EXERCISE #1

STRAIGHT OBJECTIVE TYPE

- 1. A (1, -1, -3), B (2, 1, -2) & C (-5, 2, -6) are the position vectors of the vertices of a triangle ABC. The length of the bisector of its internal angle at A is:
 - (A) $\sqrt{10}/4$
- (B) $3\sqrt{10}/4$
- (C) $\sqrt{10}$
- (D) none
- 2. Let p is the p.v. of the orthocentre & g is the p.v. of the centroid of the triangle ABC where circumcentre is the origin. If $\vec{p} = K \vec{g}$, then K =
 - (A) 3
- (B) 2
- (C) 1/3
- (D) 2/3
- 3. A vector \vec{a} has components 2p & 1 with respect to a rectangular cartesian system. The system is rotated through a certain angle about the origin in the counterclockwise sense. If with respect to the new system, \vec{a} has components p + 1 & 1 then,
 - (A) p = 0
- (B) p = 1 or p = -1/3 (C) p = -1 or p = 1/3 (D) p = 1 or p = -1
- 4. The number of vectors of unit length perpendicular to vectors $\vec{a} = (1, 1, 0) \& \vec{b}(0, 1, 1)$ is:
 - (A) 1

(B) 2

- (C)3
- (D) ∞
- 5. Four points A(+1, -1, 1); B(1, 3, 1); C(4, 3, 1) and D(4, -1, 1) taken in order are the vertices of (A) a parallelogram which is neither a rectangle nor a rhombus
 - (B) rhombus
 - (C) an isosceles trapezium
 - (D) a cyclic quadrilateral.
- Let α , β & γ be distinct real numbers. The points whose position vector's are $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$; 6. $\beta \hat{i} + \gamma \hat{j} + \alpha \hat{k}$ and $\gamma \hat{i} + \alpha \hat{j} + \beta \hat{k}$
 - (A) are collinear

(B) form an equilateral triangle

(C) form a scalene triangle

- (D) form a right angled triangle
- If the vectors $\vec{a} = 3\hat{i} + \hat{j} 2\hat{k}$, $\vec{b} = -\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = 4\hat{i} 2\hat{j} 6\hat{k}$ constitute the sides 7. of a \triangle ABC, then the length of the median bisecting the vector \vec{c} is
 - (A) $\sqrt{2}$
- (B) $\sqrt{14}$
- (C) $\sqrt{74}$
- (D) $\sqrt{6}$
- Let A(0, -1, 1), B(0, 0, 1), C(1, 0, 1) are the vertices of a $\triangle ABC$. If R and r denotes the 8. circumradius and inradius of $\triangle ABC$, then $\frac{r}{R}$ has value equal to
 - (A) $\tan \frac{3\pi}{\varrho}$
- (B) $\cot \frac{3\pi}{9}$ (C) $\tan \frac{\pi}{12}$
- (D) $\cot \frac{\pi}{12}$

9.	$\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors, no two of which are collinear and the vector $\vec{a} + \vec{b}$ is					
	collinear with \vec{c} , $\vec{b} + \vec{c}$ is collinear with \vec{a} , then $\vec{a} + \vec{b} + \vec{c}$ is equal to -					
	(A) \vec{a}	(B) b	(C) c	(D) none of these		
10.	If the three points with position vectors (1, a, b); (a, 2, b) and (a, b, 3) are collinear in space,					
	then the value of a		(0) 5			
	(A) 3	(B) 4	(C) 5	(D) none		
11.	Consider the following 3 lines in space					
	$L_1: \vec{r} = 3\hat{i} - \hat{j} + 2\hat{k} + \lambda (2\hat{i} + 4\hat{j} - \hat{k})$					
	$L_2: \vec{r} = \hat{i} + \hat{j} - 3\hat{k} + \mu (4\hat{i} + 2\hat{j} + 4\hat{k})$					
	$L_3: \vec{r} = 3\hat{i} + 2\hat{j} -$	L ₃ : $\vec{r} = 3\hat{i} + 2\hat{j} - 2\hat{k} + t (2\hat{i} + \hat{j} + 2\hat{k})$				
	Then which one of the following pair(s) are in the same plane.					
	(A) only L_1L_2	(B) only L_2L_3	(C) only L_3L_1	(D) L_1L_2 and L_2L_3		
12.	The acute angle between the medians drawn from the acute angles of an isosceles right angled triangle is:					
	(A) $\cos^{-1}(2/3)$	(B) $\cos^{-1}(3/4)$	(C) $\cos^{-1}(4/5)$	(D) none		
13.	The vectors $3\hat{i} - 2\hat{i}$	$2\hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} + 5\hat{k}$ and 3	$2\hat{i} + \hat{j} - 4\hat{k}$ form the side	es of a triangle. Then triangle is		
	(A) an acute angled triangle		(B) an obtuse angled triangle			
	(C) an equilateral	triangle	(D) a right angled	triangle		
14.	If the vectors $3\overline{p} + \overline{q}$; $5\overline{p} - 3\overline{q}$ and $2\overline{p} + \overline{q}$; $4\overline{p} - 2\overline{q}$ are pairs of mutually perpendicular vectors					
	then $\sin (\overline{p} \hat{q})$ is					
	(A) $\sqrt{55}/4$	(B) $\sqrt{55}/8$	(C) 3/16	(D) $\sqrt{247}/16$		
15.	Consider the poir	nts A, B and C with 1	position vectors $(-2\hat{i} +$	$(3\hat{j}+5\hat{k}), (\hat{i}+2\hat{j}+3\hat{k}) $ and $(7\hat{i}-\hat{k})$		
	respectively.					
	Statement-1: The vector sum, $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$					
	Because	_				
	Statement-2: A, B and C form the vertices of a triangle.					
	(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.					
	(B) Statement-1 i statement-1.	s true, statement-2 is	true and statement-2 is	NOT the correct explanation for		
	` ′	s true, statement-2 is f				
	(D) Statement-1 i	s false, statement-2 is	true.			

- **16.** The set of values of c for which the angle between the vectors $\operatorname{cx} \hat{\mathbf{i}} 6\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ and $\operatorname{x} \hat{\mathbf{i}} 2\hat{\mathbf{j}} + 2\operatorname{cx} \hat{\mathbf{k}}$ is acute for every $\mathbf{x} \in \mathbf{R}$ is (A) (0, 4/3) (B) [0, 4/3] (C) (11/9, 4/3) (D) [0, 4/3) **17.** Let $\vec{\mathbf{u}} = \hat{\mathbf{i}} + \hat{\mathbf{j}}, \vec{\mathbf{v}} = \hat{\mathbf{i}} \hat{\mathbf{j}}$ and $\vec{\mathbf{w}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$. If $\hat{\mathbf{n}}$ is a unit vector such that $\vec{\mathbf{u}} \cdot \hat{\mathbf{n}} = 0$ and $\vec{\mathbf{v}} \cdot \hat{\mathbf{n}} = 0$, then $|\vec{\mathbf{w}} \cdot \hat{\mathbf{n}}|$ is equal to (A) 1 (B) 2 (C) 3 (D) 0
- 18. If the vector $6\hat{i} 3\hat{j} 6\hat{k}$ is decomposed into vectors parallel and perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$ then the vectors are:

 (A) $(\hat{i} + \hat{i} + \hat{k})$ and $(\hat{i} + \hat{i} + \hat{k})$
 - (A) $-(\hat{i} + \hat{j} + \hat{k})$ and $7\hat{i} 2\hat{j} 5\hat{k}$ (B) $-2(\hat{i} + \hat{j} + \hat{k})$ and $8\hat{i} \hat{j} 4\hat{k}$ (C) $+2(\hat{i} + \hat{j} + \hat{k})$ and $4\hat{i} 5\hat{j} 8\hat{k}$ (D) none
- 19. Let $\vec{r} = \vec{a} + \lambda \vec{\ell}$ and $\vec{r} = \vec{b} + \mu \vec{m}$ be two lines in space where $\vec{a} = 5\hat{i} + \hat{j} + 2\hat{k}$, $\vec{b} = -\hat{i} + 7\hat{j} + 8\hat{k}$, $\vec{\ell} = -4\hat{i} + \hat{j} \hat{k}$ and $\vec{m} = 2\hat{i} 5\hat{j} 7\hat{k}$ then the p.v. of a point which lies on both of these lines, is

 (A) $\hat{i} + 2\hat{j} + \hat{k}$ (B) $2\hat{i} + \hat{j} + \hat{k}$ (C) $\hat{i} + \hat{j} + 2\hat{k}$ (D) non existent as the lines are skew
- **20.** Let A(1, 2, 3), B(0, 0, 1), C(-1, 1, 1) are the vertices of a $\triangle ABC$.
 - (i) The equation of internal angle bisector through A to side BC is (A) $\vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \mu (3\hat{i} + 2\hat{j} + 3\hat{k})$ (B) $\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \mu (3\hat{i} + 4\hat{j} + 3\hat{k})$ (C) $\vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \mu (3\hat{i} + 3\hat{j} + 2\hat{k})$ (D) $\vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \mu (3\hat{i} + 3\hat{j} + 4\hat{k})$
 - (ii) The equation of median through C to side AB is (A) $\vec{r} = -\hat{i} + \hat{j} + \hat{k} + p (3\hat{i} - 2\hat{k})$ (B) $\vec{r} = -\hat{i} + \hat{j} + \hat{k} + p (3\hat{i} + 2\hat{k})$ (C) $\vec{r} = -\hat{i} + \hat{j} + \hat{k} + p (-3\hat{i} + 2\hat{k})$ (D) $\vec{r} = -\hat{i} + \hat{j} + \hat{k} + p (3\hat{i} + 2\hat{j})$
 - (iii) The area (\triangle ABC) is equal to $(A) \frac{9}{2} \qquad (B) \frac{\sqrt{17}}{2} \qquad (C) \frac{17}{2} \qquad (D) \frac{7}{2}$
- 21. If $\vec{a} + \vec{b} + \vec{c} = 0$, $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$, then the angle between $\vec{a} \& \vec{b}$ is:

 (A) $\pi/6$ (B) $2\pi/3$ (C) $5\pi/3$ (D) $\pi/3$
- A line passes through the point $A(\hat{i}+2\hat{j}+3\hat{k})$ and is parallel to the vector $\vec{V}(\hat{i}+\hat{j}+\hat{k})$. The shortest distance from the origin, of the line is -
 - (A) $\sqrt{2}$ (B) $\sqrt{4}$ (C) $\sqrt{5}$ (D) $\sqrt{6}$

Let \vec{a} , \vec{b} , \vec{c} be vectors of length 3, 4, 5 respectively. Let \vec{a} be perpendicular to $\vec{b} + \vec{c}$, \vec{b} to $\vec{c} + \vec{a}$ 23. and \vec{c} to $\vec{a} + \vec{b}$. Then $|\vec{a} + \vec{b} + \vec{c}|$ is:

(A) $2\sqrt{5}$

(B) $2\sqrt{2}$ (C) $10\sqrt{5}$ (D) $5\sqrt{2}$

The set of values of x for which the angle between the vectors $\vec{a} = x\hat{i} - 3\hat{j} - \hat{k}$ and 24. $\vec{b} = 2x\,\hat{i} + x\hat{j} - \hat{k}$ acute and the angle between the vector \vec{b} and the axis of ordinates is obtuse, is

(A) 1 < x < 2

(B) x > 2

(C) x < 1

(D) x < 0

If a vector $\vec{\mathbf{a}}$ of magnitude 50 is collinear with vector $\vec{\mathbf{b}} = 6\hat{\mathbf{i}} - 8\hat{\mathbf{j}} - \frac{15}{2}\hat{\mathbf{k}}$ and makes an acute 25. angle with positive z-axis then:

(A) $\vec{a} = 4\vec{b}$

(B) $\vec{a} = -4\vec{b}$

(C) $\vec{b} = 4\vec{a}$

(D) none

A, B, C & D are four points in a plane with pv's $\vec{a}, \vec{b}, \vec{c} \& \vec{d}$ respectively such that **26.** $(\vec{a} - \vec{d}) \cdot (\vec{b} - \vec{c}) = (\vec{b} - \vec{d}) \cdot (\vec{c} - \vec{a}) = 0$. Then for the triangle ABC, D is its

(A) incentre

(B) circumcentre

(C) orthocentre

(D) centroid

 \vec{a} and \vec{b} are unit vectors inclined to each other at an angle α , $\alpha \in (0, \pi)$ and $|\vec{a} + \vec{b}| < 1$. Then $\alpha \in$ 27.

(A) $\left(\frac{\pi}{3}, \frac{2\pi}{3}\right)$ (B) $\left(\frac{2\pi}{3}, \pi\right)$ (C) $\left(0, \frac{\pi}{3}\right)$ (D) $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$

Image of the point P with position vector $7\hat{i} - \hat{j} + 2\hat{k}$ in the line whose vector equation is, 28. $\vec{r}=9\hat{i}+5\hat{j}+5\hat{k}+\lambda\left(\hat{i}+3\hat{j}+5\hat{k}\right)$ has the position vector

(A) (-9, 5, 2) (B) (9, 5, -2) (C) (9, -5, -2)

(D) none

Let $\hat{a}, \hat{b}, \hat{c}$ are three unit vectors such that $\hat{a} + \hat{b} + \hat{c}$ is also a unit vector. If pairwise angles 29. between $\hat{a} + \hat{b} + \hat{c}$ are θ_1 , θ_2 and θ_3 respectively then $\cos \theta_1 + \cos \theta_2 + \cos \theta_3$ equals

(A) 3

(B) - 3

(C) 1

(D) - 1

A tangent is drawn to the curve $y = \frac{8}{x^2}$ at a point A (x_1, y_1) , where $x_1 = 2$. The tangent cuts the **30.** x-axis at point B. Then the scalar product of the vectors \overrightarrow{AB} and OB is

(A) 3

(B) - 3

(C) 6

(D) - 6

- Cosine of an angle between the vectors $(\vec{a} + \vec{b})$ and $(\vec{a} \vec{b})$ if $|\vec{a}| = 2$, $|\vec{b}| = 1$ and $|\vec{a}| = 60^{\circ}$ 31. is
 - (A) $\sqrt{3/7}$
- (B) $9/\sqrt{21}$ (C) $3/\sqrt{7}$
- (D) none
- **32.** An arc AC of a circle subtends a right angle at the centre O. The point B divides the arc in the ratio 1: 2. If $\overrightarrow{OA} = \vec{a}$ and $\overrightarrow{OB} = \vec{b}$, then the vector \overrightarrow{OC} in terms of $\vec{a} \& \vec{b}$, is
 - (A) $\sqrt{3}\,\vec{a} + 2\vec{b}$
- (B) $-\sqrt{3}\vec{a} + 2\vec{b}$ (C) $2\vec{a} \sqrt{3}\vec{b}$
- (D) $-2\vec{a} + \sqrt{3}\vec{b}$
- Given three vectors $\vec{a}, \vec{b} \& \vec{c}$ each two of which are non collinear. Further if $(\vec{a} + \vec{b})$ is collinear 33. with \vec{c} , $(\vec{b} + \vec{c})$ is collinear with $\vec{a} \& |\vec{a}| = |\vec{b}| = |\vec{c}| = \sqrt{2}$. Then the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$: (B) is -3(C) is 0 (D) cannot be evaluated (A) is 3
- The vector equations of two lines L_1 and L_2 are respectively 34. $\vec{r} = 17\vec{i} - 9\hat{j} + 9\hat{k} + \lambda(3\hat{i} + \hat{j} + 5\hat{k}) \text{ and } \vec{r} = 15\hat{i} - 8\hat{j} - \hat{k} + \mu(4\hat{i} + 3\hat{j})$
 - L_1 and L_2 are skew lines
 - II (11, -11, -1) is the point of intersection of L₁ and L₂
 - (-11, 11, 1) is the point of intersection of L_1 and L_2 III
 - $\cos^{-1}(3/\sqrt{35})$ is the acute angle between L_1 and L_2 IV

then, which of the following is true?

- (A) II and IV
- (B) I and IV
- (C) IV only
- (D) III and IV
- For two particular vectors \vec{A} and \vec{B} it is known that $\vec{A} \times \vec{B} = \vec{B} \times \vec{A}$. What must be true about the **35.** two vectors?
 - (A) At least one of the two vectors must be the zero vector.
 - (B) $\vec{A} \times \vec{B} = \vec{B} \times \vec{A}$ is true for any two vectors.
 - (C) One of the two vectors is a scalar multiple of the other vector.
 - (D) The two vectors must be perpendicular to each other.
- For some non zero vector \vec{V} , if the sum of \vec{V} and the vector obtained from \vec{V} by rotating it by **36.** an angle 2α equals to the vector obtained from \vec{V} by rotating it by α then the value of α , is
 - (A) $2n\pi \pm \frac{\pi}{3}$
- (B) $n\pi \pm \frac{\pi}{3}$ (C) $2n\pi \pm \frac{2\pi}{3}$ (D) $n\pi \pm \frac{2\pi}{3}$

where n is an integer.

