A General Perspective on Graph Neural Networks

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu

Recap: Graph Neural Networks

Recap: Graph Neural Networks

Idea: Node's neighborhood defines a computation graph

Determine node computation graph

Propagate and transform information

Learn how to propagate information across the graph to compute node features

Recap: Aggregate from Neighbors

 Intuition: Nodes aggregate information from their neighbors using neural networks

Recap: Aggregate Neighbors

Intuition: Network neighborhood defines a computation graph

A General GNN Framework (1)

GNN Layer = Message + Aggregation

- Different instantiations under this perspective
- GCN, GraphSAGE, GAT, ...

A General GNN Framework (2)

(3) Layer connectivity

Connect GNN layers into a GNN

- Stack layers sequentially
- Ways of adding skip connections

A General GNN Framework (3)

Idea: Raw input graph ≠ computational graph

- Graph feature augmentation
- Graph structure augmentation

(4) Graph augmentation

A General GNN Framework (4)

How do we train a GNN

 Supervised/Unsupervised objectives

 Node/Edge/Graph level objectives

(5) Learning objective

A General GNN Framework (5)

A Single Layer of a GNN

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu

A GNN Layer

GNN Layer = Message + Aggregation

- Different instantiations under this perspective
- GCN, GraphSAGE, GAT, ...

A Single GNN Layer

- Idea of a GNN Layer:
 - Compress a set of vectors into a single vector
 - Two step process:
 - (1) Message
 - (2) Aggregation

Message Computation

- (1) Message computation
 - Message function: $\mathbf{m}_u^{(l)} = \mathrm{MSG}^{(l)} \left(\mathbf{h}_u^{(l-1)} \right)$
 - Intuition: Each node will create a message, which will be sent to other nodes later
 - **Example:** A Linear layer $\mathbf{m}_u^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$
 - lacktriangle Multiply node features with weight matrix $\mathbf{W}^{(l)}$

Message Aggregation

(2) Aggregation

• Intuition: Each node will aggregate the messages from node v^\prime s neighbors

$$\mathbf{h}_{v}^{(l)} = \mathrm{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)$$

- **Example:** Sum (\cdot) , Mean (\cdot) or Max (\cdot) aggregator
 - $\mathbf{h}_{v}^{(l)} = \text{Sum}(\{\mathbf{m}_{u}^{(l)}, u \in N(v)\})$

Message Aggregation: Issue

- Issue: Information from node v itself could get lost
 - lacksquare Computation of $\mathbf{h}_v^{(l)}$ does not directly depend on $\mathbf{h}_v^{(l-1)}$
- Solution: Include $\mathbf{h}_v^{(l-1)}$ when computing $\mathbf{h}_v^{(l)}$
 - (1) Message: compute message from node v itself
 - Usually, a different message computation will be performed

$$\mathbf{m}_{u}^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)} \qquad \qquad \mathbf{m}_{v}^{(l)} = \mathbf{B}^{(l)} \mathbf{h}_{v}^{(l-1)}$$

- (2) Aggregation: After aggregating from neighbors, we can aggregate the message from node \boldsymbol{v} itself
 - Via concatenation or summation

Then aggregate from node itself

$$\mathbf{h}_{v}^{(l)} = \text{CONCAT}\left(\text{AGG}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right), \mathbf{m}_{v}^{(l)}\right)$$
First aggregate from neighbors

A Single GNN Layer

Putting things together:

- (1) Message: each node computes a message $\mathbf{m}_{u}^{(l)} = \mathrm{MSG}^{(l)}\left(\mathbf{h}_{u}^{(l-1)}\right)$, $u \in \{N(v) \cup v\}$
- (2) Aggregation: aggregate messages from neighbors $\mathbf{h}_v^{(l)} = \mathrm{AGG}^{(l)}\left(\left\{\mathbf{m}_u^{(l)}, u \in N(v)\right\}, \mathbf{m}_v^{(l)}\right)$
- Nonlinearity (activation): Adds expressiveness
 - Often written as $\sigma(\cdot)$: ReLU(\cdot), Sigmoid(\cdot), ...
 - Can be added to message or aggregation

Classical GNN Layers: GCN (1)

(1) Graph Convolutional Networks (GCN)

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\mathbf{W}^{(l)} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$

How to write this as Message + Aggregation?

