Differential Geometry Notes of 05/02/2013

Pramook Khungurn

May 4, 2013

1 The Exponential Map

as required.

- Given a point p of a regular surface S, and a non-zero vector $v \in T_p(S)$, tehre exist a unique parameterized geodesic $\gamma: (-\epsilon, \epsilon) \to S$ with $\gamma(0) = p$ and $\gamma'(0) = v$.
- We shall denote $\gamma(t,v) = \gamma$ to indicate the dependence of the geodesic on v.
- Lemma 1.1. If the geodesic $\gamma(t,v)$ is defined for $t \in (-\epsilon,\epsilon)$, then the geodesic $\gamma(t,\lambda v)$ with $\lambda \in \mathbb{R}$, $\lambda \neq 0$, is defined for $t \in (-\epsilon/\lambda,\epsilon/\lambda)$, and $\gamma(t,\lambda v) = \gamma(\lambda t,v)$.

Proof. Let $\alpha: (-\epsilon/\lambda, \epsilon/\lambda) \to S$ be a parameterized curve defined by $\alpha(t) = \gamma(\lambda t)$. Then, $\alpha(0) = \gamma(0) = p$. Also, $\alpha'(0) = \frac{\mathrm{d}\gamma(\lambda t)}{\mathrm{d}t}\big|_{t=0} = \lambda\gamma'(0) = \lambda v$. By the linearity of

$$\frac{D\alpha'(t)}{\mathrm{d}t} = \frac{D(\gamma'(\lambda t))}{\mathrm{d}t} = \frac{D(\gamma'(\lambda t))}{\mathrm{d}(\lambda t)} \frac{\mathrm{d}(\lambda t)}{\mathrm{d}t} = \mathbf{0}.$$

This is because $\gamma(\lambda t)$ is a geodesic. It follows that α is a geodesic whose $\alpha(0) = \lambda(0)$ and $\alpha'(0) = \lambda \gamma'(0)$. By uniqueness of geodesic,

$$\alpha(t) = \gamma(t, \lambda v) = \gamma(\lambda t, v)$$

• If $v \in T_p(S)$, $v \neq 0$, is that $\gamma(|v|, v/|v|) = \gamma(1, v)$ is defined, we set

$$\exp_p(v) = \gamma(1, v)$$
, and $\exp_p(\mathbf{0}) = p$.

• Proposition 1.2. Given $p \in S$, there exists an $\epsilon > 0$ such that \exp_p is defined and differentiable in the interior of B_{ϵ} of a disk of radius ϵ of $T_p(S)$, with the center in the origin.

Proof. For every direction of $T_p(S)$, it is possible by the last lemma to take v sufficiently small so that the definition of $\gamma(t,v)$ contains 1. Thus, $\gamma(1,v) = \exp_p(v)$ is defined.

The next problem is that, if we let v varies through all the direction, ϵ does not go to zero. However, the following proposition is true:

Given $p \in S$, there exists numbers $\epsilon_1 > 0$ and $\epsilon_2 > 0$ and a differentiable map

$$\gamma: (-\epsilon_2, \epsilon_2) \times B_{\epsilon_1} \to S$$

such that, for $v \in B_{\epsilon_1}$, $v \neq \mathbf{0}$, $t \in (-\epsilon_2, \epsilon_2)$, the curve $\gamma(t, v)$ is a geodesic of S with $\gamma(0, v) = p$ and $\gamma'(0, v) = v$. Moreover, $\gamma(t, \mathbf{0}) = p$.

Since $\gamma(t,v)$ is defined for $|t| < \epsilon_2$ and $|v| < \epsilon_1$, we can set $\lambda = \epsilon_2/2$, so that $\gamma(t,(\epsilon_2/2)v)$ is defined for |t| < 2 and $|v| < \epsilon_1$. Hence, $\exp_p(v) = \gamma(1,v)$ is defined for all $|v| < \epsilon_1\epsilon_2/2$. The differentiability of \exp_p follows from the differentiability of $\gamma(t,v)$.

• Proposition 1.3. $\exp_p : B_{\epsilon} \subseteq T_p(S) \to S$ is a diffeomorphism in a neighborhood $U \subseteq B_{\epsilon}$ of the origin 0 of $T_p(S)$.

