A Genericity problem in Lorentzian Geometry

Roberto Giambò

Dipartimento di Matematica e Informatica Università di Camerino (Italy)

roberto.giambo@unicam.it
http://www.cs.unicam.it/giambo

GeLoBa2009 Martina Franca, July 9, 2009

Outline

- Introduction
 - Genericity and stability in GR
 - Genericity of lightlike nondegeneracy
- Variational setup
 - Fermat principles
- Proof of the main result
 - C^k genericity of lightlike nondegeneracy
 - C^{∞} genericity of lightlike nondegeneracy

Outline

- Introduction
 - Genericity and stability in GR
 - Genericity of lightlike nondegeneracy
- 2 Variational setup
 - Fermat principles
- Proof of the main result
 - C^k genericity of lightlike nondegeneracy
 - C^{∞} genericity of lightlike nondegeneracy

Why genericity?

S W Hawking, Stable and Generic properties in General Relativity, Gen Rel Grav 1 (1971)

...

The accuracy of the observation is always limited by practical difficulties and by the uncertainty principle. Thus the only properties of spacetime that are physically significant are those that are stable in some appropriate topology.

...

Global stability of exact solutions

- Minkowski solution
 - D Christodoulou and S Klainerman, *The Global nonlinear stability of the Minkowski space*, Princeton Math Series **41** (1993), S Klainerman and F Nicolò, Class Quantum Grav **20** (2003), H Lindblad and I Rodnianski, Commun Math Phys **256** (2005)
- flat Bianchi type III model

Y Choquet-Bruhat and V Moncrief, Ann H Poincaré **2** (2001), C-B, in *The Einstein Equations and the large scale behavior of gravitational fields*, Birkhäuser (2004)

Gravitational collapse and Cosmic Censorship

Global stability of exact solutions

- Minkowski solution
 - D Christodoulou and S Klainerman, *The Global nonlinear stability of the Minkowski space*, Princeton Math Series **41** (1993), S Klainerman and F Nicolò, Class Quantum Grav **20** (2003), H Lindblad and I Rodnianski, Commun Math Phys **256** (2005)
- flat Bianchi type III mode
 - Y Choquet-Bruhat and V Moncrief, Ann H Poincaré **2** (2001), C-B, ir *The Einstein Equations and the large scale behavior of gravitational fields*, Birkhäuser (2004)

Gravitational collapse and Cosmic Censorship

Global stability of exact solutions

- Minkowski solution
 - D Christodoulou and S Klainerman, *The Global nonlinear stability of the Minkowski space*, Princeton Math Series **41** (1993), S Klainerman and F Nicolò, Class Quantum Grav **20** (2003), H Lindblad and I Rodnianski, Commun Math Phys **256** (2005)
- flat Bianchi type III model

Y Choquet-Bruhat and V Moncrief, Ann H Poincaré **2** (2001), C-B, in The Einstein Equations and the large scale behavior of gravitational fields, Birkhäuser (2004)

Gravitational collapse and Cosmic Censorship

Global stability of exact solutions

- Minkowski solution
 - D Christodoulou and S Klainerman, *The Global nonlinear stability of the Minkowski space*, Princeton Math Series **41** (1993), S Klainerman and F Nicolò, Class Quantum Grav **20** (2003), H Lindblad and I Rodnianski, Commun Math Phys **256** (2005)
- flat Bianchi type III model

Y Choquet-Bruhat and V Moncrief, Ann H Poincaré **2** (2001), C-B, in *The Einstein Equations and the large scale behavior of gravitational fields*, Birkhäuser (2004)

Gravitational collapse and Cosmic Censorship

Global stability of exact solutions

- Minkowski solution
 - D Christodoulou and S Klainerman, *The Global nonlinear stability of the Minkowski space*, Princeton Math Series **41** (1993), S Klainerman and F Nicolò, Class Quantum Grav **20** (2003), H Lindblad and I Rodnianski, Commun Math Phys **256** (2005)
- flat Bianchi type III model

Y Choquet-Bruhat and V Moncrief, Ann H Poincaré **2** (2001), C-B, in *The Einstein Equations and the large scale behavior of gravitational fields*, Birkhäuser (2004)

Gravitational collapse and Cosmic Censorship

One step behind: Bumpy Theorem in Riemannian geometry

the set of the metric in a fixed compact manifold M st every closed geo is nondegenerate is generic (genericity = G_{δ} dense)

first stated by R Abraham (Global Analysis (1970) AMS

Application: Morse theory for closed geodesics on compact manifolds

- R Bott (nondegenerate case) Comm. Pure Appl. Math. 9 (1956)
- D Gromoll and W Meyer (possibly degenerate case) J. Diff. Geom. 3 (1969)

One step behind: Bumpy Theorem in Riemannian geometry

the set of the metric in a fixed compact manifold M st every closed geo is nondegenerate is generic (genericity = G_{δ} dense)

- first stated by R Abraham (Global Analysis (1970) AMS)
- proof: some ideas by W Klingenberg (Math Ann 197 (1972)), complete argument by D V Anosov (Izv Akad Nauk SSSR 46 (1982))

Application: Morse theory for closed geodesics on compact manifolds

- R Bott (nondegenerate case) Comm. Pure Appl. Math. 9 (1956)
- D Gromoll and W Meyer (possibly degenerate case) J. Diff. Geom. 3 (1969)

One step behind: Bumpy Theorem in Riemannian geometry

the set of the metric in a fixed compact manifold M st every closed geo is nondegenerate is generic (genericity = G_{δ} dense)

- first stated by R Abraham (Global Analysis (1970) AMS)
- proof: some ideas by W Klingenberg (Math Ann 197 (1972)), complete argument by D V Anosov (Izv Akad Nauk SSSR 46 (1982))

Application: Morse theory for closed geodesics on compact manifolds

- R Bott (nondegenerate case) Comm. Pure Appl. Math. 9 (1956)
- D Gromoll and W Meyer (possibly degenerate case) J. Diff. Geom. 3 (1969)

Genericity and stability in GR

Generic properties of Lorentzian geodesic flow

One step behind: Bumpy Theorem in Riemannian geometry

the set of the metric in a fixed compact manifold M st every closed geo is nondegenerate is generic (genericity = G_{δ} dense)

- first stated by R Abraham (Global Analysis (1970) AMS)
- proof: some ideas by W Klingenberg (Math Ann 197 (1972)), complete argument by D V Anosov (Izv Akad Nauk SSSR 46 (1982))

Application: Morse theory for closed geodesics on compact manifolds

- R Bott (nondegenerate case) Comm. Pure Appl. Math. 9 (1956)
- D Gromoll and W Meyer (possibly degenerate case) J. Diff. Geom. 3 (1969)

Genericity and stability in GR

Generic properties of Lorentzian geodesic flow

One step behind: Bumpy Theorem in Riemannian geometry

the set of the metric in a fixed compact manifold M st every closed geo is nondegenerate is generic (genericity = G_{δ} dense)

- first stated by R Abraham (Global Analysis (1970) AMS)
- proof: some ideas by W Klingenberg (Math Ann 197 (1972)), complete argument by D V Anosov (Izv Akad Nauk SSSR 46 (1982))

Application: Morse theory for closed geodesics on compact manifolds

- R Bott (nondegenerate case) Comm. Pure Appl. Math. 9 (1956)
- D Gromoll and W Meyer (possibly degenerate case) J. Diff. Geom. 3 (1969)

Introduction

00000000

Generic properties of Lorentzian geodesic flow

One step behind: Bumpy Theorem in Riemannian geometry

the set of the metric in a fixed compact manifold M st every closed geo is nondegenerate is generic (genericity = G_{δ} dense)

- first stated by R Abraham (Global Analysis (1970) AMS)
- proof: some ideas by W Klingenberg (Math Ann 197 (1972)), complete argument by D V Anosov (Izv Akad Nauk SSSR 46 (1982))

Application: Morse theory for closed geodesics on compact manifolds

- R Bott (nondegenerate case) Comm. Pure Appl. Math. 9 (1956)
- D Gromoll and W Meyer (possibly degenerate case) J. Diff. Geom. 3 (1969)

- counterexample (K Meyer and J Palmore, Global Analysis (1970) AMS)
- flow may possibly arrange differently on energy levels

Genericity and stability in GR

Generic properties of Lorentzian geodesic flow

One step behind: Bumpy Theorem in Riemannian geometry

the set of the metric in a fixed compact manifold M st every closed geo is nondegenerate is generic (genericity = G_{δ} dense)

- first stated by R Abraham (Global Analysis (1970) AMS)
- proof: some ideas by W Klingenberg (Math Ann 197 (1972)), complete argument by D V Anosov (Izv Akad Nauk SSSR 46 (1982))

Application: Morse theory for closed geodesics on compact manifolds

- R Bott (nondegenerate case) Comm. Pure Appl. Math. 9 (1956)
- D Gromoll and W Meyer (possibly degenerate case) J. Diff. Geom. 3 (1969)

- counterexample (K Meyer and J Palmore, Global Analysis (1970) AMS)
- flow may possibly arrange differently on energy levels

Introduction

00000000

Generic properties of Lorentzian geodesic flow

One step behind: Bumpy Theorem in Riemannian geometry

the set of the metric in a fixed compact manifold M st every closed geo is nondegenerate is generic (genericity = G_{δ} dense)

- first stated by R Abraham (Global Analysis (1970) AMS)
- proof: some ideas by W Klingenberg (Math Ann 197 (1972)), complete argument by D V Anosov (Izv Akad Nauk SSSR 46 (1982))

Application: Morse theory for closed geodesics on compact manifolds

- R Bott (nondegenerate case) Comm. Pure Appl. Math. 9 (1956)
- D Gromoll and W Meyer (possibly degenerate case) J. Diff. Geom. 3 (1969)

- counterexample (K Meyer and J Palmore, *Global Analysis* (1970) AMS)
- flow may possibly arrange differently on energy levels

Lorentzian case: a HUGE literature...

Morse theory for light rays and timelike geodesics

- K Uhlenbeck (Topology 14 (1975))
- V Perlick (J Math Phys 36 (1995), Current topics in mathematical cosmology, World Sci (1998)), w/ W Hasse (J Math Phys 47 (2006))...
- D Fortunato, F Giannoni, A Masiello (J Geom Phys 15 (1995)), FG, AM,
 P Piccione (J Geom Phys 35 (2000), J Math Phys 43 (2002))...
- ..

Key requisite

Nondegeneracy of critical points

A Abbondandolo and P Maier, Asian J Math 12 (2008

Lorentzian case: a HUGE literature...

Morse theory for light rays and timelike geodesics

- K Uhlenbeck (Topology 14 (1975))
- V Perlick (J Math Phys 36 (1995), Current topics in mathematical cosmology, World Sci (1998)), w/ W Hasse (J Math Phys 47 (2006))...
- D Fortunato, F Giannoni, A Masiello (J Geom Phys 15 (1995)), FG, AM,
 P Piccione (J Geom Phys 35 (2000), J Math Phys 43 (2002))...
- ..

Key requisite

Nondegeneracy of critical points

A Abbondandolo and P Maier, Asian J Math 12 (2008

Lorentzian case: a HUGE literature...

Morse theory for light rays and timelike geodesics

- K Uhlenbeck (Topology 14 (1975))
- V Perlick (J Math Phys 36 (1995), Current topics in mathematical cosmology, World Sci (1998)), w/ W Hasse (J Math Phys 47 (2006))...
- D Fortunato, F Giannoni, A Masiello (J Geom Phys 15 (1995)), FG, AM,
 P Piccione (J Geom Phys 35 (2000), J Math Phys 43 (2002))...
- ...

Key requisite

Nondegeneracy of critical points

A Abbondandolo and P Majer, Asian J Math 12 (2008)

Lorentzian case: a HUGE literature...

