

FCC RF Test Report

For

Shenzhen Hastech industries Co., Ltd.

Test Standards: Part 15C Subpart C §15.247

Product Description: Bluetooth Keyboard

Tested Model: HB115

Additional Model No.: N/A

FCC ID: 2AC9LHB115

Classification Digital Spread Spectrum (DSS)

Report No.: EC1910023RF01

Tested Date: 2019-10-14 to 2019-11-11

Issued Date: 2019-11-11

Jerry Wang

Jerry Wang / Engineer **Prepared By:**

Baron Wu Approved By:

Bacon Wu / RF Manager

Hunan Ecloud Testing Technology Co., Ltd.

Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and

Technological Development Zone, Hunan, P.R.C

Tel.: +86-731-89634887 Fax.: +86-731-89634887

www.hn-ecloud.com

Note: The test results in this report apply exclusively to the tested model / sample. Without written approval of Hunan Ecloud Testing Technology Co., Ltd., the test report shall not be reproduced except in full.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	2019.11.11	Valid	Original Report

Tel.:+86-731-89634887

TABLE OF CONTENTS

1	TES	T LABORATORY	5
	1.1	Test facility	5
2	GEN	IERAL DESCRIPTION	6
	2.1	Applicant	
	2.2	Manufacturer	
	2.3	General Description Of EUT	
	2.4	Modification of EUT	
	2.5	Applicable Standards	7
3	TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	8
	3.1	Descriptions of Test Mode	8
	3.2	Test Mode	9
	3.3	Support Equipment	10
	3.4	Test Setup	10
	3.5	Measurement Results Explanation Example	12
4	TES	T RESULT	13
	4.1	Conducted Spurious Emission Measurement	13
	4.2	Radiated Band Edges and Spurious Emission Measurement	17
	4.3	AC Conducted Emission Measurement	47
5	LIST	OF MEASURING EQUIPMENT	50
6	UNC	ERTAINTY OF EVALUATION	52
Α	PPEN	DIX A. SETUP PHOTOGRAPHS	
Α	PPEN	DIX B. EUT EXTERNAL PHOTOGRAPHS	
Α	PPEN	DIX C. EUT INTERNAL PHOTOGRAPHS	

Tel.:+86-731-89634887

Summary of Test Result

FCC Rule	Description	Limit	Result	Remark
	Padiated Band Edges and			Under limit
15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	5.56 dB at
				252.13 MHz
				Under limit
15.207	AC Conducted Emission	15.207(a)	Pass	30.42 dB at
				16.928 MHz

Tel.:+86-731-89634887

1 Test Laboratory

1.1 Test facility

CNAS (accreditation number:L11138)

Hunan Ecloud Testing Technology Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1244, Test Firm Registration

Number:793308)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

ISED(CAB identifier: CN0012, ISED# :24347)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the Wireless Device Testing Laboratories list of innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements.

A2LA (Certificate Number: 4895.01)

Hunan Ecloud Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

Tel.:+86-731-89634887

2 General Description

2.1 Applicant

Shenzhen Hastech industries Co., Ltd.

G-A1 BLDG, Democracy West Industry Park, Shajing Town, Baoan District, Shenzhen, China

2.2 Manufacturer

Shenzhen Hastech industries Co., Ltd.

G-A1 BLDG, Democracy West Industry Park, Shajing Town, Baoan District, Shenzhen, China

2.3 General Description Of EUT

Product	Bluetooth Keyboard
Model No.	HB115
Additional No.	N/A
Difference Description	N/A
FCC ID	2AC9LHB115
Power Supply	5Vdc (From adapter or host equipment) 3.7Vdc (Li-ion, polymer)
Modulation Technology	FHSS
Modulation Type	GFSK
Bluetooth Version	V 3.0
Operating Frequency	2402MHz~2480MHz
Number Of Channel	79
Max. Output Power	Bluetooth BR(1Mbps) : -4.81 dBm (0.0003W)
Antenna Type	PCB Antenna type with 0dBi gain
I/O Ports	Refer to user's manual
Cable Supplied	N/A

NOTE:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

2.4 Modification of EUT

No modifications are made to the EUT during all test items.

2.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013
- KDB 558074 D01 15.247 Meas Guidance v05r02

Remark:

1. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Tel.:+86-731-89634887

3 Test Configuration of Equipment Under Test

3.1 Descriptions of Test Mode

The transmitter has a maximum peak conducted output power as follows:

Channel	Frequency	Mode	Bluetooth RF Output Power
Ch00	2402MHz	GFSK	-4.81
Ch39	2441MHz	GFSK	-4.91
Ch78	2480MHz	GFSK	-5.51

Remark:

- 1. All the test data for each data rate were verified, but only the worst case was reported.
- 2. The data rate was set in 1Mbps for all the test items due to the highest RF output power.
- a. Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.
- b. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that Z orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Z orientation.

Tel.:+86-731-89634887

3.2 Test Mode

3.2.1 Radiated Emission Test (Below 1GHz)

Radiated	Bluetooth BR 1Mbps GFSK
Test Cases	Mode 1: CH00_2402 MHz

Note: 1. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type. Z orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Z orientation.

2. Following channel(s) was (were) selected for the final test as listed above

3.2.2 Radiated Emission Test (Above 1GHz)

	Bluetooth BR 1Mbps GFSK		
Radiated	Mode 1: CH00_2402 MHz		
Test Cases	Mode 2: CH39_2441 MHz		
	Mode 3: CH78_2480 MHz		

Note: 1. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that Zorientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Z orientation.

- 2. Following channel(s) was (were) selected for the final test as listed above
- 3. For frequency above 18GHz, the measured value is much lower than the limit, therefore, it is not reflected in the report.

3.2.3 Power Line Conducted Emission Test:

AC	
Conducted	Mode 1 : Bluetooth Link + USB Cable (Charging from Adapter)
Emission	

Tel.:+86-731-89634887

3.3 Support Equipment

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	AC Adapter	HUAWEI	HW-059200CHQ	FCC DOC	N/A	N/A
2.	MicroUSB Cable	N/A	N/A	N/A	N/A	unshielded 0.8m with magnetic
3.	Notebook	Lenovo	E470C	FCC DoC	N/A	ring shielded cable DC O/P 1.8 m unshielded AC I/P cable1.2 m

3.4 Test Setup

The EUT is continuously communicating to the Bluetooth tester during the tests.

EUT was set in the Hidden menu mode to enable BT communications.

Setup diagram for Conducted Test

Setup diagram for Radiation(9KHz~30MHz) Test

Setup diagram for Radiation(Below 1G) Test

Setup diagram for Radiation(Above1G) Test

Page 11 of 62

Setup diagram for AC Conducted Emission Test

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).
=
$$5 + 10 = 15$$
 (dB)

For all radiated test items:

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

4 Test Result

4.1 Conducted Spurious Emission Measurement

4.1.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

4.1.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4.Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

4.1.3 Test Result of Conducted Spurious Emission

Test Mode :		Transmitt	ting Temperature :		24~26°C		
Test Engineer	:	Victorique	e Gao	Relative Humidity: 50~53%			
Mode	Ch	nannel	Pref [dBm]	Puw[c	dBm]	Verdict
GFSK		LCH	-1.344		<lii< td=""><th>mit</th><td>PASS</td></lii<>	mit	PASS
GFSK	ľ	ИСН	0.785		<lii< td=""><th>mit</th><td>PASS</td></lii<>	mit	PASS
GFSK	ŀ	HCH	1.387		<lii< td=""><th>mit</th><td>PASS</td></lii<>	mit	PASS

Tel.:+86-731-89634887

Conducted Spurious Emission Polt

4.2 Radiated Band Edges and Spurious Emission Measurement

4.2.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 - 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 – 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

Note: The frequency range from 9KHz to 10th harmonic (25GHz) are checked, and no any emissions were found from 18GHz to 25GHz, So the radiated emissions from 18GHz to 25GHz were not record.

