

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2020

QUÍMICA

TEMA 8: EQUILIBRIOS DE PRECIPITACIÓN

- Junio, Ejercicio C2
- Reserva 1, Ejercicio C2
- Reserva 2, Ejercicio B5
- Reserva 2, Ejercicio C2
- Reserva 3, Ejercicio C2
- Reserva 4, Ejercicio C2
- Septiembre, Ejercicio B5
- Septiembre, Ejercicio C4

- a) Calcule la solubilidad del fluoruro de calcio, CaF_2 , en agua pura.
- b) Calcule la solubilidad del fluoruro de calcio, ${\rm CaF_2}$, en una disolución de fluoruro de sodio, ${\rm NaF}$, 0'2 M.

Dato: $K_s(CaF_2) = 3'5 \cdot 10^{-11}$

QUÍMICA. 2020. JUNIO. C2

RESOLUCIÓN

a) El equilibrio de ionización del compuesto es: $CaF_2 \iff Ca^{2+} + 2F^{-}$

$$K_s = [Ca^{2+}] \cdot [F^-]^2 = s \cdot (2s)^2 = 4s^3 = 3'5 \cdot 10^{-11} \Rightarrow s = 2'06 \cdot 10^{-4} M$$

b)

$$3'5 \cdot 10^{-11} = \left[Ca^{2+} \right] \cdot \left[F^{-} \right]^{2} = \left[Ca^{2+} \right] \cdot \left[0'2 \right]^{2} \Rightarrow s = \left[Ca^{2+} \right] = 8'75 \cdot 10^{-10} \ M \ .$$

Si el producto de solubilidad del yoduro de plata, AgI, $1'5 \cdot 10^{-16}$ a 25° C

a) Calcule la concentración, en g/L, de iones Ag^+ de la disolución saturada, basándose en el equilibrio correspondiente.

b) ¿Se formará precipitado de AgI si se mezclan 10 mL de NaI de concentración $1\cdot10^{-9}$ M y 30 mL de AgNO $_3$ de concentración $4\cdot10^{-7}$ M ?

Datos: Masa atómica relativa: Ag = 108.

QUÍMICA. 2020. RESERVA 1. EJERCICIO C2

RESOLUCIÓN

a) El equilibrio de ionización del compuesto es: AgI \rightleftharpoons Ag $^+$ + I $^-$

$$K_s = [Ag^+] \cdot [I^-] = s \cdot s = s^2 \Rightarrow s = \sqrt{1'5 \cdot 10^{-16}} = 1'22 \cdot 10^{-8} M$$

$$[Ag^+]$$
 = s = 1'22·10⁻⁸ moles/L· $\frac{108 g}{1 mol}$ = 1'32·10⁻⁶ g/L

b) Calculamos las concentraciones de $\left[Ag^{+}\right]y\left[I^{-}\right]$.

$$\left[Ag^{+}\right] = \frac{0.03 \cdot 4.10^{-7}}{0.04} = 3.10^{-7}$$

$$\begin{bmatrix} I^{-} \end{bmatrix} = \frac{0.01 \cdot 1.10^{-9}}{0.04} = 2.5 \cdot 10^{-10}$$

$$\left[Ag^{+}\right] \cdot \left[I^{-}\right] = 3 \cdot 10^{-7} \cdot 2' \cdot 5 \cdot 10^{-10} = 7' \cdot 5 \cdot 10^{-17} < K_{sp} = 1' \cdot 5 \cdot 10^{-16} \Longrightarrow \text{No precipita}$$

Sabiendo que el valor de K_s del $Mg(OH)_2$ a 25°C es 1'2·10⁻¹².

- a) Exprese el valor de K_s en función de la solubilidad.
- b) Razone cómo afectará a su solubilidad en agua la adición de MgF, a la disolución.
- c) Justifique cómo afectará a su solubilidad un aumento de pH.
- **OUÍMICA. 2020. RESERVA 2. EJERCICIO B5**

RESOLUCIÓN

a) El equilibrio de ionización del compuesto es: $Mg(OH)_2 \rightleftharpoons Mg^{2+} + 2OH^{-}$

La constante del producto de solubilidad del compuesto es:

$$K_s = \lceil Mg^{2+} \rceil \cdot \lceil OH^- \rceil^2 = s \cdot (2s)^2 = 4s^3 = 1'2 \cdot 10^{-12}$$

- b) La adición de fluoruro de magnesio, $\mathrm{MgF_2}$, proporciona a la disolución iones $\mathrm{Mg^{2+}}$, y al aumentar su concentración, provoca que se favorezca la reacción entre ellos y los iones hidróxidos para producir el compuesto poco soluble, es decir, la adición del ión común $\mathrm{Mg^{2+}}$ al equilibrio, hace que éste se desplace hacia la izquierda precipitando el compuesto poco soluble y disminuyendo su solubilidad.
- c) Al aumentar el pH de la disolución disminuye la concentración de iones $\rm H_3O^+$ y aumenta la concentración de iones $\rm OH^-$. Según el principio de Le Chatelier, el equilibrio se desplazará hacia la izquierda para compensar el aumento de concentración de iones $\rm OH^-$, con lo cual disminuye la solubilidad del compuesto.

