

INF 302 : Langages & Automates

Chapitre 8 : Automates à états finis non-déterministes avec ϵ -transitions

Yliès Falcone

ylies.falcone@univ-grenoble-alpes.fr - www.ylies.fr

Univ. Grenoble-Alpes, Inria

Laboratoire d'Informatique de Grenoble - www.liglab.fr Équipe de recherche LIG-Inria, CORSE - team.inria.fr/corse/

Année Académique 2020 - 2021

- Motivations
- 2 Automates à états finis non-déterministes avec ϵ -transitions
- 3 Élimination des ϵ -transitions
- 4 Retour sur la fermeture de la classe des langages à états
- Résumé

- Motivations
 - ullet Utilisation pratique des automates avec ϵ -transitions
 - Fermeture de Kleene d'un langage
- 2 Automates à états finis non-déterministes avec ϵ -transitions
- (3) Élimination des ϵ -transitions
- Retour sur la fermeture de la classe des langages à états
- Résumé

- Motivations
 - ullet Utilisation pratique des automates avec ϵ -transitions
 - Fermeture de Kleene d'un langage
- 2 Automates à états finis non-déterministes avec ϵ -transitions
- \bigcirc Élimination des ϵ -transitions
- 4 Retour sur la fermeture de la classe des langages à états
- 6 Résumé

Utilisation des ϵ -transitions

On autorise ϵ comme étiquette des transitions; on parle d' ϵ -transition.

Un mot est accepté si on peut lire le mot jusqu'à un état accepteur : \hookrightarrow les ϵ -transitions ne "consomment" pas de symbole pendant la lecture du mot d'entrée.

Propriété sous-jacente :

$$\forall w \in \Sigma^* : w \cdot \epsilon = \epsilon \cdot w = w.$$

(ϵ est l'élément neutre de la concaténation entre mots)

Utilisation des ϵ -transitions

Nombres décimaux

Exemple (Nombres décimaux)

Un nombre écrit en notation décimale consiste en :

- un signe + ou − optionnel,
- un mot de numéros $0, 1, 2, \ldots, 9$,
- un point pour marquer la décimale,
- un mot de numéros 0, 1, 2, . . . , 9.

L'un des deux mots de numéros peut être vide, mais ils ne peuvent pas être tous les deux vides.

L'utilisation d' ϵ -transitions facilite la définition de l'automate (notamment concernant les choix).

Utilisation des ϵ -transitions

Reconnaissance de mots clés et transformation d'automates

Exemple (Reconnaissance de mots clés - compositionalité)

Reconnaissance de deux mots clés : web et http

L'ajout d'un mot clé se fait de *manière compositionnelle* :

- écrire un automate reconnaissant uniquement ce mot clé,
- ullet ajouter une ϵ -transition depuis l'état initial de l'automate général vers l'état initial de l'automate reconnaissant,
- l'unique état initial est celui de l'automate général.

Nous verrons en TD que les ϵ -transitions facilitent la transformation d'automates, p. ex. transformer un automate pour garder que certains préfixes/suffixes du langage.

- Motivations
 - ullet Utilisation pratique des automates avec ϵ -transitions
 - Fermeture de Kleene d'un langage
- 2 Automates à états finis non-déterministes avec ϵ -transitions
- \odot Élimination des ϵ -transitions
- Retour sur la fermeture de la classe des langages à états
- 6 Résumé

Fermeture de Kleene d'un langage

Définition - vision langage

Soit L un langage (quelconque, pas forcément à états) sur Σ .

Définition (Fermeture de Kleene)

La Fermeture de Kleene de L, notée L^* , est l'ensemble défini inductivement comme le plus petit ensemble généré par les deux règles suivantes :

- \bullet $\epsilon \in L^*$, et
- si $u \in L, v \in L^*$, alors $u \cdot v \in L^*$,
- (de manière équivalente à la précédente règle : si $u \in L^*, v \in L$, alors $u \cdot v \in L^*$).

