On Solving the Sparse Matrix Compression Problem Greedily

Dominik Köppl¹ Vincent Limouzy² Andrea Marino³ Giulia Punzi⁴ Takeaki Uno⁵

- 1: University of Yamanashi
- ²: University Clermont Auvergne
- ³: University of Florence
- ⁴: University of Pisa
- ⁵: National Institute of Informatics

問題の設定

入力

- n 個の1次元ポリオミノ (=タイル)
- タイルには隙間があってもよい

目標

- タイルを1次元結合タイルにする
- 隙間を埋めることができるが、埋めたブロックは重なってはならない
- 目的: 最短の結合タイルを構築

問題の設定

補題

隙間のない結合タイルは解である

証明.

ブロックは重ならないから

決定問題

MINLENGTH すべてのタイルを長さ k の結合タイルに結合できるか?

MAXSHIFT すべてのタイルの最初のブロックが最初の列に配置された場合、最大シフトが k 以下の結合タイルを作成できるか?

MAXSHIFT はすでに Sparse Matrix Compression (SMC) problem として研究されていた

Garey+'79 は $k \geq 2$ の場合に SMC が \mathcal{NP} 困難であることを示した Bannai+'24 は幅が $\Omega(\lg n)$ の場合、両方の問題が \mathcal{NP} 困難であることを示した

問題 (SMC, [Garey+'79, Chapter A4.2, Problem SR13])

入 カ: $n \times \ell$ 行列 $A[1..n][1..\ell]$ 、n 行 ℓ 列として、すべての $i \in [1..n]$, $j \in [1..\ell]$ に対して $A[i][j] \in \{0,1\}$ の要素を持つ 整数 $k \in [0..\ell \cdot (n-1)]$

目標: 以下の2つが存在できるかどうかを調べる:

- 整数配列 $C[1..\ell+k]$ 、 $\forall i \in [1..\ell+k]$ について $C[i] \in [0..n]$ シフト関数 $s:[1,n] \rightarrow [0,k]$ が存在し、 $\forall i \in [1,n] \ \forall i \in [1,\ell]$ につ
- シフト関数 $s:[1..n] \rightarrow [0..k]$ が存在し、 $\forall i \in [1..n], \forall j \in [1..\ell]$ について $A[i][j] = 1 \Leftrightarrow C[s(i) + j] = i$ が成り立つ
- $A[0][j] = 0 \, \forall \, j$ であると仮定し、C[i] = 0 を設定することで、この要素が未割り当てであることをモデル化する

応用:

- 行列の圧縮 [Ziegler'77]
- 探索トライの実装 [Tarjan, Yao'79]
- コンパイラ [Aho+'86]
- ブルームフィルタ [Chang,Wu'91]

タイルから行列へ

$$A = egin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

タイルから行列へ

B =

$$A = egin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$s = [6, 1, 2, 0]$$

$$C = [4, 2, 3, 3, 4, 2, 1, 3, 4, 1]$$

$$1 0 0 1 0 0 0 0 0$$

$$0 0 1 0 0 0 0$$

$$1 0 0 0 1 0 0 0$$

タイルから行列へ

Ziegler'77: 貪欲アルゴリズム: 最初に最初のものを配置

- 最初のタイルを最初の位置に配置
- それ以降のタイルについて: 最も左に適合する位置に配置
- 繰り返す

使用例: "Compilers: Principles, Techniques, and Tools" の節 3.9.8

While we may not be able to choose base values so that no next-check entries remain unused, experience has shown that the simple strategy of assigning base values to states in turn, and assigning each base[s] value the lowest integer so that the special entries for state s are not previously occupied utilizes little more space than the minimum possible.

