Caroll_Ch2.3.1_Vector space axioms

Vector space axioms

Statement
u + (v + w) = (u + v) + w
u + v = v + u
There exists an element $0 \in V$, called the <u>zero</u> <u>vector</u> , such that $\mathbf{v} + 0 = \mathbf{v}$ for all $\mathbf{v} \in V$.
For every $\mathbf{v} \in V$, there exists an element $-\mathbf{v} \in V$, called the <u>additive</u> <u>inverse</u> of \mathbf{v} , such that $\mathbf{v} + (-\mathbf{v}) = 0$.
$a(b\mathbf{v}) = (ab)\mathbf{v}$
1v = v, where 1 denotes the <u>multiplicative</u> <u>identity</u> in F.
$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
$(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$