SS 2024 Marc Kegel

Differentialtopologie

Blatt 3

Aufgabe 1.

- (a) Die n-Späre S^n ist eine zusammenhängende, kompakte, orientierbare, glatte Mannigfaltigkeit ohne Rand.
- (b) Was ist die minimale Anzahl von Karten in einem glatten Atlas von S^n ?
- (c) Das Möbiusband ist eine zusammenhängende, kompakte, nicht-orientierbare, glatte Mannigfaltigkeit. Was ist der Rand des Möbiusbandes?
- (d) Ist das Achsenkreuz $\{xy=0\}$ in \mathbb{R}^2 eine Mannigfaltigkeit?
- (e) Das Produkt zweier glatter Mannigfaltigkeiten ist eine glatte Mannigfaltigkeit.
- (f) Untermannigfaltigkeiten sind Mannigfaltigkeiten.
- (g) Eine Fläche ist genau dann orientierbar, wenn sie kein Möbiusband enthält, d.h. genau dann wenn es keinen geschlossenen Weg gibt, der Rechts und Links vertauscht.
- (h) R^n ist homöomorph zu $D^n \setminus S^{n-1}$.

Aufgabe 2.

- (a) Die Komposition und das Produkt von Einbettungen sind wieder Einbettungen.
- (b) Gibt es eine Einbettung von $S^n \to \mathbb{R}^n$?
- (c) Gibt es eine Einbettung von $S^n \times \mathbb{R} \to \mathbb{R}^{n+1}$?
- (d) $S^{n_1} \times \cdots \times S^{n_k}$ kann in $\mathbb{R}^{n_1 + \cdots + n_k + 1}$ eingebettet werden.
- (e) Die Abbildung

$$f: [0, 2\pi] \times [0, \pi] \longrightarrow \mathbb{R}^5$$

 $(x, y) \longmapsto (\cos x, \cos 2y, \sin 2y, \sin x \cos y, \sin x \sin y)$

induziert eine Einbettung der Kleinschen Flasche in den $\mathbb{R}^5.$

(f) Kann man die Kleinsche Flasche auch in den \mathbb{R}^4 einbetten?

Aufgabe 3.

Fertigen Sie Skizzen von möglichst vielen nicht-transversalen Schnitten und ihren transversalen Störungen an.

Aufgabe 4.

Der *n*-dimensionale reell projektive Raum $\mathbb{R}P^n$ ist der Quotientenraum von S^n , der durch die Identifikation von Antipodenpunkten entsteht, d.h. $\mathbb{R}P^n := S^n/_{\sim}$ mit $x \sim y$ für $x, y \in S^n$ genau dann, wenn y = x oder y = -x.

- (a) Zeigen Sie, dass die folgenden Definitionen äquivalent zu dieser Definition von $\mathbb{R}P^n$ sind, d.h., dass sie zu Räumen führen, die homöomorph zu $\mathbb{R}P^n$ sind:
 - (i) Beginne mit $\mathbb{R}^{n+1} \setminus \{0\}$ und identifiziere Punkte, die auf derselben Geraden durch den Ursprung liegen, d.h. bilde den Quotientenraum $(\mathbb{R}^{n+1} \setminus \{0\})/_{\sim}$ mit $x \sim y$ für $x, y \in \mathbb{R}^{n+1} \setminus \{0\}$ genau dann, wenn ein $\lambda \in \mathbb{R} \setminus \{0\}$ existiert, so dass $x = \lambda y$. (Man sagt dann auch: $\mathbb{R}P^n$ ist der Raum der Ursprungsgeraden im \mathbb{R}^{n+1} .)
 - (ii) Beginne mit der n-dimensionalen Kreisscheibe D^n und identifiziere Antipodenpunkte auf dem Rand $\partial D^n = S^{n-1}$, d.h. $D^n/_{\sim}$ mit $x \sim y$ für $x, y \in D^n$ genau dann, wenn y = x oder $y \in S^{n-1}$ mit y = -x.
- (b) $\mathbb{R}P^n$ ist eine zusammenhängende, kompakte, glatte Mannigfaltigkeit. Ist $\mathbb{R}P^n$ orientierbar?
- (c) Sei M ein Möbiusband. Sein Rand ist $\partial M = S^1$. Verklebe M mit einer Kreisscheibe D^2 entlang des Randes, d.h. bilde $D^2 \cup_{\varphi} M$ mit $\varphi = \mathrm{id}_{S^1}$. Zeigen Sie, dass dieser Raum homöomorph zu $\mathbb{R}P^2$ ist.
- (d) Das Verkleben zweier Möbiusbänder entlang ihrer Ränder liefert eine Kleinsche Flasche.

Bonusaufgabe 1.

Der komplex projektive Raum $\mathbb{C}P^n$ ist definiert als der Quotientenraum von $\mathbb{C}^{n+1}\setminus\{(0,\ldots,0)\}$ (oder $S^{2n+1}\subset\mathbb{C}^{n+1}$) unter der Äquivalenzrelation $(z_0,\ldots,z_n)\sim(w_0,\ldots,w_n):\Leftrightarrow\exists\lambda\in\mathbb{C}\setminus\{0\}:$ $(z_0,\ldots,z_n)=(\lambda w_0,\ldots,\lambda w_n)$. Die Äquivalenzklasse eines Punktes (z_0,\ldots,z_n) bezeichnet man mit homogenen Koordinaten $[z_0:\ldots:z_n]$. Man kann $\mathbb{C}P^n$ auch als den Raum der komplexen Geraden durch den Ursprung in \mathbb{C}^{n+1} auffassen. Zeigen Sie, dass $\mathbb{C}P^n$ eine orientierbare Mannigfaltigkeit ist.

Bonusaufgabe 2.

Wir betrachten die Oberfläche W eines Einheitswürfels

$$W := \{(x_1, \dots, x_n) \in \mathbb{R}^n : \max_i (|x_i|) = 1\}.$$

- (a) Zeigen Sie, dass W keine glatte Untermannigfaltigkeit von \mathbb{R}^n ist.
- (b) Zeigen Sie, dass W eine topologische Mannigfaltigkeit ist und definieren Sie eine differenzierbare Struktur auf W.

Bonusaufgabe 3.

- (a) Beschreiben Sie einen lokal Euklidschen Raum mit abzählbarer Basis der Topologie der nicht Hausdorffsch ist.
- (b) Beschreiben Sie topologische Räume, die keine abzählbaren Basen besitzen.