Sprawozdanie nr 4

Układy Elektroniczne – Laboratoria

Temat:

C-4. Logika kombinacyjna

WFiIS AGH

30.05.2021

Łukasz Wajda

1. Cel ćwiczenia

Celem ćwiczenia jest zaprojektowanie układów kombinacyjnych oraz sprawdzenie ich działania w praktyce za pomocą matrycy logicznej zasilanej napięciem pojedynczym +5[V] względem masy.

2. Przebieg ćwiczenia

- A. Zaprojektowanie w postaci sumy iloczynów następujących bramek logicznych: NOT, AND, NAND, OR, NOR, XOR, XNOR.
- B. Zmierzenie czasu przełączania jako zmiany stanu na wyjściu ze stanu niskiego do wysokiego i odwrotnie.
- C. Zbudowanie układu kombinacyjnego dekodującego liczby w kodzie binarnym na wyświetlacz 7-segmentowy prezentujący liczby w kodzie dziesiętnym.

3. Wyniki i opracowanie

3.1. Realizacja bramek logicznych

Korzystając z 7 wyjść matrycy zaprojektowano bramki logiczne: NOT, AND, NAND, OR, NOR, XOR oraz XNOR, każdą na osobnym wyjściu matrycy O₁, O₂ itd. Bramki zmontowano na matrycy logicznej, której schemat przedstawiono na poniższym rysunku.

Rys.1. Budowa programowalnej matrycy logicznej

Matryca umożliwia bezpośrednią implementację funkcji logicznych w postaci sumy iloczynów. Na każde wyjście przypada 8 bramek AND, których wyjścia są podpięte do jednej bramki OR. Każdy kolejny wiersz symbolizuje jedną bramkę AND, a jej wejścia zaznaczono zworkami w odpowiednich miejscach. Jeżeli w danym bloku logicznym któraś bramka AND powinna pozostać wyłączona należy wpiąć w tym rzędzie zworkę w kolumnie oznaczonej GND – powoduje to wyłączenie bramki AND.

Poniżej przedstawiono schemat realizacji bramek logicznych ma programowalnej matrycy logicznej. Na rysunku schematycznych kolorem niebieskim zaznaczono miejsca gdzie wpinano zworki.

Na poszczególnych wyjściach zaprojektowano odpowiednio:

- $O_1 NOT$,
- $O_2 AND$,
- $O_3 NAND$,
- $O_4 OR$,
- $O_5 NOR$,
- $O_6 XOR$,
- $O_7 XNOR$.

Tabela 1. Tabela prawdy dla bramek logicznych

A	NOT	AB	AND	NAND	OR	NOR	XOR	XNOR
0	1	00	0	1	0	1	0	1
1	0	01	0	1	1	0	1	0
	$Y = \bar{A}$	10	0	1	1	0	1	0
		11	1	0	1	0	0	1
	Funkcja logiczna		Y = AB	$Y = \overline{AB}$	Y = A + B	$Y = \overline{A + B}$	$Y = A\bar{B} + \bar{A}B$	$Y = AB + \bar{A}\bar{B}$

Rys.2a) Programowalna matryca logiczna z przedstawieniem implementacji bramek logicznych

Rys.2b)Rysunek schematyczny programowalnej matrycy logicznej z przedstawieniem bramek logicznych

Po zaprojektowaniu bramek wszystkie zostały przetestowane i wyjścia były zgodne z Tabela1 co wskazuje na poprawność wykonanego ćwiczenia.

3.2. Pomiar czasu propagacji

Na wejście bramki NOT podano sygnał prostokątny o niskim poziomie – $Low\ level = 0[V]$ i wysokim – $High\ level = 5[V]$ a następnie zmierzono czasy przełączania ze stanu niskiego do wysokiego T_{LH} oraz wysokiego do niskiego T_{HL} .

