مراجعة هندسة – تالتة إعدادك

مفاهيم أساسية

أنصاف الأقطارفي الدائرة الواحدة متساوية في الطول

خارج الدائرة

إذا كان: مأ > نق

م ن خط المركزين

∴من ⊥أب

، ق (م د اً) = ۹۰°

، من ينصف أ ب

المستقيم الماربمركز الدائرة وبمنتصف أي وتر فيها يكون عموديا على هذا الوتر

٠: د منتصف الوتر أ ب

∴ <u>م د ل</u> أ ب

د ق (م د أ) = ۹۹°

ت<u>مد</u> ⊥أب د منتصف أ ب ∴ اد =۷د ب

المستقيم الماربمركز الدائرة وعموديأ

على أي وتر فيها ينصف هذا الوتر

أوضاع مستقيم بالنسبة لدائرة

إذا كانت م دائرة طول نصف قطرها نق ، أ نقطة و المستقيم فإن المستقيم يكون:

مماس إذا كان: مأ = نق

المماس عمودي على نصف القطر

لإثبات أن المستقيم مماس

اوضاع دائرة بالنسبة لدائرة

إذا كانت م، ن دائرتان طولا نصفى قطريهما نق، ، نق، ، م ن خط المركزين فإن الدائرتان يكونان:

متداخلتان متحدتا المركز	متباعدتان	متقاطعتان	متماستان من الداخل	متماستان من الخارج
إذا كان: إذا كان:	إذا كان :	إذا كان :	إذا كان :	إذا كان :
من < نق، - نق، من = صفر	م ن > نق۱ + نق۲	نق۱- نق۲ < م ن < نق۱+ نق۲	م ن = نق۱ ـ نق۲	م ن = نق۱ + نق۲

خط المركزين عمودي على الوتر المشترك وينصفه

∵ أ ب مماس مشترك م ن خط المركزين

خط المركزين عمودي على المماس المشترك

الأقواس المتساوية

الأقواس المتساوية في القياس متساوية في الطول والعكس صحيح

$$(\widehat{A} - \widehat{A}) = \widehat{B} + \widehat{A}$$
 $(\widehat{A} - \widehat{A}) = \widehat{B} + \widehat{A}$
 $(\widehat{A} - \widehat{A}) = \widehat{B} + \widehat{B}$
 $(\widehat{$

إذا كان أب // جدد

فإن ق (أج) = ق (ب د)

الوتر والمماس المتوازيان يحصران قوسان متساويان

الأوتار المتساوية في الطول أقواسها متساوية في القياس

إذا كان أ
$$\overline{P}$$
 ب جد \widehat{P} فإن ق (أ ج) = ق (\widehat{P} فإن ق (أ ج)

إذا كان أب = جد

والعكس صحيح

فإن : ق (أ ب) = ق (ج د)

الوتران المتوازيان يحصران بينهما قوسان متساويان

الأوتار المتساوية

الأوتار المتساوية في الطول أقواسها متساوية في القياس

إذا كان أب = جد د
$$\widehat{(i + i)} = \widehat{(i + i)}$$
 فإن : ق $(i + i) = \widehat{(i + i)}$ والعكس صحيح

الأوتار المتساوية في الطول أبعادها متساوية في الطول

- · أب = أج (أوتار متساوية) .: م س = م ص (أبعاد متساوية) والعكس صحيح
- لو عند وترين متساويين ، استنتج ان البعدين متساويين والعكس.
- ولو طلب منك تثبت ان وترين متساويين : حاول تثبت ان البعدين متساويين والعكس.

تمرین مشھور ۲

هنستخدمه لو عندنا وترين متقاطعين خارج الدائرة

ق
$$(\widehat{A}) = \frac{1}{7} = (\widehat{A})$$
 ق $(\widehat{A}) = \frac{1}{7} = (\widehat{A})$ ق $(\widehat{A}) = (\widehat{A})$

هنستخدمه لو عندنا وترين متقاطعين داخل الدائرة

$$\begin{array}{l}
\widetilde{b} \\
\widetilde{c} \\
\widetilde$$

یق (أب) = ۰۸°

ن ق (م) المركزية = ۸۰ د

في القوس أ جـ

العلاقات بين الزوايا

♦ المحيطية = المماسية = أ المركزية = أ القوس

قياس الزاوية المحيطية المرسومة في نصف دائرة = ٥٩٠

المركزية = القوس = ٢ المحيطية = ٢ المماسية

∵أب قطر ن ق (أ جُب) المحيطية = ٥٩٠ أي أن ∆أ جب قائم

قياس الزاوية المركزية = قياس القوس المقابل لها

قياس الزاوية المحيطية = ٦ قياس القوس المقابل لها

قياس المحيطية = ٦ قياس المركزية والمنزكة مها في واقوى

قياس المماسية = 7 قياس المركزية والمتركزة مها في وهوى

ق (ج أب) المماسية = $\frac{1}{7}$ ق (أ م م) د من المماسية = $\frac{1}{7}$ ق (أ م م) د من ق (ج أ ب) = ٥٦٠

· ق (أ ج) = ق (د و)

ن ق (بُ) = ق (هُ) = ۲۰ د

ن ق (ب أج) المحيطية = ٣٠٠

٠٠ ق (ب جَ) = ٢٠°

قياس المحيطية = قياس المحيطية والمنزكة مها في واقوس

ق (بُ) = ق (هُ) = ٥٥ لأنهما محيطيتان مسشتركتان

قياس المحيطية = قياس المحيطية إفرالانر فروسم ساوين

الزاوية المماسية تكمل الزاوية المحيطية المرسومة على وتر الزاوية المماسية وفي جهة واحدة منها

· ﴿ أَهُ بِ محيطية مرسومة على أ ب ، کاب د مماسیت ن ق (أ بُ د) + ق (أ هُ ب) = ١٨٠٥ .

ق (جأب) المماسية = ق (د) المحيطية نق (جأب) = ٥٦٠

قياس المحيطية = قياس المماسية والمتزكرة مها في واقوس

الشكل الرباعي الدائري

لو عرفت ان الشكل رباعي دائري (سواء هو قالك في المسألة أو لقيت رؤوسه الأربعة تقع على الدائرة) هنستنتج ٣ حاجات :

کل زاویتین متقابلتین مجموعهما = ۱۸۰

ج الشكل أ ب جد رباعى دائرى \therefore الشكل أ ب جد رباعى دائرى \therefore ق (\hat{c}) + ق (\hat{c}) = 110 \therefore ق (\hat{c}) = 110 \therefore ق (\hat{c}) = 110 \therefore

قياس الزاوية الخارجة = قياس المقابلة للمجاورة

الشكل أ ب جـ د رباعى دائرى ب ق (أ ب هـ) الخارجة = ق (\hat{c}) \div هـ) الخارجة = ق (\hat{c}) \div هـ ، ق (\hat{c}) = ه ۸

أي زاويتين مرسومتين على قاعدة واحدة وفي جهت واحدة متساويتان

إذا كان أ ب جد رباعى دائرى فإن: $\hat{(}$ ق ($\hat{(}$ أ ب جد رباعى دائرى فإن: ق ($\hat{(}$ أ) = ق ($\hat{(}$ أ مرسومتان على ب جق ($\hat{(}$ أ) = ق ($\hat{(}$ أ) مرسومتان على د جق ($\hat{(}$ أ) = ق ($\hat{(}$ أ مرسومتان على أ د ق ($\hat{(}$ أ) = ق ($\hat{(}$ أ) مرسومتان على أ د

شوف زاويتين مرسومتين على قاعدة

واحدة واثبت انهما متساويتان

لو قالك اثبت أن الشكل رباعي دائري إبحث عن إحدى الحالات الثلاثة الآتية واثبتها وهي :

زاوية خارجة واثبت انها تساوى المقابلة للمجاورة

زاویتان متقابلتان واثبت أن مجموعهما = ۱۸۰

العلاقة بين مماسات الدائرة

القطعتان المماستان المرسومتان من نقطم خارج دائرة متساويتان في الطول.

إذا كان أب، أج قطعتان مماستان فإن:

أم ينصف زاوية بأج	ا ب = ا جـ
أم ينصف زاوية ب م جـ	ق (أ بُ ج) = ق (أ جُ ب)
أم ⊥ بج وينصفه	أ ب م جـ رباعی دائری

لإثبات أن بد مماس للدائرة التي تمر برؤوس △ أبج

عدد المماسسات المشتركة

- عدد المماسات المشتركة لدائرتين متباعدتين ٤
- عدد المماسات المشتركة لدائرتين متماستين من الخارج ٣
 - عدد المماسات المشتركة لدائرتين متقاطعتين ٢
- عدد المماسات المشتركة لدائرتين متماستين من الداخل ١
 - عدد المماسات المشتركة لدائرتين متحدتا المركز صفر

ملاحظات على تعيين الدائرة

- ١) يمكن رسم دائرة تمر برؤوس كل من : المستطيل والمربع وشبه المنحرف المتساوى الساقين
- ٢) لا يمكن رسم دائرة تمر برؤوس : متوازى الأضلاع والمعين وشبه المنحرف غير المتساوى الساقين
 - ٣) يمكن رسم دائرة وحيدة تمر بثلاث نقاط ليست على استقامة واحدة
 - ٤) لا يمكن رسم دائرة تمر بثلاث نقاط ليست على استقامة واحدة.
 - ٥) يمكن رسم عدد لا نهائي من الدوائر تمر بنقطة واحدة.
 - $\frac{1}{1}$ اصغر دائرة تمر بالنقطتين أ ، ب هي التي أ ب قطر فيها وفيها نق $\frac{1}{1}$ أ ب
- ۱ (۱ کان نق $\frac{1}{7}$ ابنا فانه یمکن رسم دائرتان فقط و إذا کان نق $\frac{1}{7}$ اب فإنه لا یمکن رسم ای دائرة

الدائرة الخارجة للمثلث الحائرة الحاخلة للمثلث مركزها هو نقطة تقاطع الأعمدة المقامة على مركزها هو نقطة تقاطع اضلاع المثلث من منتصفاتها منائل أضلاعها محاور تماثل أضلاعها

خلاصة الزاوية ٩٠

لو لقيت أي حاجة من دول استنتج ان فيم زاوية قائمة قياسها ٩٠ :

كتابت بياناتها

خلاصة المثلث المتساوى الساقين

يكون المثلث متساوى الساقين إذا كان :

ضلعيه أنصاف أقطار

ضلعيه قطعتان مماستان

طول القوس

طول القوس =
$$\frac{$$
قياس القوس π × π نق

- ♦ قياس نصف الدائرة = ١٨٠°
- عياس خُمس الدائرة = $\frac{77}{2}$ = ۲۲° وهكذا
 - Φ طول الدائرة = محيط الدائرة = π ۲ تق

عدد محاور تماثل ربع الدائرة: محور واحد

- ♦ قياس الدائرة = ٣٦٠°
- ♦ قياس ربع الدائرة = ٩٠°

ملاحظات

- ا إذا كان المثلث حاد الزوايا فإن مركز الدائرة الخارجة له يقع داخل المثلث إذا كان المثلث قائم الزاوية فإن مركز الدائرة الخارجة له يقع في منتصف وتر المثلث إذا كان المثلث منفرج الزاوية فإن مركز الدائرة الخارجة له يقع خارج المثلث
 - عدد محاور تماثل الدائرة: عدد لا نهائي عدد محاور تماثل نصف الدائرة: محور واحد عدد محاور تماثل نصف الدائرة: محور واحد
 - اذا کان م ، ن دائرتان متقاطعتان فإن م ن \in] نق، نق، + نق، + نق، + نق، + نق، + نق، + اذا کان م ، ن دائرتان متباعدتان فإن م ن + نق، + نق
 - الزاوية المحيطية التي تقابل قوسا أصغر من نصف الدائرة تكون حادة الزاوية المحيطية التي تقابل قوسا أكبر من نصف الدائرة تكون منفرجة

تنبيه: لا يُسمُح لأي شخص حذف اسم محمود عوض من الملزمن ومن يفعل فأمره موكل إلى الله جل جلاله (ولكن يُسمُح بحذف رقم التليفون فقط)

٠٠ أ ب قطر ∴ق (أجُب) = ۹۰

محيطية مرسومة في نصف دائرة

$$(\hat{A}) + \hat{B}(\hat{A}) = (\hat{A}) + \hat{B}(\hat{A}) = (\hat{A})$$
ن ق $(\hat{A}) + \hat{B}(\hat{A}) = (\hat{A})$ ق $(\hat{A}) = (\hat{A})$

ق (أ جـ) = ٢ ق(د هـ ب) - ق (د ب)

ن ∆مأبقائم،ق(بُ) = ۳۰

الضلع المقابل للزاوية ٣٠ = نصف طول الوتر

کل زاویتان متقابلتان مجموعهما = ۱۸۰

تمرین مشھور 🕦

ق (د هـ ب) = أ ق (أ ج) + ق (د ب)] ق (د ب) = ٢ ق(د هُ ب) - ق (أ ج)

﴿ أَبِ قَطْرِ ﴿ قَ(أَجِبٍ) = ١٨٠ ق (أج) + ق (جَهَ) + ق (هُ بَ)

مراجعة هندسة – تالتة إعدادك

ق (أب هـ) = ق (أب) + ق (ب هـ) ق (ب ه ج) = ق (ج ه) + ق (ب ه) لاحظ أن: القوس ب هـ مشترك بينهما

ن الشكل أب جد درباعي دائري

.: ق (أ ب م الخارجة = ق (د)

الزاوية الخارجة = المقابلة للمجاورة

· س منتصف أ ب ، ص منتصف أ ج .: س ص // ب ج

الأقواس المتساوية في الطول

متساوية في القياس

والعكس

· طول أ ب = طول جـ د

ن ق (أب) = ق (جدً)

طول القوس = $\frac{\ddot{a}_{\mu l} m l}{a_{\mu l}} \times \tau$ تق

ق (هُ = أ و (أج) و ق (د ب)] ق (أ جَ) = ق (د ب)+ ٢ ق(هُ) ق (د ب) = ق (أ ج) - ٢ ق(هُ)

∴ △ أ ب جـ قائم ، ب د ⊥ الوتر أ جـ

<u>اب×بج</u> .. بد=

ص

إعداد أ/ محمود عوض

ن أب، أج قطعتان مماستان $(\hat{-})$ = $(\hat{-})$ = $(\hat{-})$

لإثبات أن الشكل رباعي دائري ابحث عن احدى الحالات الآتية:

- ١- زاويتان متقابلتان متكاملتان ٢- زاوية خارجة تساوى المقابلة للمجاورة
- ٣- زاويتان مرسومتان على قاعدة واحدة وفي جهة واحدة منها ومتساويتان

إقليدس

إذا كان ق (١) = ق (٢) .: أب جد درباعي دائري والعكس صحيح

قطعتان مماستان

- ق (أ ب ب ج) = ق (أ ج ب)
- - أم ل بج
 - أبم جرباعي دائري

أمثلة محلولة

ا في الشكل المقابل:

