

# 生物工程基础

# 第三章 细胞反应动力学



## 生物反应是非常复杂的反应过程

- 反应体系中有细胞的生长,基质消耗和产物的生成,有各自的最佳 反应条件。
- 微生物反应有多种代谢途径。
- 微生物反应过程中,细胞形态、组成要经历生长、繁殖、维持、死亡等若干阶段,不同菌龄,有不同的活性。



#### 细胞反应动力学的定义及分类

细胞反应动力学是研究生物反应速率的规律,即细胞生长速率、底物消耗速率和产物生成速率的变化规律,是进行细胞反应过程优化和生物反应器设计的重要理论依据。

主要包括: 细胞生长动力学、底物消耗动力学和产物生成动力学。

方法: 用数学模型定量地描述生物反应过程中细胞生长速率、底物消耗速率和产物生成速率等因素变化, 达到对反应过程的有效控制。



#### 细胞生长动力学

第一、细胞生长动力学的定义及分类特点

第二、细胞生长动力学模型

第三、影响细胞生长的因素及其模型



#### 细胞生长动力学的定义及分类特点

单个生物体是具体和实际的生命单元,但细胞反应体系的动力学描述采用群体来表示。

描述细胞动力学的方法不是指生物分离呈不连续的单个生物, 而是指群体的存在。

一般地,可将微生物群体的变化过程分为生长、繁殖、维持、 死亡、融胞、能动性形态变化及物理的群体变化等过程。

细胞生长动力学是研究细胞生长过程的速率及其影响因素,从 而获得相关信息。



## 细胞生长动力学的定义及分类特点



分批培养的细胞生长曲线



## 延滞期

- 把微生物从一种培养基中转接到另一培养基的最初一段时间里,尽管 微生物细胞的重量有所增加,但细胞的数量没有增加。这段时间称之 为延滞期。
- 这个期间是细胞的适应调整期,细胞在一个新的环境中生存,需要根据新环境的营养特点重新调整细胞体内的酶系及代谢过程,以使自身能适应新的环境并开始生长和繁殖。
- 怎样减少延滞期的时间?
- 可以让细胞有一个预适应的过程,种子的二级培养;种龄是对数期的 (年青,有生命力);加大接种量;优化培养基的培养条件(化学组成和物理条件);加入一些生长因子(微量元素,维生素等)。



#### 指数生长期

- 对细菌、酵母等单细胞微生物来讲,单位时间内其细胞数目将成倍增加。
- 而对于丝状微生物而言,单位时间内其生物量将加倍。
- 此时,如以细胞数目或生物量的对数对时间作一半对数图,将得一直线,因而这一时期称作指数生长期。



## 稳定期

- 在细胞生长代谢过程中,培养基中的底物不断被消耗,一些对微生物生长代谢有害的物质在不断积累。受此影响,微生物的生长速率和比生长速率就会逐渐下降,直至完全停止,这时就进入稳定期。
- 处于稳定期的生物量增加十分缓慢或基本不变;
- 但微生物细胞的代谢还在旺盛地进行着,细胞的组成物质还在不断 变化。



## 死亡期

- 在死亡期,细胞的营养物质和能源储备已消耗殆尽,不能再维持细胞的生长和代谢,因而细胞开始死亡。
- 这时,以生存细胞的数目的对数对时间作半对数图,可得一直线,这 说明微生物细胞的死亡呈指数比率增加。
- 在微生物工业生产中,在进入死亡期之前应及时将发酵液放罐处理。



定义:均衡生长条件下,细胞的生长速率rx的定义式为:

$$r_X = \frac{dX}{dt} = \mu X$$

式中,X为细胞的浓度; µ 为细胞的比生长速率,其受细胞自身遗传信息支配外,还受到环境因素所影响。



## 比生长速率µ的意义:

举例:比较一下两种情况下的那种细菌的生长效能大?

A: 在一个1mL的反应容器中, 1个细菌1min分裂产生10个细菌;

B: 在一个1mL的反应容器中, 100个细菌1min分裂产生200个细菌。



#### 比生长速率µ的意义:

举例:比较一下两种情况下的那种细菌的生长效能大?

