## On Maximal Subgroups of Free Idempotent Generated Semigroups

Robert Gray

Centro de Álgebra da Universidade de Lisboa

Lisbon, November 2010 Seminário de Semigrupos, Autómatos e Linguagens



#### Outline

#### History and motivation

Idempotent generated semigroups
Biordered sets and free idempotent generated semigroups

#### Maximal subgroups of free idempotent generated semigroups

The main result Singular squares and presentations

Future work and open problems

### Idempotent generated semigroups

S - semigroup, E = E(S) - idempotents of S

**Definition.** *S* is idempotent generated if  $\langle E(S) \rangle = S$ .

- Many natural examples
  - ▶ Howie (1966)  $T_n \setminus S_n$ , the non-invertible transformations;
  - ► Erdös (1967) singular part of  $M_n(\mathbb{F})$ , semigroup of all  $n \times n$  matrices over a field  $\mathbb{F}$ ;
  - ▶ Laffey (1983) singular part of  $M_n(Q)$ , Q an arbitrary division ring;
  - Putcha (2006) conditions for a reductive linear algebraic monoid to have the same property.
- Independence algebras
  - ▶ Gould (1995), Fountain and Lewin (1992, 1993), Araújo (2002–2007)
- Generating sets of idempotents
  - ► Gomes and Howie (1987, 1992), Howie and McFadden (1990)
- ▶ They are "general"
  - ► Every semigroup *S* embeds into an idempotent generated semigroup.

## The biordered set of a semigroup

Nambooripad (1979)

$$S$$
 - semigroup,  $E = E(S)$  - idempotents of  $S$ 

**Definition.** The biordered set of a semigroup S is the partial algebra consisting of the set E = E(S) with multiplication restricted to basic pairs.

$$(e,f) \in E \times E$$
 is called a basic if

$$ef = e$$
 or  $ef = f$  or  $fe = e$  or  $fe = f$ .

i.e. one of the idempotents stabilizes the other under left or right multiplication.

If 
$$(e,f)$$
 is basic then both  $ef \in E$  and  $fe \in E$ .  
(e.g. if  $ef = f$  then  $(fe)^2 = f(ef)e = ffe = fe$ )

### Semigroup presentations

Presentation:  $\langle A|R\rangle$ 

A - alphabet

▶ a non-empty set giving the abstract generators for the semigroup

R - defining relations

• pairs of words over A, written as  $\alpha = \beta$ 

Defines a semigroup  $S = A^+/\rho$  where  $\rho$  is congruence on  $A^+$  generated by R.

▶ The elements of *S* are equivalence classes of words where two words *u* and *v* are equivalent (represent the same element of *S*) iff *u* can be transformed into *v* by applying relations from *R*.

### Semigroup presentations

#### Examples

- ▶  $\langle A | \rangle$  defines the free semigroup on  $A^+$ . Elements: all words. Multiplication: concatenation.
- $\langle a|a^2=a\rangle$  defines the trivial semigroup. Elements:  $\{a\}$ . Multiplication: aa=a.
- ▶  $\langle a, b | ab = ba \rangle$  defines the free commutative monoid of rank 2. Elements:  $\{a^i b^j : i, j \ge 0\}$ . Multiplication:  $a^i b^j \cdot a^k b^l = a^{i+k} b^{j+l}$ .
- ▶  $\langle a, a^{-1}, b, b^{-1} | a^{\epsilon} a^{-\epsilon} = b^{\epsilon} b^{-\epsilon} = 1(\epsilon = \pm 1) \rangle$  defines the free group on  $\{a, b\}$ . Elements: reduced words. Multiplication: concatenation followed by free reduction.
- $\langle a, b | aba = b, bab = a \rangle$  defines the quaternion group.
- ► Every semigroup is defined by a presentation (multiplication table).

### Free idempotent generated semigroups

$$S$$
 - semigroup,  $E = E(S)$ 

Let IG(E) denote the semigroup defined by the following presentation.

$$IG(E) = \langle E \mid e \cdot f = ef \text{ if } (e, f) \text{ is a basic pair} \rangle.$$

IG(E) is called the free idempotent generated semigroup on E.

### Free idempotent generated semigroups

$$S$$
 - semigroup,  $E = E(S)$ 

Let IG(E) denote the semigroup defined by the following presentation.

$$IG(E) = \langle E \mid e \cdot f = ef \text{ if } (e, f) \text{ is a basic pair} \rangle.$$

IG(E) is called the free idempotent generated semigroup on E.

#### Theorem (Easdown (1985))

The biordered set of idempotents of IG(E) is E. If S is any idempotent generated semigroup with biordered set of idempotents isomorphic to E then the natural map  $E \to S$  extends uniquely to a homomorphism  $IG(E) \to S$ .

