Real Analysis

Problem Set 8

August 30, 2021

Assume that $\emptyset \subseteq \mathbb{R}$ is connected.

1 State true or false:

- 1. $S := \{(x_n) \in \mathbb{Q}^{\mathbb{N}} : \lim x_n = 0\}$ is countable.
- 2. $S \coloneqq \left\{ (x_n) \in \mathbb{R}^{\mathbb{N}} : x_n(x_n 1) = 0 \, \forall \, n \in \mathbb{N} \right\}$ is countable.
- 3. One can find a nonempty set S such that there is a surjection $f: S \rightarrow 2^S$.
- 4. Let $A_1 \subseteq A_2 \subseteq \cdots$ be a countable collection of countable sets. Then $\bigcap_{n \in \mathbb{N}} (\mathbb{R} \setminus A_n)$ is uncountable.
- 5. Let $A_1 \supseteq A_2 \supseteq \cdots$ be a countable collection of uncountable sets. Then $\bigcap_{n \in \mathbb{N}} A_n$ is uncountable.
- 6. For any $X \subseteq \mathbb{R}$ we define $\mathcal{T}(X)$ to be the collection of all open sets in X, i.e., all $S \subseteq X$ such that S is open in X. Then $\mathcal{T}(X) \subseteq \mathcal{T}(\mathbb{R}) \forall X \subseteq \mathbb{R}$.
- 7. For any $X \subseteq \mathbb{R}$ we define $\mathcal{T}(X)$ to be the collection of all open sets in X, i.e., all $S \subseteq X$ such that S is open in X.

If $X \subseteq \mathbb{R}$ is such that $\mathcal{T}(X) \subseteq \mathcal{T}(\mathbb{R})$ then $X \in \mathcal{T}(\mathbb{R})$.

8. For any $X \subseteq \mathbb{R}$ we define $\mathcal{T}(X)$ to be the collection of all open sets in X, i.e., all $S \subseteq X$ such that S is open in X.

If $X \subseteq \mathbb{R}$ is finite, then $\mathcal{T}(X) = 2^X$.

- 9. Let $A \subseteq \mathbb{R}$ be such that A^o is connected. Then A is connected.
- 10. For any $X \subseteq \mathbb{R}$, $X^{o} = (\overline{X})^{o}$.

2 Choose the correct options

- 1. Which of the following have non-empty interior in \mathbb{R} ?
 - (a) $\mathbb{R} \setminus \mathbb{Q}$
 - (b) $\{x \in \mathbb{R} : \sin(x) = 1\}$
 - (c) $\{b \in \mathbb{R} : x^2 + bx + 1 = 0 \text{ has distinct roots in } \mathbb{R}\}\$
 - (d) Q

- 2. How many bijective maps $f: \mathbb{N} \to \mathbb{N}$ are there such that $\sum_{n=1}^{\infty} \frac{f(n)}{n^2} \in \mathbb{R}$?
 - (a) Zero.
 - (b) Exactly one.
 - (c) More than one but finitely many.
 - (d) Infinitely many.
- 3. Evaluate $\lim_{n\to\infty} \prod_{k=2}^{n} \left(1 \frac{1}{k^2}\right)$.
 - (a) $\frac{1}{2}$.
 - (b) $\frac{1}{4}$.
 - (c) $\frac{3}{4}$.
 - (d) 1.
- 4. (a_n) is a sequence of positive reals such that $l := \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$. Which of the following is/are true?
 - (a) $l = 1 \implies \lim a_n = 1$.
 - (b) $l = 1 \implies \lim a_n = 0$.
 - (c) $l < 1 \implies \lim a_n = 1$.
 - (d) $l = 1 \implies \lim a_n = 0$.
- 5. Define a sequence (s_n) inductively by $s_1 := a > 0$ and $s_{n+1} := \sqrt{\frac{1+s_n^2}{1+a^2}} \forall n \ge 1$. Choose the correct options.
 - (a) $as_n^2 < 1 \forall n \implies (s_n) \uparrow \text{ and } \lim s_n = \frac{1}{\sqrt{a}}$.
 - (b) $as_n^2 < 1 \forall n \implies (s_n) \downarrow \text{ and } \lim s_n = \frac{1}{a}$.
 - (c) $as_n^2 > 1 \forall n \implies (s_n) \uparrow \text{ and } \lim s_n = \frac{1}{\sqrt{a}}$.
 - (d) $as_n^2 > 1 \forall n \implies (s_n) \downarrow \text{ and } \lim s_n = \frac{1}{a}$.
- 6. Let (a_n) be a real sequence such that that $S := \sum a_n \in \mathbb{R}$. Define $t_n := a_n + a_{n+1} + a_{n+2}$. Then $\left(\sum_{j=1}^n t_j\right)_{n \in \mathbb{N}}$
 - (a) converges to $3S a_1 a_2$.
 - (b) converges to $3S a_1 2a_2$.
 - (c) converges to $3S 2a_1 a_2$.
 - (d) diverges.
- 7. Let $s_n := \frac{(-1)^n}{2^n + 3}$, $t_n := \frac{(-1)^n}{4n 1}$. Then

- (a) $\sum s_n$ is absolutely convergent.
- (b) $\sum s_n$ is convergent.
- (c) $\sum t_n$ is absolutely convergent.
- (d) $\sum t_n$ is convergent.
- 8. Let $a = \lim_{n \to \infty} \left(\sum_{k=1}^n \frac{k}{n^2} \right)$, $b = \lim_{n \to \infty} \left(\sum_{k=1}^n \frac{1}{k+n} \right)$. Then
 - (a) a > b.
 - (b) b > a.
 - (c) $ab = \ln \sqrt{2}$.
 - (d) $\frac{a}{b} = \ln \sqrt{2}$.
- 9. Evaluate $\sum_{n=0}^{\infty} \frac{1}{(n+2)n!}.$
 - (a) e.
 - (b) 1.
 - (c) $\frac{e}{2}$.
 - (d) $\frac{1}{2}$.
- 10. Evaluate $\sum_{n=2}^{\infty} \frac{1}{n(n^2-1)}.$
 - (a) $\frac{1}{2}$.
 - (b) 1.
 - (c) $\frac{1}{4}$.
 - (d) $\frac{3}{2}$.