MI-FME Cvičení 3

Tomáš Chvosta

Únor 2020

Cvičení 3a

Zadání:

Dokažte následující formuli:

$$\lceil \neg \lceil [r \lor s] \Rightarrow q \rceil \land \lceil [r \lor s] \Rightarrow q \rceil \rceil \Rightarrow \lceil [p \Rightarrow q] \land \neg [p \Rightarrow q] \rceil$$

Důkaz:

Jelikož se jedná o implikaci, předpokládáme, že platí levá strana pravidla tedy konjunkce $\neg[[r \lor s] \Rightarrow q]$ a $[[r \lor s] \Rightarrow q]]$. Tyto dva předpoklady představují \bot a jelikož z \bot plyne cokoliv, nezáleží na tom, co máme na pravé straně implikace a formule vždy platí.

Table 1: Důkazová tabulkaKrokPředpokládámeDokazujeme1. $\neg[[r \lor s] \Rightarrow q]$ $[p \Rightarrow q]$ $[[r \lor s] \Rightarrow q]] \dots \bot$ $\neg[p \Rightarrow q]$

Cvičení 3b

Zadání:

Dokažte následující formuli:

$$[\neg p \Rightarrow p] \Rightarrow p$$

Důkaz:

Jelikož se jedná o implikaci, je předpoklad $[\neg p \Rightarrow p]$ a pokusíme se dokázat p. Použijeme důkazní pravidlo z přednášky, které říká, že když chceme dokázat p, pak můžeme nahradit p za $\neg \neg p$ a následně použít pravidlo pro dokazování negací. Do seznamu předpokladů tedy přidáme $\neg p$ a pokusíme se najít spor.

Předpoklad $[\neg p \Rightarrow p]$ říká, že musí platit p jelikož máme v předpokladech $\neg p$, což je spor. Spor podle přednášky dokončí úspěšně jakýkoliv důkaz.

Table 2: Důkazová tabulka

Krok	Předpokládáme	Dokazujeme
1.	$[\neg p \Rightarrow p]$	p
2.	$\neg p$	$\neg \neg p \text{ tedy } p$
3.	$p \dots \perp$	

Cvičení 3c

Zadání:

Dokažte následující formuli:

$$\neg[p \Rightarrow q] \Rightarrow [q \Rightarrow p]$$

Důkaz:

Jelikož se jedná o implikaci, je $\neg[p\Rightarrow q]$ předpoklad. Pokusíme se tedy dokázat $[q\Rightarrow p]$. Použijeme stejný postup a předpokládáme, že platí q. Nyní by se mohlo hodit dokázat, že platí $[p\Rightarrow q]$. Jako lemma tedy zvolíme $[p\Rightarrow q]$ a díky předpokladu q je jasné, že toto lemma platí. Můžeme tedy přidat předpoklad $[p\Rightarrow q]$, což společně s předpokladem $\neg[p\Rightarrow q]$ vytvoří \bot , ze které plyne cokoliv.

Table 3: Důkazová tabulka

Krok	Předpokládáme	Dokazujeme
1.	$\neg[p \Rightarrow q]$	$[q \Rightarrow p]$
2.	q	p
3.		lemma $[p \Rightarrow q]$
4.	$[p \Rightarrow q] \dots \perp$	

Cvičení 3d

Zadání:

Dokažte následující formuli:

$$[p \Rightarrow [[q \lor r] \land \neg q \land \neg r]] \Rightarrow \neg p$$

Důkaz:

Nejprve předpokládejme $[p \Rightarrow [[q \lor r] \land \neg q \land \neg r]]$ a dokažme $\neg p$. To uděláme tak, že předpokládáme p a zkusíme najít spor. Pokud platí p, tak můžeme usoudit

 $[[q\vee r]\wedge\neg q\wedge\neg r]].$ Z předchozího předpokladu můžeme usoudit, že platí $\neg q, \neg r$ a také $[q\vee r].$ Pokud víme, že platí disjunkce $[q\vee r],$ pak postupujeme tak, že nejprve předpokládáme qa následně dokončíme důkaz a poté předpokládáme ra následně dokončíme důkaz. V obou dvou případech získáme \bot , čímž získáváme spor a důkaz je úspěšně dokončen.

