(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-120044

(43)公開日 平成8年(1996)5月14日

審査請求 未請求 請求項の数5 OL (全 10 頁)

(21)出願番号 特願平6-262661 (71)出願人 000003300 東ソー株式会社 山口県新南陽市関成町4560番地 (72)発明者 吉村 浩幸 山口県新南陽市政所4丁目6-2-220 (72)発明者 玉野 豊 山口県徳山市大字四熊216番地の5 (72)発明者 奥園 修一 山口県下松市東陽4丁目14番5号

(54) 【発明の名称】 硬化速度に優れた硬質ポリウレタンフォームの製造法

(57)【要約】

[目的] 発泡剤としてCFC類を削減し水量を増加させた処方において、フォームの硬化速度を早め、成型性を改善し、かつ臭気が少ない触媒を用いた硬質ポリウレタンフォームの製造法を提供する。

【構成】 アミン触媒として少なくとも下記一般式で表されるアミン化合物

[化1]

(式中、Aは、炭素数11~14のアルキル基であり、R、R、は、炭素数1~6のアルキル基を表す。)より選ばれる一種以上を使用し、発泡剤として水、又は水と炭化水素類、ハイドロクロロフルオロカーボン類、もしくはハイドロフルオロカーボン類との混合物を用い、水の量がポリオール100重量部に対し2~15重量部であるポリウレタンフォームの製造法。

1

【特許請求の範囲】

[請求項] ポリオールとポリイソシアネートをアミン触媒、発泡剤及び整泡剤の存在下に反応させ、硬質ポリウレタンフォームを製造する方法において、アミン触媒として少なくとも下記一般式(I)で表されるアミン化合物

[化1]

(式中、Aは、炭素数11~14のアルキル基であり、R1、R1は、炭素数1~6のアルキル基を表す。)より選ばれる一種以上を使用し、発泡剤として水、又は水と炭化水素類、ハイドロクロロフルオロカーボン類、もしくはハイドロフルオロカーボン類との混合物を用い、水の量がポリオール100重量部に対し2~15重量部であることを特徴とする硬質ポリウレタンフォームの製造法。

【請求項2】 アミン触媒として少なくとも下記一般式 (I)で表されるアミン化合物

【化2】

(式中、Aは、炭素数 $11\sim14$ のアルキル基であり、 R_1 、 R_2 は、炭素数 $1\sim6$ のアルキル基を表す。)と樹 30 脂化触媒及び/又は泡化触媒を使用することを特徴とする請求項1に記載の方法。

【請求項3】 ボリオールの平均官能価が4~8、平均 ヒドロキシル価が200~800mg KOH/gである ことを特徴とする請求項1又は請求項2に記載の方法。

【請求項4】 下記一般式(I)で表されるアミン化合物が、ジメチルドデシルアミン、又はジメチルテトラデシルアミンである請求項1乃至請求項3のいずれかに記載の方法。

[{t3}

載の方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ポリオールとイソシアネートをアミン触媒、発泡剤及び整泡剤の存在下に反応させ、硬質ポリウレタンフォームを製造する方法に関する。さらに詳しくは、分子内に長鎖脂肪族モノアミノ基を有し、極めて低臭、低揮発性で、且つ発泡剤としてクロロフルオロカーボン類を削減し水量を増加させた処方10 において、フォームの硬化速度、成型性、寸法安定性及び表面接着強度に優れる触媒を用いた硬質ポリウレタンフォームの製造法に関する。

[0002]

【従来の技術】ポリウレタンフォームは、自動車用シートクッション、マットレス、家具等の軟質フォーム、自動車インストルメントパネル、ヘッドレスト、アームレスト等の半硬質フォーム、電気冷蔵庫、建材等に用いられる硬質フォームとして広く用いられている。

[0003]近年、ポリウレタン製造におけるコスト低 減やフォームの生産性を向上させるため、脱型時間を短縮する優れた硬化速度及び歩留まりの改善のための優れた成型性が強く要求されている。ポリウレタンフォームの形成反応は、主にポリオールとイソシアネートの反応によるウレタン基形成反応(樹脂化反応)とイソシアネートと水との反応によるウレア基形成及び炭酸ガス発生(泡化反応)反応の2つの反応から成り、触媒は、これらの反応速度だけでなく、フォームの硬化速度、成型性、フォームの流動性、低密度化及び物性等に大きな影響を及ぼす。

