ESQUEMA RELACIONAL PASAJE A TABLAS

Esquema Relacional

- Luego de haber realizado el análisis de la situación real, modelando la misma mediante un Esquema Conceptual (Diagrama Entidad-Relación) que la represente utilizando:
 - Entidades
 - Atributos
 - Atributo determinante
 - Relaciones
 - Cardinalidad
 - Mínimo y Máximo
 - Restricciones No Estructurales (R. N. E.)

Recordemos: **Fases en el modelo de BD**

Modelo lógico

- Esquema Relacional
 - Representación a través de tablas de un D. E-R.
 - Descripción del esquema de la base de datos a crear para representar la situación real descripta en el D. E-R.
 - Conformado por:
 - El pasaje a tablas del D. E-R
 - El proceso de Normaliación

Pasaje a tablas: Entidades

Entidades

- En principio, cada entidad genera una tabla con el mismo nombre, para almacenar los datos que la describen (atributos).
- El atributo determinante en la entidad será también determinante en la tabla.

Estudiante (Cld, nombre, fecha_nac, dirección)

Pasaje a tablas: Entidades

- Atributo Compuesto
 - □ Se indica la lista de los atributos que lo componen.

Persona (Cld, nombre, dirección {calle, número, esquina})

Pasaje a tablas: Entidades

- Atributo Multivaluado
 - Se indica, al igual que en el D. E-R., con un asterisco.

Cliente (Cld, nombre, teléfono*)

- Relaciones
 - Binarias

- □ La relación entre las entidades se representa a través de una tabla, si se considera necesario.
- Esta tabla esta conformada por los atributos determinantes de las entidades vinculadas en la relación.
- □ AB(A1, A2, B1)
 - □ La relación AB importa los atributos A1 y A2 porque son atributos determinantes de la tabla A, e importa el atributo B1 porque es determinante en la tabla B.

Atributo determinante

- Divide (dia, hora, Id)
- El atributo determinante de la relación depende de la cardinalidad de la misma.

- Si la relación posee atributos propios, se representan en la misma tabla, AB.
- AB (A1, B1, AB_1)

- Pertenece (Cedula, IdG, Num_Lista)
- Si la relación posee atributos propios, se representan en la misma tabla, Pertenece.

Tablas generadas y atributos determinantes.

- La cantidad total de tablas en una relación entre dos entidades, dependerá de la cardinalidad:
 - □ 1 a 1: Dos Tablas; las dos entidades.
 - N a M: Tres Tablas; las dos entidades y la relación.
 - 1 a N ó N a 1: Generalmente dos Tablas representadas por las dos entidades.
 - En algunos casos, según la realidad, se evaluará si se crea una tabla representando la relación.

Tablas generadas y atributos determinantes. Relación N : N

- A(A1, A2, A3)
- □ B(**B1**, B2)
- □ AB(A1, A2, B1)
- En una relación de N a N, el atributo determinante de la tabla resultante, está compuesto por los atributos importados de las entidades relacionadas.

Tablas generadas y atributos determinantes. Relación N : N

Atributo determinante

- Divide (dia, hora, ld)
- □ Hora(dia, hora, duración)
- □ Turno(<u>id</u>, nombre)

Las tablas que representan las entidades permanecen con los mismos atributos.

Tablas generadas y atributos determinantes. Relación N : 1 ó 1 : N

Sólo se baja a tabla las entidades.

- □ A(**A1**, A2, A3, B))
- □ B(**B1**, B2)

- •La tabla que representa la entidad con cardinalidad N, hereda el atributo que es clave en la entidad con cardinalidad 1.
- □ La clave absorbida NO ES CLAVE en la tabla A.
- □ B1 es Clave Foránea en la tabla A.

Tablas generadas y atributos determinantes. Relación N : 1 ó 1 : N

Sólo se baja a tabla las entidades.

- Grupo hereda el determinante de Turno(IdTurno)
 - Grupo(<u>IdGrupo</u>, nombre, nroSalón, *IdTurno*)
- La tabla Tuno permanece con los mismos atributos:
 - Turno(IdTurno, nombre)

Tablas generadas y atributos determinantes. Relación 1 : 1

Sólo se baja a tabla las entidades.

- Se debe optar que tabla tendrá la clave foránea.
- Opción 1:
 - □ A(<u>**A1**</u>, A2, A3, *B*1)
 - □ B(**B1**, B2)
- Opción 2:
 - □ A(**A1**, A2, A3)
 - □ B(**B1**, B2, A1)

La decisión depende de la realidad.

Tablas generadas y atributos determinantes. Relación 1 : 1

Opción 1

Director(<u>CI</u>, nombre, sector, *IdOficina*)

Oficina(IdOficina, nombre)

Opción 2

Director(CI, nombre, sector)

Oficina (IdOficina, nombre, CI)

Según la realidad, es preferible esta opción

- Sub-Entidades sin atributos ni relaciones
 - En la entidad principal se agrega un atributo donde se especifica a cual de las Sub-Entidades pertenece.

- Categorías con atributos y/o relaciones
 - Cada Sub-Entidad es una tabla. Hereda la clave de la entidad principal siendo clave también en esta tabla.

A(<u>**A1**</u>, A2, A3) B(<u>**A1**</u>, B1) C(<u>**A1**</u>, C1) D(**D1**, D2) CD(**A1, D1**)

- Personal(<u>Cedula</u>, Nombre, Dirección)
- Médico(<u>Cedula</u>, Especialidad)
- Enfermero(<u>Cedula</u>, Turno)
- Administrativo(<u>Cedula</u>, Antigüedad)

- Primero se pasan a tabla las entidades y relaciones dentro de la agregación.
- Luego las entidades que se relacionen con la agregación, tendiendo en cuenta que la agregación se comporta como una entidad.

- Los atributos de la agregación, son los que corresponde a la relación dentro de la agregación.
- Ejemplo con cardinalidad N:N

□ Ejemplo con cardinalidad N:1

- Los atributos de la agregación, son los que corresponde a la relación dentro de la agregación.
- Ejemplo con cardinalidad N:N

A(<u>A1</u>, A2) B(<u>B1</u>, B2) AB(<u>A1, B1</u>) C(<u>C1</u>, C2, A1,B1)

FUENTE

- Leonardo Carámbula. Sistemas de Bases de Datos I
 - ITS EMT CETP 2014
 - http://www.carambula.net/