FISEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Unprecedented effect of CO_2 calcination atmosphere on photocatalytic H_2 production activity from water using g- C_3N_4 synthesized from triazole polymerization

Jing Xu^{a,b}, Mamoru Fujitsuka^a, Sooyeon Kim^a, Zhouping Wang^b, Tetsuro Majima^{a,*}

- a The Institute of Scientific and Industrial Research (SANKEN). Osaka University. Mihogaoka 8-1. Ibaraki, Osaka 567-0047, Japan
- ^b School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, PR China

ARTICLE INFO

Keywords: Photocatalysis g- C_3N_4 CO $_2$ atmosphere Hydrogen Evolution reaction Triazole

ABSTRACT

Gaseous atmosphere during graphitic carbon nitride (g- C_3N_4) preparation can have a significant influence on modifying the morphological texture, polymeric structure, charge carrier behavior, and consequently the photocatalytic performance. Herein, we developed a new one-step method to fabricate g- C_3N_4 through direct pyrolysis of 3-amino-1,2,4-triazole in CO_2 atmosphere (C_3N_4 -T- CO_2) with no additive. Surprisingly, the H_2 production activity of C_3N_4 -T- CO_2 photocatalyst under visible light irradiation was 2.4 and 1.7 times as high as that of g- C_3N_4 obtained under air and N_2 atmosphere with the same heating process, respectively. Detailed characterizations indicated that the CO_2 calcination atmosphere induced less nitrogen vacancies with no charge transport ability, more NH_x groups, and faster rate of the electron transport between heptazine rings for C_3N_4 -T- CO_2 among three samples. It is also suggested that the larger number of NH_x in C_3N_4 -T- CO_2 could enhance the interlayer electron transport through the hydrogen-bonding interaction between C_3N_4 layers. Time-resolved photoluminescence, single-particle fluorescence, and femtosecond time-resolved transient absorption measurements were performed to elucidate the efficient charge transfer and trapping processes in C_3N_4 -T- CO_2 . For the first time, such unprecedented effect of CO_2 calcination atmosphere was observed for g- C_3N_4 . This work not only presents a promising strategy in designing highly effective g- C_3N_4 photocatalyst for solar energy conversion, but also makes an insight into the charge transfer process in g- C_3N_4 photocatalyst.

1. Introduction

Photocatalytic hydrogen (H_2) production from water is regarded as one promising strategy to solve the global energy crisis by utilizing solar energy. Therefore, developing effective and stable photocatalysts for hydrogen evolution reaction (HER) has become one of the most significant and challenging research subjects in the recent decades. Among the numerous kinds of existing semiconductors, graphitic carbon nitride (g- C_3N_4) has drawn considerable attention since the pioneering work on its HER ability published in 2009 by Wang et al. [1]. g- C_3N_4 , which is constructed from N-bridged triazine or tri-s-triazine (heptazine) repeating units, can be synthesized by thermal condensation of diverse nitrogen-rich precursors, for instance, cynamide, dicyandiamide, melamine, thiourea and so on [2]. As an organic polymeric photocatalyst, g- C_3N_4 shows extensive potential in energetic and environmental applications including water splitting [3,4], pollutants degradation [5,6], CO_2 reduction [7,8], disinfection [9,10], and

N₂ fixation [11,12] in virtue of its low cost, environment-friendly nature, visible-light response, and appropriate band structure. However, the efficiencies of bulk g-C₃N₄ in the above applications are not sufficiently high, because of the limited visible-light adsorption, low specific surface area, less active sites, fast charge recombination, and slow charge separation [13]. As the flexible supramolecular framework of g-C₃N₄ allows the feasibility of tuning its textural and chemical structures for photocatalysis, various approaches have been applied to overcome the existing obstacles and enhance the photocatalytic activity of g-C₃N₄, such as morphology control [14,15], heteroatoms doping [16,17], heterostructures constructing [18,19], and copolymerization with proper monomers [20,21]. Nonetheless, most of the above methods require complicated synthesis procedures and costly functionalized reagents which are unsuitable for practical application. Thus, it is still desirable to develop an alternative simple and inexpensive method to modify characteristic structure and improve photocatalytic performance of g-C₃N₄.

E-mail address: majima@sanken.osaka-u.ac.jp (T. Majima).

^{*} Corresponding author.

It is well known that optical, morphological, electronic, and photocatalytic properties of g-C₃N₄ can be greatly affected by the pyrolysis conditions set in g-C₃N₄ preparation process, including the precursors, temperature-rise path, thermolysis temperature, and heating duration [22,23]. Additionally, the calcination atmospheres, such as H2 and NH3, can also exert an effect on the intrinsic structure and charge carrier behavior of g-C₃N₄ via generating defects, carbon or nitrogen vacancies, and disordered conjugated planes, and consequently improve the photocatalytic activity [24-28]. For example, H₂ causes g-C₃N₄ with more nitrogen vacancies during thermal condensation of dicyandiamide [29], while NH3 does holey g-C3N4 nanosheets with carbon vacancies by heating bulk g-C₃N₄ [30]. Pyrolysis-generated selfproducing atmosphere results in porous g-C₃N₄ with more uncondensed amino groups by heating melamine [31]. The previous works not only present an insight into the influence of the reaction atmosphere on the structure and properties of g-C₃N₄, but also arise our interest to develop a facile method to synthesize active g-C₃N₄ under appropriate atmosphere.

