Expresiones Decimales

Las expresiones decimales se clasifican en:

• Exactas: tienen un número finito de cifras decimales.

Una fracción irreducible tiene una expresión decimal exacta (E. D. E.), cuando los factores primos del denominador son potencias de 2, de 5 o de ambos.

$$\frac{1}{5} = 0.2$$

$$\frac{3}{2} = 1,5$$

$$\frac{1}{10} = 0,1$$

 Periódicas: tienen cifras decimales que se repiten infinitamente. Pueden ser periódicas puras (todas sus cifras decimales son periódicas) o periódicas mixtas (tienen una parte decimal no periódica seguida de otra periódica).

$$1,\widehat{2} = \frac{12-1}{9} = \frac{11}{9}$$

Para pasar una **expresión decimal periódica pura** (E. D. P. P.) a fracción se escriben en el numerador todas las cifras, periódicas y no periódicas, y se resta la parte no periódica. En el denominador se escriben tantos nueves como cifras tenga el período.

$$0,2\overline{3} = \frac{23-2}{90} = \frac{21}{90}$$

Para pasar una expresión decimal periódica mixta (E. D. P. M.) a fracción, se escribe en el numerador la parte periódica y no periódica y se resta la parte no periódica. En el denominador se escriben tantos nueves como cifras periódicas, y ceros como cifras no periódicas tenga la expresión.

Para pasar las **expresiones decimales exactas** a fracción, se pone en el numerador el número sin la coma; y en el denominador un 1 seguido de tantos ceros como decimales tenga.

$$\frac{567}{100} = 5,\underline{67}$$

$$2 \text{ ceros } \triangleright 2 \text{ cifras decimales}$$

$$\frac{48}{1000} = 0,\underline{048}$$

$$3 \text{ ceros } \triangleright 3 \text{ cifras decimales}$$

- 1. Pasá las siguientes expresiones decimales a fracción. Después simplificalas hasta obtener una fracción irreducible, es decir, hasta que ya no pueda se seguir simplificando.
 - a. 0,6 =

c. 2,3 =

e. 18,64 =

b. 1,8 =

d. -5,25 =

- f. -135,75 =
- 2. Pasa a fracción las siguientes expresiones decimales periódicas. Luego simplificalas hasta hacerlas irreducibles
 - a. $0, \bar{7} =$

b. $3, \overline{6} =$

c. 1,08 =

d. $1, \bar{3} =$

3. Indica > ó < (mayor o menor) según corresponda.

(Recuerden que la parte abierta indica mayor y la cerrada menor)

a) $\frac{1}{3}$ 0,33 c) $\frac{1}{7}$ 0,142 e) $\frac{28}{100}$ b) 0, $\hat{5}$ 0,56 d) $\frac{1}{5}$ 0, $\hat{2}$ f) $-\frac{3}{4}$

Potencia

Para elevar un número decimal a un exponente positivo, lo escribimos como fracción, simplificamos y aplicamos la propiedad distributiva de la potenciación de enteros respecto a la división.

$$0.5^3 = \left(\frac{5}{10}\right)^3 = \left(\frac{1}{2}\right)^3 = \frac{1^3}{2^3} = \frac{1}{8}$$

$$\left(\frac{3}{7}\right)^2 = \frac{3^2}{7^2} = \frac{9}{49}$$

$$(0,\bar{1})^2 = (\frac{1}{9})^2 = \frac{1^2}{9^2} = \frac{1}{81}$$

Si el exponente es negativo, se "da vuelta" la fracción, y se le aplica el exponente positivo.

Ejemplos:
$$*\left(\frac{2}{5}\right)^{-1} = \left(\frac{5}{2}\right)^{1} = \frac{5}{2}$$

*
$$\left(\frac{2}{3}\right)^{-3} = \left(\frac{3}{2}\right)^3 = \frac{3^3}{2^3} = \frac{27}{8}$$

*
$$(0.8)^{-2} = \left(\frac{8}{10}\right)^{-2} = \left(\frac{4}{5}\right)^{-2} = \left(\frac{5}{4}\right)^2 = \frac{5^2}{4^2} = \frac{25}{16}$$
 * $6^{-2} = \left(\frac{1}{6}\right)^2 = \frac{1}{36}$

*
$$6^{-2} = \left(\frac{1}{6}\right)^2 = \frac{1}{36}$$

Simplifiqué, dividiendo por 2

Si el exponente es cero y la base es distinta de cero, la potencia siempre es 1.

