2. PLC 하드웨어 구조

2.1 CPU 모듈

☑ 정의

CPU 모듈은 PLC 시스템의 핵심이자 **두뇌 역할**을 수행하는 부분이다. 모든 입력 신호를 읽고, 프로그램 로직을 처리하며, 결과에 따라 출력 신호를 제어한다.

➡ PLC 내부에서 **연산, 제어, 입출력 스캔, 통신, 내부 상태 관리**를 담당하는 중심 장치다.

☑ 주요 역할

역할	설명
입력 처리	외부 센서, 스위치 등의 입력 상태를 주기적으로 읽음
프로그램 실행	래더 다이어그램 등 제어 프로그램을 순차적으로 해석 및 실행
출력 제어	계산된 결과에 따라 릴레이, 모터, 램프 등의 출력을 ON/OFF
통신 관리	HMI, 다른 PLC, SCADA 등과의 데이터 통신 처리
메모리 관리	변수, 타이머, 카운터 등의 데이터를 읽고 기록
에러 감지 및 처리	비정상 상황을 감지하고 로그를 생성하거나 알람을 출력

☑ 구성 요소

구성 요소	설명
연산 프로세서 (CPU Core)	명령어 실행, 논리 처리, 연산, 상태 관리
RAM	프로그램 실행 중 변수 저장, 버퍼 메모리 역할
ROM / Flash	사용자 프로그램 및 설정값 저장
리얼타임 클럭 (RTC)	타임스탬프, 주기 동기, 시간 기반 이벤트 처리
Watchdog Timer	이상 발생 시 자동 리셋 (무한 루프, 동작 정지 방지용)
통신 포트	RS-232, RS-485, Ethernet, USB 등 통신 기능 탑재
LED 표시등	RUN, ERROR, COM 등 현재 상태 시각화 표시

☑ Scan Cycle (스캔 사이클)

CPU는 일정한 주기로 아래의 과정을 반복 수행한다. 이것을 Scan Cycle이라 부른다.

★ 일반적으로 1 스캔 사이클은 수 ms 수준이며,고속 제어가 필요한 경우에는 인터럽트 처리나 고속 입출력 모듈을 별도로 사용하기도 한다.

☑ 스캔 시간 관련 고려사항

- 프로그램이 너무 길면 \rightarrow 스캔 시간이 길어짐 \rightarrow **출력 반응 지연** 발생 가능
- 예: 스캔 시간 100ms → 버튼 누르고 0.1초 후에 모터 동작
- 고속성 필요한 작업은 → **고속 카운터 모듈**, **인터럽트 태스크**로 처리

☑ 제조사별 CPU 모듈 예시

제조사	CPU 모듈 시리즈	특징
Siemens	S7-1200 / S7-1500	TIA Portal 기반, 강력한 통신/시각화
Mitsubishi	FX5U / Q CPU / iQ-R	모션 제어 내장, GX Works3 지원
LS산전	XGB / XGI CPU	국산 PLC, XG5000 기반
Allen-Bradley	CompactLogix / ControlLogix	Studio 5000 사용, Ethernet/IP 특화
Omron	NJ/NX 시리즈	EtherCAT, Sysmac Studio 통합 환경

☑ 실무 적용 시 체크사항

항목	설명
입출력 처리 용량	몇 개의 I/O를 처리 가능한가? (확장성)
프로세서 속도	실시간 반응이 필요한가? (스캔타임 요구사항)
통신 방식	Ethernet, Modbus, CAN 등 연동 장비와 호환되는가?
메모리 크기	프로그램 및 데이터 용량 충분한가?

항목	설명
내장 기능	타이머/카운터 외 특수 기능 내장 여부 (PID, 고속처리 등)
프로젝트 백업 및 복원	SD카드, USB, 네트워크 등 백업 지원 여부

✓ 정리

- CPU 모듈은 PLC의 중심으로서 모든 연산과 제어를 담당한다.
- 안정성과 실시간성이 매우 중요하며, 다양한 통신과 입출력의 중심 허브 역할을 한다.
- 시스템 설계 시 CPU의 성능, 확장성, 프로그래밍 환경을 기준으로 선택해야 한다.

2.2 전원 공급 모듈

☑ 정의

전원 공급 모듈(Power Supply Unit, PSU)은 PLC 시스템 전체에 안정적이고 일정한 전압과 전류를 공급하는 장치다. PLC의 CPU, I/O 모듈, 통신 모듈 등이 모두 정상 작동할 수 있도록 필수적인 기반을 제공한다.

→ 전원 모듈이 불안정하면 PLC 전체가 오작동하거나 리셋될 수 있기 때문에, PLC의 신뢰성 확보에 있어 가장 중요한 기반 요소 중 하나다.

