

BIRCH, STEWART, KOLASCH & BIRCH, LLP

INTELLECTUAL PROPERTY LAW 8110 GATEHOUSE ROAD SUITE 500 EAST

FALLS CHURCH, VA 22042

USA

(703) 205-8000

FAX: (703) 205-8050 (703) 698-8590 (G IV)

e-mail: mailroom@bskb.com web: http://www.bskb.com

SENIOR COUNSEL: ANTHONY L. BIRCH

ANTHONY L. BIRCH
JOHN W. BAILEY
JOHN A. CASTELLANO, III
GARY D. YACURA
SUSAN S. MORSE
THOMAS S. AUCHTERLONIE
EDWARD H. SIKORSKI
MICHAEL R. CAMMARATA
JAMES T. ELLER, JR.
SCOTT L. LOWE
JOSEPH H. KIM, PH.D.*
RICHARD S. MYERS, JR.*
MARY ANN CAPRIA*
MICHAEL J. CORNELISON*

MICHAEL J. CORNELISON:
REG. PATENT AGENTS:
FREDERICK R. HANDREN
ANDREW J. TELESZ, JR.
MARK J. NUELL, PH.D.
MARYANNE LIOTTA, PH.D.
MAKI HATSUMI
D. RICHARD ANDERSON
STEVEN P. WIGMORE
ESTHER H. CHIN
MIKE S. RYU
W. KARL RENNER

Date: October 3, 1997

Docket No.: 2185-0208P-SP

Assistant Commissioner for Patents Box PATENT APPLICATION Washington, D.C. 20231

sir:

Ω

MERRELL C. BIRCH
RAYMOND C. STEWART
JOSEPH A. KOLASCH
CLAMES M. SLATTERY
BERNARD L. SWEENEY*
UNICHAEL K. MUTTER
CHARLES GORENSTEIN
GERALD M. MURPHY, JR.
MEONARD R. SVENSSON
JERRY L. CLARK
ANDREW D. MEIKLE
MARC S. WEINER
JOE MCKINNEY MUNCY
ANDREW F. REISH

ANDREW F. REISH ROBERT J. KENNEY C. JOSEPH FARACI DONALD J. DALEY

OF COUNSEL!
HERBERT M. BIRCH (1905-1996)
PAUL M. CRAIG, J.R.*
ELLIOT A. GOLDBERG*
WILLIAM L. GATES*
EDWARD H. VALANCE
RUPERT J. BRADY*
LAWRENCE O. MILLER

*ADMITTED TO A BAR OTHER THAN VA

OF COUNSEL:

As authorized by the inventor(s), transmitted herewith for filing is a patent application applied for on behalf of the inventor(s) according to the provisions of 37 CFR 1.41(c).

Inventor(s): KOSHIBA, Tomokazu

For: ALDEHYDE OXIDASE GENE DERIVED FROM PLANT AND UTILIZATION

THEREOF

Enclosed are:

<u>X</u>	A specification consisting of <u>58</u> pages
	sheet(s) of drawings
	Certified copy of Priority Document(s)
X	Executed Declaration in accordance with 37 CFR 1.64 will follow
	A verified statement to establish small entity status under 37 CFR 1.9 and 37 CFR 1.27
<u>X</u>	Preliminary Amendment
<u>X</u>	Information Sheet
	Information Disclosure Statement, PTO-1449 with reference(s)

____ Other _____

The filing fee has been calculated as shown below:

LARGE ENTITY SMALL ENTITY

FOR	NO. FILED	NO. EXTRA	RATE	FEE		RATE	FEE	
BASIC FEE	********* *********	*****	***** *****	\$790.00	or	**** ****	\$395.00	
TOTAL CLAIMS	58 - 20 =	38	x22 =\$	836.00	or	x 11 = \$	0.00	
INDEPENDENT	2 - 3 =	0	x82 =\$	0.00	or	x 41 = \$	0.00	
MULTIPLE DI CLAIM PRESI		<u>es</u>	+270 =	\$270.00	or	+135 = \$	0.00	

TOTAL \$1,896.00

TOTAL \$ 0.00

- X The application transmitted herewith is filed in accordance with 37 CFR 1.41(c). The undersigned has been authorized by the inventor(s) to file the present application. The original duly executed patent application together with the surcharge will be forwarded in due course.
- \underline{X} A check in the amount of \$1,896.00 to cover the filing fee and recording fee (if applicable) is enclosed.
- The Government Filing Fee will be paid at the time of completion of the filing requirement.
- Please charge Deposit Account No. 02-2448 in the amount of \$_____. A triplicate copy of this transmittal form is enclosed.
- X Send Correspondence to: BIRCH, STEWART, KOLASCH & BIRCH, LLP
 P. O. Box 747
 Falls Church, Virginia 22040-0747

- X If necessary, the Commissioner is hereby authorized to charge payment of the following fees associated with this communication or credit any overpayment to Deposit Account No. 02-2448.
 - X Any additional filing fees required under 37 CFR 1.16.
 - X Any patent application processing fees under 37 CFR 1.17.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

Bv

RAYMOND C. STEWART Reg. No. 21,066 P. O. Box 747

Falls Church, Virginia 22040-0747

(703) 205-8000 RCS/wks IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants:

T. KOSHIBA

Serial No.:

NEW

Group:

Filed:

October 3, 1997

Examiner:

For:

ALDEHYDE OXIDASE GENE DERIVED

ERIVED FROM PLANT AND

UTILIZATION THEREOF

PRELIMINARY AMENDMENT

Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231

October 3, 1997

Sir:

Applicants respectfully submit the following amendments and remarks in connection with the above-identified new application:

IN THE CLAIMS:

Claim 3, lines 1-2, delete "or 2".

REMARKS

It is submitted that the above amendment is made merely to delete the improper multiple dependency of the claim and does not constitute new matter. Favorable action on the above-identified application is respectfully requested.

Please charge any fees or credit any overpayment pursuant to 37 CFR 1.16 or 1.17 to Deposit Account No. 02-2448.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

By:

Raymond C. Stewart

Reg. No. 21,066

RCS/wks (703) 205-8000

P.O. Box 747

Falls Church, VA 22040-0747

IN THE U.S. PATENT AND TRADEMARK OFFICE

INFORMATION SHEET

Applicant: KOSHIBA, Tomokazu

Serial No.:

Filed:

October 3, 1997

For:

ALDEHYDE OXIDASE GENE DERIVED FROM PLANT AND UTILIZATION

THEREOF

Priority Claimed:

COUNTRY

DATE

NUMBER

Japan

10/04/96

08-283314

Send Correspondence to: BIRCH, S'

BIRCH, STEWART, KOLASCH & BIRCH, LLP

P. O. Box 747

Falls Church, Virginia 22040-0747

(703) 205-8000

The above information is submitted to advise the USPTO of all relevant facts in connection with the present application. A timely executed Declaration in accordance with 37 CFR 1.64 will follow.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

By_

RAYMOND C. STEWART

Reg. No. 21,066

P. O. Box 747

Falls Church, VA 22040-0747

/wks

(703) 205-8000

15

20

25

ALDEHYDE OXIDASE GENE DERIVED FROM PLANT AND UTILIZATION THEREOF

FIELD OF THE INVENTION

The present invention relates to an aldehyde oxidase gene derived from a plant and utilization thereof.

It has been known that a natural plant growth hormone auxin alternatively IAA or indoleacetic acid is produced from tryptophane via indoleacetaldehyde followed by the action of an oxidase in higher plants. The hormone is deeply involved in various morphogenesis and environmental adaptation of a plant by its physiological activity and has significant effects on maturing by growth acceleration in general crop cultivation, improvement in yield and in quality by rooting acceleration in nursery plant production, increase in yield by growth acceleration of fruits in fruit vegetable cultivation, increase in added value by acceleration of flowering and elongation of life by prevention of defoliation or aging in ornamental plant cultivation. Therefore, there has been a strong demand for a method for artificially controlling the said enzyme for industry and particularly agricultural production.

Under these circumstances, the present inventors have successfully determined the total amino acid sequence and gene of the enzyme and completed the present invention.

20

Thus, the present invention provides:

- 1) An aldehyde oxidase gene which is a 4.4 Kbp gene obtainable from a plant and which encodes an amino acid sequence of an enzyme capable of oxidizing an aldehyde compound to a carboxylic acid (hereinafter, referred to as the gene of the present invention),
- 2) The aldehyde oxidase gene according to item
 1), wherein the aldehyde compound is indoleacetaldehyde and
 the carboxylic acid is indoleacetic acid,
- 10 3) The aldehyde oxidase gene according to item
 1 or 2 which is derived from a maize plant (Zea mays L.),
 - 4) The aldehyde oxidase gene according to item 1 which is a nucleotide sequence encoding an amino acid sequence shown by SEQ ID NO: 1,
- 15 5) The aldehyde oxidase gene according to item 4 which has a nucleotide sequence shown by SEQ ID NO: 2 (loci of CDS being 46..4120),
 - The aldehyde oxidase gene according to item

 which is a nucleotide sequence encoding an amino acid

 sequence shown by SEQ ID NO: 3,
 - 7) The aldehyde oxidase gene according to item 6 which has a nucleotide sequence shown by SEQ ID NO: 4 (loci of CDS being 91..4138),
- 8) A plasmid comprising the aldehyde oxidase 25 gene according to item 1, 2, 3, 4, 5, 6 or 7,

- 9) A transformant transformed by introducing the plasmid according to item 8 into a host cell,
- 10) The transformant according to item 9, wherein the host cell is a microorganism,
- 5 11) The transformant according to item 9, wherein the host cell is a plant,
 - 12) A process for constructing an expression plasmid which comprises ligating:
 - (1) a promoter capable of functioning in a plant cell,
- 10 (2) an aldehyde oxidase gene according to item 1, 2, 3, 4, 5, 6 or 7 and
 - (3) a terminator capable of functioning in a plant in a functional manner and in the said order described above,
 - 13) An expression plasmid comprising:
- 15 (1) a promoter capable of functioning in a plant cell,
 - (2) an aldehyde oxidase gene according to item 1, 2, 3, 4, 5, 6 or 7 and
 - (3) a terminator capable of functioning in a plant which are ligated in a functional manner and in the said order
- 20 described above,
 - 14) A process for controlling production of an aldehyde oxidase in a transformant which comprises introducing, into a host cell, an expression plasmid comprising:
- 25 (1) a promoter capable of functioning in a plant cell,

15

- (2) an aldehyde oxidase gene and
- (3) a terminator capable of functioning in a plant which are ligated in a functional manner and in the said order described above to transform said host cell,
- The process according to item 14, wherein the aldehyde oxidase gene is derived from a plant and the host cell is a plant, and
 - 16) The process according to item 14, wherein the expression plasmid is the expression plasmid according to item 13.

EMBODIMENTS OF THE INVENTION

The present invention will be described in more detail.

The gene of the present invention comprises about 4.4 kbp nucleotide obtainable from a plant and is an aldehyde oxidase gene that encodes an amino acid sequence of an enzyme capable of oxidizing an aldehyde compound to generate a carboxylic acid. For example, it is capable of oxidizing indoleacetaldehyde to generate indoleacetic acid.

The gene of the present invention can be obtained from 20 a plant, for example, maize or the like. The gene of the present invention and the enzyme as the translation product of it have an action of oxidizing an acetaldehyde compound to a carboxylic acid in a cell. Said enzyme may also act, for example, on benzaldehyde, butyraldehyde,

25 protocatechualdehyde or the like as the substrate, in

15

25

addition to indolealdehyde. Of course, a single enzyme may act on plural compounds as substrates.

The gene of the present invention specifically includes, for example, a gene which is a nucleotide sequence encoding 5 an amino acid sequence shown by SEQ ID NO: 1 and a gene which is a nucleotide sequence encoding an amino acid sequence shown by SEQ ID NO: 3 as well as an equivalent of them. expression "an equivalent of them" used herein means an aldehyde oxidase gene having a nucleotide sequence of an aldehyde oxidase gene that encodes an amino acid sequence shown by SEQ ID NO: 1 or SEQ ID NO: 3 with a single nucleotide or plural nucleotides added, deleted or replaced, and refers to a DNA which is an analog having the same function. More particularly, this includes a gene having a nucleotide sequence shown by SEQ ID NO: 2 (loci of CDS being 46..4120) or a nucleotide sequence shown by SEQ ID NO: 4 (loci of CDS being 91..4138).

