Generalized pairwise comparisons for precision medicine

Tomasz Burzykowski
IDDI & Hasselt University, Belgium
tomasz.burzykowski@iddi.com

Personalizing Treatment Choices

- Evidence-based medicine
 - (Meta-analyses of) randomized control trials
 - Subgroup analyses, if appropriate
- Precision medicine

"Giving the right treatment to the right patient at the right time"

- Personalized medicine
 - Precision medicine with personalized/patient-centric choices for therapeutic decisions

An Unmet Statistical Need

Consider the following results

Worst grade related AE	Monotherapy (n=430)	Combination (n=431)	
Grade 3	220/	54%	
Grade 4	23%		

A patient might reason:

- Taking combination, I'm more likely to live longer (by how much?)
- Taking combination, I'm more likely to have grade 3/4 adverse events (AEs)
- I'm willing to experience AEs for a survival benefit of at least m months...

Limitations of Standard Analyses

- A single (primary) endpoint drives decision-making
- Other endpoints are analyzed descriptively
- Safety informally balanced against efficacy, resulting in debatable risk / benefit analyses
- Patient preferences are not formally taken into account

Statistics in Medicine

Research Article

Received 27 October 2009,

Accepted 2 March 2010

Published online in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.3923

Generalized pairwise comparisons of prioritized outcomes in the two-sample problem

Marc Buyse^{a,b*†}

Randomized Trial

Let X_i be the outcome of i^{th} subject in T (i = 1, ..., n)

Let Y_j be the outcome of j^{th} subject in C(j = 1, ..., m)

Pairwise Comparisons

Let X_i and Y_i be the observed values of a continuous outcome

Net Benefit

Let p_{ii} be equal to

1 if the pair is a win

-1 if the pair is a loss

O if the pair is a tie/?

Then

$$U = \sum_{ij} p_{ij} / (nm)$$

- A generalization of the Wilcoxon-Mann-Whitney test-statistic
- And (if no missing data)

$$\Delta = E(U) = P(X>Y)-P(X$$

Illustration

CONTROL **TREATMENT** GROUP (C) GROUP (T)

Ties

10

Wins

Losses

Net Benefit

Ties	Wins	Losses	Net benefit
4 / 36 = 0.11	23 / 36 = 0.64	9 / 36 = 0.25	0.64 - 0.25 = 0.39

The probability of a patient having a better outcome

- if on treatment is 0.64
- if on control is 0.25

The "net benefit" is 0.39

Note: the "win ratio" is 0.64 / 0.25 = 2.56

Generalized Pairwise Comparisons

Now let X_i and Y_j be the observed values of any outcome measure (continuous, time-to-event, binary, categorical, ...)

Time to Event

X _i censored	Y _j censored	X _i >Y _j	X _i <y<sub>j</y<sub>	X _i =Y _j
No	No	Win	Loss	Tie
Yes	No	Win	?	?
No	Yes	?	Loss	?
Yes	Yes	?	?	?

Thresholds of Clinical Relevance

X _i censored	Y _j censored	X _i -Y _j >m	X _i -Y _j <-m	$ X_i-Y_j \le m$
No	No	Win	Loss	Tie
Yes	No	Win	?	?
No	Yes	?	Loss	?
Yes	Yes	?	?	?