Proof. We shall show that $d(\exp_p)$ is non-singular at $\mathbf{0} \in T_p(S)$. To do this, we identify the space of the tangent vectors to $T_p(S)$ at $\mathbf{0}$ with $T_p(S)$ itself.

Consider the curve $\alpha(t) = tv$, $v \in T_p(S)$. We have that $\alpha(0) = \mathbf{0}$ and $\alpha'(0) = v$. The curve $(\exp_p \circ \alpha)(t) = \exp_p(tv)$. Therefore,

$$\frac{\mathrm{d}}{\mathrm{d}t}(\exp_p(tv))\bigg|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t}(\gamma(t,v))\bigg|_{t=0} = v.$$

If follows that $d(\exp_p)_{\mathbf{0}}(v) = v$, which means that it is non-singular. The proposition is true by applying the inverse function theorem.

• We call $V \subseteq S$ a **normal neighborhood of** $p \in S$ if V is the image of $\exp_p(U)$ of the origin of $T_p(S)$, restricted to which \exp_p is a diffeomorphism.

2 Coordinates Defined by Exponential Maps

- The exponential map at $p \in S$ is diffeomorphism on U, it can be used to define coordinates in V. The most usual coordinate systems are:
 - The **normal coordinates** which corresponds to a system of rectangular coordinates in the tangent space $T_p(S)$.
 - The **geodesic polar coordinates** which corresponds to the polar coordinates in the tangent space $T_p(S)$.
- The normal coordinate system can be obtained by choosing two orthogonal vectors e_1 and e_2 in $T_p(S)$. Now, we can define the parameterization $\mathbf{x}: U \subseteq \mathbb{R}^2 \to S$ as:

$$\mathbf{x}(u,v) = \exp_n(ue_1 + ve_2).$$

The parameterization, of course, depends on e_1 and e_2 .

• In the normal coordinate system, the geodesics that pass through p are the images of \exp_p of the line:

$$u = at$$
$$v = vt,$$

which pass through (0,0), which maps to p.

• Let us calculate \mathbf{x}_u and \mathbf{x}_v at p. We have that

$$\frac{\mathrm{d}(\mathbf{x}(u'te_1 + v'te_2))}{\mathrm{d}t}\bigg|_{t=0} = \mathbf{x}_u u' + \mathbf{x}_v v'.$$

Therefore,

$$\mathbf{x}_u = \frac{\mathrm{d}(\mathbf{x}(te_1))}{\mathrm{d}t}\bigg|_{t=0} = \frac{\mathrm{d}\gamma(1, te_1)}{\mathrm{d}t}\bigg|_{t=0} = \frac{\mathrm{d}\gamma(t, e_1)}{\mathrm{d}t}\bigg|_{t=0} = e_1.$$

Also, we can similarly argue that $\mathbf{x}_v = e_2$.

Hence, the coefficients of the first fundamental form are $E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle = 1$, $G = \langle \mathbf{x}_v, \mathbf{x}_v \rangle = 1$, and $F = \langle \mathbf{x}_u, \mathbf{x}_v \rangle = 0$.

- We now study the geometric polar coordinates. We pick a system of polar coordinate (ρ, θ) around p in $T_p(S)$. Here, $\theta \in (0, 2\pi)$, and $\rho \in (0, \infty)$.
 - The polar coordinates are not defined in the half line $l=\{(x,0):x\in[0,\infty)\}$. Let $L=\exp_n(l)$.

So, the geodesic polar coordinate is a function from U-l to V-L.

- The images by exp_p: U → V of circles in U centered at 0 are called the geodesic circles.
 The images of exp_p of the lines through 0 are called the radial geodesics.
 These are curves with ρ = const. and θ = const., respectively.
- Proposition 2.1. Let $\mathbf{x}: U l \to V L$ be a system of geodesic polar coordinate (ρ, θ) . Then, the coefficients $E = E(\rho, \theta)$. $F = F(\rho, \theta)$, and $G = G(\rho, \theta)$ of the first fundamental form statisfy the coditions.

$$E = 1,$$
 $F = 0,$ $\lim_{\rho \to 0} G = 0,$ $\lim_{\rho \to 0} (\sqrt{G})_{\rho} = 1.$

