Stochastic Processes: Assignment 1

Group 1: Javier Esteban Aragoneses, Mauricio Marcos Fajgenbaun, Danyu Zhang, Daniel Alonso

November 27th, 2020

Importing libraries

```
#> Package: markovchain
#> Version: 0.8.5-2
#> Date: 2020-09-07
#> BugReport: https://github.com/spedygiorgio/markovchain/issues
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
intersect, setdiff, setequal, union
```

Problem 1

#> [1] "n bnq ndrsw awornoc aslnxs rzs dowfr ksfrswc ljicrwq rj nirzjwoms n ljwjcngowif gnllocs aworofz

Problem 2

(a)

Let N(t) be the number of cars arriving at a parking lot by time t, according to the proposed scenario, we can model N(t) as a non-homogenous Poisson process. Such process has almost the same process as any other Poisson process, however, its rate is a function of time.

 $N(t), t \in [0, \infty)$ is the non-homogenous Poisson process with rate $\lambda(t)$ where:

- N(0) = 0
- N(t) has independent increments

We define 8:00 as t=0 with the following integrable function and each unit of t equals to 1 hour:

$$\lambda(t) = \begin{cases} 100 & 0 \le t \le \frac{1}{2} \\ 600t - 200 & \frac{1}{2} < t \le \frac{3}{4} \\ 400t - 50 & \frac{3}{4} < t \le 1 \\ -500t + 850 & 1 < t \le 1.5 \end{cases}$$

So,

$$E[N(t)] = \begin{cases} \int_0^t 100 \, dt = 100t & 0 \le t \le \frac{1}{2} \\ \int_{\frac{1}{2}}^t 600t - 200 \, dt + 50 = 300(t^2 - \frac{1}{4}) - 200(t - \frac{1}{2}) + 50 & \frac{1}{2} < t \le \frac{3}{4} \\ \int_{\frac{3}{4}}^t 400t - 50 \, dt + 93.75 = 25(8t^2 - 2t - 3) + 93.75 & \frac{3}{4} < t \le 1 \\ \int_1^t -500t + 850 \, dt + 168.75 = -50(5t^2 - 17t + 12) + 168.75 & 1 < t \le 1.5 \end{cases}$$

Given that there is a limit of 150 vehicles:

$$E[N(t)] = \begin{cases} 100t & 0 \le t \le \frac{1}{2} \\ 300(t^2 - \frac{1}{4}) - 200(t - \frac{1}{2}) + 50 & \frac{1}{2} < t \le \frac{3}{4} \\ 25(8t^2 - 2t - 3) + 93.75 & \frac{3}{4} < t < 0.94468 \\ 150 & t \ge 0.94468 \end{cases}$$

(b)

Luego de hacer las pruebas para $\lambda(t)$ obtenemos lo siguiente:

```
lambda = 139.6
t = 0.91232
# 8:44 AM
```

Por lo que t = 0.91232 horas.

(c)

