and makes routing go faster. As mentioned above, if a router is confronted with a packet that is too big, it discards the packet and sends an ICMP error packet back to the source. This information allows the source host to fragment the packet into smaller pieces using this header and try again.

The authentication header provides a mechanism by which the receiver of a packet can be sure of who sent it. The encrypted security payload makes it possible to encrypt the contents of a packet so that only the intended recipient can read it. These headers use the cryptographic techniques that we will describe in Chap. 8 to accomplish their missions.

Controversies

Given the open design process and the strongly held opinions of many of the people involved, it should come as no surprise that many choices made for IPv6 were highly controversial, to say the least. We will summarize a few of these briefly below. For all the gory details, see the RFCs.

We have already mentioned the argument about the address length. The result was a compromise: 16-byte fixed-length addresses.

Another fight developed over the length of the *Hop limit* field. One camp felt strongly that limiting the maximum number of hops to 255 (implicit in using an 8-bit field) was a gross mistake. After all, paths of 32 hops are common now, and 10 years from now much longer paths may be common. These people argued that using a huge address size was farsighted but using a tiny hop count was short-sighted. In their view, the greatest sin a computer scientist can commit is to provide too few bits somewhere.

The response was that arguments could be made to increase every field, leading to a bloated header. Also, the function of the *Hop limit* field is to keep packets from wandering around for too long a time and 65,535 hops is far, far too long.

Finally, as the Internet grows, more and more long-distance links will be built, making it possible to get from any country to any other country in half a dozen hops at most. If it takes more than 125 hops to get from the source and the destination to their respective international gateways, something is wrong with the national backbones. The 8-bitters won this one.

Another hot potato was the maximum packet size. The supercomputer community wanted packets in excess of 64 KB. When a supercomputer gets started transferring, it really means business and does not want to be interrupted every 64 KB. The argument against large packets is that if a 1-MB packet hits a 1.5-Mbps T1 line, that packet will tie the line up for over 5 seconds, producing a very noticeable delay for interactive users sharing the line. A compromise was reached here: normal packets are limited to 64 KB, but the hop-by-hop extension header can be used to permit jumbograms.

A third hot topic was removing the IPv4 checksum. Some people likened this move to removing the brakes from a car. Doing so makes the car lighter so it can go faster, but if an unexpected event happens, you have a problem.

The argument against checksums was that any application that really cares about data integrity has to have a transport layer checksum anyway, so having another one in IP (in addition to the data link layer checksum) is overkill. Furthermore, experience showed that computing the IP checksum was a major expense in IPv4. The antichecksum camp won this one, and IPv6 does not have a checksum.

Mobile hosts were also a point of contention. If a portable computer flies halfway around the world, can it continue operating there with the same IPv6 address, or does it have to use a scheme with home agents? Some people wanted to build explicit support for mobile hosts into IPv6. That effort failed when no consensus could be found for any specific proposal.

Probably the biggest battle was about security. Everyone agreed it was essential. The war was about where to put it and how. First where. The argument for putting it in the network layer is that it then becomes a standard service that all applications can use without any advance planning. The argument against it is that really secure applications generally want nothing less than end-to-end encryption, where the source application does the encryption and the destination application undoes it. With anything less, the user is at the mercy of potentially buggy network layer implementations over which he has no control. The response to this argument is that these applications can just refrain from using the IP security features and do the job themselves. The rejoinder to that is that the people who do not trust the network to do it right do not want to pay the price of slow, bulky IP implementations that have this capability, even if it is disabled.

Another aspect of where to put security relates to the fact that many (but not all) countries have very stringent export laws concerning cryptography. Some, notably France and Iraq, also restrict its use domestically, so that people cannot have secrets from the government. As a result, any IP implementation that used a

cryptographic system strong enough to be of much value could not be exported from the United States (and many other countries) to customers worldwide. Having to maintain two sets of software, one for domestic use and one for export, is something most computer vendors vigorously oppose.

One point on which there was no controversy is that no one expects the IPv4 Internet to be turned off on a Sunday evening and come back up as an IPv6 Internet Monday morning. Instead, isolated "islands" of IPv6 will be converted, initially communicating via tunnels, as we showed in Sec. 5.5.3. As the IPv6 islands grow, they will merge into bigger islands. Eventually, all the islands will merge, and the Internet will be fully converted.

