| Soient ze et ze deux nombres complexes,                   |
|-----------------------------------------------------------|
| On définit d(z1, z2) = 121-22   la distance entre z1 et 2 |
| Preuve                                                    |
| Voir Pe TD                                                |
| Prouve:                                                   |
| => / Supposons que lim zn = Z                             |
| on a: VneIN, 0 (  Re(zm) - Re(z)) (  zm-z                 |
| donc, d'après le théorème de Gendarme:                    |
| lim  Re(zn) - Re(z)   = 0                                 |
| alors: lim Re(zn) = Re(z)                                 |
| de la même manière:                                       |
| on a: VMEIN, O &   Im(Zm) - Im(Z)   &  Zm-Z               |
| donc, d'après le théorème de Gendarme:                    |
| $\lim_{n\to+\infty}  Im(z_n) - Im(z)  = 0$                |
| alors: lim Im(zn) = Im(z)                                 |
| = / Supposons que lim Re(zn) = Re(z) et lim Im(zm) = Im(z |
| on a, the in,  zm-z 2 = (Re(zm)-Re(z))2+ (Im(zm)-Im(z))2  |
| par passage à la limite lorsque n_s+00                    |
| $\lim_{n \to \infty}  z_n - z ^2 = 0$                     |
| alors: lim zn = z                                         |
| 1) →+*0 M                                                 |

|          | V              | cul concer<br>in produit | ou a un  | quotient 10      | estent |
|----------|----------------|--------------------------|----------|------------------|--------|
| valables | <b>S</b>       |                          |          |                  |        |
| Preave   |                |                          | 44       | -1               |        |
| Soient   | (am) et (bm)   | deux sui                 | es dans  | C avec .         |        |
|          | lim am = a     | et lin                   | bm= b    |                  |        |
| Somm     |                |                          |          |                  |        |
|          | -<br>∀E>0,∃n_E | IN, VM>n                 | la_      | a1/8             |        |
|          | 4€>0,3h2€      |                          |          |                  |        |
|          |                | , ,,                     | 2 1-11-  | 2                |        |
| Soit 2>  |                |                          |          |                  |        |
|          | : h = macc     | ,                        |          |                  |        |
| donc, po | un tout my     | , h                      |          |                  |        |
|          | (am+bm)- (0    | + b)   =  a,             | + bm-a.  | -6               |        |
|          |                | = 1(a                    | m-a)+(b  | <sub>м</sub> -ь) |        |
|          |                | \$10m                    | -a1+16   | -b               |        |
|          |                | \ <u>\xi</u>             | + &      |                  |        |
|          |                | 3 \                      |          |                  |        |
| donc     | VE>0,37€11     | v, ynzh                  | 1 (an+b, | )-(a+b)          | 16     |
|          | lim (an        |                          |          |                  |        |
| Différe  |                |                          |          |                  |        |
|          | √ε>0,∃η,ε      | IN Vas                   | 10       | 3/8              |        |
|          |                |                          |          |                  |        |
|          | 1870, Inge     | IN, AND W                | 1-0-     | 2                |        |
|          |                |                          |          |                  |        |

Soil 2>0 on pose: n = masc (n1, n2) donc, pour tout ny n 1(an-bn)-(a-b) = |an-bn-a+b| = | (am-a) + (b-bm) | 5 (am-a)+ | b-bm/ { | am-a | + | bm-b | \ \ \frac{\xi}{2} + \frac{\xi}{2} 1 8 donc: YE>0, 3 he IN, Ym>, h (a-bn)-(a-b) (E lim (an-bn) = a - b · Produit: on a: la suite (bm) converge vers b d'où. JM>0, VMEIN, 16m1 KM et on a. VE >0, In & IN, Ans no lan-al ( E VE>0, In & IN, Ym>, n2 16, -61 ( 2101 Soil E >0 on pose: n = masc (n1, n2) donc, pour tout my n |anbm-ab| = |anbm-abm+abm-ab| = 1 (an-a)bn + a(bn-b) { |an-a||bm|+ |a||bm-b|

