

Отчет по Домашней работе № 1 по курсу "Компьютерные сети"

Выполнил: Студент группы Р33092 Голиков Андрей Сергеевич

Преподаватель: Авксентьева Елена Юрьевна

Этап 1. Формирование сообщения

Исходное сообщение: ГАС

Сообщение в шестнадцатеричном коде: C3 C0 D1

в двоичном коде: 110000111100000011010001

Длина сообщения: 3 байта(24 бит)

Пропускная способность: C = 100MHz

Этап 2. Физическое кодирование исходного сообщения

M2

Верхняя граница $T=t,\,t=1/C, \Rightarrow f_{_B}=1/T=C=100 MHz$

Нижняя граница $T=2t \Rightarrow f_{_{\rm H}}=C/2=50 {\rm MHz}$

Середина спектра = 75МНz

Средняя частота $(32*f_{\scriptscriptstyle B}+16*f_{\scriptscriptstyle H})/48=(2*f_{\scriptscriptstyle B}+f_{\scriptscriptstyle H})/3=83.(3)$ МНz

Спектр $S = f_{\scriptscriptstyle B}$ - $f_{\scriptscriptstyle H} = 50 MHz$

Полоса пропускания F >= S = 50MHz

NRZ

Верхняя граница T =2t, t = 1/C, \Rightarrow $f_B = 1/T = C/2 = 50MHz$

Нижняя граница $T = 12t \Rightarrow f_H = C/12 = 8.(3)MHz$

Середина спектра 29.1(6)МНz

Средняя частота (3*
$$f_{\scriptscriptstyle B}$$
 + 4* $f_{\scriptscriptstyle B}$ /2 + 3* $f_{\scriptscriptstyle B}$ /3 + 8* $f_{\scriptscriptstyle B}$ /4 + 6* $f_{\scriptscriptstyle B}$ /6)/24 = (3+2+1+2+1)* $f_{\scriptscriptstyle B}$ /24 = 9/24* $f_{\scriptscriptstyle B}$ = 0.375* $f_{\scriptscriptstyle B}$ = 18.75MHz

Спектр $S = f_B - f_H = 41.(6)MHz$

Полоса пропускания F >= S = 41.(6)MHz

AMI

Верхняя граница T =2t, t = 1/C, \Rightarrow $f_{\text{\tiny B}} = 1/T = C/2 = 50 \text{MHz}$

Нижняя граница $T = 12t \Rightarrow f_H = C/12 = 8.(3)MHz$

Середина спектра = 29.1(6)МНz

Средняя частота (11*
$$f_{\scriptscriptstyle B}$$
 + 3* $f_{\scriptscriptstyle B}$ /3 + 4* $f_{\scriptscriptstyle B}$ /4 + 6* $f_{\scriptscriptstyle B}$ /6)/24 = (11+1+1+1)* $f_{\scriptscriptstyle B}$ /24 = 14/24* $f_{\scriptscriptstyle B}$ = 29.1(6)MHz

Спектр $S = f_B - f_H = 41.(6)MHz$

Полоса пропускания $F \ge S = 41.(6)MHz$

Сравнительный анализ

Метод кодирования	Спектр сигнал а, МНz	Самосинхро низация	Постоянная составляющ ая	Обнаружен ие ошибок	Стоимость реализации
M2	50	есть	нет	есть	2
NRZ	41.(6)	нет	есть	нет	2
AMI	41.(6)	нет	есть	есть	3

M2 подходит лучше всего за счет присутствия в нем самосинхронизации и проверки на ошибки, а так же низкой стоимости реализации и отсутствия постоянной составляющей.

Этап 3. Логическое (избыточное) кодирование исходного сообщения

Новое сообщение в двоичном коде: 1101010101111010111101101101001

Длина: 30 бит

Избыточность (30 - 24) / 24 = 25%

NRZ

Верхняя граница T = 2t, t = 1/C, $\Rightarrow f_B = 1/T = C/2 = 50 MHz$

Нижняя граница $T = 8t \Rightarrow f_{H} = C/8 = 6.25 MHz$

Середина спектра 28.125МНz

Средняя частота (15* $f_{\scriptscriptstyle B}$ + 8* $f_{\scriptscriptstyle B}$ /2 + 3* $f_{\scriptscriptstyle B}$ /3 + 4* $f_{\scriptscriptstyle B}$ /4)/30 = (15+4+1+1)* $f_{\scriptscriptstyle B}$ /30 = 9/30* $f_{\scriptscriptstyle B}$ = 0.3* $f_{\scriptscriptstyle B}$ = 15MHz

