16:332:599:02 – Smart Grid Project Report

By David Lambropoulos, Demetrios Lambropoulos

Professor Hana Godrich May $9^{\rm th}$, 2018

Contents

1	Cas	e Study/Problem Formulation	1
2	Det	ailed Solution	2
	2.1	Calculating Per Unit Values	2
		2.1.1 Per-Unit One-Line Model	5
	2.2	Compute All Bus Voltages	6
		2.2.1 Newton-Raphson Method	7
	2.3	Compute All Power Values	14
		2.3.1 Compute Line Losses	14
9	Con	nclusions	16
o	COL	iciusions	TO

List of Figures

1	Original Circuit	1
2	Per-Unit One-line Diagram	5
3	PowerWorld Diagram	6
4	PowerWorld Diagram - Bus 1 after Newton-Raphson	7
5	PowerWorld Diagram - Bus 2 after Newton-Raphson	7
6	PowerWorld Diagram - Bus 3 after Newton-Raphson	8
7	PowerWorld Diagram - Bus 4 after Newton-Raphson	8
8	PowerWorld Diagram - Bus 5 after Newton-Raphson	9
9	PowerWorld Diagram - Bus 6 after Newton-Raphson	9
10	PowerWorld Diagram - Bus 7 after Newton-Raphson	10
11	PowerWorld Diagram - Buses	10
12	PowerWorld Diagram - Branch Inputs	11
13	PowerWorld Diagram - Generators	11
14	PowerWorld Diagram	11
15	PowerWorld Diagram - Bus Zero Impedance Branch Groups	12
16	PowerWorld Diagram - Fast Decoupled BP Matrix	12
17	PowerWorld Diagram - Fast Decoupled BPP Matrix	13
18	PowerWorld Diagram - Powerflow Jacobian Matrix	13
19	PowerWorld Diagram - Ybus values	14
20	Per Unit Voltages on buses	16
21	Nominal Voltage vs Actual Voltage of Buses	17

1 Circuit Values	1	Circuit V	Values																																	1
------------------	---	-----------	--------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

1 Case Study/Problem Formulation

For the single-line diagram in Figure 4 convert all positive-sequence impedance, load, and voltage data to per unit using the given system base quantities. Run the power flow program and obtain the bus, line, and transformer input/output voltages

Figure 1: Original Circuit

	Generator Ratings
G1	100MVA, 13.8kV, x'' = 0.12
G2	200MVA, 15.0kV, x'' = 0.12
	The generator neutrals are solidly grounded

	Transformer Ratings
T1	$100MVA, 13.8kV\Delta/230kVY, x = 0.1 \text{ per unit}$
T2	$200MVA$, $15kV\Delta/230kVY$, $x = 0.1$ per unit
	The transformer neutrals are solidly grounded

	Transmission Line Ratings
All Lines	$230kV$, $z_1 = 0.08 + j0.5\Omega/km$, $y_1 = j3.3E - 6S/km$, $Max\ MVA = 400$
Line Lengths	$L_1 = 15km, L_2 = 20km, L_3 = 40km, L_4 = 15km, L_5 = 50km$

	Power Flow Data
Bus 1	Swing bus $V_1 = 13.8kV$, $\partial_1 = 0^{\circ}$
Bus 2, 3, 4, 5, 6	Load buses
Bus 7	Constant voltage magnitude bus, $V_7 = 15kV$, $P_{G7} = 180MW$, $-87MVAr < Q_{G7} < +87MVAr$

System Base Quantities
$S_{base} = 100MVA$ (three-phase)
$V_{base} = 13.8kV$ (line-to-line) in the zone of G_1

