Calibrated Language Models Must Hallucinate

Adam Kalai, Santosh Vempala [STOC 2024] Presented by G. Noarov

February 20, 2025

Agenda

Introduction

Hallucinations
Preview of Results

Modeling Assumptions

Facts and Hallucinations
Anti-Concentration Assumptions
A Semantic Notion of Calibration

Main Results

General Lower Bound Instantiating the Lower Bound Matching Upper Bound: A Simple LM

Discussion and Conclusions

Calibrated LLMs Hallucinate

Kalai and Vempala

Introduction

Hallucinations

Preview of Resul

Modeling Assumptions

Anti-Concentration Assumptions

Calibration

Main Results

General Lower Bound Instantiating the Lower

Matching Upper Bou Simple LM

Simple LM

Conclusions

Calibrated LLMs Hallucinate

Kalai and Vempala

2 Introduction

Hallucinations Preview of Results

Modeling Assumptions Facts and Hallucinations

Anti-Concentration Assumptions

Introduction

A Semantic Notion of Calibration

Main Results General Lower Bound

Instantiating the Lower

Matching Upper Bound: A Simple LM

What Are Hallucinations?

Calibrated LLMs Hallucinate

Kalai and Vempala

Introduction

Hallucinations

Hallucinations

Modeling Assumption

Facts and Hallucinations

Assumptions

Calibration

Main Res

General Lower Bound Instantiating the Lower

Matching Upper Bo

- No clear consensus on definition.
- Merriam-Webster: Plausible but false or misleading response generated by an AI algorithm
- ► Math errors: Hallucinations or reasoning errors?
- "Plausible", "misleading", etc.: In the eye of the beholder
- ▶ But different degrees of egregiousness:
 - Open-domain: Without specific prompt, LLM may generate unseen facts, whether true or hallucinatory
 - Closed-domain: Given prompt document x, LLM may make up new facts not contained in x even if instructed against it
- ► Today: Open-domain, Hallucination = Falsehood

Some Reasons for Hallucinations

Calibrated LLMs Hallucinate Kalai and Vempala

Kaiai and verripais

Hallucinations

Preview of Result:

Modeling Assumption

Anti-Concentration Assumptions

A Semantic N Calibration

Main Resul

General Lower Bound Instantiating the Lower

Matching Upper Bou

Discussion ar

- Inadequate data: "Imitative falsehoods" (Ji et al., 2023), outdatedness (Vu et al., 2023), duplicates, societal biases.
- ► Token-by-token generation:
 - One-token-at-a-time generation can "corner" LMs into a prefix that is hard to factually complete (Zhang et al., 2023)
 - ▶ Resulting completion will thus be incorrect but sound good
 - This is not a statistical reason to hallucinate: log likelihood of generated document is the same whether it is generated all at once or sequentially
- Many other reasons, including:
 - ► LLM Architectures / Training issues
 - Overconfident generation
 - But indications are that LLMs can tell if they are hallucinating (Kadavath et al., 2022)

How Frequently Must LLMs Hallucinate?

- Want a statistical lower bound on LLM hallucination rates.
- ▶ LLM is *any* distribution *g* over *factoids* contained in texts
- ► Clear-cut: assume each factoid is a fact or a hallucination
- ► Assume facts are *arbitrary* / unstructured: Cannot easily
- deduce one from the other like $x < y \implies x + 1 < y + 1$ High-quality training data: assume only includes true facts
- Pure generation: from scratch, no prompts

Result: With high probability, up to errors / constant factors,

$$\operatorname{HallucinationRate(LLM)} \geq \widehat{\operatorname{MF}} - \operatorname{CalErr(LLM)} - \frac{|\operatorname{Facts}|}{|\operatorname{Hallucinations}|}$$

- ▶ MF is the *monofact (Good-Turing) rate*, i.e. fraction of training facts that appear only once
- ► CalErr is a certain measure of *calibration error* of LLM

