

Outline

- Overview
- Hardware Architecture
- Memory Optimizations
 - Data transfers between host and device
 - Device memory optimizations
 - Measuring performance effective bandwidth
 - Coalescing
 - Shared Memory
 - Textures (if we have time)
- Fermi update

Optimize Algorithms for GPU

- Algorithm selection
 - Understand the problem, consider alternate algorithms
 - Maximize independent parallelism
 - Maximize arithmetic intensity (math/bandwidth)
- Recompute?
 - GPU allocates transistors to arithmetic, not memory
 - Sometimes better to recompute rather than cache
- Serial computation on GPU?
 - Low parallelism computation may be faster on GPU vs copy to/from host

Optimize Memory Access

- Coalesce global memory access
 - Maximise DRAM efficiency
 - Order of magnitude impact on performance
- Avoid serialization
 - Minimize shared memory bank conflicts
 - Understand constant cache semantics

- Understand spatial locality
 - Optimize use of textures to ensure spatial locality

Exploit Shared Memory

- Hundreds of times faster than global memory
- Inter-thread cooperation via shared memory and synchronization
- Cache data that is reused by multiple threads
- Stage loads/stores to allow reordering
 - Avoid non-coalesced global memory accesses

Use Resources Efficiently

- Partition the computation to keep multiprocessors busy
 - Many threads, many thread blocks
 - Multiple GPUs
- Monitor per-multiprocessor resource utilization
 - Registers and shared memory
 - Low utilization per thread block permits multiple active blocks per multiprocessor
- Overlap computation with I/O
 - Use asynchronous memory transfers

Outline

- Overview
- Hardware Architecture
- Memory Optimizations
 - Data transfers between host and device
 - Device memory optimizations
 - Measuring performance effective bandwidth
 - Coalescing
 - Shared Memory
 - Textures (if we have time)
- Fermi update

10-Series Architecture

- 240 Scalar Processor (SP) cores execute parallel thread instructions
- 30 Streaming Multiprocessors (SMs) each contain
 - 8 scalar processors: 8 fp32/int ops / clock, 1 fp64 op / clk
 - 2 Special Function Units (SFUs)
 - Shared memory enables thread cooperation

20-Series Architecture

- 448 Scalar Processor (SP) cores execute parallel thread instructions
- 14 Streaming Multiprocessors (SMs) each contains
 - 32 scalar processors
 - 32 fp32 / int32 ops / clock,
 - 16 fp64 ops / clock
 - 4 Special Function Units (SFUs)
 - Shared register file (128KB)
 - 48 KB / 16 KB Shared memory
 - 16KB / 48 KB L1 data cache

Execution Model

Software

Hardware

Threads are executed by scalar processors

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one multiprocessor - limited by multiprocessor resources (shared memory and register file)

A kernel is launched as a grid of thread blocks

Warps and Half Warps

A thread block consists of 32-thread warps

A warp is executed physically in parallel (SIMD) on a multiprocessor

A half-warp of 16 threads can coordinate global memory accesses into a single transaction (compute capability < 2.0)

On compute capability >= 2.0, a warp of 32 threads can coordinate global memory accesses into a single transaction

Memory Architecture: Tesla T-10 Series

Memory Architecture: Tesla T-20 Series

Memory Architecture: Tesla T-10 Series

Memory	Location	Cached	Access	Scope	Lifetime
Register	On-chip	N/A	R/W	One thread	Thread
Local	Off-chip	No	R/W	One thread	Thread
Shared	On-chip	N/A	R/W	All threads in a block	Block
Global	Off-chip	No	R/W	All threads + host	Application
Constant	Off-chip	Yes	R	All threads + host	Application
Texture	Off-chip	Yes	R	All threads + host	Application

Memory Architecture: Tesla T-20 Series

Memory	Location	Cached	Access	Scope	Lifetime
Register	On-chip	N/A	R/W	One thread	Thread
Local	Off-chip	Yes	R/W	One thread	Thread
Shared	On-chip	N/A	R/W	All threads in a block	Block
Global	Off-chip	Yes	R/W	All threads + host	Application
Constant	Off-chip	Yes	R	All threads + host	Application
Texture	Off-chip	Yes	R	All threads + host	Application

Outline

- Overview
- Hardware Architecture
- Memory Optimizations
 - Data transfers between host and device
 - Device memory optimizations
 - Measuring performance effective bandwidth
 - Coalescing
 - Shared Memory
 - Textures (if we have time)
 - Fermi update

