Unsupervised Learning

Quiz, 5 questions

point

- For which of the following tasks might K-means 1. clustering be a suitable algorithm? Select all that apply.
 - Given historical weather records, predict if tomorrow's weather will be sunny or rainy.
 - Given a set of news articles from many different news websites, find out what are the main topics covered.
 - From the user usage patterns on a website, figure out what different groups of users exist.
 - Given many emails, you want to determine if they are Spam or Non-Spam emails.

point

- Suppose we have three cluster centroids $\mu_1=egin{bmatrix}1\\2\end{bmatrix}$, $\mu_2 = egin{bmatrix} -3 \ 0 \end{bmatrix}$ and $\mu_3 = egin{bmatrix} 4 \ 2 \end{bmatrix}$. Furthermore, we have a training example $x^{(i)} = egin{bmatrix} -2 \\ 1 \end{bmatrix}$. After a cluster assignment step, what will $c^{(i)}$ be?
 - $c^{\left(i
 ight)}$ is not assigned

 - $c^{(i)}=1$ $c^{(i)}=3$
 - $c^{(i)}=2$

1 point

K-means is an iterative algorithm, and two of the 3. following steps are repeatedly carried out in its innerloop. Which two?

		Move the cluster centroids, where the centroids μ_k are updated.
		Using the elbow method to choose K.
		The cluster assignment step, where the parameters $c^{\left(i\right)}$ are updated.
		Feature scaling, to ensure each feature is on a comparable scale to the others.
1 point	4.	Suppose you have an unlabeled dataset $\{x^{(1)},\ldots,x^{(m)}\}.$ You run K-means with 50 different random
		initializations, and obtain 50 different clusterings of the
		data. What is the recommended way for choosing which one of
		these 50 clusterings to use?
		The answer is ambiguous, and there is no good way of choosing.
		Always pick the final (50th) clustering found, since by that time it is more likely to have converged to a good solution.
		The only way to do so is if we also have labels $y^{(i)}$ for our data.
		For each of the clusterings, compute $\frac{1}{m}\sum_{i=1}^m x^{(i)}-\mu_{c^{(i)}} ^2$, and pick the one that minimizes this.
1 point	5.	Which of the following statements are true? Select all that apply.
		Since K-Means is an unsupervised learning algorithm, it cannot overfit the data, and thus it is always better to have as large a number

of clusters as is computationally feasible.

	The standard way of initializing K-measetting $\mu_1=\cdots=\mu_k$ to be equal to of zeros.			
	For some datasets, the "right" or "corvalue of K (the number of clusters) ca ambiguous, and hard even for a hum expert looking carefully at the data to	n be an		
	If we are worried about K-means gett in bad local optima, one way to ameli (reduce) this problem is if we try usin multiple random initializations.	iorate		
I, Zhaiyu Chen , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code				
		Submit Quiz		

3 P