30 【0004】また、オゾン層破壊の原因となるクロロフルオロカーボン類(トリクロロモノフルオロメタン、シクロロジフルオロメタン等のいわゆるCFC類)の削減及び作業環境の改善や製品からの揮発性物質の飛散の抑制等の環境問題が大きな関心となってきている。従来、発泡剤として使用してきたCFC類を削減し、水量を増加させた処方の検討が成されているが、発泡剤として水量を増加させると、フォームの硬化速度、成型性や硬質フォームの接着強度及び寸法安定性等が著しく悪化する。そのため、CFC類を削減し、水量を増加した処方の協力に適した触媒の開発が強く要求されている。

3

ン、N-エチルモルホリン、ジメチルシクロヘキシルアミン、ジメチルベンジルアミン等が例示できる。これらのポリウレタン製造用触媒のうち、比較的低分子量で揮発性の高い触媒であるトリエチルアミン、N-メチルモルホリン、N-エチルモルホリンやN、N、N´、N´ーテトラメチルヘキサメチレンジアミンは、ポリウレタンの硬化速度や成型性、フォーム物性改善に優れた効果を示すことから広く用いられている。

[0006]

【発明が解決しようとする課題】しかしながら、これまでに開発されているポリウレタン製造用触媒は、種々の問題点を有している。

【0007】例えば、第三級アミン類はアミン臭が強く、特に比較的低分子量のN-メチルモルホリン、N-エチルモルホリン、トリエチルアミン、N,N,N´,N´ーテトラメチルヘキサメチレンジアミン、ジメチルシクロヘキシルアミンは、極めて強い刺激臭を有し、発泡工程の悪臭のために著しく労働環境を悪化し、硬化速度を早めるためアミン触媒を大量に使用した場合、目の霞み(アイレインボー)等を引き起こしたりする問題が20ある。また、ポリウレタン製品自身にも悪臭を残したり、製品から外部に飛散して、製品としての価値を損じる等の問題があった。

[0008]また従来、硬質ポリウレタンフォームの製造においては、発泡剤としてCFC類が使用されてきたが、近年、CFC類によるオゾン層の破壊が指摘され、CFC類の削減及び代替発泡剤として水を用いた処方の開発が急務となっている。しかしながら、CFC類の代わりに発泡剤として水量を増加した場合、種々の技術的問題点が生じてくる。即ち、水とイソシアネートとの反 30 応により生成する結晶性の高いウレア結合の増加のため、フォームの表面が脆くなり、接着強度の低下、フライアビリティー性が大きくなったり、寸法安定性が著しく悪化する等の問題があった。

【0009】 これらの問題を解決するために、分子内にイソシアネートと反応しうる活性水素基を有する化合物や比較的高分子量のアミン触媒が提案されている。イソシアネートと反応しうる活性水素基を有する化合物として、N、Nージメチルエタノールアミン、N、Nージメチルアミノエトキシエタノール等のアミン化合物が例示 40できる。しかし、N、Nージメチルエタノール等も悪臭を有しており、また発泡過程においては、イソシアネート自身と反応し、活性を失うのが著しく速いのでポリウレタン形成反応の後期で触媒活性が不十分であり、硬化速度が遅く、モールド成型では脱型時間が長くなったり、成型性等に問題があった。

【0010】また比較的高分子量のアミン触媒として、 炭素数6~10の脂肪族モノアミン類が、発泡剤として CFC類を使用し水の使用量が少ない処方における硬質 50

フォーム用アミン触媒として開示されているが、炭素数 11以上の脂肪族モノアミン類については、との処方に おける硬質フォーム用アミン触媒として、触媒活性が著 しく低下しフォームの物性及び表面硬化性が著しく低下 する等の問題点が指摘されている(特開昭58-937 15号公報)。

[0011] 本発明は上記の課題に鑑みてなされたものであり、その目的は、発泡剤としてフロン類を使用せず水量を増加させた場合でもポリウレタンフォームの硬化速度、成型性、及びその他物性を改善する、極めて臭気及び揮発性が低い触媒を用いた硬質ポリウレタンフォームの製造法を提供するととである。

[0012]

【課題を解決するための手段】本発明者らは、公知の触媒の持つ様々な問題点を解決するために鋭意検討した結果、驚くべきことに分子内に炭素数11~14の範囲の長鎖脂肪族モノアミノ基をもつ高分子量アミン化合物が、触媒として極めて臭気及び揮発性が低く、発泡剤としてCFC類を使用せず水量を増加させた処方において、硬化速度、成型性、接着強度、及び寸法安定性等に優れたポリウレタンフォームが得られ、極めて有用な触媒となる新規な事実を見出し、本発明を完成したものである。

