pomin !

PROTOCOL

of the Third Session of the Joint US-USSR Working Group on Electrometallurgy

I. INTRODUCTION

1. This session of the Joint US-USSR Working Group on Electrometallurgy took place in the USSR from June 2-13, 1975. The specific meeting places, dates, itinerary, etc. are given in Appendix 1.

The Agenda was as follows:

- a. Reports by the chairmen of the Task Forces on the work done in their specific fields of electrometallurgy on agreed subjects of the program from May 1974 to May 1975;
- b. Discussion, definition and signing of a joint program of work on the subject: "Joining of Materials in the Solid State", approved by the Joint Commission at their meeting in November, 1974;
- c. Brief presentation of new problems for further cooperative work in electrometallurgy;
 - d. Other questions that might arise.
- 2. The composition of the USSR working group is given in Appendix 2, and the composition of the US working group is given in Appendix 3.
- 3. In Moscow, on June 2 and 3, the two groups reviewed the progress in carrying out the joint work to date. Reports were made on the following original subjects of the program:

State Dept. declassification & release instructions on file

- Electron beam evaporation of metallic and non-metallic materials in vacuum (by Messrs. Movchan and Bunshah);
- Electro-slag technology (by Messrs. Emelyanenko and Flemings);
- Plasma are melting of metallic materials (by Messrs. Grigorenko and Wasilewski);
- Research and development of general and special purpose welding materials (by Messrs. Pokhodnya and Savage).

Also discussed in general terms were the two new topics previously agreed upon and approved, namely, cryogenic testing of materials (by Messrs. Yushchenko and Van Echo) and Joining of Materials in the Solid State (by Messrs. Kashin and Heckel). These two topics were discussed in detail at later meetings of the principal investigators during the various visits, and the conclusions are given elsewhere in this Protocol.

A discussion took place on the subject of possibly expanding cooperation and adding new topics to the program of cooperation. Both sides recognized that the present program would have to be essentially completed before expanding it further, but proposals for expansion must begin soon (see "Conclusions and Agreements" below).

4. During the period of June 4 to 12 the United States delegation visited industrial establishments, laboratories of scientific research institutes and institutions of higher education for more detailed discussion of their cooperation and a study of their accomplishments in the field of electrometallurgy (see Appendix 1). The Forking Groups met again in Moscow on June 13 to discuss and finalize

agreements on a series of problems and details of the program of work.

5. Both sides noted the deep mutual interest existing in the discussion of, and agreements on, all the subjects and the absence of significant differences of opinion, as well as the mutual cooperation in arriving at conclusions and agreements.

II. CONCLUSIONS AND AGREEMENTS ON THE COOPERATIVE TECHNICAL WORK

(Note: In the following paragraphs, the numbers refer to the detailed items listed in the Appendices of the Second Protocol.)

A. Both sides took note of the following status of work completion in reviewing the cooperative work done:

Electron-beam evaporation of metallic and non-metallic-materials in vacuum. Work on Part I of the subject is progressing in a satisfactory manner. The Soviet side has provided samples of condensates. The U.S. side will provide similar samples in October - November, 1975, during the Soviet visit to the U.S. A further exchange of samples will take place in 1975-1976.

Work under Part II is currently being delayed due to the absence of an agreed method of tool evaluation and a plan for the exchange of coated cutting tool bits. A plan is now under discussion and details will be arranged during the Soviet visit to the U.S. in October-November, 1975. It would be helpful if both sides exchanged proposals on methods of research on tool evaluation (for hard metal cutting tools) before September 1, 1975.

Also necessary is the additional clarification of the plan and time periods for carrying out Part III by Airco-Temescal.

Plasma arc melting of metallic materials. (Note:
G.M. Grigorenko has replaced V.T. Lakomski as the Soviet responsible person.) It was noted that by June 1, 1975 the
U.S. and the Soviet sides had accomplished the following:

Part I

Point 1 (a) The Paton Institute and Stanford University have initiated work on the solubility of nitrogen in iron-carbon and iron-oxygen systems.

Point 1 (b) The Paton Institute, the University of Michigan and Stanford University have prepared alloys and have started accumulating experimental data on the solubility of nitrogen in specific types of steels to check the previously developed methods of calculation.

Point 1 (c) Stanford University has initiated studies of the effect of surface-active elements (oxygen and sulphur) on the speed of solubility and diffusion of nitrogen in liquid metals.

Point 2 (a) The Paton Institute is carrying out research on the interaction between nitrogen in plasma and liquid binary alloys of iron with copper and silicon.

Iron-nickel alloys with carbon have been prepared for this study.

Point 2 (b) The Baikov Institute has prepared experimental test equipment and has initiated studies of the interaction between carbon and oxygen in liquid metals during plasma arc melting.

Point 2 (c) MIT (Professor King) together with the Union Carbide Company (Dr. Reed) have initiated study of the kinetics of interaction of nitrogen with liquid metal.

<u>Point 2 (d)</u> The Baikov Institute has carried out a calculated evaluation of the surface temperature of the bath and has provided the U.S. side with the results. Michigan University has started the development of a mathematical heat transfer model.

Part II

Point 1 The Paton Institute together with "Glavspetzstal" has developed technology of the preparation of steel electrodes with a low nitrogen content for plasma-arc remelting.

Point 2 The Paton Institute and "Glavspetzstal" are doing research on alloying steels with nitrogen in plasma-arc remelting in order to select the optimum parameters. At the agreed time (third quarter of 1975), a 300-500 kg ingot (approximately 0.7 percent N₂) will be forwarded to the U.S. side to fulfill Point 3 of the work plan. The U.S. side will inform the Soviet side of the best port of entry into the U.S. Point 3 Battelle is preparing to undertake this task on receipt of the ingot from the Soviet side.

