《概率论与数理统计》 JMP10 的应用

王学民

读者可从

https://anyshare.sufe.edu.cn/#/link/B9F2F217DF9A179950462AF6B590145F?path=下载《概率论与数理统计》配书资料,下载的资料中有一个"《概率论与数理统计》Excel数据"文件夹,本文均从该文件夹中打开数据表。

在主窗口(见图 1)中,选择<u>文件</u>→<u>打开····</u>,即出现如图 2 所示的"**打开数据文件**"窗口,双击窗口中的数据表名即可打开该数据表。

图 1

图 2

第一部分 第二章

一、例 2.2.4 中的(1)和(2)

在 JMP 主窗口中(见图 1.1),选择<u>文件→新建 〉→数据表</u>,出现一个含有一列但无行的空表→为改列名,在列名处点击右键,在弹出的菜单中选择<u>列信息···</u>→在图 1.3 的"列名"框中,填入<u>例 2.2.4(1)→确定</u>→为添加一行,在图 1.4 的菜单中,选择<u>行→添加行···</u>→在出现的对话框中(见图 1.5),填入 <u>1→确定</u>。在图 1.6 中,选择<u>列→新建列···</u>→在图 1.7 对话框的"列名"框中,填入例 2.2.4(2)→确定,产生图 1.8。

图 1.1

图 1.2

图 1.3

图 1.4

图 1.5

图 1.6

图 1.7

图 1.8

在图 1.9 中,选择<u>列→公式····</u>→在出现的图 1.10 中,选择<u>离散概率</u>→<u>Binomial Probability</u>→在公式编辑框中,在 "p" 处填入 <u>0.3</u>,在 "n" 处填入 <u>6</u>,在 "k" 处填入 <u>4</u> →<u>确定</u>,生成图 1.11。

图 1.9

图 1.10

图 1.11

二、例 2.2.6 中的(1)和(3)

对例 2.2.6 中的 (1) 和 (3), 作类似上述操作, 可得图 1.12。

图 1.12

三、例 2.2.8 中的(1)

对例 2.2.8 中的 (1), 作上述类似操作, 可得图 1.13。

图 1.13

四、例 2.4.7 中的 P(X<130)

对例 2.4.7 中的 P(X<130),作类似的操作。在图 1.14 中,选择概率→Notmal Distribution,在标准正态分布函数 Notmal Distribution(x)中的"x"处填入"130"相应的标准化值-0.82,可得图 1.15。

图 1.14

图 1.15

五、常用分布的分位数

在图 1.14 的对话框中,可根据给定的分布函数值,容易得到许多常用分布的分位数。

第二部分 第六章和第七章的 § 7.1- § 7.3

一、对例 6.4.2 中的数据进行统计推断

打开 <u>examp642.xls</u> 数据表(见图 2.1)→选择<u>分析</u>→<u>分布</u>,随即出现"分布"窗口(见图 2.2),选择 <u>x</u> 并点击 <u>Y</u>,<u>列</u>→<u>确定</u>,出现"分布:…"窗口(见图 2.3)。

图 2.1

图 2.2

图 2.3

1.方法一

在图 2.3 中,按住 <u>Alt</u>键的同时点击 "x"旁的红色小三角,出现图 2.4,做图中的选择及数字填入→确定,即生成图 2.3 中的结果。

图 2.4

2. 方法二

要得到置信区间或进行假设检验,也可在"分布"窗口点击"x"旁的红色小三角(见图 2.5),在弹出的菜单中可分别作如下操作:

(1)选择**置信区间>→0.95**。如果希望得到单侧置信限,则可在图 2.5 的菜单中选择<u>置</u>信区间>→其他···,出现如图 2.6 所示的对话框,作相应的选择和数值填入→<u>确定</u>。

图 2.5

图 2.6

(2)在图 2.5 的菜单中选择<u>检验均值</u>,出现如图 2.7 所示的对话框,在"**指定假设均值**"框中填入 <u>4.2</u>→<u>确定</u>。

