Fundamentals of Solid State Physics

Semiconductors - Carrier Behaviors

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Carrier Behaviors in Semiconductors

- Equilibrium Carriers (热平衡态载流子)
- Non-equilibrium Carriers (非平衡态载流子)
- Majority & Minority Carriers 多数 / 少数 载流子
- Current Flow
 - diffusion current
 - drift current
- Generation 产生
- Recombination 复合

Equilibrium carriers (热平衡态载流子)

only thermal activation

$$n_c = N_c(T)e^{-(E_c - \mu)/k_B T}$$

$$p_{\nu} = P_{\nu}(T)e^{-(\mu - E_{\nu})/k_B T}$$

$$n_c p_v = N_v(T) P_v(T) e^{-E_g/k_B T} = n_i^2$$

mass action law

 E_c

 E_c

---- μ, **Ε**_i

=; -----

 E_{v}

0

— E

intrinsic

$$n_c = p_v$$

n-type

$$n_c > p_v$$

p-type

$$|n_c < p_v|$$

Non-equilibrium carriers (非平衡态载流子)

activation by other energy sources e.g., photon absorption, current injection, ...

extra more carriers n_c and p_v

$$p_{v} \neq P_{v}(T)e^{-(\mu-E_{v})/k_{B}T}$$

$$n_c \neq N_c(T)e^{-(E_c-\mu)/k_BT}$$

$$n_c p_v \neq N_v(T) P_v(T) e^{-E_g/k_B T} = n_i^2$$

mass action law is not valid

Non-equilibrium carriers (非平衡态载流子)

activation by other energy sources e.g., photon absorption, current injection, ...

extra more carriers n_c and p_v

rewrite:

$$p_{v} = P_{v}(T)e^{-(\mu_{p}-E_{v})/k_{B}T}$$

$$n_c = N_c(T)e^{-(E_c - \mu_n)/k_B T}$$

$$\mu_n \neq \mu_p$$

Non-equilibrium carriers (非平衡态载流子)

activation by other energy sources e.g., photon absorption, current injection, ...

extra more carriers n_c and p_v

light absorption increases the conductivity of a semiconductor:

---- photoconductor

$$\sigma = n_c e \mu_e + p_v e \mu_h$$

Majority & Minority Carriers

- Majority carriers (多数载流子)
- Minority carriers (少数载流子)
 - minority carriers are very important, because their amount can be easily changed by current injection, optical absorption, etc.

Current Flow

- Diffusion current 扩散电流
 - caused by concentration gradient

- Drift current 迁移电流
 - caused by electric field

Current Flow

- Diffusion current 扩散电流
 - caused by concentration gradient

$$\mathbf{1D} \qquad j = -qD\frac{\partial n}{\partial x}$$

3D

$$\mathbf{j} = -q\mathbf{D}\nabla\mathbf{n}$$

diffusivity 扩散系数

$$D = \mu \frac{kT}{q}$$

n - carrier concentration (#/m³)

D - diffusivity (m²/s) 扩散率

 μ - mobility (m²/V/s)

Current Flow

- Drift current 迁移电流
 - caused by electric field

Ohm's Law

$$j = \sigma E = nq\mu E = nqv$$

n - carrier concentration (#/m³)

D - diffusivity (m²/s) 扩散率

 μ - mobility (m²/V/s)

Carrier Generation

Excited by thermal energy

$$n_c p_v = N_v(T) P_v(T) e^{-E_g/k_B T} = n_i^2$$

- Excited by photons
 - photodetector
 - solar cells
 - **-**

$$h\nu = \mathbf{e} + \mathbf{h}$$

- Other sources
- ...

Carrier Recombination 复合

- Radiative 辐射
 - **LED**
 - laser

- Non-radiative recombination
 - defects, impurities, surfaces
 - lattice (phonons)

$$e + h = phonons$$

- Auger process

Carrier Recombination 复合

- 载流子寿命 Carrier lifetime τ_n and τ_p
 - the averaged time before the nonequilibrium carriers recombine
- 扩散率 Diffusivity D_n and D_p

 the averaged distance carriers move before recombination

$$L = \sqrt{D\tau}$$

 At non-equilibrium, minority carrier diffusion and lifetime are important for device performance

Semiconductors - Applications

different carrier behaviors offer different applications

integrated circuits

Thank you for your attention