Serie notevoli, convergenza di una serie, serie a termini positivi, criterio del confronto per serie #Analisi1

Esempio (Serie telescopiche):

Esempio (Serie di Mengoli):

$$^{\infty}\Sigma_{n=1}\left(1/n(n+1)\right)=1 \qquad \qquad a_{n}=1/n(n+1)=1/n-1/n+1 \qquad \text{ seriestelescopica con b}_{n}=1/n$$

$$S_N = {}^N \Sigma_{n=1} a_n = {}^N \Sigma_{n=1} (1/n - 1/n+1) = 1 - 1/N+1 => Lim_{N->\infty} S_N = 1 => {}^\infty \Sigma_{n=1} (1/n(n+1)) = Lim_{N->\infty} S_N = 1$$

Teorema (condizione necessaria per la convergenza di una serie):

se
$$\sum_{n=1}^{\infty} a_n$$
 converge, allora $\lim_{n\to\infty} a_n = 0$

Corollario:

se $\lim_{n\to\infty} a_n$ non esiste, oppure se $\lim_{n\to\infty} a_n \neq 0$, allora $\sum_{n=1}^{\infty} a_n$ non converge

Dimostrazione:

$$S_N = {}^\infty \Sigma_{n=1} \, a_n \, \text{successione delle somme parziali,} \qquad \text{per ipotesi } \exists S \\ = \operatorname{Lim}_{N->\infty} \, S_N \in R$$

osserviamo che
$$S_N = {}^N\Sigma_{n=1} a_n = a_N + {}^{N-1}\Sigma_{n=1} a_n = a_N + S_{N-1} => a_N = S_N - S_{N-1} \quad \forall N \in \mathbb{N}$$

poiché
$$\lim_{N\to\infty} S_N = \lim_{N\to\infty} S_{N-1} = S \in \mathbb{R}$$
 per algebra dei limiti $\lim_{N\to\infty} a_N = \lim_{N\to\infty} S_N - \lim_{N\to\infty} S_{N-1} = 0$

Osservazione:

se $\lim_{n\to\infty} a_n$ non necessariamente $\sum_{n=1}^{\infty} a_n$ risulta convergente

Esempio:

$$^{\infty}\Sigma_{n=1}$$
 1/n serie armonica; affermiamo che Lim $_{n->\infty}$ 1/n = 0 ma che $^{\infty}\Sigma_{n=1}$ 1/n = + ∞

osserviamo che $1/n \ge \log(1 + 1/n) \quad \forall n \in \mathbb{N}$

-y = log(1+x), y = x retta tangente in 0 al grafico della funzione che è

Teorema:

data una serie $\sum_{n=1}^{\infty} a_n$ se converge/diverge allora $\forall N \in \mathbb{N}$ anche $R_N = \sum_{n=N+1}^{\infty} a_n$ converge/diverge

se la serie
$$\sum_{n=1}^{\infty} a_n$$
 converge, allora $\lim_{N\to\infty} R_N = 0$

Osservazione:

se la serie converge a S R allora R
$$_N={}^\infty\Sigma_{n=N+1}$$
 a $_n={}^\infty\Sigma_{n=1}$ a $_n-{}^N\Sigma_{n=1}$ a $_n=S-S_N$ $\forall N\in N$

Definizione:

$$R_N = {}^{\infty} \Sigma_{n=N+1} a_n$$
 si chiama resto n-esimo della serie ${}^{\infty} \Sigma_{n=1} a_n$

Definizione (Serie a termini positivi (definitivamente)):

data una serie $\sum_{n=1}^{\infty} a_n$ si dice a termini (definitivamente) positivi (o non negativi) se $a_n \ge 0$ (definitivamente) in $n \in \mathbb{N}$

Teorema:

Se la serie $^{\infty}\Sigma_{n=1}$ a $_{n}$ è a termini (definitivamente) positivi essa converge o diverge a $+\infty$

Dimostrazione:

L'idea è dimostrare che $S_N = {}^N \Sigma_{n=1} a_n$ è (definitivamente) crescente, quindi regolare per il teorema di esistenza del limite

per successioni monotone, infatti $\exists n_0 \in \mathbb{N} \ \text{t.c.} \ a_n \ge 0 \quad \forall n \ge n_0 \text{ per ipotesi}$

$$\forall N \ge n_0 S_{N+1} = {N+1 \choose n=1} a_n = a_{N+1} + S_N \ge S_N$$

=> S_N è definitivamente crescente per il teorema di esistenza del limite per successioni monotone

$$\exists \text{Lim}_{N-\infty} S_N \in RU\{+\infty\} = \sum_{n=1}^{\infty} a_n = \text{Lim}_{N-\infty} S_N = S_N$$

Se $S = +\infty$ la serie diverge, se $S \in R$ la serie converge

Osservazione:

se
$$a_n \ge 0 \ \forall n \in \mathbb{N} \ \text{allora} \ ^{\infty} \Sigma_{n=1} \ a_n = \text{Lim}_{N->\infty} \ S_N = \text{supS}_N$$

Teorema (criterio del confronto per serie a termini positivi):

date due successioni a_n , b_n t.c. $0 \le a_n \le b_n$ (definitivamente) $\forall n \in \mathbb{N}$

1. Se
$$\sum_{n=1}^{\infty} a_n$$
 diverge allora $\sum_{n=1}^{\infty} b_n$ diverge

2. Se
$$\sum_{n=1}^{\infty} a_n$$
 converge allora $\sum_{n=1}^{\infty} b_n$ converge

Inoltre se
$$a_n \le b_n \ \forall n \in \mathbb{N}$$
 allora $\sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{\infty} b_n$

Dimostrazione:

per semplicità supponiamo $0 \le a_n \le b_n \quad \forall n \in \mathbb{N}$ e le somme parziali delle due serie $S_N = {}^N \Sigma_{n-1} a_n$ e $\partial_N = {}^N \Sigma_{n-1} b_n$

 S_N e ∂_N sono monotone crescenti, quindi $\exists \text{Lim}_{N->\infty} S_N = S \in \text{RU}\{+\infty\}$ e $\exists \text{Lim}_{N->\infty} \partial_N = \partial \in \text{RU}\{+\infty\}$ con $S = \sup S_N$, $\partial = \sup \partial_N$

Se $^{\infty}\Sigma_{n=1}$ a $_n$ diverge, S = + ∞ e S $_N$ successione divergente, per confronto di successioni Lim $_{N->\infty}$ ∂_N = + ∞ quindi

$$^{\infty}\Sigma_{n=1}$$
 b_n diverge

Se $^{\infty}\Sigma_{n=1}$ b_n converge, $\delta \in R$ e δ_N è successione convergente (limitato dall'alto da δ) segue $0 \le S_N \le \delta_N \le \delta$

quindi anche ${\bf S}_N$ è limitata pertanto ${\bf S}=\lim_{N\to\infty}{\bf S}_N$ \in R cioè $^\infty\Sigma_{n=1}$ ${\bf a}_n$ è convergente

Poiché esistono S = $\lim_{N\to\infty} S_N$ e ∂ = $\lim_{N\to\infty} \partial_{N'}$ passando al limite per permanenza del segno $0 \le S \le \partial$

cioè
$$0 \le {\infty \choose n=1} a_n \le {\infty \choose n=1} b_n$$

Esempio:

confronto con una serie geometrica

$$\sum_{n=0}^{\infty} q^n = \{1/1 - q \text{ se } |q| < 1; +\infty \text{ se } q \ge 1\}$$

Esempio:

confronto con serie armonica generalizzata

$$^{\infty}\Sigma_{n=1}$$
 1/n ^{δ} = {converge δ > 1; diverge δ ≤ 1}

Esempio:

confronto con serie armonica generalizzata II

$$^{\infty}\Sigma_{n=2} \ 1/n^{\partial}*log(n)^{\beta} = \{converge \ \partial > 1 \ \forall \beta \in R \ oppure \ \partial = 1, \ \beta > 1;$$
 diverge $\partial < 1 \ \forall \beta \in R \ oppure \ \partial = 1, \ \beta \leq 1\}$

