FCC Part 15C Measurement and Test Report

Report No.: BSL180610592201RF

For

Shenzhen Share Vision Co., Ltd

FCC ID: 2AKFO-IP007

FCC Rule(s): FCC Part 15C

Product Description: Low power Wireless Battery Camera /Doorbell

Tested Model: XF-IP007

Report No.: <u>BSL180610592201RF</u>

Tested Date: <u>July 2~4, 2018</u>

Issued Date: July 4,2018

Tested By: <u>Lisa. Li / Engineer</u>

Reviewed By: <u>arno. Liu / EMC Manager</u>

Approved & Authorized By: Mike mo / PSQ Manager

Prepared By:

BSL Testing Co.,LTD.

NO. 24, ZH Park, Nantou, Shenzhen, 518000 China

Tel: 86- 755-26508703 Fax: 86- 755-26508703

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.3 TEST METHODOLOGY	
1.4 TEST FACILITY	
1.5 EUT SETUP AND TEST MODE	
1.7 TEST EQUIPMENT LIST AND DETAILS.	
2. SUMMARY OF TEST RESULTS	
3. RF EXPOSURE	
3.1 STANDARD APPLICABLE	
3.2 TEST RESULT.	
4. ANTENNA REQUIREMENT	9
4.1 Standard Applicable	9
4.2 EVALUATION INFORMATION	9
5. POWER SPECTRAL DENSITY	
5.1 STANDARD APPLICABLE	
5.2 TEST PROCEDURE	
5.3 Environmental Conditions	10
6. 6DB BANDWIDTH	
6.1 STANDARD APPLICABLE	
6.2 TEST PROCEDURE	18
6.3 ENVIRONMENTAL CONDITIONS	
6.4 SUMMARY OF TEST RESULTS/PLOTS	
7. RF OUTPUT POWER	
7.1 STANDARD APPLICABLE	
7.2 Test Procedure	
7.4 SUMMARY OF TEST RESULTS/PLOTS.	
8. FIELD STRENGTH OF SPURIOUS EMISSIONS	27
8.1 Standard Applicable	27
8.2 Test Procedure	
8.3 CORRECTED AMPLITUDE & MARGIN CALCULATION	
8.4 ENVIRONMENTAL CONDITIONS	
9. OUT OF BAND EMISSIONS	
9.1 STANDARD APPLICABLE	
9.2 TEST PROCEDURE	
9.3 ENVIRONMENTAL CONDITIONS	
9.4 SUMMARY OF TEST RESULTS/PLOTS	
10. CONDUCTED EMISSIONS	
10.1 TEST PROCEDURE	
10.2 BASIC TEST SETUP BLOCK DIAGRAM	
10.4 Test Receiver Setup.	
10.5 SUMMARY OF TEST RESULTS/PLOTS	45
10.6 CONDUCTED EMISSIONS TEST DATA	45

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: Shenzhen Share Vision Co., Ltd

Address of applicant: 4F, No.8 Bldg, Fluent Industrial Park, Huaxing Rd.,

Longhua Dist., Shenzhen, Guangdong, China

Report No.: BSL180610592201RF

Manufacturer: Shenzhen Share Vision Co., Ltd

Address of manufacturer: 4F, No.8 Bldg, Fluent Industrial Park, Huaxing Rd.,

Longhua Dist., Shenzhen, Guangdong, China

General Description of EUT	
Product Name:	Low power Wireless Battery Camera /Doorbell
Trade Name:	N/A
	XF-IP007,XF-IP007C,XF-IP007D,XF-IP007E,XF-IP0
	07F,XF-IP007G,XF-IP007H,XF-IP007I,XF-IP007J,X
	F-IP007K,XF-IP007L,XF-IP007M,XF-IP007P,XF-IP0
Model No.:	7Q,XF-IP07R,XF-IP07S,XF-DC01,XF-DC02,XF-DC
Wodel No	03,XF-DC04,XF-DC05,XF-DC06,XF-DC07,XF-DC08
	,XF-DC09,XF-DC10,XF-DC11,XF-DC12,XF-DC13,X
	F-DC14,XF-DC14,XF-DC15,XF-DC16,XF-DC17,XF-
	DC18,XF-DC19,XF-DC20
Rated Voltage:	DC 3.7V from battery
Adapter information:	N/A

Note: The test data is gathered from a production sample provided by the manufacturer. The appearance of others models listed in the report is different from main-test model XF-IP007, but the circuit and the electronic construction do not change, declared by the manufacturer.