Спектр $S = f_{_{\rm B}} - f_{_{\rm H}} = 43.75 MHz$

Полоса пропускания F >= S = 43.75 MHz

Этап 4. Скремблирование исходного сообщения

1)
$$B_i = A_i \oplus B_{i-3} \oplus B_{i-5}$$

Новое сообщение в двоичном коде: 11011110111010101111100

Длина: 24 бит

Верхняя граница T = 2t, t = 1/C, $\Rightarrow f_R = 1/T = C/2 = 50 MHz$

Нижняя граница $T=8t \Rightarrow f_{_{\rm H}}=C/8=6.25 {\rm MHz}$

Середина спектра 28.125МНz

Средняя частота (8*
$$f_{\scriptscriptstyle B}$$
 + 6* $f_{\scriptscriptstyle B}$ /2 + 6* $f_{\scriptscriptstyle B}$ /3 + 4* $f_{\scriptscriptstyle B}$ /4)/24 = (8+3+2+1)* $f_{\scriptscriptstyle B}$ /24 = 14/24* $f_{\scriptscriptstyle B}$ = 0.58(3)* $f_{\scriptscriptstyle B}$ = 29.1(6)MHz

Спектр $S = f_{_{\rm B}}$ - $f_{_{\rm H}} = 43.75 MHz$

Полоса пропускания F >= S = 43.75 MHz

$$2) B_{i} = A_{i} \oplus B_{i-5} \oplus B_{i-7}$$

Новое сообщение в двоичном коде: 1100010001101011011011101

Длина: 24 бит

Верхняя граница T =2t, t = 1/C, \Rightarrow $f_B = 1/T = C/2 = 50MHz$

Нижняя граница $T = 6t \Rightarrow f_{H} = C/6 = 16.(6)MHz$

Середина спектра 33.(3)МНz

Средняя частота $(9*f_{\scriptscriptstyle B} + 6*f_{\scriptscriptstyle B}/2 + 9*f_{\scriptscriptstyle B}/3)/24 = (9+3+3)*f_{\scriptscriptstyle B}/24 = 15/24*f_{\scriptscriptstyle B} = 0.625*f_{\scriptscriptstyle B} = 31.25 \mathrm{MHz}$

Спектр $S = f_{\scriptscriptstyle B} - f_{\scriptscriptstyle H} = 33.(3) MHz$

Полоса пропускания F >= S = 33.(3)MHz

Метод кодирования	Полезная пропускная способность	Спектр	Синхронизация	Обнаружение ошибок	Дополнительные временные затраты	
4b/5b	Уменьшается	Уменьшился	Есть	Есть	Есть	
скремблирование 1	Не изменяется	Уменьшился	Нет	Нет	Есть	
скремблирование 2	Не изменяется	Уменьшился	Нет	Нет	Есть	

Часть 2. Передача кодированного сообщения по каналу связи

Шестнадцатиричный код сообщения:			Метод кодирования						
			NRZ	RZ	M2	4B/5B	Scramb		
Полоса	Номера	min	0	6	30	0	2		
пропускания	гармоник	max	14	42	42	22	20		
идеального	Частоты, МГц	min	0.0	1.3	6.3	0.0	0.4		
канала связи		max	2.9	8.8	8.8	3.7	4.2		
Минимальная полоса пропускания			2.9	7.5	2.5	3.7	3.8		
идеального канала связи									
Уровень шума		max	0.00	0.18	0.28	0.00	0.22		
Уровень расс	Уровень рассинхронизации		0.04	0.35	0.20	0.01	1		
Уровень граничного напряж.		max	0.09	0.53	1	0.05	0.16		
Процент ошибок при максимальных			0	3.85	0.51	1.36	4.84		
уровнях и минимальной полосе									
пропускания									
Уровень шума		Cp.	0.17						
Уровень рассинхронизации		Cp.	0.4						
Уровень граничного напряж.		Cp.	0.4575						
Полоса	Номера	min	0	2	12	0	2		
пропускания	гармоник	max	14	54	42	24	26		
реального	Частоты,	min	0.0	0.4	2.5	0.0	0.4		
канала связи	МГц	max	2.9	11.3	8.8	4.0	5.4		
Требуемая полоса пропускания			2.9	10.9	6.3	4.0	5.0		
реального канала связи									

Вывод: на основании сравнения кодировок из этапа 2 и моделирования 2 части домашней работы кодирование M2 оказалось самым лучшим за счет присутствия в нем самосинхронизации и проверки на ошибки, а так же низкой стоимости реализации и отсутствия постоянной составляющей, а так же при моделировании у него оказалась самая маленькая полоса пропускания и самая большая устойчивость к помехам (шумам, рассинхронизации и граничном напряжении).