· س منتصف أب ∴ م س ⊥ أ ب

ن ق (م ش أ) = ۹۰°

∵ ص منتصف أج ∴ م ص ⊥ أج

ن ق (م ص أ) = ٩٠°

ئ ق (دمُ هـ) = ٣٦٠ − (٢٠+ ٩٠٠) = ١١٠°

 \therefore م ص = م س (أبعاد متساوية) \rightarrow ١

∴ م هـ = م د (أنصاف أقطار) → ٢

بطرح ۱ من ۲ بنتج: ص ه = س د

: مجموع قياسات زوايا الشكل الرباعي أس مص =

· أج= أب (أوتار متساوية)

٣ في الشكل المقابل:

أس مماس مشترك لدائرتين متماستين اثبت أن: ب د // جه

الحل

في الدائرة الصغرى:

∴ ق (س أب) المماسية = ق (أ دُب) المحيطية → (آ)
 مشتركتان في أب

في الدائرة الكبرى:

ق (س أُج) المماسية = ق (أ هُج) المحيطية $\rightarrow (\overset{\hat{}}{Y})$ الأنهما مشتركتان في أ ج الأنهما من 1 ، ٢ ينتج أن :

ق (أ دُب) = ق (أ هُدِ) وهما في وضع تناظر ن بد // جـهـ

مي الشكل المقابل:

م، ن دائرتان متقاطعتان فی أ ، ب ق (م \hat{G} د) = \hat{G} ۱۲° ق (م \hat{G} د) = \hat{G} ق (ب \hat{G} د) = \hat{G} ه ه \hat{G} اثبت أن \hat{G} مماس

إلى في الشكل المقابل:

∆ أ ب جـ مرسوم خارج الدائرة وتمس أضلاعه في س ، هـ ، ع أ س = % سم ، س ب= % سم ، أ جـ % سم أف جد محيط ∆ أ ب جـ أوجد محيط ∆ أ ب جـ

الحل

·· أ س = أ ع قطعتان مماستان

∴أع = ٣سمر

.: ع جـ = ٨ − ٤ = ٥ سم

· ج ع = ج ه قطعتان مماستان

∴ چـ هـ = ۵ سم

ت ب ه = ب س قطعتان مماستان

∴بھ=٤سم

∴ ب جـ = ٤ + ٥ = ٩ سم

∴ محیط ۵ آب ج = ۷ + ۸ + ۹ = ۲۶ سم

العما : أب وترمشترك ، م ن خط المركزين

$$^{\circ}$$
اَب \perp من \dot{a} نق (أهمُن) = ۹۰ م

∵ مجموع قياسات زوايا الشكل الرباعي = ٣٦٠٥

ن د ⊥ جـد ∴ خـد مماس

(وهو المطلوب اثباته)

مراجعة هندسة - تالتة إعدادك

. 17. 707. 749

و في الشكل المقابل؛

أب جد شكل رباعي فيه

أد // بج

اثبت أن

الشكل أب جدد رباعي دائري

في ∆ ب هـ جـ :

∵أد // بج

وهما مرسومتان على قاعدة واحدة د ج

الشکل أ ب جد رباعی دائری

٧ في الشكل المقابل؛

جد تماس للدائرة عند ج جد // أب

ق (أمْب) = ١٢٠° اثبت أن:

△ جأب متساوى الأضلاع

٠ 📥 د ارا أب

$$^{\land}$$
من ۲، ۲ ینتج أن : ق (ج بُ أ) = ق (ج أ ب)

 $\triangle \triangle$ جأب متساوى الساقين

$$``$$
 ق ($^{\hat{A}}$) المركزية = 170° نق ($^{\hat{A}}$ ب) = 10° $^{\hat{A}}$ ب $^{\hat{A}}$ ب $^{\hat{A}}$ ب متساوى الأضلاع $^{\hat{A}}$

الشكل المقابل:

<u>م</u> س ⊥ أب،م ص ⊥ أ جـ

أوجد قياسات زوايا △ م س ص

ن مرس ⊥أب نس منتصف أب

تمص ⊥أج ∴ صمنتصف أجـ

ن س ص // بج (قطعة واصلة بين منتصفى ضلعين)

$$^{\wedge}$$
 ف (أ س ص) = $^{\circ}$ ف (أ ص س) = $^{\circ}$ بالتناظر $^{\circ}$

في ∆ س م ص:

﴿ ﴾ في الشكل المقابل:

وبإضافة ق (دهم) للطرفين

 $\mathbf{e}_{\omega} \Delta$ ج أب

بالطرح ينتج أن :

مراجعة الصف الثالث الإعدادك

. 17. 707. 789

9 في الشكل المقابل:

أب جد شكل رباعي فيه

اثبت أن: الشكل أب جدد رباعي دائري

 \therefore أ $\mathbf{p} = \mathbf{l}$ د $\triangle \triangle \triangle \mathbf{l}$ الساقين

وهما زاويتان متقابلتان متكاملتان

الشکل أ ب جد رباعی دائری

ال في الشكل المقابل؛

 $\dot{}$ ق (ه بُ ج) المحيطية = $\frac{1}{2}$ ق (مُ) المركزية

∵أب=بھ ه ب ج خارجۃ عن ۵ هـ ب أ

١٠ في الشكل المقابل:

س أ ، س ب مماسان ق (أس ب) = ٧٠° ق (د جُ ب) = ۲۱° اثبتُ أن: ١) أب ينصف دأس ٢) أد // سب

تأب جد رياعي دائري

تسأ، سب مماستان للدائرة

ن ق (د أُس) + ق (سُ) = ۱۱۰ + ۷۰ + ۱۸۰ وهما متداخلتان (∴ أد // س ب

ا الشكل المقابل:

٠٠ أب، أج قطعتان مماستان ١٠ أم ينصف ن ق (أ) = ٢ × ٢٥ = ٠٥°

﴿ أَجِ مَمَاسَةٌ ، مُ جِ نَصِفُ قَطْرِ ﴿ مَ جَ لَا أَجِ ن ق (أ محم م) = ٩٠ °

کننے : أب مماسى، م ب نصف قطر : م ب أ ب ن ق (أ مُ م) = ٩٠°

في الشكل الرباعي أ ب م ج

ن ق (ب ه ج) المحيطية = $\frac{1}{7}$ ق (ب م ج) المركزية = ٥٦٥ ثن (ب م ج) المركزية = ٥٦٥ ثن ق

مراجعة هندسة - تالتة إعدادك

. 17. 707. 749

الشكل المقابل؛

ا ب ∩ جد = { هـ } ق (د هـب) = ۱۱۰° ق (أجَ) = ١٠٠ ق أوجد ق (د کې ب)

من تمرین مشهور ۱

$$(\hat{c})$$
 ق (\hat{c} بالمحیطیۃ = $\frac{1}{7}$ ق (\hat{c} ب)

(١٥ في الشكل المقابل: أ ب جد مستطيل مرسوم داخل

· أ ب = د ج خواص المستطيل ،هج=دج (معطى) ∴أب=هـجـ ق (أب) = ق (ه ج) بإضافة ق (به) للطرفين ق (أهـ) = ق (بجـ)

الحل

∴أه=بج ه ط ث

الشكل المقابل: جد قطر⊥أب

اثبت أن:

ن ق (جـ هُـ ص) = ٩٠ ا ∵ جـد ⊥ أ ب ت ق (جـ سُ د) = ۹۰ محيطية مرسومة في نصف دائرة نق (جه هه ص) + ق (جه س د) = ۱۸۰ (متقابلتان متكاملتان)

المطلوب الأول رباعی دائری ∴ سصھج

ن ق (د ص ب) = ق (ج)
 لأن قياس الزاوية الخارجة = قياس المقابلة للمجاورة

من ۱، ۲ ینتج أن : ق (د $\hat{\omega}$ ب) = ق (د $\hat{\varphi}$ س)

الشكل المقابل:

ج ه = ج د

اثبت أن: أه = بج

تمأ = مب أنصاف أقطار

 $\Delta \Lambda$ أب متساوى الساقين $\Omega \cap \Omega$ Ω

ت جمنتصف أب نم جلا أب نق (م جُب) =٩٠٠ ث

في ۵ م جب: ق (ج مُ ب) = ۱۸۰ − (۲۰+ ۹۰) = ۷۰ في ۵ م جب ب ٠٠ ق (ب هُد د) = جُق (د هُ ب)

ن ق (ب هُد) = ٣٥ المطلوب الأول

<u>فى ∆أمب</u> ق (أمرب) = ١٨٠ - (٢٠+ ٢٠) = ١٤٠°

ن ق (أ د ب) = ق (أ م ب) المركزية = ١٤٠°

مراجعة الصف الثالث الإعدادك

. 17. 707. 789

الشكل المقابل:

د مماس للدائرة عند د

ه منتصف ب ج

أو جد ق (د هُر هـ)

ق (أ) = ٢٥°

[14] في الشكل المقابل:

ج ا = ج ب ق (ب أ د) = ۱۳۰ ق (ب أ د) = ۵۰ ق (بُ) = ۵۰ اثبت أن:

أدمماس للدائرة المارة برؤوس ١ أبج

الحل

الحل

أد مماس للدائرة المارة برؤوس ۵ أ ب جـ

الشكل المقابل:

أب قطر في الدائرة م هدمنتصف أجد، دب مماس اثبت أن: ۱ م ب د ه رباعي دائري

 $(\hat{L}_{1})^{1} = (\hat{L}_{2})^{2} = (\hat{L}_{3})^{2} = (\hat{$

٢٠ في الشكل المقابل:

د، هدمنتصفا أب، أجعلى الترتيب على الترتيب ق (أ) = ١٢٠ الثبت أن: Δ س ص م متساوى الأضلاع

الحل

 \overline{A} ه منتصف أ ج نم ه \pm أ ج نق (م هُ أ) = $^{\circ}$ نق (م هُ أ) = $^{\circ}$ نق (م هُ أ)

راعل

$$\neg a$$
 منتصف أ ج $\Rightarrow a$ ا ج $\Rightarrow a$ منتصف أ ج

" ق (
$$\hat{c}$$
) = ق (\hat{r} س) الخارجة \hat{c}

$$\sim ^{\wedge}$$
 ق (ب أ س) المحيطية = $\frac{1}{7}$ ق (ب α س) المركزية \rightarrow

$$(\hat{\Delta})$$
 من ۲، ۶: $(\hat{\Delta})$ ف $(\hat{\Delta})$ ف $(\hat{\Delta})$

· مجموع قياسات زوايا الشكل الرباعي = ٣٦٠°

ن ق (ص
$$\hat{a}$$
 س) = ۱۰ بالتقابل بالرأس نق (ص \hat{a} س)

∴ △ س ص م متساوى الأضلاع (جميع زواياه ٦٠°)

مراجعة هندسة – تالتة إعدادى

. 17. 707. 779

(١٦) في الشكل المقابل:

العل

· م هـ ۱ أب م ه متصف أب م أهـ ه سم

$$: \vec{o}(\hat{a}, \hat{a}) = \mathbf{v} \quad \text{i.a.} \quad \mathbf{v} = \frac{1}{4} \hat{a} \quad \text{i.a.} \quad \mathbf{v} = \mathbf{v} = \mathbf{v}$$

ن القطر جد د = ۱۰ × ۲ = ۲۰ سم المطلوب الأول

في ۵ م هـ أ من فيثاغورث:

77 في الشكل المقابل:

م، ن دائرتان متماستان جه منتصف د هه ق (أ) = 3.6 أوجد ق (جم ب)

 \overline{A} ج منتصف دھ منتصف دھ منتصف دھ \overline{A} ہے۔ \overline{A} ہے۔ \overline{A} ہے۔ \overline{A} ہے ہے۔ \overline{A} ہے ہے۔ \overline{A}

م ن خط مرکزین ، أ ب مماس مشترک

·· مجموع قياسات زوايا الشكل الرباعي أ ب م جـ = ٣٦٠º

وي الشكل المقابل:

بَجِ قطر ، أو مماس

دو ل بج، اثبت أن:

- ۱) الشكل أبده رباعي دانري
- ۲) ۸ أو هم متساوى الساقين

∵ ب ج قطر

من ۱، ۲ ینتج أن:

ق (هـ دُ جـ) الخارجة = ق (ب أُ جـ) المقابلة للمجاورة ند الشكل أب د هـ رباعي دائري

ن ق (أ هُ و) الخارجة = ق (بُ) المقابلة للمجاورة \rightarrow Υ $\dot{\sigma}$ (و أه) المماسية = ق (بُ) المحيطية \rightarrow $\dot{\sigma}$ $\dot{$

الشكل المقابل:

أ ب جـ مثلث مرسوم داخل دائرة داخل دائرة در هـ // ب جـ در هـ // ب جـ اثبت أن: ق (ب أ هـ) ق (ب أ هـ)

٠: د ه // بج

ن ق(د أب) المحيطية = ق (هـ أجـ) المحيطية لأنهما محيطيتان أقواسهما متساوية

وبإضافة ق (بأج) للطرفين

ن ق (د أُ ج) = ق (ب أُه)
 ه ط ث

٥٦ في الشكل المقابل:

من تمرین مشهور ۲ :

١٦ في الشكل المقابل:

الحل

ن أ ب هـ زاوية خارجة عن الرباعي الدائري أ ب جد

الشكل المقابل:

م دائرة ، ق (أم ب) = ٩٠° طول نصف قطرها = ٧ سم

 $\frac{77}{\sqrt{2}} = \pi$ أوجد طول أب حيث

أوجد قياس القوس الذي يمثل الدائرة.

ثم احسب طول هذا القوس إذا كان طول نصف قطرالدائرة ٧ سم .

