Devoir surveillé n° 04

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit (u_n) une suite complexe telle que (u_{2n}) , (u_{2n+1}) et (u_{3n}) convergent. Montrer que (u_n) converge.

II. Bornes supérieurs et inférieures pour l'inclusion.

On note $\mathscr{P}_f(\mathbb{N})$ l'ensemble des parties finies de \mathbb{N} .

- 1) a) Montrer que la relation d'inclusion \subset est une relation d'ordre sur $\mathscr{P}_f(\mathbb{N})$.
 - **b)** La relation \subset est-elle totale sur $\mathscr{P}_f(\mathbb{N})$? (N'oubliez pas de justifier votre réponse!)
- 2) On note $A_1 = \{0; 4\}$, $A_2 = \{4; 5\}$ et $A_3 = \{0; 2; 4\}$, ainsi que $\mathscr{A} = \{A_1; A_2; A_3\}$.
 - a) Soit $X \in \mathscr{P}_f(\mathbb{N})$. Écrire de manière quantifiée la proposition « X minore \mathscr{A} pour \subset », ainsi que sa négation.
 - b) Montrer que \mathscr{A} n'admet pas de plus petit élément.
 - c) Déterminer l'ensemble des minorants de \mathscr{A} dans $\mathscr{P}_f(\mathbb{N})$.
 - d) Montrer que \mathscr{A} admet une borne inférieure dans $\mathscr{P}_f(\mathbb{N})$, que l'on précisera. Indication : on pourra remarquer que cette borne inférieure X est « la plus grande partie finie de \mathbb{N} contenue dans A_1 , A_2 et A_3 ».
 - e) Donner, sans démonstration, la borne supérieure de \mathscr{A} pour \subset .
- 3) a) Soit $n \in \mathbb{N}^*$, A_1, \ldots, A_n des parties finies de \mathbb{N} , soit $\mathscr{A} = \{A_1, \ldots, A_n\}$.

 Remarque : \mathscr{A} est donc une partie finie quelconque de $\mathscr{P}_f(\mathbb{N})$ Montrer que \mathscr{A} possède une borne supérieure dans $\mathscr{P}_f(\mathbb{N})$ pour \subset , que l'on précisera.
 - b) Soit I un ensemble, $(A_i)_{i\in I}$ une famille de parties finies de \mathbb{N} et $\mathscr{A} = \{A_i \mid i \in I\}$. Remarque : \mathscr{A} est donc une partie quelconque de $\mathscr{P}_f(\mathbb{N})$ Montrer que \mathscr{A} possède une borne inférieure dans $\mathscr{P}_f(\mathbb{N})$ pour \subset , que l'on précisera.
 - c) Montrer qu'il existe au moins une partie de $\mathscr{P}_f(\mathbb{N})$ n'admettant pas de borne supérieure dans $\mathscr{P}_f(\mathbb{N})$ pour \subset .
 - d) L'ensemble ordonné $(\mathscr{P}_f(\mathbb{N}), \subset)$ vérifie-t-il la propriété de la borne supérieure?

III. Nombre de diviseurs positifs d'un entier naturel.

Pour chaque $n \in \mathbb{N}^*$, on note d_n le nombre de diviseurs entiers naturels de n. On pourra noter $\mathscr{D}^+(n)$ l'ensemble des diviseurs positifs de n: d_n est donc le nombre d'éléments de $\mathscr{D}^+(n)$.

- 1) Donner d_1 , d_2 , d_3 , d_4 , d_5 et d_6 .
- 2) Diviseurs communs au produit de deux entiers. Soit $a, b \in \mathbb{N}^*$.
 - a) Montrer les diviseurs positifs de ab sont exactement les produits d'un diviseur positif de a par un diviseur positif de b.
 - **b)** Montrer que si a et b sont premiers entre eux, alors chaque diviseur positif de ab s'écrit de manière unique comme le produit d'un diviseur positif de a par un diviseur positif de b.
 - c) Montrer que si a et b sont premiers entre eux, alors $d_{ab} = d_a d_b$.
 - d) L'implication précédente est-elle en fait une équivalence?
- 3) Quelques caractérisations.
 - a) Caractériser les entiers $n \in \mathbb{N}^*$ vérifiant $d_n = 2$.
 - b) Soit $n \in \mathbb{N}^*$. Montrer que $d_n = 3$ si et seulement si n est le carré d'un nombre premier.
- 4) Soit p un nombre premier et $k \in \mathbb{N}$. Que vaut d_{p^k} ?
- 5) Soit $n \in \mathbb{N}^*$ ayant q diviseurs premiers distincts p_1, \ldots, p_q , dont on écrit la décomposition en facteurs premiers :

$$n = p_1^{\nu_1} \times \dots \times p_q^{\nu_q}.$$

Montrer que
$$d_n = (\nu_1 + 1) \times \cdots \times (\nu_q + 1) = \prod_{k=1}^{q} (\nu_k + 1).$$

- 6) Encore d'autres caractérisations.
 - a) Caractériser les entiers $n \in \mathbb{N}^*$ vérifiant $d_n = 4$.
 - b) Soit $n \in \mathbb{N}^*$. Montrer que d_n est impair si et seulement si n est un carré parfait (carré d'un nombre entier).
- 7) Soit $n \in \mathbb{N}^*$, montrer que

$$\prod_{d \in \mathscr{D}^+(n)} d = (\sqrt{n})^{d_n}.$$

- 8) Applications.
 - a) Combien 4680 possède-t-il de diviseurs positifs?
 - b) Trouver le plus grand nombre n'ayant pas de diviseur premier supérieur strictement à 5 et ayant exactement 455 diviseurs positifs.
 - c) Quel est le plus petit entier naturel ayant exactement 17 diviseurs positifs? Et 21 diviseurs positifs?

— FIN —