Support Vector Machines

SVM

• Another linear classifier

2

- Maximum Margin classifier
- Approximation of non-linear functions using kernel methods

1

Minimization

- $w.(x^+ x^-) = ||w|| ||(x^+ x^-)|| \cos \theta$
- But $||(x^+ x^-)|| \cos \theta = d$
- So ||w|| d = 2
- Or d= 2/(||w||)

8

Maximize Margins

- Max d= 2/(||w||)
- Minimize (||w||)/2 or alternatively, minimize (||w||)²/2
- · But that can't work!

9

- Has nothing to do with the training data.
- Answer is the same where ||w||=0 regardless of the training set.

Accounting for training data

- If w.x+b=0 is indeed correct and the nearest positive training instances are on w.x+b=+1
- Then a positive/negative instance x must satisfy?

10

Inequality Constraints

- All training instances, x, will lie on some parallel line.
- So **w.x** + b = k, for some k
 - If it is a positive instance $k \ge 1 \rightarrow |k| \ge 1$
 - If it is a negative instance, $k \le -1 \rightarrow |k| \ge 1$
- So for all instances | w.x + b | ≥ 1
- Now we can minimize w subject to these conditions.

SVM training as an Optimization Problem

- Minimize (||w||)/2 subject to $|w.x^i + b| \ge 1$ for $1 \le i \le N$
- Mathematically, hard to manipulate absolute values (|w.xⁱ + b|).
 - We let the target values be 1 and -1 instead of 1 and 0.

-1 to the rescue

• If \mathbf{x}^i is a positive instance (i.e., $\mathbf{y}^i = 1$) then

•
$$w.x^i + b \ge 1$$

• So $y^{i}(w.x^{i} + b) \ge 1$

• If x^i is a negative instance, (i.e., y^i =-1) then

•
$$w.x^i + b \le -1$$

• So $y^{i}(w.x^{i} + b) \ge 1$

Optimization problem

Min (||w||)²/2
 - subject to yⁱ (w.xⁱ + b) ≥ 1 for 1 ≤ i ≤ N

• i.e., $y^i(\mathbf{w}.\mathbf{x}^i + b) -1 \ge 0$ for $1 \le i \le N$

• i.e., , - $(y^i(\mathbf{w}.\mathbf{x}^i + b) - 1) \le 0$ for $1 \le i \le N$

13

14

Primary Lagrangian objective

• $L_P = \frac{1}{2} (||\mathbf{w}||)^2 - \sum_i \lambda_i (y^i (\mathbf{w}.\mathbf{x}^i + b) - 1)$

• $dL_P/d\mathbf{w} = 0 \rightarrow \mathbf{w} = \Sigma_i \lambda_i y^i \mathbf{x}^i$

• $dL_p/db = 0 \rightarrow \Sigma_i \lambda_i y^i = 0$

• Additionally, we impose the KKT conditions

 $-\lambda_i \geq 0$

 $-\lambda_i(y^i(w.x^i+b)-1)=0$

Dual Form

• $L_D = \Sigma_i \lambda_i - \frac{1}{2} \Sigma_i \lambda_i \lambda_j y^i y^j x_i x_j$

• Numerical techniques to find the λ 's.

• Recall KKT conditions say:

 $\lambda_i \geq 0$

 $\lambda_i(y^i(\mathbf{w.x^i} + b) - 1) = 0$

 $y^{i}(w.x^{i} + b) - 1) \ge 0$

Support Vectors are those instances for which y^{i} (w.xⁱ + b) -1) = 0

15

Why Support Vectors

- Recall $\mathbf{w} = \Sigma_i \lambda_i y^i \mathbf{x}^i$
- So weight vector determined completely by the support vectors and their λ's. The nonsupport vectors have zero-valued λs.

The Separating Boundary

- Once we have figured out what w is, we can find out what b is.
- Pick any support vector, say x'. WLOG, we assume it is a positive instance. Since it is a support vector, we can plug it into the equation
- w.x' + b = 1 and solve for b.
- Now, we know both w and b and thus we know the separator w.x + b = 0.

17 18

Using SVM for Prediction

- Given an unseen data instance, say z, we can predict output by first computing
- w.z+b. If it is >0 then we predict positive (1).
 Otherwise if the value is <0 then we predict z is a negative (-1) instance.

