1 Solution approchée d'Équations Différentielles Ordinaires (EDO)

1.1 Motivations et Définitions

1.1.1 Notations et Définitions de base

Soit $F:[a,b]\times\mathbb{R}^d\to\mathbb{R}^d$ une fonction, telle que $(t,x)\mapsto F(t,x)$, avec $a,b\in\mathbb{R}$ et $d\in\mathbb{N}^*$. Cette fonction vectorielle F est donnée par ses composantes $F_i:[a,b]\times\mathbb{R}^d\to\mathbb{R}$ pour $i=1,\ldots,d$:

$$F(t,x) = \begin{pmatrix} F_1(t,x) \\ \vdots \\ F_d(t,x) \end{pmatrix}$$

On note $g^{(p)}$ la dérivée d'ordre p d'une fonction $g: \mathbb{R} \to \mathbb{R}$. En particulier, g' est la dérivée d'ordre 1.

Si une fonction $g:[a,b]\to\mathbb{R}^d$ est continue ainsi que toutes ses dérivées jusqu'à l'ordre p, on notera $g\in C^p([a,b],\mathbb{R}^d)$ ou simplement $g\in C^p([a,b])$ s'il n'y a pas d'ambiguïté sur l'espace d'arrivée. On a l'équivalence suivante :

$$(g_i \in C^k([a,b],\mathbb{R}) \quad \forall i = 1,\ldots,d) \iff (g \in C^k([a,b],\mathbb{R}^d))$$

1.1.2 Définitions des EDOs

Definition 1.1. On appelle équation différentielle d'ordre 1 une équation de la forme:

$$y'(t) = F(t, y(t)), \quad \forall t \in [t_0, t_0 + T]$$

où $y(t) \in \mathbb{R}^d$ et $F : [a, b] \times \mathbb{R}^d \to \mathbb{R}^d$.

Definition 1.2. On appelle **EDO d'ordre** *p* une équation de la forme:

$$y^{(p)}(t) = f(t, y(t), y'(t), \dots, y^{(p-1)}(t))$$

où $f:[a,b]\times(\mathbb{R}^d)^p\to\mathbb{R}^d$ est une fonction continue.

Definition 1.3. Une fonction y de classe C^1 (ou C^p pour une EDO d'ordre p) vérifiant une EDO est dite **solution** de l'EDO. Résoudre une EDO, c'est déterminer toutes les solutions de cette EDO. Lorsque $d \neq 1$ (c'est-à-dire y(t) est un vecteur et non un scalaire), on parle de **système d'EDOs**.

1.1.3 Réduction à un système d'ordre 1 et Problème de Cauchy

Theorem 1.4. Toute EDO d'ordre $p \ge 1$ peut se ramener à un système d'EDOs d'ordre 1.

Preuve. Soit une EDO d'ordre $p: y^{(p)}(t) = f(t, y(t), y'(t), \dots, y^{(p-1)}(t))$. On pose $X_1(t) = y(t), X_2(t) = y'(t), \dots, X_p(t) = y^{(p-1)}(t)$. Alors on a le système d'équations d'ordre 1 suivant pour le vecteur

$$X(t) = (X_1(t), \dots, X_p(t))^T:$$

$$X'_1(t) = y'(t) = X_2(t)$$

$$X'_2(t) = y''(t) = X_3(t)$$

$$\vdots$$

$$X'_{p-1}(t) = y^{(p-1)}(t) = X_p(t)$$

$$X'_p(t) = y^{(p)}(t) = f(t, X_1(t), X_2(t), \dots, X_p(t))$$
Ce qui peut s'écrire sous la forme $X'(t) = \mathcal{F}(t, X(t))$.

Definition 1.5. On appelle **problème de Cauchy** pour une EDO d'ordre 1 la donnée de l'EDO et de la valeur de la solution en un point initial $t_0 \in [a, b]$. Le couple (t_0, y_0) , où $y_0 = y(t_0)$, est appelé **condition initiale**. Le problème de Cauchy consiste à résoudre :

$$\begin{cases} y'(t) = F(t, y(t)), & t \in [t_0, t_0 + T] \\ y(t_0) = y_0 \end{cases}$$

où $y_0 \in \mathbb{R}^d$ est donné.