Host-Device Data Transfers

- Device to host memory bandwidth much lower than device to device bandwidth
 - 8 GB/s peak (PCI-e x16 Gen 2) vs. 144 GB/s peak (C2050)
- Minimize transfers
 - Intermediate data can be allocated, operated on, and deallocated without ever copying to host memory
- Group transfers
 - One large transfer much better than many small ones

Page-Locked Data Transfers

- cudaMallocHost() allows allocation of page-locked ("pinned") host memory
- Enables highest cudaMemcpy performance
 - 3.2 GB/s on PCI-e x16 Gen1
 - 5.2 GB/s on PCI-e x16 Gen2
- See the "bandwidthTest" CUDA SDK sample
- Use with caution
 - Page-locking too much memory can reduce overall system performance.
 - Test your systems and apps to learn their limits

Overlapping Data Transfers and Computation

- Async and Stream APIs allow overlap of H2D or D2H data transfers with computation
 - CPU computation can overlap data transfers on all CUDA capable devices
 - Kernel computation can overlap data transfers on devices with "Concurrent copy and execution" (roughly compute capability >= 1.1)
 - Tesla T-20 Series can overlap bidirectional transfers with device computation and host computation
- Stream = sequence of operations that execute in order on GPU
 - Operations from different streams can be interleaved
 - Stream ID used as argument to async calls and kernel launches

Asynchronous Data Transfers

- Asynchronous host-device memory copy returns control immediately to CPU
 - cudaMemcpyAsync(dst, src, size, dir, stream);
 - requires page-locked host memory (allocated with "cudaMallocHost")
- Overlap CPU computation with data transfer
 - 0 = default stream

Overlapping kernel and data transfer

- Requires:
 - "Concurrent copy and execute"
 - deviceOverlap field of a cudaDeviceProp variable
 - Kernel and transfer use different, non-zero streams
 - A CUDA call to stream 0 blocks until all previous calls complete and cannot be overlapped

Example:

```
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
cudaMemcpyAsync(dst, src, size, dir, stream1);
kernel<<<grid, block, 0, stream2>>>(...);
overlapped
```

GPU/CPU Synchronization

- Context based
 - cudaThreadSynchronize()
 - Blocks until all outstanding CUDA calls from CPU thread complete
- Stream based
 - cudaStreamSynchronize(stream)
 - Blocks until all CUDA calls issued to given stream complete
 - cudaStreamQuery(stream)
 - Indicates whether stream is idle
 - Returns cudaSuccess, cudaErrorNotReady, ...
 - Does not block CPU thread

GPU/CPU Synchronization

- Stream based using events
 - Events can be inserted into streams: cudaEventRecord (event, stream)
 - Event is recorded when GPU reaches it in a stream
 - Recorded = assigned a timestamp (GPU clocktick)
 - Useful for timing
 - cudaEventSynchronize(event)
 - Blocks until given event is recorded
 - cudaEventQuery(event)
 - Indicates whether event has recorded
 - Returns cudaSuccess, cudaErrorNotReady, ...
 - Does not block CPU thread

Zero copy

- Access host memory directly from device code
 - Transfers implicitly performed as needed by device code
 - Introduced in CUDA 2.2
 - Check canMapHostMemory field of cudaDeviceProp variable
- All set-up is done on host using mapped memory

```
cudaSetDeviceFlags(cudaDeviceMapHost);
....
cudaHostAlloc((void **)&a_h, nBytes, cudaHostAllocMapped);
cudaHostGetDevicePointer((void **)&a_d, (void *)a_h, 0);
for (i=0; i<N; i++) a_h[i] = i;
increment<<<grid, block>>>(a_d, N);
```

Zero copy considerations

- Always a win for integrated devices that utilize CPU memory
 - Can check using the integrated field in cudaDeviceProp
- Faster if data only read/written from/to global memory once, e.g.
 - Copy input data to GPU memory
 - Run one kernel
 - Copy output data back to CPU memory
- Coalescing is even more important with zero copy!
- Potentially easier and faster alternative to cudaMemcpyAsync
 - For example, can both read and write CPU memory from within one kernel
- Note: current devices use 32-bit addressing so limited to 4GB per context

Outline

- Overview
- Hardware Architecture
- Memory Optimizations
 - Data transfers between host and device
 - Device memory optimizations
 - Measuring performance effective bandwidth
 - Coalescing
 - Shared Memory
 - Textures (if we have time)
- Fermi update

