1 Naive Mengenlehre

Eine Menge ist eine Zusammenfassung von wohlbestimmten Objekten zu einem Ganzen. Diese Objekte heissen Elemente.

Elementbeziehung

Sei M eine beliebiege nichtleere Menge dann bedeutet, $x \in M$, das wir ein beliebiges x der Menge M auswaehlen.

1.1 Angabe von Mengen

Aufzaehlung:

Eine endliche Menge kann durch aufzaehlung all ihrer Elemente angegeben werde z.B. stellt $M = \{1, 2, 3, 4, 5\}$, die Menge aller natuerliche Zahlen < 6 dar.

Bildungsgesetz:

Eine unedliche Menge kann mit Hilfe eines Bildungsgesetzes angegeben werden z.B. $M = \{1, 2, 3, ...\} = \mathbb{N}$

Eigenschaft:

Eine Teilmenge M einer Menger N kann mit Hilfe einer Eingenschaft E die alle Elemente der Menge entweder besitzen oder nicht angegeben werden $M = \{x \in N | E(x)\}$

1.2 Mengenbeziehungen

1.2.1 Teilmenge:

Definition: Sei M eine Menge. Dann heisst eine weitere Menge N Teilmenge von M wenn gilt:

$$x \in \mathbb{N} \Rightarrow x \in \mathbb{M}$$

Notation:

 $N \subseteq M$

1.3 Potenzmenge

Defintion: Sei M eine Menge, dann nennt die Menge all ihrer Teilmengen U Potenzmenge der Menge M.

$$\mathscr{P}(M) := \{U | U \subseteq M\}$$

Beispiel:

$$\begin{split} \mathscr{P}(\emptyset) &= \{\emptyset\} \\ \mathscr{P}(\{a\}) &= \left\{\emptyset, \{a\}\right\} \\ \mathscr{P}(\{a,b\}) &= \left\{\emptyset, \{a\}, \{b\}, \{a,b\}\right\} \end{split}$$

1.4 Leere Menge

Definition: Eine Menge M die keine Elemente enhaelt nennt man leere Menge

$$\mathbf{M} = \{\forall x : x \notin \mathbf{M}\} \Leftrightarrow : \emptyset$$

Notation:

Ø

1.5 Disjunktion(Vereinigung)

Definition: Seien $N_1, N_2 \subseteq M$, dann nennt man die Menge X disjunktion(vereinigung) von N_1 und N_2 wenn fuer alle $x \in X$ gilt, das $x \in N_1$ oder $x \in N_2$.

$$X = \{x \in M | x \in N_1 \lor x \in N_2\}$$

Notation:

$$X=N_1\cup N_2$$

Venn-Diagramm

1.6 Konjunktion(Schnittmenge)

Definition: Seien $N_1, N_2 \subseteq M$, dann nennt man die Menge X konjunktion(schnittmengen) von N_1 und N_2 wenn fuer alle $x \in X$ gilt, das $x \in N_1$ und $x \in N_2$.

$$X = \{x \in M | x \in N_1 \land x \in N_2\}$$

Notation:

$$X=N_1\cap N_2$$

Venn-Diagramm

