

Inhalt

Pflic	htmodule	2
1.1 E	Bachelorarbeit	2
1.2 E	Betriebsorganisation	3
1.3 E	Betriebswirtschaftslehre	4
1.4 E	Buchführung und Bilanzierung	6
1.5 E	Business Intelligence	7
1.6	Computer Aided Design	8
1.7 E	Elektrotechnik	9
1.8 E	Englisch	11
	Enterprise Resource Planning	
1.10	Fertigungssysteme	13
	Fertigungstechnik	
1.12	Informatik	15
1.13	Kostenrechnung	16
1.14	Logistik	18
1.15	Marketing und Vertrieb	19
	Maschinen- und Anlagentechnik	
	Mathematik für Ingenieurwissenschaft 1	
1.18	Planung und Controlling	22
1.19	Praxisphase	23
1.20	Projektarbeit	24
1.21	Projektmanagement	25
1.22	Qualitätsmanagement	26
1.23	Recht	27
1.24	Technische Mechanik 1	28
1.25	Technische Mechanik 2	29
		30

Hinweis

Die Module in diesem Inhaltsverzeichnis können durch Anklicken direkt angesprungen werden. Zurück gelangen Sie durch einen Klick in die jeweilige Überschrift.

Ggf. unterstützt Ihr Browser diese Funktion nicht.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 2/31

1 Pflichtmodule

1.1 Bachelorarbeit

I.I Bac	neioraro	en								
Bachelorarbeit										
Daono										
Kürzel:	BA	Workload:	360 h	Leistungspunkte:	12					
Semester:										
Lehrveranst	altungen					Präsenzzeit	Selbststudium			
Bachelorarbe	eit					h		360 h		
Lehrformen							•			
Bachelorarbe	eit									
Gruppengrö	ße									
Einzel- oder	Gruppenarbeit									
Qualifikation	nsziele									
Die Bachelor	arbeit soll zeig	gen, dass die/d	er Studierende b	efähigt ist, innerhalb	einer v	orgegebenen Frist eine	praxisorientierte	:		
Aufgabe aus	ihrem/seinem	Fachgebiet so	wohl in ihren fac	chlichen Einzelheiten	als auc	ch in den fachübergreife	enden			
Zusammenh	ingen nach wis	ssenschaftliche	n und fachprakt	ischen Methoden selb	ständi	g zu bearbeiten.				
Inhalte										
siehe BPO										
Verwendbar	keit des Modu	ls								
Pflichtmodul	im Studiengar	ng Maschinenl	oau							
Pflichtmodul	im Studiengar	ng Bionik								
1	Pflichtmodul im Studiengang Wirtschaftsingenieurwesen									
Pflichtmodul	Pflichtmodul im Studiengang Mechatronik									
l .	Pflichtmodul im Studiengang Robotik und Automatisierung									
Pflichtmodul	im Studiengar	ng Sustainable	Engineering an	d Management						
Tailnahmay										

Teilnahmevoraussetzung

135 Kreditpunkte

Prüfungsformen

schriftliche Ausarbeitung

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiche Bearbeitung der Bachelorarbeit

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Alle Professorinnen und Professoren des Fachbereichs

Modulbeauftragte(r)

Alle Professorinnen und Professoren des Fachbereichs

Sonstige Informationen

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 3/31

1.2 Betriebsorganisation

Betriebsorganisation												
Organization												
Kürzel: BOS Workload: 180 h Leistungspunkte: 6												
Semester:	3	Dauer:	Semester	Häufigkeit:	Regel	lmäßig im Wintersemes	ster					
Lehrveranst	altungen					Präsenzzeit	Selbststudium					
2 SWS Vorle	2 SWS Vorlesung 30 h 6											
2 SWS Übung 30 h 60 h												
Lehrformen												

Lehrformer

Vorlesung, Übung

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Ubung: 30

Qualifikationsziele

Die Studierenden kennen den Sinn und die Notwendigkeit von Organisation und können deren Beitrag zum unternehmerischen Erfolg beurteilen. Sie kennen die typischen Determinanten von Organisationstrukturen und sind in der Lage, eine kontextbezogene organisationale Unternehmensanalyse durchzuführen. Auf den Prinzipien der Spezialisierung und Koordination erlernen die Studierenden die typischen organisationalen Strukturformen. Sie sind auf dieser Basis in der Lage, bestehende Strukturformen zu analysieren, zu bewerten und sinnvolle, kontextbezogenen Strukturformen für Unternehmen vorzuschlagen.

Die Studierenden kennen den Gedanken der Prozessorganisation. Sie erlernen Techniken und Methoden, um Prozesse im Unternehmen zu identifizieren, zu modellieren, zu bewerten und zu verbessern. Sie sind daher in der Lage, Prozesse im Unternehmen zu managen und die Effektivität und die Effizienz von Prozesse im Unternehmen zu verbessern.

Die Studierenden kennen Anlässe und Charakter der Organisationsentwicklung und erkennen in diesem Rahmen die Notwendigkeit von Change Management. Sie erhalten ein Verständnis des Verhaltens von Menschen in Organisationen sowie das Rüstzeug, um Veränderungen im Unternehmen auf organisationspsychologischer Ebene zu managen. Sie begreifen Agilität als eine wesentliche organisatorische Kompetenz der Organisationsentwicklung. Sie verstehen Organisationsentwicklung als Problemlösungsprozess und sind vertraut mit den wesentlichen Methoden und Techniken der Organisationsentwicklung, so dass Sie den Prozess der Organisationsentwicklung in Unternehmen aktiv begleiten können.

Durch die Übungen werden die Studierenden befähigt, die erlernten Kenntnisse anzuwenden und die getroffenen Entscheidungen sowie die entwickelten Lösungskonzepte präzise zu präsentieren, kontrovers zu diskutieren sowie zu verteidigen.

Inhalte

- Grundlagen der Organisation (Grundgedanke, begriffliche Abgrenzung, situativer Ansatz)
- Organisation als Spezialisierung (Aufgabenanalyse, Aufgabensynthese, Strukturformen, Erfolgsbetrachtung Strukturformen)
- Organisation als Koordination (Koordinatiosnproblem, hierachische und hiereachiefreie Koordinationsinstrumente)
- Prozessorganisation (Grundlagen, Prozessidentifizierung, -priorisierung, -modellierung, -bewertung, -analyse, -verbesserung)
- Organisationsentwicklung (Grundlagen, Change Management, Agilität, Methoden und Techniken)

In den Übungen werden die erlernten Inhalte anhand von praktischen Beispielen und Fallstudien angewendet und vertieft.

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Teilnahmevoraussetzung

keine

Prüfungsformen

mündliche Prüfung

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. C. Brast

Modulbeauftragte(r)

Prof. Dr. C. Brast

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekanntgegeben.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 4/31

1.3 Betriebswirtschaftslehre

Betriebswirtschaftslehre												
Business Administration												
Kürzel: BWL Workload: 180 h Leistungspunkte: 6												
Semester:	2	Dauer:	Semester	Häufigkeit:	Regel	mäßig im Sommerseme	ester					
Lehrveranst	altungen					Präsenzzeit	Selbststudium					
3 SWS Vorle	esung		45 h		90 h							
1 SWS Übun	ıg			15 h		30 h						
Labufauman												

Lehrformen

Vorlesung, Übung

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Übung: 30

Qualifikationsziele

Die Studierenden kennen Sinn und Notwendigkeit der Betriebswirtschaftslehre und haben deren ökonomische Prinzipien verstanden.

