

Part II: Stochastic Programming

Lecture 1: Introduction and Examples

Junlong Zhang zhangjunlong@tsinghua.edu.cn

Lecturer

- Junlong Zhang, Assistant Professor, Dept. of Industrial Engineering
- □ Email: <u>zhangjunlong@tsinghua.edu.cn</u>
- □ Office: South 603, Shunde Building
- □ Office hour: 14:00-15:00 Wednesday
- □ Research interests: stochastic integer programming, bilevel programming, logistics

TA

- ☐ Yilin Wang, Ph.D. student, Dept. of Industrial Engineering
- □ Email: wangyili19@mails.tsinghua.edu.cn

What is Stochastic Programming (SP)

- Study models and methods for optimal decision making in problems involving uncertain data.
 - □ **Stochastic**: opposed to deterministic and means that some data are random
 - □ Programming: various parts of the problem can be modeled as linear or nonlinear mathematical programs
- Uncertainty is usually characterized by a probability distribution on the parameters.
- Probability distributions governing the data are known or can be estimated.

Course Objectives

- Build intuition on how to model uncertainty into mathematical programs
- Understand
 - which changes uncertainty brings into the decision process
 - what difficulties uncertainty may bring
 - what problems are solvable
- Learn how to solve stochastic programming problems
- Develop intuition for research areas in stochastic programming

Textbook and Grading

- Textbook
 - □ *Introduction to Stochastic Programming* by John R. Birge and François Louveaux, second edition, 2011 (electronic version available on Tsinghua library website)
- Reference
 - Lectures on Stochastic Programming: Modeling and Theory by Alexander Shapiro, Alexander Shapiro and Andrzej Ruszczynski, second edition, 2014
- Grading
 - □ Homework: 30%
 - ☐ Final exam: 70%

Tentative Course Schedule

Week	Date	Topic	Notes
9	April 20	Introduction to stochastic programming and examples	
10	April 27	Uncertainty and modeling issues	
11	May 4	-	Holiday, no class
12	May 11	Basic properties and theory	
13	May 18	Benders decomposition	
14	May 25	L-shaped method	
15	June 1	Solution methods for stochastic integer programs	
16	June 8	Value of information and the stochastic solution	
17-18	To be determined	-	Final exam

Example 1: The farmer's problem

- The problem: A farmer has to decide in winter how to allocate 500 acres land in the coming year for raising wheat, corn, and sugar beets.
- Parameters
 - □ *Planting costs*: wheat \$150/acre; corn \$230/acre; beets \$260/acre.
 - □ *Yields* (mean): wheat 2.5 tons/acre; core 3 tons/acre; beets 20 tons/acre.
 - □ *Prices*: wheat \$170/ton to sell, \$238/ton to buy; corn \$150/ton to sell, \$210/ton to buy; beets 36\$/ton up to 6000 ton (quota), 10\$/ton if over the quota.
- Livestock requirements: wheat 200 tons, corn 240 tons.

Data

	Wheat	Corn	Sugar Beets
Yield (T/acre)	2.5	3	20
Planting cost (\$/acre)	150	230	260
Selling price (\$/T)	170	150	36 under 6000 T
			10 above 6000 T
Purchase price (\$/T)	238	210	_
Minimum require-	200	240	_
ment (T)			

Total available land: 500 acres

Variables


```
x_1 = acres of land devoted to wheat,
```

 x_2 = acres of land devoted to corn,

 x_3 = acres of land devoted to sugar beets,

 $w_1 = \text{tons of wheat sold},$

 y_1 = tons of wheat purchased,

 $w_2 = \text{tons of corn sold},$

 y_2 = tons of corn purchased,

 w_3 = tons of sugar beets sold at the favorable price,

 w_4 = tons of sugar beets sold at the lower price.

Linear Programming Formulation

min
$$150x_1 + 230x_2 + 260x_3 + 238y_1 - 170w_1$$

 $+ 210y_2 - 150w_2 - 36w_3 - 10w_4$
s. t. $x_1 + x_2 + x_3 \le 500$, $2.5 x_1 + y_1 - w_1 \ge 200$,
 $3 x_2 + y_2 - w_2 \ge 240$, $w_3 + w_4 \le 20x_3, w_3 \le 6000$,
 $x_1, x_2, x_3, y_1, y_2, w_1, w_2, w_3, w_4 \ge 0$.

