Telemac2d ReferenceManual

Otto Mattic

Version 7.2
December 29, 2016

AVERTISSEMENT / CAUTION

L'accès à ce document, ainsi que son utilisation, sont strictement limités aux personnes expressément habilitées par EDF.

EDF ne pourra être tenu responsable, au titre d'une action en responsabilité contractuelle, en responsabilité délictuelle ou de tout autre action, de tout dommage direct ou indirect, ou de quelque nature qu'il soit, ou de tout préjudice, notamment, de nature financier ou commercial, résultant de l'utilisation d'une quelconque information contenue dans ce document.

Les données et informations contenues dans ce document sont fournies "en l'état" sans aucune garantie expresse ou tacite de quelque nature que ce soit.

Toute modification, reproduction, extraction d'éléments, réutilisation de tout ou partie de ce document sans autorisation préalable écrite d'EDF ainsi que toute diffusion externe à EDF du présent document ou des informations qu'il contient est strictement interdite sous peine de sanctions.

The access to this document and its use are strictly limited to the persons expressly authorized to do so by EDF.

EDF shall not be deemed liable as a consequence of any action, for any direct or indirect damage, including, among others, commercial or financial loss arising from the use of any information contained in this document.

This document and the information contained therein are provided "as are" without any warranty of any kind, either expressed or implied.

Any total or partial modification, reproduction, new use, distribution or extraction of elements of this document or its content, without the express and prior written consent of EDF is strictly forbidden. Failure to comply to the above provisions will expose to sanctions.

Contents

1	Detail list of keywords	14
1.1	ABSCISSAE OF SOURCES	14
1.2	ACCOUNT NUMBER	14
1.3	ACCURACY FOR DIFFUSION OF TRACERS	14
1.4	ACCURACY OF EPSILON	14
1.5	ACCURACY OF K	15
1.6	ADVECTION	15
1.7	ADVECTION OF H	15
1.8	ADVECTION OF K AND EPSILON	15
1.9	ADVECTION OF TRACERS	15
1.10	ADVECTION OF U AND V	16
1.11	AIR PRESSURE	16
1.12	ALGAE TRANSPORT MODEL	16
1.13	ALGAE TYPE	16
1.14	ANTECEDENT MOISTURE CONDITIONS	16
1.15	ASCII ATMOSPHERIC DATA FILE	17
1.16	ASCII DATABASE FOR TIDE	17
1.17	BINARY ATMOSPHERIC DATA FILE	17
1.18	BINARY ATMOSPHERIC DATA FILE FORMAT	17
1.19	BINARY DATA FILE 1	17
1.20	BINARY DATA FILE 1 FORMAT	18
1.21	BINARY DATA FILE 2	18
1.22	BINARY DATA FILE 2 FORMAT	18
1.23	BINARY DATABASE 1 FOR TIDE	18
1.24	BINARY DATABASE 2 FOR TIDE	18
1.25	BINARY RESULTS FILE	19

1.26	BINARY RESULTS FILE FORMAT	19
1.27	BOTTOM SMOOTHINGS	19
1.28	BOTTOM SURFACES DELWAQ FILE	19
1.29	BOTTOM TOPOGRAPHY FILE	19
1.30	BOUNDARY CONDITIONS FILE	20
1.31	BREACH	20
1.32	BREACHES DATA FILE	20
1.33	C-U PRECONDITIONING	20
1.34	CHECKING THE MESH	20
1.35	COEFFICIENT 1 FOR LAW OF TRACERS DEGRADATION	21
1.36	COEFFICIENT FOR DIFFUSION OF TRACERS	21
1.37	COEFFICIENT OF WIND INFLUENCE	21
1.38	COEFFICIENT TO CALIBRATE SEA LEVEL	21
1.39	COEFFICIENT TO CALIBRATE TIDAL RANGE	21
1.40	COEFFICIENT TO CALIBRATE TIDAL VELOCITIES	21
1.41	COMPATIBLE COMPUTATION OF FLUXES	22
1.42	COMPUTATION CONTINUED	22
1.43	CONTINUITY CORRECTION	22
1.44	CONTROL OF LIMITS	22
1.45	CONTROL SECTIONS	23
1.46	CORIOLIS	23
1.47	CORIOLIS COEFFICIENT	23
1.48	COST FUNCTION	23
1.49	COUPLING DIRECTORY	23
1.50	COUPLING PERIOD FOR SISYPHE	24
1.51	COUPLING PERIOD FOR TOMAWAC	24
1.52	COUPLING WITH	24
1.53	CULVERTS DATA FILE	24
1.54	DEBUGGER	24
1.55	DEFAULT EXECUTABLE	24
1.56	DEFAULT PARALLEL EXECUTABLE	25
1.57	DEFINITION OF ZONES	25
1.58	DELWAQ PRINTOUT PERIOD	25
1.59	DELWAQ STEERING FILE	25
1.60	DENSITY EFFECTS	25
1.61	DENSITY OF ALGAE	26

1.62	DEPTH IN FRICTION TERMS	26
1.63	DESCRIPTION OF LIBRARIES	26
1.64	DESIRED COURANT NUMBER	26
1.65	DESTINATION	26
1.66	DIAMETER OF ROUGHNESS ELEMENTS	27
1.67	DIAMETRE OF ALGAE	27
1.68	DICTIONARY	27
1.69	DIFFUSION OF TRACERS	27
1.70	DIFFUSION OF VELOCITY	27
1.71	DIFFUSIVITY DELWAQ FILE	27
1.72	DIFFUSIVITY FOR DELWAQ	28
1.73	DISCRETIZATIONS IN SPACE	28
1.74	DISSIPATION COEFFICIENT FOR SECONDARY CURRENTS	28
1.75	DROGUES FILE	28
1.76	DURATION	28
1.77	DURATION OF RAIN OR EVAPORATION IN HOURS	29
1.78	ELEMENTS MASKED BY USER	29
1.79	EQUATIONS	29
1.80	EXCHANGE AREAS DELWAQ FILE	29
1.81	EXCHANGES BETWEEN NODES DELWAQ FILE	29
1.82	FINITE VOLUME SCHEME	29
1.83	FLUXLINE	30
1.84	FLUXLINE INPUT FILE	30
1.85	FORMATTED DATA FILE 1	30
1.86	FORMATTED DATA FILE 2	30
1.87	FORMATTED RESULTS FILE	30
1.88	FORTRAN FILE	31
1.89	FOURIER ANALYSIS PERIODS	31
1.90	FREE INTEGER 20	31
1.91	FREE SURFACE GRADIENT COMPATIBILITY	31
1.92	FRICTION COEFFICIENT	31
1.93	FRICTION DATA	32
1.94	FRICTION DATA FILE	32
1.95	GEOGRAPHIC SYSTEM	32
1.96	GEOMETRY FILE	32
1.97	GEOMETRY FILE FORMAT	32

1.98	GLOBAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER	33
1.99	GRAPHIC PRINTOUT PERIOD	33
1.100	GRAVITY ACCELERATION	33
1.101	H CLIPPING	33
1.102	HARMONIC CONSTANTS FILE	33
1.103	IDENTIFICATION METHOD	34
1.104	IMPLICITATION COEFFICIENT OF TRACERS	34
1.105	IMPLICITATION FOR DEPTH	34
1.106	IMPLICITATION FOR DIFFUSION OF VELOCITY	34
1.107	IMPLICITATION FOR VELOCITY	34
1.108	INFORMATION ABOUT K-EPSILON MODEL	35
1.109	INFORMATION ABOUT SOLVER	35
1.110	INITIAL CONDITIONS	35
1.111	INITIAL DEPTH	35
1.112	INITIAL ELEVATION	36
1.113	INITIAL GUESS FOR H	36
1.114	INITIAL GUESS FOR U	36
1.115	INITIAL TIME SET TO ZERO	36
1.116	INITIAL VALUES OF TRACERS	36
1.117	LANGUAGE	37
1.118	LATITUDE OF ORIGIN POINT	37
1.119	LAW OF BOTTOM FRICTION	37
1.120	LAW OF FRICTION ON LATERAL BOUNDARIES	37
1.121	LAW OF TRACERS DEGRADATION	37
1.122	LIBRARIES	38
1.123	LIMIT VALUES	38
1.124	LINEARIZED PROPAGATION	38
1.125	LIQUID BOUNDARIES FILE	38
1.126	LIST OF FILES	39
1.127	LIST OF POINTS	39
1.128	LISTING FOR PRINTOUT PERIOD	39
1.129	LISTING PRINTOUT	39
1.130	LISTING PRINTOUT PERIOD	40
1.131	LOCAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER	40
1.132	LONGITUDE OF ORIGIN POINT	40
1.133	MANNING DEFAULT VALUE FOR COLEBROOK-WHITE LAW	40

1.134	MASS-BALANCE	41
1.135	MASS-LUMPING FOR WEAK CHARACTERISTICS	41
1.136	MASS-LUMPING ON H	41
1.137	MASS-LUMPING ON TRACERS	41
1.138	MASS-LUMPING ON VELOCITY	41
1.139	MATRIX STORAGE	42
1.140	MATRIX-VECTOR PRODUCT	42
1.141	MAXIMUM NUMBER OF BOUNDARIES	42
1.142	MAXIMUM NUMBER OF FRICTION DOMAINS	42
1.143	MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES	42
1.144	MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF TRACERS	42
1.145	MAXIMUM NUMBER OF ITERATIONS FOR IDENTIFICATION	43
1.146	MAXIMUM NUMBER OF ITERATIONS FOR K AND EPSILON	43
1.147	MAXIMUM NUMBER OF ITERATIONS FOR SOLVER	43
1.148	MAXIMUM NUMBER OF SOURCES	43
1.149	MAXIMUM NUMBER OF TRACERS	43
1.150	MEAN DEPTH FOR LINEARIZATION	44
1.151	MEAN TEMPERATURE	44
1.152	MINIMUM VALUE OF DEPTH	44
1.153	MINOR CONSTITUENTS INFERENCE	44
1.154	NAMES OF CLANDESTINE VARIABLES	44
1.155	NAMES OF DIFFERENTIATORS	45
1.156	NAMES OF POINTS	45
1.157	NAMES OF PRIVATE VARIABLES	45
1.158	NAMES OF TRACERS	45
1.159	NEWMARK TIME INTEGRATION COEFFICIENT	45
1.160	NODES DISTANCES DELWAQ FILE	45
1.161	NON-DIMENSIONAL DISPERSION COEFFICIENTS	46
1.162	NON-SUBMERGED VEGETATION FRICTION	46
1.163	NORTH	46
1.164	NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES	46
1.165	NUMBER OF CULVERTS	46
1.166	NUMBER OF DIFFERENTIATORS	47
1.167	NUMBER OF DROGUES	47
1.168	NUMBER OF FIRST TIME STEP FOR GRAPHIC PRINTOUTS	47
1.169	NUMBER OF FIRST TIME STEP FOR LISTING PRINTOUTS	47

1.170	NUMBER OF GAUSS POINTS FOR WEAK CHARACTERISTICS	47
1.171	NUMBER OF LAGRANGIAN DRIFTS	48
1.172	NUMBER OF PRIVATE ARRAYS	48
1.173	NUMBER OF SIPHONS	48
1.174	NUMBER OF SUB-ITERATIONS FOR NON-LINEARITIES	48
1.175	NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES	48
1.176	NUMBER OF TIME STEPS	49
1.177	NUMBER OF TRACERS	49
1.178	NUMBER OF WEIRS	49
1.179	OIL SPILL MODEL	49
1.180	OIL SPILL STEERING FILE	49
1.181	OPTION FOR CHARACTERISTICS	50
1.182	OPTION FOR CULVERTS	50
1.183	OPTION FOR INITIAL ABSTRACTION RATIO	50
1.184	OPTION FOR LIQUID BOUNDARIES	50
1.185	OPTION FOR THE DIFFUSION OF TRACERS	50
1.186	OPTION FOR THE DIFFUSION OF VELOCITIES	51
1.187	OPTION FOR THE SOLVER FOR K-EPSILON MODEL	51
1.188	OPTION FOR THE TREATMENT OF TIDAL FLATS	51
1.189	OPTION FOR TIDAL BOUNDARY CONDITIONS	51
1.190	OPTION FOR TSUNAMI GENERATION	52
1.191	OPTION FOR WIND	52
1.192	OPTION OF THE HYDROSTATIC RECONSTRUCTION	52
1.193	ORDINATES OF SOURCES	52
1.194	ORIGIN COORDINATES	52
1.195	ORIGINAL DATE OF TIME	53
1.196	ORIGINAL HOUR OF TIME	53
1.197	PARALLEL PROCESSORS	53
1.198	PARAMETER ESTIMATION	53
1.199	PARTITIONING TOOL	53
1.200	PHYSICAL CHARACTERISTICS OF THE TSUNAMI	54
1.201	PRECONDITIONING	54
1.202	PRECONDITIONING FOR DIFFUSION OF TRACERS	54
1.203	PRECONDITIONING FOR K-EPSILON MODEL	54
1.204	PRESCRIBED ELEVATIONS	54
1.205	PRESCRIBED FLOWRATES	55

1.206	PRESCRIBED TRACERS VALUES	55
1.207	PRESCRIBED VELOCITIES	55
1.208	PREVIOUS COMPUTATION FILE	55
1.209	PREVIOUS COMPUTATION FILE FORMAT	55
1.210	PRINTING CUMULATED FLOWRATES	56
1.211	PRINTOUT PERIOD FOR DROGUES	56
1.212	PRIORITY	56
1.213	PRODUCTION COEFFICIENT FOR SECONDARY CURRENTS	56
1.214	PROPAGATION	56
1.215	PROPAGATION OPTION	57
1.216	PSI SCHEME OPTION	57
1.217	RAIN OR EVAPORATION	57
1.218	RAIN OR EVAPORATION IN MM PER DAY	57
1.219	RAINFALL-RUNOFF MODEL	57
1.220	RECORD NUMBER FOR RESTART	58
1.221	RECORD NUMBER IN WAVE FILE	58
1.222	REFERENCE FILE	58
1.223	REFERENCE FILE FORMAT	58
1.224	RELEASE	58
1.225	RESULTS FILE	59
1.226	RESULTS FILE FORMAT	59
1.227	ROUGHNESS COEFFICIENT OF BOUNDARIES	59
1.228	SALINITY DELWAQ FILE	59
1.229	SALINITY FOR DELWAQ	59
1.230	SCHEME FOR ADVECTION OF K-EPSILON	60
1.231	SCHEME FOR ADVECTION OF TRACERS	60
1.232	SCHEME FOR ADVECTION OF VELOCITIES	60
1.233	SCHEME OPTION FOR ADVECTION OF K-EPSILON	60
1.234	SCHEME OPTION FOR ADVECTION OF TRACERS	60
1.235	SCHEME OPTION FOR ADVECTION OF VELOCITIES	61
1.236	SECONDARY CURRENTS	61
1.237	SECTIONS INPUT FILE	61
1.238	SECTIONS OUTPUT FILE	61
1.239	SIPHONS DATA FILE	61
1.240	SISYPHE STEERING FILE	62
1.241	SOLVER	62

1.242	SOLVER ACCURACY	62
1.243	SOLVER FOR DIFFUSION OF TRACERS	62
1.244	SOLVER FOR K-EPSILON MODEL	62
1.245	SOLVER OPTION	63
1.246	SOLVER OPTION FOR TRACERS DIFFUSION	63
1.247	SOURCES FILE	63
1.248	SPACING OF ROUGHNESS ELEMENTS	63
1.249	SPATIAL PROJECTION TYPE	63
1.250	SPEED AND DIRECTION OF WIND	64
1.251	SPHERICAL COORDINATES	64
1.252	STAGE-DISCHARGE CURVES	64
1.253	STAGE-DISCHARGE CURVES FILE	64
1.254	STEERING FILE	64
1.255	STOCHASTIC DIFFUSION MODEL	65
1.256	STOP CRITERIA	65
1.257	STOP IF A STEADY STATE IS REACHED	65
1.258	SUPG OPTION	65
1.259	TEMPERATURE DELWAQ FILE	65
1.260	TEMPERATURE FOR DELWAQ	66
1.261	THICKNESS OF ALGAE	66
1.262	THRESHOLD DEPTH FOR RECEDING PROCEDURE	66
1.263	THRESHOLD DEPTH FOR WIND	66
1.264	THRESHOLD FOR NEGATIVE DEPTHS	66
1.265	TIDAL DATA BASE	66
1.266	TIDAL FLATS	67
1.267	TIDAL MODEL FILE	67
1.268	TIDE GENERATING FORCE	67
1.269	TIME RANGE FOR FOURIER ANALYSIS	67
1.270	TIME STEP	67
1.271	TIME STEP REDUCTION FOR K-EPSILON MODEL	68
1.272	TITLE	68
1.273	TOLERANCES FOR IDENTIFICATION	68
1.274	TOMAWAC STEERING FILE	68
1.275	TREATMENT OF FLUXES AT THE BOUNDARIES	68
1.276	TREATMENT OF NEGATIVE DEPTHS	69
1.277	TREATMENT OF THE LINEAR SYSTEM	69

1.278	TURBULENCE MODEL	69
1.279	TURBULENCE REGIME FOR SOLID BOUNDARIES	69
1.280	TYPE OF ADVECTION	69
1.281	TYPE OF SOURCES	70
1.282	TYPE OF WEIRS	70
1.283	UPWIND COEFFICIENTS	70
1.284	USER ON DESTINATION	70
1.285	VALIDATION	70
1.286	VALUE OF ATMOSPHERIC PRESSURE	71
1.287	VALUES OF THE TRACERS AT THE SOURCES	71
1.288	VALUES OF TRACERS IN THE RAIN	71
1.289	VARIABLE TIME-STEP	71
1.290	VARIABLES FOR GRAPHIC PRINTOUTS	71
1.291	VARIABLES TO BE PRINTED	72
1.292	VECTOR LENGTH	72
1.293	VELOCITIES OF THE SOURCES ALONG X	72
1.294	VELOCITIES OF THE SOURCES ALONG Y	72
1.295	VELOCITY DELWAQ FILE	73
1.296	VELOCITY DIFFUSIVITY	73
1.297	VELOCITY FOR DELWAQ	73
1.298	VELOCITY PROFILES	73
1.299	VERTICAL FLUXES DELWAQ FILE	73
1.300	VERTICAL STRUCTURES	74
1.301	VOLUMES DELWAQ FILE	74
1.302	WAQTEL STEERING FILE	74
1.303	WATER DENSITY	74
1.304	WATER DISCHARGE OF SOURCES	74
1.305	WATER QUALITY PROCESS	75
1.306	WAVE DRIVEN CURRENTS	75
1.307	WAVE ENHANCED FRICTION FACTOR	75
1.308	WEIRS DATA FILE	75
1.309	WIND	75
1.310	WIND VELOCITY ALONG X	76
1.311	WIND VELOCITY ALONG Y	76
1.312	ZERO	76
1.313	ZONE NUMBER IN GEOGRAPHIC SYSTEM	76

1.314	ZONES FILE	76
2	List of keywords classified according to type	77
2.1	ADVECTION	77
2.2	AIR PRESSURE	77
2.3	BOUNDARY CONDITIONS	77
2.4	COMPUTATION ENVIRONMENT	77
2.5	COMPUTATIONAL INFORMATION	77
2.6	CONSTANT VISCOSITY	78
2.7	CONTROL	78
2.8	CORIOLIS	78
2.9	DIFFUSION OF VELOCITY	78
2.10	DURATION	78
2.11	EQUATIONS	78
2.12	EQUATIONS, ADVECTION	79
2.13	EQUATIONS, BOUNDARY CONDITIONS	79
2.14	EQUATIONS, INITIAL CONDITIONS	80
2.15	EQUATIONS, SOURCE	80
2.16	EQUATIONS, SOURCE TERMS	80
2.17	EQUATIONS, SOURCES	80
2.18	FILES	80
2.19	FRICTION	80
2.20	FRICTION AND SMOOTHINGS	81
2.21	GENERAL	81
2.22	HIGHT	82
2.23	INPUT-OUTPUT, FILES	82
2.24	INPUT-OUTPUT, GRAPHICS AND LISTING	84
2.25	INPUT-OUTPUT, INFORMATION	84
2.26	K-EPSILON MODEL	85
2.27	NAMES	85
2.28	NUMERICAL PARAMETERS	86
2.29	NUMERICAL PARAMETERS, K-EPSILON MODEL	88
2.30	NUMERICAL PARAMETERS, SOLVER	88
2.31	NUMERICAL PARAMETERS, VELOCITY-CELERITY-HIGHT	88
2.32	NUMERICS VALUES	88
2.33	PHYSICAL CONSTANTS	89

		13
2.34	PHYSICAL PARAMETERS	89
2.35	PHYSICAL PARAMETERS, INITIAL CONDITIONS	89
2.36	PROPAGATION	89
2.37	SOLVER	90
2.38	SPHERICAL COORDINATES	90
2.39	TRACER	90
2.40	TRACER OPTIONS	90
2.41	TURBULENCE MODEL	90
2.42	TYPE OF ADVECTION	91
2.43	WIND	91
3	Glossary	92
3.1	English/French glossary	92
3.2	French/English glossary	101
	Bibliography	111

1. Detail list of keywords

1.1 ABSCISSAE OF SOURCES

Type: Real
Dimension: 2
Mnemo XSCE

DEFAULT VALUE:

French keyword: ABSCISSES DES SOURCES

abscissae of sources of flowrate and/or tracer

1.2 ACCOUNT NUMBER

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: "

French keyword: NUMERO DE COMPTE

Account number to which the cost of computation shall be charged.

1.3 ACCURACY FOR DIFFUSION OF TRACERS

Type: Real Dimension: 0

Mnemo SLVTRA DEFAULT VALUE: 1.E-6

French keyword: PRECISION POUR LA DIFFUSION DES TRACEURS

Sets the required accuracy for computing the tracer diffusion.

1.4 ACCURACY OF EPSILON

Type: Real
Dimension: 0
Mnemo SLVEP
DEFAULT VALUE: 1.E-9

French keyword: PRECISION SUR EPSILON

Sets the required accuracy for computing epsilon in the diffusion and source-terms step of the k-epsilon model.

1.5 ACCURACY OF K

Type: Real
Dimension: 0
Mnemo SLVK
DEFAULT VALUE: 1.E-9

French keyword: PRECISION SUR K

Sets the required accuracy for computing k in the diffusion and source terms step of the kepsilon model.

1.6 ADVECTION

Type: Logical Dimension: 0 Mnemo CONV DEFAULT VALUE: YES

French keyword: CONVECTION

Are the advection terms taken into account or not? If YES, some advection terms can still be deleted using the keywords -ADVECTION OF ..-

1.7 ADVECTION OF H

Type: Logical Dimension: 0

Mnemo CONVV(2)

DEFAULT VALUE: YES

French keyword: CONVECTION DE H

The advection of H is taken into account or ignored. Actually, in version 2.0, the matter is about C advection.

1.8 ADVECTION OF K AND EPSILON

Type: Logical Dimension: 0

Mnemo CONVV(4)

DEFAULT VALUE: YES

French keyword: CONVECTION DE K ET EPSILON The k and epsilon advection is taken into account or ignored.

1.9 ADVECTION OF TRACERS

Type: Logical Dimension: 0

Mnemo CONVV(3)

DEFAULT VALUE: YES

French keyword: CONVECTION DES TRACEURS

The advection of the passive tracer is taken into account or ignored.

1.10 ADVECTION OF U AND V

Type: Logical Dimension: 0

Mnemo CONVV(1)

DEFAULT VALUE: YES

1.11 AIR PRESSURE

Type: Logical
Dimension: 0
Mnemo ATMOS
DEFAULT VALUE: NO

French keyword: PRESSION ATMOSPHERIQUE

Provided to decide whether the influence of an atmosphere field is taken into account or not.

1.12 ALGAE TRANSPORT MODEL

Type: Logical
Dimension: 0
Mnemo ALGAE
DEFAULT VALUE: NO

French keyword: MODELE DE TRANSPORT DES ALGUES

If yes, the floats or particles will be algae

1.13 ALGAE TYPE

Type: Integer Dimension: 0

Mnemo ALGTYP

DEFAULT VALUE: 1

French keyword: TYPE DES ALGUES

Algae type. For choice 1 the algae particles will be modeled as spheres, and for the other choices see Gaylord et al. (1994)

1.14 ANTECEDENT MOISTURE CONDITIONS

Type: Integer
Dimension: 1
Mnemo AMC
DEFAULT VALUE: 2

French keyword: CONDITIONS D'HUMIDITE PRECEDENTE

gives the antecedent moisture conditions before a rainfall event for the SCS CN runoff model. Available options are: 1: dry antecedent conditions 2: normal antecedent conditions 3: wet antecedent conditions This keyword is only usefull for runoff model 1 (SCS CN model)

1.15 ASCII ATMOSPHERIC DATA FILE

Type: String Dimension: 0

Mnemo T2D FILES(T2ATMA)

DEFAULT VALUE:

French keyword: FICHIER ASCII DE DONNEES ATMOSPHERIQUES

Ascii data file containing the atmospheric data varying in time

1.16 ASCII DATABASE FOR TIDE

Type: String Dimension: -1

Mnemo T2D FILES(T2DBDD)

DEFAULT VALUE:

French keyword: BASE ASCII DE DONNEES DE MAREE

Tide data base of harmonic constituents extracted from the tidal model file. Old name in 6.1

version: TIDE DATA BASE

1.17 BINARY ATMOSPHERIC DATA FILE

Type: String Dimension: 0

Mnemo T2D_FILES(T2ATMB)

DEFAULT VALUE:

French keyword: FICHIER BINAIRE DE DONNEES ATMOSPHERIQUES Binary-coded data file containing the atmospheric data varying time and space on the mesh

1.18 BINARY ATMOSPHERIC DATA FILE FORMAT

Type: String Dimension: -1

Mnemo T2D_FILES(T2ATMB)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER BINAIRE DE DONNEES ATMOSPHERIQUES

Binary atmospheric file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; - MED: MED

format based on HDF5

1.19 BINARY DATA FILE 1

Type: String Dimension: -1

Mnemo T2D_FILES(T2DBI1)

DEFAULT VALUE: '

French keyword: FICHIER DE DONNEES BINAIRE 1

Binary-coded data file made available to the user. The data in this file shall be read on channel 24.