Die Studierenden kennen unterschiedlichen Unternehmenstypen und sind in der Lage, zentrale konstitutive unternehmerische Entscheidungen zu beurteilen und zu treffen. Sie kennen die grundlegenden Ansätze der Unternehmensführung und sind vertraut mit den zentralen Arbeitnehmerrechten.

Sie kennen die zentralen Bestandteile einer Unternehmensstrategie, lernen ausgewählte Strategien kennen und sind der Lage, mithilfe einschlägiger Instrumente eine Strategie zu entwickeln und zu formulieren. Sie sind vertraut mit dem Zielverständnis im Unternehmenskontext und können ausgewählte Formalziele formulieren. Sie sind vertraut mit den Schritten des Planungsprozesses zur Umsetzung von Strategien.

Die Studierenden kennen Bestandteile des personalwirtschaftlichen Handlungsrahmens, können Personalbedarfe planen, unterschiedliche Wege der Personalbeschaffung beurteilen, sind in der Lage unterschiedliche Arbeitszeitmodelle zu beurteilen und zu gestalten und können die Formen der anforderungs- und leistungsabhängigen Entgeltdifferenzierung beurteilen. Die Studierenden sind in der Lage, statische und dynamische Verfahren der Investitionsrechnung auf konkrete

Unternehmenssituationen anzuwenden und Handlungsempfehlungen auf Basis der Ergebnisse auszusprechen. Sie kennen die zentralen Quellen der Finazierung und können deren Vor- und Nachteile abwägen sowie ausgewählte Finanzierungsformen auf einen konkreten Unternehmensfall anwenden.

Durch die Übungen werden die Studierenden befähigt, die erlernten Kenntnisse anzuwenden und die getroffenen Entscheidungen sowie die entwickelten Lösungskonzepte präzise zu präsentieren, kontrovers zu diskutieren sowie zu verteidigen.

Inhalte

- Grundlagen der Allgemeinen Betriebswirtschaftslehre (Grundlegende Begriffe, ökonomische Prinzipien)
- Typologie des Unternehmens (Typlogisierungskriterien, Rechtsformen, Standortwahl, Shareholder- und Stakeholderansatz, Mitbestimmung)
- Unternehmensstrategie und Planung (Unternehmsstrategie, Unternehmensziele, strategische, taktische, operative Planung)
- Instrumente strategischen Managements (Branchenstrukturanalyse, Makroumwelt-Analyse Wertkettenanalyse,

Wettbewerbsstrategien, SWOT-Analyse, Lebenszyklus-Analyse, Erfahrungskurven-Effekt, Produkt-Markt-Strategien)

 $-Personal wirtschaft \ (Handlungsrahmen, Personal bedarfsplanung, Personal beschaffung, Personale insatzplanung, Personal bedarfsplanung, Person$

Arbeiszeitgestaltung, Entgeltgestaltung, Vergütungssysteme)

- Investitionsrechnung (statische und dynamsiche Verfahren)
- Finanzierung (Quellen der Außen-, Innen-, Eigen- und Fremdfinazierung)

In den Übungen werden die erlernten Inhalte anhand von praktischen Beispielen und Fallstudien angewendet und vertieft.

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Pflichtmodul im Studiengang Sustainable Engineering and Management

Teilnahmevoraussetzung

Keine

Prüfungsformen

mündliche Prüfung

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. C. Brast

Modulbeauftragte(r)

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 5/31

Prof. Dr. C. Brast

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekanntgegeben.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 6/31

1.4 Buchführung und Bilanzierung

Buchführung un	d Bilanzierung
----------------	----------------

Kürzel:	BUB	Workload:	180 h	Leistungspunkte:	9: 6				
Semester: 1 Dauer: Semester Häufigkeit: Regelmäßig im Wintersemester						ter			
Lehrveransta	altungen			Präsenzzeit	Selbststudium				
3 SWS Vorle	sung			45 h		90 h			
1 SWS Übun	g		15 h		30 h				

Lehrformen

Vorlesung, Übung

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Übung: 30

Qualifikationsziele

Die Studierenden sind in der Lage, typische unternehmerische Geschäftsvorfälle mit der Technik der Buchführung zu erfassen, Konten zu saldieren und abzuschließen. Sie ko?nnen daraus einen Jahresabschluss mit Bilanz, Gewinn- und Verlustrechnung sowie Kapitalflussrechnung ableiten. Die Studierenden ko?nnen einen Jahresabschluss nach HGB analysieren und daraus betriebswirtschaftliche Schlu?sse ziehen.

Durch die Übungen werden die Studierenden befähigt, die erlernten Kenntnisse anzuwenden und die getroffenen Entscheidungen sowie die entwickelten Lösungskonzepte präzise zu präsentieren, kontrovers zu diskutieren sowie zu verteidigen.

Inhalte

- Einführung (Grundbegriffe, Aufgaben, rechtliche Grundlagen des Rechnungswesen und der Buchführung, Grundsa?tze ordnungsgema?ßer Buchfu?hrung und Bilanzierung)
- Grundlegende Elemente der Buchführung
- Technik der Buchführung
- Buchführung ausgewählter Bereiche und Kategorien von Geschäftsvorfällen
- Grundlagen des Jahresabschlusses
- Ausgewählte Bereiche des Jahresabschlusses (AV, UV, EK, Rückstellungen, Rechnungsabgrenzung, GuV, Kapitalflussrechnung, Anhang u. Lagebericht, Pru?fung und Offenlegung)

In den Übungen werden die erlernten Inhalte anhand von praktischen Beispielen und Fallstudien angewendet und vertieft.

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Teilnahmevoraussetzung

Keine

Prüfungsformen

mündliche Prüfung

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. C. Brast

Modulbeauftragte(r)

Prof. Dr. C. Brast

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekanntgegeben.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 7/31

1.5 Business Intelligence

Business Intelligence											
Business Intelligence											
Kürzel:	Kürzel: BUI Workload: 180 h Leistungspunkte: 6										
Semester:	4	Dauer:	1 Semester	Häufigkeit:	Regel	lmäßig im Wintersemes	ter				
Lehrveransta	altungen					Präsenzzeit	Selbststudium				
2 SWS Vorlesung						30 h		60 h			
2 SWS Prakt	ikum			30 h		60 h					
Lehrformen							•				

Lehrformer

Vorlesung, Praktikum

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Praktikum: 15

Qualifikationsziele

- Merkmale operativer und dispositiver Informationssysteme analysieren
- Einsatzbereiche und anwendungsrelevante Eigenschaften dispositiver Informationssysteme analysieren
- Dispositive Informationssysteme klassifizieren
- Erstellung und Aufbau von dispositiven Informationssystemen analysieren und synthetisieren
- Informationen problemadäquat darstellen können
- Praktische Umsetzung dispositiver Informationssysteme in Form von Prototypen

Inhalte

Vorlesung:

- Der Business Intelligence Begriff
- Operative und dispositive Informationssysteme
- Gliederung dispositiver Informationssysteme
- Berichtswesen / Reporting
- Multidimensionale Online-Analyse / OLAP
- Data Mining
- Darstellung von Informationen
- Data Warehousing
- Aktualisierung und Optimierung

Praktikum:

- Praktische Bearbeitung von analytischen Problemstellungen
- Erstellung von Prototypen

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Teilnahmevoraussetzung

Keine

Prüfungsformen

Vortrag, schriftliche Ausarbeitung

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. C. Brast

Modulbeauftragte(r)