Recently, substituted 1,2,4-triazoles, heterocyclic nitrogen-rich molecules with a five-membered ring of three nitrogen and two carbon atoms, were found to be one kind of outstanding precursors for the synthesis of g-C₃N₄ with heptazine-based polymeric melon structure [32,33]. In the previous studies, triazole-derived g-C₃N₄ possessed expanded visible light absorption, adjusted electronic structures, and altered emission properties which resulted in significantly enhanced photocatalytic activities compared to ordinary g-C₃N₄ with a band gap of ~2.7 eV [34,35]. Herein, we fabricated g-C₃N₄ through directly pyrolysis treatment of 3-amino-1,2,4-triazole in CO2 atmosphere (C3N4-T-CO₂) with no additive. For comparison, g-C₃N₄ was prepared under air and N2 calcination atmosphere with the same heating process. Impressively, the obtained C₃N₄-T-CO₂ photocatalyst showed higher H₂ production activity under visible light irradiation than g-C₃N₄ synthesized in air and N2. Moreover, the impact of CO2 atmosphere on the formation of the heptazine-based polymeric melon structure and the charge transfer process was also systematically studied to understand the higher activity of C₃N₄-T-CO₂. To the best of our knowledge, this is the first time that such unprecedented effect of CO2 calcination atmosphere was observed for g-C₃N₄ photocatalyst. Considering the simple synthesis and high activity of C₃N₄-T-CO₂, this work clearly presents a method in designing the highly effective g-C₃N₄ photocatalyst.

2. Experimental section

2.1. Preparation of C_3N_4 -T under different atmospheres

We prepared a variety of $g\text{-}C_3N_4$ via thermal polycondensation of various precursors (X), $C_3N_4\text{-}X$ (X = melamine (M), 3-amino-1,2,4-triazole (T), dicyandiamide (D), and thiourea (TU)). The photocatalytic H_2 production activities of $C_3N_4\text{-}X$ photocatalyst were examined under the experimental conditions denoted in the next paragraph. Among $C_3N_4\text{-}X$ photocatalysts, $C_3N_4\text{-}T$ photocatalyst shows the highest activity for H_2 production from water under visible light irradiation ($\lambda \geq 420 \text{ nm}$) (Fig. S1). Similarly, the high photocatalytic activity of $C_3N_4\text{-}T$ photocatalyst has been previously reported by other groups [2,34].

Since C_3N_4 -T photocatalyst has the highest activity, we studied the synthesis of C_3N_4 -T under three kinds of calcination atmospheres (Y = N_2 , air, and CO_2). Three C_3N_4 -T-Y were prepared by calcinating T (0.2 g) at 550 °C for 4 h after heating from room temperature up to 550 °C at a rate of 3 °C min $^{-1}$ under N_2 , air, or CO_2 , which are denoted by C_3N_4 -T- N_2 , C_3N_4 -T-air, and C_3N_4 -T- CO_2 , respectively. The bulk g- C_3N_4 synthesized from M (C_3N_4 -M), C_3N_4 -T- N_2 , and C_3N_4 -T-air were all selected as the reference g- C_3N_4 samples.

2.2. Photocatalytic H_2 production

The photocatalytic H2 production activities were evaluated under

visible light irradiation by a xenon lamp together with a 420 nm cutoff filter (Asahi Spectra HAL-320, $750\,\mathrm{mW\,cm^{-2}}$). 5 mg of as-prepared photocatalyst was ultrasonically dispersed in 5 mL aqueous solution containing 20 vol% triethanolamine (TEOA) as a sacrificial electron donor. Then 3 wt% Pt was deposited on the surface of photocatalyst as a cocatalyst from photoreduction of $\mathrm{H_2PtCl_6}$. The suspension of photocatalyst was purged with Ar for 30 min to remove air completely in the reactor and sealed with a rubber plug. After the photocatalytic reactions, the volume of evolved $\mathrm{H_2}$ was measured by a Shimadzu GC-8A gas chromatograph equipped with a thermal conductive detector and a MS-5A column, using Ar carrier gas. The stability of $\mathrm{C_3N_4\text{-}T\text{-}CO_2}$ photocatalyst was examined by reusing them in cycle experiments. The apparent quantum efficiency (AQE) for hydrogen production at different wavelengths of monochromatic light was calculated from Eq. (1) [181].

$$AQE = \frac{2 \times number of \ produced \ H_2}{number of \ absorbed \ photons} \times 100 \ (\%). \tag{1}$$

2.3. Characterization

X-ray diffraction (XRD) patterns were collected in a Rigaku Rint-2500 Smartlab system with a Cu Kα radiation. Fourier transformed infrared (FTIR) measurements were conducted by a PerkinElmer spectrometer. The morphological images of samples were taken using scanning electron microscopy (SEM, JEOL JSM-6330FT) and transmission electron microscopy (TEM, JEOL-2100). The Brunauer-Emmett-Teller (BET) surface area and pore size distribution were estimated by N2 sorption with a BELSORP max (BEL Japan). UV-vis diffuse reflectance spectra (DRS) were recorded on a Jasco V-770 spectrometer. Elemental analysis was carried out by a MICRO CORDER JM10. X-ray photoelectron spectroscopy (XPS) analysis was characterized by an AXIS-165x system (Shimadzu), and C 1s at 284.8 eV was used to internally calibrate the binding energies. Steady-state photoluminescence (PL) spectra were obtained on a Horiba FluoroMax-4 fluorescence spectrometer excited at 350 nm. Time-resolved fluorescence spectra were measured by the single photon counting method in a streakscope (Hamamatsu Photonics, C4334-01) equipped with a polychromator (Acton Research, SpectraPro150), and a 400-nm femtosecond pulse laser was used as the excitation source. The fluorescence and background signals were both detected respectively by photomultiplier. The fluorescence lifetimes of the samples were estimated from deconvolution of the fluorescence and background signals.

