

Osnovn signali

Signali i sustavi

Profesor Branko Jeren

veljača 2007.

2006/2007

Osnovni

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali

Vremenski diskretan jedinični skok – vremenski diskretna jedinična step funkcija

vremenski diskretan jedinični skok definiran je kao:

$$\mu: \textit{Cjelobrojni}
ightarrow \textit{Realni} \ \mu(\textit{n}) = \left\{ egin{array}{ll} 1 & \textit{n} \geq 0 \ 0 & \textit{n} < 0 \end{array}
ight.$$

Osnovni

Jedinični skok

Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni

Vremenski kontinuiran jedinični skok – vremenski kontinuirana jedinična step funkcija

vremenski kontinuiran jedinični skok definiran je kao:

$$\mu: Realni
ightarrow Realni \ \mu(t) = \left\{ egin{array}{ll} 1 & t \geq 0 \ 0 & t < 0 \end{array}
ight.$$

Signali i sustavi školska godina 2006/2007 Predavanje 4

Profesor Branko Jeren

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni

Jedinična kosina

• vremenski diskretna $kosina: Cjelobrojni \rightarrow Realni$ $kosina(n) = \begin{cases} n & n \geq 0 \\ 0 & n < 0 \end{cases}$

• vremenski kontinuirana $kosina: Realni \rightarrow Realni$ $kosina(t) = \left\{ egin{array}{ll} t & t \geq 0 \\ 0 & t < 0 \end{array} \right.$

2006/2007 Predavanje 4

Profesor Branko Jeren

Osnovni signali

Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Veza jediničnog skoka i jedinične kosine

 veza vremenski diskretne jedinične kosine i jediničnog skoka je

kosina : Cjelobrojni → Realni

$$kosina(n) = \sum_{m=-\infty}^{n} \mu(m-1)$$

$$=\sum_{m=-\infty}^{n-1}\mu(m)$$

 s druge strane vremenski diskretan jedinični skok možemo definirati pomoću kosine kao

$$\mu(n) = kosina(n+1) - kosina(n)$$

 vremenski kontinuiranu jediničnu kosinu definiramo s jediničnim skokom kao

kosina : Realni → Realni

kosina
$$(t)=\int_{-\infty}^t \mu(au) ext{d} au=t\mu(t)$$

 s druge strane vremenski kontinuiran jedinični skok možemo definirati pomoću kosine kao

$$\mu(t) = \frac{\textit{d(kosina(t))}}{\textit{dt}}$$

Osnovni

Jedinični sko

Jedinična kosina Jedinični impuls

Sinusoidni signali

Eksponencijaln signal

Vremenski diskretan jedinični impuls – Kroneckerova delta funkcija

 vremenski diskretan jedinični impuls je vremenski diskretan signal definiran kao:

$$\delta: Cjelobrojni \to Realni$$

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

2006/2007

Osnovn

Jedinični sko Jedinična ko

Jedinični impuls

Sinusoidni signali Eksponencijalni signal

Vremenski diskretan jedinični impuls - primjena1

 za m koraka pomaknuti vremenski diskretan jedinični impuls definiran je kao

$$\delta(n-m) = \begin{cases} 1 & n=m & \forall m \in C \text{jelobrojni} \\ 0 & n \neq m \end{cases}$$

školska godina 2006/2007 Predavanje 4

Profesor Branko Jeren

Osnovni

signali Jedinični skok

Jedinična kosina Jedinični impuls

Sinusoidni signa Eksponencijalni signal

Niz vremenski diskretnih jediničnih impulsa

 definiraju se nizovi jediničnih impulsa označenih vremenski diskretnom funkcijom comb (prema engleskom nazivu ove funkcije)

$$comb : Cjelobrojni \rightarrow Cjelobrojni$$

 $comb(n) = \sum_{m=-\infty}^{\infty} \delta(n-m)$

$$comb : Cjelobrojni \rightarrow Cjelobrojni$$

 $comb_M(n) = \sum_{m=-\infty}^{\infty} \delta(n - mM)$

Profesor Branko Jeren

Osnovn

Jedinični skok Jedinična kosina Jedinični impuls

Sinusoidni signa Eksponencijalni signal

Vremenski diskretan jedinični impuls – primjena2

 svaki niz može biti prikazan uz pomoć niza vremenski diskretnih jediničnih impulsa što proizlazi iz:

$$u(n) = u(n) \cdot comb(n) = u(n) \sum_{m=-\infty}^{\infty} \delta(n-m) =$$
$$= \sum_{m=-\infty}^{\infty} u(m)\delta(n-m)$$

$$u(n) = .7\delta(n+3) + .2\delta(n+1) + + .5\delta(n-1) - .2\delta(n-2) + + .7\delta(n-4) + .3\delta(n-5) - - .3\delta(n-7)$$

