Numerical Algorithms

Course description

Basic information

Field of study: Analytical Computer Science

Path:-

Organizational unit: Faculty of Mathematics and Computer Science

Education level: first-cycle

Form of study: full-time studies

Study profile: general academic

Mandatory status: optional

Education cycle: 2022/23

Course code: UJ.WMIIANS.1380.03349.22

Language of instruction: Polish

Disciplines: Computer Science

ISCED classification: 0613 Software and applications development and analysis

USOS code: WMI.TCS.AN.S

Course coordinator

Lech Duraj

Course instructor

Lech Duraj

Semester 6

Form of verification of learning

outcomes

exam

Teaching format and hours

lecture: 30 laboratory exercises: 30

Number of ECTS credits

6.0

Educational goals for the course

Periods Semester 4, Semester 5,

The aim of the course is to provide knowledge in the field of numerical algorithms, with particular c1 emphasis on practically applied and experimentally verified algorithms, as well as analysis of algorithms in terms of numerical stability

Learning outcomes for the course

Code	Code Outcomes in terms of		Verification methods
Knowledge – The student knows and understands:			
W1	issues listed in "Course content" regarding computer arithmetic, calculation errors, conditioning and numerical stability of algorithms		written exam, credit
W2	issues listed in "Course content" in the field of algebra and numerical analysis, including methods for solving numerical problems	IAN_K1_W09, IAN_K1_W10, IAN_K1_W12	written exam, credit
Skills – The student can:			
U1	solve numerical problems listed in "Course content", and effectively implement selected algorithms	IAN_K1_U01, IAN_K1_U05, IAN_K1_U10	written exam, credit
prove correctness and numerical stability of U2 algorithms, select appropriate algorithms to solve numerical problems		IAN_K1_U01, IAN_K1_U02, IAN_K1_U10, IAN_K1_U11, IAN_K1_U17	written exam, credit

ECTS credits balance

Student activity form	Average number of hours* dedicated to completed activity types
lecture	30
laboratory exercises	30
preparation for exercises	42
solving computer tasks independently	30

exam preparation	45	
exam participation	3	
Total student workload	Number of hours 180	ECTS 6.0

^{*} hour (lesson) means 45 minutes

Course content

No.	Program content	Learning outcomes for the course
1.	Floating-point arithmetic, calculation and rounding errors, numerical conditioning and numerical stability of algorithms	
2.	Numerical methods in algebra: systems of linear equations, Gaussian elimination, orthonormalization, LU and QR matrix decomposition, eigenvectors and eigenvalues, singular values and SVD decomposition	W2, U1, U2
3.	Numerical analysis: nonlinear methods, unconstrained and constrained optimization, interpolation and approximation, numerical differentiation and integration, fundamentals of differential equations, Fourier transform and related transformations	W2, U1, U2

Extended information

Teaching methods:

multimedia presentation lecture, discussion, problem solving

	Class type	Credit forms	Course credit conditions
	lecture	written exam	Positive combined grade from exam and exercises
•	laboratory exercises	credit	Solving an appropriate number of programming and whiteboard tasks

Literature

Required

1. Justin Solomon, "Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics"

Additional

1. David Bau III, Lloyd N. Trefethen, "Numerical Linear Algebra"

2. David Ronald Kincaid, Elliott Ward Cheney, "Numerical Analysis: Mathematics of Scientific Computing"