SUITES NUMÉRIQUES

I. Généralités

1. Définitions

a. Suites numériques

Définition 6.1

Une **suite numérique** est une fonction u définie sur \mathbb{N} , ou sur une partie I de \mathbb{N} . Pour tout entier n on note $u_n = u(n)$:

$$u: \mathbb{N} \longrightarrow \mathbb{R}$$
 $n \longmapsto u_n$

- u_n désigne le **terme de rang** n (ou **terme d'indice** n) de la suite.
- Pour désigner la suite u on peut écrire u, ou (u_n) , ou encore $(u_n)_{n\in\mathbb{N}}$ (ou $(u_n)_{n\in I}$ le cas échéant).

On fera donc bien la distinction entre le **terme** u_n qui est un nombre réel, et la **suite** (u_n) .

Remarque

Une suite peut être définie de plusieurs façons, par exemple :

· de façon explicite

Exemple:
$$\forall n \in \mathbb{N}, u_n = \frac{1+3n}{e^n}$$

• par son (ou ses) premier(s) terme(s) et une relation de récurrence :

Exemple:
$$u_1 = 3$$
 et $\forall n \ge 1, u_{n+1} = 3u_n - 2$

Exemple:
$$u_0 = 1$$
, $u_1 = 1$ et $\forall n \ge 1$, $u_{n+2} = u_{n+1} + u_n$

Exemple:
$$u_0 = 1$$
, et $\forall n \ge 0, u_{n+1} = \sum_{k=0}^{n} u_k$

• de façon implicite, comme solution d'une équation qui dépend de n

Exemple : si (E_n) : $x^n + \ln(x) = 0$, on peut montrer en étudiant la fonction $f_n : x \longrightarrow x^n + \ln(x)$ que (E_n) admet une unique solution sur $]0; +\infty[$. Si on note u_n cette solution, cela définit une suite u_n (voir par exemple DST n^0 1).

Remarque

Une suite numérique est une famille de nombres réels indexée par $\mathbb N$ ou par une partie de $\mathbb N$.

b. Suites minorée, majorée, bornée

Définition 6.2

Soit (u_n) une suite numérique définie sur $I \subset \mathbb{N}$. On dit que (u_n) est...

- ...**majorée** s'il existe $M \in \mathbb{R}$ tel que pour tout $n \in I$, $u_n \leq M$;
- ...**minorée** s'il existe $m \in \mathbb{R}$ tel que pour tout $n \in I$, $m \le u_n$;
- ...**bornée** s'il existe $m, M \in \mathbb{R}$ tels que pour tout $n \in I$, $m \le u_n \le M$.

2. Variations

Définition 6.3

Soit (u_n) une suite numérique définie sur \mathbb{N} . On dit que (u_n) est...

- ...**croissante** si $\forall n \in \mathbb{N}$, $u_{n+1} \ge u_n$, autrement dit si $\forall n \in \mathbb{N}$, $u_{n+1} u_n \ge 0$;
- ...**décroissante** si $\forall n \in \mathbb{N}$, $u_{n+1} \le u_n$, autrement dit si $\forall n \in \mathbb{N}$, $u_{n+1} u_n \le 0$;
- ...**constante** si $\forall n \in \mathbb{N}$, $u_{n+1} = u_n$.

Remarque

Dans le cas bien précis où (u_n) est définie de façon explicite par $u_n = f(n)$ où f est une fonction, alors si f est monotone sur $[0; +\infty[$, u_n est monotone et de même sens de variation sur $[0; +\infty[$.

En effet, on a alors $u_{n+1} - u_n = f(n+1) - f(n)$ et le signe de f(n+1) - f(n) est constant si f est monotone.

Attention, il ne faut pas confondre ce cas avec celui d'une suite définie par récurrence : par exemple si $u_0 = 1$ et $u_{n+1} = \frac{1}{2}u_n$, on a $u_{n+1} = f(u_n)$ avec $f(x) = \frac{1}{2}x$. La fonction f est croissante mais la suite (u_n) est décroissante!

 \rightarrow Exercice de cours nº 1.

II. Cas particuliers

1. Suites arithmétiques

Définition 6.4

Une suite $(u_n)_{n\in\mathbb{N}}$ est dite **arithmétique** s'il existe un réel r tel que pour tout $n\in\mathbb{N}$, $u_{n+1}=u_n+r$. On appelle alors **raison** de la suite (u_n) ce réel r.

Propriété 6.1 –

Soit (u_n) une suite arithmétique de raison r

- Si r > 0, (u_n) est croissante
- Si r < 0, (u_n) est décroissante
- Si r = 0, (u_n) est constante

Propriété 6.2 (Terme général d'une suite arithmétique)

Soit (u_n) une suite arithmétique de raison $r \in \mathbb{R}$. Alors

- $\forall n \in \mathbb{N}, u_n = u_0 + nr$
- $\forall n, p \in \mathbb{N}, n \geq p, u_n = u_0 + (n-p)r$

2. Suites géométriques

Définition 6.5

Une suite $(u_n)_{n\in\mathbb{N}}$ est dite **géométrique** s'il existe un réel q tel que pour tout $n\in\mathbb{N}$, $u_{n+1}=u_n\times q$. On appelle alors **raison** de la suite (u_n) ce réel q.

