Math 74 Final: Second Version

Due by noon on June 4th.

1. Here is a presentation of the alternating group

$$A_5 = \langle a, b | a^2, b^3, (ab)^5 \rangle$$

which is the first non-Abelian simple group. Construct a topological space with fundamental group A_5 , and **prove** it has this fundamental group.

- 2. Let f be continuous map from S^1 to S^1 such that f(-x) = -f(x) for every $x \in S^1$. (See the Borsuk Ulam sheet for hints.)
 - (a) Let z^2 be the covering map from example 3 on page 338 of Munkres. Prove there exist a continuous map \tilde{f} such that $\tilde{f}z^2 = z^2f$.
 - (b) Prove $deg(\tilde{f}) = deg(f)$ (See the Borsuk Ulam sheet for the definition of deg(f)).
 - (c) Using an isomorphism between $\pi_1(S^1, y)$ and **Z**, prove that an element $[\gamma] \in \pi_1(S^1, y)$ corresponds to an odd integer if and only if the lifting of γ to S^1 with respect to the covering map z^2 has distinct end points.
 - (d) Prove $deg(\tilde{f})$ is odd and finish the proof of the Theorem 2 from the Borsuk-Ulam theorem handout. (Hint: notice that $[\tilde{f}(z^2(\lambda))] = [z^2(f(\lambda))]$, where λ is a path that connects anti-podal points in S^1 .)
- 3. See the rotation sheet for notation and hints.
 - (a) Let $\phi_l(m)$ be the homeomorphism determined by $\phi_l(m)(z_1, z_2) = (e^{i2\pi \frac{m}{k}} z_1, e^{i2\pi \frac{ml}{k}} z_2)$. Prove that the mapping of $\phi_l : \frac{\mathbf{Z}}{k\mathbf{Z}} \to Homeo(S^3)$, sending [m] to $\phi_l(m)$, is an injective homomorphism when $l \in \mathbf{Z}$ is relatively prime to k.
 - (b) Prove that $\phi_l(\frac{\mathbf{Z}}{k\mathbf{Z}})$ a properly discontinuous subgroup of $Homeo(S^3)$.
 - (c) Let $L(k,l) = S^3/\phi_l(\frac{\mathbf{Z}}{k\mathbf{Z}})$, and prove that if L(k,l) is homeomorphic to $L(k_1,l_1)$ then $k=k_1$.
- 4. See the rotation sheet for notation and hints.
 - (a) Prove that **UH** forms a group under the *. (Hint: $q^{-1} = \bar{q}$.)
 - (b) Let $E^3 = \{\vec{v} = xi + yj + zk \mid x, y, z \in \mathbf{R} \text{ where we view as } \{i, j, k\} \text{ as an orthonormal basis. Prove that the map } \Psi : \mathbf{UH} \to Homeo(E^3)$ determined by $\psi(q)(\vec{v}) = q\vec{v}q^{-1}$ has its image contained inside SO(3) and is a continuous homomorphism.
 - (c) Prove Ψ is the two fold covering map that identifies the anti-podal the points of S^3 (Hint: $q(\theta, u) = \cos\left(\frac{\theta}{2}\right) + \sin\left(\frac{\theta}{2}\right) \vec{v}$ will satisfy that $\Psi\left(q(\theta, u)\right)$ is the right-handed rotation by θ about the axis u.)
 - (d) Use the previous problem to prove that SO(3) is homeomorphic to C^3 (Hint: you may use problem 1 from the first exam.)

1