# BLUE AND RED SHRIMP IN GSA 5 STECF EWG 25-09

# 1. BLUE AND RED SHRIMP IN GSA 5

#### 1.1. DATA CHECK

# 1.1.1.CATCH (LANDINGS AND DISCARDS)

Landings for GSA 5 were reported to STECF EWG 25-09 through the Data Call. Data are available for the period 2002-2024 and were exclusively reported by OTB fishing operations. Small differences have been observed in the landings reported in the STECF EWG 24-10 and STECF EWG 25-09 in the years 2019, 2021 and 2023, but these are negligible (Table 1.1.1.1 and Figure 1.1.1.1). The percentage of the discards for the blue and red shrimp in GSA 5 is very low, between zero and 0.5% of the total catches, except in 2012 when it was 1.2% (Table 1.1.1.2 and Figure 1.1.1.2), so they were considered negligible and were not included in the assessment.

**Table 1.1.1.1. Blue and red shrimp in GSA 5**. Reported landings (t) from the DCF Data by all OTB metiers (2002-2024) in EWG 24-10 and EWG 25-09.

| Year | Landings<br>EWG 24-10 | Landings<br>EWG 25-09 | Differences |
|------|-----------------------|-----------------------|-------------|
| 2002 | 141.45                | 141.45                | 0           |
| 2003 | 122.01                | 122.01                | 0           |
| 2004 | 193.58                | 193.58                | 0           |
| 2005 | 191.48                | 191.48                | 0           |
| 2006 | 213.89                | 213.89                | 0           |
| 2007 | 239.12                | 239.12                | 0           |
| 2008 | 232.85                | 232.85                | 0           |
| 2009 | 126.16                | 126.16                | 0           |
| 2010 | 153.24                | 153.24                | 0           |
| 2011 | 111.24                | 111.24                | 0           |
| 2012 | 201.14                | 201.14                | 0           |
| 2013 | 188.6                 | 188.6                 | 0           |
| 2014 | 141.28                | 141.28                | 0           |
| 2015 | 160.15                | 160.15                | 0           |
| 2016 | 138.1                 | 138.1                 | 0           |
| 2017 | 171.35                | 171.35                | 0           |
| 2018 | 249.68                | 249.68                | 0           |
| 2019 | 205.90423             | 206.46623             | 0.562       |
| 2020 | 130.705               | 130.705               | 0           |
| 2021 | 120.11471             | 121.31371             | 1.199       |
| 2022 | 166.69022             | 166.69022             | 0           |
| 2023 | 162.6203              | 162.7053              | 0.085       |
| 2024 |                       | 174.41922             |             |



**Figure 1.1.1.1. Blue and red shrimp in GSA 5.** Reported landings (t)) from the DCF Data by all OTB metiers (2002-2024) in EWG 24-10 and EWG 25-09.

**Table 1.1.1.2. Blue and red shrimp in GSA 5**. Reported landings (t) and discards from the DCF Data by all OTB metiers (2002-2024) in EWG 25-09.

|      | EWG 25-09 |          |            |  |  |  |  |
|------|-----------|----------|------------|--|--|--|--|
| Year | Landings  | Discards | % Discards |  |  |  |  |
| 2002 | 141.45    | 0        | 0          |  |  |  |  |
| 2003 | 122.01    | 0        | 0          |  |  |  |  |
| 2004 | 193.58    | 0        | 0          |  |  |  |  |
| 2005 | 191.48    | 0        | 0          |  |  |  |  |
| 2006 | 213.89    | 0        | 0          |  |  |  |  |
| 2007 | 239.12    | 0        | 0          |  |  |  |  |
| 2008 | 232.85    | 0        | 0          |  |  |  |  |
| 2009 | 126.16    | 0.03     | 0.024      |  |  |  |  |
| 2010 | 153.24    | 0        | 0.000      |  |  |  |  |
| 2011 | 111.24    | 0.41     | 0.367      |  |  |  |  |
| 2012 | 201.14    | 2.5      | 1.228      |  |  |  |  |
| 2013 | 188.6     | 0.17     | 0.090      |  |  |  |  |
| 2014 | 141.28    | 0.23     | 0.163      |  |  |  |  |
| 2015 | 160.15    | 0.1      | 0.062      |  |  |  |  |
| 2016 | 138.1     | 0.04     | 0.029      |  |  |  |  |
| 2017 | 171.35    | 0.14     | 0.082      |  |  |  |  |
| 2018 | 249.68    | 0.23     | 0.092      |  |  |  |  |
| 2019 | 206.46623 | 0        | 0.000      |  |  |  |  |
| 2020 | 130.705   | 0.02     | 0.015      |  |  |  |  |
| 2021 | 121.31371 | 0.55397  | 0.455      |  |  |  |  |
| 2022 | 166.69022 | 0.04001  | 0.024      |  |  |  |  |
| 2023 | 162.7053  | 0.00999  | 0.006      |  |  |  |  |
| 2024 | 174.41922 | 0        | 0.000      |  |  |  |  |



**Figure 1.1.1.2. Blue and red shrimp in GSA 5.** Reported landings (t) and discards (t) from the DCF Data by all OTB metiers (2002-2024).

