JEGYZŐKÖNYV KLASSZIKUS FIZIKA LABORATÓRIUM

09. MÉRÉS - FÉNYHULLÁMHOSSZ ÉS DISZPERZIÓ MÉRÉSE

• Mérést végezte : Brindza Mátyás

• Mérést végző Neptun-azonosítója: Z2R8XS

• Mérés időpontja : NaN

• Jegyzőkönyv leadásának időpontja : 2021.04.15.

A mérés célja:

A mérés két részből áll. Az első részben a spektrállámpa által kibocsátott fény komponenseire bomlását vizsgáljuk egy **optikai rács** segítségével - meghatározzuk az egyes komponensek hullámhosszát. A második részben a **prizma** törőszögével és diszperziójával foglalkozunk

Mérőeszkzök:

- Goniométer : kollimátor, tárgyasztal, távcső, okulár, üvegkör
- Optikai rács
- Prizma
- Spektrállámpa

A mérés elméleti háttere

Optikai rács

Esetünkben az optikai rács plánparalel lemez, amely egy átlátszó lemez párhuzamos (nem átlátszó) karcolásokkal. A rácsot a rácsállandóval szokás jellemezni, amely nem más, mint egy áteresztő és egy nem áteresztő tartomány együttes szélessége. Ismert az optikai rácsra párhuzamosan beeső fénnyaláb diffrakciós képére (Fraunhofer-féle elhajlási kép) vonatkozó összefüggés:

$$k \cdot \lambda = d \cdot sin(\alpha)$$

A mérés során konkrétan a k-adik rendű vonalhoz tartozó α szöget mérjünk. A d rácsállandó ismert, így a λ hullámhossz kiszámolható. Más-más színeknél máshol jelennek meg az első- és magasabb rendű vonalak.

Prizma

A prizma törőszögének meghatározásához megmérjük mindkét oldalról, mikor kapunk teljes visszaverődést. Legyenek ezek a szögek α_1 és α_2 , ekkor a ϕ törőszög :

$$\phi = \frac{\alpha_1 + (2 \cdot \pi - \alpha_2)}{2}$$

Ezután mérjük a minimális eltérítési szöget (ϵ_{min}) minden színnél. Ebből a szögből aztán az alábbi módon lehet meghatározni a prizmának az adott hullámhosszra vonatkozó törésmutatóját.

$$n = \frac{\sin((\phi + \epsilon_{min})/2)}{\sin(\phi/2)}$$

Ez alapján határozzuk meg, milyen összefüggés áll a törésmutató és a hullámhossz között.

A mérés menete:

Kalibráció

Legelőször távolítsuk el a kollimátorról és a távcsőről a védőkupakot. A mérés elő van készítve, de szükség esetén a fényforrás és a kollimátor külső végén található lyuk is állítható - azaz a beérkező fénynyaláb intenzitása és kéresztmetszete. A lyuk keresztmetszetét nem érdemes szélesre venni, mivel ez elkent képet eredményez. A kollimátoron található durva- és finomállító is, a dőlésszöge és polárszöge is állítható - ezekre a funckiókra nincsen feltétlen szükség a mérés elvégzéséhez.

A távcsövön is megtalálthatóak ugyanazok az állítók, mint a kollimátoron. Emelett még a fókuszát is lehet állítani - illetve a szemlencse fókuszát is. A távcső külső végén is van egy kis fényforrás, amely egy keresztet vetít a szemlencsére.

A tárgyasztal forgatható függőleges tengely körül (rögzíthető is), valamint függőlegesen is mozgatható.

A kollimátor és a távcső szögét követő üvegkör is rögzíthető.

A távcső-tárgyasztal páros beállításához helyezzünk egy félig áteresztő tükröt a tárgyasztalra. A távcsőből kivetített kereszt visszaverődik róla. Megfordítjuk 180°-kal a tárgyasztalt, ha nem ugyanott látjuk a keresztet, mint az előbbi esetben, akkor nincs kalibrálva a goniométer. A fentiek ismeretében kalibrálható, a tárgyasztal és a távcső dőlésszögét kell beállítani. A tárgyasztal három ponton van alátámasztva, ezek segítségével több tengely is szabályozható.