A:在一个1mL的反应容器中,1个细菌1min分裂产生10个细菌;

B: 在一个1mL的反应容器中, 100个细菌1min分裂产生200个细菌。

反应速率: A<B

A: 9个/mL.min; B: 100个/mL. min

生产效能: A>B

**A:** 
$$\mu = \frac{dX}{Xdt} = \frac{(10^{\uparrow}/mL - 1^{\uparrow}/mL)}{1^{\uparrow}/mL \times 1 \min} = 9 \min^{-1}$$

**B:** 
$$\mu = \frac{dX}{Xdt} = \frac{(200 \uparrow / mL - 100 \uparrow / mL)}{100 \uparrow / mL \times 1 min} = 2 min^{-1}$$

比生长速率就是细胞生长速率与培养基中细胞浓度之比,它与细胞的生 命活力联系密切。



#### μ与倍增时间 (doubling time) t<sub>d</sub>的关系

曲
$$r_X = \frac{dX}{dt} = \mu X$$

当 t=0,  $X=X_0$ , 积分上式:  $lnX = \mu t + lnX_0$ 

 $t_d$ 是指X/X $_0$ =2时所需的时间,因此 $ln2 = \mu t_d$ 

$$\mu$$
与倍增时间 $t_d$ 的关系为:  $\mu = \frac{ln2}{t_d} = \frac{0.693}{t_d}$ 



#### 指数生长期的生长具有均衡生长的特性 (balanced growth)

$$\mu = \mu_{max}$$

$$\mu_{max} = \frac{ln2}{t_d}$$

最大比生长速率的含义:营养充分,不存在底物对生长限制和代谢副产物抑制等条件下的均衡生长速率。

减速期的生长模型: 就是在底物浓度限制条件下(代谢副产物抑制) 的生长模型:

$$\mu < \mu_{max}$$



#### 模型分类

结构模型和非结构模型:根据是否考虑细胞组成的变化,可将模型分为非结构模型与结构模型。

非结构模型:细胞个体的平均密度、体积和组成保持恒定。可以用来描述细胞均衡生长时的动力学行为。

**结构模型**: 描述细胞中不同组分的变化规律。细胞生长行为不符合均 衡生长假设。

均衡生长: 细胞内各种组成均以相同比例增加;

非均衡生长:细胞内各组分合成速率不同而使各组分增加比例不同。

非结构模型←──结构模型



确定论模型和概率论模型:根据是否考虑细胞之间的差异,可以将模型分为确定论模型与概率论模型。

确定论模型:不考虑细胞间的差异,而是取性质上的平均值,在此基础上建立的模型称为确定论模型。

概率论模型:如果考虑每个细胞差别,则建立的模型为概率论模型。



- 确定论的非结构模型:不考虑细胞内部结构,每个细胞之间无差别,细胞群体作为一种溶质。
- 确定论的结构模型:每个细胞无差别,但细胞内部由多个组分存在;
- 概率理论的非结构模型:不考虑细胞内部结构,每个细胞之间有差别。
- 概率理论的结构模型:细胞内部结构有差别,每个细胞之间也有差别。



#### 从工程角度看,理想的细胞生长模型应具备下列条件:

- ●要明确建立模型的目的。为进行细胞反应器的设计找到最佳操作条件,确定反应过程的合理管理方法;
- ●明确地给出建立模型的假设条件,这样才能明确模型的使用范围;
- ●希望所有参数能够通过实验逐个确定;
- 模型应尽可能简单。

目前最易使用的模型是确定论的非结构模型。



非结构的动力学模型:Monod模型—典型的确定论非结构模型 模型的基本假设:

- 细胞生长中,培养基中只有一种物质的浓度(其他组分过量)会 影响其生长速率,这种物质被称为限制性(生长)底物;
- 细胞为均衡生长且为简单的单一反应,细胞浓度是描述细胞生长的唯一变量; Y<sub>xs</sub>为常数。
- µ取决于限制性底物的浓度S,此时,细胞生长速率随着限制性底物浓度的变化而呈抛物线变化。

Monod方程的基本形式:

$$\mu = \frac{\mu_{max}[S]}{K_S + [S]}$$

μ: 比生长速率 S<sup>-1</sup>; μ<sub>max</sub>: 最大比生长速率 S<sup>-1</sup>; 随细胞种类不同而不同。[S]: 限制性底物浓度, g/L;

 $K_{S:}$  饱和常数,为当细胞的 $\mu$ 等于 $\mu_{max}$ 的一半时的底物浓度。除与细胞种类有关,还与底物类型关系密切。  $\mu_{x,y,y} = \mu_{x,y,y} = \mu_{x,y,y}$ 







