

기본 개념부터 최신 모바일 응용 예까지

3장. 에지 검출

PREVIEW

- 에지(edge)의 유용성
 - 물체의 경계를 표시해 줌
 - 매칭에 용이한 선분이나 곡선으로 변환 가능

그림 3-1 원래 영상과 에지 영상

- 에지의 한계
 - 실종된 에지 (거짓 부정), 거짓 에지 (거짓 긍정) 발생
 - 이들 오류를 어떻게 최소화할 것인가?

각 절에서 다루는 내용

- 1. 에지 검출의 기초
- 에지 검출을 위한 기초 원리와 1980년대에 사용한 알고리즘
- 2. 영교차 이론
- 다중 스케일 능력을 갖는 영교차 알고리즘의 원리
- 3. 캐니 에지
- 1990년대에 개발되어 가장 널리 활용되는 알고리즘
- 4. 컬러 에지
- 컬러 영상에서 에지 검출
- 5. 선분 검출
- 에지를 연결하여 에지 토막을 만들고 직선으로 근사화

3.1 에지 검출(edge detection)의 기초

- 원리
 - 물체 내부나 배경은 변화가 없거나 작은 반면, 물체 경계는 변화가 큼
 - 에지 검출 알고리즘은 명암, 컬러, 또는 텍스처의 변화량을 측정하고, 변화량이 큰 곳을 에지로 검출
 - 3.1.1 디지털 영상의 미분
 - 3.1.2 에지 모델과 연산자
 - 3.1.3 에지 강도와 에지 방향

3.1.1 디지털 영상의 미분

- 1차원
 - 연속 공간에서 미분

그림 3-2 미분과 에지 검출

$$s'(x) = \frac{ds}{dx} = \lim_{\Delta x \to 0} \frac{s(x + \Delta x) - s(x)}{\Delta x}$$
(3.1)

■ 디지털 (이산) 공간에서 미분

- 계단 에지와 램프 에지
 - 자연 영상에서는 주로 램프 에지가 나타남

■ 2차 미분

$$f''(x) = \frac{d^2 f}{dx^2} = f'(x) - f'(x - 1)$$

$$= (f(x + 1) - f(x)) - (f(x) - f(x - 1))$$

$$= f(x + 1) + f(x - 1) - 2f(x)$$
이에 해당하는 마스크 = 1 -2 1

■ 램프 에지에서 미분의 반응

- 에지 검출 과정
 - 1차 미분에서 봉우리 또는 2차 미분에서 영교차를 찾음
 - 두꺼운 에지에서 위치 찾기(localization) 적용

- 현실에서는,
 - 잡음 때문에 스무딩 필요 → 3x3 LPF 사용
 - 예) 100 100 100 100 170 170 170 ...→ 98 97 101 102 168 170 169 ...
 - *△x*=2인 연산자로 확장

$$f'(x) = \frac{df}{dx} = \frac{f(x+1) - f(x-1)}{2}$$

이에 해당하는 마스크 = $\boxed{-1}$ 0 1

■ 2차원으로 확장

$$\nabla f(y,x) = \left(\frac{\partial f}{\partial y}, \frac{\partial f}{\partial x}\right) = (d_y, d_x) = (f(y+1,x) - f(y-1,x), f(y,x+1) - f(y,x-1))$$
 (3.5) 이에 해당하는 마스크: $m_y = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$, $m_x = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$

■ 정방형으로 확장하여 스무딩 효과

		-1	-1	-1	-1	0	1		-1	-2	-1		-1	0	1
0 -1	-1 0	0	0	0	-1	0	1		0	0	0		-2	0	2
1 0	0 1	1	1	1	-1	0	1		1	2	1		-1	0	1
m_y	m_{x}		m_y			m_{x}		-		m_y				m_x	
(a) 로버츠 (b) 프레윗				!	(c) 소벨										

