Assignment 2 Part A

Name: David Fodor Student code: B00796884 Email: fodor-d@ulster.ac.uk

Preprocessing

Identifying target and features

In [18]:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

#Importing the dataset
dataset = pd.read_csv('diagnose5.csv')
#Specifying the features X and the target y
X = dataset.iloc[:, 3:16].values
y = dataset.iloc[:, 16].values
#Printing the dataset
print(dataset)
display(dataset.describe())
```

		ID	Gender	Location			x1			x2			x3			
x4 0	\	0	Male	Dublin	-46	67.074	1369	-1	L84.72	6516	-9	67.	684803		928.0	17
233 1 492		1	Female	Dublin	23	32.526	6054	-5	524.91	2660	8	895.	377400		335.7	54
2 2 295		2	Female	London	96	62.877	7057	-	-45.76	0582			NaN		172.8	3 4
3 953		3	Male	London	127	74.585	5571	-11	L84.65	4089	1	70.	258993		753.4	11
4 828		4	Female	Belfast	87	75.147	7413	-1	169.15	0411	4	164.	195000	-	1381.6	42
• •	•	• •	• • •	• • •						• • •			• • •			
347 544		347	Female	London	- 6	51.519	302	14	138.55	3254	15	82.	568494		-666.9	54
348 189	3	348	Female	London	13	39.640	327	-15	558.41	7473	-	31.	728934		1265.0	82
349 958	3	349	Male	Dublin	-51	10.964	1488	-9	980.39	2637	- 3	884.	941829		667.4	28
350 412		350	Female	Belfast	-1	18.396	341	13	329.75	7179	16	93.	447103		-323.6	41
351 533	3	351	Male	Belfast	-97	70.188	3522	-15	553.75	8612	-1	.04.	805284		196.8	31
			x5		х6			x7			x8		х	9	\	
0	-1	L755	.085464	1183.399	245	242.	8416	565		ľ	NaN	12	.97048	4		
1		-35	.968013	477.712	2918	475.	223	520	-476	.4232	253	-4	.65280	0		
2	-	114	.265815	543.326	998	486.	8594	142	146	.6478	394	21	.04466	6		
3	-1	L200	.044428	-834.133	3203	-74.	6973	356	-813	.8541	133	-5	.54735	0		
4	-	759	.157438	191.039	365	300.	8611	L31	1306	.1486	583	-15	.38997	4		
• •			• • •		• • •			• • •			• • •		• •			
347			.138763	668.836									.06958			
348			.070615	365.231			2367			.1405			.57854			
				-315.556									.54691			
350				1161.644									.85361			
351	-	-707	.513839	-1745.686	850	611.	2209	961	225	.4676	528	-20	.88569	1		
			v10		.11			<i>.</i> 12			12	D: -	anasis			
0		100	x10		(11	1062		(12				υта	gnosis			
0				4.4406 228.6765									0			
1 2													0 1			
3				-22.3565 643.5637									2			
3 4				-641.6699									1			
	- 2	2/33	.040333	-041,0093	741	-032.			-/41.	/044.	00					
 347	1	130	265123	-682.0397	781 .	-1541		504	335	76242	26					
348				301.8305									0			
				-285.8472									0			
				520.3293									1			
				310.5336									2			
		= .											_			

[352 rows x 17 columns]

	ID	x1	x2	х3	x4	x5	
count	352.000000	351.000000	352.000000	351.000000	352.000000	351.000000	3
mean	175.500000	-77.311644	310.492082	18.181941	48.596349	-5.167915	-;
std	101.757883	847.965600	1392.940015	905.530758	957.229191	895.246034	91
min	0.000000	-3050.818857	-4558.753586	-2452.149474	-2372.677643	-2704.774136	-33:
25%	87.750000	-639.727179	-636.880928	-608.147095	-588.971097	-637.326133	-6:
50%	175.500000	-98.234844	348.884873	67.024286	38.191051	-35.053724	-;
75%	263.250000	470.140709	1301.838996	658.112650	698.631330	530.149903	6:
max	351.000000	2365.867028	3939.210461	2453.807595	3286.966138	2576.343059	27
4							+

Missing values

We need to substitute something for the missing values. For this we use the SimpleImputer class from Scikit learn.

In [19]:

```
from sklearn.impute import SimpleImputer
#Creating a SimpleImputer object, specifying how missing values are represented and our
chosen strategy for filling them up
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
#Fitting to the data. Here we specify the relevant features from the matrix X.
X[:,0:1] = imputer.fit_transform(X[:,0:1])
X[:,2:3] = imputer.fit_transform(X[:,2:3])
X[:,4:6] = imputer.fit_transform(X[:,4:6])
X[:,7:8] = imputer.fit_transform(X[:,7:8])
X[:,9:10] = imputer.fit_transform(X[:,9:10])
X[:,12:13] = imputer.fit_transform(X[:,12:13])
#Printing X to check if it works as it should
print(X)
[[ -467.0743686
                  -184.7265156
                                 -967.6848028
                                                       4.44065212
                                               . . .
  -1062.242048
                  -234.0280502 ]
   232.5260537
                 -524.9126604
                                  895.3774003
                                                     228,6765046
                   222.117581 ]
    741.7012044
  962.877057
                   -45.76058249
                                   18.1819414
                                                     -22.35653165
 -1207.530122
                  -174.2473578 ]
 [ -510.9644882
                  -980.3926374
                                 -384.941829
                                                    -285.8472407
  1477.733558
                  438.6458203 ]
  -18.39634102 1329.757179
                                 1093.447103
                                                     520.3293924
  -1272.396845
                  -280.2984742 ]
 [ -970.1885224 -1553.758612
                                 -104.8052844
                                                     310.5336951
    800.6789307
                  -411.4117824 ]]
```

Feature Scaling

Some features can have very different magnitudes and that can affect the results from machine learning algorithms. The following code scales all of the features.

In [20]:

```
#Feature Scaling
from sklearn.preprocessing import StandardScaler
#Creating a StandardScaler object
sc = StandardScaler()
#Scaling all of the features
X[:,0:13] = sc.fit_transform(X[:,0:13])
#Printing the results after scaling
print(X)
[[-0.4609559 -0.35602648 -1.0918232 ... 0.08415121 -0.58975672
 -0.58522175]
 [ 0.36643195 -0.60059581 0.97147242 ... 0.41188176 0.70242476
  0.45364306]
 [ 1.23018721 -0.25611999 0.
                                  ... 0.04498595 -0.69382793
 -0.44907212]
 [-0.51286289 -0.92805309 -0.44644967 ... -0.34011729 1.22965164
   0.94678287]
 [ \ 0.06967664 \ \ 0.73277815 \ \ 1.19082976 \ \dots \ \ 0.83814526 \ \ -0.74029257
  -0.69060194]
 [-1.05596774 -1.3402619 -0.13620533 ... 0.53151964 0.74467106
  -0.98921053]]
```

It is a good idea to check the mean of each of the features after the scaling has been done. It should be 0.

In [21]:

```
print('Mean of x1: {:5.3f}\n'.format(np.mean(X[:,0])))
print('Mean of x2: {:5.3f}\n'.format(np.mean(X[:,1])))
print('Mean of x3: {:5.3f}\n'.format(np.mean(X[:,2])))
print('Mean of x4: {:5.3f}\n'.format(np.mean(X[:,3])))
print('Mean of x5: {:5.3f}\n'.format(np.mean(X[:,4])))
print('Mean of x6: {:5.3f}\n'.format(np.mean(X[:,5])))
print('Mean of x7: {:5.3f}\n'.format(np.mean(X[:,6])))
print('Mean of x8: {:5.3f}\n'.format(np.mean(X[:,7])))
print('Mean of x9: {:5.3f}\n'.format(np.mean(X[:,8])))
print('Mean of x10: {:5.3f}\n'.format(np.mean(X[:,10])))
print('Mean of x11: {:5.3f}\n'.format(np.mean(X[:,11])))
print('Mean of x12: {:5.3f}\n'.format(np.mean(X[:,11])))
Mean of x1: 0.000
```

```
Mean of x2: -0.000

Mean of x3: -0.000

Mean of x4: 0.000

Mean of x5: -0.000

Mean of x6: 0.000

Mean of x7: 0.000

Mean of x8: -0.000

Mean of x9: -0.000

Mean of x10: 0.000

Mean of x11: 0.000

Mean of x12: 0.000

Mean of x13: -0.000
```

Feature Selection

At this point we can select the k best features. After this, we have to modify the features so that they only consist of these selected features.

In [22]:

```
[[-0.4609559 -0.35602648 -1.96025464 ... 0.08415121 -0.58975672 -0.58522175]
[ 0.36643195 -0.60059581 -0.03450222 ... 0.41188176 0.70242476 0.45364306]
[ 1.23018721 -0.25611999 -0.12221128 ... 0.04498595 -0.69382793 -0.44907212]
...
[-0.51286289 -0.92805309 0.2658213 ... -0.34011729 1.22965164 0.94678287]
[ 0.06967664 0.73277815 -0.41862297 ... 0.83814526 -0.74029257 -0.69060194]
[ -1.05596774 -1.3402619 -0.7867667 ... 0.53151964 0.74467106 -0.98921053]
```

Splitting

We split the data into training and test sets using the function train_test_split from the sklearn.model_selection module in Sci-kit learn (sklearn).

In [23]:

```
from sklearn.model_selection import train_test_split
#The test size is 20% of all the data, and it is selected at random
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state
= 0)
#Printing out the test data
print(X_test)
print(y_test)
```

```
[[ 7.12663946e-01 -1.41863267e+00 -9.94935943e-19 0.00000000e+00
  2.70968169e-01 3.11514523e-01 -1.18150611e+00 -2.10415516e-01
  -2.99506035e-01]
 [-1.43380205e+00 -7.10685099e-02 9.00454064e-01 1.54234773e+00
  -2.65467106e+00 1.02702453e+00 -3.52544909e-01 -1.37662333e+00
  2.32570982e+00]
 [ 5.42891844e-01 -6.38827370e-01 1.57394346e+00 -6.50274688e-02
  -1.48503212e+00 -1.68224259e+00 8.90314589e-01 -1.72032712e-01
  -5.01098535e-01]
 [ 2.25252314e-01 3.74045901e-01 7.55758439e-01 -6.24614299e-01
  -9.38220919e-02 9.38729538e-01 -1.20751053e-01 3.16202148e-02
 -7.12272465e-02]
 [-3.57025318e-01 6.42058458e-01 1.20369992e+00 -1.04822714e+00
  -5.32717323e-01 1.69127228e+00 1.21256467e+00 -6.24825224e-01
  1.69218615e+00]
 9.75449240e-01 1.34247533e+00 1.43486558e+00 1.27765086e+00
  -1.55387289e-01 4.08129112e-01 -2.81340986e-01 -1.87747420e+00
  3.49088919e-01]
 [ 1.29241803e+00 -1.18928131e+00 -1.07610012e+00 5.42947342e-02
  1.13048850e+00 3.21102025e-01 3.18121980e-01 -9.81928882e-01
  -4.46593280e-01]
 [-5.28719252e-01 -2.80308274e-01 -6.82628039e-01 -8.06440394e-01
  7.88485048e-02 -5.30170208e-01 1.36360291e+00 4.60488705e-01
  -1.60933784e-01]
 [ 1.84360805e-01 2.73534613e-01 -4.78676797e-01 -5.79062764e-01
  3.17083435e-01 -3.30096735e-01 -3.91189754e-04 1.53439645e-02
  -5.15957947e-01
 [-2.14836622e-01 -1.54273444e+00 1.62275494e-01 -2.36487558e-01
  -5.70402099e-01 7.34125970e-01 7.00198851e-01 8.40724536e-01
  4.75209296e-01]
 [-8.87913963e-01 8.70896180e-01 2.79430389e-01 3.50305154e-01
  -1.07211935e+00 8.30108008e-01 -1.49162124e+00 -9.55868008e-01
  1.45407094e+00]
 [ 1.81039644e+00 4.84845735e-01 1.86003157e-02 1.08527439e+00
  8.16213161e-01 7.86991271e-01 -7.77607234e-01 -1.21272126e+00
  -6.27709337e-01]
 [-2.81647187e+00 -8.75101690e-01 -4.06663061e-01 -2.17598794e+00
  -2.67834277e-01 -3.52817870e+00 -1.87568787e+00 1.11436497e+00
  -1.44382250e-01]
 [-8.23129256e-01 -7.21448173e-02 -5.85906941e-02 1.18005896e+00
  2.86464525e-01 -4.15178500e-01 6.24964361e-01 -5.74574331e-01
  -4.87395662e-01]
 [-6.67291800e-01 9.06979628e-01 -9.67073149e-01 2.16723032e-01
  3.46957542e-01 -1.37447644e+00 -2.56475583e-01 1.87747927e-01
  -1.14286712e+00]
 [ 1.34090361e-02 9.61025308e-01 -5.95520185e-01 -5.67818223e-01
  -1.38261482e+00 7.60744941e-01 1.60155268e-01 7.43751055e-01
  6.63767905e-01]
 [-5.69470736e-01 5.38390214e-01 3.52241707e-01 -1.82760181e+00
  1.66226403e+00 -2.13012196e-01 3.42063477e-02 -3.23516514e-01
  6.23471426e-01]
 [-3.01827622e-01 7.10299771e-01 -9.20764986e-01 -4.21180669e-01
  -1.44777607e+00 6.67578361e-01 -1.55724463e+00 5.13921082e-01
  4.65721006e-01]
 [-1.05596774e+00 -1.34026190e+00 -7.86766700e-01 -1.79083771e+00
  1.07287776e-01 -2.63613082e+00 5.31519639e-01 7.44671059e-01
  -9.89210528e-011
 [-2.00499974e-01 4.65045042e-02 1.23191818e+00 -2.60510206e-02
  1.52228172e+00 -2.35307105e-01 -2.02120324e+00 -2.53313865e-01
  1.42469065e+00]
 [-7.86170293e-01 -6.47345829e-01 1.69143213e+00 -6.28826293e-01
```

