•	ALPHA xqapa (control)		xqapa (control)	G_AREA O O O O O O O O O O O O O O O O O O O	HadCM3BL-S	xqapa (control)		xqapa (control)	R_G	xqapa (control)	TL	xqapa (control		xqapa (control)
Eqob 500 - 0.04 0.06 0.0	08 0.10 0.12 0.14 0.16 ALPHA	0.84 0.86	0.88 0.90 0.92 0.00	02 0.003 0.004 0.005 0.006 G_AREA	0.007 0.008 3.80 3.85 3.90 3.95	4.00 4.05 4.10 4.15 4.20 LAI_MIN	0.048 0.049 0.049	.050 0.051 0.052 NLO	0.240 0.245 0 R 0	.250 0.255 0.260 GROW	-0.04 -0.02	0.00 0.02 0.04 FLOW	0.325 0.330 0.335 0.340 V CF	0.345 0.350 0.355 0.360 RIT_ALPHA
orica sum VEG C (Pg	xqapa (control)		xqapa (control)		xqapa (control)	xqapa (control)		xqapa (control)		xqapa (control)		xqapa (control		xqapa (control)
90 - O.04 PAPE O.04 PAPE O.04 O.06 O.0	08 0.10 0.12 0.14 0.16 ALPHA	0.84 0.86 FC	0.88 0.90 0.92 0.00	02 0.003 0.004 0.005 0.006 G_AREA	0.007 0.008 3.80 3.85 3.90 3.95	8 0 0 0 4.00 4.05 4.10 4.15 4.20 LAI_MIN	0.048 0.049 0.	0 0 0 0 0 0.050 0.051 0.052	0.240 0.245 0 R_0	8 0 0 0 .250 0.255 0.260 GROW		0.00 0.02 0.04 FLOW	0.325 0.330 0.335 0.340 V_CF	0 0 0 0 0 0.345 0.350 0.355 0.360
erica sum VEG C (Pc 200 - 190	xqapa (control)		xqapa (control)		xqapa (control)	xqapa (control)		xqapa (control)	_	xqapa (control)	_	xqapa (control		xqapa (control)
RECCAP South Am 180 0.04 0.04 0.06 0.00	08 0.10 0.12 0.14 0.16 ALPHA	0.84 0.86 FC	0.88 0.90 0.92 0.00	02 0.003 0.004 0.005 0.006 G_AREA	0.007 0.008 3.80 3.85 3.90 3.95	8 0 8 0 4.00 4.05 4.10 4.15 4.20 LAI_MIN		8 0 0 0 0.050 0.051 0.052	0.240 0.245 0 R_0	8 0 8 0 .250 0.255 0.260 GROW	-0.04 -0.02 T	8 0.00 0.02 0.04 FLOW	0.325 0.330 0.335 0.340 V_CF	8 0 0 0.345 0.350 0.355 0.360 RIT_ALPHA
Ob 22 -	xqapa (control)		xqapa (control)		xqapa (control) -	xqapa (control)		xqapa (control)		xqapa (control)	-	xqapa (control		xqapa (control)
Y 10 0.04 0.06 0.00	08 0.10 0.12 0.14 0.16 ALPHA xqapa (control)	0.84 0.86 FC	0.88 0.90 0.92 0.00 0 xqapa (control)	G_AREA	0.007 0.008 3.80 3.85 3.90 3.95	4.00 4.05 4.10 4.15 4.20 LAI_MIN xqapa (control)	N	.050 0.051 0.052 NLO xqapa (control)	0.240 0.245 0 R_0	.250 0.255 0.260 GROW	-0.04 -0.02 T	0.00 0.02 0.04 FLOW		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Obd 240 - 230 - 22									-		-			
RECCAP Afr 0.04 0.06 0.0 0.04 0.06 0.0	08 0.10 0.12 0.14 0.16 ALPHA xqapa (control)	0.84 0.86 FC	0.88 0.90 0.92 0.00 xqapa (control)	02 0.003 0.004 0.005 0.006 G_AREA		4.00 4.05 4.10 4.15 4.20 LAI_MIN xqapa (control)	N	0 0 0 .050 0.051 0.052 NLO xqapa (control)		.250 0.255 0.260 GROW xqapa (control)	-0.04 -0.02 T	0.00 0.02 0.04 FLOW xqapa (control		0.345 0.350 0.355 0.360 RIT_ALPHA xqapa (control)
