Complexidade de Algoritmos

Algoritmos Envolvendo Seqüências e Conjuntos

Prof. Osvaldo Luiz de Oliveira

Estas anotações devem ser complementadas por apontamentos em aula.

Sequências e Conjuntos

- Conjunto: coleção finita de elementos distintos.
- Sequência: coleção finita e ordenada de elementos.

Obs.: se não especificarmos nada em contrário, sequências serão de elementos distintos.

Ordenação

KNUTH, D. E.. The Art of Computer Programming. Vol 3, Sorting and Searching.

Reading: Addison-Wesley, 1997, é uma "enciclopédia" sobre algoritmos de ordenação e busca.

Diferentes reduções, diferentes algoritmos

Insertion Sort

I) Interface
InsertionSort (A, n)

II) Significado

Ordena "in-loco" o vetor A de n elementos.

Insertion Sort

III) Redução

Inserir elemento A[n] na posição dele.

InsertionSort

Comandos:

```
InsertionSort (A, n - 1);

i := n;

enquanto (i \ge 2 \text{ e A } [i] > A [i - 1])

{

troca := A[i]; A[i] := A[i - 1]; A[i - 1] := troca;

i := i - 1

}
```

IV) Base

A redução é de 1 em 1. Escolhemos base para n = 1.

Comandos (para ordenar um vetor de 1 elemento):

Nenhum comando é necessário.

O algoritmo

```
Algoritmo InsertionSort (A, n)
Entrada: vetor A de n elementos, n \ge 1.
Saída: o vetor A, ordenado "in-loco".
   se (n > 1)
       InsertionSort (A, n - 1);
       i := n;
       enquanto ( i \ge 2 e A [i] > A [i - 1] )
          troca := A[i]; A[i] := A[i-1]; A[i-1] := troca;
          i := i - 1
```

Complexidade

```
Algoritmo InsertionSort (A, n)
                                                T(n)
Entrada: vetor A de n elementos, n \ge 1.
Saída: o vetor A, ordenado "in-loco".
   se (n > 1)
                                         T(n-1)
                                                                  n - 1
       InsertionSort (A, n - 1);
       i := n;
       enquanto ( i \ge 2 e A [i] > A [i - 1] )
          troca := A[i]; A[i] := A[i-1]; A[i-1] := troca;
          i := i - 1
```

Concluindo

$$T(n) = T(n-1) + n - 1$$

 $T(1) = 0$

Resolvendo:

$$T(n) = O(n^2).$$

Ilustrando

Selection Sort

I) Interface
SelectionSort (A, n)

II) Significado

Ordena "in-loco" o vetor A de n elementos.

III) Redução

Continuar ...

Ilustrando

SelectionSort (A, 8)

SelectionSort (A, 7)

SelectionSort (A, 6)

• • •

Bubble Sort

I) Interface
BubbleSort (A, n)

II) Significado

Ordena "in-loco" o vetor A de n elementos.

III) Redução

Continuar ...

Ilustrando

SC

6

15

Merge Sort

I) Interface

MergeSort (A, i, f)

II) Significado

Ordena "in-loco" o vetor A do índice i até o índice f.

III) Redução

Continuar ...

Ilustrando

Quick Sort

I) Interface
QuickSort (A, i, f)

II) Significado

Ordena "in-loco" o vetor A do índice i até o índice f.

III) Redução

Continuar ...

Obs.: o algoritmo QuickSort foi originalmente proposto por: HOARE, C. A. R. Quicksort, **Computer Journal** 5 (1), 1962 10-15.

Ilustrando

Partição

Outros: proponha outras reduções

Resumo

- Insertion, Selection
 - pior, melhor e médio: $O(n^2)$.
- Bubble
 - pior: $O(n^2)$.
 - melhor: O(n).
 - médio: $O(n^2)$.

Resumo

Merge

- pior, melhor e médio: O(n log n).

• Quick

- pior: $O(n^2)$.

- melhor: $O(n \log n)$.

- médio: $O(n \log n)$.