#### Monod模型:

比生长速率表达式:  $\mu = \frac{\mu_{max}[S]}{K_S + [S]}$ 

当底物浓度很小,即[S]<< $K_S$ 时, $\mu \approx \frac{\mu_{max}}{K_S}[S] \propto [S]$ 

当底物浓度很大,即[S] $>> K_S$ 时, $\mu = \mu_{max}$ 

细胞的生长速率可以表示为:

$$r_X = \frac{\mu_{max}[S]X}{K_S + [S]}$$

注意:对于不少微生物 $K_S$ <1-10 mg/L (10-4-10-5 %)(w/v),而且通常在培养过程中的关键阶段控制 $C_S$ = $K_S$ ,此时有  $\mu = \mu_{max}/2$ 







#### 动力学参数:

最大比生长速率µ<sub>max</sub>,为底物浓度过量时的生长速率,它的数值 大小与微生物种类和环境条件有关。

饱和常数K<sub>s</sub>,表示微生物与底物亲和力的大小,与微生物的种类、底物类型和培养条件有关。K<sub>s</sub>值较小,微生物能在较低的底物浓度下快速生长。

Monod 方程的<mark>适用性</mark>问题:对最低培养基或碳源组成单一的合成培养基较适用,培养体系不存在底物和有害副产物的抑制作用。



#### Monod方程中 $K_S$ , $\mu_{max}$ 求解

#### Monod 方程变形为:

$$\frac{1}{\mu} = \frac{1}{\mu_{max}} + \frac{K_S}{\mu_{max}} \cdot \frac{1}{[S]}$$

绘制 $\frac{1}{\mu}$ 一 $\frac{1}{[S]}$ 曲线,为一直线,直线截距为:  $\frac{1}{\mu_{max}}$ ,斜率为:  $\frac{K_S}{\mu_{max}}$ 

可以计算出:  $K_S$ ,  $\mu_{max}$  (L-B法)

数据处理中发现:对于底物浓度较低的情况下,该方法误差较大。



#### Monod方程中 $K_S$ , $\mu_{max}$ 求解

#### Monod 方程变形为:

$$\frac{S}{\mu} = \frac{S}{\mu_{max}} + \frac{K_S}{\mu_{max}}$$

绘制 $\frac{S}{\mu}$ —S曲线,为一直线,直线截距为:  $\frac{K_S}{\mu_{max}}$ ,斜率为:  $\frac{1}{\mu_{max}}$ 

可以计算出:  $K_S$ ,  $\mu_{max}$  (H-W法)

优点:数据处理简单,误差小。



## 常见微生物的μ<sub>max</sub>和K<sub>s</sub>值

| 微生物     | 限制性底物 | μ <sub>max</sub> (h <sup>-1</sup> ) | $K_S$ (mg•L-1) |
|---------|-------|-------------------------------------|----------------|
| 大肠杆菌    | 葡萄糖   | 0.8-1.4                             | 2-4            |
| 大肠杆菌    | 甘油    | 0.87                                | 2              |
| 大肠杆菌    | 乳糖    | 0.8                                 | 20             |
| 酿酒酵母    | 葡萄糖   | 0.5-0.6                             | 25             |
| 热带假丝酵母  | 葡萄糖   | 0.5                                 | 25-75          |
| 产气克雷伯氏菌 | 甘油    | 0.85                                | 9              |
| 产气气杆菌   | 葡萄糖   | 1.22                                | 1-10           |



| Monod方程 $\mu = \frac{\mu_{max}[S]}{K_S + [S]}$ | 米氏方程 $r=rac{r_{max}[S]}{K_m+[S]}$ |
|------------------------------------------------|------------------------------------|
| 描述细胞生长,即比生长速率和底物浓<br>度的关系                      | 描述酶促反应,即反应速率与底物浓度<br>的关系           |
| 经验性方程                                          | 理论推导的机理方程                          |
| 比反应速率                                          | 反应速率                               |
| 适用于单一限制性底物,不存在抑制情<br>况。                        | 适用于单底物酶促反应,不存在抑制的<br>情况            |



#### Monod模型的特点:

- ●具有模型简单,参数少的优点,应用广泛,是细胞生长动力学最重要的方程之一;
- ●仅适用于细胞生长缓慢和细胞密度较低环境;
- ●很多情况下,它不足以完整地说明复杂的生物过程。



## 其它生长模型

●初始底物浓度过高而造成的细胞生长过快的细胞反应:

$$\mu = \frac{\mu_{max}S}{K_S + K_0S + S}$$

●存在两种限制性底物的细胞生长模型:

$$\mu = \frac{\mu_{max}S_1}{K_{S1} + S_1} \bullet \frac{\mu_{max}S_2}{K_{S2} + S_2}$$