The Asia sum VEG C														
C (PgC) 8 - 0.04 0.06 0.0	08 0.10 0.12 0.14 0.16 ALPHA xqapa (control)	0.84 0.86 FC	0.88 0.90 0.92 0.00 xqapa (control)	02 0.003 0.004 0.005 0.006 G_AREA	0.007 0.008 3.80 3.85 3.90 3.95	4.00 4.05 4.10 4.15 4.20 LAI_MIN	N	0.050 0.051 0.052 NLO xqapa (control)	0.240 0.245 0 R_0	250 0.255 0.260 GROW xqapa (control)		0.00 0.02 0.04 FLOW xqapa (control	V_CF	0.345 0.350 0.355 0.360 RIT_ALPHA xqapa (control)
intral_Asia_sum_VEG_								880000						
B COP C	08 0.10 0.12 0.14 0.16 ALPHA xqapa (control)	0.84 0.86 FC	0.88 0.90 0.92 0.00 xqapa (control)	G_AREA	0.007 0.008 3.80 3.85 3.90 3.95	8 4.00 4.05 4.10 4.15 4.20 LAI_MIN xqapa (control)	N	8 0 .050 0.051 0.052 NLO xqapa (control)		8 0 .250 0.255 0.260 GROW xqapa (control)	-0.04 -0.02 T	0.00 0.02 0.04 FLOW xqapa (control		0 0.345 0.350 0.355 0.360 RIT_ALPHA xqapa (control)
East Asia Sum VEG														
BCCAP 10 0.04 0.06 0.06 0.09	08 0.10 0.12 0.14 0.16 ALPHA xqapa (control)	0.84 0.86 FC	0.88 0.90 0.92 0.00 xqapa (control)	02 0.003 0.004 0.005 0.006 G_AREA	0.007 0.008 3.80 3.85 3.90 3.95	4.00 4.05 4.10 4.15 4.20 LAI_MIN xqapa (control)	N	0 0 0.051 0.052 NLO xqapa (control)	0.240 0.245 0 R_0	250 0.255 0.260 GROW xqapa (control)	-0.04 -0.02 T	0.00 0.02 0.04 FLOW xqapa (control		0.345 0.350 0.355 0.360 RIT_ALPHA xqapa (control)
P_South_Asia_sum_V									-					
A VEG CA O.04 0.06 0.0 O.04 0.06 0.0	08 0.10 0.12 0.14 0.16 ALPHA xqapa (control)	0.84 0.86 FC	0.88 0.90 0.92 0.00	G_AREA	0.007 0.008 3.80 3.85 3.90 3.95	4.00 4.05 4.10 4.15 4.20 LAI_MIN xqapa (control)	<u> </u>	0.050 0.051 0.052 NLO xqapa (control)	0.240 0.245 0 R_0	.250 0.255 0.260 GROW xqapa (control)	-0.04 -0.02 T	0.00 0.02 0.04 FLOW xqapa (control	V_CF	0.345 0.350 0.355 0.360 RIT_ALPHA xqapa (control)
P South East Asia st.														
Obd 37.5 - 0.04 0.06 0.0	08 0.10 0.12 0.14 0.16 ALPHA xqapa (control)	0.84 0.86 FC	0.88 0.90 0.92 0.00 xqapa (control)	02 0.003 0.004 0.005 0.006 G_AREA	0.007 0.008 3.80 3.85 3.90 3.95	4.00 4.05 4.10 4.15 4.20 LAI_MIN	N	0.050 0.051 0.052 NLO xqapa (control)	0.240 0.245 0 R_0	250 0.255 0.260 GROW xqapa (control)	-0.04 -0.02 T	0.00 0.02 0.04 FLOW xqapa (control	_	0.345 0.350 0.355 0.360 RIT_ALPHA xqapa (control)
27.5 - 25.0 - 20														
0.04 0.06 0.0 1500 1400 -	08 0.10 0.12 0.14 0.16 ALPHA xqapa (control)	0.84 0.86 FC	0.88 0.90 0.92 0.00	02 0.003 0.004 0.005 0.006 G_AREA	0.007 0.008 3.80 3.85 3.90 3.95	4.00 4.05 4.10 4.15 4.20 LAI_MIN		.050 0.051 0.052 NLO xqapa (control)		.250 0.255 0.260 GROW xqapa (control)	-0.04 -0.02 T	0.00 0.02 0.04 FLOW xqapa (control		0.345 0.350 0.355 0.360 RIT_ALPHA xqapa (control)
1300 - 1200 - 1000 - 1000 - 0.04 0.06 0.0	08 0.10 0.12 0.14 0.16	0.84 0.86	0.88 0.90	02 0.003 0.004 0.005 0.006	0.007 0.008 3.80 3.85 3.90 3.95	4.00 4.05 4.10 4.15 4.20		.050 0.051 0.052	0.240 0.245 0	.250 0.255 0.260	-0.04 -0.02	0.00 002	0.325 0.330 0.335 0.340	0.345 0.350 0.355 0.360
Jos 330 - B 320 - B 310	0.10 0.12 0.14 0.16 ALPHA xqapa (control)	U.86	0.88 0.90 0.92 0.00	G_AREA	xqapa (control)	4.00 4.05 4.10 4.15 4.20 LAI_MIN xqapa (control)	N	0.050 0.051 0.052 NLO xqapa (control)	U.245 0 R_G	.250 0.255 0.260 GROW xqapa (control)	T	0.00 0.02 0.04 FLOW xqapa (control	V_CF	0.345 0.350 0.355 0.360 RIT_ALPHA xqapa (control)
310 - PAPPE 300 - 290 - 2	08 0.10 0.12 0.14 0.16 ALPHA	0.84 0.86 FC	0.88 0.90 0.92 0.00	02 0.003 0.004 0.005 0.006 G_AREA	0.007 0.008 3.80 3.85 3.90 3.95	4.00 4.05 4.10 4.15 4.20 LAI_MIN	0.048 0.049 0. N	.050 0.051 0.052 NLO	0.240 0.245 0 R_0	.250 0.255 0.260 GROW	-0.04 -0.02 T	0.00 0.02 0.04 FLOW		O.345 0.350 0.355 0.360 RIT_ALPHA
Jerica sum SOIL C (Pg 190 - 19	xqapa (control)		xqapa (control)		xqapa (control)	xqapa (control)		xqapa (control)	-	xqapa (control)		xqapa (control		xqapa (control)
RECCAP Sorth Ame 150 - 0.04 0.06 0.0	ALPHA	0.84 0.86 F0	0.88 0.90 0.92 0.00	G_AREA		LAI_MIN	N	.050 0.051 0.052 NLO xgapa (control)	0.240 0.245 0 R_0	.250 0.255 0.260 GROW xqapa (control)	-0.04 -0.02 T	0.00 0.02 0.04 FLOW		0.345 0.350 0.355 0.360 RIT_ALPHA xqapa (control)
Obe sum Soll C (PgC)	xqapa (control)		xqapa (control)		xqapa (control) -	xqapa (control)		xqapa (control)		xqapa (control)		xqapa (control		xqapa (control)
RECCAP Euro 85 0.04 0.06 0.00	08 0.10 0.12 0.14 0.16 ALPHA xqapa (control)	0.84 0.86 FC	0.88 0.90 0.92 0.00	02 0.003 0.004 0.005 0.006 G_AREA	0.007 0.008 3.80 3.85 3.90 3.95	4.00 4.05 4.10 4.15 4.20 LAI_MIN xqapa (control)	N	.050 0.051 0.052 NLO xqapa (control)	0.240 0.245 0 R_0	.250 0.255 0.260 GROW xqapa (control)	-0.04 -0.02 T	0.00 0.02 0.04 FLOW xqapa (control	_	0.345 0.350 0.355 0.360 RIT_ALPHA xqapa (control)
Frica sum SOIL C (PgC 180 - 180 - 16														
(PgC PAF Afr CCAP Afr CAP Afr	08 0.10 0.12 0.14 0.16 ALPHA xqapa (control)	0.84 0.86 FC	0.88 0.90 0.92 0.00	02 0.003 0.004 0.005 0.006 G_AREA	0.007 0.008 3.80 3.85 3.90 3.95	4.00 4.05 4.10 4.15 4.20 LAI_MIN xqapa (control)	N	0.050 0.051 0.052 NLO xqapa (control)	0.240 0.245 0 R_0	.250 0.255 0.260 GROW xqapa (control)	-0.04 -0.02 T	0.00 0.02 0.04 FLOW xqapa (control	0.325 0.330 0.335 0.340 V_CF	0.345 0.350 0.355 0.360 RIT_ALPHA xqapa (control)
