PROGRAM LOGICS FOR LEDGERS

Orestis Melkonian, Wouter Swierstra, James Chapman

14 June 2023, TYPES @ Valencia

MOTIVATION

- Local & modular reasoning for UTxO blockchain ledgers
- Entertain the following analogy with concurrency/PL:

Blockchain		Concurrency Theory
ledgers	\leftrightarrow	computer memory
accounts	\leftrightarrow	memory locations
account balances	\leftrightarrow	data values
smart contracts	\leftrightarrow	programs accessing memory

APPROACH

Investigate multiple semantics in different systems of increasing complexity

SIMPLE MODEL

```
module ... (Part: Type) { _: DecEq Part } where
S = Map \langle Part \rightarrow \mathbb{Z} \rangle
record Tx: Type where
  constructor \longrightarrow \langle \_ \rangle_-
  field sender : Part
         value : Z
         receiver: Part
unquoteDecl DecEq-Tx = DERIVE DecEq [ quote Tx . DecEq-Tx ]
I = I ist Tx
```

SIMPLE MODEL: DENOTATIONAL SEMANTICS

```
Domain = S \rightarrow S
record Denotable (A: Type): Type where
 field [_]: A → Domain
instance
 [T]: Denotable Tx
 [L]: Denotable L
 [L] \cdot [L] = id
 [L] . [L] (t :: 1) = [1] \circ [t]
comp: \forall x \rightarrow [1 + 1'] x \equiv ([1'] \circ [1]) x
comp \{[]\} = refl
comp \{t :: 1\} x = comp \{1\} ([[t]]x)
```

SIMPLE MODEL: OPERATIONAL SEMANTICS

```
data \longrightarrow : L \times S \rightarrow S \rightarrow Type where
   base:
      \varepsilon, s \rightarrow s
   step: let t = A \rightarrow \langle v \rangle B in
     1, [t]s \rightarrow s'
     t::1,s\rightarrow s'
```

```
denot⇔oper:
  [1]s \equiv s'
  1.s \rightarrow s'
oper-comp:
  •1 , s \rightarrow s'
  • 1' , s' \rightarrow s''
   1++1', s \rightarrow s''
```

SIMPLE MODEL: AXIOMATIC SEMANTICS (HOARE LOGIC)

```
Assertion = Pred_0 S

\langle - \rangle_- \langle - \rangle: Assertion \rightarrow L \rightarrow Assertion \rightarrow Type

\langle P \rangle 1 \langle Q \rangle = P \vdash Q \circ [1]
```

hoare-base:

$$\langle P \rangle [] \langle P \rangle$$

hoare-base = id

hoare-step: $\langle P \rangle 1 \langle Q \rangle$

```
\langle P \circ [t] \rangle t :: 1 \langle Q \rangle
hoare-step P10 \{ \} = P10
```

SIMPLE MODEL: AXIOMATIC SEMANTICS (HOARE LOGIC)

```
hoare-step':
  • (P)1(0)
  • (0)1'(R)
     \langle P \rangle 1 ++ 1' \langle R \rangle
hoare-step' {P}{1}{Q}{1'}{R} PlQ QlR =
  begin P
                                           \vdash \langle PlQ \rangle
            Q \circ [1] \qquad \vdash \langle QlR \rangle
            R \circ (\llbracket 1' \rrbracket \circ \llbracket 1 \rrbracket) \stackrel{\sim}{=} \langle \operatorname{cong} R \circ \operatorname{comp} \{1\} \{1'\} \rangle
            R \circ [1++1'] where open \vdash-Reasoning
```