Ejemplos:
$$*\left(-\frac{5}{9}\right)^0 = 1$$
 $*\left(2,4\right)^0 = 1$ $*\left(-5\right)^0 = 1$

$$*(2,4)^0 = 1$$

$$*(-5)^0 = 1$$

- 4. Calcular las siguientes potencias:

a.
$$(0, \overline{9})^3 =$$

b.
$$(0.25)^2 =$$

c.
$$(-1.8)^2 =$$

d.
$$(-0.4)^3 =$$

5. Calcular las potencias de exponente negativo:

a.
$$(-6)^{-1} =$$

e.
$$(1,2)^{-3}$$

i.
$$\left(-\frac{1}{3}\right)^{-4} =$$

b.
$$\left(\frac{7}{5}\right)^{-2} =$$

f.
$$(-4)^{-3} =$$

i.
$$2^{-5} =$$

c.
$$(0,4)^{-1} =$$

g.
$$(-1)^n =$$

d.
$$(0.25)^{-2} =$$

h.
$$\left(-1, \bar{3}\right)^{-3} =$$

I.
$$(-1)^{-8} =$$

Raiz

$$\sqrt[n]{a} = b \longrightarrow rai$$

*
$$\sqrt[3]{\frac{1}{8}} = \frac{\sqrt[3]{1}}{\sqrt[3]{8}} = \frac{1}{\sqrt{2}}$$

Ejemplo: * $\sqrt[3]{\frac{1}{8}} = \frac{\sqrt[3]{1}}{\sqrt[3]{8}} = \frac{1}{2}$ * $\sqrt{0.04} = \sqrt{\frac{4}{100}} = \frac{\sqrt{4}}{\sqrt{100}} = \frac{2}{10} = \frac{1}{5}$

6. Calcular las siguientes raíces:

a.
$$\sqrt[3]{\frac{27}{125}} =$$

b.
$$\sqrt{0.64} =$$

c.
$$\sqrt{\frac{16}{49}} =$$

d.
$$\sqrt{\frac{144}{81}} =$$

e.
$$\sqrt{1,21} =$$

f.
$$\sqrt[3]{0,008} =$$

g. $\sqrt{0, \overline{4}} =$

h.
$$\sqrt{0,009} =$$

Exponente fraccionario

Si en el exponente hay una fracción, la potencia puede escribirse como una raíz: el numerador del exponente se toma como exponente de la base y el denominador, como índice de la raíz. Esto solo puede realizarse cuando la raíz se puede calcular.

$$a^{\frac{7}{5}} = \sqrt[5]{a^7}$$

$$a^{\frac{7}{5}} = \sqrt[5]{a^7}$$
 $8^{\frac{2}{3}} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$

7. Expresas las siguientes potencias como raíz y luego calculá:

a)
$$81^{\frac{1}{4}} = \sqrt[4]{81^1} = \sqrt[4]{81} = 3$$

b)
$$\left(\frac{1}{8}\right)^{\frac{1}{3}} =$$

c)
$$(-32)^{\frac{2}{5}}$$

d)
$$\left(\frac{25}{16}\right)^{\frac{1}{2}} =$$

e)
$$\left(\frac{1}{243}\right)^{-1/5} =$$

f)
$$\left(-\frac{1}{27}\right)^{-\frac{2}{3}} =$$

g) $5^{\frac{3}{2}}$
h) $(-2)^{\frac{1}{3}}$

g)
$$5^{\frac{3}{2}}$$

i)
$$3^{\frac{4}{7}}$$

j)
$$(-7)^{\frac{1}{9}}$$

k)
$$4^{\frac{3}{4}}$$

$$(-6)^{\frac{4}{5}}$$

Propiedades de la Potencia: Son las mismas que las de los números enteros.

