PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:		(11) International Publication Number: WO 00/15838
C12Q 1/68	A2	(43) International Publication Date: 23 March 2000 (23.03.00)
(21) International Application Number: PCT/EP (22) International Filing Date: 13 September 1999 (76 (74) Agents: POCHART, François et al.; Cabinet Hirsch-Desrousseaux-Pochart, 34, rue de Bassano,
(30) Priority Data: 98402255.8 11 September 1998 (11.09.9) (71) Applicant (for all designated States except US): H MARION ROUSSEL [FR/FR]; 1 Terrasse Bellini, Puteaux (FR). (72) Inventors; and (75) Inventors/Applicants (for US only): LALANNE, Jo [FR/FR]; 110, avenue du Maréchal, F-94120 sous Bois (FR). ROCHER, Corinne [FR/FR]; 3, Lemonnier, F-75012 Paris (FR). CHALWATZIS [DE/DE]; Krokusweg 15, D-64646 Heppenke LEEUW, Thomas [DE/DE]; Alspitzweg 11, Greifenberg (DE). MARGERIE, Daniel [DE/D strasse 104, D-60487 Frankfurt am Main (DE). N Almut [DE/DE]; Bergstrasse 20, D-82152 Krail REINHARD-RUPP, Jutta [DE/DE]; Neufrice Strasse 82A, D-81375 München (DE).	ean-Lot Fonten rue Eli S, Nicosim (DI D-869 E]; Fa NITSCH	SE, SG, SI, SK, SL, IJ, IM, IR, II, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). Published Without international search report and to be republished upon receipt of that report.
(54) Title: ESSENTIAL GENES FROM C. ALBICANS SAID GENES	AND A	METHOD FOR SCREENING ANTIMYCOTIC SUBSTANCES USING
451 PDLNIPHPRMLERTFVLER	LCEL	: : : : : : : :
	1:	SRLPVKDNILKFDQINHKSPTLIMGIL 64
	:	IVKQA.EKLVSEGATIIDIGGVSTRPG 110 : : IIKLCKDALYLHESVIIDVGGCSTRPN 600
1:: .	11:1	TELPQDKVILSIDTYRSNVAKEAIKVG 650
(57) Abstract The present invention concerns essential genes from	ı C. albi	cans and their use in a method for the screening of antimycotic substances.

ATTORNEY DOCKET NUMBER: 10182-016-999 SERIAL NUMBER: 10/032,585 REFERENCE: **BW**

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain .	LS	Lesotho	SI	Slovenia
AM	Amenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Paso	CR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
ÇG .	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR SCREENING ANTIMYCOTIC SUBSTANCES USING SAID GENES

The present invention relates to a method for screening for antimycotic substances in which essential genes from mycetes, particularly from Candida albicans (C.albicans) as well as functionally similar genes from other pathogenic mycetes, or the corresponding encoded proteins, are used as targets. The invention also relates to specific C. albicans genes.

10

The spectrum of known fungal infections stretches from fungal attack of skin or nails to potentially hazardous mycotic infections of the inner organs; Such infections and resulting diseases are known as mycosis.

Antimycotic substances (fungistatic or fungicidal) are 15 used for treatment of mycosis. However, up to now, relatively few substances with pharmacological effects are Nystatin, Pimaricin, Amphotericin B, such as known. 5-fluoro-cytosine and Clotrimazole, Griseofulvin, Batraphene. The drug treatment of fungal infections is 20 extremely difficult, in particular because both the host cells and the mycetes, are eucaryotic cells. Administration of drugs based on known antimycotic substances results therefore often in undesired side-effects, for example Amphotericin B has a nephrotoxic effect. Therefore, there 25 is a strong need for pharmacologically efficient substances usable for the preparation of drugs, which are suitable for prophylactic treatments of immunodepressive states or for the treatment of an existing fungal infection. Furthermore, the substances should exhibit a specific spectrum of action order to selectively inhibit the growth and proliferation of mycetes without affecting the treated host organism.

The aim of the present invention is to provide a method for the identification of antimycotic substances and especially for the identification of anti-Candida substances. An essential feature of this method is that essential genes from mycetes are used as targets for the screening.

The present invention thus concerns a method for screening antimycotic substances wherein an essential gene from mycetes or a functionally similar gene in another pathogenic mycete, or the corresponding encoded protein, is used as target and wherein the essential gene is selected from the group consisting of CaOR110, CaMR212, CaNL256, CaBR102, CaIR012, CaDR325 and CaJL039.

10

15

20

25

30

According to one embodiment of the method of the invention mycete cells which express the essential gene, or a functionally similar mycete gene, to a different level are incubated with the substance to be tested and the growth inhibiting effect of the substance is determined.

According to another embodiment, said target gene or the corresponding target gene encoded protein is contacted in vitro with the substance to be tested and the effect of the substance on the target is determined.

According to another embodiment, the screened substances inhibit partially or totally the functional expression of the essential genes or the functional activity of the encoded proteins.

According to one embodiment the screened substances partially or totally inhibit the activity of dihydropteroate synthase (DHPS) and/or 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (HPPK).

According to another embodiment, the mycete species are selected from the group comprising Basidiomycetes, Ascomycetes and Hyphomycetes.

3

According to another embodiment of the method of the invention said functional similar genes are essential genes from Candida Spp., preferably Candida albicans, or from Aspergillus Spp., preferably from Aspergillus fumigatus.

According to another aspect, the present invention concerns a polynucleotide having the sequence as depicted in SEQ ID No.2, SEQ ID No.4, SEQ ID No.6, SEQ ID No.7, SEQ ID No.9, SEQ ID No.10, SEQ ID No.11 or SEQ ID No.13, preferably SEQ ID No.2, SEQ ID No.4, SEQ ID No.6, SEQ ID No.9, SEQ ID No.10 or SEQ ID No.11, homologs thereof and functional fragments thereof.

According to another aspect, the present invention concerns a gene which is CaOR110, CaMR212, CaNL256, CaBR102, CaIR012, CaDR325 or CaJL039, preferably CaOR110, CaMR212, CaNL256, CaBR102 or CaIR012, or a functionally similar gene or a functional fragment thereof.

15

20

25

According to this embodiment, the functionally similar gene or homologous polynucleotide has a sequence identity, at the nucleotide level, with CaOR110, CaMR212, CaNL256, CaBR102, CaIR012, CaDR325 or CaJL039, respectively, of at least 50%, preferably of at least 60%, and most preferably of at least 70%. A functional fragment is a polynucleotide fragment that will retain the functionality of the starting product (nucleotide or gene). One example is the CaOR110 splice variant (which is also homologous to the original gene, with about 90% identity).

According to another embodiment, the functionally similar gene has a sequence identity, at the amino-acid level, with CaOR110, CaMR212, CaNL256, CaBR102, CaIR012, CaDR325 or CaJL039, respectively, encoded protein(s) of at least 40%, preferably of at least 50%, more preferably of at least 60% and most preferably of at least 70%.

4

These figures given for the gene apply mutatis mutandis to the polynucleotide, as far as homology and similarity.

According to another aspect, the present invention covers the protein(s) encoded by CaOR110, CaMR212, CaNL256, CaBR102, CaIR012, CaDR325 or CaJL039, respectively, gene(s) or by a functionally similar gene, or a functional polypeptidic fragment thereof.

According to another aspect, the present invention provides a plasmid containing CaOR110, CaMR212, CaNL256, CaBR102, CaIR012, CaDR325 or CaJL039, respectively, gene(s), a functionally similar gene or a functional fragment thereof

10

15

20

25

According to another aspect, the present invention provides a plasmid (bacteria containing same) deposited at the CNCM (Institut Pasteur, Paris) on 98/08/13, with the accession numbers I-2065, I-2063 and I-2064, corresponding to the CaNL256, CaBR102 and CaIR012 genes, respectively.

According to another aspect, the present invention provides a plasmid (bacteria containing same) deposited at the DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen, Germany) on 99/08/06 with the accession numbers DSM 12977, DSM 12976, DSM 12978 and DSM 12979, corresponding to the CaDR325, CaOR110, CaOR110 splice variant and CaMR212, respectively.

According to another aspect, the present invention provides a kit for diagnosis of fungal infections comprising a gene selected from the group consisting of CaOR110, CaMR212, CaNL256, CaBR102, CaIR012, CaDR325 and CaJL039, a functionally similar gene thereof, a functional fragment thereof, the corresponding encoded protein or a functional polypeptide fragment thereof.

According to another aspect, the present invention provides an antibody directed against the protein encoded

5

by the CaOR110, CaMR212, CaNL256, CaBR102, CaIR012, CaDR325 or CaJL039, respectively, gene(s) or by a functionally similar gene, or a polypeptide fragment thereof.

According to another aspect, the present invention provides a polynucleotide obtainable by the process comprising the following steps:

- (i) selecting an essential gene from Saccharomyces cerevisiae;
- (ii) comparing the sequence of said gene with
 10 Candida Albicans genome sequences;
 - (iii) deducing homologuous oligonucleotides
 regions;
 - (iv) PCR amplifying the thus-obtained
 oligonucleotides;
- 15 (v) using the amplimers of step (iv) for detecting the complete gene of interest:

the amplimers of step (iv) are used as a probe for detecting the complete gene of interest from a Candida albicans genomic or cDNA library; or

20 the complete gene is obtained by 3' and 5' extension of the amplimer, e.g. by using a PCR method.

According to the invention, the first step is to identify said essential genes and starting from these thus identified genes, essential genes from other pathogenic mycetes can be identified. For practical purposes, essential genes from S. cerevisiae are first identified and starting from them, essential genes from other pathogenic fungus, especially from Candida, are obtained.

25

30

The present invention thus discloses the identification of essential genes from C.albicans and their use in a method for the screening of antimycotic substances, especially anti-Candida substances.

In order to identify essential genes of S.cerevisiae, individual genomic genes are eliminated through homologous

6

recombination. If the DNA segment thus eliminated concerns an essential gene, then the deletion is lethal for the S.cerevisiae cells in haploid form.

A method, wherein the studied S. cerevisiae gene is replaced by a marker gene can be used to generate the corresponding genomic deletion of S.cerevisiae and to determine the S.cerevisiae cells containing the deletion.

As a selection marker a dominant selection marker (e.g. kanamycin resistance gene) or an auxotrophic marker can for example be used. As an auxotrophic marker, it is possible to use genes coding for key enzymes of amino acid or nucleic base synthesis. For example, one can use as a selection marker the following genes from S.cerevisiae: gene encoding for the metabolic pathway of leucine (e.g.LEU2-gene), histidine (e.g. HIS3-gene) or tryptophan (e.g. TRP-1 gene) or for the nucleic base metabolism of uracil (e.g. URA3-gene).

10

20

Auxotrophic S.cerevisiae strains can be used. These auxotrophic strains can only grow on nutritive media containing the corresponding amino acids or nucleotide bases. All laboratory S.cerevisiae strains, containing auxotrophic markers can for instance be used. When diploid S.cerevisiae strains are used, then the corresponding marker gene must be homozygously mutated. Strain CEN.PK2 or isogenic derivates thereof can be used.

Strains containing no suitable auxotrophic marker can also be used such as prototrophic S.cerevisiae strains. Then a dominant selection marker e.g. resistance gene, such as kanamycin resistance gene can be used. A loxP-KanMX-loxP cassette can advantageously be used for this purpose.

For the homologous recombination replacing the whole DNA sequence or part thereof of a S.cerevisiae gene, DNA fragments are used wherein the marker gene is flanked at

the 5'- and 3'-ends by sequences which are homologous to the 5'- and 3'-ends of the studied S.cerevisiae gene.

Different processes can be used for the preparation of the corresponding DNA fragments which are also appropriate for the deletion of any specific S.cerevisiae gene. A linear DNA-fragment is used for the transformation of the suitable S.cerevisiae strain. This fragment is integrated into the S.cerevisiae genome by homologous recombination. These processes include:

- 10 1. "Conventional method" for the preparation of deletion cassettes (Rothstein, R.J. (1983) Methods in Enzymology, Vol. 101, 202-211).
 - 2. "Conventional Method" using the PCR technique ("modified conventional method").
- 3. SFH (short flanking homology) PCR method (Wach, A. et al. (1994) Yeast 10: 1793-1808; Gültner, U. et al. (1996) Nucleic Acids Research 24:2519-2524).
 - 1. In the "conventional method" for the preparation of deletion cassettes in the S.cerevisiae genome, the gene to be studied is either already present in an appropriate vector or is integrated in such a vector. With this method, any pBR- pUC- and pBluescript®-derivates can be used for example. A major part of the target gene sequence is eliminated from the vector, for instance using appropriate restriction sites, conserving however the 3'- and 5'-regions of the studied gene inside the vector. The selected marker gene is integrated between the remaining regions.
- 2. In the modified form of this "conventional method", PCR is used. This method allows amplification of the 3'-and 5'-terminal regions of the coding sequence of the studied S.cerevisiae gene. This method amplifies selectively both terminal regions of the studied gene, therefore, two PCR-reactions must be carried out for each studied gene, amplifying once the 5'-end, and once the 3'-

8

end of the gene. The length of the amplified terminal DNA-fragment depends on the existing restriction sites. The amplified terminal ends of the studied gene have generally a length of 50 to 5000 base pairs (bp), preferably a length between 500 and 1000 bp.

As template for the PCR-reactions, genomic DNA of S.cerevisiae or wild-type genes can be used. The primer-pairs (a sense and an antisense primer, respectively) are constructed so that they correspond to the 3'-end and the 5'-end sequence of the studied S.cerevisiae gene. Especially, the primer is selected such as to allow its integration by way of appropriate restriction sites.

10

15

20

As vectors, pBR- pUC- and pBluescript®-derivates can be used. In particular vectors already containing a gene encoding the selection marker, are appropriate. In particular, vectors can be used, which contain genes of the selection marker HIS3, LEU2, TRP1 or URA3.

The DNA segments of the studied S.cerevisiae gene, obtained by PCR, are integrated in the vector at both sides of the selection marker, so that subsequently, as in the "conventional method", the selection marker is flanked on both ends by DNA sequences which are homologous to the studied gene.

place in a very efficient and precise manner and the length of the DNA sequence homologous to the studied S.cerevisiae gene flanking the selection marker gene can in fact be considerably shorter than with the "modified conventional method". The flanking ends homologous to the studied S.cerevisiae gene need to present a length of only about 20-60 bp, preferably 30-45 bp. The SFH-PCR method is particularly advantageous as the laborious cloning step can be obviated.

A PCR reaction is carried out on a DNA-template containing the gene for the selection marker to be used, wherein the primers are constructed so that the DNA sequence of the sense primer is homologous to the 5'-end of the selection marker sequence and so that the primer presents in addition at its 5'-end a region of preferably which corresponds to the 5'-terminal 40 nucleotides, sequence of the studied S.cerevisiae gene. The antisense primer is constructed in an analogous manner, i.e. it is complementary to the 3'-end of the gene sequence of the selection marker, wherein this primer contains at its 5'end a region of also preferably 40 nucleotides, which corresponds to the complementary strand of the 3'-terminal coding sequence of the studied gene.

10

15

20

25

30

For the amplification of S.cerevisiae genes to be studied by the SFH-PCR method, vectors containing the gene for the auxotrophic marker or selection marker can be used. Especially, plasmid pUG6 is used as the template. This plasmid contains a loxP-KanMX-loxP cassette (Gültner, U. et al. (1996) Nucleic Acids Research 24: 2519-2524). In other terms, the Kanamycin resistance gene is flanked at both ends by a loxP sequence (loxP-KanMX-loxP cassette). cassette is advantageous in that the Kanamycin resistance gene can be eventually eliminated from the S.cerevisiae genome after integration of the loxP-KanMX-loxP cassette into the S.cerevisiae gene to be studied. Cre-recombinase of bacteriophage P1 can be used for this purpose. Crerecombinase recognizes the loxP sequences and induces elimination of the DNA located between the two loxP sequences by a homologous recombination process. As a result only one loxP sequence remains and the so-called marker regeneration occurs, i.e. the S.cerevisiae strain again using the loxP-KanMX-loxP transformed cassette. This is particularly advantageous, when at least

two functionally similar genes are to be deleted in order to obtain a lethal phenotype.

With the PCR-method, the PCR reaction primers are at the 3'-end a preferably 20 nucleotide long sequence, which is homologous to the sequence situated left and/or right of the loxP-KanMX-loxP cassette, and at the 5'-end a preferably 40 nucleotide long sequence, which is homologous to the terminal ends of the gene to be studied.

Using the three methods, one obtains linear deletion cassettes containing the gene encoding the selection marker, which is flanked on both sides by homologous sequences of the gene to be studied. The deletion cassettes are used for the transformation of diploid S.cerevisiae strains. The diploid strain S.cerevisiae CEN.PK2 (Scientific Research & Development GmbH, Oberursel) can be used for example for this purpose.

10

15

[CEN.PK2 Mata/MAT α ura3-52/ura3-52 leu2-3, 112/leu2-3, 112his3 Δ 1/his3 Δ 1 trp1-289/trp1-289 MAL2-8^C/MAL2-8^C SUC2/SUC2]

The strain CEN.PK2 is prepared and cultivated using known methods (Gietz, R.D. et al. (1992) Nucleic Acids Research 8: 1425; Güldener, U. et al. (1996) Nucleic Acids Research 24:2519-2524).

The cells of the S.cerevisiae strain used are with according to processes known 25 &ransformed appropriate DNA quantity of the linear deletion cassette (e.g. Sambrook et al. 1989). Thereafter, the medium in which the cells are cultivated is replaced by a new medium, a so-called selective medium, which does not contain the corresponding amino acid (e. g. histidine, leucine or tryptophan) or nucleic base (e. g. uracil) or, when using a deletion cassette containing the kanamycin resistance gene, by a medium containing geneticin (G418®) (e.g. a complete medium (YEPD) containing geneticin). Alternatively, the 10

20

PCT/EP99/07376 WO 00/15838 11

transformed cells may be plated on agar plates prepared using the corresponding media. Thereby, one selects the transformed cells, in which a homologous recombination occured, since only those cells can grow under these modified conditions.

However, in most cases, only one of the two copies of the gene in the double chromosome set of a diploid S.cerevisiae strain is replaced by the DNA of the deletion cassette during the transformation, resulting heterozygote-diploid S.cerevisiae mutant strain, wherein one copy of the gene studied is replaced by a selection marker, while the other copy of the gene is maintained in the genome. This presents the advantage that in case of a deletion of an essential gene, due to the existence of the second copy of the essential gene, the mutant S.cerevisiae strain is still viable.

The proper integration of the deletion cassette DNA at the predetermined chromosomal gene locus (gene locus of the gene to be studied) may be checked by Southern-Blot Analysis (Southern, E.M. (1975) J. Mol. Biol. 98:503-517) or by diagnostic PCR analysis using specific primers (Güldener, U. et al. (1996) Nucleic Acids Research 24:2519-2524)

The genetic separation of individual diploid cells may be monitored by tetrad analysis. To this end, reduction division (meiosis) is induced in the diploid cells, especially heterozygote mutant strains, using known methods such as nitrogen impoverishment on potassium acetate plates (Sherman, F. et al. (1986) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.; Guthrie, C. and Fink, G.R. (1991) Methods in Enzymology, Vol 194. Academic Press, San Diego, 3-21; Ausubel, F. M. et al. (1987) Current Protocol in Molecular Biology John Wiley and Sons, Inc., Chapter 13). Meiosis results only in asci with four 15

20

ascospores (segregated), which can be indivualized after partial enzymatic digestion of the ascospore wall with way (1987)) by al. (Ausubel et zymolyase micromanipulators (e.g. SINGER). For example when a tetrad analysis is carried out on a heterozygote-diploid mutant strain in which an essential gene present in the double chromosome set is replaced on one chromosome by homologous recombination, then only two segregated ascospores are viable, namely those which carry the essential gene. The 10 two remaining segregated ascospores are not viable because they lack the essential gene.

In order to check if the genes studied by this method are really essential or if the homologous recombination leads to an alteration of an essential gene adjacent to the gene locus of the gene studied, the heterozygote diploid S.cerevisiae mutant strain is transformed with a centromere plasmid containing said studied gene.

A tetrad analysis is carried out on the transformants. When four instead of two viable segregates are obtained, then the studied gene contained in the centromere plasmid can complement the defect of the two non-viable haploid S.cerevisiae cells/mutant strains, which demonstrates that the studied S.cerevisiae gene is essential.

Preferably, plasmids present in low copy number, e.g. one or two copies per cell are used as centromere plasmids. For example plasmids pRS313, pRS314, pRS315 and pRS316 (Sijkorski, R. S. and Hieter, P. (1989) Genetics 122: 19-27) or similar plasmids can be used for this purpose. Preferably, the studied genes are integrated in said plasmids including their 3'- and 5'-end non-coding regions.

Individual S.cerevisiae genes may be studied using the above-described method, their sequences being totally or partially known. The complete genomic sequence of

S.cerevisiae was made accessible to the public via the WWW (World Wide Web) on April 24, 1996.

Different possibilities exist to have access to the S.cerevisiae genomic DNA sequence via the WWW.

MIPS (Munich information Centre of Protein Sequence)
Address http://speedy.mips.biochem.mpg.de/mips /yeast/

SGD (Saccharomyces Genome Database, Stanford)

Address http://genome-www.stanford.edu/Saccharomyces

YPD(Yeast Protein Database, Cold Spring Harbor)

Address http://www.proteome.com/YPDhome.html

5

15

25

30

The complete S.cerevisiae DNA sequence is also accessible via FTP (file transfer protocol) in Europe (e.g. at the address: ftp.mips.embnet.org) in the U.S.A. (address: genome-ftp.stanford.edu) or in Japan (address: ftp.nig.ac.jp).

7 essential genomic S.cerevisiae genes have been identified by this way: YDR325w, YJL039c, YOR110w, YNL256w, YBR102c, YIR012w and YMR212c

The essential genes of S.cerevisiae are then used to identify corresponding functionally similar genes in other mycetes.

By functionally similar genes in other mycete species, is meant genes which have a function similar or identical to that of the identified essential genes of S.cerevisiae. Functionally similar genes in other mycetes may, but need not be homologous in sequence to the corresponding essential S.cerevisiae genes. Functionally similar genes in other mycetes may exhibit only moderate sequence homology at the nucleotide level to the corresponding essential S.cerevisiae genes. By moderate sequence homology it is meant in the present invention genes having a sequence identity, at the nucleotide level, of at least 50%, more preferably of at least 60% and most preferably of at least 70%.

In addition, functionally similar genes in other mycetes may, but need not encode proteins homologous in sequence to the proteins encoded by the essential S.cerevisiae genes. Functionally similar proteins in other mycetes may exhibit moderate protein sequence homology to the proteins encoded by the essential S.cerevisiae genes.

By moderate protein sequence homology is meant in the present invention proteins having a sequence identity, at the amino-acid level, of a least 40%, preferably of at least 50%, more preferably of at least 60% and most preferably of at least 70%.

10

15

20

30

Genes homologous in sequence may be isolated according to known methods, for example via homologous screening (Sambrook, J. et al. (1989) Molecular Cloning Cold Spring Harbor Laboratory Press, N.Y.) or via the PCR technique using specific primers from genomic libraries and/or cDNA libraries of the corresponding mycetes.

According to one embodiment, genes homologous in sequences are isolated from cDNA libraries. In order to find out functionally similar genes in other mycetes, mRNA is isolated from mycete species to be studied according to known methods (Sambrock et al. 1989) and cDNA is synthesized according to known methods (Sambrock et al. 1989; or cDNA synthesis kits, e.g. from STRATAGENE).

The prepared cDNA is directionally integrated in a suitable expression vector.

For example, synthesis of the first cDNA strand may be carried out in the presence of primers having appropriate restriction sites in order to allow a subsequent cloning in the proper orientation with respect to the expression vector promoter. As restriction sites, any known restriction site may be used. As a primer, for instance the following primer, 50 nucleotides long may be used:

15

The sequence (X)₆ represents an appropriate restriction site, for example for XhoI.

After two-strand synthesis, the cohesive ends of the double stranded cDNA are filled (blunt end) and the cDNA ends are then ligated using a suitable DNA adaptor sequence. The DNA adaptor sequence should contain a restriction site which should be different from the restriction site used in the primer for the synthesis of the first cDNA strand. The DNA adaptor may comprise for example complementary 9- or 13-mer oligonucleotides, whose ends represent the cohesive end of a restriction site. These ends may be for example a EcoRI-site:

5' XXXXXGGCACGAG 3'

5

15

20

3' XCCGTGCTC 5'

The single-stranded \boldsymbol{X} in the adaptor sequence represent the cohesive end of a restriction site.

The cDNA provided with corresponding adaptor sequences is then cleaved using restriction endonuclease, whose recognition site was used in the primer for the synthesis of the first cDNA strand, for example XhoI. The cDNA thus obtained would have according to this example 3'-XhoI and 5'-EcoRI protruding ends and could be therefore directionally integrated into an expression vector cleaved with XhoI and EcoRI.

As expression vectors, among others, E. coli/S.cerevisiae shuttle vectors, i.e. vectors usable in E. coli as well as in S.cerevisiae are suitable. Such vectors may then be amplified for instance in E. coli. As expression vectors, those which are present in a high copy number as well as those present in a low copy number in S.cerevisiae cells can be used. For this purpose, for example vectors selected in the group consisting of pRS423

5

10

15

20

30

- pRS426 (pRS423, pRS424, pRS425, pRS426) and/or pRS313pRS316 (pRS313, pRS314, pRS315, pRS316) (Sikorki, R.S. and Hieter, P. (1989) Genetics 122: 19-27; Christianson T. W. et al. (1992) Gene 110: 119-122) are suitable.

appropriate contain should Expression vectors S.cerevisiae promoters and terminators. In case they do not have these elements, the corresponding promoters terminators are inserted in such a way that a subsequent incorporation of the generated cDNA remains possible. Particularly suitable are the promoters of S.cerevisiae genes MET25, PGK1, TPI1, TDH3, ADHI, URA3. One may use promoters of the wild-type gene in non modified form as well as promoters which were modified in such a way that certain activator sequences and/or repressor sequences were eliminated. As terminators, for example the terminators of the S.cerevisiae genes MET25, PGK1, TPI1, TDH3, ADHI, URA3 are suitable.

According to another embodiment, genes homologous in sequence are isolated from genomic libraries. Genomic DNA libraries from mycetes can be prepared according to procedures known (for example as described in Current Protocols in Molecular Biology, John Wiley and Sons, Inc). For example, genomic DNA from mycetes can be prepared using known methods for yeast cell lysis and isolation of genomic DNA (for example commercially available kits from Bio101, Inc). The genomic DNA can be partially digested using a restriction enzyme such as Sau3AI and the fragments are size-selected by agarose gel electrophoresis. DNA fragments having for example a size of 5-10kb are then purified by classical methods (as for example, using Gene Clean kit from Bio101) and inserted in a E.coli/yeast shuttle vector such as YEP24 (described e.g. by Sanglard D., Kuchler K., Bille J-L., and Monod Μ. Paqani Ischer F., Antimicrobial Agents and Chemotherapy, (1995) Vol.39 Noll,

P2378-2386) cut by a restriction enzyme giving compatible ends (for example BamHI for Sau3AI-cut genomic DNA). The resulting expression library can be amplified in E.coli. However any known method, appropriate for the preparation

of a genomic library, can be used in the present invention.

In order to find the genes in the studied mycete species, which are functionally similar to essential genes of S.cerevisiae, one S.cerevisiae essential gene is placed under control of a regulated promoter, either as an integrative (1) or extrachromosomal (2) gene.

10

20

25

30

1. For the integration of a regulated promoter in the S.cerevisiae genome, one replaces the native promoter of the selected essential gene by the regulated promoter, for example by homologous recombination via PCR (Güldener et al. (1996). The homologous recombination via PCR can be carried out for example in the diploid S.cerevisiae strain CEN.PK2. The successfull integration into one chromosome can be checked in haploid cells following tetrad analysis.

Using the tetrad analysis, one obtains four viable ascospores, wherein in two haploid segregates, the selected essential gene is placed under the control of the native promoter, while the essential gene in the two remaining segregates is placed under the control of the regulated promoter.

The last mentioned haploid segregates are used for the transformation with the cDNA or the genomic DNA present in the recombinant vector.

2. Using the extrachromosomal variant, the selected essential S.cerevisiae gene is first inserted in a suitable expression vector, for example a E.coli/ S.cerevisiae shuttle vector. For this purpose, the essential gene may be amplified via PCR from genomic S.cerevisiae DNA starting from the ATG initiation codon up to and including the termination codon. The primers used for this purpose may be

WO 00/15838

5

10

constructed in such a way that they contain recognition sites for appropriate restriction enzymes, facilitating a subsequent insertion under control of a regulated promoter in an expression vector.

PCT/EP99/07376

The recombinant expression vector with the plasmid copy of the essential S.cerevisiae gene under the control of a regulated promoter is subsequently used for the transcomplementation of the corresponding mutant allele. The corresponding mutant allele may be selected from the prepared heterozygote-diploid mutant strains homologous totally, by or partially eliminating, recombination an essential mycete gene listed above and as described above.

The expression vector with the selected essential S.cerevisiae gene is transformed in the corresponding 15 heterozygote-diploid mutant strain carrying instead of the selected essential S.cerevisiae gene, a selection marker gene. The transformants are isolated by selection based on the auxotrophic marker contained in the expression vector 20 used. The thus transformed heterozygote-diploid mutant strains are submitted to a tetrad analysis. One obtains four viable segregates. By retracing the corresponding markers of the mutant allele and the expression vector, the transformed wild-type segregates may be distinguished from segregates which do not contain the genomic copy of the 25 essential gene. Segregates, which do not contain the genomic copy of the selected essential gene, are designated as trans-complemented haploid mutant strains. They are subsequently used for transformation with cDNA or genomic DNA libraries from other mycete species present 30 appropriate vectors.

As regulated promoters, inducible or repressible promoters may be used. These promoters can consist of naturally and/or artificially disposed promoter sequences.

PCT/EP99/07376

10

15

20

25

30

As regulated promoters, for example the promoters of GAL1 gene and the corresponding promoter derivatives, such as for example promoters, whose different UAS (upstream activation sequence) elements have been eliminated (GALS, GALL; Mumberg, J. et al. (1994) Nucleic Acids Research As regulated promoters, used. 22:5767-5768) may be promoters of gluconeogenic genes may also be used, such as e.g. FBP1, PCK1, ICL1 or parts therefrom, such as e.g. their activation sequence (UAS1 and/or UAS2) or repression sequence (URS, upstream repression sequence) (Niederacher et al. (1992), Curr. Genet. 22: 636-670; Proft et al. (1995) Mol. Gen. Gent. 246: 367-373; Schüller et al. (1992) EMBO J; 11: 107-114; Guarente et al. (1984) Cell 36: 503-511).

A S.cerevisiae mutant strain modified in this manner can be cultivated under growth conditions, in which the regulated promoter is active, so that the essential S.cerevisiae gene is expressed. The S.cerevisiae cells are then transformed with a representative quantity of the library containing the studied mycete species cDNA or genomic DNA. Transformants express additionally the protein whose coding sequence is present in the recombinant vector.

The method contemplates that the growth conditions may be modified in such a way as to inhibit the regulated promoter, under the control of which is the selected Especially, growth conditions may be essential gene. changed by replacing the growth medium. When for example the GAL1 promoter or a derivate thereof is used, one can replace the galactose-containing medium (induced state) by a glucose-containing medium (repressed state).

for the lethal modified conditions are These S.cerevisiae cells in which the recombinant vector does not carry the functionally similar genomic DNA or cDNA of the studied mycete species. On the contrary, the S.cerevisiae 10

20

25

30

PCT/EP99/07376 WO 00/15838 20

recombinant vector expresses in which the cells functionally similar coding sequence of the studied mycete species, are viable, since in these cells the lethal metabolic defect is complemented by the protein encoded by the functionally similar gene.