Orth Asia sum 500 - 50 - 50 - 50 - 50 - 50 - 50 - 50														
D 250 - D 240 - D 24	08 0.10 0.12 0.14 0.16 ALPHA xqapa (control)	0.84 0.86 FC	0.88 0.90 0.92 0.00 xqapa (control)	G_AREA	0.007 0.008 3.80 3.85 3.90 3.95 xqapa (control)	4.00 4.05 4.10 4.15 4.20 LAI_MIN	N	0.050 0.051 0.052 NLO xqapa (control)	0.240 0.245 0 R_0	.250 0.255 0.260 GROW xqapa (control)	-0.04 -0.02 T	0.00 0.02 0.04 FLOW xqapa (control	V_CF	0 0.345 0.350 0.355 0.360 RIT_ALPHA xqapa (control)
Sentral Asia sum SO 48 - 48 - 46 - 44 - 42 - 42 - 42 - 42 - 42 - 42														
B 42 - 0.04 0.06 0.0 0.0 0.04 0.06 0.0	08 0.10 0.12 0.14 0.16 ALPHA xqapa (control)	0.84 0.86 FC	0.88 0.90 0.92 0.00	02 0.003 0.004 0.005 0.006 G_AREA		4.00 4.05 4.10 4.15 4.20 LAI_MIN xqapa (control)	N	0.050 0.051 0.052 NLO xqapa (control)	0.240 0.245 0 R_0	.250 0.255 0.260 GROW xqapa (control)	-0.04 -0.02 T	0.00 0.02 0.04 FLOW xqapa (control	_	0.345 0.350 0.355 0.360 RIT_ALPHA xqapa (control)
Bast Asia Sum 140 - 14														
Y 125 0.04 0.06 0.06 0.06 0.06 0.06 0.06 0.06	08 0.10 0.12 0.14 0.16 ALPHA xqapa (control)	0.84 0.86 FC	0.88 0.90 0.92 0.00	02 0.003 0.004 0.005 0.006 G_AREA	xqapa (control)	4.00 4.05 4.10 4.15 4.20 LAI_MIN	N	0.050 0.051 0.052 NLO xqapa (control)		250 0.255 0.260 GROW xqapa (control)	-0.04 -0.02 T	0.00 0.02 0.04 FLOW xqapa (control	_	0.345 0.350 0.355 0.360 RIT_ALPHA xqapa (control)
S wns eight 30 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
D 20 - 0.04 0.06 0.0	08 0.10 0.12 0.14 0.16 ALPHA xqapa (control)	0.84 0.86 FC	0.88 0.90 0.92 0.00	G_AREA O O O O O O O O O O O O O O O O O O	xqapa (control)	4.00 4.05 4.10 4.15 4.20 LAI_MIN xqapa (control)	N	0.050 0.051 0.052 NLO xqapa (control)		.250 0.255 0.260 GROW xqapa (control)	-0.04 -0.02 T	0.00 0.02 0.04 FLOW xqapa (control		0.345 0.350 0.355 0.360 RIT_ALPHA xqapa (control)
South East Asia sur 38														
OL C (PgC (Pg) 232	08 0.10 0.12 0.14 0.16 ALPHA xqapa (control)	0.84 0.86 FC	0.88 0.90 0.92 0.00	G_AREA		4.00 4.05 4.10 4.15 4.20 LAI_MIN	N	0.050 0.051 0.052 NLO xqapa (control)	0.240 0.245 0 R_0	.250 0.255 0.260 GROW xqapa (control)	-0.04 -0.02 T	0.00 0.02 0.04 FLOW xqapa (control	_	0.345 0.350 0.355 0.360 RIT_ALPHA xqapa (control)
O V 555 - OCEANIA SUM SOLUTION STATE OF THE												•		
0.04 0.06 0.0	08 0.10 0.12 0.14 0.16 ALPHA	0.84 0.86 F0	0.88 0.90 0.92 0.00	02 0.003 0.004 0.005 0.006 G_AREA	0.007 0.008 3.80 3.85 3.90 3.95	4.00 4.05 4.10 4.15 4.20 LAI_MIN	0.048 0.049 0. N	.050 0.051 0.052 NLO	0.240 0.245 0 R_0	.250 0.255 0.260 GROW		0.00 0.02 0.04 FLOW	0.325 0.330 0.335 0.340 V_CF	0.345 0.350 0.355 0.360