Optimización en ingeniería

Laboratorio Metaheurísticas Profesor: Mario Inostroza P. Ayudante: Cristián Sepúlveda S.

Universidad de Santiago de Chile

Facultad de ingeniería Departamento de Informática

1. Problema

Considere el problema de asignar un conjunto de instalaciones a un conjunto de ubicaciones, donde el costo depende del flujo entre las instalaciones y de la distancia entre las ubicaciones. El objetivo es asignar a cada ubicación una instalación, de forma tal de minimizar el costo total de operación.

■ Formulación:

Dadas dos matrices $F = (f_{ij}), D = (d_{kl}),$ donde f_{ij} es el flujo entre las instalaciones $i \ y \ j, \ y \ d_{kl}$ la distancia entre las ubicaciones $k \ y \ l$. Sea n el numero de instalaciones y ubicaciones y denotado $N = \{1, 2, ..., n\}$

$$\min_{\phi \in S_n} \sum_{i=i}^n \sum_{j=i}^n f_{ij} d_{\phi(i)\phi(j)}$$

Siendo S_n el conjunto de todas las permutaciones $\phi: N \to N$. Donde $\phi(i)$ es la ubicación a la cual es asignada la instalación i. Cada producto $f_{ij}d_{\phi(i)\phi(j)}$ es el costo de asignar la instalación i a la ubicación $\phi(i)$ y la instalación j a la ubicación $\phi(j)$. Las matrices F y D son simétricas con ceros en la diagonal principal.

■ Ejemplo:

Sean:

$$N = \{1, 2, 3, 4\}$$

$$F = \begin{pmatrix} 0 & 3 & 0 & 2 \\ 3 & 0 & 0 & 1 \\ 0 & 0 & 0 & 4 \\ 2 & 1 & 4 & 0 \end{pmatrix}$$

$$D = \begin{pmatrix} 0 & 22 & 53 & 0 \\ 22 & 0 & 40 & 0 \\ 53 & 40 & 0 & 55 \\ 0 & 0 & 55 & 0 \end{pmatrix}$$

Para la asignación:

Se tiene:

$$\phi(1) = 2;$$
 $\phi(2) = 1;$ $\phi(3) = 4;$ $\phi(4) = 3$

Evaluando la función objetivo:

$$\sum_{i=i}^{4} \sum_{j=i}^{4} f_{ij} d_{\phi(i)\phi(j)} = 838$$

2. Búsqueda local

■ Algoritmo

$$s = s_0;/*$$
 Generar una solución inicial s_0 /*

Mientras No se cumpla Criterio de terminación Hacer

Generar
$$(N(s));$$
/* Generar vecindad /*

Si No existe un vecino mejor Entonces Parar;

$$s = s'; /*$$
 Seleccionar un vecino mejor $s' \in N(s)/*$

Fin Mientras

Salida Última Solución encontrada (óptimo local)

■ Representación:

Vector de permutaciones con n elementos, donde n representa el numero de instalaciones y ubicaciones, por lo que se tiene un espacio de búsqueda n!. El elemento j de la posición i representa la asignación de la instalación j a la ubicación i.

Ejemplo, en la permutación

se asigna la instalación 2 a la ubicación 1.

■ Solución inicial:

- Generación aleatoria de la solución inicial.
- Utilización de una heurística, por ejemplo: Murtagh, B. A., Jefferson, T. R., Sornprasit, V. (1982). A heuristic procedure for solving the quadratic assignment problem. European Journal of Operational Research, 9(1), 71-76.

• Vecindad:

Operador intercambio (swap operator). Consiste en intercambiar la ubicación de dos instalaciones, por lo que se tiene una vecindad de tamaño,

$$\binom{n}{2} = \frac{n!}{(n-2)!2!} = \frac{n(n-1)}{2}$$

Ejemplo, se intercambian las ubicaciones de las instalaciones 1 y 3.

■ Función de evaluación:

$$\sum_{i=i}^{n} \sum_{j=i}^{n} f_{ij} d_{\phi(i)\phi(j)}$$

3. Ejercicio

Implemente las siguientes búsquedas locales para el problema de asignación cuadrática. Para cada búsqueda grafique la convergencia del valor objetivo.

- i Utilice una solución inicial aleatoria. Genere vecinos en forma aleatoria hasta que encuentre uno que mejore la solución actual o hasta generar un $50\,\%$ de la vecindad.
- ii Utilice una solución inicial aleatoria. Genere aleatoriamente el $30\,\%$ de la vecindad y seleccione el mejor vecino.
- iii Utilice una solución inicial aleatoria. Genere el total de la vecindad y seleccione el mejor vecino.
- iv Utilice una heurística para la solución inicial. Genere el total de la vecindad y seleccione el mejor vecino.

4. Instancias

 $\rm http://anjos.mgi.polymtl.ca/qaplib/inst.html$