Géologie Générale

Pr. MORARECH Moad

Département de Géologie

Chapitre 6

LA GEOCHRONOLOGIE (2° partie)

Géochronologie absolue

Filière Sciences de la Vie et de la Terre (SVT, Semestre 1)

Module M3- 2020-2021

RAPPEL

A - Z= Nombre de neutrons

Certains éléments ont le le **même nombre de protons** et des nombre de **neutrons**différents = ISOTOPES se distinguant par le nombre de masse A

Certains de ces isotopes ont des noyaux instables et sont le siège de réactions nucléaires et vont se désintégrer pour donner d'autres éléments appelés éléments **fils stables**

C'EST LA RADIOACTIVITE

changements naturels ou artificiels du nombre de neutrons des noyaux instables.

Un isotope radioactif se désintègre en un élément radiogénique en émettant des radiations

EXEMPLE

Exemple de l'element Rubidium : 2 isotopes - $\frac{85}{37}$ Rb $\frac{87}{37}$ Rb

Elément	Z	A	Période (T)	Constante de désintegration (λ)
Rubidium (Rb)	37	85		
		87	4.88*10 ¹⁰ a	1.42*10-11 a ⁻¹

même numéro atomatique (Z) = nombre de protons (37)

masse atomique (A) (= protons + neutrons) différente car ils ont un nombre de eutrons différent (48 ou 50)

⁸⁷Rb = un isotope radioactif qui se désintègre en un isotope radiogénique, le ⁸⁷Sr

TYPES DE RADIATIONS

• Un isotope radioactif se désintègre en un élément radiogénique en émettant des radiations :

• Les particules $\alpha = \text{Noy. d'He}$

- Les particules β-et β+
 - Électron et positon (e- et e+)
- Le rayonnement gamma y

b - RADIOACTIVITÉ (β⁻)

La particule émise est un électron. Ce phénomène correspond à la transformation d'un neutron du noyau en proton avec émission d'un électron selon la réaction :

$$^{M}X_{z} ----> ^{M}X'_{z+1} + e^{-}(\beta^{-})$$

ex:
$$^{87}_{37}Rb -----> ^{87}_{38}Sr + e^{-}(\beta^{-})$$

$$(T = 4,8.10^{10} ans) = 48 GA$$

2) Principe de la désintégration radioactive: exemple du 87Rb/87Sr

strontium. A neutron ir a rubidium-87 atom ejects an electron, leaving an additional proton, which changes the atom to strontium-87.

transformation d'un neutron en proton par perte d'un e- (radioactivite beta)

87
Sr = isotope radiogénique (fils – F*)
Z = 38 (+1 protons)
A = 87 (+1 protons – 1 neutrons)

CHRONOLOGIE ABSOLUE

La chronologie absolue permet de mesurer des durées (âges) des phénomènes géologiques en s'appuyant sur la désintégration radioactive des isotopes.

Décroissance au cours du temps par désintégration

de la quantité de l'isotope radioactif (père) et croissance de la

quantité de l'isotope radiogénique (fils)

COUPLES D'ISOTOPES	PERIODES	AGES MESURES	MATERIAUX
²³⁸ U/ ²⁰⁶ Pb	4,47 GA	> 25 MA	zircon
²⁰⁷ Th / ²⁰⁸ Pb	14,47 GA	> 25 MA	roches plutoniques
²³⁵ U / ²⁰⁷ Pb	703 MA	> 25 MA	zircon
⁸⁷ Rb / ⁸⁷ Sr	48,8 GA	> 100 MA	roches magmatiques (la plus utilisé en géologie)
⁴⁰ K/ ⁴⁰ Ar	1,31 GA	1 à 300 MA	roches magmatiques (la plus utilisé en géologie)
¹⁴ C / ¹⁴ N	5 730 années	100 à 50 000 ans	Bois tourbe grains, os coquille, eau (Archéologie)

Principe de datation radiométrique

Un élément P radioactif se désintègre progressivement en élément F

- t=T, il ne reste plus que 8 isotopes noirs, 8 isotopes blancs ont été produits.
- t=2T, il ne reste plus que 4 noirs pour 12 blancs,
- t=3T, il ne reste plus que 2 noirs pour 14 blancs,
- t=4T, il ne reste plus que 1 noir pour 15 blancs

On est parti d'un système à 16 éléments isotopiques et il y en a toujours 16 dans le système : on dit que le système est clos ou fermé, il n'y a pas d'apport extérieur ou de pertes.