Következő lépésként helyezzük fel az optikai rácsot a tárgyasztalra. Azt szeretnénk, ha merőlegesen érkeznének a fénysugarak a rácsra. A távcsövet elfordítjuk egy α szöggel. A színképek helyzetének vizsgálatával a távcsőn keresztül és a tárgyasztal forgatásával meg tudjuk találni azt pozíciót, amelynél egy kiszemelt szín elsőrendű vonala nem megy távolabb - ha balra fordítottuk a távcsövet α -val, akkor ez a szélső pozíció a jobb oldalon várható. Megcsináljuk ugyanezt, a távcsövet $-\alpha$ szögre állítva - ügyelve arra, hogy ugyannak a színnek ugyanolyan rendű előfordulását figyeljük. Mindkét esetben leolvashattunk egy értéket a tágyasztal skálájáról - e két értéknek a számtani közepére kell beállítani a tárgyasztalt, hogy a rácsra merőlegesen érkezzenek a fénysugarak.

Az üvegkör beállítása lesz a következő feladat. Az okulárba pillantva két skálát látunk. Egyik skála beoszátsa tíz fokperc, a másiké két fokmásodperc. Azt szeretnénk, hogy amikor a kollimátor és a távcső kollineárisak, az üveglapon 0° legyen látható. Mivel tudjuk, hogy a rács már merőleges a kollimátorra, ezért a színképvonalak helyzete alapján megtaláljuk a tényleges 0°-ot. Az üvegkör rögzíthető, rögzített állapotban használható a finomállító is. Ezek segítségével megfelelően beállítható a kívánt helyzet. Figyeljünk arra is, hogy az okulár és a távcső egymáshoz képesti szöge is állítható, az egyszerűség kedvéért érdemes, ha ezek is párhuzamosak (komplanárisak).

Optikai rács

Állítsuk be a távcsövet a 0°-hoz. Ezután, például balra indulva sorra látjuk a színeket vörösig. Még tovább haladva ismét sorrendben ugyanazokat a színeket fogjuk látni. Az alaphelyzethez képest egy szín első előfordulása lesz az első rend, a második előfordulása a második rend. Minden színnél feljegyzendő az első- és a másodrendű vonal iránya - az alaphelyzettől jobbra és balra is, tehát n szín esetén $4 \cdot n$ szöget kell feljegyezni.

Prizma

Vállasszuk ki a prizmánk egy csúcsát. A mérés során ezzel a csúccsal fogunk foglalkozni. Helyezzük el a prizmát a tárgyasztalon úgy, hogy ez a csúcs a kollimátor felé mutasson. Távcsővel vizsgáljuk meg két oldalról (a kiválasztott csúcsunkba befutó oldalakról), hogy mikor tapasztalunk teljes visszaverődést. Jegyezzük fel ezt a két szöget - ezekből számoljuk ki a törőszög nagyságát.

Ezek után a minimális eltérítési szögeket mérjük. Egy adott szín mellett akkor találtuk meg a minimális eltérítési szöget, amikor a prizmát bármely irányban elforgatva ugyanazon irányba tér ki a kép.

Mérési adatok

Optikai rács

Az optikai rács vonalsűrűsége: 15000 vonal/inch

Az optikai rács specifikációja

Szín	Bal oldal	Jobb oldal
ibolya	13° 55' 32"	346° 8° 50"
kék 1	15º 1' 16"	345° 2° 26"
kék 2	160 8' 4"	343° 54° 54"
kék 3	16º 34' 12"	343° 29' 56"
zöld 1	17º 35' 16"	342° 29' 18"
zöld 2	18º 55' 54"	341° 9° 32"
sárga 1	20° 2° 36°	340° 3° 56"
sárga 2	20° 7° 14"	339° 59° 20°
vörös	22º 38' 56"	337° 39° 14"

Szín	Bal oldal	Jobb oldal
ibolya	28° 28° 48"	331° 34° 12"
kék 1	30° 52' 22"	3290 9' 6"
kék 2	33º 31' 16"	326° 33° 22"
kék 3	34° 30° 28"	325° 33' 34"
zöld 1	36° 51' 12"	323° 10° 54"
zöld 2	40° 6' 6"	319° 55' 16"
sárga 1	42° 57° 4"	317° 7° 28"
sárga 2	43° 4' 50"	316° 55' 20"
vörös	49º 26' 54"	310° 33' 8"

(a) Első rend

(b) Második rend

Elhajlási szögek

kék3 (első rend, balra) újramérve 16° 33' 56"

Reprodukálhatóság ellenőrzése hibabecsléshez

Prizma

Szín	€ min
ibolya	39° 42' 46"
kék 1	39° 23' 24"
kék 2	39° 8' 6"
kék 3	39° 3° 30"
zöld 1	38° 52' 28"
zöld 2	38° 41' 24"
sárga 1	38° 33' 52"
sárga 2	38° 32' 58"
vörös	38° 20' 0"