Propriété 6.3

Soit (u_n) une suite géométrique de raison q et de premier terme $u_0 > 0$

- Si q > 1, (u_n) est croissante
- Si 0 < q < 1, (u_n) est décroissante
- Si q = 1, (u_n) est constante
- Si $q \le 0$, (u_n) n'est pas monotone.

Si (u_n) est une suite géométrique avec $u_0 < 0$ et q > 0, alors la propriété précédente reste vraie en échangeant « croissante » et « décroissante ».

Propriété 6.4 (Terme général d'une suite géométrique)

Soit (u_n) une suite géométrique de raison $q \in \mathbb{R}$. Alors

- $\forall n \in \mathbb{N}, u_n = u_0 \times q^n$
- $\forall n, p \in \mathbb{N}, n \ge p, u_n = u_0 \times q^{n-p}$
- → Exercice de cours nº 2.
- → Exercice de cours nº 3.

3. Suites arithmético-géométriques

Définition 6.6

Une suite numérique (u_n) est dite **arithmético-géométrique** s'il existe deux réels a et b avec $a \ne 1$ et $b \ne 0$ tels que pour tout $n \in \mathbb{N}$, $u_{n+1} = au_n + b$.

La proposition et la propriété suivante sont à savoir redémontrer en situation.

Proposition 6.5

Soit (u_n) une suite arithmético-géométrique définie par la relation de récurrence $u_{n+1}=au_n+b$ et soit r l'unique réel tel que r=ar+b, c'est à dire $r=\frac{b}{1-a}$. Alors, la suite (v_n) définie pour tout $n\in\mathbb{N}$ par $v_n=u_n-r$ est une suite géométrique de raison a.

Une conséquence immédiate est la propriété suivante :

Propriété 6.6 (Terme général d'une suite arithmético-géométrique) —

Soit (u_n) une suite arithmético-géométrique définie par la relation de récurrence $u_{n+1}=au_n+b$ et posons $r=\frac{b}{1-a}$. Alors pour tout $n\in\mathbb{N},\ u_n=a^n(u_0-r)+r$

4. Suites récurrentes linéaires d'ordre 2

Définition 6.7

Une suite (u_n) est dite **récurrente linéaire d'ordre 2** s'il existe deux réels a et b tels que pour tout $n \in \mathbb{N}$,

$$u_{n+2} = au_{n+1} + bu_n$$

Si u_0 et u_1 sont donnés, une telle suite (u_n) est définie de façon unique. On appelle alors **équation caractéristique** de (u_n) l'équation $r^2 = ar + b$.

Proposition 6.7 (Terme général d'une suite récurrente linéaire d'ordre 2)

Soit (u_n) une suite récurrente linéaire d'ordre 2 d'équation caractéristique (E): $r^2 = ar + b$. On distingue trois cas:

• Si (E) admet deux solution réelles distinctes r_1 et r_2 , alors il existe deux réels λ et μ tels que

$$\forall n \in \mathbb{N}, \quad u_n = \lambda r_1^n + \mu r_2^n$$

• Si (E) admet une solution double r_0 , alors il existe deux réels λ et μ tels que

$$\forall n \in \mathbb{N}, \quad u_n = \lambda r_0^n + \mu n r_0^n$$

• L'équation caractéristique n'admet aucune solution réelle. Elle admet donc deux solutions complexes conjuguées, $z_1 = r e^{i\alpha}$ et $z_2 = r e^{-i\alpha}$ (voir chapitre 9). Il existe deux réels λ et μ tels que

$$\forall n \in \mathbb{N}, \quad u_n = \lambda r^n \cos(n\alpha) + \mu r^n \sin(n\alpha)$$

En pratique, dans chaque cas, on trouve la valeur de λ et μ à l'aide des valeurs de u_0 et u_1 .

→ Exercice de cours nº 4.

III. Limites

Dans la suite de ce chapitre, on note $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$. Cette notation est réservé au cours et servira seulement à gagner du temps en regroupant plusieurs cas en un seul.

1. Généralités

a. Limite finie, limite infinie

Définition 6.8

Soit (u_n) une suite numérique. On dit que...

