$11a_{148} \ (K11a_{148})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 35u^{24} + 168u^{23} + \dots + 2b - 32, \ -27u^{24} - 155u^{23} + \dots + 2a + 101, \ u^{25} + 6u^{24} + \dots + 2u - 4 \rangle \\ I_2^u &= \langle 2016599941u^{10}a^3 - 15792956111u^{10}a^2 + \dots + 42968527616a + 47798397673, \\ & 2u^{10}a^3 + 5u^{10}a^2 + \dots - 11a - 4, \ u^{11} - u^{10} + 2u^9 - u^8 + 4u^7 - 2u^6 + 4u^5 - u^4 + 3u^3 + u^2 + 1 \rangle \\ I_3^u &= \langle -u^{11} + u^{10} - 3u^9 + u^8 - 6u^7 + 2u^6 - 9u^5 + 2u^4 - 7u^3 + b - 4u, \\ & u^{11} - 2u^{10} + 4u^9 - 4u^8 + 7u^7 - 8u^6 + 11u^5 - 11u^4 + 9u^3 - 7u^2 + a + 4u - 4, \\ & u^{12} - u^{11} + 3u^{10} - 2u^9 + 6u^8 - 4u^7 + 9u^6 - 5u^5 + 8u^4 - 3u^3 + 5u^2 - u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 81 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 35u^{24} + 168u^{23} + \dots + 2b - 32, \ -27u^{24} - 155u^{23} + \dots + 2a + 101, \ u^{25} + 6u^{24} + \dots + 2u - 4 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{27}{2}u^{24} + \frac{155}{2}u^{23} + \dots + 39u - \frac{101}{2} \\ -\frac{35}{2}u^{24} - 84u^{23} + \dots + \frac{53}{2}u + 16 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{7}{2}u^{24} + \frac{37}{2}u^{23} + \dots + 7u - \frac{21}{2} \\ -\frac{9}{2}u^{24} - 17u^{23} + \dots + \frac{39}{2}u - 6 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{3}{4}u^{24} - u^{23} + \dots + \frac{17}{4}u - 2 \\ -\frac{5}{2}u^{24} - 16u^{23} + \dots + \frac{3}{2}u - \frac{5}{2}u + 11 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{24} - \frac{7}{2}u^{23} + \dots + \frac{3}{2}u - \frac{5}{2}u + 11 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{17}{4}u^{24} - 24u^{23} + \dots + \frac{37}{2}u - 1 \\ \frac{9}{2}u^{24} + 21u^{23} + \dots - \frac{37}{2}u + 16 \\ \frac{9}{2}u^{24} + 21u^{23} + \dots - \frac{27}{2}u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{17}{4}u^{24} - 24u^{23} + \dots - \frac{37}{2}u + 16 \\ \frac{9}{2}u^{24} + 21u^{23} + \dots - \frac{27}{2}u - 1 \end{pmatrix}$$

(ii) Obstruction class =-1

(iii) Cusp Shapes

$$= -15u^{24} - 91u^{23} - 314u^{22} - 764u^{21} - 1477u^{20} - 2371u^{19} - 3183u^{18} - 3544u^{17} - 3125u^{16} - 1943u^{15} - 107u^{14} + 1758u^{13} + 3237u^{12} + 3576u^{11} + 3208u^{10} + 1906u^{9} + 604u^{8} - 914u^{7} - 1457u^{6} - 1716u^{5} - 1155u^{4} - 780u^{3} - 197u^{2} - 64u + 58$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{25} - 6u^{24} + \dots + 2u + 4$
c_2, c_6	$u^{25} + 8u^{24} + \dots + 92u - 16$
c_3, c_4, c_8 c_{10}	$u^{25} + 11u^{23} + \dots + u + 1$
c_7	$u^{25} + 25u^{24} + \dots + 22528u + 2048$
c_9, c_{11}	$u^{25} + 2u^{24} + \dots - 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{25} + 8y^{24} + \dots + 92y - 16$
c_2, c_6	$y^{25} + 20y^{24} + \dots + 34416y - 256$
c_3, c_4, c_8 c_{10}	$y^{25} + 22y^{24} + \dots - y - 1$
c_7	$y^{25} + 5y^{24} + \dots - 6291456y - 4194304$
c_9, c_{11}	$y^{25} + 10y^{24} + \dots + y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.547785 + 0.829347I		
