

EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR

Programozási Nyelvek és Fordítóprogramok Tanszék

Táblázatkezelő szoftver implementálása Haskell nyelven

Supervisor:

Dr. Kaposi Ambrus

egyetemi docens

Author:

Széles Márk

programtervező informatikus BSc

Tartalomjegyzék

1	Bev	Bevezetés				
2	Fell	Felhasználói dokumentáció				
	2.1	Rends	zerkövetelmények	5		
	2.2	Telepí	tés és indítás	5		
	2.3	A felha	asználói felület áttekintése	6		
	2.4	A para	ancssorban használható parancsok	7		
		2.4.1	Kifejezés kiértékelése GHCi-ban	7		
	2.5	Cellák	és kiértékelés	7		
		2.5.1	A kifejezések	7		
		2.5.2	A futásidejű reprezentáció	8		
		2.5.3	Lehetséges hibák	9		
	2.6	A stan	dard könyvtár	10		
		2.6.1	Kombinátorok	10		
		2.6.2	Alapértelmezett függvénypéldányok	10		
		2.6.3	A könyvtár bővítése	11		
3	Fejl	dokumentáció	12			
	3.1	A fejle	esztői dokumentáció felépítése	12		
3.2 A szoftver felépítése				12		
		3.2.1	Felhasznált technológiák összefoglalása	12		
		3.2.2	A globális állapot			
		3.2.3	A GUI	15		
		3.2.4	Programkomponensek és modulszerkezet (nem teljes!!!!!!!!)	16		
	3.3					
			Sprandshoot Types	17 17		

TARTALOMJEGYZÉK

		3.3.2	Spreadsheet.Parser	20		
		3.3.3	Spreadsheet.Interface	22		
		3.3.4	Eval.CodeGeneration	24		
		3.3.5	Eval.EvalMain	27		
		3.3.6	Eval.Ghci	28		
		3.3.7	Persistence	29		
		3.3.8	App.RunApp	30		
		3.3.9	App.CreateEnv	31		
		3.3.10	App.Setup	31		
		3.3.11	App.Setup.Global	32		
		3.3.12	App.Setup.CommandLine	34		
		3.3.13	App.Setup.Editor	34		
		3.3.14	App.Setup.Menubar	34		
		3.3.15	App.Setup.Table	35		
	3.4	Teszte	lés	35		
4	Össz	zegzés		36		
A	Szin	nuláció	os eredmények	37		
Bi	bliog	graphy		39		
Li	st of	Figure	es	40		
Li	List of Tables 41					
Li	uist of Codes 4					

fejezet 1

Bevezetés

Ha indokolni szeretnénk egy új táblázatkezelő szoftver elkészítésének létjogosultságát, két kérdésre kell választ adnunk:

- 1. Milyen funkciókat kell ellátnia egy táblázatkezelő szoftvernek?
- 2. Mi az, ami hiányzik a jelenleg elterjedt szoftverekből? (Pl. Microsoft Excel)

Az első kérdésre talán az a legegyszerűbb válasz, hogy egy táblázatkezelő lehetőséget ad adatok tárolására és a bevitt adataink alapján újabb adatok kiszámítására. Ez a valóságban számtalan alkalmazási lehetőséget jelent. Az Excel-lel például lehet színes, táblázatos formájú órarendet készíteni, egy gyakorlati csoport eredményeit számontartani, családi költségvetést vezetni, stb.

Egy táblázatkezelőben minden cella tartalma egy funkcionális program. Egy cellába írhatunk egy egyszerű kifejezést (adat), vagy egy összetettebb programot, ami korábbi adatok függvényében számít ki egy új adatot. A táblázatkezelő tehát nem más, mint egy könnyen használható interfész a háttérben meghúzódó funkcionális nyelvhez. Ennek a nyelvnek az intuitív használatát számos funkció segíti. Lehetővé válik az összetett program komponensekre bontása, és az egyes komponensek eredményeinek hatékony vizualiuációja.

Ha tekintjük napjaink legnépszerűbb táblázatkezelő szoftverét, az Excel-t, azt láthatjuk, hogy a fent leírt feladatot kiválóan ellátja. Bővelkedik megjelenítéssel kapcsolatos opciókban, a felhasználói felület használata intuitív, az elérhető dokumentáció közérthető. Fő hiányosságát nem is ebben látom, hanem az általa használt programozási nyelvben. Az Excel-ben a szoftver saját programozási nyelvét használhatjuk, aminek bővítésére a VBA programnyelv használatával van lehetőség. (refe-

rencia?) Ez azonban nem a legkényelmesebb megoldás, nehézkes egy összetettebb számítási funkciót hozzáadni az eszköztárunkhoz.

Ezen probléma megoldására teszek kísérletet dolgozatomban. Egy olyan táblázatkezelő szoftvert készítettem el, aminek a celláiba – a táblázatkezelő funkciók megfelelő ellátása érdekében kissé kiegészített – Haskell nyelven lehet programokat írni. Így a felhasználó rendelkezéysére áll egy általános célú programnyelv teljes eszköztára.

fejezet 2

Felhasználói dokumentáció

2.1 Rendszerkövetelmények

A program futtatásához szükséges, hogy a *pgrep* program telepítve legyen, és a helye hozzá legyen adva a *PATH*-hoz. Ez Ubuntu 20.04 LTS operációs rendszer esetén alapértelmezett.

2.2 Telepítés és indítás

A program fordításához az alábbiakra van szükség:

- 1. GHC, legalább 8.6.5 verzió (valószínűleg korábbiakra is működik)
- 2. Haskell csomagok: base, cereal, fgl, ghcid, gtk2hs, microlens-platform, parsec, split, unliftio, illetve ezen csomagok függőségei.

A fentiek megléte esetén a program az alábbi paranccsal fordítható:

ghc Main.hs -o insertNameHere

insertNameHere helyére írható a futtatható állomány kívánt neve. Az alkalmazás az így kapott futtatható állomány futtatásával indítható el. Fontos, hogy az Empty.hs fájl a futtatható állománnyal egy mappában helyezkedjék el, hogy a kiértékelés az ezen dokumentációban leírt módon működjék. EZ AM FULL GÁZ, KONFIGURÁLHATÓVÁ KÉNE TENNI.

2.3 A felhasználói felület áttekintése

ábra 2.1: A felhasználói felület

- 1. Ezzel a gombbal lehet új fájlt létrehozni. Ekkor a számolótábla üres lesz.
- 2. Ezzel a gombbal lehet elmenteni a számolótábla aktuális állapotát. A fájl az alkalmazás saját . fsandor kiterjesztésében kerül mentésre.
- 3. Ezzel a gombbal lehet fájlt betölteni.
- 4. Ezzel a menüponttal lehet beállítani a háttérben futó GHCi-be betöltendő modulok listáját. A felugró szövegmező minden sora egy modult jelent. KELL ÁBRA?
- 5. Ezzel a menüponttal lehet beállítani, hogy az alapértelmezett útvonalakon kívül hol keresse a GHCi a betöltendő modulokat. Minden sor egy elérési útvonalat jelent. Az elérési útvonal lehet abszolút (ez utóbbi a javasolt) vagy relatív a futtatható állomány helyéhez képest.
- 6. A betöltött fájl neve. Ha épp nincs elmentve a számolótábla, a "*new file" szöveg jelenik meg. Ha a betöltött fájl neve előtt szerepel egy "*", az azt jelenti, hogy a legutóbbi mentés óta történt módosítás.
- 7. Kódszerkesztő. Ebbe a sorba lehet kódot írni az aktuálisan kijelölt cellához. A kijelölt cella az a cella, amelyre a felhasználó legutóbb kattintott. A beírt kód akkor kerül kiértékelésre, ha a felhasználó egy másik elemre kattint vagy leüti

az entert.

- 8. A számolótábla. A cellába beírt kód akkor kerül kiértékelésre, ha a felhasználó egy másik elemre kattint vagy leüti az entert.
- 9. A log mutatja a végrehajtott akciók (pl. cella kódjának átírása, GHCi query eredménye) eredményét. Jobb oldalt görgethető.
- Az alkalmazáshoz tartozó parancssor. A beírt parancs akkor kerül kiértékelésre,
 ha a felhasználó leüti az entert.

2.4 A parancssorban használható parancsok

2.4.1 Kifejezés kiértékelése GHCi-ban

A program a cellák kódjának kiértékeléséhez a háttérben egy GHCi példányt futtat. Jelölje a _ a szóköz karaktert és C az összes karakterek halmazát. Amennyiben a beütött parancs $_+g_-+C^*$ alakú, a "g"-t követő szóközök utáni részstring kiértékeltetik a GHCi-ban. A kiértékelés eredménye megjelenik log üzenetként.

