

Hi3137 V100

Data Sheet

Issue 01

Date 2014-09-26

Copyright © HiSilicon Technologies Co., Ltd. 2014. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of HiSilicon Technologies Co., Ltd.

Trademarks and Permissions

HISILICON, and other HiSilicon icons are trademarks of HiSilicon Technologies Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made between HiSilicon and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

HiSilicon Technologies Co., Ltd.

Address: Huawei Industrial Base

> Bantian, Longgang Shenzhen 518129

People's Republic of China

Website: http://www.hisilicon.com

Email: support@hisilicon.com

Contents

About This Document......1

i

About This Document

Purpose

This document describes the main features, logic architecture, and hardware design of the terrestrial digital TV channel processor chip Hi3137 V100 to facilitate use and design.

Related Version

The following table lists the product version related to this document.

Product Name	Version
Hi3137	V100

Intended Audience

This document is intended for:

- Design and maintenance personnel
- Sales personnel

Symbol Conventions

The symbols that may be found in this document are defined as follows.

Symbol	Description
DANGER	Alerts you to a high risk hazard that could, if not avoided, result in serious injury or death.
MARNING	Alerts you to a medium or low risk hazard that could, if not avoided, result in moderate or minor injury.

Symbol	Description
A CAUTION	Alerts you to a potentially hazardous situation that could, if not avoided, result in equipment damage, data loss, performance deterioration, or unanticipated results.
©—¹ TIP	Provides a tip that may help you solve a problem or save time.
NOTE	Provides additional information to emphasize or supplement important points in the main text.

Register Attributes

The register attributions that may be found in this document are defined as follows.

Symbol	Description	Symbol	Description
RO	The register is read-only.	RW	The register is read/write.
RC	The register is cleared on a read.	WC	The register can be read. The register is cleared when 1 is written. The register keeps unchanged when 0 is written.

Reset Value Conventions

In the register definition tables:

- If the reset value (for the Reset row) of a bit is "?", the reset value is undefined.
- If the reset values of one or multiple bits are "?", the total reset value of a register is undefined and is marked as "-".

Numerical System

The expressions of data capacity, frequency, and data rate are described as follows.

Type	Symbol	Value
Data capacity (such as the RAM capacity)	K	1024
	M	1,048,576
	G	1,073,741,824
Frequency, data rate	k	1000

Туре	Symbol	Value
	M	1,000,000
	G	1,000,000,000

The expressions of addresses and data are described as follows.

Symbol	Example	Description
0x	0xFE04, 0x18	Address or data in hexadecimal
0b	06000, 0600 000000000	Data or sequence in binary (register description is excluded.)
X	00X, 1XX	In data expression, X indicates 0 or 1. For example, 00X indicates 000 or 001 and 1XX indicates 100, 101, 110, or 111.

Others

Frequencies in this document all comply with the SDH standard. The shortened frequency names and the corresponding nominal frequencies are as follows.

Shortened Frequency Name	Nominal Frequency
19 M	19.44 MHz
38 M	38.88 MHz
77 M	77.76 MHz
622 M	622.08 MHz

Change History

Changes between document issues are cumulative. Therefore, the latest document issue contains all changes made in previous issues.

Issue 01 (2014-09-26)

This issue is the first official release, which incorporates the following changes:

Modifications are made in section 1.2.1 to support DVB-T 1.6.1.

The name of section 1.2.2 is changed.

Issue 00B01 (2014-01-30)

This issue is the first draft release.

Contents

Contents	
	i
	1
	1
1.2 Main Features	1
	1
1.2.1 RX Performance	1
1.2.2 System	2
1.2.3 Interfaces	2
1.2.4 Process	
1.3 Functional Block Diagram	
	3
	3

Figures

Figure 1-1 Functional block diagram of Hi3137 V100	. 3
Figure 1-2 Typical front-end receiving application	. 4

1 Overview

1.1 Introduction

Hi3137 V100 is a terrestrial digital TV channel receiver chip that supports the DVB-T and DVB-T2 modes. Complying with the DVB-T2 (ETS 302 755) and DVB-T (ETS 300 744) standards, it provides the high-performance multi-carrier demodulation capability and forward error correction function to implement full processing from baseband sampling on terrestrial digital signals to MPEG TS output. Hi3137 V100 ensures signal sampling precision by using the integrated 12-bit high-performance analog-to-digital converter (ADC). After baseband sampling, all the signals are processed in the digital domain. The chip provides all required functions based on the complex channel situations, such as demodulation, channel estimation and equalization, Viterbi, Reed-Solomon (RS), low-density parity check (LDPC), and Bose-Chaudhuri-Hocquenghem (BCH) forward error correction (FEC). It also monitors the signal strength and quality to facilitate program searching and storage.

1.2 Main Features

1.2.1 Modulation

- DVB-T and DVB-T2 modes, automatic recognition
- Standard DVB-T2 V1.3.1 and DVB-T V1.6.1
- DVB-T2 Base and Lite modes
- 5 MHz, 6 MHz, 7 MHz, 8 MHz, and 1.7 MHz input bandwidth
- Single physical layer pipe (PLP) and Multi PLP services and SISO and MISO transmission support for DVB-T2
- Automatic combination of common PLP and data PLP in DVB-T2 mode
- TSs and general streams (GSs) support for DVB-T2, adapting to data services
- All parameter modes support for DVB-T, including layered transmission and nonlayered transmission

1.2.1 RX Performance

- Compliant with various test standards, including DTG7.0, NorDig-Unified Test Specification V2.2.1, and Digital Europe Ebook
- Low intermediate frequency (IF) and high IF (36 MHz) signal inputs

- Rapid signal capturing capability (less than 250 ms for DVB-T signals and less than 500 ms for DVB-T2 signals), reducing the wait time for switching the channel
- Superior Gaussian, multipath, and mobile reception performance
- Superior anti-interference (from the same frequency) performance
- Adaptive spectrum reverse recognition
- Frequency error detecting range broader than [-700 kHz, +700 kHz]

1.2.2 System

- Integrated 12-bit high-performance ADC for supporting highly precise sampling
- Integrated phase-locked loop (PLL), external passive crystal oscillator, 10–30 MHz (24 MHz typically), ±100 ppm frequency error
- Real-time monitoring of the signal strength, signal quality, and bit error rate
- Simple external circuits, 2-layer PCB routing, low BOM costs

1.2.3 Interfaces

- I²C bus protocol support for flexibly controlling chipsets
- Tuner I²C bus trunk
- TS outputs in configurable serial or parallel mode to work with the decoding chipset
- Configurable TS output pin for facilitating PCB routing

1.2.4 Process

- 1.1 V core power supply, 3.3 V I/O power supply, and maximum power consumption of 490 mW
- Micro-coax quad-flat no-leads 48 (MQFN48), body size of 6 mm x 6 mm (0.24 in. x 0.24 in.), RoHS compliance

1.3 Functional Block Diagram

Figure 1-1 shows the functional block diagram of Hi3137 V100.

Channel estimation Anti-aliasing filter VINP **ADC** baseband processor synchronization VINN soft decoding interpolation AGC **AGC** DVB-T2 DVB-T LDPC+BCH Viterbi+RS XIN CLK XOUT < **GEN** CLK_OUT ◀ User packet processing TS/GS output interface **DRAM** Reset Two-wire bus RSTN SCL SDA SCLT SDAT ADDR[1:0]

Figure 1-1 Functional block diagram of Hi3137 V100

1.4 Application Scope

- Terrestrial digital signal tuner
- Terrestrial digital STB and integrated digital TV
- Modem and digital TV card

1.5 Typical Application

Figure 1-2 shows the typical front-end receiving application.

Figure 1-2 Typical front-end receiving application

Contents

2 Demod	2-1
2.1 Clock	2-1
2.2 Reset	2-4
2.3 I ² C Controller	2-4
2.4 ADC	2-5
2.5 AGC	2-6
2.6 Clock Recovery	
	2-7
2.8 Frame Synchronization	
2.9 Channel Estimation and Equalization	
2.10 DVB-T2 FEC	
2.11 DVB-T FEC	
2.12 TS Output	
2.13 Signal Monitoring	2-12
2.14 Signal Search	
2.15 Summary of Demod Registers	
2.16 Description of Demod Registers	2-26

Figures

Figure 2-1 Internal clock domains of the Demod	2-1
Figure 2-2 I ² C read timing	2-4
Figure 2-3 I ² C write timing	2-5
Figure 2-4 I ² C forwarding schematic diagram	2-5
Figure 2-5 Timing in TS parallel output mode	2-9
Figure 2-6 Timing in 1-bit TS serial output mode	2-10
Figure 2-7 Timing in 2-bit TS serial output mode	2-10

Tables

Table 2-1 Clock domain of other main modules.	2-1
Table 2-2 Frequency ranges of PLL input and output clocks and internal clocks	2-3
Table 2-3 AGC signal clock frequencies	2-6
Table 2-4 bw[2:0], input signal bandwidth, and symbol rate	2-7
Table 2-5 TS output modes	2-9
Table 2-6 Mapping between the control signal ts_x_sel and the controlled external pin	2-11
Table 2-7 Mapping between the ts_x_sel value and the internal TS signal	2-12
Table 2-8 Relationship between fft_size and the FFT mode.	2-13
Table 2-9 Relationship between gi_mode and the guard interval mode	2-13
Table 2-10 p1_signal_s1 description	2-14
Table 2-11 Relationship between pilotpattern and pilot pattern mode	2-14
Table 2-12 Relationship between plp_mode and the modulation mode	2-14
Table 2-13 Relationship between plp_cod and the bit rate	2-15
Table 2-14 Relationship between mod and the modulation mode	2-15
Table 2-15 Relationship between hier and the hierarchical mode	2-16
Table 2-16 Relationship between cod_rate_H/code_rate_L and the bit rate	2-16
Table 2-17 Values of <i>N</i> in DVB-T2 mode	2-18
Table 2-18 Relationship between BER_CTRL[frame_num] and frams	2-18
Table 2-19 Summary of Demod registers (base address: 0x00)	2-20

2 Demod

2.1 Clock

The Demod input clock is derived from an external crystal oscillator or external clock. After being processed by the internal PLL, the working clock frequency for the Demod is obtained. The Demod has four internal clock domains. The ADC works at the CLK_ADC clock domain, the demodulation part works at the CLK_DEMO clock domain, the DRAM controller works at the CLK_SDC clock domain, and the channel decoding and TS output part works at the CLK_FEC clock domain. Figure 2-1 shows the internal clock domains of the Demod.

Figure 2-1 Internal clock domains of the Demod

Table 2-1 describes the clock domain of other main modules.

Table 2-1 Clock domain of other main modules

Module	Clock Domain
I ² C	After power-on, the I ² C module works under a crystal oscillator clock or an external clock. After the internal PLLs are stable, the clock domain can be switched to CLK_DEMO to accelerate I ² C communication. The I ² C communication rate can be 100 kbit/s or 400 kbit/s.

The PLL0 output frequency can be set by performing the following I²C operations:

- **Step 1** Set ADC_CTRL1[i2c_xo_clk] to **0** to switch the I²C clock to the crystal oscillator clock or external clock. (If Hi3137 V100 starts to work after power-on reset, the I²C module works under a crystal oscillator clock or an external clock by default.)
- Step 2 Set PLL0_PD[pll0_pd] to 1 to disable PLL0.
- Step 3 Set parameters of PLL0.

```
FVCO0= FREF/refdiv[5:0]* (fbdiv[7:0]+frac[11:0]/2^12)
FOUT0= FVCO0/postdiv1[2:0]/postdiv2[2:0]
CLK_DEMO = FOUT0/6
CLK_ADC = FOUT0/12
CLK_SDC = FOUT0/4
```

where

- **FREF** is the frequency of the external crystal oscillator or clock. It ranges from 10 MHz to 30 MHz, and its default value is 24 MHz.
- **refdiv** is set by configuring PLL0_REFDIV[pll0_refdiv] and **fbdiv** is set by configuring PLL0_FBDIV[pll0_fbdiv].
- **frac** is set by configuring PLL0_FRAC_L[pll0_frac_l] and PLL0_PD[pll0_frac_h].
- **postdiv1** must be greater than or equal to **postdiv2**. For PLL0, **postdiv1** is **2** and is set by configuring PLL0_POSTDIV[pll0_postdiv1]; **postdiv2** is **1** and is set by configuring PLL0_POSTDIV[pll0_postdiv2].
- **FVCO0** is the VCO frequency of PLL0. It is recommended that **FVCO0** be greater than 600 MHz.
- **FOUT0** is the output frequency of PLL0.
- For details about other parameters, see the descriptions of PLL0 registers.

With the typical 24 MHz crystal oscillator input, the working frequencies of CLK_DEMO, CLK_ADC, and CLK_SDC are 64 MHz, 32 MHz, and 96 MHz respectively based on the default configuration.

- **Step 4** Set PLL0_PD[pll0_pd] to **0** to enable PLL0.
- **Step 5** Wait for the PLL_LOCK [pll0_lock] indicator. The value **1** indicates that PLL0 is locked. The wait time is less than 1 ms.
- **Step 6** Set ADC_CTRL1[i2c_xo_clk] to 1 to switch the I²C clock to CLK_DEMO.
- **Step 7** Write 0 and then 1 to RSTN_CTRL[hot_rst_n] to perform a hot reset on Hi3137 V100.

----End

The PLL1 output frequency can be set by performing the following I²C operations:

- **Step 1** Set PLL1_PD[pll1_pd] to **1** to disable PLL1.
- **Step 2** Set parameters of PLL1.

```
FVCO1=FREF /refdiv[5:0]* (fbdiv[7:0]+frac[11:0]/2^12)
FOUT1= FVCO1/postdiv1[2:0]/postdiv2[2:0]
CLK_FEC = FOUT1
```


where

- **FREF** is the frequency of the external crystal oscillator clock. It ranges from 10 MHz to 30 MHz, and its default value is 24 MHz.
- **refdiv** is set by configuring PLL1_REFDIV[pll1_refdiv] and **fbdiv** is set by configuring PLL1_FBDIV[pll1_fbdiv].
- frac is set by configuring PLL1 FRAC L[pll1 frac l] and PLL1 PD[pll1 frac h].
- **postdiv1** must be greater than or equal to **postdiv2**. For PLL1, **postdiv1** is **2** and is set by configuring PLL1_POSTDIV[pll1_postdiv1]; **postdiv2** is **2** and is set by configuring PLL1_POSTDIV[pll1_postdiv2].
- **FVCO1** is the VCO frequency of PLL1. It is recommended that **FVCO1** be greater than 600 MHz.
- **FOUT1** is the output frequency of PLL1.
- For details about other parameters, see the descriptions of PLL1 registers.

With the typical 24 MHz crystal oscillator input, the working frequency of CLK_FEC is 153 MHz based on the default configuration.

- **Step 3** Set PLL1_PD[pll1_pd] to **0** to enable PLL1.
- **Step 4** Wait for the PLL_LOCK [pll1_lock] indicator. The value **1** indicates that PLL1 is locked. The wait time is less than 1 ms.
- **Step 5** Write 0 and then 1 to RSTN_CTRL[hot_rst_n] to perform a hot reset on Hi3137 V100.

----End

M NOTE

You can set the CLK_DEMO and CLK_FEC frequencies after switching the I^2C clock to the crystal oscillator clock. The frequencies of PLLx input and output clocks and internal clocks must fall within the value ranges described in Table 2-3. The value of x in PLLx or FVOCx is 0 or 1.

Table 2-2 Frequency ranges of PLL input and output clocks and internal clocks

Clock	Frequency Range (MHz)
FREF	10–30
FVCOx	> 600
CLK_DEMO	≤ 65
CLK_FEC	≤ 160

The Demod also provides the loopback clock CLK_OUT (PIN_19) of the crystal oscillator clock or external clock for other chips such as the MPEG decoding chip. In this case, IO CTRL4[clkout sel] must be set to **0**.

2.2 Reset

Reset operations are classified into hard reset and soft reset.

- The external RSTN pin is used for power-on reset or hard reset on the Demod by the master chip. When a hard reset is performed, all registers are reset.
- By using the I²C module, internal registers can be reset by a cold reset (cool_rst_n) or hot reset (hot rst n) as follows:
 - Cold reset: Write 0 and then 1 to RSTN_CTRL[cool_rst_n]. When a cold reset is performed, all registers are reset, which is the same as a hard reset.
 - Hot reset: Write **0** and then **1** to RSTN_CTRL[hot_rst_n]. When a hot reset is performed, only the logic is reset and register values are retained.

2.3 I²C Controller

The I²C controller on the Demod acts as an I²C slave. The I²C controller reads or writes to the internal configuration register of the Demod over I²C communication and forwards I²C communication for the tuner.

As a slave component, the Demod supports all I²C operations initiated by the master chip. The Demod component address is expressed by an 8-bit binary number 10110XXY. XX is specified by setting ADDR bit[1:0] and Y is used to specify the operation type. The value 1 indicates read and the value 0 indicates write. Figure 2-2 shows the I²C read timing, and Figure 2-3 shows the I²C write timing.

Figure 2-2 I²C read timing

The I²C controller can consecutively read or write to multiple registers by working with software. For the tuner, the Demod can forward I²C communication. That is, the master chip can access the tuner in the same way that it accesses the Demod when the I²C path between the master chip and the tuner is enabled. Each time after an I²C read or write operation is complete, the Demod automatically disables forwarding to prevent interference to the tuner from the I²C module. For details about I²C addresses for the tuner, see the corresponding tuner user manuals.

Figure 2-4 shows the I²C forwarding schematic diagram.

Figure 2-4 I²C forwarding schematic diagram

For details about how to enable I²C forwarding, see the description of TUNER_SEL[tuner_sel].

2.4 ADC

The Demod integrates a high-performance 12-bit ADC on-chip for sampling the low IF or IF (36 MHz) signals output by the front-end tuner. The actual sampling clock frequency can be changed by setting the CLK_ADC frequency, which is 65 MHz at the maximum. The ADC

supports differential or single-end inputs, and the peak-to-peak voltage at full scale is 1 V. The sampling clock edge is selected by configuring the most significant bit (MSB) of ADC_CTRL0[adc_clk_sel].

After the Demod is powered on and PLLs are configured, the ADC can be initialized by performing the following I²C operations:

- Step 1 Set the sampling rate based on the CLK_ADC frequency. Divide the CLK_ADC working frequency (Hz) by 1000 and write the value to CLK_ADC_L[clk_adc_l], CLK_ADC_M[clk_adc_m], and CLK_ADC_H[clk_adc_h]. For example, if the CLK_ADC frequency is 32 MHz, write 0x00 to CLK_ADC_L[clk_adc_l] and CLK_ADC_H[clk_adc_h], and write 0x7D to CLK_ADC_M [clk_adc_m].
- **Step 2** Write **0** and then **1** to ADC_CTRL1[adi2c_resetz] to initialize the ADC.
- **Step 3** Set ADC_CTRL3[adc_opm] to **3** to enter the working mode.
- **Step 4** Wait until PLLO_REFDIV[adc_rdy] changes from low to high. The wait time is less than 1 ms. Then the ADC is initialized.

----End

2.5 AGC

The automatic gain control (AGC) module receives outputs from the ADC and generates AGC control signals based on the difference between the expected power and actual power. The AGC control signal can be the pulse-duration modulation (PDM) or pulse-width modulation (PWM) wave, which is set by configuring USE_PWM[use_pwm]. The PDM output is used by default. After resistor-capacitor (RC) filtering externally, the AGC control signal is transmitted to the tuner to adjust the tuner output amplitude to the expected value. The clock frequency of the AGC control signal is adjusted by configuring AGC_CTRL[pdm_div], and the output polarity is set by configuring AGC_CTRL[agc_inverse].

- The expected AGC power can be set by configuring AGC GOAL[agc goal].
- The AGC adjustment speed can be set by configuring AGC SPEED BOUND[agc speed].

Table 2-3 describes AGC signal clock frequencies.

Table 2-3 AGC signal clock frequencies

pdm_div[2:0]	AGC Signal Clock Frequency
b'000	CLK_ADC
b'001	CLK_ADC/2
b'010	CLK_ADC/4
b'011	CLK_ADC/8
b'100	CLK_ADC/16
b'101	CLK_ADC/32
b'110	CLK_ADC/64

pdm_div[2:0]	AGC Signal Clock Frequency
b'111	CLK_ADC/128

2.6 Clock Recovery

The clock recovery module recovers a clock with the same symbol rate as that at the TX end and sampling data in the accurate clock phase.

To ensure that the clock recovery module works properly, the Demod needs to write the CLK_DEMO frequency value f_{clk_demo} over the I^2C . f_{clk_demo} is an 18-bit unsigned number. Its least significant bit (LSB) indicates 1 kHz. For details, see the descriptions of the CLK_DEMO_L, CLK_DEMO_M, and RSTN_CTRL[clk_dem_h] registers. The Demod also needs to configure the input signal bandwidth over the I^2C . For details, see the description of BAND_WIDTH[bw].

Table 2-4 bw[2:0], input signal bandwidth, and symbol rate

bw[2:0]	Input Signal Bandwidth	Symbol Rate fs (kHz)
b'000	1700	1845
b'001	5000	5714
b'010	6000	6857
b'011	7000	8000
b'100	8000	9143

2.7 Carrier Recovery

The carrier recovery module traces and compensates the frequency offset and phase offset of the carrier.

To ensure that the carrier recovery module works properly, the Demod needs to write the center frequency value of the tuner output signal (f_{IF}) over the I^2C . f_{IF} is a 16-bit unsigned number. Its LSB indicates 1 kHz. For details, see the descriptions of the IF_FREQ_L and IF_FREQ_H registers.

2.8 Frame Synchronization

DVB-T2/DVB-T signals are arranged by frame. Therefore, the start position of frames must be accurately defined and the optimal position must be traced in real time. The frame synchronization module implements this function and supports rapid synchronization in an

environment with an extremely low signal-to-noise ratio (SNR), multipath channels, or analog interference from the same frequency.

2.9 Channel Estimation and Equalization

The channel estimation and equalization module estimates channel features and equalizes modulation data by using the pilot frequency inserted in the DVBT/T2 signal frequency domain data. The Demod uses the high-performance channel estimation algorithm, which increases the estimation accuracy.

2.10 DVB-T2 FEC

This module performs the following operations:

- **Step 1** Deinterleave and demap symbols and transmit the generated software information to the bit deinterleaver.
- **Step 2** Store the deinterleaved data to the RAM and implement LDPC decoding. The LDPC decoder supports the long frame and short frame modes, as well as all bit rates in the DVB-T2 standard.
- **Step 3** Transmit the decoded data to the BCH module for BCH decoding.

----End

2.11 DVB-T FEC

This module performs the following operations:

- **Step 1** Deinterleave symbols.
- **Step 2** Perform depuncturing, demapping, and bit deinterleaving operations.
- **Step 3** Perform Viterbi decoding. The supported code rates include 1/2, 2/3, 3/4, 5/6, and 7/8.
- **Step 4** Perform DVB-T convolutional deinterleaving.
- **Step 5** Transmit deinterleaved data to the RS decoder for channel error correction. The DVB-T output packet length is 188 bytes.

----End

2.12 TS Output

The Demod supports three TS output modes: parallel mode, 1-bit serial mode, and 2-bit serial mode.

The signals from the TS output interface include the data signal TS_OUT[7:0], clock signal TS_CLK, data validity signal TS_VLD, sync header signal TS_SYNC, and packet error signal TS_ERR.

- TS_OUT: TS frame data. This signal is 8 bits in parallel mode, 1 bit in 1-bit serial mode, and 2 bits in 2-bit serial mode.
- TS_CLK: data clock. The clock edge is configurable. The clock frequency output varies according to the TS speed.
- TS_VLD: TS packet data validity indicator (byte valid in parallel mode or bit valid in serial mode).
- TS_SYNC: TS packet sync header indicator (byte valid in parallel mode or bit valid in serial mode).
- TS_ERR: TS packet error indicator. It is set to 1 if an error occurs in the current TS packet.

The TS output mode is set by configuring OUTP_TS_MODE[paral] and OUTP_TS_MODE[serl2]. See Table 2-5.