Morse theory for light rays and timelike geodesics

- K Uhlenbeck (Topology 14 (1975))
- V Perlick (J Math Phys 36 (1995), Current topics in mathematical cosmology, World Sci (1998)), w/ W Hasse (J Math Phys 47 (2006))...
- D Fortunato, F Giannoni, A Masiello (J Geom Phys 15 (1995)), FG, AM,
 P Piccione (J Geom Phys 35 (2000), J Math Phys 43 (2002))...
- ...

Key requisite

Nondegeneracy of critical points

A Abbondandolo and P Majer, Asian J Math 12 (2008

Genericity and stability in GR

Generic properties of Lorentzian geodesic flow

Lorentzian case: a HUGE literature...

Morse theory for light rays and timelike geodesics

- K Uhlenbeck (Topology 14 (1975))
- V Perlick (J Math Phys 36 (1995), Current topics in mathematical cosmology, World Sci (1998)), w/W Hasse (J Math Phys 47 (2006))...
- D Fortunato, F Giannoni, A Masiello (J Geom Phys 15 (1995)), FG, AM,
 P Piccione (J Geom Phys 35 (2000), J Math Phys 43 (2002))...
- ...

Key requisite

Nondegeneracy of critical points

A Abbondandolo and P Maier, Asian J Math 12 (2008

Lorentzian case: a HUGE literature...

Morse theory for light rays and timelike geodesics

- K Uhlenbeck (Topology 14 (1975))
- V Perlick (J Math Phys 36 (1995), Current topics in mathematical cosmology, World Sci (1998)), w/ W Hasse (J Math Phys 47 (2006))...
- D Fortunato, F Giannoni, A Masiello (J Geom Phys 15 (1995)), FG, AM,
 P Piccione (J Geom Phys 35 (2000), J Math Phys 43 (2002))...
- ...

Key requisite

Nondegeneracy of critical points

A Abbondandolo and P Majer, Asian J Math 12 (2008)

C⁰-stability of Morse complex homology

 \Rightarrow Morse theory of light rays between p and U unchanged in a set of Lorentzian manifolds st nondegeneracy generically holds

Lorentzian case: a HUGE literature...

Morse theory for light rays and timelike geodesics

- K Uhlenbeck (Topology 14 (1975))
- V Perlick (J Math Phys 36 (1995), Current topics in mathematical cosmology, World Sci (1998)), w/ W Hasse (J Math Phys 47 (2006))...
- D Fortunato, F Giannoni, A Masiello (J Geom Phys 15 (1995)), FG, AM,
 P Piccione (J Geom Phys 35 (2000), J Math Phys 43 (2002))...
- ...

Key requisite

Nondegeneracy of critical points

A Abbondandolo and P Majer, Asian J Math 12 (2008)

C⁰-stability of Morse complex homology

 \Rightarrow Morse theory of light rays between p and U unchanged in a set of Lorentzian manifolds st nondegeneracy generically holds

Genericity of lightlike nondegeneracy

Geometric motivations

Problem

Genericity of non conjugacy along light rays joining an event p and an observer U

Problem

Genericity of non conjugacy along light rays joining an event p and an observer U

- keeping g fixed, wrt (p, U) (using exp → OK)
- keeping (p, U) fixed, wrt g?

Obstructions

Assumption

Problem

Genericity of non conjugacy along light rays joining an event *p* and an observer *U*

- keeping g fixed, wrt (p, U) (using exp → OK)
- keeping (p, U) fixed, wrt g?

Obstructions

Assumption

Problem

Genericity of non conjugacy along light rays joining an event *p* and an observer *U*

- keeping g fixed, wrt (p, U) (using exp → OK)
- keeping (p, U) fixed, wrt g?

Obstructions

- regularity of curves space
- light curves space varies with g

Assumptior

Problem

Genericity of non conjugacy along light rays joining an event *p* and an observer *U*

- keeping g fixed, wrt (p, U) (using exp → OK)
- keeping (p, U) fixed, wrt g?

Obstructions

- regularity of curves space
- light curves space varies with g

Assumption

Problem

Genericity of non conjugacy along light rays joining an event *p* and an observer *U*

- keeping g fixed, wrt (p, U) (using exp → OK)
- keeping (p, U) fixed, wrt g?

Obstructions

- regularity of curves space
- light curves space varies with g

Assumption

RG, F Giannoni, P Piccione, Commun Math Phys 287 (2009)

 M_0 diff manifold, $p_0 \neq p_1 \in M_0$

The set of all standard stationary metrics defined in $M_0 \times \mathbb{R}$ with only nondegenerate light rays from $(p_0,0)$ to $U=\{p_1\}\times \mathbb{R}$ is generic in the C^∞ topology

Plan of the proof

C^k genericity ∀k

 extension to C^{cc} genericity (RG, MA Javaloyes (2009) near/inft

RG, F Giannoni, P Piccione, Commun Math Phys 287 (2009)

 \textit{M}_0 diff manifold, $\textit{p}_0 \neq \textit{p}_1 \in \textit{M}_0$

The set of all standard stationary metrics defined in $M_0 \times \mathbb{R}$ with only nondegenerate light rays from $(p_0,0)$ to $U=\{p_1\} \times \mathbb{R}$ is generic in the C^∞ topology

Plan of the proo

C^k genericity ∀k

ullet extension to C^{∞} genericity (RG, MA Javaloyes (2009)

RG, F Giannoni, P Piccione, Commun Math Phys 287 (2009)

 M_0 diff manifold, $p_0 \neq p_1 \in M_0$

The set of all standard stationary metrics defined in $M_0 \times \mathbb{R}$ with only nondegenerate light rays from $(p_0,0)$ to $U=\{p_1\}\times \mathbb{R}$ is generic in the C^∞ topology

Plan of the proof

- C^k genericity $\forall k$
- extension to C[∞] genericity (RG, MA Javaloyes (2009) preprint)

RG, F Giannoni, P Piccione, Commun Math Phys 287 (2009)

 \textit{M}_0 diff manifold, $\textit{p}_0 \neq \textit{p}_1 \in \textit{M}_0$

The set of all standard stationary metrics defined in $M_0 \times \mathbb{R}$ with only nondegenerate light rays from $(p_0,0)$ to $U=\{p_1\} \times \mathbb{R}$ is generic in the C^∞ topology

Plan of the proof

- C^k genericity $\forall k$
- extension to C^{∞} genericity (RG, MA Javaloyes (2009) preprint)

Genericity of lightlike nondegeneracy

Techniques for genericity results

Riemannian bumpy theorem: Klingenberg argument

 \circ in g has a degenerate closed geo $\gamma(t)\Rightarrow\exists g_n\to g$ such that $\gamma(t)$ nondegenerate

Issue (just to fix ideas...)

$$f(x,a,b) = e^{-\frac{1}{a+b}} e^{-\frac{1}{(x-u(a,b))^2}} \sin \frac{1}{x-u(a,b)}, \ u(a,b) = \frac{b}{a+b}, \ x > 0, \ a,b < 1$$

Anosov criticism to Klingenberg proo

Way out: San's theorem (or transversality theorem) appears as an

Techniques for genericity results

Riemannian bumpy theorem: Klingenberg argument

- local perturbation argument to adjust the flow near a closed geo
- if g has a degenerate closed geo $\gamma(t) \Rightarrow \exists g_n \to g$ such that $\gamma(t)$ nondegenerate g_n -closed geo

Issue (just to fix ideas...)

$$f(x,a,b) = e^{-\frac{1}{a+b}} e^{-\frac{1}{(x-u(a,b))^2}} \sin \frac{1}{x-u(a,b)}, \ u(a,b) = \frac{b}{a+b}, \ x > 0, \ a,b < 1$$

Anosov criticism to Klingenberg proof

Riemannian bumpy theorem: Klingenberg argument

- local perturbation argument to adjust the flow near a closed geo
- if g has a degenerate closed geo $\gamma(t) \Rightarrow \exists g_n \to g$ such that $\gamma(t)$ nondegenerate g_n -closed geo

Issue (just to fix ideas...)

$$f(x,a,b) = e^{-\frac{1}{a+b}} e^{-\frac{1}{(x-u(a,b))^2}} \sin \frac{1}{x-u(a,b)}, \ u(a,b) = \frac{b}{a+b}, \ x > 0, \ a,b < 1$$

Riemannian bumpy theorem: Klingenberg argument

- local perturbation argument to adjust the flow near a closed geo
- if g has a degenerate closed geo $\gamma(t) \Rightarrow \exists g_n \to g$ such that $\gamma(t)$ nondegenerate g_n -closed geo

Issue (just to fix ideas...)

$$f(x,a,b) = e^{-\frac{1}{a+b}} e^{-\frac{1}{(x-u(a,b))^2}} \sin \frac{1}{x-u(a,b)}, \ u(a,b) = \frac{b}{a+b}, \ x>0, \ a,b<1$$

- $\forall (a,b) \exists x_0 = u(a,b)$ non simple zero of $x \to f(x,a,b)$
- but $\exists (a_n, b_n) \rightarrow (a, b)$ st x_0 simple zero of $f(x, a_n, b_n)$

Riemannian bumpy theorem: Klingenberg argument

- local perturbation argument to adjust the flow near a closed geo
- if g has a degenerate closed geo $\gamma(t) \Rightarrow \exists g_n \to g$ such that $\gamma(t)$ nondegenerate g_n -closed geo

Issue (just to fix ideas...)

$$f(x,a,b) = e^{-\frac{1}{a+b}} e^{-\frac{1}{(x-u(a,b))^2}} \sin \frac{1}{x-u(a,b)}, \ u(a,b) = \frac{b}{a+b}, \ x>0, \ a,b<1$$

- $\forall (a,b) \exists x_0 = u(a,b) \text{ non simple zero of } x \to f(x,a,b)$
- but $\exists (a_n, b_n) \rightarrow (a, b)$ st x_0 simple zero of $f(x, a_n, b_n)$

Riemannian bumpy theorem: Klingenberg argument

- local perturbation argument to adjust the flow near a closed geo
- if g has a degenerate closed geo $\gamma(t) \Rightarrow \exists g_n \to g$ such that $\gamma(t)$ nondegenerate g_n -closed geo

Issue (just to fix ideas...)

$$f(x,a,b) = e^{-\frac{1}{a+b}} e^{-\frac{1}{(x-u(a,b))^2}} \sin \frac{1}{x-u(a,b)}, \ u(a,b) = \frac{b}{a+b}, \ x>0, \ a,b<1$$

- $\forall (a,b) \exists x_0 = u(a,b)$ non simple zero of $x \to f(x,a,b)$
- but $\exists (a_n, b_n) \rightarrow (a, b)$ st x_0 simple zero of $f(x, a_n, b_n)$

Riemannian bumpy theorem: Klingenberg argument

- local perturbation argument to adjust the flow near a closed geo
- if g has a degenerate closed geo $\gamma(t) \Rightarrow \exists g_n \to g$ such that $\gamma(t)$ nondegenerate g_n -closed geo

Issue (just to fix ideas...)

$$f(x,a,b) = e^{-\frac{1}{a+b}} e^{-\frac{1}{(x-u(a,b))^2}} \sin \frac{1}{x-u(a,b)}, \ u(a,b) = \frac{b}{a+b}, \ x>0, \ a,b<1$$

- $\forall (a,b) \exists x_0 = u(a,b) \text{ non simple zero of } x \to f(x,a,b)$
- but $\exists (a_n, b_n) \rightarrow (a, b)$ st x_0 simple zero of $f(x, a_n, b_n)$

- local perturbation arguments suffer from uniformity issues
- way out: Sard's theorem (or transversality theorem) appears as are essential resource

Riemannian bumpy theorem: Klingenberg argument

- local perturbation argument to adjust the flow near a closed geo
- if g has a degenerate closed geo $\gamma(t) \Rightarrow \exists g_n \to g$ such that $\gamma(t)$ nondegenerate g_n -closed geo

Issue (just to fix ideas...)

$$f(x,a,b) = e^{-\frac{1}{a+b}} e^{-\frac{1}{(x-u(a,b))^2}} \sin \frac{1}{x-u(a,b)}, \ u(a,b) = \frac{b}{a+b}, \ x>0, \ a,b<1$$