[0013] すなわち本発明は、ポリオールとポリイソシアネートをアミン触媒、発泡剤及び整泡剤の存在下に反応させ、硬質ポリウレタンフォームを製造する方法において、アミン触媒として少なくとも下記一般式(I)で表されるアミン化合物

[0014]

o [{£4}

【0015】(式中、Aは、炭素数11~14のアルキル基であり、R1、R1は、炭素数1~6のアルキル基を表す。)より選ばれる一種以上を使用し、発泡剤として水、又は水と炭化水素類、ハイドロクロロフルオロカーボン類、もしくはハイドロフルオロカーボン類との混合物を用い、水の量がポリオール100重量部に対し2~15重量部であることを特徴とする硬質ポリウレタンフォームの製造法である。

【0016】次に、本発明を詳細に説明する。

【0017】硬質ポリウレタンフォームは、Polyurethane handbook第234~313頁及びポリウレタン樹脂ハンドブック第224~283頁に記載のあるように、高度に架橋されたクロースドセル構造を有し、可逆変形不可能なフォームであり、軟質及び半硬質フォームとは全く異なる性質を有する。硬質フ

ォームの性質は特に限定されるものではないが、一般的 には、密度が20~100kg/m³、圧縮強度が0. 5~10kgf/cm² (50~1000kPa) の範 囲である。

【0018】とれに対し軟質ポリウレタンフォームは、 Polyurethane handbook (Gun ter Oertel著) 第161~233頁及びポリ ウレタン樹脂ハンドブック(岩田敬治著)第150〜2 21頁に記載のあるように、一般的にオープンセル構造 る。また軟質フォーム物性は、使用するポリオール、イ ソシアネート等の化学構造や発泡剤の配合量及びイソシ アネートインデックス等の化学的要因と、セル構造等に より異なり、特に限定されるものではないが、一般には Polyurethane handbook第184 ~191頁及び第212~218頁、ポリウレタン樹脂 ハンドブック第160~166頁及び第186~191 頁に記載のあるように、密度が10~100kg/m³ (JIS K 6401)、圧縮強度(IDL25%) が2~80kgf(20~800N)(JIS K 6 20 チルー2-メチルイミダゾール等のイミダゾール類が挙 401)、伸び率が80~500%(JIS K 63 01)の範囲である。

【0019】また半硬質ポリウレタンフォームは、Po lyurethane handbook第223~2 33頁及びポリウレタン樹脂ハンドブック第211~2 21頁に記載があるように、そのフォーム密度及び圧縮 強度は軟質ポリウレタンフォームより高いものの、軟質 ポリウレタンフォームと同様にオープンセル構造を有 し、高い通気性を示す可逆変形可能なフォームであり、 また使用するポリオール、イソシアネート原料も軟質ポ リウレタンフォームと同様であるため、一般に軟質ポリ ウレタンフォームに分類される。半硬質ポリウレタンフ ォームの物性は、特に限定されるものではないが、一般 的に密度が40~800kg/m³、25%圧縮強度が 0. 1~2 kg f/cm² (9. 8~200 kPa). 伸び率が40~200%の範囲である。

【0020】本発明のアミン触媒は、下記一般式(I) で表される化合物であり、

[0021]

[化5]

$$R_1$$
 $N-A$ (1)
 R_2

【0022】(式中、Aは、炭素数11~14のアルキ ル基であり、R,、R,は、炭素数1~6のアルキル基を 表す。)

特に限定するものではないが、例えば、ジメチルドデシ ルアミン、ジメチルテトラデシルアミン等が挙げられ

る。Aの炭素数が10以下では、アミン臭気及び揮発性 が高いため、作業環境の改善やフォームからの飛散の低 減が困難であり、フォームの硬化速度も遅く、生産性も 低下する。一方、Aの炭素数が15以上では、触媒活性 が著しく低下し、触媒の使用部数が多くなるとともに、 キュアー性も劣るためコスト及び生産上、不利益にな

【0023】本発明のアミン触媒の製造法は、従来公知 の方法であれば良く、特に限定するものではない。例え を有し、高い通気性を示す可逆変形可能なフォームであ 10 ぱ、原料モノアミンを還元メチル化することにより、容 易に合成することが出来る。