|              | 6  am-a  M + 1a11 bm-b1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | 4 EM M + 101 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | \\ \frac{1}{2} + \frac{1}{2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | 4 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| donc VEX     | o, 3 nein, ym > n landy-ab 14E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| alors        | Pim ambm = ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · Quotient:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ona: VE>     | 0, 3 n, EIN, Ym > n, 10m-a/ ( EIDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| a'où (pour & | $= \frac{2 a }{ b } > 0) = \frac{3}{1} \frac{1}{2} \frac{1}{2$ |
| ()           | 161 / 02 / 02   04-6  161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sour E>0,    | =>  bm >  b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | - work (h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | $= \max(N_1, N_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | tout m>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ba           | $ \frac{ a }{ a } = \frac{1}{ a_m b }  a_m b - ab_m  $ $ = \frac{1}{ a_m b }  (a_m - a)b + a(b - b_m)  $ $ \frac{1}{ a_m b }  a_m - a b  + \frac{1}{ b_m b }  a  b - b_m $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | = 1 (an-a) b + a (b-bm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | ( 1   am-a  161 + 1   a  16-ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | ( 2 Elb1 + 2 lat Elb12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | \\ \(\frac{\epsilon}{2} + \frac{\epsilon}{2} \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| done. Ve     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MUIC: UE     | >0, 3 n E IN, Vm>n 1 an - a 1 < E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| alors: $\lim_{m \to +\infty} \frac{a_m}{b_m} = \frac{a}{b}$                                                                                                                                                                                                                |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Preuvi:                                                                                                                                                                                                                                                                    |  |
| => 1 Supposons que $z_m \xrightarrow[m \to +\infty]{} \infty$<br>$c \alpha d:  z_m  \xrightarrow[m \to +\infty]{} + \infty$                                                                                                                                                |  |
| on a: $\forall E > 0$ , $\exists N_1 \in  N $ , $\forall m > N_2$ $ z_m  > \frac{1}{\epsilon}$ $\exists N_2 \in  N $ , $\forall m > N_2$ $z_m \neq 0$ Soit $E > 0$                                                                                                         |  |
| denc, pour tout myn                                                                                                                                                                                                                                                        |  |
| $\left \frac{1}{Z_{n}}\right  = \frac{1}{ Z_{m} } \langle \varepsilon$ $donc: \forall \varepsilon > 0, \exists \eta \in IN, \forall n > \eta  \left \frac{1}{Z_{m}}\right  \langle \varepsilon$                                                                            |  |
| alors: $\frac{1}{2\pi} \xrightarrow{n \to +\infty} 0$ $\leftarrow 1$ Supposons que $\frac{1}{2\pi} \xrightarrow{n \to +\infty} 0$                                                                                                                                          |  |
| ena: $\forall A > 0$ , $\exists \eta \in IN$ , $\forall m > \eta$ $\left  \frac{1}{Zm} \right  \left\langle \frac{1}{A} \right $<br>$C = \tilde{\alpha} = d  \forall A > 0$ , $\exists \eta \in IN$ , $\forall m > \eta$ $\frac{1}{ Zm } \left\langle \frac{1}{A} \right $ |  |
| d'où $\forall A > 0, \exists \eta \in  N , \forall m > \eta$ $ z_m  > A$ $donc  z_m  \xrightarrow{m \to +\infty} + \infty$                                                                                                                                                 |  |
| olors $z_m \xrightarrow[m \to +\infty]{} \infty$ $ z_m \xrightarrow[m \to +\infty]{} cs et w_m \xrightarrow[m \to +\infty]{} a implique z_m + w_m \xrightarrow[m \to +\infty]{} \infty $                                                                                   |  |
| Bra: 2m -1+10 00 et wm -1+10 a                                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                                                                            |  |



| alo   | $Z_{m} \omega_{m} \xrightarrow{m-1+\omega} \omega_{m} = 0$ |
|-------|------------------------------------------------------------|
| Qu    | and Pa limite exciste, elle estunique.                     |
| Pre   | uri:                                                       |
| Soir  | fune fonction complexe                                     |
| Soil  | zoe C                                                      |
| Sup   | posons que fadmet l'et l'comme limites en zo tels          |
| l + 1 | 21                                                         |
| Soil  | E = 19-91 >0                                               |
|       | 8,>0, Yze C, 12-20/(S1 => 18(2)-P/(E                       |
|       | S2>0, YZEC, 12-20/ (82=>   B(Z)-P)/ (8                     |
|       | ose: $S = \min(S_1, S_2)$                                  |
|       | , pour tout ze C tel que 1220/ (8                          |
|       | 18_81 = 18-8(z)+8(z)-81                                    |
|       | (1P-B(Z) + 1B(Z)-P)                                        |
|       | ( 18(z)-P1+18(z)-P1                                        |
|       | 3+3>                                                       |
|       | 128                                                        |
|       | (2. 1P-P1                                                  |
| l'où  |                                                            |
| Donn  | 6-61 5                                                     |

