

電界強度&3Dデータ統合 手法概要

株式会社アイ・エスビー

ISB CORPORATION

プロダクト事業推進室 技術主査(AI) 伊藤 誠

目次

- ・ 電波強度・導線の自動測定構成案(再掲)
- 統合ボクセルデータについて
- 統合処理概要
 - ・ 深度センサのボクセル化
 - ボクセルデータ例
 - FHDとボクセルデータの統合
 - 電界強度とボクセルデータの統合
- 統合処理の実行性能に関するISB見解
 - 統合処理の高速化
 - 手順の省略①:撮影位置を推定する低速な手法
 - 手順の省略②:撮影位置情報を利用した高速化
- デモアプリの想定GUI
- 想定作業項目

電波強度・導線の自動測定構成ISB案(再掲)

「物体が通過すると、どんな 電界強度変化があるか」を計 測可能

統合ボクセルデータについて

各時刻において、測定状況を保持する履歴データを持つ。 これを統合ボクセルデータとする。

統合ボクセルデータ

統合ボクセルデータは3D座標を持ち、下記情報を保持

- * 物体存在フラグ(人・動体・静止)
- * 電界強度関連情報
 - *座標(測定/送信/反射)
 - * 測定点の電界強度
 - *レイ・トレース電界線

物体存在フラグは以下を統合し、表示できるようにする。

- * 深度センサ: 各測定点から見える形状情報
- *FHDカメラ:人・動体の形状情報
- ※ 黄線:電界を直線に疑似化した、レイ・トレース電界線。矢印根本が送信元
- ※ 一点破線(赤・緑・黄):深度センサ・FHDカメラの撮影方向

深度センサデータのボクセル化①

カメラ位置・向きの 特定は別途検討

3D化の基本原理

測定点の位置・向き情報と深度情報が分かれば、 撮影した範囲で「物の位置」を特定可能

※ アフィン変換等の座標変換を利用。

深度センサデータのボクセル化②

基本的なアプローチ

死角のないよう深度センサを配置し、3D情報を構築。

深度センサデータのボクセル化③

なぜ3台?

3面図で設計されるロボットも死角なく3D化したいため。

シンプルな形状であれば2台でほぼ十分だが、複雑な形状は2台だと3D再現は困難(死角が多い)

今回は工場での電波計測なので 3面図で設計される運搬ロボットなど も移動することが想定される。

⇒ 3台撮影で死角をできるだけ減らす

参考:複数画像からの三次元復元 (東工大 金崎 准教授) https://www.slideshare.net/kanejaki /cvsaisentan20150328

ボクセルデータ例

死角があるため、これらは1,2台で撮影しているものと考えられる

FHDとボクセルデータの統合①

深度センサとFHDカメラの位置

深度センサからほぼ同じ位置・方向を向くよう、FHDカメラを配置。 (計測時にキャリブレーション実施)

FHDカメラデータは、後処理で概ね以下を実施する

- ①人検知AIによる人検知枠を取得
- ②3D情報化済の深度カメラデータと統合
- ③物体存在フラグ値を人ありに設定

position(x', y', z') direction(α' , β' , γ')

FHD position(x, y, z) direction(α , β , γ) 深度 座標変換処理にて、深度センサデータと統合可能。

FHDとボクセルデータの統合②

人フラグありのボクセルデータイメージ

黄色塗りが人ありと判定されたボクセル 実際は死角の少ないデータの予定。

電界強度とボクセルデータの統合

物理的な測定点情報(位置・向き)が分かっていれば 座標変換処理にて、3D化済データと統合可能。

※ 電界測定系の向き情報は不要

NICT(電界強度測定班)様への依頼事項

以下情報の提供を前提とします。

- 1. カメラからの空間的位置: 送信点、反射点、測定点
- 2. 時刻毎の電界強度情報 (時刻合わせ、測定周期について要合意)
- ※ レイ・トレーシング電界線は提供情報に基づき ISBにてデータ化。

統合処理の実行性能に関するISB見解

- 今回は「物理的な測定点を固定する」方式を選択するべきと考える。1 frame 3分以下で完了する見込み。(シンプルな座標変換のみ)
 - ※以前から説明している既存手法は「カメラ位置推定」が重い。
- ローカルサーバ購入やクラウドサービスを利用するべきと考える。
 - → NVIDIA社製GPUを利用することで、ISBで実装可能。
 - ※ 処理プログラム完成時に性能測定し、性能見積を実施。
 - ※ NICT様テストベッド環境(GPU)を借用できれば経費削減可能。

「1時点の1サンプル」の定義

- a.「深度センサとFHDの画像1枚づつ」x 測定点
- b.「電波強度測定結果」

手順の省略①:撮影位置を推定する低速な手法

低速な3D情報化

→不採用。

カメラ位置が確定しない場合は位置推定を行うが、 映った画像の形状マッチングを行い推定を行うため、非常に時間がかかる。 (実測で1frameあたり3min.)

※ カメラ位置の推定を行うため、低速。

手順の省略②:撮影位置情報を利用した高速化

高速な3D情報化

カメラの正確な位置・向き情報を利用し、 異なる座標系を高速統合する。

各手法の比較(1frame単位、並列度1で比較)

		手法①位置推定あり	手法②位置推定なし
カメラ種別		FHDのみ	FHD, 深度カメラ
長所		カメラ位置情報不要	演算が早い、省メモリ
短所		カメラ位置推定処理が重い電界強度情報とのマッチング処理が別途必要GPU高速化を見込めない。データ量が多い	正確な測定位置・向き情報が 必要
カメラ解像度		1920 x 1080	
カメラ台数		20台 ~	FHD x 3, 深度 x 3
1frameメモリ <u>量</u> (画像のみ。演算のための +α領域確保あり。)	CPU	160[MB] 以上	48[MB] 以上
	GPU	320[MB] 以上	96[MB] 以上
所要時間推定値 (1画素、1コアCPU)		4.5 x 10 ⁻⁶ sec程度	2.5 x 10 ⁻⁶ sec程度

デモアプリの想定GUI

以下のように、デモアプリUIは統合ボクセルデータの俯瞰図を表示する方針である認識。(時刻・電波強度測定値の表示は必須)

統合ボクセルデータ

俯瞰図に変換

デモアプリUI表示

想定作業項目

測定

- 1. 環境・手順構築
 - 1. 必要装置調達 (深度センサ/FHD, その他測定用治具 データサーバ)
 - 2. 環境構築手順検討
 - 3. 手順書作成•事前確認
- 2. 実施
 - ※1. 工場でのISB対応は未定。 (工場への装置運搬はISBで行う)
 - ※2. 電界強度測定はNICT様ご対応の認識。

データ処理

- 1. 測定データマージ
 - 1. プログラムの検討・作成
 - 2. マージ処理実行(NICT様環境を利用)
- デモアプリ作成
 ※ GUI、2D(俯瞰図)で表示予定。

納品

1. 納品物準備、レビュー

- ※ 電界強度シミュレーションAIについては、今期対応いたしません。
- ※ ISBの測定対応回数は1-2回の想定となります。
- ※ 以下の場合、別途工費を見積もりいたします。 クラウドサービスの利用があるとき

東京都・神奈川外への出張や宿泊ありの作業があるとき 想定回数以上の測定実施を行うとき