

Eexam

Sticker mit SRID hier einkleben

Hinweise zur Personalisierung:

- · Ihre Prüfung wird bei der Anwesenheitskontrolle durch Aufkleben eines Codes personalisiert.
- Dieser enthält lediglich eine fortlaufende Nummer, welche auch auf der Anwesenheitsliste neben dem Unterschriftenfeld vermerkt ist.
- Diese wird als Pseudonym verwendet, um eine eindeutige Zuordnung Ihrer Prüfung zu ermöglichen.

Grundlagen Rechnernetze und Verteilte Systeme

Klausur: IN0010 / Midterm Datum: Freitag, 14. Juni 2019

Prüfer: Prof. Dr.-lng. Georg Carle **Uhrzeit:** 17:30 – 18:15

Bearbeitungshinweise

- · Diese Klausur umfasst
- 8 Seiten mit insgesamt 4 Aufgaben
 Bitte kontrollieren Sie jetzt, dass Sie eine vollständige Angabe erhalten haben.
- Die Gesamtpunktzahl in dieser Prüfung beträgt 45 Punkte.
- Das Heraustrennen von Seiten aus der Prüfung ist untersagt.
- · Als Hilfsmittel sind zugelassen:
 - die der Angabe beiliegende Formelsammlung (Cheatsheet)
 - ein nicht-programmierbarer Taschenrechner
 - ein analoges Wörterbuch Deutsch → Muttersprache ohne Anmerkungen
- Mit * gekennzeichnete Teilaufgaben sind ohne Kenntnis der Ergebnisse vorheriger Teilaufgaben lösbar.
- Es werden nur solche Ergebnisse gewertet, bei denen der Lösungsweg erkennbar ist. Auch Textaufgaben sind grundsätzlich zu begründen, sofern es in der jeweiligen Teilaufgabe nicht ausdrücklich anders vermerkt ist.
- Schreiben Sie weder mit roter/grüner Farbe noch mit Bleistift.
- Schalten Sie alle mitgeführten elektronischen Geräte vollständig aus, verstauen Sie diese in Ihrer Tasche und verschließen Sie diese.

Hörsaal verlassen von	bis	/	Vorzeitige Abgabe um

Aufgabe 1 Kurzaufgaben (10 Punkte)

Die nachfolgenden Teilaufgaben sind jeweils unabhängig voneinander lösbar.

0	a)* Was versteht man unter ARP-Spoofing?					
1						
0	b)* Wofür wird das Identification-Feld im IPv4-Header benötigt?					
1 ##						
0	c)* Gegeben sei eine gedächtnislose Quelle <i>Q</i> , die <i>n</i> Zeichen emittiert. Wie muss die Auftrittswahrscheinlichkeit der Zeichen gewählt werden, so dass die Entropie der Quelle maximiert wird (ohne Begründung)?					
·						
0	d)* Erläutern Sie kurz den Unterschied zwischen ASK und PSK.					
1 2						
0	e)* Die Kanalkapazität nach Shannon und Hartley liefert jeweils unterschiedliche Werte. Erklären Sie kurz, welche äußeren Faktoren hier jeweils berücksichtigt werden.					
2						
° —	f)* Nennen Sie zwei Arten, wie sich Rahmengrenzen erkennen lassen (ohne Begründung).					
1 ##						
0	g)* Beschreiben Sie den Unterschied zwischen der N-SDU und N-PDU.					
1 2						

Aufgabe 2 CRC (7 Punkte)

Wir betrachten CRC bei IEEE 802.15.1 (Bluetooth). Hier wird als Reduktionspolynom $r(x) = x^5 + x^4 + x^2 + 1$ verwendet. Hierbei handelt es sich nicht um ein irreduzibles Reduktionspolynom. a)* Erläutern Sie kurz, was ein irreduzibles Reduktionspolynom ist. Gegeben sei der Datenblock 0000011011 bestehend aus 10 bit, welcher mittels r(x) gesichert werden soll. b)* Bestimmen Sie den gesicherten Datenblock (Daten inkl. Checksumme). c)* Beschreiben Sie kurz, wie der Empfänger einen Übertragungsfehler feststellen kann. d)* Nennen Sie ein Fehlermuster, welches mittels CRC nicht erkannt werden kann.