OBSREVATIONS IMPORTATANTES

- 1 Caractère aléatoire et imprévisible d'une désintégration radioactive : Pour un ensemble de Noyaux. Instables identiques on <u>peut prévoir</u> combien de Noy. Seront désintégrés mais non lesquels.
- 2- La désintégration de P suit une loi exponentielle :

dP/dt =
$$-\lambda$$
.P₀ P₀ est le nombre initial d'atomes pères à l'instant \mathbf{t}_0 λ = Probabilité de désintégration d'1 Ny./unité de temps (an) = Constante de désintégration

$$P = P_0 e^{-\lambda t}$$
 ou $P_0 = Pe^{-\lambda t}$ où P_0 est inconnu

Pour t = T,
$$P_0/2 = P_0 e^{-\lambda t}$$
 $\lambda = \frac{ln(2)}{T}$

Dans une roche on mesure le nombre d'éléments Pères (Pt) et Fils (radiogénique) F*:

$$F^* = P_0 - P_t$$

On remplace
$$F^* = P_0 - P_t$$

$$P_0/P = e^{\lambda t}$$

$$F^* = P_t e^{\lambda t} - P_t = P_t (e^{\lambda t} - 1)$$

Si F* est le produit de désintégration de P, $F_{mesuré} = F_0 + F^*$

Fo éléments fils initialement au départ indépendamment de la radioactivité :

$$F^* = P_t (e^{\lambda t} - 1)$$

$$F = F_0 + F^*$$

$$F_{\text{mesuré}} = F_0 + P_{\text{mesuré}} (e^{\lambda t} - 1)$$

$$t = \frac{1}{\lambda} \ln \left[1 + \frac{F - F0}{P} \right]$$

Mais on ne connaît pas F_0 ? Et on ne connaît pas P?

Pour résoudre le problème, il faut appliquer le principe de l'homogénéisation isotopique

2) Principe de la désintégration radioactive:

Loi de désintégration radioactive:

$$Pt = Po.e^{-\lambda t} \text{ ou } Po = Pt.e^{\lambda t}$$
 (1)

En réalité dans une roche on mesure le nb d'éléments Pères Pt et fils radiogénique F* avec:

$$F^* = Po - Pt \tag{2}$$

En remplaçant Po dans (2) par sa valeur dans l'équation (1):

$$F^* = Pt.e^{\lambda t} - Pt = Pt.(e^{\lambda t} - 1)$$
 (3)

Or le nb d'isotope fils total a un instant t (Ft) est égal a la somme des isotope fils initiaux (Fo) et des isotopes fils radiogéniques (F*)

$$Ft = Fo + F^* \tag{4}$$

On en déduit en combinant (3) et (4): $\mathbf{Ft} = \mathbf{Fo} + \mathbf{Pt.(e^{\lambda t}-1)}$

(7)
$$t = \frac{1}{\lambda} \ln \left[1 + \frac{F - FO}{P} \right]$$

- Or on ne connaît pas la quantité initiale de ces éléments dans les minéraux de la roche à la fermeture du système, que ce soit celle de P ou celle de F qui n'est pas nulle au départ.
- Dans ce cas on applique l'équation:

$$(F_{actuel} = F_{0 initial} + P_{actuel} (e^{\lambda t} - 1))$$

Méthode Rb (rubidium) / Sr (strontium)

- Lors formation d'une roche magmatique, du Rb et Sr sont intégrés dans les réseaux cristallins de minéraux (micas, feldpaths.)
- Chacun des éléments se présente sous plusieurs formes isotopiques ⁸⁵Rb et ⁸⁷Rb et ⁸⁸Sr ⁸⁷Sr ⁸⁶Sr ⁸⁴Sr
- Père Fils
- (T= 48,8 millards d'années et λ = 1,42 10⁻¹¹ an⁻¹)

$$F_{\text{(mesuré)}} = F_{0 \text{ initial}} + P_{\text{mesuré}}(e^{\lambda t} - 1)$$

$$^{87}Sr_{\text{(mesuré)}} = ^{87}Sr_{0 \text{ initial}} + ^{87}Rb_{\text{mesuré}}(e^{\lambda t} - 1)$$

