

Computer & Systems Engineering Department

Data Structures and Algorithms

Implementing Graph Algorithms (Dijkstra – Bellman Ford - Floyd Warshall)

Contributors:

	Name	ID
1	Adel Mahmoud Mohamed Abdelrahman	20010769
2	Amr Ahmed Abdelazim	20011037
3	Marwan Essam Eldin	20011859
4	Mohamed Amr Abdelfattah	20011675

Time complexity of algorithms

Algorithms	Time Analysis	Space Analysis
Dijkstra	O ((E+V) $\log_2 V$)	O (v)
Bellman Ford	O (V.E)	O (v)
Floyd Warshall	O (V3)	O (V ²)

Comparison between the 3 algorithms:

• Mean time to get the shortest path between 2 specific nodes under punch of different densities:

			Donaitu	0.1		
			Density =	0.1		
		Time	(microseco	onds)		
	graph size		Bellman	Floyed		
	100	1657	13127	20860.8		
	200	4856	34351	39008.3		
	500	11740	141226	332666.5		
	750	18996	456918	1694214		
	1000	34253	1043356	2716835		
	avg	14300.4	337795.6	960717		
300 0000 250 0000 200 0000 150 0000						
1000000 500000				/		
0						
	1 grap	h size —	■Dijkstra «	Bellmar	4 Floyed	5

• The time to get the shortest paths between all pairs of nodes:

Time(milliseconds) graph size Dijkstra Bellman Floyed 100 14 52 11 200 86 432 37 500 680 9431 1130 750 754 8939 337 1000 3395 157662 2956 avg 985.8 35303.2 894.2				Density =	0.05
graph size Dijkstra Bellman Floyed 100 14 52 11 200 86 432 37 500 680 9431 1130 750 754 8939 337 1000 3395 157662 2956					
100 14 52 11 200 86 432 37 500 680 9431 1130 750 754 8939 337 1000 3395 157662 2956			Time	(milliseco	nds)
200 86 432 37 500 680 9431 1130 750 754 8939 337 1000 3395 157662 2956	gr	aph size	Dijkstra	Bellman	Floyed
500 680 9431 1130 750 754 8939 337 1000 3395 157662 2956		100	14	52	11
750 754 8939 337 1000 3395 157662 2956		200	86	432	37
1000 3395 157662 2956		500	680	9431	1130
		750	754	8939	337
avg 985.8 35303.2 894.2		1000	3395	157662	2956
		avg	985.8	35303.2	894.2

			Density =	0.1
			Time(mill	iseconds)
grap	h sizi	Dijkstra	Bellman	Floyed
	100	29	66	8
	200	172	1087	43
	500	1210	14138	346
	750	1946	74842	1176
	1000	4441	308560	2987
	avg	1559.6	79738.6	912

i			Danaitu	0.2	
			Density =	0.2	
			Time(mill		
	graph size	Dijkstra	Bellman	Floyed	
	100	35	242	13	
	200	370	2620	52	
	500	1371	66760	351	
	750	3762	414520	1219	
	1000	11504	920115	2941	
	avg	3408.4	280851.4	915.2	

denisty = 0.2

			Density =	0.8		
			Time(mill	iseconds)		
	graph size	Dijkstra	Bellman	Floyed		
	100	246	301	19		
	200	1258	15573	41		
	500	5754	36835.6	385		
	750	20856	71640.9	1360		
	1000	52423	227296.9	3443		
	avg	16107.4	70329.48	1049.6		
200000 — 150000 —						
100000 -					_/	
50000					/	DI . A
50000 —						Plot Area

Conclusion:

- Time to get the shortest path between 2 specific nodes (us):
 - 1. As the graph size increases then the time to get the shortest path increases.
 - 2. The Dijkstra algorithm is the fastest of the three to get the shortest path between 2 specific nodes whatever the graph density is but its only downside is that it cannot handle negative weights.
 - 3. Bellman and Floyed can handle negative weights and furthermore they can detect negative cycles as well but to get the shortest path between 2 nodes we can tell that Bellman takes less time than Floyed in low and moderate graph dense.
 - 4. In high dense graphs we can find that Floyed is faster than Bellman.
 - 5. So, to sum up, in the application of finding the shortest path between 2 nodes then Dijkstra is the best of the three, then in low and moderate dense graphs Bellman is faster than Floyed but in high dense ones Floyed is faster.
- <u>Time to get the shortest path between all pairs of nodes (ms):</u>
 - 1. By increasing graph size, time to get all pairs shortest path increases.
 - 2. Floyd-Warshall algorithm is more efficient than the other two algorithms for getting all pairs shortest path.
 - 3. Bellman-Ford algorithm gives the worst performance especially for dense graphs.
 - 4. Dijkstra algorithm takes a slightly longer time than Floyd's at low density graphs, but for dense graphs the difference is significant, where Floyd's takes shorter time to complete.
 - 5. Floyd's and Bellman-Ford algorithms can handle negative edges, while Dijkstra's cannot.

