MSE for estimating Normal variance

Suppose $X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$. Consider two estimates of σ^2 :

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$
 $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$

Our goal is to find the MSE for these two estimators. We will use the following key facts:

- $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i \overline{X})^2 \sim \chi_{n-1}^2$
- If $V \sim \chi_{\nu}^2$, then $\mathbb{E}[V] = \nu$ and $Var(V) = 2\nu$

Questions

1. Using the information above, show that $\mathbb{E}[s^2] = \sigma^2$ (that is, the sample variance s^2 is an unbiased estimator).

2. Now calculate $\mathbb{E}[\widehat{\sigma}^2]$. Does $\widehat{\sigma}^2$ tend to overestimate or underestimate σ^2 ?

3. Using the information above, compute $Var(s^2)$ and $Var(\widehat{\sigma}^2)$.

4. Which estimator has a lower MSE?