The following function simulates a non-homogenous poisson process from a homogenous poisson process:

```
non_hom_poisson <- function(fun,1,a,b,start=0) {</pre>
    # This function generates a non-homogenous poisson
    # process from a homogenous poisson process
    # PARAMS:
    # fun: if the non-homogenous poisson process has
             multiple functions per time subinterval
    #
            this parameters represents such function
    # l:
            lambda for the homogenous poisson process
    # a:
            lower bound for the time subinterval
            upper bound for the time subinterval
    # start: this parameter is used to keep track of
             the process count.
    # We generate the homogenous poisson process
    # arrival times
    val <- rpois(1,l*(b-a))</pre>
    intervals <- (b-a) * sort(runif(val)) + a</pre>
    # Non-homogenous poisson process
    evs <- length(intervals) # length of arrival times</pre>
    nh_val <- 0 + start # start of the event count</pre>
    nh_intervals <- c() # arrival times for the NHPP</pre>
    for (i in 1:evs) {
        if (runif(1) < fun(intervals[i])/l) {</pre>
            # only including intervals from the HPP which
            # match with fun(intervals[i])/l probability
            nh_intervals <- c(nh_intervals, intervals[i])</pre>
            nh_val <- nh_val+1 # adding one to the event count
    }
    nh_events <- seq(1+start,nh_val,1) # events since the previous group</pre>
    return(list(arrival_times=nh_intervals, events=nh_events))
}
```

```
simulation <- function(iters, functions, lambdas, ints) {</pre>
    # This function simulates from the NHPP
                 number of iterations to plot and add to the list of
    # iters:
                  data frames
    # functions: list of functions corresponding to the lambda function
    # lambdas: list of lambdas for each subinterval
                 lists of vectors of 2 elements each containing the intervals
    # ints:
                  that correspond to each element of lambdas and functions lists
    p <- list()
    for (i in 1:iters) {
        {\tt maximum} <- 0 # start for the next NHPP simulation to continue count
        arr_times <- c() # arrival times</pre>
        events <- c() # event counts</pre>
        for (k in 1:4) {
            int <- non_hom_poisson(lambda_funs[[k]],lambdas[[k]],</pre>
                                     ints[[k]][1],ints[[k]][2],
                                     start=maximum)
            maximum <- max(int$events) # remembering last event count</pre>
            arr_times <- c(arr_times, int$arrival_times)</pre>
            events <- c(events, int$events)</pre>
        p[[i]] <- data.frame(arrival_times=arr_times, events=events)</pre>
        # plots
        if (i == 1) {plot(arr_times, events, cex=0.5, pch='.',
                           col=randomColor(), xlim=c(0,1.5),
                           ylim=c(0,150))
        lines(arr_times, events, col=randomColor())
    }
    return(p)
}
```



```
ratio <- 0
for (i in 1:length(data)) {
    df <- data.frame(data[[i]])
    cnt <- df %>% filter(arrival_times < 0.91232 & events >= 150) %>% dplyr::count()
    if (cnt[1] >= 1) {
        ratio <- ratio + 1
    }
}</pre>
```

Problem 3

(a)

Our infinitesimal generator is the following:

$$Q = \begin{pmatrix} -\lambda & \lambda & 0 & 0 & \dots \\ \mu & -(\lambda + \mu) & \lambda & 0 & \dots \\ 0 & 2\mu & -(2\mu + \lambda) & \lambda & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

(b)

We solve the following system:

$$\begin{cases} \sum_{i=1}^{\infty} \pi_i = 1\\ \lambda \pi_0 = \mu \pi_1\\ \lambda \pi_1 = 2\mu \pi_2\\ \vdots\\ \lambda \pi_{n-1} = 2\mu \pi_n\\ \vdots \end{cases}$$

First we have:

$$\pi_{1} = \frac{\lambda \pi_{0}}{\mu}$$

$$\pi_{2} = \frac{\lambda^{2} \pi_{0}}{2\mu^{2}}$$

$$\pi_{3} = \frac{\lambda^{3} \pi_{0}}{2^{2} \mu^{3}}$$

$$\vdots$$

$$\ddot{\pi}_n = \frac{\lambda^n \pi_0}{2^{n-1} \mu^n}$$
 :

Then:

 $\sum_{i=0}^{\infty} \pi_i = \pi_0 + \frac{\lambda \pi_0}{\mu} + \frac{\lambda^2 \pi_0}{2\mu^2} + \dots + \frac{\lambda^n \pi_0}{2^{n-1}\mu^n} + \dots = 1$

And so factoring π_0 we get:

$$\pi_0(1 + \frac{\lambda}{\mu} + \frac{\lambda^2}{2\mu^2} + \dots) = \pi_0(1 + \sum_{i=1}^{\infty} \frac{1}{2^{i-1}} (\frac{\lambda}{\mu})^i)$$

Then multiplying $\frac{2}{2}$ to the summation:

$$\pi_0(1 + \frac{2}{2} \sum_{i=1}^{\infty} \frac{1}{2^{i-1}} (\frac{\lambda}{\mu})^i)$$

$$= \pi_0 \left(2 \sum_{i=0}^{\infty} \left(\frac{\lambda}{2\mu}\right)^i - 1\right)$$

$$\pi_0(2(\frac{1}{1-\frac{\lambda}{2\mu}})-1) = 1$$

$$\pi_0 = \frac{1}{2(\frac{1}{1 - \frac{\lambda}{2u}}) - 1}$$

:
$$\pi_n = \frac{\lambda^n}{2^{n-1}\mu_n\pi_0} \frac{1}{2(\frac{1}{1-\frac{\lambda}{2\mu}})-1}$$

finally:

$$\pi_n = \frac{1}{2^{n-1}} \left(\frac{\lambda}{\mu}\right)^n \pi_0$$