Table 1: Circuit Values

2 Detailed Solution

2.1 Calculating Per Unit Values

$$per\ unit\ (pu)\ value = \frac{Actual\ value}{Base\ value}$$

In zone G1, base values are,

$$S_{base} = 100MVA$$

$$V_{base_{L-L}} = 13.8kV$$

@ G1

$$S_{G1_{(pu)}} = \frac{100MVA}{100MVA} = \boxed{1pu}$$

$$V_{G1_{(pu)}} = \frac{13.8kV}{13.8kV} = \boxed{1pu}$$

$$x''_{(new)} = \boxed{0.12pu}$$

@T1

$$S_{T1_{(pu)}} = \frac{100MVA}{100MVA} = \boxed{1pu}$$

$$V_{T1_{(pu)}} = \frac{13.8kV}{13.8kV} = \boxed{1pu}$$

$$x_{(pu)} = \boxed{0.1pu}$$

@ Bus 2

$$Q_{Load} = 30MVAr$$

$$Q_{Load_{(pu)}} = \frac{30MVAr}{100MVA} = \boxed{0.3pu}$$

$$P_{Load} = 50MW$$

$$P_{Load_{(pu)}} = \frac{50MW}{100MVA} = \boxed{0.5pu}$$

 $@L_1$

$$L_1 = 15km$$

$$z = 0.08 + j0.5\Omega/km$$

$$Z_{total} = (15km)(0.08 + j0.5\Omega/km) = 1.2 + j7.5\Omega$$

$$\theta = tan^{-1} \left(\frac{7.5}{1.2} \right) = \boxed{80.91^{\circ}}$$

$$|Z_{total}| = \sqrt{(1.2)^2 + (7.5)^2} = \boxed{7.59539\Omega}$$

$$Z_{total} = \boxed{7.59539 \angle 80.91^{\circ}\Omega}$$

$$Z_{total_{(pu)}} = 7.595 \cdot \left(\frac{100MVA}{(230kV)^{2}}\right) = \boxed{0.014358pu}$$

@ Bus 3

$$Q_{Load} = 30MVAr$$

$$Q_{Load_{(pu)}} = \frac{30MVAr}{100MVA} = \boxed{0.3pu}$$

$$P_{Load} = 50MW$$

$$P_{Load_{(pu)}} = \frac{50MW}{100MVA} = \boxed{0.5pu}$$

@ Bus 4

$$Q_{Load} = 30MVAr$$

$$Q_{Load_{(pu)}} = \frac{30MVAr}{100MVA} = \boxed{0.3pu}$$

$$P_{Load} = 50MW$$

$$P_{Load_{(pu)}} = \frac{50MW}{100MVA} = \boxed{0.5pu}$$

@ Bus 5

$$Q_{Load} = 30MVAr$$

$$Q_{Load_{(pu)}} = \frac{30MVAr}{100MVA} = \boxed{0.3pu}$$

$$P_{Load} = 50MW$$

$$P_{Load_{(pu)}} = \frac{50MW}{100MVA} = \boxed{0.5pu}$$

@ Bus 6

$$Q_{Load} = 30MVAr$$

$$Q_{Load_{(pu)}} = \frac{30MVAr}{100MVA} = \boxed{0.3pu}$$

$$P_{Load} = 50MW$$

$$P_{Load_{(pu)}} = \frac{50MW}{100MVA} = \boxed{0.5pu}$$

 $@L_2$

$$L_2 = 20km$$
$$z = 0.08 + j0.5\Omega/km$$

$$Z_{total} = (20km)(0.08 + j0.5\Omega/km) = \boxed{1.6 + j10\Omega}$$

$$\theta = tan^{-1} \left(\frac{10}{1.6}\right) = \boxed{80.91^{\circ}}$$

$$|Z_{total}| = \sqrt{(1.6)^2 + (10)^2} = \boxed{10.127191\Omega}$$

$$Z_{total} = \boxed{10.127191 \angle 80.91^{\circ}\Omega}$$

$$Z_{total_{(pu)}} = 10.127191 \cdot \left(\frac{100MVA}{(230kV)^2}\right) = \boxed{0.019144pu}$$

 $@L_3$

$$L_{3} = 40km$$

$$z = 0.08 + j0.5\Omega/km$$

$$Z_{total} = (40km)(0.08 + j0.5\Omega/km) = \boxed{3.2 + j20\Omega}$$

$$\theta = tan^{-1} \left(\frac{20}{3.2}\right) = \boxed{80.91^{\circ}}$$

$$|Z_{total}| = \sqrt{(3.2)^{2} + (20)^{2}} = \boxed{20.254382\Omega}$$

$$Z_{total} = \boxed{20.254382 \angle 80.91^{\circ}\Omega}$$

$$Z_{total_{(pu)}} = 20.254382 \cdot \left(\frac{100MVA}{(230kV)^{2}}\right) = \boxed{0.038288pu}$$

 $@L_4$

$$L_{4} = 15km$$

$$z = 0.08 + j0.5\Omega/km$$

$$Z_{total} = (15km)(0.08 + j0.5\Omega/km) = \boxed{1.2 + j7.5\Omega}$$

$$\theta = tan^{-1} \left(\frac{7.5}{1.2}\right) = \boxed{80.91^{\circ}}$$

$$|Z_{total}| = \sqrt{(1.2)^{2} + (7.5)^{2}} = \boxed{7.59539\Omega}$$

$$Z_{total} = \boxed{7.59539 \angle 80.91^{\circ}\Omega}$$

$$Z_{total_{(pu)}} = 7.595 \cdot \left(\frac{100MVA}{(230kV)^{2}}\right) = \boxed{0.014358pu}$$

