MATH 210B

Name: Quin Darcy
Due Date: 2/12/20
Instructor: Dr. Shannon
Assignment: Homework 3

3. Assume that F is a field, $f(x) \in F[x]$, and that $a \in F$. Prove that a is a root of f(x) iff $(x-a) \mid f(x)$.

Proof. Assume that a is a root of f(x). Then f(a) = 0. Since F is a field and $f(x), (x-a) \in F[x]$ where $(x-a) \neq 0$, then by the proof on pg.5 there exists unique polynomials $q(x), r(x) \in F[x]$ such that f(x) = q(x)(x-2) + r(x) and r(x) = 0 or $\deg(r(x)) < \deg(x-a)$. Since $\deg((x-a)) = 1$, then $\deg(r(x)) = 0$. Thus, for some $t \in F$, r(x) = t. By assumption, f(a) = 0 and so q(a)(a-a) + t = t = 0. Thus, f(x) = q(x)(x-a). Therefore, $(x-a) \mid f(x)$. Now assume that $(x-a) \mid f(x)$. Then for some $q(x) \in F[x]$, we have that f(x) = q(x)(x-a). Thus, f(a) = q(a)(a-a) = 0. Therefore, a is a root of f(x).

4. Assume that F is a field. Then F[x] is a Euclidean domain, thus any two polynomials have a gcd and the gcd can be expressed as a linear combination of the two polynomials. Over $\mathbb{Z}_7[x]$, find the gcd of $f(x) = 3x^3 + 5x^2 + 6x$ and $g(x) = 4x^4 + 2x^3 + 6x^2 + 4x + 5$ and express the gcd as a linear combination of f(x) and g(x).

Solution. We begin by finding the gcd of the two given polynomials and this requires repeated applications of the division algorithm. In doing this we obtain

$$g(x) = (6x)f(x) + (5x^2 + 4x + 5) = q_1(x)f(x) + r_1(x)$$

$$f(x) = (2x + 5)r_1(x) + (4x + 3).$$

Thus, the gcd of the two given polynomials is 4x + 3. Using back substitution, we get that

$$(1 + q_2(x)q_1(x))f(x) - (q_2(x))g(x) = 4x + 3.$$

5. Find the elementary symmetric functions for $x^3 + bx^2 + cx + d = (x - r)(x - s)(x - t)$, and for $x^4 - 2x^2 - 3$.

Solution. To begin, we compute the elementary symmetric functions for $x^3 + bx^2 + cx + d$ and obtain $\sigma_1 = r + s + t$, $\sigma_2 = rs + rt + st$, and $\sigma_3 = rst$. For $x^4 - 2x^2 - 3$ we get that

$$\sigma_{1} = i + (-i) + \sqrt{3} + (-\sqrt{3}) = 0$$

$$\sigma_{2} = (i)(-i) + (i)(\sqrt{3}) + (i)(-\sqrt{3}) + (-i)(\sqrt{3}) + (-\sqrt{3})(\sqrt{3}) = -2$$

$$\sigma_{3} = (i)(-i)(\sqrt{3}) + (i)(-i)(-\sqrt{3}) + (i)(\sqrt{3})(-\sqrt{3}) + (-i)(\sqrt{3})(-\sqrt{3}) = 0$$

$$\sigma_{4} = (i)(-i)(\sqrt{3})(-\sqrt{3}) = -3.$$

MATH 210B Darcy

6. Assume that F is a field, that $p(x) \in F[x]$ is irreducible over F[x], and that $\deg(p(x)) = n$. Let $I = (p(x))_i$.

(a) Prove that every element of F[x]/I can be written in the form I+h(x) where h(x)=0 or $\deg(h(x))< n$, and that this representation is unique.

Proof. Let $h(x) + I \in F[x]/I$. If $\deg(h(x)) < n$, then we are done. Otherwise, if $\deg(h(x)) \ge n$, then by the division algorithm, there exists $q(x), r(x) \in F[x]/I$ such that h(x) = q(x)p(x) + r(x), where r(x) = 0 or $\deg(r(x)) < n$. If r(x) = 0, then $h(x) \in I$. If $r(x) \ne 0$, then since $q(x)p(x) \in I$, then I + h(x) = I + r(x).

Now suppose $I + h(x) = I + f_1(x) = I + f_2(x)$ where $\deg(f_1(x)) < n$ and $\deg(f_2(x)) < n$. Then $I + (f_1(x) - f_2(x)) = I$ and it follows that $p(x) \mid (f_1(x) - f_2(x))$. Thus, for some $q(x) \in F[x]$, we have $f_1(x) = q(x)p(x) + f_2(x)$. However, since $\deg(f_1(x)) < n$ and $\deg(q(x)p(x) + f_2(x)) \ge n$ for $q(x) \ne 0$, but this is impossible. Thus q(x) = 0 and $f_1(x) = f_2(x)$.

(b) Prove that $\{I+1, I+x, \dots, I+x^{n-1}\}\$ is a basis for F[x]/I over F.