图 2.7

(3) 在图 2.5 中选择检验标准差,在出现的对话框中填入 0.18→确定。

图 2.8

二、对例 7.3.4 中的数据进行比较推断

打开 <u>examp734xls</u>数据表→选择<u>分析→以 X 拟合 Y</u>,出现"以 X 拟合 Y"窗口(见图 2.9),选择 x 并点击 Y,响应;选择 g 并点击 X,因子→确定,在随即出现的图 2.10 中,点击"单因子分析"旁的红色小三角,做图中的选择,生成的结果如图 2.11 所示。

图 2.9

图 2.10

图 2.11

注: 图 2.11 中最后一行的 "F **双边检验**"的 p 值是 0.0126 (图中未与之前的 "21"分开), 这正是书中例 7.3.4 所用的检验方法。

三、对例 7.3.3 中的成对数据进行比较推断

打开 <u>examp733xls</u> 数据表→选择<u>分析→配对</u>,出现"配对"窗口(见图 2.12),选择 \underline{y} 并点击 \underline{y} ,配对响应;选择 \underline{x} 并点击 \underline{y} ,配对响应 →确定 (点击"配对"旁的红色小三角或右边空白处点击右键,可看到弹出的菜单),生成图 2.13。

图 2.12

图 2.13

第三部分 第七章的 § 7.4

一、例 7.4.1 中的拟合检验

打开 <u>examp741.xls</u>数据表→在变量 <u>x</u>处点击右键,弹出一菜单(见图 3.1)→点击<u>列信息···</u>,出现如图 3.2 所示的对话框,在"**建模类型**"中选择<u>有序型</u>(或<u>名义型</u>)→<u>确定</u>,变量 x 即设置为有序型(或名义型)。

图 3.1

图 3.2

在图 3.1 中,选择<u>分析</u>→<u>分布</u>,随即出现"分布"窗口(见图 3.3),选择 \underline{x} 并点击 \underline{Y} <u>列</u>;选择 \underline{f} 并点击<u>频数</u>→<u>确定</u>,出现"分布:…"窗口(见图 3.4)。点击" \underline{x} "旁的红色小三角或右边空白处点击右键,在弹出的菜单中选<u>检验概率</u>,在图 3.5 中填入图中的数字→<u>完成</u>,出现图 3.6。

图 3.4

图 3.5

图 3.6

*二、例 7.4.2 中的分布检验

打开 <u>examp742.xls</u> 数据表→选择<u>分析</u>→<u>分布</u>,在"分布"窗口(同图 3.3)中,选择 <u>x</u> 并点击 <u>Y,列</u>;选择 <u>f</u> 并点击<u>频数</u>→<u>确定</u>→从"x"相应的红色小三角菜单中(见图 3.7),选<u>离散拟合〉</u>→<u>Poisson</u>。在图 3.8 中,点击"Poisson 拟合"旁的红色小三角或右边空白处点击右键,在弹出的菜单中选<u>拟合优度</u>。

图 3.7

图 3.8

*三、例 7.4.3 中的分布检验

打开 <u>examp743.xls</u> 数据表→选择<u>分析→分布</u>,在"分布"窗口(类似图 3.3)中,选择 \underline{x} 并点击 \underline{Y} , \underline{M} →确定 →从" \underline{x} "相应的红色小三角菜单中(见图 3.9),选<u>连续拟合〉</u>→<u>正态</u>。 在图 3.10 中,点击"正态拟合"旁的红色小三角或右边空白处点击右键,在弹出的菜单中选拟合优度。