☑ 주요 역할

역할	설명
전원 변환	외부에서 입력되는 교류 전원(AC)을 PLC가 사용할 수 있는 직류 전원(DC)으로 변환
전압 안정화	전압 변화에도 일정한 전압 유지 (레귤레이터 내장)
모듈별 전원 분배	CPU, I/O, 통신 모듈 등 각 구성 요소에 필요한 전압 및 전류 공급
보호 기능	과전압, 과전류, 단락, 온도 상승 등의 이상을 감지하고 보호
절연 기능	고전압 노이즈로부터 내부 회로를 보호 (SMPS 방식 등)

☑ 입력 전원 유형

입력 방식	설명
AC 220V / 110V	산업용/가정용 AC 전원 사용 (50/60Hz)
DC 24V	일부 소형 시스템, 모바일 시스템에서 DC 직접 입력
이중 전원 입력	전원 이중화 지원 시(UPS, 배터리 백업), 자동 전환 가능

☑ 출력 전원 사양

출력 항목	설명
DC 24V (가장 보편적)	대부분의 PLC 모듈과 센서, 릴레이 코일 등에 사용
전류 용량	예: 1A, 2A, 5A 이상 — 전체 시스템 소비 전류 합산 기준으로 결정
복수 출력	일부 PSU는 5V, 12V 등 멀티 전압 지원 가능

☑ 보호 및 상태 표시 기능

기능	설명
과전류 보호 (OCP)	전류 초과 시 자동 차단 또는 전류 제한
과전압 보호 (OVP)	출력 전압이 일정 이상 상승할 경우 차단
온도 보호 (OTP)	내부 온도 상승 시 자동 차단
단락 보호 (SCP)	출력 단자 간 쇼트 발생 시 전원 차단
상태 표시 LED	정상 작동, 경고, 고장 상태 등을 시각적으로 표시

☑ 전원 용량 산정법 (실무 기준)

PLC 시스템 설계 시, 전체 전력 소비를 다음과 같이 계산한다:

- 1 총 소모 전류 = CPU 모듈 소비 전류 + I/O 모듈 소비 전류 + 센서/릴레이 등 외부 부하 전류
- 2 여유분 포함하여 약 120% 수준으로 PSU 용량 선정

예)

1 CPU: 300 mA

2 입력 모듈: 100 mA 3 출력 모듈: 200 mA

4 센서 등 주변 부하: 400 mA

5 → 총합: 1000 mA → 전원 모듈은 최소 1.2 A 이상 권장

☑ 제조사별 전원 모듈 예시

제조사	전원 모듈	출력
Siemens	S7-1500 PM-1	24V DC, 2.5A
Mitsubishi	FX5-PSU	24V DC, 5A
LS산전	XGL-PSA / PSR	24V DC, 2.5A 이상

제조사	전원 모듈	출력
Omron	S8VK 시리즈	5V / 12V / 24V DC, 다양한 정격
Allen-Bradley	1606-XLS	24V DC, 2.5~10A 등 다양한 라인업

☑ 실무 적용 팁

- I/O 모듈이 많거나 부하가 큰 경우 반드시 충분한 전력 용량 확보 필요
- 전원 이중화 설계를 위해 **UPS 또는 배터리 백업 시스템 연동** 가능
- 노이즈에 민감한 시스템에서는 노이즈 필터 + 접지(GND) 설계 중요
- **리니어 전원 공급 vs SMPS(Switching Mode Power Supply)**: 대부분은 고효율 SMPS 방식 사용

✓ 정리

- 전원 공급 모듈은 PLC 전체 동작을 가능하게 하는 생명줄
- 선택 시, **전압 정격**, **출력 전류 용량**, **보호 기능**, **노이즈 내성** 등을 고려해야 하며 **전체 시스템의 소비 전력을 정확히 계산하여 여유 있게 설계**하는 것이 핵심이다.

2.3 입력 모듈 (Digital Input, Analog Input)

✓ 개요

입력 모듈(Input Module)은 PLC가 외부 세계로부터 신호를 받아들이는 장치다.

센서, 스위치, 버튼 등에서 발생하는 **전기적 신호를 감지하고**,

이를 PLC 내부의 논리 연산에 사용할 수 있도록 처리한다.

입력 모듈은 크게 **디지털 입력(DI)**과 **아날로그 입력(AI)**으로 나뉜다.

☑ 1. 디지털 입력 모듈 (DI: Digital Input)

★ 정의

디지털 입력은 0 또는 1 (ON/OFF), 즉 이진 신호를 받아들이는 모듈이다.

