DataAppendix

Adam Chow, Tori Stoner, Aniyah McWilliams

2024-09-27

Quantitative Variables

Row	Number	

Definition

Each Row consists of one individual Yelp review

Creation

Provided by Original Kaggle Dataset

Missing Value

N/A

Rank (Rank)

Definition

The ranking number of the restaurant in the list of top-recommended restaurants.

Creation

Provided by Original Kaggle Dataset

Missing Values

N/A

Star Rating (StarRating)

Definition

The average star rating of the restaurant. This is based on the typical 1-5 Star rating scale.

Creation

Provided by Original Kaggle Dataset

Missing Value

N/A

Summary Statistics

```
# Five-number summary
summary(top240$StarRating)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.500 4.000 4.300 4.258 4.400 4.900
```

Histogram

```
# Create a simple histogram
ggplot(top240, aes(x = StarRating)) +
  geom_histogram(fill = "blue", color = "black") +
  labs(title = "Distribution of Star Ratings", x = "Star Rating", y = "Frequency") +
  theme_minimal()
```


Number of Reviews (NumberOfReviews)

Definition

The total number of reviews the restaurant has received.

Creation

Provided by Original Kaggle Dataset

Missing Values

N/A

Summary Statistics

```
# Five-number summary
summary(top240$NumberOfReviews)
```

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 21 351 936 1475 2044 10020

Histogram

```
# Create a simple histogram
ggplot(top240, aes(x = NumberOfReviews)) +
  geom_histogram(fill = "blue", color = "black") +
  labs(title = "Distribution of Reviews", x = "Number of Reviews", y = "Frequency") +
  theme_minimal()
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Length of Review (LengthReview)

Definition

Creation

df['LengthReview'] = df['Comment'].apply(len)

Missing Values

Summary Statistics

```
# Five-number summary
summary(top240$LengthReview)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 70.0 169.5 320.0 475.4 613.5 4971.0
```

Histogram

```
# Create a simple histogram
ggplot(top240, aes(x = LengthReview)) +
  geom_histogram(fill = "blue", color = "black") +
  labs(title = "Distribution of Length", x = "Length of Review", y = "Frequency") +
  theme_minimal()
```


Positive Score Sentiment ('positive score')

Definition

Proportion of the score that is classified as positive by Vader.

Creation

```
import nltk nltk.download('vader_lexicon')
```

 $from\ nltk.sentiment.vader\ import\ SentimentIntensity Analyzer\ analyzer = SentimentIntensity Analyzer()$

for comment in df['Comment']: scores = analyzer.polarity_scores(comment)

for index, row in df.loc[index, 'positive score'] = scores['pos'] df.loc[index, 'negative score'] = scores['pos'] df.loc[index, 'negative score'] = scores['neg'] df.loc[index, 'neutral score'] = scores['neu'] df.loc[index, 'compound score'] = scores['compound']

Missing Values

N/A

Summary Statistics

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.500 4.000 4.300 4.258 4.400 4.900
```

Histogram

```
# Create a simple histogram
ggplot(top240, aes(x = StarRating)) +
  geom_histogram(fill = "blue", color = "black") +
  labs(title = "Distribution of Star Ratings", x = "Star Rating", y = "Frequency") +
  theme_minimal()
```


Negative Score Sentiment ('negative score')

Definition

Proportion of the score that is classified as negative by Vader

Creation

import nltk nltk.download('vader_lexicon')

 $from\ nltk.sentiment.vader\ import\ SentimentIntensity Analyzer\ analyzer = SentimentIntensity Analyzer()$

for comment in df['Comment']: scores = analyzer.polarity_scores(comment)

for index, row in df.loc[index, 'positive score'] = scores[`pos'] df.loc[index, 'positive score'] = scores[`pos'] df.loc[index, 'negative score'] = scores[`neg'] df.loc[index, 'neutral score'] = scores[`neu'] df.loc[index, 'compound score'] = scores[`compound']

Missing Values

N/A

Summary Statistics

```
# Five-number summary for StarRating summary(top240$StarRating)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.500 4.000 4.300 4.258 4.400 4.900
```

