LC029 정보검색

Chapter 6: Scoring, Term Weighting, and the Vector Space Model

- Boolean queries often result in too many results.
 - This is particularly true of large document collections.
 - Most users don't want to wade through too many results.
- Boolean Search
 - Documents either match or don't.
 - Ranking the results is impossible. ৺ টুম্ব পিটেশ্বান টেল্ল
 - It takes skill to write a query that produces a manageable number of results.

Basis of Ranked Retrieval: Scoring

- With a ranked list of documents it does not matter how large the retrieved set is.
 - We wish to return the documents in the order of usefulness.
- How can we rank the documents in the collection with respect to a query?
 - Assign a score, say in [0, 1], to each document. 🥞 🗠 🗥 🖑
 - This score measures how well document and query match.

Query-Document Matching Scores

- We need a way of assigning a score to (query, document) pair.
- Let's start with a one-term query.
 - If the query term does not occur in the document, the score should be 0.
 - The more frequent the query term in the document, the higher the score. ঝালু মান মান্ত এই ক্ষুদ্ৰ কুল কুন
- We will look at a number of alternatives for this.

불인 모델에서 정수를 가는 방법

Scoring under Boolean Search Model

- 1. Jaccard Coefficient: Scoring
- 2. Weighted Zone Scoring

Jaccard Coefficient

THALE AIG

Jaccard Coefficient: Scoring

- Measurement of the overlap of two sets A and B.
 - Jaccard(A, B) = |A ∩ B| / |A ∪ B|
- Always assigns a number between 0 and 1.
 - Jaccard(A, A) = 1
 - Jaccard(A, B) = 0 if A \cap B = \emptyset
- A and B don't have to be the same size.
- Used to measure the Query-Document Match Score

Jaccard Coefficient: Scoring Example

Example

- Query: ides of march 3
- Document 1: caesar died in march
- Document 2: the long march

score
$$(q, d1) = 1/(3 + 4 - 1) = 1/6 = 0.167$$

score $(q, d2) = 1/(3 + 3 - 1) = 1/5 = 0.200$

Jaccard Coefficient: Issues 71-215 2719 871

- Jaccard Coefficient doesn't consider the following information: াব কাৰ্য শ্রেক্ত শ্রেক্ত ইন্ত
 - Term Frequency → 이 문서 내에서 아주 결혼한 단이다
 - Frequent terms in a document are more important than rare terms.
 - Document Frequency → の口에나 나와서 坦之 반 急起性 단이다
 - Rare terms in a collection are more informative than frequent terms.

- Most documents have additional structures. 细蛙响如如
 - Digital documents encode, in machine-readable form, certain metadata, such as authors, title, abstract, date, etc.

Search category	Value				
Author	Example: Widom, J or Garcia-Molina				
<u>Title</u>	Also a part of the title possible				
Date of publication	Example: 1997 or <1997 or >1997 limits the search to the documents appeared in, before and after 1997 respectively				
Language	Language the document was written in English				
Project	ANY				
Туре	ANY				
Subject group	ANY				
Sorted by	Date of publication V				
	Start bibliographic search				

• Query:

Find documents written by *William Shakespeare* in *1601*, containing the phrase *alas poor Yorick*.

We need:

- Inverted index to find documents containing the phrase.
- Parametric index to find documents published in 1601.
- Zone index to find documents written by W. Shakespeare.
- Zones can contain arbitrary free text.

Basic Zone Index

- Encoded Zone Index
 - Reduce the size of dictionary 사이스 및 대신 검색시간 ↑

Weighted Zone Scoring

• WZS($m{q}$, $m{d}$) = $\sum_{i=1}^{l} g_i s_i$ S_n : score where weights g_1 , g_2 , ..., $g_l \in [0,1]$ such that $\sum_{i=1}^{l} g_i = 1$ and s_i is the **Boolean score** (1 for a match between query $m{q}$ and i-th zone of the document $m{d}$, otherwise 0)

- Example
 - Document has three zones: author, title and body.
 - Weights for each zone: $g_1 = 0.2$, $g_2 = 0.3$, $g_3 = 0.5$
 - Query: shakespeare
 - WZS = $0.2 \times 0 + 0.3 \times 1 + 0.5 \times 1 = 0.8$ when *title* and *body* zone include the term *shakespeare*.

