TIPE : Propagation de rumeurs dans un réseau social

Hugo LEVY-FALK

2016 - 2017

Plan

Rappel de la problématique

Modélisation

Génération de graphes

Expérience 1

Expérience 2

Expérience 3

Résultats

Conclusion

Rappel de la problématique

Comment propager une rumeur le plus rapidement possible à un maximum de nœuds d'un réseau social?

Plan

Rappel de la problématique

Modélisation

Génération de graphes

Expérience 1

Expérience 2

Expérience 3

Résultats

Conclusion

└ Modélisation

Réseau social

Modélisation

On modélise un réseau social par un graphe.

Modélisation

On modélise un réseau social par un graphe.

Personne → Nœud

Modélisation

On modélise un réseau social par un graphe.

- Personne → Nœud
- Lien social → Arrête

Modélisation

On modélise un réseau social par un graphe.

- Personne → Nœud
- Lien social → Arrête

On ne prend pas en compte la "qualité" de la relation.

└ Modélisation

Caractéristiques des réseaux simulés

Caractéristiques des réseaux simulés

└─ Modélisation

Caractéristiques des réseaux simulés

Caractéristiques des réseaux simulés

• Stanley Milgram : Six degrés de séparation (Facebook 4.57)

Caractéristiques des réseaux simulés

- Stanley Milgram : Six degrés de séparation (Facebook 4.57)
- Algorithme de Watts-Strogatz

☐ Modélisation

Simulation de propagation

Jeu de coordination

Chaque nœud maximise son gain.

- Chaque nœud maximise son gain.
- Un voisin dans l'état "informé" o gain a
- Un voisin dans l'état "non-informé" o gain b

- Chaque nœud maximise son gain.
- Un voisin dans l'état "informé" o gain a
- Un voisin dans l'état "non-informé" o gain b

Si on note p la proportion de voisins informés, le nœud maximise son gain en passant à l'état informé si et seulement si $p \times a > (1-p) \times b$, ou encore

$$p > \frac{b}{a+b}$$

- Chaque nœud maximise son gain.
- Un voisin dans l'état "informé" \rightarrow gain a
- Un voisin dans l'état "non-informé" o gain b

Si on note p la proportion de voisins informés, le nœud maximise son gain en passant à l'état informé si et seulement si $p \times a > (1-p) \times b$, ou encore

$$p > \frac{b}{a+b}$$

 \rightarrow On caractérise une rumeur par $q = \frac{b}{a+b}$.

ightarrow On caractérise une rumeur par $q=rac{b}{a+b}.$

Remarques

Soit un graphe G = (V, E) avec V un ensemble de nœuds et $E \subset V^2$.

• Pas de propagation si q < 1;

ightarrow On caractérise une rumeur par $q=rac{b}{a+b}.$

Remarques

Soit un graphe G = (V, E) avec V un ensemble de nœuds et $E \subset V^2$.

- Pas de propagation si q < 1;
- Si l'on pose $(V_k)_{k\in\mathbb{N}}$ une suite des nœuds dans l'état "informé" à l'étape k, s'il existe $n\in\mathbb{N}$ tel que $V_n=V_{n+1}$ alors la suite est stationnaire à partir du rang n;

ightarrow On caractérise une rumeur par $q=rac{b}{a+b}$.

Remarques

Soit un graphe G = (V, E) avec V un ensemble de nœuds et $E \subset V^2$.

- Pas de propagation si q < 1;
- Si l'on pose $(V_k)_{k\in\mathbb{N}}$ une suite des nœuds dans l'état "informé" à l'étape k, s'il existe $n\in\mathbb{N}$ tel que $V_n=V_{n+1}$ alors la suite est stationnaire à partir du rang n;
- La suite étant par ailleurs croissante pour l'inclusion et majorée, la suite converge et on finit une simulation en au plus |V| étapes.

