Laboratorium z podstaw fizyki Wydziału EIiT na AGH.

Podsumowanie do obliczeń.

© Michał Kołodziej 2016, kolodziej michal@gmail.com

Laboratorium 11 - Badanie zjawiska dyfrakcji i polaryzacji światła

1 Opis eksperymentu

1.1 Ustawienie eksperymentu

Stanowisko jest wyposażone następująco:

[http://www.lepla.org/en/modules/Activities/m14/m14-setup.htm]

Na ekranie otrzymamy podobny obraz dyfrakcyjny jak poniżej:

[https://www.andrews.edu/phys/wiki/PhysLab/doku.php?id=lab-9]

http://pl.wikipedia.org/wiki/Drgania t%C5%82umione http://pl.wikipedia.org/wiki/Obw %C3%B3d RLC

1.2 Związek obrazu dyfrakcyjnego z intensywnością odczytywaną przez miernik

Laser emituje elektromagnetyczną falę płaską, zgodnie z oznaczeniami osi na rysunku powyżej wzór fali będzie następujący:

$$E(y,t)=E_m cos(\omega t+ky)$$

E_m to maksimum pola elektrycznego.

Fala w przestrzeni (medium) rozchodzi się według zasady Huygensa (https://pl.wikipedia.org/wiki/Zasada Huygensa) czyli każdy punkt przestrzeni jest źródłem fali kulistej, a na skutek interferencji obserwujemy na przykład wzór fali płaskiej.

Fala płaska napotyka szczelinę o szerokości porównywalnej lub większej do długości tej fali. Korzystając z zasady Huygensa możemy przwidzieć wzór fali za szczeliną.

Dla pojedynczej szczeliny jasność w funkcji kąta odchylenia od osi przyjmuje postać:

$$I(\theta) = I_0[\operatorname{sinc}(\alpha)]^2$$

$$\alpha = \frac{\pi d}{\lambda} \sin \theta$$

gdzie:

I – intensywność światła, I0 – intensywność światła w maksimum, czyli dla kąta równego 0, λ – długość fali, d – szerokość szczeliny, funkcja sinc(x) = sin(x)/x.

[https://commons.wikimedia.org/wiki/File:Single Slit Diffraction.svg]

1.2.1 Właściwości nieznormalizowanej funkcji sinc

[https://pl.wikipedia.org/wiki/Funkcja sinc]

Argument funkcji sinc we wzorze na intensywność fali na ekranie:

$$\frac{\pi d}{\lambda}\sin\theta$$

służy do skalowania ("zwężania", "rozszerzania") funkcji sinc w zależności od szerokości szczeliny. Jest to analogiczna procedura jak na przykład gdy chcemy "rozszerzyć" dwukrotnie funkcję $cos(\omega t)$ stosujemy $cos(0.5\omega t)$

Istotną informacją jest wiedza dla jakich argumentów funkcja sinc przyjmuje minimum (lub ma miejsca zerowe).

Miejsca zerowe nieznormalizowana funkcja sinc przyjmuje dla argumentów będących całkowitą niezerową wielokrotnością liczby π .

2 Pomiary

2.1 Pomiar intensywności w funkcji położenia detektora /(xi)

https://pl.wikipedia.org/wiki/Nat%C4%99%C5%BCenie promieniowania

W radiometrii natężenie (intensywność) promieniowania to wielkość fizyczna określona jako strumień promieniowania wysyłany w jednostkowy kąt bryłowy.

$$I = \frac{\Phi}{\Omega}$$

gdzie:

I - natężenie (intensywność) promieniowania

Φ - strumień promieniowania

Ω - kąt bryłowy

W układzie SI jednostką natężenia (intensywności) promieniowania jest wat na steradian (W/sr). (Fotodioda mierzy irradiancje - W/m2, ale w tym przypadku możemy ją uznać za intensywność)

