

planetmath.org

Math for the people, by the people.

germ space

Canonical name GermSpace

Date of creation 2013-03-22 19:18:20 Last modified on 2013-03-22 19:18:20

Owner joking (16130) Last modified by joking (16130)

Numerical id 4

Author joking (16130) Entry type Definition Classification msc 53B99 Let X, Y be topological spaces and $x \in X$. Consider the set of all continuous functions

$$C(X,Y) = \{f : X \to Y \mid f \text{ is continuous}\}.$$

For any two functions $f, g: X \to Y$ we put

$$f \sim_x g$$

if and only if there exists an open neighbourhood $U \subseteq X$ of x such that

$$f_{|U} = g_{|U}.$$

The corresponding quotient set is called **the germ space** at $x \in X$ and we denote it by $G_x(X,Y)$.

More generally, if X, Y are topological spaces with $x \in X$, then consider the following set:

 $C_x(X,Y) = \{f: U \to Y \mid f \text{ is continuous and } U \text{ is an open neighbourhood of } x\}.$

Again we define a relation on $C_x(X,Y)$. If $f:U\to Y$ and $g:U'\to Y$, then put

$$f \sim_x g$$

if and only if there exists and open neighbourhood $V\subseteq X$ of x such that $V\subseteq U\cap U'$ and

$$f_{|V} = g_{|V}.$$

The corresponding set is called **the generalized germ space** at $x \in X$ and we denote it by $G_x^*(X,Y)$.

Note that if $Y = \mathbb{R}$ or $Y = \mathbb{C}$ (or Y is any topological ring), then both $G_x(X,Y)$ and $G_x^*(X,Y)$ have a well-defined ring structure via pointwise addition and multiplication.