

© International Baccalaureate Organization 2022

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2022

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2022

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Chimie Niveau supérieur Épreuve 2

Mercredi 18 mai 2022 (après-midi)

	IN	ume	ro de	ses	sion (au ca	naia	at	

2 heures 15 minutes

Instructions destinées aux candidats

- Écrivez votre numéro de session dans les cases ci-dessus.
- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Répondez à toutes les questions.
- Rédigez vos réponses dans les cases prévues à cet effet.
- Une calculatrice est nécessaire pour cette épreuve.
- Un exemplaire non annoté du **recueil de données de chimie** est nécessaire pour cette épreuve.
- Le nombre maximum de points pour cette épreuve d'examen est de [90 points].

Répondez à toutes les questions. Rédigez vos réponses dans les cases prévues à cet effet. Le lithium réagit avec l'eau pour former une solution alcaline. 1. Déterminez les coefficients permettant d'équilibrer l'équation de réaction du lithium avec l'eau. [1] ... Li(s) + ... $H_2O(l) \rightarrow ...$ LiOH(aq) + ... $H_2(g)$ Un morceau de lithium de 0,200 g a été placé dans 500,0 cm³ d'eau. (b) (i) Calculez la concentration molaire de la solution d'hydroxyde de lithium en résultant. [2] (ii) Calculez le volume d'hydrogène gazeux produit, en cm³, si la température était de 22,5 °C et la pression de 103 kPa. Utilisez les sections 1 et 2 du recueil de données. [2]

(iii) Suggérez une raison pour laquelle le volume d'hydrogène gazeux recueilli était plus petit que prévu.

. . . .

[1]

(c)	La réaction du lithium avec l'eau est une réaction redox. Identifiez l'agent oxydant dans la réaction en justifiant votre réponse.	[1]
(d)	Décrivez deux observations indiquant que la réaction du lithium avec l'eau est exothermique.	[2]

2. Les électrons sont répartis dans des niveaux d'énergie autour du noyau d'un atome. Expliquez pourquoi la première énergie d'ionisation du calcium est supérieure à celle du potassium. [2] (b) Le diagramme représente des niveaux d'énergie électroniques possibles dans un atome d'hydrogène. -n=5

		()			ou ive												on	S.	5	Su	gg	je	re	Z	de	eu:	X	lim	nita	atı	or	ıs	а	CE	n	no	de	ele	e d	е	[2]
٠.	٠.	٠		٠.	•	٠.	٠	 	 •	 •	 •	 •	-	 ٠	٠.	•	•		•		•		٠		٠		•		٠.	•					٠					٠.		
٠.				٠.		٠.		 	 -				-	 ٠	٠.								٠		٠		-										٠.			٠.		
									 _				_																			_										
								 	 -				-														-															

- (ii) Dessinez une flèche, nommée **X**, pour représenter la transition électronique correspondant à l'ionisation d'un atome d'hydrogène à l'état fondamental. [1]
- (iii) Dessinez une flèche, nommée **Z**, pour représenter la transition électronique de plus faible énergie dans le spectre visible. [1]

-6- 2222-6120

Veuillez ne **pas** écrire sur cette page.

Les réponses rédigées sur cette page ne seront pas corrigées.

Les valeu	irs de potentiel standard d'électrode E^\ominus peuvent être utilisées pour prédire la spontanc	éité.
(a) (i)	Le fer(II) est oxydé par le brome.	
	$2Fe^{2+}(aq) + Br_2(l) \rightleftharpoons 2Fe^{3+}(aq) + 2Br^{-}(aq)$	
	Calculez le potentiel $E_{\text{cellule}}^{\ominus}$ de la réaction, en V, en utilisant la section 24 du recueil de données.	[1]
(ii)	Déterminez, une raison à l'appui, si l'iode aussi oxydera le fer(II).	[1]
(b) (i)	Le chlorure de zinc fondu subit une électrolyse dans une cellule électrolytique à 450°C.	
	Déduisez les demi-équations de réaction à chacune des électrodes.	[2]
Cathode	(électrode négative):	
Anode (é	lectrode positive):	
(ii)	Déduisez la réaction globale de la cellule en incluant les symboles d'état. Utilisez la section 7 du recueil de données.	[2]
	(a) (i) (ii) (b) (i) Cathode Anode (é	2Fe²⁺ (aq) + Br₂(l) ⇌ 2Fe³⁺ (aq) + 2Br⁻ (aq) Calculez le potentiel E° cestule de la réaction, en V, en utilisant la section 24 du recueil de données. (ii) Déterminez, une raison à l'appui, si l'iode aussi oxydera le fer(II). (b) (i) Le chlorure de zinc fondu subit une électrolyse dans une cellule électrolytique à 450 °C. Déduisez les demi-équations de réaction à chacune des électrodes. Cathode (électrode négative): Anode (électrode positive):

4. L'hydrogène et l'iode réagissent pour former l'iodure d'hydrogène.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

(a) Les données expérimentales suivantes ont été obtenues.