The method contemplates that the recombinant vector (the plasmid) is isolated from the surviving transformants using known method (Strathern, J.N. and Higgins, D.R. (1991). Plasmids are recovered from yeast into Escherichia coli shuttle vectors in: Guthrie, C. and Fink, G.R. Methods in Enzymology, Volume 194. Guide to yeast genetic and molecular Biology. Academic Press, San Diego, 319-329) and the cDNA or genomic DNA is analyzed using DNA-analysis (Sanger et al. (1977), methods such as DNA sequencing. Proc. Natl. Acad. Sci. USA 74: 5463-5467)

Essential S.cerevisiae genes may thus be used for the identification of functionally similar genes and/or genes homologous in sequence in other mycetes, especially essential genes functionally similar and/or homologous in sequence in mycetes pathogenic to human, animal and plants. For this purpose for example mycetes of the classes phycomycetes or eumycetes may be used, in particular the basidiomycetes, ascomycetes, subclasses mehiascomycetales (yeast) and plectascales (mould fungus) and gymnascales (skin and hair fungus) or of the class of hyphomycetes, in particular the subclasses conidiosporales (skin fungus) and thallosporales (budding or gemmiparous among which particularly the species mucor, fungus), (blastomyces paracoccidioides coccidioides, rhizopus, (blastomyces), aspergillus, endomyces brasiliensis), penicilium (scopulariopsis), trichophyton (ctenomyces), hormodendron, piedraia, epidermophton, microsporon, cryptococcus, candida, sporotrichon, phialophora, geotrichum and trichosporon.

WO 00/15838

Of particular interest is the use of Candida Spp. especially Candida albicans, Candida glabrata, Aspergillus Spp., especially Aspergillus fumigatus, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum, Blastomyces dermatitidis, Paracoccidioides brasiliens and Sporothrix schenckii.

PCT/EP99/07376

Starting from the genes of S.cerevisiae, identified according to the above-described method, Applicants cloned corresponding essential genes from C.albicans i.e. CaOR110, CaMR212, CaNL256, CaBR102, CaIR012, CaDR325 or CaJL039, by the following method.

First, oligonucleotide(s) is(are) selected in the sequence of the S.cerevisiae gene or a homologous C. albicans sequence in order to amplify the corresponding fragment of C.albicans. After cloning, the obtained fragment (exhibiting a sequence of about several hundred bp) is used as a probe for screening a C.albicans (genomic) DNA library. The screening may include the following steps: clones were spread on dishes, covered with filters where the DNA was crosslinked to the filters, filters are hybridized, the positive colonies are then detected. The selected clone(s) is (are) then sequenced.

The method contemplates that essential mycete genes are used to identify substances which may inhibit partially or totally the functional expression of these essential genes and/or the functional activity of the encoded proteins. Substances may be identified in this fashion, which inhibit mycetes growth and which can be used as antimycotics, for example in the preparation of drugs.

25

30

The present invention especially covers a method for screening such inhibiting substances wherein an essential gene from C.albicans selected from CaOR110, CaMR212, CaNL256, CaBR102, CaIR012, CaDR325 or CaJL039, or a

functionally similar gene in another pathogenic mycete or the corresponding encoded protein is used as target.

By functionally similar genes in other pathogenic mycete species, is meant genes which have a function similar or identical to that of the identified essential genes of C.albicans. Functionally similar genes in other pathogenic mycetes may, but need not be homologous in sequence to the corresponding essential C.albicans genes. Functionally similar genes in other pathogenic mycetes may exhibit only moderate sequence homology at the nucleotide level to the corresponding essential C.albicans genes. By moderate sequence homology it is meant in the present invention genes having a sequence identity, at the nucleotide level, of at least 50%, more preferably of at least 60% and most preferably of at least 70%.

10

20

25

30

In addition, functionally similar genes in other pathogenic mycetes may, but need not encode proteins homologous in sequence to the proteins encoded by the essential C.albicans genes. Functionally similar proteins in other mycetes may exhibit moderate protein sequence homology to the proteins encoded by the essential C.albicans genes.

By moderate protein sequence homology is meant in the present invention proteins having a sequence identity, at the amino-acid level, of a least 40%, preferably of at least 50%, more preferably of at least 60% and most preferably of at least 70%.

A particular feature of this method is that essential mycete genes or the corresponding encoded proteins are used as targets for the screening of the substances. The method contemplates that essential C.albicans genes as well as functionally similar genes and/or genes homologous in sequence of other pathogenic mycetes or the corresponding encoded proteins may be used as targets.

WO 00/15838

10

According to one embodiment of the screening method of the invention, mycetes cells are provided, which contain the essential gene used as target, and those cells are incubated with the substance to be tested. By this way, the growth inhibitory effect of this substance with respect to the essential target gene is determined.

23

PCT/EP99/07376

The mycetes cells which express the essential target gene to a different degree are used, and these cells are then incubated with the substance to be tested and the growth inhibitory effect of this substance is determined.

The method includes the use of two or more mycetes cells, or strains derived therefrom, which differ in that they express the essential target gene to a different degree.

15 For example, two, three, four, five, ten or more mycetes cells or the corresponding mycetes strains may be comparatively analysed with respect to the growth inhibitory effect of a substance used in a defined concentration. Through such expression degree series, 20 antimycotic substances may be distinguished from cytotoxic or inactive substances.

A particular embodiment of the method includes the use of haploid mycetes cells/ strains for the screening, especially haploid S.cerevisiae cells/ strains.

25 The method contemplates the integration of the essential gene selected as a target in a suitable expression vector.

As expression vectors E.coli/S.cerevisiae shuttle vectors are for example suitable. Especially vectors differing in their copy number per cell may be used. Therefore, one may use vectors, which are present in the transformed S.cerevisiae cells in a high copy number, or one can also use those with a low copy number. One embodiment comprises the use of expression vectors which

allow the integration of the target gene in the S.cerevisiae genome.

For example the vectors pRS423, pRS424,pRS425, pRS426, pRS313, pRS314, pRS315, pRS316, pRS303, pRS304, pRS305, pRS306 (Sikorki and Hieter, 1989; Christianson et al. 1992) are appropriate as expression vectors.

The vectors of the series pRS423 - pRS426 are present in a high copy number, about 50 - 100 copies/ cell. On the contrary, the vectors of the series pRS313 - pRS316 are present in a low copy number (1 - 2 copies / cell). When expression vectors from these two series are used, then the target gene is present as an extrachromosomal copy. Using the vector of the series pRS303 - pRS306 allows the integration of the target genes into the genome. Using these three different expression vector types allows a gradual expression of the studied functionally similar essential gene.

10

15

20

25

30

The method includes that the growth inhibitory effect of substances with respect to mycetes cells/strains is comparatively determined using expression vectors differing for instance in the copy number of the vector/ cell.

Such cells may express the essential target gene to a different degree and may exhibit a graduated reaction with respect to the substance.

gene target includes also, that The method expression of different strength is obtained in different mycetes cells (regulated overexpression) by insertion of the target gene in the expression vector between specific promoters and S.cerevisiae selected S.cerevisiae promoters which are constitutively expressed, but with different strength, are suitable. Examples for such promoters are native promoters of S.cerevisiae genes MET25, PGK1, TPI1, TDH3, ADH1, URA3, TRP1, as well as corresponding derivatives therefrom, for example promoter

25

derivatives without specific activator and/or repressor sequences.

Regulated promoters are also appropriate for graduated over-expression of the target gene. The native promoters of the GAL1 genes and/or corresponding derivates thereof, for example promoters, in which different UAS elements have been eliminated. (GALS, GALL; Mumberg et al. (1994) Nucleic Acids Research 22: 5767-5768) as well as promoters of gluconeogenic genes, for example the promoters FBP1, PCK1, ICL1, or parts thereof, for example their 10 activator- (UAS1 or UAS2) or repressor- (URS) sequences are used in corresponding non activable and/or non repressible test promoters (Schüller et al. (1992) EMBO J. 11: 107-114) Guarente et al. (1984) Cell 36: 503-511; Niederacher et al. (1992) Curr. Genet. 22: 363-370; Proft et al. (1995) Mol. 15 Gen. Genet. 246: 367-373).

In the expression vector terminator for example the terminator sequence of S.cerevisiae genes MET25, PGK1, TPI1, TDH3, ADHI, URA3 may be used.

The method includes that by the use of cleverly selected expression vector types and/or the preparation of suitable expression vectors, eventually using promoters of different strength and differently regulated promoters, a series of expression vectors may be constructed, all containing the same target gene, but differing in that they express the target gene to a different extent.

transformation of the method includes the wild-type haploid vector in expression S.cerevisiae. The thus obtained S.cerevisiae cells/strains are cultivated in liquid medium and incubated in the presence of different concentrations of the substance and the effect of this substance on the growth behaviour of the cells/strains expressing the target gene to a different degree is comparatively analysed. The method

30

WO 00/15838 26

also includes that haploid S.cerevisiae cells/strains, transformed using the respective expression vector type without target gene, are used as a reference.

PCT/EP99/07376

The method includes that the screening of the substances can be carried out in different media using regulated promoters, especially GAL1 promoter and its derivates (GALS and GALL), since the expression degree may be largely influenced by the choice of the respective medium. Thus, the expression degree of the GAL1 promoter decreases in the following fashion: 2 % galactose > 1 % galactose + 1 % glucose > 2 % glycerine > 2 % glucose.

10

15

The effect of the substances inhibiting the growth of wild-type cells of S.cerevisiae, may be partially or totally compensated by the overexpression of the functionally similar gene of another mycete species.

According to one embodiment, the method for screening antimycotic substances is carried out in vitro by contact an essential or functionally similar gene or the corresponding encoded protein with the substance to be tested and determination of the effect of the substance on 20 the target. Any in vitro test appropriate for determining the interaction of two molecules, such as a hybridization test or a functional test, can be used (e.g. enzymatic tests which are described in details in Bergmeyer H.U., Methods of Enzymatic Analysis, VCH Publishers). If the screening is carried out using the encoded protein as the target, then the corresponding essential gene is inserted by any suitable method known in the art, such as PCR amplification using a set of primers containing appropriate restriction sites, (Current Protocol in Molecular Biology, John Wiley and Sons, Inc) into an expression system, such as E. coli, Baculovirus, or yeast, and the expressed protein is then completely or partially purified by a Any purification method method known in the art.

10

15

25

30

27

PCT/EP99/07376

appropriate for the purification of expressed proteins, such as affinity chromatography can be used. If the target protein function is known, a functional test can then be carried out in which the effect of the antimycotic substance on the protein function is determined. If the protein function is unknown, substances which can interact with the target protein, e.g. which bind to the encoded protein, can be tested. In such a case a test such as protection of the target protein from enzymatic digestion by appropriate enzymes can be used.

According to one specific embodiment, the method for screening antimycotic substances corresponds to an enzymatic assay wherein the activity of dihydropteroate synthase (DHPS) and/or 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (HPPK) is determined; the enzymatic essay can be such as diclosed in "Bergmeyer H.U., Methods in Enzymatic analysis, VCH Publishers".

Dihydropteroate synthetase (DHPS) catalyses the 6-hydroxymethyl-7,8-dihydropterin of condensation pyrophosphate to para-aminobenzoic acid to form 7,8dihydropteroate which corresponds to the second step in the 6-hydroxymethyl-7,8leading from three-step pathway 7,8-dihydro-6-7,8-dihydrofolate. dihydropterin to hydroxymethylpterin-pyrophosphokinase (HPPK) catalyzes the 6-hydroxymethyl-7,8pyrophosphate to attachment of dihydropterin to form to 6-hydroxymethyl-7,8-dihydropterin pyrophosphate which corresponds to the first step in a three-step pathway leading to 7,8-dihydrofolate. All require reduced folate cofactors for organisms synthesis of a variety of metabolites. Most microorganisms must synthesize folate de novo because they lack the active transport system of higher vertebrate cells which allows these organisms to use dietary folates. Enzymes involved in folate biosynthesis are therefore targets for a variety

WO 00/15838

5

10

15

20

25

30

28

PCT/EP99/07376

of antimicrobial agents. Consequently, these enzyme activities are essential to the microorganisms, and are absent in man.

The method also includes the identification of genes which are functionally similar and/or homologous in sequence to essential C.albicans genes from humans, animals or plants. The corresponding human, animal or plant genes may optionally be used as target genes in the method in order to test if antimycotic substances exhibit an effect on these target genes.

A particular advantage of the method is that in this way substances may be identified which efficiently inhibit mycetes growth and also the influence of these substances on corresponding functionally similar genes and/or genes homologous in sequence to essential C.albicans genes from human, animal or plants may be determined.

The method includes also the possibility to check the existence of functionally similar genes and/or human, animal or plant genes homologous in sequence to the corresponding essential mycete genes, for example by checking homology of the identified essential mycete genes or parts thereof with human, animal or plant sequence genes available in data banks. In this way, it is possible to select at an early stage from the identified essential mycete genes, depending on the aim, those for which no functionally similar gene and/or no human gene homologous in sequence exist, for example.

Thereby, the method offers a plurality of possibilities to identify selectively substances with antimycotic effects, with no harmful effect on human beings.

For example, it is possible to identify substances usable for the preparation of drugs for the treatment of mycosis or prophylaxis in immunodepression states. These

29

substances may be used for example for the manufacture of drugs usable for the treatment of mycotic infections, which occur during diseases like AIDS or Diabetes. Substances which may be used for the fabrication of fungicides, especially of fungicides which are harmless for humans and animals, can also be identified.

Furthermore, the method offers the possibility to identify antimycotic substances, which selectively inhibit growth of specific mycete species only.

10 The screening method is particularly advantageous inasmuch as it is sufficient to know whether the genes are essential, one does not need any additional information regarding the function of the essential genes or the function of the encoded proteins. In addition, it is particularly advantageous for the identification of functionally similar genes to essential S.cerevisiae gene, in other mycetes where the DNA sequence is not available for many of these genes.

According to another aspect the invention provides an antibody directed against the protein encoded by the CaOR110, CaMR212, CaNL256, CaBR102, CaIR012, CaDR325 or CaJL039, gene or a polypeptidic fragment thereof. The term "antibody" encompasses monoclonal and polyclonal antibodies. Said antibodies can be prepared by method well known in the art such as those disclosed in "Antibodies, a laboratory manual", Ed. Harbow and David Lane. Cold Spring Harbor Laboratory Eds., 1988.

20

25

According to another aspect the present invention provides a kit for the diagnosis of fungal infections comprising a gene selected from the group consisting of CaOR110, CaMR212, CaNL256, CaBR102, CaIR012, CaDR325 and CaJL039, a functionally similar gene thereof, a functional fragment thereof, the corresponding encoded protein, a functional polypeptide fragment thereof or an antiboby

PCT/EP99/07376 WO 00/15838 30

directed against the protein encoded by CaOR110, CaMR212, CaNL256, CaBR102, CaIR012, CaDR325 or CaJL039 gene or by a functionally similar gene, or a polypeptidic fragment Such kits can be prepared using any suitable method well known in the art.

Examples

Example 1 : CaNL256

Standford of site Internet (http://candida.standford.edu/) gives access to preliminary sequences of the genome of C. albicans. One of these 10 sequences has homology with the YNL256 gene of cerevisiae. Two oligonucleotides were selected in this and (5'-ATTCATCCCATCAGTGCAGAAAG-3' sequence in order to amplify ATTGACCAATAGCTCTAATTAATG-3') corresponding fragment of C. albicans. After cloning, we obtained a sequence of 399 bp close to the expected sequence (SEQ ID NO:1). The deduced protein was compared with the one of YNL256, evidencing 53% similarity and 43% identity (fig.1). This fragment of 399 bp of C. albicans was used as a probe for screening a genomic library of C. 20 albicans. The latter was prepared by partial digestion of genomic DNA of C. albicans by Sau3AI and cloning into the YEP24 vector at the BamHI site. The clones of the library were then spread at a density of 2000 clones per dish. Each dish was covered by a nitrocellulose filter which was then successively treated with: NaOH, 0.5M, 5 minutes; Tris, 1M, pH 7.7, 5 minutes; Tris, 0.5M, pH 7.7, Nacl, 1.25M, 5 minutes. After drying, the filters were kept for 2 hours at 80°C. Prehybridization and hybridization were carried out in a buffer of 40% formamide, 5xSSC, 20 mM Tris pH 7.7 1xDenhardt 0.1% SDS. The probe was labeled with 32P with the RediPrime kit and dCTP from Amersham Hybridization took place over 17 hours at 42°C. filters were then washed in 1x SSC, 0.1% SDS, three times

PCT/EP99/07376 WO 00/15838 31

for 5 minutes at room temperature and then twice for 30 minutes at 60°C, and were then submitted to autoradiography The colonies corresponding to the spots overnight. obtained were reisolated by re-spreading at low density followed by further hybridization. Three clones were thus obtained (out of 40,000), which were sequenced on an ABI 377 apparatus. The sequences were compiled using the ABI software and then analysed using the GCG software package. One of these three clones turned out to contain the complete coding sequence corresponding to the probe used; 10 this gene was called CaNL256, whose sequence is represented in SEQ ID NO:2. CaNL256 has 52% of nucleotides identical to YNL256 of S. cerevisiae. The coding region is shorter at the N-terminus. For translation to amino acids, account was taken of the fact that, in C. albicans, the CTG codon 15 is translated to Serine (there are 3 CTG codons The deduced protein had 40% amino acids CaNL256). identical with YNL256 of S. cerevisiae and 41% with FAS Pneumocystis synthase) of (folic acid Investigation into the databases using the Blast software 20 showed homology of two parts of the CaNL256 protein with, enzymes Dihydropteroate bacterial respectively, the Synthase (EC 2.5.1.15) (DHPS) of Haemophilus influenzae, meningitidis, Neisseria haemolyticus, Staphylococcus 25 Streptococcus pneumoniae, Bacillus subtilis, Clostridium acetobutylicum, Escherichia coli, Mycobacterium leprae (P 7,8-dihydro-6e-28) and than less value hydroxymethylpterin-pyrophosphokinase (EC 2.7.6.3) (HPPK) subtilis, Escherichia coli, Haemophilus Bacillus influenzae, Streptococcus pneumoniae (P value less than e-30 20). The units characteristic of DHPS and HPPK are also found in CaNL256.

Example 2 : CaBR102

Stanford of site Internet The (http://candida.stanford.edu/) give access to preliminary sequences of the genome of C. albicans. One of these YBR102 homology with the sequences has S.cerevisiae. Two oligonucleotides were selected in this (5'-AGTATTCAATTGGGTATTCC-3' sequence amplified the CCGGCATCATCAGTAACTCC-3') order in corresponding fragment of C. albicans. After cloning, we obtained a sequence of 647 bp (SEQ ID NO:3). The deduced 10 protein was compared with the one of YNL102, evidencing 35% similarity and 26% identity (fig.2). This fragment was amplified using Pfu polymerase (Stratagene). product was purified (High Pure PCR Product Purification Kit, Boehringer Mannheim) and used as a probe for screening 15 a C. albicans genomic DNA library. The latter was prepared by partial digestion of C. albicans genomic DNA with SauIIIA and cloning into the YEP-24TRP1 vector at the BamHI restriction site. 40,000 clones of the library were then spread at a density of 2000 clones per dish. Each dish was 20 covered by a nitrocellulose filter (Membrane Hybond N^* , Amersham) which was then successively treated with: 1.5 M NaCl/0.5 M NaOH, 5 minutes; 1.5 M NaCl/0.5 M Tris-HCl pH 7.2/1 mM EDTA, 3 minutes, twice; DNA was crosslinked to the filters (Amersham Life Science, ultra violet crosslinker). 25 The probe (100 ng) was labelled with 32P using the RediPrime kit and dCTP (Amersham Life Science). The filters were hybridized in a buffer containing 30% formamide, SSC, 5% Denhart's solution, 1% SDS, 100 μg /ml salmon sperm DNA and a probe concentration of 10° cpm/ml at 42°C for 16 The membranes were then washed three times at room temperature in 2 x SSC/0.1% SDS for 5 minutes each and three times in 1 x SSC/0.1% SDS at 60°C for 20 minutes each. the filters were then exposed overnight to an X-ray

PCT/EP99/07376 WO 00/15838 33

film. The colonies corresponding to the positives clones were isolated and screened a second time by the same procedure. Two positives clones were finally obtained, which were sequenced on an ABI377 apparatus. the sequences were compiled using ABI software and then analysed using the GCG software package. The nucleotide sequences of these two clones were identical and contained the complete coding sequence corresponding to the probe used, this gene was called CaBR102, whose sequence is represented in SEQ ID The translation of this nucleotide sequence was No:4. examined, account was taken of the fact that in C. albicans the CTG codon is translated to serine (there are 3 CTG codons in CaBR102). The deduced protein has 24% identity to S. cerevisiae gene YBR102.

Example 3 : CaIR012

10

15

20

25

30

Chromosomal DNA from the C. albicans strain Caf2-1 was isolated using Yeast Cell Lysis prep Kit and Genome DNA Kit A 343 bp fragment from C. albicans genomic from BIO101. DNA (SEQ ID NO:5) was amplified with the oligonucleotide primers CaYIR012-5' (5'-GACGTCGTAGACGATACTCAAGAAG-3') and (5'-CTGCAGTAAACCCTCCAGATATAACAG-3') CaYIR012-3' PowerScript DNA polymerase (PAN Systems GmbH) using the hot start technique. The PCR product was purified agarose gel and labeled with fluorescein (Gene image random prime labelling module, Amersham Life Science) according to the manufacturer's instructions. Plasmid DNA from E.coli was isolated using Qiagen columns as recommended by the Screening the $\lambda ZAPII$ C. albicans cDNA manufacturer. manufacturer's following the performed library was Nylon Ltd.). (Stratagene instructions (Schleicher&Schuell) were lifted from LB-plates (150 mm) with 15000 pfu/plate, denatured 5 min in 1.5M NaCL, 0.5M NaOH, neutralized 3 min in 1.5M NaCl, 0.5M Tris-HCl pH8.0, washed 3 min in 0.2 M Tris-HCl pH 7.5, 2xSSC and DNA was

crosslinked to the filters (Stratagene UV crosslinker). The filters were prehybridized 4 h at 60 °C and hybridized with the fluorescein-labeled DNA probe overnight at 60 °C. Detection was performed with Anti-fluorescein AP conjugate (Signal amplification module for the FluorImager, Amersham LIFE SCIENCE) and analysed after 20 h with a Fluorimager (Storm 860, Molecular Dynamics). Positive plaques were picked and incubated with 0.5 ml SM-buffer (100mM NaCl, 8 50 mM Tris-HCl pH7.5, 0,01% gelatin). mM MgSO., 10 selected clones were diluted, titered with host cells XL1-Blue and screened and purified a second time by the same SK(-) phagemid pBluescript procedure. Finally, the containing the DNA insert of interest was rescued by the ExAssist Helper Phage system according to the Stratagene protocol. From a total of 75000 screened plaques, 3 15 pBluescript SK (-) positive clones were identified. phagemid DNA was isolated, sequenced with T3 and T7 primers and the sequences were extended with custom-synthesized oligonucleotide primers. Nucleotide sequence analyses were performed with the Gene Data software package (Gene Data 20 Basel Switzerland). Similarity searches with the Swissprot database were conducted with the BLAST program (Gish, Warren and David J. States (1993). Identification of protein coding regions by database similarity search. Nat. Genet. 3:266-72.). One of these three clones turned out to contain the complete coding sequence corresponding to the probe used; this gene was called CaIR1012, whose sequence is represented in SEQ ID NO:6.

Example 4: CaJL039

The CaJL039 sequence is depicted in SEQ ID No 7.

The CaJL039 gene was cloned based on gene fragment data issued from the public Stanford Candida albicans sequencing database.

(a) A fragment that showed homology to Saccharomyces cerevisiae YJL039c was identified, the sequence of which is given in SEQ ID No 8.

Using the procedure disclosed in example 3 with the oligonucleotide primer pair (Ca039s: TAG CTC AAC CTA CCA CCA ATC /Ca039r: ATC ACA AGA CTG TCA ATG TAA AT), a short PCR fragment (234 base pairs long) was amplified for screening a Candida albicans cDNA lambda ZAP II library (gift of Alistair Brown, Aberdeen).

Three positive clones of the 3' coding region were obtained.(# 21t7, 11t3, 21t3).

(b) 3'- and 5'- extension of the internal fragment using the primer walking method

The Sanglard genomic Candida DNA library with the YEp24 vector backbone was used for further amplification of 3'- and 5'-coding sequences. Amplification was carried out by using the following vector-specific oligonucleotide primers and CaJL039 fragment-specific primers:

cggaattcctatcgactacgcgatcatgg: YEp24for (vector

20 specific)

5'fishing)

gcgaattccgatataggcgccagcaac: YEp24ba (vector specific)

caattgctttgactcgggtgttattaagt: Ca039-51 (CaJL039:

25 tcttggcacaacttgataagaatctgt: Ca039-52 (`)

taggtgtacgcgaaagccaagtagaac:Ca039-53 (`)

ttgttaatcgtacacctaaggtgttgac: Ca039-31 (CaJL039:
3'fishing)

ttgcagattgatgctagcaatgtatttg: Ca039-32 (`)

30 Using the technique of primer walking, the complete 5'-sequence could be amplified (clone 14b-1-1 and clone 17b-3-4).

The missing 3'-sequence was available from GTC PathoGenome Release 5.0, contig #2830.

15

20

An interacting protein (C82, component for RNA polymerase III in yeast) has been identified.

Example 5: CaOR110

5.1. CaOR110

The CaOR110 sequence is depicted in SEQ ID No 9.

CaOR110 was cloned based on gene fragment data issued from the public Stanford Candida albicans sequencing database.

- (a) A small ScOR110-homologous fragment was used in a hybridization experiment to identify CaOR110 clones in a Candida Albicans lambda ZAPII cDNA library (from Alistair Brown). Alignement of Candida Albicans CaOR110 sequence with the fragment used for hybridization is given in figure 3. The homologous fragment sequence is given in SEQ ID No. 17.
 - (b) 3'- and 5'- Extension of the internal fragment:

The Sanglard genomic Candida DNA library (received from RMV) in the YEP24 vector backbone was used for the amplification of 3'- and 5'- coding and non-coding sequences. This amplification was done by using the vector-specific oligos (directional towards the insert) and CaOR110 fragment-specific oligos (directional towards the vector flanking sequences) described below:

cggaattcctatcgactacgcgatcatgg : YEP24for

25 gcgaattccgatataggcgccagcaac : YEP24ba

cgggatccggtaaccaattggatctataaccgtg: 110-ba-150
gcggatcctggtgcccttggtggtgaatg: CaYOR110A
gcggatccctcacaatatgacgattgaaact: CaYOR110B

ggcgtcgactcaggcgccagttttacgtacttcaaattcatc : CaYOR110C

tgtgaattcttgacacagggtga : CaYOR110D caaaccttcagcacaactcca : CaYOR110E

The finaly assembled sequence that included also 3'- and 5'- non-coding sequences was verified by sequencing. The coding region was subcloned into the p414RSGALL-vector.

20

25

The map is depicted in Fig. 4.

The homologous yeast ORF (YOR110w) has been described as the transcription factor subunit TFC7 interacting with TFC1 in the TFIIIC polymerase complex (Manaud et al., 1998, Mol. Cell. Biol. 18; 3191-3200).

5.2. CaOR110 splice variant

For CaOR110, an additional splice variant was identified. The clones for the splice variant of CaOR110 were obtained from a Candida albicans cDNA library.

The sequence is depicted in SEQ ID No.10.

The splice variant uses the donor site "gtacgt" at position 907 of the original CaOR110 sequence. Acceptor site is at 1047. The map is disclosed in Fig. 5.

The alignement of the original CaOR110 and the splice variant is given in fig. 6.

Example 6 : CaMR212

The CaMR212 sequence is depicted in SEQ ID No. 11.

(a) CaMR212 was cloned based on gene fragment data from the public Standford Candida albicans sequencing database.

The sequence of a fragment showing homology (Blast search) to the Saccharomyces cerevisiae gene YMR212c is given in SEQ ID 12.

Based on these data, the following oligos were designed that allow amplification of this fragment (490 bp-fragment) from genomic Candida albicans DNA.

Oligos:

CaYMR212for: 5'- cacctgtgaacaacccaccatc-3'
CaYMR212back: 5'- gaatatcctttttaactcaagag -3'

(b) 3'- and 5'- extension of this internal fragment 30 from CaMR212

For this purpose, genomic Candida DNA libraries from Dominique Sanglard (received from RMV) were used. The YEp24 backbone of this library was used to amplify the 3'- and 5'- coding and non coding sequences with PCR. This was done

by using oligos specific for the CaMR212 490 bp-fragment (directional towards the vector flanking regions) and vector-specific oligos (directional towards the insert).

Oligos:

5

YEP24for (vector specific):

5'-cggaattcctatcgactacgcgatcatgg

YEP24ba (vector specific):

5'-gcgaattccgatataggcgccagcaac

Primer YEp24for and CaMR212for gave a 500 bp fragment, 10 encoding 5'-UTR and the 5'coding region from CaMR212.

Using primer YEp24 for and CaMR212back a 1400 bp CaMR212-fragment was amplified. Using the sequence of this 1400 bp-fragment the following new primers, specific for this fragment were designed.

15 Oligos:

Ca212-1: 5'- gctttcccagcaggataacattg

Ca212-2: 5'- tgagttataatgcagctgttgg

Ca212-3: 5'- catctcgtgtgaacatgattgg

Primers YEP24 for and Ca212-3 gave a 1600 bp fragment, coding for the 3'- coding region and the 3'UTS region.

With the 3 PCR fragments the 2900 bp sequence(including coding and 3'and 5'-non-coding sequences) was assembled. With the following new primers the coding sequences was amplified from genomic DNA and cloned into

25 p413GALL-vector.

Oligos for amplifying coding region:

Ca212for: 5'- agtttcttcaacttccagatccaag

Ca212back: 5'- gtatatttgcaactgtctctctctc

The yeast homolog YMR212c plays a role in cell wall function because the knockout can be rescued in 1M sorbitol. In addition, YMR212c unger GAL-promoter regulation shows an increased sensitivity versus Congo Red and Calcofluor White. YMR212c is an integral membrane protein and localizes to the plasma membrane (demonstrated

by microscope analysis of YMR212-GFP fusion proteins and by biochemical analysis of YMR212-GST fusion proteins).

Example 7 : CaDR325

The CaDR325 sequence is given at SEQ ID 13.

CaDR325 was cloned based on gene fragment data from 5 the public Stanford Candida albicans sequencing database.

- (a) 3 fragments that showed homology to Saccharomyces cerevisiae YDR325 were identified, the sequences of which are disclosed in SEQ ID 14, 15 and 16.
- Based on these data, the following oligos were 10 designed that allowed the verification of the database sequences and the amplification of an approx. 2200 bp internal CaDR325 fragment from genomic DNA:

cgagcatctacttgttcaaccac: hybCaYDR325ba Oligo

325-juls Oligo gaatctctggctcgctc: 15

25

gaccgagatacacgagaat: 325-julr Oligo

ggttaaatgatcgtgatgaat: Ca325r Oligo

caacctcactgacaaatactt: Ca325s Oligo

The finally subcloned 2200 bp internal fragment was amplified by the combination hybCaYDR325ba + 325-julr oligos.

(c) 3'- and 5'- Extension of the internal fragment:

The Sanglard genomic Candida DNA library (received from RMV) in the YEP24 vector backbone was used for the amplification of 3'- and 5'- coding and non-coding sequences. This was done by using the following vectorspecific oligos (directional towards the insert) CaDR325 2200 bp fragment-specific oligos (directional towards the vector flanking sequences):

YEP24for cggaattcctatcgactacgcgatcatgg : 30 specific)

(vector gcgaattccgatataggcgccagcaac : YEP24ba specific)

acgcttccaatgtattattctcg : Oligo 1-10-A back

40

ggatgccaatttccctga: Oligo 1-10-B for catccagaagatataacggct: Oligo 1-10-C for tgcataatctactcagcgaca: Oligo 1-10-D back gtggttgaacaagtagatgctcg: Oligo 1-10-E for

gcgcttgaaaccactagtgaattg : Ca325Klon_2_Fo caattcactagtggtttcaagcgc : Ca325Klon_3_Ba

The finally assembled 4700 bp sequence that included also 3'- and 5'- non-coding sequences were verified by sequencing. The coding region was subcloned into the p413RSGALL-vector.