• ... (u_n) tend vers $+\infty$, et on note $\lim_{n\to+\infty}u_n=+\infty$, si tout intervalle de la forme $]A;+\infty[$ contient tous les termes de la suite à partir d'un certain rang. Autrement dit, (u_n) a pour limite $+\infty$ si :

$$\forall A \in \mathbb{R}, \exists n_0 \in \mathbb{N}, n \geq n_0 \Rightarrow u_n > A$$

• ... (u_n) tend vers $-\infty$, et on note $\lim_{n \to +\infty} u_n = -\infty$, si tout intervalle de la forme $]-\infty$; A[contient tous les termes de la suite à partir d'un certain rang. Autrement dit, (u_n) a pour limite $-\infty$ si :

$$\forall A \in \mathbb{R}, \exists n_0 \in \mathbb{N}, n \ge n_0 \Rightarrow u_n < A$$

\rightarrow Exercice de cours n^o 5.

Définition 6.9

Soit (u_n) une suite numérique et soit $\ell \in \mathbb{R}$. On dit que (u_n) admet pour limite ℓ , et on note $\lim_{n \to +\infty} u_n = \ell$, si tout intervalle ouvert contenant ℓ contient tous les termes de la suite à partir d'un certain rang. Une formulation équivalente est :

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, n \ge n_0 \Rightarrow u_n \in]\ell - \varepsilon; \ell + \varepsilon[$$

Une autre formulation est

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, n \geq n_0 \Rightarrow |u_n - \ell| < \varepsilon$$

À partir d'un certain rang les termes de la suite ne sortent plus de l'intervalle $]\ell - \varepsilon; \ell + \varepsilon[$ et ce **quel que soit la valeur de** ε

Pour tout $\ell \in \mathbb{R}$, on note aussi $u_n \xrightarrow[n \to +\infty]{} \ell$ si $\lim_{n \to +\infty} u_n = \ell$

Définition 6.10 —

- Si (u_n) admet une limite finie, on dit que (u_n) converge.
- Si (u_n) admet pour limite $+\infty$ ou $-\infty$, ou si (u_n) n'admet pas de limite on dit que (u_n) diverge.

Exemple 6.1

- $\lim_{n \to +\infty} \frac{1}{n} = 0 \operatorname{donc} \left(\frac{1}{n}\right)_{n \ge 1}$ converge
- $(-1)^n$ vaut alternativement -1 et 1, donc elle ne converge pas.

En effet, supposons qu'il existe un réel ℓ tel que pour tout $\varepsilon > 0$, tous les termes de la suite sont contenus dans $]\ell - \varepsilon; \ell + \varepsilon[$ à partir d'un certain rang.

Si $\ell \neq -1$ et $\ell \neq 1$, alors il suffit de choisir ε tel que $]\ell - \varepsilon; \ell + \varepsilon[$ ne contienne ni 1 ni -1 (en prenant $\varepsilon = \frac{1}{2}\min(|\ell-1|,|\ell+1|)$). Alors, aucun terme de la suite n'appartient à $]\ell - \varepsilon; \ell + \varepsilon[$.

Si $\ell = 1$, on prend $\varepsilon = \frac{1}{2}$. Aucun terme impair de la suite n'appartient à $]1 - \frac{1}{2}; 1 + \frac{1}{2}[$ donc (u_n) ne converge pas vers 1.

Si $\ell = -1$, on prend $\varepsilon = \frac{1}{2}$. Aucun terme pair de la suite n'appartient à $]-1-\frac{1}{2};-1+\frac{1}{2}[$ donc (u_n) ne converge pas vers -1.

On dit que $((-1)^n)_{n\in\mathbb{N}}$ diverge.

• $\lim_{n \to +\infty} e^n = +\infty$ donc $(e^n)_{n \in \mathbb{N}}$ diverge.

b. Unicité de la limite

Proposition 6.8

La limite d'une suite est unique. Si $\ell \in \overline{\mathbb{R}}$ et si $\lim_{n \to +\infty} u_n = \ell$ et $\lim_{n \to +\infty} u_n = \ell'$, alors $\ell = \ell'$.

c. Caractérisations de la limite

Remarque

Si $\ell \in \mathbb{R}$, une formulation équivalente de $\lim_{n \to +\infty} u_n = \ell$ est $\lim_{n \to +\infty} (u_n - \ell) = 0$

Il est parfois plus pratique de manipuler des termes positifs uniquement. À cet effet, la proposition suivante peut rendre service :

Proposition 6.9

Soit (u_n) une suite numérique et ℓ un réel

- $\lim_{n \to +\infty} u_n = 0 \iff \lim_{n \to +\infty} |u_n| = 0$
- $\lim_{n \to +\infty} u_n = \ell \iff \lim_{n \to +\infty} |u_n \ell| = 0$

d. Quelques critères de convergence

Proposition 6.10

Soit (u_n) une suite convergente. Alors (u_n) est bornée.

Remarque

Le fait d'être bornée est une condition **nécessaire** mais **non suffisante** de convergence. Par exemple la suite définie par $u_n = (-1)^n$ est bornée mais diverge.