The gene of the present invention can be obtained by the following process.

For example, seeds of Golden Cross Bantam 70 (purchased from Sakata-no-tane), a maize cultivar, are subjected to a treatment for hastening of germination by immersing overnight in running tap water, subsequently seeded on a paper towel moistened with water and placed in red light (0.8 W/m^2)

10

15

20

under a condition of 25°C for 2 days and then in the dark for 1 day to allow germination. Top portions of young sheaths grown to 1.0-1.5 cm from the obtained seedlings are excised under a green safety light, immediately frozen with liquid nitrogen and stored at -30°C as samples for purification of enzymes and samples for extracting RNAs.

For purifying aldehyde oxidase from the frozen samples prepared in this manner, it is appropriate to use a method described in T. Koshiba et al., Plant Physiology, 1996, 110, 781 - 789.

In order to prevent decrease in activity of the enzyme and decomposition of the protein during procedures of extraction and purification, it is preferred to carry out all the treatments in the purification steps at a lower temperature of $2-4^{\circ}\mathrm{C}$, as is ordinary manner in such procedures. First, $150-200\,\mathrm{g}$ of the frozen sample is taken as a material for one batch of purification. The material is mechanically crushed by a homogenizer or the like with addition of 400 ml of 0.1 M phosphate buffer (pH 7.4) and centrifuged at 12,000 g for 30 minutes. The supernatant is separated as a crude enzyme standard sample. From the crude enzyme standard sample, a fraction is obtained with 30 - 50% saturated ammonium sulfate, dialyzed against 20 mM Tris HCl buffer (pH 8.0) and centrifuged at 20,000 g for 20 minutes.

25 The supernatant from centrifugation is passed over an

10

15

20

25

ion-exchange column (for example, DEAE TOYOPEARL 650 M, manufactured by Tosoh) and a fraction with an aldehyde oxidase activity is collected. Said fraction with the specific activity is subjected to chromatography with a hydrophobic column, a hydroxyapatite column and an ion-exchange column (for example, DEAE-5PM) in this order and purified until the fraction with aldehyde oxidase activity is detected as an almost single protein band by silver staining after electrophoresis.

According to the above described purification procedure, about 2,000 times purification, in terms of the amount of protein in the crude enzyme standard sample, is usually possible. It can be confirmed that the finally purified protein has a size of about 300 kD in molecular weight by the gel filtration column process. Further, it can be detected as a band having a size of about 150 kD in molecular weight by SDS polyacrylamide gel electrophoresis (SDS-PAGE), indicating that said enzyme forms a dimer.

In the above described fractionating process by column chromatography, effective collection of the fraction with aldehyde oxidase activity can be achieved making use of measurement of aldehyde oxidase activity in respective fractions. For this purpose, a method in which indoleacetaldehyde is added to the purified fraction as a substrate and the amount of produced indoleacetic acid is

10

15

20

25

determined by HPLC, for example, can be utilized. Precisely, 100 μ 1 of reaction solution consisting of 5 - 50 μ 1 of the purified fraction, 0.1 mM indoleacetaldehyde and 0.1 mM phosphate buffer (pH 7.4) is prepared. The solution is incubated at 30°C for 30 minutes to effect the reaction and, immediately after, 8 μ 1 of 1 N HCl, 5 μ 1 of 2.0 M sodium hydrogen sulfite and 50 μ 1 of methanol are added to the solution to quench the reaction. The reaction solution is centrifuged at 15,000 g for 5 minutes and 100 μ 1 of the obtained supernatant is taken as a analytical sample for HPLC. By detecting absorption at 280 nm, indoleacetaldehyde as the substrate and indoleacetic acid as the reaction product can be quantitatively analyzed. It is effective to carry out HPLC with, for example, ODS C18 column and to elute with 20

The protein obtained in this manner is partially digested and the digested peptide is analyzed to obtain a partial amino acid sequence information. Usually, the purified aldehyde oxidase sample is separated by SDS-PAGE and a protein band of 150 kD is collected by excision. The collected gel fragments are treated, for example, with Achromobacter Protease I (API) in the presence of 0.1% SDS and digested peptide fragments are extracted. This is loaded, for example, on a reverse phase HPLC accompanied by a pre-column of an anion exchanger (DEAE) to separate peptides

- 50% linear gradient of methanol containing 0.1% acetic acid.

10

15

20

25

and recover them. The amino acid sequences are determined by a protein sequencer and parts of the samples are subjected to molecular weight determination by MALDI-TOF to check accuracy of the obtained amino acid sequence information.

Then, an oligo DNA expected to encode the amino acid sequence is synthesized on the basis of the obtained amino acid sequence information. Further, RT-PCR is conducted using a total RNA as a template to amplify cDNA partial fragment, which is then cloned into a plasmid vector.

For extraction of the total RNA, 7 g of the frozen sample, for example, is triturated in liquid nitrogen with a mortar and a pestle to form fine powders. After evaporating liquid nitrogen, RNA is extracted by the conventional manner, for example, using guanidine thiocyanate/cesium chloride process and the total RNA is collected from the extract by ethanol precipitation. By this procedure, usually 1 mg of the total RNA is obtained.

For amplification of cDNA, a reverse transcription reaction is carried out using, among synthetic oligo DNAs, one synthesized in antisense orientation as a primer and binding it to a transcription product of a target RNA contained in the total RNA. The reverse transcription reaction can be conducted using a commercially available reverse transcription PCR kit, for example, RNA-PCR kit (manufactured by Perkin-Elmer Cetus Instruments). Then, the

10

15

20

obtained reverse transcription product can be subjected again to PCR in which an oligo DNA synthesized in sense orientation is added to amplify cDNA fragment.

The obtained cDNA amplification fragment is purified and cloned into a plasmid vector. As the plasmid vector, for example, pCRII (manufactured by Invitrogen) can be used and cDNA amplification fragment can be cloned by transforming *E. coli* according to the conventional manner and screening transformants having an insert. The nucleotide sequence of the clone is determined using, for example, ABI PRISM Dye Primer Cycle Sequencing Ready Reaction Kits (manufactured by Applied Biosystems) on the obtained cDNA clone.

Sense and antisense primers for part of nucleotide sequence in cDNA partial fragment obtained in this manner can be synthesized and subjected to RACE to obtain cDNA fragments having terminals in 5'-orientation and 3'-orientation, respectively. A complete length cDNA can be obtained by ligating them and cloning into a plasmid vector. For the RACE, a commercially available Marathon cDNA Amplification Kit (manufactured by Clontech), for example, can be used.

The gene of the present invention can be utilized in the following manner.

For example, a host cell such as a microorganism, a plant or the like is transformed by introducing the gene of the

10

15

20

25

present invention to form a transformant.

In order to introduce and express the gene of the present invention in a plant cell, an expression plasmid comprising (1) a promoter capable of functioning in a plant cell, (2) a gene of the present invention (an aldehyde oxidase gene described in items 1 to 7 above) and (3) a terminator capable of functioning in a plant cell which are ligated in a functional manner in a plant cell and in the said order described above and introduced in a plant cell to transform said cell.

The expression "in a functional manner" used herein means that, when the constructed plasmid is introduced into a plant cell to transform it, the gene of the present invention is integrated under the control of a promoter such that the gene is normally transcribed/translated and have a function of expressing a protein in said plant cell.

The promoter capable of functioning in a plant cell includes, for example, T-DNA derived constitutive type promoters such as nopaline synthase gene (NOS) promoter, octopine synthase gene (OCS) promoter and the like, plant virus derived promoters such as cauliflower mosaic virus (CaMV) derived 18S and 35S promoters and the like, and inducible type promoters such as phenylalanine ammonialyase (PAL) gene promoter, chalcone synthase (CHS) gene promoter, pathogen-related (PR) gene promoter and the like. Further,

10

15

20

it includes other known plant promoters.

The terminator capable of functioning in a plant cell includes, for example, T-DNA derived constitutive type terminators such as nopaline synthase gene (NOS) terminator and the like, plant virus derived terminators such as garlic virus GV1, GV2 terminators and the like. Further, it includes other known plant terminators.

For transforming a plant cell by introducing such plasmid into a plant cell, the above described expression plasmid is introduced into a plant cell by any of conventional means such as Agrobacterium infection method (JP-B-2-58917 and JP-A-60-70080), electroporation method into protoplast (JP-A-60-251887 and JP-A-5-68575), particle gun method (JP-A-508316 and JP-A-63-258525) and the like, and a transformed plant cell can be obtained by selecting a plant cell into which the gene of the present invention is introduced. The transformed plant is obtained by regenerating a plant according to a conventional plant cell culturing process, for example, described in Uchimiya, Manual for Plant Gene Manipulation (Method for Producing Transgenic Plants), Published by Kodansha Scientific (ISBN 4-06-153515-7 C3045), 1990, pages 27 - 55.

Further, the present invention provides a process for controlling production of an aldehyde oxidase in a transformant which comprises introducing, into a host cell,

10

15

20

an expression plasmid comprising (1) a promoter capable of functioning in a plant cell, (2) an aldehyde oxidase gene and (3) a terminator capable of functioning in a plant which are ligated in a functional manner and in the said order described above to transform said host cell.

The promoter capable of functioning in a plant cell includes, for example, lacZ gene promoter of lactose operon in *E. coli*, alcohol dehydrogenase gene (ADH) promoter in yeast, Adenovirus major late (Ad.ML) promoter, early promoter of SV 40, Baculovirus promoter and the like. When the host is a plant, promoters capable of functioning in a plant as described above may also be included.

The terminator capable of functioning in a plant cell includes, for example, HIS terminator sequence in yeast, ADHI terminator, early splicing region of SV 40 and the like. When the host is a plant, terminators capable of functioning in a plant as described above may also be included.

The aldehyde oxidase gene may be any one insofar as it is a gene encoding an amino acid sequence of an enzyme capable of oxidizing an aldehyde compound to form a carboxylic acid. This includes, for example, aldehyde oxidase genes derived from plants and preferably the gene of the present invention (an aldehyde oxidase gene described in items 1 to 7 above).

Transformation of a host cell by introducing such
25 plasmid into said host cell can be effected by a method

10

15

20

generally used in the field of genetic engineering.

When the host cell is a plant cell, it can be effected, for example, by a method generally used in the field of plant genetic engineering and the field of plant tissue cultivation as described above.

The transformation of a plant by introducing the gene of the present invention may bring about enhancement of generally known physiological action of auxin or supression of the same. For example, by enhancing the activity of auxin through a sense gene, elongation growth and differentiation to vascular bundle of the host cell can be accelerated resulting in growth acceleration of a plant and enhanced capacity of storing assimilation products. As a result, early maturing of crops, enlargement of harvest such as fruits and improvement in yield or quality can be expected and realized. To the contrary, by suppressing the activity of auxin through a sense gene, spindly growth of a plant is prevented and a plant capable of growing under improper environmental conditions such as insufficient insolation can be bred. Further, by adequately controlling growth, dwarfing of crops becomes possible and application, for example, to prevention of lodging of rice plants and shortening of cut flowers become possible. As a result, improvement in yield and quality can be expected.

25 Addition of hormone to the medium is generally essential

for aseptic cultivation of cells or tissue of a plant. When auxin activity in a plant is enhanced by introducing and expressing the gene of the present invention thereby increasing production of aldehyde oxidase in a transformant, said plant is expected to be in a state in which capacity of cell proliferation, differentiation and individual regeneration in the sterile culture is enhanced. Therefore, it is possible to create a so-called easily cultured strain and this is useful in the production of nursery plant of virus-free crops for which tissue culture-nucleotide mass culture is conducted and garden crops such as flower and ornamental plants.

EXAMPLES

5

10

25

The present invention will now be described in more detail by means of Examples. It is to be understood, however, that the scope of the present invention is not limited to these Examples.