Table 2-5 TS output modes

para 1	serl2	TS Output Mode	Maximum TS_CLK Frequency (MHz)	Maximum TS Bit Rate (Mbit/s)
1	0	Parallel	9	72
0	1	2-bit serial	36	72
0	0	1-bit serial	76.5	72

Figure 2-5 shows the timing in TS parallel output mode.

Figure 2-5 Timing in TS parallel output mode

Figure 2-6 shows the timing in 1-bit TS serial output mode.

Figure 2-6 Timing in 1-bit TS serial output mode

NOTE

In 1-bit serial output mode, TS_CLK works at the CLK_FEC frequency divided by 2. You can mask invalid bits by setting the TS_VLD level to low, or mask TS-CLK when the TS_VLD level is low by setting OUTP_TS_MODE[mask_clk] to 1. In Figure 2-6, upper bits are output first. You can enable lower bits to output first by writing 0 to OUTP_TS_MODE[msb_first]. TS_OUT can be mapped to any pin of TS_OUT[7:0]. For details, see the following sections.

Figure 2-7 shows the timing in 2-bit TS serial output mode.

Figure 2-7 Timing in 2-bit TS serial output mode

M NOTE

In 2-bit serial output mode, TS_OUT can be mapped to any two pins of TS_OUT[7:0].

In parallel output mode or 2-bit serial output mode, the TS_CLK clock edge is selected by configuring OUTP_TS_MODE[clk_inv]. If OUTP_TS_MODE[clk_inv] is **0**, the rising edge is between TS data. If OUTP_TS_MODE[clk_inv] is **1**, the falling edge is between data.

In 1-bit serial output mode, the TS_CLK clock edge is selected by configuring OUTP_TS_MODE[clk_inv]. If OUTP_TS_MODE[clk_inv] is **0**, the rising edge is selected. If OUTP_TS_MODE[clk_inv] is **1**, the falling edge is selected.

In parallel mode or 2-bit serial mode, the Demod automatically generates even TS_CLK signals based on the CLK_FEC frequency, bandwidth, bit rate, and modulation mode. You can also specify a fixed frequency-division signal of CLK_FEC as the TS_CLK signal as follows:

- Step 1 Set OUTP_CLK_SET[clk_div], OUTP_CLK_SETH[clk_div_fh], and OUTP_CLK_SETL[clk_div_fl] to determine the frequency divider for the system clock. clk_div[5:0] is the integral part of the frequency divider and ranges from 1 to 63. clk_div_f[15:0] is the decimal part of the frequency divider. It is calculated as follows: clk_div_f = clk_div_fh x 256 + clk_div_fl. The actual frequency divider is calculated as follows: Frequency divider = clk_div[5:0] + clk_div_f[15:0]/65536.
- **Step 2** Set OUTP_MODE_SET[out_mode] and OUTP_CLK_SET[clk_mode] to 1 to switch TS CLK to the configured frequency.

CAUTION

Ensure that the maximum TS rate (72 Mbit/s) is supported at the configured TS_CLK frequency.

The TS pin outputs are selected by using the following control signals. In Table 2-6, the value of x in ts x sel is a or 0-9.

Table 2-6 Mapping	between the control	signal ts x se	el and the controlled	external pin

Control Signal	Register	Controlled External Pin
ts_0_ sel	TS_0_SEL	TS_OUT0
ts_1_ sel	TS_21_SEL	TS_OUT1
ts_2_ sel	TS_21_SEL	TS_OUT2
ts_3_sel	TS_43_SEL	TS_OUT3
ts_4_ sel	TS_43_SEL	TS_OUT4
ts_5_ sel	TS_65_SEL	TS_OUT5
ts_6_sel	TS_65_SEL	TS_OUT6
ts_7_ sel	TS_87_SEL	TS_OUT7
ts_8_ sel	TS_87_SEL	TS_SYNC
ts_9_ sel	TS_A9_SEL	TS_VLD
ts_a_sel	TS_A9_SEL	TS_ERR

Table 2-7 describes the mapping between the ts_x_sel value and the internal TS signal. The value of x in ts x sel is a or 0–9.

Table 2-7 Mapping between the ts x sel value and	the internal	TS signal
---	--------------	-----------

ts_x_sel	Internal TS signal
b'0000	ts_out[0]
b'0001	ts_out[1]
b'0010	ts_out[2]
b'0011	ts_out[3]
b'0100	ts_out[4]
b'0101	ts_out[5]
b'0110	ts_out[6]
b'0111	ts_out[7]
b'1000	ts_sync
b'1001	ts_vld
Others	ts_err

M NOTE

- In 1-bit serial output mode, if the upper bits are output first, select the internal TS data signal ts_out[7]. If the lower bits are output first, select the internal TS data signal ts_out[0].
- In 2-bit serial output mode, if the upper bits are output first, select the internal TS data signal ts_out[7:6]. If the lower bits are output first, select the internal TS data signal ts_out[1:0].

----End

2.13 Signal Monitoring

Signal Strength

The Demod supports signal power statistics. The signal strength identifier can be obtained by reading AGC_CTRL_L[agc_ctrl_l] and then AGC_CTRL_H[agc_ctrl_h].

```
sig_strength = agc_ctrl_h[7:0]*16 + agc_ctrl_l[3:0]
```

A larger sig_strength value indicates weaker signal strength. The curve that shows the relationship between sig_strength and signal power varies according to the radio frequency (RF) chip.

Transmission Standard and Spectrum Inversion Recognition

The transmission standard is read as follows:

Step 1 Wait until LOCK_FLAG[fec_ok] is 1. The read information is correct only when LOCK_FLAG[fec_ok] is 1.

Step 2 Read CHN_FFT_GI[is_dvbt]. The value 1 indicates the DVB-T mode, and the value 0 indicates the DVB-T2 mode.

DVB-T2

Read CHN_FFT_GI[fft_size] in DVB-T2 mode to obtain the FFT mode. Read TPS[bw_ext] in DVB-T2 mode. The value 1 indicates that the bandwidth is extended, and the value 0 indicates that the bandwidth is not extended.

Table 2-8 Relationship between fft_size and the FFT mode

fft_size[2:0]	bw_ext	FFT and Bandwidth Mode
b'000	-	1K
b'001	-	2K
b'010	-	4K
b'011	0	8K, normal carrier mode
b'011	1	8K, extend carrier mode
b'100	0	16K, normal carrier mode
b'100	1	16K, extend carrier mode
b'101	0	32K, normal carrier mode
b'101	1	32K, extend carrier mode
b'110- b'111	-	Reserved

Read TPS[gi_mode] in DVB-T2 mode to obtain the guard interval mode.

Table 2-9 Relationship between gi_mode and the guard interval mode

gi_mode[2:0]	Guard Interval Mode
b'000	1/32
b'001	1/16
b'010	1/8
b'011	1/4
b'100	1/128
b'101	19/128
b'110	19/256
b'111	Reserved

Read P1_SIGNAL[p1_signal_s1] in DVB-T2 mode to obtain the S1 part of the P1 signaling.

Table 2-10 pl_signal_s1 description

p1_signal_s1[2:0]	Description
b'000	T2_SISO
b'001	T2_MISO
b'010	Non-T2 signal
b'011	T2_LITE_SISO
b'100	T2_LITE_MISO
b'101- b'111	Reserved

Read PP_VERSION[pilotpattern] in DVB-T2 mode to obtain the pilot pattern mode.

Table 2-11 Relationship between pilotpattern and pilot pattern mode

pilotpattern[3:0]	Pilot Pattern Mode
b'0000	PP1
b'0001	PP2
b'0010	PP3
b'0011	PP4
b'0100	PP5
b'0101	PP6
b'0110	PP7
b'0111	PP8
b'1000- b'1111	Reserved

Read CHN_FFT_GI[spectrum] in DVB-T2 mode. The value 1 indicates that the spectrum is inverted; the value 0 indicates that the spectrum is not inverted.

Read PLP_PARAM[plp_cod] and PLP_PARAM[plp_mod] in DVB-T2 mode to obtain the current PLP modulation mode and LDPC bit rate.

Read PLP_PARAM[plp_fec_type] in DVB-T2 mode to obtain the FEC frame mode of the current PLP. The value 1 indicates long frames (64K LDPC), and the value 0 indicates short frames (16K LDPC).

Table 2-12 Relationship between plp_mode and the modulation mode

plp_mod[2:0]	Modulation Mode
b'000	QPSK

b'001	16QAM
b'010	64QAM
b'011	256QAM
B'100- b'111	Reserved

Table 2-13 Relationship between plp_cod and the bit rate

plp_cod[2:0]	Bit Rate (T2_base)	Bit Rate (T2_lite)
b'000	1/2	1/2
b'001	3/5	3/5
b'010	2/3	2/3
b'011	3/4	3/4
b'100	4/5	Reserved
b'101	5/6	Reserved
b'110	Reserved	1/3
b'111	Reserved	2/5

□ NOTE

The relationship between plp_cod and the bit rate in Base mode is different from that in Lite mode. Therefore, you need to confirm whether the Base or Lite mode is used by reading P1_SIGNAL[p1_signal_s1] before determining the bit rate.

DVB-T

Read CHN_FFT_GI[fft_size] to obtain the FFT mode, and read TPS [gi_mode] to obtain the guard interval mode.

Read CHN_FFT_GI[spectrum] in DVB-T mode. The value 1 indicates that the spectrum is inverted, and the value 0 indicates that the spectrum is not inverted.

Read TPS_DVBT[mod], TPS_DVBT[hier], and TPS_DVBT[cod_rate_H] in DVB-T mode to obtain the modulation mode, hierarchical mode, and the internal bit rate of high-priority streams in hierarchical or non-hierarchical mode. Read

CODE_RATE_DVBT[code_rate_L] to obtain the internal bit rate of low-priority streams in hierarchical mode.

Table 2-14 Relationship between mod and the modulation mode

mod[1:0]	Modulation Mode	
b'00	QPSK	
b'01	16QAM	
b'10	64QAM	

b'11	reserved
------	----------

Table 2-15 Relationship between hier and the hierarchical mode

hier[1:0]	Hierarchical Mode	
b'00	Non-hierarchical	
b'01	Hierarchical, $\alpha = 1$	
b'10	Hierarchical, $\alpha = 2$	
b'11	Hierarchical, $\alpha = 4$	

Table 2-16 Relationship between cod_rate_H/code_rate_L and the bit rate

cod_rate_H or code_rate_L	Bit Rate
b'000	1/2
b'001	2/3
b'010	3/4
b'011	5/6
b'100	7/8
b'101~ b'111	reserved

----End

Symbol Rate Offset

The input signal bandwidth must be set before timing recovery. After the timing loop is stable, read TIM_OFFSET[tim_offset] from the Demod, and then read TIM_LOOP_L[tim_loop_l] and TIM_LOOP_H[tim_loop_h]. tim_offset and tim_loop_h are signed numbers, and the MSB is a signed bit. The offset between the actual symbol rate and fs is calculated as follows:

fs offset = $(tim offset x 4 - (tim loop h x 256 + tim loop 1)/16)/2^10 x fs$

If the value of fs_offset is a positive signed number, the actual symbol rate is greater than the configured symbol rate. If the value of fs_offset is a negative signed number, the actual symbol rate is less than the configured symbol rate. For details about the value of fs, see Table 2-4. The fs_offset unit is kHz.

Note that the symbol rate offset is valid only when the offset is read after LOCK FLAG[fec ok] is 1.

Carrier Offset

After the carrier loop is stable, read CAR_OFFSET_L and then CAR_OFFSET_H from the Demod. The offset between the actual signal center frequency and the tuner center frequency can be calculated as follows:

If the value of freq_offset is a positive signed number, the actual carrier frequency is greater than the configured tuner frequency. If the value of freq_offset is a negative signed number, the actual carrier frequency is less than the configured tuner frequency. For details about the value of fs, see Table 2-4. The freq_offset unit is kHz.

Note that the carrier offset is valid only when the offset is read after LOCK_FLAG[fec_ok] is 1

Signal Quality

Read the noise power statistics registers SNR_L[snr_l] and SNR_H[snr_h] from the Demod and convert the values into the SNR (ranges from 0 dB to 36 dB) as follows (The SNR is used to evaluate the signal quality):

$$SNR = 10.0 \times log10(snr_h[7:0] \times 256 + snr_l) - 11.7$$

CAUTION

The estimated SNR is accurate only when LOCK_FLAG [tps_ok_t] (for DVB-T) or LOCK_FLAG [sig_ok_t2] (for DVB-T2) is 1.

BER Statistics

The bit error rate (BER) before RS (for DVB-T) or BCH (for DVB-T2) correction can be calculated by using the Demod error bit count registers FEC BER L and FEC BER H.

Read FEC_BER_L and then FEC_BER_H, and calculate the error count error_cnt as follows: error_cnt = FEC_BER_H x 256 + FEC_BER_L. If the BER is high, the actual error bit count may be greater than the maximum value of the error bit count registers. In this case, the maximum value is retained, which results in a BER that is less than the actual error bit count.

In DVB-T mode, the BER before RS decoding is calculated as follows:

$$BER = \frac{error_cnt}{8 \times 204 \times frams}$$

frams is the total frame count, which is set by configuring BER_CTRL[frame_num].

In DVB-T2 mode, the BER before BCH decoding is calculated as follows:

$$BER = \frac{error_cnt}{N \times frams}$$

- *N* is the statistics reference length. The code length varies according to the frame length mode and code rate. For details, see Table 2-17.
- **frams** is the total frame count, which is set by configuring BER_CTRL[frame_num]. For details, see Table 2-18.

Table 2-17 Values of *N* in DVB-T2 mode

LDPC Bit Rate	Value of N for 64K LDPC	Value of N for 16K LDPC
1/3	N/A	5400
2/5	N/A	6480
1/2	32400	7200
3/5	38880	9720
2/3	43200	10800
3/4	48600	11880
4/5	51840	12600
5/6	54000	13320

Table 2-18 Relationship between BER_CTRL[frame_num] and frams

BER_CTRL [frame_num]	frams in DVB-T Mode	frams in DVB-T2 Mode	
		plp_fec_type = 1 Long FEC Frame	plp_fec_type = 0 Short FEC Frame
b'000	d'16	d'32	d'128
b'001	d'64	d'64	d'256
b'010	d'256	d'128	d'512
b'011	d'1024	d'256	d'1024
b'100	d'4096	d'512	d'2048
b'101	d'16384	d'1024	d'4096
b'110	d'65536	d'2048	d'8192
b'111	d'262144	d'4096	d'16384

In DVB-T mode, the BER after RS decoding is calculated as follows: BER = $32 \times FER$

For details about the frame error rate (FER), see the following section. The BER after RS decoding is an approximate value.

In DVB-T2 mode, the BER after BCH decoding is calculated as follows: BER = $27 \times FER$

For details about the FER, see the following section. The BER after BCH decoding is an approximate value.

FER Statistics

In FER statistics, the frame indicates an RS packet in DVB-T mode or a BCH packet in DVB-T2 mode.

Read FEC_FER_L and then FEC_FER_H. error_fram is calculated as follows: error_fram = FEC_FER_H x 256 + FEC_FER_L. For details about the relationship between the total frame count **frams** and BER_CTRL bit[6:4] in DVB-T/DVB-T2 mode, see the description in the BER statistics.

The FER is calculated as follows:

FER = error fram/frams

2.14 Signal Search

After the frequency is determined, required parameters need to be configured for searching for and locking the signals and outputting TSs. This process is signal search.

The signal search process is as follows:

- Step 1 Check whether the chip communication is normal by reading CHIP_ID_L and then CHIP_ID_H. If the read data is not 0x31 and 0x37, verify that the I²C component address of the chip and the circuit connection are correct.
- **Step 2** Initialize the chip, and initialize the PLL, ADC, clock recovery, and carrier recovery modules by configuring registers.
- Step 3 Set the search mode. Set the mode for searching DVB-T/T2 signals by configuring MAN_RST_CTRL1[cfg_scan], or set the mode for searching DVB-T2 signals in Base/Lite mode by configuring T2 CHK_CTRL[t2_lite].
- **Step 4** Set the output priority. Set the TS output priority for DVB-T signals during hierarchical transmission by configuring AUTO_DLY[prior_low] (the default value is 0, indicating that streams with a higher priority are output); set the ID of the PLP to be output for DVB-T2 signals in Multi PLP mode by configuring PLP_CTRL[common_plp], PLP_ID0, and PLP_ID1.
- **Step 5** Configure the tuner RF frequency, wait 5 ms to 20 ms, and perform a hot reset. The wait time depends on the tuner.
- **Step 6** Wait about 20 ms and then query LOCK_FLAG[tps_ok_t] or LOCK_FLAG [sig_ok_t2]. If tps_ok_t is 1, DVB-T signals are captured successfully; if sig_ok_t2 is 1, DVB-T2 signals are captured successfully. In this case, go to step 7; otherwise, wait and query until the maximum wait time (300 ms for DVB-T or 500 ms for DVB-T2) is reached. If tps_ok_t and sig_ok_t2 are still 0 when the maximum wait time is reached, the frequency fails to be locked, indicating that there is no signal at this frequency or the signal quality is too low.
- **Step 7** Query LOCK_FLAG[fec_ok]. If fec_ok is 1, the signals are successfully captured, and TSs start to be output.

NOTE

For the DVB-T2 Multi PLP mode, before the first signal search, you need to confirm the number of PLPs and PLP_GROUP_ID and PLP_TYPE of each PLP so that the Demod can be correctly configured to output expected TSs.

----End

2.15 Summary of Demod Registers

When you write to only some bits of a register, read the register, change the values of the bits to be written, and retain the values of other bits.

If a state to be read is specified by multiple registers, read the low register and then high register unless otherwise specified. For example, to obtain car_offset specified by the registers CAR_OFFSET_L and CAR_OFFSET_H, read CAR_OFFSET_L and then CAR_OFFSET_H.

Table 2-19 describes Demod registers.

Table 2-19 Summary of Demod registers (base address: 0x00)

Offset Address	Name	Description	Page
0x20	MAN_RST_CTRL0	Reset control register	2-26
0x21	MAN_RST_CTRL1	Reset control enable register	2-27
0x22	STATE_WAITS	Timeout reset register	2-27
0x23	CLK_DEMO_L	Demodulation clock low register	2-28
0x24	CLK_DEMO_M	Demodulation clock middle register	2-28
0x25	CHIP_ID_L	Chip ID low register	2-29
0x26	CLK_FEC_L	FEC clock low register	2-29
0x27	CLK_FEC_M	FEC clock middle register	2-29
0x28	CHIP_ID_H	Chip ID high register	2-30
0x29	CLK_SDC_L	Synopsys design constraint (SDC) clock low register	2-30
0x2A	CLK_SDC_M	SDC clock middle register	2-31
0x2B	SDC_CTRL	SDC control register	2-31
0x2C	LOCK_FLAG	Lock flag register	2-32
0x2D	TUNER_SEL	Tuner control register	2-32
0x2E	RSTN_CTRL	Logic reset register	2-33
0x2F	ILA_SEL	Test vector select register	2-34
0x30	AGC_SPEED_BOUND	AGC step register	2-34

Offset Address	Name	Description	Page
0x31	AGC_GOAL	AGC power register	2-34
0x32	AGCOK_WAIT	AGC wait register	2-35
0x33	AGC_CTRL	AGC control register	2-35
0x34	AGC_DC_I	Channel I direct current (DC) register	2-36
0x35	AGC_DC_Q	Channel Q DC register	2-36
0x36	DAGC_CTRL	Digital AGC (DAGC) control register	2-36
0x37	AGC_CTRL_L	AGC power high register	2-37
0x38	AGC_CTRL_H	AGC power low register	2-37
0x39	AMP_ERR_IIR	Amplitude error register	2-38
0x3A	PDM_CTRL_L	Manual AGC control word low register	2-38
0x3B	PDM_CTRL_H	Manual AGC control word high register	2-39
0x3C	USE_PWM	AGC output wave select register	2-39
0x40	MF_SEL	Matched filter select register	2-39
0x41	SF_RMV	Narrowband interference suppression control register	2-40
0x42	DAGC_REF	DAGC amplitude reference register	2-41
0x43	DAGC_SPEED	DAGC step select register	2-41
0x4A	IF_FREQ_L	Input signal IF low register	2-41
0x4B	IF_FREQ_H	Input signal IF high register	2-42
0x4E	BAND_WIDTH	Input signal bandwidth register	2-42
0x50	SYN_CTRL0	Sync control register	2-42
0x51	CORR_HIGH_TH	P2-related detection upper threshold register	2-43
0x52	CORR_LOW_TH	P2-related detection lower threshold register	2-43
0x53	P2_POS_MOD	P2 sync position modification register	2-44
0x54	P1_THRES	P1 sync control register	2-44
0x55	CHN_FFT_GI	Sync detection parameter register	2-44
0x56	P1_SIGNAL	P1 detection signaling register	2-45
0x57	TIM_OFFSET	Timing offset register	2-46

Offset Address	Name	Description	Page
0x58	CAR_OFFSET_L	Carrier offset low register	2-46
0x59	CAR_OFFSET_H	Carrier offset high register	2-47
0x5D	T2_CHK_CTRL	DVB-T2 detection configuration register	2-47
0x5E	SOAC_TH	P1 signaling detection threshold register	2-47
0x5F	OUTP_RAND	Output TS scrambling register	2-48
0x60	LOOP_BW	Loop bandwidth select register	2-48
0x61	FD_GRP	Time domain interpolation control register	2-49
0x64	NP_IIR_SFT	Channel state information (CSI) calculation control register	2-49
0x67	ECHO_THRES	Multipath detection threshold register	2-50
0x69	MIN_THRES	Multipath detection minimum threshold register	2-50
0x6A	NP_GRP	Time domain interpolation control register	2-51
0x6B	TS_A9_SEL	TS output control register	2-51
0x6C	TS_87_SEL	TS output control register	2-52
0x6D	TS_65_SEL	TS output control register	2-52
0x6E	TS_43_SEL	TS output control register	2-53
0x6F	TS_21_SEL	TS output control register	2-53
0x70	TIM_LOOP_L	Timing offset low register	2-54
0x71	TIM_LOOP_H	Timing offset high register	2-54
0x75	TS_0_SEL	TS output control register	2-55
0x76	CIR_DIST_0	Multipath distribution register	2-55
0x77	CIR_DIST_1	Multipath distribution register	2-55
0x78	CIR_DIST_2	Multipath distribution register	2-56
0x79	CIR_DIST_3	Multipath distribution register	2-56
0x7A	SNR_L	SNR low register	2-57
0x7B	SNR_H	SNR high register	2-57
0x7C	DOPPLER	Doppler indicator register	2-57

Offset Address	Name	Description	Page
0x80	CW_FREQ_L	Single-frequency interference frequency low register	2-58
0x81	CW_FREQ_H	Single-frequency interference frequency high register	2-58
0x85	CLK_ADC_L	ADC clock low register	2-59
0x86	CLK_ADC_M	ADC clock middle register	2-59
0x87	CLK_ADC_H	ADC clock high register	2-60
0x88	ATV_STATE	Same-frequency interference flag register	2-60
0x91	ITER_CTRL	Iteration control register	2-60
0x92	BER_CTRL	BER control register	2-61
0x93	AUTO_DLY	Iteration switch register	2-61
0x94	ITER_NUM	PRE signaling iteration times register	2-62
0x95	ITER_NUM_POST	POST signaling iteration times register	2-62
0x96	FEC_BER_L	BER low register	2-63
0x97	FEC_BER_H	BER high register	2-63
0x98	FEC_FER_L	FER low register	2-64
0x99	FEC_FER_H	FER high register	2-64
0x9C	SWITCH_DLY	Signaling code word switch delay register	2-64
0x9E	T2_SUCCESS	T2 decoding success register	2-65
0xA0	OUTP_ISSY	Input stream synchronizer (ISSY) control register	2-65
0xA1	OUTP_DCAP_SET	Data PLP capacity configuration register	2-66
0xA2	OUTP_CCAP_SET	Common PLP capacity configuration register	2-66
0xA3	OUTP_PLL0	PLL control register	2-66
0xA4	OUTP_PLL1	PLL control register	2-67
0xA5	OUTP_PLL2	PLL control register	2-67
0xA6	OUTP_PLL3	PLL control register	2-68
0xA7	OUTP_PLL4	PLL control register	2-68

