

planetmath.org

Math for the people, by the people.

uniform continuity

Canonical name UniformContinuity
Date of creation 2013-03-22 16:43:15
Last modified on 2013-03-22 16:43:15

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771) Entry type Definition Classification msc 54E15

Related topic UniformlyContinuous

Related topic UniformContinuityOverLocallyCompactQuantumGroupoids

Defines uniformly continuous

In this entry, we extend the usual definition of a uniformly continuous function between metric spaces to arbitrary uniform spaces.

Let $(X, \mathcal{U}), (Y, \mathcal{V})$ be uniform spaces (the second component is the uniformity on the first component). A function $f: X \to Y$ is said to be uniformly continuous if for any $V \in \mathcal{V}$ there is a $U \in \mathcal{U}$ such that for all $x \in X$, $U[x] \subseteq f^{-1}(V[f(x)])$.

Sometimes it is useful to use an alternative but equivalent version of uniform continuity of a function:

Proposition 1. Suppose $f: X \to Y$ is a function and $g: X \times X \to Y \times Y$ is defined by $g(x_1, x_2) = (f(x_1), f(x_2))$. Then f is uniformly continuous iff for any $V \in \mathcal{V}$, there is a $U \in \mathcal{U}$ such that $U \subseteq g^{-1}(V)$.

Proof. Suppose f is uniformly continuous. Pick any $V \in \mathcal{V}$. Then $U \in \mathcal{U}$ exists with $U[x] \subseteq f^{-1}(V[f(x)])$ for all $x \in X$. If $(a,b) \in U$, then $b \in U[a] \subseteq f^{-1}(V[f(a)])$, or $f(b) \subseteq V[f(a)]$, or $g(a,b) = (f(a),f(b)) \in V$. The converse is straightforward.

Remark. Note that we could have picked U so the inclusion becomes an equality.

Proposition 2. If $f: X \to Y$ is uniformly continuous, then it is continuous under the uniform topologies of X and Y.

Proof. Let A be open in Y and set $B = f^{-1}(A)$. Pick any $x \in B$. Then y = f(x) has a uniform neighborhood $V[y] \subseteq A$. By the uniform continuity of f, there is an entourage $U \in \mathcal{U}$ with $x \in U[x] \subseteq f^{-1}(V[y]) \subseteq f^{-1}(A) = B$. \square

Remark. The converse is not true, even in metric spaces.