Forelesning 11

Vi kan finne de korteste veiene fra hver node etter tur, men mange av delproblemene vil overlappe – om vi har mange nok kanter lønner det seg å bruke dynamisk programmering med dekomponeringen «Skal vi innom k eller ikke?»

Pensum

☐ Kap. 25. All-pairs shortest paths: Innledning, 25.2 og 25.3

Læringsmål

- [K₁] Forstå forgjengerstrukturen for alle-til-alle-varianten av korteste vei-problemet
 Operasjoner: Print-All-Pairs-Shortest-Path
- [K₂] Forstå Floyd-Warshall
- [K₃] Forstå Transitive-Closure
- [K₄] Forstå Johnson

Forelesningen filmes

Kjøretid, Dijkstra

korteste vei > dijkstra > kjøretid

Operasjon

Antall Kjøretid

Operasjon

Antall Kjøretid

Initialisering

Operasjon	Antall	Kjøretid
Initialisering	1	

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Build-Heap		

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Build-Heap	1	

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Build-Heap	1	$\Theta(\mathrm{V})$

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Build-Heap	1	$\Theta(\mathrm{V})$
Extract-Min		

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Build-Heap	1	$\Theta(V)$
Extract-Min	V	

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Build-Heap	1	$\Theta(V)$
Extract-Min	V	$O(\lg V)$

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Build-Heap	1	$\Theta(\mathrm{V})$
Extract-Min	V	$O(\lg V)$
Decrease-Key		

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Build-Heap	1	$\Theta(V)$
Extract-Min	V	$O(\lg V)$
Decrease-Key*		

^{*}Nødvendig i Relax

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Build-Heap	1	$\Theta(\mathrm{V})$
Extract-Min	V	$O(\lg V)$
Decrease-Key*	${ m E}$	

^{*}Nødvendig i Relax

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Build-Heap	1	$\Theta(V)$
Extract-Min	V	$O(\lg V)$
Decrease-Key*	\mathbf{E}	$O(\lg V)$

^{*}Nødvendig i Relax

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Build-Heap	1	$\Theta(V)$
Extract-Min	V	$O(\lg V)$
Decrease-Key*	\mathbf{E}	$O(\lg V)$

^{*}Nødvendig i Relax

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Build-Heap	1	$\Theta(V)$
Extract-Min	V	$O(\lg V)$
Decrease-Key*	${f E}$	$O(\lg V)$

*Nødvendig i Relax

Med binærheap; bedre enn lineært søk for $E = o(V^2/\lg V)$

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Build-Heap	1	$\Theta(\mathrm{V})$
Extract-Min	V	$O(\lg V)$
Decrease-Key*	${f E}$	$O(\lg V)$

*Nødvendig i Relax

Boka bruker $V \times INSERT$; fortsatt $O(E \lg V)$

Operasjon	Antall	Kjøretid
Initialisering	1	$\Theta(V)$
Build-Heap	1	$\Theta(V)$
Extract-Min	V	$O(\lg V)$
Decrease-Key*	${ m E}$	$O(\lg V)$

*Nødvendig i Relax

1. Johnsons algoritme

2. Transitiv lukning

3. Floyd-Warshall

Johnsons algoritme

Efficient Algorithms for Shortest Paths in Sparse Networks

DONALD B. JOHNSON

The Pennsylvania State University, University Park, Pennsylvania

ABSTRACT Algorithms for finding shortest paths are presented which are faster than algorithms previously known on networks which are relatively sparse in arcs. Known results which the results of this paper extend are surveyed briefly and analyzed. A new implementation for priority queues is employed, and a class of "arc set partition" algorithms is introduced. For the single source problem on networks with nonnegative arcs a running

Input: En vektet, rettet graf G = (V, E) uten negative sykler, der $V = \{1, ..., n\}$, og vektene er gitt av matrisen $W = (w_{ij})$.

Input: En vektet, rettet graf G = (V, E) uten negative sykler, der $V = \{1, ..., n\}$, og vektene er gitt av matrisen $W = (w_{ij})$.

Output: En $n \times n$ -matrise D = (d_{ij}) med avstander, dvs., $d_{ij} = \delta(i, j)$.

Input: En vektet, rettet graf G = (V, E) uten negative sykler, der $V = \{1, ..., n\}$, og vektene er gitt av matrisen $W = (w_{ij})$.

Output: En $n \times n$ -matrise D = (d_{ij}) med avstander, dvs., $d_{ij} = \delta(i, j)$.

For spinkle grafer: Dijkstra fra hver node! Men ... hva om vi har negative kanter?

Vi vil øke vekter, men beholde rangering av stier

$$1 \xrightarrow{+k} 2 \xrightarrow{+k} 3 \xrightarrow{+k} 4$$

Fast økning: Stier med mange kanter taper på det

Fast økning: Stier med mange kanter taper på det

korteste vei > johnson

Vi kan tillate oss en <u>teleskopsum</u>...

korteste vei > johnson

$$1 \longrightarrow 2 \longrightarrow 4$$

Vekten w(u, v) økes med differansen h(u) - h(v)

Vekten w(u, v) økes med differansen h(u) - h(v)

Positive og negative ledd opphever hverandre...

Positive og negative ledd opphever hverandre...

Positive og negative ledd opphever hverandre...

Men disse deles av alle stier mellom disse nodene!

Hvordan sikrer vi ikke-negative vekter?

Vi må ha $w(u,v) + h(u) - h(v) \ge 0$, dvs. $w(u,v) + h(u) \ge h(v)$

$$w(u,v) + h(u) \geqslant h(v)$$

Vi må ha $w(u,v) + h(u) - h(v) \ge 0$, dvs. $w(u,v) + h(u) \ge h(v)$

$$w(u,v) + h(u) \geqslant h(v)$$

Fra én-til-alle: $\delta(s, v) \leq \delta(s, u) + w(u, v)$. Kan la $h(v) = \delta(s, v)$!

$$w(u, v) + h(u) \ge h(v)$$
$$w(u, v) + \delta(s, u) \ge \delta(s, v)$$

Men hva er s? Vi må sikre at vi når alle...

$$w(u, v) + h(u) \ge h(v)$$
$$w(u, v) + \delta(s, u) \ge \delta(s, v)$$

Vi kan legge til en ny node!

$$w(u, v) + h(u) \ge h(v)$$

$$w(u, v) + \delta(s, u) \ge \delta(s, v)$$

Vi kan legge til en ny node!

$$w(u, v) + h(u) \ge h(v)$$

$$w(u, v) + \delta(s, u) \ge \delta(s, v)$$

Kantene fra s kan f.eks. få vekt 0

$$w(u, v) + h(u) \geqslant h(v)$$
$$w(u, v) + \delta(s, u) \geqslant \delta(s, v)$$

(Merk: Vi verken innfører eller fjerner negative sykler)

G graf w vekting

JOHNSON(G, w)

Forenkling: Antar at vi ikke har

negative sykler, heller enn å sjekke for det – dvs., jeg ignorerer returverdien fra Bellman-Ford. Vil normalt avbryte

om den er false (som de gjør i boka).

1 construct G' with start node s

G graf
w vekting

JOHNSON(G, w)

- 1 construct G' with start node s
- 2 Bellman-Ford(G', w, s)

G graf
w vekting

- 1 construct G' with start node s
- 2 Bellman-Ford(G', w, s)
- 3 for each vertex $v \in G.V$

G graf

w vekting

v node

(Cormen et al. bruker her G', men s er overflødig)

- construct G' with start node s
- Bellman-Ford(G', w, s)
- 3 for each vertex $v \in G.V$
- h(v) = v.d

$$G ext{ graf}$$
 $w ext{ vekting}$

$$v \mod \epsilon$$

$$h \quad \delta(s,v)$$

- 1 construct G' with start node s
- 2 Bellman-Ford(G', w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$

G graf w vekting

node

 $h \quad \delta(s,v)$

(Cormen et al. bruker her G', men s er overflødig)

- 1 construct G' with start node s
- 2 Bellman-Ford(G', w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$
- 6 $\hat{w}(u,v) = w(u,v) + h(u) h(v)$

G graf

w vekting

u node

 $v \mod \epsilon$

 $h \quad \delta(s,v)$

 \hat{w} ny vekting

$$h(v) \leqslant h(u) + w(u, v) \implies \hat{w}(u, v) \geqslant 0$$

JOHNSON(G, w)

- 1 construct G' with start node s
- 2 Bellman-Ford(G, w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$
- 6 $\hat{w}(u,v) = w(u,v) + h(u) h(v)$
- 7 let D = (d_{uv}) be a new $n \times n$ matrix

G graf

w vekting

u node

v node

 $h \quad \delta(s,v)$

 \hat{w} ny vekting

 d_{uv} $\delta(u,v)$

```
Johnson(G, w)
```

- 1 construct G' with start node s
- 2 Bellman-Ford(G, w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$
- 6 $\hat{w}(u,v) = w(u,v) + h(u) h(v)$
- 7 let D = (d_{uv}) be a new $n \times n$ matrix
- 8 for each vertex $u \in G.V$

G graf

w vekting

u node

 $v \mod \epsilon$

 $h \quad \delta(s,v)$

 \hat{w} ny vekting

 d_{uv} $\delta(u,v)$

```
Johnson(G, w)
```

- 1 construct G' with start node s
- 2 Bellman-Ford(G, w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$
- 6 $\hat{w}(u,v) = w(u,v) + h(u) h(v)$
- 7 let $D = (d_{uv})$ be a new $n \times n$ matrix
- 8 for each vertex $u \in G.V$
- 9 DIJKSTRA (G, \hat{w}, u)

