06	 Module: Calculus of Variations: 6.1 Euler- Lagrange equation (Without Proof), When F does not contain y, When F does not contain x, When F contains x, y, y'. 6.2 Isoperimetric problems- Lagrange Method. 6.3 Functions involving higher order derivatives: Rayleigh-Ritz Method. Self-Learning Topics:- Brachistochrone Problem, Variational Problem, Hamilton 	6
	Principle, Principle of Least action , Several dependent variables.	
Total		

References:

- 1. Complex Variables and Applications, Brown and Churchill, McGraw-Hill education.
- 2. Probability, Statistics and Random Processes, T. Veerarajan, McGraw-Hill education.
- 3. Advanced engineering mathematics H.K. Das, S. Chand, Publications.
- 4. Higher Engineering Mathematics B. V. Ramana, Tata Mc-Graw Hill Publication
- 5 Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa publication
- 6. Advanced Engineering Mathematics Wylie and Barret, Tata Mc-Graw Hill.
- 7. Beginning Linear Algebra Seymour Lipschutz Schaum's outline series, Mc-Graw Hill Publication
- 8. Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication

Term Work (25-Marks):

General Instructions:

- 1. Batch wise tutorials are to be conducted. The number of students per batch should be as per University pattern for practicals.
- 2. Students must be encouraged to write at least 6 class tutorials on entire syllabus.
- 3. A group of 4-6 students should be assigned a self-learning topic. Students should prepare a presentation/problem solving of 10-15 minutes. This should be considered as mini project in Engineering mathematics. This project should be graded for 10 marks depending on the performance of the students.

The distribution of Term Work marks will be as follows –

	Attendance (Theory and	
1.	Tutorial)	05 marks
	Class Tutorials on entire	
2.	syllabus	10 marks
3.	Mini project	10 marks

Internal Assessment Test (25-Marks):

Assessment consists of two class tests of 20 marks each. The first-class test (Internal Assessment I) is to be conducted when approx. 40% syllabus is completed and second class test (Internal Assessment II) will be based on remaining contents (approximately 40% syllabus but excluding contents covered in Test I). Duration of each test shall be one hour.

End Semester Theory Examination (80-Marks):

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.