At least, that was the plan. Deployment has proved the Achilles heel of IPv6. It remains little used, even though all major operating systems fully support it. Most deployments are new situations in which a network operator—for example, a mobile phone operator—needs a large number of IP addresses. Many strategies have been defined to help ease the transition. Among them are ways to automatically configure the tunnels that carry IPv6 over the IPv4 Internet, and ways for hosts to automatically find the tunnel endpoints. Dual-stack hosts have an IPv4 and an IPv6 implementation so that they can select which protocol to use depending on the destination of the packet. These strategies will streamline the substantial deployment that seems inevitable when IPv4 addresses are exhausted. For more information about IPv6, see Davies (2008).

5.6.4 Internet Control Protocols

In addition to IP, which is used for data transfer, the Internet has several companion control protocols that are used in the network layer. They include ICMP, ARP, and DHCP. In this section, we will look at each of these in turn, describing the versions that correspond to IPv4 because they are the protocols that are in common use. ICMP and DHCP have similar versions for IPv6; the equivalent of ARP is called NDP (Neighbor Discovery Protocol) for IPv6.

IMCP—The Internet Control Message Protocol

The operation of the Internet is monitored closely by the routers. When something unexpected occurs during packet processing at a router, the event is reported to the sender by the ICMP (Internet Control Message Protocol). ICMP is also used to test the Internet. About a dozen types of ICMP messages are defined. Each ICMP message type is carried encapsulated in an IP packet. The most important ones are listed in Fig. 5-60.

The DESTINATION UNREACHABLE message is used when the router cannot locate the destination or when a packet with the DF bit cannot be delivered because a "small-packet" network stands in the way.

Message type	Description		
Destination unreachable	Packet could not be delivered		
Time exceeded	Time to live field hit 0		
Parameter problem	Invalid header field		
Source quench	Choke packet		
Redirect	Teach a router about geography		
Echo and echo reply	Check if a machine is alive		
Timestamp request/reply	Same as Echo, but with timestamp		
Router advertisement/solicitation	Find a nearby router		

Figure 5-60. The principal ICMP message types.

The TIME EXCEEDED message is sent when a packet is dropped because its *TtL* (*Time to live*) counter has reached zero. This event is a symptom that packets are looping, or that the counter values are being set too low.

One clever use of this error message is the **traceroute** utility that was developed by Van Jacobson in 1987. Traceroute finds the routers along the path from the host to a destination IP address. It finds this information without any kind of privileged network support. The method is simply to send a sequence of packets to the destination, first with a TtL of 1, then a TtL of 2, 3, and so on. The counters on these packets will reach zero at successive routers along the path. These routers will each obediently send a TIME EXCEEDED message back to the host. From those messages, the host can determine the IP addresses of the routers along the path, as well as keep statistics and timings on parts of the path. It is not what the TIME EXCEEDED message was intended for, but it is perhaps the most useful network debugging tool of all time.

The PARAMETER PROBLEM message indicates that an illegal value has been detected in a header field. This problem indicates a bug in the sending host's IP software or possibly in the software of a router transited.

The SOURCE QUENCH message was long ago used to throttle hosts that were sending too many packets. When a host received this message, it was expected to slow down. It is rarely used anymore because when congestion occurs, these packets tend to add more fuel to the fire and it is unclear how to respond to them. Congestion control in the Internet is now done largely by taking action in the transport layer, using packet losses as a congestion signal; we will study it in detail in Chap. 6.

The REDIRECT message is used when a router notices that a packet seems to be routed incorrectly. It is used by the router to tell the sending host to update to a better route.

The ECHO and ECHO REPLY messages are sent by hosts to see if a given destination is reachable and currently alive. Upon receiving the ECHO message,

the destination is expected to send back an ECHO REPLY message. These messages are used in the **ping** utility that checks if a host is up and on the Internet.

The TIMESTAMP REQUEST and TIMESTAMP REPLY messages are similar, except that the arrival time of the message and the departure time of the reply are recorded in the reply. This facility can be used to measure network performance.

The ROUTER ADVERTISEMENT and ROUTER SOLICITATION messages are used to let hosts find nearby routers. A host needs to learn the IP address of at least one router to be able to send packets off the local network.

