# Binary Search

Giuseppe Persiano

Università di Salerno

Ottobre, 2020

# Cercare un elemento in una Lista

Impieghiamo tempo O(N)Se la lista è **ordinata** riusciamo a farlo in tempo  $O(\log N)$ 

**1** Abbiamo una lista ordinata A di N elementi:  $A[0], \ldots, A[N-1]$ 

- **①** Abbiamo una lista ordinata A di N elementi:  $A[0], \ldots, A[N-1]$
- Vogliamo cercare l'elemento x

- **1** Abbiamo una lista ordinata A di N elementi:  $A[0], \ldots, A[N-1]$
- Vogliamo cercare l'elemento x
  - trovare *i* tale che A[i] = x

- **1** Abbiamo una lista ordinata A di N elementi:  $A[0], \ldots, A[N-1]$
- Vogliamo cercare l'elemento x
  - trovare *i* tale che A[i] = x
    - \* Se A = [3, 5, 8, 9, 14] e x = 8 allora i = 2

- **1** Abbiamo una lista ordinata A di N elementi:  $A[0], \ldots, A[N-1]$
- Vogliamo cercare l'elemento x
  - trovare *i* tale che A[i] = x
    - \* Se A = [3, 5, 8, 9, 14] e x = 8 allora i = 2
  - $\triangleright$  trovare *i* tale che se inseriamo x alla posizione *i*, A resta ordinato.

- **1** Abbiamo una lista ordinata A di N elementi:  $A[0], \ldots, A[N-1]$
- Vogliamo cercare l'elemento x
  - trovare *i* tale che A[i] = x
    - \* Se A = [3, 5, 8, 9, 14] e x = 8 allora i = 2
  - $\triangleright$  trovare *i* tale che se inseriamo x alla posizione *i*, A resta ordinato.
    - \* Se A = [3, 5, 8, 9, 14] e x = 4 allora i = 1

- **4** Abbiamo una lista ordinata A di N elementi:  $A[0], \ldots, A[N-1]$
- Vogliamo cercare l'elemento x
  - trovare *i* tale che A[i] = x
    - \* Se A = [3, 5, 8, 9, 14] e x = 8 allora i = 2
  - $\triangleright$  trovare *i* tale che se inseriamo *x* alla posizione *i*, *A* resta ordinato.
    - \* Se A = [3, 5, 8, 9, 14] e x = 4 allora i = 1
    - \* A.insert(1,4)=[3,4,5,8,9,14]

- **4** Abbiamo una lista ordinata A di N elementi:  $A[0], \ldots, A[N-1]$
- Vogliamo cercare l'elemento x
  - trovare *i* tale che A[i] = x
    - \* Se A = [3, 5, 8, 9, 14] e x = 8 allora i = 2
  - $\triangleright$  trovare *i* tale che se inseriamo *x* alla posizione *i*, *A* resta ordinato.
    - \* Se A = [3, 5, 8, 9, 14] e x = 4 allora i = 1
    - \* A.insert(1,4)=[3,4,5,8,9,14]
- 3 All'inizio so che  $l = 0 \le i \le h = N 1$

- Abbiamo una lista ordinata A di N elementi:  $A[0], \ldots, A[N-1]$
- Vogliamo cercare l'elemento x
  - ▶ trovare *i* tale che A[i] = x

\* Se 
$$A = [3, 5, 8, 9, 14]$$
 e  $x = 8$  allora  $i = 2$ 

- $\triangleright$  trovare *i* tale che se inseriamo *x* alla posizione *i*, *A* resta ordinato.
  - \* Se A = [3, 5, 8, 9, 14] e x = 4 allora i = 1
  - \* A.insert(1,4)=[3,4,5,8,9,14]
- 3 All'inizio so che  $l = 0 \le i \le h = N 1$
- Se l > h, return l

- Abbiamo una lista ordinata A di N elementi:  $A[0], \ldots, A[N-1]$
- Vogliamo cercare l'elemento x
  - ▶ trovare *i* tale che A[i] = x

\* Se 
$$A = [3, 5, 8, 9, 14]$$
 e  $x = 8$  allora  $i = 2$ 

- $\triangleright$  trovare *i* tale che se inseriamo *x* alla posizione *i*, *A* resta ordinato.
  - \* Se A = [3, 5, 8, 9, 14] e x = 4 allora i = 1
  - \* A.insert(1,4)=[3,4,5,8,9,14]
- 3 All'inizio so che  $I = 0 \le i \le h = N 1$
- Se l > h, return l
- **5** Calcolo indice centrale m = (h + I)//2

- Abbiamo una lista ordinata A di N elementi:  $A[0], \ldots, A[N-1]$
- Vogliamo cercare l'elemento x
  - trovare *i* tale che A[i] = x