Theoretical Bandwidth

Device Bandwidth of GTX 280

- Specs report 141 GB/s
 - Use 10⁹ B/GB conversion rather than 1024³
 - Whichever you use, be consistent

Effective Bandwidth

Effective Bandwidth (for copying array of N floats)

Outline

- Overview
- Hardware Architecture
- Memory Optimizations
 - Data transfers between host and device
 - Device memory optimizations
 - Measuring performance effective bandwidth
 - Coalescing
 - Shared Memory
 - Textures (if we have time)
- Fermi update

Coalescing

- Global memory access of aligned 32, 64, or 128-bit segment by a half-warp
 - Results in as few as one (or two) transaction(s) if access requirements are met
- Depends on compute capability (CC)
 - Devices with CC < 1.2 have stricter access requirements
- Float (32-bit) data example:

Coalescing Compute capability 1.0 and 1.1

K-th thread must access k-th word in the segment (or k-th word in 2 contiguous 128B segments for 128-bit words), not all threads need to participate

Coalescing

DVIDIA

Compute capability 1.2 and higher

- Issues transactions for segments of 32B, 64B, and 128B
- Smaller transactions used to avoid wasted bandwidth

Coalescing Compute capability 2.0 (Fermi, Tesla C2050)

- Memory transactions handled per warp (32 threads)
- L1 cache ON: Issues <u>always</u> 128B segment transactions caches them in 16kB or 48kB L1 cache per multiprocessor

2 transactions - 2 x 128B segment - but next warp probably only 1 extra transaction, due to L1 cache.

- L1 cache OFF (configure with compiler switch see programming guide):
 Issues <u>always</u> 32B segment transactions
- E.g. advantage for widely scattered thread accesses

32 transactions - 32 x 32B segments, instead of 32 x 128B segments.

Coalescing Examples

- Effective bandwidth of small kernels that copy data
 - Effects of offset and stride on performance
- Two GPUs
 - GTX 280
 - Compute capability 1.3
 - Peak bandwidth of 141 GB/s
 - FX 5600
 - Compute capability 1.0
 - Peak bandwidth of 77 GB/s

Coalescing Examples

Coalescing Examples

Coalescing Examples

Strided memory access is inherent in many multidimensional problems

Stride is generally large (>> 18)

However ...

Strided access to *global memory* can be avoided using *shared memory*

Outline

- Overview
- Hardware Architecture
- Memory Optimizations
 - Data transfers between host and device
 - Device memory optimizations
 - Measuring performance effective bandwidth
 - Coalescing
 - Shared Memory
 - Textures (if we have time)
- Fermi update

Shared Memory

- ~Hundred times faster than global memory
- Cache data to reduce global memory accesses
- Threads can cooperate via shared memory
- Use it to avoid non-coalesced access
 - Stage loads and stores in shared memory to re-order non-coalesceable addressing

Shared Memory Architecture

- Many threads accessing memory
 - Therefore, memory is divided into banks
 - Successive 32-bit words assigned to successive banks
- Each bank can service one address per cycle
 - A memory can service as many simultaneous accesses as it has banks
- Multiple simultaneous accesses to a bank result in a bank conflict
 - Conflicting accesses are serialized

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7

• • •

Bank 15

Bank Addressing Examples

Bank Addressing Examples

Shared memory bank conflicts

- Shared memory is ~ as fast as registers if there are no bank conflicts.
- warp_serialize profiler signal reflects conflicts
- The fast case:
 - If all threads of a half-warp access different banks, there is no bank conflict
 - If all threads of a half-warp read identical address, there is no bank conflict (broadcast)
- The slow case:
 - Bank Conflict: multiple threads in the same half-warp access the same bank
 - Must serialize the accesses
 - Cost = max # of simultaneous accesses to a single bank

Shared Memory Example: Transpose

- Each thread block works on a tile of the matrix
- Naïve implementation exhibits strided access to global memory

Elements transposed by a half-warp of threads

Naïve Transpose

Loads are coalesced, stores are not (strided by height)

```
global void transposeNaive(float *odata, float *idata,
                             int width, int height)
int xIndex = blockIdx.x * TILE DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE DIM + threadIdx.y;
int index in = xIndex + width * yIndex;
int index out = yIndex + height * xIndex;
odata[index out] = idata[index in];
                      idata
                                              odata
```

Coalescing through shared memory

- Access columns of a tile in shared memory to write contiguous data to global memory
- Requires __syncthreads() since threads access data in shared memory stored by other threads

