```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv("/content/titanic.csv")
df.head()
\overline{\mathbf{T}}
         PassengerId Survived Pclass
                                                                               Age SibSp Parch
                                                                                                           Ticket
                                                                                                                      Fare Cabin Embarked
                                                                  Name
      0
                   1
                                                  Braund, Mr. Owen Harris
                                                                          male 22.0
                                                                                                         A/5 21171
                                                                                                                    7.2500
                                                                                                                             NaN
                                                                                                                                          S
                                               Cumings, Mrs. John Bradley
                                                                        female 38.0
                   2
                                                                                                0
                                                                                                         PC 17599 71.2833
                                                                                                                              C85
                                                                                                                                          С
      1
                             1
                                     1
                                                                                          1
                                                    (Florence Briggs Th...
                                                                                                        STON/O2.
      2
                   3
                                                                                                                    7.9250
                                     3
                                                    Heikkinen, Miss. Laina female 26.0
                                                                                                 0
                                                                                                                             NaN
                                                                                                                                          S
                                                                                                          3101282
                                          Futrelle, Mrs. Jacques Heath (Lily
                                                                                                           113803 53.1000
      3
                                                                        female 35.0
                                                                                                                             C123
                                                                                                                                          S
                                                              May Peel)
                   5
                             0
                                                  Allen, Mr. William Henry
                                                                                                0
                                                                                                                                          S
                                     3
                                                                          male 35.0
                                                                                         0
                                                                                                           373450
                                                                                                                    8.0500
                                                                                                                             NaN
 Next steps:
              Generate code with df
                                       View recommended plots
df.columns
    Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
            'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
           dtype='object')
df.drop(['PassengerId','Name','Ticket'],axis=1,inplace=True) # Unwanted Columns.
df.shape
→ (891, 9)
df.duplicated().sum() # Total Duplicates
→ 107
df.drop_duplicates(inplace=True) # Droping Duplicates
df.duplicated().sum() # No More Duplicates
→ 0
df.isnull().sum() #null values in every columns
→ Survived
                   0
     Pclass
                   0
                   0
     Sex
     Age
                 106
     SibSp
                   0
     Parch
                   0
     Fare
                   0
     Cabin
                 581
     Embarked
     dtype: int64
df["Age"] = df["Age"].fillna(df["Age"].mean())
df["Cabin"].fillna(df["Cabin"].mode()[0], inplace=True)
                                                             \# Handling Missing Values using mean , median , mode
df.dropna(inplace=True)
df.isnull().sum() # All Missing Values are handled
→ Survived
                 0
     Pclass
                 0
     Sex
                 0
     Age
                 0
     SibSp
     Parch
                 0
     Fare
                 0
     Cabin
                 0
     Embarked
                 0
     dtype: int64
```

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Index: 782 entries, 0 to 890
Data columns (total 9 columns):
    Column
              Non-Null Count Dtype
    Survived 782 non-null
 0
                            int64
    Pclass
              782 non-null
                          int64
 1
              782 non-null
 2
    Sex
                          object
              782 non-null float64
 3
    Age
             782 non-null int64
 4
    SibSp
 5
              782 non-null int64
    Parch
 6
    Fare
              782 non-null
                          float64
 7
    Cabin
              782 non-null
                            object
 8 Embarked 782 non-null
                            object
dtypes: float64(2), int64(4), object(3)
memory usage: 61.1+ KB
```

