PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C12N 15/82, 15/10, 9/12, 5/10, C12Q 1/68, A01H 5/00

(11) International Publication Number:

WO 00/08187

A2

(43) International Publication Date:

17 February 2000 (17.02.00)

(21) International Application Number:

PCT/EP99/05652

(22) International Filing Date:

4 August 1999 (04.08.99)

(30) Priority Data:

98202634.6

4 August 1998 (04.08.98)

EP

(71) Applicant (for all designated States except US): VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECH-NOLOGIE [BE/BE]; Rijvisschestraat 120, B-9052 Zwijnaarde (BE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): LEE, Jeong, Hee [KR/BE]; Spinmolenplein 274 (22K), B-9000 Gent (BE). VERBRUGGEN, Nathalie [BE/BE]; Avenue des Saisons, 53, B-1050 Ixelles (BE).
- (74) Agent: DE CLERCQ, Ann; Ann De Clercq & Co. B.V.B.A., Brandstraat 100, B-9830 Sint-Martens-Latem (BE).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: GENES INVOLVED IN TOLERANCE TO ENVIRONMENTAL STRESS

(57) Abstract

The present invention relates to a method for obtaining polynucleic acids comprising coding sequences and/or genes involved in environmental stress resistance in plants, comprising the preparation of a cDNA library comprising coding sequences from siliques, introducing said coding sequences in yeast cells in a functional format and screening for polynucleic acids leading to an enhanced tolerance or resistance to environmental stress conditions in said transformed yeast cells. The present invention further relates to an isolated polynucleic acid obtainable by such a method as listed in Table 1 as well as recombinant polynucleic acid comprising the same. The present invention further relates to an isolated polypeptide encoded by a polynucleic acid of the invention. The present invention also relates to a method for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into a plant cell a recombinant DNA comprising a polynucleic acid as defined which when expressed in a plant cell enhances the tolerances or induces resistance to environmental stress conditions of said plant. The present invention particularly relates to plant cells, plants or harvestable parts or propagation material thereof transformed with a recombinant polynucleic acid as defined above.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali -	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	**	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Li	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
							•

WO 00/08187 PCT/EP99/05652

Genes involved in tolerance to environmental stress

The present invention relates to molecular biology, in particular plant molecular biology. In particular, the invention relates to improvements of crop productivity of useful plants. One of the major limitations of crop productivity is the effect of environmental stress conditions on plant growth and development. An important goal of molecular biology is the identification and isolation of genes that can provide resistance or tolerance to such stresses. For agriculture, the creation of transgenic plants containing such genes provides the potential for improving the stress resistance or tolerance of plants.

Drought, salt loading, and freezing are stresses that cause adverse effects on the growth of plants and the productivity of crops. The physiological response to these stresses arises out of changes in cellular gene expression. Expression of a number of genes has been demonstrated to be induced by these stresses (Zhu et al., 1997; Shinozaki et al., 1996; Thomashow, 1994). The products of these genes can be classified into two groups: those that directly protect against environmental stresses and those that regulate gene expression and signal transduction in the stress response. The first group includes proteins that likely function by protecting cells from dehydration, such as the enzymes required for biosynthesis of various osmoprotectants, late-embryogenesis-abundant (LEA) proteins, antifreeze proteins, chaperones, and detoxification enzymes (Shinozaki et al., 1997, Ingram et al., 1996, Bray et al., 1997). The second group of gene products includes transcription factors, protein kinases, and enzymes involved in phosphoinositide metabolism (Shinozaki et al., 1997). An overview of the methods known to improve stress tolerance in plants is also given in Holmberg & Bülow, (1998).

Further studies are definitely needed to give an insight into the mechanisms involved in the plant response to environmental stress conditions.

The study of plants naturally adapted to extreme desiccation has led to the hypothesis that the genetic information for tolerance to environmental stress conditions exists in all higher plants. In glycophytes, this information would only be expressed in seeds and pollen grains which undergo a desiccation process.

The induction of osmotolerance in plants is very important to crop productivity: 30 to 50 % of the land under irrigation is presently affected by salinity. Several lines of evidence also demonstrate that even mild environmental stress conditions throughout the growth season have a negative impact on plant growth and crop productivity. It is

CONFIRMATION COPY

5

10

15

20

25

30

35

15

20

25

30

35

for instance known that even minor limitations in water availability cause a reduced photosynthetic rate. Unpredictable rainfall, increase in soil salinity at the beginning and the end of the growing season often result in decreased plant growth and crop productivity. These environmental factors share at least one element of stress and that is water deficit or dehydration. Drought is a significant problem in agriculture today. Over the last 40 years, for example, drought accounted for 74% of the total US crop losses of corn. To sustain productivity under adverse environmental conditions, it is important to provide crops with a genetic basis for coping with water deficit, for example by breeding water retention and tolerance mechanisms into crops so that they can grow and yield under these adverse conditions.

It is an aim of the present invention to provide a new method for screening for plant genes involved in tolerance or resistance to environmental stress.

It is an aim of the present invention to provide new plant genes, more particularly plant genes providing the potential of improving the tolerance to environmental stress conditions in plants.

It is also an aim of the present invention to provide polypeptides encoded by said new plant genes.

It is further an aim of the present invention to provide methods for producing plants with enhanced tolerance or resistance to environmental stress conditions based on said new genes.

It is also an aim of the present invention to provide recombinant polynucleic acids comprising said new genes.

It is further an aim of the present invention to provide plant cells and plants transformed with said new genes.

It is further an aim of the present invention to provide plant cells and plants with enhanced tolerance or resistance to environmental stress conditions.

The present invention relates more particularly to a method for obtaining polynucleic acids comprising coding sequences and/or genes involved in environmental stress in plants, comprising the preparation of a cDNA library comprising coding sequences from siliques, introducing said coding sequences in yeast cells in a functional format and screening for polynucleic acids leading to an enhanced tolerance or resistance to environmental stress conditions in said transformed yeast cells.

It has been found that the transfer of genes from plants which are often difficult to assay for certain characteristics, to lower eukaryotes, such as yeasts and fungi, but

10

15

20

25

30

35

in particular yeast, especially Saccharomyces, is relatively-easy to achieve, whereby it has now been shown that the results of testing for tolerance or resistance to environmental conditions in the resulting yeast cells gives a relatively reliable measure of the capability of the inserted coding sequence or gene to induce tolerance or resistance to environmental stress in plants. Thus the expression of polynucleic acid sequences comprising the gene or coding sequence which are responsible for inducing tolerance or resistance to environmental stress conditions can be enhanced in the plant species from which it originates or in any other plant species.

In the present context the term "enhancing" must be understood to mean that the levels of molecules correlated with stress protection in a transformed plant cell, plant tissue or plant part will be "substantially increased" or "elevated" meaning that this level will be greater than the levels in an untransformed plant.

This may be achieved by inducing overexpression of suitable genetic information which is already present, or by any other suitable means of introducing into the plant cell heterologous information resulting in a capability to tolerate or resist environmental stress.

The term "environmental stress" has been defined in different ways in the prior art and largely overlaps with the term "osmotic stress". Holmberg et al., 1998 for instance define different environmental stress factors which result in abiotic stress. Salinity, drought, heat, chilling and freezing are all described as examples of conditions which induce osmotic stress. The term "environmental stress" as used in the present invention refers to any adverse effect on metabolism, growth or viability of the cell, tissue, seed, organ or whole plant which is produced by an non-living or non-biological environmental stressor. More particularly, it also encompasses environmental factors such as water stress (flooding, drought, dehydration), anaerobic (low level of oxygen, CO₂ etc.), aerobic stress, osmotic stress, salt stress, temperature stress (hot/heat, cold, freezing, frost) or nutrients/pollutants stress.

The term "anaerobic stress" means any reduction in oxygen levels sufficient to produce a stress as hereinbefore defined, including hypoxia and anoxia.

The term "flooding stress" refers to any stress which is associated with or induced by prolonged or transient immersion of a plant, plant part, tissue or isolated cell in a liquid medium such as occurs during monsoon, wet season, flash flooding or excessive irrigation of plants, etc.

"Cold stress" and "heat stress" are stresses induced by temperatures which are respectively, below or above, the optimum range of growth temperatures for a

10

15

20

25

30

35

particular plant species. Such optimum growth temperature ranges are readily determined or known to those skilled in the art.

"Dehydration stress" is any stress which is associated with or induced by the loss of water, reduced turgor or reduced water content of a cell, tissue, organ or whole plant.

"Drought stress" refers to any stress which is induced by or associated with the deprivation of water or reduced supply of water to a cell, tissue, organ or organism.

"Oxidative stress" refers to any stress which increases the intracellular level of reactive oxygen species.

The terms "salinity-induced stress", "salt-stress" or similar term refer to any stress which is associated with or induced by elevated concentrations of salt and which result in a perturbation in the osmotic potential of the intracellular or extracellular environment of a cell.

Said salt can be for example, water soluble inorganic salts such as sodium sulfate, magnesium sulfate, calcium sulfate, sodium chloride, magnesium chloride, calcium chloride, potassium chloride etc., salts of agricultural fertilizers and salts associated with alkaline or acid soil conditions.

The transgenic plants obtained in accordance with the method of the present invention, upon the presence of the polynucleic acid and/or regulatory sequence introduced into said plant, attain resistance, tolerance or improved tolerance or resistance against environmental stress which the corresponding wild-type plant was susceptible to.

The terms "tolerance" and "resistance" cover the range of protection from a delay to complete inhibition of alteration in cellular metabolism, reduced cell growth and/or cell death caused by the environmental stress conditions defined herein before. Preferably, the transgenic plant obtained in accordance with the method of the present invention is tolerant or resistant to environmental stress conditions in the sense that said plant is capable of growing substantially normal under environmental conditions where the corresponding wild-type plant shows reduced growth, metabolism, viability, productivity and/or male or female sterility. Methodologies to determine plant growth or response to stress include, but are not limited to height measurements, leaf area, plant water relations, ability to flower, ability to generate progeny and yield or any other methodology known to those skilled in the art.

The terms "tolerance" and "resistance" may be used interchangeably in the present invention.

10

15

20

25

30

35

The methods according to the invention as set out below can be applied to any, higher plant, preferably important crops, preferably to all cells of a plant leading to an enhanced osmotic or any other form of environmental stress tolerance. By means of the embodiments as set out below, it now becomes possible to grow crops with improved yield, growth, development and productivity under environmental stress conditions, it may even become possible for instance to grow crops in areas where they cannot grow without the induced osmotolerance according to the invention.

In order to do a thorough screening for relevant plant genes and/or coding sequences, it is preferred to apply a method according to the invention whereby said cDNA library comprises copies of essentially all mRNA of said plant cell. Probably only coding sequences are sufficient. For the screening of genes involved in environmental stress, it is preferred to use a cDNA library from siliques (fruits, containing the maturing seeds), such as the siliques from *Arabidopsis*, because genes involved in for instance osmotolerance are preferentially expressed in these organs.

Although the genetic information may be introduced into yeast for screening by any suitable method, as long as it is in a functional format long enough tor testing of tolerance or resistance to environmental stress conditions, it is preferred for ease of operation to use a well known vector such as a 2µ plasmid. It is to be preferred to have the coding sequence or the gene under control of a strong constitutive yeast promoter, to enhance good expression of the gene or coding sequence of interest. Strong constitutive yeast promoters are well known in the art and include, but are not limited to the yeast TPI promoter.

The term "gene" as used herein refers to any DNA sequence comprising several operably linked DNA fragments such as a promoter and a 5' untranslated region (the 5'UTR), a coding region (which may or may not code for a protein), and an untranslated 3' region (3'UTR) comprising a polyadenylation site. Typically in plant cells, the 5'UTR, the coding region and the 3'UTR (together referred to as the transcribed DNA region) are transcribed into an RNA which, in the case of a protein encoding gene, is translated into a protein. A gene may include additional DNA fragments such as, for example, introns. As used herein, a genetic locus is the position of a given gene in the genome of a plant.

The present invention more particularly relates to an isolated polynucleic acid obtainable by a method comprising the preparation of a cDNA as set out above comprising coding sequences from siliques, introducing said coding sequences in yeast cells in a functional format and screening for polynucleic acids leading to an

enhanced tolerance or resistance to environmental stress conditions in said transformed yeast cells.

The term "polynucleic acid" refers to DNA or RNA, or amplified versions thereof, or the complement thereof.

The present invention more particularly provides an isolated polynucleic acid obtainable by a method as defined above which encodes a polypeptide as listed in Table 1.

The capacity of an isolated polynucleic acid to confer tolerance or resistance to environmental stress conditions can be tested according to methods well-known in the art, see for example, Grillo et al. (1996), Peassarakli et al. (Editor), Nilsen et al. (1996), Shinozaki et al. (1999), Jones et al. (1989), Fowden et al. (1993) or as described in the appended examples.

The present invention more particularly relates to an isolated polynucleic acid which encodes a homolog of any of the polypeptides as listed in Table 1, which is chosen from:

- (a) any of SEQ ID NO 1, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, or 121, or the complementary strands thereof;
- (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b), or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).

Preferably said sequences according to part (b) hybridize under stringent conditions to the sequences of part (a).

Said fragment as defined above are preferably unique fragments of said sequences.

The term "hybridizing" refers to hybridization conditions as described in Sambrook (1989), preferably specific or stringent hybridization conditions are aimed at.

20

15

5

10

25

30

15

20

25

30

35

Stringent conditions are sequence dependent and will be different in different circumstances. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typically, stringent conditions will be those in which the salt concentration is about 0.02 molar at pH 7 and the temperature is at least about 60°C.

In the present invention, genomic DNA or cDNA comprising the polynucleic acids of the invention can be identified in standard Southern blots under stringent conditions using the cDNA sequence shown. The preparation of both genomic and cDNA libraries is within the skill of the art. Examples of hybridization conditions are also given in the Examples section.

The present invention also relates to the isolated polynucleic acids which encode polypeptides which are a homolog of the polypeptides as set out in Table 1 useful for the production of plants which are resistant or tolerant to environmental stress conditions.

The present invention also relates to a polynucleic acid comprising at least part of any of SEQ ID NO 1, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or 121, or at least part of a gene that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to any of SEQ ID NO 1, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or 121. Preferably, said gene encodes a protein having substantially the same biological activity as the protein having the sequence of SEQ ID NO 2, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76 or 78. Said part of said gene is preferably a unique part.

The present invention preferably relates to the use of a polynucleic acid comprising at least part of any of SEQ ID NO 1, 3, 5, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121, or at least part of a gene that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to any of

SEQ ID NO 1, 3, 5, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121 for the production of transgenic plants having enhanced tolerance or resistance to environmental stress conditions.

Preferably, said gene encodes a protein having substantially the same biological activity as the protein having the sequence of SEQ ID NO 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, or 120. Said part of said gene is preferably a unique part.

The present invention particularly relates to an isolated polynucleic acid as defined above, which encodes a plant homolog of yeast DBF2 kinase, more particularly a DBF2 kinase homolog from Arabidopsis thaliana termed At-DBF2, which can at least be used to confer enhanced environmental stress tolerance or resistance in plants and yeast.

More preferably, the present invention relates to an isolated polynucleic acid encoding a plant DFB2 kinase, which is chosen from:

- (a) SEQ ID NO 1, or the complementary strand thereof;
- (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
- (e) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b), or,
- (c) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).

Preferably said sequences according to part (b) hybridize under stringent conditions to the sequences of part (a).

Alternatively, the present invention relates to a polynucleic acid derived from a plant comprising at least part of SEQ ID NO 1, or at least part of a gene having a sequence that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to SEQ ID NO 1. Preferably said gene encodes a protein

20

15

5

10

25

30

having substantially the same biological activity as the protein having the sequence of SEQ ID NO 2.

The present invention also relates to the use of an isolated polynucleic acid as defined above which encodes a plant HSP 17.6A protein for the production of transgenic plants, more particularly a homolog from Arabidopsis thaliana, which at least can be used to confer enhanced environmental stress tolerance in plants and yeast.

More preferably, the present invention relates to the use of an isolated polynucleic acid as defined above which is chosen from:

(a) SEQ ID NO 3, or the complementary strand thereof;

- (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b) or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c),

for the production of transgenic plants having an enhanced tolerance or resistance to environmental stress conditions.

Preferably said sequences according to part (b) hybridize under stringent conditions to the sequences of part (a).

The present invention also relates to the use of a polynucleic acid comprising at least part of SEQ ID NO 3, or at least part of a gene having a sequence that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to SEQ ID NO 3. Preferably said gene encodes a protein having substantially the same biological activity as the protein having the sequence of SEQ ID NO 4, for the production of transgenic plants having enhanced tolerance or resistance to environmental stress conditions.

More preferably, the present invention relates to the use of an isolated polynucleic acid as defined above which is chosen from:

(a) any of SEQ ID NO 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, or 119, or the complementary strand thereof;

10

5

15

20

25

30

35

10

15

20

25

- (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b) or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c),

for the production of transgenic plants having an enhanced tolerance or resistance to environmental stress conditions.

The present invention preferably relates to the use of a polynucleic acid comprising at least part of any of SEQ ID NO 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, or 119, or at least part of a gene that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to any of SEQ ID NO 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, or 119, for the production of transgenic plants having enhanced tolerance or resistance to environmental stress conditions.

Preferably, said gene encodes a protein having substantially the same biological activity as the protein having the sequence of SEQ ID NO 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, or 120. Said part of said gene is preferably a unique part.

According to another preferred embodiment, the present invention relates to an isolated polynucleic acid as defined above, which encodes a protein termed c74, more particularly a plant homolog of c74, even more preferably a c74 from Arabidopsis thaliana, which at least can be used to confer enhanced environmental stress tolerance in plants and yeast.

More particularly, the present invention relates to an isolated polynucleic acid as defined above, which is chosen from:

- (a) SEQ ID NO 5, or the complementary strand thereof;
- (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;

10

15

20

25

30

- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b) or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).

Preferably said sequences according to part (b) hybridize under stringent conditions to the sequences of part (a).

The present invention also relates to a polynucleic acid comprising at least part of SEQ ID NO 5, or at least part of a gene having a sequence that is at least 50% identical, preferentially at least 55%, 60%, 65% or 70% identical, more preferably at least 75%, 80% or 85% identical, and most preferably at least 90% or 95% identical to SEQ ID NO 5. Preferably said gene encodes a protein having substantially the same biological activity as the protein having the sequence of SEQ ID NO 6.

Two nucleic acid sequences or polypeptides are said to be "identical" according to the present invention if the sequence of nucleotides or amino acid residues, respectively, in the two sequences is the same when aligned for maximum correspondence as described below. The term "complementary to" is used herein to mean that the complementary sequence hybridizes to all or a portion of a given polynucleotide sequence.

Sequence comparisons between two (or more) polynucleic acid or polypeptide sequences are typically performed by comparing sequences of the two sequences over a "comparison window" to identify and compare local regions of sequence similarity. A "comparison window", as used herein, refers to a segment of at least about 20 contiguous positions, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman (1981), by the homology alignment algorithm of Needleman and Wunsch (1970), by the search for similarity method of Pearson and Lipman (1988), by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, WI), or by visual inspection.

15

20

25

30

"Percentage of sequence identity" is determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleic acid or polypeptide sequences in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.

The term "substantial identity" of polynucleic acid or polypeptide sequences means that a polynucleotide sequence comprises a sequence that has at least 60%, 65%, 70% or 75% sequence identity, preferably at least 80% or 85%, more preferably at least 90% and most preferably at least 95 %, compared to a reference sequence using the programs described above (preferably BLAST) using standard parameters. One of skill will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like. Substantial identity of amino acid sequences for these purposes normally means sequence identity of at least 40%, 45%, 50% or 55% preferably at least 60%, 65%, 70%, 75%, 80% or 85% more preferably at least 90%, and most preferably at least 95%. Polypeptides which are "substantially similar" share sequences as noted above except that residue positions which are not identical may differ by conservative amino acid changes. Conservative amino acid substitutions refer to the interchangeability of residues having similar side chains. For example, a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfur-containing side chains is cysteine and methionine. Preferred conservative amino acids substitution groups are: valineleucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine. asparagine-glutamine.

10

15

20

25

30

35

Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other, or a third nucleic acid, under stringent conditions.

More particularly, the polynucleic acids as used herein will comprise at least part of a DNA sequence which is essentially similar, or, preferentially, essentially identical or identical to one or both of the nucleotide or amino acid sequences corresponding to SEQ ID NO 1 to 121 disclosed herein, more specifically in the nucleotide sequence encoding, or the amino-acid sequence corresponding to the "active domain" of the respective protein or polypeptide.

The polynucleic acid sequences according to the present invention can be produced by means of any nucleic acid amplification technique known in the art such as PCR or conventional chemical synthesis.

For a general overview of PCR see PCR Protocols (Innis et al. (1990)).

Polynucleotides may also be synthesized by well-known techniques as described in the technical literature. See, e.g., Carruthers et al. (1982) and Adams et al. (1983). Double stranded DNA fragments may then be obtained either by synthesizing the complementary strand and annealing the strands together under appropriate conditions, or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

The present invention more particularly relates to an isolated polypeptide encoded by a polynucleic acid according to any of the polynucleic acids as defined above, or a functional fragment thereof.

The present invention preferably relates to an isolated polypeptide as listed in Table 1 or to an isolated polypeptide encoded by a polynucleic acid isolated as defined above. Preferably, the present invention relates to polypeptides or peptides having at least part of the sequence of any of SEQ ID NO NO 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, or 120. Preferably, said part is a unique part and preferably includes the active domain of said polypeptide. Preferably said polypeptide is a recombinant polypeptide.

The term "isolated" distinguishes the protein or polynucleic acid according to the invention from the naturally occurring one.

The present invention also relates to a polypeptide comprising at least part of a polypeptide which is at least 50%, 55%, 60%, 65% identical, preferentially at least 70%, 75% identical, more preferably at least 80% or 85% identical, and most

10

15

20

25

30

preferably at least 90% or 95% identical to any of SEQ ID NO NO 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, or 120.

The terms "polypeptide" and "protein" are used interchangeably throughout the present description.

Said polypeptide preferably has the ability to confer tolerance or resistance to environmental stress conditions in at least plants, plant parts, plant tissues, plant cells, plant calli or yeast.

The term "functional fragment" refers to a fragment having substantially the biological activity of the protein from which it is derived.

The polypeptides of the present invention may be produced by recombinant expression in prokaryotic and eukaryotic engineered cells such as bacteria, yeast or fungi. It is expected that those of skill in the art are knowledgeable in the numerous expression systems available for expression in these systems.

The present invention more particularly relates to a method for producing a plant with enhanced environmental stress resistance or tolerance, said method comprising transiently introducing into a plant cell a recombinant DNA comprising any of the polynucleic acids as defined above which when (over)expressed in a plant cell enhances tolerance or resistance to environmental stress of said plant.

The term "plant cell" as defined above also comprises plant tissue or a plant as a whole. The present invention more particularly relates to a method for producing a plant with enhanced environmental stress resistance or tolerance, said method comprising transiently introducing into a plant cell a recombinant DNA comprising any of the polynucleic acids encoding a protein as listed in Table 1 which when (over)expressed in a plant cell enhances tolerance or resistance to environmental stress in said plant.

The term "(over)expression" refers to the fact that the polypeptides of the invention encoded by said polynucleic acid are preferably expressed in an amount effective to confer tolerance or resistance to the transformed plant, to an amount of salt, heat, cold, (or other stress factors) that inhibits the growth of the corresponding untransformed plant.

Several methods to obtain transient introduction and expression of a recombinant DNA in a plant are known to the art. For example, plant virus vectors can

10

15

20

25

30

be used to obtain such purpose. Examples conferring to the use of plant viral vectors are described in Porta and Lomonossoff (1996), WO9320217 and US 5,589,367.

The present invention also relates to a method for producing a plant with enhanced environmental stress resistance or tolerance, said method comprising stably introducing into the genome of a plant cell a recombinant DNA comprising any of the polynucleic acids as defined above which when (over)expressed in a plant cell enhances the environmental stress tolerance or resistance of a plant.

The present invention also relates to a method for producing a plant with enhanced tolerance or resistance to environmental stress conditions, said method comprising introducing into the genome of a plant cell a recombinant DNA comprising any of the polynucleic acids encoding a protein as listed Table 1 which when (over)expressed in a plant cell enhances the environmental stress resistance of said plant.

According to a preferred embodiment, the present invention relates to a method for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid as defined above encoding a DBF2 kinase, preferably a plant DBF2 kinase, most preferably an Arabidopsis DBF2 kinase.

According to another preferred embodiment, the present invention relates to a method as defined above for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid as defined above encoding an HSP 17.6A protein, preferably a plant HSP 17.6A protein, most preferably an Arabidopsis HSP 17.6A.

According to a preferred embodiment, the present invention relates to a method as defined above for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid as defined above encoding a c74 protein, preferably a plant c74 protein, most preferably a Arabidopsis c74 protein.

Preferably, the present invention relates to a method as defined above, comprising:

- (a) introducing into the genome of a plant cell one or more recombinant DNA molecules, said recombinant DNA molecules comprising:
 - a polynucleic acid as defined above, and,
 - a plant expressible promoter, whereby said polynucleic acid is in the same transcriptional unit

and under the control of said plant-expressible promoter, and,

(b) regenerating said plant from said plant cell.

The present invention also relates to a method for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising indirectly increasing of inducing the expression of an endogenous gene in said plant comprised within a polynucleic acid as defined above or indirectly increasing of inducing te activity of a protein as defined above.

The present invention also relates to a method as defined above, comprising:

- (a) introducing into the genome of a plant cell one or more recombinant DNA molecules, said recombinant DNA molecules comprising:
 - a DNA encoding a protein which when expressed in said plant cell at an effective amount indirectly increases or induces the expression of an endogenous polynucleic acid or indirectly increases or induces the protein activity of a protein encoded by said polynucleic acid of the present invention, and,
 - a plant expressible promoter, whereby said DNA is in the same transcriptional unit and under the control of said plant-expressible promoter, and,

(b) regenerating said plant from said plant cell.

A "recombinant" DNA molecule will comprise a "heterologous sequence" meaning that said recombinant DNA molecule will comprise a sequence originating from a foreign species, or, if from the same species, may be substantially modified from its original form. For example, a promoter operably linked to a structural gene which is from a species different from which the structural gene was derived, or, if from the same species, may be substantially modified from its original form.

The present invention also relates to a method as defined above for producing a plant with enhanced tolerance or resistance to environmental stress conditions, said method comprising indirectly increasing or inducing the expression of an endogenous gene in said plant comprised within a polynucleic acid as defined above or indirectly increasing or inducing the activity of a protein of the invention as defined above. According to this embodiment, other polynucleic acids modulating the expression or the activity of a protein according to the present invention may be introduced

15

10

5

20

25

30

10

15

20

25

30

35

transiently or stably into the genome of said plants. The term "modulating" means enhancing, inducing, increasing, decreasing or inhibiting.

Increase or induction of expression or induction or increase of protein activity is required when said regulator protein is a positive regulator of the expression or the activity of at least one of the polynucleic acids or protein of the present invention.

Decrease or inhibition of expression or decrease or inhibition of protein activity is required when said regulator protein is a negative regulator of the expression or activity of at least one of the polynucleic acids or proteins of the present invention.

Increase of the activity of said polypeptide according to the present invention is obtained, according to one embodiment of the invention, by influencing endogenous gene expression in the plant. This is preferably achieved by the introduction of one or more polynucleic acid sequences according to the invention into the plant genome, in a suitable conformation for gene expression (e.g. under control of a plant-expressible promoter). This will result in increased or induced expression (overexpression) or increased or induced activity of the protein in the plant cells, and, in the presence of an adequate substrate, in an increase of tolerance or resistance to environmental stress conditions in a transgenic plant or plant cell as compared to a non-transgenic plant or plant cell. This increase in tolerance can be measured by measuring mRNA levels, or where appropriate, the level or activity of the respective protein (e.g. by means of ELISA, activity of the enzyme as measured by any technique known in the art). Endogenous gene expression refers to the expression of a protein which is naturally found in the plant, plant part or plant cell concerned.

Alternatively, said enhanced tolerance or resistance to environmental stress conditions may be achieved by introducing into the genome of the plant, one or more transgenes which interact with the expression of endogenous genes (polynucleic acids) according to the present invention, by anti-sense RNA, co-suppression or ribozyme suppression of genes which normally inhibit the expression of the polynucleic acids of the present invention or by suppression of genes which normally inhibit the activity of the polypeptides of the invention as defined above.

For inhibition of expression, the nucleic acid segment to be introduced generally will be substantially identical to at least a portion of the endogenous gene or genes to be repressed. The sequence, however, need not be perfectly identical to inhibit expression. The vectors of the present invention can be designed such that the inhibitory effect applies to other genes within a family of genes exhibiting homology or substantial homology to the target gene.

10

15

20

25

30

35

For antisense suppression, the introduced sequence also need not be full length relative to either the primary transcription product or fully processed mRNA.

Generally, higher homology can be used to compensate for the use of a shorter sequence.

Furthermore, the introduced sequence need not have the same intron or exon pattern, and homology of non-coding segments may be equally effective. Normally, a sequence of between about 30 or 40 nucleotides up to the full length sequence should be used, though a sequence of at least about 100 nucleotides is preferred, a sequence of at least about 200 nucleotides is more preferred, and a sequence of about 500 to about 1700 nucleotides is especially preferred.

Catalytic RNA molecules or ribozymes can also be used to inhibit expression of genes as explained above. It is possible to design ribozymes that specifically pair with virtually any target RNA and cleave the phosphodiester backbone at a specific location, thereby functionally inactivating the target RNA. In carrying out this cleavage, the ribozyme is not itself altered, and is thus capable of recycling and cleaving other molecules, making it a true enzyme. The inclusion of ribozyme sequences within antisense RNAs confers RNA-cleaving activity upon them, thereby increasing the activity of the constructs.

A number of classes of ribozymes have been identified. One class of ribozymes is derived from a number of small circular RNAs which are capable of selfcleavage and replication in plants. The RNAs replicate either alone (viroid RNAs) or with a helper virus (satellite RNAs). Examples include RNAs from avocado sunblotch viroid and the satellite RNAs from tobacco ringspot virus, lucerne transient streak virus, velvet tobacco mottle virus, solanum nodiflorum mottle virus and subterranean clover mottle virus. The design and use of target RNA-specific ribozymes is described in Haseloff et al. (1988).

Another method of suppression of gene expression is sense suppression. Introduction of nucleic acid configured in the sense orientation has been shown to be an effective means by which to block the transcription of target genes. For an example of the use of this method to modulate expression of endogenous genes see, Napoli et al. (1990), and U.S. Patents Nos. 5,034,323, 5,231,020, and 5,283,184.

The suppressive effect may occur where the introduced sequence contains no coding sequence per se, but only intron or untranslated sequences homologous to sequences present in the primary transcript of the endogenous sequence. The introduced sequence generally will be substantially identical to the endogenous

15

20

25 .

30

sequence intended to be repressed. This minimal identity will typically be greater than about 65%, but a higher identity might exert a more effective repression of expression of the endogenous sequences. Substantially greater identity of more than about 80% is preferred, though about 95% to absolute identity would be most preferred. As with antisense regulation, the effect should apply to any other proteins within a similar family of genes exhibiting homology or substantial homology.

For sense suppression, the introduced sequence, needing less than absolute identity, also need not be full length, relative to either the primary transcription product or fully processed mRNA. This may be preferred to avoid concurrent production of some plants which are overexpressers. A higher identity in a shorter than full length sequence compensates for a longer, less identical sequence. Furthermore, the introduced sequence need not have the same intron or exon pattern, and identity of non-coding segments will be equally effective. Normally, a sequence of the size ranges noted above for antisense regulation is used.

Other methods for altering or replacing genes known in the art can also be used to inhibit expression of a gene. For instance, insertional mutants using T-DNA or transposons can be generated. See, e.g., Haring et al. (1991) and Walbot (1992). Another strategy in genetic engineering of plants and animals is targeted gene replacement. Homologous recombination has typically been used for this purpose (see, Capecchi (1989)).

Alternatively, the present invention also relates to a method as defined above wherein said DNA encodes a sense or antisense RNA or a ribozyme capable of indirectly increasing or inducing the expression of an endogenous polynucleic acid sequence according to the invention as defined above or increasing or inducing the activity of a protein of the invention as defined above. Preferably said endogenous polynucleic acid encodes a protein as listed in Table 1.

The present invention also relates to a recombinant polynucleic acid comprising: a polynucleic acid as defined above, and, a plant expressible promoter, whereby said polynucleic acid is in the same transcriptional unit and under the control of said plant-expressible promoter.

The present invention also relates to a recombinant polynucleic acid comprising:

(a) a DNA encoding a protein which when expressed in said plant at an effective amount indirectly increases or induces the expression of an endogenous

10

15

20

25

35

polynucleic acid as defined above or indirectly increases or induces the protein activity of a polypeptide as defined above, and,

(b) a plant expressible promoter, whereby said DNA is in the same transcriptional unit and under the control of said plant-expressible promoter.

An "endogenous" polynucleic acid refers to a polynucleic acid that is already present in the plant species before transformation.

Said recombinant polynucleic acid as described here above is generally also referred to as a "recombinant vector" or an "expression cassette". An expression cassette of the invention can be cloned into an expression vector by standard methods. The expression vector can then be introduced into host cells by currently available DNA transfer methods.

The present invention also relates to the recombinant polynucleic acid as defined above, comprising a DNA which encodes an anti-sense RNA, a ribozyme or a sense RNA which increases or induces the activity of a protein as defined above in said cell. Preferably said protein is listed in Table 1.

More particularly, the present invention relates to a recombinant polynucleic acid comprising at least part of the nucleotide sequence of any of SEQ ID NO 1, 3, 5, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121.

Preferably, the present invention relates to a recombinant polynucleic acid comprising at least part of the coding sequence of a gene encoding a protein as listed in Table 1. Preferably, said "part" is a unique part of any of said nucleotide sequences. (26-28) As used herein, the term a "plant-expressible promoter" refers to a promoter that is capable of driving transcription in a plant cell. This includes any promoter of plant origin, including the natural promoter of the transcribed DNA sequence, but also any promoter of non-plant origin which is capable of directing transcription in a plant cell. The promoter may also be an artificial or synthetic promoter. The term "plant-expressible promoter" includes, but is not restricted to, constitutive, inducible, organ-, tissue-specific or developmentally regulated promoters.

According to the invention, production and/or activity of a polypeptide according to the present invention in a plant or in plant parts is increased by introducing *one or more* polynucleic acids according to the invention into the genome of the plant. More specifically, the constitutive promoter can be, but is not restricted to, one of the following: a 35S promoter (Odell et al. (1985)), a 35S'3 promoter (Hull and Howell

10

15

20

25

30

(1987)), the promoter of the nopaline synthase gene ("PNOS") of the Ti-plasmid (Herrera -Estrella, (1983)) or the promoter of the octopine synthase gene ("POCS", De Greve et al. (1982)). It is clear that other constitutive promoters can be used to obtain similar effects. A list of plant-expressible promoters that can be used according to the present invention is given in Table 2.

For specific embodiments of this invention, the use of inducible promoters can provide certain advantages. Modulation of protein levels or protein activity may be required in certain parts of the plant, making it possible to limit modulation to a certain period of culture or developmental stage of the plant.

For specific embodiments of this invention, the use of organ- or tissue-specific or chemical inducible promoters can provide certain advantages. Thus, in specific embodiments of the invention, the gene(s) or part thereof is (are) placed under the control of a promoter directing expression in specific plant tissues or organs, such as for instance roots, leaves, harvestable parts, etc.

It is also possible to use a promoter that can be induced upon the environmental stress conditions. Such promoters can be taken for example from stress-related genes which are regulated directly by an environmental, i.e. preferable abiotic, stress in a plant cell, including genes for which expression is increased, reduced or otherwise altered. These stress related genes comprise genes the expression of which is either induced or repressed by anaerobic stress, flooding stress, cold stress, dehydration stress, drought stress, heat stress or salinity. An exemplary list of such promoters is given in Table 3.

The recombinant polynucleic acids according to the present invention may include further regulatory or other sequences from other genes, such as leader sequences (e.g. the cab22 leader from Petunia), 3' transcription termination and polyadenylation signals (e.g. from the octopine synthase gene or the nopaline synthase gene), plant translation initiation consensus sequences, introns, transcription enhancers and other regulatory elements such as adh intron 1, etc, which is or are operably linked to the gene or a fragment thereof. Additionally, the recombinant polynucleic acid can be constructed and employed to target the gene product of the polynucleic acid of the invention to a specific intracellular compartment within a plant cell on to direct a protein to the extracellular environment. This can generally be obtained by operably joining a DNA sequence encoding a transit or signal peptide to the recombinant polynucleic acid.

10

15

20

25

30

35

The recombinant DNA comprising one or more polynucleic acids according to the present invention may be accompanied by a chimeric marker gene (Hansen et al., 1999 and references therein). The chimeric marker gene can comprise a marker DNA that is operably linked at its 5' end to a plant-expressible promoter, preferably a constitutive promoter, such as the CaMV 35S promoter, or a light inducible promoter such as the promoter of the gene encoding the small subunit of Rubisco; and operably linked at its 3' end to suitable plant transcription 3' end formation and polyadenylation signals. It is expected that the choice of the marker DNA is not critical, and any suitable marker DNA can be used. For example, a marker DNA can encode a protein that provides a distinguishable color to the transformed plant cell, such as the A1 gene (Meyer et al., (1987)), can provide herbicide resistance to the transformed plant cell, such as the *bar* gene, encoding resistance to phosphinothricin (EP 0 242 246), or can provide antibiotic resistance to the transformed cells, such as the *aac*(6') gene, encoding resistance to gentamycin (WO94/01560).

According to another embodiment, the present invention invention relates to the use of the polynucleic acids above as selectable marker gene. More preferably, the present invention also relates to the use of the plant DBF2 gene as defined above as selectable marker gene, selection taking place with treatment with a stress condition.

The recombinant DNA vectors according to the present invention comprising the sequences from genes of the invention will typically also comprise a marker gene which confers a selectable phenotype on plant cells. For example, the marker may encode biocide resistance, particularly antibiotic resistance, such as resistance to kanamycin, G418, bleomycin, hygromycin, or herbicide resistance, such as resistance to chlorosulforon or Basta.

The present invention also relates to a recombinant host cell transformed with an isolated polynucleic acid as defined above. Said host can be any host known in the art. Preferably said recombinant host cell is a plant cell, yeast, fungi, insect cell, etc. In order to be efficiently expressed in said host, said polynucleic acids can be combined with any promoter known to function in said host system. Methods for transforming said host cells are also well known in the art.

The present invention particularly also relates to a plant cell transformed with at least one recombinant polynucleic acid as defined above.

The present invention also relates to a plant consisting essentially of plant cells transformed with at least one recombinant polynucleic acid as defined above.

10

15

20

25

30

35

A "transgenic plant" refers to a plant comprising a transgene in the genome of essentially all of its cells.

DNA constructs of the invention may be introduced into the genome of the desired plant host by a variety of conventional techniques (see for example Hansen et al., 1999 for review and WO 99/05902). For example, DNA constructs of the invention may be introduced into the genome of the desired plant host by using techniques such as protoplast transformation, biolistics or microprojectile bombardment or Agrobacterium mediated transformation.

Microinjection techniques are known in the art and well described in the scientific and patent literature. The introduction of DNA constructs using polyethylene glycol precipitation is described in Paszkowski et al. (1984).

Electroporation techniques are described in Fromm et al. (1985). Biolistic transformation techniques are described in Klein et al. (1987).

Alternatively, the DNA constructs may be combined with suitable T-DNA flanking regions and introduced into a conventional Agrobacterium host vector. The virulence functions of the Agrobacterium host will direct the insertion of the construct and adjacent marker into the plant cell DNA when the cell is infected by the bacteria. Agrobacterium tumefaciens-mediated transformation techniques, including disarming and use of binary vectors, are well described in the scientific literature. See, for example Horsch et al. (1984), and Fraley et al. (1983).

Transformed plant cells which are derived by any of the above transformation techniques can be cultured to regenerate a whole plant which possesses the transformed genotype and thus the desired phenotype. Such regeneration techniques rely on manipulation of certain phytohormones in a tissue culture growth medium. Plant regeneration from cultured protoplasts is described in Evans et al. (1983); and Binding (1985). Regeneration can also be obtained from plant callus, explants, organs, or parts thereof. Such regeneration techniques are described generally in Klee et al. (1987).

The polynucleic acids and polypeptides of the invention can be used to confer desired traits on a broad range of plants, including monocotyledonous or dicotyledonous plants, preferably they belong to a plant species of interest in agriculture, wood culture or horticulture, such as a crop plant, root plant, oil producing plant, wood producing plant, fruit producing plant, fodder or forage legume, companion or ornamental or horticultured plant. The plants can include species from the genera Actinidia, Apium, Allium, Ananas, Arachis, Arisaema, Asparagus, Atropa, Avena, Beta,

10

15

20

25

30

35

Brassica, Carica, Cichorium, Citrus, Citrullus, Capsicum, Cucumis, Cucurbita, Cydonia, Daucus, Diospyros, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoscyamus, Ipomoea, Lactuca, Linum, Lolium, Lycopersicon, Malus, Mangifera, Manihot, Majorana, Medicago, Musa, Nicotiana, Oryza, Panicum, Pannesetum, Persea, Petroselinum, Phaseolus, Pisum, Pyrus, Prunus, Raphanus, Rheum, Ribes, Rubus, Saccharum, Secale, Senecio, Sinapis, Solanum, Sorghum, Spinacia, Trigonella, Triticum, Vaccinium, Vitis, Vigna, Zea, and Zingiber. Additional species are not excluded. Crops grown on cultivated lands in arid and semi-arid areas in which irrigation with ground water is needed may advantageously benefit from the invention.

One of skill will recognize that after the recombinant polynucleic acid is stably incorporated in transgenic plants and confirmed to be operable, it can be introduced into other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed. As described before, the plant cells, plant tissue, in particular, transgenic plants of the invention display a certain higher or enhanced degree of tolerance (or even resistance) to environmental stress conditions compared to the corresponding wild-type plants. For the meaning of "environmental stress", see supra. In a preferred embodiment of the present invention, the transgenic plant displays increased tolerance to osmotic stress, salt stress, cold and/or heat stress. An increase in tolerance to such environmental stress is understood to refer to a tolerance to a level of such stress which inhibits the growth and productivity of the corresponding untransformed plant, as determined by methodologies known to the art. Such increased tolerance in transgenic plants is related to an increased expression level in the transgenic plant or parts thereof of one ore more of the polynucleic acids of the present invention and/or to an increased level of activity of the polypeptide(s) encoded by said polynucleic acid, as determined by methodologies known to the art. In comparison with their untransformed counterparts, and determined according to methodologies known in the art, a transgenic plant according to the present invention shows an increased growth, viability, metabolism, fertility and/or productivity under mild environmental stress conditions. In the alternative, a transgenic plant according to the invention can grow under environmental stress conditions wherein the untransformed counterparts can not grow. An increase in tolerance to salt stress is understood to refer to the capability of the transgenic plant to grow under stress conditions which inhibit the growth of at least 95% of the parent, non-stress tolerant plants from which the stress tolerant transgenic

10

15

20

25

30

35

plants are derived. Typically, the growth rate of stress tolerant plants of the invention will be inhibited by less than 50%, preferably less than 30%, and most preferably will have a growth rate which is not significantly inhibited by growth conditions which inhibit the growth of at least 95% of the parental, non-stress tolerant plants. In an alternative example, under mild environmental stress conditions, the growth and/or productivity of the transgenic plants is statistically at least 1 % higher than for their untransformed counterparts, preferably more than 5 % higher and most preferably more than 10 % higher.

Any transformed plant obtained according to the invention can be used in a conventional breeding scheme or in *in vitro* plant propagation to produce more transformed plants with the same characteristics and/or can be used to introduce the same characteristic in other varieties of the same or related species.

Furthermore, the characteristic of the transgenic plants of the present invention to maintain normal/rapid/high growth rates under environmental stress conditions can be combined with various approaches to confer environmental stress tolerance with the use of other stress tolerance genes. Some examples of such stress tolerant genes are provided in Holmberg and Bülow (1998). Most prior art approaches which include the introduction of various stress tolerance genes have the drawback that they result in reduced or abnormal growth (compared to non-transgenic controls) under normal, non-stressed conditions, namely stress tolerance comes at the expense of growth and productivity (Kasuga et al., 1999). This correlation between constitutive expression of stress-responsive genes and reduced growth rates under normal growth conditions indicates the presence of cross talk mechanisms between stress response control and growth control.

Furthermore, the characteristic of the transgenic plants of the present invention to display tolerance to environmental stress conditions can be combined with various approaches to confer to plants other stress tolerance genes, e.g., osmotic protectants such as mannitol, proline; glycine-betaine, water-channeling proteins, etc. Thus, the approach of the present invention to confer tolerance to environmental stress conditions to plants can be combined with prior art approaches which include introduction of various stress tolerance genes. Combination of these approaches may have additive and/or synergistic effects in enhancing tolerance or resistance to environmental stress.

Thus, it is immediately evident to the person skilled in the art that the method of the present invention can be employed to produce transgenic stress tolerant plant with

15

25

30

any further desired trait (see for review TIPTEC Plant Product & Crop Biotechnology 13 (1995), 312-397) comprising:

- (i) herbicide tolerance (DE-A 3701623; Stalker (1988)),
- (ii) insect resistance (Vaek (1987)),
- (iii) virus resistance (Powell (1986), Pappu (1995), Lawson (1996)),
- (iv) ozone resistance (Van Camp (1994)),
- (v) improving the preserving of fruits (Oeller (1991)),
- (vi) improvement of starch composition and/or production (Stark (1992), Visser (1991)),
- 10 (vii) altering lipid composition (Voelker (1992)),
 - (viii) production of (bio)polymers (Poirer (1992)),
 - (ix) alteration of the flower color, e.g., bu manipulating the anthocyanin and flavonoid biosynthetic pathway (Meyer (1987), WO90/12084),
 - (x) resistance to bacteria, insects and fungi (Duering (1996), Strittmatter (1995), Estruch (1997)),
 - (xi) alteration of alkaloid and/or cardia glycoside composition,
 - (xii) inducing maintaining male and/or female sterility (EP-A1 0 412 006; EP-A1 0 223 399; WO93/25695);
 - (xiii) higher longevity of the inflorescences/flowers, and
- 20 (xvi) stress resistance.

Thus, the present invention relates to any plant cell, plant tissue, or plant which due to genetic engineering displays an enhanced tolerance or resistance to environmental stress obtainable in accordance with the method of the present invention and comprising a further nucleic acid molecule conferring a novel phenotype to the plant such as one of those described above.

The present invention also relates to a callus or calli consisting essentially of plant cells as defined here above. Such transgenic calli can be preferably used for the production of secondary metabolites in plant cell suspension cultures.

The present invention also relates to any other harvestable part, organ or tissue or propagation material of the plant as defined here above.

The present invention also relates to the seed of a transgenic plant as defined here above, comprising said recombinant DNA.

The present invention also relates to the use of any isolated polynucleic acid as defined above to produce transgenic plants.

10

15

20

25

30

35

The present invention also relates to the use of a recombinant polynucleic acid as defined above, to produce transgenic plants, preferably transgenic plants having an enhanced tolerance or resistance to environmental stress conditions. Preferably said polynucleic acid encodes a polypeptide as listed in Table 1.

The present invention also relates to the use of an isolated polynucleic acid as defined above, to produce transgenic callus having an enhanced tolerance or resistance to environmental stress conditions. Preferably said polynucleic acid encodes a polypeptide as listed in Table 1.

The present invention also relates to probes and primers derived from the genes of the invention that are useful for instance for the isolation of additional genes having sequences which are similar to but differ from any of SEQ ID NO 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121, but which encode a protein having substantially the same biological activity as a protein having the amino acids sequence of any of SEQ ID NO 2 to 120 (even numbers) by techniques known in the art, such as PCR. The presence of a homologous gene in another plant species can for instance be verified by means of Northern of Southern blotting experiments.

The present invention also relates to the cloning of the genomic counterpart of any of the cDNA sequences as represented in SEQ ID NO 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121. These genomic counterparts can be selected from a genomic library using these cDNA sequences as a probe. The present invention also relates to the coding region as well as the promoter region of any of said genomic clones.

The term "probe" according to the present invention refers to a single-stranded oligonucleotide *sequence* which is designed to specifically hybridize to any of the polynucleic acids of the invention.

The term "primer" refers to a single stranded oligonucleotide sequence capable of acting as a point of initiation for synthesis of a primer extension product which is complementary to the nucleic acid strand to be copied. Preferably the primer is about 5-50 nucleotides long. The term "target region" of a probe or a primer according to the present invention is a sequence within the polynucleic acid(s) to which the probe or the primer is completely complementary or partially complementary (i.e. with some degree

10

15

20

25

30

35

of mismatch). It is to be understood that the complement of said target sequence is also a suitable target sequence in some cases.

"Specific hybridization" of a probe to a target region of the polynucleic acid(s) means that the probe forms a duplex with part of this region or with the entire region under the experimental conditions used, and that under those conditions this probe does substantially not form a duplex with other regions of the polynucleic acids present in the sample to be analysed.

"Specific hybridization" of a primer to a target region of the polynucleic acid(s) means that, during the amplification step, said primer forms a duplex with part of this region or with the entire region under the experimental conditions used, and that under those conditions the primer does not form a duplex with other regions of the polynucleic acids present in the sample to be analysed. It is to be understood that "duplex" as used hereby, means a duplex that will lead to specific amplification.

Preferably, the probes of the invention are about 5 nucleotides to about 1 Kb long, more preferably from about 10 to 25 nucleotides. The nucleotides as used in the present invention may be ribonucleotides, deoxyribonucleotides and modified nucleotides such as inosine or nucleotides containing modified groups which do not essentially alter their hybridization characteristics. The probes according to the present invention preferably include parts of the cDNA sequences of any of the polynucleic acids as defined above.

The present invention also relates to a composition comprising a polynucleic acid sequence as defined above, a polypeptide as defined above, a probe as defined above or a primer as defined above.

The present invention also relates to a pharmaceutical or agrochemical composition comprising said polynucleic acid, a polypeptide of the invention as defined above.

The present invention also relates to antibodies specifically reacting with a protein or polypeptide according to the present invention.

The following Examples describe by way of example the tolerance and/or resistance to several environmental stress conditions observed for transgenic plants and yeast overexpressing some of the polynucleic acids according to the present invention. Unless stated otherwise in the Examples, all recombinant DNA techniques are carried out according to standard protocols as described in Sambrook et al. (1989) and in volumes 1 and 2 of Ausubel et al. (1994). Standard materials and methods for plant molecular work are described in Plant Molecular Biology Labfax (1993) by R.D.D.

Croy, jointly published by BIOS Scientific Publications Ltd. (UK) and Blackwell Scientific Publications, UK.

These examples and figures are not to be construed as limiting to any of the embodiments of the present invention as set out above. All of the references mentioned herein are incorporated by reference.

10

15

20

25

30

35

BRIEF DESCRIPTION OF THE FIGURES AND TABLES

Figure 1. At-DBF2 encodes a functional homolog of the yeast Dbf2 (A) Comparison of the deduced amino acid sequence of At-DBF2 with that of yeast DBF2. Gaps were introduced to optimize the alignment. Roman numerals above the At-DBF2 sequence indicate the protein kinase catalytic subdomains defined by Hanks et al. (1988). (B) Complementation of dbf2. The dbf2 mutant S7-4A [MATa dbf2A::URA3 ura3 leu2 ade5 trp1 his7] (Toyn and Johnston, 1994) (B1) forms swollen pairs of daughter cells (dumbbells) at restrictive temperature (37° C). The defective morphology of the dbf2 mutant can be complemented by transformation with the pYX112 centromeric plasmid (Ingenius, R&D system) containing the At-DBF2 cDNA (B2) or DBF2 (B3); wild type (CG378 strain, MATa ade5 leu2 trp1 ura3) (B4). Log phase cultures were shifted from 28°C to 37°C and photographed after 16 hours. After 16 hours, 98% of the S7-4A cells arrested with a dumbbell morphology (B1) whereas 6,1 and 0% of dumbbells were observed in B1, B3 and B4. Strains were kindly provided by (Dr Lindl, Max Planck Institut fur Zuchtungsforschung, Koln, Germany).

Figure 2. Overexpression of *DBF2* or *At-DBF2* enhances tolerance to osmotic, salt, heat and cold stress. Yeast cells were grown in YPD and cell density was adjusted to OD600 at 2. (1) DY, (2) DY transformed with pYX212 containing *DBF2*, pYX-YDBF2, (3) DY transformed with vector alone or (4) with vector containing *At-DBF2*, pYX-AtDBF2. Serial dilutions were made in step1:10. Ten μ I of each dilution was spotted on solid YPD medium (control) supplemented with 2M sorbitol (osmotic stress) or 1.2 M NaCl (salt stress) or 4μ I H_2O_2 (oxidative stress) and incubated at 28° C or at 42° C (heat stress) or at 4° C (cold stress) for 3 days.

Figure 3. *DBF2* and *At-DBF2* are induced by stress. (a) Northern analysis showing the kinetics of *At-DBF2* induction in plants treated with PEG 6000 20 % and the one of *DBF2* in yeast treated with sorbitol 2M for the time indicated. (b) Northern analysis of *At-DBF2* in 10 day-old-plants grown for 5 hours in control conditions (as described in Verbruggen et al. 1993) (1), at 37° C (2), with PEG 6000 20 % (3), NaCl 1% (4), at 4° C (5) or with 0.4 mM H₂O₂ (6); and of *DBF2* in yeast cells grown for 11/2 hour in YPD (1), at 37° C (2), with sorbitol 2M (3), with NaCl 1.2 M (4), at 4° C (5) or with 0.4 mM H₂O₂ (6). Control of loading has been done with EtBr staining and is shown under each Northern analysis.

10

15

20

25

30

(c) Western analysis of At-DBF2 in Arabidopsis. Samples are similar to those analysed in (b). Antibodies used were raised against yeast Dbf2 and kindly provided by Dr L. Leindl (Max Planck Institut fur Zuchtungsforschung, Koln, Germany).

Figure 4. *DBF2* overexpression can suppress *hog1* osmosensitivity. The *hog1* mutant (4) [W303-1A, *MATa*, *hog1*Δ:: *TRP1*] and wild type (W303) (1) were kindly provided by Dr Thevelein (Katholieke Universiteit Leuven, Belgium). The *hog1* mutant was transformed with pYX-YDBF2 (2) or pYX-AtDBF2 (3). Each of the 4 strains was grown for 16 hours in YPD (rich medium), and cell density was adjusted to OD600 at 2. Serial dilutions, 1:10 were made at five consecutive steps. Ten microliter of each dilution was spotted on solid YPD medium (control) or solid YPD medium supplemented with 0,9 M NaCl and incubated at 28°C for 3 days.

Figure 5. *T-DBF2* (*Nicotiana tabacum* DBF2) is periodically expressed during plant cell cycle. Tobacco *DBF2* expression has been followed in BY2 cells synchronised with aphidicolin (a & b) or with propyzamide (c & d) with *At-DBF2* as probe. The measure of relative rate of DNA synthesis and of the mitotic index, the use of the cell cycle markers *CYCB1.2* and *H4* markers have been previously described (Reicheld et al., 1995). *T-DB*F2 transcript levels were quantified from the blots shown in b and d using a PhosphorImager (Molecular Dynamics).

Figure 6. shows the results of a comparison of the growth of *A. thaliana* plants transformed with the following constructs: P35S-At-DBF2 (upper left and bottom right section), P35S control (upper right section) and P35S-antisense At-DBF2 (bottom left section) upon applying a salt stress of 200 mM NaCl overnight.

Figure 7 shows the results of a comparison of the growth of *A. thaliana* plants transformed with the following constructs: P35S-At-DBF2 (upper left and bottom right section), P35S control (upper right section) and P35S-antisense At-DBF2 (bottom left section) upon applying an osmotic stress induced by 20% PEG overnight.

Figure 8 shows the results of a comparison of the growth of *A. thaliana* plants transformed with the following constructs: P35S-At-DBF2 (upper left and bottom right section), P35S control (upper right section) and P35S-antisense At-DBF2 (bottom left

10

15

20

25

30

35

section) upon applying a cold stress by gradually decreasing the temperature untill - 7°C.

Figure 9 shows the results of a comparison of the growth of *A. thaliana* plants transformed with the following constructs: P35S-At-DBF2 (upper left and bottom right section), P35S control (upper right section) and P35S-antisense At-DBF2 (bottom left section) upon applying a heat stress of 2 hours at 48°C.

Figure 10 shows the results of a comparison of the growth of *A. thaliana* plants transformed with the following constructs: P35S-At-DBF2 (upper left and bottom right section), P35S control (upper right section) and P35S-antisense At-DBF2 (bottom left section). It can be concluded that the P35S-At-DBF2 transformed plants do not show morphological abnormalities compared to the control transgenic plants.

Figure 11 shows the results of a salt stress tolerance test with transgenic *A. thaliana* plants overexpressing HSP 17.6A (A) or c74 (B). The control plants (bottom left in A en B) is a transgenic line transformed with pBIN-35S-CaMVter. The other sections in A are 5 independently obtained transgenic lines overexpressing HSP17.6A. The other sections in B are 5 independently obtained transgenic lines overexpressing c74.

Figure 12 shows the influence of *At-DBF2* expression in sense and antisense orientations on stress tolerance. BY2 cells were transformed by *A. tumefaciens* with recombinant T-DNA vectors containing At-DBF2 driven by CaMV 35S RNA promoter, pBIN-35S-At-DBF2 (upper left and right sections in A or diamonds in B), the CaMV 35S promoter and terminator pBIN-35S-CaMVter (bottom left sections in A or triangles in B), or antisense *At-DBF2* under the control of the CaMV 35S promoter pBIN-35S-ASAt-DBF2 (bottom right sections in A or circles in B). (A) Picture of the same amounts of transgenic cells after 3 weeks of growth on solid medium supplemented with 300 mM NaCl, 25% PEG, 2mM H₂O₂, or at 47°C (heat). (B) Growth of suspension cells in liquid medium. Upon stress, growth was measured as fresh weigth and expressed as a percentage of unstressed growth (control) (a). Stresses were applied after subculturing (= day 0) at indicated temperatures (e) and concentrations of NaCl (b) PEG (c), and H₂O₂ (f). For the cold shock (d), cells were maintained at 0°C for 2 days before the 2-week culture at 22°C. For each construction data of three

independent transgenic lines were pooled. To not overload the figure, SDs are not shown (maximum 15% of measured values). (C) Northern analysis of At-DBF2+TDBF2, kin1, and HSP17.6. Total RNAs were extracted from independent lines transformed with pBIN-35S-At-DBF2 (1) and (2), pBIN-35S-CaMter (3), and pBIN-35S-ASAt-DBF2 (4). Osmotic stress was induced with 10% PEG treatment for 5 hr (stressed).

Figure 13 shows the results of the growth of *A. thaliana* plants transformed with p35S-AtHSP17.6A and P35S control (upper right section) upon applying an osmotic stress induced by 20% PEG overnight. The results of two independent experiments are shown, each performed with 3 independently obtained transgenic lines overexpressing At-HSP17.6A (upper left and bottom left and right).

Figure 14 shows the results of the germination of *A. thaliana* plants transformed with p35S-Atc74 and P35S control (bottom section) on mineral medium supplemented with 125 mM NaCl. The results of two independent experiments are shown, each performed with 2 independently obtained transgenic lines overexpressing Atc74 (2 upper sections).

20

25

30

5

10

15

Table 1. Classification of the *Arabidopsis thaliana* clones isolated in Example 2. Clones isolated according to the description in example 2 have been analyzed on their potential to confer tolerance. According to the method described in example 2, the tolerance of different yeast transformants expressing an Arabidopsis cDNA to osmotic stress and salt stress was compared with the tolerance of DY wild type cells.

+ : similar growth to the DY wild type cells;

++ : growth of the transformant is visible at a 10-fold higher dilution (1:10) than control (1:1);

+ : growth of the transformant is visible at a 100-fold higher dilution

(1:100) than control (1:1);

++++ : growth of the transformant is visible at a 1000-fold higher

dilution (1:1000) than control (1:1).

Table 2. Exemplary plant-expressible promoters for use in the performance of the present invention.

Table 3. Exemplary stress-inducible promoters for use in the performance of the present invention.

10

15

20

25

30

35

EXAMPLES

Example 1. Construction of the cDNA library.

Total RNA has been isolated from green siliques from *Arabidopsis thaliana* by grinding 1 g of siliques in 4 ml extraction buffer (100 mM tris-Hcl, pH 8, 10 mM EDTA, 100 mM LiCl) at 4° C, followed by phenolisation and chloroform: isoamylalcohol (24:1) extraction. To the aqueous phase, LiCl was added up to a final concentration of 2M, and the total RNA was allowed to precipitate overnight at 4°C. After centrifugation, the pellet was redissolved in 400 µl H₂O and reprecipitated with ethanol. Poly(A) messenger RNA was isolated from the total RNA by binding it to an oligo-dT cellulose spun column (Pharmacia), washing the column three times with 10 mM Tris-HCl, pH 7.5, 1 mM EDTA, 0.5 M NaCl and eluting the mRNA with 10 mM Tris-HCl, pH 7.5, 1 mM EDTA at 65° C.

The eluate was precipitated with ethanol, and cDNA was synthesized using MMLV- reverse transcriptase (Pharmacia) and a d(T)₁₄-Xhol primer for the first strand and *E. coli* DNA polymerase I (Pharmacia) for the second strand.

Example 2. Yeast transformation and selection for osmotolerance.

The cDNA was cloned into pYX vectors (Ingenius, R&D systems; 2 μ based pYX 212 for bank 1, ARS/CEN based pYX112 for bank 2) as EcoRI - Xhol fragments, using an Eco RI/Not I adaptor.

In these constructs, the cDNA is under the control of the strong constitutive TPI promoter. The yeast strain DY (MATa, his3, can1-100, ade2, leu2, trp1, ura3::3xSV40AP1-lacZ; kindly provided by N. Jones, Imperial Cancer Research Fund, London, UK) has been transformed with these cDNA libraries, using the Lithium Acetate transformation procedure (Gietz and Schietsl, 1995). After transformation with the Arabidopsis cDNA bank, transformants have been selected for the ability to grow in the presence of 100mM LiCl in a stepwise selection (Lee et al., 1999). LiCl is commonly used for salt tolerance screening in yeast (Haro et al. 1991). Several A. thaliana genes, conferring osmotolerance to the yeast, have been isolated (Table 1). To further analyse the potential of the selected Arabidopsis cDNA's to confer tolerance to environmental stress in yeast, each yeast transformant expressing such selected Arabidopsis cDNA's has been exposed to osmotic stress and salt stress. Each of the transformants was therefore grown for 16 hours in YPD (rich medium), and cell density was adjusted to OD600 at 2. Serial dilutions, 1:10, were made at three consecutive

steps. Ten microliters of each dilution was spotted on solid YPD medium (control) supplemented with 2 M sorbitol (osmotis stress) or 1.2 M NaCl (salt stress) and incubated at 28°C for 3 days. The results of this drop growth test (see also Lee et al., 1999) are shown in Table 1.

5

10

15

20

25

30

35

Example 3. Characterization of At-DBF2.

At-DBF2, a 1.8 kb cDNA (SEQ ID NO 1) has been identified in this screening that encodes a predicted 60.2 kDa protein showing 81 % similarity with the yeast Dbf2 transcriptional regulator. Homology (less than 40% similarity) has also be found with the putative Dbf2 homologues in human, C. elegans and Drosophila (named Ndr for nulear Dbf2 related, Millward et al. 1995). The At-DBF2 deduced protein sequence (SEQ ID NO 2) contains the 11 domains of protein kinases (Figure 1A). Amino acids lying between the invariant residues D and N of domain VI do not match the features of serine/threonine specificity (LKPE) defined by Hanks et al. (1988) but the GSPDYIALE peptide in domain VIII does well indicate serine/threonine specificity and At-DBF2 can complement the yeast dbf2 mutant (Figure 1B).

In mature Arabidopsis plants, *At-DBF2* is expressed in all tested organs. The highest abundance of transcripts has been found in siliques. A Southern analysis in Arabidopsis, tobacco and tomato has revealed that *DBF2* seems to be conserved in plants (see Example 13 below). As *At-DBF2* has been identified in a screening for LiCl tolerance, its effect in other stress situations has been tested in yeast (Figure 2).

Example 4. Overexpression of *Arabidopsis* and *Saccharomyces* cerevisiae DBF2 enhances cold, heat, salt and drought tolerance in yeast.

In order to test whether the effect was specific to the plant gene, the yeast DBF2 gene has been overexpressed in the same vector. Upon a drop growth test (Figure 2 and Lee et al., 1999). A remarkable enhancement of stress tolerance can be seen at 42°C, during osmotic stress (sorbitol), and after salt and cold treatments in yeast. There is no difference between stress tolerance afforded by the plant or the yeast gene. The enhancement of stress tolerance due to the overexpression of At-DBF2 or DBF2 reflects a role for these genes in stress situations. Therefore yeast and Arabidopsis plants have been exposed to sorbitol- and PEG-induced osmotic stress. At-DBF2 as well as DBF2 is induced rapidly (1 to 2 hours) and transiently upon osmotic stress (Figure 3A). The expression of At-DBF2 and DBF2 has been analyzed during other environmental stresses in Arabidopsis plants or in yeast cells after the

15

20

25

30

time corresponding to the highest induction seen in Fig. 3A (Figure 3B). In plant as in yeast, there is a clear induction after heat, salt, osmotic and to a lesser extent after cold, which perfectly correlates with stresses to which the overexpression enhances tolerance. However, many genes are induced upon stress without relevant adaptive role, amongst others because post-transcriptional mechanisms inhibit subsequent translation. Here *At-DBF2* protein amount, as detected by anti-Dbf2 antibodies, clearly increased upon stress (Figure 3C).

Example 5. Both *At-DBF2* and *DBF2* can functionally complement the hog1 mutation.

To investigate a possible interaction between stress signaling pathways and *DBF2*, the salt sensitive hog1 mutant was transformed with *At-BDF2* and *DBF2*. The *HOG1* MAP kinase pathway regulates osmotic induction of transcription in yeast (Schuller *et al.* 1994). The osmosensitivity of the mutant could be recovered by the overexpression of both *DBF2* and *At-DBF2* (Figure 4).

Example 6. At-DBF2 is cell cycle regulated.

DBF2 expression is cell cycle regulated where it plays a role in DNA synthesis initiation but also in nuclear division through its association with the CCR4 complex (Komarnitsky et al. 1998, Johnston et al. 1990). This regulation was investigated in plants. A tobacco BY-2 cell line in which the highest level of culture synchronization, compared with other plant cell lines has been achieved so far (Shaul et al. 1996, Reicheld et al. 1995) was used. Stationary phase cells were diluted into fresh medium and treated with aphidicolin (blocking cells in the beginning of the S phase) for 24 hours, then washed. The percentage of synchronous mitosis after release from the aphidicolin block was about 65 % (Figure 5A-B). A 1.6-Kb tobacco DBF2 homologue (T-DBF2) could be detected on Northern blot with the At-DBF2 as a probe. T-DBF2 steady-state transcript level clearly oscillates during the cell cycle and is mainly present during S, decreases during G2 until late M from where it increases until a peak in S phase. T-DBF2 expression occurs clearly before CYCB1.2 (a marker of G2-M phases), but parallels the one of H4 (a S phase marker) except at the S/G2 transition, where T-DBF2 transcripts decline earlier, and at the M/G1 transition, where T-DBF2 expression increases earlier. The use of the cell cycle markers CYCB1.2 and H4 is described in Reicheld et al.

10

15

20

25

30

To follow unperturbed G1 and S phases, BY2 cell suspension was synchronized using a double blocking procedure (Nagata *et al.*,1992). After the release from the aphidicoline block, cells are treated for 4 hours with propyzamide in the beginning of the preprophase. The percentage of synchronous mitosis after the release from the propyzamide block was higher than 75%. *T-DBF2* was periodically expressed with an undetectable expression until late M, a sharp increase in G1 and a peak in mid S (Figure 5C-D) which confirms results of Figures 5A-B. However a function for the plant *DBF2* in cell cycle can only be assigned with measurement of the kinase activity. In yeast, *DBF2* transcript levels do not correlate with kinase activation which occurs by dephosphorylation (Toyn and Johnson, 1994). The precise function of Dbf2 in regulation of the cell cycle is not known. An essential role has been proposed during anaphase or telophase. No activity has been measured in G1 despite evidence for a role for Dbf2 in initiation of DNA synthesis.

As other proteins recently identified, Dbf2 controls the M/G1 transition which is a major cell cycle transition in yeast (Aerne *et al.* 1998). The existence of a M/G1 control checkpoint has been suggested in plant cells (Hemmerlin and Bach 1998) but its importance compared to G1/S and G2/M has not been investigated.

Overexpression of *DBF2* in yeast results in kinase activity throughout the cell cycle, which may be due to the saturation of a post-translational deactivating mechanism (Toyn and Johnston, 1994). Overexpression of the functionnally conserved *At-DBF2* has most probably the same effect. However, the presence of Dbf2 kinase activity at the wrong time in the cell cycle does apparently not affect its progression. In marked contrast constitutive activity has a marked effect on stress tolerance. The role played by *At-DBF2* or *DBF2* in stress is most probably independent from the cell division cycle. *At-DBF2* expression is present in all plant organs (abundant expression is observed in stems where only 1-2 % cells have a mitotic activity) and can be rapidly induced upon stress. However, a link with the cell cycle is not excluded. Higher stress tolerance in yeast overexpressing *DBF2* or *At-DBF2* may be correlated to the overproduction of the kinase in G1 where yeast cells are particularly sensitive to stress. Most plant cells are also thought to be blocked in G1 but the relationship with stress response is poorly known.

Example 7. Tobacco cell transformation and recombinant T-DNA Vector construction

BY2 cells were stably transformed as described (Shaul et al., 1996) by Agrobacterium tumefaciens C58C1Rif^R (pGV2260) strain (Deblaere et al., 1985) carrying pBIN-35S-At-DBF2 or pBIN-35S-ASAt-DBF2 recombinant binary vectors. PBIN-35S-At-DBF2 is the plant binary vector pBIN m-gfp4 in which the BamHI-Sacl fragment containing the gfp reporter gene was replaced with a BamHI-Sacl fragment containing the At-DBF2 cDNA from pYX-At-DBF2. p-Bin-35S-CaMVter is the plant binary vector pBIN19 in the HindIII-Sacl restriction sites of which the hindIII-Sacl fragment of pDH51 containing the cauliflower mosaic virus (CaMV) 35S RNA promoter and terminator was cloned. pBIN-35S-ASAt-DBF2 is the pBIN-35S-CaMVter vector in which the At-DBF2 cDNA was cloned in the antisense orientation from pYXAt-DBF2 in the BamHI-Smal restriction sites, between the CaMV 35S RNA promoter and terminator. More details are described in Lee et al. (1999).

15

20

25

30

35

10

5

Example 8. Overexpression of At-DBF2 sense and antisense RNA in plant cells

Transgenic plant cells overexpressing At-DBF2 were generated to test the role of this protein in stress tolerance in planta. Tobacco BY2 cells were stably transformed by A. tumefaciens carrying the At-DBF2 cDNA driven by the strong constitutive CaMV 35S RNA promoter. The antisense At-DBF2 RNA also was overexpressed under the control of the same promoter. Control lines were obtained by transforming tobacco BY2 cells with pBIN-35S-CaMVter. Three independently obtained At-DBF2overexpressing tobacco transgenic cell lines have been selected with a high and similar At-DBF2 expression and analysed further. Three tobacco transgenic cell lines overexpressing antisense At-DBF2 were chosen that showed an undetectable tobacco DBF2 transcript level. Both the overexpression of At-DBF2 and the down-regulation of the endogenous gene by the antisense strategy did not result in significant differences in growth after 2 weeks (Fig. 12A and 12B). On the contrary, marked differences in growth were observed after a 2-week treatment with NaCl, PEG-induced drought, cold, or high temperatures. Transgenic lines that overexpressed At-DBF2 were clearly more tolerant than control lines. Inhibition of the endogenous DBF2 expression was correlated with a higher sensitivity to those stresses. To understand the basis of stress

10

15

20

25

30

35

tolerance in *At-DBF2*-overexpressing plant cells, expression of stress-induced genes was followed in control and stress conditions (Fig. 12C). Tobacco kin1 and HSP17.6A homologues already were induced in *At-DBF2*-overexpressing tobacco cells in control conditions to a level similar to that observed during stress conditions (PEG-induced drought), suggesting that *At-DBF2* overexpression may mimic a stress signal.

Example 9. Arabidopsis transformation and recombinant T-DNA vector construction with genes conferring tolerance to environmental stress

Arabidopsis were stably transformed as described in Clarke, Wei and Lindsey (1992) by Agrobacterium tumefaciens C58C1RifR (pGV2260) strains carrying pBIN-35S-At-DBF2, pBIN-35S-At-HSP17.6A, pBIN-35S-At-c74 recombinant binary vectors. pBIN-35S-At-DBF2 is described in Lee et al. 1999. pBIN-35S-At-HSP17.6A recombinant binary vector was constructed as following: the EcoRI-Xhol fragment containing At-HSP17.6A cDNA in pYX-HSP17.6A (recombinant pYX212) was first cloned in pYES2 (Invitrogen) resulting in pYES-HSP17.6A. Than the BamHI-SphI fragment of pYES-HSP17.6A containing the At-HSP17.6A cDNA was cloned in the plant binary vector pBIN m-gfp4 in which the BamHI-SacI fragment containing the gfp receptor gene was deleted and replaced by the At-HSP17.6A cDNA. The 3' protruding ends generated by Sacl and Sphl were blunt ended by T4 DNA polymerase. pBIN-35S-c74 was constructed with a similar strategy as pBIN-35S-AtHSP17.6A with an intermediary pYES-Atc74 vector. The At-c74 cDNA was first amplified with PCR using the primers 5' AAA AAA CAC ATA CAG GAA TTC 3' (SEQ ID NO 122) and 5' AGT TAG CTA GCT GAG CTC GAG 3' (SEQ ID NO 123), then cloned "blunt ended" in the vector pYES2 cut with Notl and BstXI and blunt ended with T4 DNA polymerase. Subsequently, the BamHI-SphI fragment of pYES-c74 was cloned in pBINm-qfp4 as explained supra.

Example 10. Tolerance to environmental stress in plant cells

Transgenic calli were isolated from each of the transgenic Arabidopsis lines transformed with At-DBF2, At-HSP17.6A and At-c74. The growth of these transgenic calli during salt stress was measured and compared with control calli derived from transgenic Arabidopsis lines transformed with pBIN-35S-CaMVter. Callus pieces (25 for each transgenic line) of similar fresh weight (50 to 100 mg) were therefor grown on callus inducing medium (Clarke et al., 1992) supplemented with 200mM NaCl. After two weeks, from visual inspection, it was clear that transgenic calli transformed with

10

15

20

25

30

35

At-DBF2 or At-HSP17.6A or At-c74 looked much better than control transgenic calli transformed with pBIN-35S-CaMVter. The latter calli turned yellow and started dying. To confirm the observation, the fresh weight of the calli was measured. In comparison with the control transgenic calli, the fresh weight of the transgenic calli was for each of the three lines at least five times higher than the fresh weight of the control trangenic calli.

Example 11. Tolerance to environmental stress in plants.

Seeds from transgenic Arabidopsis plants tranformed with pBIN-35S-At-DBF2, p-BIN-35S-At-c74, or pBIN-35S-At-HSP17.6A, were sown in bulk on nylon filters (as described in Verbruggen et al. 1993) placed on solid K1 medium supplemented with kanamycin (75 micrograms/ml). For each recombinant pBIN binary vector at least five independent transgenic lines were tested for stress tolerance. In each of these lines overexpression of the transgene has been confirmed with Northern hybridisation experiments. Control plants were the ones transformed with pBIN-35S-CaMVter and transgenic plants transformed with pBIN-35S-AS+At-DBF2. After sowing, seeds were kept overnight at 4 degrees (to enhance germination). Growth was at 22 degrees, 60 % humidity, 16 hours light/8 hours dark, 70 microeinsteins. After 9 days growth, filters were transferred to liquid K1 medium supplemented with 200 mM NaCl for overnight incubation. Plants were allowed to recover for 5 to 6 days by transferring the filters to solid K1 medium. Under these conditions, the control transgenic plants turned yellow, their growth was inhibited and eventually they died. On the contrary, the transgenic lines transformed with At-DBF2 or At-HSP17.6A or At-c74 survived very well (Figure 6 and Figure 11).

To further evaluate the scope of protection to environmental stress, transgenic plants were exposed to osmotic stress. Therefor seeds from transgenic Arabidopsis plants transformed with pBIN-35S-At-DBF2, pBIN-35S-At-c74 or pBIN-35S-At-HSP17.6A were sown in bulk on nylon filters (as described in Verbruggen et al. 1993) placed on solid K1 medium supplemented with kanamycin (75 micrograms/ml). For each recombinant pBIN binary vector at least five independent transgenic lines were tested for stress tolerance. In each of these lines overexpression of the transgene has been confirmed with Northern hybridisation experiments. Control plants were the ones transformed with pBIN-35S-CaMVter and transgenic plants transformed with pBIN-35S-ASAt-DBF2. After sowing, seeds were kept overnight at 4 degrees (to enhance germination). Growth was at 22 degrees, 60 % humidity, 16 hours light/8 hours dark,

10

15

20

25

30

70 microeinsteins. After 9 days growth, filters were transferred to liquid K1 medium supplemented with 20 % polyethylene glycol for overnight incubation. Plants were allowed to recover for 5 to 6 days by transferring the filters to solid K1 medium. Under these conditions, the control transgenic plants turned yellow, their growth was inhibited and eventually they died. On the contrary, the transgenic lines transformed with At-DBF2, At-HSP17.6A or At-c74 survived very well (see Figure 7 and 13). Their growth was comparable to growth on control medium without polyethylene glycol.

To further analyse the scope of protection to environmental stress, transgenic plants were exposed to high and low temperatures. Therefor seeds from transgenic plants transformed with pBIN-35S-At-DBF2 or pBIN-35S-At-c74 were sown in bulk on nylon filters (as described in Verbruggen et al. 1993) placed on solid K1 medium supplemented with kanamycin (75 micrograms/ml). For each recombinant pBIN binary vector at least five independent transgenic lines were tested for stress tolerance. In each of these lines overexpression of the transgene has been confirmed with Northern hybridisation experiments. Control plants were the ones transformed with pBIN-35S-CaMVter and transgenic plants transformed with pBIN-35S-ASAt-DBF2. After sowing, seeds were kept overnight at 4 degrees (to enhance germination). Growth was at 22 degrees, 60 % humidity, 16 hours light/8 hours dark, 70 microeinsteins. After 9 days growth, for the experiments with high temperature stress, plants were exposed to 48°C for two hours. For the experiments with low temperature stress, plants were exposed to gradually decreasing temperatures, down to -7°C. Plants were allowed to recover for 5 to 6 days by transferring the filters to solid K1 medium.

Under both low temperature and high temperature stress, the growth of control transgenic plants was inhibited and eventually they died. The transgenic lines transformed with At-DBF2 or At-c74 survived very well. Their growth was comparable to growth under control conditions with normal temperature (see Figure 8 and 9).

To further analyse the scope of protection to environmental stress, transgenic plants were exposed to salt stress during germination. Sterilized mature seeds from transgenic plants transformed with pBIN-35S-At-DBF2 or pBIN-35S-At-c74 were placed on top of petri dishes containing MS (Murashige and Skoog) medium with 0,8 % agar and 30 g l⁻¹ sucrose. Control plants were the ones transformed with pBIN-35S-CaMVter. Prior to germination and pH 5.7 adjustment, NaCl was added to a final concentration of 125 mM. Three petri dishes with a mean of 40-50 seeds per dish were used per treatment in every experiment. The complete experiment was repeated

15

25

30

twice. Seed germination at 22°C was followed. Seeds were considered to germinate after radical and green cotyledon emergency occurred.

On control medium (without 125 mM NaCl), germination of all transgenic lines was very similar to each other and to wild type plants. On medium supplemented with 125 mM NaCl, seeds from transgenic lines overexpressing At-DBF2 or At-c74 germinate significantly better than control transgenic lines. Less than 10 % of the seeds from transgenic lines transformed with pBIN-35S-CaMVter germinate under these conditions. In contrast, more than 70 % of the seeds from trangenic lines overexpressing At-DBF2 or At-c74 germinate on medium containing 125 mM NaCl (Figure 14).

Example 12. Southern hybridisation of At-DBF2 genes in other plants

To investigate whether *DBF2* homologues exist in other plant species, a Southern hybridisation analysis was performed using the full length *At-DBF2* as a probe. Genomic DNA was extracted from tobacco, tomato and rice according to Dellaporta et al. (1983) and further purified by phenol :chloroform extractions.

DNA (10 μ g) was digested with restriction enzymes and separated on 1% (w/v) agarose gels using Lambda DNA digested with Hind III as molecular size standards. The DNA was transformed on to nylon membranes (Hybond N; Amersham, little Chalfont, UK) in 0.4 N NaOH. Filters were UV-cross-linked for 30 seconds, prehybridized for 3 hours at 56°C in hybridization solution (2x SSPE, 0.1%(w/v) SDS, 5x Denhardt solution) using 200

gm⁻³ denatured salmon sperm DNA, and hybridized overnight with radiolabelled probes. 1X SSPE was 0.15 M NaCl/ 0.01 M sodium dihydrogen phosphate/ 1 mM EDTA

Filters were washed at 56°C in 2x SSPE, 0.1% (w/v) SDS for 20 min, then 1x SSPE, 0.1% (w/v) SDS for 20 min, and finally in 0.1x SSPE, 0.1% (w/v) SDS for 20 min. Filters were exposed to X-ray film (Kodak X-AR; Kodak, NY, USA) in the presence of intensifying screens for 24 hours.

The results of the hybridisation experiments show that tobacco, tomato and rice have at least one homologue to At-DBF2.

Tabel 1

putative function in	Features of encoded protein	SEQ ID NO.	Growth on medium with1,2 M NaCl	growth on medium with 2,0 M sorbitol
signalling	Similar to a yeast DBF2 cell cycle protein	1	++++	++++
metabolism	HSP17.6A	3	++++	++++
unknown	C74	5	+++	+++
metabolism	Similar to ADH2	7	+	++++
metabolism	Similar to D. melanogaster catalase/catalase 3	9	++++	+
metabolism	Similar to the HSP90 heat shock protein family	11	++++	++++
metabolism	similar to phosphoenolpyruvate carboxylase	13	+	+++
metabolism	pathogen related proteins, class 10	15	+	++++
metabolism	Arabidopsis ascorbate peroxidase	17	++++	++++
metabolism	similar to phosphatase binding protein	19	++++	++++
metabolism	similar to phosphatase binding protein	21	++++	++++
metabolism	similar to retinol dehydrogenase	23	+++	++++
metabolism	similar to retinol dehydrogenase	25	++++	++++
metabolism	ribosomal protein	27	++++	++++
metabolism	ribosomal protein	29	++++	++++
metabolism	similar to a protein transporter (kinase homolog)	31	++++	++++
metabolism	similar to a peptide transporter	33	++++	+
metabolism	similar to a wheat low affinity cation transporter LCT1	35	++++	++++
metabolism	etabolism similar to yeast iso-1-cytochrome c (CYC-1)		++++	++++
metabolism	similar to yeast OSM1	39	++++	++++
metabolism	similar to yeast copper uptake gene (CUP1)	41	++++	+++
metabolism	similar to yeast UV-induced damage repair protein (RAD7)	43	++++	++++
metabolism	electron transporter, apocytochrome b	45	++++	++++
metabolism	similar to membrane lipoprotein LPPL1	47	++++	++++
metabolism	similar to tobacco auxin binding protein	49	+	++++
metabolism	similar to tobacco cytokinin binding protein CBP 57		+++	++++
signalling	similar to calcium binding protein yeast calcineurin B	53	+++	++++

signalling	similar to calcium binding protein glycine max calnexin	calnexin		
signalling	similar to calcium binding protein Dictyostelium discoideum calreticulin	57	++++	++++
signalling	similar to calcium binding protein calmodulin 1	59	++++	+
signalling	similar to calcium binding protein calmodulin 2	61	+	++++
signalling	MAP kinase kinase, homologous to Dyctyostelium mekA (DdMek1)	63	++++	+++
signalling	similar to human adenosine kinase	65	+	++++
signalling	similar to human tyrosine kinase	67	++++	++++
signalling	similar to common ice plant tyrosine kinase	69	++++	++++
signalling	similar to the yeast protein kinase C receptor	71	++++	++++
signalling	similar to tobacco and Arabidopsis HAT7 homeotic protein	73	++	++++
signalling	similar to E. coli sigma factor regulator (RSEB)	75	+	++++
signalling	similar to human protein phosphatase 2C	n protein phosphatase 77 ++++		++++
metabolism	late embryogenesis abundant proteins, Arabidopsis LEA protein 10 & 14	late embryogenesis abundant proteins, 79 - Arabidopsis LEA protein 10 & 14		++++
metabolism	late embryogenesis abundant proteins, Arabidopsis LEA protein 10 & 14		++	++++
metabolism	pathogen related proteins, class 10	83	++++	++++
metabolism	cell wall peroxidase	85	++++	+++
metabolism	ribosomal protein	87	+++	++++
metabolism	salt stress induced protein, SAS 1	89	++++	++++
metabolism	PR gene (AIG2)	91	++++	++++
metabolism	MT1c	93	++++	++++
metabolism	IPP2 (Isopentenyl diphosphate)	95	+++	++++
metabolism	chlorophyll a/b binding protein	97	+++	+++
metabolism	glutathione transferase	99	++	++++
signalling	cold- and ABA inducible, calcium dependent – kinase, Kin1	101	++++	++++
signalling	MAP kinase, Atmpk1	103	++	++++
signalling	Arabidopsis cell cycle protein histone H2A	105	++++	++++
unknown	chromosome 4 – sequence	107	+++	++++
unknown	chromosome 4 - sequence	109	+	++++
unknown	chromosome 5 - sequence	111	++++	+++
unknown	chromosome 5 – sequence	113	++++	++
unknown	chromosome 5 – sequence	115	++++	++++
unknown	chromosome 5 – sequence	117	+	++++
unknown	chromosome 5 - sequence	119	+	++++
	Januario Caracteria	113	1T	T T T T

signalling	similar to calcium binding protein	121	++++	++++
	centrin (caltractin)			

TABLE 2
EXEMPLARY PLANT-EXPRESSIBLE PROMOTERS FOR USE IN THE PERFORMANCE OF
THE PRESENT INVENTION

GENE SOURCE	EXPRESSION PATTERN	REFERENCE
α-amylase (<i>Amy32b</i>)	Aleurone	Lanahan <i>et al</i> (1992); Skriver <i>et al.</i> (1991)
cathepsin β-like gene	Aleurone	Cejudo <i>et al.</i> (1992)
Agrobacterium rhizogenes rolB	Cambium	Nilsson et al. (1997)
PRP genes	cell wall	http://salus.medium.edu/mmg/tierney/html
barley Itr1 promoter	Endosperm	
synthetic promoter	Endosperm	Vicente-Carbajosa et al.(1998)
AtPRP4	Flowers	http://salus.medium.edu/ mmg/tierney/html
chalene synthase (chsA)	Flowers	van der Meer <i>et al.</i> (1990)
apetala-3	Flowers	
Chitinase	fruit (berries, grapes, etc)	Thomas et al. CSIRO Plant Industry, Urrbrae, South Australia, Australia; http://winetitles.com.au /gwrdc/csh95-1.html
rbcs-3A	green tissue (eg leaf)	Lam <i>et al.</i> (1990); Tucker <i>et al.</i> (1992)
leaf-specific genes	Leaf	Baszczynski et al. (1988)
AtPRP4	Leaf	http://salus.medium.edu/mmg/tierney/html
Pinus cab-6	Leaf	Yamamoto et al. (1994)
SAM22	Senescent leaf	Crowell <i>et al.</i> (1992)
R. japonicum nif gene	Nodule	United States Patent No. 4, 803, 165
B. japonicum nifH gene	Nodule	United States Patent No. 5, 008, 194

	
Nodule	Yang et al. (1993)
Nodule	Pathirana <i>et al.</i> (1992)
Nodule	Gordon et al. (1993)
Phloem	Bhattacharyya-Pakrasi et al. (1992)
plasma membrane	Grimes <i>et al.</i> (1992)
pollen; microspore	Albani et al. (1990); Albani et al. (1991)
Pollen	Hamilton <i>et al.</i> (1992)
Pollen	Baltz et al. (1992)
pollen;anther; tapetum	Arnoldo et al. (1992)
Roots	Tingey et al. (1987); An et al. (1988);
root tip	Van der Zaal et al. (1991)
Root	Oppenheimer et al. (1988)
Root	Conkling et al. (1990)
Root	United States Patent No. 5, 401, 836
Roots	Suzuki <i>et al.</i> (1993)
roots; root hairs	http://salus.medium.edu/mmg/tierney/html
root cortex	http://www2.cnsu.edu/ncsu/research
root vasculature	http://www2.cnsu.edu/ncsu/research
leaves; flowers; lateral root primordia	http://salus.medium.edu/mmg/tierney/html
Seed	Simon <i>et al.</i> (1985); Scofield <i>et al.</i> (1987); Baszczynski <i>et al.</i> (1990)
seed	Pearson et al. (1992)
Seed	Ellis <i>et al.</i> (1988)
Seed	Takaiwa et al. (1986);Takaiwa et al.
	Nodule Nodule Phloem plasma membrane pollen; microspore Pollen Pollen Pollen Roots root tip Root Root Root Roots roots; root hairs root cortex root vasculature leaves; flowers; lateral root primordia Seed Seed

		(1987)	
Zein	Seed	Matzke <i>et al.</i> (1990)	
NapA	Seed	Stalberg et al. (1996)	
Sunflower oleosin	seed(embryo and dry seed)	Cummins <i>et al.</i> (1992)	
LEAFY	shoot meristem	Weigel <i>et al.</i> (1992)	
Arabidopsis thaliana knat1	shoot meristem	Accession number AJ131822	
Malus domestica kn1	shoot meristem	Accession number Z71981	
CLAVATA1	shoot meristem	Accession number AF049870	
Stigma-specific genes	Stigma	Nasrallah <i>et al.</i> (1988); Trick <i>et al.</i> (1990)	
Class I patatin gene	Tuber	Liu et al. (1991)	
Blz2	Endosperm	EP99106056.7	
PCNA rice	Meristem	Kosugi <i>et al</i> (1991); Kosugi and Ohashi (1997)	

Table 3. Stress inducible promoters

Name	Stress	Reference
P5CS (delta(1)-pyrroline-5-carboxylate syntase)	salt, water	Zhang et al; Plant Science. Oct 28 1997; 129(1): 81-89
cor15a	Cold	Hajela et al., Plant Physiol. 93: 1246-1252 (1990)
cor15b	Cold	Wlihelm et al., Plant Mol Biol. 1993 Dec; 23(5):1073-7
cor15a (-305 to +78 nt)	cold, drought	Baker et al., Plant Mol Biol. 1994 Mar; 24(5): 701-13
rd29	salt, drought, cold	Kasuga et al., Nature Biotechnology, vol 18, 287- 291, 1999
heat shock proteins, including artificial promoters containing the heat shock element (HSE)	Heat	Barros et al., Plant Mol Biol, 19(4): 665-75, 1992. Marrs et al., Dev Genet.,14(1): 27- 41, 1993. Schoffl et al., Mol Gen Gent, 217(2-3): 246-53, 1989.
smHSP (small heat shock proteins)	heat	Waters et al, J Experimental Botany, vol 47, 296, 325- 338, 1996
wcs120	Cold	Ouellet et al., FEBS Lett. 423, 324-328 (1998)
ci7	Cold	Kirch et al., Plant Mol Biol, 33(5): 897-909, 1997 Mar
Adh	cold, drought, hypoxia	Dolferus et al., Plant Physiol, 105(4): 1075-87, 1994 Aug
pwsi18	water: salt and drought	Joshee et al., Plant Cell Physiol, 39(1): 64-72, 1998, Jan
ci21A	Cold	Schneider et al., Plant Physiol, 113(2): 335-45, 1997
Trg-31	Drought	Chaudhary et al., Plant Mol Biol, 30(6): 1247-57, 1996
Osmotin	Osmotic	Raghothama et al., Plant Mol Biol, 23(6): 1117-28, 1993

-

REFERENCES

Adams et al. (1983), J. Am. Chem. Soc. 105:661

Aerne et al. (1998). Molecular Biology of the Cell,vol 9, 945-956.

Bray et al. (1997), Plant responses to water deficit. Trends Plant Sci 2, 48-54

5 Carruthers et al. (1982), Cold Spring Harbor Symp. Quant. Biol. 47:411-418 Capecchi (1989), Science 244:1288-1292

Deblaere et al. (1985), Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants, Nucl. Acids Res. 13, 4777-4788.

De Greve et al. (1982), J. Mol. Appl. Genet. 1(6):499-511

Dellaporta et al. (1983), A plant DNA minipreparation, version II. Plant Mol. Biol. Rep. 1, 19-22

Evans et al. (1983), Protoplasts Isolation and Culture, Handbook of Plant Cell Culture, pp. 124-176

Fowden et al. (1993), Plant Adaptation to Environmental Stress; ISBN: 0412490005

15 Fraley et al. (1983), Proc. Natl. Acad. Sci USA 80:4803

Fromm et al. (1985), Proc. Natl. Acad. Sci. USA 82:5824

Gietz and Schietsl, (1995) Methods in Molecular and Cellular Biology, 5, 255-269.

Grillo et al (1996), Physical Stresses in Plants: Genes and Their Products for Tolerance. Springer Verlag; ISBN: 3540613471

20 Hanks et al. (1988). Science, 241, 42-52.

Hansen et al. (1999), Trends in plant science reviews, Vol 4, No 6, 226-231

Haring et al. (1991), Plant Mol. Biol. 16:449-469

Haro et al. (1991). FEBS Lett, 291, 189-191.

Haseloff et al. (1988), Nature 334;585-591

25 Hemmerlin and Bach (1998). Plant Journal 14 (1) 65-74 Johnston et al. (1990). Mol and Cell Biol 10, no 4,1358-1366

Herrera - Estrella (1983), Nature 303:209-213

Holmberg & Bülow (1998), Improving stress tolerance in plants by gene transfer. Trends Plant Sci. 3, 61-66

30 Horsch et al., 1984), Science 233:496-498

Hull and Howell (1987), Virology 86:482-493

Ingram et al. (1996), The molecular basis of dehydration tolerance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47, 377-403

Innis et al. (1990), A guide to methods and applications, Academic Press, San Diego

Jones et al (1989), Plants Under Stress: Biochemistry, Physiology and Ecology and Their Application to Plant Improvement (Society for Experimental Biology Seminar Serie), Cambridge Univ. Pr. (Short); ISBN: 0521344239
Johnston et al. (1995)

Kasuga et al. (1999), Nature Biotechnology 17, 287-291
 Klee et al. (1987), Ann. Rev. of Plant Phys. 38:467-486
 Klein et al. (1987), Nature 327:70-73
 Komamitsky et al. (1998). Mol and Cell Biol. 1 8, no.4, 2100-2107
 Lee et al (1999). Proc. Nat. Acad. Sci. USA 1996, 5873-5877

10 Meyer et al. (1987), Nature 330:677

Millward et al. (1995). Proc. Nat. Acad. Sci. USA, 92, 5022-5026.