Electro-slaq technology. In the absence of Professor Medovar, the Soviet responsible person, the main discussions were held with Dr. Yu. G. Emelyanenko.

In accordance with the program of joint work on electroslag technology, both sides agreed to conduct the necessary work aimed at creation of a mathematical model of the electroslag process.

Part I

Work on Part I is in progress on both sides and it is agreed that a joint Task Force meeting will be held in the U.S. in October-November, 1975, to review that work, to agree on procedures for cooperation and to estimate the time at which the work will be completed.

Part II

As regards Part II, Points 1, 2 and 3, the two sides have clarified the direction of the work to be done and confirmed the target time period in which the investigation is to be completed. Both sides have noted that it is essential to obtain extensive and reliable experimental data on the process of formation of segregates, and also associated thermophysical data, in order to develop the desired mathematical model. Within the period of two months, the Soviet side will provide the U.S. side with the initial data concerning investigations of the formation of segregations in electro-slag ingots. The U.S. side will, within the same two months, provide the Soviet side information on the modeling methods and of investigations of the segregation processes in ESR ingots. Further detailed discussions are planned on this subject at the joint Task Force meeting in October-November, 1975.

-7-

Part III

The two sides have arrived at the single opinion that the subject of Part III can be dealt with only after work on Parts I and II has been completed.

Research and development of general and special purpose welding materials.

Part I

The Soviet side transmitted and the U.S. side received, on the day of departure of the U.S. delegation from the U.S., proposals for the exchange of welding and base materials for research purposes. The U.S. side has established working relationships with the following firms: Chemetron, Hobart, Union Carbide, Airco and McKay and has obtained their permission to provide welding materials to the USSR and their willingness to participate in the program of experimentation. On the Soviet side, because of licensing agreements, the Soviets have requested permission from Chemetron to furnish the U.S. two types of flux-cored welding wire. The U.S. side will inform the Paton Instutute prior to August 1, 1975 of the materials and samples to be transmitted to the USSR and the estimated date of transmittal. The two sides will at the same time exchange information on the testing procedures to be used in testing the materials which they received.

The Paton Institute will, prior to the dates as agreed in Appendix 4, transmit to the RPI steel samples and welding materials for the experiments.

The Soviet side informed the U.S. side that, in 1974, the Paton Institute and Union Carbide exchanged representative welding materials. The Soviet side transmitted to that firm flux-cored wires of types IIII-AH4 and IIII-AH8 for welding in carbon dioxide gas and also both fused and ceramic fluxes.

Receipt is acknowledged on the U.S. side of fluxes
"Linde-60" and "Linde-80", a ceramic flux and type C-707
flux-cored wire for welding in carbon dioxide gas. The testing
of these welding materials will be completed in 1975 by both
sides.

Part II

The Paton Institute has prepared the following programs of experiments:

- (a) Development of experimental procedures for methods of predicting the hydrogen content in weldments made with type E-7018 electrodes. (see Appendix 4a).
- (b) The development of experimental techniques for methods of predicting low temperature characteristics of weldments with an austenite structure, as given in Appendix 4b.

These programs and plans have been transmitted to the U.S. side, for submittal to four potential researchers from the U.S. side for a determination of their interest in performing the work. The USSR will be informed of the names of the potential researchers prior to August 1, 1975.

The Paton Institute, during 1974-75, finished work on the subject: "Development of an experimental calculation method for predicting the amount, of porosity in weldments made with type E-7014 electrodes".

Part III

The U.S. and Soviet sides have initiated research of low temperature properties of construction materials.

Both sides determined the scope of research, the types of steels and alloys and agreed on basic low temperature tests.

In connection with the interest shown by such firms as Alcoa, International Nickel Company and Armco Steel to participate in carrying out the tests, both sides agreed to clarify Part III. This has been done and the details are given in Appendix 5 of this Protocol.

Prior to October 1, 1975, both sides will exchange the amount of materials necessary to carry out the experiments.

Joining of materials in the solid state. Both sides agreed on a program of work in this field (Appendix 6). This Appendix lists the subjects and work stages, the organizations and individuals being considered for carrying out the work on both sides, the time period assigned to the separate work stages, the target dates of the start and end of the various stages and the manner and forms in which their completion will be reported. The target period allotted for this work is 1975-1977.

III. NEW PROPOSALS

1. The U.S. side proposed the following additional subjects for joint study: "Analysis and development of test methods de-

-10-

signed to improve the service properties of ferritic steels and welded joints at elevated temperatures (ca.450° C)".

It was agreed that the U.S. side, by August 15, 1975, will present a program on this subject for consideration by the Soviet side.

- 2. The sides agreed to exchange, prior to August 15, 1975, proposals for new subjects for a further widening of cooperation in the field of electrometallurgy.
- 3. Some discussion was held with respect to including work on shaped ESR castings; for example, such products as large valve bodies for power plants. This possibility will be explored further by both sides for inclusion as stated in the previous paragraph.
- 4. The sides agreed that new projects agreed upon by both sides are subject to approval by the Joint US-USSR Commission. It was also agreed that the expansion of the program should be carried out as a function of the work achieved in the present program.

