ЛАБОРАТОРНА РОБОТА № 6 СТВОРЕННЯ РЕКОМЕНДАЦІЙНИХ СИСТЕМ

Mema роботи: використовуючи спеціалізовані бібліотеки та мову програмування Python навчитися створювати рекомендаційні системи.

Хід роботи

Завдання 1. Створення навчального конвеєра (конвеєра машинного навчання)

```
classifier = ExtraTreesClassifier(n estimators=60, max depth=4)
processor pipeline = Pipeline([('selector', k best selector), ('erf',
classifier) |)
processor pipeline.set params(selector k=7, erf n estimators=30)
processor pipeline.fit(X, y)
output = processor pipeline.predict(X)
status = processor pipeline.named steps['selector'].get support()
selected = [i for i, x in enumerate(status) if x]
print("\nIndices of selected features:", ', '.join([str(x) for x in
```

Змн.	Арк.	№ доким.	Підпис	Дата	ДУ «Житомирська політехн	іка».22.	121.07.80	5 — ІПЗк
		Кияшенко А.С.	rnonde	дата		<i>a:</i> -	4=	4
Розра	00.	кияшенко А.С.				/lim.	Арк.	Аркушів
Перев	Вір.				Системи штучного		1	13
Реценз. Н. Контр.					інтелекту			
					I (DIKIII)		КТ Гр. II	ТЗк-19-1
3 <i>a</i> m 8 i	ond				Лабораторна №6			

В першому рядку виведені спрогнозовані результати для всіх вхідних значень. Значення Score показує оцінку точності обрахування. В останньому рядку виведені індекси обраних ознак.

Завдання 2. Пошук найближчих сусідів

```
import numpy as np
import matplotlib.pyplot as plt
plt.figure()
plt.title('Bxiдні дані')
plt.scatter(X[:, 0], X[:, 1], marker='o', s=75, color='black')
distances, indices = knn model.kneighbors([test datapoint])
plt.title('Найближчі сусіди')
```


		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
LR_6_task_2 ×

C:\Users\Admin\AppData\Local\Microsoft\WindowsApps\python3.10.exe D:/LabsPoli/AI/Lab6/LR_6_task_2.py

K Nearest Neighbors:

1 ==> [5.1 2.2]

2 ==> [3.8 3.7]

3 ==> [3.4 1.9]

4 ==> [2.9 2.5]

5 ==> [5.7 3.5]

Process finished with exit code 0
```

На першому графіку зображено розташування вхідних даних. На другому графіку зображені найближчі сусіди до тестової точки. У вікні терміналу вказані координати найближчих сусідів до тестової точки.

Завдання 3. Створити класифікатор методом к найближчих сусідів

```
input file = 'data.txt'
X, y = data[:, :-1], data[:, -1].astype(int)
plt.figure()
plt.title('Вхідні дані')
marker shapes = 'v^os'
mapper = [marker shapes[i] for i in y]
for i in range(X.shape[0]):
    plt.scatter(X[i, 0], X[i, 1], marker=mapper[i],
num neighbors = 12
x_{min}, x_{max} = X[:, 0].min() - 1, X[:, 0].max() + 1 

<math>y_{min}, y_{max} = X[:, 1].min() - 1, X[:, 1].max() + 1
```

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
plt.figure()
plt.pcolormesh(x values, y values, output, cmap=cm.Paired)
   plt.scatter(X[i, 0], X[i, 1], marker=mapper[i],
plt.xlim(x values.min(), x values.max())
plt.ylim(y values.min(), y values.max())
plt.title('Границі моделі класифікатору на основі К найближчих сусідів')
plt.figure()
plt.title('Тестова точка даних')
   plt.scatter(X[i, 0], X[i, 1], marker=mapper[i],
plt.scatter(test datapoint[0], test datapoint[1], marker='x',
plt.figure()
plt.title('К найближчих сусідів')
plt.show()
```

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

Арк.


```
C:\Users\Admin\AppData\Local\Microsoft\WindowsApps\python3.10.exe D:/LabsPoli/AI/Lab6/LR_6_task_3.py
Predicted output: 1

Process finished with exit code 0
```

Точка належить до класу з індексом 1, трикутник.

Завдання 4. Обчислення оцінок подібності

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
def pearson score(dataset, user1, user2):
```

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
return Sxy / np.sqrt(Sxx * Syy)

if __name__ == '__main__':
    args = build_arg_parser().parse_args()
    user1 = args.user1
    user2 = args.user2
    score_type = args.score_type
    ratings_file = 'ratings.json'

with open(ratings_file, 'r') as f:
    data = json.loads(f.read())

if score_type == 'Euclidean':
    print("\nEuclidean score:")
    print(euclidean_score(data, user1, user2))

else:
    print("\nPearson score:")
    print(pearson_score(data, user1, user2))
```

Евклідова оцінка подібності та оцінка подібності Пірсона користувачів David Smith та Bill Duffy

```
PS D:\LabsPoli\AI\Labó> python3 .\LR_6_task_4.py --user1 "David Smith" --user2 "Bill Duffy" --score-type Euclidean Euclidean score:

0.585786437626905

PS D:\LabsPoli\AI\Labó> python3 .\LR_6_task_4.py --user1 "David Smith" --user2 "Bill Duffy" --score-type Pearson Pearson score:

0.9909924304103233
```

