# **Dominators and Dependence**

- Dominator relationships (algorithms for control flow graphs):

  - IDOM
  - $DOM^{-1}$
  - DOM!
  - DF
  - post-dominators
- Control Dependence

CS502

Dominators and Dependence

Dominators and Dependence

- DOM

# Entry i = i + 1if (c < 0)b = |c| + bb = c + bc = c + 2iif (i < n)↓F Exit

- · landing pad
- control dependence graph

**Motivating Example: Code Motion** 

# **Landing Pad (Preheader)**



# **Dominator Relationships**

#### **Dominators**

CS502

d dominates v, d DOM v, in a CFG iff all paths from Entry to v include d DOM(v) = the set of all *vertices that dominate* v

- All vertices dominate themselves,  $v \in DOM(v)$ .
- *Entry* dominates every vertex in the graph:  $\forall v \in V : Entry \in DOM(v)$ .
- reflexive, antisymmetric, and transitive

### **Strict Dominators**

$$DOM!(v) = DOM(v) - \{v\}$$

· antisymmetric and transitive

### **Immediate Dominator**

IDOM(v) = the closest, strict dominator of v

$$d \text{ IDOM } v \iff d \text{ DOM! } v \land (\forall w \mid w \text{ DOM! } v)[w \text{ DOM } d]$$

antisymmetric

CS502

# **Dominators: Example**



**Dominator Tree** 



CS502

Dominators and Dependence

CS502

Dominators and Dependence

# **Dominator Relationships**

**Theorem:** IDOM(v) is unique (*i.e.*, a singleton)

**Proof:** by contradiction.

Suppose c IDOM v and d IDOM v.

By definition,  $c \neq v$  and  $d \neq v$ , so c DOM! v and d DOM! v.

By definition of IDOM:

$$(d \; \mathsf{DOM!} \; v) \land (\forall w \; | \; w \; \mathsf{DOM!} \; v)[w \; \mathsf{DOM} \; d]$$

Thus, c DOM d and d DOM c, but DOM is antisymmetric, a contradiction, unless c=d

### **Inverse Dominators**

$$DOM^{-1}(v) = \{w \mid v DOM w\}$$

• reflexive, antisymmetric, and transitive

# **Inverse Dominators: Example**



CS502

# **Finding Dominators: Algorithm**

$$\mathrm{DOM}(v) = \{v\} \ \bigcup \ \left( \bigcap_{p \in PRED(v)} \mathrm{DOM}(p) \right)$$

$$\begin{aligned} & \operatorname{DOM}(Entry) \leftarrow \{Entry\} \\ & \underline{\mathbf{foreach}} \ v \in V - \{Entry\} \ \underline{\mathbf{do}} \ \operatorname{DOM}(v) \leftarrow V \ \underline{\mathbf{end}} \\ & \underline{\mathbf{do}} \\ & changed \leftarrow \mathit{false} \\ & \underline{\mathbf{foreach}} \ v \in V - \{Entry\} \ \underline{\mathbf{do}} \\ & olddom \leftarrow \operatorname{DOM}(v) \\ & \operatorname{DOM}(v) \leftarrow \{v\} \bigcup \Big(\bigcap_{p \in PRED(v)} \operatorname{DOM}(p)\Big) \\ & changed \leftarrow \operatorname{DOM}(v) \neq \mathit{olddom} \\ & \underline{\mathbf{end}} \\ & \underline{\mathbf{while}} \ \mathit{changed} \end{aligned}$$

Complexity:  $\mathbf{O}(N^2)$ 

CS502

Dominators and Dependence

# **Dominance Frontier**

$$\mathsf{DF}(v) = \{ w \mid \big(\exists u \in PRED(w)\big)[v \; \mathsf{DOM} \; u] \land v \; \overline{\mathsf{DOM!}} \; w \}$$

- v dominates some predecessor of w
- v does not strictly dominate w

Let

$$\begin{aligned} SUCC(S) &= \bigcup_{s \in S} SUCC(s) \\ \text{DOM!}^{-1}(v) &= \text{DOM}^{-1}(v) - \{v\} \end{aligned}$$

Then

$$\mathsf{DF}(v) \qquad = \mathit{SUCC}(\mathsf{DOM}^{-1}(v)) - \mathsf{DOM}!^{-1}(v)$$