Histogram

```
# Create a simple histogram
ggplot(top240, aes(x = StarRating)) +
  geom_histogram(fill = "blue", color = "black") +
  labs(title = "Distribution of Star Ratings", x = "Star Rating", y = "Frequency") +
  theme_minimal()
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Distribution of Star Ratings

Neutral Score Sentiment ('neutral score')

Definition

Proportion of the score that is classified as neutral by Vader

Creation

import nltk nltk.download('vader_lexicon')

 $from\ nltk.sentiment.vader\ import\ SentimentIntensityAnalyzer\ analyzer = SentimentIntensityAnalyzer()$

for comment in df['Comment']: scores = analyzer.polarity_scores(comment)

for index, row in df.loc[index, 'positive score'] = scores['pos'] df.loc[index, 'positive score'] = scores['pos'] df.loc[index, 'negative score'] = scores['neg'] df.loc[index, 'neutral score'] = scores['neu'] df.loc[index, 'compound score'] = scores['compound']

Missing Values

N/A

Summary Statistics

```
# Five-number summary for StarRating summary(top240$StarRating)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.500 4.000 4.300 4.258 4.400 4.900
```

Histogram

```
# Create a simple histogram
ggplot(top240, aes(x = StarRating)) +
  geom_histogram(fill = "blue", color = "black") +
  labs(title = "Distribution of Star Ratings", x = "Star Rating", y = "Frequency") +
  theme_minimal()
```


Compound Score Sentiment ('compound score')

Definition

Overall Compound score calculated by Vader

Creation

import nltk nltk.download('vader_lexicon')

 $from\ nltk.sentiment.vader\ import\ SentimentIntensity Analyzer\ analyzer = SentimentIntensity Analyzer()$

for comment in $df['Comment']: scores = analyzer.polarity_scores(comment)$

 $for index, row in df.loc[index, 'compound'] scores = analyzer.polarity_scores(row['Comment']) df.loc[index, 'positive score'] = scores['pos'] df.loc[index, 'negative score'] = scores['neg'] df.loc[index, 'neutral score'] = scores['neu'] df.loc[index, 'compound score'] = scores['compound']$

Missing Values

N/A

Summary Statistics

```
# Five-number summary for StarRating
summary(top240$StarRating)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.500 4.000 4.300 4.258 4.400 4.900
```

Histogram

```
# Create a simple histogram
ggplot(top240, aes(x = StarRating)) +
  geom_histogram(fill = "blue", color = "black") +
  labs(title = "Distribution of Star Ratings", x = "Star Rating", y = "Frequency") +
  theme_minimal()
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Distribution of Star Ratings

Categorical Variables

Comment Date (CommentDate)

Definition

The date when the comment was posted.

Creation

Provided by Original Kaggle Dataset

Missing Values

N/A

Frequency Table

```
summary(top240$CommentDate)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. ## "2011-12-07" "2023-08-19" "2023-09-03" "2023-08-06" "2023-09-10" "2023-09-17"
```

Bar Chart

```
# Create a simple histogram
ggplot(top240, aes(x = CommentDate)) +
  geom_histogram(bins = 5, fill = "blue", color = "black") +
  labs(title = "Distribution of Comment Dates", x = "Comment Date", y = "Frequency") +
  theme_minimal()
```


Date (Date)

Definition

The date when the data was scraped.

Creation

Provided by Original Kaggle Dataset

Missing Values

N/A

Frequency Table

All Dates are 2023-09-17.

Restaurant Name (RestaurantName)

Definition

The name of the restaurant.

Creation					
Provided by Original Kaggle Dataset					
Missing Values					
N/A					
Frequency Table					
There are roughly 10 comments per restaurant (235).					
Comment (Comment)					
Definition					
Customer comments about the restaurant.					
Creation					
Provided by Original Kaggle Dataset					
Missing Values					
N/A					
Frequency Table					
All Unique					
Address (Address)					
Definition					
The physical address of the restaurant.					
Creation					
Provided by Original Kaggle Dataset					
Missing Values					

Frequency Table

Same number of unique addresses as Restaurant names.

There are some missing values. For these values, we decided to make all of these NA values "Unkown".

Style (Style)

Definition

The style(s) or type(s) of cuisine the restaurant offers.