Profesor Branko Jeren

Osnovni signali Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni

Diracova delta funkcija – vremenski kontinuirani jednični impuls

- definira se vremenski kontinuiran jedinični impuls ili Diracova delta funkcija
- zbog svojih svojstava ona se izdvaja iz skupa regularnih matematičkih funkcija i svrstava su u klasu tzv. distribucija ili singularnih funkcija
- teorija generaliziranih funkcija, koja objedinjuje singularne i regularne funkcije, razvijana je koncem devetnaestog, i u prvoj polovici dvadestog stoljeća, a prvenstveno zbog potreba izučavanja električnih krugova i nekih problema u fizici
- za potrebe ovog predmeta ovdje se uvodi vremenski kontinuirani jedinični impuls ne ulazeći u strogi matematički postupak

2006/2007

Osnovni

signali

Jedinična kosina

Jedinični impuls

Eksponencijalni signal

Diracova delta funkcija – vremenski kontinuirani jednični impuls

• vremenski kontinuiran jednični impuls $\delta(t)$ prvi je definirao P. A. M. Dirac kao

$$\delta(t)=0$$
 za $t \neq 0$
$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

• u čast Diracu vremenski kontinuiran jednični impuls $\delta(t)$ naziva se i Diracova delta funkcija

signali

Jedinični skok Jedinična kosina

Jedinični impuls

Sinusoidni signali Eksponencijalni

Diracova delta funkcija 1

 izvod za Diracovu delta funkciju započinje s definicijom pravokutnog impulsa površine jednake jedan

$$\delta_{ au}: \textit{Realni}
ightarrow \textit{Realni} \ \delta_{ au}(t) = \left\{ egin{array}{ll} rac{1}{ au} & |t| < rac{ au}{2} \ 0 & |t| > rac{ au}{2} \end{array}
ight.$$

Osnovn signali

Jedinična kosina Jedinični impuls Sinusoidni signal

Sinusoidni signa Eksponencijalni signal

Diracova delta funkcija 2

- za au o 0 pravokutni impuls $\delta_{ au}$ postaje sve uži i sve viši ali pri tome površina ostaje uvijek vrijednosti jedan
- za granični slučaj slijedi

$$\delta(t) = \lim_{ au o 0} \delta_ au(t)$$

- Diracovu delta funkciju prikazujemo kao na slici
- strelica u t = 0 ukazuje kako je površina impulsa koncentrirana u t = 0, a visina strelice i oznaka "1" označuje jediničnu površinu impulsa
- površina ispod impulsa se naziva "težina" ili njegov "intenzitet"

2006/2007

Osnovn signali

Jedinični skok
Jedinična kosina
Jedinični impuls
Sinusoidni signal

Sinusoidni sign Eksponencijaln signal

Umnožak Diracove delta funkcije i vremenski kontinuirane regularne funkcije

- razmatra se umnožak Diracove delta funkcije s nekom vremenski kontinuiranom regularnom funkcijom f(t) koja je konačna i kontinuirana u t=0
- kako je jedinični impuls različit od nule samo za t=0 a vrijednost od f(t) u t=0 je f(0) slijedi

$$f(t)\delta(t) = f(0)\delta(t) \tag{1}$$

- dakle, umnožak vremenski kontinuirane funkcije f(t) i $\delta(t)$ rezultira s impulsom "intenziteta" ili "težine" f(0) (što je vrijednost funkcije f(t) na mjestu impulsa)
- isto tako, za funkciju koja je konačna i kontinuirana u t = t₀, vrijedi

$$f(t)\delta(t-t_0) = f(t_0)\delta(t-t_0)$$
 (2)

Osnovn signali

Jedinični skok Jedinična kosina **Jedinični impuls** Sinusoidni signali

Sinusoidni signa Eksponencijalni signal

Svojstvo otipkavanja Diracove delta funkcije

• iz jednadžbe (1) slijedi

$$\int_{-\infty}^{\infty} f(t)\delta(t)dt = f(0)\int_{-\infty}^{\infty} \delta(t)dt = f(0)$$
 (3)

isto tako, iz jednadžbe (2), slijedi

$$\int_{-\infty}^{\infty} f(t)\delta(t-t_0)dt = f(t_0)\int_{-\infty}^{\infty} \delta(t)dt = f(t_0) \quad (4)$$

- što znači da je površina produkta funkcije i impulsa $\delta(t)$ jednaka vrijednosti funkcije u trenutku u kojem je definiran jedinični impuls
- može se također reći da Diracova delta funkcija "vadi" ili "otipkava" vrijednost podintegralne funkcije na mjestu na kojem je impuls definiran