IV. EXCHANGE OF VISITS, SPECIALISTS AND SEMINARS FOR SELECTED PARTS OF THE PROGRAM

In accordance with the existing agreement to effect periodic exchanges of groups of specialists who would view the conduct of work, or adcomplish it, as appropriate, at its various stages and discuss the results achieved, as well as for an exchange of information, the U.S. side agreed to examine the possibility of receiving in the U.S. the following:

(a) A group of four to five specialists for a period of 15 days in October-November, 1975, on the subject of:

"Plasma arc Melting of Metallic Materials". The group would acquaint itself with methods, with equipment and with results of research conducted by the following organizations:

- ~ M.I.T. in Cambridge, Massachusetts;
- Union Carbide in Tarrytown, New York;
- Battelle in Columbus, Ohio;
- Michigan University in Ann Arbor, Michigan;
- Stanford University in Palo Alto, California.
- (b) A group of Soviet specialists on electron-beam evaporation and condensation, consisting of four persons, up to 15 days, during the October-November period, at the Oregon Graduate Center, UCLA, Manlabs and Airco-Temescal. The objectives of their vists would be to develop a single method of testing coated cutting tool bits and to agree on arrangements for the order of exchange and testing of the cutting tools and for the balance of the program.
- (c) Two specialists from the Paton Institute for a period of up to two months in the fourth quarter of 1975, for carrying out research (in accordance with Parts I and II of the subject) in the RPI and at Lehigh University. The problem of carrying out the work at ITTRI and at the Hobart and Airco firms will be explored by the U.S. side, and, before July 1, 1975, the Paton Institute will be informed of the results in this connection.
- (d) With the object of clarifying and defining further details on the subject of "Electro-slag Technology", the sides agreed on a meeting of three-four specialists in October-November, 1975, at M.I.T., and other locations to be agreed upon.

(e) As regards Part III, in the fourth quarter of 1975, three specialists from the Paton Institute, at Lehigh University, Armco, National Bureau of Standards and Alcoa, for a discussion of research methods in the conduct of low termperature tests.

The Soviet side agreed to examine the possibility of receiving in the USSR the following:

- (a) A group of up to five U.S. investigators in September-October, 1975, for a period of one week on the subject: "Joining of Materials in the Solid State".
- (b) A group of four to five specialists in the fourth quarter of 1975, in Kiev for a period of one to two weeks in the field of welding and welding materials.
- (c) A possible meeting in the USSR of U.S. specialists in the field of electro-slag technology, to be decided after the October-November meeting in the U.S.

The dates and places of the visits and the composition of the above delegations will be arranged by correspondence between the appropriate Task Force chairmen and responsible persons.

It was agreed that, at appropriate stages in the implementation of the work, limited seminars would be held in both countries on selected topics. The dates, locations and arrangements for these seminars would be decided as progress continues in the various parts of the program.

It was also agreed that in 1976-1977 a symposium would be held in Kiev in the Paton Institute to cover the work done and the results obtained.

Approved For Release 29,0009,06: CIA-RDP79-00798A900300070019-8 the

Joint US-USSR Working Group on Electrometallurgy during the period of May 15 to June 15, 1976 in Washington, D.C., for the purpose of examining the status of work done and to outline the direction of continued cooperation.

V. <u>COMMUNICÁTIONS</u>

Both sides have noted the delays in the receipt of correspondence (up to 2 1/2 months). The two sides have agreed to take appropriate measures to speed up the correspondence and transmittal of research materials.

VI. This Protocol has been prepared in the English and Russian languages and signed on June 13, 1975. The texts in both languages are equally authentic.

N.E. Promisel

Chairman
U.S. Side of the Joint
U.S. Working Count

US-USSR Working Group on Electrometallurgy S.P. Antonov Chairman

Chairman Soviet side of the Joint US-USSR Working Group on Electrometallurgy

Approved For Release 2000/09/06: CIA-RDP79-00798A000300670019-8

Itinerary for the visit of the

American delegation to the USSR

June 1, 1975, Sunday

Arrival in Moscow (Rossiya Hotel).

June 2, Monday.

Session of the Joint Working Group in Moscow on the premises of the Committee on Science and Technology.

Evening at the Stanislavsky and Nemirovich-Danchenko Theatre (ballet - Swan lake).

June 3, Tuesday

Continuation of the session of the Working Group.

Visit to Quality Alloy Experimental Plant.

Visit to Metallurgical Institute.

Visit to the Problems Laboratory of the Meat and Dairy Industry
Institute.

Visit to workshops and laboratories. Technical discussions.

Departure by train for Kiev.

June 4, Wednesday

Arrival in Kiev. Check into Dnepr Hotel.

Delegation received by the President of the Ukrainian Academy of Sciences, academician B. E. Paton (at the Presidium of the Academy of Sciences of the Uk.SSR).

Visit to the Rigidity Problems Institute of the AS (Academy of Sciences) of the Uk.SSR. (Wasilewski, Heckel).

Visit to the Casting Problems Institute of the AS of the UK.SSR (Flemings, Van Echo).

Technical discussions at the Electric Welding Institute.

June 5, Thursday

Discussions at the Electric Welding Institute.

Visit to the Rigidity Problems Institute (Stout, Van Echo).

Visit to the Kicv City Hospital (Promisel).

Continuation of technical discussions on boat during ride on the Dnepr.

Flight to Odessa. Check-in at Chernoye Morye Hotel.

Approved For Release 2000/09/06 : CIA-RDP79-00798A000300070019-8

June 6, Friday

Visit to Odessa Steel-Rolling Plant. Technical discussions with the plant director and in the workshops.

Visit to Odessa Opera Theater (ballet - Gisele).

June 7, Saturday

Sightseeing in Odessa. Visit to Odessa Catacombs.

Continuation of technical discussions with the directors of the Odessa Steel-Rolling Plant during boat trip on Black Sea.

June 8, Sunday

Work on Protocol of Third Session of Working Group.

Free time. Additional sightseeing in Odessa.

Flight to Donetsk. Check into Druzhba Hotel. Promisel and
Tatishchev remained in Odessa to work on English text of Protocol.

June 9, Monday

Visit to Special Electrometallurgy Problems Laboratory of the Donetsk Folytechnical Institute. Technical discussions in the laboratory.

Sightseeing in Donetsk.

Flight to Zaporozhye. Check into Zaporozhye Hotel.

Departure of Prof. Flemings by plane to Moscow and then on to U.S.

