Abgabe Meilenstein 1

4. Oktober 2024

Inhaltsverzeichnis

1	Aufgabenstellung1.1 Hintergrund	
2	Funktionszerlegung	3
3	Organigramm	4
4		
5	Technologierecherche 5.1 Quellen	12
6	Projektplan	16

1 Aufgabenstellung

1.1 Hintergrund

Studierende der Hochschule Luzern werden im Rahmen der Projektmodule Produktentwicklung 1 und 2 mit der Aufgabe betraut, gemeinsam in einem interdisziplinären Team eine Lösung für ein spezifisches Problem zu erarbeiten. Im ersten Teilmodul, PREN 1, dreht sich alles um das Thema Konzeptionierung. Jedes Team soll verschiedene Lösungsvarianten für die Aufgabenstellung ausarbeiten und bewerten. Im zweiten Semester, im Folgemodul, wird dieses Konzept finalisiert und umgesetzt. Am Ende der beiden Semester steht ein Wettbewerb an, bei dem die verschiedenen Teams mit ihren Lösungen gegeneinander antreten.

1.2 Aufgabenstellung

Es soll ein Fahrzeug entwickelt und gebaut werden, das auf einem mit Weglinien markierten Wegenetz den optimalen Weg zu einem Ziel finden soll. Dabei können drei Arten von Ereignissen auftreten, auf die das Fahrzeug reagieren muss. Ziel ist es, dass das Fahrzeug den Weg autonom und ohne externe Eingriffe findet. Das Wegenetz ist in Abbildung 1 dargestellt:

Abbildung 1: Wegenetz

Mögliche Ereignisse:

- Gesperrter Wegpunkt (Rot): Punkt darf nicht befahren werden.
- Hindernis auf der Strecke (Blau): Das Hindernis muss entfernt werden.
- Nicht vorhandene Strecke (Orange): Wird von Schiedsrichtern entfernt.

Die entsprechenden Ereignisse auf den Wegen werden vor jedem Start neu festgelegt und sind im Voraus nicht bekannt. Das gewünschte Ziel wird über einen physischen Wahlschalter vorgegeben, woraufhin das Fahrzeug automatisch zum Ziel manövriert. Nach dem Startkommando beginnt die Zeitmessung.

Während der Entwicklung des Fahrzeugs soll besonderes Augenmerk auf die verwendeten Materialien und deren Lieferwege gelegt werden, um auch der Nachhaltigkeit Rechnung zu tragen.

2 Funktionszerlegung

Abbildung 2: Wegenetz

Abbildung 2 zeigt die Funktionszerlegung der Hauptaufgabe des Pfadfinders, einen Weg durch das Wegenetz zu finden. Dabei ist die Funktion auf einzelne notwendige Überkategorien aufgeteilt, zu welche einzelne Unterfunktionen zugeordnet sind.

Kritische umzusetzende Funktionen stellen die Streckenerkennung und Navigation dar. Von diesen Funktionen hängt die fehlerfreie Erfüllung der Aufgabe stark ab.

3 Organigramm

Die Abbildung 3 zeigt die Organisation der Projektgruppe 10. Das Team ist agil organisiert und nach Disziplinen strukturiert. Die Verantwortung für Organisation, Werkstatt und Budget ist zusätzlich auf einzelne Positionen verteilt.

Abbildung 3: Organigramm

4 Anforderungsliste Version 0

Die nachfolgende Tabelle zeigt die Anforderungsliste des Pfadfinder-Fahrzeugs.