Nagata et al. (1992). Int. Rev. Cytol., 132, 1-30

Napoli et al. (1990), The Plant Cell 2:279-289

Needleman and Wunsch (1970), Mol. Biol. 48:443

Nilsen et al (1996), The Physiology of Plants Under Stress; Abiotic Factors. ISBN: 047131526

Odell et al. (1985), Nature 313:482-493

Paszkowski et al. (1984), EMBO j. 3:2717-2722

Pearson and Lipman (1988), Proc. Natl. Acad. Sci. (USA) 85:2444

Peassarakli et al, Handbook of Plant and Crop Stress. ISBN: 0824789873

Raton (1985), Binding, Regeneration of Plants, Plant Protoplasts, pp. 21-73, CRC

Press

Reicheld et al. (1995). Plant Journal 7 (2) 245-252

Sambrook (1989), Molecular cloning, a laboratory manual, Cold Spring Harbor Press, 7.52.

Shaul et al. (1996). PNAS 93,4868-4872

Shinozaki et al. (1996), Molecular responses to drought and cold stress, Curr. Opin. Biotechnol. 7, 161-167

Shinozaki et al. (1997), Gene expression and signal transduction in water-stress response. Plant Physiol. 115, 327-334

Shinozaki et al. (1999), Drought, Salt, Cold and Heat Stress: Molecular Responses in Higher Plants (Biotechnology Intelligence Unit); ISBN: 1570595631

Schuller et al. (1994). Embo Journal, 13, 4382-4389.

Smith and Waterman (1981), Adv. Appl. Math. 2:482

25

Tomashow (1994), Arabidopsis (eds Meyrowitz, E & Somerville, C, 807-834 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1994)

Toyn and Johnston, (1994). Embo Journal, 13, 1103-1113.

Verbruggen et al. (1993). Plant Phys. 103, 771-781

5 Walbot (1992), Ann. Rev. Plant Mol. Biol. 43:49-82

Weising et al; (1988), Ann; Rev. Genet. 22:421-477

Stalker, Science 242 (1988), 419

Vaek, Plant Cell 5 (1987), 159-169

Powell, Science 232 (1986), 738-743

Pappu, World Journal of Microbiology & Biotechnology 11 (1995), 426-437

Lawson, Phytopathology 86 (1996) 56 suppl.

Van Camp, Biotech. 12 (1994), 165-168

Oeller, Science 254 (1991), 437-439

Stark, Science 242 (1992), 419

15 Visser, Mol. Gen. Genet. 225 (1991), 289-296

Voelker, Science 257 (1992), 72-74

Poirer, Science 256 (1992), 520-523

Meyer, Nature 330 (1987), 667-678

Duering, Molecular Breeding 2 (1996), 297-305

20 Strittmatter, Bio/Technology 13 (1995), 1085-1089

Estruch, Nature Biotechnology 15 (1997), 137-141

An, et al., Plant Physiol. 88: 547, 1998.

Albani, et al., Plant Mol. Biol. 15: 605, 1990.

Albani, et al., Plant Mol. Biol. 16: 501, 1991.

25 Arnoldo, et al., J. Cell. Biochem., Abstract No. Y101, 204, 1992.

Baltz, et al., The Plant J. 2: 713-721, 1992.

Baszczynski, et al., Nucl. Acid Res. 16: 4732, 1988.

Baszczynski, et al., Plant Mol. Biol. 14: 633, 1990.

Bhattacharyya-Pakrasi, et al, The Plant J. 4:71-79, 1992.

30 Cejudo, F.J., et al. Plant Molecular Biology 20:849-856, 1992.

Conkling, et al., Plant Physiol. 93: 1203, 1990.

Crowell, et al., Plant Mol. Biol. 18: 459-466, 1992.

Cummins, et al., Plant Mol. Biol. 19: 873-876, 1992

Ellis, et al., Plant Mol. Biol. 10: 203-214, 1988.

35 Gordon, et al., J. Exp. Bot. 44: 1453-1465, 1993.

Grimes, et al., The Plant Cell 4:1561-1574, 1992.

Hamilton, et al., Plant Mol. Biol. 18: 211-218, 1992.

Kosugi *et al*, Upstream sequences of rice proliferating cell nuclear antigen (PCNA) gene mediate expression of PCNA-GUS chimeric gene in meristems of transgenic tobacco plants, *Nucleic Acids Research* 19:1571-1576, 1991.

Kosugi S. and Ohashi Y, PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene, *Plant Cell 9*:1607-1619, 1997.

Lam, E. et al., The Plant Cell 2: 857-866, 1990.

Lanahan, M.B., e t al., Plant Cell 4:203-211, 1992.

10 Liu et al., Plant Mol. Biol. 153:386-395, 1991.

Matzke et al Plant Mol Biol, 14(3):323-32 1990

Nasrallah, et al., Proc. Natl. Acad. Sci. USA 85: 5551, 1988.

Nilsson et al., Physiol. Plant. 100:456-462, 1997

Oppenheimer, et al., Gene 63: 87, 1988.

15 Pathirana, et al., Plant Mol. Biol. 20: 437-450, 1992.

Pearson, et al., Plant Mol. Biol. 18: 235-245, 1992.

Scofield, et al., J. Biol. Chem. 262: 12202, 1987.

Simon, et al., Plant Mol. Biol. 5: 191, 1985.

Stalberg, et al, Planta 199: 515-519, 1996.

20 Suzuki et al., Plant Mol. Biol. 21: 109-119, 1993.

Skriver, K., et al. Proc. Natl. Acad. Sci. (USA) 88: 7266-7270, 1991.

Takaiwa, et al., Mol. Gen. Genet. 208: 15-22, 1986.

Takaiwa, et al., FEBS Letts. 221: 43-47, 1987.

Tingey, et al., EMBO J. 6: 1, 1987.

25 Trick, et al., Plant Mol. Biol. 15: 203, 1990.

Tucker et al., Plant Physiol. 113: 1303-1308, 1992.

Van der Meer, et al., Plant Mol. Biol. 15, 95-109, 1990.

Van der Zaal, et al., Plant Mol. Biol. 16, 983, 1991.

Vicente-Carbajosa et al., Plant J. 13: 629-640, 1998.

30 Weigel et al., Cell 69:843-859, 1992.

Yamamoto et al., Plant Cell Physiol. 35:773-778, 1994.

Yang, et al., The Plant J. 3: 573-585.

Clarke et al. (1992), Plant Molecular Biology Reporter Volume 10(2), 178-189

Ausubel et al. (1994),

35 Zhu et al. (1997),

Zhang et al; Plant Science. Oct 28 1997; 129(1): 81-89

Hajela et al., Plant Physiol. 93: 1246-1252 (1990)

Wlihelm et al., Plant Mol Biol. 1993 Dec; 23(5):1073-7

Baker et al., Plant Mol Biol. 1994 Mar; 24(5): 701-13

Kasuga et al., Nature Biotechnology, vol 18, 287-291, 1999

Barros et al., Plant Mol Biol, 19(4): 665-75, 1992.

Marrs et al., Dev Genet.,14(1): 27-41, 1993.

Schoffl et al., Mol Gen Gent, 217(2-3): 246-53, 1989.

Waters et al, J Experimental Botany, vol 47, 296, 325-338, 1996

Ouellet et al., FEBS Lett. 423, 324-328 (1998)

Kirch et al., Plant Mol Biol, 33(5): 897-909, 1997

Dolferus et al., Plant Physiol, 105(4): 1075-87, 1994

Joshee et al., Plant Cell Physiol, 39(1): 64-72, 1998

Schneider et al., Plant Physiol, 113(2): 335-45, 1997

Chaudhary et al., Plant Mol Biol, 30(6): 1247-57, 1996

Raghothama et al., Plant Mol Biol, 23(6): 1117-28, 1993

Valvekens et al. (1988)

Porta et al. (1996), Mol Biol, 5(3):209-21

<u>Claims</u>

- 1. A method for obtaining polynucleic acids comprising coding sequences and/or genes involved in environmental stress in plants, comprising the preparation of a cDNA library comprising coding sequences from siliques, introducing said coding sequences in yeast cells in a functional format and screening for polynucleic acids leading to an enhanced tolerance or resistance to environmental stress conditions in said transformed yeast cells.
- 10 2. An isolated polynucleic acid obtainable by a method according to claim 1.
 - 3. The isolated polynucleic acid of claim 2 which encodes a polypeptide as listed in Table 1.
- 15 4. The isolated polynucleic acid of claim 3, which is chosen from:
 - (a) any of SEQ ID NO 1, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or 121, or the complementary strands thereof;

20

5

- (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b); or,

- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).
- 5. The isolated polynucleic acid of any of claim 2 to 4, which encodes a plant homolog of yeast DBF2 kinase.
 - 6. The isolated polynucleic acid of claim 5, which is chosen from:
 - (a) SEQ ID NO 1, or the complementary strands thereof:
- (b) polynucleic acid sequences which hybridize to sequences defined in (a) orfragments thereof;

- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b); or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).

7. Use of an isolated polynucleic acid of claims 2 to 3 which encodes an HSP 17.6A protein for the production of transgenic plants having an enhanced tolerance or

8. Use of an isolated polynucleic acid of claim 7 for expression of the protein encoded thereby in a plant cell, with said polynucleic acid being chosen from:

resistance to environmental stress conditions.

- (a) SEQ ID NO 3, or the complementary strand thereof;
- (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
- (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b); or,
- (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).
- 9. Use of an isolated polynucleic acid as defined above which is chosen from:
 - (a) any of SEQ ID NO 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, or 119, or the complementary strand thereof;
 - (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof;
 - (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b) or,
 - (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c),

for the production of transgenic plants having an enhanced tolerance or resistance to environmental stress conditions.

15

20

25

10

15

20

- 10. The isolated polynucleic acid of any of claims 2 to 4, which encodes a c74 protein which is chosen from:
 - (a) SEQ ID NO 5, or the complementary strand thereof;
 - (b) polynucleic acid sequences which hybridize to sequences defined in (a) or fragments thereof:
 - (c) polynucleic acid sequences which are degenerated as a result of the genetic code to the polynucleic acid sequences defined in (a) or (b); or,
 - (d) polynucleic acid sequences encoding a fragment of a protein encoded by a polynucleic acid of any one of (a) to (c).
- 11. An isolated polypeptide encoded by a polynucleic acid according to or as defined in any of claims 2 to 10, or a functional fragment thereof.
 - 12. The isolated polypeptide of claim 11 having at least part of the sequence of any of SEQ ID NO 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, or 120.
 - 13. A method for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising transiently introducing into a plant cell a recombinant DNA comprising a polynucleic acid of or as defined in any of claims 2 to 10 which is expressed in an amount effective to confer enhanced tolerance or resistance to environmental stress.
- 14. A method for producing a plant with enhanced tolerance or resistance to
 environmental stress, said method comprising stably introducing into a plant cell a
 recombinant DNA comprising a polynucleic acid of or as defined in any of claims 2
 to 10 which is expressed in an amount effective to confer enhanced tolerance or
 resistance to environmental stress.

15. The method of claims 13 or 14 for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid of claims 5 or 6 encoding a plant DBF2 kinase.

5

16. The method of claim 16 for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid of claims 7 or 8 encoding an HSP 17.6A protein.

17. The method of claim 13 to 14 for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into said plant a polynucleic acid of claim 10 encoding a c74 protein.

18. The method of any of claims 13 to 17, comprising introducing into the genome of a plant cell one or more recombinant DNA molecules, said recombinant DNA molecules comprising:

 a polynucleic acid according to or as defined in any of claims 2 to 10, and,

a plant expressible promoter, whereby said polynucleic acid is in the same transcriptional unit and under the control of said plant-expressible promoter.

20

25

15

19. A method for producing a plant with enhanced tolerance or resistance to environmental stress, comprising introducing into the genome of a plant cell one or more recombinant DNA molecules, said recombinant DNA molecules comprising:

30

a DNA encoding a protein which when expressed in said plant cell at an effective amount indirectly increases or induces the expression of an endogenous polynucleic acid according to or as defined in any of claims 2 to 10 or indirectly increases or induces the activity of a polypeptide of claims 11 or 12, and,

- a plant expressible promoter, whereby said DNA is in the same transcriptional unit and under the control of said plant-expressible promoter.
- 20. A method of claim 19 wherein said DNA encodes a sense or antisense RNA molecule or a ribozyme capable of increasing or inducing the expression of said endogenous polynucleic acid sequence according to or as defined in any of claims 2 to 10.
- 21. A recombinant polynucleic acid comprising: a polynucleic acid according to or as defined in any of claims 2 to 10, and, a plant expressible promoter, whereby said polynucleic acid is in the same transcriptional unit and under the control of said plant-expressible promoter.
- 15 22. A recombinant polynucleic acid comprising:
 - (a) a DNA encoding a protein which when expressed in said plant cell at an effective amount increases or induces the expression of an endogenous polynucleic acid according to or as defined in any of claims 2 to 10 or increases or induces the activity of a polypeptide of claims 11 or 12, and,
- 20 (b) a plant expressible promoter, whereby said DNA is in the same transcriptional unit and under the control of said plant-expressible promoter.
 - 23. The recombinant polynucleic acid of claim 22, wherein said DNA encodes an antisense RNA, a ribozyme or a sense RNA which when expressed in a cell of a plant increases or induces the expression of an endogenous polynucleic acid according to or as defined in any of claims 2 to 10 or which induces or increases the activity of a protein of claim 11 or 12.
- 24. The recombinant polynucleic acid of claim 21 comprising at least part of the nucleotide sequence of any of SEQ ID NO 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 90, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, or 121, or part thereof.

15

20

- 25. The recombinant polynucleic acid of claim 21 to 24 comprising at least part of the coding sequence of a gene encoding a protein as listed in Table 1.
- 26. The recombinant polynucleic acid of any of claims 21 to 25 wherein said plantexpressible promoter is a constitutive promoter.
- 27. The recombinant polynucleic acid of any of claims 21 to 25 wherein said plantexpressible promoter is a stress-inducible or organ- or tissue-specific promoter.
- 28. The recombinant polynucleic acid of any of claims 21 to 26 wherein said plantexpressible promoter is the 35S promoter of CaMV.
 - 29. A recombinant host cell transformed with at least one isolated polynucleic acid of or as defined in any of claims 2 to 10.
 - 30. A plant cell transformed with a recombinant polynucleic acid of any one of claims 21 to 28.
 - 31. A plant consisting essentially of plant cells of claim 30.
 - 32. A callus consisting essentially of plant cells of claim 30.
 - 33. A harvestable part, organ, tissue or propagation material of a plant of claim 31, comprising said recombinant DNA.
 - 34. The use of a recombinant polynucleic acid of claim 21 to 28 to produce transgenic plants.
- 35. A probe which is part of the polynucleic acid sequence of or as defined in any of claims 2 to 10 and which hybridizes specifically with said polynucleic acid or the complement thereof.
- 36. A primer which is part of the polynucleic acid sequence of or as defined in any of claims 2 to 10 and which specifically amplifies said polynucleic acid or the complement thereof.

37. A composition comprising a polynucleic acid sequence of or as defined in any of claims 2 to 10, a polypeptide of claim 11 or 12, a probe of claim 35 or a primer of claim 36.

89 100	189	287	356	456		
F2MAGNMSCLSTDGHGTPGGSGHFPNQNLTKRRTRPAGINDSPSPVKCFFFPYEDTSNTSLKEVSQPTKYSSNSPPVSPA1FYERATSUCT 	* * * * * * * * * * * * * * * * * * *	# * * * * * * * * * * * * * * * * * * *	VIII VIII * * * * * * * * * * * * * * * * * *	* LGCMLFESLVGYTPFSGSSTNETYAISRSWKGTLNRARHEDGRAAFYNRTWDLITRHRADLSTRTRSFEHEVKMSYFADILFKALRSIIPPFTPQLDSET	2 DAGYFDDFWNEADIAKYADVFNSQCCRTALVDDSAVSSKLVGFTFRHRNGKQGSSGMLFNGLEHSDPFSTFY 528 	
At-DBF2 DBF2	At-DBF2 DBF2	At-DBF2 DBF2	At-DBF2 DBF2	At-DBF2 DBF2	At-08F2 08F2	
	FIGURE 1 A					

FIGURE 1B

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

b

6/15

FIGURE 6

7/15

FIGURE 7

8/15

FIGURE 8

FIGURE 9

10/15

FIGURE 10

FIGURE 12A

FIGURE 12c

FIGURE 13

FIGURE 14

SEQUENCE LISTING

```
<110> VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECHNOLOGIE
 <120> Genes involved in tolerance to environmental stress
 <130> VIB-14-NV/OSMO
 <140>
 <141>
 <150> 98202634.6
 <151> 1998-08-04
 <160> 126
 <170> PatentIn Ver. 2.1
 <210> 1
 <211> 1909
 <212> DNA
 <213> Arabidopsis thaliana
<220>
<221> CDS
<222> (40)..(1626)
cggtagcctg actgctggat tggcctgctg ctgacaatt atg gcg ggt aac atg
                                                                   54
                                            Met Ala Gly Asn Met
tcg tgt tta agc acg gac gga cac ggg acc cct ggc ggt tca ggg cat
Ser Cys Leu Ser Thr Asp Gly His Gly Thr Pro Gly Gly Ser Gly His
                 10
ttc ccc aat cag aac cta acg aaa aga acg cgt cca gcg ggt atc
Phe Pro Asn Gln Asn Leu Thr Lys Arg Arg Thr Arg Pro Ala Gly Ile
                                                                   150
aac gac tcg cct tcg ccg gtg aaa tgc ttt ttt ttc ccc tat gaa gac
                                                                   198
Asn Asp Ser Pro Ser Pro Val Lys Cys Phe Phe Pro Tyr Glu Asp
                             45
acc tcc aac acg tca tta aag gaa gtg tcc cag ccc acg aaa tac agt
Thr Ser Asn Thr Ser Leu Lys Glu Val Ser Gln Pro Thr Lys Tyr Ser
tcc aat tcc cct cca gtc agc ccg gca att ttt tat gag agg gcg acg
Ser Asn Ser Pro Pro Val Ser Pro Ala Ile Phe Tyr Glu Arg Ala Thr
tcg tgg tgc acg caa agg gtg gtg agt ggg agg gca atg tac ttt cta
Ser Trp Cys Thr Gln Arg Val Val Ser Gly Arg Ala Met Tyr Phe Leu
gaa tat tat tgc gat atg ttc gat tat gta att agc agg aga caa cgc
```

Glu	Tyr	Tyr	Cys 105	Asp	Met	Phe	Asp	Tyr 110	Val	Ile	Ser	Arg	Arg 115	Gln	Arg	
acg Thr	aaa Lys	cag Gln 120	gtc Val	cta Leu	gag Glu	tat Tyr	ctg Leu 125	cag Gln	cag Gln	caa Gln	agc Ser	caa Gln 130	ctt Leu	ccg Pro	aat Asn	438
tct Ser	gac Asp 135	cag Gln	atc Ile	aag Lys	ctc Leu	aac Asn 140	gaa Glu	gag Glu	tgg Trp	tcc Ser	tcc Ser 145	tat Tyr	tta Leu	cag Gln	aga Arg	486
gag Glu 150	cat His	cag Gln	gtt Val	ttg Leu	tcg Ser 155	aaa Lys	aga Arg	agg Arg	ttg Leu	aag Lys 160	cca Pro	aaa Lys	aac Asn	aga Arg	gac Asp 165	534
ttt Phe	gaa Glu	atg Met	att Ile	aca Thr 170	caa Gln	gta Val	ggt Gly	caa Gln	ggt Gly 175	ggt Gly	tat Tyr	ggg Gly	cat His	gtt Val 180	tat Tyr	582
tta Leu	gcc Ala	aga Arg	aag Lys 185	aaa Lys	gac Asp	aca Thr	aaa Lys	gag Glu 190	gtg Val	tgc Cys	gcc Ala	tta Leu	aaa Lys 195	att Ile	ttg Leu	630
aat Asn	aag Lys	aag Lys 200	cta Leu	ggt Gly	ttc Phe	aaa Lys	ctt Leu 205	aat Asn	ggt Gly	aca Thr	tgc Cys	cat His 210	gtt Val	ttg Leu	acc Thr	678
gag Glu	agg Arg 215	cag Gln	agt Ser	ctg Leu	act Thr	aca Thr 220	acg Thr	aga Arg	tcc Ser	gag Glu	acg Thr 225	atg Met	gtg Val	aag Lys	ctc Leu	726
cta Leu 230	agt Ser	GJÀ āāā	acg Thr	acc Thr	ccc Pro 235	gta Val	ggc Gly	agt Ser	agg Arg	ggg Gly 240	atg Met	gcg Ala	ata Ile	gaa Glu	agt Ser 245	774
gag Glu	cta Leu	ggc Gly	ggt Gly	gac Asp 250	ttc Phe	cgt Arg	aca Thr	gaa Glu	agt Ser 255	ata Ile	gga Gly	cgt Arg	aga Arg	tgc Cys 260	ttg Leu	822
aaa Lys	agt Ser	ggc	cat His 265	gcg Ala	aga Arg	ttc Phe	tat Tyr	att Ile 270	agc Ser	gaa Glu	atg Met	ttc Phe	tgt Cys 275	gcc Ala	gtc Val	870
aac Asn	gag Glu	aaa Lys 280	cat His	ctt Leu	tta Leu	agt Ser	aaa Lys 285	acg Thr	gac Asp	agc Ser	aca Thr	atc Ile 290	tcc Ser	aac Asn	gaa Glu	918
gaa Glu	gat Asp 295	agt Ser	agc Ser	atc Ile	aac Asn	ata Ile 300	agg Arg	tta Leu	gaa Glu	aaa Lys	ttc Phe 305	aaa Lys	gac Asp	ctt Leu	Gly a a a	966
tac Tyr 310	cca Pro	gcg Ala	ttg Leu	agc Ser	gag Glu 315	aaa Lys	tct Ser	atc Ile	gag Glu	gac Asp 320	agg Arg	agg Arg	aag Lys	ttg Leu	tac Tyr 325	1014
acc Thr	tgt Cys	ccg Pro	aac Asn	tcc Ser	atg Met	gtt Val	GJA aaa	tct Ser	ccg Pro	gac Asp	tac Tyr	ata Ile	gcc Ala	tta Leu	gaa Glu	1062

				330	ŀ				335	ı				340)	
gtc Val	ttg Leu	aga Arg	gga Gly 345	aag Lys	agg Arg	tac Tyr	gag Glu	tat Tyr 350	Thr	gta Val	a gac Asp	tat Tyr	tgg Trp 355	Ser	ttg Leu	1110
ggt Gly	tgt Cys	atg Met 360	Leu	ttt Phe	gag Glu	agc Ser	ttg Leu 365	gtc Val	ggc Gly	tac Tyr	acc Thr	ccc Pro 370	Phe	agt Ser	ggc	1158
tcg Ser	tcg Ser 375	acc Thr	aac Asn	gaa Glu	acg Thr	tat Tyr 380	gcg Ala	atc Ile	agt Ser	cgt Arg	agc Ser 385	tgg Trp	aaa Lys	cag Gln	acg Thr	1206
ttg Leu 390	aat Asn	aga Arg	gcg Ala	aga Arg	cac His 395	gag Glu	gat Asp	Gly	agg Arg	gcg Ala 400	gcg Ala	ttt Phe	tac Tyr	aat Asn	agg Arg 405	1254
acg Thr	tgg Trp	gac Asp	ttg Leu	att Ile 410	acc Thr	aga Arg	cac His	agg Arg	gcc Ala 415	gac Asp	cta Leu	agc Ser	acg Thr	cgg Arg 420	acg Thr	1302
aga Arg	tcc Ser	ttt Phe	gag Glu 425	cac His	gag Glu	gta Val	aag Lys	atg Met 430	agc Ser	tac Tyr	ttc Phe	gcg Ala	gac Asp 435	atc Ile	ttg Leu	1350
ttt Phe	aag Lys	gcc Ala 440	tta Leu	aga Arg	tcg Ser	ata Ile	att Ile 445	cca Pro	cct Pro	ttc Phe	aca Thr	ccc Pro 450	caa Gln	cta Leu	gac Asp	1398
agc Ser	gag Glu 455	acc Thr	gat Asp	gcc Ala	ggt Gly	tat Tyr 460	ttc Phe	gat Asp	gac Asp	ttt Phe	tgg Trp 465	aat Asn	gag Glu	gct Ala	gac Asp	1446
ata Ile 470	gcc Ala	aaa Lys	tac Tyr	gct Ala	gac Asp 475	gtc Val	ttt Phe	aat Asn	agt Ser	cag Gln 480	tgc Cys	tgc Cys	cgt Arg	acg Thr	gct Ala 485	1494
tta Leu	gtc Val	gac Asp	gat Asp	tct Ser 490	gct Ala	gtt Val	tct Ser	tct Ser	aaa Lys 495	ctt Leu	gtt Val	GJA aaa	ttc Phe	acc Thr 500	ttc Phe	1542
cga Arg	cac His	Arg	aat Asn 505	ggt Gly	aaa Lys	cag Gln	Gly	tcc Ser 510	agt Ser	ggt Gly	atg Met	Leu	ttc Phe 515	aac Asn	Gly aga	1590
cta Leu	GIU	cac His 520	tca Ser	gac Asp	ccc Pro	Phe	tca Ser 525	acc Thr	ttt Phe	tac Tyr	tag	taat	cggc	ag		1636
cctg	cagc	ct g	ccca	gctg	с са	gcct	gccc	tcg	cctg	acg	cctg	cccc	ag g	atgc	ctctc	1696
cttt	ggat	aa c	atgc	cctg	c tc	cccc	atgc	ctt	gctg	cct	cgca	gcct	ga a	cgcc	tgcca	1756
gagc	tcgc	ca g	cctg	ccca	g cc	ttte	gccc	cag	cctg	cca	gcct	tttt	tt a	aacg	ctgaa	1816
aaac	gcct	aa a	aaaa	tcga	a ct	ttaa	acgc	ttt	taaa	acg	gctg	ccca	ta a	aaaa	aaagg	1876

ttttttaata aaaaatcgta aaaaaaaaa cgt

245

1909

<210> 2 <211> 528 <212> PRT <213> Arabidopsis thaliana <400> 2 Met Ala Gly Asn Met Ser Cys Leu Ser Thr Asp Gly His Gly Thr Pro Gly Gly Ser Gly His Phe Pro Asn Gln Asn Leu Thr Lys Arg Arg Thr 25 Arg Pro Ala Gly Ile Asn Asp Ser Pro Ser Pro Val Lys Cys Phe Phe 40 Phe Pro Tyr Glu Asp Thr Ser Asn Thr Ser Leu Lys Glu Val Ser Gln Pro Thr Lys Tyr Ser Ser Asn Ser Pro Pro Val Ser Pro Ala Ile Phe 70 Tyr Glu Arg Ala Thr Ser Trp Cys Thr Gln Arg Val Val Ser Gly Arg Ala Met Tyr Phe Leu Glu Tyr Tyr Cys Asp Met Phe Asp Tyr Val Ile 105 Ser Arg Arg Gln Arg Thr Lys Gln Val Leu Glu Tyr Leu Gln Gln Ser Gln Leu Pro Asn Ser Asp Gln Ile Lys Leu Asn Glu Glu Trp Ser 130 135 Ser Tyr Leu Gln Arg Glu His Gln Val Leu Ser Lys Arg Arg Leu Lys 150 Pro Lys Asn Arg Asp Phe Glu Met Ile Thr Gln Val Gly Gln Gly Gly 165 Tyr Gly His Val Tyr Leu Ala Arg Lys Lys Asp Thr Lys Glu Val Cys 185 Ala Leu Lys Ile Leu Asn Lys Lys Leu Gly Phe Lys Leu Asn Gly Thr Cys His Val Leu Thr Glu Arg Gln Ser Leu Thr Thr Arg Ser Glu Thr Met Val Lys Leu Leu Ser Gly Thr Thr Pro Val Gly Ser Arg Gly 235 Met Ala Ile Glu Ser Glu Leu Gly Gly Asp Phe Arg Thr Glu Ser Ile

250

Gly Arg Arg Cys Leu Lys Ser Gly His Ala Arg Phe Tyr Ile Ser Glu Met Phe Cys Ala Val Asn Glu Lys His Leu Leu Ser Lys Thr Asp Ser 280 Thr Ile Ser Asn Glu Glu Asp Ser Ser Ile Asn Ile Arg Leu Glu Lys Phe Lys Asp Leu Gly Tyr Pro Ala Leu Ser Glu Lys Ser Ile Glu Asp 315 Arg Arg Lys Leu Tyr Thr Cys Pro Asn Ser Met Val Gly Ser Pro Asp Tyr Ile Ala Leu Glu Val Leu Arg Gly Lys Arg Tyr Glu Tyr Thr Val Asp Tyr Trp Ser Leu Gly Cys Met Leu Phe Glu Ser Leu Val Gly Tyr Thr Pro Phe Ser Gly Ser Ser Thr Asn Glu Thr Tyr Ala Ile Ser Arg 375 Ser Trp Lys Gln Thr Leu Asn Arg Ala Arg His Glu Asp Gly Arg Ala 395 Ala Phe Tyr Asn Arg Thr Trp Asp Leu Ile Thr Arg His Arg Ala Asp 410 Leu Ser Thr Arg Thr Arg Ser Phe Glu His Glu Val Lys Met Ser Tyr 425 Phe Ala Asp Ile Leu Phe Lys Ala Leu Arg Ser Ile Ile Pro Pro Phe 435 Thr Pro Gln Leu Asp Ser Glu Thr Asp Ala Gly Tyr Phe Asp Asp Phe Trp Asn Glu Ala Asp Ile Ala Lys Tyr Ala Asp Val Phe Asn Ser Gln 470 475 Cys Cys Arg Thr Ala Leu Val Asp Asp Ser Ala Val Ser Ser Lys Leu Val Gly Phe Thr Phe Arg His Arg Asn Gly Lys Gln Gly Ser Ser Gly 505 Met Leu Phe Asn Gly Leu Glu His Ser Asp Pro Phe Ser Thr Phe Tyr 520

<210> 3 <211> 695

<212> DNA

<213> Arabidopsis thaliana <220>																
<22	1> C!		. (56	4)												
	0> 3 taag	ctt (ggta	ccga	gc to	egga	tccad	c tag	gtaad	egge	cgc	cagt	gtg (ctgga	aattcg	60
gca	cgago	caa (gaaa	gtta	ac a	caac	agcta	a aga	Me				u Ph		a agg y Arg	114
ttt Phe	cca Pro	ata Ile 10	ttt Phe	tca Ser	atc Ile	ctc Leu	gaa Glu 15	gac Asp	atg Met	ctt Leu	gaa Glu	gcc Ala 20	cct Pro	gaa Glu	gaa Glu	162
caa Gln	acc Thr 25	gag Glu	aag Lys	act Thr	cgt Arg	aac Asn 30	aac Asn	cct Pro	tca Ser	aga Arg	gct Ala 35	tac Tyr	atg Met	cga Arg	gac Asp	210
gca Ala 40	aag Lys	gca Ala	atg Met	gct Ala	gct Ala 45	aca Thr	cca Pro	gct Ala	gac Asp	gtt Val 50	atc Ile	gag Glu	cac His	ccg Pro	gat Asp 55	258
gcg Ala	tac Tyr	gtt Val	ttc Phe	gcc Ala 60	gtg Val	gac Asp	atg Met	cct Pro	gga Gly 65	atc Ile	aaa Lys	gga Gly	gat Asp	gag Glu 70	att Ile	306
cag Gln	gtc Val	cag Gln	ata Ile 75	gag Glu	aac Asn	gag Glu	aac Asn	gtg Val 80	ctt Leu	gtg Val	gtg Val	agt Ser	ggc Gly 85	aaa Lys	aga Arg	354
cag Gln	agg Arg	gac Asp 90	aac Asn	aag Lys	gag Glu	aat Asn	gaa Glu 95	ggt Gly	gtg Val	aag Lys	ttt Phe	gtg Val 100	agg Arg	atg Met	gag Glu	402
agg Arg	agg Arg 105	atg Met	Gly	aag Lys	ttt Phe	atg Met 110	agg Arg	aag Lys	ttt Phe	cag Gln	tta Leu 115	cct Pro	gat Asp	aat Asn	gca Ala	450
gat Asp 120	ttg Leu	gag Glu	aag Lys	atc Ile	tct Ser 125	gcg Ala	gct Ala	tgt Cys	aat Asn	gac Asp 130	ggt Gly	gtg Val	ttg Leu	aaa Lys	gtg Val 135	498
act Thr	att Ile	ccg Pro	aaa Lys	ctt Leu 140	cct Pro	cct Pro	cct Pro	gag Glu	cca Pro 145	aag Lys	aaa Lys	cca Pro	aag Lys -	act Thr 150	ata Ile	5 46
caa Gln	gtt Val	caa Gln	gtc Val 155	gct Ala	tga	gtt	gttt	igt g	gated	egtgt	ct tt	tgtg	jttt	:		594
aatq	gaat	gta a	atcga	ataaç	gc aa	cta	ectct	tgg	t gtt	cgt	tgta	aaat	ga a	ataa	aaata	654
atti	ttata	eta t	tcat	aaaa	aa aa	18888	18888		acto	-020	_					605

```
<210> 4
<211> 156
<212> PRT
<213> Arabidopsis thaliana
Met Asp Leu Glu Phe Gly Arg Phe Pro Ile Phe Ser Ile Leu Glu Asp
Met Leu Glu Ala Pro Glu Glu Gln Thr Glu Lys Thr Arg Asn Asn Pro
                                 25
Ser Arg Ala Tyr Met Arg Asp Ala Lys Ala Met Ala Ala Thr Pro Ala
                             40
Asp Val Ile Glu His Pro Asp Ala Tyr Val Phe Ala Val Asp Met Pro
Gly Ile Lys Gly Asp Glu Ile Gln Val Gln Ile Glu Asn Glu Asn Val
Leu Val Val Ser Gly Lys Arg Gln Arg Asp Asn Lys Glu Asn Glu Gly
                                     90
Val Lys Phe Val Arg Met Glu Arg Arg Met Gly Lys Phe Met Arg Lys
Phe Gln Leu Pro Asp Asn Ala Asp Leu Glu Lys Ile Ser Ala Ala Cys
                            120
Asn Asp Gly Val Leu Lys Val Thr Ile Pro Lys Leu Pro Pro Pro Glu
Pro Lys Lys Pro Lys Thr Ile Gln Val Gln Val Ala
                    150
<210> 5
<211> 1311
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (133)..(1083)
<400> 5
cggcacgagt ccacatgaaa ttcgattctc acatttcttc tatttaattc gaatttcaaa 60
ttgccatttc tcagattccg gggaaagaaa aaaaaaacct agaaaagtgt tttctccgtt 120
```

Met Ser Pro Asp Asn Lys Leu Leu Pro Lys Arg Ile Ile

ttccaatcat cc atg agt ccg gac aat aaa ctg ctt ccg aag cgg atc atc 171

5

ctt Leu	gta Val 15	cgg Arg	cac His	ggt Gly	gaa Glu	tcg Ser 20	gaa Glu	G1A aaa	aat Asn	ctc Leu	gac Asp 25	acg Thr	gcg Ala	gcg Ala	tat Tyr	219
aca Thr 30	acg Thr	acg Thr	ccg Pro	gat Asp	cat His 35	aag Lys	atc Ile	cag Gln	tta Leu	acg Thr 40	gat Asp	tcc Ser	ggt Gly	ttg Leu	ctt Leu 45	267
cag Gln	gcg Ala	cag Gln	gaa Glu	gcc Ala 50	gga Gly	gct Ala	cgt Arg	ctc Leu	cac His 55	gct Ala	ttg Leu	atc Ile	tct Ser	tct Ser 60	aat Asn	315
cct Pro	tct Ser	tca Ser	ccg Pro 65	gag Glu	tgg Trp	cgt Arg	gtg Val	tac Tyr 70	ttc Phe	tac Tyr	gtt Val	tcg Ser	ccg Pro 75	tac Tyr	gat Asp	363
cgg Arg	act Thr	cga Arg 80	tct Ser	acg Thr	ctc Leu	cgg Arg	gag Glu 85	atc Ile	gga Gly	cgg Arg	tcg Ser	ttc Phe 90	tcg Ser	cgt Arg	cgc Arg	411
cgt Arg	gtg Val 95	att Ile	ggt Gly	gtt Val	cgc Arg	gaa Glu 100	gaa Glu	tgt Cys	cgg Arg	att Ile	agg Arg 105	gaa Glu	cag Gln	gat Asp	ttt Phe	459
ggg Gly 110	aat Asn	ttt Phe	cag Gln	gtt Val	aaa Lys 115	gag Glu	cga Arg	atg Met	aga Arg	gca Ala 120	acg Thr	aaa Lys	aag Lys	gtc Val	aga Arg 125	507
Glu	Arg	Phe	ggc	Arg 130	Phe	Phe	Tyr	Arg	Phe 135	Pro	Glu	Gly	Glu	Ser 140	Ala	555
Ala	Asp	Val	ttc Phe 145	Asp	Arg	Val	Ser	Ser 150	Phe	Leu	Glu	Ser	Leu 155	Trp	Arg	603
gac Asp	att Ile	gac Asp 160	atg Met	aac Asn	aga Arg	ctg Leu	cac His 165	atc Ile	aac Asn	ccg Pro	tct Ser	cat His 170	gag Glu	cta Leu	aac Asn	651
ttt Phe	gtg Val 175	att Ile	gtc Val	Ser	His	ggc Gly 180	Leu	Thr	tcg Ser	Arg	Val	Phe	ctg Leu	atg Met	aaa Lys	699
tgg Trp 190	ttt Phe	aag Lys	tgg Trp	tca Ser	gtg Val 195	gaa Glu	cag Gln	ttc Phe	gag Glu	gga Gly 200	cta Leu	aac Asn	aat Asn	cca Pro	ggg Gly 205	747
aac Asn	agt Ser	gag Glu	atc Ile	aga Arg 210	gtg Val	atg Met	gaa Glu	tta Leu	gga Gly 215	caa Gln	ggc Gly	ggt Gly	gat Asp	tac Tyr 220	agc Ser	795
ttg Leu	gcg Ala	att Ile	cat His 225	cac His	aca Thr	gag Glu	gaa Glu	gag Glu 230	tta Leu	gcc Ala	aca Thr	tgg Trp	gga Gly 235	ctg Leu	tca Ser	843
cca	gag	atg	att	gca	gat	caa	aag	tgg	cgg	gct	aac	gcg	cat	aaa	ggc	891

Pro	Glu	240	: Ile	Ala	Asp	Gln	Lys 245	Trp	Arg	Ala	Asn	Ala 250		Lys	Gly	
gaa Glu	tgg Trp 255	n TA 2	gaa Glu	gat Asp	tgt Cys	aag Lys 260	Trp	tat Tyr	ttt Phe	ggt Gly	gat Asp 265	Phe	ttc Phe	gac Asp	cat His	939
atg Met 270	мта	gat Asp	tcc Ser	gat Asp	aaa Lys 275	gag Glu	tgc Cys	gag Glu	act Thr	gag Glu 280	Ala	act Thr	gaa Glu	gat Asp	aga Arg 285	987
gaa Glu	gaa Glu	gaa Glu	gaa Glu	gaa Glu 290	GIU	gag Glu	GJA aaa	aaa Lys	agg Arg 295	Val	aat Asn	ctg Leu	cta Leu	acg Thr 300	agt Ser	1035
tca Ser	gaa Glu	tat Tyr	agc Ser 305	aat Asn	gag Glu	cca Pro	gag Glu	tta Leu 310	tac Tyr	aat Asn	gga Gly	caa Gln	tgc Cys 315	tgc Cys	tga	1083
tac	tatt	tta	caga	acaa	aa g	cata	catg	a ga	agaa	acgt	tta	acta	aag	aatt	cagaag	1143
att	tgat	ttt	gata	aaaa	ct t	gtac	caat	t ta	ctga	ttaa	gct	ttct	ggt (gtct	tagttt	1203
gta	gctt	ttg	gttt	gtgg	aa a	agtg	ttgta	a ca	catc	gtta	taa	cacca	agg a	aaac	attaca	1263
gga	aatt	tga	aaga	ttca	tt t	tatt	gtga	c aaa	aaaa	aaaa	aaaa	aaaa	ā			1311
<21: <21: <21:	0> 6 1> 3: 2> P: 3> A: 0> 6	RT	dops:	is tl	halia	ana										
		Pro	Asp	Asn 5	Lys	Leu	Leu	Pro	Lys 10	Arg	Ile	Ile	Leu	Val 15	Arg	
His	Gly	Glu	Ser 20	Glu	Gly	Asn	Leu	Asp 25	Thr	Ala	Ala	Tyr	Thr 30	Thr	Thr	
Pro	Asp	His 35	Lys	Ile	Gln	Leu	Thr 40	Asp	Ser	Gly	Leu	Leu 45	Gln	Ala	Gln	
Glu	Ala 50	Gly	Ala	Arg	Leu	His 55	Ala	Leu	Ile	Ser	Ser 60	Asn	Pro	Ser	Ser	
Pro 65	Glu	Trp	Arg	Val	Tyr 70	Phe	Tyr	Val	Ser	Pro 75	Tyr	Asp	Arg	Thr	Arg 80	
Ser	Thr	Leu	Arg	Glu 85	Ile	Gly	Arg	Ser	Phe 90	Ser	Arg	Arg	Arg	Val 95	Ile	
Gly	Val	Arg	Glu 100	Glu	Суз	Arg	Ile	Arg 105	Glu	Gln	Asp	Phe	Gly 110	Asn	Phe	
Gln	Val	Lys 115	Glu	Arg	Met	Arg	Ala 120	Thr	Lys	Lys	Val	Arg 125	Glu	Arg	Phe	

Gly Arg Phe Phe Tyr Arg Phe Pro Glu Gly Glu Ser Ala Ala Asp Val Phe Asp Arg Val Ser Ser Phe Leu Glu Ser Leu Trp Arg Asp Ile Asp 155 Met Asn Arg Leu His Ile Asn Pro Ser His Glu Leu Asn Phe Val Ile Val Ser His Gly Leu Thr Ser Arg Val Phe Leu Met Lys Trp Phe Lys 185 Trp Ser Val Glu Gln Phe Glu Gly Leu Asn Asn Pro Gly Asn Ser Glu Ile Arg Val Met Glu Leu Gly Gln Gly Gly Asp Tyr Ser Leu Ala Ile His His Thr Glu Glu Glu Leu Ala Thr Trp Gly Leu Ser Pro Glu Met 230 Ile Ala Asp Gln Lys Trp Arg Ala Asn Ala His Lys Gly Glu Trp Lys 245 250 Glu Asp Cys Lys Trp Tyr Phe Gly Asp Phe Phe Asp His Met Ala Asp 265 Ser Asp Lys Glu Cys Glu Thr Glu Ala Thr Glu Asp Arg Glu Glu Glu Glu Glu Glu Glu Lys Arg Val Asn Leu Leu Thr Ser Ser Glu Tyr Ser Asn Glu Pro Glu Leu Tyr Asn Gly Gln Cys Cys 310

<210> 7 <211> 863 <212> DNA

<213> Arabidopsis thaliana

<220> <221> CDS <222> (19)..(837)

agagacagta aacctaaa atg gcg aac tca gac aaa aga tta ttc gag aag 51

Met Ala Asn Ser Asp Lys Arg Leu Phe Glu Lys

1 5 10

gta gct ata ata acc gga gga gca aga ggg ata gga gcg gcc acg gcg
Val Ala Ile Ile Thr Gly Gly Ala Arg Gly Ile Gly Ala Ala Thr Ala
15 20 25

aga Arg	ttg Leu	ttc Phe 30	aca Thr	gag Glu	aat Asn	ggc Gly	gcg Ala 35	tat Tyr	gtg Val	ata Ile	gtc Val	gcg Ala 40	gat Asp	atc Ile	ctt Leu	147
gat Asp	aat Asn 45	gaa Glu	ggc Gly	atc Ile	ctt Leu	gtg Val 50	gcg Ala	gaa Glu	tcg Ser	atc Ile	ggt Gly 55	GJÀ aaa	tgt Cys	tac Tyr	gtt Val	195
cat His 60	tgt Cys	gac Asp	gta Val	tcg Ser	aag Lys 65	gag Glu	gct Ala	gat Asp	gtt Val	gag Glu 70	gcg Ala	gca Ala	gtg Val	gag Glu	cta Leu 75	243
gca Ala	atg Met	aga Arg	cgt Arg	aaa Lys 80	ggt Gly	aga Arg	cta Leu	gat Asp	gtg Val 85	atg Met	ttc Phe	aac Asn	aat Asn	gcc Ala 90	GJA aaa	291
atg Met	tcg Ser	ctt Leu	aac Asn 95	gaa Glu	ggt Gly	agt Ser	atc Ile	atg Met 100	Gly ggg	atg Met	gac Asp	gtg Val	gac Asp 105	atg Met	gtt Val	339
aac Asn	aaa Lys	ctt Leu 110	gtc Val	tcg Ser	gtt Val	aat Asn	gtc Val 115	aat Asn	ggt Gly	gtt Val	ttg Leu	cat His 120	ggt Gly	atc Ile	aaa Lys	387
cat His	gcc Ala 125	gct Ala	aag Lys	gcc Ala	atg Met	atc Ile 130	aaa Lys	GJA aaa	gga Gly	cga Arg	gga Gly 135	ggc Gly	tcg Ser	ata Ile	ata Ile	435
tgc Cys 140	aca Thr	tcg Ser	agc Ser	tca Ser	tca Ser 145	Gly aaa	cta Leu	atg Met	gga Gly	gga Gly 150	ctt Leu	gga Gly	gga Gly	cat His	gcg Ala 155	483
tat Tyr	acg Thr	ctc Leu	tcc Ser	aaa Lys 160	gga Gly	Gly	atc Ile	aac Asn	ggg Gly 165	gtg Val	gtg Val	agg Arg	aca Thr	acg Thr 170	gag Glu	531
tgc Cys	gag Glu	ctt Leu	ggg Gly 175	tct Ser	cac His	ggc Gly	atc Ile	cgt Arg 180	gtg Val	aat Asn	agc Ser	atc Ile	tct Ser 185	cct Pro	cat His	579
gga Gly	gtt Val	ccc Pro 190	act Thr	gac Asp	atc Ile	ttg Leu	gtt Val 195	aat Asn	gcg Ala	tac Tyr	cgt Arg	aag Lys 200	ttc Phe	ctt Leu	aac Asn	627
aat Asn	gac Asp 205	aaa Lys	ctc Leu	aac Asn	gtc Val	gct Ala 210	gag Glu	gtc Val	acc Thr	gac Asp	att Ile 215	att Ile	gct Ala	gag Glu	aaa Lys	675
ggg Gly 220	agt Ser	ttg Leu	ctg Leu	acc Thr	gga Gly 225	aga Arg	gcc Ala	ggt Gly	act Thr	gtg Val 230	gag Glu	gac Asp	gta Val	gct Ala	caa Gln 235	723
gca Ala	gct Ala	ttg Leu	ttt Phe	ctt Leu 240	gca Ala	agc Ser	caa Gln	gaa Glu	tcg Ser 245	tcg Ser	GJA aaa	ttc Phe	att Ile	acc Thr 250	gga Gly	771
cat	aac	ttg	gtt	gtt	gat	gat	aat	tac	aca	tat	acc	act	ant	act	ato	819

His Asn Leu Val Val Asp Gly Gly Tyr Thr Ser Ala Thr Ser Thr Met 255 260 265

aga ttt atc tac aac tag ttttcgtttg gtggtgtttc cttttc Arg Phe Ile Tyr Asn 270

863

<210> 8 <211> 272 <212> PRT

<213> Arabidopsis thaliana

<400> 8

Met Ala Asn Ser Asp Lys Arg Leu Phe Glu Lys Val Ala Ile Ile Thr 1 5 10 15

Gly Gly Ala Arg Gly Ile Gly Ala Ala Thr Ala Arg Leu Phe Thr Glu 20 25 30

Asn Gly Ala Tyr Val Ile Val Ala Asp Ile Leu Asp Asn Glu Gly Ile 35 40 45

Leu Val Ala Glu Ser Ile Gly Gly Cys Tyr Val His Cys Asp Val Ser 50 55 60

Lys Glu Ala Asp Val Glu Ala Ala Val Glu Leu Ala Met Arg Arg Lys 65 70 75 80

Gly Arg Leu Asp Val Met Phe Asn Asn Ala Gly Met Ser Leu Asn Glu 85 90 95

Gly Ser Ile Met Gly Met Asp Val Asp Met Val Asn Lys Leu Val Ser 100 105 110

Val Asn Val Asn Gly Val Leu His Gly Ile Lys His Ala Ala Lys Ala 115 120 125

Met Ile Lys Gly Gly Arg Gly Gly Ser Ile Ile Cys Thr Ser Ser Ser 130 135 140

Ser Gly Leu Met Gly Gly Leu Gly Gly His Ala Tyr Thr Leu Ser Lys 145 150 155 160

Gly Gly Ile Asn Gly Val Val Arg Thr Thr Glu Cys Glu Leu Gly Ser 165 170 175

His Gly Ile Arg Val Asn Ser Ile Ser Pro His Gly Val Pro Thr Asp 180 185 190

Ile Leu Val Asn Ala Tyr Arg Lys Phe Leu Asn Asn Asp Lys Leu Asn 195 200 205

Val Ala Glu Val Thr Asp Ile Ile Ala Glu Lys Gly Ser Leu Leu Thr 210 215 220

Gly Arg Ala Gly Thr Val Glu Asp Val Ala Gln Ala Ala Leu Phe Leu

```
225
                    230
                                      235
                                                         240
Ala Ser Gln Glu Ser Ser Gly Phe Ile Thr Gly His Asn Leu Val Val
                245
Asp Gly Gly Tyr Thr Ser Ala Thr Ser Thr Met Arg Phe Ile Tyr Asn
                               265
<210> 9
<211> 3107
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (20)..(34)
<220>
<221> CDS
<222> (958)..(1054)
<220>
<221> CDS
<222> (1209)..(1486)
<220>
<221> CDS
<222> (1578)..(2354)
<220>
<221> CDS
<222> (2440)..(2529)
<220>
<221> CDS
<222> (2629)..(2790)
<220>
<221> CDS
<222> (2884)..(2943)
<400> 9
tcaaccttct atcatcacc atg gat cct tac aag gtatcttcga tcatattctt
                                                              54
                    Met Asp Pro Tyr Lys
cttacttttt ctttgttttt gtgtggtgta tgtgtatctt aattagaatt aggttcaact 114
atatatgctc gttttctaaa ctattttta attggattga tgttcttaaa tcttaagggt 174
caaaatactt tttatgctca aaaacttact taaattctgt gatcgcttga acctaagtgg 234
atgatgtgga tttcctgttt tggctgccta tctttaagta aaacgtttaa cccactgcgt 294
```

,	ttgt	ttt	tttt	ttta	ta g	tatg	acac	a ca	tgtg	ttct	aaa	.aatc	gga	cgtt	caaatg	414
ata	taat	cga	ttgt	ttag	ac g	tccg	accg	t at	atta	tttt	agt	gata	tca	gcca	aatcag	474
att	aagt	aat	catc	aaca	.aa a	tgat	tgat	c ag	atct	atca	ata	caag	tgt	attt	ttttt	534
cac	atac	aaa	aaaa	ttat	ct c	accg	acga	a aa	aaaa	ataa	aaa	atta	tta	tgta	gatcca	594
tcg	aaca	aaa	ggct	tgaa	ta t	cgga	agtc	a ct	taaa	agtg	taa	taat	cga	ataa	atatta	654
gtg	gata	aaa	tgaa	attt	at c	taca	accci	t ac	tctc	cgac	atg	ttac	tgt	ttgc	gtcatc	714
aaa	tcta	aag	cctt	tttg	gc a	aata	atgg	t cg	gaag	acta	ctc	gtgt	cgg	gatg	gaccac	774
ccg	gatc	cga	tcag	gaaa	cg g	gttt	tgata	a tg	tttc	gggt	tac	gaca	aaa	aatt	agggct	834
ttt	tatc	aaa	tcaa	tcag	tt g	gtag	taaaa	a tt	ttgt	ggat	tgt	tctt	gtc	gatt	ccgttt	894
gat	tgtt	gac	caaa	tttc	tt c	ctag	gatt	t tg	ttga	taat	cga	tcgt	ata	atgg	tgattg	954
cag	tat Tyr	cgt Arg	cct Pro	tca Ser	agc Ser 10	gcg Ala	tac Tyr	aac Asn	gcc Ala	cca Pro 15	ttc Phe	tac Tyr	acc Thr	aca Thr	aac Asn 20	1002
ggt Gly	ggt Gly	gct Ala	cca Pro	gtc Val 25	tcc Ser	aac Asn	aac Asn	atc Ile	tct Ser 30	tcc Ser	ctc Leu	acc Thr	atc	gga Gly 35	gaa Glu	1050
aga Arg	g g	tato	gtaad	c cc	tgaa	tttc	aaga	agtc	tat	caat	aaga	at c	ggaa	cttg	t	1104
Arg	G														t gtgaag	
Arg .tgg:	G attt	atg a		agat	aa aa	actga	agata	ı taç	gagt	ctaa	gct	gaga g gt	tct ccg	gttc	gtgaag ctt	
tgg:	G attt gatg gag	atg a tga d	aaaga	agata tttta cat	aa aa aa ca ttg	actga atgto	agata gttac	ı taçı ttc	gagte cgtae	ctaa atgg	gct; gca;	gaga g gt ly	ccg Pro	gttc gtt Val 40	gtgaag ctt Leu	1164
tgga cgta ctt Leu	gatgi gatgi gag Glu atc	atg atga t	aaaga ttati tat Tyr	agata tttta cat His	aa aa aa ca ttg Leu	actga atgto atc Ile	agata gttac gag Glu	a tag aag Lys 50	gagte cgtae gtt Val	ctaa atgg gct Ala	gct; gca; aat Asn	gaga g gt ly ttc Phe	ccg Pro acc Thr	gttc gtt Val 40 aga Arg	gtgaag ctt Leu gag Glu	1164
cgte ctt Leu agg Arg	gatgo gag Glu atc Ile	gat Asp cct Pro 60	ttati tat Tyr 45	cat His aga Arg	aa aa ttg Leu gtg Val	actga atgto atc Ile gtt Val	gag Glu cat His 65	a tag aag Lys 50 gct Ala	gagto ggta gtt Val aga Arg	ctaa atgg gct Ala gga Gly	gct; gca; aat Asn atc Ile	gaga g gt ly ttc Phe agt Ser 70	ccg Pro acc Thr 55 gct Ala	gttc gtt Val 40 aga Arg aag Lys	gtgaag ctt Leu gag Glu ggt Gly	1164 1219 1267
cgt. ctt Leu agg Arg ttc Phe	gatgo gag Glu atc Ile ttt Phe 75	gat Asp cct Pro 60 gaa Glu	tat tat Tyr 45 gag Glu	agata cat His aga Arg acc Thr	aa aa ttg ttg Leu gtg Val cat	actga atgte atc Ile gtt Val gac Asp 80 caa	gag Glu cat His 65 att Ile	a tag aag Lys 50 gct Ala tca Ser	gagto gtt Val aga Arg aac Asn	ctaa atgg gct Ala gga Gly ctc Leu	gcte gcae aat Asn atc Ile act Thr 85	gaga g gt ly ttc Phe agt Ser 70 tgt Cys	ccg Pro acc Thr 55 gct Ala gct Ala	gttc gtt Val 40 aga Arg Lys gat Asp	gtgaag ctt Leu gag Glu ggt Gly ttt Phe	1164 1219 1267

ttt gct gtc aag ttt tac acc aga gag gtataagaaa gattcaaagt Phe Ala Val Lys Phe Tyr Thr Arg Glu 125 130	1506
ttccattttt aatcgtcttt tagcttcttt agaatcagga ctgatttttg tcttgttact	1566
gttatgatca g gga aac ttt gat ctt gtt ggg aac aac act ccg gtg ttc : Gly Asn Phe Asp Leu Val Gly Asn Asn Thr Pro Val Phe 135 140	1616
ttc atc cgt gat ggg att cag ttc ccg gat gtt gtc cac gcg ttg aaa Phe Ile Arg Asp Gly Ile Gln Phe Pro Asp Val Val His Ala Leu Lys 145 150 155	1664
cct aac cga aaa aca aac atc caa gag tac tgg agg att ctg gac tac Pro Asn Arg Lys Thr Asn Ile Gln Glu Tyr Trp Arg Ile Leu Asp Tyr 160 165 170 175	1712
atg tcc cac ttg cct gag agt ttg ctc aca tgg tgc tgg atg ttt gat Met Ser His Leu Pro Glu Ser Leu Leu Thr Trp Cys Trp Met Phe Asp 180 185 190	1760
gat gtt ggt att cca caa gat tac agg cat atg gag ggt ttc ggt gtc Asp Val Gly Ile Pro Gln Asp Tyr Arg His Met Glu Gly Phe Gly Val 195 200 205	1808
Cac acc tac act ctt att gcc aaa tct gga aaa gtt ctc ttt gtg aag His Thr Tyr Thr Leu Ile Ala Lys Ser Gly Lys Val Leu Phe Val Lys 210 215 220	1856
ttc cac tgg aaa cca act tgt ggg atc aag aat ctg act gat gaa gag Phe His Trp Lys Pro Thr Cys Gly Ile Lys Asn Leu Thr Asp Glu Glu 225 230 235	1904
gcc aag gtt gtt gga gga gcc aat cac agc cac gcc act aag gat ctc Ala Lys Val Val Gly Gly Ala Asn His Ser His Ala Thr Lys Asp Leu 240 250 255	1952
cac gat gcc att gca tct ggc aac tac ccc gag tgg aaa ctt ttc atc His Asp Ala Ile Ala Ser Gly Asn Tyr Pro Glu Trp Lys Leu Phe Ile 260 265 270	2000
cag acc atg gat cct gca gat gag gat aag ttt gac ttt gac cca ctt 26 Cln Thr Met Asp Pro Ala Asp Glu Asp Lys Phe Asp Phe Asp Pro Leu 275 280 285	2048
gat gtg acc aag atc tgg cct gag gat att ttg cct ctg caa ccg gtt 2 Asp Val Thr Lys Ile Trp Pro Glu Asp Ile Leu Pro Leu Gln Pro Val 290 295 300	2096
ggt cgc ttg gtt ctg aac agg acc att gac aac ttc ttc aat gaa act Gly Arg Leu Val Leu Asn Arg Thr Ile Asp Asn Phe Phe Asn Glu Thr 305 310 315	2144
gag cag ctt gcg ttc aac ccg ggt ctt gtg gtt cct gga atc tac tac Glu Gln Leu Ala Phe Asn Pro Gly Leu Val Val Pro Gly Ile Tyr Tyr	2192

320	325	330	335
tca gac gac aag ctg Ser Asp Asp Lys Leu 340	ctc cag tgt agg atc Leu Gln Cys Arg Ile 345	Phe Ala Tyr Gly As	p Thr
cag aga cat cgc ctt Gln Arg His Arg Leu 355	gga ccg aat tat ttg Gly Pro Asn Tyr Leu 360	g cag ctt cca gtc aa 1 Gln Leu Pro Val As 365	t gct 2288 n Ala
ccc aaa tgt gct cac Pro Lys Cys Ala His 370	cac aac aat cac cat His Asn Asn His His 375	gaa ggt ttt atg aa Glu Gly Phe Met As 380	c ttc 2336 n Phe
atg cac aga gat gag Met His Arg Asp Glu 385	gag gtacgtctta gtac Glu	accact tgagctacca	2384
ttgttagtct ttttactt	gg aatcaaaatt ctcatt '	tggt ttgtactttt tac	ag atc 2442 Ile 390
aat tac tac ccc tca Asn Tyr Tyr Pro Ser 395	aag ttt gat cct gtc Lys Phe Asp Pro Val 400	Arg Cys Ala Glu Ly	s Val
ccc acc cct aca aac Pro Thr Pro Thr Asn 410	tcc tac act gga att Ser Tyr Thr Gly Ile 415	cga aca aag gtccga Arg Thr Lys	ttcc 2539
tgccatgcct tctctaaa	to ttcaaatoot aaacto	aagt ttattagaat att	ggtgcta 2599
agaaaacctt ttaattgc	ta atgttgcag tgc gtc Cys Val 420	atc aag aaa gag aad Ile Lys Lys Glu Ass 425	
ttc aaa cag gct gga Phe Lys Gln Ala Gly 430	gac agg tac aga tca Asp Arg Tyr Arg Ser 435	tgg gca cca gac agg Trp Ala Pro Asp Arg 440	g caa 2700 g Gln
gac agg ttt gtt aag Asp Arg Phe Val Lys 445	aga tgg gtg gag att Arg Trp Val Glu Ile 450	cta tcg gag cca cgg Leu Ser Glu Pro Arc 455	t ctc 2748 g Leu
acc cac gag atc cgc Thr His Glu Ile Arg 460	ggc atc tgg acc tct Gly Ile Trp Thr Ser 465	tac tgg ctc aag Tyr Trp Leu Lys 470	2790
gtcagaacca aaaaaaca	ct cggtcaaatt tctacg	tcct ttttaccaag tttc	cagcaaa 2850
ctaaaacatt atttatcto	ct ctgtatctct cag gc Al	t gat cga tcc ttg gg a Asp Arg Ser Leu Gl 475	
aaa ctc gca agc cgt Lys Leu Ala Ser Arg 485	ctg aac gtg agg cca Leu Asn Val Arg Pro 490	agc atc tag aggccaa Ser Ile	atct 2953

ccatataagc tcagtctatg tgaggtacaa tcaatctcat cgatctatca tcgcttggtc 3013
gttaaatccg tcaaaaagat aatcacatgt gttgttgttt cttgtctata taataataat 3073
gcttgtaatc ccaaaaactc atgtttcctt cctt 3107

<210> 10

<211> 492

<212> PRT

<213> Arabidopsis thaliana

<400> 10

Met Asp Pro Tyr Lys Tyr Arg Pro Ser Ser Ala Tyr Asn Ala Pro 1 5 10 15

Phe Tyr Thr Thr Asn Gly Gly Ala Pro Val Ser Asn Asn Ile Ser Ser 20 25 30

Leu Thr Ile Gly Glu Arg Gly Pro Val Leu Leu Glu Asp Tyr His Leu 35 40 45

Ile Glu Lys Val Ala Asn Phe Thr Arg Glu Arg Ile Pro Glu Arg Val 50 55 60

Val His Ala Arg Gly Ile Ser Ala Lys Gly Phe Phe Glu Val Thr His 65 70 75 8

Asp Ile Ser Asn Leu Thr Cys Ala Asp Phe Leu Arg Ala Pro Gly Val 85 90 95

Gln Thr Pro Val Ile Val Arg Phe Ser Thr Val Val His Gly Arg Ala 100 105 110

Ser Pro Glu Thr Met Arg Asp Ile Arg Gly Phe Ala Val Lys Phe Tyr 115 120 125

Thr Arg Glu Gly Asn Phe Asp Leu Val Gly Asn Asn Thr Pro Val Phe 130 135 140

Phe Ile Arg Asp Gly Ile Gln Phe Pro Asp Val Val His Ala Leu Lys 145 150 155 16

Pro Asn Arg Lys Thr Asn Ile Gln Glu Tyr Trp Arg Ile Leu Asp Tyr 165 170 175

Met Ser His Leu Pro Glu Ser Leu Leu Thr Trp Cys Trp Met Phe Asp 180 185 190

Asp Val Gly Ile Pro Gln Asp Tyr Arg His Met Glu Gly Phe Gly Val 195 200 205

His Thr Tyr Thr Leu Ile Ala Lys Ser Gly Lys Val Leu Phe Val Lys 210 215 220

Phe His Trp Lys Pro Thr Cys Gly Ile Lys Asn Leu Thr Asp Glu Glu

225 230 235 24

Ala Lys Val Val Gly Gly Ala Asn His Ser His Ala Thr Lys Asp Leu 245 250 255

His Asp Ala Ile Ala Ser Gly Asn Tyr Pro Glu Trp Lys Leu Phe Ile
260 265 270

Gln Thr Met Asp Pro Ala Asp Glu Asp Lys Phe Asp Phe Asp Pro Leu 275 280 285

Asp Val Thr Lys Ile Trp Pro Glu Asp Ile Leu Pro Leu Gln Pro Val 290 295 300

Gly Arg Leu Val Leu Asn Arg Thr Ile Asp Asn Phe Phe Asn Glu Thr 305 310 315 32

Glu Gln Leu Ala Phe Asn Pro Gly Leu Val Val Pro Gly Ile Tyr Tyr 325 330 335

Ser Asp Asp Lys Leu Leu Gln Cys Arg Ile Phe Ala Tyr Gly Asp Thr 340 345 350

Gln Arg His Arg Leu Gly Pro Asn Tyr Leu Gln Leu Pro Val Asn Ala 355 360 365

Pro Lys Cys Ala His His Asn Asn His His Glu Gly Phe Met Asn Phe 370 375 380

Met His Arg Asp Glu Glu Ile Asn Tyr Tyr Pro Ser Lys Phe Asp Pro 385 390 395 40

Val Arg Cys Ala Glu Lys Val Pro Thr Pro Thr Asn Ser Tyr Thr Gly
405 410 415

Ile Arg Thr Lys Cys Val Ile Lys Lys Glu Asn Asn Phe Lys Gln Ala
420 425 430

Gly Asp Arg Tyr Arg Ser Trp Ala Pro Asp Arg Gln Asp Arg Phe Val
435
440
445

Lys Arg Trp Val Glu Ile Leu Ser Glu Pro Arg Leu Thr His Glu Ile 450 455 460

Arg Gly Ile Trp Thr Ser Tyr Trp Leu Lys Ala Asp Arg Ser Leu Gly 465 470 475 48

Gln Lys Leu Ala Ser Arg Leu Asn Val Arg Pro Ser Ile 485 490

<210> 11

<211> 2687

<212> DNA

<213> Arabidopsis thaliana

<220>	
<221> CDS	
<222> (67)(204)	
<220>	
<221> CDS	
<222> (521)(661)	
<220>	
<221> CDS	
<222> (745)(1026)	
<220> <221> CDS	
<222> CDS <222> (1114)(2667)	
(1111)(2007)	
<400> 11	
aagttccaaa ttttctctta gcattctctt tcgtttctcg ttttcgttga atcaaagttc	60
gttgcg atg gcg gat gtt cag atg gct gat gca gaa act ttt gct ttc	108
Met Ala Asp Val Gln Met Ala Asp Ala Glu Thr Phe Ala Phe	108
1 5 10	
caa gct gag att aac cag ctt ctt agc ttg atc atc aac acg ttc tac	156
Gln Ala Glu Ile Asn Gln Leu Leu Ser Leu Ile Ile Asn Thr Phe Tyr	156
15 20 25 30	
ACC AAC AAA CAA ATC TTO GTG GGT GTG	
agc aac aaa gaa atc ttc ctc cgt gag ctc atc agt aac tct tct gat Ser Asn Lys Glu Ile Phe Leu Arg Glu Leu Ile Ser Asn Ser Ser Asp	204
35 40 45	
GTAAGTTTCC CTTCAAATGT GTGTGTGTAAA	
gtaagtttcc cttcaaatct ctctctgact cggtgtgact cgtccgcttc ctattttctt	264
gactgttgtt tgttctttaa ttcctggatt cgttgatagc gttggattcg taggtttagc	324
gttgtgattg cttattcaaa taaatcgtga tttggcttgt gcatcacgtt aagtttagaa	384
ttcttagctt gtgctcgatc ttcatgtgtt gtagttacat atatagaacg gttcttgctt	444
cgatgtagtt tttgatttac cctagaggat tgagtaaagc ttctgattat ctttgtttat	504
atgaacggtt ttgtag gct ctt gac aag att cga ttt gag agc tta acg gat	556
Ala Leu Asp Lys Ile Arg Phe Glu Ser Leu Thr Asp	
50 55	
aag agc aag ctc gat gga cag cct gaa ctc ttc att aga ttg gtt cct	604
Lys Ser Lys Leu Asp Gly Gln Pro Glu Leu Phe Ile Arg Leu Val Pro	004
60 65 70	-
gac aag cct aat aag acg ctc tca att att gac agt ggt att ggc atg	
Asp Lys Pro Asn Lys Thr Leu Ser Ile Ile Asp Ser Gly Ile Gly Met	652
75 80 85 90	
acc aaa gca ggtaacgaat caatgcctaa taatctctcg ttggtgagat Thr Lys Ala	701
gtttagtgta tgtgctgtgg ttatgactct ctattatttt tca gat ttg gtg aac	756

												Asp	Leu 95	Val	Asn	
aac Asn	ttg Leu	gga Gly 100	acc Thr	att Ile	gcg Ala	agg Arg	tct Ser 105	gga Gly	aca Thr	aaa Lys	gag Glu	ttt Phe 110	atg Met	gag Glu	gcg Ala	804
ctt Leu	caa Gln 115	gct Ala	gga Gly	gct Ala	gat Asp	gta Val 120	agc Ser	atg Met	ata Ile	gga Gly	caa Gln 125	ttt Phe	ggt Gly	gtt Val	ggt Gly	852
ttc Phe 130	tac Tyr	tct Ser	gct Ala	tat Tyr	ctt Leu 135	gtt Val	gca Ala	gag Glu	aag Lys	gtt Val 140	gtt Val	gtc Val	act Thr	aca Thr	aag Lys 145	900
cac His	aat Asn	gat Asp	gat Asp	gaa Glu 150	caa Gln	tac Tyr	gtt Val	tgg Trp	gag Glu 155	tct Ser	caa Gln	gct Ala	ggt Gly	ggt Gly 160	tcc Ser	948
ttc Phe	act Thr	gtc Val	act Thr 165	agg Arg	gat Asp	gtg Val	gat Asp	ggg Gly 170	gaa Glu	cca Pro	ctt Leu	ggt Gly	aga Arg 175	gga Gly	act Thr	996
aag Lys	atc Ile	agc Ser 180	ctc Leu	ttc Phe	ctt Leu	aag Lys	gac Asp 185	gat Asp	cag Gln	gtaa	aggaa	atc	gtago	ettte	ja	1046
gtgt	ctttq	agg g	ggato	gttct	t tt	cttt	tggt	gtt	ttct	gtg	ttct	taca	aag t	gtgt	ttatt	1106
cat	gcag	ctt Leu	gaa Glu	tac Tyr 190	ttg Leu	gag Glu	gag Glu	agg Arg	aga Arg 195	ctc Leu	aaa Lys	gac Asp	ttg Leu	gtg Val 200	aag Lys	1155
aag Lys	cac His	tct Ser	gag Glu 205	ttc Phe	atc Ile	agt Ser	tac Tyr	cct Pro 210	atc Ile	tac Tyr	ctt Leu	tgg Trp	acc Thr 215	gag Glu	aaa Lys	1203
acc Thr	acc Thr	gag Glu 220	aag Lys	gag Glu	atc Ile	agt Ser	gac Asp 225	gat Asp	gag Glu	gat Asp	gaa Glu	gat Asp 230	gaa Glu	cca. Pro	aag Lys	1251
aaa Lys	gaa Glu 235	aac Asn	gaa Glu	ggt Gly	gag Glu	gtt Val 240	gaa Glu	gaa Glu	gtt Val	gat Asp	gag Glu 245	aag Lys	aag Lys	gag Glu	aaa Lys	1299
gat Asp 250	ggt Gly	aaa Lys	aag Lys	aag Lys	aag Lys 255	aaa Lys	atc Ile	aag Lys	gaa Glu	gtc Val 260	tct Ser	cac His	gag Glu	tgg Trp	gaa Glu 265	1347
ctc Leu	atc Ile	aac Asn	aag Lys	cag Gln 270	aaa Lys	ccg Pro	atc Ile	tgg Trp	ttg Leu 275	agg Arg	aag Lys	cca Pro	gaa Glu	gag Glu 280	atc Ile	1395
act Thr	aag Lys	gaa Glu	gag Glu 285	tat Tyr	gct Ala	gct Ala	ttc Phe	tac Tyr 290	aag Lys	agc Ser	ttg Leu	acc Thr	aat Asn 2 9 5	gac Asp	tgg Trp	1443

gaa Glu	gat Asp	cac His 300	tta Leu	gcc Ala	gtg Val	aaa Lys	cac His 305	ttc Phe	tca Ser	gtg Val	gag Glu	ggt Gly 310	cag Gln	cta Leu	gaa Glu	1491
ttc Phe	aag Lys 315	gcc Ala	att Ile	ctc Leu	ttt Phe	gta Val 320	cca Pro	aag Lys	aga Arg	gct Ala	ccg Pro 325	ttt Phe	gat Asp	ctc Leu	ttt Phe	1539
gac Asp 330	acg Thr	agg Arg	aag Lys	aag Lys	ttg Leu 335	aat Asn	aac Asn	atc Ile	aag Lys	ctt Leu 340	tat Tyr	gtc Val	agg Arg	agg Arg	gtg Val 345	1587
Phe	Ile	Met	Asp	Asn 350	Сув	Glu	Glu	Leu	11e 355	Pro	Glu	Tyr	Leu	agc Ser 360	Phe	1635
Val	Lys	Gly	Val 365	Val	Asp	Ser	Asp	Asp 370	Leu	Pro	Leu	Asn	Ile 375	tct Ser	Arg	1683
Glu	Thr	180	Gln	Gln	Asn	Lys	11e 385	Leu	Lys	Val	Ile	Arg 390	Lys	aat Asn	Leu	1731
Val	Lys 395	Lys	Cys	Ile	Glu	Met 400	Phe	Asn	G1u	Ile	Ala 405	Glu	Asn	aaa Lys	Glu	1779
Asp 410	Tyr	Thr	Lys	Phe	Tyr 415	Glu	Ala	Phe	Ser	Lys 420	Asn	Leu	Lys	ttg Leu	Gly 425	1827
Ile	His	Glu	Asp	Ser 430	Gln	Asn	Arg	Gly	Lys 435	Ile	Ala	Asp	Leu	cta Leu 440	Arg	1875
Tyr	His	Ser	Thr 445	Lys	Ser	Gly	Asp	Glu 450	Met	Thr	Ser	Phe	Lys 455	gat Asp	Tyr	1923
Val	Thr	Arg 460	Met	Lys	Glu	Gly	Gln 465	Lys	Asp	Ile	Phe	Tyr 470	Ile	act Thr	Gly	1971
Glu	5er 475	Lys	Lys	Ala	Val	Glu 480	Asn	Ser	Phe	Leu	Glu 485	Arg	Leu	aag Lys	Lys	2019
Arg 490	GTA	Tyr	Glu	Val	Leu 495	Tyr	Met	Val	Asp	Ala 500	Ile	Asp	Glu	tac Tyr	Ala 505	2067
gtt Val	gga Gly	caa Gln	ttg Leu	aag Lys 510	gag Glu	tat Tyr	gac Asp	ggt Gly	aag Lys 515	aaa Lys	ctt Leu	gtt Val	tct Ser	gcg Ala 520	act Thr	2115
aaa	gaa	ggc	ctc	aaa	ctt	gaa	gat	gag	acc	gaa	gaa	gag	aag	aaa	aag	2163

Lys	Glu	Gly	Leu 525	Lys	Leu	Glu	Asp	Glu 530	Thr	Glu	Glu	Glu	Lys 535	Lys	Lys	
agg Arg	gaa Glu	gag Glu 540	aag Lys	aag Lys	aag Lys	tcc Ser	ttc Phe 545	gag Glu	aat Asn	ctc Leu	tgc Cys	aag Lys 550	acg Thr	att Ile	aag Lys	2211
gaa Glu	att Ile 555	ctc Leu	ggg Gly	gac Asp	aag Lys	gtt Val 560	gag Glu	aag Lys	gtt Val	gtg Val	gtc Val 565	tca Ser	gac Asp	agg Arg	att Ile	2259
gtg Val 570	gac Asp	tct Ser	ccc Pro	tgc Cys	tgt Cys 575	cta Leu	gta Val	act Thr	ggt Gly	gaa Glu 580	tat Tyr	gga Gly	tgg Trp	act Thr	gca Ala 585	2307
aat Asn	atg Met	gag Glu	agg Arg	att Ile 590	atg Met	aag Lys	gca Ala	cag Gln	gcc Ala 595	ttg Leu	aga Arg	gat Asp	agc Ser	agc Ser 600	atg Met	2355
agt Ser	ggt Gly	tac Tyr	atg Met 605	tcg Ser	agc Ser	aag Lys	aaa Lys	aca Thr 610	atg Met	gag Glu	atc Ile	aac Asn	ccc Pro 615	gac Asp	aac Asn	2403
ggt Gly	ata Ile	atg Met 620	gag Glu	gac Asp	ctc Leu	agg Arg	aag Lys 625	aga Arg	gct Ala	gaa Glu	gca Ala	gac Asp 630	aag Lys	aat Asn	gac Asp	2451
aag Lys	tct Ser 635	gtt Val	aaa Lys	gat Asp	ctt Leu	gtc Val 640	atg Met	ttg Leu	ctg Leu	tat Tyr	gag Glu 645	aca Thr	gct Ala	ttg Leu	ttg Leu	2499
acg Thr 650	tct Ser	gga Gly	ttt Phe	agt Ser	ctt Leu 655	gat Asp	gaa Glu	ccg Pro	aac Asn	act Thr 660	ttt Phe	gct Ala	gct Ala	agg Arg	att Ile 665	2547
cac His	agg Arg	atg Met	ttg Leu	aag Lys 670	ttg Leu	ggt Gly	ctg Leu	agt Ser	att Ile 675	gat Asp	gag Glu	gat Asp	gag Glu	aac Asn 680	gtt Val	2595
gag Glu	gaa Glu	gat Asp	ggt Gly 685	gat Asp	atg Met	cct Pro	gag Glu	ttg Leu 690	gag Glu	gag Glu	gac Asp	gct Ala	gct Ala 695	gaa Glu	gag Glu	2643
agc Ser	Lys	atg Met 700	gag Glu	gaa Glu	gtc Val	gac Asp	taa 705	gaga	tgaa	ıga a	attg	ctct	t			2687
<210 <211 <212 <213	> 70 > PR	4 T	opsi	s th	alia	na										

15

Met Ala Asp Val Gln Met Ala Asp Ala Glu Thr Phe Ala Phe Gln Ala

1

5

Glu Ile Asn Gln Leu Leu Ser Leu Ile Ile Asn Thr Phe Tyr Ser Asn Lys Glu Ile Phe Leu Arg Glu Leu Ile Ser Asn Ser Ser Asp Ala Leu 40 Asp Lys Ile Arg Phe Glu Ser Leu Thr Asp Lys Ser Lys Leu Asp Gly Gln Pro Glu Leu Phe Ile Arg Leu Val Pro Asp Lys Pro Asn Lys Thr Leu Ser Ile Ile Asp Ser Gly Ile Gly Met Thr Lys Ala Asp Leu Val 90 Asn Asn Leu Gly Thr Ile Ala Arg Ser Gly Thr Lys Glu Phe Met Glu Ala Leu Gln Ala Gly Ala Asp Val Ser Met Ile Gly Gln Phe Gly Val Gly Phe Tyr Ser Ala Tyr Leu Val Ala Glu Lys Val Val Val Thr Thr Lys His Asn Asp Asp Glu Gln Tyr Val Trp Glu Ser Gln Ala Gly Gly Ser Phe Thr Val Thr Arg Asp Val Asp Gly Glu Pro Leu Gly Arg Gly 165 Thr Lys Ile Ser Leu Phe Leu Lys Asp Asp Gln Leu Glu Tyr Leu Glu 180 185 Glu Arg Arg Leu Lys Asp Leu Val Lys Lys His Ser Glu Phe Ile Ser Tyr Pro Ile Tyr Leu Trp Thr Glu Lys Thr Thr Glu Lys Glu Ile Ser Asp Asp Glu Asp Glu Asp Glu Pro Lys Lys Glu Asn Glu Gly Glu Val 230 235 Glu Glu Val Asp Glu Lys Lys Glu Lys Asp Gly Lys Lys Lys Lys Ile Lys Glu Val Ser His Glu Trp Glu Leu Ile Asn Lys Gln Lys Pro 265 Ile Trp Leu Arg Lys Pro Glu Glu Ile Thr Lys Glu Glu Tyr Ala Ala Phe Tyr Lys Ser Leu Thr Asn Asp Trp Glu Asp His Leu Ala Val Lys 295 His Phe Ser Val Glu Gly Gln Leu Glu Phe Lys Ala Ile Leu Phe Val 305 315 320

Pro Lys Arg Ala Pro Phe Asp Leu Phe Asp Thr Arg Lys Lys Leu Asn Asn Ile Lys Leu Tyr Val Arg Arg Val Phe Ile Met Asp Asn Cys Glu 345 Glu Leu Ile Pro Glu Tyr Leu Ser Phe Val Lys Gly Val Val Asp Ser Asp Asp Leu Pro Leu Asn Ile Ser Arg Glu Thr Leu Gln Gln Asn Lys 375 Ile Leu Lys Val Ile Arg Lys Asn Leu Val Lys Lys Cys Ile Glu Met 395 Phe Asn Glu Ile Ala Glu Asn Lys Glu Asp Tyr Thr Lys Phe Tyr Glu Ala Phe Ser Lys Asn Leu Lys Leu Gly Ile His Glu Asp Ser Gln Asn 425 Arg Gly Lys Ile Ala Asp Leu Leu Arg Tyr His Ser Thr Lys Ser Gly Asp Glu Met Thr Ser Phe Lys Asp Tyr Val Thr Arg Met Lys Glu Gly Gln Lys Asp Ile Phe Tyr Ile Thr Gly Glu Ser Lys Lys Ala Val Glu Asn Ser Phe Leu Glu Arg Leu Lys Lys Arg Gly Tyr Glu Val Leu Tyr 485 490 Met Val Asp Ala Ile Asp Glu Tyr Ala Val Gly Gln Leu Lys Glu Tyr Asp Gly Lys Lys Leu Val Ser Ala Thr Lys Glu Gly Leu Lys Leu Glu Asp Glu Thr Glu Glu Glu Lys Lys Lys Arg Glu Glu Lys Lys Lys Ser 535 Phe Glu Asn Leu Cys Lys Thr Ile Lys Glu Ile Leu Gly Asp Lys Val Glu Lys Val Val Val Ser Asp Arg Ile Val Asp Ser Pro Cys Cys Leu 570 Val Thr Gly Glu Tyr Gly Trp Thr Ala Asn Met Glu Arg Ile Met Lys 585 Ala Gln Ala Leu Arg Asp Ser Ser Met Ser Gly Tyr Met Ser Ser Lys 600 Lys Thr Met Glu Ile Asn Pro Asp Asn Gly Ile Met Glu Asp Leu Arg 610 615

625	Arg	ALA	GIU	AIA	630	ьуs	ASN	Asp	Lys	635	vai	ьуs	Asp	Leu	6 4 0	
Met	Leu	Leu	Tyr	Glu 645	Thr	Ala	Leu	Leu	Thr 650	Ser	Gly	Phe	Ser	Leu 655	Asp	
Glu	Pro	Asn	Thr 660	Phe	Ala	Ala	Arg	Ile 665	His	Arg	Met	Leu	Lys 670	Leu	Gly	
Leu	Ser	Ile 675	Asp	Glu	Asp	Glu	Asn 680	Val	Glu	Glu	Asp	Gly 685	Asp	Met	Pro	
Glu	Leu 690	Glu	Glu	Asp	Ala	Ala 695	Glu	Glu	Ser	Lys	Met 700	Glu	Glu	Val	Asp	
<212 <212)> 13 l> 29 2> DN 3> Ar	32 JA	lopsi	is th	nalia	ana										
)> L> CI 2> (1		(292	24)												
	0> 13 attga		gega					egg a Arg <i>l</i>								50
	gat Asp															98
gat Asp	aag Lys	ctt Leu 30	gtt Val	gag Glu	tac Tyr	gat Asp	gct Ala 35	ctt Leu	ctc Leu	ctt Leu	gat Asp	cgc Arg 40	ttt Phe	ctc Leu	gac Asp	146
att Ile	ctc Leu 45	cag Gln	gat Asp	tta Leu	cac His	ggc Gly 50	gag Glu	gat Asp	ctc Leu	cgt Arg	gaa Glu 55	acg Thr	gtt Val	caa Gln	gag Glu	194
tta Leu 60	tac Tyr	gag Glu	ctt Leu	tct Ser	gct Ala 65	gag Glu	tat Tyr	gaa Glu	GJA āāā	aag Lys 70	cgt Arg	gag Glu	cct Pro	agc Ser	aag Lys 75	242
							_									290
	gag Glu															290
Leu		Glu	Leu	Gly 80 aag	Ser	Val ttc	Leu	Thr	Ser 85 atg	Leu	Asp	Pro tta	Gly	Asp 90 aat	Ser ttg	338

		110					115					120			٠	
aaa Lys	ggt Gly 125	gat Asp	ttc Phe	gtt Val	gat Asp	gag Glu 130	agt Ser	tct Ser	gca Ala	act Thr	act Thr 135	gaa Glu	tcc Ser	gat Asp	att Ile	434
gaa Glu 140	gag Glu	act Thr	ttt Phe	aag Lys	agg Arg 145	ctc Leu	gtt Val	tcg Ser	gat Asp	ctt Leu 150	ggt Gly	aag Lys	tct Ser	cct Pro	gaa Glu 155	482
gag Glu	atc Ile	ttt Phe	gat Asp	gcc Ala 160	ttg Leu	aag Lys	aat Asn	cag Gln	act Thr 165	gtg Val	gat Asp	ctg Leu	gtt Val	ttg Leu 170	act Thr	530
gct Ala	cat His	cct Pro	act Thr 175	cag Gln	tct Ser	gtg Val	cgt Arg	aga Arg 180	tca Ser	ttg Leu	ctt Leu	cag Gln	aag Lys 185	cat His	Gly ggg	578
agg Arg	ata Ile	agg Arg 190	gac Asp	tgt Cys	ctt Leu	gct Ala	caa Gln 195	ctc Leu	tat Tyr	gca Ala	aag Lys	gac Asp 200	att Ile	act Thr	cct Pro	626
gat Asp	gac Asp 205	aag Lys	cag Gln	gag Glu	cta Leu	gat Asp 210	gag Glu	tct Ser	ctg Leu	caa Glņ	aga Arg 215	gag Glu	att Ile	caa Gln	gct Ala	674
gca Ala 220	ttc Phe	cga Arg	aca Thr	gat Asp	gag Glu 225	att Ile	aga Arg	aga Arg	aca Thr	cct Pro 230	cca Pro	acc Thr	cca Pro	caa Gln	gat Asp 235	722
gaa Glu	atg Met	aga Arg	gct Ala	gga Gly 240	atg Met	agt Ser	tat Tyr	ttc Phe	cac His 245	gag Glu	aca Thr	atc Ile	tgg Trp	aaa Lys 250	ggt Gly	770
gtc Val	ccc Pro	aag Lys	ttc Phe 255	ttg Leu	cgc Arg	cgt Arg	gtg Val	gac Asp 260	aca Thr	gct Ala	ctg Leu	aaa Lys	aac Asn 265	att Ile	Gly ggg	818
att Ile	gat Asp	gaa Glu 270	cgt Arg	gtt Val	cct Pro	tac Tyr	aat Asn 275	gcc Ala	cca Pro	ttg Leu	att Ile	caa Gln 280	ttc Phe	tct Ser	tcg Ser	866
tgg Trp	atg Met 285	ggc	ggt Gly	gat Asp	cgt Arg	gat Asp 290	ggt Gly	aat Asn	ccg Pro	agg Arg	gtc Val 295	aca Thr	cct Pro	gag Glu	gtc Val	914
act Thr 300	aga Arg	gat Asp	gtg Val	tgc Cys	ttg Leu 305	ttg Leu	gct Ala	aga Arg	atg Met	atg Met 310	gct Ala	gcc Ala	aat Asn	ctc Leu	tac Tyr 315	962
tat Tyr	aac Asn	caa Gln	atc Ile	gag Glu 320	aat Asn	ctg Leu	atg Met	ttt Phe	gag Glu 325	tta Leu	tct Ser	atg Met	tgg Trp	cgt Arg 330	tgc Cys	1010
act Thr	gat Asp	gaa Glu	ttc Phe 335	cgt Arg	gtg Val	cgg Arg	gcg Ala	gat Asp 340	gaa Glu	ctg Leu	cac His	agg Arg	aac Asn 345	tca Ser	agg Arg	1058

Lys	gat Asp	gct Ala 350	gca Ala	aaa Lys	cat His	tac Tyr	ata Ile 355	gaa Glu	ttc Phe	tgg Trp	aag Lys	aca Thr 360	att Ile	cct Pro	cca Pro	1106
act Thr	gag Glu 365	cca Pro	tac Tyr	cgt Arg	gtg Val	att Ile 370	ctt Leu	ggt Gly	gat Asp	gtg Val	agg Arg 375	gat Asp	aag Lys	ctg Leu	tat Tyr	1154
cac His 380	aca Thr	cgt Arg	gag Glu	cgt Arg	tcc Ser 385	cgc Arg	caa Gln	ttg Leu	ctg Leu	agt Ser 390	aat Asn	gga Gly	atc Ile	tcg Ser	gat Asp 395	1202
att Ile	cct Pro	gaa Glu	gaa Glu	gct Ala 400	acc Thr	ttc Phe	act Thr	aat Asn	gtg Val 405	gaa Glu	cag Gln	ttc Phe	ttg Leu	gag Glu 410	cct Pro	1250
ctt Leu	gag Glu	ctc Leu	tgt Cys 415	tac Tyr	cga Arg	tca Ser	cta Leu	tgt Cys 420	tca Ser	tgt Cys	ggt Gly	gac Asp	agc Ser 425	ccg Pro	ata Ile	1298
gct Ala	gat Asp	gga Gly 430	agc Ser	ctt Leu	ctt Leu	gat Asp	ttc Phe 435	ttg Leu	agg Arg	caa Gln	gtc Val	tct Ser 440	acc Thr	ttt Phe	gga Gly	1346
ctc Leu	tcc Ser 445	ctt Leu	gtg Val	aga Arg	ctt Leu	gac Asp 450	atc Ile	agg Arg	caa Gln	gag Glu	tct Ser 455	gaa Glu	cgc Arg	cac His	aca Thr	1394
gat Asp 460	gtc Val	ttg Leu	gat Asp	gct Ala	atc Ile 465	acc Thr	aag Lys	cac His	ttg Leu	gac Asp 470	atc Ile	ggt Gly	tcc Ser	tcc Ser	tat Tyr 475	1442
100																
aga	gac Asp	tgg Trp	tct Ser	gaa Glu 480	gaa Glu	ggc Gly	cga Arg	cag Gln	gaa Glu 485	tgg Trp	ctt Leu	ctt Leu	gct Ala	gaa Glu 490	cta Leu	1490
aga Arg	Asp	tgg Trp aaa Lys	Ser	Glu 480 cca	Glu	Gly	Arg gga	Gln	Glu 485 gat	Trp	Leu	Leu	Ala	Glu 490 gaa	Leu gaa	1490 1538
aga Arg agc Ser	Asp ggc Gly tct	Trp	cgt Arg 495 gtc	Glu 480 cca Pro	Glu ctt Leu gac	Gly ttc Phe aca	Arg gga Gly ttc	CCt Pro 500 aaa Lys	Glu 485 gat Asp	Trp ctt Leu ata	Leu ccc Pro	Leu aaa Lys gag	acc Thr 505 ctg Leu	Glu 490 gaa Glu cct	Leu gaa Glu tca	
aga Arg agc Ser att Ile	ggc Gly tct Ser	aaa Lys gat Asp	cgt Arg 495 gtc Val	Glu 480 cca Pro ctg Leu	Glu ctt Leu gac Asp	Gly ttc Phe aca Thr	gga Gly ttc Phe 515	CCt Pro 500 aaa Lys	Glu 485 gat Asp gtc Val	Trp ctt Leu ata Ile	Leu ccc Pro tct Ser	Leu aaa Lys gag Glu 520	Ala acc Thr 505 ctg Leu cct	Glu 490 gaa Glu cct Pro	gaa Glu tca Ser	1538
aga Arg agc Ser att Ile gat Asp	ggc Gly tct Ser tgt Cys 525 ctt	aaa Lys gat Asp 510	cgt Arg 495 gtc Val gga Gly	Glu 480 cca Pro ctg Leu gct Ala	Ctt Leu gac Asp tat Tyr	ttc Phe aca Thr att Ile 530	gga Gly ttc Phe 515 atc Ile	CCT Pro 500 aaa Lys tct Ser	Glu 485 gat Asp gtc Val atg Met	Trp ctt Leu ata Ile gca Ala	ccc Pro tct Ser act Thr 535	aaa Lys gag Glu 520 tca Ser	Ala acc Thr 505 ctg Leu cct Pro	Glu 490 gaa Glu cct Pro agt Ser	gaa Glu tca Ser gat Asp	1538 1586

cct Pro	gcc Ala	gct Ala	gtt Val 575	gca Ala	aga Arg	ctc Leu	ttt Phe	tct Ser 580	ata Ile	gac Asp	tgg Trp	tac Tyr	aaa Lys 585	aac Asn	cgt Arg	1778
att Ile	aac Asn	ggt Gly 590	aaa Lys	caa Gln	gag Glu	gtt Val	atg Met 595	att Ile	ggt Gly	tac Tyr	tca Ser	gat Asp 600	tca Ser	ggg	aaa Lys	1826
gat Asp	gca Ala 605	Gly ggg	cgt Arg	ctc Leu	tca Ser	gct Ala 610	gct Ala	tgg Trp	gag Glu	cta Leu	tac Tyr 615	aaa Lys	gct Ala	caa Gln	gaa Glu	1874
gag Glu 620	ctt Leu	gtg Val	aag Lys	gtt Val	gct Ala 625	aag Lys	aaa Lys	tat Tyr	gga Gly	gtg Val 630	aag Lys	cta Leu	act Thr	atg Met	ttc Phe 635	1922
cat His	ggc Gly	cgt Arg	ggt Gly	ggc Gly 640	aca Thr	gtc Val	gga Gly	aga Arg	gga Gly 645	ggt Gly	ggt Gly	cct Pro	act Thr	cat His 650	ctt Leu	1970
gct Ala	ata Ile	ttg Leu	tct Ser 655	cag Gln	cca Pro	cca Pro	gat Asp	aca Thr 660	gtt Val	aat Asn	ggc Gly	tct Ser	ctt Leu 665	cga Arg	gtc Val	2018
acg Thr	gtt Val	cag Gln 670	ggt Gly	gaa Glu	gtc Val	att Ile	gag Glu 675	caa Gln	tca Ser	ttt Phe	GJA aaa	gag Glu 680	gca Ala	cac His	tta Leu	2066
Cys	ttt Phe 685	Arg	Thr	Leu	Gln	Arg 690	Phe	Thr	Ala	Ala	Thr 695	Leu	Glu	His	Gly	2114
Met 700	aac Asn	Pro	Pro	Ile	Ser 705	Pro	Lys	Pro	Glu	Trp 710	Arg	Ala	Leu	Leu	Asp 715	2162
gaa Glu	atg Met	gcg Ala	gtt Val	gtt Val 720	gca Ala	act Thr	gag Glu	gaa Glu	tac Tyr 725	cga Arg	tct Ser	gtc Val	gtt Val	ttc Phe 730	caa Gln	2210
gaa Glu	cct Pro	cga Arg	ttc Phe 735	Val	Glu	Tyr	Phe	cgc Arg 740	Leu	gct Ala	act Thr	ccg Pro	gag Glu 745	ctg Leu	gag Glu	2258
tat Tyr	gga Gly	cgt Arg 750	atg Met	aat Asn	att Ile	gga Gly	agt Ser 755	aga Arg	cct Pro	tca Ser	aag Lys	cga Arg 760	aaa Lys	cca Pro	agc Ser	2306
ggt Gly	ggg Gly 765	atc Ile	gaa Glu	tct Ser	ctc Leu	cgt Arg 770	gca Ala	atc Ile	cca Pro	tgg Trp	atc Ile 775	ttt Phe	gct Ala	tgg Trp	acg Thr	2354
caa Gln 780	aca Thr	aga Arg	ttc Phe	cat His	ctt Leu 785	cct Pro	gta Val	tgg Trp	tta Leu	ggt Gly 790	ttc Phe	gga Gly	gca Ala	gca Ala	ttt Phe 795	2402
agg	tat	gcg	atc	aag	aag	gat	gtg	aga	aac	ctt	cac	atg	ctg	caa	gat	2450

