Задание: Часть 1. Выполните первое демонстрационное задание "demo assignment" под названием "Exploratory data analysis with Pandas" со страницы курса https://mlcourse.ai/assignments (https://mlcourse.ai/assignments) Условие задания - https://nbviewer.jupyter.org/github/Yorko/mlcourse_open/blob/master/jupyter_english/assignments flush cache=true

(https://nbviewer.jupyter.org/github/Yorko/mlcourse_open/blob/master/jupyter_english/assignments_flush_cache=true) Часть 2. Выполните следующие запросы с использованием двух различных библиотек - Pandas и PandaSQL: один произвольный запрос на соединение двух наборов данных один произвольный запрос на группировку набора данных с использованием функций агрегирования Сравните время выполнения каждого запроса в PandaSQL.

```
import numpy as np #библиотека для работы с многомерными массивами данных и математическими операц
иями над ними
import pandas as pd #библиотека для анализа и обработки данных
pd.set_option('display.max.columns', 100)
import matplotlib.pyplot as plt #простое рисование графиков
import seaborn as sns #удобные дефолтные настройки графиков из matpotlib
```

warnings.filterwarnings('ignore')

%matplotlib inline

import warnings

Out[33]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black

```
In [34]:
         # 1) Сколько мужчин и женщин ("sex" фича) в этом сете?
          data["sex"].value_counts()
Out[34]:
          Male
                    21790
          Female
                    10771
          Name: sex, dtype: int64
In [35]:
         # 2) Какой средний возраст ("age" фича) у мужчин?
          data[data["sex"] == "Male"]["age"].mean()
Out[35]: 39.43354749885268
In [36]:
         # 3) Какой процентаж у жителей ("native-country" фича) Италии?
          print("{0:%}".format(data[data["native-country"] == "Italy"]
                               .shape[0] / data.shape[0]))
```

0.224195%

```
In [37]:
         # 4-5) Каково среднее и стандартное отклонение возраста для тех, кто зарабатывает более 50 тыс. в
          год ("salary" фича)
          # и тех, кто зарабатывает менее 50 тыс. в год?
          ages1 = data.loc[data['salary'] == '>50K', 'age']
          ages2 = data.loc[data['salary'] == '<=50K', 'age']</pre>
          print("The average age of the:\nrich: {0} +- {1} years,\npoor: {2} +- {3} years.".format(
              round(ages1.mean()), round(ages1.std(), 1),
              round(ages2.mean()), round(ages2.std(), 1)))
         The average age of the:
         rich: 44 +- 10.5 years,
         poor: 37 +- 14.0 years.
In [38]:
         # 6) Правда, что все с зарплатой >50К имеют высшее образование?
          if len(data.loc[data['salary'] == '>50K', 'education'].unique()) > 0:
              print("Ложь")
          else:
              print("Правда")
```

Ложь

In [39]:

7.1) Отображение статистики возраста для каждой расы ("race" фича) и каждого пола ("sex" фича). # Используйте groupby() и describe(). data.groupby(["race", "sex"])["age"].describe()

Out[39]:

		count	mean	std	min	25%	50%	75%	max
race	sex								
Amer-Indian-Eskimo	Female	119.0	37.117647	13.114991	17.0	27.0	36.0	46.00	0.08
	Male	192.0	37.208333	12.049563	17.0	28.0	35.0	45.00	82.0
Asian-Pac-Islander	Female	346.0	35.089595	12.300845	17.0	25.0	33.0	43.75	75.0
	Male	693.0	39.073593	12.883944	18.0	29.0	37.0	46.00	90.0
Black	Female	1555.0	37.854019	12.637197	17.0	28.0	37.0	46.00	90.0
	Male	1569.0	37.682600	12.882612	17.0	27.0	36.0	46.00	90.0
Other	Female	109.0	31.678899	11.631599	17.0	23.0	29.0	39.00	74.0
	Male	162.0	34.654321	11.355531	17.0	26.0	32.0	42.00	77.0
White	Female	8642.0	36.811618	14.329093	17.0	25.0	35.0	46.00	90.0
	Male	19174.0	39.652498	13.436029	17.0	29.0	38.0	49.00	90.0

```
In [40]:
         # 7.2) Найти максимальный возраст мужчин американо-индийско-эскимосской расы (Amer-Indian-Eskimo r
          ace).
          data[(data["race"] == "Amer-Indian-Eskimo") & (data["sex"] == "Male")]["age"].max()
Out[40]:
         82
In [41]:
         # 8) Среди кого больше доля тех, кто много зарабатывает (>50 тыс.):
          # женатые или одинокие мужчины (особенность семейного положения)?
          # Считать женатыми тех, кто имеет семейное положение, начиная с Married
          # (Married-civ-spouse, Married-spouse-absent или Married-AF-spouse), остальные считаются холостяка
          ми.
          data.loc[(data['sex'] == 'Male') &
               (data['marital-status'].isin(['Never-married',
                                             'Separated',
                                             'Divorced',
                                             'Widowed'])), 'salary'].value counts()
Out[41]: <=50K
                   7552
          >50K
                    697
          Name: salary, dtype: int64
In [42]:
          data.loc[(data['sex'] == 'Male') & (data['marital-status'].str.startswith('Married')), 'salary'].v
          alue counts()
Out[42]: <=50K
                   7576
          >50K
                   5965
          Name: salary, dtype: int64
```

