Tutorial Gmsh 4.6.0 Comandos de la creación de la malla

Steven Vanegas Giraldo

Universidad Nacional de Colombia Sede Manizales 2020

Contenido del tutorial

- Características del mallado e incluir archivos previamente cargados
- 2. Mallado 1D y 2D
- 3. Visualizar las mallas, tamaños y colores de malla
- 4. Orden del elemento finito
- 5. Algoritmos de mallado 2D
- 6. Elementos finitos rectangulares
 - 6.1. Elementos finitos rectangulares Lagrangianos
 - 6.2. Elementos finitos rectangulares Serendípitos
 - 6.3. Algoritmos de recombinación
- 7. Refinar la malla
 - 7.1. Factor de longitud característica general
 - 7.2. Factor de longitud característica en un punto
 - 7.3. Definir vértices de una curva y distribución de nodos

Contenido

- Características del mallado e incluir archivos previamente cargados
- 2. Mallado 1D y 2D
- 3. Visualizar las mallas, tamaños y colores de malla
- 4. Orden del elemento finito
- 5. Algoritmos de mallado 2D
- 6. Elementos finitos rectangulares
 - 6.1. Elementos finitos rectangulares Lagrangianos
 - 6.2. Elementos finitos rectangulares Serendípitos
 - 6.3. Algoritmos de recombinación
- 7. Refinar la malla
 - 7.1. Factor de longitud característica general
 - 7.2. Factor de longitud característica en un punto
 - 7.3. Definir vértices de una curva y distribución de nodos

Características del mallado

Todas de la mallas en Gmsh son consideradas "**no estructu**radas".

Para generar las mallas se discretiza las entidades de menor a mayor dimensión.

- Curvas
- Superficies
- Volúmenes

Archivo de malla *.msh

Se pueden incluir archivos previamente cread

Se puede incorporar archivos con el siguiente comando:

Include "nombrearchivo.geo";

Se puede incluir el archivo ya creado **Ejercicio_2.geo**

Contenido

- Características del mallado e incluir archivos previamente cargados
- 2. Mallado 1D y 2D
- 3. Visualizar las mallas, tamaños y colores de malla
- 4. Orden del elemento finito
- 5. Algoritmos de mallado 2D
- 6. Elementos finitos rectangulares
 - 6.1. Elementos finitos rectangulares Lagrangianos
 - 6.2. Elementos finitos rectangulares Serendípitos
 - 6.3. Algoritmos de recombinación
- 7. Refinar la malla
 - 7.1. Factor de longitud característica general
 - 7.2. Factor de longitud característica en un punto
 - 7.3. Definir vértices de una curva y distribución de nodos

Para generar mallas 1D:

Mesh 1;

Genera por defecto EF tipo barra de 2 nodos.

Para generar mallas 2D:

Mesh 2;

Genera por defecto EF triangular de 3 nodos.

Contenido

- Características del mallado e incluir archivos previamente cargados
- 2. Mallado 1D y 2D
- 3. Visualizar las mallas, tamaños y colores de malla
- 4. Orden del elemento finito
- 5. Algoritmos de mallado 2D
- 6. Elementos finitos rectangulares
 - 6.1. Elementos finitos rectangulares Lagrangianos
 - 6.2. Elementos finitos rectangulares Serendípitos
 - 6.3. Algoritmos de recombinación
- 7. Refinar la malla
 - 7.1. Factor de longitud característica general
 - 7.2. Factor de longitud característica en un punto
 - 7.3. Definir vértices de una curva y distribución de nodos

Visualizar las mallas

Algunos tipos de mallas, como los EF tipo barra, no son visibles por defecto. Los comandos para visualizar los EFs se presentan a continuación:

EFs 1D:

Mesh.Lines =
$$(0/1)$$
; -> Por defecto 0

EFs 2D:

Para los nodos de los EFs:

Mesh.Points =
$$(0/1)$$
; ->Por defecto 0.

Para las caras de los EFs:

Mesh.SurfaceFaces =
$$(0/1)$$
; ->Por defecto 0.

Tamaño y colores de las elementos que construyen la malla

Para el tamaño de los nodos:

Mesh.PointSize = tamanopixeles; -> Por defecto 4.

Para el color de los nodos de los vértices:

Mesh.Color.Points =
$$\{#1, #2, #3\}; ->\{0,0,255\}$$

Para el color del resto de los nodos de los EFs:

Para el grosor de los lados:

Mesh.LineWidth = grosorpixeles; -> Por defecto 1.

Para el color de los lados:

Mesh.Color.Lines= {#1, #2, #3}; -> Por defecto{0,0,0}

Para el color de los EFs de una superficie:

Color {#1, #2, #3} {Surface{etiquetasuperficie};}

Tamaño y colores de las elementos que construyen la malla

Contenido

- Características del mallado e incluir archivos previamente cargados
- 2. Mallado 1D y 2D
- 3. Visualizar las mallas, tamaños y colores de malla
- 4. Orden del elemento finito
- 5. Algoritmos de mallado 2D
- 6. Elementos finitos rectangulares
 - 6.1. Elementos finitos rectangulares Lagrangianos
 - 6.2. Elementos finitos rectangulares Serendípitos
 - 6.3. Algoritmos de recombinación
- 7. Refinar la malla
 - 7.1. Factor de longitud característica general
 - 7.2. Factor de longitud característica en un punto
 - 7.3. Definir vértices de una curva y distribución de nodos

Orden del EF

El orden del EF se define con el siguiente comando:

Mesh.ElementOrder = #;

- 1: Elementos finitos de primer orden
- 2: Elementos finitos de segundo orden
- **-** ...