In addition to these messages, others have been defined. The online list is now kept at www.iana.org/assignments/icmp-parameters.

ARP—The Address Resolution Protocol

Although every machine on the Internet has one or more IP addresses, these addresses are not sufficient for sending packets. Data link layer NICs (Network Interface Cards) such as Ethernet cards do not understand Internet addresses. In the case of Ethernet, every NIC ever manufactured comes equipped with a unique 48-bit Ethernet address. Manufacturers of Ethernet NICs request a block of Ethernet addresses from IEEE to ensure that no two NICs have the same address (to avoid conflicts should the two NICs ever appear on the same LAN). The NICs send and receive frames based on 48-bit Ethernet addresses. They know nothing at all about 32-bit IP addresses.

The question now arises, how do IP addresses get mapped onto data link layer addresses, such as Ethernet? To explain how this works, let us use the example of Fig. 5-61, in which a small university with two /24 networks is illustrated. One network (CS) is a switched Ethernet in the Computer Science Dept. It has the prefix 192.32.65.0/24. The other LAN (EE), also switched Ethernet, is in Electrical Engineering and has the prefix 192.32.63.0/24. The two LANs are connected by an IP router. Each machine on an Ethernet and each interface on the router has a unique Ethernet address, labeled *E1* through *E6*, and a unique IP address on the CS or EE network.

Let us start out by seeing how a user on host 1 sends a packet to a user on host 2 on the CS network. Let us assume the sender knows the name of the intended receiver, possibly something like *eagle.cs.uni.edu*. The first step is to find the IP address for host 2. This lookup is performed by DNS, which we will study in Chap. 7. For the moment, we will just assume that DNS returns the IP address for host 2 (192.32.65.5).

The upper layer software on host 1 now builds a packet with 192.32.65.5 in the *Destination address* field and gives it to the IP software to transmit. The IP software can look at the address and see that the destination is on the CS network, (i.e., its own network). However, it still needs some way to find the destination's Ethernet address to send the frame. One solution is to have a configuration file somewhere in the system that maps IP addresses onto Ethernet addresses. While

Frame	Source IP	Source Eth.	Destination IP	Destination Eth.
Host 1 to 2, on CS net	IP1	E1	IP2	E2
Host 1 to 4, on CS net	IP1	E1	IP4	E3
Host 1 to 4, on EE net	IP1	E4	IP4	E 6

Figure 5-61. Two switched Ethernet LANs joined by a router.

this solution is certainly possible, for organizations with thousands of machines keeping all these files up to date is an error-prone, time-consuming job.

A better solution is for host 1 to output a broadcast packet onto the Ethernet asking who owns IP address 192.32.65.5. The broadcast will arrive at every machine on the CS Ethernet, and each one will check its IP address. Host 2 alone will respond with its Ethernet address (E2). In this way host 1 learns that IP address 192.32.65.5 is on the host with Ethernet address E2. The protocol used for asking this question and getting the reply is called **ARP** (**Address Resolution Protocol**). Almost every machine on the Internet runs it. ARP is defined in RFC 826.

The advantage of using ARP over configuration files is the simplicity. The system manager does not have to do much except assign each machine an IP address and decide about subnet masks. ARP does the rest.

At this point, the IP software on host 1 builds an Ethernet frame addressed to E2, puts the IP packet (addressed to 192.32.65.5) in the payload field, and dumps it onto the Ethernet. The IP and Ethernet addresses of this packet are given in Fig. 5-61. The Ethernet NIC of host 2 detects this frame, recognizes it as a frame for itself, scoops it up, and causes an interrupt. The Ethernet driver extracts the IP packet from the payload and passes it to the IP software, which sees that it is correctly addressed and processes it.

Various optimizations are possible to make ARP work more efficiently. To start with, once a machine has run ARP, it caches the result in case it needs to contact the same machine shortly. Next time it will find the mapping in its own cache, thus eliminating the need for a second broadcast. In many cases, host 2

will need to send back a reply, forcing it, too, to run ARP to determine the sender's Ethernet address. This ARP broadcast can be avoided by having host 1 include its IP-to-Ethernet mapping in the ARP packet. When the ARP broadcast arrives at host 2, the pair (192.32.65.7, *E1*) is entered into host 2's ARP cache. In fact, all machines on the Ethernet can enter this mapping into their ARP caches.

