Endogenous Products

Charlie Murry

Boston College

February 4, 2019

Roadmap of Talk

Motivation

Berry and Waldfogel (1999, RAND)

Eizenberg (2014, ReStud

Endogenous Product

- What do I mean by this?¹
- Firms consider market interactions (pricing, etc) when optimally choosing entry of products, or positioning of products in characteristics space, or product-line length.

¹This is not an accepted term in the literature.

Way-back Motivation – IO pre-1980

- Understand the "effect" of x on profits/prices/sales.

$$y_{jt} = \beta_0 + \beta_1 * HHI_{jt} + \beta_2 * x_{jt} + \alpha * \mathbf{z}_{jt} + \varepsilon_{jt}$$

- Many times the level of observation is the industry.
- If not, still have rather aggregate data on the firms.
- *HHI* or shares are endogenous. Typically no serious attempt to truly identify the effect.
- Example: what is the "effect" of concentration on prices.
 - Typically, theory makes a stark prediction.
 - But market structure is endogenous. So the empirical strategy is very important!
- 1980's revolution in IO (Tirole et. al.): Let's think seriously about strategic interactions and choices like price, entry, marketing, product positioning.

Mankiw and Whinston (1986 RAND)

Main Idea

- Firms face strategic interactions in prices/quantities.
- Free entry condition with non-zero fixed costs to enter.
- Entrant causes incumbent firms to reduce output
- Entry of last entrant is more valuable to entrant than society
- Because net total increase in production (lower prices) is less valuable than fixed costs.

Mankiw and Whinston (1986 RAND)

Two Takeaways

- 1. Entry is endogenous long run? short run? Different for different industries.
- 2. Socially optimal may not be privately optimal with imperfect competition.
 - Post-entry business stealing new entrant makes profit at expense of incumbents.
 - If this is true for marginal entrant, so private value greater than social value.

Mankiw and Whinston (1986 RJE)

Details

 Quite general assumptions lead to weakly excessive entry compared to second best (social planner entry with post-entry competition)

Assumption 1.
$$Nq_N > \hat{N}q_{\hat{N}}$$
 for all $N > \hat{N}$ and $\lim_{N \to \infty} Nq_N = M < \infty$.

Assumption 2. $q_N < q_{\hat{N}}$ for all $N > \hat{N}$.

Assumption 3. $P(Nq_N) - c'(q_N) \ge 0$ for all N.

- If there is love of product variety, now the trade-off becomes an empirical question.

Roadmap of Talk

Motivation

Berry and Waldfogel (1999, RAND)

Eizenberg (2014, ReStud)

Berry and Waldfogel (1999 RJE)

Main Idea

- Take Mankiw and Whinston to data.
- What is optimal number of radio stations?

Empirical Strategy

- Estimate listener demand.
 - More listeners with more variety.
 - More variety in larger markets.
- 2. Estimate advertiser willingness to pay for advertisements.
- 3. Estimate entry costs (in revenues, \$) a la Berry (1992).
 - Recall: Berry (1992) is a discrete choice with unit-less latent payoffs.

Radio

- Homogeneous goods, where listeners are sold to advertisers.
- Price of an ad:

$$p(N) = p(Ns(N))$$

- Price of ads (rev. per listener) declines in total listening share.
- Price a function of listener share, not total listeners. Implies num. of advertisers scales with market size.
- Fixed cost, F. Entry decision exactly that of Mankiw and Whinston.

Radio

- Homogeneous goods, where listeners are sold to advertisers.
- Price of an ad:

$$p(N) = p(Ns(N))$$

- Price of ads (rev. per listener) declines in total listening share.
- Price a function of listener share, not total listeners. Implies num. of advertisers scales with market size.
- Fixed cost, F. Entry decision exactly that of Mankiw and Whinston.
- Yes, they ignore things like targeting, multi-homing, ads congestion...but we need to start somewhere. This paper is truly groundbreaking on multiple dimensions.