- a) Sabiendo que en 200 mL de una disolución saturada de SrF_2 hay disueltos 14'6 mg de dicha sal, calcule su producto de solubilidad.
- b) Determine justificadamente, si se forma precipitado de PbI_2 al mezclar 50 mL de una disolución de KI de concentración $1'2\cdot10^{-3}$ M con 30 mL de otra disolución de $Pb(NO_3)_2$ de concentración $3\cdot10^{-3}$ M .

Datos: $K_s(PbI_2) = 7'9 \cdot 10^{-9}$; Masas atómicas relativas: Sr = 87'6; F = 19.

QUÍMICA. 2020. RESERVA 2. EJERCICIO C2

RESOLUCIÓN

a) Calculamos la molaridad de la disolución

$$M = \frac{\frac{g}{Pm}}{V} = \frac{\frac{14'6 \cdot 10^{-3}}{125'6}}{0'2} = 5'81 \cdot 10^{-4}$$

El equilibrio de ionización del compuesto es: $SrF_2 \rightleftharpoons Sr^{2+} + 2F^{-}$

$$K_s = \left[Sr^{2+} \right] \cdot \left[F^{-} \right]^2 = s \cdot (2s)^2 = 4s^3 = 4 \cdot (5'81 \cdot 10^{-4})^3 = 7'85 \cdot 10^{-10}$$

b) Calculamos las concentraciones de $\lceil Pb^{2+} \rceil$ y $\lceil I^- \rceil$.

$$[Pb^{2+}] = \frac{0.03 \cdot 3.10^{-3}}{0.08} = 1.125 \cdot 10^{-3}$$

$$[I^{-}] = \frac{0.05 \cdot 1.2 \cdot 10^{-3}}{0.08} = 7.5 \cdot 10^{-4}$$

$$\left[Pb^{2+}\right] \cdot \left[I^{-}\right]^{2} = 1'125 \cdot 10^{-3} \cdot (7'5 \cdot 10^{-4})^{2} = 6'32 \cdot 10^{-10} < K_{sp} = 7'9 \cdot 10^{-9} \Rightarrow \text{ No precipita}$$

b)

Sabiendo que el producto de solubilidad del difluoruro de plomo, PbF_2 , a $25^{\circ}C$ es $3'6\cdot10^{-8}$. Determine:

- a) La masa de PbF₂ que se puede disolver en 100 mL de agua.
- b) La masa de PbF_2 que se puede disolver en 100 mL de una disolución de $Pb(NO_3)_2$ de concentración 0'02 M.

Masas atómicas: F = 19; Pb = 207

QUÍMICA. 2020. RESERVA 3. EJERCICIO C2

RESOLUCIÓN

a) La solubilidad de un compuesto viene determinada por la concentración de soluto en una disolución saturada.

$$PbF_{2}(s) \rightleftharpoons Pb^{2+}(ac) + 2F^{-}(ac)$$

$$s \qquad 2s$$

$$K_{s} = \left[Pb^{2+}\right] \cdot \left[F^{-}\right]^{2} = s \cdot (2s)^{2} = 4s^{3} \Rightarrow s = \sqrt[3]{\frac{K_{s}}{4}} = \sqrt[3]{\frac{3'6 \cdot 10^{-8}}{4}} = 2'08 \cdot 10^{-3} \text{ M}$$

$$s = 2'08 \cdot 10^{-3} \frac{\text{moles}}{L} \cdot \frac{245 \text{ g PbF}_{2}}{1 \text{ mol PbF}_{2}} = 0'5096 \text{ g/L} = 5'096 \cdot 10^{-2} \text{ g/100 mL}$$

$$K_s = [Pb^{2+}] \cdot [F^-]^2 = 0'02 \cdot (2s)^2 = 3'6 \cdot 10^{-8} \Rightarrow 4s^2 = 1'8 \cdot 10^{-6} \Rightarrow s = 6'7 \cdot 10^{-4} \text{ M}$$

$$s = 6'7 \cdot 10^{-4} \ \frac{moles}{L} \cdot \frac{245 \ g \ PbF_2}{1 \ mol \ PbF_2} = 0'1643 \ g \ / \ L = 1'643 \cdot 10^{-2} \ g \ / \ 100 \ mL$$

A 20°C la solubilidad del hidróxido de plata, AgOH, en agua pura es 0'015 g/L. Calcule:

a) El producto de solubilidad a 20°C.

b) La solubilidad del hidróxido de plata a esa temperatura en una disolución de pH = 12.