Remarque Autrement dit, la fermeture de Kleene de L est l'ensemble des mots formés par un nombre fini de concaténations de mots de L :

$$L^* = \{\epsilon\} \cup \{a_0 \cdots a_n \mid n \in \mathbb{N}, \forall i \leq n : a_i \in L\}$$

Exemple (Fermeture de Kleene)

- $L_1 = \{b \cdot a, c \cdot d\}$
- $L_1^* = \{\epsilon, ba, cd, baba, bacd, cdcd, cdba, \ldots\}$

• $L_2 = \{a \cdot a, b\}$

 L₂* est l'ensemble des mots contenant un nombre pair de a et des b de manière non contrainte.

Pour un langage constitué de mots de longueur 1 (qui peut être vu comme un alphabet), la fermeture de Kleene de ce langage est le langage universel (sur cet alphabet).

Fermeture de Kleene d'un langage

Vision automate

On veut montrer que si L est dans EF alors L^* est dans EF :

$$\forall L \subseteq \Sigma^* : L \in EF \implies L^* \in EF$$

Étant donné un automate qui reconnaît L.

Peut-on construire un automate qui reconnaît L^* ?

On obtient facilement un automate pour L^* à partir de n'importe quel automate de L en utilisant les e-transitions :

Automate pour L

Automate pour L^*

- Motivations
- 2 Automates à états finis non-déterministes avec ϵ -transitions
 - Définition
 - Langage accepté
- \bigcirc Élimination des ϵ -transitions
- 4 Retour sur la fermeture de la classe des langages à états
- Résumé

- Motivation:
- 2 Automates à états finis non-déterministes avec ϵ -transitions
 - Définition
 - Langage accepté
- \bigcirc Élimination des ϵ -transitions
- 4 Retour sur la fermeture de la classe des langages à états
- Résumé

ANDEF avec ϵ -transitions

Soit Σ un alphabet où le symbole $\epsilon \notin \Sigma$.

Définition (ANDEF avec ϵ -transitions)

Un automate non-déterministe avec ϵ -transitions (ϵ -ANDEF) est donné par un quintuplet $(Q, \Sigma, q_0, \Delta, F)$ où

- Q est un ensemble fini d'états,
- Σ est l'alphabet de l'automate,
- $q_0 \in Q$ est l'état initial,
- $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ est la relation de transition,
- $F \subseteq Q$ est l'ensemble des *états terminaux/finaux*.

Exemple (ANDEF avec ϵ -transitions)

Soit $\Sigma = \{a, b, c\}$.

- Motivations
- 2 Automates à états finis non-déterministes avec ϵ -transitions
 - Définition
 - Langage accepté
- \bigcirc Élimination des ϵ -transitions
- 4 Retour sur la fermeture de la classe des langages à états
- 6 Résumé

Configuration

Soit $A = (Q, \Sigma, q_0, \Delta, F)$ un ϵ -ANDEF.

Définition (Configuration)

Une configuration de l'automate A est un couple (q, u) où $q \in Q$ et $u \in \Sigma^*$.

Définition (Relation de dérivation (entre configurations))

On définit la relation \rightarrow_{Δ} de *dérivation* entre configurations :

$$\begin{array}{c} (q,a\cdot u) \to_{\Delta} (q',u') \\ ssi \\ \left((q,a,q') \in \Delta \text{ et } u'=u\right) \quad \text{ou} \quad \left(a\cdot u=u' \text{ et } (q,\epsilon,q') \in \Delta\right) \end{array}$$

Notation

ullet On note $q \overset{a_1 \cdots a_n *}{\longrightarrow}_{\Delta} q'$ lorsqu'ils existent q_1, \dots, q_{n-1} tels que :

$$(q,a_1,q_1)\in \Delta, (q_1,a_2,q_2)\in \Delta,\ldots, (q_{n-1},a_n,q')\in \Delta.$$

• On note $q \longrightarrow_{\Delta}^{*} q'$ lorsqu'ils existent a_1, \ldots, a_n tels que $q \stackrel{a_1 \cdots a_n^*}{\longrightarrow}_{\Delta} q'$.

Exécution

Définition (Exécution)

Une exécution de l'automate A est une séquence de configurations $(q_0, u_0) \cdots (q_n, u_n)$ telle que

$$(q_i, u_i) \to_{\Delta} (q_{i+1}, u_{i+1}), \text{ pour } i = 0, \dots, n-1$$

Les notions

- d'acceptation d'un mot, et
- de langage reconnu

sont définies comme dans le cas des ANDEF mutatis mutandis.

