MAT195S CALCULUS II

Midterm Test #1

12 February 2013 9:10 am - 10:55 am

Closed Book, no aid sheets, no calculators

Instructors: P. Athavale and J. W. Davis

Family Name:	J. W. Davis.	
Given Name:	Solutions.	
Student #:		

FOR MARKER USE ONLY							
Question	Marks Earned						
1	11						
2	10						
3	12						
4	9						
5	8						
6	10						
7	11						
8	5						
TOTAL	76	/ 70					

Tutorial Section:					
TA Name:					

1) Evaluate the following integrals.

a)
$$\int \frac{4x^2 - 7x - 12}{x(x+2)(x-3)} dx$$

b)
$$\int \cot^5 \theta \sin^4 \theta d\theta$$

c)
$$\int \frac{dx}{(x^2+1)^2}$$

(11 marks)

a)
$$\frac{4x^2 - 7x - 12}{x(x+2)(x-3)} = \frac{A}{x} + \frac{B}{x+2} + \frac{C}{x-3}$$

 $\Rightarrow 4x^2 - 7x - 12 = A(x+2)(x-3) + B(x-3)x + C(x+2)x$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 4x^2 - 7x - 12 = -6A \Rightarrow A = 7$
 $\Rightarrow 5x - 12 = -6A \Rightarrow 5x - 12 = -6A \Rightarrow 6x - 12 = 6A$

$$\frac{4x^{2}-7x-12}{x(x+2)(x-3)}dx = 2\left|\frac{dx}{x}+\frac{9}{5}\right|\frac{dx}{2+2}+\frac{1}{5}\int\frac{dx}{x-3}$$

$$= 2\ln|x|+\frac{9}{5}\ln|x+2|+\frac{1}{5}\ln|x-3|+C$$

b)
$$\int \cot^5 \theta \sin^4 \theta d\theta = \int \frac{\cos^5 \theta \sin^4 \theta}{\sin^5 \theta} d\theta = \int \frac{\cos^5 \theta}{\sin \theta} d\theta = \int \frac{(1-\sin^2 \theta)^2}{\sin \theta} \cos \theta d\theta$$

 $= \int \frac{1-2u^2+u^4}{u} du = \int \frac{1}{u} -2u + u^3 du = \ln|u| - u^2 + \frac{u^4}{4} + C$
 $= \ln|\sin \theta| - \sin^2 \theta + \frac{1}{4} \sin^4 \theta + C$

c)
$$\int \frac{d\pi}{(x^2+1)^2}$$
 $\int \frac{d\pi}{dx} = \frac{1}{1} \frac{1}$

2) a) Show that $\int_0^\infty x^2 e^{-x^2} dx = \frac{1}{2} \int_0^\infty e^{-x^2} dx$

(5 marks)
$$\int_{0}^{\infty} x^{2} e^{-x^{2}} dx \qquad |et u = x \qquad du = x e^{-x^{2}} dx$$

$$= \left[-\frac{x}{2} e^{-x^{2}}\right]_{0}^{\infty} - \int_{0}^{\infty} -\frac{1}{2} e^{-x^{2}} dx$$

$$= \lim_{t \to \infty} \left(-\frac{t}{2} e^{-t^{2}}\right) + 0 + \int_{0}^{\infty} \frac{1}{2} e^{-x^{2}} dx = \frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} dx$$

$$\lim_{t \to \infty} \frac{t}{e^{t^{2}}} = \lim_{t \to \infty} \frac{1}{2} e^{-x^{2}} dx = 0$$

$$\lim_{t \to \infty} \frac{t}{e^{t^{2}}} = \lim_{t \to \infty} \frac{1}{2} e^{-x^{2}} dx = 0$$

b) The Gamma function is defined as $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$. Show that $\Gamma(4) = 3!$.

- 3) a) Given the formula for the length of a parametric curve, $s = \int \sqrt{(x'(t))^2 + (y'(t))^2} dt$, find the formula for the length of a polar curve.
 - b) Find, but do not solve, the integrals representing the lengths of the following curves:
 - (i) one loop of the curve $r = \cos 2\theta$
 - (ii) the lemniscate $r^2 = \cos 2\theta$

Provide sketches of the curves

(12 marks)

a) given
$$r = r(\theta) \implies x = r(\theta) =$$

$$(2(1/6))^{2} = (r')^{2} \cos^{2}\theta - 2rr' \sin\theta \cos\theta + r^{2} \sin^{2}\theta$$

$$(y'(0))^{2} = (r')^{2} \sin^{2}\theta + 2rr' \cos\theta \sin\theta + r^{2} \cos^{2}\theta$$

$$(x'(0))^{2} + (y'(0)^{2} - r') + (r')^{2}$$

$$\therefore (x'(0))^{2} + (y'(0))^{2} + (r'(0))^{2} d\theta$$

$$\therefore S = \int_{0}^{\beta} \int_{0}^{\beta} (r(0))^{2} + (r'(0))^{2} d\theta$$

$$7^{2} = \cos 2\theta$$

$$2rdr = -2\sin\theta d\theta$$

$$dr = -2\sin\theta d\theta = -\sin^{2}\theta$$

$$\sqrt{\cos^{2}\theta} = \sqrt{\cos^{2}\theta}$$

$$\sqrt{2} = \sqrt{1/4} = \cos^{2}\theta + (\sin^{2}\theta)^{2} d\theta$$
of 9

Page 4 of 9

4) Sketch the parametric curve: $x = t^3 - 3t$, $y = t^2$

(9 marks)

$$x = t^{3} - 3t$$
 $x' = 3t^{2} - 3$
 $x' = 0 \implies t = \pm 1$
 $x' = 0 \implies t = 0$
 $(0,0)$

