2025 届高三部分重点中学 12 月联合测评 化学试题

考试时间:2024年12月13日14:30-17:05

试卷满分:100分 考试用时:75分钟

注意事项:

- 1. 答卷前,考生务必将自己的姓名、考场号、座位号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。 如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡 上。写在本试卷上无效。
 - 3. 考试结束后,将本试卷和答题卡一并交回。 可能用到的相对原子质量: H-1 Li-7 C-12 O-16 S-32 Fe-56 Ce-140
- 一、选择题: 本题共 15 小题, 每小题 3 分, 共 45 分。在每小题给出的四个选项中, 只有一项 是符合题目要求的。
- 1. 我国历史悠久,文化灿烂,下列关于非遗传承的说法错误的是
 - A. 制作土家织锦"西兰卡普"用到的蚕丝,其主要成分是纤维素
 - B. 斑铜制作工艺中需要向铜中掺杂金、银等金属, 其熔点比纯铜低
 - C. 徽墨制作过程中用到的烟灰,其主要成分炭黑属于无定形碳
 - D. 浏阳花炮能呈现五彩斑斓的颜色与原子核外电子跃迁有关
- 2. "新质生产力"的概念中,"新"的核心在于科技创新,下列有关说法正确的是
 - A. 我国研发的核反应堆"华龙一号"以235 U 为核燃料,235 U 与238 U 化学性质不相同
 - B. 巴黎奥运会中"中国制造"的足球内胆中植入芯片,制备芯片的原料属于新型无机非金
 - C. "祝融号"火星车采用我国自主研发的"正十一烷相变保温系统",正十一烷属于脂环烃
 - D. "歼-35"战斗机机翼所使用的"碳纤维布"(聚丙烯腈经碳化而成)与金刚石互为同素异 形体
- 3. 下列有关化学用语或表述正确的是

化学试题 第1页 共8页

C. 甲醛中 π 键的电子云轮廓图

D. NaCl 溶液中的水合离子:

- 4. 酚酞是一种常见的酸碱指示剂,其结构如图所示,下列关于酚酞的 说法错误的是
 - A. 其分子式为 C20 H14 O4
 - B. 1 mol 酚酞最多可以和 2 mol NaOH 反应
 - C. 能与 Fe³⁺发生显色反应
 - D. 酚酞可以发生加成反应、取代反应、氧化反应
- 5. 化学作为一门研究物质的组成、结构、性质以及变化规律的科学,深刻地揭示了宏观现象与微观结构之间的内在联系。下列有关说法错误的是
 - A. 晶体的各向异性是晶体中粒子在微观空间里呈现周期性有序排列的宏观表象
 - B. 壁虎能在天花板上爬行自如是因为壁虎的足的细毛与墙体之间存在范德华力
 - C. NaOH 溶液中滴入盐酸导电性的变化揭示了离子电荷数与溶液导电性之间的联系
 - D. 升高温度能加快反应速率揭示了分子运动与化学反应之间的内在联系
- 6. 研究金属钠的性质,实验如下:

实验装置	实验方案				
	液体a	现象			
金属钠	蒸馏水	I. 钠浮在水面,剧烈反应,有少量白雾			
	0.1 mol·L ⁻¹ 盐酸	Ⅱ. 钠浮在液面,剧烈反应,有白雾产生			
50 mL 液体 a	浓盐酸	Ⅲ. 钠浮在液面,反应比Ⅱ缓慢,产生大量白雾,烧杯底部有白色固体			

下列说法正确的是

- A. I 中反应的离子方程式:2Na+2H+-2Na++H₂↑
- B. III 中反应剧烈程度不如 III 的原因是浓盐酸中溶质主要以 III 分子形式存在, $c(H^+)$ 小
- C. Ⅲ中白雾比Ⅱ中多,说明Ⅲ中反应放热比Ⅱ中更多
- D. 反应Ⅲ中盐酸浓度较高,推测Ⅲ中烧杯底部白色固体为 NaCl
- 7. 关于有机物的检测与鉴别,下列说法错误的是
 - A. 用饱和溴水可鉴别 1-丙醇、2-氯丙烷、丙醛和苯酚溶液
 - B. 用酸性 KMnO₄ 溶液可鉴别环己烷、环己烯

化学试题 第2页 共8页

- C. 用FeCl₃ 溶液可鉴别 KSCN 溶液、甲苯和苯酚溶液
- D. 乙醇、丙醛、丙酸的核磁共振氢谱图中的峰高度之比都是 3:2:1
- 8. 清华大学尹斓副教授、熊巍博士提出了一种可完全生物降解的锌-钼(Zn-Mo)原电池,是实现生物可吸收电子药物的重要电源,结构如图所示。已知电池使用过程中在 Zn 表面形成一层 ZnO 薄膜,下列说法正确的是
 - A. Zn 作原电池负极,其质量逐渐减小
 - B. 该电池在放电过程中,水凝胶的 pH 不变
 - C. Zn 表面发生的电极反应: Zn-2e--Zn2+

