

Model Fitting

Summary

- What is Model Fitting?
- Is it difficult?
- Least Squares (LS)
 - Line fitting example
 - LS issues (outliers)
- Robust Statistics
- RANSAC

Model Fitting

- We have data
 - A lot of them
- Is there a model that generalize data distribution?
 - Choose a model
 - Compute model parameters

Model Fitting

Models

- Lines, curves, planes...
- Homographies, Calibration Matrices...

•

Example: lines fitting

Example: homograpy

Problems

- Noise
- Outliers
- Missing data

Noisy data

Outliers

Fitting

- We need to estimate parameters for a model that **optimally** generalize data distribution
- Potential approaches:
 - Least Squares (LS)
 - Robust Statistics
 - RANSAC

LS line fitting

LS line fitting

- Choose a model and its parameters
- Define a error function E(model_i, data) to evaluate model_i
- Adapt model to data
 - find the parameters set that minimize E()

- Model:
- Parameters:

$$y = m x + q$$

LS line fitting

- Choose a model and its parameters
- Define a error function E(model_i, data) to evaluate model_i
- Adapt model to data
 - find the parameters set that minimize E()

- Error function is E(model_i, data)
 - The value should indicate how much well model_i fits given data
- For LS Error Function is the sum of **squared residuals**

$$E(model_i, data) = \sum_{j=1}^{n} r_{i,j}^2$$

- r_{i,j} is the "difference" between model_i and data_j
- We need to define the residual *function*

• For a line fitting we can define residuals as

$$r_{i,j} = y_i - (m_i \cdot x_j + q_i)$$

Distance between data_j and model_i Real value of data_j Estimated value for data_j given by model_i

Given Error Function definition:

$$E(model_i, data) = \sum_{j=1}^{n} r_{i,j}^2 = \sum_{j=1}^{n} [y_j - (m_i \cdot x_j + q_i)]^2$$

LS line fitting

- Choose a model and its parameters
- Define a error function E(model_i, data) to evaluate model_i
- Adapt model to data
 - find the parameters set that minimize E()

• Consider E() graph

• We need to find the parameter set that minimize E()

• Compute gradient and try to obtain 0

• Partial derivative of E with respect to m

$$\frac{\partial E}{\partial m} = \frac{\partial}{\partial m} \sum_{j=1}^{n} (y_{j} - (mx_{j} + q))^{2} = 0$$

$$= \frac{\partial}{\partial m} \sum_{j=1}^{n} (y_{j}^{2} - 2y_{j}(x_{j}m + q) + (mx_{j} + q)^{2})$$

$$= \sum_{j=1}^{n} \frac{\partial}{\partial m} (y_{j}^{2} - 2x_{j}y_{j}m - 2y_{j}q + x_{j}^{2}m^{2} + 2x_{j}qm + q^{2})$$

$$= \sum_{j=1}^{n} (2x_{j}^{2}m - 2x_{j}y_{j} + 2x_{j}q)$$

• Partial derivative of E with respect to m

$$\frac{\partial E}{\partial m} = \sum_{j=1}^{n} \left(2x_j^2 m - 2x_j y_j + 2x_j q \right) = 0$$

$$\left(\sum_{j=1}^{n} x_{j}^{2}\right) m + \left(\sum_{j=1}^{n} x_{j}\right) q = \sum_{j=1}^{n} x_{j} y_{j}$$
 (Eq. 1)

• Partial derivative of E with respect to q

$$\frac{\partial E}{\partial q} = \frac{\partial}{\partial q} \sum_{j=1}^{n} (y_j - (mx_j + q))^2 = 0$$

$$. = \frac{\partial}{\partial q} \sum_{j=1}^{n} (y_j^2 - 2y_j(x_j m + q) + (mx_j + q)^2)$$

$$. = \sum_{j=1}^{n} \frac{\partial}{\partial q} (y_j^2 - 2x_j y_j m - 2y_j q + x_j^2 m^2 + 2x_j q m + q^2)$$

$$. = \sum_{j=1}^{n} (2x_j^2 m + 2q - 2y_j)$$

• Partial derivative of E with respect to q

$$\frac{\partial E}{\partial q} = \sum_{j=1}^{n} \left(2x_j m + 2q - 2y_j \right) = 0$$

$$\left(\sum_{j=1}^{n} x_{j}\right) m + \sum_{j=1}^{n} 1 q = \left(\sum_{j=1}^{n} x_{j}\right) m + nq = \sum_{j=1}^{n} y_{j} \quad \text{(Eq. 2)}$$