Elements transposed by a half-warp of threads

Coalescing through shared memory


```
global void transposeCoalesced(float *odata, float *idata,
                                 int width, int height)
  shared float tile[TILE DIM][TILE DIM];
int xIndex = blockIdx.x * TILE DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE DIM + threadIdx.y;
int index in = xIndex + (yIndex) *width;
xIndex = blockIdx.y * TILE DIM + threadIdx.x;
yIndex = blockIdx.x * TILE DIM + threadIdx.y;
int index out = xIndex + (yIndex)*height;
tile[threadIdx.y][threadIdx.x] = idata[index in];
syncthreads();
odata[index out] = tile[threadIdx.x][threadIdx.y];
```

Bank Conflicts in Transpose

- 16x16 shared memory tile of floats
 - Data in columns are in the same bank
 - 16-way bank conflict reading columns in tile
- Solution pad shared memory array
 - shared float tile[TILE_DIM][TILE_DIM+1];
 - Data in anti-diagonals are in same bank odata

Elements transposed by a half-warp of threads

Outline

- Overview
- Hardware Architecture
- Memory Optimizations
 - Data transfers between host and device
 - Device memory optimizations
 - Measuring performance effective bandwidth
 - Coalescing
 - Shared Memory
 - Textures (if we have time)
- Fermi update

Fermi

- Up to 1536 resident threads per multiprocessor (48 warps)
- Memory operations are done per warp (32 threads) instead of half-warp
 - Global memory, Shared memory, constant memory
- Shared memory:
 - 16 or 48KB
 - Now 32 banks, 32-bit wide each
 - No bank-conflicts when accessing 8-byte words
- L1 cache per multiprocessor
 - Should help with misaligned access, strides access, some register spilling
- Much improved dual-issue:
 - Can dual issue fp32 pairs, fp32-mem, fp64-mem, etc.
- IEEE-conformant rounding
- ECC option, 64bit address space, generic

Fermi: L1 cache

- L1 cache designed for parallel (spatial) re-use, not temporal
 - Similar to coalescing
- Partitions 64kb with shared memory:
 - Switch size between 16KB and 48KB (CUDA API call)
- Caches gmem reads only
 - It benefits if compiler detects that all threads load same value (LDU, load uniform)
- L1 cache can be deactivated: Smaller granularity of memory transactions
- L1 cache per multiprocessor
 - Not coherent!
- Caches local memory reads and writes
 - To improve spilling behaviour
 - (Coherence no problem as local memory SM-private)

Fermi: Constant (uniform) Loads

- Before Fermi, uniform data for all threads should be kept in __constant__
 - Reads go through constant cache, so only first warp that reads pays for global load
- Fermi has a new "load uniform" instruction that can perform similar constant caching for any global memory location that is uniformly accessed.
- **Condition:**
 - a) prefix pointer with const keyword
 - b) Memory access must be uniform across all threads in the block, e.g.

```
__global__ void kernel( float *g_dst, const float *g_src )
{
    g_dst = g_src[0] + g_src[blockIdx.x];
}
```

Fermi: Additional capabilities

- Fermi can execute several kernels concurrently
 - Thread blocks from one kernel are launched first
 - If there are resources available, thread blocks from a kernel in another stream are launched
 - Streams are used to define kernel independence
- Fermi has 2 copy-engines
 - Can concurrently copy CPU-GPU and GPU-CPU across PCIe
 - PCle is duplex, so aggregate bandwidth is doubled in such cases
 - Previous generation could only do one copy at a time
 - Copies must be from separate streams

Summary

- GPU hardware can achieve great performance on data-parallel computations if you follow a few simple guidelines:
 - Use parallelism efficiently
 - Coalesce memory accesses if possible
 - Take advantage of shared memory
 - Explore other memory spaces
 - Texture
 - Constant
 - Reduce bank conflicts

Outline

- Overview
- Hardware
- Memory Optimizations
 - Data transfers between host and device
 - Device memory optimizations
 - Measuring performance effective bandwidth
 - Coalescing
 - Shared Memory
 - Textures
- Summary

Textures in CUDA

- Texture is an object for *reading* data
- Benefits:
 - Data is cached
 - Helpful when coalescing is a problem
 - Filtering
 - Linear / bilinear / trilinear interpolation
 - Dedicated hardware
 - Wrap modes (for "out-of-bounds" addresses)
 - Clamp to edge / repeat
 - Addressable in 1D, 2D, or 3D
 - Using integer or normalized coordinates

Texture Addressing

Wrap

Out-of-bounds coordinate is wrapped (modulo arithmetic)

