Computational Pangenomics #CPANG18

Day 2 (March 7, 2018)

Tobias Marschall, Erik Garrison, and Jordan Eizenga

Wrap-up of day 1

- Variation graphs
- Data model
 - Graph, Node, Edge, Path, Mapping, Position, Edit, Alignment
- vg
 - construct, view, index, find, sim, map
- Practical discussion

Train track graphs

The graph is implicitly bidirectional, encoding both the forward and reverse complement.

Edges switching from the forward (+) to reverse (-) represent inversions.

github.com/vgteam/vg

Data model

Basic entity is a *Graph*:

Implemented in vg using protobuf, JSON, RDF, and GFA

vg construct

tiny.fa

1:CAAATAAGGCTTGGAAATTTTCTGGAGTTCTATTATATTCCAACTCTCTG

tiny.vcf.gz

#CHROM	POS	REF	ALT	
Χ	9	G	Α	
Χ	10	C	T	
Χ	14	G	Α	
Χ	34	T	Α	
Χ	39	T	Α	
inv.va				

vg construct \
 -v tiny/tiny.vcf.gz \

-r tiny/tiny.fa >tiny.vg

vg index

tiny.vg


```
vg index tiny.vg \
  -x tiny.xg \
  -g tiny.gcsa -k 16
```

vg kmers -gk 16 tiny.vg	g head	-50		
ATTTGGAAATTTTCTG	2:0	G	G	9:10
GTTTGGAAATTTTCTG	3:0	G	G	9:10
CAAATAAGATTTGAAA	1:0	#	Α	9:2
GTTTGAAAATTTTCTG	3:0	G	G	9:10
ATTTGAAAATTTTCTG	2:0	G	G	9:10
GCTTGAAAATTTTCTG	3:0	G	G	9:10
TAAGATTTGAAAATTT	1:4	Α	T	9:6
GCTTGGAAATTTTCTG	3:0	G	G	9:10
AATAAGATTTGAAAAT	1:2	Α	T	9:4
CCTTATTTG\$\$\$\$\$\$	3:-0	A,G	\$	17:7
ACTTGAAAATTTTCTG	2:0	G	G	9:10
CTTGAAAATTTTCTGG	5:0	A,G	Α	9:11
CAAATAAGATTTGGAA	1:0	#	Α	9:2
CTTGGAAATTTTCTGG	5:0	A,G	Α	9:11
AAATAAGATTTGAAAA	1:1	С	Т	9:3

vg find

```
vg find -x tiny.xg \
   -p x:20-25 -c 1 \
   | vg view -d -
```

Query the nodes around x:20-25 in the reference path "x".


```
vg find -g tiny.gcsa \
    -S TCCAGAAAATTTTCAA
→ 9:-7
```

Query the position of a particular sequence in the GCSA2 index.

vg sim

Use a haplotype representing some variants relative to the tiny.vg to build a new graph:

```
vg msga -g tiny.vg -Nz \
   -s CAAATAAGGTTTGCAAATTTTCTGGAGTACTATAATATTCCAACTCTCTG \
   >truth.vg
```


We can then use it as a generative model and sample reads from it:

```
vg sim -1 50 -n 10 -s 1337 -x truth.xg >truth.reads
```

vg map

vg map -x tiny.xg -g tiny.gcsa -T truth.reads >aln.gam

```
"sequence": "CAGAGAGTTGGTATATTATAGAACTCCAGAAAATTTCCAAACCTTATTTG",
"identity": 1,
"path": {
 "mapping": [
   "position": {
    "node_id": 15,
    "is_reverse": true
   "edit": [
     "from_length": 11,
     "to_length": 11
   "rank": 1
   "position": {
    "node_id": 13,
    "is_reverse": true
   "edit": [
     "from_length": 1,
     "to_length": 1
```

vg view -a aln.gam

alignment viz

Blue represents perfect match. Yellow represents a mismatch.

Questions

How comfortable are you with the concept of a pangenome?

How well do you understand vg construct?

How comfortable are you with the concept of indexing a pangenome?

Do you feel that you could set up and evaluate a read mapping pipeline in vg?

Today, how easy would it be for you to use the vg data model in your own project?

Day 1 practical results

What did we find?

Nano-presentations by various groups on their results.

Discussion.