SIMPLE MODEL: SEPARATION LOGIC

```
emp: Assertion
emp m = \forall k \rightarrow m k \equiv \epsilon
_*_: Op<sub>2</sub> Assertion
(P * 0) S = \exists \lambda S_1 \rightarrow \exists \lambda S_2 \rightarrow \langle S_1 \diamond S_2 \rangle \equiv S \times P S_1 \times O S_2
*\leftrightarrow: P*O\vdash O*P
** (s_1, s_2, \equiv s, Ps_1, Qs_2) = s_2, s_1, \diamond \equiv -comm\{x = s_1\}\{s_2\} \equiv s, Qs_2, Ps_1\}
* \rightarrow : P * O * R \vdash (P * O) * R
** \{X = S\} (S_1, S_{23}, \equiv S, PS_1, (S_2, S_3, \equiv S_{23}, QS_2, RS_3)) =
  (s_1 \diamond s_2), s_3, \diamond \approx -assoc^x \{m_1 = s_1\} \equiv s \equiv s_{23}, (s_1, s_2, \approx -refl, Ps_1, Qs_2), Rs_3
\leftarrow * : (P * O) * R \vdash P * O * R
\leftarrow * \{x = s\} (s_{12}, s_3, ≡ s, (s_1, s_2, ≡ s_{12}, Ps_1, Qs_2), Rs_3) =
  s_1, s_2 \diamond s_3, \diamond \approx -assoc^1 \{m_1 = s_1\} \{s_2\} \equiv s \equiv s_{12}, Ps_1, \{s_2, s_3, \approx -refl, Qs_2, Rs_3\}
```

SIMPLE MODEL: FRAME RULE

```
⋄-[]:
   \langle s_1 \diamond s_2 \rangle \equiv s
   \langle [1] s_1 \diamond s_2 \rangle \equiv [1] s
[FRAME]:
   \langle P \rangle 1 \langle Q \rangle
   \langle P*R \rangle 1 \langle Q*R \rangle
[FRAME] \{l = l\} PlQ (s_1, s_2, \equiv s, Ps_1, Rs_2) =
   [1]_{S_1}, S_2, \diamond -[]_{\{l=1\}} \equiv S, Plops_1, Rs_2
```

SIMPLE MODEL: CONCURRENT SEPARATION LOGIC

```
◇-interleave:

    11 || 12 = 1

   • \langle S_1 \diamond S_2 \rangle \equiv S
      \langle [l_1] | s_1 \diamond [l_2] | s_2 \rangle \equiv [l_1] s
[PAR]:

 1₁ || 1₂ ≡ 1

   \bullet \langle P_1 \rangle l_1 \langle O_1 \rangle
   \bullet \langle P_2 \rangle l_2 \langle Q_2 \rangle
      \langle P_1 * P_2 \rangle 1 \langle Q_1 * Q_2 \rangle
[PAR] \{l_1\} \{l_2\} \{l\} \equiv l Pl_1 Q Pl_2 Q \{s\} (s_1, s_2, \equiv s, Ps_1, Ps_2) =
   \begin{bmatrix} l_1 \\ s_1 \end{bmatrix}, \begin{bmatrix} l_2 \\ s_2 \end{bmatrix}, \diamond-interleave \equiv l \equiv s, Pl_1OPs_1, Pl_2OPs_2
```

SIMPLE MODEL: EXAMPLE DERIVATION (MONOLITHIC)

ABCD: Part

SIMPLE MODEL: EXAMPLE DERIVATION (MODULAR)

```
 \underline{\phantom{a}} : \langle A \mapsto 1\mathbb{Z} * B \mapsto 0\mathbb{Z} * C \mapsto 0\mathbb{Z} * D \mapsto 1\mathbb{Z} \rangle t_{1-4} \langle A \mapsto 1\mathbb{Z} * B \mapsto 0\mathbb{Z} * C \mapsto 0\mathbb{Z} * D \mapsto 1\mathbb{Z} \rangle 
\_ = begin A \mapsto 1\mathbb{Z} * B \mapsto 0\mathbb{Z} * C \mapsto 0\mathbb{Z} * D \mapsto 1\mathbb{Z} \sim \langle \langle \rangle * \rightarrow \rangle
                             (A \mapsto 1\mathbb{Z} * B \mapsto 0\mathbb{Z}) * C \mapsto 0\mathbb{Z} * D \mapsto 1\mathbb{Z} \sim \langle t_1 - 4 : - \lceil PAR \rceil \text{ auto } H_1 H_2 \rangle + +
                             (A \mapsto 1\mathbb{Z} * B \mapsto 0\mathbb{Z}) * C \mapsto 0\mathbb{Z} * D \mapsto 1\mathbb{Z} \sim \langle \langle \leftarrow * \rangle \rangle
                             A \mapsto 1\mathbb{Z} * B \mapsto 0\mathbb{Z} * C \mapsto 0\mathbb{Z} * D \mapsto 1\mathbb{Z}
     where
          H_1: \mathbb{R}\langle A \mapsto 1\mathbb{Z} * B \mapsto 0\mathbb{Z} \rangle t_1 :: t_3 :: [] \langle A \mapsto 1\mathbb{Z} * B \mapsto 0\mathbb{Z} \rangle
         H_1 = A \mapsto 1\mathbb{Z} * B \mapsto 0\mathbb{Z} \sim \langle t_1 : -A \rightarrow B \rangle
                       A \mapsto 0\mathbb{Z} * B \mapsto 1\mathbb{Z} \sim \langle t_3 : - A \leftarrow B \rangle
                       A \mapsto 1\mathbb{Z} * B \mapsto 0\mathbb{Z}
          H_2: \mathbb{R} \langle C \rightarrow 0\mathbb{Z} * D \rightarrow 1\mathbb{Z} \rangle t_2 :: t_4 :: [] \langle C \rightarrow 0\mathbb{Z} * D \rightarrow 1\mathbb{Z} \rangle
         H_2 = C \rightarrow OZ * D \rightarrow 1Z \sim \langle t_2 : -C \leftarrow D \rangle
                       C \mapsto 1\mathbb{Z} * D \mapsto 0\mathbb{Z} \sim \langle t_4 : -C \rightarrow D \rangle
                       C \mapsto 0\mathbb{Z} * D \mapsto 1\mathbb{Z}
```

