Вопросы для подготовки к экзамену по математическому анализу для всех специальностей ИУ (кроме ИУ9), РЛ, БМТ

(в квадратных скобках указаны номера лекций по календарному плану, см. Иванков П.Л. Конспект лекций по математическому анализу // электронный ресурс http://mathmod.bmstu.ru/Docs/Eduwork/ma/MAall.pdf)

- 1. Сформулируйте и докажите теорему о единственности предела сходящейся последовательности. $[\Pi, 4]$
 - **2.** Сформулируйте и докажите теорему об ограниченности сходящейся последовательности. [Π . 4]
- **3.** Сформулируйте и докажите теорему о локальной ограниченности функции, имеющей конечный предел. $[\Pi.\ 5]$
 - 4. Сформулируйте и докажите теорему о сохранении функцией знака своего предела. [Л. 5]
 - 5. Сформулируйте и докажите теорему о предельном переходе в неравенстве. [Л. 5]
 - 6. Сформулируйте и докажите теорему о пределе промежуточной функции. [Л. 5]
 - 7. Сформулируйте и докажите теорему о пределе произведения функций. [Л. 6]
 - **8.** Сформулируйте и докажите теорему о пределе сложной функции. [Π . θ]
 - 9. Докажите, что $\lim_{x\to 0} \frac{\sin x}{x} = 1$. [Л. 6]
 - 10. Сформулируйте и докажите теорему о связи функции, ее предела и бесконечно малой. [Л. 7]
- **11.** Сформулируйте и докажите теорему о произведении бесконечно малой функции на ограниченную. [Π . 7]
- **12.** Сформулируйте и докажите теорему о связи между бесконечно большой и бесконечно малой. $[\mathcal{I}$. $\mathcal{I}]$
- 13. Сформулируйте и докажите теорему о замене бесконечно малой на эквивалентную под знаком предела. [Π . \mathcal{S}]
- **14.** Сформулируйте и докажите теорему о необходимом и достаточном условии эквивалентности бесконечно малых. $[\Pi. \ 8]$
- **15.** Сформулируйте и докажите теорему о сумме конечного числа бесконечно малых разных порядков. [Π . \mathcal{S}]
- **16.** Сформулируйте и докажите теорему о непрерывности суммы, произведения и частного непрерывных функций. $[\mathit{\Pi}.\ 9]$
 - 17. Сформулируйте и докажите теорему о непрерывности сложной функции. [Л. 9]
- **18.** Сформулируйте и докажите теорему о сохранении знака непрерывной функции в окрестности точки. $[\Pi, \theta]$
- **19.** Сформулируйте теорему о непрерывности элементарных функций. Докажите непрерывность функции $y = \sin x$. [Л. 9]
 - **20.** Сформулируйте свойства функций, непрерывных на отрезке. [Π . 10]
- **21.** Сформулируйте определение точки разрыва функции и дайте классификацию точек разрыва. [Π . 9]
- **22.** Сформулируйте и докажите необходимое и достаточное условие существования наклонной асимптоты. $[Л. \ 10]$
- **23.** Сформулируйте и докажите необходимое и достаточное условие дифференцируемости функции в точке. $[\mathit{\Pi}.\ 11]$
- **24.** Сформулируйте и докажите теорему о связи дифференцируемости и непрерывности функции. [Π . 11]
- **25.** Сформулируйте и докажите теорему о производной произведения двух дифференцируемых функций. $[\mathit{\Pi}.\ 11]$
- **26.** Сформулируйте и докажите теорему о производной частного двух дифференцируемых функций. [Π . 11]
 - 27. Сформулируйте и докажите теорему о производной сложной функции. [Л. 11]
 - **28.** Сформулируйте и докажите теорему о производной обратной функции. [Π . 11]
- **29.** Сформулируйте и докажите свойство инвариантности формы записи дифференциала первого порядка. $[\mathit{\Pi}.\ 12]$
 - **30.** Сформулируйте и докажите теорему Ферма. [Л. 13]