Prof. Dr. C. Brast

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekanntgegeben.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 8/31

1.6 Computer Aided Design

Compu	Computer Aided Design											
Computer Aided Design												
Kürzel:	Kürzel: CAD Workload: 180 h Leistungspunkte: 6											
Semester:	3	Dauer:	1 Semester	Häufigkeit:	Regel	lmäßig im Wintersemes	ter					
Lehrveransta	altungen					Präsenzzeit	Selbststudium					
3 SWS Vorlesung						45 h		90 h				
1 SWS Prakt	ikum					15 h		30 h				

Lehrformen

Vorlesung, Praktikum

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Praktikum: 15

Qualifikationsziele

Die Studierenden können einfache Bauteile konstruieren, grob dimensionieren und per Handskizze oder CAD-System darstellen. Die Studierenden können technische Zeichnungen lesen und erstellen, Bauteile normgerecht zeichnen und fertigungsgerecht bemaßen. Sie erwerben Grundkenntnisse über die Funktion und Darstellung elementarer Maschinenelemente wie z.B. Wellen, Lager, Schrauben, Dichtungen, Sicherungsringe, etc.

Inhalte

- Einführung in das technische Zeichnen, Projektionsmethoden, Schnitte, Schraffuren und Bemaßung
- Erstellen von Handskizzen und normgerechten technischen Zeichnungen
- Anwenden einer fertigungsgerechten Bemaßung für ausgewählte Verfahren
- Auswahl und Berechnung von Toleranzen und Passungen
- Kenntnisse über Funktion, Nutzen und Darstellung elementarer Maschinenelemente
- Modellieren von Bauteilen und Baugruppen mittels CAD-Software
- Ableiten technischer Zeichnungen aus CAD-Modellen

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Maschinenbau

Pflichtmodul im Studiengang Bionik

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Pflichtmodul im Studiengang Mechatronik

Pflichtmodul im Studiengang Robotik und Automatisierung

Pflichtmodul im Studiengang Sustainable Engineering and Management

Teilnahmevoraussetzung

Inhaltlich: "Technische Mechanik", "Werkstoffkunde"

Prüfungsformen

Klausur

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. M. Wendland

Modulbeauftragte(r)

Prof. Dr. M. Wendland

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekanntgegeben.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 9/31

1.7 Elektrotechnik

Elektrotechnik											
Electrical Engineering											
Kürzel:	Kürzel: ELE Workload: 180 h Leistungspunkte: 6										
Semester:	1	Dauer:	Semester	Häufigkeit:	Regel	lmäßig im Wintersemes	ter				
Lehrveransta	altungen					Präsenzzeit	Selbststudium				
3 SWS Vorlesung						45 h		90 h			
1 SWS Prakt	ikum		15 h		30 h						
Lohrformon											

Lehrformer

Vorlesung, Praktikum

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Praktikum: 15

Qualifikationsziele

Die Studierenden können einfache Gleich- und Wechselstrom-Netzwerke, bestehend aus linearen Bauelementen der Elektrotechnik, analysieren und entwerfen. Sie können Energie- und Leistungsbilanzen in Netzwerken aufstellen und Systeme der Elektrotechnik Erzeuger- bzw. Verbraucher) energetisch bewerten (Aufwand, Nutzen, Wirkungsgrad etc.) Sie beherrschen die grundlegenden Methoden und Werkzeuge der Netzwerkanalyse (algebraische Verfahren sowie komplexe Wechselstromrechnung) und die Methodik zur Berechnung des Leistungs- und Energiebedarf bei spezifischen Fragestellungen.

Inhalte

- Lineare Bauelemente (R,L,C)
- Ohmsches Gesetz
- Kirchhoffsche Gesetze
- Strom- und Spannungsteiler
- Wheatstone'sche Brücke
- Leistungsanpassung
- komplexe Zeiger
- Kompieze Zeige
- Impedanz
- Schein-, Wirk- und Blindleistung
- Blindleistungskompensation
- Leistungs- und Energiebilanz
- Gewinnung und Transport und Verbrauch elektrischer Energie
- elektrische Sicherheit

Im Praktikum:

- Elektrische Messtechnik
- Kirchhoffsche Gesetze
- Messbrücke für Beleuchtungsstärke
- Wechselstrom RLC
- Blindleistungskompensation bei der Übertragung elektrischer Energie
- elektrische Sicherheit

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Pflichtmodul im Studiengang Sustainable Engineering and Management

Teilnahmevoraussetzung

Keine

Prüfungsformen

Klausur

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung und des Praktikums

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. H. Toonen

Modulbeauftragte(r)

Prof. Dr. H. Toonen

Sonstige Informationen

Literatur:

Wilfried Weißgerber: "Elektrotechnik für Ingenieure 1", Springer Verlag, ISBN 978-3-8348-0903-2;

Reiner Johannes Schütt: "Elektrotechnische Grundlagen für Wirtschaftsingenieure: Erzeugen, Übertragen, Wandeln und Nutzen

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 10/31

elektrischer Energie und elektrischer Nachrichten", Springer Verlag, ISBN 978-3658027629. Online: Skript, Übungsaufgaben, Anleitung für Praktika, Klausuren.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 11/31

1.8 Englisch

Englisch										
English										
Kürzel: ENG Workload: 180 h Leistungspunkte: 6										
Semester:	3	Dauer:	Semester	Häufigkeit:	Regel	lmäßig im Wintersemes	ster			
Lehrveransta	altungen					Präsenzzeit	Selbststudium			
4 SWS Semin	naristische Ver	ranstaltung im								
Selbststudiun	n (ggf. im Mul	ltiMedia-Labo	r)			60 h		120 h		

Lehrformen

Seminar

Gruppengröße

30

Qualifikationsziele

Berufsorientierte fachsprachliche Diskurs- und Handlungskompetenz unter Einschluss (inter) kultureller Elemente.

Inhalte

Fachfremdsprachliche Aufbereitung ausgewählter technischer und wirtschaftswissenschaftlicher Inhalte des Studiengangs z. B. durch:

- Versprachlichung der technischen Symbol- und Mathematikfachsprache
- Statische Beschreibungen (Geräte, Zeichnungen)
- Präsentation von technischen und/oder wirtschaftswissenschaftlichen Forschungsgegenständen, -entwicklungen und -ergebnissen
- Diskursive Auseinandersetzung mit gängigen wirtschaftswissenschaftlichen Themen und deren Umsetzung in der aktuellen betriebs- und volkswirtschaftlichen Praxis, wie z. B. "logistics", "production" oder "quality control management"

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Teilnahmevoraussetzung

Fortgeschrittene Englischkenntnisse, die der Hochschulzugangsberechtigung entsprechen

Prüfungsformen

Klausur

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Herr Weller, Dr. Thorsten Winkelräth

Modulbeauftragte(r)

Dr. P. Iking

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekannt gegeben;

Angebote im MultiMedia-Labor des Sprachenzentrums

Unterrichtssprache: Englisch

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 12/31

1.9 Enterprise Resource Planning

Enterprise Resource Planning											
Enterprise Resource Planning											
Kürzel:	Kürzel: ERP Workload: 180 h Leistungspunkte: 6										
Semester:	5	Dauer:	Semester	Häufigkeit:	Rege	lmäßig im Wintersemes	ter				
Lehrveransta	altungen					Präsenzzeit	Selbststudium				
2 SWS Vorlesung						30 h		60 h			
2 SWS Prakt	ikum					30 h		60 h			

Lehrformen

Vorlesung, Praktikum

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Praktikum: 15

Qualifikationsziele

Die Studierenden können das gesamte Spektrum gängiger ERP- Systeme in Auswahl- und Einführungsphase sowie in der praktischen Anwendung beurteilen und bearbeiten.

