

Question 2 Accroissement de performance (5')

Enoncé

Citez, pour chacun des dispositifs architecturaux ci-dessous, au moins une caractéristique des programmes qui permet à ces dispositifs d'en accélérer l'exécution :

- la hiérarchie mémoire ;
- architecture pipeline du traitement des instructions ;
- parallélisme d'instruction.

Répondez dans le cadre SVP.

Réponse

Module ISI 407 1 24 juin 2004

Système embarqué (5')			
Question 3 Hemisson embarqué			
Expliquez pourquoi le robot Hemisson est un système embarqué.			
Question 4 Hemisson temps réel			
Dans quelle mesure le robot Hemisson est il un système temps réel ?			
Comment ceci est il assuré ?			

Exercice programmation PIC (15')

Dans cet exercice nous allons nous intéresser à la collecte de données physiques extérieures (ici des températures), à leur traitement puis à l'affichage des résultats.

À cet effet nous supposerons que le capteur de lecture du sol droit du robot Hemisson a été remplacé par un capteur de température analogique au niveau du convertisseur Analogique/Numérique. La mesure d'une température s'effectue donc par la lecture du canal 7 du convertisseur.

Question 5

Ecrire en C la lecture du capteur de température.				

Ecrire une fonction : char calcule(char nombreMesures) ; qui effectue nombreMesures mesures de la température (transmise par le convertisseur), calcule la moyenne de ces mesures et retourne cette valeur à la fonction main (). Les mesures seront effectuées toutes les minutes.

Question 6	
Ecrire la fonction main() qui contient l'appel de la fonction fonction calcule() et l'affichage le résultat.	init(.), l'appel de la

Question 7

Comment écririez vous la fonction de calcul en utilisant l'entrée hemisson_task1(); pour effectuer la conversion ; sachant que cette entrée est appelée toutes les 200ms

(NB : Suite page suivant)

1SI407 24 juin 2004

Compilation & optimisation

Question 8 : Pourquoi les processeurs des ordinateurs sont-ils programmés en langage machine et non en langage de haut niveau ?

 $\stackrel{'}{
ightarrow}$

 \longrightarrow

Question 9 : Quel est l'intérêt d'un générateur d'analyse syntaxique (générateur de parser) pour l'écriture de compilateur ?

 $\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$

Question 10: Comparer les pour et les contre de la programmation en assembleur et de la programmation en C par exemple.

 $\begin{array}{c} \rightarrow \\ \rightarrow \end{array}$

Question 11 : Un programmeur désordonné a compilé le petit programme suivant :

```
int a = 0, i;
for(i = 0; i < 10; i++)
        a = a + i;
avec
gcc -05 -S instructions.c</pre>
```

1SI407 24 juin 2004

mais a malheureusement mélangé les instructions générées par le compilateur pour son processeur de type $x86^1$:

Assembleur	C
jle .L6	if (la comparaison précédente est <=) goto L6;
xorl %edx, %edx	edx = 0;
incl %edx	edx++;
xorl %eax, %eax	eax = 0;
.L6:	L6: /* met un label dans le code */
addl %edx, %eax	eax = eax + edx;
cmpl \$9, %edx	Compare edx avec la valeur 9

Aide le gentil programmeur à remettre les instructions dans un ordre possible pour que son programme fonctionne.

 \rightarrow

-

 \longrightarrow

 \rightarrow

¹Dont on a rajouté à côté un équivalent en pseudo-C pour vous aider à comprendre.