★ 주요 신호 소스

- 푸시버튼 (누르면 1, 안 누르면 0)
- 리미트 스위치
- 근접센서 (NPN/PNP)
- 포토센서
- 마이크로 스위치
- PLC 간 제어 신호

★ 입력 전압 기준

구분	설명
DC 타입	24V DC 신호 입력 (가장 일반적)
AC 타입	110V 또는 220V AC 입력도 가능 (특수 환경용)
NPN/PNP 방식	트랜지스터 출력 방식에 따라 입력 방식 다름 (전류 싱킹 vs 소싱)

★ 예시: 8채널 디지털 입력 모듈

- 입력 단자 수: 8점 (IN0~IN7)
- 입력 범위: 24V DC
- 각 입력마다 내부 풀업 저항/LED 표시 내장 가능

☑ 2. 아날로그 입력 모듈 (Al: Analog Input)

📌 정의

아날로그 입력은 **연속적인 전기 신호(전압 또는 전류)**를 받아들이는 모듈로, **온도, 압력, 유량, 거리** 등 **연속적인 물리량을 정밀하게 측정**할 수 있다.

★ 주요 신호 소스

- 써미스터, RTD, 열전대 (온도)
- 압력 트랜스듀서
- 거리 센서 (초음파, 레이저)
- 수위 센서
- 유량계
- 전위차계 (조도, 회전각 등)

★ 입력 범위 예시

구분	전류형	전압형
일반 범위	4~20 mA	0 10 V / 1 5 V
고정밀 범위	±10 V	0~50 mV 등

★ 해상도 및 샘플링

- 12비트 / 14비트 / 16비트 해상도 일반
- 해상도가 높을수록 미세한 변화 감지 가능
- 샘플링 속도: 수십~수천 Hz

★ 내부 처리

- 1. 센서 신호 \rightarrow 아날로그 전압/전류
- 2. AI 모듈이 **A/D 변환기**를 통해 디지털 신호로 변환
- 3. PLC 내부 변수에 값 저장 \rightarrow 연산 및 모니터링에 사용

☑ 디지털 입력 vs 아날로그 입력 요약 비교

항목	디지털 입력 (DI)	아날로그 입력 (AI)
신호 유형	ON/OFF (2진)	연속적인 전류/전압
예시	스위치, 센서 감지	온도, 압력, 수위 등
입력 값	0 또는 1	0.00 ~ 65535 (스케일 값)
필요 장비	단순 센서	센서 + 트랜스듀서 필요
변환	없음	A/D 변환 필요
제어 용도	조건 분기, 상태 감지	정량적 제어, PID 연산

☑ 실무 설계 시 고려사항

항목	설명
입력 채널 수	사용 장비 수에 따라 선택 (8, 16, 32채널 등)
입력 전압/전류 규격	사용하는 센서/스위치와 호환되는 전압 확인
노이즈 내성	아날로그의 경우 특히 중요 → 쉴드 배선 필요
입력 필터링	디지털의 경우 채터링 방지용 필터 내장 여부 확인
스케일링	아날로그 입력은 실제 물리값으로 환산 필요 (예: 0 10V → 0 100°C)

☑ 제조사별 입력 모듈 예시

제조사	디지털 입력 모듈	아날로그 입력 모듈
Siemens	SM 1221 DI	SM 1231 AI
Mitsubishi	FX5-16EX	FX5-4AD
LS산전	XBC-DR16	XBF-AD04A
Allen-Bradley	1769-IQ16	1769-IF4
Omron	CJ1W-ID211	CJ1W-AD042

✓ 정리

- **입력 모듈은 PLC가 외부 세계를 인식하는 감각기관**이며, 디지털 입력은 **단순 ON/OFF**, 아날로그 입력은 **정량적 데이터**를 다룬다.
- 시스템 설계 시, 입력 장치의 종류, 수량, 전압/전류 사양, 노이즈 등을 고려해 모듈을 선택해야 한다.

2.4 출력 모듈 (Digital Output, Analog Output)

☑ 개요

출력 모듈(Output Module)은 PLC가 **외부 장치를 제어하기 위해 신호를 출력하는 장치**다.
PLC 내부에서 논리적으로 처리된 결과를 바탕으로, 실제로 **모터, 릴레이, 램프, 밸브 등**을 작동시킨다.

출력 모듈은 크게 디지털 출력(DO)과 아날로그 출력(AO)으로 나뉜다.

☑ 1. 디지털 출력 모듈 (DO: Digital Output)

★ 정의

디지털 출력은 **0 또는 1의 이진 신호**를 출력하여 외부 장치를 **켜거나 끄는 역할**을 한다.

