Incertidumbre

SCALAB

Universidad Carlos III de Madrid

Incertidumbre

Incertidumbre

Incertidumbre

Razonamiento Probabilístico

Redes Bayesianas

Razonamiento Probabilístico en el tiempo

Lógica Borrosa

Introducción

Representación: conjuntos borrosos

Operadores Borrosos

Incertidumbre

Razonamiento Probabilístico

Redes Bayesianas

Razonamiento Probabilístico en el tiempo

Lógica Borrosa

Introducción

Representación: conjuntos borrosos

Operadores Borrosos

Incertidumbre

Razonamiento Probabilístico Redes Bayesianas

Razonamiento Probabilístico en el tiempo

Lógica Borrosa

Introducción

Representación: conjuntos borrosos

Operadores Borrosos

Incertidumbre

Razonamiento Probabilístico Redes Bayesianas Razonamiento Probabilístico en el tiempo

Lógica Borrosa

Introducción

Representación: conjuntos borrosos

Operadores Borrosos

Incertidumbre

Razonamiento Probabilístico Redes Bayesianas Razonamiento Probabilístico en el tiempo

Lógica Borrosa

Introducción

Representación: conjuntos borrosos Operadores Borrosos Reglas Borrosas

Lógica Borrosa (Fuzzy)

- Lógica clásica: true o false Conjuntos níticos.
- Lógica borrosa (Zadeh, 1965): conceptos que no son ciertos o falsos de Le Tienen un gradu de verdad, pero noson absoluto Lo Son diffusos forma clara
 - Concepto borroso: cerca de la puerta
 - Modificadores borrosos: muy cerca, bastante cerca, etc
- Representación
 - Conjunto borroso
 - Función de pertenencia a un conjunto borroso: define en qué grado es verdad que un elemento pertenece al conjunto 20 En que medida un elemento

 ► Valores en el rango [0,1]

 Pertenece al conjunto.

 - 0 representa absolutamente falso
 - 1 representa absolutamente verdadero

Función de pertenencia

Lógica borrosa vs. probabilidad

- Probabilidades
 - Eventos que ocurren o no
 - probabilidad de enfermar de gripe
 - Expresan conocimiento parcial
- Lógica borrosa
 - Vaguedad de conceptos
 - una persona de 2.5 metros es alta
 - una persona de 1.8 metros es alta
 - Ambas personas poseen la propiedad "alta"
 - ... pero en distinto grado
 - Expresa grado de verdad parcial

Imprecisión del lenguaje

- Descripciones
 - ► El tiempo está siendo muy húmedo y bastante caluroso
- ► Instrucciones
 - Cuando estés cerca del cruce empieza a frenar lentamente

Sistema de reglas borrosas

- Descripción del problema borrosa (natural)
 - ► Si cerca del cruce entonces frenar lentamente
 - Si muy cerca de la derecha, girar rápido a la izquierda
 - Si cerca del carril izquierdo, girar rápido a la derecha

Sistema de reglas borrosas

- Descripción del problema borrosa (natural)
 - ► Si cerca del cruce entonces frenar lentamente
 - Si muy cerca de la derecha, girar rápido a la izquierda
 - Si cerca del carril izquierdo, girar rápido a la derecha
- ¿Cómo lo resolvemos? Necesitamos
 - reagulles termines barresos:
 - Definir términos: cerca, rápido, muy, etc.
 - Combinar términos: conjunción (Y), disyunción (O), etc
 - Combinar reglas: para generar una salida única

Incertidumbre

Razonamiento Probabilístico Redes Bayesianas Razonamiento Probabilístico en el tiempo

Lógica Borrosa

Introducción

Representación: conjuntos borrosos

Operadores Borrosos Reglas Borrosas

Variables lingüisticas

- Las variables de los sistemas borrosos expresan cualidades (altura)
- ► Las variables toman valores en un dominio discreto {alto, medio, bajo}
- Los límites entre los valores del dominio son borrosos