Table	۸٠	Důko	70776	tabul	1120
Table	4.	I Jiika	zova.	ramu	IKA.

Krok	Předpokládáme	Dokazujeme
1.	$[p \Rightarrow [[q \lor r] \land \neg q \land \neg r]]$	$\neg p$
2.	p	hledáme spor
3.	$[[q \vee r] \wedge \neg q \wedge \neg r]]$	hledáme spor
4.	$ eg q \\ eg r \\ [q \lor r] $	hledáme spor
5a.	$q \ldots \perp$	hledáme spor
5b.	$r \dots oldsymbol{\perp}$	hledáme spor

Cvičení 3e

Zadání:

Dokažte následující formuli:

$$q \Rightarrow [[p \land q] \lor [\neg p \land q]]$$

Důkaz:

Na počátku předpokládáme, že platí q a dokážeme $[[p \land q] \lor [\neg p \land q]]$. To můžeme udělat například tak, že předpokládáme $\neg [p \land q]$ a dokážeme $[\neg p \land q]$ (nebo klidně obráceně, avšak toto je výhodnější a snazší). Při důkazu konjunkce je podtřeba dokázat $\neg p$ i q. Při dokazování q využijeme toho, že máme q v předpokladech a tedy je triviálně dokázáno. Při dokazování $\neg p$ předpokládáme, že platí p a najdeme spor. Ten jsme však již vytvořili přidáním p do předpokladů, poněvadž jistě platí $[p \land q]$ díky předpokladům p a q a tedy spolu s $\neg [p \land q]$ získáme \bot , čímž je důkaz úspěšně dokončen.

Table 5: Důkazová tabulka

Krok	Předpokládáme	Dokazujeme
1.	q	$[[p \land q] \lor [\neg p \land q]]$
2.	$\neg [p \land q]$	$[\neg p \land q]$
3.		q
4		$\neg p$
		q
5.	p	hledáme spor
6.		lemma $[p \land q]$
7.	$[p \wedge q] \dots \perp$	hledáme spor

Cvičení 3f

Zadání:

Dokažte následující formuli:

$$\neg [p \land q] \Rightarrow [\neg p \lor \neg q]$$

Důkaz:

Nejprve předpokládáme, že platí $\neg [p \land q]$ a dokážeme $[\neg p \lor \neg q]$. To dokážeme tak, že předpokládáme, že platí p a dokážeme $\neg q$. To dokážeme tak, že předpokládáme q a najdeme spor. Nyní díky předpokladům p a q můžeme usoudit, že platí lemma $[p \land q]$, což však společně s $\neg [p \land q]$ tvoří \bot . Podobně bychom mohli zvolit v druhém kroku q místo p a dostali bychom stejný výsledek.

Table 6: Důkazová tabulka

Krok	Předpokládáme	Dokazujeme
1.	$\neg [p \land q]$	$[\neg p \vee \neg q]$
2a.	p	$\neg q$
2b.	q	$\neg p$
3a.	q	hledáme spor
3b.	p	hledáme spor
4.		lemma $[p \land q]$
5.	$[p \wedge q] \dots \perp$	hledáme spor

Poznámky:

V tabulce buď zvolíme variantu a) nebo b), ale ne obojí!