June 10, Tuesday

Arrival from Odessa of Messrs. Promisel and Tatishchev.

Visit to "Dneprospetsstal" Plant. Technical discussions with

chief plant engineer and in workshops.

Sightseeing in Zaporozhye and environs.

Flight to Leningrad. Check into Leningrad Hotel.

June 11, Wednesday

Sightseeing in Leningrad and environs.

Visit to S. M. Kirov Opera and Ballet theater (ballet - "The Legend of Love").

Approved For Release 2006/99/06: CIA-RDP79-00798A000300070019-8

June 12, Thursday

Visit to the Hermitage.

Visit to the Leningrad Polytechnical Institute.

Departure for Moscow.

June 13, Friday

Arrival in Moscow. Check into Rossiya Hotel.

Continuation of Session of Joint Working Group on premises of

Committee on Science and Technology.

Signing of the Protocol of the Third Session.

June 14, Saturday

Sightseeing in Moscow.

June 15, Sunday

Departure for U.S.

LIST

of members of the Soviet delegation

participating in the work of the Third

Session of the Joint Soviet-American

Working Group on Electrometallurgy

- S. P. Antonov Division Chief, Committee on Science and Technology,

 Doctor of Technical Sciences (Head of Delegation)
- I. K. Pokhodnya Chief Scientist-Secretary, Presidium of the AS of the Uk.S.S.R., Corresponding member of the AS of the Uk.S.S.R.
- B. A. Movchan Division chief, E. O. Paton Electric Welding

 Institute, Corresponding Member of the AS of the

 Uk.S.S.R.
- V. I. Kashin Deputy Director, Metallurgical Institute, Candidate
 of Technical Sciences
- L. V. Kovalenko Chief Specialist, Committee on Science and Technology,

 Candidate of Technical Sciences
- S. N. Glebov Expert, Committee on Science and Technology
- G. M. Grigorenko Senior Scientist, E. O. Paton Electric Welding Institute, Candidate of Technical Sciences
- S. A. Fomina Senior Engineer, E. O. Paton Electric Welding
 Institute
- Yu. C. Yemelyanenko Senior Scientist, E. O. Paton Electric Welding
 Institute, Candidate of Technical Sciences
- M. Kh. Shorshorov Laboratory Chief, Metallurgical Institute, Doctor of Technical Sciences
- K. A. Yushchenko Senior Scientist, E. O. Paton Electric Welding Institute, Candidate of Technical Sciences

Approved For Release 2000/89/06 : CIA-RDP79-00798A000300070019:18:3

LIST

of members of the American delegation participating in the work of the Third Session of the Joint Soviet-American Working Group on Electrometallurgy

N. E. Promisel	- Chairman of U.S. Working Group, Formerly Executive Director, National Materials Advisory Board, National Academy of Sciences
R. F. Bunshah	 Professor, University of California at Los Angeles
M. C. Flemings, Jr.	 Professor of Metallurgy and Materials Science, Massachusetts Institute of Technology
R.W. Heckel	 Professor of Metallurgy and Materials Science and Head of Department, Carnegic-Mellon University
W. F. Savage	 Professor and Director of Weldin Research, Rensselaer Polytechnic Institute
R. Stout	- Professor, Lehigh University
A. Van Echo	- Deputy Branch Chief, Fuels and Materials, U.S. Atomic Energy Commission
R. J. Wasilewski	- Section Head, Materials Research Laboratories, National Science Foundation

Alexis B. Tatistcheff , Interpreter

		Date of delivery	1,10,1975	1.12.1975	1.10.1975	1.10.1975	1.10.1975						#1# **	-30-
ls Vered		Amount,	1.5	1.5	۲. ال	1.0	0.75	size.	Size.					1010 2
nt and date of delivering steels n subject: "Investigation and. 1 purpose welding matericls"delivered the USA	័A:ឧប	Thickness Material state mm when delive- ring	with control- lable rolling	after norma-		quenching with tempering	1 = 1	of 1500 m900 mm si	of 1500x5	ther with a steel.	Recommendations on welding - welding conditions, wolding spead, preheating and oth., should be supplied simultaneously with	hammang	S. H. Antonov Chairman	Soviet Side of the Joint US-USE Working Group on Electrometallurgy
nd date clescipote in the conservation of the construction of the		Thickness mm	14-15	. 20	. 16.5	30-40	.30-40	plates	d as plates	ered toge	ing conditions			
rristics, anount and stilled on subject and special purpost the USA and the USA		Steel grade	mels APJ-51x65	APT-512X65	10.1975 APJ-51X70	SSS-100	1-1	uld be delivered as along the rolling.	steels are delivered along the rolling.	should be delivered together with these materials.	lding – weldi should be sur			
acteri invest neral		pate of delivery	7.10.1975 APJ-	1.12.1975	1.10.1975 HTGH_STRE	1.10.1975	1.10.1975	gpc		terials shous de with thes	tions on wel	delivery.		
scription, char or carrying out evelopment of ge		Amount,	1.5	ار الا	7.5	1.0	0.75	Pipe steels 3	High-strength 500 mm size -	Welding materials to be welded with	Recommenda prebeating	materials	•	
Descri for ca develo	USSR	Matcrial sta- te when deli- vering	after norma-	1 1 1	 	quenching with		Note: 1. E	N.	e e	4	N. E. Bonnard	N.E. Promisel Chairman	U.S. Side of the Joint US-USSR Working Group on Electrometallurgy,
		Thickness	14-15	. 02	16.5	40	0,7					8.1	N.E.	U.S. US-U
		Steel	17GIS	15G2AFD	17G2A	14kh2cmR	1 2CN 2MR A Vii							

