Statistika v kazenskem pravu Predstavitev diplomske naloge

Neža Kržan

Mentor: izred. prof. dr. Jaka Smrekar Fakulteta za matematiko in fiziko

Ljubljana, 7. september 2023

Tožilčeva zmota

Tožilčeva zmota

zamenjava verjetnost dokaza E glede na hipotezo H z verjetnostjo hipoteze H glede na dokaze E oziroma P(E|H) z P(H|E).

Statistika v kazenskem pravu

• Preučujemo razmerja med dvema ali več spremenljivkami.

Definicija

Odvisna spremenljivka je pojav, ki ga želi statistik preučiti, razložiti ali napovedati.

Definicija

Neodvisna spremenljivka je dejavnik ali značilnost, s katero se poskuša pojasniti ali napovedati odvisno spremenljivko.

- časovno zaporedje;
- obstajati mora empirična povezava med odvisno in neodvisno spremenljivko;
- razmerje med neodvisno in odvisno spremenljivko nepristransko;

Težave

Določitev odvisnih in neodvisnih spremenljivk za modeliranje.

V proces določanja spremenljivk pogosto posežejo odvetniki, ki se sklicujejo na pravne zakone in načela.

To lahko postane sporno, saj lahko takšni posegi ovirajo statistike pri izračunu verjetnostnega vpliva spremenljivk.

Koncept verjetnosti

Opravlja se primerjava verjetnosti dokazov na podlagi dveh konkurenčnih predlogov:

 $H_p \dots$ trditev, ki jo predlaga tožilstvo;

 H_d ... trditev, ki jo predlaga obramba.

Verjetnost proti nedolžnosti ali verjetnost za krivdo

$$\frac{P(H_p)}{P(H_d)}$$

Verjetnost v prid krivdi ob upoštevanju informacij E

$$\frac{P(H_p|E)}{P(H_d|E)}$$

Koncept verjetnosti

Če imamo na voljo dokaz E, nas zanima pogojna verjetnost

$$P(kriv|E)$$
,

pri čemer nam je lahko v pomoč Bayesovo pravilo.

- V praksi izračun verjetnostne krivde lahko zelo zapleten;
- z Bayesovim pravilom lahko ocenimo verjetnost vmesnih trditev oziroma dokazov.

Opredelitev

Bayesova analiza

standardna metoda za posodabljanje verjetnosti po opazovanju več dokazov, zato je zelo primerna za obravnavo in vrednotenje dokazov.

- Začnemo z nekim predhodnim prepričanjem o hipotezi in ga posodabljamo, ko se dokazi ponovno pojavijo,
- dobro utemeljene predhodne predpostavke.

Bayesovo pravilo

Bayesovo sklepanje temelji na Bayesovem pravilu, ki izraža verjetnost nekega dogodka z verjetnostjo dveh dogodkov in obrnjene pogojne verjetnosti.

Izrek (Bayesovo pravilo)

$$P(H|E) = \frac{P(E|H) \times P(H)}{P(E)}.$$

Bayesovo posodabljanje

Bayesovo posodabljanje je logična trditev, kako se sčasoma posodabljajo apriorne oziroma predhodne verjetnosti dokazov glede na novo zbrane dokaze oziroma prepričanja.

Definicija (Bayesovo posodabljanje)

Če se dogodek E zgodi ob času $t_1 > t_0$, potem je $P_1(H) = P_0(H|E)$.

- Ob času t₀ dogodku H dodelimo verjetnost P₀(H) predhodna verjetnost oziroma apriorna verjetnost;
- zgodi se dogodek E ob času t₁, ki vpliva na naša prepričanja o dogodku H,
- apriorno verjetnost dogodka H v času t₁ enačimo s pogojno verjetnostjo dogodka H glede na dogodek E v času t₀.

Bayesova teorija v kazenskem pravu

Postopek posodabljanja verjetnosti tožilčeve hipoteze na podlagi predhodnih oziroma apriornih verjetnosti.

verjetnost hipoteze pred upoštevanjem določenega dokaza (dokazov)

_

verjetnost hipoteze po upoštevanju določenega dokaza (dokazov)

Predhodna verjetnost in določitev aposteriorne verjetnosti

Definicija (Predhodna verjetnost oziroma apriorna verjetnost)

Predhodna verjetnost, ki je uporabljena v vsaki posodobitvi verjetnosti s pomočjo Bayesove teorije, je začetna verjetnost hipoteze oziroma tožilčeve domneve o obtožencu oziroma storilcu kaznivega dejanja.

različne metode za določitev in izračun predhodnih verjetnosti

 \rightarrow

rezultati, ki se med seboj precej razlikujejo

Težave z določitvijo predhodne verjetnosti

Ali naj analitiki poskušajo določiti predhodne verjetnosti in če ja, kako naj jih določijo?

