COMP 7180 Quantitative Methods for Data Analytics and Artificial Intelligence

Lecture 4: Dimensionality Reduction (Feature Extraction) – Part I

Dimensionality

- An object can be described by a set of characters
- Mathematically, an object can be defined as one point in the vector space
 - Each dimension of the vector space is used to describe one character of the object
 - Example: a pixel in an image/video

How High the dimensionality could be?

 A small gray image with the resolution 100×100 is represented as a 10,000dimensional vector in the pixel space

The movie "Kung Fu Panda 3": consider each pixel value as a dimension, the total dimension of this data will be 1280x720x25x60x120x3 = 500,000,000,000 !!!

Curse of Dimensionality

 From a theoretical point of view, increasing the number of features should lead to better performance. However ...

- In practice, the inclusion of more features leads to worse performance (i.e., curse of dimensionality)
 - High computational cost
 - Redundant information

Dimensionality Reduction

Motivation

- Overcome the curse of dimensionality
- The intrinsic dimension may be small
- Visualization: projection of high-dimensional data onto 2D or 3D
- Data compression: efficient storage and retrieval
- Noise removal: positive effect on query accuracy

Definition

 Generate a lower dimensional equivalence to the original highdimensional feature space while capturing essentials of original data according to some criteria

Applications

 Face recognition, handwritten digit recognition, text summarization, image retrieval, movie editing, protein classification, ...

Dimensionality Reduction

- Assumption: Data lies on or near a low d-dimensional subspace
- Axes of this subspace are effective representation of the data

Dimensionality Reduction

Compress / reduce dimensionality:

day	We	${ m Th}$	\mathbf{Fr}	\mathbf{Sa}	Su
customer	7/10/96	7/11/96	7/12/96	7/13/96	7/14/96
ABC Inc.	1	1	1	0	0
DEF Ltd.	2	2	2	0	0
GHI Inc.	1	1	1	0	0
KLM Co.	5	5	5	0	0
${f Smith}$	0	0	0	2	2
Johnson	0	0	0	3	3
${f Thompson}$	0	0	0	1	1

The above matrix is really "2-dimensional." All rows can be reconstructed by scaling [1 1 1 0 0] or [0 0 0 1 1]

Rank of a Matrix

- Q: What is rank of a matrix A?
- A: Number of linearly independent columns of A
- For example:

 Matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix}$ has rank $\mathbf{r} = \mathbf{2}$
 - >Why? The first two rows are linearly independent, but all three rows are linearly dependent.
- Why do we care about low rank?
 - We can write A as two "basis" vectors: [1 2 1] [-2 -3 1]
 - And new coordinates of : [1 0] [0 1] [1 -1]

Mathematic Definition of Dimensionality Reduction

Given the high-dimensional data point

$$\mathbf{x} = (x_1, x_2, \cdots, x_D)^T$$

Find a compact representation

$$\mathbf{y} = (y_1, y_2, \dots, y_d)^T \qquad d \le D$$

Construct the transformation function to capture essentials in the original

$$\Phi: \mathbf{x} \to \mathbf{y}$$

$$\rightarrow [32 \ 79 \ 54 \ ... \ ..]^T$$

Objectives of Dimensionality Reduction

- Generate a lower dimensional equivalence to the original highdimensional feature space while capturing essentials of original data according to some criteria
- Information preserving (unsupervised)
 - We would like to retain as much information (data variance/distance) as possible
 - Principal component analysis (PCA)
- Classification (supervised)
 - We would like to maximize the separation among classes
 - Linear discriminant analysis (LDA)

Principal Component Analysis (PCA)

What is PCA

- Principal component analysis (PCA)
 - A classic linear dimensionality reduction method (Pearson, 1901;
 Hotelling, 1930)
 - Reduce the dimensionality of a data set by finding a new set of projection directions (coordinates), smaller than the original set of directions (coordinates)
 - Preserve most of the samples' information
 - > Directions that capture maximum variance in data

