Basic Operations

- Matrix add/sub & Scalar add/sub: element wise
- Matrix Multiplication: let R_i be a row of the left matrix, C_i be a column of the right matrix, and e_{ij} be element of resultant matrix. Then

- ex:
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
; $B = \begin{bmatrix} w & x \\ y & z \end{bmatrix}$; $AB = \begin{bmatrix} aw + by & ax + bz \\ cw + dy & cx + cz \end{bmatrix}$
- **note**: requires nxm and mxp matrix and results in nxp

- def in case I need it for proof: $\sum_{n=1}^n A_{ij}B_{ji}$

• Transpose: rows become columns
$$- \text{ ex: } A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}; A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$
• Trace: sum of diagonal $\sum A_{ii}$

- UT: 0's in top right; LT: 0's in bottom left; Diagonal: both UT and LT
- Symmetric: $A^T = A$; Skew Symmetric: $A^T = -A$

ERO's

- if you augment the indentity and take that matrix to rref the augmented portion is the inverse of the original matrix
- if you take a matrix to ref (technically can be UT, LT, or diag) the product of the diagonal is the determinant except
 - for every swap of rows multiply the det by -1^n
 - for every scale multiply the determinant by $\frac{1}{scale}$
 - * ex: $R_1 \to \frac{1}{2}R_1$ then 2det

Rank

- Consider a system Ax = b w/ A mxn, x nx1, b mx1 then
 - if $rank(A^{\#}) = rank(A) = n$ there is a unique sol
 - $rank(A^{\#}) \neq rank(A)$ no sol (more specifically $rank(A^{\#}) =$ rank(A) + 1
 - $rank(A^{\#}) = rank(A) < n \text{ inf sol with } n rank(A) \text{ params}$
 - big theorom: if $rank(A^{\#}) = rank(A)$ consistent. if $rank(A^{\#}) \neq rank(A^{\#})$ rank(A) inconsistent
 - homogenous version (constants = 0):
 - * always have sol x = 0
 - * unique sol of x = 0 if rank(A) = n
 - * inf sol (includes x = 0) if rank(A) < n

Property of Transpose

- $(A+B)^T = A^T + B^T$ $(AB)^T = B^T A^T$

Property of Inverse

- $(AB)^{-1} = B^{-1}A^{-1}$ $(A^T)^{-1} = (A^{-1})^T$

Determinant

- Def for Proof:
 - determinant: let A be an nxn matrix. $det(A) = \sum_{n} \sigma(p_1, p_2...p_n) a_{1p_1} a_{2p_2}...a_{np_n}$
- Thm: A is invertible $\leftrightarrow det(A) \neq 0$

Properties

- $\begin{array}{l} \bullet \hspace{0.2cm} det(A^T) = det(A) \\ \bullet \hspace{0.2cm} det(A^{-1}) = \frac{1}{det(A)} \\ \bullet \hspace{0.2cm} det(kA) = k^n det(A) \end{array}$

Vector Spaces

Let $u, v, w \in V$. Let k_1, k_2 be scalars - Closures under \oplus - $u \oplus v \in V$ ($\forall u, v \in V$) if you add 2 vectors inside a given vector space, the sum should also exist in that space - Closure under \odot - $k_1 \odot u \in V$ ($\forall u \in V, \forall k_1 \text{ in field}$) - \oplus is Commutative $-u \oplus v \equiv v \oplus u - \oplus$ is associative $-(u \oplus v) \oplus q \equiv u \oplus (v \oplus w) - \exists$ a zero vector, denoted $\vec{0}$ such that $v \oplus \vec{0} = v \ \forall v \in V$ - Additive inverse - $\forall v \in V \exists -v \in V$ such that $v \oplus (-v) = \vec{0}$ - Unit property - $1 \odot v = v \ \forall v \in V$ - Associativity of scalar multiplication - $k_1 \odot (k_2 \odot v) \equiv (k_1 k_2) \odot V$ - Scalar multiplication over vector addition - $k_1\odot(u\oplus v)\equiv(k_1\odot u)\oplus(k_1\odot v)$ - Scalar addition over scalar multiplication - $(k_1 + k_2) \odot u \equiv (k_1 \odot) \oplus (k_2 \odot u)$