The map is disclosed in fig. 7.

5

10

Sequences numbers are identified in field 130 of the sequence listing.

Claims:

\ 15

30

1. A polynucleotide having the sequence as depicted in SEQ ID No.2, SEQ ID No.4, SEQ ID No.6, SEQ ID No.7, SEQ ID No.9, SEQ ID No.10, SEQ ID No.11 or SEQ ID No.13, homologs thereof and functional fragments thereof.

- 2.-The polynucleotide of claim 1 having the sequence as depicted in SEQ ID No.2, SEQ ID No.4, SEQ ID No.6, SEQ
 10 ID No.9, SEQ ID No.10 or SEQ ID No.11, homologs thereof and functional fragments thereof.
 - 3.-The polynucleotide of claim 1 which is the gene CaNL256, homologs thereof and functional fragments thereof.
 - 4.-The polynucleotide of claim 1 which is the gene CaBR102, homologs thereof and functional fragments thereof.
- 5.-The polynucleotide of claim 1 which is the gene 20 CaIR012, homologs thereof and functional fragments thereof.
 - 6.-The polynucleotide of claim 1 which is the gene CaMR212, homologs thereof and functional fragments thereof.
- 7.-The polynucleotide of claim 1 which is the gene CaDR325, homologs thereof and functional fragments thereof.
 - 8.-The polynucleotide of claim 1 which is the gene CaOR110, homologs thereof and functional fragments thereof.
 - 9.-The polynucleotide of claim 1 which is the gene CaJL039, homologs thereof and functional fragments thereof.

. 4 2

10.-A gene according to any one of claims 3 to 9, wherein the functionally similar gene has a sequence identity, at the nucleotide level, of at least 50%, preferably of at least 60%, and most preferably of at least 70%.

- 11.-A gene according to any one of claims 3 to 9, wherein the functionally similar gene has a sequence identity, at the amino-acid level, with the encoded protein, of at least 40%, preferably of at least 50%, more preferably of at least 60% and most preferably of at least 70%.
- 12 -A protein encoded by the polynucleotide according 15 to any one of claims 1 to 11, a functional polypeptide fragment thereof.
 - 13.-A plasmid containing the gene according to any one of claims 3 to 9.

20

10

- 14.-A plasmid deposited at the CNCM with the accession number I-2065.
- 15.-A plasmid deposited at the CNCM with the accession number I-2063.
 - 16.-A plasmid deposited at the DSMZ with the accession number DSM 12977.
- 17.-A plasmid deposited at the DSMZ with the accession number DSM 12976.
 - 18.-A plasmid deposited at the DSMZ with the accession number DSM 12978.

- 19.-A plasmid deposited at the DSMZ with the accession number DSM 12979.
- 5 20.-A polynucleotide obtainable by the process comprising the following steps:
 - (i) selecting an essential gene from Saccharomyces cerevisiae;
- (ii) comparing the sequence of said gene with 10 Candida Albicans genome sequences;
 - (iii) deducing homologuous oligonucleotides
 regions;
 - (iv) PCR amplifying the thus-obtained
 oligonucleotides;
- 15 (v) using the amplimers of step (iv) for detecting the complete gene of interest;

and homologs thereof and functional fragments thereof.

- 21.-The polynucleotide of claim 20, in which step (v)
 20 is comprised of the step of using the amplimers of step
 (iv) as a probe for detecting the complete gene of interest
 from a Candida albicans genomic library.
- 22.-The polynucleotide of claim 20, in which step (v)
 25 is comprised of the step of using the amplimers of step
 (iv) as a probe for detecting the complete gene of interest
 from a Candida albicans cDNA library.
- 23.-The polynucleotide of claim 20, in which step (v) 30 is comprised of the step of 3' and 5' extension of the amplimer using a PCR method.
 - 24.- An antiboby directed against the protein of claim 12 or a functional polypeptide fragment thereof.

44

- 25.-A method for the screening of antimycotic substances wherein an essential gene from mycetes or a functionally similar gene from another pathogenic mycete, or the corresponding encoded protein, is used as target and wherein the essential gene is according to any one of claims 3 to 9.
- 26.-The method of claim 25 wherein mycete cells which

 10 express the essential gene, or a functionally similar

 mycete gene, to a different level are incubated with the

 substance to be tested and the growth inhibiting effect of

 the substance is determined.
- or the corresponding target encoded protein is contacted in vitro with the substance to be tested and the effect of the substance on the target is determined.
- 28.-The method according to any one of claims 25-27 wherein the screened substances partially or totally inhibit the functional expression of the essential genes or the functional activity of the encoded proteins.
- 29.-The method according to any one of claims 25-28 wherein the screened substances partially or totally inhibit the activity of dihydropteroate synthase (DHPS) and/or 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (HPPK).

30

30.-The method according to any one of claims 25-29 wherein the mycete species are selected from the group comprising Basidiomycetes, Ascomycetes and Hyphomycetes.

- 31.- The method according to any one of claims 25-30, wherein said functionally similar genes are essential genes from Candida Spp, or Aspergillus Spp.
- 5 32.- The method according to claim 31, wherein said functionally similar genes are essential genes from Candida albicans, or Aspergillus fumigatus.
- 33.- The method according to any one of claims 25-32 wherein the functionally similar gene has a sequence identity, at the nucleotide level, with the corresponding essential gene of at least 50%, preferably of at least 60%, and most preferably of at least 70%.
- wherein the functionally similar gene encodes a protein having a sequence identity, at the amino-acid level, with the corresponding essential gene encoded protein of at least 40%, preferably of at least 50%, more preferably of at least 70%.
 - 35.- A kit for diagnosis of fungal infections comprising a gene selected from the group consisting of CaOR110, CaMR212, CaNL256, CaBR102, CaIR012, CaDR325 and CaJL039, a functionally similar gene thereof, a functional fragment thereof, the corresponding encoded protein or a functional polypeptidic fragment thereof, or an antiboby directed against the protein encoded by the gene selected from the group consisting of CaOR110, CaMR212, CaNL256, CaBR102, CaIR012, CaDR325 and CaJL039, or by a functionally similar gene, or a polypeptidic fragment thereof.

30

Fig.1

1	IHPISAESLHSHLQQLINDKPQ	22
	: :. : .	
451	PDLNIPHPRMLERTFVLEPLCELISPVHLHPVTAEPIVDHLKQLYDKQHD	500
	•	
23	ETVQESSDLLQFIPVSRLPVKDNILKFDQINHKSPTLIMGIL	64
501	EDTLWKLVPLPYRSGVEPRFLKFKTATKLDEFTGETNRITVSPTYIMAIF	550
65	NMTPDSFSDGGKHFGKELDNIVKQA.EKLVSEGATIIDIGGVSTRPG	110
551	NATPDSFSDGGEHFADIESQLNDIIKLCKDALYLHESVIIDVGGCSTRPN	600
111	SVEPTEEEELERVIPLIRAIROS	133
	:: . : : :	<i></i>
- n -	-ctoxceppetppctpt.tkatpfsTkLPODKVTLSIDTYRSNVAKEAIKVG	טכם

Fig.2

251	NDLNEVLDQCTKIAEKRLQLQDQIDQERQGNFNNVESHSNSPALLPPLKA	300
251	NDUMEA POOC I VI VENEVE POOC I VILLE EN POOC I	
1	KSIQL	5
301	GONGNLMRRDRSSVLILEKFWDTELDQLFKNVEGAQKFINSTKGRHILMN	350
6	GIPSN.KKKDRSSIMVLKKMWDSQLQSLFKHVDGASKFVQPLPNRHIVAE	54
351	SANWMELNTTTGKPLQMVQIFILNDLVLIADKSRDKQNDFIVSQCYP	397
55	SGRWFEVNVGNWKPSYPTHLFIFNDLILIAVKKSSSSQEPTTGGSNGGS	104
398	LKDVTVTQEEFSTKRLLFKFSNSNSSLYECRDADECSRLLDVIRKAKD	445
105	KSRLQAVQCWPLTQVSLQQIKSPKKDDDKMYFINLKSKSLSYVYLTDRYD	154
	DLCDIFHVEEENSKRIRESFRYLQSTQQTPGRENNRSPNKNKRRSMGG	
155	HFVKVTEAFNKGRNEMIQSERLLDSRLSSPSNNNGDSKEEKRQLRESLRN	204
494	SITPGRNVTGAMDQYLLQNLTLSMHSRPRSRDMSSTAQRLKFLDEGVEEI	543
	CONTROL TO A TO	225

16.3	
301	${\tt ACCCATTGCTGAAATGTTGGACTTGAAGATTGCTTTAGAAAGAGGAGTTGGTGAATGGTT}$
0	
361	TCGTAAAAATAGAGATACCAAACCAGTTCCCGGTGATTACACACAATTGAGAACATTTTT
0	
	${\tt CGATAAATTATTGATCGATGAAGATACTTGGCCAAGAGATAACTTAAATGTTATACCTAA}$
0	
481	TATTGAAGGAGAAGATTATGATGAAATCTACGATCGTGCCAAATTGTTTTGGAAAAAGTT
	TTAAATATGTGTTGATAGTTACACATGC
541	TATTCCTGAATTTGAAAAGAAATTCCCCCGAAATTAAAAATGTGTTGATAGTTACACATGC
	AGCAACGAAAATTGCTTTAGGATCAGCTTTATTACAGTTAAAATCAGTTACTGATGTTAT
601	AGCAACGAAAATTGCTTTAGGATCAGCTTTATTACAGTTAAAATCAGTTACTGATGTTAT
	AGATGATAATCAAACTGTGTTACGTGCTGGTGCATGTTCATTATCCAAATTTGTTAGAGA
661	AGATGATAATCAAACTGTGTTACGTGCTGGTGCATGTTCATTATCCAAATTTGTTAGAGA
	TGGCGAAGATAAAACCAATCATACTATTCAATGGAAAATTGTCATGAATGGTAATTGTGA
721	TGGCGAAGATAAAACCAATGATACTATTCAATGGAAAATTGTCATGAATGGTAATTGTGA
	ATTCTTGACACAGGGTGAAGAAATGAAT
781	ATTCTTGACACAGGGTGAAGAAATGAACTGGGATTTCCGTCGTGGTGTTGAAGCCGGGTC

FIG.4

HinD III 287 Msc I 952 Drd I 290 Hae I 952 Xho 1 295 Pvu I 1015 PacR7 1 295 BsiE I 1015 Ava I 295 AlwN 1 1151 Spe I 506 BspH 1 1263 Hpa I 7 Xho II 617 EcoR 1 1280 Bcl I 57 BstY 1617 Pvu II 1343 Ban I 76 BstE II 627 NspB II 1343 Sty 181 Bsa I 793 MspA111343 Sec | 81 Mme I 799 Bgl 1 1448 BsaJ I 81 Xmn I 858 SnaB I 1487 Ear | 103 BseR I 858 Psp1406 | 1544 BsrG I 233 Eae I 950 Afl III 1610

CaOR110

FIG.5

FIG.6

60	ATGACGATTGAAACTATTTATATCGCAAGACACGGTTATAGATCCAATTGGTTACCACCA	
60	ATGACGATTGAAACTATTTATATCGCAAGACACGGTTATAGATCCAATTGGTTACCACCA	1
120	CCACACCCACAAATCCTACTGGTATTGACAGTGACCCGGCTTTAGCACCACATGGTGTT	
120	CCACACCCACCAAATCCTACTGGTATTGACAGTGACCCGGCTTTAGCACCACATGGTGTT	61
180	GAACAAGCCCAACAGTTAGCTGCCTATCTTACATCATTACCTACACATGAAAAGCCTGAA	
180	GAACAAGCCCAACAGTTAGCTGCCTATCTTACATCATTACCTACACATGAAAAGCCTGAA	
240	TTTATTATTGCTTCACCTTTTTATCGTTGTATAGAAACGTCGAGACCCATTGCCGAAATG	
	TTTATTATTGCTTCACCTTTTTATCGTTGTATAGAAACGTCGAGACCCATTGCCGAAATG	
300	TTGGACTTGAAGATTGCTTTAGAAAGAGGAGTTGGTGAATGGTTTCGTAAAAATAGAGAT	
360 360	ACCAAACCAGTTCCCGGTGATTACACACAATTGAGAACATTTTTCGATAAATTATTGATC	
420		
420	GATGAAGATACTTGGCCAAGAGATAACTTAAATGTTATACCTAATATTGAAGGAGAAGAT	
480	TATGATGAAATCTACGATCGTGCCAAATTGTTTTGGAAAAAGTTTATTCCTGAATTTGAA	
480	TATGATGAAATCTACGATCGTGCCAAATTGTTTTGGAAAAAGTTTATTCCTGAATTGAA	
540	AAGAAATTCCCCGAAATTAAAAATGTGTTGATAGTTACACATGCAGCAACGAAAATTGCT	481
540		
600	TTAGGATCAGCTTTATTACAGTTAAAATCAGTTACTGATGTTATAGATGATAATCAAACT	541
600	TTAGGATCAGCTTTATTACAGTTAAAATCAGTTACTGATGTTATAGATGATAATCAAACT	
660	GTGTTACGTGCTGGTGCATGTTCATTATCCAAATTTGTTAGAGATGGCGAAGATAAAACC	601
660	GTGTTACGTGCTGGTGCATGTTCATTATCCAAATTTGTTAGAGATGGCGAAGATAAAACC	601
720	AATCATACTATTCAATGGAAAATTGTCATGAATGGTAATTGTGAATTCTTGACACAGGGT	661

661	7 / 9 AATCATACTATTCAATGGAAAATTGTCATGAATGGTAATTGTGAATTCTTGACACAGGGT	720
		780
	GAAGAAATGAACTGGGATTTCCGTCGTGGTGTTGAAGCCGGGTCAGCTGAAGATATAGCG	780
781	CAAAGAAAGCAGCAGCAGAAGCAGAAGCATTGAAGAAAAATGAACAAACCAAA	840
781	CAAAGAAAGCAGCAGCAGAAGCAGAAGCATTGAAGAAAATGAACAAACCAAA	840
841	TCCGATGGTCCCATCACTGAATCTGCCACTGGGGCAGAAATAGATGGGAATGAAGATGAA	900
841	TCCGATGGTCCCATCACTGAATCTGCCACTGGGGCAGAAATAGATGGGAATGAAGATGAA	900
901	TTTGAAGTACGTAAAACTTGAAAGAGATATTAAATAGACACAAACTTAGAAAATATAGAG	960
901	TTTGAA	906
961	ATACAAACGTTTTGAATTCTTGATTCACTTTTTTTTTTT	1020
906		905
1021	TGAAATACTAACACATGTGTTTTTAGACATTTTATGTAACCATCGATATACCTTCAATTT	1080
906		939
1081	CGAATAAAATCGACAATGAAGAAGAACCACCATCAAGGACAGGTCAAGCTCCAAAATTCA	1140
941	CGAATAAAATCGACAATGAAGAAGAACCACCATCAAGGACAGGTCAAGCTCCAAAATTCA	1000
1141	AAAACAATATTATCAAGCCTTCAGCACAACTCCAATTTACTGATTTAAAAGAAGATCATC	1200
1001	AAAACAATATTATCAAGCCTTCAGCACAACTCCAATTTACTGATTTAAAAAGAAGATCATC	1060
1201	CATTAGTAAAAATATCGAACAATACTATATCTGCTCAAGGCTCGTCGTCGTCGTCGTTAT	1260
1061	CATTAGTAAAAATATCGAACAATACTATATCTGCTCAAGGCTCGTCGTCGTCGTCGTTAT	1120
1261	CAGCGTCGAAAAATGGATTTAATAGTCATACTCACAATTCAGGAGTCATTGATCCATCAG	1320
1121	CAGCGTCGAAAAATGGATTTAATAGTCATACTCACAATTCAGGAGTCATTGATCCATCAG	1180
1321	CACTTATAGATGGGAAAATTTATCAGACTGATTGGAATCAATTACAAGGTACTGAACTAA	1380
1181	CACTTATAGATGGGAAAATTTATCAGACTGATTGGAATCAATTACAAGGTACTGAACTAA	1240
1381	TATTTGATGAAAATGGTCAATTTATAGGCAAGGTTAAGGAACATTTGACTTGCAATAATA	1440
1241	TATTTGATGAAAATGGTCAATTTATAGGCAAGGTTAAGGAACATTTGACTTGCAATAATA	1300

		•	0	•			
1421	AAAGAGCAA	TTGTGGCTG	CTAGAGCCAAA	\GGTAA			1454
			[1][][][][]	11111			
1561	AAAGAGCAA'	TTGTGGCTG	CTAGAGCCAA	AGGTAAATAAA	MIGCIAITITE	ATATTATTATT	1020
		•			· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	1620
		_					
1301	CIAICHICO.	0	•	0	•	0 0	
1361	CTATCATGG	ATATAGATC	AAGACTCACA	GGACAACAAC	CAGCTAGAAC	STCAGTTCTTAA	1420
	1111111111		[
1501	CTATCATGG.	ATATAGATC	AAGACTCACAA	AGGACAACAAC	CAGCTAGAAC	TCAGTTCTTAA	1560
		•	•	•	•	•	
		•	•	•	•		
1301	ACACAAAAT	TCACATTAA	AAAAGGCAGAA	GAAGTAGAAC	CAACTTCGTTC	AGCAGATGATT	1360
		1111111					1260
1441	ACACAAAAT'	TCACATTAA	AAAAGGCAGAA	GAAGTAGAAC	AACTICGIIC	AGCAGATGATT	1500
		•	•				1500

FIG.7

BsaJ I 2587 BsaA 1 1203 Xho I 2623 Hac 1 1668 Bsm 1 1758 PacR7 1 2623 Ava 1 2623 (EcoR V 2207 . Hpa I 2929 Hae II 2304 Hind II 2929 Pvu II-78 Spc 1 2313 Nisi I 2362 HgiA I 2558 HinC 11 2929 NspB 11 78 Mme I 3308 MspA1 1 78 Pst 1 3476 Bsp1286 1 2558 BspH I 396 HinD III 3748 BsiHKA I 2558 AN 11 597 Xho II 4013 Sty I 2587 AN III 650 BstY 1 4013 Sec I 2587 BspM I 807 Bgl 11 4013 Nco I 2587 Psp1406 1 887 Cla I 4022 Dsa 1 2587 SnaB I 1203

CaDR325

SEQUENCE LISTING

```
<110> Hoechst Marion Roussel
<120> ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR
      SCREENING ANTIMYCOTIC SUBSTANCES USING SAID GENES
<130> SEQID01
<140>
<141>
<160> 1
<170> PatentIn Ver. 2.1
<210> 1
<211> 399
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:probe
<400> 1
attcatccca tcagtgcaga aagtttgcat agccatttac aacaattaat aaatgataaa 60
cctcaagaga cagtacaaga atcgtctgat ttattacaat ttatcccagt ctctagatta 120
cctgtcaaag ataatattt gaaatttgat caaattaatc ataaatctcc tactttgatt 180
atgggtatat tgaatatgac tcctgattca tttagtgatg gtgggaaaca ttttggaaaa 240
gaactagata atattgtgaa gcaggcagag aaattagtca gtgagggtgc tacgattatt 300
gacattggag gagtttccac acgaccagga agtgttgaac ccactgagga agaagaattg 360
gaacgtgtga ttccattaat tagagctatt cgtcaatca
```

2/83 SEQUENCE LISTING

<110> Hoechst Marion Roussel
<120> ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR SCRENING ANTIMYCOTIC SUBSTANCES USING SAID GENES
<130> SEQID02
<140>
<141>
<160> 2
<170> PatentIn Ver. 2.1
<210> 1
<211> 2367
<212> DNA
<213> Candida albicans
<220>
<221> CDS
<222> (1)(2364)
<220>
<221> gene
<222> (1)(2364)
<223> Gene CaNL256
<400> 1
atg ttg aaa aac gat acc gtt ttc act aaa gat att tct tgt acg gcg 4
Met Leu Lys Asn Asp Thr Val Phe Thr Lys Asp Ile Ser Cys Thr Ala
1 5 10 15
atæ act ggt aaa gat gcc tgg aat cgg cca aca cca caa cca atc act 9
Ile Thr Gly Lys Asp Ala Trp Asn Arg Pro Thr Pro Gln Pro Ile Thr
20 25 30
the test the past act get the cat and gen teg gan tig gat 1
ata tca tta tct ttc aat act gat ttc cat aag gca tcg gaa ttg gat 1 Ile Ser Leu Ser Phe Asn Thr Asp Phe His Lys Ala Ser Glu Leu Asp
4.5
35 40 45
aat ttg aaa tac tca att aat tat gct gtt att acc aga aat gta act 1
Asn Leu Lys Tyr Ser Ile Asn Tyr Ala Val Ile Thr Arg Asn Val Thr
50 55 60

gaa ttt atg aaa tca aat gag cat tta aat ttc aag tca tta gga aat 240

												_	_		_	
Glu	Phe	Met	Lys	Ser	Asn	Glu	His	Leu	Asn	Phe	Lys	Ser	Leu	Gly	Asn	
65					70					75					80	
att	act	caa	gca	att	agt	gat	att	gga	tta	gat	caa	tct	aga	ggt	ggt	288
Tle	Ala	Gln	Ala	Ile	Ser	Asp	Ile	Gly	Leu	Asp	Gln	Ser	Arg	Gly	Gly	
				85		_			90					95		
			ata	cat	ata	acq	ata	aaa	agt	ttq	aaa	tca	gaa	ata	aga	336
gga	tct	~1-	9-9) an	777	Thr	Tle	Lvs	Ser	Leu	Lvs	Ser	Glu	Ile	Arg	
GIA	ser	TTE		Asp	Vai	1111	110	105					110			
			100					103								
									202	220	act	tta	aat.	caa	ccc	384
gct	gaa	agt	gtc	gaa	tat	aaa	att	aat	aya	200	mh-	Lau	Glv	caa Gln	Pro	
Ala	Glu	Ser	Val	Glu	Tyr	Lys		Asn	Arg	ASII	IIII		Gry	Gln		
		115					120					125				
																432
gtt	cca	tta	gat	att	ttc	caa	gtt	aat	aaa	ttg	aga	tta	ttg	acg	a	432
Val	Pro	Leu	Asp	Ile	Phe	Gln	Val	Asn	Lys	Leu	Arg	Leu	Leu	Thr	11e	
	130					135					140					
att	qqa	gtt	ttc	aca	ttt	gaa	aga	tta	caa	aaa	caa	ata	gtt	gat	gtt	480
Tle	Glv	Val	Phe	Thr	Phe	Glu	Arg	Leu	Gln	Lys	Gln	Ile	Val	Asp	Val	
145	,				150					155					160	
143																
gat	tta	caa	ttt	aaa	att	gaa	cct	aat	tcc	aat	tta	tat	ttc	cat	caa	528
yat Nan	Ley	Cln	Dhe	Lvs	Tle	Glu	Pro	Asn	Ser	Asn	Leu	Tyr	Phe	His	Gln	
Asp	ьеи	GIII	FIIC	165	110				170					175		
				103												
						+63	tac	ata	паа	tca	tct	aat	ttc	aaa	act	576
ata	att	gct	gat	att	gee	Com	The second	9-9	Glu	Ser	Ser	Asn	Phe	Lvs	Thr	
Ile	Ile	Ala		TTE	vaı	ser	TYL		Gru				190	Lys		
			180					185								
	٠										~ ~ ~		cad	222	tat	624
gta	gaa	gca	ttg	gtg	tct	aag	att	ggt	caa	ttg	aca	Dha	Cla	aaa	Tur	
Val	Glu	Ala	Leu	Val	Ser	Lys		Gly	GIn	Leu	Thr		GIII	Lys	ıyı	
		195					200	٠				205				
												•				672
gare	gga	gta	gct	gaa	gtt	gtt	gct	act	gtc	act	aaa	ccg	aat	gca		672
Asp	Gly	Val	Ala	Glu	Val	Val	Ala	Thr	Val	Thr	Lys	Pro	Asn	Ala	Phe	
	210					215					220					
agt	cat	gtt	gaa	ggt	gtt	gga	gta	tca	tct	acc	atg	gtc	aaa	gac	aat	720
Ser	His	Val	Glu	Gly	Val	Gly	Val	Ser	Ser	Thr	Met	Val	Lys	Asp	Asn	
225				•	230					235					240	
223																
++~	222	G = F	ato	מ מס	cca	att	aaa	ttt	gaa	aac	aca	att	gct	caa	act	768
Ph -	1	yat No-	Mat	י שינט	Pro	Val	Lvs	Phe	Glu	Asn	Thr	· Ile	Ala	Gln	Thr	
rne	nys	, voh	, 1-1C C	245			_,_		250					255		
				243												
								gas	aat	gac	, aaa	act	gac	gat	tat	816
aat	aga	gca	CCC	, aat	. LLG		. 900			J~2	,		-	_		

***	0 00/	1 2020														
•								1	.18	33						
Asn	Ara	Ala	Phe	Asn	Leu	Pro	Val		• -	_	Lys	Thr	Glu	Asp	Tyr	
7.5.1			260					265					270			
acc	aga	tac	cac	act	gca	ttt.	att	gcc	ttt	gga	tcc	aat	act	gga	aat	864
Thr	Gly	Tyr	His	Thr	Ala	Phe	Ile	Ala	Phe	Gly	Ser	Asn	Thr	Gly	Asn	
	•	275					280					285				
caa	gta	gaa	aat	att	acc	aat	tca	ttc	gaa	ttg	ttg	caa	aaa	tat	gga	912
Gln	Val	Glu	Asn	Ile	Thr	Asn	Ser	Phe	Glu	Leu	Leu	Gln	ГÀз	Tyr	Gly	
	290					295					300					
atc	acc	ata	gaa	gca	act	tca	tca	ttg	tac	att	tct	aaa	cca	atg	tat -	960
Ile	Thr	Ile	Glu	Ala	Thr	Ser	Ser	Leu	Tyr	Ile	Ser	Lys	Pro	Met		
305					310					315					320	
																1000
tac	ttg	gat	caa	cca	gat	ttt	ttc	aat	gga	gta	att	aaa	grg	aac	DEC	1008
Tyr	Leu	Asp	Gln	Pro	Asp	Phe	Phe	Asn			Ile	Lys	vaı		Pne	
				325					330					335		
										- 4- 4-			~~+	- t- t	~~~	1056
caa	aac	att	tca	cct	ttc	cag	ttg -	ttg	aaa	att	cta	aaa	yac	Tla	Glu	1030
Gln	Asn	Ile		Pro	Phe	Gln	Leu		гуѕ	ire	ьeu	цуь	350	116	Giu	
			340					345					330			
					agg			~ 2 ~		cat	aat	aaa	ccc	aga	.tca	1104
tat	aaa -	cat	tta	gaa	Arg	aaa Ia	Tuc) ac	Dhe	Asn	Asn	Glv	Pro	Arg	Ser	
Tyr	гàг		Leu	GIU	Arg	пуъ	360	ASP	rnc	пор		365		5		
		355					300					• • •				
	~a=	++~	ast	att	ata	cta	tat	gac	gat	tta	caa	tta	aat	acc	gag	1152
Tla	yar Aen	Leu	Asn	Tle	Ile	Leu	Tvr	Asp	Asp	Leu	Gln	Leu	Asn	Thr	Glu	
110	370	Deu	nop			375	- 2	•	-		380					
	3,0															
aat	cta	att	att	сса	cat	aaa	tca	atg	tta	gaa	aga	aca	ttt	gta	tta	1200
Asn	Leu	Ile	Ile	Pro	His	Lys	ser	Met	Leu	Glu	Arg	Thr	Phe	Val	Leu	
385					390					395					400	
				•												•
cāà	cca	tta	tgt	gaa	gta	ttg	ccc	cct	gat	tat	att	cat	ccc	atc	agt	1248
Gln	Pro	Leu	Сув	Glu	Val	Leu	Pro	Pro	Asp	Tyr	Ile	.His	Pro	Ile	Ser	
				405					410					415		
gca	gaa	agt	ttg	cat	agc	cat	tta	caa	caa	tta	ata	aat	gat	aaa	cct	1296
Ala	Glu	Ser	Leu	His	Ser	His	Leu	Gln	Gln	Leu	Ile	Asn			Pro	
			420					425					430			
																1244
caa	gag	aca	gta	caa	gaa	tcg	tct	gat	tta	tta	caa	ttt	atc	cca	gtc	1344
Gln	Glu		Val	Gln	Glu	Ser			Leu	Leu	GIn			PIO	vaı	
		435					440					445				
						~~+			++~	, 200	+++	gat	Caa	arr	aat	1392
tct	aga	ttg	cct	.gtc	aaa	gat	aat	act	LLG	aad		Jac				

Ser	Arg 450	Leu	Pro	Val	Lys	Asp 455	Asn		Leu		Phe 460	Asp	Gln	Ile	Asn	
			cct Pro													1440
tca Ser	ttt Phe	agt Ser	gat Asp	ggt Gly 485	ggg Gly	aaa Lys	cat His	ttt Phe	gga Gly 490	aaa Lys	gaa Glu	cta Leu	gat Asp	aat Asn 495	act Thr	1488
			gca Ala 500													1536
			gtt Val													1584
			gaa Glu													1632
			gat Asp													1680
			gct Ala													1728
			atg Met 580													1776
			tgt Cys													1824
			aaa Lys													1872
			ata Ile													1920
tca	cct	gaa	atc	aag	aat	tta	ctc	aat	gga	atc	agt	cgt	gaa	ttg	agt	1968

Ser Pro Glu Ile Lys Asn Leu Leu Asn Gly Ile Ser Arg Glu Leu Ser 650 645 tta caa atg ttt aaa gcc atg gct aaa gga gtg aaa aaa tgg caa att Leu Gln Met Phe Lys Ala Met Ala Lys Gly Val Lys Lys Trp Gln Ile 660 att ttg gat cct ggt att gga ttt gct aaa aat ttg aat caa aat tta 2064 Ile Leu Asp Pro Gly Ile Gly Phe Ala Lys Asn Leu Asn Gln Asn Leu 685 680 675 gca gtt att cgt aat gcc tcg ttt ttt aaa aaa tat tct att caa att Ala Val Ile Arg Asn Ala Ser Phe Phe Lys Lys Tyr Ser Ile Gln Ile 700 690 aat gaa cgt gtt gat gat gtg aca atc aaa cat aaa tat tta agt ttt Asn Glu Arg Val Asp Asp Val Thr Ile Lys His Lys Tyr Leu Ser Phe 715 710 705 aat ggt gct tgt gtt ttg gtg ggg aca tca aga aag aag ttt ttg ggg Asn Gly Ala Cys Val Leu Val Gly Thr Ser Arg Lys Lys Phe Leu Gly 735 730 725 aca tta act ggt aat gaa gtg cct ctg gat cga gta ttt ggc act ggt 2256 Thr Leu Thr Gly Asn Glu Val Pro Leu Asp Arg Val Phe Gly Thr Gly 740 745 gca aca gtg tct gcg tgt att gaa caa aac act gat att gta aga gtt 2304 Ala Thr Val Ser Ala Cys Ile Glu Gln Asn Thr Asp Ile Val Arg Val 765 760 755 cat gat gtt aaa gaa atg aaa gat gta gta tgt ata agt gat gca att 2352 His Asp Val Lys Glu Met Lys Asp Val Val Cys Ile Ser Asp Ala Ile 780 770 775 2367 tata aaa aat gta taa Tyr Lys Asn Val 785 <210> 2 <211> 788 <212> PRT <213> Candida albicans <400> 2 Met Leu Lys Asn Asp Thr Val Phe Thr Lys Asp Ile Ser Cys Thr Ala 10

