CSCI 5451: Introduction to Parallel Computing

Lecture 9: Basic Communication Operations

Announcements (9/29)

Cuda Machine → If you have been unable to access the CUDA machines, please fill out <u>this form</u> detailing your specific problems.

Lecture Overview

- ☐ Homework 1
- Basic Communication Operations
 - Overview
 - One-to-All Broadcast & All-to-One Reduction
 - All-to-All Broadcast & All-to-All Reduction
 - All-Reduce & Prefix-Sum
 - Scatter & Gather
 - All-to-All Personalized Communication

Lecture Overview

- Homework 1
- Basic Communication Operations
 - Overview
 - One-to-All Broadcast & All-to-One Reduction
 - All-to-All Broadcast & All-to-All Reduction
 - All-Reduce & Prefix-Sum
 - Scatter & Gather
 - All-to-All Personalized Communication

Dynamic Time Warping Algorithm

```
Algorithm 1: Dynamic Time Warping (DTW)
 Input: Sequences A[0..m-1], B[0..n-1] (vectors of dimension d)
 Output: Minimum alignment cost D[m-1][n-1]
 function DTW(A, B);
 let D[0..m-1][0..n-1];
 let dist[0..m-1][0..n-1];
 // Set first timer after allocating these arrays
 for i \leftarrow 0 to m-1 do
     for j \leftarrow 0 to n-1 do
        \operatorname{dist}[i][j] \leftarrow ||A[i] - B[j]||_2;
     end
 end
 D[0][0] \leftarrow \operatorname{dist}[0][0];
 for i \leftarrow 1 to m-1 do
     D[i][0] \leftarrow \text{dist}[i][0] + D[i-1][0];
 end
 for j \leftarrow 1 to n-1 do
     D[0][j] \leftarrow \text{dist}[0][j] + D[0][j-1];
 end
 for i \leftarrow 1 to m-1 do
     for j \leftarrow 1 to n-1 do
        D[i][j] \leftarrow \text{dist}[i][j] + \min(D[i-1][j], D[i][j-1], D[i-1][j-1]);
     end
 end
 // Set last timer after completing the above computation
 return D[m-1][n-1];
```


Algorithm 1: Dynamic Time Warping (DTW)

```
Input: Sequences A[0..m-1], B[0..n-1] (vectors of dimension d)
Output: Minimum alignment cost D[m-1][n-1]
function DTW(A, B);
let D[0..m-1][0..n-1];
let dist[0..m-1][0..n-1];
// Set first timer after allocating these arrays
for i \leftarrow 0 to m-1 do
   for j \leftarrow 0 to n-1 do
       \operatorname{dist}[i][j] \leftarrow ||A[i] - B[j]||_2;
   end
end
D[0][0] \leftarrow \operatorname{dist}[0][0];
for i \leftarrow 1 to m-1 do
   D[i][0] \leftarrow \text{dist}[i][0] + D[i-1][0];
end
for j \leftarrow 1 to n-1 do
   D[0][j] \leftarrow \text{dist}[0][j] + D[0][j-1];
end
for i \leftarrow 1 to m-1 do
   for i \leftarrow 1 to n-1 do
       D[i][j] \leftarrow \operatorname{dist}[i][j] + \min(D[i-1][j], D[i][j-1], D[i-1][j-1]);
   end
end
// Set last timer after completing the above computation
return D[m-1][n-1];
```

$$A_1=(0,0),\; A_2=(1,1),\; A_3=(2,2) \ B_1=(0,1),\; B_2=(1,2),\; B_3=(2,1),\; B_4=(3,1)$$

Algorithm 1: Dynamic Time Warping (DTW)

```
Input: Sequences A[0..m-1], B[0..n-1] (vectors of dimension d)
Output: Minimum alignment cost D[m-1][n-1]
function DTW(A, B);
let D[0..m-1][0..n-1];
let dist[0..m-1][0..n-1];
// Set first timer after allocating these arrays
for i \leftarrow 0 to m-1 do
   for j \leftarrow 0 to n-1 do
       \operatorname{dist}[i][j] \leftarrow ||A[i] - B[j]||_2;
   end
end
D[0][0] \leftarrow \operatorname{dist}[0][0];
for i \leftarrow 1 to m-1 do
   D[i][0] \leftarrow \text{dist}[i][0] + D[i-1][0];
end
for j \leftarrow 1 to n-1 do
   D[0][j] \leftarrow \text{dist}[0][j] + D[0][j-1];
end
for i \leftarrow 1 to m-1 do
   for i \leftarrow 1 to n-1 do
       D[i][j] \leftarrow \operatorname{dist}[i][j] + \min(D[i-1][j], D[i][j-1], D[i-1][j-1]);
   end
end
// Set last timer after completing the above computation
return D[m-1][n-1];
```