Technical Characteristics of EUT	
Support Standards:	802.11b, 802.11g, 802.11n
Fraguency Pango:	2412-2462MHz for 802.11b/g/n(HT20)
Frequency Range:	2422-2452MHz for 802.11n(HT40)
RF Output Power:	8.80dBm (Conducted)
Type of Modulation:	CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM
Data Rate:	1-11Mbps, 6-54Mbps, up to 150Mbps
Quantity of Channels:	11 for 802.11b/g/n(HT20); 7 for 802.11n(HT40)
Channel Separation:	5MHz
Type of Antenna:	Internal Antenna
Antenna Gain:	0dBi
Lowest Internal Frequency	32.768KHz

1.2 Test Standards

The following report is prepared on behalf of the Shenzhen Share Vision Co., Ltd in accordance with FCC Part 15,

Report No.: BSL180610592201RF

Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 of the Federal Communication Commissions

rules.

The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207,

15.209 and 15.247 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which

result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard

for Testing Unlicensed Wireless Devices, and ANSI C63.4-2014, American National Standard for Methods of

Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. The measurement guide KDB 558074 D01 v04 for digital transmission systems shall be

performed also.

1.4 Test Facility

BSL Testing Co.,LTD.

NO. 24, ZH Park, Nantou, Shenzhen, 518000 China

Designation Number: CN1217

Test Firm Registration Number: 866035

Tel: 86-755-26508703

Fax: 86-755-26508703

Report No.: BSL180610592201RF Page 4 of 47 FCC Part 15.247

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Report No.: BSL180610592201RF

Test Mode List		
Test Mode	Description	Remark
TM1	802.11b	2412MHz, 2437MHz, 2462MHz
TM2	802.11g	2412MHz, 2437MHz, 2462MHz
TM3	802.11n-HT20	2412MHz, 2437MHz, 2462MHz
TM4	802.11n-HT40	2422MHz, 2437MHz, 2452MHz

Note: All test modes (different data rate and different modulation) are performed, but only the worst case is recorded in this report.

Accessories Equipment List and Details			
Description	Manufacturer	Model No.	Serial Number
Accessories Cable List	t and Details		
Cable Description	Length (m)	Shielded/Unshielded	With Core/Without Core
EUT Cable List and D	etails		
Cable Description	Length (m)	Shielded/Unshielded	With Core/Without Core

Auxiliary Equipment List and Details			
Description	Manufacturer	Model	Serial Number
Notebook	Lenovo	E23	EB12648265
USB	ESR	Shielded	Without Core

1.6 Measurement Uncertainty

Measurement uncertainty		
Parameter	Conditions	Uncertainty
RF Output Power	Conducted	±0.42dB
Occupied Bandwidth	Conducted	±1.5%
Power Spectral Density	Conducted	±1.8dB
Conducted Spurious Emission	Conducted	±2.17dB
Conducted Emissions	Conducted	±2.88dB
Transmitter Spurious Emissions	Radiated	±5.1dB

1.7 Test Equipment List and Details

Description	Manufacturer	Model	Serial No.	Cal Date	Due. Date
Communication Tester	Rohde & Schwarz	CMW500	100358	2017-10-21	2018-10-20
Spectrum Analyzer	R&S	FSP40	100550	2017-10-21	2018-10-20
Test Receiver	R&S	ESCI7	US47140102	2017-10-21	2018-10-20
Signal Generator	HP	83630B	3844A01028	2017-10-22	2018-10-21
Test Receiver	R&S	ESPI-3	100180	2017-10-21	2018-10-20
Amplifier	Agilent	8449B	4035A00116	2017-10-22	2018-10-21
Amplifier	HP	8447E	2945A02770	2017-10-22	2018-10-21
Signal Generator	IFR	2023A	202307/242	2017-10-22	2018-10-21
Broadband Antenna	SCHAFFNER	2774	2774	2017-10-17	2018-10-16
Biconical and log	ELECTRO-METRI	EM-6917B-1	171	2017-10-17	2018-10-16
periodic antennas	CS	EIVI-091/B-1	1/1	2017-10-17	2018-10-10
Horn Antenna	R&S	HF906	100253	2017-10-17	2018-10-16
Horn Antenna	EM	EM-6961	6462	2017-10-17	2018-10-16
LISN	R&S	ESH3-Z5	100196	2017-10-17	2018-10-16
LISN	COM-POWER	LI-115	02027	2017-10-17	2018-10-16
3m Semi-Anechoic	Chengyu Electron	9 (L)*6 (W)*	DCI 006	2017 10 21	2019 10 20
Chamber		6 (H)	BSL086	2017-10-21	2018-10-20
Horn Antenna	A-INFOMW	LB-180400KF	BSL088	2017-10-21	2018-10-20

