Homework # 2

August 17, 2019

1 Optimization I: Linear Regression

1.1 Single Variable Regression

Analyze the data set "single_variate_optimization.csv" and understand the relationship between the target variable Y and the predictor X

- (1) Calculate the variance, standard deviation of X and Y
- (2) Calculate the covariance, correlation coefficient of X and Y
- (3) Using the LinearRegression from sklearn package in python and build a linear regression model $Y \sim X$, what are β_0 and β_1 ?
- (4) Can you replicate β_1 using the calculation from (1) and (2)? How about β_0 ?

1.2 Multivariate Regression

Analyze the data set "multi_variate_optimization.csv" and understand the relationship between the target variable Y and the predictor Xs

- (1) Using the LinearRegression from sklearn package in python and build a linear regression model $Y \sim X$, what are the β s?
- (2) Replicate the β s using matrix operation. hint: $\hat{\beta} = (X^T X)^{-1} X^T Y$. Make sure you replicate β_0 .

2 Optimization II: Logistic Regression

Analyze the data set "logistic_regression_optimization.csv" and understand the relationship between the target variable Y and the predictor Xs

(1) Using the LogisticRegression from sklearn package in python and build a linear regression model $Y \sim X$, what are the β s? Hint: make sure that you set the regularization parameter to be large e.g. C=1e4. See the code below for your reference

```
from sklearn.linear_model import LogisticRegression
logisticRegr = LogisticRegression(C=1e4)
```

(2) Replicate the β s using Newton-Raphson method. Hint: initialize β s with some random values e.g. 0.5, update β s using the formula below until converge. What is your convergence condition? How are your β s compare to problem (1)

$$\vec{\beta}^{(m+1)} \leftarrow \vec{\beta}^{(m)} + (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{Y} - \hat{\mathbf{Y}})$$

Here,

$$\mathbf{W} = \begin{bmatrix} \hat{y}^1(1 - \hat{y}^1) & & & \\ & \ddots & & \\ & & \hat{y}^n(1 - \hat{y}^n) \end{bmatrix}$$