Offset Address	Name	Description	Page
0xA8	OUTP_CLK_SET	Output clock configuration register	2-69
0xA9	OUTP_CLK_SETH	I ² C clock configuration register	2-69
0xAA	OUTP_CLK_SETL	I ² C clock configuration register	2-70
0xAB	OUTP_MODE_SET	Output mode configuration register	2-70
0xAC	OUTP_TS_MODE	TS output mode configuration register	2-71
0xAE	OUTP_PKT_STA	TS packet count configuration register	2-72
0xAF	OUTP_LIMIT_EN	Limit and enable register	2-72
0xB0	PLP_CTRL	PLP control register	2-73
0xB1	PLP_ID0	Data PLP ID register	2-74
0xB2	PLP_ID1	Common PLP ID register	2-74
0xB3	TPS	Signal parameter register	2-75
0xB4	STREAM_TYPE	Transfer data stream type indicator register	2-76
0xB4	CODE_RATE_DVBT	DVB-T internal code rate register	2-76
0xB5	TPS_DVBT	DVB-T signal parameter register	2-77
0xB6	PAPR_L1MOD	DVB-T2 PRE signaling register	2-78
0xB8	PP_VERSION	DVB-T2 PRE signaling register	2-79
0xB9	NUM_T2_FRM	DVB-T2 PRE signaling register	2-79
0xBA	LDATA_L	DVB-T2 PRE signaling register	2-80
0xBB	LDATA_H	DVB-T2 PRE signaling register	2-80
0xBF	NUM_PLP	DVB-T2 PRE signaling register	2-80
0xC6	PLP_ID	DVB-T2 POST signaling register	2-81
0xC7	PLP_TYPE	DVB-T2 POST signaling register	2-81
0xC8	PLP_GRP_ID	DVB-T2 POST signaling register	2-82
0xC9	PLP_PARAM	DVB-T2 POST signaling register	2-82
0x00	ADC_CTRL0	ADC IP control register	2-84
0x01	ADC_CTRL1	ADC IP control register	2-84
0x02	ADC_CTRL2	ADC IP control register	2-85
0x03	ADC_CTRL3	ADC IP control register	2-86
0x04	ADC_FSCTRL	ADC IP control register	2-87

Offset Address	Name	Description	Page
0x05	PLL_LOCK	PLL lock indicator register	2-87
0x06	PLL0_FRAC_L	PLL0 frequency divider decimal part low register	2-88
0x07	PLL0_PD	PLL0 power-down control register	2-88
0x08	PLL0_POSTDIV	PLL0 post divider configuration register	2-89
0x09	PLL0_FBDIV	PLL0 feedback divider register	2-90
0x0A	PLL0_REFDIV	PLL0 reference divider register	2-90
0x0B	PLL0_SPREAD	PLL0 spread spectrum mode configuration register	2-91
0x0C	PLL_DIVVAL	PLL spread spectrum mode output divider control register	2-91
0x0D	PLL1_FRAC_L	PLL1 frequency divider decimal part low register	2-92
0x0E	PLL1_PD	PLL1 power-down control register	2-92
0x0F	PLL1_POSTDIV	PLL1 post divider configuration register	2-93
0x10	PLL1_FBDIV	PLL1 feedback divider register	2-93
0x11	PLL1_REFDIV	PLL1 reference divider register	2-93
0x12	PLL1_SPREAD	PLL1 spread spectrum mode configuration register	2-94
0x13	IO_CTRL0	I/O control register	2-95
0x14	IO_CTRL1	I/O control register	2-95
0x15	IO_CTRL2	I/O control register	2-96
0x16	IO_CTRL3	I/O control register	2-97
0x17	IO_CTRL4	I/O control register	2-98
0x18	SDR_CTRL	SDRAM control register	2-99

2.16 Description of Demod Registers

MAN_RST_CTRL0

MAN_RST_CTRL0 is a reset control register.

		Offse	et Address		Registe	r Name	Register Name Total Re					
			0x20		MAN_RS	T_CTRL0		0xFF				
Bit	7		6	5	4	3	2	1	0			
ime	rstn_sig	g	rstn_tdp	rstn_fec	rstn_tps	rstn_fbl	rstn_ceq	rstn_sync	rstn_agc			
eset	1		1	1	1	1	1	1	1			
	Bits	Acce	ss Name	e	Description	ı						
	[7]	RW	rstn_s	ig	SIG reset con							
					0: reset							
					TDP reset co	ntrol						
	[6]	RW	rstn_te	dp	1: deassert re	set						
					0: reset							
					FEC reset control							
	[5]	RW	rstn_f	ec	1: deassert re	set						
					0: reset							
					TPS reset control							
	[4]	RW	rstn_t _]	ps	1: deassert reset 0: reset							
	[2]	RW	ratn f	L1	FBL reset control							
	[3]	IX W	rstn_f	υı	1: deassert reset 0: reset							
						ntrol						
	[2]	RW	rstn_c	ea	CEQ reset control 1: deassert reset							
	L J			- 1	0: reset							
					Sync reset control							
	[1]	1] RW rstn_sync			1: deassert reset							
					0: reset							
					AGC reset control							
	[0]	RW	rstn_a	gc	1: deassert reset							
					0: reset							

MAN_RST_CTRL1

MAN_RST_CTRL1 is a reset control enable register.

			Address		Register Name MAN_RST_CTRL1			Total Reset Value 0x5F			
Bit	7		6	5	4	3	2	1	0		
ame	cfg_tcl cfg_scan				outp_rst_ena	auto_rst_ena	rstn_catch	rstn_sdc	rstn_outp		
eset	0 1 0				1	1	1	1	1		
	Bits	Acces	s Nam	e	Description	<u> </u>					
	[7]	RW	cfg_to	el	SDRAM TCI 1: TCL = 3 0: TCL = 2	L					
	[6:5]	RW	cfg_s	can	Channel scan select 00: DVB-T2 signals only 00: DVB-T signals only 10: DVB-T2/DVB-T signals adaptively 11: reserved						
	[4]	RW	outp_	rst_ena	OUTP auto reset enable 1: enabled 0: disabled						
	[3]	RW	auto_	rst_ena	FEC auto res 1: enabled 0: disabled	et enable					
	[2]	RW	rstn_c	eatch	Catch reset control 1: deassert reset 0: reset						
	[1]	RW	rstn_s	sde	SDC reset control 1: deassert reset 0: reset						
	[0]	RW	rstn_c	outp	OUTP reset control 1: deassert reset 0: reset						

STATE_WAITS

STATE_WAITS is a timeout reset register.

		Of	fset Ad	dress		Register Name			Total Reset Value		
			0x22	,		STATE_	WAITS		0x16		
Bit	7			6	5	4	3	2	1	0	
Name						state_wait					
Reset	0	0		0	0	1	0	1	1	0	
	Bits Access		Name	!	Description						
	[7:0] RV		7	state_v	vait	OK signal waw When bit[28: state_wait fie When state_v	21] of the could, the system	inter are great is reset.		ual to the	

CLK_DEMO_L

CLK_DEMO_L is a demodulation clock low register.

		Of	ffset Ad	dress		Registe	r Name		Total Reset Value		
			0x23			CLK_DEMO_L			0x00		
Bit	7			6	5	4	3	2	1	0	
Name	e clk_demo_l										
Reset	0			0	0	0	0	0	0	0	
	Bits	Ac	cess	Name	:	Description					
	[7:0]	RW	I	clk_de		Lower bits of CLK_DEMO				k	

CLK_DEMO_M

CLK_DEMO_M is a demodulation clock middle register.

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value			
			0x24			CLK_DI	EMO_M		0xFA		
Bit	7	6		6	5	4	3	2	1	0	
Name	clk_demo_m										
Reset	1			1 1		1	1 1 0		1	0	
	Bits	Bits Access Name				Description					
	[7:0]	RW	V	clk_de	ma m	Middle bits of the frequency of the demodulation clock CLK_DEMO					

CHIP_ID_L

CHIP_ID_L is a chip ID low register.

		Of	fset Ad			Register Name			Total Reset Value		
			0x25			CHIP_	ID_L		0x37		
Bit	7		(5	5	4	3	2	1	0	
Name						chip_id_1					
Reset	0		0		1	1	0	1	1	1	
	Bits Access Name					Description					
	[7:0] RO chip_id_l					Lower eight bits of the chip ID (0x3137)					

CLK_FEC_L

CLK_FEC_L is an FEC clock low register.

		Of	ffset Ado			Register Name CLK_FEC_L			Total Reset Value 0xA8		
Bit	7	7 6			5	4	3	2	1	0	
Name	clk_fec_l										
Reset	1	1 0			1	0	1	0	0	0	
	Bits	Ac	cess	Name	:	Description					
	[7:0]	RW	I	clk_fe		Lower bits of the frequency of the decoding clock CLK_FEC. The LSB indicates 1 kHz.					

CLK_FEC_M

CLK_FEC_M is an FEC clock middle register.

		Of	fset Ad	dress		Registe		Total Reset Value				
			0x27			CLK_F	EC_M		0x55			
Bit	7		(6	5	4	3	2	1	0		
Name						clk_f	ec_m					
Reset	0			1	0	1	0	1	0	1		
	Bits	Aco	cess	Name		Description						
	[7:0] RW clk_fec_m					Middle bits of the frequency of the decoding clock CLK_FE						

CHIP_ID_H

CHIP_ID_H is a chip ID high register.

		Of	fset Ad 0x28			Register CHIP_			Total Reset Va 0x31	alue	
Bit	7			6	5	4	3	2	1	0	
Name						chip_	_id_h				
Reset	0			0	1	1	0	0	0	1	
	Bits	Ac	cess	Name		Description					
	[7:0] RW chip_id_h					Upper eight bits of the chip ID (0x3137)					

CLK_SDC_L

CLK_SDC_L is an SDC clock low register.

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value				
			0x29)		CLK_SDC_L			0x00			
Bit	7	7			5	4	3	2	1	0		
Name						clk_s	sdc_1					
Reset	0			0	0 0 0 0							
	Bits Access			Name		Description						
	[7:0] RW		V			Lower bits of LSB indicates	clock CLK_S	SDC. The				

CLK_SDC_M

CLK_SDC_M is an SDC clock middle register.

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value			
			0x2A			CLK_S	DC_M	0x7D			
Bit	7			6	5	4	3	2	1	0	
Name						clk_s	dc_m				
Reset	0			1	1	1	1	1	0	1	
	Bits	Ac	cess	Name	;	Description					
	[7:0] RW clk_sdc_m					Middle bits of the frequency of the SDC clock				SDC	

SDC_CTRL

SDC_CTRL is an SDC control register.

		Of	ffset Ad	dress		Register Name Total Reset Value					
			0x2E	3		SDC_0	CTRL		0x18		
Bit	7			6	5	4	3	2	1	0	
Name	sdr_slfchk	_ok	sdr_slf	chk_ena		sdr_fix_num		stop_addrinc	reserved	clk_sdc_h	
Reset	0			0	0	1	1	0	0	0	
	Bits	Ac	cess	Name		Description					
	[7] RO sdr_			sdr_slf	chk_ok	SDRAM self 0: correct 1: incorrect	check result				
	[6]	[6] RW sdr_slfchk_er				SDRAM self check enable 0: enabled 1: disabled					
	[5:3]	RW	I	sdr_fix	_num	Number of SDC fixed time slices					
				stop_a	ddrinc	Address auto 1: disabled 0: enabled	increase enab	ole for the data	a capture mod	lule	
	[1] - reserv		reserve	ed Reserved							
			clk_sdo	e_h	MSB of the frequency of the SDC clock CLK_SDC						

LOCK_FLAG

LOCK_FLAG is a lock flag register.

		Offs	set Add	lress		Register LOCK_			Total Reset Value 0x00			
Bit	7		6		5	4	3	2	1	0		
Name		reserv	red		fec_ok	tps_ok_t	sig_ok_t2	syn_pre_ok_t	syn_ok	agc_ok		
Reset	0		0		0	0	0	0	0	0		
	Bits	Acce	ess]	Name		Description						
	[7:6]	-	1	reserve	ed	Reserved						
	[5]	RO	í	fec_ok		FEC lock flag 1: locked 0: unlocked	<u>, , , , , , , , , , , , , , , , , , , </u>					
	[4]	RO	t	tps_ok	_t	DVB-T transmission parameter lock flag 1: locked 0: unlocked						
	[3]	RO	2.	sig_ok	_t2	DVB-T2 signaling lock flag 1: locked 0: unlocked						
	[2]	RO	2.	syn_pr	e_ok_t	DVB-T sync lock flag 1: locked 0: unlocked						
	[1]	RO	Š	syn_ok	[Sync lock flag 1: locked 0: unlocked						
	[0] RO agc_ok					AGC lock flag 1: locked 0: unlocked						

TUNER_SEL

TUNER_SEL is a tuner control register.

		Offset A			Registe	r Name R SEL		Total Reset Value 0x00		
		UXZ	D		TUNE	K_SEL		UXUU		
Bit	7		6	5	4 3 2 1					
Name		res	served		man_state tur					
Reset	0		0	0	0	0	0	0	0	
	Bits	Access	Name	!	Description					
	[7:5]			ed	Reserved					
	[4:1]	RO	man_s	tate	Status of the main control state machine					
					Tuner signal	selected by co	onfiguring the	I ² C		
	[0]	RW	tuner_		time after the	est be set to 1 tuner is read ou need to con in.	or written, thi	is field is auto	matically	

RSTN_CTRL

RSTN_CTRL is a logic reset register.

		Offset Ad			Registe RSTN_		Total Reset Value 0x83				
Bit	7		6	5	4	3	2	1	0		
Name		clk_fec_h		clk_d	lem_h reser		rved	hot_rstn	cool_rstn		
Reset	Bits Access		0	0	0	0	0	1	1		
	Bits Access [7:6] RW		Name	!	Description						
	[7:6]	RW	clk_fe	c_h	Upper bits of	the frequency	y of the decod	ling clock CL	K_FEC		
	[5:4]	RW	clk_de	m n	Upper bits of the frequency of the demodulation clock CLK_DEMO						
	[3:2]	-	reserve	ed	Reserved						
	[1]	RW	hot_rs	tn	Logic reset si reset. 1: not reset 0: reset	ignal. Only th	e logic but no	t the system re	egisters is		
	[0] RW coo			stn	Reset signal. 1: not reset 0: reset	The logic and	l system regis	ters are reset.			

ILA_SEL

ILA_SEL is a test vector select register.

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value				
			0x2F			ILA_		0x00				
Bit	7	7 6				4	3	2	1	0		
Name						ila_	_sel					
Reset	0			0	0	0 0 0 0						
	Bits	its Access Name				Description						
	[7:0] RW ila_sel					Test vector select for the ILA and Catch modules						

AGC_SPEED_BOUND

AGC_SPEED_BOUND is an AGC step register.

		Of	fset Ad	dress		Registe	r Name		Total Reset Value			
			0x30)		AGC_SPEED_BOUND 0x67						
Bit	7			6	5	4	3	2	1	0		
Name			agc_	speed		err_bound						
Reset	0			1	1	0 0 1 1 1						
	Bits	its Access Name				Description						
	[7:5]	7:5] RW agc_speed				AGC step. The maximum value.		e is the config	gured value pl	us 2 and the		
	[4:0]	4:0] RW err_bound				Amplitude error boundary						

AGC_GOAL

AGC_GOAL is an AGC power register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x31			AGC_0	GOAL		0x0D			
Bit	7		(6	5	4	3	2	1	0		
Name	ame agc_goal											
Reset	0		(0	0	0 1 1 0 1						
	Bits	Ac	cess	Name		Description						
	[7:0] RW agc_goal					Target AGC power						

AGCOK_WAIT

AGCOK_WAIT is an AGC wait register.

		Off	set Ad	dress		Register	Name	Total Reset Value				
			0x32			AGCOK	_WAIT		0x0C			
Bit	7 6 5					4	3	2	1	0		
Name						agcok	_wait					
Reset	0 0 0				0	0	1	1	0	0		
	Bits Access Name					Description						
	[7:0] RW agcok_wa			_wait	AGC amplitude exception wait period							

AGC_CTRL

AGC_CTRL is an AGC control register.

		Of	fset Ad 0x33			Register		Total Reset Value 0x11				
Bit	7			6	5	4	3	2	1	0		
Name			pdn	n_div		adc_twos	iq_swap	agc_hold	agc_inverse	dagc_on		
Reset	0			0	0	1	0	0	0	1		
	Bits	Acc	ess	Name	!	Description						
	[7:5]	RW	,	pdm_c	liv	Pulse width of the AGC PDM output The actual value is the configured value plus 1.						
	[4]	RW	r	adc_tv		Input data type 1: two's complement 0: sign-and-magnitude						
	[3]	RW	r	iq_swa	-	I/Q data switch control 1: switched 0: not switched						
	[2] RW			agc_hold		AGC working type 1: The AGC holds and the output PDM is a fixed value. 0: The AGC works in normal mode.						
	[1]	RW	r	agc_in	verse	PDM signal of 1: inverted 0: not inverte		put)				

			DAGC enable
[0]	RW	dagc_on	1: enabled
			0: disabled

AGC_DC_I

AGC_DC_I is a channel I DC register.

		Of	ffset Ad			Register Name AGC_DC_I			Total Reset Value 0x00		
Bit	7		(5	5	4	3	2	0		
Name						agc_	dc_i				
Reset	0 0		0		0	0	0	0	0		
	Bits Access N			Name	!	Description					
	[7:0] RO agc_dc_i			:_i	DC value of channel I data						

AGC_DC_Q

AGC_DC_Q is a channel Q DC register.

		Of	fset Ad			Register Name AGC_DC_Q			Total Reset Value 0x00		
Bit	7		(6	5	4	3	2	0		
Name						agc_	dc_q				
Reset	0		0		0 0 0			0	0	0	
	Bits Access Name			!	Description						
	[7:0] RO agc_dc_q				c_q	DC value of channel Q data					

DAGC_CTRL

DAGC_CTRL is a DAGC control register.

		Offse	et Add 0x36			Register Name DAGC_CTRL			Total Reset Value 0x00		
Bit	7		6		5	4	3	2	1	0	
Name						dage	_ctrl				
Reset	0	0 0			0	0 0 0				0	
	Bits Access Name			Name		Description					
	[7:0] RO dagc_ctrl			trl	Control word of the DAGC						

AGC_CTRL_L

AGC_CTRL_L is an AGC power low register.

			et Address		Registe			Total Reset Value			
		(0x37		AGC_C	TRL_L		0x00			
Bit	7		6	5	4	3	2	1	0		
Name	agc_ok	agc_ok		reserved		agc_ctrl_l					
Reset	0		0	0	0	0	0	0	0		
	Bits	Acces	ss Name		Description						
	[7]	7] RO		(AGC lock flag 1: locked 0: unlocked						
	[6:4]	-	reserve	ed	Reserved						
	[3:0]	RO	agc_ct	ri i	Lower four b signal power	its of the AGG	C control wor	d, indicating t	the current		

AGC_CTRL_H

AGC_CTRL_H is an AGC power high register.

		Of	ffset Ad 0x38			Register AGC_C		Total Reset Value 0x00			
Bit	7			6	5	4	3	2	1	0	
Name						agc_c	ctrl_H				
Reset	0		0		0 0 0		0	0	0	0	
	Bits Access			Name		Description					
	[7:0] RO agc_ctrl_H					Upper eight bits of the AGC control word, indicating the c signal power					

AMP_ERR_IIR

AMP_ERR_IIR is an amplitude error register.

		Of	fset Ad	dress		Registe	r Name	Total Reset Value			
			0x39	1		AMP_E	RR_IIR	0x00			
Bit	7		6		5	4	3	2	1	0	
Name	amp_err_iir										
Reset	0	0		0	0	0	0	0	0	0	
	Bits Access Nam			Name	!	Description					
	[7:0] RO amp_err_iir				rr_iir	ADC input signal amplitude error relative to the target value					

PDM_CTRL_L

PDM_CTRL_L is a manual AGC control word low register.

		Of	ffset Ad	dress		Register	r Name	Total Reset Value			
			0x3A	L		PDM_C	TRL_L	0x00			
Bit	7			6	5	4	3	3 2 1 0			
Name		reserved				pdm_ctrl_sel		pdm_ctrl_h			
Reset	0			0	0	0	0	0	0	0	
	Bits Access			Name		Description					
	[7:5]	_		reserved		Reserved					
	[4] RW pdm_ctrl_sel			trl_sel	Manual AGC control 1: manual mode (pdm_ctrl_sel acts as the control word) 0: automatic AGC mode						

[3:0]	RW	pdm_ctrl_l	Lower four bits of the configurable AGC control word in manual AGC mode
-------	----	------------	---

PDM_CTRL_H

PDM_CTRL_H is a manual AGC control word high register.

		Of	ffset Ad 0x3B			Register PDM_C			Total Reset Value 0x00		
Bit	7		6		5	4	3	2	1	0	
Name	pdm_ctrl_1										
Reset	0		0		0	0 0		0	0	0	
	Bits Access			Name	:	Description					
	[7:0] RW pdn			pdm_c		Upper eight bits of the configurable AGC control word in manu AGC mode					

USE_PWM

USE_PWM is an AGC output wave select register.

		O	ffset Ad			Register USE_l			Total Reset Value 0x00		
Bit	7			6	5	4	3	2	1	0	
Name						reserved				use_pwm	
Reset	0	0		0	0	0	0	0	0	0	
	Bits Access		Name		Description						
	[7:1]	-		reserved		Reserved					
	[0]	RV	V	use_pv	wm	AGC output v 0: PDM 1: PWM	wave				

MF_SEL

MF_SEL is a matched filter select register.

		Of	fset Ad 0x40			Register Name Total Reset Value MF_SEL 0xC9				alue		
Bit	7		(6	5	4	3	2	1	0		
Name	dagc_en	ıa	auto_a	atvfreq	rese	rved		mf	_sel			
Reset	1					0 1 0 0 1						
	Bits	ts Access Name				Description						
	[7]	RW	7	dagc_e	ena	Internal DAGC enable 1: enabled 0: disabled						
	[6]	RW	7	auto_a	tvfreq	Internal ATV 1: auto 0: configured						
	[5:4]	-		reserve	ed	Reserved						
	[3:0]	RW	I	mf_sel		Matched filter (the default value is 9 for DVB-T/T2)						

SF_RMV

SF_RMV is a narrowband interference suppression control register.

		Of	fset Ad 0x41			Register Name Total Reset Value SF_RMV 0xCC					
Bit	7			6	5	4	3	2	1	0	
Name	sf_rmv		atv	_on			pll_	thres			
Reset	1			1	0	0	1	1	0	0	
	Bits	Ac	cess	Name	!	Description	l				
	[7]	RW	I	sf_rmv	7	Internal single-frequency interference suppression module 1: enabled 0: disabled					
	[6]	RW	7	atv_on		Internal same 1: enabled 0: disabled	e-frequency in	iterference su	ppression mod	lule enable	
	[5:0]	:0] RW pll_thres				Single-frequency detection threshold					

DAGC_REF

DAGC_REF is a DAGC amplitude reference register.

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value				
			0x42			DAGC	_REF		0x5A			
Bit	7			6	5	4	3	2	1	0		
Name						dago	_ref					
Reset	0			1	0	1 1 0 1 0						
	Bits	Ac	cess	Name	:	Description						
	[7:0]	RW	I	dagc_r	ef	DGAC amplitude reference						

DAGC_SPEED

DAGC_SPEED is a DAGC step select register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x43	i		DAGC_	SPEED	0x20			
Bit	7			6	5	4	3	2	1	0	
Name						dagc_	speed				
Reset	0			0	1	0	0	0	0	0	
	Bits	Ac	cess	Name		Description					
	[7:0]	RW	7	dagc_s	peed	DGAC step					

IF_FREQ_L

IF_FREQ_L is an input signal IF low register.