G graf

w vekting

u node

v node

 $h \quad \delta(s,v)$

 \hat{w} ny vekting

 d_{uv} $\delta(u,v)$

```
Johnson(G, w)

1 construct G' with start node s

2 Bellman-Ford(G', w, s)

3 for each vertex v \in G.V

4 h(v) = v.d

5 for each edge (u, v) \in G.E

6 \hat{w}(u, v) = w(u, v) + h(u) - h(v)

7 let D = (d_{uv}) be a new n \times n matrix

8 for each vertex u \in G.V

9 Dijkstra(G, \hat{w}, u)
```

for each vertex $v \in G.V$

10

```
G graf
w vekting
u node
v node
h \delta(s,v)
\hat{w} ny vekting
d_{uv} \delta(u,v)
```

```
JOHNSON(G, w)
 1 construct G' with start node s
   Bellman-Ford (G', w, s)
 3 for each vertex v \in G.V
   h(v) = v.d
 5 for each edge (u, v) \in G.E
   \hat{w}(u,v) = w(u,v) + h(u) - h(v)
   let D = (d_{uv}) be a new n \times n matrix
    for each vertex u \in G.V
 9
        DIJKSTRA(G, \hat{w}, u)
        for each vertex v \in G.V
10
            d_{uv} = v.d + h(v) - h(u)
11
```

```
G graf
w vekting
u node
v node
h \delta(s,v)
\hat{w} ny vekting
d_{uv} \delta(u,v)
```

```
JOHNSON(G, w)
 1 construct G' with start node s
   Bellman-Ford (G', w, s)
 3 for each vertex v \in G.V
   h(v) = v.d
 5 for each edge (u, v) \in G.E
   \hat{w}(u,v) = w(u,v) + h(u) - h(v)
   let D = (d_{uv}) be a new n \times n matrix
    for each vertex u \in GV
 9
        DIJKSTRA(G, \hat{w}, u)
        for each vertex v \in G.V
10
            d_{uv} = v.d + h(v) - h(u)
11
12
    return D
```

G graf w vekting u node v node h $\delta(s,v)$ \hat{w} ny vekting d_{uv} $\delta(u,v)$

Rett fordi $w(p) \leq w(q) \iff \hat{w}(p) \leq \hat{w}(q)$ for stier $u \stackrel{p,q}{\leadsto} v$

```
JOHNSON(G, w)
    construct G' with start node s
  Bellman-Ford(G', w, s)
 3 for each vertex v \in G.V
   h(v) = v.d
 5 for each edge (u, v) \in G.E
       \hat{w}(u,v) = w(u,v) + h(u) - h(v)
   let D = (d_{uv}) be a new n \times n matrix
    for each vertex u \in G.V
 9
        DIJKSTRA(G, \hat{w}, u)
        for each vertex v \in G.V
10
            d_{uv} = v.d + h(v) - h(u)
    return D
```

G graf w vekting u node v node h $\delta(s,v)$ \hat{w} ny vekting d_{uv} $\delta(u,v)$

JOHNSON(G, w)

- 1 construct G' with start node s
- 2 Bellman-Ford(G', w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$
- 6 $\hat{w}(u,v) = w(u,v) + h(u) h(v)$
- 7 let $D = (d_{uv})$ be a new $n \times n$ matrix
- 8 for each vertex $u \in G.V$
- 9 DIJKSTRA (G, \hat{w}, u)
- 10 for each vertex $v \in G.V$
- $11 d_{uv} = v.d + h(v) h(u)$
- 12 return D

JOHNSON(G, w)

- 1 construct G' with start node s
- 2 Bellman-Ford(G', w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$
- 6 $\hat{w}(u,v) = w(u,v) + h(u) h(v)$
- 7 let $D = (d_{uv})$ be a new $n \times n$ matrix
- 8 for each vertex $u \in G.V$
- 9 DIJKSTRA (G, \hat{w}, u)
- 10 for each vertex $v \in G.V$
- $d_{uv} = v.d + h(v) h(u)$
- 12 return D

Merk: s er ikke tegnet inn

- 1 construct G' with start node s
- 2 Bellman-Ford(G', w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$
- 6 $\hat{w}(u,v) = w(u,v) + h(u) h(v)$
- 7 let D = (d_{uv}) be a new $n \times n$ matrix
- 8 for each vertex $u \in G.V$
- 9 DIJKSTRA (G, \hat{w}, u)
- 10 for each vertex $v \in G.V$
- $11 d_{uv} = v.d + h(v) h(u)$
- 12 return D

Johnson(G, w)

1 construct G' with start node s

2 Bellman-Ford(G', w, s)

3 for each vertex
$$v \in G.V$$

4 $h(v) = v.d$

5 for each edge $(u, v) \in G.E$

6 $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

7 let D = (d_{uv}) be a new $n \times n$ matrix

8 for each vertex $u \in G.V$

9 Dijkstra(G, \hat{w} , u)

10 for each vertex $v \in G.V$

11 $d_{uv} = v.d + h(v) - h(u)$

12 return D

Johnson(G, w)

1 construct G' with start node s

2 Bellman-Ford(G', w, s)

3 for each vertex
$$v \in G.V$$

4 $h(v) = v.d$

5 for each edge $(u, v) \in G.E$

6 $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

7 let D = (d_{uv}) be a new $n \times n$ matrix

8 for each vertex $u \in G.V$

9 Dijkstra(G, \hat{w} , u)

10 for each vertex $v \in G.V$

11 $d_{uv} = v.d + h(v) - h(u)$

12 return D

Johnson(G, w)

1 construct G' with start node s

2 Bellman-Ford(G', w, s)

3 for each vertex
$$v \in G.V$$

4 $h(v) = v.d$

5 for each edge $(u, v) \in G.E$

6 $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

7 let D = (d_{uv}) be a new $n \times n$ matrix

8 for each vertex $u \in G.V$

9 Dijkstra(G, \hat{w} , u)

10 for each vertex $v \in G.V$

11 $d_{uv} = v.d + h(v) - h(u)$

12 return D

JOHNSON(G, w)

12

return D

construct G' with start node s

Bellman-Ford(G', w, s)

for each edge $(u, v) \in G.E$

for each vertex $u \in G.V$

10 for each vertex $v \in G.V$

DIJKSTRA (G, \hat{w}, u)

 $11 d_{uv} = v.d + h(v) - h(u)$

3 for each vertex $v \in G.V$

h(v) = v.d

JOHNSON(G, w)

1 construct G' with start node s

2 BELLMAN-FORD(G', w, s)

3 for each vertex
$$v \in G.V$$

4 $h(v) = v.d$

5 for each edge $(u, v) \in G.E$

6 $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

7 let D = (d_{uv}) be a new $n \times n$ matrix

8 for each vertex $u \in G.V$

9 DIJKSTRA(G, \hat{w} , u)

10 for each vertex $v \in G.V$

11 $d_{uv} = v.d + h(v) - h(u)$

12

return D

Johnson(G, w)

1 construct G' with start node s

2 Bellman-Ford(G', w, s)

3 for each vertex
$$v \in G.V$$

4 $h(v) = v.d$

5 for each edge $(u, v) \in G.E$

6 $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

7 let D = (d_{uv}) be a new $n \times n$ matrix

8 for each vertex $u \in G.V$

9 Dijkstra(G, \hat{w} , u)

10 for each vertex $v \in G.V$

11 $d_{uv} = v.d + h(v) - h(u)$

12

return D

Johnson(G, w)

1 construct G' with start node s

2 Bellman-Ford(G', w, s)

3 for each vertex
$$v \in G.V$$

4 $h(v) = v.d$

5 for each edge $(u, v) \in G.E$

6 $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

7 let D = (d_{uv}) be a new $n \times n$ matrix

8 for each vertex $u \in G.V$

9 Dijkstra(G, \hat{w} , u)

10 for each vertex $v \in G.V$

11 $d_{uv} = v.d + h(v) - h(u)$

12 return D

JOHNSON(G, w)

12

return D

construct G' with start node s

Bellman-Ford(G', w, s)

for each edge $(u, v) \in G.E$

 $\hat{w}(u,v) = w(u,v) + h(u) - h(v)$

let $D = (d_{uv})$ be a new $n \times n$ matrix

for each vertex $v \in G.V$

for each vertex $u \in G.V$

10 for each vertex $v \in G.V$

DIJKSTRA (G, \hat{w}, u)

 $11 d_{uv} = v.d + h(v) - h(u)$

h(v) = v.d

Johnson(G, w)

1 construct G' with start node s

2 Bellman-Ford(G', w, s)

3 for each vertex
$$v \in G.V$$

4 $h(v) = v.d$

5 for each edge $(u, v) \in G.E$

6 $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

7 let D = (d_{uv}) be a new $n \times n$ matrix

8 for each vertex $u \in G.V$

9 Dijkstra(G, \hat{w} , u)

10 for each vertex $v \in G.V$

11 $d_{uv} = v.d + h(v) - h(u)$

12 return D

Johnson(G, w)

1 construct G' with start node s

2 Bellman-Ford(G', w, s)

3 for each vertex
$$v \in G.V$$

4 $h(v) = v.d$

5 for each edge $(u, v) \in G.E$

6 $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

7 let D = (d_{uv}) be a new $n \times n$ matrix

8 for each vertex $u \in G.V$

9 Dijkstra(G, \hat{w} , u)

10 for each vertex $v \in G.V$

11 $d_{uv} = v.d + h(v) - h(u)$

12 return D

JOHNSON(G, w)

- 1 construct G' with start node s
- 2 Bellman-Ford(G', w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$

6
$$\hat{w}(u,v) = w(u,v) + h(u) - h(v)$$

- 7 let D = (d_{uv}) be a new $n \times n$ matrix
- 8 for each vertex $u \in G.V$
- 9 DIJKSTRA (G, \hat{w}, u)
- 10 for each vertex $v \in G.V$
- $d_{uv} = v.d + h(v) h(u)$
- 12 return D

- 1 construct G' with start node s
- 2 Bellman-Ford(G', w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$

6
$$\hat{w}(u,v) = w(u,v) + h(u) - h(v)$$

- 7 let $D = (d_{uv})$ be a new $n \times n$ matrix
- 8 for each vertex $u \in G.V$
- 9 DIJKSTRA (G, \hat{w}, u)
- 10 for each vertex $v \in G.V$
- $d_{uv} = v.d + h(v) h(u)$
- 12 return D

Johnson(G, w)

1 construct G' with start node s

2 Bellman-Ford(G', w, s)

3 for each vertex
$$v \in G.V$$

4 $h(v) = v.d$

5 for each edge $(u, v) \in G.E$

6 $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

7 let D = (d_{uv}) be a new $n \times n$ matrix

8 for each vertex $u \in G.V$

9 Dijkstra(G, \hat{w} , u)

10 for each vertex $v \in G.V$

11 $d_{uv} = v.d + h(v) - h(u)$

12 return D

Johnson(G, w)