The details of the characterizations such as photoelectrochemical measurements, single particle fluorescence analysis, and femtosecond time-resolved diffuse reflectance (fs-TDR) spectroscopy were summarized in Supporting Information.

3. Results and discussion

3.1. Characterization of C_3N_4 -T-Y

The crystal and chemical structures of as-prepared C_3N_4 -T-Y were characterized by XRD and FTIR spectra, respectively. The XRD patterns show two characteristic peaks at 13.1° and 27.6° assigned to in-planar packing of heptazine units and inter-planar stacking of conjugated C–N heterocycles, respectively (Fig. S2) [1], suggesting the heptazine ring-based framework of C_3N_4 -T-Y. The FTIR spectra of C_3N_4 -T-Y display three characteristic absorption bands of g- C_3N_4 at 808, 1200–1700, and 3150 cm $^{-1}$, assigned to the breathing vibration of the heptazine units, the stretching vibration of aromatic heterocycles, and the stretching vibration of N–H bonds, respectively (Fig. S3) [1]. Since no obvious difference is observed for three C_3N_4 -T-Y, they have similar crystal and chemical structures.

The morphological characteristics of C_3N_4 -T-Y were studied by SEM and TEM. The SEM images exhibit micrometer-sized stacking particles

Fig. 1. UV-vis diffuse reflectance spectra (a) and band gap energy calculation (b) of C₃N₄-T-Y and C₃N₄-M.

together with irregular shapes (Fig. S4), while the TEM images do bulk morphology with lamellar structure (Fig. S5). Three C_3N_4 -T-Y show similar BET surface area (6.2–7.2 m 2 g $^{-1}$), pore volume (0.060–0.072 cm 3 g $^{-1}$), and pore size distribution (Table S1 and Fig. S6), confirming the similar morphology.

By changing Y of C₃N₄-T-Y from air to CO₂ and N₂, the color of C₃N₄-T-Y gradually darkens and finally turns brick-red (Fig. S7), which are reflected to the absorption property analyzed by DRS spectra (Fig. 1a). Three C₂N₄-T-Y exhibit two absorption bands at 400 and 450-800 nm. The absorption band at 400 nm is observed for C₃N₄-M, while C₃N₄-M has no shoulder peak at 450-800 nm. Among three C₃N₄-T-Y, C₃N₄-T-N₂ has stronger absorption at 450-800 nm, while C₃N₄-Tair does weaker absorption. One intrinsic band at 400 nm is attributed to π - π * transition in the conjugated heptazine ring, while other band at 450–800 nm originates from $n-\pi^*$ transition involving lone pair electrons of sp^3 N atoms of NH_x substituted on heptazine ring [36]. The n- π * transition is allowed for dissymmetric heptazine units which can be induced by nitrogen vacancies (V_N) [37]. Since V_N increases in the order of C_3N_4 -T-air $< C_3N_4$ -T- $CO_2 < C_3N_4$ -T- N_2 , the ring should be deformed more considerably in the same order. The relation between V_N and photocatalytic activity changes has been reported for other g- C_3N_4 containing V_N [38,39].

The band gaps of C_3N_4 -T-air, C_3N_4 -T-CO₂, and C_3N_4 -T-N₂ are calculated from Tauc-Plot (Fig. 1b) to be 2.24, 2.05, and 1.94 eV, respectively, which are significantly smaller than 2.65 eV of C_3N_4 -M. The band-gap decrease or absorption increase in the visible range is responsible for higher activity of C_3N_4 -T photocatalyst than C_3N_4 -M photocatalyst for H_2 production from water under visible light irradiation (Fig. S1) [2]. It is clear that the band gap is influenced by the calcination atmospheres. Alternatively, C_3N_4 -T has defect sites depending on the calcination atmospheres.

The existence of V_N in heptazine ring of C_3N_4 -T-Y was validated by elemental analysis. The C/N atomic ratio is 0.657 for C_3N_4 -T-air, and gradually increases to 0.660 and 0.665 for C_3N_4 -T-CO $_2$ and C_3N_4 -T- $_2$, respectively (Table S2). The elemental analysis suggests the increasing loss of N atom and the increasing number of V_N in the order of C_3N_4 -T-air $< C_3N_4$ -T-CO $_2 < C_3N_4$ -T- $_2$ [40].

XPS was further conducted to confirm the formation of V_N and investigate the chemical states of C_3N_4 -T-Y. The XPS C 1s spectra comprise C (N–C=N) in heptazine rings and adventitious C, showing no obvious change for three C_3N_4 -T-Y (Fig. S8). The XPS N 1s spectra display three peaks including N (C–N=C) in heptazine rings (398.8 eV), N in N – (C)₃ (400.1 eV), and N in NH_x (401.2 eV) (Fig. 2) [9]. As shown in Table 1, the ratio of peak area C–N=C vs. N-(C)₃ (C–N=C/N-(C)₃) increases in the order of C_3N_4 -T-N₂ (3.9) < C_3N_4 -T-CO₂ (4.4) < C_3N_4 -T-air (5.1), suggesting V_N are originated by releasing N (C–N=C) to lead the degradation of the heptazine rings in a part [7]. Additionally, C–N=C/N-(C)₃ ratio of C_3N_4 -T-N₂ (3.9) is even 0.5 lower than that of C_3N_4 -T-CO₂ (4.4), indicating that more V_N are formed

Fig. 2. XPS N 1s spectra of C₃N₄-T-Y.