Proof. We first show that E=1. Fix θ and pick a curve with $\rho=\rho_0+t$. We have that

$$\mathbf{x}_{\rho}(\rho,\theta) = \frac{\partial \mathbf{x}(\rho,\theta)}{\partial \rho} = \frac{\partial \gamma(\rho,(\cos\theta,\sin\theta))}{\partial \rho} = \gamma'(\rho,(\cos\theta,\sin\theta)).$$

So, $E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle = 1$ because the velocity of the geodesic is constant and is equal to $|(\cos \theta, \sin \theta)| = 1$. Next, we will show that F = 0. To do so, we proceed in two steps.

- 1. We will show that F does not depend on ρ ; that is $F_{\rho} = 0$.
- 2. Second, we will show that $\lim_{\rho \to 0} F(\rho, \theta) = 0$.

The two assertions together show that F = 0 identically.

Now, we show that $F_{\rho} = 0$. Notice that the curve given by setting $\theta = const.$ and $\rho = t$ is a geodesic. The curve satisfies the following differential equations of the geodesics:

$$\rho'' + \Gamma_{11}^{1}(\rho')^{2} + 2\Gamma_{12}^{1}\rho'\theta' + \Gamma_{22}^{1}(\theta')^{2} = 0$$

$$\theta'' + \Gamma_{11}^{1}(\rho')^{2} + 2\Gamma_{12}^{2}\rho'\theta' + \Gamma_{22}^{2}(\theta')^{2} = 0.$$

Because $\theta' = 0$ and $\rho' = 1$, we have that the second equation becomes:

$$\Gamma_{11}^2 = 0.$$

Now, the definition of the Christoffel symbols requires that:

$$\Gamma_{11}^1 E + \Gamma_{11}^2 F = \frac{1}{2} E_\rho.$$

Because E = 1 and $\Gamma_{11}^2 = 0$, we also have that

$$\Gamma^{1}_{11} = 0.$$

Also, because

$$\Gamma_{11}^1 F + \Gamma_{11}^2 G = F_\rho - \frac{1}{2} E_\theta,$$

we have that

$$F_o = 0.$$

Hence, $F(\rho, \theta)$ does not depend on ρ .

Next, we show that $\lim_{\rho\to 0} F(\rho,\theta) = 0$. For each $q \in V$, denote by $\alpha(\sigma)$ the geodesic circle that passes through q. Here, $\sigma \in (0,2\pi)$. (Notice that, if q=p, then $\alpha(\sigma)=p$ reduces to a point.) Also, denote by $\gamma(s)$, where s is arclength of γ , the radial geodesics that passes through q. With this notation, we may write:

$$F(\rho, \theta) = \left\langle \frac{\mathrm{d}\alpha}{\mathrm{d}\sigma}, \frac{\mathrm{d}\gamma}{\mathrm{d}s} \right\rangle.$$

Notice that $F(\rho, \theta)$ is not defined at p. However, if we fix the radial geodesic $\theta = const.$, the derivative $d\gamma/ds$ is defined for every point on the geodesic. Also, since at p, $\alpha(\sigma) = p$ for all σ , it means that $d\alpha/ds = 0$. Thus, we have that

$$\lim_{\rho \to 0} F(\rho, \theta) = \lim_{\rho \to 0} \left\langle \frac{\mathrm{d}\alpha}{\mathrm{d}\sigma}, \frac{\mathrm{d}\gamma}{\mathrm{d}s} \right\rangle = 0.$$

It remains to show that $\lim_{\rho\to 0} G = 0$, and $\lim_{\rho\to 0} \sqrt{G_\rho} = 1$. Now, observe that since E = 1 and F = 0, we have that

$$\sqrt{EG - F^2} = \sqrt{G}.$$

Hence,

$$\lim_{\rho \to 0} \sqrt{G} = \lim_{\rho \to 0} \sqrt{EG - F^2},$$
$$\lim_{\rho \to 0} (\sqrt{G})_{\rho} = \lim_{\rho \to 0} (\sqrt{EG - F^2})_{\rho}.$$

Therefore, we can study the behavior of $\sqrt{EG - F^2}$ instead of G.

