.30	
	7 420 44 : 39
·	Numercicals Methods (2 mass)
	Topice:-
	Solutions to Algebric and Transcandantal Egn
	= Bisection method
	**** Newton-Raphson Method
	- Regula false method - Secont method
	- Secont method
(2)	Carrellone du Come ac la come
	Solutions 40 Systems of Lincos Equation * - Gauss Elimination Method
,	*-LU Decomposition
	3
<u>(S)</u>	Solution to Integration of function
	* * - Trapezoidal Rule
	- Simpson 1 Rule
	= Simpson 3 th Rule
	8
(4)	Solution to differential Equations
	* - Euler's method
	- forward
	Badaward
	- Runge Kutta method
	1987 - 2012
	3r Questian
ε .	Réduestion Aduertion Dans Durs.
	(Newton, Raphson (Simpson Decom
	method) Pale)
. —	अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।

Ţ

(T)	Mathematical methods are of two types.
	1) Analytical method
	@ Numerical resethed
<u> </u>	Analytical method:
89.1	Ex. \$. find mosts of 22-5x+6=0 wing analytical
V	mathead
>	Analytical Soil is $2 = -b \pm \sqrt{b^2 - 4ac}$
	20
	: x = 3, 2
·g. 🕙	find (se due using analytical method
0	
>	$\int_{-\infty}^{\infty} x dx = \left[\frac{\alpha^2}{2} \right]_{1}^{2}$
) [2]1
	[4]
	[2 2]
	_ 8
	2.
3.3	Solve dy = 2 Using analytical method.
0	du
	dy 2 oly = 2d2
	dre
	Integrate (2/2/2/2 dy= 2edx
	Jan Ju
	y= 212 + C
	2
	प्रेम सबसे करो, बुरा किसीका न करो।

ler		\(\frac{1}{4}\).
щ		
Note:	- Drawback or analytical.	method is, it is not
	- Drawbook or analytical applicable for higher degre	e equations & also
+	not applicable for non-linear	<u>≥</u> 's.
	To overcome this, we	Luse NUMERICAL
	METHOPS	
	NOMERICAL METHODS P	voide (Approviosation)
	Value	
-0-	II Solution to Algebraic.	and Transcandantal
	[I] Solution to Algebric Equation	iau
,		
*	Intermediate Mean Value	theorem :-
	f(a) is a continuous fund	han defined on [9,6]
	f(a) & f(b) having oppositions case these exist at least	te signs. In such
	in [a,b]	one Roof of T(X).
		- fex)
	$f(x) = x^3 - 4x - 9$ in [2,3]	AL fibi
	$-f(2) = 2^3 - 4(2) - 9$	
	= -9	a / !
	-: -9<0	ь
نة والمعداني الدساني والسياسة المراجدة والماد والمعاطمة الديار	$2 + (3) = 3^3 - 4(3) - 9$	
	= 6>0	(a)f(a)
	Since, f(2) < 0 & f(3) > 0	П
	So there exist atteast one	- root in [23]
	अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने	से भी ज्यादा खतरनाक है।

Pref

	Mr. / /
*	Bisection Method:
Step I	:- Let, fear is a continuous on [a, b]
tep 2	:- f(a) & f(b) having opposite signs
	Say +(a) <0 & +(b) >0
	Using intermediate mean value theorem there exist (F) atteast one root in [a, b]
Hep 3	e- let,
	Approximation root is se, and
	$\frac{2e = a + b}{2}$
	Case I:-
	If f(x,) =0 => 'x,' is root then
	Stop process.
	Case 11,-
	If f(x,) <0 and fcb) >0
	then 22 - 21+b
	Continue this process until desired motil found
	Case III:
	If fex,) so and f (a) Lo
	So 7 atleast one root between [a, 2,]
	Say, 23= Q+201 a B 24 b
	Continue this process centil desired root is found
	प्रेम सबसे करो, बुरा किसीका न करो ।
	21 1 11 11 2 11 2 3 11 12 11 12 11 1

	R: 1 15
- Q	find 2e and 2e using Bisection method where
	$-6x) = 2^3 - 4x - 9$ [2,3]
>	Put sintervals in forcy
	$f(2) = 2^3 - 4 \times 2 - 9$
	= -9
	: -9 <0 : f(2) <0
	$f(3) = 3^3 - 4 \times 3 - 9$
	= 6
	.: 6 >0 .: fest > 0.
	F atleast one took between [2,3]
	2 = 2+3 - 2,5
	$f(x.5) = (2.5)^3 - 4(2.5) - 9$
	\mathcal{A} ,
-	= -3.375 1 0.05= ()
	-1 -3.375 < 0 · fer,5) < 0.
	Since f(2.5) <0 and f(3) >0
-	6
	A1 8.5 1
	2 2.75 3
	Troot b/w (2.5,3) -3.37
	Let $x_2 = 2.5+3 = 5.5 = 2.75$
	2 2
	fcx2) = f(2.75) = (2.75) 3-4(2.75) -9 = 0.7969
a	1. 0. 79 69 >0
	अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है ।

1		i
	Since f(2.75) >0 &f(2.5) <0	+ ,
	so Fatkant one root in [25, 275]	
	Say, 23 = 2,5+2.75	
	2	
	2 = 262	
		-
*	Newton Raphson Method:	
Step 1	:- let fin à continuous function [a, b]	-
tep 2	:- Newton Rophson iteration Johnson for Finding root of fix)=0 is	
	finding soot at T(x)=0 5	
	fre fre	
	$2e_{n+1} = 2e_n - \frac{f(2e_n)}{f'(2e_n)}$	-
		-
<u>O</u> ,	find Neuton raphson steration Jamula for	
ATE	square root of the real number (G
3672	Squase 1980	3
	led, se =	
	Squazing b-s.	
	$\chi^2 = C$	
	-: x2-C=0	
	$=: f(x_0) = x^2 - c$ $=: f(x_0) = x_0^2 - c$	
	f(x) = 2x f'(xy)= 2xy	
	Constitution	
	By Newton Raphson Xn+1 = Xn - Jesen)	- <u></u>
	method files	=
	प्रेम सबसे करो, बुरा किसीका न करो।	

$$\frac{\chi_{n+1} = \chi_n - \chi_n^2 - \zeta}{2\chi_n}$$

$$\frac{\chi_n^2 + \zeta}{2\chi_n^2}$$

Q. find N-R iteration Jamus for $f(x) = x^2 - 117 = 0$ GeATE > $f(x) = x^2 - 117$; $f(x_0) = (x_0)^2 - 117$ f'(x) = 2x; $f'(x_0) = 2x_0$

 $\frac{2}{2}$

 $2n_{+1} = \frac{2^{2} + 117}{2n_{1}}$

Gente value or x_1 using N-R. iteration formula $f(x) = x^2 - 13$ $f(x) = 2x^2 - 13$ f(x) = 2x f'(x) = 2x f(x) = 2x