ADDING PARTIALITY

```
S = Map \langle Part \rightarrow N \rangle
Domain = S → Maybe S
[T]: Denotable Tx
[T] \cdot [L] t s = M. when (isValidTx ts) ([t]_0 s)
[L]: Denotable L
[L] \cdot [] s = just s
[L] \cdot [L] (t :: 1) = [t] \implies [1]
comp: \forall x \rightarrow [1++1'] x \equiv ([1] \Rightarrow [1']) x
```

Adding Partiality: Operational Semantics

```
data \longrightarrow : L \times S \rightarrow S \rightarrow Type where
   base:
     \varepsilon , s \rightarrow s
   step:
     • IsValidTx ts
     • 1, [t]_0 s \rightarrow s'
        t::1,s\rightarrow s'
denot⇔oper:
   [l]s \equiv just s'
   1, s \rightarrow s'
```

Adding Partiality: Lifting Predicates for Hoare Logic

```
weak\uparrow strong\uparrow: Pred_0 S \rightarrow Pred_0 (Maybe S) weak\uparrow = M.All.All strong\uparrow = M.Any.Any

\_\uparrow \circ \_: Pred_0 S \rightarrow (S \rightarrow Maybe S) \rightarrow Pred_0 S P \uparrow \circ f = \text{strong} \uparrow P \circ f

\langle \_ \rangle \_ \langle \_ \rangle: Assertion \rightarrow L \rightarrow Assertion \rightarrow Type \langle P \rangle 1 \langle Q \rangle = P \vdash Q \uparrow \circ [1]
```

Adding Partiality: Frame Rule

```
◇-[]: ∀ s₁' →
   • [l]s_1 \equiv justs_1'
   • \langle S_1 \diamond S_2 \rangle \equiv S
       (\langle s_1' \diamond s_2 \rangle \equiv \uparrow \circ [1]) s
[FRAME]: \forall R \rightarrow
   \langle P \rangle 1 \langle Q \rangle
   \langle P*R \rangle 1 \langle Q*R \rangle
```

ADDING PARTIALITY: PARALLEL RULE

```
◇-interleave:
   • (l_1 || l_2 \equiv l)
   • \langle S_1 \diamond S_2 \rangle \equiv S
   • [l_1]s_1 \equiv justs_1'
   • [l_2]s_2 \equiv \text{just } s_2'
     \exists \lambda s' \rightarrow ([1] s \equiv \text{just } s')
                \times (\langle s_1' \diamond s_2' \rangle \equiv s')
[PAR]:

 11 || 12 ≡ 1

   • (P1 ) 11 (O1 )
   • (P2) 12 (O2)
     \langle P_1 * P_2 \rangle l \langle O_1 * O_2 \rangle
```

Adding Partiality: Example derivation (monolithic)