2006/2007

Osnovni signali Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni

Diracova delta funkcija kao generalizirana funkcija

- Diracovu delta funkciju se ne može promatrati kao regularnu funkciju jer ona ima vrijednost nula za sve vrijednosti osim za vrijednost t = 0, a za taj t nije definirana
- zato Diracovu delta funkciju definiramo u smislu teorije distribucija ili generaliziranih funkcija
- generaliziranu funkciju, umjesto njezinih vrijednosti za sve vrijednosti domene, definiramo preko njezina djelovanja na druge, "testne" ("ispitne"), regularne funkcije
- definicija Diracove delta funkcija u smislu teorije distribucija je dana u jednadžbama (3) i (4) dakle:

$$\int_{-\infty}^{\infty} f(t)\delta(t-t_0)dt = f(t_0)\int_{-\infty}^{\infty} \delta(t)dt = f(t_0)$$
 (5)

2006/2007

Branko Jer

Osnovn

Jedinični sk

Jedinična kosina

Jedinični impuls

Sinusoidni signali Eksponencijalni

Niz Diracovih delta funkcija

• niz Diracovih delta funkcija, označen kao funkcija comb(t) prema engleskom nazivu ove funkcije, definiran je kao

$$comb(t) = \sum_{m=-\infty}^{\infty} \delta(t-m), \qquad m \in \mathit{Cjelobrojni}$$

Osnovni signali

Jedinični skok Jedinična kosina

Jedinični impuls Sinusoidni signal

Sinusoidni sigr Eksponencijali signal

Produkt niza Diracovih delta funkcija i vremenski kontinuiranog signala

- produkt niza Diracovih delta funkcija, razmaknutih za \mathcal{T} , i kontinuiranog signala f(t) naziva se impulsno otikpavanje kontinuiranog signala ili impulsna modulacija
- rezultat množenja je niza δ funkcija intenziteta koji odgovaraju trenutnim vrijednostima funkcije f(t) na mjestima t=nT za $n\in Cjelobrojni$

$$f_{\delta}(t) = f(t) \sum_{n=-\infty}^{\infty} \delta(t-nT) =$$

$$= \sum_{n=-\infty}^{\infty} f(nT)\delta(t-nT)$$

Profesor Branko Jeren

Osnovni signali Jedinični skok Jedinična kosina Jedinični impuls

Veza vremenski kontinuiranog jediničnog impulsa i vremenski kontinuiranog jediničnog skoka 1

- derivacija funkcije jediničnog skoka svuda je nula osim na mjestu diskontinuiteta u t=0 gdje derivacija nije definirana
- uvodi se tzv. generalizirana derivacija i pokazuje se kako je Diracova δ funkcija generalizirana derivacija funkcije jediničnog skoka
- do ovog zaključka dolazi se sljedećim razmatranjem
- ullet za funkciju f(t) na slici prikazana je i njezina derivacija

Osnovn signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal

Sinusoidni signa Eksponencijaln signal

Veza vremenski kontinuiranog jediničnog impulsa i vremenski kontinuiranog jediničnog skoka 2

- derivacija funkcije f(t) definirana je za svaki t osim za t=-a/2 i t=a/2
- smanjivanjem a funkcija f(t) se u konačnici približava jediničnom skoku, a pravokutni impuls, površine jedan, koji predstavlja df(t)/dt, prelazi u jediničnu Diracovu δ funkciju
- ovako postignuta derivacija naziva se generalizirana derivacija, a jedinični impuls je generalizirana derivacija jediničnog skoka

$$\delta(t) = \frac{d\mu(t)}{dt}$$

iz ovoga slijedi i

$$\mu(t) = \int_{-\infty}^{t} \delta(\lambda) d\lambda$$

Osnovni

Jedinični :

Jedinična kosina

Jedinični impuls

Sinusoidni signali Eksponencijalni signal

Generalizirana derivacija funkcije g(t) s diskontinuitetom u $t = t_0$

• generalizirana derivacija funkcije g(t) s diskontinuitetom u $t=t_0$ definirana je kao

$$\frac{d}{dt}(g(t)) = \frac{d}{dt}(g(t))_{t \neq t_0} + \lim_{\epsilon \to 0} [g(t+\epsilon) - g(t-\epsilon)]\delta(t-t_0), \epsilon > 0$$