- $\forall (a,b) \exists x_0 = u(a,b)$ non simple zero of $x \to f(x,a,b)$
- but $\exists (a_n, b_n) \rightarrow (a, b)$ st x_0 simple zero of $f(x, a_n, b_n)$

- local perturbation arguments suffer from uniformity issues
- way out: Sard's theorem (or transversality theorem) appears as are essential resource

Riemannian bumpy theorem: Klingenberg argument

- local perturbation argument to adjust the flow near a closed geo
- if g has a degenerate closed geo $\gamma(t) \Rightarrow \exists g_n \to g$ such that $\gamma(t)$ nondegenerate g_n -closed geo

Issue (just to fix ideas...)

$$f(x,a,b) = e^{-\frac{1}{a+b}} e^{-\frac{1}{(x-u(a,b))^2}} \sin \frac{1}{x-u(a,b)}, \ u(a,b) = \frac{b}{a+b}, \ x>0, \ a,b<1$$

- $\forall (a,b) \exists x_0 = u(a,b) \text{ non simple zero of } x \to f(x,a,b)$
- but $\exists (a_n, b_n) \rightarrow (a, b)$ st x_0 simple zero of $f(x, a_n, b_n)$

- local perturbation arguments suffer from uniformity issues
- way out: Sard's theorem (or transversality theorem) appears as an essential resource

B White, Indiana Univ Math J (1991), L Biliotti, MA Javaloyes, P Piccione, Indiana Univ Math J (2009)

B Banach, \mathcal{H} Hilbert; B, \mathcal{H} separable, $A \subset B \times \mathcal{H}$ open $F : A \to \mathbb{R}$, $F \in \mathcal{C}^k(k \geq 2)$; $F_b : x \to F(b, x)$

$$\mathfrak{C} = \{(b_0, x_0) \in A : x_0 \text{ critical point of } F_{b_0}\}.$$

Assume $\forall (b_0, x_0) \in \mathfrak{C}$

- (a) the Hessian $d^2F_{b_0}(x_0) = \frac{\partial^2 F}{\partial x^2}(b_0, x_0)$ is Fredholm;
- **(b)** $\forall \xi \in \text{Ker}(d^2 F_{b_0}(x_0))$ with $\xi \neq 0 \ \exists \beta \in T_{b_0} B$ such that

$$\frac{\partial^2 F}{\partial b \partial x}(b_0, x_0)[(\beta, \xi)] \neq 0.$$

 $\implies \{b \in \Pi(A) : F_b \text{ Morse } \} \text{ generic in } \Pi(A) (\Pi : B \times \mathcal{H} \to B)$

4 Return

B White, Indiana Univ Math J (1991), L Biliotti, MA Javaloyes, P Piccione, Indiana Univ Math J (2009)

B Banach, \mathcal{H} Hilbert; B, \mathcal{H} separable, $A \subset B \times \mathcal{H}$ open $F : A \to \mathbb{R}$, $F \in \mathcal{C}^k (k \geq 2)$; $F_b : x \to F(b, x)$

$$\mathfrak{C} = \{(b_0, x_0) \in A : x_0 \text{ critical point of } F_{b_0}\}.$$

Assume $\forall (b_0, x_0) \in \mathfrak{C}$

- (a) the Hessian $d^2F_{b_0}(x_0) = \frac{\partial^2 F}{\partial x^2}(b_0, x_0)$ is Fredholm;
- **(b)** $\forall \xi \in \text{Ker}(d^2F_{b_0}(x_0))$ with $\xi \neq 0 \ \exists \beta \in T_{b_0}B$ such that

$$\frac{\partial^2 F}{\partial h \partial x}(b_0, x_0)[(\beta, \xi)] \neq 0.$$

 $\implies \{b \in \Pi(A) : F_b \text{ Morse } \} \text{ generic in } \Pi(A) (\Pi : B \times \mathcal{H} \to B) \}$

Return
 Re

B White, Indiana Univ Math J (1991), L Biliotti, MA Javaloyes, P Piccione, Indiana Univ Math J (2009)

B Banach, \mathcal{H} Hilbert; B, \mathcal{H} separable, $A \subset B \times \mathcal{H}$ open $F : A \to \mathbb{R}$, $F \in \mathcal{C}^k (k \geq 2)$; $F_b : x \to F(b, x)$

$$\mathfrak{C} = \{(b_0, x_0) \in A : x_0 \text{ critical point of } F_{b_0}\}.$$

Assume $\forall (b_0, x_0) \in \mathfrak{C}$:

- (a) the Hessian $d^2 F_{b_0}(x_0) = \frac{\partial^2 F}{\partial x^2}(b_0, x_0)$ is Fredholm;
- **(b)** $\forall \xi \in \text{Ker}(d^2F_{b_0}(x_0))$ with $\xi \neq 0 \ \exists \beta \in T_{b_0}B$ such that

$$\frac{\partial^2 F}{\partial b \partial x}(b_0, x_0)[(\beta, \xi)] \neq 0.$$

 $\implies \{b \in \Pi(A) : F_b \text{ Morse } \} \text{ generic in } \Pi(A) (\Pi : B \times \mathcal{H} \to B)$

Return
 Re

B White, Indiana Univ Math J (1991), L Biliotti, MA Javaloyes, P Piccione, Indiana Univ Math J (2009)

B Banach, \mathcal{H} Hilbert; B, \mathcal{H} separable, $A \subset B \times \mathcal{H}$ open $F : A \to \mathbb{R}$, $F \in \mathcal{C}^k (k \geq 2)$; $F_b : x \to F(b, x)$

$$\mathfrak{C} = \{(b_0, x_0) \in A : x_0 \text{ critical point of } F_{b_0}\}.$$

Assume $\forall (b_0, x_0) \in \mathfrak{C}$:

- (a) the Hessian $d^2 F_{b_0}(x_0) = \frac{\partial^2 F}{\partial x^2}(b_0, x_0)$ is Fredholm;
- **(b)** $\forall \xi \in \text{Ker}(d^2F_{b_0}(x_0))$ with $\xi \neq 0 \ \exists \beta \in T_{b_0}B$ such that

$$\frac{\partial^2 F}{\partial b \partial x}(b_0, x_0)[(\beta, \xi)] \neq 0.$$

 $\implies \{b \in \Pi(A) : F_b \text{ Morse } \} \text{ generic in } \Pi(A) (\Pi : B \times \mathcal{H} \to B) \}$

Return
 Re

B White, Indiana Univ Math J (1991), L Biliotti, MA Javaloyes, P Piccione, Indiana Univ Math J (2009)

B Banach, \mathcal{H} Hilbert; B, \mathcal{H} separable, $A \subset B \times \mathcal{H}$ open $F : A \to \mathbb{R}$, $F \in \mathcal{C}^k (k \geq 2)$; $F_b : x \to F(b, x)$

$$\mathfrak{C} = \{(b_0, x_0) \in A : x_0 \text{ critical point of } F_{b_0}\}.$$

Assume $\forall (b_0, x_0) \in \mathfrak{C}$:

- (a) the Hessian $d^2 F_{b_0}(x_0) = \frac{\partial^2 F}{\partial x^2}(b_0, x_0)$ is Fredholm;
- **(b)** $\forall \xi \in \text{Ker}(d^2F_{b_0}(x_0))$ with $\xi \neq 0 \ \exists \beta \in T_{b_0}B$ such that

$$\frac{\partial^2 F}{\partial b \partial x}(b_0, x_0)[(\beta, \xi)] \neq 0.$$

 $\Longrightarrow \{b \in \Pi(A) : F_b \text{ Morse } \} \text{ generic in } \Pi(A) (\Pi : B \times \mathcal{H} \to B)$

An abstract gener Condition (b)

Piccione, Indiana Unive

 $\Rightarrow \frac{\partial F}{\partial x}: B \times \mathcal{H} \to T^*\mathcal{H}$ transversal to the 0-section of $T^*\mathcal{H} \Rightarrow \mathfrak{C} \subseteq B \times \mathcal{H}$ submanifold

B Banach, \mathcal{H} Hilbert; B, \mathcal{H} separable, $A \subset B \times \mathcal{H}$ open $F: A \to \mathbb{R}, F \in \mathcal{C}^k(k > 2); \quad F_b: X \to F(b, X)$

$$\mathfrak{C} = \{(b_0, x_0) \in A : x_0 \text{ critical point of } F_{b_0}\}.$$

Assume $\forall (b_0, x_0) \in \mathfrak{C}$:

- (a) the Hessian $d^2F_{b_0}(x_0) = \frac{\partial^2 F}{\partial x^2}(b_0, x_0)$ is Fredholm;
- (b) $\forall \xi \in \operatorname{Ker}(d^2F_{b_0}(x_0))$ with $\xi \neq 0 \; \exists \beta \in T_{b_0}B$ such that

$$\frac{\partial^2 F}{\partial b \partial x}(b_0, x_0)[(\beta, \xi)] \neq 0.$$

 $\Longrightarrow \{b \in \Pi(A) : F_b \text{ Morse } \} \text{ generic in } \Pi(A) (\Pi : B \times \mathcal{H} \to B)$

An abstract gener Condition (a)

Piccione, Indiana Uni ⊓ [ø]

 $\Rightarrow \Pi|_{\mathfrak{C}}: \mathfrak{C} \to B$ is Fredholm (w/ index 0) **B** White, Indiana Univ $\{b \in \Pi(A) : F_b \text{ not Morse }\} = \{\text{crit vals of }\}$

B Banach, \mathcal{H} Hilbert; $E \Rightarrow \text{result follows from Sard-Smale}$

$$F: A \to \mathbb{R}, F \in \mathcal{C}^k (k \ge 2); \quad F_b: X \to F(b, X)$$

$$\mathfrak{C} = \{(b_0, x_0) \in A : x_0 \text{ critical point of } F_{b_0}\}.$$

Assume $\forall (b_0, x_0) \in \mathfrak{C}$:

- (a) the Hessian $d^2 F_{b_0}(x_0) = \frac{\partial^2 F}{\partial x^2}(b_0, x_0)$ is Fredholm;
- (b) $\forall \xi \in \text{Ker}(d^2F_{b_0}(x_0))$ with $\xi \neq 0 \; \exists \beta \in T_{b_0}B$ such that

$$\frac{\partial^2 F}{\partial b \partial x}(b_0, x_0)[(\beta, \xi)] \neq 0.$$

 $\Longrightarrow \{b \in \Pi(A) : F_b \text{ Morse } \} \text{ generic in } \Pi(A) (\Pi : B \times \mathcal{H} \to B)$

Outline

- Introduction
 - Genericity and stability in GR
 - Genericity of lightlike nondegeneracy
- Variational setup
 - Fermat principles
- Proof of the main result
 - C^k genericity of lightlike nondegeneracy
 - C^{∞} genericity of lightlike nondegeneracy

$$\begin{array}{l} \textit{M} = \textit{M}_0 \times \mathbb{R}, \, \mathfrak{g} \in \mathsf{Riem}(\textit{M}_0), \, \delta \in \mathfrak{X}(\textit{M}_0) \\ \textit{g}_{(\textit{x},\textit{s})}\big((\textit{v},\textit{r}),(\bar{\textit{v}},\bar{\textit{r}})\big) = \mathfrak{g}_{\textit{x}}(\textit{v},\bar{\textit{v}}) + \mathfrak{g}_{\textit{x}}\big(\delta(\textit{x}),\textit{v}\big)\bar{\textit{r}} + \mathfrak{g}_{\textit{x}}\big(\delta(\textit{x}),\bar{\textit{v}}\big)\textit{r} - \beta(\textit{x})\textit{r}\bar{\textit{r}} \end{array}$$

$$\beta(x) = 1$$

Randers metric on M₀

$$\mathfrak{h}(v,w) = \mathfrak{g}(v,w) + \mathfrak{g}(\delta_p,v)\mathfrak{g}(\delta_p,w), \quad \omega_p(v) = \mathfrak{g}(\delta_p,v)$$

