

CSC/CPE 138 COMPUTER NETWORKING FUNDAMENTALS

Lecture 1_1
Department of Computer Science
Spring 2024

Slide Courtesy: Computer Networking: A Top-Down Approach, Kurose Ross, 8th Edition

About Me

Syed Badruddoja

- Ph.D. in Computer Science and Engineering, University of North Texas (UNT)
- Certification: Cisco Certified Internetwork Expert (CCIE Routing and Switching)
- Red Hat Certified Engineering (RHCE)
- Research: Blockchain for Artificial Intelligence
- Professional Experience: I 4 Years
- Fun Fact: I play electric piano

About the Course

Instructor: Dr. Syed Badruddoja

Office: RVR3006

Office Hours (Online): Tuesday and Thursday

2:30 PM - 4:00 PM

Office Hours Zoom Link: https://csus.zoom.us/j/84636285529

Office Telephone: 916-278-7328

Mode of Instruction: In-person

E-mail: <u>badruddoja@csus.edu</u>

Course Description

- Overview, structure, concepts, principles, and protocols of computer networking.
- Network architecture, OSI reference model, TCP/IP protocol stack, layering, protocols and encapsulation.
- Introduce socket programming fundamentals and test knowledge through programming assignments.
- End-to-end communication, multiplexing and demultiplexing, reliable data transfer, flow control, and congestion control.
- Internet protocol (IP) addressing, routing algorithms and internet routing designs.
- Switching concepts, LAN topologies, link layer error corrections and how the underlaying hardware works in switches.
- Security components and their implications in computer networks.

Course Objectives

- Explain the basic principles, architecture, layered models, and implementations of computer networks.
- Describe the details of important network protocols on different layers across the protocol stack.
- Apply reliable communication including the various methods for error detection, correction, retransmission, flow control, and congestion control.
- Explain the working mechanisms of routing, forwarding, internet addressing, and switching.
- Identify professional and ethical responsibilities, security issues and countermeasures.

Prerequisite and Materials

Prerequisite

- Introduction to Systems Programming CSC60,
- Data Structures and Algorithm Analysis CSC130

Textbook

 Computer Networking: A Top-Down Approach, 7/8th edition, Kurose and Ross, Pearson, ISBN-10: 9780133594140, 1292405465 ISBN-13: 978-0133594140, 978-1292405469

Supplemental Materials

- Slides are adapted from Computer Networking: A Top-Down Approach, 8th edition, J.F Kurose and K.W. Ross
- Coding examples, online resources and Youtube videos

Grading Policy - Assignments

In-Class Activity	5.0%	
Homework and Programming	20.0%	
Lab	20.0%	
Project	10.0%	
Midterm Exam	20.0%	
Final Exam	25.0%	
Total	100.0%	

Letter Grade	Percentage
Α	93-100%
A-	90-92%
B+	87-89%
В	83-86%
B-	80-82%
C+	77-79%
С	73-76%
C-	70-72%
D+	67-69%
D	60-66%
F	0-59%

Grading Policy - Assignments

- In-Class activities
 - Quiz
 - Self-reflection
 - Think-pair-share
 - Prompt questions
 - Concept-Map
- Homework Assignments

- Programming Assignments
- Programming Project

Submission Policy

- Submission guidelines
 - Submit assignments on due date
 - Pdf files submission for homework
 - Code files submission for programs (zipped folder)
 - Recheck submission
- Late submissions will be penalized by the following rules.
 - 15% deduction for one day late submission.
 - 30% deduction for two days late submission.
 - 45% deduction for three days late submission.
 - 100% deduction from, 4th day onwards

University and Department Policy

- Prerequisite Proof
- Attendance Policy
- Repeat Policy
- Drop Policy
- Acceptable Student Behavior

Other Policies in Syllabus

- Check emails and canvas regularly
- Make-up exams are not allowed
 - Exempted from extreme circumstances with evidence
 - Require instructor approval
- Syllabus may be modified in the semester
 - Any changes to the syllabus will be communicated

Other Policies in Syllabus

- Students with Disabilities
 - Contact DAC and provide documentation
- Academic Honesty
 - Submit your own work
 - Discuss problems with friends and classmates
 - Follow the "Policy of Academic Integrity"
 - Beware of plagiarism penalties

Additional Comments

- Communicate with instructor on any problems relating to assignments before the due date
- Use the feedback effectivity to do better on your next assignment
- Focus on depth of your learning
- Reach out to instructor if you do not understand any topic taught in class
- Feel free to discuss your learning difficulties
- Take the advantage of office hours to seek help and guidance

