ast 2020

I Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a formal power series with complex coefficients. Prove that if the series converges for every $z \in \mathbb{D}$, then f is analytic in \mathbb{D} .

Pf: Since the radius of convergence of \tilde{Z} and is at least 1, the series \tilde{Z} and converges uniformly on $\overline{D_r(0)}$ for each r < 1.

Let R be a rectangle in D and pick rel large enough that RED, 10).

The limit function, f(t) is the uniform limit of continuous functions and is thus continuous (at least on $\overline{D_r(0)}$.)

Thus, we can write down for f(1) die without issue. Furthermore, by uniform convergence, and the analyticity of 2",

$$\int_{\partial R} f(t) dt = \int_{\partial R} \left(\sum_{n=0}^{\infty} a_n t^n \right) dt = \sum_{n=0}^{\infty} a_n \int_{\partial R} t^n dt = 0.$$

Thus, by Morera's theorem, f must be analytic on D.

0

hued ...

Let γ be a closed C' curve in $C \setminus D$ that winds around the origin twice in the counterclockwise direction. Compute $\int_{\gamma} \frac{8z^2 - 6z + 1}{6z^2 - 5z + 1} dz$. As always, justify your computation.

Pf: Note that the roots of $6z^2-5z+1=0$ are $z=\frac{1}{2},\frac{1}{3}$, which both lie in D.

Note however that $82^2-62+1=0$ also has a root at $z=\frac{1}{2}$, so $f(z)=\frac{82^2-62+1}{62^2-52+1}$ extends to be analytic at $z=\frac{1}{2}$.

In particular, f(z) has a simple pole at z= 13.

Computing the residue, we get

$$Res\left(f(z), z=\frac{1}{3}\right) = \lim_{z \to \frac{1}{3}} (z-\frac{1}{3}) \frac{(8z^2-6z+1)}{3(z-\frac{1}{3})(2z-1)} = \lim_{z \to \frac{1}{3}} \frac{8z^2-6z+1}{3(2z-1)}$$

$$= \frac{8(\frac{1}{9})-2+1}{3(\frac{2}{3}-1)} = \frac{-\frac{1}{9}}{-1} = \frac{1}{9}$$

Therefore, by the residue theorem, we have that

$$\int_{\gamma} \frac{82^2 - 62 + 1}{62^2 - 52 + 1} dz = 2\pi i \cdot 2 \cdot \frac{1}{9} = \frac{4\pi i}{9}$$

П

4 Let $\Omega = \{ t \in \mathbb{C} : \text{Re}(t) > 0 \} \setminus \{ x + 0 i : x \in (0, 1] \}$ Find a one-to-one analytic function $f: \mathbb{D} \to \Omega$ such that $f(\mathbb{D}) = \Omega$, f(0) = 2, and f'(0) > 0. You may describe f using a composition of maps.

$$f_{4}: H \to D$$
 by $f_{4}(\overline{3}) = \frac{3-i}{3+i}$
Let $f: \Omega \to D$ by $f(z) = (f_{4} \circ f_{3} \circ f_{2} \circ f_{1})(\overline{z})$.
Observe that $f(0) = f_{4}(f_{3}(f_{2}(f_{1}(0))))$

$$= f_{4}(f_{3}(f_{2}(0)))$$

$$= f_{4}(f_{3}(-1))$$

$$= f_{4}(i)$$

$$= 0 \quad \checkmark$$

Let $\Omega \subseteq \mathbb{C}$ be a connected, open set, bund went that $f, f_1, f_2, \ldots : \Omega \to \mathbb{C}$ are analytic functions and fn - f converges uniformly on compact sets. Prove that fi' - f' uniformly on compact sets

Pf: WE WTS If (2) - f'(2) | -> 0 for all ZEK, K = 12 compact.

Let $\gamma = \partial B_{2r}(z)$, $z \in \Omega$, where $\overline{B}_{2r}(z) \subseteq \Omega$.

By Cauchy's formula, $f_n(z) - f'(z) = \frac{1}{2\pi i} \int_{Y} \frac{f_n(z) - f(z)}{(3-z)^2} d3 \quad \forall z \in B_r(z_0)$

 $|f_n'(z) - f'(z)| \le \frac{1}{2\pi i} \int_{\gamma} \frac{|f_n(z) - f(z)|}{|3 - z|^2} |d3| \le \frac{1}{2\pi i^2} \int_{\gamma} |f_n(z) - f(z)| |d3|$ = 1 Sup |fn(2) - f(2) | 4717

By assumption, sup |fn(z)-f(z)| →0 as n→∞.

fr - f uniformly in Br(20)

Let K be a compact subset of 12 and cover K by finitely many disks Dr., Dr. (Bzr =12)

for any zek, |fi(+)-f'(+)| = 2. sup |fn(+)-f(+)|

ro = min {r: i=1, ..., n}

fr' - f' uniformly on K.