```
-7.17137868e-01 -4.40275912e-01 -7.82462458e-02 -9.15380097e-01
 1.92534975e+00]
[-6.12232165e-01 9.08836569e-01 2.36372500e+00 -1.78916962e-01
 -1.36080492e+00 -2.12618376e-01 -6.71420719e-01 -1.26141140e+00
 2.19706089e+00]
[-3.79134638e-01 -2.43945917e-01 8.76472255e-01 -2.74036351e-01
 6.16145890e-01 2.10384779e-01 2.80953872e-01 -3.56072758e-01
 9.51858101e-01]
[ 1.69810256e+00 -1.33447987e+00 -5.40963795e-01 -1.08034839e-01
 3.25766669e-01 3.08711688e-01 1.02709866e+00 -6.28152551e-01
 -1.31652623e+00]
[ 2.13604403e+00 -6.54484549e-01 2.71833183e+00 1.47863636e+00
 1.06191496e+00 2.78615358e+00 6.25744556e-01 -9.19969796e-01
 4.16671846e-01]
[-1.43776020e-01 4.97118122e-01 1.19278568e+00 -7.79609716e-01
 -5.43641310e-01 -1.42168755e-01 7.97128416e-01 -3.46311522e-01
 9.22649302e-01]
[ 9.31283633e-01 -5.83184762e-01 2.32977519e-01 0.00000000e+00
 -1.83802184e-01 4.07120734e-01 -1.02494679e+00 1.68937262e-01
 -5.58945081e-01]
[-1.34125153e+00 2.15384097e-02 1.44107797e+00 -2.59970857e-01
 5.38063830e-01 7.45323277e-01 3.56382433e-01 -6.79322283e-02
 1.28040604e+00]
[-9.38221509e-01 1.41564114e+00 1.24480425e-01 1.80086504e-01
 1.94950669e+00 1.93652932e-01 -2.48919775e-01 -5.87140316e-01
 9.67007574e-01]
[ 1.15941018e-01 4.31914069e-01 2.92655442e-01 -4.56600585e-01
 -3.36283268e-01 -4.17475098e-01 -4.19632308e-01 8.54242110e-01
 -7.06630005e-01]
[ 6.66958718e-01 -4.66512613e-01 -1.40563526e+00 -2.79136414e-01
-5.55945816e-01 -1.41528026e-01 1.00204681e+00 -6.56209902e-01
 -1.01202768e+00]
[-8.52834760e-01 -7.60993650e-01 1.91172982e+00 -7.10123265e-02
 2.39434813e-01 9.23990528e-01 -6.84927574e-01 -4.05271991e-02
 1.55979785e+00]
[ 1.15580486e-01 9.42940571e-03 -1.07238550e+00 -2.56136642e-01
 5.42982423e-01 2.22808733e-02 1.04946604e+00 -5.14024166e-01
 6.20345604e-02]
[-3.92371939e-01 -1.26403890e+00 2.89180417e+00 -8.76094612e-01
 -4.78157195e-01 -8.77679645e-01 -1.82620725e+00 8.13084247e-01
 4.81380456e-01]
[ 1.67947085e+00 -7.98183701e-01 1.48946490e+00 5.49147485e-01
 -4.78328929e-02 1.40608816e+00 -1.40218448e-01 -5.69402355e-01
 1.34318873e-01]
[ 1.28535550e-01 5.75128663e-01 -7.66189156e-02 -3.91544619e-01
 -4.89332392e-01 -9.85033607e-02 -1.05614951e+00 4.56886088e-02
 -1.58547368e-01]
[-9.25364762e-01 -3.75363286e-01 1.39776634e-01 -5.73480460e-02
 -1.09385851e+00 -7.51281476e-01 1.34509529e+00 5.12765776e-01
 5.03420851e-01]
[-1.24216280e+00 -5.41606475e-01 4.32285491e-01 2.65933387e-01
 1.71960703e-01 -1.27774509e+00 1.50329951e-01 9.49523237e-01
 6.52786585e-01]
[-7.40673072e-01 -1.68375959e+00 -4.91199430e-01 -8.21249335e-01
 -1.70125291e+00 -2.79072286e-02 -9.00745344e-01 1.46723313e+00
 -8.07928724e-01]
[-2.06047864e+00 3.55560163e-01 4.30196063e-01 1.25731223e+00
 1.56417792e-01 -3.75773373e-01 -2.73779563e-01 -2.92754901e-01
 3.92355775e-011
[ 1.27448709e+00 -1.85407162e-01 4.27196256e-01 -8.55382899e-01
  3.45548922e-01 2.24616840e-01 -7.16297411e-01 2.63248636e+00
```

