PROGETTO DI FILTRI A RISPOSTA IMPULSIVA FINITA (FIR)

PROPRIETA' DEI FILTRI FIR (Finite Impulse Response)

Proprietà e caratteristiche principali

- Filtri FIR sono fra i più usati
- Possono avere una risposta in fase esattamente lineare (assenza di distorsione di fase e di gruppo)

- Sempre stabili
- Strutture più facili da realizzare
- Minore sensibilità nei confronti di una realizzazione con aritmetica a precisione finita
- Possono richiedere un numero di operazioni anche elevato

FUNZIONE DI TRASFERIMENTO E RISPOSTA IN FREQUENZA

$$y(n) = \sum_{k=0}^{N-1} h(k)x(n-k)$$

■ Funzione di trasferimento

$$H(z) = \sum_{n=0}^{N-1} h(n)z^{-n}$$
 solo zeri (escludendo l'origine)

■ Risposta in frequenza

$$H(F)=\sum_{n=0}^{N-1}h(n)e^{-j2\pi Fn}\,,$$

$$=A(F)e^{j\varphi(F)}$$
 $F=rac{f}{f_c}$ freq. normalizzata

$$A(F)$$
, risposta in ampiezza $\varphi(F)$, risposta in fase

da cui si ottengono:

$$\Delta(F) = -\frac{\varphi(F)}{2\pi F},$$

ritardo di fase (campioni)

$$\tau(F) = -\frac{1}{2\pi} \frac{d\varphi(F)}{dF},$$

ritardo di gruppo (campioni)

■ Fase lineare

$$\varphi(F) = -aF$$

$$\Delta(F) = \tau(F) = \frac{\alpha}{2\pi} = \alpha = \text{cost}$$

■ Condizione per la fase lineare (FIR reali)

Sfruttando la condizione di simmetria nell'espressione

$$H(F) = \sum_{n=0}^{N-1} h(n)e^{-j2\pi Fn}$$

isoliamo i termini simmetrici (N pari)

$$H(F) = \sum_{n=0}^{\frac{N}{2}-1} h(n)e^{-j2\pi Fn} + \sum_{n=0}^{\frac{N}{2}-1} h(N-1-n)e^{-j2\pi F(N-1-n)}$$

$$= \sum_{n=0}^{\frac{N}{2}-1} h(n)e^{-j2\pi F \frac{N-1}{2}} \left[e^{-j2\pi F(n-\frac{N-1}{2})} + e^{j2\pi F(n-\frac{N-1}{2})} \right] =$$

$$=e^{-j2\pi F\frac{N-1}{2}}\sum_{n=0}^{\frac{N}{2}-1}2h(n)\cos 2\pi F(n-\frac{N-1}{2})$$

Analogamente per N dispari

$$H(F) = \begin{cases} e^{-j2\pi F \frac{N-1}{2}} \left\{ h \left(\frac{N-1}{2} \right) + \sum_{n=0}^{\frac{N-3}{2}} 2h(n) \cos \left[2\pi F \left(n - \frac{N-1}{2} \right) \right] \right\} & N \text{ dispari} \\ e^{-j2\pi F \frac{N-1}{2}} \left\{ \sum_{n=0}^{\frac{N}{2}-1} 2h(n) \cos \left[2\pi F \left(n - \frac{N-1}{2} \right) \right] \right\} & N \text{ pari} \end{cases}$$

$$e^{j\varphi(F)} \qquad A \quad (F)$$

la fase $\varphi(F)$ è esattamente lineare e vale

$$\varphi(F) = -2\pi F \frac{N-1}{2}$$

$$H(F) = A_{(F)}e^{-j2\pi F \frac{N-1}{2}}$$

$$A_{-}(F)$$
 funzione reale

Ritardo

$$\Delta(F) = \tau(F) = \frac{N-1}{2}$$
 intero (N dispari) intero + 1/2 (N pari)

<u>N dispari</u>

Uscita (ritardata) generata in corrispondenza di istanti di campionamento dell'ingresso

