TCP Congestion Control Mechanisms

Kameswari Chebrolu

Seminal Paper: Congestion Avoidance and Control by Van Jacobson and Michael J. Karels

Conservation at Equilibrium

- Don't put a packet unless a packet is removed
 - Particularly important when the network is congested
 - Can potentially happen on timeouts → proper RTT estimation crucial
 - Delayed packets should not be interpreted as lost

RTT Estimation: Original Algorithm

- Measure SampleRTT for sequence/ack combo
- EstimatedRTT = a*EstimatedRTT + (1-a)*SampleRTT
 - Small a heavily influenced by temporary fluctuations
 - Large a not quick to adapt to real changes
 - a is between 0.8-0.9
- Timeout = 2 * EstimatedRTT

Jacobson/Karels Algorithm

- Algorithm takes into account variance of RTTs
 - If variance is small, EstimatedRTT can be trusted
 - If variance is large, timeout should not depend heavily on EstimatedRTT

- Difference = SampleRTT EstimatedRTT
- EstimatedRTT = EstimatedRTT + (d * Difference)
- Deviation = Deviation + d (|Difference| Deviation)), where d ~ 0.125
- Timeout = u * EstimatedRTT + q *Deviation, where u = 1 and q = 4
- Exponential Timeout backoff: controls spacing between retransmits