

UNIVERSITATEA DIN PITESTI

ACADEMIA MAGISTRA VITAE

Facultatea de Electronică, Calculatoare și Inginerie Electrică

LIMBAJE DE DESCRIERE HARDWARE

Licență CALCULATOARE

UNIVERSITATEA DIN PITESTI

Facultatea de Electronică, Calculatoare și Inginerie Electrică

Cursul II

Structura programelor VHDL

Objective

- Primul program in VHDL
- Structura unui program
- Topologii de programare

Traditional vs. HDL

Primul exemplu

Sa se implementeze un modul digital prin care se realizează determinarea parităţii unui număr binar reprezentat pe 3 biţi.

Componenta digitală prezintă următoarele porturi de intrare ieşire:

Structura limbajului VHDL

Declaratii librarie library IEEE; use IEEE.STD_LOGIC_1164.ALL;

Entitate

Arhitectura

entity mod_par is

Port (a, b, c: in std_logic;

y : in std_logic);

end mod_par;

architecture descriere of mod_par is

-- zona declarativa

begin

y <= a xor b xor c;

end descriere;

Declararea librariilor

LIBRARY nume_librarie
USE nume_librarie.nume_pachet.părţi_pachet;

```
ieeeLIBRARY ieee;
```

USE ieee std_logic_1164.all;

- standard
 LIBRARY std;
 USE std.standard.all;
- work

Pachete importante din libraria IEEE

- o standard_logic_1164
- std_logic_arhith
- std_logic_signed,std_logic_unsigned
- o pachetul standard din librăria std
- o work

Continutul unei librarii

LIBRARY

PACKAGE

FUNCTION PROCEDURES COMPONENTS CONSTANTS TYPES

Declararea entității (ENTITY)

ENTITY nume_entitate IS

GENERIC (lista de parametrii
generici);

PORT (lista de porturi);

END nume_entitate;

Exemplu de entitate

Sumator pe 1 octet

Parametrii generici

GENERIC (nr_iteraţii : integer := 146; dimens_magistrală :=8);

Declaratia de tip PORT

PORT (nume: mod tip);

- IN
- OUT
- BUFFER
- INOUT

Declararea arhitecturii

ARHITECTURE numele_arhitecturii OF numele_entitatii IS { zona de declaratii

BEGIN

{ zona de specificaţii concurente

END numele arhitecturii;

Tipuri de descrieri:

- flux de date;
- comportamentala;
- flux de date;

combinarea celor anterioare

Identificatori

Identificatorii sunt formați din numere, litere și/sau caracterul "_,... Pentru crearea unui identificator este necesară respectarea următoarelor reguli:

- Primul caracter sa fie o literă,
- Ultimul caracter să nu fie ""
- Să nu existe succesiunea "___".

Operatori logici

Tipul operatorului	Operatori	Tipul datelor
Logic	NOT, AND, NAND, OR, NOR, XOR, XNOR	BIT, BIT_VECTOR, STD_LOGIC, STD_LOGIC_VECTOR STD_UNLOGIC, STD_UNLOGIC_VECTOR
Aritmetic	+, -, *, /, ** (mod, rem, abs)	INTEGER, SIGNED, UNSIGNED
Comparaţie	=, /=, <, >, <=, >=	aproape toţi
Deplasare	sll, srl, sla, sra, rol, ror	BIT_VECTOR
Concatenare	&, (, , ,)	La fel ca la operatorii logici, pus SIGNED și UNSIGNED

Sumar

- Ce este HDL?
- Conceptul de programare hardware
- Limbaje HDL
- Un exemplu in VHDL
- Structura unui program
- Topologii