Free Entry

- Profits:

$$\pi(N) = Mp(N)s(N) - F$$

- Determination of num. of eqm firms, N_e :

$$\pi(N_e) \geq 0$$
 and $\pi(N_e + 1) < 0$

- Consider social welfare the welfare of advertisers minus fixed station costs. Planner chooses *N* to max

$$M\int_0^{Ns(N)}p(x)d(x)$$

- with FOC (like MW86):

$$\pi(N) + MNp(N) \frac{\partial s}{\partial N}$$

- and $\frac{\partial s}{\partial N}$ is negative from MW86 - so we know entry is excessive.

Monopoly Entry

- Consider a monopolist who owns all of the stations.

$$N\pi(N) = R(N) - NF$$

- Internalizes the business stealing effect.
- Monopoly profit increases less in output than social planner because social planner values *inframarginal* benefit of reduction in price caused by additional station.
- Why is this important? The policy prescription is not to grant monopoly power.

Radio Data

DGP - Listeners

- Use survey data on radio listening habits.
- Nested logit a la Berry (1994).

$$u_{ij} = \delta_j + \nu_i(\sigma) + (1 - \sigma)\epsilon_{ij}$$

- As $\sigma \to 1$ then stations are identical. Complete biz-stealing and total quantity does not expand with additional entrant.
- Awkwardness: Entry model has identical firms, but Berry (1994) is for heterogeneous firms $\delta_i = \delta$.

$$s_j(N,\delta,\sigma) = \frac{1}{N} \frac{N^{1-\sigma}}{e^{-\delta} + N^{1-\sigma}}$$

DGP – Advertising Prices

- Fixed number of ads per hour.
- Price of ad proportional to # of listeners.
- Tot. Rev. is mkt ad price per listener \times avg. # listeners.
- Inverse advertising demand curve:

$$p = \alpha(S(N))^{-\eta},$$

where S(N) is total share listening to radio, η is inv. elas. of demand, and α is a demand shifter.

- Estimating equation:

$$ln(p_k) = x_k \gamma - \eta ln(S_k) + \omega_k$$

Fixed Costs

- Firms can choose to enter/exit the market and incur fixed costs.

$$ln(F_k) = x_k \mu + \lambda v_k$$

- Fixed costs are the same for all firms (modulo the stochastic term), so we can estimate this as an ordered probit.
- Eqm: $\pi(N_e) \ge 0$ and $\pi(N_e + 1) < 0$.
- Unlike Bresnahan and Reiss, we have outcome data! What do we do here?!
- Use outcome data to construct variable profits v(N) = Mp(N)s(N)

Empirical Strategy

- Share equation (linear IV), ads price equation (linear IV), entry likelihood.
- Jointly estimate using GMM.

$$g(\theta) = \sum_{k} \begin{pmatrix} \xi_{k}(\beta, \sigma) z_{k} \\ \omega_{k}(\gamma, \eta) z_{k} \\ \partial ln(L_{k}(\theta)) / \partial(\mu, \lambda) \end{pmatrix}$$

- Key is that there is nothing "endogenous" in the log-likelihood function.

Welfare of Free Entry

- Welfare in terms of advertisers and stations (not listeners).
- σ is the key parameter determining the biz-stealing effect.

TABLE 4 Comparison of Free Entry, Optimality, and Monopoly

	Free Entry	Optimal	Monopoly
In-metro entry	2,509	649 (46)	341 (55)
Aggregate costs (\$ millions)	5,007	1,144 (92)	602 (101)
Aggregate revenue (\$ millions)	5,100	4,334 (204)	3,959 (173)
Welfare (\$ millions)	5,331 (3,064)	7,640 (3,037)	7,422 (2,878)
Ad price	277	326 (11)	375 (48)
Listening share (%)	12.91	9.28 (.19)	7.53 (.50)

The free-entry numbers without standard errors are calculated directly from data. The difference between free entry and optimal welfare has a standard error of 167.

Roadmap of Talk

Motivation

Berry and Waldfogel (1999, RAND)

Eizenberg (2014, ReStud)