그림 3-5 에지 연산자

■ 로버츠 : 너무 작아 사용치 않음. 역사적 의미

■ 프레윗: 해당 행/열만이 아니라 주변 픽셀 이용. 스무딩 효과 내포

■ 소벨 : 가까운 화소에 가중치

3.1.3 에지 강도와 에지 방향

■ 에지 검출 연산

그레이디언트 :
$$\nabla f = \left(\frac{\partial f}{\partial y}, \frac{\partial f}{\partial x}\right) = (d_y, d_x)$$
 에지 강도 : $S(y, x) = \text{magnitude}(\nabla f) = \sqrt{d_y^2 + d_x^2}$ (3.6) 그레이디언트 방향 : $D(y, x) = \arctan\left(\frac{d_y}{d_x}\right)$

(a) 에지 방향과 그레이디언트 방향

그림 3-6 에지 방향과 8-방향 양자화

(b) 에지 방향의 양자화

3.1.3 에지 강도와 에지 방향

예제 3-1 소벨 마스크를 이용한 에지 검출

[그림 3-7]의 작은 예제 영상에 소벨 에지 연산자를 적용한다. (5,3)위치에 있는 화소에 대해서 앞에서 다룬 그레이디언트, 에지 강도, 에지 방향을 계산해 보자.

	0	1	2	3	4	5	6	7							
0	0	0	0	0	0	0	0	0	$d_y = (0 \times 1 + 0 \times 2 + 1 \times 1) + (3 \times (-1) + 1 \times (-2) + 0 \times (-1)) = (3 \times (-1) + 1 \times (-2) + 0 \times (-1)) = (3 \times (-1) + 1 \times (-2) + 0 \times (-1)) = (3 \times (-1) + 1 \times (-2) + 0 \times (-1)) = (3 \times (-1) + 1 \times (-2) + 0 \times (-1)) = (3 \times (-1) + 1 \times (-2) + 0 \times (-1)) = (3 \times (-1) + 1 \times (-2) + 0 \times (-1)) = (3 \times (-1) + 1 \times (-2) + 0 \times (-1)) = (3 \times (-1) + 1 \times (-2) + 0 \times (-1)) = (3 \times (-1) + 1 \times (-2) + 0 \times (-1)) = (3 \times (-1) + 1 \times (-2) + 0 \times (-1)) = (3 \times (-1) + 1 \times (-2) + 0 \times (-1)) = (3 \times (-1) + 1 \times (-2) + 0 \times (-2)) = (3 \times (-1) + 1 \times (-2) + 0 \times (-2)) = (3 \times (-1) + 0 \times (-2) + 0 \times (-2)) = (3 \times (-2) + 0 \times (-2) + 0 \times (-2) = (3 \times (-2) + 0 \times (-2) + 0 \times (-2) = (3 \times (-2) + 0 \times (-2) + 0 \times (-2) = (3 \times (-2) + 0 \times (-2) + 0 \times (-2) = (3 \times (-2) + 0 \times (-2) $						
1	0	1	1	0	0	0	1	0	$d_x = (0 \times 1 + 4 \times 2 + 1 \times 1) + (3 \times (-1) + 2 \times (-2) + 0 \times (-1)) = 0$:2					
2	0	1	2	0	0	0	1	0	$S(5,3) = ((-4)^2 + 2^2)^{\frac{1}{2}} = 4.47$	-1	-2	_	-1	0	1
3	0	1	3	1	0	0	2	0		0	0	0	-2	0	2
3	U	1	3	1	U	U		U	$D(5,3) = \arctan(-\frac{4}{2}) = -63.4^{\circ}$	1	2	1	-1	0	1
4	0	1	3	1	0	0	2	0	2		m_y			m_{x}	
5	0	1	2	3	4	4	3	0	$\rightarrow d_y \mathfrak{P} d_x$	(c) 소	·벨				
6	0	0	0	0	1	3	1	0	→ 그레이디언트 방향						
7	0	0	0	0	0	0	0	0	→ 에지 방향						

그림 3-7 소벨 에지 검출 예

그레이디언트는 $\nabla f = (dy, dx) = (-4, 2)$ 이다. 식 (3.6)을 적용하면 에지 강도는 4.47이고, 그레이디언트 방향은 -63.4°이다. 에지 방향은 그레이디언트 방향에 수직이므로 26.6°이다. 에지 방향을 [그림 3-6(b)]에 따라 양자화하면 1이 된다.

