COMBINADICS ADJACENCY MATRIX

CONOR McCoid

Université Laval

COMBINADICS

The combinatorial number system, or combinadics, is a way to enumerate all mcombinations. Each combination of m natural numbers is given a ranking from 0 to $\binom{n}{m} - 1$.

The ranking N(J) of an m-combination J = $\{c_1,\ldots,c_m\}$, arranged in lexicographical order, of natural numbers $\{0, \ldots, n-1\}$ is equal to

$$N(J) = {c_m \choose m} + \dots + {c_1 \choose 1}.$$

UNRANKING

Generating J from N(J), called unranking, can be achieved through a greedy algorithm using the same coefficients. Let c be the largest number in $\{0, \ldots, n-1\}$ such that $N(J) \geq {c \choose m}$. Then $c \in J$. Subtract ${c \choose m}$ from N(J) and repeat, now considering the numbers $\{0,\ldots,c-1\}$ and the (m-1)-combination $J \setminus \{c\}.$

IMPORTANT LEMMA

Lemma 1. For m-combination J

$$N(J^{\complement}) + N(J) = \binom{n}{m} - 1$$

ANTI-TRANSPOSE

The anti-transpose of a matrix A, denoted A^{τ} , is its reflection over its northeastto-southwest diagonal. That is, if $A \in \mathbb{R}^{m \times m}$ then $(A^{\tau})_{i,j} = (A)_{m-j+1,m-i+1}$, where i,j = $\{1,\ldots,m\}.$

ADJACENCY MATRIX

Definition 1 (Adjacency). Two combinations J and K with the same cardinality are said to be adjacent if they differ by one element. That is,

$$|K \cap J| = |K| - 1 = |J| - 1.$$

Let A_m^n be the adjacency matrix for mcombinations taken over n elements. The following lemma gives a recurrence relation to construct A_m^n .

Lemma 2. For n > m > 1

$$A_{m}^{n} = \begin{bmatrix} A_{m}^{n-1} & \tilde{A}_{m}^{n} \\ (\tilde{A}_{m}^{n})^{\top} & A_{m-1}^{n-1} \end{bmatrix},$$

$$\tilde{A}_{m}^{n} = \begin{bmatrix} \tilde{A}_{m}^{n-1} & 0_{\binom{n-2}{m-2} \times \binom{n-2}{m}} \\ I_{\binom{n-2}{m-1}} & \tilde{A}_{m-1}^{n-1} \end{bmatrix},$$

with starting conditions

$$A_1^n = \begin{bmatrix} 0 & 1 & \dots & 1 \\ 1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 0 \end{bmatrix}, \quad \tilde{A}_2^4 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$
 sets that do or do not contain $n-1$ or $n-1 \in \mathbb{R}$ and $n-1 \in$

PROOF

$$egin{array}{c|cccc} J_i & J_j \ \hline K_i & A_m^{n-1} & ilde{A}_m^n \ K_j & (ilde{A}_m^n)^ au & A_{m-1}^{n-1} \ \hline \end{array}$$

The combinations J_i and K_i are mcombinations over n-1 elements, so the upper left block is A_m^{n-1} :

$$(A_m^{n-1})_{N(J_i)+1,N(K_i)+1} = (A_m^n)_{N(J_i)+1,N(K_i)+1}.$$

Both J_i and K_i have the element n-1, so

$$N(J_j) = \binom{n-1}{m} + N(J_j \setminus \{n-1\}),$$

$$N(K_j) = \binom{n-1}{m} + N(K_j \setminus \{n-1\}).$$

This makes the bottom right block A_{m-1}^{n-1} .

Subdivide the combinations J_i and K_j into sets that do or do not contain n-1 or n-2.

$$n-1 \notin n-1 \in n-1 \in n-1 \in n-2 \notin \tilde{K}_i$$
 $n-2 \in \tilde{K}_j$
 \tilde{J}_j

 K_i and J_j differ by at least two elements, so the relevant block is a zero matrix. J_i and K_j are adjacent if and only if $\tilde{J}_i \setminus \{n-1\} = \tilde{K}_i \setminus \{n-2\}$. This makes the relevant block an identity matrix. J_j and K_j are adjacent if and only if $J_j \setminus \{n-1\}_{0,3}$ and $K_i \setminus \{n-2\}$ are adjacent. The relevant block is then a copy of \tilde{A}_{m-1}^{n-1} .

