

DATES OF INTEREST

2/13 TH HW2 due

2/20 TH HW3 due

2/25 T Midterm review

2/27 TH Midterm

3/3 M Midterm grades due

3/7 F Last date to drop (no refund)

Due next Thursday, Feb 13. 11 pm.

Submission:

- Submit archived Databricks Notebook to Blackboard.
- You MAY submit a scanned handwritten page alongside the notebook for the problems that only involve math.
- NOTE: Submission only needs to be the notebook (and optionally the scanned page). No README is necessary.

READING!

- Read Chapter 2: Data and Sampling Distributions.
 - We already discussed forms of bias.
 This is covered in the first part of chapter 2.
 - Read up through the section titled "Regression to the Mean"

Edition of

Practical Statistics for Data Scientists

50+ Essential Concepts Using R and Python

OFFICE HOURS

Due to scheduling conflict, office hours updated

Tuesday 4-5 PM

Wednesday 12:30-1:30 PM

•

GITHUB

Lecture slides and examples have been committed to GitHub for lectures 1 through 4.

The project is at

https://github.com/dosirrah/CSCI443_25S_AdvancedDataScience

TRANSFORMATIONS

Added to the plan.

Transformation	Description	Example
select()	Select specific columns	df.select("Name", "Age")
filter()/where()	Filter rows based on a condition	df.filter(df.Age > 30)
withColumn()	Add or modify a column	<pre>df.withColumn("AgePlusOne", df.Age + 1)</pre>
drop()	Remove a column	df.drop("Ticket")
orderBy()	Sort rows by a column	df.orderBy("Fare", ascending=False)
limit()	Take the first N rows (still lazy)	df.limit(10)
distinct()	Remove duplicate rows	<pre>df.select("Pclass").distinct()</pre>

ACTIONS

Execute the plan to generate output.

Action	Description	Example
show()	Displays results	df.show(5)
collect()	Brings all data to the driver (! not recommended for large data)	df.collect()
count()	Returns the total number of rows	df.count()
first()	Returns the first row	df.first()
take(n)	Returns the first n rows	df.take(5)
describe()	Computes summary statistics	<pre>df.describe().show()</pre>
summary()	More detailed statistics than describe()	df.summary().show()

2024 Csci443 10

ACTIONS

Execute the plan to generate output.

Action	Description	
show()	Displays results	
collect()	Brings all data to the driver (! not recommended for large data)	
count()	Returns the total number of rows	

Is count() an action or a transformation?

count()	Returns the total number of rows	df.count()
first()	Returns the first row	df.first()
take(n)	Returns the first n rows	df.take(5)
describe()	Computes summary statistics	df.describe().show()
summary()	More detailed statistics than describe()	df.summary().show()

ACTIONS

Execute the plan to generate output.

	Action	Description	
	show()	Displays results	
	collect()	Brings all data to the driver (! no recommended for large data)	tc
ſ			

Is count() an action or a transformation?

BOTH

	count()	Returns the total number of rows	df.count()	
Ī	first()	Returns the first row	df.first()	
	take(n)	Returns the first n rows	df.take(5)	
	describe()	Computes summary statistics	<pre>df.describe().show()</pre>	
	summary()	More detailed statistics than describe()	df.summary().show()	

COUNT AS AN ACTION

df.count() immediately executes on the DataFrame. It counts the number of rows.

COUNT AS A TRANSFORMATION

The count specifies a transformation to perform a count, but it doesn't actually perform the count until we associate the plan with data (in this case df), and then execute the action show().

```
01:56 PM (1s)
   from pyspark.sql.functions import count
   df.select(count(when(col("Age").isNull(), 1))).show()
▶ (2) Spark Jobs
count(CASE WHEN (Age IS NULL) THEN 1 END)|
                                        177
```

AN EXERCISE IN BENCHMARKING

Community Edition only allocates one node for both driver and cluster.

- Spark and driver share the same resources.
- Cannot exploit the scaling properties of a cluster.
- Spark overhead results in worse performance at all scales compared to Numpy and Pandas

2024 Csci443 15

Execution Model

2024 Csci443 19

2024 Csci443

2024 Csci443

CATALYST OPTIMIZER Physical plan defines how the logical plan will be **Execution Model** executed on the cluster. Includes details about data partitioning and SPARK SQL Catalyst Optil physical operations Prepare Code Generator Optimizer Physical pla **DataFrames** Analyzer odel Optimized Unresolved Selected Logical Physical **SQL** Queries Logical Physical Plan Query Plan Plan Plans Plan Catalog DataSet

23

Csci443

2024

Execution Model

Cost model is used to

pick the optimal plan.