Report No.: BSL180610592201RF

FCC Rules	Description of Test Item	Result
§ 2.1093	RF Exposure	PASS
§ 15.203; § 15.247(b)(4)(i)	Antenna Requirement	PASS
§15.205	Restricted Band of Operation	PASS
§ 15.207(a)	Conducted Emission	PASS
§ 15.247(e)	Power Spectral Density	PASS
§ 15.247(a)(2)	6 dB Bandwidth	PASS
§ 15.247(b)(3)	RF Output Power	PASS
§ 15.209(a)	Radiated Emission	PASS
§ 15.247(d)	Band Edge (Out of Band Emissions)	PASS

Report No.: BSL180610592201RF

Note: PASS: applicable, N/A: not applicable.

3. RF Exposure

3.1 Standard Applicable

According to § 1.1307 and § 2.1093, the portable transmitter must comply the RF exposure requirements.

Report No.: BSL180610592201RF

3.2 Test Result

This product complied with the requirement of the RF exposure, please see the RF Exposure Report.

Report No.: BSL180610592201RF Page 8 of 47 FCC Part 15.247

4. Antenna Requirement

4.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No.: BSL180610592201RF

4.2 Evaluation Information

This product has a PCB Antenna, fulfill the requirement of this section.

Report No.: BSL180610592201RF Page 9 of 47 FCC Part 15.247

5. Power Spectral Density

5.1 Standard Applicable

According to 15.247(a)(1)(iii), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Report No.: BSL180610592201RF

5.2 Test Procedure

According to the KDB 558074 D01 v04, such specifications require that the same method as used to determine the conducted output power shall also be used to determine the power spectral density. The test method of power spectral density as below:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set span to at least 1.5 times the OBW.
- c) Set RBW to: 3 kHz \leq RBW \leq 100 kHz. .
- d) Set VBW ≥ 3 x RBW.
- e) Detector = power averaging (RMS) or sample detector (when RMS not available).
- f) Ensure that the number of measurement points in the sweep $\geq 2 x \text{ span/RBW}$.
- g) Sweep time = auto couple.
- h) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- i) Use the peak marker function to determine the maximum amplitude level.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).

5.3 Environmental Conditions

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

Test Mode	Test Channel MHz	Power Spectral Density dBm/3kHz	Limit dBm/3kHz
	2412	-13.09	8
802.11b	2437	-12.85	8
	2462	-13.62	8
	2412	-17.67	8
802.11g	2437	-18.64	8
	2462	-17.62	8
	2412	-20.23	8
802.11n HT20	2437	-20.18	8
	2462	-19.78	8
	2422	-22.16	8
802.11n HT40	2437	-22.15	8
	2452	-22.82	8

Report No.: BSL180610592201RF

Please refer to the following test plots:

Report No.: BSL180610592201RF

802.11b-Low Channel

802.11b-Middle Channel

Report No.: BSL180610592201RF

802.11b-High Channel

802.11g-Low Channel

Report No.: BSL180610592201RF

802.11g-Middle Channel

802.11g-High Channel

Report No.: BSL180610592201RF

802.11n-HT20-Low Channel

802.11n-HT20-Middle Channel

Report No.: BSL180610592201RF

802.11n-HT20-High Channel

802.11n-HT40-Low Channel

Report No.: BSL180610592201RF

802.11n-HT40-Middle Channel

802.11n-HT40-High Channel

6. 6dB Bandwidth

6.1 Standard Applicable

According to 15.247(a)(2). Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: BSL180610592201RF

6.2 Test Procedure

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 \times RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.3 Environmental Conditions