Zn Mo 水凝胶掺杂 NaCl

- D. 电路中转移 0.02 mol 电子时,理论上消耗 0.02 mol O₂
- 9. 下列实验操作对应的现象或结论错误的是

选项	实验操作	实验现象或数据	结论	
Α	以酚酞为指示剂,用 0.1 mol/L NaOH 标准溶液滴定 0.1 mol/L 草酸溶液	到达滴定终点时消耗 NaOH 的 体积为草酸的 2 倍	草酸为二元弱酸	
В	用毛皮摩擦过的带电橡胶靠近 CF _z Cl _z 液流	液流方向改变	CF ₂ Cl ₂ 是极性分子	
С	向盛有少量酸性 K ₂ Cr ₂ O ₇ 溶液的试管 中滴加足量乙醇,充分振荡	溶液由橙黄色变为灰绿色	乙醇具有还原性	
D	向NaHCO ₃ 溶液中滴加紫色石蕊试液	溶液变蓝	$K_{a_1}(H_2CO_3) \cdot K_{a_2}(H_2CO_3) < K_w$	

10. 下列有关物质结构、性质的说法正确的是

- A. 图 1 中,18-冠-6 中 O 原子(灰球)通过离子键与 K+作用
- B. 图 2 物质相较 NaBF, 摩尔质量更大, 故具有更高的熔、沸点
- C. 图 2 中,阳离子与阴离子含有的 σ 键个数比为 4:1
- D. 图 3 中, 表示硅氧四面体,则该硅酸盐结构的通式为(Si₄O₁₇), lon-
- 11. 如图为一种结构有趣的"糖葫芦"分子,其中 $W \times X \times Y \times Z$ 四种元素位于同一主族的相邻周期。 X 的电负性大于 Z,工业上利用沸点差异从空气中分离出 Y 的单质。 E 是短周期元素。 E 与 Y 的价电子数之和与 Mg 的质子数相同, W^{3-} 与 E^- 的电子结构相同。下列说法错误的是

化学试题 第3页 共8页

A. 简单离子半径:W>E>Y

- B. X 的第一电离能在同周期元素中排第三
- C. 简单氢化物键角:Y>W
- D. 已知电负性 Y>Cl,则YCl,水解生成 HYO,和 HCl
- 12. 葫芦[n] 脲(n=5,6,7,8 ……)家族分子是一种具有空腔的桶状大杯、两端开口的超分子主体,可以很好地包结有机分子、阳离子和其他客体分子(如图甲所示),在分子识别、药

物载体等方面有广泛应用。葫芦[n]駅(结构如图乙)可由①()—()和②在一定条件HN NH

下合成,下列说法错误的是

- A. 乙分子中存在 2n 个手性碳原子
- B. ②物质是甲醛,可发生氧化反应、还原反应、加成反应
- C. 乙和①分子中碳原子杂化类型相同
- D. 葫芦[n]脲的空腔能与金属阳离子形成超分子
- 13. N 元素基态原子的价层电子排布式为 3d⁶4s²。N 元素的一种氧化物 Z 的晶体是由图 1 所示的结构平移构成。图 1 包含 I 型和 II 型两种小立方体;图 2 是 Z 的晶胞,a~g 分别对应图 1 中的小立方体 I 或 II (其中阿伏加德罗常数的值用 N_A 表示,Z 的摩尔质量为 M g/mol)。下列说法错误的是

- A. N 元素形成的氧化物 Z 的化学式为 Fe₃O₄
- B. 图 2 中 Ⅱ 型小立方体可能是 b、d、e、g
- C. \blacksquare 型中两个 \mathbb{N}^{2+} 最近距离为该小立方体边长的 $\frac{\sqrt{3}}{2}$
- D. 若 I 型和 II 型小立方体的边长均为 a nm,则 Z 的密度为 $\frac{M \times 10^{21}}{a^3 N_{\Lambda}}$ g/cm^3

化氧化制备 1,2-丙二醇。吡唑银分子由于 N-H 与 OH之间的氢键作用,对 OH具有较强的吸附作用,而 N-H 解离形成 H 空位后,对 OH的吸附作用减弱,加快 OH与丙烯分子耦合,反应机理如图。下列叙述错误的是

