A Vine Copula Panel Model for Day-Ahead Electricity Prices Vienna Conference on Mathematical Finance 2019

September 9, 2019

Janus S. Valberg-Madsen, Esben Høg, Troels S. Christensen, Anca Pircalabu

Agenda

Introduction

Recap: Copulas and Vines

Data Overview

Marginal Models

Joint Model

Simulation of Price Distribution

Future Considerations

 Every day, hourly prices for the following day are set based on trading activity

- Every day, hourly prices for the following day are set based on trading activity
- lacktriangle Prices are determined from the same information set \Longrightarrow panel data

- Every day, hourly prices for the following day are set based on trading activity
- lacktriangle Prices are determined from the same information set \Longrightarrow panel data
- ► Common to consider base prices, i.e. daily means

Our Goals

Our Goals

 Model the day-ahead prices of each hour individually, as daily time series

Our Goals

- ► Model the day-ahead prices of each hour individually, as daily time series
- ► Capture their joint behaviour with a copula-based model

Our Goals

- Model the day-ahead prices of each hour individually, as daily time series
- ► Capture their joint behaviour with a copula-based model
- ► Simulate the day-ahead price distribution from the full model

Recap on Copulas

Definition (Copula)

A *d-dimensional copula* is a function $C: [0,1]^d \rightarrow [0,1]$ such that

- 1. $C(u_1, ..., u_d) = 0$ if $u_j = 0$ for at least one $j \in \{1, ..., d\}$
- **2.** $C(1,...,1,u_j,1,...,1) = u_j$ for all $j \in \{1,...,d\}$
- **3.** $V_C((a, b]) \ge 0$ for every *d*-box $(a, b] \subseteq [0, 1]^d$

where $(\boldsymbol{a},\boldsymbol{b}] \coloneqq (a_1,b_1] \times \cdots (a_d,b_d]$ and

$$egin{aligned} V_{C}ig((m{a},m{b}]) &\coloneqq \sum_{m{v} \in ext{ver}(m{a},m{b}]} \operatorname{sign}(m{v}) \ C(m{v}) \,; \ \operatorname{ver}(m{a},m{b}] &\coloneqq \{a_1,b_1\} imes \cdots imes \{a_d,b_d\} \,, \ \operatorname{sign}(m{v}) &\coloneqq egin{cases} 1, & \text{if } v_j = a_j \text{ for an even number of indices}, \ -1, & \text{otherwise}. \end{cases}$$

Recap on Copulas

Theorem (Sklar's Theorem)

Let \boldsymbol{X} be a d-dimensional random vector with joint distribution function F and marginals F_1, \ldots, F_d . Then there exists a d-copula C such that

$$F(\mathbf{x}) = C(F_1(x_1), \dots, F_d(x_d)), \quad \forall \mathbf{x} \in \mathbb{R}^d$$

and if the marginals are all continous, then C is uniquely defined.

Recap on Copulas Families of Copulas (d = 2)

Recap on Copulas Basic Idea Behind Vine Copulas

Recap on Copulas Basic Idea Behind Vine Copulas

► Factor full joint density into product of marginal densities and copula densities

Recap on Copulas Basic Idea Behind Vine Copulas

- Factor full joint density into product of marginal densities and copula densities
- ► Represent with sequence of trees, such that
 - ► Marginals are nodes in the first tree
 - ► Pair-copulas between the marginals are edges in the first tree
 - Edges from the previous tree becomes nodes in the next
 - ► Edges in subsequent trees are conditional pair-copulas
 - Nodes in a tree can be joined by an edge, if the nodes share a node from the previous tree

Recap on Copulas Basic Idea Behind Vine Copulas

- Factor full joint density into product of marginal densities and copula densities
- ► Represent with sequence of trees, such that
 - ► Marginals are nodes in the first tree
 - ► Pair-copulas between the marginals are edges in the first tree
 - Edges from the previous tree becomes nodes in the next
 - ► Edges in subsequent trees are conditional pair-copulas
 - Nodes in a tree can be joined by an edge, if the nodes share a node from the previous tree
- ► The chosen pair-copulas need not be the same

Recap on Copulas Basic Idea Behind Vine Copulas: Example

Example in d = 4

Recap on Copulas Estimating Vine Copulas

Sequential estimation

Sequential estimation

▶ Estimate tree structure with maximum spanning tree algorithm, using e.g. Kendall's τ as edge weights

Sequential estimation

- ▶ Estimate tree structure with maximum spanning tree algorithm, using e.g. Kendall's τ as edge weights
- ► For each edge, estimate a range of copulas with MLE, select one with e.g. BIC