							ŀ							
	r		19, 200 VO-	رگ چ <u>ا</u> درگ چا	4-1-10 C	* 17 ×		4		<i>v</i> ,	4	· 4		
	4000	2010 100	E	9.	74 m	60,	(3)	61%		w 20	41%	470		
Ç	r	COT DI	1	ું	20,/2m2		222	355		\ 09√	°570	×20	·	
ಸಂವರ್ಣಕ್ರಿ		Techani	7	0762	kg/mmg kg/zmg		0.4V	4.0	•	* * 45	, 09%	09%		
Onaracteristics suggested to the American side for exchange	-		-		<u></u> ч		<0.04 <0.035	20 04 50.035 340		<0.020 <0.025 ≥45	40.035	0.55 0.55 0.035	1.7 0.05-0.15-50.05 \$0.00	
iean sid	-				Ø		\$0,0	. d	5	€0.020	ι (10.00 C		
tics he Aner					No.	-	1		1	1	1	000	0.40	
secteris			2 M.C &		i Ori	-			000	1	; 1	- 60.03 - AI	4.7.	
Char suggest			composition,		in n		,		0.08-0.015-		0.08 0.12 0.02 0.02 0.02 0.03 0.03	0.002-<0.03	0.05- 0.02-	
Suiscoing			cal com	-	 >	-	1		90.0	01.0	0.0	1	000	
: ct ct e	,		Chemical		អ្ន		ç	0,0	ì		t	7.7	0 17.	
	,				Si	,	H	900	, , ,	· ·	0.0 Yr	0.37	9.00	
					퇿			17.7		2	4. 4.0	0.r 9.u	9,4	
					. 0			0.177	, , ,	0.79	60.20	0.70	0.0	;
				<u>-1</u>	B)			5157		SGZAFD .	17G2AF	14Kn2GMP	12GN2N T AYu	•

my August 1, 1975 the American side will indicate the specific grades of steels, their mechanical composition.

Mechager-notobed specimens

deliver of vientic investials for veiding pied that and the user and t	មិនប	Compositions of Amount of weld- Steel Compositions of Anount of welding mate- : materials grade riels	3 4 5 6	Pipe steels (longitudinal welds)	Fused flux AN-60 in Flux AN-60 - APJ-51X65 Combination flux + Flux - 150 kg wire (acc. to the subjection with with with given or main dia. How the given composition of volding materials, the impact volue at magative temperatures is not guaranteed.	clux flux AMK-34 - APJ-51X70 oins 150 kg n Wire sv-10c2 nm dia. of 4 mm dia of 80 kg
NOITE CET	S	Composit	2	٠,٠١	Fused flux AN-60 combination with sy-10G2 wire of the me the me the given composition of volding terials the impavolue at nagative temperatures is guarenteed	
		Stool	-		17GIS 17G2AF	1762AF 1562AFD

					aget Ap. al.
		3	4	5	0
Property of the same of the sa	Programan	relds - of	circumfenential	tial type	
17GIS 15G2AFJ	Alectrodes for welding with the method "down-ward" of rest and hot wolds with a celluloge type of the posting?	ा टीव. 20 kg । 1	APJ-51265	Electrodes for welding with the method "downward" of root end hot welds with a cellulouotype of costing E-3010** Flectrodes for welfing	3.25 III die 20 IIS (
	eld a pward type	40 kg		"eld wi ipvard" sype of Ni&x)	40 ≒3
17G2AF	Flectroded for welding root and her welds with the method "downward" with a basic, type of the scatings. Flectrodes for welding the filling weld with the method "upward" with a basic type of costings.	3 mm dia 20 kg A 4 mm dia 40 kg	APJ-51X70	Electrodes for welding root and hot welds with the method "downward" with a basic type of coating E-8016-1. Electrodes for welding filling upward" with the method "upward" with a basic type of spating E-8018-2-9018x	3.25 mm dia 4 mm dia 40 kg
	11	in the second	g the st	e e] s	
14Kh21MR	-2 of	trodes ANP -2 dia - 25 kg dia - 50 kg	SSS-100	rodes of the 18 type Grade of 19 the American sid	Flectrodes 4 nm cia -25 kg 5 nm cia -50 kg
12GNZMFAYu	Electroces ANP 2 E of 4 and 5 mm dia 4 of the E 11018 type 5	Blectrodes ANP2 Fram dia - 25 kg Fram dia - 50 kg	5	Electrodes of the E 11018 type. Grade of electrodes is speci-fied by the American sidex)	1 60 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -
(X	By August 1, 1975 both grades of electrodes.	sides inform	each other the	concrete types and	

Go.

the flux-cored wires

date USA

amount and delivery

Description,

supplied by the USSR and the

	Delivery date 1)					110 24 34
USA	를 됩니다.	20 kg	20 kg 2-2.5 mm			
	Wire grade	Dual Shield 7000	Fabco 81 "Hobart Brothers"		rod corp	- Toe
	Delivery date	.10.1975	.10.1975			American s
	Amount and wire diameter	20 kg 2.5 mm	20 kg			are specified by the Arerican side
មាននាម	Wire, grade	PP-AN 3	PP-ANS	The delivery of wire will be clarified after the agreement with "Chemetron Corp."	=	Delivery dates are specif
Type and application of a flux-cored wive		Flux-comed wire of mutile type for 002 melding	Flux-cored wire of 53510 type for GO2	Salf-shielded flux- cored wire for flat welding	Self-shielded flux- corcd wire for all-position	

Approved For Release 2000009/06 : CIA-RDF79-00798A000300070010-8

of the Soviet side according to the program of scheptific-technical cooperation on subject "Investigations and developments of general and special purpose welding materials"

Section II

"Development of calculated-experimental method for predicting the hydrogen content in weld metal made with the type E 7018 electrodes"

It is suggested to inventigate the effect of centing empasition (content of CaF₂, CaCO₃, SiO₂, MgO), its basicity, nature of deoxidation (various ratio of ferro-silicon and ferro-titanium in the coating), amount of iron powder, humidity of coating on the hydrogen content in deposited metal and to develop the calculated method of predicting the hydrogen content on the basis of experimental data.