Intercepts:
$$y=0 \Rightarrow t=0 \Rightarrow (0,0)$$

$$y=0 \Rightarrow t=0$$

$$t=\pm \sqrt{3} \Rightarrow (0,3)$$

Slope at
$$t = \pm 53$$
: $\frac{3}{2} = \pm \frac{253}{6} = \pm \frac{1}{53}$

Asymptotic behavior: Ast > ±00: 2c -> t3 :: y = 243

5) Find the area of the region that lies inside $r = 2 - \cos\theta$ but outside $r = 1 + \cos\theta$. Provide a sketch of the region.

Intersection:
$$2-\cos\theta=1+\cos\theta$$

$$1=2\cos\theta\Rightarrow\cos\theta=\frac{\pi}{2}\Rightarrow\theta=\frac{\pi}{3}\cdot\frac{5\pi}{3}$$

$$A = \frac{1}{2} \int_{\frac{\pi}{3}}^{5\pi/3} \left[(2 \cdot \cos \theta)^2 - (1 + \cos \theta)^2 \right] d\theta$$

$$= \frac{1}{2} \int_{\frac{\pi}{3}}^{5\pi/3} \left[4 - 4\cos \theta + \cos \theta - 1 - 2\cos \theta - \cos \theta \right] d\theta$$

$$= \frac{1}{2} \int_{\frac{\pi}{3}}^{5\pi/3} \left[3 - 6\cos \theta \right] d\theta = \frac{3}{2} \left[\theta - 2\sin \theta \right]_{\frac{\pi}{3}}^{5\pi/3}$$

$$= \frac{3}{2} \cdot \frac{4\pi}{3} - 3 \left(-\frac{53}{2} - \frac{53}{2} \right) = 2\pi + 353$$

6) Let $a_1 = 1$ and $a_{n+1} = \sqrt{1 + 2a_n}$ (n = 1, 2, 3, ...). Show that $\{a_n\}$ is increasing and bounded above. (Hint: show that 3 is an upper bound.) Hence conclude that the sequence is convergent and find its limit.

(10 marks)

1) Increasing: a, =1 az = J1+z = 53 7 a,

given akt 7 ak, then aktz = JI+Zakti 7 JI+Zah = akti 7 ak

: {an} is increasing by induction

2) Bounded: a, =1 <3

given ak < 3, then akn < 51+2.3 = 57 < 3

i. an < 3 for all n

3) Sequence is increasing and bounded above : limit exists.

let line an = h . line anti = L

=7 L = JI+ZL => L2-7L-1 =0

 $L = \frac{2 \pm \int 4 + 47}{2} = 1 \pm 52 = 7 \quad L = 1 + 52$ (L = 0)

- 7) a) If $\{a_n\}$ is convergent, use the definition of the limit of a sequence $(\epsilon N \text{ argument})$ to show that $\lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} a_n$. b) Determine whether the sequence converges or diverges. If it converges, find the limit:

(i)
$$a_n = \frac{\sin 2n}{1 + \sqrt{n}}$$
 (ii) $a_n = \frac{3^{n+2}}{5^n}$ (iii) $a_k = \frac{\ln k}{\ln 2k}$

(ii)
$$a_n = \frac{3^{n+2}}{5^n}$$

(iii)
$$a_k = \frac{\ln k}{\ln 2k}$$

(11 marks)

Now, since
$$n+1 > n > N$$
 = $|a_{n+1} - L| L \in$
: $|im| a_{n+1} = L = |im| a_n$
 $n \to \infty$

(a) i)
$$a_n = \frac{\sin 2n}{1 + \sqrt{n}} \Rightarrow 0$$
 i. $a_n \to 0$

ii)
$$a_n = \frac{3^{n+2}}{5^n} = q \cdot \left(\frac{3}{5}\right)^n$$

 $\lim_{n \to \infty} a_n = q \cdot \lim_{n \to \infty} \left(\frac{3}{5}\right)^n = q \cdot 0 = 0$

(iii)
$$a_{k} = \frac{\ln k}{\ln 2k} = \frac{\ln k}{\ln 2 + \ln k}$$

$$\lim_{k \to \infty} \frac{\ln 2}{\ln k} = 0 \qquad \therefore \qquad a_{k} \xrightarrow{k \to \infty} 1$$

8) Identify and sketch the conic:
$$r = \frac{10}{5 - 6\sin\theta}$$

(5 marks)

$$\Gamma = \frac{10}{5 - 6 \sin \theta} = \frac{\frac{6}{5} \cdot \frac{10}{6}}{1 - \frac{6}{5} \sin \theta}$$

$$\Gamma = \frac{10}{5 - 6 \sin \theta} = \frac{\frac{6}{5} \cdot \frac{10}{6}}{1 - \frac{6}{5} \sin \theta}$$

$$\Rightarrow d = \frac{10}{6}$$

$$\therefore \text{ directrix } y = -\frac{10}{6}$$

=> -e sind appears in the denominator. .. oriented along y-axis.

$$\Rightarrow \text{ vurtices}: \Theta = \frac{1}{2} \rightarrow \Gamma = -10$$

$$\Theta = \frac{31}{2} \rightarrow \Gamma = \frac{10}{11}$$

Page 9 of 9