Deep machine learning for Computer Vision

Andrii Liubonko Samsung R&D Institute Ukraine

Visual Perception Problems

Classification + Localization

Object Detection

Semantic Segmentation

Instance Segmentation

Localization

Object Detection

Image from: http://deeplearning.csail.mit.edu/instance_ross.pdf

Faster R-CNN [Overall architecture]

dog, score: 0.98 ball, score: 0.8

SSD architecture [Overall architecture]

Contents

Segmentation

Semantic Segmentation Instance Segmentation

Deep Metric Learning

Datasets Metrics

Beyond

Relational Reasoning, Scene Understanding 3D Machine Learning Meta-learning

Resources

Visual Perception Problems

Classification + Localization

Object Detection

Semantic Segmentation

Instance Segmentation

Semantic Segmentation [FCN]

Semantic Segmentation [SegNet]

Semantic Segmentation [DeepLab]

Figure 5. Parallel modules with atrous convolution (ASPP), augmented with image-level features.

arXiv: 1706.05587

Instance Segmentation [Mask-RCNN]

arXiv:1703.06870

Instance Segmentation [Mask-RCNN]

- Backbone Architecture
- Scale Invariance (e.g. Feature Pyramid Network (FPN))
- 3. Region Proposal Network (RPN)
- 4. Region of interest feature alignment (RolAlign)
- Multi-task network head
 - a. Box classifier
 - b. Box regressor
 - Mask predictor
 - Keypoint predictor

Instance Segmentation

Contents

```
Semantic Segmentation, Instance Segmentation
Deep Metric Learning
    Datasets
    Metrics
Beyond
    Relational Reasoning, Scene Understanding
    3D Machine Learning
    Meta-learning
Resources
```

Metric Learning

Metric learning (Distance Metric Learning, Similarity Learning)

Goal: to learn a distance function over objects, which measure how similar or related two objects are.

Useful for:

- Image Retrival
- Face Recognition
- Object/Face Re-Identification
- Recommendation Systems

Metric Learning

In deep metric learning, feature embedding function is modeled as a deep neural network. This feature embedding function embeds input images into feature embedding space with a certain desired condition.

Metric Learning [Dataset]

- CUB-200-2011: species 200 of birds with 11.788 images
- CARS196: 198 classes of cars and 16.185 images
- Stanford Online Products:
 23.000 classes and 120.000 img.

Metric Learning [Dataset]

The search quality is measured with **recall@K** metric.

Each query image first retrives K nearest neighbours from the test set and receives score 1 if a image of the same class is retrived among the K nearest neighbours and 0 otherwise.

recall@K averages this score over all the images.

Metric Learning [Descriptor]

dim = 128:256

Metric Learning [Descriptor]

In deep metric learning, feature embedding function **F** is modeled as a deep neural network. **F** embeds input images into feature embedding space with a certain desired condition. In this condition, the feature embeddings of similar images are required to be close to each other while those of dissimilar images are required to be far from each other.

Metric Learning [Contrastive Loss]

$$J = \frac{1}{m} \sum_{i,j} y_{i,j} D_{i,j}^2 + (1 - y_{i,j}) [\alpha - D_{i,j}]_+^2$$
$$D_{i,j} = \|F(x_i) - F(x_j)\|_2$$
$$y_{i,j} = \mathbb{I}[y_i == y_j]$$

where m is a number of elements in batch, α margin parameter

Metric Learning [Contrastive Loss]

Metric Learning [Results]

Table 6. Recall@K(%) score on Stanford online products dataset (SOP)

K	1	10	100	1000
Contrastive ¹²⁸ 6	42.0	58.2	73.8	89.1
LiftedStruct ⁵¹² 6	62.1	79.8	91.3	97.4
N-Pairs ⁵¹² 8	67.7	83.8	93.0	97.8
Clustering ⁶⁴ 9	67.0	83.7	93.2	-
Proxy NCA [†] ³⁴ 36	73.7	-	-	-
Margin ^{†128} 33	72.7	86.2	93.8	98.0
HDC^{384} 14	69.5	84.4	92.8	97.7
A-Bier ⁵¹² 39	74.2	86.9	94.0	97.8
ABE- 2^{512}	75.4	88.0	94.7	98.2
$ABE-4^{512}$	75.9	88.3	94.8	98.2
$\mathbf{ABE-8}^{512}$	76.3	88.4	94.8	98.2

arXiv:1804.00382

Contents

```
Semantic Segmentation, Instance Segmentation
Deep Metric Learning
    Datasets
    Metrics
Beyond
    Relational Reasoning, Scene Understanding
    3D Machine Learning
    Meta-learning
Resources
```

Relational Reasoning

"Man sitting on bench"

objects

bench

man

bench

+ attributes

sitting man

sitting man

+ relationships

Relational Reasoning

"Sleeping cat on top of couch"

objects + attributes

cat

cat

sleeping cat

+ relationships

Scene Understanding

Justin Johnson, ICCV 2017, tutorial

Scene Generation

arXiv: 1804.01622

3D Machine Learning

Car

https://github.com/timzhang642/3D-Machine-Learning

Meta-learning

Meta learning is learning to learn.

Optimizer Meta-Learning

Few Shots Meta-Learning

Resources

- cs231n: Convolutional Neural Networks for Visual Recognition, <u>http://cs231n.stanford.edu/</u>
- Book "Deep Learning", http://www.deeplearningbook.org/
- Arxiv Sanity Preserver,
 http://www.arxiv-sanity.com/top
- Google Scholar alerts
- Medium, blogs
- Twitter, Reddit, Quora