Table of Contents

Activity	Page No
1.Python Programming	
1.1. Create a simple calculator in Python.	1-1
1.2 An electric power distribution company charges	
domestic customers as follows: Consumption unit	
Rate of charge:	
1.2.1. 0-200 Rs. 0.50 per unit	
1.2.2. 201-400 Rs. 0.65 per unit in excess of 200	
1.2.3. 401-600 Rs 0.80 per unit excess of 400	
1.2.4. 601 and above Rs 1.00per unit excess of	
600	
1.2.5. If the bill exceeds Rs. 400, then a	
surcharge of 15% will be charged, and the minimum	
bill should be Rs. 100/-	
Create a Python program based on the scenario	2 - 3
mentioned above.	
1.3. Create a Python program based on the numbers	4 - 4
using for loops.	
1.4. Write a program to find the number and sum of	
all integers greater than 100 and less than 200 that	5 - 5
are divisible by 7.	3-3
1.5. Write a recursive function to calculate the sum	
of numbers from 0 to 10	6 - 6
1.6. Write a Python program to reverse the digits of	
a given number and add them to the original. If the	
sum is not a palindrome, repeat this procedure.	7 – 7
1.7. Write a menu-driven program that performs the	
following operations on strings	
1.7.1. Check if the String is a Substring of	
Another String	
1.7.2. Count Occurrences of Character	
1.7.3. Replace a substring with another	
substring	8-10
1.7.4. Convert to Capital Letters	

1.8. Write a function to find the factorial of a number	11 - 11
but also store the factorials calculated in a	
dictionary.	
1.9. Perform various set operations	
1.9.1. Set Union	
1.9.2. Set Intersection	
1.9.3. Set Difference	12 - 12
1.10. Create a dictionary to store the name, roll_no,	12 12
and total_mark of N students. Now print the details	
of the student with the highest total_mark.	13 - 13
1.11. Write a Python program to copy the contents	14 - 14
of a file into another file, line by line.	
1.12. Use the OS module to perform	
1.12.1. Create a directory	
1.12.2. Directory Listing	
1.12.3. Search for ".py" files	
1.12.4. Remove a particular file	15 - 16
1.13 Create a simple banking application by using	17 - 19
inheritance	17 - 19
2. Database Operations	
2.1. Implementation of MySQL connection using Python	20 - 23
2.2. Implementation of SqLite3 connection using	24 - 26
Python	24-20
2.3. Write a program to implement CRUD operations	
using Python	27 - 29
3. Common Gateway Interface	
3.1. Create a Login form using CGI and display the input	
on a different page.	30 - 32
3.2. Create a registration form for MCA admission and	22 25
display the inserted data on the web page.	33 - 35
3.3. Create a MySQL database and perform INSERT,	
UPDATE, DESTROY, and SELECT (display) operations using the	
CGI interface.	36 - 40
4. Machine Learning Libraries in Python.	
4.1. NumPy	
4.1.1. Create a numpy array filled with all ones	
by defining its shape.	41 - 41
4.1.2. How do you remove rows from a Numpy	
array that contains non-numeric values?	42 - 42

4.1.3. Remove single-dimensional entries from	43 - 43
the shape of an array	
4.1.4. How do you check whether specified	
values are present in the NumPy array? 4.1.5. Write a program to get all 2D diagonals of	44 – 44
a 3D NumPy array?	45 - 46
4.1.6. Write a NumPy program to sort a given	
array of shape 2 along the first axis, last axis, and	
flattened array.	47 - 47
4.1.7. Write a NumPy program to create a	
structured array from a given student name, height,	
class, and data type. Now sort by class, then height if the	
classes are equal.	48 - 48
4.1.8. Write a NumPy program to sort a given	
complex array using the real part first, then the	
imaginary part.	49 - 49
4.1.9. Write a NumPy program to sort a given	
array by the n th column.	50 - 50
4.1.10. Calculate the sum of the diagonal	
elements of a NumPy array	51 -51
4.1.11. Write a program for Matrix	52 -52
Multiplication in NumPy 4.1.12. Multiply matrices of complex numbers	
using NumPy in Python	53 -53
4.1.13. Calculate the inner, outer, and cross	
products of matrices and vectors using NumPy.	54 - 55
4.1.14. Compute the covariance matrix of two	
given NumPy arrays.	56 - 56
4.1.15. Convert covariance matrix to correlation	
matrix using Python	57 - 57
4.1.16. Write a NumPy program to compute the	58 - 58
histogram of nums against the bins.	
4.1.17. Write a NumPy program to compute the	F0 F0
cross-correlation of two given arrays	59 - 59
4.1.18. Write a NumPy program to compute the	
mean, standard deviation, and variance of a given array	
along the second axis.	60 - 60
4.1.19. Write a NumPy program to compute the	
80th percentile for all elements in a given array along	
the second axis.	61 - 61