Calibrated LLMs Hallucinate

Kalai and Vempala

Introduction

5 Preview of Results

Modeling Assumptions

Anti-Concentration
Assumptions
A Semantic Notion of

Calibration

Main Resu

General Lower Bound Instantiating the Lower Bound

Matching Upper Bou imple LM

Discussion and Conclusions

20

Calibration in LLMs

- But shouldn't LLMs get better and hallucinate less the more calibrated they get?
- Not so simple... (OpenAI, 2023) shows that post-PPO, models can get better (hallucinate less) apparently at the cost of worsened calibration (but they use a different calibration metric than we will use today)

Calibrated LLMs Hallucinate

Kalai and Vempala

Hallucin

Preview of Results

Modeling Assumptions

Anti-Concentration Assumptions

Calibration

General Lower Bound

Instantiating the Lower Bound

Matching Upper Bo Simple LM

Calibrated LLMs Hallucinate

Kalai and Vempala

Introduction

Preview of Results

Modeling Assumptions

Anti-Concentration Assumptions

Calibration Main Results

Modeling Assumptions

General Lower Bound

Instantiating the Lower Bound

Matching Upper Bound: A Simple LM

Simple Model of the World

- ► A universe of documents (strings of tokens) *X*
- ► A universe of "factoids" (true and false claims) *Y*
- ► There is a fixed surjective mapping $f: X \to Y$, that maps each document $x \in X$ to exactly one factoid $f(x) \in Y$
- ► The world distribution $D_{\text{world}} \in \Delta(\Delta(X))$: distribution over distributions over documents
- ▶ Distribution over docs $D_L \sim D_{\text{world}}$ induces *ground truth* distribution $p \in \Delta(Y)$ over factoids: $p = f \circ D_L$
- ► Facts = nonzero-probability factoids under p: F = supp(p)
- ► The set of factoids is a disjoint union of facts F and hallucinations H: $Y = F \sqcup H$
- ▶ Training set: i.i.d. sample $\mathbf{x}_{\text{train}} \sim D_I^n$ of n documents
- Observed facts O = facts contained in x_{train}; unobserved factoids U = Y − O
- ▶ Language model (LM): distribution $D_{\text{LM}} \in \Delta(X)$
- ▶ LM induces distribution over facts: $g = f \circ D_{\text{LM}}$

Calibrated LLMs Hallucinate

Kalai and Vempala

Introduction

Preview of Result

Modeling Assumptions

Facts and Hallucinations
Anti-Concentration

A Semantic Notion Calibration

Main Results
General Lower Bound

Instantiating the Lower Bound Matching Upper Bound: A

Simple Model of the World: Recap

.

Introduction

Preview of Resi

Modeling Assumptions

Facts and Hallucinations

Assumptions
A Semantic Notion of

Calibration

O-----

General Lower Bound Instantiating the Lower Bound

Matching Upper Bound Simple LM

- First, distribution over documents $D_L \sim D_{\mathrm{world}}$ is generated, and induces distribution $p \in \Delta(Y)$ over factoids
- ▶ All factoids $y \in Y$ with p(y) > 0 are declared facts (F)
- ► Then, n documents are sampled to give x_{train}, and the facts in them are called O (observed)

Anti-Concentration Assumptions

Calibrated LLMs Hallucinate

Kalai and Vempala

Introduction

Hallucinations

Modeling Assumptions

Anti-Concentration Assumptions

A Semantic Notion o

Main Result

General Lower Bound Instantiating the Lower

Matching Upper Bou Simple LM

- Assumption 1: There are many fewer facts than hallucinations: $|F| \le e^{-s}|H|$, for some constant s > 0 and with probability 1 with respect to D_{world} .
- Assumption 2: Unobserved factoids are all almost equally likely to be facts, given training data: for some r > 0, $\forall y \in U \quad \Pr[y \in F \mid \mathbf{x}_{\text{train}}] \leq \frac{r}{|U|} \mathbb{E}[|F \cap U| \mid \mathbf{x}_{\text{train}}].$
- Assumption 3: Unobserved factoids are all almost equally likely, given training data: for some constant r > 0, $\forall y \in U \quad \mathbb{E}[p(y) \mid \mathbf{x}_{\text{train}}] \leq \frac{r}{|U|} \mathbb{E}[p(U) \mid \mathbf{x}_{\text{train}}].$

A Semantic Notion of Calibration

An LM is calibrated if, for all $z \in [0, 1]$, the facts it generates with probability $\approx z$ occur in $\approx z$ fraction of natural language.

