Mathematics Department Perth Modern Perth Modern Perth Modern

Exceptional schooling. Exceptional students.

Independent Public School

Course Methods Test 1 Year 12

ormula sheet provided: ı	no, but formulae listed on next page.
Task weighting:	%ET
Marks available:	34 marks
	Drawing instruments, templates, notes on one unfolded sheet o A4 paper single sided,
	Pens (blue/black preferred), pencils (including coloured), sharpe correction fluid/tape, eraser, ruler, highlighters
Materials required:	No Cals allowed at all!
Jumber of questions:	9
Working time allowed for	this task: 40 mins
steat sidt 101 amit gnibs 95	suim G :
լցsk type։ հ	уesbouse
Student name:	Teacher name:

Note: All part questions worth more than 2 marks require working to obtain full marks.

9869 **1** Page

Working out space

Working out space

Useful formulae

$\frac{d}{dx}x^n = nx^{n-1}$		$\int x^n dx = \frac{x^{n+1}}{n+1} + c, \qquad n \neq -1$			
$\frac{d}{dx}e^{ax-b} = ae^{ax-b}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$			
$\frac{d}{dx} \ln x = \frac{1}{x}$		$\int \frac{1}{x} dx = \ln x + c, x > 0$			
$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$		$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c, f(x) > 0$			
$\frac{d}{dx}\sin(ax-b) = a\cos(ax-b)$		$\int \sin(ax-b) dx = -\frac{1}{a} \cos(ax-b) + c$			
$\frac{d}{dx}\cos(ax-b) = -a\sin(ax-b)$		$\int \cos(ax-b) dx = \frac{1}{a} \sin(ax-b) + c$			
Product rule	If $y = uv$		If $y = f(x) g(x)$		
	then	or	then		
	$\frac{d}{dx}(uv) = v\frac{du}{dx} + u\frac{dv}{dx}$		$y'=f'(x)\ g(x)+f(x)\ g'(x)$		
Quotient rule	If $y = \frac{u}{v}$		If $y = \frac{f(x)}{g(x)}$		
	then	or	then		
	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$		$y' = \frac{f'(x) g(x) - f(x) g'(x)}{(g(x))^2}$		
	If $y = f(u)$ and $u = g(x)$)	If $y = f(g(x))$		
Chain rule	then	or	then		
	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	pl.	y' = f'(g(x)) g'(x)		
Fundamental theorem	$\frac{d}{dx} \left(\int_{a}^{x} f(t) dt \right) = f(x)$	and	$\int_{a}^{b} f'(x) dx = f(b) - f(a)$		
Increments formula	$\delta y \approx \frac{dy}{dx} \times \delta x$				
Exponential growth and decay	$\frac{dP}{dt} = kP \iff P = P_0 e^{kt}$				

No calculators allowed!!!

Q1 (2, 2 & 2 = 6 marks)

Determine the gradient function $\frac{dy}{dx}$ for each of the following.

$$\frac{1}{2} + \epsilon x = \chi$$

$$\frac{x}{x_S - {}_{t}x_8} = x$$

$$(X \searrow + 2)(1 - E_X) = \chi$$

Q2 (4 marks)

Determine the equation of the tangent to the curve $y = \frac{3x + 7}{3x + 2}$ at the point $\left(1, \frac{2}{5}\right)$.

Q5 (4 marks)

Perth Modern

The cost $^{\$ C}$ for the production of X thousands units of a certain product is given by $^{C}=(3x+5)^{1}$, $^{X}>0$.

Determine the number of units for which the **average cost per unit** is a minimum and find this minimum average cost. Justify. (No need to simplify)

Q6 (4 marks) Consider a train moving in a straight line. The displacement, X km, from its starting position at time t

minutes is given by $x=\frac{t^3}{2}-\frac{3t^2}{2}+\frac{2t}{2}$, $t\geq 0$. The train changes direction twice. Determine the distance in km between these two positions on the track. (Simplify)

Mathematics Department

Perth Modern

Q3 (2, 2, 2 & 4= 10 marks)

The table below contains the values of the polynomial function f(x) and its first and second derivatives for x = 0,1,2,3,4,5,6.

There are no stationary points for non-integer values of X.

X	0	1	2	3	4	5	6
f (x)	12	5	-2	-13	-20	-35	-5
f'(x)	-4	-12	-5	0	-11	0	15
f"(x)	-8	0	2	0	-5	7	10

a) Evaluate
$$\frac{d}{dx} [f(x)]^2$$
 when $x = 1$

b) Evaluate
$$\frac{d}{dx}[f(2x)]$$
 when $x=3$

c) Evaluate
$$\frac{d}{dx} \left[\frac{1}{f(x)} \right]$$
 when $x = 2$

d) Determine the x-coordinate of any **stationary** points and their nature. Justify your answer.

4 | P a g e

Mathematics Department Perth Modern

Q4 (3 & 3 = 6 marks)

Consider the curve of y = f(x) which is graphed below.

a) Sketch below a graph of the first derivative of y = f(x). Label on this new graph stationary points.

b) Sketch below a graph of the second derivative of y = f(x). Label on this new graph any inflection points (if any).

5 | Page