(a)	Mini	mális	eltérii	lési	SZÖGE	k

Törőszög mérése
α1 = 57° 8′ 34″
α2 = 297° 18′ 2″

(b) Törőszög mérése

Tisztított adatok

Szín	Rend	Balra	Jobbra
ibolya	1	0.244443	6.04359
ibolya	2	0.499164	5.787512
kék 1	1	0.262866	6.023228
kék 1	2	0.539792	5.745042
kék 2	1	0.281774	6.004805
kék 2	2	0.585752	5.700439
kék 3	1	0.289725	5.99763
kék 3	2	0.603496	5.683568
zöld 1	1 0.307663		5.978334
zöld 1	2	0.643736	5.64294
zöld 2	1	0.332776	5.955742
zöld 2	2	0.700168	5.584375
sárga 1	1	0.351393	5.937707
sárga 1	2	0.749813	5.536087
sárga 2	1	0.351781	5.934798
sárga 2	2	0.754079	5.532209
vörös	1	0.397741	5.893783
vörös	2	0.865392	5.420508

(a) Emajiasi szogei	(a)	Elhajlási	szögek
---------------------	-----	-----------	--------

Szín	€ min
ibolya	0.695126
kék 1	0.688532
kék 2	0.683296
kék 3	0.683006
zöld 1	0.679709
zöld 2	0.676315
sárga 1	0.675345
sárga 2	0.675345
vörös	0.669043

(b) Minimális eltérülési szögek

A szögek radiánba átalakítva

Kiértékelés

Optikai rács

A jobbra és balra mért szögeket kiátlagoltam $\gamma=(\gamma_{bal}+(2\cdot\pi-\gamma_{jobb}))/2$ módon. Az alábbi ábrán található "Szög [rad]" oszlopban ezek a γ szögek vannak.

A hullámhosszokat a

$$\lambda = \frac{d}{k} \cdot \sin(\alpha)$$

összefüggés alapján számoltam ki, ahol d ismert :

$$d = \frac{1inch}{15000} = \frac{2.54 \cdot 0.01m}{15000} = 1.6933 \cdot 10^{-6}m$$

Szín	Rend	Szög [rad]	λ[nm]
ibolya	1	0.242019	405.8298
ibolya	2	0.4974188	403.9944
kék 1	1	0.2614115	437.6325
kék 1	2	0.5389674	434.5517
kék 2	1	0.2800769	468.0873
kék 2	2	0.584249	466.9985
kék 3	1	0.28764	480.3816
kék 3	2	0.6015568	479.1513
zöld 1	1	0.3062568	510.526
zöld 1	2	0.6419903	506.9761
zöld 2	1	0.3301096	548.8885
zöld 2	2	0.6994892	545.1068
sárga 1	1	0.3484356	578.1511
sárga 1	2	0.7484554	576.1632
sárga 2	1	0.350084	580.7738
sárga 2	2	0.7525278	578.6849
vörös	1	0.3935717	649.3756
vörös	2	0.8640349	643.8637

Az egyes színek kiszámolt hullámhossza

Vegyük az első és a második rendben kapott hullámhosszot, nézzük mennyire térnek el az átlagtól. Erre majd visszatérünk a "Hibaszámítás" című fejezetben, csak még az előtt kellenek konkrét értékek a törésmutató ábrázolásához.

Szín	λ[nm]	Δλ [nm]
ibolya	404.9121	0.9176866
kék 1	436.0921	1.5404082
kék 2	467.5429	0.5443873
kék 3	479.7664	0.6151814
zöld 1	508.751	1.7749604
zöld 2	546.9976	1.890855
sárga 1	577.1572	0.993945
sárga 2	579.7294	1.0444522
vörös	646.6196	2.7559477

Az egyes színekhez tartozó átlag hullámhossz és az átlagtól való eltérés

Prizma

Mindenekelőtt számoljuk ki a prizma törőszögét.

$$\alpha_1 = 57^{\circ}8'34" = 0.99881$$

$$\alpha_2 = 297^{\circ}18'2" = 5.18896$$

$$\phi = \frac{\alpha_1 + (2 \cdot \pi - \alpha_2)}{2} = 1.04651$$

A törésmutató meghatározása következik. Ehhez a fentebb említett formulát használjuk fel.

$$n = \frac{\sin((\phi + \epsilon_{min})/2)}{\sin(\phi/2)}$$

A törésmutató és a hullámhossz közti összefüggés érdekel. Az előző részfejezet végén kiszámolt értékeket (a két rendre kapott hullámhosszok átlagai) használjuk, hogy ábrázolni tuldjuk az $n(\lambda)$ összefüggést.

