Color Constancy and Understanding

• • Overview

- Color Basics
- Color Constancy
 - Gamut mapping
 - More methods
- Deeper into the Gamut
 - Matte & specular reflectance
 - Color image understanding

• • Overview

- Color Basics
- Color Constancy
 - Gamut mapping
 - More methods
- Deeper into the Gamut
 - Matte & specular reflectance
 - Color image understanding

• • What is Color?

Energy distribution in the visible spectrum

~400nm - ~700nm

• • Do objects have color?

- NO objects have pigments
- Absorb all frequencies except those which we see
- Object color depends on the illumination

• • Brightness perception

• • Color perception

Cells in the retina combine the colors of nearby areas

Color is a perceptual property

Why is Color Important?

- In animal vision
 - food vs. nonfood
 - identify predators and prey
 - check health, fitness, etc. of other ir
- In computer vision
 - Recognition [Schiele96, Swain91]
 - Segmentation [Klinker90, Comaniciu97]

• • How do we sense color?

Rods

- Very sensitive to light
- But don't detect color

Cones

- Less sensitive
- Color sensitive

Colors seemsto fade in low light

What Rods and Cones Detect

Responses of the three types of cones largely overlap

• • Eye / Sensor

Eye

Sensor

Finite dimensional color representation

- Color can have infinite number of frequencies.
- Color is measured by projecting on a finite number of sensor response functions.

• • Reflectance Model

Multiplicative model: (What the camera mesures)

• • Image formation

Illumination

Image

color

object reflectance

Sensor respons e

• • Overview

- o Color Basics
- Color constancy
 - Gamut mapping
 - More methods
- Deeper into the Gamut
 - Matte & specular reflectance
 - Color image understanding

• • Color Constancy

The goal: Evaluate the surface color as if it was illuminated with white light (canonical)

Color under different illuminations

Color constancy by Gray World

Color constancy by Gamut mapping

D. A. Forsyth. A Novel Algorithm for Color Constancy. International Journal of Computer Vision, 1990.

• • Assumptions: summary

- Planar frontal scene (Mondrian world)
- Single constant illumination
- Lambertian reflectance
- Linear camera

Gamut
(central notion in the color constancy algorithm)

 Image: a small subset object colors under a given light.

 Gamut : All possible object colors imaged under a given light.

• • Gamut of outdoor images

All possible !? (Gamut estimation)

- The Gamut is convex.
 - Reflectance functions: $f(\lambda)$ such that $0 \le f(\lambda) \le 1$
 - A convex combination of reflectance functions is a valid reflection function.

Approximate Gamut by a convex hull:

Color Constancy via Gamut mapping

 Training – Compute the Gamut of all possible surfaces under canonical light.

Color Constancy via Gamut mapping

 The Gamut under unknown illumination maps to a inside of the canonical Gamut.

Canonical illumination

Color Constancy via Gamut mapping

• • Color constancy: theory

- 1. Mapping:
 - Linearity
 - Model
- 2. Constraints on:
 - Sensors
 - Illumination

What type of mapping to construct?

We wish to find a mapping such that

$$A(\vec{E}) = \vec{E}^c$$

In the paper:

$$\Psi^{-1} = A$$

What type of mapping to construct? (Linearity)

 The response of one sensor k in one pixel under known canonical light (white)

Canonical Sensor response object reflectance
$$E_k^c = \int e^c(\lambda) \rho_k(\lambda) s(\lambda) d\lambda$$

$$k = R, G, B_{\lambda}$$

$$E_k^c = <\Phi_k^c(\lambda), s(\lambda)> \qquad \Phi_k^c(\lambda) = e^c(\lambda)\rho_k(\lambda)$$
 (inner product)

What type of mapping to construct? (Linearity)

Requires: $span\{\Phi_1, \Phi_2, \Phi_3\} = span\{\Phi_1^c, \Phi_2^c, \Phi_3^c\}$

• • • Motivation

red-blue light

white light

$$span \ \{\Phi_R, \Phi_G, \Phi_B\} = span \ \{\Phi_R, \Phi_B\} \neq span \ \{\Phi_R^c, \Phi_G^c, \Phi_B^c\}$$

What type of mapping to construct? (Linearity)

o Then we can write them as a linear combination:

$$\Phi_k(\lambda) = \sum_{j=1}^3 \alpha_{kj} \Phi_j^c \longrightarrow E_k = \sum_{j=1}^3 \alpha_{kj} E_j^c$$

What type of mapping to construct? (Linearity)

Linear Transformation

What about Constraints?

