Технические средства охраны

- Системы охранной сигнализации
 - ✓ Извещатели охранной сигнализации
 - ✓ Контрольные панели охранной сигнализации
- > Телевизионные системы наблюдения
- > Системы контроля и управления доступом
- > Системы передачи информации
- ≻Системы пожарной сигнализации, пожаротушения и оповещения
- > Интегрированные системы физической защиты
- >...

Литература:

- 1. Волхонский В. В., Попов И. Ю., Хрищун Н. С. Проектирование систем охранной сигнализации: Лабораторный практикум. СПб: Университет ИТМО, 2017. 23 с.
- 2. Волхонский В.В. Контрольные панели охранной сигнализации. Учебное пособие для вузов. СПб.: Политехника-Сервис. 2009. 216 с.
- 3. Волхонский В.В. Устройства охранной сигнализации. СПб.: Университет ИТМО, 2015. 114 с.

Контрольные панели охранной сигнализации (КП ОС)

(приемно-контрольные приборы (ПКП))

Контрольная панель — это устройство сбора и обработки информации от извещателей, принятия решения об обнаружении, отображения информации и управления устройствами противодействия угрозе.

Проводной шлейф — это электрическая цепь, включающая выходные цепи извещателей, вспомогательные элементы, соединительные провода и подключаемая к КП.

Зона — это часть охраняемого объекта, контролируемая одним или несколькими шлейфами сигнализации.

Возможен контроль:

- Одной зоны несколькими шлейфами.
- Одним шлейфом несколько зон.

_		
		30H
	IIDI	3(1)=
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	301

	i ui ibi 30
Зоны входа/выхода (зоны с задержкой).	
Позволяют без формирования сигнала ТРЕВОГА:	
о выйти с объекта в течение задержки выхода после постановки на о	храну;
о войти на охраняемый объект и снять его с охраны в течение промед времени, определяемого задержкой входа.	жутка
Зоны немедленной реакции.	
Зоны прохода (сочетают свойства первых двух).	
Зоны круглосуточной охраны (24-часовые).	
•••	

Дополнительные параметры:

- Исключаемые из охраны зоны.
 - не исключаемые (приоритетные) зоны;
 - исключаемые из охраны выборочно;
 - исключаемые из охраны группой;
 - автоматически исключаемые, в случае неисправности.

- Канал связи с извещателями (проводной беспроводной).
- Схемотехника проводных шлейфов.
 - Нормально замкнутые (НЗШ).

– Нормально разомкнутые (НРШ).

С оконечными резисторами (ШОР).

С оконечными резисторами повышенной информативности

Программирование

Определяет конкретную конфигурацию как КП, так и всей СОС и ее функциональные характеристики .

Виды программирования:

- Заводское (конфигурация СОС по умолчанию).
- Установщиком (задаются основные функциональные характеристики КП).
- Пользовательское (пользовательские пароли и их возможности).

Охрана

- ❖ Полная охрана все шлейфы ставятся на охрану (не учитываем 24часовые шлейфы - кнопки нападения, пожарные шлейфы и другие).
- ❖ Частичная охрана на охрану ставится только часть шлейфов:
 - с групповым исключением заранее запрограммированной группы шлейфов;
 - с выборочным исключением шлейфов, определяемых в каждом конкретном случае индивидуально.

Разновидности режимов постановки на охрану:

- КП в целом:
 - в режиме полной охраны;
 - в режиме частичной охраны.
- Разделов (виртуальных КП, являющихся частью основной КП).
- Отдельных шлейфов.

Процедура постановки на охрану:

- С защитой от неправильных действий.
- Принудительная.
- Автоматическая по времени.

В том числе:

- С задержкой на выход:
- □ Без задержки на выход возможно, когда устройство управления находится вне контролируемого объекта или когда управление осуществляется дистанционно.

Снята с охраны

Процедура снятия с охраны:

- ❖ полное снятие с охраны (снимаются все кроме 24-часовых шлейфов);
- ❖ частичное снятие с охраны (снимается часть шлейфов).

В том числе:

- С задержкой на вход.
- Без задержки на вход.

Разновидности снятия с охраны:

- КП в целом.
- Разделов (заранее запрограммированных групп шлейфов).
- Отдельных шлейфов.

Неадресные КП со шлейфами радиальной структуры (топология звезда).

Неадресные КП с древовидной структурой

- Клавиатуры, расширители и различные модули <u>адресные</u>.
- Извещатели <u>не адресные</u>.

Разделы

Раздел – логическая контрольная панель с независимыми или общими с другими разделами шлейфами, пользователями, выходами и т.п.

Адресные КП

Могут иметь шлейфы:

- адресные радиальные;
- адресные кольцевые;
- не адресные радиальные.

