15-150 Fall 2013 Lecture 19

Stephen Brookes

today

parallel programming

- parallelism and functional style
- cost semantics
- Brent's Theorem and speed-ups
- sequences: an abstract type with efficient parallel operations

parallelism

- exploiting multiple processors
- evaluating independent code simultaneously
- low level implementation
 - scheduling work onto processors
- high level planning
 - designing code abstractly
 - without baking in a schedule

our approach

- design code abstractly
 - specify behavioral correctness
 - specify asymptotic runtime (work, span)
- reason about code abstractly
 - independently of schedule
 - cost semantics and evaluation
- You design the code
- The compiler schedules the work

functional benefits

- No side effects, so evaluation order doesn't affect behavioral correctness
- Can build abstract types that support efficient parallel-friendly operations
- Can use work and span to predict how parallelizable our code is
- Work and span are independent of scheduling details

caveat

- In practice, it's hard to achieve speed-up
- Current languages don't make it easy to implement good scheduling strategies
- Problems include:
 - scheduling overhead
 - locality of data (cache problems)
 - runtime sensitive to scheduling choices

why bother?

- It's good to learn to think abstractly first and figure out details later
 - Focus on data dependencies when you design your code
- Our thesis: this approach to parallelism will prevail...

(plus, 15-210 builds on these ideas...)

cost semantics

- We've already introduced work and span
- Work estimates the sequential running time on a single processor
- Span takes account of data dependency, estimates the parallel running time with unlimited processors
 - critical path length of computation

cost semantics

- We showed how to calculate work and span for recursive functions with recurrence relations
- Now we introduce cost graphs, another way to deal with work and span
- Cost graphs also allow us to talk about schedules...
- ... and the potential for speed-up

cost graphs

A cost graph is a series-parallel graph

- directed graph, with source and sink
- nodes represent units of work (constant time)
- edges represent data dependencies
- branching indicates potential parallelism

cost graphs

a single node

sequential composition

parallel composition

work and span

of a cost graph

- The **work** is the number of nodes
- The span is the length of the longest path from source to sink

 $span(G) \leq work(G)$

work

span

example

work = II (number of nodes) span = 4 (longest path length)

using graphs

- Every expression can be given a cost graph
- Calculate the work and span using the graph
 - These are asymptotically the same as the work and span derived from recurrence relations

But what do work and span tell us about the actual running time?

scheduling

assign units of work to processors respecting data dependency

- Work: number of steps taken by sequential scheduler on a single processor
- Span: number of steps taken by an optimal parallel scheduler with unlimited processes

an optimal parallel schedule (5 rounds, or 4 steps)

(uses 5 processors)

example

What if there are only 2 processors?

2 processors cannot do the job as fast as 5 processors (!)

Brent's Theorem

An expression with work w and span s can be evaluated on a p-processor machine in time O(max(w/p, s)).

Optimal schedule using **p** processors:

Do (up to) **p** units of work each round

Total work to do is **w**Needs at least **s** steps

What's the significance of the smallest \mathbf{p} such that $\mathbf{w}/\mathbf{p} \leq \mathbf{s}$?

Using more than this many processors won't yield any speed-up

example

work =
$$11$$
 span = 4

min
$$\{p \mid 11/p \le 4\}$$
 is 3

(i)
$$134$$
 a best schedule (ii) 265 for 3 processors (iii) 78

$$(v)$$
 (v)

(5 rounds, 4 steps)

3 processors can do the job as fast as 5(!)

next

- Exploiting parallelism in ML
- A signature for parallel collections
- Cost analysis of implementations
- Cost benefits of parallel algorithm design

sequences

```
signature SEQ =
sig
 type 'a seq
  exception Range
  val tabulate: (int -> 'a) -> int -> 'a seq
  val length: 'a seq -> int
  val nth : int -> 'a seq -> 'a
  val map : ('a -> 'b) -> 'a seq -> 'b seq
 val reduce : (('a * 'a) -> 'a) -> 'a -> 'a seq -> 'a
 val mapreduce: ('a -> 'b) -> 'b -> ('b * 'b -> 'b) -> 'a seq -> 'b
end
```

implementations

- Many ways to implement the signature
 - lists, balanced trees, arrays, ...
- For each one, can give a cost analysis
- There may be implementation trade-offs
 - arrays: item access is O(1)
 - trees: item access is O(log n)

Seq:SEQ

- An abstract parameterized type of sequences
- Think of a sequence as a parallel collection
- With parallel-friendly operations
 - constant-time access to items
 - efficient map and reduce