الحل -

 $\frac{1}{4}$ قياس القوس الذي يمثل $\frac{1}{4}$ الدائرة = $\frac{1}{4}$

طول القوس =
$$\frac{قياس القوس}{770} \times 7 \times \pi$$
 نق

$$=\frac{77}{77}\times 7\times \frac{17}{7}\times 7=7$$
 سمر اغری

[7] في الشكل المقابل:

 \triangle أب جـ مرسوم خارج الدائرة م وتمس أضلاعه أب ، أجـ ، ب جـ فى د ، هـ ، و على الترتيب أد= ٥سم ، ب ه= ٤سم ، جـ و= ٣سم أوجد محيط \triangle أب جـ ناوجد محيط \triangle أب جـ ناوجد محيط \triangle

رادی المحقی - \cdot أد ، أو قطعتان مماستان \cdot أد = أو = ٥سم

· به د ، به قطعتان مماستان

∴بد=به=۱سم

 \overline{A} جره ، جرق قطعتان مماستان \overline{A} جره \overline{A} جره \overline{A} جره \overline{A}

٠٠ أب = ٥ + ٤ = ٩ سم ، أج = ٥ + ٣ = ٨ سم بج=٤ + ٣ = ٧ سم

∴ محیط ۵ أ ب ج = ۹ + ۸ + ۷ = ۲٤ سم

مراجعة هندسة - تالتة إعدادك

. 17. 707. 749

٣٠ في الشكل المقابل:

أج، أب مماستان أ ب = ١٢ سم ، جـ م = ٥ سم أوجد طول: أجب ، أد

قطعتان مماستان

ن أج مماست ، م ج نصف قطر

ن مرج
$$\bot$$
أج ن Δ أجم قائم Δ

في ∆أ جـ م من فيثاغورث:

٣٢ في الشكل المقابل:

ق (أ) = ۳۰ ، ق (هـج) = ۲۲۰ ق (ب ج) = ق (د هـ)

١-أوجد: ق (ب د) الأصغر

٢ - اثبت أن : أ ب = أ د

من تمرین مشهور ۲ :

بطرح ٢ من ١ ينتج أن : أب = أد

(٢١ في الشكل المقابل:

جد // ب هـ أو ينصف دأه ق (و أُ هـ) = ٢٠° ق(بُ) = ۲۰°

اثبت أن: الشكل أب جد رباعي دائري

٠ أو ينصف

خدد // به

من ۱، ۲ ینتج أن:

الشکل أ ب جد رباعی دائری

٣٣ في الشكل المقابل:

أب ج △ مرسوم داخل دائرة م $(\hat{\varphi}) = \hat{\sigma}(\hat{\varphi})$ س منتصف أب ، م ص 1 أج اثبت أن: مس = م ص

الحل

ن س منتصف أب

ن مرس لأب

في ∆ أ ب جـ :

 $\therefore \alpha m = \alpha m$ (آبعاد متساویت)

مراجعة الصف الثالث الإعدادك

. 17. 707. 749

المعالث المقابل؛ عبد المقابل؛

أب، أج قطعتان مماستان

ق (ب م د) = ۱۳۰ ق ١-اثبت أن: جب ينصف أجد

ن ق (ب جُد) المحيطية = - ق (مُ) المركزية

ن ق (أ ب^ج) = ق (ب مجد د) = ٥٦٥ بالتبادل _ (١) ن أب = ب ج (قطعتان مماستان)

من ١، ٢ ينتج أن: ق (بجد) = ق (أجب) نجب ينصف أجُد المطلوب الأول

(٣٦ في الشكل المقابل:

م،ن دائرتان متقاطعتان مأ=١٠ سم ق (ب کم ن) = ۳۰ ا أوجد طول أب الحل

أنصاف أقطار ∵مأ=مب ن م ب = ۱۰ سم

∵ م ن خط مرکزین ، أ ب وتر مشترک ∴أب⊥من $\Delta \wedge \Delta$ مردب قائم فی د في ۵ م د ب:

د ب = - م ب = ٥ سم (ضلع مقابل للزاوية ٣٠)

 خط المركزين م ن ينصف الوتر المشترك أ ب .: أب = ٥ × ٢ = ١٠ سمر

٣٧ في الشكل المقابل:

أب ج △ مرسوم داخل دائرة س ص // بد اثبت أن: ا س ص جرباعی دائری

ن س ص ۱۱ بد

الحل

ن ق (أ بُ د) = ق (ص ش ب)

ن ق (أ بُ د) المماسية = ق (جُ) المحيطية → (١)

من ۱ ، ۲ ینتج أن :

أي أن : قياس الزاوية الخارجة = قياس المقابلة للمجاورة

الشکل أس ص جر رباعی دائری

الشكل المقابل: في الشكل المقابل:

دائرتان متماستان من الداخل في ب أب مماس مشترك للدائرتين أج مماس للصغرى، أد مماس للكبرى اً جـ = ۱۵ سم ، أب = (۲س-۳) سم اً د = (ص-۲) سم أوجد قيمة س، ص

تأب=أج قطعتان مماستان للدائرة الصغرى

∴ ۲س – ۳ = ۱۵ ⇒ ∴ س = ۹

ن أ ب = أ د قطعتان مماستان للدائرة الكبرى

الشكل المقابل: كالمقابل:

ه ، ن دائرتان متقاطعتان في أ ، ب م أ = ٦سم ، ن أ = ٨سم ه أ لـ أ ن

أوجد طول أب

في ∆أمن (من فيثاغورث):

$$``ھأ لے ھن $``(ھن)' = 7' + 7' = 100$

$$∴ ھن = 100 سھ$$$$

∴من ⊥ أب ∵أب وترمشترك

من إقليدس: أج= ∵أب وترمشترك

٠٠ أ ب = ٢ × ٤٠٨ = ٩٠٦ سم

٠٤ في الشكل المقابل:

أب قطر في الدائرة م س منتصف أج، بص مماس اثبت أن: الشكل أس بص رباعي دائري

الحل

∵س منتصف أج نمس أج

· ب ص مماس ، أ ب قطر · أ ب ص ن ق (م بُ ص) = ۹۰ → (۲)

من ۱ ، ۲ ینتج أن :

ق (أسمص) = ق (أبص) وهما مرسومتان على قاعدة واحدة وهي أ ص وفي جهم واحدة منها ∴ أس ب ص رباعي دائري

اع في الشكل المقابل:

أب مماس للدائرة عند أ م أ = ٨ سم ق (بُ) = ۳۰ أوجد طول كل من أب، أج

ن أب مماس ن ه أ ل أب ∴ ۵ م أب قائم

من فیثاغورث : فی
$$\Delta$$
 مرأب (أب) $^{2} = 707 - 75 = 197$

$$\therefore$$
 أ ب $= \sqrt{197} =$ سم \therefore

أج هو الضلع المقابل للزاويت ٣٠٣°

ن أ ج =
$$\frac{1}{7}$$
 الموتر أ ب ن أ ج = $\frac{1}{7} \times \Lambda \times \frac{1}{7} = 3$ سم 19

(٢٩ في الشكل المقابل: ه و أب ق (أب) = ١١٠° ق (جب ه) = ٥٨ ° اوجدق (ب د جـ)

$$0.10 = (10)$$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$
 $0.10 = (10)$

ت جب به خارجة عن الرباعي الدائري أب جدد نق (جُدُأ) = ق (جِبُه) = ٥٨٥

مراجعة الصف الثالث الإعدادى

. 17. 707. 789

ا كا في الشكل المقابل:

أب ، جد وتران متساویان فی الطول اثبت أن:

△ أجه متساوى الساقين

الحل

∴ ۵أ جـ هـ متساوى الساقين

كا عي الشكل المقابل:

أوينصف بأجـ اثبت أن:

د ب ه و رباعی دائری

الحل

 Δ أده، أجه فيهما:

(لأنهما محيطيتان مشتركتان في القوس أ ب)

∴ الشکل د ب و هرباعی دائری

٢٤ في الشكل المقابل:

أ ب قطر في الدائرة م

٢ - اثبت أن : أب // جد

محيطيتان مشتركتان في جب

$$^{\circ}$$
 $= \frac{17}{6} = \widehat{(i \, c)} = \widehat{(i \, c)}$

$$^{\circ}$$
 ق(د بُأ) المحيطية = $\frac{7}{7}$ = $^{\circ}$

 $(-10^{-1}) = (-10^{-1})$ وهما متبادلتان (-10^{-1}) وهما متبادلتان (-10^{-1})

في الشكل المقابل:

أ جـ قطر في الدائرة م ق (جُ) = ٥٥° ق(أ بُ د) = ٢٠° أوجد: ١) ق (جـ بُ د) الله أد) كا فا (بـ أد)

· أج قطر، جباً محيطية مرسومة في نصف دائرة

محيطيتان مشتركتان في بأ

في ∆ ب د أ

أب، أج وتران متساويان في الطول في الدائرة م س، ص منتصفا أب، أجعلى الترتيب

· س منتصف أ ب : م س ل أ ب ·· ص منتصف أ جـ · · م ص 1 أ جـ

ن أب = أجـ (أوتار متساوية)

د. م س = م ص (أبعاد متساوية)

∴ ∆ م س ص متساوى الساقين

ع ق (م سُص) = ۳۰°، ق (م شُ أ) = ۹۰°

ن ق (أسُص) = ۹۰ = ۳۰ = ۲۰°

 $"٦٠ = (\hat{1})$ ق ($\hat{1} = (\hat{1}) = "٦٠ = "٥" : ق (<math>\hat{1}$) = "٦٠"

∴ ∆ أس ص متساوى الأضلاع

ق (م شُ ص) = ۳۰ ° اثبت أن: ١- △ م س ص متساوى الساقين ٢ - △ أس ص متساوى الأضلاع

٥٠ في الشكل المقابل؛

الشكل المقابل:

أب وترفى الدائرة م

اثبت أن: ب ه > أ هـ

جـم // أب

ق (جُ) = ه ٤° أوجد ق (م أُب)

ن ق (أ مُ ب) المركزية = ٢ ق (مُ) المحيطية $(\dot{\mathbf{A}})$ لأنهما مشتركتان في القوس أ ب

الحل

 $(\hat{A}) = Y$ ق (\hat{P})

مركزية ومحيطية مشتركتان في أج

 $\stackrel{\wedge}{\cdot} : \overline{-} | \hat{} | \hat{} | \hat{} | \hat{} |$ $\stackrel{\wedge}{\cdot} : \overline{-} | \hat{} | \hat{} | \hat{} |$ $\stackrel{\wedge}{\cdot} : \overline{-} | \hat{} | \hat{} |$ $\stackrel{\wedge}{\cdot} : \overline{-} | \hat{} | \hat{} |$ $\stackrel{\wedge}{\cdot} : \overline{-} |$

<u>في ∆ اهب</u>: ∴ق (أُ) = ٢ ق (بُ)

في \triangle م أب: \therefore م أ = م ب = نق

٠٤٥ = (مأب) = ق (م بُأ) = (م بُأ) = ٥٤٥

٤٧ باستخدام الأدوات الهندسية ارسم أب = ٦ سم ثم ارسم دائرة قطرها ١٠ سم تمر بالنقطتين أ، ب وكم دائرة يمكن رسمها

نق = ٥ سم

 $\frac{1}{\sqrt{2}}$ أ ب = ٣سم

 $\frac{1}{\sqrt{3}} < \frac{1}{\sqrt{3}}$ أب

من فيثاغورث

اجے = ٥ سم

∴ نق = ۲٫۵ سم

عدد الحلول دائرتان

٠٠ المركز م ينصف وتر المثلث

(١٨ باستخدام الأدوات ارسم المثلث أب جالقائم حيث أ ب = ٣ سم ، ب ج = ٤ سم ثم ارسم دائرة تمر برؤوس المثلث ثم أوجد طول نصف قطرها

أجب محيطية مرسومة في نصف دائرة ن ق (أ جُ ب) = ٩٠° → ١

(١٥) في الشكل المقابل:

أب قطر في الدائرة م

ق (د م ب) = ۰۰ ه

أوجد ق (أ كم د)

ن ق (د جُ ب) المحيطية = $\frac{1}{7}$ ق (د مُ ب) المركزية $\frac{1}{2}$

∴ق(د جُب) = ۲۵° →۲

بجمع ۲، ۲ ينتج أن: ق (أ جُد) = ۹۰ + ۲۵ = ۱۱۵

مراجعة الصف الثالث الإعدادك

. 17. 707. 749

٥٢ في الشكل المقابل:

أ ب قطر في الدائرة م ق (أبُج) = ٠٤° $(\widehat{1}) = (\widehat{1})$ ق أوجد ق (د أ ب)

الما في الشكل المقابل:

دائرتان متحدتا المركز م أب وترفى الدائرة الكبرى يقطع الصغرى في جه، د اثبت أن: أج=بد

العمل: نرسم م ه لأ ب

في الدائرة الكبرى:

∵مھ⊥أب نه منتصف أب

∴أه=هب ←۱

في الدائرة الصغرى:

نه منتصف أب ∵مھ⊥جد

∴ چـه = هـد →۲

بطرح ۱، ۲ ینتج أن:

أ ج = د ب

ن ق (أ د جر) = ٢ × ٤٠ = ٨٠

٠٤٠ = ٢ ÷ ٨٠ = (د ج) = ٢٠ + ٢ = ١٤٥

٠ أ ب قطر ∴ ق (أ جـ ب) = ١٨٠°

ن ق (ب ج) = ۱۸۰ ـ ۱۸۰ = ۱۰۰ د

ن ق (د ج ب) = ۲۰۰ + ۲۰۰ = ۱۲۰ د

ن ق (د أب) المحيطية = ب ق (د جرب) = ٧٠ ه

٥٢ في الشكل المقابل:

دائرتان متحدتا المركز م

ق (بُ) = ق (هُ

اثبت أن: جد = ع ل

أب جدد شكل رباعي اثبت أن:

ن ق (بُ) = ق (هُ) ن أب = أهـ

في الدائرة الكبرى:

· أب = أه أوتارمتساوية ، ه س = لـ أب ، ه ص لـ أهـ

∴ م س = م ص أبعاد متساويت

في الدائرة الصغرى:

 $x = \alpha$ أبعاد متساوية $x = \alpha$

∴ جد = ع ل أوتارمتساويت

اذكر ثلاث حالات يكون فيها الشكل الرباعي دائريا

الحل

- ١) إذا وجد زاويتان متقابلتان متكاملتان
- ٢) إذا وجد زاوية خارجة قياسها = المقابلة للمجاورة
- ٣) إذا وجد زايتان مرسومتان على قاعدة واحدة وفي جهت واحدة منها ومتساوبتان

٥٦ في الشكل المقابل:

الشكل أب جد رباعي دائري

 ن ق (ب مُ د) = ۱۸۰° زاویۃ مستقیمۃ ن ق (أ مُ د) = ١٨٠ = ١٠٠٠ :

الحل

في∆أمرد:

ق (م أد) = ۱۸۰ ـ (۲۰۰ + ۲۰۰) = ۵۰

∵اد = د چـ

نق(د جُأ) =ق(د أُج) = ٥٠٠

ن ق (د چُـ أ) = ق (د بُ أ)

وهما مرسومتان على قاعدة واحدة أد

∴ الشکل أب جد رياعي دائري

مراجعة هندسة – تالتة إعدادك

. 17. 707. 749

الشكل المقابل؛

أب جد شكل رباعي اج⊥بد برهن أن:

الشكل أب جد رباعي دائري

في △ ب وجالقائم الزاوية في و: ق (ب جُ و) = ١٨٠ ـ (٥٠ + ٥٠) = ٤٠ · ق (أ د ب) = ق (ب جُـ أ) = ١٠٥٠

وهما مرسومتان على قاعدة واحدة أب الشکل أب جد ریاعی دائری

١٨٥ في الشكل المقابل:

ق (أ) = ۲۲° ق (جُ) = ه ۲° أوجد: ق (أم جـ)

العمل: نرسم ب م

· م أ = م ب أنصاف أقطار

·· ق (أ مُحج) المركزية = ٢ ق (أ بُحج) المحيطية ن ق (أ مركب) = ٥١٧ × ٢ = ١١٤٥

09 في الشكل المقابل:

أج، أه مماسان للدائرتان

اثبت أن:

الحل

في الدائرة الصغرى:

``اب ، اد مماستان <math>∴ اب=اد ∴

في الدائرة الكبرى:

 $Y \leftarrow$ اهماستان \therefore أجباه \rightarrow ۲ \times

بطرح ۱، ۲ ینتج أن: بج = د ه

٦٠ في الشكل المقابل:

ت ق (د ب) = ٢ ق (جُ) المحيطية

من تمرین مشهور ۲:

= ٢ × ٤٠ + ٢٥ = ١٣٢° المطلوب الأول

من تمرین مشهور ۱:

$$[\widehat{(a)}_{+}\widehat{(a)}_{+}] = \frac{1}{7} [\widehat{(a)}_{+}\widehat{(a)}_{+}]$$
 ق (جَهَ)

$$^{\circ}$$
97 = (177 + 57) $\frac{1}{7}$ =

(١٦ في الشكل المقابل:

ن أب جده خماسي منتظم

$$: 1$$
 س مماس $: \ddot{a}(a^{\uparrow}m) = 99^{\circ}$

في الشكل الرباعي مرأس ه:

اخت الاحابة الصحيحة.