Quick Sort com mediana para pivô

```
Algoritmo QuickSort (A, i, f)
Entrada: vetor A e inteiros i \ge 1, f \ge 1.
Saída: o vetor A, ordenado "in-loco".
   se (i < f)
        pivô := Mediana (A, i, f); // a variável "pivô" recebe o índice do elemento pivô.
        piv\hat{o} := Partição (A, i, f, piv\hat{o}); // "pivô" recebe o índice do pivô após a partição.
        QuickSort (A, i, pivô - 1);
        QuickSort (A, piv\hat{o} + 1, f)
```

Complexidade (pior, melhor e média)

Seja
$$n = f - i + 1$$
.

$$T(n) = 2 T(n/2) + O(n)$$

$$T(0) = T(1) = 0$$

Logo:

$$T(n) = O(n \log n).$$

Cota inferior para ordenação

• Algoritmos baseados em comparação.

• Prove que qualquer algoritmo de ordenação baseado em comparação tem complexidade mínima de Ω ($n \log n$).

Modelo de computação: árvore de decisão

$$n = 1 e n = 2$$

$$n = 1: \{ x_1 \}$$

$$n = 2$$
: { x_1, x_2 }

$$n = 3$$

$$n = 3$$
: { x_1, x_2, x_3 }

Quantidade de folhas

n	Quantidade
1	1
2	2
3	6
• • •	
n	n!
	Permutação de <i>n</i> elementos.

Concluindo

Altura mínima da árvore de decisão:
 log (n!).

Aproximação de Stirling.

• $log(n!) = \Omega(n log n)$.

• Logo a cota inferior é Ω ($n \log n$).

Ordenação em tempo linear

• Algoritmos baseados em propriedades especiais dos elementos a ordenar.

• Bucket Sort, Counting Sort e Radix Sort.

Bucket Sort

Pressuposição: elementos a ordenar são inteiros no intervalo de 1 a *k*.

Obs.: não há repetição de elementos.

Idéia

Alocar um *bucket* (vetor B) de tamanho igual a k.

A
$$9 7 3 1 10 6 5 2$$

Iniciar elementos de B com 0.

B $0 0 0 0 0 0 0 0 0 0 0 0$

1 2 3 4 5 6 7 8 9 10

A $1 2 3 4 5 6 7 8$

A $1 2 3 5 6 7 8 9 10$

A $1 2 3 4 5 6 7 8$

O algoritmo

```
Algoritmo BucketSort (A, n, k)
Entrada: vetor A de n elementos inteiros situados no intervalo de 1 até k.
Saída: o vetor A ordenado.
Usa: vetor auxiliar B (bucket) de k elementos.
   para i := 1 até k faça B [i] := 0;
   para i := 1 até n faça B [A[i]] := 1;
  i := 1;
   para i := 1 até k faça
      se(B[i] = 1)
         A[j] := i; j := j + 1
```

Complexidade

```
O(k)
para i := 1 até k faça B[i] := 0;
para i := 1 até n faça B [A[i]] := 1;
j := 1;
                                   O(k)
para i := 1 até k faça
    se(B[i] = 1)
       A[j] := i; j := j + 1
```

Concluindo

$$T(n, k) = O(n + 2 k) = O(n + k).$$

Se k = O(n) então T(n) = O(2 n) = O(n).

Se k >>> n então as complexidades de tempo e de espaço do algoritmo podem ser grandes.

Counting Sort

Pressuposição: elementos a ordenar são inteiros, possivelmente repetidos, no intervalo de 1 a *k*.

Idéia

Determinar, para cada elemento x, a quantidade de elementos que é menor ou igual a x.

Fonte: CORMEN, T.; LEISERSON, C.; RIVEST, R.; STEIN, C. Introduction to Algorithms. New York: MIT Press, 2004.

O algoritmo

```
Algoritmo CountingSort (A, B, n, k)
Entrada: vetor A de n elementos inteiros situados no intervalo de 1 até k.
Saída: vetor B de n elementos.
Usa: vetor auxiliar C de k elementos.
   para i := 1 até k faça C[i] := 0;
   para i := 1 até n faça C[A[i]] := C[A[i]];
  // Neste ponto cada C [i] contém a quantidade de elementos igual a i.
   para i := 2 até k faça C[i] := C[i] + C[i-1];
   // Neste ponto cada C [i] contém a quantidade de elementos menor ou igual a i.
   para i := n até 1 passo – 1 faça
      B [C [A[i]]] := A[i];
      C[A[i]] := C[A[i]] - 1
```

Complexidade

```
para i := 1 até k faça C [i] := 0;

para i := 1 até n faça C [A[i]] := C [A[i]];

para i := 2 até k faça C [i] := C [i] + C [i - 1];

O(k)

para i := n até 1 passo - 1 faça

{

B [ C [ A[i] ] ] := A[i];

C [ A[i] ] := C [ A[i] ] - 1
}
```

Concluindo

$$T(n, k) = O(n + k).$$

Se k = O(n) então T(n) = O(n).