●存在竞争性抑制的细胞生长模型:

$$\mu = \frac{\mu_{max}S}{K_S (1+C_I/K_I) + S}$$

●存在非竞争性抑制的细胞生长模型:

$$\mu = \frac{\mu_{max}S}{(K_S + S) \cdot (1 + C_I/K_I)}$$



- Teissier方程  $dX/dt = \mu_{max}(1 e^{-[S]/K_S})X$
- Moser 方程  $dX/dt = \mu_{max}X/(1 + K_S[S]^{-c})$
- •Contois 方程  $dX/dt = \mu_{max}[S]X(K_SX + [S])$
- ●Mosen方程  $dX/dt = \mu_{max}[S]^n X/(K_S^n + [S]^n)$

#### \*其他对Monod方程的修正模型

Blackman方程(近似计算):

$$c_S \gg 2K_S$$
  $\mu = \mu_{\text{max}}$   $c_S < 2K_S$   $\mu = \frac{\mu_{\text{max}}}{2K_S}c_S$ 

三参数方程(隐函数形式): Dabes

$$c_S = K\mu + \frac{K_S\mu}{\mu_{\text{max}} - \mu}$$

或

$$\mu(c_S) = \frac{1}{2K} \left[ (c_S + K\mu_{\text{max}} + K_S) - \sqrt{(c_S + K\mu_{\text{max}} + K_S)^2 - 4Kc_S\mu_{\text{max}}} \right]$$



Moser方程(三参数):

$$\mu = \mu_{\text{max}} \frac{c_S^n}{K_S + c_S^n} \tag{43}$$

以上生长模型在 $c_S$ 和 $K_S$ 都很小的情况下对细胞生长的描述都有它们的特点。这些模型能充分描述细胞的生长。但是由于如葡萄糖等组分在极低浓度下难以测量,所以在一定条件下动力学参数的确定很困难。







#### 温度的影响

对不同的微生物都存在它们各自的最适生长温度。 当温度小于最适温度时,温度上升能增加生长速率,

$$\mu_G = A_G \exp\left(-E_G/RT\right)$$

当温度大于最适温度时,存在微生物的死亡,

$$\mu = \mu_G - k_d$$
  $k_d$  是细胞比死亡速率, $h^{-1}$ 

$$k_d = A_d \exp\left(-E_d/RT\right)$$

温度也能影响细胞的得率系数。





Effect of temperature on maximum specific growth rate  $(\mu_{\text{max}}, \bigcirc)$ , substrate consumption rate  $(r_{\text{S}}, \diamondsuit)$ , and the product formation rate  $(r_{\text{P}}, \square)$  by L. amylovorus DSM  $20531^{\text{T}}$  grown in MRS-starch medium at a constant pH value (5.5)





Effect of temperature on maximum biomass concentration  $(X_{\text{max}}, \blacktriangle)$ , biomass yield coefficient  $(Y_{\text{X/S}}, \bullet)$ , and product yield coefficient  $(Y_{\text{P/S}}, \blacksquare)$  in MRS-starch medium at a constant pH value (5.5)



## pH的影响

最适生长的pH对不同的微生物有特征性。 pH对表观最大比生长速率 $\mu_{max}^*$ 的影响,

$$\mu_{\text{max}}^* = \frac{\mu_{\text{max}}}{1 + \frac{K_1}{c_{H^+}} + \frac{c_{H^+}}{K_2}}$$





pH对曲霉病丝状菌的最大比生长速率的影响



例: 乙醇唯一碳源进行面包酵母培养,获得的数据如下

表所示,求: $K_S$ , $\mu_{max}$ 

| S (g/L)              | 0.40  | 0.33  | 0.18  | 0.10  | 0.071 | 0.049 | 0.038 | 0.20   | 0.014  |
|----------------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| μ (h <sup>-1</sup> ) | 0.161 | 0.169 | 0.169 | 0.149 | 0.133 | 0.135 | 0.112 | 0.0909 | 0.0735 |

解:将Monod 方程变形为:  $\frac{1}{\mu} = \frac{1}{\mu_{max}} + \frac{K_S}{\mu_{max}} \cdot \frac{1}{[S]}$ 

