Лекция. Матстат(11.10.24)

$$F(x; heta)$$
 F — известна, $heta$ неизвестна $H_0: heta = heta_0$ $H_1: heta
eq heta_0$ $\lambda = rac{L_x(heta_0)}{\max_{ heta} L_x(heta)} = rac{L_x(heta_0)}{L_x(\hat{ heta})}$

Отвергается H_0 , если $\lambda \leq \lambda_{\alpha}$ α - уровень значимости

$$P(\lambda \leq \lambda_{\alpha} \mid H_0 \text{ верна}) \leq \alpha$$
 $X \in N(a, \sigma^2), \ \sigma^2$ - известна $H_0: a = a_0$ $H_1: a \neq a_0$ $\frac{\sqrt{n} |\overline{x} - a_0|}{\sigma} > z_{1-\alpha/2}$ $F(x)$ - Φ .p. $H_0: F(x) = F_0(x)$ $H_1: F(x) \neq F_0(x)$

Гистограмма $p_{0_i} = F_0(a_i) - F_0(a_{i-1})$ Выборка объёма п π_i - истенные вер. $(\pi_1 \dots, \pi_k)$ $(m_1, \dots, m_k$ - имеет полином р

$$p(x_1 = m_1, \dots, x_k = m_k) = \frac{n!}{m_1! \dots m_k!} \prod_{i=1}^k \pi_i^{m_i} = L_x(\pi_1, \dots, \pi_k)$$

При
$$H_0:\pi_i=p_{i0},\ i=\overline{1,k}$$
 $\max_{\pi_1,\dots,\pi_k}L_x(\pi,\dots,\pi_k)=$ При $\pi_i=\frac{m_i}{n}$

$$\lambda = \frac{L_x(p_{10},\dots,p_{k0})}{L_x(\frac{m_1}{n},\dots,\frac{m_k}{n})} = \frac{\prod_{i=1}^k(p_{i_0}^{m_i})}{\prod_{i=1}^k(\frac{m_i}{n})^{m_i}} = \prod_{i=1}^k(\frac{p_{i_0}}{m_i})^{m_i}$$

$$-2\ln\lambda = 2\sum_{i=1}^k m_i \ln\frac{m_i}{np_{i_0}} = 2\sum_{i=1}^k\left((m_i-np_{i_0})+np_{i_0}\right)\ln(1+\Delta_i) = \left((m_i-np_{i_0}+p_{i_0})\left(\Delta_i-\frac{\Delta_i^2}{2}\right)\right)$$

$$\Delta_i = \frac{m_i-np_{i_0}}{np_{i_0}} = \frac{m_i}{np_{i_0}} - 1$$

$$\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$$

$$\sum_{i=1}^k p_{i_0}\Delta_i = \sum_{i=1}^k \frac{m_i-np_{i_0}}{n} = \frac{1}{n}\left(\sum_{i=1}^k m_i - n\sum_{i=1}^k p_{i_0}\right) = 0$$

$$= 2(\chi^2 - \frac{1}{2}\chi^2) = 2\frac{\chi}{2} = \chi^2$$

$$n \to \infty - 2\ln\lambda \sim \chi^2(k-1)$$

$$f(x;\theta_1,\theta_2)$$

$$H_0: \theta_1 = \theta_{10}$$

$$H_1: \theta_1 \neq \theta_{10}$$

$$\theta_2 - \text{ неизвестен (мешающий)}$$

$$\lambda = \frac{\max_{\theta_1,\theta_2} L_x(\theta_{10},\theta_2)}{\max_{\theta_1,\theta_2} L_x(\theta_{10},\theta_2)}$$

 $\lambda < \lambda_2$ - otb H_0

ПОМОГИТЕ $X \in N(a,\sigma^2), \ \sigma^2$ - неизв

 $H_0: a = a_0$

$$H_1: a \neq a_0$$

$$\theta = (a, \sigma^2)$$

$$L_x(\theta) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - a)^2\right)$$

При гипотезе

$$\max_{\sigma^2} L_x(a_0,\sigma^2) = L_x(a_0.\tilde{\sigma^2})$$

$$\tilde{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (x_i - a_0)^2 = s^2 + (\overline{x} - a_0)^2$$

$$s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

$$\max_{a,\sigma^2} L_x(a,\sigma^2) = L_x(\overline{x},s^2) = (2\pi s^2)^{-\frac{n}{2}} \exp(-\frac{n}{2})$$

$$\lambda = \left(\frac{s^2}{s^2 + (\overline{x} - a_0)^2}\right)^2 = \left(\frac{1}{1 + \frac{(\overline{x} - a_0)^2}{s^2}}\right)^{\frac{n}{2}} = \left(\frac{1}{1 + \frac{t^2}{n}}\right)^{\frac{n}{2}}$$

$$t = \frac{\sqrt{n} \ (\overline{x} - a_0)}{s}$$

$$\frac{\sqrt{n} \ |\overline{x} - a_0|}{s} \ge c_\alpha = c_{1 - \frac{\alpha}{2}}$$

$$\frac{\sqrt{n} \ |\overline{x} - a_0|}{s} \in t(n-1)$$
 по α и $\nu = n-1$
$$t_{1 - \frac{\lambda}{2}}(\nu)$$
 - квантиль пор $1 - \frac{\alpha}{2}$

Диспресионный анализ $H_0: \sigma_1 = \sigma_2 = \cdots = \sigma_k$ (самим)

Доверительный интервал

 $\hat{\theta_n}$ - оценка

Использовать неравенство Чебышева

$$E_{\theta}(\hat{\theta_n}) = \theta$$

$$D_{\theta}(\hat{\theta_n}) = \sigma^2$$

$$P(|\hat{\theta_n} - \theta_0| > 36) \leq \frac{1}{9}$$

$$|\hat{\theta_n} - \theta_0| \leq 36$$

$$X \in N(a, \sigma^2), \ \sigma^2 - \text{H3B}$$

$$P_{a_0}(\frac{\sqrt{n} \ |\overline{x} - a_0|}{\sigma} \geq z_{1-\alpha/2} \leq \alpha$$

$$P_{a_0}(\frac{\sqrt{n} \ |\overline{x} - a_0|}{\sigma} < z_{1-\alpha/2}) \geq 1 - \alpha$$

$$P_{a_0}(\overline{x} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} < a_0 < \overline{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}) \geq 1 - \alpha$$

<u>Def</u> Доверительным интервалом с границами $(\hat{\theta_1}(x), \hat{\theta_2}(\theta))$ $P((\hat{\theta_1}(x), \hat{\theta_2}(x)) \ni \theta) \ge \gamma$

Качество статистических критериев