1.20 BINARY DATA FILE 1 FORMAT

Type: String
Dimension: -1
Mnemo ?????
DEFAULT VALUE: 'BIN'

French keyword: FORMAT DU FICHIER DE DONNEES BINAIRE 1

Geometry file format. Possible values are: - BIN: Standard binary format - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac;

- MED: MED format based on HDF5

1.21 BINARY DATA FILE 2

Type: String Dimension: 0

Mnemo T2D_FILES(T2DBI2)

DEFAULT VALUE: "

French keyword: FICHIER DE DONNEES BINAIRE 2

Binary-coded data file made available to the user. The data in this file shall be read on channel 25.

1.22 BINARY DATA FILE 2 FORMAT

Type: String
Dimension: -1
Mnemo ?????
DEFAULT VALUE: 'BIN'

French keyword: FORMAT DU FICHIER DE DONNEES BINAIRE 2

Geometry file format. Possible values are: - BIN: Standard binary format - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac;

- MED: MED format based on HDF5

1.23 BINARY DATABASE 1 FOR TIDE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DBB1)

DEFAULT VALUE: '

French keyword: BASE BINAIRE 1 DE DONNEES DE MAREE

Binary database 1 extracted from the tidal model file. In the case of the TPXO satellite altimetry model, this file should be for free surface level, for instance h_{tpxo}

1.24 BINARY DATABASE 2 FOR TIDE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DBB2)

DEFAULT VALUE:

French keyword: BASE BINAIRE 2 DE DONNEES DE MAREE

Binary database 2 extracted from the tidal model file. In the case of the TPXO satellite altimetry model, this file should be for tidal velocities, for instance u_tpxo7.2

1.25 BINARY RESULTS FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DRBI)

DEFAULT VALUE:

French keyword: FICHIER DE RESULTATS BINAIRE

Additional binary-coded result file made available to the user. The results to be entered into this file shall be written on channel 28.

1.26 BINARY RESULTS FILE FORMAT

Type: String Dimension: -1

Mnemo T2D_FILES(T2DRBI)

DEFAULT VALUE: '

French keyword: FORMAT DU FICHIER DE RESULTATS BINAIRE

Geometry file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; - MED: MED format

based on HDF5

1.27 BOTTOM SMOOTHINGS

Type: Integer
Dimension: 0
Mnemo LISFON

DEFAULT VALUE: 0

French keyword: LISSAGES DU FOND

Number of smoothings on bottom topography. each smoothing is mass conservative. to be used when interpolation of bathymetry on the mesh gives very rough results.

1.28 BOTTOM SURFACES DELWAQ FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DDL5)

DEFAULT VALUE:

French keyword: FICHIER DELWAQ DES SURFACES DU FOND

Results file for coupling with Delwaq

1.29 BOTTOM TOPOGRAPHY FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DFON)

DEFAULT VALUE:

French keyword: FICHIER DES FONDS

Name of the possible file containing the bathymetric data. Where this keyword is used, these bathymetric data shall be used in the computation.

1.30 BOUNDARY CONDITIONS FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DLIM)

DEFAULT VALUE: '

French keyword: FICHIER DES CONDITIONS AUX LIMITES

Name of the file containing the types of boundary conditions. This file is filled automatically by the mesh generator through through colours that are assigned to the boundary nodes.

1.31 BREACH

Type: Logical Dimension: 0

Mnemo BRECHE

DEFAULT VALUE: NO

French keyword: BRECHE

Take in account some breaches during the computation by modifying the bottom level of the mesh. Brech description is done with the breaches data file.

1.32 BREACHES DATA FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DBRC)

DEFAULT VALUE:

French keyword: FICHIER DE DONNEES DES BRECHES

Description of breaches

1.33 C-U PRECONDITIONING

Type: Logical Dimension: 0

Mnemo PRECCU
DEFAULT VALUE: YES

 $\begin{array}{ll} French \ keyword: & \texttt{PRECONDITIONNEMENT} \ \texttt{C-U} \\ Change \ of \ variable \ from \ H \ to \ C \ in \ the \ final \ linear \ system \end{array}$

1.34 CHECKING THE MESH

Type: Logical Dimension: 0

Mnemo CHECK_MESH

DEFAULT VALUE: NO

French keyword: VERIFICATION DU MAILLAGE

if this key word is equal to yes, a call to subroutine checkmesh will look for errors in the mesh, superimposed points, etc.

1.35 COEFFICIENT 1 FOR LAW OF TRACERS DEGRADATION

Type: Real Dimension: 2

Mnemo COEF1TRAC

DEFAULT VALUE:

French keyword: COEFFICIENT 1 DE LA LOI DE DEGRADATION DES TRACEURS

Coefficient 1 of law for tracers decrease

1.36 COEFFICIENT FOR DIFFUSION OF TRACERS

Type: Real
Dimension: 0
Mnemo DIFNU
DEFAULT VALUE: 1.E-6

French keyword: COEFFICIENT DE DIFFUSION DES TRACEURS

Sets the value of the tracer diffusivity.

1.37 COEFFICIENT OF WIND INFLUENCE

Type: Real
Dimension: 0
Mnemo FAIR
DEFAULT VALUE: 0.

French keyword: COEFFICIENT D'INFLUENCE DU VENT Sets the value of the wind driving coefficient. Refer to principle note.

1.38 COEFFICIENT TO CALIBRATE SEA LEVEL

Type: Real
Dimension: 0
Mnemo MSL
DEFAULT VALUE: 0.

French keyword: COEFFICIENT DE CALAGE DU NIVEAU DE MER

Coefficient to calibrate the sea level

1.39 COEFFICIENT TO CALIBRATE TIDAL RANGE

Type: Real
Dimension: 0
Mnemo CTIDE
DEFAULT VALUE: 1.

French keyword: COEFFICIENT DE CALAGE DU MARNAGE

Coefficient to calibrate the tidal range of tidal wave at tidal open boundary conditions

1.40 COEFFICIENT TO CALIBRATE TIDAL VELOCITIES

Type: Real
Dimension: 0
Mnemo CTIDEV
DEFAULT VALUE: 999999.

French keyword: COEFFICIENT DE CALAGE DES VITESSES DE COURANT Coefficient to calibrate the tidal velocities of tidal wave at tidal open boundary conditions.

Default value 999999. means that the square root of COEFFICIENT TO CALIBRATE TIDAL RANGE is taken

1.41 COMPATIBLE COMPUTATION OF FLUXES

Type: Logical Dimension: 0

Mnemo COMFLU DEFAULT VALUE: NO

French keyword: CALCUL COMPATIBLE DES FLUX

FLOWRATES THROUGH CONTROL SECTIONS, COMPUTATION COMPATIBLE WITH THE WEAK FORMULATION OF NO-FLUX BOUNDARY CONDITION

1.42 COMPUTATION CONTINUED

Type: Logical Dimension: 0 Mnemo DEBU DEFAULT VALUE: NO

French keyword: SUITE DE CALCUL

Determines whether the computation under way is independent result or is following an earlier result. NO: It is the first run for this computation and a whole set of initial conditions should be defined. YES: It follows a former computation: the initial conditions consist in the last time step of the PREVIOUS COMPUTATION FILE in the steering file used for submitting the computation. All the data from the steering file may be defined once again, which provides an opportunity to change, for example, the time step, the turbulence model, the friction, to add or remove a tracer... It is also possible to define new boundary conditions.

1.43 CONTINUITY CORRECTION

Type: Logical

Dimension: 0

Mnemo CORCON DEFAULT VALUE: NO

French keyword: CORRECTION DE CONTINUITE

Correction of the velocities on points with a prescribed elevation, where the continuity equation has not been solved

1.44 CONTROL OF LIMITS

Type: Logical Dimension: 0

Mnemo VERLIM DEFAULT VALUE: NO

French keyword: CONTROLE DES LIMITES

Use with the key-word: limit values, the program is stopped if the limits on u,v,h, or t are

trespassed

1.45 CONTROL SECTIONS

Type: Integer
Dimension: 2
Mnemo CTRLSC

DEFAULT VALUE:

French keyword: SECTIONS DE CONTROLE

Couples of points (global numbers in the mesh) defining sections where the instantaneous and cumulated discharges will be given

1.46 CORIOLIS

Type: Logical
Dimension: 0
Mnemo CORIOL
DEFAULT VALUE: NO

French keyword: CORIOLIS

The Coriolis force is taken into account or ignored.

1.47 CORIOLIS COEFFICIENT

Type: Real
Dimension: 0
Mnemo FCOR
DEFAULT VALUE: 0.

French keyword: COEFFICIENT DE CORIOLIS

Sets the value of the Coriolis force coefficient, in cartesian coordinates. This coefficient, denoted FCOR in the code, should be equal to $2 \text{ w} \sin(1) \text{d}$ where w denotes the earth angular speed of rotation and 1 the latitude. $w = 7.27 \cdot 10-5 \cdot \text{rad/sec}$ The Coriolis force components are then: $FU = FCOR \times V$, $FV = -FCOR \times U$ In spherical coordinates, the latitudes are known

1.48 COST FUNCTION

Type: Integer Dimension: 0

Mnemo OPTCOST

DEFAULT VALUE:

 $\begin{array}{ll} \text{French keyword}: & \text{FONCTION COUT} \\ 1: \text{computed with } h,\, u \,,\, v \,\, 2: \,\, \text{computed with } c,\, u \,,\, v \end{array}$

1.49 COUPLING DIRECTORY

Type: String Dimension: -1

Mnemo DOSSIER_COUPLAGE

DEFAULT VALUE: '

French keyword: DOSSIER DE COUPLAGE

Name with full path of the directory where the files will be exchanged for coupling

1.50 COUPLING PERIOD FOR SISYPHE

Type: Integer Dimension: 0

Mnemo PERCOU

DEFAULT VALUE: 1

French keyword: PERIODE DE COUPLAGE POUR SISYPHE

to avoid coupling at every time-step

1.51 COUPLING PERIOD FOR TOMAWAC

Type: Integer Dimension: 0

Mnemo PERCOU_WAC

DEFAULT VALUE: 1

French keyword: PERIODE DE COUPLAGE POUR TOMAWAC

to avoid coupling at every time-step

1.52 COUPLING WITH

Type: String Dimension: -1

Mnemo COUPLING, IN BIEF

DEFAULT VALUE: '

French keyword: COUPLAGE AVEC

List of codes to be coupled with Telemac-2D SISYPHE: internal coupling with Sisyphe TOMAWAC

: internal coupling with Tomawac DELWAQ: will yield results file for Delwaq

1.53 CULVERTS DATA FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DBUS)

DEFAULT VALUE:

French keyword: FICHIER DE DONNEES DES BUSES

Description of culverts/tubes/bridges existing in the model

1.54 DEBUGGER

Type: Integer
Dimension: 0
Mnemo DEBUG

DEFAULT VALUE: 0

French keyword: DEBUGGER

If 1, calls of subroutines will be printed in the listing

1.55 DEFAULT EXECUTABLE

Type: String Dimension: 1

Mnemo EXEDEF

DEFAULT VALUE: 'builds|PPP|bin|telemac2dMMMVVV.exe'

French keyword: EXECUTABLE PAR DEFAUT

Default executable for T2D

1.56 DEFAULT PARALLEL EXECUTABLE

Type: String Dimension: 1

Mnemo EXEDEFPARA

DEFAULT VALUE: 'builds|PPP|bin|telemac2dMMMVVV.exe'
French keyword: EXECUTABLE PARALLELE PAR DEFAUT

Default parallel executable for T2D

1.57 DEFINITION OF ZONES

Type: Logical
Dimension: 0
Mnemo DEFZON

DEFAULT VALUE: NO

French keyword: DEFINITION DE ZONES

Triggers the call to def_zones to give a zone number to every point

1.58 DELWAQ PRINTOUT PERIOD

Type: Integer Dimension: 0

Dimension: 0

Mnemo WAQPRD

DEFAULT VALUE:

French keyword: PERIODE DE SORTIE POUR DELWAQ

Printout period for Delwaq file

1.59 DELWAQ STEERING FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DL11)

DEFAULT VALUE:

French keyword: FICHIER DE COMMANDE DELWAQ

Results file for coupling with Delwaq

1.60 DENSITY EFFECTS

Type: Logical
Dimension: 0
Mnemo ROVAR
DEFAULT VALUE: NO

French keyword: EFFETS DE DENSITE

THE HORIZONTAL GRADIENT OF DENSITY IS TAKEN INTO ACCOUNT THE TRACER IS THEN THE SALINITY

1.61 DENSITY OF ALGAE

Type: Real Dimension: 0

Mnemo RALGAE DEFAULT VALUE: 1050.

French keyword: MASSE VOLUMIQUE DES ALGUES

Density of algae in kg/m3

1.62 DEPTH IN FRICTION TERMS

Type: Integer
Dimension: 0
Mnemo HFROT

DEFAULT VALUE:

French keyword: HAUTEUR DANS LES TERMES DE FROTTEMENT

1: nodal 2: average

1.63 DESCRIPTION OF LIBRARIES

Type: String Dimension: 10

Mnemo LINKLIBS

DEFAULT VALUE: 'builds|PPP|lib|telemac2dMMMVVV.LLL;

builds|PPP|lib|sisypheMMMVVV.LLL; builds|PPP|lib|tomawacMMMVVV.LLL; builds|PPP|lib|mestorMMMVVV.LLL; builds|PPP|lib|waqte|MMMVVV.LLL; builds|PPP|lib|biefMMMVVV.LLL; builds|PPP|lib|damoMMMVVV.LLL; builds|PPP|lib|paralle|MMMVVV.LLL;

builds|PP'

French keyword: DESCRIPTION DES LIBRAIRIES

LIBRARIES description

1.64 DESIRED COURANT NUMBER

Type: Real Dimension: 0

Mnemo CFLWTD

DEFAULT VALUE: 1.

French keyword: NOMBRE DE COURANT SOUHAITE
Desired Courant number when VARIABLE TIME-STEP is set to YES

1.65 DESTINATION

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: 'CHE43A'
French keyword: DESTINATION

Possible name of a workstation to which the user wants to reroute the result file.

1.66 DIAMETER OF ROUGHNESS ELEMENTS

Type: Real
Dimension: -1
Mnemo DP
DEFAULT VALUE: 0.006

French keyword: DIAMETRE DES ELEMENTS DE FROTTEMENT

diameter of roughness element

1.67 DIAMETRE OF ALGAE

Type: Real Dimension: 0

Mnemo DALGAE

DEFAULT VALUE: 0.1

French keyword: DIAMETRE DES ALGUES

Diametre of algae in m

1.68 DICTIONARY

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: 'telemac2d.dico'
French keyword: DICTIONNAIRE

Key word dictionary.

1.69 DIFFUSION OF TRACERS

Type: Logical
Dimension: 0
Mnemo DIFT
DEFAULT VALUE: YES

French keyword: DIFFUSION DES TRACEURS

The diffusion of the passive tracer is taken into account or ignored.

1.70 DIFFUSION OF VELOCITY

Type: Logical
Dimension: 0
Mnemo DIFVIT
DEFAULT VALUE: YES

French keyword: DIFFUSION DES VITESSES

Makes it possible to decide whether the diffusion of velocity (i.e. viscosity) is taken into account

or not.

1.71 DIFFUSIVITY DELWAQ FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DL10)

DEFAULT VALUE: "

French keyword: FICHIER DELWAQ DE LA DIFFUSION

Results file for coupling with Delwaq

1.72 DIFFUSIVITY FOR DELWAQ

Type: Logical

Dimension: -1

Mnemo DIFF_DEL

DEFAULT VALUE: NO

French keyword: DIFFUSION POUR DELWAQ

Triggers output of diffusion for Delwaq

1.73 DISCRETIZATIONS IN SPACE

Type: Integer

Dimension: 4

Mnemo DISCRE DEFAULT VALUE: 11;11;11;11

French keyword: DISCRETISATIONS EN ESPACE

Choice of space discretisation for every variable These coefficients are applied respectively to 1) U and V 2) H 3) T 4) K and EPSILON (NOT IMPLEMENTED) 11: linear 12: quasi-bubble

13: quadratic

1.74 DISSIPATION COEFFICIENT FOR SECONDARY CURRENTS

Type: Real Dimension: 0

Mnemo SEC_DS DEFAULT VALUE: 5.E-1

French keyword: COEFFICIENT DE DISSIPATION POUR COURANTS SECONDAIRES

Coefficient of dissipation term of Omega

1.75 DROGUES FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DFLO)

DEFAULT VALUE: '

French keyword: FICHIER DES FLOTTEURS

Results file with positions of drogues

1.76 DURATION

Type: Real
Dimension: 0
Mnemo DUREE

DEFAULT VALUE: 0.

French keyword: DUREE DU CALCUL

duration of simulation. May be used instead of the parameter NUMBER OF TIME STEPS. The nearest integer to (duration/time step) is taken. If NUMBER OF TIME STEPS is also given, the greater value is taken

1.77 DURATION OF RAIN OR EVAPORATION IN HOURS

Type: Real Dimension: 1

Mnemo RAIN_HDUR

DEFAULT VALUE: 1.E6

French keyword: DUREE DE LA PLUIE OU EVAPORATION EN HEURES

gives the duration of the rain in hour, default value is infinite

1.78 ELEMENTS MASKED BY USER

Type: Logical
Dimension: 0
Mnemo MSKUSE

DEFAULT VALUE: NO

French keyword: ELEMENTS MASQUES PAR L'UTILISATEUR

IF YES REWRITE SUBROUTINE MASKOB

1.79 EQUATIONS

Type: String
Dimension: -1
Mnemo EQUA

DEFAULT VALUE: 'SAINT-VENANT EF'

French keyword: EQUATIONS

CHOICE OF EQUATIONS TO SOLVE: SAINT-VENANT FINITE ELEMENTS, SAINT-

VENANT FINITE VOLUMES OR BOUSSINESQ 20 CHARACTERS

1.80 EXCHANGE AREAS DELWAQ FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DDL2)

DEFAULT VALUE:

French keyword: FICHIER DELWAQ DES SURFACES DE FLUX

Results file for coupling with Delwaq

1.81 EXCHANGES BETWEEN NODES DELWAQ FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DDL6)

DEFAULT VALUE: "

French keyword: FICHIER DELWAQ DES ECHANGES ENTRE NOEUDS

Results file for coupling with Delwaq

1.82 FINITE VOLUME SCHEME

Type: Integer
Dimension: 0
Mnemo OPTVF

DEFAULT VALUE: 1

French keyword: SCHEMA EN VOLUMES FINIS

0: Roe scheme 1: kinetic order 1 2: kinetic order 2 3 : Zokagoa scheme 4 : Tchamen scheme 5 : HLLC order 1 6 : WAF order 2

1.83 FLUXLINE

Type: Logical Dimension: 1

Mnemo DOFLUX DEFAULT VALUE: NO

French keyword: FLUXLINE Use Fluxline to compute flux over lines

1.84 FLUXLINE INPUT FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DFLX)

DEFAULT VALUE: "

French keyword: FICHIER DE FLUXLINE Name of the Fluxline file, with data on cross-sections

1.85 FORMATTED DATA FILE 1

Type: String Dimension: -1

Mnemo T2D FILES(T2DFO1)

DEFAULT VALUE:

French keyword: FICHIER DE DONNEES FORMATE 1

Formatted data file made available to the user. The data in this file shall be read on channel 26.

1.86 FORMATTED DATA FILE 2

Type: String Dimension: -1

Mnemo T2D_FILES(T2DFO2)

DEFAULT VALUE: '

French keyword: FICHIER DE DONNEES FORMATE 2

Formatted data file made available to the user. The data in this file shall be read on channel 27.

1.87 FORMATTED RESULTS FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DRFO)

DEFAULT VALUE: '

French keyword: FICHIER DE RESULTATS FORMATE

Formatted file of results made available to the user. The results to be entered into this file shall be written on channel 29.

1.88 FORTRAN FILE 31

1.88 FORTRAN FILE

Type: String Dimension: -1

Mnemo NOMFOR DEFAULT VALUE: 'DEFAUT'

French keyword: FICHIER FORTRAN Name of FORTRAN file to be submitted.

1.89 FOURIER ANALYSIS PERIODS

Type: Real
Dimension: 2
Mnemo PERIAF

DEFAULT VALUE:

French keyword: PERIODES D'ANALYSE DE FOURIER

List of periods to be analysed

1.90 FREE INTEGER 20

Type: Integer Dimension: 0

Mnemo STDPRE

DEFAULT VALUE: 3

French keyword: ENTIER LIBRE 20 TODO: WRITE HELP FOR THAT KEYWORD

1.91 FREE SURFACE GRADIENT COMPATIBILITY

Type: Real Dimension: 0

Mnemo TETAZCOMP

DEFAULT VALUE: 1.

French keyword: COMPATIBILITE DU GRADIENT DE SURFACE LIBRE

Values less than 1 suppress spurious oscillations

1.92 FRICTION COEFFICIENT

Type: Real
Dimension: 0
Mnemo FFON
DEFAULT VALUE: 50.

French keyword: COEFFICIENT DE FROTTEMENT

Sets the value of the friction coefficient for the selected formulation. It is noteworthy that the meaning of this figure changes according to the selected formula (Chezy, Strickler, etc.): 1: linear coefficient 2: Chezy coefficient 3: Strickler coefficient 4: Manning coefficient 5: Nikuradse grain size

1.93 FRICTION DATA

Type: Logical
Dimension: -1
Mnemo FRICTB
DEFAULT VALUE: NO

French keyword: DONNEES POUR LE FROTTEMENT

Friction law defined by area

1.94 FRICTION DATA FILE

Type: String
Dimension: -1

Mnemo T2D FILES(T2DCOF)

DEFAULT VALUE:

French keyword: FICHIER DE DONNEES POUR LE FROTTEMENT

friction data file

1.95 GEOGRAPHIC SYSTEM

Type: Integer Dimension: 0

Mnemo GEOSYST

DEFAULT VALUE: -1

French keyword: SYSTEME GEOGRAPHIQUE

Geographic coordinates system in which the numerical model is built. Indicate the corresponding zone with the keyword

1.96 GEOMETRY FILE

Type: String Dimension: 0

Mnemo T2D_FILES(T2DGEO)

DEFAULT VALUE: '

French keyword: FICHIER DE GEOMETRIE

Name of the file containing the mesh. This file may also contain the topography and the friction

coefficients.

1.97 GEOMETRY FILE FORMAT

Type: String
Dimension: -1
Mnemo ?????

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE GEOMETRIE

Geometry file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; - MED: MED format

based on HDF5

1.98 GLOBAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER

Type: Integer Dimension: 0

Mnemo ICALHWG

DEFAULT VALUE: 0

French keyword: NUMERO GLOBAL DU POINT POUR CALER LA PLEINE MER Global number of the point with respect to which the tidal constituents have their phase shifted to start the calculation with a high water (for schematic tides only). Only harmonic constants databases like TPXO are concerned.

1.99 GRAPHIC PRINTOUT PERIOD

Type: Integer Dimension: 0

Mnemo LEOPRD

DEFAULT VALUE: 1

French keyword: PERIODE POUR LES SORTIES GRAPHIQUES

Determines, in number of time steps, the printout period for the VARIABLES FOR GRAPHIC PRINTOUTS in the RESULTS FILE.

1.100 GRAVITY ACCELERATION

Type: Real
Dimension: 0
Mnemo GRAV
DEFAULT VALUE: 9.81

French keyword: ACCELERATION DE LA PESANTEUR

Set the value of the acceleration due to gravity.

1.101 H CLIPPING

Type: Logical Dimension: 0
Mnemo CLIPH DEFAULT VALUE: NO

French keyword: CLIPPING DE H

Determines whether limiting the water depth H by a lower value desirable or not. (for instance in the case of tidal flats) This key-word may have an influence on mass conservation since the truncation of depth is equivalent to adding mass.

1.102 HARMONIC CONSTANTS FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DHAR)

DEFAULT VALUE:

French keyword: FICHIER DES CONSTANTES HARMONIQUES

Harmonic constants extracted from the tidalmodel file

1.103 IDENTIFICATION METHOD

Type: Integer
Dimension: 0
Mnemo OPTID

DEFAULT VALUE: 1

French keyword: METHODE D'IDENTIFICATION 0: list of tests 1: gradient 2: conj. gradient 3: lagrange interp.

1.104 IMPLICITATION COEFFICIENT OF TRACERS

Type: Real
Dimension: 0
Mnemo TETAT
DEFAULT VALUE: 0.6

French keyword: COEFFICIENT D'IMPLICITATION DES TRACEURS

Sets the value of the implicitation coefficient for the tracer

1.105 IMPLICITATION FOR DEPTH

Type: Real
Dimension: 0
Mnemo TETAC
DEFAULT VALUE: 0.55

French keyword: IMPLICITATION POUR LA HAUTEUR

Sets the value of the implicitation coefficient for C (the celerity of waves) in the propagation step (refer to principle note). Values below 0.5 result in an unstable scheme.