To study the behavior of $\sqrt{EG-F^2}$, we reparameterize the neighborhood with the new variables \bar{u} and \bar{v} such that:

$$\bar{u} = \rho \cos \theta,$$
 $\bar{v} = \rho \sin \theta$

which is just the normal coordinate system. Recall that

$$\sqrt{EG - F^2} = \sqrt{\bar{E}\bar{G} - \bar{F}^2} \frac{\partial(\bar{u}, \bar{v})}{\partial(\rho, \theta)}.$$

We know that $\sqrt{E}\overline{G} - \overline{F}^2 = 1$ at p. Also,

$$\frac{\partial \bar{u}}{\partial \rho} = \cos \theta, \qquad \qquad \frac{\partial \bar{v}}{\partial \rho} = \sin \theta, \qquad \qquad \frac{\partial \bar{u}}{\partial \theta} = -\rho \sin \theta \qquad \qquad \frac{\partial \bar{v}}{\partial \theta} = \rho \cos \theta.$$

So,

$$\frac{\partial(\bar{u},\bar{v})}{\partial(\rho,\theta)} = \frac{\partial\bar{u}}{\partial\rho}\frac{\partial\bar{v}}{\partial\theta} - \frac{\partial u}{\partial\theta}\frac{\partial\bar{v}}{\partial\rho} = \rho\cos^2\theta + \rho\sin^2\theta = \rho.$$

Hence, $\sqrt{G} = \sqrt{EG - F^2} = \rho$ at p. Thus,

$$\lim_{\rho \to 0} G = \lim_{\rho \to 0} \rho^2 = 0,$$

$$\lim_{\rho \to 0} \sqrt{G_\rho} = \lim_{\rho \to 0} 1 = 1$$

as required.

• The fact that F = 0 means that, in the normal neighborhood, the family of geodesic circles is orthogonal to the family of radial geodesics.

This is known as the **Gauss lemma**.

• Since in the polar geodesic coordinate system, we have that E=1 and F=0. Now,

$$\begin{split} K &= -\frac{1}{2\sqrt{EG}} \left\{ \left(\frac{E_{\theta}}{\sqrt{EG}} \right)_{\theta} + \left(\frac{G_{\rho}}{\sqrt{EG}} \right)_{\rho} \right\} = -\frac{1}{2\sqrt{G}} \left(\frac{G_{\rho}}{\sqrt{G}} \right)_{\rho} = -\frac{1}{\sqrt{G}} \left(\frac{G_{\rho}}{2\sqrt{G}} \right)_{\rho} \\ &= -\frac{1}{\sqrt{G}} \left((\sqrt{G})_{\rho} \right)_{\rho} = -\frac{(\sqrt{G})_{\rho\rho}}{\sqrt{G}}. \end{split}$$

The expression

$$K = -\frac{\sqrt{G_{\rho\rho}}}{\sqrt{G}}$$

can be thought of as the differential equation which $\sqrt{G}(\rho, \theta)$ should satisfy if we want to have the surface to have the curvature $K(\rho, \theta)$.

3 Theorem of Minding

ullet If K is constant, the equation simplifies to

$$(\sqrt{G})_{\rho\rho} + K\sqrt{G} = 0,$$

which is a linear differential equation of second order with constant coefficient.

- Let us study what E, F, and G have to be when K is constant. There are three cases: K = 0, K > 0, and K < 0.
- If K=0, we have htat $(\sqrt{G}_{\rho\rho})=0$. Thus $(\sqrt{G})_{\rho}=g(\theta)$, a function of θ . Since

$$\lim_{\rho \to 0} (\sqrt{G})_{\rho} = 1,$$

we conclude that $(\sqrt{G})_{\rho} = 1$ identically. So, $\sqrt{G} = \rho + f(\theta)$ with $f'(\theta) = g(\theta)$. Now,

$$0 = \lim_{\rho \to 0} \sqrt{G} = \lim_{\rho \to 0} \rho + \lim_{\rho \to 0} f(\theta) = f(\theta).$$