```
-1.32147954e+00]
7.65190674e-01 2.00442437e-01 -7.51048400e-01 1.30783301e+00
 -4.22482641e-01 -1.99988567e-01 -1.13632956e+00 -8.16732909e-01
 2.05152761e-01]
[ 4.78439539e-01 -4.79425645e-01 -1.15617002e+00 5.79216352e-01
 6.77151174e-01 -2.72669655e-01 1.31152693e+00 -5.35483824e-01
 -3.78651943e-01]
[-5.37842611e-02 6.88900736e-01 1.44226160e-01 3.62431222e-01
 -1.10123568e+00 6.91276077e-01 -6.81064569e-01 1.82635848e+00
  2.92095530e-01]
[-1.12382500e+00 1.66036626e+00 -1.65185438e-01 1.63242488e+00
 4.85807690e-01 -1.15758311e+00 2.06060161e+00 1.77059225e-01
 -5.32247905e-01]
[-1.93973665e-01 -4.74265220e-01 1.08806566e+00 -4.34300197e-01
 -4.31807814e-01 1.12846490e+00 6.28984256e-01 -1.93360113e+00
 2.21751380e+00]
[-4.85221205e-01 3.06257813e-01 7.19709058e-01 -1.06532314e+00
 -3.60923697e-01 -1.39890530e-01 5.28296929e-01 -8.82607563e-01
 1.02567325e+00]
[-7.97056991e-01 9.98971083e-01 -1.05124600e+00 -1.39868599e+00
 7.22134379e-01 3.39536550e-01 3.02721138e-01 6.51305485e-02
-3.79194941e-011
[ 1.62154124e+00 -7.28065503e-01 2.91297106e-02 5.17234129e-01
 -1.54368837e+00 -1.26147654e-01 4.45622732e-01 -2.77392741e-01
 -1.46691813e+00]
[-1.87404694e-01 -2.00526810e-01 1.09357471e+00 -5.36188068e-01
 -7.14435427e-02 9.52750191e-01 3.90041105e-01 2.05709951e+00
 1.13267309e+00]
[ 1.77243782e-01 -2.27113481e-01 -4.96659864e-01 5.56482487e-01
 -2.55158571e-01 2.33597359e-01 -4.50038511e-01 -3.13495877e-01
 5.98941007e-01
[-8.36002466e-01 8.95081920e-02 2.21231084e+00 1.79859575e-01
 -1.98100730e+00 -1.45672331e-01 -9.37700402e-01 -1.14957726e+00
 2.14841854e+00]
[ 1.28065971e+00 6.03936347e-02 -2.18071494e+00 6.28731978e-01
 1.22777141e+00 -4.33183505e-01 -8.19199792e-02 -1.18477242e+00
-1.90463907e+00]
[ 3.45023139e-01 1.64063625e+00 -5.93128434e-02 -1.29123090e+00
 -1.21395801e+00 1.52283753e+00 -1.62298659e+00 7.12284540e-01
 4.57243931e-01]
[-1.29961009e-01 1.95703522e+00 1.46052690e+00 9.75224687e-01
 2.16151643e+00 -6.66390328e-02 -1.42097324e+00 -1.40308446e+00
 1.09092315e+00]
[-4.46537343e-01 1.12038221e+00 4.39373237e-01 2.53324636e-02
 -1.06542654e+00 1.03881019e+00 -6.90075214e-01 -1.04863627e+00
 1.41987990e+001
[ 1.85260129e-01 -2.50089084e-01 9.99293433e-01 1.05129810e-01
 4.85659430e-01 1.78544590e-01 -5.02122437e-01 -4.72977163e-01
 9.15237698e-02]
[ 1.57143604e-01 -2.38349613e+00 5.76128791e-01 -1.87113235e+00
 -1.20864342e-01 -1.47540452e+00 1.19872880e+00 7.61193347e-01
-8.43997944e-01]
[-1.41064733e+00 -2.20671014e-01 1.97494565e+00 6.89949022e-01
 -2.93006693e+00 1.30518078e-01 4.42305732e-01 -1.43184668e+00
 2.77115099e+00]
[ 1.14578870e+00 -6.63929006e-01 5.77492509e-01 -1.54693177e+00
 -6.29184874e-01 1.32808435e+00 -1.83235269e-01 1.88625070e+00
 2.84733170e-01]
[-3.94684779e-01 1.27167598e-01 -1.55803424e+00 3.51755396e-01
 -1.75080511e+00 7.42778863e-02 9.55623517e-02 1.28001780e-01
 -2.21906730e-01]
```

