Rješenja i upute za četvrtu domaću zadaću iz Matematike 3R

- 1. pretpostavite da je $x\in \overline{A\cup B}$ i dokažite da je $x\in \overline{A}\cap \overline{B}$, mora se provjeriti i obratna tvrdnja.
 - 2. a) nije injekcija, niti surjekcija b) bijekcija c) bijekcija
 - 3. identitetu
 - 4. primjer bijekcije je $\varphi(3k+2) = 100 + k \ k \ge 0$.
- **5.** primjer bijekcije je $\varphi(3k+1)=l+1,\ k=2l+1,\ l\geq 0,$ a za $k=2l,\ l\geq 0$ imamo $\varphi(3k+1)=-l.$
 - **6.** promtarnai skup je ekvipotentan sa akupom \mathbb{Q}^{n+1} koji je prebrojiv.
- 7. $f:\mathbb{Q}\to 2\mathbb{Z}, \ f(p^m_n)=2^{p+2}3^m5^n,$ gdje je razlomak $\frac{m}{n}$ maksimalno skraćen, a $p\in\{1,-1\}$ predznak racionalnog broja koji preslikavamo.
 - 8. vidi predavanja
 - 9. a) $|Y/\rho|=5,$ b) u klasi [{1,2}] su svi dvočlani podskupovi skupa $Y\!.$
- 10. b) imamo četiri razreda ekvivalencije:[2], [4], [6], [8]. c) min[158] = 8, jer je $8\rho158$.
- 11. od crvenih vrhova možemo napraviti $\binom{7}{3}$, od bijelih $\binom{4}{3}$, a od plavih $\binom{9}{3}$, pa po principu zbroja ukupni broj trokutova s vrhovima iste boje je 123.
- 12. a) prvu znamenku biramo na 9 načina, drugu isto na 9, jer je nula dozvoljena, treću na 8, pa sve do sedme koju možemo izabrati na 4 načina, a po principu umnoška traženi broj je 544320, b) od svih telefonskih brojeva

eliminiramo one koje smo prebrajali u prvom dijelu zadatka, stoga je traženi broj 8455680.

13.
$$\binom{32}{4}$$
 $\binom{28}{4}$ $\binom{24}{4}$

14. broj svih plesnih parova u kojima je "zabranjeni par" je $\binom{7}{3}^2 \cdot 3!$, a broj svih plesnih parova je $\binom{8}{4}^2 \cdot 4!$, stoga je traženi broj $\binom{8}{4}^2 \cdot 4! - \binom{7}{3}^2 \cdot 3! = 110250$

15. a)
$$2\binom{18}{9} = 97240$$
 b) $\binom{4}{2}\binom{16}{8} = 77220$

16.
$$\binom{q+1}{p}$$

17. a)
$$2 \cdot n! \cdot n!$$
 b) $(n-1)! \cdot n!$

18.
$$\binom{n-v-s}{b-v}b! \cdot (n-b)!$$
.

19.
$$\binom{n-k}{k}$$
.

20.
$$\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} {n-k \choose k}$$
.