Creation

Provided by Original Kaggle Dataset

Missing Values

N/A

Frequency Table

```
# Explode the Style column based on ", "
top240_exploded <- top240 %>%
   separate_rows(Style, sep = ", ")
table(top240_exploded$Style)
```

##			
##	Acai Bowls	American (New)	American (Traditional)
##	10	383	74
##	Argentine	Asian Fusion	Bakeries
##	11	112	24
##	Barbeque	Bars	Beer
##	41	113	11
##	Brasseries	Brazilian	Breakfast & Brunch
##	10	10	268
##	Bubble Tea	Buffets	Burgers
##	10	11	53
##	Cafes	Chicken Shop	Chicken Wings
##	31	60	10
##	Chinese	Cocktail Bars	Coffee & Tea
##	50	290	51
##	Comfort Food	Delis	Desserts
##	71	33	14
##	Dim Sum	Diners	Fast Food
##	20	10	10
##	Filipino	Food Stands	French
##	30	10	51
##	Gastropubs	Gluten-Free	Hawaiian
##	44	10	10
##	Hong Kong Style Cafe	Hookah Bars	Hot Pot
##	20	10	10
##	Indian	Italian	Izakaya
##	10	243	20
##	Japanese	Juice Bars & Smoothies	Kebab

```
##
                         51
                                                  10
                                                                            10
                    Korean
##
                                            Laotian
                                                              Latin American
                        285
##
                                                  10
                                                                            30
##
             Live/Raw Food
                                             Lounges
                                                               Mediterranean
##
##
                   Mexican
                                     Middle Eastern
                                                         New Mexican Cuisine
##
                         40
                                                  30
                   Noodles
                                            Peruvian
                                                                        Pizza
##
##
                        101
                                                                           101
                                                Pubs
##
       Pop-Up Restaurants
                                                                        Ramen
##
                         10
                                                  20
                                                                            61
##
                                         Sandwiches
                                                                      Seafood
                      Salad
                                                                           104
##
                         13
                                                 117
##
                Smokehouse
                                           Soul Food
                                                                          Soup
##
                         10
                                                  20
                                                                           102
##
                  Southern
                                             Spanish
                                                               Specialty Food
##
                         40
                                                  10
                                                                            20
                                        Steakhouses
                                                                   Sushi Bars
##
               Sports Bars
##
                         21
                                                  42
                                                                            21
                                           Taiwanese
##
                      Tacos
                                                                   Tapas Bars
##
                                                  20
                                                                            10
##
       Tapas/Small Plates
                                         Teppanyaki
                                                                      Tex-Mex
##
                         90
                                                  10
                                                                            10
##
                       Thai
                                           Tiki Bars
                                                                    Ukrainian
##
                         70
                                                  10
##
                      Vegan
                                          Vegetarian
                                                       Venues & Event Spaces
##
                         10
                                                  20
##
                Vietnamese
                                     Wine & Spirits
                                                                    Wine Bars
##
                         20
                                                                            80
##
                      Wraps
##
                         10
```

Bar Chart

```
# Bar chart for exploded Style column
ggplot(top240_exploded, aes(x = Style)) +
   geom_bar(fill = "lightblue", color = "black") +
   labs(title = "Frequency Distribution of Restaurant Styles (Exploded)", x = "Style", y = "Count") +
   theme_minimal() +
   theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-axis labels for readability
```


Price (Price)

Definition

The price range of the restaurant, usually represented in terms of dollar signs.

Creation

Provided by Original Kaggle Dataset

Missing Values

There are missing values in this column and we decided to handle them by replacing the NAs with the mode of the column.

Frequency Table

```
table(top240$Price)
```

Bar Chart

```
# Bar chart
ggplot(top240, aes(x = Price)) +
  geom_bar(fill = "lightblue", color = "black") +
  labs(title = "Frequency Distribution of Price", x = "Price", y = "Count") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

Frequency Distribution of Price

Predicted Sentiment (predicted_sentiment)

Definition

Character value of the classification of the sentiment

Creation

```
VaderModel = SentimentIntensityAnalyzer() def extract_score(text): score = VaderModel.polarity_scores(text) compound = score['compound']
```

```
sentiment = 'neutral'
if(compound >= 0.05):
    sentiment = "positive" #Fixed indentation
```

```
elif(compound <= -0.05):
    sentiment = "negative" #Fixed indentation

return sentiment

df["predicted_sentiment"] = df["Comment"].apply(extract_score)

Missing Values

N/A</pre>
```

Frequency Table

```
table(top240$predicted_sentiment)

##
## negative neutral positive
## 144 14 1577
```

Bar Chart

```
# Bar chart
ggplot(top240, aes(x = predicted_sentiment)) +
  geom_bar(fill = "lightblue", color = "black") +
  labs(title = "Frequency Distribution of Predicted Sentiment", x = "Predicted Sentiment", y = "Count")
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-axis labels for readability
```