Tentative Class Schedule

Week	Date	Materials to Cover	Remarks
	1/22 – 1/26	Computer Networks and The Internet	LABI
2	1/29 – 2/2	Computer Networks and The Internet	-
3	2/5 – 2/9	Application Layer	ASSIGNMENT I
4	2/12 – 2/16	Application Layer	-
5	2/19 – 2/23	Application Layer	LAB2
6	2/26 – 3/1	Transport Layer	ASSIGNMENT 2
7	3/4 – 3/8	Transport Layer	-
8	3/11 – 3/15	Transport Layer	MID-TERM EXAM
9	3/25 – 3/29	Network Layer: Data Plane	ASSIGNMENT 3
10	4/1 – 4/5	Network Layer: Data Plane	-
П	4/8 – 4/12	Network Layer: Control Plane	LAB3
12	4/15 – 4/19	Network Layer: Control Plane	ASSIGNMENT 4
13	4/22 – 4/26	Link Layer	-
14	4/29 — 5/3	Link Layer	PROJECT SUBMISSION
15	5/6 – 5/10	Network Security	/
16	5/13 – 5/17	-	FINAL EXAM

Important Dates

March 18-24,2024	Spring Recess
April 1, 2024	Cesar Chavez Birthday Observed (Holiday, Campus Closed)
May 10,2024	Last Day of Instruction
May 13-17,2024	Final Exam Week, TBD by College Official Final Exam Schedule

Fun Activity: Brainstorm Internet

Parking

Ecommerce

Reservation

Training

Smart Home

TAB

Laptop

1-17

Connected-world

IP picture frame http://www.ceiva.com/

Web-enabled toaster + weather forecaster

Tweet-a-watt: monitor energy use

Smart refrigerator

sensorized, bed mattress

Internet phones

Introducing Computer Network

- What's the Internet?
- What's a protocol?
- Network edge; hosts, access network, physical media
- Network core: packet/circuit switching, Internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models
- History

What's the Internet: "nuts and bolts" view

- billions of connected computing devices:
 - hosts = end systems
 - running network apps
- communication links
 - fiber, copper, radio, satellite
 - transmission rate: bandwidth
- packet switches: forward packets (chunks of data)
 - routers and switches

What's the Internet: "nuts and bolts" view

- Internet: "network of networks"
 - Interconnected ISPs
- protocols control sending, receiving of messages
 - e.g., TCP, IP, HTTP, Skype, 802.11
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

What's the Internet: a service view

- infrastructure that provides services to applications:
 - Web, VoIP, email, games, e-commerce, social nets, ...
- provides programming interface to apps
 - hooks that allow sending and receiving app programs to "connect" to Internet
 - provides service options, analogous to postal service

What's a protocol?

human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific messages sent
- ... specific actions taken when messages received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of messages sent and received among network entities, and actions taken on message transmission, receipt

What's a protocol?

a human protocol and a computer network protocol:

Q: other human protocols?

Network Infrastructure

- network edge:
 - hosts: clients and servers
 - servers often in data centers
- access networks, physical media: wired, wireless communication links

- network core:
 - interconnected routers
 - network of networks

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks

keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Access network: digital subscriber line (DSL)

- use existing telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- < 2.5 Mbps upstream transmission rate (typically < 1 Mbps)</p>
- < 24 Mbps downstream transmission rate (typically < 10 Mbps)

Access network: cable network

frequency division multiplexing: different channels transmitted in different frequency bands

Access network: cable network

- HFC: hybrid fiber coax
 - asymmetric: up to 30Mbps downstream transmission rate, 2 Mbps upstream transmission rate.
- network of cable, fiber attaches homes to ISP router
 - homes share access network to cable headend
 - unlike DSL, which has dedicated access to central office

Access network: home network

Enterprise access networks (Ethernet)

- typically used in companies, universities, etc.
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- today, end systems typically connect into Ethernet switch

Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka "access point"

wireless LANs:

- within building (100 ft.)
- 802.11b/g/n (WiFi): 11, 54, 450 Mbps transmission rate

wide-area wireless access

- provided by telco (cellular) operator, I0's km
- between I and I0 Mbps
- 3G, 4G: LTE

Host: sends packets of data

host sending function:

- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- transmits packet into access network at transmission rate R
 - link transmission rate, aka link capacity, aka link bandwidth

transmission delay time needed to transmit
$$L$$
-bit packet into link $= \frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Physical media

- bit: propagates between transmitter/receiver pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

twisted pair (TP)

- two insulated copper wires
 - Category 5: 100 Mbps, I Gbps Ethernet
 - Category 6: 10Gbps

Physical media: coax, fiber

coaxial cable:

- two concentric copper conductors
- bidirectional
- broadband:
 - multiple channels on cable
 - HFC

fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10' s-100' s Gbps transmission rate)
- low error rate:
 - repeaters spaced far apart
 - immune to electromagnetic noise

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

radio link types:

- Terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., WiFi)
 - 54 Mbps
- Wide-area (e.g., cellular)
 - 4G cellular: ~ 10 Mbps
- Satellite
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude

SACRAMENTO STATE

Minute Paper

Differentiate between Internet and Protocol?

