Производные типы данных

Параллельное программирование

Ограничение стандартных типов

- Коммуникационные операции позволяют посылать и получать последовательность элементов одного типа, занимающих смежные области памяти.
- При разработке параллельных программ иногда возникает потребность передавать данные разных типов (структуры) или данные, расположенные в несмежных областях памяти (части массивов, не образующих непрерывную последовательность элементов)

В МРІ предоставляются два механизма эффективной пересылки данных:

- ф создание производных типов;
- пересылка упакованных данных.

Производные типы данных

- Производные типы данных МРІ не являются в полном смысле типами данных
- Они **не могут** использоваться ни в каких других операциях, кроме *коммуникационных*
- Производный тип МРІ представляет собой скрытый объект, который специфицирует две вещи:
- последовательность базовых типов
- последовательность смещений

$$Typemap = \{(type_0, disp_0), ..., (type_{n-1}, disp_{n-1})\}$$

Сценарий определения и использования производных типов

Производный тип строится из предопределенных типов MPI и ранее определенных типов с помощью специальных функций-конструкторов:

```
MPI_Type_contiguous, MPI_Type_vector, MPI_Type_hvector, MPI_Type_indexed, MPI_Type_hindexed, MPI_Type_struct.
```

- 1. Новый производный тип регистрируется вызовом функции MPI_Type_commit. Только после регистрации новый тип можно использовать.
- 2. Когда производный тип становится ненужным, он уничтожается функцией MPI_Type_free.

Характеристика любого типа данных в МРІ

протяженность

Протяженность типа определяет, сколько байт переменная данного типа занимает в памяти. Эта величина может быть вычислена как: адрес последней ячейки данных — адрес первой ячейки данных + длина последней ячейки данных.

размер

Размер типа определяет количество реально передаваемых байт. Эта величина равна *сумме длин всех базовых* элементов определяемого типа.

Функция MPI_Туре_extent определяет протяженность элемента некоторого типа

int MPI_Type_extent (MPI_Datatype datatype, MPI_Aint
*extent)

■ Входные параметры:

datatype	тип данных
----------	------------

Функция MPI_Туре_size определяет «чистый» размер элемента некоторого типа

int MPI_Type_size (MPI_Datatype datatype, int *size)

■ Входные параметры:

datatype	тип данных
----------	------------

size	размер элемента заданного типа	
------	--------------------------------	--

Самый простой конструктор типов MPI_Type_contiguous

Создает новый тип, элементы которого состоят из указанного числа элементов базового типа, занимающих смежные области памяти.

```
int MPI_Type_contiguous (int count, MPI_Datatype
oldtype, MPI_Datatype *newtype)
```

Входные параметры:

count	число элементов базового типа
oldtype	базовый тип данных

newtype	новый производный тип данных
	OldType
	Count=4
	NewType

Функция MPI_Type_commit регистрирует созданный производный тип

```
int MPI_Type_commit (MPI_Datatype *datatype)
```

■ Входные параметры:

datatype	тип данных
----------	------------

■ Выходные параметры:

datatype	тип данных
----------	------------

Только после регистрации новый тип можно использовать в коммуникационных операциях.

Функция MPI_Type_free уничтожает описатель производного типа

int MPI Type free (MPI Datatype *datatype)

■ Входные параметры:

datatype тип данных

■ Выходные параметры:

datatype тип данных

Созданный производный тип данных обязательно должен быть уничтожен до конца работы параллельной программы

Функция MPI_Get_elements возвращает число элементов простого типа (базового типа), содержащихся в сообщении

```
int MPI_Get_elements (MPI_Status *status,
MPI_Datatype datatype, int *count)
```

■ Входные параметры:

status	статус сообщения
datatype	тип элементов сообщения

count	число элементов простого (базового) типа, содержащихся
	в сообщении

Конструктор типов MPI_Type_vector

Создает новый тип, элементы которого представляют собой несколько равноудаленных друг от друга блоков из одинакового числа смежных элементов базового типа.

```
int MPI_Type_vector (int count, int blocklength, int
stride, MPI_Datatype oldtype, MPI_Datatype
*newtype)
```

■ Входные параметры:

count	число блоков
blocklength	число элементов базового типа в каждом блоке
stride	шаг между началами соседних блоков, измеренный числом элементов базового типа
oldtype	базовый тип данных

newtype	новый производный тип данных
---------	------------------------------

Конструктор типов MPI_Type_vector

OldType _____

Count=3, blocklength=2, stride=3

NewType

Конструктор типов MPI_Type_hvector

Конструктор типа MPI_Type_hvector расширяет возможности конструктора MPI_Type_vector, позволяя задавать произвольный шаг между началами блоков в **байтах**.

```
int MPI_Type_hvector (int count, int blocklength,
MPI_Aint stride, MPI_Datatype oldtype, MPI_Datatype
*newtype)
```

Входные параметры:

count	число блоков
blocklength	число элементов базового типа в каждом блоке
stride	шаг между началами соседних блоков в байтах
oldtype	базовый тип данных

newtype	новый производный тип данных
---------	------------------------------

Конструктор типов MPI_Type_hvector

OldType

Count=3, blocklength=2, stride=7

NewType

Конструктор типов MPI_Type_indexed

Создает новый тип, элементы которого состоят из произвольных по длине блоков с произвольным смещением блоков от начала размещения элемента.

```
int MPI_Type_indexed (int count, int
*array_of_blocklength, int *array_of_displacements,
MPI_Datatype oldtype, MPI_Datatype *newtype)
```

■ Входные параметры:

count	число блоков
array_of_b	массив, содержащий число элементов базового типа в каждом блоке
array_of_di.	массив смещений каждого блока от начала размещения элемента нового типа (элемент)
oldtype	базовый тип данных

newtype	новый производный тип данных
---------	------------------------------

Конструктор типов MPI_Type_indexed

Конструктор типов MPI_Type_hindexed

Создает новый тип, элементы которого состоят из произвольных по длине блоков с произвольным смещением блоков от начала размещения элемента.

```
int MPI_Type_hindexed (int count, int

*array_of_blocklength, MPI_Aint *array_of_displacements,
MPI_Datatype oldtype, MPI_Datatype *newtype)
```

Входные параметры:

count	число блоков
array_of_b	массив, содержащий число элементов базового типа в каждом блоке
array_of_di.	массив смещений каждого блока от начала размещения элемента нового типа (в байтах)
oldtype	базовый тип данных

newtype	новый производный тип данных
---------	------------------------------

Конструктор типов MPI_Type_hindexed

Конструктор типов MPI_Type_struct

```
int MPI_Type_struct (int count, int

*array_of_blocklength, MPI_Aint

*array_of_displacements, MPI_Datatype

*array_of_types, MPI_Datatype *newtype)
```

■ Входные параметры:

count	число блоков
array_of_b	массив, содержащий число элементов базового типа в каждом блоке
array_of_di.	массив смещений каждого блока от начала размещения элемента нового типа в байтах
array_of_ty.	массив, содержащий тип элементов в каждом блоке

newtype

Конструктор типов MPI_Type_struct