

PRODUCTION OF HIGH STRENGTH PARTS

Publication number: JP2000129347

Publication date: 2000-05-09

Inventor: MATSUSHIMA YOSHITAKE; KURAMOTO HIROSHI

Applicant: KOBE STEEL LTD

Classification:

- **international:** C23C8/38; C21D1/06; C21D3/04; C21D6/00;
C22C38/00; C22C38/18; C22C38/60; C22C38/00;
C22C38/18; C22C38/60; C23C8/06; C21D1/06;
C21D3/00; C21D6/00; C22C38/00; C22C38/18;
C22C38/60; C22C38/00; C22C38/18; C22C38/60;
(IPC1-7): C22C38/00; C22C38/18; C22C38/60;
C21D6/00; C21D1/06; C21D3/04; C21D6/00; C23C8/38

- **European:**

Application number: JP19980297156 19981019

Priority number(s): JP19980297156 19981019

[Report a data error here](#)

Abstract of JP2000129347

PROBLEM TO BE SOLVED: To provide a method for efficiently production high strength parts excellent in pitting resistance and bending fatigue resistance. **SOLUTION:** A steel containing by mass % 0.05-0.5% C, <=3% Si (not including 0%), <=2.5% Mn (not including 0%) and 2.5-15% Cr, is used. Then, as a heat treatment process, after executing carburizing and carbonitriding or after executing carbonitriding, immediately or after once cooling to the A₁ transformation point or lower, the steel is again heated to the A₁ transformation point - 1100 deg.C and the decarburizing treatment is executed to form <=5 μ m the average grain diameter of carbide in the cross section within 0.1 mm from the surface.

Data supplied from the esp@cenet database - Worldwide