1.106 IMPLICITATION FOR DIFFUSION OF VELOCITY

Type: Real
Dimension: 0
Mnemo TETAD
DEFAULT VALUE: 1.

French keyword: IMPLICITATION POUR LA DIFFUSION DES VITESSES

Sets the value of the implicitation coefficient for the diffusion of velocity

1.107 IMPLICITATION FOR VELOCITY

Type: Real
Dimension: 0
Mnemo TETAU
DEFAULT VALUE: 0.55

French keyword: IMPLICITATION POUR LA VITESSE

Sets the value of the implicitation coefficient for velocity in the propagation step (refer to principle note). Values below 0.5 result in an unstable condition.

1.108 INFORMATION ABOUT K-EPSILON MODEL

Type: Logical Dimension: 0

Mnemo INFOKE DEFAULT VALUE: YES

French keyword: INFORMATIONS SUR LE MODELE K-EPSILON

Gives the number of iterations of the solver in the diffusion and source terms step of the kepsilon model.

1.109 INFORMATION ABOUT SOLVER

Type: Logical
Dimension: 0
Mnemo INFOGR

DEFAULT VALUE: YES

French keyword: INFORMATIONS SUR LE SOLVEUR

if YES, prints the number of iterations that have been necessar to get the solution of the linear system.

1.110 INITIAL CONDITIONS

Type: String Dimension: -1

Mnemo CDTINI

DEFAULT VALUE: 'ZERO ELEVATION'

French keyword: CONDITIONS INITIALES

Makes it possible to define the initial conditions with the water depth. The possible values are as follows: - ZERO ELEVATION-. Initializes the free surface elevation to 0. The initial water depths are then found by computing the difference between the free surface and the bottom. - CONSTANT ELEVATION-. Initializes the water elevation to the value given by the keyword-INITIAL ELEVATION-. The initial water depths are computed as in the previous case. - ZERO DEPTH-. Initializes the water depths to 0. - CONSTANT DEPTH-. Initializes the water depths to the value given by the key-word-INITIAL DEPTH-. - SPECIAL-. The initial conditions with the water depth should be stated in the CONDIN subroutine. - TPXO SATELITE ALTIMETRY. The initial conditions on the free surface and velocities are established from the TPXO satellite program data, the harmonic constituents of which are stored in the TIDE DATA BASE file.

1.111 INITIAL DEPTH

Type: Real Dimension: 0

Mnemo HAUTIN

DEFAULT VALUE: 0

French keyword: HAUTEUR INITIALE

Value to be used along with the option: INITIAL CONDITIONS -CONSTANT DEPTH-

1.112 INITIAL ELEVATION

Type: Real Dimension: 0 Mnemo **COTINI**

DEFAULT VALUE: 0.

French keyword: COTE INITIALE

Value to be used with the option: INITIAL CONDITIONS -CONSTANT ELEVATION

1.113 INITIAL GUESS FOR H

Integer Type: Dimension:

Mnemo **IORDRH**

DEFAULT VALUE: 1

French keyword: ORDRE DU TIR INITIAL POUR H

Initial guess for the solver in the propagation step. Makes it possible to modify the initial value of C, upon each iteration in the propagation step, by using the ultimate values this variable had in the earlier time steps. Thus, the convergence can be speeded up when the system is being solved. 3 options are available: 0: DH = 0.1: DH = DHn (ultimate DH value in the next previous time step) 2: DH = 2DHn - DHn-1 (extrapolation)

1.114 INITIAL GUESS FOR U

Type: Integer Dimension: 0

Mnemo **IORDRU**

DEFAULT VALUE:

French keyword: ORDRE DU TIR INITIAL POUR U

Initial guess for the solver in the propagation step. Makes it possible to modify the initial value of U, upon each iteration in the propagation step, by using the ultimate values this variable had in the earlier time steps. Thus, the convergence can be speeded up when the system is being solved. 3 options are available: 0: U = 0.1: U = U(n). 2: U = 2. U(n) - U(n-1) (extrapolation)

1.115 **INITIAL TIME SET TO ZERO**

Type: Logical Dimension:

Mnemo **RAZTIM** DEFAULT VALUE: NO

French keyword: REMISE A ZERO DU TEMPS

Initial time set to zero in case of restart

1.116 INITIAL VALUES OF TRACERS

Type: Real Dimension: 2 Mnemo TRAC0 DEFAULT VALUE: 0.:0.

French keyword: VALEURS INITIALES DES TRACEURS

Sets the initial value of the tracer.

1.117 LANGUAGE 37

1.117 LANGUAGE

Type: Integer
Dimension: 0
Mnemo LNG
DEFAULT VALUE: 2

French keyword: LANGUE

1: FRENCH 2: ENGLISH

1.118 LATITUDE OF ORIGIN POINT

Type: Real Dimension: 0

Mnemo LAMBD0

DEFAULT VALUE: 48.

French keyword: LATITUDE DU POINT ORIGINE

Determines the origin used for computing latitudes when a computation is made in spherical coordinates. this latitude is in particular used to compute the Coriolis force. In cartesian coordinates, Coriolis coefficient is considered constant.

1.119 LAW OF BOTTOM FRICTION

Type: Integer
Dimension: 0
Mnemo KFROT
DEFAULT VALUE: 0

French keyword: LOI DE FROTTEMENT SUR LE FOND

Selects the type of formulation used for the bottom friction. The possible laws are as follows (refer to the Principle note): 0: no friction against bottom, 1: Haaland's formula 2: CHEZY's formula 3: STRICKLER's formula 4: MANNING's formula 5: NIKURADSE's formula

1.120 LAW OF FRICTION ON LATERAL BOUNDARIES

Type: Integer
Dimension: 0
Mnemo KFROTL

DEFAULT VALUE: 0

French keyword: LOI DE FROTTEMENT SUR LES PAROIS LATERALES

Selects the type of formulation used for the friction on lateral boundaries. The possible laws are as follows (refer to the Principle note): 0: no friction 1: linear 2: Chezy 3: Strickler 4: Manning 5: NIKURADSE's formula 6: law log 7: Colebrook-White

1.121 LAW OF TRACERS DEGRADATION

Type: Integer

Dimension: 2

Mnemo LOITRAC

DEFAULT VALUE: 0;0

French keyword: LOI DE DEGRADATION DES TRACEURS

Take in account a law for tracers decrease

1.122 LIBRARIES

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: '

French keyword: BIBLIOTHEQUES

Obsolete

1.123 LIMIT VALUES

Type: Real Dimension: 8

Mnemo

DEFAULT VALUE: -1000.;9000.;-1000.;1000.;-1000.;1000.;-1000.;1000.

French keyword: VALEURS LIMITES

To be used with the key-word CONTROL OF LIMITS min and max acceptable values for H,U,V et T in the following order : $\min(H)$ $\max(H)$ $\min(U)$ $\max(U)$ $\min(V)$ $\max(V)$ $\min(T)$

max(T)

1.124 LINEARIZED PROPAGATION

Type: Logical
Dimension: 0
Mnemo PROLIN
DEFAULT VALUE: NO

French keyword: PROPAGATION LINEARISEE

Provided for linearizing the propagation step, e.g. when performing test-cases for which an analytical solution in the linearized case is available.

1.125 LIQUID BOUNDARIES FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DIMP)

DEFAULT VALUE:

French keyword: FICHIER DES FRONTIERES LIQUIDES

Variations in time of boundary conditions. Data of this file are read on channel 12.

1.126 LIST OF FILES 39

1.126 LIST OF FILES

Type: String Dimension: 47

Mnemo

DEFAULT VALUE: 'STEERING FILE;

DICTIONARY; FORTRAN FILE; GEOMETRY FILE;

BOUNDARY CONDITIONS FILE;

RESULTS FILE:

PREVIOUS COMPUTATION FILE; BOTTOM TOPOGRAPHY FILE;

BINARY DATA FILE 1; BINARY DATA FILE 2; FORMATTED DATA FILE 1; FORMATTED DATA FILE 2; BINARY RESULTS FILE; FORMATTED RESULTS FILE;

REFERENCE FILE;

LIQUID BOUNDARIES FIL'

French keyword: LISTE DES FICHIERS

File names of the used files

1.127 LIST OF POINTS

Type: Integer Dimension: 2

Mnemo LIST_PTS

DEFAULT VALUE:

French keyword: LISTE DE POINTS

List of remarkable points for printouts

1.128 LISTING FOR PRINTOUT PERIOD

Type: Integer
Dimension: -1
Mnemo LISPRD

DEFAULT VALUE: 1

French keyword: PERIODE POUR LES SORTIES LISTING

Determines, in number of time steps, the printout period of the VARIABLES TO BE PRINTED The results are systematically printed out on the listing file (file CAS.SORTIE at the workstation).

1.129 LISTING PRINTOUT

French keyword: SORTIE LISTING

Result printout on hard copy. When NO is selected, the listing only includes the heading and

the phrase "NORMAL END OF PROGRAM" In addition, the options MASS BALANCE and VALIDATION are inhibited. Not recommended for use.

1.130 LISTING PRINTOUT PERIOD

Type: Integer Dimension: 0

Mnemo LISPRD

DEFAULT VALUE:

French keyword: PERIODE DE SORTIE LISTING

Determines, in number of time steps, the printout period of the VARIABLES TO BE PRINTED The results are systematically printed out on the listing file (file CAS.SORTIE at the workstation).

1.131 LOCAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER

Type: Integer Dimension: 0

Mnemo ICALHWB

DEFAULT VALUE: 0

French keyword: NUMERO LOCAL DU POINT POUR CALER LA PLEINE MER Local number between 1 and the number of tidal boundary points (of the HARMONIC CONSTANTS FILE) where the tidal boundary conditions are computed with JMJ, NEA, FES, PREVIMER databases (except TPXO-type databases). The tidal constituents have their phase shifted with respect to this point to start the simulation with a high water (for schematic tides only).

1.132 LONGITUDE OF ORIGIN POINT

Type: Real
Dimension: 0
Mnemo PHI0
DEFAULT VALUE: 0.

French keyword: LONGITUDE DU POINT ORIGINE

Give the value of the longitude of the origin point of the model, when taking into account of the tide generator force.

1.133 MANNING DEFAULT VALUE FOR COLEBROOK-WHITE LAW

Type: Real
Dimension: -1
Mnemo NDEF
DEFAULT VALUE: 0.02

French keyword: VALEUR PAR DEFAUT DU MANNING POUR LA LOI DE COLEBROOK-WHITE

Manning default value for the friction law of Colebrook-White (law number 7)

1.134 MASS-BALANCE

Type: Logical Dimension: 0

Mnemo BILMAS DEFAULT VALUE: NO

French keyword: BILAN DE MASSE

Determines whether a check of the mass-balance over the domain is mader or not. This procedures computes the following at each time step: the domain inflows and outflows, the overall flow across all the boundaries, the relative error in the mass for that time step. The relative error in the mass over the whole computation can be found at the end of the listing.

1.135 MASS-LUMPING FOR WEAK CHARACTERISTICS

Type: Real Dimension: 0

Mnemo AGGLOW

DEFAULT VALUE: 0.

French keyword: MASS-LUMPING POUR LES CARACTERISTIQUES FAIBLES

To be applied to the mass matrix

1.136 MASS-LUMPING ON H

Type: Real Dimension: 0

Mnemo AGGLOC

DEFAULT VALUE: 0.

French keyword: MASS-LUMPING SUR H

TELEMAC provides an opportunity to carry out mass-lumping either on C,H or on the velocity. This is equivalent to bringing the matrices AM1 (h) or AM2 (U) and AM3 (V) wholly or partly, back onto their diagonal. Thanks to that technique, the code can be speeded up to a quite significant extent and it can also be made much more stable. The resulting solutions, however, become artificially smoothed. This parameter sets the extent of mass-lumping that is performed on h.

1.137 MASS-LUMPING ON TRACERS

Type: Real Dimension: 0

Mnemo AGGLOT

DEFAULT VALUE: 0.

French keyword: MASS-LUMPING SUR LES TRACEURS Sets the amount of mass-lumping that is performed on the tracer.

1.138 MASS-LUMPING ON VELOCITY

Type: Real Dimension: 0

Mnemo AGGLOU

DEFAULT VALUE: 0.

French keyword: MASS-LUMPING SUR LA VITESSE Sets the amount of mass-lumping that is performed on the velocity.

1.139 MATRIX STORAGE

Type: Integer Dimension: 0

Mnemo OPTASS

DEFAULT VALUE: 3

French keyword: STOCKAGE DES MATRICES

1 : classical EBE 3 : Edge-based storage

1.140 MATRIX-VECTOR PRODUCT

Type: Integer
Dimension: 0
Mnemo PRODUC

DEFAULT VALUE: 1

French keyword: PRODUIT MATRICE-VECTEUR

1 : classic 2 : frontal beware, with option 2, a special numbering of points is required

1.141 MAXIMUM NUMBER OF BOUNDARIES

Type: Integer Dimension: 0

Mnemo MAXFRO

DEFAULT VALUE: 30

French keyword: NOMBRE MAXIMUM DE FRONTIERES

maximal number of boundaries in the mesh. Used for dimensioning arrays. Can be increased if

needed

1.142 MAXIMUM NUMBER OF FRICTION DOMAINS

Type: Integer Dimension: -1

Mnemo NZONMX

DEFAULT VALUE: 10

French keyword: NOMBRE MAXIMUM DE DOMAINES DE FROTTEMENT maximal number of zones defined for the friction. Could be increased if needed

1.143 MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES

Type: Integer Dimension: 0

Mnemo MAXADV

DEFAULT VALUE: 10

French keyword: MAXIMUM D'ITERATIONS POUR LES SCHEMAS DE CONVECTION

Only for schemes 13 and 14

1.144 MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF TRACERS

Type: Integer Dimension: 0

Mnemo SLVTRA(ITRAC)

DEFAULT VALUE: 60

French keyword: MAXIMUM D'ITERATIONS POUR LA DIFFUSION DES TRACEURS

Limits the number of solver iterations at each time step for the diffusion of tracer.

1.145 MAXIMUM NUMBER OF ITERATIONS FOR IDENTIFICATION

Type: Integer Dimension: 0

Mnemo MAXEST

DEFAULT VALUE: 20

French keyword: MAXIMUM D'ITERATIONS POUR L'IDENTIFICATION

every iteration implies at least a direct and an adjoint computation

1.146 MAXIMUM NUMBER OF ITERATIONS FOR K AND EPSILON

Type: Integer
Dimension: 0
Mnemo SLVK
DEFAULT VALUE: 50

French keyword: MAXIMUM D'ITERATIONS POUR K ET EPSILON

Sets the maximum number of iterations that are acceptable when solving the diffusion source-terms step of the k-epsilon model.

1.147 MAXIMUM NUMBER OF ITERATIONS FOR SOLVER

Type: Integer Dimension: 0

Mnemo NITMAX DEFAULT VALUE: 100

French keyword: MAXIMUM D'ITERATIONS POUR LE SOLVEUR

Since the algorithms used for solving the propagation step are iterative, the allowed number of iterations should be limited. NOTE: a maximum number of 40 iterations per time step seems to be reasonable.

1.148 MAXIMUM NUMBER OF SOURCES

Type: Integer Dimension: 0

Mnemo MAXSCE

DEFAULT VALUE: 20

French keyword: NOMBRE MAXIMUM DE SOURCES

maximal number of punctual sources in the mesh. Used for dimensioning arrays. Can be increased if needed

1.149 MAXIMUM NUMBER OF TRACERS

Type: Integer Dimension: 0

Mnemo MAXTRA

DEFAULT VALUE: 20

French keyword: NOMBRE MAXIMUM DE TRACEURS

maximal number of tracers. Used for dimensioning arrays. Can be increased if needed

1.150 MEAN DEPTH FOR LINEARIZATION

Type: Real Dimension: 0

Mnemo HAULIN

DEFAULT VALUE: 0.

French keyword: PROFONDEUR MOYENNE POUR LA LINEARISATION

Sets the water depth about which the linearization is made when the LINEARIZED PROPA-GATION OPTION is selected.

1.151 MEAN TEMPERATURE

Type: Real
Dimension: 0
Mnemo TREF
DEFAULT VALUE: 20.

French keyword: TEMPERATURE MOYENNE

REFERENCE TEMPERATURE FOR DENSITY EFFECTS TO BE USED WITH THE KEY-WORD "DENSITY EFFECTS"

1.152 MINIMUM VALUE OF DEPTH

Type: Real
Dimension: 0
Mnemo HMIN
DEFAULT VALUE: 0.

French keyword: VALEUR MINIMUM DE H

Sets the minimum H value when option H CLIPPING is implemented. Not fully implemented.

1.153 MINOR CONSTITUENTS INFERENCE

Type: Logical Dimension: 0

Mnemo INTMICON

DEFAULT VALUE: NO

French keyword: INTERPOLATION DE COMPOSANTES MINEURES

For TPXO tidal data base only. Inference of minor constituents from the one read in input files linked to keywords BINARY DATABASE 1 FOR TIDE and BINARY DATABASE 2 FOR TIDE

1.154 NAMES OF CLANDESTINE VARIABLES

Type: String Dimension: 2

Mnemo VARCLA

DEFAULT VALUE: '

French keyword: NOMS DES VARIABLES CLANDESTINES

Names of variables that are not used by TELEMAC, but should be preserved when it is being run. This keyword may be used, for instance when it if TELEMAC is coupled with another code. Thus, the clandestine variables belong to the other code and are given back in the results file.

1.155 NAMES OF DIFFERENTIATORS

Type: String

Dimension: 2

Mnemo NAME_ADVAR

DEFAULT VALUE: '

French keyword: NOMS DES DIFFERENTIATEURS

Name of user differentiators in 32 characters, 16 for the name, 16 for the unit.

1.156 NAMES OF POINTS

Type: String Dimension: 2

Mnemo NAME_PTS

DEFAULT VALUE: '

French keyword: NOMS DES POINTS Names of remarkable points for printouts

1.157 NAMES OF PRIVATE VARIABLES

Type: String Dimension: 2

Mnemo NAMES PRIVE

DEFAULT VALUE: '

French keyword: NOMS DES VARIABLES PRIVEES

Name of private variables in 32 characters, 16 for the name, 16 for the unit. They are stored in the block PRIVE and can be read in the geometry file if they are here with their name

1.158 NAMES OF TRACERS

Type: String Dimension: 2

Mnemo NAMETRAC

DEFAULT VALUE:

French keyword: NOMS DES TRACEURS

Name of tracers in 32 characters, 16 for the name, 16 for the unit.

1.159 NEWMARK TIME INTEGRATION COEFFICIENT

Type: Real Dimension: 0

Mnemo GAMMA

DEFAULT VALUE: 1.

French keyword: COEFFICIENT D'INTEGRATION EN TEMPS DE NEWMARK

1. : Euler explicit 0.5 : order 2 in time

1.160 NODES DISTANCES DELWAQ FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DDL7)

DEFAULT VALUE: "

French keyword: FICHIER DELWAQ DES DISTANCES ENTRE NOEUDS

Results file for coupling with Delwaq

1.161 NON-DIMENSIONAL DISPERSION COEFFICIENTS

Type: Real
Dimension: 2
Mnemo ELDER
DEFAULT VALUE: 6.;0.6

French keyword: COEFFICIENTS ADIMENSIONNELS DE DISPERSION

Longitudinal and transversal coefficients in elder s formula. Used only with turbulence model

number 2

1.162 NON-SUBMERGED VEGETATION FRICTION

Type: Logical Dimension: -1

Mnemo LINDNER

DEFAULT VALUE: NO

French keyword: FROTTEMENT POUR LA VEGETATION NON SUBMERGEE

friction calculation of the non-submerged vegetation

1.163 NORTH

Type: Real
Dimension: 0
Mnemo NORD
DEFAULT VALUE: 0.
French keyword: NORD

Angle of the North with the y axis, in degrees. 10.5 means 10 degrees and 30 minutes.

1.164 NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES

Type: Integer Dimension: 0

Mnemo NCO_DIST

DEFAULT VALUE:

French keyword: NOMBRE DE CORRECTIONS DES SCHEMAS DISTRIBUTIFS

For predictor-corrector options

1.165 NUMBER OF CULVERTS

Type: Integer
Dimension: 0
Mnemo NBUSE
DEFAULT VALUE: 0

French keyword: NOMBRE DE BUSES

Number of culverts, tubes or bridges treated as source terms. They must be described as sources in the domain and their features are given in the culverts data file (see written documentation)

1.166 NUMBER OF DIFFERENTIATORS

Type: Integer Dimension:

Mnemo **NADVAR**

DEFAULT VALUE:

French keyword: NOMBRE DE DIFFERENTIATEURS

Defines the number of user differentiators

1.167 NUMBER OF DROGUES

Type: Integer Dimension:

Mnemo NFLOT_MAX

DEFAULT VALUE:

NOMBRE DE FLOTTEURS French keyword:

Number of drogues in the computation. The user must then fill the subroutine FLOT specifying the coordinates of the starting points, their departure and arrival times. The trajectory of drogues is recorded in the BINARY RESULTS FILE that must be given in the steering file

1.168 NUMBER OF FIRST TIME STEP FOR GRAPHIC PRINTOUTS

Type: Integer Dimension: Mnemo **PTINIG**

DEFAULT VALUE:

French keyword: NUMERO DU PREMIER PAS DE TEMPS POUR LES SORTIES GRAPHIQUES

Determines the number of time steps after which the results are first written into the RESULTS

FILE.

NUMBER OF FIRST TIME STEP FOR LISTING PRINTOUTS 1.169

Type: Integer Dimension: 0 **PTINIL** Mnemo DEFAULT VALUE:

French keyword: NUMERO DU PREMIER PAS DE TEMPS POUR LES SORTIES LISTING

Determines the number of time steps after which the results are first written into the listing.

1.170 NUMBER OF GAUSS POINTS FOR WEAK CHARACTERISTICS

Type: Integer Dimension: 0

Mnemo **NGAUSS**

DEFAULT VALUE:

French keyword: NOMBRE DE POINTS DE GAUSS POUR LES CARACTERISTIQUES FAIBLES

See release notes 6.3

1.171 NUMBER OF LAGRANGIAN DRIFTS

Type: Integer
Dimension: 0
Mnemo NLAG
DEFAULT VALUE: 0

French keyword: NOMBRE DE DERIVES LAGRANGIENNES

Provided for performing several computations of lagrangian drifts starting at different times. Add A and G in the VARIABLES FOR GRAPHIC PRINTOUTS key-word

1.172 NUMBER OF PRIVATE ARRAYS

Type: Integer
Dimension: 0
Mnemo NPRIV
DEFAULT VALUE: 0

French keyword: NOMBRE DE TABLEAUX PRIVES

Number of arrays for own user programming

1.173 NUMBER OF SIPHONS

Type: Integer
Dimension: 1
Mnemo NSIPH
DEFAULT VALUE: 0

French keyword: NOMBRE DE SIPHONS

Number of siphons treated as source terms. They must be described as sources in the domain and their features are given in the culvert data file (see written documentation)

1.174 NUMBER OF SUB-ITERATIONS FOR NON-LINEARITIES

Type: Integer
Dimension: 0
Mnemo NSOUSI

DEFAULT VALUE: 1

French keyword: NOMBRE DE SOUS-ITERATIONS POUR LES NON-LINEARITES Used for updating, within one time step, the advection and propagation field. upon the first sub-iteration, these fields are given by C and the velocity field in the previous time step. At subsequent iterations, the results of the previous sub-iteration is used to update the advection and propagation field. The non-linearities can be taken into account through this technique.

1.175 NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES

Type: Integer Dimension: 0

Mnemo NSP_DIST

DEFAULT VALUE: 1

French keyword: NOMBRE DE SOUS-PAS DES SCHEMAS DISTRIBUTIFS

Only for implicit scheme with predictor-corrector

1.176 NUMBER OF TIME STEPS

Type: Integer
Dimension: 0
Mnemo NIT
DEFAULT VALUE: 1

French keyword: NOMBRE DE PAS DE TEMPS

Specifies the number of time steps performed when running the code.