Length frequency distributions per gear, metier and year of landings from the DCF database (2002-2024) before reconstructions are presented in Figure 1.1.1.3. Length structure by gear, fishery and year (2002-2024) after reconstruction is shown in Figure 1.1.1.4. The percentage of total landings that were reconstructed applying the SOP correction to LFDs (only in OTB\_DEF for this stock) is shown in Figure 6.16.2.2.4.



**Figure 1.1.1.3. Blue and red shrimp in GSA 5.** Original length frequency distribution before reconstruction by fishing gear and fishery (2002-2024).



**Figure 1.1.1.4. Blue and red shrimp in GSA 5.** Length frequency distribution after reconstruction by fishing gear and fishery (2002-2024).



**Figure 1.1.1.5**. **Blue and red shrimp in GSA 5**. Percentages of total landings LFDs that were reconstructed by year and gear and SOP applied to LFD.

## 1.1.2. SURVEY DATA

The MEDITS (MEDiterranean International Trawl Survey) survey is an extensive trawls survey occurring in all European countries and included in the Data Collection Framework. According to the MEDITS protocol (Bertrand et al., 2002), it takes places every year during springtime following a random stratified sampling by depth (5 strata: 0-50 m, 50-100 m, 100-200 m, 200-500m and over 500 m). The number of hauls in each stratum is proportional to the surface of the stratum and their positions were randomly selected and maintain fixed throughout the time. Same sampling gear (GOC73), characterized by a 20 mm stretched mesh size cod-end, is used throughout GSAs and years.

The survey area around the Balearic Islands (GSA5) was only very partially covered by the MEDITS survey during 1994-2006, with a very low number of surveys by year, covering only a small part of the area (Ibiza channel). Thus, survey data prior to 2007 was excluded from the stock assessment analysis. Since 2007, the survey has taken place between May and June (Figure 1.1.2.1).



Figure 1.1.2.1 Year period when the hauls of MEDITS survey are being conducted in GSA 5.

The time series of abundance and biomass indices of blue and red shrimp from MEDITS bottom trawl survey in GSA5 are shown in Figure 1.1.2.2 and 1.1.2.3. Large variations and no clearly discernible trends over the available period can be observed. Both estimated abundance and biomass indices show similar variation along the time series, excepting for 2020 and 2022 where the pattern between both variables were oposite, suggesting a shift in size. However, an increase in abundance and biomass is observed in 2023.



**Figure 1.1.2.2. Blue and red shrimp in GSA 5.** MEDITS survey abundance index (n/km²) as reported by DCF (2007-2024).





Figure 1.1.2.3. Blue and red shrimp in GSA 5. MEDITS survey biomass index (kg/km²) as reported by DCF (2007-2024).

The observed length frequency distributions from MEDITS survey in GSA 5 are illustrated in Figure 1.1.2.4.



**Figure1.1.2.4.** Blue and red shrimp in GSA 5. Length frequency distribution of the MEDITS survey data (n/km²).

#### 1.2. CHECK STOCK OBJECT

The present assessment was carried out using a statistical catch-at-age analysis (a4a). A4a is a statistical catch-at-age method that utilizes catch-at-age data to derive estimates of historical population size and fishing mortality (Jardim et al., 2015). Model parameters estimated using catch-at-age analysis are done so by working forward in time and analyses do not require the assumption that removals from the fishery are known without error. Data typically used are: catch, statistical sample of age composition of catch and abundance index.

## Input data

Data used were landings and length frequency distribution before and after reconstruction of the commercial landings, as well as the abundance and biomass index and length frequency distributions of the MEDITS survey. The used biological parameters:

**Table 1.2.1. Blue and red shrimp in GSA 5.** Growth parameters (L<sub>inf</sub>, K, t<sub>0</sub>) and parameters of the Length-Weight relationship (a, b) used for the assessment.

|           | Growth parameters |      |                | Length | -weigth |
|-----------|-------------------|------|----------------|--------|---------|
| Parameter | L <sub>inf</sub>  | k    | t <sub>0</sub> | а      | b       |
| Value     | 75                | 0.38 | 0.05           | 0.002  | 2.515   |

**Table 1.2.2. Blue and red shrimp in GSA 5.** Proportion of mature specimens and natural mortality at age.

| Age       | 0     | 1     | 2     | 3     | 4     | 5     |
|-----------|-------|-------|-------|-------|-------|-------|
| Maturity  | 0.477 | 0.611 | 0.747 | 0.974 | 1     | 1     |
| Mortality | 2.418 | 0.897 | 0.627 | 0.520 | 0.466 | 0.435 |

No differences are observed with the stock object generated last year (Figure 1.1.2.4)



**Figure 1.2.1. Blue and red shrimp in GSA 5.** Comparison of STECF EWG 24-10 and STECF EWG 25-09 stock object.

Regarding the comparison with the data from last year's assessment, no differences were observed in the stock object generated this year compared with the one produced previously, ensuring consistency in the time series. Since no substantial changes were identified with respect to last year, the assessment has been updated by incorporating the most recent data. The same types of input data were used, namely landings and length frequency distributions (before and after reconstruction) from commercial catches, as well as abundance, biomass indices, and length frequency distributions from the MEDITS survey. To correction is applied from length distribution from catches and survey and thus age0 was removed from the data to run the assessment.

