<u>Map</u> > <u>Data Science</u> > <u>Predicting the Future</u> > <u>Modeling</u> > <u>Clustering</u> > K-Means

K-Means Clustering

K-Means clustering intends to partition n objects into k clusters in which each object belongs to the cluster with the nearest mean. This method produces exactly k different clusters of greatest possible distinction. The best number of clusters k leading to the greatest separation (distance) is not known as a priori and must be computed from the data. The objective of K-Means clustering is to minimize total intra-cluster variance, or, the squared error function:

Bring your to together with the collaboration for work.

ADS VIA CAR

Algorithm

- 1. Clusters the data into k groups where k is predefined.
- 2. Select *k* points at random as cluster centers.
- 3. Assign objects to their closest cluster center according to the *Euclidean distance* function.
- 4. Calculate the centroid or mean of all objects in each cluster.
- 5. Repeat steps 2, 3 and 4 until the same points are assigned to each cluster in consecutive rounds.

K-Means is relatively an efficient method. However, we need to specify the number of clusters, in advance and the final results are sensitive to initialization and often terminates at a local optimum. Unfortunately there is no global theoretical method to find the optimal number of clusters. A practical approach is to compare the outcomes of multiple runs with different k and choose the best one based on a predefined criterion. In general, a large k probably decreases the error but increases the risk of overfitting.

Example:

Suppose we want to group the visitors to a website using just their age (one-dimensional space) as follows:

slac

Bring your to together with the collaboration for work.

ADS VIA CAR

Initial clusters (random centroid or average):

$$k = 2$$

$$c_1 = 16$$

$$c_2 = 22$$

Distance
$$1 = |x_i - c_1|$$

Distance
$$2 = |x_i - c_2|$$

Iteration 1:

$$c_1 = 15.33$$

$$c_2 = 36.25$$

x_i	c_{I}	c_2	Distance 1	Distance 2	Nearest Cluster	New Centroid
15	16	22	1	7	1	
15	16	22	1	7	1	15.33
16	16	22	0	6	1	
19	16	22	9	3	2	
19	16	22	9	3	2	
20	16	22	16	2	2	
20	16	22	16	2	2	
21	16	22	25	1	2	
22	16	22	36	0	2	
28	16	22	12	6	2	
35	16	22	19	13	2	36.25
40	16	22	24	18	2	30.23
41	16	22	25	19	2	
42	16	22	26	20	2	
43	16	22	27	21	2	
44	16	22	28	22	2	
60	16	22	44	38	2	
61	16	22	45	39	2	
65	16	22	49	43	2	

Iteration 2:

$$c_1 = 18.56$$

$$c_2 = 45.90$$

x_i	c_I	c_2	Distance 1	Distance 2	Nearest Cluster	New Centroid
15	15.33	36.25	0.33	21.25	1	18.56
15	15.33	36.25	0.33	21.25	1	

	1	20.25	0.67	36.25	15.33	16
	1	17.25	3.67	36.25	15.33	19
	1	17.25	3.67	36.25	15.33	19
	1	16.25	4.67	36.25	15.33	20
	1	16.25	4.67	36.25	15.33	20
	1	15.25	5.67	36.25	15.33	21
	1	14.25	6.67	36.25	15.33	22
	2	8.25	12.67	36.25	15.33	28
	2	1.25	19.67	36.25	15.33	35
	2	3.75	24.67	36.25	15.33	40
	2	4.75	25.67	36.25	15.33	41
45.9	2	5.75	26.67	36.25	15.33	42
43.3	2	6.75	27.67	36.25	15.33	43
	2	7.75	28.67	36.25	15.33	44
	2	23.75	44.67	36.25	15.33	60
	2	24.75	45.67	36.25	15.33	61
	2	28.75	49.67	36.25	15.33	65

Bring your to together with the collaboration for work.

ADS VIA CAR

Iteration 3:

$$c_1 = 19.50$$

 $c_2 = 47.89$

x_i	c_I	c_2	Distance 1	Distance 2	Nearest Cluster	New Centroid
15	18.56	45.9	3.56	30.9	1	
15	18.56	45.9	3.56	30.9	1	
16	18.56	45.9	2.56	29.9	1	
19	18.56	45.9	0.44	26.9	1	
19	18.56	45.9	0.44	26.9	1	19.50
20	18.56	45.9	1.44	25.9	1	19.50
20	18.56	45.9	1.44	25.9	1	
21	18.56	45.9	2.44	24.9	1	
22	18.56	45.9	3.44	23.9	1	
28	18.56	45.9	9.44	17.9	1	
35	18.56	45.9	16.44	10.9	2	
40	18.56	45.9	21.44	5.9	2	
41	18.56	45.9	22.44	4.9	2	
42	18.56	45.9	23.44	3.9	2	
43	18.56	45.9	24.44	2.9	2	47.89
44	18.56	45.9	25.44	1.9	2	
60	18.56	45.9	41.44	14.1	2	
61	18.56	45.9	42.44	15.1	2	
65	18.56	45.9	46.44	19.1	2	

Iteration 4:

$$c_1 = 19.50$$

$$c_2 = 47.89$$

x_i	c_I	c_2	Distance Distan	nce Nearest	New
-------	-------	-------	-----------------	-------------	-----

			1	2	Cluster	Centroid
15	19.5	47.89	4.50	32.89	1	
15	19.5	47.89	4.50	32.89	1	
16	19.5	47.89	3.50	31.89	1	
19	19.5	47.89	0.50	28.89	1	
19	19.5	47.89	0.50	28.89	1	19.50
20	19.5	47.89	0.50	27.89	1	19.50
20	19.5	47.89	0.50	27.89	1	
21	19.5	47.89	1.50	26.89	1	
22	19.5	47.89	2.50	25.89	1	
28	19.5	47.89	8.50	19.89	1	
35	19.5	47.89	15.50	12.89	2	
40	19.5	47.89	20.50	7.89	2	
41	19.5	47.89	21.50	6.89	2	
42	19.5	47.89	22.50	5.89	2	
43	19.5	47.89	23.50	4.89	2	47.89
44	19.5	47.89	24.50	3.89	2	
60	19.5	47.89	40.50	12.11	2	
61	19.5	47.89	41.50	13.11	2	
65	19.5	47.89	45.50	17.11	2	

Bring your to together with the collaboration for work.

ADS VIA CAR

No change between iterations 3 and 4 has been noted. By using clustering, 2 groups have been identified 15-28 and 35-65. The initial choice of centroids can affect the output clusters, so the algorithm is often run multiple times with different starting conditions in order to get a fair view of what the clusters should be.