- 最初のタイルを最初の位置に配置
- それ以降のタイルについて: 最も左に適合する位置に配置
- 繰り返す

- 最初のタイルを最初の位置に配置
- それ以降のタイルについて: 最も左に適合する位置に配置
- 繰り返す

- 最初のタイルを最初の位置に配置
- それ以降のタイルについて: 最も左に適合する位置に配置
- ┗ 繰り返す

- 最初のタイルを最初の位置に配置
- それ以降のタイルについて: 最も左に適合する位置に配置
- 繰り返す

- 最初のタイルを最初の位置に配置
- それ以降のタイルについて: 最も左に適合する位置に配置
- 繰り返す

- 近似比は本当に小さいか?
- lacktriangle 実際に、近似比は $\Theta(\sqrt{m})$, ここで m は最適値

下界: $\Omega(\sqrt{m})$ 近似比

- lacksquare 2種類のタイル: X と Y, $X = (1 \cdot 0^{k-2})^k$, $Y = (1 \cdot 0^{k-1})^k$
- $|X|, |Y| \in \Theta(k^2)$
- X 種類の個数: k 2. Y 種類の個数: k 1
- タイルの順序は Y, X, Y, X, Y, X, Y, ...
- lacktriangle 各配置は解に少なくとも k^2-k の長さを追加するので、合計の長さは $\Omega(k^3)$
- 逆に全ての X と Y は自分自身の中で結合して長さ $\Theta(k^2)$ の固まりに できる(最適値)
- 近似比は √m

ightharpoonup Y から始めて X に最初に適合する場所を見つける

 \blacksquare Y から始めて X に最初に適合する場所を見つける

ightharpoonup Y から始めて X に最初に適合する場所を見つける

- \blacksquare Y から始めて X に最初に適合する場所を見つける
- X が Y の最後の k 個の位置の中に適合

- \blacksquare Y から始めて X に最初に適合する場所を見つける
- X が Y の最後の k 個の位置の中に適合
- 次の Y が X と Y と衝突

- \blacksquare Y から始めて X に最初に適合する場所を見つける
- X が Y の最後の k 個の位置の中に適合
- 次の Y が X と Y と衝突

- \blacksquare Y から始めて X に最初に適合する場所を見つける
- X が Y の最後の k 個の位置の中に適合
- 次の Y が X と Y と衝突

- \blacksquare Y から始めて X に最初に適合する場所を見つける
- X が Y の最後の k 個の位置の中に適合
- 次の Y が X と Y と衝突
- Y が X の最後の k 個の位置に適合する

- \blacksquare Y から始めて X に最初に適合する場所を見つける
- X が Y の最後の k 個の位置の中に適合
- 次の Y が X と Y と衝突
- Y が X の最後の k 個の位置に適合する
- 再帰
- タイルを置くたびに文字列が |X| k だけ増える

貪欲アルゴリズム: まとめ

- タイル種類 X と Y がそれぞれ k 個ある
- \blacksquare タイルの長さは $\Theta(k^2)$
- 各置いたタイルに対して、出力文字列の長さが $k^2 k$ に増える
- 結局、出力の長さ: $\Omega(k^3)$
- 最短の出力は?

■ まず全ての Y を揃える

■ まず全ての Y を揃える

- まず全ての Y を揃える
- 全ての Y は完全に収まる

- まず全ての Y を揃える
- 全ての Y は完全に収まる
- 全ての X にも同じことが言える

- まず全ての Y を揃える
- 全ての Y は完全に収まる
- 全ての X にも同じことが言える
- 隙間がないよって、解は最適
- lacktriangle 解の長さは $(|X|+|Y|)+2k\in\Theta(k^2)$

recap

- \blacksquare 最適解の長さ $m \in \Theta(k^2)$
- lacktriangle 貪欲アルゴリズムの解の長さ: $\Omega(k^3)$
- lacksquare 少なくとも $\Omega(k)$ 悪い、ここで $k \in \sqrt{m}$!

以下も示せる:

- lacktriangle 鳩の巣原理より、貪欲アルゴリズムは $\mathcal{O}(\sqrt{m})$ 以上悪くならない
- \Rightarrow 貪欲アルゴリズムの近似比は \sqrt{m}
- $lacksymbol{n} imes \ell$ 行列が与えられたとき、両問題を $\mathcal{O}(n^{2^\ell}\ell n 2^\ell n)$ 時間で正確に解ける
- $\Rightarrow \ell \in \mathcal{O}(\lg \lg n)$ のとき: 問題は \mathcal{P} に属する

ご清聴ありがとうございました

未解決な問題

- 1. 順序を変わっても、 $\Omega(\sqrt{m})$ の近似比下界が成り立つ?
- 2. より良い近似アルゴリズムの提案
- 3. FPT のアルゴリズムの存在
 - □ タイルの種類をパラメタにする
 - □ タイルのブロック ('1') の最大個数をパラマタにする
- 4. タイルの最大長さは
 - \square $\Omega(\lg n) \Rightarrow \mathcal{NP}$ 困難 Bannai+'24
 - \square $\mathcal{O}(\lg \lg n) \Rightarrow \mathcal{P}$
 - \square $\omega(\lg \lg n) \cap o(\lg n) \Rightarrow ?$