★ 주요 출력 대상

- 릴레이, 접촉기
- 경광등, 부저, 램프
- 솔레노이드 밸브
- DC/AC 모터 시동 신호
- 푸시풀(PNP/NPN) 방식 센서

★ 출력 방식

출력 방식	설명
릴레이 출력	기계적 접점으로 다른 회로를 차단/접속 전기 절연, 다양한 부하에 적합 (AC/DC 모두)
트랜지스터 출력	빠른 ON/OFF 제어에 유리, DC 전용 NPN/PNP 방식 구분 필요
트라이악 출력	AC 부하 전용, 램프나 히터 제어에 적합

📌 예시: 16채널 디지털 출력 모듈

• 출력 수: 16점 (OUT0 ~ OUT15)

• 출력 방식: 트랜지스터 (NPN 타입)

• 출력 전압: 24V DC

• 최대 부하 전류: 채널당 0.5A

☑ 2. 아날로그 출력 모듈 (AO: Analog Output)

★ 정의

아날로그 출력은 **전압이나 전류의 연속적인 아날로그 값을 출력**하여, **속도 조절, 위치 제어, 온도 조절 등의 정밀한 제어**에 사용된다.

★ 주요 출력 대상

- 인버터(속도 제어 입력)
- 서보 드라이버 (위치/속도 지령)
- 아날로그 계기 (디지털-아날로그 표시)
- 온도 제어기, 유량 제어기

★ 출력 유형

출력 방식	전류형 (I-type)	전압형 (V-type)
출력 범위	4~20 mA	0 10V, ±10V, 1 5V 등
특징	장거리 전송에 강함	정밀하고 직관적인 제어에 유리

📌 내부 처리

PLC 내부의 정수/실수 값 \rightarrow **D/A 변환기**를 통해 전압 또는 전류 형태로 변환

→ 외부 제어 장비가 이를 받아 동작 수행

☑ 디지털 출력 vs 아날로그 출력 비교

항목	디지털 출력 (DO)	아날로그 출력 (AO)
신호 형태	ON/OFF (1 또는 0)	연속적인 값 (0 10V, 4 20mA)
제어 대상	모터, 램프, 밸브, 릴레이 등	인버터, 서보, 히터 등 정량제어 대상
출력 방식	릴레이, 트랜지스터, 트라이악	D/A 변환 기반
정밀도	단순	고정밀 필요
제어 용도	단순 동작/정지 제어	속도, 위치, 온도 등 연속값 제어

☑ 실무 설계 시 고려사항

항목	고려 사항
출력 부하 전압/전류	장치 사양과 모듈 사양 일치 여부 확인
출력 방식 (NPN/PNP)	주변 장치의 입력 방식과 일치해야 정상 동작

항목	고려 사항
릴레이 수명	릴레이 출력은 기계적 수명 한계 고려 필요
과부하 보호	출력 채널당 최대 전류 초과 시 회로 보호 필요
절연 여부	고전압 출력 시, 채널 간 또는 시스템과의 절연 고려
출력 펄스 기능	고속 제어 시 PWM/Pulse 출력 지원 여부 확인 (모션 제어용)

☑ 제조사별 출력 모듈 예시

제조사	디지털 출력 모듈	아날로그 출력 모듈
Siemens	SM 1222 DO	SM 1232 AO
Mitsubishi	FX5-16EY	FX5-4DA
LS산전	XBC-DR32 / XBF-DO32A	XBF-DA04A
Allen-Bradley	1769-OB16	1769-OF4
Omron	CJ1W-OD212	CJ1W-DA041

☑ 정리

- **출력 모듈은 PLC가 외부 세계를 제어하는 팔과 다리**에 해당한다.
- 디지털 출력은 단순 ON/OFF 동작,
 아날로그 출력은 연속적인 정밀 제어를 위한 출력 장치다.
- 설계 시 부하 특성, 출력 방식, 전압/전류 정격, 절연 여부 등을 반드시 고려해야 한다.

2.5 통신 모듈 (Ethernet, RS232/485, Profibus 등)

☑ 개요

통신 모듈(Communication Module)은 PLC가 **외부 장비(다른 PLC, 센서, HMI, SCADA, PC 등)**와 데이터를 **송수신할 수 있도록 해주는 인터페이스 장치**다.

현대 산업 자동화 시스템은 단순한 입출력 제어를 넘어서, 다양한 장비 간 **데이터 공유와 네트워크 통신**이 핵심이기 때문에, 통 신 모듈은 필수적인 구성 요소가 되었다.