Projection

- Vector projection
 - Dot/inner product of two vectors
 - $\mathbf{a} = [a_1, a_2]^T$, $\mathbf{b} = [b_1, b_2]$
 - $\mathbf{a}^{\mathsf{T}}\mathbf{b} = a_1b_1 + a_2b_2 = \|\mathbf{a}\|\|\mathbf{b}\|\cos\theta$
- Projection on "standard coordinate system"
 - Vector $[2, 4]^T$ projection on the x-axis is the dot production between [2, 4] and [1, 0]: 2*1 + 4*0 = 2
 - Vector $[2, 4]^T$ projection on the y-axis is the dot production between [2, 4] and [0, 1]: 2*0 + 4*1 = 4

Projection on other directions

- Project on the direction $\mathbf{u} = \begin{bmatrix} \frac{1}{\sqrt{2}} \end{bmatrix}$
- Project $[2, 4]^T$ on direction **u**:

$$2\frac{1}{\sqrt{2}} + 4\frac{1}{\sqrt{2}} = \frac{6}{\sqrt{2}}$$

• Project $[-1, 2]^T$ on direction **u**:

$$-1\frac{1}{\sqrt{2}} + 2\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

Project [-3, -1]^T on direction **u**:

$$-3\frac{1}{\sqrt{2}} + (-1)\frac{1}{\sqrt{2}} = -\frac{4}{\sqrt{2}}$$

Projection for Dimensionality Reduction

$$\mathbf{X} = \begin{bmatrix} 2 & -1 & -3 \\ 4 & 2 & -1 \end{bmatrix}$$

$$\mathbf{u}^{\mathsf{T}}\mathbf{X} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & -1 & -3 \\ 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} \frac{6}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{4}{\sqrt{2}} \end{bmatrix}$$

Data Points in 1D

$$\mathbf{Z} = \begin{bmatrix} \frac{6}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{4}{\sqrt{2}} \end{bmatrix}$$

Projection for Dimensionality Reduction

This process projects 2 dimensional data to 1 dimensional data (i.e., dimensionality reduction).

Data Points in 2D

Projection onto 1D

Data Points in 1D

$$\mathbf{X} = \begin{bmatrix} 2 & -1 & -3 \\ 4 & 2 & -1 \end{bmatrix} \qquad \mathbf{u}^{\mathsf{T}} \mathbf{X} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 & -1 & -3 \\ 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} \frac{6}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{4}{\sqrt{2}} \end{bmatrix} \qquad \mathbf{Z} = \begin{bmatrix} \frac{6}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{4}{\sqrt{2}} \end{bmatrix}$$

Linear Dimensionality Reduction

- A projection matrix $\mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_k]$ of size d^*k defines k linear projection directions.
- Each column u_k in U denotes a linear project direction for d dimensional data (assume k < d)
- Then projection matrix U can be used to transform a high dimensional sample x into a low dimensional sample z by:

Linear Dimensionality Reduction

There are infinite ways to project the data **X**.

- How do we learn the "best" projection matrix U?
- What criteria should we optimize for learning U?
- Principle Component Analysis (PCA) is an algorithm for doing this.

PCA as Maximizing Variance: A Simple Illustration

- Consider this two dimensional data
- Each data sample **x** is represented by 2 features $[x_1, x_2]^T$
- Considering ignoring the feature x₂ for each data sample
- Each 2-dimensional data sample x now becomes one-dimensional [x_1]
- Are we losing much information by simply removing x_2 ?
 - No. Most of the data spread is along x_1 (very little variance along x_2)

PCA as Maximizing Variance: A Simple Illustration

- Consider this two dimensional data
- Each data sample **x** is represented by 2 features $[x_1, x_2]^T$
- Considering ignoring the feature x₂ for each data sample
- Each 2-dimensional data sample \mathbf{x} now becomes one-dimensional [x_1]
- Are we losing much information by simply removing x_2 ?
 - Yes. This data has substantial variance along both features.

