School of Computing and Information Systems COMP30026 Models of Computation Tutorial Week 3

6-10 August 2018

The exercises

7. (Optional.) If any good questions or thoughts came up when you worked through Grok modules, now is a good time to share them. Here is a question about list types. What is the type of f defined below? Is it well-typed? Did somebody forget the square brackets in the last equation?

$$f[] = 0$$

$$f[x] = x$$

$$f y = 42$$

8. For each of the following pairs, indicate whether the two formulas have the same truth table.

(a)
$$\neg P \Rightarrow Q$$
 and $P \Rightarrow \neg Q$

(e)
$$P \Rightarrow (Q \Rightarrow R)$$
 and $Q \Rightarrow (P \Rightarrow R)$

(b)
$$\neg P \Rightarrow Q$$
 and $Q \Rightarrow \neg P$

(f)
$$P \Rightarrow (Q \Rightarrow R)$$
 and $(P \Rightarrow Q) \Rightarrow R$

(c)
$$\neg P \Rightarrow Q$$
 and $\neg Q \Rightarrow P$

(g)
$$(P \land Q) \Rightarrow R$$
 and $P \Rightarrow (Q \Rightarrow R)$

(d)
$$(P \Rightarrow Q) \Rightarrow P$$
 and P

(h)
$$P \lor Q \Rightarrow R$$
 and $(P \Rightarrow R) \land (Q \Rightarrow R)$

- 9. Find a formula that is equivalent to $(P \wedge Q) \vee P$ but simpler, that is, using fewer symbols.
- 10. Recall that \oplus is the "exclusive or" connective. Show that $(P \oplus Q) \oplus Q$ is equivalent to P.
- 11. Show that $P \Leftrightarrow (Q \Leftrightarrow R) \equiv (P \Leftrightarrow Q) \Leftrightarrow R$. This tells us that we could instead write

$$P \Leftrightarrow Q \Leftrightarrow R \tag{1}$$

without introducing any ambiguity. Mind you, that may not be such a good idea, because many people (incorrectly) tend to read " $P \Leftrightarrow Q \Leftrightarrow R$ " as

$$P, Q, \text{ and } R \text{ all have the same truth value}$$
 (2)

Show that (1) and (2) are incomparable, that is, neither is a logical consequence of the other.

12. Three playing cards lie face down on a table. One is red, one is black, and one is the joker. On the back of each card is written a sentence:

Card 1

Card 2

Card 3

The red card has a true sentence written on its back and the black card has a false sentence. Which card is red, which is black, and which is the joker?

- 13. Let Φ and Ψ be propositional formulas. What is the difference between ' $\Phi \equiv \Psi$ ' and ' $\Phi \Leftrightarrow \Psi$ ' do we really need both? Show that $\Phi \equiv \Psi$ iff $\Phi \Leftrightarrow \Psi$ is valid.
- 14. By negating a satisfiable proposition, can you get a tautology? A satisfiable proposition? A contradiction? Illustrate your affirmative answers.
- 15. (Drill.) Find a formula equivalent to $P \Leftrightarrow (P \land Q)$ but simpler, that is, using fewer symbols.
- 16. (Drill.) Recall that \Leftrightarrow is the biimplication connective. Show that $(P \Leftrightarrow Q) \equiv (\neg P \Leftrightarrow \neg Q)$.
- 17. (Drill.) For each of the following propositional formulas, determine whether it is satisfiable, and if it is, whether it is a tautology:
 - (a) $P \Leftrightarrow ((P \Rightarrow Q) \Rightarrow P)$
 - (b) $(P \Rightarrow \neg Q) \land ((P \lor Q) \Rightarrow P)$
 - (c) $((P \Rightarrow Q) \Rightarrow Q) \land (Q \oplus (P \Rightarrow Q))$