

Praktikum Computergrafik

Vorstellung des 3. Aufgabenblattes

Sommersemester 2024

Sichtbarkeit

Ziel:

 Möglichst exakte Bestimmung der vom Blickpunkt aus sichtbaren bzw. unsichtbaren Teile der Szene

Problem:

Durch Projektion werden unterschiedliche Objektteile auf dieselbe (x,y)-Koordinate abgebildet

Raycasting

- Strahl: vom Augpunkt (Kamera) durch Pixel
- Schnittberechnung eines Strahls mit allen Objekten der Szene (Kugeln, Dreiecke, usw...)
- Objekt mit geringster Distanz zwischen Augpunkt und Schnittpunkt ist im Pixel sichtbar

Schnitt mit Kugel

- e: Augpunkt
- v: Sichtrichtung normalisiert(Pixel e)
- t: Stahlparameter
- Strahl: $R(t) = \mathbf{e} + t\mathbf{v}$
- Kugel: $|\mathbf{x} \mathbf{m}|^2 r^2 = 0$

Schnitt mit Kugel

Einsetzen des Strahls R für x:

$$- |\mathbf{e} + t\mathbf{v} - \mathbf{m}|^2 - r^2 = 0$$

$$-|t\mathbf{v}+(\mathbf{e}-\mathbf{m})|^2=0$$

$$-(vv) \cdot t^2 + (2v(e-m)) \cdot t + ((e-m)(e-m) - r^2) = 0$$

Lösen der quadratischen Gleichung: $t_{1,2}$ und anschließende Berechnung der Schnittpunkte $\mathbf{s}_{1,2} = \mathbf{e} + t_{1,2}\mathbf{v}$

Schnitt mit Ebene

- e: Augpunkt
- v: Sichtrichtung normalisiert(Pixel e)
- t: Stahlparameter
- Strahl: $R(t) = \mathbf{e} + t\mathbf{v}$
- Ebene: $(\mathbf{x} \mathbf{p}) \cdot \mathbf{n} = 0$

Schnitt mit Ebene

Einsetzen des Strahls R für x:

$$- (R(t) - \mathbf{p}) \cdot \mathbf{n} = (\mathbf{e} + t\mathbf{v} - \mathbf{p}) \cdot \mathbf{n} = 0$$

$$-$$
 en $+$ t vn $-$ pn $=$ 0

$$-t = \frac{pn-en}{vn} = \frac{(p-e)n}{vn}$$

Berechnung der Schnittpunkte $\mathbf{s} = \mathbf{e} + t\mathbf{v}$

Dreieck

- Gegeben: Dreieck (A, B, C)
- Gesucht: Koordinaten von P bezüglich des Dreiecks
- Ansatz: $P = \alpha A + \beta B + \gamma C$
- Nebenbedingung: $\alpha + \beta + \gamma = 1$ (Normalisierung)

Dreieck

$$- P = \alpha A + \beta B + \gamma C$$

- Folgerung:
$$A = (1,0,0)$$
, $B = (0,1,0)$, $C = (0,0,1)$

$$-\alpha = 0, \beta + \gamma = 1$$
: Kante $B - C$

$$-\beta = 0, \alpha + \gamma = 1$$
: Kante $A - C$

$$-\gamma = 0, \alpha + \beta = 1$$
: Kante $A - B$

$$-0 \le \alpha, \beta, \gamma \le 1$$
: *P* ist innerhalb des Dreiecks

Dreieck

$$-P = \alpha A + \beta B + \gamma C$$

$$-P = (1 - \beta - \gamma)A + \beta B + \gamma C$$

$$-P = A + \beta(B - A) + \gamma(C - A)$$

- berechne (α, β, γ)

Dreieck: Flächeninhaltsmethode

$$-\alpha = \frac{\Delta(P,B,C)}{\Delta(A,B,C)}, \beta = \frac{\Delta(A,P,C)}{\Delta(A,B,C)} \gamma = \frac{\Delta(A,P,B)}{\Delta(A,B,C)}$$

- Bsp.
$$\Delta(A, B, C) = 0.5 ||(B - A) \times (C - A)||$$

- Normale
$$\mathbf{n} = \frac{(B-A)\times(C-A)}{\|(B-A)\times(C-A)\|}$$

- Bsp.
$$\alpha = \frac{((B-P)\times(C-P))\mathbf{n}}{((B-A)\times(C-A))\mathbf{n}}$$

– vorzeichen beachten!

Literaturhinweis

Effizientere Berechnung und Algorithmen: Christer Ericson, Real Time Collision Detection. Morgan Kaufman – Elsevier, 2005.