PCA as Maximizing Variance: A Simple Illustration

- Now consider we project the data into another two directions u₁, u₂
- Each data sample **x** is represented by 2 features $[z_1, z_2]^T$
- Considering ignoring the feature z₂ for each data sample
- Each 2-dimensional data sample \mathbf{x} now becomes one-dimensional [z_1]
- Are we losing much information by simply removing z_2 ?
 - No. Most of the data spread is along z_1 (very little variance along z_2)

Projecting \mathbf{x}_i (a *d*-dimensional feature vector) to a one-dimensional vector \mathbf{z}_i by \mathbf{u}_1 : $z_i = \mathbf{u}_1^T \mathbf{x}_i = \mathbf{x}_i^T \mathbf{u}_1$

- Projecting \mathbf{x}_i (a *d*-dimensional feature vector) to a one-dimensional vector \mathbf{z}_i by \mathbf{u}_1 : $z_i = \mathbf{u}_1^T \mathbf{x}_i = \mathbf{x}_i^T \mathbf{u}_1$
- Therefore, the mean of projections of all data (i.e., "center" of the green points) can be computed as

$$\frac{\sum_{i=1}^{n} \mathbf{x}_{i}^{T} \mathbf{u}_{1}}{n} = \frac{\sum_{i=1}^{n} \mathbf{x}_{i}^{T}}{n} \mathbf{u}_{1} = \overline{\mathbf{x}}^{T} \mathbf{u}_{1}$$

 $\bar{\mathbf{x}}$ is the mean feature vector $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$

 Variance of the projected data (i.e., "spread" of the green points)

$$\frac{\sum_{i=1}^{n} (\mathbf{x}_i^T \mathbf{u}_1 - \bar{\mathbf{x}}^T \mathbf{u}_1)^2}{n} = \frac{\sum_{i=1}^{n} ((\mathbf{x}_i^T - \bar{\mathbf{x}}^T) \mathbf{u}_1)^2}{n}$$

Variance of the projected data

$$\frac{\sum_{i=1}^{n}((\mathbf{x}_i^T - \overline{\mathbf{x}}^T)\mathbf{u}_1)^2}{n} = \mathbf{u}_1^T \frac{\sum_{i=1}^{n}(\mathbf{x}_i - \overline{\mathbf{x}})(\mathbf{x}_i^T - \overline{\mathbf{x}}^T)}{n} \mathbf{u}_1$$

Let $\mathbf{S} = \frac{\sum_{i=1}^n (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i^T - \overline{\mathbf{x}}^T)}{n}$, the variance of the projected data is $\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1$

• **S** is the d^*d data covariance matrix. If data is already centered (i.e., $\bar{\mathbf{x}} = 0$), then $\mathbf{S} = \frac{\sum_{i=1}^{n} (\mathbf{x}_i)(\mathbf{x}_i^T)}{n} = \frac{1}{n} \mathbf{X}^T \mathbf{X}$

- Objective: We want \mathbf{u}_1 that the variance of the project data is maximized $\max_{\mathbf{u}_1^T} \mathbf{S} \mathbf{u}_1$
- To prevent trivial solution (max variance = infinite), assume $\|\mathbf{u}_1\|_2 = \sqrt{\mathbf{u}_1^T \mathbf{u}_1} = 1$. Therefore $\mathbf{u}_1^T \mathbf{u}_1 = 1$
- Therefore, \mathbf{u}_1 can be obtained by solving the following optimization problem

$$\max_{\mathbf{u}_1} \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 + \lambda_1 (1 - \mathbf{u}_1^T \mathbf{u}_1)$$

$$\lambda_1 \text{ is a Lagrange multiplier}$$

- The objective: $\max_{\mathbf{u}_1} \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 + \lambda_1 (1 \mathbf{u}_1^T \mathbf{u}_1)$
- Obtaining the optimal solution by taking the derivative with respect to u₁ and setting to zero

$$\mathbf{S}\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$$

- Thus \mathbf{u}_1 is an eigenvector of **S** (with corresponding eigenvalue λ_1)
- **S** is a *d***d* matrix, there are *d* possible eigenvectors, which ones to take?

