Лекция 2

Первое и второе достаточные условия экстремума

Будем предполагать, что функция y = f(x) непрерывна в окрестности U точки x_0 и дифференцируема в этой окрестности, кроме, быть может, самой точки x_0 .

Определение. Точка x_0 называется *точкой локального минимума (максимума)* функции y = f(x), если существует такая окрестность точки x_0 , для каждой точки $x \neq x_0$ которой выполняется неравенство $f(x) > f(x_0)$ ($f(x) < f(x_0)$).

Определение. Внутренние точки области определения функции y = f(x), в которых $f'(x_0) = 0$, называются *стационарными точками* этой функции.

Определение. Внутренние точки области определения функции y = f(x), в которых $f'(x_0) = 0$ или $f'(x_0)$ не существует, называются *критическими точками* этой функции.

Необходимое условие экстремума. Если x_0 – точка (локального) экстремума функции y = f(x), то $f'(x_0) = 0$ или $f'(x_0)$ не существует.

Теорема (первое достаточное условие экстремума). Если f'(x) > 0 при $x < x_0$ и f'(x) < 0 при $x > x_0$, то x_0 является точкой локального максимума. Если f'(x) < 0 при $x < x_0$ и f'(x) > 0 при $x > x_0$, то x_0 является точкой локального минимума.

◀Доказательство. Проверим первое утверждение. По теореме Лагранжа $f(x)-f(x_0)=f'(c)(x-x_0)$, где точка c расположена между x_0 и x. Если $x>x_0$, то $c>x_0$ и f'(c)<0. Следовательно, $f(x)-f(x_0)<0$. Если $x<x_0$, то $c<x_0$ и f'(c)>0. Следовательно, снова $f(x)-f(x_0)<0$. Таким образом, в точке x_0 достигается локальный максимум. Второе утверждение проверяется аналогично. ▶

Пример применения теоремы.

$$y = \sqrt[3]{(x+1)^2} + \sqrt[3]{(x-1)^2}$$
, или $y = (x+1)^{2/3} + (x-1)^{2/3}$.

Найдем первую производную функции и приравняем ее к нулю:

$$y' = \frac{2}{3}(x+1)^{-1/3} + \frac{2}{3}(x-1)^{-1/3} = \frac{2}{3}\left[\frac{1}{\sqrt[3]{x+1}} + \frac{1}{\sqrt[3]{x-1}}\right] = \frac{2}{3}\frac{\sqrt[3]{x-1} + \sqrt[3]{x+1}}{\sqrt[3]{x-1} \cdot \sqrt[3]{x+1}}.$$

y'=0, следовательно, $\sqrt[3]{x-1}+\sqrt[3]{x+1}=0 \Rightarrow x=0$. Кроме того, производная не существует в точках ± 1 . Расставив знаки первой производной на промежутках $(-\infty,-1),(-1,0),(0,1),(1,+\infty)$, находим, что функция убывает на интервале $(-\infty,-1)$, возрастает на интервале (-1,0), убывает на интервале (0,1), возрастает на интервале $(1,+\infty)$. Точки $x=\pm 1$ являются точками локального минимума, точка x=0 является точкой локального максимума.

Теорема (второе достаточное условие экстремума). Если $f'(x_0) = 0$ и $f''(x_0) > 0$, то x_0 является точкой локального минимума. Если $f'(x_0) = 0$ и $f''(x_0) < 0$, то x_0 является точкой локального максимума.

 \blacktriangleleft Доказательство. Существование второй производной функции в точке x_0 означает существование первой производной функции в некоторой окрестности точки x_0 и тем более непрерывность функции в этой окрестности. По определению

$$f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0}.$$

Если $f''(x_0) > 0$, то найдется такая окрестность $U(x_0)$ точки x_0 , что $\frac{f'(x) - f'(x_0)}{x - x_0} > 0 \ \forall x \in U(x_0)$. Поскольку $f'(x_0) = 0$, то $\frac{f'(x)}{x - x_0} > 0 \ \forall x \in U(x_0)$.

Если $x > x_0$, то имеем f'(x) > 0. Если $x < x_0$, то имеем f'(x) < 0. По первому достаточному условию экстремума в точке x_0 достигается локальный минимум. Второе утверждение теоремы проверяется аналогично.

Пример применения теоремы.