و عليه			•		
المالية		7*****		لأى دائرة هو	1 عدد محاور التماثل
م على و	د) عدد لا نهائي	*	ج)	ب) ١	اً) صفر
ا اللاب وا		••••••		صف الدائرة هو	۲ عدد محاور تماثل ن
444	د) عدد لا نهائي	*	ج)	ب) ١	أ) صفر
5	ىركزهاسم	م فإنه يبعد عن ه	ها ٥ س	، دائرة طول نصف قطره	٣ وتر طوله ٨ سم في
-	۲) ۷	٥	ج)	ب) ٤	" (i
		مستقيم ل يكون	إن الم	$\Phi = 0$ الدائرة م	إذا كان المستقيم
	د) مماس	قاطع		ب) خارج	أ) محور تماثل
ىبىر	ىركزها ،	سم فإنه يبعد عن ه	رها۸،	مماسا للدائرة التي قط	إذا كان المستقيم
	۲) ۷	•	(÷	ب) ٤	r (i
	المستقيم ل يكون	ركزها ٣ سم فإن	عن م	سم والمستقيم ل يبعد	π ٦ دائرة محيطها ٦
	د) قطر في الدائرة	خارج الدائرة	ج)	ب) قاطع للدائرة	أ) مماس للدائرة
	وينصفه	ودیا علی	ون عم	ائرتين متقاطعتين يك	٧ خط المركزين لدا
	د) المماس	الوتر المشترك		ب) الوتر	أ) القطر
	∠فان من =سه	ارهم ۵ سم ، ۹ سم	ً أقط	بتان من الداخل ، أنصاف	۱ دائرتان م ، ن متماس
	4 (3		ج)	ب) ځ	1 £ (1
	ن هرن ∈	٥ سم ، ٢ سم فإ	ريهما	طعتان وطولا نصفي قط	م ، ن دائرتان متقاه
	[7 , 7]	[٧ , ٣ [ج)	ب) [۳،۳]] ۷ , ۳ [(أ
: ۸ سه	رأحدهما ٣ سم، من=				اذا كان سطح الدا
				فإن طول نصف قطر	
				ب) ٢	• (i
اا إذا كان الدائرتان م، ن متماستان من الخارج وطول نصف قطر إحداهما ٥ سم، م ن = ٩ سم الفرود الله الله الذاكان الدائرتان م الله عنه المؤخري = سم المؤخري =					
	۷٤ (ع	٩	ج)	ب) ه	٤ (أ
	٤ سمر فإن أتقع	دائرة وكان مرأ =	وی ال	٧ سمر ، أ نقطم في مسن	۱۲ م دائرة طول قطرها
3	د) على مركز الدائرة	على الدائرة	ج)	ب) خارج الدائرة	أ) داخل الدائرة

		•••••••	يـــــّ محصورة بين	٢٦ الزاوية المماسية هي زاو
وتر و قطر	(2	ج) وترومماس	ب) مماسان	
		ن هو	عت لدائرتين متباعدتا	٢٧] عدد المماسات المشترك
ź	(7	ج) ٣	ب) ۲	1 (1
		لدائرة تكون	تقابل قوسا أصغر في ال	٢٨ الزاوية المحيطية التي ة
حادة	د)	ج) منفرجة	ب) قائمة	أ) منعكسة
				را الشكل الرباعي الدائري
	<i>(</i>)			
شبه المنحرف	(2	ج) متوازى الأضلاع	ب) المستطيل	أ) المعين
سم		ها ٦ سم فإن أ م =	لى الدائرة مرالتي قطر	٣٠ إذا كانت أ نقطم تقع ع
7	(7	ج) ه	٤ (ب	r (i
ن مركزها	سم م	على بعد	ت قطرها ٥سم يكون	٣١ المماس لدائرة طول نصة
*	د)	ج) صفر	ب) ۱۰ (ب	ا) ه
	سم	الدائرة =	ها = ١٢ سم فإن محيط	٣٢ دائرة طول أكبر وتر في
πΥέ	(7	π ١ • (÷	ب) π ٦	π ۱۲ (1
			يمر بمركز الدائرة	٣٣ القطر هو
مماس	(2	ج) شعاع	ب) مستقيم	أ) وتر
			يسمى	٣٤ أكبر أوتار الدائرة طولا
ماس	()	ج) نصف قطر	ب) قطر	۱) وتر
				. 1 10 11 17 21 1
		(ب ، جـد = ۲ سم ۲		٣٥ <u>في الشكل المقابل:</u> د
1×2		π سم		فإن مساحة سطح أ. ٣
<u>+</u>		4 (·	÷ (•
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ر مر	ŕ	ىم قان م د = سد	ب = ۸ سم ، م ب = ۰ س	٣٦ <u>في الشكل المقابل:</u> أ
		7 () £ (_	T ((3 ()

ب) ۲۵

- ج) ۳۰

٣٨ في الشكل المقابل: أب مماس للدائرة م عند ب

- ب) ۳۰ (ب

٣٩ في الشكل المقابل: م دائرة ، م ج = ٤ سم

- - π / (+

ب) ۱۰

٤١ في الشكل المقابل: دائرة مركزها م

ب) ۵۰°

ا الشكل المقابل: دائرة مركزها م المقابل المقابل عند المقابل ا

ق (م أ ب) = ٠٠° فإن ق (جُ) =

ج) ٤٠ (ج

ب) ۸۰ ث

<u>٤٣</u> <u>في الشكل المقابل</u> : أب // جـ د

ق (أ جـ) = ٣٠ فإن ق (ب هـ د) =

ب) ۱۵ (ب

٤٤ في الشكل المقابل: أبج∆متساوى الأضلاع

فإن ق (ب م ج) =

ج) ۱۲۰ °

17. (1

هكا في الشكل المقابل: ق (أ ج) = ٥٠

- <u> 13 في الشكل المقابل: أم // جد، مدد ب</u>

 $^{\circ}$ الشكل المقابل: ق $(^{\hat{1}}) = ^{\circ}$ و المقابل: ق

- ج) ۱۲۰ ث
- (٤٨ في الشكل المقابل: دائرة مركزها م

- [24] في الشكل المقابل: أب جد شكل رباعي دائري

- ب) ۱۰۰

٥٠ <u>في الشكل المقابل: جب، ج</u>د قطعتان مماستان

- ب) ۱۱۰ (ب

٥١ <u>في الشكل المقابل:</u> بجر مماس للدائرة

~ < 1 . "

حراهی مسدسه
1 مساحة المعين الذي طولا قطريه ٦ سم ، ٨ سم = سم ً
2 مجموع طولي أي ضلعين في المثلثطول الضلع الثالث
3 في المثلث أب جم إذا كان (أج) ٢ = (أب) ٢ + (بج) ٢ فإن زاويـ تب تكون
4 في المثلث أب جي إذا كان (أج) ' > (أب) ' + (بج) ' فإن زاوية ب تكون
5 في المثلث أب جاذا كان (أج) ' > (أب) ' + (بج) ' فإن زاويـ ت ب تكون
6 قياس زاوية الشكل السداسي المنتظم =
7 عدد محاور تماثل المربع = ، عدد محاور تماثل المستطيل =
8ميل المستقيم الذي معادلته ٣ س $- ٤$ ص $+ ١٢ = ٠$ هو
9 ميل المستقيم الموازى لمحور السينات =
10 عدد محاور تماثل نصف الدائرة عدد محاور تماثل المثلث المتساوى الساقين
11) القطران المتساويان في الطول وغير متعامدان في
12 مربع محیطه ۲۰ سم تکون مساحته =سسس سم ^۲
13 إذا كان أب قطر في دائرة م حيث أ (٣ ، -٥) ، ب (٥ ، ١) فإن مركز الدائرة م هو
14 دائرة محيطها π ۸ فإن طول قطرها =
15 في المثلث القائم طول المتوسط الخارج من الزاوية القائمة يساوى
16 في المثلث القائم طول الضلع المقابل للزاوية ٣٠ يساوى
17 عدد المستطيلات في الشكل المقابل
18 إذا كان مسقط قطعة مستقيمة على مستقيم هو نقطة فإن القطعة المستقيمة المستق
19) مربع طول قطره ٦ سم فإن مساحته = سم ً

(17 ، 9 ، 10 ، ۸) الأعداد ٥ ، ١٠ ، ٩ ، ١٠)

22 قياس الزاوية الخارجة عن المثلث المتساوى الأضلاع =

في المثلث المتساوى الساقين

زاويتا القاعدة متساويتان

، ق (مُ) = ۱۳۰ – ۱۳۰ = ۰۰

إذا كان طول الضلع = نصف طول

قياس الزاوية الخارجة عن المثلث =

مجموع الزاويتين الداخلتين عدا المجاورة

ق (أ ب ه) الخارجة = ق (أ) + ق (ج)

إذا وجد توازی حرف ∪ فإن

الزاويتان المتداخلتان متكاملتان

ق (جُ) = ق (أبُهـ) - ق (أ)

·· م أ = م ب

 $(\hat{1}) = \tilde{0}(\hat{1})$ د ق

😯 🛆 قائم

مجموع قیاسات زوایا △ = ۱۸۰

القطعة الواصلة بين منتصفى ضلعين توازى الضلع الثالث

مجموع قياسات زوايا الشكل الرباعي = ٣٦٠

طول الضلع المقابل للزاوية ٣٠

نظرية فيثاغورث

إذا وجد توازى حرف Z فإن الزاويتان المتبادلتان متساويتان الزاويتان المتناظرتان متساويتان

٠: أب // جـد

 $(\hat{\mathbf{P}}) + \hat{\mathbf{E}}(\hat{\mathbf{P}}) = \mathbf{P}$ ن ق

المثلث المتساوى الأضلاع

أضلاعه متساوية في الطول زواياه متساوية في القياس

لإثبات التوازي نبحث عن إحدى الحالات الآتية:

- ♦ زاویتان متبادلتان متساویتان
- ♦ زاویتان متناظرتان متساویتان
 - ♦ زاویتان متداخلتان متکاملتان

= نصف طول الوتر

نظرية إقليدس

∵ ∆مأب قائم، ب د 1 الوتر أ جب ب <u>اب×بج</u> بد= اج

إذا وجد توازی حرف ۶ فإن

حالات تطابق مثلثين

- ضلعان والزاوية المحصورة بينهما زاويتان والضلع المرسوم بينهما
 - وتر وضلع (في المثلث القائم)

نموذج امتحان رقم

إعداد أ/ محمود عوض

د) قائمة

السؤال الأول : اختر الإجابة الصحيحة مما بين

- (1) الزاوية المحيطية المرسومة في نصف دائرة ب) منفرجة
- **ج**) مستقيمة (2) المماس لدائرة طول قطرها ٨ سم يكون على بعد سم من مركزها
- 7 (2 **ڊ**) ۸ (3) عدد المماسات المشتركة لدائرتين متباعدتين =
- ج) ٣ ٤ (١
- إذا كان أب جـ د شكل رباعى دائرى وكان ق (ب) = \overline{v} ق (د) فإن ق (ب) =

ا)
$$70$$
 (ب) 70 (ب

- ا) س (ب) ص ج) ع (في الشكل المقابل: ق (أج) = ٥٠ ، ق (ب د) = ١١٠ فإن ق (هـ) =

أ ب ، أج وتران متساويان في الطول س منتصف أب ، ص منتصف أ ج

- ،ق(جأب) = ٧٠
 - ١) أوجد ق (د هُ هـ)
- ۲) اثبت أن س د = ص هـ

السؤال الثاني أ) في الشكل المقابل:

أجـ = ١٥ سم $\Delta = (\Upsilon - \Upsilon)$ سم أوجد قيمة س

السؤال الرابع

أ) في الشكل المقابل:

م ، ن دائرتان متقاطعتان في أ ، ب

- ق (م نُ د) = ١٢٥°
- ق (ب جُد) = ٥٥٥
- اثبت أن جدد مماس

أوجد: ق (ب ﴿ جـ)

أب، أجب، أهم مماسات

ب) في الشكل المقابل:

ب) في الشكل المقابل:

أ) في الشكل المقابل:

- ق (أ) = ٠٤٥
- ، ق (ب د) = ۲۲۰
- ق (ب ج) = ق (د ه)
- أوجد ١٠) ق (جـ هـ)
 - ٢) ق (ب ج

أُ سَ مماس مشترك لدائرتين متماستين اثبت أن: بد // جه

أ ب = أ جـ

ھ∈بچَ

اثبت أن :

ق (أب) = ١١٠°

ق (جـبُهـ) = ۸۵°

أ) في الشكل المقابل:

أب=أج، بس ينصف ب

- ، ج ص ينصف ج
 - اثبت أن:
- ۱- ب جس ص رباعی دائری
 - ٢- ص س // بج

ب) في الشكل المقابل:

ق (أهُب) = ق (أهُج)

السؤال الأول : اختر الإجابة الصحيحة مما بين

- (1)عدد الدوائر التي تمر بثلاث نقاط ليست على استقامۃ واحدة ..
- ج) ۲
- 2) إذا كانت الدائرتان م ، ن متماستين من الداخل وطول نصف قطر أحدهما ٣ سم ، م ن = ٨ سم فإن طول نصف قطر الأخرى = 17 (2 ج) ۱۱
 - 3) عدد المماسات المشتركة لدائرتين متحدتا المركز =
 - ج) ١ د) ۳ 4) في الشكل الرباعي الدائري كل زاويتين متقابلتين
 - **ج)** متبادلتان د) متتامتان ب) متكاملتان اً) متساويتان
 - 5)م، ن دائرتان متقاطعتان وطولا نصفى قطريهما ٥ سم، ٢ سم فإن م ن ∈ [۷،۳[(ب _۸ . ۱۳،۳] ۲۰،۳] [7, 4] (2
 - 6 في الشكل المقابل: ق (أ مرب) = ٥٢ فإن ق (أ د ب) = ج) ۱۲۸ 4.7 (7

أ) في الشكل المقابل:

أ ب قطر في الدائرة ، دهـ ۱ اب اثبت أن :

ا جدد هدرباعی دائری

ب) في الشكل المقابل:

د) ۳

أ) في الشكل المقابل:

أ ب قطر في الدائرة م ، أج مماس لها عند أ فإذا كان أج = ٩ سمر

أوجد طول كل من بج، أد

ب) في الشكل المقابل:

أب قطر في الدائرة م ق (د أهـ) = ١٠٠٠ أوجد بالخطوات : ق (أ د ج)

ق (بأم) = ٣٥°

أوجد: ١) ق (ب م ج)

السؤال الرابع (ب) في الشكل المقابل:

أوجد قياس القوس الذي يمثل - الدائرة.