The model specifications are the following:

- fmodel <- ~ factor(replace(age, age>2,2)) + s(year, k=7)
- qmodel <- list(~ s(replace(age, age>3,3), k=3))
- srmodel <- ~geomean(CV=0.35)

# Assessment results compared with last year



|           | F0.1  | Fbar   | Fbar/F0.1 |
|-----------|-------|--------|-----------|
| EWG 24-10 | 0.332 | 1.4609 | 4.406     |
| EWG 25-09 | 0.333 | 1.5727 | 4.726     |

**Figure 1.2.2. Blue and red shrimp in GSA 5**. Stock summary of the final a4a model for Rec, SSB, Catch and F obtained in STECF EWG 24-10 and STECF EWG 25-09

The following section presents the updated report incorporating all the most recent data; it is still subject to review of the assessment in STECF EWG 25-09.

#### 6.16 BLUE AND RED SHRIMP IN GSA 5

#### **6.16.1 STOCK IDENTITY AND BIOLOGY**

GSA 5 (Figure 6.16.1.1) has been selected as an separate area for assessment and management purposes in the western Mediterranean (Quetglas et al., 2012) due to its main specificities. These include: 1) Geomorphologically, the Balearic Islands (GSA 5) are clearly separated from the Iberian Peninsula (GSA 6) by depths between 800 and 2000 m, which would constitute a natural barrier to the interchange of adult stages of demersal resources; 2) Physical geographically-related characteristics, such as the lack of terrigenous inputs from rivers and submarine canyons in GSA 5 compared to GSA 6, give rise to differences in the structure and composition of the trawling grounds and hence in the benthic assemblages; 3) Owing to these physical differences, the faunistic assemblages exploited by trawl fisheries differ between GSA 5 and GSA 6, resulting in large differences in the relative importance of the main commercial species; 4) There are no important or general interactions between the demersal fishing fleets in the two areas, with only local cases of vessels targeting red shrimp in GSA 5 but landing their catches in GSA 6) Trawl fishing exploitation in GSA 5 is much lower than in GSA 6; the density of trawlers around the Balearic Islands is one order of magnitude lower than in adjacent waters; and GSA 6. Due to this lower fishing exploitation, the demersal resources and ecosystems in GSA 5 are in a healthier state than in GSA 6, which is reflected in the population structure of the main commercial species (populations from the Balearic Islands have larger modal sizes and lower percentages of smallsized individuals), and in the higher abundance and diversity of elasmobranch assemblages.



Figure 6.16.1.1. Geographical localization of GSA 5.

The reproductive period for the blue and red shrimp in GSA 5 began in May and ended in September. Two main peaks were detected as an entry of juveniles (recruits) to the fishery: one in February-March and the other in September-October, for both females and males (Carbonell et al., 1999). For females, condition index, hepatosomatic index and the content of lipids in the hepatopancreas showed the minimum values at the end of the spawning period (Guijarro et al., 2008).

In the absence on new information on somatic growth, the same growth function and length-weight relationship parameters presented in the 2018 assessment for GSA 5 (STECF 15-18) were used (Table 6.16.1.1). Although females reach notable larger maximum sizes than males, it was decided

to combine sexes for consistency with both previous assessments and the approaches used for the adjacent areas GSA 1 and GSA 6 and 7. Similarly, sex-aggregated estimates for maturity-atage and mortality-age vectors presented in the 2018 (STECF 15-18) were considered as input for the stock assessment model (Table 6.16.1.2), where age-dependent M estimates were computed based on the Chen Watanabe (1989) model.

**Table 6.16.1.1. Blue and red shrimp in GSA 5.** Growth parameters (L<sub>inf</sub>, K, t<sub>0</sub>) and parameters of the Length-Weight relationship (a, b) used for the assessment.

|           | Growth parameters |      |                | Length | -weigth |
|-----------|-------------------|------|----------------|--------|---------|
| Parameter | Linf              | k    | t <sub>0</sub> | а      | b       |
| Value     | 75                | 0.38 | 0.05           | 0.002  | 2.515   |

**Table 6.16.1.2. Blue and red shrimp in GSA 5.** Proportion of mature specimens and natural mortality at age.

| Age       | 0     | 1     | 2     | 3     | 4     | 5     |
|-----------|-------|-------|-------|-------|-------|-------|
| Maturity  | 0.477 | 0.611 | 0.747 | 0.974 | 1     | 1     |
| Mortality | 2.418 | 0.897 | 0.627 | 0.520 | 0.466 | 0.435 |

