CRYPTOGRAPHY HANDOUT 15

NUMBER THEORY PRACTICE SOLUTIONS

1.	Use the Euclidean Algorithm to find the gcd for the following pairs of numbers: a. $\gcd(14129, 9353)$
	$\gcd(14129, 9353) = 199$
	b. gcd(30073, 12749)
	$\gcd(30073, 12749) = 61$
2.	Compute the Euler Phi Function for the following: a. $\varphi(25)$
	20
	b. $\varphi(40)$
	16
	c. $\varphi(29)$
	28
	d. $\varphi(17)$
	16
	e. $\varphi(p)$ where p is a prime
	p-1
3.	Use Fermat's Little Theorem to evaluate the following: a. $11^{12} \mod 13$
	1 mod 13

b. $11^{13} \mod 13$

$$11^{12} \cdot 11 \mod 13 \equiv 1 \cdot 11 \mod 13 \equiv 11 \mod 13$$

c. $88^{100} \mod 101$

 $1 \bmod 101$

d. $a^{100} \mod 101$ for some number a

 $1 \bmod 101$

e. $88^{203} \mod 101$

$$(88^2)^{100} \cdot 88^3 \mod 101 \equiv 88^3 \mod 101 \equiv 25 \mod 101$$

- 4. Use Euler's Theorem to evaluate the following:
 - a. $23^{20} \mod 25$

 $1 \bmod 25$

b. $23^{21} \mod 25$

$$23^{20} \cdot 23 \mod 25 \equiv 1 \cdot 23 \mod 25 \equiv 23 \mod 25$$

c. $31^{16} \mod 40$

 $1 \mod 40$

d. $a^{16} \mod 40$ for some number a

 $1 \mod 40$

e. $17^{55} \mod 40$

$$(17^3)^{16} \cdot 17^7 \mod 40 \equiv 17^7 \mod 40 \equiv 33 \mod 40$$

- 5. Determine the order of the following numbers a and primes p (recall the order is the smallest power k in which $a^k \equiv 1 \mod p$):
 - a. a = 3, p = 7

$$k = 6$$

b.
$$a = 2, p = 7$$

$$k = 3$$

c.
$$a = 3, p = 23$$

$$k = 11$$

d.
$$a = 7, p = 13$$

$$k = 12$$

6. In the previous question, which values are primitive roots (i.e. the order is p-1)?

3 is a primitive root when p = 7. Also, 7 is a primitive root when p = 13.

7. Given an integer a and an odd prime p, determine if a is a square mod p (use Euler's Criterion).

a.
$$a = 3, p = 7$$

 $3^{\frac{7-1}{2}} \equiv -1 \mod 7$ so 3 is not a square mod 7.

b.
$$a = 10, p = 13$$

 $10^{\frac{13-1}{2}} \equiv 1 \mod 13$ so 10 is a square mod 13.

c.
$$a = 10, p = 17$$

 $10^{\frac{17-1}{2}} \equiv -1 \mod 7$ so 10 is not a square mod 17.

d.
$$a = 45, p = 199$$

 $45^{\frac{199-1}{2}} \equiv 1 \mod 199 \text{ so } 45 \text{ is a square mod } 199.$

8. Use the Legendre symbol $\left(\frac{a}{p}\right)$ to determine whether a=-1 is a square or not for the following primes p:

a.
$$p = 17$$

 $17 \mod 4 \equiv 1 \mod 4$, so it is a square.

b. p = 59

 $59 \mod 4 \equiv 3 \mod 4$, so it is not a square.

c. p = 83

 $83 \mod 4 \equiv 3 \mod 4$, so it is not a square.

9. First, complete the following table. Then use Euler's Criterion and Quadratic Reciprocity to determine the next questions.

Prime p	Congruent to 1 mod 4 or 3 mod 4?
19	3
29	1
61	1
67	3

a. $(\frac{19}{29})$

-1

b. $(\frac{29}{19})$

-1

c. $(\frac{29}{61})$

-1

d. $(\frac{61}{29})$

-1

e. $(\frac{67}{19})$

-1

f. $(\frac{19}{67})$

1