LMA0001 – Lógica Matemática Aula 11 Dedução Natural

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2020

Dedução natural

O sistema de **dedução natural** \vdash_{DN} , proposto por *Gentzen*, visa ser um sistema de provas intuitivo.

Propriedades:

- Cada conectivo possui regras de introdução e regras de eliminação
- Podemos introduzir hipóteses durante a prova
- Sistema online para brincar :-) https://proofs.openlogicproject.org/

Regras de Inferência

Uma regra de inferência permite inferir uma nova fórmula a partir de fórmulas já derivadas.

Provas

Uma prova é uma sequência de fórmulas numeradas. A sequência inicia pela listagem das premissas e encerra com a fórmula que se quer concluir a prova.

$$\Gamma \vdash A$$

- $\begin{array}{c|cccc} 1. & \gamma_1 & \mathsf{Premissa} \\ 2. & \gamma_2 & \mathsf{Premissa} \\ . & & \end{array}$
- (i) λ Premissa
- (:) A

Provas

Após a listagem das premissas, a prova é constituída de sucessivas aplicações de regras de inferência, até chegar na conclusão.

Cada regra possui uma estrutura própria. A seguir, vamos ver as regras de cada conectivo da lógica proposicional clássica.

Dedução natural: Reiteração/Repetição

Dedução natural: Conjunção

Introdução:

m. | Á

n. E

 $A \wedge B \quad \wedge I \text{ m,n}$

Dedução natural: Conjunção

Eliminação:

m. $\begin{vmatrix} A \land B \\ A \end{vmatrix} \land E m$

m. | A ∧ B

Dedução natural: Conjunção

Introdução:

m. A

n. B

 $A \wedge B \wedge I m,n$

Eliminação:

A ∧E m

Dedução natural: Condicional

Eliminação:

Dedução natural: Condicional

Dedução natural: Condicional

Eliminação: m. $A \rightarrow B$ n. $A \rightarrow B$ $\rightarrow E$ m,n

Dedução natural: Disjunção

Introdução:

 $\begin{array}{c|c} m. & A \\ B \lor A & \lor I \ m \end{array}$

Dedução natural: Disjunção

Eliminação:

m

 $A \vee B$

В

j.

k.

A	Hipótese
:	
C	

Hipótese

 \bigvee I m,i-j,k-l

Dedução natural: Disjunção

Introdução:

 $\begin{array}{c|c} m. & A \\ B \lor A & \lor I \ m \end{array}$

Eliminação:

m $A \lor B$ i. A Hipótese

k.

В	Hipótese
:	
С	
C	∨I m,i-j,k-l

Dedução natural: Negação

Eliminação:

Dedução natural: Negação

Dedução natural: Negação

Eliminação:

Dedução natural: Contradição

Prova Indireta:

Explosão: m. $\begin{vmatrix} \bot \\ A & X m \end{vmatrix}$

Nota: veja que podemos deduzir qualquer fórmula A a partir de uma contradição.

Propriedades da Dedução Natural

- A dedução natural para lógica proposicional é
 - correta: se $\Gamma \vdash_{DN} X$ então $\Gamma \vDash X$
 - completa: se $\Gamma \vDash X$ então $\Gamma \vdash_{DN} X$
- Permite que comecemos as provas de baixo para cima, e que formulemos hipóteses ao longo do processo.
- É um sistema dedutivo bastante usado para realizar provas manualmente.