2006/2007

Osnovn

Jedinični skok Jedinična kosina

Jedinični impuls

Sinusoidni signa Eksponencijalni signal

Primjer generalizirana derivacija funkcije g(t) s diskontinuitetima

ullet neka je funkcija g(t) zadana s

$$g(t) = \begin{cases} 0 & t < 1 \\ -t + 3 & 1 < t \le 4 \\ 0.5(t - 6) & 4 < t \le 8 \\ 2 & 8 < t \le 9 \\ -t + 11 & 9 < t \le 11 \\ 0 & 11 < t \end{cases}$$

odnosno

$$g(t) = (-t+3)[\mu(t-1) - \mu(t-4)]$$

$$+0.5(t-6)[\mu(t-4) - \mu(t-8)]$$

$$+2[\mu(t-8) - \mu(t-9)]$$

$$+(-t+11)[\mu(t-9) - \mu(t-11)]$$

školska godina 2006/2007 Predavanje 4

Profesor Branko Jeren

Osnovn

Jedinični skok Jedinična kosina

Jedinični impuls

Sinusoidni signa Eksponencijalni signal

Primjer generalizirana derivacija funkcije g(t) s diskontinuitetima

• dakle, za zadanu funkciju g(t)

$$g(t) = (-t+3)[\mu(t-1) - \mu(t-4)] +0.5(t-6)[\mu(t-4) - \mu(t-8)] +2[\mu(t-8) - \mu(t-9)] +(-t+11)[\mu(t-9) - \mu(t-11)]$$

generalizirana derivacija je

$$g'(t) = -1 \cdot [\mu(t-1) - \mu(t-4)]$$

$$+0.5[\mu(t-4) - \mu(t-8)]$$

$$-1 \cdot [\mu(t-9) - \mu(t-11)]$$

$$+[g(1^{+}) - g(1^{-})]\delta(t-1)$$

$$+[g(8^{+}) - g(8^{-})]\delta(t-8)$$

sustavi školska godina 2006/2007 Predavanje 4

Profesor Branko Jeren

Osnovni

Jedinični sk

Jedinična kosina

Jedinični impuls Sinusoidni signali

Eksponencijaln signal

Generalizirana derivacija funkcije s diskontinuitetima

za funkciju g(t)

$$g(t) = (-t+3)[\mu(t-1) - \mu(t-4)] +0.5(t-6)[\mu(t-4) - \mu(t-8)] +2[\mu(t-8) - \mu(t-9)] +(-t+11)[\mu(t-9) - \mu(t-11)]$$

generalizirana derivacija je

$$g'(t) = -1 \cdot [\mu(t-1) - \mu(t-4)] \ +0.5[\mu(t-4) - \mu(t-8)] \ -1 \cdot [\mu(t-9) - \mu(t-11)] \ +[g(1^+) - g(1^-)]\delta(t-1)$$

$$+[g(8^+)-g(8^-)]\delta(t-8)$$

2006/2007

Osnovni

Jedinični skok Jedinična kosina Jedinični impuls

Sinusoidni signa Eksponencijalni signal

Generalizirana derivacija funkcije g(t) s diskontinuitetom 2

• prikazana je generalizirana derivacija funkcije g(t) s diskontinuitetima te integral dobivene funkcije

sustavi školska godina 2006/2007 Predavanje 4

Profesor Branko Jeren

Osnovn

Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni

Profesor

Vremenski kontinuiran sinusoidni signal 1

- u uvodnim izlaganjima navedena važnost sinusoidnog signala
- vremenski kontinuiran sinusoidni signal definiramo funkcijom

f: Realni
ightarrow Realni $f(t) = A\cos(2\pi F_0 t + \theta) = A\cos(\Omega_0 t + \theta) = A\cos(\frac{2\pi}{T_0} t + \theta)$ $F_0 = \frac{1}{T_0}, \qquad \Omega_0 = 2\pi F_0$ gdje su A = realna amplituda sinusoidnog signala $T_0 = \text{realni osnovni period signala}$

 $F_0 = \text{realna osnovna frekvencija signala, [Hz]}$

 $\Omega_0=$ realna kutna frekvencija signala, [rad/s]

 $\theta = \mathsf{faza}, \, \mathsf{[rad]}$

Osnovn

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni

Vremenski kontinuiran sinusoidni signal 2

Slika 1: Vremenski kontinuiran sinusoidni signal

sustavi školska godina 2006/2007 Predavanje 4

Profesor Branko Jeren

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Vremenski kontinuiran kompleksni eksponencijalni signal 1

- kompleksna eksponencijalna funkcija odlikuje se nizom značajki koje mogu poslužiti u jednostavnijem i boljem razumijevanju pojava i postupaka kod realnih signala i sustava
- zato se definira vremenski kontinuiran kompleksni eksponencijalni signal