a = -0.132188 + 1.028140I	-1.27014 + 2.16528I	-1.04869 - 7.02425I
b = 0.342369 - 0.476494I		
u = 0.547785 - 0.829347I		
a = -0.132188 - 1.028140I	-1.27014 - 2.16528I	-1.04869 + 7.02425I
b = 0.342369 + 0.476494I		
u = 0.909758 + 0.111933I		
a = 0.448280 + 0.761789I	7.60221 - 5.64749I	1.55411 + 4.80712I
b = -0.191053 - 0.377973I		
u = 0.909758 - 0.111933I		
a = 0.448280 - 0.761789I	7.60221 + 5.64749I	1.55411 - 4.80712I
b = -0.191053 + 0.377973I		
u = 0.172465 + 0.850743I		
a = 1.05588 + 0.98070I	-2.99666 + 1.65679I	-15.0147 - 0.6856I
b = -0.068333 - 0.860826I		
u = 0.172465 - 0.850743I		
a = 1.05588 - 0.98070I	-2.99666 - 1.65679I	-15.0147 + 0.6856I
b = -0.068333 + 0.860826I		
u = -0.772738 + 0.848455I		
a = -1.04991 + 1.28098I	2.58604 - 0.70386I	-5.85928 - 0.49941I
b = 2.14935 + 0.25094I		
u = -0.772738 - 0.848455I		
a = -1.04991 - 1.28098I	2.58604 + 0.70386I	-5.85928 + 0.49941I
b = 2.14935 - 0.25094I		
u = -0.261992 + 0.786193I		
a = -0.562785 - 0.125344I	-0.450467 - 1.265120I	-5.40648 + 4.55979I
b = 0.120830 + 0.426313I		
u = -0.261992 - 0.786193I		
a = -0.562785 + 0.125344I	-0.450467 + 1.265120I	-5.40648 - 4.55979I
b = 0.120830 - 0.426313I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.387681 + 1.123210I		
a = -0.918133 - 0.226616I	4.17221 + 10.11180I	-4.52201 - 8.50269I
b = 0.438533 + 0.451507I		
u = 0.387681 - 1.123210I		
a = -0.918133 + 0.226616I	4.17221 - 10.11180I	-4.52201 + 8.50269I
b = 0.438533 - 0.451507I		
u = -0.764005 + 0.915174I		
a = 0.34371 - 1.87642I	2.38356 - 5.10130I	-6.46922 + 5.59973I
b = -2.17540 + 1.02852I		
u = -0.764005 - 0.915174I		
a = 0.34371 + 1.87642I	2.38356 + 5.10130I	-6.46922 - 5.59973I
b = -2.17540 - 1.02852I		
u = -0.928755 + 0.776951I		
a = 0.99963 - 1.17470I	13.0505 + 9.3478I	-0.12461 - 3.78791I
b = -2.38197 - 0.23867I		
u = -0.928755 - 0.776951I		
a = 0.99963 + 1.17470I	13.0505 - 9.3478I	-0.12461 + 3.78791I
b = -2.38197 + 0.23867I		
u = -0.993283 + 0.737833I		
a = -0.375273 + 0.709529I	11.57130 - 0.60521I	2.81259 + 0.07964I
b = 1.332200 - 0.192203I		
u = -0.993283 - 0.737833I		
a = -0.375273 - 0.709529I	11.57130 + 0.60521I	2.81259 - 0.07964I
b = 1.332200 + 0.192203I		
u = 0.205874 + 1.279220I		
a = 0.297105 - 0.434123I	2.70932 - 1.76563I	1.67735 + 6.00861I
b = -0.360870 + 0.141760I		
u = 0.205874 - 1.279220I		
a = 0.297105 + 0.434123I	2.70932 + 1.76563I	1.67735 - 6.00861I
b = -0.360870 - 0.141760I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape	
u = -0.815577 + 1.026240I			
a = -0.83474 + 1.97424I	12.2597 - 15.7728I	-1.36713 + 8.34320I	
b = 2.55672 - 0.85139I			
u = -0.815577 - 1.026240I			
a = -0.83474 - 1.97424I	12.2597 + 15.7728I	-1.36713 - 8.34320I	
b = 2.55672 + 0.85139I			
u = -0.834263 + 1.074420I			
a = 0.617688 - 1.026740I	10.51100 - 6.06025I	0.84273 + 5.20676I	
b = -1.46448 + 0.32121I			
u = -0.834263 - 1.074420I			
a = 0.617688 + 1.026740I	10.51100 + 6.06025I	0.84273 - 5.20676I	
b = -1.46448 - 0.32121I			
u = 0.294100			
a = -1.77854	-0.887194	-11.1490	
b = 0.404195			

II.