Der Weg dahin ist gekennzeichnet durch das praxisrelevante Bearbeiten der Arbeitsschritte in den einzelnen Phasen.

Weiterhin wird in Form eines Praktikums die Funktionsweise gängiger ERP- Systeme angeeignet.

In der späteren beruflichen Praxis sind die Studierenden in der Lage die o.g. Procedere geübt und ohne längere Einarbeitungszeiten mit Leben zu füllen.

Inhalte

Vorlesung:

- Einbindung ERP in ein Unternehmen
- ERP Systemauswahl und einführung
- Funktionale Merkmale
- Kosten/ Nutzenaspekte

Praktikum:

 $Es\ wird\ der\ komplette\ Auftragsdurchlauf\ zur\ Produktion\ eines\ Produktes\ simuliert\ dargestellt.$

Das beinhaltet eine Stücklistenerstellung, die Produktionsplanung inkl. der Materialbedarfsermittlung und Terminierung der Auftragsdurchläufe unter Kapazitätsgesichtspunkten sowie der Produktionssteuerung unter der Bedingung miteinander konkurrierender Aufträge.

Es stehen dazu zur Zeit 3 unterschiedliche auf dem Markt etablierte ERP- Systeme zur Verfügung. Die Studierenden können sich im Vorfeld ein System für die Bearbeitung der Praktika aussuchen.

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Teilnahmevoraussetzung

Keine

Prüfungsformen

Klausur

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. A. Besse

Modulbeauftragte(r)

Prof. Dr. A. Besse

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekanntgegeben.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 13/31

1.10 Fertigungssysteme

Fertigungssysteme												
Manufacturing systems												
Kürzel: FES Workload: 180 h Leistungspunkte: 6												
Semester:	4	Dauer:	1 Semester	Häufigkeit:	Regel	lmäßig im Sommerseme	ester					
Lehrveranst	altungen					Präsenzzeit	Selbststudium					
2 SWS Vorle	esung			30 h		60 h						
2 SWS Prakt	ikum					30 h		60 h				
Labriarman												

Lehrformen

Vorlesung, Praktikum

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Praktikum: 15

Qualifikationsziele

Die Studierenden verstehen umfassend und detailliert den Aufbau und die Anwendung von Werkzeugmaschinen, indem sie

- die Arten von Werkzeugmaschinen kennen,
- den Aufbau von Werkzeugmaschinen beschreiben können,
- die Eigenschaften von Fertigungssystemen beurteilen können,

um später Entscheidungen über zu verwendende Technologien und Anlagen selbstständig treffen zu können und diese gegenüber Fachleuten argumentativ zu vertreten.

Inhalte

Vorlesung:

- Bezeichnung der Werkzeugmaschinen
- urformende Maschinen und Anlagen
- umformende und zerteilende Maschinen
- spanende Maschinen für Werkzeuge mit geometrisch bestimmter Schneide
- spanende Maschinen für Werkzeuge mit geometrisch unbestimmten Schneiden
- Industrie 4.0
- Mehrmaschinensysteme
- Industrieroboter

Praktikum:

- Leitstand
- Programmierung von NC-gesteuerten Maschinen
- Leitfaden Industrie 4.0

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Pflichtmodul im Studiengang Robotik und Automatisierung

Teilnahmevoraussetzung

Keine

Prüfungsformen

Klausur

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung und des Praktikums

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. C. Heßing

Modulbeauftragte(r)

Prof. Dr. C. Heßing

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekanntgegeben.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 14/31

1.11 Fertigungstechnik

Fortigungotochnik

rertigu	ngstect	IIIIK							
Kürzel:	FET	Workload:	180 h	Leistungspunkte:	6				
Semester:	2	Dauer:	1 Semester	Häufigkeit:	Regelmäßig im Sommersemester				
Lehrveranst	altungen	•				Präsenzzeit	Selbststudium		
3 SWS Vorle	3 SWS Vorlesung							90 h	
1 SWS Übun	ıg		15 h		30 h				

Lehrformen

Vorlesung, Übung

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Übung: 30

Qualifikationsziele

Die Studierenden können Kenntnisse der technologischen, wirtschaftlichen und organisatorischen Zusammenhänge der Fertigung anwenden, indem sie

- die Entstehung und Ermittlung von Lage- und Formabweichungen verstehen,
- wesentliche Verfahren der jeweiligen Hauptgruppen der Fertigungsverfahren kennen,
- grundlegende Berechnungen der Fertigungstechnik anwenden können,

um später in der Lage zu sein, geeignete Fertigungsverfahren auszuwählen, mit welchen vorgegebene Bauteile aus dem Bereich des Maschinenbaus wirtschaftlich hergestellt werden können.

Inhalte

- Aufgaben und Ziele sowie Kennzeichen der Fertigungsverfahren
- Messtechnik
- Lage- und Formabweichungen
- Einteilung der Fertigungsverfahren gemäß DIN 8580
- Vorstellung der wesentlichen Fertigungsverfahren aus den Hauptgruppen Urformen, Umformen, Trennen, Fügen und Beschichten

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Pflichtmodul im Studiengang Robotik und Automatisierung

Pflichtmodul im Studiengang Sustainable Engineering and Management

Teilnahmevoraussetzung

Keine

Prüfungsformen

Klausur

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. C. Heßing

Modulbeauftragte(r)

Prof. Dr. C. Heßing

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekanntgegeben.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 15/31

1.12 Informatik

Informa	atik							
Computer sc	ience							
Kürzel:	INF	Workload:	180 h	Leistungspunkte:	6			
Semester:	2	Dauer:	Semester	Häufigkeit:	Rege	lmäßig im Sommerseme	ester	
Lehrveranst	altungen					Präsenzzeit	Selbststudium	
3 SWS Vorle	3 SWS Vorlesung							90 h
1 SWS Prakt	ikum			15 h		30 h		
Lehrformen								

Vorlesung, Praktikum

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Praktikum: 15 Qualifikationsziele

Die TeilnehmerInnen können Methoden der Informatik anwenden um ausgewählte Aufgaben aus dem Einsatzgebiet der Informatik durch Modellbildung und Abstraktion systematisch zu lösen, indem sie

- grundlegende Methoden und Einsatzgebiete der Informatik kennenlernen
- Algorithmen und Datenstrukturen zur Lösung ausgewählter Probleme untersuchen
- die Abstraktion zur objektorientierten Programmierung durchführen
- eine Programmiersprache zur Umsetzung einer konkreten Aufgabenstellung in einem exakt formulierten Lösungsweg erlernen und anwenden
- Lösungen mit Hilfe einer professionellen Entwicklungsumgebung implementieren und testen

um später an der Schnittstelle zwischen moderner innovativer Technik und der Wirtschaft mitwirken zu können.

