

Synthesizing OpenSPARC Design in 90nm Technology Library

Overview Synopsys Predictable Success

- Expediency of using OpenSPARC in educational process
- Capabilities of 90nm Educational Design Kit
- Use of OpenSPARC in Synopsys University Programs

Expediency of Using OpenSPARC in Educational Process

©Synopsys 2009

3

Necessary Means in University Designs

- Open Source hardware IPs
- EDA tools from most well-known vendors (e.g. Synopsys)
- Open Source Educational Design Kits (EDKs)

©Synopsys 2009

SYNOPSYS®

Availability of OpenSPARC for Design

- · Complete Solution
 - Full implementation CPU core, FPU, L2 in Verilog
 - Tools Verification suite, Simulation,
 Performance, Compiler optimization tools
 - Multiple OpenSource Operating Systems:
 Solaris 10, Linux, FreeBSD, etc
- · All Open Source on the web
 - RTL (Verilog) of OpenSPARC design
 - Synthesis scripts for RTL
 - Verification test suites
 - UltraSPARC Implementation Specification
 - Full OpenSPARC simulation environment

©Synopsys 2009

SYNOPSYS®
Predictable Success

OpenSPARC usage in Synopsys Curriculum

- Megacells design
- OpenSPARC Design
- Laboratory works preparation

Synopsys 2009

9

SYNOPSYS®
Predictable Success

90nm EDK: OpenSPARC T1 Megacells

- Uses 90nm EDK 1P9M 1.2V/2.5V process
- Designed cells needed for OpenSPARC T1 core synthesis
- Contains 15 cells

©Synopsys 2009

10

SYNOPSYS°
Predictable Success

No	Functional name	Cell Name	Туре	Size	Ports
1.	Data Cache (Data)	br_r_dcd	SRAM	9KB = 128 entries x 4 way x 16B x 9b	1
2.	FP register file	bw_r_frf	SRAM	8KB (128 x 78b)	1
3.	Instruction Cache (Data)	bw_r_icd	SRAM	16KB (32B line, 4 way)	1
4.	I and D cache tag	bw_r_idct	SRAM	128 entry x 33b x 4 way	1
5.	Integer register file	bw_r_irf	RF	32 entry x 72bit x 4 threads	3 Read, 2 Write
6.	Store buffer	bw_r_scm	CAM	Bank1: 32 entries x 38b, Bank2: 32 entries x 8b	1 look-up, 1 R/W
7.	iTLB, dTLB	bw_r_tlb	CAM	64-entry x 59 bits	1
8.	Reg file	bw_r_rf16x128d	RF	16 entry x 128b	1 read, 1 write
9.	Reg file	bw_r_rf16x160	RF	16 entry x 160b	1 read, 1 write
10.	Reg file	bw_r_rf16x32	RF	16 entry x 32b	1 read, 1 write
11.	Reg file	bw_r_rf32x108	RF	32 entry x 108b	1 read, 1 write
12.	Reg file	bw_r_rf32x152b	RF	32 entry x 152b	1 read, 1 write
13.	Reg file	bw_r_rf32x80	RF	32 entry x 80b	1 read, 1 write
14.	Reg file	bw_r_rf16x65	RF	16 entry x 65b	1 read, 1 write
15.	Reg file	bw r rf16x81	RF	16 entry x 81b	1 read, 1 write

Constraints for OpenSPARC design

```
set default_clk gclk
set default_clk_freq 1200
set default_setup_skew 0.1
set default_hold_skew 0.1
set default_clk_transition
0.04
set clk_list {{
gclk 1200.0 0.100
0.100 0.040
}}
```

Constraints for OpenSPARC synthesis

©Synopsys 2009

15

SYNOPSYS*
Predictable Success

OpenSPARC T1 and 90nm educational technology library

- Using Synopsys Design Compiler to Synthesize an OpenSPARC T1 Floating-Point Unit
 - ➤ Laboratory work 1. Reading the Design in Design Compiler and Synthesize the design with timing constraints
 - Laboratory work 2. Synthesize the design with area constraints

©Synopsys 2009

16

SYNOPSYS° Predictable Success

Laboratory1

In this lab the Floating-Point Unit (FPU) of the OpenSPARC T1 design is synthesized.

The following tasks are completed:

- · Setting up Libraries
- · Invoke Design Vision
- · Read the design into GUI
- Compile and Synthesize the design using timing constraints

©Synopsys 2009

17

SYNOPSYS®
Predictable Success

Laboratory 2

In this lab the Floating-Point Unit (FPU) of the OpenSPARC T1 design will be synthesized using area and timing cosntraints.

The following tasks will be completed in this lab:

- Create a Design Compiler script file
- Invoke dc_shell
- · Synthesize the design using area constraints

©Synopsys 2009

19

SYNOPSYS*
Predictable Success

Constraints used in laboratory work

set lib_name saed90nm_typ
current_design fpu

#Reset all constraints
reset_design

#create clock
create_clock -period 2
[get_ports gclk]

©Synopsys 2009

20

SYNOPSYS°
Predictable Success