$$I_2^u = \langle 2.02 \times 10^9 a^3 u^{10} - 1.58 \times 10^{10} a^2 u^{10} + \dots + 4.30 \times 10^{10} a + 4.78 \times 10^{10}, \ 2u^{10}a^3 + 5u^{10}a^2 + \dots - 11a - 4, \ u^{11} - u^{10} + \dots + u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.0501087a^{3}u^{10} + 0.392425a^{2}u^{10} + \cdots - 1.06769a - 1.18770 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.0730076a^{3}u^{10} + 0.0208690a^{2}u^{10} + \cdots + 1.15943a - 0.436827 \\ -0.0458109a^{3}u^{10} + 0.201699a^{2}u^{10} + \cdots - 1.42746a - 1.14085 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.101413a^{3}u^{10} + 0.463802a^{2}u^{10} + \cdots - 0.220601a - 0.144396 \\ -0.00665696a^{3}u^{10} - 0.286527a^{2}u^{10} + \cdots - 0.381572a - 2.85287 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.0552205a^{3}u^{10} + 0.0271607a^{2}u^{10} + \cdots + 0.272604a - 0.228788 \\ -0.0458109a^{3}u^{10} + 0.201699a^{2}u^{10} + \cdots - 1.42746a - 1.14085 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.113164a^{3}u^{10} + 0.205988a^{2}u^{10} + \cdots - 0.610611a + 0.745692 \\ 0.204647a^{3}u^{10} + 0.121534a^{2}u^{10} + \cdots - 0.319396a + 1.27947 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.113164a^{3}u^{10} + 0.205988a^{2}u^{10} + \cdots - 0.610611a + 0.745692 \\ 0.204647a^{3}u^{10} + 0.121534a^{2}u^{10} + \cdots - 0.610611a + 0.745692 \\ 0.204647a^{3}u^{10} + 0.121534a^{2}u^{10} + \cdots - 0.610611a + 0.745692 \\ 0.204647a^{3}u^{10} + 0.121534a^{2}u^{10} + \cdots - 0.610611a + 0.745692 \\ 0.204647a^{3}u^{10} + 0.121534a^{2}u^{10} + \cdots - 0.319396a + 1.27947 \end{pmatrix}$$

(ii) Obstruction class = -1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$ (u^{11} + u^{10} + 2u^9 + u^8 + 4u^7 + 2u^6 + 4u^5 + u^4 + 3u^3 - u^2 - 1)^4 $
c_2,c_6	$(u^{11} + 3u^{10} + \dots - 2u - 1)^4$
c_3, c_4, c_8 c_{10}	$u^{44} + u^{43} + \dots - 10u + 1$
c ₇	$(u^2 - u + 1)^{22}$
c_9, c_{11}	$u^{44} - 13u^{43} + \dots - 7082u + 793$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^{11} + 3y^{10} + \dots - 2y - 1)^4$
c_2, c_6	$(y^{11} + 11y^{10} + \dots + 6y - 1)^4$
c_3, c_4, c_8 c_{10}	$y^{44} + 39y^{43} + \dots - 72y + 1$
	$(y^2 + y + 1)^{22}$
c_9,c_{11}	$y^{44} + 19y^{43} + \dots + 14956920y + 628849$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.274458 + 0.988557I		
a = -0.761443 - 0.782702I	-0.246814 - 0.916836I	-7.79937 + 0.65377I
b = 0.437204 + 0.625252I		
u = -0.274458 + 0.988557I		
a = 1.150000 + 0.163504I	-0.24681 - 4.97660I	-7.79937 + 7.58197I
b = -0.078138 + 0.311249I		
u = -0.274458 + 0.988557I		
a = -1.07620 + 0.93707I	-0.24681 - 4.97660I	-7.79937 + 7.58197I
