Odpowiedzi i schematy oceniania

Arkusz 5

Zadania zamknięte

Numer	Poprawna	Wskazówki do rozwiązania zadania		
zadania	odpowiedź	WSKu20 WKI uo 102 WIQZuiliu Zuuuliu		
1.	B.	$W = \sqrt[3]{16} - 2\sqrt{50} + 4\sqrt{32} - \sqrt[3]{250} \Rightarrow$		
		$\Rightarrow W = 2\sqrt[3]{2} - 10\sqrt{2} + 16\sqrt{2} - 5\sqrt[2]{2} = -3\sqrt[3]{2} + 6\sqrt{2}$		
2.	C.	$x + 0.5x = 120 \Rightarrow x = 80$		
3.	D.	$\log_2 56 = \log_2 7 \cdot 8 = \log_2 7 + \log_2 8 = a + 3$		
4.	A.	$\frac{9x^2 - 16y^2}{3x - 4y} = 25 \Rightarrow \frac{(3x - 4y)(3x + 4y)}{3x - 4y} = 25 \Rightarrow 3x + 4y = 25$		
5.	В.	$(2+\sqrt{3})^3 = 8+3\cdot 4\sqrt{3}+3\cdot 2\cdot 3+3\sqrt{3}=15\sqrt{3}+26$		
6.	A.	$m \operatorname{godzin} - k \operatorname{stron},$		
		m+5 godzin – x stron,		
		$x = \frac{k(m+5)}{m}.$		
7.	C.	$2x - \sqrt{3}x = -1 + 5 \Rightarrow x\left(2 - \sqrt{3}\right) = 4 \Rightarrow x = \frac{4}{2 - \sqrt{3}}$		
8.	D.	$W = \frac{(2x+3)^2}{(2x+3)^2(2x-3)^2} \Rightarrow W = \frac{1}{(2x-3)^2}$		
9.	A.	$\Delta < 0 \Rightarrow 36 - 4c < 0 \Rightarrow c > 9$		
10.	C.	$x_1 - 4, x_2 = 4$, ramiona paraboli są skierowane do dołu.		
11.	B.	$a_1 = S_1 = 9, S_2 = 24, a_2 = 24 - 9 = 15$		
12.	D.	$r = \log_5 15 - \log_5 3 = \log_5 \frac{15}{3} = \log_5 5 = 1$		
13.	D.	$x^{2} = -\log_{2} \frac{1}{16} \Rightarrow x^{2} = \log_{2} 16 \Rightarrow x^{2} = 4 \Rightarrow x = -2 \lor x = 2$		
14.	C.	Funkcja $y = \cos x$ jest funkcją malejącą, zatem przy mniejszym		
		argumencie większa jest wartość funkcji.		
15.	A.	$tg \alpha = \frac{\sqrt{3}}{3} \Rightarrow \alpha = 30^{\circ}$		

16.	D.	2a, 3a – odpowiednio podstawa i ramię trójkąta,
		$h = 2\sqrt{2}a$ – wysokość trójkąta,
		$\sin \alpha = \frac{2\sqrt{2}}{3} .$
17.	B.	α , α + 20°, 3 α – kąty trójkąta,
		$\alpha + \alpha + 20^{\circ} + 3\alpha = 180^{\circ} \Rightarrow \alpha = 32^{\circ}$.
18.	B.	CD, CE – odpowiednio dwusieczna i wysokość trójkąta, $D \in AB$,
		$ \angle EDC = 75^{\circ} \Rightarrow \angle BDC = 105^{\circ},$
		$\left \angle ABC \right = 180^{\circ} - \left(105^{\circ} + 40^{\circ} \right) \Rightarrow \left \angle ABC \right = 35^{\circ}.$
19.	D.	a – krótsza przyprostokątna trójkąta,
		c – przeciwprostokątna trójkąta,
		$a = \sqrt{16+4} \Rightarrow a = 2\sqrt{5}$, $\frac{2}{2\sqrt{5}} = \frac{2\sqrt{5}}{c} \Rightarrow c = 10$.
20.	D.	Pole połowy otrzymanej figury to $\frac{1}{4}\pi - \frac{1}{2}$, zatem pole całej figury
		jest równe $\frac{1}{2}\pi - 1 = \frac{1}{2}(\pi - 2)$.
21.	D.	$180^{\circ}(n-2) = 1800^{\circ} \Rightarrow n-2 = 10 \Rightarrow n = 12$

