[2-6] Denivative
In an earlier note, I had motivated the use of
7
limits to figure out how to get to a tangent
line from secont lines However, there was an
Phron in the explanation which I will.
connect here.
To define the tangent line to a curine C at a
To define the tangent line to a curine C at a point P on the curve, fix P and let Q. be any point on C. distinct from P
be any point on C. distinct from ?
The straight line passing through Pand Q
the straight line passing through Pand Q is called a speant line
y / Secant line Q.
See /
1 17
7
a la

Anyway, let us home this diagnorm Glash, glash) Stope of the secont line is flows) - flat = f(x+h)-f(x) "Letting a nove closer towards P" translates to finding lim flath)-fla): geometrically, it is now hoo he clear that this gives us the slope of the tangent line at (x, f(x)) provided the limit exists.

The slope of the secont line: This is called the average nate of change of f over the interval. [x, x+h]. [In general, if we have a function of [a, b] -> R, then f(b)-f(a) is called the overage nate of change of f over [a,b] The slope of the tangent line at the flood: lin f(x+h) -f(x) is called the instantaneous nate of change of f at x Thus, average nate of change is measured over a interval, whereas instantaneous nate of change is just observed at a point. at a point For example, if f(x) is the position of a care at time is, then f(x+h)-f(x) is the average velocity over [x,x+h] whereas lim & (n+h)-f(x) is the velocity at time x

Definition
The data reinstance
A function f is said to be differentiable at a point a in its domain if
a point a in its domain of
lim f(a+h)-f(a) exists. (and is finite;
lim f(a+h)-f(a) exists. (and is finite; by >0 h. so on - on (You might be asked to define this) won't be counted).
It is denoted as $f'(a) = \frac{d}{dx} (f(x)) \Big _{x=a}$
In general, the derivative of a function of with respect to x is the function of (nead "f prime")
$f'(x) = \lim_{h \to 0} \frac{f(xth) - f(x)}{h} \qquad \left[f'(x) \text{ is the slope of the tangent line at } \left[x, f(x) \right] \right]$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
The domain of f' is the set of all x such
that the above limit exists.
If $y = f(x)$, the common notations for derivative are.
. Dx f(x) Read "d sub x of f of x"
dy
4'

To find f'(x).
(I) Compute f(xth) (I) Compute f(xth)-f(x) (II) Find f(xth)-f(x)
(IV) Find $f'(x) = \lim_{h \to 0} \frac{f(xxh) - f(x)}{h}$
Remarks) of is often called the Leibnitz notation
$\frac{d}{dx}(f(x))$
Remark) If a function f is differentiable at x= a,
then f is continuous at x = a (Important fact for True / False Questions).
However, f is continuous at $x=a$, does not imply f is differentiable at $x=a$.

Example 1 Typical Question
Let $f(\alpha) = \sqrt{x}$
@ Use the limit definition of derivative to find f'(x) for any x>0.
(b) Find the equation of the tangent line of $f(x)$ at $x = 4$.
$[Soln] \bigcirc f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
$=\lim_{h\to 0}\frac{\sqrt{x+h}-\sqrt{x}\left(\sqrt{x+h}+\sqrt{x}\right)}{h(\sqrt{x+h}+\sqrt{x})}$
$= \lim_{h \to 0} \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})}$
$=\lim_{h \to 0} \frac{h}{h \left(\sqrt{x} + h + \sqrt{x}\right)} = \lim_{h \to 0} \frac{1}{\left(\sqrt{x} + h + \sqrt{x}\right)}$
$= \frac{1}{\sqrt{x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$