b = 0.763501 - 0.929299I		
u = -0.274458 + 0.988557I		
a = -0.228586 + 0.296333I	-0.246814 - 0.916836I	-7.79937 + 0.65377I
b = -0.244639 + 0.277316I		
u = -0.274458 - 0.988557I		
a = -0.761443 + 0.782702I	-0.246814 + 0.916836I	-7.79937 - 0.65377I
b = 0.437204 - 0.625252I		
u = -0.274458 - 0.988557I		
a = 1.150000 - 0.163504I	-0.24681 + 4.97660I	-7.79937 - 7.58197I
b = -0.078138 - 0.311249I		
u = -0.274458 - 0.988557I		
a = -1.07620 - 0.93707I	-0.24681 + 4.97660I	-7.79937 - 7.58197I
b = 0.763501 + 0.929299I		
u = -0.274458 - 0.988557I		
a = -0.228586 - 0.296333I	-0.246814 + 0.916836I	-7.79937 - 0.65377I
b = -0.244639 - 0.277316I		
u = 0.838197 + 0.796762I		
a = 0.259768 + 0.864513I	6.91185 + 0.61290I	-1.20869 - 2.83037I
b = -1.65309 - 0.61568I		
u = 0.838197 + 0.796762I		
a = 0.03670 - 1.50054I	6.91185 + 0.61290I	-1.20869 - 2.83037I
b = 1.36614 + 0.90157I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.838197 + 0.796762I		
a = 0.69454 + 1.55821I	6.91185 - 3.44687I	-1.20869 + 4.09783I
b = -2.43426 + 0.15762I		
u = 0.838197 + 0.796762I		
a = -1.39359 - 1.49694I	6.91185 - 3.44687I	-1.20869 + 4.09783I
b = 2.82533 - 0.05206I		
u = 0.838197 - 0.796762I		
a = 0.259768 - 0.864513I	6.91185 - 0.61290I	-1.20869 + 2.83037I
b = -1.65309 + 0.61568I		
u = 0.838197 - 0.796762I		
a = 0.03670 + 1.50054I	6.91185 - 0.61290I	-1.20869 + 2.83037I
b = 1.36614 - 0.90157I		
u = 0.838197 - 0.796762I		
a = 0.69454 - 1.55821I	6.91185 + 3.44687I	-1.20869 - 4.09783I
b = -2.43426 - 0.15762I		
u = 0.838197 - 0.796762I		
a = -1.39359 + 1.49694I	6.91185 + 3.44687I	-1.20869 - 4.09783I
b = 2.82533 + 0.05206I		
u = -0.813506 + 0.895281I		
a = -0.053255 + 1.073330I	10.57740 - 1.01164I	2.06121 - 0.64168I
b = 2.14570 - 1.02655I		
u = -0.813506 + 0.895281I		
a = 1.18879 - 1.57660I	10.57740 - 5.07141I	2.06121 + 6.28652I
b = -1.85365 - 0.68950I		
u = -0.813506 + 0.895281I		
a = 1.96101 - 0.26916I	10.57740 - 5.07141I	2.06121 + 6.28652I
b = -2.56967 - 1.24825I		
u = -0.813506 + 0.895281I		
a = 0.07683 + 2.57735I	10.57740 - 1.01164I	2.06121 - 0.64168I
b = 1.74410 - 1.83528I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.813506 - 0.895281I		
a = -0.053255 - 1.073330I	10.57740 + 1.01164I	2.06121 + 0.64168I
b = 2.14570 + 1.02655I		
u = -0.813506 - 0.895281I		
a = 1.18879 + 1.57660I	10.57740 + 5.07141I	2.06121 - 6.28652I
b = -1.85365 + 0.68950I		
u = -0.813506 - 0.895281I		
a = 1.96101 + 0.26916I	10.57740 + 5.07141I	2.06121 - 6.28652I
b = -2.56967 + 1.24825I		
u = -0.813506 - 0.895281I		
a = 0.07683 - 2.57735I	10.57740 + 1.01164I	2.06121 + 0.64168I
b = 1.74410 + 1.83528I		