- 31. Сформулируйте и докажите теорему Ролля. [Л. 13]
- 32. Сформулируйте и докажите теорему Лагранжа. [Л. 13]
- 33. Сформулируйте и докажите теорему Коши. [Л. 13]
- **34.** Сформулируйте и докажите теорему Лопиталя Бернулли для предела отношения двух бесконечно малых функций. [\mathcal{J} . 13]
 - 35. Сравните рост показательной, степенной и логарифмической функций на бесконечности. [Л. 13]
 - 36. Выведите формулу Тейлора с остаточным членом в форме Лагранжа. [Л. 14]
 - 37. Выведите формулу Тейлора с остаточным членом в форме Пеано. [Л. 14]
- **38.** Выведите формулу Маклорена для функции $y=e^x$ с остаточным членом в форме Лагранжа. [Л. 14]
- **39.** Выведите формулу Маклорена для функции $y = \sin x$ с остаточным членом в форме Лагранжа. [Л. 14]
- **40.** Выведите формулу Маклорена для функции $y = \cos x$ с остаточным членом в форме Лагранжа. [Л. 14]
- **41.** Выведите формулу Маклорена для функции $y = \ln(1+x)$ с остаточным членом в форме Лагранжа. [Л. 14]
- **42.** Выведите формулу Маклорена для функции $y=(1+x)^{\alpha}$ с остаточным членом в форме Лагранжа. [Л. 14]
- **43.** Сформулируйте и докажите необходимое и достаточное условие неубывания дифференцируемой функции. $[\Pi.\ 15]$
- **44.** Сформулируйте и докажите необходимое и достаточное условие невозрастания дифференцируемой функции. $[\Pi.\ 15]$
- **45.** Сформулируйте и докажите достаточное условие возрастания дифференцируемой функции. $[\mathit{\Pi}.\ 15]$
 - 46. Сформулируйте и докажите достаточное условие убывания дифференцируемой функции. [Л. 15]
- **47.** Сформулируйте и докажите первое достаточное условие экстремума (по первой производной). [J. 15]
- **48.** Сформулируйте и докажите второе достаточное условие экстремума (по второй производной). [J. 15]
 - **49.** Сформулируйте и докажите достаточное условие выпуклости функции. $[\Pi. \ 16]$
 - **50.** Сформулируйте и докажите необходимое условие точки перегиба. [Π . 16]
 - **51.** Сформулируйте и докажите достаточное условие точки перегиба. [*Л. 16*]

При ответе на теоретические вопросы билета формулировки теорем должны сопровождаться определениями используемых в них понятий. В частности, требуется знание следующих определений: предела последовательности [Л. 4]; предела функции (определения по Коши и по Гейне) [Л. 5]; окрестности и ε -окрестности точки $x \in \mathbb{R}$ [Л. 2]; окрестностей $+\infty$, $-\infty$ и ∞ [Л. 2]; сходящейся, ограниченной, возрастающей, убывающей, невозрастающей, неубывающей, монотонной, фундаментальной последовательностей [Л. 3, 4]; бесконечно малой и бесконечно большой функций $[\Pi. 7]$; бесконечно малых функций: одного порядка, несравнимых, эквивалентных $[\Pi. 8]$; порядка малости [Π . δ]; порядка роста [Π . δ]; приращения функции [Π . θ]; непрерывной функции в точке (эквивалентные определения) [Π . θ]; непрерывной функции на интервале, на отрезке [Π . θ]; точек разрыва: устранимого, І-го рода, ІІ-го рода [Π . 9]; наклонной асимптоты [Π . 10]; производной функции в точке $[\Pi. 11]$; односторонней (левой или правой) производной функции $[\Pi. 11]$; дифференцируемой функции [J. 11]; дифференциала первого порядка [J. 12]; производной n-го порядка [J. 12]; дифференциала n-го порядка [J. 12]; возрастающей, невозрастающей, убывающей, неубывающей, монотонной, строго монотонной функций $[\Pi. 15]$; строгого и нестрогого локальных минимума, максимума, экстремума [J. 15]; стационарной и критической точек [J. 15]; выпуклости (вверх или вниз) графика функции на промежутке $[\Pi. 16]$; точки перегиба графика функции $[\Pi. 16]$.

