

# Celebrating the Contributions of the M6 Forecasting Competition

Presentation at the M6 Conference



Chris Fry (chrisfry@google.com), 2023-11-07 (12:00 PM EST)

With special thanks to the following contributors:

Ruming Wang (rumingw@google.com), Kashif Yousuf (kyousuf@google.com), Greyson Liu (greysonliu@google.com), Chris Dobronyi (dobronyi@google.com)

# Recommendations to M6 Organizers - 2022

Spryos Makridakis, C. Fry, F. Petropoulos, E. Spiliotis, "The Future of Forecasting Competitions: Design Attributes and Principles", INFORMS Journal on Data Science, Vol. 1, No. 1, April-June 2022, pp. 96-113.

| Theme                                     | What we recommended                                                                                                                                                               |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Replicability                             | Submission of source code or executable that can be rerun on the same or new inputs / datasets.                                                                                   |
| Representativeness                        | Represents real-world challenge(s); similar to problems faced by other forecasters; broad coverage across time series feature space and range of possible external effects.       |
| Robust Evaluation                         | Rolling origin evaluation, covering different times of year; multiple evaluation rounds in a live setup.                                                                          |
| Measuring Decision<br>Impact              | Measure utility of forecasts directly through their impact on decisions, reflected in monetary terms when possible.                                                               |
| Showcase Forecast<br>Value-Added (FVA)    | Demonstrate value of winning solutions against state-of-the-art benchmarks on multiple dimensions including point estimates, uncertainty, computational complexity, and cost.     |
| Enhancing<br>Knowledge                    | Contribute new learnings and insights to the forecasting community.                                                                                                               |
| Open Sharing                              | Encourage open participation and sharing of information, e.g. through code-only competitions requiring model sharing, limit model tweaks, and/or enforce computation time limits. |
| Multiple Challenges (forecasting athlons) | Incorporate multiple challenges into a forecasting competition to enable comprehensive evaluation across multiple skill areas or application areas.                               |

# M6 incorporated the majority of our recommendations

Spryos Makridakis, C. Fry, F. Petropoulos, E. Spiliotis, "The Future of Forecasting Competitions: Design Attributes and Principles", INFORMS Journal on Data Science, Vol. 1, No. 1, April-June 2022, pp. 96-113.

| Theme                                     | What we recommended                                                                                                                                                               | Assessment (M6 "report card")                                                                                                                                                                                         |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Replicability                             | Submission of source code or executable that can be rerun on the same or new inputs / datasets.                                                                                   | F- Not achieved - participants only submit model outputs; forecasts cannot be replicated.                                                                                                                             |
| Representativeness                        | Represents real-world challenge(s); similar to problems faced by other forecasters; broad coverage across time series feature space and range of possible external effects.       | 8+ - Stock price prediction and investment decisions reflect a highly realistic real-world challenge; unlimited external features; rebalancing limited to 1x/month; forecasting not critical to investment challenge. |
| Robust Evaluation                         | Rolling origin evaluation, covering different times of year; multiple evaluation rounds in a live setup.                                                                          | A+ - 4 quarterly evaluations covering a full year; live setup, with each quarter requiring 3 rolling submissions.                                                                                                     |
| Measuring Decision<br>Impact              | Measure utility of forecasts directly through their impact on decisions, reflected in monetary terms when possible.                                                               | A+ - Information ratio metric links contest result directly to decision impact (risk-adjusted financial return)                                                                                                       |
| Showcase Forecast<br>Value-Added (FVA)    | Demonstrate value of winning solutions against state-of-the-art benchmarks on multiple dimensions including point estimates, uncertainty, computational complexity, and cost.     | 8 - Benchmarks used were equal probabilities and equal long positions. No standard forecasting model benchmarks were reported or used for FVA.                                                                        |
| Enhancing<br>Knowledge                    | Contribute new learnings and insights to the forecasting community.                                                                                                               | 8+ - Several innovations (live contest with rolling evaluation; decision impact metric). Non-standard forecasting contest metric.                                                                                     |
| Open Sharing                              | Encourage open participation and sharing of information, e.g. through code-only competitions requiring model sharing, limit model tweaks, and/or enforce computation time limits. | C Submission questionnaire allowed teams to voluntarily share data sources used and methodology; limited discussion on forum                                                                                          |
| Multiple Challenges (forecasting athlons) | Incorporate multiple challenges into a forecasting competition to enable comprehensive evaluation across multiple skill areas or application areas.                               | 8 - Duathlon format incorporated two challenges (forecasting and investment).                                                                                                                                         |