4.2. Pandas

4.2. Falluds	
4.2.1. Write a Pandas program to add, subtract,	62 - 63
multiply, and divide two Pandas Series.	02 - 03
4.2.2. Write a Pandas program to convert a	
dictionary to a Pandas series.	64 -64
4.2.3. Write a Pandas program to convert the	65 - 65
first column of a data frame into a Series	03-03
4.2.4. Write a Pandas program to convert a Series	
of lists into one Series.	66 - 66
4.2.5. Write a Pandas program to create a subset	67 - 67
of a given series based on value and condition	07 - 07
4.2.6. Write a Pandas program to get the items	
that are not common in two given series.	68 - 68
4.2.7. Write a Pandas program to calculate the	69 - 69
frequency counts of each unique value of a given series	07-07
4.2.8. Write a Pandas program to filter words	
from a given series that contain at least two vowelsu.	70 - 70
4.2.9. Write a Pandas program to find the index	
of the first occurrence of the smallest and largest values	
of a given series.	71 - 71
4.2.10. Write a Pandas program to get the first 3	5 0 5 0
rows of a given data frame.	72 - 72
4.2.11. Write a Pandas program to select the	
'name' and 'score' columns from a data frame.	73 - 73
4.2.12. Write a Pandas program to count the	54 54
number of rows and columns in a data frame.	74 – 74
4.2.13. Write a Pandas program to add one row	
to an existing data frame	75 -75
4.2.14. Write a Pandas program to write a data	76 76
frame to a CSV file using a tab separator.	76 – 76
4.2.15. Write a Pandas program to replace all the	
NaN values with Zeros in a column of a data frame.	
Write a Pandas program to drop a list of rows from a	77 - 78
specified data frame.	//-/0
4.2.16. Write a Pandas program to shuffle a given	
data frame row.	79 - 79
4.2.17. Write a Pandas program to find the row	80 - 80
where the value of a given column is maximum.	00 - 00

4.2.18. Write a Pandas program to check	
whether a given column is present in a data frame or	
not.	81 - 81
4.2.19. Write a Pandas program to append data	
to an empty data frame.	82 - 82
4.2.20. Write a Pandas program to convert	
continuous values of a column in a given data frame to	
categorical. Input: { 'Name': ['Alberto Franco','Gino	
Mcneill','Ryan Parkes', 'Eesha Hinton', 'Syed Wharton'],	
'Age': [18, 22, 40, 50, 80, 5] }	83 - 83
4.2.21. Write a Pandas program to create data	
frames that contain random values, missing values,	
datetime values, and mixed values.	84 - 86
4.2.22. Write a Pandas program to join the two	
given data frames along rows and assign all the data.	
student_data1: student_id name marks 0 s1 Danniella	
Fenton 200 1 s2 Ryder Storey 210 2 s3 Bryce Jensen 190	
3 s4 Ed Bernal 222 4 s5 Kwame Morin 199	
student_data2: student_id name marks 0 s4 Scarlette	
Fisher 201 1 s5 Carla Williamson 200 2 s6 Dante Morse	
198 3 s7 Kaiser William 219 4 s8 Madeeha Preston 201	87 - 88
4.2.23. Write a Pandas program to join the two	
given data frames along columns and assign all the data.	
(Use the same dataset as above.)	89 - 90
4.2.24. Write a Pandas program to join the two	
given data frames along rows and merge with another	
data frame along the common column id. exam_data:	
student_id exam_id 0 S1 23 1 S2 45 2 S3 12 3 S4 67 4 S5	
21 5 S7 55 6 S8 33 7 S9 14 8 S10 56 9 S11 83 10 S12 88	91 - 92
11 S13 12 (Add this data to the above dataset.)	91 - 92
4.2.25. Write a Pandas program to join the two	
data frames with matching records from both sides,	
where available. (Same dataset as above.)	93 - 94
4.3. Pandas Grouping	
4.3.1. Write a Pandas program to split the	
following data frame into groups based on school code. Also,	05 06
check the type of GroupBy object.	95 - 96
4.3.2. Write a Pandas program to split the	
following data frame by school code and get the mean,	
min, and max values of age for each school. (Use the	97 - 98
above dataset.)	