化学试题 第4页 共8页

- A. 中的 N-H 键不稳定
- B. 中 N 的杂化方式只有 sp²
- C. 图中甲为该反应的催化剂
- D. 利用该反应机理可由 1,3-戊二烯制备 HOCH₂CH —CHCH(CH₃)OH
- 15. 常温下,在 H₂CrO₄ 溶液中加人 NaOH 溶液,溶液中含铬粒子分布系数 δ[δ(H₂CrO₄)

$$=\frac{c(H_2CrO_4)}{c(H_2CrO_4)+c(HCrO_4^-)+c(CrO_4^{2-})}\times 100\%$$
与 pH 关系如图。下列叙述正确的是
A. L_2 代表 $\delta(H_2CrO_4)$ 与 pH 关系
B. 0.1 mol· L^{-1} NaHCrO₄ 溶液 pH<7
C. 常温下,Na₂CrO₄ 水解常数 $K_{h_1}=10^{-13.25}$
D. $H_2CrO_4+CrO_4^2\longrightarrow 2HCrO_4^ K<10^5$

- 二、非选择题(本题共4小题,共55分)
- 16. (13 分)某学习小组对 SO_2 通人 $Ba(NO_3)_2$ 溶液出现白色沉淀的原因进行了探究,请回答下列问题:

【提出问题】

白色沉淀产生的主要原因是什么?

【做出假设】

假设一:主要是氧气将 SO₂ 氧化为 SO₄-,产生 白色沉淀。

(1)假设二: 。

【设计实验】

该小组成员设计了如图所示的实验装置进行探究。

(2)装置 X 的作用是

【实验过程】

	对比多		对比实验二		
实验步骤		B 烧杯中加入未煮 沸的 BaCl ₂ 溶液 25 mL。	25 mL,再加入与溶	D 烧杯中加入未煮 沸的 Ba(NO ₃) ₂ 溶 液 25 mL。	

	在 A、	B、C、D四个统种中国	引放入 ph 传感器, 然后	进入502气体。	
(3)向	I A 烧杯与 C 烧杯	中加入食用油的	目的:	。烧杯中"食	用油"可
L	从用下列试剂中的_	代替(填	字母)。		
a.	. 氯仿	b. 己烷	c. 乙醇		
【实验	金现象 】				
A 烧	杯无明显现象,B、	C、D 三个烧杯中土	勾出现浑浊现象。		

【实验结论】

- (4)B 烧杯中出现浑浊的原因:
- (5)在硝酸钡溶液中,有无氧气参加都能产生硫酸钡沉淀。若是硝酸根的强氧化性导致 沉淀的出现,则对应的离子方程式为
- (6)为了进一步确定产生沉淀的原因,该小组成员对传感器采集的数据进行了处理,结 果如图所示,根据图像可得出结论:

 SO_2 通人 $Ba(NO_3)_2$ 溶液(无氧)中的 pH-t 曲线 SO_2 通人 $Ba(NO_3)_2$ 溶液(有氧)中的 pH-t 曲线

17. (14分)稀土元素是不可再生的宝贵资源,现有一种从稀土抛光粉(主要成分为 SiO₂、 CeO_2 、 Fe_2O_3 、 Al_2O_3)中回收铈(以 CeO_2 的形式)的工艺,其流程如图所示,请回答下列 问题。

已知:CeO2 具有强氧化性;Ce的常见价态为+3、+4;草酸在 pH=1.8~2.0 区间内,可 选择性沉淀稀土元素,而不与其他离子沉淀。

- (1)"酸浸"时加人盐酸,反应产生了等体积的两种气体,请写出相关的离子方程式: ;在酸浸过程中温度不宜过高也不宜过低的原因是
- (2)加入氨水的目的一是生成氯化铵,防止草酸铈水解,目的二是___

化学试题 第6页 共8页

- (3)"酸洗沉淀"得到纯度较高的十水合草酸铈晶体,则"灼烧"过程中发生反应的化学方程式为____。需要加入过量草酸的原因:____。
- (4)利用氧化还原滴定法可测定 CeO_2 产品的含量,将 0.450~0~g CeO_2 产品溶解转化成 含 Ce^{4+} 的待測液,后用 0.100~0~mol/L $FeSO_4$ 标准溶液滴定至终点时,消耗25.00 mL 的标准溶液。
 - ①滴定过程中,下列操作会使测定结果偏小的是 (填字母)。
 - A. 在滴定过程中,标准液洒出
 - B. 锥形瓶洗干净后未干燥
 - C. 在滴定时,锥形瓶中的溶液因剧烈摇晃而溅出
 - ②计算产品中 CeO₂ 的质量分数为_____%(结果保留两位小数)。
- 18. (14分)缬沙坦是一种治疗心血管疾病的药物,其中间体 F的两种合成路线如图所示。

已知:

I.
$$\bigcirc$$
 -Cl+ \bigcirc -B(OH)₂ \xrightarrow{Pd} \bigcirc - \bigcirc

II.
$$R_1$$
—CHO $\xrightarrow{(1)} R_2 - NH_2 \longrightarrow R_1 CH_2 NHR_2$

请回答下列问题:

- (1)A 中的官能团名称为。
- (2)C 中最多有 个原子共平面。
- (3)C→D 的反应类型为
- (4)D→G 的合成路线设计如下:

$$D \xrightarrow{\text{diff } X} H(C_{14} H_{11} NO) \xrightarrow{\text{diff } Y} G$$

H 的结构简式为______;试剂 Y 可选择___

- (5)请写出 D+E→F 的化学方程式:______。
- - ①能水解但不具有酯基 ②不含有氮氧键 ③能与钠反应产生氢气
- 19. (14分)乙烯年产量的高低是衡量一个国家石油化工发展水平的一个极为重要的指标。 可使用乙烷脱氢制备乙烯,在反应中产生的积碳会降低催化剂的活性和稳定性。其中

化学试题 第7页 共8页

一种制备	方法需要加	I人 CO2,在-	-定条件下涉	及到的反应	为:		
(DC2 H6(g) ← C₂H	$_{4}(g) + H_{2}(g)$	$\Delta H = +1$	43.6 kJ/mo	1		
②CO₂(g	$+H_2(g)=$	\longrightarrow $H_2O(g)+$	-CO(g) ΔI	H = +35.72	kJ/mol		
3C2 H6 ($g)+H_2(g)$	2CH₄(g)	$\Delta H = -7$	3.21 kJ/mo	1		
⊕ CO₂(g)+C(s)=	⇒2CO(g) Δ	M = +171.3	32 kJ/mol			
请回答下							
(1)在该月	京应条件下	,C(s)+H₂O	(g) ← H₂(g	z)+CO(g)	的 ΔH =		
300000000000000000000000000000000000000		生上述反应①			_		
		互为同系物	7, 1 7171 A E	112 II 199 HJ A		外丁母/。	
			ヒャカハスト	- sted			
		聚反应制备不			s ল ৬ কা <i>ল</i>	/h-	
		当C₂H₄的分			6.已达到平	則	
, ,		加人 Ar 可以					
		乙烷脱氢制					
对比多	实验,发现有	f CO₂的参与	豆,乙烯的产	率明显更高	5,请从反应	[原理的角]	度说明
CO ₂ 7	生反应中发	挥的作用:	·				
(4)在一只	官条件下,向]1 L密闭容	器中加入1 m	nol C ₂ H ₆ 和	2 mol CO ₂	,达到化学平	-衡时,
体系中	P C₂H6、CC	CH4 的物质	质的量分别为	0.04 mol,	0.1 mol,0.6	mol,若只	号虑反
应①②	②③,则 C₂	H₄选择性[ä	乙烯选择性=	n _{生成} (C ₂ H)	(1) ×100%	为	%
(结果	保留两位小	数,下同),反	应②的化学	平衡常数 K	为	•	
(5)为了抗	是高乙烯的	产量,科研工作	作者研制出 6	Cr/SiO2作	催化剂,并	且研究了在-	一定条
件下空	逐速(空速是	指在规定条件	件下,单位时	间、单位体积	只催化剂处	理的气体量)对反
应性能	的影响,数	据记录如图	听示:				
[空速/h-1	C2H6 转化率	CO₂ 转化率		选择性/%]
	至逐/n	/%	1%	C ₂ H ₄	СО	CH4	
[3 600	14.0	7.8	84.0	9.1	6.9	
]	2 400	20,3	9.8	82,2	10.1	7.7	
	1 200	26.9	15.4	79.3	11.5	9,2	-
- 1	600	36.4	24.6	75.6	12.1	12.3	

根据上	图,你认为:	最合适的空运	速为	h-1,请你	分析空速对力	反应性能的影	响并
沿田店							٠

2025 届高三部分重点中学 12 月联合测评 化学试题参考答案及多维细目表

题号	1	2	3	4	5	6	7	8
答案	Α	В	С	В	С	D	D	В
题号	9	10	11	12	13	14	15	
答案	A	D	D	Α	С	С	В	

1. 【答案】A

【解析】蚕丝的主要成分为蛋白质,A 错误;一般来说,合金的熔点比其成分金属低,B 正确;炭黑属于无定形碳,C 正确;焰火与原子核外电子跃迁释放能量有关,D 正确。

2. 【答案】B

【解析】²⁵⁶U与²⁵⁸U互为同位素,它们物理性质不同,化学性质几乎相同,A 错误;足球内胆中植人的芯片的主要成分是 Si,属于新型无机非金属材料,B 正确;正十一烷属于脂肪烃,C 错误;"碳纤维布"是复合材料,与金刚石不是同素异形体,D 错误。

