Technische Universität München

BGCE Project: CAD – Integrated Topology Optimization

BGCE First Milestone Meeting

S. Joshi, J.C. Medina, F. Menhorn, S. Reiz, *B. Rüth, E. Wannerberg*, A. Yurova

August 6, 2015

Contents

- 1. Introduction
 - 1.1 Contents
 - 1.2 Motivation
 - 1.3 Workflow Overview
 - 1.4 Schedule & Milestones
- 2. CAD to Optimized Surface
 - 2.1 CAD To STL
 - 2.2 STL To Voxels
 - 2.3 Topology Optimization
 - 2.4 Surface Extraction
 - 2.5 Short Summary
- 3. Optimized Surface to CAD
 - 3.1 B-Spline Fitting
- 4. Summary
- 5. Outlook

Motivation

Current Design Process:

- Iterative and redundant
- Time consuming

Motivation

Current Design Process:

- · Iterative and redundant
- Time consuming

Topology optimization

 Promoted by additive manufacturing

Motivation

Current Design Process:

- · Iterative and redundant
- Time consuming

Topology optimization

 Promoted by additive manufacturing

Focus:

Convert optimized geometry to lightweight and scalable CAD formats

CAD design

STL interface

Voxelized topology

Specification of loads and fixtures

Optimized topology

Surface extraction

Parametrized CAD-geometries

Schedule & Milestones

Schedule:

Schedule & Milestones

Schedule: (current)

Contents

- 1. Introduction
 - 1.1 Contents
 - 1.2 Motivation
 - 1.3 Workflow Overview
 - 1.4 Schedule & Milestones
- 2. CAD to Optimized Surface
 - 2.1 CAD To STL
 - 2.2 STL To Voxels
 - 2.3 Topology Optimization
 - 2.4 Surface Extraction
 - 2.5 Short Summary
- 3. Optimized Surface to CAD
 - 3.1 B-Spline Fitting
- 4. Summary
- 5. Outlook

CAD to STL

Tools:

Create original CAD geometry in CAD program

Interface:

Current approach: Export to STL directly.

From STL To Voxels

- Common Versatile Multi-purpose Library for C++ (CVMLCPP)
 - Converts STL format voxels of specified size (binary file)
- Custom script to read binary file and output it as ascii.vtk for visualisation

- ToPy: Open-Source SIMP/FEM topology optimizer in python
- Custom script for generating ToPy input file (.tpd)
 - Reads voxelized data and generates ToPy input
 - · Non-voxel cells set to passive elements
 - Boundary conditions added manually

- ToPy: Open-Source SIMP/FEM topology optimizer in python
- Custom script for generating ToPy input file (.tpd)
 - Reads voxelized data and generates ToPy input
 - · Non-voxel cells set to passive elements
 - Boundary conditions added manually

- ToPy: Open-Source SIMP/FEM topology optimizer in python
- Custom script for generating ToPy input file (.tpd)
 - Reads voxelized data and generates ToPy input
 - Non-voxel cells set to passive elements
 - Boundary conditions added manually

- ToPy: Open-Source SIMP/FEM topology optimizer in python
- Custom script for generating ToPy input file (.tpd)
 - Reads voxelized data and generates ToPy input
 - Non-voxel cells set to passive elements
 - Boundary conditions added manually

- ToPy: Open-Source SIMP/FEM topology optimizer in python
- Custom script for generating ToPy input file (.tpd)
 - Reads voxelized data and generates ToPy input
 - · Non-voxel cells set to passive elements
 - Boundary conditions added manually

- ToPy: Open-Source SIMP/FEM topology optimizer in python
- Custom script for generating ToPy input file (.tpd)
 - Reads voxelized data and generates ToPy input
 - Non-voxel cells set to passive elements
 - Boundary conditions added manually

- ToPy: Open-Source SIMP/FEM topology optimizer in python
- Custom script for generating ToPy input file (.tpd)
 - Reads voxelized data and generates ToPy input
 - Non-voxel cells set to passive elements
 - Boundary conditions added manually

- ToPy: Open-Source SIMP/FEM topology optimizer in python
- Custom script for generating ToPy input file (.tpd)
 - Reads voxelized data and generates ToPy input
 - Non-voxel cells set to passive elements
 - Boundary conditions added manually

From Voxel to Mesh Geometry

- Extract isosurface from voxel information
- Algorithms: Marching Cubes, Dual Contouring, Extended Models
- Implementations in VTK library

Surface Extraction

Contour Filtering using Implicit Modelling

Problem: Holes are not taken into account

Decimation

- Fine mesh to a coarser mesh through Decimation \leftrightarrow Reduction of number of triangles. (Upper: 50% Lower: 90%)
- Smoothing step is needed in between

Short Summary

Direct interaction with CAD formats (STEP)

Open-Source alternatives: OpenCascade...

Boundary conditions required - how to specify?

- Current state: Manual specification
- Extract metadata from CAD formats, extra voxelized files...