 $f: Realni o Kompleksni \ s_0 = \sigma_0 + j\Omega_0 \in Kompleksni, \ C = Ae^{j\theta} \in Kompleksni, A, \theta \in Realni$

 $f(t) = Ce^{s_0t} = Ae^{j\theta}e^{(\sigma_0 + j\Omega_0)t} = Ae^{\sigma_0t}e^{j(\Omega_0t + \theta)}$

sustavi školska godina 2006/2007 Predavanje 4

Profesor Branko Jeren

Osnovni signali

Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Vremenski kontinuirani kompleksni eksponencijalni signal 2

 primjenom Eulerove relacije vremenski kontinuiran kompleksni eksponencijalni signal prikazujemo i kao

 $f: Realni \rightarrow Kompleksni$ $f(t) = Ae^{\sigma_0 t}e^{j(\Omega_0 t + \theta)} = Ae^{\sigma_0 t}[cos(\Omega_0 t + \theta) + j sin(\Omega_0 t + \theta)]$ $F_0 = \frac{1}{T_0}, \qquad \Omega_0 = 2\pi F_0$ gdje su

A = realna amplituda kompleksnog eksponencijalnog signala

 $s_0 = kompleksna frekvencija$

 $T_0 = \text{realni osnovni period sinusoidnog signala}$

 $F_0 = \text{realna osnovna frekvencija sinusnog signala, [Hz]}$

 $\Omega_0=$ realna kutna frekvencija sinusnog signala, [rad/s]

 $\sigma_0 = \text{prigušenje} \quad \theta = \text{faza, [rad]}$

2006/2007

Osnovni signali

Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Primjer vremenski kontinuirane kompleksne eksponencijalne funkcije 1

• za $s_0 = \sigma_0 + j\Omega_0$, kompleksna eksponencijala je

$$f(t) = Ae^{s_0t} = Ae^{(\sigma_0 + j\Omega_0)t} = Ae^{\sigma_0t}[cos(\Omega_0t) + j\sin(\Omega_0t)]$$

• neka je na primjer $\sigma_0=-0.1$, $\Omega_0=1$ i A=1 tada je

$$f(t) = e^{(-0.1+j)t} = e^{(-0.1t)}[\cos(t) + j\sin(t)]$$

 za danu kompleksnu eksponencijalu možemo prikazati realni i imaginarni dio, te modul i fazu

Osnovn

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Primjer vremenski kontinuirane kompleksne eksponencijalne funkcije 2

Slika 2: Vremenski kontinuirana kompleksna eksponencijala

sustavi školska godina 2006/2007 Predavanje 4

Profesor Branko Jeren

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Primjena kompleksne eksponencijale Ae^{s_0t} u prikazu nekih realnih funkcija 1

• za $s_0=\sigma_0+j\Omega_0$, vremenski kontinuiranu kompleksnu eksponencijalu prikazujemo kao

$$Ae^{s_0t} = Ae^{(\sigma_0 + j\Omega_0)t} = Ae^{\sigma_0t}[cos(\Omega_0t) + j\sin(\Omega_0t)]$$

• za
$$s_0^* = \sigma_0 - j\Omega_0$$
, konjugirano od s_0 , vrijedi $Ae^{s_0^*t} = Ae^{(\sigma_0 - j\Omega_0)t} = Ae^{\sigma_0 t}[cos(\Omega_0 t) - j\sin(\Omega_0 t)]$

• pa dalje slijedi

$$Ae^{\sigma_0 t}cos(\Omega_0 t) = \frac{1}{2}[Ae^{s_0 t} + Ae^{s_0^* t}]$$

školska godina 2006/2007 Predavanje 4

Profesor Branko Jeren

Osnovni signali

Jedinični skok Jedinični impuls Sinusoidni signa Eksponencijalni signal

Primjena kompleksne eksponencijale Ae^{s_0t} u prikazu nekih realnih funkcija 2

- pozicija kompleksnih frekvencija $s_0=\sigma_0\pm j\Omega_0$ u kompleksnoj ravnini određuje ponašanje $Ae^{\sigma_0t}cos(\Omega_0t)$
- kompleksnu ravninu podijelimo na četiri dijela:
 - imaginarna os $j\Omega$ za $\{s|\sigma=0\}$
 - realna os σ za $\{s|\Omega=0\}$
 - lijeva kompleksna poluravnina za $\{s|\sigma<0\}$
 - ullet desna kompleksna poluravnina za $\{s|\sigma>0\}$
- ullet razmatramo četiri mogućnosti za $f(t)=Ae^{st}$
- za s na imaginarnoj $j\Omega$ osi
 - $s = \sigma = \Omega = 0$ rezultira u konstanti f(t) = A
 - $\sigma = 0$ i $s = \pm j\Omega$ rezultira u $f(t) = A\cos(\Omega t)$
- ullet za s na realnoj σ osi
 - $s = \sigma$ i $\Omega = 0$ rezultira u $f(t) = Ae^{\sigma t}$
- za $s = \sigma \pm \Omega$
 - $s = \sigma \pm j\Omega$ rezultira u $f(t) = Ae^{\sigma t}\cos(\Omega t)$