Szín	Törésmutató	λ[nm]
ibolya	1.530617676	404.9121
kék 1	1.526359371	436.0921
kék 2	1.522965957	467.5429
kék 3	1.522777127	479.7664
zöld 1	1.520634811	508.751
zöld 2	1.51842517	546.9976
sárga 1	1.517793041	577.1572
sárga 2	1.517793041	579.7294
vörös	1.513675511	646.6196

(a) Törésmutatók, hullámhosszok

(b) Numerikus ábrázolás

A törésmutató és a hullámhossz közti összefüggés

 $Megjegyz\acute{e}s$: Nem teljesen lineáris az összefüggés. Az $n(\lambda)$ mérési pontok szélesebb (szabad szemmel nem látható) tartományban jobban látszó nemlineáris lecsengő tendenciát mutatnak.

Hibaszámítás

Optikai rács

Nézzük meg, mekkora abszolút és relatív hibát kapunk a hullámhosszokra.

Érezhető, hogy a $\Delta\lambda$ függni fog α -ától. Pontosabban az alábbi két összefüggést használjuk.

$$\Delta \lambda = \frac{d\lambda}{d\alpha} \cdot \Delta \alpha = \frac{d}{k} \cdot \cos(\alpha) \cdot \Delta \alpha$$
$$\frac{\Delta \lambda}{\lambda} = \operatorname{ctg}(\alpha) \cdot \Delta \alpha$$

A szögleolvasásnál két szomszédos beosztás távolsága 2", így

$$\Delta \alpha = 1$$
"

Szín	Rend	α	λ[nm]	Δλ [nm]	Δλ/λ [%]
ibolya	1	0.242019	405.8298	4.566619	1.125255
ibolya	2	0.497419	403.9944	2.066848	0.511603
kék 1	1	0.261412	437.6325	4.543901	1.038291
kék 1	2	0.538967	434.5517	2.018451	0.464491
kék 2	1	0.280077	468.0873	4.52042	0.965722
kék 2	2	0.584249	466.9985	1.961742	0.420075
kék 3	1	0.28764	480.3816	4.510457	0.938932
kék 3	2	0.601557	479.1513	1.938997	0.404673
zöld 1	1	0.306257	510.526	4.484835	0.878473
zöld 1	2	0.64199	506.9761	1.883611	0.371538
zöld 2	1	0.33011	548.8885	4.449736	0.810681
zöld 2	2	0.699489	545.1068	1.799569	0.330132
sárga 1	1	0.348436	578.1511	4.421049	0.764687
sárga 1	2	0.748455	576.1632	1.723298	0.299099
sárga 2	1	0.350084	580.7738	4.418395	0.760777
sárga 2	2	0.752528	578.6849	1.716766	0.296667
vörös	1	0.393572	649.3756	4.344083	0.668963
vörös	2	0.864035	643.8637	1.527232	0.237198

A hullámhosszok abszolút és relatív hibái

Prizma

Az átláthatóság kedvéért vezessük be az alábbi változókat.

$$a = \frac{\phi + \epsilon_{min}}{2}$$

$$b = \frac{\phi}{2}$$

Így a és b abszolút hibái:

$$\Delta a = \frac{\Delta \phi}{2} + \frac{\Delta \epsilon_{min}}{2}$$
$$\Delta b = \frac{\Delta \phi}{2}$$

Ezek már könnyen kiszámolhatóak, mivel $\Delta \phi$ a törőszög mérésének hibája, $\Delta \epsilon_{min}$ pedig az eltérítési szög mérésének hibája:

$$\Delta\phi = \frac{2"}{2} = 1"$$

$$\Delta\epsilon_{min} = \frac{2"}{2} = 1"$$

A törésmutató relatív hibája:

$$\frac{\Delta n}{n} = \Delta a \cdot ctg(a) + \Delta b \cdot ctg(b)$$

Mivel ϕ egy állandó mennyiség, a $\Delta b \cdot ctg(b)$ tag is konstans lesz. Viszont az első tagnál minden mérési pontra más-más értéket kapunk. Ezért ez is kiértékelendő minden pontban.

