$$\lim_{t\to +\infty} g(t) = 100,000 = 10^5$$

b)
$$g(t=0)=10$$
 en $g'(t=0)=\frac{dy}{dt}(t=0)=0,5$

$$\int \frac{dy}{y \cdot (10^5 - y)} = \int k \cdot dt$$

$$-\frac{1}{10^5}$$
. $\ln\left(\frac{1y-40^5}{|y|}\right) = k.t + C$

ken K bepalen mit
$$y(t=0)=10$$

en

 $y'(t=0)=0,5$
 $10=\frac{10^{5}}{1+K}$
 $x=0$
 $y'(t=0)=0,5$
 $x=0$
 $x=0$

mu
$$\frac{dy}{dt} = k. y. (10-y) getrucker$$

 $0,5 = k. 10. (10^5 - 10)$
 $k = 5,0005.10$

$$y(t) = \frac{10^{5}}{1 + 9999.2} = \frac{10^{5}.5,0005.10^{-7}.t}{1}$$

$$y(t) = \frac{10^{5}}{10^{5}}$$

A+ 9999. 2 - 5,0005.10⁻².t

d.)
$$solve(y(t) = 50000, t) = > t = 184,186 dogen$$