<u>N pari</u>

Uscita (ritardata) generata in corrispondenza di istanti di campionamento traslati di T/2 rispetto all'ingresso

2. h(n) = -h(N-1-n), risposta antisimmetrica

E. Del Re – Fondamenti di Elaborazione Numerica dei Segnali

Analogamente

$$H(F) = \begin{cases} -je^{-j2\pi F \frac{N-1}{2}} \left\{ \sum_{n=0}^{N-1} 2h(n)sen \left[2\pi F \left(n - \frac{N-1}{2} \right) \right] \right\} N \, \text{dispari} \\ -je^{-j2\pi F \frac{N-1}{2}} \left\{ \sum_{n=0}^{N-1} 2h(n)sen \left[2\pi F \left(n - \frac{N-1}{2} \right) \right] \right\} N \, \text{pari} \end{cases}$$

$$e^{j\varphi(F)} \qquad A_{-}(F)$$

la fase $\varphi(F)$ vale

$$\varphi(F) = -\frac{\pi}{2} - 2\pi F \frac{N-1}{2}$$

$$H(F) = jA_{-}(F)e^{-j2\pi F\frac{N-1}{2}}$$

$$A_{-}(F)$$
 reale

Es.:
$$\begin{cases} \textbf{derivatori} & A_{-}(F) = cF \\ \textbf{tr. Hilbert} & A_{-}(F) = -\operatorname{sgn}F \end{cases}$$

Ritardo

Come nel caso precedente è uguale a

$$\frac{N-1}{2}$$
 campioni

• In più è introdotta una rotazione di fase di \pm 90° [a seconda del segno di $A_{-}(F)$] per ogni componente spettrale.

■ Zeri dei FIR (reali) a fase lineare

Dalle condizioni di simmetria della h(n), segue che se z_0 è uno zero, cioè

$$H(z_0) = \sum_{n=0}^{N-1} h(n)z_0^{-n} = 0$$

anche z_0^{-1} è uno zero. Per filtro con h(n) reale (filtri reali) le posizioni degli zeri sono del tipo:

E. Del Re – Fondamenti di Elaborazione Numerica dei Segnali

Configurazione degli zeri nel piano complesso

Risposta in ampiezza e fase di un filtro a fase lineare.

 F_1 = 0.23 fine banda passante, F_2 = 0.27 inizio banda attenuata W = 0.3 peso relativo banda attenuata

N = 30 lunghezza del filtro (equiripple)

FILTRI FIR "HALF - BAND"

Proprietà utile

$$N = dispari$$

- In corrispondenza di multipli pari dal campione centrale la risposta impulsiva è nulla.
 - ~ metà coefficienti uguali a zero

semplificazione realizzativa

se
$$N = 4P + 1$$
, solo $2P + 1$ coefficienti
sono $\neq 0$

Per ogni campione d'uscita:

Segnale analitico discreto

Ad un segnale reale $x(n) \rightarrow \underline{x}(n) = x(n) + j\hat{x}(n)$

- $\underline{x}(n)$ segnale analitico discreto
- $\hat{x}(n)$ trasformata di Hilbert di x(n)

$$\underline{X}(F) = \begin{cases} 2X(F), 0 < F < \frac{1}{2} \\ 0, -\frac{1}{2} < F < 0 \end{cases}$$

Generazione del segnale analitico

 $H_1(F)$: ritardo α

 $H_2(F)$: trasformatore di Hilbert FIR (N)

Generalizzazione

 $H_I(F)$: passa banda (N) \longrightarrow y(n)

 $H_2(F)$: trasformatore di Hilbert passa banda (N) $\longrightarrow \hat{y}(n)$

E. Del Re – Fondamenti di Elaborazione Numerica dei Segnali

Esercitazioni di Laboratorio di MATLAB

(reperibili a: http://lenst.det.unifi.it/node/379)