• We can write equations 1 & 2 in a matrix form

$$\left[\sum_{j=1}^{n} x_j^2 \sum_{j=1}^{n} x_j \right] \begin{bmatrix} m \\ q \end{bmatrix} = \left[\sum_{j=1}^{n} x_j y_j \right]$$

$$X = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \qquad Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \qquad \theta = \begin{bmatrix} m \\ q \end{bmatrix}$$

$$Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$\theta = \begin{bmatrix} m \\ q \end{bmatrix}$$

• We can see previous equation as:

$$\left| \sum_{j=1}^{T} x_{j}^{2} \sum_{j=1}^{T} x_{j} \right| m = \left| \sum_{j=1}^{T} x_{j} y_{j} \right|$$

$$X^{T} X \qquad \theta = X^{T} Y$$

• We can then solve this as

$$X^{T}X\theta = X^{T}Y$$

$$0 = (X^{T}X)^{-1}X^{T}Y$$

- (m,q) are not always the best parameter choiche
 - Vertical lines?
- A more general approach is ax+by+c=0
- We can also use algebraic distance as estimator for fitting

• Cost function E can now be the actual distance

$$E_i = \sum_{j=1}^{n} (a_i x_j + b_i y_j + c_i)^2$$

• Let's find the parameter set that minimize E_i

• Partial derivatives can be written as

$$\frac{\partial E}{\partial a} = \sum_{j=1}^{n} (2x_j^2 a + 2x_j y_j b + 2x_j c)$$

$$\frac{\partial E}{\partial b} = \sum_{j=1}^{n} (2x_j y_j a + 2y_j^2 b + 2y_j c)$$

$$\frac{\partial E}{\partial c} = \sum_{j=1}^{n} (2x_j a + 2y_j b + 2c)$$

• Again, put them as homogeneous equation

• Then we should solve the homogeneous equation

$$A \cdot x = 0$$

- There is always a solution?
 - No!
- Moreover, ill posed when $A \in R_{3\times 3}$ has a rank<3

LS Line Fitting – algebraic distance

• We can use (again) SVD for a minimization

$$A = UDV^{T}$$

• x is the last column of V

LS Summary

Summary

- Simple approach
 - $n \le 2 \rightarrow closed form$
 - $n > 2 \rightarrow SVD$
- No thresholds
- Results is good when until we have Gaussian noise...

- Not always Gaussian noise
- LS is highly affected by outliers

$$f(r_{i,j}) \propto r_{i,j}^2$$

• Not always Gaussian noise

• LS is highly affected by distant points

$$r_{i,j}$$
 noisy value $r_{i,j}$ outlier

• Example: what is the right fitting in this case?

• Example: what is the right fitting in this case?

• Example: what is the right fitting in this case?

Outliers

- Inliers: data which belong to the model
- Outliers: data not belonging to the model

Wrong model

Outliers are not the only issue

Robust Statistics

• Underlying idea: modify data weight depending on their distance from the model

$$f(r_{i,j}) \propto r_{i,j}^2$$

$$f(r_{i,j}) \propto |r_{i,j}|$$

$$f(r_{i,j}) \propto \frac{r_{i,j}^2}{r_{i,j}^2 + \sigma^2}$$

Robust Statistics

• Instead of squared residuals sum we use a function $\rho()$

$$\min \sum_{j=1}^{n} r_i^2 \quad \rightarrow \quad \min \sum_{j=1}^{n} \rho(r_i)$$

- The function is symmetrical and features a minimum in zero
 - Loss function

Robust Statistics RANSAC

- Estimation can also divided in two steps
 - Classify data among Inliers and Outliers
 - Generate a model using inliers only
- RANSAC (RANdom SAmple Consensus) is a widely used approach
 - M. A. Fischler and R. C. Bolles (June 1981). "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography". Comm. of the ACM 24: 381--395

RANSAC

- Given a set of points
 - $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
 - Potentially including outliers...
- Estimate parameters
 - Example: y=mx+q or ax+by+c=0

• We have some outliers...