- Motivations
- 2 Automates à états finis non-déterministes avec ϵ -transitions
- **3** Élimination des ϵ -transitions
 - Traduction vers ANDEF
 - Traduction (directe) vers ADEF
- 4 Retour sur la fermeture de la classe des langages à états
- Résumé

- Motivations
- 2 Automates à états finis non-déterministes avec ϵ -transitions
- 3 Élimination des ϵ -transitions
 - Traduction vers ANDEF
 - Traduction (directe) vers ADEF
- 4 Retour sur la fermeture de la classe des langages à états
- Résume

Élimination des ϵ -transitions

L'idée sur un exemple

Exemple (ANDEF avec ϵ -transitions)

Soit
$$\Sigma = \{a, b, c\}$$

Élimination des ϵ -transitions : traduction vers ANDEF

Soit $A = (Q, \Sigma, q_0, \Delta, F)$ un ϵ -ANDEF

Définition (Élimination des ϵ -transitions)

On construit un ANDEF

$$\epsilon\ell(A) = (Q, \Sigma, q_0, \epsilon\ell(\Delta), \epsilon\ell(F))$$

qui reconnaît L(A) tel que :

- La relation de transition $\epsilon\ell(\Delta)$ est définie par : $(q,a,q')\in\epsilon\ell(\Delta)$ ssi ils existent $q_1,q_2\in Q$ tels que :

 - $(q_1, a, q_2) \in \Delta$
- L'ensemble des états accepteurs $\epsilon \ell(F)$ est défini par :

$$\epsilon\ell(F) = \{q \in Q \mid \exists q' \in F : q \stackrel{\epsilon}{\rightarrow}_{\Delta}^* q'\}$$

Correction de la procédure d'élimination des ϵ -transitions

Soit $A = (Q, \Sigma, q_0, \Delta, F)$ un ϵ -ANDEF.

Théorème : Correction de la procédure d'élimination des ϵ -transitions

$$L(A) = L(\epsilon \ell(A)).$$

Preuve (par induction)

Pour tout $u, u' \in \Sigma^*$ (et pour tout $q, q' \in Q$),

$$(q,u) \stackrel{*}{\longrightarrow_{\epsilon\ell(\Delta)}} (q',u')$$
 si et seulement si $(q,u) \stackrel{*}{\longrightarrow_{\Delta}} (q',u')$.

- $\epsilon \in L(A)$ si et seulement si $\epsilon \in L(\epsilon \ell(A))$
- Soit $u \in \Sigma^*$, Supposons que pour tout $u' \in \Sigma^*$,

$$(q,u) \stackrel{*}{\longrightarrow}_{\Delta} (q',u')$$
 si et seulement si $(q,u) \stackrel{*}{\longrightarrow_{\epsilon\ell(\Delta)}} (q',u')$

Soit $a \in \Sigma$, il faut montrer que pour tout $u' \in \Sigma^*$

$$(q, u \cdot a) \stackrel{*}{\longrightarrow}_{\Delta} (q', u')$$
 si et seulement si $(q, u \cdot a) \stackrel{*}{\longrightarrow}_{\epsilon \ell(\Delta)} (q', u')$

- Motivations
- 2 Automates à états finis non-déterministes avec ϵ -transitions
- 3 Élimination des ϵ -transitions
 - Traduction vers ANDEF
 - Traduction (directe) vers ADEF
- 4 Retour sur la fermeture de la classe des langages à états
- Résumé

Fermeture par ϵ (ϵ -fermeture)

Définition

L' ϵ -fermeture d'un état q consiste à regrouper tous les états qu'on peut atteindre en suivant toutes les transitions sortantes de q et étiquetées par ϵ

Définition (ϵ -Fermeture d'un état)

Soit $q \in Q$ un état, on définit ECLOSE(q) de façon récursive :

- Case de base : $q \in ECLOSE(q)$
- Induction : Si $p \in ECLOSE(q)$ et s'il existe une transition de p vers $r \in Q$ étiquetée par ϵ , alors $r \in ECLOSE(q)$

De manière équivalente : $ECLOSE(q) = \delta^*(q, \epsilon)$

Définition (ϵ -Fermeture d'un ensemble d'états)

