Machine Learning: Trees and Forests

Introduction

- Decision Trees: Using tree-logic to make predictions
 - CART: Classification and Regression Trees
 - Random Forests: averaging over many possible trees

What is a Decision Tree?

- Tree-logic uses a series of steps to come to a conclusion.
- The trick is to have mini-decisions combine for good choices.
- Each decision is a node, and the final prediction is a leaf node

Example Tree Based on Alumni Data

Decision Tree Basics

- The plot above is called a dendrogram and shows:
 - Probability of being a non-donor (middle line in each node)
 - ► Share of the total population in a given node (last line in the node)
- Standard elements of a Tree
 - ▶ Root Node: the starting point; the entire population
 - Internal nodes, labeled with one of the inputs
 - Terminal nodes or "leaves"
- Splitting Rules
 - ▶ These create the two branches out of a given internal node
 - ► E.g. <70% Rain
- Predictions
 - \triangleright Outcomes are predicted by using the average y_i in each terminal node

A More Complex Tree for Alumni

Continuous Outcomes: Engagement in TV shows

Trees capture complex interactions between variables

Algorithm for Growing a Regression Tree

- Start at the root node and successfully add splits and thus additional nodes
- How to add splits:
 - lacktriangle Focus on one terminal node in the current tree, and its data ${\mathscr R}$
 - ► For each X variable in the data set, search for a split point that minimizes the RSS (Sum of Squared Residuals):

$$RSS = \sum_{i \in \mathcal{R}_{a}} (y_{i} - \hat{y})^{2} + \sum_{i \in \mathcal{R}_{b}} (y_{i} - \hat{y})^{2}$$

- where \mathcal{R}_a is all the data with $x_i < s$ and \mathcal{R}_b is all the data with $x_i >= s$ for some split point s
- pick the x_i and s that together minimize the RSS and use the x_i and s to split the node

Regression Trees: Discussion

Benefits of regression trees:

- Flexible (non-parametric) regression functions
- Allows for interactions between inputs
- Built-in variable selection. (Unpredictive variables are not used for splits.)
- Can be easily interpreted if the tree size is small
- Tress can be displayed graphically this is great to communicate the estimation results (if the tree size is not too large)

Polling questions

Access the poll here:

www.pollEv.com/mthomas

- Log in with your NUS ID
- This will allow me to give credit for your participation.

Overfit

- Prediction in a regression tree is straightforward, but especially in a large regression tree (small node size) the prediction quality will be poor because of over-fitting.
- Why this happens is easy to see: In the limit, if each node is based on only one observation, the in-sample fit will be perfect! Out-of-sample, not so much.
- **Pruning** is a common method to reduce the variance of the prediction by adding a cost for growing a tree with many leaves.

Tree Pruning

First, grow a very large, complex tree. Then prune the tree back by eliminating branches to obtain a **subtree**. For any such pruned tree T with number of leaves L_T we evaluate the following **cost complexity criterion**:

$$\sum_{l=1}^{L_T} \sum_{i \in \mathcal{R}_l} (y_i - \hat{y}_{\mathcal{R}_l})^2 + \alpha L_T$$

lpha is the cost complexity parameter. This criterion introduces a tradeoff between in-sample fit and the cost of a complex tree with many leaves. Note that this is very similar to the penalty term in a ridge regression or LASSO that allows for regularization.

For any given *cost complexity parameter* we can find the subtree (of the original, big tree) that minimizes the cost complexity criterion.

How do we determine a good value of the tuning parameter α ? — Cross-validation

Random Forests

- We discussed the advantages of trees (flexibility, tool to communicate and visualize the results), but in practice they are a poor tool for prediction.
- A random forest
 - estimates relationship between Xs and Y values
 - inherits the flexibility of trees (non-parametric estimator)
 - provides a much better out-of-sample fit than trees
- Random forests are an ensemble method
 - ▶ Instead of one algorithm to predict \hat{y} , we use an ensemble of B algorithms
 - the final \hat{y} prediction is the average prediction across all of the B algorithms

Interlude: The bootstrap

- The bootstrap is a resampling method (like cross-validation)
 - Used to simulate the sampling distribution of an estimator
 - ▶ Often we don't know the true distribution (unless $N \to \infty$)
- How to run an idealized bootstrap:
 - ① Obtain B (say, B = 1000) independent samples with N data points
 - 2 Calculate the estimator, $\hat{\theta}_b$, for each of the samples b = 1, ..., B
 - ① Predict the standard error of $\hat{\theta}_b$ using the standard deviation of the B $\hat{\theta}_b$ values, calculate a 95-percent confidence interval based on the 2.5th and 97.5th percentile of the $\hat{\theta}_b$ values, etc.