Ile Thr Gly Lys Asp Ala Trp Asn Arg Pro Thr Pro Gln Pro Ile Thr 25 Ile Ser Leu Ser Phe Asn Thr Asp Phe His Lys Ala Ser Glu Leu Asp 40 Asn Leu Lys Tyr Ser Ile Asn Tyr Ala Val Ile Thr Arg Asn Val Thr 55 Glu Phe Met Lys Ser Asn Glu His Leu Asn Phe Lys Ser Leu Gly Asn Ile Ala Gln Ala Ile Ser Asp Ile Gly Leu Asp Gln Ser Arg Gly Gly 90 Gly Ser Ile Val Asp Val Thr Ile Lys Ser Leu Lys Ser Glu Ile Arg 105 100 Ala Glu Ser Val Glu Tyr Lys Ile Asn Arg Asn Thr Leu Gly Gln Pro . 120 Val Pro Leu Asp Ile Phe Gln Val Asn Lys Leu Arg Leu Leu Thr Ile 130 Ile Gly Val Phe Thr Phe Glu Arg Leu Gln Lys Gln Ile Val Asp Val 155 150 Asp Leu Gln Phe Lys Ile Glu Pro Asn Ser Asn Leu Tyr Phe His Gln 175 165 Ile Ile Ala Asp Ile Val Ser Tyr Val Glu Ser Ser Asn Phe Lys Thr 185 180 Val Glu Ala Leu Val Ser Lys Ile Gly Gln Leu Thr Phe Gln Lys Tyr 200 195 Asp Gly Val Ala Glu Val Val Ala Thr Val Thr Lys Pro Asn Ala Phe 215 210 Ser His Val Glu Gly Val Gly Val Ser Ser Thr Met Val Lys Asp Asn 230 235 225 Phe Lys Asp Met Glu Pro Val Lys Phe Glu Asn Thr Ile Ala Gln Thr 250 Asn Arg Ala Phe Asn Leu Pro Val Glu Asn Glu Lys Thr Glu Asp Tyr . 265

									ט וכ						
Thr	Gly	Tyr 275 _.	His	Thr	Ala	Phe	Ile 280	Ala	Phe	Gly	Ser	Asn 285	Thr	Gly	Asn
Gln	Val 290	Glu	Asn	Ile	Thr	Asn 295	Ser	Phe	Glu	Leu	Leu 300	Gln	Lys	Tyr	Gly
Ile 305	Thr	Ile	Glu	Ala	Thr 310	Ser	Ser	Leu	Tyr	Ile 315	Ser	Lys	Pro	Met	Tyr 320
туг	Leu	Asp	Gln	Pro 325	Asp	Phe	Phe	Asn	Gly 330	Val	Ile	Lys	Val	Asn 335	Phe
Gln	Asn	Ile	Ser 340	Pro	Phe	Gln	Leu	Leu 345	Lys	Ile	Leu	Lys	Asp 350	Ile	Glu
Tyr	Lys	His 355	Leu	Glu	Arg	Lys	Lys 360	Asp	Phe	Asp	Asn	Gly 365	Pro	Arg	Ser
Ile	Asp 370	Leu	Asp	Ile	Ile	Leu 375	туг	Asp	Asp	Leu	Gln 380	Leu	Asn	Thr	Glu
Asn 385	Leu	Ile	Ile	Pro	His 390	Lys	Ser	Met	Leu	Glu 395	Arg	Thr	Phe	Val	Leu 400
Gln	Pro	Leu	Cys	Glu 405	Val	Leu	Pro	Pro	Asp 410	Tyr	Ile	His	Pro	Ile 415	Ser
Ala	Glu	Ser	Leu 420	His	Ser	His	Leu	Gln 425	Gln	Leu	Ile	Asn	Asp 430	Lys	Pro
Gln	Glu	Thr	Val	Gln	Glu	Ser	Ser 440	Asp	Leu	Leu	Gln	Phe	Ile	Pro	Val
	Arg 450		Pro	Val	Lys	Asp 455	Asn	Ile	Leu	Lys	Phe 460	. Asp	Gln	Ile	Asn
His 465		Ser	Pro	Thr	Leu 470	Ile	Met	Gly	Ile	Leu 475	Asn	Met	Thr	Pro	Asp 480
Ser	Phe	Ser	Asp	Gly 485	Gly	Lys	His	Phe	Gly 490		Glu	Leu	Asp	Asn 495	Thr
Val	Lys	Gln	Ala 500		Lys	Leu	Val	Ser 505		Gly	Ala	Thr	Ile 510	Ile	Asp
Ile	: Gly	Gly		Ser	Thr	Arg	Pro 520		/ Ser	Val	Glu	Pro 525		Glu	Glu

Glu Glu Leu Glu Arg Val Ile Pro Leu Ile Lys Ala Ile Arg Gln Ser Leu Asn Pro Asp Leu Leu Lys Val Leu Ile Ser Val Asp Thr Tyr Arg Arg Asn Val Ala Glu Gln Ser Leu Leu Val Gly Ala Asp Ile Ile Asn Asp Ile Ser Met Gly Lys Tyr Asp Glu Lys Ile Phe Asp Val Val Ala Lys Tyr Gly Cys Pro Tyr Ile Met Asn His Thr Arg Gly Ser Pro Lys Thr Met Ser Lys Leu Thr Asn Tyr Glu Ser Asn Thr Asn Asp Asp Ile Ile Glu Tyr Ile Ile Asp Pro Lys Leu Gly His Gln Glu Leu Asp Leu Ser Pro Glu Ile Lys Asn Leu Leu Asn Gly Ile Ser Arg Glu Leu Ser Leu Gln Met Phe Lys Ala Met Ala Lys Gly Val Lys Lys Trp Gln Ile Ile Leu Asp Pro Gly Ile Gly Phe Ala Lys Asn Leu Asn Gln Asn Leu 680 · Ala Val Ile Arg Asn Ala Ser Phe Phe Lys Lys Tyr Ser Ile Gln Ile Asn Glu Arg Val Asp Asp Val Thr Ile Lys His Lys Tyr Leu Ser Phe Asn Gly Ala Cys Val Leu Val Gly Thr Ser Arg Lys Lys Phe Leu Gly Thr Leu Thr Gly Asn Glu Val Pro Leu Asp Arg Val Phe Gly Thr Gly Ala Thr Val Ser Ala Cys Ile Glu Gln Asn Thr Asp Ile Val Arg Val His Asp Val Lys Glu Met Lys Asp Val Val Cys Ile Ser Asp Ala Ile

)

Tyr Lys Asn Val

SEQUENCE LISTING

```
<110> Hoechst Marion Roussel
<120> ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR
     SCRENING ANTIMYCOTIC SUBSTANCES USING SAID GENES
<130> SEQID03
<140>
<141>
<160> 1
<170> PatentIn Ver. 2.1
<210> 1
<211> 647
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:probe
<400> 1
agtattcaat tgggtattcc cagtaataaa aagaaagatc gatcatcaat tatggtgctt 60
aaaaaaatgt gggattotca attacaatca ttatttaaac atgttgacgg tgcatcaaaa 120
tttgtgcaac cattacccaa tagacacatt gtcgcggaaa gtggacgatg gtttgaagtt 180
aatgtgggga attggaaacc aagttatcca actcatttat ttatatttaa tgatttaatt 240
ttaattgccg ttaaaaaatc atcatctagt agtcaggaac ctactacagg gggaagtaat 300
ggtggttcaa aatcgagatt acaagcggtt caatgttggc ccttaactca agtatcatta 360
caacaaatca aatcaccgaa aaaagatgac gataagatgt attttatcaa tcttaaatcc 420
aaatotttaa gttatgtata ootgacggat ogttatgato attttgtgaa agttacggaa 480
gcatttaata aaggtagaaa tgaaatgatt caaagtgaaa gattattaga ttcaagactt 540
tcatctcctt caaataataa tggagattct aaagaagaga aacgacaatt acgggaatca 600
                                                                  647
ttaagaaact caggcaatta taaagaagga gttactgatg atgccgg
```

SEQUENCE LISTING

<110> Hoechst Marion Roussel <120> ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR SCRENING ANTIMYCOTIC SUBSTANCES USING SAID GENES <130> SEQID04 <140> <141> <160> 2 <170> PatentIn Ver. 2.1 <210> 1 <211> 2373 <212> DNA <213> Candida albicans <220> <221> CDS <222> (1)..(2373) <220> <221> gene <222> (1) . . (2373) <223> Gene CaBR102 <400> 1 atg gat aat ctt gat ccc aat tct agt tta caa gta gag aaa tta cga Met Asp Asn Leu Asp Pro Asn Ser Ser Leu Gln Val Glu Lys Leu Arg 10 5 1 aat agg aaa agc agg gct gta tgg cag aat aac aac act tct act cat Asn Arg Lys Ser Arg Ala Val Trp Gln Asn Asn Asn Thr Ser Thr His 25 20 aat aat oot tat got aat tta ago act ggt gaa aaa agt agg agt ogo Asn Asn Pro Tyr Ala Asn Leu Ser Thr Gly Glu Lys Ser Arg Ser Arg 40 35 cat aac act ggt agt tot tat gtt tot coa tat ggc ggc ggt aat gga His Asn Thr Gly Ser Ser Tyr Val Ser Pro Tyr Gly Gly Gly Asn Gly 55 50 gag gag aat gct tat act ggg aat aac aac aaa tca aat act agt ggt

Glu 65	Glu	Asn	Ala	Tyr	Thr 70	Gly	Asn	Asn	Asn	Lys 75	Ser	Asn	Thr	Ser	Gly 80	
aat	tta	tta	caa	gtt	cct	gga	gca	gga	gga	gga	gga	gat	ttg	aat	tct	288
Asn	Leu	Leu	Gln	Val	Pro	Gly	Ala	Gly	Gly	Gly	Gly	Asp	Leu	Asn	Ser	
				85					90					95		.0.
					cga											336
Asn	Lys	Lys		Ser	Arg	Arg	Met		He	His	Val	ser	110	Arg	Gin	
			100					105								204
					tca											384
His	Gly	_	Ser	Phe	Ser	Gln		GIY	Pro	He	Asp		Ala	ASN	Leu	
		115					120					125				
					ata											432
Pro	Ala	Leu	Pro	гХа	Ile		Gly	Val	Thr	Thr		GIY	Val	GIY	GIÀ	
	130			,	•	135					140					
					atg											480
Ala	Gly	Gly	Asp	Val	Met	Thr	Arg	Thr	Gly		Leu	Thr	Ile	Glu		
145					150					155					160	
					tta											528
Lys	Ile	Phe	Lys		Leu	Ser	Gln	Gly		Ala	Ala	Glu	Val		Asp	
				165					170					175		
					ttg											576
Tyr	Tyr	Lys		Leu	Leu	Lys	Gln		Asn	Leu	He	Thr		Asp	11e	
			180					185					190			
					cag											624
Lys	Asp		Ile	Asn	Gln	Asn		Lys	Asn	Ile	Leu		Leu	Thr	гÀв	
		195					200					·205				
					caa											672
Asp		Lys	Glu	Thr	Gln		Glu	Leu	Ile	Glu		Arg	GIÀ	Thr	Thr	
	210					215					220					
					gtt											720
Lys	Glu	Leu	Tyr	Glu	Val	Leu	Gly	Tyr	Phe	Lys	Glu	Ser	Ala	Gln		
225					230					235					240	
					ttt											768
Arg	Leu	Glu	Leu	Glu	Phe	Glu	Pro	Glu		Gln	Lys	Glu	Leu		Leu	
				245					250					255		
cct	caa	aaa	agt	aat	caa	ttg	ggt	att	cct	agt	aat	aaa	aag	aaa	gat	816

Pro	Gln	Lys	Ser 260	Asn	Gln	Leu	Gly	Ile 265	Pro	Ser	Asn	Lys	Lys 270	Lys	Asp	
cga Arg	tca Ser	tca Ser	att Ile	atg Met	gtg Val	ctt Leu	aaa Lys	aaa Lys	atg Met	tgg Trp	gat Asp	tct Ser	caa Gln	tta Leu	caa Gln	864
		275					280					285				
tca	tta	ttt Phe	aaa Lvs	cat His	gtt Val	gac Asp	ggt Gly	gca Ala	tca Ser	aaa Lys	ttt Phe	gtc Val	caa Gln	cca Pro	tta Leu	912
501	290		-2-			295	-				300					
ccc	aat	aga	cac	att	gtc Val	gcg	gaa	agt Ser	gga Glv	cga Arg	tgg Trp	ttt Phe	gaa Glu	gtt Val	aat Asn	960
305	Asn	Arg	HIS	116	310	ΑIα	O.Lu	J C2	- -,	315					320	
gtg	999	aat	tgg	aaa	cca	agt	tat	cca	act	cat	tta	ttt	ata	ttt	aat Asn	1008
Val	Gly	Asn	Trp	Lys 325	Pro	Ser	Tyr	Pro	330	nis	пеп	FIIC	110	335		
gat	tta	att	tta	att	act	gtt	aaa	aaa	tca	tca	tct	agt	agt	cag	gaa	1056
Asp	Leu	Ile	Leu 340	Ile	Thr	Val	Lys	Lys 345	Ser	Ser	ser	ser	350	GIII	GIŲ	
cct	act	aca	999	gga	agt	aat	ggt	ggt	tca	aaa	tcg	aga	tta	caa Gln	gcg Ala	1104
Pro	Thr	Thr 355	Gly	GIÀ	Ser	ASN	360	GIÀ	Ser	шуз	361	365	Dec	02		
gtt	caa	tgt	tgg	ccc	tta	act	caa	gta	tca	tta	caa	caa	atc	aaa Lvs	tca Ser	1152
	370				Leu	375					380					
ccg	aaa	aaa	gat	gac	gat	aag	atg	tat	ttt	atc	aat	ctt	aaa Tws	tcc Ser	aaa Lvs	1200
Pro 385	Lys	Lys	Asp	Asp	Asp 390	гÀг	Met	ıyı	PHE	395	ASII	Dea	2,0	-	400	
tct	tta	agt	tat	gta	tac	ctg -	acg	gat	cgt	tat	gat	cat	ttt	gtg Val	aaa Lvs	1248
Ser	Leu	Ser	Tyr	Val 405	Tyr	Leu	Thr	Asp	410	Tyr	Asp	uis	,	415	275	
gtt	acg	gaa	gca	ttt	aat	aaa	ggt	aga	aat	gaa	atg	att	caa	agt Ser	gaa Glu	1296
Val	Thr	Glu	Ala 420		Asn	ьуѕ	GIY	Arg 425	ASI	GIU	. nec	116	430	Jer		
aga	tta	tta	gat	tca	aga	ctt	tca	tct	cct	tca	aat	aat	aat	gga	gat	1344
Arg	Leu	435		Ser	: Arg	, Leu	440		Pro	ser	. ASD	445	, ASI	. Gly	Asp	
tct	aaa	gaa	gag	, aaa	cga	caa	tta	cgg	gaa	tca	tta	aga	aac	tca	ggc	1392

Ser	Lys 450	Glu	Glu	Lys	Arg	Gln 455	Leu	Arg	Glu	Ser	Leu 460	Arg	Asn	Ser	Gly	
					gtt Val 470	Thr										1440
					gcc Ala											1488
					tct Ser											1536
					ttc Phe											1584
					act Thr											1632
					caa Gln 550											1680
					cgt Arg											1728
					gtc Val											1776
gt a Val	tca Ser	aaa Lys 595	ttg Leu	aaa Lys	att Ile	aaa Lys	aat Asn 600	cgg Arg	aaa Lys	gaa Glu	aat Asn	gta Val 605	tct Ser	aat Asn	gga Gly	1824
					caa Gln											1872
					acg Thr 630											1920
999	gtt	caa	gga	tat	ttg	gat	tca	atg	tca	gct	tat	tta	tca	act	aca	1968

16/83

Gly	Val	Gln	Gly	Tyr 645	Leu	Asp	Ser		Ser 650		Tyr	Leu	Ser	Thr 655	Thr	
gta Val	tca Ser	aaa Lys	tta Leu 660	att Ile	gtt Val	ggt Gly	tta Leu	caa Gln 665	gga Gly	tca Ser	acg Thr	aaa Lys	atc Ile 670	gat Asp	gtt Val	2016
gtt Val	aat Asn	tat Tyr 675	ctt Leu	tcc Ser	aat Asn	tta Leu	atg Met 680	gtt Val	att Ile	aat Asn	gta Val	tcg Ser 685	att Ile	gtg Val	aaa Lys	2064
cgt Arg	aca Thr 690	att Ile	caa Gln	act Thr	tat Tyr	gaa Glu 695	caa Gln	ata Ile	att Ile	gct Ala	cca Pro 700	att Ile	tta Leu	aaa Lys	cgt Arg	2112
				gat Asp												2160
ttt Phe	act Thr	aaa Lys	ctt Leu	tgt Cys 725	aaa Lys	caa Gln	att Ile	aaa Lys	aaa Lys 730	cat His	ttg Leu	tat Tyr	gga Gly	aca Thr 735	ttg Leu	2208
ttg Leu	ata Ile	tct Ser	tct Ser 740	999 Gly	att Ile	aat Asn	atg Met	gaa Glu 745	act Thr	gat Asp	gaa Glu	cca Pro	att Ile 750	tat Tyr	aaa Lys	2256
gtt Val	aaa Lys	gaa Glu 755	aga Arg	aaa Lys	tta Leu	tat Tyr	gat Asp 760	aat Asn	ttc Phe	ttg Leu	aag Lys	att Ile 765	atg Met	caa Gln	cca Pro	2304
caa Gln	ttg Leu 770	gaa Glu	gaa Glu	tta Leu	aaa Lys	ctg Leu 775	gtg Val	gga Gly	tta Leu	aat Asn	gtt Val 780	gat Asp	tat Tyr	ata Ile	ttt Phe	2352
•				aat Asn												2373
<210> 2 <211> 791 <212> PRT <213> Candida albicans																
	0> 2 Asp	Asn	Leu	Asp	Pro	Asn	Ser	Ser	Leu	Gln	Val	Glu	Lys	Leu 15	Arg	

1 5 10 15

Asn	Arg	Lys	Ser 20	Arg	Ala	Val	Trp	Gln' 25	Asn	Asn	Asn	Thr	Ser 30	Thr	His
Asn	Asn	Pro 35	Tyr	Ala	Asn	Leu	Ser 40	Thr	Gly	Glu	Lys	Ser 45	Arg	Ser	Arg
His	Asn 50	Thr	Gly	Ser	Ser	Tyr 55	Val	Ser	Pro	Tyr	Gly 60	Gly	Gly	Asn	Gly
Glu 65	Glu	Asn	Ala	Tyr	Thr 70	Gly	Asn	Asn	Asn	Lys 75	Ser	Asn	Thr	Ser	Gly 80
Asn	Leu	Leu	Gln	Val 85	Pro	Gly	Ala	Gly	Gly 90	Gly	Gly	Asp	Leu	Asn 95	Ser
Asn	Lys	Lys	Gln 100	Ser	Arg	Arg	Met	Ser 105	Ile	His	Val	Ser	Ala 110	Arg	Gln
His	Gly	Arg 115	Ser	Phe	Ser	Gln	Thr 120	Gly	Pro	Ile	Asp	Met 125	Ala	Asn	Leu
Pro	Ala 130	Leu	Pro	Lys	Ile	Gly 135	Gly	Val	Thr	Thr	Ser 140	Gly	Val	Gly	Gly
Ala 145	Gly	Gly	Asp	Val	Met 150	Thr	Arg	Thr	Gly	Gly 155	Leu	Thr	Ile	Glu	Gln 160
Lys	Ile	Phe	Lys	Glu 165	Leu	Ser	Gln	Gly	Ser 170	Ala	Ala	Glu	Val	Asp 175	Asp
Tyr	туr	Lys	Thr 180	Leu	Leu	Lys	Glņ	Lys 185	Asn	Leu	Ile	Thr	Arg 190	Asp	Ile
Lys	Asp	Asn 195	Ile	Asn	Gln	Asn	Gln 200	Lys	Asn	Ile	Leu	Gln 205	Leu	Thr	Lys
Asp	Leu 210	Lys	Glu	Thr	Gln	Glu 215		Leu	Ile	Glu	Leu 220	Arg	Gly	Thr	Thr
Lys 225	Glu	Leu	Tyr	Glu	Val 230	Leu	Gly	туг	Phe ,	Lys 235	Glu	Ser	Ala	Gln	Arg 240
				245					250				Leu	255	
Pro	Gln	Lys	Ser 260		Gln	Leu	Gly	Ile 265	Pro	Ser	Asn	Lys	Lys 270	Lys	Asp

Arg	Ser	Ser 275	Ile	Met	Val	Leu	Lys 280	Lys	Met	Trp	Asp	Ser 285	Gln	Leu	Gln
Ser	Leu 290	Phe	Lys	His		Asp 295	Gly	Ala	Ser	Lys	Phe 300	Val	Gln	Pro	Leu
Pro 305	Asn	Arg	His	Ile	Val 310	Ala	Glu	Ser	Gly	Arg 315	Trp	Phe	Glu	Val	Asn 320
Val	Gly	Asn	Trp	Lys 325	Pro	Ser	Tyr	Pro	Thr 330	His	Leu	Phe	Ile	Phe 335	Asn
Asp	Leu	Ile	Leu 340	Ile	Thr	Val	Lys	Lys 345	Ser	Ser	Ser	Ser	Ser 350	Gln	Glu
Pro	Thr	Thr 355	Gly	Gly	Ser	Asn	Gly 360	Gly	Ser	Lys	Ser	Arg 365	Leu	Gln	Ala
Val	Gln 370	Cys	Trp	Pro	Leu	Thr 375	Gln	Val	Ser	Leu	Gln 380	Gln	Ile	Lys	Ser
Pro 385	Lys	Lys	Asp	Asp	Asp 390	Lys	Met	Tyr	Phẹ	Ile 395	Asn	Leu	Lys	Ser	Lys 400
Ser	Leu	Ser	Tyr	Val 405	туr	Leu	Thr	Asp	Arg 410	Tyr	Asp	His	Phe	Val 415	Lys
Val	Thr	Glu	Ala 420	Phe	Asn	Lys	Gly	Arg 425	Asn	Glu	Met	Ile	Gln 430	Ser	Glu
Arg	Leu	Leu 435	Asp	Ser	Arg	Leu	Ser 440	Ser	Pro	Ser	Asn	Asn 445	Asn	Gly	Asp
Ser	Lys 450	Glu	Glu	Lys			Leu			Ser	Leu 460	Arg	Asn	Ser	Gly
Asn 465	туr	Lys	Glu	Gly	Val 470	Thr	Asp	Asp	Ala	Gly 475	Gly	Ala	Ala	Thr	Gly 480
Gly	Gly	Arg	Lys	Ser 485	Ala	Gly	Thr	Pro	Asn 490		Asn	Ser	Thr	Asp 495	Tyr
Val	Leu	His	Asp 500		Ser	Ala	Arg	Val 505		Ser	Arg	Asn	Arg 510	Ser	Gln
Asp	Leu	Gly 515	Asn	Asn	Phe	Lys	Leu 520		Asn	Asn	Gly	Lys 525		Gln	Phe

Phe	Asn 530	Glu	Ile	Lys	Thr	Leu 535	Glu	Asp	Arg	Leu	Asp 540	Asp	Val	Asp	Val
Glu 545	Ile	Ser	His	Asn	Gln 550	Tyr	Ala	Glu	Ala	Val 555	Glu	Leu	Ile	Ser	Ile 560
Ile	Glu	Ser	Lys	Leu 565	Arg	Asn	Ile	Glu.	Asn 570	Ala	Leu	Thr	Asn	Gln 575	Arg
Asn	Gly	Gly	Lys 580	Asn	Val	Asn	Ile	Ala 585	Asp	Glu	Leu	Leu	Leu 590	Leu	Asp
/al	Ser	Lys 595	Leu	Lys	Ile	Lys	Asn 600	Arg	Lys	Glu	Asn	Val 605	Ser	Asn	Gly
Leu	Ile 610	Phe	Asp	Leu	Gln	His 615	Asn	Ile	Ala	Lys	Leu 620	Lys	Gln	Asp	Asp
Ile 625	Asp	Asn	Ile	Leu	Thr 630	Leu	Phe	Asp	Asn	Leu 635	Glu	Gln	Leu	Asp	Arg 640
Gly	Val	Gln	Gly	Tyr 645	Leu	Asp	Ser	Met	Ser 650	Ala	Tyr	Leu	Ser	Thr 655	Thr
Val	Ser	Lys	Leu 660	Ile	Val	Gly	Leu	Gln 665	Gly	Ser	Thr	Lys	Ile 670	Asp	Val
Val	Asn	Tyr 675	Leu	Ser	Asn	Leu	Met 680	Val	Ile	Asn	Val	Ser 685	lle	Val	r ys
Arg	Thr 690	Ile	Gln	Thr	Tyr	Glu 695	Gln	Ile	Ile	Ala	Pro 700	Ile	Leu	Lys	Arg
His 705		Asp	Val	Asp	Ser 710		Gly	Leu	Ile	Asn 715	Trp	Cys	Ile	Asp	Glu 720
Phe	Thr	Lys	Leu	Cys 725	Lys	Gln	Ile	Lys	Lys 730	His	Leu	Tyr	Gly	Thr 735	Leu
Leu	Ile	Ser	Ser 740	Gly	Ile	Asn	Met	Glu 745	Thr	Asp	Glu	Pro	Ile 750	Туr	Lys
Val	Lys	Glu 755		Lys	Leu	Tyr	Asp 760		Phe	Leu	Lys	Ile 765		Gln	Pro
Gln	1eu	Glu	Glu	Leu	Lys	Leu 775		Gly	Leu	Asn	Val 780		Tyr	Ile	Phe

Glu Ser Ile Leu Asn Leu Glu 785 790

PCT/EP99/07376

SEQUENCE LISTING

- <110> Hoechst Marion Roussel
- <120> ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR SCRENING ANTIMYCOTIC SUBSTANCES USING SAID GENES
- <130> SEQID05
- <140>
- <141>
- <160> 1
- <170> PatentIn Ver. 2.1
- <210> 1
- <211> 343
- <212> DNA ·
- <213> Artificial Sequence
- <223> Description of Artificial Sequence:probe

ctgcagtaaa ccctccagat ataacagact ctttatgtcc agtgatttcg ccaacaaatc 60 ttggtggttg ggtgtgtgtg gtccataagt atgccgtgtt gtcaccaccc ccagtcaata 120 ccattggcaa tttaggatgt gaaaaaatag taaatatact atcggtatgt ttatcaaaat 180 aagtccatga attgttggac atgtcaattt ctaaagtctc atgctcatca tctaattcca 240 tetecteate ttetteateg ggtggegett gateateate tgcaacttee teagecaett 300 343 cattaacatt gatatattct tcttgagtat cgtctacgac gtc

22/83

SEQUENCE LISTING

<110> Hoechst Marion Roussel <120> ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR SCRENING ANTIMYCOTIC SUBSTANCES USING SAID GENES <130> SEQID06 <140> <141> <160> 2 <170> PatentIn Ver. 2.1 <210> 1 <211> 1248 <212> DNA <213> Candida albicans <220> <221> CDS <222> (1)..(1245) <220> <221> gene <222> (1)..(1245) <223> gene CaIR012 <400> 1 atg tca cac caa caa gaa gac gtc gta gac gat act caa gaa gaa tat Met Ser His Gln Glu Asp Val Val Asp Asp Thr Gln Glu Glu Tyr 5 1 atc aat gtt aat gaa gtg gct gag gaa gtt gca gat gat gat caa gcg Ile Asn Val Asn Glu Val Ala Glu Glu Val Ala Asp Asp Asp Gln Ala 25 20 Pro Pro Asp Glu Glu Asp Glu Glu Met Glu Leu Asp Asp Glu His Glu 45 35 act tta gaa att gac atg tcc aac aat tca tgg act tat ttt gat aaa 192 Thr Leu Glu Ile Asp Met Ser Asn Asn Ser Trp Thr Tyr Phe Asp Lys 55

cat acc gat agt ata ttt act att ttt tca cat cct aaa ttg cca atg

His 65	Thr	Asp	Ser	Ile	Phe 70	Thr	Ile	Phe		/83 His 75	Pro	Lys	Leu	Pro	Met 80	
			GJA aaa												cac: His	288
			cca Pro													336
		Ser	gga Gly					gac								384
	Met		gga Gly				gtt					aaa				432
Gln			aaa Lys			gaa					gaa					480
			cat His		aca					gcc					gat	528
			tgg Trp 180	gtc												576
			tct Ser													624
			gga Gly													672
			act Thr													720
			caa Gln													768
gtc	acg	gtc	aaa	gta	cat	ggt	aat	ctt	gtg	gcc	att	ggt	ggc	aga	gat	816

24/83 Val Thr Val Lys Val His Gly Asn Leu Val Ala Ile Gly Gly Arg Asp 265 260 gge cag cta tea att gtg aac aat gac act ggt aaa atc gtt cat act Gly Gln Leu Ser Ile Val Asn Asn Asp Thr Gly Lys Ile Val His Thr 285 280 275 ctt aaa aca ttg gat aat gtc gac gac att gca gaa ctc tca att gag Leu Lys Thr Leu Asp Asn Val Asp Asp Ile Ala Glu Leu Ser Ile Glu 295 290 gca ttg agt tgg tgt gaa agc aaa aat att aac ctc ttg gca gtg ggt Ala Leu Ser Trp Cys Glu Ser Lys Asn Ile Asn Leu Leu Ala Val Gly 310 315 305 ttg gtt tct ggt gac gtt tta tta ttt gat act cag caa tgg aga ttg 1008 Leu Val Ser Gly Asp Val Leu Leu Phe Asp Thr Gln Gln Trp Arg Leu 330 325 aga aag aac ttg aaa gtt gac gat gcc atc acc aaa tta caa ttt gtt Arg Lys Asn Leu Lys Val Asp Asp Ala Ile Thr Lys Leu Gln Phe Val 345 340 ggc gaa acc ccc att ttg gtg gga agt agt atg gat ggt aaa att tac · 1104 Gly Glu Thr Pro Ile Leu Val Gly Ser Ser Met Asp Gly Lys Ile Tyr 365 360 355 aaa tgg gac gct aga act ggt gaa gag ttg ttt gct ggt gtg gga cac 1152 Lys Trp Asp Ala Arg Thr Gly Glu Glu Leu Phe Ala Gly Val Gly His 375 370 aac atg gga gta ttg gac ttt gct att tta gat gga ggt aaa aag ttg 1200 Asn Met Gly Val Leu Asp Phe Ala Ile Leu Asp Gly Gly Lys Lys Leu 395 400 390 385 gtt act gct ggt gat gaa ggt gtt tca ttg gtc ttt gta cat gaa tag Val Thr Ala Gly Asp Glu Gly Val Ser Leu Val Phe Val His Glu 410 405 <210> 2 <211> 415 <212> PRT <213> Candida albicans