#### 6.16.2 DATA

#### General description of the fisheries

In the Balearic Islands, commercial trawlers develop up to four different fishing tactics, which are associated with the shallow shelf (SS), deep shelf (DS), upper slope (US) and middle slope (MS) (Guijarro and Massutí 2006; Ordines et al. 2006), mainly targeted to: (i) *Spicara smaris, Mullus surmuletus, Octopus vulgaris* and a mixed fish category on the SS (50-80 m); (ii) *Merluccius merluccius, Mullus* spp., *Zeus faber* and a mixed fish category on the DS (80-250 m); (iii) *Nephrops norvegicus*, but with an important by-catch of big *M. merluccius, Lepidorhombus* spp., *Lophius* spp. and *Micromesistius poutassou* on the US (350-600 m) and (iv) *Aristeus antennatus* on the MS (600-750 m). The MS fishing tactics coincides with the metier OTB\_DWSP; OTB\_DEMSP corresponds to those days in one of the other fishing tactics is present (SS, DS and/or US) and OTB\_MDDWSP corresponds to those days in which one haul is MS and at least one of the other fishing tactics is performed.

## 6.16.2.1 CATCH (LANDINGS AND DISCARDS)

Landings for GSA 5 were reported to STECF EWG 25-09 through the Data Call. Data are available for the period 2002-2024 and were exclusively reported by OTB fishing operations (Table 6.16.2.2.1 and Figure 6.16.2.2.1). The percentage of the discards for the blue and red shrimp in GSA 5 is very low, between zero and 0.5% of the total catches, except in 2012 when it was 1.2%, so they were considered negligible and were not included in the assessment.

**Table 6.16.2.2.1. Blue and red shrimp in GSA 5**. Reported landings (t) and discards (t) from the DCF Data by all OTB metiers (2002-2024).

| Vaan | SPAIN | Total    | Total Effort * |
|------|-------|----------|----------------|
| Year | GSA5  | landings | (Fishing Days) |
| 2002 | 141.5 | 141.5    |                |
| 2003 | 122   | 122      |                |
| 2004 | 193.6 | 193.6    | 12012          |
| 2005 | 191.5 | 191.5    | 11497          |
| 2006 | 213.9 | 213.9    | 10507          |
| 2007 | 239.1 | 239.1    | 11907          |
| 2008 | 232.9 | 232.9    | 12226          |
| 2009 | 126.2 | 126.2    | 10934          |
| 2010 | 153.2 | 153.2    | 11239          |
| 2011 | 111.2 | 111.2    | 10498          |
| 2012 | 201.1 | 201.1    | 10568          |
| 2013 | 188.6 | 188.6    | 9942           |
| 2014 | 141.3 | 141.3    | 11817          |
| 2015 | 160.2 | 160.2    | 11965          |
| 2016 | 138.1 | 138.1    | 10490          |
| 2017 | 171.4 | 171.4    | 10176          |
| 2018 | 249.7 | 249.7    | 8715           |
| 2019 | 205.9 | 205.9    | 8202           |
| 2020 | 130.7 | 130.7    | 7306           |
| 2021 | 121.3 | 121.3    | 6439           |
| 2022 | 166.7 | 166.7    |                |
| 2023 | 162.6 | 162.6    |                |
| 2024 | 174.4 | 174.4    |                |



**Figure 6.16.2.2.1. Blue and red shrimp in GSA 5.** Reported landings (t) and discards (t) from the DCF Data by all OTB metiers (2002-2024).

Length frequency distributions per gear, metier and year of landings from the DCF database (2002-2024) before reconstructions are presented in Figure 6.16.2.2.2. Length structure by gear, fishery and year (2002-2024) after reconstruction is shown in Figure 6.16.2.2.3. The percentage of total landings that were reconstructed applying the SOP correction to LFDs (only in OTB\_DEF for this stock) is shown in Figure 6.16.2.2.4.



**Figure 6.16.2.2.2. Blue and red shrimp in GSA 5.** Original length frequency distribution before reconstruction by fishing gear and fishery (2002-2024).



**Figure 6.16.2.2.3. Blue and red shrimp in GSA 5.** Length frequency distribution after reconstruction by fishing gear and fishery (2002-2024).



**Figure 6.16.2.2.4**. **Blue and red shrimp in GSA 5**. Percentages of total landings LFDs that were reconstructed by year and gear and SOP applied to LFD.

#### **6.12.2.2 EFFORT**

## 6.16.2.3 SURVEY DATA

The MEDITS (MEDiterranean International Trawl Survey) survey is an extensive trawls survey occurring in all European countries and included in the Data Collection Framework. According to the MEDITS protocol (Bertrand et al., 2002), it takes places every year during springtime following a random stratified sampling by depth (5 strata: 0-50 m, 50-100 m, 100-200 m, 200-500m and over 500 m). The number of hauls in each stratum is proportional to the surface of the stratum and their positions were randomly selected and maintain fixed throughout the time. Same sampling gear (GOC73), characterized by a 20 mm stretched mesh size cod-end, is used throughout GSAs and years.