Rys.3. Parametry ustawione na generatorze

Rys.4. Opadanie sygnału

Rys.5. Narastanie sygnału

Z ekranu oscyloskopu odczytano następujące wartości:

$$t_{pLH} = 2,24[\mu s]$$

$$t_{nHL} = 370[ns] = 0.37[\mu s].$$

Jak widać, wartości te dość znacznie się od siebie różnią. Powodem tego jest budowa użytej rzeczywistej bramki. Taka sytuacja jest też związana z efektem hazardu, czyli zjawiskiem występującym w układach cyfrowych, spowodowanym niezerowym czasem propagacji. Skutkuje to chwilowym błędnym wynikiem na wyjściu, np. na Rys. 5 sygnał wejściowy (żółty) ma wartość 0, a sygnał wyjściowy (zielony) początkowo także ma wartość 0 (błędne wyjście dla bramki NOT), ale po czasie t_{pLH} wyjście jest już poprawne.

3.3. Dekoder kodu binarnego na wyświetlacz 7-segmentowy

W kolejnym etapie zajęć laboratoryjnych zbudowano układ kombinacyjny, który miał za zadanie dekodować liczby z kodu binarnego na wyświetlane na 7-semgentowym wyświetlaczu liczby w kodzie dziesiętnym. Użyto wejść A-D matrycy jako 4 bitów liczby binarnej oraz wyjść $O_1 - O_8$ jako sygnałów sterujących poszczególnymi segmentami wyświetlacza. Należało ponadto tak zaprojektować układ, aby dla wartości na wejściu 10-15 (binarnie 1010-1111) wyświetlacz pokazywał tylko "-" symbolizując przekroczenie zakresu. Natomiast dla wartości wejściowych poniżej 10 kropka na wyświetlaczu świeci się dla liczb nieparzystych.

Na początku zaprojektowano tabelę stanów (Tabela 2), gdzie dla każdego z 16 stanów słowa wejściowego DCBA przypisano jednoznaczną wartość wszystkich 8 wyjść dekodera związanych z wyświetlaczem.

Rys.6. Wyjścia wyświetlacza

Tabela 2. Tabela prawdy (stanów)

	D	C	В	A	O ₁	O ₂	O ₃	O ₄	O 5	O 6	O 7	O ₈
0	0	0	0	0	1	1	1	1	1	1	0	0
1	0	0	0	1	0	1	1	0	0	0	0	1
2	0	0	1	0	1	1	0	1	1	0	1	0
3	0	0	1	1	1	1	1	1	0	0	1	1
4	0	1	0	0	0	1	1	0	0	1	1	0
5	0	1	0	1	1	0	1	1	0	1	1	1
6	0	1	1	0	1	0	1	1	1	1	1	0
7	0	1	1	1	1	1	1	0	0	0	0	1
8	1	0	0	0	1	1	1	1	1	1	1	0
9	1	0	0	1	1	1	1	1	0	1	1	1
10	1	0	1	0	0	0	0	0	0	0	1	0
11	1	0	1	1	0	0	0	0	0	0	1	0
12	1	1	0	0	0	0	0	0	0	0	1	0
13	1	1	0	1	0	0	0	0	0	0	1	0
14	1	1	1	0	0	0	0	0	0	0	1	0
15	1	1	1	1	0	0	0	0	0	0	1	0

Następnie dokonano minimalizacji funkcji logicznych dla każdego z wyjść O_1-O_8 wykorzystując metodą tablic Karnaugh'a.