(b) The [Recall: f'(4) is the slope of the tangent line. at (4, f(4))
at (4, f(4))
$f'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}$; $f(4) = \sqrt{4} = 2$.
PE(x)
Thus, equation of tangent line at $z=4$:
(We know this line
(We know this line has slope $\frac{1}{4}$ and passes through.
$y-2=\frac{1}{4}(x-2)$ passes through.
(2,2).
on, 4y 8-8=x-2
Remark fiven a function for if you are asked to find the equation of the tangent line to graph of f at some point x=a:
i) Find f'(a), and f(a). [f'(a) gives you slope; and the tito pargent line passes through (a, f(a))
posses through la, f(a))]
i) Equation y-f(a)=f'(a)(x-a) [Point-slope form] y-yo=m/x-xo)

Rules of differentiation] (a) d(e) = 0 (i.e. derivative of a constant function is o)
If $\int_{-\infty}^{\infty} dx = \int_{-\infty}^{\infty} f(x) = c$. Then $\int_{-\infty}^{\infty} dx = \int_{-\infty}^{\infty} f(x) = \int_{-\infty}^{\infty} \frac{c - c}{h} = \lim_{h \to 0} \frac{c}{h}$ $= \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} \frac{c}{h}$ $= \lim_{h \to 0} c = 0$
$ \frac{d}{dx}(\pi^2) = 0 $ (2) If n is any real number, then $ \frac{d}{dx}(x^n) = \pi^{n-1} $
If $\int det$ us phove for $n=3$. All $f(x) = x^3$. $f'(x) = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h} = \lim_{h \to 0} \frac{x^3 + h^3 + 3x^2h + 3x h^2 - x^3}{h}$

$= \lim_{h \to 0} \frac{h^3 + 3x^2h + 3xh^2}{h}$
$=\lim_{h\to 0}\left(h\left(h^2+3x^2+3xh\right)\right)$
$= \lim_{h \to 0} \left(h^2 + 3x^2 + 3xh \right) = 3x^2$
Thus, $\frac{d}{dx}(x^3) = 3x^2$.
Can you prove for $n=2$? We already proved this for $n=\frac{1}{2}$. On general, it is difficult to prove for an arbitrary n I we omit it)
prove for an arbitrary $n \le 2$ we omit to $f(x) = x^{5/2}$.
$\frac{d}{dn}(f(n)) = \frac{5}{2} x^{5/2-1} = \frac{5}{2} x^{\frac{3}{2}}.$
3) de (cf(a))= c de (f(a)) where c is a constant
Phoof Exencise

Proof det's just do it for 't'.

Then
$$f(x) = f(x) + g(x)$$
.

Then $f(x) = f(x) + g(x)$.

Then $f(x) = \lim_{h \to 0} f(x+h) - F(x)$
 $h \to 0$
 $h \to 0$

[pa]	41 PA 1 2 A 1 2			
Laji.	det f(x) = x3 + 89 x2 + 2			
	8			
Then.	$f'(x) = \frac{d}{dx} \left(x^3 + 89 \times + 2 \right)$			
	= d (x3) + d (89x) + d (2)	As you		
	da da da	become motie		
	$= 3x^2 + 89 \frac{d(x)}{dx} + 0$	comfortable.		
		with derivatives,		
	$= 3x^2 + 89$	you directly		
		write.		
		f'(x)=3x2+891		
\$10	Fan San San San San San San San San San S			
6) Product Rule and Guelient Rule				
de (f(x)g(n))=g(x) d (f(n)) + f(n) d (g(n)) [in Leibniz notation]				
[ie (f(x)g(x)) = f'(x)g(x) + g'(x)f(x)]				
630	Quelient			

[of]
$$\frac{d}{dx} \left[(x^3 + x)(x^5 + 1) \right]$$

= $f(x) g(x) + g'(x)f(x) =$

= $(3x^2 + 1)(x^5 + 1) + 5x^9 \cdot (x^3 + x)$

(6) [Quotient Rule]

 $\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}$

= $\frac{g(x) \frac{d}{dx}f(x) - f(x) \frac{d}{dx}(g(x))}{g(x)^2} \left(ie \left(\frac{f(x)}{g(x)} \right) - \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2} \right)$