Classical GNN Layers: GCN (2)

(1) Graph Convolutional Networks (GCN)

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$
 (2) Aggregation (1) Message

Message:

■ Each Neighbor: $\mathbf{m}_u^{(l)} = \frac{1}{|N(v)|} \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$

Normalized by node degree

(In the GCN paper they use a slightly different normalization)

Aggregation:

- **Sum** over messages from neighbors, then apply activation
- $\mathbf{h}_{v}^{(l)} = \sigma\left(\operatorname{Sum}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)\right)$

Classical GNN Layers: GraphSAGE

(2) GraphSAGE

$$\mathbf{h}_{v}^{(l)} = \sigma\left(\mathbf{W}^{(l)} \cdot \text{CONCAT}\left(\mathbf{h}_{v}^{(l-1)}, \text{AGG}\left(\left\{\mathbf{h}_{u}^{(l-1)}, \forall u \in N(v)\right\}\right)\right)\right)$$

- How to write this as Message + Aggregation?
 - Message is computed within the $AGG(\cdot)$
 - Two-stage aggregation
 - Stage 1: Aggregate from node neighbors

$$\mathbf{h}_{N(v)}^{(l)} \leftarrow \mathrm{AGG}\left(\left\{\mathbf{h}_{u}^{(l-1)}, \forall u \in N(v)\right\}\right)$$

Stage 2: Further aggregate over the node itself

$$\mathbf{h}_{v}^{(l)} \leftarrow \sigma\left(\mathbf{W}^{(l)} \cdot \text{CONCAT}(\mathbf{h}_{v}^{(l-1)}, \mathbf{h}_{N(v)}^{(l)})\right)$$

GraphSAGE Neighbor Aggregation

Mean: Take a weighted average of neighbors

$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{(l-1)}}{|N(v)|}$$
 Message computation

Pool: Transform neighbor vectors and apply symmetric vector function Mean(·) or Max(·)

$$AGG = \underline{Mean}(\{\underline{MLP}(\mathbf{h}_u^{(l-1)}), \forall u \in N(v)\})$$

Aggregation Message computation

LSTM: Apply LSTM to reshuffled of neighbors

$$\text{AGG} = \underbrace{\text{LSTM}}([\mathbf{h}_u^{(l-1)}, \forall u \in \pi\big(N(v)\big)])$$
 Aggregation

GraphSAGE: L2 Normalization

• ℓ_2 Normalization:

• Optional: Apply ℓ_2 normalization to $\mathbf{h}_v^{(l)}$ at every layer

•
$$\mathbf{h}_{v}^{(l)} \leftarrow \frac{\mathbf{h}_{v}^{(l)}}{\left\|\mathbf{h}_{v}^{(l)}\right\|_{2}} \ \forall v \in V \ \text{where} \ \|u\|_{2} = \sqrt{\sum_{i} u_{i}^{2}} \ (\ell_{2}\text{-norm})$$

- Without ℓ_2 normalization, the embedding vectors have different scales (ℓ_2 -norm) for vectors
- In some cases (not always), normalization of embedding results in performance improvement
- After ℓ_2 normalization, all vectors will have the same ℓ_2 -norm

Classical GNN Layers: GAT (1)

(3) Graph Attention Networks

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$
Attention weights

- In GCN / GraphSAGE
 - $\alpha_{vu} = \frac{1}{|N(v)|}$ is the weighting factor (importance) of node u's message to node v
 - $ightharpoonup
 ightharpoonup lpha_{vu}$ is defined **explicitly** based on the structural properties of the graph (node degree)
 - \Rightarrow All neighbors $u \in N(v)$ are equally important to node v

Classical GNN Layers: GAT (2)

Can we do better than simple neighborhood aggregation?

