UNIVERSIDAD DE EL SALVADOR EDUCACIÓN A DISTANCIA

SISTEMAS DIGITALES I SDU115

UNIDAD IV

SISTEMAS SECUENCIALES

SISTEMAS DIGITALES I SDU115

Registros y Diseño de contadores síncronos.

Objetivos de la Unidad

Objetivo de la unidad:

Diseñar sistemas digitales secuenciales (contadores binarios), utilizando las tablas de entrada de cualquier tipo de Flip-Flop, y el método de simplificación apropiado, así como la experiencia del análisis, para su posterior simulación antes de su posible implementación.

Agenda

✓ Registros y Contadores

✓ Observar registros

✓ Diseñar contadores síncronos

OBJETIVO

Diseñar contadores síncronos, con cualquier tipo de flip-flop, usando sus tablas de entrada, obteniendo las ecuaciones de sus entradas síncronas reducidas y dibujando el circuito, para su posterior simulación.

Registros

Grupo de Flip-Flops interconectados para guardar datos, desplazarlos y rotarlos, según la aplicación.

Registro completo

Contadores

- -Son Flip-flops interconectados para contar los pulsos de reloj que llegan a la entrada CLK.
- -1 Flip-flop por cada bit de conteo
- -Con "n" flip-flops se hacen como máximo 2^n conteos
- -Un contador módulo N hace N conteos, un Mod 10, por ejemplo, hace 10 conteos de 0 a 9
- -Un contador puede contar ascendente (Up) o descendente (Down).
- -Si la misma señal de reloj llega a todos los FF, se llaman contadores síncronos.
- -Si no llega la misma señal de reloj a todos los FF, se llaman contadores asíncronos.

Diseño de contadores síncronos

1 Se construye una tabla donde destacan, estados presentes y variables de control, estados siguientes, y las entradas síncronas de los Flip-Flops a utilizar.

Estados Presentes y variables de control	Estados Siguientes	Entradas Síncronas		
AB Qc Qd Qe Qf	Q*c Q*d Q*e Q*f	SR o D o JK o T		

- 2 Los valores de las entradas síncronas se calculan usando las tablas de entrada del FF correspondiente.
- 3 Con los estados presentes y variables de control, como entradas en los mapas K se encuentran las ecuaciones de las entradas síncronas de los Flip-Flops.

Contador de 3 bits ascendente

	Q2	Q1	Q0	Q2*	Q1*	Q0*	J2K2	J1K1	JoKo
0	0	0	0	0	0	1	OX	OX	1X
1	0	0	1	0	1	0	OX	1X	X1
2	0	1	0	0	1	1	OX	XO	1X
3	0	1	1	1	0	0	1X	X1	X1
4	1	0	0	1	0	1	XO	OX	1X
5	1	0	1	1	1	0	XO	1X	X1
6	1	1	0	1	1	1	XO	XO	1X
7	1	1	1	0	0	0	X1	X1	X1

Q Q* J K 0 0 0 X									
Q	Q*	J	K						
0	0	0	X						
0	1	1	X						
1	0	Χ	1						
1	1	Х	0						

Usando mapas K para encontrar las ecuaciones de J y K, resulta:

$$J2 = K2 = Q1 * Qo$$

$$J1=K1=Qo$$

$$Jo = Ko = 1$$

Circuito del contador

$$J2 = K2 = Q1 * Qo$$

$$J1=K1=Qo$$

$$Jo = Ko = 1$$

Contador en gray reflejado

Q_2	Q_1	Q_0
0	0	0
0	0	1
0	1	1
0	1	0
1	1	0
1	1	1
1	0	1
1	0	0

Tabla de entrada									
Q	Q*	J	K						
0	0	0	X						
0	1	1	X						
1	0	X	1						
1	1	X	0						

	Q2	Q1	Q0	Q2*	Q1*	Q0*	J2K2	J1K1	JoKo
0	0	0	0	0	0	1	OX	OX	1X
1	0	0	1	0	1	1	OX	1X	XO
2	0	1	0	1	1	0	1X	XO	OX
3	0	1	1	0	1	0	OX	XO	X1
4	1	0	0	0	0	0	X1	OX	OX
5	1	0	1	1	0	0	XO	OX	X1
6	1	1	0	1	1	1	X0	XO	1X
7	1	1	1	1	0	1	X0	X1	XO

Circuito gray reflejado de 3 bits

$$K_0 = Q_2 Q_1 + Q_2 Q = Q \oplus Q = \overline{Jo}$$

$$J_1 = \overline{Q}_2 Q_0$$

$$K_1 = Q_2 Q_0$$

$$J_2 = Q_i \overline{Q}_i$$

$$K_2 = \overline{Q}_1 \overline{Q}_0$$

CONTADOR DE 3 BITS UP/ DOWN

Q	Q*	J	K
0	0	0	Х
0	1	1	X
1	0	X	1
1	1	X	0

Q	Q*	D
0	0	0
0	1	1
1	0	0
1	1	1

Q	Q*	Т
0	0	0
0	1	1
1	0	1
1	1	0

	Α	Q2	Q1	Q0	Q2*	Q1*	Q0*	J2K2	D1	То
0	0	0	0	0	0	0	1	OX	0	1
1	0	0	0	1	0	1	0	OX	1	1
2	0	0	1	0	0	1	1	OX	1	1
3	0	0	1	1	1	0	0	1X	0	1
4	0	1	0	0	1	0	1	XO	0	1
5	0	1	0	1	1	1	0	XO	1	1
6	0	1	1	0	1	1	1	XO	1	1
7	0	1	1	1	0	0	0	X1	0	1
8	1	0	0	0	1	1	1	1X	1	1
9	1	0	0	1	0	0	0	OX	0	1
10	1	0	1	0	0	0	1	OX	0	1
11	1	0	1	1	0	1	0	OX	1	1
12	1	1	0	0	0	1	1	X1	1	1
13	1	1	0	1	1	0	0	XO	0	1
14	1	1	1	0	1	0	1	XO	0	1
15	1	1	1	1	1	1	0	VΩ	1	1

Contador de Década

	Q3	Q2	Q1	Q0	Q3*	Q2*	Q1*	Q0*	T3	J2K2	D1	SoRo
0	0	0	0	0	0	0	0	1	0	OX	0	10
1	0	0	0	1	0	0	1	0	0	OX	1	01
2	0	0	1	0	0	0	1	1	0	OX	1	10
3	0	0	1	1	0	1	0	0	0	1X	0	01
4	0	1	0	0	0	1	0	1	0	XO	0	10
5	0	1	0	1	0	1	1	0	0	XO	1	01
6	0	1	1	0	0	1	1	1	0	XO	1	10
7	0	1	1	1	1	0	0	0	1	X1	0	01
8	1	0	0	0	1	0	0	1	0	OX	0	10
9	1	0	0	1	0	0	0	0	1	OX	0	01
10	1	0	1	0	X	X	Х	X	X	XX	Х	XX
11	1	0	1	1	X	X	Х	X	X	XX	Х	XX
12	1	1	0	0	Χ	Χ	Х	Χ	Χ	XX	Х	XX
13	1	1	0	1	Χ	Χ	Х	Χ	Χ	XX	Х	XX
14	1	1	1	0	X	X	Х	X	X	XX	Х	XX
15	1	1	1	1	X	X	Х	X	X	XX	Х	XX

HASTA LA PROXIMA