20 Example 1 (Preparation of maize young sheath)

Seeds of Golden Cross Bantam 70 (purchased from Sakata-no-tane), a maize cultivar, were subjected to a treatment for hastening of germination by immersing overnight in running tap water, subsequently seeded on a paper towel moistened with water and placed in red light $(0.8 \ \text{W/m}^2)$

10

15

20

25

under a condition of 25°C for 2 days and then in the dark for 1 day to allow germination. Top portions (1.0 - 1.5 cm) of young sheaths grown from the obtained seedlings to 2 - 3 cm were excised under a green safety light, immediately frozen with liquid nitrogen and stored at -30°C.

Example 2 (Preparation of aldehyde oxidase)

All the procedures in the following purification steps were conducted at a low temperature of 2 - 4°C .

First, about 200 g of the frozen sample prepared in Example 1 was taken as a material for one batch of purification. The material was mechanically crushed by a homogenizer with addition of 400 ml of 0.1 M phosphate buffer (pH 7.4) and centrifuged at 12,000 g for 30 minutes. The supernatant was separated as a crude enzyme standard sample. Subsequently, from the crude enzyme standard sample, a fraction was obtained with 30 - 50% saturated ammonium sulfate, dialyzed against 20 mM Tris HCl buffer (pH 8.0) and centrifuged at 20,000 g for 20 minutes. The supernatant from centrifugation was passed over an ion-exchange column (DEAE TOYOPEARL 650 M, manufactured by Tosoh) and a fraction with an aldehyde oxidase activity was collected on the basis of activity measurement conducted in a manner described below in Example 3. Said fraction with activity was subjected to chromatography with a hydrophobic column, a hydroxyapatite column and an

ion-exchange column (DEAE-5PM) in this order and purified until the fraction with aldehyde oxidase activity was detected as an almost single protein band by silver staining on electrophoresis.

By the above described purification procedure, about 0.09 mg of protein was recovered from 1,873 mg of protein in the crude enzyme standard sample, and ratio of enzyme activity for aldehyde oxidase to the original was 1,950 times. It was confirmed that the finally purified protein had a size of about 300 kD in molecular weight by the gel filtration column process. Further, it was detected as a band having

a size of about 150 kD in molecular weight by SDS polyacrylamide gel electrophoresis (SDS-PAGE), indicating that said enzyme formed a dimer.

15

20

25

10

5

Example 3 (Method for measuring aldehyde oxidase activity)

Measurement of aldehyde oxidase activity in the respective purified fractions described in Example 2 was carried out by a method in which indoleacetaldehyde was added to the purified fraction as a substrate and the amount of produced indoleacetic acid (IAA) was determined by HPLC. The reaction was carried out with 100 μ l of reaction solution consisting of 5 - 50 μ l of the purified fraction, 0.1 mM indoleacetaldehyde and 0.1 mM phosphate buffer (pH 7.4). The solution was incubated at 30°C for 30 minutes and, immediately

after, 8 μ l of 1 N HCl, 5 μ l of 2.0 M sodium hydrogen sulfite and 50 μ l of methanol were added to the solution to quench the reaction. The reaction solution was centrifuged at 15,000 g for 5 minutes and 100 μ l of the obtained supernatant was taken as a analytical sample for HPLC. By detecting absorption at 280 nm, indoleacetaldehyde and indoleacetic acid were quantitatively analyzed. HPLC was carried out with ODS C18 column and eluted with 20 - 50% linear gradient of methanol containing 0.1% acetic acid.

10

15

20

5

Example 4 (Peptide digestion of aldehyde oxidase: partial amino acid sequence)

The purified protein obtained in Example 2 was separated by SDS-PAGE and a protein band of 150 kD was collected by excision. The collected gel fragments were reacted with Achromobacter Protease I (API) in the presence of 0.1% SDS and digested peptide fragments were extracted. This was passed over a reverse phase HPLC accompanied by a pre-column of an anion exchanger (DEAE) to separate peptides, which were collected. The amino acid sequences were determined by a protein sequencer (ABI 477A).

As a result, the following 4 sequences were obtained as the partial amino acid sequences.

The first one was a sequence, shown below, having 18 amino acid residues:

Gln Val Asn Asp Val Pro Ile Ala Ala Ser Gly Asp Gly Trp Tyr His Pro Lys and it was confirmed that the sequence corresponded to Nos. 235 to 252 residues in the amino acid sequence shown by SEQ ID NO: 1.

The second one was a sequence, shown below, having 16 amino acid residues:

Thr Asn Ser Asp Gly Leu Val Ile His Asp Gly Thr Trp Thr Tyr Lys and it was confirmed that the sequence corresponded to 1,234 to 1,249 residues in the amino acid sequence shown by SEQ ID NO: 1 or to 1,226 to 1,241 residues in the amino acid sequence shown by SEQ ID NO: 3.

The third one was a sequence, shown below, having 20 amino acid residues:

Ser Ile Glu Glu Leu His Arg'Leu Phe Asp Ser Ser Trp Phe Asp Asp Ser Ser

15 Val Lys

10

and it was confirmed that the sequence corresponded to Nos. 253 to 272 residues in the amino acid sequence shown by SEQ ID NO: 1.

The fourth one was a sequence, shown below, having 21 amino acid residues:

Val Gly Ala Glu Ile Gln Ala Ser Gly Glu Ala Val Tyr Val Asp Asp Ile Pro Ala Pro Lys

and it was confirmed that the sequence corresponded to Nos. 591 to 611 residues in the amino acid sequence shown by SEQ

25 ID NO: 1.

Parts of these digested peptide samples were subjected to molecular weight determination by MALDI-TOF to check accuracy of the obtained amino acid sequence.

5 Example 5 (Preparation of total RNA from maize young sheath and synthesis of cDNA)

In a manner similar to that in Example 1, seeds of maize were germinated and 7 g of top portions of the young sheath were collected from seedlings. These were frozen in 10 ml of liquid nitrogen and triturated with a mortar and a pestle to form fine powders. After evaporating liquid nitrogen, RNA was extracted by the conventional manner (guanidine thiocyanate/cesium chloride method) and 1 mg of the total RNA was collected from the extract by ethanol precipitation.

15

20

10

Example 6 (Preparation of an oligo DNA primer and RT-PCR)

A mixture of oligo DNAs expected to encode the partial amino acid sequence determined in Example 4 was synthesized in both sense and antisense orientation.

Specifically, as a nucleotide sequence expected from 8 amino acid residues: Val Ile His Asp Gly Thr Trp Thr in the partial amino acid sequence 2 described in Example 4, a 23-mer in antisense orientation: 5'-

GTCCAIGTICC(AG)TC(AG)TGIATIAC-3' was synthesized.

25 Further, as a nucleotide sequence expected from 8 amino

10

15

20

25

acid residues: Gly Glu Ala Val Tyr Val Asp Asp in the partial amino acid sequence 4 described in Example 4, a 23-mer in sense orientation: 5'-GGIGA(AG)GCIGTITA(TC)GTIGA(TC)GA-3' was synthesized.

A reverse transcription reaction was carried out using, among them, one synthesized in antisense orientation as a primer and a commercially available reverse transcription PCR kit (RNA-PCR kit, manufactured by Perkin-Elmer Cetus Instruments). Then, the obtained reverse transcription product was subjected again to PCR in which an oligo DNA synthesized in sense orientation was added. As the result, amplification of cDNA fragment was confirmed.

Example 7 (Cloning of the PCR-amplified fragment into a vector and analysis of the structure)

The amplified cDNA fragment obtained in Example 6 was purified and cloned into a plasmid vector pCRII (manufactured by Invitrogen). Further, the nucleotide sequence of the insert in said plasmid vector was determined by 373A DNA Sequencer (manufactured by Applied Biosystems) using ABI PRISM Dye Primer Cycle Sequencing Ready Reaction Kits (manufactured by Applied Biosystems) and the structure of said cDNA fragment was determined. As a result, it was revealed that the cloned cDNA fragment contained 2 kinds having different structure, one corresponding to Nos. 1,839

to 3,785 nucleotides in the nucleotide sequence shown by SEQ ID NO: 2 and the other corresponding to Nos. 1,858 to 3,806 nucleotides in the nucleotide sequence shown by SEQ ID NO: 4.

5

10

15

25

Example 8 (Isolation of a complete length cDNA clone)

Based on the nucleotide sequence information obtained in Example 7, nucleotide sequences specific for said 2 cDNAs, respectively, were searched and oligo DNAs for the parts were synthesized in sense and antisense orientations.

Specifically, as the sense oligo DNAs corresponding to the nucleotide sequence shown by SEQ ID NO: 2, two kinds: a 28-mer: 5'-GCTGGTCAAAATATTGGTGTCGTGATTG-3' (common), and a 28-mer: 5'-GATTGCTGAAACACAAAGATATGCTAAT-3', and as the antisense oligo DNAs, four kinds:

- a 27-mer: 5'-TGGCTGCAGATTTTCTGTGCTATACTC-3' (common),
- a 27-mer: 5'-TGCTTTGCAGCCATATTAGCATATCTT-3',
- a 24-mer: 5'-ACAGCCTTTTGGAAGCCACCTGGA-3', and
- a 24-mer: 5'-ATCGGACTTGTTGTCGGCCTTGAC-3'
- 20 were synthesized.

Also, as the sense oligo DNAs corresponding to the nucleotide sequence shown by SEQ ID NO: 4, two kinds: a 28-mer: 5'-GCTGGTCAAACATATTGGTGTCGTGATTG-3' (common), and a 28-mer: 5'-GATTGCTCAAACACAGAAGTATGCCTAC-3', and as the antisense oligo DNAs, three kinds:

- a 27-mer: 5'-TGGCTGCAGATTTTCTGTGCTATACTC-3' (common),
- a 25-mer: 5'-CTTTGCCGCCATGTAGGCATACTTC-3', and
- a 24-mer: 5'-TTCCACCTATGGTTGCAGTGTTCC-3'

were synthesized.

Using them as primers, RACE process was carried out with a commercially available Marathon cDNA Amplification Kit (manufactured by Clontech) to obtain cDNA fragments having terminals in 5'-orientation and 3'-orientation, respectively. Further, a complete length cDNA was obtained by ligating them and cloned into a plasmid vector pCRII (manufactured by Invitrogen).

Example 9 (Analysis of nucleotide sequence and determination of amino acid sequence of cDNA clones)

15 For two cDNA clones obtained in Example 8, analysis of nucleotide sequence was carried out with 373A DNA Sequencer (manufactured by Applied Biosystem) using ABI PRISM Dye Primer Cycle Sequencing Ready Reaction Kits, Dye Terminator Cycle Sequencing Kits (manufactured by Applied Biosystems).

As a result, it was revealed that the genes of the present invention were cDNAs having 4,412 bp and 4,359 bp, respectively (see SEQ ID NOS: 2 and 4).

Further, based upon said nucleotide sequence, the total amino acid sequences encoded by the genes of the present invention were determined with GENETYX Gene Analysis

Software (manufactured by SDC, Software Development Co.). It was revealed that they were proteins having 1,358 and 1,349 amino acid residues, respectively (see SEQ ID NOS: 1 and 3).

5

10

15

Example 10 (Construction of aldehyde oxidase expression plasmid for direct introduction)

In order to allow expression of the gene of the present invention derived from maize by introducing in a plant cell, the following direct introduction expression vector for plant, for example, is constructed.

A GUS expression vector pBI221 (manufactured by Clontech) derived from pUC19 is digested by restriction enzymes SmaI and SacI (both being manufactured by Takara Shuzo) and 2.8 Kbp fraction is recovered removing GUS structural gene. The terminus is blunted with T4 DNA polymerase (manufactured by Takara Shuzo). Then, the terminus is treated for de-phosphorylation with bacterial alkaline phosphatase (manufactured by Takara Shuzo).

On the other hand, the complete length cDNA obtained in Example 8 is prepared for an insert gene and the terminus is blunted with T4 DNA polymerase in a similar manner.

Afterwards, the both are ligated with T4 DNA ligase (DNA Ligation Kit Ver. 2, manufactured by Takara Shuzo) and used for transforming competent cells of *E. coli* HB101 strain

(manufactured by Takara Shuzo), from which Ampicillin resistant strains are selected. Among the recombinant plasmid amplified from the selected strains, clones in which a coding region for the aldehyde oxidase is inserted in normal orientation in relation to 35S promoter derived from cauliflower mosaic virus and the terminator derived from nopaline synthase and cloned in which said region is inserted in reverse orientation are selected and taken as expression vectors for direct introduction, respectively.

