Course	10CCC201T	Course	FORMAL LANGUAGE AND AUTOMATA	AND ATTOMATA	Professional Core	L	Т	Р	С	
Code	18CSC3011	Name	FORMAL LANGUAGE AND AUTOMATA	Category	C	Professional Core	3	3 0	0	3

Pre-requisite Courses	Co-requisite Courses	Nil		Co	ressive urses	Nil													
Course Offering Department	Computer Science and Engineering	Data Book / Codes/Standard	•	Nil		1	1												
Course Learning Rationale (CLR): The purpose of learning this course is to:				Le	arning					Pro	gram	Learn	ing O	utco	nes (F	PLO)			
CLR-1: Utilize the mathematics and	d engineering principles for the basics of F	ormal Language		1	2 3	3	1	2	3	4 5	6	7	8	9	10	11	12	13	14 15
CLR-2: Acquire knowledge of Auto	mata and minimize with Regular language	'S		Ĵ.	5)	2													
CLR-3: Acquire knowledge of Cont	text free Grammar and simplify using norm	al forms		(Bloom)	(%)	2	ge		Ħ					Work		9			
CLR-4: Gain knowledge to push do	own automata and apply it with CFL			B	Sugar Program	Audimien (70)	<u>≽</u>		Development Design	ge				N		Finance	g		
CLR-5: Analyze the methods of tur	rning machine			Thinking	icie	≣│	9	Analysis	Develop	JSa	nre-	∞		Team	⊑	ᇤ	Learning		
CLR-6: Analyze and Design the me	ethods of computational complexity			Ę	rof	₽	g	nal	ev.	1 =	Cultur		ł	& Te	aţic	 	eal		
•					P S	5	흪	Ā	~ ~	불립은	~	nment			i)	₩g	J G	_	3 2
Course Learning Outcomes (CLO):	At the end of this course, learners will be	e able to:		Level of	Expected Proficiency	z yperien z	Engineering Knowledge	Problem	Design &	Research Modern Tool Usage	Society	Environ Sustain	Ethics	Individual	Communication	Project Mgt.	Life Long		PSO - 2
CLO-1: Acquire the knowledge of r	mathematics and engineering principles for	the basics of Formal Language					M	Н	-	H L	-	-	-	L	L	-	Н	-	
CLO-2: Acquire the ability to identif	fy specification of a Regular language's wit	h Automata					М	Н	L	M L	-	-	-	М	L	-	Н	-	
CLO-3: Acquire knowledge of Cont	text free Grammar and simplify using norm	al forms					М	Н	М	H L	-	-	-	М	L	-	Н	-	
CLO-4: Understand the concepts of	of push down automata and CFL .						М	Н	М	H L	-	-	-	М	L	-	Н	-	
CLO-5: Apply the knowledge to turn	ning machine and its methods						Н	Н	М	H L	-	-	-	М	L	-	Н	-	
CLO-6: Design the computational and acceptor machines using FA, PDA and Turing machines							L	Н	-	H L	-	-	-	L	L	-	Н	-	

Durati	on (hour)	11	9	9	9	7		
S-1	SLO-1	Introduction to Automaton	Grammars: Introduction: Types of Grammar	Pushdown Automata: Definitions Moves	Turing Machines: Introduction	Undecidability :Basic definitions		
3-1	SLO-2	Mathematical concepts	Context Free Grammars and Languages	Instantaneous descriptions	Formal definition of Turing machines, Instantaneous descriptions	Decidable problems,		
S-2	SLO-1	Formal Languages: Strings, Languages, Properties	Derivations	Deterministic pushdown automata		Examples of undecidable problems and Problems		
3-2	SLO-2	Finite Representation : Regular Expressions	Ambiguity	Problems related to DPDA		Rice's Theorem		
S-3	SLO-1	Problems related to regular expressions	Relationship between derivation and derivation trees	Non - Deterministic pushdown automata	Problems related to turning machine as Acceptors	Undecidable problems about Turing Machine- Post's Correspondence Problem		
3-3	SLO-2	Finite Automata :Deterministic Finite Automata	Problems related to Context free Grammar	Problems related to NDPDA		Problems related to Post's Correspondence Problem		
S-4	SLO-1	Nondeterministic Finite Automata	Simplification of CFG : Elimination of Useless Symbols	Problems related to DPDA and NDPDA	Turing Machine as a Computing Device	Properties of Recursive and Recursively enumerable languages		
3-4	SLO-2	Finite Automaton with €- moves			Problems related to turning Turing Machine as a Computing Device			
S-5	SLO-1	Problems related to Deterministic and Nondeterministic Finite Automata	Simplification of CFG : Unit productions	Pushdown automata to CFL Equivalence	Problems related to turning Turing Machine as a Computing Device	Introduction to Computational Complexity: Definitions		
3-3	SLO-2	Problems related to Finite Automaton with €- moves	Simplification of CFG : Null productions	Problems related to Equivalence of PDA to CFG		Time and Space complexity of TMs		
S-6	SLO-1	Equivalence of NFA and DFA	Problems related to Simplification of CFG	Problems related to Equivalence of PDA to CFG	Techniques for Turing Machine Construction	Complexity classes: Class P, Class NP		
3-0	SLO-2	Heuristics to Convert NFA to DFA						
	SLO-1	Equivalence of NDFA's with and without €- moves	Chomsky normal form	CFL to Pushdown automata Equivalence	Considering the state as a tuple Considering the tape symbol as a tuple	Complexity classes: Introduction to NP- Hardness		
S-7	SLO-2	Problems related Equivalence of NDFA's with and without €-moves	Problems related to CNF	Problems related to Equivalence of CFG to PDA	Checking off symbols	NP Completeness		
	SLO-1	Minimization of DFA	Greiback Normal form	Pumping lemma for CFL	Modifications of Turing Machine			
S-8	SLO-2	Problems related to Minimization of DFA			Multi-tape Turing Machine			

		SLO-1	Regular Languages : Equivalence of Finite Automata and Regular Languages	Problems related to GNF	Problems based on pumping Lemma	Non-Deterministic Turing Machine	
S.						Semi-Infinite Tape Turing Machine	
			Equivalence of Finite Automata and				
			Regular Grammars				
			Problems related to Equivalence of Finite				
			Automata and Regular Languages and				
S-	10 –		Regular Grammars				
			Variants of Finite Automata :Two-way				
		SLO-2	Finite Automaton Mealy Machines				
		SLO-1	Properties of Regular Languages: Closure				
		3LU-1	Properties				
S.	11	SLO-2	Set Theoretic Properties & Other				
		JLU-Z	Properties				
		SLO-3	Pumping Lemma				

Learning
Resources

Hopcroft J.E., Motwani R. and Ullman J.D., "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008.
 Michael Sipser, "Introduction to the Theory of Computation" Cengage Learning, 2012.

4..John.C.Martin, "Introduction to Languages and the Theory of Computation" McGraw-Hill Education, 01- May-

Kamala Krithivasan, Rama.R," Introduction to Formal Languages, Automata Theory and Computation",
 Pearson Education India, 01-Sep-2009.
 Peter Linz, "An introduction to formal languages and automata", Jones & Bartlett Learning, 2001.

Learning Assessment

	Dloomio	Bloom's Continuous Learning Assessment (50% weightage)								Final Examination (50% weightage)		
	Level of Thinking	CLA -	1 (10%)	CLA – :	2 (15%)	CLA – :	3 (15%)	CLA – 4	(10%)#	I IIIai Laiiiiialloi	i (50% weightage)	
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	tal 100 % 100 %		100) %	100	0 %	100 %				

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
		Dr.R.AnnieUthra
		Dr. Jeyasudha