Instrumentation

AUTHOR

Joseph Moerschell, Marc Nicollerat

1 Chapitre 1

• On a plongé une pierre dans un récipient pour en mesurer son volume. Quel est le poids de cette pierre si on connait sa nature ?

Tip

Le volume d'eau donne le volume de la pierre, la masse volumique de la pierre permet d'en déduire son poids.

• Comment puis-je mesurer la masse volumique d'un matériau avec des moyens rudimentaires (un pied pour la longueur et des poids connus) ?

Tip

Je peux tailler un cube d'un pied de coté et mesurer le poids. J'aurai un résultat en "poids/pied"

- On aimerait mesurer la hauteur de la tour de la Bâtiaz (en dessus de Martigny). Elle serait visible depuis la plus haute tour de Valère (à Sion).
 - o Comment mesurer cette hauteur à distance ? Que faudrait-il connaître ?
 - o Quelle précision doit-on avoir pour les mesures pour connaître la hauteur à 1m près ?

Tip

- On mesure l'angle sous lequel la tour apparaît. Il faut connaître la distance de Sion à Martigny pour en déduire la hauteur.
- Si on approxime la relation ainsi : $h=d\cdot \alpha$, α en radiants, on a pour h=1 un angle de $\alpha=1/d$.
- Si je mesure la distance du soleil en mesurant le temps qu'il faut entre les 2 instants où il est perpendiculaire à l'horizon, quelle durée vais-je mesurer ? Avec quelle précision je dois définir l'instant où le soleil apparaît perpendiculaire (en angle)?

Tip

- L'angle serait de $\alpha=d_{terre}/D_{TS}$. La terre aura tourné de $180^\circ-\alpha\cdot 180/\pi$. 180 correspond à 24h, on calcule donc le temps.
- Mesure de la distance de la terre au soleil à partir du parallaxe horizontale de Mars (cf document STAGE-SOLEIL).

Tip

cf corrigé du document

• Sachant que la puissance mécanique s'exprime par l'expression $P=F\cdot v, F=force, v=vitesse$, et que la puissance électrique est donnée par $P=V\cdot I$, que les deux unités sont les

mêmes, quelle est l'unité du volt [V] ?

Tip
$$F=m\cdot a[kgm/s^2]\text{, }P=F\cdot v\text{ a pour unit\'e }[kgm^2/s^3]\text{. }P_e=U\cdot I[V\cdot A]\text{ implique que }V\text{ a pour unit\'e }[\frac{kgm^2}{As^3}]$$

• Un capteur a une réponse du premier ordre qui s'exprime sous cette forme si la mesurande change brutalement de 0 à une valeur donnée x_1 :

$$y(t)=x_1(1-e^{-t/\tau})$$

Combien de temps faut-il attendre pour avoir une lecture de la valeur x_1 avec une précision de 99% ?

```
Tip

from math import *

print("t=tau *",-log(0.01))

t=tau * 4.605170185988091
```

2 Chapitre 2

Sonorisation d'un orchestre

On enregistre une source sonore avec un micro MKH 416. On a 2 instruments qui sont un violon et un saxophone Les instrumentistes sont assis à 2m l'un de l'autre, on place le micro en face du violoniste, à 1m.

- A la mesure du signal du micro, quel sera le niveau sonore du violon comparée au saxophone
- Quel sera le niveau d'un éternuement à l'arrière de la salle

Paramètre	Valeur
Niveau sonore d'un violon	80 dBA
Niveau sonore d'un saxophone	90 dBA
Eternuement	90 dBA
Distance des spectateurs	20 mètres
Attenuation avec la distance	3dB / doublement de distance

On va dire que le micro enregistre le niveau sonore donné pour les instruments à 1m.

Pour le saxophone, qui n'est pas dans l'axe, et qui est plus loin, on prend

- angle donné par $atan(2)=63\degree$ cause une atténuation de 3db
- distance de 2m20 cause une perte de 7db

Le micro enregistre 10db de moins le saxophone. On aura donc les 2 instruments au même niveau.

Caractéristique statique

• Pour une sonde NTC de l'exercice 2.2, quelle serait la relation qui donne la température comme fonction de la résistance ?

Ceci a été fait au TP. Il faut résoudre le polynome.

Caractéristique statique

• Si on mesure la température avec cette sonde et une résistance pull-up, le tout alimenté par une tension de 3.3V, comment peut-on calculer la température à partir de la tension qu'on peut lire sur la sonde.

