Lec 17 函数极限习题课

17.1 几个基本概念

1. 以零为极限的变量称为无穷小量; 绝对值无限增大的变量称无穷大量. 常数中只有零是 无穷小量,非零无穷小与无穷大具有倒数关系.

例 17.1 $x \to 0$ 时, $\sin x$, $x^m (m > 0)$, $\tan x$, $e^x - 1$, $1 - \cos x$ 都是无穷小量;

 $n \in N^*, n \to \mathbb{N}, n^n, n!, a^n (a > 1), n^A (A > 0), \ln n$ 都是无穷大量.

- 注 请区分, $\lim_{x\to 0} x = 0$ 是函数极限, 而 $x\to 0$ 时 x 是无穷小量. 前者是相等关系, 后者是 趋于 0. 期中考试有很多同学在分母写出了 \lim_{x} 的形式, 这是错误的.
- 2. 若函数 f(x) 在 x_0 处有定义,且 $f(x_0) = \lim_{x \to x_0} f(x)$,则称 f(x) 在 x_0 处连续,若 f(x) 在区间 I 上每一点都连续,则称 f(x) 在 I 上连续. 当 f(x) 在 x_0 处连续时,有 $f(x_0) = f(\lim_{x \to x_0} x) = f(x_0)$ $\lim f(x)$, 即连续函数的极限与函数值可以交换次序.
- 3. 幂 (x^{α}, α) 为常量), 指数 $(a^{x}, a > 0)$, 三角函数 $(\sin x, \cos x, \tan x)$, 对数函数 $(\log_a x, a > 0)$ $0, a \neq 1$),指数函数 (e^x) ,反三角函数 $(\arcsin x, \arccos x, \arctan x)$,双曲函数 $(\sinh x, \cosh x, \tanh x)$ 等函数在其定义域内均连续. 一切基本初等函数, 在其定义域内均连续.

 $\dot{\mathbf{L}}$ 我们常说的常数是一个相对的概念, 需要结合语境去理解. 比如 $a_n = Mn$, M 是一个常数, 因为他与我们在此处关注的 n 是无关的, 但是 a_n 就不是常数. 在幂函数中, 指数 α 是一个常数, 但是 x 是一个变量, 所以 x^{α} 是一个关于 x 的函数, 之后讲求导法则的时候, 需要搞清楚谁是与 x 有关的变量, 谁是常数.

17.2 无穷大的大小

命题 17.1 (常用数列无穷大)

设 a, A, m 为常数, 且 $a > 1, \alpha > 0, m > 0$, 证明: $n^n >> n! >> a^n >> n^\alpha >> (\ln n)^m$, 在 $n \to \infty, n \in \mathbb{N}^*$ 时成立; 其中 $n^n >> n! \Leftrightarrow \lim_{n \to \infty} \frac{n^n}{n!} = +\infty$, 称为 n^n 是 n! 的高阶无穷大.

证明

- 1. $\lim_{n \to \infty} \frac{n^n}{n!} = \lim_{n \to \infty} \frac{1}{n} \cdot \frac{2}{n} \cdots \frac{n}{n} < \lim_{n \to \infty} \frac{1}{n} = 0, \text{ if } n^n >> n!.$ 2. $\lim_{n \to \infty} \frac{a^n}{n!} = \lim_{n \to \infty} \frac{a}{1} \cdot \frac{a}{2} \cdots \frac{a}{[a]+1} \cdots \frac{a}{n} < \frac{a}{1} \cdot \frac{a}{2} \cdots \frac{a}{[a]+1} \cdot \lim_{n \to \infty} \frac{a}{n}, \text{ if } \frac{a}{1} \cdot \frac{a}{2} \cdots \frac{a}{[a]+1} \notin \mathbb{R}$ $= n \text{ for } n \text{ if } n \text{ if$
- 3. 先设 $\alpha \in N^*, a = 1 + \lambda$, 则 $\lambda > 0, a^n = (1 + \lambda)^n > C_n^{\alpha + 1} \lambda^{\alpha + 1}$. 故 $0 > \frac{n^\alpha}{a^n} < \frac{n^\alpha}{C_n^{\alpha + 1} \lambda^{\alpha + 1}} \rightarrow 0$ $0, n \to \infty$.

4. 仅证 m=1 时, 令 $n^{\alpha}=y$, 则 $n\to\infty$ 时, $y\to+\infty$, 且 $\frac{\ln n}{n^{\alpha}}=\frac{1}{\alpha}\frac{\ln y}{y}$. 设 $k\leqslant y\leqslant k+1$, 则 $\frac{k}{k+1} < \frac{\ln y}{y} < \frac{\ln(k+1)}{k}$, it $\lim_{y \to +\infty} \frac{\ln y}{y} = 0$, it $\lim_{n \to \infty} \frac{\ln n}{n^{\alpha}} = 0$.

命题 17.2 (常用函数无穷大)

设 a, A, m 为常数, 且 $a > 1, \alpha > 0, m > 0$, 证明: $x^x >> a^x >> x^\alpha >> (\ln x)^m$, 在 $x \to +\infty, x > 0, x \in R$ 时成立.

证明

2. 设
$$n \le x < n+1$$
, 则 $\frac{n^{\alpha}}{a^{n+1}} < \frac{x^{\alpha}}{a^{x}} < \frac{(n+1)^{\alpha}}{a^{n}}$, 当 $x \to \infty$ 时, 有 $n \to \infty$, 而 $\lim_{n \to \infty} \frac{n^{\alpha}}{a^{n+1}} = 0$, 故 $\lim_{n \to \infty} \frac{x^{\alpha}}{a^{x}} = 0 \Rightarrow \lim_{x \to \infty} \frac{x^{x}}{a^{x}} = +\infty$, 故 $x^{\alpha} >> a^{x}$.

