Physik	# 1	Mechanik	Physik	# 2	Mechanik	Physik	# 3	Mechanik	Physik	# 4	Mechanik
Ве	eschleunigung –	Kraft		Beschleunigung –	Weg		Haftreibung			Gleitreibung	;
Physik	# 5	Mechanik	Physik	# 6	Mechanik	Physik	# 7	Mechanik	Physik	# 8	Mechanik
	reibung – Schief			Leistung			Wirkungsgrad			Radialbeschleuni	
Physik	# 9	Mechanik	Physik	# 10	Mechanik	Physik	# 11	Mechanik	Physik	# 12	Mechanik
	${ m Arbeit}$			potentielle Ener	rgie		kinteische Energi	ie		Kreisfrequen	Z
Physik	# 13	Mechanik	Physik	# 14	Mechanik	Physik	# 15	Mechanik	Physik	# 16	Mechanik
Kreist	requenz Hook'so	che Feder		harmonische Schwi Beschleunigun			harmonische Schwing Geschwindigkeit			harmonische Schwi Auslenkung	

F _G µ _G F _N	Gleitreibungskonstante	F _H ր _H F _N			$x = \frac{1}{2} \cdot a \cdot t^2$ $[\mathbf{m} = \frac{\mathbf{m}}{\mathbf{s}^2} \cdot \mathbf{s}^2]$		$F = m \cdot a$ $[N = kg \cdot \frac{m}{s^2}]$
<u># 8</u>	$Antwort$ $a = \frac{v^2}{r}$	<u># 7</u>	$Antwort$ $\eta = rac{P_{ m out}}{P_{ m in}}$	<u># 6</u>	$Antwort$ $P = F \cdot v$	<u># 5</u>	$Antwort$ $\mu_{ m H}= an lpha$
	$a = \frac{1}{r}$ $\left[\frac{m}{s^2} = \frac{\frac{m^2}{s^2}}{m}\right]$		$\eta = \overline{P_{ m in}}$		$\begin{bmatrix} W = N \cdot \frac{m}{s} \\ = kg \frac{m}{s^2} \cdot \frac{m}{s} \\ = kg \frac{m^2}{s^3} \end{bmatrix}$	bung nicht i	r gegebenes $\mu_{\rm H}$, ab dem die Haftreimehr zum Halten ausreicht, also das angt zu "rutschen"
# 12	Antwort	<u># 11</u>	Antwort	# 10	Antwort		Antwort
T: Krei	$\omega = \frac{2\pi}{T}$ $\left[s^{-1} = \frac{\text{rad}}{s}\right]$ isfrequenz (Umlaufzeit)		$E_{\text{kin}} = \frac{1}{2} \cdot m \cdot v^2$ $\left[J = \text{kg} \cdot \frac{\text{m}^2}{\text{s}^2} \right]$		$E_{\text{pot}} = m \cdot g \cdot h$ $\left[J = \text{kg} \cdot \frac{\text{m}}{\text{s}^2} \cdot \text{m} \right]$ $= \text{kg} \frac{\text{m}^2}{\text{s}^2}$		$W = F \cdot s$ $\left[J = N \cdot m \right]$ $= kg \frac{m}{s^2} \cdot m$ $= kg \frac{m^2}{s^2}$
# 16	Antwort	# 15	Antwort	<u># 14</u>	Antwort	<u># 13</u>	Antwort
	$y(t) = y_0 \cdot \sin \omega t$		$v(t) = \omega \cdot y_0 \cdot \cos \omega t$ $\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{s}^{-1} \cdot \mathbf{m}\right]$. ,	$= -\omega^2 \cdot y_0 \cdot \sin \omega t = -\omega^2 \cdot y(t)$ $= s^{-2} \cdot m$	D: Feder	$\omega = \sqrt{\frac{D}{m}}$ $\left[s^{-1} = \sqrt{\frac{\frac{N}{m}}{kg}} \right]$ rkonstante