Table 1 Distribution of N atoms based on XPS N 1s spectra for C_3N_4 -T-Y.

C ₃ N ₄ -T-Y	C-N-C	N-(C) ₃	NH_x	$C-N=C/N-(C)_3$	$NH_x/N-(C)_3$
C ₃ N ₄ -T-N ₂	75.96%	19.28%	4.76%	3.9	0.25
C ₃ N ₄ -T-air	79.84%	15.62%	4.54%	5.1	0.29
C ₃ N ₄ -T-CO ₂	76.96%	17.35%	5.69%	4.4	0.33

under N_2 calcination atmosphere, which coincides with the DRS and elemental analysis. Meanwhile, the ratio of NH_x/N - $(C)_3$ for C_3N_4 -T- CO_2 (0.33) is larger than those for C_3N_4 -T- N_2 (0.25) and C_3N_4 -T-air (0.29). As previously reported, hydrogen-bonding interaction between C_3N_4 layers can be arisen from the presence of NH_x groups [31]. Therefore, C_3N_4 -T- CO_2 with the highest ratio of NH_x/N - $(C)_3$ contains the largest number of NH_x groups to promote the interaction between C_3N_4 layers through the hydrogen bonding, which would also be proved by the higher H_2 production activity and better photoelectrochemical performance for C_3N_4 -T- CO_2 photocatalyst than C_3N_4 -T- N_2 and C_3N_4 -T-air photocatalysts as discussed below.

3.2. Photocatalytic H_2 production activity

To explore the effects of calcination atmosphere on the activity of C_3N_4 -T-Y photocatalyst, H_2 production from water was carried out under visible light irradiation ($\lambda \geq 420\,\mathrm{nm}$) by adding TEOA as the sacrificial electron donor and depositing Pt as the cocatalyst (Fig. 3a). The control experiment indicates that H_2 is barely produced without photocatalyst or light irradiation. Although C_3N_4 -T- N_2 possesses the best light-harvesting ability and largest amount of V_N , C_3N_4 -T- C_2 exhibits the highest photocatalytic activity of H_2 production (424.7 μ mol g⁻¹ h⁻¹), which is almost 2.4 and 1.7 times as large as C_3N_4 -T- N_2 (177.2 μ mol g⁻¹ h⁻¹) and C_3N_4 -T-air (253.1 μ mol g⁻¹ h⁻¹),

Fig. 3. Comparison of the H_2 production rate of C_3N_4 -T-Y photocatalyst (a), absorption spectrum and wavelength-dependent AQE of H_2 production for C_3N_4 -T-CO₂ photocatalyst (b), stability of C_3N_4 -T-CO₂ photocatalyst for the photocatalytic H_2 production (c).

respectively. Therefore, the highest activity of C_3N_4 -T-CO $_2$ photocatalyst arises from neither absorption spectrum nor band gap, but other factors. Surprisingly, such unprecedented effect of CO_2 calcination atmosphere has never been observed for C_3N_4 in HER.

To elucidate the unprecedented effect of CO2 atmosphere on the photocatalytic activity, we carried out various measurements for C₃N₄-T-CO₂ as shown below. The wavelength-dependent AQE (Fig. 3b) clearly shows that the photocatalytic activity of H2 production for C3N4-T-CO₂ is not coincident with the DRS spectrum. Although the activity is related to the absorption in the range of UV and visible light shorter than 460 nm, it is smaller than the expected values in the range of 460–800 nm. It is, therefore, clear that the π - π * transition plays a dominant role in the overall visible-light-driven activity of C₃N₄-T-CO₂ photocatalyst, while the $n-\pi^*$ transition just makes a minor contribution to the photocatalytic activity. Additionally, the AOE of C₂N₄-T-CO₂ at 420 nm is about 2.2%, which is larger than those of C₃N₄-T-N₂ (1.1%) and C₃N₄-T-air (1.3%). In contrast, it has been reported that the generated V_N in g-C₃N₄ leads to improved photocatalytic activity because of obvious red-shift of the intrinsic and shoulder absorption peaks [29,39]. The difference is discussed below.

The stability of C_3N_4 -T-CO₂ photocatalyst was also examined to show a negligible decrease of the H_2 production rate after 4 cycles (Fig. 3c), confirming that C_3N_4 -T-CO₂ acts as a stable photocatalyst for H_2 evolution.

3.3. Photophysical and photochemical properties

To clarify the roles of V_N and NH_x for the activity of C_3N_4 -T-CO₂ photocatalyst, photoelectrochemical experiments, steady state PL, time-resolved fluorescence, single particle fluorescence, and fs-TDR measurements were performed to investigate the charge transfer process of C_3N_4 -T-Y in detail.

Three C₃N₄-T-Y electrodes can generate quick and invertible

transient photocurrent responses by the intermittent irradiation (Fig. 4a). Among them, the C_3N_4 -T-CO $_2$ electrode exhibits the largest visible-light-driven current density which is consistent with the highest H_2 production rate for C_3N_4 -T-CO $_2$. The enhanced transient photocurrent response can be explained by the higher separation efficiency of electron-hole pairs for C_3N_4 -T-CO $_2$ [9]. The consistent result was observed in electrochemical impedance spectroscopy (EIS) Nyquist plots (Fig. 4b), in which arc radius of C_3N_4 -T-CO $_2$ is smaller than those of C_3N_4 -T-N $_2$ and C_3N_4 -T-air under visible light irradiation. Since a smaller EIS arc radius is indicative of a lower charge transfer resistance of the working electrode, C_3N_4 -T-CO $_2$ possesses more efficient charge transfer property [9].

