

Mathematics Specialist Units 3 & 4 Test 3 2016

Section 1 Calculator Free

Vectors in Two & Three Dimensions and Systems of Equations

STU	DENT'S NAME) :			
DATE : Thursday 28 th April			TIME: 20 minutes	MARKS : 23	
INS'	TRUCTIONS:				
Standard Items:		Pens, pencils, pencil sharper, eraser, correction fluid/tape, ruler, highlighters, Formula Sheet.			
Ques	stions or parts of qu	estions worth mo	ore than 2 marks require working to be shown	to receive full marks.	
1.	(7 marks)				
	Solve the following system of equations, explaining what the equations and their solution represent in space:				
	3x+2	y - z = 19			

4x - y + 2z = 42x + 4y - 5z = 32

2. (7 marks)

By considering the value(s) of lambda, λ , determine the number of points of intersection of the line, $\mathbf{r} = (1-3\lambda)\mathbf{i} + (4+9\lambda)\mathbf{j}$, with the circle, $|\mathbf{r} - (8\mathbf{i} + 3\mathbf{j})| = \sqrt{50}$. Hence state the coordinates of any point(s) of intersection.

3. (9 marks)

Given the three points: P(0, -2, 1), Q(4, 1, 3) and R(-1, 0, 2)

(a) (i) State the vector equation of the line through points P and Q in terms of λ . [2]

- (ii) What will be the impact of restricting *lambda* such that $0 \le \lambda \le 1$? [1]
- (iii) Hence determine the Cartesian form of the equation of the line stated in part (i).
 - [2]

(b) (i) Calculate the normal $\mathbf{n} = \mathbf{PR} \times \mathbf{PQ}$ [2] Hint: $\mathbf{a} \times \mathbf{b} = (\mathbf{a}_2 \mathbf{b}_3 - \mathbf{a}_3 \mathbf{b}_2) \mathbf{i} + (\mathbf{a}_3 \mathbf{b}_1 - \mathbf{a}_1 \mathbf{b}_3) \mathbf{j} + (\mathbf{a}_1 \mathbf{b}_2 - \mathbf{a}_2 \mathbf{b}_1) \mathbf{k}$

(ii) Hence determine the Cartesian equation of the plane that contains the three points P, Q and R.

[2]

Mathematics Specialist Units 3 & 4 Test 3 2016

Section 2 Calculator Assumed

Vectors in Two & Three Dimensions and Systems of Equations

STUDENT'S NAME	:			
DATE : Thursday 28 th	April	TIME: 25 minutes	MARKS: 27	
INSTRUCTIONS:				
Standard Items:	ler, highlighters,			
Special Items:	Drawing instruments, templates, three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment).			
Questions or parts of qu	estions worth mo	ore than 2 marks require working to be shown	n to receive full marks.	
4. (4 marks)				

 $x^2 + y^2 + z^2 + 2x - 4y + 6z - 11 = 0$

Determine the vector equation of the sphere which has Cartesian equation:

5. (7 marks)

The diagram shows a tetrahedron with three edges described by vectors a,b and d.

(a) Prove the area of the bottom face is given by:

$$A = \frac{1}{2} |\boldsymbol{a} \times \boldsymbol{b}|$$

[2]

(b) Prove that the volume of the tetrahedron is given by:

$$V = \frac{1}{6} |d \bullet (a \times b)|$$
 [5]

6. (10 marks)

Consider the system of equations:

$$x+y+z=3$$
, $x-2y+z=6$ and $x-y+kz=m$

- (a) Determine the value(s) of k and m so that the system has:
 - (i) a unique solution

[3]

(ii) more than one solution

[2]

(iii) no solution

[2]

- (b) For case (ii) above:
 - (i) describe the solution in words

[1]

(ii) illustrate the solution with a small sketch

[1]

(iii) state the solution in parametric form, with parameter, $t \in \mathbb{R}$.

[1]

7. (6 marks)

Consider two aircraft A and B, flying with constant velocities in m/s and initial positions as stated below:

A:
$$r_0 = (5, -2, 1) \text{ km}$$
 $v_A = (-30, 50, 5)$

B:
$$r_0 = (-8, -4, 2.5) \text{ km}$$
 $v_B = (40, 70, 15)$

State the closest distance these two aircraft come to each other and the time at which this happens.