

Contents

																					5
	0.1																				5
	0.2																				5
	0.3																				5
	0.4																				7
	0.5																				7
	0.6																				8
[9	9
1																				1	3
2																				1	9
3																				2	3
4																				2	5

4 CONTENTS

0.1

- -

0.2

? -+-+-+...

0.3

(EAL)

,

 $Stat\ Mania$: (), , ,

:

6 CONTENTS

Figure 1: Book Cover

0.4.

Figure 2: Author

0.4

() (,)
() ()
() ()

: almahmud.sbi@gmail.com

: thinkermahmud.com/

: mahmud.sbi

0.5

,

, %

8 CONTENTS

.

· ,

,

0.6

Part I

· -

-

Chapter 1

14 CHAPTER 1.

```
?
 S = - + - + - + - + \dots
= (-) + (-) + (-) + \dots = + + + \dots
    S = - + - + - + - + \dots
S = - + - + - + - + \dots
S = +(-+)+(-+)+(-+)+...
= + + + + ...
=
                       - (Eilenberg-Mazur swindle)
 = + (- + ) + (- + ) + ... = - + - + ... = (-) + (-) + ... =
```

15

```
S = - + - + - + - + \dots
          A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, 
             , -S = S
         S + S =
             S =
             S = .
                                                                                                                                                                                                                                                                    , ... - ()
?
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   , 2n+1
                                                                                                              2n+1 ,
                                                                                                                                                                                                                                                                                                                                                                          , \begin{array}{c} 2n{+}1 \\ 2n \end{array},
                    1.
                    2.
                                                                                                                                                                                                                                                                                                                           ٠,
                                                                                                                                                                                                                                                                                                (Rearrangement)
                                                                                                                                                                                                                                                                                                                                                                                                                                          (Divergent)
                                                                                                                                                                                   (Convergent)
\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots  \infty
\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \dots
                                                                                                                                                                                                                                                                                                 , \frac{1}{\infty} = \frac{1}{\frac{1}{0}} = 1 \times \frac{1}{0} = 0
```

16 CHAPTER 1.

Figure 1.1: Guido Grandi

18 CHAPTER 1.

Chapter 2

" "

,

20 CHAPTER 2.

,

, " Enlightening Symbols

 $, \qquad \qquad (\qquad , \qquad)$

(Convergent) (Divergent) $+ + + \dots$

 $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$

,

 $\frac{x}{2} \qquad \frac{x}{4}, \frac{x}{8} \qquad \frac{x}{8} \cdots \qquad \qquad = \frac{x}{2}$ $\{\cdots, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1\}$!

, ,

, Halfway to Zero

!

22 CHAPTER 2.

Chapter 3

24 CHAPTER 3.

Chapter 4

,

, () ,

? ?

26 CHAPTER 4.

,	,	, % ,	,	%,	, %		
,	,		,	,			,
,	2.8 x 1043 ,	3,429	()			,
				,		,	
(Space)			,	,			?
	,			?			

