

LM386 SNAS545D - MAY 2004 - REVISED AUGUST 2023

LM386 Low Voltage Audio Power Amplifier

1 Features

- **Battery Operation**
- Minimum External Parts
- Wide Supply Voltage Range: 4 V-12 V or 5 V-18 V
- Low Quiescent Current Drain: 4 mA
- Voltage Gains from 20 to 200
- **Ground-Referenced Input**
- Self-Centering Output Quiescent Voltage
- Low Distortion: 0.2% ($A_V = 20$, $V_S = 6$ V, $R_L = 8$ Ω , $P_0 = 125 \text{ mW}, f = 1 \text{ kHz}$
- Available in 8-Pin MSOP Package

2 Applications

- **AM-FM Radio Amplifiers**
- Portable Tape Player Amplifiers
- Intercoms
- TV Sound Systems
- Line Drivers
- Ultrasonic Drivers
- Small Servo Drivers
- **Power Converters**

3 Description

The LM386M-1 and LM386MX-1 are power amplifiers designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 increases the gain to any value from 20 to 200.

The inputs are ground referenced while the output automatically biases to one-half the supply voltage. The quiescent power drain is only 24 mW when operating from a 6-V supply, making the LM386M-1 and LM386MX-1 prefered for battery operation.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
LM386N-1	PDIP (8)	9.60 mm × 6.35 mm
LM386N-3	PDIP (8)	9.60 mm × 6.35 mm
LM386N-4	PDIP (8)	9.60 mm × 6.35 mm
LM386M-1	SOIC (8)	4.90 mm × 3.90 mm
LM386MX-1	SOIC (8)	4.90 mm × 3.90 mm
LM386MMX-1	VSSOP (8)	3.00 mm × 3.00 mm

For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

1 Features1	8.3 Feature Description	9
2 Applications1	8.4 Device Functional Modes	
3 Description1	9 Application and Implementation	
4 Revision History2	9.1 Application Information	
5 Pin Configuration and Functions3	9.2 Typical Application	
6 Specifications4	10 Power Supply Recommendations	
6.1 Absolute Maximum Ratings4	11 Layout	18
6.2 ESD Ratings4	11.1 Layout Guidelines	
6.3 Recommended Operating Conditions4	11.2 Layout Examples	
6.4 Thermal Information4	12 Device and Documentation Support	
6.5 Electrical Characteristics5	12.1 Device Support	
6.6 Typical Characteristics6	12.2 Documentation Support	
7 Parameter Measurement Information8	12.3 Receiving Notification of Documentation Updates	
8 Detailed Description9	12.4 Community Resources	
8.1 Overview9	12.5 Trademarks	20
8.2 Functional Block Diagram9		
4 Revision History NOTE: Page numbers for previous revisions may differ fr	rom page numbers in the current version.	
Changes from Revision C (May 2017) to Revision D (, ,	age
Updated Typical Output Power Spec		5
Changes from Revision B (March 2017) to Revision C	C (May 2017)	age
 Changed devices LM386M-1/LM386MX-1 To: LM386 		
 Updated the numbering format for tables, figures, and 		
 Changed From: LM386N-4 To: Speaker Impedance in 		
 Changed From: 5 Ω to 12 Ω To: 5 V to 12 V for Supply 		
• Changed kW To: kΩ in the <i>Gain Control</i> section		
• Changed kW To: $k\Omega$ in the <i>Input Biasing</i> section		
Changed Figure 9-2		
 Changed From: 5 Ω to 12 Ω To: 5 V to 12 V for Supply 	y Voltage in Table 9-2	12
Changed Figure 9-4		12
 Changed From: 5 Ω to 12 Ω To: 5 V to 12 V for Supply 	y Voltage in Table 9-3	13
Changed Figure 9-6		
 Changed From: 5 Ω to 12 Ω To: 5 V to 12 V for Supply 		
Changed Figure 9-8	•	
 Changed From: 5 Ω to 12 Ω To: 5 V to 12 V for Supply 		
• Changed From: 5 Ω to 12 Ω To: 5 V to 12 V for Supply		
Changed Figure 9-12		
• Changed From: 5 Ω to 12 Ω To: 5 V to 12 V for Supply	y Voltage in Table 9-7	17
Changed Figure 9-14		17
Changes from Revision A (May 2004) to Revision B (age
Added LM386MX-1 device to the data sheet		1
Added Device Information, Application and Implemen		
Device and Documentation Support sections		

