HW3

Kevin Chang

October 14, 2025

1

Recall that for a vector $w \in \mathbb{R}^d$, $\mathcal{H}_w := \{z : \langle w, z \rangle = 0\}$. Let $S = \{(x_i, y_i)\}$ be a set of linearly separable data in \mathbb{R}^d (i.e., $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$). Define the set \mathcal{M}_S to be the set of all vectors which separate the data with large dot product:

$$\mathcal{M}_S = \{ w : y_i \langle w, x_i \rangle \ge 1 \text{ for } i = 1, ..., n \}.$$

• Let w^* denote the element of \mathcal{M}_S with smallest norm. Show that for any other w that separates the data

$$\min dist_{1 \le i \le n}(x_i, \mathcal{H}_w) \le \min_{1 \le i \le n} dist(x_i, \mathcal{H}_{w^*}).$$

Proof. For any nonzero w, $\operatorname{dist}(x, \mathcal{H}_w) = \frac{|\langle w, x \rangle|}{\|w\|}$. Let $\gamma_w := \min_i y_i \langle w, x_i \rangle > 0$ be the margin of w. Then

$$\min_{i} \operatorname{dist}(x_{i}, \mathcal{H}_{w}) = \frac{\min_{i} |\langle w, x_{i} \rangle|}{\|w\|} = \frac{\gamma_{w}}{\|w\|}.$$

Scale w to $\tilde{w} := \frac{w}{\gamma_w}$; then $\tilde{w} \in \mathcal{M}_S$ and $\|\tilde{w}\| = \frac{\|w\|}{\gamma_w}$. By optimality of w^* on \mathcal{M}_S , $\|w^*\| \le \|\tilde{w}\| = \frac{\|w\|}{\gamma_w}$, hence

$$\frac{\gamma_w}{\|w\|} \le \frac{1}{\|w^*\|} = \min_i \operatorname{dist}(x_i, \mathcal{H}_{w^*}),$$

where the last equality uses $\min_i y_i \langle w^*, x_i \rangle = 1$ (if it were > 1, rescaling down would contradict minimality of $||w^*||$). This proves the claim.

• Show that there are real numbers α_i such that $w^* = \sum_{i=1}^n \alpha_i x_i$.

Proof. Suppose, for the sake of contradiction, that w^* cannot be written as a linear combination of the training examples $\{x_i\}$. Then there exists a decomposition

$$w^* = \sum_{i=1}^n \alpha_i x_i + v,$$

where v is orthogonal to all x_i , i.e., $\langle v, x_i \rangle = 0$ for all i.

Define $w' := \sum_{i=1}^{n} \alpha_i x_i$. Since $\langle v, x_i \rangle = 0$, we have

$$y_i \langle w', x_i \rangle = y_i \langle w^*, x_i \rangle \ge 1,$$

which implies $w' \in \mathcal{M}_S$.

Moreover, $||w'|| < ||w^*||$ because $w^* = w' + v$ and $v \neq 0$ adds an orthogonal component, increasing the norm:

$$||w^*||^2 = ||w'||^2 + ||v||^2 > ||w'||^2.$$

This contradicts the minimality of w^* as the smallest–norm element in \mathcal{M}_S . Hence, such a v cannot exist, and therefore

$$w^* = \sum_{i=1}^n \alpha_i x_i.$$

• Show that the α_i can be chosen so that $y_i\alpha_i$ are all nonnegative. Define $\tilde{\alpha}_i := \alpha_i y_i$. Then

$$w^* = \sum_{i=1}^n \tilde{\alpha}_i x_i$$
, and $y_i \tilde{\alpha}_i = y_i^2 \alpha_i = \alpha_i \ge 0$.

Hence, the coefficients can be chosen so that $y_i\alpha_i \geq 0$ for all i.

 $\mathbf{2}$

Let u and v be D-dimensional unit vectors. Let M be a random matrix of dimension $d \times D$. Each entry of M is generated iid from a normal distribution with mean 0 and variance 1/d.

1. Show that $\mathbb{E}[\langle Mu, Mv \rangle] = \langle u, v \rangle$.

Answer:

$$\mathbb{E}[\langle Mu, Mv \rangle] = \mathbb{E}[u^{\top}M^{\top}Mv] = u^{\top}\mathbb{E}[M^{\top}M]v = u^{\top}I_Dv = \langle u, v \rangle.$$

(We used $\mathbb{E}[M^{\top}M] = I_D$ since each row of M has covariance $\frac{1}{d}I_D$ and there are d rows.)