```
[-2.29736401e-01 2.39789149e+00 1.28940323e+00 8.39930533e-01
  1.56020247e+00 1.36514895e+00 -5.66646674e-01 -1.74093958e+00
  2.24541959e+00]
[ 6.42147334e-01 4.85447287e-01 1.54158932e+00 5.54163973e-01
  2.77625883e-01 8.64455557e-01 -1.47637710e+00 2.58956259e-01
  2.48823958e-01]
[-2.39738320e-01 7.51896584e-01 8.13587933e-02 -1.57669274e-01
 -7.29457917e-01 1.00275215e+00 2.35939828e+00 -5.97279939e-01
  1.32393007e+00]
[ 3.04440078e-01 6.45651367e-01 6.27636650e-01 5.04247393e-01
  1.52120490e+00 2.53076986e-01 7.57275443e-01 -9.80367591e-01
  9.18568654e-02]
[ 1.06921333e+00 -3.38129621e-01 1.06456157e+00 -9.69103690e-01
  1.59803170e+00 -9.49770568e-02 -2.66384103e+00 1.34614902e-01
  5.24448846e-01]
[-1.18799718e+00 -8.24446429e-01 -6.48310469e-01 9.19854643e-01
 -6.95018342e-01 -8.54894962e-02 -1.98373340e-01 1.22916114e+00
 -2.42784875e-01]
[ 1.05647483e+00 -2.67794465e-01 -8.69826270e-01 -1.33798996e-01
 -6.03739881e-02 5.42648532e-01 8.10660601e-01 -7.34210942e-01
 -9.06712845e-01]
[ 1.63042643e+00 -7.94015133e-01 -4.79198823e-01 -9.82671048e-01
  2.58089232e-01 3.21826506e-01 -6.92687428e-01 -8.73741370e-01
 -1.13263175e+00]
[ 2.70467944e-01 -4.11455498e-01 1.28023187e+00 -1.71873762e+00
  1.48204867e+00 -1.71942454e+00 -2.94553619e-01 1.36174908e+00
 -9.21628962e-01]
[-1.70368776e+00 -9.96025673e-01 -2.45771849e+00 8.31590392e-01
 -1.58699049e+00 -2.12268580e+00 1.75072545e+00 2.30262686e-01
 -1.68742325e+00]]
201202011120001200102120001010102220]
```

Training

Logistic Regression

