1 D	117.	1.	\Box	
试	ᆓ	40	=	
LTV.	\rightarrow	∠/IIII	-	•

考核对象: 计算机、网络18级

班级	学号	姓名	
Jul 1. 4/14		## \Z	
1:1T ZN		U+ Z	

注意: 1. 重修必须注明(重修)

2. 试卷右侧及背面为草算区

《高等数学第10章》共3页第1页

大连工业大学 2018 ~2019 学年 第二 学期

••••	袋 刀	线	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••
	题号		_	=	四		<u> </u>	上	1/	+1	阅卷	复核
	赵与			1	낀	Д.	/\	- [/\	\ 	总分	总分
	得分											

说明:"阅卷总分"由阅卷人填写;"复核总分"由复核人填写,复核总分不得有改动。

单项选择题(每小题只有一个选项是正确的,每小题 2 分,共 20 分)

- 1. 估计积分 $I = \iint_{|x|+|y| \le 10} \frac{1}{100 + \cos^2 x + \cos^2 y} dxdy$ 的值,则正确的是(
- (A) $\frac{1}{2} < I < 1.04$
- (B) 1.04 < *I* < 1.96
- (C) 1.96 < I < 2
- 2. 设 f(x,y) 是有界闭区域 $D: x^2 + y^2 \le a^2$ 上的连续函数,则当 $a \to 0$ 时, $\frac{1}{\pi a^2} \iint_{\mathbb{R}} f(x,y) dx dy$ 的极限 (
- (A) 不存在
- (B) 等于 f(0,0) (C) 等于 f(1,1)
- (D) 等于 f(1,0)
- 3. 判断下列积分值的大小: $J_i = \iint_{\mathbb{R}} e^{-(x^2+y^2)} dx dy$, i = 1,2,3, 其中 $D_1 = \{(x,y) | x^2 + y^2 \le R^2 \}$, $D_2 = \{(x,y) | x^2 + y^2 \le 2R^2 \}$

 $D_3 = \{(x, y) | |x| \le R, |y| \le R\}, \quad \text{M} J_1, J_2, J_3 \ge \text{in bth MPS}$

- (A) $J_1 < J_2 < J_3$ (B) $J_2 < J_3 < J_1$ (C) $J_1 < J_3 < J_2$ (D) $J_3 < J_2 < J_1$

- 4. 将坐标系中的累次积分转换成直角坐标系中的累次积分: $\int_0^{\frac{\pi}{2}} d\theta \int_0^{\cos\theta} f(r\cos\theta, r\sin\theta) r dr = ($
- (A) $\int_{0}^{1} dy \int_{0}^{\sqrt{y-y^{2}}} f(x,y) dx$ (B) $\int_{0}^{1} dy \int_{0}^{\sqrt{1-y^{2}}} f(x,y) dx$ (C) $\int_{0}^{1} dx \int_{0}^{1} f(x,y) dy$ (D) $\int_{0}^{1} dx \int_{0}^{\sqrt{x-x^{2}}} f(x,y) dy$

- 5. 设 f(x, y) 是连续函数,则二次积分 $\int_{-1}^{0} dx \int_{-1}^{\sqrt{1+x^2}} f(x, y) dy = 0$
- (A) $\int_{-1}^{1} dy \int_{-1}^{y-1} f(x, y) dx + \int_{-1}^{2} dy \int_{-1}^{\sqrt{y^2 1}} f(x, y) dx$ (B) $\int_{0}^{1} dy \int_{-1}^{y-1} f(x, y) dx$
- (C) $\int_{0}^{1} dy \int_{1}^{y-1} f(x, y) dx + \int_{1}^{2} dy \int_{1}^{-\sqrt{y^{2}-1}} f(x, y) dx$ (D) $\int_{0}^{2} dy \int_{1}^{-\sqrt{y^{2}-1}} f(x, y) dx$
- 6. 由曲线 $x^2+y^2=2x$, $x^2+y^2=4x$, y=x , y=0 所围成的图形的面积 S=(
- (A) $\frac{1}{4}(2+\pi)$ (B) $\frac{1}{2}(2+\pi)$ (C) $\frac{3}{4}(2+\pi)$ (D) $2+\pi$

- 7. 已知 Ω 为 $x^2 + y^2 + z^2 \le 2z$,下列等式错误的是(
- 7. 已知 Ω 为 $x^2 + y^2 + z^2 \le 2z$,下列等式错误的是()
 (A) $\iiint_{\Omega} x(y^2 + z^2) dv = 0$ (B) $\iiint_{\Omega} y(x^2 + z^2) dv = 0$ (C) $\iiint_{\Omega} z(x^2 + y^2) dv = 0$ (D) $\iiint_{\Omega} (x + y) z^2 dv = 0$

