FINDING THE RIGHT CUSTOMER

Presenter: Rita, Terrell and Lionel

CONTENTS

- Aim and Ideal of the model
- 2 Method
- 3 Result
- 4 Conclusion

Aim and Ideal of the Model

- Create a model to find whether the customers can afford our product
- Majority of the old customers have a yearly income over \$50,000
- This model helps us to predict whether the new customers make \$50,000 a year, so that we can decide if we should promote the product to them

Dataset

The dataset contains:

Age

Relationship

Work-class

Race

Education

• Sex

Martial-status

Capital-gain

Occupation

Capital-loss

• Work hours per week

Native-country

• Income

Dataset Cleaning

- 4265 Missing values
- Drop rows that contain missing values
- Since we still have a large sample size of 30126

```
df = df.replace(" ?",np.nan)
df.isna().sum()
                     0
age
workclass
                  1836
fnlwgt
education
education-num
marital-status
occupation
                  1843
relationship
race
sex
capital-gain
capital-loss
hours-per-week
native-country
                   583
income
income2
dtype: int64
```


Method

How much do they earn?

- 75.1% of them have an income of less or equal to 50K
- 24.9% of them have an income of greater than 50K

Data Exploration and Visualization

Age Group

- Majority of the population in this sample is in the age of 20-50
- Age 20-33: more people earn less than 50K
- Age 33-60: more people earn more than 50K
- Age 60+: about the same

Prediction 1: Age is an important feature

Data Exploration and Visualization

Male or Female

More than 80% of the people who are making more than \$50,000 a year are male

Prediction: More male customers than female

Data Exploration and Visualization

Holder of a Bachelor's Degree or higher seems to earn more

STUDY HARD!

Feature Engineering

```
df.workclass.value_counts()
Private
                    22286
Self-emp-not-inc
                     2499
Local-gov
                     2067
State-gov
                     1279
Self-emp-inc
                     1074
                      943
Federal-gov
Without-pay
                      14
Name: workclass, dtype: int64
self_employed = ["Self-emp-not-inc", "Self-emp-inc"]
gov = ["Local-gov", "State-gov", "Federal-gov"]
df["workclass"].replace(to_replace = self_employed, value = "self-employed", inplace = True)
df["workclass"].replace(to_replace = gov, value = "gov", inplace = True)
df["workclass"].value_counts()
Private
                 22286
                  4289
gov
self-employed
                  3573
Without-pay
                   14
Name: workclass, dtype: int64
```

We have also done feature engineering on the following features:

Education, Native-country, Martial Status & Age

Feature Scaling

```
: dum_df = pd.get_dummies(df, prefix_sep='_', drop_first=True)
  dum_df.head()
```

	fnlwgt	capital- gain	capital- loss	hours- per- week	education_num	age_30- 39	age_40- 49	age_50- 59	age_<20	age_>60	···	relationship_Own- child	relationship_Unmarried	relationship_V
0	77516	2174	0	40	7	1	0	0	0	0		0	0	
1	83311	0	0	13	7	0	0	1	0	0	-55	0	0	
2	215646	0	0	40	3	1	0	0	0	0		0	0	
3	234721	0	0	40	3	0	0	1	0	0		0	0	
4	338409	0	0	40	7	0	0	0	0	0	-277	0	0	

5 rows × 41 columns

```
: X_train = dum_df.drop(columns = "income_>50K")
 y_train = dum_df["income_>50K"]
```

```
: from sklearn.preprocessing import MinMaxScaler
  scaler = MinMaxScaler(feature_range=(0, 1))
 rescaledX = scaler.fit_transform(X_train)
```


Logistic Regression

- Predict ≤ \$50,000 ,very well
- Predict > \$50,000, OK but not good enough
- We would have lost 1492
 potential customers under this
 model
- Imbalance dataset
- Focus on the recall

	precision	recall	f1-score	support	
0	0.87	0.93	0.90	22654	
1	0.74	0.60	0.66	7508	
accuracy			0.85	30162	
macro avg	0.81	0.76	0.78	30162	
weighted avg	0.84	0.85	0.84	30162	
print(classit	fication_repo	ν-	,y_pred_te	st)) support	
	precision	1.00011	11 30010	заррог с	
0	0.88	0.93	0.90	11360	
1	0.73	0.60	0.66	3700	
accuracy			0.85	15060	
macro avg	0.80	0.76	0.78	15060	
weighted avg	0.84	0.85	0.84	15060	
from sklearn tn, fp, fn, t print([tp,fp] print([fn,tn] [2208, 816] [1492, 10544	cp = confusio			ored_test).ra	vel()

		Actual Class				
		>50k	<=50k			
Predicted	>50k	2208 True Positives	816 False Positives			
Class	<=50k	1492 False Negatives	10544 True Negatives			