2006/2007

Osnovn

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Primjena kompleksne eksponencijale Ae^{st} u prikazu nekih relanih funkcija 3

Slika 3: $Ae^{\sigma t}\cos(\Omega t)$

školska godina 2006/2007 Predavanje 4

Profesor Branko Jeren

Osnovn signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Prikaz realnog sinusoidnog signala s kompleksnim eksponencijalnim signalom

iz prije izvedenoga slijedi:

$$A\cos(\Omega_0 t + \theta) = \frac{A}{2} e^{j\theta} e^{j\Omega_0 t} + \frac{A}{2} e^{-j\theta} e^{-j\Omega_0 t} = Re\{Ae^{j(\Omega_0 t + \theta)}\}$$

$$A\sin(\Omega_0 t + \theta) = \frac{A}{2j} e^{j\theta} e^{j\Omega_0 t} - \frac{A}{2j} e^{-j\theta} e^{-j\Omega_0 t} = Im\{Ae^{j(\Omega_0 t + \theta)}\}$$

školska godina 2006/2007 Predavanje 4

Profesor Branko Jeren

Osnovn signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Vremenski diskretan kompleksni eksponencijalni signal 1

 vremenski diskretan kompleksni eksponencijalni signal (ili niz) prikazujemo funkcijom

$$f: Cjelobrojni
ightarrow Realni \ z_0 \in Kompleksni, \quad z_0 = \sigma_0 + j\omega_0 \ f(n) = Ae^{z_0n} = Ae^{(\sigma_0+j\omega_0)n} = A\alpha^n \ A \in Kompleksni, \quad \alpha \in Kompleksni \ \mathrm{gdje} \ \mathrm{su} \ \alpha = e^{(\sigma_0+j\omega_0)}, \quad A = |A|e^{\theta}$$

• uobičajeno se kompleksna eksponencijala označuje kao $A\alpha^n$, no promotrimo i alternativni način prikaza

Osnovni signali

Jedinični skok Jedinični impuls Sinusoidni signal Eksponencijalni signal

Kompleksni eksponencijalni niz 2

• kako su $A \in Kompleksni$ i $\alpha \in Kompleksni$ možemo pisati

$$A = |A|e^{j\theta}$$
 i $\alpha = e^{(\sigma_0 + j\omega_0)} = e^{\sigma_0}e^{j\omega_0} = |\alpha|e^{j\omega_0}$

• uz $e^{j\omega_0 n} = cos\omega_0 n + j \sin \omega_0 n$ slijedi

$$f(n) = A\alpha^{n} = |A||\alpha|^{n}\cos(\omega_{0}n + \theta) + j|A||\alpha|^{n}\sin(\omega_{0}n + \theta)$$

- $|\alpha|$ i ω_0 definiraju ponašanje kompleksne eksponecijale
 - za $|\alpha| = 1$ realni i imaginarni dio kompleksne eksponencijale su sinusoidni nizovi.
 - za $|\alpha| < 1$ oni su sinusoidni nizovi množeni s eksponencijalom koja se prigušuje te
 - za $|\alpha| > 1$ oni su sinusoidni nizovi množeni s eksponencijalom koja se raspiruje

Signali i sustavi školska godina 2006/2007 Predavanje 4

Profesor Branko Jeren

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Primjer eksponencijalnog niza

Slika 4: Kompleksni niz-primjer

sustavi školska godina 2006/2007 Predavanje 4

Profesor Branko Jeren

Osnovn

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Eksponencijalni niz u tvorbi realnog prigušenog sinusoidnog niza 1

za kompleksni niz

$$A\alpha^n = Ae^{\sigma_0 n}e^{j\omega_0 n} = A|\alpha|^n\cos(\omega_0 n) + jA|\alpha|^n\sin(\omega_0 n)$$

je njegov konjugirano kompleksni

$$A(\alpha^*)^n = Ae^{\sigma_0 n}e^{-j\omega_0 n} = A|\alpha|^n\cos(\omega_0 n) - jA|\alpha|^n\sin(\omega_0 n)$$