Arg	Tyr	Ala	Ile	Lys 800	Lys	Asp	Val	Arg	Asn 805	Leu	His	Met	Leu	Gln 810	Asp	
													cta Leu 825			2498
													tac Tyr			2546
ctt Leu	ctt Leu 845	gtc Val	tca Ser	gaa Glu	gat Asp	tta Leu 850	tgg Trp	gct Ala	ttt Phe	gga Gly	gag Glu 855	aaa Lys	ctc Leu	aga Arg	gcc Ala	2594
													gga Gly			2642
gac Asp	ctt Leu	ctt Leu	gaa Glu	gga Gly 880	gat Asp	cct Pro	tac Tyr	ttg Leu	aaa Lys 885	cag Gln	aga Arg	cta Leu	agg Arg	cta Leu 890	cgt Arg	2690
													aca Thr 905			2738
													cac His			2786
													gtc Val			2834
aac Asn 940	ccc Pro	acg Thr	agt Ser	gaa Glu	tac Tyr 945	gcg Ala	cct Pro	gga Gly	ctt Leu	gag Glu 950	gac Asp	aca Thr	ctt Leu	atc Ile	tta Leu 955	2882
			ggt Gly										taa	gtga	agtca	2932

<210> 14

<211> 968

<212> PRT

<213> Arabidopsis thaliana

<400> 14

Met Ala Gly Arg Asn Ile Glu Lys Met Ala Ser Ile Asp Ala Gln Leu 1 5 10 15

Arg Gln Leu Val Pro Ala Lys Val Ser Glu Asp Asp Lys Leu Val Glu 20 25 30

Tyr Asp Ala Leu Leu Asp Arg Phe Leu Asp Ile Leu Gln Asp Leu

35

40

45

His Gly Glu Asp Leu Arg Glu Thr Val Gln Glu Leu Tyr Glu Leu Ser Ala Glu Tyr Glu Gly Lys Arg Glu Pro Ser Lys Leu Glu Glu Leu Gly Ser Val Leu Thr Ser Leu Asp Pro Gly Asp Ser Ile Val Ile Ser Lys Ala Phe Ser His Met Leu Asn Leu Ala Asn Leu Ala Glu Glu Val Gln 100 Ile Ala His Arg Arg Arg Ile Lys Lys Leu Lys Lys Gly Asp Phe Val 120 Asp Glu Ser Ser Ala Thr Thr Glu Ser Asp Ile Glu Glu Thr Phe Lys 135 Arg Leu Val Ser Asp Leu Gly Lys Ser Pro Glu Glu Ile Phe Asp Ala 150 155 Leu Lys Asn Gln Thr Val Asp Leu Val Leu Thr Ala His Pro Thr Gln 165 170 Ser Val Arg Arg Ser Leu Leu Gln Lys His Gly Arg Ile Arg Asp Cys 185 Leu Ala Gln Leu Tyr Ala Lys Asp Ile Thr Pro Asp Asp Lys Gln Glu Leu Asp Glu Ser Leu Gln Arg Glu Ile Gln Ala Ala Phe Arg Thr Asp 215 Glu Ile Arg Arg Thr Pro Pro Thr Pro Gln Asp Glu Met Arg Ala Gly Met Ser Tyr Phe His Glu Thr Ile Trp Lys Gly Val Pro Lys Phe Leu 250 Arg Arg Val Asp Thr Ala Leu Lys Asn Ile Gly Ile Asp Glu Arg Val Pro Tyr Asn Ala Pro Leu Ile Gln Phe Ser Ser Trp Met Gly Gly Asp Arg Asp Gly Asn Pro Arg Val Thr Pro Glu Val Thr Arg Asp Val Cys 295 Leu Leu Ala Arg Met Met Ala Ala Asn Leu Tyr Tyr Asn Gln Ile Glu 305 315 Asn Leu Met Phe Glu Leu Ser Met Trp Arg Cys Thr Asp Glu Phe Arg 330 Val Arg Ala Asp Glu Leu His Arg Asn Ser Arg Lys Asp Ala Ala Lys

			340					345					350		
His	Tyr	Ile 355	Glu	Phe	Trp	Lys	Thr 360	Ile	Pro	Pro	Thr	Glu 365	Pro	Tyr	Arq
Val	Ile 370	Leu	Gly	Asp	Val	Arg 375	Asp	Lys	Leu	Tyr	His 380	Thr	Arg	G1u	Arg
Ser 385	Arg	Gln	Leu	Leu	Ser 390	Asn	Gly	Ile	Ser	Asp 395	Ile	Pro	Glu	Glu	Ala 400
Thr	Phe	Thr	Asn	Val 405	Glu	Gln	Phe	Leu	Glu 410	Pro	Leu	Glu	Leu	Cys 415	Туг
Arg	Ser	Leu	Cys 420	Ser	Cys	Gly	Asp	Ser 425	Pro	Ile	Ala	Asp	Gly 430	Ser	Leu
Leu	Asp	Phe 435	Leu	Arg	Gln	Val	Ser 440	Thr	Phe	Gly	Leu	Ser 445	Leu	Val	Arg
Leu	Asp 450	Ile	Arg	Gln	Glu	Ser 455	Glu	Arg	His	Thr	Asp 460	Val	Leu	Asp	Ala
11e 465	Thr	Lys	His	Leu	Asp 470	Ile	Gly	Ser	Ser	Tyr 475	Arg	Asp	Trp	Ser	Glu 480
Glu	Gly	Arg	Gln	Glu 485	Trp	Leu	Leu	Ala	Glu 490	Leu	Ser	Gly	Lys	Arg 495	Pro
Leu	Phe	Gly	Pro 500	Asp	Leu	Pro	Lys	Thr 505	Glu	Glu	Ile	Ser	Asp 510	Val	Let
Asp	Thr	Phe 515	Lys	Val	Ile	Ser	Glu 520	Leu	Pro	Ser	Asp	Cys 525	Phe	Gly	Ala
Tyr	Ile 530	Ile	Ser	Met	Ala	Thr 535	Ser	Pro	Ser	Asp	Val 540	Leu	Ala	Val	Glu
Leu 545	Leu	Gln	Arg	Glu	Cys 550	His	Val	Lys	Asn	Pro 555	Leu	Arg	Val	Val	Pro 560
Leu	Phe	Glu	Lys	Leu 565	Ala	Asp	Leu	Glu	Ala 570	Ala	Pro	Ala	Ala	Val 575	Ala
Arg	Leu	Phe	Ser 580	Ile	Asp	Trp	Tyr	Lys 585	Asn	Arg	Ile	Asn	Gly 590	Lys	Gln
Glu	Val	Met 595	Ile	Gly	Tyr	Ser	Asp 600	Ser	Gly	Lys	Asp	Ala 605	Gly	Arg	Lev
Ser	Alà 610	Ala	Trp	Glu	Leu	Tyr 615	Lys	Ala	Gln	Glu	Glu 620	Leu	Val	Lys	Va1
Ala 625	Lys	Lys	Tyr	Gly	Val 630	Lys	Leu	Thr	Met	Phe 635	His	Gly	Arg	Gly	Gly 640
Thr	Val	Gly	Arq	Glv	Glv	Glv	Pro	Thr	His	Len	Ala	Tle	T.eu	Ser	Glr

				645					650					655	
Pro	Pro	Asp	Thr 660	Val	Asn	Gly	Ser	Leu 665	Arg	Val	Thr	Val	Gln 670	Gly	Glu
Val	Ile	Glu 675	Gln	Ser	Phe	Gly	Glu 680	Ala	His	Leu	Суѕ	Phe 685		Thr	Leu
Gln	Arg 6 9 0	Phe	Thr	Ala	Ala	Thr 695	Leu	Glu	His	Gly	Met 700	Asn	Pro	Pro	Ile
Ser 705	Pro	Lys	Pro	Glu	Trp 710	Arg	Ala	Leu	Leu	Asp 715	Glu	Met	Ala	Val	Val 720
Ala	Thr	Glu	Glu	Tyr 725	Arg	Ser	Val	Val	Phe 730	Gln	Glu	Pro	Arg	Phe 735	Val
Glu	Tyr	Phe	Arg 740	Leu	Ala	Thr	Pro	Glu 745	Leu	Glu	Tyr	Gly	Arg 75.0	Met	Asn
Ile	Gly	Ser 755	Arg	Pro	Ser	Lys	Arg 760	Lys	Pro	Ser	Gly	Gly 765	Ile	Glu	Ser
Leu	Arg 770	Ala	Ile	Pro	Trp	Ile 775	Phe	Ala	Trp	Thr	Gln 780	Thr	Arg	Phe	His
Leu 785	Pro	Val	Trp	Leu	Gly 790	Phe	Gly	Ala	Ala	Phe 795	Arg	Tyr	Ala	Ile	Lys 800
Lys	Asp	Val	Arg	Asn 805	Leu	His	Met		Gln 810	Asp	Met	Tyr	Lys	Gln 815	Trp
Pro	Phe	Phe	Arg 820	Val	Thr	Ile	Asp	Leu 825	Ile	Glu	Met	Val	Phe 830	Ala	Lys
Gly	Asp	Pro 835	Gly	Ile	Ala	Ala	Leu 840	Tyr	Asp	Lys	Leu	Leu 845	Val	Ser	Glu
Asp	Leu 850	Trp	Ala	Phe	Gly	Glu 855	Lys	Leu	Arg	Ala	Asn 860	Phe	Asp	Glu	Thr
Lys 865	Asn	Leu	Val	Leu	Gln 870	Thr	Ala	Gly	His	Lys 875	Asp	Leu	Leu	Glu	Gly 880
Asp	Pro	Tyr	Leu	Lys 885	Gln	Arg	Leu	Arġ	Leu 890	Arg	Asp	Ser	Tyr	Ile 895	Thr
Thr	Leu	Asn	Val 900	Cys	Gln	Ala	Tyr	Thr 905	Leu	Lys	Arg	Ile	Arg 910	Asp	Ala
Asn	Tyr	Asn 915	Val	Thr	Leu	Arg	Pro 920	His	Ile	Ser	Lys	Glu 925	Ile	Met	Gln
Ser	Ser 930	Lys	Ser	Ala	Gln	Glu 935	Leu	Val	Lys	Leu	Asn 940	Pro	Thr	Ser	Glu
Tyr	Ala	Pro	Gly	Leu	Glu	Asp	Thr	Leu	Ile	Leu	Thr	Met	Lys	Gly	Ile

945 950 955 960 Ala Ala Gly Leu Gln Asn Thr Gly 965 <210> 15 <211> 271 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (17)..(259) <400> 15 togattcagg ttaagg atg tcg aga gct aca tac att atc ggt gcc ctt gcg 52 Met Ser Arg Ala Thr Tyr Ile Ile Gly Ala Leu Ala gga tot gcg gta gta gct tac gtg tgt gac aaa gtt att tot gat gat 100 Gly Ser Ala Val Val Ala Tyr Val Cys Asp Lys Val Ile Ser Asp Asp 15 20 aag ett ttt gga ggt act aca eca gga act att act aac aag gaa tgg 148 Lys Leu Phe Gly Gly Thr Thr Pro Gly Thr Ile Thr Asn Lys Glu Trp 30 ggt gct gcg act gaa gag aga tta caa gca tgg cca aga gtt gct ggt 196 Gly Ala Ala Thr Glu Glu Arg Leu Gln Ala Trp Pro Arg Val Ala Gly 45 50 cct ccc gtc gtc atg aac cct atc agt cgc cag aat ttc atc gtc aag 244 Pro Pro Val Val Met Asn Pro Ile Ser Arg Gln Asn Phe Ile Val Lys 70 tca cgt cct gaa taa cttttgatgc ct 271 Ser Arg Pro Glu <210> 16 <211> 80 <212> PRT <213> Arabidopsis thaliana Met Ser Arg Ala Thr Tyr Ile Ile Gly Ala Leu Ala Gly Ser Ala Val Val Ala Tyr Val Cys Asp Lys Val Ile Ser Asp Asp Lys Leu Phe Gly 25 Gly Thr Thr Pro Gly Thr Ile Thr Asn Lys Glu Trp Gly Ala Ala Thr

45

40

Glu Glu Arg Leu Gln Ala Trp Pro Arg Val Ala Gly Pro Pro Val Val

```
Met Asn Pro Ile Ser Arg Gln Asn Phe Ile Val Lys Ser Arg Pro Glu
                      70
 <210> 17
 <211> 2580
 <212> DNA
 <213> Arabidopsis thaliana
<220>
 <221> CDS
 <222> (30)..(143)
<220>
 <221> CDS
 <222> (295)..(417)
<220>
 <221> CDS
 <222> (582)..(632)
<220>
<221> CDS
<222> (1179)..(1245)
<220>
<221> CDS
<222> (1334)..(1383)
<220>
 <221> CDS
<222> (1497)..(1577)
<220>
<221> CDS
<222> (1661)..(1740)
<220>
<221> CDS
<222> (1882)..(1984)
<220>
 <221> CDS
<222> (2370)..(2564)
 <400> 17
 tottcacaaa tootaaacga gtaggagot atg got goa cog att gtt gat gog
                                                                     53
                                 Met Ala Ala Pro Ile Val Asp Ala
 gag tac ttg aaa gag atc act aag gct cgc cgt gag ctc cgt tct ctc
                                                                     101
 Glu Tyr Leu Lys Glu Ile Thr Lys Ala Arg Arg Glu Leu Arg Ser Leu
      10
                          15
```

Ile Ala Asn Lys Asn Cys Ala Pro Ile Met Leu Arg Leu Ala 25 30 35	143
taagttttcg atttccttgg tttttcgtcg agttgactgt tacagatttc gtttattcat	203
gtggagatcg ttcgattgta gttaggctgt agaatcgatt ttgtttgttt ttgaatgttg	263
aaatgtttgt atcatctggt ttttatgaag a tgg cac gat gct gga acc tat Trp His Asp Ala Gly Thr Tyr 40 45	315
gat gct caa tcg aag acc ggt gga cct aat ggc tct atc agg aac gaa Asp Ala Gln Ser Lys Thr Gly Gly Pro Asn Gly Ser Ile Arg Asn Glu 50 55 60	363
gaa gag cac act cat ggt gcc aac agt ggt ttg aag atc gct ctc gat Glu Glu His Thr His Gly Ala Asn Ser Gly Leu Lys Ile Ala Leu Asp 65 70 75	411
ctc tgt ggtaggattt tgatttagtt tttgtagatt cactttctgg ataatttcat Leu Cys	467
gcgatgtatc cgttttatgt tgtggtttaa gaacactgtt caaaataatt acattatgct	527
tttggaaatg gactttgtat cgcttaatta tgagatccta tctttgatgt ttca gag Glu 80	584
ggc gtg aaa gct aag cat ccc aaa atc aca tac gca gac ctg tat cag Gly Val Lys Ala Lys His Pro Lys Ile Thr Tyr Ala Asp Leu Tyr Gln 85 90 95	632
gtgagttaag gctgtgagag aaatcttttt gatgtccttg ttgctttttc tgcacatttg	692
tttttcaaag ttcgctggaa ctgtattcgg cttgtgtcat tacctcgtcc caggtttgag	752
cttgttgttt aggagactta gttgatagtt gagcagctgt gtaaatatgg tttcagttgt 8	812
aatttgtttc aggagatgtt actgattgtg atttggttta caaaaatcat agattgacta 8	872
tgttgttcaa ctagaacttt tatctcttgc agtaatagct aaattcaagt aaaatataca 9	932
ctgaatgaat tcaaacgacc aagaaggaaa ctgtaatgta atgtcaatct gtttccatcc	992
taagtcacat gtctgtcgtc tgtacctata acctgtctct acgactgttt gtattgccgt 1	1052
ttctccattt tatatttggt cttacaaggt cgaggcttta tttatgaatt cccaatagaa 1	1112
gtgtaccagt ttaatggcaa ttaagttttg ggtatgaatt atttactttt aagtgttttg 1	1172
tttcag ctt gct ggt gtg gta gca gtt gag gtt act ggt gga cct gac Leu Ala Gly Val Val Ala Val Glu Val Thr Gly Gly Pro Asp 100 105 110	1220
atc gtg ttc gtt ccc ggg aga aag g tatactttct catctcttga 1	1265

Ile Val Phe Val Pro Gly Arg Lys A

115	
gacattataa cagcttatca gtttaacact aaagcaaaca taattactgt atgtttcttc	1325
ttgatagg at tca aat gtc tgc ccc aag gaa gga aga ctt cct gat gcc sp Ser Asn Val Cys Pro Lys Glu Gly Arg Leu Pro Asp Ala 120 125 130	1374
aaa caa ggt acactaaatt cttgtatcaa ttataacaaa cttttcatgt Lys Gln Gly 135	1423
tttctactga taatcttgtt ttggaattgg aagatttttt ctatgaattc acattgttta	1483
tatctctgta ggt ttc caa cat ctc aga gat gtc ttc tac cgc atg gga Phe Gln His Leu Arg Asp Val Phe Tyr Arg Met Gly 145	1532
cta tot gat aag gat att gtg gca oto toa ggg ggt oat act otg Leu Ser Asp Lys Asp Ile Val Ala Leu Ser Gly Gly His Thr Leu 150 155 160	1577
gtaaattcat tggtcactta cttaacttcc gttgtttttg aacaaatatg cttgttgtgc	1637
ttatgaccac attgggtgtt tag gga agg gct cac ccg gag agg tca ggc ttt Gly Arg Ala His Pro Glu Arg Ser Gly Phe 165 170	1690
gat gga cca tgg acc caa gag ccg ctg aat ttt gac aac tcc tac ttc Asp Gly Pro Trp Thr Gln Glu Pro Leu Asn Phe Asp Asn Ser Tyr Phe 175 180 185	1738
gt gtaattttca tttctttatc ctcagagatt ttctttgtgc atttttttaa Va	1790
tettttetgt ttgtgtetee aagaaataaa ageageaaae agataetttt ttacatgate	1850
ggttatccat gattatttac tgttttggta c c agg gaa ctg ctg aaa gga gaa l Arg Glu Leu Leu Lys Gly Glu 190 195	1903
tca gag ggc ttg ttg aaa ctt cca act gac aag acc tta ttg gaa gac Ser Glu Gly Leu Leu Lys Leu Pro Thr Asp Lys Thr Leu Leu Glu Asp 200 205 210	1951
ccg gag ttc cgt cgt ctt gtt gag ctt tat gca aaggtataat atactggaga Pro Glu Phe Arg Arg Leu Val Glu Leu Tyr Ala 215 220	2004
tottototgo ototttgoca titgittott gogitgotat aataaccatt ggaacataac	2064
togatttcct ttattggttt cacattttca ctgaatccac aagcacacac actgaatcac	2124
aaaccaaatt atctagggtt ttgttctaga gaaccccacg gatccttatc gcctttatag	2184
ttgctgatgt tgcaaaatga taaaatgaac actcttacta ctatcagtga gaactgtaat	2244

attagetttt tgttagaace gtaaacagaa atteetatgg ttetttatga ttteettget 2304 taattaagtt tcaataagat aagaaagtgt tgttatgtgt tgacaagttc agtttgtggt 2364 ggcag gat gaa gat gca ttc ttc aga gac tac gcg gaa tcg cac aag aaa 2414 Asp Glu Asp Ala Phe Phe Arg Asp Tyr Ala Glu Ser His Lys Lys 225 230 2462 ctc tct gag ctt ggt ttc aac cca aac tcc tca gca ggc aaa gca gtt Leu Ser Glu Leu Gly Phe Asn Pro Asn Ser Ser Ala Gly Lys Ala Val 240 245 gca gac agc acg att ctg gca cag agt gcg ttc ggg gtt gca gtt gct 2510 Ala Asp Ser Thr Ile Leu Ala Gln Ser Ala Phe Gly Val Ala Val Ala 260 265 get geg gtt gtg gca ttt ggt tac ttt tac gag atc egg aag agg atg 2558 Ala Ala Val Val Ala Phe Gly Tyr Phe Tyr Glu Ile Arg Lys Arg Met 2580 aag taa acgaaatagg aagtaa Lys <210> 18 <211> 287 <212> PRT <213> Arabidopsis thaliana <400> 18 Met Ala Ala Pro Ile Val Asp Ala Glu Tyr Leu Lys Glu Ile Thr Lys Ala Arg Arg Glu Leu Arg Ser Leu Ile Ala Asn Lys Asn Cys Ala Pro 30 20 Ile Met Leu Arg Leu Ala Trp His Asp Ala Gly Thr Tyr Asp Ala Gln Ser Lys Thr Gly Gly Pro Asn Gly Ser Ile Arg Asn Glu Glu Glu His 50 Thr His Gly Ala Asn Ser Gly Leu Lys Ile Ala Leu Asp Leu Cys Glu Gly Val Lys Ala Lys His Pro Lys Ile Thr Tyr Ala Asp Leu Tyr Gln Leu Ala Gly Val Val Ala Val Glu Val Thr Gly Gly Pro Asp Ile Val 105 Phe Val Pro Gly Arg Lys Asp Ser Asn Val Cys Pro Lys Glu Gly Arg

140

120

135

Leu Pro Asp Ala Lys Gln Gly Phe Gln His Leu Arg Asp Val Phe Tyr

```
Arg Met Gly Leu Ser Asp Lys Asp Ile Val Ala Leu Ser Gly Gly His
                    150
                                        155
Thr Leu Gly Arg Ala His Pro Glu Arg Ser Gly Phe Asp Gly Pro Trp
                165
                                    170
Thr Gln Glu Pro Leu Asn Phe Asp Asn Ser Tyr Phe Val Arg Glu Leu
            180
                                185
Leu Lys Gly Glu Ser Glu Gly Leu Leu Lys Leu Pro Thr Asp Lys Thr
       195
                            200
                                                 205
Leu Leu Glu Asp Pro Glu Phe Arg Arg Leu Val Glu Leu Tyr Ala Asp
                        215
Glu Asp Ala Phe Phe Arg Asp Tyr Ala Glu Ser His Lys Lys Leu Ser
                    230
                                        235
Glu Leu Gly Phe Asn Pro Asn Ser Ser Ala Gly Lys Ala Val Ala Asp
                                    250
Ser Thr Ile Leu Ala Gln Ser Ala Phe Gly Val Ala Val Ala Ala Ala
            260
                                                     270
Val Val Ala Phe Gly Tyr Phe Tyr Glu Ile Arg Lys Arg Met Lys
                            280
                                                 285
<210> 19
<211> 1861
```

```
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (26) .. (284)
<220>
<221> CDS
<222> (541)..(917)
<220>
<221> CDS
<222> (1257)..(1493)
<220>
<221> CDS
<222> (1584)..(1853)
<400> 19
atagaaaaac cctaagtagg ttgtg atg ttg cga gct tta gca cgg cct ctc
                                                                     52
                             Met Leu Arg Ala Leu Ala Arg Pro Leu
```

gaa cgg tgt ttg gga agc aga gct agt ggt gat ggt tta ctc tgg caa

100

10	Arg	Cys	Leu	Gly	Ser 15	Arg	Ala	Ser	Gly	Asp 20	Gly	Leu	Leu	Trp	Gln 25	
														gtg Val 40		148
	-					_	_		-	-	_			tct Ser		196
					_	-								gaa Glu	_	244
			gtt Val		-						_		_	taagt	tata	294
atco	ccact	tct 1	cctt	ccct	ca aa	actto	gtttt	agg	gatto	ettt	ctto	ettti	tga (ctcti	tgact	354
acgt	tttt	tga 1	tggt	caaaa	ac ti	tatga	agato	tc1	atta	accc	tgai	tcati	ttc a	aata	taaaa	414
gati	cgaa	att (ttgci	tatga	aa gi	tttt	ggtct	tt	gtgaa	acat	gtt	cagg	ttt (gtaaa	attgcc	474
tct	tgaat	ttg a	attti	tgtag	gt ca	atgti	ctto	g tta	agtga	aaat	ttad	cagg	att (ggtti	ttatga	534
ttg															tc aaa le Lys	584
				9	90				9	95					00	
				gaa	aca				ttt	tgt		atg			00 cga	632
Lys	Ala	Phe	Lys 105 atg	gaa Glu aaa	aca Thr	Glu caa	Glu atg	Glu 110 gct	ttt Phe	tgt Cys gta	Gly gga	atg Met tct	Val 115 tgc	10 aaa	cga Arg	632 680
tcc Ser	Ala ctt Leu ggt	CCC Pro 120 gca Ala	Lys 105 atg Met	gaa Glu aaa Lys	aca Thr ccg Pro	Glu caa Gln gac	atg Met 125	Glu 110 gct Ala ctg	ttt Phe act Thr	tgt Cys gta Val	Gly gga Gly gct	atg Met tct Ser 130	Val 115 tgc Cys	aaa Lys tgt Cys	cga Arg ctt Leu	
tcc Ser gtt Val	ctt Leu ggt Gly 135 aga Arg	Phe ccc Pro 120 gca Ala	Lys 105 atg Met atc Ile	gaa Glu aaa Lys tct Ser	aca Thr ccg Pro aat Asn	caa Gln gac Asp 140	atg Met 125 aca Thr	Glu 110 gct Ala ctg Leu	ttt Phe act Thr tat Tyr	tgt Cys gta Val gtt Val	gga Gly gct Ala 145	atg Met tct Ser 130 aat Asn	Val 115 tgc Cys ctt Leu	aaa Lys tgt Cys	cga Arg ctt Leu gac Asp	680
tcc Ser gtt Val tcg Ser 150	ctt Leu ggt Gly 135 aga Arg	Phe ccc Pro 120 gca Ala gcc Ala	Lys 105 atg Met atc Ile gtt Val	gaa Glu aaa Lys tct Ser ctt Leu	aca Thr Ccg Pro aat Asn Gly 155	caa Gln gac Asp 140 agc Ser	atg Met 125 aca Thr gtt Val	Glu 110 gct Ala ctg Leu gtt Val	ttt Phe act Thr tat Tyr tca Ser	tgt Cys gta Val gtt Val ggg Gly 160 cat	gga Gly gct Ala 145 gtt Val	atg Met tct Ser 130 aat Asn gat	Val 115 tgc Cys ctt Leu agt Ser	aaa Lys tgt Cys ggg Gly	cga Arg ctt Leu gac Asp aaa Lys 165	680 728
tcc Ser gtt Val tcg Ser 150 ggt Gly	ctt Leu ggt Gly 135 aga Arg gcc Ala	Phe ccc Pro 120 gca Ala gcc Ala gta Val	Lys 105 atg Met atc Ile gtt Val gct Ala	gaa Glu aaa Lys tct Ser ctt Leu gaa Glu 170 gag Glu	aca Thr Ccg Pro aat Asn gga Gly 155 Cgg Arg	caa Gln gac Asp 140 agc Ser tta Leu	atg Met 125 aca Thr gtt Val tct Ser	Glu 110 gct Ala ctg Leu gtt Val act Thr	ttt Phe act Thr tat Tyr tca Ser gat Asp 175	tgt Cys gta Val gtt Val ggg Gly 160 cat His	gga Gly gct Ala 145 gtt Val aat Asn	atg Met tct Ser 130 aat Asn gat Asp gtt Val	Val 115 tgc Cys ctt Leu agt Ser gct Ala	aaa Lys tgt Cys ggg Gly aat Asn gtt Val 180 caa Gln	cga Arg ctt Leu gac Asp aaa Lys 165 gaa Glu	680 728 776

		200					205					210				
gtai	taac	tta	gttt	tgct	tg c	ctgc	ttgt	t aaa	attg	cgtg	tga	ttac	ata	gcat	ctgtga	9 7 7
tgaa	agtta	ata	atati	ttaa	aa g	gtgta	aatc	t gai	tgtt	gttt	ttt	cttt	tct	cttt	tcattt	1037
atai	taaai	tgg (gggc	ttgc	aa t	gttc	cagg	a ato	ccgt	caca	cgg	gctc	ctg	caac	gtttct	1097
tcc	ccag	tgg (attti	tgtg	ct t	ttcta	aaga	a tto	ccg	gtag	tca	gagc	tat	acata	aataat	1157
gaaq	gatad	cat (gctti	ttta	gt to	gctt	gtga	c cti	ttcc	gtga	atg	tttg	agc	tcgt	tgtata	1217
ttag	gttag	gct :	aaato	cgtt	tt ca	atata	acgc1	t tc	tta			Ser .		tca a Ser 1		1271
ggg Gly	gat Asp	gta Val 220	tac Tyr	ttg Leu	aaa Lys	aaa Lys	ccg Pro 225	gag Glu	tat Tyr	tac Tyr	agg Arg	gac Asp 230	ccg Pro	att Ile	ttc Phe	1319
cag Gln	cga Arg 235	cat His	gga Gly	aat Asn	ccc Pro	att Ile 240	cct Pro	ttg Leu	agg Arg	aga Arg	ccc Pro 245	gcg Ala	atg Met	aca Thr	gcc Ala	1367
gaa Glu 250	ccc Pro	tcc Ser	att Ile	ata Ile	gta Val 255	agg Arg	aag Lys	ctt Leu	aag Lys	cca Pro 260	cag Gln	gac Asp	ttg Leu	ttt Phe	ctg Leu 265	1415
ata Ile	ttt Phe	gca Ala	tca Ser	gat Asp 270	ggt Gly	ctc Leu	tgg Trp	gaa Glu	cat His 275	ctt Leu	agt Ser	gat Asp	gaa Glu	aca Thr 280	gcc Ala	1463
gta Val	gaa Glu	atc Ile	gtc Val 285	ctc Leu	aaa Lys	cac His	cca Pro	aga Arg 290	act Thr	gtaa	agtt	ttc (ccta	aacto	ca	1513
agtt	tget	tt q	gtato	ette	ac at	ttat	gtta	a gct	act	tagt	tta	ttta	ttt	attaa	actctg	1573
tgtt	ctad	cag (ggt a	att q Ile <i>l</i>	Ala A	ega a Arg <i>P</i> 295	aga d Arg 1	ctt g Leu V	gta a /al /	Arg A	gct g Ala 2 300	gct (Ala 1	ctg Leu	gaa q Glu (gaa Glu	1622
gcg Ala 305	gca Ala	aag Lys	aag Lys	aga Arg	gaa Glu 310	atg Met	aga Arg	tat Tyr	gga Gly	gat Asp 315	ata Ile	aag Lys	aaa Lys	ata Ile	gcc Ala 320	1670
aaa Lys	gga Gly	att Ile	cga Arg	cga Arg 325	cat His	ttc Phe	cat His	gac Asp	gac Asp 330	ata Ile	agc Ser	gtt Val	att Ile	gta Val 335	gtt Val	1718
tat Tyr	cta Leu	gat Asp	caa Gln 340	aac Asn	aaa Lys	acc Thr	agt Ser	tca Ser 345	tcg Ser	aat Asn	agt Ser	aaa Lys	ttg Leu 350	gtg Val	aag Lys	1766
caa Gln	gga Gly	ggt Gly 355	atc Ile	acc Thr	gct Ala	cca Pro	ccg Pro 360	gat Asp	atc Ile	tac Tyr	tca Ser	tta Leu	cac His	tct Ser	gat Asp	1814

gaa gca gag caa cga cgg tta ctc aat gtg tta tac tga ctgtttga 1861
Glu Ala Glu Gln Arg Arg Leu Leu Asn Val Leu Tyr
370 375 380

<210> 20

<211> 380

<212> PRT

<213> Arabidopsis thaliana

<400> 20

Met Leu Arg Ala Leu Ala Arg Pro Leu Glu Arg Cys Leu Gly Ser Arg
1 5 10 15

Ala Ser Gly Asp Gly Leu Leu Trp Gln Ser Glu Leu Arg Pro His Ala
20 25 30

Gly Gly Asp Tyr Ser Ile Ala Val Val Gln Ala Asn Ser Arg Leu Glu 35 40 45

Asp Gln Ser Gln Val Phe Thr Ser Ser Ser Ala Thr Tyr Val Gly Val
50 55 60

Tyr Asp Gly His Gly Gly Pro Glu Ala Ser Arg Phe Val Asn Arg His 65 70 75 80

Leu Phe Pro Tyr Met His Lys Phe Ala Arg Glu His Gly Gly Leu Ser 85 90 95

Val Asp Val Ile Lys Lys Ala Phe Lys Glu Thr Glu Glu Glu Phe Cys
100 105 110

Gly Met Val Lys Arg Ser Leu Pro Met Lys Pro Gln Met Ala Thr Val 115 120 125

Gly Ser Cys Cys Leu Val Gly Ala Ile Ser Asn Asp Thr Leu Tyr Val 130 135 140

Ala Asn Leu Gly Asp Ser Arg Ala Val Leu Gly Ser Val Val Ser Gly 145 150 155 160

Val Asp Ser Asn Lys Gly Ala Val Ala Glu Arg Leu Ser Thr Asp His 165 170 175

Asn Val Ala Val Glu Glu Val Arg Lys Glu Val Lys Ala Leu Asn Pro 180 185 190

Asp Asp Ser Gln Ile Val Leu Tyr Thr Arg Gly Val Trp Arg Ile Lys 195 200 205

Gly Ile Ile Gln Val Ser Arg Ser Ile Gly Asp Val Tyr Leu Lys Lys 210 215 220

Pro Glu Tyr Tyr Arg Asp Pro Ile Phe Gln Arg His Gly Asn Pro Ile 225 230 235 240

```
Pro Leu Arg Arg Pro Ala Met Thr Ala Glu Pro Ser Ile Ile Val Arg
Lys Leu Lys Pro Gln Asp Leu Phe Leu Ile Phe Ala Ser Asp Gly Leu
                                265
Trp Glu His Leu Ser Asp Glu Thr Ala Val Glu Ile Val Leu Lys His
                            280
Pro Arg Thr Gly Ile Ala Arg Arg Leu Val Arg Ala Ala Leu Glu Glu
                        295
Ala Ala Lys Lys Arg Glu Met Arg Tyr Gly Asp Ile Lys Lys Ile Ala
                    310
                                        315
Lys Gly Ile Arg Arg His Phe His Asp Asp Ile Ser Val Ile Val Val
                325
Tyr Leu Asp Gln Asn Lys Thr Ser Ser Ser Asn Ser Lys Leu Val Lys
Gln Gly Gly Ile Thr Ala Pro Pro Asp Ile Tyr Ser Leu His Ser Asp
Glu Ala Glu Gln Arg Arg Leu Leu Asn Val Leu Tyr
    370
                        375
```

```
<210> 21
  <211> 3633
  <212> DNA
  <213> Arabidopsis thaliana
  <220>
  <221> CDS
  <222> (41)..(356)
  <220>
  <221> CDS
  <222> (811)..(956)
  <220>
  <221> CDS
  <222> (1076)..(1389)
  <220>
  <221> CDS
<222> (1544)..(1592)
  <220>
  <221> CDS
  <222> (1925)..(2010)
  <220>
  <221> CDS
  <222> (2037)..(2120)
```

PCT/EP99/05652

```
<220>
<221> CDS
<222> (2399)..(2501)
<220>
<221> CDS
<222> (2621)..(2718)
<220>
<221> CDS
<222> (2802)..(2924)
<220>
<221> CDS
<222> (3071)..(3185)
<220>
<221> CDS
<222> (3324)..(3431)
<220>
<221> CDS
<222> (3518)..(3619)
<400> 21
ggcgattgag cgaagaagaa accitcgttc tctctcggaa atg acg aag agg aag
                                             Met Thr Lys Arg Lys
aag gaa gta ata gat gtc gat tgc tcc gag aag aaa gat ttt gtg att
                                                                   103
Lys Glu Val Ile Asp Val Asp Cys Ser Glu Lys Lys Asp Phe Val Ile
gat tgg tct tcc gct atg gat aag gaa gac gaa gtt ccc gag ctc gag
                                                                   151
Asp Trp Ser Ser Ala Met Asp Lys Glu Asp Glu Val Pro Glu Leu Glu
att gtt aat acc acc aaa cct act cct ccg cca ccg cca acg ttt ttc
                                                                   199
Ile Val Asn Thr Thr Lys Pro Thr Pro Pro Pro Pro Pro Thr Phe Phe
                             45
tec gac gat caa acc gat tet eeg aaa ete eta acc gat egt gac ete
                                                                   247
Ser Asp Asp Gln Thr Asp Ser Pro Lys Leu Leu Thr Asp Arg Asp Leu
                         60
gac gag cag cta gag cgt aaa aaa gcg atc ctg aca tta ggt ccg ggc
                                                                   295
Asp Glu Gln Leu Glu Arg Lys Lys Ala Ile Leu Thr Leu Gly Pro Gly
tta ccc gac aag ggt gag aaa att cga ctc aaa atc gct gat ctc gaa
Leu Pro Asp Lys Gly Glu Lys Ile Arg Leu Lys Ile Ala Asp Leu Glu
                                     95
gag gag aag cag c gtagagtttt agaaggctcg aaaatggttc gcattctgat
Glu Glu Lys Gln A
            105
```

cca	acty	cat	gett	ayıı	cg t	ttga	tttt	c tt	agat	atgt	tac	tgtt	tta	gặtt	ggggtt	456
ttc	aagt	tta	tgct	aaag	tt t	ggct	tttt	t tg	agta	catt	tat	gtgt	atc	ttta	ctggtc	516
tta	cctc	ata	gtcc	aagc	ta g	attc	gagc	t ca	ttta	tgtg	tat	gatc	tat	agtc	acagaa	576
cat	ctat	gtg	ttcg	agct	ca t	ttat	gtgt	t tg	aata	tgaa	tat	gatg	cta	caaa	agactt	636
ttt	tggc	agg	aggt	ggac	ag a	agtt	ctaa	g gt	cgtg	tctt	cga	ctag	ctc	aggt	attctt	696
ggt	ggata	aat	gtta	aagt	tg t	ttgc	ttct	a ac	atag	tggt	tca	tttt	tct	gtat	ggtttt	756
tcga	attta	atc	tttc	attt	tt t	ggac	ttaa	g tt	tgat	gagc	cat	gttt	cat	gtag	gt rg	812
tca Ser	gat Asp	gtt Val	tta Leu 110	ccg Pro	caa Gln	gga Gly	aat Asn	gca Ala 115	Val	tca Ser	aaa Lys	gat Asp	acc Thr 120	tct	aga Arg	860
Gly	Asn	125	Asp	Ser	Lys	Asp	Thr 130	Ser	Arg	Gln	Gly	Asn 135	Ala	gat Asp	Ser	908
aaa Lys	gaa Glu 140	gtc Val	tca Ser	cgg Arg	tca Ser	aca Thr 145	ttt Phe	tct Ser	gcg Ala	gtt Val	ttc Phe 150	agt Ser	aaa Lys	cca Pro	aaa Lys	956
gtat	:aaaa	rca 1	teati	tttt	F+ +1		atta	- 22/	catai	taas	acci	total	rst	+++~	caattt	1016
3	-55-5	,	cogo				-9	- aa	-gca	cgga	gcc	ccca	Lat	cccg	caattt	
															aacag	1075
taaa	aacto gat	gtt (ttgg:	atgg:	gt ad	cttc:	tcat	t gad	tacg:	attt	tgta gaa	aatci cta	tgt gaa		aacag	
acg Thr 155	gat Asp	tct Ser gaa	cag Gln agg	tca Ser	aag Lys 160 aaa	aaa Lys cac	gcc Ala	ttt Phe	ggt Gly	attt aaa Lys 165	tgta gaa Glu aag	cta Leu	gaa Glu ota	gttca	ctg Leu 170	1075
acg Thr 155 gga Gly	gat Asp tgt Cys	tct Ser gaa Glu	cag Gln agg Arg	tca Ser agg Arg 175	aag Lys 160 aaa Lys	aaa Lys cac His	gcc Ala aag Lys	t gad ttt Phe gct Ala	ggt Gly ggt Gly 180	attt aaa Lys 165 aga Arg	gaa Glu aag Lys	cta Leu cct Pro	gaa Glu gta Val	gttc gat Asp aca Thr	ctg Leu 170 agg Arg	1075 1123
acg Thr 155 gga Gly ctg Leu	gat Asp tgt Cys agc Ser	tct Ser gaa Glu aac Asn	cag Gln agg Arg ggg Gly 190 cag	tca Ser agg Arg 175 tgg Trp	aag Lys 160 aaa Lys cgg Arg	aaa Lys cac His ttg Leu	gcc Ala aag Lys ttg Leu	ttt Phe gct Ala cca Pro 195	ggt Gly ggt Gly 180 gat Asp	attt aaa Lys 165 aga Arg gta Val	gaa Glu aag Lys ggg Gly	cta Leu cct Pro aaa Lys	gaa Glu gta Val gct Ala 200	gttc. gat Asp aca Thr 185	ctg Leu 170 agg Arg	1075 1123 1171
acg Thr 155 gga Gly ctg Leu agt Ser	gat Asp tgt Cys agc Ser gca Ala	tct Ser gaa Glu aac Asn aag Lys 205	cag Gln agg Arg ggg Gly 190 cag Gln	tca Ser agg Arg 175 tgg Trp	aag Lys 160 aaa Lys cgg Arg gat Asp	aaa Lys cac His ttg Leu tct Ser	gcc Ala aag Lys ttg Leu gga Gly 210	ttt Phe gct Ala cca Pro 195 ctt Leu	ggt Gly ggt Gly 180 gat Asp aaa Lys	attt aaa Lys 165 aga Arg gta Val gaa Glu	gaa Glu aag Lys ggg Gly tca Ser	cta Leu Cct Pro aaa Lys aaa Lys	gaa Glu gta Val gct Ala 200 ggg Gly	gat Asp aca Thr 185 gag Glu	ctg Leu 170 agg Arg cac His	1075 1123 1171 1219
acg Thr 155 gga Gly ctg Leu agt Ser aaa Lys	gat Asp tgt Cys agc Ser gca Ala tcc Ser 220	tct Ser gaa Glu aac Asn aag Lys 205 aag Lys	cag Gln agg Arg ggg Gly 190 cag Gln gaa Glu	tca Ser agg Arg 175 tgg Trp ttt Phe	aag Lys 160 aaa Lys cgg Arg gat Asp tat Tyr	aaa Lys cac His ttg Leu tct Ser gga Gly 225	gcc Ala aag Lys ttg Leu gga Gly 210 aag Lys	tttt Phe gct Ala cca Pro 195 ctt Leu aaa Lys	ggt Gly ggt Gly 180 gat Asp aaa Lys agg	attt aaa Lys 165 aga Arg gta Val gaa Glu ccc Pro	gaa Glu aag Lys ggg Gly tca Ser atg Met 230	cta Leu Cct Pro aaa Lys 215 gaa Glu	gaa Glu gta Val gct Ala 200 ggg Gly tct Ser	gate gat Asp aca Thr 185 gag Glu aat Asn	ctg Leu 170 agg Arg cac His aag Lys	1075 1123 1171 1219

Asp Thr Ser Gly His Glu Thr Pro Ar 255	
gctactagtt tgttgttttc tctaagggtt ctcaagttta ccactgctgg ttactgcaat	146
tttgttgtga catgacaatc tggtacataa tagaatgaga tgtattgtaa ttgctcaact	152
tctttctctc atag g gag tgg tct tgg gaa aaa tct cca tca caa agt tca g Glu Trp Ser Trp Glu Lys Ser Pro Ser Gln Ser Ser 260 265 270	158
agg cgc cgt aag gtattettge ttacteeege tactgtatat ettgeaattg Arg Arg Arg Lys 275	1632
cagtttttac gtagtcatta tagtccttaa gaaatttaca ccagcagaag catgactcat	1692
tttctaaacc ttcttgttat ctcccaacag aaaattttat gaattcctta aaaagacttc	1752
agttttcgaa cgtttgattc ctctctagat gaactgcagg atttatactt gccaggaaaa	1812
cttcctactt gactatatca tttatttggc ttctttaata ttgtctttac tccaactcat	1872
ttgttatgtt gtttttctta cttattgatg atattcccta aaaaaactat ag aaa tca Lys Ser	1930
gag gac aca gtg ata aat gtg gat gaa gaa gaa gct cag cct tca aca Glu Asp Thr Val Ile Asn Val Asp Glu Glu Glu Ala Gln Pro Ser Thr 280 285 290	1978
gtg gcg gag caa gcg gct gaa ctg cct gaa gg gtaaatgtga cctatttct Val Ala Glu Gln Ala Ala Glu Leu Pro Glu Gl 295 300	2030
ctttag c ctc att aag tta caa ctg gct ata tat aaa cta ata gtt gat y Leu Ile Lys Leu Gln Leu Ala Ile Tyr Lys Leu Ile Val Asp 305 310 315	2079
aaa aca tgc agc tta cag gaa gat ata tgc tac cca aca ag gtaaatctat Lys Thr Cys Ser Leu Gln Glu Asp Ile Cys Tyr Pro Thr ArSe 320 325 330 e	2130
ctcaagactg atctaggcta acttcctgta aatttgtaac cctcaaaaga tttaatgctt	2190
ggtgattcag ggatgatcct cactttgttc aagtttgtct taaagatctt gaatgccttg	2250
cacctcgaga atatctgaca tcgccggtta tgaatttcta catgaggtat tttttggagt	2310
gatagacttg ccatatatgt catcttatat tatgctagcg ctatttgcat gttatttata	2370
taactattgt cctgttttct tttggtag g ttc ttg cag cag cag ata tca tca g Phe Leu Gln Gln Gln Ile Ser S h 335	2423 0
tcg aat caa atc tct gct gat tgt cac ttc ttt aat acc tat ttc tac r Ser Asn Gln Ile Ser Ala Asp Cys His Phe Phe Asn Thr Tyr Phe T	2471

aag aag ctc agt gac gct gtt acg tac aag gtgattagaa aaatgtgatc r Lys Lys Leu Ser Asp Ala Val Thr Tyr Lys 360 365	2521
ctttaaaaat aattatctgt tggcattctt gcgattcaaa tttttatcat tgttatttat	2581
gttaactggt ctatttatct tgtcctttca atgaaatag ggg aat gac aag gat Gly Asn Asp Lys A 370	2635
gcc ttc ttt gtg agg ttc agg cgg tgg tgg aag ggt att gat cta ttt p Ala Phe Phe Val Arg Phe Arg Arg Trp Trp Lys Gly Ile Asp Leu P 375 380 385	2683
cgt aag gct tat att ttc ata cca ata cat gaa ga gtaagtatct e Arg Lys Ala Tyr Ile Phe Ile Pro Ile His Glu 390 395	2728
ttccttttag cactctactt tcgatttttt cgcaagagtt ctcaagaatt cagattcttg	2788
r Leu His Trp Ser Leu Val Ile Val Cys Ile Pro Asp e 400s 405 410	2838
aag aaa gat gaa tcg ggg ttg act ata ctt cac ctt gat tct cta gga Lys Lys Asp Glu Ser Gly Leu Thr Ile Leu His Leu Asp Ser Leu Gly 415 420 425	2886
ctt cac tcg aga aaa tca att gtt gaa aat gta aaa ag gtgagatgct Leu His Ser Arg Lys Ser Ile Val Glu Asn Val Lys Ar 430 435	2934
aggggcttta cccgtgactt tatgttctca catgcttgac gttgtatgca tatggtttca	2994
gttcataaaa ggaaaaatta ttacactggc ttgaaaatgt acgacattta ctagtttcta	3054
tgtcaatttg ttgtag g ttt cta aaa gac gaa tgg aat tat ttg aat caa g Phe Leu Lys Asp Glu Trp Asn Tyr Leu Asn Gln 440 445 450	3104
gat gac tat tcc ttg gat ctg cct atc tca gaa aaa gta tgg aaa aac Asp Asp Tyr Ser Leu Asp Leu Pro Ile Ser Glu Lys Val Trp Lys Asn 455 460 465	3152
ctc cct cgt agg atc agc gaa gct gtt gtt cag gtcagtcttt taccttctta Leu Pro Arg Arg Ile Ser Glu Ala Val Val Gln 470 - 475	3205
ateceatgat teaaggaact ttgtttatae ggtttetteg gaaatatgat tatatteaga	3265
cactagaacc acaggaagtt caattcgtct tatgatatta ttctctttgt gcaaccag	3323
gtt ccg cag cag aaa aac gat ttt gat tgt ggt ccg ttt gtg ctc ttc Val Pro Gln Gln Lys Asn Asp Phe Asp Cys Gly Pro Phe Val Leu Phe 480 485 490	3371

ttc Phe	att Ile 495	гуs	cgg Arg	ttc Phe	att Ile	gaa Glu 500	gag Glu	gcg Ala	cct Pro	caa Gln	agg Arg 505	Leu	aaa Lys	agg Arg	aaa Lys	3419
gac Asp 510	Leu	gga Gly	atg Met	gtg	agta	atc	tcaa	actc	tt t	tcct	gata	c cg	aatc	acat	:	3471
atc	tt c t	tct	tact	cttg	tc t	aaac	ttgt	g tc	ctca	atgt	atc		Phe			3526
aag Lys	tgg Trp	ttt Phe	aga Arg 520	Pro	gat Asp	gaa Glu	gcc Ala	tct Ser 525	gct Ala	ctg Leu	aga Arg	atc Ile	aaa Lys 530	Ile	cga Arg	3574
aac Asn	acg Thr	Leu	atc Ile	gag Glu	cta Leu	ttc Phe	cgt Arg 540	gtc Val	agt Ser	gac Asp	cag Gln	aca Thr 545	gag Glu	taa		3619
acc	agta	cag	atta													3633
<21:	0> 2: 1> 5: 2> PI 3> A:	46 RT	dops:	is tl	halia	ana										
	0> 2: Thr		Ara	Lare	Turn	C1	V-1	T1-	3	**- 1	_	_	_			
1	1111	ny 3	Arg	Бу 5	цуъ	GIU	vai	iie	10	vai	Asp	Cys	Ser	Glu 15	Lys	
Lys	Asp	Phe	Val 20	Ile	Asp	Trp	Ser	Ser 25	Ala	Met	Asp	Lys	Glu 30	Asp	Glu	
Val	Pro	Glu 35	Leu	Glu	Ile	Val	Asn 40	Thr	Thr	Lys	Pro	Thr 45	Pro	Pro	Pro	
Pro	Pro 50	Thr	Phe	Phe	Ser	Asp 55	Asp	Gln	Thr	Asp	Ser 60	Pro	Lys	Leu	Leu	
Thr 65	Asp	Arg	Asp	Leu	Asp 70	Glu	Gln	Leu	Glu	Arg 75	Lys	Lys	Ala	Ile	Leu 80	
Thr	Leu	Gly	Pro	Gly 85	Leu	Pro	Asp	Lys	Gly 90	Glu	Lys	Ile	Arg	Leu 95	Lys	
Ile	Ala	Asp	Leu 100	Glu	Glu	Glu	Lys	Gln 105	Arg	Ser	Asp	Val	Leu 110	Pro	Gln	
Gly	Asn	Ala 115	Val	Ser	Lys	Asp	Thr 120	Ser	Arg	Gly	Asn	Ala 125	qzA	Ser	Lys	
Asp	Thr 130	Ser	Arg	Gln	Gly	Asn 135	Ala	Asp	Ser	Lys	Glu 140	Val	Ser	Arg	Ser	
Thr	Phe	Ser	Ala	Val	Phe	Ser	Lys	Pro	Lys	Thr	Asp	Ser	Gln	Ser	Lys	

145 150 155 160 Lys Ala Phe Gly Lys Glu Leu Glu Asp Leu Gly Cys Glu Arg Arg Lys His Lys Ala Gly Arg Lys Pro Val Thr Arg Leu Ser Asn Gly Trp Arg 185 Leu Leu Pro Asp Val Gly Lys Ala Glu His Ser Ala Lys Gln Phe Asp 200 Ser Gly Leu Lys Glu Ser Lys Gly Asn Lys Lys Ser Lys Glu Pro Tyr Gly Lys Lys Arg Pro Met Glu Ser Ser Thr Tyr Ser Leu Ile Asp Asn Asp Thr Ser Gly His Glu 250 Thr Pro Arg Glu Trp Ser Trp Glu Lys Ser Pro Ser Gln Ser Ser Arg 265 Arg Arg Lys Lys Ser Glu Asp Thr Val Ile Asn Val Asp Glu Glu Glu Ala Gln Pro Ser Thr Val Ala Glu Gln Ala Ala Glu Leu Pro Glu Gly Leu Ile Lys Leu Gln Leu Ala Ile Tyr Lys Leu Ile Val Asp Lys Thr Cys Ser Leu Gln Glu Asp Ile Cys Tyr Pro Thr ArSeg Phe Leu Gln 325 330 Gln Gln Ile Ser Sr Ser Asn Gln Ile Ser Ala Asp Cys His Phe Phe Asn Thr Tyr Phe Tr Lys Lys Leu Ser Asp Ala Val Thr Tyr Lys Gly 360 Asn Asp Lys Ap Ala Phe Phe Val Arg Phe Arg Arg Trp Trp Lys Gly 375 Ile Asp Leu Pe Arg Lys Ala Tyr Ile Phe Ile Pro Ile His Glu r Leu His Trp Ser Leu Val Ile Val Cys Ile Pro Asp Lys Lys Asp Glu Ser Gly Leu Thr Ile Leu His Leu Asp Ser Leu Gly Leu His Ser Arg 415 Lys Ser Ile Val Glu Asn Val Lys Arg Phe Leu Lys Asp Glu Trp Asn Tyr Leu Asn Gln Asp Asp Tyr Ser Leu Asp Leu Pro Ile Ser Glu Lys

445					450					455	i				460	
Val	Trp	Lys	Asn	Leu 465	Pro	Arg	Arg	Ile	Ser 470		Ala	. Val	Val	Ġln 475	Val	
Pro	Gln	Gln	Lys 480	Asn	Asp	Phe	Asp	Суs 485	Gly	Pro	Phe	Val	Leu 490		Phe	
Ile	Lys	Arg 495	Phe	Ile	Glu	Glu	Ala 500	Pro	Gln	Arg	Leu	Lys 505		Lys	Asp	
Leu	Gly 510	Met	Phe	Asp	Lys	Lys 515	Trp	Phe	Arg	Pro	Asp 520		Ala	Ser	Ala	
Leu 525	Arg	Ile	Lys	Ile	Arg 530	Asn	Thr	Leu	Ile	Glu 5 3 5		Phe	Arg	Val	Ser 540	
Asp	Gln	Thr	Glu										-			
<21:	0> 21 1> 11 2> DI 3> An	108 AV	dops	is tl	halia	ana										
<222	l> CI 2> (2	22)	. (110	07)												
	0> 23 agtta		gcato	catca	aa g	atg Met 1	aag Lys	gca Ala	ctc Leu	att Ile 5	ctt Leu	gtt Val	gga Gly	ggc Gly	ttc Phe 10	51
ggc Gly	act Thr	cgc Arg	ttg Leu	aga Arg 15	cca Pro	ttg Leu	act Thr	ctc Leu	agt Ser 20	ttc Phe	cca Pro	aag Lys	ccc Pro	ctt Leu 25	gtt Val	99
gat Asp	ttt Phe	gct Ala	aat Asn 30	aaa Lys	ccc Pro	atg Met	atc Ile	ctt Leu 35	cat His	cag Gln	ata Ile	gag Glu	gct Ala 40	ctt Leu	aag Lys	147
gca Ala	gtt Val	gga Gly 45	gtt Val	gat Asp	gaa Glu	gtg Val	gtt Val 50	ttg Leu	gcc Ala	atc Ile	aat Asn	tat Tyr 55	cag Gln	cca Pro	gag Glu	195
gtg Val	atg Met 60	ctg Leu	aac Asn	ttc Phe	ttg Leu	aag Lys 65	gac Asp	ttt Phe	gag Glu	acc Thr	aag Lys 70	ctg Leu	gaa Glu	atc Ile	aaa Lys	243
atc Ile 75	act Thr	tgc Cys	tca Ser	caa Gln	gag Glu 80	acc Thr	gag Glu	cca Pro	cta Leu	ggt Gly 85	acc Thr	gct Ala	ggt Gly	cct Pro	ctg Leu 90	291
gct Ala	cta Leu	gcg Ala	aga Arg	gac Asp	aaa Lys	ttg Leu	ctt Leu	gat Asp	gga Glv	tct Ser	gga Glv	gag	ccc	ttc Phe	ttt	339

				95					100					105		
gtt Val	ctt Leu	aac Asn	agt Ser 110	gat Asp	gtg Val	att Ile	agt Ser	gag Glu 115	tac Tyr	cct Pro	ctt Leu	aaa Lys	gaa Glu 120	atg Met	ctt Leu	387
gag Glu	ttt Phe	cac His 125	aaa Lys	tct Ser	cac His	ggt Gly	ggg Gly 130	gaa Glu	gcc Ala	tcc Ser	ata Ile	atg Met 135	gta Val	aca Thr	aag Lys	435
gtg Val	gat Asp 140	gaa Glu	ccg Pro	tcg Ser	aaa Lys	tat Tyr 145	gga Gly	gtg Val	gtt Val	gtt Val	atg Met 150	gaa Glu	gaa Glu	agc Ser	act Thr	483
gga Gly 155	aga Arg	gtg Val	gag Glu	aag Lys	ttt Phe 160	gtg Val	gaa Glu	aag Lys	cca Pro	aaa Lys 165	ctg Leu	tat Tyr	gta Val	ggt Gly	aac Asn 170	531
aag Lys	atc Ile	aac Asn	gct Ala	ggg Gly 175	att Ile	tat Tyr	ctt Leu	ctg Leu	aac Asn 180	cca Pro	tct Ser	gtt Val	ctt Leu	gat Asp 185	aag Lys	579
att Ile	gag Glu	cta Leu	aga Arg 190	ccg Pro	act Thr	tca Ser	atc Ile	gaa Glu 195	aaa Lys	gag Glu	act Thr	ttc Phe	cct Pro 200	aag Lys	att Ile	627
gca Ala	gca Ala	gcg Ala 205	caa Gln	GJÀ aaa	ctc Leu	tat Tyr	gct Ala 210	atg Met	gtg Val	cta Leu	cca Pro	ggg Gly 215	ttt Phe	tgg Trp	atg Met	675
gac Asp	att Ile 220	Gly ggg	caa Gln	ccc Pro	cgt Arg	gac Asp 225	tac Tyr	ata Ile	acg Thr	ggt Gly	ttg Leu 230	aga Arg	ctc Leu	tac Tyr	tta Leu	723
gac Asp 235	tcc Ser	ctt Leu	agg Arg	aag Lys	aaa Lys 240	tct Ser	cct Pro	gcc Ala	aaa Lys	tta Leu 245	acc Thr	agt Ser	GJÀ aaa	cca Pro	cac His 250	771
ata Ile	gtt Val	Gly ggg	aat Asn	gtt Val 255	ctt Leu	gtt Val	gac Asp	gaa Glu	acc Thr 260	gct Ala	aca Thr	att Ile	GJA aaa	gaa Glu 265	gga Gly	819
tgt Cys	ttg Leu	att Ile	gga Gly 270	cca Pro	gac Asp	gtt Val	gcc Ala	att Ile 275	ggt Gly	cca Pro	Gly	tgc Cys	att Ile 280	gtt Val	gag Glu	867
tca Ser	gga Gly	gtc Val 285	aga Arg	ctc Leu	tcc Ser	cga Arg	tgc Cys 290	acg Thr	gtc Val	atg Met	cgt Arg	gga Gly 295	gtc Val	cgc Arg	atc Ile	915
aag Lys	aag Lys 300	cat His	gcg Ala	tgt Cys	atc Ile	tcg Ser 305	agc Ser	agt Ser	atc Ile	atc Ile	ggg Gly 310	tgg Trp	cac His	tca Ser	acg Thr	963
gtt Val 315	ggt Gly	caa Gln	tgg Trp	gcc Ala	agg Arg 320	atc Ile	gag Glu	aac Asn	atg Met	acg Thr 325	atc Ile	ctc Leu	ggt Gly	gag Glu	gat Asp 330	1011

gtt cat gtg agc gat gag atc tat agc aat gga gga gtt gtt ttg cca 1059 Val His Val Ser Asp Glu Ile Tyr Ser Asn Gly Gly Val Val Leu Pro 335 cac aag gag atc aaa tca aac atc ttg aag cca gag ata gtg atg tga 1107 His Lys Glu Ile Lys Ser Asn Ile Leu Lys Pro Glu Ile Val Met aa 1109 <210> 24 <211> 361 <212> PRT <213> Arabidopsis thaliana <400> 24 Met Lys Ala Leu Ile Leu Val Gly Gly Phe Gly Thr Arg Leu Arg Pro 10 Leu Thr Leu Ser Phe Pro Lys Pro Leu Val Asp Phe Ala Asn Lys Pro 25 Met Ile Leu His Gln Ile Glu Ala Leu Lys Ala Val Gly Val Asp Glu Val Val Leu Ala Ile Asn Tyr Gln Pro Glu Val Met Leu Asn Phe Leu Lys Asp Phe Glu Thr Lys Leu Glu Ile Lys Ile Thr Cys Ser Gln Glu Thr Glu Pro Leu Gly Thr Ala Gly Pro Leu Ala Leu Ala Arg Asp Lys Leu Leu Asp Gly Ser Gly Glu Pro Phe Phe Val Leu Asn Ser Asp Val 100 105 Ile Ser Glu Tyr Pro Leu Lys Glu Met Leu Glu Phe His Lys Ser His 120 Gly Gly Glu Ala Ser Ile Met Val Thr Lys Val Asp Glu Pro Ser Lys 135 140 Tyr Gly Val Val Wat Met Glu Glu Ser Thr Gly Arg Val Glu Lys Phe 155 Val Glu Lys Pro Lys Leu Tyr Val Gly Asn Lys Ile Asn Ala Gly Ile Tyr Leu Leu Asn Pro Ser Val Leu Asp Lys Ile Glu Leu Arg Pro Thr 185 Ser Ile Glu Lys Glu Thr Phe Pro Lys Ile Ala Ala Ala Gln Gly Leu

Tyr	210	Met	val	Leu	Pro	Gly 215	Phe	Trp	Met	Asp	11e 220	Gly	Gln	Pro	Arg	
Asp 225	Tyr	Ile	Thr	Gly	Leu 230	Arg	Leu	Tyr	Leu	Asp 235	Ser	Leu	Arg	Lys	Lys 240	
Ser	Pro	Ala	Lys	Leu 245	Thr	Ser	Gly	Pro	His 250	Ile	Val	Gly	Asn	Val 255	Leu	
Val	Asp	Glu	Thr 260	Ala	Thr	Ile	Gly	Glu 265	Gly	Cys	Leu	Ile	Gly 270	Pro	Asp	
Val	Ala	Ile 275	Gly	Pro	Gly	Cys	11e 280	Val	Glu	Ser	Gly	Val 285	Arg	Leu	Ser	
Arg	Суs 290	Thr	Val	Met	Arg	Gly 295	Val	Arg	Ile	Lys	Lys 300	His	Ala	Суѕ	Ile	
Ser 305	Ser	Ser	Ile	Ile	Gly 310	Trp	His	Ser	Thr	Val 315	Gly	Gln	Trp	Ala	Arg 320	
Ile	Glu	Asn	Met	Thr 325	Ile	Leu	Gly	Glu	Asp 330	Val	His	Val	Ser	Asp 335	Glu	
Ile	Tyr	Ser	Asn 340	Gly	Gly	Val	Val	Leu 345	Pro	His	Lys	Glu	Ile 350	Lys	Ser	
Asn	Ile	Leu 355	Lys	Pro	Glu	Ile	Val 360	Met								
<211 <212)> 25 L> 10 2> DN B> An)71 NA	dops:	is tl	nalia	ana										
)> L> CI 2> (9		(105	5)												
)> 25 aataa	a ato				r Lei						Lei			c ctc c Leu	50
									tca Ser							98
cgg Arg	tct Ser	cca Pro	tcc Ser	tcc Ser	tcc Ser	tcc Ser	tca Ser	gtc Val	tct Ser	atg Met	acg Thr	aca Thr	acg Thr	cgt Arg	gga Gly	146

aac gtg gct gtg gcg gct gct gct aca tcc act gag gcg cta aga aaa Asn Val Ala Val Ala Ala Ala Ala Thr Ser Thr Glu Ala Leu Arg Lys

gga Gly	ata Ile	gcg Ala 65	gag Glu	ttc Phe	tac Tyr	aat Asn	gaa Glu 70	act Thr	tcg Ser	ggt Gly	ttg Leu	tgg Trp 75	gaa Glu	gag Glu	att Ile	242
tgg Trp	gga Gly 80	gat Asp	cat His	atg Met	cat His	cat His 85	ggc Gly	ttt Phe	tat Tyr	gac Asp	cct Pro 90	gat Asp	tct Ser	tct Ser	gtt Val	290
caa Gln 95	ctt Leu	tct Ser	gat Asp	tct Ser	ggt Gly 100	cac His	aag Lys	gaa Glu	gct Ala	cag Gln 105	atc Ile	cgt Arg	atg Met	att Ile	gaa Glu 110	338
gag Glu	tct Ser	ctc Leu	cgt Arg	ttc Phe 115	gcc Ala	ggt Gly	gtt Val	act Thr	gat Asp 120	gaa Glu	gag Glu	gag Glu	gag Glu	aaa Lys 125	aag Lys	386
ata Ile	aag Lys	aaa Lys	gta Val 130	gtg Val	gat Asp	gtt Val	GJÀ aaa	tgt Cys 135	ggg	att Ile	gga Gly	gga Gly	agc Ser 140	tca Ser	aga Arg	434
tat Tyr	ctt Leu	gcc Ala 145	tct Ser	aaa Lys	ttt Phe	gga Gly	gct Ala 150	gaa Glu	tgc Cys	att Ile	ggc Gly	att Ile 155	act Thr	ctc Leu	agc Ser	482
cct Pro	gtt Val 160	cag Gln	gcc Ala	aag Lys	aga Arg	gcc Ala 165	aat Asn	gat Asp	ctc Leu	gcg Ala	gct Ala 170	gct Ala	caa Gln	tca Ser	ctc Leu	530
tet Ser 175	cat His	aag Lys	gct Ala	tcc Ser	ttc Phe 180	caa Gln	gtt Val	gcg Ala	gat Asp	gcg Ala 185	ttg Leu	gat Asp	cag Gln	cca Pro	ttc Phe 190	578
gaa Glu	gat Asp	gga Gly	aaa Lys	ttc Phe 195	gat Asp	cta Leu	gtg Val	tgg Trp	tcg Ser 200	atg Met	gag Glu	agt Ser	ggt Gly	gag Glu 205	cat His	626
atg Met	cct Pro	gac Asp	aag Lys 210	gcc Ala	aag Lys	ttt Phe	gta Val	aaa Lys 215	gag Glu	ttg Leu	gta Val	cgt Arg	gtg Val 220	gcg Ala	gct Ala	674
cca Pro	gga Gly	ggt Gly 225	agg Arg	ata Ile	ata Ile	ata Ile	gtg Val 230	aca Thr	tgg Trp	tgc Cys	cat His	aga Arg 235	Asn	cta Leu	tct Ser	722
gcg Ala	ggg Gly 240	gag Glu	gaa Glu	gct Ala	ttg Leu	cag Gln 245	ccg Pro	tgg Trp	gag Glu	caa Gln	aac Asn 250	atc Ile	ttg Leu	gac Asp	aaa Lys	770
atc Ile 255	tgt C <u>y</u> s	aag Lys	acg Thr	ttc Phe	tat Tyr 260	ctc Leu	ccg Pro	gct Ala	tgg Trp	tgc Cys 265	tcc Ser	acc Thr	gat Asp	gat Asp	tat Tyr 270	818
gtc Val	aac Asn	ttg Leu	ctt Leu	caa Gln 275	tcc Ser	cat His	tct Ser	ctc Leu	cag Gln 280	gat Asp	att Ile	aag Lys	tgt Cys	gcg Ala 285	gat Asp	866

tgg Trp	tca Ser	gag Glu	aac Asn 290	gta Val	gct Ala	cct Pro	ttc Phe	tgg Trp 295	cct Pro	gcg Ala	gtt Val	ata Ile	cgg Arg 300	act Thr	gca Ala	914
tta Leu	aca Thr	tgg Trp 305	aag Lys	ggc Gly	ctt Leu	gtg Val	tct Ser 310	ctg Leu	ctt Leu	cgt Arg	agt Ser	ggt Gly 315	atg Met	aaa Lys	agt Ser	962
att Ile	aaa Lys 320	gga Gly	gca Ala	ttg Leu	aca Thr	atg Met 325	cca Pro	ttg Leu	atg Met	att Ile	gaa Glu 330	ggt Gly	tac Tyr	aag Lys	aaa Lys	1010
ggt Gly 335	gtc Val	att Ile	aag Lys	ttt Phe	ggt Gly 340	atc Ile	atc Ile	act Thr	tgc Cys	cag Gln 345	aag Lys	cca Pro	ctc Leu	taa		1055
gtct	aaaq	gct a	atact	a												1071
<211 <212)> 26 L> 34 2> PI 3> A1	18 RT	lopsi	is th	nalia	ana				-				-		
)> 26 Lys	_	Thr	Leu 5	Ala	Ala	Pro	Ser	Ser 10	Leu	Thr	Ser	Leu	Pro 15	Tyr	,
Arg	Thr	Asn	Ser 20	Ser	Phe	Gly	Ser	Lys 25	Ser	Ser	Leu	Leu	Phe 30	Arg	Ser	
Pro	Ser	Ser 35	Ser	Ser	Ser	Val	Ser 40	Met	Thr	Thr	Thr	Arg 45	Gly	Asn	Val	
Ala	Val 50	Ala	Ala	Ala	Ala	Thr 55	Ser	Thr	Glu	Ala	Leu 60	Arg	Lys	Gly	Ile	
Ala 65	Glu	Phe	Tyr	Asn	Glu 70	Thr	Ser	Gly	Leu	Trp 75	Glu	Glu	Ile	Trp	Gly 80	
Asp	His	Met	His-	His 85	Gly	Phe	Tyr	Asp	Pro 90	Ąsp	Ser	Ser	Val	Gln 95	Leu	
Ser	Asp	Ser	Gly 100	His	Lys	Glu	Ala	Gln 105	Ile	Arg	Met	Île	Glu 110	Glu	Ser	
Leu	Arg	Phe 115	Ala	Gly	Val	Thr	Asp 120	Glu	Glu	Glu	Glu	Lys 125	Lys	Ile	Lys	
Ļys	Val 130	Val	Asp	Val	Gly	Cys 135	Gly	Ile	Gly	Gly	Ser 140	Ser	Arg	Tyr	Leu	
Ala 145	Ser	Lys	Phe	Gly	Ala 150	Glu	Суѕ	Ile		Ile 155	Thr	Leu	Ser	Pro	Val	

Gln Ala Lys Arg Ala Asn Asp Leu Ala Ala Ala Gln Ser Leu Ser His

Lys	Ala	Ser	Phe 180	Gln	Val	Ala	Asp	Ala 185	Leu	Asp	Gln	Pro	Phe 190	Ģlu	Asp
Gly	Lys	Phe 1 9 5	Asp	Leu	Val	Trp	Ser 200	Met	Glu	Ser	Gly	Glu 205	His	Met	Pro
Asp	Lys 210	Ala	Lys	Phe	Val	Lys 215	Glu	Leu	Val	Arg	Val 220	Ala	Ala	Pro	Gly
Gly 225	Arg	Ile	Ile	Ile	Val 230	Thr	Trp	Cys	His	Arg 235	Asn	Leu	Ser	Ala	Gly 240
Glu	Glu	Ala	Leu	Gln 245	Pro	Trp	Glu	Gln	Asn 250	Ile	Leu	Asp	Lys	Ile 255	Cys
Lys	Thr	Phe	Tyr 260	Leu	Pro	Ala	Trp	Cys 265	Ser	Thr	Asp	Asp	Tyr 270	Val	Asn
Leu	Leu	Gln 275	Ser	His	Ser	Leu	Gln 280	Asp	Ile	Lys	Cys	Ala 285	Asp	Trp	Ser
Glu	Asn 290	Val	Ala	Pro	Phe	Trp 295	Pro	Ala	Val	Ile	Arg 300	Thr	Ala	Leu	Thr
Trp 305	Lys	Gly	Leu	Val	Ser 310	Leu	Leu	Arg	Ser	Gly 315	Met	Lys	Ser	Ile	Lys 320
Gly	Ala	Leu	Thr	Met 325	Pro	Leu	Met	Ile	Glu 330	Gly	Tyr	Lys	Lys	Gly 335	Val
Ile	Lys	Phe	Gly 340	Ile	Ile	Thr	Cys	Gln 345	Lys	Pro	Leu				
<210)> 27	7													
	L> 76	-													
	2> DN 3> Ar		lopsi	is th	nalia	ana									
<220	1~														
	l> CI	S													
	2> (3		(752))											
-400	. 25	,													

- ag atg aag ttc aac gtt gcg aat cca act act gga tgc cag aag aag Met Lys Phe Asn Val Ala Asn Pro Thr Thr Gly Cys Gln Lys Lys 47
- ctc gag atc gac gat gac cag aaa cta cgt gcg ttt tac gac aag aga Leu Glu Ile Asp Asp Asp Gln Lys Leu Arg Ala Phe Tyr Asp Lys Arg 20
- atc tct caa gaa gtc agt gga gat gct ttg ggc gag gag ttc aaa gga 143 Ile Ser Gln Glu Val Ser Gly Asp Ala Leu Gly Glu Glu Phe Lys Gly 35 40

tac Tyr	gtt Val	Phe 50	aag Lys	atc Ile	aag Lys	ggt Gly	ggt Gly 55	tgc Cys	gat Asp	aag Lys	caa Gln	ggt Gly 60	ttc Phe	cca Pro	atg Met	191
aag Lys	cag Gln 65	gga Gly	gtt Val	ttg Leu	act Thr	cca Pro 70	ggc Gly	cgt Arg	gtt Val	cgc Arg	ctt Leu 75	ttg Leu	ctt Leu	cac His	cga Arg	239
gga Gly 80	act Thr	cct Pro	tgc Cys	ttc Phe	aga Arg 85	gga Gly	cat His	gga Gly	agg Arg	aga Arg 90	act Thr	ggt Gly	gag Glu	agg Arg	aga Arg 95	287
aga Arg	aag Lys	tct Ser	gtt Val	cgt Arg 100	ggt Gly	tgc Cys	att Ile	gtg Val	agc Ser 105	cct Pro	gat Asp	ctc Leu	tct Ser	gtt Val 110	ctg Leu	335
Asn	Leu	Val	11e 115	gtg Val	Lys	Lys	Gly	Glu 120	Asn	Asp	Leu	Pro	Gly 125	Leu	Thr	383
gat Asp	cat His	gag Glu 130	agc Ser	aag Lys	atg Met	aga Arg	gga Gly 135	cca Pro	aag Lys	aga Arg	gcc Ala	tcc Ser 140	aag Lys	atc Ile	cgt Arg	431
ьуs	145	Pne	Asn	ctc Leu	Lys	Lys 150	Glu	Asp	Asp	Val	Arg 155	Thr	Tyr	Val	Asn	4.79
160	ıyr	Arg	Arg	aag Lys	Phe 165	Thr	Asn	Lys	Lys	Gly 170	Lys	Glu	Val	Ser	Lys 175	527
gcc Ala	cct Pro	aag Lys	atc Ile	cag Gln 180	agg Arg	ctt Leu	gtg Val	acc Thr	cca Pro 185	ttg Leu	act Thr	ctt Leu	cag Gln	agg Arg 190	aag Lys	575
aga Arg	gct Ala	aga Arg	att Ile 195	gct Ala	gac Asp	aag Lys	aag Lys	aag Lys 200	aaa Lys	att Ile	gct Ala	aag Lys	gct Ala 205	aat Asn	tct Ser	623
gat Asp	gct Ala	gct Ala 210	gat Asp	tac Tyr	cag Gln	aag Lys	ctt Leu 215	ctc Leu	gcc Ala	tcg Ser	agg Arg	ttg Leu 220	aag Lys	gaa Glu	cag Gln	671
cgt Arg	gac Asp 225	agg Arg	agg Arg	agt Ser	gag Glu	agt Ser 230	ttg Leu	gca Ala	aaa Lys	gag Glu	agg Arg 235	tcg Ser	aga Arg	ctc Leu	tct Ser	719
tct Ser 240	gct Ala	gct Ala	gcc Ala	aag Lys	ccc Pro 245	tct Ser	gtc Val	aca Thr	gct Ala	taa 250	aaaa	gctt.	ga g	atto	a	768

<210> 28 <211> 249 <212> PRT

<213> Arabidopsis thaliana

<400> 28

Met Lys Phe Asn Val Ala Asn Pro Thr Thr Gly Cys Gln Lys Lys Leu 1 5 10 15

Glu Ile Asp Asp Asp Gln Lys Leu Arg Ala Phe Tyr Asp Lys Arg Ile 20 25 30

Ser Gln Glu Val Ser Gly Asp Ala Leu Gly Glu Glu Phe Lys Gly Tyr 35 40 45

Val Phe Lys Ile Lys Gly Gly Cys Asp Lys Gln Gly Phe Pro Met Lys 50 55 60

Gln Gly Val Leu Thr Pro Gly Arg Val Arg Leu Leu Leu His Arg Gly
65 70 75 80

Thr Pro Cys Phe Arg Gly His Gly Arg Arg Thr Gly Glu Arg Arg Arg 85 90 95

Lys Ser Val Arg Gly Cys Ile Val Ser Pro Asp Leu Ser Val Leu Asn 100 105 110

Leu Val Ile Val Lys Lys Gly Glu Asn Asp Leu Pro Gly Leu Thr Asp 115 120 125

His Glu Ser Lys Met Arg Gly Pro Lys Arg Ala Ser Lys Ile Arg Lys 130 135 140

Leu Phe Asn Leu Lys Lys Glu Asp Asp Val Arg Thr Tyr Val Asn Thr 145 150 155 160

Tyr Arg Arg Lys Phe Thr Asn Lys Lys Gly Lys Glu Val Ser Lys Ala 165 170 175

Pro Lys Ile Gln Arg Leu Val Thr Pro Leu Thr Leu Gln Arg Lys Arg 180 185 190

Ala Arg Ile Ala Asp Lys Lys Lys Ile Ala Lys Ala Asn Ser Asp 195 200 205

Ala Ala Asp Tyr Gln Lys Leu Leu Ala Ser Arg Leu Lys Glu Gln Arg 210 215 220

Asp Arg Arg Ser Glu Ser Leu Ala Lys Glu Arg Ser Arg Leu Ser Ser 225 230 235 240

Ala Ala Lys Pro Ser Val Thr Ala 245

<210> 29

<211> 1201

<212> DNA

<213> Arabidopsis thaliana

```
<220>
<221> CDS
<222> (24)..(35)
<220>
<221> CDS
<222> (147)..(187)
<220>
<221> CDS
<222> (283)..(383)
<220>
<221> CDS
<222> (689)..(833)
<220>
<221> CDS
<222> (916)..(1005)
<220>
<221> CDS
<222> (1103)..(1196)
<400> 29
cacgegggag etcaacatea gee atg geg gaa eag gttaetegat etgttetete
                                                                   55
                          Met Ala Glu Gln
ctctaagctt atcctcgttt tatgatctat tgatccttat tcactcaaat gattctaata 115
ctcttctctt ttctctgtca ctaattttca g act gag aaa gct ttt ctt aag
                                                                   167
                                    Thr Glu Lys Ala Phe Leu Lys
cag cct aag gtc ttc ctt ag gtaattttgc gattcgattt ctctctgttc
                                                                   217
Gln Pro Lys Val Phe Leu Se
             15
tctattgttt cattgtattt aagttccaag ttgtttatat tgttcattgt ttctgattta 277
tcaag c tcg aag aaa tct gga aag gga aag aga cct gga aaa ggt gga
      r Ser Lys Lys Ser Gly Lys Gly Lys Arg Pro Gly Lys Gly Gly
             20
aac cgt ttc tgg aag aac att ggt ttg ggc ttc aag act cct cgt gaa
Asn Arg Phe Trp Lys Asn Ile Gly Leu Gly Phe Lys Thr Pro Arg Glu
                             40
gcc att gat g gtatgtttaa gcttttaact cgttataata gataaggaac
                                                                   423
Ala Ile Asp G
tcttggattg tgttgttcat atagtcgata gatttcaaat gctattttgt cttgtagaat 483
cttaagcttt ggtttagtga gttctgattc ttcagcttta tctggatcta cattactgtt 543
```

tcag	gtga	tgc a	aaat	gtta	tc a	gtaga	attt	t ga	atta	gtag	gat	gtca	ctg	attt	gaatat	603
gtga	atca	agc	ttcai	taga	aa c	ctgca	atca	t tc	tcta	tata	cct	ttaa	gtc	agat	tctcag	663
gtta	attgi	tgt a	attt	gtgt	gg a	acag	ga ly	gct Ala	tac Tyr	gtt Val 55	gac Asp	aag Lys	aaa Lys	tgc Cys	ecc Pro 60	714
ttc Phe	act Thr	gga Gly	act Thr	gtt Val 65	tcc Ser	att Ile	aga Arg	ggt Gly	cgt Arg 70	atc Ile	tta Leu	gct Ala	ggt Gly	act Thr 75	tgc Cys	762
cac His	agt Ser	gcg Ala	aaa Lys 80	atg Met	cag Gln	agg Arg	acc Thr	att Ile 85	atc Ile	gtg Val	cga Arg	agg Arg	gat Asp 90	tac Tyr	ctt Leu	810
cac His	ttt Phe	gtg Val 95	aag Lys	aag Lys	tat Tyr	cag Gln	ag (gtaa	attc	at a	catt	ctca	t ac	ttct	ttee	863
ataç	gagto	ett a	acaca	attga	at gi	ttaa	agaa	a gta	aata	teet	ttt	tgtt	ctt	ag g g 100	tat Tyr	919
gag Glu	aag Lys	agg Arg	cat His 105	tca Ser	aac Asn	att Ile	ccg Pro	gct Ala 110	cat His	gtc Val	tca Ser	cca Pro	tgc Cys 115	ttc Phe	cgt Arg	967
gtt Val	aag Lys	gaa Glu 120	gga Gly	gac Asp	cat His	atc Ile	atc Ile 125	att Ile	ggc Gly	caa Gln	tgc Cys	ag q Ar	gtta	tgato	;t	1015
gatt	caaa	acc t	cacaa	atto	gt ct	ccat	tgat	tc1	tgati	tatc	gtga	aatti	tgt	tttga	atcttt	1075
ttgt	ttgt	ta a	atgat	tgat	a at	ttca	ag g g 130	cca Pro	ttg Leu	tcg Ser	aag Lys	aca Thr 135	gtg Val	agg Arg	ttc Phe	1127
aat Asn	gtg Val 140	ttg Leu	aag Lys	gtg Val	ata Ile	cca Pro 145	gct Ala	ggg Gly	tct Ser	tct Ser	tct Ser 150	tca Ser	ttt Phe	gga Gly	aag Lys	1175
			act Thr			taa	gctq	gc								1201
<211 <212	> 30 > 16 > PR > Ar	0 ?T	lopsi	s th	nalia	ına							-			
	> 30 Ala		Gln	Thr	Glu	ı Lys	al Alá	a Phe	e Leu 10		s Glr	n Pro	Lys	s Val		

Phe Leu Se	er Ser 20	Lys)	Lys	Ser	Gly	Lys 25		Lys	Arg	Pro	Gly 30		Gly
Gly Asn A	rg Phe 35	Trp	Lys	Asn	Ile 40		Leu	Gly	Phe	Lys 45		Pro	Arg
Glu Ala II 50	le Asp	Gly	Ala	Tyr 55	Val	Asp	Lys	Lys	Cys 60		Phe	Thr	Gly
Thr Val Se	er Ile	Arg	Gly 70	Arg	Ile	Leu	Ala	Gly 75		Cys	His	Ser	Ala 8
Lys Met G	ln Arg	Thr 85	Ile	Ile	Val	Arg	Arg 90		Tyr	Leu	His	Phe 95	
Lys Lys Ty	yr Gln 100	Arg	Tyr	Glu	Lys	Arg 105		Ser	Asn	Ile	Pro 110		His
Val Ser Pr	ro Cys 115	Phe .	Arg	Val	Lys 120	Glu)	Gly	Asp	His	Ile 125		Ile	Gly
Gln Cys Ar	rg Pro	Leu	Ser	Lys	Thr	Val	Arg	Phe	Asn	Val	Leu	Lvs	Val

130 135 140

Ile Pro Ala Gly Ser Ser Ser Phe Gly Lys Lys Ala Phe Thr Gly

155

150

Met

```
<210> 31
<211> 1790
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (23)..(1780)
<400> 31
tgtgagtaat ttagcgaaaa cg atg ggt tcc atc gaa gaa gaa gca aga cct 52
                         Met Gly Ser Ile Glu Glu Glu Ala Arg Pro
                           1
ctc atc gaa gaa ggt tta att tta cag gaa gtg aaa ttg tat gct gaa
                                                                   100
Leu Ile Glu Glu Gly Leu Ile Leu Gln Glu Val Lys Leu Tyr Ala Glu
                 15
                                     20
gat ggt tca gtg gac ttt aat gga aac cca cca ttg aag gag aaa aca
                                                                   148
Asp Gly Ser Val Asp Phe Asn Gly Asn Pro Pro Leu Lys Glu Lys Thr
             30
                                 35
gga aac tgg aaa gct tgt cct ttt att ctt ggt aat gaa tgt tgt gag
                                                                   196
Gly Asn Trp Lys Ala Cys Pro Phe Ile Leu Gly Asn Glu Cys Cys Glu
         45
                             50
```

	agg Arg	cta Leu 60	gct Ala	tac Tyr	tat Tyr	ggt Gly	att Ile 65	gct Ala	ggg Gly	aat Asn	tta Leu	atc Ile 70	act Thr	tac Tyr	ctc Leu	acc Thr	244
	act Thr 75	aag Lys	ctt Leu	cac His	caa Gln	gga Gly 80	aat Asn	gtt Val	tct Ser	gct Ala	gct Ala 85	aca Thr	aac Asn	gtt Val	acc Thr	aca Thr 90	292
	tgg Trp	caa Gln	Gly aaa	act Thr	tgt Cys 95	tat Tyr	ctc Leu	act Thr	cct Pro	ctc Leu 100	att Ile	gga Gly	gct Ala	gtt Val	ctg Leu 105	gct Ala	340
•	gat Asp	gct Ala	tac Tyr	tgg Trp 110	gga Gly	cgt Arg	tac Tyr	tgg Trp	acc Thr 115	atc Ile	gct Ala	tgt Cys	ttc Phe	tcc Ser 120	ggg Gly	att Ile	388
	tat Tyr	ttc Phe	atc Ile 125	Gly ggg	atg Met	tct Ser	gcg Ala	tta Leu 130	act Thr	ctt Leu	tca Ser	gct Ala	tca Ser 135	gtt Val	ccg Pro	gca Ala	436
	ttg Leu	aag Lys 140	cca Pro	gcg Ala	gaa Glu	tgt Cys	att Ile 145	ggt Gly	gac Asp	ttt Phe	tgt Cys	cca Pro 150	tct Ser	gca Ala	acg Thr	cca Pro	484
	gct Ala 155	cag Gln	tat Tyr	gcg Ala	atg Met	ttc Phe 160	ttt Phe	ggt Gly	ggg Gly	ctt Leu	tac Tyr 165	ctg Leu	atc Ile	gct Ala	ctt Leu	gga Gly 170	532
	act Thr	gga Gly	ggt Gly	atc Ile	aaa Lys 175	ccg Pro	tgt Cys	gtc Val	tca Ser	tcc Ser 180	ttc Phe	ggt Gly	gcc Ala	gat Asp	cag Gln 185	ttt Phe	580
	gat Asp	gac Asp	acg Thr	gac Asp 190	tct Ser	cgg Arg	gaa Glu	cga Arg	gtt Val 195	aga Arg	aaa Lys	gct Ala	tcg Ser	ttc Phe 200	ttt Phe	aac Asn	628
	tgg Trp	ttt Phe	tac Tyr 205	ttc Phe	tcc Ser	atc Ile	aat Asn	att Ile 210	gga Gly	gca Ala	ctt Leu	gtg Val	tca Ser 215	tct Ser	agt Ser	ctt Leu	676
	cta Leu	gtt Val 220	tgg Trp	att Ile	caa Gln	Glu	aat Asn 225	Arg	Gly ggg	\mathtt{Trp}	Gly	Leu	Gly	ttt Phe	Gly ggg	ata Ile	724
	cca Pro 235	aca Thr	gtg Val	ttc Phe	atg Met	gga Gly 240	cta Leu	gcc Ala	att Ile	gca Ala	agt Ser 245	ttc Phe	ttc Phe	ttt Phe	ggc Gly	aca Thr 250	772
	cct Pro	ctt Leu	tat Tyr	agg Arg	ttt Phe 255	cag Gln	aaa Lys	cct Pro	gga Gly	gga Gly 260	agc Ser	cct Pro	ata Ile	act Thr	cgg Arg 265	att Ile	820
	tcc Ser	caa Gln	gtc Val	gtg Val 270	gtt Val	gct Ala	tcg Ser	ttc Phe	cgg Arg 275	aaa Lys	tcg Ser	tct Ser	gtc Val	aaa Lys 280	gtc Val	cct Pro	868
	gaa	gac	gcc	aca	ctt	ctg	tat	gaa	act	caa	gac	aag	aac	tct	gct	att	916

Glu	Asp	Ala 285	Thr	Leu	Leu	Туг	Glu 290	Thr	Gln	Asp	Lys	295		Ala	Ile	
gct Ala	gga Gly 300	agt Ser	aga Arg	aaa Lys	atc Ile	gag Glu 305	His	acc	gat Asp	gat Asp	tgc Cys 310	Gln	tat Tyr	ctt Leu	gac Asp	964
aaa Lys 315	gcc Ala	gct Ala	gtt Val	atc Ile	tca Ser 320	Glu	gaa Glu	gaa Glu	tcg Ser	aaa Lys 325	Ser	gga Gly	gat Asp	tat Tyr	tcc Ser 330	1012
aac Asn	tcg Ser	tgg Trp	aga Arg	cta Leu 335	tgc Cys	acg Thr	gtt Val	acg Thr	caa Gln 340	Val	gaa Glu	gaa Glu	ctc Leu	aag Lys 345	att Ile	1060
Leu	iie	Arg	atg Met 350	Pne	Pro	Ile	Trp	Ala 355	Ser	Gly	Ile	Ile	Phe 360	Ser	Ala	1108
vai	īŸī	365	caa Gln	met	ser	Thr	Met 370	Phe	Val	Gln	Gln	Gly 375	Arg	Ala	Met	1156
aac Asn	tgc Cys 380	aaa Lys	att Ile	gga Gly	tca Ser	ttc Phe 385	cag Gln	ctt Leu	cct Pro	cct Pro	gca Ala 390	gca Ala	ctc Leu	Gly	aca Thr	1204
ttc Phe 395	gac Asp	aca Thr	gca Ala	agc Ser	gtc Val 400	atc Ile	atc Ile	tgg Trp	gtg Val	ccg Pro 405	ctc Leu	tac Tyr	gac Asp	cgg Arg	ttc Phe 410	1252
atc Ile	gtt Val	ccc Pro	tta Leu	gca Ala 415	aga Arg	aag Lys	ttc Phe	aca Thr	gga Gly 420	gta Val	gac Asp	aaa Lys	gga Gly	ttc Phe 425	act Thr	1300
gag Glu	ata Ile	caa Gln	aga Arg 430	atg Met	gga Gly	att Ile	ggt Gly	ctg Leu 435	ttt Phe	gtc Val	tct Ser	gtt Val	ctc Leu 440	tgt Cys	atg Met	1348
gca Ala	gct Ala	gca Ala 445	gct Ala	atc Ile	gtc Val	gaa Glu	atc Ile 450	atc Ile	cgt Arg	ctc Leu	cat His	atg Met 455	gcc Ala	Asn	gat Asp	1396
ctt Leu	gga Gly 460	tta Leu	gtc Val	gag Glu	tca Ser	gga Gly 465	gcc Ala	cca Pro	gtt Val	ccc Pro	ata Ile 470	tcc Ser	gtc Val	ttg Leu	tgg Trp	1444
cag Gln 475	att Ile	cca Pro	cag Gln	tac Tyr	ttc Phe 480	att Ile	ctc Leu	ggt Gly	gca Ala	gcc Ala 485	gaa Glu	gta Val	ttc Phe	tac Tyr	ttc Phe 490	1492
atc Ile	ggt Gly	cag Gln	ctc Leu	gag Glu 495	ttc Phe	ttc Phe	tac Tyr	gac Asp	caa Gln 500	tct Ser	cca Pro	gat Asp	gca Ala	atg Met 505	aga Arg	1540
agc Ser	ttg Leu	tgc Cys	agt Ser	gcc Ala	tta Leu	gct Ala	ctt Leu	ttg Leu	acc Thr	aat Asn	gca Ala	ctt Leu	ggt Gly	aac Asn	tac Tyr	1588

510 515 520 ttg age teg ttg ate etc acg etc gtg act tat ttt aca aca aga aat 1636 Leu Ser Ser Leu Ile Leu Thr Leu Val Thr Tyr Phe Thr Thr Arg Asn 530 535 ggg caa gaa ggt tgg att tcg gat aat ctc aat tca ggt cat ctc gat 1684 Gly Gln Glu Gly Trp Ile Ser Asp Asn Leu Asn Ser Gly His Leu Asp 540 545 tac ttc ttc tgg ctc ttg gct ggt ctt agc ctt gtg aac atg gcg gtt 1732 Tyr Phe Phe Trp Leu Leu Ala Gly Leu Ser Leu Val Asn Met Ala Val 555 560 tac ttc tct gct gct agg tat aag caa aag aaa gct tcg tcg tag 1780 Tyr Phe Phe Ser Ala Ala Arg Tyr Lys Gln Lys Lys Ala Ser Ser 575 taatgctgtt a -1791 <210> 32 <211> 585 <212> PRT <213> Arabidopsis thaliana <400> 32 Met Gly Ser Ile Glu Glu Glu Ala Arg Pro Leu Ile Glu Glu Gly Leu 10 Ile Leu Gln Glu Val Lys Leu Tyr Ala Glu Asp Gly Ser Val Asp Phe Asn Gly Asn Pro Pro Leu Lys Glu Lys Thr Gly Asn Trp Lys Ala Cys Pro Phe Ile Leu Gly Asn Glu Cys Cys Glu Arg Leu Ala Tyr Tyr Gly 50 Ile Ala Gly Asn Leu Ile Thr Tyr Leu Thr Thr Lys Leu His Gln Gly Asn Val Ser Ala Ala Thr Asn Val Thr Thr Trp Gln Gly Thr Cys Tyr 85 Leu Thr Pro Leu Ile Gly Ala Val Leu Ala Asp Ala Tyr Trp Gly Arg 105 Tyr Trp Thr Ile Ala Cys Phe Ser Gly Ile Tyr Phe Ile Gly Met Ser 120 Ala Leu Thr Leu Ser Ala Ser Val Pro Ala Leu Lys Pro Ala Glu Cys 135 Ile Gly Asp Phe Cys Pro Ser Ala Thr Pro Ala Gln Tyr Ala Met Phe 150 155 160