The Bootstrap

- The ideal solution is infeasible because we only have one data set.
- ullet Instead we have to create B data sets from the original population:
 - ① Obtain B data sets by randomly sampling N observations from the original data (which has N observations) with replacement
 - ② Calculate the estimator, $\hat{\theta}_b$, for each of the samples b=1,...,B
 - **③** Predict the standard error of $\hat{\theta}_b$ using the standard deviation of the B $\hat{\theta}_b$ values, calculate a 95-percent confidence interval based on the 2.5th and 97.5th percentile of the $\hat{\theta}_b$ values, etc.
- The bootstrap is easy to implement (on a modern computer) and tends to provide better estimates (e.g. a confidence interval) than an asymptotic approximation

Bagging

- Bagging means "bootstrap aggregation"
- The bagging algorithm:
 - Create B training data sets using the bootstrap
 - Estimate the prediction algorithm for each training set b
 - Average over all B predictions
- Purpose of bagging is to reduce the variance of the prediction without making the bias (much) worse

Selection of random subset of inputs

When building a tree

- At each attempted split the random forest algorithm will only split based on a randomly chosen subset of all p inputs (e.g., \sqrt{p} or p/3 randomly chosen inputs).
- This is sometimes called "feature bagging" or a "random subspace method"

Goal:

- Break reliance of prediction on a possible small number of "dominant" features
- explore a wider set of inputs to determine splits

Achieves:

- reduced overfitting
- reduced variance of the predictions
- improved out-of-sample predictive power

Example

- Predicting Private Label purchase share using housing prices (from Zillow)
 - Notice what each individual tree looks like
 - Notice how they aggregate to make the Random Forest prediction

Tree 1

Tree 5

Random Forest Prediction averaged over 2000 trees

Discussion

- Note how a random forest can approximate a "continuous" relationship, even though each individual tree can't — because of bagging and random subset of features selection
- The "price" of random forest:
 - ► Computational costs—even on a fast computer building 1000 trees may take several hours (or more) if the data size (*N* and *p*) is large

Polling questions

Access the poll here:

www.pollEv.com/mthomas

- Log in with your NUS ID
- This will allow me to give credit for your participation.

Summary

- Classification and regression trees (CART)
 - Flexible approximation of regression functions (non-linearities, interactions)
 - Good for visualization and communication
 - Often poor out-of-sample predictions
- Random forests
 - State-of-the-art non-parametric estimator
 - Bagging
 - Random feature subset selection
 - Computational cost can be high, but feasible to implement on a modern computer
 - Difficult to interpret how the model made its predictions

What would be a natural split point if you were fitting a tree to these data?

- * \$0
- * \$50,00
- * Ans: \$100,000
- * \$150,000
- * \$200,000
- * \$250,000

When splitting the training data to create a tree, we find the split that:

- * Ans: Minimizes the sum of squared residuals
- * Gives the best predictions in cross-validation
- * Gives the best predictions in the holdout sample.
- * Matches the linear model most closely.

What is a natural way to measure the complexity of a tree?

- * Ans: Count the number of leaves
- * Sum the values of all the split points.
- * Count the number of observations in the most populated leaf.
- * Count the number of observations in the least populated leaf.

What makes Random Forest an ensemble method?

- * Ans: Averaging across many models
- * Using trees
- * Feature bagging
- * Using bootstrapping.

How does Random Forest make better predictions than a a single tree?

- * Ans: Using the average prediction across many trees.
- * Applying cross validation.
- * Imposing a penalty on model complexity.
- * Using a holdout sample.

How does Random Forest approximate a continuous function?

- * Ans: Averaging across the predictions of many trees.
- * Using cross validation.
- * Mixing trees with linear models.
- * Drawing random predictions from trees.