Capítulo 1

Gases diluidos en las proximidades del equilibrio

Sistema clásico diluido, procesos colisionales en términos de σ , sistema grande con paredes reflejantes

$$f(\mathbf{x}, \mathbf{p}, t)d^3xd^3p \equiv \#$$
de partículas en el cubo d^3p , d^3x

siendo f la función de distribución de un cuerpo.

La teoría cinética busca hallar $f(\mathbf{x},\mathbf{p},t)$ para una dada interacción molecular. Sabemos que la interacción es a través de colisiones.

Sin colisiones las moléculas evolucionan de acuerdo a

$$t \to t + \delta t$$
 $\mathbf{x} \to \mathbf{x} + \mathbf{v}\delta t$ $\mathbf{p} \to \mathbf{p} + \mathbf{F}\delta t$
$$f(\mathbf{x}, \mathbf{p}, t)d^3xd^3p = f(\mathbf{x} + \mathbf{v}\delta t, \mathbf{p} \to \mathbf{p} + \mathbf{F}\delta t, \mathbf{p}, t + \delta t)d^3x'd^3p'$$

El volumencillo con sus partículas evoluciona en el espacio de fases μ . El volumen evoluciona de acuerdo al jacobiano.

$$d^3r'd^3p' = |J|d^3rd^3p$$

pero

$$J = \frac{\partial(x',y',z',p_x',p_y',p_z')}{\partial(x,y,z,p_x,p_y,p_z)}$$

da

$$1 + \mathcal{O}(\delta t^3)$$

Clásico implica

$$\lambda_{\rm deB} \ll (V/N)^{1/3}$$
 , $h/p \ll v^{1/3}$ o bien $\frac{h}{\sqrt{2mkT}} \ll v^{1/3}$

con lo cual si $\delta t \ll 1$ será $d^3r'd^3p' = d^3rd^3p$ y entonces

$$f(\mathbf{x} + \mathbf{v}\delta t, \mathbf{p} \to \mathbf{p} + \mathbf{F}\delta t, \mathbf{p}, t + \delta t) = f(\mathbf{x}, \mathbf{p}, t)$$

pero si hay colisiones

$$\begin{split} f(\mathbf{x}+\mathbf{v}\delta t,\mathbf{p}\to\mathbf{p}+\mathbf{F}\delta t,\mathbf{p},t+\delta t) &= f(\mathbf{x},\mathbf{p},t) + \left.\frac{\partial f}{\partial t}\right|_{\mathrm{col}}\delta t \\ &\frac{\partial f}{\partial t}\delta t d^3r d^3p = (\bar{R}-R)\delta t d^3r d^3p \end{split}$$

donde $\bar{R}\delta t d^3r'd^3p'$ es el número de colisiones durante δt en las que una partícula se halla al final en $d^3r'd^3p'$ y $R\delta t d^3r d^3p$ es correspondientemente el número de colisiones durante δt en las que una partícula se halla al comienzo en $d^3r d^3p$.

De t a $t+\delta t$ algunas moléculas de A pasan a B y otras van hacia otros lados. Hacia B llegan moléculas de A y desde fuera.

Dada la dilución consideramos colisiones binarias.

R es el número de colisiones en las cuales la partícula se halla en A y consecuentemente no llega a B (pérdida) (en el cubo d^3V_2) y \bar{R} es el número de colisiones en las cuales la partícula se halla fuera de A y consecuentemente por colisión llega a B (ganancia) (en el cubo d^3V_2).

$$\underbrace{f(\mathbf{v}_2,t)d^3V_2}_{\text{d. blancos}}\underbrace{[\mathbf{V}_2-\mathbf{V}_1]}_{\text{condición de colisión}}\underbrace{f(\mathbf{v}_1,t)d^3V_1}_{\text{d. incidentes}}\underbrace{\sigma}_{V_1V_2\to V_1'V_2'}d^3V_1'd^3V_2'$$

Si quiero conocer R debo integrar: si la partícula con \mathbf{V}_2 se halla en A integrao en todas las \mathbf{V}_1 y en todos los destinos \mathbf{V}_1' y \mathbf{V}_2' .