图 3.9

图 3.10

第四部分 第八章的 § 8.1 和 § 8.2

一、例 8.1.1 中的单因素方差分析

打开 <u>examp811xls</u>数据表→选择<u>分析→以 X 拟合 Y</u>,出现"以 X 拟合 Y"窗口(见图 4.1),选择 <u>v</u>并点击 <u>Y,响应</u>;选择 <u>A</u>并点击 <u>X,因子→确定</u>,即出现图 4.2,点击"单因子分析"旁的红色小三角或右边空白处点击右键,做图中的选择。

图 4.1

图 4.2

二、例 8.2.1 中的两因素方差分析

打开 <u>examp821.xls</u>数据表→按图 3. 1 和图 3. 2 中的操作将变量 A 设置为名义型→选择<u>分析→拟合模型</u>,出现"拟合模型"窗口(见图 4.3),选择 \underline{Y} 并点击 \underline{Y} ; 选择 \underline{A} , 点击 \underline{Z} 并在弹出的菜单中选<u>完全析因</u>→<u>运行</u>,即出现图 4.4。

Sheet - 拟合最小二乘法 - J■P ⊿ **▼ 响应" y"** ∞整体模型 **▶**▼**A ▶**▼**B ▶**▼**A**+**B** ▷ "预测值-实际值"图 ▶拟合汇总 △方差分析 遵 自由度 平方和 均方 F比 模型 11 217, 45833 19, 7689 5, 2138 误差 12 45.50000 3.7917 **概率>F** 校正总和 23 262.95833 0.0041* > 参数估计值 △效应检验 **憑 参数数目 自由度 平方和 F 比 概率/F** 2 2 160.33333 21.1429 0.0001* В 3 3 12.45833 1.0952 0.3888 A*B 6 6 44.66667 1.9634 0.1507 "预测值—残差"图 **☆**□ ▼ .:

图 4.4

三、例 8.2.3 中的两因素方差分析

打开 <u>examp823xls</u> 数据表→按图 3.1 和图 3.2 中的操作将变量 A 设置为名义型→选择<u>分析→拟合模型</u>,出现"拟合模型"窗口(类似于图 4.3),选择 <u>y</u>并点击 <u>Y</u>; 选择 <u>A,B</u>,点击<u>添加→运行</u>,即出现图 4.5。

图 4.5

第五部分 第八章的 § 8.3 和 § 8.4

一、用"以 X 拟合 Y"对例 8.3.1 中的数据进行一元回归分析

打开 <u>examp831.xls</u> 数据表→选择<u>分析→以 X 拟合 Y</u>,出现"以 X 拟合 Y"窗口(类似于图 4.1),选择 \underline{y} 并点击 \underline{y} , 响应;选择 \underline{x} 并点击 \underline{x} , 因子→确定 →从"二元拟合"相应的红色小三角菜单中(见图 5.1),选择<u>拟合线</u>→点击"线性拟合"旁的红色小三角,作图 5.2 中的选择,结果如图 5.3 所示。

