

臣亚明学院

ICC Report V

A Facile C=O Bond Splitting of CO₂ Catalyzed by Phosphinine Iron(0) Complex

Shirong Wang

Kuang Yaming Honors School

December 25, 2019

1 / 14

Contents

Background

Reaction Details

Discussion and Expectations

Current Progress

However, the use of earth-abundant 3d metals remains surprisingly under-explored, particularly given the role that such metals play in biological CO_2 reduction to CO , mediated by Ni , $\mathrm{Fe}\ \mathrm{CO}$ dehydrogenase.

1902

117

December 25, 2019

00000000

Background

Previous examples of CO₂ cleavage based on 3d metals

Laitar, D. S. et al. J. Am. Chem. Soc. 2005, 127, 17196-17197 Sadique, A. R. et al. Inorg. Chem. 2008, 47, 784-786 Oren, D. et al. Organometallics 2018, 37, 2217-2221

December 25, 2019 4 / 14

The research of D. Laitar et al. provides a catalytic cycle for CO₂ deoxygenation. ICy-cooper catalysis gives 100 turnovers in 1h.

$$(IPr)Cu-Ot\cdot Bu \xrightarrow{(pinB)_2} (IPr)Cu-Bpin \\ 91\% (a) & 1 \\ 1 + CO_2 \xrightarrow{THF-d_8} (IPr)Cu-O-Bpin \\ -80 \text{ to} -40 \text{ °C} \\ 30 \text{ min (b)} & + CO \\ (pinB)_2O \xrightarrow{L-Cu-O-Bpin} CO_2 \\ (pinB)_2 & L-Cu-O-Bpin & CO \\ (pinB)_2 & CO \\ (IPr)Cu-O-Bpin & CO_2 \\ (c) & IPr \\ IPr & IPr \\ ICy = IPr \\ I$$

Laitar, D. S. et al. J. Am. Chem. Soc. 2005, 127, 17196-17197

December 25, 2019 5 / 14

This work is the first reported example of C=O cleavage of a CO₂

molecule mediated by a single Fe centre.

Figure 1: Leitl, J. et al. Angew. Chem. Int. Ed. 2019, 58, 15407-15411

Figure 2: [Cp*Fe(η^4 -TPP)] and derived compounds Hoidn, C. M. et al. *Eur. J. Inorg. Chem.* **2019**, 2019, 1567–1574

Figure 3: New ligand 2-(2'-pyridyl)-4,6-diphenylphosphinine

December 25, 2019 000000 7 / 14

Preparation

Figure 4: i) L, DME, -35 □ to RT, -naphthalene;

ii) 1 equiv. [K([18]crown-6)][Cp*Fe-($C_{10}H_8$)], 2 equiv. L, toluene/THF, -35 \square to RT;

iii) 1 equiv. [K-([18]crown-6)][Cp*Fe(C₁₀H₈)], THF.

Calculation for 1- σ /1- π

Conversion of $1-\pi$ to $1-\sigma$ is calculated to proceed with a barrier of 27.0 kcal/mol, consistent with an equilibrium at room temperature. NMR indicates an approximately 2:1 ratio of $1-\sigma$:1- π .

Figure 5: Calculation results at TPSSh-D3/def2-TZVP. The geometry is optimized at BP86/def2-TZVP. Both are carried in THF solvent with CPCM model

December 25, 2019 9 / 14

Splitting Reaction

匡亚明学院

Figure 6: Reaction of 1- σ and 1- π with CO_2 (1 atm) in THF at room temperature.

December 25, 2019 10 / 14

Calculation for $1 \rightarrow 3$ Reaction

Very small energy barriers:

匡亚明学院

- 1- σ -> 3- σ : 3.5 kcal/mol
- 1- π -> 3- π : 5.5 kcal/mol

Figure 7: Calculation results at TPSSh-D3/def2-TZVP. The geometry is optimized at BP86/def2-TZVP. Both are carried in THF-solvent with CPCM

December 25, 2019 12 / 14 晶 医亚明学院

Discussion and Expectations

- Full catalysation cycle
- Diversification of 1- σ
- Orbital analysis

December 25, 2019 13 / 14

Testing calculation with ORCA

method	basis	cores	time
PBE0-D3	def2-TZVP/def2-SVP (1758)	24	12h (40 cyc)
PWPB95-D3	def2-TZVPP (2583)	72	29m
DLPNO-CCSD(T)	def2-TZVPP (2583)	30	Z 18.5h

Where, RI-J and RIJCOSX used for DFT, RI-MP2 used for Double-hybrid DFT.

DLPNO is performed at NormalPNO level. TightPNO calculation is on running for 3 days.

December 25, 2019 14 / 14