Legende

F = Festanforderung

M = Mindestanforderung

W = Wunschanforderung

4.1 Allgemeine Anforderungen

	F		Daten
Nr.	\mathbf{M}	Bezeichnung	Werte
	\mathbf{W}		Erläuterungen
1.1	W	Wettbewerb	Team 10 wird im Wettbewerb einen Podestplatz erreichen.
1.2	F	Wettbewerbsort	Voraussichtlich wird der Wettbewerb im Foyer der
			Mensa HSLU Technik und Architektur in Horw durchgeführt.
1.3	F	Projektabgabe	Der PREN 1 Schlussbericht ist bis zum 10. Januar 2025
		PREN 1	abzugeben.
1.4	F	Eigenkonstruktion	Einzelne Systemkomponenten wie z.B. Räder, Servos,
			Motoren, Mikrocontroller, Kamera, etc. dürfen zugekauft
			und eingesetzt werden. Das zu realisierende Fahrzeug
			als Grosses und Ganzes muss jedoch zwingend eine
			Eigenkonstruktion sein.
1.5	F	Software	Es dürfen Software-Komponenten und Software-Services
			von Fremd-Herstellern verwendet werden.
1.6	F	Eingriffe	Ein Eingreifen auf das Fahrzeug ist nach dem Start nicht
			mehr erlaubt.
1.7	F	Sicherheit	Das Team ist während sämtlichen Betriebs- und
			Test-Phasen verantwortlich für die Sicherheit des
			Fahrzeuges und den Schutz der Personen.
1.8	W	Nachhaltigkeit	Bei Projektentscheiden soll die Nachhaltigkeit
			berücksichtigt und auch entsprechend dokumentiert
			werden.

4.2 Gerät

	\mathbf{F}		Daten
Nr.	\mathbf{M}	Bezeichnung	Werte
	\mathbf{W}		Erläuterungen
2.1	F	Autonomität	Das Fahrzeug muss den vorgegebenen Parcours von Start
			bis Ziel ohne Zugriff von aussen absolvieren können.
2.2	F	Hardware-	Alle zum Betrieb benötigten Hardware-Komponenten wie
		Komponenten	z.B. Sensoren, Aktoren, Steuergeräte, Kamera, etc.
			müssen sich im oder auf dem Fahrzeug befinden.
2.3	M	Betriebsbereitschaft	Das Fahrzeug muss innerhalb von maximal einer Minute
			im Startbereich platziert, aufgebaut und betriebsbereit
			sein.
2.4	F	Gesperrte Wegpunkte	Die gesperrten Wegpunkte müssen vom Fahrzeug erkannt
			werden.
2.5	F	Hindernis auf	Mögliche Hindernisse müssen vom Fahrzeug erkannt
		Strecke	werden.
2.6	F	Hindernisbewältigung	Befährt das Fahrzeug eine Strecke mit einem Hindernis,
			so muss dieses erkannt und aktiv von der Strecke
			aufgenommen werden. Sobald das Fahrzeug die besagte
			Stelle passiert hat, muss das Hindernis wieder an die
			Ursprungsposition zurückgestellt werden. Die
			Toleranzzone beim zurückstellen des Hindernis beträgt
		11.5.1	20 mm (umlaufend).
2.7	F	Auswahl Zielposition	Die Zielposition (1, 2 oder 3) muss am Fahrzeug mittels
	_		einem Wahlschalter ausgewählt werden können.
2.8	F	Startbefehl	Der Startbefehl wird mittels einem Schalter oder Taster
			am Fahrzeug erteilt. (Gleichzeitig wird die Sicht auf
			die Strecke freigegeben und die Zeitmessung gestartet)
2.9	F	Leitlinien	Das Fahrzeug muss sich während dem gesamten Parcours
2.10		37	auf den vorgegebenen Leitlinien bewegen.
2.10	F	Not-Aus	Das Fahrzeug muss über einen leicht zugänglichen
			Not-Aus-Knopf oder -Schalter verfügen, der alle
0.11	3.5	G 11	mechanisch-dynamische Prozesse sofort unterbricht.
2.11	M	Gewicht	Das Fahrzeug darf das Maximalgewicht von 2kg nicht
0.10	777	G 1 11	überschreiten.
2.12	W	Schutzklasse	Mindestens IP-10 sollte gewährleistet sein.