Ezen parancs segítségével lehetséges modulokat importálni és bindingokat létrehozni a GHCi által használt IO monádban. Azonban minden egyes cellakiértékelés
előtt a bindingok elvesznek, a betöltött modulok pedig azok lesznek, amelyek a
"Modules" menüpontban meg lettek adva. Így a gyakorlatban a GHCi ezen funkciói
nem használhatók.

2.5 Cellák és kiértékelés

2.5.1 A kifejezések

Egy cella tartalma négyféle lehet: üres cella, szám, szöveg vagy formula. A cellába beírt kifejezés pontosan akkor formula, ha az első karaktere "=". Amennyiben az első karakter nem "=", és a beírt szöveg értelmezhető tizedestörtként, annyiban a cella tartalma számként kerül értelmezésre. Minden más esetben a cella tartalma egy string. Példák:

- 1. Szám: "0.12", "11"
- 2. Formula: "=sum [1..10]", "=\$a0\$+sumD \$a2:b4\$"

3. String: " =sum [1..10]", "alma", ".12"

A formulákba lehetséges cellahivatkozásokat írni. Kétféle cellahivatkozás létezik:

- 1. Egyszerű hivatkozás. Pl: §a0§,§B1§.
- 2. Listahivatkozás. Pl: §a0:B4§.

A cellahivatkozások nem kisbetű-nagybetű érzékenyek.

A formula összes többi része Haskell kódként kerül értelmezésre. A típushelyesség a kiértékelés során kerül ellenőrzésre.

2.5.2 A futásidejű reprezentáció

Egy cella futásidejű reprezentációja egy Maybe a típusú érték. Az üres cella reprezentációja Nothing, a nemüres cella reprezentációja Just val, ahol val a cellába beírt string/szám. A kiszámított értékek is mindig Just-ba wrappelődnek, hogy y a GHCi továbbszámolhasson velük. Az értékek visszaolvasásakor ez a háttérben egy fromJust hívással unwrappelődik. Egész szám esetén a kódgeneráló algoritmus figyel arra, hogy olyan literált generáljon a cellaértékből, ami értelmezhető egész típusúként (azaz ilyenkor levágja a tizedesrészt).

A cellahivatkozások feloldását példákon keresztül mutatjuk be. Bal oldalt található a hivatkozás, jobb oldalt a generált kód.

- 1. $\S{a0\S} \rightarrow fromJust\ v0$
- 2. $\{a0:a3\} \rightarrow [v0, v2, v5, v10]$
- 3. $\S a1:b0\S \rightarrow []$

A cellahivatkozások feloldásakor a cellákhoz egy $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ bijekción keresztül egy azonosító kerül hozzárendelésre (innen származnak a kódban írt vi változónevek. A függvény definíciója megtalálható a fejlesztői dokumentációban.

A fentiek alapján a típusú cellára mutató egyszerű hivatkozás ugyanúgy használható, mint egy a típusú érték. Az üres cellára való egyszerű hivatkozás hibát okoz. Példák (beírt kód és generált kód):

- 1. A0 kódja: "12.0", B1 kódja: "= $\S{a0}\S{+11}$ " \to B1 értékét kiszámító Haskell kód: $v3=Just\ \$\ fromJust\ (Just\ 12)\ +\ 11$
- 2. A0 kódja : "" B1 kódja: "=\$a0\$+11" \rightarrow B1 értékét kiszámító (hibát eredményező): v3 = Just \$ from Just Nothing + 11

A listahivatkozások feloldásakor azonban a lista elemei *Maybe a* típusúak maradnak. Példa:

A0 kódja: "12", A1 kódja: "13", A2 kódja: $= sum \ \S a\theta : a1\theta \to A2$ értékét kiszámító (típushibás) Haskell kód: $v5 = Just \ \$ \ sum \ [Just \ 12]$

Ez látszólag komoly problémákat eredményez, de az $\mathfrak C$ operátor (lásd 2.5.3) egy könnyen használható megoldást ad a problémára.

2.5.3 Lehetséges hibák

Egy cella kódjának megváltoztatása után előfordulhatnak hibák, az alábbiakban ezek foglaltatnak össze:

- 1. Ha egy cella kódját nem sikerül parseolni, a cellában az "FNoParse" szöveg jelenik meg. Parseolási hiba csak formula esetén léphet fel, ha szerepel a kódban '§' karakter, de nem egy értelmes hivatkozás részeként. Példák: "=§a§", "=a1§". A Haskell szintaxis helyessége csak a kiértékelés során kerül elenőrzésre.
- Ha a megváltoztatott cella olyan cellára hivatkozik, amely hibás (azaz nem nyerhető ki az értéke), akkor a cellában az "FNoCache" hibaüzenet jelenik meg.
- 3. Ha a kiértékelés során hiba történt (Haskell szintaxishiba/típushiba/futásidejű hiba), akkor a cellában az és leszármazott celláiban az "FGhciError" hibaüzenet jelenik meg.
- 4. Ha a cella kiértékelése egy másodpercnél tovább tart, a kiértékelés leáll, és a cellában az "FTimeoutError" szöveg jelenik meg. A leszármazott cellákban az "FGhciError" szöveg jelenik meg. Megjegyzés: a végtelen GHCi számítások terminálása nem működik teljesen megbízhatóan, így a legjobb tudatosan elkerülni az ilyen számítások futtatását. (A probléma részletes leírása megtalálható a 3.3.5 szakaszban.)

2.6 A standard könyvtár

2.6.1 Kombinátorok

A fentiekben már láttuk, hogy a típusú cellák listájának futásidejű reprezentációja egy $[Maybe\ a]$ típusú érték. Ez a megoldás teszi lehetővé, hogy a program kezelni tudja az üres cellákat. A probléma, ami ilyenkor felmerül, hogy egy [a] -> b függvényt szeretnénk alkalmazni egy $[Maybe\ a]$ típusú értékre, valamilyen módon kezelve az üres cellákat.

Az első megoldás az üres cellák helyettesítése egy alapértelmezett értékkel. Erre használható az € kombinátor:

```
infix 1 €

(€) :: ([a] -> b) -> a -> [Maybe a] -> b

f € b = f . map (maybe b id)
```

Code 2.1: Az € kombinátor

Példa:

"=sum € (-1) \$ $\S a0:a5\S$ " \to az a0-a5 cellalista összege, üres cella esetén levon egyet az összegből.

Előfordulhat, hogy az üres cellákat egyáltalán nem szeretnénk figyelembe venni. Erre szolgál az onJusts kombinátor:

```
onJusts :: ([a] -> b) -> [Maybe a] -> b
onJusts f = f . map fromJust . filter isJust
```

Code 2.2: Az onJusts kombinátor

Példa: "=onJusts (concat . map tail) $\S a0:a5\S" \to az$ a0-a5 cellalista nemüres elemeinek konkatenálása, de mindegyikből elhagyva az első karaktert.

De természetesen közvetlenül is kihasználható a listahivatkozások [Maybe a] reprezentációja. A következő kódrészlettel például megszámolhatók a nemüres cellák: "=length $filter\ isJust\ filter\ isJust\ filter\ isJust\ filter\ isJust\ filter\ isJust\ filter\ isJust\ filter\ fil$

2.6.2 Alapértelmezett függvénypéldányok

Bizonyos függvényeket gyakran szeretnénk egy alapértelmezett módon használni. Például cellák összegének kiszámításához a $sum~ \in 0$ függvényt, vagy cellák maxi-

mumának megkereséséhez az onJusts maximum függvényt.

Az *Empty* modul (**ÁT LESZ NEVEZVE!!**) biztosítja a *Prelude* függvényeinek egy-egy az alkalmazás reprezentációjához igazított alapértelmezett változatát. Az alapértelmezett függvények neve az eredeti függvény neve és utána egy "D". Például: sumD, maximumD, foldMapD.

2.6.3 A könyvtár bővítése

A felhasználónak lehetősége van saját modulokat írni az alkalmazáshoz, és azokat használni. (A modulok importálásáról a 2.3 szakaszban esett szó.) Saját polimorf függvények írásakor érdemes explicit kiírni a típusokat, ugyanis a monomorfizmusmegszorítás (KELL LINK?) miatt a Haskell fordító gyakran túl specifikus típust következtet ki. A standard könyvtár definiál két típusszinomimát listafüggvényekhez:

```
type LFun a b = [Maybe a] -> b
type NLFun a b = Num a => [Maybe a] -> b
```

Code 2.3: LFun és NLFun

Emellett természetesen tetszőleges Haskell modul betölthető az alkalmazásba.

fejezet 3

Fejlesztői dokumentáció

3.1 A fejlesztői dokumentáció felépítése

A fejlesztői dokumentáció három nagy részből áll.

