Machine Learning Feature Pooling

Mostafa S. Ibrahim *Teaching, Training and Coaching for more than a decade!*

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / MSc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

© 2023 All rights reserved.

Please do not reproduce or redistribute this work without permission from the author

Summarizing Numbers

- Do you remember ways to aggregate information of array of numbers?
- Mean (Arithmetic, geometric, harmonic)
- Min / Max / Median
- This kind of information summarizing/aggregating is known as feature pooling in ML context

Feature pooling

- When we apply the convolution layer we end up with
 - Another huge dimensions WxH
 - We can't just use that with the loss function
 - We can't keep processing with such dimensions due to computational cost!
 - Extracted features are on very small grid, e.g. 3x3
- Feature pooling can help us tackle these 2 problems
 - Help next layers to reduce the computational cost
 - Help next layers o see bigger view!
- The most common pooling techniques
 - Max Pooling (very common)
 - Average Pooling
- Convolution layers are typically followed by pooling to reduce the size!

Max pooling

- In max pooling, each region of the feature map is divided into non-overlapping sections (usually 2x2 or 3x3), and the maximum value within each section is selected as the representative value for that region
 - This helps in preserving the most **salient features** within each region.
 - Salient features refer to the most distinctive features in the region.
 - Such as edges/corners in images

Max pooling

- Assume a max-pooling of 3x3
 - Then divide to 3x3 blocks and take maximum per block
 - New dimensions W/3, H/3
- There are no learnable parameters!
- Average pooling: just take the average

15	2	3	4	5	6
7	8	9	10	11	12
1	2	3	16	17	18
1	20	21	7	23	4
1 25	20	21 27	7 1	23	4 30

15	18
32	23

Pytorch

- pool = nn.MaxPool2d(kernel_size=2, stride=2)
- Typically we use the kernel size = stride to make them non-overlapping

Beyond DNN

- Pooling is a general technique to aggregate information
- Imagine having K feature vectors each of D features representing some input
 - For example, we have K camera watching an object
- We can concatenate all of them as representation
 - We might call it concatenation pooling
 - Pros: all information is available
 - Cons: huge ⇒ computational cost
- We can pool all of them into a single D features
 - Index by index take the maximum
 - \circ A = {1, 5, 7, 2, 6}
 - \circ B = {6, 9, 1, 1, 8}
 - $\circ \quad \text{Pooling} \Rightarrow \{6, 9, 7, 2, 8\}$

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."