CSE 515T (Spring 2015) Assignment 1 Solutions

1. (Barber.) Suppose that a study shows that 90% of people who have contracted Creutzfeldt—Jakob disease ("mad cow disease") ate hamburgers prior to contracting the disease. Creutzfeldt—Jakob disease is incredibly rare; suppose only one in a million people have the disease.

If you eat hamburgers, should you be worried? Does this depend on how many other people eat hamburgers?

Solution

Let CJ be the random variable "has Creutzfeldt–Jakob disease," and let H be the random variable "eats hamburgers." From the problem, we know $\Pr(H \mid CJ) = 0.9$ and $\Pr(CJ) = 10^{-6}$. From Bayes' theorem, we may compute the posterior probability of having Creutzfeldt–Jakob disease given that you eat hamburgers:

$$\Pr(\mathrm{CJ}\mid \mathrm{H}) = \frac{\Pr(\mathrm{H}\mid \mathrm{CJ})\Pr(\mathrm{CJ})}{\Pr(\mathrm{H})}.$$

The denominator, $\Pr(H)$, is the probability that a random person eats hamburgers, so whether you should be worried does depend on this value. I estimate $\Pr(H)$ might be around $\frac{1}{2}$; plugging in this value, the posterior probability of having Creutzfeldt–Jakob disease is

$$\frac{0.9 \times 10^{-6}}{\frac{1}{2}} = 1.8 \times 10^{-6},$$

so your probability of having the disease has only increased from 10^{-6} to $1.8 \times 10^{-6} = 0.0000018$ as a result of eating hamburgers. You can sleep safe.

If hamburger eating were rare, say $\Pr(H) = 10^{-5}$, then we would instead have $\Pr(CJ \mid H) = 9\%$, and maybe you should be worried!

2. (O'Hagan and Forster.) Suppose x has a Poisson distribution with unknown mean θ :

$$p(x \mid \theta) = \frac{\theta^x}{x!} \exp(-\theta), \qquad x = 0, 1, \dots$$

Let the prior for θ be a gamma distribution:

$$p(\theta \mid \alpha, \beta) = \frac{\beta^{\alpha} \theta^{\alpha - 1}}{\Gamma(\alpha)} \exp(-\beta \theta), \qquad \theta > 0$$

where Γ is the gamma function. Show that, given an observation x, the posterior $p(\theta \mid x, \alpha, \beta)$ is a gamma distribution with updated parameters $(\alpha', \beta') = (\alpha + x, \beta + 1)$.

Solution

From Bayes' theorem, we have:

$$p(\theta \mid x) \propto p(x \mid \theta)p(\theta)$$

$$\propto (\theta^x \exp(-\theta))(\theta^{\alpha-1} \exp(-\beta\theta))$$

$$= \theta^{x+\alpha-1} \exp(-(\beta+1)\theta)$$

$$\propto \mathcal{G}(\alpha+x,\beta+1).$$

Here we exploit a common trick: we manipulate the numerator, ignoring constants independent of θ . If we can recognize the functional form as belonging to a distribution family we know, we can simply identify the parameters and trust that the distribution normalizes!

3. (Optimal *Price is Right* bidding.) Suppose you have a standard normal belief about an unknown parameter θ , $p(\theta) = \mathcal{N}(\theta; 0, 1^2)$. You are asked to give a point estimate $\hat{\theta}$ of θ , but are told that there is a heavy penalty for guessing too high. The loss function is

$$\ell(\hat{\theta}, \theta; c) = \begin{cases} (\theta - \hat{\theta})^2 & \hat{\theta} < \theta; \\ c & \hat{\theta} \ge \theta \end{cases},$$

where c > 0 is a constant cost for overestimating. What is the Bayesian estimator in this case? How does it change as a function of c?

