Code to Generate Input Data from Weather Dataset

https://colab.research.google.com/drive/1bswqCdNeJrgfCVVBSD-Aql-dg_OIMhLb?usp=sharing

```
import pandas as pd
import numpy as np
from math import radians, cos, sin, asin, sqrt
import requests
from io import StringIO
# Important library for many geopython libraries
!apt install gdal-bin python-gdal python3-gdal
# Install rtree - Geopandas requirment
!apt install python3-rtree
# Install Geopandas
!pip install git+git://github.com/geopandas/geopandas.git
# Install descartes - Geopandas requirment
!pip install descartes
# Install Folium for Geographic data visualization
!pip install folium
# Install plotlyExpress
!pip install plotly express
# ca bioregions shape file
import geopandas as gpd
!unzip /content/data.zip
```

Retrieve Raw Weather data from NOAA

```
x = requests.get('https://nathanpersonalbucket.s3-us-west-2.amazonaws.com/2366872.csv')
data = StringIO(x.text)
weatherStat = pd.read_csv(data)
weatherStat.NAME.unique().size #73 stations
weatherStat = weatherStat.drop_duplicates(subset=['NAME'])
# Renaming the column names
weatherStat=weatherStat.rename(columns = {'LATITUDE':'lat','LONGITUDE':'lon'})
weatherStat
```

	STATION	NAME	lat	lon	ELEVATION	DATE	AWND	PRCP
0	USW00023129	LONG BEACH DAUGHERTY AIRPORT, CA US	33.81160	-118.14630	9.4	1970- 01-01	NaN	0.00
18263	USW00023293	SAN JOSE INTERNATIONAL AIRPORT, CA US	37.35910	-121.92400	15.5	1998- 07-04	8.50	0.00
26113	USW00003167	HAWTHORNE MUNICIPAL AIRPORT, CA US	33.92278	-118.33417	19.2	1998- 04-01	5.82	0.07
33866	USW00023174	LOS ANGELES INTERNATIONAL AIRPORT, CA US	33.93800	-118.38880	29.6	1970- 01-01	NaN	0.00
52129	USW00023130	VAN NUYS	34 20972	-118 48917	234 7	1998-	4 70	ი 11

▼ Useful Functions

```
SANTA MONICA
                                                                             1000
def dist(lat1, long1, lat2, long2):
   # calc distance between 2 points on earth - using haversine formula
   # convert decimal degrees to radians
   lat1, long1, lat2, long2 = map(radians, [lat1, long1, lat2, long2])
   # haversine formula
   dlon = long2 - long1
   dlat = lat2 - lat1
   a = \sin(dlat/2)**2 + \cos(lat1) * \cos(lat2) * \sin(dlon/2)**2
   c = 2 * asin(sqrt(a))
   km = 6371* c # Radius of earth in kilometers is 6371
   return km
def find nearest(lat, long):
 #given lat, lon of fire - find nearest weather station
   distances = weatherStat.apply(
        lambda row: dist(lat, long, row['lat'], row['lon']), axis=1)
   return weatherStat.loc[distances.idxmin(), 'NAME']
```

▼ Create 3 Bioregions

Get Monthly Averages from Daily Temperature Data from NOAA Weather Dataset

```
x = requests.get('https://nathanpersonalbucket.s3-us-west-2.amazonaws.com/2366872.csv')
data = StringIO(x.text)

df = pd.read_csv(data)
table = df.dropna(subset=['TAVG'])
table = table.drop(columns=['AWND'])
table['DATE'] = pd.to_datetime(table['DATE'])

table['YEAR']=table['DATE'].dt.year
table['MONTH']=table['DATE'].dt.month
table = table.groupby(['NAME','YEAR','MONTH']).mean()

table
gdf_weather = gpd.GeoDataFrame(table, geometry=gpd.points_from_xy(table.LONGITUDE, table.LA
table
```

				LATITUDE	LONGITUDE	ELEVATION	PRCP	TAVG	TM.
N	AME	YEAR	MONTH						
ALTURAS MUNICIPA AIRPORT, O US	L	1998	6	41.49139	-120.56444	1333.5	0.068333	57.500000	71.5333
			7	41.49139	-120.56444	1333.5	0.045484	68.290323	88.1290
			9	41.49139	-120.56444	1333.5	0.066333	60.733333	78.2333
			10	41.49139	-120.56444	1333.5	0.010000	45.533333	61.7000
			11	41.49139	-120.56444	1333.5	0.119667	36.033333	45.0000

▼ Spatial Join Bioregions with Weather Data

joinWDF=gpd.sjoin(df_bioregions, gdf_weather, how='inner', op='intersects')
WEATHER_REGIONS = joinWDF.drop(columns=['index_right','LATITUDE','LONGITUDE','ELEVATION'])
WEATHER_REGIONS

	geometry	region	NAME	YEAR	MONTH	PRCP	TAVG	TMAX	TMI
0	POLYGON ((-124.21603 41.99622, -120.00380 41.9	1	MONTAGUE SISKIYOU AIRPORT, CA US	2002	6	0.001154	64.423077	82.038462	46.30769
0	POLYGON ((-124.21603 41.99622, -120.00380 41.9	1	MONTAGUE SISKIYOU AIRPORT, CA US	2005	2	0.016429	39.714286	53.535714	25.42857
0	POLYGON ((-124.21603 41.99622, -120.00380 41.9	1	MONTAGUE SISKIYOU AIRPORT, CA US	2003	2	0.026429	38.821429	50.678571	26.53571
0	POLYGON ((-124.21603 41.99622,	1	MONTAGUE SISKIYOU AIRPORT,	2002	2	0.035714	40.821429	53.714286	27.42857

Get Weather Averages from the Past 3 Months, then Save Results to CSV

```
WEATHER_3MONTH = WEATHER_REGIONS.groupby(by=['region','YEAR','MONTH']).mean().reset_index()
WEATHER 3MONTH
PRCP3 = []
TAVG3 = []
TMIN3 = []
TMAX3 = []
def threeMonthPRCP(data):
 for i in range(3, len(data)):
    threeMON = data.iloc[i-3]
    twoMON = data.iloc[i-2]
    oneMON = data.iloc[i-1]
    df = pd.DataFrame([threeMON, twoMON, oneMON])
    PRCP3.append(df['PRCP'].mean())
    TAVG3.append(df['TAVG'].mean())
    TMIN3.append(df['TMIN'].mean())
    TMAX3.append(df['TMAX'].mean())
threeMonthPRCP(WEATHER 3MONTH)
WEATHER 3MONTH = WEATHER 3MONTH.drop([0,1,2])
WEATHER 3MONTH['PRCP3'] = PRCP3
WEATHER 3MONTH['TAVG3'] = TAVG3
WEATHER_3MONTH['TMIN3'] = TMIN3
WEATHER_3MONTH['TMAX3'] = TMAX3
WEATHER_3MONTH.to_csv('weather3MONTH.csv', index=False)
```