We'll work today with an implementation Seq : SEQ based on vectors

notation

We use math notation like

$$\langle v_1, ..., v_n \rangle$$
 $\langle v_0, ..., v_{n-1} \rangle$
 $\langle \rangle$

for sequence values

 $\langle 1, 2, 4, 8 \rangle$: int seq

equality

 Two sequence values are (extensionally) equal iff they have the same length and their items are equal

```
\langle v_1, ..., v_n \rangle = \langle u_1, ..., u_m \rangle
if and only if
n = m and for all i, v_i = u_i
```

operations

- For each operation in the signature SEQ we specify the (extensional) behavior of the operation implemented in Seq and discuss its cost semantics
- Other structures with the same signature may implement the operations with different work and span profile
- Learn to choose wisely!

tabulate

tabulate f n = $\langle f 0, ..., f(n-1) \rangle$

If G_i is cost graph for f(i),
 the cost graph for tabulate f n is

If f is O(I), the work for tabulate f n is O(n)If f is O(I), the span for tabulate f n is O(I)

examples

- tabulate ($\mathbf{fn} \times \mathbf{x}$:int => x) 6
- tabulate (fn x:int => x*x) 6
- tabulate (fn _ => raise Range) 0

length

length $\langle v_1, ..., v_n \rangle = n$

- Work is O(I)
- Span is O(1)
- Cost graph is

Contrast: List.length $[v_1,...,v_n] = n$ work, span O(n)

nth

- Work is O(I)
- Span is O(1)
- Cost graph is

Seq provides constant-time access to items

map

map
$$f \langle v_1, ..., v_n \rangle = \langle f v_1, ..., f v_n \rangle$$

If f is constant time, work O(n)
 span O(1)

(contrast with List.map)

reduce

reduce should be used to combine a sequence using an associative function g with identity element z

- g:t*t->t is **associative** iff for all $x_1,x_2,x_3:t$ $g(x_1,g(x_2,x_3)) = g(g(x_1,x_2),x_3)$
- z is an identity for g iff for all x:t, g(x,z) = x
- When g is associative and z an identity we write v_1 g v_2 g ... g v_n g z

for the result of combining $v_1, v_2, ..., v_n, z$ using g

reduce
$$g z \langle v_1, ..., v_n \rangle = v_1 g v_2 g ... g v_n g z$$

= $v_1 g v_2 g ... g v_n$

reduce

When g is associative and z is an identity

reduce
$$g z \langle v_1, ..., v_n \rangle = v_1 g v_2 g ... g v_n g z$$

If g is constant time,

reduce g z
$$\langle v_1, ..., v_n \rangle$$

has work O(n)

and span O(log n)

(Contrast with foldr, foldl on lists)

reduce (op +)
$$0 \langle 1, 2, 3, 4 \rangle$$

cost graph $\begin{pmatrix} 1 & 2 & 3 & 4 \\ + & & + \end{pmatrix}$

reduce (op +) 0 (1, 2, 3, 4, 5, 6, 7, 8)

reduce cost

reduce g z $\langle v_1, ..., v_{2n} \rangle$ = g(reduce g z $\langle v_1, ..., v_n \rangle$, reduce g z $\langle v_{n+1}, ..., v_{2n} \rangle$)

$$W(2n) = 2*W(n) + c$$

 $S(2n) = S(n) + c$

mapreduce

When g is associative and z is an identity,

mapreduce f z g
$$\langle v_1, ..., v_n \rangle$$
 = (f v_1) g ... g (f v_n) g z

• When f, g are constant time,

```
mapreduce f z g \langle v_1, ..., v_n \rangle
has work O(n)
and span O(log n)
```

examples

```
fun sum (s : int seq) : int = reduce (op +) 0 s
```

```
fun count (s : int seq seq) : int =
    sum (map sum s)
```

analysis

```
fun sum (s : int seq) : int = reduce (op +) 0 s
fun count (s : int seq seq) : int = sum (map sum s)
```

- Let s be a value of type int seq seq consisting of n rows, each of length n
- What are the work and span for

counts?

analysis

Let $s = \langle s_1, ..., s_n \rangle$, $s_i = \langle x_{i1}, ..., x_{in} \rangle$, $t_i = sum s_i$

For each i, sum $s_i = reduce(op +) 0 \langle x_{i1}, ..., x_{in} \rangle$

map sum s = \langle sum s₁, ..., sum s_n \rangle

cost graph of map sum s

work is O(n²)
span is O(log n)

analysis

Let $t_i = sum s_i$

count s = sum $\langle t_1, ..., t_n \rangle$

cost graph of sum (map sum s)

work is O(n²) span is O(log n)