$$\underbrace{f(\mathbf{v}_2',t)d^3V_2'}_{\text{d. blancos}}\underbrace{[\mathbf{V}_2'-\mathbf{V}_1']}_{\text{condición de colisión}}\underbrace{f(\mathbf{v}_1',t)d^3V_1'}_{\text{d. incidentes}}\underbrace{\sigma}_{V_1V_2\to V_1'V_2'}d^3V_1d^3V_2$$

Si quiero conocer \bar{R} debo integrar: si la partícula con \mathbf{V}_2 se halla en B integrao en todas las \mathbf{V}_1' \mathbf{V}_2' (orígenes) y en todos los destinos \mathbf{V}_1' .

$$\begin{split} d^{3}V_{2}R &= \int_{V_{1}} \int_{V_{1}'} \int_{V_{2}'} f(\mathbf{V}_{2},t) d^{3}V_{2} | \mathbf{V}_{2} - \mathbf{V}_{1}| f(\mathbf{V}_{1},t) d^{3}V_{1} \underbrace{\sigma}_{12 \to 1'2'} d^{3}V_{1}' d^{3}V_{2}' \\ d^{3}V_{2}\bar{R} &= \int_{V_{1}} \int_{V_{1}'} \int_{V_{2}'} f(\mathbf{V}_{2}',t) d^{3}V_{2}' | \mathbf{V}_{2}' - \mathbf{V}_{1}' | f(\mathbf{V}_{1}',t) d^{3}V_{1}' \underbrace{\sigma}_{1'2' \to 12} d^{3}V_{1} d^{3}V_{2} \\ d^{3}V_{2}R &= \int_{V_{1}} \int_{V_{1}'} \int_{V_{2}'} f_{2}f_{1} | \mathbf{V}_{2} - \mathbf{V}_{1} | \underbrace{\sigma}_{12 \to 1'2'} d^{3}V_{1}' d^{3}V_{2}' d^{3}V_{2} d^{3}V_{1} \end{split}$$

 $R\delta t d^3r d^3p$ será finalmente el número de partículas en el cubo $d^3r d^3p$.

Queremos ver cómo varía f en

$$d^{3}V_{2}\bar{R} = \int_{V_{1}} \int_{V_{1}'} \int_{V_{2}'} f_{2}' f_{1}' |\mathbf{V}_{2}' - \mathbf{V}_{1}'| \underbrace{\sigma}_{1'2' \to 12} d^{3}V_{1} d^{3}V_{2} d^{3}V_{2}' d^{3}V_{1}'$$

y si usamos que $|\mathbf{V}_2-\mathbf{V}_1|=|\mathbf{V}_2'-\mathbf{V}_1'|$ y $\underbrace{\sigma}_{12\to1'2'}=\underbrace{\sigma}_{1'2'\to12}$ entonces

$$\left. \frac{\partial f_2}{\partial t} \right|_{\mathrm{col}} = (\bar{R} - R) d^3 V_2 = \int_{V_1} \int_{V_1'} \int_{V_2'} (f_1' f_2' - f_1 f_2) |\mathbf{V}_2 - \mathbf{V}_1| \underbrace{\sigma}_{12 \to 1'2'} d^3 V_1' d^3 V_2' d^3 V_2 d^3 V_1 d^3 V_2' d^3 V_2' d^3 V_2 d^3 V_1 d^3 V_2' d^3$$

Bajo estas líneas pueden verse los esquemas de integración,

1.0.1 Construcción de una cuenta

Volumen dentro del cual una partícula con V_1 chocaría a una de V_2 .

$$\frac{ \overline{|\mathbf{V}_2 - \mathbf{V}_1| \delta t \delta A}}{\delta t \delta A} \qquad \underbrace{f(\mathbf{V}_1, t) d^3 V_1}_{\text{densidad de incidente}}$$

es el # de partículas incidentes con ${f V}_1$ que podría colisionar con una de ${f V}_2$ en la unidad de tiempo y por unidad de área.

$$\sigma(\mathbf{V}_1\mathbf{V}_2 \to \mathbf{V}_1'\mathbf{V}_2')d^3V_1'd^3V_2'$$

es la sección eficaz de dispersión del proceso $V_1V_2 \to V_1'V_2'$ teniendo como destinos \mathbf{V}_1' y \mathbf{V}_2' .

$$\left[|\mathbf{V}_2 - \mathbf{V}_1| f(\mathbf{V}_1,t) d^3 V_1 \right] \sigma_{12 \to 1'2'} d^3 V_1' d^3 V_2'$$

es el # de partículas incidentes con \mathbf{V}_1 dispersadas en \mathbf{V}_1' y con el blanco yendo a \mathbf{V}_2' por unidad de tiempo y volumen.

$$[f(\mathbf{V}_2,t)d^3V_2]|\mathbf{V}_2 - \mathbf{V}_1|f(\mathbf{V}_1,t)d^3V_1\sigma d^3V_1'd^3V_2'$$

es el # de partículas dispersadas hacia V_1' y V_2' proviniendo de V_1 y V_2 por unidad de tiempo y de volumen.

