Kuvaus- ja mallintamismenetelmät

Lähtökohdat, tavoitteet ja tekniikat

Opintojakson oppimistavoitteet

- Opintojakson suoritettuasi:
 - 1. ymmärrät datan ja ohjelmistojen mallinnuksen tavoitteet ja tarpeen
 - 2. tunnet ER- ja UML-kaaviotekniikat ja niiden käyttökohteet
 - osaat laatia datan rakennetta sekä ohjelmistosi rakennetta ja toimintaa kuvaavia kuvauksia ja malleja
 - 4. osaat generoida mallinnetusta datasta relaatiotietokannan.
 - 5. osaat tulkita toisten kehittäjien tuottamia kuvauksia ja malleja
- Opintojaksolla opit siis
 - suunnittelemaan ja kuvamaan ohjelmistojen ratkaisuja
 - esittelemään ja kommunikoimaan ratkaisuja ammattimaisesti ja myös toisten kehittäjien ymmärtämällä tavalla
 - käyttämään ER- ja UML-kaaviotekniikoita omassa ohjelmistoprojektiasi sitä hyödyttävällä tavalla

Mitä on mallintaminen?

- Mallintaminen on datan rakennetta tai ohjelmiston rakennetta ja toimintaa kuvaavien esitysten luomista.
- Malli on abstrakti esitys datasta tai ohjelmistotuotteesta valituista näkökulmista.
 - Esimerkki mallintamisesta on ohjelmiston luokkarakenteen suunnittelu.
 - Luokkarakenne on vain yksi mahdollinen näkökulma ohjelmistoon.
- Mallintaminen on keskeinen ja erottamaton osa ohjelmistotuotantoa.

Mitä on kuvaaminen?

- Kuvaamisella tarkoitetaan mallin esittämistä visuaalisessa muodossa.
 - Esimerkiksi mallissa suunniteltu luokkarakenne voidaan esittää kuvana luokista, ns. luokkakaaviona.
- Kuvaustekniikoita tarvitaan
 - Mallien luomiseksi ja muokkaamiseksi
 - 2. Malleista keskustelemiseksi ja niistä viestimiseksi

Ohjelmisto ja tietojärjestelmä

- Ohjelmistolla tarkoitetaan kokonaisuutta, joka koostuu
 - Tietokoneessa ajettavista toisiinsa liittyvistä ohjelmista
 - Niiden tarvitsemista tiedoista
 - Niitä tukevasta dokumentaatiosta
- Tietojärjestelmällä tarkoitetaan liiketoimintatavoitteiden saavuttamiseksi luotua kokonaisuutta tiedon
 - Luomiseksi ja keräämiseksi
 - Tallentamiseksi ja varastoimiseksi
 - Käsittelemiseksi ja siirtämiseksi
- Tietojärjestelmä koostuu
 - Toisiinsa liittyvistä ohjelmistoista
 - Datan säilytys- ja tallennusratkaisuista (tietokannat)
 - (Ihmisistä)

Ohjelmistotuotanto

Ohjelmiston elinkaari ja vaihejakomallit

Elinkaari

 Aika joka kuluu ohjelmiston kehitystyön aloituksesta sen käytöstä poistamiseen

Vaihejakomalli

- Tapa, jolla ohjelmiston elinkaari (kokonaisuudessaan tai kehitystyön osalta) jaetaan toisiaan seuraaviin vaiheisiin.
- Perinteinen vesiputousmalli vs. iteratiiviset mallit

Huomaa, että malli-termiä käytetään moneen tarkoitukseen. Tässä sillä ei tässä tarkoiteta ohjelmistotuotteesta laadittavaa mallia, vaan tapaa organisoida ohjelmistoprojekti.

Vesiputousmalli

Muita vaihejakomalleja

- Prototyyppimalli
- Evolutiiviset mallit
- Spiraalimalli
- Ketterät menetelmät

Ketterät (agile) menetelmät

- Ketterät menetelmät muuttavat näkökulman ohjelmistotuotantoon vesiputousmalliin verrattuna.
 - Näkökulma asiakkaassa eikä projektinhallinnassa
 - Iteratiivista
 - tuote paranee kierros kierrokselta
 - Inkrementaalista
 - kokonaisuus koostetaan osista
 - Minimoidaan laatuvelan ja teknisen velan kasautumista.