Can we let weighting factors α_{m} to be learned?

- Goal: Specify arbitrary importance to different
- neighbors of each node in the graph

 Idea: Compute embedding $h_v^{(l)}$ of each node in the graph following an attention strategy:
 - Nodes attend over their neighborhoods' message
 - Implicitly specifying different weights to different nodes in a neighborhood

Attention Mechanism (1)

- Let α_{vu} be computed as a byproduct of an attention mechanism a:
 - (1) Let a compute attention coefficients e_{vu} across pairs of nodes u, v based on their messages:

$$\boldsymbol{e_{vu}} = a(\mathbf{W}^{(l)}\mathbf{h}_u^{(l-1)}, \mathbf{W}^{(l)}\boldsymbol{h}_v^{(l-1)})$$

 $lackbox{ } e_{vu}$ indicates the importance of u's message to node v

$$e_{AB} = a(\mathbf{W}^{(l)}\mathbf{h}_A^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_B^{(l-1)})$$

Attention Mechanism (2)

- Normalize e_{vu} into the final attention weight $lpha_{vu}$
 - Use the **softmax** function, so that $\sum_{u \in N(v)} \alpha_{vu} = 1$:

$$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$$

• Weighted sum based on the final attention weight α_{mi}

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

Weighted sum using α_{AB} , α_{AC} , α_{AD} :

$$\mathbf{h}_{A}^{(l)} = \sigma(\alpha_{AB}\mathbf{W}^{(l)}\mathbf{h}_{B}^{(l-1)} + \alpha_{AC}\mathbf{W}^{(l)}\mathbf{h}_{C}^{(l-1)} + \alpha_{AC}\mathbf{W}^{(l)}\mathbf{h}_{D}^{(l-1)})$$

Attention Mechanism (3)

• What is the form of attention mechanism α ?

- lacktriangle The approach is agnostic to the choice of a
 - E.g., use a simple single-layer neural network
 - a have trainable parameters (weights in the Linear layer)

Concatenate
$$\mathbf{h}_{A}^{(l-1)} \ \mathbf{h}_{B}^{(l-1)}$$
Linear
$$e_{AB} = a\left(\mathbf{W}^{(l)}\mathbf{h}_{A}^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_{B}^{(l-1)}\right)$$

$$= \operatorname{Linear}\left(\operatorname{Concat}\left(\mathbf{W}^{(l)}\mathbf{h}_{A}^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_{B}^{(l-1)}\right)\right)$$

- Parameters of a are trained jointly:
 - Learn the parameters together with weight matrices (i.e., other parameter of the neural net $\mathbf{W}^{(l)}$) in an end-to-end fashion

Attention Mechanism (4)

- Multi-head attention: Stabilizes the learning process of attention mechanism
 - Create multiple attention scores (each replica with a different set of parameters):

$$\begin{aligned} \mathbf{h}_{v}^{(l)}[1] &= \sigma(\sum_{u \in N(v)} \alpha_{vu}^{1} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}) \\ \mathbf{h}_{v}^{(l)}[2] &= \sigma(\sum_{u \in N(v)} \alpha_{vu}^{2} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}) \\ \mathbf{h}_{v}^{(l)}[3] &= \sigma(\sum_{u \in N(v)} \alpha_{vu}^{3} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}) \end{aligned}$$

- Outputs are aggregated:
 - By concatenation or summation
 - $\mathbf{h}_{v}^{(l)} = AGG(\mathbf{h}_{v}^{(l)}[1], \mathbf{h}_{v}^{(l)}[2], \mathbf{h}_{v}^{(l)}[3])$