> 【0024】本発明においては、本発明のアミン触媒を 他の樹脂化触媒及び/又は泡化触媒と併用することが好 ましい。

> 【0025】樹脂化触媒は、ポリイソシアネートとポリ オールの反応を特に促進する第三級アミン触媒であり、 例えば、トリエチレンジアミン、I,8-ジアザビシク ロ[5.4.0]ウンデセン-7、及び1-メチルイミ ダゾール、1、2 – ジメチルイミダゾール、1 – イソブ げられる。

> 【0026】また泡化触媒は、イソシアネートと水の反 応を特に促進し、炭酸ガスを有効に発生させる第三級ア ミン触媒であり、一般的にフォームの流動性改良に使用 される。泡化触媒としてはビス(2-ジメチルアミノエ チル) エーテル、N,N,N′, N″, N″ −ペンタメ チルジエチレントリアミン、及びN,N,N´,N″, N · · · · N · · · · 一ヘキサメチルトリエチレンテトラミン 等が例示できる。

【0027】樹脂化触媒を使用する場合、本発明のアミ ン触媒と樹脂化触媒の組成は特に限定するものではない が、本発明のアミン触媒20~95重量%に対し、樹脂 化触媒80~5重量%が好ましい。樹脂化触媒の割合を 80重量%以下にすることにより、フォームの硬化速 度、流動性、成型性が向上する。一方、樹脂化触媒の割 合を5重量%以上にすることにより、触媒の使用量が少 なくなりコスト的に有利になる。

【0028】また泡化触媒を使用する場合、本発明のア ミン触媒と泡化触媒の組成は特に限定するものではない 40 が、本発明のアミン触媒40~99重量%に対し、泡化 触媒60~1重量%が好ましい。泡化触媒の割合を60 重量%以下にすることにより、初期の発泡速度が適度に なり、液流動性が維持されるとともに、フォームの硬化 速度、成型性、硬質フォームの表面接着性も向上する。 一方泡化触媒の割合を1重量%以上にすることにより、 フォーム流動性が改良され、全触媒の使用量が少なくな りコスト的にも有利になる。

【0029】さらに樹脂化触媒と泡化触媒の両者を併用 する場合、触媒混合物の組成は、本発明のアミン触媒 1 50 9~90重量%に対し、樹脂化触媒が80~5重量%、

泡化触媒が60~1重量%の範囲が好ましい。

【0030】本発明のアミン触媒を単独で使用した場合、フォームの硬化速度、成型性、寸法安定性、表面の接着強度等が向上する。一方、本発明のアミン触媒と樹脂化触媒及び/又は泡化触媒を併用すると、触媒のトータルの使用量が減少し、寸法安定性、表面の接着強度等のフォーム物性がさらに向上する。

【0031】本発明のアミン触媒は、助触媒としてその他の第三級アミン化合物、イソシアネートと反応し得る活性水素基を有する第三級アミン化合物や有機金属化合 10物及び/又はカルボン酸金属塩と併用してポリウレタンを製造してもよい。

[0032] 本発明の触媒と併用されるその他の第三級 アミン化合物は、特に限定されるものではないが、例え ぱトリエチルアミン、N, N – ジメチルシクロヘキシル アミン、N, N, N', N'-テトラメチルエチレンジ アミン、N, N, N', N'-テトラメチルプロピレン ジアミン、N, N, N', N", N" -ペンタメチル-(3-アミノプロピル) エチレンジアミン、N, N, N' , N'' , N'' -ペンタメチルジプロピレントリアミ ン、N, N, N', N'-テトラメチルグアニジン、 1, 3, 5-トリス(N, N-ジメチルアミノプロピ ル) ヘキサヒドロ-S-トリアジン、N, N, N', N' - テトラメチルヘキサメチレンジアミン、N - メチ ルーN′- (2 - ジメチルアミノエチル) ピペラジン、 N, N'-ジメチルピペラジン、N-メチルピペラジ ン、N-メチルモルホリン、N-エチルモルホリン等の 第三級アミン類、及びN,N-ジメチルアミノエタノー ル、N,N‐ジメチルアミノイソプロパノール、N,N ージメチルアミノエトキシエタノール、N, N, N ー トリメチルアミノエチルエタノールアミン、N,N,N - トリメチル-N - ヒドロキシエチル-ビスアミノ エチルエーテル、N, N-ビス(3-ジメチルアミノブ ロビル) - N - イソプロパノールアミン、N - (3 - ジ メチルアミノプロピル) N, N − ジイソプロパノールア ミン、N-(2-ヒドロキシエチル)-N´-メチルピ ペラジン、N,N‐ジメチルアミノヘキサノール等のア ルカノールアミン類やジメチルアミノプロピルアミン、 ビスジメチルアミノプロビルアミン等の1級又は2級ア ミノ基を有し、かつイソシアネートと反応し得る活性水 40 素基を有するアミン化合物等が挙げられる。これらの活 性水素を有するアミン化合物は、イソシアネートと反応 してフォーム中に取り込まれる事から、フォームからの 揮発量を低減することが可能である。