Solution

Let $\phi(x) = \mathcal{N}(x; 0, 1^2)$ be the standard normal PDF evaluated at x, and let $\Phi(x) = \int_{-\infty}^{x} \phi(x) \, \mathrm{d}x$ be the standard normal CDF evaluated at x. If we fix a point $\hat{\theta}$, the expected loss is:

$$\mathbb{E}[\ell(\hat{\theta}, \theta; c)] = \int \ell(\hat{\theta}, \theta; c) p(\theta) d\theta$$
$$= \int_{-\infty}^{\hat{\theta}} c\phi(\theta) d\theta + \int_{\hat{\theta}}^{\infty} (\theta - \hat{\theta})^2 \phi(\theta) d\theta.$$

The first term is proportional to the standard normal CDF Φ evaluated at $\hat{\theta}$:

$$\int_{-\infty}^{\hat{\theta}} c\phi(\theta) \, \mathrm{d}\theta = c \, \Phi(\hat{\theta}).$$

We may also compute the second integral using the following antiderivatives:¹

$$\int \theta \phi(\theta) d\theta = -\phi(\theta) + C; \qquad \int \theta^2 \phi(\theta) d\theta = \Phi(\theta) - \theta \phi(\theta) + C.$$

Using the fundamental theorem of calculus, we may use these to calculate

$$\int_{\hat{\theta}}^{\infty} (\theta - \hat{\theta})^2 \phi(\theta) d\theta = (\hat{\theta}^2 + 1)(1 - \Phi(\hat{\theta})) - \hat{\theta}\phi(\hat{\theta}).$$

Finally, the entire expected loss is

$$\mathbb{E}[\ell(\hat{\theta}, \theta; c)] = (c - \hat{\theta}^2 - 1)\Phi(\hat{\theta}) - \hat{\theta}\phi(\hat{\theta}) + \hat{\theta}^2 + 1.$$

The derivative with respect to $\hat{\theta}$ is

$$\frac{\partial \mathbb{E}\left[\ell(\hat{\theta}, \theta; c)\right]}{\partial \hat{\theta}} = 2\hat{\theta}\left(1 - \Phi(\hat{\theta})\right) + (c - 2)\phi(\hat{\theta}).$$

Unfortunately, I do not believe we may find a root explicitly, so we would have to rely on numerical root finding. For c=1, the minimial expected loss is achieved at $\hat{\theta}=0.612$; for c=10, the Bayes action is $\hat{\theta}=-1.0615$; for c=100, the Bayes action is $\hat{\theta}=-2.1167$. In general, the larger c, the smaller your estimate should be, due to the potentially high cost of overestimation. For c=0, there is no Bayes action, because we may continue to decrease the expected loss when taking $\hat{\theta}\to\infty$ (there is no reason not to!).

 $^{{}^{1}}http://en.wikipedia.org/wiki/List_of_integrals_of_Gaussian_functions is useful here! \ (Wolfram \ alpha \ also \ works.)$

4. (Maximum-likelihood estimation.) Suppose you flip a coin with unknown bias θ , $\Pr(x=H)=\theta$, three times and observe the outcome HHH. What is the maximum likelihood estimator for θ ? Do you think this is a good estimator? Would you want to use it to make predictions?

Consider a Bayesian analysis of θ with a beta prior $p(\theta \mid \alpha, \beta) = \mathcal{B}(\theta; \alpha, \beta)$. What is the posterior mean of θ ? What is the posterior mode? Consider $(\alpha, \beta) = (1/5, 1/5)$. Plot the posterior density in this case. Is the posterior mean a good summary of the distribution?

Solution

The likelihood of HHH is proportional to θ^3 , which over the domain $\theta \in [0,1]$ is maximized at $\theta = 1$. Whether you think this is a good estimator is subjective; however, I certainly wouldn't use it for prediction, because it completely discounts the (in my opinion, still rather likely) possiblity of a tails event.