Learning Weights हा यसका मह्या

- Machine Learning 川州等金
 - We need training examples of the form (q, d, answer),
 where answer is either relevant or nonrelevant.
 - The weights g_i are learned from these examples, in order that the learned score approximate the relevance judgments in the training examples.
 - → optimization problem

- Assume that each document has title and body zone.
- Given an example $\Phi_j = (d_j, q_j, \underline{answer})$ Weighted Zone Score is computed from:

 1 if relevant
 0 if nonrelevant
 - $score(d_j, q_j) = g \cdot s_T(d_j, q_j) + (1 g)s_B(d_j, q_j)$
 - The error of the score is defined as:

$$24 \leftarrow \varepsilon(g, \Phi_j) = (\text{answer} - score(d_j, q_j))^2$$

- The total error of a set of training examples is given by: $\sum_{j} \varepsilon(g, \Phi_{j})$
- The problem of learning weights is reduced to a problem picking the value of g that minimizes the total error.

Training Examples

Example	DocID	Query	s_T	s_B	Judgment
Φ_1	37	linux	1	1	Relevant
Φ_2	37	penguin	0	1	Non-relevant
Φ_3	238	system	0	1	Relevant
Φ_4	238	penguin	0	0	Non-relevant
$\Phi_4 \ \Phi_5$	1741	kernel	1	1	Relevant
Φ_6	2094	driver	0	1	Relevant
Φ_7	3191	driver	1	0	Non-relevant

$$\sum_{j} \varepsilon(g, \Phi_{j}) = (1 - (0.5 \times 1 + 0.5 \times 1))^{2} + (0 - (0.5 \times 0 + 0.5 \times 1))^{2} + (1 - (0.5 \times 0 + 0.5 \times 1))^{2} + (0 - (0.5 \times 0 + 0.5 \times 0))^{2} + (1 - (0.5 \times 1 + 0.5 \times 1))^{2} + (1 - (0.5 \times 0 + 0.5 \times 1))^{2} + (0 - (0.5 \times 1 + 0.5 \times 1))^{2} + (1 - (0.5 \times 0 + 0.5 \times 1))^{2} + (0 - (0.5 \times 1 + 0.5 \times 0))^{2} = 1.0$$

Training Examples

Example	DocID	Query	s_T	s_B	Judgment
Φ_1	37	linux	1	1	Relevant
Φ_2	37	penguin	0	1	Non-relevant
Φ_3	238	system	0	1	Relevant
Φ_4	238	penguin	0	0	Non-relevant
Φ_5	1741	kernel	1	1	Relevant
Φ_6	2094	driver	0	1	Relevant
Φ_7	3191	driver	1	0	Non-relevant

$$\sum_{j} \varepsilon(g, \Phi_{j}) = (1 - (0.6 \times 1 + 0.4 \times 1))^{2} + (0 - (0.6 \times 0 + 0.4 \times 1))^{2} + (1 - (0.6 \times 0 + 0.4 \times 1))^{2} + (0 - (0.6 \times 0 + 0.4 \times 0))^{2} + (1 - (0.6 \times 1 + 0.4 \times 1))^{2} + (1 - (0.6 \times 0 + 0.4 \times 1))^{2} + (0 - (0.6 \times 1 + 0.4 \times 0))^{2} = 1.24$$

Training Examples

Example	DocID	Query	s_T	s_B	Judgment
Φ_1	37	linux	1	1	Relevant
Φ_2	37	penguin	0	1	Non-relevant
Φ_3	238	system	0	1	Relevant
Φ_4	238	penguin	0	0	Non-relevant
Φ_5	1741	kernel	1	1	Relevant
Φ_6	2094	driver	0	1	Relevant
Φ_7	3191	driver	1	0	Non-relevant

$$\sum_{j} \varepsilon(g, \Phi_{j}) = (1 - (0.3 \times 1 + 0.7 \times 1))^{2} + (0 - (0.3 \times 0 + 0.7 \times 1))^{2} + (1 - (0.3 \times 0 + 0.7 \times 1))^{2} + (0 - (0.3 \times 0 + 0.7 \times 0))^{2} + (1 - (0.3 \times 1 + 0.7 \times 1))^{2} + (1 - (0.3 \times 0 + 0.7 \times 1))^{2} + (0 - (0.3 \times 1 + 0.7 \times 0))^{2} = 0.76$$

Vector Space Model

- 1. Term Frequency
- 2. Document Frequency
- 3. *tf-idf* Weight
- → Cosine Similarity

Term Frequency

Binary Term-Document Incidence Matrix

Consider the presence or absence of a term in a doc:

Each document is represented by a binary vector $\in \{0,1\}^{|V|}$

Dictionary of size V

Term-Document Count Matrix

Consider the number of occurrences of a term in a doc:

Bag of Words Model

- Vector representation doesn't consider the ordering of words in a document. শুলাই চালা লিড কিন্তুল টালাই বিয়াক
 - John is quicker than Mary and Mary is quicker than John are represented with the same vectors.
- - In a sense, this is a step back: 불건 열예 비하면 일보 海紅 변
 The **positional index** was able to distinguish these two documents.
 - For now, we will use the bag of words model.