Inserted Functional Block Diagram.....9

5 Pin Configuration and Functions

Figure 5-1. D Package 8-Pin MSOP Top View

Table 5-1. Pin Functions

PIN		TYPE ⁽¹⁾	DESCRIPTION	
NAME	NO.	ITPE	DESCRIPTION	
GAIN	1	_	Gain setting pin	
-INPUT	2	I	Inverting input	
+INPUT	3	ı	Noninverting input	
GND	4	Р	Ground reference	
V _{OUT}	5	0	Output	
Vs	6	Р	Power supply voltage	
BYPASS	7	0	Bypass decoupling path	
GAIN	8	_	Gain setting pin	

⁽¹⁾ I = Input, O = Output, P = Power

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
Supply Voltage V	LM386N-1/-3, LM386M-1		15	V
Supply Voltage, V _{CC}	LM386N-4		22 V	
	LM386N		1.25	W
Package Dissipation	LM386M		0.73	
	LM386MM-1		0.595	
Input Voltage, V _I		-0.4	0.4	V
Storage temperature, T _{stg}		-65	150	°C

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT
			Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)	±1000	
	V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V	Supply Voltage	4	12	V
V _{CC}	LM386N-4	5	18	V
	Speaker Impedance	4		Ω
VI	Analog input voltage	-0.4	0.4	V
TA	Operating free-air temperature	0	70	°C

6.4 Thermal Information

		LM386	LM386	LM386	
THERMAL METRIC ⁽¹⁾		D (SOIC)	DGK (VSSOP)	P (PDIP)	UNIT
		8	8	8	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	115.7	169.3	53.4	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	59.7	73.1	42.1	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	56.2	100.2	30.6	°C/W
ΨЈТ	Junction-to-top characterization parameter	12.4	9.2	19.0	°C/W
ΨЈВ	Junction-to-board characterization parameter	55.6	99.1	50.5	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: LM386

Submit Document Feedback

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V	Operating Supply Voltage	LM386N-1, -3, LM386M-1, LM386MM-1	4		12	V	
V _S Operating Sup	Operating Supply Voltage	LM386N-4	5		18	V	
IQ	Quiescent Current	V _S = 6 V, V _{IN} = 0		4	8	mA	
		V _S = 6 V, R _L = 8 Ω, THD = 10% (LM386N-1, LM386M-1, LM386MM-1)	250	325			
P _{OUT} Outp	Output Power	$V_S = 9 \text{ V}, R_L = 8 \Omega, \text{ THD} = 10\%$ (LM386N-3)	500	700		mW	
		V_S = 16 V, R_L = 32 Ω , THD = 10% (LM386N-4)	700	1000			
	Vallage Coin	V _S = 6 V, f = 1 kHz		26		-ID	
A_V	Voltage Gain	10 μF from Pin 1 to 8		46		- dB	
BW	Bandwidth	V _S = 6 V, Pins 1 and 8 Open		300		kHz	
THD	Total Harmonic Distortion	V_S = 6 V, R_L = 8 Ω , POUT = 125 mW f = 1 kHz, Pins 1 and 8 Open		0.2%			
PSRR	Power Supply Rejection Ratio	V _S = 6 V, f = 1 kHz, CBYPASS = 10 μF Pins 1 and 8 Open, Referred to Output		50		dB	
R _{IN}	Input Resistance			50		kΩ	
I _{BIAS}	Input Bias Current	V _S = 6 V, Pins 2 and 3 Open		250		nA	

6.6 Typical Characteristics

Figure 6-1. Supply Current vs Supply Voltage

60

Figure 6-2. Power Supply Rejection vs Frequency

Figure 6-3. Output Voltage vs Supply Voltage

Figure 6-4. Voltage Gain vs Frequency

V_S = 6**V** TOTAL HARMONIC DISTORTION (%) = 80 7 0.01 0.001 0.1 POWER OUT (WATTS)

Figure 6-5. Total Harmonic Distortion vs Frequency Figure 6-6. Total Harmonic Distortion vs Power Out

Figure 6-7. Device Dissipation vs Output Power

Figure 6-8. Device Dissipation vs Output Power

Figure 6-9. Device Dissipation vs Output Power

7 Parameter Measurement Information

All parameters are measured according to the conditions described in the Section 6 section.

8 Detailed Description

8.1 Overview

The LM386 is a mono low voltage amplifier that can be used in a variety of applications. It can drive loads from 4 Ω to 32 Ω . The gain is internally set to 20 but it can be modified from 20 to 200 by placing a resistor and capacitor between pins 1 and 8. This device comes in three different 8-pin packages as PDIP, SOIC and VSSOP to fit in different applications.