To allow mappings to change, for example, when a host is configured to use a new IP address (but keeps its old Ethernet address), entries in the ARP cache should time out after a few minutes. A clever way to help keep the cached information current and to optimize performance is to have every machine broadcast its mapping when it is configured. This broadcast is generally done in the form of an ARP looking for its own IP address. There should not be a response, but a side effect of the broadcast is to make or update an entry in everyone's ARP cache. This is known as a **gratuitous ARP**. If a response does (unexpectedly) arrive, two machines have been assigned the same IP address. The error must be resolved by the network manager before both machines can use the network.

Now let us look at Fig. 5-61 again, only this time assume that host 1 wants to send a packet to host 4 (192.32.63.8) on the EE network. Host 1 will see that the destination IP address is not on the CS network. It knows to send all such off-network traffic to the router, which is also known as the **default gateway**. By convention, the default gateway is the lowest address on the network (198.31.65.1). To send a frame to the router, host 1 must still know the Ethernet address of the router interface on the CS network. It discovers this by sending an ARP broadcast for 198.31.65.1, from which it learns E3. It then sends the frame. The same lookup mechanisms are used to send a packet from one router to the next over a sequence of routers in an Internet path.

When the Ethernet NIC of the router gets this frame, it gives the packet to the IP software. It knows from the network masks that the packet should be sent onto the EE network where it will reach host 4. If the router does not know the Ethernet address for host 4, then it will use ARP again. The table in Fig. 5-61 lists the source and destination Ethernet and IP addresses that are present in the frames as observed on the CS and EE networks. Observe that the Ethernet addresses change with the frame on each network while the IP addresses remain constant (because they indicate the endpoints across all of the interconnected networks).

It is also possible to send a packet from host 1 to host 4 without host 1 knowing that host 4 is on a different network. The solution is to have the router answer ARPs on the CS network for host 4 and give its Ethernet address, E3, as the response. It is not possible to have host 4 reply directly because it will not see the ARP request (as routers do not forward Ethernet-level broadcasts). The router will then receive frames sent to 192.32.63.8 and forward them onto the EE network. This solution is called **proxy ARP**. It is used in special cases in which a host wants to appear on a network even though it actually resides on another network. A common situation, for example, is a mobile computer that wants some other node to pick up packets for it when it is not on its home network.

DHCP—The Dynamic Host Configuration Protocol

ARP (as well as other Internet protocols) makes the assumption that hosts are configured with some basic information, such as their own IP addresses. How do hosts get this information? It is possible to manually configure each computer, but that is tedious and error-prone. There is a better way, and it is called **DHCP** (**Dynamic Host Configuration Protocol**).

With DHCP, every network must have a DHCP server that is responsible for configuration. When a computer is started, it has a built-in Ethernet or other link layer address embedded in the NIC, but no IP address. Much like ARP, the computer broadcasts a request for an IP address on its network. It does this by using a DHCP DISCOVER packet. This packet must reach the DHCP server. If that server is not directly attached to the network, the router will be configured to receive DHCP broadcasts and relay them to the DHCP server, wherever it is located.

When the server receives the request, it allocates a free IP address and sends it to the host in a DHCP OFFER packet (which again may be relayed via the router). To be able to do this work even when hosts do not have IP addresses, the server identifies a host using its Ethernet address (which is carried in the DHCP DISCOVER packet)

An issue that arises with automatic assignment of IP addresses from a pool is for how long an IP address should be allocated. If a host leaves the network and does not return its IP address to the DHCP server, that address will be permanently lost. After a period of time, many addresses may be lost. To prevent that from happening, IP address assignment may be for a fixed period of time, a technique called **leasing**. Just before the lease expires, the host must ask for a DHCP renewal. If it fails to make a request or the request is denied, the host may no longer use the IP address it was given earlier.

DHCP is described in RFCs 2131 and 2132. It is widely used in the Internet to configure all sorts of parameters in addition to providing hosts with IP addresses. As well as in business and home networks, DHCP is used by ISPs to set the parameters of devices over the Internet access link, so that customers do not need to phone their ISPs to get this information. Common examples of the information that is configured include the network mask, the IP address of the default gateway, and the IP addresses of DNS and time servers. DHCP has largely replaced earlier protocols (called RARP and BOOTP) with more limited functionality.