Une **suite extraite** d'une suite (u_n) est une suite dont les termes sont certains termes de la suite (u_n) pris dans le même ordre, c'est à dire une suite v définie par $v_n = u_{\varphi(n)}$ où $\varphi : \mathbb{N} \to \mathbb{N}$ est une application strictement croissante. Cette définition générale n'est pas à connaître mais les exemples utilisés ci-dessous doivent être connus :

Proposition 6.11

Si $\lim_{n\to+\infty}u_n=\ell$ avec $\ell\in\overline{\mathbb{R}}$, alors toute **suite extraite** de (u_n) converge vers ℓ . En particulier :

•
$$\lim_{n \to +\infty} u_{n+1} = \ell$$

•
$$\lim_{n\to+\infty} u_{2n} = \ell$$

•
$$\lim_{n\to+\infty}u_{2n+1}=\ell.$$

Proposition 6.12 (admise)

Pour tout
$$\ell \in \overline{\mathbb{R}}$$
, $\lim_{n \to +\infty} u_n = \ell \Longleftrightarrow \begin{cases} \lim_{n \to +\infty} u_{2n} = \ell \\ \lim_{n \to +\infty} u_{2n+1} = \ell \end{cases}$

Exemple 6.2

On peut déduire de cette proposition que la suite de terme général $u_n = (-1)^n$ n'a pas de limite finie ou infinie. En effet, $\lim_{n \to +\infty} (-1)^{2n} = \lim_{n \to +\infty} 1 = 1$ et $\lim_{n \to +\infty} (-1)^{2n+1} = \lim_{n \to +\infty} -1 = -1$, si (u_n) avait une limite cela contredirait la proposition.

Proposition 6.13 -

Soit (u_n) une suite bornée et v_n une suite qui tend vers 0. Alors $\lim_{n\to+\infty}u_nv_n=0$.

Proposition 6.14

Soit (v_n) une suite qui ne s'annule pas telle que $\lim_{n \to +\infty} |v_n| = +\infty$. Alors $\lim_{n \to +\infty} \frac{1}{v_n} = 0$

Proposition 6.15

Soit (u_n) une suite bornée et (v_n) une suite qui ne s'annule pas telle que $\lim_{n\to+\infty} |v_n| = +\infty$. Alors $\lim_{n\to+\infty} \frac{u_n}{v_n} = 0$

2. Limites de référence

Lemme 6.16

Soit *a* un réel strictement positif. Alors pour tout $n \in \mathbb{N}$, $(1+a)^n \ge 1 + na$.

On déduit de ce lemme la proposition suivante :

Proposition 6.17

Soit q un nombre réel.

• Si
$$q > 1$$
 alors $\lim_{n \to +\infty} q^n = +\infty$

• Si
$$|q| < 1$$
, alors $\lim_{n \to +\infty} q^n = 0$

• Si q < -1, alors q^n n'a pas de limite.

Proposition 6.18

•
$$\lim_{n \to +\infty} e^n = +\infty$$

•
$$\lim_{n \to +\infty} e^{-n} = 0$$

•
$$\lim_{n \to +\infty} \ln(n) = +\infty$$

Proposition 6.19

Pour tout $\alpha > 0$, on a

•
$$\lim_{n \to +\infty} n^{\alpha} = +\infty$$

•
$$\lim_{n \to +\infty} \frac{1}{n^{\alpha}} = 0$$

•
$$\lim_{n \to +\infty} \sqrt{n} = +\infty$$

IV. Calcul de limites

1. Opérations sur les limites

Proposition 6.20

Multiplication par un réel

- Si $\lim_{n \to +\infty} u_n = +\infty$ et a > 0, alors $\lim_{n \to +\infty} a \times u_n = +\infty$
- Si $\lim_{n \to +\infty} u_n = +\infty$ et a < 0, alors $\lim_{n \to +\infty} a \times u_n = -\infty$
- Si $\lim_{n \to +\infty} u_n = -\infty$ et a > 0, alors $\lim_{n \to +\infty} a \times u_n = -\infty$
- Si $\lim_{n \to +\infty} u_n = -\infty$ et a < 0, alors $\lim_{n \to +\infty} a \times u_n = +\infty$

Proposition 6.21

Dans ces tableaux, ℓ et ℓ' désignent des nombres réels.