A 3.2 részben ismertetésre kerülnek a szoftver készítése során felhasznált technológiák, valamint nagy vonalakban a szoftver logikai felépítése. (Milyen programkomponensek vannak, milyen feladatokat látnak el, hogyan kapcsolódnak egymáshoz.)

A 3.3 rész tartalmazza az egyes komponensek részletesebb leírását. Minden komponens esetén ismertetésre kerül a más komponensek felé nyilvánosságra hozott interfész, valamint a komponensek működési elve, beleértve a használt típusok leírását és a fontosabb algoritmusok működési elvét. A rész sorrendileg úgy van felépítve, hogy először szerepelnek a vezérlő komponens (App) által használt komponensek leírásai, majd ezt követően a fő komponens. Így "lentről fölfelé" haladva először meg lehet érteni az egyes kisebb részek működését, majd azok segítségével az egész alkalmazás működését.

A 3.4 rész tartalmazza a tesztelési eljárás leírását és a tesztelés eredményeit.

3.2 A szoftver felépítése

3.2.1 Felhasznált technológiák összefoglalása

Az alkalmazás Haskell nyelven íródott. A grafikus megjelenítés GTK+ alapú, a qtk2hs csomag által biztosított bindingokat használtam a grafikus felület kezelésé-

hez. Ez a csomag a GTK+ osztályhierarchiáját Haskell típusosztályok hierarchiájaként adja vissza. Az egyes osztályok metódusainak a típusosztályok definíciójában szereplő függvények felelnek meg. A GTK+ típusai foreign pointerek segítségével vannak megvalósítva, és IO-ban használhatók.

Az alkalmazás a GTK+ logikájának megfelelően eseményvezérelt. A felhasználó akciói eseményeket váltanak ki, amelyek hatására handlerek futnak le. A handlerek minden esetben IO akciók, amelyek valamilyen módon módosítják a globális állapotot (lásd 3.2.1. Globális állapot). A szoftver fejlesztése során fontos volt, hogy minél kevesebb legyen az tisztátalan (impure), IO-n belül elvégzett számítás. Igyekeztem a program logikájának minél nagyobb részét egy tiszta, nem monadikus környezetben megvalósítani. Így a számítások helyessége könnyebben tesztelhető/verifikálható, a handlerek már keveset számolnak az IO-ban.

Az alkalmazás a parseolási feladatokhoz a parsec csomagot, a gráfok kezeléséhez az fgl csomagot, a ghci futtatásához pedig a ghcid csomagot használja. A modell adatainak könnyebb kezeléséhez a microlens-platform csomagot használtam, ami a jól ismert lens csomag egy kevesebb funkciót és kevesebb függőséget tartalmazó változata. A függőségek pontos listája elérhető a Felhasználói dokumentációban, illetve az egyes programkomponensek részletes leírásakor is említésre kerülnek a fontosabb felhasznált csomagok.

3.2.2 A globális állapot

Az alkalmazás fő felépítését egy az FP Complete blogján megjelent cikk (IDE KÉNE EGY REFERENCIA) inspirálta. Az alkalmazás a globális (olvasható) állapotot a ReaderT monád transzformer segítségével valósítja meg, az alkalmazás vezérlése így egy ReaderT Env IO környezetben történik, ahol Env a globális állapotot leíró adattípus. Fontos megjegyezni, hogy bár az Env típus komponensei az inicializálás után sosem módosulhatnak, a mögöttes állapot még változhat, hiszen a komponensek módosítható referenciák. Ez nagyon hasonló a Java nyelvben használható konstans referencia koncepciójához: a referencia nem változhat, de a referált adat igen.

A fentebb referált cikk által inspirálva a (GUI komponensein kívüli) globális állapot egy StateT transzformer helyett módosítható referenciákkal (IORef és MVar)

kezeltetik. Ugyanis hiába tiszta, ha globálisan használjuk a StateT-t, valójában – a programlogika szintjén – ugyanúgy egy globális, módosítható állapotot vezetünk be. Szintén egy szempont, hogy a GTK+ alapú GUI miatt eleve szerepelnek módosítható referenciák (foreign pointer) a globális állapotban, így ez a probléma semmiképpen nem kerülhető el teljesen. Egy további érv a globális StateT ellen, hogy egy nagyobb monad stack szükségszerűen bonyolítja a programot. A $ReaderT\ IO$ ellenben még kifejezetten könnyen kezelhető. A cikk konkurrenciához köthető problémákat is említ a StateT-vel kapcsolatban. Ez a szoftver jelenlegi verziójában még nem olyan jelentős (lévén a mostani implementáció nagyon kis mértékben épít konkurrenciára). Azonban a jövőre nézve mindenképpen előnyös, ha a szoftvert könnyen lehet a konkurrens paradigma szerint bővíteni.

Ezen bevezető után tekintsük a globális állapot definícióját! Az alábbi típusdefiníció az *App. Types* modulban található:

```
data EvalConfig = EvalConfig { modules :: [String]
                                  , paths :: [String]
    deriving (Eq, Generic)
  data EvalControl = EvalControl { eGhci
                                                :: MVar Ghci
                                      eCommand :: MVar String
                                               :: MVar (Either String [
                                     eResult
                                       String])
                                              :: MVar EvalConfig
                                     eConfig
                                   } deriving Eq
10
11
  data SaveStatus = Saved | Modified
12
    deriving Eq
13
14
  data File = File FilePath SaveStatus
    deriving Eq
16
17
  data Env = Env { evalControl
                                  :: EvalControl
                                     Gui
19
                  , gui
                                  :: IORef Spreadsheet
20
                    state
                    file
                                   :: IORef (Maybe File)
^{21}
```

```
} deriving Eq
```

Code 3.1: Az Env típus

Az evalControl mező tartalmazza a kifejezések ghci-ban való kiértékelés hez szükséges erőforrásokat. Az eConfig mező tartalmazza a GHCi-hoz tartozó konfigurációs beállításokat. (Betöltött modulok listája, és a modulok keresési útvonalainak listája.) Az eGhci mező tartalmazza a háttérben futó GHCi példányra való hivatkozást. Az eCommand és az eResult valósítják meg a kommunikációt a kiértékelést végző szál és az alkalmazás fő szála között. Az eCommand-nak a fő szál a termelője, és a kiértékelő szál a fogyasztója, az eResult-nak pedig fordítva.

A gui mező tartalmazza a GUI komponenseit. A pontos típusdefiníció a GUI leírásánál fog szerepelni.

A state mező egy módosítható referencia, ami a számolótáblát reprezentáló, Spreadsheet típusú adatot referálja. A file adattag tartalmazza az éppen a táblázatkezelőbe betöltött fájl fontosabb adatait, amennyiben be van töltve egy fájl. (Fájl neve, és állapota.)

Az *EvalConfig* típus példánya *Generic* és *Serialize* típusosztályoknak. Erre a perzisztenciához van szükség.

3.2.3 A GUI

Az alábbi kódrészlet a GUI definíciója az App. Types modulból:

```
data Menubar = Menubar { newButton :: Button
                             saveButton :: Button
                             loadButton :: Button
                             modulesButton :: Button
                             pathsButton :: Button
                            deriving Eq
  data Gui = Gui { mainWindow
                                 :: Window
                   logWindow
                                 :: ScrolledWindow
                                    TextBuffer
                    log
10
                                    Table
11
                    table
                                 :: [(Entry,(Int,Int))]
12
                    entryKeys
                    editor
                                 :: Entry
13
                    commandLine :: Entry
```

```
, menu :: Menubar
le deriving Eq
```

Code 3.2: A Gui típus

A *Gui* típus tartalmazza a Gui azon komponenseit, amelyekre szükség van a handlerek hozzáadásához. A *mainWindow* komponens tartalmazza az alkalmazás főablakát.

A számolótábla megjelenítése egy Table segítségével történik. A cellákat a Tableben elhelyezett Entry-k reprezentálják. Minden Entry-hez egy (Int,Int) kulcs is eltároltatik. Ez mutatja, hogy a tábla melyik pozíciójához tartozik az adott Entry. Ez egy objektumorientált nyelvben megoldható lenne egy leszármazott widgettel (amelynek van egy extra mezője), azonban a gtk2hs keretein belül ezt körülményes lett volna megoldani, így inkább ezt a megoldást választottam. Az Entry-kulcs párokat az entryKeys mező tartalmazza.

A grafikus felület alján található log egy ScrolledWindow-ban elhelyezkedő TextView. Magára a TextView-ra nincs szükség, csak az általa használt TextBuffer-re, ezért azt nem is tartalmazza a Gui. Az editor és a parancssor egy-egy Entry-vel vannak implementálva. A menu komponens tartalmazza felső menüsoron elérhető gombokat.

A GUI layout ennél alaposabb dokumentációja az *App. CreateEnv* modul leírásában érhető el.

