

Lasso and capture-recapture

Olivier Gimenez and Ian Renner

Introduction

What is this about?

- Explain variation in abundance and survival
- Capture-recapture models are often used
- Survival models with imperfect detection
- With technology, come many variables
- Often do not know which ones (not) to include

What are the issues?

Many, possibly correlated, covariates

Correlation \implies numerical instability

Many covariates \implies \searrow precision and predictability

What we usually do

Think hard about which covariates to consider Select covariates using:

- AIC or stepwise procedure
- DIC, SSVS, RJMCMC

This talk: shrink and select model coefficients

Theory

The reference - free book!

It all starts with the ridge regression

Maximize likelihood, penalize magnitude of coeff.

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmax} L(\boldsymbol{\beta}) \text{ subject to } \sum_{j=1}^p \beta_j^2 < c$$

It all starts with the ridge regression

Maximize likelihood, penalize magnitude of coeff.

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmax} \ \boldsymbol{L}(\boldsymbol{\beta}) \text{ subject to } \sum_{j=1}^{p} \beta_j^2 < c$$

It all starts with the ridge regression

Maximize likelihood, penalize magnitude of coeff.

$$\widehat{\beta} = \operatorname{argmax} L(\beta) \text{ subject to } \sum_{i=1}^{p} \beta_{j}^{2} < c$$

Lasso = Least Absolute Shrinkage and Selection Operator

Change the constraint: ℓ^2 vs. ℓ^1 norm

$$\widehat{oldsymbol{eta}} = \operatorname{argmax} \ \mathit{L}(oldsymbol{eta}) \ \operatorname{subject} \ \operatorname{to} \ \sum_{i=1}^p |eta_j| < c$$

Lasso vs. ridge regression, graphically

Lasso: maximizing penalized likelihood

$$\widehat{oldsymbol{eta}} = \operatorname{argmax} \ L(oldsymbol{eta}) \ \operatorname{subject} \ \operatorname{to} \ \sum_{j=1}^p |eta_j| < c$$

Constrained optimization not easy

Rewrite the problem with Lagrange multipliers

$$\widehat{oldsymbol{eta}} = \operatorname{argmax} \ L(oldsymbol{eta}) + \lambda \sum_{j=1}^p |eta_j|$$

Adaptive lasso penalty to achieve oracle properties

Lasso: maximizing penalized likelihood

$$\widehat{m{eta}} = \operatorname{argmax} \ L(m{eta}) \ \operatorname{subject} \ \operatorname{to} \ \sum_{j=1}^p |eta_j| < c$$

Constrained optimization not easy

Rewrite the problem with Lagrange multipliers

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmax} L(\boldsymbol{\beta}) + \lambda \sum_{j=1}^{p} |\beta_j|$$
; capture-recapt. lik.

Adaptive lasso penalty to achieve oracle properties

Capture-recapture likelihood

- 1s and 0s for detections and non-detections
- For example, animal i may be $h_i = 101$
- Denote ϕ^t survival prob between t and t+1 and p^t recapture prob at t
- Contribution of animal i to likelihood is $Pr(h_i) = \phi^1(1-p^2)\phi^2p^3$
- $\bullet \ \operatorname{logit}(\phi^t) = \beta_0 + \beta_1 x_1^t + \ldots + \beta_K x_K^t$
- Likelihood is $\prod_{i} Pr(h_i)$ for all animals i

How to choose the penalty term λ ?

- Usually, cross-validation techniques
- Build a grid of values for λ
- Repeat optimization for each value of the grid
- Pick λ corresponding to model with lowest BIC

Simulations

Setting: Capture-recapture model

- Sample size: 15 occasions with 15 new ind.
- Detection is 0.9, mean survival is 0.8
- Covariates: $X_1 \sim N(-0.6, \sigma = 1)$, $X_2 \sim N(0, \sigma = 1)$
- Apply Lasso; fit 4 models, compare with AIC
- Repeat 100 times

Simulation results

- Lasso selects correct model (X₁ only) 80%
- Comparable to variable selection using AIC
- Further simulations show similar results

Application

White storks wintering in Sahel

Capture-recapture data over 16 years

Rainfall was measured at 10 meteo stations in Sahel

Is adult white stork survival affected by rainfall?

$$logit(\phi^t) = \beta_0 + \beta_1 x_1^t + \ldots + \beta_{10} x_{10}^t$$

Do we need to consider 2¹⁰ candidate models?

Choosing the Lasso penalty using BIC

Exploring regularization path

Rainfall effect at all weather stations

Station	Estimate
Diourbel	7.47×10^{-5}
Gao	-2.99×10^{-5}
Kayes	1.3×10^{-4}
Kita	0.24
Maradi	-1.3×10^{-4}
Mopti	3.5×10^{-4}
Ouahigouya	-5.9×10^{-5}
Segou	1.7×10^{-5}
Tahoua	1.2×10^{-4}
Tombouctou	-2.3×10^{-4}

Conclusions and perspectives

Conclusions and perspectives

- From selecting variables to shrinking estimates
- Penalized likelihood easy to implement
- Ongoing work with Bayesian flavor

Questions