		Of	fset Ad	dress		Registe	r Name	Total Reset Value			
			0x4A			IF_FR	EQ_L	0x04			
Bit	7			6	5	4	3	2	1	0	
Name						if_fr	eq_l				
Reset	0			0	0	0	0	1	0	0	
	Bits	Ac	cess	Name	;	Description					
	[7:0]	RW	I	if_freq	_1	Lower eight bits of the input signal IF. The LSB indicates 1				ates 1 kHz.	

IF_FREQ_H

IF_FREQ_H is an input signal IF high register.

			Address 4B		Registe IF_FR			Total Reset Va 0x15	alue
Bit	7		6	5	4	3	2	1	0
Name					if_fr	eq_h			
Reset	0		0	0	1	0	1	0	1
	Bits	Access	Name	?	Description				
	[7:0]	RW	if_free	<u>_</u> h	Upper eight bits of the input signal IF				

BAND_WIDTH

BAND_WIDTH is an input signal bandwidth register.

		O	ffset Ac	ddress		Registe	r Name		Total Reset Va	alue		
			0x4I	3		BAND_	WIDTH		0x40			
it	7			6	5	4	3	2	1	0		
ne				b	w	reserve						
set	0			1	0	0	0 0 0					
•	Bits	Ac	cess	Name	:	Description						
	[7:4]	RV	V	bw		Signal bandw 000: 1.7 MHz 001: 5 MHz 010: 6 MHz 011: 7 MHz 100: 8 MHz Other values:	Z					
•	[3:0]	-		reserve	ed	Reserved						

SYN_CTRL0

SYN_CTRL0 is a sync control register.

		Of	fset Ad 0x50			Register SYN_C			Total Reset Value 0x89		
Bit	7			6	5	4	3	2	1	0	
Name		rgn_scope					th	r_t	reserved	p1_frac_sel	
Reset	1	1 0				0	1	0	0	1	
	Bits	Ac	cess	Name	!	Description					
	[7:4]	RW	7	rgn_sc	ope	P2-related scan scope					
	[3:2]	RW	7	thr_t		DVB-T relate	ed detection th	nreshold			
	[1]	_		reserve	ed	Reserved					
	[0] RW p1_frac_sel					P1 carrier detection mode					

CORR_HIGH_TH

CORR_HIGH_TH is a P2-related detection upper threshold register.

		Of	fset Ad 0x51			Register CORR_H			Total Reset Va	alue
Bit	7		(6	5	4	3	2	1	0
Name						corr_high_th				
Reset	0			1	0	0	0	0	0	0
	Bits	Ac	cess	Name		Description				
	[7:0] RW corr_high_th					P2-related detection upper threshold				

CORR_LOW_TH

CORR_LOW_TH is a P2-related detection lower threshold register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x52			CORR_L	OW_TH		0x18			
Bit	7			6	5	4	3	2	1	0		
Name						corr_l	ow_th					
Reset	0		(0	0	1	1	0	0	0		
	Bits	Ac	cess	Name	!	Description						
	[7:0]	RW	7	corr_lo	ow_th	P2-related detection lower threshold						

P2_POS_MOD

P2_POS_MOD is a P2 sync position modification register.

		Of	fset Ad 0x53			Register P2 POS			Total Reset Value 0x64			
Bit	7			6	5	4	3	2	1	0		
Name						p2_po	s_mod	,	,			
Reset	0			1	1	0	0	1	0	0		
	Bits	Ac	cess	Name		Description						
	[7:0] RW p2_pos_mod					Modification on the detected P2 sync position						

P1_THRES

P1_THRES is a P1 sync control register.

		Of	ffset Ad 0x54			Register P1_TF	alue				
Bit	7			6	5	4	3	2	1	0	
Name	fscan_tl	1		p1th	_sel	p1_min_th					
Reset	1			1	0	1	0	0	0	0	
	Bits	Ac	cess	Name		Description					
	[7]	RW	I	fscan_	th	P1 carrier scan validity decree threshold					
	[6:5]	RW	I	p1th_s	el	P1 frequency domain data limit threshold					
	[4:0] RW p1_min_th					P1 time-domain detection minimum threshold					

CHN_FFT_GI

CHN_FFT_GI is a sync detection parameter register.

			Address x55			r Name FFT_GI		Total Reset Va	lue		
Bit	7		6	5	4	3	2	1	0		
Name	is_dvb	t s	pectrum		fft_size			gi_mode			
Reset	0		0	0	0	0	0	0	0		
	Bits	Acces	Name	:	Description	1					
	[7]	RO	is_dvb	t	Signal indica 1: DVB-T sig 0: DVB-T2 s	gnals					
	[6]	RO	spectro	ım	-	licator signal spectru signal spectru					
	[5:3]	RO	fft_siz	e	FFT mode 000: 1K 001: 2K 010: 4K 011: 8K 100: 16K 101: 32K Other values: reserved						
	[2:0]	RO	gi_mo	de	Guard interval 000: 1/32 001: 1/16 010: 1/8 011: 1/4 100: 1/128 101: 19/128 110: 19/256 Other values When the FF invalid.	reserved) or 101, the §	guard interval	indicator is		

P1_SIGNAL

P1_SIGNAL is a P1 detection signaling register.

		Of	ffset Ad			Register Name P1 SIGNAL			Total Reset Value		
			0x56			PI_SIC			0x00		
Bit	7			6	5	4	3	2	1	0	
Name	reserved	reserved p1_signa				p1_signal_s2					
Reset	0	0 0 0				0	0	0	0	0	
	Bits	Bits Access Name				Description					
	[7]				ed	Reserved					
	[6:4]	6:4] RO p1_signal_s1			nal_s1	S1 part of the	P1 signaling				
	3:0] RO p1_signal_s2			nal_s2	S2 part of the P1 signaling						

TIM_OFFSET

TIM_OFFSET is a timing offset register.

		Of	fset Ad 0x57			Register TIM_O	Total Reset Va 0x00	alue			
Bit	7			6	5	4	3	2	1	0	
Name						tim_c	offset				
Reset	0			0	0	0	0	0	0	0	
	Bits	Aco	cess	Name		Description					
	[7:0] RO tim_offset					Timing offset. The LSB indicates 4 ppm.					

CAR_OFFSET_L

CAR_OFFSET_L is a carrier offset low register.

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value				
			0x58	}		CAR_OF	FSET_L		0x00			
Bit	7	7 6				4	3	2	1	0		
Name						car_o	ffset_l					
Reset	0			0	0	0	0	0	0	0		
	Bits	Ac	cess	Name	;	Description						
	[7:0] RO car_offset_l				fset_l	Carrier offset low register. The LSB indicates 32 Hz.						

CAR_OFFSET_H

CAR_OFFSET_H is a carrier offset high register.

		Of	fset Ad	dress		Registe	r Name	Total Reset Value			
			0x59			CAR_OF	0x00				
Bit	7	7 6 5				4	3	2	1	0	
Name						car_offset_h					
Reset	0			0	0	0	0	0	0	0	
	Bits	Ac	cess	Name	!	Description					
	7:0] RO car_offset_h				fset_h	Carrier offset high register					

T2_CHK_CTRL

T2_CHK_CTRL is a DVB-T2 detection configuration register.

		Of	ffset Ad	ldress		Register Name Total Reset Value				alue		
			0x5E)		T2_CHK	CTRL		0x02			
Bit	7			6	5	4	3	2	1	0		
Name		rese	rved		t2_	lite	rese	rved	thr	·_t2		
Reset	0			0	0	0 0 0 1 0						
	Bits	Ac	cess	Name	!	Description						
	[7:6]	-		reserve	ed	Reserved						
						T2 mode support						
						0: support on	ly t2_base					
						1: support only t2_lite						
	[5:4]	RW	V	t2_lite		2: support bo contain T2 frandomly cap other mode an signal search.	ames in both to tures frames are detected ba	t2_base and t2 in only one m	2_lite modes, ode, and fram	the system nes in the		
	[3:2]	-		reserve	ed	Reserved						
	[1:0]	RW	Į –	thr_t2		T2 signal detection threshold						

$SOAC_TH$

SOAC_TH is a P1 signaling detection threshold register.

		Of	fset Ad	ldress		Register			Total Reset Value			
			0x5E	3		SOAC	0x34					
Bit	7	7 6 5				4	3	2	1	0		
Name	reserve				fequ_param			soac_th				
Reset	0	0 0			1	1	0	1	0	0		
	Bits	Bits Access Name				Description						
	[7]			reserved		Reserved						
	[6:4]	6:4] RW fequ_param			aram	Internally res	erved					
	[3:0]	3:0] RW soac_th			h	P1 signaling	1 signaling detection threshold					

OUTP_RAND

OUTP_RAND is an output TS scrambling register.

		Of	fset Ad 0x5F			Register Name Tota OUTP_RAND				lue		
Bit	7			6	5	4 3 2 1 0						
Name		resei	rved		rand_no_hold	clk_min_wid clk_rand						
Reset	0			0	0	0	1	0	0	0		
	Bits	Acc	cess	Name		Description	Į.					
	[7:6]	-		reserve	ed	Reserved						
	[5]	RW	7	rand_n	o_hold		1: The clock width and cycle are always scrambled. 0: The clock width and cycle are not scrambled under certain conditions.					
	[4:2]	RW	Ī	clk_mi	n_wid	Minimum width of the high level and low level of the TS clock						
	[1:0]	RW	7	clk_raı	nd	01: enable the	e scrambling ne scrambling ne scrambling ne scrambling ne	nodule with the	he maximum	delay of 9		

LOOP_BW

LOOP_BW is a loop bandwidth select register.

		Of	fset Ad	dress		Registe	r Name		Total Reset Value			
			0x60	ı		LOOP	0xA3					
Bit	7			6	5	4	3	2	1	0		
Name	cpe_on	l			tim_loop			car_	loop			
Reset	1			0	1	0	0	0	1	1		
	Bits	Acc	ess	Name	!	Description						
	Bits Acc			cpe_or		CPE calibration enable 1: enabled 0: disabled						
	[6:4]	5:4] RW tim_loop			ор	Timing loop bandwidth (A larger value indicates narrower bandwidth.)						
	[3:0]	3:0] RW car_loop				Carrier loop bandwidth (A larger value indicates narrower bandwidth.)						

FD_GRP

FD_GRP is a time domain interpolation control register.

		Offset Ac	ldress		Registe	r Name	Total Reset Value				
		0x61			FD_0	GRP		0x81			
Bit	7		6	5	4	3	2	1	0		
Name			div	_p2		man_fd_grp		fd_grp			
Reset	1		0	0	0	0	0	0	1		
	Bits	Access	Name	:	Description	l					
	[7:4]	RW	div_p2		Multipath boundary of selected P2 symbols						
	[3]	RW	man_f	d_grp	Whether the inthe time domains 1: no 0: yes	•	-	e during the ca	alculation of		
	[2:0]	RW	fd_grp		Interpolation bandwidth value configured by the system when man_fd_grp is 1. A larger value indicates broader bandwidth.						

NP_IIR_SFT

NP_IIR_SFT is a CSI calculation control register.

		Off	set Ad 0x64			Register Name NP_IIR_SFT			Total Reset Value 0x65				
Bit	7		(5	5	4 3 2 1 0							
Name		dop_	_th		sp_cell_on		np_para_sft		np_ii	ir_sft			
Reset	0			1	1	0 0 1 0 1							
	Bits	Acc	ess	Name		Description	Description						
	[7:6]	RW		dop_th		Doppler detection sensitivity. A larger value indicates greater sensitivity and higher probability of detecting false alarms.							
	[5] RW			sp_cell	_on	CSI narrowba 1: enabled 0: disabled	and interferen	ce suppressio	n manual enal	ble			
	[4:2] RW			np_para_sft		Smoothing filter bandwidth during the calculation of the noise coefficient							
	[1:0] RW np_iir_sft					Smoothing filter bandwidth during the calculation of the narrowband interference							

ECHO_THRES

ECHO_THRES is a multipath detection threshold register.

		O	ffset Ad	dress		Register	r Name	Total Reset Value						
			0x67			ECHO_THRES			0x10					
Bit	7			6	5	4	3	2	1	0				
Name				th_	mid	th_high								
Reset	0			0	0	1	0	0	0	0				
	Bits	Ac	cess	Name	!	Description								
	[7:4]	RW	V	th_mic	1	Middle threshold for multipath detection. A larger value indicates greater sensitivity.								
	[3:0] RW th_high					1 1		ath detection.	Upper threshold for multipath detection. A larger value indicate greater sensitivity.					

MIN_THRES

MIN_THRES is a multipath detection minimum threshold register.

		Of	ffset Ad 0x69			Register MIN_T			Total Reset Va 0x08	alue
Bit	7			6	5	4	3	2	1	0
Name						th_i	min			
Reset	0			0	0	0	1	0	0	0
	Bits Access Name					Description				
	[7:0] RW th_min				ı	Minimum threshold for multipath detection				

NP_GRP

NP_GRP is a time domain interpolation control register.

		Of	ffset Ad 0x6A			Register Name NP_GRP			Total Reset Value 0x00		
Bit	7			6	5	4	3	2	1	0	
Name	isi_ena	isi_ena					man_np_grp		np_grp		
Reset	0	0 0 Bits Access Name				0	0	0	0	0	
	Bits Access Name					Description					
	7] RW isi_ena					Elimination e 1: enabled 0: disabled	enable for inte	rference betw	reen symbols		
	[6:4]	RW	I	fd_ma	X	Maximum time domain interpolation bandwidth					
	[3] RW man_np_grp						noise coefficio ain interpolati			alculation of	
	[2:0] RW np_grp					Noise coefficient configured by the system when man_np_grp is 1. A larger value indicates greater noise power.					

TS_A9_SEL

TS_A9_SEL is a TS output control register.

		Of	fset Ad 0x6E			Register TS_A9		Total Reset Value 0xA9			
Bit	7			6	5	4	3	2	1	0	
Name					_sel		ts_9_sel				
Reset	1	1		0	1	0 1		0	0	1	
	Bits	Ac	cess	ess Name		Description					
	[7:4]	7:4] RW					TS_ERR pin output control. The bits in {ts_err, ts_vld, ts_sync, ts_dat[7:0]} are selected for signal output.				
	[3:0]	3:0] RW ts_9_sel				TS_VLD pin output control. The bits in {ts_err, ts_vld, ts_sts_dat[7:0]} are selected for signal output.					

TS_87_SEL

TS_87_SEL is a TS output control register.

		Of	fset Ad	dress		Registe	r Name	Total Reset Value			
			0x6C			TS_87	_SEL	0x87			
Bit	7			6	5	4	3	2	1	0	
Name				ts_8	_sel			_sel			
Reset	1	1 0				0 0 1 1					
	Bits	its Access Name			!	Description					
	[7:4]	7:4] RW					TS_SYNC pin output control. The bits in {ts_err, ts_vld, ts_sync, ts_dat[7:0]} are selected for signal output.				
	3:0] RW ts_7_sel				TS_OUT7 pin output control. The bits in {ts_err, ts_vld, ts_ts_dat[7:0]} are selected for signal output.						

TS_65_SEL

TS_65_SEL is a TS output control register.

		Of	ffset Ad 0x6E			Register TS_65			Total Reset Value 0x65		
Bit	7			6	5	4	3	2	1	0	
Name					_sel		ts_5_sel				
Reset	0			1	1	0	0 1 0 1				
	Bits	Ac	cess	Name		Description					
	[7:4] RW					TS_OUT6 pin output control. The bits in {ts_err, ts_vld, ts_sync, ts_dat[7:0]} are selected for signal output.					
	[3:0] RW ts_5_sel					TS_OUT5 pin output control. The bits in {ts_err, ts_vld, ts_syncts_dat[7:0]} are selected for signal output.					

TS_43_SEL

TS_43_SEL is a TS output control register.

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value				
			0x6E			TS_43	_SEL		0x43			
Bit	7			6	5	4	3	2	1	0		
Name				ts_4	_sel			ts_3	ts_3_sel			
Reset	0	0 1				0	0	0	1	1		
	Bits	its Access Name			!	Description	L					
	[7:4]	[7:4] RW			ΔI	TS_OUT4 pin output control. The bits in {ts_err, ts_vld, ts_sync, ts_dat[7:0]} are selected for signal output.						
	[3:0] RW ts_3_sel				TS_OUT3 pin output control. The bits in {ts_err, ts_vld, ts_s ts_dat[7:0]} are selected for signal output.							

TS_21_SEL

TS_21_SEL is a TS output control register.

		Of	ffset Ad	dress		Register	r Name	Total Reset Value			
			0x6F	,		TS_21	_SEL	0x21			
Bit	7			6	5	4	3	2	1	0	
Name				ts_2	_sel		ts_1_sel				
Reset	0			0	1	0	0 0 1				
	Bits	Ac	cess	Name		Description					
	[7:4] RW					TS_OUT2 pin output control. The bits in {ts_err, ts_vld, ts_sync, ts_dat[7:0]} are selected for signal output.					
	[3:0] RW ts_1_sel					TS_OUT1 pin output control. The bits in {ts_err, ts_vld, ts_sync, ts_dat[7:0]} are selected for signal output.					

TIM_LOOP_L

TIM_LOOP_L is a timing offset low register.

		Of	ffset Ad	dress		Register	r Name	Total Reset Value			
			0x70			TIM_LO	OOP_L	0x 0 0			
Bit	7			6	5	4	3	2	1	0	
Name						tim_l	oop_l				
Reset	0			0	0	0 0 0 0					
	Bits	Ac	cess	Name	!	Description					
	[7:0] RO			tim_lo	on i	Lower bits of the timing offset output from the timing loop. The LSB indicates 1/16 ppm.					

TIM_LOOP_H

TIM_LOOP_H is a timing offset high register.

		Of	fset Ac			Register Name TIM_LOOP_H			Total Reset Value 0x00			
Bit	7			6	5	4	3	2	1	0		
Name	reserved				tim_loop_h							
Reset	0	0 0				0 0 0 0						
	Bits	Aco	cess	Name		Description						
	[7:6] RO reserv			reserve	ed	Reserved						
	5:0] RO tim_lo			tim_lo	op_h	Upper bits of the timing offset output from the timing loop						

TS_0_SEL

TS_0_SEL is a TS output control register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x75			TS_0_	_SEL		0x50		
Bit	7			6	5	4	3	2	1	0	
Name				cpado	d_ena	ts_0_sel					
Reset	0			1	0	1	0	0	0	0	
	Bits	its Access Name				Description					
	[7:4]	[7:4] RW c			ena	Internal key technology register for enabling the module for improving the performance in big guard interval mode					
	[3:0] RW ts_0_sel					TS_OUT0 pin output control. The bits in {ts_err, ts_vld, ts_syncts_dat[7:0]} are selected for signal output.					

CIR_DIST_0

CIR_DIST_0 is a multipath distribution register.

		Of	fset Ad 0x76			Register CIR_D		Total Reset Value 0x00				
Bit	7			6	5	4	3	2	1	0		
Name						cir_d	list_0					
Reset	0			0	0	0 0 0 0						
	Bits	Acc	ess	Name	:	Description						
	[7:0] RO			cir_dis	st_0	Multipath distribution register for characterizing the distribution feature of the current channel impulse response (CIR). The CIR is represented by 32 bits. This register indicates bits 7 to 0.						

CIR_DIST_1

CIR_DIST_1 is a multipath distribution register.

		Offs	set Address		Registe	r Name	Total Reset Value			
			0x77		CIR_D	DIST_1	0x 0 0			
Bit	7		6	5	4	3	2	1	0	
Name					cir_d	list_1				
Reset	0		0	0	0 0 0 0					
	Bits	Acce	ess Name	!	Description					
	[7:0]	RO	cir_dis	t_1	Multipath dis feature of the register indicates	current CIR.	The CIR is re	_		

CIR_DIST_2

CIR_DIST_2 is a multipath distribution register.

	Offset Address 0x78					Register CIR_D		Total Reset Value 0x00				
Bit	7		(6	5	4	3	2	1	0		
Name		cir_dist_2										
Reset	0	0		0	0	0	0	0	0	0		
	Bits	Acc	Access Name		:	Description						
	[7:0]	RO	CO cir_di		t_2	Multipath distribution register for characterizing the distribution feature of the current CIR. The CIR is represented by 32 bits. Th register indicates bits 23 to 16.						

CIR_DIST_3

CIR_DIST_3 is a multipath distribution register.

	Offset Address 0x79					Register CIR_D		Total Reset Value 0x00			
Bit	7	7		6	5	4	3	2	1	0	
Name	cir_dist_3										
Reset	0		0		0	0	0	0	0	0	
	Bits	Acc	ccess Name		Description						
	[7:0]	RO	O cir_dis		st_3	Multipath distribution register for characterizing the distribution feature of the current CIR. The CIR is represented by 32 bits. This register indicates bits 31 to 24.					

SNR_L

SNR_L is an SNR low register.

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value				
			0x7A	<u> </u>		SNF	R_L		0x00			
Bit	7			6	5	4 3 2 1						
Name						sn						
Reset	0			0		0 0 0				0		
	Bits	Bits Access				Description						
	[7:0] RO			snr_l		Lower bits of the SNR register for calculating the SNR (dB) of the current input signal SNR = 10 x log10 (snr_h x 256 + snr_l) - 12						

SNR_H

SNR_H is an SNR high register.

		Of	ffset Ad 0x7B			Register SNF			Total Reset Value 0x00			
Bit	7			6	5	4 3 2 1						
Name						Sni	<u> </u> r_h					
Reset	0		(0	0	0 0 0 0						
	Bits	Ac	cess	Name		Description						
	[7:0]	RO	l	snr_h		Upper bits of the SNR register						

DOPPLER

DOPPLER is a Doppler indicator register.

		Of	fset Ad	dress		Registe	r Name	Total Reset Value				
			0x7C	2		DOPE	PLER	0x00				
Bit	7			6	5	4	3	2	1	0		
Name					doppler				rela_fd_grp			
Reset	0		0		0	0	0	0	0	0		
	Bits			Name		Description						
	[7:3] RO			dopple	r	Doppler value calculated by the demo						
	[2:0] RO rela_fd_grp					Bandwidth fo	or the time do	main interpola	ation coefficie	ent		

CW_FREQ_L

CW_FREQ_L is a single-frequency interference frequency low register.

		Off	fset Ad 0x80			Register CW_FF		Total Reset Value 0x00				
Bit	7		(6	5	4 3 2 1						
Name						cw_f	req_1					
Reset	0 0				0	0	0	0 0 0				
	Bits	Acc	ess	Name		Description						
	[7:0] RO cw_freq_l					Lower bits of LSB indicates		equency interf	erence freque	ency. The		

CW_FREQ_H

CW_FREQ_H is a single-frequency interference frequency high register.

		Of	fset Ad	dress		Registe	r Name		Total Reset Value			
			0x81			CW_FF		0x00				
Bit	7			6	5	4	3	2	1	0		
Name	cw_lock				reserved		cw_freq_H					
Reset	0		0		0	0 0		0	0	0		
	Bits	Aco	cess	Name		Description	l					
					Whether single-frequen		le-frequency	interference e	xists			
	[7] RO cw_l			cw_loc	ck	1: yes						
						0: no						

[6:2]	-	reserved	Reserved
[1:0]	RW	cw_freq_H	Upper bits of the single-frequency interference frequency

CLK_ADC_L

CLK_ADC_L is an ADC clock low register.

		Of	ffset Ad 0x85			Register CLK_A			Total Reset Value 0x00			
Bit	7			6	5	4	3	3 2 1 0				
Name						clk_a	adc_1					
Reset	0			0	0	0	0	0	0	0		
	Bits	Ac	cess	Name	:	Description						
	[7:0] RW clk_adc_l					Lower bits of LSB indicates		y of the ADC	clock CLK_A	ADC. The		

CLK_ADC_M

CLK_ADC_M is an ADC clock middle register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value				
			0x86			CLK_A	DC_M	0x7D				
Bit	7			6	5	4 3 2 1						
Name						clk_a	dc_m					
Reset	0 1				1	1 1 1 0						
	Bits	Ac	cess	Name	!	Description						
	[7:0] RW clk_adc_m					Middle bits of the frequency of the ADC clock CLK_AD						

CLK_ADC_H

CLK_ADC_H is an ADC clock high register.

