COMP30120 Tutorial

Ensembles

Derek Greene

School of Computer Science and Informatics Autumn 2015

Tutorial Q1(a)

- Q. Bagging (bootstrap aggregation) has a mechanism for achieving diversity for ensemble classifiers. Explain how it works.
- 1. Randomly sample from training data with replacement.
- 2. Apply a classifier to each sample independently.
- 3. Combine the outputs of the classifiers (e.g. majority voting).

Tutorial Q1(b)

Q. In Weka, load the *Wine* data set using the ARFF file provided, and evaluate a decision tree classifier (J48) using 10-fold cross-validation. What percentage of instances are correctly classified?

Tutorial Q1(c)

- Q. Apply ensemble classification using bagging to achieve diversity and with a decision tree classifier. What percentage of instances are now correctly classified with an ensemble of size 10?
- 1. Using Weka, click on the Classify tab.
- 2. Click *Choose*, select method *classifiers->meta->Bagging*.
- 3. Click *Bagging* in the box to the right. The configuration interface of the method appears.
- 4. Click Choose, select J48.
- 5. Set the *numlterations* to 10 (default).
- 6. Click OK button.
- 7. Click *Start* button to build the ensemble.

Tutorial Q1(c)

Improvement: 93.82% → 94.38%

Q. Repeat (c), but increase the ensemble size to 100, 200, then 300 classifiers. What level of improvement does this provide, in terms of percentage of instances correctly classified?

Ensemble Size	% Correct	% Incorrect
10	94.38	5.62
100	95.51	4.49
200	96.63	3.37
300	96.63	3.37

Tutorial Q1(e)

Q. Why does the level of improvement in accuracy often "level off" after an ensemble has been increased to a certain size?

Ensemble Size	% Correct	% Incorrect
10	94.38	5.62
100	95.51	4.49
200	96.63	3.37
300	96.63	3.37
400	96.07	3.93
500	96.07	3.93
600	96.07	3.93
700	96.07	3.93

➡ Eventually, new ensemble members will have prediction patterns collinear with existing members. No new diversity is added, so ensemble accuracy will plateau.

Tutorial Q2(a)

- Q. Explain what differentiates the ensemble members in a boosting classifier ensemble.
- → Boosting: Train a series of classifiers such that later classifiers are trained to better predict on examples that earlier ones perform poorly on.
- → Focus on previous errors when building next ensemble member by adjusting weights for all examples.
- → This leads to both diversity (disagreement) between the base classifiers and increase in overall ensemble accuracy.

Tutorial Q2(b)

Q. In Weka, load the *Glass* data set using the ARFF file provided, and evaluate a decision tree classifier (J48) using 10-fold cross-validation. What percentage of instances are correctly classified?

Tutorial Q2(c)

- Q. Apply bagging with a decision tree classifier for an ensemble size of 100. What is the improvement over a single tree?
- 1. Using Weka, click on the Classify tab.
- 2. Click Choose, select method classifiers->meta->Bagging.
- 3. Click *Bagging* in the box to the right. The configuration interface of the method appears.
- 4. Click Choose, select J48.
- 5. Set the *numlterations* to 100.
- 6. Click OK button.
- 7. Click *Start* button to build the ensemble.

Tutorial Q2(c)

- Q. Now apply *boosting* with a decision tree classifier for an ensemble size of 100. How does it compare to the results from (c)? How do you explain this difference?
- 1. Using Weka, click on the Classify tab.
- 2. Click Choose, select method classifiers->meta->AdaBoostM1.
- 3. Click *AdaBoostM1* in the box to the right. The configuration interface of the method appears.
- 4. Click Choose, select J48.
- 5. Set the numlterations to 100.
- 6. Click OK button.
- 7. Click *Start* button to build the ensemble.

 Boosting adds diversity to the ensemble, while also improving accuracy on the difficult examples.

- Q.Applying bagging to a "stable" classifier is generally not a good idea. Why is this?
- If a classification algorithm is "unstable", small changes in the training set lead to larger changes in the model built on the data.
 - → Ensemble is more diverse.
 - e.g. bagging on decision trees, neural networks.
- If a classification algorithm is "stable", small changes in the training set only lead to small changes in the model.
 - →Little diversity in the ensemble, so little improvement in accuracy.
 - e.g. bagging on k-NN classifiers

- Q. Explain how diversity is generated using a random subspacing classifier ensemble.
- 1. A subset of features is randomly selected without replacement.
- 2. Train a classifier using only selected features to represent training data.
- 3. Combine outputs of many classifiers trained on different subsets.

Q. In Weka, load the *Glass* data set. Evaluate a k-NN classifier with k=5 neighbours using 10-fold cross-validation. What percentage of instances are correctly classified?

Q. Apply bagging with with a k-NN classifier (k=5) for an ensemble size of 100. What is the improvement?

- 1. Using Weka, click on the Classify tab.
- 2. Click *Choose*, select method *classifiers->meta->Bagging*.
- 3. Click *Bagging* in the box to the right. The configuration interface of the method appears.
- 4. Click Choose, select IBk.
- 5. Click *IBk*. In the configuration window, set *KNN* to 5. Close window.
- 6. Set the *numlterations* to 100.
- 7. Click OK button.
- 8. Click Start button to build the ensemble.

OK

Improvement: 67.76% → 68.22%

- Q. Now apply random subspacing with a k-NN classifier (k=5) for an ensemble size of 100. How does it compare to the results from (d)? How do you explain this difference?
- 1. Using Weka, click on the Classify tab.
- 2. Click Choose, select method classifiers->meta->RandomSubSpace.
- 3. Click *RandomSubSpace* in the box to the right. The configuration interface of the method appears.
- 4. Click Choose, select IBk.
- 5. Click *IBk*. In the configuration window, set *KNN* to 5. Close window.
- 6. Set the *numlterations* to 100.
- 7. Click OK button.
- 8. Click Start button to build the ensemble.

- Bagging is ineffective using a stable classifier (k-NN).
- Random subspacing adds more instability into the classifier (diversity)
 ⇒ different features used when calculating distances.

