CPSC 331 — Solutions for Tutorial Exercise #7 Asymptotic Notation

- 1. Consider the functions $f,g:\mathbb{N}\to\mathbb{N}$ such that $f(n)=4n^2+2n+1$ and $g(n)=n^2$ for all $n\in\mathbb{N}$.
 - (a) You were asked to use the definitions of "O(g)" and of " $\Omega(g)$ ", and one or more results stated during Lecture #7, to prove that $f \in \Theta(g)$.

Solution:

Claim 1. $4n^2 + 2n + 1 \in O(n^2)$.

Proof. It follows by the definition of " $O(n^2)$ " that it is sufficient to show that there exist constants c>0 and $N_0\geq 0$ such that $n^2+2n+1\leq c\cdot n^2$ for all $n\in\mathbb{N}$ such that $n\geq N_0$.

Let c=7 and $N_0\in\mathbb{N}$.

With that noted, let $n \in \mathbb{N}$ such that $n \geq N_0 = 1$. Then $n^2 \geq n$ and $n^2 \geq 1$ as well, so that

$$4n^{2} + 2n + 1 \le 4n^{2} + 2n^{2} + n^{2}$$
$$= 7n^{2} = c \cdot n^{2}.$$

Since n was arbitrarily chosen from $\mathbb N$ such that $n \geq N_0$, it follows that $4n^2 + 2n + 1 \leq c \cdot n^2$ for all $n \in \mathbb N$ such that $n \geq N_0$.

Thus there exist constants c>0 and $N_0\geq 0$ such that $4n^2+2n+1\leq c\cdot n^2$ for all $n\in\mathbb{N}$ such that $n\geq N_0$.

It follows by the definition of " $O(n^2)$ " that $4n^2 + 2n + 1 \in O(n^2)$.

Claim 2. $4n^2 + 2n + 1 \in \Omega(n^2)$.

Proof. It follows by the definition of " $\Omega(n^2)$ " that it is sufficient to show that *there* exist constants c>0 and $N_0\geq 0$ such that $n^2+2n+1\geq c\cdot n^2$ for all $n\in\mathbb{N}$ such that $n\geq N_0$.

Let c=4 and $N_0=0$.

With that noted, let $n \in \mathbb{N}$ such that $n \geq N_0 = 0$. Then

$$4n^2+2n+1\geq 4n^2+1 \qquad \qquad \text{(since } 2>0 \text{ and } n\geq 0\text{)}$$

$$\geq 4n^2$$

$$=c\cdot n^2.$$

Since n was arbitrarily chosen from $\mathbb N$ such that $n \geq N_0$, it follows that $4n^2 + 2n + 1 \geq n^2$ for all $n \in \mathbb N$ such that $n \geq N_0$.

Thus there exist constants c>0 and $N_0\geq 0$ such that $4n^2+2n+1\geq c\cdot n^2$ for all $n\in\mathbb{N}$ such that $n\geq N_0$.

It follows by the definition of "
$$\Omega(n^2)$$
" that $4n^2+2n+1\in\Omega(n^2)$.

Since $n^2+4n+1\in O(n^2)$ and $n^2+4n+1\in \Omega(n^2)$ by Claims 1 and 2, respectively, it follows by the "alternative definition of $\Theta(g)$ " from Lecture #6 that $n^2+4n+1\in \Theta(n^2)$ as well.

(b) You were asked to use one or more limit tests to prove that $f\in\Theta(g)$, instead.

Solution:

$$\lim_{n \to +\infty} \frac{4n^2 + 2n + 1}{n^2} = \lim_{n \to +\infty} \left(4 + \frac{2}{n} + \frac{1}{n^2} \right)$$
= 4.

Since this is a positive constant, that is not equal to $+\infty$, it follows by the "Limit Test for Big-Oh" that $4n^2+2n+1\in O(n^2)$. On the other hand, since this is a *positive* constant — strictly greater than zero — it follows by the "Limit Test for Big-Omega" that $4n^2+2n+1\in \Omega(n^2)$ as well. It now follows by the "alternative definition of $\Theta(q)$ " that $4n^2+2n+\in \Theta(n^2)$, as claimed.

2. Suppose that $f, g, h : \mathbb{R} \to \mathbb{R}$ are asymptotically positive functions. You were asked to prove that if $f \in O(g)$ and $g \in O(h)$ then $f \in O(h)$.

Solution:

Claim 3. Suppose that $f, g, h : \mathbb{R} \to \mathbb{R}$ are asymptotically positive functions. If $f \in O(g)$ and $g \in O(h)$ then $f \in O(h)$.

Proof. Suppose, as above, that $f \in O(g)$. Then it follows by the definition of "O(g)" that there exist constants $\widehat{c} > 0$ and $\widehat{N}_0 \geq 0$ such that $f(x) \leq \widehat{c} \cdot g(x)$ for all $x \in \mathbb{R}$ such that $x > \widehat{N}_0$.

Suppose, as well, that $g \in O(h)$. Then it follows by the definition of "O(h)" that there exist constants $\widetilde{c} > 0$ and $\widetilde{N}_0 \geq 0$ such that $g(x) \leq \widetilde{c} \cdot h(x)$ for all $x \in \mathbb{R}$ such that $x \geq \widetilde{N}_0$.

In order to show that $f \in O(h)$, it suffices to show that *there exist* constants c > 0 and $N_0 \ge 0$ such that $f(x) \le c \cdot h(x)$ for all $x \in \mathbb{R}$ such that $x \ge N_0$.

With that noted, let $c=\widehat{c}\cdot\widetilde{c}$ and let $N_0=\max(\widehat{N}_0,\widetilde{N}_0)$. Then c and N_0 are constants, since \widehat{c} , \widetilde{c} , \widehat{N}_0 and \widetilde{N}_0 are. Furthermore, c>0 since $\widehat{c}>0$ and $\widetilde{c}>0$, and $N_0\geq 0$ since $\widehat{N}_0\geq 0$ and $N_0\geq 0$.

Now let $x \in \mathbb{R}$ such that $x \geq N_0$. Then

$$\begin{split} f(x) & \leq \widehat{c} \cdot g(x) \\ & \leq \widehat{c} \cdot (\widetilde{c} \cdot h(x)) \\ & = (\widehat{c} \cdot \widetilde{c}) \cdot h(x) \\ & = c \cdot h(x). \end{split} \tag{since } x \geq N_0 \geq \widehat{N}_0)$$

Since x was arbitrarily chosen from $\mathbb R$ such that $x \geq N_0$, it follows that $f(x) \leq c \cdot h(x)$ for all $x \in \mathbb R$ such that $x \geq N_0$.

It now follows by the definition of "O(h)" that $f \in O(h)$.