Hence, we can conclude that $\sqrt{G} = \rho$. So,

$$E = 1, F = 0, G(\rho, \theta) = \rho^{2}.$$

• If K > 0, the general solution of $(\sqrt{G})_{\rho\rho} + K\sqrt{G} = 0$ is given by:

$$\sqrt{G} = A(\theta)\cos(\sqrt{K}\rho) + B(\theta)\sin(\sqrt{K}\rho).$$

Since $\lim_{\rho\to 0} \sqrt{G} = 0$, we have that $A(\theta) = 0$. Thus,

$$\sqrt{G} = B(\theta) \sin(\sqrt{K}\rho).$$

Also, we have that

$$1 = \lim_{\rho \to 0} (\sqrt{G})_{\rho} = \lim_{\rho \to 0} B(\theta) \sqrt{K} \cos(\sqrt{K}\rho) = B(\theta) \sqrt{K}.$$

If follows that $B(\theta) = 1/\sqrt{K}$. Hence,

$$E = 1$$
, $F = 0$, $G = \frac{1}{K}\sin^2 \sqrt{K\rho}$.

• If K < 0, the general solution of $(\sqrt{G})_{\rho\rho} + K\sqrt{G} = 0$ is given by:

$$\sqrt{G} = A(\theta) \cosh(\sqrt{-K}\rho) + B(\theta) \sinh(\sqrt{-K}\rho).$$

Again, we can find that:

$$E = 1, \quad F = 0, \quad G = \frac{1}{-K} \sinh^2(\sqrt{-K\rho}).$$

• Theorem 3.1 (Minding). Any two regular surfaces with the same constant Gaussian curvature are locally isometric.

More precisely, let S_1 , S_2 be two regular surfaces with the same constant curvature K.

Choose point $p_1 \in S_1$ and $p_2 \in S_2$.

Choose orthonormal basis $\{e_1, e_2\} \in T_{p_1}(S_1)$ and $\{f_1, f_2\} \in T_{p_2}(S_2)$.

Then, there exists a neighborhood V_1 of p_1 and V_2 of p_2 , and

an isometry $\psi: V_1 \to V_2$ such that $d\psi_{p_1}(e_1) = f_1$ and $d\psi_{p_1}(e_2) = f_2$.

Proof. Let V_1 and V_2 be normal neighborhood of p_1 and p_2 , respectively. Let $\varphi: T_{p_1}(S_1) \to T_{p_2}(S_2)$ be the linear map such that $\varphi(e_1) = f_1$ and $\varphi(e_2) = f_2$. We have that φ is an isometry from $T_{p_1}(S_1)$ to $T_{p_2}(S_2)$. Let $\psi: V_1 \to V_2$ be defined by:

$$\psi = \exp_{p_2} \circ \varphi \circ (\exp_{p_1})^{-1}.$$

We claim that ψ is the required isometry.

Take a poloar coordinate system (ρ, θ) in $T_{p_1}(S_1)$ with axis l and set $L_1 = \exp_{p_1}(l)$ and $L_2 = \exp_{p_2}(\varphi(l))$. The restriction of $\bar{\psi}$ of ψ to $V_1 - L_1$ maps a polar coordinate neighborhood with coordinates (ρ, θ) centered at p_1 into a polar coordinate neighborhood with coordinates (ρ, θ) centered at p_2 . Through the study of the coefficients of the first fundamental forms above, we have that the coefficients of the fundamental forms before and after the isometry are equal. So, $\bar{\psi}$ is an isometry. By continuity, ψ still preserves inner products of points of L_1 , and so is an isometry. It is also easy to check that $d\psi_{p_1}(e_1) = f_1$ and $d\psi_{p_1}(e_2) = f_2$.

- When K is not constant but maintains its sign, the expression $\sqrt{G}K = -(\sqrt{G})_{\rho\rho}$ has a nice intuitive meaning.
- Consider the arc length $L(\rho)$ of the curve $\rho = const.$ between two close geodesics $\theta = \theta_0$ and $\theta = \theta_1$:

$$L(\rho) = \int_{\theta_0}^{\theta_1} \sqrt{E(\rho')^2 + F\rho'\theta' + G(\rho,\theta)(\theta')^2} \, d\theta = \int_{\theta_0}^{\theta_1} \sqrt{G(\rho,\theta)} \, d\theta$$

where $\rho' = 0$ because $\rho = const.$ and $\theta' = 1$ because we want θ to vary constantly.