Expérience	Concentration initiale de H ₂ / mol dm ⁻³	Concentration initiale de ${ m I_2}$ / mol dm $^{-3}$	Vitesse initiale / mol dm ⁻³ s ⁻¹
1	2.0×10^{-3}	3.0×10^{-3}	1,2 × 10 ⁻⁶
2	6.0×10^{-3}	3.0×10^{-3}	$3,6 \times 10^{-6}$
3	6.0×10^{-3}	6.0×10^{-3}	7.2×10^{-6}

(i)	Déduisez l'ordre de la réaction par rapport à l'hydrogène.	[1]
(ii)	Déduisez l'expression de vitesse de la réaction.	[1]
(iii)	Calculez la valeur de la constante de vitesse en indiquant ses unités.	[2]

(b) E	Expr	mez d	leux c	ondition	s nécessai	res pour ur	e collis	ion efficace entre les réactifs.	[1]
(c) E	Expr	mez la	a cons	stante d'	équilibre, <i>K</i>	ζ_{c} , pour cett	e réacti	ion.	[1]
(d) C	Cons	idérez	: la réa	action de	e l'hydrogèr	ne avec l'io	de solic	de.	
			H	$H_2(g) + I$	₂ (s) ⇌ 2H	I (g) Δ	$H^{\ominus} = +5$	53,0 kJ mol ⁻¹	
(i	i)	Calcu	ılez la	variatio	n d'entropie	e de la réad	tion, Δ	S^{\ominus} , en J.K $^{-1}$.mol $^{-1}$.	[1]
						S [⊕] /JK	¹mol ⁻¹		
					H ₂ (g)	130	.6		
					$I_2(s)$	116	.1		
					HI(g)	206	.6		
(i	ii)	Prédi	sez, u	ne raisc	on à l'appui	, comment	la valeı	ur de $\Delta {\cal S}^{\ominus}_{_{ m réaction}}$ serait affectée si	
	,	le réa	ctif ut	ilisé étai	it $I_2(g)$.			reaction	[1]

(III)	Calculez la variation d'energie libre de Gibbs, ΔG° , en kJ moi $^{\circ}$, pour la réaction a 298 K. Utilisez la section 1 du recueil de données.	[1]
(iv)	Calculez la constante d'équilibre, K_c , pour cette réaction à 298 K. Utilisez votre réponse à la question (d)(iii) et les sections 1 et 2 du recueil de données.	
	(Si vous n'avez pas trouvé de réponse à la question (d)(iii), utilisez une valeur de 2,0 kJ mol ⁻¹ , bien que celle-ci ne soit pas la bonne réponse.)	[2]

5.	Le d	isultur	e de fer(II), FeS ₂ , a ete pris, a tort, pour de l'or.	
	(a)	(i)	Exprimez la configuration électronique complète de l'ion Fe ²⁺ .	[1]
		(ii)	Expliquez pourquoi il y a une forte augmentation de la 8 ^e à la 9 ^e énergie d'ionisation du fer.	[2]
	(b)	Calc	ulez l'état d'oxydation du soufre dans le disulfure de fer(II), FeS ₂ .	[1]
	(c)	Décr	ivez la liaison dans le fer, Fe(s).	[1]

6. Le trioxyde de soufre est produit à partir du dioxyde de soufre.

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

 $\Delta H = -196 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

(a) Résumez, une raison à l'appui, l'effet d'un catalyseur sur une réaction.

[2]

[3]

- (b) La réaction entre le dioxyde de soufre et l'oxygène peut être réalisée à différentes températures.
 - (i) Sur les axes, représentez les courbes de distribution des énergies de Maxwell–Boltzmann pour les espèces réactives à deux températures T_1 et T_2 , où $T_2 > T_1$.