$$egin{aligned} A_1 &= (0,0), \; A_2 &= (1,1), \; A_3 &= (2,2) \ B_1 &= (0,1), \; B_2 &= (1,2), \; B_3 &= (2,1), \; B_4 &= (3,1) \end{aligned}$$

	B_1	B_2	B_3	B_4
		2.236		
A_2	1.000	1.000	1.000	2.000
A_3	2.236	1.000	1.000	1.414

Algorithm 1: Dynamic Time Warping (DTW)

```
Input: Sequences A[0..m-1], B[0..n-1] (vectors of dimension d)
Output: Minimum alignment cost D[m-1][n-1]
function DTW(A, B);
let D[0..m-1][0..n-1];
let dist[0..m-1][0..n-1];
// Set first timer after allocating these arrays
for i \leftarrow 0 to m-1 do
    for j \leftarrow 0 to n-1 do
       \operatorname{dist}[i][j] \leftarrow ||A[i] - B[j]||_2;
   end
end
D[0][0] \leftarrow \operatorname{dist}[0][0];
for i \leftarrow 1 to m-1 do
    D[i][0] \leftarrow \text{dist}[i][0] + D[i-1][0];
end
for j \leftarrow 1 to n-1 do
    D[0][j] \leftarrow \text{dist}[0][j] + D[0][j-1];
end
for i \leftarrow 1 to m-1 do
    for i \leftarrow 1 to n-1 do
        D[i][j] \leftarrow \text{dist}[i][j] + \min(D[i-1][j], D[i][j-1], D[i-1][j-1]);
    end
end
```

// Set last timer after completing the above computation return D[m-1][n-1];

$$egin{aligned} A_1 &= (0,0), \; A_2 &= (1,1), \; A_3 &= (2,2) \ B_1 &= (0,1), \; B_2 &= (1,2), \; B_3 &= (2,1), \; B_4 &= (3,1) \end{aligned}$$

	B_1	B_2	B_3	B_4
A_1	1.000	2.236	2.236	3.162
A_2	1.000	1.000	1.000	2.000
A_3	2.236	1.000	1.000	1.414

	B_1	B_2	B_3	B_4
A_1	1.000	3.236	5.472	8.634
A_2	2.000	2.000	3.000	5.000
A_3	4.236	3.000	3.000	4.414


```
Algorithm 1: Dynamic Time Warping (DTW)
 Input: Sequences A[0..m-1], B[0..n-1] (vectors of dimension d)
 Output: Minimum alignment cost D[m-1][n-1]
 function DTW(A, B);
 let D[0..m-1][0..n-1];
 let dist[0..m-1][0..n-1];
 // Set first timer after allocating these arrays
 for i \leftarrow 0 to m-1 do
     for j \leftarrow 0 to n-1 do
        \operatorname{dist}[i][j] \leftarrow ||A[i] - B[j]||_2;
     end
 end
 D[0][0] \leftarrow \operatorname{dist}[0][0];
 for i \leftarrow 1 to m-1 do
     D[i][0] \leftarrow \text{dist}[i][0] + D[i-1][0];
 end
 for j \leftarrow 1 to n-1 do
     D[0][j] \leftarrow \text{dist}[0][j] + D[0][j-1];
 end
 for i \leftarrow 1 to m-1 do
     for i \leftarrow 1 to n-1 do
        D[i][j] \leftarrow \text{dist}[i][j] + \min(D[i-1][j], D[i][j-1], D[i-1][j-1]);
     end
 end
 // Set last timer after completing the above computation
 return D[m-1][n-1];
```

Minimum Alignment Cost

	B_1	B_2	B_3	B_4
A_1	1.000	3.236	5.472	8.634
A_2	2.000	2.000	3.000	5.000
A_3	4.236	3.000	3.000	4.414

Wavefront Parallelism

- ☐ In order to compute **D**, you will have to use wavefront parallelism
- ☐ The computation of this for-loop has dependencies you must parallelize along the anti-diagonal
- ☐ In other words, you will not be able to just add OpenMP directives to the second for-loop

