操作系统

Operating system

孔维强 大连理工大学

内容纲要

7.6 死锁检测

- 一、单资源实例条件下的死锁检测
- 二、多资源实例条件下的死锁检测
- 三、死锁检测算法的代价分析
- 四、死锁检测示例

一、单资源实例条件下的死锁检测

• 死锁检测

- 在系统运转过程中,定期进行死锁检测,判断是否有死锁发生
- 需要设计专门算法来完成死锁检测任务
- 从资源分配的角度开始考虑,死锁检测算法也要考虑单 资源实例与多资源实例这两种不同情况

一、单资源实例条件下的死锁检测

・基本方法

• 以资源分配图为基础,构建进程等待图

一、单资源实例条件下的死锁检测

・基本方法

- 以资源分配图为基础,构建进程等待图
- 实现等待图中的环路检测
- 定期启动对进程等待图的环路检测,如果发现图中有环,那么报告死锁发生

二、多资源实例条件下的死锁检测

基本数据结构(与银行家算法类似)

- Available:每类资源当前可用数量。是一个长为m的 数组
- Allocation:每个进程当前已分配资源数量.
- Request: n x m 的进程资源请求矩阵

 If Request [i][j] = k, then process Pi is requesting
 - k more instances of resource type Rj.

二、多资源实例条件下的死锁检测

复杂度: O(m*n^2), 其中m-资源类数, n:进程数

四、死锁检测示例

多实例死锁检测

 $R={A(7),B(2),C(6)};$

P={p0,p1,p2,p3,p4}

Alloc	Request	<u>Available</u>	Work	<u>Finish</u>
ABC	ABC	ABC	ABC	
P0: 0 1 0	000	000		
p1: 20 0				
p2: 3 0 3	000			
p3: 2 1 1	100			
p4: 0 0 2	002			

可以找到序列,使得进程能够按序完成

结论: 未死锁

本讲小结

- 死锁检测算法
- 死锁检测算法代价分析
- 死锁检测方法示例

练习

Consider the following snapshot of a system:

	Allocation	Max	Available
	ABCD	ABCD	ABCD
P_0	0012	0012	1520
P_1	1000	1750	
P_2	1354	2356	
P_3	0632	0652	
P_1	0014	0656	

- a. What is the content of the matrix Need?
- b. Is the system in a safe state?

c. If a request from process P_1 arrives for (0,4,2,0), can the request be granted immediately?