1 construct G' with start node s

2 Bellman-Ford(G', w, s)

3 for each vertex
$$v \in G.V$$

4 $h(v) = v.d$

5 for each edge $(u, v) \in G.E$

6 $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

7 let D = (d_{uv}) be a new $n \times n$ matrix

8 for each vertex $u \in G.V$

9 Dijkstra(G, \hat{w} , u)

10 for each vertex $v \in G.V$

11 $d_{uv} = v.d + h(v) - h(u)$

12 return D

Johnson(G, w)

1 construct G' with start node s

2 Bellman-Ford(G', w, s)

3 for each vertex
$$v \in G.V$$

4 $h(v) = v.d$

5 for each edge $(u, v) \in G.E$

6 $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

7 let D = (d_{uv}) be a new $n \times n$ matrix

8 for each vertex $u \in G.V$

9 Dijkstra(G, \hat{w} , u)

10 for each vertex $v \in G.V$

11 $d_{uv} = v.d + h(v) - h(u)$

12 return D

Johnson(G, w)

1 construct G' with start node s

2 Bellman-Ford(G', w, s)

3 **for** each vertex
$$v \in G.V$$

4 $h(v) = v.d$

5 **for** each edge $(u, v) \in G.E$

6 $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

7 let D = (d_{uv}) be a new $n \times n$ matrix

8 **for** each vertex $u \in G.V$

9 Dijkstra(G, \hat{w} , u)

10 **for** each vertex $v \in G.V$

11 $d_{uv} = v.d + h(v) - h(u)$

12 **return** D

Johnson(G, w)

1 construct G' with start node s

2 Bellman-Ford(G', w, s)

3 for each vertex
$$v \in G.V$$

4 $h(v) = v.d$

5 for each edge $(u, v) \in G.E$

6 $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

7 let D = (d_{uv}) be a new $n \times n$ matrix

8 for each vertex $u \in G.V$

9 Dijkstra(G, \hat{w} , u)

10 for each vertex $v \in G.V$

11 $d_{uv} = v.d + h(v) - h(u)$

12 return D

Johnson(G, w)

1 construct G' with start node s

2 Bellman-Ford(G', w, s)

3 for each vertex
$$v \in G.V$$

4 $h(v) = v.d$

5 for each edge $(u, v) \in G.E$

6 $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

7 let D = (d_{uv}) be a new $n \times n$ matrix

8 for each vertex $u \in G.V$

9 Dijkstra(G, \hat{w} , u)

10 for each vertex $v \in G.V$

11 $d_{uv} = v.d + h(v) - h(u)$

12 return D

Johnson(G, w)

1 construct G' with start node s

2 Bellman-Ford(G', w, s)

3 for each vertex
$$v \in G.V$$

4 $h(v) = v.d$

5 for each edge $(u, v) \in G.E$

6 $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

7 let D = (d_{uv}) be a new $n \times n$ matrix

8 for each vertex $u \in G.V$

9 Dijkstra(G, \hat{w} , u)

10 for each vertex $v \in G.V$

11 $d_{uv} = v.d + h(v) - h(u)$

12 return D

Johnson(G, w)

1 construct G' with start node s

2 Bellman-Ford(G', w, s)

3 for each vertex
$$v \in G.V$$

4 $h(v) = v.d$

5 for each edge $(u, v) \in G.E$

6 $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

7 let D = (d_{uv}) be a new $n \times n$ matrix

8 for each vertex $u \in G.V$

9 Dijkstra(G, \hat{w} , u)

10 for each vertex $v \in G.V$

11 $d_{uv} = v.d + h(v) - h(u)$

JOHNSON(G, w)

12

return D

JOHNSON(G, w)

1 construct G' with start node s

2 BELLMAN-FORD(G', w, s)

3 for each vertex
$$v \in G.V$$

4 $h(v) = v.d$

5 for each edge $(u, v) \in G.E$

6 $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$

7 let D = (d_{uv}) be a new $n \times n$ matrix

8 for each vertex $u \in G.V$

9 DIJKSTRA(G, \hat{w}, u)

10 for each vertex $v \in G.V$

11 $d_{uv} = v.d + h(v) - h(u)$

12 return D

JOHNSON(G, w)

- 1 construct G' with start node s
- 2 Bellman-Ford(G', w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$
- 6 $\hat{w}(u,v) = w(u,v) + h(u) h(v)$
- 7 let $D = (d_{uv})$ be a new $n \times n$ matrix
- 8 for each vertex $u \in G.V$
- 9 DIJKSTRA (G, \hat{w}, u)
- 10 **for** each vertex $v \in G.V$
- $11 d_{uv} = v.d + h(v) h(u)$
- 12 return D

JOHNSON(G, w)

- 1 construct G' with start node s
- 2 Bellman-Ford(G', w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$
- 6 $\hat{w}(u,v) = w(u,v) + h(u) h(v)$
- 7 let $D = (d_{uv})$ be a new $n \times n$ matrix
- 8 for each vertex $u \in G.V$
- 9 DIJKSTRA (G, \hat{w}, u)
- 10 **for** each vertex $v \in G.V$
- $d_{uv} = v.d + h(v) h(u)$
- 12 return D

- 1 construct G' with start node s
- 2 Bellman-Ford(G', w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$
- 6 $\hat{w}(u,v) = w(u,v) + h(u) h(v)$
- 7 let $D = (d_{uv})$ be a new $n \times n$ matrix
- 8 for each vertex $u \in G.V$
- 9 DIJKSTRA (G, \hat{w}, u)
- 10 **for** each vertex $v \in G.V$
- $d_{uv} = v.d + h(v) h(u)$
- 12 **return** D

JOHNSON(G, w)

10

11

12

return D

1 construct G' with start node s

Bellman-Ford(G', w, s)

for each edge $(u, v) \in G.E$

for each vertex $u \in G.V$

DIJKSTRA (G, \hat{w}, u)

for each vertex $v \in G.V$

 $d_{uv} = v.d + h(v) - h(u)$

for each vertex $v \in G.V$

h(v) = v.d

JOHNSON(G, w)

- 1 construct G' with start node s
- Bellman-Ford(G', w, s)
- for each vertex $v \in G.V$
- h(v) = v.d
- for each edge $(u, v) \in G.E$
- $\hat{w}(u,v) = w(u,v) + h(u) h(v)$
- let $D = (d_{uv})$ be a new $n \times n$ matrix
- for each vertex $u \in G.V$
- DIJKSTRA (G, \hat{w}, u)
- for each vertex $v \in G.V$ 10

$$11 d_{uv} = v.d + h(v) - h(u)$$

return D 12

JOHNSON(G, w)

- 1 construct G' with start node s
- 2 Bellman-Ford(G, w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$
- 6 $\hat{w}(u,v) = w(u,v) + h(u) h(v)$
- 7 let $D = (d_{uv})$ be a new $n \times n$ matrix
- 8 for each vertex $u \in G.V$
- 9 DIJKSTRA (G, \hat{w}, u)
- 10 **for** each vertex $v \in G.V$
- $d_{uv} = v.d + h(v) h(u)$
- 12 return D

JOHNSON(G, w)

- 1 construct G' with start node s
- 2 Bellman-Ford(G', w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$
- 6 $\hat{w}(u,v) = w(u,v) + h(u) + h(v)$
- 7 let $D = (d_{uv})$ be a new $n \times n$ matrix
- 8 for each vertex $u \in G.V$
- 9 DIJKSTRA (G, \hat{w}, u)
- 10 **for** each vertex $v \in G.V$
- $d_{uv} = v.d + h(v) h(u)$
- 12 return D

	1	0	1	-3	2	-4	
	2	3	0	-4	1	-1	
D	3	7	4	0	5	3	
	4	2	-1	-5	0	-2	
	5						
	•	1	2	3	4	5	

- 1 construct G' with start node s
- 2 Bellman-Ford(G', w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$
- 6 $\hat{w}(u,v) = w(u,v) + h(u) h(v)$
- 7 let $D = (d_{uv})$ be a new $n \times n$ matrix
- 8 for each vertex $u \in G.V$
- 9 DIJKSTRA (G, \hat{w}, u)
- 10 **for** each vertex $v \in G.V$
- $11 d_{uv} = v.d + h(v) h(u)$
- 12 return D

3

5

	1	0	1	-3	2	-4	0	1	
	2	3	0	-4	1	-1	-1	2	
D	3	7	4	0	5	3	-5	3	P
	4	2	-1	-5	0	-2	0	4	
	5						-4	5	
		1	2	2	1	<u> </u>			

JOHNSON(G, w)

- 1 construct G' with start node s
- 2 Bellman-Ford(G', w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$
- 6 $\hat{w}(u,v) = w(u,v) + h(u) h(v)$
- 7 let $D = (d_{uv})$ be a new $n \times n$ matrix
- 8 for each vertex $u \in G.V$
- 9 DIJKSTRA (G, \hat{w}, u)
- 10 **for** each vertex $v \in G.V$
- $d_{uv} = v.d + h(v) h(u)$
- 12 return D

JOHNSON(G, w)

return D

10

11

12

1 construct G' with start node s

Bellman-Ford(G', w, s)

for each edge $(u, v) \in G.E$

for each vertex $u \in G.V$

DIJKSTRA (G, \hat{w}, u)

for each vertex $v \in G.V$

 $\hat{w}(u,v) = w(u,v) + h(u) - h(v)$

 $d_{uv} = v.d + h(v) - h(u)$

for each vertex $v \in G.V$

h(v) = v.d

	1	0		-3	2	-4	0		
	2	3	0		1	-1	-1	2	
D	3	7	4	0	5	3	-5	3	h
	4	2	-1	-5	0	-2	0	4	
	5						-4	5	
	'	1	2	2	1	5		ı	

	1	0	1	-3	2	-4		0	1	
	2	3	0	-4		-1		-1	2	
D	3	7	4	0	5	3		-5	3	h
	4	2	-1	-5	0	-2		0	4	
	5	8	5					-4	5	
	'	1	2	3	4	5	ļ		•	