Aufgabe 3 Data Link Layer (14 Punkte)

Gegeben sei die aus der Vorlesung bekannte Netzwerktopologie in Abbildung 3.1. Wir nehmen an, dass zunächst alle Caches leer sind (sowohl ARP-Tabellen der Clients als auch die Switching-Tabelle von S). Die beiden kabellosen Clients (verbunden über IEEE 802.11n) seien aber bereits mit dem AP assoziiert.

Abbildung 3.1: Netztopologie

Hinweis: Die MAC-Adressen aller Stationen in Abbildung 3.1 können durch Angabe des Namens abgekürzt werden, z. B. PC1 für die MAC-Adresse von PC1.

PC1 möchte nun mit NB1 kommunizieren. Die IP-Adresse von NB1 sei an PC1 bekannt.

c)* Was beinhaltet der erste Rahmen, der von PC1 gesendet wird (ohne Begründung)?

d) Geben Sie die Source Address (SA) und Destination Address (DA) dieses Rahmens in den Abschnitten (1) und (2) an.

① SA: PC1

DA: #:#:#:#:#

② SA: PC1

DA: #:#:#:#:#:#

e) Geben Sie direkt in Abbildung 3.1 alle Einträge an, die durch diesen Rahmen in der Switching-Tabelle von S erzeugt werden.

IEEE 802.11 kennt für Datenrahmen bis zu vier MAC-Adressen mit den folgenden Bedeutungen:

- Source Address (SA)
- Destination Address (DA)
- Transmitter Address (TA)
- Receiver Address (RA)

Im Infrastrukturmodus besitzen Datenrahmen **drei** MAC-Adressen, da in Abhängigkeit der Richting, in die ein Rahmen gesendet wird, jeweils zwei Adressen identisch sind. Somit hat in diesem Fall eine Adresse zwei unterschiedliche Bedeutungen.

	Bedeutung der dritte	n Abschnitt (3) vom AP i n Adresse an. RA: ####################################	:F:H:F	SA PC1	
g) Geben dritten Adre		on NB1 an PC1 in Absc	hnitt ③ alle drei	Adressen sowie d	ie Bedeutung der
TA:	MB1=SA	Y RA: AF	<u>p</u>	A PCA	
n) Markier Bedeutung		ngen der Teilaufgaben f) und g) jeweils o	lie Adresse, welc	he eine doppelte
		Bedeutung der einzelnen Indeliegende Prinzip zu e		Header festgeleg	t wird.
		t es ein Feli 1 To Ds) Welo		Control (1)	n bem
)* Geben S	Sie für die Antwort a	n PC1 die MAC-Adresse	en in Abschnitt (2	an.	
	SA:	JB7	DA: PC	.1	
k) Geben S von S erze		ekt in Abbildung 3.1 an,	die diese Antwo	t an PC1 in der S	Switching-Tabelle
.511 5 6126	~~g				

Aufgabe 4 Multiple Choice (14 Punkte)

Kreuzen Sie richtige Antworten an

Kreuze können durch vollständiges Ausfüllen gestrichen werden

Die nachfolgenden Teilaufgaben sind jeweils unabhängig voneinander lösbar und stammen aus den vorlesungsbegleitenden Quizzen. Das Bewertungsschema entspricht ebenfalls dem der Quizze:

- · Aufgaben mit nur einer richtigen Antwort werden
 - mit 1 Punkt bei richtiger Antwort und
 - mit 0 Punkten sonst bewertet.
- · Aufgaben mit mehr als einer richtigen Antwort werden
 - mit 1 Punkt bei vollständig richtiger Antwort,
 - mit 0,5 Punkten bei einer fehlenden oder falschen Antwort und
 - mit 0 Punkten sonst bewertet.
- a)* Gegeben seien der Rechtecksimpuls $s_1(t)$ sowie der \cos^2 -Impuls $s_2(t)$. Untenstehende Abbildung zeigt vier verschiedene Spektren. Welche Aussagen sind zutreffend?

