- **8.6 a.** Split binary address into virtual page number and offset; use VPN as index into page table; extract page frame number; concatenate offset to get physical memory address
 - **b.** (i) 1052 = 1024 + 28 maps to VPN 1 in PFN 7, $(7 \times 1024 + 28 = 7196)$
 - (ii) $2221 = 2 \times 1024 + 173$ maps to VPN 2, page fault
 - (iii) $5499 = 5 \times 1024 + 379$ maps to VPN 5 in PFN 0, $(0 \times 1024 + 379 = 379)$
- **8.8** In both the cases, there are 8 page transfers. This implies that increasing the number of page frames does not always reduce the number of page transfers.
- **8.9** A total of fifteen pages are referenced, the hit ratios are:

	N	1	2	3	4	5	6
I	Ratio	0/15	1/15	2/15	7/15	9/15	9/15

8.11 The machine language version of this program, loaded in main memory starting at address 4000, might appear as:

4000	$(R1) \leftarrow ONE$	Establish index register for i
4001	(R1) ← n	Establish n in R2
4002	compare R1, R2	Test i > n
4003	branch greater 4009	
4004	$(R3) \leftarrow B(R1)$	Access B[i] using index register R1
4005	$(R3) \leftarrow (R3) + C(R1)$	Add C[i] using index register R1
4006	$A(R1) \leftarrow (R3)$	Store sum in A[i] using index register R1
4007	$(R1) \leftarrow (R1) + ONE$	Increment i
4008	branch 4002	
6000-6999	storage for A	
7000-7999	storage for B	
8000-8999	storage for C	
9000	storage for ONE	
9001	storage for n	

The reference string generated by this loop is

consisting of over 11,000 references, but involving only five distinct pages.