Inhalte

Architektur eines Rechners, Algorithmen, Flussdiagramm, Zahlensysteme, binäre Arithmetik, logische Grundfunktionen, Datenstrukturen, strukturierte- und objektorientierte Programmierung, Programmiersprache, z.B. C/C++, Entwicklungsumgebung, Kontrollstrukturen, einfache Datentypen, Zeiger, Funktionen und Schnittstellen, Klassenentwurf, GUI, Debugging-Verfahren, Vermeidung von Programmierfehlern, SW-Testverfahren

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Teilnahmevoraussetzung

Keine

Prüfungsformen

Klausur

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung und des Praktikums

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. M. Guddat

Modulbeauftragte(r)

Prof. Dr. M. Guddat

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekanntgegeben.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 16/31

1.13 Kostenrechnung

Kosten	rechnu	ng						
Cost account	ing							
Kürzel:	KRE	Workload:	180 h	Leistungspunkte:	6			
Semester:	2	Dauer:	Semester	Häufigkeit:	Rege	lmäßig im Sommerseme	ester	
Lehrveransta	altungen	•				Präsenzzeit	Selbststudium	
3 SWS Vorle	sung					45 h		90 h
1 SWS Übun	g			15 h		30 h		
Lohrformon								

Lehrformer

Vorlesung, Übung

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Übung: 30

Qualifikationsziele

Die Studierenden kennen die für die Ermittlung und Ansatz von Kosten typischen Unterschiede zwischen internem und externem Rechnungswesen.

Sie kennen die die unterschiedlichen Kostenarten und ihre Gliederungsmöglichkeiten und sind darauf aufbauend in der Lage, die Kosten einer Abrechnungsperiode als Ist-Kosten zu ermitteln und auf der Datenbasis des externen Rechnungswesens das Betriebsergebnis zu ermitteln.

Sie sind in der Lage, ein Unternehmen in Kostenstellen aufzuteilen, primäre Gemeinkosten auf die Kostenstellen zu verteilen und durch innerbetrieblichen Leistungsverrechnung auf Kostenstellen umzulegen sowie Zuschlagssätze als Grundlage für die Weiterverrechnung der Gemeinkosten auf die Kostenträger zu ermitteln.

Sie kennen die zentralen Kalkulationsverfahren der Kostenträgerstückrechnung und sind in der Lage, mithilfe der Kalkulationsverfahren die Selbstkosten der Kostenträger als Basis der Sortimentspolitik, der Preispolitik und von Kostenvergleichen zu kalkulieren.

Sie sind in der Lage, Kostenauflösungen für die Anwendung Teilkostenrechnung vorzunehmen und auf dieser Basis einstufige und mehrstufige Deckungsbeitragsrechnungen durchzuführen, um darauf aufbauend grundlegende Produktions- und Absatzplanung durchführen sowie Preisentscheidungen und Make-or-buy-Entscheidungen fällen zu können.

Sie können Kosten und Kostenstellenstellen im Plan-Ist-Vergleich einer Wirtschaftlichkeitsanalyse unterziehen und daraus Handlungsempfehlungen ableiten.

Durch die Übungen werden die Studierenden befähigt, die erlernten Kenntnisse anzuwenden und die getroffenen Entscheidungen sowie die entwickelten Lösungskonzepte präzise zu präsentieren, kontrovers zu diskutieren sowie zu verteidigen.

Inhalte

- Grundlagen der Kostenrechnung (Grundbegriffe, Aufgaben, Prinzipien, Kostenrechnungssysteme)
- Kostenartenrechnung (Kostenkategorien, Betriebsergebnisrechnung)
- Kostenstellenrechnung (Kostenstellen, Kostenstellenpläne, Kostenverteilung und -schlüsselung, innerbetriebliche Leistungsverrechnung, Betriebsabrechnungsbogen)
- Kostenträgerstück- u. Kostenträgerzeitrechnung (Kalkulationsverfahren, Maschinenstundensatzermittlung, Gesamtkostenverfahren, Umsatzkostenverfahren)
- Istkostenrechnung (Kostenauflösung, Teilkostenrechnung, ein-/mehrstufige Deckungsbeitragsrechnung,

Produktionsprogrammplanung, Make-or-Buy-Entscheidung, Break-Even-Analyse)

- Plankostenrechnung (Kostenplanung, Abweichungsanalysen, starre und flexible Plankostenrechnung)

In den Übungen werden die erlernten Inhalte anhand von praktischen Beispielen und Fallstudien angewendet und vertieft.

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Teilnahmevoraussetzung

Inhaltlich: Buchführung und Bilanzierung

Prüfungsformen

mündliche Prüfung

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. C. Brast

Modulbeauftragte(r)

Prof. Dr. C. Brast

Sonstige Informationen

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 17/31

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten be	ekanntgegeben.
--	----------------

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 18/31

1.14 Logistik

Logisti	k							
Logistics								
Kürzel:	LOG	Workload:	180 h	Leistungspunkte:	6			
Semester:	3	Dauer:	1 Semester	Häufigkeit:	Regel	lmäßig im Wintersemes	ter	
Lehrveranst	altungen					Präsenzzeit	Selbststudium	
2 SWS Vorle	esung					30 h		60 h
2 SWS Übun	ıg		30 h		60 h			
Lohrformon								

Lehrformer

Vorlesung, Übung

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Übung: 30

Qualifikationsziele

Die Studierenden kennen die Aufgaben, Inhalte und Herausforderungen der Logistik. Sie erkennen die Querschnittsfunktion der Logistik. Sie kennen die die wechslseitigen Abhängigkeits- und Wirkungsbeziehungen zwischen Logistik, Betriebswirtschaft, Mataerialfluss, Produktion und IT. Sie wissen, wie logistische Prozesse gestaltet, gesteuert und überwacht werden müssen, um die Erreichung der Unternehmensziele und -strategien zu unterstützen. Sie können die gelehrten Methoden in der Logistikplanung anwenden. Sie bsitzen anwendungsnahes Fachwissen für den Berufsalltag.

Durch die Übungen werden die Studierendenbefähigt, die erlernten Kenntnisse anzuwenden und die getroffenen Entscheidungen sowie die entwickelten Lösungskonzepte präzise zu präsentieren, kontrovers zu diskutieren sowie zu verteidigen.

Inhalte

- Grundlagen der Logistik (Bereiche, Begriffe, Ziele, Bedeutung)
- Logististrategien (Strategienetwicklung, Strategieformulierung)
- Subsysteme der Logistik (Förder-, Lager, Kommisioniersysteme)
- Beschaffungslogistik (Sourcingstrategien, Lieferantenmanagement)
- Produktionslogistik (Fabrikplanung, Materialflussrechnung)
- Distributionslogistik (Distributionsstrukturen, LAgerhaltung, Auftragsabwicklung, Verpackung, Warenausgan)
- Entsorgungslogistik (innerbetriebliche Entsorgungslogistik, externe Entsorgungslogistik)
- IT-Systeme der Logistik (IT-Systeme der Beschaffungs-, Produktions-, Distributionslogistik)

In den Übungen werden die erlernten Inhalte anhand von praktischen Beispielen und Fallstudien angewendet und vertieft.

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Pflichtmodul im Studiengang Sustainable Engineering and Management

Teilnahmevoraussetzung

Keine

Prüfungsformen

Klausur

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. A. Besse

Modulbeauftragte(r)

Prof. Dr. A. Besse

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekanntgegeben.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 19/31

1.15 Marketing und Vertrieb

Market	Marketing und Vertrieb								
Marketing ar	nd Sales								
Kürzel:	Kürzel: MAV Workload: 180 h Leistungspunkte: 6								
Semester:	5	Dauer:	1 Semester	Häufigkeit:	Regelmäßig im Wintersemester				
Lehrveranst	altungen					Präsenzzeit	Selbststudium		
2 SWS Vorle	2 SWS Vorlesung							60 h	
2 SWS Übun	ıg			30 h		60 h			
Lohrformon									

Vorlesung, Übung, Projekt

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Qualifikationsziele

Studierende

- lernen die Marketinggrundlagen
- lernen die Vertriebsgrundlagen

- Einführung in die Marketingtheorie

Übergang von der alten Marketingtheorie (4P) zu der modernen Marketingtheorie in gesättigten Märkten. Wettbewersvorteile identifizieren und quantifizieren.

