Pattern Recognition 2015 Linear Models for Classification

Ad Feelders

Universiteit Utrecht

Classification Problems

We are concerned with the problems of

- Allocating an object to a class, on the basis of a number of variables that describe the object.
- Estimating the probability that a particular object belongs to a specific class.

Interconnected, since allocation is usually based on the estimated probabilities.

Examples of Classification Problems

- Churn: is customer going to leave for a competitor?
- SPAM filter: e-mail message is SPAM or not?
- Medical diagnosis: does patient have breast cancer?
- Handwritten digit recognition.

Classification Problems

In this kind of *classification* problem there is a target variable *t* that assumes values in an unordered discrete set.

An important special case is when there are only two classes, in which case we usually choose $t \in \{0,1\}$.

The goal of a classification procedure is to predict the target value (class label) given a set of input values $\mathbf{x} = \{x_1, \dots, x_D\}$ measured on the same object.

Classification Problems

At a particular point \mathbf{x} the value of t is not uniquely determined.

It can assume both its values with respective probabilities that depend on the location of the point ${\bf x}$ in the input space. We write

$$p(\mathcal{C}_1|\mathbf{x}) = 1 - p(\mathcal{C}_2|\mathbf{x}) = y(\mathbf{x}).$$

The goal of a classification procedure is to produce an estimate of $y(\mathbf{x})$ at every input point.

Two types of approaches to classification

- Discriminative Models ("regression"; section 4.3).
- Generative Models ("density estimation"; section 4.2).

Discriminative Models

Discriminative methods only model the *conditional* distribution of t given \mathbf{x} . The probability distribution of \mathbf{x} itself is not modeled. For the binary classification problem:

$$y(\mathbf{x}) = p(\mathcal{C}_1|\mathbf{x}) = f(\mathbf{x}, \mathbf{w})$$

where $f(\mathbf{x}, \mathbf{w})$ is some deterministic function of \mathbf{x} .

Note that the approach to regression we discussed follows the same strategy.

Discriminative Models

Examples of discriminative classification methods:

- Linear probability model
- Logistic regression
- Feed-forward neural networks
- . . .

Generative Models

An alternative paradigm for estimating $y(\mathbf{x})$ is based on density estimation. Here Bayes' theorem

$$y(\mathbf{x}) = p(\mathcal{C}_1|\mathbf{x})$$

$$= \frac{p(\mathcal{C}_1)p(\mathbf{x}|\mathcal{C}_1)}{p(\mathcal{C}_1)p(\mathbf{x}|\mathcal{C}_1) + p(\mathcal{C}_2)P(\mathbf{x}|\mathcal{C}_2)}$$

is applied where $p(\mathbf{x}|\mathcal{C}_k)$ are the class conditional probability density functions and $p(\mathcal{C}_k)$ are the unconditional ("prior") probabilities of each class.

Generative Models

Examples of density estimation based classification methods:

- Linear/Quadratic Discriminant Analysis,
- Naive Bayes classifier,
- . . .

Discriminative Models: linear probability model

Consider the linear regression model

$$t = \mathbf{w}^{\top} \mathbf{x} + \varepsilon$$
 $t \in \{0, 1\}$

By assumption $\mathbb{E}[\varepsilon|\mathbf{x}] = 0$, so we have

$$\mathbb{E}[t|\mathbf{x}] = \mathbf{w}^{ op}\mathbf{x}$$

But

$$\mathbb{E}[t|\mathbf{x}] = 1 \cdot p(t = 1|\mathbf{x}) + 0 \cdot p(t = 0|\mathbf{x})$$
$$= p(t = 1|\mathbf{x}) \equiv p(C_1|\mathbf{x})$$

Linear response function

Logistic regression

Logistic response function

$$\mathbb{E}[t|\mathbf{x}] = \frac{e^{\mathbf{w}^{\top}\mathbf{x}}}{1 + e^{\mathbf{w}^{\top}\mathbf{x}}}$$

or (divide numerator and denominator by $e^{\mathbf{w}^{\top}\mathbf{x}}$)

$$\mathbb{E}[t|\mathbf{x}] = \frac{1}{1 + e^{-\mathbf{w}^{\top}\mathbf{x}}} = (1 + e^{-\mathbf{w}^{\top}\mathbf{x}})^{-1}$$
 (4.59 and 4.87)