La recherche d'une fonction de classe C^1 vérifiant ce système est l'objectif.

1.2 Exemples d'EDO

1.2.1 Pendule simple

L'équation du mouvement d'un pendule simple est $L\phi''(t) + g\sin(\phi(t)) = 0$, où $\phi(t)$ est l'angle par rapport à la verticale, L la longueur du pendule, et g l'accélération due à la gravité. Ceci est une EDO d'ordre 2 :

$$\phi''(t) + \frac{g}{L}\sin(\phi(t)) = 0$$

Figure 1: Schéma d'un pendule simple.

Pour la ramener à un système d'ordre 1, on pose $X_1(t) = \phi(t)$ et $X_2(t) = \phi'(t)$. Alors, le système devient

$$X'_1(t) = \phi'(t) = X_2(t)$$

$$X'_2(t) = \phi''(t) = -\frac{g}{L}\sin(\phi(t)) = -\frac{g}{L}\sin(X_1(t))$$

Si on note $X(t) = \begin{pmatrix} X_1(t) \\ X_2(t) \end{pmatrix}$, alors X'(t) = F(t,X(t)) avec $F(t,X) = \begin{pmatrix} X_2 \\ -\frac{g}{L}\sin(X_1) \end{pmatrix}$. C'est un système d'EDOs d'ordre 1, où $F: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$.

1.2.2 Chute libre avec frottement quadratique

L'équation du mouvement vertical z(t) d'un objet en chute libre avec une résistance de l'air proportionnelle au carré de la vitesse v(t) = z'(t) est donnée par:

$$z''(t) = -g + k(z)(z'(t))^{2}$$

où g est l'accélération de la pesanteur (constante) et k(z) est un coefficient lié à la forme de l'objet et à la densité de l'air, pouvant dépendre de l'altitude z. C'est une EDO d'ordre 2.

On pose
$$Y(t) = \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix} = \begin{pmatrix} z(t) \\ z'(t) \end{pmatrix}$$
. Le système d'ordre 1 équivalent est :

$$y'_1(t) = z'(t) = y_2(t)$$

 $y'_2(t) = z''(t) = -g + k(y_1(t))(y_2(t))^2$

Soit Y'(t) = F(t,Y(t)) avec $F(t,Y) = \begin{pmatrix} Y_2 \\ -g + k(Y_1)Y_2^2 \end{pmatrix}$. C'est un système d'équations d'ordre 1. (Note: dans les notes manuscrites, il y a une formule $F(t,Y) = \begin{pmatrix} V \\ -g + ky_1y_2^2 \end{pmatrix}$ qui semble contenir une coquille si $Y = (y_1,y_2) = (z,V)$, le terme $ky_1y_2^2$ devrait être $k(y_1)y_2^2$).

1.2.3 Modèle épidémiologique SIR

Un modèle simple d'épidémie divise la population en trois compartiments: Susceptibles (S), Infectés (I), et Rétablis (R). Les transitions sont: $S \xrightarrow{k_1 I S} I \xrightarrow{k_2 I} R$. k_1 est le taux d'infection, k_2 est le taux de guérison. Le système d'EDOs est:

$$S'(t) = -k_1 I(t) S(t)$$

$$I'(t) = k_1 I(t) S(t) - k_2 I(t)$$

$$R'(t) = k_2 I(t)$$

C'est un système d'EDOs d'ordre 1. $Y(t) = (S(t), I(t), R(t))^T$.

Figure 2: Diagramme du modèle épidémiologique SIR.

1.2.4 Exemple de fonction F(t, Y) pour un système

La fonction F(t, Y) pour un système Y'(t) = F(t, Y(t)) peut prendre diverses formes. Par exemple, considerons $Y = (y_1, y_2)^T$. Une fonction F pourrait être:

Listing 1: Exemple de fonction F(t)

```
import numpy as np
# g, L, k sont des parametres supposes definis ailleurs
# Par exemple: g = 9.81, L = 1.0, k = 0.1

def F(t, Y):
    y1, y2 = Y # Y est un vecteur [y1, y2]
    dY_dt = np.array([
        y2,
        -g/L * k * y1 * y2**2
]) * np.exp(-t)
    return dY_dt
```