### **Dominator Algorithm: Example**



| DOM(v) iteration: 0 |                     | 1 | 2 |
|---------------------|---------------------|---|---|
| Α                   | $\{A\}$             |   |   |
| В                   | $\{A,B,C,D,E,F,G\}$ |   |   |
| С                   | $\{A,B,C,D,E,F,G\}$ |   |   |
| D                   | $\{A,B,C,D,E,F,G\}$ |   |   |
| Ε                   | $\{A,B,C,D,E,F,G\}$ |   |   |
| F                   | $\{A,B,C,D,E,F,G\}$ |   |   |
| G                   | $\{A,B,C,D,E,F,G\}$ |   |   |

CS502 Dominators and Dependence

# **Dominance Frontier: Example**



| $DOM^{-1}(v)$       | $SUCC(DOM^{-1}(v))$ |  |
|---------------------|---------------------|--|
| $\{A,B,C,D,E,F,G\}$ |                     |  |
| $\{B,C,D,E,F,G\}$   |                     |  |
| { <i>C</i> }        |                     |  |
| $\{D\}$             |                     |  |
| $\{E,F,G\}$         |                     |  |
| $\int_{F}$          |                     |  |

| $DF(v) = SUCC(DOM^{-1}(v)) - DOM!^{-1}(v)$ |
|--------------------------------------------|
| where $DOM!^{-1}(v) = DOM^{-1}(v) - \{v\}$ |

| v | $DOM^{-1}(v) - \{v\}$ | DF(v) |
|---|-----------------------|-------|
| Α |                       |       |
| В |                       |       |
| С |                       |       |
| D |                       |       |
| Ε |                       |       |
| F |                       |       |
| G |                       |       |

CS502

11

A B

Ď E F

 $\{C\}$  $\{D\}$ С

 $\{E,F,G\}$  $\{F\}$ G  $\{G\}$ 

10

### **Dominance Frontier: Algorithm**

```
DF(v)
                         = DF_{local}(v) \bigcup (
                                                         DF_{up}(c)
                                            c \in Children(v)
where Children(v) = children of v in dominator tree
          \mathsf{DF}_{local}(v)
                        = \{ w \mid w \in SUCC(v) \land v \ \overline{DOM!} \ w \}
          \mathsf{DF}_{up}(w)
                         = the subset of DF(w) not strictly dominated by IDOM(w)
                            (IDOM(w) = v)
proc FindDF(v) \equiv
  DF(v) \leftarrow empty
  foreach w \in Children(v) do
     FindDF(w)
     foreach u \in DF(w) do
       if v \overline{DOM!} u then DF(v).add(u) end
     end
  end
  foreach w \in SUCC(v) do
     if v \overline{DOM!} w then DF(v).add(w) end
  end.
```

CS502

Dominators and Dependence

# **Post-Dominators: Example**



### **Post-Dominators**

Given CFG =  $\langle V, E, Entry, Exit \rangle$ , assume *Exit* reachable from all *V*:

$$\forall v \in V : v \rightarrow^* Exit$$

#### **Post-Dominators**

p post-dominates v, if all paths from v to Exit include p

- $p \text{ PDOM } v \Rightarrow v \rightarrow^* Exit \text{ can be split into } v \rightarrow^* p \text{ and } p \rightarrow^* Exit$
- reflexive, antisymmetric, and transitive
- PDOM on CFG is the same as DOM on reverse CFG

#### **Strict Post-Dominators**

• PDOM! $(v) = PDOM(v) - \{v\}$ 

#### **Post-Dominance Frontier**

•  $PDF(v) = \{w \mid (\forall u \in SUCC(v))[w \ PDOM \ u] \land (w \ \overline{PDOM!} \ v)\}$ 

CS502

13

Dominators and Dependence

14

# **Control Dependence Graph (CDG)**

y is control dependent on x, x and y in CFG, iff

- $\exists x \to^* y$  where y post-dominates every vertex p in  $x \to^* y$ ,  $p \neq x$ , and
- y does not strictly post-dominate x

 $CDPRED(y) = \{x \mid y \text{ is control dependent on } x\}$  $CDSUCC(x) = \{y \mid y \text{ is control dependent on } x\}$ 

*NB*: add edge  $Entry \rightarrow Exit$  in CFG

CS502

15

# **Control Dependence: Example**



# **Next Time**

Static Single Assignment

Cytron et al. Efficiently Computing Static Single Assignment Form and the Control Dependence Graph, TOPLAS 13(4):451–490, Oct 1991

CS502 Dominators and Dependence 17 CS502 Dominators and Dependence 18