- Einführung in die Vertriebstheorie

Unterschiede der Vertriebsstrukturen in Abhängigkeit vom Produkt- bzw. Dienstleistungsangebot. Unterschiede in den Kundenstrukturen BtB, BtC. Besonderheiten des Handels. Aufbau von Vertriebsstrukturen.

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Pflichtmodul im Studiengang Sustainable Engineering and Management

Teilnahmevoraussetzung

Keine

Prüfungsformen

Klausur, schriftliche Ausarbeitung

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. J. Schulze

Modulbeauftragte(r)

Prof. Dr. J. Schulze

Sonstige Informationen

Literatur:

Industriegütermarketing, Backhaus/Voeth, Vahlen. ISBN 978-3-8006-4763-7

Grundlagen des Marketing, Kotler/Armstromg/Harris/Piercy, Pearsons Studium - Economic BWL

Weitere Literartur wird zu Beginn des Semesters bekannt gegeben.

30 h

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 20/31

60 h

1.16 Maschinen- und Anlagentechnik

wascni	Maschinen- und Anlagentechnik									
Machinery as	Machinery and Plant Technology									
Kürzel:	Gürzel: MUA Workload: 180 h Leistungspunkte: 6									
Semester:	5	Dauer:	Semester	Häufigkeit:	Rege	lmäßig im Wintersemes	ter			
Lehrveransta	altungen			Präsenzzeit	Selbststudium					
2 SWS Vorle	esung			30 h		60 h				

2 SWS Übung Lehrformen

Vorlesung, Übung

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Übung: 30

Qualifikationsziele

Die Studierenden verstehen den Aufbau und die Funktion ausgewählter Maschinen und Anlagen unterschiedlicher Technologien, indem sie

- Maschinen und Anlagensysteme und Robotersysteme kennenlernen,
- deren Komponenten und ihren Aufbau beschreiben können,
- deren Eigenschaften beurteilen können,
- und Grundkenntnisse in der Auslegung, Steuerung und Regelung erlangen,

um später Entscheidungen über zu verwendende Systeme und Automatisierungssysteme in unterschiedlichen Industrien selbstständig treffen zu können und diese gegenüber Fachleuten argumentativ zu vertreten.

Inhalte

Aufbau und Funktion von ausgewählten Maschinen und Anlagen, insbesondere:

- -Kraftmaschinen
- -Dampfmaschinen
- -Verbrennungsmotoren
- -Turbinen
- -Wasserstofftechnologie

Arbeitsmaschinen

- -Hydraulik
- -Pneumatik
- -Fahrzeugtechnik
- -Fördertechnik
- -Automatisierungssysteme insbes. Robotik

Maschinenartenübergreifend werden Grundlagen der Maschinensicherheit, Steuerung und Recht vermittelt.

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Pflichtmodul im Studiengang Robotik und Automatisierung

Teilnahmevoraussetzung

Keine

Prüfungsformen

Klausur, mündliche Prüfung, Vortrag

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiche Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. T. Naber

Modulbeauftragte(r)

Prof. Dr. T. Naber

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekannt gegeben.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 21/31

1.17 Mathematik für Ingenieurwissenschaft 1

Mathen	Mathematik für Ingenieurwissenschaft 1									
Mathematics	Mathematics for engineering science 1									
Kürzel:	Kürzel: MAT1 Workload: 180 h Leistungspunkte: 6									
Semester:	1	Dauer:	1 Semester	Häufigkeit:	Rege	lmäßig im Wintersemes	ter			
Lehrveransta	altungen					Präsenzzeit	Selbststudium			
3 SWS Vorle	3 SWS Vorlesung							90 h		
1 SWS Übun	g				·	15 h		30 h		

Lehrformen

Vorlesung, Übung

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Übung: 30

Qualifikationsziele

Die TeilnehmerInnen können einfache mathematische Aufgabenstellungen der Algebra und Analysis bearbeiten, indem sie mathematische Werkzeuge der Algebra (reelle und komplexe Zahlen, Vektoren),

eindimensionale reelle Analysis und grundlegende Anwendungen der Differential- und Integralrechnung

beherrschen, um später die mathematischen Fähigkeiten auf andere Fachgebiete des Studiums (z.B. Technische Mechanik) anzuwenden.

Inhalte

Reelle Zahlen, Vektoren, komplexe Zahlen

Operationen, Folgen, Reihen, Konvergenz, Funktionen

Differentialrechnung und Riemann-Integration über dem R¹

Taylor-Reihen

Gewöhnliche Differentialgleichungen

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Maschinenbau

Pflichtmodul im Studiengang Bionik

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Pflichtmodul im Studiengang Mechatronik

Pflichtmodul im Studiengang Robotik und Automatisierung

Pflichtmodul im Studiengang Sustainable Engineering and Management

Teilnahmevoraussetzung

Keine

Prüfungsformen

Klausur

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. H. Kiel

Modulbeauftragte(r)

Prof. Dr. H. Kiel

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekanntgegeben.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 22/31

1.18 Planung und Controlling

Planung und Controlling

i iaiiuii	g und c		ıy					
Kürzel:	PCO	Workload:	180 h	Leistungspunkte:	6			
Semester:	4	Dauer:	Semester	Häufigkeit:	Regel	lmäßig im Sommerseme	ester	
Lehrveranst	altungen			_		Präsenzzeit	Selbststudium	
2 SWS Vorlesung						30 h		60 h
2 SWS Übun	ıg					30 h		60 h

Lehrformen

Vorlesung, Übung

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Übung: 30

Qualifikationsziele

Die Studierenden beherrschen weitgehend die gängigen Mechanismen in Planung und Steuerung, den Grundelementen des Controlling in der praktischen Anwendung. Sie erhalten diese Fähigkeiten durch die Einführung in Produkt- ind

Produktionsstrukturen. Auf dieser Basis ist es möglich, ein bedarfsgerechtes Controlling durch den Einsatz anwendungsorientierter Kennzahlensysteme aufzubauen und anzuwenden.

In der beruflichen Praxis verstehen die Studierenden Controllingaufgaben als Erfolgsfaktoren durchzuführen und mit Leben zu füllen.

