Inferencia Estadística

Marisol García Peña

Departamento de Matemáticas Pontificia Universidad Javeriana

Bogotá, 2022

Marisol García Peña

1 / 574

Ejemplo

Sea X_1,\ldots,X_n una muestra aleatoria de una población geométrica con parámetro π . Muestre que \overline{X} es una estadística suficiente para π . $P[X_i=x_i]=\pi(1-\pi)^{x-1}, x_i\geq 1$

Ejemplo

Sea X_1, \ldots, X_n una muestra aleatoria de una población $U(0,\theta)$. $f(x_i,\theta) = \frac{1}{\theta}$, $0 < x < \theta, \theta > 0$. Muestre que $X_{(n)} = \max_{1 \le i \le n} X_i$ es una estadística suficiente para θ .

Teorema de la factorización para estadísticas conjuntamente suficientes

Teorema

Sea X_1, \ldots, X_n una muestra aleatoria de tamaño n de una densidad $f(\bullet, \theta)$, donde el parámetro θ puede ser un vector. Un conjunto de estadísticas $S_1(X_1, \ldots, X_n), \ldots, S_r(X_1, \ldots, X_n)$ es conjuntamente suficiente si y sólo si la densidad conjunta de X_1, \ldots, X_n puede ser factorizada como

$$f(x_1,\ldots,x_n;\theta) = g(s_1(x_1,\ldots,x_n),\ldots,s_r(x_1,\ldots,x_n),\theta)h(x_1,\ldots,x_n)$$

= $g(s_1,\ldots,s_r,\theta)h(\mathbf{x})$

donde la función $h(x_1, ..., x_n)$ es no negativa y no depende de θ y la función $g(s_1, ..., s_r, \theta)$ es no negativa y depende de θ y del valor de la estadísticas $s_1, ..., s_r$.

Ejemplo

Sea X_1, \ldots, X_n una muestra aleatoria de una distribución $N(\mu, \sigma^2)$ donde μ y σ^2 son desconocidos, encuentre las estadísticas suficientes para los parámetros.

$$f_{\mathbf{x},\theta}(\mathbf{x},\theta) = \prod_{i=1}^{n} f(x_i,\theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2}\right\}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2\right\}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left\{-\frac{1}{2\sigma^2} \left[\sum_{i=1}^{n} x_i^2 - 2\mu \sum_{i=1}^{n} x_i + n\mu^2\right]\right\}$$

$$= \underbrace{\left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left\{-\frac{n\mu^2}{2\sigma^2}\right\} \exp\left\{\frac{\mu}{\sigma^2} \sum_{i=1}^{n} x_i - \frac{\sum_{i=1}^{n} x_i^2}{2\sigma^2}\right\}}_{g(\mathbf{s},\theta)} \underbrace{1}_{h(\mathbf{x})}$$

 $S(X) = (\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)$ son est. conj. suficientes para $\theta = (\mu, \sigma_{\mathbb{R}}^2)$.

Marisol García Peña Inferencia Estadística Bogotá, 2022 212 / 574

Teorema

Un estimador de máxima verosimilitud o un conjunto de estimadores de máxima verosimilitud dependen de la muestra a través de cualquier conjunto de estadísticas conjuntamente suficientes.

El máximo de $L(x_1,\ldots,x_n,\theta)$ se obtiene en el mismo punto que el máximo de $g(s_1,\ldots,s_r,\theta)$.

Teorema

Si S es una estadística suficiente para θ y si el EMV de θ es único, entonces es una función de S.

Estadísticas suficientes minimales

- Una estadística *S* es suficiente minimal si no se puede reducir más sin violar la propiedad de suficiencia.
- La estadística $\mathbf{S} = (S_1, \dots, S_m)$ es suficiente minimal si m es la menor dimensión de \mathbf{S} tal que \mathbf{S} continue siendo suficiente para θ .
- Si para un problema existe un único estimador de máxima verosimilitud $\widehat{\theta}$ para θ y si $\widehat{\theta}$ es una estadística suficiente entonces $\widehat{\theta}$ es suficiente minimal.

Un conjunto de estadísticas conjuntamente suficientes es suficiente minimal si y sólo si es una función de cualquier otro conjunto de estadísticas suficientes.