ثم احسب طول هذا القوس إذا كان طول نصف قطرالدائرة ٧ سم .

أً) في الشكل المقابل:

دائرتان متحدتا المركز م أب، جدد مماسان للصغرى

اثبت أن: أب = جد

ب) في الشكل المقابل:

أب∩ جد = {ه} هـأ = هـد اثبتأن: هب = هج

٢) ق (ب ه ج)

الصف الثالث الاعدادي

الفصل الدراسي الثاني 2021

		ن بين الإجابات المعطاة	أولًا اختر الإجابة الصحيحة م
	يدة الأولى	الود	AS KOMPANA STAR YARO DO MANAGO STAR
		1	 ١ مساحة نصف الدائرة تساوى ٢ ٢
نۍ π (ع)	π ۲ 🕘	π ن π 🕂 😣	الا تق
	«(القليوبية 2017)»	إن طول نصف قطرها يساوى	دائرة مساحتها 4 π سم ، ف
(3) ه سم	۳ 🖎 ۳ سم	۲ سم	(1) 9 سم
حیث – ن > صفر	ن مركزها مسافة (-٠٠ + ١) سم	900 \$400 R5480 \$291800 1500 5040	A SAME AND
	" " (1 1 1 1 1 T		فإن المستقيم ل يكون
🕘 محور تماثل للدائرة	🕘 قاطعًا للدائرة	💛 مماسًا للدائرة	أ خارج الدائرة
≪ 2017	لح الدائرة م =«الشرقية	: { م ، ب } ، فإن : أب ∩ سط ——	 إذا كان أب ∩ الدائرة أ =
۹ -	→ P (<u></u>	<i>۹۰</i>	{ -, . P } (i)
7	کانت مساحة المثلث ۲۹ ب = ۸ سو	ف <mark>طرین</mark> متعامدین فی دائرة ^م و د	ه ا کان ۴۴ ، ۴۰ نصفی ف
		لرة يساوي	، فإن طول نصف ق <mark>طر الد</mark> ائ
۳ کا سم	٤ سم	السم (ا	√ ۸ سیم
«بورسعيد 2018 ،الغربية 2017)»	عزها ٤ سم فـإن المستقيم ل يكون	ا سم و المستقيم ل يبعد عن مرك	اذا كان طول قطر دائرة = ١ 🗖
🕘 محور تماثل للدائرة	🕘 قاطعًا للدائرة	💛 مماسًا للدائرة	(أ) خارج الدائرة
ن(الدقهلية 2017)»	1: r A		
TANK TENENT CONTROL OF THE PARTY OF THE PART	ه سم هان الدائرتين ٢١ له تحويا	عطريهما لاسم ٢٠ سم ٢٠ ال = ١	۲ ا ، ۵ دائرتان طولا نصفی ا
🗿 متماستين من الداخل	🕒 متباعدتين	😛 متماستين من الخارج	۱ ، ۱۰ دائرنان طولا نصفی ۱ آ آ متقاطعتین
🗿 متماستين من الداخل	🕒 متباعدتين	😛 متماستين من الخارج	1 متقاطعتين
🗿 متماستين من الداخل	صتباعدتین سماعیلیة 2017)» π ۱۰ 🖎 سم	识 متماستين من الخارج	ا متقاطعتين دائرة نصف قطرها ۵ سم فا ا ه π سم
(2) متماستين من الداخل	متباعدتین سماعیلیة 2017)» سم ۲۱۰ 🖎 سم	الخارج متماستين من الخارج ن محيطها يساوى«الا π ۷ الا	اً متقاطعتين Δ دائرة نصف قطرها ۵ سم فا اً ۵ π سم
(2) متماستين من الداخل	ص متباعدتين (Δ) متباعدتين (Δ) (2017) سم (Δ)	ن محيطها يساوى«الاه الاها π ۷ Θ سم (المنيا 2019، الشرقية 19 صعين	 أ متقاطعتين دائرة نصف قطرها ٥ سم فإ سم آ ٥ سم ه π سم يمكن رسم دائرة تمر برءوس أ مستطيل
 آمتماستین من الداخل π ۲۵ آمتم سم آمتوازی أضلاع 	ص متباعدتين (Δ) متباعدتين (Δ) (2017) سم (Δ)	الخارج متماستين من الخارج الاستعادة الساوى المنيا (۱۵۱۵ السم الساقية (۱۵۱۵ السرقية (۱۵۱۵ الشرقية (۱۵۱۵ الشرقیة (۱۵۱۵ الشرقیقیقیقیقیقیقیقیقیقیقیقیقیقیقیقیقیقیقی	ا متقاطعتين المتواطعتين المرة نصف قطرها ٥ سم فا المرة تمر برءوس المرة تمر برءوس المرة مستطيل
 آمتماستین من الداخل π ۲۵ آمتم سم آمتوازی أضلاع 	صاعيلية (2017) سماعيلية (2017) π ۱۰ (Δ) (20) شبه المنحرف القائم سم ، ۵ سم فان ۲ س =	متماستين من الخارج محيطها يساوى«الاه π ۷	ا متقاطعتين دائرة نصف قطرها ٥ سم فا دائرة نصف قطرها ٥ سم فا سم الله مكن رسم دائرة تمر برءوس الله مستطيل الله متماستان من الرتان متماستان من الله ٢ سم
 ه متماستين من الداخل π ۲۵ ③ ه متوازى أضلاع ه متوازى أضلاع ه بني سويف 2017)» ه متوا كال متواذى أضلاع ه متواذى أسلام ه متواذى أضلاع ه متواذى أضلاع ه متواذى أسلام ه متواذى أس	صاعيلية (2017) سماعيلية (2017) π ۱۰ (Δ) (20) شبه المنحرف القائم سم ، ۵ سم فان ۲ س =	متماستين من الخارج محيطها يساوى«الاه π ۷	ا متقاطعتين دائرة نصف قطرها ۵ سم فاد اسم فاد سم آ ۵ سم سم دائرة تمر برءوس آ مستطيل المتماستان من الرتان متماستان من المراد الم
 آ متماستين من الداخل π το (3) آ متوازی أضلاع (4) آ مستطيل (3) آ مستطيل (3) 	متباعدتین	ون محيطها يساوى	 أ متقاطعتين دائرة نصف قطرها ٥ سم فإد π ۵ أ ۵ سم يمكن رسم دائرة تمر برءوس أ مستطيل أ ٢ سم لا يمكن رسم دائرة تمر برءو لا يمكن رسم دائرة تمر برءو الأ يمكن رسم دائرة تمر برءو أ مثلث
 آ متماستین من الداخل π το ③ آ متوازی أضلاع ﴿ آ مین سویف 2017) آ ۸ سم آ مستطیل 	متباعدتین	الاهاد المنيا وي الخارج الاهاد الداخل طولا نصفى قطريهما ٣ سم الداخل طولا نصفى الداخل طولا نصفى قطريهما ٣ سم الداخل طولا نصفى الداخل طولا نصفى الداخل طولا نصفى الداخل الداخل الداخل طولا نصفى الداخل ا	 أ متقاطعتين دائرة نصف قطرها ٥ سم فإد رسم π سم يمكن رسم دائرة تمر برءوس أ مستطيل أ ٢ سم ا ٢ سم ا ٢ سم ا مثلث

		((lunged 2017))	۱۳ الوتر المار بمركز الدائرة يسمى
3 قاطعًا	🕘 مماسًا	😌 نصف قطر	🛈 قطرًا
		سمى«(جنوب سيناء 2017)»	الأوتار طولاً فى الدائرة يسادة فى الدائرة يسادة المائرة ال
قاطعًا	🕘 مماسًا	😌 نصف قطر	🛈 قطرًا
	**********	نقطتين على الدائرة تسمى	10 القطعة المستقيمة التي طرفيها
وترًا	🕒 مماسًا	😌 نصف قطر	🛈 قطرًا
	۳ سم ، ۴ نه = ۸ سم	داخل و طول نصف قطر إحداهما	11 م ، ٧ دائرتان متماستان من ال
	، الغربية 2016 »	لأخرى =(الجيزة 2017 ع	فإن طول نصف قطر الدائرة اا
۱۲ 😉	🕘 ۱۱ سم	⊕ ٦ سم	(1) ه سم
لقليوبية 2019 ، المنوفية 2018 »	م ، فإن : ٢٠ له ∈«ال	ولا نصفی قطریهما ۵ سم ، ۲ سه	🗤 ۴، 🗘 دائرتان متقاطعتين و ط
[٧,٣[③]٧,٣] 🕘]٧,٣[😔	[٧,٣] ①
قهلية 2016)»	، فإن: ٢٠ ك ∈«الدة	لا نصفی قطریهما ۵ سم ، ۸ سم	🗥 ۴ ، 🗸 دائرتان متماستان و طو
{17,7}	[17,7[🖎] ۱۳ , ۳ [😣	[17,7]
«البحر الأحمر 2017»	ان المستقيم ل يكون	نيم ل يبعد عن مركزها ٣ سم ف	11 دائرة محيطها π سم والستة
السائرة محور تماثل للدائرة	🕘 خارج الدائرة	الله الله الله الله الله الله الله الله	🚺 مماسًا للدائرة
«الفيوم 2019»	ع سم ، فإن المستقيم ل	، المستقيم ل يبعد عن مركزها أ	۱۵ إذا كان طول قطر دائرة ٨ سم
🗿 محور تماثل للدائرة	🕒 خارج الدائرة	😌 قاطعًا للدائرة	🛈 مماسًا للدائرة
م و كان المستقيم ل	۰،۰) و طو <mark>ل نصف قط</mark> رها ۳ سه	ة التى مركزها نقطة الأصل ^م (11 إذا كان المستقيم ل خارج الدائر
	((2016 ä.	سم فـإن → ⊖«(الغربي	يبعد عن مركزها مسافة —
[٦,∞-[③]∞,٦] 🕘]∞,٣[⊖]∞ (٣] ①
يم لل	، ﴿ ﴿] ، ، نَ [، فَإِن المُستَقَ	ركز الدائرة ٢ مسافة — حيث	٢٢ إذا كان المستقيم ل يبعد عن مر
یمر بمرکز الدائرة	🕘 يقع خارج الدائرة	😛 يقطع الدائرة	🛈 يمس الدائرة
	((lunged 2019))	, طول نصف قطرها =	۲۲ دائرة محيطها ۱۸ π سم ، فإن
٦ آسم	⊕ ۳ سم	9 🔑	۷ 🛈 ۷ سم
اعيلية 2018 ، السويس 2016))	اً ، ₪ تكونان«(الاسما	، = { أ ، ب } ، فإن الدائرتين ⁴	٢٤ إذا كانت الدائرة ↑ ۩ الدائرة ١
نقاطعتان 🗿	🕘 متداخلتان	😌 متحدتي المركز	🛈 متباعدتان
	**** *********************************	خارج و طول نصف قطر إحداهما	
	((2017	لأخرى = «شمال سيناء ا	فإن طول نصف قطر الدائرة ا
ک ٤ سم	۲ سم	۱۰ 🔫	۱ تسم
	مو «بني سويف 2019)»	۔ الدائرتین متقاطعتین م ، له ه	۱٦ محور التماثل للوتر المشترك ٢٠
2 P 3	2 P	الم الم	P

Э	لدائرتان متباعدتين فإن م	ريهما ٢ سم ، ٥ سم فإذا كانت ا	۲۷ دائرتان ۴ ، ۷ طولا نصفی قط		
]∞.٣[③]∞,٣] 🕒]∞,∨[⊖]∞ (۷] ①		
	((الدقهلية 2017)»	لتين ٢ ، ب تقع جميعًا على	🗥 مراكز الدوائر التى تمر بالنقم		
(<u>۵</u> العمود على ۱۹ من ب	🕒 العمود المقام على ٩ سـ	<u> </u>	🚺 محور تماثل ۲۰		
ر بالنقطتين ٢، ب =	ول نصف قطر أصغر دائرة تم	ستوى بحيث ٢ - = ٤ سم فإن ط	14 إذا كان ٢ ، ب نقطتين في المس		
۸ سم	🕥 ٤ سم	۳ 😔 ۳ سم	۲ 🕦 سم		
ر بالنقطتين ٢ ، ب =	لول نصف قطر أصغر دائرة تم	ستوى بحيث ٢ - = ٧ سم فإن ط	ان ا کان ا ، ب نقطتین فی المسالم		
«قنا 2019)» عاسم «قنا 2019)»	۷ 🕘	😛 ۴٫۵ سم	۳ 🕦 سم		
يساوى«(القليوبية 2016)»	سمها و تمر بالنقطتين ٢ ، ب	: ، فــإن عدد الدوائر التي يمكن رس	الله إذا كانت أب قطعة مستقيمة		
عدد لا نهائي	7 (2)	1 😔	🛈 صفر		
	ساوى«(الدقهلية 2016)»		۳۲ عدد محاور تماثل دائرتین متط		
عدد لا نهائي	۲ 🖎	١ 😛	🛈 صفر		
		ة وحيدة هي إذا علم«ا	۲۳ إحدى الحالات الأتية تعين دائرة		
	😛 احدى نقطها		🚺 نقطتان منها		
قطها	 نصف قطرها و احدى نا 		🕘 مركزها و إحدى نقطها		
	ا ١٤ سم تساوى	شل ربع الدائرة الذى طول قطرها	<u>٢٤</u> مساحة القطاع الدائر <mark>ى الذى</mark> يه		
1٤ 🗿 سم	🕒 ۲۵ سم	€2 سم ع	11 🛈 سم		
اذا کانت 6 دائرة طول قطرها ۱۶ سم ، 1 نقطة فی مستویها ، 6 = 6 7 ، فإذا کانت 6 تقع علی الدائرة					
		ليوبية 2017)>	، فإن: س =«الق		
1 (3)	۲ 🖎	₩ 😌	ه ن		
ربية 2018» -	بعد عن المركز«الغ		تا وتر طوله ۸ سم مرسوم داخل د		
٦ ٥ سم	🕒 ٤ سم	(ب) ۳ سم	۲ 🕕 ۳ سم		
مياط 2019)»	عد عن مركزها«د ح	ئرة طول قطرها ۱۰ سم ، فإنه يب	اذا كان المستقيم ل مماسًا للدا (الله الله الله الله الله الله الله ا		
۰۱۰ سم	ب ا سم	⊕ ه سم	۱ سم		
	=	ن ، ٢ نقطة في مستويها ، ٢٩	🗥 إذا كانت ^م دائرة طول قطرها		
🗿 مركز الدائرة	🕘 تقع خارج الدائرة	😛 تقع داخل الدائرة	🚺 تقع على الدائرة		
	((2	ى ((دمياط 2019) اسوان 018	۲۹ عدد محاور تماثل الدائرة يساو:		
عدد لا نهائي	۲ 🖎	۱ 😛	🛈 صفر		
			دائرة طول أكبر وتر فيها يساو		
π۱۰ ③	π ۲٤ 🕘	π٦ 😌	π۱۲ 🕦		
	(2017 الشرقية 2017)	طر في دائرة«الغربية 8	الماسان المرسومان من نهايتي ق		
العام منظبقان	متعامدان	💛 متقاطعان	س متوازیان		

