Computer Communication and Networks Lab Exp 1 & 2

Components in Computer Networking

Hardware Components

Routers / Switches / Bridge / Repeater / Firewall / NIC Card

Wires

Router

- Routers guide and direct network data
 - Packets that contain various kinds of data

Such as files, communications, and simple transmissions like web interactions.

TP-Link Archer C6 Gigabit MU-MIMO Wireless Router

Switch

Is networking hardware that connects devices on a computer network

By using packet switching to receive and forward data to the destination

device.

Also called switching hub, bridging hub

Avaya ERS 2550T-PWR, a 50-port Ethernet switch

TP-Link TL-SF1008D 8-Port 10/100Mbps Desktop Switch

Bridge

- A network bridge joins two separate computer networks.
- The network bridge enables communication between the two networks and provides a way for them to work as a single network.
- Bridges extend local area networks to cover a larger physical area than the LAN can reach.

Repeater

- An electronic device that receives a signal and retransmits it at a higher level or higher power
- So that the signal can cover longer distances.

Firewall

- A Firewall is a network security device that monitors and filters incoming and outgoing network traffic based on an organization's previously established security policies.
- At its most basic, a firewall is essentially the barrier that is placed in between a private internal network and the public Internet.

NIC Card

Wires

Coaxial Cable

OFC

Cisco Packet Tracer

Cisco Packet Tracer

Packet Tracer is a **cross-platform visual simulation tool** designed by Cisco Systems that allows users **to create network topologies** and **imitate modern computer networks.**

Packet Tracer makes use of a **drag and drop user interface**, allowing users to add and remove simulated network devices as they see fit.

Simulation, Visualization, Collaboration

simulate IOS commands

visualize network traffic

collaborate on multiuser activities

Various Networking Specific Commands

ipconfig

Displays all current TCP/IP network configuration

ping

- Syntax: ping [target address].
- e.g. ping www.google.com

tracert

- Determines the path taken to a destination by sending Internet Control Message Protocol (ICMP) echo.
- e.g. tracert www.google.com

netstat

Displays active TCP connections, ports on which the computer is listening

nslookup

Lets users enter a host name and find out the corresponding IP address or domain name system (DNS) record.

Client-Server Network Topology using Cisco Packet Tracer

Objectives:

- 1. Set-up a simple point-to-point network between two hosts.
- 2. Setup a local area network using star topology using a Data Link Layer Switch
- 3. Setup a Server Client Topology

Client-Server Network Topology using Cisco Packet Tracer

Objective 1: Set-up a simple point-to-point network between two hosts.

Step 1 Choose the Hosts

Step 2 Choose the Connecting cable

Client-Server Network Topology using Cisco Packet Tracer

Objective 1: Set-up a simple point-to-point network between two hosts.

Step 3 Configure the IP Address of each Host as:

Host 1: 192.168.1.1

Host 2: 192.168.1.2

Client-Server Network Topology using Cisco Packet Tracer

Objective 1: Set-up a simple point-to-point network between two hosts.

Client-Server Network Topology using Cisco Packet Tracer

Objective 2: Setup a local area network using star topology using a Data Link - B X Layer Switch. **-^**Logical Physical x: 814, y: 378 **Step 1** Choose the Hosts **Step 2** Choose the Switch witch0 PC-PT PC4 PC-PT PC₀ **Step 3** Choose the PC-PT PC-PT Connecting cable PC3 PC1 PC-PT Time: 00:02:38 () Realtime Simulation Fire Last Status Source Destination Scenario 0 V Togale PDU List Window Automatically Choose Connection Type

Client-Server Network Topology using Cisco Packet Tracer

Objective 2: Setup a local area network using star topology using a Data Link

Layer Switch.

Step 3 Configure the IP Address of each Host as:

Host 1: 192.168.1.1

Host 2: 192.168.1.2

Host 3: 192.168.1.3

Host 4: 192.168.1.4

Host 5: 192.168.1.5

Client-Server Network Topology using Cisco Packet Tracer

Objective 2: Setup a local area network using star topology using a Data Link

Laver Switch

Step 4 use ping command to access the Host 4 from Host 1 to verify if they are connected.