Magm a d'origine

sachant que ⁸⁷Sr est stable et ⁸⁶Sr n'est ni radioactif ni radiogénique ne varie pas au cours du temps dans un système clos et ⁸⁶Sr = ⁸⁶S₀

Deux minéraux (ou deux roches) cristallisant à partir d'un même magma intégreront dans leur réseau cristallin du strontium avec un rapport isotopique 87Sr/86Sr identique à celui du magma d'origine.

On dit que ces échantillons sont *cogénétiques*.

-Mais des ⁸⁷Rb/⁸⁶Sr, et ⁸⁷Sr /⁸⁶Sr différents

Les quantités initiales de ⁸⁷Rb et ⁸⁷Sr varient d'un minéral à l'autre car au moment de la fermeture du système, chaque minéral n'emprisonne pas la même quantité de ces éléments.

La quantité de chacun de ces isotopes est donc mesurée en proportion par rapport à la quantité de l'isotope stable du strontium ⁸⁶**Sr**.

Considérons plusieurs échantillons cogenétiques de même âge, distincts des uns des autres par leur rapport ⁸⁷Rb/⁸⁶Sr, et ⁸⁷Sr /⁸⁶Sr évoluant en système clos ;

Et effectuons les mesures des rapports ⁸⁷Rb/⁸⁶Sr et ⁸⁷Sr /⁸⁶Sr

⁸⁷Sr (mesuré) =
87
Sr_{0 initial?} + 87 Rb mesuré ($e^{\lambda t}$ -1)

sachant que ⁸⁷Sr est stable et ⁸⁶Sr n'est ni radioactif ni radiogénique ne

varie pas au cours du temps dans un système clos et 86 Sr = 86 S₀

⁸⁷Sr_{initial} / ⁸⁶Sr_{initial} est constant dans tous les minéraux d'une même roche

$$\lambda = 5.81.10^{-11} \text{ an}^{-1}$$

$$t = 1/\lambda \log (1 + (F/P)) \rightarrow t = 1/\lambda \log (1 + (^{40}Ar)^{40}K)$$

⁴⁰Ar (F0) formé est éliminé dans le milieu avant la fermeture du système (dégazage du magma au cours de sa progression vers la surface, par exemple)..

(pas d'élément fils au départ)

L'âge de la roche est donc l'âge de la fin de son refroidissement

En conséquence, dans un magma en fusion, l'argon provenant de la désintégration du ⁴⁰K peut remonter librement vers la surface de cette masse liquide et s'en échapper.

Dans le magma liquide et chaud, le potassium radioactif se désintègre continuellement en argon qui s'échappe librement vers les couches supérieures.

Méthode du ¹⁴C

C₁₂; C₁₃; C₁₄ isotopes

Formation du Carbone 14 cosmogénique

Le ¹⁴C produit dans la haute atmosphère est rapidement oxydé en ¹⁴CO₂ qui est diffusé dans la « basse atmosphère »

Assimilé par les êtres vivants : Plantes ;ect (photosynthese et respiration)

Se renouvelle en permanence

Le ¹⁴C de ces tissus sont en équilibre avec le ¹⁴C de l 'atmosphère

Cela implique que l'activité du carbone of présent dans les organismes vivants actuellement est identique à celle des mêmes organismes ayant vécu dans le passé.

Rapport ¹⁴C / ¹²C constant chez tous les êtres vivants

Le ¹⁴C, radioactif
$$^{14}C_6$$
 -----> $^{14}N_7$ + β λ = 1,21.10⁻⁴.an⁻¹ (T = 5730 ans)

A la mort l'élément-fils ¹⁴N s'échappe

$$\mathbf{P} = \mathbf{P_0} \mathbf{e}^{-\lambda t} \qquad \Rightarrow \qquad \mathbf{^{14}C} = \mathbf{^{14}C_0 \cdot e^{-\lambda t}} \qquad \left(\frac{\mathbf{^{14}C}}{12_C}\right)_t = \left(\frac{\mathbf{^{14}C}}{12_C}\right)_0 e^{-\lambda_{14}Ct}$$

