INTELIGÊNCIA ARTIFICIAL

JÁ SEI E QUERO MAIS!!!

2° MEETUP AI BRASIL POA

RHUAM SENA

MESTRE EM INTELIGÊNCIA ARTIFICIAL / UFRGS

- CTO SANTO CONTRATO
- VISA COMMUNITY DEVELOPER
- PROFESSOR

APRESENTAÇÃO E EXEMPLOS

http://bit.ly/AI_BRASIL

Agenda

- O que é IA?
 - IA x ML x RN x DL
- Mercado de IA
- Desafios e Oportunidades
- Aprendizado de máquina com exemplos práticos
 - Supervisionado
 - Não-Supervisionado
 - Por Reforço
- Redes Neurais, Deep Learning, Redes Neurais Convolucionais, ...

O QUE É IA?

O QUE É IA?

Capacidade das máquinas de pensarem como seres humanos

- Aprender
- Raciocinar
- Perceber
- Deliberar
- Decidir

"

Uma capacidade do sistema para interpretar corretamente dados externos, aprender a partir desses dados e utilizar essas aprendizagens para atingir objetivos e tarefas específicos através de adaptação flexível.

IA x ML x RN x DL

INTELIGÊNCIA ARTIFICIAL

Técnica que habilitar em máquinas os comportamentos humanos.

MACHINE LEARNING

Uso de métodos estatísticos para atingir os objetivos da IA.

REDES NEURAIS

Algoritmos para processar dados e imitar o processamento feito pelo cérebro humano.

DEEP LEARNING

Usa várias camadas de neurônios matemáticos para processar dados, compreender a fala humana e reconhecer objetos visualmente.

MERCADO DE IA

MERCADO

COLUNISTAS

REVISTA

PODCASTS

15/07/2019 - 20H12 - ATUALIZADA ÀS 20H12 - POR ÉPOCA NEGÓCIOS ONLINE

Conhecimento em IA será fundamental no mercado de trabalho até 2030, aponta Dell

Será preciso saber o que as máquinas podem e não podem fazer, assim como o que elas devem e não devem fazer

MERCADO

COLUNISTAS

REVISTA

PODCASTS

Será preciso saber o que as máquinas podem e não podem fazer, assim como o que elas devem e não devem fazer

I MII MAIII CII CAI III CI CAMO MC

trabalho até 2030, aponta Dell

Será preciso saber o que as máquinas podem e não podem fazer, assim como o que elas devem e não devem fazer

MERCADO

Internet

Foco em melhorar a experiência digital. Geralmente baseada em mecanismos de recomendação, como, por exemplo, sites recomendados pelo Google, músicas sugeridas pelo Spotify ou séries para ver no Netflix.

Business

Foco em otimizar os dados que as empresas tradicionais e governos possuem. Busca otimizar custos ou prover um melhor serviço ao cliente, como por exemplo, nas áreas jurídicas, médicas e no mercado financeiro.

Percepção

A máquina ganha olhos e ouvidos e começa a "perceber" o mundo. Avanço do reconhecimento de imagem e som!

Autonomia

Tomada de decisões com base em textos, imagens e sons. Carros autônomos e Chatbots são algumas das aplicações possíveis.

FUTURO DOS EMPREGOS E EMPRESAS

FUTURO DOS EMPREGOS E EMPRESAS

DESAFIOS E OPORTUNIDADES

- Geração de conteúdo
- Reconhecimento facial
- Processamento de linguagem natural
- Chatbots
- Assistentes Virtuais
- Veículos Autônomos
- Exploração espacial
- Jogos
- Banco e Finanças
- Agricultura
- Saúde
- Marketing

- Geração de conteúdo
- Reconhecimento facial
- Processamento de linguagem natural
- Chatbots
- Assistentes Virtuais
- Voículos Autônomos

NSynth: Sound Maker

https://experiments.withgoogle.com/ai/sound-maker/view/

- Reconhecimento facial
- Processamento de linguagem natural
- Chatbots
- Assistentes Virtuais
- Veículos Autônomos

Amstel: Torcedor Virtual

https://www.torcedorartificial.com.br

- Exploração espacial
- Jogos
- Banco e Finanças
- Agricultura
- Saúde

a Markatina

Teachable Snake

https://teachable-snake.netlify.com

APRENDIZADO DE MÁQUINA

APRENDIZADO DE MÁQUINA

Supervisionado

É indispensável um conhecimento prévio dos dados.

Não-Supervisionado

o Dispensa conhecimento dos dados.

Por Reforço

 Aprende por tentativa e erro. Também conhecido como aprendizado semi-supervisionado.

APRENDIZADO SUPERVISIONADO

APRENDIZADO SUPERVISIONADO

CLASSIFICAÇÃO

Dada um exemplo de tumor cancerígeno, temos de prever se ele é benigno ou maligno através do seu tamanho e idade do paciente.

REGRESSÃO

Dado um conjunto de dados sobre o tamanho de casas no mercado imobiliário, tentar prever o seu preço.

ALGORITMOS DE REGRESSÃO

REGRESSÃO LINEAR

vertical.

Buscar uma equação para estimar o valor esperado de uma variável y, dados os valores de outras variáveis.

ALGORITMOS DE REGRESSÃO

REGRESSÃO LINEAR

EXEMPLO PRÁTICO

Abra o arquivo regression.ipynb

http://bit.ly/AI_BRASIL

REGRESSÃO LOGÍSTICA

O modelo de regressão logística é semelhante ao modelo de regressão linear. No entanto, a variável resposta y é binária.

$$y = \log \frac{p}{1 - p}$$

PREDIÇÃO

O valor que se quer descobrir.