Phe Gly Gly Leu Tyr Leu Ile Ala Leu Gly Thr Gly Gly Ile Lys Pro 165 Cys Val Ser Ser Phe Gly Ala Asp Gln Phe Asp Asp Thr Asp Ser Arg 180 Glu Arg Val Arg Lys Ala Ser Phe Phe Asn Trp Phe Tyr Phe Ser Ile Asn Ile Gly Ala Leu Val Ser Ser Ser Leu Leu Val Trp Ile Gln Glu 215 Asn Arg Gly Trp Gly Leu Gly Phe Gly Ile Pro Thr Val Phe Met Gly 230 235 Leu Ala Ile Ala Ser Phe Phe Phe Gly Thr Pro Leu Tyr Arg Phe Gln 245 Lys Pro Gly Gly Ser Pro Ile Thr Arg Ile Ser Gln Val Val Ala 265 Ser Phe Arg Lys Ser Ser Val Lys Val Pro Glu Asp Ala Thr Leu Leu Tyr Glu Thr Gln Asp Lys Asn Ser Ala Ile Ala Gly Ser Arg Lys Ile 300 Glu His Thr Asp Asp Cys Gln Tyr Leu Asp Lys Ala Ala Val Ile Ser 315 Glu Glu Glu Ser Lys Ser Gly Asp Tyr Ser Asn Ser Trp Arg Leu Cys Thr Val Thr Gln Val Glu Glu Leu Lys Ile Leu Ile Arg Met Phe Pro Ile Trp Ala Ser Gly Ile Ile Phe Ser Ala Val Tyr Ala Gln Met Ser 355 Thr Met Phe Val Gln Gln Gly Arg Ala Met Asn Cys Lys Ile Gly Ser Phe Gln Leu Pro Pro Ala Ala Leu Gly Thr Phe Asp Thr Ala Ser Val 390 395 Ile Ile Trp Val Pro Leu Tyr Asp Arg Phe Ile Val Pro Leu Ala Arg Lys Phe Thr Gly Val Asp Lys Gly Phe Thr Glu Ile Gln Arg Met Gly 425 Ile Gly Leu Phe Val Ser Val Leu Cys Met Ala Ala Ala Ile Val Glu Ile Ile Arg Leu His Met Ala Asn Asp Leu Gly Leu Val Glu Ser 455

465	Ala	Pro	Val	Pro	Ile 470	Ser	Val	Leu	Trp	Gln 475	Ile	Pro	Gln	Tyr	Phe 480	
Ile	Leu	Gly	Ala	Ala 485	Glu	Val	Phe	Tyr	Phe 490	Ile	Gly	Gln	Leu	Glu 495	Phe	
Phe	Tyr	Asp	Gln 500	Ser	Pro	Asp	Ala	Met 505	Arg	Ser	Leu	Суѕ	Ser 510	Ala	Leu	
Ala	Leu	Leu 515	Thr	Asn	Ala	Leu	Gly 520	Asn	Tyr	Leu	Ser	Ser 525	Leu	Ile	Leu	
Thr	Leu 530	Val	Thr	Tyr	Phe	Thr 535	Thr	Arg	Asn	Gly	Gln 540	Glu	Gly	Trp	Ile	
Ser 545	Asp	Asn	Leu	Asn	Ser 550	Gly	His	Leu	Asp	Tyr 555	Phe	Phe	Trp	Leu	Leu 560	
Ala	Gly	Leu	Ser	Leu 565	Val	Asn	Met	Ala	Val 570	Tyr	Phe	Phe	Ser	Ala 575	Ala	
Arg	Tyr	Lys	Gln 580	Lys	Lys	Ala	Ser	Ser 585		-						
<211 <212)> 33 L> 19 B> DN	84	lopsi	s tì	nalia	ına										
	.> CI	os 20)	(197	' 5)												
	> 33															
ttca	ıccgt	.cg g	ctto	tcaa	atç Met 1	Glr	gat Asp	att Ile	cto Leu 5	Gly	tcg Ser	gtt Val	cgc Arg	cga Arg 10	tcc Ser	52
ttg Leu	gtt Val	ttc Phe	cgg Arg 15	tcg Ser	tct Ser	ttg Leu	gcc Ala	gga Gly 20	gac Asp	gat Asp	ggt Gly	act Thr	agc Ser 25	ggc	gga Gly	100
ggt Gly	ctt Leu	agc Ser 30	gga Gly	ttc Phe	gtc Val	Gly	aag Lys 35	att Ile	aac Asn	tct Ser	agt Ser	atc Ile 40	cgt Arg	agc Ser	tct Ser	148
cga	att	ggg	ctc	ttt	tct	aag	ccg	cct	cca	ggg	ctt	cct	gct	cct	aga	196

Arg Ile Gly Leu Phe Ser Lys Pro Pro Pro Gly Leu Pro Ala Pro Arg

aaa gaa gag ccg tcg att cgg tgg agg aaa ggg gaa tta atc ggt

Lys Glu Glu Ala Pro Ser Ile Arg Trp Arg Lys Gly Glu Leu Ile Gly

tgc ggt gct ttt gga aga gtt tac atg gga atg aac ctc gat tcc ggc

50

244

292

Cys	Gly	Ala	Phe	Gly 80	Arg	Val	Tyr	Met	Gly 85	Met	Asn	Leu	Asp	Ser 90	Gly	
gag Glu	ctt Leu	ctt Leu	gca Ala 95	att Ile	aaa Lys	cag Gln	gtt Val	tta Leu 100	atc Ile	gct Ala	cca Pro	agc Ser	agt Ser 105	gct Ala	tca Ser	340
aag Lys	gag Glu	aag Lys 110	act Thr	cag Gln	ggt Gly	cac His	atc Ile 115	cga Arg	gag Glu	ctt Leu	gag Glu	gaa Glu 120	gaa Glu	gta Val	caa Gln	388
ctt Leu	ctt Leu 125	aag Lys	aat Asn	ctt Leu	tca Ser	cat His 130	ccg Pro	aac Asn	atc Ile	gtt Val	aga Arg 135	tac Tyr	ttg Leu	ggt Gly	act Thr	436
Val 140	Arg	Glu	Ser	Asp	Ser 145	Leu	Asn	Ile	Leu	Met 150	Glu	ttt Phe	Val	Pro	Gly 155	484
gga Gly	tca Ser	ata Ile	tca Ser	tct Ser 160	ttg Leu	ttg Leu	gag Glu	aag Lys	ttt Phe 165	gga Gly	tct Ser	ttt Phe	cct Pro	gag Glu 170	cct Pro	532
Val	Ile	Ile	Met 175	Tyr	Thr	Lys	Gln	Leu 180	Leu	Leu	Gly	ctg Leu	Glu 185	Tyr	Leu	580
cac His	aac Asn	aat Asn 190	Gly	atc Ile	atg Met	cat His	cga Arg 195	gat Asp	att Ile	aag Lys	G1À aaa	gca Ala 200	aat Asn	att Ile	ttg Leu	628
Val	205	Asn	Lys	Gly	Cys	Ile 210	Arg	Leu	Ala	Asp	Phe 215	ggt Gly	Ala	Ser	Lys	676
aaa Lys 220	gtt Val	gta Val	gag Glu	cta Leu	gct Ala 225	act Thr	gta Val	aat Asn	ggt Gly	gcc Ala 230	aaa Lys	tct Ser	atg Met	aag Lys	ggg Gly 235	724
acg Thr	cct Pro	tat Tyr	tgg Trp	atg Met 240	gct Ala	cct Pro	gaa Glu	gtc Val	att Ile 245	ctc Leu	cag Gln	act Thr	ggt Gly	cat His 250	agc Ser	772
ttc Phe	tct Ser	gct Ala	gat Asp 255	ata Ile	tgg Trp	agt Ser	gtt Val	ggg Gly 260	tgc Cys	act Thr	gtg Val	att Ile	gag Glu 265	atg Met	gct Ala	820
acg Thr	Gly ggg	aag Lys 270	cct Pro	ccc Pro	tgg Trp	agc Ser	gag Glu 275	cag Gln	tat Tyr	cag Gln	cag Gln	ttt Phe 280	Ala	gct Ala	gtc Val	868
ctt Leu	cat His 285	att Ile	ggt Gly	aga Arg	aca Thr	aaa Lys 290	gct Ala	cat His	cct Pro	cca Pro	att Ile 295	cca Pro	gaa Glu	gac Asp	ctc Leu	916
tca Ser	cca Pro	gag Glu	gct Ala	aaa Lys	gac Asp	ttt Phe	cta Leu	atg Met	aaa Lvs	tgc Cvs	tta	Cac His	aaa	gaa	cca	964

300	305	310	315	
agc ttg aga ctc tct Ser Leu Arg Leu Ser 320	gca acc gaa t Ala Thr Glu I	etg ctt cag cac c Leu Leu Gln His P 325	cg ttt gtc act 101 ro Phe Val Thr 330	.2
gga aag cgc cag gaa Gly Lys Arg Gln Glu 335	Pro Tyr Pro A	gct tac cgt aat t Ala Tyr Arg Asn S 340	ct ctt acg gaa 106 er Leu Thr Glu 345	0
tgt gga aac cca ata Cys Gly Asn Pro Ile 350	act act caa g Thr Thr Gln G 355	Sly Met Asn Val A	gg agt tca ata 110 rg Ser Ser Ile 60	8
aat tcg ttg atc agg Asn Ser Leu Ile Arg 365	agg tcg aca t Arg Ser Thr C 370	gt tca ggc ttg a Cys Ser Gly Leu L 375	ag gat gtc tgt 115 ys Asp Val Cys	6
gaa ctg gga agc ttg Glu Leu Gly Ser Leu 380	agg agt tcc a Arg Ser Ser I 385	att ata tac cca c le Ile Tyr Pro G 390	ag aag tca aat 120 ln Lys Ser Asn 395	4
aac tca gga ttt ggt Asn Ser Gly Phe Gly 400	tgg cga gat g Trp Arg Asp G	ga gac tot gat g Gly Asp Ser Asp A 405	ac ctt tgt cag 125 sp Leu Cys Gln 410	2
acc gat atg gat gat Thr Asp Met Asp Asp 415	Leu Cys Asn I	tt gaa tca gtc a le Glu Ser Val A 20	ga aac aat gtt 130 rg Asn Asn Val 425	0
ttg tca cag tcc acc Leu Ser Gln Ser Thr 430	gat tta aac a Asp Leu Asn L 435	ys Ser Phe Asn P	cc atg tgt gat 1340 ro Met Cys Asp 40	8
tcc acg gat aac tgg Ser Thr Asp Asn Trp 445	tct tgc aag t Ser Cys Lys P 450	tt gat gaa agc c he Asp Glu Ser P 455	ca aaa gtg atg 1390 ro Lys Val Met	6
aaa agc aaa tct aac Lys Ser Lys Ser Asn 460	ctg ctt tct t Leu Leu Ser T 465	ac caa gct tct c yr Gln Ala Ser G 470	aa ctc caa act 1444 In Leu Gln Thr 475	4
gga gtt cca tgt gat Gly Val Pro Cys Asp 480	gag gaa acc a Glu Glu Thr S	gc tta aca ttt go er Leu Thr Phe A 485	ct ggt ggc tct 1492 la Gly Gly Ser 490	2
tcc gtt gca gag gat Ser Val Ala Glu Asp 495	Asp Tyr Lys G	gc aca gag ttg ad ly Thr Glu Leu Ly 00	aa ata aaa tca 1540 ys Ile Lys Ser 505)
ttt ttg gat gag aag Phe Leu Asp Glu Lys 510	gct cag gat t Ala Gln Asp L 515	eu Lys Arg Leu G	ag acc cct ctg 1588 In Thr Pro Leu 20	3
ctt gaa gaa ttc cac Leu Glu Glu Phe His 525	aat gct atg a Asn Ala Met A 530	at cca gga ata co sn Pro Gly Ile Po 535	cc caa ggt gca 1636 co Gln Gly Ala	;

ctt Leu 540	gga Gly	gac Asp	acc Thr	aat Asn	atc Ile 545	tac Tyr	aat Asn	tta Leu	cca Pro	aac Asn 550	tta Leu	cca Pro	agt Ser	ata Ile	agc Ser 555	1684
aag Lys	aca Thr	cct Pro	aaa Lys	cga Arg 560	ctt Leu	ccg Pro	agt Ser	aga Arg	cga Arg 565	ctc Leu	tca Ser	gca Ala	atc Ile	agt Ser 570	gat Asp	1732
gct Ala	atg Met	ccc Pro	agc Ser 575	cca Pro	ctc Leu	aaa Lys	agc Ser	tcc Ser 580	aaa Lys	cgt Arg	aca Thr	ctg Leu	aac Asn 585	aca Thr	agc Ser	1780
aga Arg	gtg Val	atg Met 590	cag Gln	tca Ser	gga Gly	act Thr	gaa Glu 595	cca Pro	act Thr	caa Gln	gtc Vạl	aac Asn 600	gag Glu	tcg Ser	acc Thr	1828
aag Lys	aag Lys 605	gga Gly	gta Val	aat Asn	aat Asn	agc Ser 610	cgt Arg	tgt Cys	ttc Phe	tca Ser	gag Glu 615	ata Ile	cgt Arg	cgg Arg	aag Lys	1876
tgg Trp 620	gaa Glu	gaa Glu	gaa Glu	ctc Leu	tat Tyr 625	gaa Glu	gag Glu	ctt Leu	gag Glu	agg Arg 630	cat His	cga Arg	gag Glu	aat Asn	ctg Leu 635	1924
cga Arg	cac His	gct Ala	ggt Gly	gca Ala 640	gga Gly	ggg Gly	aag Lys	act Thr	cca Pro 645	tta Leu	tca Ser	ggc Gly	cac His	aaa Lys 650	gga Gly	1972
tag	tgaa	cgg	:t													1984

<210> 34

<211> 651

<212> PRT

<213> Arabidopsis thaliana

<400> 34

Met Gln Asp Ile Leu Gly Ser Val Arg Arg Ser Leu Val Phe Arg Ser 1 5 10 15

Ser Leu Ala Gly Asp Asp Gly Thr Ser Gly Gly Gly Leu Ser Gly Phe 20 25 30

Val Gly Lys Ile Asn Ser Ser Ile Arg Ser Ser Arg Ile Gly Leu Phe 35 40 45

Ser Lys Pro Pro Pro Gly Leu Pro Ala Pro Arg Lys Glu Glu Ala Pro 50 55 60

Ser Ile Arg Trp Arg Lys Gly Glu Leu Ile Gly Cys Gly Ala Phe Gly 65 70 75 80

Arg Val Tyr Met Gly Met Asn Leu Asp Ser Gly Glu Leu Leu Ala Ile 85 90 95

Lys Gln Val Leu Ile Ala Pro Ser Ser Ala Ser Lys Glu Lys Thr Gln 100 105 Gly His Ile Arg Glu Leu Glu Glu Glu Val Gln Leu Leu Lys Asn Leu 120 Ser His Pro Asn Ile Val Arg Tyr Leu Gly Thr Val Arg Glu Ser Asp 135 Ser Leu Asn Ile Leu Met Glu Phe Val Pro Gly Gly Ser Ile Ser Ser 150 Leu Leu Glu Lys Phe Gly Ser Phe Pro Glu Pro Val Ile Ile Met Tyr 165 170 Thr Lys Gln Leu Leu Gly Leu Glu Tyr Leu His Asn Asn Gly Ile 180 Met His Arg Asp Ile Lys Gly Ala Asn Ile Leu Val Asp Asn Lys Gly 200 Cys Ile Arg Leu Ala Asp Phe Gly Ala Ser Lys Lys Val Val Glu Leu Ala Thr Val Asn Gly Ala Lys Ser Met Lys Gly Thr Pro Tyr Trp Met Ala Pro Glu Val Ile Leu Gln Thr Gly His Ser Phe Ser Ala Asp Ile Trp Ser Val Gly Cys Thr Val Ile Glu Met Ala Thr Gly Lys Pro Pro 260 Trp Ser Glu Gln Tyr Gln Gln Phe Ala Ala Val Leu His Ile Gly Arg 280 Thr Lys Ala His Pro Pro Ile Pro Glu Asp Leu Ser Pro Glu Ala Lys 295 Asp Phe Leu Met Lys Cys Leu His Lys Glu Pro Ser Leu Arg Leu Ser 310 315 Ala Thr Glu Leu Leu Gln His Pro Phe Val Thr Gly Lys Arg Gln Glu Pro Tyr Pro Ala Tyr Arg Asn Ser Leu Thr Glu Cys Gly Asn Pro Ile Thr Thr Gln Gly Met Asn Val Arg Ser Ser Ile Asn Ser Leu Ile Arg 365 Arg Ser Thr Cys Ser Gly Leu Lys Asp Val Cys Glu Leu Gly Ser Leu Arg Ser Ser Ile Ile Tyr Pro Gln Lys Ser Asn Asn Ser Gly Phe Gly 385 390 395 400

Trp Arg Asp Gly Asp Ser Asp Asp Leu Cys Gln Thr Asp Met Asp Asp Leu Cys Asn Ile Glu Ser Val Arg Asn Asn Val Leu Ser Gln Ser Thr 425 Asp Leu Asn Lys Ser Phe Asn Pro Met Cys Asp Ser Thr Asp Asn Trp 440 Ser Cys Lys Phe Asp Glu Ser Pro Lys Val Met Lys Ser Lys Ser Asn 455 Leu Leu Ser Tyr Gln Ala Ser Gln Leu Gln Thr Gly Val Pro Cys Asp 470 475 Glu Glu Thr Ser Leu Thr Phe Ala Gly Gly Ser Ser Val Ala Glu Asp 490 Asp Tyr Lys Gly Thr Glu Leu Lys Ile Lys Ser Phe Leu Asp Glu Lys Ala Gln Asp Leu Lys Arg Leu Gln Thr Pro Leu Leu Glu Glu Phe His Asn Ala Met Asn Pro Gly Ile Pro Gln Gly Ala Leu Gly Asp Thr Asn 530 535 Ile Tyr Asn Leu Pro Asn Leu Pro Ser Ile Ser Lys Thr Pro Lys Arg Leu Pro Ser Arg Arg Leu Ser Ala Ile Ser Asp Ala Met Pro Ser Pro 565 570 Leu Lys Ser Ser Lys Arg Thr Leu Asn Thr Ser Arg Val Met Gln Ser 585 Gly Thr Glu Pro Thr Gln Val Asn Glu Ser Thr Lys Lys Gly Val Asn Asn Ser Arg Cys Phe Ser Glu Ile Arg Arg Lys Trp Glu Glu Glu Leu Tyr Glu Glu Leu Glu Arg His Arg Glu Asn Leu Arg His Ala Gly Ala 625 635 Gly Gly Lys Thr Pro Leu Ser Gly His Lys Gly 645 650

```
<210> 35
```

<211> 1736

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(1605)

<400)> 35	5												•		
	ccc Pro															48
	aca Thr															96
	gta Val															144
cca Pro	acg Thr 50	gca Ala	gat Asp	aca Thr	gtc Val	gtg Val 55	gcg Ala	gga Gly	agġ Arg	acg Thr	agt Ser 60	tta Leu	ggt Gly	gag Glu	gcg Ala	192
ccc Pro 65	cct Pro	cct Pro	cgt Arg	cag Gln	cct Pro 70	cca Pro	cgt Arg	cct Pro	cca Pro	aca Thr 75	gca Ala	cgg Arg	tgg Trp	tca Ser	gcg Ala 80	240
	Gly															288
	gcg Ala															336
	agc Ser															384
	gcc Ala 130															432
gcc Ala 145	acc Thr	tct Ser	cgc Arg	act Thr	gac Asp 150	Asp	acg Thr	cta Leu	ata Ile	gag Glu 155	gca Ala	gag Glu	acc Thr	ggt Gly	cgc Arg 160	480
	tgg Trp															528
	gac Asp															576
ctg Leu	cga Arg	tgc Cys 195	tac Tyr	tcg Ser	agg Arg	atc Ile	gta Val 200	cga Arg	tcg Ser	atg Met	aaa Lys	cgc Arg 205	cca Pro	ggc Gly	aac Asn	624
ttg Leu	aaa Lys	ttc Phe	acg Thr	tgc Cys	cgg Arg	agg Arg	gat Asp	gtg Val	gca Ala	ata Ile	gcc Ala	acg Thr	ttc Phe	agc Ser	ggc Gly	672

	210					215					220					
aca Thr 225	ggc	aga Arg	atg Met	cag Gln	ctg Leu 230	agt Ser	atg Met	aac Asn	agc Ser	cgt Arg 235	ttg Leu	cga Arg	gtc Val	gag Glu	agc Ser 240	720
ctc Leu	gtg Val	tcc Ser	gcg Ala	ggc Gly 245	cag Gln	agc Ser	gtg Val	gcg Ala	tca Ser 250	ttc Phe	tgc Cys	ctt Leu	ttc Phe	ctg Leu 255	ata Ile	768
tgc Cys	acg Thr	gcg Ala	ccc Pro 260	tcg Ser	gcg Ala	atg Met	cgg Arg	ctg Leu 265	gtt Val	agc Ser	ctt Leu	ctt Leu	aca Thr 270	ctg Leu	acc Thr	816
cca Pro	agc Ser	atg Met 275	acc Thr	tac Tyr	cta Leu	aca Thr	tgc Cys 280	ggg Gly	ctg Leu	gga Gly	tgg Trp	atg Met 285	acc Thr	gtc Val	gtc Val	864
gta Val	ctg Leu 290	ccg Pro	gcg Ala	ata Ile	gtg Val	gtc Val 295	cac His	tgt Cys	tat Tyr	atg Met	cgc Arg 300	cga Arg	cat His	acg Thr	gaa Glu	912
302 GJA aaa	gga Gly	tgg Trp	cgg Arg	tat Tyr	gcg Ala 310	gca Ala	ctc Leu	gag Glu	gag Glu	cat His 315	aag Lys	acg Thr	gag Glu	ccg Pro	gga Gly 320	960
Arg	Asn	GIU	гÀг	325	acc Thr	Arg	Ser	Arg	Arg 330	Asn	Ser	Ala	Phe	Gly 335	Gly	1008
ctg Leu	gtc Val	ggt Gly	cga Arg 340	aat Asn	aaa Lys	aga Arg	cga Arg	aag Lys 345	aag Lys	tcc Ser	aag Lys	gtc Val	tcc Ser 350	GJA aaa	gca Ala	1056
ccg Pro	aca Thr	gcg Ala 355	gtt Val	tac Tyr	aca Thr	gcg Ala	atg Met 360	ttt Phe	ttc Phe	atg Met	ttc Phe	tcc Ser 365	acg Thr	gca Ala	atc Ile	1104
ГÀ2	370	Met -	Val	Val	tgc Cys	Thr 375	Met	Lys	Lys	Lys	Val 380	Lys	Lys	Ser	Ala	1152
aat Asn 385	cgc Arg	aga Arg	ctc Leu	cgc Arg	cag Gln 390	ttg Leu	ctc Leu	cga Arg	tgg Trp	gcg Ala 395	cga Arg	tac Tyr	cac His	gcg Ala	aac Asn 400	1200
gcg Ala	ttc Phe	ttg Leu	ctc Leu	tgt Cys 405	tct Ser	ctt Leu	gca Ala	tgc Cys	gca Ala 410	cga Arg	ttc Phe	gcg Ala	gca Ala	tcg Ser 415	cga Arg	1248
acg Thr	gtc Val	atc Ile	cat His 420	tgc Cys	agt Ser	att Ile	Tyr	cca Pro 425	cgt Arg	ttc Phe	ggc Gly	ccc Pro	tta Leu 430	gcc Ala	acg Thr	1296
gtg Val	acg Thr	gcc Ala 435	ata Ile	tgt Cys	ttg Leu	ata Ile	cta Leu 440	cac His	acg Thr	tgt Cys	acg Thr	tac Tyr 445	cga Arg	cgt Arg	acg Thr	1344

gag Glu	gca Ala 450	gac Asp	acg Thr	acg Thr	cga Arg	cac His 455	gaa Glu	aat Asn	gac Asp	gac Asp	gcc Ala 460	cgg Arg	aag Lys	gtg Val	atg Met	1392
gaa Glu 465	gac Asp	atg Met	gcc Ala	aaa Lys	cga Arg 470	atg Met	gac Asp	gat Asp	agt Ser	agc Ser 475	agt Ser	ggg Gly	agc Ser	acg Thr	ttg Leu 480	1440
agc Ser	acg Thr	ctc Leu	acg Thr	act Thr 485	gac Asp	gag Glu	acg Thr	tac Tyr	cac His 490	acc Thr	acc Thr	acg Thr	gag Glu	gtg Val 495	acc Thr	1488
gat Asp	ttt Phe	gat Asp	tca Ser 500	tct Ser	cca Pro	tcg Ser	tgg Trp	gga Gly 505	cga Arg	tgc Cys	tca Ser	tcg Ser	cgg Arg 510	cgc Arg	ccg Pro	1536
ccg Pro	gcg Ala	ctg Leu 515	ctg Leu	gaa Glu	tcg Ser	aca Thr	ttt Phe 520	cgg Arg	cga Arg	tcc Ser	ccg Pro	aga Arg 525	GJA aaa	tcg Ser	acg Thr	1584
gga Gly	cga Arg 530	cga Arg	tgg Trp	cga Arg	gag Glu	tag 535	atto	ggag	jtc a	aggaa	acgtt	g ga	ccga	acag	3	1635
tgga	accgg	gtt t	aggg	gcagt	t ga	cggt	aggg	gtt	gcct	gac	cago	ctto	ac c	gctco	gacagc	1695
								_								
taaa	aaaa	aac o	caaca	aaaa	aa aa	laada	laaac	aaa	laaaa	ıaaa	a					1736
<210 <211 <212)> 36 L> 53 2> PF	5 34 RT	dopsi				iaaac	aaa	laaaa	aaa	a		-			1736
<210 <211 <212 <213	0> 36 L> 53 2> PF B> Ar	5 84 RT cabic		is th	nali <i>a</i>	ına						Asp	Ser	Val 15	Ala	1736
<210 <211 <213 <213 <400 Met	0> 36 l> 53 l> PF B> Ar 0> 36 Pro	34 RT cabic	dopsi	is th Lys 5	nali <i>a</i> Met	ina Leu	Pro	Pro	Thr 10	Ala	Arg			15	•	1736
<210 <211 <212 <213 <400 Met 1	0> 36 1> 53 2> PF 3> Ar 0> 36 Pro	5 34 RT cabic Fro Gly	Pro Gly	Lys 5 Ser	nalia Met Pro	ina Leu Pro	Pro Pro	Pro Pro 25	Thr 10 Pro	Ala Pro	Arg Pro	Pro	Ala 30	15 Arg	Trp	1736
<21(<211 <213 <213 <40(Met 1 Gly	0> 36 1> 53 2> PF 3> Ar 0> 36 Pro Thr	S4 RT cabic Pro Gly Ala 35	Pro Gly 20	Lys 5 Ser Glu	Met Pro Gly	ina Leu Pro Gly	Pro Pro Leu 40	Pro Pro 25 Asp	Thr 10 Pro	Ala Pro Thr	Arg Pro	Pro Pro 45	Ala 30 Pro	15 Arg Pro	Trp Pro	1736
<210 <211 <212 <400 Met 1 Gly Arg	0> 36 1> 53 2> PF 3> Ar 0> 36 Pro Thr Val	S4 RT rabio Pro Gly Ala 35	Pro Gly 20 Gly	Lys 5 Ser Glu Thr	Met Pro Gly Val	Leu Pro Gly Val 55	Pro Pro Leu 40 Ala	Pro 25 Asp Gly	Thr 10 Pro Thr	Ala Pro Thr	Arg Pro Pro Ser 60	Pro Pro 45 Leu	Ala 30 Pro Gly	15 Arg Pro Glu	Trp Pro Ala	1736
<210 <211 <212 <400 Met 1 Gly Arg Pro 65	0> 36 1> 53 2> PF 3> Ar 0> 36 Pro Thr Val Thr 50 Pro	S 4 RT rabio Pro Gly Ala 35 Ala	Pro Gly 20 Gly Asp	Lys 5 Ser Glu Thr	Met Pro Gly Val Pro 70	Leu Pro Gly Val 55	Pro Pro Leu 40 Ala Arg	Pro 25 Asp Gly	Thr 10 Pro Thr Arg	Ala Pro Thr Thr Thr	Arg Pro Pro Ser 60 Ala	Pro Pro 45 Leu Arg	Ala 30 Pro Gly Trp	15 Arg Pro Glu Ser	Trp Pro Ala Ala 80	1736

Leu Ser Met Arg Pro Thr Ser Ser Pro Thr Arg Arg Ile Asp Pro Gln 120 Gly Ala Arg Arg Ser Ser Val Ser Pro Ala Pro Val Thr Thr Gly Met Ala Thr Ser Arg Thr Asp Asp Thr Leu Ile Glu Ala Glu Thr Gly Arg Asp Trp Thr Arg Lys Arg Met Val Arg Lys Leu Leu Lys Ala Arg Ala Lys Asp Tyr Lys Glu Gly Gly Ile Ala Ala Tyr Phe Gly Leu Arg Val 185 Leu Arg Cys Tyr Ser Arg Ile Val Arg Ser Met Lys Arg Pro Gly Asn 200 Leu Lys Phe Thr Cys Arg Arg Asp Val Ala Ile Ala Thr Phe Ser Gly 215 Thr Gly Arg Met Gln Leu Ser Met Asn Ser Arg Leu Arg Val Glu Ser 230 235 Leu Val Ser Ala Gly Gln Ser Val Ala Ser Phe Cys Leu Phe Leu Ile 250 Cys Thr Ala Pro Ser Ala Met Arg Leu Val Ser Leu Leu Thr Leu Thr Pro Ser Met Thr Tyr Leu Thr Cys Gly Leu Gly Trp Met Thr Val Val 280 Val Leu Pro Ala Ile Val Val His Cys Tyr Met Arg Arg His Thr Glu Gly Gly Trp Arg Tyr Ala Ala Leu Glu Glu His Lys Thr Glu Pro Gly 305 315 Arg Asn Glu Lys Ile Thr Arg Ser Arg Arg Asn Ser Ala Phe Gly Gly Leu Val Gly Arg Asn Lys Arg Arg Lys Lys Ser Lys Val Ser Gly Ala 345 Pro Thr Ala Val Tyr Thr Ala Met Phe Phe Met Phe Ser Thr Ala Ile 360 Lys Gly Met Val Val Cys Thr Met Lys Lys Lys Val Lys Lys Ser Ala 375 380 Asn Arg Arg Leu Arg Gln Leu Leu Arg Trp Ala Arg Tyr His Ala Asn Ala Phe Leu Leu Cys Ser Leu Ala Cys Ala Arg Phe Ala Ala Ser Arg 405 410

Thr	Val	Ile	His 420	Cys	Ser	Ile	Tyr	Pro 425	Arg	Phe	Gly	Pro	Leu 430	Ala	Thr	
Val	Thr	Ala 435	Ile	Cys	Leu	Ile	Leu 440	His	Thr	Сув	Thr	Tyr 445	Arg	Arg	Thr	
Glu	Ala 450	Asp	Thr	Thr	Arg	His 455	Glu	Asn	Asp	Asp	Ala 460	Arg	Lys	Val	Met	
Glu 465	Asp	Met	Ala	Lys	Arg 470	Met	Asp	Asp	Ser	Ser 475	Ser	Gly	Ser	Thr	Leu 480	
Ser	Thr	Leu	Thr	Thr 485	Asp	Glu	Thr	Tyr	His 490	Thr	Thr	Thr	Glu	Val 495	Thr	
Asp	Phe	Asp	Ser 500	Ser	Pro	Ser	Trp	Gly 505	Arg	Cys	Ser	Ser	Arg 510	Arg	Pro	
Pro	Ala	Leu 515	Leu	Glu	Ser	Thr	Phe 520	Arg	Arg	Ser	Pro	Arg 525	Gly	Ser	Thr	,
Gly	Arg 530	Arg	Trp	Arg	Glu											
<211 <212 <213 <220 <221 <222 <220 <221 <222 <220 <221 <222 <400)> CD	08 IA Fabid 0S .8) 0S .56).	. (31	4) 3)												
		tc t		М	et G 1 -	ln V	al A	la A	sp I 5	le S	er L	eu G	ln G	ly A 10	at sp	50
gct Ala	aag Lys	aag Lys	ggt Gly 15	gcc Ala	aac Asn	ctc Leu	ttc Phe	aag Lys 20	gtac	gaac	ag a	gcaa	agat	g		97
ccgc	tgaa	aa t	tctc	acgg	c gc	attc	tatc	ccg	caga	act	tttc	tgac	ca c	tttg	tag	155
acc Thr	cgc Arg	tgc Cys	gct Ala	cag Gln 25	tgc Cys	cac His	acc Thr	ctg Leu	aag Lys . 30	gcc (Ala (ggc (Gly (gag (Glu (ggc Gly	aac a Asn 1	aag Lys	203

att Ile	ggc Gly	cct Pro	gag Glu 40	ctc Leu	cac His	ggt Gly	ctc Leu	ttc Phe 45	ggc Gly	cgc Arg	aag Lys	act Thr	ggt Gly 50	tcc Ser	gtc Val	251
gct Ala	ggc Gly	tac Tyr 55	tca Ser	tac Tyr	acc Thr	gac Asp	gcc Ala 60	aac Asn	aag Lys	cag Gln	aag Lys	ggt Gly 65	atc	gag Glu	tgg Trp	299
aag Lys	gac Asp 70	gac Asp	act Thr	ctc Leu	gtad	egte	acg (ccac	egga	ag a	ttga	aatg	t cc	ccga	gacc	354
ctc	egeta	aac a	acgad	cacaç	y tto Phe	gaç Glu 75	ı Ty	c cto	c gaq ı Gli	g aad 1 Asi	c cc n Pro 80	o Ly	g aag s Ly	g ta s Ty:	c att	406
Pro 85	ggt Gly	acc Thr	aag Lys	atg Met	gcc Ala 90	ttc Phe	ggt Gly	ggt Gly	ctc Leu	aag Lys 95	aag Lys	ccc Pro	aag Lys	gac Asp	cgc Arg 100	454
aac Asn	gac Asp	ctc Leu	atc Ile	acc Thr 105	ttc Phe	ctt Leu	gag Glu	gag Glu	gag Glu 110	acc Thr	aaa Lys	taa	gcg	tctt	gct	503
acco	CC															.508
<211 <212	0> 38 L> 11 2> PF B> Ar	L2 RT	dopsi	is th	nalia	ana										
)> 38			_		_					_					
1	GIII	Val	Ата	Asp 5	TIE	ser	Leu	Gln	10	Asp	Ala	Lys	Lys	Gly 15	Ala	
Asn	Leu	Phe	Lys 20	Thr	Arg	Cys	Ala	Gln 25	Cys	His	Thr	Leu	Lys 30	Ala	Gly	
Glu	Gly	Asn 35	Lys	Ile	Gly	Pro	Glu 40	Leu	His	Gly	Leu	Phe 45	Gly	Arg	Lys	
Thr	Gly 50	Ser	Val	Ala	Gly	Tyr 55	Ser	Tyr	Thr	Asp	Ala 60	Asn	Lys	Gln	Lys	
Gly 65	Ile	Glu	Trp	Lys	Asp 70	Asp	Thr	Leu	Phe	Glu 75	Tyr	Leu	Glu	Asn	Pro 80	
Lys	Lys	Tyr	Ile	Pro 85	Gly	Thr	Lys	Met	Ala 90	Phe	Gly	Gly	Leu	Lys 95	Lys	
Pro	Lys	Asp	Arg 100	Asn	Asp	Leu	Ile	Thr 105	Phe	Leu	Glu	Glu	Glu 110	Thr	Lys	

```
<210> 39
<211> 5156
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (1)..(609)
<220>
<221> CDS
<222> (686)..(841)
<220>
<221> CDS
<222> (933)..(1040)
<220>
<221> CDS
<222> (1130)..(1240)
<220>
<221> CDS
<222> (1341)..(2729)
<220>
<221> CDS
<222> (2772)..(2984)
<220>
<221> CDS
<222> (4112)..(4200)
<220>
<221> CDS
<222> (4241)..(4332)
<220>
<221> CDS
<222> (4478)..(4521)
<220>
<221> CDS
<222> (5088)..(5156)
<400> 39
atg gca ccg aca cca tct tct tca aga tca aat caa act caa tac acc
                                                                    48
Met Ala Pro Thr Pro Ser Ser Ser Arg Ser Asn Gln Thr Gln Tyr Thr
tta atc aga act cca caa aca aaa caa cgt ctc aat ttc cac tca aaa
                                                                    96
Leu Ile Arg Thr Pro Gln Thr Lys Gln Arg Leu Asn Phe His Ser Lys
                                 25
acc cca aac cca gac gga tct aaa gat cca tct cca ccg gag cat cca
Thr Pro Asn Pro Asp Gly Ser Lys Asp Pro Ser Pro Pro Glu His Pro
         35
                              40
                                                  45
```

gtt Val	gaa Glu 50	gta Val	Ile	ggc	cgg	atc Ile 55	cga Arg	gat Asp	tac Tyr	cct Pro	gac Asp 60	cgg Arg	aaa Lys	gag Glu	aaa Lys	192
tca Ser 65	cct Pro	tcg Ser	atc Ile	tta Leu	caa Gln 70	gtc Val	aac Asn	aca Thr	gat Asp	aat Asn 75	caa Gln	acg Thr	gta Val	cga Arg	gtc Val 80	240
aga Arg	gct Ala	gat Asp	gtt Val	ggg Gly 85	tac Tyr	aga Arg	gac Asp	ttc Phe	aca Thr 90	ctc Leu	gac Asp	ggt Gly	gtt Val	tct Ser 95	ttc Phe	288
tcg Ser	gag Glu	caa Gln	gaa Glu 100	ggt Gly	ctt Leu	gaa Glu	gag Glu	ttc Phe 105	tac Tyr	aag Lys	aag Lys	ttt Phe	ata Ile 110	gaa Glu	gag Glu	336
agg Arg	att Ile	aaa Lys 115	gga Gly	gtg Val	aaa Lys	gtt Val	ggg Gly 120	aat Asn	aaa Lys	tgc Cys	acg Thr	att Ile 125	atg Met	atg Met	tat Tyr	384
gga Gly	cct Pro 130	act Thr	ggt Gly	gct Ala	gga Gly	aag Lys 135	agt Ser	cat His	act Thr	atg Met	ttt Phe 140	ggt Gly	tgt Cys	Gly	aaa Lys	432
gag Glu 145	cct Pro	Gly ggg	att Ile	gtg Val	tat Tyr 150	cgt Arg	tct Ser	ttg Leu	aga Arg	gat Asp 155	ata Ile	ttg Leu	gga Gly	gat Asp	tct Ser 160	480
gat Asp	caa Gln	gat Asp	ggt Gly	gtt Val 165	act Thr	ttt Phe	gtt Val	caa Gln	gtt Val 170	act Thr	gtt Val	ctt Leu	gag Glu	gtt Val 175	tat Tyr	528
aat Asn	gag Glu	gag Glu	att Ile 180	tat Tyr	gat Asp	ctt Leu	ctt Leu	tcg Ser 185	act Thr	aat Asn	agt Ser	agt Ser	aac Asn 190	aat Asn	tta Leu	576
ggt Gly	att Ile	ggt Gly 195	tgg Trp	cct Pro	aaa Lys	gga Gly	gca Ala 200	agc Ser	act Thr	aag Lys	gtaa	agtt	tc (ttgat	tgata	629
actt	tagt	at a	acatt	gaat	t gg	gcttt	aaaç	g gto	ıtgta	actt	tgtt	gttt	tg 1	taca	ag gtg Val	688
agg Arg 205	ctt Leu	gaa Glu	gta Val	atg Met	ggg Gly 210	aaa Lys	aag Lys	gcg Ala	aaa Lys	aac Asn 215	gca Ala	agt Ser	ttt Phe	att Ile	tct Ser 220	736
G1À aàa	aca Thr	gag Glu	gct Ala	ggg Gly 225	aag Lys	att Ile	tct Ser	aaa Lys	gaa Glu 230	att Ile	gtc Val	aaa Lys	gtg Val	gag Glu 235	aaa Lys	784
cgg Arg	aga Arg	att Ile	gtg Val 240	aag Lys	agt Ser	aca Thr	ctt Leu	tgt Cys 245	aac Asn	gaa Glu	aga Arg	agt Ser	tct Ser 250	cgg Arg	agt Ser	832
cac	tgc	att	gtaa	gaac	ga t	cttc	ttoa	it to	atot	atat	. aca	tage	+++			221

His Cys Ile 255

u cg.	cagc	tta 1	tete	tgtt	tt a	actt	acta	g tg	tggt	tgtt	tct	tttt	gta	_	c ata e Ile	938
ctt Leu	gat Asp	gtg Val 260	cca Pro	act Thr	gtt Val	ggg Gly	gga Gly 265	aga Arg	ttg Leu	atg Met	ctt Leu	gtt Val 270	gac Asp	atg Met	gct Ala	986
ggt Gly	tct Ser 275	gaa Glu	aat Asn	ata Ile	gac Asp	caa Gln 280	gct Ala	ggg	cag Gln	act Thr	gga Gly 285	ttt Phe	gaa Glu	gct Ala	aag Lys	1034
atg Met 290	caa Gln	gtaa	atgti	ttc (ctct	ctcaa	at ti	gtti	tgati	t cta	actaa	aagt	tat	tgta	gtt	1090
atg	gatat	ca a	actga	actta	at at	cctc	catt	t ati	caad					atc Ile 295		1144
cag Gln	gga Gly	aat Asn	att Ile 300	gca Ala	ctg Leu	aag Lys	cga Arg	gtt Val 305	gtg Val	gaa Glu	tct Ser	ata Ile	gca Ala 310	aat Asn	gga Gly	1192
gat Asp	tct Ser	cat His 315	.gta Val	ccc Pro	ttt Phe	aga Arg	gac Asp 320	agc Ser	aag Lys	ctg Leu	acc Thr	atg Met 325	ctt Leu	ctc Leu	cag Gln	1240
gtga	aatt	ct t	gtto	catt	g tt	ttat	ctto	tgg	gaaaa	atgt	ttta	acgt	gtt	gctt	ggtttt	1300
		ata t	ttag	gtgtt	g tt	tcta	attct	cto	gaato	gcag			ttt Phe	gaa		1355
	jaaya										nap	330		GIU	Asp	
gac	aag	tca	aag	att	cta Leu	atg Met 340	atc Ile	ctg Leu	tgt Cys	gcg Ala	agc	330 ccg	gat	cca Pro	aaq	1403
gac Asp	aag Lys 335 atg	tca Ser	aag Lys aag	att Ile act	Leu	Met 340 tgt	Ile	Leu	Cys	Ala	agc Ser 345	330 ccg Pro	gat Asp	cca	aag Lys aag	1403 1451
gac Asp gaa Glu 350	aag Lys 335 atg Met	tca Ser cac His	aag Lys aag Lys	att Ile act Thr	ctc Leu 355	Met 340 tgt Cys	Ile act Thr	Cta Leu Cca	Cys gag Glu aac	tat Tyr 360	agc Ser 345 ggg Gly	330 ccg Pro gca Ala	gat Asp aaa Lys tat	cca Pro	aag Lys aag Lys 365	,
gac Asp gaa Glu 350 tgc Cys	aag Lys 335 atg Met ata Ile	tca Ser cac His gtt Val	aag Lys aag Lys cgt Arg	att Ile act Thr ggg Gly 370	ctc Leu 355 tct Ser	Met 340 tgt Cys cat His	Ile act Thr act Thr	Leu cta Leu cca Pro	gag Glu aac Asn 375	tat Tyr 360 aaa Lys	agc Ser 345 ggg Gly gat Asp	330 ccg Pro gca Ala aag Lys	gat Asp aaa Lys tat Tyr	cca Pro gca Ala ggg Gly	aag Lys aag Lys 365 ggt Gly	1451
gac Asp gaa Glu 350 tgc Cys	aag Lys 335 atg Met ata Ile gag Glu	tca Ser cac His gtt Val tct Ser	aag Lys aag Lys cgt Arg gct Ala 385	att Ile act Thr ggg Gly 370 tct Ser	ctc Leu 355 tct Ser gct Ala	Met 340 tgt Cys cat His gtg Val	act Thr act Thr att Ile	cta Leu cca Pro ttg Leu 390	gag Glu aac Asn 375 gga Gly	tat Tyr 360 aaa Lys tca Ser	agc Ser 345 ggg Gly gat Asp aga Arg	330 ccg Pro gca Ala aag Lys ata Ile	gat Asp aaa Lys tat Tyr gct Ala 395	cca Pro gca Ala ggg Gly 380	aag Lys aag Lys 365 ggt Gly atg Met	1451 1499

Glu	Arg 415	Asn	Glu	Ala	Gln	Lys 420	Gln	Leu	Lys	Lys	Lys 425		ı Glu	Glu	ı Val	
gct Ala 430	WIG	tta Leu	aga Arg	tct Ser	ctt Leu 435	Leu	aca Thr	cag Gln	agg Arg	gaa Glu 440	Ala	tgt Cys	gct Ala	aco Thr	aat Asn 445	1691
gaa Glu	gag Glu	gag Glu	ata Ile	aaa Lys 450	GIU	aaa Lys	gta Val	aac Asn	gag Glu 455	Arg	acc Thr	cag Gln	ctt Leu	tto Leu 460	aag Lys	1739
tcg Ser	gaa Glu	cta Leu	gat Asp 465	aag Lys	aaa Lys	ctt Leu	gaa Glu	gaa Glu 470	tgc Cys	cga Arg	aga Arg	atg Met	gct Ala 475	Glu	gaa Glu	1787
ttt Phe	gtt Val	gag Glu 480	atg Met	gag Glu	aga Arg	agg Arg	aga Arg 485	atg Met	gag Glu	gaa Glu	agg Arg	ata Ile 490	Val	cag Gln	cag Gln	1835
caa Gln	gag Glu 495	gaa Glu	ctg Leu	gag Glu	atg Met	atg Met 500	agg Arg	aga Arg	cgg Arg	tta Leu	gag Glu 505	gaa Glu	atc Ile	gag Glu	gtt Val	1883
gag Glu 510	ttc Phe	cgc Arg	cgc Arg	tca Ser	aat Asn 515	gga Gly	gga Gly	agt Ser	gtt Val	gat Asp 520	gaa Glu	act Thr	agt Ser	ggg	ttt Phe 525	1931
gcc Ala	aaa Lys	aga Arg	ctc Leu	agg Arg 530	agt Ser	ctt Leu	tac Tyr	tct Ser	gat Asp 535	gat Asp	gat Asp	cct Pro	ggt Gly	atg Met 540	gtg Val	1979
aag Lys	tca Ser	atg Met	gac Asp 545	ctt Leu	gac Asp	atg Met	ggt Gly	gat Asp 550	cca Pro	gaa Glu	cct Pro	gtc Val	aag Lys 555	caa Gln	gtg Val	2027
tgg Trp	gga Gly	gct Ala 560	gtt Val	tca Ser	cac His	caa Gln	tca Ser 565	agc Ser	aac Asn	act Thr	att Ile	agt Ser 570	agc Ser	aac Asn	ttc Phe	2075
act Thr	aac Asn 575	ctt Leu	ttg Leu	caa Gln	ccg Pro	aag Lys 580	cct Pro	tca Ser	gag Glu	aat Asn	atg Met 585	ctt Leu	aca Thr	cag Gln	atg Met	2123
tat Tyr 590	cct Pro	gac Asp	cgg Arg	gta Val	tgc Cys 595	ttg Leu	agc Ser	act Thr	gtc Val	ttt Phe 600	gaa Glu	gaa Glu	gaa Glu	gaa Glu	gtt Val 605	2171
gaa Glu	gaa Glu	gag Glu	gaa Glu	gaa Glu 610	aaa Lys	gtg Val	ata Ile	gtc Val	gag Glu 615	gat Asp	aaa Lys	agc Ser	atc Ile	tgc Cys 620	ttg Leu	2219
ata Ile	aca Thr	aca Thr	cca Pro 625	atg Met	cct Pro	agt Ser	ttg Leu	aac Asn 630	tct Ser	gaa Glu	ggt Gly	ttg Leu	ggt Gly 635	aaa Lys	gag Glu	2267
aac Asn	tgc Cys	ttc Phe	aac Asn	ggt Gly	gca Ala	gat Asp	gac Asp	aag Lys	gaa Glu	tca Ser	gcc Ala	tcg Ser	tct Ser	aga Arg	agg Arg	2315

		640			•		645					650				
ttg Leu	aga Arg 655	att Ile	caa Gln	aac Asn	att Ile	ttc Phe 660	acc Thr	ctt Leu	tgt Cys	ggc Gly	aat Asn 665	cag Gln	aga Arg	gag Glu	ctg Leu	2363
tct Ser 670	caa Gln	cac His	agt Ser	gga Gly	cag Gln 675	gag Glu	gag Glu	gat Asp	caa Gln	gcc Ala 680	aat Asn	att Ile	gca Ala	tca Ser	cct Pro 685	2411
gat Asp	aag Lys	aaa Lys	gac Asp	aat Asn 690	cag Gln	ttc Phe	ttt Phe	tct Ser	att Ile 695	acg Thr	aat Asn	aag Lys	gcc Ala	gaa Glu 700	gca Ala	2459
cta Leu	gca Ala	gta Val	gaa Glu 705	gaa Glu	gca Ala	aag Lys	gaa Glu	aac Asn 710	aat Asn	atc Ile	tca Ser	gtc Val	gat Asp 715	caa Gln	agg Arg	2507
gaa Glu	aac Asn	ggt Gly 720	cag Gln	cta Leu	gat Asp	atc Ile	tat Tyr 725	gtt Val	aaa Lys	tgg Trp	gaa Glu	aca Thr 730	gct Ala	gct Ala	gat Asp	2555
aac Asn	cct Pro 735	cga Arg	aag Lys	ctc Leu	ata Ile	aca Thr 740	aca Thr	ctg Leu	aga Arg	gtt Val	aca Thr 745	aag Lys	gat Asp	gca Ala	aca Thr	2603
cta Leu 750	gct Ala	gac Asp	ttg Leu	agg Arg	aag Lys 755	ctt Leu	att Ile	gag Glu	atc Ile	tac Tyr 760	ctt Leu	gga Gly	tct Ser	gat Asp	aat Asn 765	2651
cag Gln	gct Ala	ttt Phe	acc Thr	ttt Phe 770	ctc Leu	aag Lys	ctc Leu	Gly ggg	gta Val 775	ata Ile	aac Asn	ttg Leu	aac Asn	caa Gln 780	caa Gln	2699
gca Ala	caa Gln	aaa Lys	gct Ala 785	ttt Phe	cat His	ttt Phe	tat Tyr	ctg Leu 790	ttt Phe	gtta	atgct	ct (gatco	ctaaa	at.	2749
gcag	gttat	tt o	aatq	gtato	ga aç					/ Ala					g gag s Glu)	2801
aaa Lys	gaa Glu	tca Ser	aca Thr 805	gtt Val	caa Gln	gct Ala	acg Thr	agc Ser 810	cta Leu	cct Pro	ctc Leu	tgc Cys	aac Asn 815	gga Gly	cac His	2849
gca Ala	tac Tyr	ctc Leu 820	gcc Ala	act Thr	ttg Leu	aga Arg	cca Pro 825	gga Gly	aag Lys	agc Ser	tca Ser	caa Gln 830	cat His	aaa Lys	agt Ser	2897
ctt Leu	caa Gln 835	cct Pro	gca Ala	agc Ser	cca Pro	ctt Leu 840	cca Pro	ctt Leu	aat Asn	ccc Pro	ata Ile 845	gaa Glu	aac Asn	atg Met	atg Met	2945
gaa Glu 850	gtt Val	acc Thr	ccc Pro	atc Ile	tca Ser 855	aaa Lys	gtg Val	aca Thr	ccg Pro	aac Asn 860	cat His	caa Gln	gttg	gatga	at	2994

tttcatcacc caatctcgta gctcatctca gctccactcc attcatcact ctcagaagac	3054
attagtcgct atgtcttgtt ttctctattc ttcttttgtc tgtccaaagg tagcttttga	3114
aagatgtagc agcctttgtc tatttctctg tgttgagaaa aaaaaaactc ttatgtacga	3174
ccacttttgt agctatatat atgttctacg atgtttcagc agagtggtgt ttatcagaac	3234
gtataactgg tgtttcccaa aggatgctta gttctactta taacatatac ataagtagag	3294
agaatgctgc agccacatag agctacttct tacctctctc tgtcattgta acatatggac	3354
aaattccaaa agccctattc aattccaacc ccaatatett tatgatcatc atcataacgt	3414
gaacaccaaa aacaagggca aaaatttcaa aggctcttaa aaataacaat atcccggaag	3474
caaagattac ctgcaactgc aagggaaagc caagccctat tatagaaaag caacttcatt	3534
agttaagccc tatctctcaa tatgctcaca tgcatgcatt gaccaaatgt cttctttat	3594
ctacaggtac tcagtcactt tcttagttac acactagatt aactcaattc ttctgcaacc	3654
tcattatctc caaagtaaaa gaccactgtt attgatgttt ttatggataa tatatgatga	3714
ttcatcttta ttacattagc tgaatacaga acaacaacca attaactcaa ttattttgaa	3774
agatgtatgt agcctgtcta tttctcggtg ttgagaaaaa aaacgctatg tacgaccact	3834
ttcagcagtc aaagtgagtg actagagcca tcagcatgga gtgtttttca agttgtacaa	3894
caagatttgt caacaaagtc taaaactttc ttttattcga ccataatatg actgactagg	3954
cacgttggtt ttcgatatac agtttaaaag gttggagaag atgactagat gagataggtt	4014
ttcatatttt acttccacat cgaagtttta gagaacagaa agaggagaaa attgaagtac	4074
acatgagaca agttacactt taaagcttta ttaacag att ctt tta aaa aca gag Ile Leu Leu Lys Thr Glu 865	4129
act gag aga ttg gga gag gca gat tac att aac tct ctt tct ctc tct Thr Glu Arg Leu Gly Glu Ala Asp Tyr Ile Asn Ser Leu Ser Leu Ser 870 875 880	4177
cac ttt ctc atc ttg ttc cca ag gttaaaaaac aattcgagga catgtctttc His Phe Leu Ile Leu Phe Pro Ar 885 890	4230
ctattttcag a gga gag agc cat cag cac cga atg ttg tct ttt cac tct g Gly Glu Ser His Gln His Arg Met Leu Ser Phe His Ser 895 900 905	4280
cat caa act tot cot too cta tot toa ttt cot ctt ott too aga goo His Gln Thr Ser Pro Ser Leu Ser Ser Phe Pro Leu Leu Ser Arg Ala 910 915 920	4328

gat g gtaaggaget egaagtttet aatggeatee teatgeeeag geettgetge Asp A	4382
agctgcagat tcatagctct gtggaacccg ttgggttgtg gcatgacgtg aaccacttga	4442
aaatagtegg ettgagtggt tetegettgg tteag et gat gag eea ggt etg gtg la Asp Glu Pro Gly Leu Val 925	4497
ctt gat atc aca cct ctc ttt gag gtacttccat ttcgagactc gtgctgcaaa Leu Asp Ile Thr Pro Leu Phe Glu 930 935	4551
tgaagccagc aaatcaaaac acacaaactt tctcatgttc tgattcccta cttattctga	4611
gaattacttt ggatcattac aacaagagaa ataacaacac aaactaacca cttccttggc	4671
agaagagggt atatcatcag aagatctgtg tctagagcga tcaccaagag cgccttggct	4731
tgaaacattt cgtctggtga atgcctcaat tgcacctgta aatcttcctc gcaggtcctg	4791
tccgactaaa cagaataggg aaagaagttc tcagtttgag atcttccact attcaacaat	4851
ttaattaaat ctctggacac aaattcaaaa tcttctaagg gaaacaacat atgaatgtta	4911
atatctgaag ggtcaagtga gatagtgcac gtttttcagc acccaaaatt gtcaacactg	4971
tctcataaat ttacaactta aaataaactt tttgatatat ctctttgtat tcgtccctcc	5031
aatataagag acagagaaca tcaatgtacc tgtaggcttt tcagctcttt ctgcag gtg Val	5090
gtc ctg gag ggt cca acg ctg gtc ttg gag ttg gct gtt gta aat gat Val Leu Glu Gly Pro Thr Leu Val Leu Glu Leu Ala Val Val Asn Asp 940 945 950	5138
aga cac ata gca gga taa Arg His Ile Ala Gly 955 960	5156
<210> 40 <211> 959 <212> PRT <213> Arabidopsis thaliana	
<400> 40	
Met Ala Pro Thr Pro Ser Ser Ser Arg Ser Asn Gln Thr Gln Tyr Thr 1 5 10 15	-
Leu Ile Arg Thr Pro Gln Thr Lys Gln Arg Leu Asn Phe His Ser Lys 20 25 30	
Thr Pro Asn Pro Asp Gly Ser Lys Asp Pro Ser Pro Pro Glu His Pro	

Val Glu Val Ile Gly Arg Ile Arg Asp Tyr Pro Asp Arg Lys Glu Lys

50 55 60

Ser Pro Ser Ile Leu Gln Val Asn Thr Asp Asn Gln Thr Val Arg Val 70 Arg Ala Asp Val Gly Tyr Arg Asp Phe Thr Leu Asp Gly Val Ser Phe Ser Glu Gln Glu Gly Leu Glu Glu Phe Tyr Lys Lys Phe Ile Glu Glu Arg Ile Lys Gly Val Lys Val Gly Asn Lys Cys Thr Ile Met Met Tyr Gly Pro Thr Gly Ala Gly Lys Ser His Thr Met Phe Gly Cys Gly Lys Glu Pro Gly Ile Val Tyr Arg Ser Leu Arg Asp Ile Leu Gly Asp Ser 160 Asp Gln Asp Gly Val Thr Phe Val Gln Val Thr Val Leu Glu Val Tyr 170 Asn Glu Glu Ile Tyr Asp Leu Leu Ser Thr Asn Ser Ser Asn Asn Leu 185 Gly Ile Gly Trp Pro Lys Gly Ala Ser Thr Lys Val Arg Leu Glu Val 195 200 Met Gly Lys Lys Ala Lys Asn Ala Ser Phe Ile Ser Gly Thr Glu Ala 215 Gly Lys Ile Ser Lys Glu Ile Val Lys Val Glu Lys Arg Arg Ile Val 230 235 Lys Ser Thr Leu Cys Asn Glu Arg Ser Ser Arg Ser His Cys Ile Ile 250 Ile Leu Asp Val Pro Thr Val Gly Gly Arg Leu Met Leu Val Asp Met 260 Ala Gly Ser Glu Asn Ile Asp Gln Ala Gly Gln Thr Gly Phe Glu Ala Lys Met Gln Thr Ala Lys Ile Asn Gln Gly Asn Ile Ala Leu Lys Arg 290 295 Val Val Glu Ser Ile Ala Asn Gly Asp Ser His Val Pro Phe Arg Asp 310 Ser Lys Leu Thr Met Leu Leu Gln Asp Ser Phe Glu Asp Asp Lys Ser 325 335 Lys Ile Leu Met Ile Leu Cys Ala Ser Pro Asp Pro Lys Glu Met His Lys Thr Leu Cys Thr Leu Glu Tyr Gly Ala Lys Ala Lys Cys Ile Val

355 360 365

Arg Gly Ser His Thr Pro Asn Lys Asp Lys Tyr Gly Gly Asp Glu Ser Ala Ser Ala Val Ile Leu Gly Ser Arg Ile Ala Ala Met Asp Glu Phe Ile Ile Lys Leu Gln Ser Glu Lys Lys Gln Lys Glu Lys Glu Arg Asn 410 Glu Ala Gln Lys Gln Leu Lys Lys Lys Glu Glu Glu Val Ala Ala Leu 420 Arg Ser Leu Leu Thr Gln Arg Glu Ala Cys Ala Thr Asn Glu Glu Glu 435 Ile Lys Glu Lys Val Asn Glu Arg Thr Gln Leu Leu Lys Ser Glu Leu 455 Asp Lys Lys Leu Glu Glu Cys Arg Arg Met Ala Glu Glu Phe Val Glu 475 Met Glu Arg Arg Met Glu Glu Arg Ile Val Gln Gln Gln Glu Glu 490 Leu Glu Met Met Arg Arg Leu Glu Glu Ile Glu Val Glu Phe Arg 505 Arg Ser Asn Gly Gly Ser Val Asp Glu Thr Ser Gly Phe Ala Lys Arg Leu Arg Ser Leu Tyr Ser Asp Asp Pro Gly Met Val Lys Ser Met 530 Asp Leu Asp Met Gly Asp Pro Glu Pro Val Lys Gln Val Trp Gly Ala 550 Val Ser His Gln Ser Ser Asn Thr Ile Ser Ser Asn Phe Thr Asn Leu 565 Leu Gln Pro Lys Pro Ser Glu Asn Met Leu Thr Gln Met Tyr Pro Asp 585 Arg Val Cys Leu Ser Thr Val Phe Glu Glu Glu Glu Val Glu Glu Glu 600 Glu Glu Lys Val Ile Val Glu Asp Lys Ser Ile Cys Leu Ile Thr Thr 615 Pro Met Pro Ser Leu Asn Ser Glu Gly Leu Gly Lys Glu Asn Cys Phe 635 Asn Gly Ala Asp Asp Lys Glu Ser Ala Ser Ser Arg Arg Leu Arg Ile 650

Gln Asn Ile Phe Thr Leu Cys Gly Asn Gln Arg Glu Leu Ser Gln His

660 665 670 Ser Gly Gln Glu Glu Asp Gln Ala Asn Ile Ala Ser Pro Asp Lys Lys Asp Asn Gln Phe Phe Ser Ile Thr Asn Lys Ala Glu Ala Leu Ala Val Glu Glu Ala Lys Glu Asn Asn Ile Ser Val Asp Gln Arg Glu Asn Gly 715 Gln Leu Asp Ile Tyr Val Lys Trp Glu Thr Ala Ala Asp Asn Pro Arg 730 Lys Leu Ile Thr Thr Leu Arg Val Thr Lys Asp Ala Thr Leu Ala Asp 745 Leu Arg Lys Leu Ile Glu Ile Tyr Leu Gly Ser Asp Asn Gln Ala Phe Thr Phe Leu Lys Leu Gly Val Ile Asn Leu Asn Gln Gln Ala Gln Lys Ala Phe His Phe Tyr Leu Phe Glu Pro Cys Gly Ala Gln Val Ala Lys 795 Glu Lys Glu Ser Thr Val Gln Ala Thr Ser Leu Pro Leu Cys Asn Gly 805 810 His Ala Tyr Leu Ala Thr Leu Arg Pro Gly Lys Ser Ser Gln His Lys Ser Leu Gln Pro Ala Ser Pro Leu Pro Leu Asn Pro Ile Glu Asn Met 840 Met Glu Val Thr Pro Ile Ser Lys Val Thr Pro Asn His Gln Ile Leu Leu Lys Thr Glu Thr Glu Arg Leu Gly Glu Ala Asp Tyr Ile Asn Ser 870 875 Leu Ser Leu Ser His Phe Leu Ile Leu Phe Pro Arg Gly Glu Ser His 885 Gln His Arg Met Leu Ser Phe His Ser His Gln Thr Ser Pro Ser Leu 905 Ser Ser Phe Pro Leu Leu Ser Arg Ala Asp Ala Asp Glu Pro Gly Leu 920 Val Leu Asp Ile Thr Pro Leu Phe Glu Val Val Leu Glu Gly Pro Thr

Leu Val Leu Glu Leu Ala Val Val Asn Asp Arg His Ile Ala Gly

950

955

```
<210> 41
  <211> 6960
  <212> DNA
  <213> Arabidopsis thaliana
  <220>
  <221> CDS
  <222> (147)..(327)
  <220>
  <221> CDS
  <222> (405)..(796)
 <220>
 <221> CDS
 <222> (1426)..(1500)
 <220>
 <221> CDS
 <222> (3486)..(3638)
 <220>
 <221> CDS
 <222> (3754)..(3864)
 <220>
 <221> CDS
 <222> (4030)..(4096)
 <220>
 <221> CDS
 <222> (4252)..(4523)
 <220>
 <221> CDS
 <222> (4732)..(4834)
 <220>
 <221> CDS
 <222> (6735)..(6907)
<400> 41
 cccaaaaagc ttgacctaac ggctatgttt tctttacttt caccataaat aagcacctct 60
 tgaggttgca aacacacaca cacacacaca ctcacttcaa aagagttagt aagaagttgg 120
 ggtttgatta acgttttgca tcggag atg ggt ttg gtc atg agg ttt gat ctt
                              Met Gly Leu Val Met Arg Phe Asp Leu
                                 1
 tac ctt atg ttt gtg atg ttg atg ggt tta ggg ttt acg ata tca aat
 Tyr Leu Met Phe Val Met Leu Met Gly Leu Gly Phe Thr Ile Ser Asn
  10
                      15
 gga tac aag ttc tat gtt ggt ggg aaa gat ggt tgg gtc ccg act cct
                                                                    269
 Gly Tyr Lys Phe Tyr Val Gly Gly Lys Asp Gly Trp Val Pro Thr Pro
```

				30					35					40		
tcc Ser	gaa Glu	gat Asp	tat Tyr 45	tct Ser	cat His	tgg Trp	tct Ser	cac His 50	cga Arg	aac Asn	cgg Arg	ttt Phe	caa Gln 55	gtc Val	aac Asn	317
gac Asp	act Thr	ctt Leu 60	с g [†] Н	taag	tcta	t tt	cctc	ttct	cta	ctat	ata	taca	caat	gt		367
gtca	aata	tta i	atgca	atag	ta a	ttt	gatt	t tt	acaa					gcc Ala 65		421
gga Gly	aaa Lys	gat Asp	tca Ser 70	gtg Val	ttg Leu	gag Glu	gtg Val	act Thr 75	gaa Glu	caa Gln	gag Glu	tac Tyr	aac Asn 80	aca Thr	tgc Cys	469
aac Asn	acg Thr	aca Thr 85	cac His	ccc Pro	ctg Leu	act Thr	tcc Ser 90	ctc Leu	tca Ser	gac Asp	gga Gly	gac Asp 95	tct Ser	ctc Leu	ttc Phe	517
cta Leu	ctt Leu 100	agc Ser	cac His	tca Ser	ggt Gly	tcc Ser 105	tac Tyr	ttt Phe	ttc Phe	att Ile	agt Ser 110	ggc	aac Asn	tct Ser	caa Gln	565
aac Asn 115	tgt Cys	ctt Leu	aaa Lys	ggt Gly	cag Gln 120	aag Lys	cta Leu	gcc Ala	gtc Val	aag Lys 125	gtc Val	ttg Leu	tcc Ser	acc Thr	gtc Val 130	613
cac His	cac His	agc Ser	cac His	tct Ser 135	cct Pro	cgt Arg	cat His	acc Thr	tct Ser 140	ccc Pro	tcc Ser	ccg Pro	tct Ser	ccg Pro 145	gtc Val	661
cat His	cag Gln	gag Glu	ttg Leu 150	tct Ser	tcg Ser	ccg Pro	Gly ggg	cct Pro 155	tct Ser	cca Pro	gga Gly	gtg Val	gaa Glu 160	cca Pro	tca Ser	709
tct Ser	gat Asp	tca Ser 165	aac Asn	tct Ser	cgt Arg	gtt Val	cca Pro 170	gct Ala	cca Pro	gga Gly	ccg Pro	gct Ala 175	aca Thr	gct Ala	ccc Pro	757
aat Asn	tcg Ser 180	gcc Ala	ggt Gly	ttg Leu	gtt Val	ggt Gly 185	ccg Pro	Gly aaa	atg Met	gtg Val	gtt Val 190	ctt Leu	gtga	ittat	ga	806
taag	ttct	ct g	tttt	gagg	g gt	ttat	atat	tgt	cgct	agt	catt	aaat	tt g	tgag	ggtat	866
taat	tact	ct a	ccat	tgag	t tt	cata	ttta	tgt	gcct	ttt	tatt	tgta	tg t	ttga	agcat	926
cttg	taac	cc a	tttt	taat	g tt	tccg	ctgt	ctc	gttt	ttg	ttct	tact	aa a	gaaa	atatt	986
taag	atgt	tt t	tttg	tatt	g at	taga	tgcg	r aat	gttt	tta	tttt	gtgt	tt t	aatt	atgat	1046
caca	ctaa	ta t	gaat	atat	a cg	acga	atat	gta	gagt	tca	cata	gctc	at g	caat	aaaac	1106

ttctccacac aaactaaaat cttgttgaaa catataaata gatcttatac actttttgta 1166

catataagaa tggtttgaac aatttaactt taatcaatat attaaaccgg tacaccgaaa 1226 tccaatagag agaatatgtc aaggagttaa caaaaaaaat atactaccgc cgtctgtggg 1286 gategaacce aeggeetegt gggtaaaage caegegetet accaetgage taagaegget 1346 atatgacaaa aaatttaaat tatgttaatt attgtatgtt tttgcagatc aaattaccaa 1406 tgaaatagtt ggtatttag gtt gtt aac tca atc ata aag ccg att gac tct 1458 Val Val Asn Ser Ile Ile Lys Pro Ile Asp Ser ttt ttg ttg aag agc ttg cct ctt gtt gtg gat gtg gct gtt 1500 Phe Leu Leu Lys Ser Leu Pro Leu Val Val Asp Val Ala Val 205 gtaagactaa taccagccct tgggtcgaaa gttgaaagtt tgattctgga tctctaatgt 1560 ctctagtatg gacgctcctg tttggaagtc ttttgtttgg aatatgatat agattcataa 1620 aaatgcgggt atctactacc atttgctatt gaccatcaaa aaaacaacaa agtctcttaa 1680 ctatcttaaa attttattag gagattttca tgcgactaga acaagatttt caagcagtgg 1740 atgataagac aaaactgata ggccaacaac ttgatgaaat gggcaatatt atgaaataat 1800 acacaagtat agcttccacc tccaaccacc taaggacctc taataaattt acccaccaaa 1860 ggtggtggga ctccgtcaca gagccgtgcc tcaaggcaaa agaaagaaac attcgcctac 1920 gtcctcaaat ttttgaaaaa aacttaggag catatatttt tacaagataa ctttagtttc 1980 ataggtttaa tattgacaaa tcacttacat ttacctaaat aataaaaata tagaattaaa 2040 aatagaaaaa tattcacaga ataaataaat aaaacagaac aaagcattat aaatttaggt 2100 taaagcattc gatatagaat tggttaaaaa aattaacttt gaatcttttg tcatatgaca 2160 atttattttt gtaaacactt ttacttctat tattataagc atctttgctt gtgaattggg 2220 gcaaatttca tttggccgcc tccggcaacc attgaccttg gcacggctct gctccgtcac 2280 ctcttatatt tgctgcaatg gcacagagaa gagaaattag ttgctggtgt tgatccctaa 2340 tatgtgctag ttcatcatct acatgtccaa atctaaatct catcccttct cctatcgcac 2400 ggacctgcaa gtgtagaaag caaaaacatc aacatatttt-aataataatt acaaaacaca 2460 ttaggttett aaaettatea aaaetaatta etteaaaaaa tatettteta aaagttaata 2520 atccataaaa taaattttaa taagctctta ctaattaaac ataagataaa acaatattat 2640 taatttctca acaatcaaat gtggatagaa accaaaaaga taaaataaac tcggatgtca 2700

taggeceata atecageett tteteaaage ttaaaegtaa egggetegge ecaaatttg	2760
tgtgttcatc atcttcccca caaaacctaa ttttgtttct tcagtagtac tgtagcttca	2820
gatgcaactc ctcgaaaacc cgtagaaccg gcattgagcc aatcgtttac attctctgat	2880
tcatatcctt agcgttttca gaaacaaaat ggtgggttgg aagaggaatt tgcagactgt	2940
tattcgtcaa gttggtagaa gagtgaagaa cagtcacatt tctacagcaa attactcttc	3000
ttctactcgg aatttagaat cccctttctc acaaggttga ctttttgatc atttccgaas	3060
tctagtgtgt ttcttagtgg gtctttcaaa gggcatgtgt tatctggtct tcgtgtttgt	3120
gaattgtgtg tttgagttga gtttttttgc tggtgattat aggttacttg cagagtctcd	3180
tgagaccatc ctactcctcc agaccactgt atcatcatct acaacaactg gtaatgcatt	3240
tgaatcgaca tttcttttgt gttttactga gattggagtt tcttgtttcc tgatatagca	3300
aatttgttgc tgcattgaaa aatcgaattt caaaatttgg gaagtgagaa tgttgctagt	3360
gggagactat atctgttatc catgtgaatt aggcgaagag actcatcttt tggaactatg	3420
cgtctctagt caacttaggg acctgtactt tagggtatga aatttcaatt tgggtatgtt	3480
Gly Ile Ser Thr Ser Arg Gln Leu Gln Ala Ser Glu Glu Pro Val	3530
tca tca cct ttg tca tct cca gct ctg ttg ggt agt gga aaa gaa gaa Ser Ser Pro Leu Ser Ser Pro Ala Leu Leu Gly Ser Gly Lys Glu Glu 235 240 245	3578
gag cag aag att atc cca aag cgt cag aaa gtt cag gct gtc ctc aag Glu Gln Lys Ile Ile Pro Lys Arg Gln Lys Val Gln Ala Val Leu Lys 250 255 260	3626
tct ata aag cag gtgtcttctt taactcctag aacagtttta cttttcagat Ser Ile Lys Gln 265	3678
gatctgctcc atttcgttta atatttttcc atctcaatct agttatataa tgtgcccaac	3738
cttgcttgtt ttcag agt cct aag aag gtc aac ctg gtt gca gca cta gtc Ser Pro Lys Lys Val Asn Leu Val Ala Ala Leu Val 270 275	3789
cgt ggc atg cgt gtt gaa gat gct ttg atc caa ttg cag gtc aca gtc Arg Gly Met Arg Val Glu Asp Ala Leu Ile Gln Leu Gln Val Thr Val 280 285 290 295	3837
aaa cga gct gca caa act gtg tac cgg gtaatctctg agatccgagt Lys Arg Ala Ala Gln Thr Val Tyr Arg 300	3884

ataactttcc tcatctaatg atacttagca tacaacttgt tttgttaata caatgcttaa	4004
aggagttaaa tacattatac tgcag gtt atc cac gct gcc cgg gca aat gct Val Ile His Ala Ala Arg Ala Asn Ala 305 310	4056
act cat aac cat gga cta gat cct gac cgt ctc ctt gtt g gtatgtaaaa Thr His Asn His Gly Leu Asp Pro Asp Arg Leu Leu Val A 315 320 325	4106
ctgattctgg atccctgatt tccttgtttt acatttaaaa agagaacgtg atattttaga	4166
gagttcgccg attggtactt taaggaagca aacatgatat gccagaacga tgtatttcat	4226
ctaagcttgt gatatgtgat tgcag cg gaa gca ttt gtt ggg aag gga ctg la Glu Ala Phe Val Gly Lys Gly Leu 330 335	4277
ttt ggg aag aag gta gct tac cat gca aaa gga aga agc ggg att ata Phe Gly Lys Lys Val Ala Tyr His Ala Lys Gly Arg Ser Gly Ile Ile 340 345 350	4325
tca ata ccc cgg tgt cgc cta aca gtc ata gtt aga gag acg act cca Ser Ile Pro Arg Cys Arg Leu Thr Val Ile Val Arg Glu Thr Thr Pro 355 360 365	4373
gag gaa gaa gct gag att gca agg ctc aaa gtt cac aat ttt aag aag Glu Glu Glu Ala Glu Ile Ala Arg Leu Lys Val His Asn Phe Lys Lys 370 375 380	4421
aaa agc aaa cgg gag aga cag ctt gta cca cac aag ctc atc gag aca Lys Ser Lys Arg Glu Arg Gln Leu Val Pro His Lys Leu Ile Glu Thr 385 390 395	1469
agt cca ata tgg aac cgc aga ggt acc aaa gcc aat cat cgg tcc tca Ser Pro Ile Trp Asn Arg Arg Gly Thr Lys Ala Asn His Arg Ser Ser 400 415	1517
gag ttg gtacggtcgt ctcactagta tctttgttcc cgcaattgca acaagagctt 4	1573
ctctgttatg gtaaattgct tttttttttg gttttggttt gatattgtat tggaactcta 4	633
taggacctgt ttgcttcttg tattcaataa acatgttccc agagaggaaa cttcacttaa 4	
caaaagcgtc tctgtttttc tccattctgt ttctggag gtg tta aca atc att ttg 4 Val Leu Thr Ile Ile Leu 420	749
gat gta act tgt gtt gga aac atg gaa aaa aat cgt ctg gat aat ttg 4 Asp Val Thr Cys Val Gly Asn Met Glu Lys Asn Arg Leu Asp Asn Leu 425 430 435	797
acg aat caa aac aac att tat cat cat aat ccc gaa g gtccataatt Thr Asn Gln Asn Asn Ile Tyr His His Asn Pro Glu G 440 445 450	844

tttatcagtt tgttccactt cttaatgcaa tttttggata ttaaaagaat aaatgaatga 4904 atatacatat gcattttgtt tgttgagaat atttatttag tcatttattt aagaaattta 4964 tattttaatt ttttattatt aatatgatat ttgttttgtc actatgttac aacataattc 5024 aattttaata tcattataat tgatagtaat aataataaat aacagtcaca ggcccctacc 5084 atcatcccaa aatgattcat gcaatttagt catcaaatac atacaatctt atatacaaaa 5144 gaatcacaca gcatgtataa actaatagta tagaaattcg attaaaaaat actcccaggc 5204 tagttttttc accttccatg aagaatagaa tcataagttt ggaaggaatt agaataagaa 5264 gacgaattcc atacatcttg gaacgtggga tgttgttgtc tgcttccctc accagtttcc 5324 aacaagtaag agetetteae teteteeaac aagettattt eeettteace accateetee 5384 actaatetee ettgtteeaa tatetgeace acttgtetea tetteggaeg eactetegga 5444 traggatgra caracaga tretattete agageratet craetterte garcargaar 5504 actecatteg cetttattet etegtetaaa eeateaacea etttgtettt eteeattagt 5564 ccccatatcc attccactat cccttctctt ccttcctcta ttggcctcct tccacacact 5624 acctccaaca caaacactcc aaagctatac acatcggttt gcgctgatgc tctccctgtc 5684 ttaaccaact caggegeeat ataacceget gttecaacaa catgtgtegt getaaccate 5744 tctttactag tgttctgcaa cttagccaac ccaaaatcac ctaccctcgc gttcatatcc 5804 ttgtcaagca acacattgct tgactttata tctctatgta acacctttgt ctcccaccct 5864 tcgtgtagat acaacatccc tgaggctagg tctcttatca ctctcattct ttcctcccaa 5924 ttcaacatct cgttacaatc aaatatccgc ttatcgacac ttccattctc catatactcg 5984 taaatcaata tcagactctc tcctcctttc ttagaccaac cttttagtcc aactatattc 6044 ttgtgtctca acctccctaa gctcgagacc tcagctaaga actcactcgt cgcgccaacg 6104 ctctctcgag gactcatcat tattctctta accgcaactt ctttaccttc caacactccc 6164 ctgtacactt tagaattccc tccgtatccg atcatgttct catcggaaaa cccttttgtt 6224 gcttccaaaa catctttgta ttgcactctg tgaggccaat actctgtttc ccaatcttcc 6284 acgtctcctt ctagtctctg ccttcgacgc cttacaacgt agaaacagag gagcccaata 6344 acagagacta acaacacaac accactagag accccagcaa tgaagccttt agacttcaaa 6404 acagagtcac ctgacaattt aaacgaaggt agattcctag tgatcaaagc atcaccaatg 6464 gagaaattgg agttactaaa actccatgag agaatcctat ggctctgcac tagttgtcct 6524

gtg	gagg	cag	tgaa	tcca	ac g	aaca	tatc	a tc	aagt	aaga	ctc	cagt	gag	attt	aatgga	6584
atg	ctta	tga	gtgg	tctt	at g	ggct	ttct	a ga	gcta	gctc	tag	ccat	cgt	gaca	ttgatc	6644
gct	gacc	cat	taaa	ctcg	at c	cacg	cctg	a ta	attc	t cg c	cac	tgtt	aag	cttc	agctcc	6704
gtg	aatc	tct	ggcc	gtct	ct g	cctc	cata	g aa lu	acc Thr	tgc Cys	agt Ser 455	ttc Phe	aga Arg	tgc Cys	aac Asn	6757
gga Gly 460	agt Ser	gag Glu	aga Arg	att Ile	gac Asp 465	gtc Val	gac Asp	gcc Ala	gac Asp	gtg Val 470	gtt Val	gtc Val	gtt Val	gat Asp	gtc Val 475	6805
gtt Val	gaa Glu	ctc Leu	ttg Leu	gtt Val 480	agc Ser	gaa Glu	aac Asn	atc Ile	gaa Glu 485	ttc Phe	aac Asn	ggc	gaa Glu	gat Asp 490	tcg Ser	6853
gct Ala	att Ile	Gly	gtc Val 495	acc Thr	gtt Val	att Ile	ggt Gly	gaa Glu 500	gtt Val	gaa Glu	gag Glu	gcc Ala	gag Glu 505	atg Met	ctg Leu	6901
aga Arg	tga	gcti	tgcg	gcg (gaggt	tte	gg a	gaaa	ggaa	g gaa	agac	gaag	gcg	aagco	egt	6957
ggc																6960
<21:	0> 42 1> 50 2> PI 3> Ai	8 RT	lopsi	is tl	nalia	ana										
<21: <21: <21:	1> 50 2> PF 3> Ar	08 RT cabio														
<21: <21: <21:	1> 5(2> PI 3> Ai	08 RT cabio					Asp	Leu	Tyr 10	Leu	Met	Phe	Val	Met 15	Leu	
<21: <21: <21: <40: Met	1> 50 2> PF 3> Ar	08 RT cabic 2 Leu	Val	Met 5	Arg	Phe			10					15		
<21: <21: <21: <40: Met 1	1> 50 2> PI 3> Ai 0> 42 Gly	08 RT cabic Leu Leu	Val Gly 20	Met 5 Phe	Arg Thr	Phe Ile	Ser	Asn 25	10 Gly	Tyr	Lys	Phe	Tyr 30	15 Val	Gly	
<21: <21: <21: <400 Met 1 Met	1> 5(2> PF 3> Ar 0> 42 Gly	D8 RT cabic Leu Leu Asp 35	Val Gly 20 Gly	Met 5 Phe Trp	Arg Thr Val	Phe Ile Pro	Ser Thr 40	Asn 25 Pro	10 Gly Ser	Tyr Glu	Lys Asp	Phe Tyr 45	Tyr 30 Ser	15 Val His	Gly Trp	
<21: <21: <21: <400 Met 1 Met Gly	1 > 50 2 > PI 3 > Ai 0 > 42 Gly Gly Lys	D8 RT rabio Leu Leu Asp 35	Val Gly 20 Gly Asn	Met 5 Phe Trp Arg	Arg Thr Val Phe	Phe Ile Pro Gln 55	Ser Thr 40	Asn 25 Pro Asn	Gly Ser Asp	Tyr Glu Thr	Lys Asp Leu 60	Phe Tyr 45 His	Tyr 30 Ser Phe	15 Val His Lys	Gly Trp Tyr	
<21: <21: <21: <400 Met 1 Met Gly Ser Ala 65	1 > 50 2 > PI 3 > A1 0 > 42 Gly Gly Lys	D8 RT rabic Leu Leu Asp 35 Arg	Val Gly 20 Gly Asn Lys	Met 5 Phe Trp Arg	Arg Thr Val Phe Ser 70	Phe Ile Pro Gln 55 Val	Ser Thr 40 Val	Asn 25 Pro Asn Glu	10 Gly Ser Asp	Tyr Glu Thr Thr 75	Lys Asp Leu 60	Phe Tyr 45 His Gln	Tyr 30 Ser Phe Glu	15 Val His Lys	Gly Trp Tyr Asn 80	

Ser Gln Asn Cys Leu Lys Gly Gln Lys Leu Ala Val Lys Val Leu Ser

120

110

125

Thr Val His His Ser His Ser Pro Arg His Thr Ser Pro Ser Pro Ser 135 Pro Val His Gln Glu Leu Ser Ser Pro Gly Pro Ser Pro Gly Val Glu Pro Ser Ser Asp Ser Asn Ser Arg Val Pro Ala Pro Gly Pro Ala Thr Ala Pro Asn Ser Ala Gly Leu Val Gly Pro Gly Met Val Val Leu Val Val Asn Ser Ile Ile Lys Pro Ile Asp Ser Phe Leu Leu Lys Ser Leu 200 Pro Leu Val Val Asp Val Ala Val Gly Ile Ser Thr Ser Arg Gln Leu 215 Gln Ala Ser Glu Glu Pro Val Ser Ser Pro Leu Ser Ser Pro Ala Leu 230 Leu Gly Ser Gly Lys Glu Glu Glu Gln Lys Ile Ile Pro Lys Arg Gln 250 Lys Val Gln Ala Val Leu Lys Ser Ile Lys Gln Ser Pro Lys Lys Val 265 Asn Leu Val Ala Ala Leu Val Arg Gly Met Arg Val Glu Asp Ala Leu 280 Ile Gln Leu Gln Val Thr Val Lys Arg Ala Ala Gln Thr Val Tyr Arg Val Ile His Ala Ala Arg Ala Asn Ala Thr His Asn His Gly Leu Asp Pro Asp Arg Leu Leu Val Ala Glu Ala Phe Val Gly Lys Gly Leu Phe Gly Lys Lys Val Ala Tyr His Ala Lys Gly Arg Ser Gly Ile Ile Ser 340 Ile Pro Arg Cys Arg Leu Thr Val Ile Val Arg Glu Thr Thr Pro Glu 360 Glu Glu Ala Glu Ile Ala Arg Leu Lys Val His Asn Phe Lys Lys 370 375 Ser Lys Arg Glu Arg Gln Leu Val Pro His Lys Leu Ile Glu Thr Ser 390 Pro Ile Trp Asn Arg Arg Gly Thr Lys Ala Asn His Arg Ser Ser Glu 410 Leu Val Leu Thr Ile Ile Leu Asp Val Thr Cys Val Gly Asn Met Glu 420 425

Lys Asn Arg Leu Asp Asn Leu Thr Asn Gln Asn Asn Ile Tyr His His 435 440 Asn Pro Glu Glu Thr Cys Ser Phe Arg Cys Asn Gly Ser Glu Arg Ile 455 460 Asp Val Asp Ala Asp Val Val Val Val Val Val Glu Leu Leu Val 470 Ser Glu Asn Ile Glu Phe Asn Gly Glu Asp Ser Ala Ile Gly Val Thr 485 490 Val Ile Gly Glu Val Glu Glu Ala Glu Met Leu Arg 500

<210> 43 <211> 729 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (26)..(718) <400> 43

ctgcggcacc ggcgtcggag ttgcg atg ttc gcc aac aag ttc ccg ggc gtc Met Phe Ala Asn Lys Phe Pro Gly Val tac gca gcc act tgt ctc tcc gtc gaa gac gcc gtc aac gct cga tca 100 Tyr Ala Ala Thr Cys Leu Ser Val Glu Asp Ala Val Asn Ala Arg Ser 15 ata agc aat tgc aat gtc ctc gca ttc tcc ggc atc aaa aca tcc ccg 148 Ile Ser Asn Cys Asn Val Leu Ala Phe Ser Gly Ile Lys Thr Ser Pro gaa acc gcc ttg gaa atc ttc gac gct tgg atc aaa act cct ttc aaa 196 Glu Thr Ala Leu Glu Ile Phe Asp Ala Trp Ile Lys Thr Pro Phe Lys 50 tet eet tgt eet geg tee gga tee gaa eea tgg age tea gtt ate tet 244 Ser Pro Cys Pro Ala Ser Gly Ser Glu Pro Trp Ser Ser Val Ile Ser tee tte etc gae aat tet etc tee gag atg tet eag att gga aag tea 292 Ser Phe Leu Asp Asn Ser Leu Ser Glu Met Ser Gln Ile Gly Lys Ser acc gcc ggc gat tca aca acc aag aag atc gat gaa aca acc gcg tct 340 Thr Ala Gly Asp Ser Thr Thr Lys Lys Ile Asp Glu Thr Thr Ala Ser 100 tgc gta att tgc tgc ttg gcg aag aac aga gag ttc act cca gtg gac

Cys	Val	Ile	Cys	Cys 110	Leu	Ala	Lys	Asn	Arg 115	Glu	Phe	Thr	Pro	Val 120	Asp	
atc Ile	atg Met	ccg Pro	gga Gly 125	ggc Gly	tcg Ser	atg Met	aag Lys	atc Ile 130	gtt Val	aga Arg	gag Glu	acg Thr	ccg Pro 135	acg Thr	tcg Ser	436
gcg Ala	att Ile	gta Val 140	aga Arg	ttc Phe	aaa Lys	gcg Ala	gga Gly 145	agt Ser	gtg Val	gaa Glu	ccg Pro	gcg Ala 150	cat His	cac His	cac His	484
aca Thr	ttc Phe 155	ggc Gly	cat His	gac Asp	ctt Leu	gta Val 160	gtc Val	ata Ile	aag Lys	gga Gly	aag Lys 165	aaa Lys	agt Ser	gtg Val	tgg Trp	532
aat Asn 170	ctg Leu	agc Ser	aag Lys	aag Lys	gag Glu 175	aga Arg	gct Ala	gat Asp	ctc Leu	gtt Val 180	gac Asp	ggc Gly	gat Asp	tac Tyr	cta Leu 185	580
ttc Phe	act Thr	ccc Pro	gcc Ala	ggt Gly 190	gat Asp	gtt Val	cac His	cga Arg	gtc Val 195	aaa Lys	tat Tyr	cac His	gaa Glu	gac Asp 200	act Thr	628
gag Glu	ttc Phe	ttc Phe	atc Ile 205	act Thr	tgg Trp	gat Asp	ggc ggc	cat His 210	tgg Trp	gac Asp	ata Ile	ttc Phe	ctt Leu 215	gac Asp	gaa Glu	676
gac Asp	ctc Leu	gaa Glu 220	act Thr	gca Ala	aag Lys	aaa Lys	gcc Ala 225	atc Ile	gaa Glu	gaa Glu	gaa Glu	gct Ala 230	tga			718
aggt	gtaa	ac t	:													729
<211 <212)> 44 L> 23 2> PF B> Ar	8 0 RT	lopsi	.s th	nalia	ana										
)> 44		3	T	5 1	-	~ 1				_					
1	Pile	Ala	ASII	ьуs 5	Phe	Pro	СТĀ	Vai	Tyr 10	Ala	Ala	Thr	Cys	Leu 15	Ser	
Val	Glu	Asp	Ala 20	Val	Asn	Ala	Arg	Ser 25	Ile	Ser	Asn	Cys	Asn 30	Val	Leu	
Ala	Phe	Ser 35	Gly	Ile	r T	Thr	Ser 40	Pro	Glu	Thr	Ala	Leu 45	Glu	Ile	Phe	
Asp	Ala 50	Trp	Ile	Lys	Thr	Pro 55	Phe	Lys	Ser	Pro	Cys 60	Pro	Ala	Ser	Gly	
Ser 65	Glu	Pro	Trp	Ser	Ser 70	Val	Ile	Ser	Ser	Phe 75	Leu	Asp	Asn	Ser	Leu 80	
Ser	Glu	Met	Ser	Gln 85	Ile	Gly	Lys	Ser	Thr	Ala	Gly	Asp	Ser	Thr	Thr	

Lys	Lys	Ile	Asp 100	Glu	Thr	Thr	Ala	Ser 105	Cys	Val	Ile	Cys	Cys 110	Leu	Ala	
Lys	Asn	Arg 115	Glu	Phe	Thr	Pro	Val 120	qzA	Ile	Met	Pro	Gly 125	Gly	Ser	Met	
Lys	Ile 130	Val	Arg	Glu	Thr	Pro 135	Thr	Ser	Ala	Ile	Val 140	Arg	Phe	Lys	Ala	
Gly 145	Ser	Val	Glu	Pro	Ala 150	His	His	His	Thr	Phe 155	Gly	His	Asp	Leu	Val 160	
Val	Ile	Lys	Gly	Lys 165	Lys	Ser	Val	Trp	Asn 170	Leu	Ser	Lys	Lys	Glu 175	Arg	
Ala	Asp	Leu	Val 180	Asp	Gly	Asp	Tyr	Leu 185	Phe	Thr	Pro	Ala	Gly 190	Asp	Val	
His	Arg	Val 195	Lys	Tyr	His	Glu	Asp 200	Thr	Glu	Phe	Phe	Ile 205	Thr	Trp	Asp	
Gly	His 210	Trp	Asp	Ile	Phe	Leu 215	Asp	Glu	Asp	Leu	Glu 220	Thr	Ala	Lys	Lys	
Ala 225	Ile	Glu	Glu	Glu	Ala 230											
<213 <213 <213 <220 <221)> L> CI	03 IA abid			nalia	na										
)> 45 aaga		a ato Met	Thr	ata Ile	agg Arg	g aac g Asr	ı Glr	a cga	tto Phe	tct Ser	ctt Leu 10	ı Let	aaa Lys	caa Gln	50
cct Pro	ata Ile 15	tcc Ser	tcc Ser	aca Thr	ctt Leu	aat Asn 20	cag Gln	cat His	tta Leu	gta Val	gat Asp 25	tat Tyr	cca Pro	acc Thr	ccg Pro	98
agc Ser 30	aat Asn	ctt Leu	agt Ser	tat Tyr	tgg Trp 35	tgg Trp	Gly ggg	ttc Phe	ggt Gly	ccg Pro 40	tta Leu	gct Ala	ggt Gly	att Ile	tgt Cys 45	146
tta Leu	gtc Val	att Ile	cag Gln	ata Ile 50	gtg Val	act Thr	ggc	gtt Val	ttt Phe 55	tta Leu	gct Ala	atg Met	cat His	tac Tyr 60	aca Thr	194
cct	cat	gtg	gat	tta	gct	ttc	aac	agc	gta	gaa	cac	att	atg	aga	gat	242