3. 【答案】C

【解析】BCl,的中心原子 B的价层电子对数为 3 + 3-3×1 = 3,不含有孤电子对,故空间结构为

平面三角形、A 错误;甲烷的空间结构为正四面体,故其二氯代物只有一种,不存在同分异构体,B 错误;甲醛中存在 C=O,其中一个 π 键一个 σ

确;Na⁺带正电·水中O原子的电负性大,Na⁺吸引水中的氧原子,Cl⁻带负电,水中H原子的电负性小,Cl⁻吸引水中的氢原子,D错误。

4.【答案】B

【解析】酚酞的分子式为 C₂₀ H₁₁ O₁ ,A 正确; 酚酞 分子中有两个酚羟基、一个酯基,因此 1 mol 酚 酞最多可以和 3 mol NaOH 反应,B 错误; 酚酞 分子中含酚羟基,能与 Fe³⁺ 发生显色反应,C 正 确; 酚酞分子中含苯环、酯基、酚羟基,因此可以 发生加成反应、取代反应、氧化反应,D 正确。

5.【答案】C

【解析】晶体的各向异性反映了晶体内部质点的

有序性,A 正确;壁虎的足与墙体之间的作用力 在本质上是它的细毛与墙体之间的范德华力,B 正确;NaOH 溶液中滴入盐酸导电性的变化揭 示了离子浓度与溶液导电性之间的联系,C 错 误;随着温度升高,反应物分子的热运动加剧,分 子的平均动能增大,导致它们之间的碰撞更加频 繁且剧烈,揭示了分子运动与化学反应之间的内 在联系,D 正确。

6. 【答案】D

【解析】钠与水发生反应生成氢氧化钠和氢气、离子方程式为 2Na+2H,O —2Na⁺+2OH⁻+H₂↑ A 错误: ||| 中浓盐酸中 c(H⁺) 更大,B 错误: 浓盐酸易挥发,所以对照实验 ||| 和 ||| 和 || , 納与氢离子反应放热,除了有挥发的水蒸气以外,还有HCl,它在空气中与水蒸气结合,呈现更多的白雾,C 错误;反应 ||| 中盐酸浓度较高,反应一段时间后烧杯底部有白色固体生成,该白色固体为NaCl,D 正确。

7. 【答案】D

【解析】1-丙醇和溴水混合,液体不分层、不褪色; 2-氯丙烷和溴水混合,液体分层;丙醛和溴水混合,液体褪色、不分层;苯酚溶液和溴水混合生成白色沉淀,用饱和溴水可鉴别 1-丙醇、2-氯丙烷、丙醛和苯酚溶液、A 正确;环己烯含碳碳双键,能使酸性 KMnO₄ 溶液褪色,环己烷不含碳碳双键,不能使酸性 KMnO₆ 溶液褪色,B正确;FeCl₅溶液遇 KSCN 溶液变血红色,遇苯酚溶液显紫色,与甲苯分层,现象不同,可以鉴别,C 正确;乙醛、丙醛、丙酸的核磁共振氢谱图中的峰面积之比是3:2:1,并不是蜂高度,D错误。

8. 【答案】B

【解析】Zn 是负极,失去电子发生氧化反应,表而生成一层 ZnO 薄膜,质量增加,A 错误;该电池的总反应为 $2Zn+O_2$ ——2ZnO,故在放电过程中,水凝胶的 pH 不变,B 正确;Zn 是负极,电极反应式为 $Zn-2e^-+H_2O$ —— $ZnO+2H^-$,C 错误;电路中每消耗 1 mol O_2 ,较移 4 mol 电子,故转移 0.02 mol 电子时,理论上消耗 0.005 mol O_2 ,D 错误。

化学试题 参考答案 第1页 共6页

9. 【答案】A

【解析】以酚酞为指示剂,用 0.1 mol/L NaOH 标准溶液滴定 0.1 mol/L 草酸溶液,到达滴定终点时消耗 NaOH 的体积为草酸的 2 倍,可推断草酸是二元酸,但无法判断草酸是否为二元弱酸, Λ 错误;由于毛皮摩擦过的橡胶棒带负电, CF_2Cl_2 是极性分子,故当橡胶棒靠近液流时,液流方向改变,B 正确;向酸性 $K_2Cr_2O_7$ 溶液的试管中滴加足量乙醇,溶液由橙黄色变为灰绿色说明 $K_2Cr_2O_7$ 被还原,则乙醇表现还原性,C 正确; NaHCO₃ 溶液呈碱性,其中滴加紫色石蕊试液,溶液变蓝,说明碳酸氢根离子的水解程度大于其电离程度,即 $K_{h_2} > K_{h_2} = \frac{K_w}{K_{s_1}}$,所以 $K_w > K_{h_1}$ (H_2CO_3), K_{s_2} (H_2CO_3),D 正确。

