UM 204 : INTRODUCTION TO BASIC ANALYSIS SPRING 2022 HOMEWORK 2

Instructor: GAUTAM BHARALI Assigned: JANUARY 18, 2022

1. Let S be a non-empty set, and let \sim be an equivalence relation on S. Recall that, for any $s \in S$, the equivalence class of s—denoted by [s]—is defined as

$$[s] := \{x \in S : x \sim s\}.$$

You may assume without proof that the collection [s] is a set. Assuming furthermore (if required) that any auxiliary collections that you need to construct are sets (which **can be shown** rigorously by the axioms of Set Theory), show that \sim partitions S into disjoint equivalence classes.

2. Consider the following subsets of $\mathbb{N} \times \mathbb{N}$:

$$\begin{aligned} \operatorname{diag} &:= \{(m,m) : m \in \mathbb{N}\}, \\ \mathcal{P} &:= \{(m,n) \in \mathbb{N} \times \mathbb{N} : m \times m \leq n\}, \end{aligned}$$

where " \leq " denotes the usual order, and " \times " denotes Peano multiplication, on \mathbb{N} . Define:

for
$$m, n \in \mathbb{N}$$
, $m \leq n \iff (m, n) \in (\mathsf{diag} \cup \mathcal{P})$.

Is \leq and order on \mathbb{N} ? Give justifications.

3. Review: Recall (and study) the definition, in algebra, of a field.

The following anticipates material to be introduced in the lecture on January 19.

4. Consider the formalisation of the relation \leq on \mathbb{N} :

for
$$m, n \in \mathbb{N}, \ m \le n \iff \exists a \in \mathbb{N} : n = m + a.$$

Show that \leq is an order on \mathbb{N} .

5. Let (S, \leq) be an ordered set having the least upper bound property. Let $A \subseteq S$ be a non-empty bounded set. Show that A has a unique least upper bound.