- ◆ Радиальный шлейф подключается к КП или расширителю в одной точке.
- ❖ Кольцевой шлейф подключается к КП в двух точках в начале и конце шлейфа.
- ❖ Комбинированные шлейфы вариант совместного использования предыдущих кольцевой с радиальными ответвлениями.
 - □ Дискретные (пороговые) шлейфы обычно 2-4 состояния норма, тревога, обрыв, замыкание (простейшие, наиболее распространенные). Первичное решение о тревоге принимается в датчике, в КП окончательное.
 - □ *Аналоговые шлейфы* датчиками производится измерение аналогового значения физического параметра объекта. КП выполняет анализ и принимает решение.
- ➤ Неадресные шлейфы извещатели, включенные в такие шлейфы, не различаются индивидуально.
- ▶ Адресные шлейфы каждый извещатель имеет индивидуальный адрес.

Контроль доступа к системе – пароли и уровни доступа

деиствие		Пароли
Программирование функций и параметров системы	✓	Установщика
Пользовательское программирование (пароли и права)	✓	Хозяина (администратора)
Управление СОС	√	Пользователей
Управление (включение/выключение оборудования)	✓	Управления
Обслуживание объекта (уборка, ремонт,).	✓	Служебные (ограниченные по времени и(или) функциям)
Выполнение действий, требующих разрешения	✓	С запросом на подтверждение этих действий
Выполнение разовых действий (посетители)	✓	Ограниченного по времени действия
Выполнения действий, требующих дополнительного контроля	✓	С передачей сообщений об определенных действиях
Сообщения об опасной ситуации (пожар, нападение,)	✓	Без пароля
Сообщения о принуждении	\checkmark	Принуждения

Извещатели охранной сигнализации

(Устройства обнаружения)

Анализ характера реализация угрозы:

Извещатели охранной сигнализации Физические проявления угроз

Проявление угроз (проникновение):

- движение некоторого объекта в контролируемой зоне;
- разрушение каких-либо конструкций;
- изменение положения контролируемых объектов;
- изменение параметров физической среды;
- изменение параметров среды распространения сигнала (отражения, ослабления, ...);
- излучение некоторого сигнала;
- возникновение колебаний в некоторой среде;

и др.

Извещатели охранной сигнализации Процедура анализа угроз

Процедура анализа угроз для выбора извещателя

- √ Какая угроза.
- ✓ Существенность (какой может быть ущерб).
- ✓ Вероятность реализации (реальность угрозы).
- ✓ Способ ее реализации и факторы проявления.
- ✓ Как и чем это проявление можно обнаружить.
- ✓ Помехи, аналогичные проявлению угроз.
- ✓ Возможное противодействие подготовленного нарушителя.

Магнитоконтактные извещатели

Какой элемент неподвижный, какой перемещается?

Какое нормальное (исходное или рабочее) состояние контактов?

Пассивные инфракрасные извещатели (ПИК)

(Пассивные оптико-электронные инфракрасные)

Пассивные инфракрасные извещатели Основные элементы и принцип действия

Физические признаки проявления угрозы (проникновения):

- □ ИК-излучение нарушителя;
- движение нарушителя.

Достаточно для обнаружения?

Должны быть отличия от окружающей среды:

- разница температур фона и цели;
- изменение ИК-излучения.

Элементарные чувствительные зоны (ЭЧЗ)

Пассивные инфракрасные извещатели Принцип действия

Для обнаружения нужны отличия цели и фона:

- разница температур;
- изменение ИК-излучения изза движения.

Тогда для обнаружения <u>необходимо</u> <u>обеспечить</u>:

- 1. Компенсацию фонового излучения.
- Компенсацию медленных изменений фонового излучения.
- 3. Изменение сигнала при движении нарушителя.

Отличия в характере воздействия:

- фон на обе ЭЧЗ компенсация;
- нарушитель на одну нет компенсации.

Пассивные инфракрасные извещатели *Формирование диаграммы направленности – движение поперек*

ОС, сегментированная по горизонтали

Пассивные инфракрасные извещатели *Формирование диаграммы направленности – движение вдоль*

ОС, сегментированная по вертикали

Пассивные инфракрасные извещатели Объемная диаграмма направленности

ОС, сегментированная по горизонтали и вертикали

Пассивные инфракрасные извещатели *Эффективность обнаружения*

Пассивные инфракрасные извещатели Диаграмма направленности типа «коридор» и «штора»

Пассивные инфракрасные извещатели Круговая (потолочная) диаграмма направленности

Пассивные инфракрасные извещатели Оптические системы

Цилиндрическая линза Френеля

Оптические системы

- Линзы Френеля.
- > Зеркальные.
- Комбинированные.