Term Frequency tf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We will use term frequency when computing querydocument match scores.
- But, raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with one occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.
 - We use $\log tf_{t,d}$ instead of $tf_{t,d}$ to dampen the effect of tf.

Document Frequency

Document Frequency df

- Terms rare in the collection are more informative than frequent terms.
 - Recall stop words
- Consider a term in the query that is rare in the collection
 - e.g. arachnocentric
- A document containing this term is very likely to be relevant to the query *arachnocentric*.
 - We want a high weight for rare terms like arachnocentric.

Document Frequency df

- Consider query terms that are frequent in the collection,
 e.g. high, increase, line, ...
 - A document containing such terms is more likely to be relevant than a document that doesn't, but they are not a strong indicator of relevance.
 - - we want positive weights
 - but lower weights than for rare terms
- Use document frequency to capture this in the score.
 - $df (\leq N)$ is the number of documents that contain the term.
 - df is a measure of the informativeness of the term.

Inverse Document Frequency idf

- Let df_t be the document frequency of term t.
- Inverse document frequency of term t is defined:

$$idf_t = \log N/df_t$$

where N is the total number of documents in a collection.

• We use $\log N/df_t$ instead of N/df_t to dampen the effect of idf.

Inverse Document Frequency idf

Suppose N = 1,000,000.

term	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

There is one *idf* value for each term *t* in a collection.

tf-idf Weight

Term Frequency Weight?

Relevance does not increase proportionally with tf.

Log-Frequency Weight

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log t f_{t,d} & \text{if } t f_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$$

Example

$$tf_{t,d} = 0$$
 $\rightarrow w_{t,d} = 0.0$
 $tf_{t,d} = 1$ $\rightarrow w_{t,d} = 1.0$
 $tf_{t,d} = 2$ $\rightarrow w_{t,d} = 1.3$
 $tf_{t,d} = 10$ $\rightarrow w_{t,d} = 2.0$
 $tf_{t,d} = 100$ $\rightarrow w_{t,d} = 3.0$

Log-Frequency Weight

Log-frequency weight dampens the effect of tf.

tf-idf Weight

The tf-idf weight of a term is the product of tf and idf.

$$w_{t,d} = \underbrace{(1 + \log t f_{t,d})} \times \underbrace{\log N / d f_t}_{idf} \quad if \ t f_{t,d} > 0 \ and \ d f_t > 0.$$

- Best known weight scheme in information retrieval.
 - Increases with the number of occurrences within a document.
 - Increases with the rarity of the term in the collection.

tf-idf Weight

Dictionary of size V

Vector Space Model

- Vector Representation for both Document and Query
 - Vector Representation of Documents

Antony	Brutus	Caeser	Carpurnia	Cleopatra	Worser
< 1,	1,	1,	0,	1,	1 >
< 157,	4,	232,	0,	<i>57</i> ,	2 >
< 0.96,	0.48,	0.27,	0,	2.15 ,	0.37 >

Vector Representation of Query

query: Caeser Cleopatra

A	ntony	Brutus	Caeser	Carpurnia	Cleopatra	Worser
<	0,	0,	1,	0,	1,	0 >

Vector Space Model

Documents as Vectors

- We have a |V|-dimensional vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.

Documents as Vectors

- Very high-dimensional
 - Hundreds of millions of dimensions when you apply this to a web search engine.
- This is a very sparse vector.
 - Most entries of the vector are zero.

Antony	Brutus	Caeser	Carpurnia	Cleopatra	Worser
< 5.25,	1.21,	8.59,	0,	2.85 ,	1.37 >

Queries as Vectors

- Represent queries as vectors in the space.
- Rank documents according to their similarity to the query.

Similarity could be given by inverse of Euclidean

distance.

Similarity Measure

Euclidean distance is a bad idea

• The Euclidean distance between \vec{q} and \vec{d}_2 is large even though the distribution of terms in the query \vec{q} and the distribution of terms in the document \vec{d}_2 are very similar.

Angle is used instead of distance

- Take a document d and append it to itself to make a new document d'.
- Semantically d and d' have the same content.
- The Euclidean distance between the two documents could be quite large.
- The angle between d and d' is 0, corresponding to maximal similarity.
- Conclusion:
 Rank documents according to the angle with query.