24

2024 Csci443

Execution Model

DataSet

Code generator outputs optimized Java bytecode

(Spark is primarily written in Scala running on the JVM)

25

SPARK SQL Catalyst Optimizer

2024 Csci443

Catalog

KEY TERMS FOR CORRELATION

Correlation coefficient

A metric that measures the extent to which numeric variables are associated with one another (ranges from -1 to +1).

Correlation matrix

A table where the variables are shown on both rows and columns, and the cell values are the correlations between the variables.

Scatterplot

A plot in which the x-axis is the value of one variable, and the y-axis the value of another.

20XX CSCI 443

Correlation between two random variables means they tend to move together.

When one increases the other does, and vice versa.

Negative correlation means they tend to move opposite to one another.

There is no correlation if they do not move together.

There is no correlation if they do not move together.

There is no correlation if they do not move together.

-10.0 -

There is no correlation if they do not move together.

There is no correlation if they do not move together.

On a Cartesian plane this appears as NO tilt to the scatter of samples.

Uniformly distributed in X and Y, but they don't move together so NO CORRELATION!

Correlation is qualitative.

We want some way to quantify correlation.

COVARIANCE

Let X and Y be two random variables, covariance is

$$cov(X,Y) = E[(X - \mu_x)(Y - \mu_Y)]$$

If $\mu_x = 0$ and $\mu_y = 0$ then this simplifies to

$$cov(X,Y) = E[XY]$$

$$E[XY] = \frac{1}{n} \sum_{i=1}^{n} x_i y_i$$

let S denote the samples drawn from X and Y.

$$S = [(x_1, y_1), (x_2, y_2)] = [(-1, -1), (1, 1)]$$

$$E[XY] = \frac{1}{2}[(1 \cdot 1) + (-1 \cdot -1)] = 1$$

REMINDER! Specifically chose mean = 0 to simplify equation.

COVARIANCE

Let X and Y be two random variables, covariance is

$$cov(X,Y) = E[(X - \mu_x)(Y - \mu_Y)]$$

If $\mu_x = 0$ and $\mu_y = 0$ then this simplifies to

$$cov(X,Y) = E[XY]$$

$$E[XY] = \frac{1}{n} \sum_{i=1}^{n} x_i y_i$$

$$S = [(-1,1), (1,-1)]$$

$$E[XY] = \frac{1}{2}[(-1 \cdot 1) + (1 \cdot -1)] = -1$$

REMINDER! Specifically chose mean = 0 to simplify equation.

Let X and Y be two random variables, covariance is

$$cov(X,Y) = E[(X - \mu_x)(Y - \mu_Y)]$$

If $\mu_x = 0$ and $\mu_y = 0$ then this simplifies to

$$cov(X,Y) = E[XY]$$

$$E[XY] = \frac{1}{n} \sum_{i=1}^{n} x_i y_i$$

$$S = [(-1,1), (-1,-1), (1,1), (1,-1)]$$

$$E[XY] = \frac{1}{4}[(-1 \cdot 1) + (-1 \cdot -1) + (1 \cdot 1) + (1 \cdot -1)] = 0$$

REMINDER! Specifically chose mean = 0 to simplify equation.

Let X and Y be two random variables, covariance is

$$cov(X,Y) = E[(X - \mu_x)(Y - \mu_Y)]$$

If $\mu_x = 0$ and $\mu_y = 0$ then this simplifies to

$$cov(X,Y) = E[XY]$$

$$E[XY] = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i$$

$$E[XY] = \frac{1}{10}[(-1\cdot -1) + (-1\cdot 1) + (-\frac{1}{2}\cdot \frac{1}{2}) + (-\frac{1}{2}\cdot -\frac{1}{2}) + \dots + (1\cdot 1) + (1\cdot -1)] = 0$$

Let X and Y be two random variables, covariance is

$$cov(X,Y) = E[(X - \mu_x)(Y - \mu_Y)]$$

If $\mu_x = 0$ and $\mu_y = 0$ then this simplifies to

$$cov(X,Y) = E[XY]$$

$$E[XY] = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i$$

$$E[XY] = \frac{1}{5}[(-1\cdot -1) + (-\frac{1}{2}\cdot -\frac{1}{2}) + (0\cdot 0) + (\frac{1}{2}\cdot \frac{1}{2}) + (1\cdot 1)] = ???$$

Let X and Y be two random variables, covariance is

$$cov(X,Y) = E[(X - \mu_x)(Y - \mu_Y)]$$

If $\mu_x = 0$ and $\mu_y = 0$ then this simplifies to

$$cov(X,Y) = E[XY]$$

$$E[XY] = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i$$

$$E[XY] = \frac{1}{5}[(-1\cdot -1) + (-\frac{1}{2}\cdot -\frac{1}{2}) + (0\cdot 0) + (\frac{1}{2}\cdot \frac{1}{2}) + (1\cdot 1)] = \frac{2.5}{5} = \frac{1}{2}$$