Знание остальных теорем, определений и понятий из программы курса может потребоваться при ответе на дополнительные вопросы экзаменатора.

Задачи для подготовки к экзамену по математическому анализу для всех специальностей ИУ (кроме ИУ9), РЛ, БМТ

На экзамене студенту выдаётся две задачи, каждая на одну из следующих тем: «пределы», «сравнение бесконечно больших и бесконечно малых», «непрерывность и точки разрыва», «геометрические приложения производной и формула Тейлора», «исследование функций». При подготовке к экзамену рекомендуется прорешать следующие задачи.

1. Вычислить предел:

1.1.
$$\lim_{n \to \infty} \left(\frac{1}{2n} \cos n + \frac{5n}{3n+7} \right)$$
; **1.2.** $\lim_{x \to \infty} \left(\frac{x^3}{2x^2-1} - \frac{x^2}{2x+1} \right)$; **1.3.** $\lim_{x \to 0} \frac{\sqrt{2+x} - \sqrt{2-x}}{\sqrt[3]{2+x} - \sqrt[3]{2-x}}$;

1.4.
$$\lim_{x \to 1} \frac{\sqrt{x} + \sqrt{x - 1} - 1}{\sqrt{x^2 - 1}};$$
 1.5. $\lim_{x \to \alpha} \operatorname{tg} \frac{\pi x}{2\alpha} \sin \frac{x - \alpha}{2};$ 1.6. $\lim_{x \to 0} \frac{\sin 2x - \operatorname{tg} 2x}{x^3};$

1.7.
$$\lim_{x \to \frac{\pi}{2}} (\sin x)^{\frac{1}{\cos x}};$$
 1.8. $\lim_{x \to 0} \frac{1}{x} \ln \sqrt{\frac{1+x}{1-x}};$ **1.9.** $\lim_{x \to +\infty} \left((2x-7) \cdot \left(\ln(3x+5) - \ln(3x-1) \right) \right);$

1.10.
$$\lim_{x \to 0} \left(\frac{2}{\pi} \cdot \arccos x \right)^{\frac{1}{e^{3x}-1}};$$
 1.11. $\lim_{x \to +\infty} \frac{\ln^{2020} x}{x^{2020}};$ **1.12.** $\lim_{x \to \infty} \frac{7x^7 + 4x^4 + 1}{(x-2)^3(4x+5)^2(3x-1)^2};$

1.13.
$$\lim_{x \to 0} \frac{\operatorname{tg}(4x^4 + x^2) + e^{x^2} - \cos 2x}{\ln(1 + 2x^2)}$$
; **1.14.** $\lim_{x \to \infty} \frac{3x + 7x^2 + \cos 5x + \operatorname{arctg} x^5 + e^{-x^2}}{\sqrt{x^4 + 8x^3}}$.

2. Выделить главную часть б.м. функции или б.б. функции:

2.1.
$$f(x) = \sin(\sqrt{x+2} - \sqrt{2})$$
 при $x \to 0$;
2.2. $f(x) = \operatorname{tg} x - \sin x$ при $x \to 0$;
2.3. $f(x) = \sqrt{\operatorname{lg} x}$ при $x \to 1$;
2.4. $f(x) = (2x+1) \operatorname{arctg} \frac{1}{\sqrt{x+3}}$ при $x \to \infty$.

3. Определить порядок малости
$$\alpha(x) = \sqrt[3]{1 + \sqrt[3]{x}} - 1$$
 относительно $\beta(x) = x$ при $x \to 0$.

4. Найти точки разрыва функции, исследовать их характер:

4.1.
$$f(x) = 2^{\frac{x}{9-x^2}};$$
 4.2. $f(x) = \frac{5^{1/x} - 1}{5^{1/x} + 1};$ 4.3. $f(x) = (2+x) \cdot \arctan \frac{x}{(2-x)(1-x^2)};$ 4.4. $f(x) = \begin{cases} \cos \frac{1}{x}, & x < 0, \\ \arctan \frac{\pi}{x - x}, & x \ge 0; \end{cases}$ 4.5. $f(x) = \begin{cases} \frac{\sqrt{x^2 + x^3}}{x}, & x < 1, \\ \frac{2^{1/x}}{x}, & 1 \le x < 2, \\ \sqrt{2}, & x \ge 2. \end{cases}$

