Math 135 - Algorithm Analysis 10/4/2012 Announ cement W is up (?) over big-0 and algorithms

We define complexity or running time of an algorithm in terms of the number of operations. a single operation: - adding two humbers - loading or storing a value $\alpha = -1$. nlication

worst case # of noperations? e other way to ca compore ims is this can vary even with identical algorithms. - programming
- input

Here, n = size of input. In addition, we usually use big-0 Reason: Taking 3 versus 5 operations can very between processors + programming languages. In a loop, this is the difference between 3n and 5n. In reality, this is for the same So big-O lets us "hide" these

Ex: What is complexity of FINDMAX? FINDMAX (a1) az, ..., an): 1+1+1 |+1 = 3n-1 operations

Ex: Linear Search? INEAR SEARCH (X, Q1, G2, ..., 9n): return location (4) + | + | + | = 0

Ex: Bulble Sort? BUBBLESORT

$$5 \stackrel{2}{\sim} (i-1) = 5 \stackrel{2}{\sim} i - 21$$

$$= 5 \stackrel{(i-1)}{\sim} - (n-1)$$

$$= 0 \stackrel{(n+1)}{\sim} - (n-1)$$

x: Insert on Sort -NSERTION SORT

Again, why big-03

Kather than worrying about (6n)-64, just say O(n).

Worst-Case Time Complexity: The Big Picture

 \bullet On a computer running one billion operations per second . . .

Input	Time Complexity				
Size (n)	n	$n \log_2 n$	n^2	n^3	2^n
10	< .001	< .001	< .001	< .001	< .001
	second	second	second	second	second
20	< .001	< .001	< .001	< .001	.001
	second	second	second	second	second
30	< .001	< .001	< .001	< .001	1
	second	second	second	second	second
50	< .001	< .001	< .001	< .001	13
	second	second	second	second	days
100	< .001	< .001	< .001	.001	4×10^{11}
	second	second	second	second	centuries
1000	< .001	< .001	.001	1	4×10^{282}
	second	second	second	second	centuries
100,000	< .001	.002	10	11.57	_
	second	second	seconds	days	
one	.001	.02	1.67	32	_
million	second	second	minutes	years	
ten	.01	0.24	1.2	317	_
million	second	second	days	centuries	
one	1	30	32	4×10^{8}	_
billion	second	seconds	years	centuries	
100	1.67	1	3171	4×10^{14}	_
billion	minutes	hour	centuries	centuries	