Before Resampling	SMOTEENN	SMOTE
<pre>print(classification_report(y_train,y_pred_train))</pre>	<pre>print(classification_report(y_resampled,y_pred_train_re))</pre>	<pre>In [63]: print(classification_report(y_smote,y_pred_train_re2))</pre>
precision recall f1-score support	precision recall f1-score support	precision recall f1-score support
0 0.87 0.93 0.90 22654 1 0.74 0.60 0.66 7508	0 0.94 0.93 0.93 15678 1 0.93 0.94 0.93 15599	0 0.85 0.79 0.82 22654 1 0.80 0.86 0.83 22654
accuracy 0.85 30162 macro avg 0.81 0.76 0.78 30162 weighted avg 0.84 0.85 0.84 30162	accuracy 0.93 31277 macro avg 0.93 0.93 0.93 31277 weighted avg 0.93 0.93 0.93 31277	accuracy 0.82 45308 macro avg 0.83 0.82 0.82 45308 weighted avg 0.83 0.82 0.82 45308
<pre>print(classification_report(y_test,y_pred_test))</pre>	<pre>print(classification_report(y_test,y_pred_test_re))</pre>	<pre>In [64]: print(classification_report(y_test,y_pred_test_re2))</pre>
precision recall f1-score support	precision recall f1-score support	precision recall f1-score support
0.73 1 0.88 0.93 0.90 11360 0.73 1 0.60 0.66 3700	0.87 1 0.54 0.87 0.66 3700	0.84 0.94 0.79 0.86 11360 0.84 0.68 3700
accuracy 0.85 15060 macro avg 0.80 0.76 0.78 15060 weighted avg 0.84 0.85 0.84 15060	accuracy 0.78 15060 macro avg 0.74 0.81 0.75 15060 weighted avg 0.85 0.78 0.80 15060	accuracy 0.80 15060 macro avg 0.75 0.82 0.77 15060 weighted avg 0.85 0.80 0.81 15060
Precision 🗸	Recall 🗸	Recall 🗸
Accuracy 🗸		

Logistic regression					KNN				SVM					
	precision	recall	f1-score	support		precision	recall	f1-score	support		precision	recall	f1-score	support
0 1	0.95 0.54	0.76 0.87	0.84 0.66	11360 3700	0 1	0.91 0.54	0.79 0.75	0.84 0.63	11360 3700	0 1	0.91 0.47	0.71 0.77	0.80 0.58	11360 3700
accuracy macro avg weighted avg	0.74 0.85	0.81 0.78	0.78 0.75 0.80	15060 15060 15060	accuracy macro avg weighted avg	0.72	0.77 0.78	0.78 0.74 0.79	15060 15060 15060	accuracy macro avg weighted avg	0.69 0.80	0.74 0.73	0.73 0.69 0.75	15060 15060 15060

Combine over- and under-sampling using SMOTEENN

XGboost

	precision	recall	f1-score	support
0	0.94	0.83	0.88	11360
1	0.62	0.83	0.71	3700
accuracy			0.83	15060
macro avg	0.78	0.83	0.79	15060
weighted avg	0.86	0.83	0.84	15060

- Best result
- Relatively high precision
- High recall and accuracy

Tuning

```
from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=xgbc, param_grid=dict(learning_rate=[0.01,0.1],max_depth=[3,7]),scoring="recall").fit(rescaled print("tuned hpyerparameters :(best parameters) ",grid_search.best_params_)
print("accuracy :",grid_search.best_score_)

tuned hpyerparameters :(best parameters) {'learning_rate': 0.01, 'max_depth': 3}
accuracy : 0.8560212410545655
```

We found that 'learning_rate'=0.01 and 'max_depth'=3 are the best parameters

XGBoost

xgbc = XGBClassifier(n_estimators=5000,n_jobs=-1, learning_rate= 0.01,max_depth= 3, random_state=2,scale_pos_weight=3)

xgbc.fit(rescaledX,y_train)

y_pred_xgbc_test = xgbc.predict(rescaledX_test)

y_pred_xgbc_train = xgbc.predict(rescaledX)

print(classification_report(y_train,y_pred_xgbc_train))

	precision	recall	f1-score	support
0	0.95	0.83	0.89	22654
1	0.63	0.88	0.73	7508
accuracy			0.84	30162
macro avg	0.79	0.85	0.81	30162
weighted avg	0.87	0.84	0.85	30162

Before tuning

print(classification_report(y_test,y_pred_xgbc_test))

	precision	recall	f1-score	support
0 1	0.95 0.61	0.82 0.86	0.88 0.71	11360 3700
accuracy macro avg weighted avg	0.78 0.86	0.84 0.83	0.83 0.79 0.84	15060 15060 15060

	precision	recall	f1-score	support	
0 1	0.94 0.62	0.83	0.88 0.71	11360 3700	
accuracy macro avg weighted avg	0.78 0.86	0.83 0.83	0.83 0.79 0.84	15060 15060 15060	

XGBoost

Before

		Actual Class					
		>50k	<=50k				
Predicted	>50k	2208 True Positives	816 False Positives				
Class	<=50k	1492 False Negatives	10544 True Negatives				

After

		Actual Class					
		>50k	<=50k				
Predicted	>50k	3164 True Positives	2040 False Positives				
Class	<=50k	536 False Negatives	9320 True Negatives				

After tuning with XGBoost:

- 1. We have predicted 956 target customers more than before
- 2. Loss of potential customers goes down from 1492 to 536

Improvement

• Some features have a strong correlation between them, such as race and nativecountry, relationship and marital-status

In this model, we put them as 2 separate features which might enhance / reduce the importance of it

We would have removed features with the lowest importance

THANK YOU!

Presenter: Rita, Terrell and Lionel