Ketterä manifesti

- http://agilemanifesto.org/
- Ketterä manifesti julkituo ketterän ohjelmistokehityksen arvot:
 - 1. <u>yksilöt ja vuorovaikutus</u> vs. prosessit ja työkalut
 - 2. toimiva ohjelmisto vs. kattava dokumentaatio
 - 3. vuorovaikutus asiakkaan kanssa vs. sopimusneuvottelut
 - 4. muutoksiin reagoiminen vs. suunnitelman seuraaminen
- Käytännössä ketterissä menetelmissäkin on sisäänrakennettuna piirteitä vesiputousmallista.
 - Yleensä ainakin jonkinlainen määrittelyvaihe.

Ketterä toteutusmalli 1: Scrum

 Projektiorganisatorinen näkökulma: minimoidaan työ, joka ei edistä projektin etenemistä.

Roolitus

- Scrum team: kehitystiimin jäsenet
- Scrum master: vastaa kehitystiimin jäsenten ongelmien ratkomisesta.
- Product owner: tuoteomistaja, joka päättää, mitä kehitystiimi tekee ja mitä ei tee (tuotteeseen). Ei yleensä koodaa.

Ketterä toteutusmalli 2: Lean

- Näkökulma lisäarvon tuottamisessa asiakkaalle: minimoidaan työ, joka ei tuota asiakkaalle mitattavaa arvoa.
- Toyotan kehittämä.
- Minimoimaan "jäte" (waste) eli kaikki, mikä ei tuota lisäarvoa asiakkaalle:
 - Keskeneräinen työ
 - Ylimääräiset ominaisuudet
 - Ylimääräiset prosessit (esim. dokumentit)
 - Kontekstin vaihdot
 - Odotus ja viivästykset
 - Työn siirto toiselle henkilölle
 - Viat

Ketterä toteutusmalli 3: Kanban

- Lähtökohtina kehitystyön visualisointi ja jatkuva toimitus.
- Visualisoinnin tavoitteena on, että kehittäjillä säilyy käsitys kokonaisuudesta ja osien roolista siinä.
- Jatkuvassa toimituksessa (CD; continuous delivery) kehitettävä tuote pidetään koko ajan jakelukelpoisena.
 - Tämä edellyttää automatisoitua koontia ja testausta.
 - Uusi, tuotettu koodi voi päätyä uuteen jakeluversioon periaatteessa milloin vain.

Poistuvia ketteriä toteutusmalleja

RUP

- Rational Unified Process
- Nykyään IBM:n omistaman Rationalin luoma kaupallinen järjestelmänkehitysprosessi
- Tällä kurssilla opittava UML kehittyi huomattavasti RUP:n myötä.

XP

- Extreme Programming
- kokoelma ns. hyviksi havaittuja menetelmiä (parikoodaus, jatkuva testaus jne.)
- Ideat elävät muissa toteutusmalleissa.

Ohjelmistoprojektien haasteita

- Tiimityön yleiset haasteet
 - Kieli, kommunikaatio, näkemykset, osaaminen
- Korkea epäonnistumisprosentti
- Budjetti, aikataulu ja laatu on vaikeaa saada samanaikaisesti pitämään.
 - PMI:n raportin¹ (2017) mukaan
 - 14% epäonnistuu täysin
 - 49% ei valmistu ajallaan
 - 43% ylittää budjettinsa
 - 31% ei saavuta tarkoitustaan
- Kuvaus- ja mallintamismenetelmien hallinta on ohjelmistoprojektin toimivuuden edellytyksiä.

1) Lähde: https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse-of-the-profession-2017.pdf

Orientaatioharjoitus: Case Lomahotelli

- Orientaatioharjoituksen tavoitteena on kartoittaa kuvaus- ja mallintamistarpeiden moninaisuutta.
- Tutustu opettajan antamaan tietojärjestelmän tekstikuvaukseen.
- 2. Keksi esimerkkejä kysymyksistä, joita sinulle herää järjestelmään perehtyvänä IT-asiantuntijana.
 - Kirjaa kysymyksesi opettajan esittämään JamBoard-pohjaan.
 - Pohjassa on valmiina muutamia esimerkkejä. Keksi lisää erilaisia kysymyksiä!
 - 3. Lopuksi ryhmittelemme kysymyksiä ja pohdimme yhdessä, minkälaisin tekniikoin kysymyksiin voidaan esittää selkeä vastaus.