☑ 주요 통신 목적

목적	설명
PLC ↔ HMI 연동	터치스크린과 데이터를 주고받아 사용자 UI 구성
PLC ↔ SCADA 시스템	공장 전체 모니터링/제어 및 데이터 로깅 수행

목적	설명
PLC ↔ PLC 간 통신	분산 제어 시스템 구성 및 동기화
PLC ↔ 센서/인버터/서보	필드 장치와 실시간 통신하여 정밀 제어
PLC ↔ 클라우드/PC	원격 제어, IoT, 예지보전 시스템 통합

☑ 대표적인 통신 방식

1. RS-232 (Serial)

항목	설명
물리 방식	점대점(Point-to-Point)
속도	최대 약 115.2 kbps
거리	15m 이하 권장
특징	단순, 저속, 노이즈 민감
용도	PC ↔ PLC 프로그래밍 통신, 저가형 센서 연동

2. RS-485 (Serial Bus)

항목	설명
물리 방식	다지점(Multi-Point Bus)
속도	최대 10 Mbps (실제는 9600~115200 bps 많이 사용)
거리	1.2 km 이상 (저속 기준)
특징	다수 장치 연결, 강한 노이즈 내성
용도	Modbus RTU 기반 통신, 인버터, 센서 연결 등 현장 적용 다양

3. Ethernet (TCP/IP 기반)

항목	설명
물리 방식	표준 LAN (RJ45)
속도	10/100/1000 Mbps
프로토콜	Modbus TCP, Ethernet/IP, Profinet, OPC UA 등
용도	HMI, SCADA, PC, 서버 연동 / 클라우드 / 멀티PLC 네트워크

항목	설명
특징	빠른 속도, 표준화, 광범위한 호환성, 실시간 처리 보완 필요

4. Profibus

항목	설명
물리 방식	RS-485 기반 필드버스
속도	최대 12 Mbps
구성	Master-Slave 구조
특징	실시간 제어에 강함, 안정성 높음
용도	센서, 모터 드라이브, I/O 블록 제어 등 고신뢰성 네트워크 필요 시

5. Profinet

항목	설명
물리 방식	Ethernet 기반 (실시간 처리 확장)
속도	100 Mbps ~ 1 Gbps
특징	실시간성과 호환성 동시 확보, 고속 데이터 전송
용도	산업용 이더넷에서 고성능 통신 필요 시, Siemens 계열에서 주로 사용

6. CAN / CANopen

항목	설명
기반	차량, 기계, 로봇 등에 쓰이는 통신 버스
특징	짧은 거리, 고속, 충돌 방지 우선순위 있음
용도	서보, 모터, 센서 제어 등 고정밀 모션 제어 환경

🔽 통신 프로토콜 예시

프로토콜	설명
Modbus RTU	RS-485 기반 대표 필드버스 프로토콜
Modbus TCP	Ethernet 기반, 단순 구조와 넓은 호환성

프로토콜	설명
EtherNet/IP	Allen-Bradley 계열, CIP 기반
OPC UA	플랫폼 독립적인 통합 데이터 통신 프로토콜
мотт	경량 메시징, IoT 클라우드 연동에 특화

☑ 통신 모듈 구성 예시 (실제 PLC 시스템)

☑ 제조사별 통신 모듈 예시

제조사	RS-232/485 모듈	Ethernet 모듈	기타
Siemens	CP340, CP341	CP343-1	Profibus DP, Profinet
Mitsubishi	FX3U-485ADP	FX5-ENET	CC-Link
LS산전	XBL-COM	XBL-ENET	Modbus TCP, RTU 지원
Omron	CJ1W-SCU	CJ1W-ETN21	EtherCAT
Allen-Bradley	1769-SDN, 1761-NET-ENI	1769-L3x	Ethernet/IP, DeviceNet

☑ 실무 적용 시 고려사항

항목	고려 포인트
통신 거리	장거리 → RS-485, 단거리 → Ethernet
속도 요구	고속/대역폭 필요 시 Ethernet, 실시간성은 Profinet
마스터/슬레이브 구성	어떤 장치가 제어권을 가질 것인가?
호환성	사용하는 장비의 통신 포맷/전압/프로토콜과 일치해야 함
중복성/안정성	이중화 구성 가능 여부
배선/노이즈	실드 케이블, 종단저항 필수 고려 (특히 RS-485, Profibus)

✓ 정리

- 통신 모듈은 PLC를 다른 장비나 시스템과 연결하는 브릿지 역할을 한다.
- 현장 조건, 장비 종류, 속도/거리 요구사항에 따라 **RS-232, RS-485, Ethernet, Profibus, Profinet 등**을 선택해야 한다.
- 현대 자동화 환경에서는 단순한 제어보다 **데이터 통합, 원격 제어, IoT 연결**을 위한 통신 설계가 매우 중요하다.

2.6 특수 모듈 (온도 제어, 고속 카운터, 모션 제어 등)

✓ 개요

특수 모듈(Special Module)은 일반적인 **입출력 처리로는 구현하기 어려운 고속/고정밀 작업이나 특수한 기능**을 담당하는 PLC 확장 모듈이다.

공정의 복잡성, 정밀도, 속도, 데이터 연산 요구가 높아짐에 따라

온도, 고속 펄스, 위치 제어, 모션, 아날로그 연산 등 전문 기능이 분리된 모듈로 제공된다.

