

IP Version 6

Introduction

- The IP protocol forms the foundation of the Internet.
 - > IP version 4 is used widely today.
 - ► IPv4 suffers from a number of drawbacks.
 - ► Need to enhance the capabilities of the protocol.
- IP Next Generation
 - ►IPng / IPv6

Problems with IPv4

- Limited address space.
 - >32-bit address is inadequate today.
- Applications demanding real-time response.
 - Real-time audio or video.
 - Must avoid changing routes frequently.
- Need for more complex addressing and routing capabilities.
 - Two-level structure of IPv4 may not serve the purpose.

Main Features of IPv6

- Something is common with IPv4:
 - ►IPv6 is connectionless each datagram contains destination address and is routed independently.
 - ► Header contains the maximum number of hops a datagram can make before being discarded.
 - Some of the other general characteristics are also retained.

New features of IPv6:

- >Address size: 128-bit addresses are used.
 - 6x10²³ unique addresses per square meter of the earth's surface.
- **≻**Header format:
 - IPv6 uses a series of fixed-length headers to handle optional information.
 - A datagram consists of a base header followed by zero or more extension headers.

- > Support for real-time traffic:
 - Allows a pair of stations to establish a high quality path between them.
 - All datagrams flow through this path.
- Increased flexibility in addressing:
 - Includes the concept of an anycast address, where a packet is delivered to one of a set of nodes.
 - Provides for dynamic assignment of IP addresses.

IPv6 Datagram Format

- An IP datagram begins with a base header, followed by zero or more extension headers, followed by data (transport-layer PDU).
 - >40 bytes base header

Base Header **Extension Header 1**

. . .

Extension Header N **Transport Layer PDU**

IPv6 Base Header Format

VersionPriorityFlow LabelPayload LengthNext HdrHop Limit

Source Address (128 bits)

Destination Address (128 bits)

The Fields

- Version (4 bits): contains the value 6.
- Priority (8 bits): specifies routing priority class.
- Flow Label (20 bits): used with applications that require performance guarantee.
- Payload Length (16 bits): total length of the extension headers and the transport-level PDU.
- Next Header (8 bits): identifies the type of information that immediately follows the current header (IP extension, TCP or UDP).

Base Header Next=TCP

TCP Data

Base Header Next=Route

Route Header Next=TCP

TCP Data

- Hop Limit: decremented by 1 at each hop; discarded when it reaches 0.
- Source/destination addresses: 16 octets (128 bits) each.

IPv6 Extension Headers

- Routing Header
 - Provides source routing.
- Hop-by-hop Options Header
 - Defines special options that are processed at each hop.
- Fragment Header
 - For fragmentation and reassembly.
- Authentication Header
 - For packet integrity & authentication.
- All Extension headers chained in a linked list through Next Hdr field.

A Point About Fragmentation

- IPv6 fragmentation is similar to that in IPv4.
- Required information contained in a separate fragment extension header.
 - Presence of the fragment header identifies the datagram as a fragment.
 - Base header copied into all the fragments.

IPv6 Addressing

- Addresses do not have defined classes.
 - A prefix length associated with each address (flexibility).
- Three types of addresses:
 - Unicast: corresponds to a single computer.
 - Multicast: Refers to a set of computers, possibly at different locations. Packet delivered to every member of the set.

- Anycast: Refers to a set of computers with the same address prefix. Packet delivered to exactly one of the computers in the set.
 - Required to support replication of services.

Colon Hexadecimal Notation

- An IPv6 address is 128 bits long.
 - Dotted decimal notation too long.
 - ➤ Use colon-hexadecimal notation. Each group of 16 bits written in hex, with a colon separating groups.
 - **Example:**

7BD6:3DC:FFFF:FFFF:0:2D:F321:FFFF

Sequence of zeros is written as two colons.

7BD6:0:0:0:0:0:0:B6 → 7BD6::B6

Aggregate Global Unicast Address

- TLA: top-level aggregation
- NLA: next-level aggregation
- SLA: site-level aggregation
- Interface Id: typically based on hardware MAC address

IPv4-Mapped IPv6 Addresses

- Allow a host that supports both IPv4 and IPv6 to communicate with a host that supports only IPv4.
 - >IPv6 address is based on IPv4 address.
 - >80 0's, followed by 16 1's, followed by a 32-bit IPv4 address.

IPv4 Compatible IPv6 Addresses

- Allows a host supporting IPv6 to talk IPv6 even if the local routers do not talk IPv6.
 - Tell endpoint software to create a tunnel by encapsulating the IPv6 packet in an IPv4 packet.
 - ▶80 0's, followed by 16 0', followed by a 32-bit IP address.

Tunnelling

 Done automatically by the OS kernel when IPv4-compatible IPv6 addresses are used.

IPv6
HostIPv4
RouterIPv4
RouterIPv4
Router

IPv6 Datagram

IPv4 Datagram

Transition from IPv4 to IPv6

- Three alternate transition strategies:
 - 1. Dual stack: Both IPv4 and IPv6 protocol stacks supported in the gateway.
 - 2. Tunneling: An IPv6 datagram flows through an intermediate IPv4 network by encapsulating the whole IPv6 packet as payload.
 - 3. Header translation: An IPv4 address is translated into a IPv6 address, and vice versa.

The Scenario Today

- Very few organizations have actually moved over to IPv6.
- IPv6 networks mostly confined to laboratories.
- Transition has to take anyway
 The sooner the better.