With a $\mathcal{B}(\alpha, \beta)$ prior, the posterior is $\mathcal{B}(\alpha + 3, \beta)$. We may calculate the mean of an arbitrary beta distribution:

$$\mathbb{E}[\theta \mid \alpha, \beta] = \int \theta \mathcal{B}(\theta \mid \alpha, \beta) \, \mathrm{d}\theta = \frac{1}{B(\alpha, \beta)} \int_0^1 \theta \left(\theta^{\alpha - 1} (1 - \theta)^{\beta - 1}\right) \, \mathrm{d}\theta = \frac{B(\alpha + 1, \beta)}{B(\alpha, \beta)} = \frac{\alpha}{\alpha + \beta}.$$

Therefore the posterior mean is $\frac{\alpha+3}{\alpha+\beta+3}$. The posterior mode is $\frac{\alpha+2}{\alpha+\beta+1}$. Note that the posterior mode only exists for $\alpha, \beta > 1$.

The prior and posterior distributions are plotted below. An interesting point about the prior is that its mean and median are both 1/2, but this is simultaneously the anti-mode! It's an unusual estimator.

Figure 1: The prior and posterior distributions over θ for the coin-flipping problem.

²http://goo.gl/zigQER - this is how I would answer this type of question!

- 5. (Gaussian with unknown mean.) Let $\boldsymbol{x} = \{x_i\}_{i=1}^N$ be independent, identically distributed real-valued random variables with distribution $p(x_i \mid \theta) = \mathcal{N}(x_i; \theta, \sigma^2)$. Suppose the variance σ^2 is known but the mean θ is unknown with prior distribution $p(\theta) = \mathcal{N}(\theta; 0, 1^2)$.
 - What is the likelihood of the full observation vector $p(x \mid \theta)$?
 - After observing x, what is the posterior distribution of θ , $p(\theta \mid x, \sigma^2)$? (Note: you might find it more convenient in this case to work with the *precision* $\tau = \sigma^{-2}$.)
 - Interpret how the posterior changes as a function of N. What happens if N = 0? What happens if $N \to \infty$? Does this agree with your intuition?

Solution

In the first part, we use the definition of independence:

$$p(\boldsymbol{x} \mid \boldsymbol{\theta}) = \prod_{i=1}^{N} p(x_i \mid \boldsymbol{\theta}) = \prod_{i=1}^{N} \mathcal{N}(x_i; \boldsymbol{\theta}, \sigma^2).$$

We will consider the slightly more general case with an arbitrary Gaussian prior on θ : $p(\theta \mid m, s^2) = \mathcal{N}(\theta; m, s^2)$. For convenience, we will parameterize the Gaussians on the $\{x_i\}$ and θ with the precision parameters $\tau = \sigma^{-2}$; $t = s^{-2}$.

By Bayes' theorem, we have

$$p(\theta \mid \boldsymbol{x}) \propto p(\boldsymbol{x} \mid \theta)p(\theta)$$

$$= \prod \mathcal{N}(x_i; \theta, \tau) \mathcal{N}(\theta; m, t)$$

$$\propto \exp\left(-\frac{1}{2}\left(\tau \sum_{i=1}^{N} (x_i - \theta)^2 + t(\theta - m)^2\right)\right).$$

This is an exponentiated, negative quadratic function of θ and is therefore proportional to a Gaussian distribution over θ . Our goal is to identify the mean and precision of this distribution.

We expand:

$$\tau \sum_{i=1}^{N} (x_i - \theta)^2 + t(\theta - m)^2 = (\tau N + t)\theta^2 - 2(\tau \sum x_i + tm)\theta + (\tau \sum x_i^2 + tm^2).$$