Transformation

GNN Layer in Practice

- In practice, these classic GNN layers are a great starting point
 - We can often get better performance by considering a general GNN layer design
 - Concretely, we can include modern deep learning modules that proved to be useful in many domains

A suggested GNN Layer

Transformation

GNN Layer in Practice

- Many modern deep learning modules can be incorporated into a GNN layer
 - Batch Normalization:
 - Stabilize neural network training
 - Dropout:
 - Prevent overfitting
 - Attention/Gating:
 - Control the importance of a message
 - More:
 - Any other useful deep learning modules

A suggested GNN Layer

Batch Normalization

- Goal: Stabilize neural networks training
- Idea: Given a batch of inputs (node embeddings)
 - Re-center the node embeddings into zero mean
 - Re-scale the variance into unit variance

Input: $\mathbf{X} \in \mathbb{R}^{N \times D}$

N node embeddings

Trainable Parameters:

 $\mathbf{\gamma}, \mathbf{\beta} \in \mathbb{R}^D$

Output: $\mathbf{Y} \in \mathbb{R}^{N \times D}$

Normalized node embeddings

Step 1:

Compute the mean and variance over *N* embeddings

$$\mathbf{\mu}_{j} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{X}_{i,j}$$

$$\mathbf{\sigma}_{j}^{2} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{X}_{i,j} - \mathbf{\mu}_{j})^{2}$$

Step 2:

Normalize the feature using computed mean and variance

$$\widehat{\mathbf{X}}_{i,j} = \frac{\mathbf{X}_{i,j} - \mathbf{\mu}_j}{\sqrt{\mathbf{\sigma}_j^2 + \epsilon}}$$

$$\mathbf{Y}_{i,j} = \mathbf{\gamma}_j \widehat{\mathbf{X}}_{i,j} + \mathbf{\beta}_j$$

Dropout

- Goal: Regularize a neural net to prevent overfitting.
- Idea:
 - **During training**: with some probability p, randomly set neurons to zero (turn off)
 - During testing: Use all the neurons for computation

Dropout for GNNs

- In GNN, Dropout is applied to the <u>linear layer</u> in the message function
 - A simple message function with linear

layer:
$$\mathbf{m}_{u}^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}$$

Dropout

Visualization of a linear layer

Activation (Non-linearity)

Apply activation to *i*-th dimension of embedding **x**

$$ReLU(\mathbf{x}_i) = max(\mathbf{x}_i, 0)$$

- Most commonly used
- Sigmoid

$$\sigma(\mathbf{x}_i) = \frac{1}{1 + e^{-\mathbf{x}_i}}$$

 Used only when you want to restrict the range of your embeddings

PReLU(
$$\mathbf{x}_i$$
) = max(\mathbf{x}_i , 0) + a_i min(\mathbf{x}_i , 0)
 a_i is a trainable parameter

Empirically performs better than ReLU

GNN Layer in Practice

 Summary: Modern deep learning modules can be included into a GNN layer for better performance

Designing novel GNN layers is still
 an active research frontier!

Transformation

 Suggested resources: You can explore diverse GNN designs or try out your own ideas in <u>GraphGym</u>

Stacking Layers of a GNN

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu

Stacking GNN Layers

(3) Layer connectivity

How to connect GNN layers into a GNN?

- Stack layers sequentially
- Ways of adding skip connections

Stacking GNN Layers

- How to construct a Graph Neural Network?
 - The standard way: Stack GNN layers sequentially
 - Input: Initial raw node feature \mathbf{x}_{ν}
 - Output: Node embeddings $\mathbf{h}_{v}^{(L)}$ after L GNN layers

The Over-smoothing Problem

- The Issue of stacking many GNN layers
 - GNN suffers from the over-smoothing problem
- The over-smoothing problem: all the node embeddings converge to the same value
 - This is bad because we want to use node embeddings to differentiate nodes
- Why does the over-smoothing problem happen?