<400> 2
Met Ser His Gln Gln Glu Asp Val Val Asp Asp Thr Gln Glu Glu Tyr
1 5 10 15

lle	Asn	Val	Asn 20	Glu	Val	Ala	Glu	Glu 25	Val	Ala	Asp	Asp	qaA 0E	Gln	Ala
?ro	Pro	Asp 35	Glu	Glu	Asp	Glu	Glu 40	Met	Glu	Leu	Asp	Asp 45	Glu	His	Glu
Thr	Leu 50	Glu	Ile	Asp	Met	Ser 55	Asn	Asn	Ser	Trp	Thr 60	Tyr	Phe	Asp	Lys
lis 65	Thr	Asp	Ser	Ile	Phe 70	Thr	Ile	Phe	Ser	His 75	Pro	Lys	Leu	Pro	Met 80
/al	Leu	Thr	Gly	Gly 85	Gly	Asp	Asn	Thr	Ala 90	туr	Leu	Trp	Thr	Thr 95	His
Thr	Gln	Pro	Pro 100	Arg	Phe	Val	Gly	Glu 105	Ile	Thr	Gly	His	Lys 110	Glu	Ser
Val	Ile	Ser 115	Gly	Gly	Phe	Thr	Ala 120	Asp	Gly	Lys	Phe	Val 125	Val	Thr	Ala
Asp	Met 130	Asn	Gly	Leu	Ile	Gln 135	Val	Phe	Lys	Ala	Thr 140	Lys	Gly	Gly	Glu
Gln 145	Trp	Val	Lys	Phe	Gly 150	Glu	Leu	Asp	Glu	Val 155	Glu	Glu	Val	Leu	Phe 160
Val	Thr	Val	His	Pro 165	Thr	Leu	Pro	Phe	Phe 170	Ala	Phe	Gly	Ala	Thr 175	Asp
Gly	Ser	Ile	Trp 180	Val	Tyr	Gln	Ile	Asp 185	Glu	Ser	Ser	Lys	Leu 190	Leu	Val
Gl <u>n</u>	Ile	Met 195	Ser	Gly	Phe	Ser	His 200		Leu	Glu	Суѕ	Asn 205	Gly	Ala	Val
Phe	Ile 210	Gln	Gly	Lys	Asp	Glu 215		Asp	Leu	Thr	Leu 220	Val	Ser	Ile	Ser
Glu 225	Asp	Gly	Thr	Val	Val 230	Asn	Trp	Asn	Cys	Phe 235	Thr	Gly	Gln	Val	Asn 240
Tyr	Lys	Leu	Gln	Pro 245	His	Asp	Asp	Phe	Lys 250		Val	Glu	Ser	Pro 255	Trp
Val	Thr	Val	Lys 260		His	Gly	Asn	Leu 265		Ala	Ile	Gly	Gly 270		Asp

								L	010	>					
Gly	Gln	Leu 275	Ser	Ile	Val	Asn	Asn 280	Asp	Thr	Gly	Lys	Ile 285	Val	His	Thr
Leu	Lys 290	Thr	Leu	Asp	Asn	Val 295	Asp	Asp	Ile	Ala	Glu 300	Leu	Ser	Ile	Glu
Ala 305	Leu	Ser	Trp	Cys	Glu 310	Ser	Lys	Asn	Ile	Asn 315	Leu	Leu	Ala	Val	Gly 320
Leu	Val	Ser	Gly	Asp 325	Val	Leu	Leu	Phe	Asp 330	Thr	Gln	Gln	Trp	Arg 335	Leu
Arg	Lys	Asn	Leu 340	Lys	Val	Asp	Asp	Ala 345	Ile	Thr	Lys	Leu	Gln 350	Phe	Val
Gly	Glu	Thr 355	Pro	Ile	Leu	Val	Gly 360	Ser	Ser	Met	Asp	Gly 365	Lys	Ile	Tyr
Lys	Trp 370	Asp	Ala	Arg	Thr	Gly 375	Glu	Glu	Leu	Phe	Ala 380	Gly	Val	Gly	His
Asn 385	Met	Gly	Val	Leu	Asp 390	Phe	Ala	Ile	Leu	Asp 395	Gly	Gly	Lys	Lys	Leu 400
Val	Thr	Ala	Gly	Asp	Glu	Gly	Val	Ser	Leu	Val	Phe	Val	His	Glu	

SEQUENCE LISTING

<110> Hoechst Marion Roussel <120> ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR SCRENING ANTIMYCOTIC SUBSTANCES USING SAID GENES <130> SEQID07 <140> <141> <160> 2 <170> PatentIn Ver. 2.1 <210> 1 <211> 5544 <212> DNA <213> Candida albicans <220> <221> CDS <222> (1)..(5541) <220> <221> gene <222> (1)..(5541) <223> Gene CaJLO39 <400> 1 atg agt ggc ata ttt aat tgg tcg ctg gat gtg ttt gcc gat att tat Met Ser Gly Ile Phe Asn Trp Ser Leu Asp Val Phe Ala Asp Ile Tyr 10 aac acc ctc aag ttt gag tcc aat ata gat ttg gat aca atc gac ttc Asn Thr Leu Lys Phe Glu Ser Asn Ile Asp Leu Asp Thr Ile Asp Phe 25 20 acc agc atc aag aat gat ctt gca aat gtt ttg att aca cca gtc cct Thr Ser Ile Lys Asn Asp Leu Ala Asn Val Leu Ile Thr Pro Val Pro 40 35 ctg gat caa tca cgt agc aaa ctt gga gac gca tca aaa cca gtg gcg Leu Asp Gln Ser Arg Ser Lys Leu Gly Asp Ala Ser Lys Pro Val Ala 55 50

ttg ccc agt gga gat gag gtg aaa ttg aat caa gca tca att gaa att

240

Leu 65	Pro	Ser	Gly	Asp	Glu 70	Val	Lys	Leu	Asn	Gln 75	Ala	Ser	Ile	Glu	Ile 80	
			tta Leu													288
			tat Tyr	aac					agc							336
			100					105					110			384
			agt Ser													301
cta Leu	aac Asn 130	att Ile	gtt Val	gga Gly	tac Tyr	tta Leu 135	gtt Val	tcg Ser	cat His	aaa Lys	cgt Arg 140	tta Leu	gat Asp	atc Ile	atc Ile	432
act Thr	aac	aac Asn	aac Asn	caa Gln	gtg Val	ttg Leu	ttt Phe	gac Asp	aat Asn	att Ile	ttg Leu	aaa Lys	agt Ser	ttc Phe	agc Ser	480
145			act		150					155					160	528
			Thr													
aaa Lys	gtt Val	acc Thr	ggc Gly 180	gac Asp	atc Ile	aac Asn	aat Asn	ctt Leu 185	gca Ala	ttt Phe	atc Ile	aat Asn	tgt Cys 190	atc Ile	aat Asn	576
			agt Ser													624
gta Val	ttt Phe	gga Gly	tta Leu	gcg Ala	gat Asp	aat Asn	tat Tyr	tat Tyr	gag Glu	agt Ser	tat Tyr	ągc Gly	aca Thr	cta Leu	aac Asn	672
	210					215					220				gaa	· 720
Asn 225	Tyr	Asn	Ser	Leu	Val 230	Glu	Phe	Ile	Leu	Lys 235	Asn	Ile	Ser	Asp	Glu 240	
			gtt Val													768
aaa	tta	ctt	caa	cta	ggt	gag	gaa	tct	tta	gtc	gat	cag	ttt	tac	aag	816

Lys	Leu	Leu	Gln 260	Leu	Gly	Glu	Glu	Ser 265	Leu	Val	Asp	Gln	Phe 270	Tyr	Lys	
					ata Ile											864
					gac Asp											912
					att Ile 310											960
					acc Thr											1008
					ttg Leu											1056
					acc Thr											1104
					gat Asp											1152
cga Arg 385	ctt Leu	aca Thr	cca Pro	gca Ala	aaa Lys 390	ttt Phe	cat His	tat Tyr	cct Pro	ggc Gly 395	aat Asn	caa Gln	gaa Glu	ttg Leu	ttg Leu 400	1200
					gga Gly											1248
					gat Asp											1296
					ttc Phe											1344
atg	acc	tct	tta,	agg	gac	tca	gag	gaa	gat	ttt	gtt	tta	tcg	tcg	ttg	1392

									30/	83						
Met	Thr	Ser	Leu	Arg	Asp	Ser	Glu	Glu	Asp	Phe	Val	Leu	Ser	Ser	Leu	
	450			_	•	455			•		460					
					gag			~~~	~ 33	~==	age	gac	agc	gac	gaa	1440
aat	gaa	agt	gac	gaa	gag	gaa	gaa	gaa	91	944	Cor	3-0	-50	Dan	Glu	
Asn	Glu	Ser	Asp	Glu	Glu	GIu	GIU	GIU	GIU		Ser	wsp	Ser			
465					470					475				•	480	
gat	tct	tca	acc	cca	aaa	aac	aaa	gaa	aaa	tca	gct	999	tta	gac	ctt	1488
Acn	Ser	Ser	Thr	Pro	Lys	Asn	Lvs	Glu	Lys	Ser	Ala	Gly	Leu	Asp	Leu	
тэр	561	001		485	-1-				490			_		495		
				405												
													++~	act	++-	1536
gac	aag	att	gcc	cag	cgt	gct	gaa	tta	gaa	agg		-	-	- 1	-1	1550
Asp	Lys	Ile	Ala	Gln	Arg	Ala	Glu	Leu	Glu	Arg	Phe	Tyr	Leu	Ala	Pne	
			500					505					510			
~~~	+ > 0	200	tac	aac	aat	cga	cct	gaa	ttq	tqt	gcg	tta	ttt	tgg	999	1584
gcg		mb	- Cac	2	Asn	75-	Dro	Glu	Leu	Cvs	Ala	Leu	Phe	Trp	Glv	
Ala	Tyr		TAL	Asn	ASII	Arg		GIU	200	C, C		525			4	
		515					520					223				
aac	gag	cag	gta	act	cat	gac	att	ata	gga	ttt	att	tcc	tgg	gga	ctt	1632
Asn	Glu	Gln	Val	Thr	His	Asp	Ile	Ile	Gly	Phe	Ile	Ser	Trp	Gly	Leu	
	530					535					540					
	330											•				
					ccg		250	3.C.F	aca	aca	ttc	tac	tta	cta	tta	1680
gct	aat	aat	acg	CCC	- ccg	LLG	acc	acc	33-	mbs	Dho	Cyc	T.A11	T.em	T.e.u	
Ala	Asn	Asn	Thr	Ser	Pro	Leu	Ile	Thr	Ala		Pne	Cys	Deu	Deu		
545					550					555					560	
aga	tcq	ttg	gca	tct	gct	ggt	gca	gag	gca	act	tca	agg	ata	tgg	gag	1728
Gly	Ser	Len	Δla	Ser	Ala	Glv	Ala	Glu	Ala	Thr	Ser	Arg	Ile	Trp	Glu	
017			,	565	•	•			570					575		
				505					•							
											202	222	aat	cat	+++	1776
att	ctt	gta	cac	aac	aat	aac	aac	gca	agt	acg	aya		2	3	Dha	2.,,,,
Ile	Leu	Val	His	Asn	Asn	Asn	Asn	Ala	Ser	Thr	Arg	ьуs		Asp	Pne	
		•	580					585					590			
tca	аад	gta	tcc	att	gac	tcc	ctt	tat	gat	tcg	ttg	aaa	tat	tac	att	1824
Cox	Tye	Val	Sar	Val	Asp	Ser	Leu	Tvr	Asp	Ser	Leu	Lys	Tyr	Tyr	Ile	
Ser	nys		361	141	nop		600	-1-	•			605	•	_		
		595					800					•••				
												~~~		++~	2 t G	1872
gac	tct	tta	aat	gaa	agc	ttt	gaa	caa	gat	tta	aat	gee	caa	-	acy	1012
Asp	Ser	Leu	Asn	Glu	Ser	Phe	Glu	Gln	Asp	Leu	Asn	Ala	Gln	Leu	Met	
	610					615					620					
tta	aat	cad	aac	aaa	caa	gat	ttt	ctc	ttc	agc	acc	aca	aca	agc	aaa	1920
7.00	×	C1-		Lare	Gln	Der.	Dhe].611	Phe	Ser	Thr	Thr	Thr	Ser	Lys	
	ASN	GIN	пÀз	пÀа		vah	FIIC	200	- 110	635					640	
625					630					033						
														++-	~~~	1968
cag	gac	ctt	gat	.gat	tct	ggc	gag	aat	aga	att	gtt	ata	gag	ceg	gee	1200

Gln	Asp	Leu	Asp	Asp 645	Ser	Gly	Glu	Asn	Arg 650	Ile	Val	Ile	Glu	Leu 655	Ala	
gag Glu	gat Asp	tca Ser	ctt Leu 660	gtc Val	ctc Leu	att Ile	tca Ser	999 Gly 665	ttt Phe	att Ile	caa Gln	tta Leu	ctt Leu 670	tct Ser	gca Ala	2016
														atc Ile		2064
tcc Ser	gtg Val 690	gta Val	tac Tyr	act Thr	aga Arg	ttc Phe 695	tca Ser	cca Pro	atc Ile	att Ile	aaa Lys 700	GJÀ âââ	ttt Phe	tta Leu	aaa Lys	2112
														gct Ala		2160
att Ile	caa Gln	agc Ser	aca Thr	aac Asn 725	aac Asn	ccc Pro	aaa Lys	ttt Phe	att Ile 730	gat Asp	ttg Leu	cca Pro	aat Asn	gtt Val 735	ttc Phe	2208
														acc Thr		2256
tta Leu	ggc Gly	gat Asp 755	ttt Phe	gtt Val	acc Thr	aac Asn	gat Asp 760	agt Ser	gat Asp	ccg Pro	tat Tyr	att Ile 765	aga Arg	tat Tyr	gag Glu	2304
att Ile	tgg Trp 770	cgt Arg	tta Leu	gtc Val	gat Asp	cga Arg 775	tgg Trp	atg Met	tac Tyr	cag Gln	999 Gly 780	ttg Leu	cat His	agt Ser	ttg Leu	2352
cca Pro 785	gaa Glu	gac Asp	aag Lys	aaa Lys	gat Asp 790	gat Asp	gct Ala	ttt Phe	aga Arg	cat His 795	att Ile '	ąag Lys	aga Arg	aag Lys	tat Tyr 800	2400
														aac Asn 815		2448
									Thr					aaa Lys		2496
tta	acc	cca	tat	,gca	gat	agt	aat	gaa	gca	ttc	acc	aag	tac	tcg	ttg	2544

Leu	Thr	Pro 835	Tyr	Ala	Asp	Ser	Asn 840	Glu	Ala	Phe	Thr	Lys 845	Tyr	Ser	Leu	
					tta Leu											2592
					att Ile 870											2640
					aat Asn											2688
					agc Ser											2736
					ccg Pro											2784
Gly					ctt Leu											- 2832
					cat His 950											2880
					gcc Ala											2928
tct Ser	gtg Val	aat Asn	gaa Glu 980	tca Ser	ggt Gly	gaa Glu	tcg Ser	gcg Ala 985	gaa Glu	ttg Leu	gtg Val	tca Ser	cat His 990	gcc Ala	ctt Leu	2976
					ttg Leu	Leu					Ser					3024
Leu					cga Arg					Gln						3072
999	aca	gcc	att	. 999	att	ggt	act	tct	atg	agt	ctt	gcg	tta	gca	acc	3120

									<i>31</i> 0				_			
Gly	Thr	Ala	Ile	Gly	Ile	Gly	Thr	Ser	Met	Ser	Leu	Ala	Leu	Ala	Thr	
1025					1030					035					040	
1023				_												
														a aa	262	3168
cct	aga	acc	ata	ttt	gat	tgt	ata	tac	tat	cca	aag	aat	LLG	gga	aca	3100
Pro	Arq	Thr	Ile	Phe	Asp	Cy's	Ile	Tyr	Tyr	Pro	Lys	Asn	Leu	Gly	Thr	
	_			1045					050				1	.055		
			•													
																2216
cat	ggt	gtt	gct	gat	ttt	tac	gaa	gtg	ata	ttg	ttc	cac	LLa	LCL	gca	3216
His	Glv	Val	Ala	Asp	Phe	Tyr	Glu	Val	Ile	Leu	Phe	His	Leu	Ser	Ala	
	•		060	_				1065					070			
		•														
												3.C.F	att	tcc	220	3264
gtt	gtc	caa	ttt	gcc	ctt	tat	gtc	agt	tgt	gaa	aat	-:	acc	-		3201
Val	Val	Gln	Phe	Ala	Leu	Tyr	Val	Ser	Cys	Glu	Asn	Thr	He	Ser	ASN	
		1075					1080					.085				
	•															
											tee	220	++ +	+++	att	3312
aaa	gca	att	tcc	ata	ttg	aaa	gga	gta	age	Caa	دبد	aay			900	J J I W
Lys	Ala	Ile	Ser	Ile	Leu	Lys	Gly	Val	Ser	Gln	Ser	Lys	Phe	Phe	Val	
	.090					L095					100					
•	.050				-											
											226	220	aat	апа	tta	3360
acc	aga	gtt	tca	agc	tct	gct	gat	ccc	CCa	CCC	aac	aac -	gac	294		3300
Thr	Arg	Val	Ser	Ser	Ser	Ala	Asp	Pro	Leu	Leu	Asn	Asn	Asp	Arg	Leu	
1105					1110					1115					120	
1100	•															
										a t a	223	atc	аап	+++	act	3408
att	acc	aca	ttt	gaa	aac	atc	gac	gag	tca	ata	aaa		-		-1-	
Ile	Thr	Thr	Phe	Glu	Asn	Ile	Asp	Glu	Ser	Ile	Lys	Ile	Lys	Phe	Ala	
				1125					130				1	1135		
					•											
									~~~	+ < +	tta	aat	ato	ааа	tat	3456
ttc	att	gac	aag	בבב	gaa	gaa	ecc	gag	gac	-	-		5	T	Maran.	
Phe	Ile	Asp	Lys	Phe	Glu	Glu	Leu	Glu	Asp	Ser	Leu	Asn	met	ьys	Tyr	
			1140					1145				1	1150			
	•							aat	ctc	aat	caa	ttt	gat	aac	aaa	3504
gag	ata	ttg	gat	כככ	gtt	LLG	ggc	aat	-	-	<b>01</b>	Db -	3	03	Tue	
Glu	Ile	Leu	Asp	Phe	Val	Leu	Gly	Asn	Leu	Asn	Gin	рпе	Asp	GIY	пуъ	
		1155					1160					1165				
						+++	tta	ttg	gga	tac	aaa	ata	aaa	qqc	gat	3552
gtg	gct	act	act	gce	cac.		-	-	22	<b>T</b>	7	υ-1	Tvo	Clv	Acn	
Val	Ala	Thr	Thr	Ala	His	Phe	Leu	Leu	GTÄ			Val	пур	GLY	ASP	
1	1170					1175					1180					
		~~~	++~	ata	CaG	aca	aac	gat	caa	aac	aca	tta	cta	aaa	tct	3600
aca	LLa	yac	- LLG	gca	cag	~		3	C1-	n a n	Thr	Leu	ĭ.en	Lvs	Ser	
Thr	Leu	Asp	Leu	val	GIN	Thr	ASN	Asp			1117	J- u	u	_, .	200	
1189	5				1190					1195					1200	
		•														
++~	++=	22+	aca	tta	age	att	agt	ctt	gat	tta	att	tct	gaa	att	gat	3648
	-	aat	a.a		290		~50	10	Den	د.م.۲	Tle	Ser	Glu	Ile	Asp	
Phe	Leu	Asn	Thr	Leu	ser	116	ser	Leu							F	
				1205					1210					1215		
tac	aat	aat	qqt	aat	aac	cat	att	att	gat	gtt	ggt	cca	gcc	aag	ctt	3696
				•												

Tyr	Asn	Asn	Gly	Asn	Asn	His	Ile	Ile	Asp	Val	Gly	Pro	Ala	Lys	Leu	
•			220					225					.230			
																2744
tcg	tcg	ttg	att	tta	cag	att	ctt	atc	aag	ttg	tgc	caa	gac	Dro	Tle	3744
Ser			Ile	Leu	Gln			TIE	гÀа	reu		.245	Asp	PIO	116	
	1	1235				1	240				•	.273				
			ata	202	tta	aat	caa	tta	cat	gaa	tat	qaa	gaa	ttg	ttt	3792
ccg	ccg	Cor	Ile	Thr	Leu	Asn	Gln	Leu	Arg	Glu	Tyr	Glu	Glu	Leu	Phe	
	250	JCI				255					260					
•																
qaa	aaa	ttg	gtt	aac	tgt	caa	cct	aaa	ctt	gat	ttg	aat	acc	gtt	tgg	3840
Glu	Lys	Leu	Val	Asn	Cys	Gln	Pro	Lys	Leu	Asp	Leu	Asn	Thr	Val	Trp	
1265					270					275				1	.280	
																2000
tgt	ggt	aac	cag	ttt	gat	ggg	gat	ttg	cag	att	gat	gct	agc	aat	gta	3888
Cys	Gly	Asn	Gln		Asp	Gly	Asp			He	Asp	Ala		ASN 1295	vaı	
			3	1285				1	L290				•			
			aac		~~3	300	200	caq	act	ttc	ttt	tcc	ttt	att	aac	3936
ttt -	gtt	gac	Asn	Cla	yca Nla	Ser	Thr	Gln	Ala	Phe	Phe	Ser	Phe	Ile	Asn	
Phe	vaı		1300	GIII	MIG	JCI		1305					1310			
			1300				_									
cad	ада	aac	tta	att	ttq	cag	tat	ttg	tca	ttg	gaa	ttc	cat	agt	gtc	3984
Gln	Arq	Asn	Leu	Ile	Leu	Gln	Tyr	Leu	Ser	Leu	Glu	Phe	His	Ser	Val	
		1315					1320					1325				
aaa	tca	aga	act	aag	cgg	gag	tat	tat	tct	aaa	gtg	ttg	acc	aac	gac	4032
Lys	Ser	Arg	Thr	Lys	Arg	Glu	Tyr	Tyr	Ser			Leu	Thr	Asn	Asp	
•	1330				:	1335					1340					
									~~~	++~	303		tta	aac	att	4080
aag	gaa	ttt	gtt Val	aat	cgt	aca	Dio	Lvc	yeg val	Len	Thr	Phe	Leu	Asn	Ile	
_		Phe	vai		Arg 1350	IIII	PIO	пуз		1355					1360	
134	5				1350				·							
<del></del>	aat	tat	tca	ttc	aaq	aac	ttt	qaa	gtg	cag	aaa	tac	gaa	tgg	ctt	4128
Leu	Asn	Tvr	Ser	Phe	Lys	Asn	Phe	Glu	Val	Gln	Lys	Tyr	Glu	Trp	Leu	
200		, -		1365					1370					1375		
gac	caa	aaa	ttt	aac	gtg	tcg	ttg	tta	ttg	gca	gaa	gta	aac	gct	caa	4176
Asp	Glr	Lys	Phe	Asn	Val	Ser	Leu	Leu	Leu	Ala	Glu	Val	Asn	Ala	Gln	
			1380					1385					1390			
															<b>~++</b>	4224
aag	aat	: ggt	aca	tta	gat	ttt	tct	gtt	tta	aca	aag	yet val	Dhe	. Dyc	Len	-247
Lys	Ası		Thr	Leu	Asp	Phe			ьeu	inr	υys	1405	116	. ALG	204	
		1395	•				1400						•			
<b></b> -				. +	iaac	. tt=	ata	aca	ccc	gaq	tca	aac	, caa	ttg	ttt	4272
בבפ	rge	ن تط	acg	, cca		. cca				J J		•		-		

										,	_	_		_		
Leu	Cys	Gln	Thr	Ser	Asn	Leu	Ile	Thr	Pro	Glu	Ser	Lys	Gin	Leu	Phe	
1	410				1	415				1	420					
acc	as s	a a	att	atσ	gtt	даа	ασa	agt	aaq	att	tct	gac	ttt.	gtc	aca	4320
gcc	944	944	710	Mor	Val	C1	Glv	Ser	Lvs	Tle	Ser	Asp	Phe	- Val	Thr	
		GIU	116			GIU	Gry	501							440	
1425	•			]	1430				1	435				•	440	
aag	tac	ctg	gtg	tcg	acc	gac	ttg	aag	gat	gtg	cag	ttg	aaa	tgc	tta	4368
Lvs	Tyr	Leu	Val	Ser	Thr	Asp	Leu	Lys	Asp	Val	Gln	Leu	Lys	Cys	Leu	
•	•			1445					450					455		
			_													
									++~	att	act	cac	agt	gga	atc	4416
cat	tca	tgg	tgt	caa	ttg	ata	gag	att	-	9	act.	gac	250	994	T1 -	
His	Ser	Trp	Cys	Gln	Leu	Ile	Glu	Ile	Leu	Vai	Thr			GIY	me.	
		3	1460				3	465				1	1470			
aat	tca	cta	aat	ttc	atc	tta	gaa	ata	ttg	caa	gtt	att	att	ccc	aaa	4464
aac	2	T	200	Dho	Ile	Len	Glu	Val	I.eu	Gln	Val	Ile	Ile	Pro	Lvs	
ASD			ASII	Pne	116			vai				485			-4 -	
		L475				3	480				_	403				
				•												
atc	aat	gac	tat	ttt	gat	gtg	gac	ata	ctg	ttt	tct	gaa	gaa	atg	gtt	4512
Ile	Asn	Asp	Tyr	Phe	Asp	Val	Asp	Ile	Leu	Phe	Ser	Glu	Glu	Met	Val	
	490	•	•			L495					1500					
•	. 4 5 0				_											
								-4-4-				a+a	3.C.t	a++	aca	4560
tca	tta	tgt	gtt	tta	ttg	כככ	gat	CEE	cac	gat	cay	-	acc		329	1500
Ser	Leu	Cys	Val	Leu	Leu	Phe	Asp	Leu	Tyr	Asp	Gin	Leu	Thr			
1505	5				1510				1	1515				1	.520	
gac	aga	aaa	aat	gaa	gat	ttt	qca	ctt	gga	att	gag	aga	ttg	atc	CCC	4608
300	2	Tara	234	C1	Asp	Dhe	Δla	Len	Glv	Tle	Glu	Arg	Leu	Ile	Pro	•
Asp	Arg	гåе			Asp	FIIC	niu							1535		
			-	1525					1530				•			
tta	ttt	cag	act	tgt	att	gca	ggt	att	ctt	aat	tct	aac	tca	aca	ccc	4656
Leu	Phe	Gln	Thr	Cys	Ile	Ala	Gly	Ile	Leu	Asn	Ser	Asn	Ser	Thr	Pro	
			1540	-				1545					1550			
											•					
					ttg			a++	~~~	225	220	+++	tta	tta	aaa	4704
agc	tta	cgc	tca	gac	ttg	tat	gca	gee	990	aac	T	Dha	tou	Tou	Tuc	• • • • • • • • • • • • • • • • • • • •
Ser	Leu	Arg	Ser	Asp	Leu	Tyr	Val	Val	GIÀ	Asn			Leu	Leu	րչո	
		1555				:	1560					1565				
									•							
tat	ttt	gag	aga	gag	tcg	ttt	ttg	aaa	caa	gtg	atg	cat	atc	atc	aag	4752
Cva	Dhe	Glu	Ara	Glu	Ser	Phe	Len	Lvs	Gln	Val	Met	His	Ile	Ile	Lys	
		GIU	ura	JIU				-, -			1580				-	
-	1570				•	1575				•						
														- A	<b>.</b>	4000
tcg	gta	gat	aaa	aag	ttt	ttc	cag	gtg	att	tgt	aat	gac	gct	atc	tac	4800
Ser	Val	Asp	Lys	Lys	Phe	Phe	Gln	Val	Ile	Cys	Asn	Asp	Ala	Ile	Tyr	
158	5				1590					1595				:	1600	
F.0.3	asa	aat	CCS	ter	aga	atc	act	tet	act	tta	ttc	ctc	gaq	tca	tta	4848
ced	949	336	Jua		~34								, ,			

									66/2	-						
Ser	Glu	Gly	Pro	Ser	Arg	Ile	Thr	Ser	Thr	Leu	Phe	Leu	Glu	Ser	Leu	
			, 1	1605		•		1	L610				:	1615		
			,													
gtt	cac	tta	999	act	ttg	gtc	aag	gtt	gat	ttt	att	ttg	aat	gcg	ttg	4896
Val	His	Leu	Gly	Thr	Leu	Val	Lys	Val	Asp	Phe	Ile	Leu	Asn	Ala	Leu	
			620					1625					1630			
atc	aaa	aat	aac	gca	ttg	ctg	ttg	cta	gtc	agg	tca	gtt	aag	cgg	act	4944
														Arg		
	_	1635					1640					1645				
gat	acc	atq	atc	aaa	ttg	tgc	cag	gaa	aaa	aat	tca	gga	gtg	act	tta	4992
														Thr		
_	1650			-7-		1655			•		1660					
•	.050															
ast	cat	ttc	ata	ttt	gac	tta	atq	qca	ttc	aaa	qca	acg	cta	tat	ttt	5040
														Tyr		
		1110			1670					.675					680	
1665	•			-	.0,0				-							
			ata		222	tca	222	aac	aaa	gca	tta	cag	tta	att	caa	5088
														Ile		
Pne	vai	Arg		1685	пуs	361	Буз		L690		200	<b></b>		1695		
			_	1683				-	1000					-055		
						++~	ant	C2.0	tea	220		tta	cag	att	gat	5136
														Ile		
Asn	GIU			ser	116	ren		1705	261	пуз	-110		1710			
		J	700				•	1705				•				
											~++	<b>C23</b>	a = t	CaC	220	5184
														cac		3101
Pro			GIÀ	Leu	Ser			TIE	GIU	GIU		1725	Asp	His	цуз	
	1	1715				]	L720				•	1/25				
								·				+	- <del>-</del> -	act	<b>G</b> 2.0	5232
														act		3232
Thr	Val	Asn	Val	Asn			Leu	Asp	Thr			ser	TIE	Thr	Asp	
3	1730				]	L735					L740					
																E200
ttg	gtg	gat	cca	tac	aag	ttg	cga	agt	gaa	aac	act	ata	tca	tat	בננ	5280
Leu	Val	Asp	Pro	Tyr	Lys	Leu	Arg	Ser			Thr	He	ser	Tyr		
1745	5			1	1750					L755				1	1760	
														ttg		5328
Glu	Phe	Leu	Val	Pro	Ile	Phe	Gln	Leu	Leu	Thr	Thr	Val		Leu	Ser	
			1	1765				3	1770				:	1775		
														ctt		5376
Met	Gly	Pro	Asn	Tyr	Gln	Pro	Ala	Ile	Ile	Gln	Thr	Arg	Glu	Leu	Met	
		1	L780				:	1785				:	1790			
														•		
aag	agt	gta	aat	cga	ttg	gtg	gta	ggt	gtt	atg	aaa	aga	gat	ttc	ttg	5424

Lys Ser Val Asn Arg Leu Val Val Gly Val Met Lys Arg Asp Phe Leu 1800 1795 gta gag acc aaa caa att ggt caa ggg ttg tac aag gaa gag agt cac 5472 Val Glu Thr Lys Gln 'Ile Gly Gln Gly Leu Tyr Lys Glu Glu Ser His 1820 1815 1810 gag ttg gta tcg ttg aaa gaa ttg gtg aag ttg ttt att ttg att gat 5520 Glu Leu Val Ser Leu Lys Glu Leu Val Lys Leu Phe Ile Leu Ile Asp 1840 1830 1835 1825 5544 tca tta gct cat tat agt gtg tag Ser Leu Ala His Tyr Ser Val 1845 <210> 2 <211> 1847 <212> PRT <213> Candida albicans <400> 2 Met Ser Gly Ile Phe Asn Trp Ser Leu Asp Val Phe Ala Asp Ile Tyr 10 Asn Thr Leu Lys Phe Glu Ser Asn Ile Asp Leu Asp Thr Ile Asp Phe 25 20 Thr Ser Ile Lys Asn Asp Leu Ala Asn Val Leu Ile Thr Pro Val Pro 40 Leu Asp Gln Ser Arg Ser Lys Leu Gly Asp Ala Ser Lys Pro Val Ala 55 60 Leu Pro Ser Gly Asp Glu Val Lys Leu Asn Gln Ala Ser Ile Glu Ile 65 70 Thr Gly Val Leu Ser Asn Glu Leu Asp Leu Asp Glu Leu Asn Thr Ala 90 85 Glu Leu Leu Tyr Asn Ala Ser Asp Leu Ser Tyr Lys Lys Gly Thr Ser 110 105 100 Ile Gly Asp Ser Ala Arg Leu Ala Tyr Tyr Leu Arg Ala His Tyr Ile 120 115

