Kalman Filter Theory and Applications Equation Drilldown

https://github.com/musicarroll/kalman_course

Michael L. Carroll

June 22, 2023

©2023 by Michael L. Carroll

Part I

The Five Basic Kalman Equations Topics

Part I The Five Basic Kalman Equations Topics

• Understanding the Equations: Heuristic Introduction

Part I The Five Basic Kalman Equations Topics

- Understanding the Equations: Heuristic Introduction
- Equation Drilldown: Taking the Equations Apart

- Understanding the Equations: Heuristic Introduction
- Equation Drilldown: Taking the Equations Apart
- State Space Concepts

Part | The Five Basic Kalman Equations Topics

- Understanding the Equations: Heuristic Introduction
- Equation Drilldown: Taking the Equations Apart
- State Space Concepts

Mathematical Formulation of the Problem

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations
- The Five Kalman Filter Equations

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations
- The Five Kalman Filter Equations
- Examples: Damped Harmonic Oscillator

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations
- The Five Kalman Filter Equations
- Examples: Damped Harmonic Oscillator
- Exercises

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations
- The Five Kalman Filter Equations
- Examples: Damped Harmonic Oscillator
- Exercises

Spring, Mass, Damper System

Spring, Mass, Damper System

Spring, Mass, Damper System

System Dynamics

System Dynamics

ullet System model: Number of states = 2 (position and velocity)

System Dynamics

System Dynamics

$$\begin{bmatrix} x_1(j) \\ x_2(j) \end{bmatrix} = \exp\left(\begin{bmatrix} 0 & 1 \\ -b/m & -k/m \end{bmatrix} \Delta t \right) \begin{bmatrix} x_1(j-1) \\ x_2(j-1) \end{bmatrix} + \begin{bmatrix} w_1(j) \\ w_2(j) \end{bmatrix}$$

• Thus,
$$\Phi(\Delta t) = \exp\left(\begin{bmatrix} 0 & 1 \\ -b/m & -k/m \end{bmatrix} \Delta t\right)$$
.

System Dynamics

$$\begin{bmatrix} x_1(j) \\ x_2(j) \end{bmatrix} = \exp\left(\begin{bmatrix} 0 & 1 \\ -b/m & -k/m \end{bmatrix} \Delta t \right) \begin{bmatrix} x_1(j-1) \\ x_2(j-1) \end{bmatrix} + \begin{bmatrix} w_1(j) \\ w_2(j) \end{bmatrix}$$

- Thus, $\Phi(\Delta t) = \exp\left(\begin{bmatrix} 0 & 1 \\ -b/m & -k/m \end{bmatrix} \Delta t\right)$.
- Note that exp is a matrix exponential. We'll explain later how to derive state transition matrices from the underlying differential equations

System Dynamics

$$\begin{bmatrix} x_1(j) \\ x_2(j) \end{bmatrix} = \exp\left(\begin{bmatrix} 0 & 1 \\ -b/m & -k/m \end{bmatrix} \Delta t \right) \begin{bmatrix} x_1(j-1) \\ x_2(j-1) \end{bmatrix} + \begin{bmatrix} w_1(j) \\ w_2(j) \end{bmatrix}$$

- Thus, $\Phi(\Delta t) = \exp\left(\begin{bmatrix} 0 & 1 \\ -b/m & -k/m \end{bmatrix} \Delta t\right)$.
- Note that exp is a matrix exponential. We'll explain later how to derive state transition matrices from the underlying differential equations
- Here $\Delta t = t_j t_{j-1}$, m is the mass, k is the spring constant, and b is the damping constant; we are using t for the time step index, to avoid clash with spring constant

System Dynamics

$$\begin{bmatrix} x_1(j) \\ x_2(j) \end{bmatrix} = \exp\left(\begin{bmatrix} 0 & 1 \\ -b/m & -k/m \end{bmatrix} \Delta t \right) \begin{bmatrix} x_1(j-1) \\ x_2(j-1) \end{bmatrix} + \begin{bmatrix} w_1(j) \\ w_2(j) \end{bmatrix}$$

- Thus, $\Phi(\Delta t) = \exp\left(\begin{bmatrix} 0 & 1 \\ -b/m & -k/m \end{bmatrix} \Delta t\right)$.
- Note that exp is a matrix exponential. We'll explain later how to derive state transition matrices from the underlying differential equations
- Here $\Delta t = t_j t_{j-1}$, m is the mass, k is the spring constant, and b is the damping constant; we are using t for the time step index, to avoid clash with spring constant