Quisiera conocer $Rdtd^3rd^3v$ (# de colisiones durante dt en las cuales una partícula incial –blanco– se halla en d^3r con d^3v_2)

pérdida; si golpeo un blanco en \mathbf{V}_2 lo saco del volumen

$$Rdtd^{3}rd^{3}v = \int_{V_{1}}\int_{V_{1}}\int_{V_{1}}dtd^{3}rf(\mathbf{V}_{2},t)d^{3}V_{2}|\mathbf{V}_{2}-\mathbf{V}_{1}|f(\mathbf{V}_{1},t)d^{3}V_{1}\sigma d^{3}V_{1}'d^{3}V_{2}'$$

Se integra en las incidentes V_1 gamlas destinhse $V_1',V_2'.$

y también $\bar{R}dtd^3rd^3v$ (# de colisiones durante dt en las cuales una partícula **gamlas des tionpe b**'1, V_2' . final se halla en d^3r con d^3v_2)

$$\bar{R}dtd^3rd^3v = \int_{V_1} \int_{V_2'} \int_{V_2'} dtd^3r f(\mathbf{V_2'},t) d^3V_2' |\mathbf{V_2'} - \mathbf{V_1'}| f(\mathbf{V_1'},t) d^3V_1' \sigma d^3V_1 d^3V_2 |\mathbf{V_1'} - \mathbf{V_1'}| f(\mathbf{V_1'},t) d^3V_1' \sigma d^3V_1 d^3V$$

$$\left. \frac{\partial f}{\partial t} \right|_{t=0} \delta t = (\bar{R} - R) \delta t$$

Usando

$$\begin{split} |\mathbf{V}_2 - \mathbf{V}_1| &= |\mathbf{V}_2' - \mathbf{V}_1'| \quad \sigma(12 \rightarrow 1'2') = \sigma(1'2' \rightarrow '2) \\ \frac{\partial f}{\partial t}\Big|_{\mathrm{col}} &= \int_{V} \int_{V'} \int_{V'} d^3v_1 d^3v_1' d^3v_2' |\mathbf{V}_2 - \mathbf{V}_1| \sigma(f(\mathbf{V}_1', t) f(\mathbf{V}_2', t) - f(\mathbf{V}_1, t) f(\mathbf{V}_2, t)) \end{split}$$

Por otro lado

$$\begin{split} f(\mathbf{r} + \mathbf{v}\delta t, \mathbf{p} + \mathbf{F}\delta t, t + \delta t) - f(\mathbf{r}, \mathbf{p}, t) &= f(\mathbf{r}, \mathbf{v} + \frac{\mathbf{F}}{m}\delta t, t + \delta t) - f(\mathbf{r}, \mathbf{v}, t) \\ \frac{\partial f}{\partial \mathbf{r}} \mathbf{v}\delta t + \frac{\partial f}{\partial \mathbf{v}} \frac{\mathbf{F}}{m}\delta t + \frac{\partial f}{\partial t}\delta t &= \mathbf{v} \cdot \nabla_{\mathbf{r}} + \frac{\mathbf{F}}{m} \cdot \nabla_{\mathbf{v}} + \frac{\partial f}{\partial t}\delta t \end{split}$$

y entonces con $\delta t \to 0$ es

$$\left(\mathbf{v} \cdot \nabla_{\mathbf{r}} + \frac{\mathbf{F}}{m} \cdot \nabla_{\mathbf{p}} + \frac{\partial}{\partial t}\right) f = \left. \frac{\partial f}{\partial t} \right|_{\mathbf{co}}$$

y somos conducidos a

$$(\mathbf{v}\cdot\nabla_{\mathbf{r}}+\frac{\mathbf{F}}{m}\cdot\nabla_{\mathbf{v}}+\frac{\partial}{\partial t})f_2=\int_{V_1}\int_{V_1'}\int_{V_2'}d^3v_1d^3v_1'd^3v_2'V\sigma(f_1'f_2'-f_1f_2)$$

la ecuación de transporte de Boltmann.