Leu Asn Ile Val Gly Tyr Leu Val Ser His Lys Arg Leu Asp Ile Ile

135

140

Thr 145	Asn	Asn	Asn	Gln	Val 150	Leu	Phe	Asp	Asn	11e 155	Leu	гÀг	ser	Pne	160
Lys	Ile	Tyr	Thr	Leu 165	Ser	Gly	Lys	Leu	Asn 170	Asp	Met	Ile	Asp	Lys 175	Gln
Lys	Val	Thr	Gly 180	Asp	Ile	Asn	Asn	Leu 185	Ala	Phe	Ile	Asn	Cys 190	Ile	Asn
		195					200					205	Gly		
	210					215					220		Thr		
225					230					235			Ser	•	240
				245					250				Leu	255	•
			260					265					Phe 270		
		275					280					285	Asn		
	290					295					300		Gly		
305					310		•			315	÷		Trp		320
*****				325					330			•	Asp	335	
			340					345					Arg 350		
		355					360					365	Val Asn		
	370					375					380		Glu		
385	Leu	****		- NAG	390			-1-		395					400

Asn	Ala	Val	Arg	Pro 405	Gly	Tyr	Glu	Asn	Ile 410	Ser	Lys	Leu	Ile	Asp 415	Ile
Ser	Phe	Leu	Thr 420	Leu	Asp	Pro	Ser	Leu 425	Asn	Glu	Thr	Leu	Val 430	Ser	Pro
Phe	Phe	Gln 435	Ser	Phe	Phe	Ser	Val 440	Phe	Ile	Ser	Asn	Ala 445	Ala	Val	Val
Met	Thr 450	Ser	Leu	Arg	Asp	Ser 455	Glu	Glu	Asp	Phe	Val 460	Leu	Ser	Ser	Leu
Asn 465	Glu	Ser	Asp	Glu	Glu 470	Glu	Glu	Glu	Glu	Glu 475	Ser	Asp	Ser	Asp	Glu 480
Asp	Ser	Ser	Thr	Pro 485	Lys	Asn	Lys	Glu	Lys 490	Ser	Ala	Gly	Leu	Asp 495	Leu
Asp	Lys	Ile	Ala 500	Gln	Arg	Ala	Glu	Leu 505	Glu	Arg	Phe	Tyr	Leu 510	Ala	Phe
Ala	Tyr	Thr 515	Tyr	Asn	Asn	Arg	Pro 520	Glu	Leu	Суз	Ala	Leu 525	Phe	Trp	Gly
Asn	Glu 530	Gln	Val	Thr	His	Asp 535	Ile	Ile	Gly	Phe	Ile 540	Ser	Trp	Gly	Leu
Ala 545	Asn	Asn	Thr	Ser	Pro 550	Leu	Ile	Thr	Ala	Thr 555	Phe	Cys	Leu	Leu	Leu 560
Gly	Ser	Leu	Ala	Ser 565	Ala	Gly	Ala	Glu	Ala 570	Thr	Ser	Arg	Ile	Trp 575	Glu
Ile	Leu	Val	His 580	Asn	Asn	Asn	Asn	Ala 585	Ser	Thr	Arg	Lys	Asn 590	Asp	Phe
Ser	Lys	Val 595	Ser	Val	Asp	Ser	Leu 600	Tyr	Asp	Ser	Leu	Lys 605	Tyr	Tyr	Ile
Asp	Ser 610	Leu	Asn	Glu	Ser	Phe 615	Glu	Gln	Asp	Leu	Asn 620	Ala	Gln	Leu	Met
Leu 625	Asn	Gln	Lys	Lys	Gln 630	Asp	Phe	Leu	Phe	Ser 635	Thr	Thr	Thr	Ser	Lys 640
Gln	Asp	Leu	Asp	Asp 645	Ser	Gly	Glu	Asn	Arg 650	Ile	Val	Ile		Leu 655	Ala

						•		٦	, ,						
Glu	Asp	Ser	Leu 660	Val	Leu	Ile	Ser	Gly 665	Phe	Ile	Gln	Leu	Leu 670	Ser	Ala
Ile	Val	Lys 675	Asn	Leu	Asn	Thr	Lys 680	Asn	Glu	Arg	Ser	Lys 685	Glu	Ile	Lys
Ser	Val 690	Val	Tyr	Thr	Arg	Phe 695	Ser	Pro	Ile	Ile	Lys 700	Gly	Phe	Leu	Lys
Phe 705	Asp	Asn	Leu	Ile	Asn 710	Gly	Ser	Arg	Phe	Leu 715	Gln	Val	Asp	Ala	Ser 720
Ile	Gln	Ser	Thr	Asn 725	Asn	Pṛo	Lys	Phe	Ile 730	Asp	Leu	Pro	Asn	Val 735	Phe
Val	Ser	Asp	Asp 740	Ser	Arg	Ile	Ile	Leu 745	Thr	Asn	Leu	Ile	Leu 750	Thr	Phe
Leu	Gly	Asp 755	Phe	Val	Thr	Asn	Asp 760	Ser	Asp	Pro	Tyr	11e 765	Arg	Tyr	Glu
Ile	Trp 770	Arg	Leu	Val	Asp	Arg 775	Trp	Met	Tyr	Gln	Gly 780	Leu	His	Ser	Leu
Pro 785	Glu	Asp	Lys	Lys	Asp 790	Asp	Ala	Phe	Arg	His 795	Ile	Lys	Arg	Lys	Tyr 800
Asn	Ser	Lys	Lys	Asn 805	Val	Pro	Ile	Asn	Gln 810	Ala	Phe	Ser	Thr	Asn 815	Leu
Thr	His	Leu	Ser 820	Gln	Ile	Gly	Asn	Phe 825	Thr	Val	Leu	Val	Lys 830	Lys	Leu
Leu	Thr	Pro 835	туr	Ala	Asp	Ser	Asn 840	Glu	Ala	Phe	Thr	Lys 845	Tyr	Ser	Leu
Leu	Tyr 850	Pro	Cys	Asp	Leu	Gly 855	Leu	Gly	Tyr	Arg	Phe 860	Asn	Asn	Gln	Leu
Gly 865	Ile	Trp	Pro	Tyr	Ile 870	Glu	Phe	Leu	Met	Gln 875	Asn	Val	Phe	Ala	Asn 880
Ser	Gly	Thr	Ile	Ala 885	Asn	Lys	Arg	Asp	Arg 890	Val	Asn	Leu	Gln	Leu 895	Asn
Leu	Leu	Glu	Leu 900		Ser	Asn	Ala	Leu 905	Gln	Gly	Val	Asp	Trp 910	Lys	Phe

- Leu Ile Asp Val Ala Pro Lys Ile Ile Arg Asp Leu Lys Asn Phe Asn 915 920 925
- Gly Ile Phe Asp Ser Leu Ile Pro Gly Val Gln Leu Asp Phe Glu Val 930 935 940
- Phe Val Lys Leu His His Ser Val Ala Val Ile Asn Tyr Leu Phe Glu 945 950 955 960
- Asn Arg Thr Phe Ser Ala Leu Phe Lys Leu Val Asn Ile Gly Val Asp 965 970 975
- Ser Val Asn Glu Ser Gly Glu Ser Ala Glu Leu Val Ser His Ala Leu 980 985 990
- Gly Leu Ile Asn Ser Leu Leu Arg Val Gln Asn Ser Phe Ile Asn Lys 995 1000 1005
- Leu Leu Pro Ile Leu Arg Asn Lys Asp Thr Gln Gln Gln Leu His Arg 1010 1015 1020
- Gly Thr Ala Ile Gly Ile Gly Thr Ser Met Ser Leu Ala Leu Ala Thr 025 1030 1035 1040
- Pro Arg Thr Ile Phe Asp Cys Ile Tyr Tyr Pro Lys Asn Leu Gly Thr
  1045 1050 1055
- His Gly Val Ala Asp Phe Tyr Glu Val Ile Leu Phe His Leu Ser Ala 1060 1065 1070
- Val Val Gln Phe Ala Leu Tyr Val Ser Cys Glu Asn Thr Ile Ser Asn 1075 1080 1085
- Lys Ala Ile Ser Ile Leu Lys Gly Val Ser Gln Ser Lys Phe Phe Val 1090 1095 1100
- Thr Arg Val Ser Ser Ser Ala Asp Pro Leu Leu Asn Asn Asp Arg Leu 105 1110 1115
- Ile Thr Thr Phe Glu Asn Ile Asp Glu Ser Ile Lys Ile Lys Phe Ala 1125 1130 1135
- Phe Ile Asp Lys Phe Glu Glu Leu Glu Asp Ser Leu Asn Met Lys Tyr 1140 1145 1150
- Glu Ile Leu Asp Phe Val Leu Gly Asn Leu Asn Gln Phe Asp Gly Lys
  1155 1160 1165

- Val Ala Thr Thr Ala His Phe Leu Leu Gly Tyr Lys Val Lys Gly Asp Thr Leu Asp Leu Val Gln Thr Asn Asp Gln Asn Thr Leu Leu Lys Ser 185. Phe Leu Asn Thr Leu Ser Ile Ser Leu Asp Leu Ile Ser Glu Ile Asp Tyr Asn Asn Gly Asn Asn His Ile Ile Asp Val Gly Pro Ala Lys Leu Ser Ser Leu Ile Leu Gln Ile Leu Ile Lys Leu Cys Gln Asp Pro Ile
- Ser Ser Ser Ile Thr Leu Asn Gln Leu Arg Glu Tyr Glu Glu Leu Phe

- Glu Lys Leu Val Asn Cys Gln Pro Lys Leu Asp Leu Asn Thr Val Trp
- Cys Gly Asn Gln Phe Asp Gly Asp Leu Gln Ile Asp Ala Ser Asn Val
- Phe Val Asp Asn Gln Ala Ser Thr Gln Ala Phe Phe Ser Phe Ile Asn
- Gln Arg Asn Leu Ile Leu Gln Tyr Leu Ser Leu Glu Phe His Ser Val
- Lys Ser Arg Thr Lys Arg Glu Tyr Tyr Ser Lys Val Leu Thr Asn Asp
- Lys Glu Phe Val Asn Arg Thr Pro Lys Val Leu Thr Phe Leu Asn Ile
- Leu Asn Tyr Ser Phe Lys Asn Phe Glu Val Gln Lys Tyr Glu Trp Leu
- Asp Gln Lys Phe Asn Val Ser Leu Leu Leu Ala Glu Val Asn Ala Gln
- Lys Asn Gly Thr Leu Asp Phe Ser Val Leu Thr Lys Val Phe Arg Leu
- Leu Cys Gln Thr Ser Asn Leu Ile Thr Pro Glu Ser Lys Gln Leu Phe

431	83
-----	----

- Ala Glu Glu Ile Met Val Glu Gly Ser Lys Ile Ser Asp Phe Val Thr 425 1430 1435 1440
- Lys Tyr Leu Val Ser Thr Asp Leu Lys Asp Val Gln Leu Lys Cys Leu 1445 1450 1455
- His Ser Trp Cys Gln Leu Ile Glu Ile Leu Val Thr Asp Ser Gly Ile 1460 1465 1470
- Asn Ser Leu Asn Phe Ile Leu Glu Val Leu Gln Val Ile Ile Pro Lys 1475 1480 1485
- Ile Asn Asp Tyr Phe Asp Val Asp Ile Leu Phe Ser Glu Glu Met Val 1490 1495 1500
- Ser Leu Cys Val Leu Leu Phe Asp Leu Tyr Asp Gln Leu Thr Leu Ala 505 1510 1515 1520
- Asp Arg Lys Gly Glu Asp Phe Ala Leu Gly Ile Glu Arg Leu Ile Pro 1525 1530 1535
- Leu Phe Gln Thr Cys Ile Ala Gly Ile Leu Asn Ser Asn Ser Thr Pro 1540 1545 1550
- Ser Leu Arg Ser Asp Leu Tyr Val Val Gly Asn Lys Phe Leu Leu Lys 1555 1560 1565
- Cys Phe Glu Arg Glu Ser Phe Leu Lys Gln Val Met His Ile Ile Lys 1570 1580
- Ser Val Asp Lys Lys Phe Phe Gln Val Ile Cys Asn Asp Ala Ile Tyr 585 1590 1595 1600
- Ser Glu Gly Pro Ser Arg Ile Thr Ser Thr Leu Phe Leu Glu Ser Leu 1605 1610 1615
- Val His Leu Gly Thr Leu Val Lys Val Asp Phe Ile Leu Asn Ala Leu 1620 1625 1630
- Ile Lys Asn Asn Ala Leu Leu Leu Leu Val Arg Ser Val Lys Arg Thr 1635 1640 1645
- Asp Ala Met Ile Lys Leu Cys Gln Glu Lys Asn Ser Gly Val Thr Leu 1650 1660
- Asp His Phe Ile Phe Asp Leu Met Ala Phe Lys Ala Thr Leu Tyr Phe 665 1670 1675 1680

- Phe Val Arg Val Ala Lys Ser Lys Asn Gly Ala Leu Gln Leu Ile Gln 1685 1690 1695
- Asn Glu Leu Phe Ser Ile Leu His Gln Ser Lys Phe Leu Gln Ile Asp 1700 1705 1710
- Pro Asp Ile Gly Leu Ser Leu Arg Ile Glu Glu Val Gln Asp His Lys 1715 1720 1725
- Thr Val Asn Val Asn Val Leu Leu Asp Thr Pro Leu Ser Ile Thr Asp 1730 1735 1740
- Leu Val Asp Pro Tyr Lys Leu Arg Ser Glu Asn Thr Ile Ser Tyr Phe
  745 1750 1755 1760
- Glu Phe Leu Val Pro Ile Phe Gln Leu Leu Thr Thr Val Leu Leu Ser 1765 1770 1775
- Met Gly Pro Asn Tyr Gln Pro Ala Ile Ile Gln Thr Arg Glu Leu Met 1780 1785 1790
- Lys Ser Val Asn Arg Leu Val Val Gly Val Met Lys Arg Asp Phe Leu 1795 1800 1805
- Val Glu Thr Lys Gln Ile Gly Gln Gly Leu Tyr Lys Glu Glu Ser His 1810 1815 1820
- Glu Leu Val Ser Leu Lys Glu Leu Val Lys Leu Phe Ile Leu Ile Asp 825 1830 1835 1840
- Ser Leu Ala His Tyr Ser Val 1845

PCT/EP99/07376 WO 00/15838

#### 45/83 SEQUENCE LISTING

<110> Hoechst Marion Roussel

<120> ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR SCRENING ANTIMYCOTIC SUBSTANCES USING SAID GENES

<130> SEQID08

<140>

<141>

<160> 1

<170> PatentIn Ver. 2.1

<210> 1

<211> 575

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:homologous fragment to Sc YJL039c

<400> 1

gtttggtgac tcaacctacc accaatcgat ttacactctt cataagttct ctagtttgaa 60 taattgcagg ttgataattt ggtcccattg acaataacac tgttgtaagt agctgaaata 120 ttggtacaag gaactcaaaa tatgatatag tgttttcact tcgcaacttg tatggatcca 180 ccaagtcagt tatcgaaagt ggagtatcta gcaaaacatt tacattgaca gtcttgtgat 240 cttgaacttc ttcaattcgt aaacttaaac caatatctgg atcaatctgc aaaaacttcg 300 actgatgcaa aattgaaaac aattcatttt ggaatcannn nnanaantna aaaaaaatat 360 atattntntt ttttttttt ttntttnttt tttattttat cttacannac accecaacac 420 aacacccaac ccnaaaacac ccaacacctc catcttgtcc cgcttttctc tcacattttt 480 tetetactae tateacacaa tetataaaae atacaeeee teaaeeeete eteeeeaaca 540 575 aacctacete ceteaactee tattteetee ettee

### SEQUENCE LISTING

<pr

<120> ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR SCRENING ANTIMYCOTIC SUBSTANCES USING SAID GENES

<130> SEQID09

<140>

<141>

<160> 2

<170> PatentIn Ver. 2.1

<210> 1

<211> 921

<212> DNA

<213> Candida albicans

<220>

<221> CDS

<222> (1)..(918)

<220>

<221> gene

<222> (1)..(918)

<223> Gene Ca0R110

<400> 1

atg acg att gaa act att tat atc gca aga cac ggt tat aga tcc aat 48
Met Thr Ile Glu Thr Ile Tyr Ile Ala Arg His Gly Tyr Arg Ser Asn

1 5 10 15

tgg tta cca cca cca cca cca aat cct act ggt att gac agt gac 96
Trp Leu Pro Pro Pro His Pro Pro Asn Pro Thr Gly Ile Asp Ser Asp
20 25 30

ccg gct tta gca cca cat ggt gtt gaa caa gcc caa cag tta gct gcc 144 Pro Ala Leu Ala Pro His Gly Val Glu Gln Ala Gln Gln Leu Ala Ala 35 40 45

tat ctt aca tca tta cct aca cat gaa aag cct gaa ttt att att gct

Tyr Leu Thr Ser Leu Pro Thr His Glu Lys Pro Glu Phe Ile Ile Ala

50 55 60

tea cet tit tat egt tgt ata gaa aeg teg aga eee att gee gaa atg 240

WO 00/15838 47/83 Ser Pro Phe Tyr Arg Cys Ile Glu Thr Ser Arg Pro Ile Ala Glu Met 75 70 65 ttg gac ttg aag att gct tta gaa aga gga gtt ggt gaa tgg ttt cgt Leu Asp Leu Lys Ile Ala Leu Glu Arg Gly Val Gly Glu Trp Phe Arg 90 85 aaa aat aga gat acc aaa cca gtt ccc ggt gat tac aca caa ttg aga Lys Asn Arg Asp Thr Lys Pro Val Pro Gly Asp Tyr Thr Gln Leu Arg 105 100 aca ttt ttc gat aaa tta ttg atc gat gaa gat act tgg cca aga gat 384 Thr Phe Phe Asp Lys Leu Leu Ile Asp Glu Asp Thr Trp Pro Arg Asp 120 115 aac tta aat gtt ata cct aat att gaa gga gaa gat tat gat gaa atc 432 Asn Leu Asn Val Ile Pro Asn Ile Glu Gly Glu Asp Tyr Asp Glu Ile 140 130 tac gat cgt gcc aaa ttg ttt tgg aaa aag ttt att cct gaa ttt gaa Tyr Asp Arg Ala Lys Leu Phe Trp Lys Lys Phe Ile Pro Glu Phe Glu 155 145 150 aag aaa ttc ccc gaa att aaa aat gtg ttg ata gtt aca cat gca gca Lys Lys Phe Pro Glu Ile Lys Asn Val Leu Ile Val Thr His Ala Ala 170 175 165 acg aaa att gct tta gga tca gct tta tta cag tta aaa tca gtt act Thr Lys Ile Ala Leu Gly Ser Ala Leu Leu Gln Leu Lys Ser Val Thr 180 185 gat gtt ata gat gat aat caa act gtg tta cgt gct ggt gca tgt tca Asp Val Ile Asp Asp Asn Gln Thr Val Leu Arg Ala Gly Ala Cys Ser 205 200 195 tta tcc aaa ttt gtt aga gat ggc gaa gat aaa acc aat cat act att Leu Ser Lys Phe Val Arg Asp Gly Glu Asp Lys Thr Asn His Thr Ile 215 210 caa tgg aaa att gtc atg aat ggt aat tgt gaa ttc ttg aca cag ggt Gln Trp Lys Ile Val Met Asn Gly Asn Cys Glu Phe Leu Thr Gln Gly 235 225 230 gaa gaa atg aac tgg gat ttc cgt cgt ggt gtt gaa gcc ggg tca gct Glu Glu Met Asn Trp Asp Phe Arg Arg Gly Val Glu Ala Gly Ser Ala

250

gaa gat ata gcg caa aga aag gca gca gca gaa gca gaa gca aaa gca

245

255

48/83

Glu Asp Ile Ala Gln Arg Lys Ala Ala Ala Glu Ala Glu Ala Lys Ala 260 265 270

ttg aag aaa aat gaa caa acc aaa tcc gat ggt ccc atc act gaa tct
Leu Lys Lys Asn Glu Gln Thr Lys Ser Asp Gly Pro Ile Thr Glu Ser
275 280 285

gcc act ggg gca gaa ata gat ggg aat gaa gat gaa ttt gaa gta cgt 912 Ala Thr Gly Ala Glu Ile Asp Gly Asn Glu Asp Glu Phe Glu Val Arg 290 295 300

aaa act tga Lys Thr 305 921

<210> 2

<211> 306

<212> PRT

<213> Candida albicans

<400> 2

Met Thr Ile Glu Thr Ile Tyr Ile Ala Arg His Gly Tyr Arg Ser Asn

1 5 10 15

Trp Leu Pro Pro Pro His Pro Pro Asn Pro Thr Gly Ile Asp Ser Asp
20 25 30

Pro Ala Leu Ala Pro His Gly Val Glu Gln Ala Gln Gln Leu Ala Ala 35 40 45

Tyr Leu Thr Ser Leu Pro Thr His Glu Lys Pro Glu Phe Ile Ile Ala 50 55 60

Ser Pro Phe Tyr Arg Cys Ile Glu Thr Ser Arg Pro Ile Ala Glu Met
65 70 75 80

Leu Asp Leu Lys Ile Ala Leu Glu Arg Gly Val Gly Glu Trp Phe Arg

Lys Asn Arg Asp Thr Lys Pro Val Pro Gly Asp Tyr Thr Gln Leu Arg 100 105 110

Thr Phe Phe Asp Lys Leu Leu Ile Asp Glu Asp Thr Trp Pro Arg Asp 115 120 125

Asn Leu Asn Val Ile Pro Asn Ile Glu Gly Glu Asp Tyr Asp Glu Ile 130 135 140

45/8	33
------	----

									42	, 00	•				
Iyr	Asp	Arg	Ala	Lys	Leu	Phe	Trp	Lys	Lys	Phe	Ile	Pro	Glu	Phe	Glu
145	_				150	•				155				•	160
Lys	Lys	Phe	Pro	Glu	Ile	Lys	Asn	Val	Leu	Ile	Val	Thr	His	Ala	Ala
•	-			165					170					175	
Thr	Lys	Ile	Ala	Leu	Gly	Ser	Ala	Leu	Leu	Gln	Leu	Lys	Ser	Val	Thr
	-		180					185					190		

- Asp Val Ile Asp Asp Asn Gln Thr Val Leu Arg Ala Gly Ala Cys Ser 195 200 205
- Leu Ser Lys Phe Val Arg Asp Gly Glu Asp Lys Thr Asn His Thr Ile 210 215 220
- Gln Trp Lys Ile Val Met Asn Gly Asn Cys Glu Phe Leu Thr Gln Gly 225 230 235 240
- Glu Glu Met Asn Trp Asp Phe Arg Arg Gly Val Glu Ala Gly Ser Ala 245 250 255
- Glu Asp Ile Ala Gln Arg Lys Ala Ala Ala Glu Ala Glu Ala Lys Ala 260 265 270
- Leu Lys Lys Asn Glu Gln Thr Lys Ser Asp Gly Pro Ile Thr Glu Ser 275 280 285
- Ala Thr Gly Ala Glu Ile Asp Gly Asn Glu Asp Glu Phe Glu Val Arg 290 295 300

Lys Thr 305

## 50/8

SEQUENCE LISTING

<110> Hoechst Marion Roussel <120> ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR SCRENING ANTIMYCOTIC SUBSTANCES USING SAID GENES <130> SEQID10 <140> <141> <160> 2 <170> PatentIn Ver. 2.1 <210> 1 <211> 1454 <212> DNA <213> Artificial Sequence <220> <221> CDS <222> (1)..(1452) / <223> Gene CaOR110 Splice Variant <223> Description of Artificial Sequence: Splice Vaiant atg acg att gaa act att tat atc gca aga cac ggt tat aga tcc aat Met Thr Ile Glu Thr Ile Tyr Ile Ala Arg His Gly Tyr Arg Ser Asn tgg tta cca cca cca cca cca aat cct act ggt att gac agt gac Trp Leu Pro Pro Pro His Pro Pro Asn Pro Thr Gly Ile Asp Ser Asp 30 20 ccg gct tta gca cca cat ggt gtt gaa caa gcc caa cag tta gct gcc Pro Ala Leu Ala Pro His Gly Val Glu Gln Ala Gln Gln Leu Ala Ala 40 tat ctt aca tca tta cct aca cat gaa aag cct gaa ttt att att gct 192 Tyr Leu Thr Ser Leu Pro Thr His Glu Lys Pro Glu Phe Ile Ile Ala 50 55 tca cct ttt tat cgt tgt ata gaa acg tcg aga ccc att gcc gaa atg Ser Pro Phe Tyr Arg Cys Ile Glu Thr Ser Arg Pro Ile Ala Glu Met

51183

65					70				•	75				•	80	
tg	gac	ttg	aag	att	gct	tta	gaa	aga	gga	gtt	ggt	gaa	tgg	ttt	cgt	288
Leu	Asp	Leu	Lys	Ile	Ala	Leu	Glu	Arg	Gly	Val	Gly	Glu	Trp	Phe	Arg	
				85					90					95		
aa	aat	aga	gat	acc	aaa	cca	gtt	CCC	ggt	gat	tac	aca	caa	ttg	aga	336
Lys	Asn	Arg	Asp	Thr	Lys	Pro	Val	Pro	Gly	Asp	Tyr	Thr	Gln	Leu	Arg	
			100					105					110			
																>
ıca	ttt	ttc	gat	aaa	tta	ttg	atc	gat	gaa	gat	act	tgg	cca	aga	gat	384
Chr	Phe	Phe	Asp	Lys	Leu	Leu	lle	Asp	Glu	Asp	Thr	Trp	Pro	Arg	Asp	
		115					120					125		•		
									-							
aac	tta	aat	gtt	ata	cct	aat	att	gaa	gga	gaa	gat	tat	gat	gaa	atc	432
Asn	Leu	Asn	Val	Ile	Pro	Asn	Ile	Glu	Gly	Glu	Asp	Tyr	Asp	Glu	Ile	
	130					135					140					
tac	gat	cgt	gcc	aaa	ttg	ttt	tgg	aaa	aag	ttt	att	cct	gaa	ttt	gaa	480
ſyr	Asp	Arg	Ala	Lys	Leu	Phe	Trp	Lys	Lys	Phe	Ile	Pro	Glu	Phe	Glu	
145	-	-			150					155					160	
aaq	aaa	ttc	ccc	gaa	att	aaa	aat	gtg	ttg	ata	gtt	aca	cat	gca	gca	528
Lys	Lys	Phe	Pro	Glu	Ile	Lys	Asn	Val	Leu	Ile	Val	Thr	His	Ala	Ala	
•	-			165					170					175		
acq	aaa	att	gct	tta	gga	tca	gct	tta	tta	cag	tta	aaa	tca	gtt	act	576
Thr	Lys	Ile	Ala	Leu	Gly	Ser	Ala	Leu	Leu	Gln	Leu	Lys	Ser	Val	Thr	
	-		180					185					190			
gat	att	ata	gat	gat	aat	caa	act	gtg	tta	cgt	gct	ggt	gca	tgt	tca	624
Asp	Val	Ile	Asp	Asp	Asn	Gln	Thr	Val	Leu	Arg	Ala	Gly	Ala	Cys	Ser	
<u>-</u> -	•	195	•	_			200					205				
t-t-a	tcc	aaa	ttt	gtt	aga	gat	ggc	gaa	gat	aaa	acc	aat	cat	act	att	672
Leu	Ser	Lys	Phe	Val	Arg	Asp	Gly	Glu	Asp	Lys	Thr	Asn	His	Thr	Ile	
	210	-3-				215					220	•				
caa	taa	aaa	att	atc	atq	aat	ggt	aat	tgt	gaa	ttc	ttg	aca	cag	ggt	720
Gln	Tro	Lvs	Ile	Val	Met	Asn	Gly	Asn	Сув	Glu	Phe	Leu	Thr	Gln	Gly	
225		-,-			230					235					240	
												•				
aaa	gaa	atg	aac	taa	gat	ttc	cqt	cgt	ggt	gtt	gaa	gcc	999	tça	gct	768
Glu	Glu	Met	Asn	Trp	Asp	Phe	Arg	Arg	Gly	Val	Glu	Ala	Gly	Ser	Ala	
J_ U				245			_	_	250					255		
gaa	gat	ata	gcg	caa	aga	aag	gca	gca	gca	gaa	gca	gaa	gca	aaa	gca	816
Glu	Asp	Ile	Ala	Gln	Arg	Lys	Ala	Ala	Ala	Glu	Ala	Glu	Ala	Lys	Ala	
					_	-										

52/83

260 265 270

ttg aag aaa aat gaa caa acc aaa tcc gat ggt ccc atc act gaa tct Leu Lys Lys Asn Glu Gln Thr Lys Ser Asp Gly Pro Ile Thr Glu Ser 285 . 280 275 gcc act ggg gca gaa ata gat ggg aat gaa gat gaa ttt gaa aca ttt Ala Thr Gly Ala Glu Ile Asp Gly Asn Glu Asp Glu Phe Glu Thr Phe tat gta acc atc gat ata cct tca att tcg aat aaa atc gac aat gaa Tyr Val Thr Ile Asp Ile Pro Ser Ile Ser Asn Lys Ile Asp Asn Glu 315 310 305 gaa gaa cca cca tca agg aca ggt caa gct cca aaa ttc aaa aac aat 1008 Glu Glu Pro Pro Ser Arg Thr Gly Gln Ala Pro Lys Phe Lys Asn Asn 325 att atc aag cct tca gca caa ctc caa ttt act gat tta aaa gaa gat 1056 Ile Ile Lys Pro Ser Ala Gln Leu Gln Phe Thr Asp Leu Lys Glu Asp 345 340 cat cca tta gta aaa ata tcg aac aat act ata tct gct caa ggc tcg His Pro Leu Val Lys Ile Ser Asn Asn Thr Ile Ser Ala Gln Gly Ser 360 tog tog tog tog that ca gog tog aaa aat gga tit aat agt cat act Ser Ser Ser Leu Ser Ala Ser Lys Asn Gly Phe Asn Ser His Thr 380 370 375 cac aat toa gga gto att gat coa toa goa ott ata gat ggg aaa att 1200 His Asn Ser Gly Val Ile Asp Pro Ser Ala Leu Ile Asp Gly Lys Ile 400 390 385 tat cag act gat tgg aat caa tta caa ggt act gaa cta ata ttt gat 1248 Tyr Gln Thr Asp Trp Asn Gln Leu Gln Gly Thr Glu Leu Ile Phe Asp 410 405 gaa aat ggt caa ttt ata ggc aag gtt aag gaa cat ttg act tgc aat 1296 Glu Asn Gly Gln Phe Ile Gly Lys Val Lys Glu His Leu Thr Cys Asn 425 430 420 aat aac aca aaa ttc aca tta aaa aag gca gaa gaa gta gaa caa ctt 1344 Asn Asn Thr Lys Phe Thr Leu Lys Lys Ala Glu Glu Val Glu Gln Leu 440 435 cgt tea gea gat gat tet ate atg gat ata gat caa gae tea caa gga 1392 Arg Ser Ala Asp Asp Ser Ile Met Asp Ile Asp Gln Asp Ser Gln Gly