Assume that K < 0. Since,

$$\lim_{\rho \to 0} (\sqrt{G})_{\rho} = 1, \quad \text{and} \quad (\sqrt{G})_{\rho\rho} = -K\sqrt{G} > 0.$$

This means that $(\sqrt{G})_{\rho}$ is increasing. Since $(G)_{\rho}$ is always positive, it means that \sqrt{G} is increasing with ρ . Hence, $L(\rho)$ is increasing with ρ . That is, as ρ increases, $\theta = \theta_0$ and $\theta = \theta_1$ get farther and farther apart.

On the other hand, if K < 0, L(p) may or may not get closer to gether. It depends on whether $\sqrt{G_{\rho}}$ becomes negative or not. However, the rate that the two radial geodesic get further from each other will become slower.

4 Geometric Interpretation of Gaussian Curvature

• The expression of K in geodesic polar coordinate with center $p \in S$ is given by:

$$K = -\frac{(\sqrt{G})_{\rho\rho}}{\sqrt{G}}.$$

So,

$$(\sqrt{G})_{\rho\rho} = -K\sqrt{G}$$
$$\frac{\partial^3(\sqrt{G})}{\partial\rho^3} = -K(\sqrt{G})_{\rho} - K_{\rho}(\sqrt{G}).$$

Now, because

$$\lim_{\rho \to 0} \sqrt{G} = 0, \quad \text{and} \quad \lim_{\rho \to 0} (\sqrt{G})_{\rho} = 1,$$

we have

$$-K(p) = \lim_{\rho \to 0} \frac{\partial^3(\sqrt{G})}{\partial \rho^3}$$

• By Taylor's theorem, we have that

$$\sqrt{G}(\rho, \theta) = \sqrt{G}(0, \theta) + \rho(\sqrt{G})_{\rho}(0, \theta) + \frac{\rho^2}{2!}(\sqrt{G})_{\rho\rho}(0, \theta) + \frac{\rho^3}{3!}(\sqrt{G})_{\rho\rho\rho}(0, \theta) + R(\rho, \theta)$$

where

$$\lim_{\rho \to 0} \frac{R(\rho, \theta)}{\rho^3} = 0$$

uniformly in θ . Substituting the values obtained above, we have that

$$\sqrt{G}(\rho, \theta) = 0 + \rho - \frac{\rho^3}{3!}K(p) + R.$$

The $\rho^2/2!(\sqrt{G})_{\rho\rho}(0,\theta)$ disappear because $\sqrt{G}_{\rho\rho}(0,\theta)=-K(0,\theta)\sqrt{G}(0,\theta)=0$.

• With the value for \sqrt{G} , we compute the arc length L of a geodesic circle of radius $\rho = r$:

$$L = \lim_{\epsilon \to 0} \int_{0+\epsilon}^{2\pi - \epsilon} \sqrt{G}(r, \theta) d\theta$$
$$= \lim_{\epsilon \to 0} \int_{0+\epsilon}^{2\pi - \epsilon} r - \frac{r^3}{6} K(p) + R(r, \theta) d\theta$$
$$= 2\pi r - \frac{\pi r^3}{3} K(p) + R_1$$

where

$$\lim_{r \to 0} \frac{R_1}{r^3} = 0.$$

It follows that

$$K(p) = \frac{3}{\pi} \frac{2\pi r - L}{r^3} - \frac{3R_1}{\pi r^3}$$

So,

$$K(p) = \lim_{r \to 0} \frac{3}{\pi} \frac{2\pi r - L}{r^3}.$$

This gives an intrinsic interpretation of K(p) in terms of the length of the geodesic circle L and the length of the circle or radius r in $T_p(S)$ that gives rise to it.

5 Geodesics Minimize Distance

• Proposition 5.1. Let p be a point on a surface S. Then, there exists a neighborhood $W \subseteq S$ of p such that, if $\gamma: I \to W$ is a parameterized beodesci with $\gamma(0) = p$ and $\gamma(t_1) = q$, $t_1 \in I$, and $\alpha: [0, t_1] \to S$ is a paraetermized regular curve joining p to q, we have that

$$l_{\gamma} \leq l_{c}$$

where l_{α} denotes the length of the curve α . Moreover, if $l_{\gamma} = l_{\gamma}$, then the trace of α coincides with the trace of γ between p and q.

