Государственное образовательное учреждение высшего профессионального образования

"Московский государственный технический университет имени Н.Э.Баумана"

Дисциплина: Анализ алгоритмов

Лабораторная работа №1

Расстояние Левенштейна

Студент группы ИУ7-54Б, Котов Никита

Содержание

B	веде	ние	3		
1	Ана	алитическая часть	4		
	1.1	Описание алгоритмов	4		
2	Koi	нструкторская часть	6		
	Разработка алгоритмов	6			
		2.1.1 Рекурсивный алгоритм Левенштейна	6		
		2.1.2 Матричный алгоритм вычисления расстояния Левенштейна	7		
		2.1.3 Матричный алгоритм вычисления расстояния Левенштейна	9		
	2.2	Выводы по конструкторскому разделу	11		
3	Tex	нологическая часть	12		
	3.1	Требования к программному обеспечению	12		
	3.2	Средства реализации	12		
	3.3 Структура программы				
	3.4	Листинг кода	13		
	3.5	Тестирование фунций	15		
3	Экспериментальная часть				
	4.1	Примеры работы	16		
	4.2	Тестирование времени работы функций	18		
За	аклю	рчение	20		

Введение

Расстояние Левенштейна определяет, сколько раз необходимо добавить/удалить/заменить символ, чтобы одну строку превратить в другую.

Впервые задачу упомянул в 1965 году советский математик Владимир Иосифович Левенштейн при изучении последовательностей[1]. Впоследствии более общую задачу для произвольного алфавита связали с его именем. Позже большой вклад в изучение вопроса внёс Дэн Гасфилд.

Расстояние Левенштейна может играть роль фильтра, заведомо отбрасывающего неприемлемые варианты, у которых значение функции больше некоторой заданной константы.

Так же существует понятие расстояния Дамерау-Левенштейна. Его определение аналогично расстоянию Левенштейна, но добавляется операция транспозиции (перестановки двух соседних символов).

Расстояние Левенштейна и его обобщения активно применяется:

- для исправления ошибок в слове[2] (в поисковых системах, базах данных, при вводе текста, при автоматическом распознавании отсканированного текста или речи);
- для сравнения текстовых файлов утилитой diff и ей подобными. Здесь роль «символов» играют строки, а роль «строк» файлы[3];
- в биоинформатике для сравнения генов, хромосом и белков[4].

В рамках выполнения работы необходимо решить следующие задачи:

- рассмотреть и изучить понятия расстояния Левенштейна и расстояния Дамерау-Левенштейна;
- реализовать два варианта алгоритма нахождения расстояния Левенштейна (рекурсивного и нерекурсивного вида);
- сравнить их временные характеристики экспериментально;
- реализовать алгоритм нахождения расстояния Дамерау-Левенштейна
- на основании проделанной работы сделать выводы.

1 Аналитическая часть

1.1 Описание алгоритмов

Рекурсивный алгоритм нахождения расстояния Левенштейна

Расстояние Левенштейна между двумя строками а и b может быть вычис лено по формуле $D(|a|,\,|b|),\,$ где $|a|\,$ означает длину строки $a;\,a[i]\,$ — i-ый символ строки $a\,$, функция $D(i,\,j)\,$ определена как:

$$D(i,j) = \begin{cases} 0 & \text{i} = 0, \text{j} = 0\\ i & \text{j} = 0, \text{i} > 0\\ j & \text{i} = 0, \text{j} > 0 \end{cases} \\ min \{ \\ D(i,j-1) + 1 \\ D(i-1,j) + 1 & \text{i} > 0, \text{j} > 0\\ D(i-1,j-1) + m(a[i],b[j]) \end{cases}$$

$$(1)$$

а функция m(a, b) определена как

$$m(a,b) = \begin{cases} 0 & \text{если a} = b\\ 1 & \text{иначе} \end{cases}$$
 (2)

Рекурсивный алгоритм реализует данную формулу. Функция D составлена из следующих соображений:

- 1. для перевода из пустой строки в пустую требуется ноль операций;
- 2. для перевода из пустой строки в строку а требуется |а| операций, аналогично, для перевода из строки а в пустую требуется |а| операций;
- 3. для перевода из строки а в строку b требуется выполнить последовательно некоторое кол-во операций (удаление, вставка, замена) в некоторой последовательности. Как можно показать сравнением, последовательность проведения любых двух операций можно поменять, и, как следствие, порядок проведения операций не имеет никакого значения. Тогда цена преобразования из строки а в строку b может быть выражена как (полагая, что а', b' строки а и b без последнего символа соответственно):
 - сумма цены преобразования строки а в b и цены проведения операции удаления, которая необходима для преобразования а' в а ;
 - сумма цены преобразования строки а в b и цены проведения операции вставки, которая необходима для преобразования b' в b ;
 - сумма цены преобразования из а' в b' и операции замены, предполагая, что а и b оканчиваются разные символы;
 - цена преобразования из а' в b', предполагая, что а и b оканчиваются на один и тот же символ.

Очевидно, что минимальной ценой преобразования будет минимальное значение этих вариантов. 4

Алгоритм Вагнера-Фишера (построчный)

Прямая реализация приведенной выше формулы D может быть малоэффективна при больших i, j, τ . к. множество промежуточных значений D(i, j) вычисляются заново множество раз подряд. Для оптимизации нахождения расстояния Левенштейна можно использовать матрицу в целях хранения соответствующих промежуточных значений. В таком случае алгоритм представляет собой построчное заполнение матрицы A[a], |b| значениями D(i, j).

Можно заметить, что при каждом заполнении новой строки значения предыдущей становятся ненужными. Поэтому можно провести оптимизацию по памяти и использовать дополнительно только одномерный массив размером |b|. Такой вариант алгоритма называется построчным и именно он реализован в данной работе в качестве нерекурсивного.

Нахождение расстояния Дамерау-Левенштейна

Расстояние Дамерау-Левенштейна может быть найдено по рекурсивной формуле $d_{a,b}(|a|,|b|)$, где $d_{a,b}(i,j)$ задана как

$$d_{\mathbf{a},\mathbf{b}}(i,j) = \begin{cases} \max(i,j) & \text{если } \min(\mathbf{i},\mathbf{j}) = 0, \\ \min\{ \\ d_{\mathbf{a},\mathbf{b}}(i,j-1) + 1 \\ d_{\mathbf{a},\mathbf{b}}(i-1,j) + 1 \\ d_{\mathbf{a},\mathbf{b}}(i-1,j-1) + m(a[i],b[j]) \\ M_{\mathbf{a},\mathbf{b}}(i,j) \\ \} \end{cases}$$
 иначе (3)

где $M_{a,b}(i, j)$ задается как

$$M_{\mathrm{a,b}}(i,j) = \begin{cases} d_{\mathrm{a,b}}(i-2,j-2) + 1 & \text{если i,j} > 1; \ \mathrm{a[i]} = \mathrm{b[j-1]}; \ \mathrm{b[j]} = \mathrm{a[i-1]} \\ +\infty & \text{иначе} \end{cases}$$
 (4)

Формула выводится по тем же соображениям, что и формула (1). Т.к. прямое применение этой формулы неэффективно, то аналогично действиям из предыдущего пункта производится добавление матрицы для хранения промежуточных значений рекурсивной формулы и оптимизация по памяти. В таком случае необходимо хранить одномерный массив длиной $3 * \min(|\mathbf{a}|, |\mathbf{b}|)$.

