Neural Networks

Steve Cygu

January 24, 2019

OUTLINE

Introduction

Why Machine Learning? Neural Networks and Human Brain

Neural Networks

Types of Neural Networks Components

Fitting Neural Networks

Feed-forward Back propagation Gradient descent

Some Issues in Training Neural Networks

References

Why Machine Learning?

Can we write algorithm to correctly identify each of the objects?

504192

Neural Networks and Human Brain

Multi-layer perceptron (MLP)

Single-layer Perceptron

▶ No hidden layer, a single neuron.

Single-layer Perceptron

▶ No hidden layer, a single neuron.

$$\hat{y} = b + \sum_{i=1}^{n} x_i w_i$$

Components

Layers

- Input nodes
 No computation
- Hidden nodes (Neurons) Intermediate processing, computation and transfers to another hidden layer or output.
- Output nodes Uses a function (not necessarily activation function) to map the input from other layers to desired output format.
 - Sigmoid
 - Softmax

Synapse/Connections

- \triangleright Transfers the output of neuron i to the input of neuron j.
- ► Each connection is assigned weight, W_{ij}

Activation function

Introduces nonlinearity into the neuron output.

Sigmoid (Logistic Activation Function)

$$a(z) = \frac{1}{1 + exp(-z)}$$

Tanh (hyperbolic tangent Activation Function)

$$a(z) = tanh(z) = \frac{2}{1 + exp(-2z)} - 1 = 2sigmoid(2z) - 1$$

► ReLU (Rectified Linear Unit Activation Function)

$$a(z) = max(0, z)$$

Sigmoid and Tanh Activation Functions

Fitting Neural Networks

Weights are the parameters. The generic approach is by **gradient descent**.

- ► Forward-propagation (feed-forward)
- ► Backward-propagation

▶ Randomly assign starting weights and consider any Z_k^i , $k = 1 \cdots n$. Then,

▶ Randomly assign starting weights and consider any Z_k^i , $k=1\cdots n$. Then, $Z_1^i=X_1W_{1,1}^i+X_2W_{2,1}^i+X_3W_{3,1}^i+X_4W_{4,1}^i$

▶ Randomly assign starting weights and consider any Z_k^i , $k = 1 \cdots n$. Then, $Z_1^i = X_1 W_{1,1}^i + X_2 W_{2,1}^i + X_3 W_{3,1}^i + X_4 W_{4,1}^i$ $Z_2^i = X_1 W_{1,2}^i + X_2 W_{2,2}^i + X_3 W_{3,2}^i + X_4 W_{4,2}^i$

▶ Randomly assign starting weights and consider any Z_k^i , $k = 1 \cdots n$. Then, $Z_1^i = X_1 W_{1,1}^i + X_2 W_{2,1}^i + X_3 W_{3,1}^i + X_4 W_{4,1}^i$ $Z_2^i = X_1 W_{1,2}^i + X_2 W_{2,2}^i + X_3 W_{3,2}^i + X_4 W_{4,2}^i$ \vdots

 \blacktriangleright Randomly assign starting weights and consider any Z_k^i , $k=1\cdots n.$ Then,

$$\begin{split} Z_1^i &= X_1 W_{1,1}^i + X_2 W_{2,1}^i + X_3 W_{3,1}^i + X_4 W_{4,1}^i \\ Z_2^i &= X_1 W_{1,2}^i + X_2 W_{2,2}^i + X_3 W_{3,2}^i + X_4 W_{4,2}^i \\ \cdot \end{split}$$

÷

 Z^i 'component' is the sum of weighted inputs to each neuron.

$$Z^i = XW^i \tag{1}$$

Apply activation function to 1

$$a^i = a(Z^i) \tag{2}$$

Propagate 2 to the output layer

$$Z^j = a^i W^j \tag{3}$$

$$\Longrightarrow \hat{y} = a^j = a^*(Z^j) \tag{4}$$

- Aim is to estimate weights that ensures the model fits the training data well.
- Calculate the error at the output nodes and propagate them back to the network.

$$J = \sum_{i=1}^{n} \frac{1}{2} (y - \hat{y})^2 \tag{5}$$

- Aim is to estimate weights that ensures the model fits the training data well.
- Calculate the error at the output nodes and propagate them back to the network.

$$J = \sum \frac{1}{2} (y - \hat{y})^2 \tag{5}$$

$$J(W) = \frac{1}{2} \sum_{i} \left(y - a^* (a(XW^i)W^j) \right)^2$$
 (6)

- Aim is to estimate weights that ensures the model fits the training data well.
- Calculate the error at the output nodes and propagate them back to the network.

$$J = \sum \frac{1}{2} (y - \hat{y})^2 \tag{5}$$

$$J(W) = \frac{1}{2} \sum (y - a^*(a(XW^i)W^j))^2$$
 (6)

▶ Compute the gradient; $\frac{\partial J}{\partial W^i}$ and $\frac{\partial J}{\partial W^j}$

- Aim is to estimate weights that ensures the model fits the training data well.
- Calculate the error at the output nodes and propagate them back to the network.

$$J = \sum_{i=1}^{n} \frac{1}{2} (y - \hat{y})^2 \tag{5}$$

$$J(W) = \frac{1}{2} \sum_{i} \left(y - a^* (a(XW^i)W^j) \right)^2$$
 (6)

- ▶ Compute the gradient; $\frac{\partial J}{\partial W^i}$ and $\frac{\partial J}{\partial W^j}$
- Adjust the weights using optimization method such as Gradient Descent.

Gradient descent

$$W_{t+1} = W_t - \gamma \Delta J(W_t)$$

Gradient descent

$$W_{t+1} = W_t - \gamma \Delta J(W_t)$$

Some Issues in Training Neural Networks

Starting values

- Starting weights are random numbers near zero.
- However, near zero weights collapses NN into approximately linear model.
- Exactly zero weights leads to zero derivatives and perfect symmetry.
- Large weights lead to poor results.

Some Issues in Training Neural Networks

Starting values

- Starting weights are random numbers near zero.
- However, near zero weights collapses NN into approximately linear model.
- Exactly zero weights leads to zero derivatives and perfect symmetry.
- Large weights lead to poor results.

2. Overfitting and Stopping Criterion

- ▶ Reduce training error to some predetermined threshold → overfitting.
- ▶ Regularization by *weight decay* (analogous to ridge regression)

$$J(W) = \sum_{i=1}^{n} \frac{1}{2} (y - \hat{y})^{2} / n + \frac{1}{2} \lambda \left(\sum_{i=1}^{n} W_{1}^{2} + \sum_{i=1}^{n} W_{2}^{2} \right)$$

 $\lambda \geq 0$ - Is tuning parameter. Larger values of λ shrinks weights toward zero.

Cross-validation is used to estimate λ.

3. Convergence at the Local Minima

References

- [1] Trevor, H., Robert, T., & JH, F. (2009). The elements of statistical learning: data mining, inference, and prediction. *Springer series in statistics*. Second Edition
- [2] Tom M. Mitchell. (1997). Machine Learning *McGraw-Hill International Editions*.
- [3] Internet sources (2019).