Logistic Response Function

Linearization: the logit transformation

$$\ln \frac{\rho(\mathcal{C}_1|\mathbf{x})}{1 - \rho(\mathcal{C}_1|\mathbf{x})} = \ln \frac{(1 + e^{-\mathbf{w}^{\top}\mathbf{x}})^{-1}}{1 - (1 + e^{-\mathbf{w}^{\top}\mathbf{x}})^{-1}}$$

$$= \ln \frac{1}{(1 + e^{-\mathbf{w}^{\top}\mathbf{x}}) - 1} = \ln \frac{1}{e^{-\mathbf{w}^{\top}\mathbf{x}}}$$

$$= \ln e^{\mathbf{w}^{\top}\mathbf{x}} = \mathbf{w}^{\top}\mathbf{x}$$

In the second step, we divided the numerator and the denominator by $(1 + e^{-\mathbf{w}^{\top}\mathbf{x}})^{-1}$. The ratio $p(\mathcal{C}_1|\mathbf{x})/(1 - p(\mathcal{C}_1|\mathbf{x}))$ is called the *odds*.

Linear Separation

Assign to class C_1 if $p(C_1|\mathbf{x}) > p(C_2|\mathbf{x})$, i.e. if

$$rac{
ho(\mathcal{C}_1|\mathbf{x})}{1-
ho(\mathcal{C}_1|\mathbf{x})}>1$$

This is true if

$$\ln\left\{\frac{\rho(\mathcal{C}_1|\mathbf{x})}{1-\rho(\mathcal{C}_1|\mathbf{x})}\right\}>0$$

So assign to class \mathcal{C}_1 if $\mathbf{w}^{\top}\mathbf{x} > 0$, and to class \mathcal{C}_2 otherwise.

Maximum Likelihood Estimation

t=1 if heads, t=0 if tails. $\mu=p(t=1)$. One coin flip

 $p(t) = \mu^t (1-\mu)^{1-t}$

Note that $p(1) = \mu$, $p(0) = 1 - \mu$ as required.

Sequence of *N* independent coin flips

$$p(\mathbf{t}) = p(t_1, t_2, ..., t_N) = \prod_{n=1}^{N} \mu^{t_n} (1 - \mu)^{1 - t_n}$$

which defines the likelihood function when viewed as a function of μ .

Maximum Likelihood Estimation

In a sequence of 10 coin flips we observe $\mathbf{t} = (1, 0, 1, 1, 0, 1, 1, 1, 1, 0)$.

The corresponding likelihood function is

The corresponding loglikelihood function is

$$\ln p(\mathbf{t}|\mu) = \ln(\mu^7 (1-\mu)^3) = 7 \ln \mu + 3 \ln(1-\mu)$$

Computing the maximum

To determine the maximum we take the derivative and equate it to zero

$$\frac{d\ln p(\mathbf{t}|\mu)}{d\mu} = \frac{7}{\mu} - \frac{3}{1-\mu} = 0$$

which yields maximum likelihood estimate $\mu_{\text{ML}} = 0.7$.

This is just the relative frequency of heads in the sample.

Loglikelihood function for $\mathbf{t} = (1, 0, 1, 1, 0, 1, 1, 1, 1, 0)$

ML estimation for logistic regression

Now probability of success depends on \mathbf{x}_n :

$$y_n = \rho(\mathcal{C}_1|\mathbf{x}_n) = (1 + e^{-\mathbf{w}^{\top}\mathbf{x}_n})^{-1}$$
$$1 - y_n = \rho(\mathcal{C}_2|\mathbf{x}_n) = (1 + e^{\mathbf{w}^{\top}\mathbf{x}_n})^{-1}$$

we can represent its probability distribution as follows

$$p(t_n) = y_n^{t_n} (1 - y_n)^{1 - t_n}$$
 $t_n \in \{0, 1\}; n = 1, ..., N$

ML estimation for logistic regression

Example

n	Xn	t _n	$p(t_n)$
1	8	0	$(1+e^{w_0+8w_1})^{-1}$
2	12	0	$(1+e^{w_0+12w_1})^{-1}$
3	15	1	$ (1 + e^{-w_0 - 15w_1})^{-1} $
4	10	1	$(1+e^{-w_0-10w_1})^{-1}$