2 Конструкторская часть

2.1 Разработка алгоритмов

2.1.1 Рекурсивный алгоритм вычисления расстояния Левенштейна

На рис. 1 представлена схема рекурсивного алгоритма нахождения расстояния Левенштейна

Рис. 1: Рекурсивный алгоритм вычисления расстояния Левенштейна

Алгоритм 1 Рекурсивный алгоритм вычисления расстояния Левенштейна dist(s,t)

$\begin{aligned} & \textbf{if } |s| = 0 \textbf{ then} \\ & \textbf{return } |t| \\ & \textbf{if } |t| = 0 \textbf{ then} \\ & \textbf{return } |s| \\ & val \leftarrow 1 \\ & \textbf{if } s[|s|] = t[|t|] \textbf{ then} \\ & val \leftarrow 0 \\ & val \leftarrow 0 \\ & \textbf{return } min \begin{cases} dist(s[1 \dots |s|-1],t) + 1 \\ dist(s,t[1 \dots |t|-1]) + 1 \\ dist(s[1 \dots |s|-1],t[1 \dots |t|-1]) + val \end{cases} \end{aligned}$

2.1.2 Матричный алгоритм вычисления расстояния Левенштейна

На рис. 2 и рис. 3 представлена схема матричного алгоритма нахождения расстояния Левенштейна

Рис. 2: Матричный алгоритм вычисления расстояния Левенштейна

Рис. 3: Матричный алгоритм вычисления расстояния Левенштейна

Алгоритм 2 Матричный алгоритм вычисления расстояния Левенштейна dist(s,t)

```
\begin{array}{l} mtx[0\dots n,0\dots m] \leftarrow 0 \\ \mbox{for ot } i = 0 \mbox{ us } [0 \dots m] \mbox{ do} \\ mtx[0,i] \leftarrow i \\ \mbox{for ot } i = 1 \mbox{ us } [1 \dots n] \mbox{ do} \\ mtx[i,0] \leftarrow i \\ \mbox{for ot } i = 0 \mbox{ us } [0 \dots n] \mbox{ do} \\ \mbox{for ot } j = 0 \mbox{ us } [0 \dots m] \mbox{ do} \\ \mbox{if } s[i] = t[j] \mbox{ then} \\ \mbox{ } mtx[i,j] = mtx[i-1,j-1] \\ \mbox{ else} \\ \mbox{ } mtx[i,j] = min(mtx[i,j-1]+1,mtx[i-1][j]+1,mtx[i-1,j-1]+1) \\ \mbox{ return } mtx[m,n] \end{array}
```

2.1.3 Матричный алгоритм вычисления расстояния Левенштейна

На рис. 4 и рис. 5 представлена схема матричного алгоритма нахождения расстояния Левенштейна

Рис. 4: Матричный алгоритм вычисления расстояния Дамерау-Левенштейна

Рис. 5: Матричный алгоритм вычисления расстояния Дамерау-Левенштейна

Алгоритм 3 Матричный алгоритм вычисления расстояния Дамерау-Левенштейна dist(s,t) $mtx[0\dots n,0\dots m]\leftarrow 0$ for or i=0 из $[0\dots m]$ do

$$mtx[0,i] \leftarrow i$$
 for от $i=1$ из $[1 \dots n]$ do $mtx[i,0] \leftarrow i$

for ot
$$i=0$$
 us $[0\dots n]$ do for ot $j=0$ us $[0\dots m]$ do if $s[i]=t[j]$ then
$$mtx[i,j]=mtx[i-1,j-1]$$
 else
$$mtx[i,j]=min(mtx[i,j-1]+1,mtx[i-1][j]+1,mtx[i-1,j-1]+1)$$
 if $i>1j>1s[i-1]=t[j-2]s[i-2]=t[j-1]$ then
$$mtx[i,j]=min(mtx[i,j],mtx[i-2,j-2]+1)$$

 $\textbf{return}\ mtx[m,n]$

2.2 Выводы по конструкторскому разделу

Были разработаны схемы трех алгоритмов вычисления расстояния Левенштейна и его модификации, алгоритма Дамерау-Левенштейна. Каждый из них был описан с помощью псевдокода.

3 Технологическая часть

3.1 Требования к программному обеспечению

Программа должна работать в одном из двух режимов: пользовательском и эксперементальном.