It is found that the photocurrent and EIS performance improve in the order of C_3N_4 -T- $N_2 < C_3N_4$ -T-air $< C_3N_4$ -T-CO $_2$, and they are not directly influenced by V_N and degradation of heptazine rings which increase in the order of C_3N_4 -T-air $< C_3N_4$ -T-CO $_2 < C_3N_4$ -T- N_2 . On the other hand, the rising order of number of NH_x (C_3N_4 -T- N_2 $< C_3N_4$ -T-air $< C_3N_4$ -T-CO $_2$) is similar to the order of the photocurrent and EIS. It is, therefore, suggested that the interlayer electron transport between C_3N_4 layers is considerably enhanced in C_3N_4 -T-CO $_2$ with larger number of NH_x than those in C_3N_4 -T-air and C_3N_4 -T- N_2 . In other word, CO_2 calcination atmosphere provides a large interface between C_3N_4 layers due to larger number of NH_x in C_3N_4 -T-CO $_2$ than in C_3N_4 -T-air and C_3N_4 -T-N $_2$. The interfacial interaction between C_3N_4 layers can be considerably enhanced by the hydrogen bonding between NH_x groups [31].

It is well known that g- C_3N_4 shows PL originated from the charge recombination between hole and electron under light irradiation [19]. Indeed, C_3N_4 -M shows intense PL under 350-nm excitation, while three C_3N_4 -T-Y do a negligible weak PL at around 480 nm (Fig. S9). The decrease of the PL intensity corresponds to charge trapping at trap sites [39]. Fig. 5a presents the PL spectra of three C_3N_4 -T-Y in which C_3N_4 -T-CO₂ and C_3N_4 -T-air exhibit higher PL intensity than C_3N_4 -T-N₂. The

Fig. 4. Photocurrent responses (a) and EIS Nyquist plots (b) of C₃N₄-T-Y under visible light irradiation.

Fig. 5. PL spectra of C₃N₄-T-Y with excitation at 350 nm (a), time profiles of fluorescence decay in the ns time scale for C₃N₄-T-Y with excitation at 400 nm (b).

difference may relate to V_N as the charge trap states, while the number of V_N has no relation to the photocatalytic activity.

To understand the steady state PL results of C₃N₄-T-Y, time-resolved fluorescence spectra were measured under 400-nm laser excitation (Fig. 5b). The averaged fluorescence lifetime (τ_{av}) of ~1 ns for C₃N₄-T-Y is shorter than τ_{av} of a few ns for C₃N₄-M [9]. Usually longer τ corresponds to higher photocatalytic activity [41]. This discrepancy can be explained by the existence of various charge trap sites with shallow and deep potential minima [42]. Notably, among three C₃N₄-T-Y, C₃N₄-T-CO₂ exhibits slower decay kinetics than C₃N₄-T-air and C₃N₄-T-N₂. The decay profiles are well-fitted with shorter and longer lifetimes (τ_1 and τ_2 , respectively) for three C₃N₄-T-Y. As summarized in Table 2, τ_1 of $0.54\,\text{ns}$ for $\text{C}_3\text{N}_4\text{-T-CO}_2$ decreases to 0.38 and $0.39\,\text{ns}$ for $\text{C}_3\text{N}_4\text{-T-N}_2$ and $\text{C}_3\text{N}_4\text{-T-air},$ respectively, while τ_2 of 3.2 and 3.4 ns for $\text{C}_3\text{N}_4\text{-T-N}_2$ and C_3N_4 -T-air, respectively, increases to 3.6 ns for C_3N_4 -T- CO_2 , and the τ_2 components increase synchronously. In addition, τ_{av} increases in the order of C_3N_4 -T- N_2 (0.96 ns) $< C_3N_4$ -T-air (1.1 ns) $< C_3N_4$ -T- CO_2 (1.3 ns). Even such slightly different τ_{av} may have a relation to the large difference of the photocatalytic activity of three C₃N₄-T-Y.

Generally, ensemble measurements such as the PL measurement give only average values of various properties to obscure the minor portion of values. Since the differences of the PL intensities and fluorescence lifetimes are resulted from the ensemble average, sometimes they may not be consistent with the photocatalytic activity. It is well known that single-particle fluorescence spectroscopy is significantly useful to observe the actual properties for each catalyst particles [19]. Thus, we carried out single-particle confocal fluorescence spectroscopic measurement to monitor the PL properties of individual micrometersized particles. The typical PL images and PL spectra of three individual C₃N₄-T-Y are shown in Fig. S10. Under 405-nm laser pulse excitation, we observed bright points which come from the emission of C₃N₄-T-Y. We randomly selected six points from each PL image and measured the corresponding PL intensities. The different PL intensities for various particles of C₃N₄-T-Y are due to the nonuniform thickness of C₃N₄-T sheet. Three C₃N₄-T-Y display a broad emission peak at ~480 nm, and the PL intensities increase in the order of C_3N_4 -T- $N_2 < C_3N_4$ -T- air <C₃N₄-T-CO₂. Time-resolved fluorescence spectra of more than thirty individual particles of C₃N₄-T-Y were measured, and the decay profiles were fitted by biexponential functions with τ_1 and τ_2 . τ_1 , τ_2 , and τ_{av} are ~ 0.8 , ~ 4.9 , and 1.4–1.5 ns for C₃N₄-T-CO₂, while ~ 0.6 , 3.3–4.1, and 0.9-1.1 ns for C_3N_4 -T-air, ~0.6, 3.3-3.8, and ~1.0 ns for C_3N_4 -T- N_2 ,

Table 2 Fluorescence lifetimes (τ) for C_3N_4 -T-Y.