\* Se 
$$A = [3, 5, 8, 9, 14]$$
 e  $x = 8$  allora  $i = 2$ 

- $\triangleright$  trovare *i* tale che se inseriamo x alla posizione *i*, A resta ordinato.
  - \* Se A = [3, 5, 8, 9, 14] e x = 4 allora i = 1
  - \* A.insert(1,4)=[3,4,5,8,9,14]
- 3 All'inizio so che  $l = 0 \le i \le h = N 1$
- Se l > h, return l
- **5** Calcolo indice centrale m = (h + I)//2
- Tre casi sono possibili

- **1** Abbiamo una lista ordinata A di N elementi:  $A[0], \ldots, A[N-1]$
- Vogliamo cercare l'elemento x
  - ▶ trovare i tale che A[i] = x

\* Se 
$$A = [3, 5, 8, 9, 14]$$
 e  $x = 8$  allora  $i = 2$ 

- trovare i tale che se inseriamo x alla posizione i, A resta ordinato.
  - \* Se A = [3, 5, 8, 9, 14] e x = 4 allora i = 1
  - \* A.insert(1,4)=[3,4,5,8,9,14]
- 3 All'inizio so che  $l = 0 \le i \le h = N 1$
- Se l > h, return l
- **5** Calcolo indice centrale m = (h + I)//2
- Tre casi sono possibili
  - A[m] = x. Return i = m

- **1** Abbiamo una lista ordinata A di N elementi:  $A[0], \ldots, A[N-1]$
- Vogliamo cercare l'elemento x
  - ▶ trovare *i* tale che A[i] = x

\* Se 
$$A = [3, 5, 8, 9, 14]$$
 e  $x = 8$  allora  $i = 2$ 

- $\triangleright$  trovare *i* tale che se inseriamo x alla posizione *i*, A resta ordinato.
  - \* Se A = [3, 5, 8, 9, 14] e x = 4 allora i = 1
  - \* A.insert(1,4)=[3,4,5,8,9,14]
- 3 All'inizio so che  $l = 0 \le i \le h = N 1$
- Se l > h, return l
- **5** Calcolo indice centrale m = (h + I)//2
- Tre casi sono possibili
  - $\triangleright$  A[m] = x. Return i = m
  - A[m] < x. Allora so che  $1 \le i \le h = m-1$

- **4** Abbiamo una lista ordinata A di N elementi:  $A[0], \ldots, A[N-1]$
- Vogliamo cercare l'elemento x
  - trovare *i* tale che A[i] = x

\* Se 
$$A = [3, 5, 8, 9, 14]$$
 e  $x = 8$  allora  $i = 2$ 

- trovare i tale che se inseriamo x alla posizione i, A resta ordinato.
  - \* Se A = [3, 5, 8, 9, 14] e x = 4 allora i = 1
  - \* A.insert(1,4)=[3,4,5,8,9,14]
- 3 All'inizio so che  $l = 0 \le i \le h = N 1$
- Se l > h, return l
- **5** Calcolo indice centrale m = (h + I)//2
- Tre casi sono possibili
  - A[m] = x. Return i = m
  - A[m] < x. Allora so che  $l \le i \le h = m-1$
  - A[m] > x. Allora so che  $I = m + 1 \le i \le h$

- **4** Abbiamo una lista ordinata A di N elementi:  $A[0], \ldots, A[N-1]$
- Vogliamo cercare l'elemento x
  - trovare *i* tale che A[i] = x

\* Se 
$$A = [3, 5, 8, 9, 14]$$
 e  $x = 8$  allora  $i = 2$ 

- trovare i tale che se inseriamo x alla posizione i, A resta ordinato.
  - \* Se A = [3, 5, 8, 9, 14] e x = 4 allora i = 1
  - \* A.insert(1,4)=[3,4,5,8,9,14]
- 3 All'inizio so che  $l = 0 \le i \le h = N 1$
- Se l > h, return l
- **5** Calcolo indice centrale m = (h + I)//2
- Tre casi sono possibili
  - A[m] = x. Return i = m
  - A[m] < x. Allora so che  $l \le i \le h = m-1$
  - A[m] > x. Allora so che  $I = m + 1 \le i \le h$
- Torna al passo 4

x = 12



Cerchiamo x tra l'indice l = 0 e l'indice h = 8

x = 12



Cerchiamo 
$$x$$
 tra l'indice  $I=0$  e l'indice  $h=8$   $m=4$  e  $A[m]>x$ 

x = 12



Cerchiamo 
$$x$$
 tra l'indice  $l=0$  e l'indice  $h=3$  
$$m=1 \text{ e } A[m]=x$$

# Complessità di Ricerca Binaria

• Ad ogni passo, l'intervallo si dimezza

# Complessità di Ricerca Binaria

• Ad ogni passo, l'intervallo si dimezza

• Ci fermiamo quando l'intervallo ha solo I

# Complessità di Ricerca Binaria

• Ad ogni passo, l'intervallo si dimezza

• Ci fermiamo quando l'intervallo ha solo I

Al massimo O(log N) passi