3.2.4 Programkomponensek és modulszerkezet (nem teljes!!!!!!!!)

Az alábbiakban röviden összefoglalom a szoftver moduljainak fő feladatát:

- Main főprogram
- App az alkalmazás fő logikája, eseménykezelés
 - App.CreateEnv a globális állapot inicializálása, GUI funkcionalitás nélkül
 - App.RunApp a főprogram definiálása, a main loop terminálásakor végrehajtandó IO akciók megadása

- App.Setup funkcionalitás hozzárendelése a GUI komponenseihez
 - * App.Setup.CommandLine a parancssor eseményeinek kezelése
 - * App.Setup.Editor a kódszerkesztő eseményeinek kezelése
 - * App.Setup.Global több GUI komponens által is használt akciók
 - * **App.Setup.Menubar** menüsor gombjaihoz tartozó események kezelése
 - * **App.Setup.Table** a számolótáblát megjelenítő táblázat eseményeinek kezelése
- App.Types a globális állapothoz tartozó típusdefiníciók
- Eval kifejezések GHCi-ban történő kiértékelése
 - Spreadsheet.CodeGeneration kódgenerálás a kiértékeléshez (ezen modul dokumentációjában szerepel a kiértékelési modell leírása is)
 - Eval.EvalMain a tényleges kiértékelést végző szál főprogramja
 - Eval.Ghci az App számára biztosított interfész a kiértékeléshez
- Persistence az App számára biztosított interfész fájlok mentéséhez és betöltéséhez
- Spreadsheet a számolótábla reprezentációja és műveletei
 - Spreadsheet.Interface a számolótábla műveletei, amiket az App használhat
 - Spreadsheet.Parser felhasználó által írt kód reprezentációjának előállítása
 - Spreadsheet.Types a számolótábla és kapcsolódó kivételek típusdefiníciói

3.3 A program komponenseinek részletes leírása

3.3.1 Spreadsheet. Types

Az alkalmazás a Spreadsheet típussal reprezentálja a számolótábla állapotát. Alább látható a Spreadsheet. Types modulban szereplő definíció:

```
type CellID = Int
data Cell' = Str String | Number Double | EmptyCell
    deriving (Eq, Show, Generic)
  -- I need to come up with a better name lol
  data ForPiece = Code String | Refs [CellID]
    deriving (Eq, Show, Generic)
  data FormulaError = FNoParse
                     | FCycleRefError
11
                     FNoCache
                     | FListTypeError
13
                     | FMissingDepError
                     FGhciError
15
                     FTimeoutError
16
    deriving (Eq, Show, Generic)
17
18
  data Formula = Formula { _code :: String
                           , _cache :: Either FormulaError Cell'
20
                           , _value :: Maybe [ForPiece]
21
22
    deriving (Eq, Show, Generic)
23
24
  data Cell = Val {_cellV :: Cell'} | For {_cellF :: Formula}
    deriving (Eq, Show, Generic)
26
  data Spreadsheet = SS { _sheet :: Gr Cell Int
28
                          , _selected :: Maybe CellID
29
                           _logMessage :: Maybe String
30
31
    deriving (Eq, Show, Generic)
32
```

Code 3.3: A Spreadsheet típus

A Spreadsheet egy rekord típus, amelynek három mezője van. A selected mező jelenti az aktuálisan kijelölt cellát. Ez a mező kerülhetett volna a globális állapotba is, azonban a tervezés korai fázisában másképp döntöttem, és már nem feltétlenül éri meg refaktorálni a kódot. A _logMessage mező tartalmazza a legutóbbi művelet

kiértékeléséből származó szöveges (a GUI-ban a logra írandó) üzenetet.

A _sheet mező reprezentálja a tényleges számolótáblát. A számolótábla egy irányított gráf, aminek a csúcsai Cell típusú értékekkel vannak címkézve. Az élek egész számokkal vannak címkézve. (Lehetett volna ()-tal is, azonban a használt gráfcsomag által biztosított legrövidebb utak implementációnak szüksége volt számszerű élcímkékre. Az implementációban minden él címkéje 1.) A gráfban minden csúcs a számolótábla egy cellájának felel meg. Egy A csúcsból pontosan akkor megy él egy B csúcsba, ha a B csúcsban található cella kódja hivatkozik az A csúcsban található cellára.

Egy cella pontosan akkor szerepel a gráfban, ha nemüres vagy van olyan cella, amelyik hivatkozik rá. Így az üres és nemhivatkozott cellák tárolására nincs szükség.

A fent megadott gráfreprezentációnak két további előnye is van. Egyrészt könnyű körfigyelést implementálni, így elkerülve, hogy cellák körkörösen hivatkozzanak egymásra; másrészt ha módosul egy A cella tartalma, akkor pontosan az A-ból elérhető csúcsoknak megfelelő cellákat kell újra kiértékelni.

A gráfreprezentáció megvalósításához az fgl csomagot használtam. A műveletek a DynGraph típusosztály tetszőleges megvalósítására működnek. **EZ MÉG NEM IGAZ, DE MAJD ÁTÍROM** A Spreadsheet típus definíciójában a PatriciaTree alapú Gr típust használtam.

Egy cella tartalmát a Cell típus fejezi ki. Egy cella tartalma lehet érték (Cell') vagy formula (Formula). Az érték jelenleg háromféle lehet: szám (Double), string vagy üres.

Ha egy cella formulát tartalmaz, az a háromelemű Formula rekorddal reprezentáltatik. A _ code mező tartalmazza a felhasználó által megadott kódot. Ez egy kényelmi funkció, hogy a kód megjelenítéséhez ne kelljen visszakonvertálni a reprezentációból. A _ cache mezőben szerepel, hogy mi a formula legutóbbi kiértékelésének eredménye (ha egyáltalán már ki lett értékelve). A cache értéke vagy egy érték (Cell') vagy valamilyen hiba (FormulaError).

A _ value jelenti a formula kódgeneráláshoz szükséges reprezentációját. Ez a reprezentáció ForPiece-ek (formuladarabok) listája. Egy formuladarab vagy egy kódrészlet (String) vagy cellaazonosítók listája. A _ value mezőről részletesebben lesz szó a Spreadsheet.Parser és a Spreadsheet.CodeGeneration modulok leírásában.

A Formula típushoz tartozik egy invariáns állítás: a program futása során egy Formula mindig a következő oldalon leírt állapotok valamelyikében figyelhető meg.

Érdemes megjegyezni, hogy ez az invariáns típuszinten is garantálható lett volna (feladat az olvasó számára!). A jelenlegi megoldás a korai tervezési fázis eredménye, a későbbiekben már erőforrásigényes lett volna refaktorálni a kódot.

További megjegyzések a *Spreadsheet* típussal kapcsolatban:

- A Spreadsheet. Types modul alapértelmezett nevű lenseket is exportál a Cell, Formula és Spreadsheet típusokhoz.
- A Spreadsheet. Types modulban szereplő összes típus (a kivételek kivételével) példánya a Generic és Serialize típusosztályoknak (ez utóbbit a cereal csomag exportálja). Erre a perzisztencia implementációjához van szükség.

3.3.2 Spreadsheet.Parser

A modul feladata egy a felhasználó által egy cellához megadott kód (String) reprezentációjának (Cell) előállítása. A modul egy függvényt exportál. (rep:String -> Cell)

Legyen a felhasználó által megadott kód *str*. A *rep* függvény az alábbi specifikáció szerint állítja elő a kód cellareprezentációját.

