Jack Yan 4/23/2019

Problem 1

We have

$$h(t) = \frac{2t}{1+t^2} = \frac{d}{dt}[log(1+t^2)] = \frac{d}{dt}[-logS(t)]$$

$$log(1+t^2) = -logS(t)$$

Therefore, the survival function is

$$S(t) = \frac{1}{1+t^2}$$

The cumulative density function is

$$F(t) = 1 - S(t) = 1 - \frac{1}{1 + t^2}$$

The probability density function is

$$f(t) = \frac{d}{dt}F(t) = \frac{2t}{(1+t^2)^2}$$

Problem 2

t_i	n_i	d_i	c_i	$\hat{\lambda_i}$	$\hat{S}(t)$	$\tilde{H}(t)$	$exp(-\tilde{H}(t))$
1	10	1	0	10	$1*(1-\frac{1}{10})=\frac{9}{10}$	<u>1</u>	0.905
2	9	2	0	$\frac{10}{2}$	$\frac{9}{10} * (1 - \frac{19}{9}) = \frac{19}{10}$	$\frac{1}{10} + \frac{2}{9} = \frac{29}{90}$	0.725
4	7	0	1	Ŏ	$\frac{7}{10}$	$\frac{29}{90}$	0.725
5	6	0	1	0	$\frac{7}{10}$	$\frac{29}{90}$	0.725
6	5	1	0	$\frac{1}{5}$	$\frac{7}{10} * (1 - \frac{1}{5}) = \frac{14}{25}$	$\frac{29}{90} + \frac{1}{5} = \frac{47}{90}$	0.593
7	4	0	1	0	$\frac{14}{25}$	$\frac{47}{90}$	0.593
8	3	0	1	0	$\frac{\frac{7}{10} * (1 - \frac{1}{5}) = \frac{14}{25}}{\frac{14}{25}}$ $\frac{\frac{14}{25}}{\frac{14}{25}}$ $\frac{14}{25}$ $\frac{14}{25}$	$\frac{1}{10} + \frac{2}{9} = \frac{\frac{29}{90}}{\frac{29}{90}}$ $\frac{29}{90} + \frac{1}{5} = \frac{\frac{29}{90}}{\frac{47}{90}}$ $\frac{47}{90}$ $\frac{47}{90}$	0.593
9	2	0	1	0	$\frac{14}{25}$	$\frac{47}{90}$	0.593
10	1	0	1	0	$\frac{14}{25}$	$\frac{47}{90}$	0.593

Problem 3

```
library(tidyverse)
library(KMsurv) # data source
library(survival) # problem 3

data(tongue)
tongue_df =
   tongue %% as.tibble() %>%
   mutate(type = if_else(type == 1, "Aneuploid", "Diploid"))

# Aneuploid K-M curve
KM1 = survfit(Surv(time,delta)~1, data = subset(tongue_df, type == "Aneuploid"), conf.type = 'log')
plot(KM1,
   conf.int = TRUE, mark.time = TRUE,
```

```
xlab = "Weeks", ylab = "Survival Probability", main="Aneuploid K-M curve",
cex.lab = 1.5, cex.main = 1.5)
```

Aneuploid K-M curve

Diploid K-M curve

```
Survival Probability

Survival Probability

Survival Probability

O 50 00 150 200

Weeks

# one-year survival rate
# Appendixed
```

```
# Aneuploid
summary(KM1, time = 365/7)
## Call: survfit(formula = Surv(time, delta) ~ 1, data = subset(tongue_df,
       type == "Aneuploid"), conf.type = "log")
##
##
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
                           0.654
                                    0.066
                                                 0.537
                                                               0.797
##
    52.1
                     18
# Diploid
summary(KM2, time = 365/7)
## Call: survfit(formula = Surv(time, delta) ~ 1, data = subset(tongue_df,
##
       type == "Diploid"), conf.type = "log")
##
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
                           0.486 0.0961
                                                              0.716
    52.1
             13
                     14
                                                  0.33
```

The estimated 1-year survival rate (95% CI) is 0.654 (0.537, 0.797) for An euploid and 0.486 (0.33, 0.716) for Diploid.