<u>HW3</u>

Problem 1 (6 points)

Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function $h(x) = x \mod 10$ (i.e., the size of the hash table m = 10), show the resulting hash tables using

- (1) Separate chaining
- (2) Linear probing with f(i) = i
- (3) Quadratic probing with $f(i) = i^2$

))	1 1	MANOS	4						
.)	1 -5	1371							
	2	1011							
		323 -	->6173						
	- Adopted to	4344)	0.10						
	5								
	6								
	711								
	8								
	9	74199	9679	7-198	(9)				
		Emph	After 4B7	After 137	23 A8ter 6	173 After	4199 AFA	1344 AFF	re 1989
2)	0	1							79 9679
	1		4371	4371	43-	1 437	4371	43	
	2								1980
	3			1323	1323	1323	1323	132	3 1323
	4				6173	6173	6173	617	3 6173
	5						4344	434	4 4344
	6								
	7								
	8							1	0 11100
2)	9		10:	1	110 /	4199	4199	419	. 1
3)	-	Emply	Arte 437	After 1323	AFTEC 6173	AFT44199		9679	After 1980 9679
	6		4371	4371	4371	4371		4371	4371
	2		.571	1271	13/1	7371	124	06.79	437
	3			1323	1323	1323	1323	1323	1323
	14				6173	6173		6173	6173
	5							4344	4344
	6								
	7								
	B								1989
	q	0,				4199	4199	4199	4199

Problem 2 (2 points)

Show the result of inserting values 6, 4, 15, 2, 10, 11, 8, 1, 13, 7, 9, 12, 5, 3, 14 one at a time, into an initially empty binary min-heap.

Problem 3 (12 points)

Using dijkstra's algorithm to find the shortest path from B to all other vertices.

 $B \rightarrow A: B \rightarrow G \rightarrow E \rightarrow D \rightarrow A: 6$

B→C: B→C : 2

 $B \rightarrow D: B \rightarrow G \rightarrow E \rightarrow D: 4$

 $B \rightarrow E: B \rightarrow G \rightarrow E: 2$

 $B \rightarrow F: B \rightarrow G \rightarrow E \rightarrow F: 3$

B→G: B→G: 1

Problem 4 (5 points)

- (1) Find a minimum spanning tree for the graph using Prim's algorithm
- (2) Find a minimum spanning tree for the graph using Kruskal's algorithm
- (3) Is this minimum spanning tree unique?