[0033]また、本発明のアミン触媒は助触媒として他の有機金属化合物及び/又はカルボン酸金属塩と併用してポリウレタンを製造してもよい。

【0034】有機金属化合物としては、例えばスタナス ジアセテート、スタナスジオクトエート、スタナスジオ レエート、スタナスジラウレート、ジブチル錫オキサイ ド、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジクロライド、ジオクチル錫ジラウレート、オクタン酸鉛、ナフテン酸鉛、ナフテン酸ニッケル、ナフテン酸コバルト等が挙げられる。 これらのうち好ましい化合物としては有機錫触媒であり、 さらに好ましくはスタナスジオクトエート、ジブチル錫ジラウレートである。

【0035】カルボン酸金属塩としては、カルボン酸のアルカリ金属塩及び/又はアルカリ土類金属塩が挙げられる。カルボン酸としては、例えば、酢酸、プロピオン酸、2-エチルヘキサン酸、アジピン酸等の脂肪族モノ及びジカルボン酸類、安息香酸、フタル酸等の芳香族モノ及びジカルボン酸類等が挙げられるが、これらに限定されるものではない。また、カルボン酸塩を形成すべきアルカリ金属としては、リチウム、ナトリウム、カリウムが、アルカリ土類金属としては、カルシウム、マグネシウムがそれぞれ好ましい例として挙げられるが、これらに限定されない。

【0036】ポリウレタンの製造において通常使用される本発明のアミン触媒の量は、特に限定するものではないが、一般的に、ポリオール100重量部に対し、0.01~10重量部である。また、本発明のアミン触媒と共に用いる事の出来るその他のアミン触媒、有機金属化合物及びカルボン酸金属塩の使用量は、特に限定するのものではないが、一般的に0.01~5重量部である。【0037】また、本発明のアミン化合物の有機カルボン酸塩及び前述の第三級アミン化合物の有機カルボン酸塩は本発明の触媒機能を失わない範囲で触媒及び助触媒として適宜使用できる。

【0038】本発明のアミン触媒は、前述したように単独もしくは他のアミン触媒と混合して用いてよいが、混合調製にあたっては、必要ならば溶媒として、ジブロビレングリコール、エチレングリコール、1、4-ブタンジオール、及び水等が使用できる。溶媒の量は、特に限定するものではないが、好ましくは触媒の全量に対して70重量%以下である。この様に調製された触媒は、ポリオールに添加して使用してもよいし、種々のアミン触媒を別々にポリオールに添加して使用してもよく、特に限定されるものではない。

[0039]本発明のアミン触媒を使用してポリウレタンを製造する際に用いることのできるポリオールとしては、一般公知のポリエステルポリオール、ポリエーテルポリオール、ポリマーポリオール及びそれらの混合物が使用できる。公知のポリエステルポリオールは、通常、二塩基酸と多価アルコールより誘導される化合物が含まれる。公知のポリエーテルポリオールは、例えば、グリコール、グリセリン、ペンタエリスリトール、トリメチロールプロパン、ソルビトール、シュークロース等の多価アルコール類、アンモニア、エチレンジアミン、エタノールアミン類等の脂肪族アミン化合物類、トルエンジ

ある。

アミン、ジフェニルメタン-4、4´ージアミン等の芳 香族アミン化合物類、及び/又はこれらの混合物にエチ レンオキシドやプロピレンオキシドを付加して得られ る。公知のポリマーポリオールとしては、該ポリエーテ ルポリオールとエチレン性不飽和単量体、例えばブタジ エン、アクリロニトリル、スチレン等をラジカル重合触 媒の存在下に反応させた重合体ポリオール等が挙げられ る。

q

[0040] 本発明では、ポリオールとしてポリエーテ ル及び/又はポリエステルポリオールが好ましい。ポリ 10 オールの平均官能価は4~8、平均ヒドロキシル価が2 00~800mgKOH/gが好ましく、さらに好ましくは300~700mgKOH/gである。