1.177 NUMBER OF TRACERS

Type: Integer
Dimension: 0
Mnemo NTRAC

DEFAULT VALUE: 0

French keyword: NOMBRE DE TRACEURS

Defines the number of tracers

1.178 NUMBER OF WEIRS

Type: Integer Dimension: 0

Mnemo NWEIRS

DEFAULT VALUE: 0

French keyword: NOMBRE DE SEUILS

Number of weirs that will be treated by boundary conditions. They must be described as boundaries of the domain and their features are given in the weir data file (see written documentation)

1.179 OIL SPILL MODEL

Type: Logical

Dimension: 0

Mnemo SPILL MODEL

DEFAULT VALUE: NO

French keyword: MODELE DE NAPPES D'HYDROCARBURES

WILL TRIGGER THE OIL SPILL MODEL, IN THIS CASE THE MIGRHYCAR STEERING

FILE IS NEEDED

1.180 OIL SPILL STEERING FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DMIG)

DEFAULT VALUE:

French keyword: FICHIER DE COMMANDES HYDROCARBURES

Contains data for the oil spill model

1.181 OPTION FOR CHARACTERISTICS

Type: Integer Dimension: 0

Mnemo OPTCHA

DEFAULT VALUE: 1

French keyword: OPTION POUR LES CARACTERISTIQUES

1: strong form 2: weak form

1.182 OPTION FOR CULVERTS

Type: Integer Dimension: 1

Mnemo OPTBUSE

DEFAULT VALUE: 1

French keyword: OPTION POUR LES BUSES

Option for the treatment of culverts. There are two options in Telemac

1.183 OPTION FOR INITIAL ABSTRACTION RATIO

Type: Integer Dimension: 1

Mnemo IASCNOPT

DEFAULT VALUE: 1

French keyword: OPTION POUR RATIO DES PERTES INITIALES

Gives the ratio for Initial Abstraction to Maximal Potential Retention S for the SCS CN runoff model. Available options are: 1: IA/S = 0.2 (standard method) 2: IA/S = 0.05 (revised method, see Woodward, Hawkins et al. 2003. Wi this option the CN values given in input are automatically convers see user manual). This keyword is only useful for runoff model 1 (SCS CN model)

1.184 OPTION FOR LIQUID BOUNDARIES

Type: Integer Dimension: 2

Mnemo FRTYPE

DEFAULT VALUE:

French keyword: OPTION POUR LES FRONTIERES LIQUIDES

One integer per liquid boundary is given 1 : classical boundary conditions 2 : Thompson method

based on characteristics

1.185 OPTION FOR THE DIFFUSION OF TRACERS

Type: Integer Dimension: 0

Mnemo OPDTRA

DEFAULT VALUE: 1

French keyword: OPTION POUR LA DIFFUSION DES TRACEURS

1: Diffusion in the form div(nu grad(T)) 2: Diffusion in the form 1/h div (h nu grad(T))

1.186 OPTION FOR THE DIFFUSION OF VELOCITIES

Type: Integer
Dimension: 0
Mnemo OPDVIT

DEFAULT VALUE: 1

French keyword: OPTION POUR LA DIFFUSION DES VITESSES

1: Diffusion in the form div(nu grad(U)) 2: Diffusion in the form 1/h div (h nu grad(U))

1.187 OPTION FOR THE SOLVER FOR K-EPSILON MODEL

Type: Integer
Dimension: 0
Mnemo ISOLKE

DEFAULT VALUE: 2

French keyword: OPTION DU SOLVEUR POUR LE MODELE K-EPSILON WHEN GMRES (7) IS CHOSEN, DIMENSION OF THE KRYLOV SPACE TRY VALUES

BETWEEN 2 AND 15

1.188 OPTION FOR THE TREATMENT OF TIDAL FLATS

Type: Integer Dimension: 0

Mnemo OPTBAN

DEFAULT VALUE: 1

French keyword: OPTION DE TRAITEMENT DES BANCS DECOUVRANTS Used if TIDAL FLATS is true 1 : EQUATIONS SOLVED EVERYWHERE WITH CORRECTION ON TIDAL FLATS 2 : DRY ELEMENTS FROZEN 3 : LIKE 1 BUT WITH POROSITY (DEFINA METHOD)

1.189 OPTION FOR TIDAL BOUNDARY CONDITIONS

Type: Integer Dimension: 2

Mnemo BND_TIDE

DEFAULT VALUE:

French keyword: OPTION POUR LES CONDITIONS AUX LIMITES DE MAREE Option for tidal boundary conditions. For real tides, option 1 is recommended. This keyword has been an array with a value given per liquid boundary, separated by semicolons, since version 7.1. This enables to have tidal conditions (or not) computed on liquid boundaries with prescribed velocities or depths, avoiding a clash when using weirs in the domain. 0 codes for conditions other than tidal. BEWARE since version 7.1! Old models must be changed if their tidal boundary is not number 1. In that case this keyword must be changed and more values given. Possible calibration with the keywords COEFFICIENT TO ADJUST TIDAL RANGE, COEFFICENT TO CALIBRATE TIDAL VELOCITIES, and COEFFICIENT TO ADJUST SEA LEVEL.

1.190 OPTION FOR TSUNAMI GENERATION

Type: Integer Dimension: 0

Mnemo OPTTSUNAMI

DEFAULT VALUE: 0

French keyword: OPTION POUR LA GENERATION DE TSUNAMI

TODO: WRITE HELP FOR THAT KEYWORD

1.191 OPTION FOR WIND

Type: Integer Dimension: 1

Mnemo OPTWIND

DEFAULT VALUE: 1

French keyword: OPTION DU VENT

gives option for managing the wind: 1: constant in time and space, given by keyword SPEED AND DIRECTION OF WIND 2: variable in time and (constant in space), given by formated file 3: variable in time and space, given by formated file or by a binary serafin file

1.192 OPTION OF THE HYDROSTATIC RECONSTRUCTION

Type: Integer Dimension: 1

Mnemo HROPT

DEFAULT VALUE: 1

French keyword: OPTION DE LA RECONSTRUCION HYDROSTATIQUE

gives the option for hydrostatic reconstruction (used only for finite volumes): 1: option of Audusse, 2: option of Noelle

1.193 ORDINATES OF SOURCES

Type: Real
Dimension: 2
Mnemo YSCE

DEFAULT VALUE:

French keyword: ORDONNEES DES SOURCES

ordinates of sources of flowrate and/or tracer

1.194 ORIGIN COORDINATES

Type: Integer Dimension: 2

Mnemo I_ORIG,J_ORIG

DEFAULT VALUE: 0;0

French keyword: COORDONNEES DE L'ORIGINE

Value in metres, used to avoid large real numbers, added in Selafin format, but so far no other treatment

1.195 ORIGINAL DATE OF TIME

Type: Integer Dimension: 3

Mnemo MARDAT DEFAULT VALUE: 1900;1;1

French keyword: DATE DE L'ORIGINE DES TEMPS

Give the date of the time origin of the model when taking into account the tide generating force.

1.196 ORIGINAL HOUR OF TIME

Type: Integer Dimension: 3

Mnemo MARTIM DEFAULT VALUE: 0;0;0

French keyword: HEURE DE L'ORIGINE DES TEMPS

Give the time of the time origin of the model when taking into account of the tide generator

force.

1.197 PARALLEL PROCESSORS

Type: Integer
Dimension: 0
Mnemo NCSIZE

DEFAULT VALUE: 0

French keyword: PROCESSEURS PARALLELES

NUMBER OF PROCESSORS FOR PARALLEL PROCESSING 0 : 1 machine, compiling without parallel library 1 : 1 machine, compiling with a parallel library 2 : 2 processors or machines in parallel etc....

1.198 PARAMETER ESTIMATION

Type: String
Dimension: -1

Mnemo ESTIME

DEFAULT VALUE: '

French keyword: ESTIMATION DE PARAMETRE

List of parameter to be estimated, choice: FRICTION or FRICTION, STEADY

1.199 PARTITIONING TOOL

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: 'METIS'

French keyword: PARTITIONNEUR

PARTITIONING TOOL SELECTION 1 : METIS 2 : SCOTCH 3 : PARMETIS 4 : PTSCOTCH

etc...

1.200 PHYSICAL CHARACTERISTICS OF THE TSUNAMI

Type: Real Dimension: 10

COETSUNAMI Mnemo

DEFAULT VALUE: 100.;210000.;75000.;13.6;81.;41.;110.;0.;0.;3. French keyword: PARAMETRES PHYSIQUES DU TSUNAMI

TODO: WRITE HELP FOR THAT KEYWORD

PRECONDITIONING 1.201

Type: Integer Dimension: 0 Mnemo **SLVPRO**

DEFAULT VALUE:

French keyword: PRECONDITIONNEMENT

Choice of the preconditioning in the propagation step linear system that the convergence is speeded up when it is being solved. 0: no preconditioning 2: diagonal preconditioning 3: blockdiagonal preconditioning (systemes a 4 ou 9 matrices) 7: Crout's preconditioning per element or segment 11: Gauss-Seidel's preconditioning per element or segment Some operations (either 2 or 3 diagonal preconditioning) can be performed concurrently with the others. Only prime numbers are therefore kept to denote the preconditioning operations. When several of them are to be performed concurrently, the product of relevant options shall be made.

1.202 PRECONDITIONING FOR DIFFUSION OF TRACERS

Type: Integer Dimension:

Mnemo SLVTRA(ITRAC)

DEFAULT VALUE:

PRECONDITIONNEMENT POUR LA DIFFUSION DES TRACEURS French keyword: Preconditioning of the linear system in the tracer diffusion step. Same definition and possibilities as for the keyword PRECONDITIONING 0: no preconditioning 2: diagonal preconditioning 7: Crout's preconditioning per element.

PRECONDITIONING FOR K-EPSILON MODEL 1.203

Type: Integer Dimension: 0 Mnemo **SLVK DEFAULT VALUE:**

PRECONDITIONNEMENT POUR LE MODELE K-EPSILON French keyword: Preconditioning of the linear system in the diffusion step of the k-epsilon model. 0: no preconditioning 2: diagonal preconditioning 7: Crout's preconditioning per element

1.204 PRESCRIBED ELEVATIONS

Real Type: Dimension: 2

COTES Mnemo

DEFAULT VALUE:

French keyword: COTES IMPOSEES Values of prescribed elevations at the inflow boundaries. The section about boundary conditions is to be read in the manual

1.205 PRESCRIBED FLOWRATES

Type: Real
Dimension: 2
Mnemo DEBIT

DEFAULT VALUE:

French keyword: DEBITS IMPOSES

Values of prescribed flowrates at the inflow boundaries. The section about boundary conditions is to be read in the manual

1.206 PRESCRIBED TRACERS VALUES

Type: Real Dimension: 2

Mnemo TRACER

DEFAULT VALUE:

French keyword: VALEURS IMPOSEES DES TRACEURS

Tracer values prescribed at the inflow boundaries. Read the usermanual section dealing with the boundary conditions

1.207 PRESCRIBED VELOCITIES

Type: Real
Dimension: 2
Mnemo VITES

DEFAULT VALUE:

French keyword: VITESSES IMPOSEES

Values of prescribed velocities at the liquid inflow boundaries. Refer to the section dealing with the boundary conditions

1.208 PREVIOUS COMPUTATION FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DPRE)

DEFAULT VALUE: '

French keyword: FICHIER DU CALCUL PRECEDENT

Name of a file containing the results of an earlier computation which was made on the same mesh. The last recorded time step will provid the initial conditions for the new computation.

1.209 PREVIOUS COMPUTATION FILE FORMAT

Type: String
Dimension: -1
Mnemo ?????
DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DU CALCUL PRECEDENT

Previous computation results file format. Possible values are: - SERAFIN: classical single

precision format in Telemac; - SERAFIND: classical double precision format in Telemac; - MED: MED format based on HDF5

1.210 PRINTING CUMULATED FLOWRATES

Type: Logical Dimension: 0

Mnemo CUMFLO DEFAULT VALUE: NO

French keyword: IMPRESSION DU CUMUL DES FLUX

PRINTING THE CUMULATED FLOWRATES THROUGH CONTROL SECTIONS

1.211 PRINTOUT PERIOD FOR DROGUES

Type: Integer Dimension: 0

Mnemo FLOPRD

DEFAULT VALUE: 1

French keyword: PERIODE POUR LES SORTIES DE FLOTTEURS Number of time steps between 2 outputs of drogues positions in the binary file

1.212 PRIORITY

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: 'JOUR' French keyword: PRIORITE

Utilise par la procedure de lancement sur station de travail

1.213 PRODUCTION COEFFICIENT FOR SECONDARY CURRENTS

Type: Real
Dimension: 0
Mnemo SEC_AS

DEFAULT VALUE: 7.071

French keyword: COEFFICIENT DE PRODUCTION POUR COURANTS SECONDAIRES

A constant in the production terms of Omega

1.214 PROPAGATION

Type: Logical
Dimension: 0
Mnemo PROPA
DEFAULT VALUE: YES

French keyword: PROPAGATION

Determines whether the propagation step is taken into account or not. The diffusion being included in that step will be deleted as well.

1.215 PROPAGATION OPTION

Type: Integer Dimension:

Mnemo **OPTPRO**

DEFAULT VALUE:

French keyword: OPTION DE PROPAGATION

Not yet implemented.

1.216 PSI SCHEME OPTION

Type: Integer Dimension:

Mnemo **OPTPSI**

DEFAULT VALUE:

French keyword: OPTION DU SCHEMA PSI

1: explicit 2: predictor-corrector

RAIN OR EVAPORATION 1.217

Logical Type: Dimension: Mnemo **RAIN** DEFAULT VALUE: NO

French keyword: PLUIE OU EVAPORATION

to add or remove water at the free surface. See the key-word RAIN OR EVAPORATION IN

MM PER DAY

1.218 RAIN OR EVAPORATION IN MM PER DAY

Type: Real Dimension:

Mnemo RAIN_MMPD

DEFAULT VALUE: 0.D0

French keyword: PLUIE OU EVAPORATION EN MM PAR JOUR

to add or remove water at the free surface

1.219 RAINFALL-RUNOFF MODEL

Type: Integer Dimension:

RUNOFFOPT Mnemo

DEFAULT VALUE:

MODELE PLUIE-DEBIT French keyword:

Option for the rainfall-runoff model. Available options are: 1: No infiltration 2: CN runoff

model (Curve Number method of the SCS)

1.220 RECORD NUMBER FOR RESTART

Type: Integer Dimension: 0

Mnemo START RECORD

DEFAULT VALUE: 0

French keyword: ENREGISTREMENT POUR SUITE DE CALCUL

In case of COMPUTATION CONTINUED, record number to start from in the PREVIOUS

COMPUTATION FILE

1.221 RECORD NUMBER IN WAVE FILE

Type: Integer
Dimension: 0
Mnemo NPTH
DEFAULT VALUE: 1

French keyword: NUMERO DE L'ENREGISTREMENT DANS LE FICHIER DE HOULE

Record number to read in the wave driven currents file

1.222 REFERENCE FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DREF)

DEFAULT VALUE:

French keyword: FICHIER DE REFERENCE

Binary-coded result file for validation. The results to be entered into this file shall be written on

channel 22.

1.223 REFERENCE FILE FORMAT

Type: String
Dimension: -1
Mnemo ?????
DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE REFERENCE

Previous computation results file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; -

MED: MED format based on HDF5

1.224 RELEASE

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: 'V7P2'

French keyword: NUMERO DE VERSION

version number of the libraries used by TELEMAC. ON A WORKSTATION 5 numbers are given, corresponding to the libraries called: TELEMAC, DAMO, UTILE, BIEF, HP

1.225 RESULTS FILE 59

1.225 RESULTS FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DRES)

DEFAULT VALUE:

French keyword: FICHIER DES RESULTATS

Name of the file into which the computation results shall be written, the periodicity being given by the key-word: GRAPHIC PRINTOUT PERIOD.

1.226 RESULTS FILE FORMAT

Type: String
Dimension: -1
Mnemo ?????
DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DES RESULTATS

Results file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; - MED: MED format

based on HDF5

1.227 ROUGHNESS COEFFICIENT OF BOUNDARIES

Type: Real
Dimension: 0
Mnemo SB
DEFAULT VALUE: 100.

French keyword: COEFFICIENT DE RUGOSITE DES BORDS

Sets the value of the friction coefficient of the solid boundary with the bed roughness option. Same meaning than friction coefficient

1.228 SALINITY DELWAQ FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DDL4)

DEFAULT VALUE:

French keyword: FICHIER DELWAQ DE LA SALINITE

Results file for coupling with Delwaq

1.229 SALINITY FOR DELWAQ

Type: Logical Dimension: -1

Mnemo SALI_DEL

DEFAULT VALUE: NO

French keyword: SALINITE POUR DELWAQ

Triggers output of salinity for Delwaq

1.230 SCHEME FOR ADVECTION OF K-EPSILON

Type: Integer Dimension: 0

Mnemo ICONVF(4)

DEFAULT VALUE: 1

French keyword: SCHEMA POUR LA CONVECTION DU K-EPSILON Choice of the advection scheme for k and epsilon, replaces TYPE OF ADVECTION

1.231 SCHEME FOR ADVECTION OF TRACERS

Type: Integer Dimension: 1

Mnemo ICONVFT

DEFAULT VALUE: 1

French keyword: SCHEMA POUR LA CONVECTION DES TRACEURS Choice of the advection scheme for the tracers, replaces TYPE OF ADVECTION

1.232 SCHEME FOR ADVECTION OF VELOCITIES

Type: Integer Dimension: 0

Mnemo ICONVF(1)

DEFAULT VALUE: 1

French keyword: SCHEMA POUR LA CONVECTION DES VITESSES Choice of the advection scheme for the velocities, replaces TYPE OF ADVECTION

1.233 SCHEME OPTION FOR ADVECTION OF K-EPSILON

Type: Integer Dimension: 1

Mnemo OPTADV KE

DEFAULT VALUE: 1

French keyword: OPTION DU SCHEMA POUR LA CONVECTION DU K-EPSILON If present replaces and has priority over: OPTION FOR CHARACTERISTICS SUPG OPTION if N or PSI SCHEME: 1=explicit 2=predictor-corrector 3= predictor-corrector second-order in time 4= implicit

1.234 SCHEME OPTION FOR ADVECTION OF TRACERS

Type: Integer Dimension: 1

Mnemo OPTADV_TR

DEFAULT VALUE: 1

French keyword: OPTION DU SCHEMA POUR LA CONVECTION DES TRACEURS If present replaces and has priority over: OPTION FOR CHARACTERISTICS SUPG OPTION if N or PSI SCHEME: 1=explicit 2=predictor-corrector 3= predictor-corrector second-order in time 4= implicit

1.235 SCHEME OPTION FOR ADVECTION OF VELOCITIES

Type: Integer Dimension: 1

Mnemo OPTADV VI

DEFAULT VALUE: 1

French keyword: OPTION DU SCHEMA POUR LA CONVECTION DES VITESSES If present replaces and has priority over: OPTION FOR CHARACTERISTICS SUPG OPTION if N or PSI SCHEME: 1=explicit 2=predictor-corrector 3= predictor-corrector second-order in time 4= implicit

1.236 SECONDARY CURRENTS

Type: Logical

Dimension: 0

Mnemo SECCURRENTS

DEFAULT VALUE: NO

French keyword: COURANTS SECONDAIRES Using the parametrisation for secondary currents

1.237 SECTIONS INPUT FILE

Type: String Dimension: -1

Mnemo T2D_FILES

DEFAULT VALUE:

French keyword: FICHIER DES SECTIONS DE CONTROLE

sections input file, partitioned

1.238 SECTIONS OUTPUT FILE

Type: String Dimension: -1

Mnemo T2D_FILES

DEFAULT VALUE:

French keyword: FICHIER DE SORTIE DES SECTIONS DE CONTROLE

sections output file, written by the master

1.239 SIPHONS DATA FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DSIP)

DEFAULT VALUE:

French keyword: FICHIER DE DONNEES DES SIPHONS

Description of culvert existing in the model

1.240 SISYPHE STEERING FILE

Type: String Dimension: -1

Mnemo PAS DE MNEMO

DEFAULT VALUE:

French keyword: FICHIER DES PARAMETRES DE SISYPHE

Sisyphe parameter file in case of internal coupling

1.241 SOLVER

Type: Integer
Dimension: 0
Mnemo ISOLVE

DEFAULT VALUE: 3

French keyword: SOLVEUR

Makes it possible to select the solver used for solving the propagation step. All the currently available methods are variations of the Conjugate Gradient method. They are as follows: 1: conjugate gradient 2: conjugate residual 3: conjugate gradient on a normal equation 4: minimum error 5: conjugate gradient squared (not implemented) 6: conjugate gradient squared stabilised (cgstab) 7: gmres (see option for solver) 8: direct

1.242 SOLVER ACCURACY

Type: Real Dimension: 0

Mnemo SLVPRO DEFAULT VALUE: 1.E-4

French keyword: PRECISION DU SOLVEUR

Required accuracy for solving the propagation step (refer to Principle note).

1.243 SOLVER FOR DIFFUSION OF TRACERS

Type: Integer Dimension: 2

Difficusion. 2

Mnemo SLVTRA(ITRAC)

DEFAULT VALUE: 1;1

French keyword: SOLVEUR POUR LA DIFFUSION DES TRACEURS

1 : conjugate gradient 2 : conjugate gradient 3 : conjugate gradient on a normal equation 4 : minimum error 5 : squared conjugate gradient 6 : cgstab 7 : gmres (see option for the solver for tracer diffusion) 8 : direct

1.244 SOLVER FOR K-EPSILON MODEL

Type: Integer
Dimension: 0
Mnemo ISOLKE

DEFAULT VALUE: 1

French keyword: SOLVEUR POUR LE MODELE K-EPSILON

Makes it possible to select the solver used for solving the system of the k-epsilon model. 1: conjugate gradient 2: conjugate residuals 3: conjugate gradient on normal equation 4: minimum error 5: conjugate gradient squared 6: conjugate gradient squared stabilised (cgstab) 7: gmres (see option for the solver for k-epsilon model) 8: direct

1.245 SOLVER OPTION

Type: Integer
Dimension: 0
Mnemo ISOLVE

DEFAULT VALUE: 2

French keyword: OPTION DU SOLVEUR

WHEN GMRES (7) IS CHOSEN, DIMENSION OF THE KRYLOV SPACE TRY VALUES

BETWEEN 2 AND 15

1.246 SOLVER OPTION FOR TRACERS DIFFUSION

Type: Integer Dimension: 0

Mnemo SLVTRA(ITRAC)

DEFAULT VALUE: 2

French keyword: OPTION DU SOLVEUR POUR LA DIFFUSION DES TRACEURS WHEN GMRES (7) IS CHOSEN, DIMENSION OF THE KRYLOV SPACE TRY VALUES

BETWEEN 2 AND 15

1.247 SOURCES FILE

Type: String Dimension: 0

Mnemo T2D_FILES(T2DVEF)

DEFAULT VALUE: '

French keyword: FICHIER DES SOURCES

Name of the file containing time-dependent information on sources

1.248 SPACING OF ROUGHNESS ELEMENTS

Type: Real
Dimension: -1
Mnemo SP
DEFAULT VALUE: 0.14

French keyword: ESPACEMENT DES ELEMENTS DE FROTTEMENT

spacing of rouhness element

1.249 SPATIAL PROJECTION TYPE

Type: Integer
Dimension: 0
Mnemo PROTYP

DEFAULT VALUE: 1

French keyword: TYPE DE PROJECTION SPATIALE

Option 2 or 3 mandatory for spherical coordinates Option 3: latitude and longitude in degrees!

1.250 SPEED AND DIRECTION OF WIND

Type: Real Dimension: 2

Mnemo WIND_SPD

DEFAULT VALUE: 0.;0.

French keyword: VITESSE ET DIRECTION DU VENT

gives the speed and direction (degre (from 0 to 360), 0 given y=0 anx x=+infinity) when they are constant in time and space (keyword OPTION FOR WIND = 1)

1.251 SPHERICAL COORDINATES

Type: Logical
Dimension: 0
Mnemo SPHERI
DEFAULT VALUE: NO

French keyword: COORDONNEES SPHERIQUES

Selection of spherical coordinates to perform the computation (for large computation domains). Warning: this option is closely related to the mesh that should have been entered onto a nautical chart drawn as per Mercator projection The LATITUDE OF ORIGIN POINT (another keyword), which corresponds to ordinate y=0 in the mesh, must moreover be given.

1.252 STAGE-DISCHARGE CURVES

Type: Integer Dimension: 2

Mnemo STA DIS CURVES

DEFAULT VALUE:

French keyword: COURBES DE TARAGE

Says if a discharge-elevation curve must be used for a given boundary :NO 1:Z(Q) 2: Q(Z) (2 not programmed)

1.253 STAGE-DISCHARGE CURVES FILE

Type: String Dimension: 0

Mnemo T2D FILES(T2DMAB)

DEFAULT VALUE:

French keyword: FICHIER DES COURBES DE TARAGE

Name of the file containing stage-discharge curves

1.254 STEERING FILE

Type: String
Dimension: -1

Mnemo NOMCAS

DEFAULT VALUE: '

French keyword: FICHIER DES PARAMETRES

Name of the file containing the parameters of the computation Written by the user.

1.255 STOCHASTIC DIFFUSION MODEL

Type: Integer Dimension: 0

Mnemo STOCHA

DEFAULT VALUE: 0

French keyword: MODELE DE DIFFUSION STOCHASTIQUE

Meant for particles: drogues, oil spills

1.256 STOP CRITERIA

Type: Real Dimension: 3

Mnemo CRIPER

DEFAULT VALUE: 1.E-4;1.E-4
French keyword: CRITERES D'ARRET

Stop criteria for a steady state These coefficients are applied respectively to 1) U and V 2) H 3)

T To be used with the key-word: STOP IF A STEADY STATE IS REACHED

1.257 STOP IF A STEADY STATE IS REACHED

Type: Logical

Dimension: 0

Mnemo STOPER DEFAULT VALUE: NO

French keyword: ARRET SI UN ETAT PERMANENT EST ATTEINT

TO BE USED WITH THE KEY-WORD: STOP CRITERIA

1.258 SUPG OPTION

Type: Integer

Dimension: 4

Mnemo OPTSUP DEFAULT VALUE: 2;2;2;2

French keyword: OPTION DE SUPG

0:no upwinding 1: classical SUPG 2:modified SUPG These coefficients are applied respectively

to 1) U et V 2) H 3) T 4) K and EPSILON

1.259 TEMPERATURE DELWAQ FILE

Type: String
Dimension: -1

Mnemo T2D_FILES(T2DDL8)

DEFAULT VALUE:

French keyword: FICHIER DELWAQ DE LA TEMPERATURE

Results file for coupling with Delwaq

1.260 TEMPERATURE FOR DELWAQ

Type: Logical

Dimension: -1

Mnemo TEMP_DEL

DEFAULT VALUE: NO

French keyword: TEMPERATURE POUR DELWAQ

Triggers output of temperature for Delwaq

1.261 THICKNESS OF ALGAE

Type: Real Dimension: 0

Mnemo EALGAE DEFAULT VALUE: 0.01

French keyword: EPAISSEUR DES ALGUES

Thickness of algae in m

1.262 THRESHOLD DEPTH FOR RECEDING PROCEDURE

Type: Real
Dimension: 0
Mnemo HREC
DEFAULT VALUE: 0.

loosely discretised

1.263 THRESHOLD DEPTH FOR WIND

Type: Real
Dimension: -1
Mnemo HWIND

DEFAULT VALUE: 1.