8.二次积分 $\int_0^2 dx \int_0^{x^2} f(x,y) dy$ 写成另一种次序的积分是(

- (A) $\int_{0}^{4} dy \int_{\sqrt{y}}^{2} f(x, y) dx$ (B) $\int_{0}^{4} dy \int_{0}^{\sqrt{y}} f(x, y) dx$ (C) $\int_{0}^{4} dy \int_{x^{2}}^{2} f(x, y) dx$ (D) $\int_{0}^{4} dy \int_{2}^{\sqrt{y}} f(x, y) dx$
- 9.设 $D:1 \le x^2 + y^2 \le 2^2$ f 是 D 上的连续函数,则二重积分 $\iint_{\mathbb{T}} f(\sqrt{x^2 + y^2}) dx dy$ 在极坐标下等于(
- (A) $2\pi \int_{1}^{2} rf(r^{2})dr$ (B) $2\pi \left[\int_{0}^{2} f(r)dr \int_{0}^{1} f(r)dr\right]$ (C) $2\pi \int_{1}^{2} rf(r)dr$ (D) $2\pi \left[\int_{0}^{2} rf(r^{2})dr \int_{0}^{1} rf(r^{2})dr\right]$
- 10 设 Ω 为 $x^2 + y^2 = z^2$ 与z = a (a > 0)所围成的区域,则三重积分 $\iiint (x^2 + y^2) dv$ 在柱面坐标系下累次积分的形式为(
- (A) $\int_0^{\pi} d\theta \int_0^a r dr \int_r^a r^2 dz$ (B) $\int_0^{2\pi} d\theta \int_0^a r dr \int_0^a r^2 dz$ (C) $\int_0^{\pi} d\theta \int_0^a r dr \int_0^a r^2 dz$ (D) $\int_0^{2\pi} d\theta \int_0^a r dr \int_r^a r^2 dz$

二、填空题(每空2分,共20分)

1.设D是由圆环 $2 \le x^2 + y^2 \le 4$ 所确定的闭区域,则 $\iint_{\Sigma} dx dy =$ ______

2.设D是正方形 $0 \le x \le 1$, $0 \le y \le 1$,则 $\iint_D xydxdy =$ _______

1-12	717	/. . `	П	
试	7	7E	$\overline{-}$	
	777	5/HH	\neg	-

班级 学号 姓名

考核对象: 计算机、网络 18 级

注意: 1. 重修必须注明(重修) 2. 试卷右侧及背面为草算区

{

大连工业大学 2018 ~2019 学年 第二 学期

《高等数学第10章》共3页第2页

3.根据二重积分性质,比较积分 $\iint\limits_{D}(x+y)^{2}d\sigma$ 与 $\iint\limits_{D}(x+y)^{3}d\sigma$ 的大小,其中 D 是由

4.估计下列积分的值: $I = \iint_D xy(x+y+1)d\delta$, 其中 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 2\}$, 则估计 I 的大小 _____ $\le I \le$ _____

5.若 f(x,y) 为关于 x 的奇函数,且积分区域 D 关于 y 轴对称,则当 f(x,y) 在 D 上连续时,必有

$$\iint_{\Omega} f(x, y) dx dx = \underline{\hspace{1cm}}$$

7.设 Ω 是由 $x^2 + y^2 + z^2 = R^2$ 所围成的空间有界区域,则三重积分 $\iint_{\Omega} dv$ 的值等于______

8.设 f(x, y) 为连续函数,则 $I = \lim_{t \to 0^+} \frac{1}{\pi t^2} \iint_D f(x, y) dx dx = _______$,其中: $D: x^2 + y^2 \le t^2$

9.设 Ω 是由平面z=0,z=a(a>0),y=0及柱面 $x^2+y^2=2x$ 围成的在第一卦限部分区域,将三重积分

 $I = \iiint_{\Omega} z \sqrt{x^2 + y^2} dx dy dz$ 在柱面坐标下化成累次积分为 I =______

10. (a,b,c,R 是常数) 计算积分 $\iint_{x^2+y^2 \le R^2} (ax+by+c)dxdy = ______$

得分

三、计算题(每题 4 分,共 20 分) 1. 交换二次积分的次序 $\int_0^1 dy \int_0^{2y} f(x,y) dx + \int_1^3 dy \int_0^{3-y} f(x,y) dx$.

2.计算二重积分 $I = \iint_{\mathbb{R}} xydxdy$,其中 D 由 y = x, y = 0, x = 1所围成。

3.求 $\iint_{\Omega} x \sqrt{y} dx dy$,其中 D 是由抛物线 $y = \sqrt{x}$ 和 $y = x^2$ 所围成的闭区域。

4. $\iint_{D} \sin \sqrt{x^2 + y^2} dxdy, \quad \sharp + D = \{(x, y) | \pi^2 \le x^2 + y^2 \le 4\pi^2 \}.$

《高等数学第10章》共3页第3页

5. 计算
$$\int_{1}^{3} dx \int_{x-1}^{2} e^{y^{2}} dy$$

得 分 五(8分) 计算三重积分 $\iint\limits_{\Omega} x dx dy dz$,其中: Ω 为 x=0, y=0, z=0, x+2y+z=1所围成的四面体。

得分

六(10分)求 $\iint_{\Omega} \sqrt{x^2 + y^2} dv$,其中 Ω 是由抛物面 $z = 4 - x^2 - y^2$ 及 z = 0 所围成的空间闭区域.

得 分

七 (8 分) 求锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $z^2 = 2z$ 所割下的部分曲面的面积。

得八

八(8分)半径为 a 的均匀半圆薄片(面密度为常数 μ), 计算对于直径边的转动惯量.