Azure Microsoft Machine Learning Studio

Automatic price prediction Model

In this project, we tried to create a model which automatically predicts
the price of automobile based on the data sets that are already available
in Azure Microsoft Machine Learning Studio.

Workflow:

- 1. Import the Data
- 2. Identify the columns that has more missing values
- 3. Missing Values Treatment
- 4. Split the data
- 5. Train the model
- 6. Test the model
- 7. Evaluate of the model

1. Import the data

2. Identify the columns that has more missing values

Here we observe that the column normalised-losses has more missing values.

3. Missing Values Treatment

Since the column normalized-losses has more missing values we can exclude that column.

4. Split the data

We usually split the data for training and testing randomly. Here we used 70% of data for training and the remaining for testing.

5. Train the Model

We used linear regression model for the analysis.

6. Test the model

7. Evaluate of the model

These are the results after evaluating the model.

rows 58	colum 26	ns							
uel- system	bore	stroke	compression- ratio	horsepower	peak- rpm	city- mpg	highway- mpg	price	Scored Labels
l			1	.llu	. III.II.	1611	alılıı	lut	l _{II}
mpfi	3.54	3.07	9.3	110	5250	21	28	15510	13284.899402
spdi	3.03	3.39	7.6	102	5500	24	30	7689	7658.867692
mpfi	3.19	3.4	9	85	5250	27	34	8195	8863.220012
2bbl	3.03	3.11	9.6	70	5400	38	43	6295	5905.454253
spfi	3.43	3.23	9.2	90	5000	24	29	11048	10750.34708
mpfi	3.46	3.1	8.3	155	4750	16	18	34184	38369.412133
2bbl	3.15	3.29	9.4	69	5200	31	37	5499	5894.125916
mpfi	3.03	3.39	7.6	102	5500	24	30	7957	9549.224752
mpfi	3.62	3.39	8	182	5400	16	22	41315	30915.948926
mpfi	3.78	3.15	9.5	114	5400	19	25	22625	19695.952699
•	~ . ~	~ ~~	^	70		^^	~ .	0050	

price	Scored Labels
lut	l _{III}
15510	13284.899402
7689	7658.867692
8195	8863.220012
6295	5905.454253
11048	10750.34708
34184	38369.412133
5499	5894.125916
7957	9549.224752
41315	30915.948926
22625	19695.952699
2252	7000 507(00)

