Table of Fourier Transform and Inverse Transforms:

Sr.No.	Name of the	Interval	Expression for the	Inverse Transform
	Transforms		Transform	
1	Fourier	- ∞ < χ	$F(\lambda) = \int_{-i\lambda u}^{\infty} f(u)e^{-i\lambda u}du$	$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\lambda) e^{i\lambda x} d\lambda$
		<∞	$\int_{-\infty}^{\infty} f(u)e^{-u} du$	Zit
2	Fourier cosine (for	-∞ < x <	$F_c(\lambda) = \int_{-\infty}^{\infty} f(u) \cos \lambda u du$	$f(x) = \frac{2}{\pi} \int_{-\pi}^{\infty} F_c(\lambda) \cos \lambda x du$
	even fut ⁿ)	∞	$F_c(\lambda) = \int_0^{\infty} f(u) \cos \lambda u du$	$\int (x) = \frac{1}{\pi} \int_0^{\pi} F_c(\lambda) \cos \lambda x du$
3	Fourier sine (for odd fut ⁿ)	-∞< x < ∞	$F_{s}(\lambda) = \int_{0}^{\infty} f(u) \sin \lambda u du$	$f(x) = \frac{2}{\pi} \int_{-\infty}^{\infty} F_s(\lambda) \sin \lambda x d\lambda$