Somme

$\lim_{n\to+\infty}u_n$	ℓ	ℓ	ℓ	+∞	+∞	-∞
$\lim_{n\to+\infty}\nu_n$	ℓ'	+∞	$-\infty$	+∞	-∞	$-\infty$
$\lim_{n\to+\infty}(u_n+v_n)$	$\ell + \ell'$	+∞	$-\infty$	+∞	FI	-∞

Produit

$\lim_{n\to+\infty}u_n$	ℓ	$\ell \neq 0$	$\ell \neq 0$	+∞	+∞	-∞	0
$\lim_{n\to+\infty}v_n$	ℓ'	+∞	-∞	+∞	$-\infty$	-∞	±∞
$\lim_{n\to+\infty}(u_nv_n)$	$\ell\ell'$	±∞	±∞	+∞	$-\infty$	+∞	FI

Inverse

$\lim_{n\to+\infty}u_n$	$\ell \neq 0$	0+	0_	±∞
$\lim_{n\to+\infty}\frac{1}{u_n}$	$\frac{1}{\ell}$	+∞	$-\infty$	0

Quotient

$\lim_{n\to+\infty}u_n$	ℓ	ℓ	+∞	±∞	$\ell \neq 0$ ou $\pm \infty$	0
$\lim_{n\to+\infty}\nu_n$	$\ell' \neq 0$	±∞	±∞	$\ell' \neq 0$	0 ₊ ou 0 ₋	0
$\lim_{n\to+\infty}\frac{u_n}{v_n}$	$\frac{\ell}{\ell'}$	0	FI	±∞	±∞	FI

Exemple 6.3

- $\lim_{n \to +\infty} (3n^2 + 2n) = +\infty \operatorname{car} \lim_{n \to +\infty} 3n^2 = +\infty \operatorname{et} \lim_{n \to +\infty} 2n = +\infty$
- $\lim_{n \to +\infty} (3 + \frac{2}{n}) = 3 \operatorname{car} \lim_{n \to +\infty} 3 = 3 \operatorname{et} \lim_{n \to +\infty} \frac{2}{n} = 0$

Exemple 6.4

Deux exemples de formes indéterminées :

$$u_n = 2n^2$$
 et $v_n = -4n^2$, alors $u_n + v_n = -2n^2$ donc $\lim_{n \to +\infty} (u_n + v_n) = -\infty$ $u_n = 5n$ et $v_n = -2n$, alors $u_n + v_n = 3n$ donc $\lim_{n \to +\infty} (u_n + v_n) = +\infty$.

« Forme indéterminée » ne veut pas forcément dire qu'il n'y a pas de limite, dans certains cas la limite peut être déterminée par un raisonnement plus approfondi.

Remarque

La notation $\lim_{n \to +\infty} u_n = 0_+$ (respectivement $\lim_{n \to +\infty} u_n = 0_-$) signifie $\lim_{n \to +\infty} u_n = 0$ et $u_n > 0$ à partir d'un certain rang (respectivement $u_n < 0$ à partir d'un certain rang). Par exemple $\lim_{n \to +\infty} \frac{1}{n^2} = 0_+$ et $\lim_{n \to +\infty} -e^{-n} = 0_-$.

On n'utilise ces notations que lorsqu'elles sont pertinentes, c'est à dire dans un calcul intermédiaire pour lever une indéterminée de signe.

Exemple 6.5

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{n^2 + n}{3n + 5}$. Par somme, on a $\lim_{n \to +\infty} (n^2 + n) = +\infty$ et $\lim_{n \to +\infty} (3n + 5) = +\infty$. C'est donc une forme indéterminée.

Pour lever l'indétermination, on factorise par le terme de plus haut degré au numérateur et au dénominateur :

$$u_n = \frac{n^2 \left(1 + \frac{1}{n}\right)}{n \left(3 + \frac{5}{n}\right)}$$

$$=\frac{n\left(1+\frac{1}{n}\right)}{3+\frac{5}{n}}$$

Or, $\lim_{n\to+\infty}\frac{1}{n}=0$, $\lim_{n\to+\infty}\frac{5}{n}=0$, donc par somme, quotient et produit, $\lim_{n\to+\infty}u_n=+\infty$.

Proposition 6.22 (passage à la limité dans une inégalité ou une égalité)

Soient (u_n) et (v_n) deux suites convergentes, et soient $\ell \in \mathbb{R}$ et $\ell' \in \mathbb{R}$ tels que $\lim_{n \to +\infty} u_n = \ell$ et $\lim_{n \to +\infty} v_n = \ell'$.

- Si à partir d'un certain rang $u_n \le v_n$, alors $\ell \le \ell'$.
- Si à partir d'un certain rang $u_n = v_n$, alors $\ell = \ell'$.

2. Suites de la forme $u_{n+1} = f(u_n)$

Une suite définie par une relation de récurrence peut être de la forme $u_{n+1} = f(u_n)$, où f est une certaine fonction. Toutes les propositions énoncés dans cette sections sont à savoir redémontrer dans chaque cas particulier.

Pour savoir si u est bien définie, il faut faire attention à l'ensemble de définition de f.

→ Exercice de cours nº 6.

Soit f une fonction définie sur un intervalle I. On dit que I est **stable par** f si pour tout $x \in I$, $f(x) \in I$.

Proposition 6.23

Soit f une foncton définie sur un intervalle I telle que I est stable par f. Alors, toute suite définie par $u_0 \in I$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$ est bien définie.

Proposition 6.24

Si (u_n) est une suite qui converge vers un réel ℓ et que f est une fonction continue en ℓ , alors $\lim_{n \to +\infty} f(u_n) = f(\ell)$.