Pour $S \subseteq Q$:

$$ECLOSE(S) = \bigcup_{q \in S} ECLOSE(q)$$

Fermeture par ϵ (ϵ -fermeture)

Exemples

Exemple (ϵ -Fermeture)

 ϵ -fermeture d'états :

- $ECLOSE(0) = \{0, 1, 2, 3, 4\}$
- $ECLOSE(3) = \{3\}$
- $ECLOSE(5) = \{5, 6, 7\}$

 ϵ -fermeture d'ensembles d'états :

- $ECLOSE({0,3}) = {0,1,2,3,4}$
- $ECLOSE({3,5}) = {3,5,6,7}$

Relation de transition étendue

Définition

On définit la relation de transition étendue δ qui permet de lire en entrée des symboles de l'alphabet et ϵ ; ϵ est vu comme un symbole ne consommant pas de symbole d'entrée.

Intuitivement, $\hat{\delta}(q,w)$ est l'ensemble d'états atteints en suivant un chemin dont les étiquettes concaténées forment w (et ϵ ne "contribue" pas à w).

Définition (Relation de transition étendue)

Étant donnés $q \in Q$ et $w \in (\Sigma \cup \{\epsilon\})^*$:

- Cas de base : $\hat{\delta}(q, \epsilon) = ECLOSE(q)$
- Induction : Pour $w=x\cdot a$, avec $a\in \Sigma$, $\hat{\delta}(q,x\cdot a)$ est défini par :
 - soit $\{p_1, p_2, \dots, p_k\} = \hat{\delta}(q, x),$
 - soit $\{r_1, r_2, \ldots, r_m\} = \bigcup_{i=1}^k \delta(p_i, a),$
 - alors $\hat{\delta}(q, w) = ECLOSE(\{r_1, r_2, \dots, r_m\}).$

Relation de transition étendue

Exemple

Exemple (Relation de transition étendue)

•
$$\hat{\delta}(0, \epsilon) = ECLOSE(0) = \{0, 1, 2, 3, 4\}$$

•
$$\hat{\delta}(0,a) = \{5,6,7\}$$

$$\bullet \ \hat{\delta}(0,b) = \emptyset$$

•
$$\hat{\delta}(0, ab) = \{3\}$$

Élimination des ϵ -transitions et déterminisation "à la volée"

Traduction vers ADEF - définition du déterminisé

Soit
$$A = (Q, \Sigma, q_0, \Delta, F)$$
 un ϵ -ANDEF

Définition (Déterminisation et élimination des ϵ -transitions, à la volée)

Le déterminisé de A est l'ADEF

$$(Q_D, \Sigma, q_D, \delta, F_D)$$

tel que :

- $Q_D = \mathcal{P}(Q)$
- $q_D = ECLOSE(q_0)$
- δ est définie comme suit : pour tout $S \in Q_D, a \in \Sigma$:
 - soit $\{p_1, p_2, \dots, p_k\} = S$,
 - soit $\{r_1, r_2, ..., r_m\} = \bigcup_{i=1}^k \Delta(p_i, a),$
 - alors $\delta(S, a) = ECLOSE(\{r_1, r_2, \dots, r_m\}),$
- $F_D = \{ S \in \mathcal{P}(Q) \mid S \cap F \neq \emptyset \}.$

Remarque Chaque état de l'automate déterminisé (atteint avec δ) correspond à un ensemble d'états de l'automate non-déterministe avec ϵ -transitions qui est ϵ -fermé.

Élimination des ϵ -transitions et déterminisation "à la volée"

Traduction vers ADEF: exemple

Exemple (Élimination des ϵ -transitions - Traduction vers ADEF)

On combine élimination des ϵ -transitions et déterminisation. On fait les deux opérations "à la volée".