Receptive Field of a GNN

- Receptive field: the set of nodes that determine the embedding of a node of interest
 - In a K-layer GNN, each node has a receptive field of K-hop neighborhood

Receptive Field of a GNN

- Receptive field overlap for two nodes
 - The shared neighbors quickly grows when we increase the number of hops (num of GNN layers)

1-hop neighbor overlap Only 1 node

2-hop neighbor overlap About 20 nodes

3-hop neighbor overlap Almost all the nodes!

Receptive Field & Over-smoothing

- We can explain over-smoothing via the notion of receptive field
 - We knew the embedding of a node is determined by its receptive field
 - If two nodes have highly-overlapped receptive fields, then their embeddings are highly similar
 - Stack many GNN layers → nodes will have highly-overlapped receptive fields → node embeddings will be highly similar → suffer from the oversmoothing problem
- Next: how do we overcome over-smoothing problem?

Design GNN Layer Connectivity

- What do we learn from the over-smoothing problem?
- Lesson 1: Be cautious when adding GNN layers
 - Unlike neural networks in other domains (CNN for image classification), adding more GNN layers do not always help
 - Step 1: Analyze the necessary receptive field to solve your problem. E.g., by computing the diameter of the graph
 - Step 2: Set number of GNN layers L to be a bit more than the receptive field we like. Do not set L to be unnecessarily large!
- Question: How to enhance the expressive power of a GNN, if the number of GNN layers is small?

Expressive Power for Shallow GNNs

- How to make a shallow GNN more expressive?
- Solution 1: Increase the expressive power within each GNN layer
 - In our previous examples, each transformation or aggregation function only include one linear layer
 - We can make aggregation / transformation become a deep neural network!

If needed, each box could include a 3-layer MLP

Expressive Power for Shallow GNNs

- How to make a shallow GNN more expressive?
- Solution 2: Add layers that do not pass messages
 - A GNN does not necessarily only contain GNN layers
 - E.g., we can add MLP layers (applied to each node) before and after GNN layers, as pre-process layers and post-process layers

Pre-processing layers: Important when encoding node features is necessary.

E.g., when nodes represent images/text

Post-processing layers: Important when reasoning / transformation over node embeddings are needed E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

Design GNN Layer Connectivity

- What if my problem still requires many GNN layers?
- Lesson 2: Add skip connections in GNNs
 - Observation from over-smoothing: Node embeddings in earlier GNN layers can sometimes better differentiate nodes
 - Solution: We can increase the impact of earlier layers on the final node embeddings, by adding shortcuts in GNN

Idea of skip connections:

Before adding shortcuts:

$$F(\mathbf{x})$$

After adding shortcuts:

$$F(\mathbf{x}) + \mathbf{x}$$

Idea of Skip Connections

Why do skip connections work?

- Intuition: Skip connections create a mixture of models
- N skip connections $\rightarrow 2^N$ possible paths
- Each path could have up to N modules
- We automatically get a mixture of shallow GNNs and deep GNNs

All the possible paths:

$$2 * 2 * 2 = 2^3 = 8$$

Path 2: skip this module

Path 1: include this module

(a) Conventional 3-block residual network

(b) Unraveled view of (a)

Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016

Example: GCN with Skip Connections

A standard GCN layer

$$\mathbf{h}_{v}^{(l)} = \sigma\left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|}\right)$$

This is our F(x)

A GCN layer with skip connection

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} + \mathbf{h}_{v}^{(l-1)} \right)$$

$$F(\mathbf{X}) + \mathbf{X}$$

Other Options of Skip Connections

- Other options: Directly skip to the last layer
 - The final layer directly
 aggregates from the all the
 node embeddings in the
 previous layers

