

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH University of Science and Technology

#### Fakt I.

Równanie postaci

$$a_1x_1+a_2x_2+\ldots+a_nx_n=b$$

gdzie  $a_i \in \mathbb{R}, \ b \in \mathbb{R}$  nazywamy równaniem liniowym o n niewiadomych  $x_1, \ldots x_n \in \mathbb{R}$ 

Układy równań liniowych

2 / 23

#### Fakt II.

Układem m równań liniowych z n niewiadomymi  $x_1, \ldots x_n$  nazywamy układ postaci

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\
\dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases} (1)$$

gdzie  $a_{ij} \in \mathbb{R}$ ,  $b_i \in \mathbb{R}$ .

#### Uwaga

Układ (1) jednorodny  $\iff b_1 = b_2 \dots b_m = 0$ 

Układ (1) niejednorodny  $\iff \exists b_i \neq 0.$ 



#### Fakt III.

Rozwiązaniem układu (1) nazywamy ciąg liczb rzeczywistych  $x_1, \ldots x_n$  po podstawieniu których do (1) otrzymujemy równość.

#### Fakt IV

- Układ (1) oznaczony  $\iff$  istnieje dokładnie jedno rozwiązanie  $x_1, \dots x_n$ ;
- Układ (1) nieoznaczony  $\iff$  istnieje nieskończenie wiele rozwiązań  $x_1, \ldots x_n$ ;
- Układ (1) sprzeczny  $\iff$  nie istnieje rozwiązań  $x_1, \dots x_n$

#### Uwaga

Układ (1) jednorodny  $\iff$  oznaczony lub nieoznaczony.

### Układ oznaczony

$$\begin{cases} x_1 + x_2 = 1, \\ x_1 - x_2 = 0, \end{cases}$$

### Układ nieoznaczony

$$\begin{cases} x_1 + x_2 = 1, \\ 2x_1 + 2x_2 = 3, \end{cases}$$

6 / 23

### Układ sprzeczny

$$\begin{cases} x_1 + x_2 = 1, \\ x_1 + x_2 = 0, \end{cases}$$

Jak znaleźć rozwiązanie układu (1)?



Rysunek: może MACIERZY?

#### Postać macierzowa układu (1).

#### Uwaga

A - macierz główna układu (1),

X - macierz niewiadomych, B - macierz wyrazów wolnych



#### Układ Cramera

Układ (1) nazywamy układem Cramera jeśli A - macierz kwadratowa (tzn., m=n) i nieosobliwa (tzn. det  $A \neq 0$ ).

#### Twierdzenie.

Układ Cramera jest układem oznaczonym i

$$\begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = A^{-1} \cdot \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{bmatrix}$$

# Wykład V. Wzory Cramera.

#### Twierdzenie.

Rozwiązanie  $x_1, \ldots, x_n$  układu Cramera jest określone wzorem:

$$x_1 = \frac{\det A_1}{\det A}, \quad x_2 = \frac{\det A_2}{\det A}, \quad \dots \quad x_n = \frac{\det A_n}{\det A}$$

gdzie

$$\det A_1 = \begin{vmatrix} b_1 & a_{12} & \dots & a_{1n} \\ b_2 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ b_n & a_{n2} & \dots & a_{nn} \end{vmatrix}, \dots \det A_n = \begin{vmatrix} a_{11} & a_{12} & \dots & b_1 \\ a_{21} & a_{22} & \dots & b_2 \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & b_n \end{vmatrix}$$

# Wykład V. Wzory Cramera. Szkic dowodu.

### Układ n równań i n niewiadomych, ale nie układ Cramera, co będzie?

$$\begin{cases} x_1 + x_2 = 1, \\ 2x_1 + 2x_2 = \emptyset, \end{cases}$$

$$\begin{cases} x_1 + x_2 = 1, \\ x_1 + x_2 = 0, \end{cases}$$

# Wykład V. Rząd macierzy.

#### Definicja. Minor macierzy stopnia k

Niech A macierz wymiaru  $m \times n$  oraz  $1 \le k \le \min(n, m)$ . Minorem stopnia k macierzy A nazywamy wyznacznik macierzy k wadratowej stopnia k stworzonej k elementów k wybranych wierszy oraz k wybranych kolumn macierzy k.