Ce code définit le système d'EDOs:

$$y'_1(t) = y_2(t)e^{-t}$$

 $y'_2(t) = \left(-\frac{g}{L}ky_1(t)y_2(t)^2\right)e^{-t}$

1.3 Problème de Cauchy et Existence/Unicité de la solution

1.3.1 Nécessité de la solution approchée

On considère le problème de Cauchy suivant:

- 1. y'(t) = f(t, y(t)), pour $t \in [t_0, t_0 + T]$
- 2. $y(t_0) = y_0$ (condition initiale donnée)

Souvent, on ne sait pas résoudre analytiquement ce système (1)-(2), sauf dans des cas particuliers (par exemple, EDO linéaires à coefficients constants, EDO à variables séparables, etc.).

Example 1.6. L'EDO $y'(t) = \sin(t^2y(t))$ avec y(0) = 1 est un exemple d'équation dont on ne connaît pas de solution analytique explicite.

D'où la nécessité de recourir à des méthodes de solution approchée.

1.3.2 Théorème de Cauchy-Lipschitz

Sous certaines conditions sur la fonction f, le problème de Cauchy admet une solution unique.

Definition 1.7 (Fonction Lipschitzienne). On dit qu'une fonction $f: D \subset [a,b] \times \mathbb{R}^d \to \mathbb{R}^d$ est **Lipschitzienne** par rapport à sa seconde variable sur D s'il existe une constante L > 0 (appelée constante de Lipschitz) telle que pour tous $(t, y_1) \in D$ et $(t, y_2) \in D$:

$$||f(t,y_1) - f(t,y_2)||_{\mathbb{R}^d} \le L||y_1 - y_2||_{\mathbb{R}^d}$$

Theorem 1.8 (Cauchy-Lipschitz). Soit le problème de Cauchy (P): y'(t) = f(t, y(t)) avec $y(t_0) = y_0$. Si $f: [t_0, t_0 + T] \times \mathbb{R}^d \to \mathbb{R}^d$ est une fonction telle que:

- 1. f est continue sur $[t_0, t_0 + T] \times \mathbb{R}^d$.
- 2. f est Lipschitzienne par rapport à sa seconde variable y sur $[t_0, t_0 + T] \times \mathbb{R}^d$.

Alors, le problème de Cauchy (P) admet une unique solution y(t) de classe $C^1([t_0, t_0 + T], \mathbb{R}^d)$.

1.3.3 Qualités de la solution théorique

Lorsque le problème est bien posé (c'est-à-dire que les conditions du théorème de Cauchy-Lipschitz sont satisfaites), la solution théorique possède certaines qualités:

- Existence et unicité de la solution.
- Régularité de la solution (par exemple, C^1).
- Dépendance continue de la solution vis-à-vis des données du problème (condition initiale y_0 et fonction f). Ceci est lié à la stabilité du problème.

Cependant, même si le problème est bien posé et admet une solution unique, on peut ne pas être capable de la trouver analytiquement.

1.4 Schémas Numériques à un pas

1.4.1 Formulation Intégrale du problème de Cauchy

L'EDO y'(t) = f(t, y(t)) peut être intégrée entre t_0 et t:

$$\int_{t_0}^{t} y'(s)ds = \int_{t_0}^{t} f(s, y(s))ds$$

$$y(t) - y(t_0) = \int_{t_0}^{t} f(s, y(s)) ds$$

Proposition 1.9. Une fonction y(t) est solution du problème de Cauchy (P)

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$$

si et seulement si y(t) satisfait l'équation intégrale:

$$y(t) = y_0 + \int_{t_0}^{t} f(s, y(s))ds, \quad \forall t \in [t_0, t_0 + T]$$

Cette formulation est la base de nombreuses méthodes numériques.

1.4.2 Principe des méthodes numériques et maillage temporel

L'idée est de construire une suite de points (t_n, y_n) qui approximent la solution y(t) aux instants t_n . On définit un **maillage** du temps: une suite discrète d'instants $t_n = t_0 + n\Delta t$ pour $n = 0, 1, \ldots, N$, où $\Delta t = T/N$ est le **pas de temps** et N est le nombre de pas. On calcule $y_n \approx y(t_n)$ pour chaque n. En reliant les points (t_n, y_n) , on obtient une approximation graphique de la solution $t \mapsto y(t)$.