Variables lingüisticas

- Conjunto nítido A
 - ▶ Un elemento pertenece o no al conjunto: $A: S \to \{0, 1\}$
 - Función característica

$$\mu_A(x) = \begin{cases} 1 & \text{si x es un elemento del conjunto } A \\ 0 & \text{si x no es un elemento del conjunto } A \end{cases}$$

Podemos definir: Juan es una persona

- Conjunto nítido A
 - ▶ Un elemento pertenece o no al conjunto: $A: S \rightarrow \{0, 1\}$
 - Función característica

$$\mu_A(x) = \begin{cases} 1 & \text{si } x \text{ es un elemento del conjunto } A \\ 0 & \text{si } x \text{ no es un elemento del conjunto } A \end{cases}$$

- Podemos definir: Juan es una persona
- Cómo definimos Juan es alto?

- Conjunto nítido A
 - ▶ Un elemento pertenece o no al conjunto: $A: S \to \{0, 1\}$
 - Función característica

$$\mu_A(x) = \begin{cases} 1 & \text{si x es un elemento del conjunto } A \\ 0 & \text{si x no es un elemento del conjunto } A \end{cases}$$

- Podemos definir: Juan es una persona
- Cómo definimos Juan es alto?
- ► Con un conjunto nítido:

Alto =
$$\{x | \text{altura}(x) > 1.8 \text{ metros}\}$$

- Conjunto nítido A
 - ▶ Un elemento pertenece o no al conjunto: $A: S \rightarrow \{0, 1\}$
 - Función característica

$$\mu_A(x) = \begin{cases} 1 & \text{si x es un elemento del conjunto } A \\ 0 & \text{si x no es un elemento del conjunto } A \end{cases}$$

- Podemos definir: Juan es una persona
- Cómo definimos Juan es alto?
- Con un conjunto nítido:

Alto =
$$\{x | altura(x) > 1.8 \text{ metros} \}$$

► ¿Y si una persona mide 1.79?

Definición de conjunto borroso

Un conjunto borroso A se caracteriza por una función de pertenencia que define en qué grado un elemento x pertenece al conjunto

$$\mu_A:X\to[0,1]$$

Definición de conjunto borroso

Un conjunto borroso A se caracteriza por una función de pertenencia que define en qué grado un elemento x pertenece al conjunto

$$\mu_A:X o [0,1]$$
 entre 0 , 1

- ► Si $\mu_A(x) = 0$ entonces x no pertenece al conjunto
- ► Si $\mu_A(x) = 1$ entonces x pertenece al conjunto
- ► Si $\mu_A(x) = g \in (0,1)$ entonces x pertenece al conjunto en grado g

Ejemplo

- Una persona de 1.8 metros se considera alta con grado 1
- ► Una persona de 1.7 metros es alta pero en menor grado
- Podemos utilizar una función en forma de S

Funciones de pertenencia: función Sigmoidal

Una S

Funciones de pertenencia: función Gausiana

Ejemplo, cercano a a

0.3

0.1

100

Funciones de pertenencia simples

- ► Triangular, trapezoidal = Las que usaremos, + seucillus de colcular.
- Más sencillas de representar y calcular

Modificadores lingüísticos: Operar sobre la función de pertenencia. Modifican el significado de un conjunto borroso Por ejemplo: Al wadra do, who, ek

- - ightharpoonup Muy: $\mu(x)^2$
 - Más o menos: $\mu(x)^{1/2}$
 - Ligeramente: $\mu(x)^{1/3}$
 - ▶ Extremadamente: $\mu(x)^3$

Incertidumbre

Razonamiento Probabilístico Redes Bayesianas Razonamiento Probabilístico en el tiempo

Lógica Borrosa

Introducción

Representación: conjuntos borrosos

Operadores Borrosos

Operadores Borrosos Básicos

- -El minimo en cade una de las A Conjunción: intersección de conjuntos borrosos Lo que comparten el area.
- Disyunción: unión de conjuntos borrosos Las dos juntas.
- Negación: conjunto borroso complementario Los volores inversos (1-velor)
- Se pueden definir de distintas formas
 - Pero deben respetar ciertas propiedades
 - Es una generalización de la lógica clásica o de la teoría de conjuntos clásica

