## Aula 13

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

#### **Anuidades Diferidas**

- Na prática, para benefícios de aposentadoria, o plano é comprado anos antes do início dos recebimentos das anuidades.
  - > Anuidades diferidas são pagas passado um determinado prazo, diferentemente das anuidades imediatas.
  - caso o participante faleça antes do início do recebimento da anuidade (antes de aposentadoria) a seguradora não terá que pagar nada ao segurado (considerando que não existe reversão para pensão).

#### **Anuidades Diferidas**

- $\triangleright$  Pensemos no caso em que estamos no instante t=0 (pagamento antecipado).
  - $\triangleright$  O segurado irá receber a primeira parcela daqui a m anos.
  - > Suponha que o segurado tenha recebido 3 (b = 1u.m.) parcelas e tenha falecido.
  - > O valor de hoje gasto com este segurado será:



## **Anuidades Diferidas**

➤ Utilizando o resultado anterior, pode-se dizer que o valor gasto com esse segurado foi:

$$\ddot{a}_{\overline{m+2|}}$$

Considerando que o segurado tenha recebido t parcelas da anuidade e tenha falecido.

Então:

$$\ddot{a}_{m+t|}$$

- ➤ Variável aleatória tempo *T* , **discreta**.
- $\triangleright$  O gasto médio de com uma anuidade vitalícia paga para uma pessoa com idade x será então de (considerando que o usuário sobreviverá ao período de diferimento):
  - $\triangleright$  VPA de uma anuidade vitalícia diferida com pagamento Antecipado, b=1~u.~m.

$$E(\ddot{a}_{T+m+1|}) = \sum_{t=m}^{\infty} {}_{t}E_{x} = \sum_{t=m}^{\infty} v^{t} {}_{t}p_{x} = {}_{m|} \ddot{a}_{x}$$

$$E(\ddot{a}_{\overline{T+m+1|}}) = \sum_{t=m}^{\infty} v^t \,_t p_x = \sum_{t=0}^{\infty} v^{t+m} \,_{t+m} p_x$$

 $\triangleright$  Lembrando que  $_{t+m}p_x=_{m}p_x\times_{t}p_{x+m}$ 

$$E(\ddot{a}_{\overline{T+m+1|}}) = \sum_{t=0}^{\infty} v^t v^m \,_{m} p_x \,_{t} p_{m+x}$$

$$E(\ddot{a}_{\overline{T+m+1|}}) = v^m {}_{m} p_x \sum_{t=0}^{\infty} v^t {}_{t} p_{m+x}$$

$$E(\ddot{a}_{\overline{T+m+1|}}) = {}_{m}E_{x}\ddot{a}_{x+m}$$

$$m \ddot{a}_{x} = m E_{x} \ddot{a}_{x+m}$$

#### > Exemplo 11

Seja uma pessoa de 40 anos que queira comprar uma anuidade vitalícia diferida por 20 anos, que paga 1 u.m. com pagamento **antecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$_{20|}\ddot{a}_{40} = \sum_{t=20}^{\infty} v^t _t p_{40}$$

$$|a_{20}|\ddot{a}_{40} = |a_{20}E_{40}\ddot{a}_{60} = v^{20}|a_{20}p_{40}\left(\sum_{t=0}^{\infty} v^t|_t p_{60}\right)$$

#### > Exemplo 12

Seja uma pessoa de 40 anos que queira comprar uma anuidade vitalicia diferida por 20 anos, que paga 1 u.m. com pagamento **antecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$_{20}$$
| $\ddot{a}_{40}$  = 4,820667

# Anuidades vitalícias Diferidas, pagamento postecipado

$$E(a_{\overline{T+m|}}) = \sum_{t=m+1}^{\infty} v^{t} _{t} p_{x} = \sum_{t=1}^{\infty} v^{t+m} _{t+m} p_{x}$$

 $\triangleright$  Lembrando que  $_{t+m}p_x=_mp_x\times_tp_{x+m}$ 

$$E(a_{\overline{T+m|}}) = \sum_{t=1}^{\infty} v^t v^m \,_{m} p_{x \, t} p_{m+x}$$

$$E(a_{\overline{T+m|}}) = v^m {}_{m} p_x \sum_{t=1}^{\infty} v^t {}_{t} p_{m+x}$$

$$E(a_{\overline{T+m|}}) = {}_{m}E_{x}a_{x+m}$$

$$a_{m|}a_{x} = {}_{m}E_{x}a_{x+m}$$

ightharpoonup VPA de uma anuidade vitalícia diferida com pagamento Antecipado, b=1~u.m.