	ر الأقصر 2017)»	ك ليست على استقامة واحدة يساو	٢٤ عدد الدوائر التي تمر بثلاث نقط
۳ (3	۲ 🖎	١ 😛	🛈 صفر
	ية 2018 ، قنا 2018 »	هو نقطة تقاطع«الدقها	تنك مركز الدائرة الداخلة للمثلث ه
🧿 محاور تماثل أضلاعه	🕒 منصفات زوایاه	💛 ارتضاعاته	🛈 متوسطاته
(الدقهلية 2019)»	سم فإن الدائرتين ٢٠ ، ٧٠ تكونان	ریهما 7 سم ، ۸ سم ، ۴ د ا	كا ، ٧ دائرتان طولا نصفى قط
🧿 متماستين من الداخل	🕘 متباعدتين	😌 متماستين من الخارج	🛈 متقاطعتين
((دمياط 2019))	سم ، ۱۰ سم ، فإن : ۴ به =	داخل و طولا نصفی قطریهما ۷ س	دائرتان متماستان من ال
ا سم ۱۰ 🧿	(۷ سم	9 ۱۷ سم	۳ 🕦 سم
ه = ۳ سم	ىم، نق سم، نق > ٥، فإن: ٩ ر	داخل و طولاً نصفى قطريهما ٥ س	13 م ، ٧ دائرتان متماستان من ال
		«(2018 \	، فـإن: نق =«المني
9 و سم) سم ۸ 🕘	۳ کسم	۲ 🛈 سم
الفيوم 2018)»	قطة (٤، - ٣) يساوي«	ها نقطة الأصل (٠،٠) وتمر بالنف	٧ طول نصف قطر الدائرة مركز
۵ سم	(ع سم	⊕ ۳ سم	۷ 🛈 ۷ سم
	ة الثانية	الوحدة	
	ي سويف 2019 ، قنا 2016)»	زاویتین متقابلتین«بنر	الشكل الرباعي الدائري كل
🧿 متساويتين في القياس	متكاملتين 🕒	المبادلتين المبادلتين	🛈 متتامتين
	«اسيوط 2017 ، قنا 2016)»	ما أصغر في الدائرة تكون	۲ الزاوية المحيطية التى تقابل قوسًا
🖸 منعکسة	🕒 قائمة	ا منفرجة	🛈 حادة
	<u>هم</u>	عند ب ، ح ، فإن : ١٩ -	۳ ، ۴ مماسان للدائرة ۴
و يقطع	🕒 عمودی علی	😛 يوازى	🛈 يطابق
	في القوس تساوي	بطية و المركزية المشتركتين معًا	النسبة بين قياس الزاويتين المحب
1:7 🧿	٤:٢ 🕒	۲:٤ 😔	1:1 1
«قنا 2018»	كة معها في نفس القوس تساوي	ة و قياس الزاوية المحيطية المشتر	 النسبة بين قياس الزاوية المماسي
٥:٢	1:1 🕘	7:1 ⊖	1:7 1
*****	لاح) ، فإن : ق(لا أ) =	ائری فیه ق (۲۹) = ۱ ق (۵	آ إذا كان المحك شكل رباعى م
°180 (3	°4. 🕘	°٤٥ 😛	°۳. 🕦
((20	«المنيا 2019، مطروج 2018، الدقهلية 19	ة في نصف دائرة يساوي	∨ قياس الزاوية المحيطية المرسومة
°1 (3	° 9. 🕘	°٤۵ 😔	°1A. (j)
		ائرة يساوى«المنوفية	ann round ambana arranta anna
°17. 🧿	°4. 🕘	°٦، 😛	°1A. (1)
		دائرة يساوى «بني سويف	• قياس القوس الذي يمثل ثُلث ال
°7. (3	°4. 🕘	°17. 😛	°11.

	س الدائرة يساوى	صر قوسًا قياسه يساوى ربع قيا،	🚺 قياس الزاوية المحيطيه التي تح
°4. ③	°٤۵ 🖎	°180 😣	° ۳۰ 🕕
		ة فى ربع دائرة يساوى	11 قياس الزاوية المحيطيه المرسوم
°4. ③	° £0 👄	°180 😣	°۳۰ 🕦
اس الزاوية الداخله المقابلة	من رءوسه قياسهاقي	مدت زاویة خارجه عند أی رأس ه	۱۲ یکون الشکل رباعیًا دائریًا إذا وج
			للمجاورة لها
€ ثلث	🕘 نصف	😌 ضعف	🛈 يساوي
	سم يساوي	ائرة التي طول نصف قطرها ٦	۱۳ طول القوس الذي يمثل ثلث الد
π۳ 🗿	π٤ 🖎 سم	π٦ 😔	π ۱۲ 🛈 سم
	«(القليوبية 2016)»	<i>عيط الدائرة يساوي</i>	15 طول القوس الذي يمثل ربع مـ
ω π 🗿	π ٤ 🕒	س π 🕂 😛	π۲ 🕦
		ي π ۲٫۵ سم في دائرة طول قط	
°۲۷. ③	°1A. 🕘	°4. 😛	°٤٥ (1)
	ِ ي (البحيرة 2017)»		11 عدد المماسات التي يمكن رسمها
عدد لا نهائي	٤ 🖎	۲	1 ①
	«(الشرقية 2019)»	ن <mark>مت</mark> ماستين من الخارج يساوى	۱۷ عدد المماسات المشتركة لدائرتي
عدد لا نهائي	٤ 🖎	₩ 😛	۲ ①
	«الدقهلية 2019)»	ن متماستين من الداخل يساوى	۱۸ عدد المماسات المشتركة لدائرتي
۳ 3	۲ 🕥	1 (9)	1 صفر
		ن متقاطعتین یساوی	
عدد لا نهائي	۳ 🖎	۲ 😛	1 (1)
•		ن متباعدتین یساوی	
٤ 3	٣ 🖎	۲ 😔	1 (1)
•		ن متحدتي المركز يساوى	
۳ 3	۲ 🖎	1 😔	🛈 صفر
•		لتين في الشكل الرباعي الدائري	
°17. ③	°٣٦. 🕘	°1A. (+)	°4. (1)
•	ضلعيها «القليوبية 2016»		٣٣ قياس الذاه بية الم كذبية
2 43 (3)	ساه ی	·	
		رسوم داخل الدائرة ٢ ، فإن: ٥	
٥٣.	°٦. 🕒	ىرسوم داخل الدائرة 13 هــــان : ٥ (ب) ١٢.٠	۱۱ اب حدد ته ر سداسي منتظم ۳ ۱۱ ۵. (۱
•			
0.,	قطرها ۱۶ سم =	م و المرسوم في دائرة طول نصف م ه ه ه ه ه ه ه ه ه ه ه ه ه ه ه ه ه ه ه	11 فياس القوس الذي طوله ١١ سه ٥- ٥-
- 17.	14.	٩٠ (ب	7. (1)

المراجعة النهائية

🚻 إذا كان قياس الزاوية المماسية يساوى ٧٠° فـإن قياس الزاوية المركزية المشتركة معها فى القوس يساوى					
°1.0 ③	°12. 😑	°v. 😛	°۳۵ 🕦		
	깍 الزاوية المماسية هي زاوية محصورة بين				
وتر و قطر	🕘 وتر و مماس	😌 مماسین	🛈 وترين		
2017 الجيزة 2017)»	شتركة معها في القوس «القاهرة 19	قياس الزاوية المركزية الم	🗥 قياس الزاوية المحيطية		
ی ربع	🕒 يساوي	😌 ضعف	🛈 نصف		
	ون«(الوادي الجديد 2018)»	قوسًا أكبر من نصف الدائرة تك	۲۹ الزاوية المحيطية التى تقابل		
🗿 منعكسة	🕘 قائمة	😌 منفرجة	🛈 حادة		
رة 2019 ، المنيا 2018 »	: ع (لا حـ) =«البحيا) فیه : ص (۲۵) = ۷۰° ، فإن	环 ۴ 🖚 ک شکل رباعی دائری		
°۲. ③	°11. 🕘	°v. 😔	°۳۵ 🕦		
·······························	د) = ۲٦٠° ، فإن : ق (< حـ) =	، فيه: ص (۲۱) + ۲ ص (د ح	📆 ۴ 🖚 ک شکل رباعی دائری		
°7. ③	°A• 🕘	°1 😔	°18. 🕦		
«الدقهلية 2019 ، الاسماعيلية 2018»	e)، فإن: ق (٤٩) =	، فیه: ص (۲۱) = ۲ ص (۲ م	۲۲ ۲ س حدی شکل رباعی دائری		
°17. ③	°4. 🕘	°¬, 😛	°۳۰ 🕦		
	فإن: ق (۲ م ح ک) =	، فیه : ق (۷ ۲ س ک) = ۷۰° ،	۳۳ ۲ ب حدی شکل رباع <mark>ی دائری</mark>		
°۳۵ (3)	°11. 🕘	°۱٤،	°v. 🕦		
		ان من نقطة خارج دائرة تكونان	۲٤ القطعتان المماستان المرسومة		
ول	😔 غير متساويتين في الط		أ متساويتين فى الطول		
	عتوازیتین		🕘 متعامدتين		
		رباعيًا دائريًا ؟ «الاسماعيلية 2019»	١٥ أيًا من الأشكال الأتية يسمى		
🗿 شبه المنحرف	🕘 متوازي الأضلاع	المعين 😌	1 المربع		
=	حرب) = ٦٠°، فإن : ق (٩٦٠)	رسوم داخل الدائرة ۴ ، ۍ (۲ ۹	📆 إذا كانت: ٢ - حد مثلث مر		
°4. (3)	°17. 🖎	°¬, 😛	°۳۰ 🕦		
۷٩٦٥) =	٣٧ عاب قطر في الدائرة ٢ ، حر∈ عاب بحيث ق (عمر) : ق ((اسمر) = ٧ : ٧ ، فإن : ق (١٤ عاب ح) =				
°y. (3)	°12. 🖎	°£. 😛	°7. (1)		
سم ، فإن : مساحة المربع مرسوم داخل الدائرة $\hat{\Gamma}$ ، طول $\widehat{\mu}$ = ١٥ π سم ، فإن : مساحة المربع تساوي					
۵۰ عسم ٤٥٠	۹۰۰ 🖎	السم ۱۸۰۰ 😔	۳٦٠٠ 🛈 سم		
٢٩ عب حـ مثلث متساوي الأضلاع مرسوم داخل الدائرة ٩ ، فـإن : طول القوس سحـ الأكبر يساوي					
π نق سم π (3)	π نوه سم π 👍 🕒	π نۍ سم π 😛 😛	π نوس سم π (1)		
°7. ③	°۲٦، 🖎	°٦٥ 😣	°1٣. (1)		

المراجعة النهائية

الوحدة الأولى

الشكل المقابل:

س، ص منتصفات المب ، المح على الترتيب ، ق (لا ب الح) = ٦٠ =

- °7. (i)
 - ٥٣. 🖎

°4. (3)

°17. (+)

π ۳ 🕕

, _

π٦ 😌

سم π ۳٦ ③

٣ في الشكل المقابل: «الوادي الجديد 2018)»

٦,٥ (أ

π ٩ 🕘

- 11 😣
- 1. (3)

غ في الشكل المقابل : «الغربية 2017» <u>٤</u>

- م س = م ص ، عب // حد ، ق (الم ب) = ٥٠٠ ، فإن : ق (١٩) =
 - °۵۰ 🚺
 - ° v. (2)

° 1. (3)

في الشكل المقابل:

دائرتان متحدتا المركز م ، طولا نصفي قطريهما ٧ سم ، ١٤ سم على الترتيب

- $\frac{77}{V} = \pi$ مساحة الشكل المظلل =سم ، حيث π
- £17 (+)

۳۵، 🛈

£77 (a)

٥٣٠ (3)

نص الشكل المقابل:

مَحَ مماسًا للدائرة عند ٢ ، ك منتصف ٢٠٠ ، ق (لاح) = ٥٠ ، فإن : ق (لا ب ٢٠) = ...

° 2. (i)

°٤۵ 😛

°4. (=)

° 6, (3)

∨ في الشكل المقابل : «دمياط 2016»

۱- حک شبه منحرف فیه ، ۲ ک = ۱۵ سم ، ب ح = ۲۸ سم

- هان: مساحة الشكل المظلل =
 - °5. (1)
 - 0 . /
 - ° 4. 🕘

°٤٥ 😛

الوحدة الثانية

الشكل المقابل: «الغربية 2016)» مي الشكل المقابل:

ۍ (۱۹بح) = ۲۰° ، ق (۱هبح) = ۲۰° ، فإن : ق (۱۹حب) =

° ۲. (1)

° {• (+)

ن في الشكل المقابل: «الغربية 2016)» ٢

ى (حه (عن الله الله الله الله الله ال

° v. (i)

°٦٥ 😣

°7. (2)

° 40 (3)

٣ في الشكل المقابل: «المنيا 2016 ، شمال سيناء 2017 »

إذا كان : ق (ك أ ك ح) = ١٨٠ ، فإن : ق (ك أ ب ه) =

°1. (i)

°7. (2)

° ۸. 😛

°1., (3)

ك في الشكل المقابل: «الاسماعيلية 2016»

إذا كان : ق (2 أحرب) = راث ق (2 أم ب) = (ص + ٢٠°) ، فيان : ص =

۰۳، (آ)

°1.. ③

إذا كان : ق (١٦ م ه) = ١٠٠ ، ق (١٥ ك) = ق (حك) ، فإن : ق (١٦ ح ك) = ...