binding constraint

Culture	Wheat	Corn	Sugar Beets
Surface (acres)	120	80	300
Yield (T)	300	240	6000
Sales (T)	100	_	6000
Purchase (T)	_	_	_

Overall profit: \$118,600

Scenario Solutions

Random Factor: Yield variations due to Weather: +/- 20% of the mean

Scenario Approach

A – Good weather - Assume +20%

SOLUTION: WHEAT CORN BEETS ACRES (x_i) = 183 67 250 YIELD = 550 240 6000 PROFIT= \$167,667 per season

■ B – Bad weather - Assume -20%

SOLUTION: WHEAT CORN BEETS ACRES (x_i) = 100 25 375 YIELD = 200 60 6000 PROFIT = \$59,950 per season

But how would you allocate the land before you know the weather condition?

Stochastic Linear Program (SLP)

- Allocate the land before knowing the future weather
 - □ Suppose each scenario occurs equally likely (probability = 1/3 each)
 - Consider all scenarios in a single mathematical program
- Formulation: minimizing expected costs.

min
$$150x_1 + 230x_2 + 260x_3$$

 $-\frac{1}{3}(170w_{11} - 238y_{11} + 150w_{21} - 210y_{21} + 36w_{31} + 10w_{41})$
 $-\frac{1}{3}(170w_{12} - 238y_{12} + 150w_{22} - 210y_{22} + 36w_{32} + 10w_{42})$
 $-\frac{1}{3}(170w_{13} - 238y_{13} + 150w_{23} - 210y_{23} + 36w_{33} + 10w_{43})$
s.t. $x_1 + x_2 + x_3 \le 500$, $3x_1 + y_{11} - w_{11} \ge 200$,
 $3.6x_2 + y_{21} - w_{21} \ge 240$, $w_{31} + w_{41} \le 24x_3$, $w_{31} \le 6000$,
 $2.5x_1 + y_{12} - w_{12} \ge 200$, $3x_2 + y_{22} - w_{22} \ge 240$,
 $w_{32} + w_{42} \le 20x_3$, $w_{32} \le 6000$, $2x_1 + y_{13} - w_{13} \ge 200$,
 $2.4x_2 + y_{23} - w_{23} \ge 240$, $w_{33} + w_{43} \le 16x_3$,
 $w_{33} \le 6000$, $x, y, w \ge 0$.

Stochastic Solution

SOLUTION

	WHEAT	CORN	BEETS	
$ACRES(x_i) =$	170	80	250	
YIELD (Low) =	340	192	4000	binding constraint
YIELD (Mean) =	425	240	5000	
YIELD (High) =	510	288	6000	

EXPECTED PROFIT = \$108,390/season (Recourse Problem (RP))

- Expected Value of Perfect Information (EVPI)
 - Expected profit of perfect information (Wait-and-See): WS = (1/3)(167,667 + 118,600 + 59,950) = \$115,406
 - \square EVPI = WS RP = \$7,016
 - measures the value of knowing the future with certainty
- Value of the Stochastic Solution (VSS)
 - RP minus expected value of using solution with means (result of ignoring uncertainty) (EMS = \$107,240)
 - \Box VSS = RP EMS = \$1,150
 - assesses the value of knowing and using distributions on future outcomes

Observations

- In the deterministic (single-scenario) linear program, two constraints are binding
- In the stochastic linear program, two constraints are binding but in different scenarios
- No single-scenario linear program can reproduce the stochastic program solution
- The alternative future scenarios create a non-linear adjustment for risk/uncertainty (even without including risk aversion)

General Formulation of SLP

- New Steps: make decision x now, observe an uncertain outcome $\xi(\omega)$, make a recourse decision $y(\omega)$.
- Formulation (two-stage SLP with recourse):

$$\min c^T x + E_{\xi}[Q(x, \xi)]$$

s. t. $Ax = b, x \ge 0$

where $Q(x, \xi) = \min \{q^T y \mid Wy = h - Tx, y \ge 0\}$, $Q(x) = E_{\xi}[Q(x, \xi)]$ is the recourse function and ξ consists of random components of q, (W), h, T.

In the farm example, the randomness is in T (yield).

