1

Assignment 4

Utkarsh Shashikant Surwade

Abstract—This document solves a question based on triangle.

All the codes for the figure in this document can be found at

https://github.com/utkarshsurwade/ Matrix_Theory_EE5609/tree/master/ Assignment4

1 Problem

E and F are respectively the mid-points of equal sides AB and AC of $\triangle ABC$. Show that BF = CE.

2 Solution

Fig. 1: Isosceles Triangle with mid-points E and F on equal sides

According to figure:

$$(\mathbf{A} - \mathbf{B}) + (\mathbf{B} - \mathbf{F}) = (\mathbf{A} - \mathbf{F})$$

$$\therefore (\mathbf{A} - \mathbf{B}) = (\mathbf{A} - \mathbf{F}) - (\mathbf{B} - \mathbf{F})$$

$$\therefore (\mathbf{A} - \mathbf{B}) = \frac{1}{2}(\mathbf{A} - \mathbf{C}) - (\mathbf{B} - \mathbf{F})$$

$$(2.0.2)$$

similarly,

$$(A - C) + (C - E) = (A - E)$$
 (2.0.4)

$$\therefore (\mathbf{A} - \mathbf{C}) = (\mathbf{A} - \mathbf{E}) - (\mathbf{C} - \mathbf{E}) \qquad (2.0.5)$$

:
$$(\mathbf{A} - \mathbf{C}) = \frac{1}{2}(\mathbf{A} - \mathbf{B}) - (\mathbf{C} - \mathbf{E})$$
 (2.0.6)

Since AB = AC $\therefore (AB)^2 = (AC)^2$ Solving LHS:

$$\frac{1}{4} \|(\mathbf{A} - \mathbf{C})\|^2 + \|(\mathbf{B} - \mathbf{F})\|^2 - (\mathbf{A} - \mathbf{C})^T (\mathbf{B} - \mathbf{F})$$
(2.0.9)

Solving RHS:

Comparing LHS AND RHS Since AB=AC

$$\frac{1}{4} \|(\mathbf{A} - \mathbf{C})\|^2 = \frac{1}{4} \|(\mathbf{A} - \mathbf{B})\|^2$$
 (2.0.13)

$$(\mathbf{A} - \mathbf{C})^T (\mathbf{B} - \mathbf{F}) = (\mathbf{A} - \mathbf{B})^T (\mathbf{C} - \mathbf{E}) = 0 \quad (2.0.14)$$

$$\|\mathbf{B} - \mathbf{F}\|^2 = \|\mathbf{C} - \mathbf{E}\|^2$$
 (2.0.15)

$$\therefore ||\mathbf{B} - \mathbf{F}|| = ||\mathbf{C} - \mathbf{E}|| \tag{2.0.16}$$

Hence, BF is equal to CE