The suggested ranges of changing the calculated composition of the coating are given below:

The humidity of coating is changed by cintering the electrodes at temperatures 300°C, 350°C and 400°C.

The additional conditions for compiling the plan of experiment:

$$(GaGO_3 + GaF_2 + SiO_2 + HgO) = 80 \%$$

(FeSi + FeTi) = 15 %

Approved For Release 2000/09/06 CIA-RDP79-00798A000300070019-8
The estigations are made using the place electrodes.

The coefficient of coating mass is constant and equals $\sim 40\%$, coating thickness is ~ 1.1 mm, $\frac{\text{del.}}{\text{decree}}$ 1.55.

It is suggested to study the effect of iron powder, its content in the coating being amounted to 0 %; 20 %; 40 %. In introduction of iron powder into the coating the amount of all remaining constituents proportionally decreases.

welding conditions: welding is carried out with a nemi-automatic machine at d.c., of reversed polarity. The welding current value should be equal to ~ 180 A. The voltage is nominal. In determination of hydrogen content in the deposited metal the welding is carried out only with a first helf of an electrode.

Determination of hydrogen content in the deposited set il.

- a) Method of sampling in accordance with a methodology, recommended by IIW.
- b) Determination of diffusion hydrogen amount is carried out to cording to the methodology recommended by IIW (in zerow.).

 by another methodology, providing the trusty results.
- c) Determination of the residual hydrogen is carried out to method of vacuum melting.

N.E. Promisel

Chairman

U.S. Side of the Joint US-USSR Working Group

on Electrometallurgy

Inmount

S. P. Antonov

Soviet Side of the Country Sousse Working Crown

Sa Electrometalling

Approved For Release 2000/09/06 : CIA-RDP79-00798A000300070019-8

PLABOFFFERIMENT

 rig O	CaFz	Si 02	Marble	Ferro- silicon	Ferro- titanium	Iron powder		Cintering temperatureC
Second Second Control of the second s	00000000000000000000000000000000000000	OCOCCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO	00000000000000000000000000000000000000	OCOCOCO COCOCOCO COCOCO NAVA NAVA NA COCOCO COCOCOCO COCOCOCOCOCOCOCOCOCOCO	00000000000000000000000000000000000000	00000000000000000000000000000000000000	കെക്കെക്കെക്കെക്കെക്കെക്കെക്കെ തന്നാന്നെ തന്നു തന്നു തന്നെക്കുന്നു. ഇന്ന്നെക്കെക്ക് പ്രത്യക്ഷ് പ്രത്യക്ക് പ്രത്യക്ഷ് പ്രത്യക്ഷ് പ്രത്യക്ഷ് പ്രത്യക്ഷ് പ്രത്യക്ഷ് പ്രത്യക്ക് പ്രത്യക്	400 400 400 400 400 400 400 300 3

Approved For Release 2008/09/06: CIA-RDP79-00798A000300070019-8

Appendix 4b

PROGRAM

for

"Prediction of Low Temperature Properties of Migh-Alloy Austenitic Welds"

Objective

To establish a mathematical model, based upon published data and some experimental data, relating low temperature service properties to the chemical composition of weld metal and metallurgical processing variables.

Experimental Model

1. A search of the published literature properties of austenitic welds at low temperatures is to be made for the following systems:

Chromium - nickel

Chromium - nickel - molybdenum

Chromium - nickel - manganese

Chromium - nickel - nitrogen

Chromium - nickel - molybdenum - tungsten

Chronium - nickel - molybdenum - aluminium (titanium)

- Agreement is to be made on a test matrix system for processing on computers.
- 3. Exchange of information on materials and their properties is to be made.
- Development of algorithms for programs on statistical modelling is to be made for forecasting weld properties.
- 5. Statistical processing of data will be made for determination of mathematical relationships of chemical composition (alloying elements) with the mechanical properties and structure of the weld.
- 6. Develop methods for predictive control of austenitic weldment properties.

		Ħ		25	1	Į.	_	1	Page 2 of Appendix
Approved For Re	lea		/06		-RDP	79 %)	98A00030007	၀၀့႑ရ-	8 Appendix
Approved For Re	el	>		23		Sour of j		4	
	6			21 22			d s s	1	•
	ttio erce	A1 Fe	+	20 2			St. Kie	43 4	
ŭ	1 composition	Ţ.		9			ψ, γ,	75	
resurts	COL	9월	}.	7 18				- 4	. *
۲ <u>۱</u>	Chemical	Cr Ni	+	16 17		-	7500 A5	0 4	:
00 00 00 00 00 00 00	Cher	ပ		15			72,0	39	
. g	Heat	3		\$		weld	24/12°	38	
ssir			\dashv			A H	2012	37	· :
tic processing	Shielding medium	Arme 602 02		10 11 12 13		Mechanical properties of weld	Stress concentration factor $\mathcal{K}_{\mathcal{L}}$	38	
ix for statistic austenite welds	e1 d1	N P P P	+	9		rd L	なった。	35	
n st	Shi	Sub-with Flux arc coated ty- ele- pe ctro- and des gra-	3			anîc	2, 25	*	
dava matrix for of austeni		ctro	4	κο		цеср	2002	33	
atri	82	Sub- arc	5	7			10 4 4 M	32	
2) 20	process	번	2	9			क्षेत्र कर्	33	
කයයි රිය	Welding pr	G TIG			-	Test tempe- rature,	М	8	· :
Suggested mass		ing MIG		4		1	Ferrite,	59	
ν <u>α</u>	k- Lype of				_	Weld structure	Auste- nite,	28	:
		de ness,	-	8		atment	Pine of temp.	27	
	No Sueel			2		Heat-treatment after welding	fempe- rature,	26	!
					•		٠,		