3. 设 $n \le x < n+1$, 则 $\frac{\ln n}{(n+1)^{\alpha}} < \frac{\ln x}{x^{\alpha}} < \frac{\ln(n+1)}{n^{\alpha}}$, 当 $x \to \infty$ 时, 有 $n \to \infty$, 而

例 17.2 证明

1.
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2};$$

$$2. \lim_{x \to 0} \frac{\arcsin x}{x} = 1;$$

3.
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

4.
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

1.
$$\lim_{x \to 0} \frac{x^2}{x} = 2$$
;
2. $\lim_{x \to 0} \frac{\arcsin x}{x} = 1$;
3. $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$;
4. $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$;
5. $\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a, a > 0, a \neq 1$.

6.
$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha, \alpha \neq 0.$$

7.
$$\lim_{x \to 0^+} (\cos \sqrt{x})^{\frac{1}{x}} = \frac{1}{\sqrt{e}}$$
.

8.
$$\lim_{x \to 0} \left(\frac{x^2 + 3x - 5}{x^2 + 6} \right)^{4x} = e^{12}.$$

注 上述例 $1 \sim 6$ 今后可作为公式直接使用, 并可记为: 当 $x \to 0$ 时,

1.
$$\frac{1-\cos x}{x^2} \sim \frac{1}{2}$$
;

2.
$$\arcsin x \sim x$$
;

3.
$$\ln(1+x) \sim x$$
;

4.
$$e^x - 1 \sim x$$
;

5.
$$a^x - 1 \sim \ln a \cdot x$$
;

6.
$$(1+x)^{\alpha} - 1 \sim \alpha \cdot x$$
.

证明

1.
$$1 - \cos x = 2\sin^2\frac{x}{2}$$
, $\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2\sin^2\frac{x}{2}}{x^2} = \lim_{x \to 0} \frac{2}{4} \left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2 = \frac{1}{2}$.

2.
$$\lim_{x\to 0} \frac{\arcsin x}{x} = \lim_{x\to 0} \frac{\arcsin x}{\sin \arcsin x} = \lim_{x\to 0} \frac{\arcsin x}{\arcsin x} = 1.$$

2.
$$\lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{x \to 0} \frac{\arcsin x}{\sin \arcsin x} = \lim_{x \to 0} \frac{\arcsin x}{\arcsin x} = 1.$$
3.
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{1/x} = \ln\lim_{x \to 0} (1+x)^{1/x} = \ln e = 1.$$

4.
$$\Leftrightarrow e^x - 1 = u$$
, $\mathbb{M} \ x \to 0 \ \mathbb{H}$, $u \to 0$, $\mathbb{H} \ x = \ln(1+u)$, $\mathbb{M} \lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{u \to 0} \frac{u}{\ln(1+u)} = \lim_{u \to 0} \frac{1}{\frac{1}{u} \ln(1+u)} = 1$.

5.
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \lim_{x \to 0} \frac{e^{x \ln a} - 1}{x \ln a} \ln a$$
, $\Leftrightarrow u = x \ln a$, $y = x + 0$ $\Rightarrow 0$, $y = x + 0$, $y =$

7.
$$\lim_{x \to 0^{+}} (\cos \sqrt{x})^{\frac{1}{x}} = \lim_{x \to 0^{+}} e^{\frac{1}{x} \ln \cos \sqrt{x}} = \lim_{x \to 0^{+}} \exp\left(\frac{1}{2} \frac{\ln \cos x}{x}\right) = \exp\left(\frac{1}{2} \frac{\ln \cos x}{\cos x - 1} \frac{\cos x - 1}{x}\right) = \exp\left(\frac{1}{2} \cdot 1 \cdot (-1)\right) = \frac{1}{\sqrt{e}}.$$

8.
$$\frac{x^2 + 3x - 5}{x^2 + 6} = 1 + \frac{3x - 11}{x^2 + 6} \to 1 + 0 = 1, \quad \text{if } \lim_{x \to 0} \left(\frac{x^2 + 3x - 5}{x^2 + 6}\right)^{4x} = \lim_{x \to 0} \left(1 + \frac{3x - 11}{x^2 + 6}\right)^{\frac{x^2 + 6}{3x - 11} \cdot \frac{3x - 11}{x^2 + 6} \cdot 4x} = \lim_{x \to 0} \left(\frac{x^2 + 3x - 5}{x^2 + 6}\right)^{4x} = \lim_{x \to 0} \left(1 + \frac{3x - 11}{x^2 + 6}\right)^{\frac{x^2 + 6}{3x - 11} \cdot \frac{3x - 11}{x^2 + 6} \cdot 4x} = \lim_{x \to 0} \left(\frac{x^2 + 3x - 5}{x^2 + 6}\right)^{4x$$

 $\stackrel{x\to 0}{\succeq}$ 其中 7,8 为底数与指数皆为变量,且底数的极限值为 1,指数的极限值为 $+\infty$,这种形式的极 限求解时, 可以尝试取对数, 然后利用对数函数的连续性, 将指数提取出来, 再求极限, 我们称这 种形式的极限为 1[∞] 型不定式.

不定式是相对于 $\alpha(x)^{\beta(x)},\alpha(x),\beta(x)$ 都有非0常数极限而言的,后者很好求极限.若 lim $\alpha(x)=$ α , $\lim_{x\to x_0} \beta(x) = \beta$, 则 $\lim_{x\to x_0} \alpha(x)^{\beta(x)} = \alpha^{\beta}$. 当 α , β 中有 0, $+\infty$ 时, 则需要仿照 7,8 的方法进行求解.

作业 ex1.3:4,9(1)(2),10(1)(2)(4),11(1)(2).