In [43]: # 9) Какое максимальное количество часов человек работает в неделю ("hours-per-week" фича)?
Сколько людей работает такое количество часов и каков процент тех, кто зарабатывает много среди них?
max_load = data['hours-per-week'].max()
print("Max time - {0} hours./week.".format(max_load))

num_workaholics = data[data['hours-per-week'] == max_load].shape[0]
print("Total number of such hard workers {0}".format(num_workaholics))

rich_share = float(data[(data['hours-per-week'] == max_load) & (data['salary'] == '>50K')].shape[0]
]) / num_workaholics
print("Percentage of rich (>50K) among them {0}%".format(int(100 * rich share)))

Max time - 99 hours./week.

Total number of such hard workers 85

Percentage of rich (>50K) among them 29%

```
In [44]: # 10.1) Подсчитайте среднее время работы (hours-per-week) для тех,
# кто зарабатывает мало и много (salary) для каждой страны (native-country).

p = pd.crosstab(data["native-country"], data["salary"],

values=data['hours-per-week'], aggfunc="mean")

p
```

Out[44]:

salary	<=50K	>50K
native-country		
?	40.164760	45.547945
Cambodia	41.416667	40.000000
Canada	37.914634	45.641026
China	37.381818	38.900000
Columbia	38.684211	50.000000
Cuba	37.985714	42.440000
Dominican-Republic	42.338235	47.000000
Ecuador	38.041667	48.750000
El-Salvador	36.030928	45.000000
England	40.483333	44.533333
France	41.058824	50.750000
Germany	39.139785	44.977273

salary	<=50K	>50K
native-country		
Greece	41.809524	50.625000
Guatemala	39.360656	36.666667
Haiti	36.325000	42.750000
Holand-Netherlands	40.000000	NaN
Honduras	34.333333	60.000000
Hong	39.142857	45.000000
Hungary	31.300000	50.000000
India	38.233333	46.475000
Iran	41.440000	47.500000
Ireland	40.947368	48.000000
Italy	39.625000	45.400000
Jamaica	38.239437	41.100000
Japan	41.000000	47.958333
Laos	40.375000	40.000000
Mexico	40.003279	46.575758
Nicaragua	36.093750	37.500000

salary	<=50K	>50K
native-country		
Outlying-US(Guam-USVI-etc)	41.857143	NaN
Peru	35.068966	40.000000
Philippines	38.065693	43.032787
Poland	38.166667	39.000000
Portugal	41.939394	41.500000
Puerto-Rico	38.470588	39.416667
Scotland	39.44444	46.666667
South	40.156250	51.437500
Taiwan	33.774194	46.800000
Thailand	42.866667	58.333333
Trinadad&Tobago	37.058824	40.000000
United-States	38.799127	45.505369
Vietnam	37.193548	39.200000
Yugoslavia	41.600000	49.500000

```
In [51]:
         # 10.2) Что это будет для Италии?
          p.loc["Italy"]
Out[51]: salary
          <=50K
                   39,625
          >50K
                   45,400
          Name: Italy, dtype: float64
In [52]:
         #!pip install pandasql
In [53]:
         #!python -m pip install --upgrade pip
In [54]:
         from pandasql import sqldf
          pysqldf = lambda q: sqldf(q, globals())
In [55]:
         store = pd.read csv('./data/googleplaystore.csv')
          store.columns
Out[55]: Index(['App', 'Category', 'Rating', 'Reviews', 'Size', 'Installs', 'Type',
                 'Price', 'Content Rating', 'Genres', 'Last Updated', 'Current Ver',
                 'Android Ver'],
                dtype='object')
```

Импортировали два датасета из которых будем брать информацию для запроса.