3.1.3 에지 강도와 에지 방향

그림 3-8 에지 검출과 관련된 맵

3.2 영교차 이론

- 1980년에 Marr와 Hildreth가 개발 [Marr80]
 - 이전에는 주로 소벨을 사용
- 3.2.1 가우시안과 다중 스케일 효과
- 3.2.2 LOG 필터

- 가우시안(Gaussian filter)을 사용하는 이유
 - 미분은 잡음을 증폭시키므로 스무딩 적용이 중요함

- 가우시안을 사용하는 이유
 - σ 를 조절하여 다중 스케일 효과 (σ 조절 \rightarrow 마스크 사이즈 조절)
 - lacktriangle 에지의 세밀함 조절 가능 : σ 를 크게 하면 큰 물체의 에지, 작게 하면 작은 에지까지 추출

그림 3-10 다중 스케일 에지 효과

■ 가우시안

$$G(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$
 (3.7)

σ 로 스케일 조절

그림 3-11 가우시안 커널

(b) 가우시안 함수의 미분

■ 2차원 가우시안

그림 3-12 2치원 가우시안 함수(σ=2.0)

- 이산 공간에서 구현 마스크 크기
 - 마스크 크기가 작으면 오차, 크면 계산 시간 과다
 - 6σ와 같거나 큰 가장 작은 홀수
 - 예) $\sigma = 3.0$ 이면, 19*19 마스크 사용

■ 2차원 가우시안

 σ = 0.5 mask [3 x 3]

0.012	0.086	0.012
0.086	0.637	0.086
0.0123	0.086	0.012

 σ = 1.0 mask [7 x 7]

0.000	0.000	0.001	0.002	0.001	0.000	0.000
0.000	0.003	0.013	0.022	0.013	0.003	0.000
0.001	0.013	0.059	0.097	0.059	0.013	0.001
0.002	0.022	0.097	0.159	0.097	0.022	0.002
0.001	0.013	0.059	0.097	0.059	0.013	0.001
0.000	0.003	0.013	0.022	0.013	0.003	0.000
0.000	0.000	0.001	0.002	0.001	0.000	0.000

3.2.2 LOG(Laplacian of Gaussian) 필터

- Marr-Hildreth 에지 검출 알고리즘 [Marr80]
 - 2차 미분에서 영교차 검출

알고리즘 3-1 Marr-Hildreth 에지 검출

입력: 영상 f(j,i), $0 \le j \le M-1$, $0 \le i \le N-1$, 가우시안의 표준편차 σ

출력: 에지 영상 b(j,i), $0 \le j \le M-1$, $0 \le i \le N-1$ // 에지는 1, 비에지는 0인 이진 영상

- 1 σ 크기의 가우시안으로 입력 영상 f를 스무딩한다.
- 2 결과 영상에 라플라시안 연산자를 적용하여 2차 미분을 구한다.
- 3 결과 영상에서 영교차를 찾아 에지로 설정하고, 나머지는 비에지로 설정한다.

■ 라플라시안 (2행)

$$\nabla^2 f(y,x) = \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial x^2}$$
 식(3.3)의 확장
= $(f(y+1,x) + f(y-1,x) - 2f(y,x)) + (f(y,x+1) + f(y,x-1) - 2f(y,x))$
= $f(y+1,x) + f(y-1,x) + f(y,x+1) + f(y,x-1) - 4f(y,x)$ (3.10)
이에 해당하는 필터: $L = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

■ LOG 필터

- 입력 영상에 가우시안 G를 적용한 후, 라플라시안을 다시 적용하는 두 단계의 비효율성
 - 계산 시간 과다
 - 이산화에 따른 오류 누적

■ LOG 필터를 이용한 1단계 처리

$$LOG(y,x) = \nabla^2(G(y,x) \circledast f(y,x)) = (\nabla^2 G(y,x)) \circledast f(y,x)$$
(3.11)

$$\nabla^{2} G(y, x) = \left(\frac{y^{2} + x^{2} - 2\sigma^{2}}{\sigma^{4}}\right) G(y, x)$$
 (3.12)