10

15

20

5

Example 11 (Construction of aldehyde oxidase expression plasmid for indirect introduction)

In order to allow expression of the aldehyde oxidase gene derived from maize by introducing in a plant cell, the following indirect introduction expression vector for plant, for example, is constructed.

In a manner similar to that in Example 10, the aldehyde oxidase gene of which the terminus is blunted is prepared for an insert gene. On the other hand, a GUS expression binary vector pBI121 (manufactured by Clontech) derived from pBIN19 is digested by restriction enzymes SmaI and SacI and a fraction is recovered removing GUS structural gene. The terminus is blunted in a similar manner and treated for de-phosphorylation. The both are ligated and used for 25 transforming E. coli. The recombinant plasmid are selected

10

15

20

25

and taken as aldehyde oxidase expression vectors for indirect introduction. Further, the plasmid vectors are transferred to the strain *Agrobacterium tumefaciens* LBA4404 by the tri-parental method (GUS gene fusion system, manufactured by Clontech).

Example 12 (Creation of a transformed plant by introducing aldehyde oxidase expression plasmid; part 1)

The expression vectors for direct introduction obtainable in Example 10 are introduced by a particle gun into an aseptically cultured immature scutellum of rice plant according to a method described in Shimada et al., Ikushugaku Zasshi, 1994, 44 Supplement 1, 66, to obtain transformed rice plants. Similarly, they are introduced by a particle gun into an aseptically cultured immature scutellum of wheat plant according to a method described in Takumi et al., Ikushugaku Zasshi, 1995, 45 Supplement 1, 57, to obtain transformed wheat plants. Similarly, they are introduced by a particle gun into an aseptically cultured immature scutellum of barley plant according to a method described in Hagio et al., Ikushugaku Zasshi, 1994, 44 Supplement 1, 67, to obtain transformed barley plants. Similarly, they are introduced by particle gun into an adventitious embryo of maize according to a method described in M. E. Fromm et al., Bio/Technology, 1990, 8, 833 - 839, to obtain transformed

maize plants. Further, the expression vectors for direct introduction obtained in Example 10 are introduced by a particle gun into an adventitious embryo of soybean according to a method described in Japanese Patent Application Hei 3-291501 to obtain transformed soybean plants.

Example 13 (Creation of a transformed plant by introducing aldehyde oxidase expression plasmid; part 2)

The strains from Agrobacterium tumefaciens LBA4404 into which the aldehyde oxidase expression vectors for indirect 10 introduction are introduced, obtainable in Example 11, are infected to an aseptically cultured leaf of tobacco by a method described in Uchimiya, Manual for Plant Gene Manipulation (Method for Producing Transgenic Plants), Published by Kodansha Scientific (ISBN4-06-153513-7), 1990, 15 pages 27 - 33, to obtain transformed tobacco plants. Similarly, they are infected to a petiole of an aseptically cultured seedling of carrot by a method described in N. Pawlicki et al., Plant Cell, Tissue and Organ Culture, 1992, 31, 129 - 139, to obtain transformed carrot plants. Further, 20 they are infected to a hypocotyl or cotyledon of an aseptically cultured seedling of Lotus corniculatus by a method described in Nagasawa et al., Ikushugaku Zasshi, 1995, 45 Supplement 1, 143, to obtain transformed Lotus corniculatus plants. Similarly, they are infected to an 25

aseptically cultured adventitious embryo of alfalfa by a method described in R. Desgagnes et al., Plant Cell, Tissue and Organ Culture, 1995, 42, 129 - 140, to obtain transformed alfalfa plants. Similarly, they are infected to an epycotyl or cotyledon of an aseptically cultured seedling of pea by a method described in J. Pounti-Kaerlas et al., Theoretical and Applied Genetics, 1990, 80, 246 - 252, to obtain transformed pea plants.

SEQ ID NO: 1 SEQUENCE LENGTH: 1,358 SEQUENCE TYPE: Amino acid TOPOLOGY: linear MOLECULE TYPE: protein ORIGINAL SOURCE OF SEQUENCE ORGANISM: maize (Zea mays L.) STRAIN: cultivar: Golden Cross Bantam 70 SEQUENCE DESCRIPTION 10 15 10 Met Gly Lys Glu Ala Gly Ala Ala Glu Ser Ser Thr Val Val Leu Ala 20 25 Val Asn Gly Lys Arg Tyr Glu Ala Ala Gly Val Ala Pro Ser Thr Ser 45 15 40 35 Leu Leu Glu Phe Leu Arg Thr Gln Thr Pro Val Arg Gly Pro Lys Leu 55 60 50 Gly Cys Gly Glu Gly Gly Cys Gly Ala Cys Val Val Leu Val Ser Lys 75 70 65 Tyr Asp Pro Ala Thr Asp Glu Val Thr Glu Phe Ser Ala Ser Ser Cys 20 95 90 85 Leu Thr Leu Leu His Ser Val Asp Arg Cys Ser Val Thr Thr Ser Glu

- 29 -

105

125

Gly Ile Gly Asn Thr Arg Asp Gly Tyr His Pro Val Gln Gln Arg Leu

120

100

115

	Ser	Gly	Phe	His	Ala	Ser	Gln	Cys	Gly	Phe	Cys	Thr	Pro	Gly	Met	Cys
		130					135	5				•				
	Met	Ser	Ile	Phe	Ser	Ala	Leu	Val	Lys	Ala	Asp	Asn	Lys	Ser	Asp	Arg
	145					150					155					160
5	Pro	Asp	Pro	Pro	Ala	Gly	Phe	Ser	Lys	Ile	Thr	Thr	Ser	Glu	Ala	Glu
				165						170		175				
	Lys	Ala	Val	Ser	Gly	Asn	Leu	Cys	Arg	Cys	Thr	Gly	Tyr	Arg	Pro	Ile
				180					185	5				190)	
	Val	Asp	Thr	Cys	Lys	Ser	Phe	Ala	Ser	Asp	Val	Asp	Leu	G lu	Asp	Leu
10			195					200					20	5		
	Gly	Leu	Asn	Cys	Phe	Trp	Lys	Lys	Gly	Glu	Glu	Pro	Ala	Glu	Val	Ser
		210					215					220)			
	Arg	Leu	Pro	Gly	Tyr	Asn	Ser	Gly	Ala	Val	Cys	Thr	Phe	Pro	Glu	Phe
	225					230)				235					240
15	Leu	Lys	Ser	Glu	Ile	Lys	Ser	Thr	Met	Lys	Gln	Val	Asn	Asp	Val	Pro
					245	5				250	•				25	5
	Ile	Ala	Ala	Ser	Gly	Asp	Gly	Trp	Tyr	His	Pro	Lys	Ser	Ile	Glu	Glu
				260					265					270)	
•	Leu	His	Arg	Leu	Phe	Asp	Ser	Ser	Trp	Phe	Asp	Asp	Ser	Ser	Val	Lys
20			275					280					28	5		
	Ile	Val	Ala	Ser	Asn	Thr	Gly	Ser	Gly	Val	Tyr	Lys	Asp	Gln	Asp	Leu
		290					295					30	0			
	Tyr	Asp	Lys	Tyr	Ile	Asp	Île	Lys	Gly	Ile	Pro	Glu	Leu	Ser	Val	Ile
	305					310	0				315	5				320
25	Asn	Lys	Asn	Asp	Lys	Ala	Ile	Gļu	Leu	Gly	Ser	Val	Val	Ser	Ile	Ser

			325					330						335			
	Lys	Ala	Ile	Glu	Val	Leu	Ser	Asp	Gly	Asn	Leu	Val	Phe	Arg	Lys	Ile	
				340					345	;				350			
	Ala	Asp	His	Leu	Asn	Lys	Val	Ala	Ser	Pro	Phe	Val	Arg	Asn	Thr	Ala	
5			355					360					36	5			
	Thr	Ile	Gly	Gly	Asn	Ile	Met	Met	Ala	Gln	Arg	Leu	Pro	Phe	Glu	Ser	
		370					375					380	}				
	Asp	Val	Ala	Thr	Val	Leu	Leu	Ala	Ala	Gly	Ser	Thr	Val	Thr	Val	Gln	
	385		,			390					395					400	
10	Val	Ala	Ser	Lys	Arg	Leu	Cys	Phe	Thr	Leu	Glu	Glu	Phe	Leu	Glu	Gln	
					405	;				41	0				41	5	
	Pro	Pro	Cys	Asp	Ser	Arg	Thr	Leu	Leu	Leu	Ser	Ile	Phe	Ile	Pro	Glu	
				420					425	5				430)		
	Trp	Gly	Ser	Asp	Tyr	Val	Thr	Phe	Glu	Thr	Phe	Arg	Ala	Ala	Pro	Arg	
15			435					440					445				
	Pro	Phe	Gly	Asn	Ala	Val	Ser	Tyr	Val	Asn	Ser	Ala	Phe	Leu	Ala	Arg	
		450					455					460	D				
	Thr	Ser	Gly	Ser	Leu	Leu	Ile	Glu	Asp	Ile	Cys	Leu	Ala	Phe	Gly	Ala	
	465					470)				475	,				480	
20	Tyr	Gly	Val	Asp	His	Ala	Ile	Arg	Ala	Lys	Lys	Val	Glu	Asp	Phe	Leu	
					485	5				490)				49	5	
	Lys	Gly	Lys	Ser	Leu	Ser	Ser	Phe	Val	Ile	Leu	Glu	Ala	Ile	Lys	Leu	
				500	1				50	5				51	0		
	Leu	Lys	Asp	Thr	Val	Ser	Pro	Ser	Glu	Gly	Thr	Thr	His	His	Glu	Tyr	
25			515				5	20				52	5				

	Arg	Val	Ser	Leu	Ala	Val	Ser	Phe	Leu	Phe	Ser	Phe	Leu	Ser	Ser	Leu
		530					535					540)			
	Ala	Asn	Ser	Ser	Ser	Ala	Pro	Ser	Asn	Ile	Asp	Thr	Pro	Asn	Gly	Ser
	545					550					55	5				560
5	Tyr	Thr	His	Glu	Thr	Gly	Ser	Asn	Val	Asp	Ser	Pro	Glu	Arg	His	Ile
					565					570					575	
	Lys	Val	Asp	Ser	Asn	Asp	Leu	Pro	Ile	Arg	Ser	Arg	Gln	Glu	Met	Val
				580					585					590		
	Phe	Ser	Asp	Glu	Tyr	Lys	Pro	Val	Gly	Lys	Pro	Ile	Lys	Lys	Val	Gly
10			595					600					605			
	Ala	Glu	Ile	Gln	Ala	Ser	Gly	Glu	Ala	Val	Tyr	Val	Asp	Asp	Ile	Pro
		610					615					620)			
	Ala	Pro	Lys	Asp	Cys	Leu	Tyr	Gly	Ala	Phe	Ile	Tyr	Ser	Thr	His	Pro
	625					630					63	5				640
15	His	Ala	His	Val	Arg	Ser	Ile	Asn	Phe	Lys	Ser	Ser	Leu	Ala	Ser	Gln
					645	5				650	i				65	5
	Lys	Val	Ile	Thr	Val	Ile	Thr	Ala	Lys	Asp	Ile	Pro	Ser	Gly	Gly	Glu
				660					665	5				67	70	
	Asn	Ile	Gly	Ser	Ser	Phe	Leu	Met	Gln	Gly	Glu	Ala	Leu	Phe	Ala	Asp
20			675					680)				685	;		
	Pro	Ile	Ala	Glu	Phe	Ala	Gly	Gln	Asn	Ile	Gly	Val	Val	Ile	Ala	Glu
		690					695					70	0			
	Thr	Gln	Arg	Tyr	Ala	Asn	Met	Ala	Ala	Lys	Gln	Ala	Val	Val	Glu	Tyr
	705					710)				71	15				720
25	Ser	Thr	Glu	Asn	Leu	Gln	Pro	Pro	Ile	Leu	Thr	Ile	Glu	Asp	Ala	Ile