# Wykład V. Rząd macierzy.

#### Definicja.

Niech A macierz wymiaru  $m \times n$ . Rzędem macierzy A nazywamy największy stopień jej niezerowego minora.

Rząd macierzy A oznaczamy przez rz A. Rząd macierzy zerowej jest 0.

#### Własności rzędu macierzy A

- rząd macierzy kwadatowej A stopnia n jest: rz A = n gdy det  $A \neq 0$  i rz A < n gdy det A = 0;
- dla macierzy A wymiaru  $m \times n$ ,  $1 \leqslant rz A \leqslant min(m, n)$ ;
- rz  $A = rz A^T$ ;
- rząd macierzy trójkątnej jest równy liczbie jej niezerowych elementów na głównej przekątnej.

# Wykład V. Rząd macierzy A?..

$$A = \left[ \begin{array}{rrrr} 4 & 0 & -8 & 0 \\ 2 & 0 & -4 & 0 \\ 3 & 0 & -6 & 0 \\ 1 & 0 & -2 & 0 \end{array} \right]$$

# Wykład V. Twierdzenie Kroneckera-Capellego.

Niecz  $A \cdot X = B$  – postać macierzowa układu równań (1). Macierz

$$[A|B] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_n \end{bmatrix}.$$

nazywamy macierzą rozszerzoną układu (1).

#### Twierdzenie Kroneckera-Capellego.

Układ równań liniowych (1) ma rozwiązanie wtedy i tylko wtedy gdy rząd macierzy głównej układu A jest równy rzędowi macierzy rozszerzonej [A|B] tego układu, tzn.

$$rz A = rz [A|B].$$

**↓□▶ ◀▣▶ ◀臺▶ ▲臺▶** 臺 ∽٩ભ

17 / 23

Układy równań liniowych 09.11.2020

# Wykład V. Wnioski z dowodu Twierdzenia Kroneckera-Capellego.

Mamy układ równań  $A \cdot X = B$ .

#### Układ sprzeczny

$$\operatorname{rz} A \neq \operatorname{rz} [A|B]$$

#### Układ oznaczony

$$rz A = rz [A|B] = n.$$

#### Układ nieoznaczony

$$rz A = rz [A|B] = r < n$$

 $\implies$  Układ ma nieskończenie wiele rozwiązań załeżnych od n-r parametrów!



# Wykład V. Twierdzenie Kroneckera-Capellego.

$$\begin{cases} x_1 + x_2 = 1, \\ x_1 - 2x_2 = 0, \end{cases}$$

$$\begin{cases} x_1 + x_2 = 1, \\ 2x_1 + 2x_2 = 1. \end{cases}$$

$$\begin{cases} x_1 + x_2 = 1, \\ x_1 + x_2 = 0, \end{cases}$$

# Wykład V. Algorytm rozwiązywania układów nieoznaczonych.

#### Metoda największego minora.

I krok. Szukamy niezerowy minor stopnia  $r = rz A = rz [A|B] \leqslant n$ ;

II krok. Usunięcie wszystkich wierszy układu (1) znajdujących się poza wyróżnionym minorem;

III krok. Utworzenie i rozwiązanie układu Cramera z r niewiadomymi oraz n – r parametrami.

# Wykład V. Algorytm rozwiązywania układów nieoznaczonych.

#### Przykład

$$\begin{cases} x - 2y + z = 3, \\ 3x + 5y - 2z = 4, \\ 2x - 4y + 2z = 6 \end{cases}$$

# Wykład V. Przykład.

Dziękuję za Uwagę!