Сопряженное пространство

Гога January 17, 2023

Contents

L	Определение	1
2	Пример пространства функционалов над V	1
3	Изоморфизм $V\cong V^{**}$ с нуля (попытка расписать понятно)	2
	Можно начать читать сразу с изоморфизма V и V^{**}	
1	Определение	

Мне лень исправлять, но здесь под линейными функциями подразумеваются линейные функционалы. Т.е. такие функции $f:V\to K$, отображающие вектор из V в поле K (сопоставляющие вектору число, если по человечески)

Пространство линейных функций V^* изоморфное (не заметно, но изоморфное) V, базисами которого являются линейные функции $(\varepsilon_0, \varepsilon_1, \cdots, \varepsilon_n)$, такие что $\varepsilon_i(x) = x_i$, где x_i - это коэффицент при e_i в разложении $x \in V = x_0 e_0 + x_1 a_1 + \cdots + x_n a_n$ по базисам V

То есть базисы пространства V^* сопряженного по отношению к V есть такие функции $\varepsilon_i(x)$, каждая из которых достает из данного вектора x коэффициент, на который домножается базисный вектор $e_i \in V$ в разложении x по базисам.

2 Пример пространства функционалов над V

Пусть $\alpha(x)$ - линейная функция $\alpha:V\to K$ в пространстве V над полем K. То есть линейный функционал.

$$\alpha(x) = a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots + a_n x_n \tag{1}$$

где $\alpha(e_i) = a_i$, то есть - a_i коэффициент при базисном векторе e_i - по сути единица??

Множество всех линейных функционалов в пространстве V над полем K тоже составляет пространство.

Доказательство: Так как $\alpha(x)$ - линейная функция, то $\alpha(x) = x_1 \alpha(e_1) + \dots + x_n \alpha(e_n), x_i \in K$ Тогда $(\alpha(e_1), \dots, \alpha(e_n))$ - базис пространства всех линейных функционалов в пространстве V над полем K. Будем его называть сопряженным к V пространством V^*

3 Изоморфизм $V \cong V^{**}$ с нуля (попытка расписать понятно)

Есть линейное пространство V над K Множество всех линейных функционалов над этим пространством V в поле K, тоже образует пространство. Так как это функционал, назовем его α из определения следует что $a(x) = x_1\alpha(e_1) + ... + x_n\alpha(e_n)$ То есть это линейная комбинация функционалов $\alpha(e_1)...\alpha(e_n)$. И тогда эти функционалы являются базисом. Значит, этими базисными функционалами определяется все пространство функционалов из V в K.

Возьмем такой базис $(\varepsilon_1,...,\varepsilon_n)$, что $\varepsilon_i(x)=x_i$. То есть что \$i\$-ый функционал от x возвращает i координату $x\in V$. А почему мы взяли именно такой базис? А почему бы и нет? Что бы потом назвать его сопряженным к базису V, да и все равно все линейные функционалы определеяются через базисные, а про них ничего не сказанно (могу тут ошибаться), поэтому почему не придумать бы такие.

Итак. Мы определили базис пространства всех линейных функционалов из V в K, такое пространство мы будем называть сопряженным к V или двойственным к V и обозночать V^*

Из определения видно что $x=\sum_{i=0}^n \varepsilon_i(x)e_i$ то есть вектор из V можно представить как линейную комбинацию базисов с коэффцииентами $\varepsilon_i(x)$ - т.е. обычные коэффициенты. Теперь рассмотрим линейные функционалы из V^* в K. Т.е. такие функционалы f над пространством функционалов V^* .

$$f:V^*\to K$$

$$f:(V\to K)\to K$$

Так как функционалы линейные, мы можем прийти к такому виду: $f(v) = a_1 f(\varepsilon_1) + ... + a_n f(\varepsilon_n), v : V \to K$. То есть также видим, что $\langle f(\varepsilon_1), ..., f(\varepsilon_n) \rangle$ будет образовывать пространство всех линейных функционалов из V^* в K. Такое пространство мы будет отмечать как V^{**} (doble Dual space, пространство, двойственное двойственному, сопряженное к сопряженному к V)

Раз уж это пространство всех линейный функционалов, то мы можем найти в нем такую функцию $f_x(\alpha) = \alpha(x), \alpha: V \to K, \alpha \in V^*$, то есть функционал из V^{**} принимает функционал из V^* и возвращает значение $\alpha \in V^*$ от вектора $x \in V$. А вспоминая,

что $x=\sum\limits_{i=0}^n \varepsilon_i(x)e_i$ мы можем представить это в виде $x=\sum\limits_{i=0}^n f_x(\varepsilon_i)e_i$, откуда можно установить биекцию $x\mapsto f_x$

Винберг приходит к биекции по другому. Исходя из того, что $f_x(\alpha) = \alpha(x)$, можем взять $f_{e_i}(\varepsilon_j) = \varepsilon_j(e_i) = \delta_{ij}$, что равно символу кронекера $(\delta_{ij} = 1, i = j)$ чего достаточно для того, что бы утвержать что $(f_{e_1}, ..., f_{e_n})$ являются базисом V^{**} , а отображение $x \mapsto f_x$ по сути переводит линейную комбинацию векторов из базиса V в линейную комбинацию векторов из базиса V^{**} с такими же координатами.

(Почему с такими же?)

$$x = \sum_{i=0}^{n} f_x(\varepsilon_i)e_i \Rightarrow x = \sum_{i=0}^{n} f_{a_1e_1+...+a_ne_n}(\varepsilon_i)e_i$$

$$(a_1f_{e_1} + ... + a_nf_{e_n})(\varepsilon_i)e_i =$$

$$(a_1f_{e_1}(\varepsilon_i) + ... + a_nf_{e_n}(\varepsilon_i))e_i = a_if_{e_i}(\varepsilon_i)e_i = a_ie_i$$

$$\Rightarrow x = \sum_{i=0}^{n} f_x(\varepsilon_i)e_i = \sum_{i=0}^{n} a_ie_i$$