	\mathbf{F}		Daten		
Nr.	\mathbf{M}	Bezeichnung	Werte		
	\mathbf{W}		Erläuterungen		
2.12	M	Dimensionen	Das Fahrzeug darf die Dimensionen des Startbereichs		
			(30 x 30 cm) nicht überschreiten. Zudem ist die Höhe		
			des Fahrzeugs (oder allfälliger Anbauteile) auf maximal		
			80 cm beschränkt.		
2.13	F	Zielposition	Das Erreichen der Zielposition muss vom Fahrzeug in		
			einer passenden Form visuell oder akustisch angezeigt		
			werden. Zudem muss das Fahrzeug innerhalb eines		
			Kreises von 30 cm Durchmesser um den Zielpunkt zum		
			Stehen kommen.		
2.14	W	Energieversorgung	Die Energieversorgung soll mit einem Akku realisiert		
			werden, der über eine USB-Schnittstelle wieder		
			aufgeladen werden kann.		
2.15	W	Akkulaufzeit	Im aktiven Betrieb des Fahrzeugs soll eine Akkulaufzeit		
			von mindestens 25 Minuten gewährleistet sein.		
2.16	W	Debug-Schnittstelle	Die Elektronik des Fahrzeugs soll über eine Debug-		
			Schnittstelle verfügen, die es ermöglicht aktuelle		
			Zustände und Signale auszulesen.		

4.3 Parcours

	\mathbf{F}		Daten
Nr.	\mathbf{M}	Bezeichnung	Werte
	\mathbf{W}		Erläuterungen
3.1	F	Wege-Netzwerk	Das Wege-Netzwerk und der Startpunkt sind bekannt.
			(Abbildung 4)
3.2	F	Zielpunkte	Die möglichen Zielpunkte sind bekannt, doch der
			definitive Zielpunkt wird erst unmittelbar vor dem Start
			des Parcours bekannt gegeben. (Abbildung 4)
3.3	F	Wegpunkte	Insgesamt gibt es acht Wegpunkte. Die Wegpunkte sind
			aufgeklebte Vollkreise (weiss) mit einem Durchmesser
			von 7 bis 12 cm. (Abbildung 5)
3.4	F	Untergrund	Der Untergrund entspricht dem Bodenbelag des Foyers
			der Mensa auf dem Campus der Hochschule Luzern für
			Technik und Architektur in Horw. (Abbildung 6)
3.5	F	Leitlinien	Die Wegpunkte sind mit hellen Leitlinien (aufgeklebtes
			Klebeband) verbunden. Die Breite der Leitlinien beträgt
			ca. 20 mm.
3.6	F	Abmessungen	Der Abstand der Wegpunkte ist variabel zwischen
			0.5 bis 2.0 m. Die Gesamtfläche des Wege-Netzwerkes
			beträgt ca. $4.5 \times 4.5 \text{ m}$.
3.7	F	Gesperrte Wegpunkte	Die gesperrten Wegpunkte dürfen nicht befahren werden.
			Sie sind bis zum Start unbekannt und mittels einem
		77. 1	Leitkegel gekennzeichnet.
3.8 F Hindernis auf			Die Strecke darf befahren werden, doch das Hindernis
		Strecke	muss aktiv von der Strecke aufgenommen und am
		27.1.	gleichen Ort wieder zurückgestellt werden.
3.9	F	Nicht vorhandene	Leitlinien können aus dem Wege-Netzwerk entfernt
		Teilstrecken	werden. Die entsprechenden Verbindungen können nicht
2.10	127	Ct. 1 1 1	befahren werden.
3.10	F	Streckenbedingungen	Die Streckenbedingungen (Sperrung, Hindernisse, nicht
9 1 1	E	Ct anth anaisle	vorhandene Teilstrecke) sind bis zum Start unbekannt.
3.11	1 F Startbereich		Die Grösse des Startbereichs beträgt 30 x 30 cm. Das
9 10	E	Ctont	Fahrzeug darf diese Dimensionen nicht überschreiten.
3.12	F	Start	Sobald die Sicht auf die Strecke freigegeben wird, beginnt
9 1 9	1/1	Parcours-Laufzeit	ebenfalls die Zeitmessung. Die Laufzeit von Start bis Ziel darf maximal vier
3.13 M Parcou		r arcours-Lauizeit	
			Minuten betragen. Wird das Ziel innert vier Minuten
			nicht erreicht, ist der Lauf ungültig.

