Linear programming notes

Marco Marini

December 4, 2016

Contents

1	Sup	ply chain model
	1.1	Production
	1.2	Consumption
		Profit rate
	1.4	Supplier configuration
		${f Abstract}$
		This document contains notes about Linear programming.
1	Su	apply chain model
		ne a simplified supply chain model as a system that produces prod h a chain of product transformations performed by suppliers. t be
A	$=a_1$.	$\dots a_n$ the set of supplier types
В	$=b_1$.	b_m the set of product types.
tic		supplier can perform only a single transformation for the its dura ch product can be produced by a single supplier type. t be
S	$= s_i \in$	$i \in A$ the supplier of product $i \in B$
N	$= n_i$	the number of suppliers of type $i \in A$.
V	$=v_i$	the value of product $i \in B$
Q	$Q = q_i$	the quantity of produced product $i \in B$ l
T	$'=t_i$	the production interval for product $i \in B$
D	$= d_{ii}$	the quantity of product $i \in B$ consumed to produce the produc

1.1 Production

By now we do not consider the constraint on the availability of consuming products. It will be considered later.

Let be

 θ_{ij} The matrix that map product $j \in B$ to the supplier $i \in A$

 νi The number of supplier of product $i \in B$

such that

$$\theta_{ij} = 1, s_j = i$$

$$\theta_{ij} = 0, s_j \neq i$$

$$\nu_i = n_{s_j}$$

When a supplier of type $i \in A$ is ready to produce we assign a production slot for the product $j \in B$ such that $s_j = i$ and the production time is $t_j w_j$ where

 $W = w_i$ is the slot weight for product $i \in B$

such that

$$w_i \ge 0 \tag{1}$$

Moreover we may put the supplier $i \in A$ in idle state for a while $Z = z_i$ is the idle time during a whole production cycle

such that

$$z_i \ge 0 \tag{2}$$

The total time of production cycle for supplier i is

$$U_i(w_j, z_i) = \sum_{j \in B \mid s_j = i} t_j w_j + z_i$$

= $\sum_{j \in B} \theta_{ij} t_j w_j + z_i$
= $\sum_{j,k \in B} \theta_{ik} T_{kj} w_j + z_i$
= $UW + Z$

such that

$$U = u_{ij} = \sum_{k \in B} \theta_{ik} T_{kj} = \Theta T$$

Let normalize the total time production to 1

$$U_i(w_i, z_i) = 1 \tag{3}$$

During this interval the suppliers produce the product $i \in A$ at a slot rate

$$R_i(w_i) = n_{s_i} \frac{w_i}{y_{s_i}} = n_{s_i} w_i = \sum_i j \in BN_{ij} w_j = NW$$

$$\tag{4}$$

The production rate of product $i \in B$ is

$$P_i(w_i) = R_i(w_i)q_i = Q_{ik}R_k(w_i) = QNW = PW$$
(5)

such that

$$P = QN$$

1.2 Consumption

The (4) expresses the slot rate of a product for specific suppliers. Therefore we can calculate the consumption rate of a product $i \in B$ as the sum of consumptions among to produced products

$$C_i(w_j) = \sum_{k \in B} R_k(w_j) d_{ki} = \sum_{k \in B} d'_{ik} R_k(w_j) = D'NW = CW$$
 (6)

such that

$$C = D'N$$

The effective production rate is

$$F_i(w_i) = P_i(w_i) - C_i(w_i) = (P - C)W = FW$$

such that

$$F = f_{ij} = P - C = (Q - D')N$$

If

$$F_i(w_i) \geq 0$$

the product is produced at a higher rate then it is consumped creating a surplus that can be sold.

On the other hane we cannot have

$$F_i(w_j) < 0$$

because it cannot consume more product than the produced.

So the system must satisfy the constraint

$$F_i(w_i) \ge 0 \tag{7}$$

1.3 Profit rate

The profit rate for the whole supply chain are

$$G(w_i) = \sum_{j \in B} v_j F_j(w_i) = V' F W = G' W$$
(8)

such that

$$G = g_i = (V'F)')F'V = N'(Q' - D)V$$

The problem is to find the optimal production configuration given by the values of w_i and z_i that maximize the value rate $G(w_i)$. This is defined by the linear system composed by (1) (2), (3), (7), (8)

$$\begin{cases}
\max_{(w_i, z_j)} G(w_i) &, i \in B, j \in A \\
U_i(w_j, z_i) = 1 &, i \in A, j \in B \\
F_i \ge 0 &, i \in B \\
w_i \ge 0 &, i \in B \\
z_i \ge 0 &, i \in A
\end{cases} \tag{9}$$

1.4 Supplier configuration

Una volta risolto il sistema (9) ci troviamo con le distribuzioni degli slot di produzione dei produttori. Per l'uso pratico dobbiamo trasformare i pesi di distribuzione degli slot in una configurazione di produzione reale.

Il primo passo per far questo è trasformare le w_i e z_i nel numero di produttori per prodotto.

Il numero di produttori che producono il prodotto $i \in B$ è dato dal tempo totale di produzione dei suppliers per ogni singolo prodotto rispetto al totale $U_i(w_i, z_j) = 1$

$$\pi_i = n_{s_i} w_i t_i$$

$$\Pi = NTW$$

La parte intera di Π ci da il numero di produttori fissi per prodotto

$$F = |\Pi|$$

Il numero totale di produttori fissi è quindi

$$tot_i = \sum_{j \in B} \theta_{ij} f_j$$

$$TOT = \Theta F$$

La parte frazionaria invece determina la distribuzione parziale dei produttori per prodotto

$$R = \Pi - F$$

Il numero totale di produttori variabili è dato da

$$RTOT = ceil(\Theta R)$$

La distribuzione dei produttori variabili per prodotto e data poi da

$$P(i,j) = \frac{r_i \theta_{ij}}{rtot_j}, rtot_j > 0$$

Ponendo

$$rtot'_{j} = \max(rtot_{j}, 1) \tag{10}$$

possiamo generalizzare

$$P(i,j) = \frac{r_i \theta_{ij}}{rtot_i'}$$

e diagonalizzando r e rtot' abbiamo

$$P(i,j) = diag(R) \Theta diag^{-1}(RTOT')$$