LESSON 16

DATABASES & SQL

Michael Twardos

What We Will Do Today

- Databases, data warehouse design and SQL introduction.
- Overview of product adoption and growth analytics.
- Compute retention metrics for a fictional product.
- Apply convolution to the retention curve to project future active users.
- Build a model to predict the retention likelihood of individual customers.
- Think about how a data science model can actually be used.

WHAT IS A DATABASE?

Why Databases?

- Databases are used as a repository of information. Allow for efficient storage and access.
- Types
 - Relational (MySQL, PostgreSQL, Redshift)
 - Key Value (Redis)
 - Document (Mongo)
 - o Graph (Neo4j)
 - Time Series (Graphite)
 - o Search (Elastic, Solr, Splunk)
 - Wide Column (Cassandra, HBase)

• DB Popularity

The top 5 commercial systems, March 2016

Rank	System	Score	Overall Rank
1.	Oracle	1472	1.
2.	Microsoft SQL Server	1136	3.
3.	DB2	188	6.
4.	Microsoft Access	135	7.
5.	SAP Adaptive Server	77	12.

The top 5 open source systems, March 2016

Rank	System	Score	Overall Rank
1.	MySQL	1348	2.
2.	MongoDB	305	4.
3.	PostgreSQL	300	5.
4.	Cassandra	130	8.
5.	Redis	106	9.

Master Fact Table

- ► A comprehensive historical record of everything that happened. (Think who, what, where, when, how, why)
- Required fields:

customer_id, timestamp, event_type

Recommended fields

marketing campaign, location, device, browser, os...

Data Warehouse Design

Stories from Industry

What have you experienced and what was good or bad?

How was the data stored? How is it accessed?

SQL Read

SELECT a

FROM b

WHERE c

GROUP BY d

ORDER BY e

LIMIT f

,

Python SQL Workshop

- Import data into SQLite
- Run basic SQL queries
- Explore SQL functions

PRODUCT ADOPTION & GROWTH ANALYTICS

Product Adoption Curve

CONSUMPTION SPREADS FASTER TODAY

Figure 1. Hype Cycle for Digital Marketing, 2014

Source: Gartner (July 2014)

Stories of Product Adoption

Task: Think of a product / service / company you started using/interacting with in the last year and answer these questions.

- 1) How did you hear about it?
- 2) What was your first experiences with it? Was it memorable?
- 3) How easy was the product to use? How valuable? How enjoyable?
- 4) How often do you use this product months after you first started to if at all?
- 5) Did you pay? Would you pay again?

A Customer's Lifecycle

- Events are captured through a customer's life.
- The period of time between events can define a user 'state'. A state is the atomic unit of measurement for growth.

Customer Transitions

$$Y(t) = XG(t)$$
 The time dependent 'susceptibility' of Y to X.

- X and Y are behaviors captured as events.
- We measure the transitions of customers as defined by these events.
- Y's relationship to X, can be dependent or independent, singular or multiple. Y can also be the same event as X.
- Measuring G(t) tells us about the rate of change or growth between X and Y.

SELECT <fields>

ON A.key = B.key

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Author: http://commons.wikimedia.org/wiki/User:Arbeck

SELECT <fields>
FROM TableA A
FULL OUTER JOIN TableB B
ON A.key = B.key
WHERE A.key IS NULL
OR B.key IS NULL

Join Example

```
SELECT
   count(DISTINCT(y.customer id))
FROM
   master fact x
JOIN
   master fact y
ON
   x.customer id = y.customer id
WHERE
   x.event_type = 'X' AND
   y.event type = 'Y'
```

Growth Susceptibility Query

```
SELECT
   floor((y.date created - x.date created)/(30*86400)) AS "Age",
   count(DISTINCT( y.customerid )) AS customers
FROM
   master fact x
left join
   master fact y
ON
   x.customer id = y.customer id
WHERE
   x.eventtype = 'X' AND
   y.eventtype = 'Y'
GROUP BY 1
```

Time Dependent Susceptibility

Time Dependent Susceptibility

0.25 0.24 0.24 0.25 0.25 0.2 0.3 0.29 0.3 0.29 0.31 0.29 0.29 age 0.34 0.33 0.35 0.33 0.35 0.33 0.34 0.35 0.3 (time_{v-x}) 0.57 0.56 0.54 0.53 0.55 0.54 0.52 0.52 0.54 0.55 0.54 0.57 0.55 0.54

time_x

Python SQL Workshop #2

- Import master_fact table from eliflo.
- Explore how to do joins.
- Measure retention curves of a few cohorts.
- Look at retention performance over time.

PROJECTIONS & PREDICTIVE MODELS

A Thought Experiment

Day 3 of Launch

- ► 1000 new customers per day
- ▶ 50% return day after signup, 25% return 2 days later, none return after.
- How many users do we expect on day 5?

Generalize: If N(t) customers join each day and G(a) return how many do we expect to be active T days from now?

Forecasting

$$Y(t) = XG(t)$$

$$Y(t) = \sum_{a} X(t - a)G(a)$$

SQL for Predictive Models

Generalizable to multiple features.

```
SELECT
      X.customer id,
      X.feature,
      Y.dependent variable
FROM
SELECT
      customer id,
      count(*) as feature
FROM
      master fact
WHERE
      event type = 'X' and
      date created in 'Some Time Period'
GROUP BY 1
) X
LEFT JOIN
SELECT
      customer id,
      count(*) as dependent variable
FROM
      master fact
WHERE
      event type = 'Y' and
      date created in 'Some Later Time'
GROUP BY 1
) Y
ON
      X.customer id = Y.customer id
GROUP BY 1
```

SQL for Predictive Models

Generalizable to multiple features.

```
Cohort Activity.sql
    SELECT
        x.user_id
        x.feature,
        y.dependent_variable
    FROM
    (SELECT
        user_id,
        count(*) as feature
    FROM
10
        event_log
    WHERE
12
        event_type = 'X' and
        date_trunc(date_created, 'month') = "Some Month"
13
    GROUP BY 1
    ORDER BY 1) a
    LEFT JOIN
17
    (SELECT
18
        user_id,
        count(*) as dependent_variable
19
20
    FROM
21
        event_log
    WHERE
23
        event_type = 'Y' and
24
        date_trunc(date_created, 'month') = "Some Month Later"
    GROUP BY 1
26
    ORDER BY 1) b
27
    on a user id = b user id
28
```

Extending to Multiple X - Supervised Learning

features - events

c1x1 c1x2 c1x3 ...

c2x1 c2x2 ..

customers

cNx(M-1) cNxM

dependent variable

y1

y2

yN

- Rows are customers.
- Features are behavioral measures and latent attributes of those customers.
- Dependent variable, Y, is the customer's activity we want to predict.

Python SQL Workshop #3

- Convolve the retention curve with new users to compute future daily active users.
- ► Build a prediction model to estimate whether a customer will be active in their 3rd month.
- Write a query to create a data set you can use to build this model.