Measurement Model

• Measurement Model:

$$z(j) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(j) \\ x_2(j) \end{bmatrix} + v(j)$$

where the measurement noise v(j) has variance σ^2

• Measurement Model:

$$z(j) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(j) \\ x_2(j) \end{bmatrix} + v(j)$$

where the measurement noise v(j) has variance σ^2

• Thus $H_t = \begin{bmatrix} 1 & 0 \end{bmatrix}$

Measurement Model:

$$z(j) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(j) \\ x_2(j) \end{bmatrix} + v(j)$$

where the measurement noise v(j) has variance σ^2

- Thus $H_t = \begin{bmatrix} 1 & 0 \end{bmatrix}$
- Note that we only have a position measurement (similar to constant velocity example).

Measurement Model:

$$z(j) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(j) \\ x_2(j) \end{bmatrix} + v(j)$$

where the measurement noise v(j) has variance σ^2

- Thus $H_t = \begin{bmatrix} 1 & 0 \end{bmatrix}$
- Note that we only have a position measurement (similar to constant velocity example).

State Transition Matrix Φ

ullet $\Phi(\Delta t)$ can be approximated through series expansion of

$$\exp\left[-\frac{0}{m}\Delta t - \frac{k}{m}\Delta t\right]$$

ullet $\Phi(\Delta t)$ can be approximated through series expansion of

$$\exp\left[-\frac{b}{m}\Delta t - \frac{k}{m}\Delta t\right]$$

• Or we can use Matlab's (or scipy's) expm function for specific values of k,b,m, and Δt .

ullet $\Phi(\Delta t)$ can be approximated through series expansion of

$$\exp\left[\begin{matrix} 0 & \Delta t \\ -\frac{b}{m}\Delta t & -\frac{k}{m}\Delta t \end{matrix}\right]$$

• Or we can use Matlab's (or scipy's) expm function for specific values of k,b,m, and Δt .

Covariance Extrapolation

Covariance Extrapolation

 Because Φ and Q are matrices, the state and covariance extrapolation equations do not simplify from their general matrix form

Covariance Extrapolation

- ullet Because Φ and Q are matrices, the state and covariance extrapolation equations do not simplify from their general matrix form
- Moreover, like Φ , which is derived from a continuous model, Q is also dependent on Δt and q, the continuous process noise variance:

$$Q=qegin{bmatrix} \dfrac{(\Delta t)^3}{3} & \dfrac{(\Delta t)^2}{2} \ \dfrac{(\Delta t)^2}{2} & \Delta t \end{bmatrix}$$

Covariance Extrapolation

- Because Φ and Q are matrices, the state and covariance extrapolation equations do not simplify from their general matrix form
- Moreover, like Φ , which is derived from a continuous model, Q is also dependent on Δt and q, the continuous process noise variance:

$$Q=qegin{bmatrix} \dfrac{(\Delta t)^3}{3} & \dfrac{(\Delta t)^2}{2} \ \dfrac{(\Delta t)^2}{2} & \Delta t \end{bmatrix}$$

 The details of how this is derived from the continuous model are beyond the scope of the current presentation. See, e.g., Grewal and Andrews.

Covariance Extrapolation

- Because Φ and Q are matrices, the state and covariance extrapolation equations do not simplify from their general matrix form
- Moreover, like Φ , which is derived from a continuous model, Q is also dependent on Δt and q, the continuous process noise variance:

$$Q=qegin{bmatrix} \dfrac{(\Delta t)^3}{3} & \dfrac{(\Delta t)^2}{2} \ \dfrac{(\Delta t)^2}{2} & \Delta t \end{bmatrix}$$

 The details of how this is derived from the continuous model are beyond the scope of the current presentation. See, e.g., Grewal and Andrews.