10.【答案】D

【解析】图 1 中冠醚和钾离子之间不存在离子键、A 错误;图 2 中阳离子基团较大、离子键较弱、熔、沸点较低、则图 2 物质相较 NaBF,具有更低的熔、沸点,B 错误;如图 2.1 个阳离子中含有 19 个 σ 键,1 个阴离子中含有 4 个 σ 键,C 错误;最小重复单位中 Si 原子个数为 $4+4\times\frac{1}{2}$ = 6, O 原子个数为 $14+6\times\frac{1}{2}$ = 17, Si 元素化合价为+4 价、O 元素化合价为—2 价,所以该硅酸盐结构的通式为(Si₈O₁₇) $_{n}^{10m-}$,D 正确。

11 【答案】D

【解析】X、Y、Z、W 为同一族的元素,图中它们一个原子均形成了三个共价键,根据分子的成键特征可知,四者均为 VA 族元素,工业上利用沸点差异能从空气中分离出 Y 的单质,则 Y 为 N;W³-与E⁻的电子结构相同,且 E 是短周期元素,则 W 为 P;E 与 Y 的价电子数之和与 Mg 的质子数相同,E 形成 1 个共价键,则 E 最外层有7 个电子,再结合 W³-与E⁻的电子结构相同知 E 为 Cl;X 的电负性大于 Z,则推测 X 为 As、 Z 为 Sb,综上,X、Y、Z、W、E 依 次 为 As、 N、Sb、 P、Cl。简单离子半径;P³-> Cl⁻> N³-,A 正确;第一电离能;Kr>Br>As> Se,As 位于第三位,B 正确;N 的原子半径较小,电负性较大,故 NH。分子的键角大于 PH。,C 正确;电负性:N>Cl,NCl。水解生成 NH。和 HClO,D 错误。

12.【答案】A

下发生缩聚反应生成葫芦[n] 脲和水,则②为甲醛。手性碳原子需要连接 4 个不同的原子或基团,根据葫芦[n] 脲的一个片段可知,其中的碳原子均不是手性碳原子, 葫芦[n] 脲中不存在手性碳原子, A 错误;甲醛分子中含有醛基,一定条件下能发生氧化反应、还原反应、加成反应, B 正确; 乙和①分子中 C 原子杂化类型均为 sp²、sp³, C 正确;由图可知, 葫芦[n] 脲中空腔与阳离子形成超分子, D 正确。

13. 【答案】C

【解析】I 型立体结构中 Fe2+位于顶点和体心, 离子数是 $4 \times \frac{1}{8} + 1$, O^{2-} 位于晶胞内, 离子数是 4, Ⅱ型立方体中 Fe2+位于顶点,离子数是 4× 1,O2-位于晶胞内,离子数是 4,Fe3+位于晶胞 内,离子数是4,该立方晶胞由4个 I型和4个 Ⅱ型小立方体构成,所以1个晶胞含有 Fe2+数 是 8、O2-数是 32、Fe3+数是 16, Z 的晶体中三 种离子个数比 N(Fe2+): N(Fe3+): N(O2-) =8:16:32=1:2:4,N元素形成的氧化物 Z的化学式为 Fe₃O₄, A 正确; Z 的晶体由图 1 所示结构平移构成,则图 2 中Ⅱ型小立方体可 能是 b、d、c、g,B 正确;两个 Fe2+ 最近距离为小 立方体的面对角线,即等于边长的√2倍,C 错 误;由分析可知,图 2 所示晶胞质量为 $\frac{M\times8}{N_{\lambda}}$ g= $\frac{8M}{N_{\Lambda}}$ g,晶胞体积为 $(2a \text{ nm})^3 = 8a^3 \times 10^{-21} \text{ cm}^3$, 所以密度为 $\rho = \frac{m}{V} = \frac{M \times 10^{21}}{a^3 N_A} \text{g/cm}^3$,则 Z 的密

度为 $\frac{M\times 10^{21}}{a^3N_A}$ g/cm³,D 正确。

14. 【答案】C

【解析】N—H 解离形成 H 空位后,对'OH的吸附作用减弱,因此 N—H 键不稳定,A 正确;该物质中 N 的杂化只有 sp²,B 正确;在反应中,催化剂的质量和化学性质不变,此反应中,甲去质子化生成乙,不符合催化剂定义,C 错误;该反应原理是丙烯与水发生反应生成 1,2-丙二醇,

化学试题 参考答案 第2页 共6页

即碳碳双键两端加-OH 基团,利用该原理 | 17. 【答案】(1)4CeO2+2Cl+H2O2+14H+=== 1,3-戊二烯与水发生 1,4-加成反应可制备 HOCH₂CH = CHCH(CH₃)OH,D 正确。