- FIR fase lineare
- Segnale analitico

METODI DI PROGETTO DI FILTRI FIR

METODI DI PROGETTO FILTRI FIR

- Tre metodi fondamentali
 - Metodo delle finestre

<u>Vantaggi</u>

- Semplicità
- $A(F) \cong 0.5$ alla frequenza di taglio nominale

<u>Svantaggi</u>

- Funzione nota analiticamente ed integrabile
- Deviazioni massime uguali in banda passante e attenuata
- Oscillazione della deviazione non costante
- N più grande per confrontabili risposte in frequenza

Metodo del campionamento in frequenza

<u>Vantaggi</u>

- applicabile a qualunque risposta in frequenza
- Disponibilità di programmi di progetto

<u>Svantaggi</u>

- Controllo difficile delle deviazioni
- Oscillazione della deviazione non costante
- N più grande per confrontabili risposte in frequenza

Criterio di Chebychev (minmax o equiripple)

Vantaggi

- Criterio ottimo
- N più piccolo per confrontabili risposte in frequenza
- Disponibilità di programmi di progetto

Svantaggi

- Relativa flessibilità rispetto alla risposta in frequenza desiderata
- Progettazione più onerosa dal punto di vista dei tempi di calcolo

METODO DELLE FINESTRE

Data una desiderata $H_0(F)$: per esempio

$$h_0(n) = \int_{-1/2}^{1/2} H_0(F) e^{j2\pi F n} dF \qquad -\infty < n < +\infty$$

- troncamento fra $0 \le n \le N-1$ che dà luogo al fenomeno delle oscillazioni di Gibbs

 finestre w(n) per ridurre le oscillazioni (problema analogo al caso delle stime spettrali)

$$h(n) = h_0(n) w(n), \quad 0 \le n \le N-1$$

Una delle più usate (buon compromesso prestazioni / complessità)

$$w(n) = 0.54 - 0.46\cos\frac{2\pi n}{N - 1}, \qquad 0 \le n \le N - 1$$

(Hamming)

Esempi di finestre $0 \le n \le N-1$

$$0 \le n \le N-1$$

Rettangolare

$$w(n) = 1$$

Bartlett

$$w(n) = \begin{cases} \frac{2n}{N-1}, & 0 \le n \le \frac{N-1}{2} \\ 2 - \frac{2n}{N-1}, & \frac{N-1}{2} \le n \le N-1 \end{cases}$$

Hanning

$$w(n) = \frac{1}{2} \left[1 - \cos \left(\frac{2\pi n}{N - 1} \right) \right]$$

Hamming

$$w(n) = 0.54 - 0.46\cos\left(\frac{2\pi n}{N - 1}\right)$$

Blackman

$$w(n) = 0.42 - 0.5\cos\left(\frac{2\pi n}{N-1}\right) + 0.08\cos\left(\frac{4\pi n}{N-1}\right)$$

Kaiser

$$w(n) = \frac{I_0 \left\{ w_{\alpha} \sqrt{\left(\frac{N-1}{2}\right)^2 - \left[n - \left(\frac{N-1}{2}\right)\right]^2} \right\}}{I_0 \left[w_{\alpha} \left(\frac{N-1}{2}\right)\right]}$$

$$I_0(ullet)=egin{array}{ll} ext{funzione di Bessel modificata di ordine} \ ext{zero} \end{array}$$

$$w_{\alpha}$$
 = parametro di controllo per la larghezza del lobo principale e per l'ampiezza dei lobi laterali.

Valori tipici: $4 < w_{\alpha} \frac{N-1}{2} < 9$

■ Alcuni esempi (fase lineare)

$$\alpha = \frac{N-1}{2}$$

1. Passa banda generalizzato

$$H_0(F) = e^{-j2\pi F\alpha}$$
 $F_1 < |F| < F_2$

$$h_0(n) = \frac{1}{\pi(n-\alpha)} \left\{ sen[2\pi F_2(n-\alpha)] - \frac{1}{\pi(n-\alpha)} \right\}$$

$$sen[2\pi F_1(n-\alpha)]$$
, $n-\alpha\neq 0$

$$h_0(n) = 2(F_2 - F_1), \quad n-\alpha = 0$$
 (N dispari)

