中山大學 论文进展汇报

Paper Progress Report

2023年12月11日

目录 Contents

01

选题背景

Research Background

掌静脉识别的发展历程选择轻量型网络的原因

02

研究现状

Research Status

掌静脉识别方法 及应用综述 03

研究思路

Research Thought

问题研究方法可能存在的创新点

04

存在的问题

Existence Problems

可能存在的问题 问题可能的解决办法

01 - 选题背景

Research Background

掌静脉识别的发展历程 选择轻量型网络的原因

Research Background

随着科技的进步,生物特征识别技术已经逐渐成为身份验证的重要手段。其中,掌静脉识别技术作为一种新兴的生物特征识别技术,由于其具有稳定性高、防伪性强、非接触识别、隐私性、易用性和具有活体检测能力等特点,越来越受到人们的关注。

指标	普遍性	独特性	持久性	易采集性	识别精度	防伪性
手指静脉	高	中	较高	较低	中	高
手背静脉	高	较高	较高	较低	较高	高
手掌静脉	高	高	较高	低	高	高

Research Background

指标	普遍性	独特性	持久性	易采集性	识别精度	防伪性
指纹	中	高	高	中	高	高
人脸	高	低	中	高	低	低
手型	中	中	中	高	中	中
掌纹	中	中	中	中	中	高
虹膜	高	高	高	中	高	盲
手静脉	高	高	高	低	高	高
签名	低	低	低	高	低	低

Research Background

发表技术报告

MacGregor 等发表了3 篇关于 Veincheck 的原理介绍性文章和 技术报告。

商业应用

韩国 NEXTERN 公司研制出首套 手背静脉识别系统产品 BK-100, 静脉识别系统开始进入商业应用。

正式采纳

静脉识别技术正 式被国际标准组 织(ISO)采纳。

 1983
 1991
 1995
 1997
 2004
 2007

Veincheck提出

柯达公司雇员 Joseph Rice 在研究 红外条形码技术时产生了利用人体 手背血管红外成像作为身份识别的 想法,并发明了手静脉特征识别技术。

应用于身份认证

澳大利亚的 J.M.Cross 等发表了用 近红外设备采集手背静脉图像用来 进行身份认证的文献。

正式推出识别系统

日本富士通公司推出了第一套掌静脉识别系统。

选择轻量型网络的原因

- 轻量型网络相比于传统的深度神经网络,具有更少的参数和计算复杂度,从而使得轻量型网络 在计算和存储资源有限的设备上更加高效。使用轻量型网络可以减少设备的计算负担,提高系 统的响应速度,并且可以在较低的计算资源下实现较高的识别准确率。
- 某些场景下,对于掌静脉的识别需要在实时性要求较高的情况下进行,例如门禁系统或支付系统。轻量型网络具有较低的推理时间,能够快速处理输入图像并给出准确的识别结果。
- 掌静脉识别的应用场景很大程度上在移动设备完成。使用轻量型网络可以有效地降低模型的大小和复杂度,减少模型在移动设备上的存储和计算资源的占用,从而能够更大程度优化移动设备的性能,降低对移动设备电池寿命的损害。
- 在掌静脉识别技术中,随着新的数据和算法的出现,对模型进行更新和改进是常见的需求。使用轻量型网络可以更容易地将新模型部署到现有的系统中,实现技术的快速迭代和更新,使得网络的部署和更新更加便利。

02 一 研究现状

Research Status

掌静脉识别方法及应用综述

研究现状

Research Status

表 2 基于深度学习的掌脉识别算法比较

Table 2 Comparison of palm vein recognition algorithms based on deep learning

类型	发表 年份	识别算法	主要特点	优势	局限性
基于掌脉表征	2019	LMP-SPS ^[40]	将低层卷积特征与高层卷积特征结合	卷积特征丰富,特征表达能力较强	识别时间较长,计 算复杂度较高
	2020	MWCDE ^[41]	将低层卷积特征与高层卷积特征元素 级相乘,采用民主聚合生成紧凑型特 征	降低了等错误率,提高了特征可辨别 性,解决特征冗余问题	识别时间较长,计 算复杂度较高
	2018	SCF-SPP ^[42]	提出空间加权的选择性卷积特征模 型,并引入空间金字塔池	能权衡不同区域的局部特征对识别结 果的重要性,特征表达能力较强	特征维度较高,可 能导致训练时间和 资源消耗增加
	2019	DBN ^[43]	使用深度信念网络进行迭代训练	等错误率较低	需要大量训练数 据,训练时间长
基于网络设 计与优化 -	2019	PVSNet ^[45]	首次采用编码解码器网络学习掌脉特 定领域特征的纹理代码矩阵(TCM) 和图像射线变换(IRT)	采用图像转换技术 提升图像匹配准确率	等错误率较高,训 练时间长
	2020	DCCAE ^[46]	首次使用密集连接的卷积自动编码器	特征提取能力强	模型复杂,训练时 间长
	2021	WD-SER ^[16]	采用小波去噪模型和挤压激励模型	识别准确率高	模型复杂,训练时 间长
	2021	STN ^[48]	提出结合 STN 和 CNN 网络模型	解决图像平移、缩放、旋转等问题	需要较大的数据量

研究现状

Research Status

	2023 ECA-ResNet ^[52] 将注意机制		将注意机制和残差块整合到 U-Net 分 割模型中	识别精度高	-
	2021	MSMDGAN+CNN ^[54]	提出将多尺度、多方向生成对抗网络	可以从单个图像中生成丰富的图像样	数据量较大,训练
	2021	WISWIDGAN TENNE	与 CNN 结合	本,解决了训练数据不足的问题	时间长
	2021	021 NAS ^[55]	采用种 NAS 方法进行性能评估	识别性能高,	需要训练每个候选
	2021	NAS ^c ³	未用作 NAS 为私近有 庄能开 旧	克服人工设计 CNN 的一些缺点	网络,训练时间长
	2021	021 Bayesian ^[57]	采用贝叶斯优化寻找最优的网络结构	提升了识别精度,	输入图像尺寸太小
	2021		和训练参数	降低了单幅图像处理时间	和人区区人(1)
	2022	Transformer+CNN ^[27]	提出结合 Transformer 模块和 CNN 构	识别精度高,实现了全局特征和局部	采用闭集识别,数
	2022		建新的网络结构	特征的融合,增强特征表达能力	据可能不均衡
	2023	023 LE-MSVT ^[59]	提出基于标签增强的多尺度	识别精度高,特征提取能力强	模型复杂, 训练时
	2023	LL-WIS V I	Transformer 模型		间长
	2022	ViT-Cap ^[61]	提出融合 ViT 和胶囊网络	可以提取全局特征和局部特征	模型复杂,训练时
	2022	VII-Cap	是山區日 VII 和放義內名	并理解特征之间的依赖关系	间长
	2023	ViT ^[62] MobileNetV2 ^[23]	基于 ViT 的迁移学习	实现了不同 ViT 架构	模型复杂,训练时
			至1 411 即是6手 7	对静脉识别的性能比较	间长
			提出增强成像特征和三重损失函数的	减少了训练时间,同时解决由于样本	_
基于轻量级 网络设计			自适应 Gabor 滤波器	量小而导致的数据不足的问题	
	2020	CNN ^[65]	在不同实验环境下对经典神经网络进	实验证明了 EfficientNet 和	_
			行性能评估	MobileNetV3 性能由于其他早期 CNN	
	2022	MPSNet ^[5]	提出基于深度可分离卷积的改进 CNN 模型对饱和通道图像进行识别	提升了识别性能和推理速度	_

研究现状 Research Status

传统识别方法

近红外光拍摄 → 获取ROI图像 → 处理、增强、 提取特征

深度学习方法

训练神经网络 → 网络参数优化 → 多模态/多特征 融合

03 一研究思路

Research Thought

问题研究方法 可能存在的创新点

研究方法

Research Thought

ROI区域提取方法

基于关键点/基于内切 圆的方法,主要考虑区 域选择的的鲁棒性以及 信息采集的全面性。

图像处理方法

包括灰度归一化、直方 图均衡、各种滤波方法、 去除背景光照、多通道 Gabor 滤波方法等。

特征提取方法

根据掌静脉的生物特征 提出的特异性方法,以 及多特征融合、多模态 融合等。

网络搭建方法

考虑轻量型神经网络模型的搭建,减少超参数,尽量选择可解释性较高、能够具有现实意义的参数调节模型。

研究方法

Research Thought

方法创新

在前文提到的 ROI 区域选择方法、图像处理方法、特征提取方法和网络搭建方法中找可能提升的方法创新点。

提出的方法创新以简化模型、降低采集难度和提高信息安全为目的,从而增加该方法的适用范围。

应用创新

考虑提出的基于轻量型网络的掌静脉识别模型在 不同场景下的应用,如在移动设备实现移动身份认证、 支付等功能,提高了用户的便捷性和安全性。同时由 于其易用性,可以应用于智能家居、自助服务终端、 智能医疗等领域,提供更加智能化的用户体验。