A Finsler metric f on M_0 is induced

$$f_{(\mathfrak{h},\omega)}(v) = \sqrt{\mathfrak{h}(v,v)} + \omega(v), \quad v \in TM_0$$

1st order Fermat principle

$$\begin{array}{l} \textit{M} = \textit{M}_0 \times \mathbb{R}, \, \mathfrak{g} \in \mathsf{Riem}(\textit{M}_0), \, \delta \in \mathfrak{X}(\textit{M}_0) \\ \textit{g}_{(\textit{x},\textit{s})}\big((\textit{v},\textit{r}),(\bar{\textit{v}},\bar{\textit{r}})\big) = \mathfrak{g}_{\textit{x}}(\textit{v},\bar{\textit{v}}) + \mathfrak{g}_{\textit{x}}\big(\delta(\textit{x}),\textit{v}\big)\bar{\textit{r}} + \mathfrak{g}_{\textit{x}}\big(\delta(\textit{x}),\bar{\textit{v}}\big)\textit{r} - \beta(\textit{x})\textit{r}\bar{\textit{r}} \end{array}$$

$$\beta(x) = 1$$

Randers metric on M_0

$$\mathfrak{h}(v, w) = \mathfrak{g}(v, w) + \mathfrak{g}(\delta_{\rho}, v)\mathfrak{g}(\delta_{\rho}, w), \quad \omega_{\rho}(v) = \mathfrak{g}(\delta_{\rho}, v)$$

A Finsler metric f on M_0 is induced

$$f_{(\mathfrak{h},\omega)}(v) = \sqrt{\mathfrak{h}(v,v)} + \omega(v), \quad v \in TM_0$$

1st order Fermat principle

$$\begin{array}{l} \textit{M} = \textit{M}_0 \times \mathbb{R}, \, \mathfrak{g} \in \mathsf{Riem}(\textit{M}_0), \, \delta \in \mathfrak{X}(\textit{M}_0) \\ \textit{g}_{(\textit{x},\textit{s})}\big((\textit{v},\textit{r}),(\bar{\textit{v}},\bar{\textit{r}})\big) = \mathfrak{g}_{\textit{x}}(\textit{v},\bar{\textit{v}}) + \mathfrak{g}_{\textit{x}}\big(\delta(\textit{x}),\textit{v}\big)\bar{\textit{r}} + \mathfrak{g}_{\textit{x}}\big(\delta(\textit{x}),\bar{\textit{v}}\big)\textit{r} - \beta(\textit{x})\textit{r}\bar{\textit{r}} \end{array}$$

$$\beta(x) = 1$$

Randers metric on Mo

$$\mathfrak{h}(\mathbf{v}, \mathbf{w}) = \mathfrak{g}(\mathbf{v}, \mathbf{w}) + \mathfrak{g}(\delta_{\rho}, \mathbf{v})\mathfrak{g}(\delta_{\rho}, \mathbf{w}), \quad \omega_{\rho}(\mathbf{v}) = \mathfrak{g}(\delta_{\rho}, \mathbf{v})$$

A Finsler metric f on M_0 is induced

$$f_{(\mathfrak{h},\omega)}(v) = \sqrt{\mathfrak{h}(v,v)} + \omega(v), \quad v \in TM_0$$

1st order Fermat principle

$$\begin{array}{l} \textit{M} = \textit{M}_0 \times \mathbb{R}, \, \mathfrak{g} \in \mathsf{Riem}(\textit{M}_0), \, \delta \in \mathfrak{X}(\textit{M}_0) \\ \textit{g}_{(\textit{x},\textit{s})}\big((\textit{v},\textit{r}),(\bar{\textit{v}},\bar{\textit{r}})\big) = \mathfrak{g}_{\textit{x}}(\textit{v},\bar{\textit{v}}) + \mathfrak{g}_{\textit{x}}\big(\delta(\textit{x}),\textit{v}\big)\bar{\textit{r}} + \mathfrak{g}_{\textit{x}}\big(\delta(\textit{x}),\bar{\textit{v}}\big)\textit{r} - \beta(\textit{x})\textit{r}\bar{\textit{r}} \end{array}$$

$$\beta(x) = 1$$

Randers metric on M_0

$$\mathfrak{h}(\mathbf{v}, \mathbf{w}) = \mathfrak{g}(\mathbf{v}, \mathbf{w}) + \mathfrak{g}(\delta_{p}, \mathbf{v})\mathfrak{g}(\delta_{p}, \mathbf{w}), \quad \omega_{p}(\mathbf{v}) = \mathfrak{g}(\delta_{p}, \mathbf{v})$$

A Finsler metric f on M_0 is induced

$$f_{(\mathfrak{h},\omega)}(\mathbf{v}) = \sqrt{\mathfrak{h}(\mathbf{v},\mathbf{v})} + \omega(\mathbf{v}), \quad \mathbf{v} \in \mathit{TM}_0$$

1st order Fermat principle

$$\begin{aligned} & M = M_0 \times \mathbb{R}, \, \mathfrak{g} \in \mathsf{Riem}(M_0), \, \delta \in \mathfrak{X}(M_0) \\ & g_{(x,s)}\big((v,r),(\bar{v},\bar{r})\big) = \mathfrak{g}_x(v,\bar{v}) + \mathfrak{g}_x\big(\delta(x),v\big)\bar{r} + \mathfrak{g}_x\big(\delta(x),\bar{v}\big)r - \beta(x)r\bar{r} \end{aligned}$$

$$\beta(x) = 1$$

Randers metric on M_0

$$\mathfrak{h}(\mathbf{v}, \mathbf{w}) = \mathfrak{g}(\mathbf{v}, \mathbf{w}) + \mathfrak{g}(\delta_{p}, \mathbf{v})\mathfrak{g}(\delta_{p}, \mathbf{w}), \quad \omega_{p}(\mathbf{v}) = \mathfrak{g}(\delta_{p}, \mathbf{v})$$

A Finsler metric f on M_0 is induced

$$f_{(\mathfrak{h},\omega)}(\mathbf{v}) = \sqrt{\mathfrak{h}(\mathbf{v},\mathbf{v})} + \omega(\mathbf{v}), \quad \mathbf{v} \in \mathit{TM}_0$$

1st order Fermat principle

Moreover
$$c_{\gamma} \equiv \mathfrak{g}(\dot{x},\delta) - \dot{t} = -\sqrt{\mathfrak{g}(\dot{x},\dot{x}) + \mathfrak{g}(\dot{x},\delta)^2} \equiv c_{x}$$
.

Introduction

Reduction to the base space

The functional

$$\Omega_{p_0,p_1}(M_0) = H^1 \text{ curves } x : [0,1] \to M_0 \text{ from } p_0 \text{ to } p_1$$

$$F(x) = \left(\int_0^1 \mathfrak{g}(\dot{x}, \dot{x}) + \mathfrak{g}(\dot{x}, \delta)^2 ds\right)^{\frac{1}{2}} + \int_0^1 \mathfrak{g}(\dot{x}, \delta) ds$$

- F smooth
- critical points = Finsler geodesics w/

$$\sqrt{\mathfrak{g}(\dot{x},\dot{x})+\mathfrak{g}(\dot{x},\delta)^2}\equiv -c_{x}$$
 (constant)

$$\frac{\mathrm{D}}{\mathrm{d}s}\dot{x} + \frac{\mathrm{D}}{\mathrm{d}s}\left(\mathrm{g}(\dot{x},\delta)\,\delta\right) - \mathrm{g}(\dot{x},\delta)(\nabla\delta)^*\dot{x} + c_{x}\left[(\nabla\delta)^*\dot{x} - (\nabla\delta)\dot{x}\right] = 0$$

Introduction

Reduction to the base space

The functional

$$\Omega_{p_0,p_1}(M_0)=H^1$$
 curves $x:[0,1] o M_0$ from p_0 to p_1

$$F(x) = \left(\int_0^1 \mathfrak{g}(\dot{x}, \dot{x}) + \mathfrak{g}(\dot{x}, \delta)^2 \, \mathrm{d}s\right)^{\frac{1}{2}} + \int_0^1 \mathfrak{g}(\dot{x}, \delta) \, \mathrm{d}s$$

- F smooth
- critical points = Finsler geodesics w/

$$\sqrt{\mathfrak{g}(\dot{x},\dot{x})+\mathfrak{g}(\dot{x},\delta)^2}\equiv -c_{\scriptscriptstyle X}$$
 (constant)

$$\frac{\mathrm{D}}{\mathrm{d}s}\dot{x} + \frac{\mathrm{D}}{\mathrm{d}s}\left(\mathfrak{g}(\dot{x},\delta)\,\delta\right) - \mathfrak{g}(\dot{x},\delta)(\nabla\delta)^*\dot{x} + c_X\left[(\nabla\delta)^*\dot{x} - (\nabla\delta)\dot{x}\right] = 0$$

Reduction to the base space

The functional

$$\Omega_{p_0,p_1}(M_0)=H^1$$
 curves $x:[0,1] o M_0$ from p_0 to p_1

$$F(x) = \left(\int_0^1 \mathfrak{g}(\dot{x}, \dot{x}) + \mathfrak{g}(\dot{x}, \delta)^2 \, \mathrm{d}s\right)^{\frac{1}{2}} + \int_0^1 \mathfrak{g}(\dot{x}, \delta) \, \mathrm{d}s$$

- F smooth
- critical points = Finsler geodesics w/

$$\sqrt{\mathfrak{g}(\dot{x},\dot{x})+\mathfrak{g}(\dot{x},\delta)^2}\equiv -c_{x}$$
 (constant)

$$\frac{\mathrm{D}}{\mathrm{d}s}\dot{x} + \frac{\mathrm{D}}{\mathrm{d}s}(\mathfrak{g}(\dot{x},\delta)\delta) - \mathfrak{g}(\dot{x},\delta)(\nabla\delta)^*\dot{x} + c_x[(\nabla\delta)^*\dot{x} - (\nabla\delta)\dot{x}] = 0$$

Reduction to the base space

The functional

$$\Omega_{p_0,p_1}(M_0)=H^1$$
 curves $x:[0,1] o M_0$ from p_0 to p_1

$$F(x) = \left(\int_0^1 \mathfrak{g}(\dot{x}, \dot{x}) + \mathfrak{g}(\dot{x}, \delta)^2 \, \mathrm{d}s\right)^{\frac{1}{2}} + \int_0^1 \mathfrak{g}(\dot{x}, \delta) \, \mathrm{d}s$$

- F smooth
- critical points = Finsler geodesics w/

$$\sqrt{\mathfrak{g}(\dot{x},\dot{x})+\mathfrak{g}(\dot{x},\delta)^2}\equiv -c_{x}$$
 (constant)

$$\frac{\frac{\mathrm{D}}{\mathrm{d}s}\dot{x} + \frac{\mathrm{D}}{\mathrm{d}s}\big(\mathfrak{g}(\dot{x},\delta)\,\delta\big) - \mathfrak{g}(\dot{x},\delta)(\nabla\delta)^*\dot{x} + c_{x}\big[(\nabla\delta)^*\dot{x} - (\nabla\delta)\dot{x}\big] = 0$$

Introduction

2nd order Fermat principle

Let $x \in \Omega_{p_0,p_1}(M_0)$ cp of F. Recall the bijection

$$\mathbf{X} \leftrightarrow \gamma = (\mathbf{X}, t) : [0, 1] \rightarrow \mathbf{M} = \mathbf{M}_0 \times \mathbb{R}$$

$$d^2F(x) = -\frac{1}{c_x} \int_0^1 g(\frac{D}{ds}\xi, \frac{D}{ds}\eta) ds + D[\xi, \eta], D \text{ compac}$$

2nd order Fermat principle

Let $x \in \Omega_{p_0,p_1}(M_0)$ cp of F. Recall the bijection

$$x \leftrightarrow \gamma = (x, t) : [0, 1] \rightarrow M = M_0 \times \mathbb{R}$$

A Masiello, Pitman Research Notes in Mathematics 309 (1994)

