ECE 477 DESIGN REVIEW TEAM 4 — SPRING 2015

Matt Carpenter, Grant Gumina, Chris Holly, and Michael Pak

OUTLINE

- Project overview
- Project-specific success criteria
- Block diagram
- Component selection rationale
- Packaging design
- Schematic and theory of operation
- PCB layout
- Software design/development status
- Project completion timeline
- Questions / discussion

PROJECT OVERVIEW

 A system which allows the user to draw and manipulate objects in a virtual environment

 Utilizes a pen whose location in the 3D workspace is known to provide an intuitive, natural interface

 Environment can be viewed and settings modified remotely through a web interface

PROJECT-SPECIFIC SUCCESS CRITERIA

- An ability to remotely view the canvas as well as analytical data using a web or mobile interface.
- An ability to identify and communicate to the user (using some form of haptic feedback mechanism) when the stylus is in close proximity to a previously drawn object.
- An ability to assist the user in drawing straight lines and other primitive shapes using smoothing algorithms.
- An ability to determine the location of a point in 3D space based on wireless signal strength as measured from multiple locations.
- An ability to maintain reasonable (percentage TBD) accuracy locating the stylus regardless of its orientation.

BLOCK DIAGRAM

COMPONENT SELECTION: MICROCONTROLLER

TEXAS INSTRUMENTS

- Selection Criteria:
 - Performance
 - Community support and software tools
 - Power consumption

 Considerations: ATmega328p, TI MSP430, and PIC24FJ256DA206-I/PT

Final Decision: ATmega328p for strong community

COMPONENT SELECTION: CENTRAL COMPUTING DEVICE

ullet Selection based on Cost and amount of I/O

 Decision between Beaglebone Black, Raspberry Pi, and Hummingboard

Raspberry Pi was overall winner

COMPONENT SELECTION: RF MODULE

- Requirements
 - Operate in the unlicensed 433-444 MHz band
 - Release and experience minimal interference from system
 - Support RSSI (Received Signal Strength Indicator)

- Final Selection:
 - Link TRM-433 Transceiver IC

COMPONENT SELECTION: ORIENTATION SENSOR

- Inertial Measurement Unit
 - Combines Accelerometer, Compass, Gyroscope
 - Allows device orientation to be determined with reasonable accuracy

- Contenders: Razor IMU & Sensor Stick
 - Sensor Stick similarly equipped while being smaller, less expensive

PACKAGING DESIGN - STYLUS

Two piece, 3D printed construction comprised of outer body and inner core to which PCBs are attached

- Modular
- Inexpensive to manufacture
- Easy to swap in different grip designs for testing

PACKAGING DESIGN: MAIN BOARD & RECEIVERS

Main Board:

• Simple combination of two sheets of Polycarbonate/Acrylic with board attached in the middle to protect it from damage

• Receivers:

 Dependent on results of experiments once boards have been produced and assembled

SCHEMATIC/THEORY OF OPERATION: STYLUS

SCHEMATIC/THEORY OF OPERATION: RECEIVER

SCHEMATIC/THEORY OF OPERATION: MAIN BOARD – POWER CIRCUIT

SCHEMATIC/THEORY OF OPERATION: MAIN BOARD - CONNECTIVITY

SCHEMATIC/THEORY OF OPERATION: MAIN BOARD

PCB LAYOUT — STYLUS

PCB LAYOUT — RECEIVER

PCB LAYOUT - MAIN BOARD

SOFTWARE DEVELOPMENT STATUS: RASPBERRY PI ENVIRONMENT

- Camera Location: In Progress
- Object Drawing
 - Single Point Objects: COMPLETE
 - Double Point Objects: In Progress
- Intersection Detection: COMPLETE
- Save/Load: Future

SOFTWARE DEVELOPMENT STATUS: RASPBERRY PI INTERFACE

- Coordinate Input (UART)
 - Determine Transmission Standards: In Progress
 - Convert Raw Signal to Float: COMPLETE
- Button Input (GPIO): In Progress
- Haptic Feedback (GPIO): In Progress

SOFTWARE DEVELOPMENT STATUS: MICROCONTROLLER

- Process RSSI Input (SPI): In Progress
- Transmit Coordinates (UART): COMPLETE
- Process IMU Input (I²C): Future
- Compute Coordinates: In Progress
- Smooth Coordinates: Future

PROJECT COMPLETION TIMELINE

Projection Completion Goal: 3rd week of April

SOFTWARE: TESTING STILL TO BE DONE

- Camera Alignment
- Dual Point Object Drawing
- Saving/Loading Objects
- GPIO (Button) Input
- Haptic Feedback
- Computing/Smoothing Coordinates
- Processing IMU Input

RASPBERRY PI SOFTWARE LAYOUT

Hardware

Module

Function

Variables

External Call

RASPBERRY PI SOFTWARE PROGRESS

