

Distribución de Formas Cuadráticas

Christian Amao Suxo

Escuela Profesional de Ingeniería Estadística

Universidad Nacional de Ingeniería Escuela de Ingeniería Estadística

Contenido

- Distribución de Formas Cuadráticas
 - ullet Distribución χ^2, t -student y F de Snedecor
 - Distribución de Formas Cuadráticas y propiedades
 - Teorema de independencia de Formas Cuadráticas

Distribución de Formas Cuadráticas

¿Cómo se relacionan las distribuciones χ^2, t y F?

Distribución	Centrada	No centrada	Con factor de corrección
χ²	Sean x_1, x_2, \dots, x_n variables aleatorias $i.i.d. \cos x_1 \sim N(0,1),$ entonces $\sum_{i=1}^n x_i^2 \sim \chi^2(n)$	Sean $x_1, x_2,, x_n$ variables aleatorias independientes con $x_i \sim N(\mu_i, 1)$, entonces $\sum_{t=1}^n x_t^2 \sim \chi^2(n, \lambda) \cos \lambda = \frac{\sum_{t=1}^n \mu_t^2}{2}$	Si $Y \sim c \; \chi^2(n)$, entonces diremos que Y se distribuye como una chi – cuadrado con n grados de libertad y factor de corrección $^1\!/_c$
t	Si $Z \sim N(0,1)$ y $U \sim \chi^2(n)$ con Z y U independientes, entonces $\frac{Z}{\sqrt{U/n}} \sim t(n)$	Si $Z \sim N(\mu, 1)$ y $U \sim \chi^2(n) \cos Z$ y U independientes $\Rightarrow \frac{Z}{\sqrt{U/L_n}} \sim t(n, \lambda)$ $\cos \lambda = \frac{\mu^2}{2}$	Si $Y \sim c \ t(n)$, entonces diremos que Y se distribuye como una t – student con n grados de libertad y factor de corrección $^1/_c$
F	Si $U \sim \chi^2(m)$ y $V \sim \chi^2(n)$ con U y V independientes, entonces $\frac{v_{/m}}{v_{/n}} \sim F(m,n)$	Si $U \sim \chi^2(m,\lambda)$ y $V \sim \chi^2(n)$ con U y V independientes, entonces $\frac{u_{/m}}{V_{/n}} \sim F(m,n,\lambda)$	Si $Y \sim c \; F(m,n)$, entonces diremos que Y se distribuye como una F con $m \; y \; n$ grados de libertad y factor de corrección $^1/_c$

Definición de la χ^2 centrada

Sea $\mathbf{x} \sim \mathcal{N}_n(\mathbf{0}, \mathbb{I}_n)$ entonces se dice que $Z = \mathbf{x}'\mathbf{x}$ posee distribución chi-cuadrada centrada con n grados de libertad y se simboliza por

$$Z = \mathbf{x}'\mathbf{x} \sim \chi^2(n)$$

. . . .

Propiedades:

- $Z \sim \chi^2(n) \iff M_Z(t) = (1 2t)^{-n/2}$.
- Si $Z \sim \chi^2(n)$ entonces $\mathbb{E}(Z) = n$ y Var(Z) = 2n.
- Sea $\mathbf{x} \sim N_n(\mathbf{0}, \mathbb{I}_n)$. Entonces se cumple que:

$$\mathbf{x}'A\mathbf{x} \sim \chi^2(r) \iff A \text{ es idempotente } y \text{ } ran(A) = r$$

Caracterización de la χ^2 no centrada

Si $\mathbf{x} \sim \mathcal{N}_n(\mu, \mathbb{I}_n)$ entonces diremos que $\mathbf{x}'\mathbf{x}$ se distribuye como una χ^2 no centrada con n grados de libertad y con parámetro de no centralidad $\lambda = \frac{\mu'\mu}{2}$ y se simboliza mediante $\mathbf{x}'\mathbf{x} \sim \chi^2(n, \lambda)$.

Propiedades

- Si $Y \sim \chi^2(n,\lambda)$ entonces $M_Y(t) = (1-2t)^{-n/2}e^{\frac{2\lambda t}{1-2t}}$.
- Si $Y \sim \chi^2(n,\lambda)$ entonces $\mathbb{E}(Y) = n + 2\lambda$ y $Var(Y) = 2n + 8\lambda$.
- Propiedad reproductiva: Sean w_1, w_2, \ldots, w_n variables aleatorias independientes con $w_i \sim \chi^2(k_i, \lambda_i)$, entonces

$$\sum_{i=1}^{n} w_i \sim \chi^2 \left(\sum_{i=1}^{n} k_i, \sum_{i=1}^{n} \lambda_i \right)$$

Propiedades

• A partir de su f.g.m. se deduce que si $X \sim \chi^2(n,\lambda)$ entonces

$$p_X(x) = \sum_{i=0}^{\infty} \frac{e^{-\lambda} \lambda^i}{i!} p_{X_i}(x) \text{ donde } X_i \sim \chi^2(n+2i)$$

• Si $\mathbf{x} \sim \mathcal{N}_n(\mu, \mathbb{I}_n)$, entonces se cumple que:

$$\mathbf{x}'A\mathbf{x} \sim \chi^2(r,\lambda) \ \mathrm{con} \ \lambda = \frac{\mu'A\mu}{2} \iff A \ \mathrm{es} \ \mathrm{idempotente} \ \mathrm{y} \ ran(A) = r$$

Esperanza de una forma cuadrática

Sea ${\bf x}$ un vector aleatorio con ${\mathbb E}({\bf x})=\mu$ y $Cov({\bf x})=\Sigma$, entonces

$$\mathbb{E}(\mathbf{x}'A\mathbf{x}) = tr(A\Sigma) + \mu'A\mu$$

Distribución de Formas Cuadráticas

¿Qué has aprendido?