C ₃ N ₄ -T-Y	τ_1 (ns)	A_1	τ_2 (ns)	A_2	$\tau_{\rm av}$ (ns)
C_3N_4 -T- N_2	0.38	0.794	3.2	0.206	0.96
C_3N_4 -T-air	0.39	0.774	3.4	0.226	1.1
C_3N_4 -T- CO_2	0.54	0.743	3.6	0.257	1.3

respectively (Fig. 6). It is clearly found that the individual particles of C_3N_4 -T-CO₂ possess longer τ_1 , τ_2 , and τ_{av} than C_3N_4 -T-air and C_3N_4 -T-N₂. Particularly, a large difference of τ_2 (and τ_{av}) is consistent with that of the photocatalytic activity (Fig. 3).

Fs-TDR spectra were measured to elucidate the charge transfer kinetics of C₃N₄-T-Y. Under the 420-nm laser excitation, three C₃N₄-T-Y show a broad transient absorption band in the wavelength range of 850-1150 nm to be assigned to free and shallowly trapped photogenerated electrons (Fig. 7a-c). Transient absorption was observed immediately after a laser flash and then decayed up to 1010 ps. The time profiles of the transient absorption were recorded at 950 nm (Fig. 7d). The decay profiles were fitted by biexponential functions with shorter and longer lifetimes, τ_{abs1} and τ_{abs2} , respectively, which are much shorter than of PL τ_1 and τ_2 , respectively. It is, therefore, suggested that there are two kinds of charge trap sites, shallow and deep trap sites [42]. The charge recombination of shallowly trapped photogenerated electrons proceeds in the time scales of τ_{abs1} and τ_{abs2} with shorter and longer distances, respectively, while the charge recombination of deeply trapped photogenerated electrons occurs in the time scales of τ_1 and τ_2 . The shallow trap sites are probably assigned to the defect states, while the deep trap sites are V_N as discussed above. τ_{abs1} and τ_{abs2} are 38 and 1069 ps for C_3N_4 -T-CO₂, respectively, while they are 36 and 853 ps for C_3N_4 -T- N_2 , 31 and 957 ps for C_3N_4 -T-air (Table 3). The average lifetime ($\tau_{abs.av}$) is 605 ps for C_3N_4 -T- CO_2 , longer than 436 ps for C₃N₄-T-N₂ and 503 ps for C₃N₄-T-air, which can be explained by the faster electron transfer between haptazine rings in C_3N_4 -T- CO_2 than in C_3N_4 -T- N_2 and C_3N_4 -T-air. The longer τ_{abs} in C_3N_4 -T-CO₂ corresponds to increasing electrons at the active sites, resulting in the enhanced photocatalytic activity [43].

3.4. Photocatalytic reaction mechanism

Based on the experimental results, we suggest the photocatalytic $\rm H_2$ production mechanism for $\rm C_3N_4\text{-}T\text{-}Y$ photocatalyst involving band-gap excitation, charge separation to generate holes and electrons, holes removal by TEOA, electrons trapping at shallow and deep trap states (defects and $\rm V_N$, respectively), charge recombination for shorter and longer distances, $\rm V_N$ as the electron trap sites with no charge transport ability, electron transport processes between heptazine rings in intralayer and interlayers of $\rm C_3N_4\text{-}T\text{-}Y$ up to Pt nanoparticles, and proton reduction on the Pt nanoparticles (Scheme 1). Firstly, band-gap excitation generates the electron-hole pairs. The holes are removed by TEOA, while electrons are accumulated in the CB band and partly trapped by shallow and deep trap states. The charge recombination of shallow and deep trap sites proceeds at shorter and longer distances.

Among three C_3N_4 -T-Y photocatalysts, C_3N_4 -T-CO₂ exhibits the highest photocatalytic H_2 production activity. Such unprecedented effect of CO_2 calcination atmosphere was firstly observed for C_3N_4 -T-Y, while it has never been reported for other C_3N_4 -X. The CO_2 calcination

Fig. 6. Distribution of τ_1 (a), τ_2 (b), and τ_{av} (c) for C_3N_4 -T-Y obtained from single-particle confocal fluorescence spectroscopic measurements.

atmosphere induces less V_N, more NH_x, and faster rate of the electron transport between heptazine rings for C₃N₄-T-CO₂ among three C₃N₄-T-Y. Heptazine rings and NH_x sites are formed during the polymerization of C₃N₄ precursors X, while degradation of heptazine rings competitively occurs to generate V_N. The formation of heptazine rings and NH_x sites could be enhanced during synthesis of C₃N₄-T-CO₂, while the degradation of heptazine rings to generate $V_{\rm N}$ is inhibited under CO_2 calcination atmosphere. It is also suggested that the interlayer electron transport between C₃N₄ layers is considerably enhanced in C₃N₄-T-CO₂ compared with those in C₃N₄-T-air and C₃N₄-T-N₂. These are probably resulted from CO2 property for the interaction with the surface of C3N4 during T calcination process. On the other hand, no such effect could be existed for O2 and N2 calcination atmosphere. One of the different characters between CO2 and diatomic molecules, O2 and N2, is ionic CO2 and non-ionic O2 and N2, which attributes to the unprecedented effect of CO2 calcination atmosphere on the photocatalytic H2 production activity from water.

Consequently, electron transport between heptazine rings and C_3N_4 layers of C_3N_4 -T- CO_2 proceeds more efficiently up to Pt nanoparticles than C_3N_4 -T-air and C_3N_4 -T- N_2 , resulting in the remarkably enhanced

Table 3 Transient absorption decay lifetimes (τ_{abs}) for C_3N_4 -T-Y.