**Conclusion.** It is important to understand IG(E) if one is interested in understanding an arbitrary idempotent generated semigroup with biordered set E.





- ▶ It was conjectured that maximal subgroups of free idempotent generated semigroups must always be free groups.
- ► This conjecture was confirmed for several classes of biordered set:
  - ▶ Pastijn (1977, 1980), Nambooripad & Pastijn (1980), McElwee (2002).

- ▶ It was conjectured that maximal subgroups of free idempotent generated semigroups must always be free groups.
- ▶ This conjecture was confirmed for several classes of biordered set:
  - ► Pastijn (1977, 1980), Nambooripad & Pastijn (1980), McElwee (2002).
- Brittenham, Margolis & Meakin (2009) gave the first counterexamples to this conjecture.
  - ► Give a 72-element semigroup *S* and prove that IG(E(S)) has a maximal subgroup isomorphic to  $\mathbb{Z} \oplus \mathbb{Z}$ .
  - ► They also report that the multiplicative group  $\mathbb{F}^*$  of a field  $\mathbb{F}$  arises as a maximal subgroup of  $IG(E(M_3(\mathbb{F})))$ , where  $M_3(\mathbb{F})$  is the semigroup of all  $3 \times 3$  matrices over  $\mathbb{F}$ .

#### Main result

Theorem (RG & Ruskuc (2010))

Every group is a maximal subgroup of some free idempotent generated semigroup.

## The environment semigroup $B_{I,J}$

Let *X* be a set.

 $T_X^{(r)}$  - full transformation monoid on X, maps composed from left to right.  $T_X^{(l)}$  - full transformation monoid on X, maps composed from right to left. (If  $X = \{1, \ldots, n\}$  we write  $T_n^{(r)}$  and  $T_n^{(l)}$ .)

Define

$$B_{I,J} = T_I^{(l)} \times T_J^{(r)}.$$

A typical element of  $\beta \in B_{I,J}$  has the form  $\beta = (\beta^{(I)}, \beta^{(r)})$ .

# Multiplication in $B_{I,J}$

$$I = \{1, 2, 3\}, J = \{1, 2, 3, 4\}$$
  
 $B_{IJ} = T_{2}^{(I)} \times T_{2}^{(r)}$ 

$$\sigma = (\sigma^{(l)}, \sigma^{(r)}) = \left( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 1 & 4 \end{pmatrix} \right) \in B_{I,J}$$

$$\tau = (\tau^{(l)}, \tau^{(r)}) = \left( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 3 & 4 \end{pmatrix} \right) \in B_{I,J}$$

$$\sigma\tau = (\sigma^{(l)}\tau^{(l)}, \sigma^{(r)}\tau^{(r)}) = \left( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 4 & 4 \end{pmatrix} \right) \in B_{I,J}$$

# Multiplying constant mappings

Example 
$$\begin{split} I &= \{1,2,3\}, J = \{1,2,3,4\} \\ B_{I,J} &= T_3^{(I)} \times T_4^{(r)} \\ \sigma &= (\sigma^{(I)},\sigma^{(r)}) = \left( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 4 & 4 & 4 \end{pmatrix} \right) \in B_{I,J} \\ \tau &= (\tau^{(I)},\tau^{(r)}) = \left( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \right) \in B_{I,J} \\ \sigma\tau &= (\sigma^{(I)}\tau^{(I)},\sigma^{(r)}\tau^{(r)}) = \left( \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \right) \in B_{I,J} \end{split}$$

## Minimal ideal of $B_{I,J}$

The semigroup  $B_{I,J}$  has a unique minimal ideal

$$R_{I,J} = \{ \rho_{ij} = (\rho_i, \rho_j) : i \in I, j \in J \},$$

where

$$\rho_i: I \to I, \ x \mapsto i, \quad \rho_j: J \to J, \ x \mapsto j$$

are the constant maps.

The multiplication in  $R_{I,J}$  works as follows:

$$\rho_{ii}\rho_{kl}=\rho_{il},$$

i.e.  $R_{I,J}$  is an  $I \times J$  rectangular band.

Fix a distinguished idempotent  $\rho_{11}$  in  $R_{I,J}$  (think 'top left').



$$IG(E(S))$$
 where  $R_{I,J} \leq S \leq B_{I,J}$ 

Let *S* be a semigroup such that  $R_{I,J} \leq S \leq B_{I,J}$ .

**Aim:** Describe the maximal subgroup  $H = H(IG(E(S)), \rho_{11})$  of IG(E(S)) containing  $\rho_{11} \in R_{I,J}$ .

 Apply Reidemeister–Schreier for subgroups (Ruskuc (1999)) to rewrite the presentation

$$IG(E) = \langle E \mid e \cdot f = ef \ (e, f \in E, \{e, f\} \cap \{ef, fe\} \neq \emptyset) \rangle$$

to obtain a presentation for the maximal group H.

