Algjuurte leidmine

Joosep Näks

Tartu Ülikool

April 8, 2021

Kui a on algjuur mooduli p^k järgi, kus p>2 on algarv, siis üheks algjuureks mooduli $2p^k$ järgi on paaritu arv arvudest a ja $a+p^k$.

Tõestus: Eeldame et a on paaritu (vastasel juhul toimib analoogselt arvuga $a+p^k$). Kuna \overline{a} on algjuur p^k järgi, on ta \mathbb{Z}_{p^k} pööratav element ehk $(a,p^k)=1$. Samuti (a,2)=1. Seega $(a,2p^k)=1$ ehk $\overline{a}\in U(\mathbb{Z}_{2p^k})$. Kuna a on algjuur mooduli p^k järgi, on \overline{a} järk $U(\mathbb{Z}_{p^k})$ rühmas $m=|U(\mathbb{Z}_{p^k})|=p^{k-1}(p-1)$. Olgu n elemendi \overline{a} järk rühmas $U(\mathbb{Z}_{2p^k})$, siis $n||U(\mathbb{Z}_{2p^k})|=p^{k-1}(p-1)=m$ ehk $n\leq m$. Teiselt poolt $a^n\equiv 1\pmod{2p^k}\Rightarrow a^n\equiv 1\pmod{p^k}$ ehk lemma 7.6 põhjal $m\leq n$. Seega kehtib n=m, mis tähendabki et a on algjuur mooduli $2p^k$ järgi.

Mooduli n järgi leidub algjuuri parajasti siis, kui n on kujul $2,4,p^k$ või $2p^k$, kus p>2 on algarv.

Tõestus: Ühtepidi tuleb lausest 7.11, et kui n järgi leidub algjuuri, on n sellisel kujul.

Teistpidi järelduse 7.13 põhjal leidub algarvulise mooduli p järgi $\varphi(p-1)$ algiuurt, mis on rohkem kui 0.

Kui juba p järgi on algjuur olemas, aitab teoreem 7.14 leida p^2 järgi algjuure, teoreem 7.18 p^k järgi ja teoreem 7.19 $2p^k$ järgi algjuure. Seega kui n on sellisel kujul, leidub tema järgi algjuuri.

Olgu G lõplik rühm, mille järk $|G|=n=p_1^{k_1}...p_s^{k_s}$ on antud standardkujul. Iga $a\in G$ korral, $\langle a\rangle\neq G$ parajasti siis, kui leidub selline $i\in\{1,...,s\}$, et $a^{\frac{n}{p_i}}=1$.

Tõestus:

Tarvilikkus: Oletame et $\langle a \rangle \neq G$. Olgu m elemendi a järk. Siis m|n ning seega $m=p_1^{l_1}...p_s^{l_s}$, kus $0 \leq l_i \leq k_i$ iga $i \in \{1,...,s\}$ korral. Kuna $\langle a \rangle \neq G$, on m < n ehk peab leiduma i, mille korral $l_i < k_i$. Sellisel juhul $m|\frac{n}{p_i}$ ja seega $a^{\frac{n}{p_i}}=1$.

Piisavus: Olgu $a^{\frac{n}{p_i}}=1$, siis lemma 7.6 põhjal elemendi a järk jagab arvu $\frac{n}{p_i}$ ehk a järk on väiksem kui n ning järelikult $\langle a \rangle \neq G$.

Järeldus 7.23

Olgu G lõplik rühm, mille järk $|G|=n=p_1^{k_1}...p_s^{k_s}$ on antud standardkujul. Iga $a\in G$ korral $\langle a\rangle=G$ parajasti siis, kui iga $i\in\{1,...,s\}$ korral $a^{\frac{n}{p_i}}\neq 1$.

Järeldus 7.24

Olgu p>2 algarv. Siis a on algjuur mooduli p järgi parajasti siis, kui arvu p-1 iga algteguri q korral $a^{\frac{p-1}{q}}\not\equiv 1\pmod p$.

Lause 7.26

Olgu n naturaalarv. Siis n-elemendilisel tsüklilisel rühmal on täpselt $\varphi(n)$ moodustajat.

Tõestus:

Olgu $G=\{1,a,a^2,...,a^{n-1}\}$ tsükliline rühm, kus $a^n=1$. Esitame n standardkujul $n=p_1^{k_1}...p_s^{k_s}$. Piisab näidata et iga $k\in\{1,...,n\}$ korral $\langle a^k\rangle=G$ parajasti siis, kui (k,n)=1. Tõestame selleks, et $\langle a^k\rangle\neq G$ parajasti siis, kui $(k,n)\neq 1$.

Lause 7.26

Olgu n naturaalarv. Siis n-elemendilisel tsüklilisel rühmal on täpselt $\varphi(n)$ moodustajat.

Tõestus (jätk):

Tarvilikkus: Eeldame, et $\langle a^k \rangle \neq G$. Lemma 7.22 põhjal leidub siis selline $i \in \{1,...,s\}$, et $(a^k)^{\frac{n}{p_i}} = 1$ rühmas G. Lemma 7.6 põhjal $n|\frac{kn}{p_i}$ ehk leidub selline $u \in \mathbb{N}$ et $nu = \frac{kn}{p_i}$. Seega $up_i = k$, millest saame, et $p_i|k$. Seega $(n,k) \geq p_i > 1$.

Piisavus: Eeldame, et (k,n)=d>1. Siis leidub selline $i\in\{1,...,s\}$, et $p_i|d$ ning seega ka $p_i|k$. Olgu $k=p_ik'$, siis $(a^k)^{\frac{n}{p_i}}=a^{k'n}=(a^n)^{k'}=1$ ehk lemma 7.22 põhjal $\langle a^k\rangle\neq G$.

6/8

Kui mooduli n järgi leidub algjuuri, siis on neid täpselt $\varphi(\varphi(n))$ tükki.

Tõestus:

Jäägiklassiringi \mathbb{Z}_n pööratavate elementide arv on Euleri funktsiooni definitsiooni põhjal $\varphi(n)$ ning rakendades lauset 7.26 rühma $U(\mathbb{Z}_n)$ peal saame, et algjuurte kogus on $\varphi(|U(\mathbb{Z}_n)|) = \varphi(\varphi(n))$.

Näide $2 \cdot 19^{2021}$ algjuure leidmisest:

Leian kõigepealt ühe 19 algjuure, pakun algjuureks 2.

$$\varphi(19) = 19 - 1 = 18 = 2 \cdot 3^2$$

$$2^6 = 64 \equiv 7 \not\equiv 1 \pmod{19}$$

$$2^9 = 7 \cdot 2^3 = 56 \equiv -1 \not\equiv 1 \pmod{19}$$

Seega 2 on algjuur mooduli 19 järgi. Algjuur 19^2 järgi on 2 või 2+19.

$$2^{19-1} = 2^9 \cdot 2^9 \equiv 151 \cdot 151 = 22801 \equiv 58 \not\equiv 1 \pmod{361}$$

Ehk 2 on algjuur ka 19^2 järgi ning ka 19^{2021} järgi.

Kuna 2 on paarisarv, on $2 \cdot 19^{2021}$ järgi algjuur $2 + 19^{2021}$.