Logic

Paolo Bettelini

Contents

1	Boole	ean Algebra
2		ssity and sufficiency
		Sufficiency
	2.2 I	Necessity
	2.3 I	Biconditional logical connective
3	Proo	f theory
	3.1 λ	g-ary Boolean function
	3.2	O-ary Boolean function
		Propositional variable
	3.4 I	Propositional formula
	3.5	Fruth assignment
	3.6 I	Language
	3.7	Tautology
	3.8	Satisfiability

1 Boolean Algebra

$$x \lor 0 = x$$

$$x \land 0 = 0$$

$$x \lor 1 = 1$$

$$x \land 1 = x$$

$$x \lor x = x$$

$$x \land x = x$$

$$x \land (x \lor y) = x$$

$$x \lor (x \land y) = x$$

$$x \lor \neg x = 0$$

$$x \lor \neg x = 1$$

$$\neg x \land \neg y = \neg (x \lor y)$$

$$\neg x \lor \neg y = \neg (x \land y)$$

2 Necessity and sufficiency

- 2.1 Sufficiency
- 2.2 Necessity
- 2.3 Biconditional logical connective

A biconditional logical connective (written as iff or xnor) is the relation of equivalence between two statements P and Q. The relation $P \iff Q$ is both a sufficient condition and a necessary condition.

$$P \iff Q \equiv (P \implies Q) \land (P \iff Q)$$

3 Proof theory

3.1 k-ary Boolean function

A k-ary Boolean function is a mapping from $\{T, F\}^k \to \{T, F\}$

3.2 0-ary Boolean function

The 0-ary Boolean function are the verum (\top) and falsum (\bot) connectives. The represent respectively the True value and the False value.

3.3 Propositional variable

A propositional variable is an input boolean variable.

3.4 Propositional formula

A propositional formula is a formula which has a unique truth value given all variables.

3.5 Truth assignment

A truth assignment is a function which maps a set of propositional variables $V = \{p_1, p_2, \dots, p_n\}$ to a boolean value

$$\tau:V\to\{T,F\}$$

A formula A involving the variables $V = \{p_1, p_2, \dots, p_n\}$ defines a k-ary boolean function $f_A(x_1, x_2, \dots, x_n)$ where $x_n = \tau(p_n)$.

3.6 Language

A language L is a set of connectives which may be used to describe an L-formula.

A language L is *complete* iff every k-ary boolean functions can be defined by an L-formula.

3.7 Tautology

A propositional formula A is a tautology $\vDash A$ if its k-ary boolean function f_A is always T.

3.8 Satisfiability

A propositional formula A is satisfiable if f_A is T for some input.