Teorema

Sea X_1, \ldots, X_n una muestra aleatoria de una función de densidad o de probabilidad $f(x, \theta)$. Se dice que $\boldsymbol{S}(\boldsymbol{X})$ es una estadística suficiente minimal si para qualquier par de puntos muestrales x y y se tiene que

$$rac{f_{m{x}}(m{x},m{ heta})}{f_{m{Y}}(m{y},m{ heta})}$$
 no depende de $m{ heta}\Leftrightarrow m{S}(m{X})=m{S}(m{Y})$

Ejemplo

Sea X_1, \ldots, X_n una muestra aleatoria de una distribución $N(\mu, \sigma^2)$ con μ conocido. Encuentre una estadística suficiente minimal para $\sigma^2 = \theta$.

$$\begin{split} f_{\mathbf{X}}(\mathbf{x},\theta) &= \left(\frac{1}{\sqrt{2\pi}}\sigma\right)^n \exp\left\{\frac{-n\mu^2}{2\sigma^2}\right\} \exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n x_i^2 + \frac{\mu}{\sigma^2}\sum_{i=1}^n x_i\right\} \\ f_{\mathbf{Y}}(\mathbf{y},\theta) &= \left(\frac{1}{\sqrt{2\pi}}\sigma\right)^n \exp\left\{\frac{-n\mu^2}{2\sigma^2}\right\} \exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n y_i^2 + \frac{\mu}{\sigma^2}\sum_{i=1}^n y_i\right\} \\ \frac{f_{\mathbf{X}}(\mathbf{x},\theta)}{f_{\mathbf{Y}}(\mathbf{y},\theta)} &= \frac{\exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n x_i^2 + \frac{\mu}{\sigma^2}\sum_{i=1}^n x_i\right\}}{\exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n y_i^2 + \frac{\mu}{\sigma^2}\sum_{i=1}^n y_i\right\}} = \frac{\exp\left\{-\frac{1}{2\sigma^2}\left[\sum_{i=1}^n x_i^2 - 2\mu\sum_{i=1}^n x_i\right]\right\}}{\exp\left\{-\frac{1}{2\sigma^2}\left[\sum_{i=1}^n y_i^2 - 2\mu\sum_{i=1}^n y_i\right]\right\}} \\ &= \exp\left\{\frac{1}{2\sigma^2}\left[\sum_{i=1}^n y_i^2 - \sum_{i=1}^n x_i^2\right] + \frac{\mu}{\sigma^2}\left[\sum_{i=1}^n x_i - \sum_{i=1}^n y_i\right]\right\} \end{split}$$

No depende de $\sigma^2 \Leftrightarrow S_1(X) = \sum_{i=1}^n x_i = \sum_{i=1}^n y_i$ y $S_2(X) = \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i^2$. Entonces $S(X) = (S_1(X), S_2(X))$ es una estadística suficiente minimal para σ^2 .

Familia exponencial

Una familia de densidades de un parámetro (θ unidimensional) $f(x,\theta)$ que se puede expresar como

$$f(x, \theta) = c(\theta)h(x) \exp[Q(\theta)T(x)]$$

para $-\infty < x < \infty$ para todo θ y para una elección adecuada de funciones $c(\bullet), h(\bullet), Q(\bullet)$ y $T(\bullet)$, pertenece a la familia exponencial o clase exponencial.

Ejemplo

Sea $f(x,\theta) = \theta e^{-\theta x} I_{(0,\infty)}(x)$. ¿Pertenece a la familia exponencial?

Con $c(\theta)=\theta$, $h(x)=I_{(0,\infty)}(x)$, $Q(\theta)=-\theta$, T(x)=x, $f(x,\theta)$ pertenece a la familia exponencial.

Ejemplo

 $f(x, \theta) = f(x, \lambda)$ es Poisson. ¿Pertenece a la familia exponencial?

$$P[X = x] = \frac{e^{-\lambda} \lambda^{x}}{x!} I_{\{0,1,...\}}(x)$$
$$= e^{-\lambda} \left(\frac{1}{x!} I_{\{0,1,...\}}(x) \right) \exp(x \log \lambda)$$

 $c(\lambda)=e^{-\lambda}, h(x)=(1/x!)I_{\{0,1,\ldots\}}(x), Q(\lambda)=\log\lambda$ y T(x)=x, por tanto pertenece a la familia exponencial.

Si
$$f(x, \theta) = c(\theta)h(x) \exp[Q(\theta)T(x)]$$
, entonces

$$\prod_{i=1}^{n} f(x_i, \theta) = c^n(\theta) \left[\prod_{i=1}^{n} h(x_i) \right] \exp \left[Q(\theta) \sum_{i=1}^{n} T(x_i) \right]$$

por el criterio de factorización $\sum_{i=1}^{n} T(X_i)$ es una estadística suficiente.