 $\frac{2e}{2} = \frac{2e}{2e}$

 $2 = \frac{20 + 13}{22}$

24 = (3.5)2+13 = 3.6071 2×3.5

Q	Newton Rophson iteration Jamula Jar Jinding	Ξ,
BIE	3/2	-
396		-
9	let x = 3 C	
		_
	Ceubring Se ^S = C	
	23-C=0	
	$f(x) = x^3 - c$	
	f(x)= x3-C	
,	$f'(x) = 3x^2 - 0$	
	f'(x,)= 3x,2	
7	$\frac{1}{2} = \frac{2}{2} - \frac{f(2n)}{n}$	-
	f'(20)	
	3	
	= 20 - 20 - 0	
	322	
	0 2 3 2 4	
	= 32, -2, +(
-	320	
	$2 - 2 \times 3 + C$	
	1 2 - 22 + C	
	323	
	The N-R rosethood is used to find the rost of	
	The N-R method is used to find the root of $2^2-2=0$ & Starting value is $26:5-1$;	
jepte ,993	The iteration formula will be	,
		7
	प्रेम सबसे करो, बुरा किसीका न करो ।	<u>-</u>
		Print

~	fastness ox Convergence is Route of Convergence
-	@ Converges to -1 & Converges to -52
	@ Converges to -1 & Converges to -12 © Converges to 52 @ Not convergent
	11
	$f(x_0) = x^2 - 2$ $f'(x_0) = \frac{2}{2}$ $f'(x_0) = \frac{2}{2}$
	$x^{1} = x^{2} - f(x^{2})$
	f'(xn)
	$\mathcal{X}_{0+1} = \mathcal{X}_0 - \frac{f(\mathcal{X}_0)}{g}$
	$2e_{++} = 2e_{-} - \frac{f(2e_{0})}{f(2e_{0})}$
N-	$2 = -1 = (-1)^2 - 2$
	2(-1)
	-2
	: ~! - +!
	2.
	1+0·5 1·5
	$\therefore 2 = 21^2 + 2 = (-1.5)^2 + 2 = -1.416$
	22, 2(-1.5)
-	$(-1.416)^2 + 2 = (-1.414)^2$
-	$\frac{(-1.416)^{2}+2}{22e_{2}} = \frac{(-1.416)^{2}+2}{2(-1.416)} = -1.414$
	114
0	1 d se = -1.414 t.e J2
Kecess 10,301	
	अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।

i

	R: / /	
ntmue		= .
10001		
		(
		7.7
		-
·		
<u></u>		
		·
 -		
		G 18
		8
		
		ــــــــــــــــــــــــــــــــــــــ
	प्रेम सबसे करो, बुरा किसीका न करो ।	==
	अन् राजरा चरा, द्वरा करावाचा । करा	حسجنة

ب	हि: / प्रेंड तं. : कि
Q	find Newton Ranhson iteration lamous for the
GATE	Find Newton Raphson iteration Jamula, for +xxx
2003	let, 2=1
	0
	2=0
	$\frac{1}{2} - a = 0$
	:. fex) = 1/2 - a
	$f(x) = \frac{-1}{x^2}$
	2n+1 = 2n - f(2n) $f(2n)$
	- (1/25-a)
ne	$\frac{-2n}{(-1/x^2)}$
	$= 2n + 2n^{2} \left(\frac{1}{2n} - \alpha \right)$
	$= x_1 + x_1 - \alpha x_1^2$
	2n1 = 22n-a2n
+ Q	Given as a we wish to tempete N-R Heralian.
GATE	formular for racingonal of a for a=7 and
8005	formula for racipoolal of a for a=7 and se = 0.2 thus Irst-two iteration will be.
	@ 0.11,0.1299 \$ 0.12,0.1392
	2
	0 · 4 - 7, 0 · ७ अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है। - 0 · 4 - 23 = 124 - 0 · 1 =

	Mr. 1	ì
	Geiren 22-1	
	Q.	į
	: 1 - a = fcx)	
	$\frac{1}{2} = \frac{9x - ax^2}{a}$	ė
	$20 = 22 - 02^2$	
	$=2\times0.2-7(0.2)^{2}$	ī
	7, = 0.12	-
	2= = 2 = 22, - 02, 2	
	= 2(0.12) - 7(0.12)2	
	=0.24 - 7x 0.0144	
	· 2 = 0.1392	
1.W		
Q	from = se-cosse, then 2001 = ?.	
395	⇒ Ans. → 2, - (2, - cos € 2,)	
	1+ Sm 26	
	~	
tm 0		5
UCK	→ Ans. > 2 = 0.853	
1.40	fox = 2 = 2 + 4x - 4 = 0, = 26, = 2, then 2 = _	2
3557	$\Rightarrow \theta_{03} \Rightarrow \alpha = 4/3$	
4ma	for = e = 1, 20= -1, then 20, 2	
9749	-> Ans -> 0, = 0.71828	
	प्रेमं सबसे करो, बुरा किसीका न करो ।	

R: / / S
2x+y+z=10
9+32=6 $-2z=-10$
- By Using Back Substitution.
ue get Z=5, y=-9, z=7
Case II:-
IF R(A) = P(AB) = r
but r <n< td=""></n<>
* * (1) No. or linearly independent solutions = n-r.
(i) No. of linearly dependent
(i) No. of linearly dependent Solutions = r
In this case system has infinitely many solutions
Q U
Ex: - Same example only 3rd now elements ale
made Zerss.
. [2 1 1 10
0 1/2 3/2 , 3
0000
Here
g(A) = 2= g(AB)
(i) No. of Imeasly independent 501 = n-r
= 3-2
Ci) No. of Marry dependent =1.
r

ia: / /	
	-
2 1 1 10	
0 1/2 3/2 3	_
 6 0 0 0	-
	-
 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ude
 0 1/2 3/2 7 3	•••
	~
 2x+4+2=10 ci)	
 2+3z=6 - (i) .: y=6-3z - (i) - y is dependent & from (i) Z is independent	~-
& from in Zis independent	
2 x = 2+ Z -(ii) 7 13 dependent	
2 x = 2+ z — (ii) 7 is dependent 7 is independent	
$\frac{-1}{7} = \frac{2+2}{6-32}$	
[2] [2]	_:
 7 = 6 + 2 -3	
	.
 for different value of Z we not different	
 for different values of Z are get different 501°. So System has intimite 501°.	<u>۔</u>
 प्रेम सबसे करो, बुरा किसीका न करो ।	

	Bisection fines (a,b) d_sa=====
	N. R fere) 20.
,	
Q	$f(x) = x - e^{-x}, \text{ then } x_{n+1} = \frac{?}{e^{-x_n}(1+x_n)}$
200%	$A A \alpha \Rightarrow \alpha = e^{-2\alpha} (1+2\alpha)$
	1-+ - 247)
Q	fex) = 2+ 12-3 and 2= 2 , then 2= ?
200	$\Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow = 1.8124$
Q	The newton saphson method used to find the rout of
	the equation and f'(21) is derivative of f this the
	11
	method is converges @ Always Bonly if f' is polynomial
	(a) Always (b) only IF the population
	@ Only if f(x) <0 & None or the above \Rightarrow Ane. = @.
	Nove of the cooke = Ant. 2 W.
	- Newton Raphson method 17 Oseful for
(/ ////	finding roots or En whether Curve is les to
	se asis, i'e the Curves which are generating high
	Slopes are can get better results lumg N-Rmethad - It slope is less than N-R method is not
	- If slope is less than N-K method is not
	providing accusate tesult
<u> </u>	The N-K method converging to the
	providing accurate tesular The N-R method converging to the root if it socisity the following eg? Ifax: f''(x < f'(x) ²
	f(x).f"(x) < f(x) =
₹	
ļ	अश्लील, गंदे विचारवाली पुरतक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।
!	