2

Antwort

1

Antwort

4

Antwort

3

Antwort

Physik	# 17	Mechanik	Physik	# 18	Mechanik	Physik	# 19	Mechanik	Physik	# 20	Mechanik
potentielle Energie Hook'sche Feder		Kraft Hook'sche Feder			Inelastischer Stoß			Elastischer Stoß			
Physik	# 21	Mechanik	Physik	# 22	Mechanik	Physik	# 23	Mechanik	Physik	# 24	Mechanik
	Drehimpuls			che Energie Dre			Impuls			reisfrequenz Fade	
Physik	# 25	Mechanik	Physik	# 26	Mechanik	Physik	# 27	Mechanik	Physik	# 28	Mechanik
	Trägheitsmoment Sta Stabende	ab um	Trä	gheitsmoment S Schwerpunk		Träg	heitsmoment Voll	lzylinder	Träg	gheitsmoment Ho	hlzylinder
Physik	# 29	Mechanik	Physik	# 30	Mechanik	Physik	# 31	Mechanik	Physik	# 32	Mechanik
	Transformation Geschwindigkeit Winkelgeschwindig	_	Tr	ägheitsmoment	Kugel		leeres Duplika	t		Leistung Transla	ation

# 20	Antwort	# 19	Antwort	# 18	Antwort	<u># 17</u>	Antwort	
	$v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$ $v_2' = \frac{(m_2 - m_1)v_2 + 1m_1v_1}{m_2 + m_1}$		$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$		$F = D \cdot x$ $\left[N = \frac{N}{m} \cdot m \right]$		$W = \frac{1}{2} \cdot D \cdot x^2 = E_{\text{pot}}$ $\left[J = \frac{N}{m} m^2 \right]$ $= \frac{\log \frac{m}{s^2}}{m} \cdot m^2$ $= \log \frac{m^2}{s^2}$	
# 24	Antwort	<u># 23</u>	Antwort	<u># 22</u>	Antwort	# 21	Antwort	
Nur bei $lpha$ -	$\omega = \sqrt{\frac{g}{l}}$ $\left[s^{-1} = \sqrt{\frac{m}{s^2} \cdot \frac{1}{m}}\right]$ $= \sqrt{s^{-2}} = s^{-1}$ $< 5^{\circ}$		$p = m \cdot v$ $\left[\frac{\text{kg m}}{\text{s}} = \text{kg} \cdot \frac{\text{m}}{\text{s}} \right]$		$E_{kin} = \frac{1}{2} \cdot \vartheta \cdot \omega^{2}$ $\left[J = kg \ m^{2} \cdot s^{-2} \right]$ $= kg \frac{m^{2}}{s^{2}}$		$L = \vartheta \cdot \omega$ $\left[\text{N m s} = \text{kg m}^2 \cdot \text{s}^{-1} \right]$ $\text{kg} \frac{\text{m}}{\text{s}^2} \text{m s} = \text{kg} \frac{\text{m}^2}{\text{s}}$ $\text{kg} \frac{\text{m}^2}{\text{s}} = \text{kg} \frac{\text{m}^2}{\text{s}} \right]$	
# 28	Antwort	<u># 27</u>	Antwort	<u># 26</u>	Antwort	<u># 25</u>	Antwort	
	$\vartheta = m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$	r: Durchr	$\vartheta = \frac{1}{2} \cdot m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$ messer des Zylinders	l: Länge	$\vartheta = \frac{1}{12} \cdot m \cdot l^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$ des homogenen Stabes	l: Länge	$\vartheta = \frac{1}{3} \cdot m \cdot l^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$ des homogenen Stabes	
# 32	Antwort	<u># 31</u>	Antwort	<u># 30</u>	Antwort	<u># 29</u>	Antwort	
J	$P = F \cdot v = M \cdot \omega$ $\left[W = N \cdot \frac{m}{s} = Nm \cdot s^{-1} \right]$ $kg \frac{m^2}{s^3} = kg \frac{m}{s^2} \cdot \frac{m}{s}$				$\vartheta = \frac{2}{5} \cdot m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$		$v = r \cdot \omega$ $\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{m} \cdot \mathbf{s}^{-1}\right]$	