	1	0	1	-3	2	-4	0	1
	2	3	0	-4	1	-1	-1	2
D	3	7	4	0	5	3	-5	3
	4	2	-1	-5	0	-2	0	4
	5	8	5	1			-4	5
	'	1	2	3	4	5		

- 1 construct G' with start node s
- 2 Bellman-Ford(G', w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$
- 6 $\hat{w}(u,v) = w(u,v) + h(u) h(v)$
- 7 let $D = (d_{uv})$ be a new $n \times n$ matrix
- 8 for each vertex $u \in G.V$
- 9 DIJKSTRA (G, \hat{w}, u)
- 10 **for** each vertex $v \in G.V$
- $d_{uv} = v.d + h(v) h(u)$
- 12 return D

		-1	I	2	4	<u> </u>			l	
	5	8	5	1	6			-4	5	
	4			-5	0	-2		0	4	
D	3	7	4	0	5	3		-5	3	7
	2	3	0	-4		-1		-1	2	
	1	0	1	-3		-4		0	1	

JOHNSON(G, w)

- 1 construct G' with start node s
- 2 Bellman-Ford(G', w, s)
- 3 for each vertex $v \in G.V$
- 4 h(v) = v.d
- 5 for each edge $(u, v) \in G.E$
- 6 $\hat{w}(u,v) = w(u,v) + h(u) h(v)$
- 7 let $D = (d_{uv})$ be a new $n \times n$ matrix
- 8 for each vertex $u \in G.V$
- 9 DIJKSTRA (G, \hat{w}, u)
- 10 **for** each vertex $v \in G.V$
- $d_{uv} = v.d + h(v) h(u)$
- 12 return D

Transitiv lukning

$A\ Theorem\ on\ Boolean\ Matrices*$

 S_{TEPHEN} $W_{ARSHALL}$

Computer Associates, Inc., Woburn, Massachusetts as that matrix whose (i, j)th entry is $\mathbf{v}_k(a_{ik} \wedge b_{kj})$.

Given two boolean matrices A and B, we define the boolean product $A \wedge B$ We define the boolean sum $A \lor B$ as that matrix whose (i, j)th entry is

The Use of boolean matrices to represent program topology (Prosser [1], and The use of boolean matrices to represent program topology (Prosser [1], and the description of the descripti Warmont [2], for example) has led to interest in algorithms for transformatrix M to the $d \times d$ boolean matrix M' given by:

 $M' = \bigvee_{i=1}^{d} M^{i}$ where we define $M^{1} = M$ and M^{i+1}

The convenience of describing the

Fra 1960 (publisert 1962). Bernhard Roy publiserte samme resultat separat i 1959.

korteste vei > transitiv lukning > problemet

Input: En rettet graf G = (V, E).

Input: En rettet graf G = (V, E).

Output: En rettet graf $G^* = (V, E^*)$ der $(i, j) \in E^*$ hvis og bare hvis det finnes en sti fra i til j i G.

Input: En rettet graf G = (V, E).

Output: En rettet graf $G^* = (V, E^*)$ der $(i, j) \in E^*$ hvis og bare hvis det finnes en sti fra i til j i G.

 $Y = Kj \text{ gretid: } V \times \Theta(E + V) = \Theta(VE + V^2)$

- \rightarrow Kjøretid: $V \times \Theta(E + V) = \Theta(VE + V^2)$
- \rightarrow Bra når vi har få kanter, f.eks. $E = o(V^2)$

- \rightarrow Kjøretid: $V \times \Theta(E + V) = \Theta(VE + V^2)$
- \rightarrow Bra når vi har få kanter, f.eks. $\mathcal{E}=o(\mathcal{V}^2)$
- Mye overhead; høye konstantledd

- \rightarrow Kjøretid: $V \times \Theta(E + V) = \Theta(VE + V^2)$
- \rightarrow Bra når vi har få kanter, f.eks. $\mathcal{E} = o(\mathcal{V}^2)$
- Mye overhead; høye konstantledd

Målsetting:

- \rightarrow Kjøretid: $V \times \Theta(E + V) = \Theta(VE + V^2)$
- \rightarrow Bra når vi har få kanter, f.eks. $E = o(V^2)$
- Mye overhead; høye konstantledd

Målsetting:

Vi fokuserer på tilfellet $E = \Theta(V^2)$

- \rightarrow Kjøretid: $V \times \Theta(E + V) = \Theta(VE + V^2)$
- \rightarrow Bra når vi har få kanter, f.eks. $E = o(V^2)$
- Mye overhead; høye konstantledd

Målsetting:

- \rightarrow Vi fokuserer på tilfellet $E = \Theta(V^2)$
- > Vi vil ha et lavere konstantledd

- \rightarrow Kjøretid: $V \times \Theta(E + V) = \Theta(VE + V^2)$
- \rightarrow Bra når vi har få kanter, f.eks. $E = o(V^2)$
- Mye overhead; høye konstantledd

Målsetting:

- Vi fokuserer på tilfellet $E = \Theta(V^2)$
- > Vi vil ha et lavere konstantledd

Observasjon:

> Korteste stier har felles segmenter

- \rightarrow Kjøretid: $V \times \Theta(E + V) = \Theta(VE + V^2)$
- \rightarrow Bra når vi har få kanter, f.eks. $E = o(V^2)$
- Mye overhead; høye konstantledd

Målsetting:

- \rightarrow Vi fokuserer på tilfellet $E = \Theta(V^2)$
- > Vi vil ha et lavere konstantledd

Observasjon:

- > Korteste stier har felles segmenter
- > Overlappende delproblemer...

- \rightarrow Kjøretid: $V \times \Theta(E + V) = \Theta(VE + V^2)$
- \rightarrow Bra når vi har få kanter, f.eks. $E = o(V^2)$
- Mye overhead; høye konstantledd

Målsetting:

- Vi fokuserer på tilfellet $E = \Theta(V^2)$
- > Vi vil ha et lavere konstantledd

Observasjon:

- > Korteste stier har felles segmenter
- > Overlappende delproblemer...

Dekomponering: Hva blir «koordinatene» til delproblemene?

Det finnes en vei fra $i \dots$

Det finnes en vei fra i til j...

Det finnes en vei fra i til j via noder fra $\{1 \dots k\}$

Det finnes en vei fra i til j via noder fra $\{1 \dots k\}$

 $t_{ij}^{(k)} = \det \text{ går en vei fra } i \text{ til } j \text{ via noder fra } \{1 \dots k\}$

Som for ryggsekkproblemet: Skal k være med eller ikke?

De mulige stiene p, p_1 og p_2 går kun via noder fra $\{1 \dots k-1\}$

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)})$$

$$t_{ij}^{(0)} = \begin{cases} 0 & \text{if } i \neq j \text{ and } (i,j) \notin E, \\ 1 & \text{if } i = j \text{ or } (i,j) \in E. \end{cases}$$

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)})$$

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)})$$

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)})$$

Problemet er at iterasjonene 1...k «blandes», så vi kan risikere at noen av del-stiene allerede går innom k – så kanskje vi går innom k mer enn én gang? I så fall har vi en sykel ... men om det finnes en sti *med* en sykel, så finnes det også en sti *uten* en sykel!

Det er trygt å bruke én tabell. Hvorfor?

G graf

Transitive-Closure(G)
1
$$n = |GV|$$

$$1 \quad n = |GV|$$

2 let
$$T^{(0)} = (t_{ij}^{(0)})$$
 be a new $n \times n$ matrix

G graf

$$n$$
 ant. noder

 $t_{ij}^{(k)}$ $i \stackrel{1 \cdots k}{\leadsto} j$?

- $1 \quad n = |GV|$
- 2 let $\mathbf{T}^{(0)} = (t_{ij}^{(0)})$ be a new $n \times n$ matrix
- 3 **for** i = 1 **to** n

G graf

$$n$$
 ant. noder

 $t_{ij}^{(k)}$ $i \stackrel{1 \cdots k}{\leadsto} j$?

1
$$n = |G.V|$$

- 2 let $T^{(0)} = (t_{ij}^{(0)})$ be a new $n \times n$ matrix
- 3 **for** i = 1 **to** n
- 4 for j = 1 to n

G graf

$$n$$
 ant. noder

 $t_{ij}^{(k)} i \stackrel{1 \cdots k}{\leadsto} j$?

$$1 \quad n = |G.V|$$

- 2 let $T^{(0)} = (t_{ij}^{(0)})$ be a new $n \times n$ matrix
- 3 **for** i = 1 **to** n
- 4 for j = 1 to n
- 5 if i == j or $(i, j) \in G.E$

G graf

n ant. noder

$$t_{ij}^{(k)} i \stackrel{1 \cdots k}{\leadsto} j$$
?

```
Transitive-Closure(G)

1 n = |G.V|

2 let T^{(0)} = (t_{ij}^{(0)}) be a new n \times n matrix

3 for i = 1 to n

4 for j = 1 to n

5 if i == j or (i, j) \in G.E

6 t_{ij}^{(0)} = 1
```

G graf

n ant. noder

$$t_{ij}^{(k)} i \stackrel{1 \cdots k}{\leadsto} j$$
?

Da finnes det en sti $i \leadsto j$ som ikke går via andre noder

```
Transitive-Closure(G)
1 \quad n = |\text{G.V}|
2 \quad \text{let } \mathbf{T}^{(0)} = (t_{ij}^{(0)}) \text{ be a new } n \times n \text{ matrix}
3 \quad \text{for } i = 1 \text{ to } n
4 \quad \text{for } j = 1 \text{ to } n
5 \quad \text{if } i == j \text{ or } (i, j) \in \text{G.E}
6 \quad t_{ij}^{(0)} = 1
7 \quad \text{else } t_{ij}^{(0)} = 0
```

G graf

n ant. noder

$$t_{ij}^{(k)} i \stackrel{1 \cdots k}{\leadsto} j$$
?

```
Transitive-Closure(G)

1 n = |G.V|

2 let T^{(0)} = (t_{ij}^{(0)}) be a new n \times n matrix

3 for i = 1 to n

4 for j = 1 to n

5 if i = j or (i, j) \in G.E

6 t_{ij}^{(0)} = 1

7 else t_{ij}^{(0)} = 0
```

G graf

n ant. noder

$$t_{ij}^{(k)}$$
 $i \stackrel{1 \cdots k}{\leadsto} j$?

