

Regressão

- Regressão refere-se a prever a saída de uma variável numérica (dependente) a partir de um conjunto de uma ou mais variáveis independentes.
- Uma equação de regressão é usada em estatística para descobrir qual relação existe, e se existe, entre conjuntos de dados.
- Em Aprendizado de Máquina, essa equação é obtida através de um algoritmo de treinamento utilizando os m dados x (i), y (i).

FEATURES	TARGET		
	y: variável		

x: Variável	independente	y: variável dependente
ldade	Peso (Kg)	Pressão Arterial
52	78.5	132
59	83.5	143
67	88.0	153
73	95.7	162
64	88.9	154
74	99.8	168
54	85.3	13 <i>7</i>
61	85.3	149
65	93.9	159
46	75.7	128
72	98.4	166

Regressão

Regressão

- É denominada dessa forma por ser uma reta traçada a partir de uma relação em um diagrama de dispersão.
- Essa reta resume uma relação entre os dados de duas variáveis e também pode ser utilizada para realizar previsões.
- Sua origem vem da correlação linear, que é a verificação da existência de um relacionamento entre duas variáveis.
 - Ou seja, dado X e Y, quanto que X explica Y.
- O resultado da regressão linear é sempre um número.

• É utilizada adequadamente quando o dataset apresenta algum tipo de tendência de crescimento/descrescimento constante.

Tenho m=11 dados de treinamento (•), onde x é a variável única de entrada (n=1) e y é a variável de saída.

m	ldade (variável de entrada)	Pressão Arterial (variável de saída)
1	52	132
2	59	143
3	67	153
4	73	162
5	64	154
6	74	168
7	54	137
8	61	149
9	65	159
10	46	128
11	72	166

• Resíduo e Erro:

O resíduo é calculado após a execução do modelo de regressão e é a diferença entre os valores observados e os valores estimados.

O erro do conjunto de dados é a diferença entre os valores observados e os valores verdadeiros, não observáveis.

- A regressão linear pode ser de dois tipos:
 - Regressão linear simples, onde é utilizada apenas uma variável independente,
 - Regressão linear múltipla, onde múltiplas variáveis independentes são definidas.
- Para quantificar a relação entre duas variáveis quantitativas utiliza-se o coeficiente de correlação linear de Pearson:

	Coeficiente	Classificação
	$0.9 < r \le 1.0$	Ótima
	$0.8 < r \le 0.9$	Boa
$r = \frac{n \cdot \sum x \cdot y - (\sum x) \cdot (\sum y)}{n \cdot \sum x \cdot y - (\sum x) \cdot (\sum y)}$	$0.7 < r \le 0.8$	Razoável
$\sqrt{[n\cdot\sum x^2-(\sum x)^2]\cdot[n\cdot\sum y^2-(\sum y)^2]}$	$0.6 < r \le 0.7$	Mediocre
	$0.5 < r \le 0.6$	Péssima
	$ r \le 0.5$	Impropria

- Prova: CESGRANRIO 2018 Banco do Brasil Escriturário
- Para ilustrar a importância da análise gráfica em análises de regressão linear, F. J. Anscombe produziu quatro conjuntos de pares (x, y) a partir das mesmas estatísticas suficientes, como: coeficientes linear e angular; soma dos quadrados dos resíduos e da regressão; e número de observações. Os diagramas de dispersão para as quatro bases de dados, juntamente com a reta da regressão (y = 4 + 0,5 x), encontram-se abaixo.
- Com base nesses gráficos, considere as seguintes afirmativas:
- I O gráfico B mostra um valor influente para gerar uma regressão linear.
- II O gráfico C mostra uma possível observação outlier na regressão linear.
- III O gráfico D mostra uma possível observação outlier na regressão linear.
- Está correto SOMENTE o que se afirma em
- Allell
- Blelll
- C I
- DII
- E III

- Prova: CESGRANRIO 2018 Banco do Brasil Escriturário
- Para ilustrar a importância da análise gráfica em análises de regressão linear, F. J. Anscombe produziu quatro conjuntos de pares (x, y) a partir das mesmas estatísticas suficientes, como: coeficientes linear e angular; soma dos quadrados dos resíduos e da regressão; e número de observações. Os diagramas de dispersão para as quatro bases de dados, juntamente com a reta da regressão (y = 4 + 0,5 x), encontram-se abaixo.
- Com base nesses gráficos, considere as seguintes afirmativas:
- I O gráfico B mostra um valor influente para gerar uma regressão linear.
- II O gráfico C mostra uma possível observação outlier na regressão linear.
- III O gráfico D mostra uma possível observação outlier na regressão linear.
- Está correto SOMENTE o que se afirma em
- Allell
- Blelll
- C I
- D II
- E III

- Ano: 2013 Banca: Quadrix Órgão: DATAPREV
- Assinale a alternativa que contém uma justificativa para a utilização de um modelo de regressão linear múltipla em substituição a um modelo de regressão linear simples para a análise de dados.
- A Quando existe um número excessivo de dados a serem analisados.
- B Quando o resíduo é muito grande.
- C Quando a regressão é ausente.
- D Quando se necessita de mais de uma variável independente no modelo de regressão.
- E Quando a regressão é fracamente positiva.

- Ano: 2013 Banca: Quadrix Órgão: DATAPREV
- Assinale a alternativa que contém uma justificativa para a utilização de um modelo de regressão linear múltipla em substituição a um modelo de regressão linear simples para a análise de dados.
- A Quando existe um número excessivo de dados a serem analisados.
- B Quando o resíduo é muito grande.
- C Quando a regressão é ausente.
- D Quando se necessita de mais de uma variável independente no modelo de regressão.
- E Quando a regressão é fracamente positiva.

- Prova: FMP Concursos 2012 PROCEMPA Analista de Logística
- Com um conjunto de dados, apresentados na forma de diagrama de dispersão, onde são identificadas duas variáveis (exemplo: renda e produtos vendidos), pode-se utilizar as seguintes ferramentas estatísticas:
- I) regressão linear simples.
- II) correlação.
- III) regressão linear múltipla.
- As alternativas corretas são:
- A apenas I e II.
- B apenas I e III.
- C apenas II e III.
- DI, II e III.
- E Nenhuma das alternativas está correta.

- Prova: FMP Concursos 2012 PROCEMPA Analista de Logística
- Com um conjunto de dados, apresentados na forma de diagrama de dispersão, onde são identificadas duas variáveis (exemplo: renda e produtos vendidos), pode-se utilizar as seguintes ferramentas estatísticas:
- I) regressão linear simples.
- II) correlação.
- III) regressão linear múltipla.
- As alternativas corretas são:
- A apenas I e II.
- B apenas I e III.
- C apenas II e III.
- DI, II e III.
- E Nenhuma das alternativas está correta.