Clamp

Out-of-bounds coordinate is replaced with the closest boundary

CUDA Texture Types

- Bound to linear memory
 - Global memory address is bound to a texture
 - Only 1D
 - Integer addressing
 - No filtering, no addressing modes
 - **Bound to CUDA arrays**
 - Block linear CUDA array is bound to a texture
 - 1D, 2D, or 3D
 - Float addressing (size-based or normalized)
 - Filtering
 - Addressing modes (clamping, repeat)
 - Bound to pitch linear (CUDA 2.2)
 - Global memory address is bound to a texture
 - **2**D
 - Float/integer addressing, filtering, and clamp/repeat addressing modes similar to CUDA arrays

CUDA Texturing Steps

- Host (CPU) code:
 - Allocate/obtain memory (global linear/pitch linear, or CUDA array)
 - Create a texture reference object
 - Currently must be at file-scope
 - Bind the texture reference to memory/array
 - When done:
 - Unbind the texture reference, free resources
- Device (kernel) code:
 - Fetch using texture reference
 - Linear memory textures: tex1Dfetch()
 - Array textures: tex1D() or tex2D() or tex3D()
 - Pitch linear textures: tex2D()

Texture Example


```
global
            void
shiftCopy(float *odata,
           float *idata,
           int shift)
   int xid = blockIdx.x * blockDim.x
           + threadIdx.x;
   odata[xid] = idata[xid+shift];
texture <float> texRef;
  global
            void
textureShiftCopy(float *odata,
                   float *idata,
                   int shift)
   int xid = blockIdx.x * blockDim.x
           + threadIdx.x;
   odata[xid] = tex1Dfetch(texRef, xid+shift);
© NVIDIA Corporation 2009
```


Constant Memory

- Data stored in global memory, read through constant cache
 - __constant__ qualifier in declarations
 - Can only be read by GPU kernels
 - Limited to 64KB
- To be used when all threads in a warp read the same address
 - Serializes otherwise
- Throughput:
 - 32 bits per warp per clock per multiprocessor

Memory Throughput as Performance Metric

Global Memory Throughput Metric

- Many applications are memory throughput bound
- When coding from scratch:
 - Start with memory operations first, achieve good throughput
 - Add the arithmetic, measuring perf as you go
- When optimizing:
 - Measure effective memory throughput
 - Compare to the theoretical bandwidth
 - 70-80% is very good, ~50% is good if arithmetic is nontrivial
- Measuring throughput
 - From the app point of view ("useful" bytes)
 - From the hw point of view (actual bytes moved across the bus)
 - The two are likely to be different
 - Due to coalescing, discrete bus transaction sizes

Measuring Memory Throughput

- Latest Visual Profiler reports memory throughput
 - From HW point of view
 - Based on counters for one TPC (3 multiprocessors)
 - Need compute capability 1.2 or higher GPU

Measuring Memory Throughput

- Latest Visual Profiler reports memory throughput
 - From HW point of view
 - Based on counters for one TPC (3 multiprocessors)
 - Need compute capability 1.2 or higher GPU

P	rofiler Output 🔣 🧏	Summary Table	×				
	Method	GPU — usec	%GPU time	glob mem read throughput (GB/s)	glob mem write throughput (GB/s)	glob mem overall throughput (GB/s)	instruction throughput
1	fwd_3D_16x16_order8	3.09382e+06	82.15	46.9465	11.6771	58.6236	0.763973
2	memcpyHtoD	503094	13.35				
3	memcpyDtoH	168906	4.48				

Measuring Memory Throughput

- Latest Visual Profiler reports memory throughput
 - From HW point of view
 - Based on counters for one TPC (3 multiprocessors)
 - Need compute capability 1.2 or higher GPU

4	Profiler Output 🗵 Summary Table 🔟										
	Method	GPU 🕌 usec	%GPU time	glob mem read throughput (GB/s)	glob mem write throughput (GB/s)	glob mem overall throughput (GB/s)	instruction throughput				
1	fwd_3D_16x16_order8	3.09382e+06	82.15	46.9465	11.6771	58.6236	0.763973				
2	memcpyHtoD	503094	13.35								
3	memcpyDtoH	168906	4.48								

- How throughput is computed:
 - Count load/store bus transactions of each size (32, 64, 128B) on the TPC
 - Extrapolate from one TPC to the entire GPU
 - Multiply by (total threadblocks / threadblocks on TPC)

(grid size / cta launched)