西安交通大学考试题

成绩

					NX SX	
课	程	高等数学I,II,工科会	分析 (下)			
学	院	3	考试	日 期 2024	年 4 月 21	日
辛亚	班号					
姓	名		学 号		期中	期末
一、	单选题	(每小题 3 分,共 18	分))
		中正确的是().				
		m f(x,y)与 lim シッシ				
(B)	$\frac{\partial f}{\partial x}\Big _{P_0}$	$\left. \frac{\partial f}{\partial y} \right _{\rho_0}$ 都存在,则 $f(x)$;,y)在点 <i>F</i>	? _{(x₀,y₀) 必连续}	ŧ;	
(C)	f(x,y))在P₀点沿任意方向的	的方向导数	放存在,则 $\frac{\partial f}{\partial x}$	与多人。	存在;
(D)	f(x, y))在P₀点沿任何方向。	u 的方向导	异数存在,则 f	(x,y)在P ₀ 点	必连续.
2. 函	数 f(x,	y)= x-y g(x,y),其	+ g(x,y)	在点(0,0)处	连续且 g(0,0) = 0,
		(0,0)处().				
(A)	连续但	偏导数不存在	(B) 不	连续但偏导数	存在	
(C)				导数存在但不		
		$t)$, $\psi(t)$ 具有二阶连续				
		$=0; (B) \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial x^2}$				
4. 已知函数 $f(x,y)$ 在点 $(0,0)$ 处连续,且 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{\sin(x^2+y^2)} = -1$,则().						
(A)	$f_{x}(0,0)$)不存在;	((B) $f_x(0,0)$ 存	在,但不为	零;
(C)	点(0,0) 是 f(x,y) 的极小值。	点;	(D)点(0,0)是	f(x,y) 的极	达大值点 .
5. 设	曲面 z =	$=\frac{1}{2}x^2+y^2$ 上有一点 Λ	1,曲面7	生该点的切平面	面平行于平面	$\vec{1} 2x + 2y - z$
		坐标为().				
		(B) (1,2,3);				
6. 设区域 D : $\{(x,y) -1 \le x \le 1, x \le y \le 1\}$, D_1 : $\{(x,y) 0 \le x \le 1, x \le y \le 1\}$,						
-	$\iint_{D_j} (xy +$	x^2 arc tan y) dxdy = () .			
(A)	$2\iint\limits_{(D_1)}z$	xy dxdy		(B) $2 \iint_{(D_1)} x^2 \operatorname{arc}$	tan y dxdy	
(C)	$4\iint\limits_{(D_1)}(x$	$y + x^2$ arc tan y) dxdy		(D) 0		

填空题(每小题3分,共18分)

1.
$$\lim_{\substack{x \to \infty \\ y \to 1}} (1 + \tan \frac{1}{xy})^{\frac{xy}{3}} = \underline{\qquad}$$

3. 交換积分顺序:
$$\int_{\frac{1}{4}}^{\frac{1}{2}} dy \int_{\frac{1}{2}}^{\sqrt{y}} f(x,y) dx + \int_{\frac{1}{2}}^{1} dy \int_{y}^{\sqrt{y}} f(x,y) dx = ______.$$

4. 函数
$$u = x^2 + y^2 + z^2$$
在点 $M(-0.5, -0.5, 0)$ 处的梯度为________,在该点沿 $\bar{l} = \{1, -1, 0\}$ 的方向导数为______.

5. 函数
$$z = z(x, y)$$
 由方程 $x - az = \varphi(y - bz)$ 所确定,其中 $\varphi(u)$ 有连续导数, a, b 为不全为零的常数,则 $a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = ______.$

三、计算题(每小题6分,共30分)

1. 设
$$r = \sqrt{x^2 + y^2 + z^2}$$
, 求 $\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} + \frac{\partial^2 r}{\partial z^2}$.
2. 求曲线 $\bar{r}(t) = \{t, -t^2, 3t - 1\}$ 上一点处与平面 $x + 2y + z = 4$ 平行的切线方程.

2. 求曲线
$$\bar{r}(t) = \{t, -t^2, 3t - 1\}$$
上一点处与平面 $x + 2y + z = 4$ 平行的切线方程.

3. 设向量值函数
$$\overline{w} = \overline{f}(\overline{u}) = \begin{pmatrix} u_1 + u_2 \\ u_2 u_3 \end{pmatrix}$$
, $\overline{u} = \overline{g}(\overline{x}) = \begin{pmatrix} x_1 e^{x_2} \\ e^{x_1} + \sin x_2 \\ x_1 - x_2 \end{pmatrix}$, $\overline{x} = (x_1, x_2)^T$,

$$\overline{u} = (u_1, u_2, u_3)^T, \overline{w} = (w_1, w_2)^T$$
求复合函数 $(f \circ g)$ 在 $(1,0)$ 点处的导数及微分.

$$\overline{u} = (u_1, u_2, u_3)^T, \overline{w} = (w_1, w_2)^T$$
求复合函数 $(f \circ g)$ 在 $(1,0)$ 点处的导数及微分.
4. 已知方程组
$$\begin{cases} x^2 + y^2 = uv \\ xy^2 = u^2 - v^2 \end{cases}$$
确定了隐函数 $u = u(x, y), v = v(x, y),$ 求 $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}.$

5. 求函数
$$z = x^2 - xy + y^2 - 2x + y$$
 的极值.

四、(12 分) 设
$$f(x,y) = \begin{cases} xy^2 \sin \frac{1}{x+y}, & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 讨论 $f(x,y)$ 在(0,0) 处的连续

性、偏导数的存在性及可微性.

五、(8分) 求曲面 $xy-z^2+1=0$ 上距离原点最近的点.

力、(8分) 水面面
$$xy-2-1=0$$
 工柜內原 原 取 取 更 的 点。

六、(8分) 已知函数 $f(x,y)$ 满足 $\frac{\partial^2 f}{\partial x \partial y} = x + y$, 且 $f(x,0) = x^2$, $f(0,y) = y$, 求 $f(x,y)$.

七、(6 分) 设
$$f \in C^{(1)}[\varepsilon, +\infty)$$
, $\varepsilon > 0$ 且 $f'(t) = \frac{1}{2\pi} \iint_{\varepsilon^2 \le x^2 + y^2 \le t^2} \frac{f(\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}} dxdy$, 求 $f(t)$.