2. Suppose $d \geq \frac{8}{\epsilon^2}$. Show that with probability at least $1 - e^{-1} - e^{-2}$,

$$\langle Mu, Mv \rangle \ge \langle u, v \rangle - \epsilon.$$

Answer: Using the polarization identity,

$$\langle Mu, Mv \rangle = \frac{1}{4} (\|M(u+v)\|^2 - \|M(u-v)\|^2).$$

Let $z_{\pm} := u \pm v$. Then $||Mz_{\pm}||^2 = \frac{1}{d} \sum_{j=1}^{d} g_{j,\pm}^2$ with $g_{j,\pm} \sim \mathcal{N}(0, ||z_{\pm}||^2)$ i.i.d., so $\frac{||Mz_{\pm}||^2}{||z_{\pm}||^2}$ is the average of d i.i.d. $\mathcal{N}(0,1)^2$ variables. By the bounds, for any $\varepsilon' > 0$,

$$\Pr[||Mz_{+}||^{2} - ||z_{+}||^{2}| > \varepsilon'||z_{+}||^{2}] \le e^{-d\varepsilon'^{2}/8},$$

$$\Pr \big[\big| \| M z_- \|^2 - \| z_- \|^2 \big| > \varepsilon' \| z_- \|^2 \big] \le e^{-d\varepsilon'^2/4}.$$

On the intersection of these two events,

$$\left| \left\langle Mu, Mv \right\rangle - \left\langle u, v \right\rangle \right| = \tfrac{1}{4} \left| \left(\|Mz_+\|^2 - \|z_+\|^2 \right) - \left(\|Mz_-\|^2 - \|z_-\|^2 \right) \right| \leq \varepsilon'.$$

Taking $\varepsilon' = \varepsilon$ and using the union bound gives

$$\Pr[\langle Mu, Mv \rangle \ge \langle u, v \rangle - \varepsilon] \ge 1 - e^{-d\varepsilon^2/8} - e^{-d\varepsilon^2/4}.$$

If $d \geq 8/\varepsilon^2$, then $e^{-d\varepsilon^2/8} \leq e^{-1}$ and $e^{-d\varepsilon^2/4} \leq e^{-2}$, hence

$$\Pr[\langle Mu, Mv \rangle \ge \langle u, v \rangle - \varepsilon] \ge 1 - e^{-1} - e^{-2}.$$

3. Now let's apply this to machine learning. Consider a set of n examples in D dimensional space that is linearly separable with margin y. That is, there are n examples, (x_i, y_i) with $y_i \in \{-1, 1\}$ and $||x_i|| \leq R$, and there is a unit vetor w so that $y_i \langle w, x_i \rangle \geq y$ for all i. Suppose that

$$d \ge 32 \frac{R^2}{\gamma^2} \log(4n).$$

Show that with probability at least 1/2, $y_i\langle Mw, Mx_i\rangle \geq \frac{\gamma}{2}$ for all i. We can think of the vectors Mx_i as embeddings of the original data set in a lower dimensional space. This problem shows a random embedding already preserves much of the linear separability of data. An optimized embedding can do only better.

Answer: Assume a linearly separable dataset $\{(x_i,y_i)\}_{i=1}^n$ with $||x_i|| \leq R$, labels $y_i \in \{\pm 1\}$, and a unit vector w such that $y_i \langle w, x_i \rangle \geq \gamma$ for all i. Fix i and apply part (2) with the unit pair u = w and $v = \frac{x_i}{||x_i||}$. With probability at least $1 - e^{-d\varepsilon^2/8} - e^{-d\varepsilon^2/4}$,

$$\langle Mw, M(x_i/||x_i||) \rangle \geq \langle w, x_i/||x_i|| \rangle - \varepsilon.$$

Multiplying by $||x_i||$ and then by y_i yields

$$y_i\langle Mw, Mx_i\rangle \geq y_i\langle w, x_i\rangle - ||x_i|| \varepsilon \geq \gamma - R\varepsilon.$$