Notice that $\sum x_i = N\bar{x}$, where \bar{x} is the sample mean of the measurements. Notice also that the last term is a constant independent of θ , which will be absorbed into the normalizing constant. To arrive at a more-familiar form, we "complete the square:"

$$(\tau N+t)\theta^2 - 2(\tau N\bar{x} + tm)\theta = (\tau N + t) \left(\theta - \frac{\tau N\bar{x} + tm}{\tau N + t}\right)^2 + c,$$

where c is another constant independent of θ . Therefore:

$$p(\theta \mid \boldsymbol{x}) \propto \exp\left(-\frac{t'}{2}(\theta - m')^2\right),$$

which is a Gaussian distribution with mean and precision

$$m' = \frac{\tau N \bar{x} + tm}{\tau N + t}; \qquad t' = \tau N + t,$$

respectively. We recognize that the new precision is the sum of the precisions of each measurement (the N independent measurements $\{x_i\}$ with precision τ aplus one additional prior "measurement." with precision t). The posterior mean can be recognized as a precision-weighted average of the measurements, including the "measurement" at the prior mean m.

As $N\to\infty$, the sample mean $\bar x$ dominates, and the influence of the prior diminishes to zero. If N=0, we rely only on our prior knowledge.

6. (Spike and slab priors.) Suppose θ is a real-valued random variable that is expected to either be near zero (with probability π) or to have a wide range of potential values (with probability $(1-\pi)$). Such scenarios happen a lot in practice: for example, θ could be the coefficient of a feature in a regression model. We either expect the feature to be useless for predicting the output (and have a value close to zero) or to be useful, in which case we expect a value with larger magnitude but can't say much else.

A common approach in this case is to use a so-called *spike and slab prior*. Let $f \in \{0,1\}$ be a discrete random variable serving as a flag. We define the following conditional prior:

$$p(\theta \mid f, \sigma_{\text{spike}}^2, \sigma_{\text{slab}}^2) = \begin{cases} \mathcal{N}(\theta; 0, \sigma_{\text{spike}}^2) & f = 0\\ \mathcal{N}(\theta; 0, \sigma_{\text{slab}}^2) & f = 1, \end{cases}$$

where $\sigma_{\rm spike}$ is the width of a narrow "spike" at zero, and $\sigma_{\rm slab} > \sigma_{\rm spike}$ is the width of a "slab" supporting values with larger magnitude.

In practice, we will never observe the flag variable f; instead, we must infer it or marginalize it, as required.

- Suppose we choose a prior $\Pr(f=1) = \pi = 1/2$, expressing no *a priori* preference for the spike or the slab. What is the marginal prior $p(\theta \mid \sigma_{\text{spike}}^2, \sigma_{\text{slab}}^2)$? Plot the marginal prior distribution for $(\sigma_{\text{spike}}^2, \sigma_{\text{slab}}^2) = (1^2, 10^2)$.
- Suppose that we can make a noisy observation x of θ , with distribution $p(x \mid \theta, \omega^2) = \mathcal{N}(x; \theta, \omega^2)$, with known variance ω^2 . Given x, what is the posterior distribution of the flag parameter, $\Pr(f = 1 \mid x, \sigma_{\text{spike}}^2, \sigma_{\text{slab}}^2, \omega^2)$? Plot this distribution as a function of x. What observation would teach us the most about f? What teaches us the least?
- Given an observation x as in the last part, what is the posterior distribution of θ , $p(\theta \mid x, \sigma_{\rm spike}^2, \sigma_{\rm slab}^2, \omega^2)$? (Hint: use the sum rule to eliminate f and use the result above.)
- Suppose the noise variance is $\omega^2=0.1^2$ and we make an observation x=3. Plot the posterior distribution of θ , using the parameters from the first part.

Solution

For the first part, we use the sum rule:

$$p(\theta \mid \sigma_{\text{spike}}^2, \sigma_{\text{slab}}^2) = \sum_{f} \Pr(f) p(\theta \mid f, \sigma_{\text{spike}}^2, \sigma_{\text{slab}}^2) = \frac{1}{2} \mathcal{N}(\theta; 0, \sigma_{\text{spike}}^2) + \frac{1}{2} \mathcal{N}(\theta; 0, \sigma_{\text{slab}}^2).$$

The prior density is plotted below.