Szín	n	∆n/n [%]	Δn
ibolya	1.530618	0.008617	0.000131888
kék 1	1.526359	0.008695	0.000132720
kék 2	1.522966	0.008758	0.000133388
kék 3	1.522777	0.008762	0.000133426
zöld 1	1.520635	0.008802	0.000133851
zöld 2	1.518425	0.008844	0.000134291
sárga 1	1.517793	0.008856	0.000134418
sárga 2	1.517793	0.008856	0.000134418
vörös	1.513676	0.008935	0.000135246

A törésmutatók relatív és abszolút hibái

Eredmények

Optikai rács

Szín	Rend	α	λ[nm]	Δλ [nm]	Δλ/λ [%]
ibolya	1	0.242019	405.8298	4.566619	1.125255
ibolya	2	0.497419	403.9944	2.066848	0.511603
kék 1	1	0.261412	437.6325	4.543901	1.038291
kék 1	2	0.538967	434.5517	2.018451	0.464491
kék 2	1	0.280077	468.0873	4.52042	0.965722
kék 2	2	0.584249	466.9985	1.961742	0.420075
kék 3	1	0.28764	480.3816	4.510457	0.938932
kék 3	2	0.601557	479.1513	1.938997	0.404673
zöld 1	1	0.306257	510.526	4.484835	0.878473
zöld 1	2	0.64199	506.9761	1.883611	0.371538
zöld 2	1	0.33011	548.8885	4.449736	0.810681
zöld 2	2	0.699489	545.1068	1.799569	0.330132
sárga 1	1	0.348436	578.1511	4.421049	0.764687
sárga 1	2	0.748455	576.1632	1.723298	0.299099
sárga 2	1	0.350084	580.7738	4.418395	0.760777
sárga 2	2	0.752528	578.6849	1.716766	0.296667
vörös	1	0.393572	649.3756	4.344083	0.668963
vörös	2	0.864035	643.8637	1.527232	0.237198

A hullámhosszok abszolút és relatív hibái

Prizma

Szín	n	∆n/n [%]	Δn
ibolya	1.530618	0.008617	0.000131888
kék 1	1.526359	0.008695	0.000132720
kék 2	1.522966	0.008758	0.000133388
kék 3	1.522777	0.008762	0.000133426
zöld 1	1.520635	0.008802	0.000133851
zöld 2	1.518425	0.008844	0.000134291
sárga 1	1.517793	0.008856	0.000134418
sárga 2	1.517793	0.008856	0.000134418
vörös	1.513676	0.008935	0.000135246

A törésmutatók relatív és abszolút hibái

Diszkusszió

Optikai rács

A mérés kiértékelésénél a különböző színekre kapott hullámhosszok közel állnak névleges értékükhöz.

Megfigyelhető, hogy az első rendben kapott hullámhossz mindig nagyobb, mint a második rendben kapott hullámhossz, és az abszolút hibája is nagyobb. Ez utóbbi annak tudható be, hogy az első és a második rendben mért adatok között eltörpülő különségek vannak a rend 1-ről 2-re változásához képest. Szépen látszik, hogy az első rend abszolút hibái nagyjából duplái a másodikéinál.

Ez a relatív hibákról is hasonlóképp elmondható. Itt nem fordul elő expliciten a rend, viszont az elhajlási szög igen, amikre többé-kevésbé szintén egy 2-es szoró jellemző. A relatív hibánál azért nem látszik olyan szépen ez a duplázódás, mert a szögek koszínuszai számítanak, amik torzítják ezt a hatást - amire alapból kevésbé jellemző a duplázódás.

Az emberi hiba ott fedezhető fel legjobban, ahol egy színnél az első és második rendben vett hullámhosszok nem esnek bele egymás konfidencia tartományába.

Prizma

A törésmutatók is kellőképp meg lettek határozva. Nem vártunk hatalmas változásokat különböző színek esetén, nagyságrendileg a második tizedes környékén kellett volna változást észlelni - ez így is történt. A hullámhosszok is épp jó mintavételezési pontoknak bizonyultak, szépen látszik az $n(\lambda)$ összefüggésben a lecsengő tendencia (mint említve volt fentebb, ez nem lineáris lecsengés).

A hibákra kivételes módon nagyon kicsi értékek jöttek ki. A relatív hibák nyolc-kilenc ezred százalék környékén vannak - ez annak tudható be, hogy fokmásodperces pontossággal 30-40 fok környékén mértünk. A színek közötti jelentősebb változás a második tizedes környékén történik, az abszolút hibahatár pedig jelentősen csak a negyedik tizedesre vonatkozik.

Felhasznált irodalom

[1] Böhönyey - Havancsák - Huhn: Mérések a klasszikus fizika laboratóriumban, szerkesztette: Havancsák Károly, ELTE Eötvös Kiadó, Budapest, 2003.