C ₃ N ₄ -T-Y	τ_{abs1} (ps)	τ_{abs2} (ps)	$\tau_{\mathrm{abs,av}}$ (ps)
C_3N_4 -T- N_2	36.0 (51%)	853 (49%)	436
C ₃ N ₄ -T-air	31.0 (49%)	957 (51%)	503
C_3N_4 -T- CO_2	38.0 (45%)	1070 (55%)	605

H₂ production rate of C₃N₄-T-CO₂ photocatalyst.

4. Conclusion

In summary, C_3N_4 -T-CO $_2$ photocatalyst was developed for the first time through a one-step process by directly pyrolysis treatment of 3-amino-1,2,4-triazole in CO_2 atmosphere with no additive. C_3N_4 -T-CO $_2$ showed the higher H_2 production ability under visible light irradiation than C_3N_4 -T-N $_2$ and C_3N_4 -T-air. The improvement of the photocatalytic activity for C_3N_4 -T-CO $_2$ could be ascribed to the increased formation of NH_x sites to generate hydrogen-bonding interaction between C_3N_4 layers and the inhibited degradation of heptazine rings to generate V_N

Fig. 7. Time-resolved diffuse reflectance spectra of C_3N_4 -T- N_2 (a), C_3N_4 -T-air (b), and C_3N_4 -T- CO_2 (c), time profiles of normalized transient absorption at 950 nm for C_3N_4 -T-Y after 420-nm laser pulse irradiation (d).

Scheme 1. C₃N₄-T-Y photocatalytic H₂ production mechanism involving band-gap excitation, charge separation to generate holes and electrons, holes removal by TEOA, electrons trapping by trap sites, electron transport processes between heptazine rings up to Pt nanoparticles, and proton reduction on the Pt nanoparticles.

with no charge transport ability under CO_2 calcination atmosphere. Charge transfer process of C_3N_4 -T- CO_2 was systematically investigated by time-resolved fluorescence, single-particle fluorescence, and femto-second time-resolved transient absorption spectroscopies to reveal that the electron transport between heptazine rings and C_3N_4 layers was effectively accelerated. Such unprecedented effect of CO_2 atmosphere was probably resulted from CO_2 ionic character for the interaction with the surface of g- C_3N_4 during 3-amino-1,2,4-triazole calcination process. The present work puts forward a simple, facile, and economical method in designing highly effective g- C_3N_4 photocatalyst for solar energy utilization.

Acknowledgements

We are thankful for the help of the Comprehensive Analysis Center of SANKEN, Osaka University. This work has been partly supported by a Grant-in-Aid for Scientific Research (Project 25220806 and others) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japanese Government. J.X. and Z.W. thank State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, and Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, National Natural Science Foundation of China (21707052), China Postdoctoral Science Foundation (2016M601718), Key Research and Development Program of Jiangsu Province (BE2017623), and Fundamental Research Funds for the Central Universities (JUSRP51714B).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2018.09.023.

References

- [1] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8 (2009) 76–80.
- [2] D. Dontsova, S. Pronkin, M. Wehle, Z.P. Chen, C. Fettkenhauer, G. Clavel, M. Antonietti, Chem. Mater. 27 (2015) 5170–5179.
- [3] W. Jiang, Q. Ruan, J. Xie, X. Chen, Y. Zhu, J. Tang, Appl. Catal. B: Environ. 236 (2018) 428–435.