• Randomly choose 2 points

• Estimate model

• How many point fit a given distance δ from the model?

• Repeat until a "good" result is obtained

• 13 in – 2 out

• Repeat until a "good" result is obtained

• 4 in...

- Let's just consider the straight line example
- We have n=12 points
- In order to test a line we need s=2 points

• Given:

- e \rightarrow probability a given point is an outlier
- s \rightarrow number of points in a subset
- $N \rightarrow$ number of subsets (the unknown)
- p \rightarrow probability to have at least 1 good subset

$$p=1-(1-(1-e)^s)^N$$

• Given:

- e \rightarrow probability a given point is an outlier
- s \rightarrow number of points in a subset
- $N \rightarrow$ number of subsets (the unknown)
- p \rightarrow probability to have at least 1 good subset

$$p=1-(1-(1-e)^s)^N$$

Inlier Probability

• Given:

- e \rightarrow probability a given point is an outlier
- s \rightarrow number of points in a subset
- $N \rightarrow$ number of subsets (the unknown)
- p \rightarrow probability to have at least 1 good subset

$$p=1-(1-(1-e)^s)^N$$

All Inlier Probability in the Subset

• Given:

- e \rightarrow probability a given point is an outlier
- s \rightarrow number of points in a subset
- $N \rightarrow$ number of subsets (the unknown)
- p \rightarrow probability to have at least 1 good subset

$$p=1-(1-(1-e)^s)^N$$

One or more Outliers Probability in the Subset

• Given:

- e \rightarrow probability a given point is an outlier
- s \rightarrow number of points in a subset
- $N \rightarrow$ number of subsets (the unknown)
- p \rightarrow probability to have at least 1 good subset

$$p=1-(1-(1-e)^s)^N$$

Probability that N subsets always contain outliers

• Given:

- e \rightarrow probability a given point is an outlier
- s \rightarrow number of points in a subset
- $N \rightarrow$ number of subsets (the unknown)
- p \rightarrow probability to have at least 1 good subset

$$p=1-(1-(1-e)^s)^N$$

Probability to have at least one uncontaminated subset

- N can be then computed as f(p,e)
 - s is known given the model

$$(1-(1-e)^s)^N = p-1 \rightarrow N = \frac{\log(1-p)}{\log(1-(1-e)^s)}$$

• Assuming we need a "strong" probability (i.e. p=0.99)

N =	$\log(1-p)$				
	$\log(1-(1-e)^s)$				

	proportion of outliers e								
S	5%	10%	20%	25%	30%	40%	50%		
2	2	3	5	6	7	11	17		
3	3	4	7	9	11	19	35		
4	3	5	9	13	17	34	72		
5	4	6	12	17	26	57	146		
6	4	7	16	24	37	97	293		
7	4	8	20	33	54	163	588		
8	5	9	26	44	78	272	1177		

- Again let's consider the straight line example
- We have n=12 points
- We also estimate a ~20% outliers
- In order to test a line we need s=2 points
- We want a p=0.99

$$N = 5 \ll 66$$

- Therefore it is not necessary to test all subsets
- We can simply randomly choose N
 - N is usually << all possible combinations
- We can further reduce N
 - Stop iterations when a "sufficient" number of inliers is found

$$T = (1 - e) \cdot n$$

RANSAC: improvements

- Once a model is tested it can be refined considering all inliers
 - LS can be used again

RANSAC: pro&cons

- It often works!
- We need data assumptions
 - inliers/outliers probability
- When several outliers it may be slow...
 - No upper time
 - You can limit iterations \rightarrow far from optimal solution

Model Fitting

Question time!