Without Computing w

- We don't really need to compute **w**. Given an instance, **z**, and knowing $\mathbf{w} = \Sigma_i \lambda_i y^i \mathbf{x}^i$, we can compute $[(\Sigma_i \lambda_i y^i \mathbf{x}^i).\mathbf{z} + \mathbf{b}]$ instead.
- Recall the support vectors are the only training instances that have non-zero λ's.
- We can rewrite this as $(\Sigma_i \lambda_i y^i (\mathbf{x}^i.\mathbf{z})) + \mathbf{b}$
 - weighted sum of dot products with support vectors (SV).
- Weight for each SV is given by λ_i yⁱ (positive when yⁱ = 1 and negative when yⁱ = -1).

19 20

4/13/23

Linear but Non Seperable

21

Error Term

- $y^i(\mathbf{w}.\mathbf{x}^i + b) \ge (1 e^i), e^i \ge 0$
- Minimize ½ $(||\mathbf{w}||)^2 + C \Sigma_i e^i$
- Additional KKT $\mu_i e^i = 0$
- Same way to compute weights (using support vectors only).
- C is a parameter that allows us to trade off between generality (larger margins) and errors.

Kernel Trick

25 26

•
$$(x_1-1)^2 + (x_2-1)^2 = 4$$

•
$$x_1^2 - 2x_1 + 1 + x_2^2 - 2x_2 + 1 = 4$$

•
$$x_1^2 - 2x_1 + x_2^2 - 2x_2 - 2 = 0$$

- Map <x₁, x₂> to <z₁, z₂> where
- $z_1 = x_1^2 2x_1$ and $z_2 = x_2^2 2x_2$
- z₁ + z₂ 2 = 0 (a straight line!)

- $z_1 = x_1^2 2x_1$ and $z_2 = x_2^2 2x_2$
- z₁ + z₂ = 2 (a straight line!)
- +ve: (0,-1), (2,4), (3,2) → (0,3), (0,8),(3,0)
- -ve: (-0.5,0), (0,2), (1,1), (2,2) → (-1.25,0), (0,0), (-1,-1), (0,0)

27

4/13/23

- $(x_1-1)^2 + (x_2-1)^2 = 4 \implies x_1^2 2x_1 + x_2^2 2x_2 = 2$
- $z_1 = x_1^2 2x_1$ and $z_2 = x_2^2 2x_2$
- $z_1 + z_2 = 2$ in the new space
- But $\phi(\langle x_1, x_2 \rangle)$ to map training instances
- $\phi(\langle x_1, x_2 \rangle) = \langle x_1^2, x_1, x_2^2, x_2 \rangle$ will do the same trick.
- Learning will result in $\mathbf{w} = <1,-2,1,-2,> \& w_0=2$.

29

30

Kernels

- Recall in SVM $\mathbf{w} = \Sigma_i \lambda_i y^i \mathbf{x}^i$
- The decision boundary is $(\Sigma_i \lambda_i y^i x^i).x + b = 0$ i.e., $(\Sigma_i \lambda_i y^i x^i.x) + b = 0$
- When we use the mapping ϕ , this becomes $(\Sigma_i \lambda_i y^i \phi(\mathbf{x}^i) . \phi(\mathbf{x})) + b = 0$
- But we don't know φ
- What if there is a function $K(\mathbf{x}.\mathbf{x'})$ such that $K(\mathbf{x}.\mathbf{x'}) = \phi(\mathbf{x}) \cdot \phi(\mathbf{x'})$

Existence of Kernels

- · Computation in original space
- If K() is a kernel function. Then there is ϕ with $K(x,y) = \phi(x).\phi(y)$
- Examples
 - Polynomial kernels (x.y+1)p
 - Radial basis function kernel

31

Examples of Kernels

•
$$(x.y + 1)^2 = (\langle x_1, x_2 \rangle, \langle y_1, y_2 \rangle + 1)^2 =$$

•
$$(x_1y_1 + x_2y_2 + 1)^2 =$$

•
$$x_1^2y_1^2 + 2x_1y_1x_2y_2 + 2x_1y_1 + 2x_2y_2 + x_2^2y_2^2 + 1 =$$

 $\bullet \quad <\!x_1{}^2,\, \forall 2\,\, x_1x_2,\, \forall 2\,\, x_1,\, \forall 2\,\, x_2,\, 1\!> .\, <\!y_1{}^2,\, \forall 2\,\, y_1y_2,\, \forall 2\,\, y_1,\, \forall 2\,\, y_2,\, 1\!>$

$$\phi(\langle x_1, x_2 \rangle) = \langle x_1^2, \sqrt{2} x_1 x_2, \sqrt{2} x_1, \sqrt{2} x_2, 1 \rangle$$

Second Example

- K(D₁,D₂) = number of words they have in common.
- What is φ(D)?
- φ(D) = <0,0,1,0,1,1,....>
- A component recording presence/absence of each word in the vocabulary.
- What is dot product?