Figure 3: Illustration de la construction d'une solution numérique approchée $y_n \approx y(t_n)$. Les points (t_n, y_n) sont reliés pour former une approximation de la courbe solution.

1.4.3 Construction des schémas à partir d'approximations d'intégrales (Formules de Quadrature)

Les schémas numériques sont souvent dérivés de la formulation intégrale sur un petit intervalle $[t_n, t_{n+1}]$:

$$y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(s, y(s)) ds$$

L'intégrale $\int_{t_n}^{t_{n+1}} g(s)ds$ (où g(s) = f(s,y(s))) est approximée par une formule de quadrature:

- Rectangle à gauche: $\int_{t_n}^{t_{n+1}} g(s) ds \approx \Delta t \cdot g(t_n)$. Erreur $O(\Delta t^2)$.
- Rectangle à droite: $\int_{t_n}^{t_{n+1}} g(s) ds \approx \Delta t \cdot g(t_{n+1})$. Erreur $O(\Delta t^2)$.
- Trapèze: $\int_{t_n}^{t_{n+1}} g(s)ds \approx \frac{\Delta t}{2} [g(t_n) + g(t_{n+1})]$. Erreur $O(\Delta t^3)$.
- Point milieu: $\int_{t_n}^{t_{n+1}} g(s)ds \approx \Delta t \cdot g(t_n + \frac{\Delta t}{2})$. Erreur $O(\Delta t^3)$.

Figure 4: Approximation de l'intégrale $\int_{t_n}^{t_{n+1}} g(s)ds$ par la méthode du rectangle à gauche.

Sur l'intervalle $[t_n, t_{n+1}]$, on considère le problème de Cauchy local:

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(t_n) = x_n \end{cases}$$

où x_n est la valeur approchée de $y(t_n)$ calculée à l'étape précédente $(x_0 = y_0$ étant la condition initiale exacte). Alors $y(t_{n+1}) = x_n + \int_{t_n}^{t_{n+1}} f(s,y(s)) ds$. En approximant l'intégrale et y(s) dans l'intégrande, on obtient différents schémas. On pose x_{n+1} comme l'approximation de $y(t_{n+1})$.

1.4.4 Schéma d'Euler Explicite

En utilisant la formule du rectangle à gauche pour l'intégrale et en approximant $f(s, y(s)) \approx f(t_n, x_n)$ pour $s \in [t_n, t_{n+1}]$:

$$y(t_{n+1}) \approx x_n + \Delta t f(t_n, x_n)$$

Le schéma d'Euler explicite est défini par:

$$x_{n+1} = x_n + \Delta t f(t_n, x_n), \quad n = 0, \dots, N - 1$$
$$x_0 = y_0$$

1.4.5 Schéma du Point Milieu (Explicite)

En utilisant la formule du point milieu pour l'intégrale:

$$\int_{t_n}^{t_{n+1}} f(s, y(s)) ds \approx \Delta t f(t_n + \frac{\Delta t}{2}, y(t_n + \frac{\Delta t}{2}))$$

Pour évaluer $y(t_n + \frac{\Delta t}{2})$, on peut utiliser une approximation d'Euler sur un demi-pas: $y(t_n + \frac{\Delta t}{2}) \approx y(t_n) + \frac{\Delta t}{2} f(t_n, y(t_n))$. En substituant $y(t_n)$ par x_n , on obtient le schéma du point milieu (un schéma de Runge-Kutta d'ordre 2):

$$x_{n+1} = x_n + \Delta t f\left(t_n + \frac{\Delta t}{2}, x_n + \frac{\Delta t}{2} f(t_n, x_n)\right), \quad n = 0, \dots, N - 1$$

La note indique $y(t_{n+1}) = y(t_n) + \Delta t f(t_n + \frac{\Delta t}{2}, y(t_n) + \frac{\Delta t}{2} f(t_n, y(t_n))) + O(\Delta t^3)$. Ce $O(\Delta t^3)$ est l'erreur de troncature locale.