Production de ¹⁴C étant supposée régulière

rapport ¹⁴C / ¹²C constant chez tous les êtres vivants

A la mort d'un organisme ¹⁴C se désintègre, t=0

Cette fois ¹⁴C n'est pas régénéré, et le ¹⁴C résiduel permet d'estimer son âge

le rapport ¹⁴C / ¹²C (initial) au moment de la fermeture du système était la même que dans un organisme vivant actuel

donc rapport ¹⁴C _{initial} / ¹²C _{initial} est connu (même qu'aujourd'hui)

¹⁴C_{actuel} / ¹²C_{actuel} mesuré donne la valeur du rapport ¹⁴C _{initial} / ¹⁴C _{actuel}

$$P_0/P = e^{\lambda t}$$

$$\lambda = \log 2/T$$

L'âge de l'échantillon est t = Logn (14C initial / 14C actuel) x T / Logn2

cette méthode n'est applicable qu'à la datation de matériaux très récents, ne dépassant pas 50 000 ans.

DATER UN ECHANTILLON PAR LE RADIOCARBONE CONSISTERA DONC A MESURER SA TENEUR EN ¹⁴C ACTUELLE ET LA COMPARER A CELLE QU'IL AVAIT LORS DE SA FORMATION

					I	
échelle stratigraphique internationale des	EON	ERE	PERIODE	EPOQUE	* Ma	durée en Ma
temps géologiques		CENOZOIQUE	QUATERNAIRE	Holocène Pléistocène	* - 0,01	10 000 ans à nos jours
			NEOGENI	Pliocène	* - 2	11
			NEOGENI	Miocène	* - 5	19
1°) - Les Eons (= Eonothèmes)		Ë		Oligocène	* - 24	13
1 , Les Lons (Londenemes)			PALEOGENI		* - 37	21
Internalle de terror explosione la plus				Paléocène	* - 58	8
Intervalle de temps géologique le plus			CRETACE	Supérieur Inférieur	* - 66	78
grand de plusieurs centaines Ma		3		Malm	- 00	
State de prosteure contamies ma		Ö	JURASSIQUE	Dogger		64
		MESOZOIQUE		Lias	* - 144	
		ME	TRIAS	Keuper Muschelkalk		37
	<u> ۳</u>		INIAS	Buntsandstein	*- 208	37
	ğ			Supérieur		
- Le Hadéen couvre le début de l'histoire de la Terre (-4600 Ma à -3900 Ma)	020		PERMIEN	Moyen	*	41
	l RO			Inférieur Sielésien	* - 245	
de la lerre (-4000 Ivia a -3300 Ivia)	PHANEROZOIQUE		CARBONIFERE	Dinantien	* - 360	74
	H.			supérieur		
			DEVONIEN	moyen	* 400	48
		ш		<u>inférieur</u> Pridolien	* - 408	
		PALEOZOIQUE	OH LIBIEN	Ludlowien		20
- L'Archéen (3800 Ma à 2500 Ma) :		1020	SILURIEN	Wenlockien		30
anciennes roches à organismes		l EG		Llandovérien	* - 438	
9		A _A		Ashgillien Caradocien		
unicellulaires			ORDOVICIEN	Llandeilien		67
			ORDOVICIEN	Llanvirnien		67
- Le Protérozoïque (2500 Ma à 570 Ma)				Arénigien	*- 505	
				<u>Trémadocien</u> supérieur	1- 303	
organismes multicellulaires primitifs			CAMBRIEN	moyen		65
				inférieur	- 570	
	PROTEROZOIQUE					
	- NOTENOZOIQOZ	E S			*- 2500	3 230
- Le Phanérozoïque	ARCHEEN	PRECAMBRIEN				
· · · · · · · · · · · · · · · · · · ·		Š			*- 3800	
(570 Ma à aujourd'hui)	HADEEN	PRE				
					* - 4600	800

2) - Les Eres	(= Erathèmes)

limites marquées de grands par bouleversements biologiques (grandes paléogéographiques extinctions), (orogenèse)

Ma à - 245 Ma)