LR: likelihood function

Since the t_n observations are independent:

$$p(\mathbf{t}|\mathbf{w}) = \prod_{n=1}^{N} p(t_n) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1 - t_n}$$
(4.89)

Or, taking minus the natural log:

$$-\ln p(\mathbf{t}|\mathbf{w}) = -\ln \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1 - t_n}$$

$$= -\sum_{n=1}^{N} \{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \}$$
(4.90)

This is called the *cross-entropy* error function.

LR: error function

Since for the logistic regression model

$$y_n = (1 + e^{-\mathbf{w}^{\top} \mathbf{x}_n})^{-1}$$

 $1 - y_n = (1 + e^{\mathbf{w}^{\top} \mathbf{x}_n})^{-1}$

we get

$$E(\mathbf{w}) = \sum_{n=1}^{N} \left\{ t_n \ln(1 + e^{-\mathbf{w}^{\top} \mathbf{x}_n}) + (1 - t_n) \ln(1 + e^{\mathbf{w}^{\top} \mathbf{x}_n}) \right\}$$

- Non-linear function of the parameters.
- No closed form solution.
- Likelihood function globally concave.
- Estimate with e.g. iterative re-weighted least squares (section 4.3.3).

Fitted Response Function

Substitute maximum likelihood estimates into the response function to obtain the *fitted response function*

$$\hat{
ho}(\mathcal{C}_1|\mathbf{x}) = rac{e^{\mathbf{w}_{ ext{ML}}^{ op}\mathbf{x}}}{1 + e^{\mathbf{w}_{ ext{ML}}^{ op}\mathbf{x}}}$$

Example: Programming Assignment

Model the probability of successfully completing a programming assignment.

Explanatory variable: "programming experience". We find $w_0 = -3.0597$ and $w_1 = 0.1615$, so

$$\hat{\rho}(\mathcal{C}_1|x_n) = \frac{e^{-3.0597 + 0.1615x_n}}{1 + e^{-3.0597 + 0.1615x_n}}$$

14 months of programming experience:

$$\hat{p}(\mathcal{C}_1|x=14) = \frac{e^{-3.0597 + 0.1615(14)}}{1 + e^{-3.0597 + 0.1615(14)}} \approx 0.31$$

Example: Programming Assignment

	${\tt month.exp}$	success	fitted		${\tt month.exp}$	success	fitted
1	14	0	0.310262	16	13	0	0.276802
2	29	0	0.835263	17	9	0	0.167100
3	6	0	0.109996	18	32	1	0.891664
4	25	1	0.726602	19	24	0	0.693379
5	18	1	0.461837	20	13	1	0.276802
6	4	0	0.082130	21	19	0	0.502134
7	18	0	0.461837	22	4	0	0.082130
8	12	0	0.245666	23	28	1	0.811825
9	22	1	0.620812	24	22	1	0.620812
10	6	0	0.109996	25	8	1	0.145815
11	30	1	0.856299				
12	11	0	0.216980				
13	30	1	0.856299				
14	5	0	0.095154				
15	20	1	0.542404				

Allocation Rule

Probability of the classes is equal when

$$-3.0597 + 0.1615x = 0$$

Solving for x we get $x \approx 18.95$.