### Major wins of the M6 competition

- 1. Measures a real business outcome in addition to measuring forecasting quality
- 2. Answers questions directly relevant to the finance industry
- 3. Great example of a rolling evaluation setup (more time needed to fully separate luck vs skill?)
- 4. Live forecasting challenge
- 5. Comparison to benchmarks
- 6. Contest results showed the value of linking decisions with uncertainty modeled in forecasts --> risk model / diversification approach
- 7. Reminder of the value of flexibility strategies that took advantage of short positions outperformed strategies limited to long positions only (e.g. the investment benchmark)

## Some learnings (my opinions)

- 1. Low signal to noise ratio shifts challenge from prediction to risk management
  - Difficult to confidently project trend from history
  - High variance estimates require portfolio approach (and a bit of luck)
- 2. Importance of aligning contest structure to real-world challenge
  - Monthly portfolio rebalancing is unrealistic limits flexibility; doesn't consider transaction costs
  - Difficult to draw conclusions with single year of data
- 3. Importance of consistency between forecast and outcome metrics
  - Strong performance on RPS score did not correlate with strong outcomes

#### Performance on RPS score did not correlate with outcomes\*

|                   |                                                                        | RPS          | IR       |
|-------------------|------------------------------------------------------------------------|--------------|----------|
| M6<br>submissions | Scores directly from competition leaderboard**.                        | 0.156 ~ 0.32 | -29 ~ 33 |
| Benchmark         | Equal probability in each quintile. Equal weight among the asset (1%). | 0.16         | -2.7     |

Benchmark (equal probability) strategy achieved a high RPS score, with the highest-performing team only beating it by 2.2%...

...but the benchmark **returned a negative IR.** 

<sup>\*</sup> Reported correlation between RPS and IR was 0.04 overall, and 0.12 for the top 5% highest-performing teams. Maximum correlation observed was 0.7 for top 20% highest-performing teams. Source: Makridakis et al, "The M6 forecasting competition: Bridging the gap between forecasting and investment decisions", Preprint submitted to International Journal of Forecasting

<sup>\*\*</sup> Source: m6competition.com/Leaderboard. Used with permission.

#### CRPS a better metric?

|                   |                                                                                                            | RPS          | IR       | CRPS  |
|-------------------|------------------------------------------------------------------------------------------------------------|--------------|----------|-------|
| M6<br>submissions | Scores directly from competition leaderboard*.                                                             | 0.156 ~ 0.32 | -29 ~ 33 |       |
| Benchmark 1       | Equal probability in each quintile. Equal weight among the asset (1%). (reshuffled last month returns)     | 0.16         | -2.7     | 0.106 |
| Benchmark 2       | Equal probability in each quintile. Equal weight among the asset (1%). (random sample, Uniform[-1.0, 1.0]) | 0.16         | -2.7     | 0.504 |



**Benchmark (equal probability) strategy** achieved a poor CRPS score based on our assessment

Multiple forecasts can generate the Benchmark strategy; most have poor CRPS scores.

<sup>\*</sup> Source: m6competition.com/Leaderboard. Used with permission.

# Optimizing for asset value prediction accuracy drove higher returns in our toy example

|                                 |                                                                                                                 | RPS          | IR       | CRPS  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|----------|-------|
| M6<br>submissions               | Scores directly from competition leaderboard*.                                                                  | 0.156 ~ 0.32 | -29 ~ 33 |       |
| Benchmark 1                     | Equal probability in each quintile. Equal weight among the asset (1%). (reshuffled last month returns)          | 0.16         | -2.7     | 0.106 |
| Benchmark 2                     | Equal probability in each quintile. Equal weight among the asset (1%). (random sample, Uniform[-1.0, 1.0])      | 0.16         | -2.7     | 0.504 |
| Toy model univariate forecast** | Quintile = quintile distribution based on range forecasts for each timeseries.  Portfolio weight ~ P50 forecast | 0.186        | 6.9      | 0.08  |

<sup>\*\*</sup> Recency-weighted linear regression model (half-life = 30 days), with empirically-generated prediction intervals.