		Of	fset Ad			Register		Total Reset Value			
			0x87			CLK_A	IDC_H	0x00			
Bit	7			6	5	4	3	2	1	0	
Name					rese	rved			clk_adc_h		
Reset	0		0		0	0 0 0		0	0	0	
	Bits	Acc	cess	Name	!	Description					
	[7:2]	7:2] - reserved			ed	Reserved					
	[1:0] RW clk_adc_h				c_h	Upper bits of	clock CLK_A	ADC			

ATV_STATE

ATV_STATE is a same-frequency interference flag register.

		Of	ffset Ad	dress		Registe	r Name		Total Reset Value		
			0x88	}		ATV_S	STATE	0x00	0x00		
Bit	7			6	5	4 3 2 1				0	
Name		0 0				reserved					
Reset	0					0	0	0	0	0	
	Bits	its Access Name			!						
	[7:1]	-		reserve	ed	Description in	nformation				
						Whether sam	e-frequency in	nterference ex	xists		
	[0]	RO)	atv_sta	ate	1: yes					
						0: no					

ITER_CTRL

ITER_CTRL is an iteration control register.

		Of	fset Ad	dress		Registe	r Name		Total Reset Value		
			0x91			ITER_	CTRL		0xA4		
Bit	7			6	5	4	3	2	1	0	
Name	fix_iter		fix_ite	er_man			fix_ite	r_num			
Reset	1			0	1	0	0	1	0	0	
	Bits	Bits Acc		Name		Description					
	[7]	RW	I	fix_ite	r	Fixed or selected maximum iteration times 1: fixed 0: automatically selected					
	[6]	RW	7	fix_ite	r_man	Manually or a 1: manually 0: automatica		configured m	aximum itera	tion times	
	[5:0]	RW	I	fix_ite:	r_num	Manually configured maximum iteration times					

BER_CTRL

BER_CTRL is a BER control register.

		Of	fset Ad	dress		Register	r Name		Total Reset Value			
			0x92			BER_CTRL 0xB4						
Bit	7			6	5	4 3 2 1						
Name	stop_se	stop_sel			frame_num			high	ı_err			
Reset	1			0	1	1	0	1	0	0		
	Bits	Ac	cess	Name	!	Description						
	[7] RV		I	stop_s	Iteration checked 1: Automatic 0: Iteration st		iteration chec	•	ration times a	re reached.		
	[6:4]	5:4] RW		frame_num		BER statistics	s period					
	[3:0]	:0] RW hig		high_err		Threshold for high BER reset						

AUTO_DLY

AUTO_DLY is an iteration switch register.

		Off	fset Ad	dress		Registe	r Name		Total Reset Va	alue		
			0x93			AUTO	_DLY		0x01			
Bit	7		(5	5	4	3	2	1	0		
Name					rese	rved			prior_low	auto_dly		
Reset	0		()	0	0	0	0	0	1		
	Bits	Acc	ess	Name		Description	l					
	[7:2]	-		reserve	ed	Reserved						
	[1]	RW		prior_l	ow	Stream output select in DVB-T hierarchical mode 1: output streams with a low priority 0: output streams with a high priority						
	[0]	RW		auto_d	ly	Signaling cool 1: automatica 0: configured	ally selected	h wait time				

ITER_NUM

ITER_NUM is a PRE signaling iteration times register.

		Of	fset Ad	dress		Registe	r Name		Total Reset Value		
			0x94			ITER_	NUM		0x18		
Bit	7		(6	5	4	3	2	1	0	
Name	gate_of	U =		rved		iter_num_pre					
Reset	0		(0	0	1	1	0	0	0	
	Bits	its Access		Name	!	Description					
	[7] RW		I	gate_o	ff	Gating enable 1: disabled 0: enabled					
	[6]	-		reserve	ed	Reserved					
	[5:0]	RW	7	iter_nu	ım_pre	Maximum ite	ration times f	or L1 PRE de	ecoding		

ITER_NUM_POST

ITER_NUM_POST is a POST signaling iteration times register.

		Of	fset Ad	dress	Register Name				Total Reset Value		
			0x95			ITER_NU	M_POST		0x18		
Bit	7			6	5	4	3	2	1	0	
Name		reserved					iter_nu	m_post			
Reset	0 0			0	0	1 1 0 0					
	Bits				Description						
	[7:6]	7:6] - reserv			ved Reserved						
	[5:0] RW iter_nu			iter_nu	ım_post	Maximum iteration times for L1 POST decoding					

FEC_BER_L

FEC_BER_L is a BER low register.

		Of	fset Ad 0x96			Register FEC_E			Total Reset Va 0x00	alue	
Bit	7			6	5	4	3	2	1	0	
Name						fec_1	ber_1				
Reset	0			0	0	0	0	0	0	0	
	Bits	Ac	cess	Name	:	Description					
	[7:0] RO fec_ber_l					Lower eight bits of BER statistics					

FEC_BER_H

FEC_BER_H is a BER high register.

		Of	fset Ad	dress		Registe	r Name	Total Reset Value				
			0x97			FEC_B	ER_H		0x00			
Bit	7		(6	5	4	3	2	1	0		
Name						fec_ber_h						
Reset	0		(0	0	0	0	0	0	0		
	Bits	Ac	cess	Name	!	Description						
	[7:0] RO fec_ber_h					Upper eight bits of BER statistics						

FEC_FER_L

FEC_FER_L is an FER low register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x98			FEC_F	ER_L	0x00			
Bit	7			6	5	4	3	2	1	0	
Name						fec_fer_l					
Reset	0			0	0	0	0	0	0	0	
	Bits	Ac	cess	Name		Description					
	[7:0] RO fec_fer_l					Lower eight bits of the error frame count					

FEC_FER_H

 FEC_FER_H is an FER high register.

		Of	fset Ad	dress		Register	r Name	Total Reset Value			
			0x99			FEC_F	ER_H	0x 0 0			
Bit	7		(6	5	4	3	2	1	0	
Name						fec_t	fer_h				
Reset	0		(0	0	0	0	0	0	0	
	Bits	Ac	cess	Name		Description					
	[7:0] RO fec_fer_h					Upper eight bits of the error frame count					

SWITCH_DLY

SWITCH_DLY is a signaling code word switch delay register.

		Of	fset Ad	dress		Registe	r Name	Total Reset Value				
			0x9C	2		SWITCI	H_DLY		0x00			
Bit	7			6	5	4	3	2	1	0		
Name	reserved						man_switch_dly					
Reset	0			0	0	0	0	0	0	0		
	Bits	Acc	cess	ess Name		Description						
	7] - reserve			reserve	ed Reserved							
	[6:0]	6:0] RW man_switch_dl			witch_dly	Manually configured delay for signaling code word switching						

T2_SUCCESS

T2_SUCCESS is a T2 decoding success register.

			Address 89E		Registe T2_SU0			Total Reset Value 0x00			
Bit	7		6	5	4	3	2	1	0		
Name				iter_	num			bch_cancorr	ldpc_badly		
Reset	0		0	0	0 0 0 0						
	Bits	Acces	Name	2	Description	l					
	[7:2]	RO	iter_n	ım	LDPC decoding iteration times						
	[1]	RO	bch_ca	ancorr	BCH decodir 1: success 0: failure	ng success flag					
	[0]	RO	ldpc_t	oadly	LDPC decodents failure 0: success	ing success/fa	ilure				

OUTP_ISSY

OUTP_ISSY is an ISSY control register.

		Of	fset Ad 0xA0			Register Name Total Reset Value OUTP_ISSY 0x10				alue	
Bit	7			6	5	4	3	2	1	0	
Name	issy_lon	g	issy	_rmv			tto_a	djust			
Reset	0			0	0	1	0	0	0	0	
	Bits	Acc	cess	Name	Description						
	[7]	RW	7	issy_lo	ong	ISSY length 1: 3 bytes for 0: 2 bytes for					
	[6]	RW	T	issy_rı	nv	ISSY remova 1: GCS and C 0: GCS and C	GSE stream pa	•			
	[5:0]	RW	T	tto_ad	just	TTO adjustment					

OUTP_DCAP_SET

OUTP_DCAP_SET is a data PLP capacity configuration register.

		Of	ffset Ad			Register			Total Reset Value			
			0xA1			OUTP_DO	CAP_SET		0xC9			
Bit	7		(6	5	4	3	2	1	0		
Name						vol_	dset					
Reset	1			1	0	0	1	0	0	1		
	Bits	Ac	cess	Name	,	Description						
	[7:0] RW vol_dset					Data PLP cap OUTP_DCA	pacity. OUTP_ P_SET[3:0] k	_DCAP_SET bit, OUTP_D	[7:4] << CAP_SET[7:	4]≥8		

OUTP_CCAP_SET

OUTP_CCAP_SET is a common PLP capacity configuration register.

		Of	ffset Ad 0xA2			Register		Total Reset Value 0x88			
Bit	7			6	5	4	3	2	1	0	
Name						vol_cset					
Reset	1		(0	0	0	1	0	0	0	
	Bits	Ac	cess	Name	!	Description					
	[7:0] RW vol_cset					Common PLP capacity. OUTP_CCAP_SET[7:4] << OUTP_CCAP_SET[3:0] kbit, OUTP_CCAP_SET[7:4] ≥ 8					

OUTP_PLL0

OUTP_PLL0 is a PLL control register.

		Of	fset Ad	dress		Registe	r Name	Total Reset Value			
			0xA3	3		OUTP	_PLL0	0x83			
Bit	7			6	5	4	3	2	1	0	
Name					cent_point			cent_speed			
Reset	1		0		0	0 0		0	1	1	
	Bits Access		cess	Name		Description					
	7:3] RW cent_point				oint	Position of the OUTP RAM central area					
	[2:0]	RW	I	cent_s ₁	peed	Feedback coefficient for the central area					

OUTP_PLL1

OUTP_PLL1 is a PLL control register.

		Ot	ffset Ad 0xA4			Register OUTP_			Total Reset Value 0x9B		
Bit	7			6	5	4	3	2	1	0	
Name					slow_high				fast_speed		
Reset	1			0	0	1	1	0	1	1	
	Bits	Ac	cess	Name		Description					
	[7:3] RW slow_high			nigh	Upper thresh	old for the OU	JTP RAM slo	w adjustment	area		
	[2:0]	2:0] RW fast_speed				Feedback coefficient for the fast adjustment area					

OUTP_PLL2

OUTP_PLL2 is a PLL control register.

		Of	fset Ad	dress		Registe	r Name	Total Reset Value				
			0xA5	5		OUTP	_PLL2	0x40				
Bit	7			6	5	4	3	2	1	0		
Name					slow_slow			iscr_ted_gain	pll_s _I	peed_i		
Reset	0		1 0		0	0	0	0	0	0		
	Bits	Bits Access Nan				Description						
	7:3] RW slow_slow				slow	Lower threshold for the OUTP RAM slow adjustment area						
	[2]	RW	7	iscr_te	d_gain	Input stream time reference (ISCR) feedback coefficient						

[1:0]	pll_speed_i	ISCR feedback gain
-------	-------------	--------------------

OUTP_PLL3

OUTP_PLL3 is a PLL control register.

		Offset A			Registe OUTP			Total Reset Value 0xBF		
Bit	7		6	5	4 3 2 1 (0	
Name		1 0					auto_vol	pll_sp	oeed_r	
Reset	1	its Access		1	1	1	1	1	1	
	Bits			:	Description					
	[7:3] RW		fast_h	gh	Upper threshold for the OUTP RAM fast adjustment area					
	[2] RW		auto_vol		1: The data P are automatic	LP and commeally configure	ncity configuration PLP capaced. ed base on Ol	cities in the O		
	[1:0]	RW	pll_sp	eed_r	PLL speed when the ISCR is not active					

OUTP_PLL4

OUTP_PLL4 is a PLL control register.

		Offset A	ddress		Registe	r Name	Total Reset Value			
		0xA	7		OUTP	_PLL4	0x23			
Bit	7		6	5	4	3	2	1	0	
Name				fast_low			out_mode_auto	ted_	shift	
Reset	0		0	1	0	0 0		1	1	
	Bits	Access	Name	!	Description	1				
	[7:3]	RW	fast_lo)W	Lower thresh	old for the O	UTP RAM fas	t adjustment	area	
	[2]	RW	out_m	out_mode_auto TS output mode au 1: enabled 0: disabled (The or out mode.)				based on clk	_mode and	
	[1:0] RW ted_shift				PLL feedback coefficient					

OUTP_CLK_SET

OUTP_CLK_SET is an output clock configuration register.

		Offset A	ddress		Registe	r Name		Total Reset Value			
		0xA	.8		OUTP_C	LK_SET		0x00			
Bit	7		6	5	4	3	2	1	0		
Name				clk	_div			clk_mode			
Reset	0		0	0	0	0	0	0	0		
	Bits			•	Description						
	[7:2]	RW	clk_di		Integral part of configuration		the system cl	ock frequency	y to the I ² C		
	[1:0]	RW	clk_m	ode	TS output clo 00: PLL even 01: I ² C config 10: basic unit 11: reserved	clock guration clock	ζ				

OUTP_CLK_SETH

OUTP_CLK_SETH is an I²C clock configuration register.

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value				
			0xA9)		OUTP_CI	K_SETH	0x00				
Bit	7			6	5	4	3	2 1				
Name						clk_d	liv_fh					
Reset	0	0 0										
	Bits	Ac	cess	Name		Description						
	[7:0] RW clk_div_fh					Upper eight bits of the decimal part of the ratio of the system frequency to the I ² C configuration clock frequency						

OUTP_CLK_SETL

OUTP_CLK_SETL is an I²C clock configuration register.

		Of	fset Ad			Register OUTP_CI		Total Reset Value 0x00			
Bit	7		(6	5	4	3	2	1	0	
Name						clk_c	liv_fl				
Reset	0		0 0		0	0	0	0	0		
	Bits					Description					
	[7:0] RW clk_div_fl					Lower eight bits of the decimal part of the ratio of the syster clock frequency to the I ² C configuration clock frequency					

OUTP_MODE_SET

OUTP_MODE_SET is an output mode configuration register.

		Of	fset Ac	ldress		Register Name			Total Reset Value			
			0xAl	В		OUTP_MODE_SET 0x			0x10			
Bit	7			6	5	4	3	2	1	0		
Name		out_r	node				ram_thres			serl_sync8		
Reset	0			0	0	1 0 0 0						
	Bits	Aco	cess	Name	:	Description						
	[7:6] RW out_mo				ode		utput evenly.	n the basic un	it clock.	ek.		
	[5:1]	RW	7	ram_th	nres	OUTP RAM	output start th	nreshold				
	[0]	RW	7	serl_sy	/nc8	TS sync header time length 1: The sync word occupies 8 bits in serial mode. 0: The sync word occupies 1 bit in 1-bit serial mode and 2 bits 2-bit serial mode.						

OUTP_TS_MODE

OUTP_TS_MODE is a TS output mode configuration register.

		Offset Ac			Register			Total Reset Value 0x05				
Bit	7		6	5	4	3	2	1	0			
Name		wai	t_time		mask_clk	clk_inv	msb_1st	serl2	paral			
Reset	0		0	0	0 0 1 0 1							
	Bits	Access	Name	·	Description							
	[7:5]	RW	wait_t	ime	TS output wait time 000: 10 ms 001: 20 ms 010: 40 ms 011: 80 ms 100: 160 ms 101: 320 ms 110: 640 ms							
	[4]	RW	mask_	clk	TS output clock mask 1: masked when there is no TS 0: not masked							
	[3]	RW	clk_in	V	TS clock edge select 1: The falling edge of the TS clock is between data. 0: The rising edge of the TS clock is between data.							
	[2]	RW	msb_1	st	Serial output sequence 1: upper bits first 0: lower bits first							
	[1]	RW	serl2		Serial mode select (valid only when paral is 0) 1: 2-bit serial TS output 0: 1-bit serial TS output							
	[0]	RW	paral		Serial or parallel TS output 1: 8-bit parallel TS output 0: serial output							

OUTP_PKT_STA

OUTP_PKT_STA is a TS packet count configuration register.

		Of	fset Ad	dress		Registe	r Name		Total Reset Value		
			0xAE	E		OUTP_P	KT_STA	0x20			
Bit	7			6	5	4 3		2	1	0	
Name						sta_p	kt_set				
Reset	0	0		0 1		0 0 0			0	0	
	Bits			s Name		Description					
	[7:0]	RW	I	sta_pk	r cer	Number of pacalculated	ackets to be co	ounted when t	the initial TS	rate is	

OUTP_LIMIT_EN

OUTP_LIMIT_EN is a limit and enable register.

		Of	fset Ad			č			Total Reset Va	llue		
			0xAI	7		OUTP_LIMIT_EN 0x64						
Bit	7			6	5	4	3	2	1	0		
Name	tei_en ctrl_limit iscr_			iscr_limit	discard_num							
Reset	0 1			1	0	0	1	0	0			
	Bits Access Name					Description						
	[7]	RW	7	tei_en		Reset signal generation enable for the TS error flag bit 1: enabled 0: disabled						
	[6]	RW	7	ctrl_lir	mit	PLL control word limit enable 1: limited to 32767 0: not limited						
	[5] RW iscr_limit					ISCR feedback processing 1: The ISCR feedback value is limited. 0: The ISCR feedback value is not limited.						
	[4:0]	RW	7	discard	l_num	Count reset threshold. The count restarts when error bits exist in the input baseband frames and the number of counted packets is less than this threshold.						

PLP_CTRL

PLP_CTRL is a PLP control register.

		Offset A	ldress		Register Name			Total Reset Value		
		0xB	0		PLP_CTRL			0x10		
Bit	7		6	5	4	3	2	1	0	
Name	reserved				post_	static	reserved	common_plp	plp_read	
Reset	0		0	0	1	0	0	0	0	
	Bits	Access	Name		Description					
	[7:5]	-	reserve	ed	Reserved					
					POST signali	ng track mod	e			
					0: The signalitraced.	ing changes in	n single PLP 1	node are dyna	mically	
	[4:3]	RW	post_s	tatic	_		-	y traced in sin 1 post signalir	_	
					2: The signaling changes are not traced in single PLP mode.					
					3: reserved					
	[2]	-	reserve	ed	Reserved					
	[1]	RW	commo	on_plp	Common PLP enable (valid only when common PLP exists). If the signals do not contain common PLP, this bit is fixed at 0.					
					PLP parameter read enable (valid only in Multi PLP mode)					
	[0]	RW	plp_re	ad	1: Only difference PLP parameters are read. The PLP is not switched during demodulation.					
					0: PLPs are switched during demodulation.					

PLP_ID0

PLP_ID0 is a data PLP ID register.

	Offset Address					Registe	r Name	Total Reset Value			
	0xB1					PLP_	_ID0	0x 0 0			
Bit	7 6 5					4	3	2	2 1 0		
Name						data_p	lp_idx				
Reset	0 0 0			0	0 0 0 0				0		
	Bits Access Name			!	Description						
	[7:0]	RW	T	data_p	lp_idx	Data PLP ID					

PLP_ID1

PLP_ID1 is a common PLP ID register.

	Offset Address 0xB2					Register Name PLP ID1			Total Reset Value 0x04		
Bit	7 6 5				5	4	-			0	
Name						common	_plp_idx				
Reset	0	0 0			0	0 0 1 0 0					
	Bits Access Name			Name		Description					
	[7:0] RW		commo	on_plp_idx	Common PL1	P ID					

TPS

TPS is a signal parameter register.

			Address		Register Name TPS			Total Reset Value 0x00			
Bit	7		6	5	4	3	2	1	0		
Name	t_tps_o	k 11	_pre_ok	bw_ext		gi_mode		t2_base_lite	11_post_scr		
Reset	0 0 0			0	0	0	0	0	0		
	Bits Access Name				Description	1					
	[7] RO t_tps_ok			ok	Channel parameter check completion indicator for DVB-T signals						
	[6] RO l1_pre_ok			_ok	PRE signalin	g check comp	letion indicat	or for DVB-T	2 signals		
	[5]	RO	bw_ex	t	Bandwidth mode 1: extended bandwidth 0: common bandwidth						
	[4:2] RO gi_mode				Guard intervalues: 000: 1/32 001: 1/16 010: 1/8 011: 1/4 100: 1/128 101: 19/128 110: 19/256 Other values:						
	[1]	RO	t2_bas	e_lite	T2_base_lite indicator (valid only when the standard V1.3.1 is used and the current signals are in Lite mode)						

			Whether POST signaling is scrambled
[0]	RO	l1_post_scr	1: scrambled
			0: not scrambled

STREAM_TYPE

STREAM_TYPE is a data stream type indicator register.

		Of	fset Ad	dress		Register Name			Total Reset Value		
			0xB4	ļ		STREAM_TYPE			0x00		
Bit	7	7 6 5			5	4 3 2 1			0		
Name						stream_type					
Reset	0 0			0	0	0	0	0	0	0	
	Bits Access			Name Description							
						Type of DVB	3-T2 input dat	a streams			
						0x00: TS					
	[7:0] RO			stream_type		0x01: GS					
					0x02: TS and GS						
						0x03–0xFF: reserved					

CODE_RATE_DVBT

CODE_RATE_DVBT is a DVB-T internal code rate register.

		Of	fset Ad	ldress		Register	r Name	Total Reset Value			
			0xB4	1		CODE_RA	TE_DVBT	0x00			
Bit	7 6 5			5	4	3	2	2 1 0			
Name					reserved			code_rate_l			
Reset	0	0 0 0			0	0	0	0 0 0			
	Bits	Bits Access Name			!	Description					
	[7:3]	7:3] - reserved			ed	Reserved					

[2:0]	RO	code_rate_l	Code rate of streams with a low priority in DVB-T hierarchical mode or internal code in non-hierarchical mode 000: 1/2 001: 2/3 010: 3/4 011: 5/6 100: 7/8 Other values: reserved
-------	----	-------------	---

TPS_DVBT

TPS_DVBT is a DVB-T signal parameter register.

		Off	fset Ad 0xB5			Registe TPS_I		Total Reset Value 0x00			
Bit	7		(6	5	4	3	2	1	0	
Name		mo	od			hier indepth code_rate					
Reset	0 0			0	0	0 0 0 0				0	
	Bits	Bits Access Nam			;	Description					
	[7:6] RO mod					Constellation 00: QPSK 01: 16QAM 10: 64QAM Other values: reserved					
	[5:4] RO hier [3] RO indepth					Hierarchical (00: non-hiera 01: alpha = 1 10: alpha = 2 11: alpha = 4	rchical				
					h	Interleaving mode 1: indepth interleaving 0: normal interleaving					

[2:0]	RO	code_rate_H	Code rate of streams with a high priority in DVB-T hierarchical mode or internal code in non-hierarchical mode 000: 1/2 001: 2/3 010: 3/4 011: 5/6 100: 7/8 Other values: reserved
-------	----	-------------	--

PAPR_L1MOD

PAPR_L1MOD is a DVB-T2 PRE signaling register.

		Offset Ad	ldress		Registe	r Name	Total Reset Value				
		0xB	5		PAPR_L1MOD			0x00			
Bit	7		6	5	4	3	2	1	0		
Name			pa	pr		11_mod					
Reset	0		0	0	0	0	0	0	0		
	Bits	Access	Name	;	Description						
	[7:4] RO papr				PAPR parameter						
	[3:0] RO I1_mod				POST signali 0000: BPSK 0001: QPSK 0010: 16QAM 0011: 64QAM Other values:	M M	on				

PP_VERSION

PP_VERSION is a DVB-T2 PRE signaling register.

		Offset A	Address B8		Register Name Total Reset Value PP_VERSION 0x00				alue		
Bit	7		6	5	4	3	2	1	0		
Name			pilot	oattern			t2_ve	ersion			
Reset	0		0	0	0	0	0	0	0		
	Bits	Access	ss Name Des		Description	Description					
	[7:4]	RO			Pilot pattern 0000: PP1 0001: PP2 0010: PP3 0011: PP4 0100: PP5 0101: PP6 0110: PP7 0111: PP8 Other values:	reserved					
	[3:0]	RO t2		sion	T2 standard v 0000: 1.1.1 0001: 1.2.1 0010: 1.3.1 Other values:						

NUM_T2_FRM

NUM_T2_FRM is a DVB-T2 PRE signaling register.