Sequential estimation

- Estimate tree structure with maximum spanning tree algorithm, using e.g. Kendall's τ as edge weights
- ▶ For each edge, estimate a range of copulas with MLE, select one with e.g. BIC
- Use estimated copulas to calculate pseudo-observations for the next tree

Sequential estimation

- Estimate tree structure with maximum spanning tree algorithm, using e.g. Kendall's τ as edge weights
- ▶ For each edge, estimate a range of copulas with MLE, select one with e.g. BIC
- Use estimated copulas to calculate pseudo-observations for the next tree

Maximum likelihood estimation

► Full MLE using numerical optimisation methods

Recap on Copulas Estimating Vine Copulas

Sequential estimation

- Estimate tree structure with maximum spanning tree algorithm, using e.g. Kendall's τ as edge weights
- ▶ For each edge, estimate a range of copulas with MLE, select one with e.g. BIC
- Use estimated copulas to calculate pseudo-observations for the next tree

- ► Full MLE using numerical optimisation methods
- ► Can use sequential estimation results as starting values

Data German Day-Ahead Electricity Prices

► Estimation data range: 2015-01-06 – 2018-12-31

- ► Estimation data range: 2015-01-06 2018-12-31
- ▶ Downloaded from the ENTSO-E Transparency Platform
 - ► 2015-01-06 2018-09-30: DE-AT-LU bidding zone prices
 - ► 2018-10-01 2018-12-31: DE-LU bidding zone prices

- ► Estimation data range: 2015-01-06 2018-12-31
- ▶ Downloaded from the ENTSO-E Transparency Platform
 - ► 2015-01-06 2018-09-30: DE-AT-LU bidding zone prices
 - ► 2018-10-01 2018-12-31: DE-LU bidding zone prices
- Missing Hour 3 observations (due to summer time) interpolated from hours 2 and 4

- ► Estimation data range: 2015-01-06 2018-12-31
- ► Downloaded from the ENTSO-E Transparency Platform
 - ► 2015-01-06 2018-09-30: DE-AT-LU bidding zone prices
 - ► 2018-10-01 2018-12-31: DE-LU bidding zone prices
- Missing Hour 3 observations (due to summer time) interpolated from hours 2 and 4
- ► Duplicate Hour 3 observations (due to winter time) averaged

- ► Estimation data range: 2015-01-06 2018-12-31
- ► Downloaded from the ENTSO-E Transparency Platform
 - ► 2015-01-06 2018-09-30: DE-AT-LU bidding zone prices
 - ► 2018-10-01 2018-12-31: DE-LU bidding zone prices
- Missing Hour 3 observations (due to summer time) interpolated from hours 2 and 4
- ► Duplicate Hour 3 observations (due to winter time) averaged

⇒ 24 daily time series of 1668 observations

Marginal Models Overview

With
$$t \in \{1, ..., 1668\}$$
 and $h \in \{1, ..., 24\}$,

$$p_{t,h} := \log(P_{t,h} + K) = s_{t,h} + X_{t,h},$$

where

- ightharpoonup K = 500 (chosen as such from bid restrictions)
- $ightharpoonup s_{t,h}$ is a deterministic component for capturing season
- \triangleright $X_{t,h}$ is a stochastic component for capturing serial behaviour

Marginal Models Seasonal Component

Seasonal model specification

$$s_{t,h} = \alpha_{0,h} + \alpha_{1,h} \cdot t + \sum_{\phi \in \Phi} \left(\beta_{1,\phi,h} \sin(2\pi t\phi) + \beta_{2,\phi,h} \cos(2\pi t\phi) \right) + \gamma_{w,h} w_t,$$

where

- $ightharpoonup \Phi = \{1/365, 2/365\}$ is a set of frequencies
- $ightharpoonup w_t$ is a factor variable for weekdays

Marginal Models Seasonal Component

Seasonal model specification

$$s_{t,h} = \alpha_{0,h} + \alpha_{1,h} \cdot t + \sum_{\phi \in \Phi} \left(\beta_{1,\phi,h} \sin(2\pi t\phi) + \beta_{2,\phi,h} \cos(2\pi t\phi) \right) + \gamma_{w,h} w_t,$$

where

- $ightharpoonup \Phi = \{1/365, 2/365\}$ is a set of frequencies
- $ightharpoonup w_t$ is a factor variable for weekdays

Estimated with a linear model, residuals used for serial model

Marginal Models Serial Component

Serial model specification

Each model is chosen among a panel of ARMA-GARCH models:

- ► ARMA orders: $p, q \in \{0, 1\}$
- ▶ GARCH orders: $p, q \in \{0, 1\}$ such that at least one is nonzero
- ► GARCH types: GJR-GARCH and EGARCH
- Conditional distributions: Student's t-distribution and its skewed variant

Marginal Models Serial Component

Serial model specification

Each model is chosen among a panel of ARMA-GARCH models:

- ► ARMA orders: $p, q \in \{0, 1\}$
- ▶ GARCH orders: $p, q \in \{0, 1\}$ such that at least one is nonzero
- ► GARCH types: GJR-GARCH and EGARCH
- ► Conditional distributions: Student's *t*-distribution and its skewed variant

⇒ 48 different models for each series; estimated with MLE, model chosen with BIC

Marginal Models Serial Component

Hour	Model	Hour	Model
1	ARMA(1,1)-GJR-GARCH(1,1)-st	13	ARMA(1,1)-GJR-GARCH(1,0)-st
2	ARMA(1,1)-GJR-GARCH(1,1)-st	14	ARMA(1,1)-GJR-GARCH(1,0)-st
3	ARMA(1,1)-E-GARCH(1,1)-st	15	AR(1)-GJR-GARCH(1,0)-st
4	ARMA(1,1)-GJR-GARCH(1,1)-st	16	ARMA(1,1)-GJR-GARCH(1,0)-st
5	ARMA(1,1)-E-GARCH(1,1)-st	17	ARMA(1,1)-GJR-GARCH(1,1)-st
6	ARMA(1,1)-GJR-GARCH(1,1)-st	18	ARMA(1,1)-E-GARCH(1,1)-st
7	ARMA(1,1)-E-GARCH(1,1)-st	19	ARMA(1,1)-GJR-GARCH(1,1)-t
8	ARMA(1,1)-E-GARCH(1,1)-st	20	ARMA(1,1)-GJR-GARCH(1,1)-st
9	ARMA(1,1)-E-GARCH(1,1)-st	21	ARMA(1,1)-GJR-GARCH(1,1)-st
10	ARMA(1,1)-E-GARCH(1,1)-st	22	ARMA(1,1)-GJR-GARCH(1,1)-st
11	ARMA(1,1)-E-GARCH(1,1)-st	23	ARMA(1,1)-E-GARCH(1,1)-st
12	ARMA(1,1)-E-GARCH(1,1)-st	24	ARMA(1,1)-E-GARCH(1,1)-st

Joint Model Estimation of Vine Copula

 Transform the standardised residuals from each marginal model with its distribution function, i.e. t- and skew-t-distributions with estimated shape and skew parameters

- Transform the standardised residuals from each marginal model with its distribution function, i.e. t- and skew-t-distributions with estimated shape and skew parameters
- 2. Sequentially fit vine copula, where

- Transform the standardised residuals from each marginal model with its distribution function, i.e. t- and skew-t-distributions with estimated shape and skew parameters
- 2. Sequentially fit vine copula, where
 - ▶ Edge weights used for MST algorithm are empirical Kendall's τ 's

- Transform the standardised residuals from each marginal model with its distribution function, i.e. t- and skew-t-distributions with estimated shape and skew parameters
- 2. Sequentially fit vine copula, where
 - ightharpoonup Edge weights used for MST algorithm are empirical Kendall's au's
 - ► Each edge is tested for independence

- Transform the standardised residuals from each marginal model with its distribution function, i.e. t- and skew-t-distributions with estimated shape and skew parameters
- 2. Sequentially fit vine copula, where
 - ightharpoonup Edge weights used for MST algorithm are empirical Kendall's τ 's
 - ► Each edge is tested for independence
 - Pair-copulas considered are: Gaussian, Student's t, Clayton, Gumbel, Frank, and Joe, and their rotations

- Transform the standardised residuals from each marginal model with its distribution function, i.e. t- and skew-t-distributions with estimated shape and skew parameters
- 2. Sequentially fit vine copula, where
 - ightharpoonup Edge weights used for MST algorithm are empirical Kendall's τ 's
 - ► Each edge is tested for independence
 - Pair-copulas considered are: Gaussian, Student's t, Clayton, Gumbel, Frank, and Joe, and their rotations
 - Pair-copulas are chosen with BIC

- Transform the standardised residuals from each marginal model with its distribution function, i.e. t- and skew-t-distributions with estimated shape and skew parameters
- 2. Sequentially fit vine copula, where
 - ▶ Edge weights used for MST algorithm are empirical Kendall's τ 's
 - ► Each edge is tested for independence
 - Pair-copulas considered are: Gaussian, Student's t, Clayton, Gumbel, Frank, and Joe, and their rotations
 - ► Pair-copulas are chosen with BIC
- 3. Reestimate with MLE