Simulation de propagation

Cluster

Définition : p-cluster

Soit un graphe G=(V,E) avec V un ensemble de nœuds et $E\subset V^2$. On appelle p-cluster tout sous-ensemble $C\subset V$ tel que pour tout $i\in C$ il existe un p-uplet $(v_k)_{k\in [\![1,p]\!]}\in C^p$ deux à deux distincts et tel que pour tout $k\in [\![1,p]\!]$, i et v_k soient voisins.

Remarque

Si le graphe est connexe (cas des graphes étudiés), l'ensemble forme un 1-cluster.

Simulation de propagation

Les clusters sont les seuls obstacles aux rumeurs

Théorème

Les clusters sont les seuls obstacles aux rumeurs.

On pose n = |V|, q la note de la rumeur.

Les clusters sont les seuls obstacles aux rumeurs

Théorème

Les clusters sont les seuls obstacles aux rumeurs.

On pose n = |V|, q la note de la rumeur. S'il existe un p-cluster C avec p > q, alors tout nœud de C possède au moins une proportion p de voisins non informés. Ceci valant pour tous les nœuds de C, aucun nœud de C ne sera informé au bout de n étapes.

Les clusters sont les seuls obstacles aux rumeurs

Théorème

Les clusters sont les seuls obstacles aux rumeurs.

On pose n=|V|, q la note de la rumeur. S'il existe un nœud i tel qu'au bout de n étapes i ne soit pas dans l'état informé, alors la proportion p de voisins de i dans l'état informé vérifie $p \leq q$ ou encore $(1-p) > q \leq 0$. Il existe donc des voisins de i vérifiant cette propriété, on a un z-cluster avec z > q.

Capacité à atteindre l'ensemble du graphe;

- Capacité à atteindre l'ensemble du graphe;
- Nombre d'itérations de simulation le plus faible possible;

- Capacité à atteindre l'ensemble du graphe;
- Nombre d'itérations de simulation le plus faible possible;

Problème(s) : Unicité de la solution? identification des propriétés permettant une telle propagation?

- Capacité à atteindre l'ensemble du graphe;
- Nombre d'itérations de simulation le plus faible possible;

Problème(s) : Unicité de la solution ? identification des propriétés permettant une telle propagation ?

 \rightarrow Comparaison de critères qualitatifs.

Plan

Rappel de la problématique

Modélisation

Génération de graphes

Expérience 1

Expérience 2

Expérience 3

Résultats

Conclusion


```
Données: N \in \mathbb{N}, K \in [1, \lfloor \frac{N}{2} \rfloor] (N \gg K \gg \ln N), \beta \in [0, 1]
Résultat : Matrice d'adjacence d'un graphe aléatoire.
M \leftarrow \text{ matrice avec pour } i \in [0, N-1], j \in [1, K],
 M_{i,i+i[N]} = M_{i,i-i[N]} = \text{Vrai}, Faux pour les autres;
pour i \in [0, N-1] faire
     pour i \in [1, K] faire
           r \leftarrow \text{Nombre al\'eatoire sur } [0, 1];
           si r < \beta alors
               M_{i,i+i[M]} \leftarrow \mathsf{Faux};
                M_{i+j[N],i} \leftarrow \mathsf{Faux};
                Choisir au hasard k tel que M_{i,k} = Faux;
                M_{i,k} \leftarrow Vrai;
            M_{k,i} \leftarrow Vrai;
     fin
fin
retourner M
```


Réseaux simulés

500 nœuds;

Réseaux simulés

- 500 nœuds;
- Au plus 500 étapes de simulation ;

Réseaux simulés

- 500 nœuds:
- Au plus 500 étapes de simulation;
- On lance la simulation 100 fois;

Réseaux simulés

- 500 nœuds:
- Au plus 500 étapes de simulation;
- On lance la simulation 100 fois:
- 3 paramètres à examiner (β , q, proportion initiale d'informés)

Réseaux simulés

- 500 nœuds:
- Au plus 500 étapes de simulation;
- On lance la simulation 100 fois:
- 3 paramètres à examiner (β , q, proportion initiale d'informés)
- ightarrow Stockage des résultats dans une base de donnée des résultats des calculs afin de pouvoir interrompre l'expérience à tout instant.