CIA-RDP79-007984800300070019-8 Page 3 of Appendix 4 b Gauges (plate thick Approved For Release me tero ness 14 KE formati-op end, 4 2/2 8/5 feature rature Tempe-8 Jan L Kglmm. ŏ ध्र US-USSR Working Grouphon Electro of the Soviet Side of the Joint numerous P, Antonov Rolling emper Suggested mass data matrix for statistic processing of test Kg.mon Kg. man Ckgm Kgy 9 8 Z. Hrs. tempe-Time B A ratu-Chairman Heat 38 metallurgy Field ጴ Mechanical properties results of austenitic base metals. 74 15 16 17 33 32 23 weight Þ £ 163 z 74 g concen- 64s
tration 62s 5 33 composition, 77 72 4 Stress 걾 ä ž 9 70 ğ 3 Chemical 넕 8 80 占 35% 8 of the American Side of the Joint N. E. Promise] 28 29 26.05 ರ **~** 5 duction furnace + VAR US-USSR Working Group on metallurgy Field , / 0 / প্র in in-27 4 o i ر من ک Chairman Test tempe-rature, å 8 in vacufurnace arc m 5 process Fer-rite, Ħ 3 Structure in in-duction furnace ູ່ 4 Melting Auste-nite, 5 in open arc furnace Temper ۲-3 Heat treatment Tine 47 Hrs 3 No Steel grade N rature, Kembe-ผู ø

. Approved For Release 2000/09/06 : CIA-RDP79-00798A000300070019-8

Appendix 5

To section III of
"Research and Development of Welding Materials".
according to the US-USSR joint program

. Project title:

1. Investigation of proporties of structural materials and their welds for ING storage and transportation.

Participants: USGR - E.O. Paton Welding Institute,

Dr. K. Yushchenko and Prof. D. Rabkin

USA - National Bureau of Standards, Dr. R. Reed

- Lehigh University, Prof. R. Stout

- ARMCO Stoel, Dr. Bruner

- ALCOA, Dr. Kelsoy

- International Nickel, Dr. Decker

Date - 1976, providing both sides receive materials before the end of 1975.

Analysis and development of test methods for evaluation of service proporties
of welds and welded joints resistant to low temperature, with emphasis on
fracture toughness.

Participants: USSR .. E. O. Paton Wolding Institute,

Dr. K. Yushchenko, Prof. V. Makhmenko,

Dr. A. Ishchenko,

Institute of Problems of Materials

Strength, Dr. N. Novikov.

USA - Lehigh University, Prof. R. Stout

- National Bureau of Standards, Dr. R. Reed

Nate - the first stage - 1976.

Investigations and tests will be performed by both sides:

On materials used in the USSR: chromium-manganese-nitrogen steel OX13AG19

Appendix 5 page 2

and its veldments, and aluminium-magnetsium alloy AMG-6 and its weldments. On materials used in the USA: nickel steels with 5% and 9% nickel and their weldments, and aluminium alloy 505; 0 and its weldments.

Exchange of base materials, welding materials and welded joints by October 1975 in quantities given in the attached list.

The work is to be completed by discussion of results and by joint reports in 1976. In the precess of carrying out this work, an exchange of experts who conduct tests in collaborating laboratories will be made by both sides.

Approved For Release 2000/09/06: CIA-RDP79-00798A000300070019-8

Approved For Release 2009/09/06: CIA-RDP79-00798A000300070019-8

Appendix 5 Page 3

Test procedures for conducting the work on "Study of the properties of structural materials and their weldments for LNG storage and transportation"

- USA side will conduct the tests according to the attached Table.
- 2. USSR side will conduct the tests on:
 - static tension;
 - sensitivity to stress concentration under static and dynamic loads;
 - C.O.D.;
 - instrumented Charpy-V with analysis of fracture diagram;
 - static bend;
 - compact fracture toughness by static tensile or bend tests;
 - fatigue strength;
 - fractography and structural analysis of fractured surface.
- 3. The two sides obtain the data on properties vs. temperatures within the range of 300-760K.

PROGRAM ON MATERIALS

ţ		Ö	Organization		1,28,090,00%1
Proportios,	NBS (Reed)	LEHGH (Stout)	ARMCO (Bruner)	ALCOA (Kelsey)	
Supaly of Alloys				(J) (3	Fe-3N:
Tensile		Fe-12Cr-20Mn;Al-8Wg	Pe-126r-20Mmi long, trans, 300, 111, 76 K;	300, 76 K; base and weld; smooth and	ferritic vett metal (USSR)
Inpact	•:	Fe-12Cr-20Mn;Al-8Mg	Fe-12Cr-20Mn: Jong, trans. :76-300 K;	notched	ferritic weld metal (USSR)
Dynanic Tear			Fe.12Cr-20Mm: 76-300 K; base	A1-8Mg: 500, 76 K; base and	•
	•		Fe-12Cr-20Mn: 76-300 K; base	WEIG	
Recurve			Fe-12Cr-20Mm: 76, 103, 123 K; base, HAZ	•	
рпэ2	•	Fe-12Cr-20Mn;Aî-8Mg			
Fracture Toughness. Compact feasile		Fe-12Cr-20Mn;A1-8Mg		Al-8Mg: 300, 76 K; base and weld	
Fathur Crack Orevil Reto	Fe-12Cr-20Mn;Al-8Mg: 300, 111, 76 K; base, weld				
Supply of			Fe-5Ni, Fe-9Ni: about 2, 5 cm thick plate;		pendix 5
Fe-5Ni, Fe-9Ni	•		weldments in lengths 60 cm x 30 cm wide	5083-O Al:	
t√ \$885 jo Xidóng				2, 5 cm plate; weld- ments in lengths 90 cm x 60 cm vide	

