Core-Maths-C3 - 2012-June

Question 1

Express

$$\frac{2(3x+2)}{9x^2-4} - \frac{2}{3x+1}$$

as a single fraction in its simplest form.

(4)

Question 2

$$f(x) = x^3 + 3x^2 + 4x - 12$$

(a) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{4(3-x)}{(3+x)}\right)}, \qquad x \neq -3$$
 (3)

The equation $x^3 + 3x^2 + 4x - 12 = 0$ has a single root which is between 1 and 2

(b) Use the iteration formula

$$x_{n+1} = \sqrt{\left(\frac{4(3-x_n)}{(3+x_n)}\right)}, n \geqslant 0$$

with $x_0 = 1$ to find, to 2 decimal places, the value of x_1 , x_2 and x_3 .

(3)

The root of f(x) = 0 is α .

(c) By choosing a suitable interval, prove that $\alpha = 1.272$ to 3 decimal places.

(3)

Figure 1 shows a sketch of the curve C which has equation

$$y = e^{x\sqrt{3}} \sin 3x$$
, $-\frac{\pi}{3} \leqslant x \leqslant \frac{\pi}{3}$

(a) Find the x coordinate of the turning point P on C, for which x > 0 Give your answer as a multiple of π .

(6)

(b) Find an equation of the normal to C at the point where x = 0

(3)

Figure 2

Figure 2 shows part of the curve with equation y = f(x)The curve passes through the points P(-1.5, 0) and Q(0, 5) as shown.

On separate diagrams, sketch the curve with equation

(a)
$$y = |\mathbf{f}(x)|$$

(b)
$$y = f(|x|)$$
 (2)

(c)
$$y = 2f(3x)$$
 (3)

Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes.

(a) Express $4\csc^2 2\theta - \csc^2 \theta$ in terms of $\sin \theta$ and $\cos \theta$.

(2)

(b) Hence show that

$$4 \operatorname{cosec}^2 2\theta - \operatorname{cosec}^2 \theta = \operatorname{sec}^2 \theta$$

(4)

(c) Hence or otherwise solve, for $0 < \theta < \pi$,

$$4\csc^2 2\theta - \csc^2 \theta = 4$$

giving your answers in terms of π .

(3)

Question 6

The functions f and g are defined by

$$f: x \mapsto e^x + 2, \quad x \in \mathbb{R}$$

$$g: x \mapsto \ln x$$
, $x > 0$

(a) State the range of f.

(1)

(b) Find fg(x), giving your answer in its simplest form.

(2)

(c) Find the exact value of x for which f(2x+3)=6

(4)

(d) Find f⁻¹, the inverse function of f, stating its domain.

(3)

(e) On the same axes sketch the curves with equation y = f(x) and $y = f^{-1}(x)$, giving the coordinates of all the points where the curves cross the axes.

(4)

- (a) Differentiate with respect to x,
 - (i) $x^{\frac{1}{2}} \ln(3x)$
 - (ii) $\frac{1-10x}{(2x-1)^5}$, giving your answer in its simplest form.
- (b) Given that $x = 3 \tan 2y$ find $\frac{dy}{dx}$ in terms of x.

(5)

Question 8

$$f(x) = 7\cos 2x - 24\sin 2x$$

Given that $f(x) = R\cos(2x + \alpha)$, where R > 0 and $0 < \alpha < 90^{\circ}$,

(a) find the value of R and the value of α .

(3)

(b) Hence solve the equation

$$7\cos 2x - 24\sin 2x = 12.5$$

for $0 \le x < 180^{\circ}$, giving your answers to 1 decimal place.

(5)

(c) Express $14\cos^2 x - 48\sin x \cos x$ in the form $a\cos 2x + b\sin 2x + c$, where a, b, and c are constants to be found.

(2)

(d) Hence, using your answers to parts (a) and (c), deduce the maximum value of

$$14\cos^2 x - 48\sin x \cos x$$

(2)