Exercise 03

Equations of motion

Deadline: Please hand in your protocol by Thursday, the 16th of May 2019, 10 am to jan.joswig@fu-berlin.de and marco.manni@fu-berlin.de. If your solution includes Python-code, you should submit executable files (or even better a jupyter notebook). Pen and paper solutions can be also submitted in paper form.

3.1 Harmonic oscillator

Consider the following harmonic stretching vibrations:

- 1. C-H: Wavenumber $\tilde{\nu} = 3000 \, \mathrm{cm}^{-1}$
- 2. C-D: $\tilde{\nu} = 2100 \, \text{cm}^{-1}$
- 3. C-C: $\tilde{\nu} = 1000 \, \mathrm{cm}^{-1}$
- 4. C=C: $\tilde{\nu} = 1700 \, \text{cm}^{-1}$
- 5. $C \equiv C$: $\tilde{\nu} = 2200 \, \text{cm}^{-1}$
- 1. Look up the definition of wavenumber and convert the values above to frequencies f, angular frequency ω and vibration periods T.
- 2. Calculate the reduced mass μ and force constant k for the examples above.
- 3. Discuss the influence of μ and chemical bond strength on the vibrational frequencies for the given examples.

3.2 Integration of the equation of motion

In this task you should solve the equation of motion for a harmonic diatomic vibration analytically and numerically. Write a commented python script for the numeric solution. Both ways should be compared. The harmonic potential is given as:

$$U(q) = \frac{k}{2}(q - q_0)^2 \tag{1}$$

Assume a reduced mass of $\mu = 6.00$ u, a force constant of $k = 6.15 \times 10^5$ kJ mol⁻¹ nm⁻² and an equilibrium bond distance of $q_0 = 0.134$ nm (corresponding to a C=C bond). Use molecular units throughout your calculations (compare script p. 190).

- 1. Give the equation of motion for the harmonic oscillation and derive the analytical solution q(t).
- 2. Let the bond distance at time t = 0 be q(0) = 0.187 nm and the velocity $v(0) = \dot{q}(0) = 0$ nm ps⁻¹. Draw a curve for the analytical solutions to q(t) and $\dot{q}(t)$.

- 3. What would be an appropriate time step τ for the numerical solution?
- 4. Write a script that solves the equation of motion by a) an Euler algorithm and b) an Verlet algorithm. Calculate $q(t+\tau)$ and $\dot{q}(t+\tau)$ starting from t=0, $q(0)=0.187\,\mathrm{nm}$ and $v(0)=0\,\mathrm{nm}\,\mathrm{ps}^{-1}$. The result should be visualised graphically. 5. Let the program run for an appropriate number of timesteps (at least 100 fs) and variate τ (at constant simulation lengths), so that the difference between the two algorithms and between (nearly) exact and completely wrong behaviour becomes obvious.
- 6. Discuss shortly the difference between analytical and numerical solution.