pp 126 참조

					0.0005	O. D028	0.008	8 0.012	5 0.0	088 0	.0028	O. D005
					0.002B	0.0177	0.039	4 0.043	3 0.0	394 0	.0177	0.0028
					0.0088	0.0394	0.000	2 -0.096	4 0.0	002 0	.0394	O. D088
					0.0125	O. D433	-0.096	4 -0.318	3 -0.0	964 0	.0433	O. DI 25
0.4038	0.8021	0.403	18		0.0088	0.0394	0.000	2 -0.096				0.0088
0.8021	-4.8233	0.802	1		0.002B	0.0177	0.039	4 0.043	3 0.0	394 0	.0177	O. D028
0.4038	0.8021	0.403			0.0005	0.0028						O. D005
		01400					0,000	0.0.2	0 0.0	000 0	.0025	0,0000
(a) σ =(0,5				(b) σ =	:1,0						
0.0001	0.0001	0.0002	D.0004	0.0006	0.0007	0.0008	0.0007	0.0006	D.0004	0.0002	0.0001	0.0001
0.0001	0.0002	0.0005	0.0010	0.0014	0.001B	0.0019	0.0018	0.0014	0.0010	0.0005	0.0002	0.0001
0.0002	0.0005	0.0011	0.0019	0.0025	0.0027	0.0027	0.0027	0.0025	0.0019	0.0011	0.0005	0.0002
0.0004	0.0010	0.0019	0.0027	0.0025	0.0015	0.0008	0.0015	0.0025	0.0027	0.0019	0.0010	0.0004
0.0006	0.0014	0.0025	0.0025	0.0000	-0.0040	-0.0060	-0.0040	0.0000	0.0025	0.0025	0.0014	0.0006
0.0007	0.0018	0.0027	0.0015	-0.0040	-0.0116	-0.0154	-0.0116	-0.0040	0.0015	0.0027	0.0018	0.0007
0.0008	0.0019	0.0027	0.0008	-0.0060	-0.0154	-0.0199	-0.0154	-0.0060	0.0008	0.0027	0.0019	0.0008
0.0007	0.0018	0.0027	0.0015	-0.0040	-0.0116	-0.0154	-0.0116	-0.0040	0.0015	0.0027	0.0018	0.0007
0.0006	0.0014	0.0025	0.0025	0.0000	-0.0040	-0.0060	-0.0040	0.0000	0.0025	0.0025	0.0014	0.0005
0.0004	0.0010	0.0019	0.0027	0.0025	0.0015	0.0008	0.0015	0.0025	0.0027	0.0019	0.0010	0.0004
0.0002	0.0005	0.0011	0.0019	0.0025	0.0027	0.0027	0.0027	0.0025	0.0019	0.0011	0.0005	0.0002
0.0001	0.0002	0.0005	0.0010	0.0014	0.001B	0.0019	0.0018	0.0014	D.0010	0.0005	0.0002	0.0001
0.0001	0.0001	0.0002	0.0004	0.0006	0.0007	0.0008	0.0007	0.0006	0.0004	0.0002	0.0001	0.0001
(c) $\sigma = 2$	2.0											

- (d) $\sigma = 5.0$
- 그림 3-13 LOG 필터

- 함수 자체에도 영교차 발생
- 등방성 (Isotropic)
- Mexican hat

알고리즘 3-2 Marr-Hildreth 에지 검출(LOG 필터 사용)

입력: 영상 f(j,i), $0 \le j \le M-1$, $0 \le i \le N-1$, 가우시안의 표준편차 σ

출력:에지 영상 b(j,i), $0 \le j \le M-1$, $0 \le i \le N-1$ // 에지는 1, 비에지는 0인 이진 영상

1 σ 크기의 LOG 필터를 입력 영상 f에 적용한다.

2 결과 영상에서 영교차를 찾아 에지로 설정하고, 나머지는 비에지로 설정한다.

- 영교차 검출 (2행)
- 1. 여덟 개의 이웃 중에 마주보는 동-서, 남-북, 북동-남서, 북서-남동의 화소 쌍 네 개를 조사한다. 그들 중 두 개 이상이 서로 다른 부호를 가진다.
- 2. 부호가 다른 쌍의 값 차이가 임계값을 넘는다.