¡Ahora es tu turno!

- **1** Si $\mathbf{x} \sim \mathcal{N}_n(\mu, \Sigma)$ entonces halle la varianza de $(\mathbf{x} \mu)' \Sigma^{-1} (\mathbf{x} \mu)$.
- ② Sea $\mathbf{y} \sim \mathcal{N}_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbb{I}_n)$ donde $\boldsymbol{\beta} \in \mathbb{R}^p$ y \mathbf{X} es una matriz de rango completo (con p < n). Si se particiona $\mathbf{X} = (\mathbf{X}_1 | \mathbf{X}_2)$ donde \mathbf{X}_1 es de orden $n \times p_1$ con $p_1 < p$.
 - a. Halle la distribución de $\mathbf{F} = \frac{\mathbf{y}'\mathbf{H}_{\mathbf{X}}\mathbf{y}}{\sigma^2}$, donde $\mathbf{H}_{\mathbf{X}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$.
 - b. Halle la distribución de $G = \frac{y'(\mathbb{I}_n H_X)y}{\sigma^2}$, donde H_X es definido como en el item a.
 - c. Halle la distribución de $\mathbf{H} = \frac{\mathbf{y}'(\mathbf{H_X} \mathbf{H_{X_1}})\mathbf{y}}{\sigma^2}$, donde $\mathbf{H_{X_1}}$ es definido como en el item a.
 - d. Si $p_2=p-p_1>p_1$ y las columnas de ${\bf X}_1$ son ortogonales con las columnas de ${\bf X}_2$, halle la distribución de

$$\mathbf{K} = \frac{\mathbf{y}'(\mathbf{H}_{\mathbf{X}_2} - \mathbf{H}_{\mathbf{X}_1})\mathbf{y}}{\sigma^2}$$

¿Cómo se distribuye una forma cuadrática?

Teorema

Sea $\mathbf{x} \sim \mathcal{N}_n(\mu, \Sigma)$ con $\Sigma > 0$. Entonces:

$$\mathbf{x}'A\mathbf{x} \sim \chi^2(r,\lambda) \ con \ \lambda = \frac{\mu'A\mu}{2}$$
 (1)

si y solo si $A\Sigma$ es idempotente y $ran(A\Sigma) = r$.

Corolario

Sea $\mathbf{x} \sim \mathcal{N}_n(\mu, \Sigma)$ con $\Sigma > 0$. Entonces:

$$\mathbf{x}'A\mathbf{x} \sim c\chi^2(r,\lambda) \ con \ \lambda = \frac{\mu'A\mu}{2c}$$
 (2)

si y solo si $A\Sigma=cB$ donde B es idempotente y ran(B)=r.

¿Cómo se distribuye una forma cuadrática?

¡Ahora es tu turno!

 $oxed{1}$ Si $\mathbf{x}=(x_1,x_2,\ldots,x_n)'\sim \mathcal{N}_n(\alpha\mathbf{1}_n,\mathbf{\Sigma})$, donde

$$\Sigma = \sigma^2 \begin{pmatrix} 1 & \rho & \dots & \rho \\ \rho & 1 & \dots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \dots & 1 \end{pmatrix} \text{ con } \alpha \in \mathbb{R}, \rho \in (-1, 1).$$

Halle la distribución de $\frac{\sum_{i=1}^{n}(x_i-\overline{x})^2}{\sigma^2(1-\rho)}$.

2 Si $\mathbf{y} \sim \mathcal{N}_{st}(\alpha(\mathbf{1}_s \otimes \mathbf{1}_t); \sigma_S^2(\mathbb{J}_s \otimes \mathbb{I}_t) + \sigma_T^2(\mathbb{I}_s \otimes \mathbb{J}_t) + \sigma_{ST}^2(\mathbb{I}_s \otimes \mathbb{I}_t))$. Halle la distribución de

$$\mathbf{y}'\left((\mathbb{I}_s - \frac{1}{s}\mathbb{J}_s)\otimes \frac{1}{t}\mathbb{J}_t
ight)\mathbf{y}$$

¿Cuándo dos formas cuadráticas son independientes?

Teorema

Sea
$$\mathbf{y} \sim \mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 y \mathbf{A} , \mathbf{B} matrices cuadradas cualquiera. Entonces: $\mathbf{y}' \mathbf{A} \mathbf{y}$ y $\mathbf{y}' \mathbf{B} \mathbf{y}$ son independientes $\iff \mathbf{A} \boldsymbol{\Sigma} \mathbf{B} = \mathbf{0}_{n \times n}$

¡Ahora es tu turno!

- 1 Pruebe la condición necesaria del teorema anterior.
- 2 Del problema 2 de la slide 7, responda los siguientes items:
 - a. \S Son \mathbf{F} y \mathbf{G} independientes?
 - b. ¿Son **F** y **H** independientes?
 - c. \S Son G y H independientes?
 - d. $\mathsf{i}\mathsf{Son}\;\mathbf{G}\;\mathsf{y}\;\mathbf{K}$ independientes?
 - e. ¿Son \mathbf{H} y \mathbf{K} independientes?
 - g. Halle la distribución de \mathbf{F}/\mathbf{G} .
 - h. Halle la distribución de \mathbf{H}/\mathbf{G} .
 - i. Halle la distribución de K/G.

¿Preguntas?

