Math 214 - April 17, 2020

Quiz 8-Take Home (Sections 4.6, 5.1) Due by Sunday 4/19/2020 by 11:59 pm.

Directions: Complete the following quiz on paper. Show all work necessary to receive full credit. Circle your final answer. Please upload a PDF copy of your responses to Moodle by Sunday, April 19, 2020, by 11:59 pm.

1. Consider
$$A = \begin{bmatrix} 2 & -3 & 6 & 2 & 5 \\ -2 & 3 & -3 & -3 & -4 \\ 4 & -6 & 9 & 5 & 9 \\ -2 & 3 & 3 & -4 & 1 \end{bmatrix}$$
. Find a basis for $Col(A)$, $Row(A)$, $Nul(A)$,

and list the rank(A) and dim(nul(A)).

2. Let A be an $m \times n$ matrix. Which of the subspaces Row(A), Col(A), Nul(A), $\text{Row}(A^T)$, $\text{Col}(A^T)$, and $\text{Nul}(A^T)$ are in \mathbb{R}^m and which are in \mathbb{R}^n ? How many distinct subspaces are in this list?

3. Is
$$\begin{bmatrix} -1+\sqrt{2} \\ 1 \end{bmatrix}$$
 an eigenvector of $A = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$.

4. Consider
$$A=\begin{bmatrix}4&-1&6\\2&1&6\\2&-1&8\end{bmatrix}$$
. Show that $\lambda=2,9$ are an eigenvalues of A , find

corresponding eigenvectors, and find a basis for the corresponding eigenspaces.