2011~2012学年第一学期期末考试试卷 《线性代数及其应用》

- 一、**填空题** (共15分,每小题 3分)
- 1. 二次型 $f(X) = X^{T}AX$ 通过正交替换 X = SY 化为标准形 $y_1^2 + 2y_2^2 + 3y_3^2$, 则二次型 $g(X) = X^{T}A^{-1}X$ 通过正交替换 X = SY 化为标准形是
- 2. 设 $\lambda = -1$ 是 n 阶实对称矩阵 A 的 k 重特征值, 则矩阵 -E A 的秩
- 3. 设二维线性空间 V 上的线性变换 σ 在基 α_1, α_2 下的矩阵为 $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ 则 σ 在基 α_2 , α_1 下的矩阵为_

4. 已知矩阵
$$A = \begin{bmatrix} 0 & 5 & 3 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 5 & 4 \end{bmatrix}$$
, 则 $A^{-1} = \underline{\qquad}$.

- 5. 设 λ_1 和 λ_2 是矩阵 A 的两个不同的特征值, 且 α_1 和 α_2 分别为相应的特 征向量, 则 α_2 , $A(\alpha_1 + 3\alpha_2)$ 线性相关的充分必要条件是______.
 - 二、选择题 (共15分,每小题3分)
 - 1. 下列 () 构成 R^4 的子空间.
 - (A) $W_1 = \{(x_1, x_2, x_3, x_4) | x_1 + x_2 = x_3 + x_4\}$
 - (B) $W_2 = \{(x_1, x_2, x_3, x_4) | x_1 + x_2 = 1\}$
 - (C) $W_3 = \{(x_1, x_2, x_3, x_4) | x_1 \in Z\}$
 - (D) $W_4 = \{(x_1, x_2, x_3, x_4) | x_1^2 = x_2 \}$
- 2. 设向量组 $(I)\alpha_1,\alpha_2,\ldots,\alpha_s$ 可由 $(II)\beta_1,\beta_2,\ldots,\beta_s$ 线性表示,下列说法中 正确的是().
 - (A) 若 (I) 线性无关, 则 (II) 线性相关
 - (B) 若 (I) 线性无关, 则 (II) 线性无关
 - (C) 若 (II) 线性无关, 则 (I) 线性相关
 - (D) 若 (II) 线性无关, 则 (I) 线性无关
 - 3. 矩阵 $A, B \in P^{n \times n}$ 为实对称矩阵, 若 $A \ni B$ 合同, 则 (
 - (A) *A* 与 *B* 有相同特征值
- (B) *A* 与 *B* 有相同的秩
- (C) A 与 B 有相同特征向量 (D) A 与 B 有相同的行列式
- 4. 设 A 为可逆矩阵,A 的第 1 行的 2 倍加到第 3 行得矩阵 B, 则 ().
 - (A) A^* 的第 1 行的 -2 倍加到第 3 行得 B^*

- (B) A* 的第 3 行的 -2 倍加到第 1 行得 B*
- (C) A* 的第 1 列的 -2 倍加到第 3 列得 B*
- (D) A^* 的第 3 列的 -2 倍加到第 1 列得 B^*
- 5. 下列二次型中正定二次型是().

(A)
$$f_1 = (x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 - x_1)^2$$

(B)
$$f_2 = (x_1 + x_2)^2 + (x_2 - x_3)^2 + (x_3 + x_1)^2$$

(C)
$$f_3 = (x_1 + x_2)^2 + (x_2 + x_3)^2 + (x_3 - x_4)^2 + (x_4 - x_1)^2$$

(D)
$$f_4 = (x_1 + x_2)^2 + (x_2 + x_3)^2 + (x_3 + x_4)^2 + (x_4 - x_1)^2$$

三、 $(8 \ \mathcal{G})$ 已知三阶方阵 A 的特征值为 2, -2, 1, 又三阶方阵 B 与 A 相似, 求 (1)B 的伴随矩阵 B^* 的特征值; $(2)B^2 - 2B$ 的行列式.

四、(8 分) 在 $R[x]_3$ 中取定基 $(I):1,x,x^2,x^3$ 和 $(II):1+x+x^2,1+x,1,1+x+x^2+x^3$.

- (1) 求由基 (I) 到基 (II) 的过渡矩阵;
- (2) $\vec{x} f(x) = 1 + 2x + 3x^2 + 4x^3$ 在基 (II) 下的坐标;
- (3) 如果 $g(x) \in R[x]_3$ 在基 (II) 下的坐标为 $[1,2,3,4]^T$, 求它在基 (I) 下的坐标.

五、
$$(10\ \mathcal{G})$$
 已知 $\xi=\begin{bmatrix}1\\1\\-1\end{bmatrix}$ 是三阶矩阵 $A=\begin{bmatrix}2&-1&2\\5&a&3\\-1&b&-2\end{bmatrix}$ 的特征向

 $\mathbb{L}_{a}(1)$ 求参数 a,b 的值及 ξ 所对应的特征值; (2) 矩阵 A 能否对角化? 说明理由.

六、(12 分) 已知 $\alpha_1 = [1, -1, 0]^T$, $\alpha_2 = [-1, 0, 1]^T$, $\alpha_3 = [0, 1, 1]^T$ 是 R^3 的一个基, σ 是 R^3 上的一个线性变换,且 σ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵为 $A = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}$

$$\left[\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 1 & -2 & 0 \end{array}\right].$$

- (1) 证明 $\boldsymbol{\beta}_1 = \boldsymbol{\alpha}_1, \boldsymbol{\beta}_2 = -\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\beta}_3 = -\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$ 也是 R^3 的一个基;
- (2) 求 σ 在 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3$ 下的矩阵;
- (3) 设 $\alpha = \alpha_1 + 2\alpha_2 3\alpha_3$, 求 $\sigma(\alpha)$ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标.

七、(12 分) 已知非齐次线性方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = -1 \\ 4x_1 + 3x_2 + 5x_3 - x_4 = -1 \\ ax_1 + x_2 + 3x_3 + bx_4 = 1 \end{cases}$$
有三个

线性无关解.

- (1) 求方程组系数矩阵 A 的秩;
- (2) 求参数 a, b 的值及方程组的通解 (用导出组的基础解系表示).

八、(16 分) (1) 求一个正交替换,将实二次型 $f(x_1,x_2,x_3)=3x_1^2+3x_2^2+6x_3^2+8x_1x_2-4x_1x_3+4x_2x_3$ 化为标准形;

(2) 求二次型的正惯性指数和符号差.

九、(4 分) 设 n 阶实方阵 A 满足 $A^2-4A+3E=O,$ 证明 $(2E-A)^{\mathrm{T}}(2E-A)$ 为正定矩阵.