Cours 5

Calcul propositionnel: sémantique (suite et fin)

Substitutions

Notation : $F[p_1,...,p_n]$ indique qu'une formule F ne comporte pas de variables en dehors de $p_1,...,p_n$.

Proposition

Soit $F[p_1,..,p_n]$ une formule et φ une valuation, alors la valeur $\varphi(F)$ ne dépend que de la valeur de φ sur $p_1,..,p_n$.

Proposition

Soient F et G deux formules et φ une valuation, alors la valeur de F[G/p] pour φ est égale à la valeur de F pour une valuation φ' telle que $\varphi'(p) = \varphi(G)$ et $\varphi'(q) = \varphi(q)$ pour tout $q \in \mathbb{V} \setminus \{p\}$.

Substitutions

Corollaire

Soit F, F', G, G' *des formules et* $p \in \mathbb{V}$:

- ▶ si F est une tautologie alors F[G/p] est une tautologie
- $si\ F \equiv F'\ alors\ F[G/p] \equiv F'[G/p]$
- $si\ G \equiv G'\ alors\ F[G/p] \equiv F[G'/p]$

Exemples:

- ▶ pour toutes formules F, G, H, $((F \Rightarrow (G \Rightarrow H)) \Rightarrow ((F \Rightarrow G) \Rightarrow (F \Rightarrow H)))$ est une tautologie.
- $\neg (F \land G) \equiv (\neg F \lor \neg G)$

Formes normales

Théorème

On a une bijection entre les applications de $\{0,1\}^n \to \{0,1\}$ et l'ensemble des formules sur $p_1,...,p_n$ quotienté par \equiv .

Représentants particuliers : formes normales

- ► Forme normale disjonctive (FND) : $F = G_1 \lor ... \lor G_k$ et $G_i = (B_{i,1} \land ... \land B_{i,n_i})$ avec $B_{i,j} = p$ ou $\neg p$ (litéral).
- ► Forme normale conjonctive (FNC) : $F = G_1 \land ... \land G_k$ et $G_i = (B_{i,1} \lor ... \lor B_{i,n_i})$ avec $B_{i,j}$ un litéral.

Théorème

Tout formule est équivalente à une formule sous FND et une formule sous FNC.

Remarque : on s'autorise à supprimer des parenthèses quand cela ne change pas la classe d'équivalence.

Forme normale

Comment calculer une forme normale?

- 1 à partir de la table de vérité
- par manipulation symbolique
 - mise sous forme normale négative (les seuls connecteurs autorisés sont ∨, ∧, ¬; les négations ne portent que sur des variables propositionnelles)

$$(A \iff B) \equiv ((A \Rightarrow B) \land (B \Rightarrow A))$$

$$(A \Rightarrow B) \equiv (\neg A \lor B)$$

$$\neg (A \land B) \equiv (\neg A \lor \neg B)$$

$$\neg (A \lor B) \equiv (\neg A \land \neg B)$$

2 distributivité de \land sur \lor (et de \lor sur \land)

$$(A \land (B \lor C)) \equiv ((A \land B) \lor (A \land C))$$
$$(A \lor (B \land C)) \equiv ((A \lor B) \land (A \lor C))$$

Encodage de Tseitin

Problème:

 les techniques des mise en forme normale précédentes peuvent augmenter de façon exponentielle la taille d'une formule

Encodage de Tseitin (mise en FNC):

- ► chaque sous formule $(A \alpha B)$ (ou $\neg A$) est *remplacée* par une variable propositionnelle fraîche x
- on ajoute par conjonction $(x \iff (A \alpha B))$ (mis en FNC)

Propriétés:

- ▶ la formule en FNC obtenue n'a augmenté en taille qu'avec un facteur linéaire
- ► *F* satisfiable si et seulement Tseitin(*F*) satisfiable

Systèmes complets de connecteurs

Définition

Un système complet de connecteurs est un ensemble de connecteurs qui permet d'engendrer toutes les applications de $\{0,1\}^n \to \{0,1\}$

Exemple : $\{\neg, \land, \lor\}$, $\{\neg, \lor\}$, $\{nand\}$, $\{nor\}$.

Théorème de compacité

Définition

Un ensemble Σ de formules est *finiment satisfiable* si tout sous-ensemble fini de Σ est satisfiable.

Théorème (de compacité)

 Σ satisfiable si et seulement si Σ finiment satisfiable.

Ce théorème admet un corollaire très utile pour les résultats de complétude qui suivront.

Corollaire

Une formule F est conséquence sémantique d'un ensemble de formules Σ ($\Sigma \models F$) si et seulement si il existe un sous-ensemble fini Σ_{fini} de Σ tel que $\Sigma_{fini} \models F$.

Preuve¹ du théorème de compacité

Nous démontrons le résultat équivalent suivant

 Σ non-satisfiable si et seulement si il existe un sous-ensemble fini de Σ non-satisfiable

Le sens (\Leftarrow) est direct.

Seul le sens (\Rightarrow) est difficile. Nous allons nous appuyer sur lemme de König.

¹Cf cours de Jean Goubault-Larrecq: http://www.lsv.ens-cachan.fr/~goubault/prop.pdf

Lemme de König

Un arbre est un ensemble d'objets, appelé *noeuds*, muni d'une relation binaire \rightarrow , dite de *succession immédiate*, et d'un noeud r appelé racine, vérifiant :

- r n'est le successeur immédiat d'aucun noeud;
- ▶ tout noeud n autre que r a un unique prédécesseur immédiat, c'est-à-dire qu'il existe un unique noeud m tel que $m \rightarrow n$;
- ▶ tout noeud n est successeur de r, c'est-à-dire $r \to^* n$, où \to^* désigne la clôture réflexive transitive de \to .

Un arbre est à *branchement fini* si tous les noeuds n'ont qu'un nombre fini de successeurs immédiats. Il est *fini* si et seulement si l'ensemble de ses noeuds est fini. Une *branche* est une suite finie ou infinie de noeuds n_i , avec $n_0 = r$, et $n_i \rightarrow n_{i+1}$ pour tout i.

Lemme de König

Lemme (König)

Tout arbre a branchement fini et dont toutes les branches sont finies, est fini.

Preuve : Nous considérons un arbre T, à branchement fini, qui soit infini. Nous montrons que T a nécessairement un branche infinie.

Nous construisons une branche infinie de noeuds n_i tel que le sous-arbre de T de racine n_i (*i.e.* l'ensemble des noeud n de T tels que $n_i \to^* n$) soit infini. Nous construisons cette suite par récurrence sur i.

- i = 0: il suffit de prendre $n_0 = r$ car T est infini.
- ▶ nous supposons que $r = n0, ..., n_i$ sont construits. Puisque le sous-arbre de T de racine n_i est infini, il existe nécessairement parmi les successeurs $n_i^1, ..., n_i^k$ (en nombre fini) un noeud racine d'un sous-arbre infini. Un tel noeud nous fournit un choix valide pour n_{i+1} .

Arbre sémantique : définition

Nous avons supposé $\mathbb{V} = \{p_1, \dots, p_n, \dots\}$ dénombrable. Nous définissons l'arbre infinie T_0 suivant

- ▶ les noeuds de T_0 sont des valuations partielles dont le domaine est de la forme $\{p_1, ..., p_i\}$ pour un certain $i \in \mathbb{N}$;
- ▶ la racine est la valuation de domaine vide ;
- ▶ pour toute valuation partielle φ de domaine $\{p_1, ..., p_i\}$, les deux seuls successeurs immédiats de φ sont les valuations $φ^+$ et $φ^-$ de domaines $\{p_1, ..., p_{i+1}\}$ qui coïncident avec φ sur $\{p_1, ..., p_i\}$ et telles que $φ^+(p_{i+1}) = 1$ et $φ^-(p_{i+1}) = 0$.

Arbre sémantique : observations

Quelques observations

- $ightharpoonup T_0$ est à branchement fini;
- chaque branche infinie décrit une unique valuation, qui est l'union des valuations partielles correspondant à chaque noeud;
- tout valuation φ définit une unique branche infinie, obtenue en descendant à gauche ou à droite selon les valeurs attribuées à chaque variable p_i

Noeuds d'échecs

Nous considérons un ensemble de formule Σ non-satisfiables.

- ▶ Pour toute branche de T_0 , *i.e.* toute valuation φ , il existe une formule F_{φ} de Σ telle que $\varphi \not\models F_{\varphi}$.
- ► Chaque F_{φ} ne contient qu'un nombre fini de variables donc il existe toujours une sous branche finie de T_0 dont la valuation partielle correspondante ne satisfait pas F_{φ} . Pour chaque φ nous choisissons un tel noeud, appelé *noeud d'échec*.

Conclusions

Considérons l'arbre T obtenu à partir de T_0 en tronquant chaque branche φ juste après son noeud d'échec. Formellement, T est la restriction de T_0 aux noeuds dont aucun prédécesseur strict n'est un noeud d'échec pour une quelconque formule.

- ► *T* est à branchement fini,
- toutes les branches de T sont finies

Donc *T* est fini, d'après le lemme de König. En particulier, il n'a qu'un nombre fini de feuilles (noeuds sans successeurs).

- chaque feuille est le noeud d'échec d'une certaine formule F_{φ}
- ► l'ensemble (fini) de ces formules forme un ensemble non-satisfiable