В пользовательском режиме должны быть реализованы:

- ввод исходных данных с клавиатуры
- вывод результата работы алгоритмов
- отсутствие аварийных ситуаций

Эксперементальный режим должен также предоставлять сведенья о затраченном на выполнение алгоритмов процессорном времени.

3.2 Средства реализации

В качестве языка программирования был выбран С++, так как он предоставляет широкие возможности для эффективной реализации алгоритмов.

3.3 Структура программы

levenshtain_dist.cpp - содержит реализацию алгоритмов поиска расстояния Левенштейна и Дамерау-Левенштейна

test.cpp - содержит тесты для реализованных алгоритмов

main.cpp - содержит интерфейс для взаимодействия с программой

3.4 Листинг кода

Листинг 1: Рекурсивный алгоритм вычисления расстояния Левенштейна

Листинг 2: Матричный алгоритм вычисления расстояния Левенштейна

```
int lev(std::string str1, std::string str2) {
    std::vector<int> a1(str2.length() + 1);
    std::vector<int> a2(str2.length() + 1);

    // initialisation of 1st row
    for (int i = 0; i < a1.size(); i++) a1[i] = i;

    for (int i = 1; i < str1.length() + 1; i++) {
        a2.at(0) = a1.at(0) + 1;
        for (int j = 1; j < str2.length() + 1; j++) {
            auto vertical = a1[j] + 1;
            auto horisontal = a2[j - 1] + 1;
            auto diagonal = a1[j - 1] + (str1[i - 1] == str2[j - 1]? 0: 1);
        a2[j] = std::min({ vertical, horisontal, diagonal });
    }
    std::copy(a2.begin(), a2.end(), a1.begin());
}

return a2[a2.size() - 1];
}</pre>
```

Листинг 3: Матричный алгоритм вычисления расстояния Дамерау-Левенштейна

```
int dam_lev_dist(std::string str1, std::string str2) {
   std::vector<int> a0(str2.length() + 1);
   std::vector<int> a1(str2.length() + 1);
   std::vector<int> a2(str2.length() + 1);
   // initialisation of 1st row
   for (int i = 0; i < a1.size(); i++) a1[i] = i;</pre>
   for (int i = 1; i < str1.length() + 1; i++) {</pre>
       a2[0] = a1[0] + 1;
       for (int j = 1; j < str2.length() + 1; j++) {</pre>
           auto eq = str1[i - 1] == str2[j - 1]? 0: 1;
           auto vertical = a1[j] + 1;
           auto horisontal = a2[j - 1] + 1;
           auto diagonal = a1[j - 1] + eq;
           a2[j] = std::min({ vertical, horisontal, diagonal });
           // swap
           if (i && j && str1[i - 1] == str2[j - 2]
           && str1[i - 2] == str2[j - 1]) {
              a2[j] = std::min(a2[j], a0[j - 2] + eq);
           }
       }
       a0 = a1;
       a1 = a2;
   }
   return a2[a2.size() - 1];
```

3.5 Тестирование фунций

В таблице 1, таблице 2, таблице 3 приведены результаты тестирования для рекурсивного, матричного алгоритмов вычисления расстояния Левенштейна и алгоритма нахождения расстояния Дамерау-Левенштейна соответственно.

Таблица 1: Рекурсивный алгоритм вычисления расстояния Левенштейна

Строка 1	Строка 2	Результат	Ожидаемый результат
kot	skat	2	2
abc	abc	0	0
kot	null	3	3
null	kot	3	3
null	null	0	0
abc	acb	2	$\overline{2}$

Таблица 2: Матричный алгоритм вычисления расстояния Левенштейна

Строка 1	Строка 2	Результат	Ожидаемый результат
kot	skat	2	2
abc	abc	0	0
kot	null	3	3
null	kot	3	3
null	null	0	0
abc	acb	2	$\overline{2}$

Таблица 3: Матричный алгоритм вычисления расстояния Дамерау-Левенштейна

Строка 1	Строка 2	Результат	Ожидаемый результат
kot	skat	2	2
abc	abc	0	0
kot	null	3	3
null	kot	3	3
null	null	0	0
abc	acb	1	1

