Limit Theorems

Allen Williams

November 15 2017

Problem. 53. $s_n = (-1)^n$ is an example of a bounded sequence which does not converge

Problem. Let $\lim_{n\to\infty} a_n = a$. If $a_n > 0$ for all $n \in N$ then $a \ge 0$.

Proof. Since $\lim_{n\to\infty}a_n=a$, then for all $\epsilon>0$ there exists an $n\in N$ such that $|a_n-a|<\epsilon$. Assume for contradiction that a<0, then $|a_n-a|>a_n\geq 0$, so $a_n-a<\epsilon$ for all $\epsilon>0$. Since $a_n\geq 0$ consider $\epsilon=a_n+\epsilon_1$ where $\epsilon_1>0$. Then there exists an $n\in N$ such that $a_n-a< a_n+\epsilon_1$ or $a>-\epsilon_1$. Since $a>-\epsilon_1$ it must be true that $a\geq 0$. But a<0 by assumption which is contradictory and it must be true that $a\geq 0$.

Problem. If there exists $a \ c \in R$ for which $c \le b_n$ for all $n \in N$ then $c \le b$. Similarly if $a_n \le c$ for all $n \in N$ then $a \le c$.

Proof. Since $\lim_{n\to\infty} b_n = b$ then for all $\epsilon > 0$ there exists an $N \in N$ such that for n > N $|b_n - b| < \epsilon$. Then $-\epsilon < b_n - b < \epsilon$, meaning $c \le b_n < \epsilon + b$, so we have $c < b + \epsilon$ for all $\epsilon > 0$. Now assume for contradiction c > b and consider $\epsilon = c - b$. Then c < c which is absurd so it must be true that $c \le b$. QED

Proof. Since $\lim_{n\to\infty} a_n = a$ then for all $\epsilon > 0$ there exists an $N \in N$ such that for n > N $|a_n - a| < \epsilon$. Then $-\epsilon < b_n - b < \epsilon$, meaning $-\epsilon + a < a_n \le c$. So we have $-\epsilon + a < c$ for all $\epsilon > 0$. Now assume c < a for contradiction and consider $\epsilon = a - c$. Then we have c < c which is absurd so it must be true that $a \le c$

Problem. 53 a) If $x_n = (-1)^n$ and $y_n = (-1)^{n+1}$ then both x_n and y_n diverge but $x_n + y_n$ converges.

Problem. 53 b) If $x_n = (-1)^n$ and $y_n = \frac{1}{n}$ then x_n diverges and y_n converges but $x_n + y_n$ converges.

Problem. 53 c) If $b_n = \frac{1}{n}$ then $b_n \neq 0$ for all n and $\frac{1}{b_n} = n$ which diverges to infinity.

Problem. 53 d) There are no sequences a_n and b_n such that a_n is unbounded, b_n is convergent, and $a_n - b_n$ is bounded. Since b_n is convergent it is also bounded. let B_1 be an upper bound for b_n and B_2 be an upper bound for $a_n - b_n$ then $B - 1 + B_2$ is an upper bound for $a_n - b_n + b_n = a_n$. Similarly let c_1 be a lower bound for b_n and c_2 be a lower bound for $a_n - b_n$ then $c_2 + c_1$ is a lower bound for a_n implying a_n is bounded.

Problem. If $a_n = \frac{1}{n^2}$ and $b_n = n$ then $a_n b_n = \frac{1}{n}$ which converges, a_n also converges, but b_n does not converge.