For the final block, consider a new set $J_k =$ $|\tilde{J}_i \setminus \{n-1\} \cup \{n-2\}$. Then \tilde{J}_i is adjacent to K_i if and only if J_k is adjacent to K_i . Thus,

$$(A_m^n)_{N(\tilde{J}_i)+1,N(\tilde{K}_i)+1} = (A_m^{n-1})_{N(J_k)+1,N(\tilde{K}_i)+1}.$$
0.4

The block is then a copy of \tilde{A}_m^{n-1} .

Since adjacency is bidirectional, A_m^n is symmetric, and the bottom left block is the transpose of the upper right block.

The following corollary means only half of all A_m^n need to be found.

Corollary 1.

$$(A_m^n)^{\tau} = A_{n-m}^n.$$

UNION OF ADJACENT COMBINATIONS

Define a matrix B_m^n that stores the values of $N(J \cup K)$ for when J and K are adjacent:

$$(B_m^n)_{N(J)+1,N(K)+1} = \begin{cases} N(J \cup K) + 1 & J,K \text{ adjacent} \\ 0 & \text{otherwise} \end{cases}$$

Lemma 3.

$$B_1^n = \begin{bmatrix} 0 & 1 & 2 & \dots & \binom{n}{2} + 1 \\ 0 & 3 & \dots & \binom{n}{2} + 2 \end{bmatrix}, \quad B_{n-1}^n = A_1^n.$$

Lemma 4.

$$B_{m}^{n} = \begin{bmatrix} B_{m}^{n-1} & \tilde{B}_{m}^{n} \\ (\tilde{B}_{m}^{n})^{\top} & B_{m-1}^{n-1} \end{bmatrix} + \begin{pmatrix} n-1 \\ m+1 \end{pmatrix} \begin{bmatrix} 0 & \tilde{A}_{m}^{n} \\ 0 & A_{m-1}^{n-1} \end{bmatrix},$$

$$\tilde{B}_{m}^{n} = \begin{bmatrix} \tilde{B}_{m}^{n-1} & 0 \\ \text{diag}(K) & \tilde{B}_{m-1}^{n-1} \end{bmatrix} - \begin{pmatrix} n-2 \\ m+1 \end{pmatrix} \begin{bmatrix} \tilde{A}_{m}^{n-1} & 0 \\ 0 & 0 \end{bmatrix}$$

where diag(K) is the diagonal matrix with entries equal to the row index.

INTERSECTIONS

Corollary 2. Let J and K be two adjacent mcombinations, then

$$(B_m^n)_{N(J)+1,N(K)+1}^{\tau} = \binom{n}{m} - N(J \cap K).$$
0.7

$$B_{m}^{n} = \begin{bmatrix} B_{m}^{n-1} & \tilde{B}_{m}^{n} \\ (\tilde{B}_{m}^{n})^{\top} & B_{m-1}^{n-1} \end{bmatrix} + \begin{pmatrix} n-1 \\ m+1 \end{pmatrix} \begin{bmatrix} 0 & \tilde{A}_{m}^{n} \\ 0 & A_{m-1}^{n-1} \end{bmatrix},$$

$$\tilde{B}_{m}^{n} = \begin{bmatrix} \tilde{B}_{m}^{n-1} & 0 \\ \operatorname{diag}(K) & \tilde{B}_{m-1}^{n-1} \end{bmatrix} - \begin{pmatrix} n-2 \\ m+1 \end{pmatrix} \begin{bmatrix} \tilde{A}_{m}^{n-1} & 0 \\ 0 & 0 \end{bmatrix},$$

$$= N(K^{\mathbf{C}} \cup J^{\mathbf{C}}) + 1$$

$$= N((J \cap K)^{\mathbf{C}}) + 1$$

$$= N((J \cap K)^{\mathbf{C}}) + 1$$

$$= N(J \cap K)$$

$$= (m) - N(J \cap K).$$

REFERENCES

- [1] C. Donnot, A. Genitrini, and Y. Herida, Unranking combinations lexicographically: an efficient new strategy compared with others, (2020).
- [3] F. S. Macaulay, Some properties of enumeration in the theory of modular systems, Proceedings of the London Mathematical Society, 2 (1927), pp. 531–555.
- [2] D. H. Lehmer, The machine tools of combinatorics, Applied combinatorial mathematics, (1964), pp. 5–31.
- [4] J. McCaffrey, Generating the mth lexicographical element of a mathematical combination, MSDN Library, 7 (2004).