$12n_{0121} \ (K12n_{0121})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^4 - 3u^3 - 2u^2 + b + 1, -u^4 - 3u^3 - 2u^2 + a + u + 1, u^5 + 3u^4 + 4u^3 + u^2 - u - 1 \rangle$$

$$I_2^u = \langle -u^4 + u^3 + b - 1, -u^4 + u^3 + a - u - 1, u^5 - u^4 + u^2 + u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 10 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \ I_1^u = \\ \langle -u^4 - 3u^3 - 2u^2 + b + 1, \ -u^4 - 3u^3 - 2u^2 + a + u + 1, \ u^5 + 3u^4 + 4u^3 + u^2 - u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{4} + 3u^{3} + 2u^{2} - u - 1 \\ u^{4} + 3u^{3} + 2u^{2} - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} + 3u^{3} + 2u^{2} - u - 1 \\ 3u^{4} + 5u^{3} + 2u^{2} - u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -20u^{4} - 44u^{3} - 16u^{2} + 8u + 12 \\ -26u^{4} - 46u^{3} - 16u^{2} + 11u + 12 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -3u^{4} - 9u^{3} - 4u^{2} + u + 3 \\ -13u^{4} - 15u^{3} - 4u^{2} + 6u + 3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -4u^{4} - 11u^{3} - 6u^{2} + 2u + 4 \\ -5u^{4} - 11u^{3} - 5u^{2} + 2u + 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -6u^{4} - 2u^{3} + 3u \\ -2u^{4} + 9u^{3} + 6u^{2} + u - 4 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2u^4 3u^3 + u^2 + 11u + 8$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^5 + 37u^4 + 682u^3 - 278u^2 + 101u + 1$
c_2, c_4	$u^5 - 9u^4 + 22u^3 + 10u^2 + 9u - 1$
c_3, c_6	$u^5 + 12u^4 + 120u^3 - 120u^2 + 128u - 32$
c_5, c_9	$u^5 + 3u^4 + 4u^3 + u^2 - u - 1$
$c_7, c_8, c_{10} \\ c_{11}, c_{12}$	$u^5 - u^4 + 8u^3 - 3u^2 + 3u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^5 - 5y^4 + 485898y^3 + 60406y^2 + 10757y - 1$
c_{2}, c_{4}	$y^5 - 37y^4 + 682y^3 + 278y^2 + 101y - 1$
c_3, c_6	$y^5 + 96y^4 + 17536y^3 + 17088y^2 + 8704y - 1024$
c_5, c_9	$y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1$
c_7, c_8, c_{10} c_{11}, c_{12}	$y^5 + 15y^4 + 64y^3 + 37y^2 + 3y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.561306 + 0.557752I		
a = 0.218218 - 0.753989I	-1.31583 - 1.53058I	1.57269 + 4.45807I
b = -0.343087 - 0.196237I		
u = -0.561306 - 0.557752I		
a = 0.218218 + 0.753989I	-1.31583 + 1.53058I	1.57269 - 4.45807I
b = -0.343087 + 0.196237I		
u = 0.588022		
a = -0.166966	0.756147	13.9650
b = 0.421056		
u = -1.23271 + 1.09381I		
a = 1.36526 + 2.80304I	4.22763 - 4.40083I	1.44484 + 1.78781I
b = 0.13256 + 3.89685I		
u = -1.23271 - 1.09381I		
a = 1.36526 - 2.80304I	4.22763 + 4.40083I	1.44484 - 1.78781I
b = 0.13256 - 3.89685I		

II. $I_2^u = \langle -u^4 + u^3 + b - 1, -u^4 + u^3 + a - u - 1, u^5 - u^4 + u^2 + u - 1 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{4} - u^{3} + u + 1 \\ u^{4} - u^{3} + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} - u^{3} + u + 1 \\ u^{4} - u^{3} - u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} - u^{3} + u + 1 \\ u^{4} - u^{3} + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} - u^{3} + u + 1 \\ u^{4} - u^{3} + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} + u + 1 \\ u^{4} - u^{3} + u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^3 3u^2 + u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^5$
c_3, c_6	u^5
c_4	$(u+1)^5$
<i>c</i> ₅	$u^5 + u^4 - u^2 + u + 1$
c_{7}, c_{8}	$u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1$
c_9	$u^5 - u^4 + u^2 + u - 1$
c_{10}, c_{11}, c_{12}	$u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^5$
c_3, c_6	y^5
c_{5}, c_{9}	$y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1$
$c_7, c_8, c_{10} \\ c_{11}, c_{12}$	$y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.758138 + 0.584034I		
a = -0.827780 - 0.637683I	-3.46474 - 2.21397I	0.88087 + 4.04855I
b = -0.069642 - 1.221720I		
u = -0.758138 - 0.584034I		
a = -0.827780 + 0.637683I	-3.46474 + 2.21397I	0.88087 - 4.04855I
b = -0.069642 + 1.221720I		
u = 0.935538 + 0.903908I		
a = 0.552827 - 0.534136I	-12.60320 + 3.33174I	1.28666 - 2.53508I
b = -0.38271 - 1.43804I		
u = 0.935538 - 0.903908I		
a = 0.552827 + 0.534136I	-12.60320 - 3.33174I	1.28666 + 2.53508I
b = -0.38271 + 1.43804I		
u = 0.645200		
a = 1.54991	-0.762751	1.66490
b = 0.904706		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^5(u^5+37u^4+682u^3-278u^2+101u+1)$
c_2	$(u-1)^5(u^5 - 9u^4 + 22u^3 + 10u^2 + 9u - 1)$
c_3, c_6	$u^5(u^5 + 12u^4 + 120u^3 - 120u^2 + 128u - 32)$
c_4	$(u+1)^5(u^5 - 9u^4 + 22u^3 + 10u^2 + 9u - 1)$
<i>C</i> ₅	$(u^5 + u^4 - u^2 + u + 1)(u^5 + 3u^4 + 4u^3 + u^2 - u - 1)$
c_7, c_8	$(u^5 - u^4 + 8u^3 - 3u^2 + 3u - 1)(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)$
<i>c</i> 9	$(u^5 - u^4 + u^2 + u - 1)(u^5 + 3u^4 + 4u^3 + u^2 - u - 1)$
c_{10}, c_{11}, c_{12}	$(u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1)(u^5 - u^4 + 8u^3 - 3u^2 + 3u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)^5(y^5 - 5y^4 + 485898y^3 + 60406y^2 + 10757y - 1)$
c_2, c_4	$(y-1)^5(y^5 - 37y^4 + 682y^3 + 278y^2 + 101y - 1)$
c_3, c_6	$y^5(y^5 + 96y^4 + 17536y^3 + 17088y^2 + 8704y - 1024)$
c_5,c_9	$(y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)$
c_7, c_8, c_{10} c_{11}, c_{12}	$(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)(y^5 + 15y^4 + 64y^3 + 37y^2 + 3y - 1)$