2. Derivatore generalizzato

$$H_0(F) = jFe^{-j2\pi F\alpha}$$

$$h_0(n) = \frac{1}{2\pi^2} \left\{ \frac{2\pi F_2 \cos[2\pi F_2(n-\alpha)] - 2\pi F_1 \cos[2\pi F_1(n-\alpha)]}{n-\alpha} - \frac{1}{n-\alpha} \right\}$$

$$\frac{sen[2\pi F_2(n-\alpha)]-sen[2\pi F_1(n-\alpha)]}{(n-\alpha)^2} \right\}, \quad n-\alpha \neq 0$$

$$h_0(n) = 0$$
, $n-\alpha = 0$ (N dispari)

3. Trasformatore di Hilbert generalizzato

$$H_0(F) = -j \operatorname{sgn} F e^{-j2\pi F \alpha}, \quad F_1 < |F| < F_2$$

$$h_0(n) = \frac{1}{\pi(n-\alpha)} \left\{ \cos\left[2\pi F_1(n-\alpha)\right] - \right\}$$

$$\cos[2\pi F_2(n-\alpha)]$$
, $n-\alpha \neq 0$

$$h_0(n) = 0$$
, $n-\alpha = 0$ (N dispari)

ESEMPI

Passa Basso - Hamming

Progetto di filtro passa basso (N=41, banda passante 0-0.25)

Risposte in ampiezza (lineare e in dB) dei filtri progettati col metodo delle finestre confrontate con la risposta ideale desiderata.

Risposta impulsiva del filtro progettato con la finestra di Hamming.

Notare i campioni nulli a passi dispari dal campione centrale, tipici di un filtro "half-band".

E. Del Re – Fondamenti di Elaborazione Numerica dei Segnali

METODO DEL CAMPIONAMENTO IN FREQUENZA

 Si campiona la risposta in frequenza desiderata in N punti equispaziati

$$H(k) = H_0(F)_{\mid_{F = \frac{k}{N}}} \qquad 0 \le k \le N - 1$$

Si calcolano

$$h(n) = IDFT_N \{ H(k) \}, \qquad 0 \le n \le N-1$$

che implica un errore

$$E(F) = H(F) - H_0(F) \neq 0 \qquad F \neq \frac{k}{N}$$

si fanno variare i campioni \blacksquare nella banda di transizione, fino a minimizzare una norma prescelta di E(F). Generalmente due o tre campioni nella banda di transizione sono sufficienti. Soluzione mediante tecniche di programmazione lineare.

Osservazione: applicabile a qualunque risposta in frequenza

CRITERIO DI CHEBYCHEV

Con questo metodo si vuole minimizzare l'errore massimo della risposta in ampiezza ovvero avere uguali deviazioni massime rispetto alla risposta in ampiezza desiderata (minmax, equiripple)

CRITERIO DI CHEBYCHEV

Si parte da specifiche (es. passa-basso)

 δ_1 deviazione max in banda passante δ_2 deviazione max in banda attenuata

cinque parametri interdipendenti

$$N \quad F_1 \quad F_2 \quad \delta_1 \quad \delta_2$$

 Programma Parks - Mc Clellan (FIR a fase lineare)

<u>Ingressi</u>

Uscite

Tipo filtro
 (multibanda /
 derivatore / Hilbert)

h(n)

• N

 $\delta_1, \ \delta_2$ (equiripple, minmax)

- Estremi bande (passanti e attenuate)
- Peso relativo deviazione in banda passante e in banda attenuata

■ Formule di progetto per FIR a fase lineare

 Stima di N per passa-basso (errore entro 10%)

$$N \cong \frac{2}{3} \frac{1}{F_2 - F_1} Log_{10} \left(\frac{1}{10\delta_1 \delta_2} \right)$$

• N è <u>inversamente proporzionale</u> alla larghezza della banda di transizione normalizzata F_2 - F_1

ullet N è meno sensibile a variazioni di $\, \delta_{_{\! 1}} \, e \, \delta_{_{\! 2}} \,$

• N non dipende da F_1 e da F_2 singolarmente, ma solo da $(F_2 - F_1)$

[con ottima approssimazione]