예제 3-2 Marr-Hildreth 에지 검출 알고리즘

[그림 3-14(a)]는 간단한 8×8 영상과 여기에 σ =0.5의 3×3 크기의 LOG 연산자([그림 3-13])를 적용하여 얻은 영상 g이다. 동그라미로 표시된 (6,3)에 있는 화소의 영교차 여부를 따져보자. 마주보는 네 개의 이웃 쌍 중에 남-북과 북서-남동의 두 개 쌍의 부호가 다르다. 이들을 구성하는 화소의 값 차이는 각각 7.6442와 5.2379이다. 만일 임계값 T=1.0으로 설정했다면 둘 다 T를 넘으므로 이 화소는 영교차 점이 된다. [그림 3-14(b)]는 T=1.0으로 구한 에지 영상 D이다.

0	0	0	0	0	0	0	0
0	1	1	0	0	0	1	0
0	1	2	0	0	0	1	0
0	1	3	1	0	0	2	0
0	1	3	1	0	0	2	0
0	1	2	3	4	4	3	0
0	0	0	0	1	3	1	0
0	0	0	0	0	0	0	0

0.4038	1.2058	1.2058	0.4038	0	0.4038	0.8021	0.4038
1.2058	-2.4116	-2.0133	1.6096	0	1.2058	-4.0212	1.2058
1.6096	-0.0000	-4.4250	4.0212	0.4038	2.0133	-2.4171	2.0133
1.6096	1.2058	-7.6441	0.4038	1.2058	2.8154	-7.2404	2.8154
1.6096	1.2058	-6.4328	4.4250	7.2404	8.4462	-4.0212	3.6229
1.2058	-1.2058	-3.2246	-7.2404	-11.2616	-9.6574	-7.6441	3.6175
0.4038	1.6096	3.2191	5.6308	3.6175	-6.8311	1.6041	2.0133
0	0	0	0.4038	2.0133	3.2137	2.0133	0.4038

(a) 원래 영상과 LOG 필터를 적용한 영상 g

0	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0
0	1	1	1	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	1	1	1	0	0
0	1	0	0	0	1	1	0
0	0	0	1	1	1	1	0
0	0	0	0	0	0	0	0

(b) 영교차 검출(*T=*1.0)

그림 3-14 LOG 영상과 영교차 영상

- σ가 작으면 세밀한 에지 검출
- σ가 크면 큰 규모 에지 검출

원본

 $\sigma = 0.5$

 $\sigma = 2.0$

- σ가 작으면 세밀한 에지 검출
- σ가 크면 큰 규모 에지 검출

그림 3-15 다중 스케일 에지 검출

3.3 캐니(Canny) 에지

- 앞 절은 '그럴 듯해 보이는' 에지 연산자 사용
- 1986년에 Canny 에지 발표 [Canny86]
 - 에지 검출을 최적화 문제로 해결
 - 세 가지 기준
 - 최소 오류율: 거짓 긍정과 거짓 부정이 최소여야 한다. 즉, 없는 에지가 생성되거나 있는 에지를 못 찾는 경우를 최소로 유지해야 한다.
 - 2. 위치 정확도 : 검출된 에지는 실제 에지의 위치와 가급적 가까워야 한다.
 - 3. 에지 두께 : 실제 에지에 해당하는 곳에는 한 두께의 에지만 생성해야 한다.

A computational approach to edge detection

J Canny - Pattern Analysis and Machine Intelligence, IEEE ..., 1986 - ieeexplore.ieee.org
Abstract-This paper describes a computational approach to edge detection. The success of
the approach depends on the definition of a comprehensive set of goals for the computation
of edge points. These goals must be precise enough to delimit the desired behavior of the ...
19422회 인용 관련 학술자료 전체 17개의 버전 Web of Science: 6073 인용 저장

← Google scholar

3.3 캐니 에지

■ 캐니 에지 검출 알고리즘

알고리즘 3-3 캐니 에지 검출(스케치 버전)

입력: 영상 f(j,i), $0 \le j \le M-1$, $0 \le i \le N-1$, 가우시안의 표준편차 σ

출력:에지 영상 e(j,i), $0 \le j \le M-1$, $0 \le i \le N-1$ // 에지는 1, 비에지는 0인 이진 영상

- 1 입력 영상 f에 σ 크기의 가우시안 스무딩을 적용한다.
- 2 결과 영상에 소벨 연산자를 적용하여 에지 강도와 에지 방향 맵을 구한다.
- 3 비최대 억제를 적용하여 얇은 두께 에지 맵을 만든다.
- 4 이력 임계값을 적용하여 거짓 긍정을 제거한다.

