Dry Friction - Coulomb Friction

point mass model

stick Vearfeet = 0

|F| = u |N|) transition:

V contact > 0

IH= MINI

18/= MINI

direction of F opposes the motion.

en block on slope $0=45^{\circ}$, $\mu=0-7$ Q' what happens if we start from rest?

(1) method of assumed motion: assume sticking => V=0, a=0.

Solve for F SN-mg cos Q = 0 $N = \frac{mg}{\sqrt{z}}$ SF=ma F-mg sin Q = ma = 0 $F=\frac{mg}{\sqrt{z}}$

check [FI= uINI: physically impossible sour original assumption (sticking) is wrong. (2) method of assumed force: assume slipping => |F| = µ/N/ opposing V/a Choose signs: N,F both positive as shown. $F = \mu N$, solve for a: $N - mg \cos \theta = 0 \Rightarrow N = mg \cos \theta$ ZF = ma: $T - mg \sin \theta = ma$ a = of (ucoso - sind) = = (0.7-1) $=-\frac{0.3}{12}g$

$$\mu=2$$
 $\theta=45^{\circ}$

$$\frac{mg}{\sqrt{2}} \leq 2. \frac{mg}{\sqrt{2}}$$
 ok

physically possible.
$$\Rightarrow$$
 a=0, F=N= $\frac{mg}{12}$

ep

$$\vec{a} = a\hat{e}_t$$

$$\hat{e}_i$$
: $T - F - mg s_i d = ma$