```
In [24]:
```

```
#Learning Logistic Regression Classifier
from sklearn.linear_model import LogisticRegression
#Creating a LogisticRegression object
lr = LogisticRegression(random_state = 0)
#Fitting the model to the training data
lr.fit(X_train, y_train)
#Predicting test cases
y_pred = lr.predict(X_test)
```

Testing and evaluation

Confusion Matrix

In [25]:

```
#Constructing the Confusion Matrix
from sklearn.metrics import confusion_matrix
#Creating a confusion matrix object
cm = confusion_matrix(y_test, y_pred)
#Printing the confusion matrix
print(cm)
#Calculate the accuracy and see if we can get a better result by changing the value of
    k at the 'Feature selection' step
#Since this is not a binary classification, finding the TP, TN, FP and FN values was a
    little more difficult.
#A formula was used from the following site:
#https://towardsdatascience.com/confusion-matrix-for-your-multi-class-machine-learning-
model-ff9aa3bf7826
#By calculating the accuracy for each of the three cases, and taking the mean of them,
    we can simplify the formula to this:
accuracy = (3 * cm.item(0) + cm.item(1) + cm.item(2) + cm.item(3) + 3 * cm.item(4) + cm.item(4) + cm.item(4) + cm.item(5) + 3 * cm.item(6) + 3 * cm.item(6) + 3 * cm.item(6) + 3 * cm.item(6) + 6 * cm.item(6) +
 (8) + cm.item(6) + cm.item(7) + 3 * cm.item(8) ) / (3 * (cm.item(0) + cm.item(1) + cm.item(2) + cm.item(3) + cm.item(4) + cm.item(5) + cm.item(6) 
cm.item(2) + cm.item(3) + cm.item(4) + cm.item(5) + cm.item(6) + cm.item(7) + cm.item(8)
) ) )
#Printing the accuracy
print('Accuracy: ')
print(accuracy)
```

```
[[17 8 0]

[ 0 23 2]

[ 1 2 18]]

Accuracy:

0.8779342723004695
```

Training

Decision Tree

In [26]:

```
#Learning Decision Tree Classifier
from sklearn.tree import DecisionTreeClassifier
#Creating a DecisionTreeClassifier object
dt = DecisionTreeClassifier(criterion = 'entropy', random_state = 0, ccp_alpha = 0.0)
#Fitting the model to the training data
dt.fit(X_train, y_train)
#Predicting test cases
y_pred = dt.predict(X_test)
```

Testing and evaluation

Confusion Matrix

In [27]:

```
# Constructing the Confusion Matrix
from sklearn.metrics import confusion_matrix
#Fitting the model to the training data
cm = confusion_matrix(y_test, y_pred)
#Printing the confusion matrix
print(cm)
accuracy = (cm.item(0) + cm.item(0) + cm.item(0) + cm.item(1) + cm.item(2) + cm.item(3)
+ cm.item(4) + cm.item(4) + cm.item(4) + cm.item(5) + cm.item(6) + cm.item(7) + cm.item
(8) + cm.item(8) + cm.item(8) ) / (3 * (cm.item(0) + cm.item(1) + cm.item(2) + cm.item(3)
+ cm.item(4) + cm.item(5) + cm.item(6) + cm.item(7) + cm.item(8) )
#Printing the accuracy
print('Accuracy: ')
print(accuracy)
```

```
[[17 5 3]

[ 3 20 2]

[ 6 0 15]]

Accuracy:

0.8215962441314554
```

Conclusion

If we take a look at the accuracy of both the Logistic Regression and the Decision Tree algorithm, we can compare them and conclude which one produces a more accurate result in case of this dataset. This, of course, is not constant, for as we change the value of k, one might be more accurate than the other and vice versa. By trying out every possible value of k, I have concluded that LR produced a higher accuracy for almost any value of k, except for 4 and 5. In case of k = 4, the accuracy of the two classifiers is identical (0.77). In case of k = 5, the accuracy of DT is a bit higher. However, this hardly matters, for I have concluded earlier that the highest possible accuracy that we can achieve in this scenario (for both LR and DT) is if k has the value of 9. In this case, LR has an accuracy 0f 0.88, while DT has only 0.82. The biggest difference in the accuracy of LR and DT is at k = 10. In this case, LR has 0.88, while DT has only 0.79. In conclusion, LR is the better choice for this scenario.