Math 221

Class Exercises: Apr. 6

1. The transformations $T: \mathbb{R}^2 \to \mathbb{R}^3$ and $S: \mathbb{R}^3 \to \mathbb{R}^2$ are defined as follows:

$$T\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \left[\begin{array}{c} x \\ 0 \\ x+y \end{array}\right] \qquad S\left(\left[\begin{array}{c} x \\ y \\ z \end{array}\right]\right) = \left[\begin{array}{c} z-x \\ y \end{array}\right]$$

- (a) Is T injective (one-to-one)?
- (b) Is $S \circ T$ an isomorphism?
- (c) Find $[S]^{\beta}_{\alpha}$ where α and β are the standard ordered basis for \mathbb{R}^3 and \mathbb{R}^2 respectively.
- 2. Let $T: \mathbb{M}_{2\times 2} \to \mathbb{M}_{2\times 2}$ be defined by $T(B) = B^T$.
 - (a) Show that T is linear.
 - (b) Find $[T]^{\alpha}_{\alpha}$ if

$$\alpha = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\}$$

- 3. Decide if each of the following statements is true or false and explain why:
 - (a) If $V \perp W$, then $V^{\perp} \perp W^{\perp}$.
 - (b) If $V \perp W$ and $W \perp Z$, then $V \perp Z$.
- 4. The equation x + 2y 3z = 0 defines a plane in \mathbb{R}^3 .
 - (a) Find a matrix that has this plane as its null space. Is the matrix unique?
 - (b) Find a matrix that has this plane as its row space. Is the matrix unique?
- 5. (a) Find the matrix P_1 that projects orthogonally onto Span $\left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$.
 - (b) Find the matrix P_2 that projects orthogonally onto Span $\left\{ \begin{bmatrix} -1 \\ 4 \end{bmatrix} \right\}$.
 - (c) Is the product P_1P_2 also an orthogonal projection?

6. Let
$$U = \text{Span}\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$
 and $W = \text{Span}\left\{ \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$

Find a matrix P so that Px is the projection of x onto U along W.

- (a) Check that $P^2 = P$.
- (b) Check that Px is in U for any $x \in \mathbb{R}^3$.
- (c) Check that Pw = 0 for any $w \in W$.