Physik	# 33	Mechanik	Physik	# 34	Mechanik	Physik	# 35	Mechanik	Physik	# 36	Mechanik
Drehmoment		Krei	Kreisfrequenz Drehschwingung			Rückstellmoment Drehschwingung			Präzessionsfred	uenz	
Physik	# 37	Mechanik	Physik	# 38	Mechanik	Physik	# 39	Mechanik	Physik	# 40	Mechanik
	Satz von Steine			Gravitationkonst			ravitationspote			pot. Energie Gra	
Physik	# 41	Mechanik	Physik	# 42	Mechanik	Physik	# 43	Mechanik	Physik	# 44	Mechanik
	Gravitationfeldstä	rke		Gravitationskr	raft	Erhalt	ungssätze der k Physik	lassischen	Corioliskraft		
Physik	# 45	Mechanik	Physik	# 46	Mechanik	Physik	# 47	Mechanik	Physik	# 48	Deformation
	Keplersche Geset	ze		Planet auf Kreis	bahn	Gebun	dener und unge Zustand	bundener		Elastizitätsmo	odul

$\omega_{p} = \frac{M}{L} = \frac{F \cdot r \cdot \sin \varphi}{\vartheta \cdot \omega_{r}}$ $\left[s^{-1} = \frac{Nm}{N \text{ m s}} = \frac{N \cdot m}{\text{kg m}^{2} \cdot s^{-1}}\right]$	$M = -D_{\varphi} \cdot \varphi$ $[\text{Nm} = \text{Nm?}]$ $D_{\varphi}: \text{Torsionsfederkonstante}$ $\varphi: \text{Verdrillungswinkel}$	$\omega = \sqrt{\frac{D}{\vartheta}}$ $\left[s^{-1} = \sqrt{\frac{N}{m} \cdot \frac{1}{\text{kg m}^2}}\right]$	$M = F \cdot r$ $\left[\text{Nm} = \text{N} \cdot \text{m} \right]$
# 40	# 39 Antwort $\varphi = -\frac{\gamma \cdot m}{r}$ $\left[\frac{m^2}{s^2} = \frac{\frac{N m^2}{kg^2} \cdot kg}{m} - N \frac{m}{kg} = kg \frac{m}{s^2} \frac{m}{kg}\right]$	# 38	# 37 $ \theta = m \cdot a^2 + \vartheta_{\mathrm{SP}} $ $ \left[\mathrm{kg} \ \mathrm{m}^2 = \mathrm{m}^2 \cdot \mathrm{kg} + \mathrm{kg} \ \mathrm{m}^2 \right] $ $ \theta_{\mathrm{SP}} \text{Trägheitsmoment durch Schwerpunkt} $ $ \theta \text{Trägheitsmoment durch neue Achse,} $ $ \ \ \mathrm{zur} \ \mathrm{Achse} \ \mathrm{von} \ \vartheta_{\mathrm{SP}} $ a Abstand der beiden Achsen
# 44	# 43 Antwort • Energien • Impulse • Drehimpulse • elektrische Ladungen	# 42 Antwort $F_{G} = -\gamma \cdot \frac{m_1 m_2}{r^2}$ $\left[N = \frac{\text{N m}^2}{\text{kg}^2} \cdot \frac{\text{kg}^2}{\text{m}^2} \right]$	# 41 Antwort $g = -\frac{\gamma \cdot M}{r^2}$ $\left[\frac{m}{s^2} = \frac{\frac{N \text{ m}^2}{\text{kg}^2} \cdot \text{kg}}{m^2} \right]$ $= \frac{N}{\text{kg}} = \frac{\text{kg} \frac{m}{s^2}}{\text{kg}}$ M : Planetenmasse
# 48	# 47	$\frac{r_{ m p}^3}{T_{ m p}^2}=\gamma rac{m_{ m s}}{4\pi^2}=const.$ $r_{ m p}$: Radius Planetenbahn $r_{ m p}$: Umlaufzeit Planet $m_{ m s}$: Masse der Sonne	 # 45 Antwort Planeten auf Ellipsen mit Sonne im gemeinsamen Brennpunkt Radiusvektor überstreicht in gleicher Zeit gleiche Fläche: ΔA/Δt = const Umlaufzeit T_{1,2}, große Halbachse a_{1,2} zweier Planeten: T²/T²/2 = a³/a³/2