| d'un produit  | u cas comp  | lexe.      |             |              | " eten |
|---------------|-------------|------------|-------------|--------------|--------|
| Paguares      |             |            |             |              |        |
| Scient f et g | deux for    | ctions def | inies au    | voisina      | e de a |
| lim<br>Z-1Z0  | g(z)=P e    | t lim go   | (z) = P1    |              | & av   |
| Somme.        |             |            |             |              |        |
| ona 48,0, 3   | 18, >0, YZE | C, 12-2    | 165 =       | 18(z)-e1     | ٤      |
| E,0<3V        | 8270, Yze ( | 1, 12-20   | 1482=>      | 19(z)-P1     | 2      |
| Soir 2 > 0    |             |            |             |              | 2      |
| on pose S=    |             | 1 1        |             |              |        |
| donce pourte  | out ze C t  | el que 12  | -20168      |              |        |
| 1(8+9         | )(z)-(P+P') | =   g(z)+g | (z) - f - P | 1            |        |
|               |             | =   (8(2)- | P)+(g(z)    | -111         |        |
|               |             | 618(z)-e   |             |              |        |
|               |             | ( = + =    |             |              |        |
|               |             | 48         |             |              |        |
| donc 48>0, =  | 1870, Yze ( | 12-201     | (8 => ) (   | (+g)(z) - (e | +01112 |
|               | lim (B+9)   |            |             |              |        |
| · Produit:    | 2-120 (0 0) |            |             |              |        |
| ona la foncti | on a come   | de une f   | imite O.    | nie en z     |        |
| d'ai anso     | , VzeC      | 10/21      | M           |              |        |
|               |             | 18(2)      |             |              |        |
|               |             |            |             |              |        |

```
VE>0, 351 > 0, 42 & C
                              12-20 (S1 => 18(2)-81 ( E
        Dash, ocaE, ocah.
                             |2-20| (82=> |g(z)-P') ( 2 21PI
 Sou E>0
 on pose S=min(S1,S2)
 donc, pour tout ze ( tel que 12-2016 s
         1(Bg)(z)- PP' | = | B(z)g(z)- PP' |
                      = 18(z)g(z)- Pg(z)+ Pg(z)- PP1
                     = 1 (B(z)-P)g(z) + P(g(z)-P') |
                      6 18(z)-P/19(z) + 1P/19(z)-P/
                     ( 18(2)-PIM+1P1)g(2)-P1
                     ( E M + 1P1 E
                     < = + E
      48>0, 35>0, 42EC, 12-20 (8 => 1 (88)(2)-PP' / E
               tim (Bg)(z) = PPI
· Raporteur:
      YE>0, 78,>0, YzeC, |z-z0 | (8,=> | B(z)-P) ( E1P')
      Vε>0, ∃Sg>0, YZ∈C, |z-201 (Sg => |g(z)-P'| < E|P'|2
d'où (pour & = 2181 >0) 35, >0, YZE ( 12-2/(52 => 19(2))>181)
Soit E>0
on pose S=min (61, S2)
donc, pour tout ze ( tel que 12-20/ LS
```

| 1.00   |           | -         | 13(2)1111 | 1 B(2                | P'_ Pg(z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|-----------|-----------|-----------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |           |           | 9/2/11/01 | 1 (Blz               | 1-8)81+8(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |           |           | 19(2)1101 | f(2)                 | P     P1 + 1   19110)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | 2 34 4    | - 4       | 19(2)1    | (z)-P1               | + 181 19(2) 1911 - 9(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 40        | - 4       | 1911      | 16,1                 | + 181 + 2   18(2)  P1   P1 P' 3(4)   + 18(2)  P1   18(2) - P1   2181   E1812   P1 2   P1 2 |
|        |           | 4         | 2 2       |                      | 18.12 4 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 195    | 13 (25)   | - 4       | ع ۔       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| donc   | 3E,023V   | So, Vz    | C  z_     | 2,148                | =>   ( \frac{\beta}{3})(2) - \frac{\beta}{21} \left\ \delta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| alor   |           | lim (B)   | (z) = P   |                      | 1(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0,00   |           | 1-120 (8) | 1 61      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.1    | lim f(z)= | P alma    | D         | ( <del>-</del> ) - 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |           | - acos    | z-7, 0    | (2)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Preus  |           | D         |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | lim f(z)  |           |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |           | 1>0, As   | E C 12.   | -2016                | n => 18(z)-P1(E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Soit 8 | >0        |           |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| sour s | out ze C  | tel que   | 12-20     | 147                  | B.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 1B(z)-    | F1 = 1(   | Q(z) - P) | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |           | = 18      | (Z) - P1  | 1047                 | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |           | 18        |           | - 3                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| lone   | 4E 50, 3h | >o, YZE   | C   Z-    | 20161                | 2 →   B(2) - E   LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| lors   |           |           |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2003   | 2→20      | 6         |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