Paléozoïque (vie ancienne - 570

- Mésozoïque (vie intermédiaire -245 Ma à - 66,4 Ma)
- Cénozoïque (vie récente 66,4 Ma à aujourd'hui)

EON
PHANEROZOIQUE
PROTEROZOIQUE ARCHEEN
HADEEN

QUATERNAIRE	Holocène
	Pléistocène
NEOGENE	Pliocène
NEOGENE	Miocène
	Oligocène
PALEOGENE	Eocène
	Paléocène
ODET 4 OF	Supérieur
CRETACE	Inférieur
	Malm
JURASSIQUE	Dogger
	Lias
	Keuper
TRIAS	Muschelkalk
	Buntsandstein Supérieur
DEDMIEN	Moyen
PERMIEN	Inférieur
	Sielésien
CARBONIFERE	Dinantien
CARBONIFERE	supérieur
DEVONIEN	moyen
	inférieur
	Pridolien
OU LIBIEN	Ludlowien
SILURIEN	Wenlockien
	Llandovérien
	Ashgillien
	Caradocien
ORDOVICIEN	Llandeilien
ORDOVICIEN	Llanvirnien
	Arénigien
	Trémadocien
	supérieur
CAMBRIEN	moyen
	inférieur

PERIODE

ERE

CENOZOIGUE

MESOZOIQUE

EPOQUE

* Ma

* - 0,01 * - 2

* - 5

* - 24

* - 37

* - 58

* - 66

* - 144

durée en Ma 10 000 ans

à nos jours

11

19

13

21

8

78

64

37

41

74

48

30

800

	Buntsandstein	*- 208
	Supérieur	
PERMIEN	Moyen	
PERMIEN CARBONIFERE DEVONIEN SILURIEN ORDOVICIEN CAMBRIEN	Inférieur	* - 245
CADRONIEEDE	Sielésien	
OARBONII ERE	Dinantien	* - 360
	supérieur	
DEVONIEN	moyen	
	inférieur	* - 408
	Pridolien	
SILLIRIEN	Ludlowien	
OILOI(ILIV	Wenlockien	
	Llandovérien	* - 438
	Ashgillien	
	Caradocien	
OPDOVICIEN	Llandeilien	
OKDOVICILIA	Llanvirnien	
	Arénigien	
	Trémadocien	*- 505
	supérieur	
CAMBRIEN	moyen	
	inférieur	- 570
		* 0500
		*- 2500
		*- 3800
		* - 4600

	67
- 505	
- 570	65
- 2500	3 230
- 3800	

3) - Les périodes (=Systèmes)		EON	ERE	PERIODE	EPOQUE	* Ma	durée en Ma
regroupent des étages sur des référ	rences		Æ	QUATERNAIRE	Holocène Pléistocène	* - 0,01	10 000 ans à nos jours
lithologiques (Carbonifère, Cré	étacé),		CENOZOIQUE	NEOGENE	Pliocène	* - 2	11
paléontologiques (Nummulitique	_		Ö		Miocène	* - 5	19
	_		뜅		Oligocène	* - 24	13
Paléogène) ou autres.				PALEOGENE		* - 37	21
					Paléocène Supérieur	* - 58	8
			ш	CRETACE	Inférieur	* - 66	78
			og l		Malm		
			MESOZOIQUE	JURASSIQUE	Dogger		64
4) - Les époques (=Séries)			SO		Lias	* - 144	
4) - Les epoques (-Series)	ш	Щ	M	TRIAS	Keuper Muschelkalk		37
		l g	_	IRIAS	Buntsandstein	*- 208	
basée sur les associations de fo	occilos	l ğ		Supérieur			
basee sui les associations de id	J 3311E3	07		PERMIEN	Moyen		41
stratigraphiques spécifiques		E E			Inférieur	* - 245	
		PHANEROZOIQUE		CARBONIFERE	Sielésien Dinantien	* - 360	74
		ਮੁੱ		DEVONIEN	supérieur	- 300	/-
					moven		48
			ш		inférieur	* - 408	
durás movemos est d'anviron 15 Ma	lcouf.		g	SILURIEN	Pridolien Ludlowien		30
durée moyenne est d'environ 15 Ma	(Saul		PALEOZOIQUE		Wenlockien		
pour le Quaternaire).			잂		Llandovérien	* - 438	
pour le Qualeurian sy			٦		Ashgillien		
			_		Caradocien		
				ORDOVICIEN	Llandeilien Llanvirnien		67
adjectif inf., moyen, sup. (Crétacé	é inf.,				Arénigien		
	_				Trémadocien	*- 505	
sup.) ou encore «-cène» (Ec	ocene,				supérieur		
Oligocène).				CAMBRIEN	moyen		65
ongoethe miji					inférieur	- 570	
		PROTEROZOIQUE	Z				
			Z Z			*- 2500	3 230
		ARCHEEN	PRECAMBRIEN			* 2000	
			, Ž			*- 3800	
		HADEEN	<u>a</u>				
						* - 4600	800