Евклідова оцінка подібності та оцінка подібності Пірсона користувачів David Smith та Brenda Peterson

```
PS D:\LabsPoli\AI\Lab6> python3 .\LR_6_task_4.py --user1 "David Smith" --user2 "Brenda Peterson" --score-type Euclidean Euclidean score:
0.1424339656566283
PS D:\LabsPoli\AI\Lab6> python3 .\LR_6_task_4.py --user1 "David Smith" --user2 "Brenda Peterson" --score-type Pearson Pearson score:
-0.7236759610155113
```

Евклідова оцінка подібності та оцінка подібності Пірсона користувачів David Smith та Samuel Miller

```
PS D:\LabsPoli\AI\Lab6> python3 .\LR_6_task_4.py --user1 "David Smith" --user2 "Samuel Miller" --score-type Euclidean Euclidean score:

0.30383243470068705

PS D:\LabsPoli\AI\Lab6> python3 .\LR_6_task_4.py --user1 "David Smith" --user2 "Samuel Miller" --score-type Pearson

Pearson score:

0.7587869106393281
```

Евклідова оцінка подібності та оцінка подібності Пірсона користувачів David Smith та Julie Hammel

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
PS D:\LabsPoli\AI\Lab6> python3 .\LR_6_task_4.py --user1 "David Smith" --user2 "Julie Hammel" --score-type Euclidean Euclidean score:

0.2857142857142857

PS D:\LabsPoli\AI\Lab6> python3 .\LR_6_task_4.py --user1 "David Smith" --user2 "Julie Hammel" --score-type Pearson

Pearson score:

0
```

Евклідова оцінка подібності та оцінка подібності Пірсона користувачів David Smith та Clarissa Jackson

```
PS D:\LabsPoli\AI\Lab6> python3 .\LR_6_task_4.py --user1 "David Smith" --user2 "Clarissa Jackson" --score-type Euclidean

Euclidean score:

0.28989794855663564

PS D:\LabsPoli\AI\Lab6> python3 .\LR_6_task_4.py --user1 "David Smith" --user2 "Clarissa Jackson" --score-type Pearson

Pearson score:

0.6944217062199275
```

Евклідова оцінка подібності та оцінка подібності Пірсона користувачів David Smith та Adam Cohen

```
PS D:\LabsPoli\AI\Labó> python3 .\LR_ó_task_4.py --user1 "David Smith" --user2 "Adam Cohen" --score-type Euclidean Euclidean score:

0.38742588672279304
PS D:\LabsPoli\AI\Labó> python3 .\LR_ó_task_4.py --user1 "David Smith" --user2 "Adam Cohen" --score-type Pearson

Pearson score:

0.9081082718950217
```

Евклідова оцінка подібності та оцінка подібності Пірсона користувачів David Smith та Clarissa Jackson

```
PS D:\LabsPoli\AI\Labó> python3 .\LR_6_task_4.py --user1 "David Smith" --user2 "Clarissa Jackson" --score-type Euclidean

Euclidean score:

0.28989794855663564

PS D:\LabsPoli\AI\Labó> python3 .\LR_6_task_4.py --user1 "David Smith" --user2 "Clarissa Jackson" --score-type Pearson

Pearson score:

0.6944217062199275

PS D:\LabsPoli\AI\Labó>
```

Завдання 5. Пошук користувачів зі схожими уподобаннями методом колаборативної фільтрації

```
import argparse
import json
import numpy as np

from LR_6_task_4 import pearson_score

# Створення парсеру для обробки вхідних аргументів
def build_arg_parser():
    parser = argparse.ArgumentParser(description='Find the movie recommendations for the given user')
```

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
PS D:\LabsPoli\AI\Labó> python3 .\LR_6_task_5.py --user "Clarissa Jackson"

Users similar to Clarissa Jackson:

User Similarity score

Chris Duncan 1.0

Bill Duffy 0.83

Samuel Miller 0.73

PS D:\LabsPoli\AI\Labó>
```

Завдання 6. Створення рекомендаційної системи фільмів

```
import numpy as np
def build arg parser():
    parser = argparse.ArgumentParser(description='Find the movie
def get recommendations(dataset, input user):
            overall scores.update({item: dataset[user][item] *
similarity score})
```

		Кияшенко А.С.		
	·			·
Змн.	Арк.	№ докум.	Підпис	Дата

```
PS D:\LabsPoli\AI\Labó> python3 .\LR_6_task_6.py --user "Chris Duncan"

Movie recommendations for Chris Duncan:

1. Vertigo

2. Scarface

3. Goodfellas

4. Roman Holiday

PS D:\LabsPoli\AI\Labó>
```

```
PS D:\LabsPoli\AI\Labó> python3 .\LR_6_task_6.py --user "Julie Hammel"

Movie recommendations for Julie Hammel:

1. The Apartment

2. Vertigo

3. Raging Bull

PS D:\LabsPoli\AI\Labó>
```

Посилання на Git: https://github.com/Grum74/AI

Висновок

Я, використовуючи спеціалізовані бібліотеки та мову програмування Python навчився створювати рекомендаційні системи.

		Кияшенко А.С.				Арк.
					ДУ «Житомирська політехніка».22.121.07. 806– ІПЗк	12
Змн.	Арк.	№ докум.	Підпис	Дата	•	