Inhalte

Materialplanung und -steuerung, Disposition, Einkauf, Lagerwesen

Kapazitätsplanung und -steuerung, Personal und Betriebsmittel, Terminierungsarten, Durchlaufzeitermittlung

Strategisches Controlling: Kontrollmechanismen, Kostensenkungsstrategien,

Operatives Controlling: Wirtschaftlichkeitsrechnungen, Kennzahlen und -systeme

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Teilnahmevoraussetzung

Keine

Prüfungsformen

Klausur

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. T. Naber

Modulbeauftragte(r)

Prof. Dr. T. Naber

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekanntgegeben.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 23/31

1.19 Praxisphase

Praxis	nhasa						
I Iaxis	priase						
16"1	DDW	14/	2601	1 -!	I 10		
Kürzel:	PRX	Workload:	360 h	Leistungspunkte:	12	2.1.6	
Semester:	6	Dauer:	1 Semester	Häufigkeit:	Nach I		0 " "
Lehrverans	aitungen					Präsenzzeit	Selbststudium
Praxisphase						h	360 h
Lehrformen							
Sonstige							
Gruppengrö	olse						
einzeln							
Qualifikatio	nsziele						
siehe BPO							
Inhalte							
siehe BPO							
Verwendba							
1		igang Maschinen	bau				
		gang Bionik					
		gang Wirtschafts		en			
1		igang Mechatron					
1		igang Robotik un		_			
		<u> </u>	Engineering a	and Management			
Teilnahmev		ng					
110 Kreditp							
Prüfungsfo							
schriftliche .							
		Vergabe von Kre	•				
		g der Praxisphase	2				
		der Endnote					
Siehe Prüfui							
Hauptamtlio							
		Professoren des I	Fachbereichs				
Modulbeauf							
		Professoren des	Fachbereichs				
Sonstige In	formationer	1					

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 24/31

1.20 Projektarbeit

Drajaktarhait

Projekt	arbeit							
Kürzel:	PRJ	Workload:	180 h	Leistungspunkte:	6			
Semester:	6	Dauer:	Semester	Häufigkeit:	Nach	Bedarf		
Lehrveranst	altungen					Präsenzzeit	Selbststudium	
Projektarbeit						h		180 h

Lehrformen

Projekt

Gruppengröße

einzeln oder in Kleingruppen

Qualifikationsziele

Die Studierenden verfügen über ein breites Wissen einschließlich der wissenschaftlichen Grundlagen in ihrem Studiengang. Sie bearbeiten ein theoretisches oder experimentelles Thema ihrer Disziplin und erweben hierbei Kompetenzen in der Problemlösung. Die Studierenden sind in der Lage, sich selbst zu organisieren und die Ergebnisse ihrer Projektarbeit in wissenschaftlicher Weise aufzuarbeiten und zu präsentieren.

Inhalte

Inhalte in Absprache mit den Lehrenden der jeweiligen Studiengänge

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Maschinenbau

Pflichtmodul im Studiengang Bionik

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Pflichtmodul im Studiengang Mechatronik

Pflichtmodul im Studiengang Robotik und Automatisierung

Pflichtmodul im Studiengang Sustainable Engineering and Management

Teilnahmevoraussetzung

siehe BPO

Prüfungsformen

Bewertung nach Absprache mit dem Betreuer

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Alle Professorinnen und Professoren des Fachbereichs

Modulbeauftragte(r)

Alle Professorinnen und Professoren des Fachbereichs

Sonstige Informationen

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 25/31

1.21 Projektmanagement

Projektmanagement										
Project Mana	agement									
Kürzel:	Kürzel: PMA Workload: 180 h Leistungspunkte: 6									
Semester:	4	Dauer:	Semester	Häufigkeit:	Regel	lmäßig im Sommerseme	ester			
Lehrveranst	altungen					Präsenzzeit	Selbststudium			
2 SWS Vorle	esung		30 h		60 h					
2 SWS Übun	ng		30 h		60 h					

Lehrformen

Vorlesung, Übung

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Übung: 30

Qualifikationsziele

Die Studierenden verstehen die Grundmechanismen der Projektplanung und -steuerung, welche in vielen Unternehmen Grundlage eines erfolgreichen Arbeitens darstellt. Vermittelt wird diese Fähigkeit durch das Erlernen struktureller Zusammenhänge innerhalb dieser Organisationsform. Studierenden betreiben die erfolgreiche Umsetzung, Organisation und Steuerung von Projekten unter Berücksichtigung von Risiken und Erfolgsfaktoren. Methoden und Hilfsmittel dazu werden beherrscht.

Sie differenzieren anwendungsspezifisch die Methoden in den Bereichen Dienstleistung, Produktion der Kleinserienfertigung, Investitionsgüter- sowie Anlagenbau.

In der täglichen beruflichen Praxis wird die Anwendung des Instrumentariums Projektmanagement eine unerlässliche Hilfe zur erfolgreichen Leistungserstellung darstellen.

Inhalte

- Teamzusammensetzung
- Projektstrukturierung
- Zeit-, Kosten-, Kapazitätsplanung und -steuerung
- Bedarfsgerechter IT-Einsatz
- Planung und Steuerung eines prasxisorientierten Großprojektes

In den Übungen werden die erlernten Inhalte anhand von praktischen Beispielen und Fallstudien angewendet und vertieft.

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Pflichtmodul im Studiengang Sustainable Engineering and Management

Teilnahmevoraussetzung

Keine

Prüfungsformen

Klausur

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. A. Besse

Modulbeauftragte(r)

Prof. Dr. A. Besse

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekanntgegeben.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 26/31

1.22 Qualitätsmanagement

Qualitätsmanagement								
Quality Management								
Kürzel:	QMG	Workload:	180 h	Leistungspunkte:	6			
Semester:	5	Dauer:	Semester	Häufigkeit:	Regelmäßig im Sommersemester			
Lehrveranstaltungen						Präsenzzeit	Selbststudium	
2 SWS Vorlesung					30 h		60 h	
2 SWS Übung					30 h		60 h	
Lahrfarman								

Lehrformer

Vorlesung, Übung

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Übung: 30

Qualifikationsziele

Die Studierenden können spezifische Aufgabenstellungen des Qualitätsmanagements bearbeiten indem sie

- die Bedeutung von Qualität und der fehlerhaften Teile in einem Unternehmen erkennen,
- den Umgang mit Werkzeugen und Methoden anhand von Übungen und Fallbeispielen erlernen und
- die Abläufe im Qualitätswesen verstehen

um später eigenständig Verbesserungen erarbeiten und umsetzen zu können.

Inhalte

Aufbau von QM-Systemen; Normen und Regelwerke, Zertifizierung; Werkzeuge und Methoden des QM-Systems (QFD, FMEA, SPC, Control Plan, 8D Report, etc.).

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Teilnahmevoraussetzung

Keine

Prüfungsformen

Klausur

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. T. Naber

Modulbeauftragte(r)

Prof. Dr. T. Naber

Sonstige Informationen

Linß, G.: "Qualitätsmanagement für Ingenieure", Fachbuchverlag Leipzig im Carl Hanser Verlag

Hering, E., Triemel, J., Blank, H.P.: "Qualitätsmanagement für Ingenieure", Springer Verlag

Schmitt, R., Pfeifer, T.: "Qualitätsmanagement", Hanser Fachbuch

Kamiske, G.: "Handbuch QM-Methoden", Hanser Verlag

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 27/31

1.23 Recht

Recht								
Law								
Kürzel:	REC	Workload:	180 h	Leistungspunkte:	6			
Semester:	3	Dauer:	1 Semester	Häufigkeit:	Regelmäßig im Wintersemester			
Lehrveranstaltungen						Präsenzzeit	Selbststudium	
2 SWS Vorlesung						30 h		60 h
2 SWS Übung						30 h		60 h
Lohrformon								

Lehrformer

Vorlesung, Übung

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Übung: 30

Qualifikationsziele

Die Studierenden können die für einen Wirtschaftsingenieur relevanten, rechtlichen Fragestellungen erkennen und deren Bedeutung beurteilen, indem sie

- die Grundzüge des allgemeinen Vertrags-, Schuld- und Haftungsrechts verstehen
- die in der Praxis wichtigen Vertragsarten und die sich daraus ergebenen Rechte und Pflichten kennen
- wichtige Pflichten eines Unternehmens zum Beispiel in Bezug auf Compliance kennen
- sensibel für die vielfältigen weiteren wirtschaftsrechtlichen Fragen sind, die in den zukünftigen Tätigkeitsfeldern eines Wirtschaftsingenieurs relevant werden können

um später rechtliche Risiken ihrer Tätigkeit rechtzeitig zu erkennen und erfolgreich abzuwenden.