Mesh.ElementOrder = 2;

- Características del mallado e incluir archivos previamente cargados
- 2. Mallado 1D y 2D
- 3. Visualizar las mallas, tamaños y colores de malla
- 4. Orden del elemento finito
- 5. Algoritmos de mallado 2D
- 6. Elementos finitos rectangulares
 - 6.1. Elementos finitos rectangulares Lagrangianos
 - 6.2. Elementos finitos rectangulares Serendípitos
 - 6.3. Algoritmos de recombinación
- 7. Refinar la malla
 - 7.1. Factor de longitud característica general
 - 7.2. Factor de longitud característica en un punto
 - 7.3. Definir vértices de una curva y distribución de nodos

Algoritmos de mallado

Cambiar el algoritmo de mallado en 2D.

Mesh.Algorithm = #;

- 1: Mesh Adapt
- 2: Automatic
- 3: Initial mesh
- 5: Delaunay
- 6: Frontal-Delaunay
- 7: BAMG
- 8: Frontal-Delaunay (para EF rectangulares)
- 9: Embalaje de paralelogramos

Por defecto 6.

Algoritmos de mallado

- Para superficies curvas muy complejas -> MeshAdapt es el más robusto.
- Para altas calidades del EF -> Frontal-Delaunay.
- Para mallas grandes en superficies planas, el algoritmo más rápido es -> Frontal-Delaunay.
- Cuando el "Delaunay" o "Frontal-Delaunay" fallan, "MeshAdapt" se activa automáticamente.

Para una determinada superficie:

MeshAlgorithm Surface{eti_s1, eti_s2, ..., eti_sn} = #;

Contenido

- Características del mallado e incluir archivos previamente cargados
- 2. Mallado 1D y 2D
- 3. Visualizar las mallas, tamaños y colores de malla
- 4. Orden del elemento finito
- 5. Algoritmos de mallado 2D
- 6. Elementos finitos rectangulares
 - 6.1. Elementos finitos rectangulares Lagrangianos
 - 6.2. Elementos finitos rectangulares Serendípitos
 - 6.3. Algoritmos de recombinación
- 7. Refinar la malla
 - 7.1. Factor de longitud característica general
 - 7.2. Factor de longitud característica en un punto
 - 7.3. Definir vértices de una curva y distribución de nodos

Generar elementos finitos rectangulares

Por defecto, la generación de EFs de la malla son triangulares. Para generar EFs rectangulares se puede usar el siguiente comando:

Mesh.RecombineAll = (0/1); Por defecto 0.

Mesh.SubdivisionAlgorithm = #; -> Por defecto 0.

■ Ninguno: 0

Todos rectángulos: 1

Todos hexaedros: 2

Baricéntrico: 3

Generar elementos finitos rectangulares

Generar elementos finitos rectangulares (algoritmos)

Se puede seleccionar el algoritmo de recombinación de la siguiente manera:

Mesh.RecombinationAlgorithm = #; -> Por defecto 1.

■ Simple: 0

■ Blossom: 1

Simple full-quad: 2

Blossom full-quad: 3

Generar elementos finitos rectangulares (serendípitos)

Se pueden obtener EFs serendípitos con el siguiente comando:

Mesh.SecondOrderIncomplete = (0/1); -> Por defecto 0.

Contenido

- Características del mallado e incluir archivos previamente cargados
- 2. Mallado 1D y 2D
- 3. Visualizar las mallas, tamaños y colores de malla
- 4. Orden del elemento finito
- 5. Algoritmos de mallado 2D
- 6. Elementos finitos rectangulares
 - 6.1. Elementos finitos rectangulares Lagrangianos
 - 6.2. Elementos finitos rectangulares Serendípitos
 - 6.3. Algoritmos de recombinación
- 7. Refinar la malla
 - 7.1. Factor de longitud característica general
 - 7.2. Factor de longitud característica en un punto
 - 7.3. Definir vértices de una curva y distribución de nodos

Factor de longitud característica de toda la malla

Se puede determinar un factor de la longitud característica de la malla.

Mesh.CharacteristicLengthFactor = #;

Factor de 1.

Factor de 0.2.

Factor de longitud característica de toda la ma-

Se puede determinar un factor de la longitud característica mínima y máxima de la malla.

Existen unas restricciones máximas y mínimas:

Mesh.CharacteristicLengthMin = #;

Mesh.CharacteristicLengthMax = #;

Definir longitud característica en un punto

$$Point(i) = \{x, y, z, lc\};$$

Ic: longitud característica que establece el tamaño del elemento alrededor del punto

Cambiar las logitudes características de varios puntos:

Debe ser definido antes de **Mesh #**;

Definir el número de vértices de una curva

Para determinar el número de vértices de los EFs con limitaciones con una curva, se puede usar el siguiente comando:

Transfinite Curve{eti_c1, eti_c2, ..., eti_cn} = #vertices;

Definir puntos en una curva

Se puede definir el número de vértices de EFs sobre una superficie:

Transfinite Curve {eti_c1, eti_c2, ..., eti_cn} = #numerovertices Using Progression #;

La dirección de la definición de la curva tendrá predominancia en el sentido de la progresión geométrica.

Definir puntos en una curva

Se puede definir el número de vértices de EFs sobre una superficie y con una progresión geométrica:

Transfinite Curve {eti_c1, eti_c2, ..., eti_cn} = #numerovertices Using Bump #;

Mallas estructuradas

Las mallas estructuradas se puede pueden hacer definiendo los puntos de las fronteras de la superficie y luego usando el siguiente comando:

Transfinite Surface{eti_s1, eti_s2, ..., eti_sn};

Mallas estructuradas

Guardar las malla

Para guardar la malla generada se puede usar el siguiente comando:

Save "nombrearchivo.msh";

Se creará un archivo con extensión *.msh.