# Impact of Lifestyle on Obesity

Predicting Obesity Risk Based on Lifestyle & Demographic Factors Using Machine Learning

CS 412- Introduction to Machine Learning, Professor Zhaochen Gu

## 01

Introduction

#### **Abstract**

A Brief Introduction of Our Project

Obesity poses serious health risks globally; this project develops a machine learning model using demographic and lifestyle data to predict obesity risk and provide actionable insights for prevention.



#### **Project Introduction**

The problem we aim to solve and its relevance to machine learning

This project develops a predictive model to assess obesity risk based on **demographic** and **lifestyle** factors, such as **diet** and **physical activity**. Using **SVC** and **Naive Bayes**, our approach highlights key predictors and provides actionable recommendations to **reduce obesity risk**. This model offers practical insights to support personal and public health initiatives.

Index Terms: Obesity, Prediction, Lifestyle, Machine Learning, SVC, Naive Bayes, Health, Demographic, Preventive Health, Data-Driven Health Insights, Public Health Informatics, Risk

## 02

Dataset

### Dataset Description and Relevant Pre-processing Conducted

Describing the dataset used, including its source and key characteristics, as well as data preprocessing steps

#### **Dataset Source & Key Characteristics**

- Source: UCI Machine Learning Repo
- Dataset has features: Gender, Age, Height, Weight, family\_history\_with\_overweight, FAVC, FCVC, NCP, CAEC, SMOKE, CH2O, SCC, FAF, TUE, CALC, MTRANS, NObeyesdad, and BMI.
- Dimensionality: 2111 rows & 18 columns

#### **Data Preprocessing Steps**

- Encoded categorical variables
- Converted height from meters to inches
- Converted weight from kg to lbs
- Rounded numerical values
- Added `BMI` column
- Target column: NObeyesdad



Methodology

#### Methodology

Our chosen approaches to predictive modeling of the dataset

#### **Naive Bayes**

Effective for categorical data and is generally computationally efficient.

Encoded categorical variables and scaled numerical features.

#### SVC

Handles high-dimensional data well, with strong margins for classification.

Normalized numerical data and one-hot encoded categorical features.

#### **Ensemble**

Combines Random Forest, SVC, & Gradient Boosting for improved accuracy.

Used a ColumnTransformer for consistent feature preparation.



Key metrics obtained from model implementations

#### **Naive Bayes**

| Accuracy: 0.8959810874704491 |           |        |          |         |  |  |  |  |
|------------------------------|-----------|--------|----------|---------|--|--|--|--|
| *                            | precision | recall | f1-score | support |  |  |  |  |
|                              |           |        |          |         |  |  |  |  |
| Insufficient_Weight          | 0.82      | 1.00   | 0.90     | 56      |  |  |  |  |
| Normal_Weight                | 0.88      | 0.73   | 0.80     | 62      |  |  |  |  |
| Obesity_Type_I               | 0.96      | 0.82   | 0.88     | 78      |  |  |  |  |
| Obesity_Type_II              | 0.86      | 0.98   | 0.92     | 58      |  |  |  |  |
| Obesity_Type_III             | 0.97      | 1.00   | 0.98     | 63      |  |  |  |  |
| Overweight_Level_I           | 0.91      | 0.86   | 0.88     | 56      |  |  |  |  |
| Overweight_Level_II          | 0.87      | 0.92   | 0.89     | 50      |  |  |  |  |
| accuracy                     |           |        | 0.90     | 423     |  |  |  |  |
| macro avg                    | 0.90      | 0.90   | 0.89     | 423     |  |  |  |  |
| weighted avg                 | 0.90      | 0.90   | 0.89     | 423     |  |  |  |  |



Key metrics obtained from model implementations

#### **Support Vector Classifier (SVC)**



#### Accuracy: 0.9479166666666666

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.90      | 0.99   | 0.94     | 135     |
| 1            | 0.98      | 0.85   | 0.91     | 151     |
| 2            | 0.99      | 0.94   | 0.96     | 170     |
| 3            | 0.95      | 1.00   | 0.97     | 153     |
| 4            | 1.00      | 0.99   | 1.00     | 163     |
| 5            | 0.87      | 0.96   | 0.91     | 141     |
| 6            | 0.94      | 0.91   | 0.93     | 143     |
|              |           |        |          |         |
| accuracy     |           |        | 0.95     | 1056    |
| macro avg    | 0.95      | 0.95   | 0.95     | 1056    |
| weighted avg | 0.95      | 0.95   | 0.95     | 1056    |



Key metrics obtained from model implementations

#### **Ensemble with Support Vector, Random Forest and Gradient Boosting Classifier**



Key metrics obtained from model implementations

#### **Ensemble with Support Vector, Random Forest and Gradient Boosting Classifier**



Key metrics obtained from model implementations

### Ensemble with Support Vector, Random Forest and Gradient Boosting Classifier

Overall Accuracy: 0.98

|                     | precision | recall | f1-score | support |
|---------------------|-----------|--------|----------|---------|
| Insufficient Weight | 0.98      | 0.95   | 0.96     | 56      |
| Normal Weight       | 0.92      | 0.98   | 0.95     | 62      |
| Obesity_Type_I      | 1.00      | 0.99   | 0.99     | 78      |
| Obesity_Type_II     | 0.98      | 1.00   | 0.99     | 58      |
| Obesity_Type_III    | 1.00      | 1.00   | 1.00     | 63      |
| Overweight_Level_I  | 1.00      | 0.95   | 0.97     | 56      |
| Overweight_Level_II | 0.98      | 1.00   | 0.99     | 50      |
| accuracy            |           |        | 0.98     | 423     |
| macro avg           | 0.98      | 0.98   | 0.98     | 423     |
| weighted avg        | 0.98      | 0.98   | 0.98     | 423     |



Key metrics obtained from model implementations



### 

Challenges and Adaptations

#### Challenges and Adaptations

Problems faced and methods used to tackle them

#### Data Imbalance:

- Challenge: Some obesity classes were underrepresented (ie. had fewer data points compared to other classes, which could lead to **model bias** and **poor generalization**).
- Adaptation: Used **soft voting** (handles imbalanced datasets better) in the ensemble model and evaluated performance using **F1-scores** (balances precision and recall for each class) to handle imbalance effectively.

#### Preprocessing Complexity:

- Challenge: Categorical and numerical features required different preprocessing steps.
- Adaptation: Implemented a **ColumnTransformer** for **streamlined feature preparation**.

## 06

Conclusion

#### Conclusion

Evaluation and review of the results obtained

#### Findings and Implications:

- The **ensemble model** achieved the **highest accuracy (98%)**, outperforming individual models like Naive Bayes and SVC.
- This project highlighted key predictors of obesity, such as diet and activity patterns, which is useful as actionable insights to be used by healthcare workers for obesity risk reduction.
- These results can support public health efforts by allowing personalized obesity risk assessments and hopefully curb the severe rise in obesity globally

#### Future Work and Improvements:

- Enhancements:
  - Incorporate additional datasets to increase feature diversity
  - experiment with deep learning models for more complex feature interactions.
- Could develop a user-friendly app for real-time obesity risk predictions and personalized health recommendations
- Could integrate the model into public health systems.

Questions?

Comments?

### THANK YOU