Exercice de cours nº 7.

Dans l'exemple précédent, ℓ vérifie l'équation $\ell = f(\ell)$. On dit que ℓ est un **point fixe** de f. Si f est une fonction continue, une suite convergente de la forme $u_{n+1} = f(u_n)$ admet pour limite un point fixe de f.

Si f est une fonction continue et sans points fixe, alors (u_n) diverge. Cela peut servir à prouver qu'une suite croissante tend vers $+\infty$ de façon indirecte (voir exercice d'approfondissement n^0 15 par exemple)

On peut déterminer graphiquement les termes d'une suite définie par une relation de récurrence en représentant la courbe y = f(x) et la droite y = x. Dans l'exemple ci-dessous, on considère la suite définie par $u_0 = 0, 2$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \sqrt{u_n}$

V. Théorèmes de convergence

1. Suites monotones

Théorème 6.25 de la limite monotone

Soit (u_n) une suite numérique.

- Si (u_n) est croissante et majorée, alors (u_n) converge.
- Si (u_n) est croissante et non majorée, alors $\lim_{n \to +\infty} u_n = +\infty$
- Si (u_n) est décroissante et minorée, alors (u_n) converge.
- Si (u_n) est décroissante et non minorée, alors $\lim_{n\to+\infty} v_n = -\infty$.

Remarque

Ce résultat peut se résumer de la façon suivante : si (u_n) est croissante, alors $\lim_{n \to +\infty} u_n = \sup_{n \in \mathbb{N}} u_n$.

Remarque

Ce théorème est parfois appelé à tort « théorème de convergence monotone » par confusion avec un autre théorème qui porte ce nom.

Proposition 6.26 (suites monotones convergentes)

- Soit (u_n) une suite croissante qui converge vers un réel ℓ . Alors $\forall n \in \mathbb{N}, u_n \leq \ell$.
- Soit (v_n) une suite décroissante qui converge vers un réel ℓ' . Alors $\forall n \in \mathbb{N}, v_n \geq \ell'$.

2. Théorèmes de comparaison

Théorème 6.27 de comparaison

Soit (u_n) et (v_n) deux suites telles que $u_n \le v_n$ à partir d'un certain rang.

- Si $\lim_{n \to +\infty} u_n = +\infty$, alors $\lim_{n \to +\infty} v_n = +\infty$.
- Si $\lim_{n \to +\infty} v_n = -\infty$, alors $\lim_{n \to +\infty} u_n = -\infty$
- → Exercice de cours nº 8.

Théorème 6.28 des gendarmes (ou d'encadrement) -

Soient (u_n) , (v_n) et (w_n) trois suites telles que $u_n \le v_n \le w_n$ à partir d'un certain rang. Si (u_n) et (w_n) convergent vers une même limite finie ℓ , alors (v_n) converge et $\lim_{n \to +\infty} v_n = \ell$.

- → Exercice de cours nº 9.
- → Exercice de cours nº 10.

3. Suites adjacentes

Définition 6.12

Deux suites (a_n) et (b_n) sont dites **adjacentes** si les trois conditions suivantes sont remplies :

- (*a_n*) est croissante
- (b_n) est décroissante
- $\lim_{n\to+\infty}(b_n-a_n)=0$

Proposition 6.29

Si (a_n) et (b_n) sont adjacentes, alors (a_n) et (b_n) convergent et $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = \ell \in \mathbb{R}$. De plus, pour tout $n \in \mathbb{N}$,

$$a_n \le \ell \le b_n$$

- → Exercice de cours nº 11.
- → Exercice de cours nº 12.

VI. Comparaison asymptotique

1. Négligeabilité

Définition 6.13(négligeabilité)

Soit (u_n) et (v_n) deux suites. On dit que (u_n) est **négligeable devant** (v_n) s'il existe une suite (ε_n) avec $\varepsilon_n \xrightarrow[n \to \infty]{} 0$ telle que pour tout $n \in \mathbb{N}$, $u_n = \varepsilon_n v_n$. On note $u_n = o(v_n)$ (notation de Landau).

Si (v_n) ne s'annule pas, $u_n = o(v_n) \Longleftrightarrow \lim_{n \to +\infty} \frac{u_n}{v_n} = 0$.

→ Exercice de cours nº 13.

Propriété 6.30

Soient (a_n) , (b_n) et (c_n) sont trois suites.

- Si $a_n = o(b_n)$ et $b_n = o(c_n)$, alors $a_n = o(c_n)$.
- Si $a_n = o(c_n)$ et $b_n = o(c_n)$, alors $a_n + b_n = o(c_n)$

Propriété 6.31

Si $a_n = o(b_n)$, alors quelle que soit la suite (c_n) on a $a_n c_n = o(b_n c_n)$.