On a la tension sur la sonde qui est donnée par $U_{sonde}=3.3*R_{sonde}/(R_{up}+R_{sonde})$. On résoud ceci pour obtenir $R_{sonde}=f(U_{sonde})$. Avec la relation inverse ($T=f(R_{sonde})$), on peut calculer la température.

Entraînement à courant continu

Quel est le régime stationnaire de l'entraınement à courant continu ?

Il faut poser que les dérivées sont égales à 0, ce qui correspond à un régime stationnaire. On résoud ensuite les équations pour trouver la vitesse de l'entraînement.

3 Chapitre 3

Dérive

Un instrument fournit une mesure. La mise en forme de la mesure effectue une amplification qui est assurée par un amplificateur opérationel, dont le gain est défini par 2 résistances :

$$g = R2/R1$$

Les résistances voient leur valeur changer avec la température selon la relation :

$$R_{temp} = R_{nom}(1 + \alpha \cdot (T - T_a)), R_{nom}$$
 est la valeur à température ambiante T_a

Une fois mis en marche, l'appareil chauffe pour atteindre très lentement une température de fonctionnement T_f

- Quelle sera la valeur du gain une fois que l'appareil a chauffé si les 2 résistances on le même coefficient α de 100ppm ?
- Après une réparation, la résistance R1 est remplacée par une résistance de précision qui n'est pas influencée par la température (coefficient α très bas). Quelle sera la valeur du gain après l'échauffement ?

cf document "résistance Vishay.pdf"

La valeur des résistances va changer selon la relation

$$R_{temp} = R_{nom}(1 + \alpha \cdot (T - T_a))$$

donc le gain va changer selon la relation

$$g_T = rac{R1_{nom}(1 + lpha \cdot (T - T_a))}{R2_{nom}(1 + lpha \cdot (T - T_a))}$$

Ce qui peut s'écrire

$$g_T = grac{\left(1 + lpha_{R1}\cdot \left(T - T_a
ight)
ight)}{\left(1 + lpha_{R2}\cdot \left(T - T_a
ight)
ight)}$$

Si les coefficients α sont identiques, la variation est la même. Par contre si ils sont différents, le gain sera influencé.

Caution

Il est possible que l'influence de la température α annoncée soit un *maximum*, ce qui fait que dans les 2 cas on a une influence de la température

4 Chapitre 4

Voir les solutions dans la feuille de donnée.

5 Chapitre 5

Mesures de position

- 1. Calculez l'effet d'une résistance de charge sur un potentiomètre (schéma \$5.4). Trouvez l'erreur maximum sur la plage de fonctionnement.
- 2. Pour le capteur capacitif du croquis du §5.7, on mesure le courant induit sur la partie mobile qui est connectée à la masse avec une résistance.
- Que va-t-on mesurer comme signal?
- Comment déduire la position X de cette mesure ?
- 3. Peut-on obtenir la position d'un arbre avec les valeurs instantannées fournies par un resolver ?
- 1. Effet de charge. La valeur de ho qui cause l'erreur maximale est assez complexe à évaluer.
 - 1. Il faut l'expression linéaire $U_{lin} =
 ho \cdot U$
 - 2. L'expression avec la résistance de charge $U_{load}=rac{R_c U
 ho}{R_c + R_v
 ho R_v
 ho^2}$
 - 3. On dérive l'expression $U_{diff} = U_{lin} U_{load}$
 - 4. On cherche la valeur de ρ qui annule la dérivée.
 - 5. Pour Rp=1kohm, Rc=2kohm, on trouve l'erreur max à ho=0.678
- 2. Capteur capacitif
 - 1. On mesure une tension alternative sur la résistance qui l'image du courant
 - 2. On cherche l'expression du courant comme fonction de x. Si la tension sur la résistance de mesure est faible, ceci revient à trouver le courant dans la capacité comme fonction de la tension d'excitation. De $Z_c=\frac{1}{j\omega C}$, on déduit $I=U/C=Uj\omega C$. Avec $C=\epsilon_0\frac{Sc}{x}$ on trouve $I=Uj\omega\epsilon_0\frac{Sc}{x}$.

3. Position d'un arbre : On ne peut pas résoudre n'importe quel angle.

- 1. Lorsque l'excitation est faible, le bruit sera important
- 2. Il y a plusieurs angles qui correspondent aux valeurs observées.