4 Экспериментальная часть

4.1 Примеры работы

Входные данные:

Enter 1st string: **kot**Enter 2nd string: **skat**Run time tests? y /n? **n**

Выходные данные:

Levenshtein distance (Matrix)

Matrix:

- λ q w e

 λ 0 1 2 3

a 1 1 2 3

d 2 2 2 3

e 3 3 3 3

Result: 3

Levenshtein distance (Recursive)

Result: 3

Damerau-Levenshtein distance (Matrix)

Matrix:

- λ q w e

 λ 0 1 2 3

a 1 1 2 3

d 2 2 2 3

 $e \ 3 \ 3 \ 3 \ 3$

Result: 3

Входные данные:

Enter 1st string: kot

Enter 2nd string: **skat** Run time tests? y /n? **y**

Выходные данные:

Levenshtein distance (Matrix)

Time: 0.00001110s

Matrix:

- λ q w e

 λ 0 1 2 3

a 1 1 2 3

d 2 2 2 3

e 3 3 3 3

Result: 3

Levenshtein distance (Recursive)

Time: 0.00004630s

Result: 3

 ${\bf Damerau-Levenshtein~distance~(Matrix)}$

Time: 0.00001550s

Matrix:

- λ q w e

 λ 0 1 2 3

a 1 1 2 3

d 2 2 2 3

e 3 3 3 3

Result: 3

4.2 Тестирование времени работы функций

Для измерения времени использовалась функция clock(). Чтобы исключить случайные отклонения в измеренном времени, измерялось время работы 50 запусков функции и делилось на 50.

В таблице 4 представлены результаты замеров времени работы реализованных алгоритмов. На рис. 6 и рис. 7 изображены графики, позволяющие сравнить эффективность реализаций.

Таблица 4: Время работы реализаций алгоритмов

Строка 1	Строка 2	МДЛ	МЛ	РЛ
200	200	0.002242	0.002173	-
100	100	0.000867	0.000848	-
50	50	0.000545	0.000607	-
10	10	0.000045	0.000041	0.430871
8	8	0.000031	0.000028	0.017353
5	5	0.000018	0.000015	0.000689
50	2	0.000042	0.000048	0.001515
50	4	0.000123	0.000114	0.283745

Рис. 6: Сравнение матричных реализаций алгоритмов

Рис. 7: Сравнение рекурсивного и матричного алгоритма

Время работы матричных реализаций практически не отличается друг от друга, а рекурсивная реализация алгоритма нахождения реализации Левенштейна уже на строках длины 9 работает медленнее в 500 раз.

Заключение

В рамках лабораторной работы были реализованы и изучены рекурсивный алгоритм нахождения расстояния Левенштейна, матричная версия алгоритма и алгоритм нахождения расстония Дамерау-Левенштейна. Были произведены замеры времени работы реализованных алгоритмов и сравнена их эффективность по времени и памяти. Матричные алгоритмы оказались близки по эффективности, рекурсивный алгоритм же работает значительно медленнее матричных реализаций, уже при длинне строк больше 10 установить время работы не удалось.

Список литературы

- [1] В. И. Левенштейн. Двоичные коды с исправлением выпадений, вставок и замещений символов. Доклады Академий Наук СССР, 1965. 163.4:845-848.
- [2] Damareau, F., J., "A technique for computer detection and correction of spelling errors"
- [3] Ovicic, V., "Constrained edit distance algorithm and its application in Library Information Systems"
- [4] The Institute of Electronics, "Tree Edit Distance Problems: Algorithms and Applications to Bioinformatics"
- [5] Гасфилд. Строки, деревья и последовательности в алгоритмах. Информатика и вычислительная биология. Невский Диалект БВХ-Петербург, 2003.
- [6] US National Library of Medicine National Institutes of Health, "Secure approximation of edit distance on genomic data"