The survey area around the Balearic Islands (GSA5) was only very partially covered by the MEDITS survey during 1994-2006, with a very low number of surveys by year, covering only a small part of the area (Ibiza channel). Thus, survey data prior to 2007 was excluded from the stock assessment analysis. Since 2007, the survey has taken place between May and June (Figure 6.16.2.3.1).



Figure 6.16.2.3.1 Year period when the hauls of MEDITS survey are being conducted in GSA 5.

The time series of abundance and biomass indices of blue and red shrimp from MEDITS bottom trawl survey in GSA5 are shown in Figure 6.16.2.3.2 and 6.16.2.3.3. Large variations and no clearly discernible trends over the available period can be observed. Both estimated abundance and biomass indices show similar variation along the time series, excepting for 2020 and 2022 where the pattern between both variables were oposite, suggesting a shift in size. However, an increase in abundance and biomass is observed in 2023.



**Figure 6.16.2.3.2 Blue and red shrimp in GSA 5.** MEDITS survey abundance index (n/km²) as reported by DCF (2007-2023).



**Figure 6.16.2.3.3 Blue and red shrimp in GSA 5.** MEDITS survey biomass index (kg/km²) as reported by DCF (2007-2023).

The observed length frequency distributions from MEDITS survey in GSA 5 are illustrated in Figure 6.16.2.3.4.



**Figure 6.16.2.3.4. Blue and red shrimp in GSA 5.** Length frequency distribution of the MEDITS survey data (n/km²).

#### 6.16.3 STOCK ASSESSMENT

The present assessment was carried out using a statistical catch-at-age analysis (a4a). A4a is a statistical catch-at-age method that utilizes catch-at-age data to derive estimates of historical population size and fishing mortality (Jardim et al., 2015). Model parameters estimated using catch-at-age analysis are done so by working forward in time and analyses do not require the assumption that removals from the fishery are known without error. Data typically used are: catch, statistical sample of age composition of catch and abundance index.

## Input data

Data used were landings (Table 6.16.2.2.1) and length frequency distribution before and after reconstruction of the commercial landings (Figure 6.16.2.2.2 and 6.16.2.2.3, respectively), as well as the abundance and biomass index and length frequency distributions of the MEDITS survey (Figures 6.16.2.3.2, 6.16.2.3.3 and 6.16.2.3.4, respectively). The used biological parameters were those included in section 6.16.1. The catch at age structure for the commercial data and of the MEDITS survey and their internal consistency was checked. Age composition is mainly composed by age 1 individuals both for commercial and MEDITS survey data, although age 2 are also frequent in the catches (Figures 6.16.3.1 and 6.16.3.3). The internal consistency was quite good for the commercial data (Figure 6.16.3.2), but for the MEDITS it was in general poorer, especially for ages 2-3 and 4-5 (Figure 6.16.3.4).

**Table 6.16.3.1. Blue and red shrimp in GSA 5**: Catch-at-age number (thousands) from the commercial fleet per year used in the assessment.

| Year | 1      | 2      | 3      | 4     | 5    |
|------|--------|--------|--------|-------|------|
| 2002 | 7283.5 | 3295   | 645.9  | 111.7 | 2.6  |
| 2003 | 7135   | 2623.3 | 562.3  | 127.3 | 12.1 |
| 2004 | 12279  | 4113.7 | 719.9  | 158.2 | 18   |
| 2005 | 12844  | 3933.6 | 908    | 76.2  | 5.5  |
| 2006 | 9977.1 | 6070.5 | 831.8  | 17.8  | 2.7  |
| 2007 | 9518.3 | 6006.7 | 1686.2 | 27.4  | 2.4  |
| 2008 | 11791  | 5246   | 1358   | 138.7 | 4.8  |
| 2009 | 4613.4 | 3417.9 | 785.3  | 100.4 | 9.1  |
| 2010 | 8342.4 | 4196.4 | 468.2  | 68.1  | 5.6  |
| 2011 | 7187.1 | 2528.7 | 471.3  | 16.6  | 0.4  |
| 2012 | 13019  | 4494.3 | 785    | 49.6  | 0.1  |
| 2013 | 10214  | 4735.7 | 849    | 27.6  | 0.1  |
| 2014 | 6135.4 | 3717.3 | 874.6  | 24.3  | 1    |
| 2015 | 7662.8 | 3591   | 970.2  | 108.9 | 0.1  |
| 2016 | 10967  | 3035.7 | 314    | 25.2  | 2.4  |
| 2017 | 13410  | 4015.2 | 335.8  | 31.8  | 0.5  |
| 2018 | 19872  | 5530.5 | 574.3  | 15.3  | 1.9  |
| 2019 | 14682  | 5346.4 | 374.8  | 7.9   | 0.1  |
| 2020 | 7463.6 | 2775.9 | 444.9  | 8.6   | 0.5  |
| 2021 | 6688.1 | 3837   | 201.3  | 4.2   | 0.1  |
| 2022 | 9692.9 | 4461.3 | 522.5  | 18.5  | 0.3  |
| 2023 | 9787.3 | 4030.9 | 506    | 20.6  | 0.1  |
| 2024 | 11442  | 4159.6 | 528.5  | 10.1  | 0.1  |