Let X and Y be two random variables, covariance is

$$cov(X,Y) = E[(X - \mu_x)(Y - \mu_Y)]$$

If $\mu_x = 0$ and $\mu_y = 0$ then this simplifies to

$$cov(X,Y) = E[XY]$$

$$E[XY] = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i$$

$$E[XY] = \frac{1}{5}[(-1\cdot -1) + (-\frac{1}{2}\cdot -\frac{1}{2}) + (0\cdot 0) + (\frac{1}{2}\cdot \frac{1}{2}) + (1\cdot 1)] = \frac{2.5}{5} = \frac{1}{2}$$

Why? Why not 1?

20XX

$$E[XY] = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i$$

When X and Y are equal, they square.

The impact of a sample grows with the square of the distance from the mean (here mean is 0).

Numbers farther out have greater impact on E[XY].

$$E[XY] = \frac{1}{5}[(-1 \cdot -1) + (-\frac{1}{2} \cdot -\frac{1}{2}) + (0 \cdot 0) + (\frac{1}{2} \cdot \frac{1}{2}) + (1 \cdot 1)] = \frac{2.5}{5} = \frac{1}{2}$$

$$E[XY] = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i$$

Variance ALSO grows with the square.

When the mean is zero

$$Var[X] = E[X^2]$$

$$\frac{E[XY]}{Var[X]} = ???$$

$$E[XY] = \frac{\frac{1}{5}[(-1\cdot-1)+(-\frac{1}{2}\cdot-\frac{1}{2})+(0\cdot0)+(\frac{1}{2}\cdot\frac{1}{2})+(1\cdot1)]}{\frac{1}{5}[(-1\cdot-1)+(-\frac{1}{2}\cdot-\frac{1}{2})+(0\cdot0)+(\frac{1}{2}\cdot\frac{1}{2})+(1\cdot1)]} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1$$

$$E[XY] = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i$$

Variance ALSO grows with the square.

When the mean is zero

$$Var[X] = E[X^2]$$

$$\frac{E[XY]}{Var[X]} = ???$$

But why only Var[X]? Shouldn't the variation in Y also matter?

$$E[XY] = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i$$

Variance ALSO grows with the square.

When the mean is zero

$$Var[X] = E[X^2]$$

$$\frac{E[XY]}{\sqrt{Var[X]}\sqrt{Var[Y]}} = \frac{E[XY]}{\sigma_X \sigma_Y} = \frac{\frac{1}{2}}{\sqrt{\frac{1}{2}}\sqrt{\frac{1}{2}}} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1$$

We can adjust the equations to take into account non-zero mean.

$$cov(X,Y) = E[(X - \mu_x)(Y - \mu_Y)]$$

$$E[XY] = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i \qquad \qquad \qquad \qquad \qquad \frac{1}{n} \sum_{i=0}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$$

$$\frac{E[XY]}{\sigma_X \sigma_Y} \qquad \qquad \frac{\frac{1}{n} \sum_{i=0}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sigma_X \sigma_Y}$$

We can adjust the equations to take into account non-zero mean.

$$cov(X,Y) = E[(X - \mu_x)(Y - \mu_Y)]$$

$$E[XY] = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i \qquad \qquad \qquad \qquad \qquad \frac{1}{n} \sum_{i=0}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$$

$$rac{E[XY]}{\sigma_X\sigma_Y}$$

$$extstyle rac{1}{n}\sum_{i=0}^n (X_i-\overline{X})(Y_i-\overline{Y}) \ \sigma_X\sigma_Y$$
 Pearson Correlation

20 X X **CSCI 443**

Correlation Coefficient

a.k.a.,

Linear Correlation Coefficient.

a.k.a.,

the Pearson Correlation Coefficient.

$$r = \frac{\frac{1}{n} \sum_{i=0}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sigma_X \sigma_Y}$$

 $\sigma_X \sigma_Y$

DEPENDENCE

A variable y is dependent on another variable x if y=f(x).

Meaning y is a function of x.

INDEPENDENCE

A variable y is *independent* of x if y remains constant as x changes.

CORRELATION

PEARSON
CORRELATION
COEFFICIENT
ONLY CAPTURES
LINEAR
RELATIONSHIPS

Y is dependent on X, but has zero Pearson Correlation

CORRELATION VS. DEPENDENCE VS. INDEPENDENCE

If two random variables are linearly correlated then they are dependent.

If two random variables are related in a non-linear way, they may have zero correlation and yet still be dependent!

THANK YOU

David Harrison

Harrison@cs.olemiss.edu