<sup>\*</sup> Source: m6competition.com/Leaderboard. Used with permission

# Adjusting for risk further improved performance

|                                                              |                                                                                                                             | RPS          | IR       | CRPS  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------|----------|-------|
| M6<br>submissions                                            | Scores directly from competition leaderboard*.                                                                              | 0.156 ~ 0.32 | -29 ~ 33 |       |
| Benchmark 1                                                  | Equal probability in each quintile. Equal weight among the asset (1%). (reshuffled last month returns)                      | 0.16         | -2.7     | 0.106 |
| Benchmark 2                                                  | Equal probability in each quintile. Equal weight among the asset (1%). (random sample, Uniform[-1.0, 1.0])                  | 0.16         | -2.7     | 0.504 |
| Toy model univariate forecast**                              | Quintile = quintile distribution based on range forecasts for each timeseries.  Portfolio weight ~ P50 forecast             | 0.186        | 6.9      | 0.08  |
| Univariate<br>forecast** with<br>risk-adjusted<br>investment | Quintile = quintile distribution based on range forecasts for each timeseries.  Portfolio weight ~ P50 forecast / sigma*0.5 | 0.186        | 11.5     | 0.08  |

<sup>\*</sup> Source: m6competition.com/Leaderboard. Used with permission.

<sup>\*\*</sup> Recency-weighted linear regression model (half-life = 30 days), with empirically-generated prediction intervals.

# Adjusting for risk further improved performance

|                                                            |                                                                                                                            | RPS             | IR          | CRPS  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-------|
| M6<br>submissions                                          | Scores directly from competition leaderboard*.                                                                             | 0.156 ~<br>0.32 | -29 ~<br>33 |       |
| Benchmark 1                                                | Equal probability in each quintile. Equal weight among the asset (1%). (reshuffled last month returns)                     | 0.16            | -2.7        | 0.106 |
| Benchmark 2                                                | Equal probability in each quintile. Equal weight among the asset (1%). (random sample from Uniform[-1.0, 1.0])             | 0.16            | -2.7        | 0.504 |
| Toy model univariate forecast**                            | Quintile = quintile distribution based on range forecasts for each timeseries.  Portfolio weight ~ P50 forecast            | 0.186           | 6.9         | 0.08  |
| Univariate<br>forecast** w/<br>risk-adjusted<br>investment | Quintile = quintile distribution based on range forecasts for each timeseries. Portfolio weight ~ P50 forecast / sigma*0.5 | 0.186           | 11.5        | 0.08  |



<sup>\*</sup> Source: m6competition.com/Leaderboard. Used with permission.

<sup>\*\*</sup> Recency-weighted linear regression model (half-life = 30 days), with empirically-generated prediction intervals.

# Playing out the game a bit longer...

|                                                            |                                                                                                                            | RPS             | IR          | CRPS  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-------|
| M6<br>submissions                                          | Scores directly from competition leaderboard*.                                                                             | 0.156 ~<br>0.32 | -29 ~<br>33 |       |
| Benchmark 1                                                | Equal probability in each quintile. Equal weight among the asset (1%). (reshuffled last month returns)                     | 0.16            | -2.7        | 0.106 |
| Benchmark 2                                                | Equal probability in each quintile. Equal weight among the asset (1%). (random sample from Uniform[-1.0, 1.0])             | 0.16            | -2.7        | 0.504 |
| Toy model univariate forecast**                            | Quintile = quintile distribution based on range forecasts for each timeseries.  Portfolio weight ~ P50 forecast            | 0.186           | 6.9         | 0.08  |
| Univariate<br>forecast** w/<br>risk-adjusted<br>investment | Quintile = quintile distribution based on range forecasts for each timeseries. Portfolio weight ~ P50 forecast / sigma*0.5 | 0.186           | 11.5        | 0.08  |



<sup>\*</sup> Source: m6competition.com/Leaderboard. Used with permission.

<sup>\*\*</sup> Recency-weighted linear regression model (half-life = 30 days), with empirically-generated prediction intervals.