Joint Model Summary of Results

► Very close to D-vine structure

- ► Very close to D-vine structure
- ► Many (but but not all) *t*-copulas in first tree

- ► Very close to D-vine structure
- ► Many (but but not all) *t*-copulas in first tree
- Strong, positive dependence in first tree, including tail dependence

- ► Very close to D-vine structure
- ► Many (but but not all) *t*-copulas in first tree
- Strong, positive dependence in first tree, including tail dependence
- ► A lot of independence or "near-independence" in later trees, in particular tree 19, 21, 22, 23, and 24
 - ► For tree 5 and later, over half of the edges are independence copulas
 - ► In total, about 53% of the copulas are independence copulas
 - On the other hand, dependence persists until tree 20

Simulation of Price Distribution Prediction Framework

Simulation of Price Distribution

1. Draw *N* samples, $u_{n,h}$ from the vine copula model, which will be an $N \times 24$ matrix, uniformly distributed (column-wise)

- 1. Draw *N* samples, $u_{n,h}$ from the vine copula model, which will be an $N \times 24$ matrix, uniformly distributed (column-wise)
- 2. Transform each column with the estimated quantile function for the residuals of the ARMA-GARCH models, producing t- or skew-t-distributed draws, $z_{n,h}$

Prediction Framework

- 1. Draw *N* samples, $u_{n,h}$ from the vine copula model, which will be an $N \times 24$ matrix, uniformly distributed (column-wise)
- 2. Transform each column with the estimated quantile function for the residuals of the ARMA-GARCH models, producing t- or skew-t-distributed draws, $z_{n,h}$
- 3. Use tail of input values for the ARMA-GARCH models together with $z_{n,h}$ to calculate $X_{n,h}$

Prediction Framework

- 1. Draw *N* samples, $u_{n,h}$ from the vine copula model, which will be an $N \times 24$ matrix, uniformly distributed (column-wise)
- 2. Transform each column with the estimated quantile function for the residuals of the ARMA-GARCH models, producing t- or skew-t-distributed draws, $z_{n,h}$
- 3. Use tail of input values for the ARMA-GARCH models together with $z_{n,h}$ to calculate $X_{n,h}$
- 4. Calculate $s_{n,h}$ and add to $X_{n,h}$ to obtain $p_{n,h}$

Prediction Framework

- 1. Draw *N* samples, $u_{n,h}$ from the vine copula model, which will be an $N \times 24$ matrix, uniformly distributed (column-wise)
- 2. Transform each column with the estimated quantile function for the residuals of the ARMA-GARCH models, producing t- or skew-t-distributed draws, $z_{n,h}$
- 3. Use tail of input values for the ARMA-GARCH models together with $z_{n,h}$ to calculate $X_{n,h}$
- 4. Calculate $s_{n,h}$ and add to $X_{n,h}$ to obtain $p_{n,h}$
- 5. Prices in EUR/MW are then $P_{n,h} = \exp p_{n,h} K$

Predicting the payoff distribution of a forward contract

Let $F(t, t_1, t_2)$ be a price in EUR/MW determined today (at time t) for delivery of power in the period $[t_1, t_2]$. Payoff on a long position is then

$$\sum_{s=t_1}^{t_2} \sum_{h \in H(s)} (P_{s,h} - F(t, t_1, t_2)),$$

where $H(s) \subseteq \{1, \dots, 24\}$ are the hours on day s for which the forward is in effect.

Predicting the payoff distribution of a forward contract

Let $F(t, t_1, t_2)$ be a price in EUR/MW determined today (at time t) for delivery of power in the period $[t_1, t_2]$. Payoff on a long position is then

$$\sum_{s=t_1}^{t_2} \sum_{h \in H(s)} (P_{s,h} - F(t,t_1,t_2)),$$

where $H(s) \subseteq \{1, ..., 24\}$ are the hours on day s for which the forward is in effect.

For example, if the delivery interval is February 2019, on hours 2–4 and 16–18, for 40 EUR/MW, the simulated mean payoff is 48.31.

Future Considerations

Future Considerations

► Majority of pair-copulas in first tree are *t*-copulas—model could be compared to a 24-dimensional *t*-copulas

Future Considerations

► Majority of pair-copulas in first tree are *t*-copulas—model could be compared to a 24-dimensional *t*-copulas