Étude de la sous-nutrition dans le monde

MAXIMEBCH - FAO

Mise en contexte

LA FAO (FOOD AND AGRICULTURE ORGANISATION)

Selon la FAO, la **sous-alimentation (sous-nutrition)** est une situation dans laquelle la ration alimentaire, mesurée en kilocalories, ne suffit pas, de manière continue, pour couvrir les besoins énergétiques de base. Concrètement, cela signifie qu'une personne sous-alimentée souffre de la faim tous les jours ou presque. Cette définition se concentre sur l'apport en énergie de la nourriture ingérée.

Par différence, la **malnutrition** est un mauvais état physiologique provenant d'une alimentation inadéquate, ou d'une déficience de soins (insuffisance de fractionnement des repas pour les nourrissons ou pour certains malades, par exemple), ou de mauvaises conditions de santé ou d'hygiène (non-accès à l'eau potable par exemple).

Organisation des Nations Unies pour l'alimentation et l'agriculture Devise : « *Fiat panis* » (qu'il y ait du pain)

OBJECTIF « FAIM ZÉRO »

Le 2^{ème} **objectif de développement durable** des Nations Unies à atteindre pour 2030 est :

« Éliminer la faim, assurer la sécurité alimentaire, améliorer la nutrition et promouvoir l'agriculture durable »

UNE BAISSE DES MORTS CAUSÉES PAR LÁ FAIM...

Deaths from protein-energy malnutrition, by age, World, 1990 to 2017

Our World in Data

Annual number of deaths from protein-energy malnutrition (which results from insufficient caloric and protein intake) by age group across both sexes.

De **510 000** morts par an en 1990 à **230 000** en 2017

Source: IHME, Global Burden of Disease (GBD)

MAIS UNE SOUS-NUTRITION EN AUGMENTATION

Prévalence de la sous-alimentation (axe de gauche)
 Nombre de personnes sous-alimentées (axe de droite)

NOTES: Les valeurs projetées dans la figure sont illustrées par des lignes pointillées et des cercles vides. La zone ombrée représente les projections à plus long terme de 2019 à l'année cible 2030. L'ensemble de la série a été soigneusement révisé pour refléter les nouvelles informations disponibles depuis la publication de la dernière édition du rapport; il remplace toutes les séries publiées précédemment.

Diminution jusqu'à 8,6% en 2014 mais désormais en augmentation et pourrait atteindre 9,8%

d'ici 2030

^{*} Voir La situation de la sécurité alimentaire et de la nutrition dans le monde en 2020 pour une description de la méthode de

^{**} Les projections jusqu'en 2030 ne tiennent pas compte de l'impact potentiel de la pandémie de covid-19. SOURCE: FAO.

DEPUIS LA PANDÉMIE DU COVID-19

La FAO avait déjà signalé que la sécurité alimentaire de millions de personnes (surtout des enfants) était en jeu...

Désormais les anticipations pour 2030 ont été atteintes car **9,9% de la population mondiale était en sous-alimentation en 2020** contre 8,4% en 2019 (source : OMS).

Le covid-19 est une nouvelle crise qui s'ajoute à des crises déjà existantes responsables de la faim dans le monde...

LES CAUSES DE LA FAIM

- o Changements climatiques : inondations, sécheresses, pluies, réchauffement...
- Guerres et conflits sociaux : impact sur les terres, récoltes, travailleurs et infrastructures
- Chocs économiques : pauvreté, accès à l'eau potable, hygiène...

Source: FAO

LE MANQUE DE NOURRITURE DISPONIBLE EST/IL VUNE CAUSE DE LA FAIM ?

DES QUANTITÉS DE NOURRITURES SUFFISANTES

Si la disponibilité alimentaire en produits végétaux + la nourriture végétale destinée aux animaux + les pertes de produits végétaux étaient utilisés pour de la nourriture

126 % des êtres humains pourraient être nourris

Les pays avec le plus d'habitants en sous-nutrition ne profitent pas d'une autonomie alimentaire car ils produisent principalement des produits (huile de palme, maïs, manioc, riz, sucre) :

- Destinés à l'alimentation animale
- Destinés aux autres utilisations
- Peu nutritifs

Thaïlande : 8 % de la population est en sous-nutrition La quantité de manioc exportée pourrait **nourrir 1,5x la population**

LE MANQUE DE NOURRITURE DISPONIBLE ESTÉIL UNE CAUSE DE LA FAIM ?