$$m \ddot{a}_x = m E_x \ddot{a}_{x+m}$$

 $\triangleright$  VPA de uma anuidade vitalícia diferida com pagamento Postecipado, b=1~u,m.

$$m \mid a_x = m E_x a_{x+m}$$

#### > Exemplo 12

Seja uma pessoa de 40 anos que queira comprar uma anuidade vitalícia diferida por 19 anos, que paga 1 u.m. com pagamento **Postecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento diferido.

$$\sum_{t=0}^{\infty} v^{t} _{t} p_{m+x}$$

$$_{19|} a_{40} = {}_{19} E_{40} a_{59} = v^{19} _{19} p_{40} \left( \sum_{t=1}^{\infty} v^{t} _{t} p_{59} \right)$$

Lembrando que  $_{t+m}p_{x}=_{m}p_{x}*_{t}p_{x+m}$ 

$$_{19|}a_{40} = v^{19} _{19}p_{40} \left( \sum_{t=0}^{\infty} v^{t+1} _{t+1}p_{59} \right) = v^{19} _{19}p_{40} \left( \sum_{t=0}^{\infty} v^{t} v^{1} _{1}p_{59} _{t}p_{59+1} \right)$$

$$_{19|}a_{40} = v^{19} _{19}p_{40}v^{1} _{1}p_{59}\left(\sum_{t=0}^{\infty} v^{t} _{t}p_{59+1}\right) = v^{20} _{19}p_{40} _{1}p_{40+19}\left(\sum_{t=0}^{\infty} v^{t} _{t}p_{59+1}\right)$$

$$a_{19|}a_{40} = v^{20} a_{19|}p_{40} \left(\sum_{t=0}^{\infty} v^t p_{59+1}\right) = a_{10|}\ddot{a}_{40}$$

#### > Exemplo 12

Seja uma pessoa de 40 anos que queira comprar uma anuidade vitalícia diferida por 19 anos, que paga 1 u.m. com pagamento **Postecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento diferido.

$$_{19|}a_{40} = \sum_{t=19+1}^{\infty} v^t _t p_{40} = \sum_{t=20}^{\infty} v^t _t p_{40} = _{20|} \ddot{a}_{40}$$

#### > Exemplo 13

Considerando que o valor presente pago as anuidade vitalícia diferidas por 20 anos, com pagamentos antecipados para uma pessoa de 40 anos seja igual a  $_{20|}\ddot{a}_{40}=4,820667$  então conclui-se que  $_{19|}a_{40}=4,820667$ .

```
|z_{0}|\ddot{a}_{40} = |z_{0}|E_{40}\ddot{a}_{60} = |v^{20}|z_{0}p_{40}\left(\sum_{t=0}^{\infty} v^{t}|_{t}p_{60}\right) = |z_{0}|a_{40}
            |z_{0}|\ddot{a}_{40} = \sum_{t=0}^{\infty} v^{t} |_{t} p_{40} = |z_{9}| a_{40}
                                                     n <- tamanho.tabua
n <- tamanho.tabua
                                                    v < -1/1.05
v < -1/1.05
                                                           <- cumprod(px[41:n])
                                                    рхх
         <-cumprod(px[41:n])
рхх
                                                               <-(v^20)*pxx[20]
n1
            <-length(pxx)
                                                    ext{pxx} <- c(1,cumprod(px[61:n]))
        <-pxx[20:n1]
рхх
                                                              <-length(pxx)
        <- (20:n1)
                                                              <- (0:(n-1))
    <- sum(fator.desconto^(t)*pxx)
bx
                                                                 <- E*sum(fator.desconto^(t)*pxx)
                                                    bx
```

 $\triangleright$  VPA de uma anuidade vitalícia diferida com pagamento Antecipado, b=1~u.m.

$$_{m|}\ddot{a}_{x} = {}_{m}E_{x}\ddot{a}_{x+m}$$

> VPA de uma anuidade vitalícia diferida com pagamento Postecipado, b = 1 u.m.

$$m \mid a_x = m E_x a_{x+m}$$

$$_{m+1|}\ddot{a}_{x}=_{m|}a_{x}$$

## **Anuidades Temporárias Diferidas**

- > Para o caso temporário a notação fica:
- > VPA de uma anuidade temporária por n anos, diferida por m anos com pagamento antecipado,  $b=1\ u.m.$

$$m|\ddot{a}_{x:\overline{n|}} = m E_x \ddot{a}_{x+m:\overline{n|}} = m E_x \sum_{t=0}^{n-1} v^t t p_{x+m}$$