Let $\vec{u}, \vec{v}, \vec{w}$ be such that $|\vec{u}| = 1$, $|\vec{v}| = 2$, $|\vec{w}| = 3$. If the projection of \vec{v} along \vec{u} is equal to **37.** that of \vec{w} along \vec{u} and vectors \vec{v} , \vec{w} are perpendicular to each other then $|\vec{u} - \vec{v} + \vec{w}|$ equals

(A) 2

(B) $\sqrt{7}$

(C) $\sqrt{14}$

(D) 14

- If \vec{a} and \vec{b} are non zero, non collinear, and the linear combination 38. $(2x - y)\vec{a} + 4\vec{b} = 5\vec{a} + (x - 2y)\vec{b}$ holds for real x and y then x + y has the value equal to (A) - 3(B) 1 (C) 17(D)3
- **39.** Given an equilateral triangle ABC with side length equal to 'a'. Let M and N be two points respectively on the side AB and AC such that $\overrightarrow{AN} = \overrightarrow{KAC}$ and $\overrightarrow{AM} = \frac{AB}{3}$. If \overrightarrow{BN} and \overrightarrow{CM} are orthogonal then the value of K is equal to

(A) $\frac{1}{5}$

(B) $\frac{1}{4}$

(C) $\frac{1}{2}$ (D) $\frac{1}{2}$

If $\vec{p} \& \vec{s}$ are not perpendicular to each other and $\vec{r} \times \vec{p} = \vec{q} \times \vec{p} \& \vec{r} \cdot \vec{s} = 0$, then $\vec{r} = \vec{r} = \vec{r} \times \vec{p} = \vec{r} \times \vec{p} \times \vec{r} = \vec{r} \times \vec{r} \vec{r} \times \vec{r} \times \vec{r} \times \vec{r} = \vec{r} \times \vec{r} \times \vec{r} \times \vec{r} \times \vec{r} \times \vec{r} = \vec{r} \times \vec{r$ 40.

 $(A) \vec{p}.\vec{s}$

(B) $\vec{q} + \left(\frac{\vec{q}.\vec{p}}{\vec{p}.\vec{s}}\right) \vec{p}$ (C) $\vec{q} - \left(\frac{\vec{q}.\vec{s}}{\vec{p}.\vec{s}}\right) \vec{p}$ (D) $\vec{q} + \mu \vec{p}$ for all scalars μ

41. If \vec{u} and \vec{v} are two vectors such that $|\vec{u}| = 3$; $|\vec{v}| = 2$ and $|\vec{u} \times \vec{v}| = 6$ then the correct statement

(A) $\vec{u} \wedge \vec{v} \in (0, 90^{\circ})$ (B) $\vec{u} \wedge \vec{v} \in (90^{\circ}, 180^{\circ})$ (C) $\vec{u} \wedge \vec{v} = 90^{\circ}$

(D) $(\vec{\mathbf{u}} \times \vec{\mathbf{v}}) \times \vec{\mathbf{u}} = 6\vec{\mathbf{v}}$

42. Given a parallelogram OACB. The lengths of the vectors $\overrightarrow{OA}, \overrightarrow{OB} \& \overrightarrow{AB}$ are a, b & c respectively. The scalar product of the vectors OC&OB is:

(A) $\frac{a^2 - 3b^2 + c^2}{2}$ (B) $\frac{3a^2 + b^2 - c^2}{2}$ (C) $\frac{3a^2 - b^2 + c^2}{2}$ (D) $\frac{a^2 + 3b^2 - c^2}{2}$

Vectors $\vec{a} \& \vec{b}$ make an angle $\theta = \frac{2\pi}{3}$. If $|\vec{a}| = 1$, $|\vec{b}| = 2$ then $\{(\vec{a} + 3\vec{b})x(3\vec{a} - \vec{b})\}^2 =$ 43.

(A) 225

(B) 250

(C) 275

(D) 300

If the vector product of a constant vector \overrightarrow{OA} with a variable vector \overrightarrow{OB} in a fixed plane OAB 44. be a constant vector, then locus of B is:

(A) a straight line perpendicular to OA

(B) a circle with centre O radius equal to $|\overline{OA}|$

(C) a straight line parallel to OA

(D) none of these

For non-zero vectors $\vec{a}, \vec{b}, \vec{c}, \left| \vec{a} \times \vec{b}.\vec{c} \right| = |\vec{a}| |\vec{b}| |\vec{c}|$ holds if and only if ; 45.

(A)
$$\vec{a}.\vec{b} = 0$$
, $\vec{b}.\vec{c} = 0$

(B)
$$\vec{c} \cdot \vec{a} = 0$$
, $\vec{a} \cdot \vec{b} = 0$

(C)
$$\vec{a}.\vec{c} = 0$$
, $\vec{b}.\vec{c} = 0$

(D)
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$$

- The vectors $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$; $\vec{b} = 2\hat{i} \hat{j} + \hat{k} \& \vec{c} = 3\hat{i} + \hat{j} + 4\hat{k}$ are so placed that the end point of 46. one vector is the starting point of the next vector. Then the vectors are -
 - (A) not coplanar
 - (B) coplanar but cannot form a triangle
 - (C) coplanar but can form a triangle
 - (D) coplanar & can form a right angled triangle
- 47. Given the vectors

$$\vec{u}\,=\,2\hat{i}-\,\hat{j}\,-\,\hat{k}$$

$$\vec{v} = \hat{i} - \hat{j} + 2\hat{k}$$

$$\vec{\mathbf{w}} = \hat{\mathbf{i}} - \hat{\mathbf{k}}$$

If the volume of the parallelopiped having $-c\vec{u}$, \vec{v} and $c\vec{w}$ as concurrent edges, is 8 then 'c' can be equal to

$$(A) \pm 2$$

- (D) cannot be determined
- Given $\vec{a} = x\hat{i} + y\hat{j} + 2\hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$, $\vec{c} = \hat{i} + 2\hat{j}$; $(\overline{a} \hat{b}) = \pi/2$, $\vec{a} \cdot \vec{c} = 4$ then 48.

(A)
$$[\vec{a}\,\vec{b}\,\vec{c}]^2 = |\,\vec{a}\,|$$
 (B) $[\vec{a}\,\vec{b}\,\vec{c}] = |\,\vec{a}\,|$ (C) $[\vec{a}\,\vec{b}\,\vec{c}] = 0$ (D) $[\vec{a}\,\vec{b}\,\vec{c}] = |\,\vec{a}\,|^2$

(B)
$$[\vec{a}\,\vec{b}\,\vec{c}] = |\,\vec{a}$$

(C)
$$[\vec{a}\,\vec{b}\,\vec{c}] = 0$$

(D)
$$[\vec{a}\,\vec{b}\,\vec{c}] = |\vec{a}|^2$$

Let $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$; $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$; $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ be three non-zero vectors such **49.** that \vec{c} is a unit vector perpendicular to both $\vec{a} \& \vec{b}$. If the angle between $\vec{a} \& \vec{b}$ is $\frac{\pi}{6}$, then

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}^2 =$$

(C)
$$\frac{1}{4}$$
 (a₁² + a₂² + a₃²) (b₁² + b₂² + b₃²)

(C)
$$\frac{1}{4}(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)$$
 (D) $\frac{3}{4}(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)(c_1^2 + c_2^2 + c_3^2)$

50. For three vectors $\vec{u}, \vec{v}, \vec{w}$ which of the following expressions is not equal to any of the remaining three?

(A)
$$\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{w}})$$

(B)
$$(\vec{v} \times \vec{w}) \cdot \vec{v}$$

(B)
$$(\vec{\mathbf{v}} \times \vec{\mathbf{w}})\vec{\mathbf{u}}$$
 (C) $\vec{\mathbf{v}} \cdot (\vec{\mathbf{u}} \times \vec{\mathbf{w}})$ (D) $(\vec{\mathbf{u}} \times \vec{\mathbf{v}})\vec{\mathbf{w}}$

(D)
$$(\vec{\mathbf{u}} \times \vec{\mathbf{v}}) \cdot \vec{\mathbf{w}}$$

Let $\vec{a} = \hat{i} + \hat{j}$, $\vec{b} = \hat{j} + \hat{k} \& \vec{c} = \alpha \vec{a} + \beta \vec{b}$. If the vectors, $\hat{i} - 2\hat{j} + \hat{k}$, $3\hat{i} + 2\hat{j} - \hat{k}$ and \vec{c} are coplanar **51.** then $\frac{\alpha}{\beta}$ is

(A) 1

(B) 2

(C) 3

(D) - 3

52. A rigid body rotates with constant angular velocity ω about the line whose vector equation is, $\vec{r} = \lambda (\hat{i} + 2\hat{j} + 2\hat{k})$. The speed of the particle at the instant it passes through the point with p.v. $2\hat{i} + 3\hat{j} + 5\hat{k}$ is:

(A) $\omega \sqrt{2}$

 $(B) 2\omega$

(C) $\omega/\sqrt{2}$

(D) none

Given 3 vectors **53.**

 $\vec{V}_1 = a\hat{i} + b\hat{j} + c\hat{k};$ $\vec{V}_2 = b\hat{i} + c\hat{j} + a\hat{k};$ $\vec{V}_3 = c\hat{i} + a\hat{j} + b\hat{k}$

In which one of the following conditions \vec{V}_1 , \vec{V}_2 and \vec{V}_3 are linearly independent?

(A) a + b + c = 0 and $a^2 + b^2 + c^2 \ne ab + bc + ca$

- (B) a + b + c = 0 and $a^2 + b^2 + c^2 = ab + bc + ca$
- (C) $a + b + c \neq 0$ and $a^2 + b^2 + c^2 = ab + bc + ca$
- (D) $a + b + c \neq 0$ and $a^2 + b^2 + c^2 \neq ab + bc + ca$
- Given unit vectors $\vec{m}, \vec{n} \& \vec{p}$ such that angle between $\vec{m} \& \vec{n} = \text{angle between } \vec{p}$ and 54. $(\vec{m} \times \vec{n}) = \pi/6$, then $[\vec{n} \vec{p} \vec{m}] =$

(A) $\sqrt{3}/4$

(B) 3/4

(C) 1/4

(D) none

Let $\overrightarrow{AB} = 3\hat{i} - \hat{j}$, $\overrightarrow{AC} = 2\hat{i} + 3\hat{j}$ and $\overrightarrow{DE} = 4\hat{i} - 2\hat{j}$. The area of the shaded region in the adjacent 55. figure, is-

(A) 5

(B)6

(C)7

(D) 8

The altitude of a parallelopiped whose three coterminous edges are the vectors, $\vec{A} = \hat{i} + \hat{j} + \hat{k}$; **56.** $\vec{B} = 2\hat{i} + 4\hat{j} - \hat{k}$ and $\vec{C} = \hat{i} + \hat{j} + 3\hat{k}$ with \vec{A} and \vec{B} as the sides of the base of the parallelopiped, is

(A) $2/\sqrt{19}$

(B) $4/\sqrt{19}$

(C) $2\sqrt{38}/19$

Consider $\triangle ABC$ with $A \equiv (\vec{a})$; $B \equiv (\vec{b})$ & $C \equiv (\vec{c})$. If $\vec{b} \cdot (\vec{a} + \vec{c}) = \vec{b} \cdot \vec{b} + \vec{a} \cdot \vec{c}$; $|\vec{b} - \vec{a}| = 3$; **57.**

 $|\vec{c} - \vec{b}| = 4$ then the angle between the medians \overrightarrow{AM} and \overrightarrow{BD} is

$$(A) \ \pi - cos^{-1} \left(\frac{1}{5\sqrt{13}}\right)$$

(B)
$$\pi - \cos^{-1} \left(\frac{1}{13\sqrt{5}} \right)$$

(C)
$$\cos^{-1}\left(\frac{1}{5\sqrt{13}}\right)$$

(D)
$$\cos^{-1}\left(\frac{1}{13\sqrt{5}}\right)$$

- **58.** If A (-4, 0, 3); B (14, 2, -5) then which one of the following points lie on the bisector of the angle between \overrightarrow{OA} and \overrightarrow{OB} ('O' is the origin of reference)
 - (A)(2,1,-1)
- (B)(2,11,5)
- (C) (10, 2, -2)
- (D)(1,1,2)
- Position vectors of the four angular points of a tetrahedron ABCD are A(3, -2, 1); B(3, 1, 5); **59.** C(4, 0, 3) and D(1, 0, 0). Acute angle between the plane faces ADC and ABC is
 - (A) $tan^{-1} (5/2)$
- (B) $\cos^{-1}(2/5)$
- (C) $cosec^{-1} (5/2)$
- (D) $\cot^{-1} (3/2)$
- **60.** The volume of the tetrahedron formed by the coterminus edges $\vec{a}, \vec{b}, \vec{c}$ is 3. Then the volume of the parallelopiped formed by the coterminus edges $\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}$ is
 - (A) 6
- (B) 18
- (C) 36
- (D)9
- If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} 2\hat{j} + \hat{k}$, then the vector \vec{c} such that $\vec{a} \cdot \vec{c} = 2 \& \vec{a} \times \vec{c} = \vec{b}$ is -61.

 - (A) $\frac{1}{3}(3\hat{i}-2\hat{j}+5\hat{k})$ (B) $\frac{1}{3}(-\hat{i}+2\hat{j}+5\hat{k})$ (C) $\frac{1}{3}(\hat{i}+2\hat{j}-5\hat{k})$ (D) $\frac{1}{3}(3\hat{i}+2\hat{j}+\hat{k})$

- \vec{a} , \vec{b} and \vec{c} be three vectors having magnitudes 1, 1 and 2 respectively. If $\vec{a} \times (\vec{a} \times \vec{c}) + \vec{b} = 0$, **62.** then the acute angle between $\vec{a} \& \vec{c}$ is:
 - (A) $\pi/6$
- (B) $\pi/4$
- (C) $\pi / 3$
- (D) $5 \pi / 12$
- If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$ are linearly dependent vectors $\& |\vec{c}| = \sqrt{3}$ **63.** then
 - (A) $\alpha = 1$, $\beta = -1$
- (B) $\alpha = 1$, $\beta = \pm 1$
- (C) $\alpha = -1$, $\beta = \pm 1$ (D) $\alpha = \pm 1$, $\beta = 1$
- A vector of magnitude $5\sqrt{5}$ coplanar with vectors $\hat{i} + 2\hat{j}$ and $\hat{j} + 2\hat{k}$ and the perpendicular 64. vector $2\hat{i} + \hat{j} + 2\hat{k}$ is
 - $(A) \pm 5 \left(5\hat{i} + 6\hat{j} 8\hat{k} \right)$

(B) $\pm \sqrt{5} \left(5\hat{i} + 6\hat{j} - 8\hat{k} \right)$

 $(C) \pm 5\sqrt{5} \left(5\hat{i} + 6\hat{j} - 8\hat{k}\right)$

- (D) $\pm \left(5\hat{i} + 6\hat{j} 8\hat{k}\right)$
- Let $\vec{\alpha}=2\hat{i}+3\hat{j}-\hat{k}$ and $\vec{\beta}=\hat{i}+\hat{j}$. If $\vec{\gamma}$ is a unit vector, then the maximum value of **65.** $\left[\vec{\alpha} \times \vec{\beta} \ \vec{\beta} \times \vec{\gamma} \ \vec{\gamma} \times \vec{\alpha}\right]$ is equal to
 - (A) 2
- (B)3
- (C)4

(D) 9

MATRIX MATCH TYPE

66. If A(0, 1, 0), B(0, 0, 0), C(1, 0, 1) are the vertices of a \triangle ABC. Match the entries of **column-II** with **column-II**.

Column-I

Column-II

(A) Orthocentre of $\triangle ABC$.

 $(P) \qquad \frac{\sqrt{2}}{2}$

(B) Circumcentre of $\triangle ABC$.

 $(Q) \qquad \frac{\sqrt{3}}{2}$

(C) Area (ΔABC).

- $(R) \qquad \frac{\sqrt{3}}{3}$
- (D) Distance between orthocentre and centroid. (S)
- (E) Distance between orthocentre and circumcentre.
- (T) (0,0,0)
- (F) Distance between circumcentre and
- $(U) \qquad \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$

centroid.

(G) Incentre of $\triangle ABC$.

