ENGG1003 - Monday Week 8

Solving nonlinear algebraic equations

Steve Weller

University of Newcastle

26 April 2021

Last compiled: April 23, 2021 3:39pm +10:00

Lecture overview

- Solving nonlinear algebraic equations pp. 175-176
 - general setting
 - two problems: flight time, fluid level
- Bisection method §7.4
- Secant method §7.3
 - Newton–Raphson method
- Extensions
 - bisection & secant methods: re-write as functions
 - timing code in Python
 - speed comparisons

1) Solving nonlinear algebraic equations

- *linear* equations: ax + b = 0
 - ightharpoonup solution x = -b/a
- nonlinear equations
 - quadratic $ax^2 + bx + c = 0$: solution $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
 - cubic and quartic (orders 3 and 4): exact solutions exist but are very complicated
 - quintic (order 5) equations: exact solutions do not exist in general, proving that needs serious mathematics
- most equations in engineering applications have no exact "pen and paper" solutions!

Numerical solutions to equations

"An approximate answer to the right problem is worth a good deal more than an exact answer to an approximate problem" —John Tukey

General problem: find x satisfying

$$f(x) = 0$$

where f(x) is a formula involving x

Example

$$f(x) = e^{-x}\sin(x) - \cos(x)$$

has solution x = 7.85359326 because

$$e^{-7.85359326}\sin(7.85359326) - \cos(7.85359326) = 0.00$$

Flight time

• one more time!

Fluid level

image of measuring cup

Fluid level

- cup dimension figure
- water in dam, coal in stockpile
- volume V (mL) depends on depth L as follows, presented without proof:

$$V = 0.0268L^3 + 1.884L^2 + 44.15L$$

- \bullet Question: depth L when cup holds $500~\mathrm{mL}$ of water?
- solve f(L) = 0 where

$$F(L) = 0.0268L^3 + 1.884L^2 + 44.15L - 500$$

2) Bisection method

basic idea: visualisation

• bisection method: key equations

• bisection method: pseudocode

- bisection method: Python code
- live demo

• bisection method: simulation results

3) Secant method

basic idea: visualisation

secant method: key equations

• secant method: pseudocode

- secant method: Python code
- live demo

secant method: simulation results

Newton-Raphson method

4) Extensions: re-write methods as functions

bisection re-write as function

secant re-write as function

Timing code in Python

- import time
- tStart = time.perf_counter()
- (code)
- tStop = time.perf_counter()
- elapsedTime = tStop-tStart

Speed comparisons: bisection vs. secant

- XXX
- XXX

Lecture summary

- Solving nonlinear algebraic equations
- Bisection method
- Secant method
 - Newton–Raphson method
- Extensions

More information

- Newton–Raphson method in §7.2 textbook
 - known as Newton's method
 - ▶ needs differential calculus MATH1110

- §7.3 and §7.4 text for "optimised" versions of bisection and secant methods, which minimise number of function calls
- extension: proof of measuring cup volume
 https://www.sjsu.edu/me/docs/hsu-Chap