VIII. Filtrage

- Manipulation des niveaux (de gris) des pixels en fonction de leur voisinage
 - Filtrage linéaire = convolution spatiale
 - Filtrage non linéaire
- Quel filtrage ?, pour faire quoi ?
 - Filtrage « Passe Bas »
 - » Réduction, Élimination des hautes fréquences spatiales : détails, bruit
 - Lissage d'une image, réduction de bruit, ...
 - Filtrage « Passe Haut »
 - Réduction, Élimination des basses fréquences spatiales : valeur moyenne, variation spatialement lente de niveaux de gris
 - > Rehaussement de contraste, ...
 - Filtrage directionnel
 - Détection de contour, Suivi de contours (cf chap. IX)

- Lissage d'une image : Exemple
 - Filtrage « Passe Bas »

- Lissage d'une image : Exemple sur un profil « ligne »
 - Filtrage « Passe Bas »

GINF41A6 - AGD

- Réduction de bruit : Exemple
 - Filtrage « Passe Bas »

- Image des « contours » :
 - Filtrage « Passe Haut »

- On note
 - L'information est uniquement localisée sur les variations de niveaux de gris, donc filtrage sensible aux bruits
 - Le signe de la valeur en sortie code le sens du contraste

1000

500

-0

-500

-1000

Image des « contours » : Exemple profil « ligne »

Filtrage « Passe Haut »

- Rehaussement de contraste : Exemple
 - Filtrage « Passe Haut »
 - * Rehaussement : Image_out = Image_in + α .Image_contraste

VIII. Filtrage VIII.2 Technique de Filtrage Linéaire

- Filtrage linéaire = convolution spatiale
- Un opérateur de filtrage linéaire = un noyau de convolution (« Kernel »)
 - $_{\bullet}$ Matrice 2D de taille [L $_k \times C_k$] , beaucoup plus petite que l'image
- Exemple : le noyau le plus simple :
 - Noyau « Moyenneur »
 - $I_s[i,j]$ = moyenne avec ses 8 plus proches voisins

$$I_{e} \longrightarrow \boxed{\text{Noyau K}} \longrightarrow I_{s} \qquad K = \frac{1}{9} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

VIII. Filtrage VIII.2 Technique

VIII. I include VIII.2 Technique de Filtrage Linéaire

- Algorithme de la convolution spatiale
 - Considérons un noyau avec un nombre impair de lignes et de colonnes

$$L_k=2\times I_k+1$$
; $C_k=2\times C_k+1$

VIII. Filtrage VIII.2 Technique de Filtrage Linéaire

- Algorithme de la convolution spatiale
 - Retournement spatial
 - Issu du traitement du signal 1D : causalité
 - En traitement d'image 2D :
 - aucun effet si le noyau K est symétrique
 - Effets de bord
 - ▶ l_k lignes en haut et en haut et c_k colonnes à droite et à gauche

VIII. Filtrage VIII.2 Technique de Filtrage Linéaire

Algorithme de la convolution spatiale

- Nombre d'opérations par pixel
 - Cas général : Proportionnel au nombre de coefficients : L_k×C_k
 - Cas des noyaux symétriques : noyau séparable en ligne et en colonne
 - ✓ Proportionnel à L_k + C_k
 - Intéressant pour les noyaux de grande taille

$$\begin{bmatrix} a \\ b \\ a \end{bmatrix} \otimes \begin{bmatrix} \alpha & \beta & \alpha \end{bmatrix} = \begin{bmatrix} a\alpha & a\beta & a\alpha \\ b\alpha & b\beta & b\alpha \\ a\alpha & a\beta & a\alpha \end{bmatrix}$$

$$K_{C} \qquad K_{L} \qquad K$$

Différents sources de Bruit

- Capteurs
- Contexte d'acquisition : sur, sous exposition, durée d'exposition, ...
- Echantillonnage, Quantification
- Contexte de la scène : grains, rayures photo, ...
- Transmission
- Compression avec pertes
- *****

- Réduire le bruit dans une image
 - Se donner un modèle de type de perturbation et de bruit
- Modèles de type de perturbation
 - Bruit additif (transmission, capteurs, ...)
 - Bruit multiplicatif (exemple : imagerie multispectrale : grain Speckle)
 - Bruit convolutif (exemple : flou = défaut de mise au point)
- Modèles de Bruit

 $f(a) = C \times \exp\left(-K|a|^{\alpha}\right)$

- Modèle impulsionnel
 - Distribution exponentielle, gaussienne, uniforme
 - > Si additif : réduction par filtrage linéaire
- Modèle « Sel et Poivre » (« Salt and Pepper »)
 - Exemple : poussières sur caméra
 - Réduction par filtrage NL = filtrage « Médian »