(ii) Expliquez l'effet d'augmentation de température sur le rendement de SO₃. [2]

(c)	(i)	Dessinez la structure de Lewis de SO ₃ .	[1]
	(ii)	Expliquez la géométrie du domaine électronique de SO ₃ .	[2]
(d)	/i)	Everimez la produit formá par la réaction de CO, avec l'agu	[4]
(d)	(i)	Exprimez le produit formé par la réaction de SO ₃ avec l'eau.	[1]
	(ii)	Exprimez ce qu'est un acide fort de Brønsted-Lowry.	[2]

[1]

7.	L'équation globale de production du cyanure d'hydrogène, HCN, est représentée ci-dessous.
	$CH_4(g) + NH_3(g) + \frac{3}{2}O_2(g) \rightarrow HCN(g) + 3H_2O(g)$

Exprimez pourquoi NH₃ est une base de Lewis.

Calculez le pH d'une solution aqueuse d'ammoniac à $1,00 \times 10^{-2} \, \text{mol dm}^{-3}$. (ii)

> $p\textit{K}_{b}=4,75~\grave{a}~298\,\textrm{K}.$ [3]

Justifiez si $1,0\,\mathrm{dm^3}$ de solution réalisée à partir de $0,10\,\mathrm{mol}$ de $\mathrm{NH_3}$ et de $0,20\,\mathrm{mol}$ (iii) de HCl formera une solution tampon. [1]

(Suite de la question à la page suivante)

(a)

(b)	(i)	Représentez la forme d'une liaison sigma (σ) et d'une liaison pi (π).	[2]
Sigi	ma (σ)):	
Pi (π):		
	(ii)	Identifiez le nombre de liaisons sigma et de liaisons pi dans HCN.	[1]
Sigr	na (σ)	:	
Pi (τ	τ):		
	(iii)	Exprimez l'hybridation de l'atome de carbone dans HCN.	[1]

Tournez la page

(c)	Suggérez pourquoi la température d'ébullition du chlorure d'hydrogène, HCl, est
	inférieure à celle du cyanure d'hydrogène, HCN.

[1]

	M _r	Température d'ébullition
HCN	27,03	26,00°C
HCl	36,51	−85,05°C

	(d) Expliquez pourquoi les complexes du cyanure de métaux de transition sont colorés.	[3]
8.	Le carbone forme de nombreux composés.	
	(a) Le C ₆₀ et le diamant sont des allotropes du carbone.	
	(i) Résumez deux différences entre les liaisons des atomes de carbone dans le C_{60} et dans le diamant.	[2]
1		

(ii)	Expliquez pourquoi le C_{60} et le diamant subliment à différentes températures et pressions.	[2]
(b) (i)	Exprimez deux caractéristiques montrant que le propane et le butane font partie de la même série homologue.	[2]
(ii)	Suggérez le fragment causant le pic R dans le spectre de masse du butane.	[1]

.....

Supprimé pour des raisons de droits d'auteur

(c) Decrivez un test, avec les resultats attendus, permettant d'identifier la presence de liaisons doubles carbone–carbone.	[2]
Test:	
Résultat:	
(d) (i) Dessinez la formule de structure complète du (Z)-but-2-ène.	[1]
(ii) Écrivez l'équation de la réaction entre le but-2-ène et le bromure d'hydrogène.	[2]
(iii) Exprimez le type de réaction dont il s'agit.	[1]
	•

(iv)	Suggérez deux différences dans le spectre RMN ¹ H du but-2-ène et celui du produit organique obtenu à la question (d)(ii).	[2]
(v)	Prédisez, une raison à l'appui, le produit majoritaire de la réaction entre le but-1- ène et la vapeur d'eau.	[2]
(e) (i)	Expliquez le mécanisme de réaction entre le 1-bromopropane, CH ₃ CH ₂ CH ₂ Br, et une solution aqueuse d'hydroxyde de sodium, NaOH (aq), en utilisant des flèches courbes pour représenter le mouvement des doublets d'électrons.	[4]
(ii)	Déduisez la figure de dédoublement dans le spectre RMN ¹ H pour le 1-bromopropane.	[1]

(f) Le chlore réagit avec le méthane.

$$\operatorname{CH_4(g)} + \operatorname{Cl_2(g)} \to \operatorname{CH_3Cl(g)} + \operatorname{HCl(g)}$$

(i) Calculez la variation d'enthalpie de la réaction, ΔH , en utilisant la section 11 du recueil de données.

[3]

(ii) Dessinez et légendez un diagramme d'enthalpie pour cette réaction.

[2]

Références :

Tous les autres textes, graphiques et illustrations : © Organisation du Baccalauréat International 2022