I. Tablica Karnaugh'a i funkcja logiczna dla O₁

DC/BA	00	01	11	10
00	[1]	0	1	1
01	0	1	ϵ	_1/
11	0	0	0	0
10	1	1	0	0

$${\rm Zatem}\ \ {\cal O}_1 = \ \bar{C} \bar{B} \bar{A} + D \bar{C} \bar{B} + \overline{D} C A + \overline{D} B.$$

II. Tablica Karnaugh'a i funkcja logiczna dla O2

DC/BA	00	01	11	10
00	\forall	1	(1)	
01	1	0	1	0
11	0	0	0	0
10	1	1	0	0

$${\rm Zatem} \ \ O_2 = \ \bar{C}\bar{B} + \overline{D}\bar{B}\bar{A} + \overline{D}BA + \ \overline{D}\bar{C}.$$

III. Tablica Karnaugh'a i funkcja logiczna dla O₃

DC/BA	00	01	11	10
00	1	1	1	0
01	\forall	1	1	
11	0	0	0	0
10	1	1	0	0

Zatem
$$O_3 = \overline{C}\overline{B} + \overline{D}A + \overline{D}C$$
.

IV. Tablica Karnaugh'a i funkcja logiczna dla O₄

DC/BA	00	01	11_	10
00	1	0	\bigcup	
01	0	(1)	0	$\backslash 1$
11	0	0	0	0
10	(1)	1	0	0

8

$${\rm Zatem} \ \ O_4 = \ \bar{C} \bar{B} \bar{A} + \bar{C} D \bar{B} + \bar{D} \bar{C} B + \bar{D} B \bar{A} + C \bar{D} \bar{B} A.$$

V. Tablica Karnaugh'a i funkcja logiczna dla O₅

DC/BA	00	01	11	10
00	(1)	0	0	(1)
01	0	0	0	$\langle 1 \rangle$
11	0	0	0	0
10	1	0	0	0

Zatem $O_5 = \bar{C}\bar{B}\bar{A} + \bar{D}B\bar{A}$.

VI. Tablica Karnaugh'a i funkcja logiczna dla O₆

DC/BA	00	01	11	10
00	1	0	0	0
01	1	1	0	(1)
11	0	0	0	0
10	(1)	1	0	0

Zatem $O_6 = \overline{C}\overline{B}\overline{A} + \overline{D}C\overline{A} + D\overline{C}\overline{B} + \overline{D}C\overline{B}$.

VII. Tablica Karnaugh'a i funkcja logiczna dla O₇

DC/BA	00	01	11	10
00	0	0	J	$/1\rangle$
01	$\sqrt{1}$	1	0	1
11	1	1	1	1
10	7	1	\bigcap	1)

Zatem $O_7 = C\bar{B} + D + B\bar{A} + \bar{C}B$.

VIII. Tablica Karnaugh'a i funkcja logiczna dla O₈

DC/BA	00	01	11	10
00	0		1	0
01	0	1	1	0
11	0	0	0	0
10	0	(1)	0	0

Zatem $O_8 = \overline{D}A + \overline{C}\overline{B}A$.

Powyższe funkcje logiczne zrealizowano również na matrycy co widać na poniższych rysunkach.

9

Rys.7a) Programowalna matryca logiczna z wpiętymi zworkami dla wyświetlacza 7-segmentowego

Rys.7b) Test dla wartości $0000_B = 0_D$

	GND	Α	В	С	D	Ε	F	G	Н	Ī	Ī	Ī Ū	Ī	<u> </u>	Ē	F	G	Ħ	01	02	O 3	O 4	O 5	O 6	07	O 8	$\overline{o_1}$	$\overline{o_2}$	$\overline{o_3}$	$\overline{0_4}$	<u>0</u> 5	06	07	08	
														+																					
Α																																			Wyjście O₁
^																																			
												_																							
В															_																				Wyjście O ₂
													-	-																					77
													+		1																				
												-																							
С																																			Wyjście O ₃
														_	+								-		-			-							
									\vdash						_																				
															1																				
D															1																				Wyjście O ₄

Rys.7c)Rysunek schematyczny programowalnej matrycy logicznej z połączeniem zworek dla wyświetlacza 7-segmentowego

Wszystkie znaki wyświetlały się poprawnie, co świadczy o poprawnym wyznaczeniu funkcji logicznych oraz prawidłowym umiejscowieniu zworek na programowalnej matrycy logicznej. Ćwiczenie zostało wykonane poprawnie.