	EON	ERE	PERIODE	EPOQUE
			QUATERNAIRE	Holocène
5) - Les étages (=Ages)		当	QOATERNAIRE	Pléistocène
5) 100 cm8co (1.800)		NEOGEN		Pliocène
			NEOGENE	Miocène
		N N	PALEOGENE	Oligocène
stratotype (formation géologique		O		
rófóroncóa mandialament qui a caractóricó				Paléocène
référencée mondialement qui a caractérisé			CRETACE	Supérieur
cette période)		Щ	CRETACE	Inférieur
cette periodej		MESOZOIQUE		Malm
		Į Ž	JURASSIQUE	Dogger
		300		Lias
	ш	Ű	TRIAS	Keuper
		_		Muschelkalk
				Buntsandstein
	ZC			Supérieur
	l		PERMIEN	Moyen
	ш			Inférieur Sielésien
	CARBONIFE		CARBONIFERE	Dinantien
	PHANEROZOIQUE			
	<u> </u>		DEVONIEN	<u>supérieur</u>
			DEVOIVIEN	moyen inférieur
		PALEOZOIQUE		Pridolien
		g		Ludlowien
) ZC	SILURIEN	Wenlockien
		Щ		Llandovérien
		A		Ashgillien
				Caradocien
			ORDOVICIEN	Llandeilien
			ORDOVICIEN	Llanvirnien
				Arénigien
				Trémadocien
				supérieur
			CAMBRIEN	moyen
				inférieur
	PROTEROZOIQUE	N III		
	ARCHEEN	PRECAMBRIEN		
	HADEEN	PRE		

* Ma

* - 0,01

* - 2

* - 5

* - 24

* - 37

* - 58

* - 66

* - 144

*- 208

* - 245

* - 360

* - 408

* - 438

*- 505

- 570

*- 2500

*- 3800

* - 4600

durée en Ma 10 000 ans

à nos jours

2

11

19

13

21

8

78

64

37

41

74

48

30

67

65

3 230

800

EON	ERE	PERIODE	EPOQUE	* Ma	durée en Ma
		QUATERNAIRE		* 0.04	10 000 ans à nos jours
QUATERNAIRE Holocène Pléistocène NEOGENI Miocène Oligocène Paléocène Paléocè	* - 0,01	2			
	00	NEOGENI	Pliocène	* - 2	11
	ŽO		Miocène	* - 5	19
	EN S			* - 24	13
		PALEOGEN	Eocène	* - 37	21
			Paléocène	* - 58	8
		CRETACE	•		78
	ш	OKETAGE		* - 66	70
	8				
	Į.	JURASSIQUE			64
	203			* - 144	
	⊠	TDIAG			
ш	_	IRIAS		* 200	37
ກຸ				*- 208	
)io		DEDMIEN	•		
ZC		PERMIEN		* - 245	41
ER				- 243	
Z		CARBONIFERE		* - 360	74
ž		CARBONIFERE Sielésie Dinanti supérie			
<u> </u>				1	48
			-	* - 408	
	Щ		,		
	ğ	SILURIEN			30
)Z0	OILOITILIT			
	l E			* - 438	
	A				
		ORDOVICIEN		_	67
				*- 505	
				- 303	
		CAMBRIEN		1	65
	CAMBRIE			- 570	
			Пуспса		
PROTEROZOIQUE	2				
	E			*- 2500	3 230
ARCHEEN	₩			*- 3800	
	S S			- 3000	
HADEEN	PRI			* - 4600	800