Allocation Rule:

$$x \geq 19$$
: assign to class C_1 $(t = 1)$

$$x < 19$$
: assign to class C_2 $(t = 0)$

Programming Assignment: Confusion Matrix

Cross table of observed and predicted class label:

	0	1
0	11	3
1	3	8

Row: observed, Column: predicted

Error rate: 6/25 = 0.24

Default (predict majority class): 11/25=0.44

How to in R

```
> prog.logreg <- glm(succes \sim month.exp, data=prog.dat, family=binomial)
> summary(prog.logreg)
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.05970 1.25935 -2.430 0.0151 *
month.exp 0.16149 0.06498 2.485 0.0129 *
Number of Fisher Scoring iterations: 4
> table(prog.dat$succes, as.numeric(prog.logreg$fitted > 0.5))
  0 11 3
  1 3 8
```

Example: Conn's syndrome

Two possible causes:

- (a) Benign tumor (adenoma) of the adrenal cortex.
- (b) More diffuse affection of the adrenal glands (bilateral hyperplasia).

Pre-operative diagnosis on basis of

- Sodium concentration (mmol/l)
- 2 CO₂ concentration (mmol/l)

Conn's syndrome: the data

a=1, b=0

```
sodium
            co2
                               sodium co2
                  cause
                                              cause
     140.6 30.3
                           16
                                139.0 31.4
    143.0 27.1
                           17
                                144.8 33.5
 3
    140.0 27.0
                       0
                           18
                                145.7 27.4
    146.0 33.0
                       0
                           19
                                144.0 33.0
 5
    138.7 24.1
                       0
                           20
                                143.5 27.5
     143.7 28.0
                                140.3 23.4
6
                       0
                           21
7
     137.3 29.6
                                141.2 25.8
                       0
                           22
8
     141.0 30.0
                           23
                                142.0 22.0
9
     143.8 32.2
                           24
                                143.5 27.8
                                139.7 28.0
10
     144.6 29.5
                           25
11
     139.5 26.0
                           26
                                141.1 25.0
12
    144.0 33.7
                           27
                                141.0 26.0
13
    145.0 33.0
                           28
                                140.5 27.0
                       0
14
    140.2 29.1
                       0
                           29
                                140.0 26.0
15
     144.7 27.4
                           30
                                140.0 25.6
```

Conn's Syndrome: Plot of Data

Maximum Likelihood Estimation

The maximum likelihood estimates are:

$$w_0 = 36.6874320$$

 $w_1 = -0.1164658$
 $w_2 = -0.7626711$

Assign to group a if

$$36.69 - 0.12 \times \text{sodium} - 0.76 \times \text{CO}_2 > 0$$

and to group b otherwise.

Conn's Syndrome: Allocation Rule

How to in R

```
# plot data points
```

```
> plot(conn.dat[,1],conn.dat[,2], pch=c(rep("b",20), rep("a",10)),
col=c(rep(4,20), rep(2,10)), cex=1.5, xlab="sodium", ylab="co2")
```

draw decision boundary

> abline(36.6874320/0.7626711,-0.1164658/0.7626711,lwd=2)

Conn's Syndrome: Confusion Matrix

Cross table of observed and predicted class label:

	а	b
а	7	3
b	2	18

Row: observed, Column: predicted

Error rate: 5/30=1/6

Default: 1/3

Conn's Syndrome: Line with lower empirical error

Likelihood and Error Rate

Likelihood maximization is not the same as error rate minimization!

n	t _n	$\hat{p}_1(t_n=1)$	$\hat{p}_2(t_n=1)$
1	0	0.9	0.6
2	0	0.4	0.1
3	1	0.6	0.9
4	1	0.55	0.4

Which model has the lower error-rate? Which one the higher likelihood?