u = 0.783273 + 0.973706I		
a = 1.036200 + 0.662931I	6.36658 + 5.44535I	-2.22908 - 2.09050I
b = -1.80909 + 0.34245I		
u = 0.783273 + 0.973706I		
a = -0.89046 - 1.26486I	6.36658 + 5.44535I	-2.22908 - 2.09050I
b = 1.58433 - 0.03492I		
u = 0.783273 + 0.973706I		
a = -0.58020 - 1.92757I	6.36658 + 9.50512I	-2.22908 - 9.01871I
b = 2.64742 + 0.71348I		
u = 0.783273 + 0.973706I		
a = 1.02861 + 2.35476I	6.36658 + 9.50512I	-2.22908 - 9.01871I
b = -2.80137 - 1.06189I		
u = 0.783273 - 0.973706I		
a = 1.036200 - 0.662931I	6.36658 - 5.44535I	-2.22908 + 2.09050I
b = -1.80909 - 0.34245I		
u = 0.783273 - 0.973706I		
a = -0.89046 + 1.26486I	6.36658 - 5.44535I	-2.22908 + 2.09050I
b = 1.58433 + 0.03492I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.783273 - 0.973706I		
a = -0.58020 + 1.92757I	6.36658 - 9.50512I	-2.22908 + 9.01871I
b = 2.64742 - 0.71348I		
u = 0.783273 - 0.973706I		
a = 1.02861 - 2.35476I	6.36658 - 9.50512I	-2.22908 + 9.01871I
b = -2.80137 + 1.06189I		
u = 0.267638 + 0.666716I		
a = -0.382603 - 0.064806I	4.63007 + 3.16118I	-2.01220 - 9.52195I
b = -0.65101 - 1.57425I		
u = 0.267638 + 0.666716I		
a = 0.02805 - 2.21970I	4.63007 - 0.89859I	-2.01220 - 2.59375I
b = 0.74533 + 1.93262I		
u = 0.267638 + 0.666716I		
a = -2.48453 + 0.39943I	4.63007 - 0.89859I	-2.01220 - 2.59375I
b = -0.398387 - 0.438790I		
u = 0.267638 + 0.666716I		
a = 3.18724 - 1.15243I	4.63007 + 3.16118I	-2.01220 - 9.52195I
b = -0.816152 + 1.127800I		
u = 0.267638 - 0.666716I		
a = -0.382603 + 0.064806I	4.63007 - 3.16118I	-2.01220 + 9.52195I
b = -0.65101 + 1.57425I		
u = 0.267638 - 0.666716I		
a = 0.02805 + 2.21970I	4.63007 + 0.89859I	-2.01220 + 2.59375I
b = 0.74533 - 1.93262I		
u = 0.267638 - 0.666716I		
a = -2.48453 - 0.39943I	4.63007 + 0.89859I	-2.01220 + 2.59375I
b = -0.398387 + 0.438790I		
u = 0.267638 - 0.666716I		
a = 3.18724 + 1.15243I	4.63007 - 3.16118I	-2.01220 + 9.52195I
b = -0.816152 - 1.127800I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.602288		
a = -0.778528 + 0.855239I	2.73943 + 2.02988I	-1.62374 - 3.46410I
b = 0.012044 - 0.807490I		
u = -0.602288		
a = -0.778528 - 0.855239I	2.73943 - 2.02988I	-1.62374 + 3.46410I
b = 0.012044 + 0.807490I		
u = -0.602288		
a = 0.48164 + 1.36946I	2.73943 - 2.02988I	-1.62374 + 3.46410I
b = -0.461645 - 0.028759I		
u = -0.602288		
a = 0.48164 - 1.36946I	2.73943 + 2.02988I	-1.62374 - 3.46410I
b = -0.461645 + 0.028759I		