- $\gamma(1)$ conjugate to $\gamma(0)$ along $\gamma \Leftrightarrow x$ degenerate cp of F
- $\mu(\gamma(1)) = \dim \operatorname{Ker} d^2 F(x)$

$d^2F(x)$ is Fredholm

$$d^2F(x) = -\frac{1}{c_x} \int_0^1 \mathfrak{g}\left(\frac{\mathrm{D}}{\mathrm{d}s}\xi, \frac{\mathrm{D}}{\mathrm{d}s}\eta\right) \mathrm{d}s + D[\xi, \eta], D \text{ compact}$$

Introduction

2nd order Fermat principle

Let $x \in \Omega_{p_0,p_1}(M_0)$ cp of F. Recall the bijection

$$\mathbf{X} \leftrightarrow \gamma = (\mathbf{X}, \mathbf{t}) : [0, 1] \rightarrow \mathbf{M} = \mathbf{M}_0 \times \mathbb{R}$$

A Masiello, Pitman Research Notes in Mathematics 309 (1994)

- $\gamma(1)$ conjugate to $\gamma(0)$ along $\gamma \Leftrightarrow x$ degenerate cp of F
- $\mu(\gamma(1)) = \dim \operatorname{Ker} d^2 F(x)$

$d^2F(x)$ is Fredholm

$$d^2F(x) = -\frac{1}{c_x} \int_0^1 \mathfrak{g}\left(\frac{\mathrm{D}}{\mathrm{d}s}\xi, \frac{\mathrm{D}}{\mathrm{d}s}\eta\right) \mathrm{d}s + D[\xi, \eta], D \text{ compact}$$

2nd order Fermat principle

Let $x \in \Omega_{p_0,p_1}(M_0)$ cp of F. Recall the bijection

$$\mathbf{X} \leftrightarrow \gamma = (\mathbf{X}, t) : [0, 1] \rightarrow \mathbf{M} = \mathbf{M}_0 \times \mathbb{R}$$

A Masiello, Pitman Research Notes in Mathematics 309 (1994)

- $\gamma(1)$ conjugate to $\gamma(0)$ along $\gamma \Leftrightarrow x$ degenerate cp of F
- $\mu(\gamma(1)) = \dim \operatorname{Ker} d^2 F(x)$

$d^2F(x)$ is Fredholm

$$\mathrm{d}^2F(x) = -\frac{1}{c_x}\int_0^1\mathfrak{g}ig(rac{\mathrm{D}}{\mathrm{d}s}\xi,rac{\mathrm{D}}{\mathrm{d}s}\etaig)\,\mathrm{d}s + Dig[\xi,\etaig]$$
, D compact

Outline

- - Genericity and stability in GR
- - Fermat principles
- Proof of the main result
 - C^k genericity of lightlike nondegeneracy
 - C^{∞} genericity of lightlike nondegeneracy

▶ Main Theorem

$$\begin{split} F: \mathfrak{A} \times \Omega_{p_0,p_1}(M_0) &\to \mathbb{R} \\ F((\mathfrak{g},\delta),x) &= \left(\int_0^1 \mathfrak{g}(\dot{x},\dot{x}) + \mathfrak{g}(\dot{x},\delta)^2 \,\mathrm{d}s\right)^{\frac{1}{2}} + \int_0^1 \mathfrak{g}(\dot{x},\delta) \,\mathrm{d}s \\ \text{Ingredients:} \end{split}$$

→ Main Theorem

$$F: \mathfrak{A} \times \Omega_{p_0,p_1}(M_0) \to \mathbb{R}$$

$$F((\mathfrak{g},\delta),x) = \left(\int_0^1 \mathfrak{g}(\dot{x},\dot{x}) + \mathfrak{g}(\dot{x},\delta)^2 \,\mathrm{d}s\right)^{\frac{1}{2}} + \int_0^1 \mathfrak{g}(\dot{x},\delta) \,\mathrm{d}s$$
Ingredients:

▶ Main Theorem

$$F: \mathfrak{A} \times \Omega_{p_0,p_1}(M_0) \to \mathbb{R}$$

$$F((\mathfrak{g},\delta),x) = \left(\int_0^1 \mathfrak{g}(\dot{x},\dot{x}) + \mathfrak{g}(\dot{x},\delta)^2 ds\right)^{\frac{1}{2}} + \int_0^1 \mathfrak{g}(\dot{x},\delta) ds$$
 Ingredients:

- ① find a suitable set of admissible metrics $g = (\mathfrak{g}, \delta) \in \mathfrak{A}$
- 2 prove that fixed
 - g ∈ A
 - $x \in \Omega_{p_0,p_1}(M_0)$ cp of $x \mapsto F(g,x)$
 - $V = (\xi, \tau)$ nontrivial Jacobi along $\gamma = (x, t)$ st V(0) = V(1) = 0

$$\Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } \frac{\partial^2 F}{\partial g \partial x}(g, x)[h, \xi] \neq 0$$

▶ Main Theorem

$$F: \mathfrak{A} \times \Omega_{p_0,p_1}(M_0) \to \mathbb{R}$$

$$F((\mathfrak{g},\delta),x) = \left(\int_0^1 \mathfrak{g}(\dot{x},\dot{x}) + \mathfrak{g}(\dot{x},\delta)^2 ds\right)^{\frac{1}{2}} + \int_0^1 \mathfrak{g}(\dot{x},\delta) ds$$
 Ingredients:

- find a suitable set of admissible metrics $g = (\mathfrak{g}, \delta) \in \mathfrak{A}$
- prove that fixed
 - $g \in \mathfrak{A}$
 - $x \in \Omega_{p_0,p_1}(M_0)$ cp of $x \mapsto F(g,x)$
 - $V = (\xi, \tau)$ nontrivial Jacobi along $\gamma = (x, t)$ st V(0) = V(1) = 0

$$\Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } \frac{\partial^2 F}{\partial g \partial x}(g, x)[h, \xi] \neq 0$$

▶ Main Theorem

$$F: \mathfrak{A} \times \Omega_{p_0,p_1}(M_0) \to \mathbb{R}$$

$$F((\mathfrak{g},\delta),x) = \left(\int_0^1 \mathfrak{g}(\dot{x},\dot{x}) + \mathfrak{g}(\dot{x},\delta)^2 ds\right)^{\frac{1}{2}} + \int_0^1 \mathfrak{g}(\dot{x},\delta) ds$$
 Ingredients:

- **1** find a suitable set of admissible metrics $g = (\mathfrak{g}, \delta) \in \mathfrak{A}$
- prove that fixed
 - $g \in \mathfrak{A}$
 - $x \in \Omega_{p_0,p_1}(M_0)$ cp of $x \mapsto F(g,x)$
 - $V = (\xi, \tau)$ nontrivial Jacobi along $\gamma = (x, t)$ st V(0) = V(1) = 0

$$\Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } rac{\partial^2 F}{\partial g \partial x}(g, x) ig[h, \xi ig]
eq 0$$

Main Theorem

$$F: \mathfrak{A} \times \Omega_{p_0,p_1}(M_0) \to \mathbb{R}$$

$$F((\mathfrak{g},\delta),x) = \left(\int_0^1 \mathfrak{g}(\dot{x},\dot{x}) + \mathfrak{g}(\dot{x},\delta)^2 ds\right)^{\frac{1}{2}} + \int_0^1 \mathfrak{g}(\dot{x},\delta) ds$$
 Ingredients:

- **1** find a suitable set of admissible metrics $g = (\mathfrak{g}, \delta) \in \mathfrak{A}$
- prove that fixed
 - $g \in \mathfrak{A}$
 - $x \in \Omega_{p_0,p_1}(M_0)$ cp of $x \mapsto F(g,x)$
 - $V = (\xi, \tau)$ nontrivial Jacobi along $\gamma = (x, t)$ st V(0) = V(1) = 0

$$\Rightarrow \exists h = (\mathfrak{h},\zeta) \in T_g \mathfrak{A} ext{ st } rac{\partial^2 F}{\partial g \partial x}(g,x)ig[h,\xiig]
eq 0$$

→ Main Theorem

$$F: \mathfrak{A} \times \Omega_{p_0,p_1}(M_0) \to \mathbb{R}$$

$$F((\mathfrak{g},\delta),x) = \left(\int_0^1 \mathfrak{g}(\dot{x},\dot{x}) + \mathfrak{g}(\dot{x},\delta)^2 ds\right)^{\frac{1}{2}} + \int_0^1 \mathfrak{g}(\dot{x},\delta) ds$$
 Ingredients:

- **1** find a suitable set of admissible metrics $g = (\mathfrak{g}, \delta) \in \mathfrak{A}$
- prove that fixed
 - $g \in \mathfrak{A}$
 - $x \in \Omega_{p_0,p_1}(M_0)$ cp of $x \mapsto F(g,x)$
 - $V = (\xi, \tau)$ nontrivial Jacobi along $\gamma = (x, t)$ st V(0) = V(1) = 0

$$\Rightarrow \exists h = (\mathfrak{h},\zeta) \in T_g \mathfrak{A} ext{ st } rac{\partial^2 F}{\partial g \, \partial x}(g,x)ig[h,\xiig]
eq 0$$

Begin the begin...

▶ Main Theorem

Applying the abstract genericity result Precall it

$$F: \mathfrak{A} \times \Omega_{p_0,p_1}(M_0) \to \mathbb{R}$$

$$F((\mathfrak{g},\delta),x) = \left(\int_0^1 \mathfrak{g}(\dot{x},\dot{x}) + \mathfrak{g}(\dot{x},\delta)^2 ds\right)^{\frac{1}{2}} + \int_0^1 \mathfrak{g}(\dot{x},\delta) ds$$
 Ingredients:

- **1** find a suitable set of admissible metrics $g = (\mathfrak{g}, \delta) \in \mathfrak{A}$
- prove that fixed
 - $g \in \mathfrak{A}$
 - $x \in \Omega_{p_0,p_1}(M_0)$ cp of $x \mapsto F(g,x)$
 - $V = (\xi, \tau)$ nontrivial Jacobi along $\gamma = (x, t)$ st V(0) = V(1) = 0

$$\Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } \frac{\partial^2 F}{\partial g \partial x}(g, x)[h, \xi] \neq 0$$

Begin the begin...

▶ Main Theorem

Applying the abstract genericity result Precall it

$$F: \mathfrak{A} \times \Omega_{p_0,p_1}(M_0) \to \mathbb{R}$$

$$F((\mathfrak{g},\delta),x) = \left(\int_0^1 \mathfrak{g}(\dot{x},\dot{x}) + \mathfrak{g}(\dot{x},\delta)^2 ds\right)^{\frac{1}{2}} + \int_0^1 \mathfrak{g}(\dot{x},\delta) ds$$
 Ingredients:

- **1** find a suitable set of admissible metrics $g = (\mathfrak{g}, \delta) \in \mathfrak{A}$
- prove that fixed
 - $g \in \mathfrak{A}$
 - $x \in \Omega_{p_0,p_1}(M_0)$ cp of $x \mapsto F(g,x)$
 - $V = (\xi, \tau)$ nontrivial Jacobi along $\gamma = (x, t)$ st V(0) = V(1) = 0

$$\Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } \frac{\partial^2 F}{\partial g \partial x}(g, x)[h, \xi] \neq 0$$

Let $g_0 \in \text{Riem}(M_0) (\rightsquigarrow \nabla^0)$ and $k \geq 2$ fixed

Assumptions on $(h, V) \in \mathfrak{D}$

$$||V||_{L} = \max_{x \in \mathcal{X}} ||\nabla^{0}|^{j} V_{x}|| \le +\infty$$

②
$$\|V\|_k = \max_{j=0,...k} \left[\sup_{x \in M_0} \| (\nabla^0)^j V_x \| \right] < +\infty$$

Remarks on 2

it is an open subset of a Banach space

 $ilde{\circ}$ it contains tensors in C_0^{∞}

Let $\mathfrak{g}_0 \in \mathsf{Riem}(M_0) \ (\leadsto \nabla^0)$ and $k \ge 2$ fixed