Host 1: ping 192.168.1.4


```
PC2
                                                                     Config Desktop
                           Programming
 Physical
                                         Attributes
                                                                        Χ
 Command Prompt
  C:\>ping 192.168.1.2
  Pinging 192.168.1.2 with 32 bytes of data:
  Reply from 192.168.1.2: bytes=32 time=4ms TTL=128
  Reply from 192.168.1.2: bytes=32 time=2ms TTL=128
  Reply from 192.168.1.2: bytes=32 time=2ms TTL=128
  Reply from 192.168.1.2: bytes=32 time=2ms TTL=128
  Ping statistics for 192.168.1.2:
      Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
  Approximate round trip times in milli-seconds:
```

Client-Server Network Topology using Cisco Packet Tracer

Client-Server Network Topology using Cisco Packet Tracer

Objective 3:

Setup a Server Client Topology

Step 3 Configure the Server

Give the same IP as the DNS Server IP

Client-Server Network Topology using Cisco Packet Tracer

Objective 3:

Setup a Server Client Topology

Step 4 Check for Connectivity from Hosts
Using the ping command from hosts
ping 192.168.1.10

```
PC0
                                                                      Physical
          Config Desktop
                            Programming
                                         Attributes
                                                                         Χ
 Command Prompt
  Cisco Packet Tracer PC Command Line 1.0
  C:\>ping 192.168.1.10
  Pinging 192.168.1.10 with 32 bytes of data:
  Reply from 192.168.1.10: bytes=32 time<1ms TTL=128
  Ping statistics for 192.168.1.10:
      Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
  Approximate round trip times in milli-seconds:
      Minimum = 0ms, Maximum = 0ms, Average = 0ms
  C:\>
```

Client-Server Network Topology using Cisco Packet Tracer

Objective 3:

Setup a Server Client Topology

Step 5 use the services of Server from any host open the browser and enter the URL as http://192.168.1.10/index.html

Client-Server Network Topology using Cisco Packet Tracer

Objective 3:

Setup a Server Client Topology

Step 5 use the services of Server from any host open the browser and enter the URL as http://192.168.1.10/index.html

Set-up a Wide Area Network using a router in Cisco Packet Tracer

Objectives:

- 1. To set-up a physical network wide area network using a router
- 2. Configure a server on LAN-2
- **3.** Try to access the server on LAN-1

Expt. 2: Set-up a Wide Area Network using a router in Cisco Packet Tracer

Set-up a Wide Area Network using a router in Cisco Packet Tracer

Step 1:

Select the following components:

- a. End Devices > PC
- b. Network Devices > Switches > Switch 2960
- c. Network Devices > Routers > Router 2911

Step 2:

Form 2 LANs, and connect PCs to each via a 2960 switch via straight cables

- a. Assign IP Addresses to LAN 1
 - i. Assign IP address '192.168.1.X' to PCX
- b. Assign IP Addresses to LAN 2
 - i. Assign IP address '10.10.10.Y' to PCY

Set-up a Wide Area Network using a router in Cisco Packet Tracer

Step 3:

Connect the Switches to the Router 2911 via Gigabit interface

i. Connect Gig0/1 of SW 1 to Gig0/0 of Router

- Assign IP Addresses '192.168.1.X' to the Gig0/0 interface of the router 2911 and
- Check 'Port Status' to 'On'

ii. Connect Gig0/1 of SW 2 to Gig0/1 of Router

- Assign IP Addresses '10.10.10.Y' to the Gig0/1 interface of the router 2911 and
- Check 'Port Status' to 'On'

Set-up a Wide Area Network using a router in Cisco Packet Tracer

Step 4:

Assign Default Gateway Addresses:

i. GW Address '192.168.1.4' to LAN 1

ii. GW Address '10.10.10.4' to LAN 2

Step 5:

Configure Server on LAN-2

Step 6:

- i. ping LAN 2 from LAN 1 to check for connectivity
- ii. Access DNS server on LAN 1