ABCD: Part

Adding Partiality: Example derivation (modular)

```
\_: \langle A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1 \rangle t_{1-4} \langle A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1 \rangle
\_ = begin A \rightarrow 1 * B \rightarrow 0 * C \rightarrow 0 * D \rightarrow 1 \sim ( * \sim )
                      (A \mapsto 1 * B \mapsto 0) * C \mapsto 0 * D \mapsto 1 \sim \langle t_1 - 4 : - [PAR] \text{ auto } H_1 H_2 \rangle + +
                      (A \mapsto 1 * B \mapsto 0) * C \mapsto 0 * D \mapsto 1 \sim \langle \langle \leftarrow * \rangle
                     A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1
   where
       H_1: \langle A \mapsto 1 * B \mapsto 0 \rangle t_1 :: t_3 :: [] \langle A \mapsto 1 * B \mapsto 0 \rangle
       H_1 = begin A \rightarrow 1 * B \rightarrow 0 \sim \langle t_1 :- A \rightarrow B \rangle
                               A \mapsto 0 * B \mapsto 1 \sim \langle t_3 : - A \leftarrow B \rangle
                                A \mapsto 1 * B \mapsto 0
       H_2: \langle C \mapsto 0 * D \mapsto 1 \rangle t_2 :: t_4 :: [] \langle C \mapsto 0 * D \mapsto 1 \rangle
       H_2 = begin C \rightarrow 0 * D \rightarrow 1 \sim \langle t_2 : - C \leftarrow D \rangle
                               C \mapsto 1 * D \mapsto 0 \sim \langle t_4 : - C \rightarrow D \rangle
                               C \mapsto 0 * D \mapsto 1
```

UTXO: BAREBONES SETUP

```
S = Map( TxOutputRef → TxOutput )
record IsValidTx (tx: Tx) (utxos: S): Type where
 field
   noDoubleSpending:
     •Unique (outputRefs tx)
   validOutputRefs:
     \forall \lceil ref \in \text{outputRefs } tx \rceil (ref \in \text{d} utxos)
   preserves Values:
     tx.forge + \sum resolvedInputs (value \circ proj_2) \equiv \sum (tx.outputs) value
   allInputsValidate:
     \forall [i \in tx.inputs] \top (i.validator txInfo(i.redeemer))
   validateValidHashes:
     \forall [(i, o) \in resolvedInputs] (o.address \equiv i.validator \#)
```

UTxO: DENOTATIONAL SEMANTICS

```
instance
  [T]: Denotable Tx
  [T] \cdot [T] \cdot tx s = M. when (isValidTx tx s) (s - \text{outputRefs } tx \cup \text{utxoTx } tx)
  [L]: Denotable L
  [L] \cdot [L]  [] s = just s
  [L] . [\_] (t :: 1) = [t] > \implies [1]
comp: \forall x \rightarrow [1 + 1'] x \equiv ([1] \Rightarrow [1']) x
comp \{[]\} _= refl
comp \{t :: 1\} x with [t] x
... | nothing = refl
... | justs = comp \{1\} s
```

UTxO: Separation via Disjointness

```
_*_: Op<sub>2</sub> Assertion
(P*0) S = \exists \lambda S_1 \rightarrow \exists \lambda S_2 \rightarrow \langle S_1 \uplus S_2 \rangle \equiv S \times P S_1 \times Q S_2
₩-[]: ∀ S1' →
   • [1]s_1 \equiv \text{just } s_1'
   • \langle S_1 \uplus S_2 \rangle \equiv S
      (\langle s_1' \uplus s_2 \rangle \equiv \uparrow \circ [1]) s
[FRAME]: \forall R \rightarrow
   • 1 # R
   • (P)1(Q)
      \langle P*R \rangle 1 \langle O*R \rangle
```

```
[PAR]:

• l_1 \# P_2

• l_2 \# P_1

• l_1 \| l_2 \equiv l

• \langle P_1 \rangle l_1 \langle Q_1 \rangle

• \langle P_2 \rangle l_2 \langle Q_2 \rangle
```