Pro	His	Val	Asp 65	Leu	Ala	Phe	Asn	Ser 70	Val	Glu	His	Ile	Met 75	Arg	Asp	
gtt Val	gaa Glu	80 GJA aaa	Gly	tgg Trp	ttg Leu	ctc Leu	cgt Arg 85	tat Tyr	atg Met	cat His	gct Ala	aat Asn 90	ggg Gly	gca Ala	agt Ser	290
atg Met	ttt Phe 95	ctt Leu	att Ile	gtg Val	gtt Val	tac Tyr 100	ctt Leu	cat His	att Ile	ttt Phe	cgt Arg 105	ggt Gly	cta Leu	tat Tyr	cat His	338
gcg Ala 110	agt Ser	tat Tyr	agc Ser	agt Ser	cct Pro 115	agg Arg	gaa Glu	ttt Phe	gtt Val	tgg Trp 120	tgt Cys	ctt Leu	gga Gly	gtt Val	gta Val 125	386
atc Ile	ttc Phe	cta Leu	tta Leu	atg Met 130	att Ile	gtg Val	aca Thr	gct Ala	ttt Phe 135	ata Ile	gga Gly	tat Tyr	gta Val	cta Leu 140	cct Pro	434
tgg Trp	ggt Gly	cag Gln	atg Met 145	agc Ser	ttt Phe	tgg Trp	gga Gly	gct Ala 150	aca Thr	gta Val	att Ile	aca Thr	agc Ser 155	tta Leu	gct Ala	482
agc Ser	gcc Ala	ata Ile 160	cct Pro	gta Val	gta Val	gga Gly	gat Asp 1 6 5	acc Thr	ata Ile	gtg Val	act Thr	tgg Trp 170	ctt Leu	tgg Trp	ggt Gly	530
ggt Gly	ttc Phe 175	tcc Ser	gtg Val	gac Asp	aat Asn	gcc Ala 180	acc Thr	tta Leu	aat Asn	cgt Arg	ttt Phe 185	ttt Phe	agt Ser	ctt Leu	cat His	578
cat His 190	tta Leu	ctc Leu	ccc Pro	ttt Phe	att Ile 195	tta Leu	gta Val	ggc Gly	gcc Ala	agt Ser 200	ctt Leu	ctt Leu	cat His	ctg Leu	gcc Ala 205	626
gca Ala	ttg Leu	cat His	caa Gln	tat Tyr 210	gga Gly	tca Ser	aat Asn	aat Asn	cca Pro 215	ttg Leu	ggt Gly	gta Val	cat His	tct Ser 220	gag Glu	674
atg Met	gat Asp	aaa Lys	ata Ile 225	gct Ala	ttt Phe	tac Tyr	cct Pro	tat Tyr 230	ttt Phe	tat Tyr	gtc Val	aag Lys	gat Asp 235	cta Leu	gtt Val	722
ggt Gly	tgg Trp	gta Val 240	gct Ala	ttt Phe	gct Ala	atc Ile	ttt Phe 245	ttt Phe	tct Ser	att Ile	tgg Trp	att Ile 250	ttt Phe	tat Tyr	gct Ala	770
cct Pro	aat Asn 255	gtt Val	ttg Leu	gga Gly	cat His	ccc Pro 260	gac Asp	aat Asn	tat Tyr	ata Ile	cct Pro 265	gct Ala	aat Asn	ccg Pro	atg Met	818
tcc Ser 270	acc Thr	ccg Pro	cct Pro	cat His	att Ile 275	gtg Val	ccg Pro	gaa Glu	tgg Trp	tat Tyr 280	ttc Phe	cta Leu	ccg Pro	atc Ile	cat His 285	866
gcc Ala	att Ile	ctt Leu	cgt Arg	agt Ser	ata Ile	cct Pro	gac Asp	aaa Lys	gcg Ala	gga Gly	ggt Gly	gta Val	gcc Ala	gca Ala	ata Ile	914

290 295 300 gca cca gtt ttt ata tgt ctc ttg gct tta cct ttt ttt aaa agt atg 962 Ala Pro Val Phe Ile Cys Leu Leu Ala Leu Pro Phe Phe Lys Ser Met 305 310 tat gtg cgt agt tca agt ttt cga ccg att cac caa gga atg ttt tgg 1010 Tyr Val Arg Ser Ser Ser Phe Arg Pro Ile His Gln Gly Met Phe Trp 320 325 ttg ctt ttg gcg gat tgc tta cta cta ggt tgg atc gga tgt caa cct 1058 Leu Leu Leu Ala Asp Cys Leu Leu Leu Gly Trp Ile Gly Cys Gln Pro 335 340 1106 gtg gag gct cca ttt gtt act att gga caa att tct cct ttg gtt ttc Val Glu Ala Pro Phe Val Thr Ile Gly Gln Ile Ser Pro Leu Val Phe 350 355 360 tto ttg tto ttt gcc ata acg ccc att ctg gga cga gtt gga aga gga 1154 Phe Leu Phe Phe Ala Ile Thr Pro Ile Leu Gly Arg Val Gly Arg Gly 370 375 att cct aat tct tac acg gat gag act gat cac acc tga tcagtgaaaa Ile Pro Asn Ser Tyr Thr Asp Glu Thr Asp His Thr 385 390 <210> 46 <211> 393 <212> PRT <213> Arabidopsis thaliana <400> 46 Met Thr Ile Arg Asn Gln Arg Phe Ser Leu Leu Lys Gln Pro Ile Ser Ser Thr Leu Asn Gln His Leu Val Asp Tyr Pro Thr Pro Ser Asn Leu Ser Tyr Trp Trp Gly Phe Gly Pro Leu Ala Gly Ile Cys Leu Val Ile Gln Ile Val Thr Gly Val Phe Leu Ala Met His Tyr Thr Pro His Val Asp Leu Ala Phe Asn Ser Val Glu His Ile Met Arg Asp Val Glu Gly 70 Gly Trp Leu Leu Arg Tyr Met His Ala Asn Gly Ala Ser Met Phe Leu 85

Ile Val Val Tyr Leu His Ile Phe Arg Gly Leu Tyr His Ala Ser Tyr

Ser Ser Pro Arg Glu Phe Val Trp Cys Leu Gly Val Val Ile Phe Leu 115 120 125

105

Leu	Met 130	Ile	Val	Thr	Ala	Phe 135	Ile	Gly	Tyr	Val	Leu 140	Pro	Trp	Gly	Gln
Met 145	Ser	Phe	Trp	Gly	Ala 150	Thr	Val	Ile	Thr	Ser 155	Leu	Ala	Ser	Ala	Ile 160
Pro	Val	Val	Gly	Asp 165	Thr	Ile	Val	Thr	Trp 170	Leu	Trp	Gly	Gly	Phe 175	Ser
Val	Asp	Asn	Ala 180	Thr	Leu	Asn	Arg	Phe 185	Phe	Ser	Leu	His	His 190	Leu	Leu
Pro	Phe	Ile 195	Leu	Val	Gly	Ala	Ser 200	Leu	Leu	His	Leu	Ala 205	Ala	Leu	His
Gln	Tyr 210	Gly	Ser	Asn	Asn	Pro 215	Leu	Gly	Val	His	Ser 220	Glu	Met	Asp	Lys
Ile 225	Ala	Phe	туг	Pro	Tyr 230	Phe	Tyr	Val	Lys	Asp 235	Leu	Val	Gly	Trp	Val 240
Ala	Phe	Ala	Ile	Phe 245	Phe	Ser	Ile	Trp	Ile 250	Phe	Tyr	Ala	Pro	Asn 255	Val
Leu	Gly	His	Pro 260	Asp	Asn	Tyr	Ile	Pro 265	Ala	Asn	Pro	Met	Ser 270	Thr	Pro
Pro	His	Ile 275	Val	Pro	Glu	Trp	Tyr 280	Phe	Leu	Pro	Ile	His 285	Ala	Ile	Leu
Arg	Ser 290	Ile	Pro	Asp	Lys	Ala 295	Gly	Gly	Val	Ala	Ala 300	Ile	Ala	Pro	Val
Phe 305	Ile	Cys	Leu	Leu	Ala 310	Leu	Pro	Phe	Phe	Lys 315	Ser	Met	Tyr	Val	Arg 320
Ser	Ser	Ser	Phe	Arg	Pro	Ile	His	Gln	Gly 330	Met	Phe	Trp	Leu	Leu 335	Leu
Ala	Asp	Cys	Leu 340	Leu	Leu	Gly	Trp	Ile 345	Gly	Cys	Gln	Pro	Val 350	Glu	Ala
Pro	Phe	Val 355	Thr	Ile	Gly	Gln	Ile 360	Ser	Pro	Leu	Val	Phe 365	Phe	Leu	Phe
Phe	Ala 370	Ile	Thr	Pro	Ile	Leu 375	Gly	Arg	Val	Gly	Arg 380	Gly	Ile	Pro	Asn
Ser 385	Tyr	Thr	Asp	Glu	Thr 390	Asp	His	Thr			-				

<210> 47

<211> 1194

<212> DNA

<213> Arabidopsis thaliana

<220> <221> CDS <222> (1)..(1194) <400> 47 atg aga aaa gtt tct tcc gta att tct gtc gtt gat ccc gtt att ttc Met Arg Lys Val Ser Ser Val Ile Ser Val Val Asp Pro Val Ile Phe 10 cga gga aat tac gca gct aca ctc gat gtg tcg tat ccg gta ttc ccg 96 Arg Gly Asn Tyr Ala Ala Thr Leu Asp Val Ser Tyr Pro Val Phe Pro caa aat aaa gat ggc cgt gca ctt cag aaa gtt ctc gga acc att cgt 144 Gln Asn Lys Asp Gly Arg Ala Leu Gln Lys Val Leu Gly Thr Ile Arg 40 aac gga gat ttg gct gtt tcg gct cct aaa aca agt ctt agg gca ggt 192 Asn Gly Asp Leu Ala Val Ser Ala Pro Lys Thr Ser Leu Arg Ala Gly att ttc ggt gaa ggt tcc agc ttg gtc gat cag atg ccc tgt aaa gtt Ile Phe Gly Glu Gly Ser Ser Leu Val Asp Gln Met Pro Cys Lys Val tac gtg gcg ttc cac aaa gaa tca tac tgc tcg ctt acc ggg cta agc 288 Tyr Val Ala Phe His Lys Glu Ser Tyr Cys Ser Leu Thr Gly Leu Ser 85 aaa cgc gga gtc gca ata aac gaa gca agt ctt tcc ctg gtc gga atc 336 Lys Arg Gly Val Ala Ile Asn Glu Ala Ser Leu Ser Leu Val Gly Ile 100 105 act aaa gtt aga gcc ccc gtc gga aat acc gtt gga gcg gaa gca acc 384 Thr Lys Val Arg Ala Pro Val Gly Asn Thr Val Gly Ala Glu Ala Thr 120 gta tac ata ggt agt cca aaa cct tat aca gag tgt agt act cca aat 432 Val Tyr Ile Gly Ser Pro Lys Pro Tyr Thr Glu Cys Ser Thr Pro Asn 135 140 aaa atg tat gcg gtt gca gct ggt ttc aag gtg gca agt ttc gcc gct 480 Lys Met Tyr Ala Val Ala Ala Gly Phe Lys Val Ala Ser Phe Ala Ala 150 agt acg tgc gta cgt ccg cct gca cgt gca cgt cgt acg ctg acc gtg 528 Ser Thr Cys Val Arg Pro Pro Ala Arg Ala Arg Arg Thr Leu Thr Val 170 acg tcg acc gtg acg ctg tct atg gca act ggt aaa tgc gta aat aca 576 Thr Ser Thr Val Thr Leu Ser Met Ala Thr Gly Lys Cys Val Asn Thr 185 gga aac gaa cca gta tct aaa cct aca gga gta cgt atg atg tta att Gly Asn Glu Pro Val Ser Lys Pro Thr Gly Val Arg Met Met Leu Ile 195 200

cct Pro	ctc Leu 210	gat Asp	gct Ala	act Thr	ctc Leu	att Ile 215	aaa Lys	gta Val	tgg Trp	act Thr	ggg Gly 220	gaa Glu	gta Val	aaa Lys	aaa Lys	672
gcg Ala 225	ata Ile	gtt Val	tcc Ser	cgg Arg	cct Pro 230	gca Ala	aaa Lys	att Ile	ttc Phe	aat Asn 235	agc Ser	gta Val	gga Gly	aat Asn	tta Leu 240	720
gaa Glu	cgt Arg	cct Pro	tca Ser	att Ile 245	tcg Ser	cat His	tct Ser	tgt Cys	gga Gly 250	caa Gln	ggt Gly	ttg Leu	gat Asp	gaa Glu 255	gct Ala	768
gcc Ala	gct Ala	tat Tyr	atc Ile 260	aag Lys	ggt Gly	aga Arg	ctt Leù	tct Ser 265	cca Pro	atc Ile	gtt Val	aaa Lys	gca Ala 270	gaa Glu	aga Arg	816
att Ile	aaa Lys	gtt Val 275	ttg Leu	gtt Val	aaa Lys	gac Asp	gag Glu 280	cac His	gaa Glu	gaa Glu	gta Val	aaa Lys 285	gaa Glu	ctt Leu	ctt Leu	864
caa Gln	gaa Glu 290	ggt Gly	tac Tyr	gaa Glu	gaa Glu	atc Ile 2 9 5	gtc Val	ggt Gly	gag Glu	tct Ser	cca Pro 300	agt Ser	ttc Phe	aat Asn	tta Leu	912
gca Ala 305	caa Gln	gaa Glu	gcg Ala	tgg Trp	gaa Glu 310	aaa Lys	gct Ala	gaa Glu	aga Arg	cga Arg 315	gca Ala	aaa Lys	ggt Gly	cag Gln	tcc Ser 320	960
Pro	Cys	Ser	Ala	Ala 325	aaa Lys	Ala	Asn	Leu	Ala 330	Thr	Tyr	Tyr	Phe	Ser 335	Thr	1008
ggt Gly	gat Asp	ttc Phe	gaa Glu 340	aaa Lys	tca Ser	att Ile	aaa Lys	ctc Leu 345	tac Tyr	gaa Glu	gaa Glu	cct Pro	atg Met 350	ggt Gly	ttg Leu	1056
aaa Lys	gat Asp	act Thr 355	gat Asp	aag Lys	agc Ser	tat Tyr	ctg Leu 360	cga Arg	gaa Glu	cgt Arg	aga Arg	aaa Lys 365	aga Arg	gta Val	gag Glu	1104
gct Ala	act Thr 370	acg Thr	ttg Leu	cgt Arg	gca Ala	ccg Pro 375	ttc Phe	gtg Val	gtc Val	cag Gln	ctg Leu 380	acc Thr	gtg Val	cgt Arg	agt Ser	1152
cgt Arg 385	acg Thr	acg Thr	atg Met	atc Ile	gcc Ala 390	gtt Val	ggt Gly	gaa Glu	agc Ser	aac Asn 395	gca Ala	aac Asn	tga			1194

<210> 48

Met Arg Lys Val Ser Ser Val Ile Ser Val Val Asp Pro Val Ile Phe

<211> 397

<212> PRT

<213> Arabidopsis thaliana

<400> 48

1				5					10					15	
Arg	Gly	Asn	Туr 20	Ala	Ala	Thr	Leu	Asp 25	Val	Ser	Tyr	Pro	Val 30	Phe	Pro
Gln	Asn	Lys 35	Asp	Gly	Arg	Ala	Leu 40	Gln	Lys	Val	Leu	Gly 45	Thr	Ile	Arg
Asn	Gly 50	Asp	Leu	Ala	Val	Ser 55	Ala	Pro	Lys	Thr	Ser 60	Leu	Arg	Ala	Gly
Ile 65	Phe	Gly	Glu	Gly	Ser 70	Ser	Leu	Val	Asp	Gln 75	Met	Pro	Cys	Lys	Val 80
Tyr	Val	Ala	Phe	His 85	Lys	Glu	Ser	Tyr	Cys 90	Ser	Leu	Thr	Gly	Leu 95	Ser
Lys	Arg	Gly	Val 100	Ala	Ile	Asn	Glu	Ala 105	Ser	Leu	Ser	Leu	Val 110	Gly	Ile
Thr	Lys	Val 115	Arg	Ala	Pro	Val	Gly 120	Asn	Thr	Val	Gly	Ala 125	Glu	Ala	Thr
Val	Tyr 130	Ile	Gly	Ser	Pro	Lys 135	Pro	Tyr	Thr	Glu	Cys 140	Ser	Thr	Pro	Asn
Lys 145	Met	Tyr	Ala	Val	Ala 150	Ala	Gly	Phe	Lys	Val 155	Ala	Ser	Phe	Ala	Ala 160
Ser	Thr	Cys	Val	Arg 165	Pro	Pro	Ala	Arg	Ala 170	Arg	Arg	Thr	Leu	Thr 175	Val
Thr	Ser	Thr	Val 180	Thr	Leu	Ser	Met	Ala 185	Thr	Gly	Lys	Cys	Val 190	Asn	Thr
Gly	Asn	Glu 195	Pro	Val	Ser	Lys	Pro 200	Thr	Gly	Val	Arg	Met 205	Met	Leu	Ile
Pro	Leu 210	Asp	Ala	Thr	Leu	Ile 215	Lys	Val	Trp	Thr	Gly 220	Glu	Val	Lys	Lys
Ala 225	Ile	Val	Ser	Arg	Pro 230	Ala	Lys	Ile	Phe	Asn 235	Ser	Val	Gly	Asn	Leu 240
Glu	Arg	Pro	Ser	11e 245	Ser	His	Ser	Cys	Gly 250	Gln	Gly	Leu	Asp	Glu 2 5 5	Ala
Ala	Ala	Tyr	Ile 260	Lys	Gly	Arg	Leu	Ser 265	Pro	Ile	Val	Lys	Ala 270	Glu	Arg
Ile	Lys	Val 275	Leu	Val	Lys	Asp	Glu 280	His	Glu	Glu	Val	Lys 285	Glu	Leu	Leu
Gln	Glu 290	Gly	Tyr	Glu	Glu	Ile 295	Val	Gly	Glu	Ser	Pro 300	Ser	Phe	Asn	Leu
Ala	Gln	Glu	Ala	Trp	Glu	Lys	Ala	Glu	Arg	Arg	Ala	Lvs	Glv	Gln	Ser

					310)				315	5				320	
Pro	Cys	Ser	Ala	Ala 325	Lys i	Ala	Asr	ı Lev	Ala 330	Thr	Туг	ту	r Phe	Ser 335	Thr	
Gly	Asp	Phe	Glu 340	Lys	Ser	Ile	Lys	345	Tyr	Glu	Glu	ı Pro	350		/ Leu	
Lys	Asp	Thr 355	Asp	Lys	Ser	Tyr	Leu 360	Arg	Glu	Arg	Arg	1 Lys 365	s Arç	y Val	Glu	
Ala	Thr 370	Thr	Leu	Arg	Ala	Pro 375	Phe	· Val	Val	Gln	Leu 380	Thr	· Val	Arg	ser (
Arg 385	Thr	Thr	Met	Ile	Ala 390	Val	Glý	Glu	Ser	Asn 395		Asn	1			
<213 <213 <213 <220 <221)> l> CI	11 NA rabio DS	dops:		halia	ana										
gaaa	1	g ato t Ile l	·	. ne	ı sei	va.	r GT	y Sei	r Ala	s Sei	r Sei	r Se:	r Pr	o Il	c gtc e Val 15	49
gaaa gtc	Met Met 1 gtc	g ato	tcc	gtc	7 261	ctt	ctt.	y Sei	r Ala	s Ser 10	Sei	r Se	r Pr	o Il	e Val 15	49 97
gaaa gtc Val	Met Met gtc Val	t Ile l ttt Phe	tcc Ser	gtc Val 20	gcg	ctt Leu	ctt Leu	ctg Leu	ttc Phe 25	tac Tyr	ttc Phe	tct Ser	gaa Glu	act Thr 30	tct Ser	
gaaa gtc Val cta Leu	Met Met gtc Val gga Gly	g ato	tcc Ser cct Pro 35	gtc Val 20 tgt Cys	gcg Ala ccc Pro	ctt Leu atc Ile	ctt Leu aat Asn	ctg Leu ggc Gly 40	ttc Phe 25 ttg Leu	tac Tyr cca Pro	ttc Phe atc Ile	tct Ser gtg Val	gaa Glu agg Arg	act Thr 30 aat Asn	e Val 15 tct Ser att Ile	97
gtc Val cta Leu agt Ser	gtc Val gga Gly gac Asp	g atc t Ile l ttt Phe gct Ala ctt Leu 50	tcc Ser cct Pro 35 cct Pro	gtc Val 20 tgt Cys cag Gln	gcg Ala ccc Pro	ctt Leu atc Ile aac Asn	ctt Leu aat Asn tat Tyr 55	ctg Leu ggc Gly 40 gga Gly	ttc Phe 25 ttg Leu aga Arg	tac Tyr cca Pro	ttc Phe atc Ile	tct Ser gtg Val ctt Leu 60	gaa Glu agg Arg 45 tcc Ser	act Thr 30 aat Asn	e Val 15 tct Ser att Ile atg Met	97 145
gtc Val cta Leu agt Ser act Thr	gtc Val gga Gly gac Asp gtt Val 65	g atc t Ile l ttt Phe gct Ala ctt Leu 50 gct Ala	tcc Ser cct Pro 35 cct Pro	gtc Val 20 tgt Cys cag Gln tcc Ser	gcg Ala ccc Pro gat Asp	ctt Leu atc Ile aac Asn ttg Leu 70	ctt Leu aat Asn tat Tyr 55 cat	ctg Leu ggc Gly 40 gga Gly	ttc Phe 25 ttg Leu aga Arg	tac Tyr cca Pro cca Pro	ttc Phe atc Ile ggt Gly gag Glu 75	tct Ser gtg Val ctt Leu 60 gtt Val	gaa Glu agg Arg 45 tcc Ser	act Thr 30 aat Asn cac His	e Val 15 tct Ser att Ile atg Met tgg Trp	97 145 193

gct Ala	gaa Glu	aca Thr	cat His 115	gga Gly	aat Asn	ttc Phe	cct Pro	ggg Gly 120	aaa Lys	cca Pro	atc Ile	gaa Glu	ttt Phe 125	cca Pro	atc Ile	385
ttt Phe	gcc Ala	aac Asn 130	agt Ser	aca Thr	att Ile	cat His	att Ile 135	ccg Pro	atc Ile	aat Asn	gat Asp	gct Ala 140	cat His	cag Gln	gtc Val	433
aaa Lys	aac Asn 145	acc Thr	ggt Gly	cat His	gag Glu	gac Asp 150	ctg Leu	cag Gln	gtg Val	ttg Leu	gtt Val 155	atc Ile	ata Ile	tct Ser	cgg Arg	481
ccg Pro 160	cct Pro	att Ile	aaa Lys	atc Ile	ttc Phe 165	atc Ile	tac Tyr	gaa Glu	gac Asp	tgg Trp 170	ttt Phe	atg Met	cca Pro	cac His	act Thr 175	529
gct Ala	gca Ala	agg Arg	ctg Leu	aag Lys 180	ttc Phe	cct Pro	tac Tyr	tat Tyr	tgg Trp 185	gat Asp	gag Glu	caa Gln	Cys	att Ile 190	caa Gln	577
	tca Ser						taa	agca	aagt	cc						611

<210> 50

<211> 198

<212> PRT

<213> Arabidopsis thaliana

<400> 50

Met Ile Val Leu Ser Val Gly Ser Ala Ser Ser Ser Pro Ile Val Val 1 5 10 15

Val Phe Ser Val Ala Leu Leu Leu Phe Tyr Phe Ser Glu Thr Ser Leu 20 25 30

Gly Ala Pro Cys Pro Ile Asn Gly Leu Pro Ile Val Arg Asn Ile Ser 35 40 45

Asp Leu Pro Gln Asp Asn Tyr Gly Arg Pro Gly Leu Ser His Met Thr 50 55 60

Val Ala Gly Ser Val Leu His Gly Met Lys Glu Val Glu Ile Trp Leu 65 70 75 80

Gln Thr Phe Ala Pro Gly Ser Glu Thr Pro Ile His Arg His Ser Cys 85 90 95

Glu Glu Val Phe Val Val Leu Lys Gly Ser Gly Thr Leu Tyr Leu Ala 100 105 110

Glu Thr His Gly Asn Phe Pro Gly Lys Pro Ile Glu Phe Pro Ile Phe 115 120 125

Ala Asn Ser Thr Ile His Ile Pro Ile Asn Asp Ala His Gln Val Lys 130 135 140

Asn 145	Thr	Gl3	/ His	s Glu	Asp 150	Leu	Gln	Val	. Leu	Val 155	Ile	⊇ Ile	e Sei	.Ar	Pro 160	
Pro	Ile	Lys	: Ile	Phe 165	e Ile	Tyr	Glu	Asp	170	Phe	Met	Pro	His	Th:	Ala	
Ala	A r g	Leu	180	Phe	Pro	Tyr	Tyr	Trp 185	Asp	Glu	Glr	сув	11e		Glu	
Ser	Gln	Lys 195		Glu	Leu											
<21 <21 <21 <22	0>	398 NA rabi	dops	is t	hali	ana										
	1> C 2> ((139	8)												
	0> 5	_														
Met 1	Pro	Arg	Arg	Arg 5	acg Thr	Cys	tgt Cys	cgg Arg	cgt Arg 10	gaa Glu	ttc Phe	ggt Gly	ccg Pro	aca Thr 15	cag Gln	48
cca Pro	tgt Cys	aga Arg	ggc Gly 20	AIA	tca Ser	atc Ile	act Thr	gga Gly 25	tct Ser	cta Leu	cgt Arg	gac Asp	cgt Arg 30	cga Arg	ccg Pro	96
acc Thr	gct Ala	atc Ile 35	ctt Leu	atc Ile	gga Gly	acc Thr	ctc Leu 40	acc Thr	gct Ala	tta Leu	ggc Gly	ggt Gly 45	gga Gly	gtt Val	aga Arg	144
tgt Cys	ggc Gly 50	tct Ser	tgc Cys	ccc Pro	agt Ser	gtc Val 55	gac Asp	cgt Arg	tgc Cys	gga Gly	cac His 60	gca Ala	agt Ser	gcc Ala	gcc Ala	192
ata Ile 65	gcg Ala	cgt Arg	gat Asp	agc Ser	tgt Cys 70	gcc Ala	gtg Val	Pne	gca Ala	Trp	Lys	cga Arg	ggt Gly	acg Thr	cga Arg 80	240
caa Gln	gag Glu	tac Tyr	tgg Trp	tgc Cys 85.	tcg Ser	act Thr	gaa Glu	ccg Pro	acc Thr 90	ctt Leu	gac Asp	tgg Trp	ggc Gly	ccc Pro 95	ggt Gly	288
ggt Gly	gga Gly	ccc Pro	gac Asp 100	ttc Phe	gat Asp	tgt Cys	gat Asp	gat Asp 105	ggt Gly	ggt Gly	gac Asp	gat Asp	ccg Pro 110	ctt Leu	ttg Leu	336
att Ile	caa Gln	gat Asp 115	ggc Gly	gta Val	aaa Lys	Ala	gcg Ala 120	gag Glu	gaa Glu	tat Tyr	gct Ala	aaa Lys 125	tct Ser	gga Gly	aaa Lys	384

gtt Val	cca Pro 130	gat Asp	cca Pro	agc Ser	tgt Cys	act Thr 135	gat Asp	aat Asn	gct Ala	gag Glu	ttt Phe 140	caa Gln	gtt Val	gtg Val	ctt Leu	432
att Ile 145	att Ile	att Ile	agg Arg	gag Glu	ggg Gly 150	ttg Leu	aaa Lys	act Thr	gat Asp	cct Pro 155	tta Leu	aaa Lys	tac Tyr	act Thr	aag Lys 160	480
cga Arg	ccc Pro	agt Ser	tgc Cys	ctt Leu 165	gtt Val	ggt Gly	gtt Val	tct Ser	gag Glu 170	gaa Glu	act Thr	act Thr	act Thr	ggt Gly 175	gtt Val	528
aag Lys	aga Arg	agt Ser	tac Tyr 180	caa Gln	atg Met	cag Gln	ccg Pro	aaa Lys 185	tgt Cys	act Thr	ttg Leu	ctt Leu	ttg Leu 190	cat His	gct Ala	576
act Thr	gat Asp	gtt Val 195	tgt Cys	gac Asp	acc Thr	gtg Val	atc Ile 200	aag Lys	agc Ser	aag Lys	att Ile	gat Asp 205	aac Asn	ttg Leu	tac Tyr	624
gga Gly	tgc Cys 210	cgc Arg	cac His	tca Ser	ctt Leu	tcg Ser 215	gat Asp	ggt Gly	ctc Leu	atg Met	agg Arg 220	gct Ala	act Thr	gat Asp	gtt Val	672
Arg 225	Arg	Pro	Cys	Lys	Val 230	Ala	Leu	Val	Gly	ggt Gly 235	Tyr	Gly	Asp	Val	Phe 240	720
Lys	Gly	Trp	Val	Ala 245	Ala	Leu	Lys	Gln	Ala 250	ggt Gly	Ala	Arg	Val	Ile 255	Val	768
Thr	Glu	Ile	Pro 260	Gln	Ile	Cys	Ala	Val 265	Gln	gct Ala	Thr	Met	Glu 270	Gly	Ser	816
tcg Ser	gtc Val	ctt Leu 275	acc Thr	ctt Leu	gag Glu	gat Asp	gtc Val 280	gtt Val	tca Ser	gat Asp	gtt Val	gat Asp 285	cgc Arg	ttc Phe	gtt Val	864
acg Thr	aca Thr 290	acc Thr	ggt Gly	aac Asn	aag Lys	gac Asp 295	ctc Leu	atc Ile	atg Met	gtt Val	gac Asp 300	cac His	atg Met	agg Arg	cga Arg	912
atg Met 305	aag Lys	aac Asn	cag Gln	gcc Ala	ata Ile 310	gtt Val	tgc Cys	aac Asn	att Ile	cga Arg 315	cgt Arg	ttc Phe	gac Asp	aat Asn	gaa Glu 320	960
atc Ile	gac Asp	atg Met	cgc Arg	agt Ser 325	ctc Leu	gag Glu	acc Thr	ttc Phe	cct Pro 330	gga Gly	gtg Val	aag Lys	cgg Arg	atc Ile 335	aca Thr	1008
atc Ile	aag Lys	gcc Ala	cag Gln 340	act Thr	gac Asp	aga Arg	tgg Trp	gtc Val 345	ttt Phe	cgc Arg	gac Asp	acc Thr	aac Asn 350	aga Arg	ggt Gly	1056
atc	att	gtc	cca	gcc	gag	ggg	cgt	ctc	atg	acg	atg	gga	tgc	gcc	act	1104

	Ile	Ile	Val 355	Pro	Ala	Glu	Gly	Arg 360		Met	Thr	Met	Gly 365	Cys	Ala	Thr	
	gga Gly	cac His 370	ccc Pro	agc Ser	ttc Phe	cgg Arg	acg Thr 375	tcc Ser	tgc Cys	tct Ser	ttc Phe	act Thr 380	aac Asn	caa Gln	gtc Val	agt Ser	1152
	tct Ser 385	cag Gln	ctc Leu	gag Glu	ttg Leu	tgg Trp 390	cgg Arg	gag Glu	aag Lys	agc Ser	acc Thr 395	ggc Gly	aag Lys	tat Tyr	gag Glu	aag Lys 400	1200
	aaa Lys	gtg Val	tac Tyr	gtc Val	ttc Phe 405	cca Pro	aag Lys	cac His	ctt Leu	gag Glu 410	aag Lys	aag Lys	gtt Val	gcc Ala	gcc Ala 415	ctt Leu	1248
	cat His	ctc Leu	gta Val	aag Lys 420	ctc Leu	gga Gly	gca Ala	agg Arg	ctc Leu 425	act Thr	aag Lys	ctt Leu	agt Ser	cgg Arg 430	tgc Cys	acg Thr	1296
	ttg Leu	ttg Leu	tgc Cys 435	acg Thr	gac Asp	gac Asp	cca Pro	gtt Val 440	gaa Glu	ggt Gly	cgt Arg	aaa Lys	gag Glu 445	cct Pro	cct Pro	cac His	1344
	cgt Arg	gct Ala 450	Gly ggc	agc Ser	cct Pro	gaa Glu	ccg Pro 455	tgc Cys	cag Gln	ctg Leu	cag Gln	ctg Leu 460	acc Thr	gtg Val	ttc Phe	agg Arg	1392
	tag	taa															1398
	465																
)> 52															
	<212	L> 46 P> PF	₹ T														
	<213	> Ar	abid	lopsi	s th	nalia	ına										
)> 52		Δ'rα	Ara	Thr	Cva	Crea	2	N 24 ==	G1	D1	0 1-	_	Thr	~ 1	
	1		g	ni g	5	****	Cys	Cys	AIG	10	GIU	Pne	GIY	Pro	15	Gin	
	Pro	Cys	Arg	Gly 20	Ala	Ser	Ile	Thr	Gly 25	Ser	Leu	Arg	Asp	Arg 30	Arg	Pro	
	Thr	Ala	Ile 35	Leu	Ile	Gly	Thr	Leu 40	Thr	Ala	Leu	Gly	Gly 45	Gly	Val	Arg	
	Суѕ	Gly 50	Ser	Cys	Pro	Ser	Val 55	Asp	Arg	Cys	Gly	His 60	Ala	Ser	Ala	Ala	
	Ile 65	Ala	Arg	Asp	Ser	Cys 70	Ala	Val	Phe	Ala	Trp 75	Lys	Arg	Gly	Thr	Arg 80	
,	Gln	Glu	Tyr	Trp	Cys 85	Ser	Thr	Glu	Pro	Thr 90	Leu	Asp	Trp	Gly	Pro 95	Gly	-

Gly Gly Pro Asp Phe Asp Cys Asp Asp Gly Gly Asp Asp Pro Leu Leu

100 105 110

Ile Gln Asp Gly Val Lys Ala Ala Glu Glu Tyr Ala Lys Ser Gly Lys
115 120 125

Val Pro Asp Pro Ser Cys Thr Asp Asn Ala Glu Phe Gln Val Val Leu 130 135 140

Ile Ile Ile Arg Glu Gly Leu Lys Thr Asp Pro Leu Lys Tyr Thr Lys 145 150 155 160

Arg Pro Ser Cys Leu Val Gly Val Ser Glu Glu Thr Thr Thr Gly Val 165 170 175

Lys Arg Ser Tyr Gln Met Gln Pro Lys Cys Thr Leu Leu Leu His Ala 180 185 190

Thr Asp Val Cys Asp Thr Val Ile Lys Ser Lys Ile Asp Asn Leu Tyr 195 200 205

Gly Cys Arg His Ser Leu Ser Asp Gly Leu Met Arg Ala Thr Asp Val 210 215 220

Arg Arg Pro Cys Lys Val Ala Leu Val Gly Gly Tyr Gly Asp Val Phe 225 230 235 240

Lys Gly Trp Val Ala Ala Leu Lys Gln Ala Gly Ala Arg Val Ile Val 245 250 255

Thr Glu Ile Pro Gln Ile Cys Ala Val Gln Ala Thr Met Glu Gly Ser 260 265 270

Ser Val Leu Thr Leu Glu Asp Val Val Ser Asp Val Asp Arg Phe Val 275 280 285

Thr Thr Gly Asn Lys Asp Leu Ile Met Val Asp His Met Arg Arg 290 295 300

Met Lys Asn Gln Ala Ile Val Cys Asn Ile Arg Arg Phe Asp Asn Glu 305 310 315 320

Ile Asp Met Arg Ser Leu Glu Thr Phe Pro Gly Val Lys Arg Ile Thr 325 330 335

Ile Lys Ala Gln Thr Asp Arg Trp Val Phe Arg Asp Thr Asn Arg Gly 340 345 350

Ile Ile Val Pro Ala Glu Gly Arg Leu Met Thr Met Gly Cys Ala Thr 355 360 365

Gly His Pro Ser Phe Arg Thr Ser Cys Ser Phe Thr Asn Gln Val Ser 370 375 380

Ser Gln Leu Glu Leu Trp Arg Glu Lys Ser Thr Gly Lys Tyr Glu Lys 385 390 395 400

Lys Val Tyr Val Phe Pro Lys His Leu Glu Lys Lys Val Ala Ala Leu

				405					410					415	
His	Leu	Val	Lys 420	Leu	Gly	Ala	Arg	Leu 425	Thr	Lys	Leu	Ser	Arg 430	Cys	Thr

Leu Leu Cys Thr Asp Asp Pro Val Glu Gly Arg Lys Glu Pro Pro His 435 440

Arg Ala Gly Ser Pro Glu Pro Cys Gln Leu Gln Leu Thr Val Phe Arg 455 460

<210> 53 <211> 771 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS

<222> (1)..(537) <400> 53 atg ccg cgt aac gtt gct ggt atg tgc gtt gcg tta gaa cga gtc ttc Met Pro Arg Asn Val Ala Gly Met Cys Val Ala Leu Glu Arg Val Phe gac gtc gat gaa att gtc agg tta agg aag agg ttt ttc aag ttg gac 96 Asp Val Asp Glu Ile Val Arg Leu Arg Lys Arg Phe Phe Lys Leu Asp 20 aga gat tgt tca gga tca gaa ctt gga agt gag ttc atg agt ttg cct Arg Asp Cys Ser Gly Ser Glu Leu Gly Ser Glu Phe Met Ser Leu Pro 35 40 caa gtt agt tcg aac cct ctt cgg atg cgt gag atg cgt aat ttc gat 192 Gln Val Ser Ser Asn Pro Leu Arg Met Arg Glu Met Arg Asn Phe Asp 50 aat gat tgc gta ggg agt gtg gat ttt atc gag ttc atc aat gga cgt 240 Asn Asp Cys Val Gly Ser Val Asp Phe Ile Glu Phe Ile Asn Gly Arg 65 70 tcc agt ttc agt act gtc ggg cag aag aat gct aaa ttg aga ttt gca 288 Ser Ser Phe Ser Thr Val Gly Gln Lys Asn Ala Lys Leu Arg Phe Ala 85 ccg att atc tat gat tgc gat aaa gat gga cct ata tca aac ggt gag 336 Pro Ile Ile Tyr Asp Cys Asp Lys Asp Gly Pro Ile Ser Asn Gly Glu 100 110 tta ttt agg gtg ttg cgt att atg gtt cat gac aat ctg agt gat aat Leu Phe Arg Val Leu Arg Ile Met Val His Asp Asn Leu Ser Asp Asn 115 cag ctg cag cgt tgc gat tgc acg cgt agt ggc gga gat aat gac 432

Gln Leu Gln Gln Arg Cys Asp Cys Thr Arg Ser Gly Gly Asp Asn Asp

	130					135					140					
ggg Gly 145	gat Asp	ggt Gly	cga Arg	ggt Gly	gcg Ala 150	aaa Lys	aac Asn	agc Ser	ttt Phe	gag Glu 155	gaa Glu	ttt Phe	tac Tyr	ggt Gly	cgt Arg 160	480
ttg Leu	cca Pro	gct Ala	acc Thr	gta Val 165	cgt Arg	cgg Arg	cgt Arg	ccg Pro	tac Tyr 170	cgt Arg	acg Thr	ttg Leu	gta Val	agc Ser 175	ggt Gly	528
gat Asp	gtg Val	taa	agtt	cagt	gc a	accgt	gac	eg to	gagco	ctgga	a ago	cctga	aacg			577
ctga	caaç	jcc d	ttaa	igcca	aa aa	aaatt	ggct	gaç	ggcct	gat	gcc	tgaç	gat (gc ca a	aaggct	637
tttt	aggo	ett t	taga	ıgaaa	aa ag	gcta	aaaa	a aaa	agget	aga	aaaa	aaagg	gct (cttag	gcctg	697
ctto	gagco	tg a	igcct	gago	c to	gatco	gatca	a aaa	aaaa	agg	agco	ettt	tt 1	tttta	agctaa	75 7
aaaa	aaaa	ag c	taa													771
<211 <212 <213)> 54 .> 17 !> PF !> Ar	8 RT Tabid	lopsi	s th	nalia	ına										
			Asn	Val 5	Ala	Gly	Met	Сув	Val 10	Ala	Leu	Glu	Arg	Val 15	Phe	
Asp	Val	qaA	Glu 20	Ile	Val	Arg	Leu	Arg 25	Lys	Arg	Phe	Phe	Lys 30	Leu	Asp	
Arg	Asp	Cys 35	Ser	Gly	Ser	Glu	Leu 40	Gly	Ser	Glu	Phe	Met 45	Ser	Leu	Pro	
Gln	Val 50	Ser	Ser	Asn	Pro	Leu 55	Arg	Met	Arg	Glu	Met 60	Arg	Asn	Phe	Asp	
Asn 65	Asp	Cys	Val	Gly	Ser 70	Val	qaA	Phe	Ile	Glu 75	Phe	Ile	Asn	Gly	Arg 80	
Ser	Ser	Phe	Ser	Thr 85	Val	Gly	Gln	Lys	Asn 90	Ala	Lys	Leu	Arg	Phe 95	Ala	
Pro	Ile	Ile	Туг 100	Asp	Cys	Asp	Lys	Asp 105	Gly	Pro	Ile	Ser	Asn 110	Gly	Glu	
Leu	Phe	Arg 115	Val	Leu	Arg	Ile	Met 120	Val	His	Asp	Asn	Leu 125	Ser	Asp	Asn	
Gln	Leu 130	Gln	Gln	Arg	Сув	Asp 135	Cys	Thr	Arg	Ser	Gly 140	Gly	qaA	Asn	Asp	
Gly 145	Asp	Gly	Arg	Gly	Ala 150	Lys	Asn	Ser	Phe	Glu 155	Glu	Phe	туг	Gly	Arg 160	

Asp Val <210> 55 <211> 1617 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (10)..(1557) <400> 55 egetaeggt atg egt acg tea aga aca gga ttt egg atg eea ttg ggg eee 51 Met Arg Thr Ser Arg Thr Gly Phe Arg Met Pro Leu Gly Pro tgg gcg gtg aac ccc tgc ttc att gct tcc tgt tcc tgt ctc ctc gtt Trp Ala Val Asn Pro Cys Phe Ile Ala Ser Cys Ser Cys Leu Leu Val 15 20 ggc ttc ggc gac gca atc ttc tac gag tcg ttc gcc ggg gat ttt gat Gly Phe Gly Asp Ala Ile Phe Tyr Glu Ser Phe Ala Gly Asp Phe Asp 35 gca cgc tgg att tta tcc ggc tca aag tgt ctc tcg gat tcg gcc aag 195 Ala Arg Trp Ile Leu Ser Gly Ser Lys Cys Leu Ser Asp Ser Ala Lys 55 aat gct ggg ttt gat gat tat gga ctt ctt gtg ggt gaa caa gcc agg 243 Asn Ala Gly Phe Asp Asp Tyr Gly Leu Leu Val Gly Glu Gln Ala Arg 70

Leu Pro Ala Thr Val Arg Arg Pro Tyr Arg Thr Leu Val Ser Gly

165

aag cct cct ata gtc aag gaa ctt gcc gag tct ctc agt cta aag gac 291 Lys Pro Pro Ile Val Lys Glu Leu Ala Glu Ser Leu Ser Leu Lys Asp 85 gga aga gtt gtt ctt gag tgt gag act cgc ctt gac cat ggc atc gac 339 Gly Arg Val Val Leu Glu Cys Glu Thr Arg Leu Asp His Gly Ile Asp 100 tgt gga ggt ccc tgt att aga tat ctt cga acc cag gag agc gga tgg 387 Cys Gly Gly Pro Cys Ile Arg Tyr Leu Arg Thr Gln Glu Ser Gly Trp 120 aaa ttt gac agc tcc acc atg ttt ggt gct gct aag tat ggc gcg agg 435 Lys Phe Asp Ser Ser Thr Met Phe Gly Ala Ala Lys Tyr Gly Ala Arg 135 agg acc cag ttc ttc ggg ggc cac ccc cag aac cca aac agt ggt gag 483 Arg Thr Gln Phe Phe Gly Gly His Pro Gln Asn Pro Asn Ser Gly Glu 150 155

tgt Cys	gtt Val 160	gac Asp	cat His	gat Asp	cac His	aac Asn 165	cag Gln	cgg Arg	gct Ala	tcc Ser	ctc Leu 170	Thr	tcg Ser	gac	aaa Lys	531
gta Val 175	PLO	cgt Arg	ttg Leu	tac Tyr	act Thr 180	gga Gly	att Ile	ctg Leu	tcg Ser	Pro	Glu	aat Asn	gaa Glu	ttc Phe	cag Gln 190	579
atc Ile	ttg Leu	ata Ile	gat Asp	cgg Arg 195	Gly	ttg Leu	gag Glu	acc Thr	aag Lys 200	gcc Ala	aaa Lys	atc Ile	ttc Phe	cct Pro 205	tgt Cys	627
GIU	Asp	Phe	G1u 210	Pro	Pro	Val	Ile	Pro 215	Ser	Lys	Arg	Ser	Pro 220		Asn	675
. Pro	ser	225	Arg	Thr	Glu	Asp	Ser 230	Asp	Glu	Lys	Ala	Lys 235	Ile	cca Pro	Gly	723
PIO	240	Ala	ren	ьуs	Arg	G1n 245	Glu	Ser	Asp	Glu	Asp 250	Pro	Asn	cgg Arg	Glu	771
255	Leu	His	Glu	Glu	Ala 260	Gly	Arg	Arg	Ser	Ser 265	Asp	Val	Gly	gcc Ala	His 270	819
Ala	ьуs	Asp	Gin	A1a 275	His	Glu	Pro	Glu	Pro 280	Lys	His	Trp	Gly	gct Ala 285	Glu	867
rys	Asp	GIÀ	G1u 290	Cys	Ala	Pro	Pro	Lys 295	Ile	Glu	Asn	Ala	100 100	cgg Arg	Gly	915
Ala	Ala	305	Ser	Cys	Gly	Val	Ser 310	Glu	Arg	Gln	Thr	Lys 315	Ile	agt Ser	Pro	963
ASI	320	гÀг	GIA	Lys	Pro	Ser 325	Val	Gly	Pro	Asn	Val 330	Tyr	Gln	Gly ggg	Ile	1011
335	Lys	Pro	Arg	Glu	Met 340	Leu	Asn	Pro	Gly	Ser 345	Phe	Gln	Ile	gca Ala	Lys 350	1059
ccc Pro	gct Ala	tgt Cys	gag Glu	cct Pro 355	att Ile	gct Ala	ggt Gly	ata Ile	ggc 360	atg Met	gag Glu	att Ile	agg Arg	aag Lys 365	cag Gln	1107
ggc Gly	atc Ile	Leu	tta Leu 370	gac Asp	act Thr	gtg Val	gtg Val	ggg Gly 375	gtt Val	agg Arg	GJA āāa	gat Asp	aca Thr 380	ggt Gly	gaa Glu	1155

gaa Glu	tat Tyr	ggg Gly 385	GIU	acc Thr	ccg	ttg Leu	aag Lys 390	Thr	acc Thr	tgt Cys	acc Thr	gto Val	. Glu	g aag 1 Lys	cac His	1203
agt Ser	ttg Leu 400	cag Gln	gct Ala	caa Gln	gag Glu	gcg Ala 405	Arg	acc Thr	cgg Arg	tca Ser	gac Asp 410	Ala	ggt Gly	t tca 7 Ser	ccc Pro	1251
tac Tyr 415	acc Thr	agg Arg	tac Tyr	gta Val	ser 420	Lys	atc Ile	ccc Pro	GJA aaa	aaa Lys 425	Ala	gat Asp	aat Asr	ccc Pro	ttc Phe 430	1299
tcg Ser	agc Ser	gag Glu	cac His	aaa Lys 435	tgt Cys	aag Lys	aat Asn	ttc Phe	gat Asp 440	Leu	att	gag Glu	gct Ala	gag Glu 445	aaa Lys	1347
cag Gln	tgt Cys	gcc Ala	aat Asn 450	gca Ala	gta Val	atc Ile	ctg Leu	ggt Gly 455	gtt Val	gtg Val	gtt Val	aac Asn	tcc Ser 460	Gly	tca Ser	1395
att Ile	aac Asn	tcc Ser 465	gtt Val	gtg Val	tct Ser	tgg Trp	ggc Gly 470	tac Tyr	aaa Lys	cct Pro	ggc Gly	acg Thr 475	gtg Val	aac Asn	aag Lys	1443
aac Asn	caa Gln 480	gaa Glu	cgc Arg	aga Arg	gca Ala	ccc Pro 485	tcc Ser	cag Gln	cga Arg	cgt Arg	agt Ser 490	agc Ser	gag Glu	att Ile	gaa Glu	1491
gga Gly 495	acc Thr	caa Gln	gac Asp	cga Arg	cga Arg 500	aaa Lys	cag Gln	gat Asp	gtt Val	ggc Gly 505	cga Arg	cgc Arg	caa Gln	gct Ala	gcc Ala 510	1539
agc Ser	tcg Ser	ccc Pro	agg Arg	cgc Arg 515	tga	taat	taaa	atc o	gato	ccgt	cc tt	taad	ccc	c		1587
gttg	ttca	at a	ccgt	tttt	t tt	ttat	ttaa	ı .				-				1617
<212	> 51 > PR	.5 T	lopsi	s th	nalia	ına										
<400 Met 1			Ser	Arg 5	Thr	Gly	Phe	Årg	Met 10	Pro	Leu	Gly	Pro	Trp 15	Ala	
Val	Asn	Pro	Cys 20	Phe	Ile	Ala	Ser	Cys 25	Ser	Cys	Leu	Leu	Val 30	Gly	Phe	-
Gly	Asp	Ala 35	Ile	Phe	Tyr	Glu	Ser 40	Phe	Ala	Gly	Asp	Phe 45	Asp	Ala	Arg	
Trp	Ile 50	Leu	Ser	Gly	Ser	Lys 55	Cys	Leu	Ser	Asp	Ser	Ala	Lys	Asn	Ala	

Gly Phe Asp Asp Tyr Gly Leu Leu Val Gly Glu Gln Ala Arg Lys Pro 70 Pro Ile Val Lys Glu Leu Ala Glu Ser Leu Ser Leu Lys Asp Gly Arg Val Val Leu Glu Cys Glu Thr Arg Leu Asp His Gly Ile Asp Cys Gly Gly Pro Cys Ile Arg Tyr Leu Arg Thr Gln Glu Ser Gly Trp Lys Phe Asp Ser Ser Thr Met Phe Gly Ala Ala Lys Tyr Gly Ala Arg Arg Thr 135 Gln Phe Phe Gly Gly His Pro Gln Asn Pro Asn Ser Gly Glu Cys Val 150 Asp His Asp His Asn Gln Arg Ala Ser Leu Thr Ser Asp Lys Val Pro 170 Arg Leu Tyr Thr Gly Ile Leu Ser Pro Glu Asn Glu Phe Gln Ile Leu 180 Ile Asp Arg Gly Leu Glu Thr Lys Ala Lys Ile Phe Pro Cys Glu Asp Phe Glu Pro Pro Val Ile Pro Ser Lys Arg Ser Pro Asp Asn Pro Ser 215 Lys Arg Thr Glu Asp Ser Asp Glu Lys Ala Lys Ile Pro Gly Pro Ser 235 Ala Leu Lys Arg Gln Glu Ser Asp Glu Asp Pro Asn Arg Glu Ile Leu His Glu Glu Ala Gly Arg Arg Ser Ser Asp Val Gly Ala His Ala Lys Asp Gln Ala His Glu Pro Glu Pro Lys His Trp Gly Ala Glu Lys Asp Gly Glu Cys Ala Pro Pro Lys Ile Glu Asn Ala Lys Arg Gly Ala Ala 290 Pro Ser Cys Gly Val Ser Glu Arg Gln Thr Lys Ile Ser Pro Asn Tyr Lys Gly Lys Pro Ser Val Gly Pro Asn Val Tyr Gln Gly Ile Trp Lys 325 330 Pro Arg Glu Met Leu Asn Pro Gly Ser Phe Gln Ile Ala Lys Pro Ala 340 Cys Glu Pro Ile Ala Gly Ile Gly Met Glu Ile Arg Lys Gln Gly Ile

Leu Leu Asp Thr Val Val Gly Val Arg Gly Asp Thr Gly Glu Glu Tyr 370 375 Gly Glu Thr Pro Leu Lys Thr Thr Cys Thr Val Glu Lys His Ser Leu 390 395 Gln Ala Gln Glu Ala Arg Thr Arg Ser Asp Ala Gly Ser Pro Tyr Thr Arg Tyr Val Ser Lys Ile Pro Gly Lys Ala Asp Asn Pro Phe Ser Ser 425 Glu His Lys Cys Lys Asn Phe Asp Leu Ile Glu Ala Glu Lys Gln Cys 440 Ala Asn Ala Val Ile Leu Gly Val Val Val Asn Ser Gly Ser Ile Asn 455 Ser Val Val Ser Trp Gly Tyr Lys Pro Gly Thr Val Asn Lys Asn Gln 470 475 Glu Arg Arg Ala Pro Ser Gln Arg Arg Ser Ser Glu Ile Glu Gly Thr 490 Gln Asp Arg Arg Lys Gln Asp Val Gly Arg Arg Gln Ala Ala Ser Ser 505 Pro Arg Arg 515 <210> 57 <211> 1281 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (13)..(1266) <400> 57 geteegeteg et atg agt tgg ega eee egg aag aac gtg eeg atg aaa aca 51 Met Ser Trp Arg Pro Arg Lys Asn Val Pro Met Lys Thr cgg gtg acc agg gac ggt tcg ggg ccc gga aaa acc ggt gtc aca cgc 99 Arg Val Thr Arg Asp Gly Ser Gly Pro Gly Lys Thr Gly Val Thr Arg ggg tcg tca ccc atg cga tgg gca tgg aag cgg tgg caa gcc gtc ggg 147 Gly Ser Ser Pro Met Arg Trp Ala Trp Lys Arg Trp Gln Ala Val Gly gca tcg acg gcc cgc acg tgg ttc ggg aca gag aac cag aaa gga ata 195 Ala Ser Thr Ala Arg Thr Trp Phe Gly Thr Glu Asn Gln Lys Gly Ile

55

50

Thr	aca Thr	agc Ser	acc Thr 65	cgc Arg	gcg Ala	cgg Arg	cgc Arg	tac Tyr 70	gcg Ala	gtc Val	tcg Ser	gcc Ala	aaa Lys 75	ttc Phe	ccg Pro	243
aga Arg	tta Leu	agt Ser 80	aat Asn	aag Lys	ggc Gly	. aaa Lys	gat Asp 85	tac Tyr	atg Met	cgt Arg	tgc Cys	gtc Val 90	ctc Leu	caa Gln	tac Tyr	291
acc Thr	gtc Val 95	aaa Lys	aat Asn	gaa Glu	caa Gln	aaa Lys 100	gtt Val	gat Asp	tgt Cys	ggt Gly	ggc Gly 105	tca Ser	tat Tyr	atc Ile	aag Lys	339
tta Leu 110	tta Leu	cct Pro	tcg Ser	aaa Lys	ttg Leu 115	cgc Arg	acg Thr	ggt Gly	gat Asp	ggt Gly 120	gat Asp	ggc Gly	gtg Val	tca Ser	gaa Glu 125	387
Tyr	Ser	Ile	Met	Phe 130	ggt Gly	Pro	Asp	Ser	Thr 135	Gly	Ala	Ser	Arg	Thr 140	Val	435
Arg	Arg	Ala	Arg 145	Asn	tat Tyr	Lys	Gly	Lys 150	Arg	His	Leu	Arg	Lys 155	Lys	Glu	483
Gln	Asn	Lys 160	Val	Glu	aca Thr	Asp	Gln 165	Leu	Thr	His	Gln	Туг 170	Thr	Thr	Ser	531
tgg	tca	cca	gat	tgg Tro	acc Thr	tac Tvr	aac Asn	gtt Val	cta Leu	gta Val	gat Asp	aat Asn	aag Lys	gaa Glu	tcg Ser	579
	175					180					185					
caa Gln 190	gca Ala	G1À āāā	aac Asn	ctt Leu	gcc Ala 195	gac Asp	gac Asp	tgc Cys	gag Glu	tta Leu 200	185 ctt Leu	Pro	cag Gln	aag Lys	cga Arg 205	627
caa Gln 190 atc Ile	gca Ala ttc Phe	cga Gly agg	aac Asn ccc Pro	ctt Leu agc Ser 210	gcc Ala 195 tgc Cys	gac Asp cga Arg	gac Asp aaa Lys	tgc Cys caa Gln	gag Glu tcc Ser 215	tta Leu 200 aaa Lys	185 ctt Leu cca Pro	Pro gtc Val	cag Gln acc Thr	aag Lys tgc Cys 220	cga Arg 205 gta Val	627 675
caa Gln 190 atc Ile gac Asp	gca Ala ttc Phe gtc Val	ggg Gly cga Arg aag Lys	aac Asn ccc Pro cac His 225	ctt Leu agc Ser 210 cac	gcc Ala 195 tgc Cys gcc Ala	gac Asp cga Arg	gac Asp aaa Lys cga Arg	tgc Cys caa Gln cga Arg 230	gag Glu tcc Ser 215 aat Asn	tta Leu 200 aaa Lys gtg Val	185 ctt Leu cca Pro aaa Lys	Pro gtc Val ccc Pro	cag Gln acc Thr gcc Ala 235	aag Lys tgc Cys 220 ggg Gly	cga Arg 205 gta Val cac His	
caa Gln 190 atc Ile gac Asp	gca Ala ttc Phe gtc Val gac Asp	ggg Gly cga Arg aag Lys att Ile 240	aac Asn ccc Pro cac His 225 cca Pro	ctt Leu agc Ser 210 cac His	gcc Ala 195 tgc Cys gcc Ala cga Arg	gac Asp cga Arg ccc Pro	gac Asp aaa Lys cga Arg acg Thr 245	tgc Cys caa Gln cga Arg 230 acg	gag Glu tcc Ser 215 aat Asn ccg Pro	tta Leu 200 aaa Lys gtg Val gaa Glu	ctt Leu cca Pro aaa Lys gcg Ala	Pro gtc Val ccc Pro gtc Val 250	cag Gln acc Thr gcc Ala 235 cgg Arg	aag Lys tgc Cys 220 ggg Gly aaa Lys	cga Arg 205 gta Val cac His	675
caa Gln 190 atc Ile gac Asp	gca Ala ttc Phe gtc Val gac Asp	ggg Gly cga Arg aag Lys att Ile 240	aac Asn ccc Pro cac His 225 cca Pro	ctt Leu agc Ser 210 cac His gcg Ala	gcc Ala 195 tgc Cys gcc Ala	gac Asp cga Arg ccc Pro , cgg Arg gac	gac Asp aaa Lys cga Arg Thr 245	tgc Cys caa Gln cga Arg 230 acg Thr	gag Glu tcc Ser 215 aat Asn ccg Pro	tta Leu 200 aaa Lys gtg Val gaa Glu	ctt Leu cca Pro aaa Lys gcg Ala	gtc Val ccc Pro gtc Val 250	cag Gln acc Thr gcc Ala 235 cgg Arg	aag Lys tgc Cys 220 ggg Gly aaa Lys	cga Arg 205 gta Val cac His	675 723

ccg gaa tac aaa ggg acc tgg gtc acg ccg tta cag gac aac ccc a Pro Glu Tyr Lys Gly Thr Trp Val Thr Pro Leu Gln Asp Asn Pro 1 290 295 300	act 915 Thr
cca gcc ccc ccg aac gac cta tat cta ttc ttg gac ctg ggt gca g Pro Ala Pro Pro Asn Asp Leu Tyr Leu Phe Leu Asp Leu Gly Ala P 305 310 315	gca 963 Ala
ggg aca cgg acc tgg acc gtg aaa tcg ggc tca atc acg aac aac a Gly Thr Arg Thr Trp Thr Val Lys Ser Gly Ser Ile Thr Asn Asn M 320 325 330	atg 1011 Met
ata gtg aca acg tcc gtg gaa acc gcg acc gac ttc tca gag aaa a Ile Val Thr Thr Ser Val Glu Thr Ala Thr Asp Phe Ser Glu Lys T 335 340 345	acc 1059 Thr
	Gly B65
acg ggg atc ggt gcc gag cgc cac tgt gct gat gag aga tgg aaa g Thr Gly Ile Gly Ala Glu Arg His Cys Ala Asp Glu Arg Trp Lys G 370 375 380	Glu
aca acg gta gcc ccc gat tgc gcc gta tcg gca gcg aac gcc tcg c Thr Thr Val Ala Pro Asp Cys Ala Val Ser Ala Ala Asn Ala Ser A 385 390 395	urg
cgc acc ggg gag ctg gcc acc ccg gtg acg atg ctg cct gat ccg t Arg Thr Gly Glu Leu Ala Thr Pro Val Thr Met Leu Pro Asp Pro L 400 405 410	tg 1251 Jeu
tac gga ccg gaa taa aatcgcctga tgcct Tyr Gly Pro Glu 415	1281
<210> 58 <211> 417 <212> PRT <213> Arabidopsis thaliana	
<pre><400> 58 Met Ser Trp Arg Pro Arg Lys Asn Val Pro Met Lys Thr Arg Val T 1</pre>	hr
Arg Asp Gly Ser Gly Pro Gly Lys Thr Gly Val Thr Arg Gly Ser Se 20 25 30	er
Pro Met Arg Trp Ala Trp Lys Arg Trp Gln Ala Val Gly Ala Ser Tr 35 40 45	hr
Ala Arg Thr Trp Phe Gly Thr Glu Asn Gln Lys Gly Ile Thr Thr Sc 50 55 60	er
Thr Arg Ala Arg Arg Tyr Ala Val Ser Ala Lys Phe Pro Arg Leu Se 65 70 75	er 80

Asn Lys Gly Lys Asp Tyr Met Arg Cys Val Leu Gln Tyr Thr Val Lys Asn Glu Gln Lys Val Asp Cys Gly Gly Ser Tyr Ile Lys Leu Leu Pro Ser Lys Leu Arg Thr Gly Asp Gly Asp Gly Val Ser Glu Tyr Ser Ile Met Phe Gly Pro Asp Ser Thr Gly Ala Ser Arg Thr Val Arg Arg Ala Arg Asn Tyr Lys Gly Lys Arg His Leu Arg Lys Lys Glu Gln Asn Lys 150 Val Glu Thr Asp Gln Leu Thr His Gln Tyr Thr Thr Ser Trp Ser Pro 165 170 Asp Trp Thr Tyr Asn Val Leu Val Asp Asn Lys Glu Ser Gln Ala Gly 180 185 Asn Leu Ala Asp Asp Cys Glu Leu Leu Pro Gln Lys Arg Ile Phe Arg 200 Pro Ser Cys Arg Lys Gln Ser Lys Pro Val Thr Cys Val Asp Val Lys His His Ala Pro Arg Arg Asn Val Lys Pro Ala Gly His Asp Asp Ile 230 Pro Ala Arg Arg Thr Thr Pro Glu Ala Val Arg Lys Gly Arg Thr Asn Glu Arg Pro Asp Arg Thr Trp Ala Thr Gly Thr Thr Pro Arg Pro Arg 260 Arg Tyr Lys Gly Glu Thr Lys Ala Lys Lys His Pro Arg Pro Glu Tyr 280 Lys Gly Thr Trp Val Thr Pro Leu Gln Asp Asn Pro Thr Pro Ala Pro 290 295 Pro Asn Asp Leu Tyr Leu Phe Leu Asp Leu Gly Ala Ala Gly Thr Arg 310 Thr Trp Thr Val Lys Ser Gly Ser Ile Thr Asn Asn Met Ile Val Thr 330 Thr Ser Val Glu Thr Ala Thr Asp Phe Ser Glu Lys Thr Lys Val Ala 345 Asn Thr Thr Glu Leu Asn Asp Gly Arg Asp Ala Gly Thr Gly Ile Gly Ala Glu Arg His Cys Ala Asp Glu Arg Trp Lys Glu Thr Thr Val 375

Ala Pro Asp Cys Ala 385	a Val Ser Ala A 390	Ala Asn Ala Ser Arg Arg Thr Gly 395 400	
Glu Leu Ala Thr Pro 409	o Val Thr Met I 5	Leu Pro Asp Pro Leu Tyr Gly Pro 410 415	
Glu			
<210> 59 <211> 416 <212> DNA <213> Arabidopsis t	chaliana ·		
<220> <221> CDS <222> (1)(411)		,	
<400> 59 aag gaa gct ttt agc Lys Glu Ala Phe Ser 1	Leu Phe Asp L	aaa gat ggc gat ggt tgc atc aca yys Asp Gly Asp Gly Cys Ile Thr 10 15	48
aca aaa gag ctg gga Thr Lys Glu Leu Gly 20	Thr Val Met A	gt tca cta gga caa aac cca aca rg Ser Leu Gly Gln Asn Pro Thr 25 30	96
gag gct gag ctc caa Glu Ala Glu Leu Glr 35	n gac atg atc a n Asp Met Ile A 40	ac gag gtt gat gca gat gga aac sn Glu Val Asp Ala Asp Gly Asn 45	144
ggc act atc gac ttc Gly Thr Ile Asp Phe 50	ccc gag ttc c Pro Glu Phe L 55	tg aac ctg atg gct aag aag atg eu Asn Leu Met Ala Lys Lys Met 60	192
aaa gac act gac tcc Lys Asp Thr Asp Ser 65	gag gaa gag c Glu Glu Glu L 70	ta aaa gaa gcc ttc agg gtt ttc eu Lys Glu Ala Phe Arg Val Phe 75 80	240
gac aaa gac cag aac Asp Lys Asp Gln Asn 85	Gly Phe Ile So	cc gct gct gag cta cgc cat gtg er Ala Ala Glu Leu Arg His Val 90 95	288
atg acc aat ctt ggt Met Thr Asn Leu Gly 100	Glu Lys Leu T	ct gat gaa gaa gtg gaa gag atg hr Asp Glu Glu Val Glu Glu Met 05 110	336
atc cgt gag gct gat Ile Arg Glu Ala Asp 115	gtt gat gga ga Val Asp Gly As 120	at ggt cag att aac tat gaa gag sp Gly Gln Ile Asn Tyr Glu Glu 125	384
ttt gtc aag att atg Phe Val Lys Ile Met 130	atg gct aag to Met Ala Lys 135	ga tttgat "	417

```
<210> 60
<211> 136
<212> PRT
<213> Arabidopsis thaliana
<400> 60
Lys Glu Ala Phe Ser Leu Phe Asp Lys Asp Gly Asp Gly Cys Ile Thr
Thr Lys Glu Leu Gly Thr Val Met Arg Ser Leu Gly Gln Asn Pro Thr
Glu Ala Glu Leu Gln Asp Met Ile Asn Glu Val Asp Ala Asp Gly Asn
Gly Thr Ile Asp Phe Pro Glu Phe Leu Asn Leu Met Ala Lys Lys Met
                         55
Lys Asp Thr Asp Ser Glu Glu Glu Leu Lys Glu Ala Phe Arg Val Phe
Asp Lys Asp Gln Asn Gly Phe Ile Ser Ala Ala Glu Leu Arg His Val
                 85
Met Thr Asn Leu Gly Glu Lys Leu Thr Asp Glu Glu Val Glu Glu Met
                                105
Ile Arg Glu Ala Asp Val Asp Gly Asp Gly Gln Ile Asn Tyr Glu Glu
                            120
Phe Val Lys Ile Met Met Ala Lys
    130
<210> 61
<211> 6069
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (34)..(173)
<220>
<221> CDS
<222> (282)..(492)
<220>
<221> CDS
<222> (539)..(1135)
<220>
```

<221> CDS

<222> (1224)..(1320)

```
<220>
<221> CDS
<222> (1404)..(1585)
<220>
<221> CDS
<222> (1663)..(1778)
<220>
<221> CDS
<222> (1891)..(1993)
<220>
<221> CDS
<222> (2114)..(2266)
<220>
<221> CDS
<222> (2376)..(2522)
<220>
<221> CDS
<222> (2608)..(2808)
<220>
<221> CDS
<222> (3071)..(3235)
<220>
<221> CDS
<222> (3315)..(3419)
<220>
<221> CDS
<222> (3519)..(3656)
<220>
<221> CDS
<222> (3742)..(3936)
<220>
<221> CDS
<222> (4061)..(4187)
<220>
<221> CDS
<222> (4268) .. (4470)
<220>
<221> CDS
<222> (4556)..(4738)
<220>
<221> CDS
<222> (4809)..(4904)
<220>
```

	1> C 2> ()(5188)											
	0> 1> C 2> ()(5780	}											
	0> 1> C 2> ()(6059)								•			
<40	0> 6	1														
cag	atct	act (acaa	tete	tc t	ttt	ette	a g g	Me	g ga t Gl [.] 1	g gg u Gl	c ca y Gl	n Ar	a gg g Gl: 5	c agt y Ser	54
aat Asn	tct Ser	tcg Ser 10	ttg Leu	agc Ser	tct Ser	ggc Gly	aat Asn 15	ggc Gly	acc Thr	gaa Glu	gtc Val	gcc Ala 20	acc Thr	gac Asp	gtt Val	102
tct Ser	tct Ser 25	tgc Cys	ttc Phe	tat Tyr	gtt Val	ccc Pro 30	aat Asn	ccc Pro	tct Ser	gga Gly	acc Thr 35	gat Asp	ttc Phe	gat Asp	gcc Ala	150
gag Glu 40	tcg Ser	tct Ser	tct Ser	ctt Leu	cct Pro 45	cct Pro	ct (Le	gtaaq	gtcti	tc ti	ttga	attt	t ta	aaaa	catt	203
cac	tctc	tg d	ctgci	tgtc	c to	gttga	atcc	t tci	ttcti	ttga	aaa	tttga	aaa a	acati	tcttag	263
tct	ctcgo	etc 1	tgtca	acag	c to u Se	er Pi	CO A	ct co la Pi 50	ct ca ro Gi	aa gi ln Va	tg go	la L	tg to eu So 55	ca at er I	tt cct le Pro	315
gcg Ala	gag Glu 60	ctt Leu	gcc Ala	gcc Ala	gcc Ala	att Ile 65	ccc Pro	ctc Leu	atc Ile	gat Asp	cgc Arg 70	ttc Phe	cag Gln	gtt Val	gaa Glu	363
gct Ala 75	ttt Phe	ctg Leu	cgg Arg	cta Leu	atg Met 80	cag Gln	aaa Lys	caa Gln	atc Ile	cag Gln 85	tct Ser	gct Ala	Gly ggg	aag Lys	cgt Arg 90	411
ggc Gly	ttc Phe	ttc Phe	tat Tyr	tcc Ser 95	aaa Lys	aag Lys	tcc Ser	tct Ser	ggc Gly 100	tcc Ser	aat Asn	gtc Val	cgc Arg	gag Glu 105	cgc Arg	459
ttc Phe	aca Thr	ttt Phe	gag Glu 110	gat Asp	atg Met	ctt Leu	tgc Cys	ttt Phe 115	caa Gln	aag Lys	gtt	ttet	tt d	-	ccttt	512
ctto	ccce	att g	gacaa	tcca	ıt tç	jact <u>c</u>	, aat Asi	ato 1 Met	tct Ser 120	Leu	tco Ser	c cct	tco Sei	tto Phe 125	ctt Leu	565
cag Gln	gat Asp	cca Pro	atc Ile 130	ccc Pro	aca Thr	tct Ser	ctc Leu	ctc Leu 135	aag Lys	att Ile	aac Asn	agc Ser	gat Asp 140	ctc Leu	gtc Val	613

agc Ser	cgt Arg	gct Ala 145	acc Thr	aag Lys	ttg Leu	ttt Phe	cat His 150	ctc Leu	atc Ile	tta Leu	aaa Lys	tat Tyr 155	atg Met	ggt Gly	gtt Val	661
gat Asp	tca Ser 160	tct Ser	gat Asp	cga Arg	tct Ser	acg Thr 165	cct Pro	ccc Pro	agt Ser	tta Leu	gat Asp 170	gaa Glu	cgc Arg	att Ile	gac Asp	709
ctc Leu 175	gtt Val	gga Gly	aag Lys	ctc Leu	ttc Phe 180	aaa Lys	aaa Lys	act Thr	ttg Leu	aag Lys 185	cgt Arg	gtt Val	gaa Glu	ctc Leu	agg Arg 190	757
gac Asp	gaa Glu	ctt Leu	ttt Phe	gcc Ala 195	caa Gln	atc Ile	tcc Ser	aaa Lys	cag Gln 200	act Thr	aga Arg	cat His	aat Asn	cct Pro 205	gac Asp	805
agg Arg	caa Gln	tac Tyr	ttg Leu 210	atc Ile	aaa Lys	gct Ala	tgg Trp	gaa Glu 215	ttg Leu	atg Met	tac Tyr	tta Leu	tgt Cys 220	gcc Ala	tcc Ser	853
tct Ser	atg Met	cct Pro 225	cct Pro	agc Ser	aaa Lys	gat Asp	atc Ile 230	ggt Gly	gga Gly	tat Tyr	cta Leu	tct Ser 235	gag Glu	tat Tyr	att Ile	901
cat His	aat Asn 240	gtc Val	gca Ala	cac His	gat Asp	gca Ala 245	act Thr	att Ile	gaa Glu	ccg Pro	gat Asp 250	gct Ala	cag Gln	gtt Val	ctt Leu	949
gct Ala 255	gtt Val	aac Asn	act Thr	ttg Leu	aaa Lys 260	gct Ala	tta Leu	aag Lys	cgc Arg	tct Ser 265	atc Ile	aaa Lys	gct Ala	ggt Gly	cct Pro 270	997
agg Arg	cac His	acc Thr	aca Thr	cct Pro 275	ggt Gly	cgt Arg	gaa Glu	gaa Glu	att Ile 280	gaa Glu	gcc Ala	ctt Leu	ttg Leu	acc Thr 285	ggt Gly	1045
aga Arg	aag Lys	ctc Leu	aca Thr 290	acc Thr	att Ile	gtc Val	ttc Phe	ttt Phe 295	ctc Leu	gat Asp	gaa Glu	act Thr	ttt Phe 300	gaa Glu	gaa Glu	1093
att Ile	tca Ser	tat Tyr 305	gac Asp	atg Met	gct Ala	acc Thr	aca Thr 310	gtg Val	tct Ser	gat As p	gct Ala	gtt Val 315	gag Glu			1135
gtat	cttc	tt c	cttt	cttt	t tt	cata	attt	acc	gctg	gatc	atat	tctt	gt c	cctt	tttct	1195
ctca	ctgc	at t	gaca	tetg	jt tt	cagg	ag c	ta g .eu A	ct g la C	Sly T	ca a hr I 20	itt a :le L	aa c ys L	ta t eu S	ca Ger	1247
gct Ala 325	ttc Phe	tct Ser	agc Ser	ttt Phe	agt Ser 330	ttg Leu	ttt Phe	gaa Glu	tgt Cys	cgt Arg 335	aaa Lys	gtt Val	gtt Val	tca Ser	agt Ser 340	1295
tct Ser	aaa Lvs	tca Ser	tct	gat	ccc	gga	aat	g gt	atgo	tttc	ata	tgac	tgg			1340

ctto	gtc	ata	tatt	gtga	ag t	aata	caac	a tt	atc	gatca	ttt	ttci	tatc	tgtg	cacttg	1400
cag	lu	gaa Glu 350	tat Tyr	ata Ile	gga Gly	ttg Leu	gat Asp 355	gat Asp	aac Asn	aag Lys	tat Tyr	att Ile 360	gga Gly	gat Asp	ctc Leu	1447
ctc Leu	gca Ala 365	gaa Glu	ttt Phe	aaa Lys	gct Ala	att Ile 370	Lys	gac Asp	cga Arg	a aat g Asn	aaa Lys 375	Gly	a gaq 7 Glu	g ata ı Ile	cta Leu	1495
cac His 380	tgc Cys	aaa Lys	ctg Leu	gta Val	ttt Phe 385	Lys	aaa Lys	aaa Lys	tta Lei	ttc Phe 390	Arg	ı gaç g Glı	g tct 1 Sei	gat Asp	gaa Glu 395	1543
gct Ala	gta Val	aca Thr	gat Asp	ctg Leu 400	Met	ttt Phe	gtg Val	caa Gln	Let 405	tcg Ser	tat Tyr	gtt Val	caa l Glr	a 1		1585
gtga	ıgca	ttt	tctt	catt	gg t	gaca	ttta	t tt	ccac	acaa	aag	gctt	gcc	tttc	gttgct	1645
gaca	cac	ata '	tatg		ctg Leu 410	caa Gln	cat His	gac Asp	tat Tyr	ttg Leu 415	cta Leu	gga Gly	aac Asn	tat Tyr	cct Pro 420	1695
gtt Val	ggg Gly	agg Arg	gac Asp	gat Asp 425	gct Ala	gca Ala	cag Gln	ctt Leu	tgt Cys 430	gcc Ala	ttg Leu	caa Glr	a att	ctt Leu 435	Val	1743
GJA aaa	att Ile	Gly	ttt Phe 440	Val	aat Asn	agt Ser	cca Pro	gag Glu 445	Ser	tgc Cys	at Il	gtta	agttt	tc		1788
ttaa	gct	ccg (ccat	tgac	tt t	attt	tagt	t gt	ccga	tact	tta	ttt	tcc	aatt	ttcctc	1848
cctt	aac	aat a	atca	tttc	ct t	tctc	aatg	t at	caca	ıtatc	ag			p Th	a tca r Ser	1903
ctt Leu	ctt Leu	gag Glu 455	cgg Arg	ttt Phe	ttg Leu	cca Pro	aga Arg 460	Gln	ata Ile	gca Ala	ata Ile	acc Thr 465	Arg	gca Ala	aag Lys	1951
cgt Arg	gaa Glu 470	tgg Trp	gaa Glu	ttg Leu	gat Asp	atc Ile 475	Leu	gct Ala	cgc Arg	tac Tyr	cgt Arg 480	Ser	atg Met	! :		1993
gtaç	gaa	tag	ttct	atgc	at g	tgga	ttgt	c tt	cccc	tttc	tag	atac	ctt	tggc	aaataa	2053
aaac	cca	ttg a	aagt	gatg	gc a	tggt	aaaa	t ga	tatt	tcgt	atg	tgta	tgt	gggc	atgtag	2113
gag Glu	aac Asn	gtg Val 485	acc Thr	aaa Lys	gat Asp	gat Asp	gca Ala 490	Arg	caa Glr	caa Gln	ttt Phe	cta Leu 495	Arg	ata Ile	ctg Leu	2161
aag	gca	ctg	cca	tac	ggg	aat	tca	gtt	ttt	ttt	ago	gta	cac	aaq	ata	2209

Lys	Ala 500	Leu	Pro	Tyr	Gly	Asn 505	Ser	Val	Phe	Phe	Ser 510	Val	Arg	Lys	Ile	
gat Asp 515	gat Asp	ccg Pro	atc Ile	ggt Gly	ctt Leu 520	tta Leu	cct Pro	Gly ggg	cga Arg	atc Ile 525	att Ile	ttg Leu	ggt Gly	atc Ile	aac Asn 530	2257
aaa Lys	cgt Arg	ggg Gly	gtt	gtct	caa	tata	aatg	tt a	taca	ttat	g act	tta	aaaa			2306
aact	gtta	att ç	gttgi	tttg	ga ai	ttca	aatc	t at	gttg	ttgg	attt	gaa	ttt	gttgt	ttgct	2366
ttct	tgta	ag gt Va	T H	ac to is Pl 35	tt ti he Pl	it co	ga co rg Pi	ro Va	tt co al Pi 10	ct aa ro Ly	aa ga ys Gl	aa ta lu T	yr L	tg ca eu Hi 45	ac tct is Ser	2417
gct Ala	gaa Glu	cta Leu 550	cgt Arg	gac Asp	atc Ile	atg Met	caa Gln 555	ttt Phe	ggc Gly	agc Ser	agt Ser	aac Asn 560	act Thr	gct Ala	gtc Val	2465
ttt Phe	Phe 565	aaa Lys	atg Met	aga Arg	gtc Val	gct Ala 570	ggt Gly	gtt Val	ctt Leu	cac His	ata Ile 575	ttt Phe	cag Gln	ttc Phe	gag Glu	2513
aca Thr 580	aaa Lys	cag Gln	gttt	aaad	cat o	acta	atttg	gt gg	gatca	attat	att	atga	aagc			25.62
aatt	cctt	at g	agat	atto	a at	ttgg	gtaa	ctt	gtat:	gtt	tgta	G] g gg	ga ga ly Gl	aa ga Lu Gl 58	a att u Ile 5	2619
tgt Cys	gtt Val	Ala	ttg Leu 590	caa Gln	aca Thr	cat His	ata Ile	aat Asn 595	gat Asp	gtc Val	atg Met	ttg Leu	cgt Arg 600	cgt Arg	tac Tyr	2667
tcc Ser	aaa Lys	gct Ala 605	cga Arg	tct Ser	gct Ala	gcc Ala	aat Asn 610	tgc Cys	ttg Leu	gtt Val	Asn	gga Gly 615	gat Asp	att Ile	tct Ser	2715
cys	tgt Cys 620	tct Ser	aag Lys	ccg Pro	caa Gln	aat Asn 625	ttt Phe	gaa Glu	gtg Val	Tyr	gaa Glu : 630	aaa Lys	cgt Arg	ttg Leu	caa Gln	2763
gat Asp 635	ttg Leu	tct Ser	aag Lys	gct Ala	tat Tyr 640	gaa Glu	gag Glu	tcc Ser	caa Gln	aag Lys 645	aag (Lys :	att Ile	gag Glu	aag Lys		2808
gtac	acat	tc t	aaca	aatt	t ct	tatt	tatt	ctt	caat	gta	aaati	tgaa	ta t	aata	gaggg	2868
															ggttt	
															attgt	*er
															attcg	
tatg	tttt	at g	ttgt	tgta	t ag	ttg	atg	gat	gaa	caa	caa	gag	aaa	aat	cac	3100

Leu Met Asp Glu Gln Glu Lys Asn Gln caa gaa gtt act ctg cgt gaa gag tta gaa gct ata cac aat ggt ttg 3148 Gln Glu Val Thr Leu Arg Glu Glu Leu Glu Ala Ile His Asn Gly Leu 665 gag ctt gaa agg aga aaa ttg ttg gag gtt act tta gac cga gat aaa 3196 Glu Leu Glu Arg Arg Lys Leu Leu Glu Val Thr Leu Asp Arg Asp Lys 680 685 ctt agg tca ttg tgt gac gag aag gga acc cct att caa gttagttata 3245 Leu Arg Ser Leu Cys Asp Glu Lys Gly Thr Pro Ile Gln acctaacttt tgtctttctt ttgatgcttg gttgaagtta tttaatgatt tattctatat 3305 atgctatag tcc ttg atg tct gaa ctg cga gga atg gaa gca agg ttg gca 3356 Ser Leu Met Ser Glu Leu Arg Gly Met Glu Ala Arg Leu Ala 710 aag tcg ggc aac acc aaa tca agt aaa gag acc aaa tca gaa tta gcc 3404 Lys Ser Gly Asn Thr Lys Ser Ser Lys Glu Thr Lys Ser Glu Leu Ala 725 gaa atg aat aat cag gtgaatatta tgtgtttaaa tctaattcat tgtaatcatt 3459 Glu Met Asn Asn Gln 735 gagttgttgt tttttgttcc caattctgct ttcctttgac aatgaatttt aagtcacag 3518 ata tta tac aag atc caa aag gag tta gaa gtt cga aat aag gaa ttg 3566 Ile Leu Tyr Lys Ile Gln Lys Glu Leu Glu Val Arg Asn Lys Glu Leu 740 745 cat gtc gca gtt gat aat tca aag agg ttg ttg agt gaa aac aag ata 3614 His Val Ala Val Asp Asn Ser Lys Arg Leu Leu Ser Glu Asn Lys Ile 760 ttg gag caa aat ctc aat att gaa aag aag aaa aaa gag gag 3656 Leu Glu Gln Asn Leu Asn Ile Glu Lys Lys Lys Glu Glu 775 780 gtgaattcta tgtattagat ttattgaaga tttcaaattg agaagtatca aatacttgcg 3716 tattgttgac atctcattat ttcag gtt gaa att cat caa aag aga tat gaa 3768 Val Glu Ile His Gln Lys Arg Tyr Glu 790 caa gaa aaa aag gtg tta aag ctt cga gtt tct gaa ctt gaa aat aag 3816 Gln Glu Lys Lys Val Leu Lys Leu Arg Val Ser Glu Leu Glu Asn Lys 795 805 ctt gaa gta ctt gct caa gac ttg gat agt gct gag tct acg att gaa 3864 Leu Glu Val Leu Ala Gln Asp Leu Asp Ser Ala Glu Ser Thr Ile Glu 815 820

agt a Ser I	ag ys	aat Asn	Ser 830	gac Asp	atg Met	ctg Leu	ctg Leu	ttg Leu 835	caa Gln	aat Asn	aac Asn	ttg Leu	aaa Lys 840	gaa Glu	ctt Leu	3912
gag g Glu G	gag Slu	tta Leu 845	aga Arg	gaa Glu	atg Met	aaa Lys	gag Glu 850	gtaa	tggt	ac t	ctt	tgto	et to	cttca	attat	3966
ttaat	ttt	gt t	tctg	gtttg	ga at	gato	jataa	a tgt	att	tcg	cgat	tcca	aaa t	ttgaa	agtaga	4026
gggat	gtg	tt t	acat	teca	aa tt	tcat	ttt	: tta					g Ly		at gag sn Glu	4081
caa a Gln 1	ca hr	gct Ala 860	gcc Ala	att Ile	ttg Leu	aaa Lys	atg Met 865	caa Gln	gga Gly	gcc Ala	caa Gln	ctt Leu 870	gct Ala	gag Glu	cta Leu	4129
gaa a Glu I	1ta 11e 175	ctt Leu	tat Tyr	aag Lys	gaa Glu	gaa Glu 880	caa Gln	gtt Val	tta Leu	agg Arg	aaa Lys 885	aga Arg	tac Tyr	tat Tyr	aat Asn	4177
acc a Thr 1 890	ta le	gaa Glu	g gt A	aaca	taat	gct	caag	jta t	gtad	caato	gat g	gttca	attgo	et		4227
tttaa	aaa	ag a	attt	tact	a ac	catt	ttat	ttç	gatto	gtag		1et 1		gly i		4281
att a Ile A	iga Arg	gtt Val 900	tat Tyr	tgt Cys	cga Arg	ata Ile	aga Arg 905	cct Pro	cta Leu	aat Asn	gaa Glu	aaa Lys 910	gag Glu	agt Ser	tca Ser	4329
gag a Glu A	ngg Arg 915	gaa Glu	aaa Lys	caa Gln	atg Met	ctg Leu 920	aca Thr	act Thr	gtg Val	gat Asp	gag Glu 925	ttt Phe	act Thr	gtt Val	gaa Glu	4377
cat of His A 930	ica Ala	tgg Trp	aaa Lys	gac Asp	gac Asp 935	aaa Lys	aga Arg	aag Lys	caa Gln	cac His 940	ata Ile	tat Tyr	gat Asp	cgc Arg	gta Val 945	4425
ttt g Phe A	ac Asp	atg Met	cgt Arg	gct Ala 950	agt Ser	caa Gln	gat Asp	gat Asp	atc Ile 955	ttt Phe	gaa Glu	gac Asp	aca Thr	aag Lys 960		4470
gtatt	att	ga t	atgt	caact	g to	gttca	attta	a cct	ttca	atcc	tttg	ttat	tt t	ctte	gtggtt	4530
actaa	acat	cg t	ttt	cctt	t aa	acag	tat Tyr	ttg Leu	gta Val	cag Gln	tcg Ser 965	gct Ala	gta Val	gat Asp	ggg ggg	4582
tat a Tyr 1 970	ac Asn	gtt Val	tgc Cys	atc Ile	ttt Phe 975	gca Ala	tat Tyr	ggt Gly	caa Gln	act Thr 980	ggt Gly	tct Ser	gga Gly	aaa Lys	act Thr 985	4630
ttc a	act	ata	tat	ggg	cat	gag	agc	aat	cct	gga	ctc	aca	cct	cga	gct	4678

Phe Thr Ile Tyr Gly His Glu Ser Asn Pro Gly Leu Thr Pro Arg Ala 990 995 1000	
aca aag gaa ctg ttc aac ata tta aag cga gat agc aag aga ttt tca Thr Lys Glu Leu Phe Asn Ile Leu Lys Arg Asp Ser Lys Arg Phe Ser 1005 1010 1015	4726
ttt tct cta aag gtaatttgtt atcctaatag atgatgtgat aaaagattat Phe Ser Leu Lys 1020	4778
gacatcaact gactacaaaa agttatgcag gca tat atg gtg gaa ctt tat caa Ala Tyr Met Val Glu Leu Tyr Gln 1025	
gac aca ctt gta gac ctt ttg tta cca aaa agt gca aga cgc ttg aaa Asp Thr Leu Val Asp Leu Leu Leu Pro Lys Ser Ala Arg Arg Leu Lys 1030 1035 1040 1045	4880
cta gag att aaa aaa gat tca aag gtattgtgag atatatctat tttaactagg Leu Glu Ile Lys Lys Asp Ser Lys 1050	4934
ttataactag attgtagaca cgtaagtttg atcttatgca taaaatattt tctcag gg Gl	
atg gtc ttt gta gag aat gtg aca act att cct ata tca act ttg gag Met Val Phe Val Glu Asn Val Thr Thr Ile Pro Ile Ser Thr Leu Glu 1055 1060 1065 1070	5041
gaa ctg cga atg att ctt gaa cgg gga tcg gaa cga cga cat gtt tct Glu Leu Arg Met Ile Leu Glu Arg Gly Ser Glu Arg Arg His Val Ser 1075 1080 1085	5089
gga aca aat atg aat gaa gaa agc tca aga tct cac ctc ata tta tca Gly Thr Asn Met Asn Glu Glu Ser Ser Arg Ser His Leu Ile Leu Ser 1090 1095 1100	5137
gtt gtt att gaa agt att gat ctt caa acc cag tct gct gcg agg ggc Val Val Ile Glu Ser Ile Asp Leu Gln Thr Gln Ser Ala Ala Arg Gly 1105 1110 1115	5185
aag gtgacaaaat tcactatgtt tttctttatt gactcattat catttttcac Lys	5238
aggatttagt agcatttagg gattttaagg aaataggagt ttctttagat tttcatgct	5298
agtctaccga agaaaaatat agtaacatta atcttgttta agagagatat tattttaca	5358
ctcaaatctt tggtctggta caaaatgtta aacctttatg tacacaatcc atattattag	
tcaatgatat gccctccatt gttaaaccca tatcacctga tcatggtggt atcttctaca	a 5478
atattctgaa tttttgtttg ttatttgcag ctg agt ttt gtg gat ctt gct ggt Leu Ser Phe Val Asp Leu Ala Gly 1125	5532

Ser Glu Ar	g Val Ly:	s Lys Ser	ggc tca Gly Ser 1135	gct ggt Ala Gly	tgc caa c Cys Gln I 1140	tc aaa gaa Leu Lys Glu	5580
gct caa ag Ala Gln Se 1145	t atc aad r Ile Ası	c aaa tca n Lys Ser 1150	Leu Ser	Ala Leu	ggt gat g Gly Asp V 1155	gtt att ggt /al Ile Gly	5628
gct tta tc Ala Leu Se 1160	t tct ggd r Ser Gly	c aac cag y Asn Gln 1165	cat att His Ile	cct tat Pro Tyr 1170	agg aat o Arg Asn H	ac aag cta His Lys Leu 1175	5676
acg atg tt Thr Met Le	g atg ago u Met Sei 1180	r Asp Ser	Leu Gly	ggc aat Gly Asn 1185	gcc aag a Ala Lys T	acg tta atg Thr Leu Met 1190	5724
ttt gtt aa Phe Val As	t gtg tct n Val Sei 1195	cca gcc Pro Ala	gaa tca Glu Ser 1200	aat ttg Asn Leu	Asp Glu T	ncg tac aat Thr Tyr Asn 105	5772
tct ctt ct Ser Leu Le	gtaagtca	atg agttc	ccata ta	tatataac	ataaatcaa	a tatgcttagt	5830
gtaaaaatgg	ataatcca	ata ttgtt	ttttt tt	cctccttt	gattccag	u Tyr Ala	5885
tcg aga gt Ser Arg Va 121	l Arg Thi	: Ile Val	aat gat Asn Asp 1220	ccc agc Pro Ser	aaa cat a Lys His I 1225	ta tca tcc le Ser Ser	5933
aaa gag at Lys Glu Me 1230	g gtg cga t Val Arg	ttg aag Leu Lys 1235	aag ttg Lys Leu	Val Ala	tac tgg a Tyr Trp L 1240	aa gag caa ys Glu Gln	5 98 1
gcc ggt aa Ala Gly Ly 1245	a aaa ggt s Lys Gly	gag gaa Glu Glu 1250	gaa gac Glu Asp	ttg gtg Leu Val 1255	gat att g Asp Ile G	ag gaa gat lu Glu Asp 1260	6029
cgt aca cg Arg Thr Ar	a aaa gat g Lys Asg 1265	Glu Ala	Asp Ser	tga agaa 1270	aagctga c		6070
<210> 62 <211> 1269 <212> PRT <213> Arab	idopsis t	chaliana	-				
<400> 62 Met Glu Gl	y Gln Arg		Asn Ser	Ser Leu	Ser Ser G	ly Asn Gly 15	

