

# Computational Imaging and Spectroscopy: Deep learning for imaging: Advanced concepts

Thierry SOREZE DTU July 2024



DTU Fotonik
Department of Photonics Engineering



#### **Features fusion methods**





#### **Features fusion methods**





















Wang, Fang, et al. "Deep learning for daily precipitation and temperature downscaling." *Water Resources Research* 57.4 (2021): e2020WR029308.











#### **ResNet**



#### **DenseNet**



# Skip Connection Addition

Dense Connection

Concatenating





# **Generative Adversarial Networks (GANs)**





#### **Generative Adversarial Networks: GAN**





#### **Generative Adversarial Networks: cGAN**





#### **Generative Adversarial Networks: BCE loss**

#### **Binary Cross Entropy loss**

$$\mathcal{L}_{GAN} = \min_{G} \max_{D} \mathbb{E}_{x \sim p_{data}(x)} [\log(D(x))] + \mathbb{E}_{z \sim p_{z}(z)} [\log(1 - D(G(z)))]$$

- 1. Unstable training
- 2. Overfitting
- 3. Gradients vanishing/Explosion
- 4. Mode collapse



#### **Generative Adversarial Networks: Wass loss**

#### Wasserstein distance loss + Spectral Normalization

$$W(P,Q) = \inf_{\pi \in \Pi(P,Q)} \mathbb{E}_{(x,y) \sim \pi}[\|x - y\|]$$

$$\mathcal{L}_{\text{WGAN}} = \max_{\theta_D} \left( \mathbb{E}_{x \sim p_{\text{data}}}[D(x)] - \mathbb{E}_{z \sim p_z}[D(G(z))] \right)$$

$$\sigma(W) = \frac{\|Wv\|_2}{\|v\|_2}$$
Spectral Normalization(W) =  $\frac{W}{\sigma(W)}$ 



#### **GAN Backbone: Pix2Pix**



Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2017.



#### **Attention mechanisms: SEN**



Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." *Proceedings of the IEEE conference on computer vision and pattern recognition.* 2018.



#### Attention mechanisms: BAM and CBAM



Woo, Sanghyun, et al. "Cbam: Convolutional block attention module." *Proceedings of the European conference on computer vision (ECCV)*. 2018.



#### **Attention mechanisms: Channel Attention ex.**





#### **Attention mechanisms: Self-Attention**



Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems* 30 (2017).



#### **Transformers**





#### **Transformers: GPTransformers**









#### **Transformers:: Vision transformer**





#### **Transformers:**: Vision transformer



https://khvmaths.medium.com/vision-transformer-understanding-the-underlying-concept-83d699d71180



#### **Transformers:**: Swin transformer



(d) Architecture
Thisanke, Hans, et al. "Semantic segmentation using Vision Transformers: A survey." Engineering Applications of Artificial Intelligence 126 (2023): 106669.



#### **Transformers:: GELU activation function**





## Backbone/SOTA model HSI: MST++



Cai, Yuanhao, et al. "Mst++: Multi-stage spectral-wise transformer for efficient spectral reconstruction." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.



## **Backbone/SOTA Transformer: Restormer**



Zamir, Syed Waqas, et al. "Restormer: Efficient transformer for high-resolution image restoration." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.



#### **Hands on: GANs**

- √ <a href="https://www.tensorflow.org/tutorials/generative/dcgan">https://www.tensorflow.org/tutorials/generative/dcgan</a>
- √ <a href="https://pytorch.org/tutorials/beginner/dcgan">https://pytorch.org/tutorials/beginner/dcgan</a> faces tutorial.html
- √ <a href="https://github.com/tensorflow/gan/blob/master/tensorflow-gan/examples/colab-notebooks/tfgan-tutorial.ipynb">https://github.com/tensorflow/gan/blob/master/tensorflow-gan/examples/colab-notebooks/tfgan-tutorial.ipynb</a>