UTxO: Example transaction graph

A B C D : Address
$$t_{1-4} = L \ni [t_1, t_2, t_3, t_4]$$

UTxO: Example derivation (monolithic)

```
\_: \langle t_{00} \mapsto 1 \text{ at A} * t_{01} \mapsto 1 \text{ at D} \rangle t_{1-4} \langle t_{30} \mapsto 1 \text{ at A} * t_{40} \mapsto 1 \text{ at D} \rangle
\_ = begin t_{00} \mapsto 1 at A * t_{01} \mapsto 1 at D \sim \langle t_1 : - [FRAME] (t_{01} \mapsto 1 \text{ at D}) t_1 \# \cdots \rangle
                    t_{10} \rightarrow 1 at B * t_{01} \rightarrow 1 at D \sim ( * \leftrightarrow )
                    t_{01} \mapsto 1 \text{ at D} * t_{10} \mapsto 1 \text{ at B} \sim (t_2 :- [FRAME] (t_{10} \mapsto 1 \text{ at B}) t_2 \# \cdots)
                    t_{20} \rightarrow 1 at C * t_{10} \rightarrow 1 at B \sim ( * \leftrightarrow )
                    t_{10} \rightarrow 1 at B * t_{20} \rightarrow 1 at C \sim \langle t_3 : - [FRAME] (t_{20} \rightarrow 1 at C) t_3 \# \cdots \rangle
                    t_{30} \mapsto 1 at A * t_{20} \mapsto 1 at C \sim \langle \langle * \leftrightarrow \rangle \rangle
                    t_{20} \rightarrow 1 at C * t_{30} \rightarrow 1 at A \sim \langle t_4 : - [FRAME] (t_{30} \rightarrow 1 at A) t_4 \# \cdots \rangle
                    t_{AB} \mapsto 1 at D * t_{AB} \mapsto 1 at A \sim ( * \leftrightarrow )
                    t_{30} \mapsto 1 at A * t_{40} \mapsto 1 at D \blacksquare
   where postulate t_1 \# : [t_1] \# (t_{01} \mapsto 1 \text{ at D})
                                        t_2 # : [t_2] # (t_{10} \mapsto 1 \text{ at B})
                                        t_3 # : [t_3] # (t_{20} \mapsto 1 \text{ at C})
                                        t_4 # : [t_4] # (t_{30} \mapsto 1 \text{ at A})
```

UTXO: EXAMPLE DERIVATION (MODULAR)

```
\_: \langle t_{00} \mapsto 1 \text{ at A} * t_{01} \mapsto 1 \text{ at D} \rangle t_{1-4} \langle t_{30} \mapsto 1 \text{ at A} * t_{40} \mapsto 1 \text{ at D} \rangle
\_ = begin t_{00} \rightarrow 1 at A * t_{01} \rightarrow 1 at D \sim \langle t_{1-4} : - [PAR] \cdots auto H_1 H_2 \rangle + +
                     t_{30} \mapsto 1 at A * t_{40} \mapsto 1 at D
   where
       H_1: \langle t_{00} \mapsto 1 \text{ at } A \rangle t_1 :: t_3 :: \lceil \rceil \langle t_{30} \mapsto 1 \text{ at } A \rangle
       H_1 = begin t_{00} \rightarrow 1 at A \sim \langle t_1 : - \cdots \rangle
                               t_{10} \mapsto 1 at B \sim \langle t_3 : - \cdots \rangle
                               t<sub>30</sub> → 1 at A
       H_2: \langle t_{01} \mapsto 1 \text{ at } D \rangle t_2 :: t_4 :: [] \langle t_{40} \mapsto 1 \text{ at } D \rangle
       H_2 = begin t_{01} \rightarrow 1 \text{ at } D \sim \langle t_2 : - \cdots \rangle
                               t_{20} \mapsto 1 at C \sim \langle t_4 : - \cdots \rangle
                               t_{AB} \mapsto 1 at D
```

ABSTRACT UTXO: SETUP

```
S = Bag(TxOutput)
record IsValidTx (tx: Tx) (utxos: S): Type where
 field
   validOutputRefs:
     stxoTx tx c⁵ utxos
   preservesValues:
     tx.forge + \sum (tx.inputs) (value \circ outputRef) \equiv \sum (tx.outputs) value
   allInputsValidate:
     \forall [i \in tx.inputs] T(i.validator txInfo(i.redeemer))
   validateValidHashes:
     \forall [i \in tx.inputs] (i.outputRef.address \equiv i.validator \#)
```

ABSTRACT UTXO: DENOTATIONAL SEMANTICS

```
instance
  [T] : Denotable Tx
  [T] . [_] tx s = M. when (isValidTx tx s) (s - stxoTx tx \cup utxoTx tx)

[L] : Denotable L
  [L] . [_] [] s = just s
  [L] . [_] (t :: 1) = [t] \Rightarrow = 1]
```