Covariance Extrapolation

Covariance Extrapolation

•
$$P^{-}(j) = \Phi(j)P^{+}(j-1)\Phi(j)^{\top} + Q(j)$$
 becomes:

Covariance Extrapolation

•
$$P^{-}(j) = \Phi(j)P^{+}(j-1)\Phi(j)^{\top} + Q(j)$$
 becomes:

$$P^{-}(j) = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{12} & \phi_{22} \end{bmatrix} \begin{bmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{bmatrix} \begin{bmatrix} \phi_{11} & \phi_{21} \\ \phi_{12} & \phi_{22} \end{bmatrix} + \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix}$$

Covariance Extrapolation

• $P^{-}(j) = \Phi(j)P^{+}(j-1)\Phi(j)^{\top} + Q(j)$ becomes:

$$\begin{split} P^{-}\left(j\right) &= \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{12} & \phi_{22} \end{bmatrix} \begin{bmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{bmatrix} \begin{bmatrix} \phi_{11} & \phi_{21} \\ \phi_{12} & \phi_{22} \end{bmatrix} + \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} \\ &= \begin{bmatrix} (\phi_{11}p_{11} + \phi_{12}p_{21})\phi_{11} + (\phi_{11}p_{12} + \phi_{12}p_{22})\phi_{12} & (\phi_{11}p_{11} + \phi_{12}p_{21})\phi_{21} + (\phi_{11}p_{12} + \phi_{12}p_{22})\phi_{22} \\ (\phi_{12}p_{11} + \phi_{22}p_{21})\phi_{11} + (\phi_{12}p_{12} + \phi_{22}p_{22})\phi_{12} & (\phi_{12}p_{11} + \phi_{22}p_{21})\phi_{21} + (\phi_{12}p_{12} + \phi_{22}p_{22})\phi_{22} \end{bmatrix} \\ &+ \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} \end{split}$$

Covariance Extrapolation

• $P^{-}(j) = \Phi(j)P^{+}(j-1)\Phi(j)^{\top} + Q(j)$ becomes:

$$\begin{split} P^{-}\left(j\right) &= \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{12} & \phi_{22} \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} \phi_{11} & \phi_{21} \\ \phi_{12} & \phi_{22} \end{bmatrix} + \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} \\ &= \begin{bmatrix} (\phi_{11}p_{11} + \phi_{12}p_{21})\phi_{11} + (\phi_{11}p_{12} + \phi_{12}p_{22})\phi_{12} & (\phi_{11}p_{11} + \phi_{12}p_{21})\phi_{21} + (\phi_{11}p_{12} + \phi_{12}p_{22})\phi_{22} \\ (\phi_{12}p_{11} + \phi_{22}p_{21})\phi_{11} + (\phi_{12}p_{12} + \phi_{22}p_{22})\phi_{12} & (\phi_{12}p_{11} + \phi_{22}p_{21})\phi_{21} + (\phi_{12}p_{12} + \phi_{12}p_{22})\phi_{22} \end{bmatrix} \\ &+ \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} \\ &= \begin{bmatrix} \phi_{12}p_{12}\phi_{12} + q_{11} & \phi_{12}p_{12}\phi_{21} + \phi_{12}p_{22}\phi_{22} + q_{12} \\ \phi_{22}p_{21}\phi_{12} + q_{21} & \phi_{22}p_{21}\phi_{21} + \phi_{22}p_{22}\phi_{22} + q_{22} \end{bmatrix} \end{split}$$

Covariance Extrapolation

• $P^{-}(j) = \Phi(j)P^{+}(j-1)\Phi(j)^{\top} + Q(j)$ becomes:

$$\begin{split} P^{-}\left(j\right) &= \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{12} & \phi_{22} \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} \phi_{11} & \phi_{21} \\ \phi_{12} & \phi_{22} \end{bmatrix} + \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} \\ &= \begin{bmatrix} (\phi_{11}p_{11} + \phi_{12}p_{21})\phi_{11} + (\phi_{11}p_{12} + \phi_{12}p_{22})\phi_{12} & (\phi_{11}p_{11} + \phi_{12}p_{21})\phi_{21} + (\phi_{11}p_{12} + \phi_{12}p_{22})\phi_{22} \\ (\phi_{12}p_{11} + \phi_{22}p_{21})\phi_{11} + (\phi_{12}p_{12} + \phi_{22}p_{22})\phi_{12} & (\phi_{12}p_{11} + \phi_{22}p_{21})\phi_{21} + (\phi_{12}p_{12} + \phi_{22}p_{22})\phi_{22} \end{bmatrix} \\ &+ \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} \\ &= \begin{bmatrix} \phi_{12}p_{12}\phi_{12} + q_{11} & \phi_{12}p_{12}\phi_{21} + \phi_{12}p_{22}\phi_{22} + q_{12} \\ \phi_{22}p_{21}\phi_{12} + q_{21} & \phi_{22}p_{21}\phi_{21} + \phi_{22}p_{22}\phi_{22} + q_{22} \end{bmatrix} \end{split}$$