I

*	Regula false Method &-
	:- Let, fcx) is continuous function in [a, b]
teo 2	- let us Assume that 26 and 2, are initial
	approximation values for the recquired root
	such that fixe) and fex, having opposite signs Say foxe) < 0 , fox, > 0
ten 3	:- Regula dalse Iteration formula for finding
	root or fex) is (20,21) is
	if 200 = for 30-1-for 1.30
	fn-fn-1
	In particular se = fixofo se, -n=1
	f fo
	——————————————————————————————————————
	Case I:
	$ \frac{1}{3} f(x_2) = 0 \implies 72 \text{ is most, then Stop} $ process
	Case II :-
	If frag) <0 and f(2,)>0
	ie 1).>0
	Pc 7,
	f(xo) < 0 f(x) < 0
	To Bind Comparts or some or by X
	To find Compute 23, replace 20 by X2
	$\frac{1}{12} = \frac{1}{12} \frac{2^2 - f_2 x_1}{x_1}$
	F C.
	1 T &
	प्रेम सबसे करो, बुरा किसीका न करो ।

Case III: and fores) <0 So to Compute of we have to replace +, by? Continue the process until desired accuracy is $f(\alpha) = 2^{8} + 2 - 1 \quad \text{and} \quad$ (x) = x3 +x-1 f(0.5) = (0.3)3 + 0.5-1 = -0.375 ie <0 = fixo-fox 1 x 0.5 - (-0.375) x1 1-(-0.375) 2 = 0.64 Now, fz= f(22)= f(0.64)= (0.64) 3+0.64-1

V	Red 1. 52.
	er and
	2, = 2.03
	2,41 = 2,06
	En+1 = 0.0 €
	En = 0.03
	Ent = 2 En
	<u></u>
4 Note:	- Let us consider of degree polynamial
	f(x) = 0
	a) The number of the real roots for
	(b) The number of sign changes in (Fix):
	f(x) < The number or sign changes in = 0
52	@ The number of imaginary roots =
	n- (no. ox (tve) routs + No. of Eve route
Q	Polynomial P(x) = x5+x+2 has
GEATE	@ All real roots @ Three real roots &2 comp
20037	15 Treal & 4 Complex roots @ All complex poots
	from Note @
	no. or the 60 No. of Sign changes in Pens
	real roots
	No, or the = 0
from	real roots
Noted	No. of -re < Noice Sign Changes in P(-2)
-	P(-24) =-25-2+2
	अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।
ļ	

	15: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	pca) = 1 Change
	· '1' (-ve) real roots.
	hosegnary roots = n - ((tre)+ (-re) nosts)
	= 5-[0+1]
	= 4
	Ans. 1 Real rout & 4 complex nost
۵.	If or, or, or, ore or took of Eg.
	027+027-1+
	@ \$ x:- B \$ x x =
	l=4 Bèss
	@ Zx, x2 x3 = a x, x2, x x x -1) a
	Cest + bat C 20
	A + A = B - B $A + A = C = Const.$
·	Court or x
	Coeff of 23
	Coeff of 23
	,
	d. x. d d = Const (
	Coeff. 20 E
	- x, x, x, x, an
	प्रेम सबसे करो, बुरा किसीका न करो ।

đ	पृष्ठ सं. : 🕉
~	$\therefore an^3 + bn^2 + cn + d = 0.$
	$A_1 + A_2 + A_3 = \frac{6600}{2}$
	$\frac{-b}{a} = \frac{-a_1}{a_0}$
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	$\geq \alpha_1 \cdot \alpha_2 = \frac{\alpha_2}{c}$
	2 0
	· \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$\frac{1}{2} \sum_{\alpha} \alpha_{\alpha} \cdot \alpha_{\alpha} = \frac{1}{2} \alpha_{\alpha}$
	1. ≥ d= -a, ().
	iz ao
	afternate
	$\sum \alpha_1' \alpha_2 = \frac{\alpha_2}{\alpha}$ cutternate $\sum \alpha_1' \alpha_2 = \frac{\alpha_2}{\alpha}$ tur, -ve
	Signs.
2	2 x, x2 x x = - 0/3
-	
	2. x x = (-1) 2 an
-	
-	
GEFFE	It is known that the roots or the non-linear left as - 6x2+112-6 = 0 ase 1 &3 then
5000	3rd root coil be
	~+ x + x = - (-6) = 6
	Q 1
	Q, d₂ d₃ = -6 = -6 = -6
	अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।

प्रेम सबसे करो, बुरा किसीका न करो।

24/08/12	पृष्ठ सं. :
I	Solutions to System of linear Equation
(4)	Gaus Elimpolation: - "MATRIX METHOD"
ℚ.	Salve $2x+y+z=10$
9	3x + 3y + 3z = 18 3x + 4y + 9z = 16
StepI	- Construct Augumented matrix
	i.e $[A:B] = [2] $
	1 4 9 16
	B= Constant metrix
SlepII	:- Convert augumented matrix into an upper triangular matrix using elementary now operations
	Here, in above prob we have to do Row operation as, $R_2 - \frac{3R_1}{2}$ and $R_3 - \frac{R_1}{2}$
	2 1 1 10
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
-	
	अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।

necs de

	$R_{3} = \frac{(H_{2})R_{2}}{V_{2}} = R_{3} - 7R_{2}$
	2 1 1 10
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0 0 -2 , -10
Imp	

quected	SCA) = No. of Non Zero rows in an
Ques.	appentriangular matrix OF A.
	Case I:- IF $g(A) = g(AB) = r = n$
	where no or unionowns
	i.e. (x, y, z etc)
	Then the System is said to CONSISTENT
	and it has a UNIQUE SOLUTION.
	Continue to prob.
	2 1 1 10
	0 1/2 3/2 3
	0 0 -2 1-10
	Here $g(A) = g(AB) = 3 = 0$
	So, it has a Unique SDI.
	[2 1 1][2] [10]
	0 1/2 3/2 7 2 3
·	
	प्रेम सबसे करो, बुरा किसीका न करो।