Proof. Suppose that for some $a_0, \ldots, a_{n-1} \in F$

$$\sum_{i=0}^{n-1} (I + a_i x^i) = I + \sum_{i=0}^{n-1} a_i x^i = I.$$

By the unique representation component of part (a), it follows that

$$\sum_{i=0}^{n-1} a_i x^i = 0.$$

Moving the constant term over we see that $a_1x + \cdots + a_{n-1}x^{n-1} = -a_0$.

With indeterminates on the left and none on the right, this equality only holds for $a_i = 0$ for all i. Thus, the set is linearly independent. Since F[x]/I is a field, then clearly $\langle \{I+1,\ldots,I+x^{n-1}\} \rangle \subseteq F[x]/I$ and so it suffices to show that the inclusion goes the other way. Let $I+h(x) \in F[x]/I$. By part (a), we can assume that $\deg(h(x)) < n$, say $\deg(h(x)) = j$. Then $h(x) = a_0 + a_1x + \cdots + a_jx^j$ and so

$$I + h(x) = I + \sum_{i=0}^{j} a_i x^i \in \langle \{I + 1, \dots, I + x^{n-1}\} \rangle.$$

Thus, $\langle \{I+1,\ldots,I+x^{n-1}\} \rangle \subseteq F[x]/I$ and so $\{I+1,\ldots,+I+x^{n-1}\}$ is a basis for F[x]/I.

(c) Find a basis for $\mathbb{Q}[x]/(x^3-2)_i$ over \mathbb{Q} .

Solution. Let $I = (x^3 - 2)_i$ and $S = \{I+1, I+x, I+x^2\}$. Assume for $a_0, a_1, a_2 \in \mathbb{Q}$ that

$$(I + a_0) + (I + a_1x) + (I + a_2x^2) = I + (a_0 + a_1x + a_2x^2) = I.$$

By 6.a, this representation is unique and so $a_0 + a_1x + a_2x^2 = 0$ which only holds for $a_i = 0$ for all i. Thus, S is linearly independent. Now take $I + h(x) \in \mathbb{Q}[x]/I$.

Then by 6.a, we can assume that deg(h(x)) < 3 and so let $h(x) = b_0 + b_1 x + b_2 x^2$, then

$$I + h(x) = I + (b_0 + b_1 x + b_2 x^2) = (I + b_0) + (I + b_1 x) + (I + b_2 x^2) \in S.$$

Thus, $\langle S \rangle = \mathbb{Q}/(x^3 - 2)_i$. Therefore, S is a basis.

7. Determine the number of elements of $\mathbb{Z}_5/(x^2-3)_i$, and determine whether or not $\mathbb{Z}_5[x]/(x^2-3)_i$ is a field.

Solution. By 6.a, we know every element of $\mathbb{Z}_5[x]/(x^2-3)_i$ can be written as I+h(x) where $I=(x^2-3)_i$ and h(x)=0 or $\deg(h(x))<2$. Thus, $h(x)=a_0+a_1x$ for $a_0,a_1\in\mathbb{Z}_5$. There are 5 elements in \mathbb{Z}_5 and so a_0 can take on any one of these 5 values, and the same for a_1 . Thus, there are $5\cdot 5=25$ elements in $\mathbb{Z}_5[x]/(x^2-3)_i$. Lastly, we will check to see if x^2-3 is irreducible over \mathbb{Z}_5 . Supposing it is, we would have

$$x^2 - 3 = (ax+b)(cx+d)$$

which gives us the relations ac = 1, ad + bc = 0, bd = -3. Checking every element, we find that there are no solutions. Thus, $x^2 - 3$ is irreducible, which implies $(x^2 - 3)_i$ is maximal and so $\mathbb{Z}_5[x]/(x^2 - 3)_i$ is a field.

8.

(a) Assume that F is a field, $f(x), g(x), h(x) \in F[x]$, $f(x) = g(x) \cdot h(x)$, and for all $c \in F$, $g(c) \neq 0$ and $h(c) \neq 0$. Must f(x) be irreducible over F[x]? Explain your answer.

Solution. No, as a counter example consider $f(x) \in \mathbb{Q}[x]$ where

$$f(x) = x^4 - x^2 - 2 = (x^2 - 2)(x^2 + 1)$$

In this case, f is reducible since neither g(x) or h(x) is a unit, and the roots of both factors are not elements of \mathbb{Q} .

(b) Assume that F is a field, $a \in F$, $m \mid n$, $m \neq 1$, and there exists $d \in F$, $d \neq \pm a$, such that $d^m = a$. Prove that $x^n - a$ is reducible over F. Determine if the converse is true.