视角创新

传统的掌静脉识别通常需要用户将手掌放在特定的位置进行扫描,需要接触式的设备和传感器。而新技术可以利用普通的摄像头进行图像采集,实现非接触式的掌静脉识别。同时还可以在选择 ROI 区域的基础上加入对于掌纹、手型等因素的考虑,实现多模态/多特征的融合。

指标创新

传统的指标通常关注准确率、召回率、假阳性率等,轻量型网络的掌静脉识别技术,还可以引入轻量 化指标来评估模型的性能。例如,可以考虑模型的参 数量、计算复杂度、模型大小等指标,以评估网络在 资源受限环境下的有效性和可应用性。

04 -存在的问题

Existence Problems

可能存在的问题问题可能的解决办法

存在的问题

香港理工大学 (Polyu) 掌纹数据集 **Existence Problems** CASIA掌纹数据集 CASIA多光谱掌纹数据集(含掌静脉数据集) IIT-D掌纹数据集 常见公开数据库 同济大学掌纹数据集(也有掌静脉数据集) Ferrer掌纹数据集 数据库的选用 NUIG 掌纹数据集 可以选择一个较大、认可度较高的数据集进行实验,再在其他数据集上 进行进行检验和调整参数,避免对于某一个相对小型的数据库造成过拟 合。 学习使用生物信息相关专业的APP 存在的问题 3D图像 (如果有) 预处理 对相应3D图像进行切片处理 涉及筛选出"最优切片",需要考虑参数和指标的选择。 图像处理增强 - 6

代码实现 (4)

多模态/多特征实现

存在的问题

Existence Problems

存在的问题

Existence Problems

参考文献

- [1] ROSS AA, NANDAKUMAR K, JAIN AK. Handbook of multibiometrics: Vol. 6[M]. Springer Science & Business Media, 2006.
- [2] Michael G K O, Connie T, Teoh A B J. A contactless biometric system using multiple hand features[J]. Journal of Visual Communication and Image Representation, 2012, 23(7): 1068-1084.
- [3] 颜学葵. 掌静脉识别算法研究[D]. 华南理工大学, 2016.
- [4]李强. 掌静脉身份识别技术的理论与实验研究[D]. 华中科技大学, 2010.
- [5] Jia W, Gao J, Xia W, et al. A Performance Evaluation of Classic Convolutional Neural Networks for 2D and 3D Palmprint and Palm Vein Recognition[J]. International Journal of Automation and Computing, 2020, 18(1): 18-44.
- [6] Tan M, Le Q V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[J], 2020.
- [7] 聂昊, 鲁玺龙, 郭文志, et al. 多模态生物特征识别技术的研究进展. 生命科学仪器[J], 2020, 18(05): 20-28.
- [8] 王鹏. 基于深度学习的掌静脉特征提取与识别算法研究[D]. 重庆工商大学, 2020.

参考文献

- [9] 张秀峰, 牛选兵, 王伟, et al. 掌静脉识别研究综述 [J]. 大连民族大学学报, 2020, 22(01): 33-37.
- [10] Chen Y-Y, Hsia C-H, Chen P-H. Contactless Multispectral Palm-Vein Recognition With Lightweight Convolutional Neural Network[J]. IEEE Access, 2021, 9: 149796-149806.
- [11] Jia W, Xia W, Zhao Y, et al. 2D and 3D Palmprint and Palm Vein Recognition Based on Neural Architecture Search[J]. International Journal of Automation and Computing, 2021, 18(3): 377-409.
- [12] 彭菲. 生物特征识别技术的现状和未来展望. 中国安防[J], 2021(11): 78-81.
- [13] Horng S-J, Vu D-T, Nguyen T-V, et al. Recognizing Palm Vein in Smartphones Using RGB Images[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 5992-6002.
- [14] Hsia C H, Ke L Y, Chen S T. Improved Lightweight Convolutional Neural Network for Finger Vein Recognition System[J]. Bioengineering (Basel), 2023, 10(8).
- [15] 谭振林, 刘子良, 黄蔼权, et al. 掌静脉识别的深度学习方法综述. 计算机工程与应用[J], 2023: 1-12.

谢谢观看

SUN YAT-SEN UNIVERSITY 2023