基礎コンピュータ工学 第5章 機械語プログラミング (パート2)

https://github.com/tctsigemura/TecTextBook

本スライドの入手:

データ転送命令

CPU とメモリの間でデータを転送する機械語命令(2種類)

- LD (Load) 命令: CPU のレジスタ ← メモリ
- ST (Store) 命令:メモリ ← CPU のレジスタ

LD(Load)命令(ニーモニックと命令フォーマット)

メモリ(EA)から CPU のレジスタ(GR) ヘデータを転送(コピー)する.

 $=-\pm - y$: LD GR, EA

命令フォーマット: 2バイトの長さを持つ.

第1バイト		** 0
OP	GR XR	第2バイト
0001_2	GR XR	aaaa aaaa

フィールド: OP, GR, XR, A

GR フィールドの意味と値: GR の 2 ビットで CPU レジスタを指定する.

GR	意味
00_{2}	G0
01_{2}	G1
10_{2}	G2
11_{2}	SP

LD (Load) 命令 (具体的な命令の例)

メモリの3番地からから G1 レジスタヘデータを転送 (コピー) する.

ニーモニック: LD G1,03H

命令フォーマット: G1 と 03H を反映する.

第1バイト		答り ぶんし
OP	GR XR	第2バイト
0001_2	$01_2 \ 00_2$	$0000 \ 0011_2$

メモリに格納した状態: HALT 命令やデータも格納している.

-12 12 1	, ,	
番地	命令	
00_{16}	14 ₁₆	LD G1,03H
01_{16}	03 ₁₆	
02_{16}	<i>FF</i> ₁₆	HALT
03_{16}	12_{16}	何かデータ

LD(Load)命令(少し長い例)

プログラムの例: データを GO, G1 にロードする.

番地	機械語	ラベル	ニー	モニック
0016	$10_{16} \ 05_{16}$		LD	GO,05H
02_{16}	$14_{16} \ 06_{16}$		LD	G1,06H
04_{16}	FF_{16}		HALT	

メモリに格納した状態: 何かデータも準備する必要がある.

, ,		
番地	機械語	意味
00_{16}	10_{16}	LD G0,05H
01_{16}	05_{16}	
02_{16}	14_{16}	LD G1,06H
03_{16}	06_{16}	
04_{16}	FF_{16}	HALT
05_{16}	12 ₁₆	データ!!
06_{16}	34 ₁₆	データ!!

LD(Load)命令(フローチャートの描き方)

LD 命令のフローチャート: [と] を忘れないように!

LD 命令のフローチャート例: START と END を追加

ST(Store)命令(ニーモニックと命令フォーマット)

CPU のレジスタからメモリヘデータを転送 (コピー) する.

ニーモニック: ST GR,EA

命令フォーマット: 2バイトの長さを持つ.

第1バイト		然 0 . 3 . 1 . 1
OP	GR XR	第2バイト
0010_2	GR XR	aaaa aaaa

ST 命令のフローチャート: [と] を忘れないように!

ST(Store)命令(プログラム例)

プログラムの例: 05H 番地のデータを 06H 番地にコピーする.

	番地	機械語	ラベル	ニー	モニック
ĺ	00	10 05		LD	GO,05H
	02	20 06		ST	G0,06H
	04	FF		HALT	

番地と機械語はいつも 16 進数で書く(小さく 16 と書く必要なし).

フローチャート: 上のプログラムのフローチャートを描いてみる.

演習

次の手順を守って演習を行う.

- 1. フローチャートを描いて考えをまとめる.
- 2. ニーモニック (オペレーション, オペランド) に変換する.
- 3. 番地 (アドレス) を決める.
- 4. 機械語を決める.
- 5. TeC に打ち込み実行して結果を確認する.

Title 基礎計算機工学 演習課題 No 氏名	í		Date		No	6
(1) 11H番地のデータを12H番地に、10H番	也のデータ	プを11H番地	こコピーす	るプログラ	<i>5</i> Δ	
フローチャート	アドレス	機械語	ラベル	オペレーション	オペラント	