Masas atómicas: Ag = 108; O = 16; H = 1.

QUÍMICA. 2020. RESERVA 4. EJERCICIO C2

RESOLUCIÓN

a) La solubilidad de un compuesto viene determinada por la concentración de soluto en una disolución saturada.

$$AgOH \rightleftharpoons Ag^+ + OH^-$$

$$s = 0'015 \text{ g} / L \cdot \frac{1 \text{ mol AgOH}}{125 \text{ g AgOH}} = 1'2 \cdot 10^{-4} \text{ moles} / L$$

$$K_s = [Ag^+] \cdot [OH^-] = s \cdot s = s^2 = (1'2 \cdot 10^{-4})^2 = 1'44 \cdot 10^{-8}$$

b) Si el pH de la disolución es 12, el pOH es 2, o sea, la concentración de iones OH - será 10⁻². La concentración de iones Ag + se podrá calcular:

$$s = \left[Ag^{+}\right] = \frac{K_{s}}{\left[OH^{-}\right]} = \frac{1'44 \cdot 10^{-8}}{10^{-2}} = 1'44 \cdot 10^{-6} \text{ mol/L}$$

Disponemos en un recipiente de una disolución saturada de ${\rm CaF_2(aq)}$ en equilibrio con ${\rm CaF_2(s)}$, depositado en el fondo. Explique qué sucederá si se añade:

- a) Agua.
- b) Fluoruro de calcio, CaF₂(s).
- c) Fluoruro de sodio, NaF(s).
- QUÍMICA. 2020. SEPTIEMBRE. B5

RESOLUCIÓN

a) El equilibrio de ionización del compuesto es: $CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2F^{-}(aq)$

Al añadir agua se disuelve más cantidad de CaF₂(s), pero la solubilidad del compuesto no varía.

- b) Al añadir CaF₂(s) esto no influye en el equilibrio, por lo tanto, no ocurre nada.
- c) Al añadir NaF(s), aumentamos la concentración de $[F^-]$, por lo tanto, el equilibrio se desplaza hacia la izquierda, es decir, aumenta la concentración de $CaF_2(s)$, o lo que es lo mismo, disminuye la solubilidad.

- a) Se mezclan 100 mL de una disolución de nitrato de talio (TINO $_3$) $4\cdot10^{-2}$ M con 300 mL de otra disolución de cloruro de sodio (NaCl) $8\cdot10^{-3}$ M. Sabiendo que el producto de solubilidad del cloruro de talio (TICl) es $1'9\cdot10^{-4}$, deduzca si precipitará dicha sal en estas condiciones.
- b) Calcule la solubilidad del ${\rm Mg(OH)}_2$ en agua pura, sabiendo que su producto de solubilidad es $3'4\cdot10^{-4}$.
- QUÍMICA. 2020. SEPTIEMBRE. C4

RESOLUCIÓN

a) El equilibrio de ionización del compuesto es: TlCl \rightleftarrows Tl $^+$ + Cl $^-$

Calculamos las concentraciones de los iones

$$\left[\text{Tl}^{+} \right] = \frac{0'1 \cdot 4 \cdot 10^{-2}}{0'4} = 0'01$$

$$\left[\text{Cl}^{-} \right] = \frac{0'3 \cdot 8 \cdot 10^{-3}}{0'4} = 6 \cdot 10^{-3}$$

Y como: $[T1^+] \cdot [C1^-] = 0'01 \cdot 6 \cdot 10^{-3} = 6 \cdot 10^{-5} < 1'9 \cdot 10^{-4} \implies \text{No precipita}$

b) El equilibrio de ionización del compuesto es: $Mg(OH)_2 \rightleftharpoons Mg^{2+} + 2OH^{-}$

$$K_s = [Mg^{2+}] \cdot [OH^-]^2 = s \cdot (2s)^2 = 4s^3 \Rightarrow s = \sqrt[3]{\frac{3'4 \cdot 10^{-4}}{4}} = 0'044 M.$$