FIELD THEORY

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1.	Choose the correct alternatives for any ten of the following:
	$10 \times 1 = 10$

- i) The intrinsic impedance of free space is given by
 - a) 333Ω

b) 377 Ω

c) $4\pi \Omega$

- d) $2\pi \Omega$.
- ii) Minimum value of VSWR is
 - a) ∝

b) - 2

c) 0

- d) 1.
- iii) \in 0 for vacuum is given by
 - a) $10^{-9}/(36 \pi)$

b) $10^{-19}/(36 \pi)$

c) 0

d) 1.

iv) Which one is true for charge free region?

a)
$$\nabla^2 \phi = 1$$

b)
$$\nabla^2 \phi = 0$$

$$\acute{\mathbf{c}}) \qquad \nabla^2 \phi = -\frac{\epsilon}{\rho}$$

d) none of these.

v) Which one is conservation of charge equation for the steady currents?

a)
$$\nabla \cdot J = 1$$

b)
$$\nabla \cdot J = 0$$

c)
$$\nabla \cdot J = 4\pi$$

d)
$$\nabla \cdot J = \rho$$

vi) Lorentz force for a point charge in motion in external electric and magnetic field is given by

a)
$$F = Q(E + u \times B)$$

b)
$$F = Q (B + u \times H)$$

c)
$$F = Q(H + uB)$$

d)
$$F = Q (E + uB)$$
.

vii) Which of the following can be the unit of emf?

viii) In a co-axial cable the mode of wave propagation is

TEM a)

quasi TEM b)

c) TE d) TM.

For a lossless transmission line the characteristic ix) impedance is given by

a) $\sqrt{\frac{C}{L}}$ c) $2\pi \sqrt{\frac{C}{L}}$

b) $\sqrt{\frac{L}{C}}$ d) $2\pi \sqrt{\frac{L}{C}}$.

For a lossless transmission line terminated with a short X) circuit, the i/p impedance is given by (for line characteristic impedance z_0)

- a) $jz_0 \tan \beta l_i$ b) $-jz_0 \tan \beta l$
- c) $jz_0 \cot \beta l$
- d) $-jz_0 \cot \beta l$.

Wave number is given by xi)

a) $k = \omega \sqrt{\mu \epsilon}$

b) $k = 2\pi \sqrt{\mu \epsilon}$

c) $k = \sqrt{\mu \epsilon}$

d) $k = \omega^2 \mu \in .$

16-(N)

3

[Turn over

xii) Skin depth is given by

a)
$$\delta = \sqrt{2/(\omega\mu\sigma)}$$

b)
$$\delta = \sqrt{\pi/(\omega\mu\sigma)}$$

c)
$$\delta = 2/\sqrt{(\omega\mu\sigma)}$$

d)
$$\delta = \pi/\sqrt{(\omega\mu\sigma)}$$
.

GROUP - B (Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. State and explain the following:
 - a) Stoke's theorem
 - b) Helmholtz theorem.
- 3. Using Cartesian coordinates show that

$$\nabla \cdot (\nabla \times A) \equiv 0 \text{ and } \nabla \times (\nabla \phi) \equiv 0.$$

4. Show that a lossless x/8 length line terminated as open circuit, behaves like a capacitor.

- CS/B.Tech(New)/EE,EEE,ICE/SEM-3/EE-302/2011-12
- 5. a) Derive an expression for the wave equation in terms of electric field intensity in a perfect dielectric of permittivity ∈, permeability μ for the medium with no absorption.
 - b) For a lossy dielectric $\mu_r = 1$, $\epsilon_r = 48$, $\sigma = 20$ S/m, calculate the attenuation constant and phase constant at frequency of 16 GHz.
- 6. Deduce boundary conditions on electric vector \overrightarrow{E} and \overrightarrow{D} for Dielectric-Dielectric interface.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) What is polarization? How will you generate right handed circular polarize waves using linearly polarized wave sources? Define axial ratio. 2+2+2
 - b) State and prove Poynting Theorem. 9
- 8. a) Draw the equivalent circuit of a transmission line. What is distortionless line? How to achieve distortionless condition on the line? Derive necessary conditions.

2 + 2 + 5

b) Find the characteristic impedence, propagation constant and velocity of propagation for a transmition line having the following parameters:

$$R = 84 \text{ ohm/km}, G = 10^{-6} \text{ mho/}m, L = 0.01 \text{H/km},$$

 $C = 0.061 \,\mu\text{F/km}, \text{ frequency} = 1000 \,\text{Hz}.$

- 9. a) State and explain Gauss's law in differential form and explain what do you mean by div. D.
 - b) A circular disc of radius 'a' is situated in the xy plane at Z=0, with its centre at the origin charge density on disc is $\rho_s=$ constant c/m². Calculate the field at any point (0, 0, h) in cylindrical co-ordinate system.
- 10. Fine the Gradient of a function G at the point (4, 5, 6) and Divergence of F at (3, 2, 1), given that

$$G = x^2 + y^2 + z^2$$
 and $\overline{F} = 2xya_x + za_y + yz^2 a_z$.

Given point P (1, 2, 3). Express P in cylindrical and spherical co-ordinates. 9+6

11. Write short notes on any three of the following: 3×5

- a) Magnetic material
- b) Poisson's and Laplace's equation
- c) Maxwell's equations
- d) Propagation constants
- e) Biot-Savart law.