Submission

- dtw_parallel.c
- □ PDF report containing speedups on one of the tests as well as a description of your parallelization strategies

Grading Criteria

- Compiles + runs + correct + no-memory leaks
- Speedups → Your program must achieve the desired speedups using OpenMP as instructed
- Report → Contains speedup figure + describes parallelization strategy

Be sure to review all the tips

If you have questions, reach out in the homework slack channel #hw1

Lecture Overview

- ☐ Homework 1
- Basic Communication Operations
 - o Overview
 - One-to-All Broadcast & All-to-One Reduction
 - All-to-All Broadcast & All-to-All Reduction
 - All-Reduce & Prefix-Sum
 - Scatter & Gather
 - All-to-All Personalized Communication

Communication Operations (Distributed Memory)

- ☐ The last few lectures we covered shared-memory programs
- We will now return to distributed memory programs
- Specifically, we will be looking at how we can get multiple processors to communicate concurrently

Source: Kaminsky/Parallel Java

General-Purpose Interactions

- ☐ In most distributed programs with communication communications will often occur between *all* or some *large subset* of processors in a given topology (very rarely will there be single processes which communicate)
- We will define some of these more common communication patterns in today's lecture & discuss how to efficiently perform them on certain physical processor topologies

General-Purpose Interactions

- ☐ In most distributed programs with communication communications will often occur between *all* or some *large subset* of processors in a given topology (very rarely will there be single processes which communicate)
- We will define some of these more common communication patterns in today's lecture & discuss how to efficiently perform them on certain physical processor topologies

Example of Unlikely
Communication: P2 sends a
message to P5 while no other
communications occur

Lecture Overview

- ☐ Homework 1
- Basic Communication Operations
 - Overview
 - One-to-All Broadcast & All-to-One Reduction
 - All-to-All Broadcast & All-to-All Reduction
 - All-Reduce & Prefix-Sum
 - Scatter & Gather
 - All-to-All Personalized Communication

One-to All Broadcast

A message **M** exists on one processor which we want to send to all *p* other processors

How can we efficiently get this message across all *p* processors?

How can we efficiently get this message across all *p* processors?

Use Recursive Doubling (examples on following slides):

- 1. P_0 sends to $P_{p/2}$
- 2. [In parallel] P_0 sends to $P_{p/4}$ | and $P_{p/2}$ sends to $P_{3p/4}$

. .

log(p). [In parallel] P_0 sends to P_1 |and| P_2 sends to P_3 |and| ... |and| P_{p-2} sends to P_{p-1}

All-to-One Reduction

Messages *Mⁱ* exist on each process *i*, and we want to combine these messages onto a single processor.

All-to-One Reduction

The operation we use to combine messages can be sums, products, maximums, minimums, etc.

Messages M^i exist on each process i, and we want to combine these messages onto a single processor.

All-to-One Reduction

For example, if we combined the below messages with 'sum', then we would have $M = M^0 + M^1 + ... + M^{p-1}$

Messages *Mⁱ* exist on each process *i*, and we want to combine these messages onto a single processor.

All-to-One Reduction <> One-to-All Broadcast

All-to-One Reduction is the dual of One-to-All Broadcast. We can think of All-to-One Reduction as running in the operation direction as One-to-All Broadcast

All-to-One Reduction <> One-to-All Broadcast

All-to-One Reduction is the dual of One-to-All Broadcast. We can think of All-to-One Reduction as running in the operation direction as One-to-All Broadcast

Use Recursive Halving (examples on following slides):

1. [In parallel] (\mathbf{P}_1 sends to \mathbf{P}_0 and \mathbf{P}_0 sums) |and| (\mathbf{P}_3 sends to \mathbf{P}_2 and \mathbf{P}_2 sums) |and| ... |and| (\mathbf{P}_{p-1} sends to \mathbf{P}_{p-2} and \mathbf{P}_{p-2} sums)

. . .

log(p). ($P_{p/2}$ sends to P_0 and P_0 sums)

How do we map this pattern onto physical processor topologies (Ring, Mesh, Hypercube, etc.)?