Intersección de conjuntos borrosos: operador AND

$$\mu_A \wedge \mu_B(x) = \min\{\mu_A(x), \mu_B(x)\}\$$

Intersección de conjuntos borrosos: operador AND

$$\mu_A \wedge \mu_B(x) = \underline{min}\{\mu_A(x), \mu_B(x)\}$$

Unión de conjuntos borrosos: operador OR

$$\mu_A \vee \mu_B(x) = \max\{\mu_A(x), \mu_B(x)\}\$$

Unión de conjuntos borrosos: operador OR

$$\mu_A \vee \mu_B(x) = \underbrace{max} \{\mu_A(x), \mu_B(x)\}$$

Complemento de conjuntos borrosos: operador NOT

$$\neg \mu_A = 1 - \mu_A(x)$$

Complemento de conjuntos borrosos: operador **NOT**

$$\neg \mu_A = 1 - \mu_A(x)$$

Incertidumbre

Razonamiento Probabilístico Redes Bayesianas Razonamiento Probabilístico en el tiempo

Lógica Borrosa

Introducción Representación: conjuntos borrosos

Operadores Borrosos

SI p ENTONCES q

- Reglas Nítidas (modus ponens)
 - Si p es cierto, entonces q también es cierto
 - Ejemplo

SI el semáforo está rojo ENTONCES parar el coche

SI p ENTONCES q

- Reglas Nítidas (modus ponens)
 - Si p es cierto, entonces q también es cierto
 - Ejemplo

SI el semáforo está rojo el semáforo está rojo

ENTONCES parar el coche

Por lo tanto paro el coche

SI p ENTONCES q

- Reglas Nítidas (modus ponens)
- P = q P enciente
- Si p es cierto, entonces q también es cierto
- Ejemplo

SI el semáforo está rojo el semáforo está rojo

ENTONCES parar el coche

Por lo tanto paro el coche

- Reglas Borrosas
 - Si p es cierto en un grado, entonces q también es cierto en un grado
 - Ejemplo

SI temperatura muy alta

ENTONCES poner termostato muy bajo

SI p ENTONCES q

- Reglas Nítidas (modus ponens)
 - Si p es cierto, entonces q también es cierto
 - Ejemplo

SI el semáforo está rojo el semáforo está rojo

ENTONCES parar el coche

Por lo tanto paro el coche

- Reglas Borrosas
 - ► Si p es cierto en un grado, entonces q también es cierto en un grado
 - Ejemplo

SI temperatura muy alta temperatura de 32 grados

ENTONCES poner termostato muy bajo

Por lo tanto ¿termostato?

SI p ENTONCES q

- Reglas Nítidas (modus ponens)
 - Si p es cierto, entonces q también es cierto
 - Ejemplo

SI el semáforo está rojo el semáforo está rojo

ENTONCES parar el coche

Por lo tanto paro el coche

- Reglas Borrosas
 - ► Si p es cierto en un grado, entonces q también es cierto en un grado
 - Ejemplo

SI temperatura muy alta temperatura de 32 grados

temperatura alta

ENTONCES poner termostato muy bajo

Por lo tanto ¿termostato?

Por lo tanto ¿termostato?

Controlador Borroso Siste ma Larosos de reglas Larosos Input - Fuzzifier - Fuzzy System - Defuzzifier output It is too hot! Set the fan at 90% speed 90 Degree F. Turn the fan on high

Inferencia con reglas borrosas: 4 pasos

- Método de Mandami: el método típico de inferencia borrosa
 - Construyó un sistema de reglas borrosas para controlar el sistema de vapor de una caldera
 - Las reglas se obtuvieron de expertos experimentados
- 1. Fuzzificar (borrosificar) las entradas Heller les distinces qui de la de la consecuentes de la consecuente consecuente consecuentes de la consecuente consecuente
- 3. Agregación de los consecuentes Hallor func. maximo de las consecuentes
- 4. Defuzzificar (deborrosificar) el resultado Coger el volor del centro de grave de 3.