G graf

$$n$$
 ant. noder

 $t_{ij}^{(k)}$ $i \stackrel{1 \cdots k}{\leadsto} j$?

Transitive-Closure(G) $7 \dots$

G graf n ant. noder $t_{ij}^{(k)} i \stackrel{1 \cdots k}{\leadsto} j$?

8 **for**
$$k = 1$$
 to n

G graf

$$n$$
 ant. noder

 $t_{ij}^{(k)} i \stackrel{1 \cdots k}{\leadsto} j$?

8 **for**
$$k = 1$$
 to n

let
$$T^{(k)} = (t_{ij}^{(k)})$$
 be a new $n \times n$ matrix

G graf

$$n$$
 ant. noder

 $t_{ij}^{(k)} i \stackrel{1 \cdots k}{\leadsto} j$?

Finnes en sti $i \rightsquigarrow j$ som kun får gå innom $\{1, \ldots, k\}$?

```
7 ...
```

8 **for**
$$k = 1$$
 to n

let
$$T^{(k)} = (t_{ij}^{(k)})$$
 be a new $n \times n$ matrix

10 **for**
$$i = 1$$
 to n

G graf

$$n$$
 ant. noder

 $t_{ij}^{(k)} i \stackrel{1 \cdots k}{\leadsto} j$?

```
7 ...
8 for k = 1 to n
9 let T^{(k)} = (t_{ij}^{(k)}) be a new n \times n matrix
10 for i = 1 to n
11 for j = 1 to n
```

G graf

n ant. noder

$$t_{ij}^{(k)} i \stackrel{1 \cdots k}{\leadsto} j$$
?

```
7 ...

8 for k = 1 to n

9 let T^{(k)} = (t_{ij}^{(k)}) be a new n \times n matrix

10 for i = 1 to n

11 for j = 1 to n

12 t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)})
```

G graf

$$n$$
 ant. noder

 $t_{ij}^{(k)} i \stackrel{1 \cdots k}{\sim} j$?

Finnes $i \leadsto j$ eller $i \leadsto k \leadsto j$, om vi kun får gå innom $\{1, \ldots, k-1\}$?

```
Transitive-Closure(G)
7 ...
8 for k = 1 to n
9 let T^{(k)} = (t_{ij}^{(k)}) be a new n \times n matrix
10 for i = 1 to n
11 for j = 1 to n
12 t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)})
13 return T^{(n)}
```

G graf

$$n$$
 ant. noder

 $t_{ij}^{(k)}$ $i \stackrel{1 \cdots k}{\leadsto} j$?

Finnes det en sti $i \rightsquigarrow j$ som får gå innom $\{1, \ldots, n\}$, dvs. alle?

Transitive-Closure'(G)
1
$$n = |G.V|$$

- $1 \quad n = |G.V|$
- 2 initialize T

- 1 n = |G.V|
- 2 initialize T
- 3 **for** k = 1 **to** n

```
Transitive-Closure'(G)
```

- 1 n = |G.V|
- 2 initialize T
- 3 **for** k = 1 **to** n
- 4 for i = 1 to n

For hver mulig startnode...

```
Transitive-Closure'(G)

1 n = |G.V|

2 initialize T

3 for k = 1 to n

4 for i = 1 to n

5 for j = 1 to n
```

For hver mulig sluttnode...

```
Transitive-Closure'(G)

1 n = |G.V|

2 initialize T

3 for k = 1 to n

4 for i = 1 to n

5 for j = 1 to n

6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})
```

```
Transitive-Closure'(G)

1 n = |G.V|

2 initialize T

3 for k = 1 to n

4 for i = 1 to n

5 for j = 1 to n

6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})

7 return T
```

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 **for**
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 1, 1, 1

1			1		
2	1	1		1	
3			1		1
4				1	
5		1	1	1	1
	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 **for**
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 1, 1, 2

1	1		1		
2	1	$\mid 1 \mid$		1	
3			1		1
4				1	
5		1	1	1	1
'	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

for
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 1, 1, 3

1	1		1		
2	1	1		1	
3			1		1
4				1	
5		1	1	1	1
'	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 **for**
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

1	1		1		
2	1	1		1	
3			1		1
4				1	
5		1	1	1	1
'	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 1, 1, 5

1	1		1		
2	1	1		1	
3			1		1
4				1	
5		1	1	1	1
'	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 1, 2, 1

1	1		1		
2	1	1		1	
3			1		1
4				1	
5		1	1	1	1
	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

3 for
$$k=1$$
 to n

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 1, 2, 2

1	1		1		
2	1	1		1	
3			1		1
4				1	
5		1	1	1	1
'	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

1	1		1		
2	1	1		1	
3			$\mid 1 \mid$		1
4				1	
5		1	1	1	1
'	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 1, 2, 4

1	1		1		
2	1	1	1	1	
3			1		1
4				1	
5		1	1	1	1
'	1	2	3	4	5

korteste vei > transitiv lukning

1	1		1		
2	1	1	1	1	
3			1		1
4				1	
5		1	1	1	1
	1	2	3	4	5

Transitive-Closure'(G)

$$1 \quad n = |G.V|$$

2 initialize T

3 for
$$k = 1$$
 to n

4 for
$$i = 1$$
 to n

for
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \vee (t_{ik} \wedge t_{kj})$$

7 return T

$$1 \quad n = |G.V|$$

2 initialize T

3 **for**
$$k = 1$$
 to n

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 2, 5, 1

1	1		1		
2	1	1	1	1	
3			1		1
4				1	
5		1	1	1	1
	1	2	3	4	5

korteste vei > transitiv lukning

1	1		1		
2	1	1	1	1	
3			1		1
4				1	
5	1	1	1	1	1
'	1	2	3	4	5

Transitive-Closure'(G)

$$1 \quad n = |G.V|$$

2 initialize T

3 for
$$k = 1$$
 to n

4 for
$$i = 1$$
 to n

for
$$j = 1$$
 to n

$$t_{ij} = t_{ij} \vee (t_{ik} \wedge t_{kj})$$

7 return T

$$1 \quad n = |G.V|$$

2 initialize T

3 **for**
$$k = 1$$
 to n

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 3, 2, 5

1	1		1		1
2	1	1	1	1	
3			1		1
4				1	
5	1	1	1	1	1
'	1	2	3	4	5

korteste vei > transitiv lukning

1	1		1		1
2	1	1	1	1	1
3			1		1
4				1	
5	1	1	1	1	1
	1	2	3	4	5

Transitive-Closure'(G)

$$1 \quad n = |G.V|$$

2 initialize T

3 for
$$k = 1$$
 to n

4 for
$$i = 1$$
 to n

for
$$j = 1$$
 to n

$$t_{ij} = t_{ij} \vee (t_{ik} \wedge t_{kj})$$

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 **for**
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 1, 1

1			1		1
2	1	1	1	1	1
3			1		1
4				1	
5	1	1	1	1	1
	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 1, 2

1	1		1		1
2	1	1	1	1	1
3			1		1
4				1	
5	1	1	1	1	1
•	1	2	3	4	5

$$1 \quad n = |G.V|$$

- 2 initialize T
- 3 **for** k = 1 **to** n
- 4 **for** i = 1 **to** n
- 5 **for** j = 1 **to** n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

1	1	1	1		1
2	1	1	1	1	1
3			1		1
4				1	
5	1	1	1	1	1
'	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

1	1	1	1		1
2	1	1	1	1	1
3			1		1
4				1	
5	1	1	1	1	1
·	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 **for**
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 1, 5

1	1	1	1	1	1/1/1
2	1	1	1	1	$\mid 1 \mid$
3			1		$\mid 1 \mid$
4				1	
5	1	1	1	1	1
'	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 2, 1

1	1	1	1	1	1
2	1	1	1	1	1
3			1		1
4				1	
5	1	1	1	1	1
	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

3 **for**
$$k = 1$$
 to n

4 **for**
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 2, 2

1	1	1	1	1	1
2	1	1	1	1	1
3			1		1
4				1	
5	1	1	1	1	1
·	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 2, 3

1	1	1	1	1	1
2	1	1	1	1	1
3			1		1
4				1	
5	1	1	1	1	1
'	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 2, 4

1	1	1	1	1	1
2	1	1	1	1	1
3			1		1
4				1	
5	1	1	1	1	1
	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 **for**
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 2, 5

1	1	1	1	1	1
2	1	1	1	1	1
3			1		1
4				1	
5	1	1	1	1	1
'	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 3, 1

1	1	1	1	1	1
2	1	1	1	1	1
3			1		1
4				1	
5	1	1	1	1	1
,	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 **for**
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 3, 2

1	1	1	1	1	1
2	1	$\mid 1 \mid$	1	1	1
3	1		1		1
4				1	
5	1	1	1	1	1
•	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 **for**
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 3, 3

1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1		1
4				1	
5	1	1	1	1	1
·	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 **for**
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 3, 4

1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1		1
4				1	
5	1	1	1	1	1
·	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 **for**
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \vee (t_{ik} \wedge t_{kj})$$

7 return T

1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1	1	1
4				1	
5	1	1	1	1	1
,	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 4, 1

1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1	1	1
4				1	
5	1	1	1	1	1
	1	2	3	4	5

$$1 \quad n = |G.V|$$

- 2 initialize T
- 3 **for** k = 1 **to** n
- 4 **for** i = 1 **to** n
- 5 **for** j = 1 **to** n

$$6 t_{ij} = t_{ij} \vee (t_{ik} \wedge t_{kj})$$

7 return T

1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1	1	1
4				1	
5	1	1	1	1	1
·	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 **for**
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 4, 3

1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1	1	1
4				1	
5	1	1	1	1	1
'	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 4, 4

1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1	1	1
4				1	
5	1	1	1	1	1
'		2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 4, 5

1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1	1	1
4				1	
5	1	1	1	1	1
,	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1	1	1
4				1	
5		1	1	1	1
	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

1	1	1	1	1	1
2	1	$\mid 1 \mid$	1	1	1
3	1	1	1	1	1
4				1	
5	1		1	1	1
	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 **for**
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1	1	1
4				1	
5	1	1	1	1	1
·	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 **for**
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 5, 4