Table 6.16.3.2. Blue and red shrimp in GSA 5: Catch-at-age weights (kg) per year from the commercial fleet used in the assessment.

| Year | 1     | 2     | 3     | 4     | 5     |
|------|-------|-------|-------|-------|-------|
| 2002 | 0.007 | 0.018 | 0.035 | 0.052 | 0.062 |
| 2003 | 0.007 | 0.017 | 0.036 | 0.052 | 0.065 |
| 2004 | 0.007 | 0.018 | 0.035 | 0.051 | 0.065 |
| 2005 | 0.007 | 0.018 | 0.035 | 0.051 | 0.063 |
| 2006 | 0.007 | 0.019 | 0.033 | 0.05  | 0.064 |
| 2007 | 0.007 | 0.018 | 0.033 | 0.049 | 0.07  |
| 2008 | 0.007 | 0.017 | 0.035 | 0.051 | 0.063 |
| 2009 | 0.007 | 0.017 | 0.035 | 0.052 | 0.066 |
| 2010 | 0.007 | 0.017 | 0.035 | 0.053 | 0.064 |
| 2011 | 0.007 | 0.017 | 0.034 | 0.051 | 0.064 |
| 2012 | 0.007 | 0.017 | 0.034 | 0.051 | 0.065 |
| 2013 | 0.007 | 0.017 | 0.034 | 0.051 | 0.065 |
| 2014 | 0.007 | 0.017 | 0.034 | 0.049 | 0.065 |
| 2015 | 0.007 | 0.018 | 0.035 | 0.051 | 0.065 |
| 2016 | 0.007 | 0.016 | 0.034 | 0.051 | 0.066 |
| 2017 | 0.007 | 0.017 | 0.034 | 0.051 | 0.062 |
| 2018 | 0.007 | 0.017 | 0.033 | 0.05  | 0.062 |
| 2019 | 0.007 | 0.016 | 0.032 | 0.052 | 0.065 |
| 2020 | 0.009 | 0.018 | 0.032 | 0.049 | 0.065 |
| 2021 | 0.008 | 0.016 | 0.033 | 0.049 | 0.065 |
| 2022 | 0.007 | 0.017 | 0.034 | 0.051 | 0.067 |
| 2023 | 0.008 | 0.017 | 0.034 | 0.049 | 0.065 |
| 2024 | 0.007 | 0.017 | 0.034 | 0.048 | 0.065 |



**Figure 6.16.3.1. Blue and red shrimp in GSA 5**. Catch-at-age data by year from the commercial fleet used in this assessment.



**Figure 6.16.3.2 Blue and red shrimp in GSA 5**. Internal consistency of the catch- at-age data from used in this assessment.

**Table 6.16.3.3. Blue and red shrimp in GSA 5**: Catch-at-age number (thousands) per year from MEDITS survey used in the assessment.

| Year | 1     | 2     | 3    | 4   | 5   |
|------|-------|-------|------|-----|-----|
| 2007 | 41.4  | 61.6  | 24.4 | 0.3 | 0.1 |
| 2008 | 93.6  | 71.8  | 27.2 | 5.6 | 2.5 |
| 2009 | 73.4  | 40.6  | 9.5  | 2.3 | 0.7 |
| 2010 | 99.4  | 27    | 7    | 0.4 | 0.1 |
| 2011 | 295.1 | 50.3  | 10.7 | 0.4 | 0.1 |
| 2012 | 175.9 | 81.1  | 14.8 | 0.1 | 0.1 |
| 2013 | 54.7  | 48.4  | 9.6  | 0.1 | 0.2 |
| 2014 | 133.4 | 37.2  | 10.3 | 1.8 | 0.2 |
| 2015 | 248.8 | 116.6 | 23.4 | 4.8 | 0.1 |
| 2016 | 158.5 | 48.7  | 8    | 1.5 | 0.1 |
| 2017 | 219.4 | 58.2  | 9.7  | 1.4 | 0.6 |
| 2018 | 160.1 | 54.8  | 6.3  | 1   | 0.1 |
| 2019 | 127.4 | 55.2  | 15.7 | 1.5 | 0.1 |
| 2020 | 180.8 | 68    | 1.8  | 0.2 | 0.1 |
| 2021 | 207.9 | 72.1  | 7.4  | 0.1 | 0.1 |
| 2022 | 229   | 55.4  | 6.1  | 0.6 | 0.1 |
| 2023 | 41.4  | 61.6  | 24.4 | 0.3 | 0.1 |
| 2024 | 93.6  | 71.8  | 27.2 | 5.6 | 2.5 |

## Survey age structure ARA5



**Figure 6.16.3.3. Blue and red shrimp in GSA 5**. Catch-at-age data by year from the MEDITS survey used in this assessment.



**Figure 6.16.3.4. Blue and red shrimp in GSA 5**. Internal consistency of the catch- at-age data from the MEDITS survey used in this assessment.