Assumptions on $(h, V) \in \mathfrak{A}$

◆ Return

②
$$\|V\|_k = \max_{j=0,...k} \left[\sup_{x \in M_0} \| (\nabla^0)^j V_x \| \right] < +\infty$$

Let $g_0 \in \text{Riem}(M_0) (\rightsquigarrow \nabla^0)$ and $k \geq 2$ fixed

Assumptions on $(h, V) \in \mathfrak{A}$

◆ Return

1
$$\|h\|_k = \max_{j=0,...k} \left[\sup_{x \in M_0} \| (\nabla^0)^j h_x \| \right] < +\infty$$

- it is an open subset of a Banach space
- $\forall (h, V)$ defines a stationary Lorentzian metric on $M_0 \times \mathbb{R}$
- it contains tensors in \mathcal{C}_0^{∞}
- $\|\cdot\|$ convergence $\Rightarrow \mathcal{C}^k$ convergence on compact sets

Let $g_0 \in \text{Riem}(M_0) (\rightsquigarrow \nabla^0)$ and $k \geq 2$ fixed

Assumptions on $(h, V) \in \mathfrak{A}$

◆ Return

1
$$\|h\|_k = \max_{j=0,...k} \left[\sup_{x \in M_0} \| (\nabla^0)^j h_x \| \right] < +\infty$$

②
$$\|V\|_k = \max_{j=0,...k} \left[\sup_{x \in M_0} \| (\nabla^0)^j V_x \| \right] < +\infty$$

- it is an open subset of a Banach space
- $\forall (h, V)$ defines a stationary Lorentzian metric on $M_0 \times \mathbb{R}$
- it contains tensors in \mathcal{C}_0^{∞}
- $\|\cdot\|$ convergence $\Rightarrow \mathcal{C}^k$ convergence on compact sets

Let $g_0 \in \text{Riem}(M_0) (\rightsquigarrow \nabla^0)$ and $k \geq 2$ fixed

Assumptions on $(h, V) \in \mathfrak{A}$

◆ Return

②
$$\|V\|_k = \max_{j=0,...k} \left[\sup_{x \in M_0} \| (\nabla^0)^j V_x \| \right] < +\infty$$

- it is an open subset of a Banach space
- $\forall (h, V)$ defines a stationary Lorentzian metric on $M_0 \times \mathbb{R}$
- it contains tensors in C_0^{∞}
- $\|\cdot\|$ convergence $\Rightarrow \mathcal{C}^k$ convergence on compact sets

Let $\mathfrak{g}_0 \in \mathsf{Riem}(M_0) \ (\leadsto \nabla^0)$ and $k \geq 2$ fixed

Assumptions on $(h, V) \in \mathfrak{A}$

◆ Return

1
$$\|h\|_k = \max_{j=0,...k} \left[\sup_{x \in M_0} \| (\nabla^0)^j h_x \| \right] < +\infty$$

②
$$\|V\|_k = \max_{j=0,...k} \left[\sup_{x \in M_0} \| (\nabla^0)^j V_x \| \right] < +\infty$$

- it is an open subset of a Banach space
- $\forall (h, V)$ defines a stationary Lorentzian metric on $M_0 \times \mathbb{R}$
- it contains tensors in \mathcal{C}_0^{∞}
- $\|\cdot\|$ convergence $\Rightarrow \mathcal{C}^k$ convergence on compact sets

Let $g_0 \in \text{Riem}(M_0) (\rightsquigarrow \nabla^0)$ and $k \geq 2$ fixed

Assumptions on $(h, V) \in \mathfrak{A}$

◆ Return

1
$$\|h\|_k = \max_{j=0,...k} \left[\sup_{x \in M_0} \| (\nabla^0)^j h_x \| \right] < +\infty$$

②
$$\|V\|_k = \max_{j=0,...k} \left[\sup_{x \in M_0} \| (\nabla^0)^j V_x \| \right] < +\infty$$

- it is an open subset of a Banach space
- $\forall (h, V)$ defines a stationary Lorentzian metric on $M_0 \times \mathbb{R}$
- it contains tensors in \mathcal{C}_0^{∞}
- $\|\cdot\|$ convergence $\Rightarrow \mathcal{C}^k$ convergence on compact sets

Problem

$$\forall g = (\mathfrak{g}, \delta) \in \mathfrak{A}, x \in \Omega_{\rho_0, \rho_1}(M_0) \text{ cp of } x \mapsto F(g, x), V = (\xi, \tau) \text{ Jacobi w/}$$

$$V_0 = V_1 = 0 \Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } \frac{\partial^2 F}{\partial g \partial x}(g, x) \big[h, \xi \big] \neq 0$$

A sketch of the proof when x not periodic

 \emptyset $\sharp\{\operatorname{self}\cap\operatorname{of} x\}<+\infty$ and $\sharp\{s\in[0,1]:\xi_s\parallel x(s)\}<+\infty$ \emptyset $\exists]a,b[\subset[0,1],U\subset M_0$ w/x([a,b[)) embedded in $U,\xi_s\parallel X(s)$

Ck genericity of lightlike nondegeneracy

The transversality condition

Problem

$$\forall g = (\mathfrak{g}, \delta) \in \mathfrak{A}, x \in \Omega_{\rho_0, \rho_1}(M_0) \text{ cp of } x \mapsto F(g, x), V = (\xi, \tau) \text{ Jacobi w/}$$

$$V_0 = V_1 = 0 \Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } \frac{\partial^2 F}{\partial g \partial x}(g, x) \big[h, \xi \big] \neq 0$$

- $\sharp\{\text{self-}\cap\text{ of }x\}<+\infty \text{ and }\sharp\{s\in[0,1]:\xi_s\parallel\dot{x}(s)\}<+\infty$
- $\exists |a,b| \subset [0,1], U \subset M_0 \text{ w/ } x(|a,b|) \text{ embedded in } U, \xi_s \text{ } \forall \dot{x}(s)$

Problem

$$\forall g = (\mathfrak{g}, \delta) \in \mathfrak{A}, x \in \Omega_{\rho_0, \rho_1}(M_0) \text{ cp of } x \mapsto F(g, x), V = (\xi, \tau) \text{ Jacobi w/}$$

$$V_0 = V_1 = 0 \Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } \frac{\partial^2 F}{\partial g \partial x}(g, x) \big[h, \xi \big] \neq 0$$

- $\sharp \{ \text{self-} \cap \text{ of } x \} < +\infty \text{ and } \sharp \{ s \in [0,1] : \xi_s \parallel \dot{x}(s) \} < +\infty$
- $\exists [a, b[\subset [0, 1], U \subset M_0 \text{ w} / x([a, b[))] \text{ embedded in } U, \xi_s \text{ } \text{ } \text{!} \dot{x}(s)$

Problem

$$\forall g = (\mathfrak{g}, \delta) \in \mathfrak{A}, x \in \Omega_{\rho_0, \rho_1}(M_0) \text{ cp of } x \mapsto F(g, x), V = (\xi, \tau) \text{ Jacobi w/}$$

$$V_0 = V_1 = 0 \Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } \frac{\partial^2 F}{\partial g \partial x}(g, x) \big[h, \xi \big] \neq 0$$

- $\sharp\{\mathsf{self} \cap \mathsf{of} \ x\} < +\infty \ \mathsf{and} \ \sharp\{s \in [0,1] : \xi_s \parallel \dot{x}(s)\} < +\infty$
- $\exists]a,b[\subset [0,1],U\subset M_0 \text{ w/ } x(]a,b[) \text{ embedded in } U,\xi_s \not | \dot{x}(s)$
- observe that $W = 2[c_x \mathfrak{g}(\dot{x}, \delta)]\delta \dot{x} \neq 0 \forall s$
- $\bullet \ \exists K \in \mathfrak{T}_0^2(x(]a,b[) \text{ w/} \int_a^b K_t(\dot{x},W) \, \mathrm{d}s \neq 0$
- $\bullet \exists \mathfrak{h} \in \mathfrak{T}_0^2(U) \text{ w/ } \mathfrak{h}_X = 0, \nabla_{\xi} \mathfrak{h} = K \text{ on } x(]a,b[).$
- observe that $\zeta = \nabla_{\xi} \zeta \equiv 0$ and $\mathfrak{h} \equiv 0$ implies $\frac{\partial^2 F}{\partial g \partial x}(g, x)[h, \xi] = \frac{1}{2c} \int_0^1 \nabla_{\xi} \mathfrak{h}(\dot{x}, W) ds$

Problem

$$\forall g = (\mathfrak{g}, \delta) \in \mathfrak{A}, x \in \Omega_{p_0, p_1}(M_0) \text{ cp of } x \mapsto F(g, x), V = (\xi, \tau) \text{ Jacobi w/}$$

$$V_0 = V_1 = 0 \Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } \frac{\partial^2 F}{\partial g \partial x}(g, x) \big[h, \xi \big] \neq 0$$

- $\sharp\{\mathsf{self} \cap \mathsf{of} \ x\} < +\infty \ \mathsf{and} \ \sharp\{s \in [0,1] : \xi_s \parallel \dot{x}(s)\} < +\infty$
- \exists] a, b[\subset [0, 1], $U \subset M_0$ w/ x(]a, b[) embedded in $U, \xi_s \not | \dot{x}(s)$
- observe that $W = 2[c_x \mathfrak{g}(\dot{x}, \delta)]\delta \dot{x} \neq 0 \forall s$
- $\bullet \ \exists K \in \mathfrak{T}_0^2(x(]a,b[) \text{ w/} \int_a^b K_t(\dot{x},W) \, \mathrm{d}s \neq 0$
- $\exists \mathfrak{h} \in \mathfrak{T}_0^2(U) \text{ w/ } \mathfrak{h}_x = 0, \nabla_{\xi} \mathfrak{h} = K \text{ on } x(]a, b[).$
- observe that $\zeta = \nabla_{\xi} \zeta \equiv 0$ and $\mathfrak{h} \equiv 0$ implies $\frac{\partial^2 F}{\partial g \partial x}(g, x)[h, \xi] = \frac{1}{2G} \int_0^1 \nabla_{\xi} \mathfrak{h}(\dot{x}, W) \, \mathrm{d}s$

Problem

$$\forall g = (\mathfrak{g}, \delta) \in \mathfrak{A}, x \in \Omega_{p_0, p_1}(M_0) \text{ cp of } x \mapsto F(g, x), V = (\xi, \tau) \text{ Jacobi w/}$$

$$V_0 = V_1 = 0 \Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } \frac{\partial^2 F}{\partial g \partial x}(g, x) \big[h, \xi \big] \neq 0$$

- $\sharp \{ \text{self-} \cap \text{ of } x \} < +\infty \text{ and } \sharp \{ s \in [0,1] : \xi_s \parallel \dot{x}(s) \} < +\infty \}$
- $\exists [a, b[\subset [0, 1], U \subset M_0 \text{ w/ } x([a, b[)) \text{ embedded in } U, \xi_s \not \parallel \dot{x}(s)]$
- observe that $W = 2[c_x \mathfrak{g}(\dot{x}, \delta)]\delta \dot{x} \neq 0 \forall s$
- $\exists K \in \mathfrak{T}_0^2(x(]a,b[) \text{ w}/\int_a^b K_t(\dot{x},W) ds \neq 0$
- $\bullet \exists \mathfrak{h} \in \mathfrak{T}_0^2(U) \text{ w/ } \mathfrak{h}_x = 0, \nabla_{\varepsilon} \mathfrak{h} = K \text{ on } x(]a, b[).$

Problem

$$\forall g = (\mathfrak{g}, \delta) \in \mathfrak{A}, x \in \Omega_{p_0, p_1}(M_0) \text{ cp of } x \mapsto F(g, x), V = (\xi, \tau) \text{ Jacobi w/}$$

$$V_0 = V_1 = 0 \Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } \frac{\partial^2 F}{\partial g \partial x}(g, x) \big[h, \xi \big] \neq 0$$

