TD - Programmation et structures de données

Guillaume Bonfante - Pierre-Etienne Moreau

Exercice 1

Utilisation d'une classe

Représentation et opérations sur les polynômes "classiques"

Définir une classe Polynomial permettant de construire un polynôme à partir d'une liste de coefficients.

Définir une méthode $_str__$ décrivant un polynôme avec sa représentation mathématique usuelle. Par exemple : $x^2 - 1$, $x^3 + 3*x + 4$ ou encore $4*x^2 + 4*x + 2$. Définir la méthode add permettant d'additionner deux polynômes Écrire des jeux de tests

Exercice 2

Nous allons représenter les polynômes dans $Z_q[X] / (X^n+1)Z_q[X]$ avec q et n deux entiers. Cet anneau est constitué de classes d'équivalence de polynômes à coefficients dans Z_q (les entiers modulo q), où deux polynômes sont considérés équivalents s'ils diffèrent d'un multiple de X^n+1 .

```
Les coefficients sont dans Z_q, c'est-à-dire dans [0, q(et on rappelle que : X^n = -1 \mod (X^n + 1).
Proposer une classe pour représenter un tel polynôme.
```

Exercice 3

Toujours dans la classe des polynômes, rajouter une fonction scalar qui multiplie les coefficients d'un polynôme par un scalaire

```
def scalar(self, c): # c * self
...
```

En sus, une fonction rescale qui passe de P dans $Z_q[X] / (X^n+1)Z_q[X]$ au polynôme avec les mêmes coefficients mais dans $Z_r[X] / (X^n+1)Z_r[X]$:

```
def rescale(self, r)
...
```

Exercice 4

Étendre cette classe pour offrir la méthode add. Les deux polynômes doivent avoir les mêmes degrés ainsi que les mêmes paramètres q et n.

Écrire un jeu de tests avec des assert (ou le module unittest si vous vous sentez à l'aise, https://docs.python.org/fr/3/library/unittest.html)

Exercice 5

Étendre cette classe pour offrir la méthode \mathtt{mul} . Les deux polynômes doivent avoir les mêmes degrés ainsi que les mêmes paramètres q et n. Écrire un jeu de tests.

Exercice 6 (pour les plus rapides)

Proposez une autre implémentation de la multiplication en utilisant l'algorithme de Karatsuba