No contention on any links at any communication step

One-to-All Broadcast (Mesh)

We can treat the 2-D
Mesh as mutually
exclusive sets of Rings,
then use our previous
recursive doubling
pattern

One-to-All Broadcast (Mesh)

We can treat the 2-D

Mesh as mutually
exclusive sets of Rings,
then use our previous
recursive doubling
pattern

One-to-All Broadcast (Mesh)

We can treat the 2-D

Mesh as mutually
exclusive sets of Rings,
then use our previous
recursive doubling
pattern

Cost (Time to Communicate)

- ☐ Either communication (One-to-All Reduction or All-to-One Broadcast) requires log(p) steps
- Each communication involves a message of size *m* (recall from our previously lecture this takes *t_s* + *t_wm*)
- NOTE: We omit the 'per-hop' travel times from our equation as they are typically quite small.

$$T = (t_s + t_w m) \log p$$

Lecture Overview

- ☐ Homework 1
- Basic Communication Operations
 - Overview
 - One-to-All Broadcast & All-to-One Reduction
 - All-to-All Broadcast & All-to-All Reduction
 - All-Reduce & Prefix-Sum
 - Scatter & Gather
 - All-to-All Personalized Communication

All-to-All Broadcast

Messages *Mⁱ* exist on each process *i*, and we want each message to be present on all processors.

The dual of All-to-All Broadcast. Each processor has *p* messages. We want to reduce each of these onto each processor, separately

The dual of All-to-All Broadcast. Each processor has *p* messages. We want to reduce each of these onto each processor, separately

All-to-all reduction

The dual of All-to-All Broadcast. Each processor has *p* messages. We want to reduce each of these onto each processor, separately

The dual of All-to-All Broadcast. Each processor has *p* messages. We want to reduce each of these onto each processor, separately

M_0	M_1		M _{p-1}
0	1		(p-l)

All-to-all reduction

How do we map All-to-All Broadcast onto physical processor topologies (Ring, Mesh, Hypercube, etc.)? Should we just perform *p* separate One-to-All Broadcasts?

How do we map All-to-All Broadcast onto physical processor topologies (Ring, Mesh, Hypercube, etc.)? Should we just perform *p* separate One-to-All Broadcasts?

No. This will leave many links idle. We can instead have all links communicate on each step for greater speedups.

General pattern → Pass along the last message received to the next processor. This way all links are used at each step of communication.

Message sent between processors

Messages currently on given processor

What is the fastest way of performing All-to-All Reduction on a Ring?

What is the fastest way of performing All-to-All Reduction on a Ring?

It depends. The time using the inverse approach of All-to-All Broadcast described on the previous slides takes $(p-1)(t_s + (t_w mp)/2)$ while simply performing p consecutive All-to-One Reductions takes $p\log p(t_s + t_w m)$

Similar to One-to-All Broadcast, treat each dimension as a Ring

(a) Initial data distribution

(b) Data distribution after rowwise broadcast

$$T = (t_s + t_w m)(\sqrt{p} - 1) + (t_s + t_w m \sqrt{p})(\sqrt{p} - 1)$$

$$T = (t_s + t_w m)(\sqrt{p} - 1) + (t_s + t_w m \sqrt{p})(\sqrt{p} - 1)$$

Time per step on second dimension

Total Steps on second dimension

$$T = (t_s + t_w m)(\sqrt{p} - 1) + (t_s + t_w m \sqrt{p})(\sqrt{p} - 1)$$
$$= 2t_s(\sqrt{p} - 1) + t_w m(p - 1)$$

(a) Initial distribution of messages

(b) Distribution before the second step

(c) Distribution before the third step

(d) Final distribution of messages

$$T = (t_s + t_w m) + (t_s + 2t_w m) + \dots + (t_s + (p/2)t_w m)$$

$$T = \underbrace{(t_s + t_w m)} + (t_s + 2t_w m) + \dots + (t_s + (p/2)t_w m)$$
Time on first Step

$$T = (t_s + t_w m) + (t_s + 2t_w m) + \dots + (t_s + (p/2)t_w m)$$
Time on second Step

$$T = (t_s + t_w m) + (t_s + 2t_w m) + \dots + (t_s + (p/2)t_w m)$$

Time on final Step

$$T = (t_s + t_w m) + (t_s + 2t_w m) + \dots + (t_s + (p/2)t_w m)$$
$$= t_s \log p + t_w m(p - 1)$$

Topology Matters

- The algorithm used was different in each case when changing the processor topology → How we structure communication is dependent upon the physical processor topology
- The time taken in each case was different as a result
- More links usually means faster communication

Lecture Overview

- ☐ Homework 1
- Basic Communication Operations
 - Overview
 - One-to-All Broadcast & All-to-One Reduction
 - All-to-All Broadcast & All-to-All Reduction
 - All-Reduce & Prefix-Sum
 - Scatter & Gather
 - All-to-All Personalized Communication

All-Reduce

Messages *Mⁱ* exist on each process *i*, and we want to combine these messages in the same way on each processor.