34

Antwort

33

Antwort

36

Antwort

35

Antwort

Physik	# 49	Deformation	Physik	# 50	Deformation	Physik	# 51	Deformation	Physik	# 52	Deformation
	${ m Zugfestigke}$			Hooksches Gesetz		relative Längenänderung			Poisson-Zahl		
Physik	# 53	Deformation	Physik	# 54	Deformation	Physik	# 55	Deformation	Physik	# 56	Deformation
	Druck			Kompressibi			Kompressions			Scherspann	
Physik	# 57	Deformation	Physik	# 58	Deformation	Physik	# 59	Deformation	Physik	# 60	Deformation
	Torsionskonst dünnwandiges			Torsionskons Vollstab		Drehmoment Torsion			nung eines Federkonsta		
Physik	# 61	Deformation	Physik	# 62	Deformation	Physik	# 63	Deformation	Nutzungshinweis	# 64	Lizenz
	potentielle End Dehnarbei			Energiedichte D) ehnung	Hinweise zur Karteile Die Karten w Beteiligten nach Gewissen erstelle und Klausurge keine Garantie			arteilernka rten wurden nach beste erstellt, für usurgelinge	arten: n von allen m Wissen und Fehlerfreiheit n kann aber	

# 92 Antwort	# 01 Allowort	# 50 Alltwort	# 49 Alltwort
$\mu = \left \frac{\frac{\Delta d}{d}}{\frac{\Delta l}{l}}\right $ Querkontraktion, Dicke nimm t \bot zur Dehnung ab.	$\varepsilon = \frac{\Delta l}{l_0}$ $\left[1 = \frac{\mathbf{m}}{\mathbf{m}}\right]$	$\sigma = E \cdot arepsilon \ \left[rac{ ext{N}}{ ext{m}^2} = rac{ ext{N}}{ ext{m}^2} \cdot 1 ight]$	$\sigma = \frac{F}{A}$ $\left[\frac{N}{m^2} = \frac{N}{m^2}\right]$
# 56	# 55	# 54 Antwort $\frac{\Delta V}{V} = -\kappa p$ $\Rightarrow \kappa = \frac{3}{E}(1 - 2\mu)$ $\left[\frac{1}{Pa} = \frac{1}{\frac{N}{m^2}}\right]$	# 53
# 60 Antwort $D = \frac{E \cdot A}{l}$ $\left[\frac{N}{m} = \frac{\frac{N}{m^2} \cdot m^2}{m}\right]$	# 59	# 58	# 57
# 64 Antwort "THE BEER-WARE LICENSE": Moritz Augsburger (and others, see https://github.com/maugsburger/exph) wrote this file. As long as you retain this notice you can do whatever you want with this stuff. If we meet some day and you think this stuff is worth it, you can buy me a beer or a coffee in return.	# 63 Antwort $w = \frac{G}{2}\alpha^{2}$ $\left[\frac{J}{m^{3}} = \frac{N}{m^{2}}\right]$ $= \frac{N m}{m^{3}}$	# 62 Antwort $w = \frac{W}{V} = \frac{E}{2}\varepsilon^{2}$ $\left[\frac{J}{m^{3}} = \frac{N}{m^{2}}\right]$ $= \frac{N m}{m^{3}}$	# 61

50

Antwort

49

Antwort

52

Antwort

51

Antwort