Teorema (criterio del confronto asintotico per serie):

siano $a_{n'}$ b_n due successioni a termini (definitivamente) positivi, supponiamo $a_n \sim b_n$ (Lim $_{n->\infty} a_n/b_n = 1$)

allora $^\infty\Sigma_{n=1}$ a $_n$ e $^\infty\Sigma_{n=1}$ b $_n$ o convergono entrambe o divergono entrambe a $+\infty$

Osservazione:

se le serie convergono, il risultato delle rispettive somme sarà in generale diverso

Dimostrazione:

 ${\rm dato~che~Lim}_{n \to \infty} \ {\rm a}_n/{\rm b}_n \approx 1 \quad \epsilon > 0 \qquad \qquad {\rm \exists N_1 \in N} \ {\rm t.c.} \ 1 - \epsilon < {\rm a}_n/{\rm b}_n < 1$

da (2) segue che 0 < ${\rm a}_{\rm n}$ < 3/2 * ${\rm b}_{\rm n}$ da (1) segue che 0 < ${\rm b}_{\rm n}$ < $2^*{\rm a}_{\rm n}$

Per il teorema del confronto per serie, se ${}^\infty\Sigma_{n=1}$ b $_n$ converge da $0 < b_n < 2^*a_n$ segue che converge anche ${}^\infty\Sigma_{n=1}$ a $_n$

viceversa, se $^{\infty}\Sigma_{n=1}$ a $_n$ converge da 0 < a $_n$ < 3/2 * b $_n$ segue che converge anche $^{\infty}\Sigma_{n=1}$ b $_n$

Quindi $^{\infty}\Sigma_{n=1}$ a_n converge <=> $^{\infty}\Sigma_{n=1}$ b_n converge

Poiché le due serie o convergono o divergono, segue allora anche che $^\infty\Sigma_{n=1}\, a_n$ diverge <=> $^\infty\Sigma_{n=1}\, b_n$ diverge

Teorema(criterio del rapporto per serie):

sia a_n successione a termini (definitivamente) strettamente positivi e $\exists \text{Lim}_{N->\infty} a_{n+1}/a_n \in \mathbb{R}^*$ allora

1. Se
$$l > 1$$
 (incluso $l = +\infty$) allora $\sum_{n=1}^{\infty} a_n$ diverge (Lim_{->\infty} $a_n = +\infty$)

2. Se
$$0 \le l < 1$$
 allora $\sum_{n=1}^{\infty} a_n$ converge

- 3. Se I = 1 non si può concludere, esistono serie convergenti e serie divergenti t.c. $\lim_{n\to\infty} a_{n+1}/a_n = 1$
- Se $0 \le I < 1$ allora Lim_{$->\infty$} $a_n = 0$
- Se I > 1 allora Lim_{-> ∞} a_n = + ∞

(criterio del rapporto per successioni)

Teorema(criterio della radice per serie):

sia a_n successione a termini (definitivamente) positivi e $\exists \text{Lim}_{N->\infty} \ ^n \sqrt{a_n}$ $\in \mathbb{R}^*$ allora

- 1. Se l > 1 (incluso $l = +\infty$) allora $\sum_{n=1}^{\infty} a_n$ diverge (Lim_{->\infty} $a_n = +\infty$)
- 2. Se $0 \le I < 1$ allora $\sum_{n=1}^{\infty} a_n$ converge
- 3. Se l = 1 non si può concludere, esistono serie convergenti e serie divergenti t.c. $\lim_{n\to\infty} {}^{n} \sqrt{a_n} = 1$