 $(V) \qquad \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

(H) Centroid of $\triangle ABC$

(W) $\left(\frac{1}{\sqrt{1}+\sqrt{2}+\sqrt{3}}, \frac{\sqrt{2}}{\sqrt{1}+\sqrt{2}+\sqrt{3}}, \frac{1}{\sqrt{1}+\sqrt{2}+\sqrt{3}}\right)$

EXERCISE #2

- 1. Given the vector $\overrightarrow{PQ} = -6\hat{i} 4\hat{j}$ and Q is the point (3, 3), find the point P.
- 2. Find the unit vector (in xy plane) obtained by rotating j counterclockwise $3\pi/4$ radian about the origin.
- 3. Show that the vector $\mathbf{v} = \mathbf{a}\mathbf{i} + \mathbf{b}\mathbf{j}$ is perpendicular to the line $\mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y} = \mathbf{c}$.
- 4. In $\triangle ABC$, a point P is chosen on side \overrightarrow{AB} so that AP : PB = 1 : 4 and a point Q is chosen on the side \overrightarrow{BC} so that CQ : QB = 1 : 3. Segment \overrightarrow{CP} and \overrightarrow{AQ} intersect at M. If the ratio $\frac{MC}{PC}$ is expressed as a rational numbers in the lowest term as $\frac{a}{b}$, find (a + b).
- 5. Let O be an interior point of $\triangle ABC$ such that $2\overrightarrow{OA} + 5\overrightarrow{OB} + 10\overrightarrow{OC} = \overrightarrow{0}$. If the ratio of the area of $\triangle ABC$ to the area of $\triangle AOC$ is t, where 'O' is the origin. Find [t]. (where [] denotes greatest integer function)
- 6. If the distance from the point P(1, 1, 1) to the line passing through the points Q(0, 6, 8) and R(-1, 4, 7) is expressed in the form $\sqrt{p/q}$ where p and q are coprime, then the value of $\frac{(p+q)(p+q-1)}{2}.$
- 7. Let S(t) be the area of the ΔOAB with O(0,0,0), A(2,2,1) and B(t,1,t+1). The value of the definite integral $\int\limits_{1}^{e} (S(t))^2 \ell nt dt$, is equal to $\left(\frac{e^3+a}{b}\right)$ where $a,b\in N$, find (a+b).
- 8. Given $f^2(x) + g^2(x) + h^2(x) \le 9$ and U(x) = 3f(x) + 4g(x) + 10h(x), where f(x), g(x) and h(x) are continuous $\forall x \in R$. If maximum value of U(x) is \sqrt{N} , then find N.
- 9. If \vec{a} and \vec{b} are non collinear vectors such that $\vec{p} = (x+4y) \vec{a} + (2x+y+1) \vec{b}$ and $\vec{q} = (y-2x+2) \vec{a} + (2x-3y-1) \vec{b}$, find x and y such that $3\vec{p} = 2\vec{q}$.
- 10. (a) Show that the points $\vec{a} 2\vec{b} + 3\vec{c}$; $2\vec{a} + 3\vec{b} 4\vec{c}$ and $-7\vec{b} + 10\vec{c}$ are collinear.
 - (b) Prove that the points A(1, 2, 3), B(3, 4, 7), C(-3, -2, -5) are collinear and find the ratio in which B divides AC.

11. Find out whether the following pairs of lines are parallel, non-parallel & intersecting, or nonparallel and non-intersecting.

(a)
$$\vec{r}_1 = \hat{i} + \hat{j} + 2\hat{k} + \lambda(3\hat{i} - 2\hat{j} + 4\hat{k})$$
$$\vec{r}_2 = 2\hat{i} + \hat{j} + 3\hat{k} + \mu(-6\hat{i} + 4\hat{j} - 8\hat{k})$$

(b)
$$\vec{r}_i = \hat{i} - \hat{j} + 3\hat{k} + \lambda(\hat{i} - \hat{j} + \hat{k})$$

$$\vec{r}_2 = 2\hat{i} + 4\hat{j} + 6\hat{k} + \mu(2\hat{i} + \hat{j} + 3\hat{k})$$

(c)
$$\vec{r}_{l} = \hat{i} + \hat{k} + \lambda(\hat{i} + 3\hat{j} + \hat{k})$$

$$\vec{r}_{2} = 2\hat{i} + 3\hat{j} + \mu(4\hat{i} - \hat{j} + \hat{k})$$

- 12. If \vec{r} and \vec{s} are non zero constant vectors and the scalar b is chosen such that $|\vec{r} + b\vec{s}|$ is minimum, then show that the value of $|b\vec{s}|^2 + |\vec{r} + b\vec{s}|^2$ is equal to $|\vec{r}|^2$.
- 13. In a unit cube. Find
 - (a) The angle between the diagonal of the cube and a diagonal of a face skew to it.
 - (b) The angle between the diagonals of two faces of the cube through the same vertex.
 - (c) The angle between a diagonal of a cube and a diagonal of a face intersecting it.

Instruction for question nos. 14 to 16:

Suppose the three vectors \vec{a} , \vec{b} , \vec{c} on a plane satisfy the condition that $|\vec{a}| = |\vec{b}| = |\vec{c}| = |\vec{a} + \vec{b}| = 1$; \vec{c} is perpendicular to \vec{a} and $\vec{b} \cdot \vec{c} > 0$, then

- **14.** Find the angle formed by $2\vec{a} + \vec{b}$ and \vec{b} .
- 15. If the vector \vec{c} is expressed as a linear combination $\lambda \vec{a} + \mu \vec{b}$ then find the ordered pair (λ, μ) .
- 16. For real numbers x,y the vector $\vec{p} = x\vec{a} + y\vec{c}$ satisfies the condition $0 \le \vec{p} \cdot \vec{a} \le 1$ and $0 \le \vec{p} \cdot \vec{b} \le 1$. Find the maximum value of $\vec{p} \cdot \vec{c}$.
- 17. (a) Find the minimum area of the triangle whose vertices are A(-1,1,2); B(1,2,3) and C(t,1,1) where t is a real number.
 - (b) Let $\overrightarrow{OA} = \vec{a}$; $\overrightarrow{OB} = 100\vec{a} + 2\vec{b}$ and $\overrightarrow{OC} = \vec{b}$ where O, A and C are non collinear points. Let P denotes the area of the parallelogram with \overrightarrow{OA} and \overrightarrow{OC} as adjacent sides and Q denotes the area of the quadrilateral OABC. If $Q = \lambda P$. Find the value of λ .
- 18. Given that \vec{a} and \vec{b} are two unit vectors such that angle between \vec{a} and \vec{b} is $\cos^{-1}\left(\frac{1}{4}\right)$. If \vec{c} be a vector in the plane of \vec{a} and \vec{b} , such that $|\vec{c}| = 4$, $\vec{c} \times \vec{b} = 2\vec{a} \times \vec{b}$ and $\vec{c} = \lambda \vec{a} + \mu \vec{b}$ then, find (a) the value of λ , (b) the sum of values of μ and (c) the product of all possible values of μ .
- **19.** Let $\vec{A} = \hat{i} 2\hat{j} + 3\hat{k}$, $\vec{B} = 2\hat{i} + \hat{j} \hat{k}$, $\vec{C} = \hat{j} + \hat{k}$.

y, z are scalars, then find the value of (100x + 10y + 8z).

- The base vectors \vec{a}_1 , \vec{a}_2 , \vec{a}_3 are given in terms of base vectors \vec{b}_1 , \vec{b}_2 , \vec{b}_3 as $\vec{a}_1 = 2\vec{b}_1 + 3\vec{b}_2 \vec{b}_3$; 20. $\vec{a}_2 = \vec{b}_1 - 2\vec{b}_2 + 2\vec{b}_3$ and $\vec{a}_3 = -2\vec{b}_1 + \vec{b}_2 - 2\vec{b}_3$. If $\vec{F} = 3\vec{b}_1 - \vec{b}_2 + 2\vec{b}_3$, then express \vec{F} in terms of \vec{a}_1, \vec{a}_2 and \vec{a}_3 .
- The vector $\overrightarrow{OP} = \hat{i} + 2\hat{j} + 2\hat{k}$ turns through a right angle, passing through the positive x-axis on 21. the way. Find the vector in its new position.
- The pv's of the four angular points of a tetrahedron are $A(\hat{j}+2\hat{k})$; $B(3\hat{i}+\hat{k})$; $C(4\hat{i}+3\hat{j}+6\hat{k})$ & 22. $D(2\hat{i}+3\hat{j}+2\hat{k})$. Find:
 - (i) the perpendicular distance from A to the line BC.
 - (ii) the volume of the tetrahedron ABCD.
 - (iii) the perpendicular distance from D to the plane ABC.
 - (iv) the shortest distance between the lines AB & CD.
- Let a 3 dimensional vector \vec{V} satisfies the condition $2\vec{V} + \vec{V} \times (\hat{i} + 2\hat{j}) = 2\hat{i} + \hat{k}$. 23. If $3|\vec{V}| = \sqrt{m}$, where $m \in N$, then find m.
- If \vec{x} , \vec{y} are two non-zero and non-collinear vectors satisfying 24. $[(a-2)\alpha^2 + (b-3)\alpha + c]_{\vec{x}} + [(a-2)\beta^2 + (b-3)\beta + c]_{\vec{y}} + [(a-2)\gamma^2 + (b-3)\gamma + c]_{\vec{x}} \times \vec{y}) = 0$ where α , β , γ are three distinct real numbers, then find the value of $(a^2 + b^2 + c^2)$.
- 25. Solve the simultaneous vector equations for the vectors \vec{x} and \vec{y} . $\vec{x} + \vec{c} \times \vec{y} = \vec{a}$ and $\vec{y} + \vec{c} \times \vec{x} = \vec{b}$ where \vec{c} is a non zero vector.
- Vector \vec{V} is perpendicular to the plane of vectors $\vec{a} = 2\hat{i} 3\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} 2\hat{j} + 3\hat{k}$ and satisfies **26.** the condition $\vec{V} \cdot (\hat{i} + 2\hat{j} - 7\hat{k}) = 10$. Find $|\vec{V}|^2$.
- Let two non-collinear vectors \vec{a} and \vec{b} inclined at an angle $\frac{2\pi}{3}$ be such that $|\vec{a}| = 3$ and $|\vec{b}| = 4$. 27. A point P moves so that at any time t the position vector \overrightarrow{OP} (where O is the origin) is given as $\overrightarrow{OP} = (e^t + e^{-t})\vec{a} + (e^t - e^{-t})\vec{b}$. If the least distance of P from origin is $\sqrt{2}\sqrt{\sqrt{p}-q}$ where $p, q \in N$ then find the value of (p + q).

EXERCISE # 3 (JM)

- ABC is a triangle, right angled at A. The resultant of the forces acting along \overrightarrow{AB} , \overrightarrow{AC} with 1. magnitudes $\frac{1}{\Delta R}$ and $\frac{1}{\Delta C}$ respectively is the force along \overrightarrow{AD} , where D is the foot of the [AIEEE-2006] perpendicular from A onto BC. the magnitude of the resultant is-
 - $(1) \frac{(AB)(AC)}{AB+AC} \qquad (2) \frac{1}{AB} + \frac{1}{AC} \qquad (3) \frac{1}{AD}$
- (4) $\frac{AB^2 + AC^2}{(AB)^2 (AC)^2}$
- If $\hat{\mathbf{u}}$ and $\hat{\mathbf{v}}$ are unit vectors and θ is the acute angle between them, then $2 \hat{\mathbf{u}} \times 3 \hat{\mathbf{v}}$ is a unit 2. vector for-[AIEEE-2007]
 - (1) Exactly two values of θ

(2) More than two values of θ

(3) No value of θ

- (4) Exactly one value of θ
- Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} \hat{j} + 2 \hat{k}$ and $\vec{c} = x \hat{i} + (x 2) \hat{j} \hat{k}$. If the vector \vec{c} lies in the plane **3.** of \vec{a} and \vec{b} , then x equals -[AIEEE-2007]
 - (1) 0

(2) 1

- (3) -4
- (4) -2
- The vector $\vec{a} = \alpha \hat{i} + 2 \hat{j} + \beta \hat{k}$, lies in the plane the vectors $\vec{b} = \hat{i} + \hat{j}$ and $\vec{c} = \hat{j} + \hat{k}$ and bisect 4. the angle between \vec{b} and \vec{c} . Then which one of the following gives possible values of α and β ? [AIEEE-2008]
- (1) $\alpha = 2$, $\beta = 2$ (2) $\alpha = 1$, $\beta = 2$ (3) $\alpha = 2$, $\beta = -1$
- (4) $\alpha = 1$, $\beta = 1$
- 5. If $\vec{u}, \vec{v}, \vec{w}$ are non-coplanar vectors and p, q are real numbers, then the equality [AIEEE-2009] $[3\vec{u} \ p\vec{v} \ p\vec{w}] - [p\vec{v} \ \vec{w} \ q\vec{u}] - [2\vec{w} \ q\vec{v} \ q\vec{u}] = 0$ holds for :-
 - (1) More than two but not all values of (p,q)
 - (2) All values of (p, q)
 - (3) Exactly one value of (p, q)
 - (4) Exactly two values of (p, q)
- Let $\vec{a} = \hat{j} \hat{k}$ and $\vec{c} = \hat{i} \hat{j} \hat{k}$. Then the vector \vec{b} satisfying $\vec{a} \times \vec{b} + \vec{c} = \vec{0}$ and $\vec{a} \cdot \vec{b} = 3$ is : **6.**

[AIEEE-2010]

- (1) $-\hat{i} + \hat{j} 2\hat{k}$ (2) $2\hat{i} \hat{j} + 2\hat{k}$ (3) $\hat{i} \hat{j} 2\hat{k}$ (4) $\hat{i} + \hat{j} 2\hat{k}$

- The vectors \vec{a} and \vec{b} are not perpendicular and \vec{c} and \vec{d} are two vectors satisfying : $\vec{b} \times \vec{c} = \vec{b} \times \vec{d}$ 7. and $\vec{a} \cdot \vec{d} = 0$ then the vector \vec{d} is equal to :-[AIEEE-2011]
- $(1) \vec{b} + \left(\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{c} \qquad (2) \vec{c} \left(\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{b} \qquad (3) \vec{b} \left(\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{c} \qquad (4) \vec{c} + \left(\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{b}$
- If $\vec{a} = \frac{1}{\sqrt{10}} \left(3\hat{i} + \hat{k} \right)$ and $\vec{b} = \frac{1}{7} \left(2\hat{i} + 3\hat{j} 6\hat{k} \right)$, then the value of $\left(2\vec{a} \vec{b} \right) \cdot \left[\left(\vec{a} \times \vec{b} \right) \times \left(\vec{a} + 2\vec{b} \right) \right]$ is: 8.

[AIEEE-2011]

(1)5

(2)3

- (3) 5
- (4) 3
- Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero vectors which are pairwise non-collinear. If $\vec{a} + 3\vec{b}$ is collinear 9. with \vec{c} and $\vec{b} + 2\vec{c}$ is collinear with \vec{a} , then $\vec{a} + 3\vec{b} + 6\vec{c}$ is: [AIEEE-2011]
 - (1) $\vec{a} + \vec{c}$
- $(2) \vec{a}$

 $(3) \vec{c}$

- $(4) \vec{0}$
- Let \hat{a} and \hat{b} be two unit vectors. If the vectors $\vec{c} = \hat{a} + 2\hat{b}$ and $\vec{d} = 5\hat{a} 4\hat{b}$ are perpendicular to 10. each other, then the angle between \hat{a} and \hat{b} is: [AIEEE-2012]
 - (1) $\frac{\pi}{4}$

- (2) $\frac{\pi}{6}$ (3) $\frac{\pi}{2}$
- (4) $\frac{\pi}{3}$
- Let ABCD be a parallelogram such that $\overrightarrow{AB} = \overrightarrow{q}, \overrightarrow{AD} = \overrightarrow{p}$ and $\angle BAD$ be an acute angle. If \overrightarrow{r} is 11. the vector that coincides with the altitude directed from the vertex B to the side AD, then r is given by: [AIEEE-2012]
 - (1) $\vec{r} = -3\vec{q} + \frac{3(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})}\vec{p}$

 $(2) \vec{r} = 3\vec{q} - \frac{3(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})} \vec{p}$

(3) $\vec{r} = -\vec{q} + \left(\frac{\vec{p}\cdot\vec{q}}{\vec{p}\cdot\vec{p}}\right)\vec{p}$

- $(4) \vec{r} = \vec{q} \left(\frac{\vec{p} \cdot \vec{q}}{\vec{p} \cdot \vec{p}}\right) \vec{p}$
- If the vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC, then the 12. length of median through A is:
 - (1) $\sqrt{18}$
- (2) $\sqrt{72}$
- (3) $\sqrt{33}$
- (4) $\sqrt{45}$
- Let $\vec{a} = 2\hat{i} \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} 2\hat{k}$ be three vectors. A vectors of the type $\vec{b} + \lambda \vec{c}$ **13.** for some scalar λ , whose projection on \vec{a} is of magnitude $\sqrt{\frac{2}{3}}$, is:

[JEE-MAINS Online 2013]

- (1) $-2\hat{i} \hat{i} + 5\hat{k}$ (2) $2\hat{i} + \hat{i} + 5\hat{k}$
- $(3) 2\hat{i} \hat{j} + 5\hat{k}$
- $(4) 2\hat{i} + 3\hat{j} + 3\hat{k}$