Przesuwając detektor odczytujemy jego względne położenie ze śruby mikrometrycznej i odpowiadające mu natężenie światła na mierniku uniwersalnym (napięcia/prądu). Zapisujemy pomiar. Następnie normalizujemy położenia przyjmując położenie największego maksimum jako x=0.

```
("polozenia_pomiar [mm]",[0,1,2,3,4,5,6,7,8,9 ... 11,12,13,14,15,16,17,18,19,20]) ("polozenia [mm]",[-12,-11,-10,-9,-8,-7,-6,-5,-4,-3 ... -1,0,1,2,3,4,5,6,7,8]) ("intensywnosci [W/m2]", [0.219,0.233,0.258,0.258,0.234,0.259,0.288,0.292,0.27,0.309,0.35,0.381,0.394,0.3 92,0.377,0.346,0.308,0.278]) ("intensywnosc_max [W/m2]",0.394)
```

2.2 Ilustracja graficzna znormalizowanej intensywności I(x)

2.3 Wyznaczamy znormalizowane położenia minimów intensywności *xmin*

polozenia minimow = [-4, -8] #[mm]

2.4 Dopasowanie funkcji *l(\theta)* do zmierzonej intensywności = znalezienie szerokości szczeliny d

Funkcja

$$I(\theta) = I_0 [\operatorname{sinc}(\alpha)]^2$$

ma miejsca zerowe dla α będącego wielokrownościami π , czyli 1 minimum (licząc od maximum) będzie dla $\alpha = \pi$, drugie minimum dla $\alpha = 2\pi$, w związku z czym otrzymujemy równania:

$$\pi = \frac{\pi d}{\lambda} \sin \theta_1$$

$$2\pi = \frac{\pi d}{\lambda} \sin \theta_2$$

gdzie:

d – jest nieznaną szerokością szczeliny,

 λ – jest długością fali płaskiej padającej na szczelinę (w przypadku lasera gazowego He-Ne 632,8 nm),

 $\ddot{\theta}_{-}1$ – nieznanym kątem dla jakiego zmierzono pierwsze minimum intensywności, $\theta_{-}2$ – nieznanym kątem dla jakiego zmierzono drugie minimum intensywności.

Kąt θ możemy wyznaczyć z właściwości geometrycznych stanowiska pomiarowego, tangens tego kąta to stosunek znormalizowanego położenia fotodiody x do odległości pomiędzy szczeliną a fotodiodą L:

$$\theta = \operatorname{arctg}\left(\frac{x}{L}\right)$$

Przekształcając powyższe wzory otrzymujemy wzór na szerokość szczeliny, dla pierwszego minimum:

$$d = \frac{\lambda}{\sin\left(\arctan\left(\frac{x_1}{L}\right)\right)}$$

dla drugiego minimum:

$$d = \frac{2\lambda}{\sin\left(\arctan\left(\frac{x_2}{L}\right)\right)}$$

itd.

Podsumowując, jeżeli znajdziemy d spełniające powyższe równania to wykres funkcji $I(\theta)$ powinien mieć minima dla takich samych x-ów jak punkty pomiarowe intensywności.

2.4.1 Wyznaczona szerokość szczeliny

```
("odleglosc_detektora [cm]",80)
("\(\text{\lambda}\)_lasera [nm]",632.8)
("\(\theta\)_minimow [rad]",[-0.005,-0.01])
("szerokosci_szczeliny [mm]",[-0.13,-0.13])
("szerokosci_szczeliny_srednia [mm]",-0.13)
```

2.5 Ilustracja funkcji *l(\theta)* dla wyznaczonej szerokości szczeliny d

2.6 Błąd wyznaczenia szerokości szczeliny Δd dla pierwszego minimum

$$\Delta d = d(x + \Delta x, L + \Delta L, \lambda) - d(x, L, \lambda)$$
$$d(x, L, \lambda) = \frac{\lambda}{\sin(\arctan(\frac{x}{L}))}$$

2.6.1 Błąd wyznaczenia szerokości szczeliny

("szerokosc_szczeliny_blad [mm]",-0.022)

3 Wnioski

Znormalizowano pomiary i przestawiono je na rysunku.

Na podstawie zidentyfikowanych minimów i właściwości funkcji sinc dopasowano dane to krzywej teoretycznej, w ten sposób wyznaczono szerokość szczeliny:

"szerokosci_szczeliny_srednia [mm]", 0.13 +- 0.02

co się wydaje wynikiem racjonalnym, co również zobrazowano na rysunku.