```
df['Embarked'].unique()
```

array(['S', 'C', 'Q'], dtype=object)

df["Sex"].unique()

array(['male', 'female'], dtype=object)

df["Sex"] = pd.get_dummies(df["Sex"],drop_first=True).astype(int) df.head() # Male -> 1 and Female -> 2

$\overline{\Rightarrow}$		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked	
	0	0	3	1	22.0	1	0	7.2500	B96 B98	S	11.
	1	1	1	0	38.0	1	0	71.2833	C85	С	
	2	1	3	0	26.0	0	0	7.9250	B96 B98	S	
	3	1	1	0	35.0	1	0	53.1000	C123	S	
	4	0	3	1	35.0	0	0	8.0500	B96 B98	S	

Next steps:

Generate code with df

View recommended plots

from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df["Embarked"] = le.fit_transform(df['Embarked']) df.head() # Encoded the Embarked column

→		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked	
	0	0	3	1	22.0	1	0	7.2500	B96 B98	2	ıl.
	1	1	1	0	38.0	1	0	71.2833	C85	0	
	2	1	3	0	26.0	0	0	7.9250	B96 B98	2	
	3	1	1	0	35.0	1	0	53.1000	C123	2	
	4	0	3	1	35.0	0	0	8.0500	B96 B98	2	

Next steps:

Generate code with df

View recommended plots

df.describe()

count 782.0000000 782.0000000 782.000000	}	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
std 0.492237 0.853828 0.483680 13.689935 0.987138 0.837728 52.176458 0.804024 min 0.000000 1.000000 0.000000 0.420000 0.000000 0.000000 0.000000 0.000000 0.000000 25% 0.000000 1.000000 22.000000 0.000000 0.000000 8.050000 1.000000 50% 0.000000 3.000000 1.000000 29.869351 0.000000 0.000000 15.875000 2.000000 75% 1.000000 3.000000 1.000000 36.000000 1.000000 1.000000 33.375000 2.000000	cou	unt 782.000000	782.000000	782.000000	782.000000	782.000000	782.000000	782.000000	782.000000
min 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000	mea	ean 0.410486	2.246803	0.627877	29.817866	0.524297	0.416880	34.595913	1.528133
25% 0.000000 1.000000 0.000000 22.000000 0.000000 0.000000 8.050000 1.000000 50% 0.000000 3.000000 1.000000 29.869351 0.000000 0.000000 15.875000 2.000000 75% 1.000000 3.000000 1.000000 36.000000 1.000000 1.000000 33.375000 2.000000	sto	td 0.492237	0.853828	0.483680	13.689935	0.987138	0.837728	52.176458	0.804024
50% 0.000000 3.000000 1.000000 29.869351 0.000000 0.000000 15.875000 2.000000 75% 1.000000 3.000000 1.000000 36.000000 1.000000 1.000000 33.375000 2.000000	mi	in 0.000000	1.000000	0.000000	0.420000	0.000000	0.000000	0.000000	0.000000
75 % 1.000000 3.000000 1.000000 36.000000 1.000000 1.000000 33.375000 2.000000	259	0.000000	1.000000	0.000000	22.000000	0.000000	0.000000	8.050000	1.000000
	50 °	0.000000	3.000000	1.000000	29.869351	0.000000	0.000000	15.875000	2.000000
max 1.000000 3.000000 1.000000 80.000000 8.000000 6.000000 512.329200 2.000000	75°	1.000000	3.000000	1.000000	36.000000	1.000000	1.000000	33.375000	2.000000
	ma	ax 1.000000	3.000000	1.000000	80.000000	8.000000	6.000000	512.329200	2.000000

plt.figure(figsize=(10,7))

sns.boxplot(df)


```
numericals = df[["Survived","Pclass","Sex","Age","SibSp","Parch","Fare","Embarked"]]
q1 = numericals.quantile(0.25)
q3 = numericals.quantile(0.75)

IQR = q3-q1
lower = q1 - 1.5*(IQR)
higher = q3 + 1.5*(IQR)
cleaned_data = df[~((numericals < lower) | (numericals > higher)).any(axis=1)]
cleaned_data.head()
```

→		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked	
	0	0	3	1	22.0	1	0	7.2500	B96 B98	2	ıl.
	1	1	1	0	38.0	1	0	71.2833	C85	0	
	2	1	3	0	26.0	0	0	7.9250	B96 B98	2	
	3	1	1	0	35.0	1	0	53.1000	C123	2	
	4	0	3	1	35.0	0	0	8.0500	B96 B98	2	

```
import warnings
warnings.filterwarnings('ignore')
plt.figure(figsize=(10,7))
plt.subplots(figsize=(15,9))
plt.subplot(1,2,1)
sns.boxplot(df)
plt.title("With Outliers")
plt.subplot(1,2,2)
sns.boxplot(cleaned_data)
plt.title("After Removing Outliers")

print("Shape of Original Dataframe with outliers : ",df.shape)
print("Shape after removing Outliers from dataframe: ",cleaned_data.shape)
```

Shape of Original Dataframe with outliers: (782, 9)
Shape after removing Outliers from dataframe: (602, 9)
<Figure size 1000x700 with 0 Axes>

plt.figure(figsize=(10,7))
sns.heatmap(numericals.corr(),annot=True)


```
df.columns
```

sns.countplot(x=df["Survived"],hue=df["Sex"]) # Sex : 0-> Female , 1 -> Male.

Sex: 0-> Female, 1 -> Male.

Survived: 0-> Unsurvived, 1 -> Survived.

Here, Males Survival Rate is very Less as Compared to Females

```
df1 = numericals
df1.head()
\overline{\mathbf{T}}
         Survived Pclass Sex Age SibSp Parch
                                                       Fare Embarked
                                                                         \blacksquare
      0
                             1 22.0
                                                 0 7.2500
                                                                          ılı.
      1
                             0 38.0
                                                 0 71.2833
      2
                             0 26.0
                                                 0 7.9250
                                                                     2
      3
                             0 35.0
                                                 0 53.1000
                              1 35.0
                                                     8.0500
 Next steps:
              Generate code with df1
                                        View recommended plots
col = ['Age','Fare']
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df1[col] = scaler.fit_transform(df1[col]) # Feature Scaling -> Standarization
plt.figure(figsize=(10, 7))
sns.barplot(data = df1 , x='Pclass', y='Survived')
plt.title('Survival Rate by Pclass')
plt.xlabel('Pclass')
plt.show()
```


Observations:

In PClass -> Class-1 Survival Rate is High..