$$I_3^u = \langle -u^{11} + u^{10} + \dots + b - 4u, \ u^{11} - 2u^{10} + \dots + a - 4, \ u^{12} - u^{11} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{11} - u^{10} + 3u^{9} - u^{8} + 6u^{7} - 2u^{6} + 9u^{5} - 2u^{4} + 7u^{3} + 4u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{11} + 2u^{10} + \dots - 3u + 4 \\ 2u^{11} - 2u^{10} + \dots + 5u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{11} - 2u^{9} - u^{8} - 4u^{7} - 2u^{6} - 4u^{5} - 4u^{4} - 2u^{3} - 4u^{2} - u - 3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{10} - u^{9} + 2u^{8} - u^{7} + 4u^{6} - 3u^{5} + 6u^{4} - 3u^{3} + 4u^{2} - u + 3 \\ u^{11} - u^{10} + 3u^{9} - u^{8} + 5u^{7} - 2u^{6} + 8u^{5} - 2u^{4} + 6u^{3} + 2u^{2} - 4u - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{11} + u^{10} - 4u^{9} + u^{8} - 8u^{7} + 2u^{6} - 10u^{5} + u^{4} - 6u^{3} - 2u^{2} - 4u - 2 \\ u^{10} - u^{9} + 2u^{8} - 2u^{7} + 4u^{6} - 4u^{5} + 5u^{4} - 5u^{3} + 4u^{2} - 3u + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{11} + u^{10} - 4u^{9} + u^{8} - 8u^{7} + 2u^{6} - 10u^{5} + u^{4} - 6u^{3} - 2u^{2} - 4u - 2 \\ u^{10} - u^{9} + 2u^{8} - 2u^{7} + 4u^{6} - 4u^{5} + 5u^{4} - 5u^{3} + 4u^{2} - 3u + 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^{10} 5u^9 + 4u^8 9u^7 + 6u^6 15u^5 + 9u^4 17u^3 + 6u^2 5u 3$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{12} - u^{11} + \dots - u + 1$
c_2, c_6	$u^{12} + 5u^{11} + \dots + 9u + 1$
c_3, c_{10}	$u^{12} + 7u^{10} + \dots - 4u + 1$
c_4, c_8	$u^{12} + 7u^{10} + \dots + 4u + 1$
<i>C</i> 5	$u^{12} + u^{11} + \dots + u + 1$
c ₇	$u^{12} + 2u^{11} + 4u^{10} + u^9 - 2u^8 - 5u^7 - 6u^6 - 3u^5 + 3u^3 + 3u^2 + 2u + 1$
c_9, c_{11}	$u^{12} - 2u^{11} + 3u^{10} - 3u^9 + 3u^7 - 6u^6 + 5u^5 - 2u^4 - u^3 + 4u^2 - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{12} + 5y^{11} + \dots + 9y + 1$
c_{2}, c_{6}	$y^{12} + 9y^{11} + \dots - 11y + 1$
c_3, c_4, c_8 c_{10}	$y^{12} + 14y^{11} + \dots + 14y + 1$
	$y^{12} + 4y^{11} + \dots + 2y + 1$
c_9, c_{11}	$y^{12} + 2y^{11} + \dots + 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.429976 + 0.814812I		
a = -0.081378 + 0.968613I	-1.76614 - 1.77242I	-11.74681 + 0.90385I
b = -0.252948 - 0.481751I		
u = -0.429976 - 0.814812I		
a = -0.081378 - 0.968613I	-1.76614 + 1.77242I	-11.74681 - 0.90385I
b = -0.252948 + 0.481751I		
u = 0.796369 + 0.772849I		
a = -0.03503 + 1.67593I	7.61677 - 1.25384I	1.08380 + 0.96345I
b = -2.00388 - 1.18404I		
u = 0.796369 - 0.772849I		
a = -0.03503 - 1.67593I	7.61677 + 1.25384I	1.08380 - 0.96345I
b = -2.00388 + 1.18404I		
u = 0.111695 + 1.124500I		
a = 0.025899 - 0.751777I	2.20710 - 1.19387I	-6.38204 - 1.53253I
b = 0.396961 + 0.440767I		
u = 0.111695 - 1.124500I		
a = 0.025899 + 0.751777I	2.20710 + 1.19387I	-6.38204 + 1.53253I
b = 0.396961 - 0.440767I		