- Identify the elements in hierarchical network infrastructure?
- Identify types of access networks and their use case in daily lives?

The network core

- Mesh of interconnected routers
- Packet-switching: hosts break application-layer messages into packets
 - Forward packets from one router to the next, across links on path from source to destination
 - Each packet transmitted at full link capacity

Packet-switching: store-and-forward

- takes L/R seconds to transmit (push out) L-bit packet into link at R bps
- store and forward: entire packet must arrive at router before it can be transmitted on next link
- end-end delay = 2L/R (assuming zero propagation delay)

one-hop numerical example:

- L = 7.5 Mbits
- *R* = 1.5 Mbps
- Delay = L/R = 7.5/1.5
- one-hop transmission delay = 5 sec

more on delay shortly ...

Packet Switching: queueing delay, loss

queuing and loss:

- if arrival rate (in bits) to link exceeds transmission rate of link for a period of time:
 - packets will queue, wait to be transmitted on link
 - packets can be dropped (lost) if memory (buffer) fills up

Two key network-core functions

routing: determines sourcedestination route taken by packets

routing algorithms

forwarding: move packets from router's input to appropriate router output

Alternative core: circuit switching

end-end resources allocated to, reserved for "call" between source & dest:

- in diagram, each link has four circuits.
 - call gets 2nd circuit in top link and Ist circuit in right link.
- dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- commonly used in traditional telephone networks

Minute Paper

• How many circuits can be active from source computer A to destination computer B simultaneously?

When can C communicate with B?

B

Circuit switching: FDM versus TDM

A Little more on TDM

Synchronous TDM – Time is divided into periods of slots

Asynchronous TDM – No periods, anyone can send

TDM: Example

Suppose that you have a multiplexer (mux) with 2 different inputs at the following bit-rates: (A) 10 Kbps, (B) 8 Kbps, Using a fixed slot size in the frame, how would you organize a single asynchronous TDM link receiving the output of the mux?

Solution: Common slot size is 2 KBPS

Or

Circuit Switching Vs Packet Switching

packet switching allows more users to use network!

example:

- I Mb/s link
- each user:
 - 100 kb/s when "active"
 - active 10% of time
- circuit-switching:
 - 10 users can be active
- packet switching:
 - With 35 users, probability of 10 active at same time is less than .002 *

Q: how did we get value 0.002?

Efficiency of Packet-Switching Method

Measuring probability of users being active

- Given
 - Total number of users = 35
 - The probability of a user being active = 0.1
- Find
 - Probability of 10 users simultaneously active

Solution:

Binomial probability distribution =
$$\binom{n}{x} p^x (1-p)^{n-x}$$

= $\binom{35}{10} 0.1^{10} (1-0.1)^{35-10}$
= 0.00131

Note:
$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

DIY: Computing Binomial Probability

Now consider a scenario where 20 users are using the packet switched line and users are active 10% of time.

- A. Compute probability of I user being active
- B. Compute the summative probability of up to 7 users being active simultaneously
- C. Compute the probability that more than 7 of 20 users are transmitting at the same time.

DIY: Solutions

A. Compute probability of I user being active

Binomial probability distribution =
$$\binom{n}{x} p^x (1-p)^{n-x}$$

= $\binom{20}{1} 0.1^1 (1-0.1)^{20-1}$
= 0.27017

B. Compute the summative probability of any upto 7 (0,1,2,...7) users being active

Cumulative Binomial distribution for 0 through 7 users

$$= {20 \choose 0} 0.1^{0} (1 - 0.1)^{20-0} + {20 \choose 1} 0.1^{1} (1 - 0.1)^{20-1} + + {20 \choose 7} 0.1^{7} (1 - 0.1)^{20-7} = 0.999584$$

DIY: Solutions

C. Compute the probability of more than 7 of 20 users are transmitting at the same time.

- = I (summative probability of 7 users)
- = 1 0.999584
- = 0.000416

Packet switching versus circuit switching

is packet switching a "slam dunk winner?"

- great for bursty data
 - resource sharing
 - simpler, no call setup
- excessive congestion possible: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps
 - still an unsolved problem (chapter 7)

Q: human analogies of reserved resources (circuit switching) versus on-demand allocation (packet-switching)?

Summarize Lecture I I

Protocol

Infrastructure:
Edge, Core
Access Network

Packet - Switching

Circuit- Switching

Binomial

Distribution:

$$\binom{n}{x} p^x (1-p)^{n-x}$$

End of Lecture 1_1