Day 2 proper

New commands: msga, surject, vectorize, mod, augment

vg msga

vg view -dp L-3139.vg

vg surject

vg map -x z.xg -g z.gcsa -G z.sim | vg surject -d z.xg >aln.bam or

vg map -d z -G z.sim --surject-to bam >aln.bam

Select the path to surject into with --into-path or --into-paths

26791 26801 26811 26821 26831 FAAATGAAATGGCAACTGAAAGGACAGGTGGAAGGATGTGTGGGTAACTAGA	26841 26851 TGGGAGGGTGAATAGAATAAT			26881 ATGTCTAGO	26891 CTCTTGCCCC	26901 ICTCTTCCCA	26911 ACTGCCTTTT
MY		 					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,	,,,,,,,,	,,,,,,,,,,,	,,,,,,,,,,	,,,,,,,,,,
c,,,,,,t,,,,,,,,a,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,	,,,,,,,,	,,,,,,,,,,,	111111111	,,,,,,,,,,
	,,,,,t,,,,,,,,		,,,,,,,,,,	,,,,,,,,	,,,,,,,,,,,		,,,,,,,,,,
CA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,	,,,,,,,,	,,,,,,,,,,,		,,,,,,,,,,
,,,,,,,,,,,,,a,,,,a						TT	
C							
C,,,,,,,,		,,,,,t,,,,	,,,,,,,,,,	,,,,,,,,,	,,,,,,,,,,,,		,,,,,,,,,,
CT		,,,t,,,,,	,,,,,,,,,,	, C, , , , ,	,,,,,,,,,,,	,,,,,,,,,	,,,,,,,,,,
c,,,,,,,,,,,,,,a,,,a,,,,,,,,,,,,,,,,,,		111	,,,,,,,,,,	,,,,,,,,	,,,,,,,,,,,	,,,,,,,,,	,,,,,,,,,,
C					11111	,,,,,,,,,	,,,,,,,,,,
C						,,,,,,,,,	,,,,,,,,,,
,,,,C,g,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111				111111	,,,,,,,,,
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					111	,,,a,,,cg
c,,,,,t,c,,,,,,,,,,,,,,,,t,c,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
C,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111				
		A					
C							
,,,,,,,,,,,,,,,,,a,,,,a,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,	,,,,,,,,	, ,		
c,,,,,,,,,,,,,,,a,,,a,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,	111		
,,,,,,,C,,,,,,,,a,,,,a,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,	,,,,,,,,	,,,,,,,,,,,	111111111	,,,,,,,,,,
,,,,,,,,,,,,,,,a,,,a,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11111111	11111111111	111111111	1111111111
,,,,,,,a,,,,a,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,	11111111	1111111111111	111111111	,,,,,,,,,
A		G					

vg vectorize -f -x tiny.xg aln.gam

vg vectorize

aln.name	node.1	node.2	node.3	node.4	node.5	node.6	node.7	node.8	node.9	node.10	node.11	node.12	node.13	node.14	node.15
d20030447889ddce	1	Θ	1	1	Θ	1	1	Θ	1	1	0	1	1	0	1
617e3f3871de4388	1	1	0	1	Θ	1	0	1	1	0	1	1	Θ	1	1
47747b2abe90ed0c	1	Θ	1	1	Θ	1	Θ	1	1	Θ	1	1	Θ	1	1
37b9b60a8a5213ff	1	1	Θ	1	Θ	1	Θ	1	1	1	0	1	Θ	1	1
e5d31d6cd282cf8d	1	Θ	1	1	Θ	1	0	1	1	0	1	1	Θ	1	1
57dda702eaeb82c9	1	Θ	1	Θ	1	1	1	Θ	1	1	0	1	1	0	1
08343878ae5b90f3	1	Θ	1	Θ	1	1	1	Θ	1	Θ	1	1	Θ	1	1
757b525e41d48830	1	1	Θ	1	Θ	1	1	Θ	1	1	0	1	Θ	1	1
cd17bf40552fc5a2	1	Θ	1	1	Θ	1	0	1	1	Θ	1	1	Θ	1	1
1b8e295543bed0e8	1	1	0	1	0	1	0	1	1	0	1	1	1	0	1

vg mod

MANY graph modification tools in one command line utility.

- Sorting
- Chopping
- Simplification
- Augmentation
- Unfolding/unrolling
- Path manipulation (add, remove, keep)
- ... etc, etc

vg mod -pl / vg prune

vg mod -pl 8 -e 2 tiny.vg
or
vg prune -k 8 -e 2 -s 0 tiny.vg

Removes edges for which we would have crossed 2 bifurcations in a path of 8 bases. (Used in indexing.)

vg mod -i / vg augment

vg map -d tiny -G <(vg sim -n 10 -e 0.1 -i 0.05 -l 50 -a -x tiny.xg) >aln.gam vg mod -i aln.gam tiny.vg >tiny+.vg vg augment -g 1 -A aln+aug.gam tiny.vg aln.gam

vg mod -i / vg augment

vg map -d tiny -G <(vg sim -n 10 -e 0.1 -i 0.05 -l 50 -a -x tiny.xg) >aln.gam vg mod -i aln.gam tiny.vg >tiny+.vg vg augment -g 1 -A aln+aug.gam tiny.vg aln.gam