Osservazione:

se I = 1 non si può concludere nulla in entrambi i criteri

Esempio:

$$^{\infty}\Sigma_{n=1} 1/n^{\partial} \ \partial \in \mathbb{R}$$
 $a_n = 1/n^{\partial}$ (serie armonica generalizzata)

la serie converge per $\delta > 1$, diverge per $\delta \le 1$

$$a_{n+1}/a_n = 1/(n+1)^{\partial} * n^{\partial} = (n/n+1)^{\partial} -> 1^{\partial} = 1 => \lim_{n \to \infty} a_{n+1}/a_n = 1$$

 $\forall \partial \in \mathbb{R}$

$$^{n}\sqrt{a_{n}} = (1/n^{\delta})^{1/n} = e^{\log(1/n^{\delta/n})} = e^{\delta/n \log(1/n)} \log(1/n) / n = -\log n / n - \log n$$

> 0 (gerarchia degli infiniti) $\lim_{n\to\infty} {}^{n}\sqrt{a_n} = e^0 = 1$

Dimostrazione (criterio del rapporto):

per semplicità assumiamo $a_n > 0 \quad \forall n \in \mathbb{N}$ $I = \lim_{n \to \infty} a_{n+1}/a_n$

1. I > 1 se I ∈ R scelgo ε

$$\varepsilon = I-1/2$$
 allora $\exists N \in N$ t.c. $\forall n \ge N$

$$I - \varepsilon < a_{n+1}/a_n \ (< I + \varepsilon) \ cioè \ a_{n+1}/a_n > I - \varepsilon = I - (I-1)/2 = (I+1)/2 > 1$$

chiamiamo q = (I+1)/2 quindi $a_{n+1}/a_n > q > 1 \quad \forall n \ge N$

$$=> a_{n+1} > q^* a_n > q^2 * a_{n-1} > ... > q^{(n+1)-N} * a_N$$
 $\forall n \ge N => a_n \ge n$

$$(a_{N}/q^{N}) * q^{n}$$

per il criterio del confronto (per successioni e serie) $\lim_{n\to\infty} a_n = +\infty$

$$e^{\infty}\sum_{n=1}^{\infty}a_n=+\infty$$

– Se I = $+\infty$, per M=2 esiste (vedi definizione di limite) N \in N t.c. $\forall n \geq N$ $a_{n+1}/a_n > 2 > 1$

quindi come già visto
$$\forall n \ge N \ a_{n+1} > 2a_n > 2^2 a_{n-1} > ... > 2^{(n+1)-N} a_N$$

=> $\forall n \ge N$ $a_n > 2^n a_n/2^N$ per confronto (successioni e serie) $\lim_{n \to \infty} a_n = +\infty$ e $\sum_{n=1}^{\infty} a_n = +\infty$

2. Se $0 \le l < 1$ se $\epsilon > 0$ $\exists N \in N$ t.c. $\forall n \ge N$ $(l - \epsilon <)$ $a_{n+1}/a_n < l + \epsilon$, $\epsilon = (1-l)/2$

=> \forall n \geq N $a_{n+1}/a_n < l + \epsilon = l + (1-l)/2 = (1+l)/2 < 1 definiamo q = (1+l)/2 < 1 allora <math>\forall$ n \geq N 0 < $a_{n+1}/a_n <$ q < 1

$$=> \forall n \ge N \ a_{n+1} < q^* a_n < q^2 * a_{n-1} < ... < q^{(n+1)-N} * a_N$$

=> $\forall n \ge N \ 0 < a_n < q^n \ a_N/q^N$ poiché $q \in (0,1)$ per il criterio del confronto delle serie (con serie geometrica)

segue che $^{\infty}\Sigma_{n=0}$ q n = 1/(1-q) convergente, anche $^{\infty}\Sigma_{n=1}$ a $_{n}$ converge

Esempio:

 $^{\infty}\Sigma_{n=1}$ a^n/n^n a>0 $a_n=a^n/n^n>0$ $^n\sqrt{a_n}=a/n$ ->0 $l\in[0,1)$ =>la serie converge $\forall a>0$ per criterio della radice