Proof. Let V be a normal neighborhood of p. Let \bar{W} be the closed region bounded by a geodesic circle of radius r contained within V. Let (ρ, θ) be geodesic polar coordinates in $\bar{W} - L$ centered in p such that $q \in L$.

Suppose first that $\alpha((0,t_1)) \subseteq \bar{W} - L$, and set $\alpha(t) = (\rho(t), \theta(t))$. Observe initially that

$$\sqrt{(\rho')^2 + G(\theta')^2} \ge \sqrt{(\rho')^2},$$

and equality holds if and only if $\theta' \equiv 0$; that is $\theta = const$. Therefore, the length $l_{\alpha}(\epsilon)$ of α between ϵ and $t_1 - \epsilon$ satisfies:

$$l_{\alpha}(\epsilon) = \int_{\epsilon}^{t_1 - \epsilon} \sqrt{(\rho')^2 + G(\theta')^2} \, \mathrm{d}t \ge \int_{\epsilon}^{t_1 - \epsilon} \sqrt{(\rho')^2} \, \mathrm{d}t \ge \int_{\epsilon}^{t_1 - \epsilon} \rho' \, \mathrm{d}t = l_{\gamma} - 2\epsilon.$$

Equation holds if and only if $\theta = const.$ and $\rho' > 0$. By making $\epsilon \to 0$ in the expression above, we bontain that $l_{\alpha} \geq l_{\gamma}$, and that equality holds if and only if α is the radius geodesic $\theta = const.$ with a parameterization $\rho = \rho(t)$ where $\rho'(t) > 0$. It follows that, if $l_{\alpha} = l_{\gamma}$, then the traces of α and γ between p and q coincide.

Suppose now that $\alpha((0, t_1))$ intersects L, and assume that this occurs for the first time at, say, $\alpha(t_2)$. Then, by the previous argument, $l_{\alpha} \geq l_{\gamma}$ between t_0 and t_2 , and $l_{\alpha} = l_{\gamma}$ implies that the traces of α and γ conincide. Since $\alpha([0, t_1])$ and L are compact, there exists a $\bar{t} \geq t_2$ such that either $\alpha(\bar{t})$ is the last point where $\alpha((0, t_1))$ intersects L or $\alpha([\bar{t}, t_1]) \subseteq L$. In any case, applying the above case, the conclusions of the proposition follows.

Suppose finally that $\alpha([0,t_1])$ is not entirely contained in \bar{W} . Let $t_0 \in [0,t_1]$ be the first value for which $t_0) = x$ belongs to the boundary of \bar{W} . Let $\bar{\gamma}$ be the radial geodesic px and let $\bar{\alpha}$ be the restriction of the curve α to the interval $[0,t_0]$. It is clear that $l_{\alpha} \geq l_{\bar{\alpha}}$. By the previous argument, $l_{\bar{\alpha}} \geq l_{\bar{\gamma}}$. Since q is a point in the interior of \bar{W} , we have that $l_{\bar{\gamma}} > l_{\gamma}$. We conclude that $l_{\alpha} > l_{\gamma}$, which ends the proof.

- The above prosition is true for piecewise regular curve as well.
- The converse of the proposition is true. However, if we relax the requirement and make α a piecewise regular curve, then the converse is not true.
- The proposition is not true globally.
- Proposition 5.2. Let $\alpha: I \to S$ be a regular parameterized curve with a parameter proportional to arc length. Suppose that the arc length of α between any two points $t, \tau \in I$ is smaller than or equal to the arc length of any regular parameterized curve joining $\alpha(t)$ to $\alpha(\tau)$. Then, α is a geodesic.

Proof. Let $t_0 \in I$ be an arbitrary point on I and let W be the neighborhood of $\alpha(t_0) = p$ given by the last proposition. Let $q = \alpha(t_1) \in W$. From the case of equality in the last proposition, it follows that α is a geodesic in (t_0, t_1) . Otherwise, α would have, between t_0 and t_1 , a length greater than the radial geodesic joining $\alpha(t_0)$ and $\alpha(t_1)$, a contradiction to the hypothesis. Since α is regular, we have, by continuity, that α is still a geodesic in t_0 .