☑ 특수 모듈의 역할과 종류 요약

모듈 종류	기능
온도 제어 모듈	열전대, RTD 등의 온도 센서로부터 신호 입력 → PID 제어 출력
고속 카운터 모듈	고속 펄스 신호를 실시간으로 계수/처리 (1kHz ~ MHz 단위)
모션 제어 모듈	서보 모터, 스테핑 모터의 위치/속도/가감속 제어
위치 결정 모듈	다축 서보 제어용 (선형/회전 위치 제어)
펄스 출력 모듈	PWM, 펄스 트레인 등을 외부로 출력 (인버터, 서보 지령 등)
아날로그 연산 모듈	아날로그 신호의 산술처리, 필터링, 비교 연산 등
로드셀 입력 모듈	중량 측정용 로드셀 신호를 정밀하게 받아서 처리
특수 프로토콜 통신 모듈	RFID, 바코드 리더기 등 사용자 정의 프로토콜 처리

☑ 1. 온도 제어 모듈

항목	내용
입력 센서	Thermocouple (K, J, T 등), RTD (Pt100, Pt1000)
출력 제어	Relay, SSR, 4~20mA 아날로그 출력
기능	PID 자동제어, 히스테리시스 제어, 온도 알람
활용 예시	히터 제어, 반응조 온도 제어, 오븐 제어 등

🔽 2. 고속 카운터 모듈

항목	내용
입력 방식	A/B 위상 엔코더, 펄스 신호
해상도	수 kHz ~ 수 MHz 단위까지 지원
기능	계수, 비교, 재설정, 캡쳐, 방향 판별
활용 예시	고속 라벨 감지, 위치 계측, 회전수 측정, 엔코더 기반 위치 제어

☑ 3. 모션 제어 모듈

항목	내용
제어 대상	서보 모터, 스테핑 모터
축수	1축 ~ 32축까지 확장 가능
출력	펄스(Pulse) 또는 EtherCAT, SSCNET, Mechatrolink
기능	위치 제어, 속도 제어, 가감속 곡선, 동기 제어, 원운동/선운동 보간
활용 예시	XY 테이블, 로봇 암, 이송 시스템, 카메라 위치 보정 등

☑ 4. 위치 결정 모듈

모션 제어 모듈과 유사하지만 **사전 등록된 위치 패턴**에 따라 자동 이동하는 기능 중심

항목	내용
위치 데이터 등록	내부 메모리에 최대 수백 개의 위치값 저장
트리거 방식	조건 발생 시 자동 이동
활용 예시	절단기, 절곡기, 라벨 위치 지정, 이송 거리 고정 제어

☑ 5. 아날로그 연산 모듈

항목	내용
기능	아날로그 입력 간의 연산(합, 차, 평균, 비교 등), 필터링
활용 예시	다채널 온도 비교, 평균값 출력, 아날로그 알람 조건 판별
필요성	PLC 기본 CPU로는 처리 어려운 연산 속도/정밀도 필요 시 사용

🔽 6. 로드셀 모듈

항목	설명
기능	저전압(μV) 로드셀 신호 증폭 및 디지털 변환
특징	고정밀 24비트 A/D 변환기 내장, 필터 보정 기능
활용 예시	포장기, 계량기, 충전 시스템 등 중량 측정 자동화

☑ 7. 특수 통신/프로토콜 모듈

항목	설명
기능	사용자 정의 ASCII/HEX 기반 프로토콜 전송/수신
활용 예시	RFID 리더기, 바코드 스캐너, 전광판 통신
프로토콜	일반 UART 외, 특정 장비 전용 API 통신 구현 가능

☑ 제조사별 특수 모듈 예시

제조사	온도 제어	고속 카운터	모션 제어
Siemens	SM1231 TC	FM350-1	TM Drive, SINAMICS
Mitsubishi	FX3U-4LC	FX3U-2HC	QD75, MR-J4-B
LS산전	XBF-TC04S	XBF-HCNT	XMC-E32A
Omron	CJ1W-TC001	CJ1W-CT021	CJ1W-NC[][][]
Allen-Bradley	1769-IF8TC	1769-HSC	Kinetix 5500, 2094-AMPx

☑ 실무 설계 시 고려사항

항목	고려 내용
모듈당 채널 수	몇 개의 입력/출력을 처리해야 하는가
샘플링 속도 / 정밀도	고속 처리/고분해능이 필요한지
센서/모터 호환성	연결되는 장치의 전압, 전류, 통신방식과 맞는가
제어 방식	PID, 위치 지정, 보간 제어, 트리거 연동 등 기능 지원 여부
환경 조건	열/진동/노이즈가 많은 공정에서 사용 가능한가

✓ 정리

- 특수 모듈은 PLC 시스템의 확장성과 전문성을 높이는 핵심 요소다.
- 일반 모듈로는 구현이 어려운 고속성, 정밀성, 연속제어를 실현할 수 있도록 도와준다.
- 다양한 공정 제어와 고정밀 장비 통합에 반드시 고려해야 할 고급 기능군이다.