图 5.2

图 5.3

二、用"拟合模型"对例 8.3.1 中的数据进行一元回归分析

图 5.4

图 5.5

•	y	x	預測值: y	95%均值下 限: y	95%均值上 限: y	95% 单值下 限: y	95% 单值上 限: y
1	2556	4530	2866.5054082	2658. 998359	3074.0124574	2048. 4147966	3684.5960199
2	3694	5921	3456, 1671521	3248.8317907	3663.5025135	2638.1200718	4274.2142323
3	1933	3294	2342.5500413	2079. 4880114	2605.6120712	1508.6347549	3176.4653278
4	4565	8150	4401.0672434	4072.9169716	4729, 2175151	3544.3901314	5257. 7443554
5	4281	7730	4223.0241575	3924.0424551	4522, 00586	3377.0908671	5068. 9574479
6	2332	2624	2058. 5289282	1752.5395033	2364.5183531	1210.0935437	2906. 9643126
7	1630	1839	1725. 7579225	1363.2333814	2088. 2824636	855.33439551	2596. 1814495
8	3816	5538	3293.8088143	3094.0420567	3493.5755718	2477.6471692	4109.9704593
9	3244	4952	3045.3963183	2846.0142664	3244.7783702	2229. 32875	3861.4638866
10	2285	3426	2398.5064397	2143.0866786	2653.9262009	1566, 9703144	3230.0425651
11	4831	9942	5160, 717743	4694, 2756391	5627, 1598469	4242.1420467	6079. 2934392
12	4200	6134	3546.4604313	3332.6354069	3760.2854557	2726.7444961	4366. 1763666
13	2914	3827	2568. 4951955	2334.1477982	2802.8425928	1743. 1881157	3393.8022753
14	3629	7228	4010.2202787	3743.3053013	4277, 1352561	3175.0815606	4845.3589969
15	2988	5980	3481.1779665	3272.1993665	3690.1565666	2662.7128611	4299.6430719
16	1705	2544	2024.6159595	1713, 1224563	2336, 1094626	1174.1800266	2875.0518923
17	•	4000	2641.8319904	2415. 4169438	2868, 247037	1818.7421734	3464.9218073

图 5.6

三、对例 8.4.1 中的数据进行多元回归分析

打开 <u>examp841.xls</u> 数据表,在表中添加一行,在该行的 x1 和 x2 变量处分别填入 "40" 和 "61"。选择<u>分析→拟合模型</u>,出现 "拟合模型" 窗口(类似于图 4.3)→选择 \underline{y} 并点击 \underline{Y} ; 选择 <u>x1,x2</u> 并点击<u>添加→运行</u>→在出现的 "拟合最小二乘法" 窗口中(见图 5.7),按住 <u>Alt</u> 键的同时点击 "响应" 旁的红色小三角,作图 5.8 中的选择→<u>确定</u>,生成图 5.7,并在原数据表中保存相应的值,见图 5.9。

图 5.7

选择"选项"并点	击"确定"			X
回归报表 ☑ 报合汇总 ☑ 方差分析 ☑ 参数应检 □ 效应产所有值 □ 效应示所有置信区 □ MATCc 估计值 □ 显标后后领测表达式 □ 排序层后检验 □ 上扩展发动效 □ 估计值 □ 仿佛 计值	■ 统一尺度估计值 ■ 正态图 ■ Bayes 图 ■ Pareto 图 因子刻画	行诊断	□ Cook 距离影响 □ 标准误差预测公式 □ 均值置信限公式 □ 单值置信限公式 脚本 □ 重新启动分析 □ 复制脚本 □ 将脚本保存至至地表 □ 将脚本保存至距本每口 □ 将脚本保存至叛表 □ 将脚本保存至叛表 □ 保护本保存可到	
				确定 取消

图 5.8

•	y	x 1	x 2	預測值: y	95% 均值下 限: y	95% 均值上 限: y	95% 单值下 限: y	95% 单值上 限: y
1	50	38	50	50.916782247	49.223430136	52.610134358	47. 58243205	54.251132444
2	52	39	50	51.957382423	50.271032806	53.643732041	48.626582986	55. 288181861
3	56	39	54	55.313327449	53. 938234797	56.688420101	52.128782008	58. 49787289
4	59	41	56	59.072500315	58.043589779	60.101410852	56.021417433	62.123583198
5	62	44	56	62.194300845	60.843344821	63.545256868	59.020102987	65.368498703
6	64	42	60	63. 469045518	62.081620231	64.856470804	60.279155427	66.658935608
7	68	43	64	67.86559072	65.741598798	69. 989582642	64. 29322574	71.4379557
8	69	46	63	70.148404993	68.768780716	71.52802927	66.961900167	73.334909819
9	70	48	62	71.39061909	69.616269462	73.164968718	68.014413162	74. 766825017
10	71	47	60	68. 6720464	67.005449881	70.33864292	65.351204064	71.992888736
11		40	61	62.226831421	59.856338132	64. 59732471	58.502628379	65. 951034463

图 5.9