PROBABILIDADE

É a probabilidade de um evento ocorrer divido pela probabilidade dele não ocorrer.

FUNÇÃO LOGARITIMICA

Faz a curva de regressão logística.

REGRESSÃO LOGÍSTICA

ÁRVORE DE DECISÃO

A ideia geral de métodos baseados em árvores é particionar o espaço recursivamente em sub-regiões, nos quais um modelo simples é aprendido.

São usados critérios de pureza com Entropia e Information Gain.

ÁRVORE DE DECISÃO

- Setosa (amarela)
- Versicolor (verde)
- Viriginica (roxa)

ÁRVORE DE DECISÃO

petal length (cm) ≤ 2.45 samples = 150 value = [50, 50, 50] class = setosa

ÁRVORE DE DECISÃO

ÁRVORE DE DECISÃO

FLORESTAS ALEATÓRIAS

Ele busca a melhor característica em um subconjunto aleatório das características observadas. Este processo cria uma grande diversidade, o que geralmente leva a geração de modelos melhores.

FLORESTAS ALEATÓRIAS

KNN (K-NEAREST NEIGHBORS)

É um classificador onde o aprendizado é baseado "no quão similar" é um dado (um vetor) do outro.

- 1. Recebe um dado não classificado
- 2. Mede a distância do novo dado com todos os outros dados que já estão classificados
- 3. Obtém as X menores distâncias
- 4. Conta as classe mais próximas
- 5. Classifica o novo dado com a classe mais frequente.

KNN (K-NEAREST NEIGHBORS)

NAÏVE BAYES

O algoritmo "Naïve Bayes" é um classificador probabilístico baseado no "Teorema de Bayes".

PROBABILIDADE

É a probabilidade que representa a probabilidade do preditor dada a classe.

$$|B| = \frac{P(B|A)P(A)}{P(B)}$$

PROBABILIDADE POSTERIOR

É a probabilidade posterior da classe A dada o preditor B.

PROBABILIDADE DA CLASSE

É a probabilidade original da classe.

É a probabilidade original do preditor.

NAÏVE BAYES

A probabilidade de ter dor no pescoço S se tem meningite M é 50%

A probabilidade de ter meningite é 0.002%

A probabilidade de ter dor no pescoço é 5%

Qual a probabilidade de ter meningite, dado que tem dor no pescoço?

$$P(M|S) = \frac{P(S|M)P(M)}{P(S)}$$

NAÏVE BAYES

A probabilidade de ter dor no pescoço S se tem meningite M é 50%

A probabilidade de ter meningite é 0.002%

A probabilidade de ter dor no pescoço é 5%

Qual a probabilidade de ter meningite, dado que tem dor no pescoço?

$$P(S|M) = 0.5$$

 $P(M) = 0.00002$
 $P(S) = 0.05$
 $P(M|S) = \frac{P(S|M)P(M)}{P(S)}$
 $P(M|S) = 0.0002$

SVM (MÁQUINA DE VETORES DE SUPORTE)

É uma representação de exemplos como pontos no espaço, mapeados de maneira que os exemplos de cada categoria sejam divididos por um espaço claro que seja tão amplo quanto possível.

Encontrar uma linha de separação, mais comumente chamada de hiperplano entre dados de duas classes. Essa linha busca maximizar a distância entre os pontos mais próximos em relação a cada uma das classes

EXEMPLO PRÁTICO

Abra o arquivo classification.ipynb

http://bit.ly/AI_BRASIL

APRENDIZADO NÃO-SUPERVISIONADO

KMEANS

É um algoritmo que treina um modelo para agrupar objetos semelhantes. Para isso, ele mapeia cada observação no conjunto de dados de entrada para um ponto no espaço de n dimensões (em que n é o número de atributos da observação).

- 1. Ele determina os centros aleatoriamente de k clusters iniciais.
- 2. Mapeia os dados mais próximos
- 3. Recalcula o centro

EXEMPLO PRÁTICO

Abra o arquivo unsupervised.ipynb

http://bit.ly/AI_BRASIL

O aprendizado é baseado em **tentativa e erro** através de interações com o ambiente. Ou seja, este método se distingue do problema do aprendizado supervisionado no sentindo em que pares de input/output corretos nunca são apresentados, nem as ações sub-ótimas são explicitamente corrigidas.

ESTADOS

ALGORITMO APRENDIZADO POR REFORÇO

Q-LEARNING

EXEMPLO PRÁTICO

Abra o arquivo reinforcement.ipynb

http://bit.ly/AI_BRASIL

UM POUCO MAIS

Pode ser definida como uma estrutura complexa interligada por elementos de processamento simples (neurônios), que possuem a capacidade de realizar operações como cálculos em paralelo, para processamento de dados e representação de conhecimento.

Obrigado

Dúvidas ou sugestões?

CURSO PRESENCIAL DE FÉRIAS INTELIGÊNCIA ARTIFICIAL

- ► APROFUNDAMENTO EM TODO CONTEÚDO VISTO
- ► MÉTRICAS DE AVALIAÇÃO DE MODELOS
- ► PRÁTICA DE REDE NEURAIS ARTIFICIAIS

3x 69,00 07/11/2019 10 HORAS DE AULA ATÉ 10 PESSOAS

