Example 12

In $\triangle ABC, D, E$ are points on ACB, and AB, respectively. CE and CD meet at $M.\angle DBC = \angle A.BM = MD$. Prove that $\frac{BC^2}{AC^2} = \frac{BE}{AE}$. Solution: Method 1:

Since $\angle DBC = \angle A, \angle ACB = \angle BCD, \triangle ABC \sim \triangle BDC$.

$$\frac{BC}{CD} = \frac{AC}{BC} \quad \Rightarrow \quad \frac{BC^2}{AC^2} = \frac{CD}{AC}$$

Draw DF//BE to meet CE at $F.\triangle ACE \sim \triangle DCF$.

 $\frac{CD}{AC} = \frac{DF}{AE}$ We know that $\triangle BEM \sim \triangle DF$.

So we have
$$\frac{DF}{MD} = \frac{BE}{BM}$$
 or $\frac{DF}{MD} = \frac{BE}{MD}$.
So $DF = BE$.
Thus $\frac{BC^2}{AC^2} = \frac{CD}{AC} = \frac{DF}{AE} = \frac{BE}{AE}$.
Method 2:

Since $\angle DBC = \angle A, \angle ACB = \angle BCD, \triangle ABC \sim \triangle BDC$.

$$\frac{BC}{CD} = \frac{AC}{BC} \quad \Rightarrow \quad \frac{BC^2}{AC^2} = \frac{CD}{AC}$$

Draw BN//AC to meet the extension of CE at N. Since

Since $\angle DBC = \angle A, \angle ACB = \angle BCD, \triangle ABC \sim \triangle BDC$.

$$\frac{BC}{CD} = \frac{AC}{BC} \quad \Rightarrow \quad \frac{BC^2}{AC^2} = \frac{CD}{AC}$$

Draw AP//BD to meet the extension of CE at P. We know that $\triangle AEP \sim \triangle BEM(AA) \cdot \frac{BM}{AP} = \frac{BE}{AE}$.

We know that $\triangle ACP \sim \triangle DCM(AA) \cdot \frac{CD}{AC} = \frac{DM}{AP}$. Since $BM = MD, \frac{CD}{AC} = \frac{BM}{AP} = \frac{BE}{AE}$. Therefore, $\frac{BC^2}{AC^2} = \frac{BE}{AE}$.