What is the faster way of performing All-Reduce on a Hypercube?

What is the faster way of performing All-Reduce on a Hypercube?

All-to-All Broadcast style communication, except with additional sums after each communication

All-Reduce (Hypercube)

Whiteboard
example on how to
update All-to-All
Broadcast for
All-Reduce

(a) Initial distribution of messages

(c) Distribution before the third step

(b) Distribution before the second step

(d) Final distribution of messages

Prefix Sum

An array where each element stores the cumulative sum of all previous elements (useful for histograms, radix sort, etc.

Input array $[2, 4, 6, 8] \rightarrow \text{Prefix sums } [2, 6, 12, 20]$

Prefix Sum on a Hypercube

- (a) Initial distribution of values
- (b) Distribution of sums before second step

- (c) Distribution of sums before third step
- (d) Final distribution of prefix sums

Lecture Overview

- ☐ Homework 1
- Basic Communication Operations
 - Overview
 - One-to-All Broadcast & All-to-One Reduction
 - All-to-All Broadcast & All-to-All Reduction
 - All-Reduce & Prefix-Sum
 - Scatter & Gather
 - All-to-All Personalized Communication

Scatter

A single processor has a separate message *m* for each other processor in the network

Gather

Each processor has a message *m*, all of which must be collected onto a single processor

Scatter on Hypercube

Quite similar to All-to-One Reduction or One-to-All Broadcast

(a) Initial distribution of messages

(c) Distribution before the third step

(b) Distribution before the second step

(d) Final distribution of messages

Scatter & Gather Cost (Ring/Mesh/Hypercube)

$$T = t_s \log p + t_w m(p - 1)$$

Scatter & Gather Cost (Ring/Mesh/Hypercube)

$$T = t_s \log p + t_w m(p - 1)$$

How did we arrive at this cost?

Lecture Overview

- ☐ Homework 1
- Basic Communication Operations
 - Overview
 - One-to-All Broadcast & All-to-One Reduction
 - All-to-All Broadcast & All-to-All Reduction
 - All-Reduce & Prefix-Sum
 - Scatter & Gather
 - All-to-All Personalized Communication

All-to-All Personalized Communication (AAPC)

All processors contain a unique message for each other processor.

$M_{0,p-1}$	$M_{1,p-1}$	$M_{p-1, p-1}$		$M_{p-1,0}$	$M_{p-1,1}$	$M_{p-1, p-1}$
÷	:	:		÷	:	÷
$M_{0,1}$	$M_{1,1}$	$M_{p-1,1}$		$M_{1,0}$	M 1,1	$M_{1,p-1}$
M _{0,0}	M _{1,0}	M _{p-1,0}	All-to-all personalized communication	M _{0,0}	M _{0,1}	M _{0,p-1}

AAPC Example (Transposing a Matrix)

Suppose we have some matrix such that each processor holds a separate set of rows (i.e. P_0 has the first set of rows, P_1 the next set of rows, etc.), and we want to transpose the matrix such that P_0 has the first set of columns, P_1 the second set of columns, etc.

AAPC (Ring)

AAPC (Ring)

Cost?

Pass along messages one link at a time. Pull messages for you out of the set and pass along to next processor

AAPC (Mesh)

As before, treat each dimension as mutually exclusive Rings

(b) Data distribution at the beginning of second phase

AAPC (Mesh)

Cost?

As before, treat each dimension as mutually exclusive Rings

(b) Data distribution at the beginning of second phase

AAPC (Hypercube)

As before, treat each dimension as mutually exclusive 2-processor Rings

(a) Initial distribution of messages

(b) Distribution before the second step

(c) Distribution before the third step

(d) Final distribution of messages

AAPC (Hypercube)

Cost?

As before, treat each dimension as mutually exclusive 2-processor Rings

- (a) Initial distribution of messages
- (b) Distribution before the second step

(c) Distribution before the third step

(d) Final distribution of messages