• Note that the last matrix results when we simplify using $\phi_{11}=0$ (See previous slide)

Covariance Extrapolation

• $P^{-}(j) = \Phi(j)P^{+}(j-1)\Phi(j)^{\top} + Q(j)$ becomes:

$$\begin{split} P^{-}\left(j\right) &= \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{12} & \phi_{22} \end{bmatrix} \begin{bmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{bmatrix} \begin{bmatrix} \phi_{11} & \phi_{21} \\ \phi_{12} & \phi_{22} \end{bmatrix} + \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} \\ &= \begin{bmatrix} (\phi_{11}p_{11} + \phi_{12}p_{21})\phi_{11} + (\phi_{11}p_{12} + \phi_{12}p_{22})\phi_{12} & (\phi_{11}p_{11} + \phi_{12}p_{21})\phi_{21} + (\phi_{11}p_{12} + \phi_{12}p_{22})\phi_{22} \\ (\phi_{12}p_{11} + \phi_{22}p_{21})\phi_{11} + (\phi_{12}p_{12} + \phi_{22}p_{22})\phi_{12} & (\phi_{12}p_{11} + \phi_{22}p_{21})\phi_{21} + (\phi_{12}p_{12} + \phi_{22}p_{22})\phi_{22} \end{bmatrix} \\ &+ \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} \\ &= \begin{bmatrix} \phi_{12}p_{12}\phi_{12} + q_{11} & \phi_{12}p_{12}\phi_{21} + \phi_{12}p_{22}\phi_{22} + q_{12} \\ \phi_{22}p_{21}\phi_{12} + q_{21} & \phi_{22}p_{21}\phi_{21} + \phi_{22}p_{22}\phi_{22} + q_{22} \end{bmatrix} \end{split}$$

- Note that the last matrix results when we simplify using $\phi_{11}=0$ (See previous slide)
- ullet We've also decluttered by suppressing the + superscripts and j-1 indices on the right-hand sides

Covariance Extrapolation

• $P^{-}(j) = \Phi(j)P^{+}(j-1)\Phi(j)^{\top} + Q(j)$ becomes:

$$\begin{split} P^{-}\left(j\right) &= \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{12} & \phi_{22} \end{bmatrix} \begin{bmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{bmatrix} \begin{bmatrix} \phi_{11} & \phi_{21} \\ \phi_{12} & \phi_{22} \end{bmatrix} + \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} \\ &= \begin{bmatrix} (\phi_{11}\rho_{11} + \phi_{12}\rho_{21})\phi_{11} + (\phi_{11}\rho_{12} + \phi_{12}\rho_{22})\phi_{12} & (\phi_{11}\rho_{11} + \phi_{12}\rho_{21})\phi_{21} + (\phi_{11}\rho_{12} + \phi_{12}\rho_{22})\phi_{22} \\ (\phi_{12}\rho_{11} + \phi_{22}\rho_{21})\phi_{11} + (\phi_{12}\rho_{12} + \phi_{22}\rho_{22})\phi_{12} & (\phi_{12}\rho_{11} + \phi_{22}\rho_{21})\phi_{21} + (\phi_{12}\rho_{12} + \phi_{22}\rho_{22})\phi_{22} \end{bmatrix} \\ &+ \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} \\ &= \begin{bmatrix} \phi_{12}\rho_{12}\phi_{12} + q_{11} & \phi_{12}\rho_{12}\phi_{21} + \phi_{12}\rho_{22}\phi_{22} + q_{12} \\ \phi_{22}\rho_{21}\phi_{12} + q_{21} & \phi_{22}\rho_{21}\phi_{21} + \phi_{22}\rho_{22}\phi_{22} + q_{22} \end{bmatrix} \end{split}$$

- Note that the last matrix results when we simplify using $\phi_{11} = 0$ (See previous slide)
- ullet We've also decluttered by suppressing the + superscripts and j-1 indices on the right-hand sides

Kalman Gain

Kalman Gain

• The gain equation $K = P^-H^\top \left[HP^-H^\top + R\right]^{-1}$ looks like this:

• The gain equation $K = P^-H^\top \left[HP^-H^\top + R\right]^{-1}$ looks like this:

$$K = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \sigma^2 \right)^{-1}$$

