

Introduction to Deep Learning

Pabitra Mitra
Indian Institute of Technology Kharagpur
pabitra@cse.iitkgp.ac.in

NSM Workshop on Accelerated Data Science

Deep Learning

- Based on neural networks
- Uses deep architectures
- Very successful in many applications

Perceptron

Neuron Models

ullet The choice of activation function \ensuremath{arphi} determines the neuron model.

Examples:

• step function:
$$\varphi(v) = \begin{cases} a & \text{if } v < c \\ b & \text{if } v > c \end{cases}$$

• ramp function:
$$\varphi(v) = \begin{cases} a & \text{if } v < c \\ b & \text{if } v > d \\ a + ((v-c)(b-a)/(d-c)) & \text{otherwise} \end{cases}$$

• sigmoid function with z,x,y parameters
$$\varphi(v) = z + \frac{1}{1 + \exp(-xv + y)}$$

Gaussian function:

$$\varphi(v) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2} \left(\frac{v-\mu}{\sigma}\right)^2\right)$$

Sigmoid unit

• f is the sigmoid function

$$f(x) = \frac{1}{1 + e^{-x}}$$

- Derivative can be easily computed:
- Logistic equation
 - used in many applications
 - other functions possible (tanh)
- Single unit:
 - apply gradient descent rule
- Multilayer networks: backpropagation

$$\frac{df(x)}{dx} = f(x)(1 - f(x))$$

Multi layer feed-forward NN (FFNN)

- FFNN is a more general network architecture, where there are hidden layers between input and output layers.
- Hidden nodes do not directly receive inputs nor send outputs to the external environment.
- FFNNs overcome the limitation of single-layer NN.
- They can handle non-linearly separable learning tasks.

3-4-2 Network

Backpropagation

- Initialize all weights to small random numbers
- Repeat

For each training example

- 1. Input the training example to the network and compute the network outputs
- 2. For each output unit *k*

$$\delta_k \leftarrow o_k (1 - o_k) (t_k - o_k)$$

3. For each hidden unit h

$$\delta_h \leftarrow o_h (1 - o_h) \sum_{k \in \text{outputs}} w_{k,h} \delta_k$$

4. Update each network weight $w_{i,i}$

$$W_{j,i} \leftarrow W_{j,i} + \Delta W_{j,i}$$

where $\Delta w_{j,i} = \eta \, \delta_j x_{j,i}$

NN DESIGN ISSUES

- Data representation
- Network Topology
- Network Parameters
- Training
- Validation

Expressiveness

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer (Cybenko et al '89)
 - Hidden layer of sigmoid functions
 - Output layer of linear functions
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers (Cybenko '88)
 - Sigmoid units in both hidden layers
 - Output layer of linear functions

Choice of Architecture Neural Networks

Training Set vs Generalization error

Motivation for Depth

Large, Shallow Models Overfit More

Motivation: Mimic the Brain Structure

Neurons Arranged In Coupled Layers

End-to-End Neural Architecture

Motivation

• Practical success in computer vision, signal processing, text mining

Increase in volume and complexity of data

Availability of GPUs

Convolutional Neural Network: Motivation

Hierarchical organization

Simple cells:

Response to light orientation

Complex cells:

Response to light orientation and movement

Hypercomplex cells:

response to movement with an end point

[Zeiler and Fergus, 2013] 11.1% error

CNN

Max Pooling Layer

Every layer of a ConvNet has the same API:

- Takes a 3D volume of numbers
- Outputs a 3D volume of numbers
- Constraint: function must be differentiable

What do the neurons learn?

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Example activation maps

Training

Loop until tired:

- 1. Sample a batch of data
- 2. Forward it through the network to get predictions
- 3. **Backprop** the errors
- 4. **Update** the weights

ResNet

CNN + Skip Connections

Pyramidal cells in cortex

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (in each dimension)
- Additional conv layer at the beginning
- No FC layers at the end (only FC 1000 to output classes)

Densenet

Figure 2. A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change feature map sizes via convolution and pooling.

Challenges of Depth

• Overfitting – dropout

Vanishing gradient – ReLU activation

Accelerating training – batch normalization

Hyperparameter tuning

Computational Complexity

Comparing complexity...

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

Types of Deep Architectures

RNN, LSTM (sequence learning)

Stacked Autoencoders (representation learning)

GAN (classification, distribution learning)

- Combining architectures unified backprop if all layers differentiable
 - Tensorflow, PyTorch

References

• Introduction to Deep Learning – Ian Goodfellow

Stanford Deep Learning course