Se k >>> n então as complexidades de tempo e de espaço do algoritmo podem ser grandes.

Este algoritmo é **estável**: elementos com o mesmo valor aparecerão na saída na mesma ordem em que estavam na entrada.

Radix Sort

Idéia: ordenar o conjunto dígito por dígito, do menos significativo ao mais significativo.

329 457 657 839	ասվիշ	720 355 436 457	ուսո <u>վի</u> թ.	720 329 436 839	 329 355 436 457
436 720 355		657 329 839		355 457 657	657 720 839

Fonte: CORMEN, T.; LEISERSON, C.; RIVEST, R.; STEIN, C. Introduction to Algorithms. New York: MIT Press, 2004.

O algoritmo

```
Algoritmo RadixSort (A, n, d)

Entrada: vetor A de n elementos inteiros com d dígitos.

Saída: vetor A ordenado.

{
    para i := 1 até d faça

        Usar um algoritmo de ordenação estável para ordenar o vetor A pelo dígito i
}
```

Complexidade

- Depende do algoritmo estável usado na ordenação.
- Suponhamos usar o CountingSort.
 - Se cada dígito está no intervalo de 1 até k então a ordenação do i-ésimo dígito é igial a O(n + k).
 - Logo T(n, d, k) = (d n + d k).
 - Se d for constante (d <<<< n) e k = O(n) então T(n) = O(n).

Busca

• Linear (em um vetor não ordenado - visto): O(n).

• Binária (em um vetor ordenado - visto): O(log n)

Variações de busca binária (ver lista de exercícios)

- Busca em uma seqüência cíclica.
- Busca de um índice i tal que i = A[i].
- Busca em uma sequência de tamanho não conhecido.
- Cálculo de raízes de equações (método de Bolzano).

Estatísticas de ordem

Máximo e mínimo

• Máximo: $\Theta(n)$.

• Mínimo: $\Theta(n)$.

• Máximo e mínimo simultaneamente (ver lista de exercícios): aprox. 3n/2 comparações em vez de 2n comparações.

Seleção do k-ésimo menor

(caso médio linear)

Seleção do k-ésimo menor

(pior caso linear)

- S: uma coleção de *n* elementos, possivelmente repetidos.
- k: um inteiro $1 \le k \le n$.
- A idéia é encontrar um elemento m que particione S em:
 - S_1 : coleção de elementos menores do que m;
 - S_2 : coleção de elementos iguais a m;
 - S_3 : coleção de elementos maiores do que m.

Obs.: este algoritmo foi originalmente proposto por:

BLUM, M.; FLOYD, R.W.; PRATT, V.; RIVEST, R. and TARJAN, R. Time bounds for selection, **J. Comput. System Sci.** 7 (1973) 448-461.

Como achar *m*?

- Dividir S em blocos de 5 elementos cada.
- Cada bloco de 5 elementos é ordenado e a mediana de cada bloco é utilizada para formar uma coleção M.
- Agora M contém $\lfloor n/5 \rfloor$ elementos e nós podemos achar a mediana m de M cinco vezes mais rápido.

Como achar *m*?

Particionar S em subcoleções S_1 , S_2 e S_3 tendo m como pivô

$$S_1 = \{ 09, 11, 13, 10, 13, 10, 10, 12, 17, 12, 13, 14, 15 \}$$

$$S_2 = \{ 18, 18, 18 \}$$

$$S_3 = \{ 22, 22, 21, 25, 24, 30, 32, 25, 22, 30, 30, 36, 24, 22, 28, 52, 45, 39, 37 \}$$

$$n_1 = |S_1| = 13$$

 $n_2 = |S_2| = 3$
 $n_3 = |S_3| = 19$

O Algoritmo

```
Algoritmo Seleção (S, n, k)
Entrada: S, coleção de n elementos, possivelmente repetidos e um inteiro 1 \le k \le n.
Saída: retorna o k-ésimo menor elemento da coleção S.

{
    se (n < 50)
    {
        Ordenar S (qualquer algoritmo visto ou na "força bruta").
        Retornar o k-ésimo menor elemento em S.
    }
    senão
    {
```

Dividir S em $\lfloor n/5 \rfloor$ blocos de 5 elementos (o último pode ter menos do que 5 elementos). Ordenar cada bloco de 5 elementos (qualquer algoritmo). Seja M o conjunto das medianas de cada bloco de 5 elementos.