Tel.:+86-731-89634887

4.2.2 Test Procedures

- The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The measurement distance is 3 meter.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f<1 GHz, RBW=1MHz for f>1GHz; VBW =3 * RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band		Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
1Mbps		78.39	2.94	0.340	1kHz
	10 dB/div Ref 10 dB/div Ref 10 00	2.441000000 GHz Trig D PNO: Fast → Trig: V	elay-2.000 ms #Avg Type: RMS fideo : 20 dB	#1:36 M/Sep 25, 2019 **TRACE 123 45 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
	Center 2.4410 Res BW 8 MH: MRR MODE TRC SCL 1 N 1 t 2 A41 1 t 3 A41 1 t 5 6 6 7 8 9 9 10 11 10 11	z #VBW 8.0 MH x y 1.976 ms -33.63 (Δ) 2.941 ms (Δ) 17.	FUNCTION FUNCTION WIDTH	Span 0 Hz ms (8000 pts) PUNICTION VALUE Freq Offset 0 Hz Scale Type Log Lin	

6. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

4.2.3 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

4.2.4 Test Result of Radiated Spurious at Band Edges

Tel.:+86-731-89634887

_	Reading level dBuV	factor	loss	factor	level	level	limit	Remark
2310. 000 2390. 000 2401. 850	42. 24	27. 11	3. 53	35. 55	37. 33	74.00	-36.67	Peak

Freq Reading Antenna Cable Preamp Limit 0ver level factor loss factor level level limit Remark MHzdBuV dB/m dΒ dΒ dBuV/m dBuV/m dΒ 2479.772 81.20 27.35 3.59 35.67 76.47 74.00 2.47 Peak 2483.500 42.1727.36 3.59 35.68 37.44 74.00 -36.56 Peak 2498.087 45.74 27.40 3.60 35.70 41.0474.00-32.96 Peak 2500.000 45.0127.40 3.60 35.70 40.31 74.00 -33.69 Peak

Frequency (MHz)

Tel.:+86-731-89634887

Test Mode :	Bluetooth (1Mbps) CH78 (2480MHz)	Temperature :	21~23℃
Test Engineer :	Jack Liu	Relative Humidity :	63~65%
Frequencey Range	2.477GHz~2.510GHz	Polarization :	Horizontal

Freq MHz	Reading level dBuV	Antenna factor dB/m		factor	level	Limit level dBuV/m		Remark
2480. 003 2483. 500 2500. 000	79. 47 29. 03 29. 13	27. 36	3. 59	35. 68	24.30	54.00	-29.70	Average Average Average

Test Mode :	est Mode: Bluetooth (1Mbps) CH78 (2480MHz)		21~23℃
Test Engineer :	Jack Liu	Relative Humidity :	63~65%
Frequencey Range	2.477GHz~2.510GHz	Polarization :	Vertical

•	level	factor	loss	factor	level	level	limit	Remark
79.772	72.77	27.35	3.59	35. 67	68.04	74.00	-5.96	Peak
83. 500	42.34	27.36	3.59	35.68	37.61	74.00	-36.39	Peak
500.000	42.47	27.40	3.60	35. 70	37.77	74.00	-36. 23	Peak
	MHz .79. 772 .83. 500	1evel MHz dBuV .79.772 72.77 .83.500 42.34	level factor dBuV dB/m	level factor loss MHz dBuV dB/m dB .79.772 72.77 27.35 3.59 .83.500 42.34 27.36 3.59	level factor loss factor dBuV dB/m dB dB dB dB	level factor loss factor level dBuV dB/m dB dB dBuV/m 79.772 72.77 27.35 3.59 35.67 68.04 83.500 42.34 27.36 3.59 35.68 37.61	level factor loss factor level level dBuV/m	Reading Antenna Cable Preamp Limit Over level dBuV dB/m dB dB dBuV/m dB dB dBuV/m dB dB dBuV/m dB dB dB dB dB dB dB d

Test Mode :	Bluetooth (1Mbps) CH78 (2480MHz)	Temperature :	21~23℃
Test Engineer :	Jack Liu	Relative Humidity :	63~65%
Frequencey Range	2.477GHz~2.510GHz	Polarization :	Vertical

Freq Reading Antenna Cable Preamp Limit 0ver level level factor loss factor level limit Remark MHzdBuV dBuV/m dBuV/m dΒ dB/m dΒ dΒ 27. 35 27. 36 27. 40 2480.003 70.50 3.59 35.67 65.77 54.00 11.77 Average 2483.500 -30.13 28.60 3.59 23.87 54.00 35.68 Average 2500.000 3.60 35.70 23.96 -30.04 Average 28.66 54.00

Frequency (MHz)