## **Assessment results**

This assessment is an update of the last year assessment. To correction is applied from length distribution from catches and survey and thus age0 was removed from the data to run the assessment. The model specifications are the following:

- fmodel <- ~ factor(replace(age, age>2,2)) + s(year, k=7)
- qmodel <- list(~ s(replace(age, age>3,3), k=3))
- srmodel <- ~geomean(CV=0.35)

The general results of the a4a assessment, including the summary of the fitting of the model for all the parameters (Rec, SSB, Catch and F), the estimated fishing mortality and catchability for the survey, the residuals patterns, the fit vs. observed catch-at-age, the retrospective analysis and the performed simulations, are shown in Figures 6.16.3.5 to 6.16.3.11.



**Figure 6.16.3.5. Blue and red shrimp in GSA 5**. Stock summary of the final a4a model for Rec, SSB, Catch and F.



**Figure 6.16.3.6. Blue and red shrimp in GSA5.** 3D contour plot of estimated fishing mortality (left) and 3D contour plot of estimated survey catchability (right) at age and year.

# log residuals of catch and abundance indices by age



# log residuals of catch and abundance indices



**Figure 6.16.3.7. Blue and red shrimp in GSA 5.** Standardized residuals for abundance indices and for catch numbers.



Figure 6.16.3.8. Blue and red shrimp in GSA 5. Fitted and observed catch-at- age.



**Figure 6.16.3.9. Blue and red shrimp in GSA 5.** Fitted and observed index-at-age (MEDITS survey data).



**Figure 6.16.3.10. Blue and red shrimp in GSA 5**. Results of the retrospective analysis from the a4a analysis.



Figure 6.16.3.11. Blue and red shrimp in GSA 5. Simulations over the summary results.

The Mohn'rho test for Fbar<sub>1-3</sub>, SSB and recruitment are also shown below:

| fbar        | ssb        | rec        |
|-------------|------------|------------|
| -0.09193578 | 0.13167862 | 0.07107165 |

In the following tables, the population estimates obtained by the a4a model are provided:

**Table 6.16.3.4. Blue and red shrimp in GSA 5.** Catch-at-age of number (thousands) as estimated by a4a.

| Year | 1     | 2      | 3      | 4     | 5    |
|------|-------|--------|--------|-------|------|
| 2002 | 20307 | 4568   | 4978.6 | 422.9 | 2.8  |
| 2003 | 21441 | 4011.1 | 231.2  | 280.4 | 25.3 |
| 2004 | 39199 | 4540   | 254.5  | 16.3  | 22.9 |
| 2005 | 42216 | 8725.9 | 338.9  | 21.1  | 3.5  |
| 2006 | 32462 | 9610.2 | 700.5  | 30.3  | 2.3  |
| 2007 | 29658 | 7333   | 752.4  | 61    | 3    |
| 2008 | 34653 | 6474.8 | 513.8  | 58.7  | 5.3  |
| 2009 | 12867 | 7194.7 | 385.4  | 34    | 4.5  |
| 2010 | 22570 | 2542.3 | 364.5  | 21.7  | 2.3  |
| 2011 | 19398 | 4323.5 | 116.5  | 18.6  | 1.3  |
| 2012 | 35879 | 3706.5 | 196.4  | 5.9   | 1.1  |
| 2013 | 29036 | 7004.9 | 180.6  | 10.7  | 0.4  |
| 2014 | 17872 | 5844.6 | 377    | 10.8  | 0.7  |
| 2015 | 22408 | 3680.6 | 338.8  | 24.3  | 0.8  |
| 2016 | 31387 | 4631.1 | 215.8  | 22.1  | 1.7  |
| 2017 | 36836 | 6358.5 | 254.5  | 13.2  | 1.5  |
| 2018 | 52106 | 7168.1 | 306.6  | 13.7  | 0.8  |
| 2019 | 37139 | 9650.2 | 294.3  | 14    | 0.7  |
| 2020 | 18645 | 6600.2 | 346.5  | 11.8  | 0.6  |
| 2021 | 17000 | 3264   | 225.6  | 13.2  | 0.5  |
| 2022 | 25818 | 3038.6 | 119.4  | 9.2   | 0.6  |
| 2023 | 27948 | 4864.4 | 131.9  | 5.8   | 0.5  |
| 2024 | 35471 | 5649.7 | 265.4  | 8     | 0.4  |

Table 6.16.3.5. Blue and red shrimp in GSA 5. a4a summary results.