[0041] 本発明の触媒を使用してポリウレタンフォ ームを製造する際に用いることのできるポリイソシアネ ートは、公知のポリイソシアネートであれば良く、例え ばトルエンジイソシアネート(TDI)、4,4´-又 は4,2´ージフェニルメタンジイソシアネート(MD I)、ナフチレンジイソシアネート、キシリレンジイソ シアネート等の芳香族ポリイソシアネート類、イソホロ 20 ンジイソシアネート等の脂環式ポリイソシアネート類、 ヘキサメチレンジイソシアネート等の脂肪族ポリイソシ アネート類、又はそれらとポリオールとの反応による遊 離イソシアネート含有プレポリマー類、カルボジイミド 変性等の変性ポリイソシアネート類、さらには、それら の混合ポリイソシアネート等を例示できる。

【0042】とれらのうち好ましくはTDIとその誘導 体又はMDIとその誘導体であり、これらは混合して使 用しても差支えない。TDIとその誘導体としては、 2, 4-TDIと2, 6-TDIの混合物又はTDIの 30 末端イソシアネートプレポリマー誘導体を挙げることが ができる。MDIとその誘導体としては、MDIとその 重合体のポリフェニルポリメチレンジイソシアネートの 混合体、及び/又は末端イソシアネート基をもつジフェ ニルメタンジイソシアネート誘導体を挙げることができ る。

[0043] 本発明の触媒を使用してポリウレタンを製 造する際には、発泡剤は、クロロフルオロカーボン類以 外の物理的発泡剤及び化学的発泡剤であれば良く、特に 限定されないが、水の使用が必須である。

[0044]公知の物理的発泡剤としては、例えば、ペ ンタン、シクロベンタン等の炭化水素類、HCFC-2 2、141b等のハイドロクロロフルオロカーボン類、 HFC-245類、356類等のハイドロフルオロカー ボン類、エアー、窒素、二酸化炭素等の気体混合類等が 例示できる。公知の化学発泡剤としては、水、有機酸、 硼酸等の無機酸類、アルカリ炭酸塩類、環状カーボネー ト類、ジアルキルカーボネートが挙げられポリウレタン 樹脂成分と反応もしくは熱等により分解してガスを発生 させるものが挙げられる。これらのうち発泡剤として水 50

単独、又は水と炭化水素類、ハイドロクロロフルオロカ ーボン類、もしくはハイドロフルオロカーボン類との混 合物が好ましい。水の量はポリオール100重量部に対 し、2~15重量部であり、さらに好ましくは2~10 重量部である。水の使用量が多くなると、フォームの硬 化速度が遅くなるとともに、発泡のプロセスレンジが狭 くなり、フォームの低密度化が生じたり、成型性が悪化 する。水と併用される炭化水素類、ハイドロクロロフル オロカーボン類、ハイドロフルオロカーボン類の量は所 望の密度に応じて適宜選択され、特に限定されるもので はないが、ポリオール100重量部に対して、通常40 重量部以下であり、さらに好ましくは30重量部以下で

【0045】本発明において使用される整泡剤は、公知 の整泡剤であれば良く、例えばオルガノシロキサンーポ リオキシアルキレン共重合体、シリコーン-グリース共 重合体等の非イオン系界面活性剤、又はこれらの混合物 等が例示でき、その使用量は、通常ポリオール100重 量部に対して0.1~10重量部である。

【0046】本発明において、必要であれば架橋剤又は 鎖延長剤を添加するととが出来る。架橋剤又は鎖延長剤 としては、例えば、エチレングリコール、ジエチレング リコール、1、4-ブタンジオール、グリセリン等の低 分子量の多価アルコール類、ジエタノールアミン、トリ エタノールアミン等の低分子量のアミンポリオール類、 又はエチレンジアミン、キシリレンジアミン、メチレン ビスオルソクロルアニリン等のポリアミン類等を挙げる ととができる。

[0047]また必要に応じて、着色剤、難燃剤、老化 防止剤その他公知の添加剤等も使用してもよい。とれら の添加剤の種類、添加量は、通常使用される範囲で十分 使用するととができる。

[0048]

【実施例】以下、実施例、比較例に基づいて説明するが 本発明はこれら実施例のみに限定されるものではない。 【0049】実施例1~5及び比較例1~7

以下の組成、発泡条件でポリウレタン発泡を行い、得ら れたフォームの物性を測定した。生成した硬質ポリウレ タンフォームの流動性、接着強度、寸法安定性の測定は 40 次に示す方法で行った。結果を表1及び表2に示す。