	R:: / / T
	·
	Case (iii):-
	If $S(A) \neq S(AB)$ thus
	System is said to be "INCONSISTENT", then it has "NO SOLUTION"
	it has "NO SOLUTION"
	Gui Su Control muliu ha
	Ex: - Same example, but in constant motins in
	third row a const is present ite -5.
	. [2 1 1 10]
	0 1/2 3/2 3
	0 0 0 1 -5
	-: g(A)= 2
	g(AB) = 3
	: P(A) \(\frac{1}{2} \) = \(\frac{1}{2} \) NO SOUTION"
	Gaus Elimination:
	"PIVOTAL SOLUTION"
0.	Solve !-
<u>~</u>	
	22ct ft z = 10 32ct 2yt 37 = 19
-	2c+ 4y+92 = 16
Step]	:- Construct augumented moutrix
T	[2 1 1 10]
	i.e. [A:B] = 3 2 3 ; 18
	1 4 9 16)
	अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।
Į.	

From (2, 3, -10, 5, 1, -7) the largest absolute value is (10)
restrict = Troudulus
Since, $q_1 = 2$
Now, Scan entire 1st column and select
largest absolute value and make it as
"Pivot" Exchange pivot element row with 187 row and then eliminate se from now 2%
YOU 3.
R. C. P. 3 2 3 18
2 1 1 1 10
1 4 9 16
R-281 & R-R1
8 2 3 18
0 -1/3 -1 -2
0 10/3 8 10
Since, 02-1/2
Now, Scan entire 2 nd column a from a
and relect largest absolute value
[·e. - < 10 and make it as phot
Exchange pivot element row with 2nd vow
and then eliminate 7 from 10w3
ar
Q33
प्रेम सबसे करो, बुरा किसीका न करो ।
। जिल्हा चार्चा चार्चा ।

	पृष्ठ सं. : कि रि.: / /
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\frac{(\frac{1}{3})R_{2}}{(\frac{10}{3})R_{2}} = R_{3} + R_{2}$ $\frac{(\frac{10}{3})R_{2}}{(\frac{10}{3})R_{2}} = R_{3} + R_{2}$ $\frac{10}{3} = R_{3} + R_{2}$ $\frac{10}{3} = R_{3} + R_{2}$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
CATE DENT	In the solutions of the following set of Imeal equations by Games Elimperation using Pivotal solo the pivots for eliminating "x & y " sept
	501 The pivots for eliminating $x & y & sept$ $5x + y + 2z = 34$ $4y - 3z = 12$ $10x - 2y + 2 = -4$ $95 & 4$ $95 & -4$

	R.: / /
	5 1 2 34
	0 4 -3 12
	10 -2 1 -4
	10 -2 1 1 -4
	0 4 -3 12 34
	5 1 2 34 ++
	8R3 R1/2
	10 -2 1 -4
	0 4 -3 12
	0 2 3/2 36
	Acs. 0,=10 9,24
	Ans. 10 & 4.
B	LU Decomposition (Method of factorisation) or Do-little method
tepI	II
	Q21X+Q22 X2+Q22 X3= b2 Q31 x1+Q32 x2+Q33 x3 = b3
tepli	equation it expresentation of given system of equation it expresses the system of the
	प्रेम सबसे करो, बुरा किसीका न करो ।

र्युष्ठ सं. :	130
दि.:	1 1 3

-

62	B: 1 1 2
	let, A = LV (1i)
	- where L= lower Unit D'war
	moutrix
	iel 100
- Marine	Q ₂₁ 1 0
~	l3, l32
	U= Opper Dular matrix
	= U ₁ , U ₁ , U ₁
	0 022 025
	0 0 U ₃₃
	-1.(i) => LUX = B (ii)
7	
	Let, Ux = Y - Cir)
-	where . Y = d1
	Y ₂ Y ₃
	· · · · · · · · · · · · · · · · · · ·
-	Ly = B.
	[6 0] [b ₁] [b ₁]
	le 1 0 / 2 = 62
	$\left[\begin{array}{c c} Q_{31} & Q_{92} & 1 \end{array}\right] \left[\begin{array}{c} V_2 \\ Y_3 \end{array}\right] \left[\begin{array}{c} Y_3 \end{array}\right]$
	By solving we get, 7, 42 43 intermol
	Clements of lower unit D'war matrix.
	8
	अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।

			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
[U ₁₁ t)en 13	De,	[7]	† G
0	U ₂₂ U ₂₃	≯ ₂ =	J2	
0	0 033	23	73	
		jol	terms of	
By Solving, of Upper 51	are get e,,	22, 23 M	the elements	of
Upper d'	was and li	swer Uni	¿ Aular me	بد شال
The order U,, U12, U1	computing	elements	of L&	Zi U
W.1, O12, O1	2, 21,	W22, U23	- 131, US2,	U33 .
0.000.7/0		<u> </u>		
ote: CROUT'S				
method execu	1			
P' is decor				, III DOWN X
& Unit upper	3. marque	-E TOTALY X		
ie. L=	l, 0	0	andininkalah menanden majarah pengangan pengangan pengangan pengangan pengangan pengangan pengangan pengangan	
	le 122	0		
	l31 l32	لوع ا		
		-		
U=1	. 0	3		
0.0	<u>1</u> 0,			
Lo	0 \$	1]		
		Alphaga Para Para Baran and Language and American Security and Security and Security and Security and Security		
	\\\\.			
	प्रम सबस कर	ा, बुरा किसीका न करो	·	· !

j		B: 1 1 3
Gen T	0 11	In matrix A is 2 1 is decomposed into
98		product of Lower and upper Dulor methics
		clane Cross's method The money decomposed
		L& U matrices respectively
		@ [1 0]
		B [2 0] [1 0.5]
		4 -3 0
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
2	homeleng, grette belge samme	$f = \begin{bmatrix} 4 & -1 \end{bmatrix} = \begin{bmatrix} l_2 & l_{22} \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix}$
*		
		2 1 0 Q1, Q1 U12
w-		4 -1 D2 l21. Q12 + l22
1		
		·: 2, = 2
		P1 U12 = 1 U12 = 1/2
	· · · · · · · · · · · · · · · · · · ·	<u>l21 = 4</u>
		$\frac{1}{2_1 \cdot 0_{12} + 2_{22}} = -1 4 \times \frac{1}{2} + 2_{22} = -1$
		l22 = -3
		-: [l, 0] [1 U ₁₂]
		le 122 0 0 1
	<u>.</u>	[2 0][1 1/2]
		अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।
		3 7 3