- $\sharp\{\mathsf{self} \cap \mathsf{of} \ x\} < +\infty \ \mathsf{and} \ \sharp\{s \in [0,1] : \xi_s \parallel \dot{x}(s)\} < +\infty$
- $\exists]a,b[\subset [0,1],U\subset M_0 \text{ w/ } x(]a,b[) \text{ embedded in } U,\xi_s \not\parallel \dot{x}(s)$
- observe that $W = 2[c_x \mathfrak{g}(\dot{x}, \delta)]\delta \dot{x} \neq 0 \forall s$
- $\exists K \in \mathfrak{T}_0^2(x(]a,b[) \text{ w/} \int_a^b K_t(\dot{x},W) ds \neq 0$
- $\exists \mathfrak{h} \in \mathfrak{T}_0^2(U) \text{ w/ } \mathfrak{h}_x = 0, \nabla_{\xi} \mathfrak{h} = K \text{ on } x(]a, b[).$
- observe that $\zeta = \nabla_{\xi} \zeta \equiv 0$ and $\mathfrak{h} \equiv 0$ implies $\frac{\partial^2 F}{\partial g \partial x}(g, x)[h, \xi] = \frac{1}{2c} \int_0^1 \nabla_{\xi} \mathfrak{h}(\dot{x}, W) ds$

Problem

$$\forall g = (\mathfrak{g}, \delta) \in \mathfrak{A}, x \in \Omega_{\rho_0, \rho_1}(M_0) \text{ cp of } x \mapsto F(g, x), V = (\xi, \tau) \text{ Jacobi w/}$$

$$V_0 = V_1 = 0 \Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } \frac{\partial^2 F}{\partial g \partial x}(g, x) [h, \xi] \neq 0$$

- $\sharp \{ \text{self-} \cap \text{ of } x \} < +\infty \text{ and } \sharp \{ s \in [0,1] : \xi_s \parallel \dot{x}(s) \} < +\infty$
- \exists]a, b[\subset [0, 1], $U \subset M_0$ w/ x(]a, b[) embedded in $U, \xi_s \not\parallel \dot{x}(s)$ similarly...

Problem

$$\forall g = (\mathfrak{g}, \delta) \in \mathfrak{A}, x \in \Omega_{p_0, p_1}(M_0) \text{ cp of } x \mapsto F(g, x), V = (\xi, \tau) \text{ Jacobi w/}$$

$$V_0 = V_1 = 0 \Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } \frac{\partial^2 F}{\partial g \partial x}(g, x) \big[h, \xi \big] \neq 0$$

- $\sharp\{\mathsf{self} \cap \mathsf{of} \ x\} < +\infty \ \mathsf{and} \ \sharp\{s \in [0,1] : \xi_s \parallel \dot{x}(s)\} < +\infty$
- $\exists]a,b[\subset [0,1],U\subset M_0 \text{ w/ } x(]a,b[) \text{ embedded in } U,\xi_s \not\parallel \dot{x}(s)$
- observe that $Z = [c_x \mathfrak{g}(\dot{x}, \delta)]\dot{x} \neq 0 \forall s$
- $\exists K \in \mathfrak{X}(x(]a,b[) \text{ w}/\int_a^b \mathfrak{g}(Z,K) ds \neq 0$
- $\exists \zeta \in \mathfrak{X}(U) \text{ w/ } \zeta_X = 0, \nabla_{\xi} \zeta = K \text{ on } x(]a, b[).$
- observe that $\zeta = 0$ and $\mathfrak{h} = \nabla_{\xi} \mathfrak{h} \equiv 0$ implies $\frac{\partial^2 F}{\partial g \partial v}(g, x)[h, \xi] = \frac{1}{2g} \int_0^1 \mathfrak{g}(Z, \nabla_{\xi} \zeta) \, \mathrm{d}s$

Problem

$$\forall g = (\mathfrak{g}, \delta) \in \mathfrak{A}, x \in \Omega_{p_0, p_1}(M_0) \text{ cp of } x \mapsto F(g, x), V = (\xi, \tau) \text{ Jacobi w/}$$

$$V_0 = V_1 = 0 \Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } \frac{\partial^2 F}{\partial g \partial x}(g, x) \big[h, \xi \big] \neq 0$$

- $\sharp\{\mathsf{self} \cap \mathsf{of} \ x\} < +\infty \ \mathsf{and} \ \sharp\{s \in [0,1] : \xi_s \parallel \dot{x}(s)\} < +\infty$
- \exists] a, b[\subset [0, 1], $U \subset M_0$ w/ x(]a, b[) embedded in $U, \xi_s \not | \dot{x}(s)$
- observe that $Z = [c_x \mathfrak{g}(\dot{x}, \delta)]\dot{x} \neq 0 \forall s$
- $\bullet \ \exists K \in \mathfrak{X}(x(]a,b[) \text{ w}/ \int_a^b \mathfrak{g}(Z,K) \, \mathrm{d}s \neq 0$
- $\bullet \ \exists \zeta \in \mathfrak{X}(U) \text{ w/ } \zeta_X = 0, \nabla_{\xi} \zeta = K \text{ on } x(]a,b[).$
- observe that $\zeta = 0$ and $\mathfrak{h} = \nabla_{\xi} \mathfrak{h} \equiv 0$ implies $\frac{\partial^2 F}{\partial g \, \partial x}(g, x)[h, \xi] = \frac{1}{2c} \int_0^1 \mathfrak{g}(Z, \nabla_{\xi} \zeta) \, ds$

Problem

$$\forall g = (\mathfrak{g}, \delta) \in \mathfrak{A}, x \in \Omega_{p_0, p_1}(M_0) \text{ cp of } x \mapsto F(g, x), V = (\xi, \tau) \text{ Jacobi w/}$$

$$V_0 = V_1 = 0 \Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } \frac{\partial^2 F}{\partial g \partial x}(g, x) [h, \xi] \neq 0$$

- $\sharp \{ \text{self-} \cap \text{ of } x \} < +\infty \text{ and } \sharp \{ s \in [0,1] : \xi_s \parallel \dot{x}(s) \} < +\infty$
- $\exists]a,b[\subset [0,1], U\subset M_0 \text{ w/ } x(]a,b[) \text{ embedded in } U,\xi_s \not\parallel \dot{x}(s)$
- observe that $Z = [c_x \mathfrak{g}(\dot{x}, \delta)]\dot{x} \neq 0 \forall s$
- $\exists K \in \mathfrak{X}(x(]a,b[) \text{ w}/\int_a^b \mathfrak{g}(Z,K) ds \neq 0$
- $\exists \zeta \in \mathfrak{X}(U) \text{ w/ } \zeta_{x} = 0, \nabla_{\xi} \zeta = K \text{ on } x(]a, b[).$
- observe that $\zeta = 0$ and $\mathfrak{h} = \nabla_{\xi} \mathfrak{h} \equiv 0$ implies $\frac{\partial^2 F}{\partial g \, \partial x}(g, x) [h, \xi] = \frac{1}{2c} \int_0^1 \mathfrak{g}(Z, \nabla_{\xi} \zeta) \, \mathrm{d}s$

Problem

$$\forall g = (\mathfrak{g}, \delta) \in \mathfrak{A}, x \in \Omega_{p_0, p_1}(M_0) \text{ cp of } x \mapsto F(g, x), V = (\xi, \tau) \text{ Jacobi w/}$$

$$V_0 = V_1 = 0 \Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } \frac{\partial^2 F}{\partial g \partial x}(g, x) \big[h, \xi \big] \neq 0$$

- $\sharp\{\mathsf{self} \cap \mathsf{of} \ x\} < +\infty \ \mathsf{and} \ \sharp\{s \in [0,1] : \xi_s \parallel \dot{x}(s)\} < +\infty$
- $\exists]a,b[\subset [0,1],U\subset M_0 \text{ w/ } x(]a,b[) \text{ embedded in } U,\xi_s \not\parallel \dot{x}(s)$
- observe that $Z = [c_x \mathfrak{g}(\dot{x}, \delta)]\dot{x} \neq 0 \forall s$
- $\exists K \in \mathfrak{X}(x(]a,b[) \text{ w}/\int_a^b \mathfrak{g}(Z,K) ds \neq 0$
- $\exists \zeta \in \mathfrak{X}(U) \text{ w/ } \zeta_{x} = 0, \nabla_{\xi} \zeta = K \text{ on } x(]a, b[).$
- observe that $\zeta = 0$ and $\mathfrak{h} = \nabla_{\xi} \mathfrak{h} \equiv 0$ implies $\frac{\partial^2 F}{\partial g \partial x}(g, x)[h, \xi] = \frac{1}{2c} \int_0^1 \mathfrak{g}(Z, \nabla_{\xi} \zeta) ds$

Problem

$$\forall g = (\mathfrak{g}, \delta) \in \mathfrak{A}, x \in \Omega_{\rho_0, \rho_1}(M_0) \text{ cp of } x \mapsto F(g, x), V = (\xi, \tau) \text{ Jacobi w/}$$

$$V_0 = V_1 = 0 \Rightarrow \exists h = (\mathfrak{h}, \zeta) \in T_g \mathfrak{A} \text{ st } \frac{\partial^2 F}{\partial g \partial x}(g, x) \big[h, \xi \big] \neq 0$$

- Note that in this way a stronger result is proven
 - $\forall \mathfrak{g}$, the set of δ such that g has only nondegenerate light rays from $(p_0, 0)$ to $\{p_1\} \times \mathbb{R}$ is generic in $\{\delta : (\mathfrak{g}, \delta) \in \mathfrak{A}\}$
 - $\forall \delta$, the set of $\mathfrak g$ such that g has only nondegenerate light rays from $(p_0,0)$ to $\{p_1\} \times \mathbb R$ is generic in $\{\mathfrak g: (\mathfrak g,\delta) \in \mathfrak A\}$

Obstruction

▶ C^k admissible tensors

 C^{∞} -topology makes the space of admissible metrics Frechet

Solution

Use an idea from A Floer, H Hofer and D Salamon (1995), Duke Math J **80** 251, used in L Biliotti, MA Javaloyes and P Piccione, Indiana Univ. Math. J (2009) for the fixed-point case.

To begin

• From now on denote the set of admissible tensor by \mathfrak{A}_k (to stress dependence on $k \in \mathbb{N}$).

 \mathcal{C}^{∞} genericity of lightlike nondegeneracy

Extension to C^{∞} genericity

Obstruction

C^k admissible tensors

 C^{∞} -topology makes the space of admissible metrics Frechet

Solution

Use an idea from A Floer, H Hofer and D Salamon (1995), Duke Math J **80** 251, used in L Biliotti, MA Javaloyes and P Piccione, Indiana Univ. Math. J (2009) for the fixed-point case.

 C^{∞} genericity of lightlike nondegeneracy

Extension to C^{∞} genericity

Obstruction

▶ C^k admissible tensors

 C^{∞} -topology makes the space of admissible metrics Frechet

Solution

Use an idea from A Floer, H Hofer and D Salamon (1995), Duke Math J **80** 251, used in L Biliotti, MA Javaloyes and P Piccione, Indiana Univ. Math. J (2009) for the fixed-point case.

- From now on denote the set of admissible tensor by \mathfrak{A}_k (to stress dependence on $k \in \mathbb{N}$).
- fixed $p_0, p_1 \in M_0$ denote by $\mathfrak{A}_{k,\star}$ the set of $(\mathfrak{g}, \delta) \in \mathfrak{A}_k$ such that light ray in $M_0 \times \mathbb{R}$ between $(p_0, 0)$ and $\{p_1\} \times \mathbb{R}$ is nondeg.
- what we proved so far: $\mathfrak{A}_{k,\star} \subseteq \mathfrak{A}_k$ generic $\forall k \geq 2$

 C^{∞} genericity of lightlike nondegeneracy

Extension to C^{∞} genericity

Obstruction

C^k admissible tensors

 C^{∞} -topology makes the space of admissible metrics Frechet

Solution

Use an idea from A Floer, H Hofer and D Salamon (1995), Duke Math J **80** 251, used in L Biliotti, MA Javaloyes and P Piccione, Indiana Univ. Math. J (2009) for the fixed-point case.