14.	Let $\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$, $\vec{b} = \hat{i} + \hat{j}$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c} = \vec{c} $, $ \vec{c} - \vec{a} = 2\sqrt{2}$ and the					
	angle between	$\vec{a} \times \vec{b}$ and \vec{c} is 30°, the	en $ (\vec{a} \times \vec{b}) \times \vec{c} $ equals:	[JEE-MAINS Online 2013]		
	(1) $\frac{3}{2}$	(2) 3	(3) $\frac{1}{2}$	$(4) \ \frac{3\sqrt{3}}{2}$		
15.	If $\vec{a} \times \vec{b} \vec{b} \times \vec{c}$	$\vec{c} \times \vec{a} = \lambda [\vec{a} \vec{b} \vec{c}]^2$ then	λ is equal to :	[JEE(Main)-2014]		
	(1) 2	(2) 3	(3) 0	(4) 1		
16.	Let \vec{a}, \vec{b} and	\vec{c} be three non – zero	vectors such that no	two of them are collinear and		
	$(\vec{a} \times \vec{b}) \times \vec{c} = \frac{1}{2}$	$(\vec{a} \times \vec{b}) \times \vec{c} = \frac{1}{3} \vec{b} \vec{c} \vec{a} $. If θ is the angle between vectors \vec{b} and \vec{c} , then a value of $\sin \theta$ is:				
	` ′	3		[JEE(Main)-2015]		
	(1) $\frac{2}{3}$	(2) $\frac{-2\sqrt{3}}{3}$	(3) $\frac{2\sqrt{2}}{3}$	$(4) \ \frac{-\sqrt{2}}{3}$		
17.	Let \vec{a}, \vec{b} and	c be three unit vectors	such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}(\vec{b}+\vec{c})$. If \vec{b} is not parallel to		
	\vec{c} , then the an	gle between \vec{a} and \vec{b} is	:-	[JEE(Main)-2016]		
	$(1) \frac{5\pi}{6}$	$(2) \ \frac{3\pi}{4}$	$(3) \frac{\pi}{2}$	(4) $\frac{2\pi}{3}$		
18.	Let $\vec{a} = 2\hat{i} +$	$\hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. Let	t c be a vector such that	$ \vec{c} - \vec{a} = 3$, $\left \begin{pmatrix} r & r \\ a \times b \end{pmatrix} \times r \right = 3$ and		
		veen \vec{c} and $\vec{a} \times \vec{b}$ be 30°.		[JEE (Main)-2017]		
	(1) $\frac{1}{8}$	(2) $\frac{25}{8}$	(3) 2	(4) 5		
19.	Let \vec{u} be a ve	ector coplanar with the v	vectors $\vec{\mathbf{a}} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - \hat{\mathbf{k}}$ and	$d \vec{b} = \hat{j} + \hat{k}$, If \vec{u} is perpendicular		
	to \vec{a} and $\vec{u}.\vec{b}$	$= 24$, then $ \vec{\mathbf{u}} ^2$ is equal to	[JEE (Main)-2018]			
	(1) 84	(2) 336	(3) 315	(4) 265		
20.	The magnitude of the projection of the vector $2\hat{i} + 3\hat{j} + \hat{k}$ on the vector perpendicular to the plane containing the vectors $\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$ is; [JEE (Main)-2019]					
	(1) $\sqrt{6}$	$(2) \ 3\sqrt{6}$		(4) $\frac{\sqrt{3}}{2}$		
21	If a point R(4		V Z	2 P(2, -3, 4) and Q(8, 0, 10), then [JEE (Main)-2019]		
				48		

T/T	~	$\Gamma \cap$	n
VI			ĸ

				VECTOR	
	(1) 6	(2) $\sqrt{53}$	(3) $2\sqrt{14}$	(4) $2\sqrt{21}$	
22.	Let $\vec{a} = 3\hat{i} + 2\hat{j} + x\hat{k}$	and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$, for so	ome real x. Then $ \vec{a} \times \vec{b} $	=r is possible if:	
				[JEE (Main)-2019]	
	$(1) r \ge 5\sqrt{\frac{3}{2}}$	$(2) \ \sqrt{\frac{3}{2}} < r \le 3\sqrt{\frac{3}{2}}$	$(3) \ 3\sqrt{\frac{3}{2}} < r < 5\sqrt{\frac{3}{2}}$	$(4) \ 0 < r \le \sqrt{\frac{3}{2}}$	
23.	Let $\vec{\alpha} = 3\hat{i} + \hat{j}$ and $\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k}$. If $\vec{\beta} = \vec{\beta}_1 - \vec{\beta}_2$, where $\vec{\beta}_1$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ is perpendicular				
	to $\vec{\alpha}$, then $\vec{\beta}_1 \times \vec{\beta}_2$ is	equal to:	[JEE	(Main)-2019]	
	$(1) -3\hat{i} + 9\hat{j} + 5\hat{k}$	(2) $3\hat{i} - 9\hat{j} - 5\hat{k}$ (3) $\frac{1}{2}$	$(-3\hat{i} + 9\hat{j} + 5\hat{k})$ (4) $\frac{1}{2}$	$(3\hat{i} - 9\hat{j} + 5\hat{k})$	
24.	If a unit vector \vec{a} mais:	akes angle $\pi/3$ with \hat{i} ,	$\pi/4$ with \hat{j} and $\theta \in (0$, π) with \hat{k} , then a value of θ [JEE (Main)-2019]	
		5π	π		
	$(1) \frac{5\pi}{6}$	$(2) \frac{5\pi}{12}$	(3) $\frac{\pi}{4}$	$(4) \frac{2\pi}{3}$	
25.		point having position v , 3, -4) and parallel to (2) $2\sqrt{13}$		in the straight line passing is: [JEE (Main)-2019] (4) $4\sqrt{3}$	
26	If the volume of paraminimum, then λ is	allelopiped formed by	the vectors $\hat{\mathbf{i}} + \lambda \hat{\mathbf{j}} + \hat{\mathbf{k}}$,	$\hat{j} + \lambda \hat{k}$ and $\lambda \hat{i} + \hat{k}$ is [JEE (Main)- 2019]	
	$(1)-\sqrt{3}$	$(2) \ \frac{1}{\sqrt{3}}$	$(3) - \frac{1}{\sqrt{3}}$	$(4) \sqrt{3}$	
27.	vectors $\vec{a} + \vec{b}$ and \vec{a}		de 12 then one such ve	or perpendicular to both the ctor is: [JEE (Main)-2019] (4) $4(2\hat{i}+2\hat{j}+\hat{k})$	
		,	,	•	
28.	Let $\alpha \in \mathbb{R}$ and the three vectors $\vec{a} = \alpha \hat{i} + \hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} + \hat{j} - \alpha \hat{k}$ and $\vec{c} = \alpha \hat{i} - 2\hat{j} + 3\hat{k}$. Then the				
	(3) is empty	nd c are coplanar} two numbers only one two positive numbers	of which is positive	[JEE (Main)-2019]	
29.	•	-	r such that $\vec{a} \times \vec{c} + \vec{b} = 0$	$\vec{0}$ and $\vec{a}.\vec{c} = 4$, then $ \vec{c} ^2$ is	
	J,	,			

(3) $\frac{17}{2}$

equal to: (1) $\frac{19}{2}$

(2) 8

[JEE (Main)-2019]

(4) 9

30.		Let $\vec{a} = \hat{i} + \hat{j} + \sqrt{2}k$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + \sqrt{2}k$ and $\vec{c} = 5\hat{i} + \hat{j} + \sqrt{2}k$ be three vectors such that the projection vector of \vec{b} on \vec{a} is \vec{a} . If $\vec{a} + \vec{b}$ is perpendicular of \vec{c} , then $ \vec{b} $ is equal to :			
	projection vector o	f b on a is a. If a +	b is perpendicular of c	, then $ b $ is equal to :	
	$(1) \sqrt{22}$	(2) 4	(3) 6	$(4) \sqrt{32}$	
				[JEE (Main)-2019]	
31.		-	-	$(-1)\hat{k}$ be three vectors such that	
				$_{1}, \lambda_{2}, \lambda_{3})$ is: [JEE (Main)-2019]	
	$(1)\left(\frac{1}{2},4,-2\right)$	(2) (1, 5, 1)	$(3)\left(-\frac{1}{2},4,0\right)$	(4) (1, 3, 1)	
32.				rs where vectors \vec{a} and \vec{b} are	
				llinear, is: [JEE (Main)-2019]	
	(1) -3	(2) 4	(3) –4	(4) 3	
33. Let $\vec{a} = \hat{i} + 2\hat{j} + 4k$, $\vec{b} = \hat{i} + \lambda\hat{j} + 4k$ and $\vec{c} = 2\hat{i} + 4\hat{j} + (\lambda^2 - 1)k$ be coplanar vector				coplanar vectors. Then the	
	non-zero vector a	\vec{c} is:		[JEE (Main)-2019]	
	$(1) -10\hat{i} + 5\hat{j}$	$(2) -14\hat{i} + 5\hat{j}$	$(3) -10\hat{i} -5\hat{j}$	$(4) -14\hat{i} -5\hat{j}$	
34.				vectors of the points A, B and C or of the acute angle between	
	OA and OB is $\frac{3}{\sqrt{2}}$, then the sum of all p	ossible values of β is:	[JEE (Main)-2019]	
	(1) 3	(2) 4	(3) 1	(4) 2	
35.	The sum of the disare co-planar, is:	tinct real values of μ ,	, for which the vectors,	$\begin{split} \mu \hat{i} + \hat{j} + k, \hat{i} + \mu \hat{j} + k, \hat{i} + \hat{j} + \mu k \\ & \left[\textbf{JEE (Main)-2019} \right] \end{split}$	
	(1) 2	(2) 0	(3)-1	(4) 1	
36.	Let \vec{a}, \vec{b} and \vec{c} be three unit vectors, out of which vectors \vec{b} and \vec{c} are non-parallel. If α and β				
	are the angles which vector \vec{a} makes with vectors \vec{b} and \vec{c} respectively and $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2}\vec{b}$, then				
	$ \alpha - \beta $ is equal to:			[JEE (Main)-2019]	
	(1) 30°	(2) 45°	(3) 90°	(4) 60°	
37.	A vector $\vec{a} = \alpha \hat{i} + 2$	$2\hat{j} + \beta \hat{k} (\alpha, \beta \in R)$ lies	in the plane of the vect	ors, $\vec{b} = \hat{i} + \hat{j}$ and $\vec{c} = \hat{i} - \hat{j} + 4\hat{k}$.	
	If a bisects the ang	gle between \vec{b} and \vec{c} ,	then:	[JEE (Main)-2020]	
	$(1) \vec{a} \cdot \hat{k} + 4 = 0$	(2) $\vec{a} \cdot \hat{i} + 1 = 0$	(3) $\vec{a} \cdot \hat{k} + 2 = 0$	(4) $\vec{a} \cdot \hat{i} + 3 = 0$	

Let \vec{a} , \vec{b} and \vec{c} be three unit vector such 38.

that
$$\vec{a} + \vec{b} + \vec{c} = \vec{0}$$
 if

$$\lambda = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$$
 and

$$\vec{d} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$$
 then

the ordered pair, (λ, \vec{d}) is equal to :

[JEE (Main)-2020]

$$(1)\left(-\frac{3}{2},3\vec{a}\times\vec{b}\right)$$

$$(2)\left(\frac{3}{2},3\vec{b}\times\vec{c}\right)$$

$$(1)\left(-\frac{3}{2},3\vec{a}\times\vec{b}\right) \qquad (2)\left(\frac{3}{2},3\vec{b}\times\vec{c}\right) \qquad (3)\left(-\frac{3}{2},3\vec{c}\times\vec{b}\right) \qquad (4)\left(\frac{3}{2},3\vec{a}\times\vec{c}\right)$$

$$(4)\left(\frac{3}{2},3\vec{a}\times\vec{c}\right)$$

- 39. If the foot of the perpendicular drawn from the point (1, 0, 3) on a line passing through $(\alpha, 7, 1)$ is $\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$, then α is equal to [JEE (Main)-2020]
- Let the volume of a paralleleopiped whose coterminous edges are given by $\vec{u} = \hat{i} + \hat{j} + \lambda \hat{k}$ 40. $\vec{v}=\hat{i}+\hat{j}+3\hat{k} \ \ \text{and} \ \ \vec{w}=2\hat{i}+\hat{j}+\hat{k} \ \ \text{be 1 cu. unit. If } \theta \ \text{be the angle between the edge } \vec{u} \ \ \text{and} \ \ \vec{w} \ ,$ then $\cos\theta$ can be: [JEE (Main)-2020]
 - $(1) \frac{7}{6\sqrt{6}}$
- (2) $\frac{5}{3\sqrt{3}}$ (3) $\frac{7}{6\sqrt{3}}$
- $(4) \frac{5}{7}$
- Let $\vec{a} = \hat{i} 2\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} \hat{j} + \hat{k}$ be two vectors. If \vec{c} is a vector such that $\vec{b} \times \vec{c} = \vec{b} \times \vec{a}$ and 41. $\vec{c} \cdot \vec{a} = 0$ then $\vec{c} \cdot \vec{b}$ is equal to [JEE (Main)-2020]
 - $(1) \frac{1}{2}$
- (2)-1
- $(3) -\frac{3}{2}$ $(4) -\frac{1}{2}$

42. If the vectors.

$$\vec{p} = (a+1)\hat{i} + a\hat{j} + a\hat{k},$$

$$\vec{q} = a\hat{i} + (a+1)\hat{j} + a\hat{k} \quad \text{and}$$

Let \vec{a} , \vec{b} and \vec{c} be three vectors such that $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 5$, $\vec{b} \cdot \vec{c} = 10$ and the angle between \vec{b} 43. and \vec{c} is $\frac{\pi}{3}$. If \vec{a} is perpendicular to the vector $\vec{b} \times \vec{c}$, then $|\vec{a} \times (\vec{b} \times \vec{c})|$ is equal to____.

[JEE (Main)-2020]

- Let \vec{a} , \vec{b} and \vec{c} be three unit vectors such that $\left|\vec{a}-\vec{b}\right|^2+\left|\vec{a}-\vec{c}\right|^2=8$. Then $\left|\vec{a}+2\vec{b}\right|^2+\left|\vec{a}+2\vec{c}\right|^2$ is 44. equal to . [JEE (Main)-2020]
- The lines $\vec{r} = (\hat{i} \hat{j}) + l(2\hat{i} + \hat{k})$ and $\vec{r} = (2\hat{i} \hat{j}) + m(\hat{i} + \hat{j} \hat{k})$ [JEE (Main)-2020] 45. (1) intersect when l = 1 and m = 2(2) do not intersect for any values of l and m

- (3) intersect for all values of l and m
- (4) intersect when l = 2 and $m = \frac{1}{2}$
- **46.** Let a, b, $c \in R$ be such that $a^2 + b^2 + c^2 = 1$. If $a \cos \theta = b \cos \left(\theta + \frac{2\pi}{3}\right) = \cos \left(\theta + \frac{4\pi}{3}\right)$, where

 $\theta = \frac{\pi}{9}$, then the angle between the vectors $a\hat{i} + b\hat{j} + c\hat{k}$ and $b\hat{i} + c\hat{j} + a\hat{k}$ is: [**JEE** (**Main**)-2020]

- $(1) \ \frac{\pi}{2}$
- (2) 0

- (3) $\frac{\pi}{9}$
- $(4) \ \frac{2\pi}{3}$
- **47.** Let x_0 be the point of local maxima of $f(x) = \vec{a} \cdot (\vec{b} \times \vec{c})$, where $\vec{a} = x\hat{i} 2\hat{j} + 3\hat{k}$, $\vec{b} = -2\hat{i} + x\hat{j} \hat{k}$ and $\vec{c} = 7\hat{i} 2\hat{j} + x\hat{k}$. Then the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ at $x = x_0$ is : **[JEE (Main)-2020]**(1) -30 (2) -22 (3) 14 (4) -4
- 48. If $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$, then the value $\left|\hat{i} \times \left(\vec{a} \times \hat{i}\right)\right|^2 + \left|\hat{j} \times \left(\vec{a} \times \hat{j}\right)\right|^2 + \left|\hat{k} \times \left(\vec{a} \times \hat{k}\right)\right|^2$ of is equal to _____. [JEE (Main)-2020]
- 49. If the volume of a parallopiped, whose coterminos edges are given by the vectors $\vec{a} = \hat{i} + \hat{j} + n\hat{k}$, $\vec{b} = 2\hat{i} + 4\hat{j} n\hat{k}$ and $\vec{c} = \hat{i} + n\hat{j} + 3\hat{k}$ ($n \ge 0$), is 158 cu. units, Then: [JEE (Main)-2020]

 (1) $\vec{a} \cdot \vec{c} = 17$ (2) $\vec{b} \cdot \vec{c} = 10$ (3) n = 9 (4) n = 7
- Let the vectors \vec{a} , \vec{b} , \vec{c} be such that $|\vec{a}| = 2$, $|\vec{b}| = 4$ and $|\vec{c}| = 4$. If the projection of \vec{b} on \vec{a} is equal to the projection of \vec{c} on \vec{a} and \vec{b} is perpendicular to \vec{c} , then the value of $|\vec{a} + \vec{b} \vec{c}|$ is _____. [JEE (Main)-2020]
- 51. If \vec{a} and \vec{b} are unit vectors, then the greatest value of $\sqrt{3} |\vec{a} + \vec{b}| + |\vec{a} \vec{b}|$ is[JEE (Main)-2020]
- 52. If \vec{x} and \vec{y} be two non-zero vectors such that $|\vec{x} + \vec{y}| = \vec{x}$ and $2\vec{x} + \lambda \vec{y}$ is perpendicular to \vec{y} , then the value of λ is _____. [JEE (Main)-2020]
- The vector equation of the plane passing through the intersection of the planes $\vec{r} \cdot (\hat{i} + \hat{j} + k) = 1$ and $\vec{r} \cdot (\hat{i} 2\hat{j}) = -2$, and the point (1, 0, 2) is [JEE (Main)-2021]
 - (A) $\vec{r} \cdot (\hat{i} 2\hat{j} + 3k) = \frac{7}{3}$
- (B) $\vec{r} \cdot (3\hat{i} + 7\hat{j} + 3k) = 7$
- (C) $\vec{r} \cdot (\hat{i} + 7\hat{j} + 3k) = 7$
- (D) $\vec{r} \cdot (\hat{i} 7\hat{j} + 3k) = \frac{7}{3}$