LES « AUTRES UTILISATIONS »

produit	ratio
Alcool, non Comestible	0.9824561403508771
Plantes Aquatiques	0.9206611570247933
Huile de Palmistes	0.773645039477774
Piments	0.7391304347826086
Huile de Palme	0.6525201928105668
Huile de Colza&Moutarde	0.6168654069356987
Palmistes	0.5756249109989211
Huile de Coco	0.5708937511900739
Huil Plantes Oleif Autr	0.547179135005601
Huile de Son de Riz	0.5029546758462421

Les 10 produits pour lesquels le ratio Autres utilisations/Disponibilité intérieure est le plus élevé

Exemples

Alcool (éthanol): carburant, matière première (industrie chimique), antiseptique, solvant, utilisation médicale (en injection), liquide à basse température

Huile de palme: « À l'échelle mondiale, l'huile de palme est principalement utilisée dans l'industrie alimentaire (près de 70 %), dans l'oléochimie (savon, cosmétiques...) et en tant qu'agrocarburant (plus de 20 %) »

Piments: horticulture, médical, irritant chimique (lacrymogène), insecticide

LE MANQUE DE NOURRITURE DISPONIBLE EST/IL VILLE CAUSE DE LA FAIM ?

L'IMPACT DE L'ALIMENTATION ANIMALE (ET AUTRES UTILISATION)

46 % de la production de céréales est destinée aux aliments pour animaux

Si toute la disponibilité intérieure mondiale de produits végétaux était utilisée pour de la nourriture

216 % des êtres humains pourraient être nourris

LE MANQUE DE NOURRITURE DISPONIBLE EST/IL UNE CAUSE DE LA FAIM ?

ÉVOLUTION DE LA POPULATION MONDIALE

Projections jusqu'en 2100

1990 **************** milliards

2017 ****†**†**** 7,3 milliards

Source: Nations Unies, Division de la population (Département des affaires économiques et sociales)

La population mondiale devrait augmenter de **33 %** entre 2017 et 2050.

C'est-à-dire une augmentation de **140 %** de la population de 2013

On pourrait donc nourrir la population de 2050 avec la production de 2013

L'enjeu est de **produire davantage de produits sains pour contrer l'augmentation de la malnutrition**

Analyse des données

DONNÉES TÉLÉCHARGÉES SOURCE

Base de donnée en ligne de la FAO

DONNÉES TÉLÉCHARGÉES FICHIERS .CSV - 1/5

animaux_df

Code Domaine	Domaine	Code zone	Zone	Code Élément	Élément	Code Produit	Produit	Code année	Année	Unité	Valeur	Symbole	Descriptior du Symbole
FBSH	Bilans Alimentaire (Ancienne méthodologie et p	2	Afghanistan	5511	Production	2731	Viande de Bovins	2013	2013	Milliers de tonnes	134.00	S	Données standardisées
FBSH	Bilans Alimentaire (Ancienne méthodologie et p	2	Afghanistan	5611	Importations - Quantité	2731	Viande de Bovins	2013	2013	Milliers de tonnes	6.00	s	Données standardisées

Produits alimentaires d'origine animale

DONNÉES TÉLÉCHARGÉES FICHIERS .CSV - 2/5

vegetaux_df

	Code Domaine	Domaine	Code zone	Zone	Code Élément	Élément	Code Produit	Produit	Code année	Année	Unité	Valeur	Symbole
0	FBSH	Bilans Alimentaire (Ancienne méthodologie et p	2	Afghanistan	5511	Production	2511	Blé	2013	2013	Milliers de tonnes	5169.00	S
1	FBSH	Bilans Alimentaire (Ancienne méthodologie et p	2	Afghanistan	5611	Importations - Quantité	2511	Blé	2013	2013	Milliers de tonnes	1173.00	S

Produits alimentaires d'origine végétale

DONNÉES TÉLÉCHARGÉESFICHIERS .CSV - 3/5

cereales_df

	Code Domaine	Domaine	Code zone	Zone	Code Élément	Élément	Code Produit	Produit	Code année	Année	Unité	Valeur	Symbole	Description du Symbole
0	FBSH	Bilans Alimentaire (Ancienne méthodologie et p	2	Afghanistan	5511	Production	2511	Blé	2013	2013	Milliers de tonnes	5169	S	Données standardisées
1	FBSH	Bilans Alimentaire (Ancienne méthodologie et p	2	Afghanistan	5511	Production	2805	Riz (Eq Blanchi)	2013	2013	Milliers de tonnes	342	S	Données standardisées

Produits alimentaires céréaliers

DONNÉES TÉLÉCHARGÉESFICHIERS .CSV - 4/5

population_df

	Code Domaine	Domaine	Code zone	Zone	Code Élément	Élément	Code Produit	Produit	Code année	Année	Unité	Valeur	Symbole	Description du Symbole
0	FBSH	Bilans Alimentaire (Ancienne méthodologie et p	2	Afghanistan	511	Population totale	2501	Population	2013	2013	1000 personnes	30552	NaN	Donnée officielle
1	FBSH	Bilans Alimentaire (Ancienne méthodologie et	202	Afrique du Sud	511	Population totale	2501	Population	2013	2013	1000 personnes	52776	NaN	Donnée officielle