Thr Glu Val Ala Thr Asp Val Ser Ser Cys Phe Tyr Val Pro Asn Pro

Ser Gly Thr Asp Phe Asp Ala Glu Ser Ser Ser Leu Pro Pro Leu Ser

17-

35 40 45

Pro Ala Pro Gln Val Ala Leu Ser Ile Pro Ala Glu Leu Ala Ala 50 55 60

Ile Pro Leu Ile Asp Arg Phe Gln Val Glu Ala Phe Leu Arg Leu Met
65 70 75 80

Gln Lys Gln Ile Gln Ser Ala Gly Lys Arg Gly Phe Phe Tyr Ser Lys 85 90 95

Lys Ser Ser Gly Ser Asn Val Arg Glu Arg Phe Thr Phe Glu Asp Met 100 105 110

Leu Cys Phe Gln Lys Asn Met Ser Leu Ser Pro Ser Phe Leu Gln Asp 115 120 125

Pro Ile Pro Thr Ser Leu Leu Lys Ile Asn Ser Asp Leu Val Ser Arg 130 135 140

Ala Thr Lys Leu Phe His Leu Ile Leu Lys Tyr Met Gly Val Asp Ser 145 150 155 160

Ser Asp Arg Ser Thr Pro Pro Ser Leu Asp Glu Arg Ile Asp Leu Val 165 170 175

Gly Lys Leu Phe Lys Lys Thr Leu Lys Arg Val Glu Leu Arg Asp Glu 180 185 190

Leu Phe Ala Gln Ile Ser Lys Gln Thr Arg His Asn Pro Asp Arg Gln 195 200 205

Tyr Leu Ile Lys Ala Trp Glu Leu Met Tyr Leu Cys Ala Ser Ser Met 210 215 220

Pro Pro Ser Lys Asp Ile Gly Gly Tyr Leu Ser Glu Tyr Ile His Asn 225 235 240

Val Ala His Asp Ala Thr Ile Glu Pro Asp Ala Gln Val Leu Ala Val 245 250 255

Asn Thr Leu Lys Ala Leu Lys Arg Ser Ile Lys Ala Gly Pro Arg His 260 265 270

Thr Thr Pro Gly Arg Glu Glu Ile Glu Ala Leu Leu Thr Gly Arg Lys 275 280 285

Leu Thr Thr Ile Val Phe Phe Leu Asp Glu Thr Phe Glu Glu Ile Ser 290 295 300

Tyr Asp Met Ala Thr Thr Val Ser Asp Ala Val Glu Leu Ala Gly Thr 305 310 315 320

Ile Lys Leu Ser Ala Phe Ser Ser Phe Ser Leu Phe Glu Cys Arg Lys 325 330 335

Val Val Ser Ser Ser Lys Ser Ser Asp Pro Gly Asn Glu Glu Tyr Ile

340 345 350

Gly Leu Asp Asp Asp Lys Tyr Ile Gly Asp Leu Leu Ala Glu Phe Lys 355 360 365

Ala Ile Lys Asp Arg Asn Lys Gly Glu Ile Leu His Cys Lys Leu Val 370 375 380

Phe Lys Lys Leu Phe Arg Glu Ser Asp Glu Ala Val Thr Asp Leu 385 390 395 400

Met Phe Val Gln Leu Ser Tyr Val Gln Leu Gln His Asp Tyr Leu Leu 405 410 415

Gly Asn Tyr Pro Val Gly Arg Asp Asp Ala Ala Gln Leu Cys Ala Leu
420 425 430

Gln Ile Leu Val Gly Ile Gly Phe Val Asn Ser Pro Glu Ser Cys Ile 435 440 445

Asp Trp Thr Ser Leu Leu Glu Arg Phe Leu Pro Arg Gln Ile Ala Ile 450 455 460

Thr Arg Ala Lys Arg Glu Trp Glu Leu Asp Ile Leu Ala Arg Tyr Arg 465 470 475 480

Ser Met Glu Asn Val Thr Lys Asp Asp Ala Arg Gln Gln Phe Leu Arg 485 490 495

Ile Leu Lys Ala Leu Pro Tyr Gly Asn Ser Val Phe Phe Ser Val Arg 500 505 510

Lys Ile Asp Asp Pro Ile Gly Leu Leu Pro Gly Arg Ile Ile Leu Gly 515 520 525

Ile Asn Lys Arg Gly Val His Phe Phe Arg Pro Val Pro Lys Glu Tyr 530 535 540

Leu His Ser Ala Glu Leu Arg Asp Ile Met Gln Phe Gly Ser Ser Asn 545 550 555 560

Thr Ala Val Phe Phe Lys Met Arg Val Ala Gly Val Leu His Ile Phe 565 570 575

Gln Phe Glu Thr Lys Gln Gly Glu Glu Ile Cys Val Ala Leu Gln Thr 580 585 590

His Ile Asn Asp Val Met Leu Arg Arg Tyr Ser Lys Ala Arg Ser Ala 595 600 605

Ala Asn Cys Leu Val Asn Gly Asp Ile Ser Cys Cys Ser Lys Pro Gln 610 620

Asn Phe Glu Val Tyr Glu Lys Arg Leu Gln Asp Leu Ser Lys Ala Tyr 625 630 635 640

Glu Glu Ser Gln Lys Lys Ile Glu Lys Leu Met Asp Glu Gln Glu

645	650	655

Lys Asn Gln Glu Val Thr Leu Arg Glu Glu Leu Glu Ala Ile His
660 665 670

Asn Gly Leu Glu Leu Glu Arg Arg Lys Leu Leu Glu Val Thr Leu Asp 675 680 685

Arg Asp Lys Leu Arg Ser Leu Cys Asp Glu Lys Gly Thr Pro Ile Gln 690 695 700

Ser Leu Met Ser Glu Leu Arg Gly Met Glu Ala Arg Leu Ala Lys Ser 705 710 715 720

Gly Asn Thr Lys Ser Ser Lys Glu Thr Lys Ser Glu Leu Ala Glu Met 725 730 735

Asn Asn Gln Ile Leu Tyr Lys Ile Gln Lys Glu Leu Glu Val Arg Asn 740 745 750

Lys Glu Leu His Val Ala Val Asp Asn Ser Lys Arg Leu Leu Ser Glu
755 760 765

Asn Lys Ile Leu Glu Gln Asn Leu Asn Ile Glu Lys Lys Lys Glu 770 775 780

Glu Val Glu Ile His Gln Lys Arg Tyr Glu Gln Glu Lys Lys Val Leu 785 790 795 800

Lys Leu Arg Val Ser Glu Leu Glu Asn Lys Leu Glu Val Leu Ala Gln 805 810 815

Asp Leu Asp Ser Ala Glu Ser Thr Ile Glu Ser Lys Asn Ser Asp Met 820 825 830

Leu Leu Gln Asn Asn Leu Lys Glu Leu Glu Glu Leu Arg Glu Met 835 840 845

Lys Glu Asp Ile Asp Arg Lys Asn Glu Gln Thr Ala Ala Ile Leu Lys 850 855 860

Met Gln Gly Ala Gln Leu Ala Glu Leu Glu Ile Leu Tyr Lys Glu Glu 865. 870 875 880

Gln Val Leu Arg Lys Arg Tyr Tyr Asn Thr Ile Glu Asp Met Lys Gly 885 890 895

Lys Ile Arg Val Tyr Cys Arg Ile Arg Pro Leu Asn Glu Lys Glu Ser 900 905 910

Ser Glu Arg Glu Lys Gln Met Leu Thr Thr Val Asp Glu Phe Thr Val 915 920 925

Glu His Ala Trp Lys Asp Asp Lys Arg Lys Gln His Ile Tyr Asp Arg 930 935 940

Val Phe Asp Met Arg Ala Ser Gln Asp Asp Ile Phe Glu Asp Thr Lys

945 950 955 960

Tyr Leu Val Gln Ser Ala Val Asp Gly Tyr Asn Val Cys Ile Phe Ala 965 970 975

Tyr Gly Gln Thr Gly Ser Gly Lys Thr Phe Thr Ile Tyr Gly His Glu 980 985 990

Ser Asn Pro Gly Leu Thr Pro Arg Ala Thr Lys Glu Leu Phe Asn Ile 995 1000 1005

Leu Lys Arg Asp Ser Lys Arg Phe Ser Phe Ser Leu Lys Ala Tyr Met 1010 1015 1020

Val Glu Leu Tyr Gln Asp Thr Leu Val Asp Leu Leu Pro Lys Ser 025 1030 1035 1040

Ala Arg Arg Leu Lys Leu Glu Ile Lys Lys Asp Ser Lys Gly Met Val 1045 1050 1055

Phe Val Glu Asn Val Thr Thr Ile Pro Ile Ser Thr Leu Glu Glu Leu 1060 1065 1070

Arg Met Ile Leu Glu Arg Gly Ser Glu Arg Arg His Val Ser Gly Thr 1075 1080 1085

Asn Met Asn Glu Glu Ser Ser Arg Ser His Leu Ile Leu Ser Val Val 1090 1095 1100

Ile Glu Ser Ile Asp Leu Gln Thr Gln Ser Ala Ala Arg Gly Lys Leu 105 1110 1115 1120

Ser Phe Val Asp Leu Ala Gly Ser Glu Arg Val Lys Lys Ser Gly Ser 1125 1130 1135

Ala Gly Cys Gln Leu Lys Glu Ala Gln Ser Ile Asn Lys Ser Leu Ser 1140 1145 1150

Ala Leu Gly Asp Val Ile Gly Ala Leu Ser Ser Gly Asn Gln His Ile 1155 1160 1165

Pro Tyr Arg Asn His Lys Leu Thr Met Leu Met Ser Asp Ser Leu Gly 1170 1180

Gly Asn Ala Lys Thr Leu Met Phe Val Asn Val Ser Pro Ala Glu Ser 185 1190 1195 1200

Asn Leu Asp Glu Thre Tyr Asn Ser Leu Leu Tyr Ala Ser Arg Val Arg
1205 1210 1215

Thr Ile Val Asn Asp Pro Ser Lys His Ile Ser Ser Lys Glu Met Val 1220 1225 1230

Arg Leu Lys Lys Leu Val Ala Tyr Trp Lys Glu Gln Ala Gly Lys Lys 1245

Gly Glu Glu Glu Asp Leu Val Asp Ile Glu Glu Asp Arg Thr Arg Lys

.1250 1255 1260

Asp Glu Ala Asp Ser

<210> 63 <211> 2105 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(1947) atg aat aca gat aaa atg acc aag atg gat cta acg ggg tcc aat aac Met Asn Thr Asp Lys Met Thr Lys Met Asp Leu Thr Gly Ser Asn Asn gtg ccc att aat cca ccg acc act aag cgt gat ctt aga cag aat gat 96 Val Pro Ile Asn Pro Pro Thr Thr Lys Arg Asp Leu Arg Gln Asn Asp 25 aat aat aac cct aag agt cat aat agt cat aat agc aat ggg atg act 144 Asn Asn Asn Pro Lys Ser His Asn Ser His Asn Ser Asn Gly Met Thr 40 ggt aac agg aac aat aat aaa aat gcc ggc gga gtt gaa act agt 192 Gly Asn Arg Asn Asn Asn Lys Asn Ala Gly Gly Val Glu Thr Ser aaa aaa gcg cgc tca cga ctg gaa aca cat ccc cga gat aat gag aat 240 Lys Lys Ala Arg Ser Arg Leu Glu Thr His Pro Arg Asp Asn Glu Asn 65 aat tac aga cta gct aca agt gcc ggt acg aaa gga ggt gcg cga acc 288 Asn Tyr Arg Leu Ala Thr Ser Ala Gly Thr Lys Gly Gly Ala Arg Thr gtt gac gta cca gtc ata tta agt acc cgg gaa tca caa ggc aca cgt 336 Val Asp Val Pro Val Ile Leu Ser Thr Arg Glu Ser Gln Gly Thr Arg 100 tca gta aat gca aca agt aaa att aga tgc ccg gat tcc act gca att 384 Ser Val Asn Ala Thr Ser Lys Ile Arg Cys Pro Asp Ser Thr Ala Ile 115 tgc gag tgg ttc gcc acg ccc acg gat cct caa aga cca gga gtt tat 432 Cys Glu Trp Phe Ala Thr Pro Thr Asp Pro Gln Arg Pro Gly Val Tyr 130 135 aac cac aag aac ggc gac aaa aac aga gat acc ggg aac att aat 480 Asn His Lys Asn Gly Asp Lys Asn Asn Arg Asp Thr Gly Asn Ile Asn 150

155

acc Thr	gtt Val	agc Ser	agt Ser	cta Leu 165	atg Met	gat Asp	aat Asn	gct Ala	agg Arg 170	ggt Gly	ccg Pro	aac Asn	ccg Pro	cga Arg 175	tct Ser	528
Gly	att Ile	tca Ser	ata Ile 180	ccg Pro	aca Thr	cca Pro	acc Thr	tct Ser 185	aga Arg	caa Gln	tcc Ser	cca Pro	agt Ser 190	gag Glu	aca Thr	576
cct Pro	cca Pro	gat Asp 195	cca Pro	ctg Leu	cag Gln	aat Asn	cct Pro 200	aat Asn	aat Asn	tat Tyr	act Thr	agg Arg 205	tat Tyr	cat His	aat Asn	624
Asp	Lys 210	Asn	Ser	Lys	Asn	Ser 215	Asn	Arg	Asn	Tyr	Asn 220	Lys	Arg	aat Asn	Lys	672
225	Ser	Thr	Thr	Phe	Asn 230	Asn	Ser	Asp	Leu	Pro 235	Gly	His	Asn	aga Arg	Ser 240	720
Ser	Pro	Ala	Ile	Asn 245	Ala	Val	Lys	Ser	Ala 250	Ser	Asn	Arg	Ser	tct Ser 255	Ala	768
lie	GIA	Ser	Arg 260	Asn	Ser	Asp	Leu	Asn 265	Asn	Ala	Ala	Asn	Asp 270	gaa Glu	Arg	816
His	Tyr	A1a 275	Arg	Ser	Gly	Thr	Tyr 280	Gln	Ile	Asn	Ala	Va1 285	Thr	gta Val	Leu	864
Arg	Val 290	Leu	GIA	Arg	Gly	Ala 295	Arg	Arg	Asp	Val	Lys 300	Ser	Ala	tat Tyr	His	912
305 GIA	Thr	Cys	Gly	Thr	Gly 310	Pro	Arg	Met	Lys	Val 315	Ile	Thr	Leu	gct Ala	Val 320	960
Gin	Glu	Asn	Ile	Arg 325	Asn	Arg	Ile	Ile	Leu 330	Glu	Leu	Arg	Thr	tta Leu 335	His	1008
Lys	Thr	Ser	Tyr 340	Gln	Tyr	Ile	Val	Pro 345	Tyr	Tyr	Asp	Gly	11e 350	tat Tyr	Thr	1056
gag Glu	ggc	tca Ser 355	att Ile	ttc Phe	att Ile	cgg Arg	atg Met 360	gtg Val	gaa Glu	ctt Leu	gga Gly	tgg Trp 365	gta Val	acg Thr	aat Asn	1104
atc Ile	atg Met 370	aac Asn	aaa Lys	acg Thr	gcg Ala	acc Thr 375	ata Ile	cgt Arg	gcg Ala	ccg Pro	gtt Val 380	ttg Leu	ggt Gly	acg Thr	atg Met	1152
gca	ttt	cta	gtg	tta	caa	ggt	cgg	att	tac	gtt	cac	aga	aag	ttc	gat	1200

Ala 385	Phe	Leu	Val	Leu	Gln 390	Gly	Arg	Ile	Tyr	Val 395	His	Arg	Lys	Phe	Asp 400	
aaa Lys	tgc Cys	ccg Pro	agc Ser	aag Lys 405	cgt Arg	gat Asp	ata Ile	aaa Lys	cct Pro 410	tca Ser	gat Asp	att Ile	ctg Leu	gta Val 415	aac Asn	1248
aat Asn	gaa Glu	ggt Gly	cga Arg 420	gca Ala	aag Lys	atc Ile	gca Ala	ggt Gly 425	ttc Phe	ggt Gly	gta Val	agc Ser	gga Gly 430	cag Gln	tta Leu	1296
caa Gln	cat His	act Thr 435	ctc Leu	tca Ser	aag Lys	gat Asp	gta Val 440	act Thr	tcg Ser	gtg Val	gag Glu	tct Ser 445	cct Pro	gaa Glu	cgt Arg	1344
cgt Arg	agt Ser 450	ggt Gly	agg Arg	tct Ser	tat Tyr	ggt Gly 455	ttc Phe	gat Asp	cga Arg	gat Asp	att Ile 460	tgg Trp	agt Ser	gat Asp	ggt Gly	1392
ata Ile 465	aca Thr	cgt Arg	gta Val	tca Ser	tgc Cys 470	gca Ala	atc Ile	GJA aaa	aga Arg	ttc Phe 475	cct Pro	tat Tyr	gct Ala	tgt Cys	aat Asn 480	1440
tac Tyr	cca Pro	caa Gln	cag Gln	ctc Leu 485	cca Pro	caa Gln	gca Ala	tca Ser	caa Gln 490	cac His	cag Gln	cta Leu	cag Gln	caa Gln 495	cag Gln	1488
caa Gln	caa Gln	aaa Lys	cga Arg 500	ccg Pro	gcg Ala	tta Leu	caa Gln	cca Pro 505	aag Lys	caa Gln	gaa Glu	caa Gln	ccg Pro 510	gaa Glu	gta Val	1536
gag Glu	aaa Lys	cac His 515	cga Arg	tta Leu	caa Gln	ata Ile	cca Pro 520	cgt Arg	caa Gln	aat Asn	tta Leu	gct Ala 525	gta Val	tat Tyr	aat Asn	1584
agt Ser	aat Asn 530	cac His	gat Asp	ata Ile	tgg Trp	aat Asn 535	aat Asn	cgc Arg	aat Asn	aga Arg	gat Asp 540	aaa Lys	tat Tyr	att Ile	att Ile	1632
agt Ser 545	aac Asn	aat Asn	cct Pro	aat Asn	aat Asn 550	agg Arg	aat Asn	gat Asp	aat Asn	aat Asn 555	aac Asn	act Thr	gta Val	tgc Cys	gat Asp 560	1680
cta Leu	agc Ser	agt Ser	Gly ggc	gag Glu 565	tta Leu	ggt Gly	gaa Glu	agt Ser	cgt Arg 570	gag Glu	gtt Val	gtg Val	cca Pro	gac Asp 575	ggt Gly	1728
atc Ile	ggg Gly	ttg Leu	gag Glu 580	gta Val	ctt Leu	cta Leu	gat Asp	tct Ser 585	atc Ile	gta Val	aaa Lys	gaa Glu	gag Glu 590	gta Val	cga Arg	1776
atg Met	gaa Glu	cca Pro 5 9 5	tca Ser	aca Thr	gtt Val	tcg Ser	aag Lys 600	gaa Glu	ttt Phe	agg Arg	tcg Ser	atc Ile 605	att Ile	tct Ser	gaa Glu	1824
tgt Cys	tta Leu	cga Arg	aac Asn	gat Asp	gca Ala	act Thr	gaa Glu	aga Arg	caa Gln	aca Thr	gct Ala	tca Ser	aac Asn	tta Leu	gta Val	1872

610 615 620 aat cac gaa ttt gta aag aaa tat caa aag tac aat cgt gaa aaa tgg Asn His Glu Phe Val Lys Lys Tyr Gln Lys Tyr Asn Arg Glu Lys Trp 630 635 acc gca gat tta caa agg tgg caa taa aaatcgcctt cacgcctgat 1967 Thr Ala Asp Leu Gln Arg Trp Gln 645 cgctgacgct cgacgcctgc ccccagcctg cagctcgccc agctcgccca ggctcgccca 2027 gcctgcccac cagcctgccc caccgctcca cgcctaaata ataaaaattt ttaaaaaaaa 2087 aaaaaaaaa aaaccgct 2105 <210> 64 <211> 648 <212> PRT <213> Arabidopsis thaliana <400> 64 Met Asn Thr Asp Lys Met Thr Lys Met Asp Leu Thr Gly Ser Asn Asn

Gly Ile Ser Ile Pro Thr Pro Thr Ser Arg Gln Ser Pro Ser Glu Thr

170

Pro Pro Asp Pro Leu Gln Asn Pro Asn Asn Tyr Thr Arg Tyr His Asn 195 200 205

Asp Lys Asn Ser Lys Asn Ser Asn Arg Asn Tyr Asn Lys Arg Asn Lys 210 215 220

Asn Ser Thr Thr Phe Asn Asn Ser Asp Leu Pro Gly His Asn Arg Ser 225 230 235 240

Ser Pro Ala Ile Asn Ala Val Lys Ser Ala Ser Asn Arg Ser Ser Ala 245 250 255

Ile Gly Ser Arg Asn Ser Asp Leu Asn Asn Ala Ala Asn Asp Glu Arg 260 265 270

His Tyr Ala Arg Ser Gly Thr Tyr Gln Ile Asn Ala Val Thr Val Leu 275 280 285

Arg Val Leu Gly Arg Gly Ala Arg Arg Asp Val Lys Ser Ala Tyr His 290 295 300

Gly Thr Cys Gly Thr Gly Pro Arg Met Lys Val Ile Thr Leu Ala Val 305 310 315 320

Gln Glu Asn Ile Arg Asn Arg Ile Ile Leu Glu Leu Arg Thr Leu His 325 330 335

Lys Thr Ser Tyr Gln Tyr Ile Val Pro Tyr Tyr Asp Gly Ile Tyr Thr 340 345 350

Glu Gly Ser Ile Phe Ile Arg Met Val Glu Leu Gly Trp Val Thr Asn 355 360 365

Ile Met Asn Lys Thr Ala Thr Ile Arg Ala Pro Val Leu Gly Thr Met 370 375 380

Ala Phe Leu Val Leu Gln Gly Arg Ile Tyr Val His Arg Lys Phe Asp 385 390 395 400

Lys Cys Pro Ser Lys Arg Asp Ile Lys Pro Ser Asp Ile Leu Val Asn
405
410

Asn Glu Gly Arg Ala Lys Ile Ala Gly Phe Gly Val Ser Gly Gln Leu 420 425 430

Gln His Thr Leu Ser Lys Asp Val Thr Ser Val Glu Ser Pro Glu Arg
435 440 445

Arg Ser Gly Arg Ser Tyr Gly Phe Asp Arg Asp Ile Trp Ser Asp Gly 450 455 460

Ile Thr Arg Val Ser Cys Ala Ile Gly Arg Phe Pro Tyr Ala Cys Asn 465 470 475 480

Tyr Pro Gln Gln Leu Pro Gln Ala Ser Gln His Gln Leu Gln Gln

				485					490					495		
Gln	Gln	Lys	Arg 500	Pro	Ala	Leu	Gln	Pro 505	Lys	Gln	Glu	Gln	Pro 510	Glu	Val	
Glu	Lys	His 515	Arg	Leu	Gln	Ile	Pro 520	Arg	Gln	Asn	Leu	Ala 525	Val	Tyr	Asn	
Ser	Asn 530	His	Asp	Ile	Trp	Asn 535	Asn	Arg	Asn	Arg	Asp 540	Lys	Tyr	Ile	Ile	
Ser 545	Asn	Asn	Pro	Asn	Asn 550	Arg	Asn	Asp	Asn	Asn 555	Asn	Thr	Val	Cys	Asp 560	
Leu	Ser	Ser	Gly	Glu 565	Leu	Gly	Glu	Ser	Arg 570	Glu	Val	Val	Pro	Asp 575	Gly	
Ile	Gly	Leu	Glu 580	Val	Leu	Leu	Asp	Ser 585	Ile	Val	Lys	Glu	Glu 590	Val	Arg	
Met	Glu	Pro 595	Ser	Thr	Val	Ser	Lys 600	Glu	Phe	Arg	Ser	Ile 605	Ile	Ser	Glu	
Суѕ	Leu 610	Arg	Asn	Asp	Ala	Thr 615	Glu	Arg	Gln	Thr	Ala 620	Ser	Asn	Leu	Val	
Asn 625	His.	Glu	Phe	Val	Lys 630	Lys	Tyr	Gln	Lys	Tyr 635	Asn	Arg	Glu	Lys	Trp 640	٠
Thr	Ala	Asp	Leu	Gln 645	Arg	Trp	Gln									
<211 <212)> 65 .> 92 !> DN	O IA	lopsi	s th	nalia	ına										
)> .> CD !> (2		(907	')												
)> 65 agtt		ggcc	gtcg	ıg at	tca	atg Met 1	gaa Glu	gga Gly	tta Leu	gct Ala 5	atc Ile	aga Arg	gca Ala	tct Ser	52
cga Arg 10	ccg Pro	tcg Ser	gtt Val	ttc Phe	tgt Cys 15	tct Ser	att Ile	cca Pro	ggt Gly	ctc Leu 20	ggc Gly	ggc Gly	gat Asp	tcc Ser	cac His 25	100

cga aaa cct cca agt gac ggt ttc ctc aag ctg cct gcg tcg tct att

Arg Lys Pro Pro Ser Asp Gly Phe Leu Lys Leu Pro Ala Ser Ser Ile

ccg gcg gac agc cga aaa tta gta gcg aat tct act tcc ttt cat cca

35

148

196

Pro	Ala	Asp	Ser 45	Arg	Lys	Leu	Val	Ala 50	Asn	Ser	Thr	Ser	Phe 55		Pro	
atc Ile	tca Ser	gcc Ala 60	gtt Val	aac Asn	gtc Val	tct Ser	gct Ala 65	caa Gln	gct Ala	tcc Ser	ctc Leu	acc Thr 70	gct Ala	gat Asp	ttt Phe	244
ccc Pro	gcc Ala 75	ctt Leu	tca Ser	gaa Glu	act Thr	ata Ile 80	ctg Leu	aaa Lys	gag Glu	gga Gly	aga Arg 85	aat Asn	aac Asn	gga Gly	aaa Lys	292
gag Glu 90	aaa Lys	gca Ala	gag Glu	aac Asn	atc Ile 95	gtg Val	tgg Trp	cac His	gag Glu	agt Ser 100	tcg Ser	ata Ile	tgc Cys	aga Arg	tgc Cys 105	340
gac Asp	aga Arg	caa Gln	caa Gln	ctt Leu 110	ctt Leu	caa Gln	caa Gln	aag Lys	ggt Gly 115	tgt Cys	gtc Val	gtt Val	tgg Trp	atc Ile 120	act Thr	388
ggt Gly	ctc Leu	agt Ser	ggt Gly 125	tca Ser	ggg	aaa Lys	agc Ser	act Thr 130	gtt Val	gct Ala	tgt Cys	gca Ala	cta Leu 135	agt Ser	aaa Lys	436
gca Ala	ttg Leu	ttt Phe 140	gaa Glu	aga Arg	ggc Gly	aaa Lys	ctt Leu 145	act Thr	tac Tyr	aca Thr	ctc Leu	gac Asp 150	ggc Gly	gac Asp	aat Asn	484
gtc Val	cgt Arg 155	cac His	ggc Gly	ctt Leu	aac Asn	cgt Arg 160	gac Asp	ctc Leu	act Thr	ttc Phe	aaa Lys 165	gca Ala	gag Glu	cac His	cgc Arg	532
acc Thr 170	gaa Glu	aac Asn	att Ile	aga Arg	aga Arg 175	att Ile	ggt Gly	gag Glu	gtg Val	gct Ala 180	aag Lys	ttg Leu	ttt Phe	gct Ala	gac Asp 185	580
gtc Val	gga Gly	gtc Val	att Ile	tgt Cys 190	ata Ile	gca Ala	agt Ser	ttg Leu	att Ile 195	tct Ser	ccg Pro	tac Tyr	cgg Arg	aga Arg 200	gac Asp	628
aga Arg	gac Asp	gcg Ala	tgc Cys 205	cgg Arg	tcc Ser	ttg Leu	tta Leu	cct Pro 210	gac Asp	ggc	gat As p	ttc Phe	gtc Val 215	gag Glu	gtc Val	676
ttc Phe	atg Met	gac Asp 220	gtt Val	cct Pro	ctt Leu	cat His	gtg Val 225	tgc Cys	gag Glu	tcg Ser	aga Arg	gat Asp 230	cca Pro	aag Lys	Gly aaa	724
ttg Leu	tac Tyr 235	aag Lys	ctt Leu	gca Ala	cgt Arg	gca Ala 240	ggc Gly	aaa Lys	atc Ile	aaa Lys	ggc Gly 245	ttc Phe	act Thr	gga Gly	atc Ile	772
gac Asp 250	gac Asp	cct Pro	tac Tyr	gag Glu	gca Ala 255	cca Pro	gtg Val	aat Asn	tgc Cys	gag Glu 260	gta Val	gtg Val	ctg Leu	aaa Lys	cac His 265	820
aca Thr	gga Gly	gac Asp	gac Asp	gag Glu	tcg Ser	tgt Cys	tcg Ser	cca Pro	cgt Arg	cag Gln	atg Met	gct Ala	gag Glu	aac Asn	atc Ile	868

270 275 280

atc tct tac ctg caa aac aaa ggt tat ctt gag ggc taa gtcaaagtcg 917

Ile Ser Tyr Leu Gln Asn Lys Gly Tyr Leu Glu Gly
285 290

gaa 920

<210> 66

<211> 293

<212> PRT

<213> Arabidopsis thaliana

<400> 66

Met Glu Gly Leu Ala Ile Arg Ala Ser Arg Pro Ser Val Phe Cys Ser
1. 5 10 15

Ile Pro Gly Leu Gly Gly Asp Ser His Arg Lys Pro Pro Ser Asp Gly
20 25 30

Phe Leu Lys Leu Pro Ala Ser Ser Ile Pro Ala Asp Ser Arg Lys Leu 35 40 45

Val Ala Asn Ser Thr Ser Phe His Pro Ile Ser Ala Val Asn Val Ser 50 55 60

Ala Gln Ala Ser Leu Thr Ala Asp Phe Pro Ala Leu Ser Glu Thr Ile 65 70 75 80

Leu Lys Glu Gly Arg Asn Asn Gly Lys Glu Lys Ala Glu Asn Ile Val 85 90 95

Trp His Glu Ser Ser Ile Cys Arg Cys Asp Arg Gln Gln Leu Leu Gln
100 105 110

Gln Lys Gly Cys Val Val Trp Ile Thr Gly Leu Ser Gly Ser Gly Lys 115 120 125

Ser Thr Val Ala Cys Ala Leu Ser Lys Ala Leu Phe Glu Arg Gly Lys 130 135 140

Leu Thr Tyr Thr Leu Asp Gly Asp Asn Val Arg His Gly Leu Asn Arg 145 150 155 160

Asp Leu Thr Phe Lys Ala Glu His Arg Thr Glu Asn Ile Arg Arg Ile 165 170 175

Gly Glu Val Ala Lys Leu Phe Ala Asp Val Gly Val Ile Cys Ile Ala 180 185 190

Ser Leu Ile Ser Pro Tyr Arg Arg Asp Arg Asp Ala Cys Arg Ser Leu 195 200 205

Leu Pro Asp Gly Asp Phe Val Glu Val Phe Met Asp Val Pro Leu His 210 215 220

Val Cys Glu Ser Arg Asp Pro Lys Gly Leu Tyr Lys Leu Ala Arg Ala 235 Gly Lys Ile Lys Gly Phe Thr Gly Ile Asp Asp Pro Tyr Glu Ala Pro 250 Val Asn Cys Glu Val Val Leu Lys His Thr Gly Asp Asp Glu Ser Cys Ser Pro Arg Gln Met Ala Glu Asn Ile Ile Ser Tyr Leu Gln Asn Lys 275 280 Gly Tyr Leu Glu Gly 290 <210> 67 <211> 1257 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (13)..(1245) <400> 67 aattactcaa to atg ggg att tgc ttg agt gct cag gtc aaa gct gag agc 51 Met Gly Ile Cys Leu Ser Ala Gln Val Lys Ala Glu Ser tca gga gcg agt acg aag tat gac gcc aaa gat ata gga agt ctt ggg 99 Ser Gly Ala Ser Thr Lys Tyr Asp Ala Lys Asp Ile Gly Ser Leu Gly 20 age aag get teg tet gtg tet gta aga eea age eet ega aet gag ggt 147 Ser Lys Ala Ser Ser Val Ser Val Arg Pro Ser Pro Arg Thr Glu Gly gag atc tta cag tct cca aat ctc aag agt ttt agc ttt gct gag ctt 195 Glu Ile Leu Gln Ser Pro Asn Leu Lys Ser Phe Ser Phe Ala Glu Leu 50 aaa tca gca acc agg aat ttt aga cca gac agt gtg ctt ggt gaa ggt 243 Lys Ser Ala Thr Arg Asn Phe Arg Pro Asp Ser Val Leu Gly Glu Gly gga ttc ggt tgt gtt ttc aaa gga tgg att gat gag aag tct ctc act 291 Gly Phe Gly Cys Val Phe Lys Gly Trp Ile Asp Glu Lys Ser Leu Thr 80 gcc tca aga cca ggc acg ggt ttg gtt att gcc gtc aaa aag ctt aac Ala Ser Arg Pro Gly Thr Gly Leu Val Ile Ala Val Lys Lys Leu Asn 95 100 caa gat ggt tgg caa ggt cac cag gag tgg ctg gct gaa gtg aat tac Gln Asp Gly Trp Gln Gly His Gln Glu Trp Leu Ala Glu Val Asn Tyr

110					115					120					125	
ctt Leu	ggt Gly	cag Gln	ttt Phe	tct Ser 130	cac His	cgt Arg	cac His	ctt Leu	gtg Val 135	aag Lys	ctg Leu	att Ile	ggt Gly	tat Tyr 140	tgc Cys	435
cta Leu	gag Glu	gat Asp	gag Glu 145	cac His	cgt Arg	ctt Leu	ctt Leu	gtt Val 150	tac Tyr	gag Glu	ttc Phe	atg Met	cct Pro 155	cgg Arg	ggt Gly	483
agc Ser	ttg Leu	gag Glu 160	aat Asn	cat His	ctt Leu	ttc Phe	agg Arg 165	aga Arg	ggt Gly	ttg Leu	tac Tyr	ttc Phe 170	caa Gln	ccg Pro	tta Leu	531
tct Ser	tgg Trp 175	aaa Lys	ctt Leu	cgg Arg	ttg Leu	aaa Lys 180	gtť Val	gct Ala	ctt Leu	ggt Gly	gct Ala 185	gca Ala	aag Lys	gga Gly	ctt Leu	579
gct Ala 190	ttt Phe	ctt Leu	cac His	agt Ser	tcc Ser 195	gag Glu	aca Thr	aga Arg	gtg Val	ata Ile 200	tac Tyr	cga Arg	gat Asp	ttc Phe	aag Lys 205	627
act Thr	tct Ser	aat Asn	atc Ile	ctt Leu 210	ctt Leu	gac Asp	tcg Ser	gag Glu	tac Tyr 215	aac Asn	gca Ala	aag Lys	ctt Leu	tct Ser 220	gat Asp	675
ttt Phe	GJA aaa	ttg Leu	gct Ala 225	aag Lys	gat Asp	ggg ggg	cca Pro	ata Ile 230	ggt Gly	gat Asp	aaa Lys	agt Ser	cat His 235	gtc Val	tct Ser	723
aca Thr	cga Arg	gtc Val 240	atg Met	ggt Gly	aca Thr	cac His	gga Gly 245	tat Tyr	gca Ala	gct Ala	cct Pro	gaa Glu 250	tac Tyr	ctt Leu	gca Ala	771
acc Thr	ggt Gly 255	cat His	cta Leu	aca Thr	aca Thr	aag Lys 260	agt Ser	gat Asp	gtc Val	tat Tyr	agc Ser 265	ttc Phe	ggg Gly	gtt Val	gtc Val	819
ctt Leu 270	ctg Leu	gag Glu	ctg Leu	ttg Leu	tct Ser 275	ggt Gly	cgt Arg	cga Arg	gca Ala	gtg Val 280	gac Asp	aag Lys	aac Asn	cgc Arg	cca Pro 285	867
tct Ser	gga Gly	gag Glu	agg Arg	aac Asn 290	ctt Leu	gtg Val	gag Glu	tgg Trp	gct Ala 295	aaa Lys	cca Pro	tac Tyr	ctc Leu	gta Val 300	aac Asn	915
aaa Lys	aga Arg	aag Lys	ata Ile 305	ttc Phe	cga Arg	gtc Val	att Ile	gat Asp 310	aat Asn	cgt Arg	ctt Leu	cag Gln	gac Asp 315	cag Gln	tac Tyr	963
tct Ser	atg Met	gaa Glu 320	gaa Glu	gca Ala	tgt Cys	aaa Lys	gtg Val 325	gct Ala	act Thr	ctg Leu	tct Ser	ctg Leu 330	aga Arg	tgt Cys	ctc Leu	1011
acc Thr	aca Thr 335	gag Glu	att Ile	aag Lys	ctg Leu	aga Arg 340	cca Pro	aac Asn	atg Met	agc Ser	gag Glu 345	gtt Val	gtt Val	tcg Ser	cac His	1059

ctc gaa cac Leu Glu His 350	att cag Ile Gln	tct tta Ser Leu 355	aat gc Asn Ala	gct Ala	ata Ile 360	gga Gly	gga Gly	aat Asn	atg Met	gat Asp 365	1107
aaa aca gat Lys Thr Asp	aga aga Arg Arg 370	atg cgt Met Arg	agg agg	a agt g Ser 375	gac Asp	agt Ser	gtt Val	gtc Val	agc Ser 380	aaa Lys	1155
aaa gtg aat Lys Val Asn	gca ggt Ala Gly 385	ttt gct Phe Ala	cga cad Arg Gli 390	1 Thr	gct Ala	gtt Val	ggc Gly	agt Ser 395	aca Thr	gtt Val	1203
gtt gct tat Val Ala Tyr 400	cct cgc Pro Arg	cca tca Pro Ser	gcc tcc Ala Ser 405	g cca Pro	ctg Leu	tat Tyr	gtt Val 410	tga			1245
atagggttaa	ac								-		1257
<210> 68 <211> 410 <212> PRT <213> Arabi	dopsis th	naliana									
<400> 68 Met Gly Ile 1	Cys Leu 5	Ser Ala	Gln Va	Lys 10	Ala	Glu	Ser	Ser	Gly 15	Ala	
Ser Thr Lys	Tyr Asp	Ala Lys	Asp Ile		Ser	Leu	Gly	Ser 30	Lys	Ala	
Ser Ser Val	Ser Val	Arg Pro	Ser Pro	Arg	Thr	Glu	Gly 45	Glu	Ile	Leu	
Gln Ser Pro 50	Asn Leu	Lys Ser 55	Phe Ser	Phe	Ala	Glu 60	Leu	Lys	Ser	Ala	
Thr Arg Asn 65	Phe Arg	Pro Asp 70	Ser Val	. Leu	Gly 75	Glu	Gly	Gly	Phe	Gly 80	
Cys Val Phe	Lys Gly 85	Trp Ile	Asp Glu	Lys 90	Ser	Leu	Thr	Ala	Ser 95	Arg	
Pro Gly Thr	Gly Leu 100	Val Ile	Ala Val		Lys	Leu	Asn	Gln 110	Asp	Gly	
Trp Gln Gly 115	His Gln	Glu Trp	Leu Ala 120	Glu	Val	Asn	Tyr 125	Leu	Gly	Gln	
Phe Ser His 130	Arg His	Leu Val 135	Lys Let	ılle	Gly	туr 140	Cys	Leu	Glu	Asp	
Glu His Arg 145	Leu Leu	Val Tyr 150	Glu Phe	Met	Pro 155	Arg	Gly	Ser	Leu	Glu 160	
Asn His Leu	Phe Arg	Arg Gly	Leu Ty	Phe	Gln	Pro	Leu	Ser	Trp	Lys	

165

170

175

Leu Arg Leu Lys Val Ala Leu Gly Ala Ala Lys Gly Leu Ala Phe Leu 180 185 His Ser Ser Glu Thr Arg Val Ile Tyr Arg Asp Phe Lys Thr Ser Asn Ile Leu Leu Asp Ser Glu Tyr Asn Ala Lys Leu Ser Asp Phe Gly Leu Ala Lys Asp Gly Pro Ile Gly Asp Lys Ser His Val Ser Thr Arg Val Met Gly Thr His Gly Tyr Ala Ala Pro Glu Tyr Leu Ala Thr Gly His 245 250 Leu Thr Thr Lys Ser Asp Val Tyr Ser Phe Gly Val Val Leu Leu Glu Leu Leu Ser Gly Arg Arg Ala Val Asp Lys Asn Arg Pro Ser Gly Glu 280 Arg Asn Leu Val Glu Trp Ala Lys Pro Tyr Leu Val Asn Lys Arg Lys 295 Ile Phe Arg Val Ile Asp Asn Arg Leu Gln Asp Gln Tyr Ser Met Glu 315 Glu Ala Cys Lys Val Ala Thr Leu Ser Leu Arg Cys Leu Thr Thr Glu 330 Ile Lys Leu Arg Pro Asn Met Ser Glu Val Val Ser His Leu Glu His 340 345 Ile Gln Ser Leu Asn Ala Ala Ile Gly Gly Asn Met Asp Lys Thr Asp Arg Arg Met Arg Arg Arg Ser Asp Ser Val Val Ser Lys Lys Val Asn 375

Ala Gly Phe Ala Arg Gln Thr Ala Val Gly Ser Thr Val Val Ala Tyr 390 395

Pro Arg Pro Ser Ala Ser Pro Leu Tyr Val 405

<210> 69

<211> 3240

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (69)..(236)

```
<220>
<221> CDS
<222> (420)..(506)
<220>
<221> CDS
<222> (581)..(822)
<220>
<221> CDS
<222> (907)..(1126)
<220>
<221> CDS
<222> (1276)..(1355)
<220>
<221> CDS
<222> (1442)..(1526)
<220>
<221> CDS
<222> (1684)..(1815)
<220>
<221> CDS
<222> (1911)..(2024)
<220>
<221> CDS
<222> (2196)..(2243)
<220>
<221> CDS
<222> (2734)..(2818)
<220>
<221> CDS
<222> (2928)..(2984)
<220>
<221> CDS
<222> (3079)..(3191)
<400> 69
ctttcgtgtg aacttccgtc catatcctta gctctttgtt tggtatttac atttcataca 60
gacgcaaa atg cta gag aaa aaa tta gct gct gca gaa gtc tct gag gaa
         Met Leu Glu Lys Lys Leu Ala Ala Glu Val Ser Glu Glu
gag caa aat aac ttg cta aag gat ttg gag atg aag gaa act gaa tat
Glu Gln Asn Asn Leu Leu Lys Asp Leu Glu Met Lys Glu Thr Glu Tyr
                     20
atg cgc cgt cag agg cat aaa atg gga gct gat gac ttt gag cca ttg
                                                                   206
```

Met	Arg	Arg	Gln	Arg 35	His	Lys	Met	Gly	Ala 40	Asp	Asp	Phe	Glu	Pro 45	Leu	
aca Thr	atg Met	att Ile	ggg Gly 50	aag Lys	ggt Gly	gca Ala	ttc Phe	gga Gly 55	gag Glu	gtaa	acato	ctc	tttt	ataga	at	256
cata	agtci	tgt 1	tact	ctgt	tt to	ctcag	gcct	c tca	attg	gcat	gcat	tcat	ctt	gaaa	tgttct	316
ctg	tgato	gca 1	tcct	tctt	ga aa	aggto	ette	t tag	ggcca	attt	ttti	ttac	cac	agcta	aatttt	376
tcaa	aaaa	agt a	atgg	catgo	ct aa	attti	tete	e tti	tctc	ttg	cag			atc Ile		431
agg Arg	gag Glu	aag Lys	gga Gly	aca Thr 65	ggc Gly	aat Asn	gtc Val	tat Tyr	gca Ala 70	atg Met	aag Lys	aag Lys	ctt Leu	aag Lys 75	aaa Lys	479
tct Ser	gag Glu	atg Met	ctt Leu 80	cgc Arg	aga Arg	ggc Gly	cag Gln	gta Val 85	ttta	aatt	icc t	tca	agtg	gc		526
ttt	gttt	cga d	catti	gtt	a gt	tggt	tgat	gtg	gaato	gtgg	aato	etgai	ttt 1	tcag	gtg Val	583
gaa Glu	cat His	gta Val	aaa Lys 90	gca Ala	gag Glu	aga Arg	aat Asn	tta Leu 95	ctt Leu	gca Ala	gaa Glu	gtt Val	gat Asp 100	agc Ser	aat Asn	631
tgc Cys	att Ile	gtc Val 105	aaa Lys	ctg Leu	tat Tyr	tgt Cys	tct Ser 110	ttc Phe	caa Gln	gat Asp	gaa Glu	gag Glu 115	tac Tyr	ttg Leu	tat Tyr	679
ctc Leu	ata Ile 120	atg Met	gag Glu	tat Tyr	tta Leu	cct Pro 125	ggt Gly	G1A aaa	gat Asp	atg Met	atg Met 130	act Thr	tta Leu	ctt Leu	atg Met	727
agg Arg 135	aaa Lys	gac Asp	acc Thr	ctc Leu	act Thr 140	gaa Glu	gac Asp	gag Glu	gcc Ala	agg Arg 145	ttt Phe	tat Tyr	att Ile	Gly ggg	gaa Glu 150	775
act Thr	gtc Val	ctg Leu	gct Ala	att Ile 155	gag Glu	tcc Ser	att Ile	cat His	aag Lys 160	cac His	aac Asn	tac Tyr	att Ile	cac His 165	ag Ar	822
gtca	agtga	aag o	agaa	atata	ıt ga	ttta	gtto	tag	getec	cat	tgtt	att	tg t	tcta	aacgt	882
cttt	tttt	cet o	ccaat	gtga	ıt ac	ag a	gat Asp S	ato Ile	aaç E Lys	r cct Pro 170	Asp	aat Asr	cto Leu	g cta 1 Leu	ctt Leu 175	934
gac Asp	aaa Lys	gac Asp	ggc Gly	cac His 180	atg Met	aaa Lys	ttg Leu	tca Ser	gat Asp 185	ttt Phe	gga Gly	tta Leu	tgt Cys	aaa Lys 190	cca Pro	982
tta	gac	tgt	agt	aat	ctt	caa	gag	222	gac	ttt	aca	att	ac a	242	220	102

Leu As	sp Cy:	s Ser 195	Asn	Leu	Gln	Glu	Lys 200	Asp	Phe	Thr	Val	Ala 205		Asn	
gtt ag Val Se	gt ggg er Gly 210	/ Ala	tta Leu	caa Gln	agt Ser	gat Asp 215	ggt Gly	cgc Arg	cct Pro	gtg Val	gcg Ala 220	aca Thr	aga Arg	cgc Arg	1078
acc ca Thr Gl	n Glr	a gag 1 Glu	caa Gln	tta Leu	cta Leu 230	aac Asn	tgg Trp	cag Gln	aga Arg	aat Asn 235	Arg	agg Arg	atg Met	ctt Leu	1126
gtaagt	ttca	ctta	ttcc	tc a	tctti	ttcti	cca	agaga	atgt	gga	gtagi	tcc	acagt	tatcca	1186
gtatat	ttcg	ttat	tgaa	ag ca	aaati	tctct	cca	attga	atat	aga	catc	tat	gttag	gatatg	1246
acttac	tagg	ttaa	ggte	at ta	actti	tcag	gct Ala 240	tat Tyr	tcc Ser	aca Thr	gtt Val	ggc Gly 245	Thr	cct Pro	1299
gac ta Asp Ty	t att r Ile 250	Ala	cca Pro	gaa Glu	gtt Val	ctg Leu 255	ttg Leu	aaa Lys	aaa Lys	gga Gly	tat Tyr 260	gga Gly	atg Met	gaa Glu	1347
tgt ga Cys As 26	p Tr	gtag	gtgaa	ag co	caaco	ctatt	cct	att	gtg	gtci	ttga	att	tcttt	ggtgt	1405
aaataa	ataa	tatg	ggtga	aa ta	aatct	tgaç	g att	tag				eu G		c att a Ile	1460
atg ta Met Ty	t gaa r Glu 275	Met	ctt Leu	gtg Val	Gly aaa	ttt Phe 280	ccg Pro	ccc Pro	ttt Phe	tat Tyr	tca Ser 285	gat Asp	gac Asp	cca Pro	1508
atg ac Met Th 29	r Thr	tgt Cys	agg Arg	aag Lys	gtaa	attaa	itc c	atto	ctt	it to	gaato	ettt	c		1556
atttta	atat	tgaa	ggcag	ga ct	ggcg	gattt	caa	igtct	tac	attt	aatt	tt a	agtct	ttttg	1616
tatctc	tttg	gtaa	ttcta	aa to	ıtgga	aact	tac	ctct	tct	cgat	tcat	ta 1	tcttc	cccct	1676
tatgca	g ata Ile 295	Val	aat Asn	tgg Trp	aga Arg	aat Asn 300	tac Tyr	ttg Leu	aaa Lys	ttc Phe	cca Pro 305	gat Asp	gag Glu	gtt Val	1725
aga ct Arg Le 31	u Ser	cca Pro	gaa Glu	gcc Ala	aag Lys 315	gat Asp	ctt Leu	att Ile	tgt Cys	agg Arg 320	ctt Leu	tta Leu	tgc Cys	aat Asn	1773
gtt ga Val Gl 325	a caa u Gln	agg Arg	ctt Leu	gga Gly 330	aca Thr	aaa Lys	gga Gly	gca Ala	gat Asp 335	gaa Glu	att Ile	aag Lys			1815
gtgttg	tatg	cgtt	gttca	a ct	ttga	ıgatt	caa	agtt	ccc	ttat	gtaa	ga t	catt	gtgtg	1875

caattettaa aaacgatttg actggtttet tteag ggt eac eet tgg ttt aga Gly His Pro Trp Phe Arg 340	1928
ggc aca gaa tgg gga aaa ttg tat caa atg aaa gct gcc ttt att ccc Gly Thr Glu Trp Gly Lys Leu Tyr Gln Met Lys Ala Ala Phe Ile Pro 345 350 360	1976
caa gtt aat gat gag ttg gac acc caa aat ttt gag aaa ttt gaa gag Gln Val Asn Asp Glu Leu Asp Thr Gln Asn Phe Glu Lys Phe Glu Glu 365 370 375	2024
gtaacacact gatactatca gctaatgatg tctatagtga aatattggtg caatatatgc	2084
caccaaatga tgtggcatga tgtatatact gaaatattgg tatcacagat gatttttatg	2144
ctcctgataa ggaaaataat gtatactctt ctttgattcc ttctggaaca g act gac Thr Asp	2201
aag caa gtt cca aag tca gcc aag tca ggt cca tgg aga aag Lys Gln Val Pro Lys Ser Ala Lys Ser Gly Pro Trp Arg Lys 380 385 390	2243
gtacagcata agcactgact ttttggcatt atgtaccatc aagcttttt tttttatcta	2303
atagaagagt gatcatactt caaaatttat ctataagtgg gttccttgag atatgttgtt	2363
ctttgatgat actacagacg tagcttaaaa tattacatgc aacaaagagc tcagaatgat	2423
gaaattggct cagtttctgt cacaggcgtt tctatctttg tactatattc acaaaaacgt	2483
gattcactct tttaggttca aattttctta tggtaattta gaatttggag ctgattggga	2543
tgctactaac agaattatgt tgttaatctg ccagttctgc atgttgacgt gtgttagatg	2603
aatcacttat ctttttggac caacatgata taacttagaa cctgttctgt caatagaatt	2663
tatgtcatga accaaaagga ttcttgtgaa tttcataaca tgacgctggc tttcttttt	2723
tcttctccag atg ctc tca tcc aaa gac att aac ttt gtt ggt tat act Met Leu Ser Ser Lys Asp Ile Asn Phe Val Gly Tyr Thr 395 400 405	2772
tac aag aac gta gaa atc gta aat gat gac caa ata cca ggg ata g Tyr Lys Asn Val Glu Ile Val Asn Asp Asp Gln Ile Pro Gly Ile A 410 415 420	2818
gtaattcact taacccccct tccgttgctg aggaagaagc aacaatacta gattaccttg	2878
tgattatcat cgcatgtttg ctgcatttgt aatttgtttt attgtgcag ct gag ttg la Glu Leu G	2935
aag aag aag agc aat aag cca aaa agg ccg tct att aaa tct ctc ttt g : Lys Lys Lys Ser Asn Lys Pro Lys Arg Pro Ser Ile Lys Ser Leu Phe G 425 430 435	2984 40

gtaaatcatc tgtttgtatg ctatttgtaa aatcaagatg attacgatcc atgtttgatt 3044 ctctctaacc aaactgtgga aactaaatta acag aa gac gaa aca tct ggt ggg lu Asp Glu Thr Ser Gly Gly aca aca acc cac caa gga agc ttt ttg aat cta cta ccg acg cag att 3146 Thr Thr His Gln Gly Ser Phe Leu Asn Leu Leu Pro Thr Gln Ile 450 455 gaa gat cca gag aaa gaa ggt agt aag tcg agc tca tcc ggg tga 3191 Glu Asp Pro Glu Lys Glu Gly Ser Lys Ser Ser Ser Gly atttcatttg acacattgca cagcctgaac cagaagactc ttgttatat 3240 <210> 70 <211> 476 <212> PRT <213> Arabidopsis thaliana <400> 70 Met Leu Glu Lys Lys Leu Ala Ala Ala Glu Val Ser Glu Glu Glu Gln Asn Asn Leu Leu Lys Asp Leu Glu Met Lys Glu Thr Glu Tyr Met Arg Arg Gln Arg His Lys Met Gly Ala Asp Asp Phe Glu Pro Leu Thr Met 40 Ile Gly Lys Gly Ala Phe Gly Glu Val Arg Ile Cys Arg Glu Lys Gly Thr Gly Asn Val Tyr Ala Met Lys Lys Leu Lys Lys Ser Glu Met Leu Arg Arg Gly Gln Val Val Glu His Val Lys Ala Glu Arg Asn Leu Leu Ala Glu Val Asp Ser Asn Cys Ile Val Lys Leu Tyr Cys Ser Phe Gln Asp Glu Glu Tyr Leu Tyr Leu Ile Met Glu Tyr Leu Pro Gly Gly Asp 115 120 Met Met Thr Leu Leu Met Arg Lys Asp Thr Leu Thr Glu Asp Glu Ala Arg Phe Tyr Ile Gly Glu Thr Val Leu Ala Ile Glu Ser Ile His Lys 145 155 His Asn Tyr Ile His Arg Asp Ile Lys Pro Asp Asn Leu Leu Leu Asp 165 170 Lys Asp Gly His Met Lys Leu Ser Asp Phe Gly Leu Cys Lys Pro Leu

180 185 190 Asp Cys Ser Asn Leu Gln Glu Lys Asp Phe Thr Val Ala Arg Asn Val 200 Ser Gly Ala Leu Gln Ser Asp Gly Arg Pro Val Ala Thr Arg Arg Thr Gln Gln Glu Gln Leu Leu Asn Trp Gln Arg Asn Arg Arg Met Leu Ala 235 Tyr Ser Thr Val Gly Thr Pro Asp Tyr Ile Ala Pro Glu Val Leu Leu 250 Lys Lys Gly Tyr Gly Met Glu Cys Asp Trp Trp Ser Leu Gly Ala Ile Met Tyr Glu Met Leu Val Gly Phe Pro Pro Phe Tyr Ser Asp Pro 280 Met Thr Thr Cys Arg Lys Ile Val Asn Trp Arg Asn Tyr Leu Lys Phe 290 295 Pro Asp Glu Val Arg Leu Ser Pro Glu Ala Lys Asp Leu Ile Cys Arg Leu Cys Asn Val Glu Gln Arg Leu Gly Thr Lys Gly Ala Asp Glu 325 Ile Lys Gly His Pro Trp Phe Arg Gly Thr Glu Trp Gly Lys Leu Tyr Gln Met Lys Ala Ala Phe Ile Pro Gln Val Asn Asp Glu Leu Asp Thr 355 360 Gln Asn Phe Glu Lys Phe Glu Glu Thr Asp Lys Gln Val Pro Lys Ser Ala Lys Ser Gly Pro Trp Arg Lys Met Leu Ser Ser Lys Asp Ile Asn 385 390 395 Phe Val Gly Tyr Thr Tyr Lys Asn Val Glu Ile Val Asn Asp Asp Gln Ile Pro Gly Ile Ala Glu Leu Lys Lys Lys Ser Asn Lys Pro Lys Arg 420 Pro Ser Ile Lys Ser Leu Phe Glu Asp Glu Thr Ser Gly Gly Thr Thr 440 Thr His Gln Gly Ser Phe Leu Asn Leu Leu Pro Thr Gln Ile Glu Asp 450 455 Pro Glu Lys Glu Gly Ser Lys Ser Ser Ser Ser Gly 465 470

<210> 71

```
<211> 979
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (28)..(843)
acgaaaacca ccgttagcta taggctg atg ata tgt agg atc cga ctc ggg tcg 54
                              Met Ile Cys Arg Ile Arg Leu Gly Ser
atg aac ggt gac gaa tgc gcg aac gtt gcg acg tgc tgg gtt act tct
                                                                   102
Met Asn Gly Asp Glu Cys Ala Asn Val Ala Thr Cys Trp Val Thr Ser
                                         20
cta gct tgt gta gtt gac gcc gga cga tat acg aaa aag gta tcc cac
Leu Ala Cys Val Val Asp Ala Gly Arg Tyr Thr Lys Lys Val Ser His
                                     35
gac cgg cga acg agg tgg ccc gcc tgg aaa gca cga cgg gat cgt cat
                                                                   198
Asp Arg Arg Thr Arg Trp Pro Ala Trp Lys Ala Arg Arg Asp Arg His
             45
                                 50
agt gtc cga agt gat agc ggc cta gac agt cat gca ctt gaa ggt gga
                                                                   246
Ser Val Arg Ser Asp Ser Gly Leu Asp Ser His Ala Leu Glu Gly Gly
                             65
aaa cga cgt gag tca tgc gta tca cta gct cac gaa cga gat tat gca
                                                                   294
Lys Arg Arg Glu Ser Cys Val Ser Leu Ala His Glu Arg Asp Tyr Ala
     75
cta acg gca cgg tgg gat cgt agc att gca atg acg gat gac acg aac
                                                                   342
Leu Thr Ala Arg Trp Asp Arg Ser Ile Ala Met Thr Asp Asp Thr Asn
 90
                     95
cca caa acc caa cgt aaa ttt gag aaa cat act cgg gat gta gaa gct
                                                                   390
Pro Gln Thr Gln Arg Lys Phe Glu Lys His Thr Arg Asp Val Glu Ala
gtt cga ttt tct cca cga gat cgt cta att gta tct gcg ggt gca gat
                                                                   438
Val Arg Phe Ser Pro Arg Asp Arg Leu Ile Val Ser Ala Gly Ala Asp
            125
ggg gta att gca gta tgt ccg gtt gct ggt gaa tgt gat gat gac gat
                                                                   486
Gly Val Ile Ala Val Cys Pro Val Ala Gly Glu Cys Asp Asp Asp
        140
gcc cgt gat ggt cat gaa gat tgt gtt agt agt att tgc ttt tca cca
                                                                   534
Ala Arg Asp Gly His Glu Asp Cys Val Ser Ser Ile Cys Phe Ser Pro
    155
                        160
tca cta gaa cac ccg atc ctc ttt tct ggt agt tgt atc tac ttt att
Ser Leu Glu His Pro Ile Leu Phe Ser Gly Ser Cys Ile Tyr Phe Ile
```

170					175					180					185	
aaa Lys	gtg Val	tgg Trp	aat Asn	gtc Val 190	aat Asn	gga Gly	aag Lys	aaa Lys	tgt Cys 195	agg Arg	acg Thr	ccg Pro	cta Leu	aaa Lys 200	aag Lys	630
cat His	agt Ser	aat Asn	ccc Pro 205	gta Val	tct Ser	aca Thr	cgg Arg	aca Thr 210	cag Gln	tca Ser	gaa Glu	gag Glu	gga Gly 215	agg Arg	cta Leu	678
tgt Cys	gca Ala	aaa Lys 220	ggt Gly	ggt Gly	aaa Lys	agc Ser	ggt Gly 225	gca Ala	cgg Arg	cta Leu	cta Leu	ccc Pro 230	gat Asp	cta Leu	agt Ser	726
act Thr	cag Gln 235	gaa Glu	caa Gln	cta Leu	ccc Pro	aaa Lys 240	att Ile	aat Asn	caa Gln	gaa Glu	aac Asn 245	cct Pro	att Ile	aat Asn	caa Gln	774
att Ile 250	gct Ala	ttt Phe	tca Ser	cct Pro	agt Ser 255	ccg Pro	ttc Phe	gtc Val	gtc Val	acg Thr 260	tgc Cys	caa Gln	acg Thr	gaa Glu	aga Arg 265	822
tcc Ser	cta Leu	tct Ser	caa Gln	acg Thr 270	tgg Trp	tga	ccgt	gcad	ccg (gcaco	ggtga	aa aa	agto	egaco		873
gga	tcgad	cg a	ccga	aaago	ec to	gctcg	gctgg	g aca	aaaa	aaag	agct	tttt	ag g	geett	teget	933
ttti	tttga	ag a	aaaa	aaggo	et co	gcgaa	aaaa	a aaa	aago	ctcg	aaat	ca				979
<213	0> 72 1> 27 2> PF	1														
	3> A1		lopsi	is th	nalia	ana										
<400	0> 72	abio					Cl v	So.~	Vat	.	G 1	•	al.			
<400		abio					Gly	Ser	Met 10	Asn	Gly	Asp	Glu	Cys 15	Ala	
<400 Met 1	0> 72	cabic Cys	Arg	Ile 5	Arg	Leu			10					15		
<400 Met 1 Asn	0> 72 Ile	cabic Cys Ala	Arg Thr 20	Ile 5 Cys	Arg Trp	Leu Val	Thr	Ser 25	10 Leu	Ala	Cys	Val	Val 30	15 Asp	Ala	
<400 Met 1 Asn Gly	0> 72 Ile Val	Cys Ala Tyr 35	Arg Thr 20 Thr	Ile 5 Cys Lys	Arg Trp Lys	Leu Val Val	Thr Ser 40	Ser 25 His	10 Leu Asp	Ala Arg	Cys Arg	Val Thr 45	Val 30 Arg	Asp Trp	Ala Pro	
<400 Met 1 Asn Gly	O> 72 Ile Val Arg	Cys Ala Tyr 35	Arg Thr 20 Thr	Ile 5 Cys Lys Arg	Arg Trp Lys Arg	Leu Val Val Asp 55	Thr Ser 40 Arg	Ser 25 His	10 Leu Asp Ser	Ala Arg Val	Cys Arg Arg 60	Val Thr 45 Ser	Val 30 Arg	15 Asp Trp Ser	Ala Pro Gly	
<400 Met 1 Asn Gly Ala Leu 65	O> 72 Ile Val Arg Trp 50	Cys Ala Tyr 35 Lys	Arg Thr 20 Thr Ala	Ile 5 Cys Lys Arg	Arg Trp Lys Arg Leu 70	Leu Val Val Asp 55 Glu	Thr Ser 40 Arg	Ser 25 His His	10 Leu Asp Ser	Ala Arg Val Arg 75	Cys Arg Arg 60 Arg	Thr 45 Ser	Val 30 Arg Asp	15 Asp Trp Ser	Ala Pro Gly Val 80	

Glu Lys His Thr Arg Asp Val Glu Ala Val Arg Phe Ser Pro Arg Asp 115 120 125 Arg Leu Ile Val Ser Ala Gly Ala Asp Gly Val Ile Ala Val Cys Pro 140 Val Ala Gly Glu Cys Asp Asp Asp Asp Ala Arg Asp Gly His Glu Asp 150 155 Cys Val Ser Ser Ile Cys Phe Ser Pro Ser Leu Glu His Pro Ile Leu 170 Phe Ser Gly Ser Cys Ile Tyr Phe Ile Lys Val Trp Asn Val Asn Gly Lys Lys Cys Arg Thr Pro Leu Lys Lys His Ser Asn Pro Val Ser Thr 200 Arg Thr Gln Ser Glu Glu Gly Arg Leu Cys Ala Lys Gly Gly Lys Ser 215 Gly Ala Arg Leu Leu Pro Asp Leu Ser Thr Gln Glu Gln Leu Pro Lys 230 235 Ile Asn Gln Glu Asn Pro Ile Asn Gln Ile Ala Phe Ser Pro Ser Pro 245 250 Phe Val Val Thr Cys Gln Thr Glu Arg Ser Leu Ser Gln Thr Trp 260 265

<210> 73
<211> 1260
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (101)..(155)
<220>
<221> CDS
<222> (254)..(660)
<220>
<221> CDS
<222> (750)..(1193)
<400> 73

gctcaattat gtttacaaca ttgttgtaat ttcaaaactt cataagaatt tctctgataa 60

taaagaaaaa gctggagtag aactatttta aagtgtcatc atg aag aga cta agc 119 Met Lys Arg Leu Ser 1 5

agc Ser	tca Ser	gat Asp	Ser	atg Met 10	Cys	ggt Gly	cta Leu	atc Ile	tcc Ser 15	Thr	tct Ser	aca Thr	. y	ttet	tatta	165
cca	tctt	tgt	tctt	tcta	ct t	tttg	ctaa	t gt	caga	caaa	acc	catg	tga	tcct	ttcttc	225
act	ttcc	act	gttt	cttt	ta t	tgac	aag	sp S	ca t er P 20	tt g he G	gt t ly T	ac a yr T	ca a hr T	ca g hr A 25	gat gaa Asp Glu	279
cag Gln	agt Ser	cca Pro 30	aga Arg	Gly aaa	tac Tyr	gga Gly	agt Ser 35	aat Asn	tac Tyr	caa Gln	tct Ser	atg Met 40	Leu	gaa Glu	ggt Gly	327
tac Tyr	gat Asp 45	gaa Glu	gat Asp	gct Ala	aca Thr	cta Leu 50	atc Ile	gag Glu	gaa Glu	tat Tyr	tcc Ser 55	Gly	aac Asn	cac His	cac	375
cac His 60	atg Met	ggt Gly	cta Leu	tcg Ser	gag Glu 65	aag Lys	aag Lys	aga Arg	aga Arg	tta Leu 70	aaa Lys	gtt Val	gac Asp	caa Gln	gtc Val 75	423
aaa Lys	gct Ala	ctt Leu	gag Glu	aag Lys 80	aat Asn	ttc Phe	gaa Glu	ctt Leu	gag Glu 85	aat Asn	aaa Lys	ctc Leu	gaa Glu	cct Pro 90	gag Glu	471
agg Arg	aaa Lys	act Thr	aaa Lys 95	Leu	gca Ala	caa Gln	gag Glu	ctt Leu 100	gga Gly	ctt Leu	caa Gln	cct Pro	cgt Arg 105	caa Gln	gta Val	519
gct Ala	gtt Val	tgg Trp 110	ttt Phe	cag Gln	aac Asn	cgt Arg	cgt Arg 115	gca Ala	cgg Arg	tgg Trp	aaa Lys	aca Thr 120	aaa Lys	cag Gln	ctt Leu	567
gaa Glu	aaa Lys 125	gat Asp	tac Tyr	ggt Gly	gtt Val	ctt Leu 130	aag Lys	ggt Gly	caa Gln	tac Tyr	gat Asp 135	tct Ser	ctc Leu	cgc Arg	cac His	615
aat Asn 140	ttc Phe	gat Asp	tct Ser	ctc Leu	cgc Arg 145	cgt Arg	gac Asp	aat Asn	gat Asp	tcc Ser 150	ctt Leu	ctc Leu	caa Gln	gag Glu		660
gtac	aata	itt a	agaga	cttt	a aa	accat	aaaa	att	gaaa	ectt	caga	gaco	gaa a	aatgo	caaaaa	720
ggtt	tgat	tt t	taaa	gttt	t to	gttg	gcag	att Ile 155	agt Ser	aaa Lys	atc Ile	aaa Lys	gct Ala 160	aag Lys	gta Val	773
aac Asn	ggt Gly	gaa Glu 165	gaa Glu	gat Asp	aac Asn	aac Asn	aac Asn 170	aac Asn	aaa Lys	gct Ala	att Ile	acg Thr 175	gag Glu	ggt Gly	gtt Val	821
rys	gaa Glu 180	gag Glu	gaa Glu	gtt Val	cac His	aag Lys 185	acg Thr	gat Asp	tcg Ser	att Ile	cct Pro 190	tcg Ser	tct Ser	cct Pro	ctg Leu	869
cag	ttt	cta	gaa	cat	tcc	tct	aat	ttt	aac	tac	caa	caa	agc	tta	act	017

	_															
195	Phe	Leu	. Glu	His	Ser 200	Ser	Gly	Phe	Asn	Tyr 205		Arg	Ser	Phe	Thr 210	
gac Asp	ctc Leu	cgt Arg	gac Asp	ctt Leu 215	cta Leu	ccg Pro	aat Asn	tcc Ser	acc Thr 220	gtt Val	gtc Val	gag Glu	gct Ala	gga Gly 225	tct Ser	965
tcc Ser	gat Asp	agt Ser	tgc Cys 230	gat Asp	tca Ser	agc Ser	gcc Ala	gtt Val 235	ctt Leu	aac Asn	gac Asp	gaa Glu	aca Thr 240	Ser	tct Ser	1013
gat Asp	aac Asn	gga Gly 245	aga Arg	ttg Leu	acg Thr	ccg Pro	CCt Pro 250	gtg Val	acg Thr	gtt Val	act Thr	ggc Gly 255	Gly	agt Ser	ttc Phe	1061
tta Leu	cag Gln 260	ttt Phe	gtg Val	aaa Lys	aca Thr	gag Glu 265	caa Gln	aca Thr	gag Glu	gat Asp	cac His 270	gag Glu	gat Asp	ttt Phe	cta Leu	1109
agc Ser 275	ggt Gly	gaa Glu	gaa Glu	gct Ala	tgt Cys 280	ggt Gly	ttc Phe	ttc Phe	tcc Ser	gat Asp 285	gaa Glu	cag Gln	ccg Pro	ccg Pro	tca Ser 290	1157
ctt Leu	cat His	tgg Trp	tac Tyr	tct Ser 295	gct Ala	tca Ser	gat Asp	cat His	tgg Trp 300	act Thr	tga	gaa	ttgt	tta		1203
tcaa	aatto	ggt g	getet	gtt	a gt	ctca	atgo	g gaa	aaca	agag	aaga	aggg	caa a	aggt	gga	1260
	0> 74	1				•										
	L> 30 2> PF 3> Ar)1 RT	lopsi	is th	nalia	ına										
<213	2> PF)1 RT Tabid	lopsi	is th	nalia	ına										
<213	2> PF 3> Ar)1 RT Tabić					Asp	Ser	Met 10	Cys	Gly	Leu	Ile	Ser 15	Thr	
<213 <400 Met 1	2> PF 3> Ar 0> 74	01 RT abio Arg	Leu	Ser 5	Ser	Ser			10					15		
<213 <400 Met 1 Ser	2> PF 3> Ar 0> 74 Lys	O1 RT Cabic Arg	Leu Ser 20	Ser 5 Phe	Ser Gly	Ser Tyr	Thr	Thr 25	10 Asp	Glu	Gln	Ser	Pro 30	15 Arg	Gly	
<213 <400 Met 1 Ser Tyr	2> PF 3> Ar 0> 74 Lys	Arg Asp Ser 35	Leu Ser 20 Asn	Ser 5 Phe Tyr	Ser Gly Gln	Ser Tyr Ser	Thr Met 40	Thr 25 Leu	Asp Glu	Glu Gly	Gln Tyr	Ser Asp 45	Pro 30 Glu	15 Arg Asp	Gly Ala	
<213 <400 Met 1 Ser Tyr	2> PF 3> Ar 0> 74 Lys Thr Gly	Arg Asp Ser 35	Leu Ser 20 Asn Glu	Ser 5 Phe Tyr Glu	Ser Gly Gln Tyr	Ser Tyr Ser Ser 55	Thr Met 40 Gly	Thr 25 Leu Asn	10 Asp Glu His	Glu Gly His	Gln Tyr His 60	Ser Asp 45 Met	Pro 30 Glu Gly	15 Arg Asp Leu	Gly Ala Ser	
<213 <400 Met 1 Ser Tyr Thr Glu 65	2> PF 3> Ar 0> 74 Lys Thr Gly Leu 50	Arg Asp Ser 35	Leu Ser 20 Asn Glu Arg	Ser 5 Phe Tyr Glu Arg	Ser Gly Gln Tyr Leu 70	Ser Tyr Ser Ser 55 Lys	Thr Met 40 Gly Val	Thr 25 Leu Asn Asp	Asp Glu His	Glu Gly His Val 75	Gln Tyr His 60 Lys	Ser Asp 45 Met	Pro 30 Glu Gly Leu	15 Arg Asp Leu Glu	Gly Ala Ser Lys 80	

Asn Arg Arg Ala Arg Trp Lys Thr Lys Gln Leu Glu Lys Asp Tyr Gly 115 120 Val Leu Lys Gly Gln Tyr Asp Ser Leu Arg His Asn Phe Asp Ser Leu 135 Arg Arg Asp Asn Asp Ser Leu Leu Gln Glu Ile Ser Lys Ile Lys Ala 150 155 Lys Val Asn Gly Glu Glu Asp Asn Asn Asn Lys Ala Ile Thr Glu 165 Gly Val Lys Glu Glu Val His Lys Thr Asp Ser Ile Pro Ser Ser 185 Pro Leu Gln Phe Leu Glu His Ser Ser Gly Phe Asn Tyr Arg Arg Ser 195 200 Phe Thr Asp Leu Arg Asp Leu Leu Pro Asn Ser Thr Val Val Glu Ala 215 Gly Ser Ser Asp Ser Cys Asp Ser Ser Ala Val Leu Asn Asp Glu Thr 230 235 Ser Ser Asp Asn Gly Arg Leu Thr Pro Pro Val Thr Val Thr Gly Gly 250 Ser Phe Leu Gln Phe Val Lys Thr Glu Gln Thr Glu Asp His Glu Asp 265 Phe Leu Ser Gly Glu Glu Ala Cys Gly Phe Phe Ser Asp Glu Gln Pro Pro Ser Leu His Trp Tyr Ser Ala Ser Asp His Trp Thr 290 295

<210> 75 <211> 1122

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (22)..(1122)

<400> 75

acgtagctaa agtccgtttg a atg aac caa cgt gct gac cgt gac cgt gct 51

Met Asn Gln Arg Ala Asp Arg Asp Arg Ala

1 5 10

agc tcg atc cgt tgg ttt gcc aac cga tta gtg agt ggt agc ctg tta 99 Ser Ser Ile Arg Trp Phe Ala Asn Arg Leu Val Ser Gly Ser Leu Leu 15 20 25

ttg tgt gct aac gcc tac agt cgt cgt act ccc gcg tcc ggg gcc gca 147

Leu	Cys	Ala	Asn 30	Ala	Tyr	Ser	Arg	Arg 35	Thr	Pro	Ala	Ser	Gly 40		Ala	
tta Leu	cag Gln	cag Gln 45	atg Met	aac Asn	cgt Arg	gcc Ala	agt Ser 50	cag Gln	tca Ser	gtg Val	aat Asn	tac Tyr 55	Arg	cga Arg	cgt Arg	195
gag Glu	ctg Leu 60	tca Ser	tta Leu	atc Ile	agc Ser	ggc Gly 65	cgg Arg	aaa Lys	cag Gln	ggt Gly	gtc Val 70	Gln	tct Ser	ctg Leu	ggt	243
tat Tyr 75	aga Arg	ctt Leu	gca Ala	cgc Arg	ctc Leu 80	gat Asp	aac Asn	cgc Arg	gct Ala	ctt Leu 85	gca Ala	caa Gln	ttg Leu	ttg Leu	cac His 90	291
Arg	Asp	GIA	GIN	95	GLu	Glu	Val	Val	Gln 100	Arg	Gly	Asn	Glu	Ile 105	agc Ser	339
tat Tyr	ttc Phe	gaa Glu	acg Thr 110	gga Gly	ctt Leu	gaa Glu	ccg Pro	acc Thr 115	acg Thr	ctt Leu	aga Arg	cgt	gtg Val 120	cgc Arg	gat Asp	387
Cys	vai	125	Ala	Ala	Leu	Pro	Thr 130	Val	Ile	Tyr	Thr	Gly 135	Phe	aaa Lys	Arg	435
vaı	140	PIO	ıyr	lyr	Glu	Phe 145	Ile	Ser	Val	Gly	Arg 150	Thr	Arg	gtt Val	Ala	483
gat Asp 155	cgt Arg	ctt Leu	agc Ser	gaa Glu	gtc Val 160	acg Thr	caa Gln	gtg Val	gtt Val	ccc Pro 165	cga Arg	gat Asp	gat Asp	aca Thr	cgc Arg 170	531
tac Tyr	gtc Val	tac Tyr	atc Ile	gtg Val 175	tgg Trp	cgg Arg	gaa Glu	tcc Ser	gaa Glu 180	cga Arg	tcg Ser	aaa Lys	tta Leu	gag Glu 185	gcg Ala	579
cgg Arg	Gly	gat Asp	ctc Leu 190	cgt Arg	gat Asp	cgc Arg	gat As p	ggt Gly 195	gaa Glu	acg Thr	ctg Leu	gaa Glu	aag Lys 200	ttt Phe	cgc Arg	627
gtg Val	att Ile	gct Ala 205	ttt Phe	aac Asn	gtc Val	acg Thr	ctg Leu 210	gat Asp	atc Ile	agc Ser	agc Ser	agt Ser 215	atg Met	gag Glu	ccg Pro	675
ctg Leu	gcg Ala 220	aag Lys	gga Gly	gat Asp	ttg Leu	ccg Pro 225	ccg Pro	ttg Leu	ctt Leu	gct Ala	gtt Val 230	cct Pro	gta Val	ggt Gly	gaa Glu	723
caa 31n 235	gct Ala	aga Arg	ttc Phe	agc Ser	ttg Leu 240	acg Thr	cca Pro	acc Thr	tgg Trp	ttg Leu 245	cca Pro	cag Gln	ggt Gly	cgt Arg	agc Ser 250	771
gat Asp	gtt Val	tcc Ser	agt Ser	agt Ser	cga Arg	cgt Arg	ggg Glv	cta Leu	ccg Pro	cgg Ara	atg Met	gac	aaa Lve	gtg Val	cct	819

	255				260					265		
atc gaa tcc Ile Glu Ser	cgt ctc Arg Leu 270	tcg ac	c gac ir Asp	gga Gly 275	gta Val	ttc Phe	agc Ser	ttc Phe	tcg Ser 280	gta Val	aac Asn	867
gtt aac ggc Val Asn Gly 285	gct acg Ala Thr	cca to Pro Se	g agg er Arg 290	\mathtt{Trp}	gat Asp	cag Gln	atg Met	ttg Leu 295	cgc Arg	acc Thr	gga Gly	915
cgc agg ccc Arg Arg Pro 300	gtc agt Val Ser	aga ag Arg Se	r Val	cgt Arg	gat Asp	gtc Val	gcc Ala 310	gaa Glu	aac Asn	acc Thr	att Ile	963
ggc ggt gaa Gly Gly Glu 315	ctg ccg Leu Pro	ccg cg Pro Ar 320	t agc g Ser	tgc Cys	tcg Ser	cga Arg 325	ccc Pro	gat Asp	ccg Pro	ttg Leu	acc Thr 330	1011
gct gac cgc Ala Asp Arg	cga cgc Arg Arg 335	tgc gc Cys Al	t agc a Ser	ctg Leu	agc Ser 340	ctg Leu	ccc Pro	agc Ser	ctg Leu	cca Pro 345	gct Ala	1059
cga cag ccc Arg Gln Pro	tcc caa Ser Gln 350	acg ga Thr Gl	g aaa u Lys	cgc Arg 355	att Ile	gtc Val	gag Glu	aat Asn	att Ile 360	aag Lys	tac Tyr	1107
ggg gca gcg Gly Ala Ala 365	_											1122
<210> 76 <211> 366 <212> PRT												
<213> Arabi	dopsis th	naliana										
<400> 76												
				Arg	Ala 10	Ser	Ser	Ile	Arg	Trp 15	Phe	
<400> 76 Met Asn Gln	Arg Ala 5	Asp Ar	g Asp		10					15		
<400> 76 Met Asn Gln 1	Arg Ala 5 Leu Val 20	Asp Ar	g Asp y Ser	Leu 25	10 Leu	Leu	Cys	Ala	Asn 30	15 Ala	Tyr	
<400> 76 Met Asn Gln 1 Ala Asn Arg Ser Arg Arg	Arg Ala 5 Leu Val 20 Thr Pro	Asp Ar Ser Gl	g Asp y Ser r Gly 40 r Arg	Leu 25 Ala	10 Leu Ala	Leu Leu	Cys Gln	Ala Gln 45	Asn 30 Met	15 Ala Asn	Tyr Arg	
<400> 76 Met Asn Gln 1 Ala Asn Arg Ser Arg Arg 35 Ala Ser Gln	Arg Ala 5 Leu Val 20 Thr Pro Ser Val	Asp Ar Ser Gl Ala Se Asn Ty	g Asp y Ser r Gly 40 r Arg	Leu 25 Ala Arg	10 Leu Ala Arg	Leu Leu Glu	Cys Gln Leu 60	Ala Gln 45 Ser	Asn 30 Met Leu	15 Ala Asn Ile	Tyr Arg Ser	
<400> 76 Met Asn Gln 1 Ala Asn Arg Ser Arg Arg 35 Ala Ser Gln 50 Gly Arg Lys	Arg Ala 5 Leu Val 20 Thr Pro Ser Val Gln Gly	Asp Ar Ser Gl Ala Se Asn Ty 5 Val Gl 70	g Asp y Ser r Gly 40 r Arg 5	Leu 25 Ala Arg Leu	10 Leu Ala Arg	Leu Leu Glu Tyr 75	Cys Gln Leu 60 Arg	Ala Gln 45 Ser Leu	Asn 30 Met Leu Ala	15 Ala Asn Ile Arg	Tyr Arg Ser Leu 80	

Glu Pro Thr Thr Leu Arg Arg Val Arg Asp Cys Val Val Ala Ala Leu Pro Thr Val Ile Tyr Thr Gly Phe Lys Arg Val Ser Pro Tyr Tyr Glu 135 Phe Ile Ser Val Gly Arg Thr Arg Val Ala Asp Arg Leu Ser Glu Val 150 155 Thr Gln Val Val Pro Arg Asp Asp Thr Arg Tyr Val Tyr Ile Val Trp Arg Glu Ser Glu Arg Ser Lys Leu Glu Ala Arg Gly Asp Leu Arg Asp Arg Asp Gly Glu Thr Leu Glu Lys Phe Arg Val Ile Ala Phe Asn Val 200 205 Thr Leu Asp Ile Ser Ser Ser Met Glu Pro Leu Ala Lys Gly Asp Leu 210 Pro Pro Leu Leu Ala Val Pro Val Gly Glu Gln Ala Arg Phe Ser Leu 230 235 Thr Pro Thr Trp Leu Pro Gln Gly Arg Ser Asp Val Ser Ser Ser Arg 245 Arg Gly Leu Pro Arg Met Asp Lys Val Pro Ile Glu Ser Arg Leu Ser 265 Thr Asp Gly Val Phe Ser Phe Ser Val Asn Val Asn Gly Ala Thr Pro Ser Arg Trp Asp Gln Met Leu Arg Thr Gly Arg Arg Pro Val Ser Arg 300 Ser Val Arg Asp Val Ala Glu Asn Thr Ile Gly Gly Glu Leu Pro Pro Arg Ser Cys Ser Arg Pro Asp Pro Leu Thr Ala Asp Arg Arg Cys 330 Ala Ser Leu Ser Leu Pro Ser Leu Pro Ala Arg Gln Pro Ser Gln Thr 340 Glu Lys Arg Ile Val Glu Asn Ile Lys Tyr Gly Ala Ala Pro 355

<210> 77

<211> 1650

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS <222> (21)(203)	
<220> <221> CDS	
<222> (291)(482)	
<220> <221> CDS <222> (633)(838)	
<220>	
<221> CDS <222> (1044)(1605)	
<400> 77	
attcagagaa gaactcaccg atg agt atg gat ttt tca cct ttg tta acg gtt 5 Met Ser Met Asp Phe Ser Pro Leu Leu Thr Val 1 5 10	53
ctt gag gga gat ttc aac aag gat aat act tct tct gca aca gaa att 1 Leu Glu Gly Asp Phe Asn Lys Asp Asn Thr Ser Ser Ala Thr Glu Ile 15 20 25	101
gat act tta gag aac tta gat gac act agg cag ata agt aaa gga aaa 1 Asp Thr Leu Glu Asn Leu Asp Asp Thr Arg Gln Ile Ser Lys Gly Lys 30	149
cct ccg agg cac ctc aca agc agt gct act agg ctg cag ctt gca gcc 1 Pro Pro Arg His Leu Thr Ser Ser Ala Thr Arg Leu Gln Leu Ala Ala 45 50 55	.97
aat gcg gtaatatact tgaccctgct ttttcttttt ccttttcttt gttacaatgg 2 Asn Ala 60	:53
gattcgaatg atgtaactgg tttctgtttg tgcgcag gat gtg gat gtt tgt aac 3 Asp Val Asp Val Cys Asn 65	80
ttg gtt atg aag tca ctt gat gac aaa tca gag ttt cta cct gta tac 3 Leu Val Met Lys Ser Leu Asp Asp Lys Ser Glu Phe Leu Pro Val Tyr 70 75 80	56
cga tca gga agt tgt gct gag caa ggg gca aaa cag ttc atg gaa gat 40 Arg Ser Gly Ser Cys Ala Glu Gln Gly Ala Lys Gln Phe Met Glu Asp 85 90 95	04
gaa cac att tgc atc gat gat ctt gtt aat cat ctt ggt gca gct att 49 Glu His Ile Cys Ile Asp Asp Leu Val Asn His Leu Gly Ala Ala Ile 100 115	52
caa tgc tct tct ctt gga gcc ttc tat ggg gtgagtttat cttccaatct 50 Gln Cys Ser Ser Leu Gly Ala Phe Tyr Gly 120 125	02
tacccaaaga agcataaaag caattcacta gcctgattct tctttcttct cctcttttgt 56	52

	tagta	acga	tata	agaç	ggt a	ttac	ttca	ıa aa	acto	ettet	aac	catti	tgtt	gati	Lgtgtg1	622
cci	tttgg	gcag	gta Val	ttt Phe	gat Asp	ggc Gly	cac His 130	ggt Gly	ggc Gly	aca Thr	gat Asp	gca Ala 135	gca Ala	cac His	ttt Phe	671
gtt Va]	aga L Arg 140	, Llys	aac Asn	att Ile	cto Leu	aga Arg 145	Pne	att Ile	gta Val	gag Glu	gad Asp 150	Ser	tco Sei	tto Phe	cca Pro	719
155	cys i	val	. rys	гуs	160	lle	Lys	Ser	` Ala	Phe 165	Leu	Lys	Ala	Asp	tat Tyr 170	767
O10	· FIIC	, Ala	. Asp	175	ser	ser	Leu	Asp	180	Ser	Ser	Gly	Thr	Thr 185		815
ctt Leu	aca Thr	gct Ala	ttt Phe 190	att Ile	ttt Phe	gga Gly	cg Ar	gtaa	gagc	at t	taaa	ttcg	t at	ttat	gaac	868
ttg	ggaa	gct	atat	atgt	ta t	cacc	tgta	t aa	tcat	caat	act	tatc	agg	ttgc	ctgtgt	928
gta	taag	ata	gaga	ataa	gg c	ttag	tgta	a ag	actt	atgt	aac	gggc	tgt	ttta	ccatgt	988
		tag	tttt	gatg	tg a	tttt	gaata	a ga	attg	ctac	ttt	cttt	ctt	taca	g g g	1044
agg Arg 195	ttg Leu	ata Ile	att Ile	gca Ala	aat Asn 200	gct Ala	ggt Gly	gat Asp	tgc Cys	cga Arg 205	gca Ala	gta Val	ctg Leu	ggg	aga Arg 210	1092
195	ggt	agg	gca	att	200 gag	gct Ala ttg Leu	tcc	Asp	Cys	Arg 205	Ala	Val	Leu	Gly	Arg 210	1092 1140
195 aga Arg	ggt Gly	agg Arg	gca Ala gta	att Ile 215	gag Glu	ttg	tcc Ser	aaa Lys	gat Asp 220	Arg 205 cac His	Ala aaa Lys	cca Pro	aac Asn	tgc Cys 225	Arg 210 aca Thr	
195 aga Arg gcc Ala	ggt Gly gag Glu	agg Arg aaa Lys	gca Ala gta Val 230	att Ile 215 aga Arg	gag Glu ata Ile	ttg Leu	tcc Ser aag Lys	aaa Lys tta Leu 235	gat Asp 220 ggt Gly	Arg 205 cac His gga Gly	Ala aaa Lys gtt Val	cca Pro gtg Val	aac Asn tat Tyr 240	tgc Cys 225 gac Asp	Arg 210 aca Thr ggt Gly	1140
195 aga Arg gcc Ala tac Tyr	ggt Gly gag Glu ctc Leu	agg Arg aaa Lys aac Asn 245	gca Ala gta Val 230 ggg Gly	att Ile 215 aga Arg caa Gln	gag Glu ata Ile cta Leu	ttg Leu gaa Glu	tcc Ser aag Lys gtt Val 250	aaa Lys tta Leu 235 gca Ala	gat Asp 220 ggt Gly cgt Arg	arg 205 cac His gga Gly gcc Ala	aaa Lys gtt Val att Ile	cca Pro gtg Val gga Gly 255	aac Asn tat Tyr 240 gac Asp	tgc Cys 225 gac Asp tgg	Arg 210 aca Thr ggt Gly cac	1140 1188
195 aga Arg gcc Ala tac Tyr atg Met	ggt Gly gag Glu ctc Leu aaa Lys 260	agg Arg aaa Lys aac Asn 245 ggt Gly	gca Ala gta Val 230 ggg Gly ccc Pro	att Ile 215 aga Arg caa Gln aaa Lys	gag Glu ata Ile cta Leu ggc Gly ctg	ttg Leu gaa Glu tca Ser tct	tcc Ser aag Lys gtt Val 250 gct Ala	aaa Lys tta Leu 235 gca Ala tgt Cys	gat Asp 220 ggt Gly cgt Arg	arg 205 cac His gga Gly gcc Ala cta Leu	ada Lys gtt Val att Ile agc Ser 270	cca Pro gtg Val gga Gly 255 cca Pro	aac Asn tat Tyr 240 gac Asp	tgc Cys 225 gac Asp tgg Trp	aca Thr ggt Gly cac His	1140 1188 1236

gct agg aag gaa ctg atg att cat aat gat cca gag aga tgc tct aga Ala Arg Lys Glu Leu Met Ile His Asn Asp Pro Glu Arg Cys Ser Arg 310 315 320	1428
gag ctt gtg agg gag gcc ctt aaa cgg aat aca tgt gac aat ttg aca Glu Leu Val Arg Glu Ala Leu Lys Arg Asn Thr Cys Asp Asn Leu Thr 325 330 335	1476
gtg att gtt gtg tgc ttc tct ccg gat cct cca cag agg ata gag atc Val Ile Val Val Cys Phe Ser Pro Asp Pro Pro Gln Arg Ile Glu Ile 340 345 350	1524
cga atg cag tca cgg gtg agg cgg agc ata tct gcg gaa ggg tta aac Arg Met Gln Ser Arg Val Arg Arg Ser Ile Ser Ala Glu Gly Leu Asn 355 360 365 370	1572
cta ctc aaa ggc gtg ctc gat ggc tat ccg tga gcatgttatg ttgtacgtta Leu Leu Lys Gly Val Leu Asp Gly Tyr Pro 375 380	1625
ctttgtgaga ctattgccaa gttag	1650
<210> 78 <211> 380 <212> PRT <213> Arabidopsis thaliana	
400 00	
<pre><400> 78 Met Ser Met Asp Phe Ser Pro Leu Leu Thr Val Leu Glu Gly Asp Phe</pre>	
Met Ser Met Asp Phe Ser Pro Leu Leu Thr Val Leu Glu Gly Asp Phe 1 5 10 15	
Met Ser Met Asp Phe Ser Pro Leu Leu Thr Val Leu Glu Gly Asp Phe	
Met Ser Met Asp Phe Ser Pro Leu Leu Thr Val Leu Glu Gly Asp Phe 1 5 10 15 Asn Lys Asp Asn Thr Ser Ser Ala Thr Glu Ile Asp Thr Leu Glu Asn	
Met Ser Met Asp Phe Ser Pro Leu Leu Thr Val Leu Glu Gly Asp Phe 1 5 5 8 10 10 15 15 Asp Lys Asp Asp Thr Ser Ser Ala Thr Glu Ile Asp Thr Leu Glu Asp 25 30 Leu Asp Asp Thr Arg Gln Ile Ser Lys Gly Lys Pro Pro Arg His Leu	
Met Ser Met Asp Phe Ser Pro Leu Leu Thr Val Leu Glu Gly Asp Phe 15 Asn Lys Asp Asn Thr Ser Ser Ala Thr Glu Ile Asp Thr Leu Glu Asn 20 Leu Asp Asp Thr Arg Gln Ile Ser Lys Gly Lys Pro Pro Arg His Leu 40 Thr Ser Ser Ala Thr Arg Leu Gln Leu Ala Ala Asn Ala Asp Val Asp	
Met Ser Met Asp Phe Ser Pro Leu Leu Thr Val Leu Glu Gly Asp Phe 15 Asn Lys Asp Asn Thr Ser Ser Ala Thr Glu Ile Asp Thr Leu Glu Asn 20 Leu Asp Asp Thr Arg Gln Ile Ser Lys Gly Lys Pro Pro Arg His Leu 40 Thr Ser Ser Ala Thr Arg Leu Gln Leu Ala Ala Asn Ala Asp Val Asp 50 Val Cys Asn Leu Val Met Lys Ser Leu Asp Asp Lys Ser Glu Phe Leu	
Met Ser Met Asp Phe Ser Pro Leu Leu Thr Val Leu Glu Gly Asp Phe 15 Asn Lys Asp Asn Thr Ser Ser Ala Thr Glu Ile Asp Thr Leu Glu Asn 20 Leu Asp Asp Thr Arg Gln Ile Ser Lys Gly Lys Pro Pro Arg His Leu 40 Thr Ser Ser Ala Thr Arg Leu Gln Leu Ala Ala Asn Ala Asp Val Asp 50 Val Cys Asn Leu Val Met Lys Ser Leu Asp Asp Lys Ser Glu Phe Leu 80 Pro Val Tyr Arg Ser Gly Ser Cys Ala Glu Gln Gly Ala Lys Gln Phe	
Met Ser Met Asp Phe Ser Pro Leu Leu Thr Val Leu Glu Gly Asp Phe 15 Asn Lys Asp Asn Thr Ser Ser Ala Thr Glu Ile Asp Thr Leu Glu Asn 25 Glu Asn 25 Glu Ile Asp Thr Leu Glu Asn 30 Glu Asn 35 Thr Arg Gln Ile Ser Lys Gly Lys Pro Pro Arg His Leu 45 Asp Ser Ser Ala Thr Arg Leu Gln Leu Ala Ala Asn Ala Asp Val Asp 50 Cys Asn Leu Val Met Lys Ser Leu Asp Asp Lys Ser Glu Phe Leu 65 Cys Asn Leu Val Met Cys Ser Cys Ala Glu Gln Gly Ala Lys Gln Phe 90 Met Glu Asp Glu His Ile Cys Ile Asp Asp Leu Val Asn His Leu Gly	

Arg Phe Ile Val Glu Asp Ser Ser Phe Pro Leu Cys Val Lys Lys Ala 145 150 Ile Lys Ser Ala Phe Leu Lys Ala Asp Tyr Glu Phe Ala Asp Asp Ser 165 175 Ser Leu Asp Ile Ser Ser Gly Thr Thr Ala Leu Thr Ala Phe Ile Phe Gly Arg Arg Leu Ile Ile Ala Asn Ala Gly Asp Cys Arg Ala Val Leu 200 Gly Arg Arg Gly Arg Ala Ile Glu Leu Ser Lys Asp His Lys Pro Asn 215 Cys Thr Ala Glu Lys Val Arg Ile Glu Lys Leu Gly Gly Val Val Tyr 225 230 Asp Gly Tyr Leu Asn Gly Gln Leu Ser Val Ala Arg Ala Ile Gly Asp 250 Trp His Met Lys Gly Pro Lys Gly Ser Ala Cys Pro Leu Ser Pro Glu 260 Pro Glu Leu Gln Glu Thr Asp Leu Ser Glu Asp Asp Glu Phe Leu Ile 280 Met Gly Cys Asp Gly Leu Trp Asp Val Met Ser Ser Gln Cys Ala Val 295 Thr Ile Ala Arg Lys Glu Leu Met Ile His Asn Asp Pro Glu Arg Cys 315 Ser Arg Glu Leu Val Arg Glu Ala Leu Lys Arg Asn Thr Cys Asp Asn Leu Thr Val Ile Val Val Cys Phe Ser Pro Asp Pro Pro Gln Arg Ile 345 Glu Ile Arg Met Gln Ser Arg Val Arg Arg Ser Ile Ser Ala Glu Gly 355 Leu Asn Leu Leu Lys Gly Val Leu Asp Gly Tyr Pro 370 375

```
<210> 79
<211> 589
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (18)..(575)
<400> 79
```

atc	tttt	tcc ·	gata	act	atg Met 1	gct Ala	gag Glu	gaa Glu	atc Ile 5	aag Lys	aat Asn	gtt Val	cct Pro	gaa Glu 10	cag Gln	50
gag Glu	gtg Val	cca Pro	aag Lys 15	gta Val	gca Ala	aca Thr	gag Glu	gaa Glu 20	Ser	tcg Ser	gca Ala	gag Glu	gtt Val 25	Thr	gat Asp	98
cgt Arg	gga Gly	ttg Leu 30	ttc Phe	gat Asp	ttc Phe	ttg Leu	gga Gly 35	Lys	aag Lys	aaa Lys	gac	gaa Glu 40	Thr	aaa Lys	cca Pro	146
gag Glu	gag Glu 45	act Thr	ccg Pro	atc Ile	gct Ala	tca Ser 50	Glu	ttt Phe	gag Glu	cag Gln	aag Lys 55	Val	cat His	att Ile	tca Ser	194
gag Glu 60	ccg Pro	gag Glu	cca Pro	gag Glu	gtt Val 65	aaa Lys	cac His	gaa Glu	agt Ser	ctt Leu 70	ctt Leu	gaa Glu	aag Lys	ctt Leu	cac His 75	242
cga Arg	agc Ser	gac Asp	agt Ser	Ser 80	tct Ser	agc Ser	tcc Ser	tca Ser	agt Ser 85	gag Glu	gaa Glu	gaa Glu	ggt Gly	tca Ser 90	gat Asp	290
GIĀ	Glu	Lys	Arg 95	Lys	Lys	Lys	Lys	Glu 100	Lys	aag Lys	Lys	Pro	Thr 105	Thr	Glu	338
Val	Glu	Val 110	Lys	Glu	Glu	Glu	Lys 115	Lys	Gly	ttt Phe	Met	Glu 120	Lys	Leu	Lys	386
Glu	Lys 125	Leu	Pro	Gly	His	Lys 130	Lys	Pro	Glu	gac Asp	Gly 135	Ser	Ala	Val	Ala	434
140	Ala	Pro	Val	Val	Val 145	Pro	Pro	Pro	Val	gaa Glu 150	Glu	Ala	His	Pro	Val 155	482
gag Glu	aag Lys	aaa Lys	ggg Gly	att Ile 160	ctt Leu	gag Glu	aag Lys	att Ile	aag Lys 165	gag Glu	aag Lys	ctt Leu	cca Pro	gga Gly 170	tac Tyr	530
cac His	cct Pro	aag Lys	acc Thr 175	acc Thr	gta Val	gag Glu	gag Glu	gag Glu 180	aag Lys	aaa Lys	gat Asp	aaa Lys	gaa Glu 185	taa		575
gaag	gatta	ıtç a	ttaa	l												590