Se ha supuesto CAOS MOLECULAR, de modo que la correlación de dos cuerpos (función de distribución de dos cuerpos en el mismo punto espacial)

$$f(\mathbf{r}, \mathbf{v}_1, \mathbf{v}_2, t) = f(\mathbf{r}, \mathbf{v}_1, t) f(\mathbf{r}, \mathbf{v}_2, t)$$

y esto nos lleva a que las velocidades de dos partículas en el elemento d^3r no están correlacionadas. La probabilidad de encontrarlas simultáneamente es el producto de hallarlas a cada una por separado.

Una condición suficiente es

$$f_1'f_2' - f_1f_2 = 0 \Rightarrow \frac{\partial f}{\partial t}\Big|_{\text{col}} = 0$$

y veremos que es también necesaria.

La solución de equilibrio será aquella independiente del tiempo. Es decir $\frac{\partial f}{\partial t}=0,$ $\int \int \int dV...V\sigma(f_1'f_2'-f_1f_2)=0$

1.0.2 otra

Supusimos un sistema diluido, con colisiones binarias y llegamos a

$$\left(\mathbf{v}\cdot\nabla_{\vec{r}}+\frac{1}{m}\mathbf{F}\cdot\nabla_{\vec{v}}+\frac{\partial}{\partial t}\right)f_2=\frac{\partial f_2}{\partial t}=\int\int\int d^3v_1d^3v_1'd^3v_2'V\sigma(f_{1'}f_{2'}-f_1f_2) \tag{1}$$

Pensamos que en el equilibrio será $\partial f_2/\partial t=0$ y sabemos que

$$\operatorname{si} f_{1'} f_{2'} - f_1 f_2 = 0 \Rightarrow \frac{\partial f}{\partial t} = 0$$

La función del equilibrio es MB, $f_0(\mathbf{v}) \rightarrow \frac{\partial f_0}{\partial t} = 0$

Definiendo $H(t) = \int d^3V f(\mathbf{v}, t) \log(f(\mathbf{v}, t))$ vemos que

$$\operatorname{si} \frac{\partial f(\mathbf{v}, t)}{\partial t} = 0 \Rightarrow \frac{dH}{dt} = 0$$

Ahora, considerando que f satisface (1) probamos que

si
$$f$$
 verifica (1) $\Rightarrow \frac{dH}{dt} \leq 0$

pero como el integrando en dH/dt no cambia de signo nunca debe anularse para obtener el cero con lo cual

$$\frac{dH}{dt} = 0 \Rightarrow f_{1'}f_{2'} - f_1f_2 = 0 \Rightarrow \frac{\partial f}{\partial t} = 0$$

y en definitiva

$$\boxed{\frac{dH}{dt} = 0 \Leftrightarrow \frac{\partial f}{\partial t} = 0}$$

y prueba que con

$$f(\mathbf{v},t)_{t\to\infty} \to f_0(\mathbf{v})$$
 con $\frac{\partial f_0}{\partial t} = 0$

La ecuación (1) asume la hipótesis de CAOS MOLECULAR para su validez.

 $f(\mathbf{p},t)$ en principia
o sólo satisface la ecuación de transporte de Boltzmann cuando vale CAOS MOLECULAR. Una ta
lfes tal que

 $\frac{dH}{dt} \leq 0$ H es decreciente siempre (un instante luego del CAOS MOLECULAR)

$$\frac{dH}{dt} = 0 \qquad \text{si } f(\mathbf{p},t) = f_{MB} \text{ con } \frac{\partial f}{\partial t} = 0$$

CAOS MOLECULAR entonces significa que H es máximo local, luego decrece rápidamente y además se sale de f_{MB}

1.1 Teorema H y consecuencias

$$\begin{split} H(t) &= \int d^3p f(\mathbf{p},t) \log(f(\mathbf{p},t)) = <\log f(\mathbf{p},t)>_{\text{no normalizado}} \\ &\frac{\partial H(t)}{\partial t} = \int d^3p \left(\frac{\partial f}{\partial t} \log f + f \frac{1}{f} \frac{\partial f}{\partial t}\right) \\ &\frac{\partial H(t)}{\partial t} = \int d^3p \frac{\partial f}{\partial t} \left(1 + \log f\right) \\ &\text{Si } \frac{\partial f}{\partial t} = 0 \Rightarrow \frac{\partial H}{\partial t} = 0 \end{split}$$

Entonces la anulación de la derivada de H es condición necesaria pero no suficiente para que la derivada de f se anule.