	Via: 7 /	
I	Solution to Integration of function :-	*
	Let as consider the given curve is flag and	
	ordinates on x axis is x = a & x = b	Andrew C
	The asea bounded by the given curve	
	and the ordinates is almosted by	-
	b C	
·	(fin) dr +	hái gu _r uithea
	2	Данцинис
	Divide [a, b] into "n" equal subintervals	
	where length of each interval is "h" (Step Size)	
	Q=20	
	マース。+h	
	2 = 25 + h = 26 + h + h = 26 + 2h	
	2= 2+h= 2,+2++h 2 26+3h	
	Yn/y=Peay	<u> </u>
	Y. y. y y. y.	<u>ir</u>
	2n=2n+nh	C
	ie b= 2e + nh	<u>6</u>
		2
	1 = 2 + 1 h a=2 × 2 × 2 × 2 × 2 × 1 × 1	
	b-a+nh a=x, x, 2, x3,-1xn	ر
	$n = \frac{b-a}{1}$	6
	h	
	प्रेम सबसे करों, बुरा किसीका न करो ।	

<u></u>	Tooks Simpson rule is mintioned tun thater Simpson 13th rule
	Equation (#) Can be evaluated by Comp 1) Trapezoidal Rule = \frac{h}{2} \left(y + y \right) + 2 \left(y + y \right) + \frac{y}{3} + \frac{y}{3} + \frac{y}{3} + \frac{y}{3} \right) 2) Simpson \frac{1}{2} Rule
.)	= h (fot fm) + 2 (f + f + f + f + fm - 2) + 4 (f + f + f + f + fm - 1) 8) Smapson 3 th Rule
1 Rews	= 3h (yo+yn)+2(y3+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+
10:40 Continu 11: 15:	1 2 2 2 2 2 2 3 3 3 4 3 3 4 3 5 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7
9	The value of the integrated begin the limits of 1 Using Sompson Rule (if not mentioned then take 1/3 rd rule)
	अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।

ļ

	<u> </u>
	Simpson 1 race = h [(yo+yn)+2(y2+74··-)+
	4(7,+Y3····)]
	= 0.25 (y ₀ +y ₊)+2(y ₂)+q(y ₁ +y ₃)
	3 [(1+0.8)+ 2(0.8)+ 4 (0.9412+0.64)]
	3 [
	= 0.7854
	Simpson's Rule is applicable if the number of Merval, are "FVEN"
(3	Dempson's 3 th Rule is applicable if the
	number of 8 merrous are multiples of 3
	i-e & (n=3, 6, 9, 12, exc)
(13	Trapezoidal Rule is applicable for any
	number of Intervals
Q,	A 2nd degree polynomial for taxes a fullawity
TATE OUS	The Mean har alor
	$x = 0$ 2 f^2 fox 1 dx 13
	fex) 1 4 15 3 Evaluated Ding
	10 apezoidal Rule this the error estimation is
	प्रेम सबसे करो, बुरा किसीका न करो ।

Error = Exad Approvimati Value Value 18:11
-Here,
The is mustioned that 2nd degree polynomial.
$f(x) = a_0 + a_1 x + a_2 x^2$
and it takes a followings values - given.
$f(0)=1-\frac{1}{2}$
· : a=1
f(1) = 4
-100+9.49.42=4
1+9,+0,=4
9,19,23, (i)
f(2)=15
90+0,x2+9,X602=17
29 + 2a = 14
C + C = C

29, + 20 = 14

29, + 20 = 14

21, + 20 = 14

21, + 20 = 14

21, + 20 = 14

21, + 20 = 14

21, + 20 = 14

9= 9= 9

 $f(x) = 1 - 2x + 4x^2$

Exact value = fens da = f(1-2+424) da

अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।

B: / / 2	
$\begin{bmatrix} 2 - x^2 + 4x^3 \\ 2 + 3 \end{bmatrix}^2$	2 0 0
 ract = 82 3	
Approvince Trapezoidal Value Rule Value	
: T. P. value = h (yo+yn)+ @ 2 (y,+yz+y)	
$= \frac{1}{2} \left[(1 + 1 + 2 + 4) \right]$	
= 12.	
. : Error = Exact - Approvimate	
$\frac{282}{3}$	
प्रेम सबसे करो, बुरा किसीका न करो।	

	25 } 3 3 3 1 2 × (-1)
	5 Significant = upto 5th decimal pr. Tr. /
	digit who b' decimal pt.
ME Q.	(Sin x doc is Evaluated by T.R. Rule with
GATE	Eight Equal intervals coith 5 Significant
2007	district the second sec
	(B) 0.00000 (B) 1.00000 (B) 0.00025
	Here, $9=8$, $h=b-a=2\pi-0=\pi$
	n 8 4.
	h = 7 4
	of the second
	Sinx 2=0 Sm0=0-%
_	2+h=01/4 0.70710 h
	7/2 1 42
	3×/4 0.70710 Y3
	7 0 4
	ST/4 -0.70710 /s
	867/4 -1 4
	7 474 -0.70710 47
	27 0 78
	T.R. Rule = \(\frac{1}{2} \left(\frac{1}{4} + \frac{1}{4
	= 7.1 (0+0)+2(0.70710+1+0.70710+0
	4 2 [-0.70710 -1 -0.70710]
ਚ	- 0.0000
9	
3	अश्लील, गंदे विचारवाली पुरुतक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।

पुष्ठ सं	130
5/1	150
\ \? : /	1 75

Q							R: / /	7	1
√1E	æ	0	60	120	180	240	300	3 6 0	<u>}</u>
HATE	J	O	1068	-323	0	323	-352	0	ã
-010			عد					الأجريان وبالإيامان أداسية والتعالية المتالة والما	<u>C</u>
	Evaluat	te	40	dre C	ente ?	Zmpson	13 Pu	<u>Le</u>	
	0 -		<u> </u>		U	······································	7	در برونون <u>د.</u> او ده ماسیفادهیشیشاهای انگ	-
	@ 54 ₂	<u> </u>	995	<u></u>) 1440	<u>4 (d</u>) 1986		
<u> </u>	= 6 (J 9 + 16) + 2 (J3+8) + 4(y,+72-	+ 4 + 4 5	+8)/	-
	3 _ '				lacia di Principologia 10 dela brilla competiti Mazzina		de signigaçõe productiva mandrida productiva mandrida granca comercia que productiva comercia que productiva c		-
		b	-a	2x=	5		gywwaith To fal the equation accompany to the total	Processor declaration of the state of the st	
	 	7	F		<u> </u>			a Marie America and America	
	-6	20	٠.+						-
		3 1			وفعون والقودون والرفاق والمقدد العاديديد				
									
			<u></u>		received to the second			Water of the same	
		76		***************************************					
			·					*1 Philippen addition of the proper service and the service an	
	6	E	9						
			h= 6				. 1		
		Į ė	34	the Int	egration	n lu	m to this	T team	<u> </u>
		ake	== 4=	3					
	110	-X [Cyot	76) + â	((y ₃)+	-4 (Y) -	72+74	+45)]	
		≆ .dેલે ≅	S					<u> </u>	
				<u> </u>					
				प्रेम सबसे करों,	बुरा किसीका न	1 करा ।			