5.6.5 Label Switching and MPLS

So far, on our tour of the network layer of the Internet, we have focused exclusively on packets as datagrams that are forwarded by IP routers. There is also another kind of technology that is starting to be widely used, especially by ISPs, in order to move Internet traffic across their networks. This technology is

called MPLS (MultiProtocol Label Switching) and it is perilously close to circuit switching. Despite the fact that many people in the Internet community have an intense dislike for connection-oriented networking, the idea seems to keep coming back. As Yogi Berra once put it, it is like deja vu all over again. However, there are essential differences between the way the Internet handles route construction and the way connection-oriented networks do it, so the technique is certainly not traditional circuit switching.

MPLS adds a label in front of each packet, and forwarding is based on the label rather than on the destination address. Making the label an index into an internal table makes finding the correct output line just a matter of table lookup. Using this technique, forwarding can be done very quickly. This advantage was the original motivation behind MPLS, which began as proprietary technology known by various names including **tag switching**. Eventually, IETF began to standardize the idea. It is described in RFC 3031 and many other RFCs. The main benefits over time have come to be routing that is flexible and forwarding that is suited to quality of service as well as fast.

The first question to ask is where does the label go? Since IP packets were not designed for virtual circuits, there is no field available for virtual-circuit numbers within the IP header. For this reason, a new MPLS header had to be added in front of the IP header. On a router-to-router line using PPP as the framing protocol, the frame format, including the PPP, MPLS, IP, and TCP headers, is as shown in Fig. 5-62.

Figure 5-62. Transmitting a TCP segment using IP, MPLS, and PPP.

The generic MPLS header is 4 bytes long and has four fields. Most important is the *Label* field, which holds the index. The *QoS* field indicates the class of service. The *S* field relates to stacking multiple labels (which is discussed below). The *TtL* field indicates how many more times the packet may be forwarded. It is decremented at each router, and if it hits 0, the packet is discarded. This feature prevents infinite looping in the case of routing instability.

MPLS falls between the IP network layer protocol and the PPP link layer protocol. It is not really a layer 3 protocol because it depends on IP or other network

layer addresses to set up label paths. It is not really a layer 2 protocol either because it forwards packets across multiple hops, not a single link. For this reason, MPLS is sometimes described as a layer 2.5 protocol. It is an illustration that real protocols do not always fit neatly into our ideal layered protocol model.

On the brighter side, because the MPLS headers are not part of the network layer packet or the data link layer frame, MPLS is to a large extent independent of both layers. Among other things, this property means it is possible to build MPLS switches that can forward both IP packets and non-IP packets, depending on what shows up. This feature is where the "multiprotocol" in the name MPLS came from MPLS can also carry IP packets over non-IP networks.

When an MPLS-enhanced packet arrives at a LSR (Label Switched Router), the label is used as an index into a table to determine the outgoing line to use and also the new label to use. This label swapping is used in all virtual-circuit networks. Labels have only local significance and two different routers can feed unrelated packets with the same label into another router for transmission on the same outgoing line. To be distinguishable at the other end, labels have to be remapped at every hop. We saw this mechanism in action in Fig. 5-3. MPLS uses the same technique.

As an aside, some people distinguish between *forwarding* and *switching*. Forwarding is the process of finding the best match for a destination address in a table to decide where to send packets. An example is the longest matching prefix algorithm used for IP forwarding. In contrast, switching uses a label taken from the packet as an index into a forwarding table. It is simpler and faster. These definitions are far from universal, however.

Since most hosts and routers do not understand MPLS, we should also ask when and how the labels are attached to packets. This happens when an IP packet reaches the edge of an MPLS network. The LER (Label Edge Router) inspects the destination IP address and other fields to see which MPLS path the packet should follow, and puts the right label on the front of the packet. Within the MPLS network, this label is used to forward the packet. At the other edge of the MPLS network, the label has served its purpose and is removed, revealing the IP packet again for the next network. This process is shown in Fig. 5-63. One difference from traditional virtual circuits is the level of aggregation. It is certainly possible for each flow to have its own set of labels through the MPLS network. However, it is more common for routers to group multiple flows that end at a particular router or LAN and use a single label for them. The flows that are grouped together under a single label are said to belong to the same FEC (Forwarding Equivalence Class). This class covers not only where the packets are going, but also their service class (in the differentiated services sense) because all the packets are treated the same way for forwarding purposes.