Temperature:	25° C
Relative Humidity:	53%
ATM Pressure:	1018 mbar

6.4 Summary of Test Results/Plots

Test Mode	Test Channel	6 dB Bandwidth	Limit
Test Mode	MHz	MHz	kHz
	2412	9.5600	≥500
802.11b	2437	9.5600	≥500
	2462	9.5600	≥500
	2412	16.5600	≥500
802.11g	2437	16.5600	≥500
	2462	16.3600	≥500
	2412	17.7000	≥500
802.11n-HT20	2437	17.7000	≥500
	2462	17.7000	≥500
	2422	36.6000	≥500
802.11n-HT40	2437	36.6000	≥500
	2452	36.5000	≥500

Please refer to the following test plots:

802.11b-Low Channel

802.11b-Middle Channel

Report No.: BSL180610592201RF

802.11b-High Channel

802.11g-Low Channel

802.11g-Middle Channel

802.11g-High Channel

Report No.: BSL180610592201RF

802.11n-HT20-Low Channel

802.11n-HT20-Middle Channel

Report No.: BSL180610592201RF

802.11n-HT20-High Channel

802.11n-HT40-Low Channel

Report No.: BSL180610592201RF

802.11n-HT40-Middle Channel

802.11n-HT40-High Channel

7. RF Output Power

7.1 Standard Applicable

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

Report No.: BSL180610592201RF

7.2 Test Procedure

According to the KDB-558074 D01 v04, 9.2.2.2, when this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth

- a) Set span to at least 1.5 times the OBW.
- b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- c) Set VBW $\geq 3 \times RBW$.
- d) Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\leq \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

7.3 Environmental Conditions

Temperature:	26° C
Relative Humidity:	57%
ATM Pressure:	1011 mbar

Test Mode	Frequency MHz	Reading dBm	Output Power mW	
	2412	8.61	7.26	
802.11b _ 11Mbps	2437	8.62	7.28	
	2462	8.80	7.59	
	2412	8.18	6.58	

7.92

8.57

8.70

8.52

7.35

8.21

8.52

8.55

2437

2462

2412

2437

2462

2422

2437

2452

Report No.: BSL180610592201RF

6.19

7.19

7.41

7.11

5.43

6.62

7.11

7.16

Limit mW 1000 1000 1000

1000

1000

1000

1000

1000

1000

1000

1000

Please refer to the following test plots:

802.11g_54Mbps

802.11n HT20 MCS7

802.11n HT40_MCS7

8. Field Strength of Spurious Emissions

8.1 Standard Applicable

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

8.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.247(a) and FCC Part 15.209 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

Frequency:9kHz-30MHz	Frequency:30MHz-1GHz	Frequency: Above 1GHz
1 3	• •	1 2
RBW=10KHz,	RBW=120KHz,	RBW=1MHz,
VBW = 30KHz	VBW=300KHz	VBW=3MHz(Peak), 10Hz(AV)
Sweep time= Auto	Sweep time= Auto	Sweep time= Auto
Trace = \max hold	Trace = max hold	Trace = \max hold
Detector function = peak	Detector function = peak, QP	Detector function = peak, AV

8.3 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit. The equation for margin calculation is as follows:

8.4 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

8.5 Summary of Test Results/Plots

According to the data below, the FCC Part 15.205, 15.209 and 15.247 standards, and had the worst cases:

Report No.: BSL180610592201RF

Note:

- 1. Worst-case radiated emission below 1GHz is 802.11b (CH Low) mode.
- 2. Worst-case radiated emission above 1GHz is 802.11g (CH Low, Middle, High) mode.

Plot of Radiated Emissions Test Data (30MHz to 1GHz)

Operating Condition: 802.11b Transmitting Low Channel-2412MHz

Test Specification: Horizontal

No.	Mk.	Freq.	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		34.8823	22.37	40.00	-17.63	QP			
2		46.5030	25.92	40.00	-14.08	QP			
3		91.4949	30.03	43.50	-13.47	QP			
4		180.0165	28.52	43.50	-14.98	QP			
5		345.5951	31.01	46.00	-14.99	QP			
6	*	622.8899	35.29	46.00	-10.71	QP			