[0050]

11 a. フォーミュレーション-A

> (重量部) ポリオールA11 50.0 ポリオールB²⁾ 50.0 水 4. 0 11.0 HCFC-141b 整泡剤8) 1. 5 アミン触媒り 変化 インデックス=110 イソシアネート5)

- 00 OH価=390mgKOH/g)
- 2) ポリエーテルポリオール (三井東圧社製、SU-4
- 64 OH価=450mgKOH/g)

なお上記ポリオール1)、2)の混合物の平均官能価は 5である

- 3) SZ-1627(日本ユニカー社製)
- 4) 表中の触媒略号の説明

TEDA-L33;トリエチレンジアミン33.3%ジ プロピレングリコール溶液(東ソー株式会社製)

ンタメチルジエチレントリアミン

DMDOA; N, N-ジメチルドデシルアミン(一般式 中、Aの炭素数=12)

DMTDA; N, N-ジメチルテトラデシルアミン(一 般式中、Aの炭素数=14)

DMOA: N. N-ジメチルオクチルアミン(一般式 中、Aの炭素数=8)

DMHDA: N, N-ジメチルヘキサデシルアミン(一 般式中、Aの炭素数=16)

DMCHA; N, N-ジメチルシクロヘキシルアミン MDCHA; N, N-ジシクロヘキシルモノメチルアミ

5) クルードMDI (日本ポリウレタン社製 MR-2 00)

b. 測定項目

室温下(20~25℃)、2リットルのポリエチレン製 カップにポリウレタン原料を注ぎ発泡させ、反応性、フ リー発泡密度等を測定

・反応性

クリームタイム :フォーミングの開始時間(秒)

ゲルタイム ; 樹脂化時間(秒)

タックフリータイム;フォーム表面のべとつきがなくな

った時間(秒)

;フォームの発泡最大高さに達した ライズタイム

時間(秒)

·硬化速度

発泡10分後、フリー発泡フォーム上面の硬度をショア 1) ポリエーテルポリオール (三井東圧社製、NT-4 10 - C硬度計を用いて測定し、これを硬化速度とする。硬 度が大きい程、硬化速度に優れる

・フォーム流動性

50×50×4.5cmのアルミニウム製モールドを用 いてフリー発泡し、生成したフォームの密度(kg/m 3) を測定。密度が低い程、流動性に優れる

・接着強度

30℃に調温した25×25×8cmのアルミニウム製 モールドの側面に50×50mmの亜鉛引き鉄板をセッ トして発泡させた。発泡10分後、セットした鉄板の9 TOYOCAT-DT; N, N, N´, N´, N″ーペ 20 0°剥離強度を接着強度(kg/25cm²)とする

・寸法安定性

25×25×8cmのアルミニウム製モールドを用いて フリー発泡し、生成したフォームのコア部20×20× 6 cmを室温20℃で70日間エージングした時の体積 変化率(%)を測定

・アミン触媒の臭気の評価

ポリオール(FA703)100重量部に対し、触媒5 重量部を混合した後、10人のパネラーにより、アミン 触媒臭を嗅いで、臭気を以下の評価基準で決定した。触 30 媒を併用した場合は、ポリオール100重量部に対し、

同一触媒組成で5重量部混合した

大……全員強い臭気を感じる

中……10人中4人以上の人が弱い臭気を感じる

小……10人中3人以下が弱い臭気を感じる

無……全員が臭気を感じない

[0051]

【表1】

14

例 NO	実施例1	実施例2	実施例3	実施例4	実施例5	比較例1
触媒 (重量部)*)						
TEDA-L33	_	1.40	_	0.71	0.71	2.80
TOYOCAT-DT	_	-	0.55	0.30	0.30	
DMDOA	4.60	2.30	2.30	2.30	-	_
DMTDA	_	_	_	_	2. 55	-
DMOA	_	_	_] –	_	-
DMHDA	. –	_	-	_	-	-
DMCHA	_	-	_	_	_	_
MDCHA	_	-	_	_	-	_
				<u> </u>		
反応性(秒)	•					
クリームタイム	14	14	10	12	13	14
ゲルタイム	50	5 0	50	5 0	5 0	5 0
タックフリータイム	64	63	6 2	64	63	63
ライズタイム	77	7 3	7 8	76	78	73
フォーム物性	0.0 5	0.0 7	0.0	26.4	0.0	27.9
	26. 5	26. 1	۵6. ن	20.4	20. 5	21. 3
モールド密度(kg/m³)	90 5	29.7	28.0	28.7	28.8	31,8
オーバーオール	29. 5		26. 5	27. 1	27. 2	30.7
コア 1557年 - 1557年 - 15574 - 15	65	7 0	65	67	66	70
硬化速度	11. 0	9.5	9.0	9. 5	9. 5	3.9
接着強度	23. 0	20. 2	10.0	12.0	13. 0	23. 0
臭 気	無無	小	小	小	小 小	ф ф