Contents

1. Introduction

- 1.1 Contents
- 1.2 Motivation
- 1.3 Workflow Overview
- 1.4 Schedule & Milestones

2. CAD to Optimized Surface

- 2.1 CAD To STL
- 2.2 STL To Voxels
- 2.3 Topology Optimization
- 2.4 Surface Extraction
- 2.5 Short Summary

3. Optimized Surface to CAD

- 3.1 B-Spline Fitting
- 4. Summary
- 5. Outlook

Current Status

• What do we have so far?

Current Status

- What do we have so far?
- What if we try to pass it to an engineer?

How to make CAD understand our data?

B-Spline

$$\vec{S}(u,v) = \sum_{i,j=1}^{n,m} \vec{C}_{i,j} N_i^{\rho}(u) N_j^{\rho}(v),$$

where p – degree of the B–Spline surface and n, m – number of control points in each direction.

B-Splines

- offer great flexibility for handling arbitrary shapes
- are CAD-standard

Engineers are working with CAD

B–Spline Fitting

Goal:

Find B-Spline representation of our data!

$$\vec{S}(u_{\alpha},v_{\alpha}) \approx \vec{P}_{\alpha}$$

B–Spline Fitting

Goal:

Find B-Spline representation of our data!

$$\vec{S}(u_{\alpha},v_{\alpha}) \approx \vec{P}_{\alpha}$$

B-Spline Fitting: Least Squares

The task:

Find control points $C_{i,j}$, such that the B–Spline surface

$$\vec{S}(u, v) = \sum_{i,i=1}^{n,m} \vec{C}_{i,j} N_i^p(u) N_j^p(v)$$

approximates our dataset of points $\{\vec{P}_{\alpha}\}$.

This leads to minimization problem:

$$\vec{\mathcal{S}}(u_{\alpha}, v_{\alpha}) \approx \vec{P}_{\alpha} \forall \alpha \leftrightarrow \min_{\vec{C}_{i,j} \in \mathbb{R}^3} \sum_{\alpha} \parallel \vec{P}_{\alpha} - \vec{\mathcal{S}}(u_{\alpha}, v_{\alpha}) \parallel_2$$

B–Spline Fitting: Least Squares (cont.)

Resulting system looks like:

$$\sum_{i,j=1}^{n,m} \vec{C}_{i,j} N_i^{p} (u_{\alpha}) N_j^{p} (v_{\alpha}) pprox \vec{P}_{\alpha} \quad \forall \alpha$$

Or, in matrix-vector form:

$$AC \approx P$$

Our system matrix A depends on $\{u_{\alpha}, v_{\alpha}\}$

B-Spline Fitting Pipeline [Becker, Schäfer, Jameson]

B–Spline Fitting: Open Questions

- How to distribute our data into patches?
- How to parameterize obtained patches?
- How to connect several patches after fitting?

B-Spline Fitting Pipeline [M. Eck & H. Hoppe]

B–Spline Fitting: Parameter Correction

The task:

For *fixed* control points $C_{i,j}$, find an optimal parametrization $\{u_{\alpha}, v_{\alpha}\}$.

Contents

1. Introduction

- 1.1 Contents
- 1.2 Motivation
- 1.3 Workflow Overview
- 1.4 Schedule & Milestones

2. CAD to Optimized Surface

- 2.1 CAD To STL
- 2.2 STL To Voxels
- 2.3 Topology Optimization
- 2.4 Surface Extraction
- 2.5 Short Summary

3. Optimized Surface to CAD

- 3.1 B-Spline Fitting
- 4. Summary
- 5. Outlook

What is done?

- First part of the pipeline from CAD model to optimized voxel model:
 - ✓ CAD to STL with e.g. FreeCAD
 - ✓ STL to Voxels with CVMLCPP
 - √ Voxels to ToPy input with custom script
 - Topology optimized geometry with ToPy
 - U Surface reconstruction with VTKToolbox
- B—spline fitting
 - Automatic patch selection
 - Parametrization of obtained patches
 - √ B–spline fitting using least squares
 - (b) Smooth connection of patches
 - Conversion back to CAD

Contents

1. Introduction

- 1.1 Contents
- 1.2 Motivation
- 1.3 Workflow Overview
- 1.4 Schedule & Milestones

2. CAD to Optimized Surface

- 2.1 CAD To STL
- 2.2 STL To Voxels
- 2.3 Topology Optimization
- 2.4 Surface Extraction
- 2.5 Short Summary

3. Optimized Surface to CAD

- 3.1 B-Spline Fitting
- 4. Summary
- 5. Outlook

What is next?

- Automation of the first part of the pipeline
- Integration of boundary conditions handling
- Implementation of remaining B-spline fitting steps (based on work of M.Eck & H.Hoppe)
- Further research on algorithms considering voxel geometry

Thank you for your attention!

Literature

- William Hunter. "Predominantly solid-void three-dimensional topology optimisation using open source software"
- Gerrit Becker, Michael Schäfer, Antony Jameson. "An advanced NURBS fitting procedure for post-processing of grid-based shape optimizations"
- Matthias Eck, Hugues Hoppe. "Automatic Reconstruction of B-Spline Surfaces of Arbitrary Topological Type"