lim f(z) = P = lim Re(f(z)) = Re(P) et lim Im(f(z)) = Im(P) Preuve ? =>/ Supposons que lim f(z) = P ona: 0 { | Re(B(z)) - Re(P) | 6 | B(z) - P | 0 ( | Im( f(z)) - Im(P) ) ( | f(z) - P) donc, d'après le théorème de Crendarme lim | Re(B(z)) - Re(P) | = 0 et lim | Im(B(z)) - Im(P) | = 0 lim Re(B(z)) = Re(P) et lim Im(B(z)) = Im(P) <= / Supposons que lim Re(f(z)) = Re(P) et lim Im(f(z)) = Im(P) 0 ( | f(z)- P | ( | Re(f(z)) - Re(P) | + | Im(f(z)) - Im(P) | donc, d'après le théorème de Gendarme lim 1-8(2)-11 = 0 lim &(z)=P Soit ECC un ensemble, zo E E et f: E -> C Jes Enoncés suivants sont équivalentes: 1/ YESO, 3 M(E, Zo) EIN, YZEC 12-Zo (M(E, Zo) => | f(Z)-f(Zo) (E 2/ Pour toute suite (2m) men de points de E convergeant vers zo, la suite (f(zm1) converge vers f(zo) 3/8/image réciproque de toutouvert de f(E) est un ouvert de E Preune 1/ => 2/ Supposons que YESO, FM(E,Zo) EIN, YZE ( 17-Zo) (M(E,Zo) => |f(z)-f(zo) | LE

| Sour (Za | n)mein   | e suite c             | guot ege  | 1            | 5                |            |
|----------|----------|-----------------------|-----------|--------------|------------------|------------|
| donc     | A5,>01   | HN(E1, 20)            | IN, VM    | N(E, 70)     | 12m-Zol          | 13         |
| on pre   | md E1=   | M(E, 70)              |           |              |                  |            |
| d'où:    | 3N(E,Zo  | EIN, Ym               | N(E,Z0)   | Z4-Z0        | < M(E,Zo) =>     | 8(2)-8(2)1 |
| donc     | A8>0,    | 1N(E,Zo)              | ,         | E120) 11/24  | 1-8(50) (8       | 154        |
| alors    | (B(2m1)  | est une               | suite co  | nver gente   | vers f(zo)       |            |
| 2/=>3    | Suppos   | ons que p             | our tout  | e suite (z   | m) now depo      | oints di E |
| Conver   | geant ve | nszo, Pa              | suite (8  | (Zm))mein Co | merge ver        | ) f(z0)    |
| Soit U   | un our   | ent de f(E            | )         |              |                  |            |
|          | se V= B  |                       |           | 51 0-01      |                  |            |
|          |          | Vestun                | ouvert de | E            |                  |            |
| Soil-2   |          |                       |           |              |                  |            |
|          | €(z0) €  | u                     |           |              |                  |            |
|          | 1        | B ( 8 (20             | ), r) c U |              |                  |            |
|          |          | me sente c            |           | ute wers z   | 0                |            |
| 1        |          | IN(EZ) EIN            | 1         |              |                  |            |
| 1        |          | Conve                 |           |              |                  |            |
| den c    | YEI 50.  | HIN (E', Z) GI        | N. Ymz    | 1) 18/2      | (20) - f(20) - f | ا اع       |
|          | '= r>0   | (E', Z <sub>o</sub> ) |           | (2,20)       |                  | L V        |
|          |          | ein, Yn               | . N'      | & (zm) G     | B( 8(20) , Y     | ) cu       |
|          | 3 NI)    |                       | (r120)    | D(7.16       | 1)               |            |
|          | ( N. 20) | EIN, Ym               | (1.50)    | 6(-1)        |                  |            |

