MOCK EXAM SOLUTIONS

1. a) Write down the formal definition of $\Theta(g(n))$.

[10%]

ANSWER:

$$\Theta(g(n)) = \{f(n) \mid \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that for all } n \geq n_0$$

 $0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}$

No deduction of marks if they forget the inequality " $0 \le \dots$ " or if they forget to say that constants are positive. Half marks if "for all $n \ge n_0$ " is missing.

- b) Simplify the following functions by expressing them in Θ -notation. Give a formal justification for each case, referring to the definition of Θ -notation.
 - (i) $n \cdot (3 + \log n)$

ANSWER:

This is $\Theta(n \log n)$ as for all $n \ge n_0 := 2$ we have $c_1 n \log n \le n \cdot (3 + \log n) \le c_2 n \log n$ for $c_1 := 1$ and $c_2 := 4$.

Marking: deduct [5%] for each mistake (constants or "for all $n \ge n_0$ " missing).

(ii)
$$4n^2 + n - 100$$

ANSWER:

This is $\Theta(n^2)$ as for all $n \ge n_0 := 100$ we have $c_1 n^2 \le 4n^2 + n - 100 \le c_2 n^2$ for $c_1 := 4$ (as then $n - 100 \ge 0$) and $c_2 := 5$ (as $4n^2 + n \le 5n^2$).

Marking: deduct [5%] for each mistake (constants or "for all $n \ge n_0$ " missing).

c) For each of the following statements, decide whether the statement is true or false. Explain your answers.

$$(i) o(n) = O(n) [15\%]$$

ANSWER:

True. Formal or informal explanations are acceptable such as the following.

An informal answer: the set o(n) describes all functions that grow slower than n. Each such function grows at most as fast as n. Hence "f(n) = o(g(n))" implies "f(n) = O(g(n))".

A formal answer: every function f(n) = o(n) has $\lim_{n \to \infty} f(n)/n = 0$. Hence there must exist positive constants c, n_0 such that $f(n)/n \le c$ for all $n \ge n_0$, which implies $f(n) \le cn$ for all $n \ge n_0$.

(ii)
$$\Omega(n^2) = \Theta(n^2)$$
 [15%]

ANSWER:

False. The set $\Omega(n^2)$ describes all functions that grow at least as fast as n^2 . This includes functions with a faster growth, such as n^3 . This is not in $\Theta(n^2)$ as the latter only contains functions that grow proportionally to n^2 .

d) The following algorithm counts the number of zeros within an array $A[1 \dots n]$ of length $n \ge 1$.

COUNT-ZEROS(A)

```
1: x = 0
```

2: **for** i = 1 to A.length **do**

3: **if** A[i] = 0 **then**

4: x = x + 1

5: **return** x

Prove the correctness of COUNT-ZEROS by stating an appropriate loop invariant and showing the three properties: initialisation, maintenance, and termination.

[30%]

ANSWER:

The loop invariant is: at the start of the for loop, x contains the number of zeros in the subarray $A[1], \ldots, A[i-1]$ [10%].

Initialisation: the loop invariant is true as for i=1 the subarray is empty and x=0. [5%]. Maintenance: if the loop invariant is true at iteration i, if A[i]=0 then x is incremented and at the end of the loop, x will be the number of zeros in $A[1],\ldots,A[i]$ [5%]. Otherwise, x is unchanged as the number of zeros in $A[1],\ldots,A[i-1]$ equals the number of zeros in $A[1],\ldots,A[i]$. Incrementing i re-establishes the loop invariant [5%].

Termination: the loop ends when i=n+1. Then the loop invariant states that x is the number of zeros in $A[1],\ldots,A[n]$ [5%].

2. a) Copy the following table to your answer booklet and fill in asymptotic statements that best describe the running time of the given algorithms across inputs of n elements, using appropriate symbols Θ , O, and/or Ω .

Algorithm	running time
InsertionSort	
SELECTIONSORT	
MERGESORT	
QuickSort	
BUBBLESORT	

[25%]

ANSWER:

Each correct line gives [5%]. Where the running time is $\Theta(f(n))$, stating $\Theta(f(n))$ is sufficient; no deduction of points if O(f(n)) and/or $\Omega(f(n))$ are stated in addition to $\Theta(f(n))$.

Algorithm	running time
InsertionSort	$\Omega(n)$ and $O(n^2)$
SELECTIONSORT	$\Theta(n^2)$
MERGESORT	$\Theta(n \log n)$
QuickSort	$\Omega(n\log n)$ and $O(n^2)$
BUBBLESORT	$\Theta(n^2)$

b)

(i) Define the term max-heap property, referring to an array A[1...n].

[10%]

ANSWER:

For all nodes i except for the root, the value of the parent must be no smaller than that of the child: $A[\mathsf{Parent}(i)] \geq A[i]$.

(ii) Does the following array represent a max-heap? Justify your answer.

42	33	15	20	24	18	4	5

[10%]

ANSWER:

No, the element 18 (index 6) is larger than its parent, 15 (index $\lfloor 6/2 \rfloor = 3$). [0%] marks when no justification is given.

Recall that QUICKSORT uses the last element of the input as pivot element. Write down the contents of the following array A[1...n] after the execution of PARTITION(A,1,8).

