PERFORMANCE METRICS

SIN O	Project Name	Scope/Featu re	Functional changes	Hardwa re changes	Software changes	Impact of downtime	Load/volum e changes	Risk score	Justificatio n
1	Industry specific intelligent fire manageme nt system	The IoT based fire alarm system can be enhanced to sense leakage of LPG gas.	Rate of burning and heat output for surface and crown fires are influenced by fuel load, fuel moisture, topography, ignition method, air temperatur e, wind,	No changes	Software can play a key role. By utilizing sensor and collecting data on the size, temperatur e and nature of the fire, New	Lack of risk mitigation strategies.	Fire load is the amount of heat in kilocalories which is liberated per square metre of floor area of a compartme nt by the combustion of the contents of the building and any	Ensure complian ce	The primary objective of your fire safety system is to protect the individuals inside the building. The key to success for this goal is early detection.

	and relative humidity.	high-tech sprinkler systems can target the source of the fire much more exactly. Focusing the water reserves only where the fire is.		combustibl e parts of the building itself. This amount of heat is used as the basis for classificatio n of occupancie s.		The methods to achieve this goal can vary between electronic system monitoring , smoke detection, or heat detection.
IoT technologies can enhance the operational efficiency of the fire service			Failure to monitor and maintain equipmen t		Limit risk	

The effectiveness of fire		Employe es error	Reduce costs	
protection to				
improve fire				
fighter health				

SINO	Project overview	NFT Test approach	Assumption/Dependencies/Risk	Approvals/signofff

1	Fire Detectors	Structural fire	Predictability	Application for initial
	play a very	testing is		(original) licensure as an
	important role	experiencing a		adult foster care home for
	in Industries,	renaissance.		seven or more residents and
	Shops, Malls,	Both the		homes for the aged require
	Residential	research and		approval from the Bureau of
	complexes, and	regulatory		Fire Services (BFS) prior to
	parking areas.	communities		license issuance. BFS
	They help in	are currently		approval involves review of
	detecting fire	confronting		architectural plans and shop
	or smoke at an	the inherent		drawings for the building
	early stage and	problems		followed by inspection.
	can help in	associated		Following original license
	saving lives.	with using		issuance, annual inspections
	Commercial	simplified,		are conducted by BFS
	Fire detecting	single element		thereafter.
	systems usually	tests on		
	have an alarm	isolated		
	signaling, with	structural		
	the help of a	members		
	buzzer or	subjected to		
	Siren. We have	standard		
	designed an	temperature-		
	IOT based Fire	time curves to		
	Alerting	demonstrate		
	System using	adequate		
		structural		

than a century
during which
the standard
fire resistance
test has been
the
predominant
means of
characterizing
the response
of structural
elements and
materials in
fires. Large-
scale non-
standard tests
performed
around the
world during
the past three
decades have
identified
numerous
shortcomings
in our
understanding
of real

building
behaviour in
real fires;
these could
not have been
observed
through
standard tests

SN O	Project overview	NFT - ME T	NFR Test approach	Test outcome	Go/No Go decisio n	Recommendati on	Identified defect(Detected/Closed/Op en)	Approval s/ sign off
---------	---------------------	---------------------	----------------------	-----------------	-----------------------------	--------------------	--	-------------------------

signaling,	demonstrate			
with the	adequate			
help of a	structural			
buzzer or	performance			
Siren. We	of buildings			
have	in fires.			
designed an	Indeed, this			
IOT based	international			
Fire Alerting	symposium			
System	on "Fire			
using	Testing and			
Temperatur	Experimental			
e, smoke	Validation" is			
and fire	an indication			
sensor. This	of renewed			
project	interest in			
would not	this area.			
only signal	This involves			
the	a shift in			
presence of	testing			
fire in a	philosophy			
particular	from			
premise but	prescriptive			
will also	standard fire			
send related	testing to			
information	large-scale			
through IOT	non-			

standard fire		
testing using		
real fires.		
This follows		
more than a		
century		
during which		
the standard		
fire		
resistance		
test has		
been the		
predominant		
means of		
characterizin		
g the		
response of		
structural		
elements		
and		
materials in		
fires. Large-		
scale non-		
standard		
tests		
performed		
around the		

	\neg
world during	
the past	
three	
decades	
have	
identified	
numerous	
shortcoming	
s in our	
understandi	
ng of real	
building	
behaviour in	
real fires;	
these could	
not have	
been	
observed	
through	
standard	
tests	