Contrôle d'analyse II N°1

Durée : 1 heure 30 minutes Barème sur 15 points

NOM:	

Groupe

PRENOM:

1. On considère deux roues dentées de rayon r_1 et r_2 $(r_1 < r_2)$ qui s'entraînent mutuellement par contact.

Au temps $t_0 = 0$, on repère la position supérieure de chaque roue par deux points P_1 et P_2 .

On fait tourner la petite roue à la vitesse constante $\omega = 5$ tours/minute.

Au temps t = 36 secondes, on observe que les deux points P_1 et P_2 se retrouvent pour la première fois ensemble dans la position initiale.

Quel est alors le nombre de tours effectués par la grande roue sachant que le rapport des rayons vaut $\frac{r_2}{r_1} = \frac{3}{2}$? Justifier rigoureusement votre réponse.

2 pts

2. On considère l'angle α défini par

$$\cot g(\alpha) = +\frac{3}{4}$$
 et $\alpha \in \left[-\frac{11\pi}{2}, -\frac{9\pi}{2}\right]$.

Déterminer, sans machine à calculer, la valeur exacte de $\sin(\frac{5\alpha}{2})$.

5 pts

3. Résoudre l'équation suivante sur l'intervalle donné.

$$\cos(3x - \frac{\pi}{3}) = \sin(x - \frac{\pi}{6}), \quad x \in [\pi, 2\pi].$$
 4 pts

4. Résoudre l'inéquation suivante sur l'intervalle donné.

$$\cos(2x) + 4 + 4\sqrt{2}\sin(x) \ge 0$$
, $x \in [-3\pi, -\frac{7\pi}{4}]$. 4 pts

Quelques formules de trigonométrie

Formules d'addition:

$$\sin(x+y) = \sin x \cos y + \cos x \sin y \qquad \cos(x+y) = \cos x \cos y - \sin x \sin y$$
$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x + \tan y}$$

Formules de bissection:

$$\sin^2(\frac{x}{2}) = \frac{1 - \cos x}{2} \qquad \cos^2(\frac{x}{2}) = \frac{1 + \cos x}{2} \qquad \operatorname{tg}^2(\frac{x}{2}) = \frac{1 - \cos x}{1 + \cos x}$$

Formules de transformation produit-somme :

$$\cos(x) \cdot \cos(y) = \frac{1}{2} \left[\cos(x+y) + \cos(x-y) \right]$$
$$\sin(x) \cdot \sin(y) = -\frac{1}{2} \left[\cos(x+y) - \cos(x-y) \right]$$
$$\sin(x) \cdot \cos(y) = \frac{1}{2} \left[\sin(x+y) + \sin(x-y) \right]$$

Formules de transformation somme-produit :

$$\cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) \qquad \cos x - \cos y = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$
$$\sin x + \sin y = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) \qquad \sin x - \sin y = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$