					725					730					735	5
	Gln	Arg	Asn	Ser	Tyr	Ile	Gln	Ile	Pro	Pro	Phe	Leu	Ala	Pro	Lys	Pro
				740					745	;				750		
	۷al	Gly	Asp	Tyr	Asn	Lys	Gly	Met	Ala	Glu	Ala	Asp	His	Lys	Ile	Leu
5			755	;				760					765	5		
	Ser	Ala	Glu	Val	Lys	Leu	Glu	Ser	Gln	Tyr	Tyr	Phe	Tyr	Met	Glu	Thr
		770					775					780)			
	Gln	Ala	Ala	Leu	Ala	Ile	Pro	Asp	Glu	Asp	Asn	Cys	Ile	Thr	Ile	Tyr
	785					790					795					800
10	Ser	Ser	Thr	Gln	Met	Pro	Glu	Leu	Thr	Gln	Asn	Leu	Ile	Ala	Arg	Cys
					805					810					815	5
	Leu	Gly	Ile	Pro	Phe	His	Asn	Val	Arg	Val	Ile	Ser	Arg	Arg	Val	Gly
				820					825	5				830	i	
	Gly	Gly	Phe	Gly	Gly	Lys	Ala	Met	Lys	Ala	Thr	His	Thr	Ala	Cys	Ala
15			835	5				840					84	5		
	Cys	Ala	Leu	Ala	Ala	Phe	Lys	Leu	Arg	Arg	Pro	Val	Arg	Met	Tyr	Leu
		850					855					860				
	Asp	Arg	Lys	Thr	qaA	Met	Ile	Met	Ala	Gly	Gly	Arg	His	Pro	Met	Lys
	865					870					875	i				880
20	Ala	Lys	Tyr	Ser	Val	Gly	Phe	Lys	Ser	Asp	Gly	Lys	Ile	Thr	Ala	Leu
					888	5 .				890)				89	5
	His	Leu	Asp	Leu	Gly	Ile	Asn	Ala	Gly	Ile	Ser	Pro	Asp	Val	Ser	Pro
				900)				90	5				910	3	
	Leu	Met	Pro	Arg	Ala	Ile	Ile	Gly	Ala	Leu	Lys	Lys	Tyr	Asn	Trp	Gly
25			915				92	0				9	925			

	Thr	Leu	Glu	Phe	Asp	Thr	Lys	Val	Сув	Lys	Thr	Asn	Val	Ser	Ser	Lys	
		930					935					940)				
	Ser	Ala	Met	Arg	Ala	Pro	Gly	Asp	Val	Gln	Gly	Ser	Phe	Ile	Ala	Glu	
	945					950					95	5				960	
5	Ala	Ile	Ile	Glu	His	Val	Ala	Ser	Ala	Leu	Ala	Leu	Asp	Thr	Asn	Thr	
					965	i,				97	0				97!	5	
	Val	Arg	Arg	Lys	Asn	Leu	His	Asp	Phe	Glu	Ser	Leu	Glu	Val	Phe	Tyr	
				980					985	5				99	0		
	Gly	Glu	Ser	Ala	Gly	Glu	Ala	Ser	Thr	Tyr	Ser	Leu	Val	Ser	Met	Phe	
10			995	5				1000	•				1005				
	Asp	Lys	Leu	Ala	Leu	Ser	Pro	Glu	Tyr	Gln	His	Arg	Ala	Ala	Met	Ile	
		1010					1015					102	С				
	Glu	Gln	Phe	Asn	Ser	Ser	Asn	Lys	Trp	Lys	Lys	Arg	Gly	Ile	Ser	Cys	
	1025					1030)				1035	i.				1040	
15	Val	Pro	Ala	Thr	Tyr	Glu	Val	Asn	Leu	Arg	Pro	Thr	Pro	Gly	Lys	Val	
					1045	5				1050)				105	5	
	Ser	Ile	Met	Asn	Asp	Gly	Ser	Ile	Ala	Val	Glu	Val	Gly	Gly	Ile	Glu	
				1060					1065					107	0	•	
	Ile	Gly	Gln	Gly	Leu	Trp	Thr	Lys	Val	Lys	Gln	Met	Thr	Ala	Phe	Gly	
20		:	1075					1080)				108	5			
-	Leu	Gly	Gln	Leu	Cys	Pro	Asp	Gly	Gly	Glu	Cys	Leu	Leu	Asp	Lys	Val	
		1090					1095					110	0				
	Arg	Val	Ile	Gln	Ala	Asp	Thr	Leu	Ser	Leu	Ile	Gln	Gly	Gly	Met	Thr	
	1105					1110)				1115	5				1120	
25	Ala	Gly	Ser	Thr	Thr	Ser	Glu	Thr	Ser	Cys	Glu	Thr	Val	Arg	Gln	Ser	

Cys Val Ala Leu Val Glu Lys Leu Asn Pro Ile Lys Glu Ser Leu Glu Ala Lys Ser Asn Thr Val Glu Trp Ser Ala Leu Ile Ala Gln Ala Ser Met Ala Ser Val Asn Leu Ser Ala Gln Pro Tyr Trp Thr Pro Asp Pro Ser Phe Lys Ser Tyr Leu Asn Tyr Gly Ala Gly Thr Ser Glu Val Glu Val Asp Ile Leu Thr Gly Ala Thr Thr Ile Leu Arg Ser Asp Leu Val Tyr Asp Cys Gly Gln Ser Leu Asn Pro Ala Val Asp Leu Gly Gln Ile Glu Gly Cys Phe Val Gln Gly Ile Gly Phe Phe Thr Asn Glu Asp Tyr Lys Thr Asn Ser Asp Gly Leu Val Ile His Asp Gly Thr Trp Thr Tyr Lys Ile Pro Thr Val Asp Asn Ile Pro Lys Glu Phe Asn Val Glu Met Phe Asn Ser Ala Pro Asp Lys Lys Arg Val Leu Ser Ser Lys Ala Ser Gly Glu Pro Pro Leu Val Leu Ala Thr Ser Val His Cys Ala Met Arg Glu Ala Ile Arg Ala Ala Arg Lys Glu Phe Ser Val Ser Thr Ser Pro 25.

Ala Lys Ser Ala Val Thr Phe Gln Met Asp Val Pro Ala Thr Met Pro

1330 1335 1340

Val Val Lys Glu Leu Cys Gly Leu Asp Val Val Glu Arg Tyr Leu Glu

1345 1350 1355

5 Asn Val Ser Ala Ala Ser Ala Gly Pro Asn Thr Ala Lys Ala

SEO ID NO: 2

SEQUENCE LENGTH: 4,412

SEQUENCE TYPE: Nucleic acid

5 STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA to mRNA

ORIGINAL SOURCE OF SEQUENCE

ORGANISM: maize (Zea mays L.)

10 STRAIN: cultivar: Golden Cross Bantam 70

FEATURES OF SEQUENCE:

KEY: CDS

LOCATION: 46..4120 (including termination codon)

IDENTIFICATION METHOD: E

15 SEQUENCE DESCRIPTION

GTG CTG TGT TGT GCT GTG CTG CGT GCT GTG GAG GAG GAG GAG ATG GGG AAG GAG GCA GGG GCA GCG GAG TCG TCG ACG GTG GTG CTG GCC GTC 96 AAC GGC AAG CGC TAC GAG GCG GCC GGC GTG GCT CCG TCC ACG TCG CTG 144 CTG GAG TTC CTC CGC ACC CAG ACG CCC GTC AGA GGC CCC AAG CTC GGC 192 20 TGC GGC GAA GGT GGC TGC GGT GCA TGC GTG GTC CTC GTC TCC AAG TAC 240 GAC CCG GCC ACG GAC GAG GTG ACC GAG TTC TCT GCC AGC TCC TGC CTG 288 ACG CTG CTC CAC AGC GTG GAC CGC TGC TCA GTG ACC ACC AGC GAG GGA 336 ATC GGC AAC ACC AGG GAT GGC TAC CAC CCC GTG CAG CAG CGC CTC TCC 384 GGC TTC CAC GCC TCG CAG TGC GGC TTC TGC ACA CCC GGC ATG TGC ATG 432 TCC ATC TTC TCC GCC CTT GTC AAG GCC GAC AAC AAG TCC GAT CGC CCG 25 480

GAC CCT CCT GCT GGC TTC TCC AAG ATC ACT ACC TCG GAG GCA GAG AAG 528 GCT GTC TCG GGC AAC CTT TGT CGT TGC ACC GGA TAC AGA CCC ATT GTT 576 GAC ACC TGC AAA AGC TTT GCC TCT GAT GTT GAC CTC GAG GAC CTA GGC CTC AAC TGT TTC TGG AAG AAG GGC GAA GAA CCT GCA GAA GTC AGC AGG 672 CTG CCG GGG TAC AAC AGC GGT GCC GTC TGC ACC TTT CCA GAG TTT CTC 720 AAA TCC GAA ATC AAG TCT ACT ATG AAG CAG GTG AAC GAT GTC CCC ATT GCA GCC TCA GGT GAT GGC TGG TAC CAT CCT AAG AGC ATT GAA GAG CTT CAC AGG TTG TTT GAT TCC AGC TGG TTT GAT GAC AGT TCT GTG AAG ATT 864 GTT GCT TCA AAC ACT GGG TCT GGA GTG TAC AAG GAT CAG GAC CTC TAC 912 GAC AAG TAC ATT GAC ATC AAA GGA ATC CCA GAG CTT TCA GTC ATC AAT 960 10 AAA AAC GAC AAA GCA ATT GAG CTT GGA TCA GTT GTG TCC ATC TCT AAA 1008 GCT ATT GAA GTG CTG TCA GAT GGA AAT TTG GTC TTC AGA AAG ATT GCT 1056 GAT CAC CTC AAC AAA GTG GCT TCA CCG TTT GTT CGG AAC ACT GCA ACC 1104 ATA GGA GGA AAC ATA ATG ATG GCA CAA AGG TTG CCA TTT GAA TCG GAT 1152 GTT GCA ACC GTG CTC CTA GCT GCG GGT TCG ACA GTC ACA GTC CAG GTG 1200 15 GCT TCC AAA AGG CTG TGC TTC ACT CTG GAG GAA TTC TTG GAA CAA CCT 1248 CCA TGT GAT TCT AGG ACC CTG CTG CTG AGC ATA TTT ATC CCA GAA TGG 1296 GGT TCA GAC TAT GTC ACC TTT GAG ACT TTC CGA GCC GCC CCA CGA CCA 1344 TTT GGA AAT GCT GTC TCT TAT GTA AAC TCT GCT TTC TTG GCA AGG ACA 1392 TCA GGC AGC CTT CTA ATT GAG GAT ATA TGC TTG GCA TTT GGT GCC TAC 1440 20 GGA GTC GAT CAT GCC ATC AGA GCT AAG AAG GTT GAA GAT TTC TTG AAG 1488 GGA AAA TCG CTG AGC TCA TTT GTG ATA CTT GAA GCA ATT AAA CTA CTC 1536 AAA GAT ACC GTT TCA CCA TCA GAA GGC ACT ACA CAT CAT GAA TAC AGG 1584 GTC AGC TTG GCT GTC AGT TTC TTG TTC AGT TTC TTA TCT TCC CTT GCC 1632 AAC AGT TCG AGT GCA CCA TCA AAT ATT GAT ACT CCC AAT GGG TCA TAT 1680 25

