Mid-Semester Test (AY21/22 S1)

EP0605 - Advanced Physics

Time Allowed: 1½ hour

Instructions to Candidates

Max Marks: 100

- 1. All the Singapore Polytechnic examination rules must be strictly adhered to.
- 2. This paper consists of **6 questions**. Take $g = 9.8 \text{ m/s}^2$.
- 3. Answer all the questions in this question booklet. All working must be shown.
- 4. This paper consists of **8** pages (inclusive of the cover page).
- 5. Fill in the table below.

Name:		
Admission No:	S/No	
Class:	Date:	

For Official Use Only	Question	Marks
	1	
	2	
	3	
	4	
	5	
	6	
	Total	

AY21/22 S1 1

- 1. a) The acceleration of an object has the formula $a = \frac{m^x v^y}{r^z}$ where m, v and r are mass, velocity and distance, respectively. Using dimensional analysis, determine the values of x, y, and z and hence, find the formula for the acceleration.
 - b) A particle is under the influence of a force $\mathbf{F} = (3\mathbf{i} + 4\mathbf{j})$ N. The displacement vector of the particle is $\mathbf{s} = (7\mathbf{i} + 24\mathbf{j})$ m. Calculate the dot product of \mathbf{F} and \mathbf{s} and hence, find the angle between the two vectors.

(17 marks)

- 2. a) A particle moves so that its position as a function of time is given by $\vec{r} = \hat{i} + 4t^2 j + tk$.
 - i) Write the expressions for its instantaneous velocity and acceleration as functions of time.
 - ii) What is the average velocity and average acceleration between t = 0 s and t = 2 s?
 - b) Two trains are moving along a straight track when their drivers suddenly notice that they are headed towards each other. The figure below shows their velocity-vs-time graphs as the drivers slow the trains. The slowing processes begin when the trains are 200 m apart. What is their separation when both trains have stopped?

- 3. A boy threw a stone with an initial speed of 15.0 m/s at 60.0° with respect to the ground. The stone just missed the tops of two 4.00 m tall wall that are separated by distance d. The below figure (not drawn to scale) depicts the scenario.
 - i) What is the maximum height reached by the stone?
 - ii) How long did the stone take to reach the maximum height?
 - iii) Determine the separation d of the two walls?

(17 marks)

- 4. a) State Newton's First Law of motion.
 - b) The diagram below shows three segments of a surface. All segments are 2.0 m long. Segment A is smooth and inclined at 30°. Segments B and C are both horizontal but B is smooth while C has a coefficient of kinetic friction of 0.25.

An object of mass 1.0 kg at the bottom of A is given an initial velocity directed along the inclined surface such that it can just reach the end of C.

- i) Describe the motion of the object in the three segments (in terms of velocities and acceleration).
- ii) What is the initial velocity of the object?
- c) What is the initial velocity of the object if it were to just stop at the top of A?

(17 marks)

- 5. Angular momentum \vec{L} is defined as $\vec{L} = \vec{r} \times \vec{p}$ where \vec{r} is the position vector and $\vec{p} = m\vec{v}$ is the linear momentum of a particle of mass m. A particle of mass m = 1.0 kg moves with velocity v = 10 m/s from A to B as shown in the below figure. Given $r_1 = 10$ m, $\theta_1 = 60^\circ$, $r_2 = 5.0$ m and $\theta_2 = 30^\circ$. Take right as +x (unit vector \hat{i}), up as +y (unit vector j) and out of the paper as +z (unit vector k).
 - i) Determine the angular momentum, $\vec{L}_1 = \vec{r_1} \times \vec{p_1}$ of the particle at A.
 - ii) Determine the angular momentum $\vec{L}_2 = \vec{r}_2 \times \vec{p}_2$ of the particle at B.
 - iii) Determine the change in angular momentum $\Delta \vec{L}$.

- 6. The two blocks (A = 16 kg and B = 88 kg) in the figure below are not attached to each other. The coefficient of static friction between the two blocks is $\mu_s = 0.33$, but the surface beneath the larger block is frictionless.
 - i) Draw the free-body diagram for blocks A and B if a horizontal force F acts on A as shown in the figure.
 - ii) What is the magnitude of the minimum force F required to keep block A from slipping down block B?
 - iii) If the force F acts on block B instead of block A, what is the magnitude of F so that block A does not fall off block B?

Answer:

1(a)	x = 0, y = 2, z = 1
1(b)	20.6°
2(a)(i)	$\vec{v} = 8t\hat{\jmath} + \hat{k},\vec{a} = 8\hat{\jmath}$
2(a)(ii)	$\vec{v}_{ave} = (8\hat{j} + \hat{k}) \text{ m/s}, \vec{a}_{ave} = 8\hat{j} \text{ m/s}^2$
2(b)	40 m
3(i)	8.61 m
3(ii)	1.33 s
3(iii)	14.5 m
4(a)	Every object remains stationary or moves with constant velocity unless a net
	force acts on it.
4(b)(i)	A: object's slows down with acceleration $-g \sin \theta$
	B: object moves with constant velocity, 0 acceleration
	C: object slows down with constant deceleration
4(b)(ii)	5.42 m/s
4(c)	4.43 m/s
5(i)	$-50.0 \ \hat{k} \ \text{kg m}^2/\text{s}$
5(ii)	$-43.3 \hat{k} \text{kg m}^2/\text{s}$
5(iii)	$6.70 \ \hat{k} \ \text{kg m}^2/\text{s}$
6(ii)	562 N
6(iii)	3090 N

8

AY21/22 S1