• The gain equation $K = P^-H^\top \left[HP^-H^\top + R\right]^{-1}$ looks like this:

$$K = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \sigma^2 \right)^{-1} \\
= \begin{bmatrix} \frac{p_{11}}{p_{11} + \sigma^2} \\ \frac{p_{21}}{p_{11} + \sigma^2} \end{bmatrix},$$

• The gain equation $K = P^-H^\top \left[HP^-H^\top + R\right]^{-1}$ looks like this:

$$K = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \sigma^2 \right)^{-1} \\
= \begin{bmatrix} \frac{p_{11}}{p_{11} + \sigma^2} \\ \frac{p_{21}}{p_{11} + \sigma^2} \end{bmatrix},$$

where we have once again suppressed the minus(-) superscripts and time step variable j on the right hand side

Kalman Gain

• The gain equation $K = P^-H^\top \left[HP^-H^\top + R\right]^{-1}$ looks like this:

$$K = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \sigma^2 \right)^{-1} \\
= \begin{bmatrix} \frac{p_{11}}{p_{11} + \sigma^2} \\ \frac{p_{21}}{p_{11} + \sigma^2} \end{bmatrix},$$

where we have once again suppressed the minus(-) superscripts and time step variable j on the right hand side

MATLAB/Python Run

• $\Delta t = 0.1$ sec, 50 samples, 50% process noise assumption factor

- $\Delta t = 0.1$ sec, 50 samples, 50% process noise assumption factor
- m=1 kg

- $\Delta t = 0.1$ sec, 50 samples, 50% process noise assumption factor
- m=1 kg
- Light spring: k = 1 N/m

- $\Delta t = 0.1$ sec, 50 samples, 50% process noise assumption factor
- m=1 kg
- Light spring: k = 1 N/m
- Medium damping: b = 5 Ns/m

- $\Delta t = 0.1$ sec, 50 samples, 50% process noise assumption factor
- m=1 kg
- Light spring: k = 1 N/m
- Medium damping: b = 5 Ns/m

MATLAB/Python Run

MATLAB/Python Run

• $\Delta t = 1$ sec, 50 samples, 50% process noise assumption factor

- $\Delta t = 1$ sec, 50 samples, 50% process noise assumption factor
- m=1 kg

- $\Delta t = 1$ sec, 50 samples, 50% process noise assumption factor
- m=1 kg
- Light spring: k = 1 N/m

- $\Delta t = 1$ sec, 50 samples, 50% process noise assumption factor
- m=1 kg
- Light spring: k = 1 N/m
- Medium damping: b = 5 Ns/m

- $\Delta t = 1$ sec, 50 samples, 50% process noise assumption factor
- m=1 kg
- Light spring: k = 1 N/m
- Medium damping: b = 5 Ns/m

MATLAB/Python Run

MATLAB/Python Run

Summary

Vector Check

Summary

Vector Check

• Where are we?

Summary

Vector Check

- Where are we?
 - Examined the Damped Harmonic Oscillator and how the discrete model depends on the continuous model from which it was derived

Summary Vector Check

vector Check

- Where are we?
 - Examined the Damped Harmonic Oscillator and how the discrete model depends on the continuous model from which it was derived
 - Showed results of some Python simulations: See damposc.py on github:
 - https://github.com/musicarroll/kalman_course

Summary Vector Check

vector Check

- Where are we?
 - Examined the Damped Harmonic Oscillator and how the discrete model depends on the continuous model from which it was derived
 - Showed results of some Python simulations: See damposc.py on github:
 - https://github.com/musicarroll/kalman_course

Summary Vector Check

- Where are we?
 - Examined the Damped Harmonic Oscillator and how the discrete model depends on the continuous model from which it was derived
 - Showed results of some Python simulations: See damposc.py on github: https://github.com/musicarroll/kalman_course
- What's next?

• Where are we?

- Examined the Damped Harmonic Oscillator and how the discrete model depends on the continuous model from which it was derived
- Showed results of some Python simulations: See damposc.py on github: https://github.com/musicarroll/kalman_course
- What's next?
 - In the next video, we will present some exercises for you to solve.

• Where are we?

- Examined the Damped Harmonic Oscillator and how the discrete model depends on the continuous model from which it was derived
- Showed results of some Python simulations: See damposc.py on github: https://github.com/musicarroll/kalman_course
- What's next?
 - In the next video, we will present some exercises for you to solve.