- ▶ The relations in IG(E) arise from basic pairs (e,f) of idempotents.
- ► The way that basic pairs of idempotents "interact" in *S* should influence the presentation obtained for *H*.

### Singular squares

$$S$$
 - a semigroup such that  $R_{I,J} \leq S \leq B_{I,J}, \;\; E = E(S)$ 

#### Definition

A quadruple  $(i, k; j, l) \in I \times I \times J \times J$  is a singular square if there exists an idempotent  $e \in E$  such that one of the following dual conditions holds:

$$e\rho_{ij} = \rho_{ij}, \ e\rho_{kj} = \rho_{kj}, \ \rho_{ij}e = \rho_{il}, \ \rho_{kj}e = \rho_{kl}, \ \text{or}$$
  
 $\rho_{ij}e = \rho_{ij}, \ \rho_{il}e = \rho_{il}, \ e\rho_{ij} = \rho_{kj}, \ e\rho_{il} = \rho_{kl}.$ 

We will say that *e* singularises the square.



## Singular squares example

Example

$$I = \{1, 2, 3\}, J = \{1, 2, 3, 4\}$$
  
 $B_{I,J} = T_3^{(I)} \times T_4^{(r)}$ 

Let  $S = {\sigma} \cup R_{I,J}$  where:

$$\sigma = (\sigma^{(l)}, \sigma^{(r)}) = \left( \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 1 & 4 \end{pmatrix} \right) \in B_{I,J}$$

Clearly  $R_{I,J} \leq S \leq B_{I,J}$ .

(1,2;3,1) is a singular square singularised by  $\sigma$  since:

$$\sigma \rho_{13} = \rho_{13}, \ \sigma \rho_{23} = \rho_{23}, \ \rho_{13} \sigma = \rho_{11}, \ \rho_{23} \sigma = \rho_{21}.$$

(1,2;1,2) is **not** singular

### A presentation for the maximal subgroup

- ▶ The abstract generators for the group H are in one-to-one correspondence with the elements of the rectangular band  $R_{I,J} \leq S$ .
- ▶ The singular squares in the rectangular band  $R_{I,J} \leq S$  give rise to the relations that define the maximal subgroup H of IG(E).

#### Theorem

Let S be a semigroup such that  $R_{I,J} \leq S \leq B_{I,J}$  and let  $\rho_{11} \in R_{I,J}$ . Then the group  $H = H(IG(E(S)), \rho_{11})$  is defined by the presentation

$$\langle f_{ij} \ (i \in I, j \in J)$$
 |  $f_{1j} = f_{i1} = 1$   $(i \in I, j \in J),$   
 $f_{ij}^{-1} f_{il} = f_{kj}^{-1} f_{kl}$   $((i, k; j, l) \in \Sigma)) \rangle$ 

where  $\Sigma$  is the set of all singular squares.



## Singular squares and the relations they yield



### Goldilocks and the three bears

By varying I, J and S, with  $R_{I,J} \le S \le B_{I,J}$  we want to see what groups  $H(IG(E(S)), \rho_{11})$  we can obtain.

### Example

If we set  $S = R_{I,J}$  then there are no (non-degenerate) singular squares (i,k;j,l) and so we obtain:

$$\langle f_{ij} \ (i \in I, j \in J) \qquad | \qquad f_{1j} = f_{i1} = 1 \qquad (i \in I, j \in J) \rangle.$$

So in this case  $H(IG(E(S)), \rho_{11})$  is a free group of rank (|I| - 1)(|J| - 1).

#### Example

If we set  $S = B_{I,J}$  then every square is singular and from the relations arising from corner squares we obtain:

$$\langle f_{ij} \ (i \in I, j \in J)$$
  $| f_{ij} = 1$   $(i \in I, j \in J) \rangle.$ 

So in this case  $H(IG(E(S)), \rho_{11})$  is the trivial group.

## Obtaining any given group

G - arbitrary group of order N (possibly infinite),  $n = N^2$ 

We will work in  $B_{3,n} = T_3^{(l)} \times T_n^{(r)}$ , which has the  $3 \times n$  rectangular band  $R_{3,n}$  as its minimal ideal.

**Aim:** Find S with  $R_{3,n} \leq S \leq B_{3,n}$  such that  $H(IG(E(S)), \rho_{11}) \cong G$ .

We must use G somehow to define a collection of idempotents in  $B_{3,n} \setminus R_{3,n}$  which, together with  $R_{3,n}$ , generate the desired semigroup S.