Approved For Release 2000/09/06 : CIA-RDP79-00798A000300070019-8

Approved For Release 2000/09/06: CIA-RDP79-00798A000300070019-8

Appendix In Page 5

LIST

of materials supplied in the USA and the USSR to carry out the works on "Investigation of properties of structural materials and weldments for LNG storage and transportation"

-5 -

The USSR side supply to the USA (Lehigh University, National Bureau of Standards) the following representing samples of structural materials:

Grade of steel, of alloy	Sample dimen- sions, mm	Quantity Ly	Date of supply
OX13A519 (base metal)	200x170x550	300+400	October 1975
OX13AG19 (welded jo- int, submerged-arc	*		4
process	20x200x550	200+250	October 1975
wolded joints of USA 5% or 9% Ni steel with lower nickel content in weld			
metal	25x200x500	200+250	April 1976
AM3-6 grade alumini- um-magnesium alloy containing 6% Hg	• 20x300x600 ·	300+400	October 1975
Ally 6 welding wire with zirconium for aluminium welding	1.6 dia.	40+50	October 1975

The USA side supply to the USSR (E. O. Paton Welding Institute the following representative structural materials:

Λ	T-01			
Approved Fo	or <u>Release 2000/09/06</u> : C	Sample dimen- sions, mm	000 3000700 Quantity	Date of supply
	5% Ni steel (quen- ching + tempering)	25x300x600	4 00+ 500	October 1975
•	9% Ni steel (quen- ching + tempering)	25 x 300x600	400+500	October 1975
	welded joints of both steels	25x300x600	150+200	October 1975
	Incomel wire 625 2	1.2 dia.	50	October 1975
	Inconel wire 82	2.0 dia.	100	October 1975
	Inconel wire 92 Inconel electrode	2.0 dia.	100	October 1975
	Welding Electrode	3+4 dia.	20	October 1975
	Flux - Incoflux 4	-	.50	
	Aluminium alloy 5083-0	25x600x900	300+400	October 1975
	Welded joints of 5083-0 alloy	25x600x900	300+400	October 1975
	Welding wire of 0-5183 alloyed with cobalt	1.6 dia.	40+50	October 1975
			•	

/Address of the USSR side: Ukr.SSR, Kiev-5, 69 Gorky st., E.O.Paton Welding Institute

Chairman of the American Side of the Joint US-USSR Working Group on Electrometallurgy Field

N. E. Promisel

Chairman of the Soviet Side of the Joint US-USSR Working Group on Electrometallurgy Field

S.P. Antonov

² The USA side is to forward its address before August 1, 1975.

^{3,} Both sides may correct the grades, size and quantity of the samples supplied up to 1 August.

	Forms of collab- oration	6	I. Inde- percent imvestiga- tions of each sica.
	Forms of work completion	8	Tables, Figures, Nomograms, Reports and articles.
of the US-USSR scientific-technical collaboration or the theme "Solid State Joining"	Possible Organizations Term from US from USSR Begin End	5 6 7	W.A. Owczerski V.I. Kashin, 1975 1977 Pratt and M.Kh. Shorshorov Baite East Institute of Metallurgy AS USSR, Moscow, B.E. Paton, J.B. Malevsky, Paton Welding Institute, A.S. of Ukrainian SSR, Kiev. N.F. Kazakov Diffusion Welding Laboratory, Moscow E.S. Karakozov Metallurgy evening Institute, Moscow Metallurgy evening Institute, Moscow.
of the US-	91100		joining and review of solid state joining of state joining of similar and dissimilar metals and alloys.
×	‡ 		T O

To the same of the	5	2. Exchange of experimental methols, materials and specimes. 3. Conion seminare and	meetings for discussion of results.		
	^1				
	7			•	
	5 ' 6	V.I. Kashin, M.Kh. Shorshorov Baikov Institute of Metallurgy. G.K. Dzneladze	for iron and Steel Metallurgy, Moscow. • B.E. Paton, S.M. Gurevitch, Paton Welding Institute.	V.N. Gridnev, I.N. Larikov Institute for Physic of Metals, A.S. of the Ukrainian SSR, Kiev	N. F. Kazakov, Diffusion Welding Laboratory, Moscow. E.S. Karakozov, Metallurov evening
	4	A.T. Male Westing- house Electric Corp. Pittsburgh, Pa.			
	3	2. Development of techniques and methods for internal fying the joining of similar and dissimilar metals	and elloys, considering powders and hot isostatic compaction.	·	
	77				

Approved For Release	20	09/06 : CIA-RDP79-0079	8A000300070019-	8
Appendix Page 3		As in I. above.		the Joint USSR-US rometallurgy faum. Miller Antonov
		As in I. above.		Chairman Side of the Joint US on Electrometallurgy Annwhule (5.P. Antonov
	1	1978		Soviet
	9	1975	b 6	of the Morking Field
ą.	5.	V.I. Kashin, M.Kh. Shorshorov, L.M. Ustinov, V.V. Belov Baikov Institute of Metallurgy. Pa.	V.I. Kashin, M.Kh. Shorshorov O.V. Gusev, Baikov Institute of Metallurgy.	
4	4	L.J. Ebert Case Western Re- serve University Cleveland, Ohio. R.W. Heckel Carnegie- Mellon University Pittsburgh,	R.M. Fisher and G.R. Speich U.S. Steel Corp. Monroeville, Pa.	nt one-
- - -	. e	1. Investigations of the effect of residual stresses on the mechanical behavior of composites.	2. Application of acoustical emission to the study of de- formation and fracture of composites.	Chairman of the American Side of the Joint US-USSR Working Group on Electrome- tallurgy Field N.E. Promisel
	2	Composite materials		Chargo the American US-USSR Working tallurgy Field
	-	법		