\mathbf{CS}	5565,	ECE	5590CI	HW3(C	Classifica	tion)	80 pts	. (60	pts.	CS465R,	ECE40	1CI)
			Nar	ne								

1. (10 points) Using a little bit of algebra, prove that the equation

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

is equivalent to the equation.

$$\frac{p(X)}{1 - p(X)} = e^{\beta_0 + \beta_1 X}$$

In other words, the logistic function representation and logit representation for the logistic regression model are equivalent.

- 2. (10 points) Suppose we collect data for a large company to detect server overloads in their cloud services with variables $X_1 = \text{IO}$ traffic in Gbs, $X_2 = \text{CPU}$ Utilization, and Y = probability of overload. We fit a logistic regression and produce estimated coefficient, $\hat{\beta}_0 = -6$, $\hat{\beta}_1 = 0.05$, $\hat{\beta}_2 = 4$.
 - (a) (5 points) Estimate the probability that given the IO traffic is 50Gbs and the utilization is 0.8, the server is overloaded.
 - (b) (5 points) Given a utilization of 0.8, what would the IO traffic need to be in order for the probability of a server overload to be 50%?
- 3. (10 points) We now examine the differences between LDA and QDA.
 - (a) (2.5 points) If the Bayes decision boundary is linear, do we expect LDA or QDA to perform better on the training set? On the test set?
 - (b) (2.5 points) If the Bayes decision boundary is non-linear, do we expect LDA or QDA to perform better on the training set? On the test set?
 - (c) (2.5 points) In general, as the sample size n increases, do we expect the test prediction accuracy of QDA relative to LDA to improve, decline, or be unchanged? Why?
 - (d) (2.5 points) True or False: Even if the Bayes decision boundary for a given problem is linear, we will probably achieve a superior test error rate using QDA rather than LDA because QDA is flexible enough to model a linear decision boundary. Justify your answer.
- 4. (10 points)(UG extra credit) Suppose that we wish to predict whether your boss will issue you a bonus this year ("Yes" or "No") based on X, last year's percent profit generated by the company you work for. We examine a large number of companies and discover that the mean value of X for companies that issued bonuses was $\bar{X} = 8$, while the mean for those that didn't was $\bar{X} = 0$. In addition, the variance of X for these two sets of companies was $\hat{\sigma}^2 = 25$. Finally, 75% of companies issued bonuses. Assuming that X follows a normal distribution, predict the probability that your boss will issue a bonus this year given that its percentage profit was X = 4 last year. Hint: Recall that the density function for a normal random variable is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/s\sigma^2}.$$

Hint: You will need to use Bayes' theorem.

$$p_{yes}(x) = \frac{\pi_{yes} \exp(-\frac{1}{2\sigma^2}(x - \mu_{yes})^2)}{\sum \pi_l \exp(-\frac{1}{2\sigma^2}(x - \mu_l)^2)}$$

- 5. (10 points) Suppose that we take a data set, divide it into equally-sized training and test sets, and then try out two different classification procedures. First we use logistic regression and get an error rate of 20% on the training data and 26% on the test data. Next we use 1-nearest neighbors (i.e. K=1) and get an average error rate (averaged over both test and training data sets) of 18%. Based on these results, which method should we prefer to use for classification of new observations? Why?
- 6. (10 points) This problem has to do with odds.
 - (a) (5 points) On average, what fraction of people with an odds of 0.32 of defaulting on their credit card payment will in fact default?
 - (b) (5 points) Suppose that an individual has an 15% chance of defaulting on her credit card payment. What are the odds that she will default?
- 7. (20 points)(LDA)(UG Extra credit)
 - (a) (10 points) Use LDA to build a classifier for the following data. To get full credit you must show all work and all discriminate values.

X_1 -6	X_2 9 -2	Y
-6	9	0
2	-2	1
3	-4	1
-4	8	0
-1	-3	1
2	2	1 0
1	8	0
-4	U	0
-2	-6	0 1 1
	1 2 3	1
-4	2	0
-2	3	0
2	-6	1 0
2	5 7	0
-2	7	0

(b) (10 points) Use the classifier you built above to classify the following data. To get full credit you must show all work and all discriminate values.

3

X_1	X_2	F_0	F_1	Y
1	-1			
0	4			
-3	-2			
-2	-3			
7	5			