Choose $\varepsilon = \gamma/(2R)$. Then for this i,

$$\Pr[y_i \langle Mw, Mx_i \rangle \ge \gamma/2] \ge 1 - e^{-d\gamma^2/(32R^2)} - e^{-d\gamma^2/(16R^2)}.$$

If

$$d \ge 32 \frac{R^2}{\gamma^2} \log(4n),$$

then $e^{-d\gamma^2/(32R^2)} \le \frac{1}{4n}$ and $e^{-d\gamma^2/(16R^2)} \le \frac{1}{4n}$, so for this i,

$$\Pr[y_i\langle Mw, Mx_i\rangle \ge \gamma/2] \ge 1 - \frac{1}{2n}.$$

Applying the union bound over all i = 1, ..., n,

$$\Pr[y_i\langle Mw, Mx_i\rangle \ge \gamma/2 \text{ for all } i] \ge 1 - n \cdot \frac{1}{2n} = \frac{1}{2}.$$

Thus, with probability at least 1/2, every embedded example maintains margin at least $\gamma/2$ against Mw.

For parts 2 and 3, you can use the following fact about Gaussian random variables. If g_1, \ldots, g_k are independent Gaussian random variables with mean zero and variance 1, then

$$Pr\left[\frac{1}{m}\sum_{i=1}^{m}g_{i}^{2}\geq1+\epsilon\right]\leq\exp\left(-\frac{m\epsilon^{2}}{8}\right)$$

$$Pr\left[\frac{1}{m}\sum_{i=1}^{m}g_i^2 \ge 1 - \epsilon\right] \le exp\left(-\frac{m\epsilon^2}{4}\right)$$

3

Consider the function $k:(0,1)\times(0,1)\to\mathbb{R}$ defined by $k(x_1,x_2)=\min\{x_1,x_2\}$.

1. Prove that k is a valid kernel (Hint: write k as the integral of a product of two simple functions and then prove that its Gram matrices are positive semi-definite).

Answer: For $x \in (0,1)$ define the feature map $\phi_x : [0,1] \to \mathbb{R}$ by

$$\phi_x(t) := \mathbf{1}\{t \le x\}.$$

Then

$$k(x_1, x_2) = \int_0^1 \phi_{x_1}(t) \, \phi_{x_2}(t) \, dt = \langle \phi_{x_1}, \phi_{x_2} \rangle_{L^2[0,1]}.$$

Hence k is an inner-product kernel.

2. Now, consider a training set $\{(x_i, y_i)\}_{i=1,...,n}$ with $y_i \in \mathbb{R}$ and distinct points x_i in (0,1). Show that if we ran kernel regression without regularization on this data set, we would obtain zero training error. More precisely, find explicit coefficients α_j , in terms of the training data, such that for all points (x_i, y_i) in the training set we have

$$\sum_{i=1}^{n} \alpha_j \min\{x_j, x_i\} = y_i.$$

Answer: Without loss of generality, assume the inputs are sorted:

$$0 < x_1 < x_2 < \dots < x_n < 1.$$

Define

$$f(x) = \sum_{j=1}^{n} \alpha_j \min\{x, x_j\}.$$

Then f is continuous and piecewise linear, with slope on each interval $(x_{i-1}, x_i]$ given by

$$f'(x) = \sum_{j: x_j \ge x} \alpha_j.$$

We want $f(x_i) = y_i$ for all i. To achieve this, define the slopes between adjacent points:

$$\beta_1 = \frac{y_1}{x_1}, \qquad \beta_i = \frac{y_i - y_{i-1}}{x_i - x_{i-1}} \quad \text{for } i = 2, \dots, n.$$

These β_i describe the desired piecewise-linear interpolant through (0,0) and (x_i,y_i) . Since $f'(x) = \sum_{j=i}^n \alpha_j = \beta_i$ for $x \in (x_{i-1},x_i]$, we can recover α from the backward differences:

$$\alpha_i = \beta_i - \beta_{i+1} \quad (i = 1, \dots, n-1), \qquad \alpha_n = \beta_n,$$

where we take $\beta_{n+1} := 0$.

Then, for each i,

$$f(x_i) = \sum_{j=1}^n \alpha_j \min\{x_i, x_j\} = y_i,$$

so the regression interpolates the data exactly—yielding zero training error.