 $\begin{array}{c} ^{16}\text{y} = 0.1105\text{x} + 5.6382 \\ ^{14}\text{R}^2 = 0.9869 \\ ^{13}\text{R}^3 = 8 \\ ^{6}\text{A} \\ ^{4}\text{C} \\ ^{10}\text{C} \\ ^{10}\text{C} \\ ^{40}\text{C} \\ ^{60}\text{C} \\ ^{8}\text{C} \\ ^{10}\text{C} \\$ 

由所给数据,以1/[S]为横坐标,1/µ为纵坐标,作图得一直线,由直

线与X轴和Y轴相交,可分别求得:

 $K_S = 0.02 \text{ (Kg/m}^3\text{)}, \quad \mu_{\text{max}} = 0.18 \text{ (h}^{-1}\text{)}$ 



例:以甲醇为底物,进行某种微生物的好氧分批培养,获 得如下数据,求:

(1) μ<sub>max</sub>; Y<sub>xs</sub>; 倍增时间t<sub>d</sub>; 饱和常数K<sub>s</sub>;

(2) 当t=10 h时, 微生物的比生长速率;

| 时间/h    | 0    | 2     | 4     | 8    | 10   | 12  | 14   | 16    | 18  |
|---------|------|-------|-------|------|------|-----|------|-------|-----|
| X (g/L) | 0.2  | 0.211 | 0.305 | 0.98 | 1.77 | 3.2 | 5.6  | 6.15  | 6.2 |
| S(g/L)  | 9.23 | 9.21  | 9.07  | 8.03 | 6.8  | 4.6 | 0.92 | 0.077 | 0   |



#### 解: 根据题义可得如下数据

| △Cx   | Cs平均值 | Cx平均值  | Vx    | Cx/Vx   | 1/Cs    |
|-------|-------|--------|-------|---------|---------|
| 0.011 | 9.220 | 0.206  | 0.005 | 41.200  | 0.108   |
| 0.094 | 9.140 | 0.258  | 0.047 | 5. 489  | 0.109   |
| 0.675 | 8.550 | 0.643  | 0.169 | 3.807   | 0.117   |
| 0.790 | 7.415 | 1.375  | 0.395 | 3.481   | 0.135   |
| 1.430 | 5.700 | 2.485  | 0.715 | 3.476   | 0.175   |
| 2.400 | 2.760 | 4.400  | 1.200 | 3.667   | 0.362   |
| 0.550 | 0.499 | 5.875  | 0.275 | 21.364  | 2.006   |
| 0.050 | 0.039 | 6. 175 | 0.025 | 247.000 | 25. 974 |

$$\frac{1}{\mu} = \frac{1}{\mu_{max}} + \frac{K_S}{\mu_{max}} \cdot \frac{1}{C_S} \qquad r_X = \mu C_X \to \mu = \frac{r_X}{C_X} \to \frac{1}{\mu} = \frac{C_X}{r_X}$$



作图可得: y=9.211x+7.33

$$1/\mu_{max} = 7.33$$
,  $K_s/\mu_{max} = 9.211$ 

因此 $\mu_{\text{max}}$ =0.1364 h<sup>-1</sup>, K<sub>s</sub>=1.257 kg/m<sup>3</sup>



$$Y_{XS} = \Delta X / \Delta S = (6.2-0.2)/(9.23-0) = 0.65 g/g$$

$$t_d = \ln 2/\mu_{max} = 0.693/0.1364 = 5.08h$$

$$t = 10h$$
时, $\mu = \frac{\mu_{max}[S]}{K_S + [S]} = \frac{0.1364 \times 6.8}{1.257 + 6.8} = 0.115 h^{-1}$ 



## 小结

细胞生长动力学、细胞生长速率与比速率; 细胞生长动力学模型 (Monod) 及其各种修正模型;



#### 思考题:

- 1. 细胞指数生长期的比生长速率是否为最大比生长速率。在指数期细胞是否为均衡生长?
- 2. 对大多数微生物,若Monod方程适用,饱和系数一般处于哪个范围? 若限制性底物为葡萄糖,如何利用Monod生长模型结果控制葡萄糖浓度以避免葡萄糖效应?
- 3. Monod 方程中的最大比生长速率的求取时,若用指数生长期的细胞浓度随时间变化的数据直接求导计算得出。试问这种做法的正确性如何?



#### 作业

以乙醇为唯一碳源进行产气气杆菌培养,菌体初始浓度 $X_0 = 0.1$   $Kg/m^2$  , 培养至3.2 h,菌体浓度为8.44  $Kg/m^3$  , 如果不考虑延迟期,比生长速率 $\mu$  一定,求倍增时间 $t_d$ 。



# 谢谢!