1.4.6 Schéma d'Euler Implicite

En utilisant la formule du rectangle à droite pour l'intégrale:

$$\int_{t_n}^{t_{n+1}} f(s, y(s)) ds \approx \Delta t f(t_{n+1}, y(t_{n+1}))$$

On obtient:

$$y(t_{n+1}) \approx x_n + \Delta t f(t_{n+1}, y(t_{n+1}))$$

Le schéma d'Euler implicite est défini par:

$$x_{n+1} = x_n + \Delta t f(t_{n+1}, x_{n+1}), \quad n = 0, \dots, N-1$$

$$x_0 = y_0$$

Ce schéma est implicite car x_{n+1} apparaît des deux côtés de l'équation. À chaque pas de temps, on doit résoudre l'équation (souvent non linéaire) (PH): $x_{n+1} - \Delta t f(t_{n+1}, x_{n+1}) = x_n$ pour trouver x_{n+1} .

1.4.7 Schéma de Crank-Nicolson (Trapèze Implicite)

En utilisant la formule du trapèze pour l'intégrale:

$$\int_{t_n}^{t_{n+1}} f(s, y(s)) ds \approx \frac{\Delta t}{2} [f(t_n, y(t_n)) + f(t_{n+1}, y(t_{n+1}))]$$

Le schéma de Crank-Nicolson est défini par:

$$x_{n+1} = x_n + \frac{\Delta t}{2} [f(t_n, x_n) + f(t_{n+1}, x_{n+1})], \quad n = 0, \dots, N-1$$

 $x_0 = y_0$

Ce schéma est également implicite.

1.4.8 Schéma de Heun (Trapèze Explicite / Euler amélioré)

On peut rendre le schéma du trapèze explicite en utilisant une prédiction pour x_{n+1} dans le terme $f(t_{n+1}, x_{n+1})$. Une méthode courante est d'utiliser une prédiction par Euler explicite:

- 1. Prédiction (Euler explicite): $\tilde{x}_{n+1} = x_n + \Delta t f(t_n, x_n)$
- 2. Correction (Trapèze): $x_{n+1} = x_n + \frac{\Delta t}{2} [f(t_n, x_n) + f(t_{n+1}, \tilde{x}_{n+1})]$

Ceci est le schéma de Heun:

$$x_{n+1} = x_n + \frac{\Delta t}{2} \left[f(t_n, x_n) + f(t_{n+1}, x_n + \Delta t f(t_n, x_n)) \right], \quad n = 0, \dots, N - 1$$
$$x_0 = y_0$$

C'est un schéma explicite.

1.4.9 Forme générale des schémas explicites à un pas

De nombreux schémas explicites à un pas peuvent s'écrire sous la forme générale:

$$x_{n+1} = x_n + \Delta t \Phi(t_n, x_n, \Delta t), \quad n = 0, \dots, N-1$$

 x_0 donné

où $\Phi: \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$ est la fonction d'incrément.

Example 1.10. Exemples de fonctions Φ :

- Euler explicite: $\Phi(t, y, \Delta t) = f(t, y)$
- Point Milieu: $\Phi(t,y,\Delta t) = f\left(t + \frac{\Delta t}{2}, y + \frac{\Delta t}{2}f(t,y)\right)$
- Heun: $\Phi(t, y, \Delta t) = \frac{1}{2} [f(t, y) + f(t + \Delta t, y + \Delta t f(t, y))]$

1.5 Exemple: Modèle Proie-Prédateur (Lotka-Volterra)

Un autre exemple classique de système d'EDOs est le modèle de Lotka-Volterra, qui décrit la dynamique des populations de proies L(t) (par exemple, lapins) et de prédateurs R(t) (par exemple, renards). On a le problème de Cauchy:

$$L'(t) = aL(t) - bL(t)R(t)$$

$$R'(t) = -cR(t) + dL(t)R(t)$$

avec les conditions initiales $L(0) = L_0$ et $R(0) = R_0$. Les constantes a, b, c, d sont positives et décrivent les interactions:

- aL(t): croissance exponentielle des proies en l'absence de prédateurs.
- -bL(t)R(t): mortalité des proies due à la prédation.
- \bullet -cR(t): mortalité exponentielle des prédateurs en l'absence de proies.
- dL(t)R(t): croissance des prédateurs grâce à la prédation.

Les notes mentionnent L'(t) = L(t) - L(t)R(t) et R'(t) = -R(t) + L(t)R(t), ce qui correspond au cas a = 1, b = 1, c = 1, d = 1. Ce système n'est généralement pas résoluble analytiquement et nécessite des méthodes numériques.