$$V(k_0) = \sum_{t=0}^{\infty} \left[\beta^t \ln(1 - \alpha \beta) + \beta^t \alpha \ln k_t \right]$$

$$= \ln(1 \operatorname{Reading}) \operatorname{otes}_{\alpha\beta}^{\infty} \ln \alpha \beta + \alpha^t \ln k_0$$

$$\rightleftharpoons \frac{1}{1} \operatorname{sphi}_{\alpha\beta}^{\infty} \operatorname{in}_{\alpha\beta}^{\infty} \operatorname{tr}_{\alpha\beta}^{\gamma} \operatorname{tr}_{\alpha\beta}^{\gamma$$

左边 =
$$V(k) = \frac{\alpha}{1 - \alpha\beta} \ln k + \frac{\ln(1 - \alpha\beta)}{1 - \beta} + \frac{\alpha\beta}{(1 - \beta)(1 - \alpha\beta)} \ln(\alpha\beta)$$

$$\stackrel{\triangle}{=} \frac{\alpha}{1 - \alpha\beta} \ln k + A$$

右边 = $\max \left\{ \sqrt{(f(t) + y)} + \beta V(y) \right\}$

利用 FOC 和包络条件求解得到 $y = x \rho k^{\alpha}$, $\Lambda \lambda \sqrt{x}$ 求右边。

加まtitute for Advanced Study
$$= u(f(k) - g(k)) + \beta \left[\frac{\alpha}{1 - \alpha \beta} \ln g(k) + A \right]$$
Victory won't come to us unless we go to it.
$$= \ln(1 - \alpha \beta) + \alpha \ln k + \beta \left[\frac{\alpha}{1 - \alpha \beta} \left[\ln \alpha \beta + \alpha \ln k \right] + k \right]$$

$$= \alpha \ln k + \frac{\alpha \beta}{1 - \alpha \beta} \alpha \ln k + \ln(1 - \alpha \beta) + \frac{\alpha \beta}{1 - \alpha \beta} \ln \alpha \beta + \beta A$$

$$= \frac{\alpha}{1 - \alpha \beta} \ln k + \ln(1 - \alpha \beta) + \frac{\alpha \beta}{1 - \alpha \beta} \ln \alpha \beta + \beta A$$

$$= \frac{\alpha}{1 - \alpha \beta} \ln k + \ln(1 - \beta) + \frac{\alpha \beta}{1 - \alpha \beta} \ln \alpha \beta + \beta A$$
整理: 陈传升
整理时间: November 29, 2019
$$= \frac{\alpha}{1 - \alpha \beta} \ln k + A$$
Email: sheng_ccs@163.com

所以, 左边 = 右边, 证毕。

Version: 1.00

目 录

1	散度	散度														3					
	1.1	通量⊉																			3
		1.1.1	有向曲面	面 .																	3

第1章 散度

在矢量场的曲面几分钟已经引入了通量。通量是矢量场中一个重要的宏观参量。表示矢力线 \vec{A} 穿过曲面 \vec{S} 的总量。与通量概念对应的矢量场的一个重要的微观测度 便是散度

1.1 通量 Ψ

1.1.1 有向曲面

注意有向曲面 \vec{S} 的凸凹规定,即法线方向。