

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name:	
Conner Wilson	
UB Person Number:	Instructions:

1 1 1 1 3 3 (3) 4 4 (4) **(5) (5)** (5) (5) (5) 6 6 (7) (7) (8)

Textbooks, calculators and any other electronic devices are not permitted. You may use one sheet of notes.

 For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1,v_2,v_3\}$ linearly independent? Justify your answer.

$$\begin{array}{c} \chi_1 - \chi_2 + \chi_3 = 2 \\ \chi_1 + 2\chi_3 = 2 \\ \chi_2 + 2\chi_3 = 2 \\ \chi_1 - (2 - 2\chi_3) + \chi_3 = -2 \\ \chi_1 + 3\chi_3 = 0 \\ \chi_1 + 3\chi_3 = 0 \\ \chi_1 + 3\chi_3 = 0 \\ \chi_2 + 2\chi_3 + \chi_3 = -2 \\ \chi_1 + 3\chi_3 = 0 \\ \chi_2 + 2\chi_3 + \chi_3 = -2 \\ \chi_1 + 3\chi_3 = 0 \\ \chi_2 + 2\chi_3 + \chi_3 = -2 \\ \chi_1 + 3\chi_3 = 0 \\ \chi_2 + 2\chi_3 + \chi_3 = -2 \\ \chi_1 + 3\chi_3 = 0 \\ \chi_2 + 2\chi_3 + \chi_3 = -2 \\ \chi_1 + 3\chi_3 = 0 \\ \chi_2 + 2\chi_3 + \chi_3 = -2 \\ \chi_1 + 3\chi_3 = 0 \\ \chi_2 + 2\chi_3 + \chi_3 = -2 \\ \chi_1 + 3\chi_3 = 0 \\ \chi_2 + 2\chi_3 + \chi_3 = -2 \\ \chi_1 + 3\chi_3 = 0 \\ \chi_2 + 2\chi_3 + \chi_3 = -2 \\ \chi_1 + 3\chi_3 = 0 \\ \chi_2 + 2\chi_3 + \chi_3 = -2 \\ \chi_1 + 3\chi_3 = 0 \\ \chi_2 + 2\chi_3 + \chi_3 = -2 \\ \chi_1 + 3\chi_2 = 0 \\ \chi_2 + 2\chi_3 + \chi_3 = -2 \\ \chi_1 + 2\chi_3 + \chi_3 = -2 \\ \chi_2 + 2\chi_3 + \chi_3 = -2 \\ \chi_1 + 2\chi_3 + \chi_3 = -2 \\ \chi_1 + 2\chi_3 + \chi_3 = -2 \\ \chi_2 + 2\chi_3 + \chi_3 = -2 \\ \chi_1 + 2\chi_3 + \chi_3 = -2 \\ \chi_2 + 2\chi_3 + \chi_3 + \chi_3 = -2 \\ \chi_1 + \chi_2 + \chi_3 + \chi_3 = -2 \\ \chi_2 + \chi_3 + \chi_3 + \chi_3 = -2 \\ \chi_3 + \chi_$$

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$a_1 - a_{11} + 2a_{11} = 1$$
 $a_1 - a_{11} + 2a_{11} = 1$
 $a_1 + a_{12} = 0$
 $a_1 + a_{11} = 0$
 $a_1 + a_{12} = 0$
 $a_1 + a_{13} = 0$
 $a_1 + a_{14} = 0$
 $a_1 = 0$
 $a_1 = 0$
 $a_1 = 0$
 $a_1 = 0$

$$a_1 - a_5 + 2a_8 = 0$$
 $2a_5 = a_8$ $1 - a_8 - \frac{1}{2}a_8 + 2a_8 = 0$ $a_2 + a_8 = 1$ $a_8 = 1 - a_7$ $\frac{1}{2}a_8 = -1$ $a_8 = -2$ $a_8 = -2$ $a_8 = -2$

$$a_3 - a_6 + 2a_9 = 0$$

$$a_3 + a_9 = 0$$

$$2a_6 - a_9 = 1$$
Not the best method,

$$a_3 = -a_q$$
 $a_6 = \frac{1}{2}(1 + a_q) + 2a_q = 0$
 $a_6 = \frac{1}{2}(1 + a_q)$
 $a_6 = 1$

$$a_3 = -1$$
 $a_6 = \frac{1}{2}(1+1) = 1$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 2 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 3 & -1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of \mathcal{T} .
- b) Find all vectors \mathbf{u} satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

There are no vectors 4 sois fring T(4)-[10]

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors v_1 and v_2 such that $T_A(v_1) = T_A(v_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 6 - 7 & 6 \\ 0 & 1 & 2 & 6 \\ 6 & 0 & 0 & 6 \end{bmatrix}$$

$$\times_{1} = 2x_{3}$$

A is not one-to-one, ex. for vectors $v_1 = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$, $V_2 = \begin{bmatrix} 4 \\ -2 \\ 2 \end{bmatrix}$, $T_A(V_1) = T_A(V_2)$

$$V_2 = \begin{bmatrix} 4 \\ -4 \end{bmatrix}$$
 $T_1(v) = T_1(v)$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

This is true. By def. of spain, w+ u= Gu+C2V for some CI, GER. Therefore W=Ciu+CzV-U, and combining gives W=(C1-1)4+C2V. However, C1-1 is just some other constant in R, so let C3 = C, -1. Therefore W= C3U+C2V, meaning W & Span(u, V) by definition.

QED.

b) If u,v,w are vectors in \mathbb{R}^3 such that the set $\{u,v,w\}$ is linearly independent then the set $\{u,v\}$ must be linearly independent.

This is true. If {u, v, w} is linearly independent, u & C, V+GN for 1 GGE IR then V & CZW+GM For any CZGER W/ C34+C6V FOI any C36ER

Since $U \neq C, V / for any C, ER, then {u,v} is$ linearly independent by definition.

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

This is false. For example, let u=[i], v=[i], and Av=[i].

And A=[ii]. Then Au=[i] and Av=[i].

An and Av are the same vector, so they are clearly linearly disdependent, however, [i] and [i] are linearly independent.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in $\mathrm{Span}(v, w)$ then T(u) must be in $\mathrm{Span}(T(v), T(w))$.

This is true. If $u \in Spain(v, w)$, then $U = C_1 \vee C_2 \vee C_2 \vee C_3 \vee C_4 \vee C$

0 1 2 3 4 5 6 7 8 9 10