		Offset Address				Register	r Name	Total Reset Value			
			0xB9)		NUM_T	2_FRM	0x00			
Bit	7			6	5	4	3	2	1	0	
Name						num_t	2_frm				
Reset	0		(0	0	0	0	0	0	0	
			Name	!	Description						
	[7:0]	RO	1	num_t	2_frm	Number of Ta	2 frames in ea	ch super fran	ne of T2 signa	ıls	

LDATA_L

LDATA_L is a DVB-T2 PRE signaling register.

		Offset Address				Registe	r Name	Total Reset Value			
			0xBA	1		LDAT	TA_L	0x 0 0			
Bit	7			6	5	4	3	2	1	0	
Name						num_da	t_sym_l				
Reset	0			0	0 0 0		0	0	0		
	Bits	Ac	ccess Name			Description					
	[7:0]	RO		num_d	at_sym_l	Lower bits of	the signed nu	ımber in each	T2 frame		

LDATA_H

LDATA_H is a DVB-T2 PRE signaling register.

		Offset A	Address		Registe	r Name	Total Reset Value			
		0x	3B		LDAT	TA_H	0x00			
Bit	7		6	5	4	3	2	1	0	
Name			rese	reserved			num_dat_sym_h			
Reset	0		0	0	0	0	0	0	0	
	Bits	Access	Name	!	Description					
	[7:4]	RO	reserv	ed	Reserved					
	[3:0]	RO	num_c	lat_sym_h	Upper bits of	the signed nu	ımber in each	T2 frame		

NUM_PLP

NUM_PLP is a DVB-T2 PRE signaling register.

		Offset Address				Registe	r Name		Total Reset Value		
			0xBF	•		NUM	_PLP		0x00		
Bit	7		(5	5	4	3	2	1	0	
Name						num	_plp				
Reset	0		()	0	0	0	0	0	0	
	Bits	Aco	cess	Name		Description					
	[7:0]	RO)	num_p	olp	Number of Pl	LPs in T2 sign	nals			

PLP_ID

PLP_ID is a DVB-T2 POST signaling register.

		Offset Address				Registe	r Name		Total Reset Value			
			0xC6			PLP	_ID		0x 0 0			
Bit	7		(5	5	4	3	2	1	0		
Name						plp	_id					
Reset	0		(0	0	0 0 0 0						
	Bits	Access Name				Description						
	[7:0] RO plp_id				ID of the currently selected PLP (specified by 0xB1)							

PLP_TYPE

PLP_TYPE is a DVB-T2 POST signaling register.

		Offset Ac			Register Name PLP_TYPE			Total Reset Value 0x00		
Bit	7		6	5	4	3	2	1	0	
Name		plp	_type				plp_pay_load			
Reset	0		0	0	0	0	0	0	0	
	Bits	Access	Name	!	Description					
	[7:5] RO		plp_type		Type of the c 000: commor 001: type 1 P 010: type 2 P Other values:	r PLP LP LP	ted PLP			
	[4:0] RO		plp_pa	y_load	Payload of th 00000: GFPS 00001: GCS 00010: GSE 00011: TS Other values:		lected PLP			

PLP_GRP_ID

PLP_GRP_ID is a DVB-T2 POST signaling register.

		Offset Address 0xC8				Register		Total Reset Value			
			0xC8	3		PLP_G	RP_ID		0x00		
Bit	7			6	5	4	3	2	1	0	
Name					plp_grp_id						
Reset	0			0	0	0	0	0	0	0	
	Bits	its Access Nam		Name	Name Description						
	[7:0] RO plp_grp		p_id	Group ID of t	the currently s	selected PLP					

PLP_PARAM

PLP_PARAM is a DVB-T2 POST signaling register.

			Address		Register Name Total Reset Value PLP_PARAM 0x00						
Bit	7		6	5	4	3	2	1	0		
Name			plp_cod			plp_mod		plp_rotation	plp_fec_type		
Reset	0		0	0	0	0	0	0	0		
	Bits	Acces	s Name	<u> </u>	Description						
	[7:5]	RO plp_cod			LDPC code r Base mode 000: 1/2 001: 3/5 010: 2/3 011: 3/4 100: 4/5 101: 5/6 Other values: Lite mode 000: 1/2 001: 3/5 010: 2/3 011: 3/4 110: 1/3 111: 2/5 Other values:	reserved	rently selected	I PLP			
	[4:2]	RO plp_mod			Constellation of the currently selected PLP 000: QPSK 001: 16QAM 010: 64QAM 011: 256QAM Other values: reserved						
	[1]	RO plp_rotation		Constellation rotation mode of the currently selected PLP 0: standard constellation 1: rotated constellation							
	[0]] RO plp_fec_type			FEC frame type of the currently selected PLP 0: 16K LDPC 1: 64K LDPC						

ADC_CTRL0

ADC_CTRL0 is an ADC IP control register.

		Of	fset Ad			Register Name ADC_CTRL0			Total Reset Value 0x41	
Bit	7			6	5	4	3	2	1	0
Name	adi2c_e	n	adc_c	clk_on			adc_c	lk_sel		
Reset	0			1	0	0	0	0	0	1
	Bits	Aco	cess	Name	:	Description	ı			
	[7]	RW	I	adi2c_	en	I ² C enable of mounted on t When c_adi2 when c_adi2c	he repeater.) c_en is 1, the	repeater com	municates wit	th the ADC;
	[6]	RW	I	adc_cl	k_on	ADC clock in 1: enabled 0: disabled	nput enable			
	[5:0]	RW	I	adc_cl	k_sel	ADC clock so	elect			

ADC_CTRL1

ADC_CTRL1 is an ADC IP control register.

		Of	ffset Ad	dress		Register Name			Total Reset Value		
			0x01			ADC_C	CTRL1		0xC0		
Bit	7			6	5	4	3	2	1	0	
Name	adc_enavc	min	adi2c_	_resetz	adi2c_addr1	adi2c_addr0	pllout_sel	ts_testout	test_clk_en	i2c_xo_clk	
Reset	1			1	0	0	0	0	0	0	
	Bits	its Access I		Name		Description					
	[7]			adc_enavcmin		ADC common-mode voltage module enable 1: enabled 0: bypassed					
	[6]	RW	I	adi2c_	resetz	0: reset the A 1: deassert res					
	[5]	RW	<i>I</i>	adi2c_	addr1	I ² C address o	f the ADC				
	[4]	RW	1	adi2c_	addr0	I ² C address o	f the ADC				

[3]	RW	pllout_sel	0: normal mode 1: The fec_err/ts_err pin outputs frequency division signals of PLLs.
[2]	RW	ts_testout	0: normal mode 1: output test data
[1]	RW	test_clk_en	0: normal mode 1: internal PLL frequency division enable (fec_err/ts_err output can be selected by configuring c_pllout_sel)
[0]	RW	i2c vo elk	0: The I ² C works at the crystal oscillator clock. 1: The I ² C works at the clk_dem clock.

ADC_CTRL2

ADC_CTRL2 is an ADC IP control register.

		Offset Ad			Registe		Total Reset Value 0x29				
		0x02	<u></u>		ADC_0	JIKL2		UX29			
Bit	7		6	5	4	3	2	1	0		
Name				adc_bctrl			adc_endoutz	adc_endcr	adc_chsel		
Reset	0		0	1	0	1	0	0	1		
	Bits	Access	Name		Description	l					
	[7:3]	RW	adc_bo	etrl	Bias current control of the ADC. The default value is 0x05.						
	[2]	RW	adc_er	idoutz	0: output nor 1: output 0	mal I/Q data					
	[1]	RW	adc_er	der	Duty cycle restorer enable 1: enabled (used only when the sampling rate fs is greater than or equal to 40 MHz) 0: disabled						
	[0]	RW	adc_cł	isel	{adc_ppsel,adc_ppsel,adc_opsel,adc_opsel,adcoording} {00: single charton dual-charton dual-chart	annel I annel Q anel I/Q interlanel independent	eaving ent frequency of	Ü			

ADC_CTRL3

ADC_CTRL3 is an ADC IP control register.

		Of	fset Ad	ldress		Registe	r Name	Total Reset Value				
			0x03	1		ADC_0	CTRL3		0x01			
Bit	7			6	5	4	3	2	1	0		
Name	adc_pps	el	adc_	prevf	adc_	opm	adc_	bcal	adc_startcal	adc_selof		
Reset	0			0	0	0	0	0	0	1		
	Bits	Aco	cess	Name		Description						
	[7]	RW	I	adc_pp	sel	See the descr	iption of adc_	chsel.				
	[6] DW ada no					ADC auto calibration module enable						
	[6] RW adc_p				evf	0: enabled						
						1: disabled						
						ADC operating mode						
	[5:4]	RW	ī	adc_op	vm	00: power down						
	[3.4]	IX VV	′	auc_op	7111	01/10: standby						
						11: normal						
	[3:2] RW adc_bc			adc_bc	al	ADC backgro	ound calibration	on control				
	[1] RW adc_startcal			artcal	ADC start cal	libration						
	[0] RW add selof				lof.	0: ADC sign-and-magnitude output						
	[0] RW adc_selof				101	1: ADC two's complement output						

ADC_FSCTRL

ADC_FSCTRL is an ADC IP control register.

		Of	ffset Ad	ldress		Registe	r Name	Total Reset Value			
			0x04	ļ		ADC_F	SCTRL	0x00			
Bit	7	7 6		6	5	4	3	2	1	0	
Name						adc_	fsctrl				
Reset	0			0 0		0 0		0	0	0	
	Bits	Ac	cess	Name	:	Description					
	[7:0]	RW	I	adc_fs	ctrl	ADC output o Gain = 1 + ac					

PLL_LOCK

PLL_LOCK is a PLL lock indicator register.

		Of	fset Ad	dress		Register			Total Reset Value			
			0x05			PLL_LOCK				0x00		
Bit	7		(6	5	4	3	2	1	0		
Name				_lock		adc_rflagi			adc_rflagq			
Reset	0 Bits Access			0	0	0	0	0	0	0		
	Bits	Bits Access			!	Description						
	[7] RO		pll1_lock		PLL1 lock indicator 1: locked 0: unlocked							
	[6] RO pll0_lock				ock	PLL0 lock indicator 1: locked 0: unlocked						
	[5:3] RO adc_rflagi				lagi	Overflow flag of channel I input signals of the ADC						
	[2:0] RO adc_rflagq					Overflow flag of channel Q input signals of the ADC						

PLL0_FRAC_L

PLL0_FRAC_L is a PLL0 frequency divider decimal part low register.

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value			
			0x06			PLL0_F	RAC_L	0x 0 0			
Bit	7	6		6	5	4 3		2	1	0	
Name						pll0_frac_l					
Reset	0	0 0			0 0 0			0	0	0	
	Bits	Ac	cess	Name		Description					
	[7:0] RW pll0_frac_l				ac_l	LSB of the decimal part of the PLL0 feedback divider				-	

PLL0_PD

PLL0_PD is a PLL0 power down control register.

		Of	fset Addr 0x07	ress		Register Name Total Reset Value PLL0_PD 0x40					
Bit	7		(6	5	4	3	2	1	0	
lame	d –			4phasepd	pll0_foutvcopd	d pll0_pd pll0_frac_h					
Reset	0			1	0	0	0	0	0	0	
	Bits	Acc	ess	Name		Descriptio	n				
	[7]	RW		pll0_fou	ıtpostdivpd	PLL0 foutpolice 1: power do 0: power on		down			
	[6]	RW		pll0_fou	ıt4phasepd	PLL0 fout4phase power down 1: power down 0: power on					
	[5]	RW		pll0_fou	ıtvcopd	PLL0 foutvco power down 1: power down 0: power on					
	[4]	RW		pll0_pd		PLL0 power down 1: power down 0: power on					
	[3:0]	RW		pll0_fra	c_h	MSB of the decimal part of the PLL0 feedback divider					

PLL0_POSTDIV

PLL0_POSTDIV is a PLL0 post divider configuration register.

		Of	ffset Ad	dress		Register	r Name		Total Reset Value		
			0x08			PLL0_PC	OSTDIV		0x11		
Bit	7	, 0			5	4	3	2	1	0	
Name	pll0_dsmpd pll0_d			dacpd		pll0_postdiv2		pll0_postdiv1			
Reset	0	0		0	1	0	0	0	1		
	Bits	Ac	cess	Name		Description					
	[7] RW		I	pll0_d:	smpd	PLL0 down Delta-Sigma modulator power down 1: power down 0: power on					

[6]	RW	pll0_dacpd	PLL0 noise cancellation DAC power down 1: power down 0: power on
[5:3]	RW	pll0_postdiv2	PLL0 post divider 2
[2:0]	RW	pll0_postdiv1	PLL0 post divider 1

PLL0_FBDIV

PLL0_FBDIV is a PLL0 feedback divider register.

		Of	fset Ad			Register Name T PLL0_FBDIV			Total Reset Va 0x20	alue
Bit	7	6		5	5	4 3		2	1	0
Name						pll0_fbdiv				
Reset	0 0)	1	0	0	0	0	0	
	Bits Access Name			!	Description					
	[7:0] RW pll0_fbdiv			odiv	PLL0 feedbac	ck divider				

PLL0_REFDIV

PLL0_REFDIV is a PLL0 reference divider register.

		Of	fset Ad 0x0A			Register PLL0_R			Total Reset Value 0x01			
Bit	7			6	5	4 3 2 1 0						
Name				bypass		pll0_refdiv						
Reset	0 Acce			0 0		0	0	0	0	1		
	Bits	Sits Access		Name	;	Description						
	[7] RO			adc_rd	ly	Indication of the ADC working state 1: ready 0: not ready						
	[6]	RW	7	pll0_b	ypass	PLL0 bypass 1: bypassed 0: normal mo						
	[5:0] RW pll0_refdiv			efdiv	PLL0 reference divider							

PLL0_SPREAD

PLL0_SPREAD is a PLL0 spread spectrum mode configuration register.

		Offset Ad	ddress		Regist	er Name		Total Reset Value					
		0x01	3		PLLO_	SPREAD		0x01					
Bit	7		6	5	4	3	2	1	0				
Name	reserved	i		pll0_spread		pll0_downsprea d	pll0_disable_ssc g	pll0_rst_req	pll0_cken				
Reset	0		0	0	0	0	0	0	1				
	Bits	Access	Name	!	Description	1							
	[7]	_	reserv	ed	Reserved	Reserved							
	[6:4] RW pll0_spread				PLL0 spectru	ım spread mode	e select						
	[3]	RW	pll0_d	ownspread	PLL0 downs	PLL0 downspread mode select							
	[2]	RW	pll0_d	isable_sscg	PLL0 synchr	PLL0 synchronization clock gate enable							
	Г11	RW	pll0 rs		PLL0 spectru 1: reset	ım spread mode	e reset						
	[1]	IX VV	pno_rs		0: deassert re	eset							
					PLL0 spectru	ım spread mode	e clock enable						
	[0] RW pll0_cken				1: enabled								
					0: disabled								

PLL_DIVVAL

PLL_DIVVAL is a PLL spread spectrum mode output divider control register.

		Off	fset Ad	ldress		Register	r Name	Name Total Reset Value			
			0x0C			PLL_DI	VVAL	0x00			
Bit	7		(6	5	4	3	2	1	0	
Name				pll1_c	divval			pll0_divval			
Reset	0	0 0			0	0 0 0					
	Bits	Acc	ess	Name		Description					
	[7:4] RW pll1_divva			ivval	VCO output o	divider of the	PLL1 spectru	m spread mod	de		
	[3:0] RW pll0_divval			ivval	VCO output divider of the PLL0 spectrum spread mode						

PLL1_FRAC_L

PLL1_FRAC_L is a PLL1 frequency divider decimal part low register.

		Of	ffset Ad			Register			Total Reset Value			
	0x0D					PLL1_F	RAC_L		0x 0 0			
Bit	7			6	5	4	3	2	1	0		
Name	pll1_frac_l											
Reset	0			0	0	0	0	0	0			
	Bits Access Name				Description							
	[7:0] RW pll1_frac_l LSB of the de					ecimal part of the PLL1 feedback divider						

PLL1_PD

PLL1_PD is a PLL1 power down control register.

		Of	fset Addr 0x0E	ress		Registe			Total Reset Value				
						PLL1_PD 0x48							
Bit	7		(6	5	4	3	2	1	0			
Name	pll1_foutpost d	divp	pll1_fout	4phasepd	pll1_foutvcopd	pll1_pd	pll1_pd pll1_frac_h						
Reset	0		1	1	0	0	1	0	0	0			
	Bits	Acc	ess	Name		Descriptio	n						
						PLL1 foutp	ostdiv power	down					
	[7]	RW		pll1_fou	ıtpostdivpd	1: power down							
						0: power on							
						PLL1 fout4phase power down							
	[6]	RW		pll1_fou	ıt4phasepd	1: power down							
						0: power on							
						PLL1 foutvco power down							
	[5]	RW		pll1_fou	itvcopd	1: power down							
						0: power on							
						PLL1 power down							
							1: power down						
						0: power on							
	[3:0]	RW		pll1_fra	c_h	MSB of the decimal part of the PLL1 feedback divider							

PLL1_POSTDIV

PLL1_POSTDIV is a PLL1 post divider configuration register.

		Of	ffset Ad	dress		Registe	r Name	Total Reset Value				
			0x0F	•		PLL1_PC	OSTDIV		0x12			
Bit	7		6	5	4	3	2	1	0			
Name	pll1_dsm	pd	pll1_	dacpd		pll1_postdiv2			pll1_postdiv1			
Reset	0		0		0	1	0	0	1	0		
	Bits Access Name					Description						
	[7] RW pll1_dsmpd				smpd	PLL1 down Delta-Sigma modulator power down 1: power down 0: power on						
	[6]	RW	7	pll1_da	acpd	PLL1 noise c 1: power dow 0: power on		AC power do	wn			
	[5:3]	RW	I	pll1_p	ostdiv2	PLL1 post divider 2						
	[2:0]	RW	7	pll1_p	ostdiv1	PLL1 post di	vider 1					

PLL1_FBDIV

PLL1_FBDIV is a PLL1 feedback divider register.

		Of	fset Ad	dress		Register Name			Total Reset Value			
	0x10					PLL1_I	FBDIV	0x19				
Bit	7			6	5	4	3	2	1	0		
Name						p111_	fbdiv					
Reset	0			0	0	1	1	0	0	1		
	Bits A		ccess Name		Description							
	[7:0] RW		I	pll1_fbdiv		PLL1 feedback divider						

PLL1_REFDIV

PLL1_REFDIV is a PLL1 reference divider register.

		Of	ffset Ad	dress		Registe	r Name		Total Reset Value			
			0x11			PLL1_R	REFDIV	0x01				
Bit	7	7		6	5	4	3	2	1	0		
Name	reserve	erved pll1_		bypass	pll1_refdiv							
Reset	0		0		0	0	0	0	0	1		
	Bits Acc		cess	ss Name		Description						
	[7]	-	reserve		ed	Reserved						
						PLL1 bypass						
	[6] RW			pll1_bypass		1: bypassed						
						0: normal mode						
	[5:0]	RW	I	pll1_re	efdiv	PLL1 reference divider						

PLL1_SPREAD

PLL1_SPREAD is a PLL1 spread spectrum mode configuration register.

		Offset A			-	er Name SPREAD	Total Reset Value 0x01					
Bit	7		6	5	4	3	2	1	0			
Name	reserved	1		pll1_spread		pll1_downsprea d	pll1_disable_ssc g	pll1_rst_req	pll1_cken			
Reset	0		0	0	0	0	0	0	1			
	Bits	Access	Name	9	Description							
	[7]	reserved				Reserved						
	[6:4]	RW	pll1_s	pread	PLL1 spectrum spread mode select							
	[3]	RW	pll1_d	lownspread	PLL1 downspread mode select							
	[2]	RW	pll1_d	lisable_sscg	PLL1 synchronization clock gate enable							
	PLL1 spectrum spread mode reset 1: reset 0: deassert reset PLL1 spectrum spread mode clock enable 1: enabled 0: disabled											

IO_CTRL0 is an I/O control register.

	Offset Address						Register Name Total Reset Value			lue		
	0x13			IO_C	ΓRL0		0x00					
Bit	7			6	5	4	3	2	1	0		
Name	ts_sync_	sl			ts_sync_ds		ts_data_sl		ts_data_ds			
Reset	0 0 0		0	0	0	0	0	0				
	Bits	Acc	ess	Name		Description						
	[7] RW ts_sync_sl				z_sl	ts_sync I/O speed control 1: high speed 0: low speed						
	[6:4] RW ts_sync_ds			ts_sync I/O driving current 000: 4 mA 001: 7 mA 010: 10 mA 011: 12 mA 100: 14 mA 101: 16 mA 110: 18 mA 111: 20 mA								
	[3]	RW	•	ts_data	_sl	ts_data I/O sp 1: high speed 0: low speed						
	[2:0] RW ts_data_ds				_ds	ts_data I/O do 000: 4 mA 001: 7 mA 010: 10 mA 011: 12 mA 100: 14 mA 101: 16 mA 110: 18 mA 111: 20 mA	riving current					

IO_CTRL1

IO_CTRL1 is an I/O control register.

		Offset Ac			Register Name To IO_CTRL1			Total Reset V	Otal Reset Value	
Bit	7		6	5	4	3	2	1	0	
Name	ts_err_s	1		ts_err_ds			ts_vld_sl		ts_vld_ds	
Reset	0		0	0	0	0	0	0	0	
	Bits	Access	Name	2	Description		1			
	[7] RW ts_err_sl [6:4] RW ts_err_ds			ts_err I/O spe 1: high speed 0: low speed						
				_ds	ts_err I/O driving current 000: 4 mA 001: 7 mA 010: 10 mA 011: 12 mA 100: 14 mA 101: 16 mA 110: 18 mA 111: 20 mA					
	[3:1]	RW	ts_vld	_sl	ts_vld I/O spo 1: high speed 0: low speed					
	[0] RW ts_vld_ds				ts_vld I/O dri 000: 4 mA 001: 7 mA 010: 10 mA 011: 12 mA 100: 14 mA 101: 16 mA 110: 18 mA 111: 20 mA	ving current				

IO_CTRL2 is an I/O control register.

			t Address 0x15		Registe			Total Reset Va	llue		
Bit	7		6	5	4	3	2	1	0		
Name	clkout_s	sl		clkout_ds		ts_clk_sl		ts_clk_ds			
Reset	0		0	0	0	0	0	0	0		
	Bits	Acces	s Naı	me	Description	l					
	r=-				clkout I/O sp						
	[7]	RW	clko	out_sl	1: high speed 0: low speed	1: high speed					
						ivin a ayımant					
					clkout I/O dri	iving current					
					000: 4 IIIA 001: 7 mA						
					010: 10 mA						
	[6:4]	RW	clko	out_ds	011: 12 mA						
					100: 14 mA						
				101: 16 mA							
					110: 18 mA						
					111: 20 mA						
	507				ts_clk I/O spe						
	[3]	RW	ts_c	clk_sl 1: high speed							
					0: low speed						
					ts_clk I/O driving current						
					000: 4 mA						
					001: 7 mA 010: 10 mA						
	[2:0]	RW	ts c	lk_ds	010: 10 m/s 011: 12 mA						
	. ,			_	100: 14 mA						
					101: 16 mA						
					110: 18 mA						
					111: 20 mA						

IO_CTRL3 is an I/O control register.

		Offset Ac			Register Name Total Reset Value IO_CTRL3 0xC0				lue		
Bit	7		6	5	4	3	2	1	0		
Name		sdc_	clk_sel		fec_err_hiz	fec_err_sl		fec_err_ds			
Reset	1		1	0	0	0	0	0	0		
	Bits	Access	Name	!	Description						
	[7:5]	RW	sdc_cl	k_sel	SDC clock pl	nase					
	[4]	RW	fec_er	r_hiz	fec_err I/O output mode 1: high impedance 0: normal mode						
	[3]	RW	fec_er	r_sl	fec_err I/O speed 1: high speed 0: low speed						
	[2:0] RW fec_err_ds 011 100 101 110					riving current					

IO_CTRL4 is an I/O control register.

