On my honor as a KAIST student, I pledge to take this exam honestly.

You should write down all your work for full credits.

Session 2, October 19, 2021, 20:40–21:55, Four problems: 4–7

- 4. (15 pts) Let w(t) be a differentiable function and κ and ρ be positive constants.
 - (a) (10 pts) Solve

$$\frac{d}{dt}w(t) + \kappa w(t) - \rho = 0 \text{ or } w' + \kappa w - \rho = 0$$

with an initial condition $w(0) = v_0$.

(b) (5 pts) By setting $w(t) = \frac{d}{dt}y(t)$, solve

$$\frac{d^2}{dt^2}y(t) + \kappa \frac{d}{dt}y(t) - \rho = 0 \text{ or } y'' + \kappa y' - \rho = 0$$

with
$$y(0) = 0$$
 and $\frac{d}{dt}y(t)\Big|_{t=0} = v_0$.

5. (10 pts) Evaluate

$$\int_{1}^{\infty} \left[2\sqrt{x^2 - 1} - 2x + \frac{1}{x} \right] dx.$$

- 6. (15 pts) Let $\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} dx$ for a positive integer n.
 - (a) (5 pts) Use a comparison test to show that $\Gamma(n)$ converges.
 - (b) (10 pts) Show that $\Gamma(n) = (n-1)!$
- 7. (20 pts)
 - (a) (10 pts) Solve the equation $xy' + 2y = \frac{8x}{(x-1)(x+1)(x+2)}$ for x > 1.
 - (b) (10 pts) Solve the initial value problem $y' = 2x\sqrt{1+y^2}$ with y(0) = 0.