ABSTRACT UTXO: MONOIDAL SEPARATION ONCE AGAIN

```
_*_: Op<sub>2</sub> Assertion
 (P * Q) S = \exists \lambda S_1 \rightarrow \exists \lambda S_2 \rightarrow \langle S_1 \diamond S_2 \rangle \equiv S \times P S_1 \times Q S_2
*\leftrightarrow: P*O\vdash O*P
** \{X = S\} \{S_1, S_2, \exists S, PS_1, OS_2\} = S_2, S_1, \Diamond \equiv -\text{comm} \{S = S\} \{S_1\} \{S_2\} \equiv S, OS_2, PS_1\}
* \rightarrow : P * O * R \vdash (P * O) * R
** \{X = S\} (S_1, S_{23}, \equiv S, PS_1, (S_2, S_3, \equiv S_{23}, QS_2, RS_3)) =
         let \equiv s_{12} = 0 \approx -assoc^{r} \{s_{1} = s_{1}\}\{s_{23}\}\{s_{2}\}\{s_{3}\} \equiv s \equiv s_{23} \text{ in}
          (s_1 \diamond s_2), s_3, \equiv s_{12}, (s_1, s_2, \approx -\text{refl} \{x = s_1 \cup s_2\}, Ps_1, Qs_2), Rs_3
\leftarrow * : (P * 0) * R \vdash P * 0 * R
4 \times \{X = S\} (S_{12}, S_{3}, \equiv S, (S_{1}, S_{2}, \equiv S_{12}, PS_{1}, OS_{2}), RS_{3}) = 4 \times \{X = S\} (S_{12}, S_{3}, \equiv S, (S_{1}, S_{2}, \equiv S_{12}, PS_{1}, OS_{2}), RS_{3}) = 4 \times \{X = S\} (S_{12}, S_{23}, \equiv S, (S_{13}, S_{23
         let \equiv s_{23} = 0 \approx -assoc^1 \{s_{12} = s_{12}\} \{s_3\} \{s_1\} \{s_2\} \equiv s \equiv s_{12} \text{ in}
         s_1, s_2 \diamond s_3, \equiv s_{23}, Ps_1, (s_2, s_3, \approx -refl\{x = s_2 \cup s_3\}, Qs_2, Rs_3)
```

ABSTRACT UTXO: SEPARATION LOGIC RULES

```
[FRAME] : \forall R \rightarrow \langle P \rangle 1 \langle Q \rangle
\langle P * R \rangle 1 \langle Q * R \rangle
```

```
[PAR]:

• l_1 \parallel l_2 \equiv l

• \langle P_1 \rangle l_1 \langle Q_1 \rangle

• \langle P_2 \rangle l_2 \langle Q_2 \rangle

\langle P_1 * P_2 \rangle l \langle Q_1 * Q_2 \rangle
```

ABSTRACT UTXO: EXAMPLE TRANSACTION GRAPH

A B C D : Address $t_{1-4} = L \ni [t_1, t_2, t_3, t_4]$

ABSTRACT UTXO: EXAMPLE DERIVATION (MONOLITHIC)

```
\underline{\phantom{a}}: \langle A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1 \rangle t_{1-4} \langle A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1 \rangle
= begin A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1 \sim ((***))
                       (A \mapsto 1 * B \mapsto 0) * C \mapsto 0 * D \mapsto 1 \sim (t_1 := [FRAME] (C \mapsto 0 * D \mapsto 1) (A \sim B)
                       (A \mapsto 0 * B \mapsto 1) * C \mapsto 0 * D \mapsto 1 \sim \langle \langle * \leftrightarrow \rangle \rangle
                       (C \mapsto 0 * D \mapsto 1) * A \mapsto 0 * B \mapsto 1 \sim (t_2 :- [FRAME] (A \mapsto 0 * B \mapsto 1) (C \hookrightarrow D)
                       (C \rightarrow 1 * D \rightarrow 0) * A \rightarrow 0 * B \rightarrow 1 \sim \langle * * \rightarrow \rangle
                       (A \mapsto 0 * B \mapsto 1) * C \mapsto 1 * D \mapsto 0 \sim (t_3 :- [FRAME] (C \mapsto 1 * D \mapsto 0) (A \hookrightarrow B)
                       (A \mapsto 1 * B \mapsto 0) * C \mapsto 1 * D \mapsto 0 \sim \langle \langle * \leftrightarrow \rangle \rangle
                       (C \mapsto 1 * D \mapsto 0) * A \mapsto 1 * B \mapsto 0 \sim (t_4 :- [FRAME] (A \mapsto 1 * B \mapsto 0) (C \rightarrow D))
                       (C \rightarrow 0 * D \rightarrow 1) * A \rightarrow 1 * B \rightarrow 0 \sim \langle \langle * \leftrightarrow \rangle \rangle
                       (A \mapsto 1 * B \mapsto 0) * C \mapsto 0 * D \mapsto 1 \sim \langle \langle \leftarrow * \rangle
                      A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1
```