Proof. We begin by noting that for any $m \in \mathbb{N}$,

$$x^{m} - t^{m} = (x - t)(x^{m-t} + x^{m-2}t + \dots + t^{m-1})$$

Since $d^m = a$, then we may write $x^n - a = x^n - d^m$. Moreover, since $m \mid n$, then for some $k \in \mathbb{Z}$, we have n = mk. Thus,

$$x^{n} - a = x^{n} - d^{m}$$

$$= x^{mk} - d^{m}$$

$$= (x^{k})^{m} - d^{m}$$

$$= (x^{k} - d)((x^{k})^{m-1} + (x^{k})^{m-2}d + \dots + d^{m-1})$$

Since neither of the polynomials in the final product are a unit, then $x^n - a$ is irreducible.

MATH 210B Darcy

9. Find (and explain) the multiplicative inverse of $(x^3+x+1)_i+x^2+2$ in $\mathbb{Z}_5[x]/(x^3+x+1)_i$.

Solution. We being by applying the division algorithm on $x^3 + x + 1$ and $x^2 + 2$ in order to find the gcd of the two polynomials. In doing so we get

- 1) $(x^3 + x + 1) = x(x^2 + 2) + (4x + 1);$
- 2) $(x^2 + 2) = (4x + 4)(4x + 1) + (3);$
- 3) (4x+1) = (3x+1)(3).

Thus, 3 is the gcd of the two polynomials. Letting $f(x) = x^2 + 2$, $g(x) = x^3 + x + 1$, $q_1(x) = x$, and $q_2(x) = 4x + 4$, we can use back substitution to obtain the following linear combination of f(x) and g(x):

$$(1 - q_2(x)q_1(x))f(x) - q_2(x)g(x) = 3.$$

Multiplying both sides by 2 and expanding, we get

$$2[1 - (4x + 4)(x)]f(x) - 2q_2(x)g(x) = [2 - 8x^2 - 8x]f(x) - 2q_2(x)g(x)$$
$$= [2 + 2x^2 + 2x]f(x) - 2q_2(x)g(x)$$
$$= [2x^2 + 2x + 2]f(x) - 2q_2(x)g(x)$$
$$= 1.$$

For space economy, let $I = (g(x))_i$. Since $-2q_2(x)g(x) \in I$, then $I - 2q_2(x)g(x) = I$, from which it follows

$$[I+f(x)][I+(2x^2+2x+2)] = I + (2x^2+2x+2)f(x)$$

$$= [I+(2x^2+2x+2)f(x)] + I$$

$$= [I+(2x^2+2x+2)f(x)] + [I-2q_2(x)g(x)]$$

$$= I + [(2x^2+2x+2)f(x) - 2q_2(x)g(x)]$$

$$= I+1.$$

Hence, the multiplicative inverse of $(x^3 + x + 2)_i + x^2 + 2$ is $(x^3 + x + 1)_i + 2x^2 + 2x + 2$.

10. Assume that F is a field, $p(x) \in F[x]$ is irreducible over F and $I = (p(x))_i$. Prove that I + x is a root of p(x) in F[x]/I.

Proof. Since p(x) is irreducible, then I is maximal and so F[x]/I is a field. Now consider a map $\psi \colon F \to F[x]/I$ defined by $\psi(a) = I + a$. If we let $a, b \in F$ such that a = b, then $\psi(a) = I + a = I + b = \psi(b)$ and so ψ is well defined. If $\psi(a) = \psi(b)$, then I + a = I + b and so I + (a - b) = I. Thus, $a - b \in I$. Hence, a - b is a multiple of p(x) which has degree greater than or equal to 1. Since $a, b \in F$ then the only way in which a - b is equal to a multiple of a polynomial of degree ≥ 1 is if a - b = 0 and so a = b. Therefore, ψ is 1-1. Moreover, we have that

$$\psi(a+b) = I + a + b = (I+a) + (I+b) = \psi(a) + \psi(b)$$

and

$$\psi(ab) = I + ab = (I + a)(I + b) = \psi(a)\psi(b).$$

MATH 210B Darcy

Thus, $\psi \colon F \to \psi(F)$ is an isomorphism and so we can identify each element $a \in F$ with a coset $I + a \in F[x]/I$. Moreover, since F is a field, F[x]/I is a field, and ψ is an isomorphism onto the image of F, then $\psi(F)$ is a subfield of F[x]/I. Now consider the homomorphism from HW2, problem 7 with $\theta \colon F[x] \to F[x]/I$ defined by $\theta(f(x)) = f(I+x)$. Thus, if $p(x) = a_0 + a_1x + \cdots + a_nx^n$ with $a_i \in F$, then

$$\theta(p(x)) = p(I+x)$$

$$= a_0(I+x)^0 + a_1(I+x)^1 + a_2(I+x)^2 + \dots + a_n(I+x)^n$$

$$= (I+a_0) + (I+a_1x) + (I+a_2x^2) + \dots + (I+a_nx^n)$$

$$= I + (a_0 + a_1x + a_2x^2 + \dots + a_nx^n)$$

$$= I + p(x)$$

$$= I.$$

Thus, $p(I+x) = I = \psi(0)$. So since $F \cong \psi(F) \subseteq F[x]/I$, then it follows that F[x]/I can be thought of as an extension of F which contains a root of p(x), namely I+x. \square