ASSIGNMENT 13

APPLIED COMPUTATIONAL METHODS IN MECHANICAL SCIENCES

RAJAT A CHANDAVAR – 16ME156 13-Nov-19

Answer

- All values computed are non-dimensional values.
- Validation of results were done with Ghia et. al. [1]
- All property calculation were done at node points.

Code(C++)

```
#include<iostream>
    #include<cmath>
    #include<fstream>
    using namespace std;
 5
     main()
  6
         fstream pr,x_vel,y_vel,er,data;
         pr.open("Pressure.txt",ios::out);
 8
 9
         x_vel.open("x-velocity.txt",ios::out);
         y_vel.open("y-velocity.txt",ios::out);
10
         er.open("Error.txt",ios::out);
12
         data.open("data.dat",ios::out);
13
         int i,j,no_x=128,no_y=128,iter=0;
14
         double pn[no_y+2][no_x+2]={ }, p[no_y+2][no_x+2]={ }, u[no_y+2][no_x+1]={ }
, v[no_y+1][no_x+2]={};
         double F[no_y+2][no_x+1]={ },G[no_y+1][no_x+2]={
},p error,max p error,v error,u error,max v error,max u error,velocity error;
         double dx=1.0/no_x, dy=1.0/no_y, r=dx/dy, dt=0.001, Re=100, time;
17
         double ue,uw,un,us,ve,vw,vn,vs,ae,ap,aw,an,as,q,omega_sor=1.9,temp;
18
19
 20
              ++iter;
              time=dt*iter;
 21
 22
 23
              for (j=1; j<no x+1; ++j)</pre>
 24
 25
                  v[0][j]=0.0;/Bottom
 26
                  v[no y][j]=0.0;//Top
27
 28
              for (i=0; i < no y+1; ++i)</pre>
 29
 30
                  v[i][0] = -v[i][1]; //Left
 31
                  v[i][no x+1]=-v[i][no x];//Right
 32
 33
 34
              for (i=1; i < no_y+1; ++i)</pre>
 35
 36
                  u[i][0]=0.0;//Left
 37
                  u[i][no_x]=0.0;//Right
38
 39
              for (j=0; j<no x+1; ++j)</pre>
 40
 41
                  u[0][j] = -u[1][j]; //Bottom
                  u[no_y+1][j]=2-u[no_y][j];//Top
 42
 43
 44
 45
              for (i=1; i < no y+1; ++i)</pre>
 46
 47
                  for (j=1; j<no x; ++j)</pre>
 48
 49
                      ue=(u[i][j]+u[i][j+1])/2;
 50
                      uw = (u[i][j-1]+u[i][j])/2;
 51
                      un=(u[i][j]+u[i+1][j])/2;
 52
                      us=(u[i][j]+u[i-1][j])/2;
 53
                      vn = (v[i][j] + v[i][j+1])/2;
 54
                      vs=(v[i-1][j+1]+v[i-1][j])/2;
```

```
55
                        F[i][j]=-((ue*ue-uw*uw)/dx+(un*vn-us*vs)/dy-
(1.0/Re)*((u[i][j+1]-2*u[i][j]+u[i][j-1])/(dx*dx)+(u[i+1][j]-2*u[i][j]+u[i-1])
1][j])/(dy*dy)));
 56
 57
 58
 59
               for (i=1; i<no y; ++i)</pre>
 60
                   for (j=1; j<no_x+1; ++j)</pre>
 61
 62
 63
                        vn=(v[i+1][j]+v[i][j])/2;
                        vs=(v[i][j]+v[i-1][j])/2;
 64
                        ve=(v[i][j]+v[i][j+1])/2;
 65
 66
                        vw = (v[i][j] + v[i][j-1])/2;
 67
                        ue=(u[i+1][j]+u[i][j])/2;
 68
                        uw = (u[i+1][j-1]+u[i][j-1])/2;
                        G[i][j]=-((vn*vn-vs*vs)/dy+(ue*ve-uw*vw)/dx-
 69
(1.0/Re)*((v[i+1][j]-2*v[i][j]+v[i-1][j])/(dy*dy)+(v[i][j+1]-2*v[i][j]+v[i][j-1]
1]) / (dx*dx)));
 70
 71
 72
               do//SOR for Pressure
 73
 74
                   for(i=no y;i>0;--i)//computing from top
 75
 76
                        for (j=1; j<no_x+1; ++j)</pre>
 77
 78
                            aw=1.0;
 79
                            ae=1.0;
 80
                            an=r*r;
 81
                            as=r*r;
 82
                            q=((F[i][j]-F[i][j-1])/dx+(G[i][j]-G[i-1][j])/dy)*dx*dx;
 8.3
                            if(i==1)
 84
                                 as=0;
 85
                            else if(i==no y)
 86
                                 an=0;
 87
                            if(j==1)
 88
                                 aw=0;
 89
                            else if(j==no_x)
 90
                                ae=0;
 91
                            ap=-(aw+ae+as+an);
                            \label{eq:pnij} \texttt{pn[i][j]=(1-omega\_sor)*p[i][j]+omega\_sor*(q-ae*pn[i][j+1]-apriled)} \\
 92
aw*pn[i][j-1]-an*pn[i+1][j]-as*pn[i-1][j])/ap;
 93
                            p_error=abs(pn[i][j]-p[i][j]);
                             if(i==no_y && j==1)
 95
                                 max_p_error=p_error;
 96
                            else if(p_error>max_p_error)
 97
                                 max_p_error=p_error;
 98
 99
100
101
                   for (i=0; i < no y+2; ++i)</pre>
102
                        for (j=0; j<no_x+2; ++j)</pre>
103
                            p[i][j]=pn[i][j];
104
               }while (max_p_error>1e-6);
105
               for (i=1; i < no_y+1; ++i)</pre>
106
107
                   for (j=1; j < no_x; ++j)</pre>
108
109
                        temp=u[i][j];
110
                        u[i][j]=u[i][j]+dt*F[i][j]-(dt/dx)*(p[i][j+1]-p[i][j]);
111
                        u_error=abs(u[i][j]-temp);
112
                        if(i==1 && j==1)
113
                            max_u_error=u_error;
114
                        else if (u error>max u error)
115
                            max_u_error=u_error;
116
117
```

```
118
              for (i=1; i < no_y; ++i)</pre>
119
120
                   for (j=1; j<no x+1; ++j)</pre>
121
122
                        temp=v[i][j];
                       v[i][j]=v[i][j]+dt*G[i][j]-(dt/dy)*(p[i+1][j]-p[i][j]);
123
124
                        v error=abs(v[i][j]-temp);
125
                        if(i==1 \&\& j==1)
126
                           max_v_error=v_error;
127
                        else if(v_error>max_v_error)
128
                            max_v_error=v_error;
129
130
131
               if (max_u_error>max_v_error)
132
                   velocity_error=max_u_error;
133
               else
134
                   velocity_error=max_v_error;
135
              cout<<"Iteration:"<<iter<<" "<<"Error:"<<velocity error<<"\n";</pre>
              er<<time<<" "<<u[no_y/2][no_x/2]<<"\n";
136
137
          }while (velocity_error>1e-8);
138
          er.close();
139
140
          for (i=1; i < no_y+1; ++i)</pre>
141
142
              pn[i][0]=pn[i][1];
143
              pn[i][no_x+1]=pn[i][no_x];
144
145
          for (j=0; j<no_x+2; ++j)</pre>
146
147
              pn[0][j]=pn[1][j];
148
              pn[no_y+1][j]=pn[no_y][j];
149
150
151
          for (i=0; i < no y+1; ++i)</pre>
152
153
              v[i][0] = -v[i][1]; //Left
154
              v[i][no_x+1]=-v[i][no_x];//Right
155
156
          for (j=0; j<no_x+1; ++j)</pre>
157
158
              u[0][j] = -u[1][j]; //Bottom
159
              u[no_y+1][j]=2-u[no_y][j];//Top
160
161
162
          for (i=no_y;i>=0;--i)
163
164
               for (j=1; j<no x+2; ++j)</pre>
165
                   pr<<(p[i][j]+p[i+1][j]+p[i+1][j-1]+p[i][j-1])/4<<" ";
              pr<<"\n";
166
167
168
          pr.close();
169
170
          for (i=no_y; i>=0; --i)
171
172
               for (j=0; j<no_x+1;++j)</pre>
                  x_vel<<(u[i][j]+u[i+1][j])/2<<" ";
173
174
              x \text{ vel} << " \n";
175
          x_vel.close();
176
177
178
          for (i=no_y; i>=0; --i)
179
              for (j=0; j<no x+1;++j)</pre>
180
181
                  y_vel<<(v[i][j]+v[i][j+1])/2<<" ";</pre>
182
              y vel<<"\n";
183
          y_vel.close();
184
185
```

```
186
       for (i=0; i < no_y+1; ++i)</pre>
187
188
           for (j=0; j<no_x+1;++j)</pre>
189
               data<<j/float(no_x)<<" "<<i/float(no_y)<<" ";</pre>
190
               data<<(p[i][j]+p[i+1][j]+p[i+1][j+1]+p[i][j+1])/4<<" ";
191
               data<<(u[i][j]+u[i+1][j])/2<<" ";
192
               data<<(v[i][j]+v[i][j+1])/2<<" ";
193
194
195
196
197
       data.close();
198
```

Output

Validation

• Re = 400

<u>Observation</u>: The present study seems to agree well with the well established results for lid driven cavity. Hence, it is accurate and further analyses can be done using the developed code.

Velocity contour and Streamline

• Re = 400

<u>Observation</u>: Clockwise circulation is observed within the cavity. Vortices at bottom edges become more significant with increase in Reynolds number.

Convergence Plot

Reference:

[1] U Ghia, K.N Ghia, C.T Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computational Physics, Volume 48, Issue 3, 1982, Pages 387-411, ISSN 0021-9991, https://doi.org/10.1016/0021-9991(82)90058-4.