numpy

Dr. Ilkay Altintas and Dr. Leo Porter

Describe the value of numpy to data science

What are the key features of numpy?

- Multi-dimensional arrays
- Built-in array operations
- •Simplified, but powerful array interactions → broadcasting
- •Integration of other languages (Fortran, C, C++)

```
\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}
```

Why numpy for data science?

Speed

Functionality

Many packages are built on Numpy!

numpy: ndarray Basics

Dr. Ilkay Altintas and Dr. Leo Porter

- Create Rank 1 and Rank 2 ndarrays
- Access elements in ndarrays using basic indexing
- Use built-in functions to quickly and easily create useful ndarrays

numpy: ndarray Indexing

Dr. Ilkay Altintas and Dr. Leo Porter

- Use slice indexing to access subsets of an ndarray
- Recognize that such indexing creates a second reference to the same underlying data

a_slice = an_array[:2, 1:3]

a_slice = an_array[:2, 1:3]

numpy: ndarray Boolean Indexing

Dr. Ilkay Altintas and Dr. Leo Porter

 Use boolean indexing to access and permute relevant data in ndarrays

numpy: ndarray Datatypes and Operations

Dr. Ilkay Altintas and Dr. Leo Porter

- Examine and set the datatype of an ndarray
- Use common ndarray functions

numpy: Statistical, Sorting, and Set Operations

Dr. Ilkay Altintas and Dr. Leo Porter

 Use common ndarray functions for data analysis including statistical, sorting, and set operations

numpy: Broadcasting

Dr. Ilkay Altintas and Dr. Leo Porter

 employ broadcasting to perform operations on different size ndarrays

0	1	2	3
		3	

	0	1	2	3		0	1	2	3
0	1	2	3	4	_L	0	1	0	2
1	5	6	7	8	т	R			
2	9	10	11	12				U	

A

	0	1	2	3		0	1	2	3	1
0	1	2	3	4		0	1	0	2	В
1	5	6	7	8	+	0	1	0	2	В
2	9	10	11	12		0	1	0	2	В

A

	0	1	2	3
0	1	3	3	6
1	5	7	7	10
2	9	11	11	14

Result

Broadcasting rules

"When operating on two arrays, NumPy compares their shapes element-wise. It starts with the trailing dimensions, and works its way forward. Two dimensions are compatible when

- 1. they are equal, or
- 2. one of them is 1"

numpy: Speed Test: ndarray vs. list

Dr. Ilkay Altintas and Dr. Leo Porter

Describe the speed benefits of ndarrays over lists