8.2 Functional Block Diagram

8.3 Feature Description

There is an internal 1.35-K Ω resistor that sets the gain of this device to 20. The gain can be modified from 20 to 200. Detailed information about gain setting can be found in the Section 9.2.2.2 section.

8.4 Device Functional Modes

As this is an Op Amp it can be used in different configurations to fit in several applications. The internal gain setting resistor allows the LM386 to be used in a very low part count system. In addition a series resistor can be placed between pins 1 and 5 to modify the gain and frequency response for specific applications.

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

Below are shown different setups that show how the LM386 can be implemented in a variety of applications.

9.2 Typical Application

9.2.1 LM386 with Gain = 20

Figure 9-1 shows the minimum part count application that can be implemented using LM386. Its gain is internally set to 20.

Copyright © 2017, Texas Instruments Incorporated

Figure 9-1. LM386 with Gain = 20

9.2.1.1 Design Requirements

Table 9-1. Design Parameters

Table 6 11 Boolgii i alamotoro				
DESIGN PARAMETER	EXAMPLE VALUE			
Load Impedance	4 Ω to 32 Ω			
Supply Voltage	5 V to 12 V			

9.2.1.2 Detailed Design Procedure

9.2.1.2.1 Gain Control

To make the LM386 a more versatile amplifier, two pins (1 and 8) are provided for gain control. With pins 1 and 8 open the 1.35-k Ω resistor sets the gain at 20 (26 dB). If a capacitor is put from pin 1 to 8, bypassing the 1.35-k Ω resistor, the gain will go up to 200 (46 dB). If a resistor is placed in series with the capacitor, the gain can be set to any value from 20 to 200. Gain control can also be done by capacitively coupling a resistor (or FET) from pin 1 to ground.

Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual applications. For example, we can compensate poor speaker bass response by frequency shaping the feedback path. This is done with a series RC from pin 1 to 5 (paralleling the internal

15-k Ω resistor). For 6 dB effective bass boost: R ~= 15 k Ω , the lowest value for good stable operation is R = 10 k Ω if pin 8 is open. If pins 1 and 8 are bypassed then R as low as 2 k Ω can be used. This restriction is because the amplifier is only compensated for closed-loop gains greater than 9.

9.2.1.2.2 Input Biasing

The schematic shows that both inputs are biased to ground with a 50 k Ω resistor. The base current of the input transistors is about 250 nA, so the inputs are at about 12.5 mV when left open. If the dc source resistance driving the LM386 is higher than 250 k Ω it will contribute very little additional offset (about 2.5 mV at the input, 50 mV at the output). If the dc source resistance is less than 10 k Ω , then shorting the unused input to ground will keep the offset low (about 2.5 mV at the input, 50 mV at the output). For dc source resistances between these values we can eliminate excess offset by putting a resistor from the unused input to ground, equal in value to the dc source resistance. Of course all offset problems are eliminated if the input is capacitively coupled.

When using the LM386 with higher gains (bypassing the 1.35 k Ω resistor between pins 1 and 8) it is necessary to bypass the unused input, preventing degradation of gain and possible instabilities. This is done with a 0.1 μ F capacitor or a short to ground depending on the dc source resistance on the driven input.

9.2.1.3 Application Curve

Figure 9-2. Supply Current vs Supply Voltage

9.2.2 LM386 with Gain = 200

Copyright © 2017, Texas Instruments Incorporated

Figure 9-3. LM386 with Gain = 200

9.2.2.1 Design Requirements

Table 9-2. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Load Impedance	4 Ω to 32 Ω
Supply Voltage	5 V to 12 V

9.2.2.2 Detailed Design Procedure

The Detailed Design Procedure can be found in the Section 9.2.1.2 section.

9.2.2.3 Application Curve

Figure 9-4. Supply Current vs Supply Voltage

9.2.3 LM386 with Gain = 50

Copyright © 2017, Texas Instruments Incorporated

Figure 9-5. LM386 with Gain = 50

9.2.3.1 Design Requirements

Table 9-3. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Load Impedance	4 Ω to 32 Ω
Supply Voltage	5 V to 12 V

9.2.3.2 Detailed Design Procedure

The Detailed Design Procedure can be found in the Section 9.2.1.2 section.

9.2.3.3 Application Curve

Figure 9-6. Supply Current vs Supply Voltage

9.2.4 Low Distortion Power Wienbridge Oscillator

Copyright © 2017, Texas Instruments Incorporated

Figure 9-7. Low Distortion Power Wienbridge Oscillator

9.2.4.1 Design Requirements

Table 9-4. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Load Impedance	4 Ω to 32 Ω
Supply Voltage	5 V to 12 V

9.2.4.2 Detailed Design Procedure

The Detailed Design Procedure can be found in the Section 9.2.1.2 section.