- 1. Ha str = "", rep str = $Val\ EmptyCell$
- 2. Ha str illeszkedik a $(+|-|\varepsilon)DD^*(.D^+|\varepsilon)$) reguláris kifejezésre, ahol D=(0|1|2|3|4|5|6|7|8|9), akkor rep str = Val $(Num\ n)$, ahol n a literál által ábrázolt lebegőpontos szám.
- 3. Ha a fenti esetek egyike sem áll fent, és str nem (=C*) alakú (ahol C az összes karakterek halmaza), akkor rep str = $Val\ (Str\ str)$
- 4. Ha B a betűk halmaza (a Data.Char modul isLetter függvényének igazsághalmaza), $C' = C \setminus \{\S\}$ és str $(= ((\S BD^+ : BD^+\S)|(\S BD^+\S)|(C'^+))^+)$ alakú, akkor a kód formulaként parseolható. rep str $= Formula\ str\ (Left\ FNoCache)\ (Just\ ps)$, ahol ps definíciója alább szerepel.
- 5. Ha egyik fenti eset sem áll fent, akkor a parseolás sikertelen. Ekkor rep str = Formula str (Left FNoParse) Nothing

		Minta		Jelentés
Formula	_	(Left FNoParse)	Nothing	parseolási hiba
Formula	_	(Left FCycleRefError)	Nothing	sikeres parseolás, azonban a
				formula körkörös referenciá-
				kat adott volna a táblához
Formula	_	(Left FNoCache)	(Just _)	sikeres parseolás, érvényes
				referenciák, de a formula
				még nem lett kiértékelve
Formula	_	(Left FListTypeError)	(Just _)	ALMA?
Formula	_	(Left FMissingDepError)	(Just _)	a formula nem értékelhető
				ki, mivel egy hivatkozott
				cella nem volt cache-elve.
Formula	_	(Left FGHCIError)	(Just _)	a formula egyéb okokból
				nem volt kiértékelhető (pl.
				típushiba, Haskell szintaxis-
				hiba)
Formula	_	(Left FTimeoutError)	(Just _)	időtúllépés miatt sikerte-
				len kiértékelés, valószínűleg
				végtelen ciklus miatt
Formula	_	(Right cell')	(Just _)	sikeres kiértékelés, az ered-
				mény cell'

táblázat 3.1: Egy Formula lehetséges állapotai

Ha str formulaként parseolható (fenti 4. eset), egy egyszerű szintaktikus elemzés segítségével kaphatjuk a reprezentációjának _ value komponensét. A parser először elhagyja az = karaktert. Ezután sorban parseol substringeket a szó elejéről az alábbi módon:

- 1. Először megpróbálja cellahivatkozásként olvasni a soron következő részt: $((\S BD^* : BD^*\S)|(\S BD^+\S))$. Ha sikerült, a hivatkozást cellaazonosítók sorozatává konvertálja (lásd alább), és a kapott rs azonosítólistát Refs rs módon az eredménylista végére fűzi.
- 2. Ha a soron következő substring nem olvasható cellahivatkozásként, akkor a parser végigolvassa a lehető leghosszabb $s=C'^+$ substringet, és az eredménylistához egy $Code\ s$ -t ír.

A cellahivatkozások feloldásához kihasználjuk, hogy a karakterek injektíven az egész számok halmazára képezhetők (az Enum típusosztály műveleteivel). A kisés nagybetűket nem különbözetjük meg. Emellett definiálunk egy Enum példányt (Int, Int) párokra. **AZT IS LE KÉNE SZÉPEN ÍRNI...** Jelölje $fromEnum^C$ a karaktert Int-té kódoló függvényt, és $fromEnum^P$ az (Int, Int) párt Int-té kódoló függvény. Jelölje a, b :: Int esetén [a..b] az $a \leq n \leq b$ n egész számok rendezett listáját! Ekkor a cellahivatkozások feloldása az alábbiak szerint történik:

- 1. Ha a hivatkozás ($\S BD^*\S$) alakú, legyen b a betű, és n a számjegyek által reprezentált egész szám. Ekkor a kapott rs lista egyelemű. $rs=[from Enum^P\ (from Enum^C,n)]$
- 2. Ha a hivatkozás ($\S BD^*:BD^*\S$) alakú, felbontható a : mentén két egyszerű hivatkozásra. Legyenek a betűk d_1 és d_2 , a számjegyek által reprezentált számok pedig rendre n_1 és n_2 ! Ekkor XD LOL

3.3.3 Spreadsheet.Interface

Ebben a modulban szerepelnek az *App* komponens számára elérhető, a *Spreadsheet* típushoz kapcsolódó függvények. Alább látható táblázatos formában a modul által exportált függvények feladata:

Függvény	Típus	Feladat
${\bf emptySpreadSheet}$	Spreadsheet	üres számolótábla (0 csú-
		csú gráf, nincs kijelölt cella,
		nincs log üzenet)
getCellText	CellID -> Spreadsheet ->	egy cellában megjelenítendő
	String	szöveg lekérdezése
getCellCode	getCellCode :: CellID ->	egy adott cellába legutóbb
	Spreadsheet -> String	beírt kód lekérdezése
setCellState	CellID -> String ->	a megadott cella állapotának
	Spreadsheet -> Spreadsheet	módosítása egy a felhasználó
		által megadott String alap-
		ján
cacheCell	CellID -> Either EvalError	kiértékelés eredményének
	String -> Spreadsheet ->	cachelése
	Spreadsheet	
getSelected	Spreadsheet -> Maybe	kijelölt cella azonosítója
	CellID	
setSelected	CellID -> Spreadsheet ->	kijelölt cella azonosítójának
	Spreadsheet	beállítása
${ m getLogMessage}$	Spreadsheet -> String	legutóbbi log üzenet lekérde-
		zése

táblázat 3.2: A Spreadsheet. Interface által exportált függvények

setCellState

A setCellState függvény feladata, hogy a megadott cellaazonosítóhoz tartozó csúcsban lévő cella állapotát a felhasználó által megadott String-nek megfelelően módosítsa, valamint felülírja a _logMessage mező tartalmát a múvelet sikerességétől függően.

Ehhez szükség van a megadott *String Cell* reprezentációjára, amit a *Spreadsheet.Parser* modul által exportált *rep* függvény számít ki. A kapott reprezentáció alapján az alább leírtaknak megfelelően viselkedik a függvény:

- 1. Ellenőrzi, hogy a cella állapotának megváltoztatásával keletkeznék-e körkörös referencia. Pontosan akkor keletkeznék, ha a megváltoztatandó c azonosítójú cellához tartozó csúcsba bemenő összes él kitörlésével keletkezett gráfban van olyan n azonosítójú csúcs, hogy c kódja hivatkozik n-re és a gráfban már van c → n út. (Ez utóbbi feltétel azt jelenti, hogy az n cella értéke függ c értékétől.) Ezt a feltételt az isLegal függvény ellenőrzi. Érdemes megjegyezni, hogy ilyen hiba csak akkor fordulhat elő, ha a kapott reprezentációnk egy formula.
- 2. Amennyiben az isLegal eredménye False, a c csúcsban levő cella reprezentációja For (Formula str' (Left FCycleRefError) Nothing) lesz, ahol str' a paraméterként kapott String. A _logMessage mezőbe egy hibaüzenet kerül.
- 3. Amennyiben az isLegal függvény True eredményt ad, a gráfból kitöröltetik az összes c-be menő él, és új c-be menő élek kerülnek behúzásra a c kódja által referált celláknak megfelelő csúcsokból. (Ezeket a references függvény számolja a reprezentációból.) A _logMessage mező tartalma egy sikert jelző üzenet lesz.

ITT MÉG KÉNE ÍRNI TALÁN A FELHASZNÁLT SEGÉDFÜGGVÉNYEKRŐL?

cacheCell

3.3.4 Eval.CodeGeneration

A kiértékelési folyamat az alábbi szempontok alapján került megtervezésre:

- Listán értelmezett függvények esetén legyen lehetőség könnyen kezelni az üres cellákat, alapértelmezett értékek megadásával.
- 2. Ha a kiértékelés során hiba történik, annak a hatása minimális legyen.

Az első szempont megvalósításához a kiértékelés során egy kiszámított vagy paraméterként kapott a típusú értéket egy Maybe a típusú érték reprezentálja. Az üres cellákat Nothing reprezentálja, az értékkel rendelkező cellákat pedig egy Just érték. Egy a kiértékelés során kiszámított cellaérték is mindig egy Just-ba csomagoltatik. Ennek megfelelően a típusú cellaértékek listájának futásidejű reprezentációja egy $[Maybe\ a]$. A Haskellben megszokott listafüggvények a felhasználói dokumentációban részletesen leírt $\mathfrak C$ operátor segítségével használhatók ezen a reprezentáción.

A második szempont megvalósításához a kódgenerálás során értékadások sorozata jön létre, és a kiértékelés során ezen értékadások egyesével hajtódnak végre. Így ha valamelyik cella kiértékelésének eredménye egy hiba, csak a tőle függő cellák értéke lesz hiba.