Quadratic Model

Coefficient	Value
(Intercept)	-13100.69
sodium	177.42
CO_2	41.36
sodium ²	-0.60
CO_2^2	-0.12
$sodium \times CO_2$	-0.25

Cross table of observed (row) and predicted class label:

	а	b
а	8	2
b	2	18

Conn's Syndrome: Quadratic Specification

Non-binary classes in logistic regression

Recall the logistic regression model assumption for binary class variable $t \in \{0,1\}$:

$$ho(t=1|\mathbf{x}) = rac{\exp(\mathbf{w}^{ op}\mathbf{x})}{1+\exp(\mathbf{w}^{ op}\mathbf{x})}$$

from which it follows that

$$p(t = 0|\mathbf{x}) = \frac{1}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})}$$

since

$$p(t = 1|\mathbf{x}) + p(t = 0|\mathbf{x}) = 1$$

Non-binary classes in logistic regression

We can generalize this model to non-binary class variable $t \in \{0, 1, ..., K-1\}$ (where K is the number of classes) as follows

$$p(t = k|\mathbf{x}) = \frac{\exp(\mathbf{w}_k^{\top} \mathbf{x})}{\sum_{j=0}^{K-1} \exp(\mathbf{w}_j^{\top} \mathbf{x})}$$
 (4.104 and 4.105)

where we now have a weight vector \mathbf{w}_k for each class.

This is called the *multinomial logit model* or multi-class logistic regression (section 4.3.4).

Multi-class logistic regression

We can arrive at this model in the following steps:

- **4** Assume that $p(t = k | \mathbf{x})$ is a function of the linear combination $\mathbf{w}_k^{\top} \mathbf{x}$.
- ② To ensure that the probabilities are non-negative, take the exponential $\exp(\mathbf{w}_k^{\top}\mathbf{x})$.
- **3** To make sure the probabilities sum to 1, we divide $\exp(\mathbf{w}_{k}^{\top}\mathbf{x})$ by $\sum_{j=0}^{K-1}\exp(\mathbf{w}_{j}^{\top}\mathbf{x})$:

$$p(t = k|\mathbf{x}) = \frac{\exp(\mathbf{w}_k^{\top}\mathbf{x})}{\sum_{j=0}^{K-1} \exp(\mathbf{w}_j^{\top}\mathbf{x})}$$

Identification Restriction

Note that

$$\frac{\exp((\mathbf{w}_k + \mathbf{d})^\top \mathbf{x})}{\sum_{j=0}^{K-1} \exp((\mathbf{w}_j + \mathbf{d})^\top \mathbf{x})} = \frac{\exp(\mathbf{d}^\top \mathbf{x})}{\exp(\mathbf{d}^\top \mathbf{x})} \frac{\exp(\mathbf{w}_k^\top \mathbf{x})}{\sum_{j=0}^{K-1} \exp(\mathbf{w}_j^\top \mathbf{x})}$$

so adding a vector \mathbf{d} to each of the vectors $\mathbf{w}_j, j=0,\ldots,K-1$ would yield the same fitted probabilities.

To identify the model, we put $\mathbf{w}_0 = \mathbf{0}$.

Verify that binary logistic regression is a special case of the multinomial logit model, with K=2, since $\exp(\mathbf{w}_0^{\top}\mathbf{x})=\exp(0)=1$.

Interpretation

We have

$$\ln\left\{\frac{p(t=k|\mathbf{x})}{p(t=\ell|\mathbf{x})}\right\} = (\mathbf{w}_k - \mathbf{w}_\ell)^\top \mathbf{x},$$

which allows us to interpret $w_{k,i} - w_{\ell,i}$ as follows:

for a unit increase in x_i , the log-odds of class k versus class ℓ is expected to change by $w_{k,i}-w_{\ell,i}$ units, holding all the other variables constant.

Since $\mathbf{w}_0 = \mathbf{0}$, $w_{k,i}$ is the effect of x_i on the log-odds of class k relative to class 0:

for a unit increase in x_i , the log-odds of class k versus class 0 is expected to change by $w_{k,i}$ units, holding all the other variables constant.

```
# load training data
> optdigits.train <- read.csv("D:/Pattern</pre>
Recognition/Datasets/optdigits-tra.txt", header=F)
# convert class label to factor
> optdigits.train[,65] <- as.factor(optdigits.train[,65])</pre>
# same for test data
> optdigits.test <- read.csv("D:/Pattern
Recognition/Datasets/optdigits-tes.txt", header=F)
> optdigits.test[,65] <- as.factor(optdigits.test[,65])
```

```
# load nnet library
> library(nnet)
# fit multinomial logistic regression model
# column 1 and 40 are not used (always 0)
> optdigits.multinom <- multinom(V65 \sim ., data =
optdigits.train[,-c(1,40)], maxit = 1000)
# weights: 640 (567 variable)
initial value 8802.782811
. . .
converged
# predict class label on training data
> optdigits.multinom.pred <- predict(optdigits.multinom,
optdigits.train[,-c(1,40,65)],type="class")
```

```
# make confusion matrix: true label vs. predicted label
```