Rappel de la problématique

Modélisation

Génération de graphes

Expérience 1

Expérience 2

Expérience 3

Résultats

Protocole expérimental

On fixe K=50. Pour $\beta\in\{0,0.25,0.5,1\}$ et $q\in\{0.25,0.5,0.75\}$, pour une proportion initiale de 1% à 99% faire 100 expériences de propagation en choisissant les éléments initiaux au hasard et stocker la propagation à chaque étape de la simulation.

Protocole expérimental

On fixe K=50. Pour $\beta\in\{0,0.25,0.5,1\}$ et $q\in\{0.25,0.5,0.75\}$, pour une proportion initiale de 1% à 99% faire 100 expériences de propagation en choisissant les éléments initiaux au hasard et stocker la propagation à chaque étape de la simulation.

But : pouvoir comparer les résultats des autres expériences, éventuellement fixer certains paramètres qui ont peu d'influence.

Courbe type

Taille du graphe=500 Nb gen=100 K=50, q=0.5, Beta =<math>50%

Faible influence du paramètre β

Taille du graphe=500 Nb gen=100 K=50, q=0.5, Beta =0%

Faible influence du paramètre β

Taille du graphe=500 Nb gen=100 K=50, q=0.5, Beta =25%

Faible influence du paramètre β

Taille du graphe=500 Nb gen=100 K=50, q=0.5, Beta =<math>50%

Faible influence du paramètre β

Taille du graphe=500 Nb gen=100 K=50, q=0.5, Beta =75%

Faible influence du paramètre β

Taille du graphe=500 Nb gen=100 K=50, q=0.5, Beta =100%

Influence de q

Influence de q

Taille du graphe=500 Nb gen=100 K=50, q=0.5, Beta =<math>50%

Influence de q

Taille du graphe= $500 \text{ Nb gen}=100 \text{ K}=50, q=0.75, Beta}=50\%$

Rappel de la problématique

Modélisation

Génération de graphes

Expérience 1

Expérience 2

Expérience 3

Résultats

Protocole expérimental

On fixe K=50. Pour $\beta \in \{0,0.25,0.5,1\}$ et $q \in \{0.25,0.5,0.75\}$, pour une proportion initiale de 1% à 99% faire 100 expériences de propagation en choisissant les éléments initiaux possèdant la plus grande arité et stocker la propagation à chaque étape de la simulation.

Remarques sur les résultats

• Le résultat pour $\beta = 0$ est inexploitable;

Remarques sur les résultats

- Le résultat pour $\beta = 0$ est inexploitable;
- On retrouve les mêmes effets qualitatifs de β et q.

Rappel de la problématique

Modélisation

Génération de graphes

Expérience 1

Expérience 2

Expérience 3

Résultats

Protocole expérimental

On fixe K=50. Pour $\beta \in \{0,0.25,0.5,1\}$ et $q \in \{0.25,0.5,0.75\}$, pour une proportion initiale de 1% à 99% faire 100 expériences de propagation en choisissant les éléments initiaux possèdant la plus grande centralité (proportion de plus courts chemins passants par un nœud) et stocker la propagation à chaque étape de la simulation.

Remarques sur les résultats

• Le résultat pour $\beta = 0$ est inexploitable;

Remarques sur les résultats

- Le résultat pour $\beta = 0$ est inexploitable;
- On retrouve les mêmes effets qualitatifs de β et q.

Rappel de la problématique

Modélisation

Génération de graphes

Expérience 1

Expérience 2

Expérience 3

Résultats

Rappel de la problématique

Modélisation

Génération de graphes

Expérience 1

Expérience 2

Expérience 3

Résultats