2 14 English school class name date_Of_Birth age height weight address S1 s001 V Alberto Franco 15/05/2002 12 173 35 street1 S2 s002 V Gino Mcneill 17/05/2002	
, ,	
12 192 32 street2 S3 s003 VI Ryan Parkes 16/02/1999	
13 186 33 street3 S4 s001 VI Eesha Hinton 25/09/1998	
13 167 30 street1 S5 s002 V Gino Mcneill 11/05/2002	
14 151 31 street2 S6 s004 VI David Parkes 15/09/1997	
12 159 32 street4 99	9 - 99
4.3.4. Write a Pandas program to split the	
following data frame into groups by school code and get	
the mean, min, and max values of age with customized	
	0 - 101
4.4. Matplotlib	
4.4.1. Visualize the following using the given dataset	
(alphabet_stock_data.csv), 4.4.1.1. Create a line plot of the historical	
stock prices of Alphabet Inc. between two	
specific dates	
4.4.1.2. Create a bar plot of the trading	2 - 103
volume of Alphabet Inc. stock between two	
	3 - 105
4.4.1.3. Create a stacked histogram plot	
with more bins of opening, closing, high, and low	
stock prices of Alphabet Inc. between two	
specific dates.	5 - 107
4.4.1.4. Create a scatter plot of the trading	3-10/
volume/stock prices of Alphabet Inc. stock	
between two specific dates.	7 - 108
4.4.2. Write a Python program to draw a line	
with a suitable label on the x-axis, y-axis, and	
title.	9 - 110

4.4.3. Write a Python program to draw line	
charts of the financial data of Alphabet Inc.	
between October 3, 2016, and October 7, 2016.	
Date, Open, High, Low, Close 10-03-	
16,774.25,776.065002,769.5,772.559998 10-	
04-	
16,776.030029,778.710022,772.890015,776.4	
29993 10-05-	
16,779.309998,782.070007,775.650024,776.4	
69971 10-06-	
16,779,780.47998,775.539978,776.859985 10-	
07-	
16,779.659973,779.659973,770.75,775.08001	
7	111 - 113
4.4.4. Write a Python program to draw a line	
with a suitable label on the x-axis, and y-axis and	
a title. Create the code snippet that gives the	
output shown in the following screenshot:	114 - 115
4.4.5. Write a Python program to display the grid	
and draw line charts of the closing value of	
Alphabet Inc. between October 3, 2016, and	
October 7, 2016. Customized the grid lines with	
linestyle -, width 0.5, and color blue. Date,Close	
03-10-16,772.559998 04-10-16,776.429993	
05-10-16,776.469971 06-10-16,776.859985	
07-10-16,775.080017	116 - 117
4.4.6. Write a Python program to create multiple	
plots as in the screenshot (use any method).	118 - 119
4.4.7. Write a Python program to create a bar	
plot from a data frame. Sample Data Frame: s a b	
c d e f 2 4,8,5,7,6 4 2,3,4,2,6 6 4,7,4,7,8 8 2,6,4,8,6	
10 2,4,3,3,2 Create the code snippet which gives	
the output shown in the following screenshot:	120 - 121
4.4.8. Write a Python program to create a stacked bar plot with	
error bars. Note: Use the bottom to stack the women's bars on	
top of the men's bars. Sample Data: Means (men) = (22, 30, 35,	
35, 26) Means (women) = (25, 32, 30, 35, 29) Men's Standard	
deviation = (4, 3, 4, 1, 5) Women's Standard deviation = (3, 5, 2, 3, 3) Create the code snippet that gives the output shown in the	
following screenshot:	122 - 124