Mapping model

Recall:
$$\vec{\Phi}(\lambda) = Sensor * illumination$$

$$\vec{\Phi}^{c}(\lambda) = A\vec{\Phi}(\lambda) \text{ (Span constraint)}$$

$$e^{c}(\lambda)\vec{\rho}(\lambda) = A\vec{\rho}(\lambda)e(\lambda)$$

$$\frac{e^{c}(\lambda)}{e(\lambda)}\vec{\rho}(\lambda) = A\vec{\rho}(\lambda)$$

EigenValue of A

EigenVector of A

Mapping model

$$\frac{e^{c}(\lambda)}{e(\lambda)}\vec{\rho}(\lambda) = A\vec{\rho}(\lambda)$$

EigenVector of A

For each frequency the response originated from one sensor.

$$\vec{\rho}(\lambda_0) \in \left\{ \begin{bmatrix} 0 \\ 0 \\ b \end{bmatrix}, \begin{bmatrix} 0 \\ g \\ 0 \end{bmatrix}, \begin{bmatrix} r \\ 0 \\ 0 \end{bmatrix} \right\}$$

The sensor responses are the eigenvectors of a diagonal matrix

• • The resulting mapping

A is a diagonal mapping

• • C-rule algorithm: outline

- Training: compute canonical gamut
- o Given a new image:
 - 1. Find mappings which map each pixel to the inside of the canonical gamut.
 - 2. Choose one such mapping.
 - 3. Compute new RGB values.

• • C-rule algorithm

 Training – Compute the Gamut of all possible surfaces under canonical light.

• • C-rule algorithm

$$\begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix} \begin{bmatrix} r \\ g \end{bmatrix} = \begin{bmatrix} k_1 r \\ k_2 g \end{bmatrix}$$

$$g = \frac{G}{B}$$

$$r = \frac{R}{B}$$

D. A. Forsyth. A Novel Algorithm for Color Constancy. International Journal of Computer Vision, 1990.

Finlayson, G. Color in Perspective, PAMI Oct 1996. Vol 18 number 10, p1034-1038

C-rule algorithm

$$\begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix} \begin{bmatrix} r \\ g \end{bmatrix} = \begin{bmatrix} k_1 r \\ k_2 g \end{bmatrix}$$

Heuristics: Select the matrix with maximum trace i.e. max(k1+k2)

Results (Gamut Mapping)

D. A. Forsyth. A Novel Algorithm for Color Constancy. International Journal of Computer Vision, 1990.

Algorithms for Color Constancy

General framework and some comparison

Color Constancy Algorithms: Common Framework

- Most color constancy algorithms find diagonal mapping
- The difference is how to choose the coefficients

Color Constancy Algorithms: Selective list

All these methods find *diagonal transform* (gain factor for each color channel)

- Max-RGB [Land 1977]
 Coefficients are 1 / maximal value of each channel
- Gray world [Buchsbaum 1980]
 Coefficients are 1 / average value of each channel
- Color by Correlation [Finlayson et al. 2001]
 Build database of color distributions under different illuminants.
 Choose illuminant with maximum likelihood.
 Coefficients are 1 / illuminant components.
- Gamut Mapping [Forsyth 1990, Barnard 2000, Finlayson&Xu 2003] (seen earlier; several modifications)
- S. D. Hordley and G. D. Finlayson, "Reevaluation of color constancy algorithm performance," JOSA (2006)

 K. Barnard et al. "A Comparison of Computational Color Constancy Algorithms"; Part One&Two, IEEE Transactions in Image Processing, 2002

Color Constancy Algorithms: Comparison (real images)

- S. D. Hordley and G. D. Finlayson, "Reevaluation of color constancy algorithm performance," JOSA (2006)
- K. Barnard et al. "A Comparison of Computational Color Constancy Algorithms"; Part One&Two, IEEE Transactions in Image Processing, 2002

Diagonality Assumption

Requires *narrow-band disjoint* sensors

- Use hardware that gives disjoint sensors
- Use software

- "Sensor sharpening": linear combinations of sensors which are as disjoint as possible
- Implemented as post-processing: directly transform RGB responses

- G. D. Finlayson, M. S. Drew, and B. V. Funt, "Spectral sharpening: sensor transformations for improved color constancy," JOSA (1994)
- K. Barnard, F. Ciurea, and B. Funt, "Sensor sharpening for computational colour constancy," JOSA (2001).