4.4 Simulation

	F		Daten
Nr.	\mathbf{M}	Bezeichnung	Werte
	\mathbf{W}		Erläuterungen
4.1	W	Betriebssystem	Die Simulation soll auf Linux und auch Windows
			ausführbar sein.
4.2	W	Benutzeroberfläche	Die Benutzeroberfläche soll beliebig editierbar sein. Die
			Die gesamte Simulation wird jedoch nur 2-dimensional
			realisiert.
4.3	W	Pfadfindungs-	In der Simulation sollen verschiedene Pfadfindungs-
		algorithmen	algorithmen (z.B. Dijkstra, A*-Algorithmus, etc.)
			implementiert werden für eine direkte Gegenüberstellung.
4.4	W	Zeitauswertung	In der Simulation soll eine approximierte
			Zeitauswertung, basierend auf heuristischen Abschätzungen,
			möglich sein.
4.5	W	Echtzeit-	Der simulierte Pfad soll in Echtzeit visualisiert werden,
		Visualisierung	um das Verhalten des Fahrzeugs besser nachvollziehen
		des Pfades	zu können.
4.6	W	Hindernistypen	Verschiedene Arten von Hindernissen (beweglich und
			stationär) sollen simuliert werden können.
4.7	W	Fahrzeugparameter	Fahrzeugparameter (Geschwindigkeit, Wendekreis,
			Sensorreichweite, etc.) sollen editierbar sein.
4.8	W	Datenexport	Die Daten, welche während der Simulation generiert
			werden, sollen exportierbar sein. (z.B. Log-File)
4.9	W	Error-Handling	Der Simulator muss robust auf Fehler reagieren und
			darf keinesfalls abstürzen. Zudem sollen Fehlerzustände
			abgefangen und klar dokumentiert werden.

4.5 Herstellungsressourcen

	F		Daten		
Nr.	\mathbf{M}	Bezeichnung	Werte		
	\mathbf{W}		Erläuterungen		
5.1	W	Materialbeschaffung	Materialien und Komponenten sollen vorzugsweise von		
			folgenden Lieferanten bestellt werden:		
			- Conrad Electronic		
			- Distrelec		
			- Mädler		
			- Farnell		
5.2	F	Budget	Für die Realisierung des Projekts stehen dem Team		
			insgesamt 500 CHF zur Verfügung. Davon dürfen maximal		
			200 CHF in PREN 1 ausgegeben werden.		
5.3	F	Normteile ab HSLU	Normteile (Schrauben, Lager, Rohmaterial, Widerstände,		
		Lagerbestand	Kondensatoren, etc.) aus dem HSLU Lagerbestand		
			dürfen kostenlos verwendet werden.		
5.4	F	Persönlicher	Wird für das Projekt ein persönlicher 3D-Drucker		
		3D-Drucker	verwendet, so muss die verarbeitete Menge		
			ausgewiesen werden.		
5.5	F	Herstellungs-	Dem Team stehen für die Umsetzung des Projekts		
		ressourcen der	(PREN 1 und PREN 2) die folgenden Ressourcen der		
		HSLU	HSLU zur Verfügung:		
			- maximal 25 h Maschinenlaufzeit der 3D-Drucker		
			- maximal 1 h Maschinenlaufzeit des Lasergeräts		
			- maximal 10 Arbeitsstunden des Werkstattpersonals		
			Elektrotechnik		
			- maximal 10 Arbeitsstunden des Werkstattpersonals		
			Maschinentechnik		

4.6 Abbildungen

Folgend sind sämtliche Abbildungen aufgeführt, auf die in der Anforderungsliste referenziert wurde.