Example 2: News Vendor Problem

- lacksquare Buy x newspapers at cost c, sell at price q
- Return unsold ones at return value r < c
- Demand is random ξ with cumulative distribution $F(\xi)$
- Formulate the problem to minimize cost (maximum profit)

$$\min cx + Q(x)$$
s. t. $0 \le x \le u$

where

$$Q(x) = E_{\xi}[Q(x, \xi)]$$

and

$$Q(x,\xi) = \min - qy(\xi) - rw(\xi)$$

$$s.t. \ y(\xi) \le \xi,$$

$$y(\xi) + w(\xi) \le x,$$

$$y(\xi), w(\xi) \ge 0$$

Solution to the News Vendor Problem

Solution to the second stage:

$$y^*(\xi) = \min(\xi, x),$$

$$w^*(\xi) = \max(x - \xi, 0).$$

Hence

$$Q(x, \xi) = -q \min(\xi, x) - r \max(x - \xi, 0)$$

= $-q[\min(\xi - x, 0) + x] - r \max(x - \xi, 0)$
= $-qx + (q - r) \max(x - \xi, 0)$

and

$$Q(x) = E_{\xi}[Q(x, \xi)] = -qx + (q - r) \int_{0}^{x} F(\xi) d\xi$$

Solution to the first stage: first order necessary condition:

$$c + Q'(x) = 0$$

$$c - q + (q - r)F(x) = 0 \Leftrightarrow F(x) = \frac{q - c}{q - r}$$

Example 3: Financial Planning

- Objective: to accumulate \$G in H investment periods from now, with initial wealth \$b to invest in I investments.
- Assumption:
 - uncertain return on each investment in each period
 - concave (risk-averse) utility (piecewise linear)

Scenario Approach

Tree of scenarios with three periods

Notation

Notation

- □ *S*: scenario set
- $\square p(s)$: probability of scenario $s \in S$
- $\Box \xi(i,t,s)$: return of investment i in period t under scenario s
- $\square x(i,t,s)$: investment in i in period t under scenario s
- \square s_t : realization of return at time t under scenario s
- \square $S_{S_1,\dots,S_{t-1}}^t$: group of scenarios having the same history up to time t
- $\square J(s,t)$: equals to $\{s_{1},\cdots,s_{t-1}\}$ such that $s\in S^t_{s_1,\cdots,s_{t-1}}$

Formulation without Transaction Fees

$$\max z = \sum_{s} p(s)(qy(s) - rw(s))$$

Utility

s. t.
$$\sum_{i=1}^{I} x(i,1,s) = b$$
, $\forall s \in S$,

Initial investments

$$\sum_{i=1}^{I} \xi(i,t,s) x(i,t-1,s) - \sum_{i=1}^{I} x(i,t,s) = 0 \; , \; \forall s \in S \; , \quad \text{Flow conservation}$$

$$t=2,\ldots,H$$
,

$$\sum_{i=1}^{I} \xi(i,H,s)x(i,H,s) - y(s) + w(s) = G,$$
 Deficit and surplus

$$\left(\sum_{s' \in S_{J(s,t)}^t} p(s')x(i,t,s')\right) - \left(\sum_{s' \in S_{J(s,t)}^t} p(s')\right)x(i,t,s) = 0\;, \quad \begin{array}{l} \textit{Nonanticipativity} \\ \textit{constraints} \text{: forces} \\ \text{all decisions within} \end{array}$$

$$\forall 1 \leq i \leq I$$
, $\forall 1 \leq t \leq H$, $\forall s \in S$,

$$x(i,t,s) \ge 0$$
, $y(s) \ge 0$, $w(s) \ge 0$,

$$\forall \ 1 \le i \le I \ , \ \forall \ 1 \le t \le H \ , \ \forall \ s \in S \ ,$$

the same group at time t to be the same

Optimal Solution

Period, Scenario	Stock	Bonds
1,1-8	41.5	13.5
2,1-4	65.1	2.17
2,5-8	36.7	22.4
3,1-2	83.8	0.00
3,3-4	0.00	71.4
3,5-6	0.00	71.4
3,7-8	64.0	0.00

Summary

- Three application problems
 - □ The farmer's problem (two-stage, discrete distribution)
 - News vendor problem (two-stage, continuous distribution)
 - □ Financial planning (multi-stage, discrete distribution)
- Key concepts
 - Uncertainty
 - Recourse
 - Expected Value of Perfect Information (EVPI)
 - Value of Stochastic Solution (VSS)
 - Nonanticipativity constraints

Homework

- Reading:
 - □ Sections 1.1-1.3 of textbook
- **Exercise:**
 - □ Page 18, Problems 3, 4 and 6
 - □ Due on April 27 (Tue), before 10:00 am
 - □ Late submission will NOT be accepted!