1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1	1	1
4				1	
5	1	1	1	1	1
·	1	2	3	4	5

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \lor (t_{ik} \land t_{kj})$$

7 return T

k, i, j = 5, 5, 5

1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1	1	1
4				1	
5	1	1	1	1	1
·	1	2	3	4	5

Transitive-Closure'(G)

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 for
$$i = 1$$
 to n

5 **for**
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \vee (t_{ik} \wedge t_{kj})$$

7 return T

korteste vei > transitiv lukning

1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1	1	1
4				1	
5	1	1	1	1	1
'	1	2	3	4	5

Transitive-Closure'(G)

$$1 \quad n = |G.V|$$

2 initialize T

$$3 \quad \mathbf{for} \ k = 1 \ \mathbf{to} \ n$$

4 **for**
$$i = 1$$
 to n

for
$$j = 1$$
 to n

$$6 t_{ij} = t_{ij} \vee (t_{ik} \wedge t_{kj})$$

7 return T

k, i, j = -, -, -

korteste vei > transitiv lukning

1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1	1	1
4				1	
5	1	1	1	1	1
•	1	2	3	4	5

Korteste vei > Transitiv lukning > Kjøretid

$$\operatorname{init}
ightarrow \Theta(n^2)$$
 $\operatorname{for} i = 1 \operatorname{to} n$
 $\operatorname{sett} t_{ij}^{(0)}
ightarrow \operatorname{O}(1)$
 $\operatorname{for} k = 1 \operatorname{to} n$
 $\operatorname{evt. ny matrise}
ightarrow \Theta(n^2)$
 $\operatorname{for} i = 1 \operatorname{to} n$
 $\operatorname{sett} t_{ij}^{(k)}
ightarrow \operatorname{O}(1)$
 $\operatorname{return}
ightarrow \operatorname{O}(1)$

```
init \Theta(n^2)
for i = 1 to n
      for j = 1 to n
            sett t_{ij}^{(0)} \rightarrow \mathcal{O}(1)
for k = 1 to n
      evt. ny matrise \Theta(n^2)
      for i = 1 to n
            for j = 1 to n
                  sett t_{ij}^{(k)} \to \mathrm{O}(1)
return \rightarrow O(1)
Totalt: \Theta(n^3)
```

Fra 1962.

Floyd-Warshall

m[j,k]:=end ancestor

ALGORITHM 97 Armour Research Foundation, Chicago, Ill. SHORTEST PATH ROBERT W. FLOYD procedure shortest path (m,n); value n; integ

procedure snortest path (m,n); value n; integer comment Initially m(i,j) is the length of a distribution of m(i,j) is the length of m(i,j). point i of a network to point j. If no direct link point total network to point 3. If no direct link initially 1010. At completion, m [t, j] is the length of the state of th minary 1010. At completion, m [1, 7] is the leng path from i to j. If none exists, m [i, j] is 1010. path from v to j. If none exists, m [t, j] is 1010.

SHALL, S. A theorem on Boolean matrices. J, A(pegin integer i, j, k; real inf, s; inf := 1010;

for i = 1 step 1 until n do for j = 1 step 1 until n do if m [j, i] < inf then for k = 1 step 1 until n do if $m [i, k] < \inf$ then $\mathbf{begin}^{[i]} = m [i, i] + m [i, k];$ begin s := m(l), (l + m(l), k) := sif s < m(l), k then m(l), k := s end shortest path

Contributions to this departme stated in the Algorithms Depar (Communications, February, 1960 notation should be used (see Co Contributions should be sent in d Computation Laboratory, Nati Washington 25, D. C. Algorithm form of ALGOL 60 and written most recent algorithms appea the convenience of the printe are delimiters to appear in bo Although each algorithm utor, no warranty, expressed

tributors, the editor, or Machinery as to the accur rithm and related algori bility is assumed by the association for Computing The reproduction of

ment is explicitly pern production is for pub made to the algorithm issue bearing the algo

 \rightarrow DIJKSTRA med tabell: $O(V^3 + VE)$

 \rightarrow DIJKSTRA med tabell: O(V³ + VE)

 $\rightarrow \dots$ med binærhaug: $O(VE \lg V)$

- \rightarrow DIJKSTRA med tabell: $O(V^3 + VE)$
- $\rightarrow \dots$ med binærhaug: $O(VE \lg V)$
- $\rightarrow \dots \text{med Fib.-haug:} \qquad O(V^2 \lg V + VE)$

DIJKSTRA med tabell: $O(V^3 + VE)$

 $\rightarrow \dots$ med binærhaug: $O(VE \lg V)$

 $O(V^2 \lg V + VE)$

 \rightarrow Bellman-Ford: $\Theta(V^2E)$

 \rightarrow DIJKSTRA med tabell: $O(V^3 + VE)$

 $\rightarrow \dots$ med binærhaug: $O(VE \lg V)$

 $O(V^2 \lg V + VE)$

 \rightarrow Bellman-Ford: $\Theta(V^2E)$

 \rightarrow DIJKSTRA med tabell: O(V³ + VE)

 $\rightarrow \dots$ med binærhaug: $O(VE \lg V)$

 $O(V^2 \lg V + VE)$

 \rightarrow Bellman-Ford: $\Theta(V^2E)$

Målsetting:

> Vi vil tillate negative kanter

DIJKSTRA med tabell: $O(V^3 + VE)$

 $\rightarrow \dots$ med binærhaug: $O(VE \lg V)$

 $O(V^2 \lg V + VE)$

 \rightarrow Bellman-Ford: $\Theta(V^2E)$

- > Vi vil tillate negative kanter
- Vi vil ha lavere asymptotisk kjøretid...

 \rightarrow DIJKSTRA med tabell: $O(V^3 + VE)$

 $\rightarrow \dots$ med binærhaug: $O(VE \lg V)$

 $O(V^2 \lg V + VE)$

 \rightarrow Bellman-Ford: $\Theta(V^2E)$

- > Vi vil tillate negative kanter
- Vi vil ha lavere asymptotisk kjøretid...
- ... og vil ha lavere konstantledd

 \rightarrow DIJKSTRA med tabell: $O(V^3 + VE)$

 $\rightarrow \dots$ med binærhaug: $O(VE \lg V)$

 $\rightarrow \dots$ med Fib.-haug: $O(V^2 \lg V + VE)$

 \rightarrow Bellman-Ford: $\Theta(V^2E)$

- > Vi vil tillate negative kanter
- Vi vil ha lavere asymptotisk kjøretid...
- ... og vil ha lavere konstantledd

Korteste vei fra i til j via noder fra $\{1 \dots k\}$

Korteste vei fra i til j via noder fra $\{1 \dots k\}$

Forgjengeren til j om vi starter i i og går via noder fra $\{1 \dots k\}$

 $d_{ij}^{(k)} = \text{korteste vei fra } i \text{ til } j \text{ via noder fra } \{1 \dots k\}$

Som for ryggsekkproblemet: Skal k være med eller ikke?

Stiene p, p_1 og p_2 går kun via noder fra $\{1 \dots k-1\}$

 $\boldsymbol{d}_{ij}^{(k)}$ kan enten være $\boldsymbol{d}_{ij}^{(k-1)}$ eller $\boldsymbol{d}_{ik}^{(k-1)} + \boldsymbol{d}_{kj}^{(k-1)}$

$$d_{ij}^{(k)} = \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right)$$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & \text{if } k \ge 1. \end{cases}$$

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases}$$

$$\pi_{ij}^{(k)} = \left\{ \right.$$

if
$$d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$$
,

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}, \\ \end{cases}$$

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}, \\ & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}. \end{cases}$$

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}, \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}. \end{cases}$$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & \text{if } k \ge 1. \end{cases}$$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \geq 1. \end{cases}$$

Som før: Vi kan ha gått innom k i én av delstiene, siden vi blander iterasjoner – men vi antar at det ikke er noen negative sykler, og en positiv sykel vil aldri lønne seg (og vil dermed ikke bli med).

Vi kan bruke én tabell igjen (se oppgave 25.2-4)

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)}, \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}. \end{cases}$$

Fordi denne bare baserer seg på valget vi gjør for d.

Også her holder det med én tabell

FLOYD-WARSHALL(W)

FLOYD-WARSHALL(W) $1 \quad n = \text{W.} rows$

FLOYD-WARSHALL(W)

- $1 \quad n = W.rows$
- $2 D^{(0)} = W$

Korteste vei $i \leadsto j$ som ikke går via andre = w(i,j)

- $1 \quad n = W.rows$
- $2 D^{(0)} = W$
- 3 **for** k = 1 **to** n

- $1 \quad n = W.rows$
- $2 D^{(0)} = W$
- 3 **for** k = 1 **to** n
- let $D^{(k)} = (d_{ij}^{(k)})$ be a new $n \times n$ matrix

- 1 n = W.rows
- $2 D^{(0)} = W$
- 3 **for** k = 1 **to** n
- let $D^{(k)} = (d_{ij}^{(k)})$ be a new $n \times n$ matrix
- 5 **for** i = 1 **to** n

For hver mulig startnode...

```
FLOYD-WARSHALL(W)

1 n = \text{W.}rows

2 D^{(0)} = \text{W}

3 for k = 1 to n

4 let D^{(k)} = (d_{ij}^{(k)}) be a new n \times n matrix

5 for i = 1 to n

6 for j = 1 to n
```

For hver mulig sluttnode...

```
FLOYD-WARSHALL(W)

1  n = \text{W.} rows

2  D^{(0)} = \text{W}

3  for k = 1 to n

4  let D^{(k)} = (d_{ij}^{(k)}) be a new n \times n matrix

5  for i = 1 to n

6  for j = 1 to n

7  d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})
```

```
FLOYD-WARSHALL(W)

1  n = \text{W.} rows

2  D^{(0)} = \text{W}

3  for k = 1 to n

4  let D^{(k)} = (d_{ij}^{(k)}) be a new n \times n matrix

5  for i = 1 to n

6  for j = 1 to n

7  d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})

8  return D^{(n)}
```