Abbildung 4: Vorgegebenes Wege-Netzwerk mit Start- und Zielpositionen A-B-C

Abbildung 5: Typischer aufgeklebter Wegpunkt

Abbildung 6: Fliesenboden im Foyer der Mensa

5 Technologierecherche

Die nachfolgende Quellensammlung in Tabelle 1 dient als Übersicht zur Technologierecherche und wird im Laufe des Projekts weitergeführt, um die verwendeten Quellen im Ausblick auf die Schlussdokumentation zu sammeln. Die unter Grade aufgeführten Werte dienen zur Bewertung der Relevanz der Quellen für das Projekt und deren weiterführende Benutzung.

5.1 Quellen

Thema	Stichwort	\mathbf{Grade}	Quelle	Beschreibung
Simulator	Pfadfindung	2	Link	Visualisierung verschiedener Pfadfindungsalgorithmen.
Simulator	Pfadfindung	5	Link	Performance Evaluation von Pfadfindungsalgorithmen.
Simulator	Graph	3	Link	Erstellung von 2D Graphen.
Simulator	2D-Simulation für autonome Fahrzeuge	4	Link	Simulationstool für Visualisierung.
Simulator	Sensoren und KI	4	Link	Programmierung von Sensoren und neuronalen Netzen in Javascript.
Simulator	Physik Auto	4	Link	Simulation eines realistischen Fahrverhaltens.
Simulator	Editierbare Benutzerober- flächen	5	Link	Benutzerfreundliche Oberfläche.
Simulator	Pfadfindung, Berechenbarkeit	8	Link	Übersicht und Visualisierung verschiedener fortgeschrittener Pfadfindungsalgorithmen.
Simulator	Pfadfindung	6	Link	State Space Exploration: Grundlagen der Graphenexploration.
Simulator	Pfadfindung	5	Link	Übersicht über Model Predictive Path Integral (MPPI).
Simulator	Pfadfindung, Optimierungen	7	Link 1, Link 2	Markov Decision Processes (MDP): Modellierungen von Entscheidungen bei ungewissem Ausgang, welcher Weg ist wahrscheinlich der schnellste im Graph.
Simulator	Pfadfindung	7	Link	Detaillierte Beschreibung des D*Lite Algorithmus.

contd

Tabelle 1: Quellensammlung

Tabelle 1 – Fortsetzung

Thema	Stichwort	Grade	Quelle	Beschreibung
Simulator	Pfadfindung	4	Link	Euclidean Distance Transform für heuristische Entscheidungen bei Graphenproblemen.
Sensorik	Raumwahrnehmung Image Processing	s, 5	Link	Depth Perception: Grundlagen für Raumwahrnehmung bei der Bildverarbeitung.
Sensorik	Homographie, Image Processing	5	Link	Informationen, um verzerrte Bilder in verschiedene Perspektiven zu transformieren.
Sensorik	Kantenerkennung, Image Processing	9	Link 1, Link 2	Erkennung von Kanten in Bildern, ermöglicht rudimentäre Kollisionserkennung.
Sensorik	Image Processing	8	Link	Analyse von mehreren SLAM Algorithmen.
Elektrotechnik - Antriebe	BLDC Grundlagen	10	Link	Application Note: Grundlagen BLDC Motoren.
Elektrotechnik - Antriebe	BLDC Grundlagen	6	Link	Application Note: Grundlagen BLDC Motoren.
Elektrotechnik - Antriebe	Brushless DC Motor Fundamentals	7	Link	Application Note: Grundlagen BLDC Motoren.
Elektrotechnik - Antriebe	Stepping Motors Fundamentals	10	Link	Application Note: Grundlagen Schrittmotoren.
Elektrotechnik - Antriebe	Stepping Motors Fundamentals	7	Link	Application Note: Grundlagen Schrittmotoren.
Elektrotechnik - Antriebe	Stepper Motor Reference	7	Link	Application Note: Grundschaltungen Schrittmotoren.
Elektrotechnik - Energiema- nagement	Li-Ion Batterie	5	Link	Buch: Lithium-Ionen Batterien.
Elektrotechnik - Energiema- nagement	Li-Ion Basics	8	Link	Buch: Batterietypen.
Elektrotechnik - Energiema- nagement	Recycling Li-Ion; Li-Ion	/	Link	Buch: Recycling.
Elektrotechnik - Energiema- nagement	Li-Ion Battery	10	Link	Buch: Verschiedene Batterietypen.