Graph Manipulation in GNNs

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs224w.stanford.edu

General GNN Framework

Idea: Raw input graph ≠ computational graph

- Graph feature augmentation
- Graph structure manipulation

(4) Graph manipulation

Why Manipulate Graphs

Our assumption so far has been

- Raw input graph = computational graph
 Reasons for breaking this assumption
 - Feature level:
 - The input graph lacks features → feature augmentation
 - Structure level:
 - The graph is too sparse → inefficient message passing
 - The graph is too dense → message passing is too costly
 - The graph is too large → cannot fit the computational graph into a GPU
 - It's just unlikely that the input graph happens to be the optimal computation graph for embeddings

Graph Manipulation Approaches

- Graph Feature manipulation
 - The input graph lacks features → feature augmentation
- Graph Structure manipulation
 - The graph is too sparse → Add virtual nodes / edges
 - The graph is too dense → Sample neighbors when doing message passing
 - The graph is too large → Sample subgraphs to compute embeddings
 - Will cover later in lecture: Scaling up GNNs

Why do we need feature augmentation?

- (1) Input graph does not have node features
 - This is common when we only have the adj. matrix
- Standard approaches:
- a) Assign constant values to nodes

Why do we need feature augmentation?

- (1) Input graph does not have node features
 - This is common when we only have the adj. matrix
- Standard approaches:
- b) Assign unique IDs to nodes
 - These IDs are converted into one-hot vectors

One-hot vector for node with ID=5

Feature augmentation: constant vs. one-hot

	Constant node feature	One-hot node feature
Expressive power	Medium. All the nodes are identical, but GNN can still learn from the graph structure	High. Each node has a unique ID, so node-specific information can be stored
Inductive learning (Generalize to unseen nodes)	High. Simple to generalize to new nodes: we assign constant feature to them, then apply our GNN	Low. Cannot generalize to new nodes: new nodes introduce new IDs, GNN doesn't know how to embed unseen IDs
Computational cost	Low. Only 1 dimensional feature	High. $O(V)$ dimensional feature, cannot apply to large graphs
Use cases	Any graph, inductive settings (generalize to new nodes)	Small graph, transductive settings (no new nodes)

Why do we need feature augmentation?

- (2) Certain features can help GNN learning
- Other commonly used augmented features:
 - Node degree
 - PageRank
 - Clustering coefficient
 - •••
- Any useful graph statistics can be used!

Add Virtual Nodes / Edges

- Motivation: Augment sparse graphs
- (1) Add virtual edges
 - Common approach: Connect 2-hop neighbors via virtual edges
 - Intuition: Instead of using adj. matrix A for GNN computation, use $A + A^2$
- Use cases: Bipartite graphs
 - Author-to-papers (they authored)
 - 2-hop virtual edges make an author-author collaboration graph

Add Virtual Nodes / Edges

- Motivation: Augment sparse graphs
- (2) Add virtual nodes
 - The virtual node will connect to all the nodes in the graph
 - Suppose in a sparse graph, two nodes have shortest path distance of 10
 - After adding the virtual node, all the nodes will have a distance of 2
 - Node A Virtual node Node B
 - Benefits: Greatly improves message passing in sparse graphs

Node Neighborhood Sampling

- Previously:
 - All the nodes are used for message passing

 New idea: (Randomly) sample a node's neighborhood for message passing

Neighborhood Sampling Example

- For example, we can randomly choose 2 neighbors to pass messages
 - lacktriangle Only nodes B and D will pass message to A

Neighborhood Sampling Example

- Next time when we compute the embeddings, we can sample different neighbors
 - Only nodes C and D will pass message to A

Neighborhood Sampling Example

- In expectation, we can get embeddings similar to the case where all the neighbors are used
 - Benefits: greatly reduce computational cost
 - And in practice it works great!

Summary of the lecture

- Recap: A general perspective for GNNs
 - GNN Layer:
 - Transformation + Aggregation
 - Classic GNN layers: GCN, GraphSAGE, GAT
 - Layer connectivity:
 - Deciding number of layers
 - Skip connections
 - Graph Manipulation:
 - Feature augmentation
 - Structure manipulation
- Next: GNN objectives, GNN in practice