∃N(E, Zo) € IN, YZME B(Zo, N(E, Zo)) B(Zn) € U 3 N(E,Zo) & IN, YZMEB(Zo, N(E,Zo)) ZME &-1(U) d'ou : B(Zo, N(E,Zo)) C 8-1(U) B(Z0, N(E,Z0)) CV d'où: Vest un voisinage de zo et puisque zo est un point or bitraire de V donc V est en voisinage de chaqu'en de ses points alors Vest un ouvert de E 3/=>1/ Supposons que l'image réciproque de tout ouvert de R(E) est un ouvert de E Soil E>0 on considère U=B(f(zo), E) dans f(E) donc V= f-1(U) est un ouvert de E Soit 20 E V d'où =r>0, B(zo,r) CV => B(B(zo,r)) CU Supposons que 12-20/ (M(E, Zo) => 2 & B(Zo, M(E, Zo)) on pose M(E, Z) = Y donce ze B(zorr) d'ou: f(z) & U => |f(z) - f(z0) | < & alons 4E>0, 3m(E,Z,) EIN, 4ZE C, 1Z-Zo (M(E,Z)) => | B(Z)-B(Z) (S)

Zes règles de dérivation (somme, produit, quotient) sont même que celles utilisées en malyse récle. Preuxe: Soit ZOE C Soient per g deux fonctions dérivables en zo · Somme: en a: lim (b+g)(z)-(b+g)(z) = lim b(z)+g(z)-(b(z)+g(z)) = lim ( B(2)-B(20) + B(2)-g(2)) d'où: lim (b+g)(z)-(b+g)(z) = b'(z0) + g'(z0) donc: f+g est dérivable en zo, et: (8+g)'(20) = f'(20)+g'(20) ona: lim (88)(2)-(88)(20) = lim B(2)9(2)-B(2)9(2)
z-z0 z-z0 z-z0 = lim f(z)g(z)-f(z0)g(z)+f(z0)g(z)-f(z)g(5) = lim (f(z)-f(z0))g(z)+f(z0)(g(z)-g(z0)) z-z0 z-z0 = lim ( ((z)-b(z0) g(z)+ f(z0) g(z)-g(z)) dow. lim (88)(2)-(84)(20) = 8'(20)8(20)+8(20)8'(20) donc: gg est dérivable en zo, et: (Bg)'(zo) = B'(zo)g(zo) + B(zo)g'(zo) ona:  $\lim_{z \to z_0} \frac{\left(\frac{\beta}{g}\right)^{(z)} - \left(\frac{\beta}{g}\right)^{(z_0)}}{z^{-z_0}} = \lim_{z \to z_0} \frac{g(z_0)}{g(z)} + 0,$ 

| B(z)g(zo) - B(zo)g(z) = lim B(z)g(zo)                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| = lim 1 B(z)g(z)-f(z)g(z)                                                                                                                                          |
| Z->20 8(2)8(20) Z-20<br>= lim 1 B(2)3(20) + B(20)3(20)                                                                                                             |
| 2-> 20 g(z)g(z) Z-Z0<br>+ f(z)g(z) - f(z)g(z)                                                                                                                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                             |
| $-\frac{\ell(z_o)(3(z)-3(z_o))}{2-z_o}$                                                                                                                            |
| = lim 1 (g(z)-g(z)) g(z)) = 2-120 g(z)g(z) (2-20) g(z)                                                                                                             |
| $-\frac{\beta(z_0)}{2} \frac{g(z_0)}{z-z_0} = \frac{1}{g(z_0)} \frac{\beta(z_0)}{g(z_0)} \frac{\beta(z_0)}{z-z_0} + \frac{\beta(z_0)}{2} \frac{\beta(z_0)}{z-z_0}$ |
| d'où: lim (3/3)(2)-(8/3)(20) = 8(20)9(20)-8(2)9(20) 2-20 2-20 (8(20))2                                                                                             |
| donc: E est dérivable en zo, et:                                                                                                                                   |
| $\frac{g}{g}(z_0) = \frac{g(z_0)g(z_0) - g(z_0)g'(z_0)}{(g(z_0))^2}$                                                                                               |
| (3(4))-                                                                                                                                                            |
| · Toute fonction dérivable sur C est continue                                                                                                                      |
| Premie                                                                                                                                                             |
| Soit gene Bonction dérivable sur C,                                                                                                                                |
| d'ou: pest dérivable en tout point de C,                                                                                                                           |
| Soitzo e C,                                                                                                                                                        |
| ona: Best dérivable en zo,                                                                                                                                         |
| de plus: lim (b(z)-b(z0)) = lim b(z)-b(z0) (z-z0)                                                                                                                  |
|                                                                                                                                                                    |
| = f'(zo) (zo - zo)                                                                                                                                                 |
|                                                                                                                                                                    |