Сферическая линза Френеля

Пассивные инфракрасные извещатели *Круговые линзы Френеля*

Круговая сегментированная сферическая

Круговая сегментированная пирамидальная

Пассивные инфракрасные извещатели Основные элементы

Дополнительные клеммы для — оконечного резистора

Клеммы подключения питания, реле тревоги и датчика вскрытия

Экраны защиты от электромагнитных помех

Реле тревоги

Перемычки или переключатели режимов работы и светодиода тревоги

Фиксатор платы

Пироприемник

-Датчик вскрытия

Пассивные инфракрасные извещатели *Элементы крышки корпуса*

Световод индикаторного светодиода

Экран защиты от насекомых

Экран защиты от переотражений

Фиксатор линзы Френеля

Линза Френеля

Окно ЭЧЗ под извещателем

Пассивные инфракрасные извещатели *Элементы основания корпуса*

Места ввода проводов в корпус

Места для крепления на плоскости

Место для крепления на кронштейн

Канал для проводов

Скосы для установки в углу и под углом Места ввода проводов в корпус

Пассивные инфракрасные извещатели *Установка*

- 1. Следовать инструкции по установке.
- 2. Наиболее вероятное направление движения нарушителя должно быть поперек ДН.
- 3. Не направлять на потенциальные источники ложных тревог:
 - источники потоков воздуха (вентиляторы, кондиционеры);
 - нагревательные приборы;
 - окна (возможность засветки солнцем);
 - мощные источники освещения (стационарные, автомобильные фары);
 - места, где могут быть потоки воздуха;
 - ...
- 4. Не устанавливать вблизи источников радиопомех.

Пассивные инфракрасные извещатели Выбор места установки

Комбинированные и совмещенные извещатели

Комбинированные извещатели Проблема и решение

Проблема любого извещателя - необходимо одновременно:

- увеличивать вероятность правильного обнаружения;
- уменьшать вероятность ложной тревоги.

Это противоречивые требования.

Решение:

- Два канала обнаружения с разными физическими принципами действия.
- Совместный алгоритм принятия решения «И».

Комбинированные извещатели Выбор принципа действия каналов обнаружения

Источники помех	ПИК	РВ	УЗ	ПИК+РВ	ПИК+УЗ
Солнечный свет	✓	_		_	_
Источники тепла	✓	_	_	_	_
Изменение температуры	✓	_	_	_	_
Потоки воздуха	✓	_	✓	_	>
Вибрация	_	~	✓	_	_
Движение механизмов	_	~	~	_	_
Люминесцентные лампы	_	~	_	_	_
Движение за тонкими перегородками	_	~	_	_	-
Движение воды в пластиковых трубах	_	~	_	_	_

- 1. Следовать инструкции по установке.
- 1. Не направлять на потенциальные источники ложных тревог *для обоих каналов:*
 - движущиеся механизмы, вентиляторы, кондиционеры и т.д.
 - источники потоков воздуха (вентиляторы, кондиционеры, ...);
 - нагревательные приборы;
 - окна (возможность засветки солнцем);
 - мощные источники освещения (стационарные, автомобильные фары);
- 2. Не устанавливать вблизи источников радиопомех.
- 3. Не устанавливать и не направлять на конструкции, которые могут колебаться и вибрировать.
- 3. Наиболее вероятное направление движения нарушителя должно быть, в первую очередь, поперек ДН ПИК канала.
- 4. Регулировать дальность действия РВ канала в соответствии с размерами помещения.

Это несколько независимых извещателей в одном корпусе с отдельными выходами реле.

Обычно совмещают:

- магнитоконтактный с акустическим разбивания стекла;
- ПИК с акустическим разбивания стекла;
- и комбинированный с акустическим разбивания стекла.

Установка *по требованиям для обоих каналов*.

Могут быть противоречия!

Извещатели разбивания стекла

Извещатели разрушения стекла Задачи обнаружения

Предназначены для обнаружения:

- проникновения через окна с их разрушением;
- разрушения витрин и т.п.;
- разрушения стекла как элемента конструкции;
- и др.

Извещатели разрушения стекла *Физические проявления*

Физические проявления:

- Акустические колебания.
- Нарушение целостности.
- Распространение колебаний внутри.

Извещатели разрушения стекла Параметры определяющие сигналы

Основные параметры, определяющие физические проявления:

- размер стекла;
- тип стекла (листовое, закаленное, армированное, многослойное и др.);
- способ крепления стекла (тип и материал рамы, уплотнители и т.п.);
- характер предмета, которым разбивается стекло (материал, форма и др.);
- сила удара по стеклу;
- ...

Извещатели разрушения стекла Особенности разрушения стекол

- 1. Следовать инструкции по установке.
- 2. Обеспечивать прямой путь распространения акустических колебаний.
- 3. Соблюдать требования по максимальной дальности действия.
- 4. Учитывать ширину диаграммы направленности микрофона.
- 4. Не устанавливать рядом с потенциальными источники ложных тревог, создающими акустические колебания с широким спектром.
- 5. Не устанавливать вблизи источников радиопомех.

Акустические извещатели разбивания стекла Выбор места установки

Не рекомендуемые места установки извещателя (вид сверху)

Акустические извещатели разбивания стекла Выбор места установки

вид сверху

вид сбоку

звуковой (акустический)

пассивный оптико-электронный (инфракрасный) объемный

пассивный оптико-электронный (инфракрасный) поверхностный

пассивный оптико-электронный (инфракрасный) линейный

комбинированный

совмещенный

тревожной сигнализации (ручной)

тревожной сигнализации (ножной)

Устройства охранной сигнализации Обозначения графические

Устройства охранной сигнализации Обозначения графические

оповещатель звуковой

оповещатель световой

оповещатель комбинированный