°1.. (i)

- ۰۸. (ن)

° ٣. (3)

آ في الشكل المقابل : «اسيوط 2016»

إذا كان: أحد = ٨ سم ، أع = ٣ سم ، بع = ٢ سم ، فإن: بح =

🛈 ۵ سم

💛 ۷ سم

🕒 ۱۰ سم

🗿 ۱۳ سم

في الشكل المقابل: «الشرقية 2016»

دائرتان متحدتا المركز $\hat{\gamma}$ ، $\hat{\sigma}$ ($\hat{\gamma}$ فيإن : $\hat{\sigma}$ ($\hat{\gamma}$) =

° 1. (i)

° { . (+)

° 7. (3)

°17. (3)

△ في الشكل المقابل: «الدقهلية 2016»

إذا كان : ق (٢٦) = ٥٥° ، فإن : ق (٢ ٢ حرب) =

°11. (1)

°۵۵ 😛

۵۳۵ (<u>۹</u>

° 70 (3)

4 في الشكل المقابل: «البحرالأحمر 2016»

- 0 التي طول نصف قطرها ٤ سم ، 0 (2 ألت الدائرة أن التي طول نصف قطرها ٤ سم ، 0 (2 أ ب 1 التي طول نصف قطرها ٤ سم ، 1
 - فان: اب =
 - (أ) ٨ سم
 - △ ۶ ۱۳ سم

- 😯 ۸ 🕅 سم
- ۵ ۲ ۱۳ سم

الشكل المقابل: «الاسماعيلية 2016» في الشكل المقابل: «الاسماعيلية 2016»

- اذا كان : ق (١٤ م ح) = ٤٠ ، فإن : ق (١٩ م ح) =
 - ° 1. (1)

° 1. (2)

- ° 2. 😛
- °15. (3)

۱۱ في الشكل المقابل : «الأقصر 2019»

- إذا كان : ق (لا حرا ك) = ٣٦° ، اك = اح ، فإن : ق (لا ب) =
 - °15. (1)

° V. (2)

- °1.1 (+)
 - ° { . (3)

۱۲ في الشكل المقابل: «الشرقية 2018»

- اب قطر في الدائرة م، اب الحرى، ق (حره ك) = ٨٠، فإن: ق (احد) = .
 - ° 2. (i)

° 1. (2)

- ٥، (ا
- °1., ③

۱۳ في الشكل المقابل : «الغربية 2017»

- ا ب قطر في الدائرة م ، ق (لا ح) = ٣٠ °، فان : ق (لا اب ح) =
 - °17. (1)
 - °4. (2)

٥٣، 🔾

°11. 😛

۱٤ في الشكل المقابل : «اسوان 2019»

- م دائرة ، أب // حك ، ق (لاب م حر) = ٦٠ ، فإن : ق (أك) =
 - ° 4. (1)

- °7, 😥
- °17. (3)

الشكل المقابل: «كفرالشيخ 2018» في الشكل المقابل: «كفرالشيخ 2018»

- عد ال ساء ، ق (۲۹ م س) = ۱٤٠ ، فيان : ق (۲۶ م ح) =
 - ° v. (i)

°11. (+)

°12. (2)

° ۲۲. (3)

17 في الشكل المقابل: «كفرالشيخ 2018»

 \widehat{A} قطر فى الدائرة \widehat{A} ، \widehat{O} (\widehat{A}) = \widehat{O} (\widehat{A}) = \widehat{O} (\widehat{A}) ، فإن : \widehat{O} (\widehat{A} \widehat{O}) = \widehat{O}

- ۰۳، 😛

° 20 (2)

°7. ③

۱۷ في الشكل المقابل: «الشرقية 2019»

- إذا كان: ق (ع م) = ١٠٠ ، ق (ب ك) = ١٢٠ ، فإن: ق (١ ع ه م) =
 - °11. (1)

°۵۵ 😣

° V. (2)

°1.. (3)

🛂 في الشكل المقابل :

- إذا كانت: ك منتصف (بحر) ، ق (لا ب ع حر) = ١٢٠ ، فإن: ق (لا ك ع حر) =
 - °10 (1)

۰۳، 🥹

° 20 (2)

14 في الشكل المقابل: «الأقصر 2017»

٩ب قطر في الدائرة ٢، ق (١٩ ص ع) = ٢٥°، ق (س ك) ، فإن : ق (١ ح) = ...

°110 (2)

- °1.. (+)
- °170 3

ن في الشكل المقابل : «الغربية 2017» كالفريدة 2017

- إذا كان : ق (لا ب م ك) = ١١٠ ، فإن : ق (لا ح) =
 - °v. (i)
 - °170 (2)

- ۵۵ (ع

- حك قطر في الدائرة م، أك مماسًا لها عندك، أك = حك، فإن: ق (لا هـ) =

° 20 (2)

- °4. (+)

۲۲ في الشكل المقابل: «الشرقية 2017»

- إذا كان: أب // حك، ق (لا أو ح) = ٤٠ ، فإن: ق (لا ب ه ك) =

- ° {• 😛

° 20 (3)

- **٢٢ في الشكل المقابل :** «الجيزة 2017»
- إذا كانت: حمنتصف (٩٦) ، فإن: ٩٠
 - > (1)
- ≥ (3)

= ③

< ⊕

۲٤ في الشكل المقابل : «الجيزة 2017»

- إذا كانت: ه ∈ بح، حس ينصف لا هدى بحيث ق (لا هدس) = ٦٢°
 - ، فـإن : ق (\ ٢) =

- °۵٦ 🖎

- °17A (+)
- °178 3

ن في الشكل المقابل: «الجيزة 2019» في الشكل

- $^{\circ}$ إذا كان : $^{\circ}$ $^{\circ$
 - ، فإن قيمة س =
 - ° 7. (1)
 - ° 47 (3)

 - ۰۳، 😣
 - ° ٣7 ③

- نص الشكل المقابل: «الغربية 2017» في الشكل المقابل: «الغربية 2017»
- م دائرة ، اب الحك ، ق (عمر) = ٦٠ ، ق (لا ب ه ك) = (٣ ص + ٥) ° دائرة ، الم ك ا
 - ، فـاِن: ص =

°10 (2)

- °1, 😛
- ° 70 (3)

- ۲۷ في الشكل المقابل: «الدقهلية 2017»
- إذا كان: ١٩ ، ١٥ مماسان للدائرة عند ب، ح، ق (٤١) = ٧٠
 - ، فـإن : ق (ب حَ) الأصغر =
 - °11. (1)

°4. (3)

- °11. 😛

- 环 في الشكل المقابل

°7. 3

😘 في الشكل المقابل :

إذا كان: أب ∩ حرى = { ه } ، ق (ا ه) = ، ٤° ، ق (ا ح) = ٥٢°

عد ∩ ب ≥ = { ه } ، ق (ل ح ه ب) = ١٤٠° ، ق (ل ك) = ١٠٠° ، فإن: ق (ل ح) =

- - ° 0. (i)

° Yo (

- °70 (3)

۰۸۰ 😥

نص الشكل المقابل : «اسوان 2018» 😘

 $P = M^{\circ}$ و $P = M^{\circ}$ و الدائرة $P = M^{\circ}$ و $P = M^{\circ}$ و الدائرة $P = M^{\circ}$

۰۳. 🥹

° 2. (2)

📆 في الشكل المقابل :

- ٩ ك مماسًا للدائرة عند ك ، ق (لا ب) = ٢ س ، ق (لا ح) = ٣ س ، ق (لا ح ١ ب) = س و
 - ، فان : ق (\ ك ع ح) =

- ° {• 😛
- ° 1. (3)

°7. (=)

الدعم: 01018047203 - 01022543617

📆 في الشكل المقابل :

- دائرة مركزها م، ق (الم م ح) = ٣٢ ، فإن: ق (الم ع الم دائرة مركزها م ، ق (الم الم ح) = ٣٢ ، فإن
 - °17 (i)

۳۲ (!)

°75 (4)

°117 (3)

٣٣ في الشكل المقابل :

آب، آحد مماسان للدائرة عند ب، ح، أخذت ك (بحر) بحيث ق (لا ب ك ح) = ١٢٥°

- ، فـإن : ق (\ أ) =

 - ° V. (2)

° 1. (3)

۲ في الشكل المقابل :

ع كم مماسًا للدائرة عند ع ، ق (لا ب) = ٧٠ ، ق (ب ح) = ١٢٠ ، فإن : ق (١٩) =

° V. (2)

- °7, (+)
- ° 40 (3)

😘 في الشكل المقابل :

ه أ ، ه ب مماسان مشتركان للدائرتين م ، له ، اب = ٥ سم ، ه ك = ٧ سم

- ، ه ک = ۷ سم ، فان : س + ص =

18 3

اب ، احد ، و ه مماسات للدائرة عند ب ، ح ، و على الترتيب ، و و = ٩ سم

، اه = ١٠ سم ، و ك = ٤ سم ، فإن : ه ك =

- 🖎 ہ سم

😌 ٤ سم

AW (++ m)

📆 في الشكل المقابل :

اب ، حرى وتران متعامدان في الدائرة م ، فإن : ق (س ك) + ق (عمر) =

- ° 20 (1)
- °11.

۲۸ في الشكل المقابل : «دمياط 2016»

٩ - ح ک شکل رباعی دائری فیه ، ق (ل ب ٩ ح) = ٧٠ ، ق (ل ک ب ح) = ٤٠ د

- °11. (2)

° V. (3)

📆 في الشكل المقابل :

- ا م ک ، ق (ا م ک ، ق (ا م ک) = ٥٦ فإن : ق (ا م ک) =
 - °YA (i)
 - °77 (2)

° 41 (3)

°۵٦ 😣

نهي الشكل المقابل: 🛂

٩ ك مماسًا للدائرة المارة برؤوس المثلث ٩ ح عند ٩ ، ق (١ ج) = س ، ق (١ ح) = ٢ س

- ، ق (لا ک ا ب) = (س + ۳۲) ، فإن : ق (لا ح ا ب) =
 - ° 47 (1)

- ° 27 (3)

م الدائرة م ، ق (الم عن الدائرة م) .

- ، فإن: ق (ه ک) =
 - °v. (i)
- ° 4. (3)
- ۰۸۰ (ن
- °11. (3)

왭 في الشكل المقابل:

اب مماسًا للدائرة عند ب ، اب = ٦ سم ، اح = ٤ سم ، فإن : ح ك =

عدد الشكل المقابل : «سوهاج 2017)» في الشكل المقابل : «سوهاج 2017)»

إذا كان: ٩٦ // حك ، ق (٢٩٦ ب) = ٩٠ ، فإن: ق (٩ ح) =

°7. (1)

° 4. (2)

° 20 (3)

كا في الشكل المقابل: «الشرقية 2018»

٩ - ح ک شکل رباعي دائري ، ق (لا ب ٩ ح) = ٤٠ ، ق (لا ٩ ح ب) = ٢٠ °

- ، فـاِن: ق (\ ك) =
 - ° ۲. (1)
 - °7. 🖎

°17. 3

° ٤٠ 😛

البسيط في الرياضيات، مُنطلق جديد

مفاتيح الهندسة للصف الثالث الإعدادي

نظرية (٤) ونتائجها:

- 1-1-1-
- ا کا محور سر ویکون
- 50=50 , 001
- 🕆 الشكل إبم و رباعي دائيري لأن:
 - ن (ا دُر) = درا و ۱ و ۹۰ = ۹۰
 - $\widehat{\mathfrak{L}}$ طول $\widehat{\mathfrak{L}}$ طول $\widehat{\mathfrak{L}}$
 - @ مد=م د= نق
- ال درام) = دروم) (حمر ينصف (دام)
- ((عَدُن) عَنْ الْمُعَالِ (عَدُنَا) عَنْ (الْمُعَالِ (الْمُعَالِ الْمُعَالِينَ الْمُعَالِينَ الْمُعَالِينَ الْم
- آ قـوس الـدائرة المحصـور بـين القطعتـان
 المماسـتان المرسـومتان مـن نقطـة خـارج
 دائرة قوس أصغر فى الدائرة.

- $\mathcal{O}(\hat{\mathbf{r}}) = \mathcal{O}(\hat{\mathbf{r}})$ یکون رباعی دائری
- $\mathfrak{G}(\hat{\mathfrak{r}}) = \mathfrak{G}(\hat{\mathfrak{t}})$ یکون رہاعی دائری $\mathfrak{F}(\hat{\mathfrak{r}})$
- $\mathfrak{G}(\hat{\mathfrak{o}}) = \mathfrak{G}(\hat{\mathfrak{f}})$ یکون رہاعی دائری
- یکون رباعی دائری ($\hat{\lambda}$) یکون رباعی دائری \mathfrak{E}

إذا كان : $\mathfrak{o}(\widehat{z} \widehat{\mathfrak{a}})$ الخارجة $\mathfrak{o}(\widehat{\gamma})$ الداخلة المقابلة فإن الشكل : $\widehat{\gamma}$ رباعي دائري

موضع دائرة بالنسبة لدائرة أخري

إذا كان لدينا دائرتان لهما س، س، نجمع القطرين ثم نطرح القطرين

إذا كان ٧٠ = صفر فإن الدائرتان تكونان متحدتا المركز

عدد الدوائر التي تمرب

ثلاث نقط ليست علي استقامة واحدة (واحدة)

ثلاث نقط علي استقامة واحدة صفر)

- (١) المستطيل والمربع وشبه المنحرف المتساوي الساقين أشكال رباعية دائرية.
- (٢) متوازي الأضلاع والمعين وشبه المنحرف غير متساوي الساقين ليست أشكالاً رباعية

بعض القوانين الهامة

طول القوس =
$$\pi ext{القوس} imes \pi ext{القوس} imes \pi ext{القوس} imes \pi ext{القوس} imes \pi ext{القوس القوس القوس$$

$$^\circ$$
 ۳۲۰ $imes$ قياس القوس $=$ π $imes$

 $^{\mathsf{r}}$ مساحة الدائرة π

محيط المربع = طول الضلع ×٤

 $7 \times ($ محيط الستطيل = (الطول + العرض

0

محيط الدائرة π س π ن

مساحة المربع = مربع طول ضلعه

مساحة المستطيل = الطول × العرض

مساحة متوازي الأضلاع = طول القاعدة × الارتفاع

مسحة المعين = طول الضلع × الارتفاع

مساحة المعين $= \cancel{\times} \times$ حاصل ضرب طولا قطرية

مساحة الثلث $= \frac{1}{2} \times |$ القاعدة \times الارتفاع

مساحة شبة المنحرف $\chi \times \chi$ مجموع القاعدتين المتوازيتان χ الارتفاع

عدد المماسات المشتركة التي يمكن رسمها لدائرتين متباعدتين

عدد المماسات المشتركة التي يمكن رسمها لدائرة من نقطة خارجها

عدد المماسات المشتركة التي يمكن رسمها لدائرة من نقطة عليها

عدد المماسات المشتركة التي يمكن رسمها لدائرتين متماستين من الداخل

عدد المماسات المشتركة التي يمكن رسمها لدائرتين متماستين من الخارج

عدد المماسات المشتركة التي يمكن رسمها لدائرتين متقاطعتين

عدد المماسات المشتركة التي يمكن رسمها لدائرتين متداخلتين أو متحدى المركز (صفر)