Élimination des ϵ -transitions et déterminisation "à la volée"

Traduction vers ADEF: un autre exemple

Exemple (Élimination des ϵ -transitions - Traduction vers ADEF)

- Motivations
- 2 Automates à états finis non-déterministes avec ϵ -transitions
- (3) Élimination des ϵ -transitions
- 4 Retour sur la fermeture de la classe des langages à états
 - Fermeture par union et concaténation
 - Fermeture par opération miroir
 - Fermeture par morphisme
- 6 Résume

- Motivations
- 2 Automates à états finis non-déterministes avec ϵ -transitions
- (3) Élimination des ϵ -transitions
- 4 Retour sur la fermeture de la classe des langages à états
 - Fermeture par union et concaténation
 - Fermeture par opération miroir
 - Fermeture par morphisme
- 6 Résumé

Fermeture des langages à états par union et concaténation

Union

Concaténation

Fermeture des langages à états par union et concaténation

Union

Concaténation

- Motivations
- 2 Automates à états finis non-déterministes avec ε-transitions
- \odot Élimination des ϵ -transitions
- 4 Retour sur la fermeture de la classe des langages à états
 - Fermeture par union et concaténation
 - Fermeture par opération miroir
 - Fermeture par morphisme
- 6 Résumé

Opération miroir

Le miroir d'un mot est le mot écrit en lisant de droite à gauche.

Définition (Opération miroir – mot et langage)

• Pour $w = a_1 \cdot a_2 \cdots a_n$, le *miroir* de w est le mot dénoté w^R et défini par :

$$w^R = a_n \cdot a_{n-1} \cdot \cdot \cdot a_1$$

• Pour $L \subseteq \Sigma^*$, le *miroir* de L est le langage, dénoté L^R , des mots miroirs de L :

$$L^R = \{ w^R \mid w \in L \}$$

Exemple (Opération miroir)

Pour $L = \{001, 10, 111\}$, on a $L^R = \{100, 01, 111\}$.

Fermeture des langages à états par opération miroir

Fermeture de EF par l'opération miroir

- Si $L \subseteq \Sigma^*$ est un langage à états, alors ainsi est L^R .
- Donc EF est fermé par l'opération miroir.

Preuve informelle basée sur les automates

Etant donnés un langage L à états et son automate reconnaisseur A:

- Inverser toutes les transitions de A.
- ② Faire de l'état initial de A l'unique état accepteur.
- \odot Créer un nouvel état initial q_0 (si l'ancien état initial était accepteur, rendre ce nouvel état initial accepteur).
- **4** Ajouter une transition étiquetée par ϵ depuis q_0 vers chaque état accepteur de l'automate initial.

(La preuve est laissée sous forme d'exercice en TD.)

- Motivations
- 2 Automates à états finis non-déterministes avec ϵ -transitions
- \odot Élimination des ϵ -transitions
- 4 Retour sur la fermeture de la classe des langages à états
 - Fermeture par union et concaténation
 - Fermeture par opération miroir
 - Fermeture par morphisme
- 6 Résume

Rappel: morphismes (de groupes)

Définition (Groupe)

Un groupe est un couple (G,*) où G est un ensemble et * une opération entre éléments de G tels que pour tout $g_1,g_2,g_3\in G$:

- $g_1 * g_2 \in G$,
- $g_1 * (g_2 * g_3) = (g_1 * g_2) * g_3$

- il existe un élément neutre e_g $(g_1 * e_G = e_G * g_1 = g_1)$
- chaque élément a un symétrique

Soient (G, \bullet) et (G', *) 2 groupes dont les éléments neutres sont e_G et $e_{G'}$, respectivement.

Définition (Morphisme)

Une application $f: G \rightarrow G'$ est un morphisme de groupes si

$$\forall x, y \in G : f(x \bullet y) = f(x) * f(y)$$

Exemple (Morphisme)

L'application $f:(Z,+)\to (R,\times)$ définie par $f(n)=2^n$ est un morphisme de groupes.

Dans la suite, pour chaque alphabet Σ , nous considérons le groupe (Σ^*,\cdot) où \cdot est l'opération de concaténation entre mots de Σ^* et des morphismes pour traduire des mots sur un alphabet vers des mots sur un autre alphabet.

Morphisme sur les mots

Soit Σ et Σ' deux alphabets.

Définition (Morphisme de mots)

Une application $h: \Sigma \to \Sigma'^*$ induit un morphisme \hat{h} , de $\Sigma^* \to \Sigma'^*$ défini par :

- $\hat{h}(\epsilon) = \epsilon$, et
- $\hat{h}(u \cdot a) = \hat{h}(u) \cdot h(a).$

Remarque On montre que \hat{h} est un morphisme en montrant

$$\forall x,y \in \Sigma^* = \hat{h}(x \cdot y) = \hat{h}(x) \cdot \hat{h}(y)$$
 par induction sur y ou récurrence sur $|y|$.

