FACULTAD DE INGENIERÍA Y CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BÁSICAS TRABAJO COLABORATIVO CÁLCULO II

Mario Rugeles

April 1, 2018

1 Calcular el área de la casa utilizando como unidad el cuadrado de la cuadrícula.

1.1 Imagen 1

Area	Baldosas	Conversión a Unidad (*.25)
A1	69	2.76
A2	910	36.4
A3	50	12.5
A4	64	2.56
Total		54.22

2 Use rectangulos para cálcular el área de la casa, para esto realice el cálculo variando el número de rectángulos (cambie el número de rectángulos tres veces), por favor registre los datos obtenidos en la siguiente tabla.

2.1 Imagen 2

2.2 Funciones para el cálculo de áreas

Las funciones que representan las áreas para A1 y A4 se transladan al origen en el segmento del dominio (a, b) con a = 0 y donde k = b / Δ , siendo Δ es la longitud de la base del rectangulo.

2.2.1 Area 1

$$A1 = \sum_{i=0}^{k} \Delta[sen(\Delta i) + 1] = \Delta[\sum_{i=0}^{k} sen(\Delta i) + \sum_{i=0}^{k} 1]$$
$$= \Delta[\sum_{i=0}^{k} sen(\Delta i) + (k+1)]$$

2.2.2 Area 2

$$A2 = 31 \tag{1}$$

2.2.3 Area 3

A3 Es 7 veces el area bajo la curva de $\mathbf{f}(\mathbf{x})=\mathbf{x}$ entre 0 y 1

$$A3 = 7\sum_{i=0}^{k} \Delta i = 7\Delta \sum_{i=0}^{k} i$$
 (2)

2.2.4 Area 4

$$A4 = \sum_{i=0}^{k} \Delta(-(\Delta i - 2)^2/2 + 2) = \Delta \sum_{i=0}^{k} (-(\Delta i - 2)^2/2 + 2)$$
 (3)

Area	Sumatoria
A1	$\Delta\left[\sum_{i=0}^{k} sen(\Delta i) + (k+1)\right]$
A2	31
A3	$7\Delta\sum_{i=0}^{k}i$
A4	$\Delta \sum_{i=0}^{k} (-(\Delta i - 2)^2/2 + 2)$

2.3 Area total para $\Delta = 1$

Area	b	$ m k = b/\Delta$	Ecuación	Total
A1	6	6	$\sum_{i=0}^{6} sen(i) + 7$	6.8967
A2			31	31
A3	1	1	$7\sum_{i=0}^{1} i$	7
A4	4	4	$\sum_{i=0}^{4} (-(i-2)^2/2 + 2)$	5
Total				28.8967

2.4 Area total para $\Delta = 0.5$

Area	b	$k=b/\Delta$	Ecuación	Total
A1	6	12	$0.5\left[\sum_{i=0}^{12} sen(0.5i) + 13\right]$	6.4691
A2			31	31
A3	1	2	$7\sum_{i=0}^{2} 0.5i$	10.5
A4	4	8	$0.5[\sum_{i=0}^{8}(-(0.5i-2)^2/2+2)]$	5.25
Total				32.2191

2.5 Area total para $\Delta = 0.2$

Area	b	$k=b/\Delta$	Ecuación	Total
A1	6	30	$0.2\left[\sum_{i=0}^{30} sen(0.2i) + 31\right]$	6.2117
A2			31	31
A3	1	5	$7\sum_{i=0}^{5} 0.2i$	21
A4	4	20	$0.2\left[\sum_{i=0}^{20} (-(0.2i-2)^2/2+2)\right]$	5.32
Total				42.5317

2.6 Area total por intervalos

Intervalos	Estimado del area
1	28.3967
0.5	32.2191
0.2	42.5317

3 Use la integral definida para calcular el area de la casa

Area	Ecuación	Total
A1	$\int_0^6 \sin(x) + 1 dx$	6.0398
A2	31	31
A3	$7(\int_0^1 x dx)$	3.5
A4	$\int_0^6 -((x-2)^2)/2 + 2 dx$	5.3333
Total		45.8731

4 Cuál es la mejor aproximacion del área de la casa? Justifique su respuesta.

La integral arroja un mejor resultado porque hace un cálculo con un intervalo infinitamente pequeño ($\Delta=\infty$)

5 Por seguridad el propietario quiere colocarle cerca electrica a la casa, para esto debe conocer cuántos metros lineales de cerca necesita?. Use técnicas de integración