### An auxiliary matrix

We define an auxiliary matrix:

$$Y = (y_{ij})_{3 \times n} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & y_{22} & y_{23} & \dots & y_{2n} \\ 1 & y_{32} & y_{33} & \dots & y_{3n} \end{pmatrix}.$$

Its entries are the elements of G, arranged arbitrarily subject to the condition that every possible column appears (once and only once):

$$\{(1, y_{2j}, y_{3j}) : j = 1, \dots, n\} = \{(1, g, h) : g, h \in G\}.$$

We may identify the index set  $J = \{1, ..., n\}$  and the set  $\{(1, g, h) : g, h \in G\}$  of all columns of Y.

## Define six additional idempotents

$$\sigma_u = (\sigma_u^{(l)}, \sigma_u^{(r)}) \in B_{3,n} (u = 1, \dots, 6),$$

given by

$$\begin{split} &\sigma_1^{(l)} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix} \qquad \sigma_1^{(r)} : (1,g,h) \mapsto (1,g,g) \\ &\sigma_2^{(l)} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix} \qquad \sigma_2^{(r)} : (1,g,h) \mapsto (1,g,1) \\ &\sigma_3^{(l)} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \end{pmatrix} \qquad \sigma_3^{(r)} : (1,g,h) \mapsto (1,1,h) \\ &\sigma_4^{(l)} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \end{pmatrix} \qquad \sigma_4^{(r)} : (1,g,h) \mapsto (1,h,h) \\ &\sigma_5^{(l)} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \qquad \sigma_5^{(r)} : (1,g,h) \mapsto (1,1,hg^{-1}) \\ &\sigma_6^{(l)} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 3 \end{pmatrix} \qquad \sigma_6^{(r)} : (1,g,h) \mapsto (1,gh^{-1},1). \end{split}$$

### The structure of *S*

The semigroup

$$S = \langle R_{3,n} \cup \{\sigma_1, \dots, \sigma_6\} \rangle = R_{3,n} \cup D \leq B_{3,n}$$

has the following properties:

- ► *S* is regular;
- ▶ *S* has two  $\mathcal{D}$ -classes:  $R_{3,n}$  and D;
- ▶ *S* has precisely six idempotents  $\sigma_1, \ldots, \sigma_6$  outside  $R_{3,n}$ ;
- ▶ *S* has exactly eighteen elements outside  $R_{3,n}$ ;
- ▶ *S* is finite if and only if  $R_{3,n}$  is finite, which is the case if and only if *G* is finite.

#### Theorem

$$H(IG(E(S)), \rho_{11}) \cong G.$$

# Picture of $S = R_{3,n} \cup D$

| $\sigma_1$    | $\sigma_2$    | $\sigma_7$    |
|---------------|---------------|---------------|
| $\sigma_{14}$ | $\sigma_{13}$ | $\sigma_8$    |
| $\sigma_4$    | $\sigma_9$    | $\sigma_3$    |
| $\sigma_{15}$ | $\sigma_{10}$ | $\sigma_{16}$ |
| $\sigma_{11}$ | $\sigma_6$    | $\sigma_5$    |
| $\sigma_{12}$ | $\sigma_{17}$ | $\sigma_{18}$ |

l

 $R_{3,n}$ 

### Preserving finiteness properties

The above construction proves:

### Theorem (RG & Ruskuc (2010))

Every group is a maximal subgroup of some free idempotent generated semigroup.

- ▶ One drawback of the above construction is that if *G* is infinite, then the semigroup *S* constructed will necessarily be infinite.
- ▶ If *G* is finitely presented then we can do better than this:

#### Theorem (RG & Ruskuc (2010))

Every finitely presented group is a maximal subgroup of some free idempotent generated semigroup arising from a finite semigroup.

### The word problem

Since there exist finitely presented groups that have unsolvable word problem, combining such a group with the above theorem gives:

### Corollary

There exists a free idempotent generated semigroup F arising from a finite semigroup such that the word problem for F is unsolvable.

### Open problems and future directions

▶ Investigate subgroups of free idempotent generated semigroups *IG*(*E*) for biorders *E* that occur "in nature".

### Theorem (Brittenham, Margolis & Meakin (2010))

Let E be the biordered set of  $M_n(Q)$ , for Q a division ring, and let e be an idempotent matrix of rank 1 in  $M_n(Q)$ . For  $n \geq 3$ , the maximal subgroup of IG(E) containing e is isomorphic to  $Q^*$ , the multiplicative group of units of Q.

### Open problem

Brittenham, Margolis & Meakin conjecture that the maximal subgroup of IG(E) with identity e an idempotent matrix of rank k < n - 1 is  $GL_k(Q)$ , if k < n/2 and  $n \ge 3$ .

▶ We have (very) recently shown that the full transformation monoid analogue of this result does hold (i.e. that the maximal subgroups of  $IG(E(T_n))$  are symmetric groups).