> VPA de uma anuidade temporária por n anos, diferida por m anos com pagamento postecipado,  $b=1 \ u.m.$ 

$$a_{m|}a_{x:\bar{n}|} = {}_{m}E_{x}a_{x+m:\bar{n}|} = {}_{m}E_{x}\sum_{t=1}^{\infty} v^{t} {}_{t}p_{x+m}$$

## **Anuidades Temporárias Diferidas**

#### > Exemplo 14

Seja uma pessoa de 40 anos que queira comprar uma anuidade que paga 1 u.m. no período de 3 anos. No entanto essa anuidade é diferida por 3 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% a.a., Calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento diferido, antecipado e postecipado.

| x  | qx       | px       | lx       |
|----|----------|----------|----------|
| 35 | 0,000792 | 0,999208 | 978890,5 |
| 36 | 0,000794 | 0,999206 | 978115,2 |
| 37 | 0,000823 | 0,999177 | 977338,6 |
| 38 | 0,000872 | 0,999128 | 976534,2 |
| 39 | 0,000945 | 0,999055 | 975682,7 |
| 40 | 0,001043 | 0,998957 | 974760,7 |
| 41 | 0,001168 | 0,998832 | 973744   |
| 42 | 0,001322 | 0,998678 | 972606,7 |
| 43 | 0,001505 | 0,998495 | 971320,9 |
| 44 | 0,001715 | 0,998285 | 969859   |
| 45 | 0,001948 | 0,998052 | 968195,7 |
| 46 | 0,002198 | 0,997802 | 966309,7 |
| 47 | 0,002463 | 0,997537 | 964185,7 |
| 48 | 0,00274  | 0,99726  | 961810,9 |
| 49 | 0,003028 | 0,996972 | 959175,6 |
| 50 | 0,00333  | 0,99667  | 956271,2 |
| 51 | 0,003647 | 0,996353 | 953086,8 |
| 52 | 0,00398  | 0,99602  | 949610,9 |
| 53 | 0,004331 | 0,995669 | 945831,5 |
| 54 | 0,004698 | 0,995302 | 941735,1 |
| 55 | 0,005077 | 0,994923 | 937310,8 |

#### $\triangleright$ Pagamento Antecipado , b=1 u.m, m=3, i=0.05

| Х  | qx       | рх       | lx       |
|----|----------|----------|----------|
| 35 | 0,000792 | 0,999208 | 978890,5 |
| 36 | 0,000794 | 0,999206 | 978115,2 |
| 37 | 0,000823 | 0,999177 | 977338,6 |
| 38 | 0,000872 | 0,999128 | 976534,2 |
| 39 | 0,000945 | 0,999055 | 975682,7 |
| 40 | 0,001043 | 0,998957 | 974760,7 |
| 41 | 0,001168 | 0,998832 | 973744   |
| 42 | 0,001322 | 0,998678 | 972606,7 |
| 43 | 0,001505 | 0,998495 | 971320,9 |
| 44 | 0,001715 | 0,998285 | 969859   |
| 45 | 0,001948 | 0,998052 | 968195,7 |
| 46 | 0,002198 | 0,997802 | 966309,7 |
| 47 | 0,002463 | 0,997537 | 964185,7 |
| 48 | 0,00274  | 0,99726  | 961810,9 |
| 49 | 0,003028 | 0,996972 | 959175,6 |
| 50 | 0,00333  | 0,99667  | 956271,2 |
| 51 | 0,003647 | 0,996353 | 953086,8 |
| 52 | 0,00398  | 0,99602  | 949610,9 |
| 53 | 0,004331 | 0,995669 | 945831,5 |
| 54 | 0,004698 | 0,995302 | 941735,1 |
| 55 | 0,005077 | 0,994923 | 937310,8 |

$$_{3|\ddot{a}_{40:\overline{3}|} = m} E_{x} \ddot{a}_{x+m:\overline{n}|}$$

$$_{3|\ddot{a}_{40:\overline{3}|} = 3} E_{40} \ddot{a}_{43:\overline{3}|}$$

$$_{3|\ddot{a}_{40:\overline{3}|} = v^{3} {}_{3} p_{40} \sum_{t=0}^{3-1} v^{t} {}_{t} p_{43}$$

$$_{3|\ddot{a}_{40:\overline{3}|} = v^{3} {}_{3} p_{40} (1 + v p_{43} + v^{2} {}_{2} p_{43})$$