 $\alpha = 1$

 $\alpha = 2$

 $\alpha \rightarrow \infty$

Modélisation du bruit « Salt and Pepper »

- Paramétrage
 - « p » : la proportion des pixels altérés uniformément répartis dans l'image
 - La moitié de ces pixels est positionnée à une valeur « maxi »
 - L'autre moitié de ces pixels est positionnée à une valeur « mini »

p = 5%

p = 10%

- Filtres linéaires de lissage
 - Bien adaptés pour les bruit additifs impulsionnels
 - Image observée : Image_Bruit = (Image + Bruit)
 - Image_Débruitée : Filtrage(Image_Bruit)
 - Effet sur l'image :
 - Atténuation des différences entre un pixel et ses voisins
 - > Pas d'effet sur les larges zones homogènes
 - > Elargissement des zones de transition entre régions claires et sombres

- Filtres linéaires de lissage
 - Filtre « Moyenne »
 - Le plus simple, performance médiocre (cf TP4)
 - Filtre gaussien
 - Noyau de convolution numérique : approximation d'une fonction gaussienne → noyaux binomiaux

$$K_{Moy} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K_{Binom} = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

1

VIII. Filtrage VIII.3 Réduction de Bruit

- Filtres linéaires de lissage
 - Filtre gaussien
 - > Fct Gauss. de moyenne nulle et d'écart-type σ

Approximation d'une fonction gaussienne (μ =0, σ =1 avec un noyau K 5 x 5

$$K = \frac{1}{273} \times \begin{vmatrix} 1 & 4 & 7 & 4 & 1 \\ 4 & 16 & 26 & 16 & 4 \\ 7 & 26 & 41 & 26 & 7 \\ 4 & 16 & 26 & 16 & 4 \\ 1 & 4 & 7 & 4 & 1 \end{vmatrix}$$

- Filtres binomiaux
 - > Filtres approximant les filtres gaussiens de variance entière

Somme = 2^n	_
$\sigma^2 = n/4$	

Coefficients	Niveau	Somme	σ^2	σ
1	0	1	0	0
1 1	1	2	1 / 4	1/2
1 2 1	2	4	1/2	$\sqrt{2/2}$
1 3 3 1	3	8	3/4	$\sqrt{3/2}$
1 4 6 4 1	4	16	1	1
1 5 10 10 5 1	5	32	5/4	$\sqrt{5/2}$
1 6 15 20 15 6 1	6	64	6/4	$\sqrt{6/2}$
1 7 21 35 35 21 7 1	7	128	7/4	$\sqrt{7/2}$
1 8 29 56 70 56 29 8	8	256	2	$\sqrt{2}$

- Filtres linéaires de lissage
 - Filtre gaussien vs Binomiaux

- Obtention des filtres binomiaux par convolutions successives
 - » n convolutions successives du noyau [1 1]

$$K_{binom}(n) = K_{binom}(1)^{*n}$$

Exemple

Filtrage « Passe Bas » Moyenne vs Gauss

Après Filtre Binomial 5x5

- 'Filtrage non linéaire
 - Exemple : Filtrage d'ordre
 - La convolution vue comme une somme pondérée des pixels dans un voisinage V s'applique sur la liste triée des niveaux de gris
 - > Soit un voisinage à $N_v = (2v+1) \times (2v+1)$ pixels
 - Soient a_k[i,j] les N_v niveaux de gris triés par ordre croissant dans le voisinage V du pixel [i,j]
 - Soient c_k les coefficients du noyau de convolution
 - Le plus utilisé : Filtre « Médian »
 - $c_k=1$ pour k= $(N_v+1)/2$, $c_k=0$ sinon
 - Is[i,j]= la valeur médiane dans le voisinage V
 - Elimine les valeurs aberrantes
 - Ne modifie pas la pente des transitions
 - Déplace les transitions

 $I_{s}[i,j] = \sum_{k=0}^{N_{v}} c_{k} \times a_{k}[i,j]$

- Filtrage non linéaire
 - Exemple : Filtre Médian vs Filtre Gauss

Après Filtre Binomial 3 × 3

Après Filtre Médian

- 1ère approche par différence sur un filtrage Passe-Bas
 - Rappel : filtre de lissage = filtre Passe Bas = atténuation des contours
 - Soustraction : Image Passe-Bas(Image) = Information des contours
 - Addition : Image $+\alpha$.(Image Passe-Bas(Image)) = Rehaussement des contours
 - Caractéristiques du filtre :
 - ightarrow Paramètre lpha à ajuster
 - Sensibilité aux bruits (par construction du filtre)
 - $\rightarrow \alpha$ fort : risque de dépassement
 - Niveaux de gris en sortie : à recaler entre 0 et 255