French keyword: PROFONDEUR LIMITE POUR LE VENT

Wind is not taken into account for small depths

1.264 THRESHOLD FOR NEGATIVE DEPTHS

Type: Real
Dimension: -1
Mnemo HNEG
DEFAULT VALUE: 0.

French keyword: SEUIL POUR LES PROFONDEURS NEGATIVES

Below the threshold the negative depths are smoothed

1.265 TIDAL DATA BASE

Type: Integer Dimension: 0

Mnemo TIDALDB

DEFAULT VALUE: -1

French keyword: BASE DE DONNEES DE MAREE

1.266 TIDAL FLATS 67

For JMJ, indicate the location of the files bdd_jmj and geofin with keywords TIDE DATA BASE and TIDAL MODEL FILE. For TPXO, LEGOS-NEA, FES20XX and PREVIMER, the user has to download files of harmonic constituents on the internet

1.266 TIDAL FLATS

Type: Logical Dimension: 0

Mnemo BANDEC
DEFAULT VALUE: YES

French keyword: BANCS DECOUVRANTS

When no, the specific treatments for tidal flats are by-passed. This spares time, but of course you must be sure that you have no tidal flats

1.267 TIDAL MODEL FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DTID)

DEFAULT VALUE: '

French keyword: FICHIER DU MODELE DE MAREE

Geometry file of the model from which harmonic constituents are extracted

1.268 TIDE GENERATING FORCE

Type: Logical
Dimension: 0
Mnemo MAREE
DEFAULT VALUE: NO

French keyword: FORCE GENERATRICE DE LA MAREE

The tide generating force is taken into account.

1.269 TIME RANGE FOR FOURIER ANALYSIS

Type: Real Dimension: 2

Mnemo TAFBGN,TAFEND

DEFAULT VALUE: 0.;0.

French keyword: BORNES EN TEMPS POUR L'ANALYSE DE FOURIER

For computing tidal range and phase of tide

1.270 TIME STEP

Type: Real
Dimension: 0
Mnemo DT
DEFAULT VALUE: 1.

French keyword: PAS DE TEMPS

Specifies the time step in seconds.

1.271 TIME STEP REDUCTION FOR K-EPSILON MODEL

Type: Real
Dimension: 0
Mnemo REDUC
DEFAULT VALUE: 1.

French keyword: REDUCTION DU PAS DE TEMPS POUR LE MODELE K-EPSILON Time step reduction coefficient for k-epsilon model (which is normally same the same as that of the hydrodynamic system) Not recommended for use.

1.272 TITLE

Type: String
Dimension: 0
Mnemo TITCAS

DEFAULT VALUE:

French keyword: TITRE

Title of the case being considered. This title shall be marked on the drawings.

1.273 TOLERANCES FOR IDENTIFICATION

Type: Real Dimension: 4

Mnemo TOLEST

DEFAULT VALUE: 1.E-3;1.E-3;1.E-3;1.E-4

French keyword: PRECISIONS POUR L'IDENTIFICATION

4 numbers: absolute precision on H, U V, and relative precision on the cost function

1.274 TOMAWAC STEERING FILE

Type: String Dimension: -1

Mnemo PAS DE MNEMO

DEFAULT VALUE: '

French keyword: FICHIER DES PARAMETRES DE TOMAWAC

Tomawac parameter file in case of internal coupling

1.275 TREATMENT OF FLUXES AT THE BOUNDARIES

Type: Integer
Dimension: 0
Mnemo DIRFLU

DEFAULT VALUE: 1

French keyword: TRAITEMENT DES FLUX AUX FRONTIERES

Used so far only with the SUPG, PSI and N schemes. With option 2, Dirichlet prescribed values are not obeyed, but the fluxes are correct

1.276 TREATMENT OF NEGATIVE DEPTHS

Type: Integer Dimension:

Mnemo **OPT HNEG**

DEFAULT VALUE:

French keyword: TRAITEMENT DES HAUTEURS NEGATIVES

Only with OPTION FOR THE TREATMENT OF TIDAL FLATS=1 0:no treatment 1:smooth-

ing 2:flux control, by segment 3:flux control, by element

1.277 TREATMENT OF THE LINEAR SYSTEM

Integer Dimension: 0 **SOLSYS** Mnemo

DEFAULT VALUE:

French keyword: TRAITEMENT DU SYSTEME LINEAIRE

1 : Coupled 2 : wave equation

1.278 TURBULENCE MODEL

Type: Integer Dimension: 0 **ITURB** Mnemo DEFAULT VALUE:

French keyword: MODELE DE TURBULENCE

The current alternatives are as follows: constant viscosity (1) elder's model (2) or k-epsilon model (3). NOTE: when option 1 is chosen, it should be kept in mind that the value of the keyword VELOCITY DIFFUSIVITY has to be ajusted. When option 2 is chosen, the two values of key-word: NON-DIMENSIONAL DISPERSION COEFFICIENTS are used When option 3 is chosen, this parameter should recover its true physical value, since it is used as such in the turbulence model.

1.279 TURBULENCE REGIME FOR SOLID BOUNDARIES

Type: Integer Dimension: 0 Mnemo **LISRUG**

DEFAULT VALUE: 2

French keyword: REGIME DE TURBULENCE POUR LES PAROIS Provided for selecting the type of friction on the walls 1: smooth 2: rough

1.280 TYPE OF ADVECTION

Type: Integer Dimension: **ICONVF** Mnemo

DEFAULT VALUE: 1:5:1:1

French keyword: FORME DE LA CONVECTION

Choice of advection schemes for every variable These coefficients are applied respectively to 1) U et V 2) H 3) T 4) K and EPSILON 1: characteristics 2: SUPG 3: Conservative N-scheme 4: Conservative N-scheme 5: Conservative PSI-scheme 13: Edge-based N-scheme 14: Edgebased N-scheme 15: ERIA scheme Second integer must be 5

1.281 TYPE OF SOURCES

Type: Integer Dimension: 0

Mnemo OPTSOU

DEFAULT VALUE: 1

French keyword: TYPE DES SOURCES

1: Source term multiplied by a finite element basis 2: Source term multiplied by a Dirac function

1.282 TYPE OF WEIRS

Type: Integer Dimension: 1

Mnemo TYPSEUIL

DEFAULT VALUE:

French keyword: TYPE DES SEUILS

Method for treatment of weirs

1.283 UPWIND COEFFICIENTS

Type: Real Dimension: 4

Mnemo COSUPG DEFAULT VALUE: 1.;1.;1

French keyword: COEFFICIENTS DE DECENTREMENT

Upwind coefficients used by the S.U.P.G. method These coefficients are applied respectively to

1) U and V 2) H or C 3) T 4) K and epsilon

1.284 USER ON DESTINATION

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: 'JMH'

French keyword: USER SUR LA DESTINATION

User's name of USER at the workstation onto which the results file shall desirebly be rerouted.

1.285 VALIDATION

Type: Logical Dimension: 0
Mnemo VALID DEFAULT VALUE: NO

French keyword: VALIDATION

This option is primarily used for the validation documents. The PREVIOUS COMPUTATION FILE is then considered as a reference which the computation is going to be compared with. The comparison is made by the subroutine VALIDA, which can be modified as to so as to include, for example, a comparison with an exact solution.

1.286 VALUE OF ATMOSPHERIC PRESSURE

Type: Real Dimension: 1

Mnemo PATMOS_VALUE

DEFAULT VALUE: 100000.

French keyword: VALEUR DE LA PRESSION ATMOSPHERIQUE gives the value of atmospheric pressure when it is contant in time and space

1.287 VALUES OF THE TRACERS AT THE SOURCES

Type: Real Dimension: 2 Mnemo TSCE

DEFAULT VALUE:

French keyword: VALEURS DES TRACEURS DES SOURCES

Values of the tracers at the sources

1.288 VALUES OF TRACERS IN THE RAIN

Type: Real
Dimension: 2
Mnemo TRAIN

DEFAULT VALUE:

French keyword: VALEURS DES TRACEURS DANS LA PLUIE

most often, this tracer is temperature, in this case this value should be modified, otherwise, default value of 0 seems reasonable

1.289 VARIABLE TIME-STEP

Type: Logical
Dimension: 0
Mnemo DTVARI
DEFAULT VALUE: NO

French keyword: PAS DE TEMPS VARIABLE Variable time-step to get a given Courant number

1.290 VARIABLES FOR GRAPHIC PRINTOUTS

Type: String
Dimension: 0
Mnemo SORTIE
DEFAULT VALUE: 'U,V,H,B'

French keyword: VARIABLES POUR LES SORTIES GRAPHIQUES

Names of variables the user wants to write into the results file. Each variable is represented by a letter. The separators can be freely selected. The available capabilities are as follows: U: velocity along x axis (m/s), V: velocity along y axis (m/s), C: wave celerity (m/s), H: water depth (m), S: free surface elevation (m), B: bottom elevation (m), F: Froude number, Q: scalar flowrate of fluid (m2/s), E: dissipation of turbulent energy (W/kg), E: turbulent viscosity of k-epsilon model (m2/s), E: dissipation of turbulent energy (W/kg), E: turbulent viscosity of k-epsilon model (m2/s), E: flowrate along x axis (m2/s), E: flowrate along y axis (m2/s), E: air pressure (Pa), E: wind along y axis (m/s), E: air pressure (Pa), E: wind along y axis (m/s), E: air pressure (Pa), E: wind along y axis (m/s), E: air pressure (Pa), E: wind along y axis (m/s), E: air pressure (Pa), E: wind along y axis (m/s), E: air pressure (Pa), E: wind along y axis (m/s), E: air pressure (Pa), E: air pressure (Pa),

friction coefficient, A: drift along x, G: drift along y, L: nombre de courant, G: differentiated gradient, with n the gradient reference four other variables are also made available to the user who may use them for writing into the file the results of variables he creates himself. These user-specific variables should be computed in the subroutine PRERES and their desired name should be written into the subroutine NOMVAR. These seven variables are as follows: -N, O, R, Z which correspond to arrays PRIVE(1,1) up to PRIVE(1, Unlike the preceding variables, they are preserved throughout the program, so that they can be used again. In the latter case, do not forget to provide the array PRIVE with sufficiently large dimensions (in FORTRAN file). With this key-word, one can limit the size of the RESULTS FILE. It should be kept in mind, however, that if a computation has to be continued, the RESULTS FILE should contain the appropriate information for running the code,i.e.: - velocities U and V, - water depths H, - bottom elevations B. TELEMAC, however, can compute some of these variables from others for example, it will compute H from S and B.

1.291 VARIABLES TO BE PRINTED

Type: String Dimension: 0

Mnemo VARIMP

DEFAULT VALUE: "

French keyword: VARIABLES A IMPRIMER TODO: WRITE HELP FOR THAT KEYWORD

1.292 VECTOR LENGTH

Type: Integer
Dimension: 0
Mnemo LVMAC

DEFAULT VALUE: 1

French keyword: LONGUEUR DU VECTEUR VECTOR LENGTH ON VECTOR MACHINES

1.293 VELOCITIES OF THE SOURCES ALONG X

Type: Real Dimension: 2 Mnemo USCE

DEFAULT VALUE:

French keyword: VITESSES DES SOURCES SELON X

Velocities at the sources. If they are not given, the velocity of the flow at this location is taken

1.294 VELOCITIES OF THE SOURCES ALONG Y

Type: Real
Dimension: 2
Mnemo VSCE

DEFAULT VALUE:

French keyword: VITESSES DES SOURCES SELON Y

Velocities at the sources

1.295 VELOCITY DELWAQ FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DDL9)

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DE LA VITESSE

Results file for coupling with Delwag

1.296 VELOCITY DIFFUSIVITY

Type: Real Dimension: 0

Mnemo PROPNU DEFAULT VALUE: 1.E-6

French keyword: COEFFICIENT DE DIFFUSION DES VITESSES

Sets, in an even way for the whole domain, the value of the coefficient of global (dynamic+turbulent) viscosity. this value may have a significant effect both on the shapes and sizes of recirculation zones.

1.297 VELOCITY FOR DELWAQ

Type: Logical Dimension: -1

Mnemo VELO_DEL

DEFAULT VALUE: NO

French keyword: VITESSE POUR DELWAQ

Triggers output of velocity for Delwaq

1.298 VELOCITY PROFILES

Type: Integer Dimension: 2

Mnemo PROVEL

DEFAULT VALUE:

French keyword: PROFILS DE VITESSE

1:constant normal profile 2:u and v given in the conlim file 3:normal velocity given in ubor in the conlim file 4:sqrt(depth) profile 5:sqrt(depth) profile, variant

1.299 VERTICAL FLUXES DELWAQ FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DDL3)

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DES FLUX VERTICAUX

Results file for coupling with Delwaq

1.300 VERTICAL STRUCTURES

Type: Logical
Dimension: 0
Mnemo VERTIC
DEFAULT VALUE: NO

French keyword: STRUCTURES VERTICALES

drag forces from vertical structures are taken into account. (subroutine DRAGFO must then be

implemented)

1.301 VOLUMES DELWAQ FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DSOU)

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DES VOLUMES

Results file for coupling with Delwaq

1.302 WAQTEL STEERING FILE

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: "

French keyword: FICHIER DES PARAMETRES DE WAQTEL

file for physical parameters of waq processes (local ones of Telemac-tracer not those of DEL-

WAQ)

1.303 WATER DENSITY

Type: Real
Dimension: 0
Mnemo ROEAU
DEFAULT VALUE: 1000.

French keyword: MASSE VOLUMIQUE DE L'EAU

set the value of water density

1.304 WATER DISCHARGE OF SOURCES

Type: Real Dimension: 2 Mnemo DSCE

DEFAULT VALUE:

French keyword: DEBITS DES SOURCES

values of water discharge of sources

1.305 WATER QUALITY PROCESS

Type: Integer Dimension:

Mnemo WAQPROCESS

DEFAULT VALUE: French keyword: PROCESSUS QUALITE D'EAU

gives the waq process number (from 1 to 5) 0-NOTHING, 1-O2, 2-BIOMASS, 3-EUTRO 4-

MICROPOL 5-THERMIC)

1.306 WAVE DRIVEN CURRENTS

Logical Type: Dimension:

Mnemo **COUROU** DEFAULT VALUE: NO

French keyword: COURANTS DE HOULE

Wave driven currents are taken into account.

1.307 WAVE ENHANCED FRICTION FACTOR

Type: Logical Dimension: 0

FRICOU Mnemo DEFAULT VALUE: NO

French keyword: AUGMENTATION DU FROTTEMENT PAR LA HOULE

Wave friction enhancement for the calculation of the wave generated longshore current (cf

OConnor and Yoo, 1988, Coast Eng. 12.)

1.308 WEIRS DATA FILE

Type: String Dimension: -1

T2D_FILES(T2DSEU) Mnemo

DEFAULT VALUE:

French keyword: FICHIER DE DONNEES DES SEUILS

Description of weirs existing in the model

1.309 WIND

Type: Logical Dimension: 0 Mnemo **VENT** DEFAULT VALUE: NO French keyword: VENT

Determines whether the wind effects are to be taken into account or not.

1.310 WIND VELOCITY ALONG X

Type: Real
Dimension: 0
Mnemo FUAIR
DEFAULT VALUE: 0.

French keyword: VITESSE DU VENT SUIVANT X

Wind velocity, component along x axis (m/s).

1.311 WIND VELOCITY ALONG Y

Type: Real
Dimension: 0
Mnemo FVAIR
DEFAULT VALUE: 0.

French keyword: VITESSE DU VENT SUIVANT Y

Wind velocity, component along y axis (m/s).

1.312 ZERO

Type: Real Dimension: 0

Mnemo SLVPRO
DEFAULT VALUE: 1.E-10
French keyword: ZERO

Not yet implemented

1.313 ZONE NUMBER IN GEOGRAPHIC SYSTEM

Type: Integer

Dimension: 0

Mnemo NUMZONE

DEFAULT VALUE: -1

French keyword: NUMERO DE FUSEAU OU PROJECTION DANS LE SYSTEME GEOGRAPHIQUE

Number of zone when using a plane projection. Indicate the geographic system in which the numerical model is built with the keyword GEOGRAPHIC SYSTEM

1.314 ZONES FILE

Type: String Dimension: -1

Mnemo T2D_FILES(T2DZFI)

DEFAULT VALUE: '

French keyword: FICHIER DES ZONES

Zones file, with on every line: point number zone number

2. List of keywords classified according to type

2.1 ADVECTION

ADVECTION OF H
ADVECTION OF TRACERS
ADVECTION OF U AND V

2.2 AIR PRESSURE

AIR PRESSURE

2.3 BOUNDARY CONDITIONS

STAGE-DISCHARGE CURVES

2.4 COMPUTATION ENVIRONMENT

ACCOUNT NUMBER
DESTINATION
DICTIONARY
PRIORITY
USER ON DESTINATION

2.5 COMPUTATIONAL INFORMATION

COMPUTATION CONTINUED
DEFAULT EXECUTABLE
DEFAULT PARALLEL EXECUTABLE
DESCRIPTION OF LIBRARIES
DIFFUSION OF TRACERS
LIBRARIES

NAMES OF CLANDESTINE VARIABLES
RELEASE
TITLE
VALIDATION

2.6 CONSTANT VISCOSITY

VELOCITY DIFFUSIVITY

2.7 CONTROL

CONTROL OF LIMITS
DELWAQ PRINTOUT PERIOD
LIMIT VALUES
OIL SPILL MODEL
ORIGIN COORDINATES

2.8 CORIOLIS

CORIOLIS

2.9 DIFFUSION OF VELOCITY

DIFFUSION OF VELOCITY

2.10 DURATION

DESIRED COURANT NUMBER

DURATION

FREE SURFACE GRADIENT COMPATIBILITY

NEWMARK TIME INTEGRATION COEFFICIENT

NUMBER OF TIME STEPS

TIME RANGE FOR FOURIER ANALYSIS

TIME STEP

2.11 EQUATIONS

ACCURACY FOR DIFFUSION OF TRACERS
ADVECTION
ADVECTION OF H
ADVECTION OF K AND EPSILON
ADVECTION OF TRACERS
ADVECTION OF U AND V
AIR PRESSURE

BOTTOM SMOOTHINGS

COEFFICIENT 1 FOR LAW OF TRACERS DEGRADATION

COEFFICIENT FOR DIFFUSION OF TRACERS

COEFFICIENT OF WIND INFLUENCE

CORIOLIS

DIFFUSION OF VELOCITY

FRICTION COEFFICIENT

IMPLICITATION COEFFICIENT OF TRACERS

INITIAL VALUES OF TRACERS

LAW OF BOTTOM FRICTION

LAW OF FRICTION ON LATERAL BOUNDARIES

LAW OF TRACERS DEGRADATION

LINEARIZED PROPAGATION

MASS-LUMPING ON TRACERS

MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF TRACERS

MEAN DEPTH FOR LINEARIZATION

NUMBER OF TRACERS

OPTION FOR THE DIFFUSION OF TRACERS

OPTION FOR THE SOLVER FOR K-EPSILON MODEL

PRECONDITIONING FOR DIFFUSION OF TRACERS

PROPAGATION

PROPAGATION OPTION

ROUGHNESS COEFFICIENT OF BOUNDARIES

SOLVER FOR K-EPSILON MODEL

SOLVER OPTION FOR TRACERS DIFFUSION

SPATIAL PROJECTION TYPE

SPHERICAL COORDINATES

TURBULENCE MODEL

TURBULENCE REGIME FOR SOLID BOUNDARIES

VELOCITY DIFFUSIVITY

WIND

WIND VELOCITY ALONG X

WIND VELOCITY ALONG Y

2.12 EQUATIONS, ADVECTION

SCHEME FOR ADVECTION OF K-EPSILON

SCHEME FOR ADVECTION OF TRACERS

SCHEME FOR ADVECTION OF VELOCITIES

SCHEME OPTION FOR ADVECTION OF K-EPSILON

SCHEME OPTION FOR ADVECTION OF TRACERS

SCHEME OPTION FOR ADVECTION OF VELOCITIES

2.13 EQUATIONS, BOUNDARY CONDITIONS

OPTION FOR LIQUID BOUNDARIES

PRESCRIBED ELEVATIONS

PRESCRIBED FLOWRATES

PRESCRIBED TRACERS VALUES
PRESCRIBED VELOCITIES
VELOCITY PROFILES

2.14 EQUATIONS, INITIAL CONDITIONS

INITIAL CONDITIONS
INITIAL DEPTH
INITIAL ELEVATION

2.15 EQUATIONS, SOURCE

ANTECEDENT MOISTURE CONDITIONS
DURATION OF RAIN OR EVAPORATION IN HOURS
OPTION FOR INITIAL ABSTRACTION RATIO
OPTION OF THE HYDROSTATIC RECONSTRUCTION
RAINFALL-RUNOFF MODEL
WATER QUALITY PROCESS

2.16 EQUATIONS, SOURCE TERMS

ABSCISSAE OF SOURCES
FOURIER ANALYSIS PERIODS
ORDINATES OF SOURCES
TYPE OF SOURCES
VALUES OF THE TRACERS AT THE SOURCES
VELOCITIES OF THE SOURCES ALONG X
VELOCITIES OF THE SOURCES ALONG Y
WATER DISCHARGE OF SOURCES

2.17 EQUATIONS, SOURCES

OPTION FOR WIND

2.18 FILES

LIST OF FILES

2.19 FRICTION

LAW OF FRICTION ON LATERAL BOUNDARIES

2.20 FRICTION AND SMOOTHINGS

BOTTOM SMOOTHINGS FRICTION COEFFICIENT LAW OF BOTTOM FRICTION

2.21 GENERAL

C-U PRECONDITIONING

CHECKING THE MESH

CONTINUITY CORRECTION

CONTROL SECTIONS

COST FUNCTION

COUPLING PERIOD FOR SISYPHE

COUPLING PERIOD FOR TOMAWAC

DEFINITION OF ZONES

DENSITY EFFECTS

DEPTH IN FRICTION TERMS

DISCRETIZATIONS IN SPACE

DISSIPATION COEFFICIENT FOR SECONDARY CURRENTS

ELEMENTS MASKED BY USER

EOUATIONS

FINITE VOLUME SCHEME

FLUXLINE

FREE INTEGER 20

GLOBAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER

IDENTIFICATION METHOD

INITIAL TIME SET TO ZERO

LANGUAGE

LIST OF POINTS

LOCAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER

MATRIX STORAGE

MATRIX-VECTOR PRODUCT

MAXIMUM NUMBER OF BOUNDARIES

MAXIMUM NUMBER OF ITERATIONS FOR IDENTIFICATION

MAXIMUM NUMBER OF SOURCES

MAXIMUM NUMBER OF TRACERS

NAMES OF POINTS

NON-DIMENSIONAL DISPERSION COEFFICIENTS

NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES

NUMBER OF CULVERTS

NUMBER OF LAGRANGIAN DRIFTS

NUMBER OF PRIVATE ARRAYS

NUMBER OF SIPHONS

NUMBER OF SUB-ITERATIONS FOR NON-LINEARITIES

NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES

NUMBER OF WEIRS

OPTION FOR CULVERTS

OPTION FOR THE TREATMENT OF TIDAL FLATS

OPTION FOR TIDAL BOUNDARY CONDITIONS

ORIGINAL DATE OF TIME

ORIGINAL HOUR OF TIME

PARALLEL PROCESSORS

PARTITIONING TOOL

PRECONDITIONING

PRODUCTION COEFFICIENT FOR SECONDARY CURRENTS

RAIN OR EVAPORATION

RAIN OR EVAPORATION IN MM PER DAY

RECORD NUMBER FOR RESTART

RECORD NUMBER IN WAVE FILE

SCHEME FOR ADVECTION OF K-EPSILON

SCHEME FOR ADVECTION OF TRACERS

SCHEME FOR ADVECTION OF VELOCITIES

SCHEME OPTION FOR ADVECTION OF K-EPSILON

SCHEME OPTION FOR ADVECTION OF TRACERS

SCHEME OPTION FOR ADVECTION OF VELOCITIES

SECONDARY CURRENTS

SPATIAL PROJECTION TYPE

STOP CRITERIA

STOP IF A STEADY STATE IS REACHED

SUPG OPTION

THRESHOLD DEPTH FOR RECEDING PROCEDURE

TIDAL FLATS

TIDE GENERATING FORCE

TOLERANCES FOR IDENTIFICATION

TREATMENT OF FLUXES AT THE BOUNDARIES

TREATMENT OF THE LINEAR SYSTEM

TYPE OF WEIRS

UPWIND COEFFICIENTS

VARIABLE TIME-STEP

VECTOR LENGTH

VERTICAL STRUCTURES

WAVE DRIVEN CURRENTS

WAVE ENHANCED FRICTION FACTOR

ZERO

2.22 HIGHT

MEAN DEPTH FOR LINEARIZATION

2.23 INPUT-OUTPUT, FILES

ASCII ATMOSPHERIC DATA FILE

ASCII DATABASE FOR TIDE

BINARY ATMOSPHERIC DATA FILE

BINARY ATMOSPHERIC DATA FILE FORMAT

BINARY DATA FILE 1

BINARY DATA FILE 1 FORMAT

BINARY DATA FILE 2

BINARY DATA FILE 2 FORMAT

BINARY DATABASE 1 FOR TIDE

BINARY DATABASE 2 FOR TIDE

BINARY RESULTS FILE

BINARY RESULTS FILE FORMAT

BOTTOM SURFACES DELWAQ FILE

BOTTOM TOPOGRAPHY FILE

BOUNDARY CONDITIONS FILE

BREACHES DATA FILE

COUPLING DIRECTORY

COUPLING WITH

CULVERTS DATA FILE

DELWAQ STEERING FILE

DIFFUSIVITY DELWAQ FILE

DROGUES FILE

EXCHANGE AREAS DELWAQ FILE

EXCHANGES BETWEEN NODES DELWAQ FILE

FLUXLINE INPUT FILE

FORMATTED DATA FILE 1

FORMATTED DATA FILE 2

FORMATTED RESULTS FILE

FORTRAN FILE

FRICTION DATA FILE

GEOMETRY FILE

GEOMETRY FILE FORMAT

HARMONIC CONSTANTS FILE

LIQUID BOUNDARIES FILE

NAMES OF DIFFERENTIATORS

NAMES OF PRIVATE VARIABLES

NAMES OF TRACERS

NODES DISTANCES DELWAQ FILE

NUMBER OF DIFFERENTIATORS

OIL SPILL STEERING FILE

PARAMETER ESTIMATION

PREVIOUS COMPUTATION FILE

PREVIOUS COMPUTATION FILE FORMAT

REFERENCE FILE

REFERENCE FILE FORMAT

RESULTS FILE

RESULTS FILE FORMAT

SALINITY DELWAQ FILE

SECTIONS INPUT FILE

SECTIONS OUTPUT FILE

SIPHONS DATA FILE

SISYPHE STEERING FILE

SOURCES FILE

STAGE-DISCHARGE CURVES FILE

STEERING FILE
TEMPERATURE DELWAQ FILE
TIDAL MODEL FILE
TOMAWAC STEERING FILE
VELOCITY DELWAQ FILE
VERTICAL FLUXES DELWAQ FILE
VOLUMES DELWAQ FILE
WAQTEL STEERING FILE
WEIRS DATA FILE
ZONES FILE