4.4.9. Write a Python program to create stack bar	
plot and add labels to each section. Sample data:	
people = $('G1','G2','G3','G4','G5','G6','G7','G8')$	
segments = 4 # multi-dimensional data data = [[
3.40022085, 7.70632498, 6.4097905,	
10.51648577, 7.5330039, 7.1123587,	
12.77792868, 3.44773477], [11.24811149,	
5.03778215, 6.65808464, 12.32220677,	
7.45964195, 6.79685302, 7.24578743,	
3.69371847], [3.94253354, 4.74763549,	
11.73529246, 4.6465543, 12.9952182,	
4.63832778, 11.16849999, 8.56883433], [
4.24409799, 12.71746612, 11.3772169,	
9.00514257, 10.47084185, 10.97567589,	
3.98287652, 8.80552122]] Create the code	
snippet that gives the output shown in the	
following screenshot:	125 - 127
4.4.10. Write a Python program to add textures	
(black and white) to bars and wedges. Note: Use	
the bottom to stack the women's bars on top of	
the men's bars. Create the code snippet that	
gives the output shown in the following	
screenshot	128 - 129
5. Data Analytics using Python	120 127
5.1. Handle the given dataset (Data.csv) with	
adequate preprocessing steps mentioned and visualize the	
dataset with appropriate graphs.	
5.1.1. Handle Missing Data Values	
5.1.2. Encode the categorical data	
5.1.3. Scale your features	130 - 134
5.2. Using the given dataset (dirtydata.csv),	
5.2.1. Handle the data with empty cells	
(Use dropna() and fillna())	
5.2.2. Replace the empty cells using	
mean, median, and mode.	
5.2.3. Handle the data in the wrong	
format.	
5.2.4. Handle the wrong data from the	
dataset.	
5.2.5. Discover and remove duplicates.	135 - 138
•	

5.3. Create a cricketer dataset using a dictionary of lists, and create a new attribute 'Experience Category' using 'Age' as the binning factor. 5.4. car_age = [5, 7, 8, 7, 2, 17, 2, 9, 4, 11, 12, 9, 6] car_speed = [99,86,87,88,111,86,103,87,94,78,77,85,86]	139 - 140
Using the given dataset,	
5.4.1. Draw the line of linear regression	
5.4.2. Evaluate how well the data fit in	
linear regression.	
5.4.3. Predict the speed of a 10-year-old	
car.	444 440
5.5. Using the dataset (cars.csv),	141 - 143
5.5.1. Predict the CO2 emissions of a car	
with a weight of 2300 kg and volume of 1300	
cm3.	
5.5.2. Print the coefficient values of the	
	144 - 145
regression object.	111 110
5.6. Using the insurance dataset	
(insurance.csv) with adequate preprocessing	
steps,	
5.6.1. Visualize the correlation	
among variables using a heatmap.	
5.6.2. Create a linear regression	
model.	
5.6.3. Evaluate the model. (Find	
MSE and R_square.)	
5.6.4. Predict the charges for a	
person with an age of 30, a BMI of 32.00,	446 450
and who is a smoker.	146 - 152
5.7. Evaluate the dataset (User_Data.csv)	
and predict whether a user will purchase	
the company's product or not. (Use	
logistic regression.)	153 - 155
5.8. Use the Iris dataset to visualize a	
decision tree with a depth=4 and save the	
plot as a PNG file. Also, print the	
confusion matrix and generate the	486 480
classification report.	156 - 158
•	

5.9. Use the KNN algorithm to train the	
model and predict the future using the	
Iris dataset. Also, measure the accuracy	159 - 161
of the model.	139 - 101
5.10. Analyze the given dataset	
(gym_data.csv) using	
RandomForestRegressor and visualize	
the 'Effect of n_estimators.	162 - 164
5.11. Visualize a 3-dimensional cluster	
using the given dataset	
'Mall_Customers.csv', where	
no_of_clusters = 5.	165 - 167
5.12. Using the dataset provided (Online	200 207
Retail.xlsx),	
5.12.1. Split the data according to	
the region of the transaction.	
5.12.2. Build the models using the	
apriori algorithm.	
5.12.3. Develop the association	
rules.	
5.12.4. Find the most frequent	
items in any one of the regions.	168 - 169
	170 - 178

6. Project