Angle is used instead of distance

Take a document *d1* and append it to itself to make a new document *d2*.

$$d1 = <3, 2>$$

Angle is used instead of distance

Which document is similar to a query q?

From Angles to Cosines

- The following two notions are equivalent.
 - Rank documents in <u>increasing</u> order of the angle between query and document.
 - Rank documents in <u>decreasing</u> order of cos(q, d).
- Thus, we will use cosine to measure the similarity of query and document.

Cosine Similarity : cos(q, d)

 q_i is the *tf-idf* weight of term *i* in the query. d_i is the *tf-idf* weight of term *i* in the document.

 $cos(\overrightarrow{q}, \overrightarrow{d})$ is the cosine similarity of \overrightarrow{q} and \overrightarrow{d} , or equivalently, the cosine of the angle between \overrightarrow{q} and \overrightarrow{d} .

Length Normalization

- A vector is normalized by dividing each of its components by its length.
 - The resulting vector is a unit vector of same direction.
 - Example Given vector <3, 4, 5> Length of the vector = $\sqrt{3^2 + 4^2 + 5^2} = \sqrt{50} = 7.07$ Unit vector = <3/7.07, 4/7.07, 5/7.07> = <0.42, 0.57, 0.71>

Length Normalization

- Effect on the two documents d and d' (d appended to itself).
 - They have identical vectors after length normalization.

$$d = \langle 3,4,5 \rangle$$

$$|d| = \sqrt{3^2 + 4^2 + 5^2} = 5\sqrt{2}$$

$$\frac{d}{|d|} = \langle \frac{3}{5\sqrt{2}}, \frac{4}{5\sqrt{2}}, \frac{5}{5\sqrt{2}} \rangle$$

$$d' = \langle 6,8,10 \rangle$$

$$|d'| = \sqrt{6^2 + 8^2 + 10^2} = 10\sqrt{2}$$

$$\frac{d'}{|d'|} = \langle \frac{6}{10\sqrt{2}}, \frac{8}{10\sqrt{2}}, \frac{10}{10\sqrt{2}} \rangle$$

$$= \langle \frac{3}{5\sqrt{2}}, \frac{4}{5\sqrt{2}}, \frac{5}{5\sqrt{2}} \rangle$$

$$d1 \cdot d2 = 3x6 + 2x4 = 26$$

$$|d1| = \sqrt{3^2 + 2^2} = 3.6$$

$$|d2| = \sqrt{6^2 + 4^2} = 7.2$$

$$\frac{d1 \cdot d2}{|d1|x|d2|} = 26 / (3.6 \times 7.2) = 26 / 26 = 1.0$$

$$\frac{d1}{|d1|} \times \frac{d2}{|d2|} = 0.83 \times 0.83 + 0.55 \times 0.55 = 0.7 + 0.3 = 1.0$$

- q = <4, 0>, d1 = <3, 3>, d2 = <3, 1>
- cos(q, d1) = $(4x3+0x3) / (\sqrt{4^2 + 0^2} \times \sqrt{3^2 + 3^2})$ = $12 / (4 \times 3\sqrt{2}) = 1/\sqrt{2} = \cos(45)$
- cos(q, d2) = $(4x3+0x1) / (\sqrt{4^2 + 0^2} \times \sqrt{3^2 + 1^2})$ = $12 / (4 \times \sqrt{10}) = 3 / \sqrt{10}$

- How similar are the novels?
 - SaS: Sense and Sensibility
 - PaP: Pride and Prejudice
 - WH: Wuthering Heights?

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

Term frequencies

SaS PaP WH term affection 115 58 20 iealous 10 11 gossip 06 wuthering 38 0 0

Log frequency weighting

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

Log Frequency Weight :
$$w_{t,d} = 1 + \log t f_{t,d}$$

$$W_{affection,SaS} = 1 + \log 115 = 1 + 2.06 = 3.06$$

$$W_{jealous,SaS} = 1 + log 10 = 1 + 1 = 2.0$$

Log frequency weighting

WH SaS PaP term affection 3.06 2.76 2.30 2.04 jealous 2.00 1.85 1.30 1.78 gossip 2.58 wuthering 0 0

After normalization

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

Nomalization : $\overrightarrow{d} / |\overrightarrow{d}|$

$$\vec{d}$$
 = <3.06, 2.0, 1.3, 0.0>, $|\vec{d}|$ = 3.88 d / $|\vec{d}|$ = <0.789, 0.515, 0.335, 0.0>

After normalization

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

 $cos(SaS,WH) \approx 0.79$

 $cos(PaP,WH) \approx 0.69$

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|}$$