Nombre d'habitants par pays

DONNÉES TÉLÉCHARGÉES FICHIERS .CSV - 5/5

sousalimentation_df

	Code Domaine	Domaine	Code zone	Zone	Code Élément	Élément	Code Produit	Produit	Code année	Année	Unité	Valeur	Symbole	Description du Symbole	Note
0	FS	Données de la sécurité alimentaire	2	Afghanistan	6132	Valeur	210011	Nombre de personnes sous- alimentées (millions)	20122014	2012- 2014	millions	7.9	F	Estimation FAO	NaN
1	FS	Données de la sécurité alimentaire	2	Afghanistan	6132	Valeur	210011	Nombre de personnes sous- alimentées (millions)	20132015	2013- 2015	millions	8.8	F	Estimation FAO	NaN

Nombre d'habitants sous-alimentés par pays et par années


```
population_df[population_df['Zone'].str.contains('Chine')][['Code zone', 'Zone', 'Valeur']]
#affichage des zones "Chine"
```

	Code zone	Zone	Valeur
33	351	Chine	1416667
34	96	Chine - RAS de Hong-Kong	7204
35	128	Chine - RAS de Macao	566
36	41	Chine, continentale	1385567
37	214	Chine, Taiwan Province de	23330

```
« Is not equal to »
```

```
population_df = population_df[population_df['Code zone'] != 351]
animaux_df = animaux_df[animaux_df['Code zone'] != 351]
cereales_df = cereales_df[cereales_df['Code zone'] != 351]
sousalimentation_df = sousalimentation_df[sousalimentation_df['Code zone'] != 351]
vegetaux_df = vegetaux_df[vegetaux_df['Code zone'] != 351]
```

Pour les premiers dataframes créés à partir des fichiers .csv, j'ai supprimé la zone « Chine » qui était un agrégat de la zone « Chine continentale » et des autres provinces

DATAFRAMES

 code_pays	pays	code_produit	produit_x	origine	alim_animaux	autres	dispo_kcal_p_j	dispo_kg_p	dispo_mat_g_p_j	imports	nourriture
0 1	Arménie	2511	Blé	vegetal	93.0	0.0	1024.0	130.60	3.60	361.0	389.0
1 1	Arménie	2513	Orge	vegetal	137.0	26.0	0.0	0.00	0.00	9.0	0.0
		2511			00.0			2.22		00.0	

Jointure externe (full join) entre deux dataframes :

```
Bilan_alim + population_df =
bilan_alim
Clé primaire : pays + code_pays
```

```
dispo_moy_energie = bilan_alim.groupby(bilan_alim['produit_x']).agg('mean')
dispo_moy_energie = dispo_moy_energie.replace([-np.inf, np.inf], np.nan)
dispo_moy_energie = dispo_moy_energie.sort_values('ratio_energie', ascending = False)
dispo_moy_energie = dispo_moy_energie[['ratio_energie', 'proteines (%)']].reset_index()
print(dispo_moy_energie.iloc[0:20])
```

Création d'un dataframe avec l'**agrégation** des données « produits » de chaque pays

#création d'un dataframe Blé en France
bleFr = vegetaux_df.loc[(vegetaux_df['Zone'] == 'France') & (vegetaux_df['Produit'] == 'Blé')]
bleFr.reset_index(drop=True)

	Code Domaine	Domaine	Code zone	Zone	Code Élément	Élément	Code Produit	Produit	Code année	Année	Unité	Valeur	Symbole	Description du Symbole
0	FBSH	Bilans Alimentaire (Ancienne méthodologie et p	68	France	5511	Production	2511	Blé	2013	2013	Milliers de tonnes	38614.00	S	Données standardisées
1	FBSH	Bilans Alimentaire (Ancienne méthodologie et p	68	France	5611	Importations - Quantité	2511	Blé	2013	2013	Milliers de tonnes	2055.00	S	Données standardisées
2	FBSH	Bilans Alimentaire (Ancienne méthodologie et p	68	France	5072	Variation de stock	2511	Blé	2013	2013	Milliers de tonnes	1131.00	s	Données standardisées

Création d'un dataframe avec **restriction**

bleFR = restriction du dataframe « végétaux_df » sur la zone « France » et le produit « blé »

DATABASE

Module « psycopg2 » pour connecter la database SQL avec python

%reload_ext sql
%sql postgresql://postgres:postgre@localhost:5432/postgres
from sqlalchemy import create_engine
engine = create_engine('postgresql+psycopg2://postgres:postgre@localhost:5432/postgres')
#connexion avec la base de données "postgres" dans postgresql

