Деревья решений

Что такое дерево решений

- Узлы:
 - Внутренние- правило разделения (ветвления)
 - Листья- конечное значение
- Критерий разделения
- Критерий остановки
- Критерий постобрезки (не обязательно)

Критерий разделения

- В каждом узле m разбиение множества всех объектов, соответствующих данному узлу(\widetilde{X}_{M}) на множества $X_{m,l}$ и $X_{m,r}$ выбирается таким образом, чтобы максимизировать функционал $H(\widetilde{X}_{M}) \frac{|X_{m,l}|}{|\widetilde{X}_{m}|} H(X_{m,l}) \frac{|X_{m,r}|}{|\widetilde{X}_{m}|} H(X_{m,r})$, где H критерий информативности.
- Для регрессионных задач мы можем использовать сумму квадратов $\frac{1}{|X|} \sum_{y_i \in X} (y_i \bar{y})^2$, где \bar{y} среднее значение
- Для классификационных задач:
 - \circ Критерий Джини $H(X) = \sum_{k=1}^K p_k (1-p_k)$, где p_k это доля объектов класса к $\frac{|\{y_i \colon y_i \in X \land y_i = k\}|}{|X|}$
 - \circ Энтропия Шеннона $H(X) = -\sum_{k=1}^K p * \log_2 p$, где $0 \log_2 0$ принимается равным нулю

Критерии остановки

- Достижение максимальной глубины дерева
- Достижение максимального количества узлов в дереве
- Достижении приростом функционала качества минимального значения
- Прекращение ветвления узлов, когда все объекты в узле принадлежат одному классу
- Прочее

Алгоритмы построения

• Взято из https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466856/

Methods	CART	C4.5	CHAID	QUEST
Measure used to select input variable	Gini index; Twoing criteria	Entropy info-gain	Chi-square	Chi-square for categorical variables; J-way ANOVA for continuous/ordinal variables
Pruning	Pre-pruning using a single-pass algorithm	Pre-pruning using a single-pass algorithm	Pre-pruning using Chi-square test for independence	Post-pruning
Dependent variable	Categorical/ Continuous	Categorical/ Continuous	Categorical	Categorical
Input variables	Categorical/ Continuous	Categorical/ Continuous	Categorical/ Continuous	Categorical/ Continuous
Split at each node	Binary; Split on linear combinations	Multiple	Multiple	Binary; Split on linear combinations