- ▶ Recall: p, g are true & LLM distr-s over factoids $y \in Y$.
- ► Let Π be any *binning* of *Y* into disjoint buckets:

► E.g.
$$\Pi_{\infty} = \{B_z\}_{z \in [0,1]}$$
, where $B_z = \{y \in Y : g(y) = z\}$.

► The Π-bucketing of p is the distribution p^{Π} obtained by replacing, for each bucket $B \in \Pi$, the values of p with their bucket-average within B. For example:

$$p\!=\![0.1,0.1|0.2|0.1,0.2,0.3]\!\rightarrow\!\rho^\Pi\!=\![0.1,0.1|0.2|0.2,0.2,0.2].$$

Π-calibration error of LLM: Defined as the total variation distance of LLM distribution from Π-bucketed ground truth:

$$\mathrm{CalErr}_\Pi(g,\rho) = \left\| \rho^\Pi - g \right\|_{\mathrm{TV}}$$

Does $CalErr_{\Pi_{\infty}}(g, p)$ correspond to intuitive calibration def-n?

Calibrated LLMs Hallucinate

Kalai and Vempala

ntroduction

Hallucinations

Modeling Assumptions

Anti-Concentration

A Semantic Notion of Calibration

Main Res

General Lower Bound Instantiating the Lower

Matching Upper Bound:

Calibrated LLMs Hallucinate

Kalai and Vempala

Introduction

Hallucinations

Preview of Result:

Modeling Assumptions Facts and Hallucinations

Anti-Concentration

Assumptions
A Semantic Notion of

Calibration

12 Main Results

Main Results

General Lower Bound

Instantiating the Lower

Matching Upper Bound: A Simple LM

General Lower Bound: Statement

- \blacktriangleright We reformulate the joint distribution over p and $\mathbf{x}_{\text{train}}$
- Let $\nu \in \Delta(\Delta(Y))$ denote a distribution such that picking $\mathbf{x}_{\text{train}}$ and then drawing $p \sim \nu$ is equivalent to the original setup (sampling $D_L \sim D_{\text{world}}$ followed by $\mathbf{x}_{\text{train}} \sim D_I^n$)

General Bound: For any $\nu \in \Delta(\Delta(Y))$, facts F, hallucinations H, observed facts O, unseen facts U, LM distribution $g \in \Delta(Y)$, and partition Π over Y,

$$\mathbb{E}_{\boldsymbol{\rho} \sim \boldsymbol{\nu}}[(\boldsymbol{\rho}(\boldsymbol{U}) - \operatorname{CalErr}_{\Pi}(\boldsymbol{g}, \boldsymbol{\rho}) - \boldsymbol{g}(\boldsymbol{H}))_{+}] \leq \max_{\boldsymbol{y} \in \boldsymbol{U}} \Pr_{\boldsymbol{\rho} \sim \boldsymbol{\nu}}[\boldsymbol{y} \in \boldsymbol{F}] + |\boldsymbol{O}| \max_{\boldsymbol{y} \in \boldsymbol{U}} \mathbb{E}[\boldsymbol{\rho}(\boldsymbol{y})].$$

- ▶ The LHS: Difference between missing mass p(U) and hallucination rate g(H) is bounded by: (1) the calibration error of g relative to p, plus...
- ▶ (2) The RHS: Quantities that will be small under regularity assumptions on the world's distribution.

Calibrated LLMs Hallucinate

Kalai and Vempala

ntroduction

Preview of Result

Modeling Assumptions

Anti-Concentration Assumptions

A Semantic Notion of Calibration

Main Results

General Lower Bound Instantiating the Lower

Bound
Matching Upper Bound:

Discussion and Conclusions

20

General Lower Bound: Proof Intuition

Calibrated LLMs Hallucinate

Kalai and Vempala

Introduction

Hallucinations

Modelina Assumnti

Anti-Concentration Assumptions

A Semantic Notion Calibration

ain Results

General Lower Bound

Instantiating the Lower Bound Matching Upper Bound: Simple I M

- ► Intuition assuming LLM *g* is calibrated:
 - ▶ (1) Unseen factoids \approx hallucinations: $H \cap U \approx \emptyset$;
 - ▶ (2) The LM assigns similar probability mass to unseen factoids as does the ground truth distribution: $g(U) \approx p(U)$;
 - ▶ (3) Missing mass is estimable via Good-Turing: $p(U) \approx \widehat{MF}$;
 - ► Then: $g(H) \approx^{(1)} g(U) \approx^{(2)} p(U) \approx^{(3)} \widehat{\mathrm{MF}}$.
- ► How does *calibration error* come in? In more detail, in step (2) above: $p(U) \approx p^{\Pi}(U)$ for any bucketing Π, and so $g(U) \approx p^{\Pi}(U) \text{CalErr}_{\Pi}(g, p) \approx p(U) \text{CalErr}_{\Pi}(g, p)$.
- ▶ This argument suggests not just lower bound $\widehat{\mathrm{MF}} \lesssim g(H)$ but also a possible matching upper bound; stay tuned

General Lower Bound: Proof Part 1

Fix any distribution $q \in \Delta(Y)$. Then, $q(U) - g(U) \le ||q - g||_{TV}$. LLM hallucination frequency satisfies:

$$\begin{split} g(H) &= g(U) - g(F \cap U) \\ &\geq q(U) - \|q - g\|_{\mathsf{TV}} - g(F \cap U) \\ &= p(U) - (p(U) - q(U)) - \|q - g\|_{\mathsf{TV}} - g(F \cap U) \\ &= p(U) - \|q - g\|_{\mathsf{TV}} - (p(U) - q(U) + g(F \cap U)). \end{split}$$

Therefore,

$$(p(U) - g(H) - \|q - g\|_{TV})_+ \le (p(U) - q(U))_+ + g(F \cap U).$$

It remains to bound the expectation of both RHS terms.

Calibrated LLMs Hallucinate Kalai and Vempala

....

Introduction

Provious of Results

Modeling Assumptions

Anti-Concentration

A Semantic Notion of Calibration

lain Results

General Lower Bound Instantiating the Lower

atching Upper Bound:

General Lower Bound: Proof Part 2

Have for any $q \in \Delta(Y)$:

$$\mathbb{E}[(p(U)-g(H)-\|q-g\|_{\mathsf{TV}})_{+}] \leq \underbrace{\mathbb{E}[(p(U)-q(U))_{+}]}_{\text{(1)}} + \underbrace{\mathbb{E}[g(F\cap U)]}_{\text{(2)}}.$$

Now we use our Assumptions 2 and 3 to bound both terms:

(2):
$$\mathbb{E}_{\nu}[g(F \cap U)] = \sum_{y \in U} g(y) \Pr[y \in F] \leq \max_{y \in U} \Pr[y \in F]$$
.

(1): Let $q = p^{\Pi}$ for any partition Π of Y, then can show:

$$\mathbb{E}[(p(U) - q(U))_{+}] \leq \sum_{B \in \Pi} |B - U| \cdot \mathbb{E}\left[\frac{p(B \cap U)}{|B \cap U|}\right]$$

$$\leq \sum_{B \in \Pi} |B - U| \cdot \max_{y \in U} \mathbb{E}\left[p(y)\right]$$

$$= |O| \max_{y \in U} \mathbb{E}\left[p(y)\right].$$

Calibrated LLMs Hallucinate

Kalai and Vempala

ntroduction

Hallucinations

Modeling Assumptions

Anti-Concentration

A Semantic Notion o

Januarion .

General Lower Bound

Instantiating the Lower Bound

Matching Upper Bound: A Simple LM

Instantiating Bound Using Assumptions

Recall the general lower bound:

$$\underset{p \sim \nu}{\mathbb{E}}[(p(U) - \operatorname{CalErr}_{\Pi}(g, p) - g(H))_{+}] \leq \underset{y \in U}{\operatorname{max}} \underset{p \sim \nu}{\operatorname{Pr}}[y \in F] + |O| \underset{y \in U}{\operatorname{max}} \underset{\nu}{\mathbb{E}}[p(y)].$$