- [4] Z.C. Sun, M.S. Zhu, M. Fujitsuka, A.J. Wang, C. Shi, T. Majima, ACS Appl. Mater. Interfaces 9 (2017) 30583–30590.
- [5] M. Zhang, W. Jiang, D. Liu, J. Wang, Y. Liu, Y. Zhu, Y. Zhu, Appl. Catal. B: Environ. 183 (2016) 263–268.
- [6] X. Bai, L. Wang, R. Zong, Y. Zhu, J. Phys. Chem. C 117 (2013) 9952-9961.
- [7] W.G. Tu, Y. Xu, J.J. Wang, B.W. Zhang, T.H. Zhou, S.M. Yin, S.Y. Wu, C.M. Li, Y.Z. Huang, Y. Zhou, Z.G. Zou, J. Robertson, M. Kraft, R. Xu, ACS Sustain. Chem. Eng. 5 (2017) 7260–7268.
- [8] S.W. Liu, F. Chen, S.T. Li, X.X. Peng, Y. Xiong, Appl. Catal. B: Environ. 211 (2017) 1–10.
- [9] J. Xu, Z.P. Wang, Y.F. Zhu, ACS Appl. Mater. Interfaces 9 (2017) 27727-27735.
- [10] J. Huang, W. Ho, X. Wang, Chem. Commun. 50 (2014) 4338–4340.
- [11] S.Z. Hu, X.Y. Qu, J. Bai, P. Li, Q. Li, F. Wang, L.J. Song, ACS Sustain. Chem. Eng. 5 (2017) 6863–6872.
- 12] G.H. Dong, W.K. Ho, C.Y. Wang, J. Mater. Chem. A 3 (2015) 23435–23441.
- [13] X.C. Wang, K. Maeda, X.F. Chen, K. Takanabe, K. Domen, Y.D. Hou, X.Z. Fu, M. Antonietti, J. Am. Chem. Soc. 131 (2009) 1680–1681.
- [14] J. Xu, L.W. Zhang, R. Shi, Y.F. Zhu, J. Mater. Chem. A 1 (2013) 14766–14772.
- [15] X. Bai, S. Yan, J. Wang, L. Wang, W. Jiang, S. Wu, C. Sun, Y. Zhu, J. Mater. Chem. A 2 (2014) 17521–17529.
- [16] S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan, H. Fu, Angew. Chem. Int. Ed. 55 (2016) 1830–1834.
- [17] M. Zhang, X. Bai, D. Liu, J. Wang, Y. Zhu, Appl. Catal. B: Environ. 164 (2015) 77–81.
- [18] M. Zhu, S. Kim, L. Mao, M. Fujitsuka, J. Zhang, X. Wang, T. Majima, J. Am. Chem. Soc. 139 (2017) 13234–13242.
- [19] X.W. Shi, M. Fujitsuka, S. Kim, T. Majima, Small 14 (2018) 1703277.
- [20] W.K. Ho, Z.Z. Zhang, W. Lin, S.P. Huang, X.W. Zhang, X.X. Wang, Y. Huang, ACS Appl. Mater. Interfaces 7 (2015) 5497–5505.
- [21] L. Luo, M. Zhang, P. Wang, Y.H. Wang, F. Wang, New J. Chem. 42 (2018) 1087–1091.
- [22] J. Oh, J.M. Lee, Y. Yoo, J. Kim, S.J. Hwang, S. Park, Appl. Catal. B: Environ. 218 (2017) 349–358.
- [23] J. Xu, Y. Wang, Y. Zhu, Langmuir 29 (2013) 10566-10572.
- [24] X.B. Li, G. Hartley, A.J. Ward, P.A. Young, A.F. Masters, T. Maschmeyer, J. Phys. Chem. C 119 (2015) 14938–14946.
- [25] Y.F. Li, R.X. Jin, Y. Xing, J.Q. Li, S.Y. Song, X.C. Liu, M. Li, R.C. Jin, Adv. Energy Mater. 6 (2016) 1601273.
- [26] Y.Y. Kang, Y.Q. Yang, L.C. Yin, X.D. Kang, G. Liu, H.M. Cheng, Adv. Mater. 27 (2015) 4572–4577.
- [27] Y.Y. Chai, Q.Q. Liu, L. Zhang, J. Ren, W.L. Dai, Chin. J. Chem. 35 (2017) 173-182.
- [28] Y.F. Li, M. Yang, Y. Xing, X.C. Liu, Y. Yang, X. Wang, S.Y. Song, Small 13 (2017) 1701552.
- [29] Q. Tay, P. Kanhere, C.F. Ng, S. Chen, S. Chakraborty, A.C.H. Huan, T.C. Sum, R. Ahuja, Z. Chen, Chem. Mater. 27 (2015) 4930–4933.
- [30] Q.H. Liang, Z. Li, Z.H. Huang, F.Y. Kang, Q.H. Yang, Adv. Funct. Mater. 25 (2015) 6885–6892.
- [31] X.P. Song, Q. Yang, X.H. Jiang, M.Y. Yin, L.M. Zhou, Appl. Catal. B: Environ. 217 (2017) 322–330.
- [32] D. Dontsova, C. Fettkenhauer, V. Papaefthimiou, J. Schmid, M. Antonietti, Chem. Mater. 28 (2016) 772–778.
- [33] D.H. Park, K.S. Lakhi, K. Ramadass, M.K. Kim, S.N. Talapaneni, S. Joseph, U. Ravon,

- K. Al-Bahily, A. Vinu, Chem. Eur. J. 23 (2017) 10753-10757.
- [34] A. Savateev, S. Pronkin, J.D. Epping, M.G. Willinger, M. Antonietti, D. Dontsova, J. Mater. Chem. A 5 (2017) 8394-8401.
- [35] G.P. Mane, S.N. Talapaneni, K.S. Lakhi, H. Ilbeygi, U. Ravon, K. Al-Bahily, T. Mori, D.H. Park, A. Vinu, Angew. Chem. Int. Ed. 56 (2017) 8481-8485.
- [36] A.B. Jorge, D.J. Martin, M.T.S. Dhanoa, A.S. Rahman, N. Makwana, J.W. Tang, A. Sella, F. Cora, S. Firth, J.A. Darr, P.F. McMillan, J. Phys. Chem. C 117 (2013) 7178-7185.
- [37] A. Savateev, S. Pronkin, J.D. Epping, M.G. Willinger, C. Wolff, D. Neher, M. Antonietti, D. Dontsova, ChemCatChem 9 (2017) 167–174.

 [38] H.J. Yu, R. Shi, Y.X. Zhao, T. Bian, Y.F. Zhao, C. Zhou, G.I.N. Waterhouse, L.Z. Wu,
- C.H. Tung, T.R. Zhang, Adv. Mater. 29 (2017) 1605148.
- [39] P. Niu, M. Qiao, Y.F. Li, L. Huang, T.Y. Zhai, Nano Energy 44 (2018) 73-81.
- [40] J. Ding, W. Xu, H. Wan, D.S. Yuan, C. Chen, L. Wang, G.F. Guan, W.L. Dai, Appl. Catal. B: Environ. 221 (2018) 626-634.
- [41] M. Fujitsuka, A. Okada, S. Tojo, F. Takei, K. Onitsuka, S. Takahashi, T. Majima, J. Phys. Chem. B 108 (2004) 11935-11941.
- [42] R. Godin, Y. Wang, M.A. Zwijnenburg, J.W. Tang, J.R. Durrant, J. Am. Chem. Soc. 139 (2017) 5216-5224.
- [43] O. Elbanna, P. Zhang, M. Fujitsuka, T. Majima, Appl. Catal. B: Environ. 192 (2016)