[20%]

ANSWER:

The answer can be derived by simulating PARTITION. The input is the same as for Exercise Sheet 4, Question 4.1:

A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]	A[8]
4	3	8	2	7	5	1	6
4	3	8	2	7	5	1	6
4	3	8	2	7	5	1	6
4	3	8	2	7	5	1	6
4	3	2	8	7	5	1	6
4	3	2	8	7	5	1	6
4	3	2	5	7	8	1	6
4	3	2	5	1	8	7	6
4	3	2	5	1	6	7	8

So the answer is:

4	3	2	5	1	6	7	8

d) Consider an array $A[1\dots n]$ of n integers in the range 0 to k. Give two algorithms PRE-PROCESS(A,n,k) and COUNT-LESS-OR-EQUAL-ELEMENTS(a) in pseudocode (or Java syntax) such that PREPROCESS preprocesses the input A in time O(n+k). After pre-processing, COUNT-LESS-OR-EQUAL-ELEMENTS(a) must be able to return the number of elements in A which are less or equal to a ($\leq a$) in time O(1), for arbitrary inputs $0 \leq a \leq k$. Explain why your algorithms meet the stated running time bounds.

[35%]

ANSWER:

This task is implicitly solved by COUNTINGSORT, and the idea can be borrowed from there. PREPROCESS creates an array $C[0\dots k]$ initialised with zeros. Then we scan the input array A and for the i-th element we increment C[A[i]]. At the end, C[j] contains the number of elements in A that have value j. Then we compute a running sum to add up the elements less or equal to j. After that, COUNT-LESS-OR-EQUAL-ELEMENTS(a) simply returns C[a].

```
\overline{\text{PREPROCESS}(A, n, k)}
```

```
1: Let C[0...k] be a new array

2: for i = 0 to k do

3: C[i] = 0

4: for j = 1 to A.length do

5: C[A[j]] = C[A[j]] + 1

6: for i = 1 to k do

7: C[i] = C[i] + C[i - 1]
```

COUNT-LESS-OR-EQUAL-ELEMENTS(a)

1: **return** C[a]

The running time of PREPROCESS is $\Theta(n+k)$: the second for loop takes time $\Theta(n)$ and the other two each take time $\Theta(k)$. The running time of COUNT-LESS-OR-EQUAL-ELEMENTS is O(1).

Marking: [25%] (20% + 5%) for correct algorithms in pseudocode/Java as specified, and [10%] (5% + 5%) for analysing runtimes. No deduction if the initialisation of C is not mentioned. Deduct [20%] if at least one of the algorithms does not run in the required time. No marks for incorrect algorithms.

Answers without code (just explaining ideas or drawing a link to COUNTINGSORT) may receive up to [10%] for algorithms and [10%] for analysis.

3. a) Prove by induction that every nonempty binary tree satisfies |V| = |E| + 1.

ANSWER:

Proof by induction on n = |V| for a tree T.

- Base case: For n = 1, T has only a root node, hence |E| = 0.
- Induction step: Suppose |V|=|E|+1 for $|V|\leq n$ (Induction hypothesis). We must prove the claim for |V|=n+1.

There are three subcases.

- 1. The root of T has only a left child. Then this child has n nodes and therefore n-1 edges by the induction hypothesis. Since T adds one single edge from the root to its left child, it has n edges (and n+1 nodes by assumption).
- 2. The case where the root of T has only a right child is symmetric.
- 3. The root of T has two children. Suppose the left subtree has n_L nodes and the right subtree has n_R nodes. Then $n=n_L+n_R$ and it follows that $n_L< n+1$ and $n_R< n+1$. We can therefore apply the induction hypothesis to both subtrees, which yields $e_L=n_L-1$ and $e_R=n_R-1$, writing e_L for the number of edges in the left subtree of T and e_R for the number of edges in its right subtree. Hence, by substitution, $n=e_L+e_R+2=|E|$, and therefore |E|=|V|-1.
- b) Insert the numbers 12, 5, 9, 18, 15, 2, 17, 19 and 13 in that order into a binary search tree, which is initially empty.

ANSWER:

c) Delete the nodes labelled with 15, 58, 55, 48, 18, 10, 5 and 24 in that order from the

following binary search tree. Show the resulting binary search tree.

ANSWER:

4. a) Perform a depth-first search on the directed graph below, visiting nodes in alphabetical order. Write down the timestamps of each node.

ANSWER:

	d	f
а	1	8
b	2	7
С	3	4
d	9	14
е	5	6
f	15	16
g	10	13
h	11	12

b) Write down the strongly connected component graph of the graph from (a).

ANSWER:

Vertices are $\{a,b,e\}$, $\{c\}$, $\{f\}$ and $\{d,g,h\}$. Edges are $(\{a,b,e\},\{c\})$, $(\{f\},\{a,b,e\})$, $(\{f\},\{d,g,h\})$ and $(\{d,g,h\},\{c\})$.

c) With Kruskal's algorithm, compute the minimal spanning tree of the following weighted graph.

ANSWER:

d) Prove that every directed graph, which can be topologically sorted, is acyclic.

ANSWER:

By contradiction, suppose the graph G can be sorted topologically to the linear order $v_1 < v_2 < \cdots < v_n$ and contains a cycle. Let v_i be the lowest index vertex on that cycle and v_j its predecessor on the cycle. On the one hand, (v_j, v_i) is an edge of G. On the other hand, by minimality, i < j. Hence the above sequence cannot be a topological sorting.

END OF QUESTION PAPER