- Let the position vectors of two points P and Q be $3\hat{i} \hat{j} + 2k$ and $\hat{i} + 2\hat{j} 4k$, respectively. Let R 54. and S be two points such that the direction ratios of lines PR and QS are (4, -1, 2) and (-2, 1, 2).2), respectively. Let lines PR and OS intersect at T. If the vector \overrightarrow{TA} is perpendicular to both \overrightarrow{PR} and \overrightarrow{OS} and the length of the vector \overrightarrow{TA} is $\sqrt{5}$ units, then the modulus of a position vector of A is [JEE (Main)-2021]
 - (A) $\sqrt{482}$

- (B) $\sqrt{171}$ (C) $\sqrt{5}$ (D) $\sqrt{227}$
- A vector \vec{a} has components 3p and 1 with respect to a rectangular cartesian system. This 55. system is rotated through a certain angle about the origin in the counter clockwise sense. If, with respect to new system, \vec{a} has components p + 1 and $\sqrt{10}$, then a value of p is equal to
 - (A) 1
- (B) $-\frac{5}{4}$ (C) $\frac{4}{5}$
- Let \vec{a} and \vec{b} be two-zero vectors perpendicular to each other and $|\vec{a}| = |\vec{b}|$. If $|\vec{a} \times \vec{b}| = |\vec{a}|$, then **56.** the angle between the vectors $(\vec{a} + \vec{b} + (\vec{a} \times \vec{b}))$ and \vec{a} is equal to [JEE (Main)-2021]
- (A) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (B) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (C) $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ (D) $\sin^{-1}\left(\frac{1}{\sqrt{6}}\right)$
- Let three vectors \vec{a} , \vec{b} and \vec{c} be such that $\vec{a} \times \vec{b} = \vec{c}$, $\vec{b} \times \vec{c} = \vec{a}$ and $|\vec{a}| = 2$. Then which one of the 57. following not true? [JEE (Main)-2021]
 - (A) Projection of \vec{a} on $(\vec{b} \times \vec{c})$ is 2 (B) $|\vec{3a} + \vec{b} 2\vec{c}|^2 = 51$

(C) $[\vec{a}\vec{b}\vec{c}]+[\vec{c}\vec{a}\vec{b}]=8$

- (D) $\vec{a} \times ((\vec{b} + \vec{c}) \times (\vec{b} \vec{c})) = \vec{0}$
- Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors mutually perpendicular to each other and have same magnitude. If a **58.** vector r satisfies.

 $\vec{a} \times \{(\vec{r} - \vec{b}) \times \vec{a}\} + \vec{b} \times \{(\vec{r} - \vec{c}) \times \vec{b}\} + \vec{c} \times \{(\vec{r} - \vec{a}) \times \vec{c}\} = \vec{0}$, then \vec{r} is equal to [JEE (Main)-2021]

- (A) $\frac{1}{3}(\vec{a} + \vec{b} + \vec{c})$ (B) $\frac{1}{3}(2\vec{a} + \vec{b} \vec{c})$ (C) $\frac{1}{2}(\vec{a} + \vec{b} + \vec{c})$ (D) $\frac{1}{2}(\vec{a} + \vec{b} + 2\vec{c})$
- \vec{c} is coplanar with $\vec{a} = -\hat{i} + \hat{j} + k \& \vec{b} = 2\hat{i} + k \vec{a} \cdot \vec{c} = 7 \& \vec{c} \perp \vec{b}$. then the value of $2|\vec{a} + \vec{b} + \vec{c}|^2$ is **59.**
- If $\vec{a} = \alpha \hat{i} + \beta \hat{j} + 3k$, $\vec{b} = \beta \hat{i} \alpha \hat{j} k$ and $\vec{c} = \hat{i} 2\hat{j} k$ such that $\vec{a} \cdot \vec{b} = 1$ and $\vec{b} \cdot \vec{c} = -3$, then 60. $\frac{1}{2}((\vec{a}\times\vec{b}).\vec{c})$ is equal to ______. [JEE (Main)-2021]
- Let $\vec{a} = \hat{i} + 5\hat{j} + \alpha k$, $\vec{b} = \hat{i} + 3\hat{j} + \beta k$ and $\vec{c} = -\hat{i} + 2\hat{j} + 3k$ be three vectors such that, $|\vec{b} \times \vec{c}| = 5\sqrt{3}$ 61. and \vec{a} is perpendicular to \vec{b} . Then the greatest amongst the values of $|\vec{a}|^2$ is ______. [JEE (Main)-2021]

- 62. Let $\vec{a} = 2\hat{i} \hat{j} + 2k$ and $\vec{b} = \hat{i} + 2\hat{j} k$. Let a vector \vec{v} be in the plane containing \vec{a} and \vec{b} . If \vec{v} is perpendicular to the vector $3\hat{i} + 2\hat{j} k$ and its projection on \vec{a} is 19 units, then $|2\vec{v}|^2$ is equal to ______. [JEE (Main)-2021]
- 63. Let the vectors $\hat{a} = (1+t)\hat{i} + (1-t)\hat{j} + k$, $\vec{b} = (1-t)\hat{i} + (1+t)\hat{j} + 2k$ and $\vec{c} = t\hat{i} + t\hat{j} + k$, $t \in R$ such that for $abg \ \alpha, \beta, \gamma \in R$, $\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \vec{0} \Rightarrow \alpha = \beta = \gamma = 0$. Then, the set of all values of t is: [JEE (Main)-2021]
- 64. Let a vector \vec{a} has magnitude 9, Let a vector \vec{b} be such that for every $(x, y) \in R \times R \{(0, 0)\}$, the vector $(x\vec{a} + y\vec{b})$ is perpendicular to the vector $(6y\vec{a} 18x\vec{b})$ then the value of $|\vec{a} \times \vec{b}|$ is equal to

 [JEE (Main)-2022]

 (A) $9\sqrt{3}$ (B) $27\sqrt{3}$ (C) 9 (D) 81
- **65.** Let P(-2, -1, 1) and Q $\left(\frac{56}{11}, \frac{43}{17}, \frac{111}{17}\right)$ be the vertices of the rhombus PRQS. If the direction ratios of the diagonal RS are α, -1, β where both α and β are integers orf minimum absolute values, then $\alpha^2 + \beta^2$ is equal to : [JEE (Main)-2022]
- 66. If $\vec{a} = 2\hat{i} + \hat{j} + 3k$, $\vec{b} = 3\hat{i} + 3\hat{j} + k$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ are complanar vectors and $\vec{a}.\vec{c} = 5$, $\vec{b} \perp \vec{c}$, then 122 $(c_1 + c_2 + c_3)$ is equal to ______. [JEE (Main)-2022]
- Let the position vectors of the points A, B, C and D be $5\hat{i} + 5\hat{j} + 2\lambda k$, $\hat{i} + 2\hat{j} + 3k$, $-2\hat{i} + \lambda\hat{j} + 4k$ and $-\hat{i} + 5\hat{j} + 6k$. Let the set $S = \{\lambda \in \mathbb{R} : \text{the points A, B, C and D are coplanar}\}$. Then $\sum_{\lambda \in S} (\lambda + 2)^2 \text{ is equal to :} \qquad \qquad [\textbf{JEE (Main)-2023}]$ (A) $\frac{37}{2}$ (B) 13 (C) 25 (D) 41
- 68. Let $\vec{a} = 2\hat{i} + 3\hat{j} + 4k$, $b = \hat{i} 2\hat{j} 2k$ and $\vec{c} = -\hat{i} + 4\hat{j} + 3k$. If \vec{d} is a vector perpendicular to both \vec{b} and \vec{c} , and $\vec{a} \cdot \vec{d} = 18$, then $[\vec{a} \times \vec{d}]^2$ is equal to: [JEE (Main)-2023]
- (A) 760 (B) 640 (C) 25 (D) 41 69. Let $\vec{u} = \hat{i} - \hat{j} - 2k$, $\vec{v} = 2\hat{i} + \hat{j} - k$, $\vec{v} = \vec{w} = 2$ and $\vec{v} \times \vec{w} = \vec{u} + \lambda \vec{v}$. Then $\vec{u} = \vec{w} = \vec{w} = \vec{w} = \vec{w} = \vec{v} = \vec{w} = \vec{v} = \vec{v$
- 70. Let PQR be a triangle. The points A, B and C are on the sides QR, RP and PQ respectively such that $\frac{QA}{AR} = \frac{RB}{BP} = \frac{PC}{CQ} = \frac{1}{2}$. Then $\frac{Area(\Delta PQR)}{Area(\Delta ABC)}$ is equal to [JEE (Main)-2023]

EXERCISE # 4 (JA)

Incident ray is along the unit vector $\hat{\mathbf{v}}$ and the reflected ray is along the unit vector. The normal 1. is along unit vector $\hat{\mathbf{a}}$ outwards. Express $\hat{\mathbf{w}}$ in terms of $\hat{\mathbf{a}}$ and $\hat{\mathbf{v}}$. [**JEE 05** (Mains)4]

- (a) Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} \hat{k}$. A vector in the plane of \vec{a} and \vec{b} whose 2. projection on \vec{c} has the magnitude equal to $\frac{1}{\sqrt{3}}$ is -
- (A) $4\hat{i} \hat{j} + 4\hat{k}$ (B) $3\hat{i} + \hat{j} 3\hat{k}$ (C) $2\hat{i} + \hat{j} 2\hat{k}$ (D) $4\hat{i} + \hat{j} 4\hat{k}$
- (b) Let \vec{A} be vector parallel to line of intersection of planes P_1 and P_2 through origin. P_1 is parallel to the vectors $2\hat{j}+3\hat{k}$ and $4\hat{j}-3\hat{k}$ and P_2 is parallel to $\hat{j}-\hat{k}$ and $3\hat{i}+3\hat{j}$, then the angle between vector \vec{A} and $2\hat{i} + \hat{j} - 2\hat{k}$ is – [JEE 2006, 3+5]
 - (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{6}$

- (a) The number of distinct real values of λ , for which the vectors $-\lambda^2 \hat{i} + \hat{j} + \hat{k}$, $\hat{i} \lambda^2 \hat{j} + \hat{k}$ and **3.** $\hat{i} + \hat{j} - \lambda^2 \hat{k}$ are coplanar, is -
 - (A) zero
- (B) one
- (C) two
- (D) three
- (b) Let $\vec{a}, \vec{b}, \vec{c}$ be unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Which one of the following is correct?
 - (A) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} = \vec{0}$
- (B) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} \neq \vec{0}$
- (C) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{a} \times \vec{c} \neq \vec{0}$
- (D) $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ are mutually perpendicular
- (c) Let the vectors \overrightarrow{PQ} , \overrightarrow{QR} , \overrightarrow{RS} , \overrightarrow{ST} , \overrightarrow{TU} and \overrightarrow{UP} represent the sides of a regular hexagon.

Statement-1: $\overrightarrow{PO} \times (\overrightarrow{RS} + \overrightarrow{ST}) \neq \overrightarrow{0}$.

because

Statement-2: $\overrightarrow{PQ} \times \overrightarrow{RS} = \overrightarrow{0}$ and $\overrightarrow{PQ} \times \overrightarrow{ST} \neq \overrightarrow{0}$.

- Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for (A) Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (C) Statement-1 is True, Statement-2 is False.
- Statement-1 is False, Statement-2 is True. (D)

[JEE 2007, 3+3+3]

- (a) The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit 4. vectors $\hat{a}, \hat{b}, \hat{c}$ such that $\hat{a} \cdot \hat{b} = \hat{b} \cdot \hat{c} = \hat{c} \cdot \hat{a} = \frac{1}{2}$. Then, the volume of the parallelopiped is:

 - (A) $\frac{1}{\sqrt{2}}$ (B) $\frac{1}{2\sqrt{2}}$ (C) $\frac{\sqrt{3}}{2}$
- (D) $\frac{1}{\sqrt{2}}$
- (b) Let two non-collinear unit vectors â and b form an acute angle. A point P moves so that at any time t the position vector \overrightarrow{OP} (where O is the origin) is given by $\hat{a} \cos t + \hat{b} \sin t$. when P is farthest from origin O, let M be the length of \overrightarrow{OP} and \hat{u} be the unit vector along \overrightarrow{OP} . Then-

 - (A) $\hat{\mathbf{u}} = \frac{\hat{\mathbf{a}} + \mathbf{b}}{|\hat{\mathbf{a}} + \hat{\mathbf{b}}|}$ and $\mathbf{M} = (1 + \hat{\mathbf{a}}.\hat{\mathbf{b}})^{1/2}$ (B) $\hat{\mathbf{u}} = \frac{\hat{\mathbf{a}} \mathbf{b}}{|\hat{\mathbf{a}} \hat{\mathbf{b}}|}$ and $\mathbf{M} = (1 + \hat{\mathbf{a}}.\hat{\mathbf{b}})^{1/2}$
 - (C) $\hat{\mathbf{u}} = \frac{\hat{\mathbf{a}} + \hat{\mathbf{b}}}{\left|\hat{\mathbf{a}} + \hat{\mathbf{b}}\right|}$ and $\mathbf{M} = (1 + 2\,\hat{\mathbf{a}}.\hat{\mathbf{b}}\,)^{1/2}$ (D) $\hat{\mathbf{u}} = \frac{\hat{\mathbf{a}} \hat{\mathbf{b}}}{\left|\hat{\mathbf{a}} \hat{\mathbf{b}}\right|}$ and $\mathbf{M} = (1 + 2\,\hat{\mathbf{a}}.\hat{\mathbf{b}}\,)^{1/2}$

[JEE 2008, 3+3]

- (a) If \vec{a} , \vec{b} , \vec{c} and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 1$ and $\vec{a} \cdot \vec{c} = \frac{1}{2}$, then **5.**
 - (A) $\vec{a}, \vec{b}, \vec{c}$ are non coplanar
- (B) $\vec{b}, \vec{c}, \vec{d}$ are non coplanar
- (C) \vec{b} , \vec{d} are non parallel
- (D) \vec{a}, \vec{d} are parallel and \vec{b}, \vec{c} are parallel
- (b) Match the statements / expression given in Column I with the value given in Column II.

Column - I

(C)

Column - II

Root(s) of the equation $2\sin^2\theta + \sin^2 2\theta = 2$ (A)

- Points of discontinuity of the function $f(x) = \left| \frac{6x}{\pi} \left| \cos \left| \frac{3x}{\pi} \right| \right|$ (B)
- (Q)
- where [y] denotes the largest integer less than or equal to y

Volume of the parallelepiped with its edges

- (R)
- represented by the vectors $\hat{i} + \hat{j}$, $\hat{i} + 2\hat{j}$ and $\hat{i} + \hat{j} + \pi \hat{k}$
- **(S)**
- Angle between vectors \vec{a} and \vec{b} where \vec{a}, \vec{b} and \vec{c} are unit (D) vectors satisfying $\vec{a} + \vec{b} + \sqrt{3}\vec{c} = \vec{0}$
- (T)

[JEE 2009, 3+8]

- (a) Two adjacent sides of a parallelogram ABCD are given by $\overrightarrow{AB} = 2\hat{i} + 10\hat{j} + 11\hat{k}$ and **6.** $\overrightarrow{AD} = -\hat{i} + 2\hat{j} + 2\hat{k}$. The side AD is rotated by an acute angle α in the plane of the parallelogram so that AD becomes AD'. If AD' makes a right angle with the side AB then the cosine of the angle α is given by –

 - (A) $\frac{8}{0}$ (B) $\frac{\sqrt{17}}{0}$ (C) $\frac{1}{9}$
- (D) $\frac{4\sqrt{5}}{0}$
- **(b)** If \vec{a} and \vec{b} are vectors in space given by $\vec{a} = \frac{\vec{i} 2\vec{j}}{\sqrt{5}}$ and $\vec{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}}$, then the value of $(2\vec{a} + \vec{b}) \cdot [(\vec{a} \times \vec{b}) \times (\vec{a} - 2\vec{b})]$ is [JEE 2010, 5 + 3]
- (a) Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} \hat{j} \hat{k}$ be three vectors. A vector \vec{v} in the plane of 7. \vec{a} and \vec{b} , whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$, is given by

 - (A) $\hat{i} 3\hat{j} + 3\hat{k}$ (B) $-3\hat{i} 3\hat{j} \hat{k}$ (C) $3\hat{i} \hat{j} + 3\hat{k}$ (D) $\hat{i} + 3\hat{j} 3\hat{k}$
- (b) The vector(s) which is/are coplanar with vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$, and perpendicular to the vector $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ is/are

 - (A) $\hat{i} \hat{k}$ (B) $-\hat{i} + \hat{i}$
- (C) $\hat{i} \hat{i}$ (D) $-\hat{i} + \hat{k}$
- (c) Let $\vec{a} = -\hat{i} \hat{k}$, $\hat{b} = -\hat{i} + \hat{j}$ and $\vec{c} = \hat{i} + 2\hat{j} + 3\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a} = 0$, then the value of $\vec{r} \cdot \vec{b}$ is [JEE 2011, 3+4+4]
- (a) If \vec{a} , \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a} \vec{b}|^2 + |\vec{b} \vec{c}|^2 + |\vec{c} \vec{a}|^2 = 9$, then $|2\vec{a} + 5\vec{b} + 5\vec{c}|$ is 8.
 - **(b)** If \vec{a} and \vec{b} are vectors such that $|\vec{a} + \vec{b}| = \sqrt{29}$ and $\vec{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \vec{b}$, then a possible value of $(\vec{a} + \vec{b})$. $(-7\hat{i} + 2\hat{j} + 3\hat{k})$ is [JEE 2012, 4+3]
 - (A) 0

- (C)4
- (D) 8
- Let $\overrightarrow{PR} = 3\hat{i} + \hat{j} 2\hat{k}$ and $\overrightarrow{SQ} = \hat{i} 3\hat{j} 4\hat{k}$ determine diagonals of a parallelogram PQRS and 9. $\overrightarrow{PT} = \hat{i} + 2\hat{j} + 3\hat{k}$ be another vector. Then the volume of the parallelepiped determined by the vectors \overrightarrow{PT} , \overrightarrow{PO} and \overrightarrow{PS} is [JEE-Advanced 2013, 2M]
 - (A) 5
- (B) 20
- (C) 10
- (D) 30

- Consider the set of eight vectors $V = \overline{\left\{a\hat{i} + b\hat{j} + c\hat{k} : a, b, c \in \{-1,1\}\right\}}$. Three non-coplanar vectors can **10.** be chosen from V in 2^p ways. Then p is [JEE-Advanced 2013, 4, (-1)]
- 11. Match List – I with List – II and select the correct answer using the code given below the lists.