Propriété 6.32

Soit (u_n) une suite. Alors $\lim_{n \to +\infty} u_n = 0$ si et seulement si $u_n = o(1)$.

Proposition 6.33 (croissance comparée de suites usuelles, admise)

Soit a, b, c > 0 trois réels. On a

•
$$a^n = o(n!)$$
, c'est à dire : $\lim_{n \to +\infty} \frac{a^n}{n!} = 0$

• Si
$$a > 1$$
, $n^b = o(a^n)$, c'est à dire : $\lim_{n \to +\infty} \frac{n^b}{a^n} = 0$

En particulier pour a = e, $n^b = o(e^n)$, c'est à dire : $\lim_{n \to +\infty} \frac{n^b}{e^n} = 0$

•
$$[(\ln n)^c = o(n^b)]$$
, c'est à dire : $\lim_{n \to +\infty} \frac{(\ln n)^c}{n^b} = 0$

En particulier pour $b = \frac{1}{2}$, $(\ln(n))^c = o(\sqrt{n})$, c'est à dire : $\lim_{n \to +\infty} \frac{(\ln(n))^c}{\sqrt{n}} = 0$

→ Exercice de cours nº 14.

2. Équivalence

Définition 6.14(équivalence de suites) -

Soient (u_n) et (v_n) deux suites. On dit que (u_n) est **équivalente à** (v_n) s'il existe une suite (α_n) avec $\alpha_n \xrightarrow[n \to \infty]{} 1$ telle que $u_n = \alpha_n v_n$ pour tout $n \in \mathbb{N}$. On note $u_n \sim v_n$

Si (v_n) ne s'annule pas, $u_n \sim v_n \Longleftrightarrow \lim_{n \to +\infty} \frac{u_n}{v_n} = 1$.

Propriété 6.34

Soient (a_n) , (b_n) et (c_n) trois suites.

- Si $(a_n) \sim (b_n)$, alors $(b_n) \sim (a_n)$
- Si $(a_n) \sim (b_n)$ et que $(b_n) \sim (c_n)$ alors $(a_n) \sim (c_n)$

Propriété 6.35

On a $u_n \sim v_n$ si et seulement si $u_n - v_n = o(v_n)$.

→ Exercice de cours nº 15.

Propriété 6.36

Soit (u_n) une suite et ℓ un réel non nul. $(u_n) \sim \ell$ si et seulement si $\lim_{n \to +\infty} u_n = \ell$.

Propriété 6.37

Si (u_n) et (v_n) sont deux suites telles que $u_n \sim v_n$, alors (u_n) et (v_n) sont de même nature (toutes deux convergentes ou bien toutes deux divergentes) et (u_n) et (v_n) ont la même limite le cas échéant.

Proposition 6.38 (Opérations sur les équivalences)

Soient (a_n) , (b_n) , (c_n) , (d_n) quatre suites telles que $a_n \sim b_n$ et $c_n \sim d_n$. Alors

• $a_n c_n \sim b_n d_n$

•
$$\frac{a_n}{c_n} \sim \frac{b_n}{d_n}$$

En règle général, on ne peut pas additionner des équivalences. Par exemple, $n^2+1\sim n^2$ et $-n^2\sim -n^2$ mais $n^2+1-n^2\sim n^2+(-n^2)$.

Proposition 6.39

Soit (P(n)) une suite où P est un polynôme. Alors P(n) est équivalent à son terme de plus haut degré et P(1/n) est équivalent au terme de plus petit degré non nul.

→ Exercice de cours nº 16.

Proposition 6.40 (Équivalents usuels)

Si (u_n) une suite telle que $\lim_{n\to+\infty}u_n=0$. Alors

- $\left[\sin(u_n) \underset{n \to \infty}{\sim} u_n\right]$ ou de façon équivalente $\left[\sin(u_n) \underset{n \to \infty}{=} u_n + o(u_n)\right]$
- $\left[\cos(u_n) \underset{n \to \infty}{\sim} 1\right]$ ou de façon équivalente $\left[\cos(u_n) \underset{n \to \infty}{=} 1 + o(u_n)\right]$
- $\left[\frac{1}{1-u_n} 1 \sim u_n\right]$ ou de façon équivalente $\left[\frac{1}{1-u_n} = 1 + u_n + o(u_n)\right]$
- $\left[\ln(1+u_n) \underset{n\to\infty}{\sim} u_n\right]$ ou de façon équivalente $\left[\ln(1+u_n) \underset{n\to\infty}{=} u_n + o(u_n)\right]$
- $e^{u_n} 1 \underset{n \to \infty}{\sim} u_n$ ou de façon équivalente $e^{u_n} = 1 + u_n + o(u_n)$
- → Exercice de cours nº 17.
- → Exercice de cours nº 18.

Exercices de cours

Exercice 1

Étudier les variations de la suite (u_n) définie pour tout $n \ge 1$ par $u_n = \frac{n^2 + 4}{n + 1}$.

