Refe	rences:
1	Basic Electronics- Solid State—BL Theraja-SChand And Company Ltd.
2	Electronic Devices And Circuit Theory –Robert L Boylestad AndLouis Nashelsky(PHI)

SEMESTER IV

Year	2	Course Code: 21BSC4C2ELE2L		Credits	04	
Sem.	3	Course Title: ELECTRONICS COMMUNICATION-I Hours 60			60	
Course Pre-requisites, if any NA						
Formative Assessment Marks: 40 Summative Asse			Summative Assessment Marks: 60	Duration	n of ESA:	2 hrs.
Course						
Object	ives	To understand the communication system, Principle and working communication system, means and medium of communication.				

	To understand the Principle and working of different modulation techniques		
	Will be able to differentiate between analog and digital communication.		
	To understand the Principle and working of Satellite and optical fibre communication.		
Course	Course Outcomes (COs): After the successful completion of the course, the student will be		
Outcomes	able to:		
	CO1. Know the basic concept of Analog Communication, means and medium of		
	communication.		
	CO2. Understand the principle of Analog and digital modulation.		
	CO3. Familiar with "AM" and "FM "techniques.		
	CO4. Understand the basic concept of Pulse Modulation, Carrier Modulation for digital		
	transmission and able to construct simple pulse modulation.		
	CO5. Understand the basic concept of Satellite Communication		
	CO6. Understand the basic concept of Optical Fibre Communication.		
Unit No.	Course Content		
	Electronic communication: Introduction to communication – means and modes. Need for		
	modulation. Block diagram of an electronic communication system. Brief idea of frequency		
	allocation for radio communication system in India (TRAI). Electromagnetic		
	communication spectrum, band designations and usage. Channels and base-band signals.		
	Concept of Noise, signal-to-noise (S/N) ratio.		
Unit- I	Propagation of "EM" Wave: Introduction, Loss of "EM" Energy due to noise, Ground		
	Wave, Sky-wave and Space-wave propagation. Ionosphere and its effects.		
	Communication medium: Transmission lines, coaxial cables, wave guides and optical		
	fibres.		
	Antenna: Introduction, Antenna parameters, Ferrite rod antenna, yagi-Uda antenna, Dish-		
	antenna, principle, Working and applications only. (15 HOURS)		
	Analog Modulation: Amplitude Modulation, modulation index and frequency spectrum.		
	Generation of AM (Emitter Modulation), Amplitude Demodulation (diode detector),		
	Concept of Single side band generation and detection. Frequency Modulation (FM) and		
TT24 TT	Phase Modulation (PM), modulation index and frequency spectrum, equivalence between		
Unit- II	FM and PM, Generation of FM using VCO, FM detector (slope detector), Qualitative idea of		
	Super heterodyne receiver.		
	Analog Pulse Modulation: Channel capacity, sampling theorem, Basic Principles- PAM,		
	PWM, PPM, modulation and detection technique for PAM only, Multiplexing. (15 HOURS)		
	Digital Pulse Modulation : Need for digital transmission, Pulse Code Modulation, Digital		
	Carrier Modulation Techniques.		
T TT	Introduction to Communication and Navigation systems: Satellite Communication		
Unit -III	Introduction, need, geosynchronous satellite orbits, geostationary satellite advantages of		
	geostationary satellites. Satellite visibility, transponders (C - Band), path loss, ground		
	station, simplified block diagram of earth station. Uplink and downlink. (15 HOURS)		
	Optical Fiber Communication: Optical Fibers: Structure and wave guides, fundamentals,		
	Nature of light, basic optical laws and definitions, optical fiber types, Rays and modes, ray		
Unit -IV	optics. Signal degradation in optical fibers, attenuation, scattering losses, radiative losses,		
	absorption losses, core and cladding losses, signal distortion in optical wave guides, group		
	delay, dispersion, pulse broadening in graded index wave guide.		
	Optical sources : LEDs, structure, source materials, Laser diodes: Structures, threshold		
	conditions, modal properties and radiation patterns		
	Optical Receiver Operations : Fundamental receiver operations, digital signal transmission,		
	receiver noise, analog receivers. (15 HOURS)		
-	Recommended Leaning Resources		
Recommended Leaning Resources			

Reference **Books** 1 Electronic Communications, D. Roddy and J. Coolen, Pearson Education India. 2 Advanced Electronics Communication Systems- Tomasi, 6th edition, Prentice Modern Digital and Analog Communication Systems, B.P. Lathi, 4th Edition, 3 2011, Oxford University Press. K.D Prasad, "Antenna and Wave Propagation", Satyaprakashan, New Delhi. 5 Sanjeev Gupta, "Electronic Communication Systems", Khanna Publishers, New 6 Electronic Communication systems, G. Kennedy, 3rd Edn., 1999, Tata McGraw 7 Principles of Electronic communication systems – Frenzel, 3rd edition, McGraw Hill Communication Systems, S. Haykin, 2006, Wiley India Electronic Communication system, Blake, Cengage, 5th edition. Wireless communications, Andrea Goldsmith, 2015, Cambridge University Gerd Keiser, "Optical Fibre Communication", McGraw Hill, 3rd Edn.