3.3 캐니 에지

- 비최대 억제(non-maximum suppression)
 - 에지 방향에 따라 이웃하는 두 화소보다 에지 강도가 크지 않으면 억제됨

(a) 에지 방향=0 (b) 에지 방향=1 (c) 에지 방향=2 (d) 에지 방향=3

그림 3-17 비최대 억제를 위한 두 이웃 화소(방향 4는 0, 5는 1, 6은 2, 7은 3과 같음)

- 이력 임계값(hysteresis thresholding)
 - 두 개의 임계값 T_{high} 와 T_{low} 사용하여 거짓 긍정(에지가 아닌 걸 에지로 판정) 줄임
 - 에지 추적은 T_{high} 를 넘는 화소에서 시작, 추적 도중에는 T_{low} 적용

3.3 캐니 에지

(a) 원래 영상(342×800)

그림 3-18 캐니 에지

3.4 컬러 에지

- RGB 채널에 독립적으로 적용 후 OR 결합
 - 에지 불일치 발생

그림 3-19 RGB 컬러 공간에서 그레이디언트

그림 3-20 RGB 영상에서 OR 연산으로 구한 에지

3.4 컬러 에지

■ 디 젠조(Di Zenzo) 방법

$$g_{yy} = (d_{yr})^{2} + (d_{yg})^{2} + (d_{yb})^{2}$$

$$g_{xx} = (d_{xr})^{2} + (d_{xg})^{2} + (d_{xb})^{2}$$

$$g_{yx} = d_{yr}d_{xr} + d_{yg}d_{xg} + d_{yb}d_{xb}$$
(3.13)

그레이디언트 방향:
$$D(y,x) = \frac{1}{2}\arctan\left(\frac{2g_{yx}}{g_{xx}-g_{yy}}\right)$$
 (3.14)

에지 강도:
$$S(y,x) = \sqrt{0.5 \times ((g_{yy} + g_{xx}) + (g_{xx} - g_{yy})\cos(2D(y,x)) + 2g_{yx}\sin(2D(y,x)))}$$
 (3.15)

3.4 컬러 에지

차이가 있나?

그림 3-21 디 젠조 에지 맵(왼쪽)과 RGB채널을 평균한 에지 맵(오른쪽)

3.5 선분 검출

■ 에지 맵 → 에지 토막(edge segment) → 선분(직선 토막, line segment)

- 3.5.1 에지 연결과 선분 근사
- 3.5.2 허프 변환
- **3.5.3 RANSAC**

■ 에지 연결과 표현

@끝점 + 분기점 o 통과점

(a) 에지 영상

(b) 체인 코드 표시 기준

에지 토막	에지 열	체인 코드
1	(2,1)(2,2)(3,3)(4,4)(4,5)	(2,1)0110
2	(4,5)(5,5)(6,6)(6,7)(6,8)	(4,5)2100
3	(4,5)(3,6)(2,7)	(4,5)77
4	(2,7)(1,8)(1,9)(2,10)(3,9)(3,8)	(2,7)701345
5	(2,13)(3,14)(4,15)(5,14)(5,13)(4,12)(3,12)	(2,13)113567

두께가 2이상의 에지인 경우 혼란

그림 3-22 에지 토막의 에지 열과 체인 코드 표현

- 세선화(Thinning)
 - 2~3 두께 에지를 1 두께로 변환
 - 최소 8-연결성(minimal 8-connectivity) 보장

SPTA(Safe Point Thinning Algorithm) 세선화 [Naccache84]

														n_7
														n_0
X	X	X	1	0	X	X	0	0	X	X	X	n_3	n_2	n_1

 $s_4 = n_0 \cdot (n_1 + n_2 + n_6 + n_7) \cdot (n_2 + n_3') \cdot (n_6 + n_5')$

(a) n₄=0인 그룹의 마스크와 논리식

그림 3-23 SPTA의 규칙

(b) 이웃 표기

네가지 마스크에 매치가 안되면 혹은 *S*₄가 참이면

*p*를 에지에서 제거

 $n_{\Delta}=0$,

0: 비에지, 1: 에지, x: don't care

■ 에지 추적

(a) 캐니로 검출한 에지 영상

(b) SPTA로 세선화된 영상

(c) 추적 시작점(분기점과 끝점)

그림 3-24 에지 연결 과정

a, b, c 중 누가 분기점?