- b)* Gegeben seien ein Signal s(t) mit Leistung $P_s = 100\,\mathrm{mW}$ sowie eine Rauschleistung von $P_N = 10\,\mathrm{mW}$. Welchen Wert hat der Signal-zu-Rauschabstand in diesem Fall?
- □ 1 bit □ 10 □ 10 bit □ 10 dB □ 1 dB
- c)* Ein wertkontinuierliches Signal soll im Intervall I = [-2;2] quantisiert werden, sodass der maximale Quantisierungsfehler innerhalb von I höchstens 1/2 beträgt. Wie viele Quantisierungsstufen sind dafür mindestens erforderlich?
- 4
 □ 2
 □ 12
 □ 8
 □ 10
 □ 6
 □ 16
 □ 14
- d)* Nebenstehende Signalraumzuordnung stellt welche(s) Modulationsverfahren dar?
- ☐ 1-PSK ☐ 2-ASK ☐ 2-QAM ☐ 1-ASK ☐ 2-PSK
- e)* Kreuzen Sie die Matrix an, die für nebenstehendes Netzwerk nach Vorlesung die Adjazenzmatrix darstellt.

- f)* Gegeben die sei Distanzmatrix \mathbf{D} für nebenstehendes Netzwerk. Für welches minimale n gilt $\mathbf{D}^n = \mathbf{D}^{n+1}$?

g)* G Orde	•	ei die binär	e Nachricht	10101010 000	00000 i	n Little En	dian. Wie	lautet sie	in Network Byte	
	0x00 0x55					0x00 0xaa				
	00000000 10101010					00000000 01010101				
h)* A werk		len Broadc	ast-Domäner	n besteht das	nebens	stehende I	Netz-			
	5	4	3	2	1		6		X	
i)* Au	ıs wie viele	en Kollisions	domänen bes	steht das nebe	enstehe	nde Netzw	verk?			
	4	5	2	□ 1	6		3			
j)* W	orin bestel	ht der wese	ntliche Unter	schied zwisch	nen CS	MA/CD un	d CSMA/	CA?		
			niede in der ledienzugriff.	Kollisionsbe-		CSMA/CA ge von 64		eine minim	nale Rahmenlän-	
		dienzugriff ne Contentio	mittels CSM/ on Phase.	A/CA gibt es		CSMA/CI MA/CA B			gensatz zu CS-	
k)* W	lelche Aus	sagen zum	Manchester-	-Code sind zu	utreffend	d?				
	automatis	sche Taktrü	ckgewinnung			immer gle	eichstrom	rei		
	gleichstromfrei nur mit zusätzlichem 4B5B- schmaleres Spektrum als NRZ Code							Z		
				it 16 untersch SNR von 7. Be					agungskanal mit	
	3 Mbit/s	□ 7 N	Mbit/s	4 Mbit/s		5 Mbit/s		6 Mbit/s	■ 8 Mbit/s	
m)* [Die Serialis	sierungszeit	t							
	ist der Qu	uotient aus I	Rahmenlänge	e und Datenra	ate.					
	ist Bestandteil des Delays zwischen Sender und Empfänger.									
	gibt die notwendige Zeit zur Serialisierung eines einzelnen Bits an.									
	ist der Quotient aus Distanz zwischen Sender/Empfänger und der Signalgeschwindigkeit.									
	kann aus dem Bandbreitenverzögerungsprodukt bestimmt werden.									
n)* D	ie Ausbrei	tungsverzö	gerung							
	kann im Vergleich zur Serialisierungszeit grundsätzlich vernachlässigt werden.									
	ist abhängig vom Übertragungsmedium.									
	ist unabhängig von der Rahmenlänge.									
	\square wird in s^{-1} angegeben.									

Zusätzlicher Platz für Lösungen. Markieren Sie deutlich die Zuordnung zur jeweiligen Teilaufgabe. Vergessen Sie nicht, ungültige Lösungen zu streichen.