Ha sikeres a generálás, a generateCode függvény eredménye két (egy Right konstruktorba csomagolt) lista ([String],[(String,CellID)]. Az első listába kerülnek az értékadások, amelyek az úgynevezett külső függőségekhez lettek generálva. A második lista tartalmazza az olyan értékadásokat, amelyek a megváltoztatott id-jű cellától függnek. A Spreadsheet.Types modulnál tárgyalt gráfreprezentáció segítségével az előbbi két fogalmat az alábbi módon tehetjük precízzé:

Legyen id a megváltoztatott cella id-je, és legyen $lab: CellID \rightarrow Cell$ a gráf csúcsaihoz a megfelelő cellát hozzárendelő függvény! Legyenek $For, Lab: Cell \rightarrow$ predikátumok, amelyek akkor adnak igazat, ha a paraméterük a megfelelő konstruktorral jött létre. Legyen b egy létező cellaazonosító! Ekkor:

b külső függőség
$$\Leftrightarrow \exists c : (\exists (id \to c \text{ út}) \land \exists (b \to c \text{ út}) \land \not\exists (id \to b \text{ út}))$$

$$\lor ((b = id) \land Val(lab(b)))$$
b függ id-től $\Leftrightarrow ((b \neq id) \land \exists (id \to b \text{ út})$

$$\lor ((b = id) \land For(lab(b)))$$

A külső függőségeket olyan módon kell sorrendbe rendezni, hogy az eredménylistában egy cella csak az őt megelőző külső függőségektől függjön. Ekkor az értékadásokat lehetséges a lista által megadott sorrendben végrehajtani. A sorba rendezéshez a leghosszabb utak algoritmusa szerinti szintek használatosak, ezek alapján kerülnek növekvő sorrendbe a külső függőségek. Könnyű látni, hogy ez a sorrend megfelel a fent megfogalmazott elvárásnak.

A kódgeneráláshoz szükséges ellenőrizni, hogy a kapott külső függőségek értéke kiolvasható-e. Ez akkor lehetséges, ha a külső függőség egy *Val*, vagy egy olyan *For*, amelybe van cachelve érték.

Az *id*-től függő cellák esetén (ezek szükségszerűen formulák) azt kell ellenőrizni, hogy sikerült-e parseolni. Ez ekvivalens azzal, hogy a *value* mező értéke *Just*.

A függőségek listáinak kiszámítása és a fenti ellenőrzések elvégzése a dep-List függvény feladata. A leghosszabb utak szerinti szinteket kiszámító függvény a GraphFunctions modulban szerepel.

Az értékadások generálásáért a codeG függvény felel. Ez az n azonosító cellához egy vn = someCode formájú értékadást generál. A someCode részt külső függőség esetén a cacheG, id-től függő cella esetén a cellG függvény számítja ki.

A cacheG függvény üres cellákhoz a "Nothing" stringet rendeli. Számokhoz és stringekhez pedig egy "Just val" stringet, ahol val a megfelelő szám/string. Amennyiben egész számról van szó, a függvény levágja a tizedesrészt a számliterálról, hogy a GHCi egész típusúként értelmezhesse a literált.

A cellG függvény a formula _value komponensének elemeiből egy stringet állít elő. Ehhez a _value mező minden eleméhez egy stringet rendel, és ezeket konkatenálja, majd a legvégén eléír egy "Just \$ "-t. A függvény az egyes elemekhez az alábbi módon rendel stringeket:

- 1. $Code\ code \rightarrow code$
- 2. $Refs [n] \rightarrow "fromJust vn"$
- 3. Refs ids, ha |ids|>1 \to az ids-ben szereplő cellaazonosítókból generált változónevek listája. Pl. ids=[1,2,3] esetén "[v1,v2,v3]"

A fenti leírásból jól látszik, hogy egy cella értéke mindig Just-ba lesz csomagolva. Ha egy cella értékét akarjuk használni, az a "szokásos módon" megtehető, mivel a változónév elé egy fromJust kerül. Cellák listája esetén azonban Just értékek listáját kapjuk. Ez esetben tehát a szokásos Haskell függvények nem a megszokott módon működnek, de az \mathfrak{C} operátor segítségével ez könnyen áthidalható. Érdemes megjegyezni, hogy a cellákhoz kiszámított érték mindig $Maybe\ a$ típusú lesz, így az eredmény kinyeréséhez a $fromJust\ vn$ kód szükséges. Ha az eredmény Nothing, ez futásidejű hibát okoz, amit a hívó ki tud olvasni a GHCi-ból, és cachelhet egy hibát a kiértékelt cellához (EGhciError).

A modul által exportált *generateCode* függvény segítségével végezhető el a fent leírt kódgenerálás.

3.3.5 Eval.EvalMain

A modul által exportált *evalMain* függvény biztosítja a kifejezések GHCi-ben való kiértékelését végző szál főprogramját. A szál az alábbiak szerint működik:

- 1. Várakozik, ameddig a globális állapot evalControl mezőjének eCommand változójába egy GHCi utasítást nem ír a fő szál.
- 2. Kiüríti a változót, és kiértékeli a kapott utasítást a GHCi-ben.
- 3. Ha egy megadott idő után nem ér véget a kiértékelés (jelenleg 1 másodperc), lekérdezi a GHCi folyamathoz tartozó PID-et, majd megkeresi annak a gyerekfolyamatát (childPid), és az eResult változóba Left childPid-et ír. Ezt a folyamatot aztán a fő szál fogja kilőni.
- 4. Amennyiben időben véget ér a kiértékelés, a GHCi által eredményül adott sorok result listáját Right result módon az eResult változóba írja.

A timeout utáni viselkedés bonyolultsága egy szerencsétlen helyzet eredménye. A magyarázathoz meg kell ismerni a *ghcid* csomag által biztosított GHCi interfészt. A *startGhci* függvény a dokumentáció alapján elindít egy GHCi háttérfolyamatot, amellyel innentől egy megadott szálról kell interaktálni (a megszakítást kivéve). A valóságban azonban azt tapasztaltam, hogy két folyamatot indít el, amelyek közül az egyik gyereke a másiknak.

Időtúllépés esetén meg kell állítani a háttérben futó számítást. Erre szolgálna az interrupt függvény, ami egy SIGINT jelzést küld a GHCi folyamatnak. A GHCi folyamat azonban bizonyos esetekben ezt kimaszkolja, ilyenkor a számítást nem lehetséges megszakítani. IDE KÉNE LINK ERRŐL A DISKURZUSRÓL A GHCi leállítására szolgáló stopGhci függvény pedig csak az egyik (a szülő) folyamatot terminálja a startGhci által indított két folyamatból. A másik folyamat pedig tovább folytatja a számítást. Az alkalmazás egy Haskell szálat tartalmazó verziójában ez kiéheztette az fő folyamatot.

Ezért van szükség arra, hogy a kiértékelés külön szálon fusson. Ugyanis időtúllépés esetén a fő szál, miután ütemezésre kerül, a kapott PID alapján a lehető legag-

Függvény	Típus
execGhciCommand	String -> ReaderT EvalControl IO
	(Either EvalError String)
loadModules	ReaderT EvalControl IO ()

táblázat 3.3: Az Eval. Ghci által exportált függvények

resszívabban (SIGKILL) terminálja a második GHCi folyamatot. Ez a tapasztalat szerint az első folyamatnak is véget vet. Ezután új GHCi folyamat indítható.

A fenti megoldást a szükség szülte, és tapasztalatok alapján, gyakran próbálgatás útján állt össze. Nem ismert, hogy miért indít a startGhci két folyamatot. (Egy "rendes" GHCi folyamathoz például csak egy PID tartozik.) A megoldás az én számítógépemen, Ubuntu 20.04 LTS operációs rendszer mellett működött, de nincs rá garancia, hogy más Linux rendszer (vagy akár egy másik számítógép!) esetén működni fog. (A működés feltétele, hogy ütemezésre kerüljön a fő szál.) Ráadásul csak e miatt az interakció miatt kellett konkurrenciát adni az alkalmazáshoz. Valódi hatékonyságot ezzel nem nyertünk, hiszen az egyik szál mindig blokkolt állapotban lesz. (Mivel mindkét szál a fogyasztóként hozzá tartozó MVar-ra várakozik, ha éppen a másik szál dolgozik.)

A gyerekfolyamat megtalálásához a program rendszerhívást hajt végre, a pgrep parancsot használja -P kapcsolóval.

3.3.6 Eval.Ghci

A modul fő feladata, hogy kiértékeljen egy GHCi parancsot, és az eredményt értelmezze. Emellett lehetőséget biztosít a modulok és keresési útvonalak újratöltésére a globális konfiguráció alapján (*EvalConfig*).

A kiértékelés folyamata a (nem exportált) execG függvényben van leírva, és az alábbi módon zajlik:

- 1. A paraméterként kapott parancs a eCommand változóba kerül.
- 2. Kiolvasásra kerül az eredmény az eResult változóból.
- 3. Ha az eredmény *Left pid*, a kapott PID-hez tartozó folyamat terminálásra kerül, és a kiértékelés eredménye *Left ETimeoutError*. Új GHCi folyamat indul,

és a hivatkozása bekerül a globális állapot evalConfig mezőjének eGhci mezőjébe.

4. Ha az eredmény *Right result*, ez a kiértékelés eredménye. *result :: [String]* a GHCi által eredményül adott sorok listája.

Az exportált *execGhciCommand* függvény ezt a viselkedést egészíti ki egy extra ellenőrzéssel.

