Class 1 GRADING

Class 1

Shikhar Saxena

January 03, 2023

Contents

Resources	1
Grading	1
Course Outline	
What is RL? Mathematical Viewpoint	2
Viewpoint 2: Sequential decision problem	2
Key ingredients of MDP/RL	

Resources

- 1. Sutton & Barto
- 2. Bertsekas; Reinforcement learning and optimal control
- 3. Applied porbability models with optimization applications by Sheldon Ross (for MDP's)
- 4. Other recent books by Warren Powell, Sean Meyn, Sham Kakde, Abhijith Gosavi, Ashwin Rao.
- Some course notes (links from slides). First and Second Link will be followed by Sir mostly. Third Link: (david silver lectures).

Grading

Quiz 1: 10%Midsem: 20%Quiz 2: 10%Endsem: 20%

 \circ Assignment: 20%

 \circ Project: 20%

Probably two-three assignments and group-based project.

Course Outline

- Module 1 (3-4 lecs)
 - ★ Probability & markov chain
- Module 2 (5-6 lecs)
 - ★ MDPs
- Module 3 (3-4 lecs)
 - * Intro to RL
- Module 4 & 5 (12-14 lecs)
 - * Adv RL (Prof. Harikumar)

HW for today

Watch

- AlphaGo (2017 documentary)
- David Silver lec 1

What is RL? Mathematical Viewpoint

Essentially an MDP where Markovian transitions are unknown.

• MDP: Markov Chain that you control with actions for maximizing your accumulated reward.

Viewpoint 2: Sequential decision problem

Interaction between Agent and Environment. Agent performs action and environment rewards the agent and next state. Objective is to select the best action over time.

SARSA: State action reward (next) state (an rl algorithm).

Select sequence of actions to maximize total reward under environment uncertainty.

- Model based rl
 - * You learn the mdp and use the optimal policy for that
- another is where we try to pick policies (and then converge to the best policy).
- Immediate gains vs long term gains
 - \star balance exploration and exploitation

Key ingredients of MDP/RL

- Model for the environment
 - * transition model
 - you move from one state to another
 - represents *dynamics* of the environment

- $S_{t+1} = f(H_t, W_t)$
 - $H_t = \{S_1, A_1, \dots, S_t, A_t\}$: History (state-action pairs)
 - · W_t : possible source for randomness (noise)
- Markovian Model: $S_{t+1} = f(S_t, A_t, W_t)$ where W_t is i.i.d noise. In this case, the Markov Property is true.
- * reward model
 - how are the rewards coming
 - $\bullet \ R_{t+1} = g(S_t, A_t)$
 - Another model for reward $R_{t+1} = g(S_t, A_t, S_{t+1})$.
 - Reward Hypothesis: Optimize expected total reward.
 - Other metrics finite time expected total reward, time average reward and discounted total expected reward.
- policy of the agent
 - $\star \ \pi = (\pi_1, \pi_2, ...)$
 - sequence of actions that the agent selects at each time
 - policies could be history-based, markovian, deterministic, randomized, stationary, etc.
 - \star optimal policy π^* : highest expected total reward.
 - * when model is knoen, the optimal policies often turn out to be markovian, deterministic and even stationary (more later).
- value function for the policy and/or states
 - * $V^{\pi}(s)$ quantifies the expected total reward from policy π when starting in state s.
 - $\star Q^{\pi}(s,a)$: state action value function for policy π .

RL: minimize the regret (how different you are from the optimal; in an RL scenario you don't really know how much regret you're making).

My objective:

$$V(s) := \max_{\pi \in \Pi} V^\pi(s)$$

and

$$\pi^* = \arg\max_{\pi \in \Pi} V^\pi(s)$$

Classification of RL Problems

- Under uncertainity, obj of RL to learn $Q^*(s, a)$ and/or π^* .
- \circ focus on learning Q^* , value function based algo eg value iteration
- focus on learning π^* , policy based algo eg policy iteration
- (these are model-free algorithms).