15.【答案】B

【解析】根据电离方程式可知, L2代表 $\delta(HCrO_{1}^{-})$ 与 pH 关系, A 错误; 根据图像, K a $=10^{-0.74}$, $K_{a_2}=10^{-6.49}$, NaHCrO₄ 水解常数 $K_{h_0} = 10^{-13.26} < 10^{-6.49}$,其水溶液呈酸性,B正

确;
$$K_{b_1} = \frac{K_w}{K_{s_2}} = 10^{-7.51}$$
, C 错误; $K = \frac{K_{s_1}}{K_{s_2}} = 10^{-0.74}$

10^{-6,49}=10^{5,75}>10⁵,D错误。

- 16. 【答案】(1)在酸性环境中,硝酸根离子有强氧化 性,将 SO2 氧化为 SO2 (2分)
 - (2)作缓冲瓶,使通入溶液中的二氧化硫气体的 速率比较稳定(2分)
 - (3)隔绝氧气(2分) b(1分)
 - (4)SO₂ 被 O₂ 氧化,与 BaCl₂ 溶液反应产生硫
 - $(5)3SO_2 + 2NO_3^- + 3Ba^{2+} + 2H_2O = 3BaSO_4$ +2NO+4H+(2分)
 - (6)氧气起主要氧化作用(2分)

【解析】(1)通过题目信息可知, SO2通入 Ba(NO₃)。溶液出现白色沉淀可能原因为氢气 或者硝酸根离子,因此可得假设二为:在酸性环 境中,硝酸根离子有强氧化性,将 SO2 氧化 为 SO²⁻。

- (2)装置 X 为级冲瓶,可使得通人溶液中的二氧 化硫气体的速率稳定,让后续反应更稳定,数据 更准确。
- (3)由于实验中需要研究氧气的作用,因此需要 控制变量,植物油起到的作用为隔绝氧气。食 用油密度小于水,难溶于水。氯仿密度大于水; 己烷密度小于水,难溶于水;乙醇易溶于水,故
- (4)根据 A 烧杯和 B 烧杯中实验现象的对比, 可以得出:在氯化钡溶液中,必须有氧气的参与 才会产生沉淀。
- (5)NO₃ 将 SO₂ 氧化,则离子方程式为 3SO₂+ $2NO_3^- + 3Ba^{2+} + 2H_2O = 3BaSO_4 + 2NO$ $+4H^{+}$
- (6) 通讨图像对比,可以发现在氦气的参与下, pH 下降幅度更大,因此在反应中氧气起主要氧 | 18.【答案】(1) 氰基、碳氯键(2分) 化作用。

- 4Ce³⁺+Cl₂ ↑+O₂ ↑+8H₂O(2 分) 温度过 低,反应速率较慢;温度过高,过氧化氢受热分 解,盐酸挥发(2分)
 - (2)调 pH 至 1.8~2.0,可选择性沉淀 Ce3+(2
 - (3) $Ce_2(C_2O_4)_3 \cdot 10H_2O + 2O_2$ <u>高温</u> $2CeO_2 +$ 6CO₂ ↑ +10H₂O(2分) 抑制草酸铈溶解,减 少草酸铈损耗(2分)
 - (4) ①C(2分) ②95.56(2分)
 - 【解析】(1)"酸浸"过程中 CeO2 中 Ce 的价态为 +4,具有强氧化性,因此可以将 H₂O₂ 氧化为 O₂,将 Cl⁻氧化为 Cl₂,由于产生气体体积均相 等,因此可得离子方程式为 4CeO2 + 2Cl-+ $H_2O_2 + 14H^+ = 4Ce^{3+} + Cl_2 \uparrow + O_2 \uparrow +$ 8H2O。"酸浸"过程中需要严格控制温度,温度 过低,反应速率较慢;温度过高,过氧化氢受热 分解,盐酸挥发。
 - (2)由题干已知信息可知,草酸在 pH=1.8~2.0 区 间内,可选择性沉淀稀土元素,而不与其他离子 沉淀。因此加入氨水的目的是将 pH 调节到 1.8~2.0区间,选择性沉淀 Ce3+。
 - (3)由题中信息可知,"灼烧"后得到 CeO2 产 品,因此需要考虑空气中 O2 的参与,因此可得 化学方程式为 Ce, (C,O,), · 10H,O+2O, <u>高温</u>2CeO₂+6CO₂↑+10H₂O。在沉淀过程 中,希望尽可能降低草酸铈的溶解度,因此根据 沉淀溶解平衡可以提高草酸浓度,从而降低草 酸铈溶解度。
 - (4)①在滴定操作中,标准液洒出,会导致消耗 标准液的浓度增加,进而导致测定结果偏大;锥 形瓶洗干净后未干燥不影响消耗标准液的体 积,对测定结果不影响;若锥形瓶中的液体洒 出,则会导致消耗标准液的体积减少,测定结果 偏小。故选 C。②根据题干信息可得滴定过程 中的等量关系:Fe2+~Ce1+,根据消耗标准溶液 的体积可得待测液中 Ce1+ 的物质的量为(0.1× 25×0.001) mol, 根据原子守恒可得 CeO₂ 的质 量为(0.1×25×0.001×172)g,则产品中 CeO2 的质量分数为(0.1×25×0.001×172÷0.45)× 100%≈95.56%。
- (2)24(2分)