- 1. Ha az execG eredménye Left ETimeoutError, akkor ez az eredmény.
- 2. Ha az execG eredménye Right results:
 - Ha results üres, az eredmény Right ""
 - Ha results egyelemű, az eredmény Right (head (results))
 - Ha results több elemű, akkor a GHCi több sornyi eredményt adott vissza.
 Ezt a függvény hibának tekinti, és az eredmény Left (EGhciError results)

A loadModules akció beállítja a globális állapot evalControl mezőjének eConfig mezője alapján az elérési utakat, majd betölti a megadott modulokat. A korábban betöltött modulokat először kitölti (:m). Ilyenkor a felhasználó által közvetlenül a GHCi-ba megadott definíciók is elvesznek. Az akció betölti az Empty modult is, ami szükséges ahhoz, hogy működjék az \mathfrak{C} minta, amit a cellablokkok kezeléséhez biztosít a program.

3.3.7 Persistence

A modul feladata, hogy fájlokat mentsen és betöltsön. Egy adatot akkor lehet elmenteni, ha az adat típusa példánya a *Serialize* típusosztálynak. Ezt a típusosztályt a *cereal* csomag biztosítja. Egy *Serialize* példány minden eleme bytestring-gé szerializálható. A program a számolótáblák és a konfigurációs fájlok perzisztálásához is bytestring formátumot használ.

Jelenleg a program egy konfigurációs fájlt használ, ennek nevét a moduleConfig-File konstans definiálja. Az alkalmazás bezárásakor ebbe a fájlba kerül mentésre a globális állapot evalControl mezőjének eConfig mezője.

saveSheet :: Serialize a => String -> a -> IO ()

Ez a függvény elment egy szerializálható adatot a megadott fájlnévvel. Létező fájl esetén felülírás történik.

loadSheet :: Serialize a => String -> IO (Either String a)

Betölti a paraméterként kapott fájlból az adatot. Ha nem létezik a fájl, az eredmény egy hibaüzenet, ami jelzi, hogy a paraméterként kapott fájl nem létezik.

saveModuleConfig :: EvalConfig -> IO ()

A saveSheet speciális esete. A kapott paramétert a moduleConfigFile konstans által megadott fájlba menti.

loadModuleConfig :: IO EvalConfig

Betölti a modulkonfigurációs fájl tartalmát. Ha a fájl nem létezik, az IO akció üres konfigurációt eredményez: (EvalConfig [] []).

3.3.8 App.RunApp

Ez a modul definiálja a főprogramot (appMain :: IO ()), amellyel egyenlő a Main-ben definiált main függvény. Az appMain két akcióból áll. Először inicializálja a globális állapotot (App.CreateEnv.createEnv), majd végrehajtja a runApp :: ReaderT Env IO () akciót, a globális állapotot az inicializált környezetre állítva. A createEnv akció elindítja a háttérben futó kiértekelő szálat is. (Eval.EvalMain.evalMain).

A runApp akció a következőképpen határozza meg a program működését:

- 1. Hozzárendeli a GUI elemeihez a handlereket (App. Setup. setup Gui)
- 2. Betölti a betöltendő keresési útvonalakat és modulokat a GHCi-be (Eval. Ghci.loadModules).
- 3. Beállítja, hogy az alkalmazás bezárásakor álljon le a GHCi és a modulok konfigurációja kerüljön mentésre.
- 4. Megjeleníti a GUI-t és elindítja a main loopot.

3.3.9 App.CreateEnv

Ez a modul exportálja az App.RunApp-ban használt createEnv :: IO Env akciót.

A createEvalControl :: IO EvalControl segédakció hozza létre az evalControl mező tartalmát. Az eGhci mezőhöz elindít egy GHCi-t. A GHCi alapértelmezett munkakönyvtára az alkalmazás futtatásának helye. Az eCommand és eResult mezőkhöz létrehoz egy-egy üres MVar-t. Az eConfig mező tartalmát beolvassa a konfigurációs fájlból (Persistence.loadModuleConfig).

A state mező az üres számolótáblával kerül inicializálásra (Spreadsheet.Interface.emptySpreadSheet). A file mező Nothing-gal kerül inicializálásra, mivel kezdetben nincs betöltve fájl az alkalmazásba

A createGui :: IO Gui segédakció építi fel a GUI-t. Az alkalmazás grafikus felületét egy Window tartalmazza (mainWindow). Ennek az ablaknak a gyereke egy VBox, amely a további widgeteket tartalmazza. Ezek rendre a menüsor (egy HBox, ami Button-öket tartalmaz), az egysoros kódszerkesztő (Entry), a cellákat tartalmazó táblázat (Table), a logot megjelenítő ScrolledWindow és a parancssornak megfelelő Entry.

A *Table* létrehozásakor jönnek létre a cellák megjelenítésére szolgáló *Entry*-k, melyek a pozíciójukat leíró kulccsal együtt kerülnek mentésre.

A menüsor gombjaihoz itt kerülnek hozzárendelésre a billentyűkombinációk.

Az akció "*new file"-ra állítja a fő ablak címét, mivel az alkalmazás elindításakor nincs betöltött fájl.

3.3.10 App.Setup

Ez a modul exportálja a setupGui akciót, amelynek feladata, hogy a GUI-hoz eseménykezelőket rendeljen. Ezek az eseménykezelők definiálják az alkalmazás lényegi működését. A setupGui akció rendre végrehajtja a setupEditor, setupCommandLine, setupMenubar és setupTable akciókat, amelyek definiálják az egyes GUI komponensek működését. Ezek az akciók a megfelelő nevű App.Setup.* almodulban vannak definiálya.

Az eseménykezelők megadásához egy IO () akcióra vagy egy Event->IO () függvényre van szükség. Ez azért hátrányos, mert nem lehetséges az eseménykezelőket

közvetlenül a ReaderT kontextusban definiálni. Ezért az eseménykezelők megadására az alábbi minta használatos:

```
setupSomeWidget :: ReaderT Env IO ()
setupSomeWidget = do

widget <- ...
env <- ask
...
void $ lift $ onSomeEvent widget $ runReaderT handlerAction env

handlerAction :: ReaderT Env IO ()</pre>
```

Code 3.4: Az eseménykezelők hozzárendelése

Tehát a eseménykezelőt hozzárendelő függvény lekérdezi a globális állapotot, és a handler nem más, mint egy ReaderT IO akció futtatása a globális állapottal. Így viszonylag kényelmesen használható a globális állapot a handlerek megírásakor. A fent leírt minta akkor is alkalmazható, ha van egy extra *Event* paraméter (pl. onFocusOut). Ilyenkor a handlerAction-nek paraméterként adható az *Event*.

3.3.11 App.Setup.Global

Ez a modul olyan akciókat definiál, melyeket az *App.Setup* további almoduljai felhasználhatnak. Az alább leírtak mellett a modul exportál néhány, a globális állapot egyes komponenseinek lekérdezését kényelmesebbé tevő akciót is.

setTitle :: String -> ReaderT Env IO ()

FULL KI KÉNE JAVÍTANI AM XC

A fő ablak címét a megadott String-re állítja.

logAppendText :: String -> ReaderT Env IO ()

A paraméterként kapott *String*-et új sorként hozzáadja a log aljához, majd legörget a logot tartalmazó *ScrolledWindow*-ban. A legörgetés többsoros üzenet esetén csak az első sorig görget le. Ez egy ismert hiba, amit egyelőre nem sikerült javítani. Jelenleg nincs számontartva a log mérete, és nincs is maximális mérete. Ennek értelmében a logüzeneteket tartalmazó buffer mérete tetszőlegesen nagy lehet. **EZT**

updateView :: ReaderT Env IO ()

A globális állapot *state* mezője alapján frissíti a cellákban megjelenő szöveget. Ehhez felhasználja a *Spreadsheet.Interface.getCellText* függvényt.

evalAndSet :: CellID -> ReaderT Env IO

Kiértékeli a megadott azonosítójú cellához generált kódrészleteket, majd a kiértékelés eredményét cacheli a számolótáblába. A betöltött fájl állapotát *Modified*-ra módosítja.

A kiértékeléshez először kódot generál a kapott azonosítóhoz (Spreadsheet.CodeGeneration.generateCode). Kódgenerálási hiba esetén logolja a hibát jelző üzenetet.

Ha sikeres volt a kódgenerálás, akkor a kapott sorrendben kiértékeli az utasításokat a GHCi-ben. Ehhez először törli a korábbi GHCi bindingokat az Eval. Ghci.loadModules akcióval. Erre azért van szükség, hogy ha egy cellához rendelt változót nem sikerült kiszámítani (pl. típushiba miatt), akkor a leszármazott cellához ne legyen felhasználható egy korábbi kiértékeléskor kiszámított, elavult érték. Ezután kiértékeli a külső dependenciákat, azaz azon cellákat, amelyek nem függnek a megváltoztatott cellától, de függőségei valamely a megváltoztatott cellától függő cellának. (Ez a kódgenerálás által adott első lista.)