With traditional virtual-circuit routing, it is not possible to group several distinct paths with different endpoints onto the same virtual-circuit identifier because there would be no way to distinguish them at the final destination. With MPLS,

Figure 5-63. Forwarding an IP packet through an MPLS network.

the packets still contain their final destination address, in addition to the label. At the end of the labeled route, the label header can be removed and forwarding can continue the usual way, using the network layer destination address.

Actually, MPLS goes even further. It can operate at multiple levels at once by adding more than one label to the front of a packet. For example, suppose that there are many packets that already have different labels (because we want to treat the packets differently somewhere in the network) that should follow a common path to some destination. Instead of setting up many label switching paths, one for each of the different labels, we can set up a single path. When the already-labeled packets reach the start of this path, another label is added to the front. This is called a stack of labels. The outermost label guides the packets along the path. It is removed at the end of the path, and the labels revealed, if any, are used to forward the packet further. The S bit in Fig. 5-62 allows a router removing a label to know if there are any additional labels left. It is set to 1 for the bottom label and 0 for all the other labels.

The final question we will ask is how the label forwarding tables are set up so that packets follow them. This is one area of major difference between MPLS and conventional virtual-circuit designs. In traditional virtual-circuit networks, when a user wants to establish a connection, a setup packet is launched into the network to create the path and make the forwarding table entries. MPLS does not involve users in the setup phase. Requiring users to do anything other than send a datagram would break too much existing Internet software.

Instead, the forwarding information is set up by protocols that are a combination of routing protocols and connection setup protocols. These control protocols are cleanly separated from label forwarding, which allows multiple, different control protocols to be used. One of the variants works like this. When a router is booted, it checks to see which routes it is the final destination for (e.g., which prefixes belong to its interfaces). It then creates one or more FECs for them, allocates a label for each one, and passes the labels to its neighbors. They, in turn, enter the labels in their forwarding tables and send new labels to their neighbors, until all the routers have acquired the path. Resources can also be reserved as the

path is constructed to guarantee an appropriate quality of service. Other variants can set up different paths, such as traffic engineering paths that take unused capacity into account, and create paths on-demand to support service offerings such as quality of service.

Although the basic ideas behind MPLS are straightforward, the details are complicated, with many variations and use cases that are being actively developed. For more information, see Davie and Farrel (2008) and Davie and Rekhter (2000).

5.6.6 OSPF—An Interior Gateway Routing Protocol

We have now finished our study of how packets are forwarded in the Internet. It is time to move on to the next topic: routing in the Internet. As we mentioned earlier, the Internet is made up of a large number of independent networks or ASes (Autonomous Systems) that are operated by different organizations, usually a company, university, or ISP. Inside of its own network, an organization can use its own algorithm for internal routing, or intradomain routing, as it is more commonly known. Nevertheless, there are only a handful of standard protocols that are popular. In this section, we will study the problem of intradomain routing and look at the OSPF protocol that is widely used in practice. An intradomain routing protocol is also called an interior gateway protocol. In the next section, we will study the problem of routing between independently operated networks, or interdomain routing protocol or exterior gateway protocol. The protocol that is used in the Internet is BGP (Border Gateway Protocol).

Early intradomain routing protocols used a distance vector design, based on the distributed Bellman-Ford algorithm inherited from the ARPANET. RIP (Routing Information Protocol) is the main example that is used to this day. It works well in small systems, but less well as networks get larger. It also suffers from the count-to-infinity problem and generally slow convergence. The ARPANET switched over to a link state protocol in May 1979 because of these problems, and in 1988 IETF began work on a link state protocol for intradomain routing. That protocol, called **OSPF** (**Open Shortest Path First**), became a standard in 1990. It drew on a protocol called **IS-IS** (**Intermediate-System to Intermediate-System**), which became an ISO standard. Because of their shared heritage, the two protocols are much more alike than different. For the complete story, see RFC 2328. They are the dominant intradomain routing protocols, and most router vendors now support both of them. OSPF is more widely used in company networks, and IS-IS is more widely used in ISP networks. Of the two, we will give a sketch of how OSPF works.

