IJ,

<u>Dashboard</u> My courses <u>20BS1101: Matrices and Differential Calculus IT & ME</u> <u>General</u>

20BS1101: Matrices and Differential Calculus IT & ME

Started on Wednesday, 28 April 2021, 11:00 AM

State Finished

Completed on Wednesday, 28 April 2021, 11:20 AM

Time taken 20 mins

Grade 8.00 out of 12.00 (67%)

Question 1 What is the reduced linear differential equations with constant coefficients for

$$(1+x)^2rac{d^2y}{dx^2}+(1+x)rac{dy}{dx}+y=sin[2log(1+x)]$$

Select one:

$$\bigcirc$$
 a. $(D^2+2D+1)y=sin2t$

$$lacksquare b. (D^2 + D + 1)y = sin2t$$

×

$$\bigcirc$$
 c. $(D^2+1)y=sin2t$

$$igcup$$
 d. $(D^2+1)y=sine^t$

Your answer is incorrect.

The correct answer is: $(D^2+1)y=sin2t$

Question 2
Correct
Mark 2.00 out of 2.00

Mark 0.00 out

of 2.00

The general solution of $rac{d^2y}{dx^2}+y=sin2x$ is y=---

Select one:

$$\bigcirc$$
 a. $c_1 cos x + c_2 sin x - rac{1}{3} cos 2x$

$$ullet$$
 b. $c_1 cos x + c_2 sin x - rac{1}{3} sin 2x$

~

$$\bigcirc$$
 c. $c_1e^x+c_2e^{-x}-rac{1}{3}sin2x$

$$\bigcirc$$
 d. $c_1e^x+c_2e^{-x}-rac{1}{3}cos2x$

Your answer is correct.

The correct answer is: $c_1 cos x + c_2 sin x - rac{1}{3} sin 2x$

Ŋ,

Q

寥

(?)

仚

Mark 1.00 out of 1.00

Question 3 Correct

The general solution of $rac{d^2y}{dx^2}-y=0$ is y=----

Select one:

- igcup a. $(c_1+c_2x)e^{-x}$
- igcup b. $(c_1+c_2x)e^x$
- \circ c. $c_1 e^x + c_2 e^{-x}$

 $igcup_{igcup_1}$ d. $c_1 cos x + c_2 sin x$

Your answer is correct.

The correct answer is: $c_1 e^x + c_2 e^{-x}$

Question 4 Correct Mark 1.00 out of 1.00

The linear differential equation whose auxiliary equation has the roots 2,3 is

Select one:

$$\bigcirc$$
 a. $rac{d^2y}{dx^2}-6rac{dy}{dx}+5y=0$

$$ullet$$
 b. $rac{d^2y}{dx^2}-5rac{dy}{dx}+6y=0$

$$\bigcirc$$
 c. $rac{d^2y}{dx^2}-2rac{dy}{dx}+3y=0$

$$\bigcirc$$
 d. $rac{d^2y}{dx^2}-3rac{dy}{dx}+2y=0$

Your answer is correct.

The correct answer is: $rac{d^2y}{dx^2} - 5rac{dy}{dx} + 6y = 0$

Question **5**Correct
Mark 1.00 out

of 1.00

If the differential equation M dx+N dy=0 is homogeneous differential

equation then integrating factor is-----

Select one:

$$igorplus$$
 a. $rac{1}{Mx+Ny}$

$$\bigcirc$$
 b. $\frac{1}{Ny}$

$$\circ$$
 c. $\frac{1}{Mx}$

$$igcup$$
 d. $rac{1}{Mx-Ny}$

Your answer is correct.

The correct answer is: $\frac{1}{Mx+Ny}$

Question **6**Correct
Mark 1.00 out of 1.00

What is the integrating factor of $xdy-ydx+a(x^2+y^2)dx=0$

Select one:

$$igodesign$$
 a. $rac{1}{x^2+y^2}$

O b.
$$\frac{1}{x^2}$$

$$\bigcirc$$
 c. $\frac{1}{x^2-y^2}$

Od.
$$\frac{1}{y^2}$$

Your answer is correct.

The correct answer is: $\frac{1}{x^2+y^2}$

Ω̈́

 \mathcal{A}

 \otimes

(?)

命

Mark 0.00 out of 2.00

Question 7 Incorrect

Solution of simultaneous linear differential equations

$$x+rac{dy}{dt}=0,rac{dx}{dt}+y=0$$

Select one:

$$igcup$$
 a. $x = -c_1 e^t + c_2 e^{-t}, y = c_1 e^t + c_2 e^{-t}$

$$lacksquare$$
 b. $x = -c_1 e^t + c_2 e^{-t}, y = c_1 e^{2t} + c_2 e^{-2t}$

$$c. x = -c_1 e^{2t} + c_2 e^{-2t}, y = c_1 e^t + c_2 e^{-t}$$

od. non of these

Your answer is incorrect.

The correct answer is: $x=-c_1e^t+c_2e^{-t}, y=c_1e^t+c_2e^{-t}$

To reduce $(3x-2)^2rac{d^2y}{dx^2}+4(3x-2)rac{dy}{dx}+6y=sin(3x-2)$

Question 8 Correct

Mark 1.00 out

of 1.00

into linear differential equation with constant coefficients which transformation is used

Select one:

$$igcup$$
 a. $3x=e^t$

$$\bigcirc$$
 b. $3x-2=logt$

$$igcup_{t}$$
 c. $x=e^t$

$$left$$
 d. $3x - 2 = e^t$

Your answer is correct.

The correct answer is: $3x-2=e^t$

Question 9 Correct Mark 1.00 out

If one solution of the differential equation $rac{d^2y}{dx^2}+4y=0$

is y=sin 2x then the second solution is

Select one:

Your answer is correct.

The correct answer is: y=cos 2x

仚

 $\ddot{}$

www.vrsiddhartha.ac.in

- www.vrsiddhartha.ac.in

 www.vrsidhartha.ac.in

 www.wrsidhartha.ac.in

 www.wrsidharth
- ← +91 866 2582333,2584930

□ Data retention summary