CS343 Operating Systems

Lecture 2

Introduction to Process States

John Jose
Associate Professor
Department of Computer Science & Engineering
Indian Institute of Technology Guwahati

Operating System Services

- ❖ The OS structure is divided into many sub-components.
 - ❖ Process Execution
 - Process Management
 - **❖** Memory Management
 - ❖ File Management
 - Storage Management
 - ❖ I/O Sub-system Management
 - Protection and Security
 - User Interface

Process Management

- Creating and deleting both user and system processes
- Suspending and resuming processes
- Providing mechanisms for process synchronization
- Providing mechanisms for process communication
- Providing mechanisms for deadlock handling

Process Concept

- ❖ A process is a program in execution
- It is a unit of work within the system
- Program is a passive entity, process is an active entity
- Process needs resources to accomplish its task
- ❖ These resources include CPU, memory, I/O, files, etc.
- Program becomes process when executable file loaded into memory
- Program execution is initiated by GUI mouse clicks / command line entry

Process Concept

- One program can have several processes
- Process has multiple parts
 - ❖ The program code, also called text section
 - Current activity program counter, registers
 - Stack containing temporary data like function parameters, return addresses, local variables
 - Data section containing global variables
 - Heap -dynamically allocated memory during run time

Process State Diagram

- * new: The process is being created
- running: Instructions are being executed
- * waiting: The process is waiting for some event to occur
- ❖ ready: The process is waiting to processor assignment.
- terminated: The process has finished execution

Representation of Process Scheduling

Process Control Block (PCB)

- Process state running, waiting, etc
- Program counter location of instruction to next execute
- CPU registers contents of all process-centric registers
- CPU scheduling information- priorities, scheduling queue pointers
- Memory-management information memory allocated to the process
- Accounting information CPU used, clock time elapsed since start, time limits
- ❖ I/O status information I/O devices allocated to process, list of open files

process state process number program counter registers memory limits list of open files

Multiprogramming

- In a uni-processor system, CPU is running only one process.
- ❖ In a multiprogramming system, CPU switches from processes quickly.

Context Switch From One Process to Another

Modeling Multiprogramming

CPU utilization as a function of the number of processes in memory.

CPU vs I/O Bound Processes

Bursts of CPU usage alternate with periods of waiting for I/O. (a) A CPU-bound process. (b) An I/O-bound process.

Process Scheduling

- Maximize CPU use, quickly switch processes onto CPU for time sharing
- Process scheduler selects among available processes for next execution on CPU
- Maintains scheduling queues of processes
 - ❖ Job queue set of all processes in the system
 - Ready queue set of all processes residing in main memory, ready and waiting to execute
 - ❖ Device queues set of processes waiting for an I/O device
 - Processes migrate among the various queues

CPU vs Job Schedulers

Short-term scheduler (CPU scheduler) selects from among the processes that are ready to execute and allocates the CPU to one of them.

- Selection from Ready state to Running state
- Short-term scheduler is invoked frequently
- Long-term scheduler (Job scheduler) selects which processes should be brought into the ready queue from the job queue
 - Long-term scheduler is invoked less frequently
 - It controls the degree of multiprogramming

Process State Diagram

CPU Scheduler

- Whenever the CPU becomes idle, the OS must select one of the processes in the ready queue to be executed.
- ❖ The selection process is carried out by the CPU scheduler of the OS.
- The scheduler selects a process that is in ready state and allocates the CPU to that process.
- Ready queue can be implemented as
 - FIFO queue
 - Priority queue
 - ❖ Tree
 - Unordered linked list

Dispatcher

- ❖ The dispatcher is the module that gives control of the CPU to the process selected by the CPU scheduler.
- Function of dispatcher involves the following:
 - Switching context
 - Switching to user mode
 - Initiate restarting/ resumption of selected user program
- Dispatcher should be as fast as possible, since it is invoked during every process switch.
- The time it takes for the dispatcher to stop one process and start another running is known as the dispatch latency.

johnjose@iitg.ac.in http://www.iitg.ac.in/johnjose/