W vekter

FLOYD-WARSHALL'(W) $1 \quad n = \text{W.} rows$

W vekter n ant. noder

- 1 n = W.rows
- 2 initialize D and Π

W vekter

n ant. noder

D avstander

 Π forgjengere

- 1 n = W.rows
- 2 initialize D and Π
- 3 **for** k = 1 **to** n

W vekter

n ant. noder

D avstander

Π forgjengere

k mellomlanding

- 1 n = W.rows
- 2 initialize D and Π
- 3 **for** k = 1 **to** n
- 4 for i = 1 to n

W vekter

n ant. noder

D avstander

Π forgjengere

k mellomlanding

fra-node

```
FLOYD-WARSHALL'(W)

1 n = W.rows

2 initialize D and \Pi

3 for k = 1 to n

4 for i = 1 to n

5 for j = 1 to n
```

```
egin{array}{ll} W & 	ext{vekter} \\ n & 	ext{ant. noder} \\ D & 	ext{avstander} \\ \Pi & 	ext{forgjengere} \\ k & 	ext{mellomlanding} \\ i & 	ext{fra-node} \\ j & 	ext{til-node} \\ \end{array}
```

```
FLOYD-WARSHALL'(W)

1 n = \text{W.}rows

2 initialize D and \Pi

3 for k = 1 to n

4 for i = 1 to n

5 for j = 1 to n

6 if d_{ij} > d_{ik} + d_{kj}
```

```
egin{array}{ll} W & 	ext{vekter} \\ n & 	ext{ant. noder} \\ D & 	ext{avstander} \\ \Pi & 	ext{forgjengere} \\ k & 	ext{mellomlanding} \\ i & 	ext{fra-node} \\ j & 	ext{til-node} \\ d_{ij} & 	ext{celle i D} \\ \end{array}
```

```
FLOYD-WARSHALL'(W)

1 n = \text{W.}rows

2 initialize D and \Pi

3 for k = 1 to n

4 for i = 1 to n

5 for j = 1 to n

6 if d_{ij} > d_{ik} + d_{kj}

7 d_{ij} = d_{ik} + d_{kj}
```

```
egin{array}{ll} W & 	ext{vekter} \\ n & 	ext{ant. noder} \\ D & 	ext{avstander} \\ \Pi & 	ext{forgjengere} \\ k & 	ext{mellomlanding} \\ i & 	ext{fra-node} \\ j & 	ext{til-node} \\ d_{ij} & 	ext{celle i D} \\ \end{array}
```

```
FLOYD-WARSHALL'(W)

1 n = \text{W.}rows

2 initialize D and \Pi

3 for k = 1 to n

4 for i = 1 to n

5 for j = 1 to n

6 if d_{ij} > d_{ik} + d_{kj}

7 d_{ij} = d_{ik} + d_{kj}

8 \pi_{ij} = \pi_{kj}
```

```
egin{array}{ll} W & 	ext{vekter} \ n & 	ext{ant. noder} \ D & 	ext{avstander} \ \Pi & 	ext{forgjengere} \ k & 	ext{mellomlanding} \ i & 	ext{fra-node} \ j & 	ext{til-node} \ d_{ij} & 	ext{celle i D} \ \pi_{ij} & 	ext{celle i } \Pi \ \end{array}
```

```
FLOYD-WARSHALL'(W)

1 n = W.rows

2 initialize D and \Pi

3 for k = 1 to n

4 for i = 1 to n

5 for j = 1 to n

6 if d_{ij} > d_{ik} + d_{kj}

7 d_{ij} = d_{ik} + d_{kj}

8 \pi_{ij} = \pi_{kj}

9 return D, \Pi
```

```
W vekter n ant. noder D avstander \Pi forgjengere k mellomlanding i fra-node j til-node d_{ij} celle i D \pi_{ij} celle i \Pi
```

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	∞	-5	0	∞
	5	∞	000	∞	6	0

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4		4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	∞	-5	0	∞
	5	∞	∞	∞	6	0

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4		4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	∞	-5	0	∞
	5	∞	∞	∞	6	0

		1	2	3	4	5
	1		1	1		$\mid 1 \mid$
	2				2	2
Π	3		3			
	4	4		4		
	5				5	_

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8		-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	∞	-5	0	∞
	5	∞	∞	∞	6	0
	'					

		1	2	3	4	5
	1		1	1		$\begin{array}{ c c } 1 \end{array}$
	2				2	2
Π	3		3			
	4	4		4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	∞	-5	0	∞
	5	∞	∞	∞	6	0
	'					

		1	2	3	4	5
	1		1	1		$\begin{array}{ c c } 1 \end{array}$
	2				2	2
Π	3		3			
	4	4		4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = W.rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2		0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	∞	-5	0	∞
	5	∞	∞	∞	6	0
	l					

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4		4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	8	4	0	∞	∞
	4	2	∞	-5	0	∞
	5	∞	∞	∞	6	0
	'					

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4		4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.} rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0		1	7
D	3	∞	4	0	∞	∞
	4	2	∞	-5	0	∞
	5	∞	∞	∞	6	0

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4		4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	∞	-5	0	∞
	5	∞	∞	∞	6	0

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4		4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	∞	-5	0	∞
	5	∞	∞	∞	6	0

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4		4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3		4	0	∞	∞
	4	2	∞	-5	0	∞
	5	∞	∞	∞	6	0

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4		4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.} rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	∞	-5	0	∞
	5	∞	∞	∞	6	0

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4		4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	∞	-5	0	∞
	5	∞	∞	∞	6	0
	'					

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4		4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0		∞
	4	2	∞	-5	0	∞
	5	∞	∞	∞	6	0
	'					

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4		4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞			∞	
4	2	∞	-5	0	∞
5	∞	∞	∞	6	0
	233	$\begin{bmatrix} 2 & \infty \\ 3 & \infty \end{bmatrix}$	$\begin{bmatrix} 0 & 3 \\ \infty & 0 \\ \infty & 4 \\ 2 & \infty \end{bmatrix}$	$\begin{bmatrix} 0 & 3 & 8 \\ \infty & 0 & \infty \\ \infty & 4 & 0 \\ 2 & \infty & -5 \end{bmatrix}$	$\begin{bmatrix} 0 & 3 & 8 & \infty \\ \infty & 0 & \infty & 1 \\ \infty & 4 & 0 & \infty \\ 2 & \infty & -5 & 0 \end{bmatrix}$

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4		4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.} rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	∞	-5	0	∞
	5	∞	∞	∞	6	0

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4		4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2		-5	0	∞
	5	∞	∞	∞	6	0
	'					

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4		4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2		-5	0	∞
	5	∞	∞	∞	6	0
	,				_	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	5	-5	0	∞
	5	∞	∞	∞	6	0
		1	2	3	4	5

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4		4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	5	-5	0	∞
	5	∞	∞	∞	6	0

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4	1	4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.} rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	15	-5	0	∞
	5	∞	∞	∞	6	0

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4	1	4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	5	-5	0	
	5	∞	∞	∞	6	0

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4	1	4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	5	-5	0	
	5	∞	∞	∞	6	0
	'					

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4	1	4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

1 2 3 4	5
$1 \mid 0 \mid 3 \mid 8 \mid \infty \mid$	-4
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	7
$D 3 \infty 4 0 \infty$	∞
4 2 5 -5 0	-2
5 ∞ ∞ ∞ 6	0
1 0 0 4	

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4	1	4		
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	5	-5	0	-2
	5		00	∞	6	0

		1	2	3	4	5
Π	1		1	1		1
	2				2	2
	3		3			
	4	4	1	4		1
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	5	-5	0	-2
	5	∞		∞	6	0

		1	2	3	4	5
Π	1		1	1		1
	2				2	2
	3		3			
	4	4	1	4		1
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.} rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	5	-5	0	-2
	5	∞	∞		6	0

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4	1	4		1
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	5	-5	0	-2
	5	∞	∞	∞	6	0
	'					

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4	1	4		1
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

4 5
~ -4
$1 \mid 7$
∞ ∞
0 -2
6 0
4 -

		1	2	3	4	5
	1		1	1		1
	2				2	2
Π	3		3			
	4	4	1	4		1
	5				5	

FLOYD-WARSHALL'(W)

$$1 \quad n = W.rows$$

2 initialize D and
$$\Pi$$

3 for
$$k = 1$$
 to n

4 for
$$i = 1$$
 to n

for
$$j = 1$$
 to n

$$\mathbf{if}\ d_{ij} > d_{ik} + d_{kj}$$

$$d_{ij} = d_{ik} + d_{kj}$$

$$8 \pi_{ij} = \pi_{kj}$$

9 return
$$D, \Pi$$

		1	2	3	4	5
	1	0	3	8	∞	-4
	2	∞	0	∞	1	7
D	3	∞	4	0	∞	∞
	4	2	5	-5	0	-2
	5	00	00	∞	6	0

		1	2	3	4	5
	1		1	1		1
	2				2	2
П	3		3			
	4	4	1	4		1
	5				5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	-1	4	-4
	2	3	0	-4	1	-1
D	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
		1	2	3	4	5
	1		1	1	9	1

		1	2	3	4	5
	1		1	4	2	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	-1	4	-4
	2	3	0	-4	1	-1
D	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0

		1	2	3	4	5
	1		1	4	2	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	3	-1	4	-4
	2	3	0	-4	1	-1
D	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
		1	0	9	1	_

		1	2	3	4	5
	1		1	4	2	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

FLOYD-WARSHALL'(W)

1
$$n = W.rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	1	-1	4	-4
	2	3	0	-4	1	-1
D	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0

		1	2	3	4	5
	1		1	4	2	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	1	_1	4	-4
	2	3	0	-4	1	-1
D	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
	'					

		1	2	3	4	5
	1		3	4	2	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	1	1	4	-4
	2	3	0	-4	1	-1
D	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
		1	2	3	4	5

		1	2	3	4	5
	1		3	4	2	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	1	-3	4	-4
	2	3	0	-4	1	-1
D	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0

		1	2	3	4	5
	1		3	4	2	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	1	-3	4	-4
	2	3	0	-4	1	-1
D	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0

		1	2	3	4	5
	1		3	4	2	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	1	-3	4	-4
	2	3	0	-4	1	-1
D	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
	'					