— Exercice 2 -

Soit (u_n) une suite arithmétique de raison 5.

Soit (v_n) la suite définie pour tout $n \in \mathbb{N}$ par $v_n = e^{u_n}$. Montrer que (v_n) est une suite géométrique et préciser sa raison.

Exercice 3 -

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{3\sqrt{7^n}}{2^{2n}}$. Montrer que u_n est géométrique et préciser sa raison.

Exercice 4 -

Soit (u_n) la suite définie par $u_0 = 1$, $u_1 = 3$ et pour tout $n \in \mathbb{N}$ par $u_{n+2} = 3u_{n+1} - 2u_n$. Déterminer une expression du terme général de (u_n) .

- Exercice 5 —

Montrer à l'aide de la définition que la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \sqrt{n+3}$ tend vers $+\infty$.

Exercice 6

Considérons la suite u définie par $u_0 = 2$ et $u_{n+1} = \sqrt{u_n - 1}$. Cette suite est-elle bien définie pour tout $n \in \mathbb{N}$?

- Exercice 7

On considère la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = \frac{2u_n + 1}{u_n + 1}$.

- 1. Étudier les variations de la fonction $f: x \mapsto \frac{2x+1}{x+1}$ sur son ensemble de définition.
- 2. En déduire que l'intervalle [1;2] est stable par \boldsymbol{f}
- 3. Montrer que pour tout $n \in \mathbb{N}$, $1 \le u_n \le u_{n+1} \le 2$
- 4. En déduire que u_n converge et préciser sa limite.

Exercice 8

Étudier la limite de la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \exp\left(\frac{\sqrt{n} \times \sin(n) - \sqrt{n}}{n \tan\left(\frac{1}{n}\right) + \sqrt{n}}\right) + n^2$.

Exercice 9

Étudier la limite de la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{\sin(3n)}{n}$.

Exercice 10 -

Étudier la limite de la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{n^2 - n \sin n}{7 - 3n^2}$

Exercice 11

On considère les suites (u_n) et (v_n) définies par

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{5u_n + 2v_n}{7} \end{cases} \text{ et } \begin{cases} v_0 = 3 \\ v_{n+1} = \frac{2u_n + 5v_n}{7} \end{cases}$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $u_n \le u_{n+1} \le v_{n+1} \le v_n$
- 2. Montrer que (u_n) et (v_n) sont adjacentes et déterminer leur limite commune.

Exercice 12 -

On considère la suite (u_n) définie par $u_n = \sum_{k=1}^n \frac{(-1)^k}{k}$. Soit (a_n) et (b_n) les suites définies pour tout $n \in \mathbb{N}$ par $a_n = u_{2n}$ et $b_n = u_{2n+1}$.

Montrer que (a_n) et (b_n) sont adjacentes et en déduire que (u_n) converge.

Exercice 13

Montrer que si 0 < a < b on a $n^a = o(n^b)$ et $a^n = o(b^n)$

Exercice 14

Déterminer les limite de
$$u_n=\frac{(\ln n)^{2023}}{\sqrt{n}}$$
 et de $v_n=\frac{n^{10}\times \ln(n)^{100}}{1000^n}$

— Exercice 15 -

Montrer que
$$\lim_{n \to +\infty} n^{3/2} \left(\frac{1}{n - \ln(n)} - \frac{1}{n} \right) = 0.$$

— Exercice 16 -

Calculer la limite de
$$u_n = \frac{7n^5 - 4n^3 + 2n^2 - 1}{3 + 2n^2 - 11n^5}$$
 et celle de $v_n = \frac{\frac{6}{n^3} - \frac{2}{n^4} + \frac{6}{n^7}}{\frac{\frac{1}{n^2} + \frac{2}{n}}{-2 + 6n + 3n^2}}$

Exercice 17 -

Montrer que pour tout réel x, $\lim_{n \to +\infty} \left(1 + \frac{x}{n}\right)^n = e^x$.

Exercice 18

Étudier dans chaque cas la limite de la suite (u_n)

1.
$$\forall n \in \mathbb{N}, \ u_n = \frac{3n+2}{n^2+5n+1}$$

2.
$$\forall n \in \mathbb{N}, \ u_n = \frac{5n^2 + 3n}{3n^2 + 2}$$

2.
$$\forall n \in \mathbb{N}, \ u_n = \frac{5n^2 + 3n}{3n^2 + 2}$$

3. $\forall n \in \mathbb{N}^*, \ u_n = \frac{\sin(\pi/n)}{e^{-\frac{1}{n}} - 1}$

4.
$$\forall n \in \mathbb{N}^*, u_n = n(\ln(1+n) - \ln n)$$

5.
$$\forall n \in \mathbb{N}^*$$
, $u_n = n^{1/n}$

6.
$$\forall n \in \mathbb{N}^*, \ u_n = (3n)^{1/\sqrt{n}}$$