For the second part, we have from Bayes' theorem that:

$$\Pr(f = 1 \mid x, \sigma_{\text{spike}}^2, \sigma_{\text{slab}}^2, \omega^2) = \frac{p(x \mid f = 1, \sigma_{\text{slab}}^2, \omega^2) \Pr(f = 1)}{\sum_f p(x \mid f, \sigma_{\text{spike}}^2, \sigma_{\text{slab}}^2, \omega^2) \Pr(f)}.$$

We must derive the likelihood $p(x\mid f,\sigma_{\rm spike}^2,\sigma_{\rm slab}^2).$ We apply the sum rule:

$$p(x \mid f, \sigma_{\text{spike}}^2, \sigma_{\text{slab}}^2, \omega^2) = \int p(x \mid \theta, \omega^2) p(\theta \mid f, \sigma_{\text{slab}}^2, \omega^2) \, d\theta.$$

Figure 2: The prior distribution over θ for the spike-and-slab prior problem.

For f = 1, this becomes:

$$\begin{split} p(x \mid f = 1, \sigma_{\text{spike}}^2, \sigma_{\text{slab}}^2, \omega^2) &= \int p(x \mid \theta, \omega^2) p(\theta \mid f = 1, \sigma_{\text{slab}}^2, \omega^2) \, \mathrm{d}\theta \\ &= \int \mathcal{N}(x; \theta, \omega^2) \mathcal{N}(\theta; 0, \sigma_{\text{slab}}^2) \, \mathrm{d}\theta \\ &= \mathcal{N}(x; 0, \sigma_{\text{slab}}^2 + \omega^2). \end{split}$$

A similar expression holds for f = 0. The final result is

$$\Pr(f = 1 \mid x, \sigma_{\text{spike}}^2, \sigma_{\text{slab}}^2, \omega^2) = \frac{\mathcal{N}(x; 0, \sigma_{\text{slab}}^2 + \omega^2)}{\mathcal{N}(x; 0, \sigma_{\text{spike}}^2 + \omega^2) + \mathcal{N}(x; 0, \sigma_{\text{slab}}^2 + \omega^2)}$$

This value is plotted as a function of x on the range $x \in [-10, 10]$ below for $\omega^2 = 0.1^2$. Extreme values of x teach us the most, because we can conclude with near certainty that the observation came from the slab. The observations that would teach us the least are $x \approx \pm 2.165$, either of which result in a posterior slab probability of 1/2 – the same as our prior!

For the third part, we use the sum rule:

$$p(\theta \mid x, \sigma_{\text{spike}}^2, \sigma_{\text{slab}}^2, \omega^2) = \sum_f p(\theta \mid f, x, \sigma_{\text{spike}}^2, \sigma_{\text{slab}}^2, \omega^2) \Pr(f \mid x, \sigma_{\text{spike}}^2, \sigma_{\text{slab}}^2, \omega^2).$$

We need to compute the posterior on θ given f and x. Here we may use the result from the last problem:

$$p(\theta \mid f = 0, x, \sigma_{\text{spike}}^2, \omega^2) = \mathcal{N}(\theta; \tau_{\text{spike}}^{-1} \omega^{-2} x, \tau_{\text{spike}}^{-1})$$
$$p(\theta \mid f = 1, x, \sigma_{\text{slab}}^2, \omega^2) = \mathcal{N}(\theta; \tau_{\text{slab}}^{-1} \omega^{-2} x, \tau_{\text{slab}}^{-1}),$$

Figure 3: The posterior probability for the slab flag (f=1) for the spike-and-slab prior problem as a function of the observation x.

where $au_{
m spike} = (\omega^{-2} + \sigma_{
m spike}^{-2})$, and $au_{
m slab}$ is defined similarly.

Finally, the posterior for θ for the observation x=3 with $\omega^2=0.1^2$ is plotted below.

Figure 4: The posterior density for the parameter θ given the example observation x=3, $\omega^2=0.1^2.$