 La stima di N si può estendere ragionevolmente anche a filtri di tipo diverso dal passa-basso

Risposta in ampiezza e impulsiva di un filtro passa-basso equiripple N=41 F1=0.2 fine banda passante

F2 = 0.3 inizio banda attenuata W = 1 peso relativo banda attenuata

E. Del Re – Fondamenti di Elaborazione Numerica dei Segnali

Risposta in ampiezza e impulsiva di un filtro passa-banda equiripple N=51 F1=0.15 fine I banda attenuata F2=0.20 inizio banda passante F3=0.30 fine banda passante

F4 = 0.35 inizio II banda attenuata

Risposta in ampiezza e impulsiva di un trasformatore di Hilbert equiripple N = 31F1 = 0.05 inizio banda trasformatore

F2 = 0.45 fine banda traformatore

Risposta in ampiezza e impulsiva di un derivatore equiripple N=20F1=0.05 inizio banda derivatore F2=0.45 fine banda derivatore

E. Del Re – Fondamenti di Elaborazione Numerica dei Segnali

Confronto FIR – Metodi Chebychev e finestre

Confronto di progetti per un filtro passa-basso

- FIR progettato col metodo a finestre
- FIR progettato col metodo di Parks-McClellan (equiripple)

N=60,

F1 = 0.20 fine banda passante,

F2 = 0.30 inizio banda attenuata

Confronto di progetti per un filtro passa-alto

- FIR progettato col metodo a finestre
- FIR progettato col metodo di Parks-McClellan (equiripple)

N=61,

F1 = 0.20 fine banda attenuata,

F2 = 0.30 inizio banda passante

Confronto di progetti per un filtro passa-banda

- FIR progettato col metodo a finestre
- FIR progettato col metodo di Parks-McClellan (equiripple)

N=120,

0-0.15 prima banda attenuata,

0.2-0.3 banda passante,

0.35-0.5 seconda banda attenuata

Confronto di progetti per un filtro elimina-banda

- FIR progettato col metodo a finestre
- FIR progettato col metodo di Parks-McClellan (equiripple)

N=121,

0-0.15 prima banda passante,

0.2-0.3 banda attenuata,

0.35-0.5 seconda banda passante)

Esercitazioni di Laboratorio di MATLAB

(reperibili a: http://lenst.det.unifi.it/node/379)

- FIR-finestre
- FIR-equi
- FIR-confronto

STRUTTURE REALIZZATIVE

Rappresentano la struttura realizzativa dell'algoritmo di filtraggio.

Non necessariamente coincide con la struttura realizzativa circuitale.

■ Diretta

■ Teorema di trasposizione

La funzione di trasferimento del sistema non cambia applicando le regole di trasposizione ad una struttura realizzativa.

Regole di trasposizione

- scambiare ingresso e uscita
- invertire il senso del flusso dei segnali
- punti di diramazione diventano punti di somma e viceversa
- un'operazione di moltiplicazione per una sequenza g(n) si trasforma in una moltiplicazione per g(-n)
- L'operazione di sottocampionamento si trasforma in operazione di incremento della frequenza di campionamento dello stesso fattore e viceversa

Operazioni di trasposizione fra strutture realizzative

■ Trasposta

Complessità

Entrambe richiedono:

N moltiplicazioni

N - 1 somme

FIR a fase lineare N dispari

Complessità

Moltiplicazioni:
$$\frac{N+1}{2}$$
 (*N dispari*)

$$\frac{N}{2}$$
 (N pari)

Somme: N-1

■ FIR a campionamento in frequenza

In alternativa alle strutture precedenti

$$H(z) = \frac{1 - z^{-N}}{N} \sum_{k=0}^{N-1} \frac{H(k)}{1 - z^{-1} e^{j\frac{2\pi}{N}k}}$$

- Un FIR più N IIR del I° ordine (complessi)
- Struttura conveniente quando pochi H(k) ≠ 0
 (filtri a banda stretta)

 I filtri IIR hanno poli sul cerchio unitario: per evitare problemi di instabilità si spostano leggermente all'interno