Cvičení 3g

Zadání:

Dokažte následující formuli:

$$[[p \land q] \Rightarrow r] \Rightarrow [[p \Rightarrow r] \lor [q \Rightarrow r]]$$

Důkaz:

Na začátku tohoto důkazu předpokládejme, že platí $[[p \wedge q] \Rightarrow r]$ a dokažme $[[p \Rightarrow r] \vee [q \Rightarrow r]]$. V tomto kroku máme opět dvě volby jako v předchozí úloze, nyní budeme předpokládat, že platí $\neg [q \Rightarrow r]$ a pokusíme se dokázat $p \Rightarrow r$. To dokážeme tak, že předpokládáme p a dokazujeme r. Nyní se hodí využít faktu, že r je ekvivalentní s $\neg \neg r$. Následně můžeme předpokládat $\neg r$ a poté se pokusit najít spor. Aby platil předpoklad $[p \wedge q] \Rightarrow r$ a zároveň předpoklad $\neg r$, musí platit $\neg [p \wedge q]$. Stejně tak, aby platil předpoklad $\neg [q \Rightarrow r]$ a zároveň $\neg r$, musí platit q. Nyní díky předpokladům p a q můžeme dokázat lemma $[p \wedge q]$, což nám vytvoří krásný spor s předpokladem $\neg [p \wedge q]$ a vznikne \bot , což úspěšně dokončí důkaz.

Table 7: Důkazová tabulka			
Krok	Předpokládáme	Dokazujeme	
1.	$[p \land q] \Rightarrow r$	$p \Rightarrow r \lor [q \Rightarrow r]$	
2.	$\neg[q \Rightarrow r]$	$p \Rightarrow r$	
3.	p	r	
4.		$\neg \neg r$	
5.	$\neg r$	hledáme spor	
6.	$\neg [p \land q]$	hledáme spor	

hledáme spor

hledáme spor

Cvičení 3h

Zadání:

Dokažte následující formuli:

7.

8.

$$[p \land q] \Rightarrow \neg [\neg p \lor \neg q]$$

Důkaz:

Na začátku předpokládejme $p \wedge q$ a dokažme $\neg [\neg p \vee \neg q]$. Z předpokladu $p \wedge q$ můžeme usoudit p a q. V dalším kroku předpokládejme, že platí $\neg p \vee \neg q$ a pokusíme se najít spor. Pokud víme, že platí $\neg p \vee \neg q$, můžeme nejprve

předpokládat $\neg p$ a dokončit důkaz a poté předpokládat $\neg q$ a dokončit důkaz. V obou případech nalezneme spor a vznikne \bot , čímž je důkaz úspěšně dokončen.

Table 8: Důkazová tabulka

Krok	Předpokládáme	Dokazujeme
1.	$p \wedge q$	$\neg [\neg p \vee \neg q]$
2.	$egin{pmatrix} p & & & \\ q & & & \end{matrix}$	
3.	$\neg p \lor \neg q$	hledáme spor
4.	$\neg p \dots \bot$	hledáme spor
5.	$\neg q \ldots \bot$	hledáme spor

Cvičení 3i

Zadání:

Dokažte následující formuli:

$$[p \Rightarrow q] \lor [q \Rightarrow r]$$

Důkaz:

Jelikož máme dokázat disjunkci, můžeme postupovat tak, že předpokládáme, že levá část disjunkce neplatí a dokážeme pravou stranu. V tomto konkrétním případě to znamená předpokládat, že platí $\neg[p\Rightarrow q]$ a dokázat $q\Rightarrow r$. Dále pokračujeme předpokladem, že platí q a máme dokázat r. Díky předpokladu q si můžeme dokázat lemma $[p\Rightarrow q]$, díky platnosti q bude lemma vždy platit bez ohledu na to, jestli platí p. Nyní se v předpokladech ocitla formule $[p\Rightarrow q]$, která nám vytvoří spor s prvním předpokladem. Z toho plyne, že první část počáteční formule $[p\Rightarrow q]$ musí platit, čímž jsme důkaz úspěšně dokončili.

Table 9: Důkazová tabulka

Krok	Předpokládáme Dokazujeme	
1.	$\neg[p \Rightarrow q]$	$q \Rightarrow r$
2.	q	r
3.		lemma $p \Rightarrow q$
4.	$[p \Rightarrow q] \dots \perp$	r