- From now on denote the set of admissible tensor by \mathfrak{A}_k (to stress dependence on $k \in \mathbb{N}$).
- fixed $p_0, p_1 \in M_0$ denote by $\mathfrak{A}_{k,\star}$ the set of $(\mathfrak{g}, \delta) \in \mathfrak{A}_k$ such that \forall light ray in $M_0 \times \mathbb{R}$ between $(p_0, 0)$ and $\{p_1\} \times \mathbb{R}$ is nondeg.
- what we proved so far: $\mathfrak{A}_{k,\star} \subseteq \mathfrak{A}_k$ generic $\forall k \geq 2$

Obstruction

C^k admissible tensors

 C^{∞} -topology makes the space of admissible metrics Frechet

Solution

Use an idea from A Floer, H Hofer and D Salamon (1995), Duke Math J **80** 251, used in L Biliotti, MA Javaloyes and P Piccione, Indiana Univ. Math. J (2009) for the fixed-point case.

- From now on denote the set of admissible tensor by \mathfrak{A}_k (to stress dependence on $k \in \mathbb{N}$).
- fixed $p_0, p_1 \in M_0$ denote by $\mathfrak{A}_{k,\star}$ the set of $(\mathfrak{g}, \delta) \in \mathfrak{A}_k$ such that \forall light ray in $M_0 \times \mathbb{R}$ between $(p_0, 0)$ and $\{p_1\} \times \mathbb{R}$ is nondeg.
- what we proved so far: $\mathfrak{A}_{k,\star} \subseteq \mathfrak{A}_k$ generic $\forall k \geq 2$

C[∞] genericity of lightlike nondegeneracy

Extension to C^{∞} genericity

Problem: start from $\mathfrak{A}_{k,\star} \subseteq \mathfrak{A}_k$ generic $\forall k \geq 2$

- $\mathfrak{A}_{\infty} = \cap_k \mathfrak{A}_k$, $\mathfrak{A}_{\infty,\star} = \cap_k \mathfrak{A}_{k,\star}$
- claim: $\mathfrak{A}_{\infty,\star} \subseteq \mathfrak{A}_{\infty}$ generic

 C^{∞} genericity of lightlike nondegeneracy

Extension to C^{∞} genericity

Problem: start from $\mathfrak{A}_{k,\star} \subseteq \mathfrak{A}_k$ generic $\forall k \geq 2$

- $\bullet \ \mathfrak{A}_{\infty} = \cap_{k} \mathfrak{A}_{k}, \ \mathfrak{A}_{\infty,\star} = \cap_{k} \mathfrak{A}_{k,\star}$
- claim: $\mathfrak{A}_{\infty,\star} \subseteq \mathfrak{A}_{\infty}$ generic

Sketch of the proof

• define $\mathfrak{A}_{K,*,N}$ such that every light ray between p and γ st $\|\dot{\mathbf{x}}\|_{\infty} \leq N$ is nondegenerate and let $\mathfrak{A}_{\infty,*,N} = \cap_k \mathfrak{A}_{K,*,N}$

 \mathcal{C}^{∞} genericity of lightlike nondegeneracy

Extension to C^{∞} genericity

Problem: start from $\mathfrak{A}_{k,\star} \subseteq \mathfrak{A}_k$ generic $\forall k \geq 2$

- $\bullet \ \mathfrak{A}_{\infty} = \cap_{k} \mathfrak{A}_{k}, \ \mathfrak{A}_{\infty,\star} = \cap_{k} \mathfrak{A}_{k,\star}$
- ullet claim: $\mathfrak{A}_{\infty,\star}\subseteq\mathfrak{A}_{\infty}$ generic

Problem: start from $\mathfrak{A}_{k,\star} \subseteq \mathfrak{A}_k$ generic $\forall k \geq 2$

- $\bullet \ \mathfrak{A}_{\infty} = \cap_{k} \mathfrak{A}_{k}, \ \mathfrak{A}_{\infty,\star} = \cap_{k} \mathfrak{A}_{k,\star}$
- ullet claim: ${\mathfrak A}_{\infty,\star}\subseteq {\mathfrak A}_\infty$ generic

- define $\mathfrak{A}_{k,\star,N}$ such that every light ray between p and γ st $\|\dot{x}\|_{\infty} \leq N$ is nondegenerate and let $\mathfrak{A}_{\infty,\star,N} = \cap_k \mathfrak{A}_{k,\star,N}$
- $\mathfrak{A}_{k,\star,N} \subseteq \mathfrak{A}_k$ is open $\forall N$ and $\forall 2 \leq k \leq +\infty$
- observe $\mathfrak{A}_{k,\star} \subseteq \mathfrak{A}_{k,\star,N} \Rightarrow \mathfrak{A}_{k,\star,N}$ dense in \mathfrak{A}_k
- observe \mathfrak{A}_{∞} dense in \mathfrak{A}_k
 - $A\Rightarrow \mathfrak{A}_{\infty,\star,N}=\mathfrak{A}_{\infty}\cap \mathfrak{A}_{k,\star,N}$ dense in $\mathfrak{A}_k\ orall k\Rightarrow \mathfrak{A}_{\infty,\star,N}$ dense in \mathfrak{A}_{∞}
- observe $\mathfrak{A}_{\infty,\star} = \cap_N \mathfrak{A}_{\infty,\star,N}$

Problem: start from $\mathfrak{A}_{k,\star} \subseteq \mathfrak{A}_k$ generic $\forall k \geq 2$

- $\mathfrak{A}_{\infty} = \cap_k \mathfrak{A}_k$, $\mathfrak{A}_{\infty,\star} = \cap_k \mathfrak{A}_{k,\star}$
- ullet claim: ${\mathfrak A}_{\infty,\star}\subseteq {\mathfrak A}_\infty$ generic

- define $\mathfrak{A}_{k,\star,N}$ such that every light ray between p and γ st $\|\dot{x}\|_{\infty} \leq N$ is nondegenerate and let $\mathfrak{A}_{\infty,\star,N} = \cap_k \mathfrak{A}_{k,\star,N}$
- $\mathfrak{A}_{k,\star,N}\subseteq\mathfrak{A}_k$ is open $\forall N$ and $\forall 2\leq k\leq +\infty$
- observe $\mathfrak{A}_{k,\star} \subseteq \mathfrak{A}_{k,\star,N} \Rightarrow \mathfrak{A}_{k,\star,N}$ dense in \mathfrak{A}_k
- observe $\mathfrak{A}_{\infty,\star} = \cap_N \mathfrak{A}_{\infty,\star,N}$

Problem: start from $\mathfrak{A}_{k,\star} \subseteq \mathfrak{A}_k$ generic $\forall k \geq 2$

- $\mathfrak{A}_{\infty} = \cap_k \mathfrak{A}_k$, $\mathfrak{A}_{\infty,\star} = \cap_k \mathfrak{A}_{k,\star}$
- ullet claim: ${\mathfrak A}_{\infty,\star}\subseteq {\mathfrak A}_\infty$ generic

- define $\mathfrak{A}_{k,\star,N}$ such that every light ray between p and γ st $\|\dot{x}\|_{\infty} \leq N$ is nondegenerate and let $\mathfrak{A}_{\infty,\star,N} = \cap_k \mathfrak{A}_{k,\star,N}$
- $\mathfrak{A}_{k,\star,N} \subseteq \mathfrak{A}_k$ is open $\forall N$ and $\forall 2 \leq k \leq +\infty$
- observe $\mathfrak{A}_{k,\star} \subseteq \mathfrak{A}_{k,\star,N} \Rightarrow \mathfrak{A}_{k,\star,N}$ dense in \mathfrak{A}_k
- observe $\mathfrak{A}_{\infty,\star} = \cap_N \mathfrak{A}_{\infty,\star,N}$

Problem: start from $\mathfrak{A}_{k,\star} \subseteq \mathfrak{A}_k$ generic $\forall k \geq 2$

- $\bullet \ \mathfrak{A}_{\infty} = \cap_{k} \mathfrak{A}_{k}, \ \mathfrak{A}_{\infty,\star} = \cap_{k} \mathfrak{A}_{k,\star}$
- ullet claim: ${\mathfrak A}_{\infty,\star}\subseteq {\mathfrak A}_\infty$ generic

- define $\mathfrak{A}_{k,\star,N}$ such that every light ray between p and γ st $\|\dot{x}\|_{\infty} \leq N$ is nondegenerate and let $\mathfrak{A}_{\infty,\star,N} = \cap_k \mathfrak{A}_{k,\star,N}$
- $\mathfrak{A}_{k,\star,N}\subseteq\mathfrak{A}_k$ is open $\forall N$ and $\forall 2\leq k\leq +\infty$
- observe $\mathfrak{A}_{k,\star} \subseteq \mathfrak{A}_{k,\star,N} \Rightarrow \mathfrak{A}_{k,\star,N}$ dense in \mathfrak{A}_k
- observe \mathfrak{A}_{∞} dense in \mathfrak{A}_k $\Rightarrow \mathfrak{A}_{\infty,\star,N} = \mathfrak{A}_{\infty} \cap \mathfrak{A}_{k,\star,N}$ dense in $\mathfrak{A}_k \ \forall k \Rightarrow \mathfrak{A}_{\infty,\star,N}$ dense in \mathfrak{A}_{∞}
- observe $\mathfrak{A}_{\infty,\star} = \cap_N \mathfrak{A}_{\infty,\star,N}$

Problem: start from $\mathfrak{A}_{k,\star} \subseteq \mathfrak{A}_k$ generic $\forall k \geq 2$

- $\bullet \ \mathfrak{A}_{\infty} = \cap_{k} \mathfrak{A}_{k}, \ \mathfrak{A}_{\infty,\star} = \cap_{k} \mathfrak{A}_{k,\star}$
- ullet claim: ${\mathfrak A}_{\infty,\star}\subseteq {\mathfrak A}_\infty$ generic

- define $\mathfrak{A}_{k,\star,N}$ such that every light ray between p and γ st $\|\dot{x}\|_{\infty} \leq N$ is nondegenerate and let $\mathfrak{A}_{\infty,\star,N} = \cap_k \mathfrak{A}_{k,\star,N}$
- $\mathfrak{A}_{k,\star,N}\subseteq\mathfrak{A}_k$ is open $\forall N$ and $\forall 2\leq k\leq +\infty$
- observe $\mathfrak{A}_{k,\star} \subseteq \mathfrak{A}_{k,\star,N} \Rightarrow \mathfrak{A}_{k,\star,N}$ dense in \mathfrak{A}_k
- observe \mathfrak{A}_{∞} dense in \mathfrak{A}_k $\Rightarrow \mathfrak{A}_{\infty,\star,N} = \mathfrak{A}_{\infty} \cap \mathfrak{A}_{k,\star,N}$ dense in $\mathfrak{A}_k \ \forall k \Rightarrow \mathfrak{A}_{\infty,\star,N}$ dense in \mathfrak{A}_{∞}
- observe $\mathfrak{A}_{\infty,\star} = \cap_N \mathfrak{A}_{\infty,\star,N}$

Summary

- motivations for studying genericity features in GR are observational and geometrical as well

- motivations for studying genericity features in GR are observational and geometrical as well
- genericity problems in Lorentzian geometry can be tackled using global abstract results
- these techniques also successfully extend to general splitting spacetimes (work in progress)
- open problem: genericity of light rays nondegeneracy for wider classes of spacetimes

Summary

- motivations for studying genericity features in GR are observational and geometrical as well
- genericity problems in Lorentzian geometry can be tackled using global abstract results
- these techniques also successfully extend to general splitting spacetimes (work in progress)
- open problem: genericity of light rays nondegeneracy for wider classes of spacetimes

Summary

- motivations for studying genericity features in GR are observational and geometrical as well
- genericity problems in Lorentzian geometry can be tackled using global abstract results
- these techniques also successfully extend to general splitting spacetimes (work in progress)
- open problem: genericity of light rays nondegeneracy for wider classes of spacetimes