2.24 INPUT-OUTPUT, GRAPHICS AND LISTING

DIFFUSIVITY FOR DELWAO

GRAPHIC PRINTOUT PERIOD INFORMATION ABOUT SOLVER LISTING FOR PRINTOUT PERIOD LISTING PRINTOUT LISTING PRINTOUT PERIOD MASS-BALANCE NUMBER OF DROGUES NUMBER OF FIRST TIME STEP FOR GRAPHIC PRINTOUTS NUMBER OF FIRST TIME STEP FOR LISTING PRINTOUTS PRINTING CUMULATED FLOWRATES PRINTOUT PERIOD FOR DROGUES SALINITY FOR DELWAQ TEMPERATURE FOR DELWAQ VARIABLES FOR GRAPHIC PRINTOUTS VARIABLES TO BE PRINTED VELOCITY FOR DELWAO

2.25 INPUT-OUTPUT, INFORMATION

ACCOUNT NUMBER
COMPUTATION CONTINUED
CONTROL OF LIMITS
DEFAULT EXECUTABLE
DEFAULT PARALLEL EXECUTABLE
DELWAQ PRINTOUT PERIOD
DESCRIPTION OF LIBRARIES
DESTINATION
DICTIONARY
DIFFUSION OF TRACERS
LIBRARIES
LIMIT VALUES
NAMES OF CLANDESTINE VARIABLES
OIL SPILL MODEL
ORIGIN COORDINATES

PRIORITY
RELEASE
TITLE
USER ON DESTINATION
VALIDATION

2.26 K-EPSILON MODEL

ADVECTION OF K AND EPSILON OPTION FOR THE SOLVER FOR K-EPSILON MODEL SOLVER FOR K-EPSILON MODEL

2.27 NAMES

ASCII ATMOSPHERIC DATA FILE

ASCII DATABASE FOR TIDE

BINARY ATMOSPHERIC DATA FILE

BINARY DATA FILE 1

BINARY DATA FILE 2

BINARY DATABASE 1 FOR TIDE

BINARY DATABASE 2 FOR TIDE

BINARY RESULTS FILE

BOTTOM SURFACES DELWAQ FILE

BOTTOM TOPOGRAPHY FILE

BOUNDARY CONDITIONS FILE

BREACHES DATA FILE

COUPLING DIRECTORY

COUPLING WITH

CULVERTS DATA FILE

DELWAQ STEERING FILE

DIFFUSIVITY DELWAQ FILE

DROGUES FILE

EXCHANGE AREAS DELWAQ FILE

EXCHANGES BETWEEN NODES DELWAQ FILE

FLUXLINE INPUT FILE

FORMATTED DATA FILE 1

FORMATTED DATA FILE 2

FORMATTED RESULTS FILE

FORTRAN FILE

FRICTION DATA FILE

GEOMETRY FILE

HARMONIC CONSTANTS FILE

LIQUID BOUNDARIES FILE

NAMES OF DIFFERENTIATORS

NAMES OF PRIVATE VARIABLES

NAMES OF TRACERS

NODES DISTANCES DELWAQ FILE

NUMBER OF DIFFERENTIATORS

OIL SPILL STEERING FILE

PARAMETER ESTIMATION

PREVIOUS COMPUTATION FILE

REFERENCE FILE

RESULTS FILE

SALINITY DELWAO FILE

SECTIONS INPUT FILE

SECTIONS OUTPUT FILE

SIPHONS DATA FILE

SISYPHE STEERING FILE

SOURCES FILE

STAGE-DISCHARGE CURVES FILE

STEERING FILE

TEMPERATURE DELWAQ FILE

TIDAL MODEL FILE

TOMAWAC STEERING FILE

VELOCITY DELWAQ FILE

VERTICAL FLUXES DELWAQ FILE

VOLUMES DELWAQ FILE

WAQTEL STEERING FILE

WEIRS DATA FILE

ZONES FILE

2.28 NUMERICAL PARAMETERS

C-U PRECONDITIONING

COEFFICIENT TO CALIBRATE SEA LEVEL

COEFFICIENT TO CALIBRATE TIDAL RANGE

COEFFICIENT TO CALIBRATE TIDAL VELOCITIES

COMPATIBLE COMPUTATION OF FLUXES

CONTINUITY CORRECTION

CONTROL SECTIONS

COST FUNCTION

COUPLING PERIOD FOR SISYPHE

COUPLING PERIOD FOR TOMAWAC

DEBUGGER

DEFINITION OF ZONES

DENSITY EFFECTS

DEPTH IN FRICTION TERMS

DESIRED COURANT NUMBER

DISCRETIZATIONS IN SPACE

DURATION

ELEMENTS MASKED BY USER

EOUATIONS

FINITE VOLUME SCHEME

FREE INTEGER 20

FREE SURFACE GRADIENT COMPATIBILITY

GEOGRAPHIC SYSTEM

GLOBAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER

IDENTIFICATION METHOD

INITIAL TIME SET TO ZERO

LIST OF POINTS

LOCAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER

MATRIX STORAGE

MATRIX-VECTOR PRODUCT

MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES

MAXIMUM NUMBER OF ITERATIONS FOR IDENTIFICATION

MINOR CONSTITUENTS INFERENCE

NAMES OF POINTS

NEWMARK TIME INTEGRATION COEFFICIENT

NON-DIMENSIONAL DISPERSION COEFFICIENTS

NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES

NUMBER OF CULVERTS

NUMBER OF GAUSS POINTS FOR WEAK CHARACTERISTICS

NUMBER OF LAGRANGIAN DRIFTS

NUMBER OF PRIVATE ARRAYS

NUMBER OF SIPHONS

NUMBER OF SUB-ITERATIONS FOR NON-LINEARITIES

NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES

NUMBER OF TIME STEPS

NUMBER OF WEIRS

OPTION FOR CULVERTS

OPTION FOR THE TREATMENT OF TIDAL FLATS

OPTION FOR TIDAL BOUNDARY CONDITIONS

ORIGINAL DATE OF TIME

ORIGINAL HOUR OF TIME

PARALLEL PROCESSORS

PARTITIONING TOOL

PRECONDITIONING

RAIN OR EVAPORATION

RAIN OR EVAPORATION IN MM PER DAY

RECORD NUMBER FOR RESTART

RECORD NUMBER IN WAVE FILE

STOCHASTIC DIFFUSION MODEL

STOP CRITERIA

STOP IF A STEADY STATE IS REACHED

SUPG OPTION

THRESHOLD DEPTH FOR RECEDING PROCEDURE

TIDAL DATA BASE

TIDAL FLATS

TIDE GENERATING FORCE

TIME RANGE FOR FOURIER ANALYSIS

TIME STEP

TOLERANCES FOR IDENTIFICATION

TREATMENT OF FLUXES AT THE BOUNDARIES

TREATMENT OF NEGATIVE DEPTHS

TREATMENT OF THE LINEAR SYSTEM

TYPE OF ADVECTION

TYPE OF WEIRS
UPWIND COEFFICIENTS
VALUES OF TRACERS IN THE RAIN
VARIABLE TIME-STEP
VECTOR LENGTH
VERTICAL STRUCTURES
WAVE DRIVEN CURRENTS
WAVE ENHANCED FRICTION FACTOR
ZERO
ZONE NUMBER IN GEOGRAPHIC SYSTEM

2.29 NUMERICAL PARAMETERS, K-EPSILON MODEL

ACCURACY OF EPSILON

ACCURACY OF K

INFORMATION ABOUT K-EPSILON MODEL

MAXIMUM NUMBER OF ITERATIONS FOR K AND EPSILON

PRECONDITIONING FOR K-EPSILON MODEL

TIME STEP REDUCTION FOR K-EPSILON MODEL

2.30 NUMERICAL PARAMETERS, SOLVER

MAXIMUM NUMBER OF ITERATIONS FOR SOLVER SOLVER
SOLVER ACCURACY
SOLVER FOR DIFFUSION OF TRACERS
SOLVER OPTION

2.31 NUMERICAL PARAMETERS, VELOCITY-CELERITY-HIGHT

H CLIPPING
IMPLICITATION FOR DEPTH
IMPLICITATION FOR DIFFUSION OF VELOCITY
IMPLICITATION FOR VELOCITY
INITIAL GUESS FOR H
INITIAL GUESS FOR U
MASS-LUMPING ON H
MASS-LUMPING ON VELOCITY
MINIMUM VALUE OF DEPTH
OPTION FOR THE DIFFUSION OF VELOCITIES

2.32 NUMERICS VALUES

COEFFICIENT OF WIND INFLUENCE WIND VELOCITY ALONG X

WIND VELOCITY ALONG Y

2.33 PHYSICAL CONSTANTS

CORIOLIS COEFFICIENT

DIAMETER OF ROUGHNESS ELEMENTS

FRICTION DATA

GRAVITY ACCELERATION

LATITUDE OF ORIGIN POINT

LONGITUDE OF ORIGIN POINT

MANNING DEFAULT VALUE FOR COLEBROOK-WHITE LAW

MAXIMUM NUMBER OF FRICTION DOMAINS

MEAN TEMPERATURE

NON-SUBMERGED VEGETATION FRICTION

NORTH

SPACING OF ROUGHNESS ELEMENTS

THRESHOLD DEPTH FOR WIND

THRESHOLD FOR NEGATIVE DEPTHS

WATER DENSITY

2.34 PHYSICAL PARAMETERS

ALGAE TRANSPORT MODEL

ALGAE TYPE

BREACH

DENSITY OF ALGAE

DIAMETRE OF ALGAE

MASS-LUMPING FOR WEAK CHARACTERISTICS

OPTION FOR CHARACTERISTICS

PSI SCHEME OPTION

SPEED AND DIRECTION OF WIND

THICKNESS OF ALGAE

VALUE OF ATMOSPHERIC PRESSURE

2.35 PHYSICAL PARAMETERS, INITIAL CONDITIONS

OPTION FOR TSUNAMI GENERATION
PHYSICAL CHARACTERISTICS OF THE TSUNAMI

2.36 PROPAGATION

LINEARIZED PROPAGATION PROPAGATION PROPAGATION OPTION

2.37 SOLVER

ACCURACY FOR DIFFUSION OF TRACERS

2.38 SPHERICAL COORDINATES

SPHERICAL COORDINATES

2.39 TRACER

COEFFICIENT 1 FOR LAW OF TRACERS DEGRADATION
COEFFICIENT FOR DIFFUSION OF TRACERS
IMPLICITATION COEFFICIENT OF TRACERS
INITIAL VALUES OF TRACERS
LAW OF TRACERS DEGRADATION
MASS-LUMPING ON TRACERS
MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF TRACERS
NUMBER OF TRACERS
OPTION FOR THE DIFFUSION OF TRACERS
PRECONDITIONING FOR DIFFUSION OF TRACERS
SOLVER OPTION FOR TRACERS DIFFUSION
WATER QUALITY PROCESS

2.40 TRACER OPTIONS

COEFFICIENT 1 FOR LAW OF TRACERS DEGRADATION
COEFFICIENT FOR DIFFUSION OF TRACERS
IMPLICITATION COEFFICIENT OF TRACERS
INITIAL VALUES OF TRACERS
LAW OF TRACERS DEGRADATION
MASS-LUMPING ON TRACERS
MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF TRACERS
OPTION FOR THE DIFFUSION OF TRACERS
PRECONDITIONING FOR DIFFUSION OF TRACERS
SOLVER OPTION FOR TRACERS DIFFUSION

2.41 TURBULENCE MODEL

ADVECTION OF K AND EPSILON
OPTION FOR THE SOLVER FOR K-EPSILON MODEL
SOLVER FOR K-EPSILON MODEL
TURBULENCE MODEL
TURBULENCE REGIME FOR SOLID BOUNDARIES
VELOCITY DIFFUSIVITY

2.42 TYPE OF ADVECTION

TYPE OF ADVECTION

2.43 WIND

COEFFICIENT OF WIND INFLUENCE WIND
WIND VELOCITY ALONG X
WIND VELOCITY ALONG Y

3. Glossary

3.1 English/French glossary

ABSCISSAE OF SOURCES	ABSCISSES DES SOURCES
ACCOUNT NUMBER	NUMERO DE COMPTE
ACCURACY FOR DIFFUSION OF	PRECISION POUR LA DIFFUSION DES
TRACERS	TRACEURS
ACCURACY OF EPSILON	PRECISION SUR EPSILON
ACCURACY OF K	PRECISION SUR K
ADVECTION	CONVECTION
ADVECTION OF H	CONVECTION DE H
ADVECTION OF K AND EPSILON	CONVECTION DE K ET EPSILON
ADVECTION OF TRACERS	CONVECTION DES TRACEURS
ADVECTION OF U AND V	CONVECTION DE U ET V
AIR PRESSURE	PRESSION ATMOSPHERIQUE
ALGAE TRANSPORT MODEL	MODELE DE TRANSPORT DES ALGUES
ALGAE TYPE	TYPE DES ALGUES
ANTECEDENT MOISTURE CONDITIONS	CONDITIONS D'HUMIDITE
	PRECEDENTE
ASCII ATMOSPHERIC DATA FILE	FICHIER ASCII DE DONNEES
	ATMOSPHERIQUES
ASCII DATABASE FOR TIDE	BASE ASCII DE DONNEES DE MAREE
BINARY ATMOSPHERIC DATA FILE	FICHIER BINAIRE DE DONNEES
	ATMOSPHERIQUES
BINARY ATMOSPHERIC DATA FILE	FORMAT DU FICHIER BINAIRE DE
FORMAT	DONNEES ATMOSPHERIQUES
BINARY DATA FILE 1	FICHIER DE DONNEES BINAIRE 1
BINARY DATA FILE 1 FORMAT	FORMAT DU FICHIER DE DONNEES
	BINAIRE 1
BINARY DATA FILE 2	FICHIER DE DONNEES BINAIRE 2
BINARY DATA FILE 2 FORMAT	FORMAT DU FICHIER DE DONNEES
	BINAIRE 2
BINARY DATABASE 1 FOR TIDE	BASE BINAIRE 1 DE DONNEES DE
	MAREE

BINARY DATABASE 2 FOR TIDE	BASE BINAIRE 2 DE DONNEES DE
	MAREE
BINARY RESULTS FILE	FICHIER DE RESULTATS BINAIRE
BINARY RESULTS FILE FORMAT	FORMAT DU FICHIER DE RESULTATS BINAIRE
BOTTOM SMOOTHINGS	LISSAGES DU FOND
BOTTOM SURFACES DELWAQ FILE	FICHIER DELWAQ DES SURFACES DU FOND
BOTTOM TOPOGRAPHY FILE	FICHIER DES FONDS
BOUNDARY CONDITIONS FILE	FICHIER DES CONDITIONS AUX
	LIMITES
BREACH	BRECHE
BREACHES DATA FILE	FICHIER DE DONNEES DES BRECHES
C-U PRECONDITIONING	PRECONDITIONNEMENT C-U
CHECKING THE MESH	VERIFICATION DU MAILLAGE
COEFFICIENT 1 FOR LAW OF	COEFFICIENT 1 DE LA LOI DE
TRACERS DEGRADATION	DEGRADATION DES TRACEURS
COEFFICIENT FOR DIFFUSION OF	COEFFICIENT DE DIFFUSION DES
TRACERS	TRACEURS
COEFFICIENT OF WIND INFLUENCE	COEFFICIENT D'INFLUENCE DU VENT
COEFFICIENT TO CALIBRATE SEA	COEFFICIENT DE CALAGE DU NIVEAU
LEVEL	DE MER
COEFFICIENT TO CALIBRATE TIDAL	COEFFICIENT DE CALAGE DU
RANGE	MARNAGE
COEFFICIENT TO CALIBRATE TIDAL	COEFFICIENT DE CALAGE DES
VELOCITIES	VITESSES DE COURANT
COMPATIBLE COMPUTATION OF FLUXES	CALCUL COMPATIBLE DES FLUX
COMPUTATION CONTINUED	SUITE DE CALCUL
CONTINUITY CORRECTION	CORRECTION DE CONTINUITE
CONTROL OF LIMITS	CONTROLE DES LIMITES
CONTROL SECTIONS	SECTIONS DE CONTROLE
CORIOLIS	CORIOLIS
CORIOLIS COEFFICIENT	COEFFICIENT DE CORIOLIS
COST FUNCTION	FONCTION COUT
COUPLING DIRECTORY	DOSSIER DE COUPLAGE
COUPLING PERIOD FOR SISYPHE	PERIODE DE COUPLAGE POUR
COURTING DEPTOR FOR TOWARDS	SISYPHE DE COUDLAGE DOUB
COUPLING PERIOD FOR TOMAWAC	PERIODE DE COUPLAGE POUR TOMAWAC
COUPLING WITH	COUPLAGE AVEC
CULVERTS DATA FILE	FICHIER DE DONNEES DES BUSES
DEBUGGER	DEBUGGER
DEFAULT EXECUTABLE	EXECUTABLE PAR DEFAUT
DEFAULT PARALLEL EXECUTABLE	EXECUTABLE PAR DEFAUT EXECUTABLE PARALLELE PAR DEFAUT
DEFINITION OF ZONES	DEFINITION DE ZONES
DELWAQ PRINTOUT PERIOD	PERIODE DE SORTIE POUR DELWAQ

DELWAQ STEERING FILE	FICHIER DE COMMANDE DELWAQ
DENSITY EFFECTS	EFFETS DE DENSITE
DENSITY OF ALGAE	MASSE VOLUMIQUE DES ALGUES
DEPTH IN FRICTION TERMS	HAUTEUR DANS LES TERMES DE FROTTEMENT
DESCRIPTION OF LIBRARIES	DESCRIPTION DES LIBRAIRIES
DESIRED COURANT NUMBER	NOMBRE DE COURANT SOUHAITE
DESTINATION	DESTINATION
DIAMETER OF ROUGHNESS ELEMENTS	DIAMETRE DES ELEMENTS DE
DIAMETER OF ROOGHNESS ELEMENTS	FROTTEMENT
DIAMETRE OF ALGAE	DIAMETRE DES ALGUES
DICTIONARY	DICTIONNAIRE
DIFFUSION OF TRACERS	DIFFUSION DES TRACEURS
DIFFUSION OF VELOCITY	DIFFUSION DES VITESSES
DIFFUSIVITY DELWAQ FILE	FICHIER DELWAQ DE LA DIFFUSION
DIFFUSIVITY FOR DELWAQ	DIFFUSION POUR DELWAQ
DISCRETIZATIONS IN SPACE	DISCRETISATIONS EN ESPACE
DISSIPATION COEFFICIENT FOR	COEFFICIENT DE DISSIPATION POUR
SECONDARY CURRENTS	COURANTS SECONDAIRES
DROGUES FILE	FICHIER DES FLOTTEURS
DURATION	DUREE DU CALCUL
DURATION OF RAIN OR EVAPORATION	DUREE DE LA PLUIE OU
IN HOURS	EVAPORATION EN HEURES
ELEMENTS MASKED BY USER	ELEMENTS MASQUES PAR
	L'UTILISATEUR
EQUATIONS	EQUATIONS
EXCHANGE AREAS DELWAQ FILE	FICHIER DELWAQ DES SURFACES DE
	FLUX
EXCHANGES BETWEEN NODES DELWAQ	FICHIER DELWAQ DES ECHANGES
FILE	ENTRE NOEUDS
FINITE VOLUME SCHEME	SCHEMA EN VOLUMES FINIS
FLUXLINE	FLUXLINE
FLUXLINE INPUT FILE	FICHIER DE FLUXLINE
FORMATTED DATA FILE 1	FICHIER DE DONNEES FORMATE 1
FORMATTED DATA FILE 2	FICHIER DE DONNEES FORMATE 2
FORMATTED RESULTS FILE	FICHIER DE RESULTATS FORMATE
FORTRAN FILE	FICHIER FORTRAN
FOURIER ANALYSIS PERIODS	PERIODES D'ANALYSE DE FOURIER
FREE INTEGER 20	ENTIER LIBRE 20
FREE SURFACE GRADIENT	COMPATIBILITE DU GRADIENT DE
COMPATIBILITY	SURFACE LIBRE
FRICTION COEFFICIENT	COEFFICIENT DE FROTTEMENT
FRICTION DATA	DONNEES POUR LE FROTTEMENT
FRICTION DATA FILE	FICHIER DE DONNEES POUR LE
	FROTTEMENT
GEOGRAPHIC SYSTEM	SYSTEME GEOGRAPHIQUE
GEOMETRY FILE	FICHIER DE GEOMETRIE
	I TOTTEL DE CHOTHETITE

CHOMPEDY BILL DODMAE	DODMAE DI BIGUIED DE GEOMEEDIE
GEOMETRY FILE FORMAT	FORMAT DU FICHIER DE GEOMETRIE
GLOBAL NUMBER OF THE POINT TO	NUMERO GLOBAL DU POINT POUR
CALIBRATE HIGH WATER	CALER LA PLEINE MER
GRAPHIC PRINTOUT PERIOD	PERIODE POUR LES SORTIES
ODALITEN AGGELEDATION	GRAPHIQUES
GRAVITY ACCELERATION	ACCELERATION DE LA PESANTEUR
H CLIPPING	CLIPPING DE H
HARMONIC CONSTANTS FILE	FICHIER DES CONSTANTES
TREMETER CARTON MERIOD	HARMONIQUES
IDENTIFICATION METHOD	METHODE D'IDENTIFICATION
IMPLICITATION COEFFICIENT OF	COEFFICIENT D'IMPLICITATION DES
TRACERS	TRACEURS
IMPLICITATION FOR DEPTH	IMPLICITATION POUR LA HAUTEUR
IMPLICITATION FOR DIFFUSION OF	IMPLICITATION POUR LA DIFFUSION
VELOCITY IMPLICATION FOR VELOCITY	DES VITESSES
IMPLICITATION FOR VELOCITY	IMPLICITATION POUR LA VITESSE
INFORMATION ABOUT K-EPSILON	INFORMATIONS SUR LE MODELE
MODEL THEODMATION ABOUT COLVED	K-EPSILON
INTERAL CONDITIONS	INFORMATIONS SUR LE SOLVEUR
INITIAL CONDITIONS	CONDITIONS INITIALES
INITIAL DEPTH	HAUTEUR INITIALE
INITIAL CHECK FOR H	COTE INITIALE
INITIAL GUESS FOR H	ORDRE DU TIR INITIAL POUR H
INITIAL GUESS FOR U	ORDRE DU TIR INITIAL POUR U
INITIAL TIME SET TO ZERO	REMISE A ZERO DU TEMPS
INITIAL VALUES OF TRACERS	VALEURS INITIALES DES TRACEURS
LANGUAGE	LANGUE
LATITUDE OF ORIGIN POINT	LATITUDE DU POINT ORIGINE
LAW OF BOTTOM FRICTION	LOI DE FROTTEMENT SUR LE FOND
LAW OF FRICTION ON LATERAL	LOI DE FROTTEMENT SUR LES
BOUNDARIES	PAROIS LATERALES
LAW OF TRACERS DEGRADATION	LOI DE DEGRADATION DES TRACEURS
LIBRARIES	BIBLIOTHEQUES
LIMIT VALUES	VALEURS LIMITES
LINEARIZED PROPAGATION	PROPAGATION LINEARISEE
LIQUID BOUNDARIES FILE	FICHIER DES FRONTIERES LIQUIDES
LIST OF FILES	LISTE DES FICHIERS
LIST OF POINTS	LISTE DE POINTS
LISTING FOR PRINTOUT PERIOD	PERIODE POUR LES SORTIES
LIGHTNG DRIVING	LISTING
LISTING PRINTOUT	SORTIE LISTING
LISTING PRINTOUT PERIOD	PERIODE DE SORTIE LISTING
LOCAL NUMBER OF THE POINT TO	NUMERO LOCAL DU POINT POUR
CALIBRATE HIGH WATER	CALER LA PLEINE MER
LONGITUDE OF ORIGIN POINT	LONGITUDE DU POINT ORIGINE
MANNING DEFAULT VALUE FOR	VALEUR PAR DEFAUT DU MANNING
COLEBROOK-WHITE LAW	POUR LA LOI DE COLEBROOK-WHITE