• • Overview

- Color Basics
- Color constancy
 - Gamut mapping
 - More methods
- Deeper into the Gamut
 - Matte & specular reflectance in color space
 - Object segmentation and photometric analysis
 - Color constancy from specularities

• • Goal: detect objects in color space

 Detect / segment objects using their representation in the color space

G. J. Klinker, S. A. Shafer and T. Kanade. A Physical Approach to Color Image Understanding. International Journal of Computer Vision, 1990.

Physical model of image colors: Main variables

illuminant color and position

• • Two reflectance components

o total = matte + specular

• • Matte reflectance

Physical model:"body" reflectance

Separation of brightness and color:

L (wavelength, geometry) = c (wavelength) * m (geometry)

reflected light

color

brightness

• • Matte reflectance

- Dependence of brightness on geometry:
 - Diffuse reflectance: the same amount goes in each direction (intuitively: chaotic bouncing)

Matte reflectance

- Dependence of brightness on geometry:
 - Diffuse reflectance: the same amount goes in each direction
 - Amount of incoming light depends on the falling angle (cosine law [J.H. Lambert, 1760])

• • • Matte object in RGB space

Linear cluster in color space

• • Specular reflectance

Physical model: "surface" reflectance

Separation of brightness and color:

L (wavelength, geometry) = c (wavelength) * m (geometry)

reflected light

color

brightness

Light is reflected (almost) as is:

illuminant color = reflected color

• • Specular reflectance

- Dependence of brightness on geometry:
 - Reflect light in one direction mostly

• • Specular object in RGB space

Linear cluster in the direction of the illuminant color

Combined reflectance

• total = body (matte) + surface (specular)

Combined reflectance in RGB space

• • Skewed-T in Color Space

Specular highlights are very *localized* two linear clusters and *not* a whole plane

 Usually T-junction is on the bright half of the matte linear cluster

Color Image Understanding Algorithm

G. J. Klinker, S. A. Shafer and T. Kanade. *A Physical Approach to Color Image Understanding*. ICJV, 1990.

- Part I: Spatial segmentation
 - Segment matte regions and specular regions (linear clusters in the color space)
 - Group regions belonging to the same object ("skewed T" clusters)
- Part II: Reflectance analysis
 - Decompose object pixels into matte + specular

- valuable for: shape from shading, stereo, color constancy
- Estimate illuminant color
 - from specular component

Part I: Clusters in color space

- Several T-clusters
- Specular lines are parallel

Region grouping

- Group together matte and specular image parts of the same object
- Do not group regions from different objects

Algorithm, Part I: Image Segmentation

Grow regions in image domain so that to form clusters in color domain.

input image

"linear" color clusters

"skewed-T" color clusters

Part II: Decompose into matte + specular

Coordinate transform in color space

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} C_{matte} | C_{spec} | C_{matte} \times C_{spec} \end{bmatrix} \begin{bmatrix} matte \\ specular \\ noise \end{bmatrix}$$

$$\begin{bmatrix} matte \\ specular \\ noise \end{bmatrix} = \begin{bmatrix} C_{matte} | C_{spec} | C_{matte} \times C_{spec} \end{bmatrix}^{-1} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Decompose into matte + specular (2)

Decompose into matte + specular (3)

Algorithm, Part II: Reflectance Decomposition

(Separately for each segment)

Algorithm, Part II: Illuminant color estimation

- From specular components
- Note: can use for color constancy!
 - Diagonal transform = 1 ./ illuminant color

Algorithm Results: Illumination dependence

G. J. Klinker, S. A. Shafer and T. Kanade. A Physical Approach to Color Image Understanding. IJCV, 1990.

• • Summary

- Geometric structures in color space
 - Glossy uniformly colored convex objects are "skewed T"
 - The bright (highlight) part is in the direction of the illumination color
- This can be used to:
 - segment objects
 - separate reflectance components
 - implement color constancy

• • Lecture Summary

- Ocolor:
 - spectral distribution of energy
 - ...projected on a few sensors
- o Color Constancy:
 - done by linear transform of sensor responses (color values)
 - often diagonal (or can be made such)
- Color Constancy by Gamut Mapping:
 - find possible mappings by intersecting convex hulls
 - choose one of them
- Objects in Color Space
 - linear clusters or "skewed T" (specularities)
 - can segment objects and decompose reflectance
 - color constancy from specularities

• • The End

Illumination constraints

Wavelength (nm)

spectral support

• • • Illumination constraints

Illumination power spectrum should be constant over each sensor's support

 $(e^c(\lambda) = 1)$

• • • Illumination constraints

More narrow band sensors – less illumination constraints