Net Benefit – Proportional Hazards

KAPLAN-MEIER CURVES

NET BENEFIT OF AT LEAST M MONTHS

Net Benefit – Proportional Hazards

KAPLAN-MEIER CURVES

NET BENEFIT OF AT LEAST m MONTHS

There is a 13% net probabilty that survival will be longer on T than C

The "net benefit" of T is 13%

Net Benefit – Proportional Hazards

KAPLAN-MEIER CURVES

NET BENEFIT OF AT LEAST M MONTHS

There is an 8% net benefit of at least 10 months in favor of T

Power – Proportional Hazards

Power of several tests in the proportional hazards scenario

Net Benefit – Delayed Difference

NET BENEFIT OF AT LEAST m MONTHS

Example: immunotherapy for advanced solid tumors

Power – Delayed Difference

Power of several tests in the delayed treatment effect scenario

Net Benefit – Cure Rate

NET BENEFIT OF AT LEAST m MONTHS

Example: allografts in childhood tumors

Power – Cure Rate

Power of several tests in the cure rate scenario

Net Benefit

- Related to the 'probabilistic index', P(X > Y), [Acion et al. 2006, De Neve et al. 2013].
- The probabilistic index and related measures do not automatically generalize to other settings or different patient populations, where the variability of the outcome(s) of interest could be quite different [Senn 2011, Thas et al. 2012].
- These measures of benefit may be best seen as complementary to traditional (parametric) measures of benefit.

Prioritized Outcomes

Now let (X_i, X_i') and (Y_j, Y_j') be observed values of two outcome measures, with X(Y) being prioritized over X'(Y)

X_i vs. Y_j	X_i ' vs. Y_j '	Pair is
WIN		WIN
LOSS		LOSS
TIE or?	WIN	WIN
TIE or?	LOSS	LOSS
TIE or ?	TIE or ?	TIE or ?

Net Benefit

- Assume K outcomes
- Let p_{ijk} (k=1, ..., K) be equal to

1 if the pair is a win for the k-th outcome

-1 if the pair is a loss for the k-th outcome

0 if the pair is a tie for the k-th outcome

- Define u_{iik}= I(the pair is ? for the k-th outcome)
- Let

$$U(K) = \sum_{ij} \{p_{ij1}(1-u_{ij1}) + ... + p_{ijK}u_{ij1}...u_{ij,K-1}(1-u_{ijK})\}/(nm)$$

And

$$\Delta = E\{U(K)\}$$

A Recent Example

Myeloablative Autologous Stem-Cell Transplantation for Severe Scleroderma

N Engl J Med 2018;378:35-47. DOI: 10.1056/NEJMoa1703327

K.M. Sullivan, E.A. Goldmuntz, L. Keyes-Elstein, P.A. McSweeney, A. Pinckney, B. Welch, M.D. Mayes, R.A. Nash, L.J. Crofford, B. Eggleston, S. Castina, L.M. Griffith, J.S. Goldstein, D. Wallace, O. Craciunescu, D. Khanna, R.J. Folz, J. Goldin, E.W. St. Clair, J.R. Seibold, K. Phillips, S. Mineishi, R.W. Simms, K. Ballen, M.H. Wener, G.E. Georges, S. Heimfeld, C. Hosing, S. Forman, S. Kafaja, R.M. Silver, L. Griffing, J. Storek, S. LeClercq, R. Brasington, M.E. Csuka, C. Bredeson, C. Keever-Taylor, R.T. Domsic, M.B. Kahaleh, T. Medsger, and D.E. Furst, for the SCOT Study Investigators*

METHODS

We randomly assigned adults (18 to 69 years of age) with severe scleroderma to undergo myeloablative autologous stem-cell transplantation (36 participants) or to receive cyclophosphamide (39 participants). The primary end point was a global rank composite score comparing participants with each other on the basis of a hierarchy of disease features assessed at 54 months: death, event-free survival (survival without respiratory, renal, or cardiac failure), forced vital capacity, the score on the Disability Index of the Health Assessment Questionnaire, and the modified Rodnan skin score.

RESULTS

In the intention-to-treat population, global rank composite scores at 54 months showed the superiority of transplantation (67% of 1404 pairwise comparisons favored transplantation and 33% favored cyclophosphamide, P=0.01). In the per-protocol population

BENEFIT Project

- Biostatistical Estimation of Net Effects
 For Individualization of Therapy
- Funds: the Walloon Region, Biowin the Health Cluster of Wallonia and Innoviris, the Brussels Institute for Research and Innovation.