Zadania otwarte

Numer zadania	Modelowe etapy rozwiązywania zadania	Liczba punktów
22.	Wyznaczenie długości wysokości trójkąta: $h = \frac{\sqrt{5}}{2}$.	1
	Wyznaczenie długości boku trójkąta: $a = \frac{\sqrt{15}}{3}$.	1
23	Wyznaczenie długości boku kwadratu: $ AC = 2\sqrt{10}$.	1
	Wyznaczenie obwodu kwadratu: $L = 8\sqrt{5}$.	1
24.	Przekształcenie równania okręgu do postaci:	1

	$(x-2)^2 + (y+6)^2 = 9.$	
	Wyznaczenie środka i promienia okręgu: $S = (2,-6)$, $r = 3$.	1
25.	Wyznaczenie współczynnika kierunkowego prostej prostopadłej:	1
	$a=\frac{1}{4}$.	
	+	1
	Wyznaczenie równania prostej prostopadłej: $y = \frac{1}{4}x - 11$.	1
26.	Wyznaczenie krawędzi prostopadłościanu: $a = \sqrt{3}$.	1
	Wyznaczenie pola powierzchni całkowitej prostopadłościanu:	1
	$P_c = 30$.	
27.	Wyznaczenie sumy liczb $a, b, c: a+b+c=45$.	1
	Wyznaczenie średniej arytmetycznej liczb	1
	a+7, b+3, c+8: x=21.	
28.	Wyznaczenie prawdopodobieństw zdarzeń	1
	$A, B: P(A) = \frac{2}{3}, P(B) = \frac{3}{5}.$	
	$A, B, I(A) = \frac{1}{3}, I(B) = \frac{1}{5}.$	
	Obliczenie prawdopodobieństwa sumy zdarzeń: $P(A \cup B) = \frac{31}{60}$.	1
29.	Wprowadzenie oznaczeń i zapisanie równania: $x \cdot y = 72$, gdzie	1
	x – liczba kilogramów truskawek zbieranych jednego dnia,	
	y - liczba dni, x > 0, y > 0.	
	Zapisanie układu równań: $\begin{cases} xy = 72\\ (x+2) \cdot (y-3) = 72 \end{cases}$	1
	Przekształcenie układu do równania z jedną niewiadomą:	1
	$-3x^2 - 6x + 144 = 0.$	
	Rozwiązanie układu i podanie odpowiedzi z uwzględnieniem	1
	dziedziny: $\begin{cases} x = 6 \\ y = 12 \end{cases}$	
30.	Wyznaczenie przeciwprostokątnej: $ AB = 24$.	1
	Wyznaczenie odcinka: $CM : CM = 2$.	1
	Wyznaczenie mniejszej podstawy trapezu: $ MN = 4$.	1

	Wyznaczenie wysokości trapezu: $h = 5\sqrt{3}$.	1
	Wyznaczenie pola trapezu: $P = 70\sqrt{3}$.	1
31.	Wykonanie rysunku z oznaczeniami lub wprowadzenie	1
	dokładnych oznaczeń:	
	r,h – odpowiednio promień podstawy i wysokość stożka,	
	lpha – kąt nachylenia tworzącej stożka do płaszczyzny jego	
	podstawy,	
	$V_k = V_s$.	
	Wyznaczenie tangensa kąta α : $\operatorname{tg} \alpha = \frac{1}{2}$.	2 (1 punkt za
	w yzmaczenie tangensa kąta α . $\operatorname{tg} \alpha = \frac{1}{2}$	wyznaczenie
		cosinusa
		i 1 za
		wyznaczenie
		tangensa)
	Zapisanie układu równań: $\begin{cases} \frac{4}{3}\pi \cdot 3^3 = \frac{1}{3}\pi r^2 h \\ \frac{h}{r} = \frac{1}{2} \end{cases}$	1
	Przekształcenie układu do równania z jedną niewiadomą:	1
	$36 = \frac{1}{3}r^2 \frac{1}{2}r.$	
	Rozwiązanie równania: $r = 6$.	1