- 1ère approche par différence sur un filtrage Passe-Bas
 - Addition : Image $+\alpha$.(Image Passe_Bas(Image)) = Rehaussement des contours

 $\alpha = 1$

 $\alpha = 2$

GINF41A6 - AGD

- 1ère approche par différence sur un filtrage Passe-Bas
 - Image_out= Image_in + α .(Image_in Passe_Bas(Image_in))
 - Image_out= $(1+\alpha)$.Image_in - α .Passe_Bas(Image_in)
 - \bullet $I_s[i,j]=K_R \otimes I_e[i,j]$

 $K_R = (1+\alpha).d -\alpha.K_{PB}$ avec d le noyau « impulsionnel »

d[0,0]=1, d[m,n]=0 sinon d=0 1 0 pour un noyau 3×3

$$0 \ 0 \ 0$$

- Exemples
 - K_{PB} = filtre moyenne et α =9
 - Soit k₊ la somme des coefs >0, k₋ la « || » de la somme des coefs <0</p>
 - \rightarrow On a $k_{+} > k_{-}$
 - Effet plus marqué si k₊ k₋ plus faible

2ème approche

Laplacien d'une image : dérivée seconde, notation ∆(image)

$$\Delta f(x,y) = \nabla^2 f(x,y) = \frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}$$

• Sortie : Image – α . Laplacien

Illustration 1D, f(x)=bord; f'(x); f''(x)

Illustration 1D , Principe du rehaussement out(x)= bord – α . Δ (bord); out1 : α =1/10; α =4/10 GINF41A6 - AGD

VIII. Filtrage

VIII.4 Rehaussement de contraste

- Autre approche : Laplacien d'une image
 - Construction du noyau de convolution du Laplacien
 - A partir du noyau de convolution de la dérivée première symétrique
 - Dérivée première en colonne à appliquer 2 fois :
 - $I_{d1}[i,j]=I[i+1/2,j]-I[i-1/2,j]$
 - Dérivée seconde en colonne

$$I_{d2}[i,j] = I_{d1}[i+1/2,j] - I_{d1}[i-1/2,j] = I[i+1,j] - 2.I[i,j] + I[i-1,j]$$

- D'où le noyau 2D en sommant les noyaux « ligne » et « colonne »:

Laplacien: Passe Haut
$$k_{+} = k_{-}$$

$$K_{L} = \begin{bmatrix}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{bmatrix}$$

$$K_{L} = \begin{bmatrix}
1 & 1 & 1 \\
1 & -8 & 1 \\
1 & 1 & 1
\end{bmatrix}$$
ou bien, en rajoutant u

$$K_{L=} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

ou bien, en rajoutant les 2 dérivées diagonales

$$K_{L=} \begin{bmatrix} 1 & 2 & 1 \\ 2 & -12 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

ou bien, en rajoutant un lissage binomial

Autre approche : Laplacien d'une image

Image originale

 $\mbox{Image rehauss\'ee= Image} - \alpha. \mbox{ Laplacien}$ $\mbox{Laplacien}$

Image rehaussée α =1/10

VIII. Filtrage

VIII.4 Rehaussement de contraste

Exemples de Masques « Rehausseur »

$$\alpha$$
=1/10 et $K_{L=}\begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

*
$$\alpha = 1/10$$
 et $K_{L=}\begin{bmatrix} 1 & 2 & 1 \\ 2 & -12 & 2 \\ 1 & 2 & 1 \end{bmatrix}$

$$K_{R=} \begin{bmatrix} -1 & -2 & -1 \\ -2 & 22 & -2 \\ -1 & -2 & -1 \end{bmatrix} / 10$$

- Exemples de Masques « Rehausseur »
 - Attention ensuite à recaler les niveaux de gris en sortie

$$K_{R=} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 18 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$K_{R=} \begin{vmatrix} -1 & -2 & -1 \\ -2 & 22 & -2 \\ -1 & -2 & -1 \end{vmatrix}$$

3500

3000

2500

2000

1500

1000

500

0

-500

-1000

- Exemples de Masques « Rehausseur »
 - * Attention ensuite à recaler les niveaux de gris en sortie
 - » Recaler Moyenne, Dynamique (min ; max) selon une loi linéaire

250