<210> 80 <211> 185 <212> PRT <213> Arabidopsis thaliana

<400> 80

Met 1	Ala	Glu	Glu	Ile 5	Lys	Asn	Val	Pro	Glu 10	Gln	Glu	Val	Pro	Lys 15	Val	
Ala	Thr	Glu	Glu 20	Ser	Ser	Ala	Glu	Val 25	Thr	Asp	Arg	Gly	Leu 30	Phe	Asp	
Phe	Leu	Gly 35	Lys	Lys	Lys	Asp	Glu 40	Thr	Lys	Pro	Glu	Glu 45	Thr	Pro	Ile	
Ala	Ser 50	Glu	Phe	Glu	Gln	Lys 55	Val	His	Ile	Ser	Glu 60	Pro	Glu	Pro	Glu	
Val 65	Lys	His	Glu	Ser	Leu 70	Leu	Glu	Lys	Leu	His 75	Arg	Ser	Asp	Ser	Ser 80	
Ser	Ser	Ser	Ser	Ser 85	Glu	Glu	Glu	Gly	Ser 90	Asp	Gly	Glu	Lys	Arg 95	Lys	
Lys	Lys	Lys	Glu 100	Lys	Lys	Lys	Pro	Thr 105	Thr	Glu	Val	Glu	Val 110	Lys	Glu	
Glu	Glu	Lys 115	Lys	Gly	Phe	Met	Glu 120	Lys	Leu	Lys	Glu	Lys 125	Leu	Pro	Gly	
His	Lys 130	Lys	Pro	Glu	Asp	Gly 135	Ser	Ala	Val	Ala	Ala 140	Ala	Pro	Val	Val	
Val 145	Pro	Pro	Pro	Val	Glu 150	Glu	Ala	His	Pro	Val 155	Glu	Lys	Lys	Gly	Ile 160	
Leu	Glu	Lys	Ile	Lys 165	Glu	Lys	Leu	Pro	Gly 170	Tyr	His	Pro	Lys	Thr 175	Thr	
Val	Glu	Glu	Glu 180	Lys	Lys	Asp	Lys	Glu 185								
<211 <212 <213 <220 <221 <222	> > CD	76 A abid S O)			alia	na										-
agca	atcg	ag a	aaaa	agca	atg Met 1	gcg Ala	tca Ser	gac Asp	aaa Lys 5	caa Gln	aag Lys	gcg Ala	gag Glu	aga Arg 10	gcc Ala	52
gag Glu	gtt Val	gcg Ala	gcg Ala 15	agg Arg	cta Leu	gcg Ala	gct Ala	gag Glu 20	gac Asp	ttg Leu i	cat (gac Asp	att . Ile . 25	aac Asn :	aaa Lys	100

tcc ggt ggt gct gat gtc aca atg tat aag gtg acg gag aga aca act 148

Ser	Gly	Gly 30	Ala	Asp	Val	Thr	Met 35	Туг	Lys	Val	. Thr	Glu 40		Thr	Thr	
gaa Glu	cat His 45	PIO	ccg Pro	gag Glu	caa Gln	gat Asp 50	Arg	Pro	ggt Gly	gtg Val	ata Ile 55	Gly	tca Ser	gtg Val	ttc Phe	196
agg Arg 60	ATG	gtc Val	caa Gln	gga Gly	acg Thr 65	Tyr	gag Glu	cat His	gcg Ala	aga Arg 70	Asp	gct Ala	gta Val	gtt Val	gga Gly 75	244
aaa Lys	acc Thr	cac His	gaa Glu	gcg Ala 80	gct Ala	gag Glu	tct Ser	acc Thr	aaa Lys 85	gaa Glu	gga Gly	gct Ala	cag Gln	ata Ile 90	gct Ala	292
tca Ser	gag Glu	aaa Lys	gcg Ala 95	gtt Val	gga Gly	gca Ala	aag Lys	gac Asp 100	gca Ala	acc Thr	gtc Val	gag Glu	aaa Lys 105	gct Ala	aag Lys	340
gaa Glu	acc Thr	gct Ala 110	gat Asp	tat Tyr	act Thr	gcg Ala	gag Glu 115	aag Lys	gtg Val	ggt Gly	gag Glu	tat Tyr 120	aaa Lys	gac Asp	tat Tyr	388
acg Thr	gtt Val 125	gat Asp	aaa Lys	gct Ala	aaa Lys	gag Glu 130	gct Ala	aag Lys	gac Asp	aca Thr	act Thr 135	gca Ala	gag Glu	aag Lys	gcg Ala	436
aag Lys 140	gag Glu	act Thr	gct Ala	aat Asn	tat Tyr 145	act Thr	gcg Ala	gat Asp	aag Lys	gcg Ala 150	gtg Val	gaa Glu	gca Ala	aag Lys	gat Asp 155	484
aag Lys	acg Thr	gcg Ala	gag Glu	aag Lys 160	att Ile	ggt Gly	gag Glu	tac Tyr	aaa Lys 165	gac Asp	tat Tyr	gcg Ala	gtg Val	gat Asp 170	aag Lys	532
gca Ala	gta Val	gaa Glu	gct Ala 175	aaa Lys	gat Asp	aag Lys	aca Thr	gcg Ala 180	gag Glu	aag Lys	gcg Ala	aag Lys	gag Glu 185	act Thr	tcg Ser	580
aat Asn	tat Tyr	acg Thr 190	gcg Ala	gat Asp	aag Lys	gct Ala	aaa Lys 195	gag Glu	gct Ala	aag Lys	gac Asp	aag Lys 200	acg Thr	gct Ala	gag Glu	628
aag Lys	gtt Val 205	ggt Gly	gag Glu	tat Tyr	aag Lys	gat Asp 210	tac Tyr	acg Thr	gtg Val	gac Asp	aag Lys 215	gcc Ala	gtg Val	gaa Glu	gct Ala	676
agg Arg 220	gat Asp	tac Tyr	aca Thr	gcg Ala	gag Glu 225	aag Lys	gct Ala	att Ile	gaa Glu	gca Ala 230	aag Lys	gat Asp	aag Lys	aca Thr	gct Ala 235	724
gag Glu	aag Lys	act Thr	gga Gly	gag Glu 240	tat Tyr	aag Lys	gac Asp	tat Tyr	acg Thr 245	gtg Val	gag Glu	aag Lys	gcg Ala	acg Thr 250	gag Glu	772
Gly ggg	aaa Lys	gat Asp	gtt Val	acg Thr	gtg Val	agt Ser	aag Lys	cta Leu	gga Gly	gag Glu	ctg Leu	aag Lys	gat Asp	agt Ser	gcc Ala	820

255		260	265	
gtt gag aca gcg Val Glu Thr Ala 270	aag aga gct atg Lys Arg Ala Met 275	ggt ttc ttg tcg Gly Phe Leu Ser	ggg aag aca gag Gly Lys Thr Glu 280	868
gag gcc aaa gga Glu Ala Lys Gly 285	aaa gct gtg gag Lys Ala Val Glu 290	acc aaa gat act Thr Lys Asp Thr 295	gcc aag gaa aac Ala Lys Glu Asn	916
atg gag aaa gct o Met Glu Lys Ala o 300	gga gaa gta aca Gly Glu Val Thr 305	aga caa aag atg Arg Gln Lys Met 310	gag gaa atg aga Glu Glu Met Arg 315	964
ttg gaa ggt aaa (Leu Glu Gly Lys (gag ctc aaa gaa Glu Leu Lys Glu 320	gaa gct gga gca Glu Ala Gly Ala 325	aaa gcc caa gag Lys Ala Gln Glu 330	1012
gca tct caa aag a Ala Ser Gln Lys 1 335	Thr Arg Glu Ser	act gag tcg gga Thr Glu Ser Gly 340	gct caa aaa gcc Ala Gln Lys Ala 345	1060
gaa gag acc aaa g Glu Glu Thr Lys i 350	Asp Ser Pro Ala 355	Val Arg Gly Asn	Glu Ala Lys Gly 360	1108
act att ttt ggt g Thr Ile Phe Gly 1 365	Ala Leu Gly Asn 370	Val Thr Glu Ala 375	Ile Lys Ser Lys	1156
ctg aca atg cca t Leu Thr Met Pro S 380	Ser Asp Ile Val	Glu Glu Thr Arg 390	Ala Ala Arg Glu 395	1204
	Gly Arg Thr Val ' 400	Val Glu Val Lys 405	Val Glu Asp Ser 410	1252
aag ccg ggt aag g Lys Pro Gly Lys V 415	Val Ala Thr Ser	Leu Lys Ala Ser 420	Asp Gln Met Thr 425	1300
ggt caa aca ttc a Gly Gln Thr Phe A 430	Asn Asp Val Gly 1 435	Arg Met Asp Asp	gat gct cgg aaa Asp Ala Arg Lys 440	1348
gat aag gga aag d Asp Lys Gly Lys I 445		ga		1376
<210> 82 <211> 448				

<210> 82 <211> 448 <212> PRT <213> Arabidopsis thaliana

<400> 82

Met Ala Ser Asp Lys Gln Lys Ala Glu Arg Ala Glu Val Ala Ala Arg Leu Ala Ala Glu Asp Leu His Asp Ile Asn Lys Ser Gly Gly Ala Asp Val Thr Met Tyr Lys Val Thr Glu Arg Thr Thr Glu His Pro Pro Glu Gln Asp Arg Pro Gly Val Ile Gly Ser Val Phe Arg Ala Val Gln Gly Thr Tyr Glu His Ala Arg Asp Ala Val Val Gly Lys Thr His Glu Ala Ala Glu Ser Thr Lys Glu Gly Ala Gln Ile Ala Ser Glu Lys Ala Val 90 Gly Ala Lys Asp Ala Thr Val Glu Lys Ala Lys Glu Thr Ala Asp Tyr 105 Thr Ala Glu Lys Val Gly Glu Tyr Lys Asp Tyr Thr Val Asp Lys Ala Lys Glu Ala Lys Asp Thr Thr Ala Glu Lys Ala Lys Glu Thr Ala Asn Tyr Thr Ala Asp Lys Ala Val Glu Ala Lys Asp Lys Thr Ala Glu Lys Ile Gly Glu Tyr Lys Asp Tyr Ala Val Asp Lys Ala Val Glu Ala Lys 165 170 Asp Lys Thr Ala Glu Lys Ala Lys Glu Thr Ser Asn Tyr Thr Ala Asp Lys Ala Lys Glu Ala Lys Asp Lys Thr Ala Glu Lys Val Gly Glu Tyr 200 Lys Asp Tyr Thr Val Asp Lys Ala Val Glu Ala Arg Asp Tyr Thr Ala 215 Glu Lys Ala Ile Glu Ala Lys Asp Lys Thr Ala Glu Lys Thr Gly Glu 225 235 Tyr Lys Asp Tyr Thr Val Glu Lys Ala Thr Glu Gly Lys Asp Val Thr Val Ser Lys Leu Gly Glu Leu Lys Asp Ser Ala Val Glu Thr Ala Lys 265 Arg Ala Met Gly Phe Leu Ser Gly Lys Thr Glu Glu Ala Lys Gly Lys Ala Val Glu Thr Lys Asp Thr Ala Lys Glu Asn Met Glu Lys Ala Gly 290 300

G1: 305	ı Val	Thr	Arg	Gln	Lys 310	Met	Glu	Glu	Met	Arg 315	Leu	Glu	Gly	Lys	Glu 320	
Leu	ı Lys	Glu	Glu	Ala 325	Gly	Ala	Lys	Ala	Gln 330	Glu	Ala	Ser	Gln	Lys 335	Thr	
Arg	g Glu	Ser	Thr 340	Glu	Ser	Gly	Ala	Gln 345	Lys	Ala	Glu	Glu	Thr 350		Asp	
Ser	Pro	Ala 355	Val	Arg	Gly	Asn	Glu 360	Ala	Lys	Gly	Thr	Ile 365		Gly	Ala	
Leu	370	Asn	Val	Thr	Glu	Ala 375	Ile	Lys	Ser	Lys	Leu 380	Thr	Met	Pro	Ser	
Asp 385	Ile	Val	Glu	Glu	Thr 390	Arg	Ala	Ala	Arg	Glu 395	His	Gly	Gly	Thr	Gly 400	
Arg	Thr	Val	Val	Glu 405	Val	Lys	Val	Glu	Asp 410	Ser	Lys	Pro	Gly	Lys 415	Val	
Ala	Thr	Ser	Leu 420	Lys	Ala	Ser	Asp	Gln 425	Met	Thr	Gly	Gln	Thr 430	Phe	Asn	
Asp	Val	Gly 435	Arg	Met	Asp	Asp	Asp 440	Ala	Arg	Lys	Asp	Lys 445	Gly	Lys	Leu	
<21 <21 <21 <22 <22 <22 <22	1> CI 2> (:	51 NA rabio OS L8)			aalia	na										
	0> 83 cacad		itaca	aa a M	tg a let A 1	at g sn G	aa a lu M	tg t let S	cg t Ser P 5	tc t	tt g he G	gt t ly 1	at a	agt t Ser I 10	tc he	50
atc Ile	gta Val	gta Val	gca Ala 15	tta Leu	ttc Phe	ttc Phe	gat Asp	tta Leu 20	act Thr	caa Gln	gcc Ala	tat Tyr	cgt Arg 25	cac His	act Thr	98
ccc Pro	gct Ala	caa Gln 30	ccg Pro	cca Pro	aaa Lys .	gca Ala	aac Asn 35	gca Ala	aac Asn	ggt Gly	gat Asp	gtc Val 40	aaa Lys	ccg Pro	caa Gln	146
gaa Glu	acg Thr 45	ctc Leu	gtg Val	gtt Val	cac His	aac Asn 50	aag Lys	gcc Ala	cga Arg	gcc Ala	atg Met 55	gtc Val	gga Gly	gtc Val	gga Gly	194
cca Pro	atg Met	gtg Val	tgg Trp	aac Asn	gaa . Glu '	act Thr	ctt Leu .	gcg Ala	acc Thr	tat Tyr	gca Ala	cag Gln	agc Ser	tac Tyr	gca Ala	242

60		65		70			75
cat gaa cg His Glu Ar	a gcc aga g Ala Arg 80	gac tgt Asp Cys	gcc atg Ala Met	aag cat Lys His 85	tcc ttg Ser Leu	gga cca Gly Pro 90	Phe
ggc gag aa Gly Glu As	t cta gcc n Leu Ala 95	gcg ggt Ala Gly	tgg gga Trp Gly 100	acg atg Thr Met	agc ggt Ser Gly	ccg gta Pro Val 105	gca 338 Ala
act gag ta Thr Glu Ty 11	r Trp Met	acg gag Thr Glu	aag gaa Lys Glu 115	aat tac Asn Tyr	gat tat Asp Tyr 120	gat agt Asp Ser	aac 386 Asn
acg tgt gg Thr Cys Gl 125	t ggt gat y Gly Asp	ggt gtg Gly Val 130	tgt gga Cys Gly	cac tac His Tyr	act cag Thr Gln 135	atc gtg Ile Val	tgg 434 Trp
cgt gac to Arg Asp Se 140	g gtt cga r Val Arg	ctt ggt Leu Gly 145	tgt gcc Cys Ala	tcc gtg Ser Val 150	aga tgt Arg Cys	aag aat Lys Asn	gat 482 Asp 155
gag tat at Glu Tyr Il	t tgg gtg e Trp Val 160	att tgt Ile Cys	agc tat Ser Tyr	gat cct Asp Pro 165	ccg ggg Pro Gly	aat tac Asn Tyr 170	atc 530 Ile
ggt caa cg Gly Gln Ar		tag tgat	tggatt (cta			561
<210> 84 <211> 176 <212> PRT <213> Arab	idopsis th	naliana					
<400> 84 Met Asp Gl	1 Met Ser	Phe Phe	C1				
1	5	THE FILE		Com Dho	T1 - **-1		_
	-		GIY TYP	Ser Phe 10	Ile Val	Val Ala 15	Leu
Phe Phe As	Deu Thr			10		15	
Phe Phe As Lys Ala As	Leu Thr 20	Gln Ala	Tyr Arg 25	10 His Thr	Pro Ala	Gln Pro 30	Pro
Lys Ala As	Leu Thr 20 n Ala Asn	Gln Ala	Tyr Arg 25 Val Lys 40	10 His Thr Pro Gln	Pro Ala Glu Thr 45	Gln Pro 30 Leu Val	Pro Val
Lys Ala As 3 His Asn Ly	Leu Thr 20 n Ala Asn 5 s Ala Arg	Gln Ala Gly Asp Ala Met 55	Tyr Arg 25 Val Lys 40 Val Gly	His Thr Pro Gln Val Gly	Pro Ala Glu Thr 45 Pro Met	Gln Pro 30 Leu Val Val Trp	Pro Val Asn
Lys Ala As 3 His Asn Ly 50 Glu Thr Le	Leu Thr 20 n Ala Asn s Ala Arg	Gln Ala Gly Asp Ala Met 55 Tyr Ala 70	Tyr Arg 25 Val Lys 40 Val Gly Gln Ser	His Thr Pro Gln Val Gly Tyr Ala 75	Pro Ala Glu Thr 45 Pro Met 60 His Glu	Gln Pro 30 Leu Val Val Trp Arg Ala	Pro Val Asn Arg 80

Thr Glu Lys Glu Asn Tyr Asp Tyr Asp Ser Asn Thr Cys Gly Gly Asp

120 Gly Val Cys Gly His Tyr Thr Gln Ile Val Trp Arg Asp Ser Val Arg 140 Leu Gly Cys Ala Ser Val Arg Cys Lys Asn Asp Glu Tyr Ile Trp Val Ile Cys Ser Tyr Asp Pro Pro Gly Asn Tyr Ile Gly Gln Arg Pro Tyr 170 <210> 85 <211> 988 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (12)..(977) <400> 85 tttttaagaa a atg gca gct tct aag cga cta gtt gtc tct tgc ttg ttc Met Ala Ala Ser Lys Arg Leu Val Val Ser Cys Leu Phe tta gtt ttg ttg ttt gct caa gcc aat tcg caa ggt ttg aaa gta ggt Leu Val Leu Leu Phe Ala Gln Ala Asn Ser Gln Gly Leu Lys Val Gly 20 ttc tac agc aaa aca tgc cca caa ctc gag ggt ata gtt aaa aag gtc Phe Tyr Ser Lys Thr Cys Pro Gln Leu Glu Gly Ile Val Lys Lys Val 40 gtg ttc gat gcg atg aac aaa gca cca aca ctt ggt gct cct ttg ctt

aga atg ttc ttc cac gac tgc ttc gtt cgg gga tgt gac gga tca gtt Arg Met Phe His Asp Cys Phe Val Arg Gly Cys Asp Gly Ser Val 65 ttg tta gat aaa cca aac aat caa ggt gag aag agt gca gtt cct aac 290 Leu Leu Asp Lys Pro Asn Asn Gln Gly Glu Lys Ser Ala Val Pro Asn 80 85 cta agt ctt cga ggg ttt ggc atc ata gac gat tcc aag gcg gct cta 338 Leu Ser Leu Arg Gly Phe Gly Ile Ile Asp Asp Ser Lys Ala Ala Leu 95 100 gaa aaa gtg tgt ccg gga att gtt tct tgc tct gat atc ttg gca ctt 386 Glu Lys Val Cys Pro Gly Ile Val Ser Cys Ser Asp Ile Leu Ala Leu 110 115

Val Phe Asp Ala Met Asn Lys Ala Pro Thr Leu Gly Ala Pro Leu Leu

55

194

gtc Val	gct Ala	aga Arg	gac Asp	gca Ala 130	atg Met	gtt Val	gca Ala	ctt Leu	gaa Glu 135	gga Gly	cca Pro	tca Ser	tgg Trp	gaa Glu 140	gtt Val	434
gaa Glu	acg Thr	gga Gly	aga Arg 145	aga Arg	gac Asp	ggt Gly	agg Arg	gtt Val 150	tct Ser	aac Asn	atc Ile	aac Asn	gaa Glu 155	gtc Val	aac Asn	482
ttg Leu	cca Pro	tca Ser 160	cct Pro	ttt Phe	gat Asp	aac Asn	atc Ile 165	acc Thr	aag Lys	ctt Leu	atc Ile	agc Ser 170	gat Asp	ttt Phe	cgc Arg	530
ser	Lys 175	ggc Gly	геп	Asn	Glu	Lys 180	Asp	Leu	Val	Ile	Leu 185	Ser	Gly	Gly	His	578
190	TIE	gga Gly	met	GIA	H1S 195	Cys	Pro	Leu	Leu	Thr 200	Asn	Arg	Leu	Tyr	Asn 205	626
Pne	THE	gga Gly	rys	210	Asp	Ser	Asp	Pro	Ser 215	Leu	Asp	Ser	Glu	Tyr 220	Ala	674
Ala	rys	ctc Leu	Arg 225	Lys	Lys	Суз	Lys	Pro 230	Thr	Asp	Thr	Thr	Thr 235	Ala	Leu	722
GIU	Met	gat Asp 240	Pro	GIA	Ser	Phe	Lys 245	Thr	Phe	Asp	Leu	Ser 250	Tyr	Phe	Thr	770
ren	255	gct Ala	Lys	Arg	Arg	Gly 260	Leu	Phe	Gln	Ser	Asp 265	Ala	Ala	Leu	Leu	818
270	Asn	tcc Ser	ьуs	Tnr	Arg 275	Ala	Tyr	Val	Leu	Gln 280	Gln	Ile	Arg	Thr	His 285	866
Gly	tca Ser	atg Met	ttc Phe	ttt Phe 290	aac Asn	Asp	Phe	Gly	gtc Val 295	Ser	atg Met	gtg Val	aaa Lys	atg Met 300	ggt Gly	914
cgg Arg	act Thr	gga Gly	gtt Val 305	ctt Leu	acg Thr	ggt Gly	aag Lys	gcc Ala 310	GJÀ aaa	gag Glu	atc Ile	cgt Arg	aag Lys 315	acg Thr	tgt Cys	962
		gct Ala 320		taa	gaga	tata	ga a	a								989

<210> 86

<211> 321

<212> PRT

<213> Arabidopsis thaliana

<400> 86

Met Ala Ala Ser Lys Arg Leu Val Val Ser Cys Leu Phe Leu Val Leu

1 5 10 15

Leu Phe Ala Gln Ala Asn Ser Gln Gly Leu Lys Val Gly Phe Tyr Ser 20 25 30

Lys Thr Cys Pro Gln Leu Glu Gly Ile Val Lys Lys Val Val Phe Asp 35 40 45

Ala Met Asn Lys Ala Pro Thr Leu Gly Ala Pro Leu Leu Arg Met Phe 50 55 60

Phe His Asp Cys Phe Val Arg Glý Cys Asp Gly Ser Val Leu Leu Asp 65 70 75 80

Lys Pro Asn Asn Gln Gly Glu Lys Ser Ala Val Pro Asn Leu Ser Leu 85 90 95

Arg Gly Phe Gly Ile Ile Asp Asp Ser Lys Ala Ala Leu Glu Lys Val

Cys Pro Gly Ile Val Ser Cys Ser Asp Ile Leu Ala Leu Val Ala Arg 115 120 125

Asp Ala Met Val Ala Leu Glu Gly Pro Ser Trp Glu Val Glu Thr Gly 130 135 140

Arg Arg Asp Gly Arg Val Ser Asn Ile Asn Glu Val Asn Leu Pro Ser 145 150 155 160

Pro Phe Asp Asn Ile Thr Lys Leu Ile Ser Asp Phe Arg Ser Lys Gly 165. 170 175

Leu Asn Glu Lys Asp Leu Val Ile Leu Ser Gly Gly His Thr Ile Gly 180 185 190

Met Gly His Cys Pro Leu Leu Thr Asn Arg Leu Tyr Asn Phe Thr Gly 195 200 205

Lys Gly Asp Ser Asp Pro Ser Leu Asp Ser Glu Tyr Ala Ala Lys Leu 210 215 220

Arg Lys Lys Cys Lys Pro Thr Asp Thr Thr Thr Ala Leu Glu Met Asp 225 230 235 240

Pro Gly Ser Phe Lys Thr Phe Asp Leu Ser Tyr Phe Thr Leu Val Ala 245 250 255

Lys Arg Arg Gly Leu Phe Gln Ser Asp Ala Ala Leu Leu Asp Asn Ser 260 265 270

Lys Thr Arg Ala Tyr Val Leu Gln Gln Ile Arg Thr His Gly Ser Met 275 280 285

Phe Phe Asn Asp Phe Gly Val Ser Met Val Lys Met Gly Arg Thr Gly

	290					295					300					
Val 305	Leu	Thr	Gly	Lys	Ala 310	Gly	Glu	Ile	Arg	Lys 315		Cys	Arg	Ser	Ala 320	
Asn																
<21:	0> 8 1> 6 2> D 3> A	50 NA	dops	is t	hali	ana										
	1> C		(634)												
	0> 8 gaca	atg	gcg Ala	tcg Ser	att Ile	acg Thr 5	aac Asn	ctc Leu	gcc Ala	tct Ser	tct Ser 10	ctc Leu	tct Ser	tca Ser	ctc	49
tcg Ser 15	ttc Phe	tcc Ser	tcc Ser	caa Gln	gtt Val 20	tct Ser	caa Gln	aga Arg	cct Pro	aac Asn 25	acc Thr	att Ile	tcc Ser	ttc Phe	ccc Pro	97
cgc Arg	gcg Ala	aat Asn	tca Ser	gta Val 35	ttc Phe	gca Ala	tta Leu	ccg Pro	gcg Ala 40	aaa Lys	tcc Ser	gca Ala	cgc Arg	cgc Arg 45	gct Ala	145
tct Ser	cta Leu	tct Ser	atc Ile 50	acc Thr	gcc Ala	acg Thr	gta Val	tct Ser 55	gct Ala	cca Pro	ccg Pro	gag Glu	gag Glu 60	gag Glu	gag Glu	193
ata Ile	gtt Val	gaa Glu 65	ctg Leu	aag Lys	aaa Lys	tac Tyr	gtc Val 70	aaa Lys	tcg Ser	agg Arg	ctt Leu	ccc Pro 75	gga Gly	gga Gly	ttt Phe	241
gct Ala	gct Ala 80	cag Gln	aag Lys	att Ile	att Ile	ggc Gly 85	act Thr	gga Gly	cga Arg	cgt Arg	aag Lys 90	tgc Cys	gca Ala	atc Ile	gct Ala	289
aga Arg 95	gtt Val	gtt Val	ctt Leu	cag Gln	gaa Glu 100	ggt Gly	act Thr	Gly ggg	aag Lys	gtt Val 105	atc Ile	atc Ile	aac Asn	tat Tyr	cgt Arg 110	337
gat Asp	gcc Ala	aag Lys	gag Glu	tac Tyr 115	ctt Leu	cag Gln	gga Gly	aat Asn	cca Pro 120	ttg Leu	tgg Trp	ctt Leu	cag Gln	tat Tyr 125	gtt Val	385
aaa Lys	gta Val	cca Pro	ttg Leu 130	gtg Val	act Thr	tta Leu	gga Gly	tat Tyr 135	gag Glu	aat Asn	agc Ser	tac Tyr	gac Asp 140	ata Ile	ttt Phe	433
gtg Val	aaa Lvs	gcc Ala	cat His	gga Glv	ggc Glv	ggt Glv	ctc	tca	ggt	caa	gct	caa	gca	att	acc	481

		145					150					155		•		
ttg Leu	gga Gly 160	gtc Val	gca Ala	cgt Arg	gca Ala	ctc Leu 165	ctg Leu	aag Lys	gta Val	agt Ser	gca Ala 170	gac Asp	cac	aga Arg	tcg Ser	529
cct Pro 175	ttg Leu	aag Lys	aag Lys	gaa Glu	ggt Gly 180	ttg Leu	ctc Leu	act Thr	aga Arg	gat Asp 185	gcg Ala	aga Arg	gtg Val	gtt Val	gaa Glu 190	577
aga Arg	aag Lys	aag Lys	gcc Ala	ggg Gly 195	ctc Leu	aag Lys	aag Lys	gcg Ala	cgt Arg 200	Lys	gcc Ala	cca Pro	caa Gln	ttc Phe 205	tcc Ser	625
	cgt Arg	.taa	gag	ttt t	ata 1	tatca	at ·									650
<21: <21: <21:	0> 88 1> 26 2> PI 3> Ar	08 RT rabio	dops	is t	halia	ana										
	0> 88 Ala		Ile	Thr 5	Asn	Leu	Ala	Ser	Ser 10	Leu	Ser	Ser	Leu	Ser 15	Phe	
Ser	Ser	Gln	Val 20	Ser	Gln	Arg	Pro	Asn 25	Thr	Ile	Ser	Phe	Pro 30	Arg	Ala	
Asn	Ser	Val 35	Phe	Ala	Leu	Pro	Ala 40	Lys	Ser	Ala	Arg	Arg 45	Ala	Ser	Leu	
Ser	Ile 50	Thr	Ala	Thr	Val	Ser 55	Ala	Pro	Pro	Glu	Glu 60	Glu	Glu	Ile	Val	
Glu 65	Leu	Lys	Lys	Tyr	Val 70	Lys	Ser	Arg	Leu	Pro 75	Gly	Gly	Phe	Ala	Ala 80	
Gln	Lys	Ile	Ile	Gly 85	Thr	Gly	Arg	Arg	Lys 90	Cys	Ala	Ile	Ala	Arg 95	Val	
Val	Leu	Gln	Glu 100	Gly	Thr	Gly	Lys	Val 105	Ile	Ile	Asn	Tyr	Arg 110	Asp	Ala	
Lys	Glu	Tyr 115	Leu	Gln	Gly	Asn	Pro 120	Leu	Trp	Leu	Gln	Tyr 125	Val	Lys	Val	
Pro	Leu 130	Val	Thr	Leu	Gly	Tyr 135	Glu	Asn	Ser	Tyr	Asp 140	Ile	Phe	Val	Lys	
Ala 145	His	Gly	Gly	Gly	Leu 150	Ser	Gly	Gln	Ala	Gln 155	Ala	Ile	Thr	Leu	Gly 160	

Val Ala Arg Ala Leu Leu Lys Val Ser Ala Asp His Arg Ser Pro Leu 165 . 170 . 175

Lys Lys Glu Gly Leu Leu Thr Arg Asp Ala Arg Val Val Glu Arg Lys 180 185 190 .

Lys Ala Gly Leu Lys Lys Ala Arg Lys Ala Pro Gln Phe Ser Lys Arg 200 205

<210> 89 <211> 1223 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (16)..(1215) <400> 89 aacaagtgaa gcaca atg ggg atc atc gaa agg att aaa gaa atc gag gcc Met Gly Ile Ile Glu Arg Ile Lys Glu Ile Glu Ala gag atg gct cgg act cag aag aat aaa gct aca gag tat cat ctt ggt 99 Glu Met Ala Arg Thr Gln Lys Asn Lys Ala Thr Glu Tyr His Leu Gly 15 20 cag ctc aag gca aag att gca aaa ctc agg aca caa ctg ttg gag cct 147 Gln Leu Lys Ala Lys Ile Ala Lys Leu Arg Thr Gln Leu Leu Glu Pro 35 cca aaa ggt gct agt gga ggc ggg gaa ggt ttt gaa gtt acc aag tat 195 Pro Lys Gly Ala Ser Gly Gly Gly Glu Gly Phe Glu Val Thr Lys Tyr ggt cat gga cgt gtt gca ctt ata gga ttt cct agt gtc gga aag tcc 243 Gly His Gly Arg Val Ala Leu Ile Gly Phe Pro Ser Val Gly Lys Ser 65 acg ctt ttg act atg tta act gga aca cat tct gaa gca gcc tca tat 291 Thr Leu Leu Thr Met Leu Thr Gly Thr His Ser Glu Ala Ala Ser Tyr gaa ttt aca aca ctt aca tgc atc cct ggt gta att cac tac aac gac 339 Glu Phe Thr Thr Leu Thr Cys Ile Pro Gly Val Ile His Tyr Asn Asp 100 aca aag att cag ctt ctc gat ctt cct ggg att att gaa ggt gct tcg 387 Thr Lys Ile Gln Leu Leu Asp Leu Pro Gly Ile Ile Glu Gly Ala Ser 110 115 120 gaa gga aag ggg cga gga agg cag gtt att gct gtt gca aag tct tcc

Glu Gly Lys Gly Arg Gly Arg Gln Val Ile Ala Val Ala Lys Ser Ser

gac ctt gta ttg atg gtt ctt gat gcc tca aaa agc gaa ggc cac agg Asp Leu Val Leu Met Val Leu Asp Ala Ser Lys Ser Glu Gly His Arg

145

150

135

125

caa Gln	ata Ile	ttg Leu	act Thr 160	aag Lys	gaa Glu	ctt Leu	gag Glu	gca Ala 165	gtg Val	ggc	ttg Leu	cga Arg	cta Leu 170	aac Asn	aaa Lys	531
act Thr	cct Pro	ccg Pro 175	cag Gln	ata Ile	tac Tyr	ttt Phe	aaa Lys 180	aag Lys	aaa Lys	aag Lys	act Thr	ggt Gly 185	gga Gly	atc Ile	tct Ser	5.79
ttc Phe	aac Asn 190	act Thr	aca Thr	gca Ala	ccc Pro	ttg Leu 195	act Thr	cac His	att Ile	gat Asp	gag Glu 200	aag Lys	ctc Leu	tgt Cys	tat Tyr	627
caa Gln 205	atc Ile	ctg Leu	cat His	gaa Glu	tac Tyr 210	aag Lys	att Ile	cac His	aat Asn	gct Ala 215	gag Glu	gtg Val	cta Leu	ttt Phe	cgt Arg 220	675
gag Glu	aat Asn	gcc Ala	aca Thr	gtg Val 225	gat Asp	gac Asp	ttt Phe	att Ile	gat Asp 230	gtc Val	att Ile	gaa Glu	ggc Gly	aac Asn 235	cgc Arg	723
Lys	Tyr	Ile	Lys 240	Cys	gtt Val	Tyr	Val	Tyr 245	Ile	Lys	Ile	Asp	Val 250	Val	Gly	771
Ile	Asp	Asp 255	Val	Asp	aga Arg	Leu	Ser 260	Arg	Gln	Pro	Asn	Ser 265	Ile	Val	Ile	819
agc Ser	tgc Cys 270	aat Asn	ctt Leu	aag Lys	ctt Leu	aac Asn 275	tta Leu	gac Asp	aga Arg	cta Leu	ctt Leu 280	gct Ala	agg Arg	atg Met	tgg Trp	867
285	GIu	Met	Gly	Leu	gtg Val 290	Arg	Val	Tyr	Ser	Lys 295	Pro	Gln	Gly	Gln	Gln 300	915
cca Pro	gat Asp	ttc Phe	gat Asp	gag Glu 305	cct Pro	ttt Phe	gtc Val	ctc Leu	tca Ser 310	tct Ser	gat Asp	cga Arg	ggt Gly	ggc Gly 315	tgc Cys	963
aca Thr	gtg Val	gaa Glu	gac Asp 320	ttc Phe	tgt Cys	aac Asn	cac His	gtc Val 325	cac His	agg Arg	act Thr	ctg Leu	gtg Val 330	Lys	gat Asp	1011
atg Met	aag Lys	tat Tyr 335	gca Ala	ctc Leu	gtt Val	tgg Trp	ggc Gly 340	aca Thr	agc Ser	aca Thr	agg Arg	cac His 345	aat Asn	cca Pro	cag Gln	1059
aat Asn	tgt Cys 350	ggt Gly	ctt Leu	tct Ser	caa Gln	cat His 355	ctt Leu	gaa Glu	gac Asp	gaa Glu	gat Asp 360	gtt Val	gtt Val	cag Gln	atc Ile	1107
gtc Val 365	aag Lys	aaa Lys	aag Lys	gag Glu	aga Arg 370	gac Asp	gaa Glu	gga Gly	gga Gly	aga Arg 375	ggc Gly	cgg Arg	ttc Phe	aag Lys	tca Ser 380	1155

cac tca aac gcc cct gct aga att gca gac aga gag aaa aaa gct cct 1203 His Ser Asn Ala Pro Ala Arg Ile Ala Asp Arg Glu Lys Lys Ala Pro 385 390 395

ctt aag caa taa gcttttag Leu Lys Gln

1223

400

<210> 90 <211> 399 <212> PRT <213> Arabidopsis thaliana

<400> 90

Met Gly Ile Ile Glu Arg Ile Lys Glu Ile Glu Ala Glu Met Ala Arg

1 5 10 15

Thr Gln Lys Asn Lys Ala Thr Glu Tyr His Leu Gly Gln Leu Lys Ala 20 25 30

Lys Ile Ala Lys Leu Arg Thr Gln Leu Leu Glu Pro Pro Lys Gly Ala
35 40 45

Ser Gly Gly Glu Gly Phe Glu Val Thr Lys Tyr Gly His Gly Arg 50 55 60

Val Ala Leu Ile Gly Phe Pro Ser Val Gly Lys Ser Thr Leu Leu Thr 65 70 75 80

Met Leu Thr Gly Thr His Ser Glu Ala Ala Ser Tyr Glu Phe Thr Thr 85 90 95

Leu Thr Cys Ile Pro Gly Val Ile His Tyr Asn Asp Thr Lys Ile Gln
100 105 110

Leu Leu Asp Leu Pro Gly Ile Ile Glu Gly Ala Ser Glu Gly Lys Gly 115 120 125

Arg Gly Arg Gln Val Ile Ala Val Ala Lys Ser Ser Asp Leu Val Leu 130 135 140

Met Val Leu Asp Ala Ser Lys Ser Glu Gly His Arg Gln Ile Leu Thr 145 155 160

Lys Glu Leu Glu Ala Val Gly Leu Arg Leu Asn Lys Thr Pro Pro Gln 165 170 175

Ile Tyr Phe Lys Lys Lys Thr Gly Gly Ile Ser Phe Asn Thr Thr 180 185 190

Ala Pro Leu Thr His Ile Asp Glu Lys Leu Cys Tyr Gln Ile Leu His 195 200 205

Glu Tyr Lys Ile His Asn Ala Glu Val Leu Phe Arg Glu Asn Ala Thr 210 215 220

Val Asp Asp Phe Ile Asp Val Ile Glu Gly Asn Arg Lys Tyr Ile Lys 235 Cys Val Tyr Val Tyr Ile Lys Ile Asp Val Val Gly Ile Asp Asp Val 250 Asp Arg Leu Ser Arg Gln Pro Asn Ser Ile Val Ile Ser Cys Asn Leu 265 Lys Leu Asn Leu Asp Arg Leu Leu Ala Arg Met Trp Asp Glu Met Gly 280 285 Leu Val Arg Val Tyr Ser Lys Pro Gln Gly Gln Gln Pro Asp Phe Asp Glu Pro Phe Val Leu Ser Ser Asp Arg Gly Gly Cys Thr Val Glu Asp 305 310 315 Phe Cys Asn His Val His Arg Thr Leu Val Lys Asp Met Lys Tyr Ala Leu Val Trp Gly Thr Ser Thr Arg His Asn Pro Gln Asn Cys Gly Leu 345 350 Ser Gln His Leu Glu Asp Glu Asp Val Val Gln Ile Val Lys Lys 360 Glu Arg Asp Glu Gly Gly Arg Gly Arg Phe Lys Ser His Ser Asn Ala 370 Pro Ala Arg Ile Ala Asp Arg Glu Lys Lys Ala Pro Leu Lys Gln 390 <210> 91 <211> 536 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (12)..(524) <400> 91 aaataaaaac a atg aca agc tcc gat caa tct cca tcg cac gac gtc ttc Met Thr Ser Ser Asp Gln Ser Pro Ser His Asp Val Phe gtc tac ggc agt ttc caa gaa cca gcc gtt gtt aat tta att ctc gaa 98 Val Tyr Gly Ser Phe Gln Glu Pro Ala Val Val Asn Leu Ile Leu Glu 15 20 tgt gct ccg gtc atg gtt tcc gct caa ctc cac ggc tat cac ttg tat Cys Ala Pro Val Met Val Ser Ala Gln Leu His Gly Tyr His Leu Tyr 30

40

aga Arg	Leu	aaa Lys	ggt Gly	Arg 50	ttg Leu	cat His	cca Pro	tgt Cys	att Ile 55	tct Ser	cct Pro	tcc Ser	gac Asp	aat Asn 60	gga Gly	194
tta Leu	atc Ile	aat Asn	ggc Gly 65	aag Lys	ata Ile	cta Leu	act Thr	gga Gly 70	tta Leu	aca Thr	gat Asp	tct Ser	cag Gln 75	tta Leu	gag Glu	242
agt Ser	tta Leu	gat Asp 80	atg Met	att Ile	gaa Glu	gga Gly	act Thr 85	gaa Glu	tat Tyr	gtg Val	agg Arg	aag Lys 90	act Thr	gtt Val	gaa Glu	290
gtt Val	gtt Val 95	ttg Leu	act Thr	gat Asp	act Thr	ttg Leu 100	gag Glu	aag Lys	aag Lys	caa Gln	gtt Val 105	gaa Glu	aca Thr	att Ile	gta Val	338
tgg Trp 110	gca Ala	aac Asn	aag Lys	gat Asp	gat Asp 115	cct Pro	aat Asn	atg Met	tat Tyr	gga Gly 120	gaa Glu	tgg Trp	gat Asp	ttc Phe	gag Glu 125	386
gaa Glu	tgg Trp	aag Lys	agg Arg	ctt Leu 130	cat His	atg Met	gag Glu	aaa Lys	ttt Phe 135	ata Ile	gag Glu	gcg Ala	gcg Ala	acg Thr 140	aaa Lys	434
ttc Phe	atg Met	gag Glu	tgg Trp 145	aag Lys	aag Lys	aat Asn	ccg Pro	aat Asn 150	Gly ggg	aga Arg	agt Ser	agg Arg	gaa Glu 155	gag Glu	ttt Phe	482
gag Glu	aag Lys	ttt Phe 160	gta Val	caa Gln	gat Asp	gat Asp	tct Ser 165	tct Ser	ccg Pro	gct Ala	tcg Ser	gct Ala 170	tga			524
agaa	agtto	ytt t	a													536
<211 <212	0> 92 l> 17 2> PF 3> Ar	70 RT	lopsi	s th	nalia	ına										
<400)> 92	2														
1	Thr			5					10					15	-	
Ser	Phe	Gln	Glu 20	Pro	Ala	Val	Val	Asn 25	Leu	Ile	Leu	Glu	Cys 30	Ala	Pro	
Val	Met	Va1 35	Ser	Ala	Gln	Leu	His 40	Gly	Tyr	His	Leu	Tyr 45	Arg	Leu	Lys	
Gly	Arg 50	Leu	His	Pro	Cys	Ile 55	Ser	Pro	Ser	Asp	Asn 60	Gly	Leu	Ile	Asn	
Gly 65	Lys	Ile	Leu	Thr	Gly 70	Leu	Thr	Asp	Ser	Gln 75	Leu	Glu	Ser	Leu	Asp 80	
Met	Ile	Glu	Gly	Thr	Glu	Tyr	Val	Arg	Lys	Thr	Val	Glu	Val	Val	Leu	

	85		90	95	
Thr Asp Thr L	eu Glu Lys L 00	ys Gln Val 105	Glu Thr Ile	Val Trp Ála 110	Asn
Lys Asp Asp P: 115	ro Asn Met T	Tyr Gly Glu 120	Trp Asp Phe	Glu Glu Trp 125	Lys
Arg Leu His Mo	et Glu Lys P 1	Phe Ile Glu . .35	Ala Ala Thr 140	Lys Phe Met	Glu
Trp Lys Lys A: 145	sn Pro Asn G 150	Sly Arg Ser	Arg Glu Glu 155	Phe Glu Lys	Phe 160
Val Gln Asp A	sp Ser Ser P 165		Ala 170		
<210> 93 <211> 293 <212> DNA <213> Arabidor <220> <221> CDS <222> (16)(3) <220> <221> CDS <222> (177)6	71)	â			
agagaagtaa gag	gaa atg gca g Met Ala (1	ggt tct aac Gly Ser Asn 5	tgt gga tgt Cys Gly Cys	ggc tcc tcc Gly Ser Ser 10	c tgc 51 r Cys
aaa tgt ggt ga Lys Cys Gly As 15	at tcg tgc ag sp Ser Cys Se	g gtaaacccta e	a gattctctct	tcattaactt	101
atcatgcata tat	tatcctaa tata	acatgtg gtta	acatatt cctt	aagata aatt	tgaaa 161
tettataett etg	gttgtttt ttto	ggtatga caaa		aag aac tad Lys Asn Tyr	

aag gag tgt gat aac tgt agc tgt gga tca aac tgc agc tgc ggg tca

Lys Glu Cys Asp Asn Cys Ser Cys Gly Ser Asn Cys Ser Cys Gly Ser

agc tgt aac tgt tga agaaattatc agcat Ser Cys Asn Cys 45

293

263

<210> 94

<211> 45 <212> PRT <213> Arabidopsis thaliana <400> 94 Met Ala Gly Ser Asn Cys Gly Cys Gly Ser Ser Cys Lys Cys Gly Asp 10 Ser Cys Ser Cys Glu Lys Asn Tyr Asn Lys Glu Cys Asp Asn Cys Ser 25 Cys Gly Ser Asn Cys Ser Cys Gly Ser Ser Cys Asn Cys 40 <210> 95 <211> 880 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (14)..(868) <400> 95 cacaccaaca cca atg tot got tot tot tta ttt aat ctc cca ttg att 49 Met Ser Ala Ser Ser Leu Phe Asn Leu Pro Leu Ile ege etc aga tet etc get ett teg tet tet tet tet tet ega ttt Arg Leu Arg Ser Leu Ala Leu Ser Ser Ser Phe Ser Ser Phe Arg Phe gcc cat cgt cct ctg tca tcg att tca ccg aga aag tta ccg aat ttt 145 Ala His Arg Pro Leu Ser Ser Ile Ser Pro Arg Lys Leu Pro Asn Phe cgt gct ttc tct ggt acc gct atg aca gat act aaa gat gct ggt atg 193 Arg Ala Phe Ser Gly Thr Ala Met Thr Asp Thr Lys Asp Ala Gly Met gat gct gtt cag aga cgt ctc atg ttt gag gat gaa tgc att ctt gtt 241 Asp Ala Val Gln Arg Arg Leu Met Phe Glu Asp Glu Cys Ile Leu Val gat gaa act gat cgt gtt gtg ggg cat gac agc aag tat aat tgt cat 289 Asp Glu Thr Asp Arg Val Val Gly His Asp Ser Lys Tyr Asn Cys His 80 ctg atg gaa aat att gaa gcc aag aat ttg ctg cac agg gct ttt agt 337 Leu Met Glu Asn Ile Glu Ala Lys Asn Leu Leu His Arg Ala Phe Ser 105 gta tit tia tic aac tog aag tat gag tig oit oic cag caa agg toa Val Phe Leu Phe Asn Ser Lys Tyr Glu Leu Leu Leu Gln Gln Arg Ser

120

115

110

aac Asn 125	aca Thr	aag Lys	gtt Val	acg Thr	ttc Phe 130	cct Pro	cta Leu	gtg Val	tgg Trp	act Thr 135	aac Asn	act Thr	tgt Cys	tgc Cys	agc Ser 140	433
cat His	cct Pro	ctt Leu	tac Tyr	cgt Arg 145	gaa Glu	tca Ser	gag Glu	ctt Leu	atc Ile 150	cag Gln	gac Asp	aat Asn	gca Ala	cta Leu 155	ggt Gly	481
gtg Val	agg Arg	aat Asn	gct Ala 160	gca Ala	caa Gln	aga Arg	aag Lys	ctt Leu 165	ctc Leu	gat Asp	gag Glu	ctt Leu	ggt Gly 170	att Ile	gta Val	529
gct Ala	gaa Glu	gat Asp 175	gta Val	cca Pro	gtc Val	gat Asp	gag Glu 180	ttc Phe	act Thr	ccc Pro	ttg Leu	gga Gly 185	cgt Arg	atg Met	ctg Leu	577
tac Tyr	aag Lys 190	gct Ala	cct Pro	tct Ser	gat Asp	ggc Gly 195	aaa Lys	tgg Trp	gga Gly	gag Glu	cat His 200	gaa Glu	ctt Leu	gat Asp	tac Tyr	625
ttg Le u 20 5	ctc Leu	ttc Phe	atc Ile	gtg Val	cga Arg 210	gac Asp	gtg Val	aag Lys	gtt Val	caa Gln 215	Pro	aac Asn	cca Pro	gat Asp	gaa Glu 220	673
gta Val	gct Ala	gag Glu	atc Ile	aag Lys 225	tat Tyr	gtg Val	agc Ser	cgg Arg	gaa Glu 230	gag Glu	ctg Leu	aag Lys	gag Glu	ctg Leu 235	gtg Val	721
aag Lys	aaa Lys	gca Ala	gat Asp 240	gca Ala	ggt Gly	gag Glu	gaa Glu	ggt Gly 245	ttg Leu	aaa Lys	ctg Leu	tca Ser	cca Pro 250	tgg Trp	ttc Phe	769
aga Arg	ttg Leu	gtg Val 255	gtg Val	gac Asp	aat Asn	ttc Phe	ttg Leu 260	atg Met	aag Lys	tgg Trp	tgg Trp	gat Asp 265	cat His	gta Val	gag Glu	817
aaa Lys	gga Gly 270	act Thr	ttg Leu	gtt Val	gaa Glu	gct Ala 275	ata Ile	gac Asp	atg Met	aaa Lys	acc Thr 280	atc Ile	cac His	aaa Lys	ctc Leu	865
tga 285	acat	cttt	tt t	t												880
<211 <212)> 96 L> 28 2> PR 3> Ar	4 T	lopsi	s th	nalia	na										
)> 96 Ser		Ser		Leu	Phe	Asn	Leu		Leu	Ile	Arg	Leu		Ser	
_	Ala	Leu	Ser 20	Ser	Ser	Phe	Ser	Ser 25	10 Phe	Arg	Phe	Ala	His 30	15 Arg	Pro	

Leu Ser Ser Ile Ser Pro Arg Lys Leu Pro Asn Phe Arg Ala Phe Ser 35 40 45

Gly Thr Ala Met Thr Asp Thr Lys Asp Ala Gly Met Asp Ala Val Gln 50 55 60

Arg Arg Leu Met Phe Glu Asp Glu Cys Ile Leu Val Asp Glu Thr Asp 65 70 75 80

Arg Val Val Gly His Asp Ser Lys Tyr Asn Cys His Leu Met Glu Asn 85 90 95

Ile Glu Ala Lys Asn Leu Leu His Arg Ala Phe Ser Val Phe Leu Phe
100 105 110

Asn Ser Lys Tyr Glu Leu Leu Gln Gln Arg Ser Asn Thr Lys Val

Thr Phe Pro Leu Val Trp Thr Asn Thr Cys Cys Ser His Pro Leu Tyr 130 135 140

Arg Glu Ser Glu Leu Ile Gln Asp Asn Ala Leu Gly Val Arg Asn Ala 145 150 155 160

Ala Gln Arg Lys Leu Leu Asp Glu Leu Gly Ile Val Ala Glu Asp Val 165 170 175

Pro Val Asp Glu Phe Thr Pro Leu Gly Arg Met Leu Tyr Lys Ala Pro 180 185 190

Ser Asp Gly Lys Trp Gly Glu His Glu Leu Asp Tyr Leu Leu Phe Ile 195 200 205

Val Arg Asp Val Lys Val Gln Pro Asn Pro Asp Glu Val Ala Glu Ile 210 215 220

Lys Tyr Val Ser Arg Glu Glu Leu Lys Glu Leu Val Lys Lys Ala Asp 225 230 235 240

Ala Gly Glu Glu Cly Leu Lys Leu Ser Pro Trp Phe Arg Leu Val Val 245 250 255

Asp Asn Phe Leu Met Lys Trp Trp Asp His Val Glu Lys Gly Thr Leu 260 265 270

Val Glu Ala Ile Asp Met Lys Thr Ile His Lys Leu 275 280

<210> 97

<211> 831

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS <222> (18)..(821) <400> 97 tgcactactc aacctca atg gcc gcc tca aca atg gct ctc tcc tcc cct 50 Met Ala Ala Ser Thr Met Ala Leu Ser Ser Pro 1 gcc ttc gcc ggt aag gcc gtc aag ctt tcc ccc gcg gca tca gaa gtc Ala Phe Ala Gly Lys Ala Val Lys Leu Ser Pro Ala Ala Ser Glu Val 15 ctt gga agc ggc cgt gtg aca atg agg aag act gtt gcc aag cca aag 146 Leu Gly Ser Gly Arg Val Thr Met Arg Lys Thr Val Ala Lys Pro Lys 35 ggc cca tca ggc agc cca tgg tac gga tct gac cgt gtc aag tac ttg 194 Gly Pro Ser Gly Ser Pro Trp Tyr Gly Ser Asp Arg Val Lys Tyr Leu ggt cca ttc tct ggc gaa tca ccg agc tac ctt acc gga gag ttc ccc 242 Gly Pro Phe Ser Gly Glu Ser Pro Ser Tyr Leu Thr Gly Glu Phe Pro 65 gga gac tac gga tgg gac acc gcc gga ctt tca gct gac ccc gag aca Gly Asp Tyr Gly Trp Asp Thr Ala Gly Leu Ser Ala Asp Pro Glu Thr 85 ttc gca agg aac cgt gaa cta gaa gtt atc cac agc agg tgg gct atg 338 Phe Ala Arg Asn Arg Glu Leu Glu Val Ile His Ser Arg Trp Ala Met 95 100 105 ctc gga gcc cta ggc tgc gtc ttc cct gag ctt ttg gct aga aac gga Leu Gly Ala Leu Gly Cys Val Phe Pro Glu Leu Leu Ala Arg Asn Gly 110 115 gtc aag ttc gga gag gcg gtt tgg ttc aag gcc ggt tca cag atc ttc 434 Val Lys Phe Gly Glu Ala Val Trp Phe Lys Ala Gly Ser Gln Ile Phe 125 130 age gat gga ggg ete gat tae ttg gga aac eet age ttg gtt eac get 482 Ser Asp Gly Gly Leu Asp Tyr Leu Gly Asn Pro Ser Leu Val His Ala 140 150 cag agc att ttg gcc att tgg gcc aca caa gtt att ttg atg gga gcc 530 Gln Ser Ile Leu Ala Ile Trp Ala Thr Gln Val Ile Leu Met Gly Ala 160 165 170 gtt gaa ggc tac aga gtc gca gga aat ggg cca ttg gga gag gcc gag 578 Val Glu Gly Tyr Arg Val Ala Gly Asn Gly Pro Leu Gly Glu Ala Glu 175 185 gac ttg ctt tac ccc ggt ggc agc ttc gac cca ttg ggt ttg gct acc 626 Asp Leu Leu Tyr Pro Gly Gly Ser Phe Asp Pro Leu Gly Leu Ala Thr 190 195 200 gac cca gag gca ttc gct gag ttg aag gtg aag gag ctc aag aac gga

Asp	Pro 205	Glu	Ala	Phe	Ala	Glu 210	Leu	Lys	Val	Lys	Glu 215	Leu	Lys	Asn	Gly	
aga Arg 220	ttg Leu	gct Ala	atg Met	ttc Phe	tct Ser 225	atg Met	ttt Phe	gga Gly	ttc Phe	ttc Phe 230	gtt Val	caa Gln	gcc Ala	atc Ile	gtc Val 235	722
act Thr	ggt Gly	aag Lys	gga Gly	ccg Pro 240	ata Ile	gag Glu	aac Asn	ctt Leu	gct Ala 245	gac Asp	cat His	ttg Leu	gcc Ala	gat Asp 250	cca Pro	770
gtt Val	aac Asn	aac Asn	aac Asn 255	gca Ala	tgg Trp	gcc Ala	ttc Phe	gcc Ala 260	acc Thr	aac Asn	ttt Phe	gtt Val	ccc Pro 265	gga Gly	aag Lys	818
tga	gcca	agtt	tt													831
<211 <212)> 98 l> 26 l> PI l> A1	57 RT	dopsi	is tl	nalia	ana										
)> 98 Ala		Ser	Thr 5	Met	Ala	Leu	Ser	Ser 10	Pro	Ala	Phe	Ala	Gly 15	Lys	
Ala	Val	Lys	Leu 20	Ser	Pro	Ala	Ala	Ser 25	Glu	Val	Leu	Gly	Ser 30	Gly	Arg	
Val	Thr	Met 35	Arg	Lys	Thr	Val	Ala 40	Lys	Pro	Lys	Gly	Pro 45	Ser	Gly	Ser	
Pro	Trp 50	Tyr	Gly	Ser	Asp	Arg 55	Val	Lys	Tyr	Leu	Gly 60	Pro	Phe	Ser	Gly	
Glu 65	Ser	Pro	Ser	Tyr	Leu 70	Thr	Gly	Glu	Phe	Pro 75	Gly	Asp	Туr	Gly	Trp 80	
Asp	Thr	Ala	Gly	Leu 85	Ser	Ala	Asp	Pro	Glu 90	Thr	Phe	Ala	Arg	Asn 95	Arg	
Glu	Leu	Glu	Val 100	Ile	His	Ser	Arg	Trp 105	Ala	Met	Leu	Gly	Ala 110	Leu	Gly	
Cys	Val	Phe 115	Pro	Glu	Leu	Leu	Ala 120	Arg	Asn	Gly	Val	Lys 125	Phe	Gly	Glu	
Ala	Val 130	Trp	Phe	Lys	Ala	Gly 135	Ser	Gln	Ile	Phe	Ser 140	Asp	Gly	Gly	Leu	

Asp Tyr Leu Gly Asn Pro Ser Leu Val His Ala Gln Ser Ile Leu Ala

Ile Trp Ala Thr Gln Val Ile Leu Met Gly Ala Val Glu Gly Tyr Arg

150

165

170

155

145

Val Ala Gly Asn Gly Pro Leu Gly Glu Ala Glu Asp Leu Leu Tyr Pro 190 Gly Gly Ser Phe Asp Pro Leu Gly Leu Ala Thr Asp Pro Glu Ala Phe 200 Ala Glu Leu Lys Val Lys Glu Leu Lys Asn Gly Arg Leu Ala Met Phe 220 Ser Met Phe Gly Phe Phe Val Gln Ala Ile Val Thr Gly Lys Gly Pro 230 235 Ile Glu Asn Leu Ala Asp His Leu Ala Asp Pro Val Asn Asn Asn Ala 245 250 Trp Ala Phe Ala Thr Asn Phe Val Pro Gly Lys 260 <210> 99 <211> 855 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (15)..(164) <220> <221> CDS <222> (257)..(305) <220> <221> CDS <222> (416)..(843) <400> 99 cacagtatta acaa atg gca gga atc aaa gtt ttc ggt cac cca gct tcc 50 Met Ala Gly Ile Lys Val Phe Gly His Pro Ala Ser aca gcc act aga aga gtt ctc atc gct ctt cac gag aag aat gtc gac 98 Thr Ala Thr Arg Arg Val Leu Ile Ala Leu His Glu Lys Asn Val Asp 15 20 ttt gaa ttc gtt cat gtc gag ctc aaa gat ggt gaa cac aag aaa gag Phe Glu Phe Val His Val Glu Leu Lys Asp Gly Glu His Lys Lys Glu 30 cct tte atc ctt cgc aac gtgagtacat ataacatctg tcaagccaaa 194 Pro Phe Ile Leu Arg Asn 45

atattgtatt tcatctagat actgaatctt ggtcttaaca atcttgaata atgtttttgc 254

ag	Pro	Phe	ggt Gly	aaa Lys	gtt Val 55	cca Pro	gcc Ala	ttt Phe	gaa Glu	gat Asp 60	gga Gly	gac Asp	ttc Phe	aag Lys	att Ile 65	301
ttc Phe		gtaaa	taca	a at	atat	atca	tta	tagt	cat	gttt	acaa	at t	tttc	gttt	:t	355
atg	atca	ttg	caat	aata	ga a	agca	gaaa	c ac	tcaa	aaat	gtt	tttt	ttt	tggt	gggcag	415
aa lu	tca Ser	aga Arg	gca Ala	att Ile 70	act Thr	caa Gln	tac Tyr	ata Ile	gct Ala 75	cat His	gaa Glu	ttc Phe	tca Ser	gac Asp 80	aaa Lys	462
gga Gly	aac Asn	aac Asr	cțt Leu 85	Leu	tca Ser	act Thr	ggc Gly	aag Lys 90	gac	: atg Met	gcg Ala	atc Ile	ata 11e 95	e Ala	atg Met	510
ggc	att Ile	gaa Glu 100	att Ile	gag Glu	tcg Ser	cat	gag Glu 105	Phe	gac	cca Pro	gtt Val	ggt Gly 110	Ser	aag Lys	ctt Leu	558
gtt Val	tgg Trp 115	Glu	g caa 1 Gln	gtc Val	tta Leu	aag Lys 120	Pro	ttg Leu	tat Tyr	ggt Gly	atg Met 125	Thr	aca Thr	gac Asp	aaa Lys	606
act Thr 130	Val	gtt Val	gaa Glu	gaa Glu	gaa Glu 135	gag Glu	gct Ala	aag Lys	cta Leu	gcc Ala 140	Lys	gtc Val	cto Leu	gat Asp	gtt Val 145	654
tac Tyr	gaa Glu	cac His	agg Arg	ctt Leu 150	Gly	gag Glu	tcc Ser	aag Lys	tat Tyr 155	Leu	gct Ala	tct Ser	gac Asp	cac His	Phe	702
act Thr	ttg Lev	gtc Val	gat Asp 165	ctt Leu	cac His	act Thr	atc Ile	cct Pro 170	gtg Val	att	caa Gln	tac Tyr	tta Leu 175	Leu	gga Gly	750
act Thr	cca Pro	act Thr 180	aag Lys	aaa Lys	ctc Leu	ttc Phe	gac Asp 185	Glu	cgt Arg	cca Pro	cat His	gtg Val 190	Ser	gct Ala	tgg Trp	798
gtt Val	gct Ala 195	Asp	atc Ile	act Thr	tca Ser	agg Arg 200	Pro	tct Ser	gct Ala	cag Gln	aag Lys 205	Val	ctt Leu	taa		843
gtg	aato	tca	aa													855
<21 <21	0> 1 1> 2 2> F 3> A	08 RT	.dops	is t	hali	ana										
			, Ile	Lys 5		Phe	Gly	His	Pro		Ser	Thr	Ala	Thr 15	-	

Arg Val Leu Ile Ala Leu His Glu Lys Asn Val Asp Phe Glu Phe Val His Val Glu Leu Lys Asp Gly Glu His Lys Lys Glu Pro Phe Ile Leu 40 Arg Asn Pro Phe Gly Lys Val Pro Ala Phe Glu Asp Gly Asp Phe Lys Ile Phe Glu Ser Arg Ala Ile Thr Gln Tyr Ile Ala His Glu Phe Ser 70 Asp Lys Gly Asn Asn Leu Leu Ser Thr Gly Lys Asp Met Ala Ile Ile Ala Met Gly Ile Glu Ile Glu Ser His Glu Phe Asp Pro Val Gly Ser 105 Lys Leu Val Trp Glu Gln Val Leu Lys Pro Leu Tyr Gly Met Thr Thr 120 Asp Lys Thr Val Val Glu Glu Glu Ala Lys Leu Ala Lys Val Leu Asp Val Tyr Glu His Arg Leu Gly Glu Ser Lys Tyr Leu Ala Ser Asp 150 His Phe Thr Leu Val Asp Leu His Thr Ile Pro Val Ile Gln Tyr Leu 165 Leu Gly Thr Pro Thr Lys Lys Leu Phe Asp Glu Arg Pro His Val Ser 180 185 Ala Trp Val Ala Asp Ile Thr Ser Arg Pro Ser Ala Gln Lys Val Leu 195 200

```
<210> 101
<211> 512
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (12)..(67)
<220>
<221> CDS
<222> (241)..(309)
<220>
<221> CDS
<222> (241)..(309)
```

 $<\!400>$ 101 tatctgaaaa a atg tca gag acc aac aag aat gcc ttc caa gcc ggt cag 50

	Ме	t Ser (1	Slu Th		n Ly 5	s As	n Al	a Ph	e Gl 1		a Gl	y Gln	
acc gct of the Ala of 15	ggc aaa Gly Lys	gct ga Ala Gl	ggta	ctac	tc t	ttct	ctct	t tg	acag	aact	:		97
cttaaact	gg aaaa	attgtt	gaagc	tata	a ct	cttt	gaaa	aca	gttg	aaa	cttg	atcatt	157
actagaaa	tt tcag	ttactt	gttta	attt	a gt	ttgt	cgta	atta	atgt	aat	tgat	gatttt	217
atggttaca	aa tggt	tgtcat	gta g u	gag Glu 20	aag Lys	agc Ser	aat Asn	gtt Val	ctg Leu 25	ctg Leu	gac Asp	aag Lys	268
gcc aag g Ala Lys 2 30	gat gct Asp Ala	gca gc Ala Al	t ggt a Gly 35	Ala	gga Gly	gct Ala	gga Gly	gca Ala 40	caa Gln	ca G1	ggta	aacaat	319
ccatacaca	ag acaca	ataaca	tataa	tatg	t aad	cgaa	ataa	acgt	ctt	tgt	aagc	ttacat	379
gtacgcaga	at ttct	gatatg	gttat	gtata	a tgi	ttat	ag (gcg g Ala (gga a Sly 1	aag Lys 45	agt (Ser)	gta Val	432
tcg gat g	gcg gca Ala Ala 50	gcg gg Ala Gl	a ggt y Gly	gtt Val 55	aac Asn	ttc Phe	gtg Val	aag Lys	gac Asp 60	aag Lys	acc Thr	ggc Gly	480
ctg aac a Leu Asn I 65	aag tag Lys	agatto	gggt	caaat	ttg	aa							512
<210> 102 <211> 66 <212> PR1 <213> Ara	r	is thal	iana										
<400> 102 Met Ser 0	-	Asn Ly 5	s Asn	Ala	Phe	Gln 10	Ala	Gly	Gln	Thr	Ala 15	Gly	
Lys Ala (Glu Glu 20	Lys Se	r Asn	Val	Leu 25	Leu	Asp	Lys	Ala	Lys 30	Asp	Ala	
Ala Ala G	Sly Ala 35	Gly Al	a Gly	Ala 40	Gln	Gln	Ala	Gly	Lys 45	Ser	Val	Ser	
Asp Ala A	Ala Ala	Gly Gl	y Val 55	Asn	Phe	Val	Lys	Asp 60	Lys	Thr	Gly	Leu	
Asn Lys 65													

<210> 103 <211> 1138 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (11)..(1123) <400> 103 aaaacaaaaa atg gcg act ttg gtt gat cct cct aat ggg ata agg aat 49 Met Ala Thr Leu Val Asp Pro Pro Asn Gly Ile Arg Asn 10 gaa ggg aag cat tac ttc tca atg tgg caa act ctg ttc gag atc gac 97 Glu Gly Lys His Tyr Phe Ser Met Trp Gln Thr Leu Phe Glu Ile Asp 15 act aag tac atg cct atc aag cct att ggt cgt gga gct tac ggt gtt Thr Lys Tyr Met Pro Ile Lys Pro Ile Gly Arg Gly Ala Tyr Gly Val 35 gtc tgc tcc tct gtt aac agt gac acc aac gag aaa gtt gct atc aag Val Cys Ser Ser Val Asn Ser Asp Thr Asn Glu Lys Val Ala Ile Lys 50 aag att cac aat gtt tat gag aat agg atc gat gcg ttg agg act ctt 241 Lys Ile His Asn Val Tyr Glu Asn Arg Ile Asp Ala Leu Arg Thr Leu 70 cgg gag ctc aag ctt cta cgc cat ctt cga cat gag aat gtc att gct 289 Arg Glu Leu Lys Leu Leu Arg His Leu Arg His Glu Asn Val Ile Ala ttg aaa gat gtc atg atg cca att cat aag atg agc ttc aag gat gtt 337 Leu Lys Asp Val Met Met Pro Ile His Lys Met Ser Phe Lys Asp Val 95 100 tat ctt gtt tat gag ctc atg gac act gat ctc cac cag att atc aag 385 Tyr Leu Val Tyr Glu Leu Met Asp Thr Asp Leu His Gln Ile Ile Lys 110 120 125 tet tet cag egt ett agt aac gat eat tge caa tae tte ttg tte cag 433 Ser Ser Gln Arg Leu Ser Asn Asp His Cys Gln Tyr Phe Leu Phe Gln 130 135 ttg ctt cga ggg ctc aag tat att cat tca gcc aat atc ctg cac cga 481 Leu Leu Arg Gly Leu Lys Tyr Ile His Ser Ala Asn Ile Leu His Arg 145 gat ttg aaa cct ggt aac ctt ctt gtc aac gca aac tgc gat tta aag 529 Asp Leu Lys Pro Gly Asn Leu Leu Val Asn Ala Asn Cys Asp Leu Lys 160 ata tgc gat ttt gga cta gcg cgt gcg agc aac acc aag ggt cag ttc 577 Ile Cys Asp Phe Gly Leu Ala Arg Ala Ser Asn Thr Lys Gly Gln Phe 175 180 185

atg Met 190	act Thr	gaa Glu	tat Tyr	gtt Val	gtg Val 195	act Thr	cgt Arg	tgg Trp	tac Tyr	cga Arg 200	gcc Ala	cca Pro	gag Glu	ctt Leu	ctc Leu 205	625
ctc Leu	tgt Cys	tgt Cys	gac Asp	aac Asn 210	tat Tyr	gga Gly	aca Thr	tcc Ser	att Ile 215	gat Asp	gtt Val	tgg Trp	tct Ser	gtt Val 220	ggt Gly	673
tgc Cys	att Ile	ttc Phe	gcc Ala 225	gag Glu	ctt Leu	ctt Leu	ggt Gly	agg Arg 230	aaa Lys	ccg Pro	ata Ile	ttc Phe	caa Gln 235	gga Gly	acg Thr	721
gaa Glu	tgt Cys	ctt Leu 240	aac Asn	cag Gln	ctt Leu	aag Lys	ctc Leu 245	att Ile	gtc Val	aac Asn	att Ile	atc Ile 250	gga Gly	agc Ser	caa Gln	769
aga Arg	gaa Glu 255	gaa Glu	gat Asp	ctt Leu	gag Glu	ttc Phe 260	ata Ile	gtt Val	aac Asn	ccg Pro	aaa Lys 265	gct Ala	aaa Lys	aga Arg	tac Tyr	817
att Ile 270	aga Arg	tca Ser	ctt Leu	ccg Pro	tac Tyr 275	tca Ser	cct Pro	GJÀ aaa	atg Met	tct Ser 280	tta Leu	tcc Ser	aga Arg	ctt Leu	tac Tyr 285	865
ccg Pro	tgc Cys	gct Ala	cat His	gta Val 290	ttg Leu	gcc Ala	atc Ile	gac Asp	ctt Leu 295	ctg Leu	cag Gln	aaa Lys	atg Met	ctt Leu 300	gtt Val	913
ttt Phe	gat Asp	ccg Pro	tca Ser 305	aag Lys	agg Arg	att Ile	agt Ser	gcc Ala 310	tct Ser	gaa Glu	gca Ala	ctc Leu	cag Gln 315	cat His	cca Pro	961
tac Tyr	atg Met	gcg Ala 320	cca Pro	cta Leu	tat Tyr	gac Asp	ccg Pro 325	aat Asn	gca Ala	aac Asn	cct Pro	cct Pro 330	gct Ala	caa Gln	gtt Val	1009
cct Pro	atc Ile 335	gat Asp	ctc Leu	gat Asp	gta Val	gat Asp 340	gag Glu	gat Asp	ttg Leu	aga Arg	gag Glu 345	gag Glu	atg Met	ata Ile	aga Arg	1057
gaa Glu 350	atg Met	ata Ile	tgg Trp	aat Asn	gag Glu 355	atg Met	ctt Leu	cac His	tac Tyr	cat His 360	cca Pro	caa Gln	gct Ala	tca Ser	acc Thr 365	1105
	aac Asn				tga	gcto	aagt	ct t	gttt	:						1138

<210> 104

<211> 370

<212> PRT

<213> Arabidopsis thaliana

<400> 104

Met Ala Thr Leu Val Asp Pro Pro Asn Gly Ile Arg Asn Glu Gly Lys

1 10 His Tyr Phe Ser Met Trp Gln Thr Leu Phe Glu Ile Asp Thr Lys Tyr 25 Met Pro Ile Lys Pro Ile Gly Arg Gly Ala Tyr Gly Val Val Cys Ser Ser Val Asn Ser Asp Thr Asn Glu Lys Val Ala Ile Lys Lys Ile His Asn Val Tyr Glu Asn Arg Ile Asp Ala Leu Arg Thr Leu Arg Glu Leu 70 Lys Leu Leu Arg His Leu Arg His Glu Asn Val Ile Ala Leu Lys Asp Val Met Met Pro Ile His Lys Met Ser Phe Lys Asp Val Tyr Leu Val Tyr Glu Leu Met Asp Thr Asp Leu His Gln Ile Ile Lys Ser Ser Gln 120 Arg Leu Ser Asn Asp His Cys Gln Tyr Phe Leu Phe Gln Leu Leu Arg Gly Leu Lys Tyr Ile His Ser Ala Asn Ile Leu His Arg Asp Leu Lys 150 155 Pro Gly Asn Leu Leu Val Asn Ala Asn Cys Asp Leu Lys Ile Cys Asp 165 Phe Gly Leu Ala Arg Ala Ser Asn Thr Lys Gly Gln Phe Met Thr Glu 185 Tyr Val Val Thr Arg Trp Tyr Arg Ala Pro Glu Leu Leu Cys Cys Asp Asn Tyr Gly Thr Ser Ile Asp Val Trp Ser Val Gly Cys Ile Phe 215 Ala Glu Leu Leu Gly Arg Lys Pro Ile Phe Gln Gly Thr Glu Cys Leu Asn Gln Leu Lys Leu Ile Val Asn Ile Ile Gly Ser Gln Arg Glu Glu Asp Leu Glu Phe Ile Val Asn Pro Lys Ala Lys Arg Tyr Ile Arg Ser Leu Pro Tyr Ser Pro Gly Met Ser Leu Ser Arg Leu Tyr Pro Cys Ala 275 His Val Leu Ala Ile Asp Leu Leu Gln Lys Met Leu Val Phe Asp Pro 290 Ser Lys Arg Ile Ser Ala Ser Glu Ala Leu Gln His Pro Tyr Met Ala

305 310 315 320 Pro Leu Tyr Asp Pro Asn Ala Asn Pro Pro Ala Gln Val Pro Ile Asp 325 330 Leu Asp Val Asp Glu Asp Leu Arg Glu Glu Met Ile Arg Glu Met Ile 345 Trp Asn Glu Met Leu His Tyr His Pro Gln Ala Ser Thr Leu Asn Thr 360 Glu Leu 370 <210> 105 <211> 445 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (20) . . (430) <400> 105 aacaacaatt tcaagagac atg gca ggc aaa ggt gga aaa gga ctc gta gct Met Ala Gly Lys Gly Gly Lys Gly Leu Val Ala gcg aag acg atg gct gct aac aag gac aaa gac aag gac aag aag aaa Ala Lys Thr Met Ala Ala Asn Lys Asp Lys Asp Lys Lys Lys 15 ccc atc tct cgc tct gct cgt gct att cag ttt cca gtt gga cga 148 Pro Ile Ser Arg Ser Ala Arg Ala Gly Ile Gln Phe Pro Val Gly Arg 35 att cac agg caa ctg aag acc cga gtc tcg gca cat ggc aga gtt ggt 196 Ile His Arg Gln Leu Lys Thr Arg Val Ser Ala His Gly Arg Val Gly gec act gea gee gte tae aca get tea ate etg gag tat etg aca gea Ala Thr Ala Ala Val Tyr Thr Ala Ser Ile Leu Glu Tyr Leu Thr Ala 65 gag gtt ctt gag ttg gct ggg aat gcg agc aag gat ctc aaa gtg aag Glu Val Leu Glu Leu Ala Gly Asn Ala Ser Lys Asp Leu Lys Val Lys 85 agg ata acg cca agg cat ctg cag ttg gcg att aga gga gat gag gag Arg Ile Thr Pro Arg His Leu Gln Leu Ala Ile Arg Gly Asp Glu Glu 100 ctg gac aca ctc atc aag gga acg att gct gga ggt ggt gtg atc cct Leu Asp Thr Leu Ile Lys Gly Thr Ile Ala Gly Gly Val Ile Pro 110 115 120

```
cac atc cac aag tot otc atc aac aaa acc acc aag gag tga
                                                                   430
His Ile His Lys Ser Leu Ile Asn Lys Thr Thr Lys Glu
                        130
tgtgtagctt tttat
                                                                   445
<210> 106
<211> 136
<212> PRT
<213> Arabidopsis thaliana
<400> 106
Met Ala Gly Lys Gly Gly Lys Gly Leu Val Ala Ala Lys Thr Met Ala
Ala Asn Lys Asp Lys Asp Lys Lys Lys Pro Ile Ser Arg Ser
           _ 20
Ala Arg Ala Gly Ile Gln Phe Pro Val Gly Arg Ile His Arg Gln Leu
Lys Thr Arg Val Ser Ala His Gly Arg Val Gly Ala Thr Ala Ala Val
Tyr Thr Ala Ser Ile Leu Glu Tyr Leu Thr Ala Glu Val Leu Glu Leu
                     70
Ala Gly Asn Ala Ser Lys Asp Leu Lys Val Lys Arg Ile Thr Pro Arg
                                     90
His Leu Gln Leu Ala Ile Arg Gly Asp Glu Glu Leu Asp Thr Leu Ile
                                105
Lys Gly Thr Ile Ala Gly Gly Gly Val Ile Pro His Ile His Lys Ser
Leu Ile Asn Lys Thr Thr Lys Glu
    130
<210> 107
<211> 930
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (14)..(916)
<400> 107
gcctccttgg ctt atg tac tta cca aaa cgt ggc aat ttg ttc gaa ctc
               Met Tyr Leu Pro Lys Arg Gly Asn Leu Phe Glu Leu
                                 5
```

tat Tyr	gat Asp	Pro 15	ttg Leu	cat His	cag Gln	aag Lys	atg Met 20	tac Tyr	aca Thr	ttg Leu	aat Asn	cta Leu 25	cct Pro	gag Glu	ctt Leu	97
gcc Ala	aaa Lys 30	tct Ser	acg Thr	gtt Val	tgt Cys	tac Tyr 35	tca Ser	aga Arg	gat Asp	gga Gly	tgg Trp 40	tta Leu	cta Leu	atg Met	cgt Arg	145
aaa Lys 45	acc Thr	att Ile	tca Ser	aga Arg	gaa Glu 50	atg Met	ttc Phe	ttc Phe	ttc Phe	aac Asn 55	ccg Pro	ttt Phe	act Thr	cgt Arg	gag Glu 60	193
ctc Leu	ata Ile	aac Asn	gta Val	cca Pro 65	aaa Lys	tgt Cys	act Thr	tta Leu	tca Ser 70	tat Tyr	gat Asp	gcg Ala	atc Ile	gct Ala 75	ttc Phe	241
tct Ser	tgt Cys	gca Ala	cct Pro 80	aca Thr	tca Ser	ggt Gly	act Thr	tgc Cys 85	gtg Val	ttg Leu	cta Leu	gca Ala	ttt Phe 90	aag Lys	cat His	289
gtt Val	tcg Ser	tat Tyr 95	cgt Arg	atc Ile	acc Thr	act Thr	acg Thr 100	agc Ser	act Thr	tgc Cys	cat His	ccc Pro 105	aaa Lys	gca Ala	acc Thr	337
gag Glu	tgg Trp 110	gtt Val	act Thr	gag Glu	gat Asp	cta Leu 115	caa Gln	ttc Phe	cat His	cgt Arg	cgc Arg 120	ttc Phe	cgc Arg	agt Ser	gaa Glu	385
aca Thr 125	ctt Leu	aac Asn	cac His	agc Ser	aat Asn 130	gtt Val	gtc Val	tat Tyr	gcc Ala	aaa Lys 135	cgt Arg	cgc Arg	ttc Phe	tat Tyr	tgc Cys 140	433
ctt Leu	gac Asp	ggt Gly	caa Gln	gga Gly 145	agc Ser	tta Leu	tat Tyr	tac Tyr	ttt Phe 150	gat Asp	ccg Pro	tct Ser	tct Ser	cga Arg 155	aga Arg	481
tgg Trp	gat Asp	ttt Phe	agt Ser 160	tac Tyr	acc Thr	tat Tyr	tta Leu	ctg Leu 165	cca Pro	tgt Cys	cct Pro	tat Tyr	atc Ile 170	tcg Ser	gat Asp	529
aga Arg	ttt Phe	agt Ser 175	tac Tyr	cag Gln	tat Tyr	gag Glu	cgg Arg 180	aag Lys	aag Lys	aag Lys	aga Arg	att Ile 185	ttc Phe	ttg Leu	gct Ala	577
gtg Val	cgg Arg 190	aaa Lys	gga Gly	gtg Val	ttc Phe	ttt Phe 195	aag Lys	ata Ile	ttt Phe	aca Thr	tgt Cys 200	gat Asp	ggt Gly	gag Glu	aag Lys	62 5
ccg Pro 205	ata Ile	gtg Val	cat His	aag Lys	tta Leu 210	gaa Glu	gat Asp	atc Ile	aat Asn	tgg Trp 215	gag Glu	gag Glu	atc Ile	aat Asn	agt Ser 220	673
act Thr	acg Thr	att Ile	gat Asp	gga Gly 225	ttg Leu	aca Thr	atc Ile	ttt Phe	acg Thr 230	ggt Gly	ctt Leu	tat Tyr	tcc Ser	tct Ser 235	gag Glu	721
gtg	aga	ctt	aat	cta	cca	tgg	atg	agg	aat	agt	gtt	tac	ttt	cct	aga	769

Val	Arg	Leu	Asn 240	Leu	Pro	Trp	Met	Arg 245	Asn	Ser	Val	Tyr	Phe 250	Pro	Arg	
ctt Leu	cgt Arg	ttt Phe 255	aat Asn	gtc Val	aag Lys	cgt Arg	tgt Cys 260	gta Val	tca Ser	tat Tyr	tcg Ser	ctt Leu 265	gat Asp	gaa Glu	gag Glu	817
agg Arg	tat Tyr 270	tat Tyr	ccg Pro	cgg Arg	aag Lys	cag Gln 275	tgg Trp	caa Gln	gaa Glu	cag Gln	gag Glu 280	gat Asp	tta Leu	tgt Cys	cct Pro	865
att Ile 285	gag Glu	aat Asn	ctt Leu	tgg Trp	att Ile 290	agg Arg	cca Pro	ccg Pro	aag Lys	aaa Lys 295	gct Ala	gta Val	gat Asp	ttc Phe	atg Met 300	913
tga	agat	aaaa	agt a	atg												930
<211 <212)> 1(l> 3(2> PF B> Ar	00 RT	lopsi	is th	nalia	ına										
)> 1(Tyr		Pro	Lys 5	Arg	Gly	Asn	Leu	Phe 10	Glu	Leu	Tyr	Asp	Pro 15	Ĺeu	
His	Gln	Lys	Met 20	Tyr	Thr	Leu	Asn	Leu 25	Pro	Glu	Leu	Ala	J0	Ser	Thr	
Val	Суѕ	Туг 35	Ser	Arg	Asp	Gly	Trp 40	Leu	Leu	Met	Arg	Lys 45	Thr	Ile	Ser	
Arg	Glu 50	Met	Phe	Phe	Phe	Asn 55	Pro	Phe	Thr	Arg	Glu 60	Leu	Ile	Asn	Val	
Pro 65	Lys	Cys	Thr	Leu	Ser 70	Tyr	Asp	Ala	Ile	Ala 75	Phe	Ser	Сув	Ala	Pro 80	
Thr	Ser	Gly	Thr	Суs 85	Val	Leu	Leu	Ala	Phe 90	Lys	His	Val	Ser	Tyr 95	Arg	
Ile	Thr	Thr	Thr 100	Ser	Thr	Cys	His	Pro 105	Lys	Ala	Thr	Glu	Trp 110	Val	Thr	
Glu -	Asp	Leu 115	Gln	Phe	His	Arg	Arg 120	Phe	Arg	Ser	Glu	Thr 125	Leu	Asn	His	
Ser	Asn 130	Val	Val	Tyr	Ala	Lys 135	Arg	Arg	Phe	Tyr	Cys 140	Leu	Asp	Gly	Gln	
Gly 145	Ser	Leu	Tyr	Tyr	Phe 150	Asp	Pro	Ser	Ser	Arg 155	Arg	Trp	Asp	Phe	Ser 160	
Tyr	Thr	Tyr	Leu	Leu 165	Pro	Cys	Pro	Tyr	Ile 170	Ser	Asp	Arg		Ser 175	Tyr	

```
Gln Tyr Glu Arg Lys Lys Arg Ile Phe Leu Ala Val Arg Lys Gly
                                185
Val Phe Phe Lys Ile Phe Thr Cys Asp Gly Glu Lys Pro Ile Val His
                            200
Lys Leu Glu Asp Ile Asn Trp Glu Glu Ile Asn Ser Thr Thr Ile Asp
Gly Leu Thr Ile Phe Thr Gly Leu Tyr Ser Ser Glu Val Arg Leu Asn
                    230
Leu Pro Trp Met Arg Asn Ser Val Tyr Phe Pro Arg Leu Arg Phe Asn
Val Lys Arg Cys Val Ser Tyr Ser Leu Asp Glu Glu Arg Tyr Tyr Pro
                                265
Arg Lys Gln Trp Gln Glu Gln Glu Asp Leu Cys Pro Ile Glu Asn Leu
        275
Trp Ile Arg Pro Pro Lys Lys Ala Val Asp Phe Met
                        295
<210> 109
<211> 2640
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (145)..(981)
<220>
<221> CDS
<222> (1439)..(1727)
<220>
<221> CDS
<222> (1817)..(2126)
<220>
<221> CDS
<222> (2204)..(2330)
<220>
<221> CDS
<222> (2405)..(2518)
<400> 109
tccacggcta caaaagaaca ttctcgacat acacaaaaaa attcgaaatt tcgagaactc 60
```

tettgtgeet tettetteat etteetetgt ttttaaaaat geaateaage agatteteae 120

gat	acct	aaa	ccaa	atco	aa t	tca	atg Met 1	gcg Ala	gaa Glu	gaa Glu	gca Ala 5	aaa Lys	tcc Ser	aaa Lys	gga Gly	171
aac Asn 10	АТа	gct Ala	ttc Phe	tct Ser	tcc Ser 15	ggc Gly	gat Asp	tac Tyr	gcc	acc Thr 20	Ala	ata Ile	acc Thr	cat His	ttc Phe 25	219
aca Thr	gaa Glu	gca Ala	atc Ile	aac Asn 30	ctt Leu	tca Ser	cca Pro	acc Thr	aat Asn 35	His	atc Ile	ctc Leu	tac Tyr	tca Ser 40	aac Asn	267
aga Arg	tcc Ser	gct Ala	tct Ser 45	tac Tyr	gct Ala	tct Ser	ctc Leu	cac His 50	cgt Arg	tac Tyr	gaa Glu	gaa Glu	gct Ala 55	. Leu	tca Ser	315
gac Asp	gcg Ala	aag Lys 60	aag Lys	act Thr	ata Ile	gag Glu	ctt Leu 65	aaa Lys	cct Pro	gat Asp	tgg Trp	tct Ser 70	aaa Lys	gga Gly	tat Tyr	363
agc Ser	cga Arg 75	tta Leu	ggt Gly	gct Ala	gcg Ala	ttt Phe 80	att Ile	gga Gly	ttg Leu	tcc Ser	aag Lys 85	ttt Phe	gat Asp	gaa Glu	gcg Ala	411
gtt Val 90	gat Asp	tcg Ser	tat Tyr	aag Lys	aaa Lys 95	gga Gly	tta Leu	gag Glu	att Ile	gat Asp 100	ccg Pro	agt Ser	aat Asn	gag Glu	atg Met 105	459
ctt Leu	aaa Lys	tcg Ser	gga Gly	tta Leu 110	gct Ala	gat Asp	gct Ala	tcg Ser	aga Arg 115	tct Ser	agg Arg	gtt Val	tcg Ser	tca Ser 120	aag Lys	507
tcg Ser	aat Asn	cct Pro	ttt Phe 125	gtt Val	gat Asp	gcg Ala	ttt Phe	caa Gln 130	ggg Gly	aag Lys	gag Glu	atg Met	tgg Trp 135	gag Glu	aag Lys	555
ttg Leu	acg Thr	gcg Ala 140	gat Asp	ccg Pro	Gly aaa	act Thr	agg Arg 145	gtt Val	tat Tyr	ttg Leu	gag Glu	cag Gln 150	gat Asp	gat Asp	ttt Phe	603
gtt Val	aag Lys 155	acg Thr	atg Met	aag Lys	Glu	att Ile 160	Gln	agg Arg	aac Asn	cct Pro	aat Asn 165	aat Asn	ctt Leu	aat Asn	ttg Leu	651
tat Tyr 170	atg Met	aag Lys	gat Asp	aag Lys	aga Arg 175	gtt Val	atg Met	aag Lys	gct Ala	tta Leu 180	G1y ggg	gtt Val	ttg Leu	ttg Leu	aat Asn 185	699
gtg Val	aag Lys	ttt Phe	ggt Gly	gga Gly 190	tct Ser	agt Ser	ggt Gly	gaa Glu	gat Asp 195	act Thr	gag Glu	atg Met	aag Lys	gag Glu 200	gct Ala	747
gat Asp	gag Glu	agg Arg	aaa Lys 205	gag Glu	cct Pro	gaa Glu	ccg Pro	gag Glu 210	atg Met	gaa Glu	cct Pro	atg Met	gag Glu 215	ttg Leu	acg Thr	795
gag	gag	gag	agg	cag	aag	aag	gag	aga	aag	gag	aag	gct	ttg	aag	gag	843

