

CONTENT

1. INTRODUCTION

2. DATA

3. METHODOLOGY

4. RESULT AND DISSCUSSION

INTRODUCTION

1. INTRODUCTION

1. INTRODUCTION

How to Improve Road Safety?

MACHINE LEARNING TO TPREDICT PREDICT THE LIKELIHOOD OF OF THE DANGERS

SEVERITY HELP ACCIDENTS COULD SEVERE TRAFFIC ACCIDENTS, MEDICAL FACILITIES PREPARE THEREBY WARNING DRIVERS IN ADVANCE SO AS TO DECREASE FATALITIES

BETTER **AWARENESS**

FEWER FATALITIES

LESS WORK FOR POLICE

DATA

	SEVERITYCODE	х	Y	OBJECTID	INCKEY	COLDETKEY	REPORTNO	STATUS
0	2	-122.323148	47.703140	1	1307	1307	3502005	Matched
1	1	-122.347294	47.647172	2	52200	52200	2607959	Matched
2	1	-122.334540	47.607871	3	26700	26700	1482393	Matched
3	1	-122.334803	47.604803	4	1144	1144	3503937	Matched
4	2	-122.306426	47.545739	5	17700	17700	1807429	Matched

DATA

1. Data Source

Seattle Department of Transportation (SDOT). Updated weekly, from 2004 to present.

Email: DOT_IT_GIS@seattle.gov

2. Metadata

The raw dataset contains 38 columns and 194673 row. Except the first column being the label, all other 37 columns are features.

Complete metadata: click <u>here</u>.

METHODOLOGY

Data Processing

Eliminating Bias

Raw data contains far more 🤺 Uses 👚 dataframe.sample() instances of SEVERITYCODE 1 than of 2 (around 2.34:1)

method to sample from SEVERITYCODE==1 instances an amount equal to the number SEVERITYCODE==2 instances

BIAS ELIMINATED

BETTER TRAINING

EXPLORATORY DATA ANALYSIS

Which features affect the SEVERITYCODE?

name)[].value_counts() is used on each column to determine the correlated with accident severity

Dataframe.groupby(feature_ **Converts INCDATE to data objects and then to day of the week, but finds no ones correlation with SEVERITYCODE

WHY THESE **FEATURES**

TO BE ONE-HOT ENCODED

ONE HOT ENCODING

How could categorical features be used to train the model?

Dataframe(feature_name).re Test the place() was used on each feature to convert categorical variables into numerical ones

post-processing dataset with dataframe.dtypes to double check

READY FOR TRAINING

DECREASED COMPLEXICTY

Feature Selection And Normalization

How could features on different scales be used without bias?

dataset, including weather, road condition, lighting, etc.

Selects 14 features from Tuses dataframe.dropna() to drop rows of the feature set with NaN values and preprocessing.StandardScal ar().fit().transform() normalize the feature set.

NO EMPTY **CELLS**

WITHOUT BIAS

READY FOR TRAINING

Model Training and Testing

How to train the ML models with existing data and test them?

method to split the datasets into X_train, y_train, X_test, y_test.

Uses the train_test_split() Imports four ML classification models (KNN, Decision Tree, Logistics SVM, and Regressioin, trains them with X_train and Y_train, and tests them with X test and y_test to obtain their performance.

MODELS TRAINED

MODELS TESTED

PERFORMANCE OBTAINED

RESULT AND DISSCUSSION

Results and Discussion

K=25, consumes the most

computing time

Kernel = 'rbt', took much

computing time

C = 0,1, took

computing time

moderate

Max_depth=15, consumes

little computing time

Results and Discussion

Improvement

Fine tune the parameters of the ML models so that better results could be predicted

Lesson Learned

Preparing data, rather than training the models, takes the most time

Model

for deployment

Deployment

After the model is deployed, it should be continually updated with newly-generated data for better performance

Selection

With the least computing time and the most accurate result, decision tree will be selected