	マ 中 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MEQ.	The integral () dre when Evaluated Using
GNIE	1 rd rule on two equal intervalse Each of Human 8 length 1.
	3 (1) h=0
) = on
	2 2
	h=1 50 1 1/9=1
	$\frac{1}{3} = \frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right) + \frac{1}{3} = \frac{1}{3}$
	$= \frac{1}{3} \left[\frac{4 \circ 3}{3} \right] \frac{1}{3} = \frac{1}{3} \left[\frac{1+1}{3} + \frac{1}{3} + 1$
	$=\frac{1}{3}\left[\frac{4}{3}+4\times\frac{1}{2}\right]$
2	$=\frac{1}{3}\left[\frac{4}{3}+2\right]$
	3 3
6	<u> </u>
A	21.111
	अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।

mp Q	Error order T. R. nule = h² Error order Erropson 3 = h4 Error order Erropson 3 = h5.	
	The minimum number of equal lengths of	<u>:</u>
SATE	subinternal needed to approximate	<u>.</u> , .
5008	2	~ 4
	(2.e dx to an accuracy of at least	
	1 (6 1)	
	1 1x10-6 Using T.R. fule	~
	Ø 1000. € ⓑ 1000 ⓒ 100. € ⓓ 100	~
	D = P.	
	fex) = x · e x	
lote	- Error in T.R. Rule $= -(b-a) \cdot h^2 \cdot man \cdot f''(2)$	
(b)	Truncation Erron in (b-a) h2. max. [f"(x)]	
	T.R. Rule 12 Error order h2	
	At least means >	·
	Here, I Erron 1, Accuracy 1	
		
	Gerren; Aceuracy > 1 x10-6	•
	3	~
	Truncation Error < 1 x 10-6	
	3	
	$(5-a)$ h^2 $max[f''(x)] < 1 \times 10^{-6}$	
	12 () 3	
	प्रेम सबसे करो, बुरा किसीका न करो ।	
	अने सबस करा, बुरा किसाका न करा।	

	Heze,
14	Con1 = 200
	$f'(x) = xe^{x} + e^{x}$
	(11(x) = xex+ex+ex
	i'. f" (x) = lex+ 2ex
	- Here in f'in ex is Increasing function
	as re increases.
	l ze is abo.
	-: f'(su) is Increasing function in (1,2)
	$1000 \cdot 12 \cdot 1000 = 4e^2 \cdot 10$
	n.
	$(2-1)$ $(2-1)$ mon $G''(x) \leq 1$ $x = 10^{-6}$
	$\frac{(2-1)}{12}$ $\frac{(2-1)}{n}$ mon $f''(x) \le \frac{1}{3}x^{10-6}$.
	$\frac{1}{12} \times \frac{1}{12} \times 4e^2 \leq \frac{1}{3} \times 10^{-6}$
	1/2 n ² / 3
	8 e² ≤ 10-4
· · · · · · · · · · · · · · · · · · ·	
	$e^2 \times 10^{-6} \le D^2$
	$n^{t} \ge e^{2(103)^{2}}$
	n ≥ e · 103
	7 ≥ 1000.e.
	ms. 1000.e.
	अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।
ı	The same of the sa

	Re: 1 1 72
Jote	
0	Error in $S-1$ role = $-(b-a) \cdot h^4$ max $f(x)$
	— Erron order h ⁴
(Y)	Error in g-3 Rule = -3, hs. max f ¹ .(x)
	Error order hs.
IV	Solutions to differential Equation
	Let us consider differential Egn.
	$\frac{dy}{dx} \in (x, y) \text{ where } y(x_0) = y - x$
	Eg & Can be sorved by using L
	1) Falers method
	- forward twees method
	- Backword Feller method.
	a) Runge - kutta method
	- Ruge Kutta of 15% order - Eulers method
•	- Runge keutra of 2nd order-[twee method]
	Not 5 - Runge Kenter of 3rd order
	asked in I - Runge Kutta or 4th order
	yet.
	, , , , , , , , , , , , , , , , , , ,
	प्रेम सबसे करो, बुरा किसीका न करो ।

=		पृष्ठ सं. : अ हि. : / / ड
	*	(torword)
<u> </u>		Eulers Herotive formula for finding Solution curve to the eq () is
		In particular for $n=0$
		$\mathcal{J}_{1} = \mathcal{J}_{0} + h \cdot f(x_{1}, y_{1})$
5	0	find an approximate value of y' corresponding to x=0.28 dy 2+4 / /= 1, within x=0. Using tules
	→	make it for, 7)
-	1	2c. y comment
al.	3	2=26+h
		$= \frac{1+0.1}{3} = \frac{1+0.1}{3} $
*	3	$2 = 2 + h$ $y = 2$ $f = f + h \cdot f(x_1, y_1)$
for.		= 0.2 $= 1.1 + 0.1 (0.1 + 94)$ $= 1.1 + 0.1 (0.2)$
_		अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।

	पृष्ठ सं. : 🕉	7
	dy -4-2. when f(0)=0.	
[(C	$\frac{dy}{dx} = \frac{y}{2} = \infty$ where $h = 0.1$	4
3		
-#	Compute 7 (0.3) very Evless 15% order method.	
	V	-
	= ie Eules forward method.	
	Pris. 0.031	-
	1773	+
	2 . 7 Comment	-
	2020 0 4= 4+ h f(xo, 40)	
	2=0·1	-
	Y. = 0	<u> </u>
	y= 4,+h f(x1, 4,)	
	x=0.2	-
	- 0.0	-
	13=4,+hf(x2, 42)	(
	y = 0.031 y = 0.01 + 0.1 = 0.240	9)
	= 0.0 + 0.1 × 0.24	
-l	= 0.01+	-
	= 0.0398	-
		-
		-+
====	प्रेम सबसे करो, बुरा किसीका न करो।	

4	03/69/	हिः: / /
	*	Ewers Backward Chernod: - Let, dy f(x,y) - (+) dn
		where, f(xo) = & f.
		: Eulers Backward iterative formula for solving 897 (*) ie dy = fix, y) on
		y _{i+1} = Y _{i+} b f (x _{i+1} , y _{i+1})
		Here, Jih is in both UHIS RIHIS. Since, Jih is defined in function Therefore, this method is called as Implicit.
		Euler's method.
9)	Q. <u>1</u>	find an appropriate value for $x = 0.2$ Using Implicit Euless method where dy = $x+y$, $y(0) = 1$ ashere step size $h=0.1$
24	<i>→</i>	Geiren, dy = 2+7
		$ \frac{1}{2i+1} = \frac{1}{2i+1} + \frac{1}{2i+1} $
b		$(1-h)\cdot \dot{\mathcal{J}}_{i+1} = \dot{\mathcal{J}}_{i} + h \cdot 2e_{i+1}$
h-		$\frac{\mathcal{Y}_{i+1} = \mathcal{Y}_{i} + h \cdot \mathcal{X}_{i+1}}{(1-h)}$
===		अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।