| Year | Recruitment<br>age 1<br>thousands | SSB<br>tonnes | Catch<br>tonnes | F<br>ages 1-3 |
|------|-----------------------------------|---------------|-----------------|---------------|
| 2002 | 20307                             | 100.7         | 267.9           | 1.81          |
| 2003 | 21441                             | 61.2          | 117.9           | 1.64          |
| 2004 | 39199                             | 98.9          | 150.8           | 1.51          |

| 2005         | 42216          | 119          | 201.8          | 1.46         |
|--------------|----------------|--------------|----------------|--------------|
| 2006         | 32462          | 113.2        | 214.4          | 1.48         |
| 2007         | 29658          | 97.8         | 187.5          | 1.56         |
| 2008         | 34653          | 96.5         | 185.0          | 1.69         |
| 2009         | 12867          | 50           | 139.4          | 1.81         |
| 2010         | 22570          | 54.7         | 105.6          | 1.89         |
| 2011         | 19398          | 49.8         | 111.4          | 1.90         |
| 2012         | 35879          | 81.9         | 147.8          | 1.84         |
| 2013         | 29036          | 82           | 171.9          | 1.77         |
| 2014         | 17872          | 58.3         | 130.1          | 1.71         |
| 2015         | 22408          | 61.1         | 114.6          | 1.70         |
| 2016         | 31387          | 75.3         | 139.0          | 1.75         |
| 2017         | 36836          | 87.4         | 178.6          | 1.85         |
| 2018         | 52106          | 115.5        | 238.3          | 1.97         |
| 2019         | 37139          | 93.1         | 237.9          | 2.08         |
| 2020         | 18645          | 60.6         | 169.3          | 2.11         |
| 2021         | 17000          | 42.5         | 98.8           | 2.06         |
| 2022         | 25818          | 60.1         | 115.4          | 1.93         |
| 2023         | 27948          | 75.3         | 140.9          | 1.76         |
| 2024         | 35471          | 96.7         | 160.6          | 1.57         |
| 2022<br>2023 | 25818<br>27948 | 60.1<br>75.3 | 115.4<br>140.9 | 1.93<br>1.76 |

Table 6.16.3.6. Blue and red shrimp in GSA 5. Fishing mortality at age.

| Year | 1     | 2     | 3     | 4     | 5     |
|------|-------|-------|-------|-------|-------|
| 2002 | 0.725 | 2.356 | 2.356 | 2.356 | 2.356 |
| 2003 | 0.655 | 2.13  | 2.13  | 2.13  | 2.13  |
| 2004 | 0.605 | 1.968 | 1.968 | 1.968 | 1.968 |
| 2005 | 0.583 | 1.895 | 1.895 | 1.895 | 1.895 |
| 2006 | 0.591 | 1.92  | 1.92  | 1.92  | 1.92  |
| 2007 | 0.625 | 2.031 | 2.031 | 2.031 | 2.031 |
| 2008 | 0.675 | 2.194 | 2.194 | 2.194 | 2.194 |
| 2009 | 0.725 | 2.355 | 2.355 | 2.355 | 2.355 |
| 2010 | 0.756 | 2.456 | 2.456 | 2.456 | 2.456 |
| 2011 | 0.758 | 2.464 | 2.464 | 2.464 | 2.464 |
| 2012 | 0.737 | 2.394 | 2.394 | 2.394 | 2.394 |
| 2013 | 0.706 | 2.295 | 2.295 | 2.295 | 2.295 |
| 2014 | 0.683 | 2.221 | 2.221 | 2.221 | 2.221 |
| 2015 | 0.68  | 2.209 | 2.209 | 2.209 | 2.209 |
| 2016 | 0.7   | 2.274 | 2.274 | 2.274 | 2.274 |
| 2017 | 0.74  | 2.405 | 2.405 | 2.405 | 2.405 |
| 2018 | 0.789 | 2.566 | 2.566 | 2.566 | 2.566 |
| 2019 | 0.831 | 2.7   | 2.7   | 2.7   | 2.7   |
| 2020 | 0.846 | 2.749 | 2.749 | 2.749 | 2.749 |
| 2021 | 0.825 | 2.681 | 2.681 | 2.681 | 2.681 |
| 2022 | 0.772 | 2.51  | 2.51  | 2.51  | 2.51  |

| 2023 | 0.702 | 2.281 | 2.281 | 2.281 | 2.281 |
|------|-------|-------|-------|-------|-------|
| 2024 | 0.629 | 2.045 | 2.045 | 2.045 | 2.045 |

The model was fitted assuming flat selectivity from age 2 onwards in the catches and flat catchability (q) from age 3 onwards in the survey. Commercial catches showed greater consistency than the MEDITS survey index. However, the assessment results revealed some instability, particularly regarding the stability of residuals, both in commercial catches (especially at age class 3) and in the MEDITS survey (age classes 3 and 5). The retrospective analysis produced acceptable results, as did all other diagnostics. Therefore, based on the a4a outputs, the main conclusion is that the stock of Blue and Red Shrimp in GSA5 shows a highly variable pattern across all indicators, with no clear trends throughout the time series. After fluctuating from the start of the series until 2014, catches, recruitment (Rec), and spawning stock biomass (SSB) increased progressively between 2014–2015 and 2018, reaching a peak that year. Since then, however, all three dropped sharply until 2021. From 2022 onwards, an increasing trend in catches, Rec, and SSB is again observed. Fbar (ages 1–3) displayed a fluctuating pattern across the series (between 1.57 and 2.11), but with a marked decline from 2020 onwards, reaching 1.57 in 2024.