Laboratory Experiments:

Year	2	Course Code:21BSC2C3ELE3P	Credits	2
Sem.	4	Course Title: ELECTRONIC COMMUNICATION - I		4
				Hrs/week
Format	Formative Assessment Marks: 25 Summative Assessment Marks: 25 Duration			4 hrs.
		Note: Minimum of 08 Experiments are to be performed using hardward	re and sim	ulation.
		LIST OF EXPERIMENTS		
	1. Construct amplitude modulator using transistor / I. C. Determination the modulation inde			ation index.
	2. Construct frequency modulator circuit – determine the modulation index.			
	3. "AM" Liner Diode detector- trace the input and output waveforms.			
	4. Frequency mixer circuit – Verify output frequency for different input frequencies.			es.
5. "FM" Det		5. "FM" Detector – Plot the frequency response curve.		
6. Stud		6. Study of Balanced demodulator		
7. Study of IF amplifier circuit.		7. Study of IF amplifier circuit.		
	8. Pulse amplitude modulation (PAM) – trace the output waveforms.			
	9. Pulse width modulation (PWM) – trace the output waveforms.			
	10. Pulse position modulation (PPM) – trace the output waveforms.			
	11. Characteristics of LED in OFC			
		12. Study of Numerical aperture		
		13. Study of OFC losses.		
	14. Setting up simple OFC Link.			

OPEN ELECTIVE

Year	2	Course Code:	Credits	03
Sem.	4	Course Title: Application of Electronics-2	Hours	40

Formative A	Formative Assessment Marks: 40 Summative Assessment Marks: 60 Duration of		
Unit No.	Hours		
	Introduction to Advanced Communication	(10 hours)	
Unit I	Radio, TV- principles, block diagram & applications, OFC applications and advantages, Embedded system – Smart card, SIM card Mobiles- Bock diagram & applications		
Unit II	Advance Electronics (10 hours) CCTV camera, ATM- principles, block diagram & applications Electronic voting Machine (EVM)- CU,BU,VVPAT.,		
Unit III	Application of Satellite Types of cameras, antenna and communication system is satellites, EDUSAT, TV & Internet-modem, Wi-Fi.	(10 hours)	
Unit IV E-waste management-identification, segregation, disposal. Precious elements. Lithium extraction from Li-Ion batteries. Alternative to Li-Ion batteries, Environmental effect of e-Wastes.			
	References: Basic Electronics-Solid State – B L Theraja - S Chand And Company Ltd		

ASSESSMENT METHODS

Evaluation Scheme for Internal Assessment:

Theory:

Assessment Criteria	40 marks
1 st Internal Assessment Test for 30 marks 1 hr after 8 weeks and 2 nd Internal Assessment Test for 30 marks 1 hr after 15 weeks. Average of two tests should be considered.	30
Assignment	05
Activity	05
Total	40

Assessment Criteria	25 marks
1 st Internal Assessment Test for 20 marks 1 hr after 8 weeks and	20
2 nd Internal Assessment Test for 20 marks 1 hr after 15 weeks.	
Average of two tests should be considered.	
Assignment/Activity	05
Total	25

Practical:

Assessment Criteria	25 marks
Internal test	15
Viva Voce / basic understanding of the concept	05
Journal/Practical Record	05
Total	25

Scheme of Evaluation for Practical Examination

Sl.N o.	Particulars	Marks Allotted Max. 25
1.	Basic formula with description, nature of graph if any & indication of unit	05
2.	Tracing of schematic ray diagram/Circuit diagram with description and tabulation	05
4.	Experimental skill & connection	05
5.	Record of observation,	05
6.	Calculation including drawing graph	04
7.	Result with unit	01
	Total	25

Question Paper Pattern:

RANI CHANNAMMA UNIVERSITY Department of ELECTRONICS

I /II/III/IV Semester B.Sc.

Sub: Code: Maximum Marks: 60

Q.No.1.	Answer any Six Questions (Two question from Each Unit to be asked)	6X2=12
	a.	
	b.	
	c.	
	d ,	
	e.	
	f.	
	g.	
	h.	
Q.No.2.	(Questions from Unit-I)	
	a.	08
	b.	04
	OR	
	c.	08
	d.	04
Q.No.3.	(Questions from Entire Unit-II)	
	a.	08
	b.	04
	OR	
	c.	08
	d.	04
Q.No.4.	(Questions from Unit-III)	

	a.	08
	b.	04
	OR	
	c.	08
	d.	04
Q.No.5.	(Questions from Unit-IV)	
	a.	08
	b.	04
	OR	
	c.	08
	d.	04

Note:

- i. There should be a problem carrying 4 marks from each unit and may be asked in either b or d in questions 2 to 5.
- ii. If necessary, sub questions a and c from 2 to 5 may be subdivided in to i. and ii. Without exceeding maximum 08 marks.