			(R: 1) 2	
	In perticula	x x=0 this		
	7	y yo+h·2 (1-h)		
	ŧ.			
		y wit	b	
	· · Construct -	the table for a reg	sertime & values of 2	G
	×	y	Comment.	2
	~ ^	4 - 1	To: Line On the	:
	7 = 0	Jo = 1	Initial Condition	
	4=0.1	Y=1.222	7 = Yoth. 2,	
			(1-h)	
			= 1+0.1×0.1	
			(1-0.1)	
			7=1.222	
				i
	2 = 0.2	17 = 1.38	y = 4, + h. 22	
			(1-6)	
			= 1.222 x+0.1 x 2.	2_
			(1-0.1)	
			= 1.38.	
lote:	- Eulers Be	releward method	is more stable than	
	forward method.			
	The exe	act Solution for	differential eq?	
	dy dn	ety with 40)=1 is y=2e2-2-1	
	at 2	=1, y=3.44.		
		v		
		प्रेम सबसे करो, बुरा	किसींका न करो ।	
				<u> </u>

-	gou can say that Backward method is converging
	you can say that Backward method is converging
	to recquired value svery quickly
GATE	badavard fuler method with boundary conditions Y=1 at x=0 and had what time the
2006	badavard Euler method with boundary conditions
	The value of
	1/2 dx 2 = 1
	(A) 1.33 (B) 1.67 (D) 2.33
0'-	Here dy 0.25 y 2
	$\mathcal{J}_{i+1} = \mathcal{J}_{i} + h f(x_{i+1}, \mathcal{J}_{i+1})$
	y;+1 - 1 [0.25 y²] = y;
	1 X 0:25 Yit - Yit + Yi = 0.
-	- Here, value of h=1,. 'No preed to constmul
-	
	0.25 y + - y + + y = 0.
	Compaining with axetbx+c=0
	roots of Eq. asy
	2e-+-b+14
	$2e = -b \pm \int b^2 - 4ac$
	2.0
	$-(-1) \pm (-1)^{2} - 4(0.25)(y_{i})^{2}$
	2×0.25
	y(+1 = 1+11-y; 0.5
	अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।
	ग्रिक्त कर्मा अंदर नाग राजा उपादा खतरनाल है।

		<u> </u>
	put $i=0$, $y = 1 \pm \sqrt{1-y_0}$ $y = -y_0 = 1$. i=0.5 $i=0.5$ $i=0.5$	*
	$\frac{1}{4} = \frac{1+\sqrt{1-1}}{6.5}$ $\frac{1}{4} = \frac{1}{0.5}$	
	7 4.2	
	Runge Kutta Method:	4
1996 2 ^{hd}	Given diff. eq dy = x-y costh y(0)=0 +hors dn value of y(0:1) using 2nd order funge tutta	¢
rder	method, with step size hear! Runge kutta method of 2nd order Herakire formula for finding 801 Course to ear is	
	$\begin{cases} y = y + 1 & (k_1 + k_2) \\ where & k_1 = h f(x_0, y_0) \end{cases}$ $\begin{cases} k = h f(x_0, y_0) \\ k = h f(x_0, y_0 + k_1) \end{cases}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	प्रेम सबसे करो, बुरा किसीका न करो ।	=: =

ز	पृष्ठ सं. :	130
`	R: /	\\

	पृष्ठ सं. : 🕉
	- : y = y(x0+h) = y(0+0·1) = y(0·1)
	$J_1 = J_0 + \frac{1}{2} (K_1 + K_2)$
	= 0 + 1 (0 + 0.01)
	= 0.01
	y = 0.005 -
Q. 2. 4th	Apply Runge-kutter method of 4th order where dy = sety, y=1 when 200, h=0.2
Order R-K	Compute of (0.2)
	Runge Kutta method of 4th order formula
	y = y + 1 (K1+2k2+2k3+K4)
	cohere.
	$K_1 = h \cdot f(x_0, y_0)$ $K_2 = h \cdot f(x_0 + \frac{1}{2}, y_0 + \frac{1}{2})$ $K_3 = h \cdot f(x_0 + \frac{1}{2}, y_0 + \frac{1}{2})$ = 0.2(2(4+y ₀) = 0.2(0+0.2+1+0.2) = 0.2(0+0.2+1+0.2)
j K	= 6.2(0+1) $ = 0.2 $ $ = 0.2[0.1+1+0.12] $ $ = 0.24 $ $ = 0.244$
	F3 0.244
	अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है ।

अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।

		•
	Q	¥ ¥
	[K4= h.f(x+h, y+ 1c3)]	4
	= 0.2 [26+h+y0+kg]	•
	= 0.2 [0+0.2+1+0.2+4]	
	K ₄ = 0.2888	

	J= Jo+ [k,+2k2+2k3+k4]	
	= 1+ 1 (0.2+2×0.24+2×0.244 +0.28)	
	J=1.2428	
		<u> </u>
₹3.	Apply Rugge Kutta method of 3rd order with	
zrd	dy a.v. when 4=1, 2=0 & h=0.2 then	
)rder	du -	
3-K	Compute y(0.2)	
	Reinge Kutta method of 3rd order iterative	
	Renge Kutta method of 3rd order iterative formula for finding Solution curve to the Egi	C
	ÎS.	J sa
	y=30+ = (k,+4k2+k3)	E
		780
	where, k = h. (xo, yo) k = h. f(xo + h. , yo + E)	+
	= 0.2(0+1)	
	४,=0.2 प्रेम सबसे करो, बुरा किसीका न करो।	

न् पृष्ठ सं. :	V.70
77	16.
ो रिदे ः /	
• •	

	\$5:: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
7	[kg = h.f (2co+h, yo+(k))]
	where, $\frac{k'=0}{k'=h \cdot f(x_0+h, y_0+k_1)}$
	: K' = 0.2 [0+0.2+1+0.2]
	= 0.2 (1.4) $k' = 0.28$
	$ c_3 = 0.2[0+0.2+1+0.28]$ $ c_3 = 0.296$
:	y=90+6[K1+4K2+K3]
	$\frac{1}{10} = 1 + \frac{1}{6} \left[0.2 + 4 \times 0.24 + 0.290 \right]$ $\frac{1}{10} = 1.2428$
Q.4.	The diff. eq dx = 1-2 is evaluated using Eules
GATE 20,7	method with step size h= \$7, where \$770
Yorethod "	Stability in SO!" (B) T (C) T (D) 27
	अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।