		1	2	3	4	5
	1		3	4	2	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	1	-3	2	-4
	2	3	0	-4	1	-1
D	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0

		1	2	3	4	5
	1		3	4	2	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

FLOYD-WARSHALL'(W)

$$1 \quad n = W.rows$$

2 initialize D and
$$\Pi$$

3 for
$$k = 1$$
 to n

4 for
$$i = 1$$
 to n

for
$$j = 1$$
 to n

$$\mathbf{if}\ d_{ij} > d_{ik} + d_{kj}$$

$$d_{ij} = d_{ik} + d_{kj}$$

$$8 \pi_{ij} = \pi_{kj}$$

9 return
$$D, \Pi$$

		1	2	3	4	5
	1	0	1	-3	2	-4
	2	3	0	-4	1	-1
D	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0

1	2	3	4	5

1	3	4	5	1

$$k, i, j = 5, 1, 5$$

5

4

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	1	-3	2	-4
	2	3	0	-4	1	-1
D	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
		1	2	3	4	5
	1	1	3	3	5	5
	1 2	1 4				
Π				4	5	1
Π	2	4	3	4	5 2	1

5 | 4

3

FLOYD-WARSHALL'(W)

1
$$n = \text{W.}rows$$

2 initialize D and Π

3 for $k = 1$ to n

4 for $i = 1$ to n

5 for $j = 1$ to n

6 if $d_{ij} > d_{ik} + d_{kj}$

7 $d_{ij} = d_{ik} + d_{kj}$

8 $\pi_{ij} = \pi_{kj}$

9 return D, Π

		1	2	3	4	5
	1	0	1	-3	2	-4
	2	3	0	-4	1	-1
D	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
		1	2	3	4	5
	1	1	3	3	5	5
	1 2	1 4				
Π				4	5	1
Π	2	4	3	4	5 2	1

Print-All-Pairs-Shortest-Path (Π, i, j)

Print-All-Pairs-Shortest-Path (Π, i, j) 1 if i == j Print-All-Pairs-Shortest-Path (Π, i, j)

- 1 **if** i == j
- 2 print i

...så bare skriv ut noden

Print-All-Pairs-Shortest-Path (Π, i, j)

- 1 **if** i == j
- 2 print i
- 3 elseif $\pi_{ij} == \text{NIL}$

Hvis vi ellers ikke kom fra noe sted...

```
Print-All-Pairs-Shortest-Path(\Pi, i, j)

1 if i == j

2 print i

3 elseif \pi_{ij} == \text{NIL}

4 print "no path from" i "to" j "exists"
```

... så finnes ingen sti!

```
Print-All-Pairs-Shortest-Path(\Pi, i, j)

1 if i == j

2 print i

3 elseif \pi_{ij} == \text{NIL}

4 print "no path from" i "to" j "exists"

5 else Print-All-Pairs-Shortest-Path(\Pi, i, \pi_{ij})
```

```
Print-All-Pairs-Shortest-Path(\Pi, i, j)

1 if i == j

2 print i

3 elseif \pi_{ij} == \text{NIL}

4 print "no path from" i "to" j "exists"

5 else Print-All-Pairs-Shortest-Path(\Pi, i, \pi_{ij})

6 print j
```

Print-Path (Π, i, j)

```
1 if i == j

2 print i

3 elseif \pi_{ij} == \text{NIL}

4 print "no such path"

5 else Print-Path(\Pi, i, \pi_{ij})

6 print j
```

		1	2	3	4	5
	1		3	4	5	1
	2	4		4	2	$\mid 1 \mid$
Π	3	4	3		2	$\mid 1 \mid$
	4	4	3	4		$\mid 1 \mid$
	5	4	3	4	5	

Print-Path
$$(\Pi, i, j)$$
1 if $i == j$
2 print i
3 elseif $\pi_{ij} == \text{NIL}$
4 print "no such path"
5 else Print-Path (Π, i, π_{ij})
6 print j

		1	2	3	4	5
	1		3	4	15	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

Print-Path(
$$\Pi, i, j$$
)

1 if $i == j$

2 print i

3 elseif $\pi_{ij} == \text{NIL}$

4 print "no such path"

5 else Print-Path(Π, i, π_{ij})

6 print j

		1	2	3	4	5
	1		3	4	15	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

Print-Path (Π, i, j)

1 if
$$i == j$$

2 print i
3 elseif $\pi_{ij} == \text{NIL}$
4 print "no such path"
5 else PRINT-PATH (Π, i, π_{ij})
6 print j

		1	2	3	4	5
	1		3	4	5	$\begin{array}{ c c c } 1 \end{array}$
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

Print-Path
$$(\Pi, i, j)$$
1 if $i == j$
2 print i
3 elseif $\pi_{ij} == \text{NIL}$
4 print "no such path"
5 else Print-Path (Π, i, π_{ij})
6 print j

		1	2	3	4	5
	1		3	4	5	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

Print-Path(
$$\Pi, i, j$$
)

1 if $i == j$

2 print i

3 elseif $\pi_{ij} == \text{NIL}$

4 print "no such path"

5 else Print-Path(Π, i, π_{ij})

6 print j

		1	2	3	4	5
	1		3	4	15	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

Print-Path (Π, i, j)

1 if
$$i == j$$

2 print i
3 elseif $\pi_{ij} == \text{NIL}$
4 print "no such path"
5 else Print-Path(Π, i, π_{ij})
6 print j

		1	2	3	4	5
	1		3	4	5	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	$\overline{4}$	3	4	5	

Print-Path
$$(\Pi, i, j)$$
1 if $i == j$
2 print i
3 elseif $\pi_{ij} == \text{NIL}$
4 print "no such path"
5 else Print-Path (Π, i, π_{ij})
6 print j

		1	2	3	4	5
	1		3	4	5	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

Print-Path(
$$\Pi, i, j$$
)

1 if $i == j$

2 print i

3 elseif $\pi_{ij} == \text{NIL}$

4 print "no such path"

5 else Print-Path(Π, i, π_{ij})

6 print j

		1	2	3	4	5
	1		3	4	5	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

Print-Path (Π, i, j)

1 if
$$i == j$$

2 print i
3 elseif $\pi_{ij} == \text{NIL}$
4 print "no such path"
5 else PRINT-PATH (Π, i, π_{ij})
6 print j

		1	2	3	4	5
	1		3	4	5	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

Print-Path(
$$\Pi, i, j$$
)

1 if $i == j$

2 print i

3 elseif $\pi_{ij} == \text{NIL}$

4 print "no such path"

5 else Print-Path(Π, i, π_{ij})

6 print j

		1	2	3	4	5
	1		3	4	5	1
	2	4		4	2	$\mid 1 \mid$
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

Print-Path(
$$\Pi, i, j$$
)

1 if $i == j$

2 print i

3 elseif $\pi_{ij} == \text{NIL}$

4 print "no such path"

5 else Print-Path(Π, i, π_{ij})

6 print j

		1	2	3	4	5
	1		3	4	5	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

PRINT-PATH (Π, i, j)

1 if
$$i == j$$

2 print i
3 elseif $\pi_{ij} == \text{NIL}$
4 print "no such path"
5 else Print-Path(Π, i, π_{ij})
6 print j

		1	2	3	4	5
	1		3	4	15	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

```
Print-Path(\Pi, i, j)

1 if i == j

2 print i

3 elseif \pi_{ij} == \text{NIL}

4 print "no such path"

5 else Print-Path(\Pi, i, \pi_{ij})

6 print j
```

		1	2	3	4	5
	1		3	4	5	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

Print-Path
$$(\Pi, i, j)$$
1 if $i == j$
2 print i
3 elseif $\pi_{ij} == \text{NIL}$
4 print "no such path"
5 else Print-Path (Π, i, π_{ij})
6 print j

		1	2	3	4	5
	1		3	4	5	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

Print-Path
$$(\Pi, i, j)$$
1 if $i == j$
2 print i
3 elseif $\pi_{ij} == \text{NIL}$
4 print "no such path"
5 else Print-Path (Π, i, π_{ij})
6 print j

		1	2	3	4	5
	1		3	4	5	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

Print-Path(
$$\Pi, i, j$$
)

1 if $i == j$

2 print i

3 elseif $\pi_{ij} == \text{NIL}$

4 print "no such path"

5 else Print-Path(Π, i, π_{ij})

6 print j

		1	2	3	4	5
	1		3	4	5	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

$$i,j = 1,2 \rightarrow 1,3$$

Print-Path(
$$\Pi, i, j$$
)

1 if $i == j$

2 print i

3 elseif $\pi_{ij} == \text{NIL}$

4 print "no such path"

5 else Print-Path(Π, i, π_{ij})

6 print j

		1	2	3	4	5
	1		3	4	5	1
	2	4		4	2	1
Π	3	4	3		2	1
	4	4	3	4		1
	5	4	3	4	5	

$$i, j = 1, 2$$

Pı	RINT-PATH (Π,i,j)
1	if $i == j$
2	print i
3	elseif $\pi_{ij} == NIL$
4	print "no such path"
5	else Print-Path (Π, i, π_{ij})
6	$\mathrm{print}\ j$

		1	2	3	4	5
	1		3	4	5	1
	2	4		4	2	$\mid 1 \mid$
Π	3	4	3		2	$\mid 1 \mid$
	4	4	3	4		1
	5	4	3	4	5	

$$i, j = 1, 2$$

Korteste vei > Floyd-Warshall > Kjøretid

```
\operatorname{for} k = 1 \text{ to } n
\operatorname{for} i = 1 \text{ to } n
\operatorname{for} j = 1 \text{ to } n
\min_{j \in \mathcal{O}(1)} \operatorname{O}(1)
```

```
egin{aligned} & \inf & \Theta(n^2) \ & \mathbf{for} \ k = 1 \ \mathbf{to} \ n \ & \mathbf{for} \ i = 1 \ \mathbf{to} \ n \ & \mathbf{for} \ j = 1 \ \mathbf{to} \ n \ & \min & \mathrm{O}(1) \end{aligned}
\mathbf{return} & \mathrm{O}(1)
```

1. Johnsons algoritme

2. Transitiv lukning

3. Floyd-Warshall