RANDOM NUMBER GENERATION

Quantitative Risk Management project work

Silvia Baldisserotto, Maysa Jahanbani, Claudia Pesci, Phan Ho Tan Phat, Andrea Venuta

Università degli Studi di Firenze - Finance and Risk Management

RANDOM NUMBERS

- Computer-generated numbers are pseudo-random: deterministic and predictable
- Quasi-random numbers prevent potential lack of equidistributedness
- Definition. (sample) a sequence of number is called a sample from the distribution F if the numbers are independent realizations of a random variable with distribution function F
- · Uniform deviates: samples from $\sim \mathcal{U}\left[0,1\right]$
- · Normal deviates: samples from $\sim \mathcal{N}\left(0,1\right)$
- · Drawing uniform deviates is the basis of random number generation

LINEAR CONGRUENTIAL GENERATORS

- \cdot N₀ is chosen arbitrarily (called the seed)
- · $N_i = (aN_{i-1} + b) \text{ mod M for } i > 0$

.

$$U_i = \frac{N_i}{M}, \quad U_i \in [0, 1)$$

 \cdot Suitability of the numbers U_i depends on how a,b,M are chosen

LINEAR CONGRUENTIAL GENERATORS: PROPERTIES

- · Numbers N_i are periodic, with period \leq M: there are at most M different numbers in the class modulo M
- \cdot Example: if N=0, b can't be 0, otherwise $N_i=0$ will repeat itself
- · Example: if a = 0, generator settles down on $N_n = N_0 + nb$
- · Numbers are distributed "evenly" if we have exactly M different numbers in a generator with modulo M, or
- Each grid point on a mesh on [0,1] with mesh size $\frac{1}{M}$ is occupied once

QUALITY OF GENERATORS

Requirements:

- 1. Large period: small set of numbers makes the outcome easier to predict (choose M as large as possible)
- 2. Statistical tests to verify that the distribution is the intended one
 - · Comparison of sample mean and variance $\mu,\ \sigma^2$ with desired values
 - · Correlation between sample values
 - · Quality of approximation of the distribution
- 3. Distribution in higher dimensional spaces: lattice structure

RANDOM VECTORS AND LATTICE STRUCTURE

- Sequences of random numbers can be arranged in m-dimensional vectors
- The vectors lie on a number of parallel (m − 1)-dimensional hyperplanes
- The ideal condition is that the number of parallel hyperplanes is maximized: number of hyperplanes is a measure of equidistributedness
- \cdot Family of parallel lines in the (U_{i-1}, U_i) -plane

$$z_0U_{i-1}+z_1U_i=c+\frac{z_1b}{M}\quad \text{where}\quad c:=N_{i-1}\frac{z_0+az_1}{M}-z_1k$$

for each tuple (z_0, z_1) and for all cs.

RANDOM VECTORS AND LATTICE STRUCTURE

immagini qui

INVERSION AND TRANSFORMATION METHODS

 Inversion and transformation methods generate numbers distributed according to an arbitrary distribution from uniformly distributed samples

BOX-MULLER METHOD

- · Generate $x_1, x_2 \sim \mathcal{U}(0, 1)$ random numbers
- · Derive

$$\begin{split} h_1(x_1,x_2) &:= y_1 = \sqrt{-2\log x_1}\cos 2\pi x_2 \\ h_2(x_1,x_2) &:= y_2 = \sqrt{-2\log x_1}\sin 2\pi x_2 \end{split}$$

· y_1 and y_2 will be i.i.d. $\sim \mathcal{N}(0,1)$

BOX-MULLER METHOD

$$y_1 = D\cos\omega \quad y_2 = D\sin\omega$$
 where
$$D = \sqrt{-2\log x_1} \quad \omega = 2\pi x_2$$

$$h^{-1}(x_1, x_2) = \begin{cases} x_1 = exp\left\{-\frac{y_1^2 + y_2^2}{2}\right\} \\ x_2 = \frac{1}{2\pi} \arctan \frac{y_2}{y_1} \end{cases}$$

$$|Jacobian| = det\left(\frac{\partial x_1}{\partial y_1} \quad \frac{\partial x_1}{\partial y_2} \right) = \left[\frac{1}{\sqrt{2\pi}} exp\left(-\frac{y_1^2}{2}\right)\right] \cdot \left[\frac{1}{\sqrt{2\pi}} exp\left(-\frac{y_2^2}{2}\right)\right]$$

is the density of the bivariate standard normal distribution because it's the product of two univariate standard normal densities.

POLAR METHOD

- 1. Let $U_1, U_2 \sim \mathcal{U}(0, 1)$
- 2. Define $V_i = 2U_i 1$: $V_i \sim \mathcal{U}(-1, 1)$
- 3. Define $S = V_1^2 + V_2^2$
- 4. If and only if $S \le 1$, then define

$$Y = \sqrt{\frac{-2 \ln S}{S}}$$

5.

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} V_1 Y \\ V_2 Y \end{pmatrix} \quad \text{ and } \quad X_1, X_2 \text{ i.i.d. } \sim \mathcal{N}(0,1)$$

CORRELATED BIVARIATE RANDOM VARIABLES

$$Z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}, \quad z_1, z_2 \sim \mathcal{N}(0, 1) \quad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \quad \Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

1. Calculate the Cholesky decomposition $AA^T = \Sigma$

$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} a^2 & ab \\ ab & b^2 + c^2 \end{pmatrix} = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

$$\rightarrow A = \begin{pmatrix} \sigma_1 & 0 \\ \rho \sigma_2 & \sigma_2 (1 - \rho^2)^{\frac{1}{2}} \end{pmatrix}$$

- 2. Calculate $\mathbf{Z} \sim \mathcal{N}(0, \mathbb{I}_2)$
- 3. $\mu + AZ \sim \mathcal{N}(\mu, \Sigma)$ has the desired distribution.

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \mu + \begin{pmatrix} \sigma_1 & 0 \\ \rho \sigma_2 & \sigma_2 (1 - \rho^2)^{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} = \mu + \begin{pmatrix} \sigma_1 Z_1 \\ \rho \sigma_2 Z_1 + \sigma_2 (1 - \rho^2)^{\frac{1}{2}} Z_2 \end{pmatrix}$$

IMPLEMENTATIONS - LINEAR CONGRUENTIAL GENERATOR

```
function [rn] = LCG(x)
                                 14
                                     function [ rnStep ] = LCGstep()
                                 15
2
                                       persistent seed:
                                 16
3
      if(nargin == 0)
                                       M = 244944:
        x = 1;
                                 17
                                       a = 1597:
                                 18
5
      end
                                       b = 51749;
6
                                 19
                                 20
      rn = zeros(x,1);
                                       if(isempty(seed))
                                 21
8
                                         seed = 0:
                                 22
9
     for i = 1:x
                                 23
                                       end
       rn(i) = LCGstep();
10
                                 24
     end
11
                                       seed = mod(seed * a + b, M);
                                 25
12
                                 26
13
    end
                                       rnStep = seed / M;
                                 27
                                 28
                                     end
                                 29
```

IMPLEMENTATIONS - BOX-MULLER METHOD

```
function [ Z ] = BoxMuller( x )
2
3
       if(nargin == 0)
4
       x = 1;
5
       end
6
7
       U = rand(x, 2);
8
9
       theta = 2 .* pi .* U(:, 2);
       rho = sqrt(-2 * log(U(:, 1)));
10
11
12
       Z = [ \text{rho } .* \text{cos}(\text{theta}), \text{rho } .* \text{sin}(\text{theta}) ];
13
    end
14
```

IMPLEMENTATIONS - MARSAGLIA POLAR ALGORITHM

```
function [ Z ] = Marsaglia( x )
2
3 if(nargin == 0)
     x = 1;
4
5
    end
6
7
    Z = zeros(x,2);
8
9
     for i = 1 : x
       W = 1; V = [1, 1];
10
       while not (W < 1)
11
         V = 2 * rand(1, 2) - 1;
12
         W = V(1) .^2 + V(2) .^2;
13
      end
14
15
16
       Z(i, :) = V .* sqrt(-2 * log(W) / W);
     end
17
18
   end
```

PLOTS - UNIVARIATE METHODS

PLOTS - BIVARIATE METHODS