53/83 ₄₆₀

caa caa cca gct aga agt cag ttc tta aaa aga gca att gtg gct gct 1440
Gln Gln Pro Ala Arg Ser Gln Phe Leu Lys Arg Ala Ile Val Ala Ala
465 470 475 480

aga gcc aaa ggt aa Arg Ala Lys Gly 1454

<210> 2

<211> 484

450

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: Splice Vaiant

<400> 2

Met Thr Ile Glu Thr Ile Tyr Ile Ala Arg His Gly Tyr Arg Ser Asn
1 5 10 15

Trp Leu Pro Pro Pro His Pro Pro Asn Pro Thr Gly Ile Asp Ser Asp
20 25 30

Pro Ala Leu Ala Pro His Gly Val Glu Gln Ala Gln Gln Leu Ala Ala 35 40 45

Tyr Leu Thr Ser Leu Pro Thr His Glu Lys Pro Glu Phe Ile Ile Ala 50 55 60

Ser Pro Phe Tyr Arg Cys Ile Glu Thr Ser Arg Pro Ile Ala Glu Met 65 . 70 . 75 . 80

Leu Asp Leu Lys Ile Ala Leu Glu Arg Gly Val Gly Glu Trp Phe Arg 85 90 95

Lys Asn Arg Asp Thr Lys Pro Val Pro Gly Asp Tyr Thr Gln Leu Arg 100 105 110

Thr Phe Phe Asp Lys Leu Leu Ile Asp Glu Asp Thr Trp Pro Arg Asp 115 120 125

Asn Leu Asn Val Ile Pro Asn Ile Glu Gly Glu Asp Tyr Asp Glu Ile 130 135 140

Tyr Asp Arg Ala Lys Leu Phe Trp Lys Lys Phe Ile Pro Glu Phe Glu
145 150 155 160

Lys Lys Phe Pro Glu Ile Lys Asn Val Leu Ile Val Thr His Ala Ala

165

Thŗ	Lys	Ilė	Ala 180	Leu	Gly	Ser	Ala	Leu 185	Leu	Gln	Leu	Lys	Ser 190	Val	Thr
Asp	Val	Ile 195	Asp	Asp	Asn	Gln	Thr 200	Val	Leu	Arg	Ala	Gly 205	Ala	Cys	Ser
Leu	Ser 210	Lys	Phe	Val	Arg	Asp 215	Gly	Glu	Asp	Lys	Thr 220	Asn	His ,	Thr	Ile
Gln 225	Trp	Lys	Ile	Val	Met 230	Asn	Gly	Asn	Cys	Glu 235	Phe	Leu	Thr	Gln	Gly 240
Glu	Glu	Met	Asn	Trp 245	Asp	Phe	Arg	Arg	Gly 250	Val	Glu	Ala	Gly	Ser 255	Ala
Glu	Asp	Ile	Ala 260	Gln	Arg	Lys	Ala	Ala 265	Ala	Glu	Ala	Glu	Ala 270	Lys	Ala
Leu	Lys	Lys 275	Asn	Glu	Gln	Thr	Lys 280	Ser	Asp	Gly	Pro	Ile 285	Thr	Glu	Ser
Ala	Thr 290	Gly	Ala	Glu	Ile	Asp 295	Gly	Asn	Glu	Asp	Glu 300	Phe	Glu	Thr	Phe
Tyr 305	Val	Thr	Ile	Asp	Ile 310	Pro	Ser	Ile	Ser	Asn 315	Lys	Ile	Asp	Asn	Glu 320
Glu	Glu	Pro	Pro	Ser 325	Arg	Thr	Gly	Gln	Ala 330	Pro	Lys	Phe	Lys	Asn 335	Asn
Ile	Ile	Lys	Pro 340	Ser	Ala	Gln	Leu	Gln 345	Phe	Thr	Asp	Leu	Lys 350	Glu	Asp
нів	Pro	Leu 355	Val	Lys	Ile	Ser	Asn 360	Asn	Thr	Ile	Ser	Ala 365	Gln	Gly	Ser
Ser	Ser 370		Ser	Leu	Ser	Ala 375		Lys	Asn	Gly	Phe 380	Asn	Ser	His	Thr
His 385		Ser	Gly	Val	Ile 390		Pro	Ser	Ala	Leu 395		Asp	Gly	Lys	Ile 400
Tyr	Gln	Thr	Asp	Trp		Gln	Leu	Gln	Gly 410		Glu	Leu	Ile	Phe 415	Asp
Glu	Asn	Gly	Gln	Phe	Ile	Gly	Lys	Val	Lys	Glu	His	Leu	Thr	Cys	Asn

55/83

Asn Asn Thr Lys Phe Thr Leu Lys Lys Ala Glu Glu Val Glu Gln Leu 435 440 445

Arg Ser Ala Asp Asp Ser Ile Met Asp Ile Asp Gln Asp Ser Gln Gly
450 455 460

Gln Gln Pro Ala Arg Ser Gln Phe Leu Lys Arg Ala Ile Val Ala Ala 465 470 475 480

Arg Ala Lys Gly

# 56/83 SEQUENCE LISTING

<110> Hoechst Marion Roussel <120> ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR SCRENING ANTIMYCOTIC SUBSTANCES USING SAID GENES <130> SEQID11 <140> <141> <160> 2 <170> PatentIn Ver. 2.1 <210> 1 . <211> 2877 <212> DNA <213> Candida albicans · <220> <221> CDS <222> (1)..(2874) <220> <221> gene <222> (1)..(2874) <223> Gene CaMR212 <400> 1 atg aat ttg ttt caa cat aaa cat caa aaa tta ata tta caa tgt tat Met Asn Leu Phe Gln His Lys His Gln Lys Leu Ile Leu Gln Cys Tyr cct gct ggg aaa gca gtg gac aaa aaa ccc aac tcg tcc gag tta agt Pro Ala Gly Lys Ala Val Asp Lys Lys Pro Asn Ser Ser Glu Leu Ser 20 tat tta tta tac tat gca tcc act cgt aga gtc aaa tta gaa aag gtg Tyr Leu Leu Tyr Tyr Ala Ser Thr Arg Arg Val Lys Leu Glu Lys Val 40 35 . att aat ttt ttg aaa gat aaa act cat cat gat gtt ggt aga aac cgt Ile Asn Phe Leu Lys Asp Lys Thr His His Asp Val Gly Arg Asn Arg 50 55

act ggt aat tta caa gtc aca tta gcc att att cag gaa tta atc aaa

Thr 65	Gly	Asn	Leu	Gln	Val 70	Thr	Leu	Äla	Ile	Ile 75	Gln	Glu	Leu	Ile	Lys 80	•
				aac Asn 85												288
				gcc Ala												336
				ggt Gly												384
				gag Glu												432
				ggt Gly												480
				tta Leu 165												528
				gtt Val												576
				att Ile												624
				aat Asn												672
				caa Gln												720
				aat Asn 245												768
gca	ttt	tcg	tcg	atg	aaa	tct	ttt	ttc	aat	acc	aat	gct	gcc	agt	caa	816

Ala	Phe	Ser	Ser 260	Met	Lys	Ser	Phe	Phe 265		Thr		Ala	Ala 270	Ser	Gln	
atc	tct	gaa	gtg	aca	aga	gct	gtt	gtc	caa	cac	aat	att	ctc	aat	gga	864
Ile	Ser	Glu	Val	Thr	Arg	Ala	Val	Val	Gln	His	Asn	Ile	Leu	Asn	Gly	
		275					280					285				
			gag													912
Thr	Asp	Leu	Glu	Trp	Gly	Val	Ser	Phe	Leu	Glu		Cys	Ile	Thr	Trp	
	290					295					300					
									<b>++</b> a	<b>t</b> .c.c	200	++0	tta	acc	act	960
att	cca	gtt	caa Gln	tca	cgt	Dhe	gcc val	car	Len	Ser	Thr	Leu	Leu	Ala	Thr	200
	Pro	vai	GIN	Leu	310	Phe	vai	SEI	Deu	315					320	
305					310					313						
tta	aat	aga	att	aat	att	qaa	ggt	aac	acc	aaa	tcc	aat	tac	aac	atg	1008
			Ile													
	2			325			- 8		330					335		
																•
			tat													1056
Gln	Phe	Gln	Tyr	Ala	Arg	Tyr	Leu	Leu	Gly	Leu	Leu	Ser	Ser	Arg	Val	
			340					345				•	350			
																1104
			<b>9</b> 99													1104
Asn	Met		Gly	Leu	Ser	Val		Asp	iie	116	GIN	365	пеп	Leu	Ser	
		355					360					303				
tta	caa	act	gat	tta	att	tta	aaq	qca	aqt	gat	ttg	gac	aaa	agt	gaa	1152
			Asp													
200	370					375	•			-	380					
att	tca	att	tta	aca	gac	att	tat	tct	gac	tgt	att	tgt	agt	ttg	act	1200
Ile	Ser	Ile	Leu	Thr	Asp	Ile	Tyr	Ser	Asp	Cys	Ile	Cys	Ser	Leu	Thr	
385					390					395					400	
														~	250	1248
			tat													1240
Thr	His	He	Tyr		Pne	Asp	GIN.	vai	410	Asp	Ser	116	GIII	415	110	
				405					410							
tta	atc	аад	att	gat	tac	att	tta	gaa	agc	agt	ttt	gtg	gaa	gat	aat	1296
			Ile													
		-,-	420			-		425					430	_		
			tcc													1344
Asn	Ile	Thr	Ser	Thr	Gly	Glu	Gln	Ile	Gln	Asp	Leu	Ile	Ile	Gln	Leu	
		435					440					445				
								<b>.</b> .		<b></b>				+	266	1202
ttg	gat	aac	att	.tcg	aag	att	ttt	tta	att	ttg	aag	aat	aaa	ıca	ayc	1392

Leu	Asp 450	Asn	Ile	Ser	Lys	Ile 455	Phe	Leu	Ile	Leu	Lys 460	Asn	Lys	Ser	Ser	
tca	att	aat	cgt	aac	cat	gtg	aat	ttg	gaa	cat	tgg	gat	atc	agt	tta	1440
					His											
465			_		470					475					480	
aga	tta	tta	qct	cca	caa	ggc	gac	cat	gat	gat	aac	aga	aaa	atg	att	1488
					Gln											
1				485		-	-		490					495		
att	tct	acq	aca	caa	ctt	atc	aat	atc	caa	gcc	agg	tac	ttg	aaa	gtg	1536
					Leu											
			500					505			_	•	510	-		
						٠										
ttt	gat	gag	ttt	tta	aat	aat	qaa	ttq	qcq	gtt	ggc	aat	tct	aaa	aag	1584
	_				Asn											
		515			• • • • • • • • • • • • • • • • • • • •		520				-	525		•	-	
age	tat	gat	ctt	ctt	agc	aaa	caq	tct	cqt	ttg	gat	cct	gga	agt	aca	1632
					Ser											
001	530					535			_		540		-			
	330															
act	att	gaa	gga	ata	aac	aaq	tct	gac	gat	cta	gac	aat	ggt	aag	gac	1680
					Asn											
545	,		<b>U</b> -1		550	-1-			•	555	•		-	-	560	
313																
rtt	aaa	aaa	cct	gat	gcc	aat	caa	tac	att	acc	aat	caa	caa	aac	ttc	1728
					Ala											
	270	_,_		565				- 2	570					575		
ata	tcc	cat	ttc	ctt	atg	tat	atc	qac	aaa	ttt	ttc	gaa	aat	tac	gat	1776
					Met											
			580			-1-		585	•				590	-	-	
	•															
tcc	ccc	aac	aca	caa	tca	ata	tta	ctt	ttg	gtt	act	gtt	tta	aaa	gat	1824
					Ser											
		595					600					605 [.]		-	_	
						•							•			
atq	atq	aac	att	tta	gga	ttq	aat	ttc	ttg	agt	aat	ttt	att	cca	ttt	1872
					Gly											
	610				3	615					620					
ttc	cac	cat	tgg	gtt	atg	aaa	gta	aac	aga	gcc	agt	aat	ttc	act	caa	1920
					Met											
625			•		630	•				635					640	
aga	cag	aaa	ttc	aaa	gat	act	ttt	gct	cat	att	att	tta	tat	tac	atg	1968

Arg	Gln	Lys	Phe	Lys 645	Asp	Thr	Phe	Ala	His 650	Ile	Ile	Leu	Tyr	Tyr 655	Met	
											tta Leu					2016
											gct Ala					2064
aaa Lys	atg Met 690	caa Gln	aag Lys	ttt Phe	tgg Trp	gtc Val 695	cat His	ggc Gly	att Ile	gac Asp	cct Pro 700	tca Ser	cca Pro	tct Ser	gat Asp	2112
ttg Leu 705	gaa Glu	aac Asn	act Thr	aaa Lys	ggc Gly 710	gac Asp	cgt Arg	acg Thr	ata Ile	ccc Pro 715	aca Thr	gat Asp	gcc Ala	aat Asn	ggt Gly 720	2160
aat Asn	tat Tyr	att Ile	gct Ala	att Ile 725	aga Arg	atc Ile	aaa Lys	cct Pro	gaa Glu 730	aat Asn	att Ile	gag Glu	gaa Glu	ttt Phe 735	gcc Ala	2208
tgt Cys	ggt Gly	aac Asn	aac Asn 740	ttt Phe	ttg Leu	att Ile	gta Val	tgg Trp 745	tta Leu	cat His	ccc Pro	caa Gln	aaa Lys 750	caa Gln	tta Leu	2256
ctc Leu	act Thr	gaa Glu 755	att Ile	gaa Glu	aaa Lys	tca Ser	caa Gln 760	gtc Val	agt Ser	act Thr	cat His	atg Met 765	agc Ser	aca Thr	ttc Phe	2304
aat Asn	aat Asn 770	gat Asp	tct Ser	aga Arg	aac Asn	aca Thr 775	aat Asn	atg Met	aca Thr	gtg Val	ata Ile 780	atg Met	gat Asp	caa Gln	gga Gly	2352
tca Ser 785	ctg Leu	gca Ala	cta Leu	agt Ser	gga Gly 790	ggt Gly	gca Ala	gac Asp	cat His	gga Gly 795	ggt Gly	cac His	ttt Phe	gtt Val	ccg Pro 800	2400
cca Pro	cct Pro	gaa Glụ	ttt Phe	gtt Val 805	aac Asn	cac His	acc Thr	ggt Gly	ttg Leu 810	tct Ser	tct Ser	gaa Glu	tct Ser	gcg Ala 815	tca Ser	2448
tca Ser	aac Asn	tca Ser	gag Glu 820	aaa Lys	ggt Gly	.ttg Leu	tat Tyr	act Thr 825	ggt Gly	tta Leu	gga Gly	ttg Leu	ggt Gly 830	act Thr	gct Ala	2496
ggt	gat	att	act	.atg	att	cat	tct	gaa	ata	tta	caa	tac	agt	caa	cat	2544

61/83 Gly Asp Ile Thr Met Ile His Ser Glu Ile Leu Gln Tyr Ser Gln His 840 835 ttc caa gaa aga ggt tta cct cat ggt aat ggg ttt gct act att tta Phe Gln Glu Arg Gly Leu Pro His Gly Asn Gly Phe Ala Thr Ile Leu 855 cga act gtc gat agt gtt aac agt act aat gat ggg tta att tat act Arq Thr Val Asp Ser Val Asn Ser Thr Asn Asp Gly Leu Ile Tyr Thr 870 865 tat gat agt aaa tat ttg cag tca cca aga gta agt gat ttg aaa gat Tyr Asp Ser Lys Tyr Leu Gln Ser Pro Arg Val Ser Asp Leu Lys Asp 890 885 gcc atg tca aca cat agg ggt ata agg tta tct aaa cca aat ttt ggt 2736 Ala Met Ser Thr His Arg Gly Ile Arg Leu Ser Lys Pro Asn Phe Gly 905 900 ggt gcc aat gga act gct aat atg acg gat tct gct tct aca tcc aat 2784 Gly Ala Asn Gly Thr Ala Asn Met Thr Asp Ser Ala Ser Thr Ser Asn 915 920 gga tot gtg ttg aat aaa aat atg caa act aca gat gtt gat tca att 2832 Gly Ser Val Leu Asn Lys Asn Met Gln Thr Thr Asp Val Asp Ser Ile 930 935 tta agt ggt ctt gaa agt gaa gac gaa gct gcg ttt gtt gtt taa 2877 Leu Ser Gly Leu Glu Ser Glu Asp Glu Ala Ala Phe Val Val 950 945 <210> 2 <211> 958 <212> PRT <213 > Candida albicans <400> 2 Met Asn Leu Phe Gln His Lys His Gln Lys Leu Ile Leu Gln Cys Tyr 10 Pro Ala Gly Lys Ala Val Asp Lys Lys Pro Asn Ser Ser Glu Leu Ser

25

Tyr Leu Leu Tyr Tyr Ala Ser Thr Arg Arg Val Lys Leu Glu Lys Val

Ile Asn Phe Leu Lys Asp Lys Thr His His Asp Val Gly Arg Asn Arg

	50					55		. 6	2/83	3	60				
Thr 65	Gly	Asn	Leu	Gln	Val 70	Thr	Leu	Ala	Ile	Ile 75	Gln	Glu	Leu	Ile	Lys 80
Lys	Cys	Ser	Glu	Asn 85	Leu	Asn	Val	Phe	Ala 90	Phe	Gln	Val	Cys	Tyr 95	Ile
Leu	Gln	Leu	Ile 100	Ala	Asn	Thr	Lys	Asp 105	Leu	Ala	Leu	Cys	Lys 110	Asn	Val
Val	Lys	Thr 115	Phe	Gly	Val	Leu	Cys 120	Glu	Asn	Leu	Asp	Gly 125	Gly	Leu	Phe
Thr	Gly 130	Asp	Lys	Glu	Phe	Ile 135	Lys	Ile	Phe	Thr	Glu 140	Val	Phe	Gln	Thr
Leu 145	Val	Ser	Phe	Gly	Lys 150	Asp	Arg	Ser	Gly	Val 155	Thr	Gln	Tyr	Asp	Trp
Gln	Met	Ile	Ser	Leu 165	Met	Ala	Ile	Asn	Asp 170	Ile	Ser	Ser	Суз	Leu 175	Ser
Tyr	Asn	Ala	Ala 180	Val	Gly	Lys	Lys	Phe 185	Ile	Ala	Leu	Ser	Ile 190	Pro	Val
Leu	Leu	Gln 195	Phe	Ile	Ile	Ala	Asn 200	Asn	Pro	Gln	Ser	Ser 205	Ile	Leu	Gln
Arg	Leu 210	Lys	Ser	Asn	Leu	His 215	Val	Glu	Asp	Asp	Gly 220	Lys	Arg	Leu	Ser
Arg 225	Ala	His	Leu	Gln	Lys 230	Ser	His	Ser	Lys	Ile 235	Ala	Gln	Gln	Ile	Asp 240
Asp	Asp	Phe	Thr	Asn 245	Asp	Ser	Leu	Thr	Leu 250	Thr	Asp	Ile	Thr	Glu 255	Lys
Ala	Phe	Ser	Ser 260	Met	Lys	Ser	Phe	Phe 265	Asn	Thr	Asn	Ala	Ala 270	Ser	Gln
		275			Arg		. 280					285			
Thr	Asp 290				Gly	295					300				0
-1.		11-1	01-	100	· ~ ~	Dho	1/21	Ser	Leu	Ser	Thr	Leu	Leu	Ala	Thi

									63	83						
	305		•			310					315					320
I	Leu	Gly	Arg	Ile	Asn 325	Ile	Glu	Gly	Asn	Thr 330	Lys	Ser	Asn	Tyr	Asn 335	Met
(	31n	Phe	Gln	Tyr 340	Ala	Arg	Tyr	Leu	Leu 345	Gly	Leu	Leu	Ser	Ser 350	Arg	Val
1	Asn	Met	Ile 355	Gly	Leu	Ser	Val	Ser 360	Asp	Ile	Ile	Gln	Gln 365	Leu	Leu	Ser
1	Leu	Gln 370	Ala	Asp	Leu	Ile	Leu 375	Lys	Ala	Ser	Asp	Leu 380	Asp	Lys	Ser	Glu
	Ile 385	Ser	Ile	Leu	Thr	Asp 390	Ile	туr	Ser	Asp	Cys 395	Ile	Cys	Ser	Leu	Thr 400
	Thr	His	Ile	Tyr	Tyr 405	Phe	Asp	Gln	Val	Pro 410	Asp	Ser	Ile	Gln	Glu 415	Ile
	Leu	Ile	Lys	Ile 420	Asp	туr	Ile	Leu	Glu 425	Ser	Ser	Phe	Val	Glu 430	Asp	Asn
	Asn	Ile	Thr 435	Ser	Thr	Gly	Glu	Gln 440	Ile	Gln	Asp	Leu	Ile 445	Ile	Gln	Leu
	Leu	Asp 450		Ile	Ser	Lys	Ile 455		Leu	Ile	Leu	Lys 460	As'n	Lys	Ser	Ser
	Ser 465		Asn	Arg	Asn	His 470	Val	Asn	Leu	Glu	His 475	Trp	Asp	Ile	Ser	Leu 480
	Gly	Leu	Leu	Ala	Pro 485		Gly			Asp 490		Asn	Arg	Lys	Met 495	Ile
	Ile	Ser	Thr	Thr 500		Leu	Ile	Asn	Ile 505		Ala	Arg	Tyr	Leu 510	Lys	Val
	Phe	Asp	Glu 515		Leu	Asn	Asn	Glu 520		Ala	Val	Gly	Asn 525	Ser	Lys	Lys
	Ser	Туг 530		Leu	Leu	Ser	Lys 535		Ser	Arg	, Leu	Asp 540		Gly	Ser	Thr
	Ala		l Glu	Gly	/ Val	. Asn		s Ser	: Asp	Asp	Leu 555		Asn	Gly	Lys	Asp 560
		_			. n		. Ac-	. G1*	ነ <b>ጥ</b> ኒታን	- T]e	- Thr	Asn	Gln	Gln	Asn	Phe

565 570 575

Ile Ser His Phe Leu Met Tyr Ile Asp Lys Phe Phe Glu Asn Tyr Asp 580 585 590

Ser Pro Asn Thr Gin Ser Val Leu Leu Leu Val Thr Val Leu Lys Asp 595 600 605

Met Met Asn Ile Leu Gly Leu Asn Phe Leu Ser Asn Phe Ile Pro Phe 610 615 620

Phe His His Trp Val Met Lys Val Asn Arg Ala Ser Asn Phe Thr Gln 625 630 635 640

Arg Gln Lys Phe Lys Asp Thr Phe Ala His Ile Ile Leu Tyr Tyr Met 645 650 655

Leu Lys Asp Leu Asp Glu Gln Tyr Ser His Asp Leu Gln Asn Tyr Cys
660 665 670

Lys Ser Ser Lys Leu Phe Lys Gln Ile Leu Asp Ala Val Glu Tyr Arg 675 680 685

Lys Met Gln Lys Phe Trp Val His Gly Ile Asp Pro Ser Pro Ser Asp 690 695 700

Leu Glu Asn Thr Lys Gly Asp Arg Thr Ile Pro Thr Asp Ala Asn Gly
705 710 715 720

Asn Tyr Ile Ala Ile Arg Ile Lys Pro Glu Asn Ile Glu Glu Phe Ala . 725 730 735

Cys Gly Asn Asn Phe Leu Ile Val Trp Leu His Pro Gln Lys Gln Leu 740 745 750

Leu Thr Glu Ile Glu Lys Ser Gln Val Ser Thr His Met Ser Thr Phe
755 760 765

Asn Asn Asp Ser Arg Asn Thr Asn Met Thr Val Ile Met Asp Gln Gly
770 775 780

Ser Leu Ala Leu Ser Gly Gly Ala Asp His Gly Gly His Phe Val Pro 785 790 795 800

Pro Pro Glu Phe Val Asn His Thr Gly Leu Ser Ser Glu Ser Ala Ser 805 810 815

Ser Asn Ser Glu Lys Gly Leu Tyr Thr Gly Leu Gly Leu Gly Thr Ala

			820					825					830		
Gly	Asp	Ile 835	Thr	Met	Ile	His	Ser 840	Glu	Ile	Leu		Tyr 845	Ser	Gln	His
Phe	Gln 850	Glu	Arg	Gly	Leu	Pro 855	His	Gly	Asn	Gly	Phe 860	Ala	Thr	Ile	Leu
Arg 865	Thr	Val	Asp	Ser	Val. 870	Asn	Ser	Thr	Asn	Asp 875	Gly	Leu	Ile	Tyr	Thr 880
Tyr	Asp	Ser	Lys	Tyr 885	Leu	Gln	Ser	Pro	Arg 890	Val	Ser	Asp	Leu	Lys 895	Asp
Ala	Met	Ser	Thr 900	His	Arg	Gly	Ile	Arg 905	Leu	Ser	Lys	Pro	Asn 910	Phe	Gly
Gly	Ala	Asn 915	Gly	Thr	Ala	Asn	Met 920	Thr	Asp	Ser	Ala	Ser 925	Thr	Ser	Asn
Gly	ser 930	Val	Leu	Asn	Lys	Asn 935	Met	Gln	Thr	Thr	Asp 940	Val	Asp	Ser	Ile
Leu	Ser	Glv	Leu	Glu	Ser	Glu	Asp	Glu	Ala	Ala	Phe	Val	Val		

### SEQUENCE LISTING

- <110> Hoechst Marion Roussel
- <120> ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR SCRENING ANTIMYCOTIC SUBSTANCES USING SAID GENES
- <130> SEQID12
- <140>
- <141>
- <160> 1
- <170> PatentIn Ver. 2.1
- <210> 1
- <211> 594
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence:Homologous fragment to Sc YMR212c
- <400> 1

atcacetgtg aacaacecac catccaagtt tteacacaa acaceaaatg ttetgacaac 60 attettacac aaggeaagat cettagtgtt ggcaatcagt tgeaagatat ageacacttg 120 aaaggeaaaa acattcaagt tteeactaca ttetttgatt aatteetgaa taatggetaa 180 tgtgacettgt aaattaccag taeggettet accaacatca tgatgagttt tateetteaa 240 aaaattaate acettteta attegacee tgetteeca geaggataac attacatca 360 taacetetga tgettaatgt gaaacaaatt catteetga tgettatgtt gaaacaaatt cattettga tegttaatgt gaaacaaatt agaaaagaag taacetettga getaaaaagg 480 aaacaagaaa aaagtgatea aatgateaa aatgataaa taaatgaaag taggtaaaaa tgaaataaag 540 aaacaaagaaa aaagtgatea aatgatga taacetetga tgaataaaag 540

### SEQUENCE LISTING

<110> Hoechst Marion Roussel <120> ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR SCRENING ANTIMYCOTIC SUBSTANCES USING SAID GENES <130> SEQID13 <140> <141> <160> 2 <170> PatentIn Ver. 2.1 <210> 1 <211> 3771 <212> DNA <213> Candida albicans <220> <221> CDS <222> (1)..(3771) <220> <221> gene <222> (1)..(3771) <223> Gene CaDR325 <400> 1 atg gat ata cca cca aaa cca act ctt aag gca att aag aaa ttt aga 48 Met Asp Ile Pro Pro Lys Pro Thr Leu Lys Ala Ile Lys Lys Phe Arg 15 5 1 act ttg gat gaa ata aaa tat gcc atg aaa cat gtt ttc caa gat gct Thr Leu Asp Glu Ile Lys Tyr Ala Met Lys His Val Phe Gln Asp Ala 25 20 caa tta ggt tta gca gga cat aga aaa tta gtg gta att ttg aaa aat 144 Gln Leu Gly Leu Ala Gly His Arg Lys Leu Val Val Ile Leu Lys Asn 40 35 gta ttt aaa aaa gcc att gaa tta aat caa att aat ttc ttt gcc atg 192 Val Phe Lys Lys Ala Ile Glu Leu Asn Gln Ile Asn Phe Phe Ala Met 55 50 tgt ttt act aaa ttg tta tct aaa gta tta cct ttg aaa aga gga gtt

Cys 65	Phe	Thr	Lys	Leu	Leu 70	Ser	Lys	Val	Leu	Pro 75	Leu	Lys	Arg	Gly	Val 80	
tta	gca	ggt	gat	aga	ata	gtc	aaa	ttt	tgt	tat	ctg	ttt	gtt	aat	ggt	288
Leu	Ala	Gly	Asp	Arg 85	Ile	Val	Lys	Phe	90	Tyr	Leu	Phe	Val	Asn 95	Gly	
ctt	gta	aaa	gat	gcc	aat	gaa	gaa	aaa	cgt	tcc	aaa	gaa	gaa	gaa	aaa	336
Leu	Val	Lys	Asp 100	Ala	Asn	Glu	Glu	Lys 105	Arg	ser	гÀг	GIU	110	GIU	пув	
gaa	gaa	aaa	gac	aaa	gac	gaa	gac	aaa	gat	acg	aat	gaa	agt	gat	aaa	384
Glu	Glu	Lys 115	Asp	Lys	Asp	Glu	Asp 120	Lys	Asp	Thr	Asn	125	ser	Asp	гÀг	
aat	gaa	gaa	gat	cag	gaa	gat	caa	gaa	gga	gaa	gga	gat	caa	gaa	act	432
Asn	Glu 130	Glu	Asp	Gln	Glu	Asp 135	Gln	Glu	Gly	Glu	Gly 140	Asp	Gln	Glu	Thr	
сса	att	tcg	gaa	ttc.	ata	tca	tat	ttg	ata	aaa	tat	tta	ttg	agt	999	480
Pro 145	Ile	Ser	Glu	Phe	Ile 150	Ser	Tyr	Leu	Ile	Lys 155	Tyr	Leu	Leu	Ser	160	
ata	gag	gct	aaa	gat	aaa	ctg	gtt	cgt	tat	cgt	gtt	gta	caa	aca	tta	528
lle	Glu	Ala	Lys	Asp 165	Lys	Leu	Val	Arg	Tyr 170	Arg	Val	Val	Gln	175	Leu	
gca	tac	ttg	gtt	gaa	ttc	ttg	acc	gag	ata	cac	gag	aat	aat	aca	ttg	576
Ala	Tyr	Leu	Val 180	Glu	Phe	Leu	Thr	Glu 185	Ile	His	Glu	Asn	Asn 190	Thr	Leu	
gaa	gcg	tta	tat	act	tta	tta	agţ	aat	agg	cta	caa	gat	aaa	gag	ctg	624
Glu	Ala	Leu 195	Tyr	Thr	Leu	Leu	Ser 200	Asn	Arg	Leu	Gln	Asp 205	Lys	Glu	Leu	
tcg	ata	cgt	att	caa	gct	gtt	gtg	gca	tta	tca	cat	ttt	caa	tta	ttt	672
Ser	Ile 210	Arg	Ile	Gln	Ala	Val 215	Val	Ala	Leu	Ser	His 220	Phe	Gln	Leu	Phe	
gaa	ttt	agt	att	gaa	ggt	gat	act	gga	gaa	ttt	gag	gat	gaa	tta	ata	720
Glu	Phe	Ser	Ile	Glu	Gly	Asp	Thr	Gly	Glu	Phe 235	Glu	Asp	Glu	Leu	Ile 240	•
225					230			•			•					
tca	agt	aac	caa	att	cag	aat	aaa	ttg	ata	aat	tcc	att	caa Gln	aat Asn	gat	768
Ser	Ser	Asn	Gln	11e 245		. Asn	rys	ьeu	250		. ser	116	9111	255	Asp	
gat	agt	cca	gaa	gtc	aga	cgt	gca	gca	tta	atg	aat	ttg	gtt	aaa	aca	816