< ロ > < 回 > < 直 > < 直 > へき > (き >) き りくぐ

Marisol García Peña Inferencia Estadística Bogotá, 2022 219 / 574

Familia exponencial k-paramétrica

Una familia de densidades $f(\bullet, \theta_1, \dots, \theta_k)$ que puede ser expresada como

$$f(x, \theta_1, \dots, \theta_k) = c(\theta_1, \dots, \theta_k) h(x) \exp \left\{ \sum_{j=1}^k Q_j(\theta_1, \dots, \theta_k) T_j(x) \right\}$$

pertenece a la familia exponencial k-paramétrica.

Marisol García Peña

Ejemplo

Sea $X \sim Bin(n, \theta)$, $0 < \theta < 1$. Muestre que la distribución pertenece a la familia exponencial.

$$P[X = x] = \binom{n}{x} \theta^{x} (1 - \theta)^{n-x} I_{(0,\dots,n)}(x)$$

$$= \binom{n}{x} \exp[\log(\theta^{x})] \exp[\log(1 - \theta)^{n-x}] I_{(0,\dots,n)}(x)$$

$$= \underbrace{\binom{n}{x}} I_{(0,\dots,n)}(x) \underbrace{(1 - \theta)^{n}}_{c(\theta)} \exp[\underbrace{x}_{T_{1}(X)} \underbrace{\log(\theta/(1 - \theta))}_{Q_{1}(\theta)}]$$

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 釣 9 C C

Marisol García Peña Inferencia Estadística Bogotá, 2022 221 / 574

Teorema

Sea $f(x, \theta)$ una función de densidad o de probabilidad de la familia exponencial k-paramétrica

$$f(x, \theta) = c(\theta)h(x) \exp \left\{ \sum_{j=1}^{k} Q_j(\theta) T_j(x) \right\}$$

si se considera una muestra aleatoria de tamaño n de esa familia, se tiene que

$$P_j(X) = \sum_{i=1}^n T_j(X_i)$$

son conjuntamente suficientes para θ .

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かりで

Marisol García Peña Inferencia Estadística Bogotá, 2022 22 / 574

Ejemplo

En el ejemplo anterior de la Binomial, j=1 solo un parámetro θ .

$$P_i(X) = \sum_{i=1}^n T_1(X_i) = \sum_{i=1}^n X_i$$

Entonces $P_1(X) = \sum_{i=1}^n X_i$ es una estadística suficiente para θ

Si

$$f(x, \theta_1, \dots, \theta_k)$$

$$= c^n(\theta_1, \dots, \theta_k) \left[\prod_{i=1}^n h(x_i) \right] \exp \left[\sum_{j=1}^k Q_j(\theta_1, \dots, \theta_k) \sum_{i=1}^n T_j(x_i) \right]$$

por el criterio de factorización $\sum_{i=1}^n T_1(X_i), \ldots, \sum_{i=1}^n T_k(X_i)$ es un conjunto de estadísticas suficientes y minimales.

Estimación insesgada

- $ECM[T(\tau(\theta))] = E[[T \tau(\theta)]^2] = V[T] + {\tau(\theta) E[T]}^2.$
- Si T es un estimador insesgado de $\tau(\theta) \Longrightarrow E[T] = \tau(\theta)$ y $ECM[T(\tau(\theta))] = V[T].$
- Estimador de error cuadrático medio uniformemente mínimo entre los estimadores insesgados.
- Estimador con varianza uniformemente mínima entre los estimadores insesgados.

Marisol García Peña Inferencia Estadística Bogotá, 2022 225 / 574

Estimador insesgado de varianza uniformemente mínima - UMVUE

Sea X_1, \ldots, X_n es una muestra aleatoria de $f(\bullet, \theta)$. Un estimador $T^*(X_1, \ldots, X_n)$ de $\tau(\theta)$ es definido como un estimador insesgado de varianza uniformemente mínima de $\tau(\theta)$ si y sólo si:

- $\bullet \ E[T^*] = \tau(\theta) \Longrightarrow \text{estimador insesgado}.$
- ② $V[T^*] \leq V[T]$ para cualquier otro estimador $T(X_1, ..., X_n)$ de $\tau(\theta)$ que también es insesgado, $E[T] = \tau(\theta)$.