List - I

- List II
- Volume of parallelepiped determined by vectors \vec{a}, \vec{b} and P. \vec{c} is 2. Then the volume of the parallelepiped determined by vectors $2(\vec{a} \times \vec{b}), 3(\vec{b} \times \vec{c})$ and $(\vec{c} \times \vec{a})$ is
- 100 1.
- Volume of parallelepiped determined by vectors \vec{a}, \vec{b} and \vec{c} Q. is 5. Then the volume of the parallelepiped determined by vectors $3(\vec{a} + \vec{b})$, $(\vec{b} + \vec{c})$ and $2(\vec{c} + \vec{a})$ is
- 2. 30
- Area of triangle with adjacent sides determined by vectors R. \vec{a} and \vec{b} is 20. Then the area of the triangle with adjacent sides determined by vectors $(2\vec{a} + 3\vec{b})$ and $(\vec{a} - \vec{b})$ is
- 3. 24
- S. Area of a parallelogram with adjacent sides determined by vectors \vec{a} and \vec{b} is 30. Then the area of the parallelogram with adjacent sides determined by vectors $(\vec{a} + \vec{b})$ and \vec{a} is
- 60 4.

Codes:

- P Q R S 3 (A) 1
- (B)
- 3 2 (C) 1
- 3 2 (D) 1 4

- [JEE-Advanced 2013, 3, (-1)]
- Let \vec{x}, \vec{y} and \vec{z} be three vectors each of magnitude $\sqrt{2}$ and the angle between each pair of them **12.** is $\frac{\pi}{2}$. If \vec{a} is a nonzero vector perpendicular to \vec{x} and $\vec{y} \times \vec{z}$ and \vec{b} is nonzero vector perpendicular to \vec{y} and $\vec{z} \times \vec{x}$, then [JEE (Advanced)-2014, 3] (A) $\vec{b} = (\vec{b} \cdot \vec{z})(\vec{z} - \vec{x})$ (B) $\vec{a} = (\vec{a} \cdot \vec{y})(\vec{y} - \vec{z})$ (C) $\vec{a} \cdot \vec{b} = -(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})$ (D) $\vec{a} = (\vec{a} \cdot \vec{y})(\vec{z} - \vec{y})$

- Let \vec{a} , \vec{b} and \vec{c} be three non-coplanar unit vectors such that the angle between every pair of them is $\frac{\pi}{3}$. if $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} = p\vec{a} + q\vec{b} + r\vec{c}$, where p, q and r are scalars, then the value of $\frac{p^2 + 2q^2 + r^2}{q^2}$ is [JEE(Advanced)-2014, 3]
- 14. Let $\triangle PQR$ be a triangle. Let $\vec{a} = \overrightarrow{QR}$, $\vec{b} = \overrightarrow{RP}$ and $\vec{c} = \overrightarrow{PQ}$. If $|\vec{a}| = 12$, $|\vec{b}| = 4\sqrt{3}$ and $\vec{b} \cdot \vec{c} = 24$, then which of the following is (are) true?

(A)
$$\frac{|\vec{c}|^2}{2} - |\vec{a}| = 12$$
 (B) $\frac{|\vec{c}|^2}{2} + |\vec{a}| = 30$ (C) $|\vec{a} \times \vec{b} + \vec{c} \times \vec{a}| = 48\sqrt{3}$ (D) $\vec{a} \cdot \vec{b} = -72$

- 15. (a) Suppose that \vec{p}, \vec{q} and \vec{r} are three non-coplanar vectors in \Box^3 . Let the components of a vector \vec{s} along \vec{p}, \vec{q} and \vec{r} be 4, 3 and 5, respectively. If the components of this vector \vec{s} along $(-\vec{p}+\vec{q}+\vec{r})$, $(\vec{p}-\vec{q}+\vec{r})$ and $(-\vec{p}-\vec{q}+\vec{r})$ are x, y and z, respectively, then the value of 2x + y + z is [JEE 2015, 4,, -0M]
 - (b) Column-II Column-II
 - (A) In a triangle ΔXYZ , let a, b and c be the length of the sides opposite to the angles X, Y and Z, respectively. If $2(a^2-b^2)=c^2$ and $\lambda=\frac{\sin(X-Y)}{\sin Z}$, then possible values of n for which $\cos(n\pi\lambda)=0$ is (are)
 - (B) In a triangle ΔXYZ , let a, b and c be the length of the sides opposite to the angles, X Y and Z, respectively. If $1 + \cos 2X 2\cos 2Y = 2\sin X\sin Y, \text{ then possible value(s)}$ of $\frac{a}{b}$ is (are)
 - (C) In R^2 , Let $\sqrt{3}\hat{i} + \hat{j}$, $\hat{i} + \sqrt{3}\hat{j}$ and $\beta \hat{i} + (1 \beta)\hat{j}$ be the position vectors of X, Y and Z with respect to the origin O, respectively. If the distance of Z from the bisector of the acute angle of \overrightarrow{OX} and \overrightarrow{OY} is $\frac{3}{\sqrt{2}}$, then possible value(s) of $|\beta|$ is (are)
 - (D) Suppose that $F(\alpha)$ denotes the area of the region bounded by x = 0, x = 2, $y^2 = 4x$ and $y = |\alpha x 1| + |\alpha x 2| + ax$, where $\alpha \in \{0,1\}$. Then the value(s) of $F(\alpha) + \frac{8}{3}\sqrt{2}$, when $\alpha = 0$ and $\alpha = 1$, is (are) [JEE (Advanced) 2015]

Let $\hat{\mathbf{u}} = \mathbf{u}_1 \hat{\mathbf{i}} + \mathbf{u}_2 \hat{\mathbf{j}} + \mathbf{u}_3 \hat{\mathbf{k}}$ be a unit vector in \Box^2 and $\hat{\mathbf{w}} = \frac{1}{\sqrt{6}} (\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$. Given that there exist **16.** a vector \vec{v} in \Box^3 such that $|\hat{u} \times \vec{v}| = 1$ and $\hat{w}.(\hat{u} \times \vec{v}) = 1$. Which of the following statement(s) is (are) correct?

- (A) There is exactly one choice for such \vec{v}
- (B) There are infinitely many choice for such \vec{v}
- (C) if $\hat{\mathbf{u}}$ lies in the xy-plane then $|\mathbf{u}_1| = |\mathbf{u}_2|$
- (D) If $\hat{\mathbf{u}}$ lies in the xz-plane then $2|\mathbf{u}_1| = |\mathbf{u}_3|$

[JEE(Advanced)-2016, 4(-2)]

17. Let O be the origin and let PQR be an arbitrary triangle. The point S is such that $\overrightarrow{OP}.\overrightarrow{OO} + \overrightarrow{OR}.\overrightarrow{OS} = \overrightarrow{OR}.\overrightarrow{OP} + \overrightarrow{OO}.\overrightarrow{OS} = \overrightarrow{OO}.\overrightarrow{OR} + \overrightarrow{OP}.\overrightarrow{OS}$

Then the triangle PQR has S as its

[JEE (Advanced)-2017]

- (A) circumcentre
- (B) incentre
- (C) centroid
- (D) orthocenter

PARAGRAPH-1

Let O be origin, and $\overrightarrow{OX}, \overrightarrow{OY}, \overrightarrow{OZ}$ be three unit vectors in the direction of the sides $\overrightarrow{QR}, \overrightarrow{RP}, \overrightarrow{PQ}$, respectively of a triangle PQR. [JEE (Advanced)-2017]

- $|\overrightarrow{OX} \times \overrightarrow{OY}| =$ 18.
 - $(A) \sin (Q + R)$
- (B) sin 2R
- $(C) \sin (P + R)$
- $(D) \sin (P + Q)$
- 19. If the triangle PQR varies, then the minimum value of cos(P+Q) + cos(Q+R) + cos(R+P) is
 - $(A) \frac{5}{2}$
- (B) $-\frac{3}{2}$ (C) $\frac{5}{3}$
- (D) $\frac{3}{2}$
- Let \vec{a} and \vec{b} be two unit vectors such that $\vec{a}.\vec{b} = 0$. For some $x, y \in R$, let $\vec{c} = x\vec{a} + y\vec{b} + (\vec{a} \times \vec{b})$. 20. If $|\vec{c}| = 2$ and the vector \vec{c} is inlined at the same angle α to both \vec{a} and \vec{b} , then the value of $8\cos^2\alpha$ is ____. [JEE (Advanced)-2018]
- 21. Consider the cube in the first with sides OP, OQ and OR of length 1, along the x-axis, y-axis and z-axis, respectively, where O(0,0,0) is the origin, Let $S\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$ be the centre of the cube and T be the vertex of the cube opposite to the origin O such that S lies on the diagranal OT. If $\vec{p} = \overrightarrow{SP}, \ \vec{q} = \overrightarrow{SQ}, \ \vec{r} = \overrightarrow{SR}, \ \text{and} \ \vec{t} = \overrightarrow{ST}, \ \text{then the value of} \ \left| (\vec{p} \times \vec{q}) \times (\vec{r} \times \vec{t}) \right| \ \text{is} \ \underline{\hspace{1cm}}.$

[JEE (Advanced)-2018]

22. Let L₁ and L₂ denote the lines

$$\vec{r} = \hat{i} + \lambda(-\hat{i} + 2\hat{j} + 2\hat{k}), \lambda \in \Box$$
 and

$$\vec{r} = \mu(2\hat{i} - \hat{j} + 2\hat{k}), \mu \in \square$$

respectively. If L₃ is a line which is perpendicular to both L₁ and L₂ and cuts both of them, then which of the following options describe(s) L_3 ? [JEE (Advanced)-2019]

(A)
$$\vec{r} = \frac{2}{9}(4\hat{i} + \hat{j} + \hat{k}) + t(2\hat{i} + 2\hat{j} - \hat{k}), t \in \mathbb{R}$$

(B)
$$\vec{r} = t(2\hat{i} + 2\hat{j} - \hat{k}), t \in \Box$$

(C)
$$\vec{\mathbf{r}} = \frac{1}{3}(2\hat{\mathbf{i}} + \hat{\mathbf{k}}) + \mathbf{t}(2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}), \mathbf{t} \in \Box$$

(D)
$$\vec{\mathbf{r}} = \frac{2}{9}(2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}) + \mathbf{t}(2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}), \mathbf{t} \in \Box$$

23. Three lines

$$L_1: \vec{r} = \lambda \hat{i}, \lambda \in \square$$

$$L_2: \vec{r} = \hat{k} + \mu \hat{j}, \mu \in \square$$
 and

$$L_3$$
: $\vec{r} = \hat{i} + \hat{j} + v\hat{k}$, $v \in \square$

are given. For which point(s) Q and L₂ can we find a point P on L₁ and a point R on L₃ so that P, Q and R are collinear? [JEE (Advanced)-2019]

- (1) $\hat{k} + \frac{1}{2}\hat{j}$
- (2) $\hat{k} + \hat{j}$ (3) \hat{k}
- (4) $\hat{k} \frac{1}{2}\hat{j}$
- Let $\vec{a} = 2\hat{i} + \hat{j} \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$ be two vectors. Consider a vector $\vec{c} = \alpha \vec{a} + \beta \vec{b}$, α , $\beta \in R$. If 24. the projections of \vec{c} on the vector $(\vec{a} + \vec{b})$ is $3\sqrt{2}$, then the minimum value of $(\vec{c} - (\vec{a} \times \vec{b})) \cdot \vec{c}$ [JEE (Advanced)-2019] equals _____
- In a triangle PQR, let $\vec{a} = \overrightarrow{QR}$, $\vec{b} = \overrightarrow{RP}$ and $\vec{c} = \overrightarrow{PQ}$. If $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $\frac{\vec{a} \cdot (\vec{c} \vec{b})}{\vec{c} \cdot (\vec{a} \vec{b})} = \frac{|\vec{a}|}{|\vec{a}| + |\vec{b}|}$, 25. then the value of $|\vec{a} \times \vec{b}|^2$ is _____ [JEE (Advanced)-2020]
- Let a and b be positive real numbers. Suppose $\overrightarrow{PQ} = a\hat{i} + b\hat{j}$ and $\overrightarrow{PS} = a\hat{i} b\hat{j}$ are adjacent sides **26.** of a parallelogram PQRS. Let \vec{u} and \vec{v} be the projection vectors of $\vec{w} = \hat{i} + \hat{j}$ along \overrightarrow{PQ} and

 \overrightarrow{PS} , respectively. If $|\vec{u}| + |\vec{v}| = |\vec{w}|$ and if the area of the parallelogram PQRS is 8, then which of the following statements is/are TRUE? [JEE (Advanced)-2020]

- (A) a + b = 4
- (B) a b = 2
- (C) The length of the diagonal PR of the parallelogram PQRS is 4
- (D) \vec{w} is an angle bisector of the vectors \overrightarrow{PQ} and \overrightarrow{PS}
- 27. Let 0 be the origin and $\overrightarrow{OA} = 2\hat{i} + 2\hat{j} + \hat{k}\overrightarrow{OB} = \hat{i} 2\hat{j} + 2\hat{k}$ and $\overrightarrow{OC} \frac{1}{2} \left(\overrightarrow{OB} \lambda \overrightarrow{OA} \right)$ for some $\lambda > 0$. If $\left| \overrightarrow{OB} \times \overrightarrow{OC} \right| = \frac{9}{2}$, then which of the following statements is (are) TRUE?

[JEE (Advanced)-2021]

- (A)Projection of \overrightarrow{OC} on \overrightarrow{OA} is $-\frac{3}{2}$
- (B) Area of the triangle OAB is $\frac{9}{2}$
- (C) Area of the triangle ABC is $\frac{9}{2}$
- (D) The acute angle between the diagonals of the parallelogram with adjacent sides \overrightarrow{OA} and \overrightarrow{OC} is $\frac{\pi}{3}$
- **28.** Let \vec{u} , \vec{v} and \vec{w} , be vectors in three-dimensional space, where \vec{u} and \vec{v} are unit vectors which are not perpendicular to each other and \vec{u} , $\vec{w} = 1$, \vec{v} . $\vec{w} = 1$, \vec{w} . $\vec{w} = 4$. If the volume of the paralleloipiped, whose adjacent sides are represented by the vectors \vec{u} , \vec{v} and \vec{w} is $\sqrt{2}$ then the value of $|3\vec{u} + 5\vec{v}|$ is ______. [JEE (Advanced)-2021]
- 29. Let S be the reflection of a point Q with respect to the plane given by $\vec{r} = -(t+p)\hat{i} + t\hat{j} + (1+p)\hat{k}$ where t, p are real parameters and \hat{i} , \hat{j} , \hat{k} are the unit vectors along the three positive coordinate axes. If the position vectors of Q and S are $10\hat{i} + 15\hat{j} + 20\hat{k}$ and $\alpha\hat{i} + \beta\hat{j} + \gamma\hat{k}$ respectively, then which of the following is/are TRUE?

