02/08/2022 Tutorial-2 Pike Maily 1Rv21m (07)
1) Find the time complexity of an algorithm which was the executable Roth. Port. Port.
@ Sorting Part that taxes - & n m-1) Companisons.
Destring Part that taxes - In (n-1) Companisons. To check Consecutive element, it requires no Companison.
Contract of the desired of the contract of the
Sol \rightarrow With the help of Property of asymptotic metalion, order of growth for Sorting Path is $\frac{1}{2}n(n-1)$ $=\frac{n^2-n}{2}$
: It is approxiamathy (x) n2 : Quadratic in Nature. To order of growth Checkers ("ansecutive clement is no Companison which is approxiamately (x) n.
: Linear in Nature
:. let, fim)= n2
$eg_{2(h)} = v$

 $f(n) = f_1(n) + f_2(n) = mex (n^2, n)$ $f_2(n) \approx n^2$

2) Order the fellowing fractions according to their order of granth from the lowest to the highest.

(n-2)!, 5 leg (n+100)10, 220, 10.

order of growth $(n-2)! \rightarrow n!$ (Factorial in nature).

order of growth $5 \log(n+100)^{10} \rightarrow \log(n)^{10}$ (legarithmic)

order of growth $2^{2n} \rightarrow 2^{2n}$ (Expenential in nature)

order of growth $10 \rightarrow 10$ (complant in nature)

: decording to order of growth from the lowest to the highest is $10 \le 5\log (n+100)^0 \le 2^{2n} \le (n-2)!$

3 Solve the following recurrence relation
$$X(n) = X(n) + 1$$
 for $n > 1$, $X(i) = 1$

:
$$x(m) = \begin{cases} 1 & \text{if } m = 1 \\ x(m_3) + 1 \end{cases}$$
 Otherwise.

! Consider
$$x(m) = x(m_3) + 1$$
 | $x(m) = x(m_3) + 1 - 1$
So, $x(m) = \left(x(m_3) + 1\right) + 1$ | $x(m_3) = x(\frac{m_3}{3}) + 1$
 $x(m_3) = x(m_3) + 1$

$$X(m) = \left[X(m_{27}) + 1 \right] + 2$$

$$= \left[X(m_{3}) = X(m_{3}) + 1 \right] + 2$$

$$= \left[X(m_{3}) = X(m_{3}) + 1 \right] + 2$$

$$= \left[X(m_{3}) + 1$$

$$X(m) = \left(\frac{x \left(\frac{m}{2+} \right) + 1}{1 + 2} \right)$$

$$= x \left(\frac{m}{3!} + 1 \right)$$

$$= x \left(\frac{m}{3!} + 1 \right)$$

Samo Character	operand Stack	Geration
5	108 1 → TOP	Which will be see
3	Pop S 3 Top	0P2 = 3, 0P1 = 5 5+3=8
6	6 top	
2	2 + top 6 8	0P2=2,0P1=6 6/2=3
	3	
* .	24	0P2=3, 0P1=8

· No character left out in Postfix. exp. So, the top of the shork is the result. So, 39.

Implement the Synamic memory Allo Cation using Stack.