This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WHAT IS CLAIMED IS:

1	1. A developing method, comprising the steps of:
2	carrying one-component non-magnetic toner on a developer carrier;
3	pressing the one-component non-magnetic toner by a regulating
4	member so as to regulate a transporting quantity of the one-component
5	non-magnetic toner so that the one-component non-magnetic toner is charged
6	forming an electrostatic latent image on an image carrier;
7	providing the one-component non-magnetic toner to the electrostatic
8	latent image so as to convert the electrostatic latent image into a visible toner
9	image; and
10	controlling the one-component non-magnetic toner so that the
11	one-component non-magnetic toner pressed by the regulating member
12	satisfies the following relationship:
13	B/A≦1
14	where A represents a width $[\mu m]$ of a particle size distribution of the
15	one-component non-magnetic toner; and B represents a width [fC] of a charge
16	quantity distribution of the one-component non-magnetic toner.
1	2. The developing method as set forth in claim 1, wherein the control
2	step is performed to satisfy the following relationship;
3	a>b
4	where a represents a particle size [µm] in a particle size segment
5	having a largest particle count in the particle size distribution of the
6	one-component non-magnetic toner; and b represents a particle size [um] in a

- 7 particle size segment having a largest particle count in the particle size
- 8 distribution in every charge quantity segment.
- 1 3. The developing method as set forth in claim 1, wherein the control
- 2 step is performed to satisfy a relation that a ratio of toner of reverse polarity in
- 3 the charge quantity distribution of the one-component non-magnetic toner is
- 4 less than 5%.
- 1 4. The developing method as set forth in claim 3, wherein the control
- 2 step is performed to satisfy a relation that a toner particle count in a charge
- 3 quantity segment having a largest particle count in the charge quantity
- 4 distribution in every particle size segment is 10% or higher of total toner.
- 1 5. The developing method as set forth in claim 1, wherein at least one of
- 2 kinds, resin composition and shape of the toner base particles of the
- 3 one-component non-magnetic toner is determined in the control step.
- 1 6. The developing method as set forth in claim 1, wherein at least one of
- 2 kinds and quantities of the extraneous additives added to the one-component
- 3 non-magnetic toner is determined in the control step.
- 1 7. The developing method as set forth in claim 1, wherein a surface
- 2 material of the developer carrier is determined in the control step.
- The developing method as set forth in claim 1, wherein a regulating

2	condition of the regulating member is determined in the control step.
1	9. The developing method as set forth in claim 1, wherein the
2	transporting quantity of the one-component non-magnetic toner is determined
3	in the control step.
1	10. An image forming method, comprising the steps of:
2	carrying a one-component non-magnetic toner on a developer carrier;
3	pressing the one-component non-magnetic toner by a regulating
4	member so as to regulate a thickness thereof so that the one-component
5	non-magnetic toner is charged;
6	forming an electrostatic latent image on an image carrier;
7	providing the one-component non-magnetic toner to the electrostatic
8	latent image so as to convert the electrostatic latent image into a visible toner
9	image;
10	controlling the one-component non-magnetic toner so that the
11	one-component non-magnetic toner pressed by the regulating member
12	satisfies the following relationship:
13	- B/A≦1
14	where A represents a width $[\mu m]$ of a particle size distribution of the
15	one-component non-magnetic toner; and B represents a width [fC] of a charge
16	quantity distribution of the one-component non-magnetic toner; and
17	transferring the visible image so as to form an image.

1

11.

The image forming method as set forth in claim 10, wherein the

- 2 method uses an image forming apparatus having no cleaner mechanism that
- 3 cleans waste toner remaining on the image carrier after the transferring step.