Given $R'' \subset R' \subset R$, we want to proof the following implication:

$$\neg(IND(R') \subseteq IND(D)) \Longrightarrow \neg(IND(R'') \subseteq IND(D)).$$

By the property:

$$A \subseteq B \Longrightarrow IND(B) \subseteq IND(A)$$
,

we have:

$$R'' \subset R' \Longrightarrow IND(R') \subseteq IND(R'').$$

Given $R'' \subset R'$, we have $IND(R') \subseteq IND(R'')$. Now assume $\neg(IND(R') \subseteq IND(D))$. We want to prove $\neg(IND(R'') \subseteq IND(D))$. This can be easily seen through a proof by contradiction. If we assume that $\neg(IND(R'') \subseteq IND(D))$ is false, which is equivalnt to $IND(R'') \subseteq IND(D)$, by $IND(R') \subseteq IND(R'')$, we would have $IND(R') \subseteq IND(D)$. This contradicts the assumption that $\neg(IND(R') \subseteq IND(D))$ is true. Therefore, $\neg(IND(R'') \subseteq IND(D))$ must be true.