Tel.:+86-731-89634887

Fax.: +86-731-89634887

2510

4.2.5 Test Result of Radiated Spurious Emission (1GHz ~ 10th Harmonic)

Tel.:+86-731-89634887

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

		factor	loss	factor	level	level	limit	Remark	
MHz	dBuV	dB/m	dB 	dB 	dBuV/m	dBuV/m	dB		
2402.000	72.95	27. 15	3.54	35. 56	68.08	74.00	-5. 92	Peak	

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Tel.:+86-731-89634887

Freq	Reading	Antenna factor						Remark	
MHz	dBuV							Remain	
2480.000	79.76	27.35	3.59	35.67	75.03	74.00	1.03	Peak	

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Freq		factor	loss	factor	level	level	limit	Remar	k
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
2480.000	70. 64	27. 35	3. 59	35. 67	65. 91	74. 00	-8. 09	Peak	

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

4.2.6 Test Result of Radiated Spurious Emission (30MHz ~ 1GHz)

4.3 AC Conducted Emission Measurement

4.3.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Fraguency of amission (MHz)	Conducted limit (dBμV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

4.3.2 Test Procedures

- 7. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 8. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 9. All the support units are connecting to the other LISN.
- 10. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 11. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 12. Both sides of AC line were checked for maximum conducted interference.
- 13. The frequency range from 150 kHz to 30 MHz was searched.
- 14. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

Tel.:+86-731-89634887

4.3.3 Test Result of AC Conducted Emission

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Spectrum Analyzer	Keysight	N9010A	MY56070788	2019/1/23	2020/1/22	Conducted
Power Sensor	Keysight	U2021XA	MY56510025	2019/1/23	2020/1/22	Conducted
Power Sensor	Keysight	U2021XA	MY57030005	2019/1/23	2020/1/22	Conducted
Power Sensor	Keysight	U2021XA	MY56510018	2019/1/23	2020/1/22	Conducted
Power Sensor	Keysight	U2021XA	MY56480002	2019/1/23	2020/1/22	Conducted
Thermal Chamber	Sanmtest	SMC-408-CD	2435	2019/05/09	2020/5/08	Conducted
Base Station	R&S	CMW 270	101231	2019/1/23	2020/1/22	Conducted
Signal Generator (Blocker)	Keysight	N5171B	MY56200661	2019/1/23	2020/1/22	Conducted

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV 40	101433	2019/2/18	2020/2/17	Radiation
Amplifier	Sonoma	310	363917	2019/1/22	2020/1/21	Radiation
Amplifier	Schwarzbeck	BBV 9718	327	2019/1/22	2020/1/21	Radiation
Amplifier	Narda	TTA1840-35-HG	2034380	2019/05/15	2020/5/14	Radiation
Broadband Antenna	Schwarzbeck	VULB 9168	9168-757	2017-03-03	2020/3/02	Radiation
Horn Antenna	Schwarzbeck	BBHA 9120 D	1677	2017-03-03	2020/3/02	Radiation
Horn Antenna	COM-POWER	AH-1840	101117	2018-06-20	2021/6/19	Radiation
Test Software	Auidx	E3	6.111221a	N/A	N/A	Radiation
Filter	Micro-Tronics	BRM 50702	G266	N/A	N/A	Radiation

Tel.:+86-731-89634887

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
LISN	R&S	ENV216	102125	2019-01-22	2020-01-21	Conducted
LISN	R&S	ENV432	101327	2019-01-22	2020-01-21	Conducted
EMI Test	R&S	ESR3	102143	2019-01-23	2020-01-22	Conducted
Receiver	1100	20110	102110	2010 01 20	2020 01 22	Conadoloa
EMI Test	Audix	E3	N/A	N/A	N/A	Conducted
Software	Addix	LS	IN/A	IN/A	IN/A	Conducted

N/A: No Calibration Required

Tel.:+86-731-89634887

6 Uncertainty of Evaluation

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.60dB
	30MHz ~ 1GMHz	5.05dB
Radiated emission	1GHz ~ 18GHz	5.06 dB
	18GHz ~ 40GHz	3.65dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Tel.:+86-731-89634887

APPENDIX A. SETUP PHOTOGRAPHS

Fig. 1 Radiated emission setup photo(Below 30MHz)

Fig. 2 Radiated emission setup photo(30MHz-1GHz)

Fig. 3 Radiated emission setup photo(Above 1GHz)

Fig. 4 Conducted emission setup photo

Fig. 5 AC Power Line Conducted emission setup photo