Uniformly minimum-variance unbiased estimator - UMVUE

Límite inferior para varianza

Sea X_1, \ldots, X_n es una variable aleaotria con función de densidad o probabilidad $f(\bullet, \theta)$. Sea $T = (X_1, \ldots, X_n)$ un estimador insesgado de $\tau(\theta)$. $f(\bullet, \theta)$ satisface las siguientes *condiciones de regularidad* (caso continuo):

- $\bullet \quad \frac{\partial}{\partial \theta} \log f(x, \theta) \text{ existe } \forall x \text{ y } \forall \theta.$
- $\frac{\partial}{\partial \theta} \int \cdots \int t(x_1, \dots, x_n) \prod_{i=1}^n f(x_i, \theta) dx_1 \cdots dx_n$ $= \int \cdots \int t(x_1, \dots, x_n) \frac{\partial}{\partial \theta} \prod_{i=1}^n f(x_i, \theta) dx_1 \cdots dx_n.$

Teorema

Desigualdad de Cramér-Rao

Bajo las condiciones (i) a (iv) se tiene

$$V[T] \ge \frac{[\tau'(\theta)]^2}{nE\left[\left[\frac{\partial}{\partial \theta}\log f(X,\theta)\right]^2\right]}$$

donde $T(X_1, ..., X_n)$ es un estimador insesgado de $\tau(\theta)$. La igualdad se obtiene si y sólo si existe una función $K(\theta, n)$ tal que

$$\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f(X, \theta) = K(\theta, n) [t(x_1, \dots, x_n) - \tau(\theta)].$$

La parte derecha se conoce como Cota inferior de Cramér-Rao para la varianza de estimadores insesgados de $\tau(\theta)$.

- Proporciona una cota inferior para la varianza de estimadores insesgados.
- Si T(X) es un estimador insesgado de $\tau(\theta)$ y si $V[T(X)] = \cot$ de Cramér-Rao $\Longrightarrow T(X)$ es un UMVUE de $\tau(\theta)$.
- Si T(X) es un estimador insesgado de θ y si $V[T(X)] = \frac{1}{I_F(\theta)} \Longrightarrow T(X)$ es un UMVUE de θ , $I_F(\theta)$ para una muestra.
- Definición alternativa para la cota de Cramér-Rao

$$V[T] \ge rac{\left\{rac{\partial}{\partial heta} E[T(X)]
ight\}^2}{I_F(heta)}$$

con $I_F(\theta)$ para una muestra.

Si la estimación de máxima verosimilitud de θ , $\widehat{\theta}$ está dada por la solución de la ecuación

$$\frac{\partial}{\partial \theta} \log L(\theta, x_1, \dots, x_n) \equiv \frac{\partial}{\partial \theta} \log \prod_{i=1}^n f(x_i, \theta) = 0$$

y si $T^*=t^*(X_1,\ldots,X_n)$ es un estimador insesgado de $\tau^*(\theta)$ cuya varianza coincide con la cota inferior de Cramér-Rao, entonces $t^*(X_1,\ldots,X_n)=\tau^*(\widehat{\theta})$.

Bajo estas condiciones un estimador de máxima verosimilitud es UMVUE.

Marisol García Peña

Si $T^* = t(X_1, \ldots, X_n)$ es un estimador insesgado de algún $\tau^*(\theta)$ cuya varianza coincide con la cota inferior de Cramér-Rao, entonces $f(\bullet, \theta)$ es miembro de la clase/familia exponencial y viceversa, si $f(\bullet, \theta)$ es miembro de la familia exponencial, entonces existe un estimador insesgado, T^* de alguna función $\tau^*(\theta)$, cuya varianza coincide con la cota inferior de Cramér-Rao.

Ejemplo

Sea X_1,\dots,X_n una muestra aleatoria de una población Bernoulli (θ) , $0<\theta<1.$ Se pide:

- Encuentre la información de Fisher.
- Sea $T(X) = \overline{X}$, muestre que T(X) es un UMVUE de θ .

Marisol García Peña

Ejemplo

Sea X una variable aleatoria con distribución $\mathsf{Poisson}(\theta),\ \theta>0$. Sea la estadística $T(X)=\left\{egin{array}{ll} 1, & \mathsf{si}\ x=0 \\ 0, & \mathsf{e.o.c.} \end{array}\right. \Longrightarrow T(X)=\mathbf{1}_{[X=0]}.$ Se pide calcular la cota inferior de Cramér-Rao y la V[T(X)]. ¿Qué se puede concluir?

Marisol García Peña Inferencia Estadística Bogotá, 2022 233 / 574