- Nevtralno stanje analitiki predpostavi enake predhodne verjetnosti za vse hipoteze v primeru;
- Analitik naj uporabi svoje strokovno znanje za izračun apriorne verjetnosti na podlagi razpoložljivih podatkov in brez nepotrebnega vplivanja odvetnikov ali drugih udeležencev postopka;

Vključevanje novih dokazov

Nove dokaze v postopku izračuna upoštevamo.

nov dokaz o dokaz priznan na sodišču o upoštevan v izračunih o dokaz umaknjen iz procesa

- Ko se določen dokaz iz sodnega procesa umakne, posodobimo vse izračune.
- nadaljujemo posodabljanje verjetnosti.

Razmerje verjetij v kazenskem pravu

Oblika Bayesovega izreka o razmerju verjetij v forenzičnem kontekstu.

 H_p ... obtoženec je resnično kriv;

 H_d ... obtoženec je resnično nedolžen;

Ev ... obravnavani dokaz;

Ob upoštevanju informacij /

$$\frac{P(H_p|Ev,I)}{P(H_d|Ev,I)} = \frac{P(Ev|H_p,I)}{P(Ev|H_d,I)} \times \frac{P(H_p|I)}{P(H_d|I)}.$$

RAZMERJE VERJETIJ

razmerje verjetij > 1 → dokaz povečuje »verjetnost« krivde razmerje verjetij < 1 → dokaz zmanjšuje »verjetnost« krivde

Druge metode

Frekvence

- Relativne frekvence vedno navajajo ali predpostavljajo, da obstaja referenčni vzorec, na podlagi katerega se lahko oceni pogostost zadevnega dogodka.
- Relativna frekvenca lahko podpre vmesno sklepanje o moči dokazov.

Metoda verjetnosti naključnega ujemanja

- Izraža možnost, da bi imel naključni posameznik, ki ni povezan z obdolžencem, ustrezno lastnost npr. DNK profil.
- Predstavljena oziroma razumevana narobe tožilčeva zmota.

Izogib zmotam z uporabo Bayesovih omrežij

Bayesova omrežja pomagajo določiti ustrezne verjetnostne formule, ne da bi prikazali njihovo polno algebrsko obliko, in omogočajo skoraj popolno avtomatizacijo potrebnih verjetnostnih izračunov.

- med konkurenčnimi hipotezami izberemo najverjetnejšo;
- izbira mora biti podprta z znanstveno utemeljeno argumentacijo;
- primerna so za analizo dogodka;
- primerno za napovedovanje verjetnosti, da je k dogodku prispeval katerikoli od več možnih znanih vzrokov;

Prednosti Bayesovih mrež se najbolj izrazito pokažejo na zapletenih področjih z več spremenljivkami.

Bayesov pristop na splošno najboljši za vrednotenje dokazov.

- Bayesov pristop na splošno najboljši za vrednotenje dokazov.
- 2 Za določitev in izračun prehodnih verjetnosti poskrbijo statistiki.

- Bayesov pristop na splošno najboljši za vrednotenje dokazov.
- Za določitev in izračun prehodnih verjetnosti poskrbijo statistiki.
- 3 Težave pa nastanejo pri vključevanju novih dokazov.

- Bayesov pristop na splošno najboljši za vrednotenje dokazov.
- Za določitev in izračun prehodnih verjetnosti poskrbijo statistiki.
- Težave pa nastanejo pri vključevanju novih dokazov.
- Najboljši način za izogib zmotam.

- Bayesov pristop na splošno najboljši za vrednotenje dokazov.
- Za določitev in izračun prehodnih verjetnosti poskrbijo statistiki.
- Težave pa nastanejo pri vključevanju novih dokazov.
- Najboljši način za izogib zmotam.
- Bayesova omrežja ne prikažejo polne algebrske oblike verjetnostne formule in omogočajo skoraj popolno avtomatizacijo verjetnostnih izračunov.