Practice Problem 2.17 (solution page 184)

Assuming w=4, we can assign a numeric value to each possible hexadecimal digit, assuming either an unsigned or a two's-complement interpretation. Fill in the following table according to these interpretations by writing out the nonzero powers of 2 in the summations shown in Equations 2.1 and 2.3:

\vec{x}					
Hexadecimal	Binary	$B2U_4(\vec{x})$	$B2T_4(\vec{x})$		
OxA	[1010]	$2^3 + 2^1 = 10$	$-2^3 + 2^1 = -6$		
0x1	000	2 = 1	2 = 1		
0xB	_ 0 1	23+2+2=11	-2+2+2=-5		
0x2	Dolo	2'=2	21=2		
0x7	0111	2+2+2=5	2+2+2=5		
OxC	[100	23+2=12	-23+2=-4		

Hex digit	0	1	2	3	4	5	6	7
Decimal value	0	1	2	3	4	5	6	7
Binary value	0000	0001	0010	0011	0100	0101	0110	0111
Hex digit	8	9	A	В	C	D	E	F
Decimal value	8	9	10	11	12	13	14	15
Binary value	1000	1001	1010	1011	1100	1101	1110	1111

Figure 2.2 Hexadecimal notation. Each hex digit encodes one of 16 values.