• pa vrijedi

$$A|\alpha|^n\cos(\omega_0 n) = \frac{1}{2}[A\alpha^n + A(\alpha^*)^n]$$

Osnovn

Jedinična kosina Jedinični impuls Sinusoidni signal

Sinusoidni signa Eksponencijalni signal

Eksponencijalni niz u tvorbi realnog prigušenog sinusoidnog niza 2

- analiziramo $A|\alpha|^n\cos(\omega_0 n)$ za razne vrijednosti $|\alpha|$ i ω_0
- za $\omega_0 = 0$
 - $|\alpha=1|$, $|\alpha|<1$, $|\alpha|>1$
- za $\omega_0=\pm \frac{\pi}{8}$
 - $\bullet \ |\alpha=1|,\, |\alpha|<1,\, |\alpha|>1$

Osnovni

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal Primjena kompleksne eksponencijale Ae^{st} u prikazu nekih relanih funkcija 2

Slika 5: $A|\alpha|^n \cos(\omega_0 n)$

2006/2007 Predavanje 4 Profesor

Profesor Branko Jeren

Osnovni signali

Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Sinousoidni signal 1

 neovisno o načinu nastajanja diskretna se sinusoida definira kao

$$f: Cjelobrojni \rightarrow Realni$$

 $f(n) = A\cos(\omega_0 n + \theta) = A\cos(2\pi f_0 n + \theta) = A\cos(\frac{2\pi n}{N_0} + \theta)$
 $f_0 = \frac{1}{N_0} = \frac{\omega_0}{2\pi}$
gdje su $N_0 \in Realni, A \in Realni$

- A je amplituda, ω_0 [radijana/uzorku] kutna frekvencija, a θ [radijana] faza signala
- N₀ je broj uzoraka jedne periode
- f₀ je dimenzije [perioda/uzorku] i predstavlja dio periode koji odgovara jednom uzorku

Osnovni

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Primjer realnog sinusoidnog niza

• primjer sinusoidnog niza za $\omega_0 = \frac{\pi}{12} \Rightarrow f_0 = \frac{1}{24}$, te $\theta = \frac{\pi}{3}$

Slika 6:
$$\cos(\frac{\pi}{12}n - \frac{\pi}{3})$$

Osnovni

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Periodičnost sinusoidnog niza

• niz
$$u(n) = \cos(\omega_0 n + \theta)$$
 je periodičan ako vrijedi $\cos[\omega_0 (n+N) + \theta] = \cos(\omega_0 n + \theta)$

izvodimo

$$\cos[\omega_0(n+N)+\theta] = \cos(\omega_0 n+\theta)\cos(\omega_0 N) - \sin(\omega_0 n+\theta)\sin(\omega_0 N)$$

• desna je strana jednaka $\cos(\omega_0 n + \theta)$ za $\cos(\omega_0 N) = 1$, i $\sin(\omega_0 N) = 0$

• a to je za

$$\omega_0 N = 2\pi k$$
, ili $\frac{\omega_0}{2\pi} = \frac{k}{N}$, ili $f_0 = \frac{k}{N}$

Osnovn

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Primjer periodičnog sinusoidnog niza

• za niz $1.8\cos(\frac{2\pi}{15}n - \frac{\pi}{7})$ vrijedi

$$\omega_0=rac{2\pi}{15}$$
 pa je $N=rac{2\pi k}{\omega_0}=rac{2\pi k}{rac{2}{15}\pi}=15$ za $k=1$

Slika 7: Periodični sinusoidni niz

Osnovni signali

Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Primjer neperiodičnog sinusoidnog niza

• za niz $1.8\cos(\frac{\sqrt{5}\pi}{15}n - \frac{\pi}{7})$ vrijedi

$$\omega_0 = \frac{\sqrt{5}\pi}{15}$$
 pa je $N = \frac{2\pi k}{\omega_0} = \frac{2\pi k}{\frac{\sqrt{5}}{15}\pi} = \frac{30}{\sqrt{5}}k$

Slika 8: Neperiodičan sinusoidni niz

2006/2007

Osnovn signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Nejednoznačnost valnih oblika vremenski diskretne sinusoide

- valni oblici vremenski kontinuirane sinusoide $\cos(\Omega t)$ su jednoznačni za svaku realnu vrijednost Ω iz intervala 0 do ∞
- u slučaju vremenski diskretne sinusoide imamo drugačiju pojavu
- razmotrimo sinusoidne signale kutne frekvencije $\omega_0 + 2k\pi$, za $k \in \mathit{Cjelobrojni}$

$$\cos((\omega_0 + 2k\pi)n + \theta) = \cos((\omega_0 n + \theta) + 2k\pi n) = \cos(\omega_0 n + \theta)$$