Given the long experience with other routing protocols, the group designing OSPF had a long list of requirements that had to be met. First, the algorithm had to be published in the open literature, hence the "O" in OSPF. A proprietary

solution owned by one company would not do. Second, the new protocol had to support a variety of distance metrics, including physical distance, delay, and so on. Third, it had to be a dynamic algorithm, one that adapted to changes in the topology automatically and quickly.

Fourth, and new for OSPF, it had to support routing based on type of service. The new protocol had to be able to route real-time traffic one way and other traffic a different way. At the time, IP had a *Type of service* field, but no existing routing protocol used it. This field was included in OSPF but still nobody used it, and it was eventually removed. Perhaps this requirement was ahead of its time, as it preceded IETF's work on differentiated services, which has rejuvenated classes of service.

Fifth, and related to the above, OSPF had to do load balancing, splitting the load over multiple lines. Most previous protocols sent all packets over a single best route, even if there were two routes that were equally good. The other route was not used at all. In many cases, splitting the load over multiple routes gives better performance.

Sixth, support for hierarchical systems was needed. By 1988, some networks had grown so large that no router could be expected to know the entire topology. OSPF had to be designed so that no router would have to.

Seventh, some modicum of security was required to prevent fun-loving students from spoofing routers by sending them false routing information. Finally, provision was needed for dealing with routers that were connected to the Internet via a tunnel. Previous protocols did not handle this well.

OSPF supports both point-to-point links (e.g., SONET) and broadcast networks (e.g., most LANs). Actually, it is able to support networks with multiple routers, each of which can communicate directly with the others (called **multiaccess networks**) even if they do not have broadcast capability. Earlier protocols did not handle this case well.

An example of an autonomous system network is given in Fig. 5-64(a). Hosts are omitted because they do not generally play a role in OSPF, while routers and networks (which may contain hosts) do. Most of the routers in Fig. 5-64(a) are connected to other routers by point-to-point links, and to networks to reach the hosts on those networks. However, routers *R3*, *R4*, and *R5* are connected by a broadcast LAN such as switched Ethernet.

OSPF operates by abstracting the collection of actual networks, routers, and links into a directed graph in which each arc is assigned a weight (distance, delay, etc.). A point-to-point connection between two routers is represented by a pair of arcs, one in each direction. Their weights may be different. A broadcast network is represented by a node for the network itself, plus a node for each router. The arcs from that network node to the routers have weight 0. They are important nonetheless, as without them there is no path through the network. Other networks, which have only hosts, have only an arc reaching them and not one returning. This structure gives routes to hosts, but not through them.

Figure 5-64. (a) An autonomous system. (b) A graph representation of (a).

Figure 5-64(b) shows the graph representation of the network of Fig. 5-64(a). What OSPF fundamentally does is represent the actual network as a graph like this and then use the link state method to have every router compute the shortest path from itself to all other nodes. Multiple paths may be found that are equally short. In this case, OSPF remembers the set of shortest paths and during packet forwarding, traffic is split across them. This helps to balance load. It is called **ECMP** (**Equal Cost MultiPath**).

Many of the ASes in the Internet are themselves large and nontrivial to manage. To work at this scale, OSPF allows an AS to be divided into numbered areas, where an area is a network or a set of contiguous networks. Areas do not overlap but need not be exhaustive, that is, some routers may belong to no area. Routers that lie wholly within an area are called **internal routers**. An area is a generalization of an individual network. Outside an area, its destinations are visible but not its topology. This characteristic helps routing to scale.

Every AS has a **backbone area**, called area 0. The routers in this area are called **backbone routers**. All areas are connected to the backbone, possibly by tunnels, so it is possible to go from any area in the AS to any other area in the AS via the backbone. A tunnel is represented in the graph as just another arc with a cost. As with other areas, the topology of the backbone is not visible outside the backbone.

Each router that is connected to two or more areas is called an **area border** router. It must also be part of the backbone. The job of an area border router is to summarize the destinations in one area and to inject this summary into the other