		Offset A			Register Name Total Reset Value IO_CTRL4 0x00			alue			
Bit	7	7 6 5		4	3	2	1	0			
Name		lock_sel		lock_val	clkou	ıt_sel	clkout_hiz	lock_hiz	ts_hiz		
Reset	0		0	0	0	0	0	0	0		
	Bits	Access	Name		Description	ı					
	[7:6]	RW	lock_s		Lock pin output signal select 00: Demod lock indicator 01: TXD 10: future extension frame (FEF) part indicator 11: lock_val value						
	[5]	RW	lock_v	al	Lock pin output signal						
	[4:3]	RW	clkout	_sel	clkout I/O ou 00: crystal os 01: FEF part 10: Demod lo 11: gpio_val	cillator clock indicator ock indicator					
	[2]	clkout I/O output mode									
	[1]	RW	lock_h	iiz	Lock I/O output mode 1: high impedance 0: normal mode						
	[0]	RW	ts_hiz		TS I/O output mode 1: high impedance 0: normal mode						

SDR_CTRL

SDR_CTRL is an SDR control register.

	Offset Address 0x18					Register Name SDR_CTRL			Total Reset Value 0x24			
Bit	7			6	5	4	3	2	1	0		
Name	sdr_dq_	sl		sdr_c	lq_ds	sdr_addr_sl	sdr_ac	ddr_ds	sdr_etron	gpio_val		
Reset	0			0	1	0	0	1	0	0		
	Bits	Acc	ess	Name		Description						
	[7] RW sdr_dq_sl				_sl	sdr_dq I/O speed 1: high speed 0: low speed						
	[6:5] RW sdr_dq_ds					sdr_dq I/O driving current 00: 4 mA 01: 7 mA 10: 10 mA 11: 12 mA						
	[4]	RW		sdr_ad	dr_sl	sdr_addr I/O speed 1: high speed 0: low speed						
	sdr_addr I/O driving current 00: 4 mA [3:2] RW sdr_addr_ds 01: 7 mA 10: 10 mA 11: 12 mA											
	[1] RW sdr_etron					Packaged SDRAM select 1: Etron 0: Winbond						
	[0]	RW		gpio_v	al	GPIO output	signal contro	1				

Contents

3 Hardware Design	3-1
3.1 Package and Pins	3-1
3.1.1 Package and Pinout	3-1
3.1.2 Pin Descriptions	3-4
3.1.3 Summary of I/O Function Configuration Registers	3-10
3.1.4 Description of I/O Function Configuration Registers	3-10
3.1.5 Software Multiplexed Pins	3-12
3.2 Electrical Specifications	3-13
3.2.1 Power Consumption Specifications	3-13
3.2.2 Rated Working Conditions	3-13
3.2.3 Recommended Working Conditions	3-14
3.2.4 Power-On and Power-Off Sequences	3-14
3.2.5 DC Electrical Specifications	3-14
3.3 Design Recommendations for Schematic Diagrams	3-15
3.3.1 Design Recommendations for the Small System	3-15
3.3.2 Power Supplies	3-20
3.3.3 Unused Pins	3-22
3.4 PCB Design Recommendations	3-22
3.4.1 Stack and Layout	3-22
3.4.2 PCB Design Recommendations for the Small System	3-23
3.4.3 PCB Design Recommendations for Digital and Analog Interfaces	3-24
3.5 Heat Design Recommendations	3-26
3.5.1 Package Thermal Resistance	3-26
3.5.2 Recommended Thermally Conductive Materials	3-27
3.5.3 Schematic Diagram Design.	3-27
3.5.4 PCB Design.	3-27
3.6 Soldering Process Recommendations	3-28
3.6.1 Overview	3-28
3.6.2 Process Preparations	3-29
3.7 Moisture-Sensitive Specifications	3-29
3.7.1 Storage and Usage	3-29
3.7.2 Rebaking	3-30

3.8 Interface Timings	3-31
3.8.1 Output Interface Timings	
3 8 2 Output Timing Parameters	3-32

Figures

Figure 3-1 Package views.	3-2
Figure 3-2 Package dimensions	3-3
Figure 3-3 Pin map	3-4
Figure 3-4 Recommended connection mode of the crystal oscillator	3-15
Figure 3-5 Typical reset circuit.	3-16
Figure 3-6 Topology when Hi3137 V100 connects to an STB decoder chip in parallel	3-17
Figure 3-7 Topology when Hi3137 V100 connects to an STB decoder chip in serial	3-18
Figure 3-8 Topology when the AGC interface connects to a tuner.	3-18
Figure 3-9 Topology when the I ² C interface of Hi3137 V100 connects to an STB decoder chip	3-19
Figure 3-10 Interconnection topology of TS_OUT[0:7] and an STB decoder chip when the number clayers is greater than 2	
Figure 3-11 Interconnection topology of TS_CLK/TS_SYNC/TS_VALID and an STB decoder chip number of PCB layers is greater than 2	
Figure 3-12 Interconnection topology of TS_OUT[0:7] and an STB decoder chip when the number of layers is 2	
Figure 3-13 Interconnection topology of TS_VAILD/TS_SYNC/TS_CLK and an STB decoder chip number of PCB layers is 2	
Figure 3-14 VDD33_IO topology	3-21
Figure 3-15 AVDD11_ADC topology	3-22
Figure 3-16 Board layout	3-23
Figure 3-17 Soldering temperatures	3-28
Figure 3-18 Timing in TS parallel output mode	3-32
Figure 3-19 Timing in 1-bit TS serial output mode	3-32
Figure 3-20 Timing in 2-bit TS serial output mode	3-32
Figure 3-21 TS_CLK output timing	3-33

Tables

Table 3-1 Pin arrangement	3-4
Table 3-2 I/O pin types	3-5
Table 3-3 ADC pins	3-6
Table 3-4 I ² C pins	3-7
Table 3-5 TS pins.	3-8
Table 3-6 PLL pins	3-9
Table 3-7 OSC pins.	3-9
Table 3-8 PG pins	3-9
Table 3-9 SYS pins	3-10
Table 3-10 I/O function configuration registers (base address: 0x00)	3-10
Table 3-11 Software multiplexed pins LOCK and CLK_OUT	3-12
Table 3-12 Pin multiplexing signals	3-12
Table 3-13 Power consumption specifications	3-13
Table 3-14 Rated working conditions	3-13
Table 3-15 Recommended working conditions	3-14
Table 3-16 DC electrical specifications	3-14
Table 3-17 Address configurations 1	3-16
Table 3-18 Address configurations 2	3-16
Table 3-19 Thermal resistance of the package	3-26
Table 3-20 Recommended thermally conductive materials	3-27
Table 3-21 Reflow soldering specifications.	3-29
Table 3-22 Floor life	3-29
Table 3-23 Rebaking reference	3-30
Table 3-24 TS output timing parameters	3-33

3 Hardware Design

3.1 Package and Pins

3.1.1 Package and Pinout

Package

Hi3137 V100 uses the mapped quad flat non-leaded (MQFN) package. It has 48 pins, its body size is 6 mm x 6 mm (0.24 in. x 0.24 in.), and its lead pitch is 0.4 mm (0.02 in.). Figure 3-1 shows the package views. Figure 3-2 shows package dimensions.

Figure 3-1 Package views

Figure 3-2 Package dimensions

	Dimen	sion in	mm	Dimension in inch			
Symbol	MIN	МОМ	MAX	MIN	NOM	MAX	
Α	0.80	0.85	0.90	0.031	0.033	0.035	
A1	0.00	0.02	0.05	0.000	0.001	0.002	
А3		0.20 REF			0.008 RE	F	
b	0.15	0.20	0.25	0.006	0.008	0.010	
D/E	5.90	6.00	6.10	0.232	0.236	0.240	
D2/E2	3.85	4.00	4.15	0.152	0.157	0.163	
е	0.40 BSC 0.016 BSC			С			
L	0.30	0.40	0.50	0.012	0.016	0.020	
K	0.20			0.008			
R	0.075			0.003			
aaa		0.10			0.004		
bbb		0.07			0.003		
ссс		0.10			0.004		
ddd	0.05 0.002						
eee		0.08		0.003			
fff		0.10			0.004		

NOTE:

- 1. CONTROLLING DIMENSION: MILLIMETER
- 2. REFERENCE DOCUMENT: JEDEC MO-220.

Pin Map

Figure 3-3 shows the pin map.

Figure 3-3 Pin map

3.1.2 Pin Descriptions

Pin Arrangement

Table 3-1 lists the pins of Hi3137 V100 in order.

Table 3-1 Pin arrangement

Position	Pin Name	Position	Pin Name
1	DVDD11	25	DVDD33
2	TS_DATA0	26	SCLT
3	TS_DATA1	27	DVDD11
4	TS_DATA2	28	AVDD11_PLL

Position	Pin Name	Position	Pin Name
5	TS_DATA3	29	AVSS_PLL
6	TS_DATA4	30	AVDD33_PLL
7	DVDD33	31	AVDDREF
8	TS_DATA5	32	AGNDREF
9	TS_DATA6	33	AVDD11_ADC
10	TS_DATA7	34	AVSS_ADC
11	TS_ERR	35	VINP
12	DVDD11	36	VINN
13	FEC_ERR	37	DVDD11
14	FUNC_SEL	38	ADDR1
15	RSTN	39	AGC
16	LOCK	40	ADDR0
17	DVDD33	41	DVDD33
18	DVDD11	42	SDA
19	CLK_OUT	43	SCL
20	DVDD33	44	DVDD11
21	DVDD11	45	DVDD33
22	XOUT	46	TS_SYNC
23	XIN	47	TS_VALID
24	SDAT	48	TS_CLK

Pin Types

Table 3-2 describes the I/O pin types.

Table 3-2 I/O pin types

I/O	Description
Ι	Input signal
I_{PD}	Input signal, internal pull-down
$I_{ m PU}$	Input signal, internal pull-up
I_S	Input signal with a Schmitt trigger
I_{SPD}	Input signal with a Schmitt trigger, internal pull-down

I/O	Description
I _{SPU}	Input signal with a Schmitt trigger, internal pull-up
О	Output signal
O _{OD}	Output open drain (OD)
I/O	Bidirectional (input/output) signal
I _{PD} /O	Bidirectional signal, input pull-down
I _{PU} /O	Bidirectional signal, input pull-up
I _{SPU} /O	Bidirectional signal with a Schmitt trigger, input pull-up
I _{PD} /O _{OD}	Bidirectional signal, input pull-down and output OD
I _{PU} /O _{OD}	Bidirectional signal, input pull-up and output OD
I _S /O	Bidirectional signal, input with a Schmitt trigger
I _S /O _{OD}	Bidirectional signal, input with a Schmitt trigger and output OD
XIN	Crystal oscillator input
XOUT	Crystal oscillator output
P	Power supply
G	Ground (GND)

ADC Pins

Table 3-3 describes ADC pins.

Table 3-3 ADC pins

Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
34	AVSS_A DC	G	-	-	ADC GND
33	AVDD11 _ADC	P	-	1.1	1.1 V ADC power
35	VINP	I	-	1.1	ADC differential input. The peak voltage in both differential input and single-end input modes is 1 Vpp.
36	VINN	I	-	1.1	ADC differential input. The peak voltage in both differential input and single-end input modes is 1 Vpp.

Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
32	AGNDRE F	I	-	-	ADC negative reference signal, which connects to a 22 Ω resistor in serial and then to GND
31	AVDDRE F	I	-	1.1	ADC positive reference signal, which connects to the 1.1 V analog power

I²C Pins

Table 3-4 lists the I²C pins.

Table 3-4 I²C pins

Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
40	ADDR0	I	3	3.3	Hi3137 V100 device address 0
38	ADDR1	I	3	3.3	Hi3137 V100 device address 1
26	SCLT	O _{OD}	3	3.3/5	I ² C bus clock output, OD. This pin controls the tuner communication interface. It must connect to a pull-up resistor and then to the 3.3 V or 5 V power. The power voltage depends on the I ² C level of the tuner.
24	SDAT	I _S /O _O	3	3.3/5	I ² C bus data output, OD. This pin controls the tuner communication interface. It must connect to an external pull-up resistor and then to the 3.3 V or 5 V power. The power voltage depends on the I ² C level of the tuner.
43	SCL	I _S	3	3.3	Clock input bus of the I ² C bus. This pin must connect to an external pull-up resistor and then to the 3.3 V power.
42	SDA	I _S /O _O	3	3.3	Data bus of the I ² C bus, OD output. This pin must connect to an external pull-up resistor and then to the 3.3 V power.

AGC and TS Pins

Table 3-5 describes TS pins.

Table 3-5 TS pins

Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
39	AGC	O _{OD}	8	3.3/5	AGC output, OD. This pin is used to control the tuner gain and can connect to a pull-up resistor and then to the 3.3 V or 5 V power.
48	TS_CLK	О	4	3.3	TS clock of the Demod output
2	TS_DA TA0	О	4	3.3	TS_DATA0 Demod data output
3	TS_DA TA1	О	4	3.3	TS_DATA1 Demod data output
4	TS_DA TA2	О	4	3.3	TS_DATA2 Demod data output
5	TS_DA TA3	О	4	3.3	TS_DATA3 Demod data output
6	TS_DA TA4	0	4	3.3	TS_DATA4 Demod data output
8	TS_DA TA5	0	4	3.3	TS_DATA5 Demod data output
9	TS_DA TA6	О	4	3.3	TS_DATA6 Demod data output
10	TS_DA TA7	О	4	3.3	TS_DATA7 Demod data output
11	TS_ERR	О	4	3.3	TS_ERR TS error indicator
46	TS_SYN C	О	4	3.3	TS_SYNC Demod sync signal output
47	TS_VA LID	О	4	3.3	TS_VALID Demod output data validity indicator, active high

PLL Pins

Table 3-6 describes PLL pins.

Table 3-6 PLL pins

Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
28	AVDD11_PL L	P	-	1.1	1.1 V PLL analog power
30	AVDD33_PL L	P	-	3.3	3.3 V PLL analog power
29	AVSS_PLL	G	-	-	PLL analog GND

OSC Pins

Table 3-7 describes oscillator (OSC) pins.

Table 3-7 OSC pins

Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
19	CLK_OUT	0	4	3.3	Loop-through output of the crystal oscillator clock
23	XIN	I	-	3.3	Crystal oscillator input
24	XOUT	О	-	3.3	Crystal oscillator output

PG Pins

Table 3-8 describes power/ground (PG) pins.

Table 3-8 PG pins

Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
7, 17, 20, 25, 41, 45	DVDD33	P	-	3.3	3.3 V I/O power
1, 12, 18, 21, 27, 37, 44	DVDD11	P	-	1.1	1.1 V core power

SYS Pins

Table 3-9 describes system (SYS) pins.

Table 3-9 SYS pins

Position	Pin Name	Type	Drive Current (mA)	Voltage (V)	Description
14	FUNC_SE L	I_{SPD}	8	3.3	Mode select 0: functional mode 1: reserved
15	RSTN	I_{SPU}	8	3.3	System reset signal input, active low
16	LOCK	О	4	3.3	System lock indicator
13	FEC_ERR	О	4	3.3	System bit error indicator

3.1.3 Summary of I/O Function Configuration Registers

Table 3-10 describes the I/O function configuration registers.

Table 3-10 I/O function configuration registers (base address: 0x00)

Register	Offset Address	Description	Page
IO_CTRL4	0x17	I/O control register	3-10
SDR_CTRL	0x18	I/O control register	3-11

3.1.4 Description of I/O Function Configuration Registers IO_CTRL4

IO_CTRL4 is an I/O control register.

		Offset A			Registe IO_C			Total Reset Value 0x00				
Bit	7		6	5	4	3	2	1	0			
Name		lock_sel		lock_val	clkou	ıt_sel	clkout_hiz	lock_hiz	ts_hiz			
Reset	0		0	0	0	0	0	0	0			
	Bits	Access	Name	;	Description							
	[7:6]	RW	lock_s	el	Lock pin outp 00: Demod lo 01: TXD 10: FEF part 11: lock_val	ock indicator	ect	t				
	[5]	RW	lock_v	al	Programmable output level of the lock pin							
	[4:3]	RW	clkout	_sel	CLK_OUT pin output signal select 00: crystal oscillator clock 01: FEF part indicator 10: Demod lock indicator 11: gpio_val value							
	[2]	RW	clkout	_hiz	CLK_OUT I/ 1: high imped 0: normal mo	lance	le					
	[1]	RW	lock_h	iz	LOCK I/O ou 1: high imped 0: normal mo	lance						
	[0]	RW	ts_hiz		TS I/O outpu 1: high impec 0: normal mo	lance						

SDR_CTRL

SDR_CTRL is an I/O control register.

		Of	fset Ad	dress		Registe	r Name		Total Reset Value			
			0x18	1		SDR_0	CTRL		0x24			
Bit	7		6		6		5	4	3	2	1	0
Name		reserved							gpio_val			
Reset	0	0 0 1			1	0	0	1	0	0		
	Bits	Acc	ess	Name	!	Description						
	[0]	RW	ī	gpio_v	al	Programmable output level of the CLK_OUT pin. The output his level V_{OH} ranges from 2.7 V to 3.3 V, and the output low level V_{OL} is less than or equal to 0 V.						

3.1.5 Software Multiplexed Pins

Table 3-11 describes the software multiplexed pins LOCK and CLK_OUT.

Table 3-11 Software multiplexed pins LOCK and CLK_OUT

Positi on	Pad Signal	Multiplexing Control Register	Multiplexing Signal 0	Multiplexing Signal 1	Multiplexing Signal 2	Multiplexing Signal 3
16	LOCK	IO_CTRL4	LOCK	TXD	FEF	GPO
19	CLK_O UT	SDR_CTRL	XO	FEF	LOCK	GPO

Table 3-12 describes the pin multiplexing signals.

Table 3-12 Pin multiplexing signals

Signal	Direction	Description				
LOCK	О	Channel lock indicator				
TXD	О	Serial output				
FEF	О	FEF indicator				
GPO	О	Programmable output				
XO	О	Crystal oscillator clock				
FEF	О	FEF indicator				
LOCK	О	Channel lock indicator				
GPO	О	Programmable output				

3.2 Electrical Specifications

3.2.1 Power Consumption Specifications

Table 3-13 describes the power consumption specifications.

Table 3-13 Power consumption specifications

Symbol	Description	Min	Тур	Max	Unit
DVDD33	3.3 V (I/O) power	-	50	60	mA
AVDD33_PLL	3.3 V PLL analog power	-	3	5	mA
DVDD11	1.1 V core voltage	-	150	300	mA
AVDD11_ADC	1.1 V ADC power	-	7	15	mA
AVDD11_PLL	1.1 V PLL analog power	-	1	3	mA
AVDDREF	1.1 V ADC reference power		1	3	mA

3.2.2 Rated Working Conditions

WARNING

Hi3137 V100 may be unstable or damaged when working beyond the rated working conditions listed in Table 3-14.

Table 3-14 describes rated working conditions.

Table 3-14 Rated working conditions

Symbol	Description	Min	Max	Unit
T_{OPT}	Operating temperature	125	°C	
T _{STG}	Storage temperature	-65	150	°C
VI	Input voltage	-0.5	4.6	V
VO	Output voltage	-0.5	4.6	V
DVDD11	Internal core voltage	-0.5	1.8	V
DVDD33	I/O power	-0.5	4.6	V

3.2.3 Recommended Working Conditions

Table 3-15 describes the recommended working conditions.

Table 3-15 Recommended working conditions

Symbol	Description	Min	Тур	Max	Unit
T_{OPT}	Operating temperature	0	25	70	°C
DVDD11	Internal core voltage	1.045	1.1	1.155	V
DVDD33	I/O power	2.97	3.3	3.63	V
AVDD33_PLL	PLL power	2.97	3.3	3.63	V
AVDD11_PLL	PLL power	1.045	1.1	1.155	V
AVDD11_ADC	ADC power	1.045	1.1	1.155	V
AVDDREF	1.1 V ADC reference power	1.045	1.1	1.155	V

3.2.4 Power-On and Power-Off Sequences

The power-on and power-off sequences are not restricted for the 3.3 V and 1.1 V power supplies.

3.2.5 DC Electrical Specifications

Table 3-16 describes the DC electrical specifications.

Table 3-16 DC electrical specifications

Symbol	Description	Min	Тур	Max	Unit	Remarks
V_{IH}	Input high voltage	2.0	-	DVDD33 + 0.3	V	The 5 V tol is not supported.
$V_{\rm IL}$	Input low voltage	-0.3	-	0.8	V	-
$I_{\rm L}$	Input leakage current	-	-	±10	μΑ	-
I_{OZ}	Tri-state output leakage current	-	-	±10	μΑ	-
V _{OH}	Output high voltage	2.4	-	-	V	-
V _{OL}	Output low voltage	-	-	0.4	V	-
R _{PU}	Internal pull-up resistor	27	40	64	kΩ	-

Symbol	Description	Min	Тур	Max	Unit	Remarks
R _{PD}	Internal pull- down resistor	31	46	78	kΩ	-

3.3 Design Recommendations for Schematic Diagrams

3.3.1 Design Recommendations for the Small System

3.3.1.1 Clocking Circuit

The system clock can be generated by combining the internal feedback circuit of Hi3137 V100 with an external 24 MHz (recommended) crystal oscillator circuit. ESR_{max} is 40 Ω and C_L is 20 pF.

Figure 3-4 shows the recommended connection mode of the crystal oscillator and the component specifications.

Figure 3-4 Recommended connection mode of the crystal oscillator

The following formula is used to calculate the capacitance of the internal load capacitor in the crystal oscillator and external capacitors:

$$C_L = C1 \times C2/(C1 + C2) + C$$

- C indicates the internal capacitor in the IC. Its capacitance is 5–7 pF.
- C1 and C2 each are 30 pF each in Figure 3-4.
- C_L is the load capacitor in the crystal oscillator. Its capacitance is 20–22 pF. The specific value provided by the vendor prevails.

3.3.1.2 Reset Circuit

The Hi3137 V100 RSTN pin is a reset signal input pin. The valid reset signal must have low-level ($V_{IL} \le 0.8 \text{ V}$) pulse and the pulse width must be greater than 12 cycles of the clock input from the XIN pin. The pulse width of the reset signal ranges from 10 ms to 100 ms in general.

During the board design, the RC power-on reset circuit is recommended for the RSTN pin. That is, the RSTN pin connects to a 4.7 k Ω pull-up resistor and then to the 3.3 V power. In addition, the RSTN pin connects to a 4.7 μ F capacitor and then to GND. This connection mode implements power-on reset. The RSTN pin can also connect to an STB decoder master chip. The master chip generates a reset signal complying with protocols in normal mode. If an exception occurs, the GPIO pin of the master chip generates a low-level pulse to trigger a soft reset.

Figure 3-5 shows the typical reset circuit.

Figure 3-5 Typical reset circuit

3.3.1.3 System Configuration Circuit for Hardware Initialization

The system configuration circuit for hardware initialization initializes internal registers over the I²C bus. The I²C addresses for Hi3137 V100 are set by configuring the external ADDR0 and ADDR1.

Table 3-17 and Table 3-18 describe address configurations.