5. Найти y'', если функция y = f(x) задана

5. Найти
$$y''$$
, если функция $y = f(x)$ задана

5.1. неявно: $\arctan \frac{y}{x} = \ln \sqrt{x^2 + y^2};$
5.2. параметрически: $\begin{cases} x = \sec t, \\ y = \operatorname{tg} t, \end{cases}$ $t \in \left(0; \frac{\pi}{2}\right).$

6. Составить уравнение касательной к линии $y = x^2 + 4x$, которая параллельна прямой y - 2x = 0.

7. В каких точках нормаль к кривой $x^2 - 2x + y^2 = 0$ параллельна оси OY?

8. Вычислить пределы по правилу Лопиталя – Бернулли:

8.1.
$$\lim_{x \to 0} \frac{x - \sin x}{x - \lg x}$$
; **8.2.** $\lim_{x \to +\infty} (x + 2^x)^{1/x}$; **8.3.** $\lim_{x \to 0} \left(\frac{1}{x^2} - \operatorname{ctg}^2 x\right)$.

9. Используя разложения функций по формуле Маклорена, вычислить предел:

9.1.
$$\lim_{x\to 0} \frac{1-\sqrt{1+x^2}\cdot\cos x}{\sec^4 x}$$
;

9.1.
$$\lim_{x\to 0} \frac{1-\sqrt{1+x^2}\cdot\cos x}{\operatorname{tg}^4 x};$$
 9.2. $\lim_{x\to 0} \frac{\sin(x^2)-4e^{-x^2/2}+4}{x^3(e^x-1)};$ **9.3.** $\lim_{x\to 0} \frac{\sin x-\operatorname{tg} x}{(3^x-1)^3};$

9.3.
$$\lim_{x \to 0} \frac{\sin x - \operatorname{tg} x}{(3^x - 1)^3}$$

10. Функцию f(x) разложить по целым степеням x, ограничиваясь членами до пятого порядка малости относительно x.

10.1.
$$f(x) = e^{x^2 - 1}$$
; **10.2.** $f(x) = \sin\left(x + \frac{\pi}{3}\right)$; **10.3.** $f(x) = \frac{1}{1 + x^2} - \frac{2x}{1 - x}$; **10.4.** $f(x) = \ln\frac{3 + x}{1 - x^2}$; **10.5.** $f(x) = x\sqrt[3]{8 - x^2}$; **10.6.** $f(x) = x\sqrt{1 - x^2} - \cos x \cdot \ln(1 + x)$.

10.4.
$$f(x) = \ln \frac{3+x}{1-x^2}$$
; **10.5.** $f(x) = x\sqrt[3]{8-x^2}$; **10.6.** $f(x) = x\sqrt{1-x^2} - \cos x \cdot \ln(1+x)$

- **11.** Разложить многочлен $P(x) = x^4 3x^3 + x^2 + 2x + 4$ по степеням x 2.
- **12.** Найти асимптоты графика функции $y = \sqrt[3]{12x 4x^3}$ и интервалы монотонности.
- **13.** Найти интервалы выпуклости графика функции $y = x \arctan 5x$ и точки перегиба.
- Построить график функции $y = \frac{x}{x^2 4}$, определить асимптоты, точки эктремума, интервалы возрастания и убывания, направление выпуклости графика функции и точки перегиба.

Образец билета

Московский государственный технический университет им. Н.Э. Баумана

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ

по курсу Математического анализа, 1-й курс, 1-й сем., ИУ (кроме ИУ9), РЛ, БМТ.

- 1. Сформулируйте и докажите теорему о замене бесконечно малой на эквивалентную под знаком предела. (6 баллов)
- Сформулируйте и докажите достаточное условие возрастания дифференцируемой функции. (6 баллов)
 - 3. Задача из комплекта № 1. (6 баллов)
 - 4. Задача из комплекта № 4. (6 баллов)
 - **5.** Дополнительные вопросы экзаменатора. (*6 баллов*)

Билеты утверждены на заседании кафедры ФН-12 16.11.2019.