

浅谈FCN

陈力 vchenli@csu.edu.cn

论文阅读: Fully Convolutional Networks for Semantic Segmentation

图像分割 (Segmentation)

Semantic Segmentation

Instance Segmentation

- 1. 存储开销很大。
- 2. 计算效率低下。
- 3. 像素块大小的限制了感知区域的大小。

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf

Flatten层

```
keras.layers.core.Flatten()
```

Flatten层用来将输入"压平",即把多维的输入一维化,常用在从卷积层到全连接层的过渡。Flatten不影响batch的大小。

例子

FCN输入图像尺寸不用固定

a classification network

Upsampling ____ 反卷积(deconvolutional) ____ transposed convolution

$$h_o = \frac{h_i + 2 * pad - kernel_h}{stride_h} + 1$$

16x16

transposed convolution

32x32

stride: 2

kernel_size: 4

padding: 1

No local pattern

所以反卷积一般学习率设置为0,即卷积核不变 (有论文开放学习率发现效果也不明显)

Unpooling?

	pixel	mean	mean	f.w.
	acc.	acc.	IU	IU
FCN-32s-fixed	83.0	59.7	45.4	72.0
FCN-32s	89.1	73.3	59.4	81.4
FCN-16s	90.0	75.7	62.4	83.0
FCN-32s-fixed FCN-32s FCN-16s FCN-8s	90.3	75.9	62.7	83.2

Thanks