9.2.4.3 Application Curve

Figure 9-8. Supply Current vs Supply Voltage

Submit Document Feedback

9.2.5 LM386 with Bass Boost

Copyright © 2017, Texas Instruments Incorporated

Figure 9-9. LM386 with Bass Boost

9.2.5.1 Design Requirements

Table 9-5. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE				
Load Impedance	4 Ω to 32 Ω				
Supply Voltage	5 V to 12 V				

9.2.5.2 Detailed Design Procedure

The Detailed Design Procedure can be found in the Section 9.2.1.2 section.

9.2.5.3 Application Curve

Figure 9-10. Voltage Gain vs Frequency

9.2.6 Square Wave Oscillator

.

Figure 9-11. Square Wave Oscillator

Table 9-6. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE				
Load Impedance	4 Ω to 32 Ω				
Supply Voltage	5 V to 12 V				

9.2.6.1 Detailed Design Procedure

The Detailed Design Procedure can be found in the Section 9.2.1.2 section.

9.2.6.2 Application Curve

Figure 9-12. Supply Current vs Supply Voltage

Submit Document Feedback

9.2.7 AM Radio Power Amplifier

Copyright © 2017, Texas instruments incorporated

Figure 9-13. AM Radio Power Amplifier

9.2.7.1 Design Requirements

Table 9-7. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE				
Load Impedance	4 Ω to 32 Ω				
Supply Voltage	5 V to 12 V				

9.2.7.2 Detailed Design Procedure

The Detailed Design Procedure can be found in the Section 9.2.1.2 section.

9.2.7.3 Application Curve

Figure 9-14. Supply Current vs Supply Voltage

10 Power Supply Recommendations

The LM386 is specified for operation up to 12 V or 18 V. The power supply should be well regulated and the voltage must be within the specified values. It is recommended to place a capacitor to GND close to the LM386 power supply pin.

11 Layout

11.1 Layout Guidelines

Place all required components as close as possible to the device. Use short traces for the output to the speaker connection. Route the analog traces far from the digital signal traces and avoid crossing them.

11.2 Layout Examples

Connection to ground plane

Connection to power 5V

Top layer traces

Top layer ground plane

Figure 11-1. Layout Example for Minimum Parts Gain = 20 dB on PDIP package

Figure 11-2. Layout Example for Minimum Parts Gain = 20 dB on SOIC package

Figure 11-3. Layout Example for Minimum Parts Gain = 20 dB on VSSOP package

12 Device and Documentation Support

12.1 Device Support

12.1.1 Development Support

12.2 Documentation Support

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates — go to the product folder for your device on ti.com. In the upper right-hand corner, click the *Alert me* button to register and receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document.

12.4 Community Resources

12.5 Trademarks

All trademarks are the property of their respective owners.

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 2-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
LM386M-1/NOPB	Active	Production	SOIC (D) 8	95 TUBE	Yes	SN	Level-1-260C-UNLIM	0 to 70	LM386 M-1
LM386MMX-1/NOPB	Active	Production	VSSOP (DGK) 8	3500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	0 to 70	Z86
LM386MX-1/NOPB	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	0 to 70	LM386 M-1
LM386N-1/NOPB	Active	Production	PDIP (P) 8	40 TUBE	Yes	NIPDAU	Level-1-NA-UNLIM	0 to 70	LM 386N-1
LM386N-3/NOPB	Active	Production	PDIP (P) 8	40 TUBE	Yes	NIPDAU	Level-1-NA-UNLIM	0 to 70	LM 386N-3
LM386N-4/NOPB	Active	Production	PDIP (P) 8	40 TUBE	Yes	NIPDAU	Level-1-NA-UNLIM	0 to 70	LM 386N-4

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 2-May-2025

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 31-Aug-2023

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM386MMX-1/NOPB	VSSOP	DGK	8	3500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM386MX-1/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1

www.ti.com 31-Aug-2023

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
LM386MMX-1/NOPB	VSSOP	DGK	8	3500	367.0	367.0	35.0	
LM386MX-1/NOPB	SOIC	D	8	2500	367.0	367.0	35.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 31-Aug-2023

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
LM386M-1/NOPB	D	SOIC	8	95	495	8	4064	3.05
LM386N-1/NOPB	Р	PDIP	8	40	502	14	11938	4.32
LM386N-3/NOPB	Р	PDIP	8	40	502	14	11938	4.32
LM386N-4/NOPB	Р	PDIP	8	40	502	14	11938	4.32

SMALL OUTLINE PACKAGE

NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated