# Matrices : applications

\*\*\*

#### I. Suites de matrices

#### 1. Suite de matrices colonnes

#### Définition.

Soit n un entier naturel.

On appelle suite de matrices colonnes, notée  $(U_n)$  des matrices colonnes dont tous les éléments sont des termes de suites numériques.

**Exemple.** La suite  $(U_n)$  définie pour tout entier naturel n par  $U_n = \begin{pmatrix} n^2 \\ 2n+1 \\ 3^n \end{pmatrix}$  est une suite de matrice dont les coefficients sont les suites numériques  $(a_n)$ ,  $(b_n)$  et  $(c_n)$  définies pour tout entier naturel n par  $a_n = n^2$ ,  $b_n = 2+1$  et  $c_n = 3^n$ .

Remarque. On peut définir de la même manière les suites de matrices lignes.

#### Définition.

Une suite  $(U_n)$  de matrices **converge** si et seulement si toutes les suites formant les coefficients de cette matrice convergent. La limite de la suite  $(U_n)$  est alors la matrice ayant pour coefficients les limites de chaque terme  $(U_n)$ .

**Exemple.** Soit la suite de matrice  $(U_n)$  définie sur  $\mathbb{N}$  par,  $U_n = \binom{2+0,7^n}{1-\frac{1}{n}}$ . Cette suite de matrices converge vers la matrice  $U = \binom{2}{1}$ .

#### 2. Suites de matrices définies par des relations de récurrence

#### Propriété.

Soit A une matrice carrée d'ordre p avec p entier naturel supérieur ou égal à 2 et  $(U_n)$  une suite de matrices colonnes à p lignes telles que pour tout entier naturel  $n: U_{n+1} = AU_n$ . Alors pour tout entier naturel n,

$$U_n = A^n U_0$$

**Exemple.** On considère deux suites  $(a_n)$  et  $(b_n)$  définies pour tout entier naturel n par les relations de récurrence :  $a_{n+1} = 2a_n + 3b_n$ ,  $b_{n+1} = 4a_n + b_n$  et telles que  $a_0 = 1$  et  $b_0 = 2$ .

Calculer  $a_4$  et  $b_4$ .

#### Propriété.

Soit A une matrice carrée d'ordre p avec p entier naturel supérieur ou égal à 2, B est une matrice colonne à p lignes et  $(U_n)$  une suite de matrices colonnes à p lignes telles que pour tout entier naturel  $n: U_{n+1} = AU_n + B$ . Si la suite  $(U_n)$  converge alors sa limite U est une matrice colonne vérifiant : U = AU + B. La matrice U est appelée état stable de la suite  $(U_n)$ .

Exercice 1.11. Soit la suite de matrices colonnes  $(U_n)$  définies pour tout entier naturel n par  $U_{n+1} = AU_n + B$  avec  $U_0 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ ,  $A = \begin{pmatrix} 0.5 & 0 \\ -0.5 & 0.5 \end{pmatrix}$  et  $B = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ .

- 1. Déterminer une matrice colonne u telle que U = AU + B.
- **2.** On pose  $V_n = U_n U$ . Montrer que, pour tout entier naturel n,  $V_{n+1} = AV_n$ ; en déduire l'expression de  $V_n$  en fonction de n.
- **3.** On admet que pour tout entier naturel  $n \ge 1$ ,

$$A^n = \begin{pmatrix} 0,5^n & 0 \\ -n0,5^n & 0,5^n \end{pmatrix} \text{ et } \lim_{n \to +\infty} n0, 5^n = 0.$$

Déduire ce qui précède l'expression de  $U_n$  en fonction de n et étudier sa limite.

### II. Chaînes de Markov

#### 1. Graphe orienté pondéré

#### Définitions.

- Un graphe orienté est *pondéré* lorsque chaque arête est affectée d'un nombre réel positif, appelé pois de cette arête.
- Un graphe *probabiliste* est un graphe orienté pondéré où tous les poids sont compris entre 0 et 1 te tel que la *somme des poids* des arêtes issues d'un même sommet est égale à 1.
- Les sommets d'un graphe probabiliste sont appelés des *états*.

**Exemple.** Voici un graphe probabiliste à deux états :



#### 2. Matrice de transition

#### Définition.

La matrice associée à un graphe probabiliste comportant p sommets s'appelle matrice de transition. C'est une matrice carrée d'ordre p où le terme de la i-ème ligne et la j-ième colonne est égale au poids de l'arête allant du sommet i au sommet j si elle existe, 0 sinon.

## Exercice 2.11.

- 1. Donner la matrice de transition associée au graphe donné ci-dessous, les sommets étant rangés dans l'ordre alphabétique.
- 2. Quelle remarque peut-on faire sur la somme des termes appartenant à une même ligne?



#### 3. Chaîne de Markov associée à deux ou trois états

#### Définition.

On considère une suite de variables aléatoires  $(X_n)$  permettant de modéliser l'évolution par étapes successives d'un système aléatoire comportant différents états.

- À l'étape n = 0, la loi de probabilité de  $X_0$  s'appelle la **distribution initiale** du système.
- À l'étape n, la loi de probabilité de  $X_n$  s'appelle la **distribution après** n **transitions**.

Lorsque, à chaque étape, la probabilité de transition d'un état à un autre ne dépend pas de n, on dit que la suite  $(X_n)$  est une chaîne de Markov.

#### Remarques. On peut associer à une chaîne de Markov :

- un graphe probabiliste où les sommets sont les états du système aléatoire et le poids de chaque arête est égal à la probabilité de transition d'un état à un autre.
- La matrice de transition de ce graphe probabiliste.

**Exercice 3.11.** Un robot se déplace sur un triangle ABC. À chaque étape :

- s'il est en A, il choisit de façon aléatoire soit de rester en A, soit de se déplacer vers B ou C;
- s'il est en B, il se déplace aléatoirement vers A ou c;
- s'il est en c, il se déplace vers A.

On note  $X_n$  la variable aléatoire donnant la position du robot à l'étape n. Au début de l'expérience, pour n = 0, on place le robot en A.

- **1.** Donner la distribution initiale du système, c'est-à-dire  $\mathbb{P}(X_0 = A)$ ,  $\mathbb{P}(X_0 = B)$  et  $\mathbb{P}(X_0 = C)$ .
- 2. À l'aide d'un arbre pondéré, déterminer la distribution du système après deux étapes.
- 3. Expliquer pourquoi la suite  $(X_n)$  est une chaîne de Markov et donner le graphe probabiliste et la matrice associée.

#### Représentation d'une chaîne de Markov à l'aide d'une suite de ma-TTT. trices

#### Modélisation à l'aide d'une suite de matrice

#### Propriété.

On considère une chaîne de Markov à 2 (respectivement à 3) états et P la matrice de transition associée. Soit n, i et j trois entiers naturels tels que  $n \ge 1$ ,  $1 \le i \le 2$  et  $1 \le j \le 2$  (respectivement  $1 \le i \le 3$  et

La probabilité de passer de l'état i à l'état j en n étapes est égale au terme de la i-ième ligne et j-ième colonne de la matrice  $P^n$ .

**Exercice 4.11.** On considère une marche aléatoire à deux états modélisée par le graphe probabiliste suivant :



- 1. Déterminer la matrice de transition associée à cette marche aléatoire.
- **2.** Calculer  $M^3$ . En déduire la probabilité de passer de l'état 1 à l'état 2 en trois étapes.

#### Étude asymptotique 2.

#### Définition.

On considère une chaîne de Markov à 2 (respectivement à 3) états et P la matrice de transition associée. On note  $\pi_n$  la matrice ligne à 2 (respectivement à 3) colonnes dont le terme de la j-ième colonne est la probabilité qu'à l'étape n la variable aléatoire  $X_n$  soit égale à j. Autrement dit :

$$\pi_n = (P(X_n = 1) \quad P(X_n = 2)) \quad \text{(respectivement)} \quad \pi_n = (P(X_n = 1) \quad P(X_n = 2) \quad P(X_n = 3)).$$

**Remarques.** La matrice  $\pi_0$  représente la distribution initiale et la matrice  $\pi_n$  la distribution après n transitions.

#### Définition.

Pour tout entier naturel  $n \ge 1$ ,  $\pi_{n+1} = \pi_n P$  et  $\pi_n = \pi_0 P^n$ . S'il existe un entier n tel que la matrice  $P^n$  ne contient pas de 0 alors la suite  $(\pi_n)$  converge vers la matrice  $\pi$  vérifiant  $\pi = \pi P$  et cette limite de **dépend** pas de  $\pi_0$ .

On dit que la matrice  $\pi$  représente la distribution invariante du système.

Exercice 5.11. On a programmé un ordinateur pour qu'il affiche successivement des lettres qui sont soit des consonnes C, soit des voyelles V selon le graphe probabiliste suivant :



- 1. On suppose que la première lettre est une consonne. Calculer la probabilité que la cinquième lettre soit une consonne.
- 2. Déterminer la distribution invariante de ce système. Interpréter le résultat.