->	Stable !-	
	An iterative method is said to be stable if	, ,
	the round off error is remains bounded as	
	n ->00, where n is no of Iterations.	
	The Eules method formula	
	Jit = 4: th f(x;, y:) can be conitred as	
	J:+= E. J: + E (*)	
	where	
,	K= terms which are involved in 2 or anots.	
	20 CH2 > 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Eq (#) is said to be stable, if E <1	
	ie -1 < [[]	
	dn 1-2	
	$\frac{dn}{dt} = \frac{1-x}{c}$	
	Smilarly dy 1-y	
	dn T	
	· dy 1-9-f(x, y)	
	dn E	
	: +:+1 = 4:+h. f(oc; +i)	5
	= 4 1 - 1 - 4:	
	して (て)	
	Y:= (1-h):4:+h - (I)	
	प्रेम सबसे करो, बुरा बिसीका न करो।	
		()

	पुस्त सं. : ्रिक रि.: / /
,	Eq (I) is Stable if 1-1 <1
	1-5 < 1
	1-24/
	ie -1 < 1 - 57 < 1
	Substract 1 throughout to reduce 1 or Cancell 1 from middle team
	-: -1-1 < 1-1- <u>\DT</u> < 1-1
	-: -2 < - <u>AT</u> < 0
	: -2T < -AT < 0
	: 2T > DT > 0 - Removing Signs and
	ie OCCTCZT of Equality Signs.
	AT < 2T Ans. 2T
Q.1 Simpse Pule	The min. no. of Equal length subintervals needed in to appropriate (22% of to an accuracy) of
James	atteast 8 × 10-8 Osma Sompson's Rule
	अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाळ है।

ţ

	R: / /	9 .
——)	$f(x) = e^{2x}$ $= [a,b] = [0,2]$ Accuracy attent means accuracy $\frac{3}{45} \times 10^{-8}$; e t
	Accuracy atteast means	
	acurary > 8 × 10-8	
	Here, if Accusacy T then Error J	
	∴ Error <u>< 8 x10⁻⁸</u>	
	In Namerical method error is considered as	
	Simpson's Truncation method	
	Truncation Error < 8 x 10-8 Simpson 45	
	Smpson 45	
V	14 (21)	
	180 x h x Man (s'(x)) \leq \frac{8}{45} \times 10^{-8}	
	But $h = b-a$	
	ŋ	
· · · · · · · · · · · · · · · · · · ·	1. 2-0 x (2-0) x Max (Nax) (8 x10-8	-
	180 X (n) A 1803 (x) & 45 X 16	G
	Now, for = e2x	
	$f'(x) = 4 \cdot e^{2x}$	
	$f''(x) = 4.e^{-x}$	l
	(x) = 16.e ² = 16.xe ² = 16.e ⁴ = 10.e ⁴ =	- ×
	- 2-0 x (2-0) x 16.04 < 8 x 10-8	
	180 (n) 180 (n)	
	प्रेम सबसे करो, बुरा किसीका न करो।	
		-

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		पृष्ठ सं : 🕉
$ 16 \cdot e^{4} \leq h^{4}$ $ 18 \times 10^{-8} \leq h^{4}$ $ 16 \times e^{4} \times 10^{48} \leq h^{4}$ $ 16 \times e^{4} \times 10^{48} $ $ 16 \times e^{4} $	ė,	$\left \left(\frac{2}{n} \right)^{4} \cdot e^{4} \right \leq \frac{8}{1} \times 10^{-8}$
		16 et < \$ x10-8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		16.6. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$ n > 2^{4} \times e^{4} \times (i0^{2})^{4} $ $ n > 2 \times e^{4} \times i0^{2} $ $ n >$		
.: $n \ge 2 \times e^4 \times 10^2 $ $n \ge 200 e^4$ Gents If we use Newton raphson method to find roots $f(\infty) = 0$, $vimq vin, vi, dix respectively. As initial guess values a thin the roots Obtained would be (B) 1.3, 0.6, 0.6 (B) 0.6, 0.6, 1.3$		
D > 200 e 4 Ano Q2. GEATE If we use Newton raphs on method to find roots f(x)=0, ving 20, 2, dx, respectively As initial guess values a then the roots Obtained would be (B) 0.6, 0.6, 1.3 B) 0.6, 0.6, 1.3		
Q.2. Gent If we use Newton raphson method to find roots $f(x) = 0$, Using $2c_0$, $2c_1$ de $2c_2$ respectively. As instial guess values a then the roots Obtained would be (B) 1.3 , 0.6 , 0.6 . (B) 0.6 , 0.6 , 0.6 .		
GeATE If are use Newton raphson method to find roots $f(x) = 0$, ving $2c_0$, 2 , $2c_2$ respectively As instial guess values a thin the roots Obtained would be (B) 0.6, 0.6, 0.6 1.3, 1.3, 0.6	02	
# mitial guess values & then the roots Obtained would be (B) 0.6, 0.6, 0.6 (B) 0.6, 0.6, 1.3 (B) 1.3, 1.3, 0.6		11
(B) 0.6, 0.6, 1.3 (B) 1.3, 1.3, 0.6		As initial guess values or then the roots
(B) 0.6, 0.6, 1.3 (B) 1.3, 1.3, 0.6	L 3	
B) 0.6, 0.6, 1.3 B) 0.6, 0.6, 1.3		
2 1.3,1.3,0.6	i	
	2	<u> </u>
अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।		अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।

	पुष्ठ सं. :	1,30
-	₹ <i>1</i> .	المختاح
	्रि दः /	1
-		

	पुष्ठ सं. : 30 दि:: / /	
	On-2 arcis, 4=0,	
	So, ecl which is near to 1.3 than 0.6 on	
	2 anis : 2 is converging to 1.3.	
	- 279 line for x, (0.5, 0.5) (1, -0.8)	
	(0.5, or5)	
	$\frac{2}{2} = \frac{3}{2} = \frac{3}{2}$	
	w = -0.8 - 0.2	
	1-0.5	
	m = -1.8 /(01,-0.3)	
	Ef of 2nd line => (y-y1) = m(x-x1)	
>	(y-0.5) = -1.8(x-0.5)	
	y-0.5 = -1.8x + 0.9	
D 1973	y+1.8x = 09+0.5	
	$\frac{A+1.8x=1.3}{}$	
	0 1.92. 1.0	
<u></u>	$= 3 = -1.8 \times +1.3$	
/	⇒ g= mx+c	
1	=) C → 1·3. Con verges to 1·3.	
	The state of the s	
	- grd me for 22 (1.55,0.5) (2.05,1)	
	$m = \frac{y_2 - y_1}{1 - 0.5}$ (2.06,1)	
-	32-2, 2.08-1.55 (.55,05)	
	m=0	
	अश्लील, गंदे विचारवाली पुस्तक पढ़ना जहर पीने से भी ज्यादा खतरनाक है।	

[•3

Ef or 3rd line $(y-y_1) = m(x-x_1)$

(y-0.5) = 0(x-1.55)

y=0.5 => .: y=mx+c .: C≠0.5

Converges to 0.6

प्रेम सबसे करो, बुरा किसीका न करो।