	•			•													
									ra	183							
		_	<b>-</b>	<b>a</b> 1	**- 1	Arg	A	7 l a				Asn	Leu	Val	Lvs	Thr	
-	Asp	Ser	Pro		vai	Arg	Arg	Ala	265	Deu				270	-1-		
				260					205								
											~~~	202	cat	tcc	aat	tct	864
	caa	gat	aca	ata	ccg	att	tta	CEE	gaa	cya N==	232	Ara	Acr.	Car	Acn	Ser	001
1	Gln	Asp	Thr	Ile	Pro	Ile	Leu		GIU	Arg	Ald	ALG		361	veii	Jer	1
			275					280					285				
		•														205	912
	att	aat	aga	aga	ttg	gtt	tat	tct	aaa -	ata	gct	cgt	gaa	t au	Tla	mb~	712
	Ile	Asn	Arg	Arg	Leu	Val		Ser	Lys	He	Ala		GIU	Leu	116	IIII	
		290					295					300					
																+ ~ ~	960
,	gat	ttg	gat	gat	ctt	gaa	ttt	gaa	gat	agg	gaa		tta		aaa T	ryg Tees	900
	Asp	Leu	Asp	Asp	Leu	Glu	Phe	Glu	Asp	Arg		Phe	Leu	Leu	Lys		
	305					310					315					320	•
														4-			1000
	ggg	tta	aat	gat	cgt	gat	gaa	act	gtt	aaa	gca	gcc	gcc	act	aaa	atg	1008
	Gly	Leu	Asn	Asp	Arg	Asp	Glu	Thr	Val		Ala	Ala	Ala	Thr	rys	met	
					325					330					335		
	ctt	acc	att	tat	tgg	tat	caa	tct	gtc	aat	gaa	gat	tta	tta	gaa	tta -	1056
	Leu	Thr	Ile	Tyr	Trp	Tyr	Gln	Ser	Val	Asn	Glu	Asp	Leu		GIu	Leu	
				340					345					350			
	att	gat	caa	tta	aat	gtc	aag	agt	gct	ata	gct	gaa	cag	gcc	ata	tta -	1104
	Ile	Asp	Gln	Leu	Asn	Val	Lys	Ser	Ala	Ile	Ala	Glu		Ala	Ile	Leu	
			355					360					365				
	gca	ttt	ttt	aaa	aat	aaa	cca	gaa	gtt	ctt	gaa	act	att	aaa	att	gat	1152
	Ala	Phe	Phe	Lys	Asn	Lys	Pro	Glu	Val	Leu	Glu	Thr	Ile	Lys	Ile	Asp	
		370					375					380					
	gaa	tca	tat	tgg	aaa	aat	cta	act	aca	gaa	aag	gca	ttc	ttg	atg	agg	1200
	Glu	Ser	Tyr	Trp	Lys	Asn	Leu	Thr	Thr	Glu	Lys	Ala	Phe	Leu	Met	Arg	
	385					390					395					400	
	acq	ttt	tat	caa	tat	tgt	aat	gag	aat	caa	tta	cat	gct	tta	atg	gat	1248
	Thr	Phe	Tyr	Gln	Tyr	Cys	Asn	Glu	Asn	Gln	Leu	His	Ala	Leu	Met	Asp	
			•		405					410					415		
	qcc	aat	ttc	cct	gaa	tta	ctt	gat	ttg	tca	ata	aca	tta	gaa	aag	tat	1296
	Ala	Asn	Phe	Pro	Glu	Leu	Leu	Asp	Leu	Ser	Ile	Thr	Leu	Glu	Lys	Tyr	
				420					425					430			
									^								
	tta	tça	gtq	agg	ttg	aaa	act	ata	aat	gaa	aat	gaa	aat	tta	gtt	aag	1344
	Leu	Ser	Val	Arg	Leu	Lys	Thr	Ile	Asn	Glu	Asn	Glu	Asn	Leu	Val	Lys	
			435					440					445				
											٠						
	aca	tgg	gaa	act	tat	aat	gcc	aag	att	gac	gaa	tta	gat	gat	caa	ata	1392
					-												

Thr	Trp 450	Glu	Thr	Tyr	Asn	Ala 455	Lys	Ile	Asp	Glu	Leu 460	Asp	Asp	Gln	Ile	
ttt Phe 465	agt Ser	ctt Leu	gaa Glu	aac Asn	cag Gln 470	att Ile	tcc Ser	aga Arg	ata Ile	aat Asn 475	act Thr	gat Asp	gcc Àla	gat Asp	aat Asn 480	1440
ttc Phe	cgt Arg	aaa Lys	agt Ser	tta Leu 485	tct Ser	aac Asn	att Ile	gaa Glu	gaa Glu 490	gat Asp	att Ile	att Ile	gaa Glu	atc Ile 495	aat Asn	1488
att Ile	gct Ala	aag Lys	gat Asp 500	ttg Leu	ttc Phe	aaa Lys	aag Lys	aga Arg 505	att Ile	aaa Lys	caa Gln	ttg Leu	aaa Lys 510	aac Asn	aac Asn	1536
agt Ser	999 Gly	aat Asn 515	cta Leu	gaa Glu	gat Asp	ttg Leu	att Ile 520	act Thr	gaa Glu	gaa Glu	aat Asn	caa Gln 525	gag Glu	att Ile	gct Ala	1584
gat Asp	caa Gln 530	atc Ile	aag Lys	gat Asp	ttc Phe	ctg Leu 535	atg Met	gaa Glu	gat Asp	ttg Leu	caa Gln 540	caa Gln	caa Gln	ttg Leu	gaa Glu	1632
gat Asp 545	atc Ile	aat Asn	aaa Lys	aat Asn	ctt Leu 550	gat Asp	gaa Glu	att Ile	gaa Glu	cat His 555	cat His	cca Pro	gaa Glu	gat Asp	ata Ile 560	1680
acg Thr	gct Ala	aaa Lys	tta Leu	gaa Glu 565	gaa Glu	ctt Leu	caa Gln	aca Thr	aaa Lys 570	tat Tyr	gat Asp	tct Ser	tgt Cys	att Ile 575	agg Arg	1728
gcg Ala	ctt Leu	gaa Glu	acc Thr 580	act Thr	agt Ser	gaa Glu	ttg Leu	aaa Lys 585	att Ile	cag Gln	act Thr	gtt Val	caa Gln 590	atc Ile	ttt Phe	1776
gaā Glu	caa Gln	gaa Glu 595	cat His	gaa Glu	aat Asn	gat Asp	tgt Cys 600	atc Ile	ccc Pro	ttt Phe	gta Val	gat Asp 605	gct Ala	ttg Leu	aaa Lys	1824
gaa Glu	tta Leu 610	gaa Glu	ttc Phe	att Ile	att Ile	aat Asn 615	caa Gln	tta Leu	tta Leu	tta Leu	att Ile 620	gtt Val	aaa Lys	gat Asp	ttt Phe	1872
gat Asp 625	Tyr	gga Gly	gat Asp	gaa Glu	atg Met 630	gca Ala	aga Arg	aga Arg	aaa Lys	ttg Leu 635	tta Leu	cat His	ata Ile	ata Ile	aga Arg 640	1920
atg	aca	tta	act	. gaa	gat	aaa	tta	cct	gat	gcg	tta	ata	tca	gtg	gca	1968

									7							
Met	Thr	Leu	Thr	Glu	Asp	Lys	Leu	Pro	Asp	Ala	Leu	Ile	Ser	Val	Ala	
				645					650					655		
								- 4-5		~~~	222	~a+		a++	t.c.c	2016
					gca											2010
Leu	Arg	Val	Leu	Arg	Ala	Leu	Ser	Ile	Asn	Glu	Lys	Asp	Phe	Val	ser	
			660		•			665					670			
				2 = 2	att	3.C.F	ast	att	cat	gat	tot	cga	gat	gat	gaa	2064
Met	Ala	Val	Glu	Ile	Ile	Thr	Asp	He	Arg	Asp	Ser		Asp	Asp	GIU	
		675					680					685				
gag	ttc	cat	tct	act	gcc	qct	aca	ttt	gat	gat	gat	gat	gat	gat	att	2112
					Ala											
GIU		urs	261	мта	Ala		1111	1110	пор							
	690					695	•				700					
			•													
ttg	gga	aat	ggt	gat	gat	gaa	tct	caa	caa	tca	tca	tca	ctc	agt	gca	2160
					Asp											
	U -7		7		710					715					720	
705					/10											
					aga											2208
Val	Thr	Lys	Lys	Arg	Arg	Ile	Glu	Pro	Asp	Met	Pro	Pro	Asp	Asp	Ile	
				725					730	,				735		
														•		
					acc	250	202	C22	tat	σta	tta	gaa	ata	att	act	2256
Val	Leu	Arg	Cys	Leu	Thr	Met	Thr	GIn	Tyr	vai	Leu	GIU		ire	THE	
			740					745					750			
				•												
cat	agt	tta	gat	gat	cat	ctt	tca	ttg	agt	tct	att	tac	agt	ggt	att	2304
					His											
пть	261		nsp	Yaħ	1113	200						765		•		
		755					760					763				
	•															,
gtc	aat	tat	gct	att	cag	aat	gaa	tcg	aaa	aag	aaa	tta	tat	ctt	gct	2352
Val	Asn	Tyr	Ala	Ile	Gln	Asn	Glu	Ser	Lys	Lys	Lys	Leu	Tyr	Leu	Ala	
	770	•				775					780					
	,,,					•				•						
								. - •			~	.	222		acc	2400
					gga											2400
Gly	Leu	Thr	Cys	Leu	Gly	Leu	Tyr	Ser	Leu	Ile	Asp	Ser	Lys	Ile	Ala	
785					790					795					800	
	a++	~~~	205	207	aca	tts	tta	cta	aca	ato	aga	aot	aat	gat	qaa	2448
Arg	Ile	Ala	Thr	Thr	Thr	ьeu	ьeu	Leu		met	Arg	ser	ASIL		GIU	
				805					810					815		
gaa	qta	aaa	qaq	att	gga	atq	aaa	gct	att	gtg	gat	ata	ttg	gca	att	2496
					Gly											
Gru	*41	-y3			1		-1-	825			2		83,0			
			820					023					0.0			
																2544
tat	ggt	atg	agt	att	ctt	gat	aaa	tca	tct	aaa	tac	aaa	tat	tca	aga	2544

	Tyr Gly Met Ser Ile Leu Asp Lys Ser Ser Lys Tyr Lys Tyr Ser Arg																
•	Tvr	Glv	Met	Ser	Ile	Leu	Asp	Lys	Ser	Ser	Lys	Tyr	Lys	Tyr	Ser	Arg	
	- 1 -						•	840					845				
			835					040									
	ata	ttt	ttc	aaa	att	tta	aat	tca	ttt	gat	gca	cca	aaa	tta	caa	tgc	2592
						Leu											
ı	Met	Pne	Pne	rås	val	Leu	ASII	361	FIIC	rap	774		-,-			-,-	
		850					855					860					
						tta		222	tta	+++	tta	acc	gat	att	tta	tac	2640
	Ile	Val	Ala	Glu	Gly	Leu	Cys	Lys	Leu	Phe	Leu	Ala	Asp	11e	Leu	Tyr	
	865					870					875					880	
														~~+	-a-	aat	2688
						agt											2000
1	Lys	Thr	Asp	Lys	Arg	Ser	Leu	Phe	Gly	Asn	Ala	Ile	Gln	Gly	Gly	Gly	
	•		•		885					890					895		
					003												
4	ggt.	ggt	ggt	ggt	ggt	aat	gat	gat	cca	act	acc	acc	aat	gac	gat	gaa	2736
	G137	Glv	Glv	Glv	Glv	Asn	Asp	Asp	Pro	Thr	Thr	Thr	Asn	Asp	Asp	Glu	
•	Gry	Gry	O.J											910			
				900					905					310			
	act	gaa	gaa	gaa	aca	gat	cga	gag	cat	gaa	aag	cat	tta	ttt	gaa	gcg	2784
		-1	500	21		3	3	01	ui a	Clu	Lve	uie	ī.eu	Dhe	Glu	Ala	
•	Thr	GIu	GIU	GIU	Thr	Asp	Arg	GIU	nıs	Giu	Буз	птэ		1110	014	****	
			915					920					925				
						ttc	220	000	226	acc	222	tca	aat	caa	gaa	tta	2832
	Ile	Val	Leu	Ile	Tyr	Phe	Asn	Pro	Asn	Thr	Lys	Ser	Asn	GIn	GIU	Leu	
		930					935					940					
																252	2880
	caa	caa	att	ttg	tca	ttt	tgt	att	cca	gtt	tat	gcc	נננ	tet	Cat	ala	2000
	Gln	Gln	Ile	Leu	Ser	Phe	Cys	Ile	Pro	Val	Tyr	Ala	Phe	Ser	His	Ile	
						950	_				955					960	
	945					950											
		•															
	aat	cat	caa	atc	aat	tta	gct	gca	gtt	agt	ggt	gat	gtt	att	tat	cga	2928
	Δen	нія	Gln	Ile	Asn	Leu	Ala	Ala	Val	Ser	Gly	Asp	Val	Ile	Tyr	Arg	
•	M311	1110	01									•			975		
					965					970					,,,		
	ctt	ttc	act	qaa	aca	gaa	aca	gaa	tta	tca	cca	agt	gtt	ata	atc	cct	2976
						Glu											
	Leu	Pne	Thr	GIU	Inr	Glu	IIIL	Gru		361	110	561					
				980					985					990			
	~~~	++-	ata	tc=	taa	tgt	gat	cct	cga	aat	tta	qtt	aaa	tta	tca	aat	3024
	Gln	Leu	Ile	Ser	Trp	Cys	Asp	Pro	Arg	Asn	Leu	val	гλг	ьeu	oe I	Mail	
			995					1000				•	1005				
														•			
							_	<u>.</u> -		<b></b> -	-~-			~++	+=+	++=	3072
						gca											3012
	Glu	Glu	Ile	Asn	Gln	Ala	Thr	Ser	His	Leu	Trp	Gln	Cys	Val	Tyr	Leu	
		1010					1015					1020					
	•	-010															
					٠ .												2100
	tta	caa	gtg	gtt	gaa	caa	gta	gat	gct	cgt	aat	gtt	aaa	aga	tgc	atc	3120

Leu Gln Val	Val Glu	Gln Val	Asp Ala	Arg Asn	Val Lys	Arg Cys	[le
1025	:	1030		1035		10	040
att aac aat							
Ile Asn Asn	Leu Asn	Lys Phe	His Ile	Thr Glu	Glu Leu		Asn
	1045			1050		1055	
						•	
caa tta caa							
Gln Leu Gln	Ala Leu	Ile Lys	Ala Leu	Asp Ala			Phe
	1060		1065			1070	
act aat aat	gaa gat	aac cct	aat ttt	atc ttg	gat aaa	cca aca a	aag 3264
Thr Asn Asn	Glu Asp	Asn Pro	Asn Phe	Ile Leu		Pro Thr	Lys
1075		;	1080		1085		`
							2212
aag aat ttt							
Lys Asn Phe	Asp Thr		Glu Ser			Leu Glu .	i i e
1090		1095			1100		
							2260
gct caa aaa							
Ala Gln Lys			Glu Leu		Ser Gly		
1105		1110		1115		1.	120
							3400
ata tta cat							
Ile Leu His	Glu Leu	Asp Asp			Thr Gly		ser
	1125			1130		1135	
							tct 3456
caa ata tct							
Gln Ile Ser		Ser Glu		Arg Arg			ser
	1140		1145			1150	
			*** ***	gaa agt	tca caa	aat daa (	gat 3504
ctg caa gtt							
Leu Gln Val				GIU IIII	1165		rop
1155			1160		1103		
gaa gag gat			ana ann	caa cac	220 220	aaa agt i	ttt 3552
Glu Glu Asp	gat aat	gay yay	gay gaa	Cln Clu	Lve Eve	Lvs Ser	Phe
	Asp Asn	1175	GIU GIU		1180	2,0 002	
1170		11/3			2100		
act gat gga	222 225	aaa ctt	maa cta	aag gca	gat aag	cca atc	aca 3600
Thr Asp Gly							
1185		1190	Olu Deu	1195			200
1103	•	1170		2233		-	-
ttt aaa gct	gaa gac	aag agg	даа дад	tca gtt	gaa aca	gat cat	ggt 3648
Phe Lys Ala							
THE DAS WIG	1205	ayo mag	J U_]	1210		1215	•
caa gaa caa	gtt cta	gtt qaa	tca aaq	aaa gtc	att gat	agt aat	gtt 3696
J	-		_		-	-	

74183

Gln Glu Gln Val Leu Val Glu Ser Lys Lys Val Ile Asp Ser Asn Val 1220 1225 1230

gtt gat tat ggt gat att tca atg gat Val Asp Tyr Gly Asp Ile Ser Met Asp 1250 3771

<210> 2

<211> 1257

<212> PRT

<213> Candida albicans

<400> 2

Met Asp Ile Pro Pro Lys Pro Thr Leu Lys Ala Ile Lys Lys Phe Arg

1 5 10 15

Thr Leu Asp Glu Ile Lys Tyr Ala Met Lys His Val Phe Gln Asp Ala

Gln Leu Gly Leu Ala Gly His Arg Lys Leu Val Val Ile Leu Lys Asn 35 40 45

Val Phe Lys Lys Ala Ile Glu Leu Asn Gln Ile Asn Phe Phe Ala Met 50 55 60

Cys Phe Thr Lys Leu Leu Ser Lys Val Leu Pro Leu Lys Arg Gly Val 65 70 . 75 80

Leu Ala Gly Asp Arg Ile Val Lys Phe Cys Tyr Leu Phe Val Asn Gly 85 90 95

Leu Val Lys Asp Ala Asn Glu Glu Lys Arg Ser Lys Glu Glu Glu Lys
100 105 110

Glu Glu Lys Asp Lys Asp Glu Asp Lys Asp Thr Asn Glu Ser Asp Lys
115 120 125

Asn Glu Glu Asp Gln Glu Asp Gln Glu Gly Glu Gly Asp Gln Glu Thr
130 135 140

PCT/EP99/07376 WO 00/15838

										i ^~					
Ile	Glu	Ala	Lys	Asp 165	Lys	Leu	Val			83 Arg		Val	Gln	Thr 175	Leu
Ala	Tyr	Leu	Val 180	Glu	Phe	Leu	Thr	Glu 185`		His	Glu	Asn	Asn 190	Thr	Leu
Glu	Ala	Leu 195	Tyr	Thr	Leu	Leu	Ser 200	Asn	Arg	Leu	Gln	Asp 205	Lys	Glu	Leu
Ser	Ile 210	Arg	Ile	Gln	Ala	Val 215	Val	Ala	Leu	Ser	His 220	Phe	Gln	Leu	Phe
Glu 225	Phe	Ser	Ile	Glu	Gly 230	Asp	Thr	Gly	Glu	Phe 235	Glu	Asp	Glu	Leu	11e 240
Ser	Ser	Asn	Gln	11e 245	Gln	Asn	Lys	Leu	Ile 250	Asn	Ser	Ile	Gln	Asn 255	Asp
			260					265					Val 270		
		275					280					285	Ser		
	290					295					300		Leu		
305					310					315			Leu		320
				325			٠.		330				Thr	335	
24			340					345					Leu 350		
		355					360					365	Ala		
	370					375					380		Lys		
385					390					395			Leu		400
Thr	Phe	Tyr	Gln	Tyr		Asn	Glu		Gln 410		His	Ala	Leu	Met 415	Asp

CT/EP99/07376

V	VO 00	/1583	8			P									
Ala	Asn	Phe	Pro 420	Glu	Leu	Leu	Asp	Leu 425	76   Ser	83 Ile	Thr	Leu	Glu 430	Lys	Tyr
Leu	Ser	Val 435	Arg	Leu	Lys	Thr	Ile 440	Asn	Glu	Asn	Glu	Asn 445		Val	Lys
Thr	Trp 450	Glu	Thr	Tyr	Asn	Ala 455	Lys	Ile	Asp	Glu	Leu 460	Asp	Asp	Gln	Ile
Phe 465	Ser	Leu	Glu	Asn	Gln 470	Ile	Ser	Arg	Ile	Asn 475	Thr	Asp	Ala	Asp	Asn 480
Phe	Arg	Lys	Ser	Leu 485	Ser	Asn	Ile	Glu	Glu 490	Asp	Ile	Ile	Glu	Ile 495	Asn
Ile	Ala	Lys	Asp 500	Leu	Phe	Lys	Lys	Arg 505	Ile	Lys	Gln	Leu	Lys 510	Asn	Asn
Ser	Gly	Asn 515	Leu	Glu	Asp	Leu	Ile 520	Thr	Glu	Glu	Asn	Gln 525	Glu	Ile	Ala
Asp	Gln 530	Ile	Lys	Asp	Phe	Leu 535	Met	Glu	Asp	Leu	Gln 540	Gln	Gln	Leu	Glu
Asp 545	Ile	Asn	Lys	Asn	Leu 550	Asp	Glu	Ile	Glu	His 555	His	Pro	Glu	Asp	Ile 560
Thr	Ala	Lys	Leu	Glu 565	Glu	Leu	Gln	Thr	Lys 570	Tyr	Asp	Ser	Cys	Ile 575	Arg

Ala Leu Glu Thr Thr Ser Glu Leu Lys Ile Gln Thr Val Gln Ile Phe 585

Glu Gln Glu His Glu Asn Asp Cys Ile Pro Phe Val Asp Ala Leu Lys 600

Glu Leu Glu Phe Ile Ile Asn Gln Leu Leu Leu Ile Val Lys Asp Phe

Asp Tyr Gly Asp Glu Met Ala Arg Arg Lys Leu Leu His Ile Ile Arg

Met Thr Leu Thr Glu Asp Lys Leu Pro Asp Ala Leu Ile Ser Val'Ala 650

Leu Arg Val Leu Arg Ala Leu Ser Ile Asn Glu Lys Asp Phe Val Ser

. 665

635

670

615

630

645

580

Met	Ala	Val 675	Glu	Ile	Ile	Thr	Asp 680	Ile	Arg	Asp	Ser	Arg 685	Asp	Asp	Glu
Glu	Phe 690	His	Ser	Ala	Ala	Ala 695	Thr	Phe	Asp	qaA	Asp 700	Asp	Asp	Asp	Ile
Leu 705	Gly	Asn	Gly	Asp	Asp 710	Glu	Ser	Gln	Gln	Ser 715	Ser	Ser	Leu	Ser	Ala 720
Val	Thr	Lys	Lys	Arg 725	Arg	Ile	Glu	Pro	Asp 730	Met	Pro	Pro	Asp	Asp 735	Ile
Val	Leu	Arg	Cys 740	Leu	Thr	Met	Thr	Gln 745	Tyr	Val	Leu	Glu	Val 750	Ile	Thr
His	Ser	Leu 755	Asp	Asp	His	Leu	Ser 760	Leu	Ser	Ser	Ile	Tyr 765	Ser	Gly	Ile
Val	Asn 770	Tyr	Ala	Ile	Gln	Asn 775	Glu	Ser	Lys	Lys	Lys 780	Leu	Tyr	Leu	Ala
Gly 785	Leu	Thr	Cys	Leu	Gly 790	Leu	Tyr	Ser	Leu	Ile 795	Asp	Ser	Lys	Ile	Ala 800
Arg	Ile		Thr	Thr 805	Thr	Leu	Leu	Leu	Ala 810	Met	Arg	Ser	Asn	Gly 815	Glu
Glu	Val	Lys	Glu 820	Ile	Gly	Met	Lys	Ala 825	Ile	Val	Asp	Ile	Leu 830	Ala	Ile
Tyr	Gly	Met 835	Ser	Ile	Leu	Asp	Lys 840	Ser	Ser	Lys	Tyr	Lys 845	Tyr	Ser	Arg
Met	850	Phe	Lys	Val	Leu	Asn 855	Ser	Phe	Asp	Ala	Pro 860	Lys	Leu	Gln	Сув
Ile 865		Ala	Glu	Gly	Leu 870	Cys	Lys	Leu	Phe	Leu 875	Ala	Asp	Ile	Leu	Tyr 880
Lys	Thr	Asp	Lys	Arg 885	Ser	Leu	Phe	Gly	Asn 890	Ala	Ile	Gln	Gly	Gly 895	Gly
Gly	Gly	Gly	Gly 900	Gly	Asņ	Asp	Asp	Pro 905		Thr	Thr	Asn	Asp 910	Asp	Glu
Thr	Glu	Glu 915		Thr	Asp	Arg	Glu 920		Glu	Lys	His	Leu 925	Phe	Glu	Ala

								;	181	83					
Ile	Val 930	Leu	Ile	Tyr	Phe	Asn 935	Pro	Asn	Thr	Lys	Ser 940	Asn	Gln	Glu	Leu
Gln 945	Gln	Ile	Leu	Ser	Phe 950	Cys	Ile	Pro	Val	Tyr 955	Ala	Phe	Ser	His	11e 960
Asn	His	Gln	Ile	Asn 965	Leu	Ala	Ala	Val	Ser 970	Gly	Asp	Val	Ile	Tyr 975	Arg
Leu	Phe	Thr	Glu 980	Thr	Glu	Thr	Glu	Leu 985	Ser	Pro	Ser	Val _.	Ile 990	Ile	Pro
Gln	Leu	Ile 995	Ser	Trp	Суѕ		Pro 1000	Arg	Asn	Leu		Lys 1005	Leu	Ser	Asn
	Glu .010	Ile	Asn	Gln		Thr 1015	Ser	His	Leu		Gln 1020	Суз	Val	Tyr	Leu
Leu 025	Gln	Val	Val		Gln LO30	Val	Asp	Ala		Asn L035	Val	Lys	Arg	Cys	Ile 1040
Ile	Asn	Asn		Asn 1045	Lys	Phe	His		Thr L050	Glu	Glu	Leu		Ser 1055	Asn
Gln	Leu		Ala 1060	Leu	Ile	Lys		Leu 1065	Asp	Ala	Thr		Glu 1070	Leu	Phe
Thr		Asn 1075	Glu	Asp	Asn		Asn 1080	Phe	Ile	Leu		Lys 1085	Pro	Thr	Lys
	Asn LO90	Phe	Asp	Thr		Ile 1095	Glu	Seŗ	Ile		Asn 1100	Lys	Leu	Glu	Ile
Ala 105		Lys	Arg		Glu 1110	Asn	Glu	Leu		Lys 1115	Ser	Gly	Thr	Asn	Ser 1120
Ile	Leu	His		Leu 1125	Asp	Asp	Leu		Ile 1130	Gly	Thr	Gly		Ser 1135	Ser
Gln	Ile		Ile 1140	Lys	Ser	Glu		Lys 1145	Arg	Arg	Asp		Asp 1150	Arg	Ser
Leu															

Glu Glu Asp Asp Asn Glu Glu Glu Glu Glu Lys Lys Ser Phe

1180

1175

79/83

Thr Asp Gly Lys Asn Lys Leu Glu Leu Lys Ala Asp Lys Pro Ile Thr
185 1190 1195 1200

Phe Lys Ala Glu Asp Lys Arg Glu Gly Ser Val Glu Thr Asp His Gly 1205 1210 1215

Gln Glu Gln Val Leu Val Glu Ser Lys Lys Val Ile Asp Ser Asn Val 1220 1225 1230

Glu Asp Ser Leu Glu Asp Ile Asp Lys Phe Leu Glu Glu Ala Asp Asp 1235 1240 1245

Val Asp Tyr Gly Asp Ile Ser Met Asp 1250 1255

PCT/EP99/07376

## 80/83

#### SEQUENCE LISTING

- <110> Hoechst Marion Roussel
- <120> ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR SCRENING ANTIMYCOTIC SUBSTANCES USING SAID GENES
- <130> SEQID14

<140>

<141>

<160> 1

<170> PatentIn Ver. 2.1

<210> 1

<211> 603

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Homologous
 fragment to Sc YDR325

<400> 1

ctgtttgtta atggtcttgt aaaagatgc aatgaagaa aacgttccaa agaagaaga 60 aaagaagaga aagacaaaga caaagacaaa gatacgaatg aaagtgataa aaatgaagaa 120 gatcaggaag atcaagaagg agaaggagat caagaaactc caatttcgga attcatatca 180 tatttgataa aatatttatt gagtggata gaggctaaag ataaactggt tcgttatcgt 240 gttgtacaaa cattagcata cttggttgaa ttcttgaccg agatacacga gaataataca 300 ttggaagcgt tatatacttt attaagtaat aggctacaag ataaagagct gtcgatacgt 360 attcaagctg ttgtggcatt atcacatttt caattattg aatttagtat tgaaggtgat 420 actggagaat ttgaggatga attaataca agtaaccaaa ttcagaataa attgataaat 480 tccattcaaa atgatgatag tccagaagtc agaccaaga attccaattc tattaatga 540 aga

PCT/EP99/07376 WO 00/15838

## 81/83

#### SEQUENCE LISTING

<110> Hoechst Marion Roussel

<120> ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR SCRENING ANTIMYCOTIC SUBSTANCES USING SAID GENES

<130> SEQID15

<140>

<141>

<160> 1

<170> PatentIn Ver. 2.1

<210> 1

<211> 581

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Homologous fragment to Sc YDR325

#### <400> 1

ggggttaaat gatcgtgatg aatctgttaa agcagccgcc tttaaaatgc taaccattta 60 ttggtatcaa tctgtcaatg aagatttatt agaattaatt gatcaattaa atgtcagaag 120 tgctatagct gaacaggcca tattagcatt ttttaaaaat aaaccagaag ttcttgcaac 180 tattaaaatt gatgaatcat attggaaaaa tctaactaca gaaaaggcat tcttgatgag 240 gacgttttat caatattgta atgagaatca attacatgct ttaatggatg ccaatttccc 300 tgaattactt gatttgtcaa taacattaga aaagtatttg tcagtgaggt tgaaaacaat 360 aaatgaaaat gaaaatttaa ttaagacatg ggaaacttat aatgccaaga ttgacgaatt 420 agatgatcaa atatttagtc ttgaaaacca gatttccaga ataaatactg atgccgataa 480 tttccgtaaa agtttatcta acattgaaga agatattatt gaaatcaata ttgctaagga 540 581 tregttcaaa aagagaatta aacaattgaa aaactgagca c

## 82/83 SEQUENCE LISTING

<110> Hoechst Marion Roussel

<120> ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR SCRENING ANTIMYCOTIC SUBSTANCES USING SAID GENES

<130> SEQID16

<140>

<141>

<160> 1

<170> PatentIn Ver. 2.1

<210> 1

<211> 662

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Homologous
 fragment to Sc YDR325

<400> 1

tggtgactca attcattga tgcaccaaaa ttacaatgca ttgtcgctga gtagattatg 60 caaattgtt ttagccgata ttttgtacaa gactgacaaa cggatttatt tggaaatgc 120 attcaaggtg gtggtggg tgatgatcca actaccacca atgacgatga aactgaagaa 180 gaaacagatc gagagcatga aaagcattta tttgaagcga ttgtacttat ttattcaac 240 cccaacacca aatcaaatca agaattacaa caaattttgt cattttgtat tccagtttat 300 gccttttctc atataaatca tcaaatcaat ttagctgcag ttagtggtga tgttatttat 360 cgacttttca ctgaaacaga aacagaatta tcaccaagtg ttataatccc tcaattaata 420 tcatggtgg atcctcgaaa tttagttaaa ttatcgaatg aggaaataaa tccaagcaaca 480 gttaaaaagat gcatcattaa caatttgaat aaatttcata taacggaaga attagaatca 600 ga

## 83/83

#### SEQUENCE LISTING

<110> Hoechst Marion Roussel

<120> ESSENTIAL GENES FROM C. ALBICANS AND A METHOD FOR
 SCREENING SUBSTANCES USING SAID GENES

<130> SEQID17

<140>

<141>

<160> 1

<170> PatentIn Ver. 2.1

<210> 1

<211> 231

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Homologous
 fragment to Sc YOR110

<400> 1

atatgtgttg atagttacac atgcagcaac gaaaattgct ttaggatcag ctttattaca 60 gttaaaatca gttactgatg ttatagatga taatcaaact gtgttacgtg ctggtgcatg 120 ttcattatcc aaattgtta gagatggcga agataaaacc aatcatacta ttcaatggaa 180 aattgtcatg aatggtaatt gtgaattctt gacacagggt gaagaaatga a 231