ACT CAT GAA ACT GGT AGC AAT GTG GAC TCA CCT GAG AGG CAT ATT AAG 1728 GTT GAC AGC AAT GAT TTG CCA ATT CGT TCA AGA CAA GAA ATG GTT TTC 1776 AGC GAT GAG TAC AAG CCT GTT GGC AAG CCG ATC AAG AAA GTC GGG GCA 1824 GAG ATC CAA GCA TCA GGG GAG GCT GTG TAC GTT GAT GAT ATC CCT GCT 5 CCC AAG GAT TGC CTC TAT GGA GCA TTT ATC TAC AGC ACA CAT CCT CAT 1920 GCT CAT GTG AGA AGT ATC AAC TTC AAA TCA TCC TTG GCT TCA CAG AAG 1968 GTC ATC ACA GTT ATA ACC GCA AAG GAT ATT CCA AGC GGT GGA GAA AAT 2016 ATT GGA AGC AGC TTC CTG ATG CAA GGA GAA GCA CTA TTT GCA GAT CCA 2064 ATC GCT GAA TTT GCT GGT CAA AAT ATT GGT GTC GTG ATT GCT GAA ACA 2112 10 CAA AGA TAT GCT AAT ATG GCT GCA AAG CAA GCT GTT GTT GAG TAT AGC 2160 ACA GAA AAT CTG CAG CCA CCA ATT CTG ACA ATA GAA GAT GCC ATC CAA 2208 AGA AAC AGC TAC ATC CAA ATT CCC CCA TTT TTA GCT CCA AAG CCA GTT 2256 GGT GAC TAC AAC AAA GGG ATG GCT GAA GCA GAC CAC AAG ATT CTA TCA 2304 GCA GAG GTA AAA CTT GAA TCC CAG TAC TAC TTC TAC ATG GAA ACT CAA 2352 GCA GCA CTA GCG ATT CCT GAT GAA GAT AAC TGC ATA ACA ATC TAT TCC 15 2400 TCG ACA CAA ATG CCT GAG CTC ACA CAA AAT TTG ATA GCA AGG TGT CTT 2448 GGC ATT CCA TTT CAC AAT GTC CGT GTC ATC AGC AGA AGA GTA GGA GGA 2496 GGC TTT GGT GGA AAG GCA ATG AAA GCA ACG CAT ACT GCA TGT GCA TGT 2544 GCC CTT GCT GCC TTC AAG CTG CGG CGT CCA GTT AGG ATG TAC CTC GAT 2592 CGC AAG ACG GAC ATG ATA ATG GCT GGA GGG AGA CAT CCA ATG AAG GCG 20 2640 AAG TAC TCT GTT GGG TTC AAG TCA GAT GGC AAG ATC ACA GCC TTG CAC 2688 CTA GAT CTT GGA ATC AAT GCT GGA ATA TCA CCA GAT GTG AGT CCA TTG 2736 ATG CCA CGT GCT ATC ATA GGA GCT CTC AAA AAG TAC AAC TGG GGC ACT 2784 CTT GAA TTT GAC ACC AAG GTC TGC AAG ACA AAT GTC TCA TCA AAG TCA 2832 25 GCA ATG CGA GCT CCT GGA GAT GTG CAG GGC TCT TTC ATC GCT GAA GCC 2880

ATC ATC GAG CAT GTT GCC TCA GCA CTC GCA CTA GAC ACT AAC ACC GTC 2928 AGG AGG AAG AAC CTT CAT GAT TTT GAA AGC CTT GAA GTT TTC TAT GGA 2976 GAA AGT GCA GGT GAA GCT TCT ACA TAC AGC CTG GTT TCC ATG TTT GAC 3024 AAG CTG GCC TTG TCT CCA GAA TAC CAG CAC AGG GCT GCA ATG ATT GAG 3072 CAG TTC AAT AGC AGC AAC AAA TGG AAG AAA CGC GGC ATT TCT TGT GTG 5 3120 CCA GCC ACT TAT GAG GTT AAT CTT CGA CCA ACT CCA GGC AAG GTG TCA 3168 ATC ATG AAT GAT GGT TCC ATC GCT GTC GAG GTT GGA GGA ATT GAG ATA 3216 GGT CAA GGA TTG TGG ACT AAA GTG AAG CAG ATG ACG GCC TTT GGA CTG 3264 GGA CAG CTG TGT CCT GAT GGT GGC GAA TGC CTT CTG GAC AAG GTT CGG 3312 10 GTT ATC CAG GCA GAC ACA TTA AGC CTG ATC CAA GGA GGT ATG ACT GCT 3360 GGG AGC ACC ACT TCT GAA ACT AGC TGT GAA ACA GTT CGG CAA TCT TGT 3408 GTT GCA CTG GTT GAG AAG CTG AAC CCT ATC AAG GAG AGT CTC GAA GCT 3456 AAG TCC AAC ACA GTG GAA TGG AGT GCC TTG ATT GCT CAG GCA AGC ATG 3504 GCG AGT GTG AAC CTA TCA GCA CAG CCG TAC TGG ACT CCT GAT CCA TCT 3552 TTC AAG AGC TAC TTG AAC TAC GGA GCT GGC ACC AGT GAG GTG GAA GTT 3600 15 GAT ATC CTA ACA GGA GCA ACC ACA ATT CTG CGA AGC GAC CTG GTG TAT 3648 GAC TGC GGG CAG AGC CTA AAC CCT GCT GTA GAC TTG GGC CAG ATC GAG 3696 GGC TGC TTT GTC CAA GGA ATA GGG TTC TTC ACG AAC GAG GAC TAC AAG ACG AAT TCC GAC GGG TTG GTC ATC CAC GAC GGC ACA TGG ACG TAC AAG 3792 ATC CCC ACG GTG GAT AAT ATC CCG AAG GAG TTC AAT GTT GAG ATG TTT 20 3840 AAC AGC GCC CCT GAC AAG AAG CGT GTC CTA TCT TCC AAA GCG TCG GGC 3888 GAG CCG CCG CTG GTT CTC GCA ACC TCG GTG CAC TGC GCG ATG AGG GAG 3936 GCC ATC AGG GCG GCG AGG AAG GAG TTC TCG GTC AGC ACC AGC CCC GCG 3984 AAA TCC GCC GTC ACA TTC CAG ATG GAC GTG CCG GCG ACG ATG CCT GTC 4032 GTC AAG GAG CTC TGC GGC CTC GAC GTC GTG GAG AGG TAC CTC GAG AAC 4080 25

	GTG	TCT	GCC	GCC	AGT	GCC	GGC	CCA	AAC	ACA	GCG	AAA	GCA	TAG	ATC	CAG	4128
	CAG	GCC	TCA	GGG	TGC	AGT	CGG	CGC	ACT	GCC	AGA	GAT	GAT	GTG	TGC	TGC	4176
	сст	GAT	GTA	CAG	ACA	GTA	CAG	TAC	AGA	GGA	GAG	AGA	ATT	GGG	GGA	ACT	4224
	CAG	GAA	CTG	CGA	GGA	GCG	ATG	AAC	AGT	ATA	TAG	AGT	GAA	AAA	TAA	AAG	4272
5	TGC	TTC	GTA	CTA	ATA	ATC	ACT	AGA	AAA	AAT	TAT	GCA	CAT	CTC	CCA	CGC	4320
	ACT	ACC	GGC	ACG	ACT	GTT	GAA	TAT	TTT	GTA	AAA	TAA	GAT	GTC	ATA	AGC	4368
	TAT	тта	ттт	тст	GTA	AAA	AA		4412								

```
SEQ ID NO: 3
     SEQUENCE LENGTH: 1,349
     SEQUENCE TYPE: Amino acid
5
    TOPOLOGY: linear
     MOLECULE TYPE: protein
     ORIGINAL SOURCE OF SEQUENCE
          ORGANISM: maize (Zea mays L.)
          STRAIN: cultivar: Golden Cross Bantam 70
     SEQUENCE DESCRIPTION
10
                                        10
                                                          - 15
     Met Glu Met Gly Lys Ala Ala Val Val Leu Ala Val Asn Gly Lys
                                    25
     Arg Tyr Glu Ala Ala Gly Val Asp Pro Ser Thr Thr Leu Leu Glu Phe
15
             35
                                 40
                                                   45
     Leu Arg Thr His Thr Pro Val Arg Gly Pro Lys Leu Gly Cys Gly Glu
          50
                             55
                                                60
     Gly Gly Cys Gly Ala Cys Val Val Leu Val Ser Lys Tyr Asp Pro Ala
      65
                         70
                                         75
                                                                80
20
     Thr Asp Glu Val Thr Glu Phe Ser Ala Ser Ser Cys Leu Thr Leu Leu
                                        90
                                                            95
                      85
     His Ser Val Asp Arg Cys Ser Val Thr Thr Ser Glu Gly Ile Gly Asn
```

105

125

Thr Lys Asp Gly Tyr His Pro Val Gln Gln Arg Leu Ser Gly Phe His

120

100

	Ala	Ser	Gln	Cys	Gly	Phe	Cys	Thr	Pro	Gly	Met	Cys	Met	Ser	Ile	Phe
		130					135					140	•			
	Ser	Ala	Leu	Val	Lys	Ala	Asp	Lys	Ala	Ala	Asn	Arg	Pro	Ala	Pro	Pro
	145					150					15	5			_	160
5	Ala	Gly	Phe	Ser	Lys	Leu	Thr	Ser	Ser	Glu	Ala	Glu	Lys	Ala	Val	Ser
					165					170					175	5
	Gly	Asn	Leu	Cys	Arg	Cys	Thr	Gly	Tyr	Arg	Pro	Ile	Val	Asp	Ala	Cys
				180					185	5				190		
	Lys	Ser	Phe	Ala	Ala	Asp	Val	Asp	Leu	Glu	Asp	Leu	Gly	Leu	Asn	Cys
10			195	;				200					209	5		
	Phe	Trp	Lys	Lys	Gly	Asp	Glu	Pro	Ala	Asp	Val	Ser	Lys	Leu	Pro	Gly
		210					215					220	,			
	Tyr	Asn	Ser	Gly	Asp	Val	Cys	Thr	Phe	Pro	Asp	Phe	Leu	Lys	Ser	Glu
	225					230					235					240
15	Met	Lys	Ser	Ser	Ile	Gln	Gln	Ala	Asn	Ser	Ala	Pro	Val	Pro	Val	Ser
					245					250					255	5
	Asp	Asp	Gly	Trp	Tyr	Arg	Pro	Arg	Ser	Ile	Asp	Glu	Leu	His	Arg	Leu
				260					265					270	ı	
	Phe	Gln	Ser	Ser	Ser	Phe	Asp	Glu	Asn	Ser	Val	Lys	Ile	Val	Ala	Ser
20			275					280					285			
	Asn	Thr	Gly	Ser	Gly	Val	Tyr	Lys	Asp	Gln	Asp	Leu	Tyr	Asp	Lys	Tyr
-		290					295					300)			
	Ile	Asp	Ile	Lys	Gly	Ile	Pro	Glu	Leu	Ser	Val	Ile	Asn	Arg	Asn	Asp
	305					310					31	5				320
2 =	_	~ 3		~ 1	_			·	-		 7 .			• 7 -	- 1 -	a 1

	Val	Leu	Ser	Asp	Gly	Asn	Leu	Val	Phe	Arg	Lys	Ile	Ala	Gly	His	Leu
				340					345					350		
	Asn	Lys	Val	Ala	Ser	Pro	Phe	Val	Arg	Asn	Thr	Ala	Thr	Ile	Gly	Gly
5			355					360					36	5		
	Asn	Ile	Val	Met	Ala	Gln	Arg	Leu	Pro	Phe	Ala	Ser	Asp	Ile	Ala	Thr
		370					375					380	1			
	Ile	Leu	Leu	Ala	Ala	Gly	Ser	Thr	Val	Thr	Ile	Gln	Val	Ala	Ser	Lys
	385					390					395					400
10	Arg	Leu	Cys	Phe	Thr	Leu	Glu	Glu	Phe	Leu	Gln	Gln	Pro	Pro	Cys	Asp
					405					410					415	5
	Ser	Arg	Thr	Leu	Leu	Leu	Ser	Ile	Phe	Ile	Pro	Glu	Trp	Gly	Ser	Asn
				420					425	5				430		
	Asp	Val	Thr	Phe	Glu	Thr	Phe	Arg	Ala	Ala	Pro	Arg	Pro	Leu	Gly	Asn
15			435					440					44	5		
	Ala	Val	Ser	Tyr	Val	Asn	Ser	Ala	Phe	Leu	Ala	Arg	Thr	Ser	Leu	Asp
		450					455					460)			
	Ala	Ala	Ser	Lys	Asp	His	Leu	Ile	Glu	Asp	Ile	Cys	Leu	Ala	Phe	Gly
	465					470					475					480
20	Ala	Tyr	Gly	Ala	Asp	His	Ala	Ile	Arg	Ala	Arg	Lys	Val	Glu	Asp	Tyr
				•	485	;				490					49!	5
	Leu	Lys	Gly	Lys	Thr	Val	Ser	Ser	Ser	Val	Ile	Leu	Glu	Ala	Val	Arg
				500					50	5				510)	
	Leu	Leu	Lys	Gly	Ser	Ile	Lys	Pro	Ser	Glu	Gly	Ser	Thr	His	Pro	Glu
25			515				5:	20				52	25			