MAGG DATANGE	DILAN DE MAGGE
MASS-BALANCE	BILAN DE MASSE
MASS-LUMPING FOR WEAK	MASS-LUMPING POUR LES
CHARACTERISTICS	CARACTERISTIQUES FAIBLES
MASS-LUMPING ON H	MASS-LUMPING SUR H
MASS-LUMPING ON TRACERS	MASS-LUMPING SUR LES TRACEURS
MASS-LUMPING ON VELOCITY	MASS-LUMPING SUR LA VITESSE
MATRIX STORAGE	STOCKAGE DES MATRICES
MATRIX-VECTOR PRODUCT	PRODUIT MATRICE-VECTEUR
MAXIMUM NUMBER OF BOUNDARIES	NOMBRE MAXIMUM DE FRONTIERES
MAXIMUM NUMBER OF FRICTION DOMAINS	NOMBRE MAXIMUM DE DOMAINES DE FROTTEMENT
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LES
FOR ADVECTION SCHEMES	SCHEMAS DE CONVECTION
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LA
FOR DIFFUSION OF TRACERS	DIFFUSION DES TRACEURS
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR
FOR IDENTIFICATION	L'IDENTIFICATION
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR K ET
FOR K AND EPSILON	EPSILON
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LE
FOR SOLVER	SOLVEUR
MAXIMUM NUMBER OF SOURCES	NOMBRE MAXIMUM DE SOURCES
MAXIMUM NUMBER OF TRACERS	NOMBRE MAXIMUM DE TRACEURS
MEAN DEPTH FOR LINEARIZATION	PROFONDEUR MOYENNE POUR LA
	LINEARISATION
MEAN TEMPERATURE	TEMPERATURE MOYENNE
MINIMUM VALUE OF DEPTH	VALEUR MINIMUM DE H
MINOR CONSTITUENTS INFERENCE	INTERPOLATION DE COMPOSANTES
	MINEURES
NAMES OF CLANDESTINE VARIABLES	NOMS DES VARIABLES CLANDESTINES
NAMES OF DIFFERENTIATORS	NOMS DES DIFFERENTIATEURS
NAMES OF POINTS	NOMS DES POINTS
NAMES OF PRIVATE VARIABLES	NOMS DES VARIABLES PRIVEES
NAMES OF TRACERS	NOMS DES TRACEURS
NEWMARK TIME INTEGRATION	COEFFICIENT D'INTEGRATION EN
COEFFICIENT	TEMPS DE NEWMARK
NODES DISTANCES DELWAQ FILE	FICHIER DELWAQ DES DISTANCES
	ENTRE NOEUDS
NON-DIMENSIONAL DISPERSION	COEFFICIENTS ADIMENSIONNELS DE
COEFFICIENTS	DISPERSION
NON-SUBMERGED VEGETATION	FROTTEMENT POUR LA VEGETATION
FRICTION	NON SUBMERGEE
NORTH	NORD
NUMBER OF CORRECTIONS OF	NOMBRE DE CORRECTIONS DES
DISTRIBUTIVE SCHEMES	SCHEMAS DISTRIBUTIFS
NUMBER OF CULVERTS	NOMBRE DE BUSES
NUMBER OF DIFFERENTIATORS	NOMBRE DE DIFFERENTIATEURS
MOLIDEY OF DILLEVENITATORS	MOLIDUE DE DILLEVENITATEOVO

	T.
NUMBER OF DROGUES	NOMBRE DE FLOTTEURS
NUMBER OF FIRST TIME STEP FOR	NUMERO DU PREMIER PAS DE TEMPS
GRAPHIC PRINTOUTS	POUR LES SORTIES GRAPHIQUES
NUMBER OF FIRST TIME STEP FOR	NUMERO DU PREMIER PAS DE TEMPS
LISTING PRINTOUTS	POUR LES SORTIES LISTING
NUMBER OF GAUSS POINTS FOR WEAK	NOMBRE DE POINTS DE GAUSS POUR
CHARACTERISTICS	LES CARACTERISTIQUES FAIBLES
NUMBER OF LAGRANGIAN DRIFTS	NOMBRE DE DERIVES LAGRANGIENNES
NUMBER OF PRIVATE ARRAYS	NOMBRE DE TABLEAUX PRIVES
NUMBER OF SIPHONS	NOMBRE DE SIPHONS
NUMBER OF SUB-ITERATIONS FOR	NOMBRE DE SOUS-ITERATIONS POUR
NON-LINEARITIES	LES NON-LINEARITES
NUMBER OF SUB-STEPS OF	NOMBRE DE SOUS-PAS DES SCHEMAS
DISTRIBUTIVE SCHEMES	DISTRIBUTIFS
NUMBER OF TIME STEPS	NOMBRE DE PAS DE TEMPS
NUMBER OF TRACERS	NOMBRE DE TRACEURS
NUMBER OF WEIRS	NOMBRE DE SEUILS
OIL SPILL MODEL	MODELE DE NAPPES
	D'HYDROCARBURES
OIL SPILL STEERING FILE	FICHIER DE COMMANDES
	HYDROCARBURES
OPTION FOR CHARACTERISTICS	OPTION POUR LES
	CARACTERISTIQUES
OPTION FOR CULVERTS	OPTION POUR LES BUSES
OPTION FOR INITIAL ABSTRACTION	OPTION POUR RATIO DES PERTES
RATIO	INITIALES
OPTION FOR LIQUID BOUNDARIES	OPTION POUR LES FRONTIERES
	LIQUIDES
OPTION FOR THE DIFFUSION OF	OPTION POUR LA DIFFUSION DES
TRACERS	TRACEURS
OPTION FOR THE DIFFUSION OF	OPTION POUR LA DIFFUSION DES
VELOCITIES	VITESSES
OPTION FOR THE SOLVER FOR	OPTION DU SOLVEUR POUR LE
K-EPSILON MODEL	MODELE K-EPSILON
OPTION FOR THE TREATMENT OF	OPTION DE TRAITEMENT DES BANCS
TIDAL FLATS	DECOUVRANTS
OPTION FOR TIDAL BOUNDARY	OPTION POUR LES CONDITIONS AUX
CONDITIONS	LIMITES DE MAREE
OPTION FOR TSUNAMI GENERATION	OPTION POUR LA GENERATION DE
	TSUNAMI
OPTION FOR WIND	OPTION DU VENT
OPTION OF THE HYDROSTATIC	OPTION DE LA RECONSTRUCION
RECONSTRUCTION	HYDROSTATIQUE
ORDINATES OF SOURCES	ORDONNEES DES SOURCES
ORIGIN COORDINATES	COORDONNEES DE L'ORIGINE
ORIGINAL DATE OF TIME	DATE DE L'ORIGINE DES TEMPS
ORIGINAL HOUR OF TIME	HEURE DE L'ORIGINE DES TEMPS

PARALLEL PROCESSORS	PROCESSEURS PARALLELES
PARAMETER ESTIMATION	ESTIMATION DE PARAMETRE
PARTITIONING TOOL	PARTITIONNEUR
PHYSICAL CHARACTERISTICS OF THE	PARAMETRES PHYSIQUES DU TSUNAMI
TSUNAMI	FARAMETRES FHISTQUES DU ISUNAMI
PRECONDITIONING	PRECONDITIONNEMENT
PRECONDITIONING FOR DIFFUSION	PRECONDITIONNEMENT POUR LA
OF TRACERS	DIFFUSION DES TRACEURS
PRECONDITIONING FOR K-EPSILON	PRECONDITIONNEMENT POUR LE
MODEL	MODELE K-EPSILON
PRESCRIBED ELEVATIONS	COTES IMPOSEES
PRESCRIBED FLOWRATES	DEBITS IMPOSES
PRESCRIBED TRACERS VALUES	VALEURS IMPOSEES DES TRACEURS
PRESCRIBED VELOCITIES	VITESSES IMPOSEES
PREVIOUS COMPUTATION FILE	FICHIER DU CALCUL PRECEDENT
PREVIOUS COMPUTATION FILE	FORMAT DU FICHIER DU CALCUL
FORMAT	PRECEDENT
PRINTING CUMULATED FLOWRATES	IMPRESSION DU CUMUL DES FLUX
PRINTOUT PERIOD FOR DROGUES	PERIODE POUR LES SORTIES DE
TRINIOUT TERRIOR TOR BROOKER	FLOTTEURS
PRIORITY	PRIORITE
PRODUCTION COEFFICIENT FOR	COEFFICIENT DE PRODUCTION POUR
SECONDARY CURRENTS	COURANTS SECONDAIRES
PROPAGATION	PROPAGATION
PROPAGATION OPTION	OPTION DE PROPAGATION
PSI SCHEME OPTION	OPTION DU SCHEMA PSI
RAIN OR EVAPORATION	PLUIE OU EVAPORATION
RAIN OR EVAPORATION IN MM PER	PLUIE OU EVAPORATION EN MM PAR
DAY	JOUR
RAINFALL-RUNOFF MODEL	MODELE PLUIE-DEBIT
RECORD NUMBER FOR RESTART	ENREGISTREMENT POUR SUITE DE
	CALCUL
RECORD NUMBER IN WAVE FILE	NUMERO DE L'ENREGISTREMENT DANS
	LE FICHIER DE HOULE
REFERENCE FILE	FICHIER DE REFERENCE
REFERENCE FILE FORMAT	FORMAT DU FICHIER DE REFERENCE
RELEASE	NUMERO DE VERSION
RESULTS FILE	FICHIER DES RESULTATS
RESULTS FILE FORMAT	FORMAT DU FICHIER DES RESULTATS
ROUGHNESS COEFFICIENT OF	COEFFICIENT DE RUGOSITE DES
BOUNDARIES	BORDS
SALINITY DELWAQ FILE	FICHIER DELWAQ DE LA SALINITE
SALINITY FOR DELWAQ	SALINITE POUR DELWAQ
SCHEME FOR ADVECTION OF	SCHEMA POUR LA CONVECTION DU
K-EPSILON	K-EPSILON
SCHEME FOR ADVECTION OF TRACERS	SCHEMA POUR LA CONVECTION DES
	TRACEURS

	1
SCHEME FOR ADVECTION OF	SCHEMA POUR LA CONVECTION DES
VELOCITIES	VITESSES
SCHEME OPTION FOR ADVECTION OF	OPTION DU SCHEMA POUR LA
K-EPSILON	CONVECTION DU K-EPSILON
SCHEME OPTION FOR ADVECTION OF	OPTION DU SCHEMA POUR LA
TRACERS	CONVECTION DES TRACEURS
SCHEME OPTION FOR ADVECTION OF	OPTION DU SCHEMA POUR LA
VELOCITIES	CONVECTION DES VITESSES
SECONDARY CURRENTS	COURANTS SECONDAIRES
SECTIONS INPUT FILE	FICHIER DES SECTIONS DE
	CONTROLE
SECTIONS OUTPUT FILE	FICHIER DE SORTIE DES SECTIONS
	DE CONTROLE
SIPHONS DATA FILE	FICHIER DE DONNEES DES SIPHONS
SISYPHE STEERING FILE	FICHIER DES PARAMETRES DE
	SISYPHE
SOLVER	SOLVEUR
SOLVER ACCURACY	PRECISION DU SOLVEUR
SOLVER FOR DIFFUSION OF TRACERS	SOLVEUR POUR LA DIFFUSION DES
	TRACEURS
SOLVER FOR K-EPSILON MODEL	SOLVEUR POUR LE MODELE
	K-EPSILON
SOLVER OPTION	OPTION DU SOLVEUR
SOLVER OPTION FOR TRACERS	OPTION DU SOLVEUR POUR LA
DIFFUSION	DIFFUSION DES TRACEURS
SOURCES FILE	FICHIER DES SOURCES
SPACING OF ROUGHNESS ELEMENTS	ESPACEMENT DES ELEMENTS DE FROTTEMENT
SPATIAL PROJECTION TYPE	TYPE DE PROJECTION SPATIALE
SPEED AND DIRECTION OF WIND	VITESSE ET DIRECTION DU VENT
SPHERICAL COORDINATES	COORDONNEES SPHERIQUES
STAGE-DISCHARGE CURVES	COURBES DE TARAGE
STAGE-DISCHARGE CURVES FILE	FICHIER DES COURBES DE TARAGE
STEERING FILE	FICHIER DES PARAMETRES
STOCHASTIC DIFFUSION MODEL	MODELE DE DIFFUSION
	STOCHASTIQUE
STOP CRITERIA	CRITERES D'ARRET
STOP IF A STEADY STATE IS	ARRET SI UN ETAT PERMANENT EST
REACHED	ATTEINT
SUPG OPTION	OPTION DE SUPG
TEMPERATURE DELWAQ FILE	FICHIER DELWAQ DE LA TEMPERATURE
TEMPERATURE FOR DELWAQ	TEMPERATURE POUR DELWAQ
THICKNESS OF ALGAE	EPAISSEUR DES ALGUES
THRESHOLD DEPTH FOR RECEDING	PROFONDEUR LIMITE POUR
PROCEDURE	PROCEDURE DE RESSUYAGE
THRESHOLD DEPTH FOR WIND	PROFONDEUR LIMITE POUR LE VENT
TITILEDITOTIO DELL'III I OIL WILVE	TIMOTOMORA DILITIO LOOK DE VENT

THRESHOLD FOR NEGATIVE DEPTHS	SEUIL POUR LES PROFONDEURS NEGATIVES
TIDAL DATA BASE	BASE DE DONNEES DE MAREE
TIDAL FLATS	BANCS DECOUVRANTS
TIDAL MODEL FILE	FICHIER DU MODELE DE MAREE
TIDE GENERATING FORCE	FORCE GENERATRICE DE LA MAREE
TIME RANGE FOR FOURIER ANALYSIS	BORNES EN TEMPS POUR L'ANALYSE DE FOURIER
TIME STEP	PAS DE TEMPS
TIME STEP REDUCTION FOR	REDUCTION DU PAS DE TEMPS POUR
K-EPSILON MODEL	LE MODELE K-EPSILON
TITLE	TITRE
TOLERANCES FOR IDENTIFICATION	PRECISIONS POUR
	L'IDENTIFICATION
TOMAWAC STEERING FILE	FICHIER DES PARAMETRES DE
	TOMAWAC
TREATMENT OF FLUXES AT THE	TRAITEMENT DES FLUX AUX
BOUNDARIES	FRONTIERES
TREATMENT OF NEGATIVE DEPTHS	TRAITEMENT DES HAUTEURS
	NEGATIVES
TREATMENT OF THE LINEAR SYSTEM	TRAITEMENT DU SYSTEME LINEAIRE
TURBULENCE MODEL	MODELE DE TURBULENCE
TURBULENCE REGIME FOR SOLID	REGIME DE TURBULENCE POUR LES
BOUNDARIES	PAROIS
TYPE OF ADVECTION	FORME DE LA CONVECTION
TYPE OF SOURCES	TYPE DES SOURCES
TYPE OF WEIRS	TYPE DES SEUILS
UPWIND COEFFICIENTS	COEFFICIENTS DE DECENTREMENT
USER ON DESTINATION	USER SUR LA DESTINATION
VALIDATION	VALIDATION
VALUE OF ATMOSPHERIC PRESSURE	VALEUR DE LA PRESSION
	ATMOSPHERIQUE
VALUES OF THE TRACERS AT THE	VALEURS DES TRACEURS DES
SOURCES	SOURCES
VALUES OF TRACERS IN THE RAIN	VALEURS DES TRACEURS DANS LA
	PLUIE
VARIABLE TIME-STEP	PAS DE TEMPS VARIABLE
VARIABLES FOR GRAPHIC PRINTOUTS	VARIABLES POUR LES SORTIES
	GRAPHIQUES
VARIABLES TO BE PRINTED	VARIABLES A IMPRIMER
VECTOR LENGTH	LONGUEUR DU VECTEUR
VELOCITIES OF THE SOURCES ALONG	VITESSES DES SOURCES SELON X
X	
VELOCITIES OF THE SOURCES ALONG	VITESSES DES SOURCES SELON Y
Y	
VELOCITY DELWAQ FILE	FICHIER DELWAQ DE LA VITESSE

VELOCITY DIFFUSIVITY	COEFFICIENT DE DIFFUSION DES
	VITESSES
VELOCITY FOR DELWAQ	VITESSE POUR DELWAQ
VELOCITY PROFILES	PROFILS DE VITESSE
VERTICAL FLUXES DELWAQ FILE	FICHIER DELWAQ DES FLUX
	VERTICAUX
VERTICAL STRUCTURES	STRUCTURES VERTICALES
VOLUMES DELWAQ FILE	FICHIER DELWAQ DES VOLUMES
WAQTEL STEERING FILE	FICHIER DES PARAMETRES DE
	WAQTEL
WATER DENSITY	MASSE VOLUMIQUE DE L'EAU
WATER DISCHARGE OF SOURCES	DEBITS DES SOURCES
WATER QUALITY PROCESS	PROCESSUS QUALITE D'EAU
WAVE DRIVEN CURRENTS	COURANTS DE HOULE
WAVE ENHANCED FRICTION FACTOR	AUGMENTATION DU FROTTEMENT PAR
	LA HOULE
WEIRS DATA FILE	FICHIER DE DONNEES DES SEUILS
WIND	VENT
WIND VELOCITY ALONG X	VITESSE DU VENT SUIVANT X
WIND VELOCITY ALONG Y	VITESSE DU VENT SUIVANT Y
ZERO	ZERO
ZONE NUMBER IN GEOGRAPHIC	NUMERO DE FUSEAU OU PROJECTION
SYSTEM	DANS LE SYSTEME GEOGRAPHIQUE
ZONES FILE	FICHIER DES ZONES

3.2 French/English glossary

ABSCISSES DES SOURCES	ABSCISSAE OF SOURCES
ACCELERATION DE LA PESANTEUR	GRAVITY ACCELERATION
ARRET SI UN ETAT PERMANENT EST	STOP IF A STEADY STATE IS
ATTEINT	REACHED
AUGMENTATION DU FROTTEMENT PAR	WAVE ENHANCED FRICTION FACTOR
LA HOULE	
BANCS DECOUVRANTS	TIDAL FLATS
BASE ASCII DE DONNEES DE MAREE	ASCII DATABASE FOR TIDE
BASE BINAIRE 1 DE DONNEES DE	BINARY DATABASE 1 FOR TIDE
MAREE	
BASE BINAIRE 2 DE DONNEES DE	BINARY DATABASE 2 FOR TIDE
MAREE	
BASE DE DONNEES DE MAREE	TIDAL DATA BASE
BIBLIOTHEQUES	LIBRARIES
BILAN DE MASSE	MASS-BALANCE
BORNES EN TEMPS POUR L'ANALYSE	TIME RANGE FOR FOURIER ANALYSIS
DE FOURIER	
BRECHE	BREACH
CALCUL COMPATIBLE DES FLUX	COMPATIBLE COMPUTATION OF
	FLUXES
CLIPPING DE H	H CLIPPING

COEFFICIENT 1 DE LA LOI DE	COEFFICIENT 1 FOR LAW OF
DEGRADATION DES TRACEURS	TRACERS DEGRADATION
COEFFICIENT D'IMPLICITATION DES	IMPLICITATION COEFFICIENT OF
TRACEURS	TRACERS
COEFFICIENT D'INFLUENCE DU VENT	COEFFICIENT OF WIND INFLUENCE
COEFFICIENT D'INTEGRATION EN	NEWMARK TIME INTEGRATION
TEMPS DE NEWMARK	COEFFICIENT
COEFFICIENT DE CALAGE DES	COEFFICIENT TO CALIBRATE TIDAL
VITESSES DE COURANT	VELOCITIES
COEFFICIENT DE CALAGE DU	COEFFICIENT TO CALIBRATE TIDAL
MARNAGE	RANGE
COEFFICIENT DE CALAGE DU NIVEAU	COEFFICIENT TO CALIBRATE SEA
DE MER	LEVEL
COEFFICIENT DE CORIOLIS	CORIOLIS COEFFICIENT
COEFFICIENT DE DIFFUSION DES	COEFFICIENT FOR DIFFUSION OF
TRACEURS	TRACERS
COEFFICIENT DE DIFFUSION DES	VELOCITY DIFFUSIVITY
VITESSES	
COEFFICIENT DE DISSIPATION POUR	DISSIPATION COEFFICIENT FOR
COURANTS SECONDAIRES	SECONDARY CURRENTS
COEFFICIENT DE FROTTEMENT	FRICTION COEFFICIENT
COEFFICIENT DE PRODUCTION POUR	PRODUCTION COEFFICIENT FOR
COURANTS SECONDAIRES	SECONDARY CURRENTS
COEFFICIENT DE RUGOSITE DES	ROUGHNESS COEFFICIENT OF
BORDS	BOUNDARIES
COEFFICIENTS ADIMENSIONNELS DE	NON-DIMENSIONAL DISPERSION
DISPERSION	COEFFICIENTS
COEFFICIENTS DE DECENTREMENT	UPWIND COEFFICIENTS
COMPATIBILITE DU GRADIENT DE	FREE SURFACE GRADIENT
SURFACE LIBRE	COMPATIBILITY
CONDITIONS D'HUMIDITE	ANTECEDENT MOISTURE CONDITIONS
PRECEDENTE	
CONDITIONS INITIALES	INITIAL CONDITIONS
CONTROLE DES LIMITES	CONTROL OF LIMITS
CONVECTION	ADVECTION
CONVECTION DE H	ADVECTION OF H
CONVECTION DE K ET EPSILON	ADVECTION OF K AND EPSILON
CONVECTION DE U ET V	ADVECTION OF U AND V
CONVECTION DES TRACEURS	ADVECTION OF TRACERS
COORDONNEES DE L'ORIGINE	ORIGIN COORDINATES
COORDONNEES SPHERIQUES	SPHERICAL COORDINATES
CORIOLIS	CORIOLIS
CORRECTION DE CONTINUITE	CONTINUITY CORRECTION
COTE INITIALE	INITIAL ELEVATION
COTES IMPOSEES	PRESCRIBED ELEVATIONS
COUPLAGE AVEC	COUPLING WITH
COURANTS DE HOULE	WAVE DRIVEN CURRENTS
	21.1.1.1.0011.1.10

COURANTS SECONDAIRES	SECONDARY CURRENTS
COURBES DE TARAGE	STAGE-DISCHARGE CURVES
CRITERES D'ARRET	STAGE-DISCHARGE CURVES STOP CRITERIA
DATE DE L'ORIGINE DES TEMPS	
	ORIGINAL DATE OF TIME WATER DISCHARGE OF SOURCES
DEBITS DES SOURCES	
DEBITS IMPOSES	PRESCRIBED FLOWRATES
DEBUGGER	DEBUGGER
DESCRIPTION DE ZONES	DESCRIPTION OF JURDANIES
DESCRIPTION DES LIBRAIRIES	DESCRIPTION OF LIBRARIES
DESTINATION	DESTINATION
DIAMETRE DES ALGUES	DIAMETRE OF ALGAE
DIAMETRE DES ELEMENTS DE	DIAMETER OF ROUGHNESS ELEMENTS
FROTTEMENT	DIGHTOWARK
DICTIONNAIRE	DICTIONARY
DIFFUSION DES TRACEURS	DIFFUSION OF TRACERS
DIFFUSION DES VITESSES	DIFFUSION OF VELOCITY
DIFFUSION POUR DELWAQ	DIFFUSIVITY FOR DELWAQ
DISCRETISATIONS EN ESPACE	DISCRETIZATIONS IN SPACE
DONNEES POUR LE FROTTEMENT	FRICTION DATA
DOSSIER DE COUPLAGE	COUPLING DIRECTORY
DUREE DE LA PLUIE OU	DURATION OF RAIN OR EVAPORATION
EVAPORATION EN HEURES	IN HOURS
DUREE DU CALCUL	DURATION
EFFETS DE DENSITE	DENSITY EFFECTS
ELEMENTS MASQUES PAR	ELEMENTS MASKED BY USER
L'UTILISATEUR	
ENREGISTREMENT POUR SUITE DE	RECORD NUMBER FOR RESTART
CALCUL	
ENTIER LIBRE 20	FREE INTEGER 20
EPAISSEUR DES ALGUES	THICKNESS OF ALGAE
EQUATIONS	EQUATIONS
ESPACEMENT DES ELEMENTS DE	SPACING OF ROUGHNESS ELEMENTS
FROTTEMENT	
ESTIMATION DE PARAMETRE	PARAMETER ESTIMATION
EXECUTABLE PAR DEFAUT	DEFAULT EXECUTABLE
EXECUTABLE PARALLELE PAR DEFAUT	DEFAULT PARALLEL EXECUTABLE
FICHIER ASCII DE DONNEES	ASCII ATMOSPHERIC DATA FILE
ATMOSPHERIQUES	
FICHIER BINAIRE DE DONNEES	BINARY ATMOSPHERIC DATA FILE
ATMOSPHERIQUES	
FICHIER DE COMMANDE DELWAQ	DELWAQ STEERING FILE
FICHIER DE COMMANDES	OIL SPILL STEERING FILE
HYDROCARBURES	
FICHIER DE DONNEES BINAIRE 1	BINARY DATA FILE 1
FICHIER DE DONNEES BINAIRE 2	BINARY DATA FILE 2
FICHIER DE DONNEES DES BRECHES	BREACHES DATA FILE
FICHIER DE DONNEES DES BUSES	CULVERTS DATA FILE