Table 3-17 Address configurations 1

ADDR1	ADDR0		7	-bit	Ad	dre	ss	R/W	Write Address (in		
		MSB						LSB	Bit	Hex)	
Low	Low	1	0	1	1	1	0	0	0	0xB8	
Low	High	1	0	1	1	1	0	1	0	0xBA	
High	Low	1	0	1	1	1	1	0	0	0xBC	
High	High	1	0	1	1	1	1	1	0	0xBE	

 Table 3-18 Address configurations 2

ADDR1	ADDR0		7-bit Address							Read Address (in
		MSB						LSB	Bit	Hex)
Low	Low	1	0	1	1	1	0	0	1	0xB9
Low	High	1	0	1	1	1	0	1	1	0xBB
High	Low	1	0	1	1	1	1	0	1	0xBD

|--|

3.3.1.4 Circuits for Digital/Analog Signal Interfaces

Introduction

The level standard of digital interfaces is LVCMOS33. Hi3137 V100 provides the following digital interfaces:

- One TS serial/parallel interface (configurable serial/parallel working mode)
 - In 1-bit serial mode, the maximum clock frequency is 76.5 MHz, and the bit width is 1 bit.
 - In 2-bit serial mode, the maximum clock frequency is 36 MHz, and the bit width is 2
 - In parallel mode, the maximum clock frequency is 9 MHz, and the bit width is 8 bits.
- One I²C interface with the maximum I²C working frequency of 400 kHz. This interface is used to access the internal registers of Hi3137 V100 and the I²C forwarding control tuner.
- One AGC output interface. This interface is used to control the gain of the front-end tuner in PWM or PDM (default) modulation mode by using an RC low-pass filtering circuit.
- One RSTN. A reset can be performed by using a hardware RC circuit or an STB decoder chip. The RSTN signal is active low.

TS Topologies

Figure 3-6 shows the typical topology when Hi3137 V100 connects to an external STB decoder chip in parallel. Figure 3-7 shows the typical topology when Hi3137 V100 connects to an external STB decoder chip in serial.

Figure 3-6 Topology when Hi3137 V100 connects to an STB decoder chip in parallel

MOTE

All TS output pins except TS_CLK in the TS parallel interface can be configured based on the actual layout.

Figure 3-7 Topology when Hi3137 V100 connects to an STB decoder chip in serial

NOTE

All TS output pins except TS_CLK in the TS serial interface can be configured based on the actual layout.

AGC Topology

The AGC module converts digital signals into analog signals in PDM output mode (or PWM output mode by configuring internal registers) by using an external RC low-pass filter and automatically controls the gain of the front-end tuner when the external environment changes. This ensures signal quality. During the PCB layout design, the RC filtering circuit needs to be placed close to the AGC output pin of Hi3137 V100, preventing interference to analog RF from the high-frequency component of the AGC. Figure 3-8 shows the topology when the AGC interface connects to a tuner.

Figure 3-8 Topology when the AGC interface connects to a tuner

I²C Bus

The I²C bus between Hi3137 V100 and an STB decoder chip must connect to a 2 k Ω pull-up resistor and then to the 3.3 V power. In addition, bypass filtering capacitors (less than or equal to 100 pF) must be connected on the I²C bus close to the Hi3137 I²C pin. See Figure 3-9.

Figure 3-9 Topology when the I²C interface of Hi3137 V100 connects to an STB decoder chip

TS Matching Design

The TS matching design is provided based on the number of PCB layers:

- If more than two PCB layers are designed, the trace characteristic impedance is 50 Ω .
 - TS_OUT[0:7] connect to a 33 Ω resistor in serial. For details about the topology, see Figure 3-10.
 - TS_CLK, TS_SYNC, and TS_VALID connect to a 33 Ω resistor in serial. For details about the topology, see Figure 3-11.
- If two PCB layers are designed, the trace characteristic impedance is 140 Ω .
 - TS_OUT[0:7] connect to a 75 Ω resistor in serial. For details about the topology, see Figure 3-12.
 - TS_CLK, TS_VALID, and TS_SYNC connect to a 75 Ω resistor in serial. For details about the topology, see Figure 3-13.

MOTE

The maximum trace length is 4500 mils.

Figure 3-10 Interconnection topology of TS_OUT[0:7] and an STB decoder chip when the number of PCB layers is greater than 2

Figure 3-11 Interconnection topology of TS_CLK/TS_SYNC/TS_VALID and an STB decoder chip when the number of PCB layers is greater than 2

Figure 3-12 Interconnection topology of TS_OUT[0:7] and an STB decoder chip when the number of PCB layers is 2

Figure 3-13 Interconnection topology of TS_VAILD/TS_SYNC/TS_CLK and an STB decoder chip when the number of PCB layers is 2

AGC Circuit

After the low-pass filter processes PDM modulation signals, the AC components in analog signals are significantly alleviated. On the RC filtering network, a larger RC value indicates less AC components but slow response. Therefore, an appropriate RC value is required to balance the quantity of AC analog signals and response speed in actual application scenarios. A 4.7 k Ω resistor and a 100 nF capacitor are recommended on the AGC circuit.

3.3.2 Power Supplies

M NOTE

For details about system power supply design, see the schematic diagram of the Hi3137 V100 board.

3.3.2.1 Core Power

The core power pin DVDD11 connects to the 1.1 V digital power. The design recommendations are as follows:

- If there is no 1.1 V power on the board, the low dropout regulator (LDO) is preferred when you select the power chip and the current of power chip must be greater than or equal to 500 mA.
- The typical current of the core power is 150 mA and the maximum current is 300 mA.
- Each core power pin connects to a 10 μF filtering bypass capacitor and then to GND. In addition, each core power pin connects to a group of 10 nF and 100 pF decoupling capacitors, which are placed close to power pins.

3.3.2.2 I/O Power

The I/O power pin DVDD33 is connected to the 3.3 V digital power.

- The maximum current of VDD_IO is 60 mA. The LDO is preferred.
- Each I/O power pin connects to a group of 10 nF and 100 pF decoupling capacitors, which are placed close to power pins.
- The inputs of I/O power pins are isolated by using electromagnetic interference (EMI) beads. See Figure 3-14.

Figure 3-14 VDD33 IO topology

3.3.2.3 ADC Power

The ADC power pin AVDD11_ADC connects to the 1.1 V analog power. Note the following:

- The maximum current of the ADC power is 15 mA. By using the EMI beads, the ADC power and core power share the 1.1 V power.
- The ADC power is isolated from the 1.1 V power by using an EMI bead and connects to a 10 μ F filtering bypass capacitor and then to GND.
- Each ADC power pin connects to a group of 10 nF and 100 pF decoupling capacitors, which are placed close to power pins.
- The level deviation of the 1.1 V power is within $\pm 5\%$. See Figure 3-15.

Figure 3-15 AVDD11_ADC topology

3.3.2.4 Others

The other precautions for power supply design are as follows:

- The LDO is preferred when you select the power chip. The digital and analog power supplies are isolated by using EMI beads and groups of 10 nF and 100 pF decoupling capacitors are required.
- Ensure that the output voltage of each power supply meets the requirements even when ripples and noises occur. For details about the power supply requirements of each module, see section 3.2 "Electrical Specifications."

3.3.3 Unused Pins

If some pins are not used, do not connect them and disable the corresponding circuits by configuring registers.

3.4 PCB Design Recommendations

3.4.1 Stack and Layout

3.4.1.1 Stack

The package of Hi3137 V100 is mapped quad flat non-leaded 48 (MQFN48). The lead pitch is 0.4 mm (0.02 in.). You are advised to design a 4-layer PCB with the following stack:

- Top layer: signal traces
- Internal layer 1: GND plane
- Internal layer 2: power plane
- Bottom layer: signal traces

To reduce the cost, you can also design a 2-layer PCB with the following stack:

- Top layer: signal traces and part of power traces
- Bottom layer: GND plane and part of power traces

Take the following precautions during PCB design:

Components are placed at the top layer. Routing signal traces at the top layer is preferred.

- Power pins are connected by using wide traces.
- Ensure that the bottom layer is a complete GND plane.
- The vias with 8-mil diameter are recommended for master chip fanout.
- The impedance of special signal traces must meet requirements.

The PCB material is FR-4, the PCB thickness is 1.6 mm, and the thickness of the copper foil on the surface is 1 oz.

3.4.1.2 Board Layout

Figure 3-16 shows the board layout of the Hi3137 V100 reference design.

Figure 3-16 Board layout

During the Demod reference design of Hi3137 V100, pay attention to the layout of RF, analog, and digital signals and ESD protective components such as the RF interface female connector, crystal resonator, and RF loop filter.

Isolate the 3.3 V and 1.1 V power pins from digital parts by using EMI beads and select the components with small-sized package.

3.4.2 PCB Design Recommendations for the Small System

3.4.2.1 Power Supplies of the Small System

Digital Power

The digital power supplies of Hi3137 V100 include DVDD33 (3.3 V) and DVDD11 (1.1 V). It is recommended that the DVDD33 and DVDD11 be isolated from the 3.3 V and 1.1 V digital power supplies of the board by using EMI beads. All power supplies use the exposed pad of Hi3137 V100 as the reference GND. The traces should be as wide as possible when the through-flow capacity is ensured. The minimum trace width is 15 mils for DVDD33 or 25 mils for DVDD11. Ensure that digital power and analog power planes do not overlap and decoupling capacitors are placed close to Hi3137 V100.

RF/Analog Power

The RF and analog power supplies must be isolated from other power supplies by using EMI beads. The RF and analog power supplies use the exposed pad of Hi3137 V100 as the reference GND.

- Never route digital signal traces especially high-speed digital signal traces in the analog power area.
- Connect a decoupling capacitor to each power pin and ensure that traces are as wide as possible and decoupling capacitors are placed close to Hi3137 V100.

3.4.2.2 Clock and Reset Circuits

Clock

The power supplies of the Hi3137 V100 PLL unit are AVDD11_PLL (1.1 V) and AVDD33_PLL. The GND of the Hi3137 V100 PLL unit is AVSS_PLL. Design the PCB based on the following guidelines:

- AVDD11_PLL is the 1.1 V PLL power. Ensure that the width of the AVDD11_PLL trace is 12 mils when the through-flow capacity is ensured.
- Ensure that the width of the AVDD33_PLL trace is 12 mils when the through-flow capacity is ensured.
- AVSS_PLL is the reference GND of the PLL unit. It is recommended that GND traces
 connect to the exposed pad and the GND vias are connected by ensuring a complete
 GND plane.
- The traces of the system clock crystal oscillator circuit must be as short as possible and be surrounded by GND traces. The crystal GND part must be separately processed and isolated from the large-sized GND area to prevent coupling.
- The matching capacitors for the crystal oscillator must be placed close to the crystal oscillator and the crystal oscillator must be placed close to Hi3137 V100. Ensure that the spacing between the crystal oscillator and the board edge is at least 1000 mils. Never route critical traces such as high-speed clock traces under the crystal oscillator and ensure the integrity of the signals under the crystal oscillator.

Reset

Pin 15 is a reset pin. The reset signal trace is a critical trace and is susceptible to interference. The following are design recommendations:

- If the number of PCB layers is greater than 2, route the reset signal trace at an inner layer close to the GND plane and ensure that the trace width is greater than 8 mils. If a 2-layer PCB is used, ensure that the reset signal trace is surrounded by GND traces.
- Route the reset signal trace at least 30 mils away from interfaces and power inputs.

3.4.3 PCB Design Recommendations for Digital and Analog Interfaces

3.4.3.1 Digital Interfaces

TS Signals

The following are TS signal requirements:

- The maximum signal trace length is 5000 mils.
- The length of all TS signal traces is determined based on the TS_CLK traces. The allowed length deviation is ± 250 mils.
- The serial matching resistors are connected close to Hi3137 V100.
- For the 2-layer PCB, the characteristic impedance of the TS signal trace should be 140 Ω . It is recommended that TS_OUT[0:7] connect to a 75 Ω matching resistor in serial and TS_CLK, TS_SYNC, and TS_VALID connect to a 75 Ω matching resistor in serial.
- If more than two PCB layers are designed, the characteristic impedance of the TS signal trace should be 50Ω . A 33Ω matching resistor is recommended.

AGC Signals

The following are requirements on AGC signal traces:

- The maximum trace length is 5000 mils and the minimum trace width is 12 mils. Route GND traces around AGC signal traces to prevent interference to external signal traces from AGC signals and interference to AGC signal traces from external noises.
- The RC low-pass filter to which AGC outputs are transmitted must be placed close to the AGC output pin of Hi3137 V100. This prevents AGC high-frequency noises from being transmitted to the board, which may result in deterioration in channel performance.

The following are recommendations for the I^2C traces:

- The maximum serial clock (SCL) trace length is 5000 mils.
- The serial data (SDA) traces are routed based on SCL traces. The allowed length deviation is ±250 mils.

PCB Routing Recommendations

Route traces on a PCB based on the following guidelines:

CAUTION

Never cross the reference GND plane of TS signal traces when routing other signal traces, and ensure that GND traces are routed around signal traces. Place serial resistors close to Hi3137 V100. For details, see the PCB design documents of the Hi3137EVA board.

- Route all the TS signal traces on the planes adjacent to the GND plane. Never route the signal traces across the power and GND plane splits. Ensure that signal traces have a complete reference GND plane.
- To ensure a good signal return path, punch vias around signal traces and changed layers and connect the punched vias to GND.
- Ensure that signal traces are as short as possible. Minimize the use of vias to ensure the impedance continuity of traces. If the number of PCB layers is greater than 2, the characteristic impedance of the single-end PCB signal trace is $50 \Omega \pm 10\%$. If a 2-layer PCB is used, the characteristic impedance of the single-end PCB signal trace is $140 \Omega \pm 10\%$. The serial matching resistors are connected close to Hi3137 V100.
- If resistor networks are used, ensure that the TS_CLK trace and TS traces are not routed on the same resistor network.

- Ensure that the spacing between adjacent signal traces is 2–3 times of the trace width according to the 3W rule. The 3W rule indicates that the trace spacing is three times of the trace width.
- Route signal traces far away from data and address buses and route GND traces around the TS CLK trace.

3.4.3.2 Others

Integrity Simulation Design Recommendations for PCB Signals

By using board-level simulation tools, PCB designers can simulate and analyze signal integrity based on the input/output buffer information specification (IBIS) models of the Hi3137 V100 interfaces and interconnected components, transmission line models, and board topologies. Based on the simulation results, PCB designers can adjust the typologies to meet the signal quality requirements in overshoot, undershoot, ringing, monotonicity, and others.

Note

If a clock signal trace connects to multiple loads, ensure good signal quality, especially signal edge monotonicity regardless of the frequency.

3.5 Heat Design Recommendations

3.5.1 Package Thermal Resistance

CAUTION

The thermal resistance is provided in compliance with the JEDEC JESD51-2 standard. The actual system design and environment may be different.

Table 3-19 describes the thermal resistance of the package.

Table 3-19 Thermal resistance of the package

Parameter	Symbol	Value	Unit
Junction-to-ambient thermal resistance	θ_{JA}	37	°C/W
Junction-to-case thermal resistance	$\theta_{ m JC}$	20.684	°C/W
Junction-to-top center of case thermal resistance	$\Psi_{ m JT}$	-	°C/W
Junction-to-board thermal resistance	$\theta_{ m JB}$	17.41	°C/W

3.5.2 Recommended Thermally Conductive Materials

Table 3-20 describes recommended thermally conductive materials.

Table 3-20 Recommended thermally conductive materials

Mode of Fixing Heat Sinks	Model	Thermal Conductivity Coefficient (W/m x k)	Ambient Temperature (°C)	Colloid Type	Insulation Strength (V/Mil)	Flame Retardance	Bearing Capacity (g)
Mechanic al fixing	GF2000	2	-60 to +200	Silicone rubber	500	UL9V0	None
Non- mechanic al fixing	Locotite 315	0.808	None	Acrylic resin	6000	UL9V2	None

3.5.3 Schematic Diagram Design

3.5.3.1 Power Supply

Ensure that the efficiency of the board power tree is the highest on the basis that the power supply is stable. That is, the board power load is designed optimally and fewer LDO components with large voltage difference are used. This reduces the heat produced during the conversion of the power supply. An exposed pad is designed at the bottom of the chip and solder mask opening is designed for the GND plane of the PCB, which is good for heat conduction.

3.5.4 PCB Design

3.5.4.1 Component Layout

Lay out components based on the product architecture and heat dissipation design:

- Do not lay out the components that consume a large amount of power and produce much heat on the same ventilation path.
- Place the components that consume a large amount of power and produce much heat evenly, and pour copper sheets under and around these components as large as possible to dissipate heat.

3.5.4.2 PCB Heat Dissipation

The recommendations are as follows:

- For the connect style of the vias under Hi3137 V100, select the full connect style but not the thermal connect style, In addition, use an opening copper plane at the PCB bottom layer on which the exposed pad of Hi3137 V100 is soldered to improve the dissipation efficiency of the board.
- The 1.1 V power traces, 3.3 V power traces, and GND traces should be as wide as possible on the basis that the maximum current capability is ensured.
- Never place components that produce much heat around Hi3137 V100.

3.6 Soldering Process Recommendations

3.6.1 Overview

The appropriate reflow soldering temperatures must be determined based on the reflow profiles supported by all the components, ICs, and PCB, and the reflow profile recommended by the solder paste vendor. This chapter describes only the reflow soldering temperature range supported by Hi3137 V100.

3.6.1.1 Coating Material

The elelectrotinning coating is used on the MQFN package.

3.6.1.2 Component Package and Storage

The following describes the component package and storage:

- Package of surface-mount components: tray
- Allowed storage duration (below 60% RH): 12 months at 40°C (104°F)
- Packaging material: electrostatic discharge (ESD) material

3.6.1.3 Soldering Process

Reflow soldering can be used.

Figure 3-17 shows the reflow profiles supported by Hi3137 V100 but not the reflow profiles recommended during soldering. Determine the soldering temperatures based on the reflow profiles of the solder paste, PCB, and all ICs and components. For details, see the JEDEC020D standard.

Figure 3-17 Soldering temperatures

Table 3-21 Reflow soldering specifications

Zone	Duration	Heating Up Slope	Peak Temperature	Cooling Down Slope
Preheat zone (40–150°C or 104–302°F)	60-150s	≤ 2.0°C/s (≤ 35.6°F/s)	None	None
Soak zone (150–200°C or 302–392°F)	60-120s	< 1.0°C/s (≤ 33.8°F/s)	None	None
Reflow zone (> 217°C or 423°F)	30-90s	None	230–260°C (446–500°F)	None
Cooling zone (Tmax to 180°C or 356°F)	None	None	None	1.0°C/s ≤ Slope ≤ 4.0°C/s (33.8°F/s ≤ Slope ≤ 39.2°F/s)

3.6.2 Process Preparations

Confirm that all products are dry and materials have not expired.

Test the first sample (for example, check the solder paste thickness) before mass production. Start mass production only when the first sample passes all tests.

3.7 Moisture-Sensitive Specifications

3.7.1 Storage and Usage

[Application Scope]

The specifications apply to the storage and usage of all moisture-sensitive ICs of HiSilicon.

[Storage Environment]

You are advised to store products in vacuum packages at 30°C (86°F) or lower and at most 60% relative humidity (RH).

[Shelf Life]

At 30°C (86°F) or lower and at most 60% RH, the shelf life is greater than or equal to 12 months for the vacuum package.

[Floor Life]

Table 3-22 describes the floor life at 30°C (86°F) or lower and at most 60% RH.

Table 3-22 Floor life

Level	Floor Life (Out of Bag) at Factory Ambient ≤ 30°C (86°F)/60% RH or As Stated
1	Unlimited at 30°C (86°F) or lower and at most 85% RH
2	1 year

2a	4 weeks
3	168 hours
4	72 hours
5	48 hours
5a	24 hours
6	Mandatory bake before use. The product must be reflowed within the time limit specified on the label.

[Usage of Moisture-Sensitive Products]

- If a chip has been exposed to air for 2 hours at 30°C (86°F) or lower and at most 60% RH, rebake it and pack it into a vacuum bag.
- If a chip has been exposed to air for less than 2 hours at 30°C (86°F) or lower and at most 60% RH, replace the desiccant and pack the chip into a vacuum bag.

For details about other storage modes and usage rules, see the JEDEC J-STD-033A standard.

3.7.2 Rebaking

[Applicable Products]

All moisture-sensitive ICs of HiSilicon

[Application Scope]

All ICs that need to be rebaked

[Rebaking Reference]

 Table 3-23 Rebaking reference

Body Thickness	Level	Baking at 125°C (257°F)	Baking at 90°C (194°F) ≤ 5% RH	Baking at 40°C (104°F) ≤ 5% RH
≤ 1.4 mm	2a	3 hours	11 hours	5 days
(0.06 in.)	3	7 hours	23 hours	9 days
	4	7 hours	23 hours	9 days
	5	7 hours	24 hours	10 days
	5a	10 hours	24 hours	10 days
≤ 2.0 mm	2a	16 hours	2 days	22 days
(0.08 in.)	3	17 hours	2 days	23 days
	4	20 hours	3 days	28 days
	5	25 hours	4 days	35 days

Body Thickness	Level	Baking at 125°C (257°F)	Baking at 90°C (194°F) ≤ 5% RH	Baking at 40°C (104°F) ≤ 5% RH
	5a	40 hours	6 days	56 days
≤ 4.5 mm	2a	48 hours	7 days	67 days
(0.18 in.)	3	48 hours	8 days	67 days
	4	48 hours	10 days	67 days
	5	48 hours	10 days	67 days
	5a	48 hours	10 days	67 days

Note:

- Table 3-23 lists the minimum rebaking time for moist chips.
- Low-temperature rebaking is recommended.
- For details, see the JEDEC standard.

3.8 Interface Timings

3.8.1 Output Interface Timings

Hi3137 V100 supports three TS output modes: parallel mode, 1-bit serial mode, and 2-bit serial mode.

The signals from the TS output interface include the data signals TS_OUT[7:0], clock signal TS_CLK, data validity signal TS_VLD, sync header signal TS_SYNC, and packet error signal TS_ERR.

- TS_OUT: TS frame data. This signal is 8 bits in parallel mode, 1 bit in 1-bit serial mode, and 2 bits in 2-bit serial mode.
- TS_CLK: data clock. The clock edge is configurable. The adaptive clock output is used by default in various output modes.
- TS_VLD: TS packet data validity indicator (byte valid in parallel mode or bit valid in 1-bit serial mode).
- TS_SYNC: TS packet sync header indicator (byte valid in parallel mode or bit valid in serial mode).
- TS_ERR: TS packet error indicator. Set it to 1 if an error occurs in the current TS packet.

Figure 3-18 Timing in TS parallel output mode

Figure 3-19 Timing in 1-bit TS serial output mode

Figure 3-20 Timing in 2-bit TS serial output mode

3.8.2 Output Timing Parameters

Figure 3-21 shows the TS output timing.

Figure 3-21 TS_CLK output timing

Note that the TS_CLK output in the preceding figure is the rising edge mode.

Table 3-24 describes the TS output timing parameters.

Table 3-24 TS output timing parameters

Parameter	Symbol	Min	Тур	Max	Unit
TS_CLK duty cycle	-		50		%
TS_CLK clock frequency	TS_Freq			80	MHz
Output data signal setup time	Tdp		(1/TS_Freq)/2	(1/TS_Freq)/2 + 1.7	ns
Output data signal hold time	Tdh	(1/TS_Freq)/2 – 1.8	(1/TS_Freq)/2		ns

4	4
nte	ntc
	TILO

i

A

Acronyms and Abbreviations

 \mathbf{A}

AAF anti-aliasing filter

ADC analog-to-digital converter

AGC automatic gain control

В

BB base band

BCH bose-chaudhuri-hocquenghem multiple error correction binary block code

BER bit error rate

 \mathbf{C}

CIR channel impulse response

CLK clock

CR carrier recovery

CSI channel state information

D

DAGC digital automatic gain control

DNP deleted null packets

E

EQU equalizer

ERR error

F

FEC forward error correction

FEF future extension frame

FER frame error rate

FFT fast fourier transform

G

GFPS generic fixed-length packetized stream

GS generic stream

GSE generic stream encapsulation

I

ISCR input stream time reference

ISSY input stream synchronizer

L

LDPC low density parity check code

LSB least significant byte

M

MISO multiple input single output

MPLP multiple physical layer pipe

P

PER packet error rate

PLL phase-locked loop

PLP physical layer pipe

PDM pulse density modulation

PWM pulse width modulation

PP pilot pattern

Q

Q quadrant

QPSK quaternary phase shift keying

QAM quadrature amplitude modulation

 \mathbf{R}

RF radio frequency
RS reed solomon

 \mathbf{S}

SNR signal-to-noise ratio

SYNC synchronization

SISO single input single output

T

TR timing recovery

TS transport stream

V

VLD valid