Banking Customer Churn Prediction

Artificial Intelligence - Supervised Learning

Banking Customer Churn Prediction

Dataset

Bank customers and their churn status, which indicates whether they have exited the bank or not.

Machine learning problem

Factors influencing customer churn in banking institutions and build predictive models to identify customers at risk of churning.

Churn rate: 2037 / 10000

Tools and algorithms to use

Tools

- Pandas
- Numpy
- MatPlot
- Seaborn
- Scikit-learn
- TensorFlow
- Imbalanced-learn

Algorithms

- Decision Trees
- Neural Networks
- K-Nearest Neighbors (K-NN)
- Support Vector Machines (SVM)
- Naïve Bayes

Dataset features

A: row number H: tenure

B: customerid I: balance

C: surname J: numOfProducts

D: credit score K: hasCreditCard

E: geography L: isActiveMember

F: gender M: estimatedSalary

Exited customers per country

Exited customers per gender

Male

Churn rate: 898 / 5457

Female

Churn rate: 1139 / 4543

Credit score & estimated salary

Geography -	0.01	1.00	0.00	0.02	0.00	0.07	0.00		0.01		0.04		- 0.8
Gender -	-0.00	0.00	1.00	-0.03	0.01	0.01	-0.02	0.01	0.02	-0.01	-0.11		
Age -	-0.00	0.02		1.00	-0.01	0.03	-0.03	-0.01	0.09	-0.01	0.29		- 0.6
Tenure -	0.00	0.00	0.01	-0.01	1.00		0.01	0.02		0.01	-0.01		
Balance -	0.01	0.07	0.01	0.03	-0.01	1.00	-0.30	-0.01	-0.01	0.01	0.12		- 0.4
NumOfProducts -	0.01	0.00	-0.02	-0.03	0.01	-0.30	1.00	0.00	0.01	0.01	-0.05		- 0.2
HasCrCard -	-0.01		0.01	-0.01	0.02	-0.01	0.00	1.00		-0.01			
lsActiveMember -	0.03	0.01	0.02	0.09	-0.03	-0.01	0.01	-0.01	1.00	-0.01	-0.16		- 0.0
EstimatedSalary -	-0.00			-0.01	0.01	0.01	0.01	-0.01	-0.01	1.00	0.01		
Exited -	-0.03	0.04	-0.11	0.29	-0.01	0.12	-0.05		-0.16	0.01	1.00		0.2
	CreditScore -	Geography -	Gender -	Age -	Tenure -	Balance -	NumOfProducts -	HasCrCard -	IsActiveMember -	EstimatedSalary -	Exited -		

CreditScore -

0.01

Data preprocessing

A: row number H: tenure

B: customerid I: balance

C: surname J: numOfProducts

D: credit score K: hasCreditCard

E: geography L: isActiveMember

F: gender M: estimatedSalary

A: row number H: tenure

B: customer id I: balance

C: surname J: numOfProducts

D: credit score K: hasCreditCard

E: geography L: isActiveMember

F: gender M: estimatedSalary

A: row number H: tenure

B: customer id I: balance

C: surname J: numOfProducts

D: credit score K: hasCreditCard

E: geography L: isActiveMember

F: gender M: estimatedSalary

G: age N: exited

dataset.drop(['RowNumber', 'CustomerId', 'Surname'])

A: row number H: tenure

B: customer id I: balance

C: surname J: numOfProducts

D: credit score K: hasCreditCard

E: geography L: isActiveMember

: gender M: estimatedSalary

Converting input types

Gender	Gender	Geography	Geography
Male	1	Germany	2
Female	0	France	0
Female	0	Spain	1
Male	1	Germany	2
Male	0	Germany	2
Female	1	France	0

Normalizing salary

```
# Mapping the country to the minimum salary
country salaries = {'France': 1540 * 12, 'Spain': 1050 * 12, 'Germany': 1580 * 12}
# Remove rows with 'EstimatedSalary' less than 1000
dataset = dataset[dataset['EstimatedSalary'] >= 1000]
# Multiply 'EstimatedSalary' by 12 if it's less than the corresponding country's salary
dataset.loc[dataset['EstimatedSalary'] < dataset['Geography'].map(country salaries),</pre>
'EstimatedSalary'] *= 12
```

Handle imbalanced data