> table(optdigits.train[,65],optdigits.multinom.pred)

```
optdigits.multinom.pred
                              5
                                                  9
                    3
                                   6
  376
                         0
                                                  0
    0
       389
                              0
            380
                         0
                              0
                                   0
    0
                                                  0
3
              0 389
                              0
                                   0
    0
         0
4
    0
                    0 387
                              0
                                   0
5
    0
         0
              0
                    0
                         0 376
6
    0
         0
              0
                         0
                              0 377
                                                  0
7
    0
                         0
                                   0 387
                              0
8
    0
         0
              0
                    0
                         0
                              0
                                   0
                                          380
9
    0
          0
               0
                    0
                         0
                              0
                                   0
                                             0
                                               382
```

```
# predict class label on test data
> optdigits.multinom.test.pred <- predict(optdigits.multinom,
optdigits.test[,-c(1,40,65)],type="class")
> table(optdigits.test[,65],optdigits.multinom.test.pred)
  optdigits.multinom.test.pred
                        5
                            6
 0 170
             0
                 0 1
                        6
     1 170
 2
         7 157
                    0
                        0
                            6
     4
                                       0
 3
            10 155
                        2
                            2
                                8
                                    3
     0
 4
             0
                 0 153
                                        6
 5
     0
         0
                 5
                      173
                                    0
 6
     4
         2
                    4
                        3 168
             0
                 0
                                        0
 7
     0
         Ω
             4
                 0
                       17
                            2 149
 8
     2
         5
             0
                7
                    3
                        5
                            5
                                4 142
 9
     1
             0
                 0
                     2
                        5
                            0
                                4
                                    3 159
```

```
# make confusion matrix for predictions on test data
> confmat <- table(optdigits.test[,65],
optdigits.multinom.test.pred)
# use it to compute accuracy on test data
> sum(diag(confmat))/sum(confmat)
[1] 0.888147
```

The accuracy on the test sample is about 89%.

Multinomial Logit with LASSO

With ordinary multinomial logit the accuracy on the training set was 100%, but on the test set only 89%. Maybe we are overfitting. Apply regularization (LASSO).

$$\widetilde{E}(\mathbf{w}) = E(\mathbf{w}) + \lambda \sum_{i=1}^{M-1} |w_i|$$

- # load glmnet library
- > library(glmnet)
- # apply 10-fold cross-validation with different values of lambda
- > optdigits.lasso.cv <cv.glmnet(as.matrix(optdigits.train[,-c(1,40,65)]),
 optdigits.train[,65],family="multinomial", type.measure="class")</pre>
- # plot lambda agains misclassification error
- > plot(optdigits.lasso.cv)

Plot of lambda against misclassification error

Results of Cross-Validation

- Best value is $\lambda \approx 0.0004$.
- The cross validation misclassification error is about 3% for this value of λ .
- On average, only 27 out of 62 coefficients are non-zero.
 Sparse solution.

Prediction on Test Set

```
# predict class label on test set using the best cv model
> optdigits.lasso.cv.pred <- predict(optdigits.lasso.cv,</pre>
as.matrix(optdigits.test[,-c(1,40,65)]),type="class")
# make the confusion matrix
> optdigits.lasso.cv.confmat <-
table(optdigits.test[,65],optdigits.lasso.cv.pred)
# compute the accuracy on the test set
> sum(diag(optdigits.lasso.cv.confmat))/
sum(optdigits.lasso.cv.confmat)
[1] 0.9510295
```

We have improved the accuracy from 89% to 95% by using regularization.