Ezután következik a második lista utasításainak kiértékelése. Minden utasítás esetén először kiértékeli az "értékadást". Ha az eredmény hiba, a kiértékelés eredménye hiba. Ha az eredmény nem hiba, akkor lekérdezi a kiértékelt változót. A kódgenerálás garanciát ad arra, hogy egy cella mindig a függőségei után kerül kiértékelésre.

Az összegyűjtött eredmények ezután cacheltetnek (Spreadsheet.Interface.cacheCell). A betöltött fájl állapota Modified lesz.

updateView:: ReaderT Env IO

A számolótábla állapota alapján frissíti a cellákban megjelenített szöveget. Ehhez felhasználja a *Spreadsheet.Interface.getCellText* függvényt. A cellatartalmak lekérdezése a GUI *entryKeys* komponensében tárolt kulcsok alapján történik.

3.3.12 App.Setup.CommandLine

A modul a parancssor (*Entry*) on *EntryActivate* eseményéhez (enter billentyű leütése) rendel eseménykezelőt. Az esemény hatására bekövetkező viselkedés a következő:

- 1. A parancssorban lévő szöveg parancsként parseoltatik.
- 2. Ha GHCi parancsként értelmezhető (a parseolás eredménye *ClGhci cmd*), akkor végrehajtatik a GHCi parancs, és az eredmény logolásra kerül.
- 3. Ismeretlen parancs esetén logolásra kerül a hiba.
- 4. A parancsorból eltűnik a szöveg.

3.3.13 App.Setup.Editor

A modul a kódszerkesztő (Entry) onFocusOut (fókusz elvesztése), onFocusIn (fókusz megszerzése) és onEntryActivate eseményeihez rendel eseménykezelőt.

A fókusz elvesztésekor és az enter leütésekor az alábbi viselkedés következik be:

- 1. Amennyiben nem volt kiválasztva cella a táblában, nem történik semmi.
- 2. Amennyiben volt kiválasztott cella, a cella állapota módosításra kerül a bevitt szöveg alapján (Spreadsheet.Interface.setCellState). Ha ezzel megváltozott a cella állapota, végrehajtódik egy kiértékelés, aminek a gyökere a megváltoztatott cella. (App.Setup.Global.evalAndSet).
- 3. Frissül a táblanézet ((App. Setup. Global. update View)

A fókusz megszerzésekor amennyiben volt kijelölt cella, úgy annak a legutóbb megadott kódja jelenik meg a szerkesztőben.

3.3.14 App.Setup.Menubar

A modul eseménykezelőket rendel a menüsor gombjainak (Button) on Clicked eseményéhez.

runAreYouSureDialog:: IO Bool

Ez a segédakció egy felugró ablak segítségével visszaad egy igen-nem választ ("biztos-e ebben" dialógus). Több handler is használja, amikor fennálna a lehetőség,

hogy a végrahajtandó akció végrehajtása során elvesznének nem mentett információk.

getFileChooserDialog::FileChooserAction->IOFileChooserDialog

Ez a segédakció hozza létre a mentéshez és betöltéshez szükséges dialógusokat. A kapott paramétertől függ, hogy mentéshez vagy betöltéshez szükséges dialógus jön létre.

newAction :: ReaderT Env IO () - USERBE MEGY

A "New" gomb megnyomásakor az alábbiak történnek:

- 1. Felugrik a "biztos-e ebben" dialógus.
- 2. Nemleges válasz esetén nem történik semmi.
- 3. Igenlő válasz esetén a globális állapot *state* mezőjébe egy üres számolótábla kerül. A *file* mező értéke *Nothing* lesz. Az ablak címe "*new file" lesz.
- 4. Frissül a nézet

loadAction :: ReaderT Env IO () - USERBE MEGY

A "Load" gomb megnyomásakor az alábbiak történnek:

- 1. Megjelenik a betöltéshez szolgáló fájlválasztó dialógus.
- 2. Amennyiben a felhasználó a "Load" gombra kattintott, és megadott egy fájlnevet.

3.3.15 App.Setup.Table

A modul eseménykezelőket rendel a cellák megjelenítésére szolgáló Entry-k on-FocusIn és onFocusOut eseményeihez.

3.4 Tesztelés

LOL XD HAHA TESZTEK OMEGALUL XC

fejezet 4

Összegzés

?appendixname? A

Szimulációs eredmények

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque facilisis in nibh auctor molestie. Donec porta tortor mauris. Cras in lacus in purus ultricies blandit. Proin dolor erat, pulvinar posuere orci ac, eleifend ultrices libero. Donec elementum et elit a ullamcorper. Nunc tincidunt, lorem et consectetur tincidunt, ante sapien scelerisque neque, eu bibendum felis augue non est. Maecenas nibh arcu, ultrices et libero id, egestas tempus mauris. Etiam iaculis dui nec augue venenatis, fermentum posuere justo congue. Nullam sit amet porttitor sem, at porttitor augue. Proin bibendum justo at ornare efficitur. Donec tempor turpis ligula, vitae viverra felis finibus eu. Curabitur sed libero ac urna condimentum gravida. Donec tincidunt neque sit amet neque luctus auctor vel eget tortor. Integer dignissim, urna ut lobortis volutpat, justo nunc convallis diam, sit amet vulputate erat eros eu velit. Mauris porttitor dictum ante, commodo facilisis ex suscipit sed.

Sed egestas dapibus nisl, vitae fringilla justo. Donec eget condimentum lectus, molestie mattis nunc. Nulla ac faucibus dui. Nullam a congue erat. Ut accumsan sed sapien quis porttitor. Ut pellentesque, est ac posuere pulvinar, tortor mauris fermentum nulla, sit amet fringilla sapien sapien quis velit. Integer accumsan placerat lorem, eu aliquam urna consectetur eget. In ligula orci, dignissim sed consequat ac, porta at metus. Phasellus ipsum tellus, molestie ut lacus tempus, rutrum convallis elit. Suspendisse arcu orci, luctus vitae ultricies quis, bibendum sed elit. Vivamus at sem maximus leo placerat gravida semper vel mi. Etiam hendrerit sed massa ut lacinia. Morbi varius libero odio, sit amet auctor nunc interdum sit amet.

Aenean non mauris accumsan, rutrum nisi non, porttitor enim. Maecenas vel

tortor ex. Proin vulputate tellus luctus egestas fermentum. In nec lobortis risus, sit amet tincidunt purus. Nam id turpis venenatis, vehicula nisl sed, ultricies nibh. Suspendisse in libero nec nisi tempor vestibulum. Integer eu dui congue enim venenatis lobortis. Donec sed elementum nunc. Nulla facilisi. Maecenas cursus id lorem et finibus. Sed fermentum molestie erat, nec tempor lorem facilisis cursus. In vel nulla id orci fringilla facilisis. Cras non bibendum odio, ac vestibulum ex. Donec turpis urna, tincidunt ut mi eu, finibus facilisis lorem. Praesent posuere nisl nec dui accumsan, sed interdum odio malesuada.

Bibliography

- O. J. Dahl, E. W. Dijkstra és C. A. R. Hoare, szerk. Structured Programming.
 London, UK, UK: Academic Press Ltd., 1972. ISBN: 0-12-200550-3.
- [2] Thomas H. Cormen és tsai. Introduction to Algorithms, Third Edition. 3rd. The
 MIT Press, 2009. ISBN: 0262033844, 9780262033848.
- [3] Glenn E. Krasner és Stephen T. Pope. "A Cookbook for Using the Model-View-Controller User Interface Paradigm in Smalltalk-80". J. Object Oriented Program. 1.3 (1988. aug.), old. 26-49. ISSN: 0896-8438. URL: http://dl.acm.org/citation.cfm?id=50757.50759.
- [4] E. Dijkstra. "Classics in Software Engineering". Szerk. Edward Nash Yourdon. Upper Saddle River, NJ, USA: Yourdon Press, 1979. Fej. Go to Statement Considered Harmful, old. 27–33. ISBN: 0-917072-14-6. URL: http://dl.acm.org/citation.cfm?id=1241515.1241518.

?listfigurename?

?listtablename?

3.1	Egy Formula lehetséges állapotai	21
3.2	A Spreadsheet. Interface által exportált függvények	23
3.3	Az <i>Eval. Ghci</i> által exportált függvények	28

List of Codes

2.1	Az € kombinátor	10
2.2	Az onJusts kombinátor	10
2.3	LFun és NLFun	11
3.1	Az Env típus	14
3.2	A Gui típus	15
3.3	A Spreadsheet típus	18
3.4	Az eseménykezelők hozzárendelése	32