	Tyr	Arg	Ile	Ser	Leu	Ala	Val	Ser	Phe	Leu	Phe	Thr	Phe	Leu	Ser	Ser
		530					535	5				540				
	Leu	Ala	Asn	Ser	Leu	Asn	Glu	Ser	Ala	Lys	Val	Ser	Gly	Thr	Asn	Glu
	545					550					55	5				560
5	His	Ser	Pro	Glu	Lys	Gln	Leu	Lys	Leu	Asp	Ile	Asn	Asp	Leu	Pro	Ile
					565					570					575	5
	Arg	Ser	Arg	Gln	Glu	Ile	Phe	Phe	Thr	Asp	Ala	Tyr	Lys	Pro	Val	Gly
				580					585					590	i	
	Lys	Ala	Ile	Lys	Lys	Ala	Gly	Val	Glu	Ile	Gln	Ala	Ser	Gly	Glu	Ala
10			595					600					60	5		
	Val	Tyr	Val	Asp	qaA	Ile	Pro	Ala	Pro	Lys	Asp	Cys	Leu	Tyr	Gly	Ala
		610					615					620)			
	Phe	Ile	Tyr	Ser	Thr	His	Pro	His	Ala	His	Val	Lys	Ser	Ile	Asn	Phe
	625					630					63	5				640
15	Lys	Pro	Ser	Leu	Ala	Ser	Gln	Lys	Ile	Ile	Thr	Val	Ile	Thr	Ala	Lys
					645	5				65	0				65	5
	Asp	Ile	Pro	Ser	Gly	Gly	Gln	Asn	Val	Gly	Tyr	Ser	Phe	Pro	Met	Ile
				660					669	5				67	0	
	Gly	Glu	Glu	Ala	Leu	Phe	Ala	Asp	Pro	Val	Ala	Glu	Phe	Ala	Gly	Gln
20			675					680					68	5		
	Asn	Ile	Gly	Val	Val	Ile	Ala	Gln	Thr	Gln	Lys	Tyr	Ala	Tyr	Met	Ala
		690)				695					70	0			
	Ala	Lys	Gln	Ala	Ile	Ile	Glu	Tyr	Ser	Thr	Glu	Asn	Leu	Gln	Pro	Pro
	705					710)				715	5				720
25	Ile	Leu	Thr	Ile	Glu	Asp	Ala	Ile	Glu	Arg	Ser	Ser	Phe	Phe	Gln	Thr

	Leu	Pro	Phe	۷al	Ala	Pro	Lys	Pro	Val	Gly	Asp	Tyr	Asp	Lys	Gly	Met
				740					745					750		
	Ser	Glu	Ala	Asp	His	Lys	Ile	Leu	Ser	Ala	Glu	Val	Lys	Ile	Glu	Ser
5			755					760					76	5		
	Gln	Tyr	Phe	Phe	Tyr	Met	Glu	Pro	Gln	Val	Ala	Leu	Ala	Ile	Pro	Asp
		770					775					780	•			
	Glu	Asp	Asn	Cys	Ile	Thr	Ile	Tyr	Phe	Ser	Thr	Gln	Leu	Pro	Glu	Ser
	785					790					795					800
10	Thr	Gln	Asn	Val	Val	Ala	Lys	Cys	Val	Gly	Ile	Pro	Phe	His	Asn	Val
					805					810					81	5
	Arg	Val	Ile	Thr	Arg	Arg	Val	Gly	Gly	Gly	Phe	Gly	Gly	Lys	Ala	Leu
				820					825	5				830)	
	Lys	Ser	Met	His	Val	Ala	Cys	Ala	Cys	Ala	Val	Ala	Ala	Leu	Lys	Leu
15			835					840	•				84	5		
	Gln	Arg	Pro	Val	Arg	Met	Tyr	Leu	Asp	Arg	Lys	Thr	Asp	Met	Ile	Met
	Gln Arg Pro Val						85	5				860)			

Ala Gly Gly Arg His Pro Met Lys Val Lys Tyr Ser Val Gly Phe Lys Ser Asn Gly Lys Ile Thr Ala Leu His Leu Asp Leu Gly Ile Asn Gly Gly Ile Ser Pro Asp Met Ser Pro Met Ile Ala Ala Pro Val Ile Gly Ser Leu Lys Lys Tyr Asn Trp Gly Asn Leu Ala Phe Asp Thr Lys Val

	Cys	Lys	Thr	Asn	Val	Ser	Ser	Lys	Ser	Ser	Met	Arg	Ala	Pro	Gly	Asp
		930					935					940				
	Ala	Gln	Gly	Ser	Phe	Ile	Ala	Glu	Ala	Ile	Ile	Glu	His	Val	Ala	Ser
	945					950					95	5			•	960
5	Ala	Leu	Ser	Ala	Asp	Thr	Asn	Thr	Ile	Arg	Arg	Lys	Asn	Leu	His	Asp
					965					970					975	i
	Phe	Glu	Ser	Leu	Ala	Val	Phe	Phe	Gly	Asp	Ser	Ala	Gly	Glu	Ala	Ser
				980					985				-	990		
	Thr	Tyr	Ser	Leu	Val	Thr	Met	Phe	Asp	Lys	Leu	Ala	Ser	Ser	Pro	Glu
10			995					1000					100	5		
	Tyr	Gln	His	Arg	Ala	Glu	Met	Val	Glu	Gln	Phe	Asn	Arg	Ser	Asn	Lys
		1010					101	5				102	0			
	Trp	Lys	Lys	Arg	Gly	Ile	Ser	Cys	Val	Pro	Val	Thr	Tyr	Glu	Val	Gln
	1025					1030)				1035	5				1040
15	Leu	Arg	Pro	Thr	Pro	Gly	Lys	Val	Ser	Ile	Met	Asn	Asp	Gly	Ser	Ile
					1045	5				105	0				105	5
	Ala	Val	Glu	Val	Gly	Gly	Val	Glu	Leu	Gly	Gln	Gly	Leu	Trp	Thr	Lys
				1060					106	5				107	0	
	Val	Lys	Gln	Met	Thr	Ala	Phe	Gly	Leu	Gly	Gln	Leu	Cys	Pro	Gly	Gly
20			1075					1080					108	5		
	Gly	Glu	Ser	Leu	Leu	Asp	Lys	Val	Arg	Val	Ile	Gln	Ala	Asp	Thr	Leu
		1090)				1095	5				110	0			
	Ser	Met	Ile	Gln	Gly	Gly	Val	Thr	Gly	Gly	Ser	Thr	Thr	Ser	Glu	Thr
	1105					111	0				111	5				1120
25	Ser	Cys	Glu	Ala	Val	Arg	Lys	Ser	Cys	Val	Ala	Leu	Val	Glu	Ser	Leu

					1125	i				1130					113	5
	Lys	Pro	Ile	Lys	Glu	Asn	Leu	Glu	Ala	Lys	Thr	Gly	Thr	Val	Glu	Trp
				114	0				1145					1150	1	
	Ser	Ala	Leu	Ile	Ala	Gln	Ala	Ser	Met	Ala	Ser	Val	Asn	Leu	Ser	Ala
5		1	1155					1160	,				1165			
	His	Ala	Tyr	Trp	Thr	Pro	Asp	Pro	Thr	Phe	Thr	Ser	Tyr	Leu	Asn	Tyr
	1	170					1175					1180)			
	Gly	Ala	Gly	Thr	Ser	Glu	Val	Glu	Ile	Asp	Val	Leu	Thr	Gly	Ala	Thr
	1185					1190)				119	5				1200
10	Thr	Ile	Leu	Arg	Ser	Asp	Leu	Val	Tyr	Asp	Cys	Gly	Gln	Ser	Leu	Asn
					1205	5				121	.0				121	5
	Pro	Ala	Val	Asp	Leu	Gly	Gln	Val	Glu	Gly	Ala	Phe	Val	Gln	Gly	Val
				1220	ı				1225					123	0	
	Gly	Phe	Phe	Thr	Asn	Glu	Glu	Tyr	Ala	Thr	Asn	Ser	Asp	Gly	Leu	Val
15			123	5				1240	כ				1245	5		
	Ile	His	Asp	Gly	Thr	Trp	Thr	Tyr	Lys	Ile	Pro	Thr	Val	Asp	Thr	Ile
		1250)				125	5				126	0			
	Pro	Lys	Gln	Phe	Asn	Val	Glu	Leu	Ile	Asn	Ser	Ala	Arg	Asp	Gln	Lys
	1265					127	0				127	5				128
20	Arg	Val	Leu	Ser	Ser	Lys	Ala	Ser	Gly	Glu	Pro	Pro	Leu	Leu	Leu	Ala
		·			128	5				129	90				129	5
	Ser	Ser	Val	His	Cys	Ala	Met	Arg	Glu	Ala	Ile	Arg	Ala	Ala	Arg	Lys
				130	0 0				130	5				13	10	
	Glu	Phe	Ser	Val	Суз	Thr	Gly	Pro	Ala	Asn	Ser	Ala	Ϊle	Thr	Phe	Gln
25		1	.315				132	20				132	:5			

Met Asp Val Pro Ala Thr Met Pro Val Val Lys Glu Leu Cys Gly Leu
1330 1335 1340

Asp Val Val Glu Arg Tyr Leu Glu Ser Val Ser Ala Ala Ser Pro Thr 1345

5 Asn Thr Ala Lys Ala

SEQ ID NO: 4

SEQUENCE LENGTH: 4,359

SEQUENCE TYPE: Nucleic acid

5 STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA to mRNA

ORIGINAL SOURCE OF SEQUENCE

ORGANISM: maize (Zea mays L.)

10 STRAIN: cultivar: Golden Cross Bantam 70

FEATURES OF SEQUENCE:

KEY: CDS

LOCATION: 91..4138 (including termination codon)

IDENTIFICATION METHOD: E

15 SEQUENCE DESCRIPTION

CCG GCT CTC TCG GTG CAG ACG TCC GGG ACT AGT ACG TGG ATC GGG CCG 48 GGG GCA ACT CGA GTC GTC AAG AAG GCT GCT ACC TGC TAG AGG ATG GAG 96 ATG GGG AAG GCG GCG GTG GTG CTG GCG GTG AAC GGC AAG CGG TAC 144 GAG GCC GCC GGC GTG GAC CCG TCG ACG ACG CTG CTG GAG TTC CTG CGC 192 ACC CAC ACG CCC GTC AGG GGG CCC AAG CTC GGC TGC GGC GAA GGT GGC 240 20 TGC GGT GCA TGC GTT GTG CTT GTC TCG AAG TAC GAC CCA GCC ACC GAC 288 GAG GTG ACC GAG TTC TCA GCG AGC TCC TGC CTG ACG CTG CTC CAT AGC 336 GTG GAC CGC TGC TCG GTG ACC ACC AGC GAG GGC ATT GGC AAC ACC AAG 384 GAT GGC TAC CAC CCT GTG CAG CAG CGC CTC TCC GGC TTC CAC GCC TCC 432 CAG TGC GGT TTC TGC ACG CCC GGC ATG TGC ATG TCC ATC TTC TCT GCG 480 25