u = -0.839842 + 0.897845I		
a = -0.241344 - 0.625397I	10.06100 - 3.11950I	0.49742 + 2.52128I
b = 0.269373 + 0.299156I		
u = -0.839842 - 0.897845I		
a = -0.241344 + 0.625397I	10.06100 + 3.11950I	0.49742 - 2.52128I
b = 0.269373 - 0.299156I		
u = 0.752518 + 0.986539I		
a = -1.33320 - 1.17743I	6.95919 + 7.10303I	-0.32122 - 6.73031I
b = 2.13710 - 0.37562I		
u = 0.752518 - 0.986539I		
a = -1.33320 + 1.17743I	6.95919 - 7.10303I	-0.32122 + 6.73031I
b = 2.13710 + 0.37562I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.109236 + 0.556796I		
a = 2.66505 - 0.92579I	4.53093 + 2.25781I	-3.63115 - 0.42527I
b = -0.04661 + 1.52320I		
u = 0.109236 - 0.556796I		
a = 2.66505 + 0.92579I	4.53093 - 2.25781I	-3.63115 + 0.42527I
b = -0.04661 - 1.52320I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{11} + u^{10} + 2u^9 + u^8 + 4u^7 + 2u^6 + 4u^5 + u^4 + 3u^3 - u^2 - 1)^4$ $\cdot (u^{12} - u^{11} + \dots - u + 1)(u^{25} - 6u^{24} + \dots + 2u + 4)$
c_2, c_6	$((u^{11} + 3u^{10} + \dots - 2u - 1)^4)(u^{12} + 5u^{11} + \dots + 9u + 1)$ $\cdot (u^{25} + 8u^{24} + \dots + 92u - 16)$
c_3, c_{10}	$(u^{12} + 7u^{10} + \dots - 4u + 1)(u^{25} + 11u^{23} + \dots + u + 1)$ $\cdot (u^{44} + u^{43} + \dots - 10u + 1)$
c_4, c_8	$(u^{12} + 7u^{10} + \dots + 4u + 1)(u^{25} + 11u^{23} + \dots + u + 1)$ $\cdot (u^{44} + u^{43} + \dots - 10u + 1)$
<i>C</i> ₅	$(u^{11} + u^{10} + 2u^9 + u^8 + 4u^7 + 2u^6 + 4u^5 + u^4 + 3u^3 - u^2 - 1)^4$ $\cdot (u^{12} + u^{11} + \dots + u + 1)(u^{25} - 6u^{24} + \dots + 2u + 4)$
<i>C</i> ₇	$(u^{2} - u + 1)^{22}$ $\cdot (u^{12} + 2u^{11} + 4u^{10} + u^{9} - 2u^{8} - 5u^{7} - 6u^{6} - 3u^{5} + 3u^{3} + 3u^{2} + 2u + 1)$ $\cdot (u^{25} + 25u^{24} + \dots + 22528u + 2048)$
c_9, c_{11}	$(u^{12} - 2u^{11} + 3u^{10} - 3u^9 + 3u^7 - 6u^6 + 5u^5 - 2u^4 - u^3 + 4u^2 - 2u + 1)$ $\cdot (u^{25} + 2u^{24} + \dots - 3u + 1)(u^{44} - 13u^{43} + \dots - 7082u + 793)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$((y^{11} + 3y^{10} + \dots - 2y - 1)^4)(y^{12} + 5y^{11} + \dots + 9y + 1)$ $\cdot (y^{25} + 8y^{24} + \dots + 92y - 16)$
c_2, c_6	$((y^{11} + 11y^{10} + \dots + 6y - 1)^4)(y^{12} + 9y^{11} + \dots - 11y + 1)$ $\cdot (y^{25} + 20y^{24} + \dots + 34416y - 256)$
c_3, c_4, c_8 c_{10}	$(y^{12} + 14y^{11} + \dots + 14y + 1)(y^{25} + 22y^{24} + \dots - y - 1)$ $\cdot (y^{44} + 39y^{43} + \dots - 72y + 1)$
	$((y^{2} + y + 1)^{22})(y^{12} + 4y^{11} + \dots + 2y + 1)$ $\cdot (y^{25} + 5y^{24} + \dots - 6291456y - 4194304)$
c_9, c_{11}	$(y^{12} + 2y^{11} + \dots + 4y + 1)(y^{25} + 10y^{24} + \dots + y - 1)$ $\cdot (y^{44} + 19y^{43} + \dots + 14956920y + 628849)$