Test Specification: Vertical

Mk.	Freq.	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	39.4371	24.36	40.00	-15.64	QP			
	71.0802	28.85	40.00	-11.15	QP			
	117.7724	28.64	43.50	-14.86	QP			
	206.3976	30.78	43.50	-12.72	QP			
	345.5951	33.01	46.00	-12.99	QP			
*	670.4891	34.89	46.00	-11.11	QP			
		MHz 39.4371 71.0802 117.7724 206.3976 345.5951	Mk. Freq. ment MHz dBuV/m 39.4371 24.36 71.0802 28.85 117.7724 28.64 206.3976 30.78 345.5951 33.01	Mk. Freq. ment Limit MHz dBuV/m dBuV/m 39.4371 24.36 40.00 71.0802 28.85 40.00 117.7724 28.64 43.50 206.3976 30.78 43.50 345.5951 33.01 46.00	Mk. Freq. ment Limit Over MHz dBuV/m dBuV/m dB 39.4371 24.36 40.00 -15.64 71.0802 28.85 40.00 -11.15 117.7724 28.64 43.50 -14.86 206.3976 30.78 43.50 -12.72 345.5951 33.01 46.00 -12.99	Mk. Freq. ment Limit Over MHz dBuV/m dBuV/m dB Detector 39.4371 24.36 40.00 -15.64 QP 71.0802 28.85 40.00 -11.15 QP 117.7724 28.64 43.50 -14.86 QP 206.3976 30.78 43.50 -12.72 QP 345.5951 33.01 46.00 -12.99 QP	Mk. Freq. ment Limit Over Height MHz dBuV/m dBuV/m dB Detector cm 39.4371 24.36 40.00 -15.64 QP 71.0802 28.85 40.00 -11.15 QP 117.7724 28.64 43.50 -14.86 QP 206.3976 30.78 43.50 -12.72 QP 345.5951 33.01 46.00 -12.99 QP	Mk. Freq. ment Limit Over Height Degree MHz dBuV/m dBuV/m dB Detector cm degree 39.4371 24.36 40.00 -15.64 QP 71.0802 28.85 40.00 -11.15 QP 117.7724 28.64 43.50 -14.86 QP 206.3976 30.78 43.50 -12.72 QP 345.5951 33.01 46.00 -12.99 QP

Spurious Emissions Above 1GHz

Test Mode: 802.11g

Frequency	Result	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	H/V	
		Low	channel-2412MHz		
4824.000	58.26	74	-15.74	Н	PK
4824.000	43.37	54	-10.63	Н	AV
7236.000	50.28	74	-23.72	Н	PK
7236.000	34.45	54	-19.55	Н	AV
4824.000	51.54	74	-22.46	V	PK
4824.000	44.33	54	-9.67	V	AV
7236.000	50.92	74	-23.08	V	PK
7236.000	40.10	54	-13.9	V	AV
		Middl	e channel-2437MHz		
4874.000	51.99	74	-22.01	Н	PK
4874.000	46.36	54	-7.64	Н	AV
7311.000	52.75	74	-21.25	Н	PK
7311.000	39.68	54	-14.32	Н	AV
4874.000	51.84	74	-22.16	V	PK
4874.000	48.55	54	-5.45	V	AV
7311.000	54.52	74	-19.48	V	PK
7311.000	36.23	54	-17.77	V	AV
		High	channel-2462MHz		
4924.000	50.64	74	-23.36	Н	PK
4924.000	38.67	54	-15.33	Н	AV
7386.000	54.25	74	-19.75	Н	PK
7386.000	36.85	54	-17.15	Н	AV
4924.000	50.39	74	-23.61	V	PK
4924.000	44.69	54	-9.31	V	AV
7386.000	51.38	74	-22.62	V	PK
7386.000	34.45	54	-19.55	V	AV

Report No.: BSL180610592201RF

Note:

- 1. Calculation of result is: Result (dBm) = Reading (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB)=Ant. Factor + Cable Loss Ampl. Gain.
- 3. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Report No.: BSL180610592201RF

Spurious (Conducted) 802.11b-Lowest Lowest

Middle

Spurious (Conducted) 802.11g-Lowest Lowest

Middle

Highest

Report No.: BSL180610592201RF

Spurious (Conducted) 802.11n-HT20-Lowest Lowest

Middle

Spurious (Conducted) 802.11n-HT40-Lowest

Lowest

Middle

Highest

9. Out of Band Emissions

9.1 Standard Applicable

According to §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Report No.: BSL180610592201RF

9.2 Test Procedure

According to the KDB 558074D01 v04, the band-edge radiated test method as follows:

Set span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation (2310MHz to 2420MHz for low bandedge, 2460MHz to 2500MHz for the high bandedge)

RBW = 1MHz, VBW = 1MHz for peak value measured

RBW = 1MHz, VBW = 10Hz for average value measured

Sweep = auto; Detector function = peak/average; Trace = max hold

All the trace to stabilize, set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. Those emission must comply with the 15.209 limit for fall in the restricted bands listed in section 15.205. Note that the method of measurement KDB publication number: 913591 may be used for the radiated bandedge measurements.