$$_{3|\ddot{a}_{40:\overline{3}|} = \left(\frac{1}{1,05}\right)^{3} p_{40} p_{41} p_{42} \left(1 + \left(\frac{1}{1,05}\right) p_{43} + \left(\frac{1}{1,05}\right)^{2} p_{43} p_{44}\right)$$

$$_{3|\ddot{a}_{40:\overline{3}|} = 2,457604$$

#### Exemplo 15

 $\blacktriangleright$  Pagamento Postecipado, b=1 u.m, m=3, i=0.05

| х  | qx       | рх       | lx       |
|----|----------|----------|----------|
| 35 | 0,000792 | 0,999208 | 978890,5 |
| 36 | 0,000794 | 0,999206 | 978115,2 |
| 37 | 0,000823 | 0,999177 | 977338,6 |
| 38 | 0,000872 | 0,999128 | 976534,2 |
| 39 | 0,000945 | 0,999055 | 975682,7 |
| 40 | 0,001043 | 0,998957 | 974760,7 |
| 41 | 0,001168 | 0,998832 | 973744   |
| 42 | 0,001322 | 0,998678 | 972606,7 |
| 43 | 0,001505 | 0,998495 | 971320,9 |
| 44 | 0,001715 | 0,998285 | 969859   |
| 45 | 0,001948 | 0,998052 | 968195,7 |
| 46 | 0,002198 | 0,997802 | 966309,7 |
| 47 | 0,002463 | 0,997537 | 964185,7 |
| 48 | 0,00274  | 0,99726  | 961810,9 |
| 49 | 0,003028 | 0,996972 | 959175,6 |
| 50 | 0,00333  | 0,99667  | 956271,2 |
| 51 | 0,003647 | 0,996353 | 953086,8 |
| 52 | 0,00398  | 0,99602  | 949610,9 |
| 53 | 0,004331 | 0,995669 | 945831,5 |
| 54 | 0,004698 | 0,995302 | 941735,1 |
| 55 | 0,005077 | 0,994923 | 937310,8 |



#### $\triangleright$ Pagamento Postecipado, b=1 u.m, m=3, i=0.05

| X  | qx       | рх       | lx       |
|----|----------|----------|----------|
| 35 | 0,000792 | 0,999208 | 978890,5 |
| 36 | 0,000794 | 0,999206 | 978115,2 |
| 37 | 0,000823 | 0,999177 | 977338,6 |
| 38 | 0,000872 | 0,999128 | 976534,2 |
| 39 | 0,000945 | 0,999055 | 975682,7 |
| 40 | 0,001043 | 0,998957 | 974760,7 |
| 41 | 0,001168 | 0,998832 | 973744   |
| 42 | 0,001322 | 0,998678 | 972606,7 |
| 43 | 0,001505 | 0,998495 | 971320,9 |
| 44 | 0,001715 | 0,998285 | 969859   |
| 45 | 0,001948 | 0,998052 | 968195,7 |
| 46 | 0,002198 | 0,997802 | 966309,7 |
| 47 | 0,002463 | 0,997537 | 964185,7 |
| 48 | 0,00274  | 0,99726  | 961810,9 |
| 49 | 0,003028 | 0,996972 | 959175,6 |
| 50 | 0,00333  | 0,99667  | 956271,2 |
| 51 | 0,003647 | 0,996353 | 953086,8 |
| 52 | 0,00398  | 0,99602  | 949610,9 |
| 53 | 0,004331 | 0,995669 | 945831,5 |
| 54 | 0,004698 | 0,995302 | 941735,1 |
| 55 | 0,005077 | 0,994923 | 937310,8 |

$$m|a_{x:\overline{n}}| = m E_x a_{x+m:\overline{n}}|$$

$$3|a_{40:\overline{3}}| = 3 E_{40} a_{43:\overline{3}}|$$

$$3|a_{40:\overline{3}}| = v^3 {}_3 p_{40} \sum_{t=1}^3 v^t {}_t p_{43}$$

$$3|a_{40:\overline{3}}| = v^3 {}_3 p_{40} (v p_{43} + v^2 {}_2 p_{43} + v^3 {}_3 p_{43})$$

$$3|a_{40:\overline{3}}| = \left(\frac{1}{1,05}\right)^3 p_{40} p_{41} p_{42} \left[\left(\frac{1}{1,05}\right) p_{43} + \left(\frac{1}{1,05}\right)^2 p_{43} p_{44} + \left(\frac{1}{1,05}\right)^3 p_{43} p_{44} p_{45}\right]$$

$$3|a_{40:\overline{3}}| = 0,8591533 \times 2,71444$$

 $a_{40:\overline{3}|} = 2,33212$