Bridge Corrosion

A Chloride Exposure Prediction Model for Bridges in Ontario

Cynthia Liu

Table of Content

- The problem
- Existing work
- Goal
- Input & output
- Assumption
- Procedures
- Theoretical model
- Symbols
- Instance model
- Other model
- Stakeholders

The problem: chloride-induced corrosion

- Reinforced Concrete
- Deicing salts(NaCl)
 - Climate
 - \rightarrow snow
 - Traffic
 - → dissolved chloride ions

Existing Paper & Collaboration

- Dr. Cancan Yang and Ph.D. candidate Mingsai Xu from the Department of Civil Engineering at McMaster University
- Hanmin Wang, Ravi Ranade & Pinar Okumus (2023) Estimating chloride exposure of reinforced concrete bridges using vehicle spray and splash mechanisms, Structure and Infrastructure Engineering, 19:11, 1676-1686, DOI: 10.1080/15732479.2022.2052910

Goal Statement

- This project should return a predictive model indicating corrosion trends based on location information.
- This project should ensure its applicability to all locations within Ontario.
- This project should provide trends for locations nearest to the input if exact data is unavailable.
- This project should extends the forecasted trend period to a minimum of five years
- This project should incorporates calculated data from previous years for comparison with real-world observations, verify the accuracy of the model.

Input & Output

Coordinate

- Locations inside Ontario
- (x,y) where x is longitude and y is latitude
- Float

Example:

- Input: 43.1, -79.3
- Output: [4.69, 4.92, 7.48, 6.00, 5.10]

Predictive model

- The likelihood of corrosion in bridges at the provided coordinates.
- Measured by the amount of chloride for every cubic meter
- A series of data

Assumption

- The deicing salt used is NaCl.
- The amount of deicing salts applied on the road is same for every snowfall.
- The melted water thickness is same for every snowfall.
- The speed for every vehicle reaches the highway speed limit.
- Bridges within the same classification has same annual average daily traffic

Procedures

- 1. Amount of deicing salts applied per day with snowfall
- 2. Thickness of melted water on the ground
- 3. Water sprayed and splashed by one truck
- 4. Chloride sprayed and splashed by one truck
- 5. Chloride sprayed and splashed by all vehicle
- 6. Chloride on the surface of bridge substructure

Theoretical Models - determining the amount of water sprayed and splashed by one truck

- Four primary mechanisms of vehicle spray and splash: capillary adhesion,
 tread pickup, bow wave, side wave. Total amount of water = sum of the four
- Computational fluid dynamics & regression analysis (Flintsch et al. (2014))

• $MR_w = V \cdot b \cdot WD \cdot \rho_{water}$

Figure 1. Mechanisms of vehicle spray and splash (adapted from Weir et al. (1978)).

Symbols

symbol	unit	description
V_{speed}	km/h	heavy vehicle speed
V	miles/h	heavy vehicle speed
b	m	tire width
WD	m	water depth/thickness
K	m	ratio of the tire width that is not a groove to the tire width
h_{film}	m	depth of the water film picked up in each rotation
$ ho_{water}$	kg/m^3	density of water
h_{app}	m	daily water film thickness on the road
MR_{CA}	kg/s	amount of water displaced by a single tire due to capillary adhesion
MR_{TP}	kg/s	amount of water displaced by a single tire due to tread pickup
MR_{BW}	kg/s	amount of water displaced by a single tire due to bow
MR_{SW}	kg/s	amount of water displaced by a single tire due to side waves
SD_{CA}	kg/m^3	amount of water in 1 m^3 volume of air by a single tire due to capillary adhesion
SD_{TP}	kg/m^3	amount of water in 1 m^3 volume of air by a single tire due to tread pickup
SD_{BW}	kg/m^3	amount of water in 1 m^3 volume of air by a single tire due to bow
SD_{SW}	kg/m^3	amount of water in 1 m^3 volume of air by a single tire due to side waves
SD_{total}	kg/m^3	mass of water per unit air volume kicked up by each passing truck

Instance Models - Mass Flow Rate

Capillary adhesion: $MR_{CA} = V_{speed} \times b \times K \times h_{film} \times \rho_{water}$

Tread pickup: $MR_{TP} = V_{speed} \times b \times (1 - K) \times h_{app} \times \rho_{water}$

Bow and side waves:

$$MR_{BW} = MR_{SW} = 0.5 \times V_{speed} \times b \times \left(h_{app} - K \times h_{film} - (1 - K) \times h_{app}\right) \times \rho_{water}$$

Instance Models - Spray Density

Capillary adhesion: $SD_{CA} = (-2.69 \times 10^{-5} \times V + 2.43 \times 10^{-3}) \times MR_{CA}$

Tread pickup: $SD_{TP} = (1.16 \times 10^{-5} \times V - 5.25 \times 10^{-5})MR_{TP}$

Bow: $SD_{BW} = (2.67 \times 10^{-5} \times V - 4.71 \times 10^{-4})MR_{BW}$

Side waves: $SD_{SW} = (1.65 \times 10^{-5} \times V - 3.99 \times 10^{-4})MR_{SW}$

Instance Models

Mass of water per unit air volume kicked up by each passing truck:

$$SD_{total} = SD_{CA} + SD_{TP} + SD_{BW} + SD_{SW}$$

Other Model

- One truck → all vehicle over a year
- CanRCM4 regional climate model: https://climate-modelling.canada.ca/climatemodeldata/canrcm/CanRCM4/

Stakeholders

- Governments
- Researchers
- Developers

Reference

- Du, Y. G., Clark, L. A., and Chan, A. H. C. 2005. "Effect of corrosion on ductility of reinforcing bars." Magazine of Concrete Research, 57(7): 407-419.
- Guo, T., Sause, R., Frangopol, D. M., and Li, A. 2011. "Time-dependent reliability of PSC box girder bridge considering creep, shrinkage, and corrosion." Journal of Bridge Engineering, 16(1): 29-43.
- Tang, L., and Utgenannt, P. 2007. Chloride ingress and reinforcement corrosion in concrete under de-icing highway environment-a study after 10 years' field exposure. Sweden: SP Technical Research institute of Sweden.
- Lindvall, A. 2001. Environmental actions and response Reinforced concrete structures exposed in road and marine environments (MSc Thesis). Chalmers University of Technology, Gothenburg, Sweden.
- Lindvall, A. 2003. Environmental actions on concrete exposed in marine and road environments and its response—Consequences for the initiation of chloride induced reinforcement corrosion (PhD dissertation).
 Chalmers University of Technology, Gothenburg, Sweden.
- Flintsch, G. W., Tang, L., Katicha, S. W., de Leon Izeppi, E., Viner, H., Dunford, A., ... Gibbons, R. B. (2014). Splash and spray assessment tool development program. Washington, D.C.: Federal Highway Administration.
- Weir, D. H., Strange, J. F., and Heffley, R. K. 1978. Reduction of adverse aerodynamic effects of large trucks,
 Volume I. Technical report (No. FHWA-RD-79-84). United States. Federal Highway Administration

Questions?