- ▼ 目 Tables (4)
 - > dispo_alim
 - > == equilibre_prod
 - > = population
 - > = sous_nutrition

Les 4 fichiers .csv ont été importés dans PostgreSQL

Les 10 pays ayant le plus haut ratio disponibilité alimentaire/habitant en termes de protéines (en kg) par habitant, puis en termes de kcal par habitant.

```
%%sql
SELECT
    pays,
    sum((dispo_prot/1000)) AS dispo_prot_kg_per_jour
FROM dispo_alim
GROUP BY pays
ORDER BY dispo_prot_kg_per_jour DESC
LIMIT 10
```

* postgresql://postgres:***@localhost:5432/postgres 10 rows affected.

pays	dispo_prot_kg_per_jour
Islande	0.13305999999999998
Chine - RAS de Hong-Kong	0.12906999999999996
Israël	0.128
Lituanie	0.12436000000000005
Maldives	0.12232
Finlande	0.11755999999999998
Luxembourg	0.113640000000000002
Monténégro	0.11189999999999999
Pays-Bas	0.11146
Albanie	0.111370000000000002

```
%%sql
SELECT
    pays,
    sum(dispo_alim_kcal_p_j) as dispo_alim_kcal_p_jour
FROM dispo_alim
GROUP BY pays, annee
ORDER BY dispo_alim_kcal_p_jour DESC
LIMIT 10
```

pays	dispo_alim_kcal_p_jour
Autriche	3770.0
Belgique	3737.0
Turquie	3708.0
États-Unis d'Amérique	3682.0
Israël	3610.0
Irlande	3602.0
Italie	3578.0
Luxembourg	3540.0
Égypte	3518.0
Allemagne	3503.0

Pour l'année 2013, les 10 pays ayant le plus faible ratio disponibilité alimentaire/habitant en termes de protéines (en kg) par habitant.


```
%%sql
SELECT
    pays,
    sum((dispo_prot/1000)) AS dispo_prot_kg_per_jour
FROM dispo_alim
GROUP BY pays

ORDER BY dispo_prot_kg_per_jour ASC
LIMIT 10
```

pays	dispo_prot_kg_per_jour
Libéria	0.03765999999999999
Guinée-Bissau	0.04405
Mozambique	0.045680000000000002
République centrafricaine	0.0460399999999999
Madagascar	0.04669
Haïti	0.047700000000000001
Zimbabwe	0.048320000000000002
Congo	0.05140999999999999
Ouganda	0.052640000000000002
Sao Tomé-et-Principe	0.05310000000000001

REQUÊTES SQL

La quantité totale (en kg) de produits perdus par pays en 2013.

```
%%sql
SELECT pays, SUM((pertes)*1000) AS pertes_totales
FROM equilibre_prod
GROUP BY pays
ORDER BY pertes_totales DESC
LIMIT 10;
```

pays	pertes_totales
Chine, continentale	89575000.0
Brésil	75914000.0
Inde	55930000.0
Nigéria	19854000.0
Indonésie	13081000.0
Turquie	12036000.0
Mexique	8289000.0
Égypte	7608000.0
Ghana	7442000.0
États-Unis d'Amérique	7162000.0

Les 10 pays pour lesquels la proportion de personnes sous-alimentées est la plus forte.

```
%%sql
SELECT S.pays,((S.nb_personnes*1000000 /P.population)*100) as prop_sous_alim
    FROM sous_nutrition S, population P
    WHERE P. code_pays = S. code_pays AND S. annee = '2012-2014'
    ORDER BY prop_sous_alim DESC
    LIMIT 10
```

pays	prop_sous_alim
Haïti	50.40224871571193
Zambie	48.146364949446316
Zimbabwe	46.64310954063604
République centrafricaine	43.327556325823224
République populaire démocratique de Corée	42.57883109058044
Congo	40.46762589928058
Tchad	38.20662768031189
Angola	37.72354694485842
Libéria	37.26129482999534
Madagascar	35.76881134133042

Les 10 produits pour lesquels le ratio Autres utilisations/Disponibilité intérieure est le plus élevé.

%%sql
SELECT produit, AVG(autres_utilisations/dispo_int) AS ratio
FROM equilibre_prod
WHERE dispo_int <> 0 AND autres_utilisations IS NOT NULL
GROUP BY produit
ORDER BY ratio DESC
LIMIT 10

ratio
0.9824561403508771
0.9206611570247933
0.773645039477774
0.7391304347826086
0.6525201928105668
0.6168654069356987
0.5756249109989211
0.5708937511900739
0.547179135005601
0.5029546758462421

QUESTIONS?