*) ポリオール100重量部に対する重量部

40 【表2】

[0052]

					r	
M NO	比較例2	比較例3	比較例4	比較例5	比較例6	比較例7
触媒 (重量部) *)						
TEDA-L33	-	0.95	0.40	0.40] –	-
TOYOCAT-DT	1. 10	0.55	0.30	0.30	i –	-
DMDOA	_	-	_	-	-	-
DMTDA	_	-	_	-	-	-
DMOA	_	-	2. 00	-	-	_
DMHDA .	-		-	3.00	_	-
DMCHA	_	_	-	-	2. 40	-
MDCHA		-	-	_	-	11.0
			<u> </u>			
反応性(秒)						
クリームタイム	7	10	11	11	13	12
ゲルタイム	50	5 0	50	50	50	50
タックフリータイム	61	63	6 5	6 5	73	75
ライズタイム	80	74	79	77	78	8 5
					·	
フォーム物性					ļ	
フリー密度(kg/n³)	26. 3	26.8	26.7	26.4	26.6	27.0
モールド密度(kg/a³)						
オーバーオール	30.0	29.7	29.7	30.2	29.2	30.3
37	28.7	28.0	27.7	28.8	27.6	28.4
硬化速度	5 0	5 8		5 5	60	20
接着強度	1. 4	The state of the s			3.3	
寸法安定性 (%)	9.4	20.0	30.0	27.5	24.1	7.3
臭 気	中,	中	大	小	大	小

*) ポリオール100重量部に対する重量部

【0053】表1及び表2から明らかな如く、アミン触媒として上記一般式(I)のアミン化合物を使用し硬質ポリウレタンフォームを製造することによって、触媒の臭気を低減でき、且つフォーム成型性、硬化速度に優れたフォームを製造することが出来た。また、フロン類の代わりにハイドロフルオロカーボン類を少量用い、水量を増加させた処方において、フォームの流動性、接着強度及び寸法安定性に優れたフォームを製造可能であった。

【0054】さらに、樹脂化触媒又は泡化触媒と組み合では、臭気が高く、硬化速度が遅く、接着性も悪く、作わせることにより、触媒機能を損なうことなく、全触媒 使用量を低減することが可能となった。また、樹脂化触 50 また高分子量アミン触媒として知られているMDCHA

媒と併用した場合、硬化速度、寸法安定性に優れたフォ 40 ームを形成可能となり、泡化触媒と併用した場合、流動 性に優れ、低密度化、寸法安定性の改善に有効であっ た。

[0055]一方、従来の樹脂化触媒単独系、泡化触媒単独系、又は樹脂化触媒及び泡化触媒併用系では、接着強度に劣り、フォーム流動性等の物性に劣るフォームとなった(比較例1~比較例3)。従来、硬質フォーム用途で多用されるDMCHAのような低分子量アミン触媒では、臭気が高く、硬化速度が遅く、接着性も悪く、作業環境上及び生産性の点で問題があった(比較例6)。また真分子量アミン触媒として知られているMDCHA

では、臭気は低いものの、硬化速度が遅く、接着強度も 悪化するという問題があった(比較例7)。さらに本発 明と類似骨格を有するアミン触媒は、触媒臭気、硬化速 度、寸法安定性の改善に効果がなく、目的を達成すると とが出来なかった(比較例4、比較例5)。

[0056]

[発明の効果]以上の説明から明らかなように本発明の 方法によれば、従来のアミン触媒に比べ、臭気が極めて 少ないポリウレタン用アミン触媒を使用するため、ポリ 18

ウレタン製造工程において作業環境を著しく改善し、製造フォーム自身に悪臭を残さないとともにフォームからの揮発性の低減が可能である。また発泡剤としてCFC 類を削減し水量を増加させた処方において、フォームの硬化速度を高め、成型性、寸法安定性、表面の接着強度等を改善するため、フォームの生産性および歩留まりを著しく向上することが可能である。

[0057]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.