시계방향으로 전환 조사

3번이상 전환 : 분기점

1번 전환 : 끝점

(a) 분기점 후보

(b) a의 전환 횟수는 2, b는 3, c는 2이다. 따라서 b가 분기점이다.

그림 3-25 분기점을 골라내는 규칙

- 에지 토막 > 선분 근사
 - 에지 토막: 끝점과 분기점을 양끝점으로 하는 연결된 에지 집합
 - 두 끝점을 잇는 직선으로부터 가장 먼 점까지의 거리 h가 임계값 이내가 될 때까지 선분 분할을 재귀적으로 반복

그림 3-27 선분 근사화 알고리즘

3.5.2 허프 변환 (Hough transform)

- 허프 변환
 - 에지 연결 과정 없이 선분 검출 (전역 연산을 이용한 지각 군집화)
 - 영상 공간 *y-x*를 기울기 절편 공간 *b-a*로 매핑

y-x 공간을 *b-a* 공간으로 매핑

그림 3-28 허프 변환의 원리

3.5.2 허프 변환

- 수직선의 기울기가 ∞인 문제
 - 극좌표계 사용하여 해결

$$y\cos\theta + x\sin\theta = \rho$$

(3.16)

y-x 공간을 $\rho-\theta$ 공간으로 매핑

그림 $3-29 \rho - \theta$ 공간에서 허프 변환

3.5.2 허프 변환

예제 3-3 허프 변환

- 밀집된 곳 찾기
 - 양자화 이용

[그림 3-30]은 [그림 3-29]를 이산 공간에 다시 그린 것이다. 왼쪽 그림에서 세 점은 $(y_1, x_1) = (4,1)$, $(y_2, x_2) = (2,4)$, $(y_3, x_3) = (1,6)$ 이다. $(y_4, x_4) = (3.5,1)$ 이면 세 점이 정확히 일직선 상에 있지만, 디지털 영상의 특성상 약간의 위치 오차가 발생했다고 간주하자.

그림 3-30 이산 공간에서 허프 변환

 θ 축은 20° 간격으로 양자화하여 총 아홉 개의 구간을 가지도록 하였다. ρ 축은 범위 [-9,9]를 2 크기의 구간으로 나누어 총 아홉 개의 구간을 가지도록 양자화하였다. 따라서 누적 배열 A는 9×9 이다. [알고리즘 3-7]에 따라 A를 0으로 초기화한 후, $2\sim3$ 행을 수행하여 세 점의 자취를 누적시키면 오른쪽 그림과 같은 배열이 된다. 이 배열에서 지역 최대점은 3을 갖는 (6,6)으로, (ρ,θ) = $(4,40^{\circ})$ 에 해당한다. $y\cos 40^{\circ}+x\sin 40^{\circ}$ = 4라는 직선을 검출한 셈이다. 왼쪽 그림에 있는 점선이 검출한 직선이다.

3.5.2 허프 변환

- 허프 변환은 방정식으로 표현할 수 있는 어떤 도형도 검출 가능
- 원 검출
 - 3차원 누적 배열 사용

$$(y-b)^2 + (x-a)^2 = r^2$$
 (3.17)

3.5.3 RANSAC (RANdom Sample Consensus) [Fischler 81]

- 인라이어(inlier)와 아웃라이어(outlier)가 혼재된 상황에서 인라이어를 찾아 모델을 만드는 기법
- 난수 생성하여 인라이어 군집을 찾기 때문에 임의성 내포
- 선분 검출에 적용 : 모델은 직선의 방정식 y = ax + b

모든 샘플에서 가장 가까운 직선이 아닌 RANSAC을 쓰 는 이유는?

- 임의의 샘플 2개 선택 → 직선의 방정식 생성(a, b값 계산)
 - → 직선에서 가까운 인라이어 개수가 가장 많은 모델 선택
 - → 모든 인라이어를 가지고 직선의 방정식을 다시 추정