CTT GTC AAA GCC GAC AAG GCG GCC AAC CGG CCA GCC CCA CCG GCC GGC TTC TCC AAG CTC ACT TCC TCG GAG GCT GAG AAG GCT GTC TCT GGC AAC 576 CTG TGC CGC TGC ACA GGG TAC AGG CCC ATC GTC GAC GCC TGT AAG AGC 624 672 TTC GCA GCC GAT GTT GAT CTT GAG GAC CTG GGC CTC AAC TGC TTC TGG AAG AAG GGT GAT GAG CCT GCA GAT GTC AGC AAG CTG CCA GGC TAC AAC 5 AGT GGT GAC GTC TGC ACT TTC CCT GAC TTT CTC AAA TCT GAG ATG AAG 768 TCC TCA ATT CAG CAG GCT AAC AGC GCT CCA GTT CCT GTT TCT GAC GAC 816 GGC TGG TAC CGT CCT AGG AGC ATT GAC GAG CTT CAC AGG TTG TTT CAA 864 TCT AGC TCC TTC GAT GAA AAT TCC GTG AAG ATA GTG GCT TCA AAC ACT 912 GGG TCT GGA GTG TAC AAG GAT CAG GAC CTT TAT GAC AAG TAC ATT GAC 960 10 ATC AAA GGA ATC CCA GAG CTT TCA GTC ATC AAC AGA AAC GAC AAA GGA 1008 ATT GAG CTT GGA TCA GTT GTG TCC ATC TCT AAA GCT ATT GAG GTG CTG 1056 TCA GAT GGA AAT CTC GTC TTC AGA AAG ATT GCT GGT CAC CTG AAC AAA 1104 GTG GCT TCA CCG TTT GTT CGG AAC ACT GCA ACC ATA GGT GGA AAC ATA 1152 GTC ATG GCA CAA AGA TTG CCA TTC GCA TCG GAC ATT GCA ACC ATA CTA 1200 15 CTA GCT GCA GGT TCA ACA GTC ACA ATC CAG GTG GCT TCC AAA AGG CTG 1248 TGC TTC ACT CTG GAG GAG TTC TTG CAG CAG CCT CCA TGC GAT TCT AGG 1296 ACC CTG CTG CTG AGC ATA TTT ATC CCG GAA TGG GGC TCA AAT GAT GTC 1344 ACC TTT GAG ACT TTC CGA GCA GCA CCT CGT CCA CTT GGC AAT GCT GTC 1392 1440 TCA TAT GTC AAT TCA GCT TTC TTG GCA AGG ACT TCA TTG GAT GCA GCA 20 TCA AAG GAC CAT CTC ATC GAG GAT ATA TGT CTG GCG TTC GGT GCT TAT 1488 GGA GCT GAT CAT GCT ATT AGA GCT AGA AAG GTT GAG GAT TAC CTG AAG 1536 GGC AAA ACA GTG AGC TCG TCT GTC ATA CTT GAA GCT GTT CGG TTG CTT 1584 AAA GGG TCT ATT AAA CCA TCA GAA GGC TCA ACA CAT CCT GAG TAT AGA 1532 ATT AGC TTG GCT GTC AGT TTC TTG TTT ACC TTC CTA TCC TCC CTT GCC 1680 25

AAC AGC TTG AAT GAA TCT GCA AAG GTT AGT GGT ACC AAC GAG CAC TCA 1728 1776 CCA GAG AAG CAA CTC AAG TTG GAC ATC AAT GAT TTG CCA ATA CGA TCA AGA CAA GAA ATA TTT TTC ACT GAT GCA TAT AAG CCA GTT GGC AAA GCA 1824 ATT AAG AAA GCT GGG GTA GAG ATC CAA GCT TCA GGG GAA GCT GTG TAC 1872 GTT GAT GAT ATC CCT GCT CCC AAA GAT TGC CTC TAT GGG GCA TTT ATT 1920 5 TAT AGC ACA CAC CCT CAT GCA CAT GTA AAG TCA ATC AAC TTT AAA CCA 1968 TCT TTG GCT TCA CAG AAG ATC ATC ACA GTT ATC ACT GCA AAG GAT ATT 2016 CCC AGC GGT GGA CAA AAT GTT GGT TAT AGC TTC CCG ATG ATT GGA GAA 2064 GAA GCA CTT TTT GCA GAT CCA GTT GCT GAA TTT GCT GGT CAA AAT ATT 2112 GGT GTC GTG ATT GCT CAA ACA CAG AAG TAT GCC TAC ATG GCG GCA AAG 2150 10 CAA GCC ATC ATT GAG TAT AGC ACA GAA AAT CTG CAG CCA CCA ATT CTG 2208 ACA ATA GAA GAT GCA ATT GAA CGA AGC AGC TTC TTC CAA ACC CTC CCA 2256 TTT GTA GCT CCT AAG CCA GTT GGT GAT TAC GAC AAA GGG ATG TCT GAA 2304 GCT GAT CAC AAG ATT TTA TCG GCA GAG GTA AAA ATT GAA TCC CAA TAC 2352 TTT TTC TAC ATG GAG CCA CAA GTG GCG CTA GCT ATT CCT GAT GAA GAT 2400 15 AAC TGC ATA ACC ATC TAT TTT TCG ACA CAA TTA CCT GAG TCC ACA CAA 2448 AAT GTG GTT GCA AAG TGC GTT GGC ATT CCA TTT CAC AAT GTC CGT GTA 2496 ATC ACC AGA AGG GTC GGA GGA GGC TTT GGT GGA AAA GCA TTG AAA TCA 2544 ATG CAT GTT GCA TGT GCA TGT GCA GTT GCT GCA TTG AAG CTA CAA CGT 2592 CCA GTT CGG ATG TAC CTC GAT CGC AAG ACA GAC ATG ATA ATG GCA GGC 2640 20 GGG CGG CAT CCT ATG AAG GTG AAG TAC TCT GTT GGG TTC AAG TCA AAC 2688 GGC AAG ATC ACA GCC TTA CAT CTT GAT CTT GGG ATC AAT GGT GGA ATA 2736 TCT CCA GAT ATG AGT CCA ATG ATT GCA GCA CCT GTC ATA GGT TCT CTC 2784 AAA AAG TAC AAC TGG GGC AAT CTT GCA TTT GAC ACC AAG GTC TGC AAA 2832 ACA AAT GTC TCA TCA AAA TCG TCA ATG AGA GCT CCT GGA GAT GCG CAG 2880 25

GGC TCT TTC ATT GCT GAA GCC ATC ATC GAG CAT GTT GCC TCG GCA CTT 2928 TCA GCC GAC ACT AAT ACC ATA AGG AGA AAG AAC CTT CAT GAC TTT GAG 2976 AGC CTT GCA GTG TTC TTT GGA GAT AGT GCA GGT GAA GCT TCT ACA TAC 3024 AGC CTT GTC ACC ATG TTC GAT AAA TTG GCC TCC TCT CCA GAA TAC CAG 3072 CAC CGA GCT GAA ATG GTG GAA CAA TTC AAC CGA AGC AAC AAG TGG AAG 3120 AAG CGT GGC ATT TCT TGT GTG CCT GTA ACA TAT GAG GTG CAG CTT CGG 3168 CCA ACT CCA GGA AAG GTG TCT ATC ATG AAT GAT GGT TCC ATT GCT GTT 3216 GAG GTT GGA GGG GTT GAG CTA GGC CAA GGG TTG TGG ACA AAA GTG AAG 3264 CAG ATG ACG GCA TTC GGA CTA GGA CAG CTG TGT CCT GGC GGC GGT GAA 3312 AGC CTT CTA GAC AAG GTG CGG GTC ATC CAG GCC GAC ACA TTG AGC ATG 3360 10 ATC CAA GGA GGG GTC ACT GGT GGG AGC ACC ACT TCT GAA ACT AGC TGT 3408 GAA GCA GTT CGT AAG TCG TGT GTT GCA CTC GTC GAG AGC TTG AAG CCA 3456 ATC AAG GAG AAT CTG GAG GCT AAA ACT GGC ACA GTG GAA TGG AGT GCC 3504 TTG ATT GCA CAG GCA AGT ATG GCG AGC GTT AAC TTA TCG GCA CAT GCA 3552 TAC TGG ACC CCT GAT CCA ACT TTC ACA AGC TAT TTG AAC TAC GGA GCC 3600 15 GGC ACT AGC GAG GTG GAA ATT GAT GTC CTG ACA GGA GCA ACA ACA ATT 3648 CTA AGG AGT GAC CTT GTC TAC GAT TGC GGG CAA AGC TTG AAC CCT GCT 3696 GTC GAT TTG GGG CAG GTG GAA GGT GCA TTC GTA CAA GGA GTA GGC TTC 3744 TTC ACA AAC GAG GAG TAC GCA ACC AAC TCT GAC GGG TTG GTC ATC CAC 3792 GAT GGC ACA TGG ACG TAC AAG ATC CCC ACG GTC GAC ACC ATC CCA AAG 3840 20 CAG TTC AAC GTT GAG CTG ATC AAC AGC GCC CGT GAC CAG AAG CGC GTC 3888 CTC TCT TCC AAA GCA TCG GGC GAG CCT CCG CTT CTC CTA GCT TCC TCT 3936 GTG CAC TGC GCA ATG AGG GAG GCC ATC AGG GCC GCC AGG AAA GAA TTC 3984 TCG GTC TGC ACT GGT CCA GCG AAC TCC GCC ATC ACG TTC CAG ATG GAC 4032 GTG CCG GCA ACG ATG CCT GTC GTC AAG GAG CTC TGC GGC CTG GAT GTC 4080 25

GTT	GAG	AGG	TAC	CTG	GAG	AGC	GTG	TCG	GCT	GCC	AGC	CCA	ACA	AAC	ACC	4128
GCT	AAA	GCA	TAG	ATC	CAG	TAG	GCG	CTC	TAT	CCA	TGG	TGT	GAT	GGC	TTA	4176
ATC	AAT	CTG	TAA	AAC	ACT	AAG	CGG	CGT	GAC	ATG	CCG	AGC	TTT	CAG	TGT	4224
TAG	CTA	TGA	TGT	ACA	GAA	GAA	GAG	GTA	CCA	ATG	GCG	AGT	TGT	GGC	CAT	4272
GCG	AAT	CAG	GAG	TCA	TGA	ACC	ATT	GAG	GGG	GGA	AAT	AAA	GTA	AAT	AAG	4320
TGT	TGC	GCC	GGC	GAA	AAA				4359							

CLAIMS

- 1. An aldehyde oxidase gene which is a 4.4 Kbp gene obtainable from a plant and which encodes an amino acid sequence of an enzyme capable of oxidizing an aldehyde compound to a carboxylic acid.
- 2. The aldehyde oxidase gene according to claim 1, wherein the aldehyde compound is indoleacetaldehyde and the carboxylic acid is indoleacetic acid.
- 3. The aldehyde oxidase gene according to claim 1 orwhich is derived from maize plant (Zea mays L.).
 - 4. The aldehyde oxidase gene according to claim 1 which is a nucleotide sequence encoding an amino acid sequence shown by SEQ ID NO: 1.
- 5. The aldehyde oxidase gene according to claim 4 which has a nucleotide sequence shown by SEQ ID NO: 2 (loci of CDS being 46..4120).
- The aldehyde oxidase gene according to claim 1 which
 is a nucleotide sequence encoding an amino acid sequence shown
 by SEQ ID NO: 3.
 - 7. The aldehyde oxidase gene according to claim 6 which has a nucleotide sequence shown by SEQ ID NO: 4 (loci of CDS being 91..4138).
- 8. A plasmid comprising the aldehyde oxidase gene 25 according to claim 1, 2, 3, 4, 5, 6 or 7.

- 9. A transformant transformed by introducing the plasmid according to claim 8 into a host cell.
- 10. The transformant according to claim 9, wherein the host cell is a microorganism.
- 5 11. The transformant according to claim 9, wherein the host cell is a plant.
 - 12. A process for constructing an expression plasmid which comprises ligating (1) a promoter capable of functioning in a plant cell, (2) an aldehyde oxidase gene according to claim 1, 2, 3, 4, 5, 6 or 7 and (3) a terminator capable of functioning in a plant in a functional manner and in the said order described above.
 - 13. An expression plasmid comprising (1) a promoter capable of functioning in a plant cell, (2) an aldehyde oxidase gene according to claim 1, 2, 3, 4, 5, 6 or 7 and (3) a terminator capable of functioning in a plant which are ligated in a functional manner and in the said order described above.
- oxidase in a transformant which comprises introducing, into a host cell, an expression plasmid comprising (1) a promoter capable of functioning in a plant cell, (2) an aldehyde oxidase gene and (3) a terminator capable of functioning in a plant which are ligated in a functional manner and in the said order described above to transform said host cell.

- 15. The process according to claim 14, wherein the aldehyde oxidase gene is derived from a plant and the host cell is a plant cell.
- 16. The process according to claim 13, wherein the
 5 expression plasmid is the expression plasmid according to
 claim 13.

ABSTRACT

There is provided an aldehyde oxidase gene which is a 4.4 kbp gene obtainable from a plant and which encodes an amino acid sequence of an enzyme capable of oxidizing an aldehyde compound to a carboxylic acid and utilization thereof.