 [JEE (Advanced)-2022]
 - (A) $3(\alpha + \beta) = -101$
- (B) $3(\beta + \gamma) = -71$
- (C) $3(\gamma + \alpha) = -86$
- (D) $3(\alpha + \beta + \gamma) = -121$
- 30. Let \hat{i}, \hat{j} and \hat{k} be the unit vectors along the three positive coordinate axes. Let

$$\vec{a} = 3\vec{i} + \hat{j} - \hat{k}$$

$$\vec{b} = \hat{i} + b_2 \hat{j} + b_3 \hat{k} \qquad b_2 b_3 \in R$$

$$\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$$
 $c_1, c_2, c_3 \in R$

Be three vectors such that $b_1b_3 > 0$, $\vec{a} \cdot \vec{b} = 0$ and

$$\begin{pmatrix}
0 & -c_3 & c_2 \\
c_3 & 0 & -c_1 \\
-c_2 & c_1 & 0
\end{pmatrix}
\begin{pmatrix}
1 \\
b_2 \\
b_3
\end{pmatrix}
\begin{pmatrix}
3 & -c_1 \\
1 & -c_2 \\
-1 & -c_3
\end{pmatrix}$$

Then, which of the following is/are True? [JEE (Advanced)-2022]

- $(A) \vec{a}.\vec{c} = 0$
- (B) $\vec{b} \cdot \vec{c} = 0$ (C) $|\vec{b}| > \sqrt{10}$
- (D) $|\vec{c}| \ge \sqrt{11}$
- 31. Let the position vectors of the points P, Q, R and S be

 $\vec{a} = \hat{i} + 2\hat{j} - 5k$, $\vec{b} = 3\hat{i} + 6\hat{j} + 3k$, $\vec{c} = \frac{17}{5}\hat{i} + \frac{16}{5}\hat{j} + 7\hat{k}$ and $\vec{d} = 2\hat{i} + \hat{j} + \hat{k}$, respectively. Then which of the following statements is true? [JEE (Advanced)-2023]

- (A) The points P, Q, R and S are NOT coplanar
- (B) $\frac{b+2d}{2}$ is the position vector of a point which divides PR internally in the ratio 5:4
- (C) $\frac{b+2d}{3}$ is the position vector of a point which divides PR externally in the ratio 5:4
- (D) The square of the magnitude of the vector $\vec{b} \times \vec{d}$ is 95

EXERCISE #5

STRAIGHT OBJECTIVE TYPE

- Given a parallelogram ABCD. If $|\overrightarrow{AB}| = a$, $|\overrightarrow{AD}| = b$ and $|\overrightarrow{AC}| = c$, then $\overrightarrow{DB} \cdot \overrightarrow{AB}$ has the 1.
- (A) $\frac{3a^2 + b^2 c^2}{2}$ (B) $\frac{a^2 + 3b^2 c^2}{2}$ (C) $\frac{a^2 b^2 + 3c^2}{2}$
- (D) none

2. L₁ and L₂ are two lines whose vector equations are

$$\begin{split} L_1: \ \vec{r} &= \lambda \bigg[\Big(\cos \theta + \sqrt{3} \Big) \hat{i} + \Big(\sqrt{2} \sin \theta \Big) \hat{j} + \Big(\cos \theta - \sqrt{3} \Big) \hat{k} \bigg] \\ L_2: \ \vec{r} &= \mu \Big(a \hat{i} + b \hat{j} + c \hat{k} \Big), \end{split}$$

where λ and μ are scalars and α is the acute angle between L₁ and L₂.

If the angle ' α ' is independent of θ then the value of ' α ' is

- (A) $\frac{\pi}{6}$
- (B) $\frac{\pi}{4}$
- (C) $\frac{\pi}{3}$
- (D) $\frac{\pi}{2}$
- In the isosceles triangle ABC, $|\overrightarrow{AB}| = |\overrightarrow{BC}| = 8$, a point E divides AB internally in the ratio **3.** 1:3, then the cosine of the angle between \overrightarrow{CE} and \overrightarrow{CA} is (where $|\overrightarrow{CA}| = 12$)
 - $(A) \frac{3\sqrt{7}}{8}$
- (B) $\frac{3\sqrt{8}}{17}$
- (C) $\frac{3\sqrt{7}}{8}$
- (D) $\frac{-3\sqrt{8}}{17}$
- If $\vec{p} = 3\vec{a} 5\vec{b}$; $\vec{q} = 2\vec{a} + \vec{b}$; $\vec{r} = \vec{a} + 4\vec{b}$; $\vec{s} = -\vec{a} + \vec{b}$ are four vectors such that $\sin\left(\vec{p} \land \vec{q}\right) = 1$ and 4. $\sin (\vec{r} \wedge \vec{s}) = 1 \text{ then } \cos (\vec{a} \wedge \vec{b}) \text{ is } :$
 - (A) $-\frac{19}{5\sqrt{43}}$
- (B) 0
- (C) 1

(D) $\frac{19}{5\sqrt{43}}$

- In a quadrilateral ABCD, \overrightarrow{AC} is the bisector of the $(\overrightarrow{AB} \land \overrightarrow{AD})$ which is $\frac{2\pi}{3}$, **5.**
 - $|15||\overrightarrow{AC}| = 3||\overrightarrow{AB}|| = 5||\overrightarrow{AD}||$ then $\cos(|\overrightarrow{BA} \wedge \overrightarrow{CD}|)$ is
 - (A) $-\frac{\sqrt{14}}{7\sqrt{2}}$ (B) $-\frac{\sqrt{21}}{7\sqrt{3}}$ (C) $\frac{2}{\sqrt{7}}$
- (D) $\frac{2\sqrt{7}}{14}$
- 6. If the two adjacent sides of two rectangles are represented by $\vec{p} = 5\vec{a} - 3\vec{b}; \vec{q} = -\vec{a} - 2\vec{b}$ and $\vec{r} = -4\vec{a} - \vec{b}; \vec{s} = -\vec{a} + \vec{b}$ respectively, then the angle between the vectors $\vec{x} = \frac{1}{3}(\vec{p} + \vec{r} + \vec{s})$ and $\vec{y} = \frac{1}{5}(\vec{r} + \vec{s})$
 - (A) is $-\cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$

(B) is $\cos^{-1} \left(\frac{19}{5\sqrt{43}} \right)$

(C) is $\pi - \cos^{-1} \left(\frac{19}{5\sqrt{43}} \right)$

- (D) cannot be evaluated
- A rigid body rotates about an axis through the origin with an angular velocity 7. $10\sqrt{3}$ radians/sec. If $\vec{\omega}$ points in the direction of $\hat{i} + \hat{j} + \hat{k}$ then the equation to the locus of the points having tangential speed 20 m/sec. is
 - (A) $x^2 + y^2 + z^2 xy yz zx 1 = 0$
 - (B) $x^2 + y^2 + z^2 2 x y 2 y z 2 z x 1 = 0$
 - (C) $x^2 + y^2 + z^2 xy yz zx 2 = 0$
 - (D) $x^2 + y^2 + z^2 2xy 2yz 2zx 2 = 0$

MULTIPLE OBJECTIVE TYPE

- If $\vec{a}, \vec{b}, \vec{c}$ be three non zero vectors satisfying the condition $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{b} \times \vec{c} = \vec{a}$ then which of 8. the following always hold(s) good?
 - (A) $\vec{a}, \vec{b}, \vec{c}$ are orthogonal in pairs
- (B) $\left[\vec{a}\,\vec{b}\,\vec{c}\right] = \left|\vec{b}\right|$

(C) $|\vec{a}\vec{b}\vec{c}| = |\vec{c}|^2$

- (D) $|\vec{b}| = |\vec{c}|$
- Given the following information about the non zero vectors \vec{A} , \vec{B} and \vec{C} 9.
 - (i) $(\vec{A} \times \vec{B}) \times \vec{A} = \vec{0}$
- (ii) $\vec{B} \cdot \vec{B} = 4$
- (iii) $\vec{A} \cdot \vec{B} = -6$
- (iv) $\vec{B} \cdot \vec{C} = 6$

Which one of the following holds good?

- (A) $\hat{A} \times \hat{B} = 0$
- (B) $\vec{A} \cdot (\vec{B} \times \vec{C}) = 0$ (C) $\vec{A} \cdot \vec{A} = 8$
- (D) $\hat{A} \cdot \hat{C} = -9$

10. If $\vec{A}, \vec{B}, \vec{C}$ and \vec{D} are four non zero vectors in the same plane no two of which are collinear then which of the following hold(s) good?

(A)
$$(\vec{A} \times \vec{B}) \cdot (\vec{C} \times \vec{D}) = 0$$

(B)
$$(\vec{A} \times \vec{C}) \cdot (\vec{B} \times \vec{D}) \neq 0$$

(C)
$$(\vec{A} \times \vec{B}) \times (\vec{C} \times \vec{D}) = \vec{0}$$

(D)
$$(\vec{A} \times \vec{C}) \times (\vec{B} \times \vec{D}) \neq \vec{0}$$

- 11. If \vec{a} , \vec{b} , \vec{c} & \vec{d} are the pv's of the points A, B, C & D respectively in three dimensional space & satisfy the relation $3\vec{a} 2\vec{b} + \vec{c} 2\vec{d} = 0$, then:
 - (A) A, B, C & D are coplanar
 - (B) the line joining the points B & D divides the line joining the point A & C in the ratio 2:1.
 - (C) the line joining the points A & C divides the line joining the points B & D in the ratio 1:1
 - (D) the four vectors \vec{a} , \vec{b} , \vec{c} & \vec{d} are linearly dependent.
- 12. The vectors $\vec{\mathbf{u}} = \begin{bmatrix} 6 \\ -3 \\ 2 \end{bmatrix}$; $\vec{\mathbf{v}} = \begin{bmatrix} 2 \\ 6 \\ 3 \end{bmatrix}$; $\vec{\mathbf{w}} = \begin{bmatrix} 3 \\ 2 \\ -6 \end{bmatrix}$
 - (A) form a left handed system
 - (B) form a right handed system
 - (C) are linearly independent
 - (D) are such that each is perpendicular to the plane containing the other two.
- 13. If $\vec{a}, \vec{b}, \vec{c}$ are non-zero, non-collinear vectors such that a vector

$$\vec{p} = ab\cos\left(2\pi - \left(\vec{a} \wedge \vec{b}\right)\right)\vec{c}$$
 and a vector $\vec{q} = a\cos\left(\pi - \left(\vec{a} \wedge \vec{c}\right)\right)\vec{b}$ then $\vec{p} + \vec{q}$ is

(A) parallel to \vec{a}

(B) perpendicular to \vec{a}

(C) coplanar with $\vec{b} \& \vec{c}$

- (D) coplanar with \vec{a} and \vec{c}
- **14.** Which of the following statement(s) hold good?

(A) if
$$\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c} \Rightarrow \vec{b} = \vec{c} (\vec{a} \neq 0)$$

(B) if
$$\vec{a} \times \vec{b} = \vec{a} \times \vec{c} \implies \vec{b} = \vec{c} (\vec{a} \neq 0)$$

(C) if
$$\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$$
 and $\vec{a} \times \vec{b} = \vec{a} \times \vec{c} \Rightarrow \vec{b} = \vec{c}$ $(\vec{a} \neq 0)$

(D) if $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are non coplanar vectors and $\vec{k}_1 = \frac{\vec{v}_2 \times \vec{v}_3}{\vec{v}_1 \cdot (\vec{v}_2 \times \vec{v}_3)}$; $\vec{k}_2 = \frac{\vec{v}_3 \times \vec{v}_1}{\vec{v}_1 \cdot (\vec{v}_2 \times \vec{v}_3)}$

and
$$\vec{k}_3 = \frac{\vec{v}_1 \times \vec{v}_2}{\vec{v}_1 \cdot (\vec{v}_2 \times \vec{v}_3)}$$
 then $\vec{k}_1 \cdot (\vec{k}_2 \times \vec{k}_3) = \frac{1}{\vec{v}_1 \cdot (\vec{v}_2 \times \vec{v}_3)}$

- If the line $\vec{r} = 2\hat{i} \hat{j} + 3\hat{k} + \lambda(\hat{i} + \hat{j} + \sqrt{2}\hat{k})$ makes angles α , β , γ with xy, yz and zx planes **15.** respectively then which of the following are not possible?
 - (A) $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2 \& \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$
 - (B) $\tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma = 7 \& \cot^2 \alpha + \cot^2 \beta + \cot^2 \gamma = 5/3$
 - (C) $\sin^2\alpha + \sin^2\beta + \sin^2\gamma = 1 & \cos^2\alpha + \cos^2\beta + \cos^2\gamma = 2$
 - (D) $\sec^2\alpha + \sec^2\beta + \sec^2\gamma = 10 \& \csc^2\alpha + \csc^2\beta + \csc^2\gamma = 14/3$
- If a, b, c are different real numbers and $a\hat{i} + b\hat{j} + c\hat{k}$; $b\hat{i} + c\hat{j} + a\hat{k} & c\hat{i} + a\hat{j} + b\hat{k}$ are position vectors **16.** of three non-collinear points A, B & C then:
 - (A) centroid of triangle ABC is $\frac{a+b+c}{3}(\hat{i}+\hat{j}+\hat{k})$
 - (B) $\hat{i} + \hat{j} + \hat{k}$ is equally inclined to the three vectors
 - (C) perpendicular from the origin to the plane of triangle ABC meet at centroid
 - (D) triangle ABC is an equilateral triangle.
- A vector of magnitude 10 along the normal to the curve $3x^2 + 8xy + 2y^2 3 = 0$ at its point 17. P(1, 0) can be
 - (A) $6\hat{i} + 8\hat{j}$

- (B) $-6\hat{i} + 8\hat{j}$ (C) $6\hat{i} 8\hat{j}$ (D) $-6\hat{i} 8\hat{j}$
- 18. Let OAB be a regular triangle with side length unity (O being the origin). Also M,N are the points of trisection of AB,M being closer to A and N closer to B. Position vectors of A,B,M and N are $\vec{a}, \vec{b}, \vec{m}$ and \vec{n} respectively. Which of the following hold(s) good?
 - (A) $\vec{m} = x\vec{a} + y\vec{b} \Rightarrow \frac{2}{3}$ and $y = \frac{1}{3}$
- (B) $\vec{m} = x\vec{a} + y\vec{b} \Rightarrow \frac{5}{6}$ and $y = \frac{1}{6}$
- (C) $\vec{m} \cdot \vec{n}$ equals $\frac{13}{18}$

- (D) $\vec{m} \cdot \vec{n}$ equals $\frac{15}{18}$
- 19. If $A(\bar{a})$; $B(\bar{b})$; $C(\bar{c})$ and $D(\bar{d})$ are four points such that $\bar{a} = -2\hat{i} + 4\hat{j} + 3\hat{k}; \ \bar{b} = 2\hat{i} - 8\hat{j}; \ \bar{c} = \hat{i} - 3\hat{j} + 5\hat{k}; \ \bar{d} = 4\hat{i} + \hat{j} - 7\hat{k}$

d is the shortest distance between the lines AB and CD, then which of the following is True?

- (A) d = 0, hence AB and CD intersect
- (B) $d = \frac{\begin{bmatrix} AB CD BD \end{bmatrix}}{|\overrightarrow{AB} \times \overrightarrow{CD}|}$
- (C) AB and CD are skew lines and $d = \frac{23}{13}$ (D) $d = \frac{\left[\overrightarrow{AB} \overrightarrow{CD} \overrightarrow{AC}\right]}{\left|\overrightarrow{AB} \times \overrightarrow{CD}\right|}$
- 20. Which of the following statement(s) is(are) incorrect?
 - (A) The relation $|(\vec{u} \times \vec{v})| = |\vec{u} \cdot \vec{v}|$ is only possible if at least one of the vectors \vec{u} and \vec{v} is null vector.

- (B) Every vector contained in the line $\vec{r}(t) = \langle 1+2t, 1+3t, 1+4t \rangle$ is parallel to the vector $\langle 1, 1, 1 \rangle$.
- (C) If scalar triple product of three vectors, $\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}$ is larger than $|\vec{\mathbf{u}} \times \vec{\mathbf{v}}|$ then $|\vec{\mathbf{w}}| > 1$.
- (D) The distance between the x-axis and the line x = y = 1 is $\sqrt{2}$.
- **21.** Given three vectors $\vec{U} = 2\hat{i} + 3\hat{j} 6\hat{k}$; $\vec{V} = 6\hat{i} + 2\hat{j} + 3\hat{k}$; $\vec{W} = 3\hat{i} 6\hat{j} 2\hat{k}$

Which of the following hold good for the vectors \vec{U} , \vec{V} and \vec{W} ?