Por otro lado, también vale que si f satisface la ecuación de Boltzmann, entonces

$$\frac{dH}{dt} = \frac{d}{dt} < \log f(\mathbf{p}, t) >_{\text{no normalizado}} \le 0$$
$$\frac{\partial H(t)}{\partial t} = \int d^3 p \frac{\partial f}{\partial t}(\mathbf{p}, t) (1 + \log f)$$

y si consideramos función de v2:

$$\frac{dH}{dt} = \int d^3V_2 \int_{V_1} \int_{V_1'} \int_{V_2'} d^3v_1 d^3v_1' d^3v_2' V \sigma(f_1'f_2' - f_1f_2) [1 + \log f_2]$$

pero el intercambio de ${\cal V}_1$ con ${\cal V}_2$ no afecta la integral y podemos sumar dos medios,

$$\begin{split} \frac{dH}{dt} &= \frac{1}{2} \left[\int d^3V_2 \int_{V_1} \int_{V_1'} \int_{V_2'} d^3v_1 d^3v_1' d^3v_2' V \sigma(f_2'f_1' - f_2f_1) [1 + \log f_1] + \right. \\ & \left. \int d^3V_2 \int_{V_1} \int_{V_1'} \int_{V_2'} d^3v_1 d^3v_1' d^3v_2' V \sigma(f_1'f_2' - f_1f_2) [1 + \log f_2] \right] \\ \\ \frac{dH}{dt} &= \frac{1}{2} \left[\int d^3V_2 \int_{V_1} \int_{V_1'} \int_{V_2'} d^3v_1 d^3v_1' d^3v_2' V \sigma(f_2'f_1' - f_2f_1) [2 + \log(f_1f_2)] \right] \end{split}$$

pero intercambio de V_1', V_2' con V_1, V_2 tampoco afecta, entonces

$$\begin{split} \frac{dH}{dt} &= \frac{1}{4} \left[\int d^3V_2 \int_{V_1} \int_{V_1'} \int_{V_2'} d^3v_1 d^3v_1' d^3v_2' V \sigma(f_2 f_1 - f_2' f_1') [2 + \log(f_1' f_2')] + \right. \\ &\left. int d^3V_2 \int_{V_1} \int_{V_1'} \int_{V_2'} d^3v_1 d^3v_1' d^3v_2' V \sigma(f_2' f_1' - f_2 f_1) [2 + \log(f_1 f_2)] \right] \\ \frac{dH}{dt} &= \frac{1}{4} \int d^3V_2 \int_{V_1} \int_{V_1'} \int_{V_1'} d^3v_1 d^3v_1' d^3v_2' V \sigma(f_2 f_1 - f_2' f_1') [\log \left(\frac{f_1' f_2'}{f_1 f_2}\right)] \end{split}$$

y como siempre es

$$(X - Y) \log \left(\frac{Y}{X}\right) \le 0$$

luego

$$\frac{dH}{dt} \le 0$$

y si

$$\frac{\partial f}{\partial t} = 0 \Rightarrow \frac{dH}{dt} = 0$$

pero de la prueba que acabamos de finalizar vemos que si

$$\frac{dH}{dt} = 0 \Rightarrow f_1 f_2 - f_1' f_2' = 0 \Rightarrow \frac{\partial f}{\partial t} = 0$$

luego

$$\frac{dH}{dt} = 0$$
 \Leftrightarrow $\frac{\partial f}{\partial t}(\mathbf{v}, t) = 0$

con f de Boltzmann.

Entonces dH/dt=0 si y sólo si $f_1f_2=f_1'f_2'$ para todas las colisiones. Esta condición se conoce como *balance detallado* y es la condición de equilibrio para el gas.

$$E = \int d^3V f(\mathbf{v}, t) |\mathbf{v}|^2 < \infty$$
$$H = \int d^3V f(\mathbf{v}, t) \log f(\mathbf{v}, t)$$

H es el promedio en la distribución de $\log f(\mathbf{p},t)$ no normalizado.