ArgentinaPrograma YoProgramo

Complejidad Computacional

por Leonardo Blautzik, Federico Gasior y Lucas Videla

Julio / Diciembre 2021

Complejidad Computacional

- Se trata de encontrar una función matemática que describa el comportamiento temporal de un algoritmo o fragmento de código en función del tamaño de la muestra.
- Encontrar esa función matemática será cuestión del análisis del código.
- Se busca encontrar una cota superior, es decir, se debe pensar siempre en el **peor caso**.

Complejidad Computacional

Figure 1: Cómo estimar el rendimiento temporal de un algoritmo

Complejidad Computacional

Figure 2: Regla de la Suma - Regla del Producto

Hacer un análisis en notación O del tiempo de ejecución del siguiente fragmento de código.

```
for (int j = 0; j < n; j++) {
           n veces 7 (n)
```

Hacer un análisis en notación O del tiempo de ejecución del siguiente fragmento de código.

```
for (int i = 0; i < n; i++) {

for (int j = 0; j < n * n; j++) {

sum++; N^{-2} /lees

}
```

Hacer un análisis en notación O del tiempo de ejecución del siguiente fragmento de código. $\alpha = 16$ $\mu = 256$

ACM 138 "Street numbers"

Una programadora de computadoras vive en una calle con casas numeradas consecutivamente (desde 1) por un lado de la calle. Cada noche ella sale a pasear a su perro dejando su casa y girando al azar a la izquierda o a la derecha, camina hasta el final de la calle y vuelve. Una noche suma los números de las casas que pasan (excluyendo la suya). La siguiente vez que camina, comienza por el otro lado repitiendo la suma y encuentra, para su asombro, que las dos sumas son iguales. Aunque esto se determina en parte por su número de casa y en parte por el número de casas en la calle, ella sin embargo siente que esta es una propiedad deseable para su casa y decide que todas sus casas subsecuentes tendrán esa propiedad.

Continúa...

Escribe un programa para encontrar los pares de números que satisfagan esta condición. Para comenzar su lista los primeros pares son: (número de casa, último número):

1 z 3 4 5 6 7 8
15
1+12+--1---+C-1 | C | C+1+-- N-1+ 17

$$\leq 1 \Rightarrow C-1$$
 $\leq C+1 \Rightarrow N$
 $for (i=1; i < C-1-i++)$
 $SumaI_{2}+=i$
 $for (j=C+1; j < N, j++)$

Pensemos cómo resolverlo...

Sumader
$$+ = J$$
;

9

¡Muchas Gracias!

continuará...