• Note that the constraint $\mathbf{u}_1^T \mathbf{u}_1 = 1$, the variance of the projected data is

$$\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 = \mathbf{u}_1^T \lambda_1 \mathbf{u}_1 = \lambda_1 \mathbf{u}_1^T \mathbf{u}_1 = \lambda_1$$

• Therefore, variance is maximized when \mathbf{u}_1 is the (top) eigenvector with largest eigenvalue.

Other directions can also be found similarly (with each being orthogonal to all previous ones)

• Question: What is u₂?

$$\max_{\mathbf{u}_{2}} \mathbf{u}_{2}^{T} \mathbf{S} \mathbf{u}_{2}$$

$$s. t. \mathbf{u}_{2}^{T} \mathbf{u}_{2} = 1, \mathbf{u}_{2}^{T} \mathbf{u}_{1} = 0$$

$$\max_{\mathbf{u}_{2}} \mathbf{u}_{2}^{T} \mathbf{S} \mathbf{u}_{2} - \lambda (\mathbf{u}_{2}^{T} \mathbf{u}_{2} - 1) - \phi \mathbf{u}_{2}^{T} \mathbf{u}_{1}$$

$$\bigcup_{\mathbf{u}_{2}} \frac{\partial}{\partial \mathbf{u}_{2}} (\mathbf{u}_{2}^{T} \mathbf{S} \mathbf{u}_{2} - \lambda (\mathbf{u}_{2}^{T} \mathbf{u}_{2} - 1) - \phi \mathbf{u}_{2}^{T} \mathbf{u}_{1}) = 0$$

• Question: What is u₂?

$$\frac{\partial}{\partial \mathbf{u}_{2}} (\mathbf{u}_{2}^{T} \mathbf{S} \mathbf{u}_{2} - \lambda (\mathbf{u}_{2}^{T} \mathbf{u}_{2} - 1) - \phi \mathbf{u}_{2}^{T} \mathbf{u}_{1}) = 0$$

$$\downarrow \mathbf{S} \mathbf{u}_{2} - 2\lambda \mathbf{u}_{2} - \phi \mathbf{u}_{1} = 0$$

$$\phi = 0 ? \qquad \downarrow \mathbf{S} \mathbf{u}_{2} = \lambda \mathbf{u}_{2}$$

 \mathbf{u}_2 is the eigenvector with the second largest eigenvalue.

Steps of Principle Component Analysis

- Center the data (subtract the mean $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$ from each data point) to get \mathbf{X}_c
- Compute the covariance matrix S using the centered data as

$$\mathbf{S} = \frac{1}{n} \mathbf{X}_c \mathbf{X}_c^T$$

- Do an eigen-decomposition of the covariance matrix S
- Take first k leading eigenvectors $\{\mathbf{u}_1, ..., \mathbf{u}_k\}$ with k largest eigenvalue $\{\lambda_1, ..., \lambda_k\}$
- The final k dimensional representation of data is obtained by

$$\mathbf{Z} = \mathbf{U}^{\mathsf{T}} \mathbf{X}_{c}$$

How many Principal Components to Use?

• Eigenvalue λ_i measures the variance captured by the corresponding projection direction \mathbf{u}_i

$$\mathbf{u}_i^T \mathbf{S} \mathbf{u}_i = \mathbf{u}_i^T \lambda_i \mathbf{u}_i = \lambda_i \mathbf{u}_i^T \mathbf{u}_i = \lambda_i$$

- The "left-over" variance will therefore be $\sum_{i=k+1}^d \lambda_i$
- Can choose k by looking at what fraction of variance is captured by the first k projection directions: \mathbf{u}_1 , \mathbf{u}_2 , ... \mathbf{u}_k
- Another direct way is to look at the spectrum of the eigenvalues plot, or the plot of reconstruction error vs k

How many Principal Components to Use?

PCA for image compression

$$z = U^T x$$

$$\overline{x} = U z$$

$$\overline{x} = U U^T x$$

Original Image 64*64