Exemple (Morphisme de mots)

Considérons $\Sigma = \{a, b\}$, $\Sigma' = \{0, 1\}$ et l'application $h : \Sigma \to \Sigma'^*$ telle que h(a) = 0 et $h(b) = 1 \cdot 1$.

L'application h induit bien un morphisme $\hat{h}: \Sigma^* \to {\Sigma'}^*$.

En effet on a, par exemple, $\hat{h}(b \cdot a \cdot a) = 1 \cdot 1 \cdot 0 \cdot 0 = \hat{h}(b) \cdot \hat{h}(a \cdot a)$.

À partir de maintenant, on écrit h au lieu de \hat{h} .

Fermeture des langages à états par morphisme

Soit h un morphisme.

Théorème : Fermeture de EF par morphisme

Si $L\subseteq \Sigma^*$ est un langage à états alors ainsi est son image par h, notée h(L) et définie par

$$h(L) = \{h(u) \mid u \in L\}.$$

Donc EF est fermé par morphisme.

Preuve

Basée sur les automates. Laissée en exercice.

Exemple (Fermeture de EF par morphisme)

Considérons $\Sigma = \{a,b\}$, $\Sigma' = \{0,1\}$ et le morphisme \hat{h} (noté h ci-dessous) comme décrit précédemment et induit par l'application $h: \Sigma \to \Sigma'^*$ telle que h(a) = 0 et $h(b) = 1 \cdot 1$.

- Le langage $L_1 \subseteq \Sigma^*$ contenant l'ensemble des mots avec un nombre impair de a est un langage à états.
- Le langage $h(L_1) \subseteq {\Sigma'}^*$ contenant l'ensemble des mots avec un nombre impair de 0 et un nombre pair de 1 est un langage à états.

Fermeture de EF par morphisme inverse

Soit h un morphisme et h^{-1} le morphisme inverse (application inverse).

Théorème : Fermeture de EF par morphisme inverse

Si $L\subseteq \Sigma'^*$ est un langage à états alors ainsi est son image $h^{-1}(L)$ par h^{-1} définie par

$$h^{-1}(L) = \left\{ u \in \Sigma^* \mid \exists u' \in L : h(u) = u' \right\}.$$

Donc EF est fermé par morphisme inverse.

Preuve

Basée sur les automates. Laissée en exercice.

Exemple (Fermeture de EF par morphisme inverse)

Considérons $\Sigma = \{a, b, c, d\}$, $\Sigma' = \{0, 1, 2\}$ et le morphisme \hat{h} (noté h ci-dessous) induit par l'application $h : \Sigma \to {\Sigma'}^*$ telle que h(a) = 0, h(b) = 1, $h(c) = \epsilon$ et h(d) = 2.

- Le langage $L_1 \subseteq {\Sigma'}^*$ contenant l'ensemble des mots avec un nombre pair de 0 et pas de 2 est un langage à états.
- Le langage $h^{-1}(L_1) \subseteq {\Sigma'}^*$ contenant l'ensemble des mots avec
 - un nombre pair de 0,
 - pas de d, et
 - des b et des c de manière non-contrainte

est un langage à états.

- Motivation
- 2 Automates à états finis non-déterministes avec ϵ -transitions
- (3) Élimination des ϵ -transitions
- Retour sur la fermeture de la classe des langages à états
- Résumé

Résumé 1 : transformations entre automates

Résumé 2 : fermeture de la classe des langages à états, problèmes et procédures de décision

Propriétés de fermeture

Les langages d'états finis sont fermés par les opérations suivantes :

- union, intersection,
- complément,
- concaténation,

- 4 l'étoile/la fermeture de Kleene,
- opération miroir,
- o morphisme, morphisme inverse.

Nous avons associé ces opérations à des transformations d'automates.

Problèmes et procédures de décision

Les problèmes de décision suivants sont décidables :

accessibilité,

langage vide,

inclusion de langages,

co-accessibilité,

langage infini,

égalité de langages.

Nous avons donné une procédure de décision pour chaque problème.