 $@L_5$

$$L_5 = 50km$$

$$z = 0.08 + j0.5\Omega/km$$

$$Z_{total} = (50km)(0.08 + j0.5\Omega/km) = \boxed{4 + j25\Omega}$$

$$\theta = tan^{-1} \left(\frac{25}{4}\right) = \boxed{80.91^{\circ}}$$

$$|Z_{total}| = \sqrt{(4)^2 + (25)^2} = \boxed{25.317978\Omega}$$

$$Z_{total} = \boxed{25.317978 \angle 80.91^\circ \Omega}$$

$$Z_{total_{(pu)}} = 25.317978 \cdot \left(\frac{100MVA}{(230kV)^2}\right) = \boxed{0.04786pu}$$
© Bus 7
$$P_{G7_{(pu)}} = \frac{180MW}{100MVA} = \boxed{1.8pu}$$

$$\frac{-87MVAr}{100} < Q_{G7_{(pu)}} < \frac{87MVAr}{100}$$

$$-0.87pu < Q_{G7_{(pu)}} < 0.87pu$$

$$V_{T2_{(pu)}} = \frac{15kV}{13.8kV} = \boxed{1.086956pu}$$

2.1.1 Per-Unit One-Line Model

Figure 2: Per-Unit One-line Diagram

2.2 Compute All Bus Voltages

Figure 3: PowerWorld Diagram - Full Powerflow Analysis

2.2.1 Newton-Raphson Method

Figure 4: PowerWorld Diagram - Bus 1 after Newton-Raphson

Figure 5: PowerWorld Diagram - Bus 2 after Newton-Raphson

Figure 6: PowerWorld Diagram - Bus 3 after Newton-Raphson

Figure 7: PowerWorld Diagram - Bus 4 after Newton-Raphson

Figure 8: PowerWorld Diagram - Bus 5 after Newton-Raphson

Figure 9: PowerWorld Diagram - Bus 6 after Newton-Raphson

Figure 10: PowerWorld Diagram - Bus 7 after Newton-Raphson

Figure 11: PowerWorld Diagram - Buses

Figure 12: PowerWorld Diagram - Branch Inputs

Figure 13: PowerWorld Diagram - Generators

Figure 14: PowerWorld Diagram

Figure 15: PowerWorld Diagram - Bus Zero Impedance Branch Groups

Figure 16: PowerWorld Diagram - Fast Decoupled BP Matrix

Figure 17: PowerWorld Diagram - Fast Decoupled BPP Matrix

Figure 18: PowerWorld Diagram - Powerflow Jacobian Matrix

Figure 19: PowerWorld Diagram - Ybus values

2.3 Compute All Power Values

Line losses added in

2.3.1 Compute Line Losses

$$P_{loss} = \frac{P^2R}{V^2}$$
 @L1
$$Z = 1.2 + j7.5\Omega$$

$$P_{loss} = \frac{100^2 \cdot (1.2 + j7.5)}{13.8^2} = \frac{12000 + j75000}{190.44} = 63.01 + j393.82$$
 @L2
$$Z = 1.6 + j10\Omega$$

$$P_{loss} = \frac{100^2 \cdot (1.6 + j10)}{13.8^2} = \frac{16000 + j100000}{190.44} = 84.02 + j525.1$$
 @L3
$$3.2 + j20\Omega$$

$$P_{loss} = \frac{100^2 \cdot (3.2 + j20)}{13.8^2} = \frac{32000 + j200000}{190.44} = 168.03 + j1050.2$$
 @L4
$$1.2 + j7.5\Omega$$

$$P_{loss} = \frac{100^2 \cdot (1.2 + j7.5)}{13.8^2} = \frac{12000 + j75000}{190.44} = 63.01 + j393.82$$

@L5

$$P_{loss} = \frac{100^2 \cdot (4+j25)}{13.8^2} = \frac{4+j25\Omega}{40000+j250000} = 210.04+j1312.75$$

3 Conclusions

What we learned from the PowerWorld simulation is that power flow is slower as we reach the center of the power grid. From the amp meters on the transmission lines we can see that less than 25% of the maximum handled Amps are being transferred through the line. This is unlike at the generators, where the two transformers T1 and T2 are extremely overpowered. We can also see the per unit voltage present at each bus in the following graph:

Figure 20: Per Unit Voltages on buses.

We can also see from the nominal voltage expected to what voltage was simulated at the bus points in the following:

Figure 21: Nominal Voltage vs Actual Voltage of Buses.