化学试题 参考答案 第3页 共6页

(3)取代反应(2分) (2分) Cu,O2(2分) CH₃CH₂OH HBr(2分) (6)21(2分) . 因此 A 中 【解析】(1)A 的结构简式为 的官能团名称为氰基、碳氯键。 (2)C中甲基上最少有两个氢原子不在这个平 面,因此最多有24个原子共平面。 ,因此 C (3)D的结构简式为 →D 的反应类型为取代反应。 (4)根据 H 和 G 的分子式结合题意,可推知 H CH,OH ,G 结构简式为 将羟基氧化为醛基,则试剂 Y可选 Cu,O2。 D+E→F 的化学方程式为 CH,Br COOCH,

CH3CH2OH

+HBr.

(6) E 的分子式为 C₆ H₁₃ NO₂,则 G 的分子式为 C₄ H₃ NO₂,不饱和度为 2。根据题意可知 J 中含 4 个碳、酰胺基、羟基,由此可先确定碳骨架,

19.【答案】(1)+135.6 kJ/mol(2分)

(2)BCD(2分)

(3)CO₂ 可以将脱氢反应产生的 H₂ 反应,从而 促进反应①进行,提高乙烷转化率;可以除去反 应中产生的积碳,降低其对催化剂的活性和稳 定性的影响(2分)

(4)68.75(2分) 0.02(2分)

(5)600(2分) 空速越小,气体与催化剂接触 越充分,乙烷转化率增大乙烯产量增高,但是随 着接触时间越长,副反应增强,乙烯选择性降低 (2分)

【解析】(1)根据盖斯定律: ①一②,则 △H = +(171,32-35,72)kJ/mol=+135.6 kJ/mol。(2)苯乙烯与乙烯不满足同系物"结构相似,组成上相差"个 CH2"的定义,因此不属于同系物,A 错误;乙烯可以通过加聚反应得到聚乙烯有机高分子材料,B正确;所涉及反应的反应前后气体分子数目发生变化,因此恒容体系中当分压不再改变,则说明已达到化学平衡,C 正确;恒压体系,充人 Ar,容器体积增大,根据勒夏特列原理,反应物转化率提高,D正确。

(3)反应中产生的积碳会降低催化剂的稳定性和活性,而反应①的存在可以利用 CO。将产生的积碳反应掉,从而减少积碳的影响;另一方面,反应②中 CO。可以将反应①产生的 H。消耗掉,从而促进反应①正向移动,提高乙烷转化率。

(4)若只考虑反应①②③,根据题中等量关系可知:由于平衡体系中剩余 C₂H₆ 为 0.04 mol,则反应中消耗的 C₂H₆ 总量为 0.96 mol,反应③中生成 0.6 mol CH₄ 的同时会消耗 0.3 mol 的

化学试题 参考答案 第4页 共6页

соосн,

 C_2H_6 和 0.3 mol H_2 ,因此反应①中消耗的 C_2H_6 为 0.66 mol,因此乙烯选择性为 $\frac{0.66}{0.96}$ × 100%=68.75%。反应①产生 H_2 0.66 mol,反应②生成 0.1 mol 的 CO 的同时会消耗 0.1 mol 的 H_2 以及 0.1 mol 的 CO_2 ,另外还会产生 0.1 mol的 H_2O_3 因此平衡体系中 H_2 的物质的量为 0.26 mol、 CO_2 的物质的量为 1.9 mol、 H_2O 的物质的量为 0.1 mol、CO 的物质的量为 0.1 mol、EO 的物质的量为 0.1 mol,EO 的物质的量为 0.1 mol,EO 的物质的量为 0.1 mol,EO 的物质的量为 0.1 mol,EO 的物质的量为 0.1 mol EO 的物质的量

 $\frac{c(CO)c(H_2O)}{c(CO_2)c(H_2O)}$ 可得, $K = \frac{0.1 \times 0.1}{1.9 \times 0.26} \approx 0.02$ 。 (5)在不同空速下,可以根据乙烷转化率以及乙烯转化率计算乙烯的产率,在空速 600 h^{-1} 下,产量最高,因此最适宜空速为 600 h^{-1} ;空速降低,原料气体与催化剂接触更充分,催化效果更好,反应更充分,因此可以提高转化率。但是接触时间越长,副反应也会增强,导致乙烯选择性下降。