 $y = x^3 - x + 1$, $y' = 3x^2 - 1$, y'' = 6x. Найдем стационарные точки из условия y' = 0,

ИЛИ

$$3x^2 - 1 = 0$$
. Получаем $x_1 = -\frac{1}{\sqrt{3}}, x_2 = \frac{1}{\sqrt{3}}$. Вычисляем

$$y''(x_1) = 6\left(-\frac{1}{\sqrt{3}}\right) = -\frac{6}{\sqrt{3}} < 0,$$
 $y''(x_2) = 6\left(\frac{1}{\sqrt{3}}\right) = \frac{6}{\sqrt{3}} > 0.$ Следовательно,

$$y''(x_2) = 6\left(\frac{1}{\sqrt{3}}\right) = \frac{6}{\sqrt{3}} > 0.$$

$$x_1 = -\frac{1}{\sqrt{3}}$$
 — точка локального максимума, $x_2 = \frac{1}{\sqrt{3}}$ — точка локального минимума.

Замечание. Если $f'(x_0) = 0$ и $f''(x_0) = 0$, то в точке x_0 может достигаться локальный экстремум, а может и не достигаться.

Пример. $y = x^4$, $y' = 4x^3$, $y'' = 12x^2$, y'(0) = 0, y''(0) = 0, $x_0 = 0$ — точка локального минимума.

Пример. $y = x^3$, $y' = 3x^2$, y'' = 6x, y'(0) = 0, y''(0) = 0точкой локального экстремума.

Правило нахождения наибольшего и наименьшего значения функции на отрезке

Пусть функция y = f(x) непрерывна на отрезке [a,b]. По второй теореме Вейерштрасса на отрезке [a,b] найдутся точки, в которых функция принимает свое наибольшее значение и свое наименьшее значение: $M = \max_{x \in [a,b]} f(x) = f(c_1)$, $m = \min_{x \in [a,b]} f(x) = f(c_2)$. Точка c_1 может совпадать с концом отрезка, либо лежать на интервале (a,b). В последнем случае c_1 является точкой локального максимума и, следовательно, критической точкой. Аналогично, точка c_2 может совпадать с концом отрезка, либо лежать на интервале (a,b). В последнем случае c_2 является точкой локального минимума и, следовательно, критической точкой.

Предположим, что функция y = f(x) имеет конечное число критических точек на интервале (a,b). Это означает, что функция не дифференцируема лишь в конечном числе точек и число стационарных точек также конечно. Тогда можно сформулировать следующее *правило нахождения наибольшего и наименьшего* значения функции на отрезке:

- 1) найти производную функции f'(x);
- 2) найти критические точки $x_1, x_2, ..., x_n$ функции f(x), лежащие на интервале (a,b);
- 3) найти значения $f(x_1), f(x_2), ..., f(x_n)$ и значения f(a), f(b);
- 4) из всех найденных значений выбрать наибольшее и наименьшее:

$$M = \max \{ f(x_1), f(x_2), ..., f(x_n), f(a), f(b) \},$$

$$m = \min \{ f(x_1), f(x_2), ..., f(x_n), f(a), f(b) \}.$$

Пример. $y = x^3 - x + 1$. Найти наибольшее и наименьшее значения функции на отрезке [0,2].

функции в трех точках:
$$y(0) = 1$$
, $y(2) = 7$, $y\left(\frac{1}{\sqrt{3}}\right) = 1 - \frac{2}{3\sqrt{3}}$. Таким образом, $M = 7$, $m = 1 - \frac{2}{3\sqrt{3}}$.

Направление выпуклости графика функции. Точки перегиба

Определение. График дифференцируемой функции f(x) называется *выпуклым вниз* (*вверх*) на интервале (a,b), если его дуга y = f(x), расположена выше (ниже) любой касательной к этой дуге на интервале (a,b).

На рисунке график функции y = f(x) является выпуклым вниз на интервале (a, x_0) и выпуклым вверх на интервале (x_0, b) .

Запишем уравнение касательной к графику функции в точке $(x_0, f(x_0))$:

$$Y - f(x_0) = f'(x_0)(x - x_0)$$
, или $Y = f(x_0) + f'(x_0)(x - x_0)$.

Пусть график функции y = f(x) является выпуклым вниз на интервале (a,b). Это означает, что f(x) > Y, или $f(x) > f(x_0) + f'(x_0)(x - x_0)$, $\forall x \in (a,b), x \neq x_0$.

Пусть график функции y = f(x) является выпуклым вверх на интервале (a,b). Это означает, что f(x) < Y, или $f(x) < f(x_0) + f'(x_0)(x - x_0)$, $\forall x \in (a,b), x \neq x_0$.

Теорема (необходимое и достаточное условие выпуклости вниз (вверх) графика функции). График функции y = f(x) является выпуклым вниз (вверх) на интервале (a,b) тогда и только тогда, когда производная f'(x) возрастает (убывает) на интервале (a,b).