Inhalte

Zustandekommen eines Vertrages und Darstellung möglicher Konflikte bei vertraglichem Leistungsaustausch am Beispiel eines Kaufvertrages: verspätete oder mangelhafte Leistung, handelsrechtliche Prüf- und Rügepflichten, Vertragsstrafen, Garantien usw. Abgrenzung vom Kauf-, Werk- und Dienstvertrag

Exkurse zu wirtschaftsrechtlichen Themen wie Haftung aus Delikt, Produkthaftung, Gewerblicher Rechtsschutz, Geheimhaltung/Datenschutz, Compliance etc.

In den Übungen werden die erlernten Grundlagen anhand von praktischen Beispielen vertieft.

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Teilnahmevoraussetzung

Keine

Prüfungsformen

Klausur

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Lehrbeauftragter

Modulbeauftragte(r)

Prof. Dr. C. Heßing

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekanntgegeben.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 28/31

1.24 Technische Mechanik 1

Technische Mechanik 1								
Technical Mechanics 1								
Kürzel:	TME1	Workload:	180 h	Leistungspunkte:	6			
Semester:	1	Dauer:	1 Semester	Häufigkeit:	Regelmäßig im Wintersemester			
Lehrveranstaltungen						Präsenzzeit	Selbststudium	
2 SWS Vorlesung					30 h		60 h	
2 SWS Übung					30 h		60 h	
Lehrformen								

Vorlesung, Übung

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Übung: 30

Qualifikationsziele

Die Teilnehmer können mechanische Aufgaben der Statik bearbeiten, indem sie ausgewählte Verfahren der Statik einsetzen, Sie können Belastungen eines Bauteils berechnen und bewerten.

Grundlagen der Statik:

Kräfte, Momente, Kraftsysteme, Festkörperreibung, Lagerrekationen, Schwerpunktsbetrachtungen, innere Kräfte und Momente am

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Maschinenbau

Pflichtmodul im Studiengang Bionik

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Pflichtmodul im Studiengang Mechatronik

Pflichtmodul im Studiengang Robotik und Automatisierung

Pflichtmodul im Studiengang Sustainable Engineering and Management

Teilnahmevoraussetzung

Mathematische Grundlagen

Prüfungsformen

Klausur

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. M. Maß

Modulbeauftragte(r)

Prof. Dr. M. Maß

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekanntgegeben.

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 29/31

1.25 Technische Mechanik 2

6		
Regelmäßig im Sommersemester		
60 h		
30 h		
30 h		

Lehrformen

Vorlesung, Übung, Praktikum

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Übung: 30 Praktikum: 15

Qualifikationsziele

Die Teilnehmer können mechanische Aufgaben der Festigkeitslehre bearbeiten, indem sie ausgewählte Verfahren der Statik und der Festigkeitslehre einsetzen. Sie beherrschen Modelle der Biegung, Torsion und mehrdimensionaler Spannungszustände.

Inhalte

Grundlagen der Festigkeitslehre, Elastizitätsgesetz, Spannungszustand, Zug- und Druckbelastung in Stäben, Verformungszustand,

Flächenmomente, Biege- und Schubbeanspruchung (inkl. Torsion für kreisförmige Querschnitte)

Bauteilfestigkeit berechnen und bewerten (Kerben, Sicherkeit, Vergleichsspannungen)

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Maschinenbau

Pflichtmodul im Studiengang Bionik

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Pflichtmodul im Studiengang Mechatronik

Pflichtmodul im Studiengang Robotik und Automatisierung

Teilnahmevoraussetzung

TME 1 sowie mathematische Grundlagen

Prüfungsformen

Klausur

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung und des Praktikums

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Hauptamtlich Lehrende(r)

Prof. Dr. F.-J. Peitzmann

Modulbeauftragte(r)

Prof. Dr. F.-J. Peitzmann

Sonstige Informationen

Literatur

Assmann, B. "Technische Mechanik, Bd II und III", Oldenbourg-Verlag; Hibbeler, R.C. "Technische Mechanik Bd II und III", Pearson Studium; Gross, Hauger, Schnell" Mechanik", Springer-Verlag

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 30/31

1.26 Werkstoffkunde

Werkstoffkunde								
Materials science								
Kürzel:	WEK	Workload:	180 h	Leistungspunkte:	6			
Semester:	1	Dauer:	Semester	Häufigkeit:	Regelmäßig im Wintersemester			
Lehrveranstaltungen						Präsenzzeit	Selbststudium	
3 SWS Vorlesung						45 h		90 h
1 SWS Praktikum						15 h		30 h

Lehrformen

Vorlesung, Praktikum

Gruppengröße

Vorlesung: Begrenzung der Gruppenstärke laut Aushang

Praktikum: 15

Qualifikationsziele

Die Studierenden können ausgehend vom Aufbau der Werkstoffe, die Gebrauchs- und Fertigungseigenschaften dieser verstehen und interpretieren, indem sie

- die Grundlagen der Metall- und Legierungskunde erlernen,
- wesentliche Werkstoffe kennen,
- die Verfahren der Werkstoffprüfungen verstehen und anwenden,

um später die Fähigkeiten auf andere Fachgebiete des Studiums (Fertigungstechnik, Konstruktionstechnik) anzuwenden und um eine anforderungsgerechte Werkstoffauswahl für den Einsatz im Maschinenbau zu treffen.

Inhalte

Vorlesung:

- Aufbau kristalliner Werkstoffe
- Bindungsarten
- Phasenumwandlungen
- thermisch aktivierte Vorgänge
- Grundlagen der Legierungsbildung
- Zustandsschaubilder
- Zeit-Temperatur-Umwandlungsschaubilder
- Wärmebehandlungen
- mechanisch-technologische Werkstoffprüfung
- zerstörungsfreie Werkstoffprüfung
- Bezeichnung und Einteilung der Werkstoffe
- Eisenbasiswerkstoffe (Stähle, Gusseisen)
- Nichteisenmetalle (Aluminium, Kupfer)
- Keramiken/Polymere
- Grundlagen der Korrosion und Tribologie

Praktikum:

Grundlagenversuche in der Werkstoffkunde z. B.

- Metallographie
- Zustandsdiagramme
- ZTU-Diagramme
- Härteprüfung
- Zugversuch
- Kerbschlagbiegeversuch

Verwendbarkeit des Moduls

Pflichtmodul im Studiengang Wirtschaftsingenieurwesen

Pflichtmodul im Studiengang Sustainable Engineering and Management

Teilnahmevoraussetzung

Keine

Prüfungsformen

Klausur

Voraussetzung für die Vergabe von Kreditpunkten

Erfolgreiches Bestehen der Modulprüfung

Stellenwert der Note in der Endnote

Siehe Prüfungsordnung

Modulhandbuch (Teil 2: Modulbeschreibungen)

Seite 31/31

Hauntamtlich	Lehrende(r)

Prof. Dr. C. Heßing

Modulbeauftragte(r)

Prof. Dr. C. Heßing

Sonstige Informationen

Die aktuelle Literatur wird zu Beginn des Moduls vom Dozenten bekanntgegeben.