- International Drug Development Institute (IDDI)
- Bristol-Myers Squibb
- European Organization for Research and Treatment of Cancer (EORTC)
- Université Catholique de Louvain (UCL)
- Université Claude Bernard Lyon 1 (Lyon, France)

BENEFIT Project: Goals

- Methods
 - Extensions of GPC (missing data, longitudinal, cross-over, ...)
 - "Optimal" GPC (censoring, risk/benefit, ...)
 - Comparisons with traditional methods
 - Use for trial design
- Applications (oncology, ophthalmology, ...)
- Software
 - Open
 - Proprietary (design, analysis, patient)

Net Benefit for Longitudinal Data

- Normally-distributed outcome Y
- Two measurements: "earlier" Y₁ and "later" Y₂
- Y₂ "primary"
- For uncorrelated Y₁ and Y₂

$$\Delta = \theta_2 + \theta_1 * \left\{ \Phi\left(\frac{\mu_{20} + \tau_2 - \mu_{21}}{\sigma_2 \sqrt{2}}\right) - \Phi\left(\frac{\mu_{20} - \tau_2 - \mu_{21}}{\sigma_2 \sqrt{2}}\right) \right\}$$

- = {P(T better for Y₂)-P(C better for Y₂)} + {P(T better for Y₁)-P(C better for Y₁)}·P(tie on Y₁)
- = (Net benefit for Y₂) + (Net benefit for Y₁)·P(tie on Y₂)

Net Benefit Under MCAR Dropout

- Data for Y₁ complete
- Data for Y₂ missing completely at random in each treatment group

$$-\omega_0 = P(Y_2 \text{ observed for control}), \omega_1 = P(Y_2 \text{ observed for treatment})$$

Then, for uncorrelated Y₁ and Y₂,

$$\Delta_{\text{MCAR}} = \omega_0 \omega_1 \Delta + \theta_1 (1 - \omega_0 \omega_1)$$

- Hence, estimation ignoring missing data (even for MCAR) is biased!
- A corrected estimator obtained from

$$\Delta = \{\Delta_{\text{MCAR}} - \theta_1 (1 - \omega_0 \omega_1)\} / (\omega_0 \omega_1)$$

Net Benefit Under Dropout/Correlation IDDI

- Formulae quickly complicate for correlated Y₁ and Y₂
 - MCAR:

$$\Delta = \theta_{2}\Phi(\beta_{0})\Phi(\beta_{0} + \gamma) + \theta_{1}(1 - \Phi(\beta_{0})\Phi(\beta_{0} + \gamma)) + \\ + \Phi(\beta_{0})\Phi(\beta_{0} + \gamma) \left(\frac{1}{\sigma_{1}^{2}} \int_{-\infty}^{\infty} \phi\left(\frac{y_{11} - \mu_{11}}{\sigma_{1}}\right) \left(BvN(h_{11}, \frac{y_{11} - \tau_{1} - \mu_{10}}{\sigma_{1}}; \rho_{3}) - BvN(h_{12}, \frac{y_{11} - \tau_{1} - \mu_{10}}{\sigma_{1}}; \rho_{3})\right) dy_{11} - \\ + \frac{1}{\sigma_{1}} \int_{-\infty}^{\infty} \phi\left(\frac{y_{10} - \mu_{10}}{\sigma_{1}}\right) \left(BvN(h_{13}, \frac{y_{10} - \tau_{1} - \mu_{11}}{\sigma_{1}}; -\rho_{3}) - BvN(h_{14}, \frac{y_{10} - \tau_{1} - \mu_{11}}{\sigma_{1}}; \rho_{3})\right) dy_{10}\right)$$

- Even more for MAR...
- Nevertheless, IPW estimators can be constructed

Closing Remarks (1)

- GPCs are attractive
 - In terms of patient centricity:
 - "Net benefit", a patient-relevant measure
 - Accommodate prioritized outcomes
 - In statistical terms:
 - Equivalent to standard non-parametric tests in simple cases
 - May have better power than, e.g., the logrank test
 - Allow for testing of clinically relevant differences

Closing Remarks (2)

- GPCs require more fundamental research
 - In terms of theoretical properties:
 - sufficiency, completeness?
 - robustness to missing data
 - handling multiple relevance-thresholds
 - generalizability beyond the available sample?
 - •
 - In terms of applicability:
 - Disease domains where additional insight can be obtained?