Exercise sheet 2 on Discrete Mathematics

Lijun Zhang

Andrea Turrini

http://iscasmc.ios.ac.cn/DM2016

To be submitted on April 3rd, 2018.

Let A be a finite alphabet, such as the English alphabet, and consider the following simple programming language **WHILE** whose well-formed programs are those obtained by applying the rules of the following grammar:

Numbers:

$$Num := d \mid dNum$$
 where $d \in \{0, 1, \dots, 9\}$

Identifiers:

$$Id ::= aId'$$
 where $a \in A$
 $Id' ::= \lambda \mid aId' \mid NumId'$

Numeric expressions:

$$\begin{aligned} Exp ::= Num \mid Id \\ \mid Exp + Exp \mid Exp - Exp \mid Exp * Exp \mid Exp / Exp \end{aligned}$$

Boolean expressions:

$$BExp ::= \mathbf{true} \mid \mathbf{false} \mid Exp = Exp$$

 $\mid \neg BExp \mid BExp \land BExp \mid BExp \lor BExp$

Programs:

$$P ::= \mathbf{skip} \mid Id := Exp \mid P; P$$

$$\mid \mathbf{if} \ BExp \ \mathbf{then} \ P \ \mathbf{else} \ P \ \mathbf{fi}$$

$$\mid \mathbf{while} \ BExp \ \mathbf{do} \ P \ \mathbf{done}$$

Exercise 2.1. Show, by providing the appropriate functions, that the set of identifiers has the same cardinality as \mathbb{N} .

Hint. Make use of results of the Exercise 1.2.2 in the lecture notes.

Exercise 2.2. Show that the set of all well-formed WHILE programs is countable.

Exercise 2.3. Show the following statements:

- 1. If A is an uncountable set and B is a countable set, then $|A \setminus B| = |A|$.
- 2. Let \mathbb{I} be the set of irrational numbers, i.e., $\mathbb{I} = \{ r \in \mathbb{R} \mid r \notin \mathbb{Q} \}$. Then $|\{0,1\}^{\omega} \setminus \{0,1\}^*0^{\omega}| = |\mathbb{I} \cap [0,1]|$.
- 3. $|\{0,1\}^{\omega}| = |[0,1]|$.
- 4. $|[0,1]| = |[0,1] \times [0,1]| = |[0,1]^n|$ for each n > 1.

Hint. For point 3, make use of points 1 and 2; for point 4, make use of point 3.

Exercise 2.4. Consider the semantic bracket operator presented in Definition 2.1.6 of the lecture notes. Show that $\models \varphi \rightarrow \psi$ iff $\llbracket \varphi \rrbracket \subseteq \llbracket \psi \rrbracket$.

Exercise 2.5. Let $\mathfrak{Q}_1 \subseteq FOF$ be the set of FOL formulas φ such that each quantifier operator Qx (with $Q \in \{\forall, \exists\}$ and $x \in VS$) appears at most once in φ .

Provide a function Scope, including its type, such that, given a quantifier operator Qx (with $Q \in \{\forall, \exists\}$ and $x \in VS$) and a formula $\varphi \in \mathfrak{Q}_1$, it returns the formula corresponding to the scope of Qx.

Exercise 2.6. Given $\varphi, \psi, \eta \in FOF$,

- 1. provide a function #, including its type, that returns how many times ψ occurs in φ as sub-formula;
- 2. provide a function R_{∞} , including its type, that replaces each occurrence of φ in η with ψ ;
- 3. provide a function R_1 , including its type, that replaces exactly one occurrence of φ in η with ψ if φ occurs in η , and that returns η if φ does not occur in η . If φ occurs in η multiple times, then there is no requirement on the particular instance to be replaced.

Exercise 2.7. Prove the following:

- 1. For any predicate P with arity 2, $\forall x \forall y P(x, y) \vdash \forall y \forall z P(y, z)$.
- 2. Assume x is not free in φ , then $\varphi \to \forall x\psi$ and $\forall x(\varphi \to \psi)$ are syntactically equivalent.

3. We say a formula φ has repeated occurrences of a bound variable x, if Qx appears more than once in the sub-formulas of φ (recall $Q \in \{\forall, \exists\}$). Prove that there exists a formula φ' which has no repeated occurrences of any bound variable such that φ and φ' are syntactically equivalent.

Exercise 2.8. Prove that a Hintikka set Γ is consistent, and moreover, for each formula φ , either $\varphi \notin \Gamma$, or $\neg \varphi \notin \Gamma$.

Exercise 2.9. Consider the formula $\varphi = fa \wedge \forall x(gxy) \wedge \forall ygfxy$. Here a is a constant, x, y are variables, f is a function symbol with arity one and g is a function with arity two. Show that φ is satisfiable by providing a corresponding Tarski structure and an assignment.

Exercise 2.10. Assume Γ is consistent, and assume $\Gamma \not\vdash \neg \varphi$ with $\varphi = \neg \forall x \psi$. Moreover, assume that the constant a does not occur in $\Gamma \cup \{\varphi\}$. Then, show $\Gamma \cup \{\varphi, \neg S_a^x \psi\}$ is consistent.