Producto de potencias de igual base

$$\left(\frac{3}{5}\right) \cdot \left(\frac{3}{5}\right)^3 = \left(\frac{3}{5}\right)^{1+3} = \left(\frac{3}{5}\right)^4 = \frac{81}{625}$$

Cuando se multiplican bases iguales, se obtiene la misma base, y se suman los exponentes.

Cociente de potencias de igual base

$$\left(\frac{2}{3}\right)^7 : \left(\frac{2}{3}\right)^3 = \left(\frac{2}{3}\right)^{7-3} = \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

Cuando se dividen bases iguales, se obtiene la misma base, y se restan los exponentes.

Potencia de otra potencia

$$\left[\left(\frac{1}{2} \right)^2 \right]^3 = \left(\frac{1}{2} \right)^{2 \cdot 3} = \left(\frac{1}{2} \right)^6 = \frac{1}{64}$$

Cuando hay una potencia de otra potencia, queda la misma base y se multiplican los exponentes.

8. Calcula utilizando las propiedades:

$$a.\left(\frac{3}{2}\right)^{-2}.\left(\frac{3}{2}\right)^{4}.\left(\frac{3}{2}\right)^{-5}=$$

b.
$$\left(\frac{3}{4}\right)^{-4}$$
 . $\left(\frac{3}{4}\right)^{3}$. $(0.75)^{9}$ =

$$\mathbf{c.} \left[\left(\frac{3}{2} \right)^{-2} \cdot \left(\frac{3}{4} \right)^2 \right]^{-1} =$$

d.
$$3^{\frac{2}{3}}$$
. 3 =

e.
$$2^{\frac{1}{2}}$$
. $2^2 : 2^{\frac{5}{2}} =$
f. $\left(m^{\frac{3}{4}} : m^2\right)^{\frac{1}{5}} =$

Propiedades de la raíz

Producto de raíces de igual índice

$$5\sqrt{\frac{1}{2}} \cdot 5\sqrt{\frac{1}{16}} = 5\sqrt{\frac{1}{2} \cdot \frac{1}{16}} = 5\sqrt{\frac{1}{32}} = \frac{1}{2}$$

Cuando se multiplican raíces de igual índice, se puede expresar como una única raíz donde los radicandos se multiplican

Cociente de raices de igual índice

$$\sqrt[3]{-\frac{1}{81}} : \sqrt[3]{\frac{1}{3}} = \sqrt[3]{-\frac{1}{81}} : \frac{1}{3} = \sqrt[3]{-\frac{1}{27}} = -\frac{1}{3}$$

Cuando se dividen raíces de igual índice, se puede expresar como una única raíz donde los radicandos se dividen entre sí

Raíz de otra raíz

$$\sqrt[3]{\sqrt{\frac{1}{64}}} = \sqrt[6]{\frac{1}{64}} = \frac{1}{2}$$

Cuando hay una raíz dentro de otra, se puede expresar como una sola raíz cuyo índice será la multiplicación de ambos índices.

9. Resolver aplicando las propiedades de la radicación

a)
$$\sqrt{2} \cdot \sqrt{2} =$$

b)
$$\sqrt{8} \cdot \sqrt{2} =$$

c)
$$\frac{\sqrt{27}}{\sqrt{3}} =$$

d)
$$\sqrt{20} \cdot \sqrt{5} =$$

e)
$$\sqrt{6}$$
. $\sqrt{3}$. $\sqrt{2}$ =

f)
$$\sqrt{3}.\sqrt{27} =$$

g)
$$\sqrt{24} \cdot \sqrt{6} =$$

h)
$$\sqrt{15}.\sqrt{135} =$$

i)
$$\sqrt{18} : \sqrt{2} =$$

j)
$$\sqrt{10}:\sqrt{0,1}=$$

k)
$$\sqrt{20}:\sqrt{5}=$$

I)
$$\sqrt{\sqrt{16}} =$$

m)
$$\sqrt[3]{64} =$$

n)
$$\sqrt{\sqrt{27}}$$
. $\sqrt[4]{3} =$