2.7 메모리 구조 (RAM, ROM, Flash, 백업 배터리)

☑ 개요

PLC는 내부적으로 **다양한 종류의 메모리**를 사용하여 **프로그램, 변수, 설정값, 연산 결과, 시스템 상태** 등을 저장하고 처리한다.

각 메모리 영역은 **용도와 특성에 따라 분리되어 있으며**, 정전 시에도 데이터를 보존해야 하는 부분과 실행 중에만 사용하는 임시 데이터 저장 공간이 명확히 구분된다.

☑ PLC의 주요 메모리 종류 요약

메모리 종류	용도	휘발성 여부	보존 방법
ROM	시스템 펌웨어 저장	비휘발성	영구 보존
Flash Memory	사용자 프로그램, 설정값 저장	비휘발성	영구 보존
RAM	연산 중간값, 임시 변수, 타이머 카운트 등	휘발성	배터리로 보존 가능
Backup SRAM	정전 시에도 보존해야 할 데이터 저장	휘발성 + 배터리 유지	예: 생산량, 설정값
EEPROM (일부 PLC)	설정값 백업용	비휘발성	영구 보존
SD 카드 / 외장 메모리	프로그램 백업, 로그 저장 등	비휘발성	교체 가능

1. ROM (Read-Only Memory)

항목	설명
내용	제조사에서 제공하는 펌웨어, 시스템 OS 등
특징	수정 불가, PLC의 기초 동작 기반
예시	CPU 부팅 코드, 시스템 점검 루틴

2. Flash Memory

항목	설명
내용	사용자가 작성한 래더 프로그램, 파라미터, 초기값
특징	프로그램 다운로드 시 저장, 정전 후에도 유지
용도	프로젝트 코드, HMI 연동 설정 등

3. RAM (Random Access Memory)

항목	설명
내용	PLC 실행 중의 임시 변수 값, 연산 중간값, 타이머 상태
특징	전원이 꺼지면 기본적으로 모두 초기화됨
단점 보완	일부 RAM은 배터리 백업 또는 커패시터 유지 가능

☑ 4. Backup SRAM (배터리 백업 메모리)

항목	설명
용도	정전 후에도 보존되어야 할 변수/데이터 저장
예시	생산 개수, 설정값, 사용자 카운터 값 등
보존 방식	리튬 배터리 또는 Super Capacitor 방식으로 유지
주의사항	배터리 방전 시 데이터 손실 → 교체 주기 관리 필수

☑ 5. EEPROM (Electrically Erasable Programmable ROM)

항목	설명
내용	설정값, ID, 작은 용량의 변경 가능 데이터
특징	전원이 꺼져도 유지되며 반복 기록 가능 (수만~수십만 회)
용도	설정값 저장, 계수기 초기값, 기계 ID, 커스터마이즈 데이터

☑ 6. 외장 메모리 (SD 카드 등)

항목	설명
용도	프로젝트 백업, 로깅 데이터 저장, 펌웨어 업데이트
형태	SD 카드, USB 메모리, 내부 EEPROM 확장
기능	프로그램 자동 백업, 기록 저장, 교체 가능
주의사항	FAT32 포맷, 쓰기 사이클 제한 등 존재

☑ 메모리 구조 다이어그램 (예시)

☑ 실무 설계 시 고려사항

항목	고려 포인트
정전 후 데이터 보존 필요 여부	생산량, 설정값은 백업 RAM 사용 필수
배터리 교체 주기	제조사 권장 기간 내 교체 (보통 3~5년)
플래시 메모리 내구성	반복 쓰기 많을 경우 주의 필요
EEPROM 사용 제한	너무 잦은 쓰기는 손상 유발 가능
백업 전략 수립	SD 카드, 네트워크로 정기 백업 설정 권장

☑ 제조사별 메모리 구조 예시

제조사	RAM	Flash	EEPROM	배터리 백업
Siemens (S7-1200)	64 KB ~	1 MB ~	일부 있음	CR2032 코인셀
Mitsubishi (FX5)	최대 128 KB	512 KB ~	내부 있음	Super Capacitor

제조사	RAM	Flash	EEPROM	배터리 백업
LS산전 (XGT)	최대 256 KB	1 MB ~	선택적	리튬배터리
Omron (CJ/NJ)	64~256 KB	2 MB	EEPROM 있음	배터리 모듈
Allen-Bradley	다양	모듈별 상이	EEPROM/Flash	배터리 교체 가능

☑ 정리

- 메모리 구조는 PLC의 동작, 유지보수, 백업 전략의 핵심이다.
- RAM은 빠르고 휘발성이며, Flash는 영구 저장용, Backup RAM은 정전 후 보존이 필요한 데이터 저장에 사용된다.
- 설계 시 **어떤 데이터가 사라지면 안 되는지**를 판단하고, 그에 맞는 **메모리 종류와 보호 대책**을 수립해야 한다.