 $m := \text{Seleção}(M, \lfloor n/5 \rfloor, \lfloor n/10 \rfloor)$. (m é a mediana de M).

Particionar S usando *m* como pivô em:

- S_1 : coleção de elementos menores do que m;
- S₂: coleção de elementos iguais a *m*;
- S_3 : coleção de elementos maiores do que m.

Sejam n_1 , n_2 e n_3 as quantidades de elementos em S_1 , S_2 e S_3 .

```
se (k \le n_1) retornar Seleção (S_1, n_1, k)
senão
se (k \le n_1 + n_2) retornar m
senão retornar Seleção (S_3, n_3, k - n_1 - n_2)
```

Complexidade

```
se (n < 50)
                                                                O(1)
    Ordenar S (qualquer algoritmo ou na "força bruta")
    Retornar o k-ésimo menor elemento em S.
 senão
                                                                                                         O(n)
     Dividir S em \lfloor n/5 \rfloor blocos de 5 elementos (o último pode ter menos do que 5 elementos).
     Ordenar cada bloco de 5 elementos (qualquer algoritmo).
      Seja M o conjunto das medianas de cada bloco de 5 elementos.
                                                                             O(n)
     m := \text{Seleção}(M, \lfloor n/5 \rfloor, \lfloor n/10 \rfloor). (m é a mediana de M).
                                                                               T(n/5)
      Particionar S usando m como pivô em:
         - S1: coleção de elementos menores do que m;
         - S2: coleção de elementos iguais a m;
                                                                                         O(n)
         - S3: coleção de elementos maiores do que m.
      Sejam n1, n2 e n3 as quantidades de elementos em S1, S2 e S3.
     se (k \le n1) retornar Seleção (S1, n1, k)
                                                                 T(3n/4)
     senão
         se (k \le n1 + n2) retornar m
                                                                        T(3n/4)
         senão retornar Seleção (S3, n3, k - n1 - n2)
```

Complexidade

$$T(n) = T(n/5) + T(3n/4) + O(n)$$
, se $n \ge 50$

$$T(n) = O(1)$$
, se $n < 50$

Resolvendo (método da substituição)

Teorema

T(n) = O(n), ou seja, $T(n) \le a n$, para alguma constante a > 0 e $n \ge N$.

Bases:

Para n < 50, T(n) = c n, para alguma constante c > 0.

Para satisfazer o teorema, T(n) = c $n \le a$ n. Logo, $a \ge c$ (primeira restrição). Esta restrição é plenamente factível.

Hipóteses de indução:

 $T(n/5) \le a n/5 \text{ e que } T(3n/4) \le a 3n/4.$

Prova de que a validade das hipóteses implicam na validade do teorema.

$$T(n) = T(n/5) + T(3n/4) + c$$
 $n \le a$ $n/5 + a$ $3n/4 + c$ $n = a$ n $19/20 + c$ n .

Para que provemos temos que chegar à conclusão de que $T(n) \le a n$.

Ou seja, $T(n) \le a \ n \ 19/20 + c \ n \le a \ n$.

Isto é verdade para a \geq 20 c (segunda restrição, que também é factível e não conflita com a primeira).

Por que divisão em blocos de 5 elementos?

• $1/5 + 3/4 = 19/20 \le 1$. Assim: $T(n/5) + T(3n/4) \le T(n)$.

• Você poderia propor outras divisões?

Por que n < 50 para a base do algoritmo?

- A quantidade máxima de elementos em S_1 é $n-3\lfloor n/10 \rfloor$.
- Para $n \ge 50$ esta quantidade é menor que 3n/4.

n	$n-3\lfloor n/10 \rfloor$	<i>3n</i> /4
49	37	36.7
50	35	37.5
59	44	44.25