Nirma University

Institute of Technology
Semester End Examination (RPR), May - 2019
B. Tech. in Computer Engineering, Semester-VII
IT724 Artificial Intelligence

Exam N	0	Supervisor's initial with date		
Time: 3	Hours	with date	Max	Marks: 100
Instruc	 Attempt all questions. Figures to the right in Draw neat sketches w 	dicate full marks.	state the assum	ptions.
Q:1 A CO-1, BL-2	Do as Directed. List all the issues in hill climen encounter them.	SECTION-I bing. Write down corrective	re measures to	[14] [04]
B CO-1, BL-1	Explain the importance of search space. Differentiate the terms breadth first search and depth first search.			
C CO-3, BL-3	Consider following board structure and Turn for tic-tac-toe problem. Board: a nine element vector. Consider 2[blank], 3[X] and 5[O]. Turn: integer indicating which move of the game is about to be played. Write main sub procedures to solve the above problem.		[06]	
C CO-1, BL-2	Define Artificial Intelligence. mundane task and expert ta	OR Classify AI task domain in sk.	to formal task,	[06]
Q:2 A CO-2, BL-4	Perform the A* algorithm on queue at each step. A 6 A 6 C A	following figure. Explicitly	y write down	[20] [06]
	17 S 5 B 13 6 E 7 D 2 C 6	F 3 6 0		

Page 1 of 4

Apply the Constraint satisfaction procedure for solving following [08] CO-2, BL-6 cryptarithmatic problem -

Apply the Constraint satisfaction procedure for solving following [08] OR CO-2, BL-6 cryptarithmatic problem -

> DONALD GERALD ROBERT

- You are given two jugs, a 4-gallon one and a 3-gallon one. Neither has [06] CO-3, BL-3 any measuring markers on it. There is a pump that can be used to fill the jugs with water. How can you get exactly two gallons of water into 4-gallon jug? Define the state space first and solve the prolem.
- Q: 3 Answer the following questions Analyze 8-puzzle problem with respect to seven problem [08] [16] CO-3, BL-4 characteristics.
- For each of the following problems, define only heuristic function in CO-1, BL-5 a precise way: 1) Blocks world problem

 - 2) Missionaries and cannibals problem

SECTION-II

0:4 Do as Directed:

[14]

What is the basis of the resolution? Assume the following facts: CO-1, BL-3

[04]

- i) If a person is happy then he is either rich or saint. ii) It is necessary to be happy for being healthy.
- iii) John is healthy.
- iv) John is not saint.

Convert each of the statement in predicate logic and use resolution to prove or disprove that "John is rich".

B Critically discuss the following terms in the context of Uncertainty [04]

- (i) Statistical reasoning
- (ii) Symbolic reasoning

C Draw and explain Architecture of a typical Expert System with functionalities of each module. [06]

Q:5 Do as Directed

[20]

A Consider the following game tree in which static scores are all from [10] the first player's point of view:

- (1) Suppose the first player is a maximizing player. What move should he choose?
- (2) Use alpha-beta pruning to show that which nodes need not to be examined.

OR

CO-2, BL-5 Consider an alarm system installed in a house that can be triggered [10] by three events, namely earthquake, burglary, and tornado. This situation can be modeled with the help of Bayesian network as shown in following figure and table:

Find Out:

- 1) Joint probability of all the events.
- 2) What is the probability that it is an earthquake, given the alarm is ringing?
- 3) What is the probability that it is an earthquake, given that there is a tornado?

P(E) = 0.4 P(B) = 0.7

E	P(T)
T	0.8
F	0.5

E (Earthquake	B (Burglary)	T (Tornado)	P(A) Alarm
T	· T	T	1.0
T	T	F	0.9
T	F	T	0.95
T	F	F	0.85
F	Т	T	0.89
F	T	F	0.7
F	F	T	0.87
F	F	F	0.3

B Briefly describe the phases that are needed to understand natural [05] CO-2, BL-2 language processing.

C Mention the problems that typically occurs in Mini-max search [05] procedure in game playing. Describe the techniques to refine the performance of Mini-max procedure.

Q: 6 Answer the following questions:

[16]

A Think that you are given a specific real world problem and you are [08] CO-2, BL-6 building a system to solve that problem using an AI technique. Which are the steps needed to build a system in order to solve a particular problem?

B Write programs for following in PROLOG:

[08]

- CO-3, BL-3 1) Program that splits the input list of numbers into two output list consisting positive numbers and negative numbers separately.
 - 2) Inserting an element at a desired position into the list of given numbers.