◄Доказательство. Пусть $x_0 \in (a,b)$. Запишем уравнение касательной к графику функции в точке $(x_0, f(x_0))$: $Y = f(x_0) + f'(x_0)(x - x_0)$. Предположим, что f'(x) возрастает на интервале (a,b). Рассмотрим разность

$$y - Y = f(x) - f'(x_0) - f'(x_0)(x - x_0) = f'(c)(x - x_0) - f'(x_0)(x - x_0) =$$

$$= (f'(c) - f'(x_0))(x - x_0), \text{ точка } c \text{ лежит между } x \text{ и } x_0.$$

Здесь мы применили теорему Лагранжа. Если $x < x_0$, то $c \in (x, x_0)$ и $f'(c) < f'(x_0)$. Следовательно, y - Y > 0. Если $x > x_0$, то $c \in (x_0, x)$ и $f'(c) > f'(x_0)$. Следовательно, снова y - Y > 0. Значит, график функции является выпуклым вниз на интервале (a,b).

Предположим теперь, что график функции является выпуклым вниз на интервале (a,b). Возьмем точки $a < x_1 < x_2 < b$. Построим касательные в точках $(x_1, f(x_1))$ и $(x_2, f(x_2))$:

$$Y_1 = f(x_1) + f'(x_1)(x - x_1)$$
 и $Y_2 = f(x_2) + f'(x_2)(x - x_2)$.

В силу выпуклости вниз $f(x)-Y_1>0$, $x\neq x_1$. В частности, $f(x_2)-Y_1>0$, т.е. $f(x_2)>f(x_1)+f'(x_1)(x_2-x_1)$. Аналогично, $f(x)-Y_2>0$, $x\neq x_2$, $f(x_1)-Y_2>0$, т.е. $f(x_1)>f(x_2)+f'(x_2)(x_1-x_2)$. Получаем неравенство

$$f'(x_1) < \frac{f(x_2) - f(x_1)}{x_2 - x_1} < f'(x_2),$$

из которого следует, что производная f'(x) возрастает на интервале (a,b).

Теорема (достаточное условие выпуклости вниз (вверх) графика функции). Если f''(x) > 0 (f''(x) < 0) на интервале (a,b), то график функции y = f(x) является выпуклым вниз (вверх) на этом интервале.

◄Доказательство. Если f''(x) > 0 на интервале (a,b), то f'(x) возрастает на интервале (a,b). По теореме 1 график функции y = f(x) является выпуклым вниз на интервале (a,b).▶

Определение. Точка $(x_0, f(x_0))$ графика непрерывной функции y = f(x), при переходе через которую меняется направление выпуклости, называется *точкой перегиба*.

Теорема (необходимое условие точки перегиба). Если (x_0, y_0) — точка перегиба графика функции y = f(x), то $f''(x_0) = 0$ или $f''(x_0)$ не существует.

∢Доказательство. Предположим для определенности, что график функции y = f(x) является выпуклым вниз на интервале (a, x_0) и выпуклым вверх на интервале (x_0, b) . По теореме 1 производная f'(x) возрастает на интервале (a, x_0) и убывает на интервале (x_0, b) . Следовательно, x_0 является точкой локального максимума для f'(x). В силу необходимого условия локального экстремума $f''(x_0) = 0$ или $f''(x_0)$ не существует. ▶

Теорема (достаточное условие точки перегиба графика непрерывной функции). Пусть $f''(x_0) = 0$ или $f''(x_0)$ не существует. Если при переходе через точку x_0 вторая производная меняет знак, то $(x_0, f(x_0))$ – точка перегиба.

◄Доказательство. Предположим, что f''(x) > 0 на интервале (a, x_0) и f''(x) < 0 на интервале (x_0, b) . По достаточному условию выпуклости вниз график функции y = f(x) является выпуклым вниз на интервале (a, x_0) и график функции y = f(x) является выпуклым вверх на интервале (x_0, b) . Следовательно, $(x_0, f(x_0))$ — точка перегиба. ▶

Пример. Найти интервалы выпуклости вниз (вверх), а также точки перегиба кривой Гаусса: $y = e^{-x^2}$.

■Имеем $y' = -2xe^{-x^2}$ и $y'' = \left(4x^2 - 2\right)e^{-x^2}$. Вторая производная обращается в нуль в точках $x_{1,2} = \pm \frac{1}{\sqrt{2}}$. Эти точки разбивают ось x на три интервала $\left(-\infty, -\frac{1}{\sqrt{2}}\right)$

$$\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, +\infty\right)$$
. Знаки y'' соответственно будут "+", "–", "+". Поэтому на первом и третьем интервалах график выпуклый вниз, а на втором — вверх. Точки $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

$$\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{e}}\right), \left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{e}}\right)$$
 – точки перегиба.

Заметим, что ввиду симметрии кривой Гаусса относительно оси y исследование направления выпуклости этой кривой достаточно провести лишь на полуоси $(0,+\infty)$