| Jois: g est      | e est Bo | euse  |            |          |        |                      |
|------------------|----------|-------|------------|----------|--------|----------------------|
| Preuve ?         |          |       |            |          |        |                      |
| on considère     | Pa Bond  | ten   | B: 0       | <u> </u> | >      | C                    |
|                  |          |       | - 2        | -        | ->     | 7                    |
| ona. Best co     | ntinue   | Sun   | C          |          |        |                      |
| d'autre part:    |          |       |            |          | 100    |                      |
| Soit zo e C,     |          |       |            |          |        |                      |
| on a: Pin B(z    | 6+41-86  | 20) = | lim        | 20+      | B -    | \(\overline{\pi}_0\) |
| 8→0.             | E        | = 1   | h→o<br>lim | Z0+      | B-     | 20                   |
|                  |          | = 1   | h→0        | 民        | R      |                      |
|                  |          | R     | -0         | B        | Rel    | R)=0                 |
|                  |          | = 1   |            |          |        | R)=0                 |
| donc: finiest p  | no dã.:  |       | • †        |          |        |                      |
| Y Y              |          | 1     |            | -        |        |                      |
| alors: & n'est   | pas de   | uwal  | ore /      | مند      | Œ      |                      |
| C                |          |       |            |          |        |                      |
|                  |          |       |            | A B      | etg    | deux fonctions       |
| holomorphes se   | 1        |       |            |          |        |                      |
| 1/ B+g est holon |          |       |            |          |        |                      |
| 2/ bg est holomo | male a   | 10 2  | 1          |          | est to |                      |

3/ g est holomorphe sur UIA avec A= fze C/g(z)=0} 41 Si f est halomorphe au voisinage de zo, et g est holomor -phe au voisinage de  $\beta(z_0)$ , alors gof est holomorphe au voisinage de zo 5/ 80 règles usuelles de dérivation s'appliquent:  $(\ell+8)' = \ell+8'$ ;  $(\ell 8)' = \ell 9 + \ell 9'$ ;  $(2\ell)' = 2\ell'$ ;  $(\frac{1}{9})' = \frac{-9'}{92}$  $(\frac{\theta}{3})' = \theta' \theta - \theta \theta'$ ;  $(g \circ \theta)' = \theta' \cdot g' \circ \theta$ 1/on a: fet g sont holomorphe sur U d'où: f et g sont dérivables en tout point de U Soitz EU Dim (8+9)(2)-(8+9)(2) - Dim 8(2)+9(2)-8(2)-9(20) = Pim (B(z)-f(Z)+ g(z)-g(Z)) = f'(Zo)+g'(Zo) d'où: f+g est dérivable en zo donc: B+g est dérivable en tout point de 11 alors: f+g est holomorphe sur U 21 on a: fet g sont holomorphe sun U d'où: fet g sont dérivables en tout point de U Soit zo ∈ U 

= lim (B(z)-B(zo) g(z)+ B(zo) 3(z)-8(zo) ) = 6'(2)9(20)+8(20)9'(20) d'où. fg est dérivable en zo donc: fg est dérivable en tout point de 11 alors: fg est holomorphe sur U 3/on a: fetg southolomorphes sun U d'où: f et g sont dérivable en tout point de U Soit ZO E UNA,  $\lim_{z \to z_0} \frac{\left(\frac{\beta}{9}\right)(z) - \left(\frac{\beta}{9}\right)(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{\frac{\beta(z)}{9(z)} - \frac{\beta(z)}{9(z_0)}}{z - z_0}$ = lim 1 ( B(z)-B(Z)) g(Z) - B(Z) g(z)-B(Z) (Z-Z) = 1 (8(20))2 (8'(20)8(20)-8(20)8(20)) 81(20) 8(20) - 8(20) 81(20) d'ai: g est dérivable en zo donc: B est dérivable en tout point de UIA alors: & est holomorphe sur UNA