

(Code)

R V College of Engineering Department of Computer Science and Engineering CIE - III: Question Paper

Computer Networks(21CS45) Semester: IV

Date:Sept 2023Duration:90 minutesStaff:SCN/MM/PH/SUN/NS

Name: USN: Section: A/B/C/ISE/AIML

Sl. No	Questions	Marks	BTL	СО
1a	Compare and contrast Inter-domain Routing and Intra-domain Routing	04	3	5
1b	Briefly explain the concept of tunneling.	06	2	2
22a	Outline the different types of fragmentation.	05	1	4
2b	Describe the different types of ICMP messages.	05	2	2
3	How do IP addresses get mapped onto data link layer addresses, such as Ethernet? With a neat sketch explain the protocol used for this purpose.	10	2	1
4	With a neat diagram, explain the protocol used to determine the best paths for routing data packets between routers within an Autonomous System.	10	2	5
5a	Differentiate between UDP and TCP.	05	3	2
5b	Write a note on TCP Service Model.	05	1	2

COURSE OUTCOMES

CO1.	Apply the algorithms /techniques of routing and congestion control to solve problems related
	to Computer Networks.
CO2.	Analyze the services provided by various layers of TCP/IP model to build effective solutions
CO3.	Design sustainable networking solutions with societal and environmental concerns by
	engaging in lifelong learning for emerging technology.
CO4.	Exhibit network configuration, protocol usage and performance evaluation in networks.
CO5.	Demonstrate the solutions using various algorithms/protocols available to address networking
	issues using modern tools by exhibiting team work and effective communication.

	L1	L2	L3	L4	L5	L6	CO1	CO2	CO3	CO4	CO5
Marks	05	31	05	-	-	-	10	21	-	05	14

		CIE III Scheme and Solu Answers		Mark		
	Feature	Intra-domain Routing	Inter-domain Routing			
	Scope	Within a single Autonomous System (AS)	Between different Autonomous Systems (ASes)			
	Purpose	Establish routes within the same network domain	Facilitate communication between different networks			
	Protocols	OSPF, RIP, IS-IS, EIGRP (for some vendors)	BGP (Border Gateway Protocol)			
1a	Metric Calculation Typically uses link metrics (e.g., Path attributes (e.g., AS path, preference, MED)					
	Administrative Managed by a single administrative Involves coordination between Control entity multiple administrative entities					
	Scalability	Suitable for large-scale networks	Handles global internet-scale routing			
	Convergence Speed	Generally faster convergence due to smaller network size and frequent updates	Slower convergence due to the complexity of inter-domain paths			
1b	IPv6	IPv4 Router	IPv6 London	06		
I	Paris IPv6 packe	Router	Router London	06		

the path will detect the oversize packet and fragment it into smaller pieces that fit within the MTU size of the outgoing link. Network 1 Network 2 01 Packet G₂ reassembles G₄ reassembles G₁ fragments G₃ fragments the fragments a large packet again (a) G₁ fragments The fragments are not reassembled until the final destination (a host) is reached a large packet Figure 5-42. (a) Transparent fragmentation. (b) Nontransparent fragmentation. 1. Echo Request and Echo Reply (Ping): ICMP Echo Request (Type 8) is used to request an "echo" from a target host, often referred to as "pinging." The target host responds with an ICMP Echo Reply (Type 0), indicating its availability and responsiveness. 2. **Destination Unreachable (Type 3):** This message type is used to indicate that a destination host or network is unreachable for various reasons, such as network congestion, unreachable host, or protocol unreachable. 3. Time Exceeded (Type 11): This message type is used to indicate that a packet has exceeded its time-to-live (TTL) value while traversing through routers. It is often used to detect routing loops or network issues. 4. Redirect Message (Type 5): A router can send an ICMP Redirect message to inform a host that a better route is available for a specific destination. 5. Router Advertisement and Router Solicitation (Type 9 and Type 10): 05 2b These messages are used in the context of IPv6 to facilitate the autoconfiguration of network interfaces and to discover routers on the local network. 6. Parameter Problem (Type 12): This message is used to indicate that a problem has been detected with the IP header, such as an unrecognized option or an incorrect length. 7. Timestamp Request and Timestamp Reply (Type 13 and Type 14): These messages are used to request and respond with timestamps for diagnostic and timing purposes. 8. Address Mask Request and Address Mask Reply (Type 17 and Type 18): These messages are used to determine the subnet mask of a network,

particularly in older versions of ICMP.

	Aspect		ТСР		UDP		
	Connection		Connection-or	iented	Connectionless		
	Reliability		Reliable		Unreliable		
	Ordering Ma		Maintains orde	er of data	No guarantee of order		
	Error Checking		Yes (Checksum)		Limited (Checksum optional)		
	Flow Control		Yes (Congestion control)		No		
5a	11.11.11.11.11.11.11.11.11.11.11.11.11.		Yes (Acknowledgment packets)		No acknowledgments		
	Header Size		Larger (20-60 bytes)		Smaller (8 bytes)		
	Overhead		Higher		Lower		
	Speed		Slower (due to overhead)		Faster (less overhead)		
	Use Cases		Reliable data transfer		Real-time applications, video st	treaming,	
	Example Prot	tocols	HTTP, FTP, SM	TP, SSH	DNS, VoIP, streaming, IoT		
		Port Protocol			Use		05
		20, 21	FTP	File transfe	er		
		22	SSH	Remote login, replacement for Telnet			
		25	SMTP	Email			
		80	HTTP	World Wide Web			
		110	POP-3	Remote er	mail access		
5b		143	IMAP	Remote er	mail access		
		443	HTTPS	Secure We	eb (HTTP over SSL/TLS)		
		543	RTSP	Media play	ver control		
		631	IPP	Printer sha	aring		
Explana	Figure 6-34. Some assigned ports. Explanantion-04M						