ABSTRACT UTXO: EXAMPLE DERIVATION (MODULAR)

```
\_: \langle A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1 \rangle t_{1-4} \langle A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1 \rangle
\_ = begin A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1 \sim \langle \langle * \rangle \rangle
                      (A \mapsto 1 * B \mapsto 0) * C \mapsto 0 * D \mapsto 1 \sim (t_1 - 4 :- [PAR] \text{ auto } H_1 H_2) + +
                      (A \mapsto 1 * B \mapsto 0) * C \mapsto 0 * D \mapsto 1 \sim \langle \langle \leftarrow * \rangle
                     A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1
    where
       H_1: \mathbb{R}\langle A \mapsto 1 * B \mapsto 0 \rangle t_1 :: t_3 :: [] \langle A \mapsto 1 * B \mapsto 0 \rangle
       H_1 = A \rightarrow 1 * B \rightarrow 0 \sim \langle t_1 : -A \rightarrow B \rangle
                 A \mapsto 0 * B \mapsto 1 \sim \langle t_3 : - A \leftarrow B \rangle
                 A \mapsto 1 * B \mapsto 0
       H_2: \mathbb{R}\langle C \mapsto 0 * D \mapsto 1 \rangle t_2 :: t_4 :: [] \langle C \mapsto 0 * D \mapsto 1 \rangle
       H_2 = C \rightarrow 0 * D \rightarrow 1 \sim \langle t_2 : -C \leftarrow D \rangle
                 C \mapsto 1 * D \mapsto 0 \sim \langle t_4 : -C \rightarrow D \rangle
                 C \mapsto 0 * D \mapsto 1
```

SOUND ABSTRACTION: STATES AND VALIDITY

absS: $\mathbb{C}.S \rightarrow \mathbb{A}.S$

 $\texttt{absVT}: \texttt{C.IsValidTx} \ t \ s \to \exists \ \lambda \ \hat{t} \to \texttt{A.IsValidTx} \ \hat{t} \ (\texttt{absS} \ s)$

absVL: \mathbb{C} .ValidLedger $s \ \mathcal{I} \to \mathbb{A} \ \lambda \ \hat{\mathcal{I}} \to \mathbb{A}$.ValidLedger (absS s) $\hat{\mathcal{I}}$

Sound Abstraction: Denotations Coincide

```
denot-abs-t : \forall (vt : \mathbb{C}.IsValidTx ts) \rightarrow A. [absT vt ] (absS s) \equiv (absS <$> \mathbb{C}. [t ]s) denot-abs : \forall (vl : \mathbb{C}.ValidLedger s l) \rightarrow A. [absL vl ] (absS s) \equiv (absS <$> \mathbb{C}. [l ]s)
```


SOUND ABSTRACTION

```
soundness:

\forall (vl: \mathbb{C}. \forall \text{ValidLedger } sl) \rightarrow A \langle P \rangle \text{ absL } vl \langle Q \rangle

= \mathbb{C} \langle P \circ \text{absS} \rangle l \langle Q \circ \text{absS} \rangle
```

FUTURE WORK

- · Deeper compositionality (i.e. monoidally exploit the values in the bag)
 - → will require further abstraction of split/merge transactions
- · Go beyond the monetary values (states, transaction data)
 - \rightarrow leads to more practical verification of smart contracts
- · Generalise to multiple separation views, aka zooming levels
- · Generically grow such separation logics, i.e. "Separation Logics à la carte"

CONCLUSION

Agda as a design guide, rather than merely a verification tool of existing systems.

QUESTIONS?

CODE

omelkonian.github.io/hoare-ledgers

PAPER

omelkonian.github.io/data/publications/hoare-ledgers.pdf