In [57]:

sur.head()

Out[57]:

	Арр	Translated_Review	Sentiment	Sentiment_Polarity	Sentiment_Subjectivity
0	Foods	I like eat delicious food. That's I'm cooking	Positive	1.00	0.533333
1	Foods	This help eating healthy exercise regular basis	Positive	0.25	0.288462
2	10 Best Foods for You	NaN	NaN	NaN	NaN
3	Foods	Works great especially going grocery store	Positive	0.40	0.875000
4	10 Best Foods for You	Best idea us	Positive	1.00	0.300000

Out[58]:

	Арр	Category	Rating	Price
0	Photo Editor & Candy Camera & Grid & ScrapBook	ART_AND_DESIGN	4.1	0
1	Coloring book moana	ART_AND_DESIGN	3.9	0
2	U Launcher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	0
3	Sketch - Draw & Paint	ART_AND_DESIGN	4.5	0
4	Pixel Draw - Number Art Coloring Book	ART_AND_DESIGN	4.3	0

```
In [59]: sur = sur.dropna()
    sur = sur.drop("Translated_Review", 1)
    sur.head()
```

Out[59]:

	Арр	Sentiment	Sentiment_Polarity	Sentiment_Subjectivity
0	10 Best Foods for You	Positive	1.00	0.533333
1	10 Best Foods for You	Positive	0.25	0.288462
3	10 Best Foods for You	Positive	0.40	0.875000
4	10 Best Foods for You	Positive	1.00	0.300000
5	10 Best Foods for You	Positive	1.00	0.300000

```
In [60]: store.merge(sur[["App", "Sentiment_Polarity"]], on="App").head()
```

Out[60]:

	Арр	Category	Rating	Price	Sentiment_Polarity
0	Coloring book moana	ART_AND_DESIGN	3.9	0	-0.250
1	Coloring book moana	ART_AND_DESIGN	3.9	0	-0.725
2	Coloring book moana	ART_AND_DESIGN	3.9	0	0.000
3	Coloring book moana	ART_AND_DESIGN	3.9	0	0.500
4	Coloring book moana	ART_AND_DESIGN	3.9	0	-0.800

```
In [61]:
         %%timeit
         store.merge(sur[["App", "Sentiment Polarity"]], on="App")
         20.1 ms ± 1.52 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [62]:
         #pysqldf("""SELECT st.App, st.Category, st.Rating, sur.Sentiment Polarity
                     FROM store AS st JOIN sur
          #
                     ON st.App = sur.App""").head()
In [63]:
         sur.groupby("App")["Sentiment Polarity"].mean().head()
Out[63]:
          App
          10 Best Foods for You
                                              0.470733
          104 找工作 - 找工作 找打工 找兼職 履歷健檢 履歷診療室
                                                               0.392405
          11st
                                              0.185943
          1800 Contacts - Lens Store
                                             0.318145
          1LINE - One Line with One Touch
                                              0.196290
          Name: Sentiment Polarity, dtype: float64
In [64]:
         %%timeit
         sur.groupby("App")["Sentiment Polarity"].mean()
         3.63 ms \pm 129 \mus per loop (mean \pm std. dev. of 7 runs, 100 loops each)
```

244 ms \pm 80.7 ms per loop (mean \pm std. dev. of 7 runs, 1 loop each)

In [66]: pysqldf("""SELECT * FROM sur""").head()

Out[66]:

	Арр	Sentiment	Sentiment_Polarity	Sentiment_Subjectivity
0	10 Best Foods for You	Positive	1.00	0.533333
1	10 Best Foods for You	Positive	0.25	0.288462
2	10 Best Foods for You	Positive	0.40	0.875000
3	10 Best Foods for You	Positive	1.00	0.300000
4	10 Best Foods for You	Positive	1.00	0.300000