Paso 1: Fuzzificar las entradas

Determiner en que grade la entrada nitida pertenece a los conjentos barrosos

Determinar en qué grado el valor de la variable de entrada pertenece a los conjuntos borrosos que definen esa variable

ightharpoonup Ejemplo: entrada x_n

Ejemplo: entrada fuzzificada: x_n es baja en grado 0.6, normal en grado 0.4 y alta en grado 0.0

- Determinar en qué medida las entradas fuzzificadas verifican el antedecente de las reglas
- Se cálcula la similitud S entre el antecedente y la entrada correspondiente

- Determinar en qué medida las entradas fuzzificadas verifican el antedecente de las reglas
- Se cálcula la similitud S entre el antecedente y la entrada correspondiente
 - ► Si la temperatura es caliente entonces poner el ventilador alto
 - ▶ La temperatura es tibia

- Determinar en qué medida las entradas fuzzificadas verifican el antedecente de las reglas
- Se cálcula la similitud S entre el antecedente y la entrada correspondiente
 - ► Si la temperatura es caliente entonces poner el ventilador alto
 - ▶ La temperatura es tibia

$$S = \max_{T} \{ \min(caliente(T), tibia(T)) \}$$

Cálculo del antecedente

- Determinar en qué medida las entradas fuzzificadas verifican el antedecente de las reglas
- Se cálcula la similitud S entre el antecedente y la entrada correspondiente
 - ► Si la temperatura es caliente entonces poner el ventilador alto
 - ▶ La temperatura es tibia

$$S = \max_T \{ \min(caliente(T), tibia(T)) \}$$
 El pico mas olto del AND del imply ansemble.

- Antecendentes múltiples
 - lacktriangle AND conjunción de antecedentes ightarrow MIN
 - ▶ OR: disyunción de antecedentes → MAX

de los antecedentes de los antecedentes

Cálculo del consecuente

Cálculo del consecuente

Método más común: cortar la función de pertenencia del consecuente al nivel que marca la similitud S del antecedente

$$Q(x) = \min(S, \mu_C(x))$$

donde C es el conjunto borroso del consecuente

- Agregación: unificación de las salidas de todas las reglas
 - Combina las funciones de pertenencia obtenidas para todos los consecuentes en un sólo conjunto borroso
- Se puede hacer de distintas formas
- Nosotros utilizaremos el *máximo*: unión de los consecuentes

- Agregación: unificación de las salidas de todas las reglas
 - Combina las funciones de pertenencia obtenidas para todos los consecuentes en un sólo conjunto borroso
- Se puede hacer de distintas formas
- Nosotros utilizaremos el máximo: unión de los consecuentes
- Ejemplo
 - ► Si la temperatura es caliente entonces poner el ventilador alto
 - ► Si la temperatura es fría entonces poner el ventilador bajo
 - La temperatura es tibia

Paso 4: Defuzzificación

Convertir el resultado en un valor nítido

- Distintos métodos
 - Más común: centro de gravedad o centroide del área
 - Otros:
 - Bisector del área
 - Menor del máximo
 - Media del máximo
 - Mayor del máximo

La x del centre de grave dad

Paso 3: Defuzzificación

Lógica Borrosa

- Ventajas
 - Representa la vaguedad del lenguaje de forma natural
 - Generaliza los conjuntos nítidos
 - Permite diseños flexibles desde el punto de vista ingenieril
 - Buen rendimiento
 - Métodos simples de implementar
 - → Normalmente funcionan bien!
- Desventajas
 - Hay que diseñar las funciones de pertenencia
 - Normalmente requiere de un ajuste fino de los parámetros
 - La defuzzificación puede producir resultados no deseados
- Herramientas
 - ► Matlab (Fuzzy Toolbox)
 - FuzzyClips

