1 Условие.

Найти периодическое решение системы ДУ

$$\begin{cases} \begin{cases} \frac{dx}{dt} = y, \\ \frac{dy}{dt} = \alpha \left(1 - x^2\right) y - x, \\ \alpha \in \{0.1, 10.0\}. \end{cases} \end{cases}$$

2 Решение.

Система уравнений является частным случаем уравнения Ван-дер-Поля, записанного как система. Существование у этой системы предельного цикла и его единственность уже доказаны. Так же известно, что любое решение, не проходящее через критические точки будет сходиться к предельному циклу. Единственной критической точкой данного уравнения является (0,0), так как из первого уравнения получаем y=0, подставив это во 2 уравнение получим, что x=0. Итак, если решение не начинается в (0,0), оно будет сходиться к предельному циклу.

Будем рассматривать решение, начинающееся из точки (1,0), и методом хорд искать точку его третьего пересечения прямой y=0. Эти точки сходятся к точке предельного цикла, следовательно, можем взять достаточно близкую.

3 Метод Рунге-Кутты.

При решении был использован классический метод Рунге-Кутты 4 порядка

16 6 6 6 Для определения ошибки на шаге делается один просчет с удвоенной длинной шага и 2 просчета с обычной (обозначим результаты u_{2h} и u_h соответственно). Далее, ошибка по каждой переменной считается по правилу Рунге с использовнием масштабирующего множителя. Окончательная формула для подсчета ошибки выглядит следующим образом:

$$d = \left| u_h + \frac{u_h - u_{2h}}{2^4 - 1} \right|$$

$$\operatorname{err} = \left| \frac{1}{2^4 - 1} \frac{u_h - u_{2h}}{d} \right|$$

Затем, ошибкой на шаге принимается максимум из ошибок по каждой переменной.

4 Выбор шага.

Новый шаг рассчитывается по формуле $h_{\text{new}} = h \cdot \min(\text{facmax}, \max(\text{facmin}, \text{fac}(\frac{\text{tol}}{\text{err}})^{\left(\frac{1}{p+1}\right)}))$, где p = 4, facmax = 3, facmin = 0.00001, fac = 0.8, a tol - это максимальная ошибка, при различных значениях которой делаются расчеты.

Если ошибка на шаге не превышает максимальной, полученное значение принимается, иначе производится пересчет с новым шагом.

5 Результаты.

Цикл при $\alpha=0.1$

Цикл при $\alpha=10$

В таблицах приведены результаты расчетов при различных значениях максимальной ошибки

$\alpha = 0.1$		
tol	Количество точек	Суммарная ошиб-
		ка
1e-7	118	1.374860e - 06
1e-9	280	4.913808e - 08
1e - 11	708	1.166902e - 09
$\alpha = 10$		
tol	Количество точек	Суммарная ошиб-
		ка
1e-7	1094	1.828893e - 05
1e-9	2744	4.532883e - 07
1e - 11	6892	1.131785e - 08

Для всех расчетов должно выполняться

$$\begin{split} \frac{n_{i+2}}{n_i} &= \left(\frac{\varepsilon_i}{\varepsilon_{i+2}}\right)^{1/5} \approx 2.5119, \quad \frac{err_i}{err_{i+2}} = \left(\frac{\varepsilon_i}{\varepsilon_{i+2}}\right)^{4/5} \approx 39.8107 \\ \alpha &= 0.1 \\ \frac{n_9}{n_7} &= 2.372 \\ \frac{n_{11}}{n_9} &= 2.528 \\ \frac{errSum_7}{errSum_9} &= 27.979 \\ \frac{errSum_9}{errSum_{11}} &= 42.109 \\ \alpha &= 10 \\ \frac{n_9}{n_7} &= 2.508 \\ \frac{n_{11}}{n_9} &= 2.512 \\ \frac{errSum_7}{errSum_9} &= 40.347 \\ \frac{errSum_9}{errSum_{11}} &= 40.0507 \end{split}$$

6 Оценка глобальной ошибки.

Для оценки глобальной ошибки была использована следующая формула:

$$\delta(x_{i+1}) = r_i + \delta(x_i) \cdot \exp(L_i),$$

в которой L_i было оценено максимум нормы матрицы Якоби на отрезке $((x_i,y_i),(x_{i+1},y_{i+1}))$, умноженный на длину этого отрезка, которую обозначим за d_i . В качестве нормы матрицы была выбрана логарифмическая норма, так как она приводила к меньшей оценке. Матрица Якоби системы имеет следующий вид:

$$A = \begin{pmatrix} 0 & 1 \\ -(2\alpha xy) - 1 & \alpha (1 - x^2) \end{pmatrix}.$$

Рис. 1: $\alpha = 0.1$

Рис. 2: $\alpha = 10$

Для того, чтобы найти ее логарифмическую норму, необходимо найти максимальное по модулю собственное значение матрицы

$$\frac{1}{2} \left(A + A^T \right) = \begin{pmatrix} 0 & -\left(\alpha xy \right) \\ -\left(\alpha xy \right) & \alpha \left(1 - x^2 \right) \end{pmatrix}.$$

Выше приведены графики логарифмической нормы матрицы Якоби для $\alpha=0,1$ и $\alpha=10$. Итоговая формула для расчета глобальной ошибки:

$$\delta(x_{i+1}) = r_i + \delta(x_i) \cdot \exp(d_i l_i)$$

$$l_i = \max \left(\mu(A(x_i, y_i)), \mu(A(x_{i+1}, y_{i+1})) \right)$$

Значения оценки глобалбной ошибки приведены в таблице: