Compression Scaling Law — One-Pager

Abstract

We introduce a surrogate-controlled compression contrast that exposes a power-law scaling in window length. The slope defines α , a coder-invariant index of higher-order structure. Across climate, finance, and microdynamics, α separates near-null from organizing regimes and can be tracked over time for regime shifts.

Formula & reading

 $\kappa(L) = -L \; [\; \blacksquare(Q(X\blacksquare:L)) - \blacksquare(Q(S\blacksquare:L)) \;], \; \text{with} \; \kappa(L) \propto L^{\Lambda}\{1-\alpha\}. \; \alpha \approx 1 \; \rightarrow \; \text{near-null}, \; \alpha < 1 \; \rightarrow \; \text{stronger extra-order}.$

 α across datasets (95% CIs).

Rolling alpha(t) — bead_angvel:1.1NA_6umbead_30mW_10ms_100umdeep_1_MMStack_Pos0_txy.txt (seg_len=1152, hop=576)

Rolling $\alpha(t)$ demo (bead angular-velocity).

How to use

1) Choose L grid and step; 2) Quantize + compress real and surrogate; 3) Build $\kappa(L)$; 4) Fit slope; 5) Bootstrap CIs; 6) Compare to nulls; 7) Track $\alpha(t)$.

Limits

Finite-L bias at large scales; intercept depends on quantizer; stationarity assumptions for surrogates.