- vidi se da su sinusoidni signali frekvencije $\omega_0 + 2k\pi$ identični signalu frekvencije ω_0
- slijedi zaključak kako je dovoljno razmatrati samo vremenski diskretne sinusoide čije su kutne frekvencija unutar intervala $0 \le \omega_0 \le 2\pi$ odnosno $-\pi \le \omega_0 \le +\pi$

Osnovn signali

Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Još o periodičnosti vremenski diskretne sinusoide

- zbog upravo pokazane periodičnosti vremenski diskretne sinusoide jasno je da ne postoji kontinuirani porast broja oscilacija kako raste ω_0
- na slici koja slijedi ilustrirano je kako s porastom ω_0 od 0 prema π raste broj oscilacija, a s porastom ω_0 od π prema 2π , smanjuje broj oscilacija
- prikazane su sinusoide $\cos(\omega_0 n)$ za $\omega_0 = 0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{2\pi}{6}, \frac{\pi}{2}, \frac{4\pi}{6}, \frac{3\pi}{4}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6}, \frac{5\pi}{4}, \frac{8\pi}{6}, \frac{3\pi}{2}, \frac{10\pi}{6}, \frac{7\pi}{4}, \frac{11\pi}{6}$

sustavi školska godina 2006/2007 Predavanje 4

Profesor Branko Jeren

Osnovn signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Primjer realnog sinusoidnog niza

Osnovni

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Još o nejednoznačnosti prikaza vremenski diskretne sinusoide

- prethodni primjer potvrđuje kako će vremenski diskretna sinusoida biti jednoznačnog valnog oblika samo za vrijednosti $\omega \in [-\pi,\pi]$ ovaj interval se naziva osnovno frekvencijsko područje
- bilo koja frekvencija ω bez obzira na njezinu visinu bit će identična nekoj frekvenciji ω_a u temeljnom području $(-\pi \leq \omega_a \leq \pi)$
- dakle možemo pisati

$$\omega_a = \omega - 2\pi k$$
, $-\pi \le \omega_a \le \pi$ i $k \in C$ jelobrojni

2006/2007

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Još o nejednoznačnosti prikaza vremenski diskretne sinusoide 2

- slično se razmatranje može provesti i za prikaz sinusoide uz pomoć frekvencije f₀ koja predstavlja dio periode koja odgovara jednom uzorku
- pokazuje se da su sve sinusoide čije se frekvencije razlikuju za cjelobrojnu vrijednost identične (npr. za frekvencije 0.4, 1.4, 2.4,...)
- ovaj zaključak slijedi iz

$$\cos[(\omega_0 + 2k\pi)n + \theta] = \cos(\omega_0 n + \theta) \quad \text{za } \omega_0 = 2\pi f_0 \text{ vrijedi}$$
$$\cos[(2\pi f_0 + 2k\pi)n + \theta] = \cos[2\pi (f_0 + k)n + \theta)] = \cos(2\pi f_0 n + \theta)$$

• jednoznačno može biti prikazana vremenski diskretna sinusoida $\cos(2\pi f n + \theta)$ za vrijednosti f iz intervala (-0.5 < f < 0.5)

Signali i sustavi školska godina 2006/2007 Predavanje 4

Profesor Branko Jeren

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Veza f i f_a

• zaključujemo kako je svaka frekvencija f, bez obzira na njezin iznos, identična jednoj od frekvencija, f_a u osnovnom intervalu $(-0.5 \le f \le 0.5)$

Slika 11: Odnos f i fa

Osnovni signali

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signal Eksponencijalni signal

Frekvencijski alias 1

- prethodna razmatranja "sugeriraju" kako za diskretne signale ne postoje frekvencije iza $|\omega|=\pi$ ili $|f|=\frac{1}{2}$ i kako je najviša frekvencije $\omega=\pi(f=0.5)$ i najniža 0
- treba naglasiti kako frekvencije više od ovdje navedenih postoje ali se one "predstavljaju" odgovarajućom frekvencijom unutar osnovnog područja frekvencija dakle one imaju svoj "alias"
- primjer sinusoidnih signala frekvencija unutar i izvan osnovnog frekvencijskog područja ilustrira pojavu koju nazivamo, prema engleskoj terminologiji, aliasing
- bit će pokazano kako signal $\cos(\frac{7\pi}{6})$ ima svoj "alias" u $\cos(\frac{5\pi}{6})$ odnosno $\cos(\frac{11\pi}{6})$ svoj "alias" u $\cos(\frac{\pi}{6})$

Signali i sustavi školska godina 2006/2007 Predavanje 4

Profesor Branko Jeren

Osnovni

Jedinični skok Jedinična kosina Jedinični impuls Sinusoidni signali Eksponencijalni signal

Frekvencijski alias 2

Slika 12: Aliasing