 ${\rm contd}$

Tabelle 1: Quellensammlung

Tabelle 1 – Fortsetzung

	~ ı	0 11	D 1 11	
Thema	Stichwort	Grade	Quelle	Beschreibung
Elektrotechnik - Energiema- nagement	NiCad Battery Charge	5	Link	Beschreibung: NiCad vs. NiMH Batterien.
Elektrotechnik - Energiema- nagement	NiCad Battery Basics	10	Link	Buch: Grundlagen Nickel-Batterien, Ladevorgänge.
Elektrotechnik - Energiema- nagement	Lead Acid Batteries; Batteries; Ni-Cd Batteries	10	Link	Buch: Verschiedene Batterietypen sowie Ladeverfahren.
Elektrotechnik - Energiema- nagement	Lead Acid Battery	6	Link	Research Paper über Blei-Akkumulatoren.
Elektrotechnik - Energiema- nagement	Lead Acid Battery Charge	4	Link	Application Note über Ladeverfahren zu Blei-Akkumulatoren.
Elektrotechnik - Energiema- nagement	Lead Acid Battery	2	Link	Research Paper zu Blei-Akkumulatoren.
Elektrotechnik - Energiema- nagement	Battery Management; Li-Ion Battery	8	Link	Buch über Batteriemanagementsysteme für Li-Ion Akkus.
Elektrotechnik - Energiema- nagement	Battery Management; Li-Ion Battery	7	Link	Buch über Batteriemanagement und Li-Ion Akkus.
Elektrotechnik - Energiema- nagement	Battery Management; Li-Ion Battery	6	Link	Buch über Batteriemanagement und Li-Ion Akkus.
Elektrotechnik - Sensoren	LiDAR und Ultraschall	3	Link	Unterschied von LiDAR und Radar für Abstandsmessung.
Elektrotechnik - Sensoren	Abstandsmessung	4	Link	Möglicher LiDAR Sensor mit Time-of-Flight.
Elektrotechnik - Sensoren	Abstandsmessung	4	Link	Möglicher Ultraschallsensor.
Elektrotechnik - Sensoren	Pfadfindung	5	Link	Verschiedene Sensoren für die Pfadfindung.
Elektrotechnik - Sensoren	Pfadfindung	4	Link	Möglicher Infrarotsensor für die Pfadfindung.

 contd

Tabelle 1: Quellensammlung

Tabelle 1 – Fortsetzung

Thema	Stichwort	${\bf Grade}$	Quelle	Beschreibung
Elektrotechnik - Sensoren	Pfadfindung	3	Link	Geschwindigkeit und Strecke berechnen mit Hallsensor.
Elektrotechnik - Sensoren	Streckenerkennung	8		
Maschinenbau	Mecanum Wheels Overview	5	Link	Überblick über Mecanumräder und deren Verwendungszweck in der Industrie.
Maschinenbau	Räder	7	Link	Überblick und Auswahl verschiedener Rädertypen für einen Roboter.
Maschinenbau	Greifer	7	Link	Funktionsweise von verschiedenen Greifermechanismen.
Maschinenbau	Greifer	4	Link	Auswahl an Greifern und Linearführungen.
Maschinenbau	Greifer	6	Link	Funktionsweise von verschiedenen Greifermechanismen.
Maschinenbau	Linearführung	5	Link	Überblick an Linearführungen.
Maschinenbau	Material	2	Link	Materialauswahl für Chassis.
Maschinenbau	Roboterkinematik	7	Link	Roboterkinematik für fahrende Systeme inklusive Linienverfolgung.
Maschinenbau	Bewegungsarten	5	Link	Verschiedene Bewegungsarten für Roboter.
Maschinenbau	Robotik	6	Link	Grundlagen der Robotik.

Tabelle 1: Quellensammlung

6 Projektplan

