Flying Tourist Problem An Integer Linear Programming Approach

MSc. in Aerospace Engineering
Francisco Madaleno Ferreira dos Santos

27 November 2019

PROTOTYPE IMPLEMENTATION

Flying Tourist Problem
Client Side Application Demonstration

CONTRIBUTIONS

Development of an exact approach to the Flying Tourist Problem using

Integer Linear Programming Solve the problem to optimality

Formulate different models that fit different needs:

- Generalized problem
- Multi-objective variations

Problem Formulation

Prototype noitsinemelaml

Experimental Results

Conclusion and Future Work

LITERATURE REVIEW

The Traveling Salesman Problem (TSP)

Given G = (N,A):

What is the minimum weight Hamiltonian cycle?

LITERATURE REVIEW

TSP Variations

Time Dependent TSP (TDTSP)

- Weight is a function of time
- Each arc is associated with a traveling time

Generalized TSP (MO-TSP)

- Nodes are clusters
- One node per cluster visited

Multi-objective TSP (MO-TSP)

Arcs have more than one weight associated

LITERATURE REVIEW

Optimization Techniques

Incomplete Methods

- Usually stochastic
- Cannot guarantee the quality of the solution found

Heuristic

- Nearest Neighbour
- k-opt

Meta-Heuristic

- Simulated Annealing (SA)
- Ant Colony Optimization
- Genetic Algorithms

Complete Methods

- Exact
- Usually deterministic

Integer Linear Programming (ILP)

- Simplex
- Branch and Cut

PROBLEM FORMULATION

Flying Tourist Problem (FTP)

What is the best set of flights to visit each <u>city</u> exactly once in a specified **time-window**?

E.g. Starting date between 1st and 15th of October from Lisbon

```
{(London),
(Barcelona),
(Rome)} Lisbon - Barcelona - London - Rome - Lisbon
7th - 9th - 12th - 16th
(3,2,4)
days
```

PROBLEM FORMULATION

Generalized Flying Tourist Problem (GFTP)

What is the best set of flights to visit one city only of each <u>cluster</u> exactly once in a specified <u>time-window</u>?

```
E.g:
{(London), {(London, Liverpool), {(London, Liverpool), (Barcelona), (Barcelona), (Rome)} (Rome, Florence, Venice)}
```

When compared to the FTP:

- Better or equally good solution
- Solution space as large or larger

PROBLEM FORMULATION

Multi-objective Variations

What if the tourist want to optimize **both** the cost and the flight duration of the trip?

Multi-Objective FTP (MO-FTP)

Traveling time and cost trade-off

When compared to the FTP:

- Traveling time at most as large
- Cost of the trip generally higher

Multi-Objective GFTP (MO-GFTP)

GFTP capacity to achieve better optimal values

Diminish the cost increase caused by the **MO-FTP**

PROTOTYPE IMPLEMENTATION

System Architecture

PROTOTYPE IMPLEMENTATION

Optimization Module

Data Set construction:

- Departure and Arrival city: Lisbon
- 50 possible intermediate cities
- 1st of October
 5th of December (65 days)

9000 different random requests for each problem with:

- Random number of cities/clusters (between 2 and 10)
- Random stop time at each city (between 2 and 5 days)
- Random starting window date between 1st and 15th of October

Flying Tourist Problem - Computational Analysis

Flying Tourist Problem - Comparison

Comparing with the SA algorithm:

	Method	Entire Set	_
Cost per Flight	SA	62.37	
in €	ILP	60.27 (-3.35%)	
Elapsed Wall	SA	2.46	
Time [s]	ILP	0.70 (-71.80%)	

If the SA solution is used:

CPU time decreased 70.80%

TÉCNICO LISBOA

Flying Tourist Problem Variations

Flying Tourist Problem Variations

CONCLUSION

- Proposed variations of the FTP that fit different needs
- Developed ILP models for the different problems
- Implemented a complete method to solve the 4 different models
- Implemented the work developed in an application prototype

FUTURE WORK

- Integration of more means of transport
- Database integration
- Implement incomplete methods to solve the GFTP, MO-FTP and MO-GFTP
- Explore Multi-objective evolutionary algorithms

Flying Tourist Problem An Integer Linear Programming Approach

MSc. in Aerospace Engineering
Francisco Madaleno Ferreira dos Santos

27 November 2019