- (A) $\vec{U}\,,\,\vec{V}$ and $\,\vec{W}$ are linearly dependent
- (B) $(\vec{U} \times \vec{V}) \times \vec{W} = \vec{0}$
- (C) \vec{U} , \vec{V} and \vec{W} form a triplet of mutually perpendicular vectors
- (D) $\vec{U} \times (\vec{V} \times \vec{W}) = \vec{0}$
- 22. Which of the following statement(s) is/are true in respect of the lines

$$\vec{r} = \vec{a} + \lambda \vec{b}; \vec{r} = \vec{c} + \mu d$$
 where $\vec{b} \times \vec{d} \neq 0$

- (A) acute angle between the lines is $\cos^{-1}\left(\frac{|\vec{b}\cdot\vec{d}|}{|\vec{b}||\vec{d}|}\right)$
- (B) The lines would intersect if $[\vec{c}\ \vec{b}\ \vec{d}] = [\vec{a}\ \vec{b}\ \vec{d}]$
- (C) The lines will be skew if $[\vec{c} \vec{a} \ \vec{b} \ \vec{d}] \neq 0$
- (D) If the lines intersect at $\vec{r}=\vec{r}_0$, then the equation of the plane containing the lines is $[\vec{r}-\vec{r}_0\ \vec{b}\ \vec{d}]=0$
- 23. Let \vec{a} and \vec{b} be two non-zero and non-collinear vectors then which of the following is/are always correct?
 - (A) $\vec{a} \times \vec{b} = [\vec{a} \ \vec{b} \ \hat{i}] \hat{i} + [\vec{a} \ \vec{b} \ \hat{j}] + [\vec{a} \ \vec{b} \ \hat{k}] \hat{k}$
 - (B) $\vec{a} \cdot \vec{b} = (\vec{a} \cdot \hat{i})(\vec{b} \cdot \hat{i}) + (\vec{a} \cdot \hat{j})(\vec{b} \cdot \hat{j}) + (\vec{a} \cdot \hat{k})(\vec{b} \cdot \hat{k})$
 - (C) if $\vec{\mathbf{u}} = \hat{\mathbf{a}} (\hat{\mathbf{a}} \cdot \hat{\mathbf{b}}) \hat{\mathbf{b}}$ and $\vec{\mathbf{v}} = \hat{\mathbf{a}} \times \hat{\mathbf{b}}$ then $|\vec{\mathbf{u}}| = |\vec{\mathbf{v}}|$
 - (D) if $\vec{c} = \vec{a} \times (\vec{a} \times \vec{b})$ and $\vec{d} = \vec{b} \times (\vec{a} \times \vec{b})$ then $\vec{c} + \vec{d} = \vec{0}$

COMPREHENSION TYPE

Paragraph for questions nos. 24 to 26

Consider three vectors $\vec{p} = \hat{i} + \hat{j} + \hat{k}$, $\vec{q} = 2\hat{i} + 4\hat{j} - \hat{k}$ and $\vec{r} = \hat{i} + \hat{j} + 3\hat{k}$ and let \vec{s} be a unit vector, then

- **24.** \vec{p} , \vec{q} and \vec{r} are
 - (A) linearly dependent

- (B) can form the sides of a possible triangle
- (C) such that the vectors $(\vec{q} \vec{r})$ is orthogonal to \vec{p}
- (D) such that each one of these can be expressed as a linear combination of the other two
- 25. If $(\vec{p} \times \vec{q}) \times \vec{r} = u\vec{p} + v\vec{q} + w\vec{r}$, then (u + v + w) equals to
 - (A) 8
- (B) 2
- (C) 2
- (D) 4
- **26.** The magnitude of the vector $(\vec{p} \cdot \vec{s})(\vec{q} \times \vec{r}) + (\vec{q} \cdot \vec{s})(\vec{r} \times \vec{p}) + (\vec{r} \cdot \vec{s})(\vec{p} \times \vec{q})$ is
 - (A) 4

(B)

its

- (B) 8
- (C) 18
- (D) 2

MATRIX MATCH TYPE

- 27. Column-I Column-II
 - (A) P is point in the plane of the triangle ABC. The pv's of A,B and C are \vec{a} , \vec{b} and \vec{c} respectively with respect to P as the origin. If $(\vec{b} + \vec{c})(\vec{b} - \vec{c}) = 0$ and $(\vec{c} + \vec{a})(\vec{c} - \vec{a}) = 0$, then w.r.t. the triangle ABC,P is its
 - If \vec{a} , \vec{b} , \vec{c} are the position vectors of the three non collinear (Q) orthocentre $\vec{V} = \overline{PA} + \overline{PB} + \overline{PC}$ is a null vector then w.r.t. the $\triangle ABC$. P is

(P)

centroid

(C) If P is a point inside the \triangle ABC such that the vector $\vec{R} = (BC)\vec{PA} + (CA)(\vec{PB}) + (AB)(\vec{PC})$ is a null vector then w.r.t. the $\triangle ABC$, P is its

points A,B and C respectively such that the vector

- (R) Incentre
- (D) If P is a point in the plane of the triangle ABC such that the scalar product PA.CB and PB.AC vanishes, then w.r.t. the \triangle ABC, P is its
- **(S)** circumcentre

EXERCISE #6

- Given a tetrahedron D-ABC with AB = 12, CD = 6. If the shortest distance between the skew lines AB and CD is 8 and the angle between them is $\frac{\pi}{6}$, then find the volume of tetrahedron.
- 2. A vector $\vec{V} = v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}$ satisfies the following conditions:
 - (i) magnitude of \vec{V} is $7\sqrt{2}$
 - (ii) \vec{V} is parallel to the plane x 2y + z = 6
 - (iii) \vec{V} is orthogonal to the vector $2\hat{i} 3\hat{j} + 6\hat{j}$ and (iv) $\vec{V} \cdot \hat{i} > 0$ Find the value of $(v_1 + v_2 + v_3)$.
- 3. Let $(\vec{p} \times \vec{q}) \times \vec{r} + (\vec{q} \cdot \vec{r}) \vec{q} = (x^2 + y^2) \vec{q} + (14 4x 6y) \vec{p}$ and $(\vec{r} \cdot \vec{r}) \vec{p} = \vec{r}$ where \vec{p} and \vec{q} are two non-zero non-collinear vectors and x and y are scalars. Find the value of (x + y).
- 4. In a $\triangle ABC$, points E and F divide sides AC and AB respectively so that $\frac{AE}{EC}=4$ and $\frac{AF}{FB}=1$. Suppose D is a point on side BC. Let G be the intersection of EF and AD and suppose D is situated so that $\frac{AG}{GD}=\frac{3}{2}$. If the ratio $\frac{BD}{DC}=\frac{a}{b}$, where a and b are in their lowest form, find the value of (a+b).
- Let \vec{u} be a vector on rectangular coordinate system with sloping angle 60°. Suppose that $|\vec{u} \hat{i}|$ is geometric mean of $|\vec{u}|$ and $|\vec{u} 2\hat{i}|$ where \hat{i} is the unit vector along x-axis then find the value of $|\vec{u}|$.
- **6.** $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are the position vectors of the points A = (x, y, z); B = (y, -2z, 3x); C = (2z, 3x, -y) and D = (1, -1, 2) respectively. If $|\vec{a}| = 2\sqrt{3}$; $(\vec{a} \wedge \vec{b}) = (\vec{a} \wedge \vec{c}); (\vec{a} \wedge \vec{d}) = \frac{\pi}{2}$ and $(\vec{a} \wedge \hat{j})$ is obtuse, then find x, y, z.
- 7. The length of the edge of the regular tetrahedron D-ABC is 'a'. Point E and F are taken on the edges AD and BD respectively such that E divides \overrightarrow{DA} and F divides \overrightarrow{BD} in the ratio 2: 1 each. Then find the area of triangle CEF.

- 8. The position vectors of the points A, B, C are respectively (1, 1, 1); (1, -1, 2); (0, 2, -1). Find a unit vector parallel to the plane determined by ABC &perpendicular to the vector (1,0,1).
- 9. The position vectors of the vertices A,B and C of a tetrahedron are (1,1,1), (1,0,0) and (3,0,0) respectively. The altitude from the vertex D to the opposite face ABC meets the median line through A of the triangle ABC at a point E. If the length of side AD is 4 and volume of the tetrahedron is $2\sqrt{2}/3$ then find the all possible position vectors of the point E.
- **10.** Given non zero number x_1 , x_2 , x_3 ; y_1 , y_2 , y_3 and z_1 , z_2 and z_3
 - (i) Can the given numbers satisfy

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} = 0 \text{ and } \begin{cases} x_1 x_2 + y_1 y_2 + z_1 z_2 = 0 \\ x_2 x_3 + y_2 y_3 + z_2 z_3 = 0 \\ x_3 x_1 + y_3 y_1 + z_3 z_1 = 0 \end{cases}$$

- (ii) If $x_i > 0$ and $y_i < 0$ for all i = 1, 2, 3 and $P(x_1, x_2, x_3)$; $Q(y_1, y_2, y_3)$ and O(0, 0, 0) can the triangle POQ be a right angled triangle?
- **11.** Given that $\vec{a}, \vec{b}, \vec{p}, \vec{q}$ are four vectors such that $\vec{a} + \vec{b} = \mu \vec{p}$, $\vec{b} \cdot \vec{q} = 0$ and $(\vec{b})^2 = 1$, where μ is a scalar then prove that $|(\vec{a} \cdot \vec{q})\vec{p} (\vec{p} \cdot \vec{q})\vec{a}| = |\vec{p} \cdot \vec{q}|$.
- 12. Let $g(\theta) = \int_{-(\hat{a}.\hat{b})^2}^{|a\times b|} (2\,t+1)\,dt$, where θ is the angle between \hat{a} and \hat{b} . If volume of the parallelopiped whose coterminous edges are represented by vectors $\hat{a}, \hat{a} \times \hat{b}$ and $\hat{a} \times (\hat{a} \times \hat{b})$ (where angle between \hat{a} and \hat{b} is taken from the equation $2g(\theta) 1 = 0$), is $\frac{p}{q}$ then find the least value of (p+q).
- 13. (a) Find a unit vector $\hat{\mathbf{a}}$ which makes an angle $(\pi/4)$ with axis of \mathbf{z} & is such that $\hat{\mathbf{a}} + \hat{\mathbf{i}} + \hat{\mathbf{j}}$ is a unit vector.
 - **(b)** If \vec{a} and \vec{b} are any two unit vectors, then find the range of $\frac{3|\vec{a}+\vec{b}|}{2}+2|\vec{a}-\vec{b}|$.
- 14. Given four non zero vectors \vec{a} , \vec{b} , \vec{c} and \vec{d} . The vectors \vec{a} , \vec{b} and \vec{c} are coplanar but not collinear pair by pair and vector \vec{d} is not coplanar with vectors \vec{a} , \vec{b} and \vec{c} and

$$\left(\vec{a} \wedge \vec{b}\right) = \left(\vec{b} \wedge \vec{c}\right) = \frac{\pi}{3}, \\ \left(\vec{d} \wedge \vec{a}\right) = \alpha, \\ \left(\vec{d} \wedge \vec{b}\right) = \beta, \\ \text{then prove that } \left(\vec{d} \wedge \vec{c}\right) = cos^{-1}(cso\beta - cos\alpha)$$

Given three points on the xy plane on O(0, 0), A(1, 0) and B(-1, 0). Point P is moving on the plane satisfying the condition $(\overrightarrow{PA} \cdot \overrightarrow{PB}) + 3(\overrightarrow{OA} \cdot \overrightarrow{OB}) = 0$. If the maximum and minimum values of $|\overrightarrow{PA}||\overrightarrow{PB}|$ are M and m respectively then find the values of $M^2 + m^2$.

VECTOR Let \vec{a} , \vec{b} , \vec{c} are unit vectors where $|\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} + \vec{a}|^2 = 3$, then $|\vec{a} + 2\vec{b} + 3\vec{c}|^2$ is equal to **16.**

ANSWER KEY

EXERCISE #1

- 1. 2. **3.** В 4. В 5. 6. В 7. D В A D
- 8. **14.** В 9. D **10.** В 11. D **12.** \mathbf{C} **13.** D В
- **15. 17**. \mathbf{C} **18**. **19**. **20**. C **16**. D A A (i) D, (ii) B, (iii) B
- 21. D 22. A 23. D 24. D 25. В **26**. C **27**. В
- **30**. 32. **28**. **29**. D A 31. **33.** 34. В A В В A
- **37. 39**. **35.** \mathbf{C} **36.** A \mathbf{C} **38.** В A **40**. C **41**. \mathbf{C}
- **42**. **43**. 44. \mathbf{C} **45. 46.** D D D В **47.** A **48.** D
- **49.** \mathbf{C} **50.** C 51. D **52**. A **53**. **54**. **55**. \mathbf{C} D A
- **56**. C *5*7. A **58. 59. 60.** C **62.** D A 61. В A
- **63.** D **64.** D **65**. В
- **66**. (A) T; (B) U; (C) P; (D) R; (E) Q; (F) S; (G) W; (H) V

EXERCISE #2

- (9,7) **2.** $-\frac{1}{2}(\hat{i}+\hat{j})$ **4.** 13 1. 5. 3 7 6. 4950 **7.**
- 1125 **9.** x = 2, y = -1 **10. (b)** externally in the ratio 1:3 8.
- the lines intersect at the point p. v. $-2\hat{i} + 2\hat{j}$ 11. (ii) (i) parallel
 - (iii) lines are skew
- $\cot^{-1}(0)$; **(b)** $\cot^{-1}\frac{1}{\sqrt{3}}$; **(c)** $\cot^{-1}\sqrt{2}$ **14.** $\frac{\pi}{2}$ (a) **13.**
- **16.** $\sqrt{3}$ **17.** (a) $\frac{\sqrt{3}}{2}$, (b) 51
- **(b)** -1, **(c)** -12 **19.** 101 **20.** $F = 2\vec{a}_1 + 5\vec{a}_2 + 3\vec{a}_3$ 2, (a) **18.**
- $\frac{4}{\sqrt{2}}\hat{i} \frac{1}{\sqrt{2}}\hat{j} \frac{1}{\sqrt{2}}\hat{k}$ 22. (i) $\frac{6}{7}\sqrt{14}$ (ii) 6 (iii) $\frac{3}{5}\sqrt{10}$ (iv) $\sqrt{6}$
- 13 **25.** $\vec{x} = \frac{\vec{a} + (\vec{c}.\vec{a})\vec{c} + \vec{b} \times \vec{c}}{1 + \vec{c}^2}, y = \frac{\vec{b} + (\vec{c}.\vec{b})\vec{c} + \vec{a} \times \vec{c}}{1 + \vec{c}^2}$ 24. 23.
- **26.** 75 **27.** 488

EXERCISE #3 (JM)

- **1.** 3 **2.** 4 **3.** 4 **4.** 4 **5.** 3 **6.** 1 **7.** 2
- **8.** 3 **9.** 4 **10.** 4 **11.** 3 **12.** 3 **13.** 1 **14.** 1
- **15.** 4 **16.** 3 **17.** 1 **18.** 3 **19.** 2 **20.** 3 **21.** 3
- 22. 1 23. 3 24. 4 25. 3 26. 2 27. 2 28. 3 31. 33. 29. 1 **30.** 3 3 **32.** 3 34. 3 35. 3 1
- 36 1 37. Bonus 38. 1 39. 4.00 40. 3 41. 4 42. 1.00
- **43.** 30.00 **44.** 2.00 **45.** 2 **46.** 1 **47.** 2 **48.** 18.00 **49.** 2
- **50.** 6.00 **51.** 4.00 **52.** 1.00 **53.** C **54.** B **55.** D **56.** B
- **57.** B **58.** C **59.** 75 **60.** 2 **61.** 90 **62.** 1494 **63.** C
- **64.** B **65.** 450 **66.** 150 **67.** D **68.** C **69.** C **70.** B

EXERCISE # 4 (JA)

- 1. $\hat{w} = \hat{v} 2(\hat{a}.\hat{v})\hat{a}$ 2. (a) A (b) B
- 3. (a) C (b) B (c) C 4. (a) A (b) A
- **5.** (a) C (b) (A) Q,S; (B) P,R,S,T; (C) T, (D) R
- **6.** (a) B (b) 5
- 7. (a) C (b) A,D (c) 9 8. (a) 3 (b) C
- **9.** C **10.** 5 **11.** C **12.** A,B,C **13.** 4 **14.** A,C,D
- **15.** (a) Bonus, (b) $(A \rightarrow P, R, S)$; $(B \rightarrow P)$; $(C \rightarrow P, Q)$; $(D \rightarrow S; T)$
- **16.** B,C **17.** D **18.** D **19.** B **20.** 3.00 **21.** 0.50
- 22. A,C,D 23. A,D 24. 18.00 25. 108.00 26. A,C 27. A,B,C
- **28.** 7 **29.** A,B,C **30.** B,C,D **31.** B

EXERCISEss #5

- 1. A 2. A 3. C 4. D 5. C 6. B 7. C
- **8.** A,C **9.** A,B,D **10**. B,C **11.** A,C,D **12.** A,C,D **13.** B,C **14.** C,D
- **15.** A,B,D **16.** A,B,C,D **17.** A,D **18.** A,C **19.** B,C,D **20.** A,B,D
- **21.** B,C,D **22.** A,B,C,D **23.** A,B,C **24.** C **25.** B **26.** A
- **27.** (A) S; (B) P; (C) R; (D) Q

EXERCISE #6

- **1.** 48 **2.** 12 **3.** 5 **4.** 9 **5.** $\sqrt{2}-1$ **6.** x=2, y=-2, z=-2
- 7. $\frac{5a^2}{12\sqrt{3}}$ sq. units 8. $\pm \frac{1}{3\sqrt{3}} (\hat{i} + 5\hat{j} \hat{k})$ 9. (-1, 3, 3) and (3, -1, -1)

10. NO, NO

34

- **12**. 5
- 13.
- (a) $\frac{-1}{2}\hat{i} \frac{1}{2}\hat{j} + \frac{1}{\sqrt{2}}\hat{k}$, (c) Range: [3, 5]

- 15.
- 16. 19