- $\qquad \text{Ass. 2: } \max_{y \in U} \Pr[y \in F] \leq r \frac{\mathbb{E}[|F \cap U|]}{|U|} \leq r \frac{|F|}{|U|} \leq r \frac{|F|}{|H|} \leq r e^{-s};$
- ► Ass. 3: $|O| \max_{y \in U} \mathbb{E}[p(y)] \le r \frac{|O|}{|U|} \mathbb{E}[p(U)] \le r \frac{|F|}{|U|} \le re^{-s}$;
- ► Markov's inequality: In-expectation → high-probability;
- ▶ Thus, for $n = |\mathbf{x}_{\text{train}}|$, we get with prob. $\geq 1 \delta$:

$$g(H) \geq \widehat{\mathrm{MF}} - \mathrm{CalErr}_\Pi(g,p) - \frac{3re^{-s}}{\delta} \sqrt{\frac{6\ln(6/\delta)}{n}}.$$

Calibrated LLMs Hallucinate

Kalai and Vempala

Introduction

Hallucinations

Mandalina Annountina

nodeling Assumptions

Anti-Concentration Assumptions

A Semantic Notion of Calibration

Main Results

General Lower Bound Instantiating the Lower

Bound Matching Upper Bound:

Matching Upper Bound: Simple LM

Matching Upper Bound: A Simple LM A

- ► Assume A knows the entire space of factoids Y, including unobserved ones. $A(\mathbf{x}_{\text{train}})$ does this:
 - ► Compute set of observed factoids O and set of unobserved factoids U = Y O, and monofact rate $\widehat{\text{MF}}$
 - ► LM distribution g: Generate any factoid $y \in O$ with prob. $g(y) = \frac{1 \widehat{MF}}{|O|}$, and any $y \in U$ with prob. $g(y) = \frac{\widehat{MF}}{|U|}$
- A achieves monofact rate while being calibrated:
 - ▶ Hallucination rate is $g(H) = \frac{\widehat{\mathrm{MF}}}{|U|} \cdot |H \cap U| \leq \widehat{\mathrm{MF}}$
 - ▶ \mathcal{A} is fully calibrated if $\frac{\widehat{\mathrm{MF}}}{|U|} = \frac{1-\widehat{\mathrm{MF}}}{|O|}$ (only one bucket), and $\leq \frac{1}{2}(|p(O)-g(O)|+|p(U)-g(U)|) = |p(U)-g(U)| = |p(U)-\widehat{\mathrm{MF}}| \leq \epsilon$ when there is an O-bucket and a U-bucket

Calibrated LLMs Hallucinate Kalai and Vempala

rtaiai and vompaia

Introduction

Daniero of Document

Modeling Assumptions

Anti-Concentration Assumptions

A Semantic Notion Calibration

General Lower Bound Instantiating the Lower

Matching Upper Bound: A Simple I M

Calibrated LLMs Hallucinate

Kalai and Vempala

Modeling Assumptions Facts and Hallucinations

A Semantic Notion of

Discussion and Conclusions

Main Results General Lower Bound

Instantiating the Lower

Matching Upper Bound: A

Discussion and Conclusions

- ► LLM calibrated-ness implies $\widehat{\mathrm{MF}}$ is the baseline LLM hallucination rate, even when training data is clean / factual
- Main assumption on facts is that they are arbitrary, i.e., not systematic, unlike math. For example:
 - Who-what-where: Say factoids are of the form "X ate Y at Z", e.g. "Edgar ate foie gras at Le Bernardin". Can expect that a high percentage, e.g. 80%, facts repeat only once in data. Thus, hallucination rate > 80%.
 - ▶ Citations: Even never-cited papers repeat in data, so $\widehat{\mathrm{MF}}$ will be small \Longrightarrow hallucinated refs statistically unexplained
- ► Miscalibration quantifies discrepancy between LLM distribution and ground truth. However, our definition is semantic-level ⇒ hard to enforce and even to check
- Real world is much more complex than this model, so much stronger hallucination lower bounds await discovery

Calibrated LLMs Hallucinate

Kalai and Vempala

Introduction

Provious of Regulte

Modeling Assumptions

Anti-Concentration Assumptions

A Semantic Notion Calibration

Main Res

General Lower Bound Instantiating the Lower Bound

Matching Upper Bound Simple LM