According to the KDB 558074 D01 v04, the conducted spurious emissions test method as follows:

- 1. Set start frequency to DTS channel edge frequency.
- 2. Set stop frequency so as to encompass the spectrum to be examined.
- 3. Set RBW = 100 kHz.
- 4. Set VBW \geq 300 kHz.
- 5. Detector = peak.
- 6. Trace Mode = max hold.
- 7. Sweep = auto couple.
- 8. Allow the trace to stabilize (this may take some time, depending on the extent of the span).
- 9. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in section 8.1. Report the three highest emissions relative to the limit.

Report No.: BSL180610592201RF Page 38 of 47 FCC Part 15.247

9.3 Environmental Conditions

Temperature:	23°C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

9.4 Summary of Test Results/Plots

802.11b- Bandedge (Radiated)

Note: we are pre-scan all modes, the worst data is 802.11b mode.

Channel	Freq.(MHz)	Level(dBuV)	Limit(dBuV)	Margin(dB)	Detector
	2400	52.61	74	-21.39	Peak
LOW	2400	33.89	54	-20.11	Average
	2483.5	54.15	74	-19.85	Peak
HIGH	2483.5	38.35	54	-15.65	Average

Bandedge (Conducted) 802.11b-Lowest Lowest

802.11g-Lowest

802.11n-HT20-Lowest

Lowest

802.11n-HT40-Lowest

10. Conducted Emissions

10.1 Test Procedure

The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

Report No.: BSL180610592201RF

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

10.2 Basic Test Setup Block Diagram

10.3 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

Report No.: BSL180610592201RF Page 44 of 47 FCC Part 15.247

10.4 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	150 kHz
Stop Frequency	30 MHz
Sweep Speed	Auto
IF Bandwidth	10 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode	Normal

10.5 Summary of Test Results/Plots

According to the data in section 10.6, the EUT complied with the FCC Part 15.207 Conducted margin for this device.

Report No.: BSL180610592201RF

10.6 Conducted Emissions Test Data

Note: we are pre-scan all modes, the worst data is 802.11n HT20(Low) mode.

Plot of Conducted Emissions Test Data: 802.11n HT20(Low)

Test Specification: Neutral

No.	Mk.	Freq.	Measure- ment	Limit	Over		
		MHz	dBu∀	dBu∀	dB	Detector	Comment
1		0.2560	42.81	61.56	-18.75	QP	
2		0.2560	29.56	51.56	-22.00	AVG	
3	*	0.7940	46.29	56.00	-9.71	QP	
4		0.7940	31.94	46.00	-14.06	AVG	
5		2.0219	38.02	56.00	-17.98	QP	
6		2.0219	27.65	46.00	-18.35	AVG	
7		5.2899	34.39	60.00	-25.61	QP	
8		5.2899	21.56	50.00	-28.44	AVG	
9		8.5297	42.28	60.00	-17.72	QP	
10		8.5297	32.86	50.00	-17.14	AVG	
11		26.8180	32.92	60.00	-27.08	QP	
12	į.	26.8180	20.67	50.00	-29.33	AVG	

Test Specification: Live

No.	Mk.	Freq.	Measure- ment	Limit	Over		
		MHz	dBu∨	dBu∀	dB	Detector	Comment
1		0.2560	44.81	61.56	-16.75	QP	
2		0.2560	32.26	51.56	-19.30	AVG	
3		0.4778	39.52	56.38	-16.86	QP	
4		0.4778	26.61	46.38	-19.77	AVG	
5	*	0.8659	42.08	56.00	-13.92	QP	
6		0.8659	31.78	46.00	-14.22	AVG	
7		5.0457	41.73	60.00	-18.27	QP	
8		5.0457	31.20	50.00	-18.80	AVG	
9		11.9938	34.90	60.00	-25.10	QP	
10		11.9938	24.35	50.00	-25.65	AVG	
11		26.2896	34.32	60.00	-25.68	QP	
12		26.2896	24.33	50.00	-25.67	AVG	

***** END OF REPORT *****