	THE DO DAWN HALD
FICHIER DE DONNEES DES SEUILS	WEIRS DATA FILE
FICHIER DE DONNEES DES SIPHONS	SIPHONS DATA FILE
FICHIER DE DONNEES FORMATE 1	FORMATTED DATA FILE 1
FICHIER DE DONNEES FORMATE 2	FORMATTED DATA FILE 2
FICHIER DE DONNEES POUR LE	FRICTION DATA FILE
FROTTEMENT	
FICHIER DE FLUXLINE	FLUXLINE INPUT FILE
FICHIER DE GEOMETRIE	GEOMETRY FILE
FICHIER DE REFERENCE	REFERENCE FILE
FICHIER DE RESULTATS BINAIRE	BINARY RESULTS FILE
FICHIER DE RESULTATS FORMATE	FORMATTED RESULTS FILE
FICHIER DE SORTIE DES SECTIONS	SECTIONS OUTPUT FILE
DE CONTROLE	
FICHIER DELWAQ DE LA DIFFUSION	DIFFUSIVITY DELWAQ FILE
FICHIER DELWAQ DE LA SALINITE	SALINITY DELWAQ FILE
FICHIER DELWAQ DE LA	TEMPERATURE DELWAQ FILE
TEMPERATURE	
FICHIER DELWAQ DE LA VITESSE	VELOCITY DELWAQ FILE
FICHIER DELWAQ DES DISTANCES	NODES DISTANCES DELWAQ FILE
ENTRE NOEUDS	
FICHIER DELWAQ DES ECHANGES	EXCHANGES BETWEEN NODES DELWAQ
ENTRE NOEUDS	FILE
FICHIER DELWAQ DES FLUX	VERTICAL FLUXES DELWAQ FILE
VERTICAUX	
FICHIER DELWAQ DES SURFACES DE	EXCHANGE AREAS DELWAQ FILE
FLUX	
FICHIER DELWAQ DES SURFACES DU	BOTTOM SURFACES DELWAQ FILE
FOND	
FICHIER DELWAQ DES VOLUMES	VOLUMES DELWAQ FILE
FICHIER DES CONDITIONS AUX	BOUNDARY CONDITIONS FILE
LIMITES	
FICHIER DES CONSTANTES	HARMONIC CONSTANTS FILE
HARMONIQUES	
FICHIER DES COURBES DE TARAGE	STAGE-DISCHARGE CURVES FILE
FICHIER DES FLOTTEURS	DROGUES FILE
FICHIER DES FONDS	BOTTOM TOPOGRAPHY FILE
FICHIER DES FRONTIERES LIQUIDES	LIQUID BOUNDARIES FILE
FICHIER DES PARAMETRES	STEERING FILE
FICHIER DES PARAMETRES DE	SISYPHE STEERING FILE
SISYPHE	
FICHIER DES PARAMETRES DE	TOMAWAC STEERING FILE
TOMAWAC	
FICHIER DES PARAMETRES DE	WAQTEL STEERING FILE
WAQTEL	
FICHIER DES RESULTATS	RESULTS FILE
FICHIER DES SECTIONS DE	SECTIONS INPUT FILE
CONTROLE	

ETGUTED DEG GOUDGEG	GOLIDADA DILI
FICHIER DES SOURCES	SOURCES FILE
FICHIER DES ZONES	ZONES FILE
FICHIER DU CALCUL PRECEDENT	PREVIOUS COMPUTATION FILE
FICHIER DU MODELE DE MAREE	TIDAL MODEL FILE
FICHIER FORTRAN	FORTRAN FILE
FLUXLINE	FLUXLINE
FONCTION COUT	COST FUNCTION
FORCE GENERATRICE DE LA MAREE	TIDE GENERATING FORCE
FORMAT DU FICHIER BINAIRE DE	BINARY ATMOSPHERIC DATA FILE
DONNEES ATMOSPHERIQUES	FORMAT
FORMAT DU FICHIER DE DONNEES	BINARY DATA FILE 1 FORMAT
BINAIRE 1	
FORMAT DU FICHIER DE DONNEES	BINARY DATA FILE 2 FORMAT
BINAIRE 2	
FORMAT DU FICHIER DE GEOMETRIE	GEOMETRY FILE FORMAT
FORMAT DU FICHIER DE REFERENCE	REFERENCE FILE FORMAT
FORMAT DU FICHIER DE RESULTATS	BINARY RESULTS FILE FORMAT
BINAIRE	
FORMAT DU FICHIER DES RESULTATS	RESULTS FILE FORMAT
FORMAT DU FICHIER DU CALCUL	PREVIOUS COMPUTATION FILE
PRECEDENT	FORMAT
FORME DE LA CONVECTION	TYPE OF ADVECTION
FROTTEMENT POUR LA VEGETATION	NON-SUBMERGED VEGETATION
NON SUBMERGEE	FRICTION
HAUTEUR DANS LES TERMES DE	DEPTH IN FRICTION TERMS
FROTTEMENT	
HAUTEUR INITIALE	INITIAL DEPTH
HEURE DE L'ORIGINE DES TEMPS	ORIGINAL HOUR OF TIME
IMPLICITATION POUR LA DIFFUSION	IMPLICITATION FOR DIFFUSION OF
DES VITESSES	VELOCITY
IMPLICITATION POUR LA HAUTEUR	IMPLICITATION FOR DEPTH
IMPLICITATION POUR LA VITESSE	IMPLICITATION FOR VELOCITY
IMPRESSION DU CUMUL DES FLUX	PRINTING CUMULATED FLOWRATES
INFORMATIONS SUR LE MODELE	INFORMATION ABOUT K-EPSILON
K-EPSILON	MODEL
INFORMATIONS SUR LE SOLVEUR	INFORMATION ABOUT SOLVER
INTERPOLATION DE COMPOSANTES	MINOR CONSTITUENTS INFERENCE
MINEURES	TITION CONSTITUTIONS THE DIVINOR
LANGUE	LANGUAGE
LATITUDE DU POINT ORIGINE	LATITUDE OF ORIGIN POINT
LISSAGES DU FOND	BOTTOM SMOOTHINGS
LISTE DE POINTS	LIST OF POINTS
LISTE DES FICHIERS	LIST OF FILES
LOI DE DEGRADATION DES TRACEURS	LAW OF TRACERS DEGRADATION
LOI DE FROTTEMENT SUR LE FOND	LAW OF BOTTOM FRICTION
LOI DE FROTTEMENT SUR LES	LAW OF FRICTION ON LATERAL
PAROIS LATERALES	BOUNDARIES

	T
LONGITUDE DU POINT ORIGINE	LONGITUDE OF ORIGIN POINT
LONGUEUR DU VECTEUR	VECTOR LENGTH
MASS-LUMPING POUR LES	MASS-LUMPING FOR WEAK
CARACTERISTIQUES FAIBLES	CHARACTERISTICS
MASS-LUMPING SUR H	MASS-LUMPING ON H
MASS-LUMPING SUR LA VITESSE	MASS-LUMPING ON VELOCITY
MASS-LUMPING SUR LES TRACEURS	MASS-LUMPING ON TRACERS
MASSE VOLUMIQUE DE L'EAU	WATER DENSITY
MASSE VOLUMIQUE DES ALGUES	DENSITY OF ALGAE
MAXIMUM D'ITERATIONS POUR K ET	MAXIMUM NUMBER OF ITERATIONS
EPSILON	FOR K AND EPSILON
MAXIMUM D'ITERATIONS POUR	MAXIMUM NUMBER OF ITERATIONS
L'IDENTIFICATION	FOR IDENTIFICATION
MAXIMUM D'ITERATIONS POUR LA	MAXIMUM NUMBER OF ITERATIONS
DIFFUSION DES TRACEURS	FOR DIFFUSION OF TRACERS
MAXIMUM D'ITERATIONS POUR LE	MAXIMUM NUMBER OF ITERATIONS
SOLVEUR	FOR SOLVER
MAXIMUM D'ITERATIONS POUR LES	MAXIMUM NUMBER OF ITERATIONS
SCHEMAS DE CONVECTION	FOR ADVECTION SCHEMES
METHODE D'IDENTIFICATION	IDENTIFICATION METHOD
MODELE DE DIFFUSION	STOCHASTIC DIFFUSION MODEL
STOCHASTIQUE	
MODELE DE NAPPES	OIL SPILL MODEL
D'HYDROCARBURES	
MODELE DE TRANSPORT DES ALGUES	ALGAE TRANSPORT MODEL
MODELE DE TURBULENCE	TURBULENCE MODEL
MODELE PLUIE-DEBIT	RAINFALL-RUNOFF MODEL
NOMBRE DE BUSES	NUMBER OF CULVERTS
NOMBRE DE CORRECTIONS DES	NUMBER OF CORRECTIONS OF
SCHEMAS DISTRIBUTIFS	DISTRIBUTIVE SCHEMES
NOMBRE DE COURANT SOUHAITE	DESIRED COURANT NUMBER
NOMBRE DE DERIVES LAGRANGIENNES	NUMBER OF LAGRANGIAN DRIFTS
NOMBRE DE DIFFERENTIATEURS	NUMBER OF DIFFERENTIATORS
NOMBRE DE FLOTTEURS	NUMBER OF DROGUES
NOMBRE DE PAS DE TEMPS	NUMBER OF TIME STEPS
NOMBRE DE POINTS DE GAUSS POUR	NUMBER OF GAUSS POINTS FOR WEAK
LES CARACTERISTIQUES FAIBLES	CHARACTERISTICS
NOMBRE DE SEUILS	NUMBER OF WEIRS
NOMBRE DE SIPHONS	NUMBER OF SIPHONS
NOMBRE DE SOUS-ITERATIONS POUR	NUMBER OF SUB-ITERATIONS FOR
LES NON-LINEARITES	NON-LINEARITIES
NOMBRE DE SOUS-PAS DES SCHEMAS	NUMBER OF SUB-STEPS OF
DISTRIBUTIFS	DISTRIBUTIVE SCHEMES
NOMBRE DE TABLEAUX PRIVES	NUMBER OF PRIVATE ARRAYS
NOMBRE DE TRACEURS	NUMBER OF TRACERS
NOMBRE MAXIMUM DE DOMAINES DE	MAXIMUM NUMBER OF FRICTION
FROTTEMENT	DOMAINS
	1

NOMBRE MAXIMUM DE FRONTIERES	MAXIMUM NUMBER OF BOUNDARIES
NOMBRE MAXIMUM DE SOURCES	MAXIMUM NUMBER OF SOURCES
NOMBRE MAXIMUM DE TRACEURS	MAXIMUM NUMBER OF TRACERS
NOMS DES DIFFERENTIATEURS	NAMES OF DIFFERENTIATORS
	NAMES OF POINTS
NOMS DES POINTS	
NOMS DES TRACEURS	NAMES OF TRACERS
NOMS DES VARIABLES CLANDESTINES	NAMES OF CLANDESTINE VARIABLES
NOMS DES VARIABLES PRIVEES	NAMES OF PRIVATE VARIABLES
NORD	NORTH
NUMERO DE COMPTE	ACCOUNT NUMBER
NUMERO DE FUSEAU OU PROJECTION	ZONE NUMBER IN GEOGRAPHIC
DANS LE SYSTEME GEOGRAPHIQUE	SYSTEM
NUMERO DE L'ENREGISTREMENT DANS	RECORD NUMBER IN WAVE FILE
LE FICHIER DE HOULE	
NUMERO DE VERSION	RELEASE
NUMERO DU PREMIER PAS DE TEMPS	NUMBER OF FIRST TIME STEP FOR
POUR LES SORTIES GRAPHIQUES	GRAPHIC PRINTOUTS
NUMERO DU PREMIER PAS DE TEMPS	NUMBER OF FIRST TIME STEP FOR
POUR LES SORTIES LISTING	LISTING PRINTOUTS
NUMERO GLOBAL DU POINT POUR	GLOBAL NUMBER OF THE POINT TO
CALER LA PLEINE MER	CALIBRATE HIGH WATER
NUMERO LOCAL DU POINT POUR	LOCAL NUMBER OF THE POINT TO
CALER LA PLEINE MER	CALIBRATE HIGH WATER
OPTION DE LA RECONSTRUCION	OPTION OF THE HYDROSTATIC
HYDROSTATIQUE	RECONSTRUCTION
OPTION DE PROPAGATION	PROPAGATION OPTION
OPTION DE SUPG	SUPG OPTION
OPTION DE TRAITEMENT DES BANCS	OPTION FOR THE TREATMENT OF
DECOUVRANTS	TIDAL FLATS
OPTION DU SCHEMA POUR LA	SCHEME OPTION FOR ADVECTION OF
CONVECTION DES TRACEURS	TRACERS
OPTION DU SCHEMA POUR LA	SCHEME OPTION FOR ADVECTION OF
CONVECTION DES VITESSES	VELOCITIES
OPTION DU SCHEMA POUR LA	SCHEME OPTION FOR ADVECTION OF
CONVECTION DU K-EPSILON	K-EPSILON
OPTION DU SCHEMA PSI	PSI SCHEME OPTION
OPTION DU SOLVEUR	SOLVER OPTION
OPTION DU SOLVEUR POUR LA	SOLVER OPTION FOR TRACERS
DIFFUSION DES TRACEURS	DIFFUSION
OPTION DU SOLVEUR POUR LE	OPTION FOR THE SOLVER FOR
MODELE K-EPSILON	K-EPSILON MODEL
OPTION DU VENT	OPTION FOR WIND
OPTION POUR LA DIFFUSION DES	OPTION FOR THE DIFFUSION OF
TRACEURS	TRACERS
OPTION POUR LA DIFFUSION DES	OPTION FOR THE DIFFUSION OF
VITESSES	VELOCITIES

OPTION POUR LA GENERATION DE	OPTION FOR TSUNAMI GENERATION
TSUNAMI	OPTION FOR ISONAMI GENERATION
OPTION POUR LES BUSES	OPTION FOR CULVERTS
OPTION POUR LES	OPTION FOR CHARACTERISTICS
CARACTERISTIQUES	
OPTION POUR LES CONDITIONS AUX	OPTION FOR TIDAL BOUNDARY
LIMITES DE MAREE	CONDITIONS
OPTION POUR LES FRONTIERES	OPTION FOR LIQUID BOUNDARIES
LIQUIDES	
OPTION POUR RATIO DES PERTES	OPTION FOR INITIAL ABSTRACTION
INITIALES	RATIO
ORDONNEES DES SOURCES	ORDINATES OF SOURCES
ORDRE DU TIR INITIAL POUR H	INITIAL GUESS FOR H
ORDRE DU TIR INITIAL POUR U	INITIAL GUESS FOR U
PARAMETRES PHYSIQUES DU TSUNAMI	PHYSICAL CHARACTERISTICS OF THE
	TSUNAMI
PARTITIONNEUR	PARTITIONING TOOL
PAS DE TEMPS	TIME STEP
PAS DE TEMPS VARIABLE	VARIABLE TIME-STEP
PERIODE DE COUPLAGE POUR	COUPLING PERIOD FOR SISYPHE
SISYPHE	
PERIODE DE COUPLAGE POUR	COUPLING PERIOD FOR TOMAWAC
TOMAWAC	
PERIODE DE SORTIE LISTING	LISTING PRINTOUT PERIOD
PERIODE DE SORTIE POUR DELWAQ	DELWAQ PRINTOUT PERIOD
PERIODE POUR LES SORTIES DE	PRINTOUT PERIOD FOR DROGUES
FLOTTEURS	
PERIODE POUR LES SORTIES	GRAPHIC PRINTOUT PERIOD
GRAPHIQUES	
PERIODE POUR LES SORTIES	LISTING FOR PRINTOUT PERIOD
LISTING	
PERIODES D'ANALYSE DE FOURIER	FOURIER ANALYSIS PERIODS
PLUIE OU EVAPORATION	RAIN OR EVAPORATION
PLUIE OU EVAPORATION EN MM PAR	RAIN OR EVAPORATION IN MM PER
JOUR	DAY
PRECISION DU SOLVEUR	SOLVER ACCURACY
PRECISION POUR LA DIFFUSION DES	ACCURACY FOR DIFFUSION OF
TRACEURS	TRACERS
PRECISION SUR EPSILON	ACCURACY OF EPSILON
PRECISION SUR K	ACCURACY OF K
PRECISIONS POUR	TOLERANCES FOR IDENTIFICATION
L'IDENTIFICATION	
PRECONDITIONNEMENT	PRECONDITIONING
PRECONDITIONNEMENT C-U	C-U PRECONDITIONING
PRECONDITIONNEMENT POUR LA	PRECONDITIONING FOR DIFFUSION
DIFFUSION DES TRACEURS	OF TRACERS

PRECONDITIONNEMENT POUR LE	PRECONDITIONING FOR K-EPSILON
MODELE K-EPSILON	MODEL
PRESSION ATMOSPHERIQUE	AIR PRESSURE
PRIORITE	PRIORITY
PROCESSEURS PARALLELES	PARALLEL PROCESSORS
PROCESSUS QUALITE D'EAU	WATER QUALITY PROCESS
PRODUIT MATRICE-VECTEUR	MATRIX-VECTOR PRODUCT
PROFILS DE VITESSE	VELOCITY PROFILES
PROFONDEUR LIMITE POUR LE VENT	THRESHOLD DEPTH FOR WIND
PROFONDEUR LIMITE POUR	THRESHOLD DEPTH FOR RECEDING
PROCEDURE DE RESSUYAGE	PROCEDURE
PROFONDEUR MOYENNE POUR LA	MEAN DEPTH FOR LINEARIZATION
LINEARISATION	
PROPAGATION	PROPAGATION
PROPAGATION LINEARISEE	LINEARIZED PROPAGATION
REDUCTION DU PAS DE TEMPS POUR	TIME STEP REDUCTION FOR
LE MODELE K-EPSILON	K-EPSILON MODEL
REGIME DE TURBULENCE POUR LES	TURBULENCE REGIME FOR SOLID
PAROIS	BOUNDARIES
REMISE A ZERO DU TEMPS	INITIAL TIME SET TO ZERO
SALINITE POUR DELWAQ	SALINITY FOR DELWAQ
SCHEMA EN VOLUMES FINIS	FINITE VOLUME SCHEME
SCHEMA POUR LA CONVECTION DES	SCHEME FOR ADVECTION OF TRACERS
TRACEURS	SCHEME FOR ADVECTION OF TRACERS
SCHEMA POUR LA CONVECTION DES	SCHEME FOR ADVECTION OF
VITESSES	VELOCITIES
SCHEMA POUR LA CONVECTION DU	SCHEME FOR ADVECTION OF
K-EPSILON	K-EPSILON
SECTIONS DE CONTROLE	CONTROL SECTIONS
SEUIL POUR LES PROFONDEURS	THRESHOLD FOR NEGATIVE DEPTHS
NEGATIVES	
SOLVEUR	SOLVER
SOLVEUR POUR LA DIFFUSION DES	SOLVER FOR DIFFUSION OF TRACERS
TRACEURS	
SOLVEUR POUR LE MODELE	SOLVER FOR K-EPSILON MODEL
K-EPSILON	
SORTIE LISTING	LISTING PRINTOUT
STOCKAGE DES MATRICES	MATRIX STORAGE
STRUCTURES VERTICALES	VERTICAL STRUCTURES
SUITE DE CALCUL	COMPUTATION CONTINUED
SYSTEME GEOGRAPHIQUE	GEOGRAPHIC SYSTEM
	MEAN TEMPERATURE
TEMPERATURE POUR DELWAQ	TEMPERATURE FOR DELWAQ
TITRE	TITLE
TRAITEMENT DES FLUX AUX	TREATMENT OF FLUXES AT THE
FRONTIERES	BOUNDARIES
SOLVEUR SOLVEUR POUR LA DIFFUSION DES TRACEURS SOLVEUR POUR LE MODELE K-EPSILON SORTIE LISTING STOCKAGE DES MATRICES STRUCTURES VERTICALES SUITE DE CALCUL SYSTEME GEOGRAPHIQUE TEMPERATURE MOYENNE TEMPERATURE POUR DELWAQ TITRE TRAITEMENT DES FLUX AUX	SOLVER FOR DIFFUSION OF TRACERS SOLVER FOR K-EPSILON MODEL LISTING PRINTOUT MATRIX STORAGE VERTICAL STRUCTURES COMPUTATION CONTINUED GEOGRAPHIC SYSTEM MEAN TEMPERATURE TEMPERATURE FOR DELWAQ TITLE TREATMENT OF FLUXES AT THE

110 Bibliography

TDATTEMENT DEC HAHTEHDC	TDEATMENT OF NECATIVE DEDTIC
TRAITEMENT DES HAUTEURS	TREATMENT OF NEGATIVE DEPTHS
NEGATIVES	
TRAITEMENT DU SYSTEME LINEAIRE	TREATMENT OF THE LINEAR SYSTEM
TYPE DE PROJECTION SPATIALE	SPATIAL PROJECTION TYPE
TYPE DES ALGUES	ALGAE TYPE
TYPE DES SEUILS	TYPE OF WEIRS
TYPE DES SOURCES	TYPE OF SOURCES
USER SUR LA DESTINATION	USER ON DESTINATION
VALEUR DE LA PRESSION	VALUE OF ATMOSPHERIC PRESSURE
ATMOSPHERIQUE	
VALEUR MINIMUM DE H	MINIMUM VALUE OF DEPTH
VALEUR PAR DEFAUT DU MANNING	MANNING DEFAULT VALUE FOR
POUR LA LOI DE COLEBROOK-WHITE	COLEBROOK-WHITE LAW
VALEURS DES TRACEURS DANS LA	VALUES OF TRACERS IN THE RAIN
PLUIE	
VALEURS DES TRACEURS DES	VALUES OF THE TRACERS AT THE
SOURCES	SOURCES
VALEURS IMPOSEES DES TRACEURS	PRESCRIBED TRACERS VALUES
VALEURS INITIALES DES TRACEURS	INITIAL VALUES OF TRACERS
VALEURS LIMITES	LIMIT VALUES
VALIDATION	VALIDATION
VARIABLES A IMPRIMER	VARIABLES TO BE PRINTED
VARIABLES POUR LES SORTIES	VARIABLES FOR GRAPHIC PRINTOUTS
GRAPHIQUES	
VENT	WIND
VERIFICATION DU MAILLAGE	CHECKING THE MESH
VITESSE DU VENT SUIVANT X	WIND VELOCITY ALONG X
VITESSE DU VENT SUIVANT Y	WIND VELOCITY ALONG Y
VITESSE ET DIRECTION DU VENT	SPEED AND DIRECTION OF WIND
VITESSE POUR DELWAQ	VELOCITY FOR DELWAQ
VITESSES DES SOURCES SELON X	VELOCITIES OF THE SOURCES ALONG
	X
VITESSES DES SOURCES SELON Y	VELOCITIES OF THE SOURCES ALONG
	Y
VITESSES IMPOSEES	PRESCRIBED VELOCITIES
ZERO	ZERO

- [1] JOLY A., GOEURY C., and HERVOUET J.-M. Adding a particle transport module to telemac-2d with applications to algae blooms and oil spills. Technical Report H-P74-2013-02317-EN, EDF R&D-LNHE, 2013.
- [2] AUTHOR. Title. Journal de Mickey, 666.
- [3] PHAM C.-T., BOURBAN S., DURAND N., and TURNBULL M. Méthodologie pour la simulation de la marée avec la version 6.2 de telemac-2d et telemac-3d. Technical Report H-P74-2012-02534-FR, EDF R&D-LNHE, 2012.
- [4] Sampath Kumar Gurram, Karam S. Karki, and Willi H. Hager. Subcritical junction flow. *Journal of Hydraulic Engineering*, 123(5):447–455, may 1997.
- [5] TSANIS I. Simulation of wind-induced water currents. *Journal of hydraulic Engineering*, 115(8):1113–1134, 1989.
- [6] SMAGORINSKY J. General simulation experiments with the primitive equations. *Monthly Weather Review*, 91(3):99–164, March 1963.
- [7] HERVOUET J.-M. *Méthodes itératives pour la solution des systèmes matriciels*. Rapport EDF HE43/93.049/A, 1996.
- [8] HERVOUET J.-M. Hydrodynamics of Free Surface Flows. Modelling with the finite element method. Wiley, 2007.
- [9] HERVOUET J.-M. Guide to programming in the telemac system version 6.0. Technical Report H-P74-2009-00801-EN, EDF R&D-LNHE, 2009.
- [10] JANIN J.-M., HERVOUET J.-M., and MOULIN C. A positive conservative scheme for scalar advection using the M.U.R.D technique in 3D free-surface flow problems. XIth International Conference on Computional methods in water resources, 1996.
- [11] GAUTHIER M. and QUETIN B. Modèles mathématiques de calcul des écoulements induits par le vent. In *17e congrès de l'AIRH*, Baden-Baden, August 1977.
- [12] METCALF M. and REID J. Fortran 90 explained. Oxford Science Publications, 1990.