220	J Gln Lys I	Lys Glu Arg I 225	Lys Glu Lys	Ala Leu Lys Glu 230										
aaa ggg gaa gg Lys Gly Glu Gl 235	y Asn Val A	gct tat aag a Ala Tyr Lys I 240	aag aag gat Lys Lys Asp 245	ttt ggg aga gct Phe Gly Arg Ala	891									
gtt gaa cat ta Val Glu His Ty 250	t act aag o r Thr Lys <i>l</i> 255	gcc atg gag o Ala Met Glu I	ctc gat gat Leu Asp Asp 260	gag gat att tcg Glu Asp Ile Ser 265	939									
tat ttg acg aa Tyr Leu Thr As	t cgt gct g n Arg Ala A 270	Ala Val Tyr I	ctt gag atg Leu Glu Met 275	ggg aag Gly L y s	981									
gtattaagtc ttatacttgg cttaaaagtt aaacctttag gtactttaag attaaggagg 10														
agatettggg ttettgaagt agettatetg tttagtatag ettgteacta gttagtacat 11														
ttgtgatgac ctt	jatgggt ttt	tgataact ttca	atctgct tctt	gttgga gatttaagag	1161									
ttttgaactt aag	tttcac ttc	gtgctgaa agta	agttagc ttta	gatgag gtagaaattt	1221									
agggtttatg gct	catgat gga	agtttatt cact	tgttct gtag	aagtgg ttatctttat	1281									
tattactgga atc	attaat ctt	tcaagtat cctg	gagtggt tcaa	ttccat tggtctatgt	1341									
gttcttgcat tag	cttgtt tae	attaacag ttgg	ittcatc tgga	tcttac tgtatcttgt	1401									
gtgatgtttt act	cattto toa	aaatgaaa ttat		gag tgc att gaa Glu Cys Ile Glu 285	1456									
gac tgt gac aa	. aat att .													
Asp Cys Asp Ly	Ala Val G	Glu Arg Gly A	aga gaa ctt arg Glu Leu . 195	cgt tct gac ttc Arg Ser Asp Phe 300	1504									
Asp Cys Asp Ly aag atg ata gc	s Ala Val G 290 a aga gct c a Arg Ala I	Glu Arg Gly A 2 ctg act aga a	arg Glu Leu . 195 aaa gga tct :	Arg Ser Asp Phe	1504 1552									
aag atg ata gc. Lys Met Ile Al. 30 atg gcg aga tg.	a aga gct ca Arg Ala I	Glu Arg Gly A ctg act aga a Leu Thr Arg I 310 gac ttt gag c	arg Glu Leu . 195 Laa gga tct . Lys Gly Ser . Cct gcg att . Pro Ala Ile .	Arg Ser Asp Phe 300 gct cta gtg aaa Ala Leu Val Lys										
aag atg ata gc. Lys Met Ile Al. 30 atg gcg aga tg. Met Ala Arg Cy. 320 aaa gct ctt ac.	a aga gct ca Arg Ala I c tcg aaa g s Ser Lys A	Ctg act aga a Leu Thr Arg I 310 gac ttt gag c Asp Phe Glu F 325	arg Glu Leu . 195 Laa gga tct . Lys Gly Ser . 10t gcg att . 10ro Ala Ile .	Arg Ser Asp Phe 300 gct cta gtg aaa Ala Leu Val Lys 315 gag act ttc cag Glu Thr Phe Gln	1552									
aag atg ata gc. Lys Met Ile Al. 30 atg gcg aga tg. Met Ala Arg Cy. 320 aaa gct ctt ac. Lys Ala Leu Th. 335 gat gct gag aa.	a aga gct ca Arg Ala I c tcg aaa g s Ser Lys A a gag cat ca Glu His A a gtc aag a	Ctg act aga a Leu Thr Arg I 310 gac ttt gag c Asp Phe Glu F 325 cgt aat cca g Arg Asn Pro A 340 aaa gag ctg g	arg Glu Leu . 295 Laa gga tct . Lys Gly Ser . Ct gcg att . Cro Ala Ile . Gat aca ttg . Lsp Thr Leu . 345	Arg Ser Asp Phe 300 gct cta gtg aaa Ala Leu Val Lys 315 gag act ttc cag Glu Thr Phe Gln 330 aag aaa ctg aac	1552 1600									

ttacacttac tatcttgaaa cgtgatttga ttttaggatt aagcatttga cacttcttca 18														1807		
ttg	atgc	ag g l	t aa y As	t gg n Gl	a tt y Ph	c tt e Ph 38	е Гу	a ga s Gl	a ca u Gl	a aa n Ly	g ta s Ty 38	r Pr	a ga o Gl	g gc u Al	a gtg a Val	1857
aag Lys 390	HIS	tat Tyr	tca Ser	gaa Glu	gca Ala 395	atc Ile	aaa Lys	aga Arg	aac Asn	ccg Pro 400	aac Asn	gac Asp	gtg Val	agg Arg	gca Ala 405	1905
tat Tyr	agc Ser	aac Asn	aga Arg	gct Ala 410	gct Ala	tgt Cys	tac Tyr	aca Thr	aag Lys 415	tta Leu	gga Gly	gca Ala	tta Leu	cca Pro 420	gag Glu	1953
gga Gly	ttg Leu	aaa Lys	gat Asp 425	gct Ala	gaa Glu	aaa Lys	tgc Cys	att Ile 430	gag Glu	ctg Leu	gac Asp	cca Pro	agt Ser 435	ttc Phe	acg Thr	2001
aaa Lys	gga Gly	tac Tyr 440	agt Ser	aga Arg	aaa Lys	gga Gly	gct Ala 445	att Ile	caa Gln	ttt Phe	ttc Phe	atg Met 450	aag Lys	gaa Glu	tac Tyr	2049
gat Asp	aaa Lys 455	gct Ala	atg Met	gaa Glu	acg Thr	tat Tyr 460	caa Gln	gaa Glu	ggg Gly	cta Leu	aaa Lys 465	cat His	gat Asp	cct Pro	aag Lys	2097
aac Asn 470	cag Gln	gag Glu	ttc Phe	ctt Leu	gat Asp 475	ggt Gly	gtt Val	aga Arg	ag q Ar	yttt(gcaaa	at tt	tggd	catto	2	2146
tct	cttt	gtt (gttt	aacci	ct go	caaag	gatco	gto	ctagt	gaa	agto	gttgt	tg t	tttc	ag a g	2204
tgt Cys 480	gtg Val	gaa Glu	cag Gln	ata Ile	aac Asn 485	aaa Lys	gcg Ala	agc Ser	cgt Arg	ggt Gly 490	gat Asp	ctg Leu	act Thr	cca Pro	gaa Glu 495	2252
gaa Glu	ttg Leu	aag Lys	gag Glu	aga Arg 500	caa Gln	gca Ala	aag Lys	gca Ala	atg Met 505	caa Gln	gat Asp	cct Pro	gaa Glu	gtt Val 510	cag Gln	2300
aac Asn	ata Ile	tta Leu	tcg Ser 515	gat Asp	cca Pro	gtg Val	atg Met	aga Arg 520	cag Gln	gtaa	aagc	ag t	ggca	agca	ıt	2350
tgto	gttet	caa c	etegt	aago	et gt	ctgt	gaga	ctt	gtgt	gat	gatg	rtcta	i t t g		gta Val	2407
cta Leu	gtg Val	gac Asp 525	ttt Phe	caa Gln	gag Glu	aat Asn	ccg Pro 530	aaa Lys	gct Ala	gca Ala	caa Gln	gag Glu 535	cat His	atg Met	aag Lys	2455
aac Asn	cca Pro 540	atg Met	gta Val	atg Met	aac Asn	aag Lys 545	att Ile	cag Gln	aag Lys	ctg Leu	gtt Val 550	agt Ser	gcc Ala	gga Gly	att Ile	2503
gtt	cag	gtc	cgg	taa	attg	gtta	tg c	taaa	.ccgg	a gt	ggta	tatt	gaa	tcaa	acc	2558

Val Gln Val Arg 555

gaagatgttt ccaaattttc actgcgttct tttgggcttt tgttaaactg atgaaactct 2618 gatttggttt gggtcatgtt tg 2640

<210> 110

<211> 558

<212> PRT

<213> Arabidopsis thaliana

<400> 110

Met Ala Glu Glu Ala Lys Ser Lys Gly Asn Ala Ala Phe Ser Ser Gly
1 5 10 15

Asp Tyr Ala Thr Ala Ile Thr His Phe Thr Glu Ala Ile Asn Leu Ser 20 25 30

Pro Thr Asn His Ile Leu Tyr Ser Asn Arg Ser Ala Ser Tyr Ala Ser 35 40 45

Leu His Arg Tyr Glu Glu Ala Leu Ser Asp Ala Lys Lys Thr Ile Glu 50 55 60

Leu Lys Pro Asp Trp Ser Lys Gly Tyr Ser Arg Leu Gly Ala Ala Phe 65 70 75 80

Ile Gly Leu Ser Lys Phe Asp Glu Ala Val Asp Ser Tyr Lys Lys Gly
85 90 95

Leu Glu Ile Asp Pro Ser Asn Glu Met Leu Lys Ser Gly Leu Ala Asp

Ala Ser Arg Ser Arg Val Ser Ser Lys Ser Asn Pro Phe Val Asp Ala
115 120 125

Phe Gln Gly Lys Glu Met Trp Glu Lys Leu Thr Ala Asp Pro Gly Thr 130 140

Arg Val Tyr Leu Glu Gln Asp Asp Phe Val Lys Thr Met Lys Glu Ile 145 150 155 160

Gln Arg Asn Pro Asn Asn Leu Asn Leu Tyr Met Lys Asp Lys Arg Val 165 170 175

Met Lys Ala Leu Gly Val Leu Leu Asn Val Lys Phe Gly Gly Ser Ser 180 185 190

Gly Glu Asp Thr Glu Met Lys Glu Ala Asp Glu Arg Lys Glu Pro Glu 195 200 205

Pro Glu Met Glu Pro Met Glu Leu Thr Glu Glu Glu Arg Gln Lys Lys 210 215 220

Glu Arg Lys Glu Lys Ala Leu Lys Glu Lys Gly Glu Gly Asn Val Ala

225 230 235 240 Tyr Lys Lys Lys Asp Phe Gly Arg Ala Val Glu His Tyr Thr Lys Ala 250 Met Glu Leu Asp Asp Glu Asp Ile Ser Tyr Leu Thr Asn Arg Ala Ala 260 Val Tyr Leu Glu Met Gly Lys Tyr Glu Glu Cys Ile Glu Asp Cys Asp Lys Ala Val Glu Arg Gly Arg Glu Leu Arg Ser Asp Phe Lys Met Ile Ala Arg Ala Leu Thr Arg Lys Gly Ser Ala Leu Val Lys Met Ala Arg . 310 Cys Ser Lys Asp Phe Glu Pro Ala Ile Glu Thr Phe Gln Lys Ala Leu 325 Thr Glu His Arg Asn Pro Asp Thr Leu Lys Lys Leu Asn Asp Ala Glu Lys Val Lys Lys Glu Leu Glu Gln Gln Glu Tyr Phe Asp Pro Thr Ile 360 Ala Glu Glu Glu Arg Glu Lys Gly Asn Gly Phe Phe Lys Glu Gln Lys Tyr Pro Glu Ala Val Lys His Tyr Ser Glu Ala Ile Lys Arg Asn Pro 395 Asn Asp Val Arg Ala Tyr Ser Asn Arg Ala Ala Cys Tyr Thr Lys Leu 410 Gly Ala Leu Pro Glu Gly Leu Lys Asp Ala Glu Lys Cys Ile Glu Leu 420 Asp Pro Ser Phe Thr Lys Gly Tyr Ser Arg Lys Gly Ala Ile Gln Phe Phe Met Lys Glu Tyr Asp Lys Ala Met Glu Thr Tyr Gln Glu Gly Leu Lys His Asp Pro Lys Asn Gln Glu Phe Leu Asp Gly Val Arg Arg Cys 470 475 Val Glu Gln Ile Asn Lys Ala Ser Arg Gly Asp Leu Thr Pro Glu Glu 490 Leu Lys Glu Arg Gln Ala Lys Ala Met Gln Asp Pro Glu Val Gln Asn 505 Ile Leu Ser Asp Pro Val Met Arg Gln Val Leu Val Asp Phe Gln Glu Asn Pro Lys Ala Ala Gln Glu His Met Lys Asn Pro Met Val Met Asn

530 535 540

Lys Ile Gln Lys Leu Val Ser Ala Gly Ile Val Gln Val Arg 545 550 550

<210> 111
<211> 1560

<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (130)..(265)
<220>
<221> CDS
<220>
<221> CDS
<221> CDS

<220>
<221> CDS
<222> (622)..(1480)

<400> 111

tatataaacc tcacacacgc attatcatac accatcctcc tcattctctt catcatcaac 60

ataagagaga gagaagaaaa aaagaattac aattaataag aacaagatca agaatcaaga 120

atcaagaaa atg gga aga gca ccg tgt tgt gat aag gcc aac gtg aag aaa 171 Met Gly Arg Ala Pro Cys Cys Asp Lys Ala Asn Val Lys Lys

ggg cct tgg tct cct gag gaa gac gcc aaa ctc aaa gat tac atc gag 219
Gly Pro Trp Ser Pro Glu Glu Asp Ala Lys Leu Lys Asp Tyr Ile Glu
15 20 25 30

aat agt ggc aca gga ggc aac tgg att gct ttg cct cag aaa att g

Asn Ser Gly Thr Gly Gly Asn Trp Ile Ala Leu Pro Gln Lys Ile G

35

40

45

gtatgtatta cttaaaactc acttttgatt taaaattggc actgagagtt tccaaatagt 325

actttgagac cgtggtcgtg ttaaatttgt gtgttgatga tatttattta catggtatag 385

gt tta agg aga tgt ggg aag agt tgc agg cta agg tgg ctc aac tat 432 ly Leu Arg Arg Cys Gly Lys Ser Cys Arg Leu Arg Trp Leu Asn Tyr 50 55 60

ttg aga cca aac atc aaa cat ggt ggc ttc tcc gag gaa gaa gac aac 480 Leu Arg Pro Asn Ile Lys His Gly Gly Phe Ser Glu Glu Glu Asp Asn 65 70 75

atc att tgt aac ctc tat gtt act att ggt agc ag gtactatata 525

Ile Ile Cys Asn Leu Tyr Val Thr Ile Gly Ser Ar

80 85

ctta	cat	ata	tatc	atca	ta t	gcat	ggat	g aa	tatt	atta	att	gaca	cac	ttat	tcttga	585
ctta	agag	act	cact	atgt	at c	tttg	ttta	a tt	ctag						ct gca la Ala 95	
caa Gln	ttg Leu	ccg Pro	gga Gly	aga Arg 100	acc Thr	gac Asp	aac Asn	gat Asp	atc Ile 105	aaa Lys	aac Asn	tat Tyr	tgg Trp	aac Asn 110	acg	688
agg Arg	ctg Leu	aag Lys	aag Lys 115	aag Lys	ctt Leu	ctg Leu	aac Asn	aaa Lys 120	caa Gln	agg Arg	aaa Lys	gag Glu	Phe	Gln	gaa Glu	736
Ala	Arg	130	ьуs	GIn	Glu	Met	Val 135	Met	Met	Lys	Arg	Gln 140	Gln	Gln	gga Gly	784
	145	GIN	GIA	GIn	Ser	Asn 150	Gly	Ser	Thr	Asp	Leu 155	Tyr	Leu	Asn	Asn	832
atg Met 160	rne	GIÀ	Ser	Ser	165	Trp	Pro	Leu	Leu	Pro 170	Gln	Leu	Pro	Pro	Pro 175	880
cat (HIS	GIN	ııe	180	Leu	Gly	Met	Met	Glu 185	Pro	Thr	Ser	Суѕ	Asn 190	Tyr	928
tac (GIN	Thr	195	Pro	Ser	Суѕ	Asn	Leu 200	Glu	Gln	Lys	Pro	Leu 205	Ile	Thr	976
ctc a Leu l	ьуs	210	Met	Val	Lys	Ile	Glu 215	Glu	Glu	Gln	Glu	Arg 220	Thr	Asn	Pro	1024
gat o Asp I	cat His 225	cat His	cat His	caa Gln	gat Asp	tct Ser 230	gtc Val	aca Thr	aac Asn	cct Pro	ttt Phe 235	gat Asp	ttc Phe	tct Ser	ttc Phe	1072
ser (cag Gln	ctt Leu	ttg Leu	tta Leu	gat Asp 245	ccc Pro	aat Asn	tac Tyr	tat Tyr	ctg Leu 250	gga Gly	tca Ser	gga Gly	G1A aaa	gga Gly 255	1120
gga g Gly (gaa Glu	gga Gly	gat Asp	ttt Phe 260	gct Ala	atc Ile	atg Met	agc Ser	agc Ser 265	agc Ser	aca Thr	aac Asn	tca Ser	cca Pro 270	tta Leu	1168
cca a	aac Asn	aca Thr	agt Ser 275	agt Ser	gat Asp	caa Gln	cat His	cca Pro 280	agt Ser	caa Gln	cag Gln	caa Gln	gag Glu 285	att Ile	ctt Leu	1216
caa t Gln 1	rrp	ttt Phe 290	ggg Gly	agc Ser	agt Ser	Asn	ttt Phe 295	cag Gln	aca Thr	gaa Glu	gca Ala	atc Ile 300	aac Asn	gat Asp	atg Met	1264

ttc Phe	ata Ile 305	aac Asn	aac Asn	aac Asn	aac Asn	aac Asn 310	ata Ile	gtg Val	aat Asn	ctt Leu	gag Glu 315	acc Thr	atc Ile	gag Glu	aac Asn	1312
aca Thr 320	aaa Lys	gtc Val	tat Tyr	gga Gly	gac Asp 325	gcc Ala	tca Ser	gta Val	gcc Ala	gga Gly 330	gcc Ala	gct Ala	gtc Val	cga Arg	gca Ala 335	1360
gct Ala	ttg Leu	ggc Gly	gga Gly	ggg Gly 340	aca Thr	acg Thr	agt Ser	aca Thr	tcg Ser 345	gcg Ala	gat Asp	caa Gln	agt Ser	aca Thr 350	ata Ile	1408
agt Ser	tgg Trp	gag Glu	gat Asp 355	ata Ile	act Thr	tct Ser	cta Leu	gtt Val 360	aat Asn	tcc Ser	gaa Glu	gat Asp	gca Ala 365	agt Ser	tac Tyr	1456
ttc Phe	aat Asn	gcg Ala 370	cca Pro	aat Asn	cat His	gtg Val	taa 375	catt	ttgt	tt a	aaaa	ettta	at ti	gtad	ettaa	1510
atad	atacataaag aggggttttc tattttgtat aaatctgtgt ctttagggag 1															1560
<213 <212)> 11 l> 37 l> PF B> Ar	74 RT	lopsi	.s tl	nalia	ına										
)> 11 Gly		Ala	Pro 5	Cys	Суѕ	Asp	Lys	Ala 10	Asn	Val	Lys	Lys	Gly 15	Pro	
Trp	Ser	Pro	Glu 20	Glu	qaA	Ala	Lys	Leu 25	Lys	Asp	Tyr	Ile	Glu 30	Àsn	Ser	
Gly	Thr	Gly 35	Gly	Asn	Trp	Ile	Ala 40	Leu	Pro	Gln	Lys	Ile 45	Gly	Leu	Arg	
Arg	Cys	Gly	Lvs	Sor	.											
	50			261	Cys	Arg 55	Leu	Arg	Trp	Leu	Asn 60	Tyr	Leu	Arg	Pro	
Asn 65						55										
65	Ile	Lys	His	Gly	Gly 70	55 Phe	Ser	Glu	Glu	Glu 75	60	Asn	Ile	Ile	Cys 80	
65 Asn	Ile Leu	Lys Tyr	His Val	Gly Thr 85	Gly 70 Ile	55 Phe Gly	Ser Ser	Glu Arg	Glu Trp 90	Glu 75 Ser	60 Asp	Asn Ile	Ile Ala	Ile Ala 95	Cys 80 Gln	
Asn Leu	Ile Leu Pro	Lys Tyr Gly	His Val Arg 100	Gly Thr 85 Thr	Gly 70 Ile Asp	55 Phe Gly Asn	Ser Ser Asp	Glu Arg Ile 105	Glu Trp 90 Lys	Glu 75 Ser Asn	Asp	Asn Ile Trp	Ile Ala Asn 110	Ile Ala 95 Thr	Cys 80 Gln Arg	

Gly Gln Gly Gln Ser Asn Gly Ser Thr Asp Leu Tyr Leu Asn Asn Met Phe Gly Ser Ser Pro Trp Pro Leu Leu Pro Gln Leu Pro Pro Pro His 165 170 His Gln Ile Pro Leu Gly Met Met Glu Pro Thr Ser Cys Asn Tyr Tyr 185 Gln Thr Thr Pro Ser Cys Asn Leu Glu Gln Lys Pro Leu Ile Thr Leu 195 Lys Asn Met Val Lys Ile Glu Glu Glu Gln Glu Arg Thr Asn Pro Asp His His His Gln Asp Ser Val Thr Asn Pro Phe Asp Phe Ser Phe Ser 230 Gln Leu Leu Asp Pro Asn Tyr Tyr Leu Gly Ser Gly Gly Gly Glu Gly Asp Phe Ala Ile Met Ser Ser Ser Thr Asn Ser Pro Leu Pro 265 Asn Thr Ser Ser Asp Gln His Pro Ser Gln Gln Gln Glu Ile Leu Gln 280 Trp Phe Gly Ser Ser Asn Phe Gln Thr Glu Ala Ile Asn Asp Met Phe 290 295 300 Ile Asn Asn Asn Asn Ile Val Asn Leu Glu Thr Ile Glu Asn Thr 310 Lys Val Tyr Gly Asp Ala Ser Val Ala Gly Ala Ala Val Arg Ala Ala 325 Leu Gly Gly Gly Thr Thr Ser Thr Ser Ala Asp Gln Ser Thr Ile Ser 345 Trp Glu Asp Ile Thr Ser Leu Val Asn Ser Glu Asp Ala Ser Tyr Phe 355 360 Asn Ala Pro Asn His Val 370

```
- <210> 113

<211> 3790

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (38)..(1597)

<220>
```

```
<221> CDS
<222> (1717)..(1943)
<220>
<221> CDS
<222> (2052)..(2384)
<220>
<221> CDS
<222> (2468)..(2714)
<220>
<221> CDS
<222> (2800)..(2928)
<220>
<221> CDS
<222> (3020)..(3203)
<220>
<221> CDS
<222> (3532)..(3773)
<400> 113
ttgtatggtt cgttgttact gatagattac ttaagct atg gtt tgg ttt aga atc
                                          Met Val Trp Phe Arg Ile
ggt tot tot gtg gca aag ott gcc ata aga agg aca otg tot cag tot
                                                                    103
Gly Ser Ser Val Ala Lys Leu Ala Ile Arg Arg Thr Leu Ser Gln Ser
             10
cgt tgt ggt tca tat gcc act aga aca agg gtt ttg cct tgt caa acc
                                                                    151
Arg Cys Gly Ser Tyr Ala Thr Arg Thr Arg Val Leu Pro Cys Gln Thr
                              30
aga tgt ttt cac tct aca ata ctc aaa tca aag gca gag tct gct gca
                                                                   199
Arg Cys Phe His Ser Thr Ile Leu Lys Ser Lys Ala Glu Ser Ala Ala
     40
                          45
                                              50
cct gtt cca cgt cct gtc cca ctt tct aag cta act gat agc ttc tta
                                                                    247
Pro Val Pro Arg Pro Val Pro Leu Ser Lys Leu Thr Asp Ser Phe Leu
55
                                          65
gat gga aca agc agt gtg tat cta gag gag tta caa aga gct tgg gag
                                                                   295
Asp Gly Thr Ser Ser Val Tyr Leu Glu Glu Leu Gln Arg Ala Trp Glu
                 75
                                     80
gct gat ccc aac agt gtt gat gag tcg tgg gat aac ttt ttt agg aat
                                                                   343
Ala Asp Pro Asn Ser Val Asp Glu Ser Trp Asp Asn Phe Phe Arg Asn
             90
                                                     100
ttt gtg ggt cag gct tct aca tcg cct ggt atc tcg ggg caa acc att
                                                                   391
Phe Val Gly Gln Ala Ser Thr Ser Pro Gly Ile Ser Gly Gln Thr Ile
        105
                             110
                                                 115
caa gaa agc atg cgt ttg ttg ttg cta gtt aga gct tac cag gtt aat
```

Gln	Glu 120	Ser	Met	Arg	Leu	Leu 125	Leu	Leu	Val	Arg	Ala 130	Tyr	Gln	Val	Asn	
ggc Gly 135	cac His	atg Met	aag Lys	gcc Ala	aag Lys 140	ctt Leu	gat Asp	cct Pro	tta Leu	ggt Gly 145	cta Leu	gag Glu	aag Lys	aga Arg	gag Glu 150	487
att Ile	cca Pro	gag Glu	gat Asp	ctc Leu 155	acg Thr	cca Pro	ggt Gly	ctt Leu	tat Tyr 160	G1y ggg	ttt Phe	act Thr	gag Glu	gct Ala 165	gat Asp	535
ctt Leu	gat Asp	cgg Arg	gaa Glu 170	ttc Phe	ttt Phe	ctg Leu	ggt Gly	gta Val 175	tgg Trp	agg Arg	atg Met	tcg Ser	ggt Gly 180	ttt Phe	ctc Leu	583
tct Ser	gag Glu	aac Asn 185	cgc Arg	ccg Pro	gtt Val	caa Gln	aca Thr 190	ctg Leu	agg Arg	tcg Ser	ata Ile	ctg Leu 195	tcg Ser	agg Arg	ctt Leu	631
gag Glu	caa Gln 200	gct Ala	tac Tyr	tgt Cys	Gly ggg	act Thr 205	ata Ile	Gly ggg	tat Tyr	gag Glu	tac Tyr 210	atg Met	cac	att Ile	gct Ala	679
gat Asp 215	agg Arg	gat Asp	aaa Lys	tgt Cys	aac Asn 220	tgg Trp	ttg Leu	aga Arg	gac Asp	aag Lys 225	atc Ile	gag Glu	acc Thr	cca Pro	act Thr 230	727
cct Pro	cga Arg	cag Gln	tac Tyr	aat Asn 235	agt Ser	gag Glu	cgt Arg	cgg Arg	atg Met 240	gtt Val	att Ile	tat Tyr	gat Asp	agg Arg 245	ctt Leu	775
acc Thr	tgg Trp	agc Ser	aca Thr 250	cag Gln	ttt Phe	gag Glu	aat Asn	ttc Phe 255	ttg Leu	gct Ala	act Thr	aag Lys	tgg Trp 260	acc Thr	acg Thr	823
gct Ala	aaa Lys	agg Arg 265	ttt Phe	gga Gly	ctg Leu	gaa Glu	ggt Gly 270	gct Ala	gaa Glu	tct Ser	ttg Leu	att Ile 275	cct Pro	ggc Gly	atg Met	871
aag Lys	gag Glu 280	atg Met	ttc Phe	gat Asp	agg Arg	tct Ser 285	gca Ala	gat Asp	ctc Leu	G1A aaa	gta Val 290	gag Glu	aac Asn	ata Ile	gtt Val	919
atc Ile 295	ggt Gly	atg Met	ccc Pro	cat His	agg Arg 300	ggt Gly	cga Arg	ctt Leu	aat Asn	gtt Val 305	ttg Leu	ggt Gly	aat Asn	gtt Val	gtt Val 310	967
aga Arg	aaa Lys	cct Pro	cta Leu	cgc Arg 315	caa Gln	ata Ile	ttc Phe	agc Ser	gag Glu 320	ttt Phe	agc Ser	ggt Gly	ggt Gly	act Thr 325	agg Arg	1015
cca Pro	gta Val	gat Asp	gaa Glu 330	gtt Val	Gly aga	ctt Leu	tac Tyr	acc Thr 335	gga Gly	aca Thr	ggt Gly	gat Asp	gtg Val 340	aaa Lys	tac Tyr	1063
cac His	ttg Leu	ggt Gly	aca Thr	tct Ser	tat Tyr	gat Asp	cgt Arg	cca Pro	act Thr	aga Arg	gga Gly	ggc Gly	aaa Lys	cat His	ctc Leu	1111

345		350	355		
cac ttg tct ttg His Leu Ser Leu 360	gta gca aat Val Ala Asn 365	ccc agt cac Pro Ser His	ttg gaa gca Leu Glu Ala 370	gta gat cct Val Asp Pro	1159
gtt gtg ata ggt Val Val Ile Gly 375	aaa acc aga Lys Thr Arg 380	Ala Lys Gln	tat tac acg of Tyr Tyr Thr 1 385	aaa gac gag Lys Asp Glu 390	1207
aac aga aca aag Asn Arg Thr Lys	aac atg ggt Asn Met Gly 395	att ttg atc Ile Leu Ile 400	cat ggg gat (His Gly Asp (ggt agc ttt Gly Ser Phe 405	1255
gcc gga caa gga Ala Gly Gln Gly 410	gtg gtg tat Val Val Tyr	gaa act ctc Glu Thr Leu 415	His Leu Ser I	gca ctt cct Ala Leu Pro 420	1303
aac tac tgt acc Asn Tyr Cys Thr 425	ggt gga aca Gly Gly Thr	gtg cac att Val His Ile 430	gtg gtg aat a Val Val Asn 2 435	aat caa gtg Asn Gln Val	1351
gct ttc aca acc Ala Phe Thr Thr 440	gat ccc agg Asp Pro Arg 445	gaa gga agg Glu Gly Arg	tct tca cag (Ser Ser Gln (450	tat tgc act Tyr Cys Thr	1399
gat gtt gca aag Asp Val Ala Lys 455	gct ttg agc Ala Leu Ser 460	Ala Pro Ile	ttc cat gtc a Phe His Val A 465	aat gca gat Asn Ala Asp 470	1447
gac att gaa gca Asp Ile Glu Ala	gta gtg cat Val Val His 475	gct tgt gag Ala Cys Glu 480	ctt gct gct g Leu Ala Ala (gag tgg cgc Glu Trp Arg 485	1495
cag acg ttc cat Gln Thr Phe His 490	tct gat gtt Ser Asp Val	gtt gtt gat Val Val Asp 495	Leu Val Cys 1	tac cgt cgc Tyr Arg Arg 500	1543
ttt ggg cat aac Phe Gly His Asn 505	gag ata gac Glu Ile Asp	gaa ccg tca Glu Pro Ser 510	ttc aca caa c Phe Thr Gln I 515	cca aaa atg Pro Lys Met	1591
tac aag gtctggc Tyr Lys 520	tat tatatcato	cc atctctgtga	aataatctaa t	taaccaattc	1647
aagtttccat ttca	tacttt tcttg	actt tttttt	gtt taaaaacgg	ga tgttacttgt	1707
tggtgatag gtg a Val I	le Arg Ser H:	at ccc tcg tc is Pro Ser Se 25	a ctt caa atc r Leu Gln Ile 530	c tac cag gag e Tyr Gln Glu	1758
aag ctc ttg caa Lys Leu Leu Gln 535	tct gga cag Ser Gly Gln 540	Val Thr Gln	gaa gat att g Glu Asp Ile <i>F</i> 545	gat aag att Asp Lys Ile 550	1806
caa aag aaa gta	agc tct atc	ctc aat gaa	gaa tat gag ç	gca agt aaa	1854

				222					560	ı				565		
gat Asp	tat Tyr	att Ile	cca Pro 570	caa Gln	aaa Lys	cgt Arg	gac Asp	tgg Trp 575	Leu	gca Ala	agt Ser	cac His	tgg Trp 580	act Thr	gga Gly	1902
ttc Phe	aag Lys	tct Ser 585	ccg Pro	gag Glu	cag Gln	att Ile	tct Ser 590	agg Arg	att	cga Arg	aac Asn	acc Thr 595	gg Gl	gtaa	aaaaca	1953
ttt	ttat	ttc a	attta	agtti	tg t	caat	geet	t tt	ggcc	tttt	ttc	tttt	ctt	tttc	aatgta	2013
aca	tttt	gct (ggaaa	aacta	at to	ccti	gtt	c tt	ttgc	ag a Y	gtg Val	aag Lys	cca Pro	gag Glu 600	att Ile	2067
ttg Leu	aag Lys	aat Asn	gtg Val 605	gga Gly	aag Lys	gca Ala	atc Ile	tca Ser 610	acc Thr	ttc Phe	cct Pro	gag Glu	aac Asn 615	ttt Phe	aag Lys	2115
cca Pro	cac His	aga Arg 620	gga Gly	gtt Val	aaa Lys	aga Arg	gtt Val 625	tat Tyr	gaa Glu	caa Gln	cgt Arg	gct Ala 630	caa Gln	atg Met	att Ile	2163
gaa Glu	tcg Ser 635	gga Gly	gaa Glu	ggc Gly	att Ile	gac Asp 640	tgg Trp	gga Gly	ctt Leu	gga Gly	gaa Glu 645	gca Ala	ctt Leu	gct Ala	ttt Phe	2211
gct Ala 650	aca Thr	ctg Leu	gtt Val	gtg Val	gaa Glu 655	ggg ggg	aac Asn	cat His	gtt Val	cgg Arg 660	cta Leu	agt Ser	ggt Gly	caa Gln	gat Asp 665	2259
gtt Val	gaa Glu	aga Arg	gga Gly	act Thr 670	ttc Phe	agt Ser	cat His	aga Arg	cac His 675	tca Ser	gtg Val	ctt Leu	cat His	gat Asp 680	caa Gln	2307
gaa Glu	acc Thr	GIA	gag Glu 685	gaa Glu	tat Tyr	tgt Cys	ccc Pro	ctc Leu 690	gat Asp	cac His	cta Leu	Ile	aaa Lys 695	aac Asn	caa Gln	2355
gac Asp	FIU	gaa Glu 700	atg Met	ttc Phe	act Thr	Val	agc Ser 705	aac Asn	ag g Se	tatg	rcatt	t tt	tttt	aatc		2404
tcta	gaga	tg a	taac	cact	c tt	caat	tgtt	ttt	acat	gat	cttt	acgt	tg t	ttgt	gtatg	2464
cag	c tc r	c ct Ser	t tc. Leu : 71	ser	a tt Glu	t gg Phe	t gt Gly	t ct Val 71	Leu	t tt Gly	c ga Phe	a ct Glu :	g gg Leu 72	Gly	t tcg Tyr Se	2513
atg (r Me	gaa t Gl	aat u As: 72	ccc a n Pro 5	aat o Asi	tct (n Se	ctg (r Le	gtg u Va ₋ 73	T II	tgg e Tr	gaa p Gl	gct u Al	cag a Gli 73	n Ph	gga e Gl	gac y As	2561
ttt (gct a e Ala	aat (a Ası	ggc q n Gly	gca o y Ala	caa e a Gl	gtt a n Val	atg l Me	ttt t Ph	gat e As	cag p Gl:	ttc a	ata a	agc a	agt (r Se:	ggg r Gl	2609

WO 00/08187 PCT/EP99/0565:

740	745	750		
gaa gcc aaa tgg ctc c y Glu Ala Lys Trp Leu 755	gt caa act ggt Arg Gln Thr G 760	cta gta gtt tta ly Leu Val Val Le 765	ctt cct cat eu Leu Pro Hi 770	2657)
gga tat gat ggt cag gg s Gly Tyr Asp Gly Gln 775	gt cct gaa cat Gly Pro Glu H	tcc agt gga aga is Ser Ser Gly Ai 780	ttg gaa cgt rg Leu Glu Ar 785	2705
ttc ctt cag gtatattat g Phe Leu Gln	a tgaccgatac t	taccgttaa gattcto	etec	2754
actttttgta tttgtttccc	tctcatttga aa	attttaac tgcag at	g agt gat gac Met Ser Asp As 790	
aat cct tac gtt atc co p Asn Pro Tyr Val Ile 795	ct gag atg gac Pro Glu Met A 800	cca act ctt cga sp Pro Thr Leu Ar 805	aag cag att cg Lys Gln Il	2859
caa gaa tgt aat tgg ca e Gln Glu Cys Asn Trp 810	aa gtt gtt aat Gln Val Val A 815	gtt act aca cct sn Val Thr Thr Pr 820	gcc aac tat co Ala Asn Ty 825	2907
ttc cat gtt ctg cgt cg r Phe His Val Leu Arg 830	gg cag gtaaaata Arg Gln	atc tatttatccc aa	agttegtaa	2958
aatgttgtta cttaattttc	gtattcttca cad	ctcacatg cttgatat	ca tccatttgca	3018
g ata cac agg gac ttt Ile His Arg Asp Pl 835	cgc aag cct c ne Arg Lys Pro 840	tt ata gtg atg go Leu Ile Val Met	ec ecc aaa aac Ala Pro Lys As 845	3067
ttg ctt cgt cac aaa can Leu Leu Arg His Lys 850	ag tgt gta tct Gln Cys Val So 855	aat ctc tcg gaa er Asn Leu Ser G] 860	ttc gat gat u Phe Asp As	3115
gtt aaa gga cat cct gg p Val Lys Gly His Pro 865	ga ttt gac aag Gly Phe Asp Ly 870	caa gga act cga ys Gln Gly Thr Ar 875	ttt aaa cgg cg Phe Lys Ar 880	3163
ttg atc aaa gat caa ag g Leu Ile Lys Asp Gln 885	gt ggc cac tct Ser Gly His So	gat ctt gaa gaa er Asp Leu Glu G] 890	g gtatcagacg Lu A	3213
tctagtcctc tgctctggga	aggtataaaa aa	aaagatcc acttttt	ccg tcattaacta	3273
acaaagttcc cacattctga	aatttaatac tt	taaatgtc aatgaatc	ag gtctactatg	3333
agcttgacga agagcgaaag	aagtctgaaa ca	aaggatgt agccattt	gc agagtagagc	3393
agctttgccc atttccatat	gatctcatcc aa	agagaact aaagcgat	at ccaagtaggc	3453

gtcgaaaact caagtttgtg ttcaatagtt ttggttgatt atggaattct ttgaaacttt 3513

tgttcttgtg tttaacag at gca gag atc gtg tgg tgt caa gaa gag ccg 3563 sp Ala Glu Ile Val Trp Cys Gln Glu Glu Pro 895 atg aac atg gga gga tac caa tac ata gcc cta agg ctt tgc acc gcg 3611 Met Asn Met Gly Gly Tyr Gln Tyr Ile Ala Leu Arg Leu Cys Thr Ala 910 atg aaa gca ctg caa aga gga aac ttc aac gac atc aaa tac gtt ggt Met Lys Ala Leu Gln Arg Gly Asn Phe Asn Asp Ile Lys Tyr Val Gly 920 925 935 cgt ctt ccc tca gct gct aca gcc aca gga ttt tac cag ctt cat gtt 3707 Arg Leu Pro Ser Ala Ala Thr Ala Thr Gly Phe Tyr Gln Leu His Val 940 945 aag gag cag act gat ctt gtg aag aaa gct ctt caa cct gac ccc atc 3755 Lys Glu Gln Thr Asp Leu Val Lys Lys Ala Leu Gln Pro Asp Pro Ile 955 960 acc ccc gtc atc cct taa aaaaacacag cttgaga 3790 Thr Pro Val Ile Pro 970 <210> 114 <211> 947 <212> PRT <213> Arabidopsis thaliana <400> 114 Met Val Trp Phe Arg Ile Gly Ser Ser Val Ala Lys Leu Ala Ile Arg Arg Thr Leu Ser Gln Ser Arg Cys Gly Ser Tyr Ala Thr Arg Thr Arg Val Leu Pro Cys Gln Thr Arg Cys Phe His Ser Thr Ile Leu Lys Ser 40 Lys Ala Glu Ser Ala Ala Pro Val Pro Arg Pro Val Pro Leu Ser Lys Leu Thr Asp Ser Phe Leu Asp Gly Thr Ser Ser Val Tyr Leu Glu Glu Leu Gln Arg Ala Trp Glu Ala Asp Pro Asn Ser Val Asp Glu Ser Trp Asp Asn Phe Phe Arg Asn Phe Val Gly Gln Ala Ser Thr Ser Pro Gly Ile Ser Gly Gln Thr Ile Gln Glu Ser Met Arg Leu Leu Leu Val 120 Arg Ala Tyr Gln Val Asn Gly His Met Lys Ala Lys Leu Asp Pro Leu

135

130

Gly Leu Glu Lys Arg Glu Ile Pro Glu Asp Leu Thr Pro Gly Leu Tyr 145 150 Gly Phe Thr Glu Ala Asp Leu Asp Arg Glu Phe Phe Leu Gly Val Trp 170 Arg Met Ser Gly Phe Leu Ser Glu Asn Arg Pro Val Gln Thr Leu Arg 180 Ser Ile Leu Ser Arg Leu Glu Gln Ala Tyr Cys Gly Thr Ile Gly Tyr 200 Glu Tyr Met His Ile Ala Asp Arg Asp Lys Cys Asn Trp Leu Arg Asp Lys Ile Glu Thr Pro Thr Pro Arg Gln Tyr Asn Ser Glu Arg Arg Met 230 235 Val Ile Tyr Asp Arg Leu Thr Trp Ser Thr Gln Phe Glu Asn Phe Leu 245 250 Ala Thr Lys Trp Thr Thr Ala Lys Arg Phe Gly Leu Glu Gly Ala Glu 265 Ser Leu Ile Pro Gly Met Lys Glu Met Phe Asp Arg Ser Ala Asp Leu 280 Gly Val Glu Asn Ile Val Ile Gly Met Pro His Arg Gly Arg Leu Asn Val Leu Gly Asn Val Val Arg Lys Pro Leu Arg Gln Ile Phe Ser Glu Phe Ser Gly Gly Thr Arg Pro Val Asp Glu Val Gly Leu Tyr Thr Gly 330 Thr Gly Asp Val Lys Tyr His Leu Gly Thr Ser Tyr Asp Arg Pro Thr 345 Arg Gly Gly Lys His Leu His Leu Ser Leu Val Ala Asn Pro Ser His 355 Leu Glu Ala Val Asp Pro Val Val Ile Gly Lys Thr Arg Ala Lys Gln 375 Tyr Tyr Thr Lys Asp Glu Asn Arg Thr Lys Asn Met Gly Ile Leu Ile 385 390 395 His Gly Asp Gly Ser Phe Ala Gly Gln Gly Val Val Tyr Glu Thr Leu His Leu Ser Ala Leu Pro Asn Tyr Cys Thr Gly Gly Thr Val His Ile 420 425 Val Val Asn Asn Gln Val Ala Phe Thr Thr Asp Pro Arg Glu Gly Arg 435 440

Ser Ser Gln Tyr Cys Thr Asp Val Ala Lys Ala Leu Ser Ala Pro Ile

455

Phe His Val Asn Ala Asp Asp Ile Glu Ala Val Val His Ala Cys Glu 470 Leu Ala Ala Glu Trp Arg Gln Thr Phe His Ser Asp Val Val Val Asp Leu Val Cys Tyr Arg Arg Phe Gly His Asn Glu Ile Asp Glu Pro Ser Phe Thr Gln Pro Lys Met Tyr Lys Val Ile Arg Ser His Pro Ser Ser 525 Leu Gln Ile Tyr Gln Glu Lys Leu Leu Gln Ser Gly Gln Val Thr Gln Glu Asp Ile Asp Lys Ile Gln Lys Lys Val Ser Ser Ile Leu Asn Glu 555 Glu Tyr Glu Ala Ser Lys Asp Tyr Ile Pro Gln Lys Arg Asp Trp Leu 565 570 Ala Ser His Trp Thr Gly Phe Lys Ser Pro Glu Gln Ile Ser Arg Ile Arg Asn Thr Gly Val Lys Pro Glu Ile Leu Lys Asn Val Gly Lys Ala 600

Val Tyr Glu Gln Arg Ala Gln Met Ile Glu Ser Gly Glu Gly Ile Asp 625 635

Ile Ser Thr Phe Pro Glu Asn Phe Lys Pro His Arg Gly Val Lys Arg

615

- Trp Gly Leu Gly Glu Ala Leu Ala Phe Ala Thr Leu Val Val Glu Gly
- Asn His Val Arg Leu Ser Gly Gln Asp Val Glu Arg Gly Thr Phe Ser 660 665
- His Arg His Ser Val Leu His Asp Gln Glu Thr Gly Glu Glu Tyr Cys
- Pro Leu Asp His Leu Ile Lys Asn Gln Asp Pro Glu Met Phe Thr Val
- Ser Asn Ser Ser Leu Ser Glu Phe Gly Val Leu Gly Phe Glu Leu 710 720
- Gly Tyr Ser Met Glu Asn Pro Asn Ser Leu Val Ile Trp Glu Ala Gln 730 73
- Phe Gly Ap Phe Ala Asn Gly Ala Gln Val Met Phe Asp Gln Phe Ile 740 745

Ser Ser Gy Glu Ala Lys Trp Leu Arg Gln Thr Gly Leu Val Val Leu 755 760 765

Leu Pro Hs Gly Tyr Asp Gly Gln Gly Pro Glu His Ser Ser Gly Arg
770 775 780

Leu Glu Ag Phe Leu Gln Met Ser Asp Asp Asn Pro Tyr Val Ile Pro
785 790 795

Glu Met Asp Pro Thr Leu Arg Lys Gln Ile Gln Glu Cys Asn Trp Gln 800 805 810

Val Val Asn Val Thr Thr Pro Ala Asn Trp Phe His Val Leu Arg Arg 815 820 825

Gln Ile His Arg Asp Phe Arg Lys Pro Leu Ile Val Met Ala Pro Lys 830 835 840

Asn Leu Leu Arg His Lys Gln Cys Val Ser Asn Leu Ser Glu Phe Asp 845 850 855

Asp Val Lys Gly His Pro Gly Phe Asp Lys Gln Gly Thr Arg Phe Lys 860 865 870

Arg Leu Ile Lys Asp Gln Ser Gly His Ser Asp Leu Glu Glu 875 880 889

Asp Ala Glu Ile Val Trp Cys Gln Glu Glu Pro Met Asn Met Gly Gly 890 895 900

Tyr Gln Tyr Ile Ala Leu Arg Leu Cys Thr Ala Met Lys Ala Leu Gln 905 910 915

Arg Gly Asn Phe Asn Asp Ile Lys Tyr Val Gly Arg Leu Pro Ser Ala 920 925 930

Ala Thr Ala Thr Gly Phe Tyr Gln Leu His Val Lys Glu Gln Thr Asp 935

Leu Val Lys Lys Ala Leu Gln

Pro Asp Pro Ile Thr Pro Val Ile Pro

<210> 115

<211> 1200

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (25)..(151)

<220>

<221> CDS

<22	2> ((257)	(3	157)												
	1> 0	DS (465)	(6	(62)										•		
	1> C	DS (783)	(1	166)												
	0> 1 attt	-	ctct	cttg	ac g	cta	atg Met 1	ttc Phe	att Ile	cgg Arg	gtt Val 5	tcc Ser	gct Ala	cga Arg	ccc Pro	51
gcg Ala 10	aca Thr	ttc Phe	gtc Val	gag Glu	gat Asp 15	ttc Phe	aaa Lys	gcc Ala	gcc Ala	tgg Trp 20	Ser	gaa Glu	tct Ser	cac His	atc Ile 25	99
cgt Arg	caa Gln	atg Met	gaa Glu	gac Asp 30	GIY	aaa Lys	gct Ala	atc Ile	cag Gln 35	Leu	gtc Val	ctt Leu	gat Asp	cag Gln 40	agc Ser	147
act Thr	g g G	taca	ccaa	c gc	caca	gtta	tat	tttt.	aaa	cgga	aaca	tt t	tgaa	atta	a	201
tgg	tgtt	ttt .	atgt.	aata	ta c	tete	actg	t ac	atgt	tcat	att	tgtc	ttt	taaa	g ga ly	258
tgt Cys	gga Gly 45	ttt Phe	gct Ala	tcc Ser	aaa Lys	aga Arg 50	aaa Lys	tat Tyr	cta Leu	ttc Phe	gga Gly 55	cga Arg	gtg Val	agc Ser	atg Met	306
aag Lys 60	atc Ile	aaa Lys	ctc Leu	att Ile	ccc Pro 65	gga Gly	gac Asp	tct Ser	gcc Ala	ggt Gly 70	acg Thr	gtc Val	acc Thr	gct Ala	ttc Phe 75	354
tac Tyr	gta	agtc	tat (catt	ttacı	tc ca	acta	gttt	t gaa	aatti	ttac	aca	ttca	cac		407
aata	aaaa	aat a	aaca	tttt	ct to	gaaad	cacta	a acg	ggtc	aaat	cat	tgat	atg	tcta	tag	464
atg Met	aac Asn	tcc Ser	gat Asp 80	acg Thr	gcc Ala	acg Thr	gtg Val	aga Arg 85	gac Asp	gag Glu	cta Leu	gat Asp	ttt Phe 90	gag Glu	ttc Phe	512
ttg Leu	gga Gly	aac Asn 95	aga Arg	agt Ser	ggt Gly	caa Gln	cct Pro 100	tac Tyr	tca Ser	gtg Val	caa Gln	aca Thr 105	aac Asn	ata Ile	ttt Phe	560
gct Ala	cat His 110	ggc Gly	aaa Lys	gga Gly	gat Asp	aga Arg 115	gaa Glu	caa Gln	aga Arg	gtt Val	aat Asn 120	ctt Leu	tgg Trp	ttc Phe	gac Asp	608
cca Pro 125	tct Ser	atg Met	gat Asp	tac Tyr	cac His 130	act Thr	tac Tyr	act Thr	atc Ile	tta Leu 135	tgg Trp	tca Ser	cac His	aaa Lys	cac His 140	656

att Ile	gtg Val	taa	gctt	ttc	tcta	attg	ta c	tttc	aact	a ga	atca	acat	tta	ctgt	ttc	712
aaaa	acaa	aaa a	atca	ccat	tt a	ctgt	ttaa	a aa	aacc	ttag	ttt	aacg	tgg	ggtt	gttttg	772
gtta	actca	agt :	ttt Phe '	Tyr	gta Val 145	gac Asp	gat Asp	gtg Val	cca Pro	ata Ile 150	aga Arg	gaa Glu	tac Tyr	aaa Lys	aac Asn 155	821
aac Asn	gaa Glu	gcc Ala	aag Lys	aac Asn 160	Ile	gct Ala	tac Tyr	cca Pro	aca Thr 165	tca Ser	caa Gln	cct Pro	atg Met	gga Gly 170	gta Val	869
tac Tyr	tca Ser	aca Thr	tta Leu 175	tgg Trp	gaa Glu	gca Ala	gat Asp	gac Asp 180	tgg Trp	gca Ala	aca Thr	cgt Arg	ggt Gly 185	Gly	tta Leu	917
gag Glu	aaa Lys	att Ile 190	gat Asp	tgg Trp	agc Ser	aaa Lys	gct Ala 195	cca Pro	ttt Phe	tat Tyr	gct Ala	tat Tyr 200	tac Tyr	aaa Lys	gat Asp	965
ttc Phe	gac Asp 205	atc Ile	gaa Glu	ggt Gly	tgt Cys	cct Pro 210	gtt Val	cct Pro	gga Gly	cca Pro	acc Thr 215	Phe	tgt Cys	cca Pro	tcg Ser	1013
aac Asn 220	.cct Pro	cat His	aat Asn	tgg Trp	tgg Trp 225	gaa Glu	ggt Gly	tat Tyr	gcc Ala	tat Tyr 230	cag Gln	tct Ser	ctt Leu	aac Asn	gcc Ala 235	1061
gtt Val	gaa Glu	gct Ala	cga Arg	cgt Arg 240	tac Tyr	cgg Arg	tgg Trp	gtt Val	aga Arg 245	gta Val	aac Asn	cat His	atg Met	gtt Val 250	tat Tyr	1109
gat Asp	tat Tyr	tgt Cys	act Thr 255	gac Asp	cgg Arg	tct Ser	agg Arg	ttt Phe 260	cct Pro	gtc Val	cca Pro	cca Pro	ccc Pro 265	gag Glu	tgt Cys	1157
cgt Arg	gct Ala	tga 270	aaat	taat	tgc a	atac	gtac	gt t	gcaa	tgato	c at	gt				1200
<211 <212	0> 11 L> 26 2> PF 3> Ar	59 RT	dops	is t!	halia	ana										
)> 11															
Met 1	Phe	Ile	Arg	Val 5	Ser	Ala	Arg	Pro	Ala 10	Thr	Phe	Val	Glu	Asp 15	Phe	
Lys	Ala	Ala	Trp 20	Ser	Glu	Ser	His	Ile 25	Arg	Gln	Met	Glu	Asp 30	Gly	Lys	
Ala	Ile	Gln 35	Leu	Val	Leu	Asp	Gln 40	Ser	Thr	Gly	Cys	Gly 45	Phe	Ala	Ser	

Lys Arg Lys Tyr Leu Phe Gly Arg Val Ser Met Lys Ile Lys Leu Ile 50 60

Pro Gly Asp Ser Ala Gly Thr Val Thr Ala Phe Tyr Met Asn Ser Asp 65 70 75 80

Thr Ala Thr Val Arg Asp Glu Leu Asp Phe Glu Phe Leu Gly Asn Arg 85 90 95

Ser Gly Gln Pro Tyr Ser Val Gln Thr Asn Ile Phe Ala His Gly Lys 100 105 110

Gly Asp Arg Glu Gln Arg Val Asn Leu Trp Phe Asp Pro Ser Met Asp 115 120 125

Tyr His Thr Tyr Thr Ile Leu Trp Ser His Lys His Ile Val Phe Tyr 130 135 140

Val Asp Asp Val Pro Ile Arg Glu Tyr Lys Asn Asn Glu Ala Lys Asn 145 150 155 160

Ile Ala Tyr Pro Thr Ser Gln Pro Met Gly Val Tyr Ser Thr Leu Trp
165 170 175

Glu Ala Asp Asp Trp Ala Thr Arg Gly Gly Leu Glu Lys Ile Asp Trp
180 185 190

Ser Lys Ala Pro Phe Tyr Ala Tyr Tyr Lys Asp Phe Asp Ile Glu Gly 195 200 205

Cys Pro Val Pro Gly Pro Thr Phe Cys Pro Ser Asn Pro His Asn Trp 210 215 220

Trp Glu Gly Tyr Ala Tyr Gln Ser Leu Asn Ala Val Glu Ala Arg Arg 225 230 235 240

Tyr Arg Trp Val Arg Val Asn His Met Val Tyr Asp Tyr Cys Thr Asp 245 250 255

Arg Ser Arg Phe Pro Val Pro Pro Pro Glu Cys Arg Ala 260 265

<210> 117

<211> 1399

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (25)..(1386)

	0> 1															
aac	acaa	acc (gagg	tttt	ag a	aac	atg Met . 1	gcg Ala	tct Ser	aag Lys	gta Val 5	atc Ile	tct Ser	gcc Ala	aca Thr	51
atc Ile 10	cgc Arg	aga Arg	acc Thr	cta Leu	acc Thr 15	aaa Lys	cca Pro	cac His	ggc	act Thr 20	Phe	tcc	cgg Arg	tgt Cys	cgc Arg 25	99
tac Tyr	tta Leu	tca Ser	acc Thr	gcc Ala 30	gct Ala	gct Ala	gcg Ala	acg Thr	gag Glu 35	gtg Val	aat Asn	tac Tyr	gag	gat Asp 40	gaa Glu	147
tcg Ser	att Ile	atg Met	atg Met 45	aaa Lys	gga Gly	gtt Val	cga Arg	att Ile 50	tca Ser	ggt Gly	aga Arg	cct Pro	ctt Leu 55	Tyr	tta Leu	195
gat Asp	atg Met	caa Gln 60	gcg Ala	acg Thr	act Thr	ccg Pro	att Ile 65	gat Asp	cct Pro	aga Arg	gta Val	ttc Phe 70	gat Asp	gcg Ala	atg Met	243
aat Asn	gct Ala 75	tca Ser	cag Gln	atc Ile	cat His	gag Glu 80	tat Tyr	Gly	aat Asn	cct Pro	cac His 85	tcg Ser	cga Arg	acg Thr	cat His	291
ctc Leu 90	tac Tyr	Gly	tgg Trp	gaa Glu	gct Ala 95	gag Glu	aac Asn	gcc Ala	gtc Val	gag Glu 100	aac Asn	gca Ala	cga Arg	aac Asn	cag Gln 105	339
gtc Val	gcg Ala	aaa Lys	ctg Leu	atc Ile 110	gaa Glu	gct Ala	tca Ser	ccg Pro	aag Lys 115	gag Glu	atc Ile	gta Val	ttc Phe	gtg Val 120	tcc Ser	387
ggt Gly	gca Ala	acg Thr	gag Glu 125	gcg Ala	aac Asn	aat Asn	atg Met	gcg Ala 130	gtg Val	aaa Lys	gga Gly	gtg Val	atg Met 135	cac His	ttt Phe	435
tac Tyr	aag Lys	gac Asp 140	acg Thr	aag Lys	aaa Lys	cat His	gtg Val 145	ata Ile	act Thr	aca Thr	cag Gln	act Thr 150	gag Glu	cat His	aag Lys	483
tgt Cys	gtg Val 155	ctt Leu	gat Asp	tcg Ser	tgt Cys	agg Arg 160	cat His	ttg Leu	cag Gln	caa Gln	gaa Glu 165	gga Gly	ttt Phe	gag Glu	gta Val	531
act Thr 170	tat Tyr	tta Leu	cct Pro	gtg Val	aaa Lys 175	act Thr	gat Asp	gga Gly	ttg Leu	gtt Val 180	gat Asp	tta Leu	gag Glu	atg Met	ttg Leu 185	579
aga Arg	gaa Glu	gct Ala	att Ile	agg Arg 190	cca Pro	gac Asp	aca Thr	ggg Gly	cta Leu 195	gtt Val	tct Ser	att Ile	atg Met	gct Ala 200	gtg Val	627
aac Asn	aat Asn	gag Glu	att Ile 205	ggt Gly	gtg Val	gtt Val	caa Gln	cct Pro 210	atg Met	gag Glu	gag Glu	att Ile	ggt Gly 215	atg Met	att Ile	675

tgc Cys	aaa Lys	gag Glu 220	cat His	aat Asn	gtt Val	ccg Pro	ttt Phe 225	cat His	act Thr	gat Asp	gct Ala	gct Ala 230	caa Gln	gct Ala	att Ile	723
Gly aaa	aag Lys 235	ata Ile	cct Pro	gtt Val	gat Asp	gtt Val 240	aag Lys	aag Lys	tgg Trp	aat Asn	gtt Val 245	gct Ala	ttg Leu	atg Met	tct Ser	771
atg Met 250	agt Ser	gct Ala	cac His	aag Lys	atc Ile 255	tat Tyr	gga Gly	ccg Pro	aaa Lys	ggt Gly 260	gtt Val	ggt Gly	gct Ala	ttg Leu	tat Tyr 265	819
vai	Arg	Arg	Arg	270		Ile	Arg	Leu	Glu 275	Pro	Leu	Met	Asn	Gly 280	Gly	867
GIÀ	GIN	GIU	Arg 285	GIĀ	ttg Leu	Arg	Ser	Gly 290	Thr	Gly	Ala	Thr	Gln 295	Gln	Ile	915
Val	GIĀ	300	GIÀ	Ala	gct Ala	Cys	Glu 305	Leu	Ala	Met	Lys	Glu 310	Met	Glu	Tyr	963
Asp	315	гуs	ттр	11e	aag Lys	320 GIA	Leu	Gln	Glu	Arg	Leu 325	Leu	Asn	Gly	Val	1011
330	GIU	ьуs	ren	Asp	ggt Gly 335	Val	Val	Val	Asn	Gly 340	Ser	Met	Asp	Ser	Arg 345	1059
Tyr	vai	GIĀ	Asn	350	aat Asn	Leu	Ser	Phe	Ala 355	Tyr	Val	Glu	Gly	Glu 360	Ser	1107
rea	ьеи	Met	365	Leu	aag Lys	Glu	Val	Ala 370	Val	Ser	Ser	Gly	Ser 375	Ala	Cys	1155
THE	ser	380	Ser	Leu	gag Glu	Pro	Ser 385	Tyr	Val	Leu	Arg	Ala 390	Leu	Gly	Val	1203
ASP	395	Asp	Met	Ala	cac His	Thr 400	Ser	Ile	Arg	Phe	Gly 405	Ile	Gly	Arg	Phe	1251
acc Thr 410	acg Thr	aag Lys	gaa Glu	gag Glu	att Ile 415	gat Asp	aaa Lys	gcg Ala	gtc Val	gag Glu 420	ctt Leu	acg Thr	gtt Val	aaa Lys	caa Gln 425	1299
gtt Val	gag Glu	aag Lys	Leu	agg Arg 430	gaa Glu	atg Met	agc Ser	Pro	ctt Leu 435	tat Tyr	gaa Glu	atg Met	gtt Val	aaa Lys 440	gaa Glu	1347
ggt	atc	gat	atc	aag	aac	att	caa	tgg	tct	caa	cac	tga	ttca	acag	tt	1396

Gly Ile Asp Ile Lys Asn Ile Gln Trp Ser Gln His
445 450

cca 1399

<210> 118

<211> 453

<212> PRT

<213> Arabidopsis thaliana

<400> 118

Met Ala Ser Lys Val Ile Ser Ala Thr Ile Arg Arg Thr Leu Thr Lys

1 10 15

Pro His Gly Thr Phe Ser Arg Cys Arg Tyr Leu Ser Thr Ala Ala Ala 20 25 30

Ala Thr Glu Val Asn Tyr Glu Asp Glu Ser Ile Met Met Lys Gly Val 35 40 45

Arg Ile Ser Gly Arg Pro Leu Tyr Leu Asp Met Gln Ala Thr Thr Pro 50 55 60

Ile Asp Pro Arg Val Phe Asp Ala Met Asn Ala Ser Gln Ile His Glu 65 70 75 80

Tyr Gly Asn Pro His Ser Arg Thr His Leu Tyr Gly Trp Glu Ala Glu 85 90 95

Asn Ala Val Glu Asn Ala Arg Asn Gln Val Ala Lys Leu Ile Glu Ala 100 105 110

Ser Pro Lys Glu Ile Val Phe Val Ser Gly Ala Thr Glu Ala Asn Asn 115 120 125

Met Ala Val Lys Gly Val Met His Phe Tyr Lys Asp Thr Lys Lys His 130 135 140

Val Ile Thr Thr Gln Thr Glu His Lys Cys Val Leu Asp Ser Cys Arg 145 150 155 160

His Leu Gln Gln Glu Gly Phe Glu Val Thr Tyr Leu Pro Val Lys Thr 165 170 175

Asp Gly Leu Val Asp Leu Glu Met Leu Arg Glu Ala Ile Arg Pro Asp 180 185 190

Thr Gly Leu Val Ser Ile Met Ala Val Asn Asn Glu Ile Gly Val Val 195 200 205

Gln Pro Met Glu Glu Ile Gly Met Ile Cys Lys Glu His Asn Val Pro 210 215 220

Phe His Thr Asp Ala Ala Gln Ala Ile Gly Lys Ile Pro Val Asp Val 225 230 235 240

Lys Lys Trp Asn Val Ala Leu Met Ser Met Ser Ala His Lys Ile Tyr 250 Gly Pro Lys Gly Val Gly Ala Leu Tyr Val Arg Arg Pro Arg Ile 265 Arg Leu Glu Pro Leu Met Asn Gly Gly Gly Gln Glu Arg Gly Leu Arg Ser Gly Thr Gly Ala Thr Gln Gln Ile Val Gly Phe Gly Ala Ala Cys 290 295 Glu Leu Ala Met Lys Glu Met Glu Tyr Asp Glu Lys Trp Ile Lys Gly 315 Leu Gln Glu Arg Leu Leu Asn Gly Val Arg Glu Lys Leu Asp Gly Val 325 Val Val Asn Gly Ser Met Asp Ser Arg Tyr Val Gly Asn Leu Asn Leu Ser Phe Ala Tyr Val Glu Gly Glu Ser Leu Leu Met Gly Leu Lys Glu 355 360 Val Ala Val Ser Ser Gly Ser Ala Cys Thr Ser Ala Ser Leu Glu Pro 375 Ser Tyr Val Leu Arg Ala Leu Gly Val Asp Glu Asp Met Ala His Thr 395 Ser Ile Arg Phe Gly Ile Gly Arg Phe Thr Thr Lys Glu Glu Ile Asp 405 Lys Ala Val Glu Leu Thr Val Lys Gln Val Glu Lys Leu Arg Glu Met 420 Ser Pro Leu Tyr Glu Met Val Lys Glu Gly Ile Asp Ile Lys Asn Ile 435 440 445 Gln Trp Ser Gln His 450 <210> 119 <211> 3180 <212> DNA <213> Arabidopsis thaliana <220>

<221> CDS <222> (8)..(1781) <220> <221> CDS <222> (1833)..(2609)

<220> <221> CDS <222> (2697)..(3076) <400> 119 caacacg atg ctc acc aat act aat ctc ttc ttc ttt ctc tct tta ctt 49 Met Leu Thr Asn Thr Asn Leu Phe Phe Phe Leu Ser Leu Leu ctt ctt tct tgt ttt ctc caa gtt tct tcc aat gga gac gct gag ata Leu Leu Ser Cys Phe Leu Gln Val Ser Ser Asn Gly Asp Ala Glu Ile ttg agt aga gtt aaa aag acc cga ctt ttc gac ccc gat gga aat tta 145 Leu Ser Arg Val Lys Lys Thr Arg Leu Phe Asp Pro Asp Gly Asn Leu 35 40 caa gat tgg gtc ata acc gga gat aat cgg agt cca tgt aat tgg acg 193 Gln Asp Trp Val Ile Thr Gly Asp Asn Arg Ser Pro Cys Asn Trp Thr gga atc aca tgc cac atc aga aaa ggt agc tcc ctc gcc gtc act acc 241 Gly Ile Thr Cys His Ile Arg Lys Gly Ser Ser Leu Ala Val Thr Thr 70 att gat ctc tcc ggc tat aat atc tcc ggt ggc ttt ccc tac gga ttc 289 Ile Asp Leu Ser Gly Tyr Asn Ile Ser Gly Gly Phe Pro Tyr Gly Phe 80 tgt cgt atc cgt aca ctc atc act act ctt tct caa aac aat ctc 337 Cys Arg Ile Arg Thr Leu Ile Asn Ile Thr Leu Ser Gln Asn Asn Leu 100 aat ggt acg att gat tot gct cot ctc tcc ctc tgt tot aaa ctt cag 385 Asn Gly Thr Ile Asp Ser Ala Pro Leu Ser Leu Cys Ser Lys Leu Gln 120 aat ttg att ctc aat caa aac aac ttc tcc ggt aaa tta ccg gaa ttc 433 Asn Leu Ile Leu Asn Gln Asn Asn Phe Ser Gly Lys Leu Pro Glu Phe 130 135 tca ccg gag ttt cgt aaa tta cga gtc ctc gaa ttg gaa tca aac ctc 481 Ser Pro Glu Phe Arg Lys Leu Arg Val Leu Glu Leu Glu Ser Asn Leu 145 ttc acc ggt gag att cct caa agt tac ggg aga ctc act gct ctg caa 529 Phe Thr Gly Glu Ile Pro Gln Ser Tyr Gly Arg Leu Thr Ala Leu Gln 160 gtt ctg aat ctt aat ggt aac ccg ctc agt gga atc gtt ccg gcg ttt 577 Val Leu Asn Leu Asn Gly Asn Pro Leu Ser Gly Ile Val Pro Ala Phe 175 180 ttg ggt tat ctg act gag tta act cgt ctt gat ctc gct tac atc agt Leu Gly Tyr Leu Thr Glu Leu Thr Arg Leu Asp Leu Ala Tyr Ile Ser 200

ttt Phe	gat Asp	Pro	agt Ser 210	Pro	att Ile	cca Pro	tca Ser	acc Thr 215	ttg Leu	ggg Gly	aac Asn	ttg Leu	tcg Ser 220	Asr	ctg Leu	673
act Thr	gat Asp	ctt Leu 225	Arg	cta Leu	act Thr	cac His	tcg Ser 230	aac Asn	ctc Leu	gtc Val	gga Gly	gaa Glu 235	att Ile	cct Pro	gat Asp	721
tcg Ser	atc Ile 240	atg Met	aat Asn	ctg Leu	gtg Val	ttg Leu 245	tta Leu	gag Glu	aat Asn	ctt Leu	gat Asp 250	Leu	gct Ala	atg Met	aat Asn	769
agt Ser 255	ctc Leu	acc Thr	gga Gly	gaa Glu	ata Ile 260	cct Pro	gag Gl <u>u</u>	agt Ser	atc Ile	gga Gly 265	aga Arg	ctc Leu	gaa Glu	tcg Ser	gtt Val 270	817
lyi	GIN	TIE	GIU	275	Tyr	Asp	Asn	Arg	Leu 280	Ser	Gly	Lys	Leu	Pro 285	gag Glu	865
agt Ser	atc Ile	gga Gly	aat Asn 290	tta Leu	acc Thr	gaa Glu	ttg Leu	agg Arg 295	aat Asn	ttt Phe	gat Asp	gtc Val	tcg Ser 300	cag Gln	aat Asn	913
Asn	Leu	305	GIA	Glu	Leu	Pro	310	Lys	Ile	Ala	Ala	Leu 315	Gln	Leu	Ile	961
sei	320	ASI	Leu	Asn	Asp	Asn 325	ttc Phe	Phe	Thr	Gly	Gly 330	Leu	Pro	Asp	Val	1009
335	Ala	ren	Asn	Pro	Asn 340	Leu	gtt Val	Glu	Phe	Lys 345	Ile	Phe	Asn	Asn	Ser 350	1057
Pne	THE	GIY	Tnr	355	Pro	Arg	aat Asn	Leu	Gly 360	Lys	Phe	Ser	Glu	11e 365	Ser _.	1105
gaa Glu	ttc Phe	gat Asp	gtc Val 370	tcg Ser	acg Thr	aac Asn	aga Arg	ttc Phe 375	tcc Ser	ggt Gly	gaa Glu	ttg Leu	ccg Pro 380	ccg Pro	tat Tyr	1153
ttg Leu	tgc Cys	tac Tyr 385	aga Arg	aga Arg	aaa Lys	ctt Leu	cag Gln 390	aag Lys	att Ile	atc Ile	acc Thr	ttc Phe 395	agc Ser	aat Asn	caa Gln	1201
tta Leu	agc Ser 400	ggc Gly	gaa Glu	att Ile	ccg Pro	gaa Glu 405	tct Ser	tac Tyr	ggc Gly	gat Asp	tgt Cys 410	cat His	tcg Ser	ctt Leu	aat Asn	1249
tac Tyr 415	att Ile	cgt Arg	atg Met	gcg Ala	gat Asp 420	aac Asn	aaa Lys	ctc Leu	tcc Ser	ggc Gly 425	gaa Glu	gtt Val	ccg Pro	gct Ala	agg Arg 430	1297
ttt	tgg	gaa	ctt	cct	ctt	act	cgt	ctt	gag	cta	gcc	aac	aac	aat	caa	1345

Phe	Trp	Glu	Leu	Pro 435	Leu	Thr	Arg	Leu	Glu 440	Leu	Ala	Asn	Asn	Asn 445	Gln	
											gct Ala					1393
cag Gln	ctt Leu	gaa Glu 465	atc Ile	tcc Ser	gct Ala	aac Asn	aac Asn 470	ttc Phe	tcc Ser	ggt Gly	gtg Val	att Ile 475	ccc Pro	gtc Val	aaa Lys	1441
											ctt Leu 490					1489
											ttg Leu					1537
aga Arg	gta Val	gag Glu	atg Met	cag Gln 515	gag Glu	aac Asn	atg Met	ctc Leu	gac Asp 520	ggc Gly	gag Glu	att Ile	ccg Pro	agt Ser 525	tca Ser	1585
											ctc Leu					1633
											tta Leu					1681
											gag Glu 570					1729
_				_						_	tcc Ser	_				1777
tat Tyr		taaga	attc	c tte	ctgga	attt	cage	caaga	ata 1	tttt	tcga	ec ca	agtt	tetta	a g gt ly	1834
								-	-	_	att Ile	_		-	-	1882
											tca Ser 620					1930
											atc Ile					1978
											ata Ile					2026

cgg Arg	gtc Val	ggg	ttc Phe 660	acg Thr	gag Glu	gaa Glu	gac Asp	ata Ile 665	tac Tyr	ccg Pro	caa Gln	tta Leu	aca Thr 670	Glu	gat Asp	2074
aac Asn	ata Ile	att Ile 675	Gly	tcg Ser	ggc	ggg Gly	tcg Ser 680	ggt Gly	ttg Leu	gtt Val	tat Tyr	aga Arg 685	gtg Val	aaa Lys	ctc Leu	2122
aaa Lys	tca Ser 690	ggt Gly	caa Gln	acg Thr	ctt Leu	gcg Ala 695	gtg Val	aag Lys	aaa Lys	ctc Leu	tgg Trp 700	gga Gly	gaa Glu	acg Thr	ggt Gly	2170
caa Gln 705	aaa Lys	acg Thr	gaa Glu	tct Ser	gaa Glu 710	tct Ser	gtt Val	ttt Phe	cga Arg	tcc Ser 715	gaa Glu	gta Val	gag Glu	acg Thr	ttg Leu 720	2218
GIY	Arg	Val	Arg	725	gga Gly	Asn	Ile	Val	Lys 730	Leu	Leu	Met	Cys	Cys 735	Asn	2266
GIY	GIU	GIU	740	Arg	ttc Phe	Leu	Val	Tyr 745	Glu	Phe	Met	Glu	Asn 750	Gly	Ser	2314
Leu	GIA	755	vai	Leu	cat His	Ser	Glu 760	Lys	Glu	His	Arg	Ala 765	Val	Ser	Pro	2362
Leu	770	Trp	Thr	Thr	cga Arg	775	Ser	Ile	Ala	Val	Gly 780	Ala	Ala	Gln	Gly	2410
785	ser	Tyr	Leu	His	cat His 790	Asp	Ser	Val	Pro	Pro 795	Ile	Val	His	Arg	Asp 800	2458
vai	rys	Ser	Asn	Asn 805	ata Ile	Leu	Leu	Asp	His 810	Glu	Met	Lys	Pro	Arg 815	Val	2506
AIG	Asp	rne	820	ren	gct Ala	Lys	Pro	Leu 825	Lys	Arg	Glu	Asp	Asn 830	Asp	Gly	2554
gtc Val	tcc Ser	gat Asp 835	gtt Val	tca Ser	atg Met	tct Ser	tgt Cys 840	gtt Val	gct Ala	gga Gly	tcc Ser	tac Tyr 845	ggc Gly	tac Tyr	att Ile	2602
ATA	ccg Pro 850	g gt G	tcga	atto	tta	gctc	tac	aata	tcaa	at c	gtta	aaac	c ct	atac	gcaa:	2659
gcgt	ttta	gt a	acat	tact	g tt	cttc	tgtg	gat	gcag	aa lu	tat Tyr	ggt Gly	Tyr	acg Thr 855	tca Ser	2713

860 865 870	c 2761 u			
gaa ctg att acg gga aaa aga ccg aac gat tcg tct ttt ggg gag aa Glu Leu Ile Thr Gly Lys Arg Pro Asn Asp Ser Ser Phe Gly Glu As 875 880 885	t 2809 n			
aag gac att gtt aag ttt gca atg gaa gca gct ttg tgt tac cct tc Lys Asp Ile Val Lys Phe Ala Met Glu Ala Ala Leu Cys Tyr Pro Se 890 895 900	t 2857 r			
cca tca gca gaa gac gga gcc atg aat caa gat tca ctt gga aac ta Pro Ser Ala Glu Asp Gly Ala Met Asn Gln Asp Ser Leu Gly Asn Ty 905 910 915 92	r			
cga gat ctt agc aag ctt gtt gat cca aag atg aaa ctt tcg acg ag Arg Asp Leu Ser Lys Leu Val Asp Pro Lys Met Lys Leu Ser Thr Ar 925 930 935	a 2953 g			
gag tat gaa gag ata gag aaa gtt ctt gac gtt gca ttg ctc tgt ac Glu Tyr Glu Glu Ile Glu Lys Val Leu Asp Val Ala Leu Leu Cys Th 940 945 950	g 3001 r			
tcg tct ttt cct atc aac agg ccg acc atg agg aaa gta gta gag tt Ser Ser Phe Pro Ile Asn Arg Pro Thr Met Arg Lys Val Val Glu Les 955 960 965	g 3049 1			
ctt aaa gag aag aaa tca cta gag tga tattaatcct aggcttttaa Leu Lys Glu Lys Lys Ser Leu Glu 970 975	3096			
ttattaggct tctataatgt acaaaatccg actaggattg ttactcatta ttatagccat 3156				
orders traced acadaticty actaggatty tractcatta tratage	at 3156			
aggttggact ttgctttaaa gttt	3156 3180			
aggttggact ttgctttaaa gttt <210> 120 <211> 976				
aggttggact ttgctttaaa gttt <210> 120				
<pre>aggttggact ttgctttaaa gttt <210> 120 <211> 976 <212> PRT <213> Arabidopsis thaliana <400> 120</pre>	3180			
<pre><210> 120 <211> 976 <212> PRT <213> Arabidopsis thaliana</pre>	3180			
aggttggact ttgctttaaa gttt <210> 120 <211> 976 <212> PRT <213> Arabidopsis thaliana <400> 120 Met Leu Thr Asn Thr Asn Leu Phe Phe Leu Ser Leu Leu Leu	3180			
aggttggact ttgctttaaa gttt <210> 120 <211> 976 <212> PRT <213> Arabidopsis thaliana <400> 120 Met Leu Thr Asn Thr Asn Leu Phe Phe Phe Leu Ser Leu Leu Leu Leu 1	3180			
aggttggact ttgctttaaa gttt <210> 120 <211> 976 <212> PRT <213> Arabidopsis thaliana <400> 120 Met Leu Thr Asn Thr Asn Leu Phe Phe Phe Leu Ser Leu Leu Leu Leu 1	3180			

Leu Ser Gly Tyr Asn Ile Ser Gly Gly Phe Pro Tyr Gly Phe Cys Arg Ile Arg Thr Leu Ile Asn Ile Thr Leu Ser Gln Asn Asn Leu Asn Gly 105 Thr Ile Asp Ser Ala Pro Leu Ser Leu Cys Ser Lys Leu Gln Asn Leu 120 Ile Leu Asn Gln Asn Asn Phe Ser Gly Lys Leu Pro Glu Phe Ser Pro 140 Glu Phe Arg Lys Leu Arg Val Leu Glu Leu Glu Ser Asn Leu Phe Thr 150 155 Gly Glu Ile Pro Gln Ser Tyr Gly Arg Leu Thr Ala Leu Gln Val Leu Asn Leu Asn Gly Asn Pro Leu Ser Gly Ile Val Pro Ala Phe Leu Gly 180 Tyr Leu Thr Glu Leu Thr Arg Leu Asp Leu Ala Tyr Ile Ser Phe Asp 200 Pro Ser Pro Ile Pro Ser Thr Leu Gly Asn Leu Ser Asn Leu Thr Asp 215 220 Leu Arg Leu Thr His Ser Asn Leu Val Gly Glu Ile Pro Asp Ser Ile 230 235 Met Asn Leu Val Leu Leu Glu Asn Leu Asp Leu Ala Met Asn Ser Leu Thr Gly Glu Ile Pro Glu Ser Ile Gly Arg Leu Glu Ser Val Tyr Gln Ile Glu Leu Tyr Asp Asn Arg Leu Ser Gly Lys Leu Pro Glu Ser Ile 280 Gly Asn Leu Thr Glu Leu Arg Asn Phe Asp Val Ser Gln Asn Asn Leu 295 Thr Gly Glu Leu Pro Glu Lys Ile Ala Ala Leu Gln Leu Ile Ser Phe 315 Asn Leu Asn Asp Asn Phe Phe Thr Gly Gly Leu Pro Asp Val Val Ala Leu Asn Pro Asn Leu Val Glu Phe Lys Ile Phe Asn Asn Ser Phe Thr Gly Thr Leu Pro Arg Asn Leu Gly Lys Phe Ser Glu Ile Ser Glu Phe 355 Asp Val Ser Thr Asn Arg Phe Ser Gly Glu Leu Pro Pro Tyr Leu Cys 370 375

Tyr Arg Arg Lys Leu Gln Lys Ile Ile Thr Phe Ser Asn Gln Leu Ser 395 Gly Glu Ile Pro Glu Ser Tyr Gly Asp Cys His Ser Leu Asn Tyr Ile . 405 410 Arg Met Ala Asp Asn Lys Leu Ser Gly Glu Val Pro Ala Arg Phe Trp Glu Leu Pro Leu Thr Arg Leu Glu Leu Ala Asn Asn Asn Gln Leu Gln Gly Ser Ile Pro Pro Ser Ile Ser Lys Ala Arg His Leu Ser Gln Leu 455 Glu Ile Ser Ala Asn Asn Phe Ser Gly Val Ile Pro Val Lys Leu Cys 470 Asp Leu Arg Asp Leu Arg Val Ile Asp Leu Ser Arg Asn Ser Phe Leu 490 Gly Ser Ile Pro Ser Cys Ile Asn Lys Leu Lys Asn Leu Glu Arg Val 500 Glu Met Gln Glu Asn Met Leu Asp Gly Glu Ile Pro Ser Ser Val Ser 520 Ser Cys Thr Glu Leu Thr Glu Leu Asn Leu Ser Asn Asn Arg Leu Arg 535 Gly Gly Ile Pro Pro Glu Leu Gly Asp Leu Pro Val Leu Asn Tyr Leu Asp Leu Ser Asn Asn Gln Leu Thr Gly Glu Ile Pro Ala Glu Leu Leu Arg Leu Lys Leu Asn Gln Phe Asn Val Ser Asp Asn Lys Leu Tyr Gly 580 Asn Pro Asn Leu Cys Ala Pro Asn Leu Asp Pro Ile Arg Pro Cys Arg Ser Lys Arg Glu Thr Arg Tyr Ile Leu Pro Ile Ser Ile Leu Cys Ile 615 Val Ala Leu Thr Gly Ala Leu Val Trp Leu Phe Ile Lys Thr Lys Pro 635 Leu Phe Lys Arg Lys Pro Lys Arg Thr Asn Lys Ile Thr Ile Phe Gln 650 Arg Val Gly Phe Thr Glu Glu Asp Ile Tyr Pro Gln Leu Thr Glu Asp Asn Ile Ile Gly Ser Gly Gly Ser Gly Leu Val Tyr Arg Val Lys Leu 680

Lys Ser Gly Gln Thr Leu Ala Val Lys Lys Leu Trp Gly Glu Thr Gly Gln Lys Thr Glu Ser Glu Ser Val Phe Arg Ser Glu Val Glu Thr Leu 715 Gly Arg Val Arg His Gly Asn Ile Val Lys Leu Leu Met Cys Cys Asn 725 Gly Glu Glu Phe Arg Phe Leu Val Tyr Glu Phe Met Glu Asn Gly Ser Leu Gly Asp Val Leu His Ser Glu Lys Glu His Arg Ala Val Ser Pro 760. Leu Asp Trp Thr Thr Arg Phe Ser Ile Ala Val Gly Ala Ala Gln Gly Leu Ser Tyr Leu His His Asp Ser Val Pro Pro Ile Val His Arg Asp 790 Val Lys Ser Asn Asn Ile Leu Leu Asp His Glu Met Lys Pro Arg Val 810 Ala Asp Phe Gly Leu Ala Lys Pro Leu Lys Arg Glu Asp Asn Asp Gly 820 Val Ser Asp Val Ser Met Ser Cys Val Ala Gly Ser Tyr Gly Tyr Ile 840 Ala Pro Glu Tyr Gly Tyr Thr Ser Lys Val Asn Glu Lys Ser Asp Val Tyr Ser Phe Gly Val Val Leu Leu Glu Leu Ile Thr Gly Lys Arg Pro Asn Asp Ser Ser Phe Gly Glu Asn Lys Asp Ile Val Lys Phe Ala Met 890 Glu Ala Ala Leu Cys Tyr Pro Ser Pro Ser Ala Glu Asp Gly Ala Met 900 Asn Gln Asp Ser Leu Gly Asn Tyr Arg Asp Leu Ser Lys Leu Val Asp 920 Pro Lys Met Lys Leu Ser Thr Arg Glu Tyr Glu Glu Ile Glu Lys Val 935 Leu Asp Val Ala Leu Leu Cys Thr Ser Ser Phe Pro Ile Asn Arg Pro 955 Thr Met Arg Lys Val Val Glu Leu Leu Lys Glu Lys Lys Ser Leu Glu 965 970

```
<210> 121
<211> 731
<212> DNA
<213> Arabidopsis thaliana
<400> 121
aagtcgagta tgattgtccg tacgtgctcg acggtgcgac cgtacgtacc ctggcagtcg 60
ccctgacgca acttcgaatc tgccctgcgc cctgctcctc ctatggcagt actgcgtact 120
tcgacgagca ggagctgaag ctgactataa cgtgcctggt cgaaaagcat gccagcccat 180
gaaaaaggag atcgagaacg gtatctcgga cttcggcgag gacggctccg ggaacgtcga 240
tttcgagaag tccgtgcaaa tcggtacggc gcggaacggc gagcgccacg cacgcgacga 300
ggtcataaac gaaacccgcc tgttcggcgc acgccaaacc gggacgataa cctgcaacag 360
cctaaaacgc ccggccgagg agctaggcca gggggcggac ccggaggaga tcccgggaac 420
tagaccggac gggcgaccca tccagcctga ccgcttggac ccgtacccgt tgcctgaaat 540
gcctgaattc gcctcgcctt ggatgcctgc tctgaaatgc tcgcctgttg cctgaattcg 600
ctctgaaatc cgttcccccg cctccgcagc tcgtgaccgt ccgaaccgct cgaaccctgc 660
aaaaaaaaacagt ccaaaaaaaa 720
aaacgcctcg c
<210> 122
<211> 21
<212> DNA
<213> Artificial sequence
<400> 122
aaaaaacaca tacaggaatt c
<210> 123
<211> 21
<212> DNA
<213> Artificial sequence
<400> 123
```

230

agttagctag ctgagctcga g

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C12N 15/82, 15/10, 9/12, 5/10, C12Q 1/68, A01H 5/00

(11) International Publication Number: **A3**

WO 00/08187

(43) International Publication Date:

17 February 2000 (17.02.00)

(21) International Application Number:

PCT/EP99/05652

(22) International Filing Date:

4 August 1999 (04.08.99)

(30) Priority Data:

98202634.6

4 August 1998 (04.08.98)

EP

(71) Applicant (for all designated States except US): VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECH-NOLOGIE [BE/BE]; Rijvisschestraat 120, B-9052 Zwijnaarde (BE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LEE, Jeong, Hee [KR/BE]; Spinmolenplein 274 (22K), B-9000 Gent (BE). VERBRUGGEN, Nathalie [BE/BE]: Avenue des Saisons. 53, B-1050 Ixelles (BE).

(74) Agent: DE CLERCQ, Ann; Ann De Clercq & Co. B.V.B.A., Brandstraat 100, B-9830 Sint-Martens-Latem (BE).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(88) Date of publication of the international search report: 29 June 2000 (29.06.00)

(54) Title: GENES INVOLVED IN TOLERANCE TO ENVIRONMENTAL STRESS

(57) Abstract

The present invention relates to a method for obtaining polynucleic acids comprising coding sequences and/or genes involved in environmental stress resistance in plants, comprising the preparation of a cDNA library comprising coding sequences from siliques. introducing said coding sequences in yeast cells in a functional format and screening for polynucleic acids leading to an enhanced tolerance or resistance to environmental stress conditions in said transformed yeast cells. The present invention further relates to an isolated polynucleic acid obtainable by such a method as listed in Table 1 as well as recombinant polynucleic acid comprising the same. The present invention further relates to an isolated polypeptide encoded by a polynucleic acid of the invention. The present invention also relates to a method for producing a plant with enhanced tolerance or resistance to environmental stress, said method comprising introducing into a plant cell a recombinant DNA comprising a polynucleic acid as defined which when expressed in a plant cell enhances the tolerances or induces resistance to environmental stress conditions of said plant. The present invention particularly relates to plant cells, plants or harvestable parts or propagation material thereof transformed with a recombinant polynucleic acid as defined above.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

		77.0	Cursin	LS	Lesotho	SI	Slovenia
AL	Albania	ES	Spain		Lithuania	SK	Slovakia
AM	Armenia	Fſ	Pinland	LT			*
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece ·		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	Œ	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Ll	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Int Ational Application No PCT/EP 99/05652

A. CLASSI IPC 7	FICATION OF SUBJECT MATTER C12N15/82 C12N15/10 C12N9/12 A01H5/00	2 C12N5/10	C12Q1/68	
According to	o International Patent Classification (IPC) or to both national classific	ation and IPC		
	SEARCHED			
Minimum do IPC 7	cumentation searched (classification system followed by classificati C12N	ion symbols)		
Documentat	ion searched other than minimum documentation to the extent that s	such documents are included in th	e fields searched	
Electronic di	ata base consulted during the International search (name of data ba	ise and, where practical search te	erms used)	
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT			
Category '	Citation of document, with indication, where appropriate, of the rel	levant passages	Relevant to claim No.	
X	PRÄNDL, R., ET AL.: "HSF3, a ne shock factor from Arabidopsis the derepresses the heat shock respondence thermotolerance when over in transgenic plants" MOLECULAR AND GENERAL GENETICS, vol. 258, May 1998 (1998-05), page 269-278, XP002135096 the whole document	2,3,7,8, 11-14, 16,18, 21, 24-26, 28-37		
	-			
X Furth	ner documents are listed in the continuation of box C.	X Patent family members	are listed in annex.	
"A" docume conside "E" earlier dilling de "L" docume which i citation "O" docume other n "P" docume later th	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another nor other special reason (as specified) and the first referring to an oral disclosure, use, exhibition or	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document, such combination being obvious to a person skilled in the art. "&" document member of the same patent family Date of mailing of the international search report 2 7, 04, 00 		
	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Holtorf, S		

Form PCT/ISA/210 (second sheet) (July 1992)

Int ational Application No
PCT/EP 99/05652

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Agievani to daini to.
Y	KUSHNIR,S., ET AL.: "characterization of Arabidopsis thaliana cDNAs that render yeasts tolerant toward the thiol-oxidizing drug diamide" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, vol. 92, November 1995 (1995-11), pages 10580-10584, XP002127804 see also last paragraph the whole document	1,2
Υ	WO 96 39020 A (UNIV CALIFORNIA) 12 December 1996 (1996-12-12) the whole document	1,2
Υ	QUINTERO, F.J., ET AL.: "the SAL1 gene of Arabidopsis, encoding an enzyme with 3' (2'),5'-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase activities, Increases salt tolerance in yeast" THE PLANT CELL, vol. 8, March 1996 (1996-03), pages 529-537, XP002092755 see last paragraph the whole document	1,2
Y	BABIYCHUK, E., ET AL.: "Arabidopsis thaliana NADPH oxidoreductase homologs confer tolerance of yeasts towards the thiol-oxidizing drug Diamide" THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 270, no. 44, 1995, pages 26224-26231, XP002127805 see last paragraph the whole document	1,2
Y	GIRAUDAT J ET AL: "ISOLATION OF THE ARABIDOPSIS AB13 GENE BY POSITIONAL CLONING" PLANT CELL,US,AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, vol. 4, 1 October 1992 (1992-10-01), pages 1251-1261, XP002063682 ISSN: 1040-4651 the whole document	1,2
Y	WO 97 41152 A (UNIV NEW YORK) 6 November 1997 (1997-11-06) page 59, line 1 - line 5 -/	1,2

Int Ational Application No
PCT/EP 99/05652

		101/21 99/03032		
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Helevant to claim No.		
A	NAMBARA,E., ET AL.: "a mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele" THE PLANT JOURNAL, vol. 2, no. 4, 1992, pages 435-441, XP002129247 the whole document	1,2		
A	HELM,K.W. AND VIERLING, E.: "an Arabidopsis thaliana cDNA clone encoding a low molecular weight heat shock protein" NUCLEIC ACID RESEARCH, vol. 17, no. 19, 1989, page 7995 XP002129295 the whole document	1,2		
A	YANG H ET AL: "Arabidopsis thaliana ECP63 encoding a LEA protein is located in chromosome 4" GENE: AN INTERNATIONAL JOURNAL ON GENES AND GENOMES, GB, ELSEVIER SCIENCE PUBLISHERS, BARKING, vol. 184, no. 1, 3 January 1997 (1997-01-03), pages 83-88, XP004093225 ISSN: 0378-1119 the whole document	1,2		
Α	MIZOGUSHI,T., ET AL.: "characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells" THE PLANT JOURNAL, vol. 5, no. 1, 1994, pages 111-122, XP002129296 the whole document	1,2		
P, X	LEE,J.H., ET AL.: "a highly conserved kinase is an essential component for stress tolerance in yeast and plant cells" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, vol. 96, May 1999 (1999-05), pages 5873-5877, XP002127807 the whole document	1,2		

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

International application No. PCT/EP 99/05652

INTERNATIONAL SEARCH REPORT

Box I	Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This Inter	rnational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
	see additional sheet
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. X	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
	1,2-4,7,8,10-14,16-37 (inventions 1,3,37)
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remai	The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claim: 1 completely; 2 partially

A method to identify cDNAs involved in environmental stress tolerance in plants by expressing a silique-specific cDNA library obtained from said plant in yeast cells and screening the yeast cells for enhanced environmental stress tolerance or resistance.

2. Claims: 5,6,15 completely , 2,3,4,11,12,13,14, 18-37 partially

An isolated cDNA as identified by SEQID 1 coding for a DBF2-related peptide characterized by SEQID 2; furthermore the use of the cDNA in methods to produce transgenic plants with enhanced environmental stress tolerance or resistance.

3. Claims: 10,17 completely , 2,3,4,11,12,13,14, 18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 5 coding for a c74-related peptide characterized by SEQID 6.

4. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 7 coding for a ADH2-related peptide characterized by SEQID 8.

5. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 9 coding for a catalase /catalase3-related peptide characterized by SEQID 10.

6. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 11 coding for a HSP90-related peptide characterized by SEQID 12.

7. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified

by SEQID 13 coding for a peptide similar to a phosphoenolpyruvate carboxylase characterized by SEQID 14.

8. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 15 coding for a PR-protein characterized by SEQID 16.

9. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 17 coding for a protein similar to an ascorbate peroxidase characterized by SEQID 18.

10. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 19,21 coding for a protein similar to a phosphatase binding protein characterized by SEQID 20,22.

11. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 23,25 coding for a protein similar to a retinol dehydrogenase characterized by SEQID 24,26.

12. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 27,29 coding for a protein similar to a ribosomal protein characterized by SEQID 28,30.

13. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 31 coding for a protein similar to a protein transporter characterized by SEQID 32.

14. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 33 coding for a protein similar to a peptide transporter characterized by SEQID 34.

15. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 35 coding for an LCT1-related protein characterized by SEQID 36.

16. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 37 coding for an CYC1-related protein characterized by SEQID 38.

17. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 39 coding for an OSM1-related protein characterized by SEQID 40.

18. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 41 coding for an CUP1-related protein characterized by SEQID 42.

19. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 43 coding for an RAD7-related protein characterized by SEQID 44.

20. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 45 coding for an apocytochrome b-related protein characterized by SEQID 46.

21. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 47 coding for an LPPL1-related protein characterized by SEQID 48.

22. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 49 coding for a protein similar to an auxin binding protein characterized by SEQID 50.

23. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 51 coding for an CBP57-related protein characterized by SEQID 52.

24. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 53 coding for a calcineurin B-related protein characterized by SEQID 54.

25. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 55 coding for a calnexin-related protein characterized by SEQID 56.

26. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 57 coding for a calreticulin-related protein characterized by SEQID 58.

27. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 59,61 coding for a calmodulin-related protein characterized by SEQID 60,62.

28. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 63 coding for a DdMek1-related protein characterized by SEQID 64.

29. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 65 coding for an adenosine kinase-related protein characterized by SEQID 66.

30. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 67 coding for a human tyrosine kinase-related protein characterized by SEQID 68.

31. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 69 coding for an ice-plant tyrosine kinase-related protein characterized by SEQID 70.

32. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 71 coding for a kinase C receptor-related protein characterized by SEQID 72.

33. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 73 coding for a HAT7-related protein characterized by SEQID 74.

34. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 75 coding for a RSEB-related protein characterized by SEQID 76.

35. Claims: 2,3,4,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 77 coding for a phosphatase 2C-related protein characterized by SEQID 78.

36. Claims: 2,3,4,11,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 121 potentially coding for a caltractin-related protein.

37. Claims: 7,8,16 completely; 2,3,11,13,14,18-37 partially

Idem as invention 1; but limited to the cDNA as identified by SEQID 3 coding for a HSP17.6-related protein characterized by SEQID 4.

38. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 79,81 coding for a LEA-related protein characterized by SEQID 80,82.

39. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 83 coding for a protein similar to a PR-protein characterized by SEQID 84.

40. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 85 coding for a peroxidase-related protein characterized by SEQID 86.

41. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 87 coding for a ribosomal protein characterized by SEQID 88.

42. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 89 coding for a SAS1-related protein characterized by SEOID 90.

43. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 91 coding for a AIG2-related protein characterized by SEQID 92.

44. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 93 coding for a MTlc-related protein characterized by SEQID 94.

45. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 95 coding for a IPP2-related protein characterized by SEQID 96.

46. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 97 coding for a chlorophyll a/b binding protein protein characterized by SEQID 98.

47. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention; but limited to the cDNA as identified by SEQID 99 coding for glutathione transferase characterized by SEQID 100.

48. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 101 coding for kin1-related protein characterized by SEQID 102.

49. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 103 coding for Atmpk1-related protein characterized by SEQID 104.

50. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 105 coding for H2A-related protein characterized by SEQID 106.

51. Claims: 2.3.9.11.12.13.14.18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 107 coding for a protein with unknown function as characterized by SEQID 108.

52. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 109 coding for a protein with unknown function as characterized by SEQID 110.

53. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 111 coding for a protein with unknown function as characterized by SEQID 112.

54. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 113 coding for a protein with unknown function as

characterized by SEQID 114.

55. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 115 coding for a protein with unknown function as characterized by SEQID 116.

56. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 117 coding for a protein with unknown function as characterized by SEQID 118.

57. Claims: 2,3,9,11,12,13,14,18-37 partially

Idem as invention 2; but limited to the cDNA as identified by SEQID 119 coding for a protein with unknown function as characterized by SEQID 120.

Information on patent family members

Int .tional Application No PCT/EP 99/05652

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9639020	Α	12-12-1996	US	5859337 A	12-01-1999
WO 9741152	Α	06-11-1997	AU EP	3283197 A 0907660 A	19-11-1997 14-04-1999

Form PCT/ISA/210 (patent lamily annex) (July 1992)

	v v		

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.