2.8 입출력 어드레스 지정 방식

☑ 개요

PLC에서 **입력(Input)**과 **출력(Output)** 장치는 **주소(Address)**를 부여받아 관리된다.

- 이 주소는 **사용자가 래더 프로그램에서 I/O를 식별**하고 **제어/감시**하기 위해 반드시 필요하다.
- 📌 PLC는 내부적으로 I/O 모듈의 신호를 **특정한 메모리 공간**에 매핑하여 처리하며,
- 이 구조를 통해 프로그램은 실제 하드웨어와 연결된 신호를 간접적으로 제어한다.

☑ PLC의 주소 지정 원칙

구분	설명
입력 주소	센서, 스위치 등의 상태를 읽는 주소 (예: X0, I0.0 등)
출력 주소	PLC가 장치를 제어하기 위해 사용하는 주소 (예: Y0, Q0.0 등)
메모리 기반	주소는 내부의 메모리 공간으로 매핑됨 (Bit 단위 또는 Word 단위)

☑ 주소 지정 방식 유형

★ 1. 절대 주소 방식

모듈의 위치(슬롯)와 채널 번호에 따라 주소를 정적으로 할당

- 예시 (Siemens)
 - o 입력: IO.O, IO.1, I1.0
 - o 출력: Q0.0, Q0.1, Q1.0

★ 2. 기호 주소 방식 (태그 방식)

입출력에 의미 있는 이름(태그)을 부여하여 사용

- 예: LimitSwitch_1, Motor_Start_Button, Lamp1_On
- 기호 사용 장점: 가독성 향상, 유지보수 용이, 모듈 교체 시에도 코드 수정 최소화

★ 3. 자동 어드레스 매핑

PLC 소프트웨어가 하드웨어 구성을 바탕으로 **자동으로 주소를 할당**

• 예: GX Works3, TIA Portal 등에서 자동 매핑 기능 지원

☑ 대표 PLC 제조사별 주소 체계

제조사	입력 주소	출력 주소	메모리 주소
Mitsubishi	X0, X1, X10	Y0, Y1, Y10	MO, DO, TO, CO
LS산전	x000, x001	Y000, Y001	M000, D000
Siemens (S7)	[10.0, [11.1]	Q0.0, Q1.1	M0.0, DB1.DBX2.0
Omron	0000.00, 0000.01	0100.00, 0100.01	WO, DO, CO
Allen-Bradley	Local:1:I.Data.0	Local:2:0.Data.1	N7:0, B3:1/0

☑ 주소 구분 예시 (Mitsubishi 기준)

종류	형식	설명
입력	x0, x1,	외부 입력 센서, 스위치
출력	Y0, Y1,	외부 제어 장치 (램프, 밸브)
내부 릴레이	MO, M1,	프로그램 내부 상태 저장용
타이머	T0, T1,	지연 타이머
카운터	(c0, c1,	상승엣지 카운트
데이터 레지스터	D0, D1,	수치값 저장용 (Word 단위)

☑ 주소 할당 방식 예시 (입출력 모듈 기준)

슬롯	모듈 종류	주소 범위
0	CPU	시스템 주소
1	디지털 입력 (16점)	x0 ~ xF (16진수 기준)

슬롯	모듈 종류	주소 범위
2	디지털 출력 (16점)	<u>Y0</u> ~ <u>YF</u>
3	아날로그 입력 (4ch)	DO ~ D3 또는 AIO ~ AI3
4	아날로그 출력 (2ch)	D10 ~ D11 또는 A00, A01

☑ 실무 설계 시 고려사항

항목	설명
모듈 슬롯 순서	슬롯 번호에 따라 주소가 결정되므로 설계 초기부터 계획적으로 배치해야 함
주소 중복 방지	수동 지정 시 겹치지 않도록 주의
가독성 향상	기호(tag) 기반 주소로 프로그램 작성 권장
배선도 연계	실제 배선 라벨과 주소 체계가 일치해야 디버깅이 쉬움
메모리 맵 정리	전체 주소 체계를 한 눈에 보기 위한 I/O 테이블 문서화 필수

☑ 정리

- PLC의 입출력 주소 지정은 하드웨어와 소프트웨어를 연결하는 핵심 구조
- 절대 주소와 기호 주소를 병행하여 유지보수성과 안정성을 높일 수 있음
- 주소 설계는 PLC 시스템 구성 시 초기에 반드시 명확하게 설계해야 하는 중요한 요소