ملخص نظرى الهندســة

- 🕥 نصف قطر الدائرة أي قطعة مستقيمة تصل بين المركز وأي نقطة على الدائرة وكلها متساوية وتساوي ن
 - 🕜 وتر الدائرة هو أي قطعة مستقيمة تصل بين نقطتين على الدائرة
 - 🍘 قطر الدائرة وتريمر بالمركز أو أي قطعة مستقيمة تصل بين نقطتين على الدائرة وتمر بالمركز
 - € أي مستقيم يمر بمركز الدائرة هو محور تماثل لها وللدائرة عدد لا نهائي من محاور التماثل
 - π محيط الدائرة π ف π أن π مساحة الدائرة π
- ﴿ ﴿ خَطَ المركزينِ الدائرتينِ متماستينِ من الداخل أو الخارج يكون عمودياً على المماس المشترك عند نقطة التماس ﴾
 - ﴿ المستقيم المار بمركز الدائرة وبمنتصف أي وتر فيها يكون عمودياً على هذا الوتر
 - 🤏 خط المركزين لدائرتين متقاطعتين يكون عمودياً على الوتر المشترك وينصفه
 - 🕞 المماس لدائرة يكون عمودياً على نصف القطر المرسوم من نقطة التماس
 - 🕥 المستقيم العمودي على قطر الدائرة من إحدى نهايته يكون مماس للدائرة
 - 🔫 المماسان لدائرة المرسومان من نهايتي قطر فيهما متوازيين
 - 🕆 يوجد عدد لا نهائي من الدوائر التي تمر بنقطة واحدة
 - ﴿ يوجد عدد لا نهائي من الدوائر التي تمر بنقطتين
 - 🔞 لا يمكن رسم دائرة واحدة تمر بثلاث نقط على استقامة واحدة
 - 🕤 أصغر دائرة يمكن رسمها تمر بالنقطتين 🕴 ، 🕒 طولها يساوى نصف طول 🜓
 - 🕡 يمكن رسم دائرة وحيدة تمر بثلاث نقط ليست على استقامة واحدة
 - 🔊 الدائرة الخارجة للمثلث هي الدائرة التي تمر برؤوس المثلث من الخارج
 - ﴿ وَ مِركِزُ الدائرةِ الخارجةِ للمثلثِ هي نقطة تقاطع الأعمدة المقامة على أضلاعه من منتصفاتها
 - (٢٠) مركز الدائرة الخارجة للمثلث القائم الزاوية هو منتصف الوتر
 - (٣) الأوتار المتساوية في الطول في دائرة تكون على ابعاد متساوية من مركزها
 - ﴿ فَى الدائرة الواحدة أو فَى الدوائر المتطابقة إذا كانت الأوتار على ابعاد متساوية من المركز فانها تكون متساوية في الطول
- 😙 في الدائرة الواحدة أو في الدوائر المتطابقة الأقواس المتساوية في القياس متساوية في الطول والعكس صحيح
 - ﴿ فَى الدائرة الواحدة أو فَى الدوائر المتطابقة الأقواس المتساوية فَى القياس أوتارها متساوية فَى الطول والعكس صحيح
 - 🔞 الوتران المتوازييان في الدائرة يحصران قوسين متساويين في القياس
 - 🛪 القوسان المحصوران بين وتر ومماس يوازيه متساويان في القياس
 - 📆 قياس الزاوية المحيطية يساوى نصف قياس الزاوية المركزية المشتركة معها في القوس
 - (٨) قياس الزاوية المركزية ضعف قياس الزاوية المحيطية المشتركة معها في القوس
 - 🔊 قياس الزاوية المحيطية يساوى نصف قياس القوس المقابل لها
 - 🛪 الزاوية المحيطية المرسومة في نصف دائرة قائمة
 - (٣) الزاوية المحيطية التي تحصر نفس القوس في الدائرة الواحدة متساوية في القياس

- (٣) قياس الزاوية المحيطية يساوى نصف قياس القوس المقابل لها 🝘 الزاوية المحيطية المرسومة في نصف دائرة قائمة ዢ الزاوية المحيطية التي تحصر نفس القوس في الدائرة الواحدة متساوية في القياس 🔊 في الدائرة الواحدة أو في عدة دوائر الزوايا المحيطية المتساوية في القياس تحصر بين ضلعيهما أقواساً متساوية في القياس 📆 إذا تساوى قياسا زاويتين مرسومتين على قاعدة واحدة وفي جهة واحدة منها فأنه يمر برأسيهما دائرة واحدة تكون هذه القاعدة وترأ فيها إذا كان الشكل الرباعي دائرياً فإن: كل زاويتان متقابلتان متكاملتان مجموعهم =١٨٠٥ 🕅 المستطيل والمربع والشبه منحرف المتساوى الساقين اشكال رباعية دائرية 🙉 متوازى الأضلاع والمعين وشبه المنحرف الغير متساوى الساقين رباعيه غير دائرية 😥 قياس الزاوية الخارجة عن أي رأس من رؤوس الشكل الرباعي الدائري يساوي قياس الزاوية الداخله المقابلة للمجاورة ﴿ إِذَا وَجِدتُ زَاوِيتَانَ مَتَقَابِلْتَانَ مُتَكَامِلْتَانَ فَي شَكِلَ رِبَاعِي كَانَ هَذَا الشَّكُلُ رِبَاعي دائري 攘 إذا وجدت زاوية خارجة عند رأس من رؤوس شكل رباعي قياسها يساوي قياس الزاوية الداخلة المقابلة لهذا الرأس كان الشكل رباعيا دائريا 😭 القطعتان المماستان المرسومتان من نقطة خارج الدائرة متساويتان في الطول 😥 يكون الشكل الرباعي دائرياً إذا تحققت أحد الشروط التالية : ◎إذا وجدت نقطة في مستوى الشكل تكون على ابعاد متساوية من رؤوسه
 - ⊚إذا وجدت زاويتان متساويتان في القياس ومرسومتان على ضلع من اضلاعه كقاعدة وفي جهة واحدة من هذا الضلع
 - @إذا وجدت زاويتان متقابلتان فيه متكاملتان مجموع قياسهما = ١٨٠ °
 - ⊚إذا وجدت زاوية خارجة عند أي رأس من رؤسه قياسها يساوي قياس الزاوية الداخلة المقابلة للمجاورة له
 - الدائرة الداخلة لمثلث هي الدائرة التي تمس اضلاعه من الداخل
 - 🕄 مركز الدائرة الداخلة لأى مثلث هو نقطة تقاطع منصفات زواياه
 - الزاوية المماسية هي الزاوية المكونة من اتحاد شعاعين أحدهما مماس للدائرة والأخر يحتوى وتر الدائرة يمر بنقطة التماس
 - 🗈 قياس الزاوية المماسية يساوى نصف قياس القوس الموصول بين ضلعيهما
 - 🙉 قياس الزاوية المماسية يساوي قياس الزاوية المحيطية المرسومة على وتر التماس
 - إذا رسم من احدى نقطتى النهاية لوتر فى دائرة بحيث كان قياس الزاوية المحصورة بين هذا الشعاع والوتر يساوى قياس الزاوية المحيطية المرسومة على نفس الوتر من الجهة الأخرى فإن هذا الشعاع يكون مماساً للدائرة

اختر الإجابة الصحيحة من بين الإجابات المعطاة :

۱۶ سم	على الترتيب فإن : م 🗸	۸سم ، ۲سم	ن طولا نصفى قطريهما	🕥 ۲ ، ۷ دائرتان متباعدتان
290				
القوس	المركزية المشتركة معها في نفس	قياس الزاوية ا	ىاوىى	🥎 قياس الزاوية المحيطية يس
	﴿ ثَلث	⊛ ربع	😡 ضعف	نصف (
	لريهما ٧سم ، ٣سم فإن : ٢٠٠	طولا نصفى قط	متماستان من الداخل م	🈙 إذا كانت الدائرتان ٢ ، 🕫
	1. ③			
٢)	"المراجعة النهائية في الهندسة"	عدادی"	"الصف الثالث الإ	المحترف نى الدياضيات

			 في الشكل المقابل
5		A	<i>γًب</i> قطر في الدائرة
	10		$(\widehat{s}) \circ = (\widehat{s}) \circ (\widehat{s}) \circ$
\ \' /	<i>\'</i>	***************************************	$=(2 \widehat{\mathbf{c}}_{0})$ فإن : ق
		°7. 🔘	010 D
		° ७ ।	°£0 🕖
=	$=\frac{1}{7}$ $\mathcal{O}(\widehat{\boldsymbol{\epsilon}})$ فإن $\mathcal{O}(\widehat{\boldsymbol{\epsilon}})$	دائری اسرء إذا كان: ق (أُ	في الشكل الرباعي الـ
·110	°٦٠	° 7 • 😡	∘7∙ ⊕
وينصفه	على	ين متقاطعتين يكون عموداً	🕤 خط المركزين لدائرت
(ع) المماس	🕢 الوتر المشترك	⊖ الوتر	() القطر
~/		رسومة في نصف دائرة	√ الزاوية المحيطية الم
قائمة	🕝 منفرجة	🔾 مستقيمة	🕦 حادة
5		رباعياً دائرياً إذا كان	🛦 الشكل المقابل يكون
\times	<u>5-</u> 1 - 1 ⊖	$^{\circ}$ \ $\wedge \cdot = (\hat{s})$	(Î) U (D)
ر (ا وَب) ر	ع (ا وُ س) = و ال ف (ا وُ س) = و	= ق (ح أ 5)	=(>Îu) 0 @
م فإن الدائرتين تكونان	سم إذا كان: ٢٥ = ١٤ سم	: نصفی قطریهما ۸سم ، ۱	🍳 دائرتان ۲ ، ۷ طولا
🕜 متماستين من الخارج	داخلتين 🕢	💛 متباعدتين	🕦 متقاطعتين
			🕞 في الشكل المقابل
	P	ئرة م =	م ك ∩ سطح الدا
		52 🔾	{s · >} ①
5 5	Charles and the	ØG	55 @
	- π نۍ نۍ π	بة التى تقابل قوساً طوله 🙀	🕦 قياس الزاوية المركزب
°7٤٠ 🕜	°15. ⊙	∘7. ⊖	° r. D
			88000
		ِ برؤوس	🔫 يمكن رسم دائرة تمر
ن متوازی أضلاع	🔗 شبه منحرف		س یمکن رسم دائرة تمر صعین () معین
. 1955 1975	10 1 1 Table 1		🕥 معین
. 1955 1975	مركزها مسافة ٥سم فإن ا	😡 مستطيل	معین 🕥 معین 🐨 دائرة طول قطرها ۱۰
لمستقيم ل يكون	مركزها مسافة ٥سم فإن ا	صتطيل ⊖ مستطيل سم والمستقيم ⊖ يبعد عن	معین ﴿ معین ﴿ معین ﴿ دائرة طول قطرها ١٠﴿ ﴿ مماساً للدائرة ﴿ مماساً للدائرة
لمستقيم ل يكون	مركزها مسافة ٥سم فإن ا	۞ مستطيل سم والمستقيم ل يبعد عن ة ۞ قاطعاً للدائرة	معین ﴿ معین ﴿ معین ﴿ دائرة طول قطرها ١٠﴿ ﴿ مماساً للدائرة ﴿ مماساً للدائرة
لمستقيم ل يكون ﴿ قطراً في الدائرة 	مركزها مسافة ٥سم فإن ا ﴿ خارج الدائرة من الخارج هو	۞ مستطيل سم والمستقيم ل يبعد عن ة ۞ قاطعاً للدائرة ركة للدائرتين المتماستين	معين المعين الدائرة طول قطرها ١٠ الدائرة الدائرة الدائرة عدد المماسات المشتال
لمستقيم ل يكون	مركزها مسافة ٥سم فإن ا ﴿ خارج الدائرة من الخارج هو	۞ مستطيل سم والمستقيم ۞ يبعد عن ق ۞ قاطعاً للدائرة تركة للدائرتين المتماستين ا ۞ ١	معين المعين الدائرة طول قطرها ١٠ الدائرة الدائرة الدائرة عدد المماسات المشتال
لمستقيم ل يكون	مركزها مسافة ٥سم فإن ا ﴿ خارج الدائرة من الخارج هو ﴿ ٢	© مستطيل سم والمستقيم ل يبعد عن قاطعاً للدائرة لا ائرتين المتماستين ا الله الله الله الله الله الله الله ال	معين الدائرة طول قطرها ١٠ الدائرة المماسات المشتاك ال
لمستقيم ل يكون	مركزها مسافة ٥سم فإن ا ﴿ خارج الدائرة من الخارج هو ﴿ ٢ 	© مستطيل سم والمستقيم ل يبعد عن قاطعاً للدائرة لا ائرتين المتماستين ا الله الله الله الله الله الله الله ال	معين الله معين الله الله الله الله الله الله الله الل

		. 5	🕝 فى الشكل المقابل : إذا كان آ - قطر فى الدائر
,	=($\widehat{}$	$\widehat{1} = \frac{1}{\sqrt{2}} \sqrt{\frac{2}{2}}$ 0 0
, , , , , , , , , , , , , , , , , , ,		°0. \(\text{\tin}\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\texi}\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\texi}\text{\text{\texi}\text{\text{\text{\text{	° {• (D)
		°1 ③	
ما ٥سم ، ٢سم على الترتيب	کان طولا نصفی قطریهه		© (√) إذا كان : ۲ ، ◊ دائرتان من
			فإن: م∨ ∈
]٧,٣] ③]٧,٣[🕝		[٧,٣] ①
X- 1007 1007 1 			۸ محور تماثل الدائرة هو
بالمركز ﴿ المماس	🕢 المستقيم المار		① القطر
	\	ع قياس الدائرة يساوى .	🕦 قياس القوس الذي يمثل رب
°737°	⊙ .11°	04. 0	°7. ①
.0	ونانونان	هایتی قطر فی دائرة یک	🕜 المماسان المرسومان من نـ
🕝 منطبقین	🔗 متقاطعتين	😡 متوازيين	🕦 متعامدین
زسم	١سم فإنه يبعد عن المرك	ل دائرة طول قطرها ٠	🕥 وتر طوله ۸سم مرسوم داد
7 3	r @ °	٤ 😡	01
	\\	، هو نقطة تقاطع	😙 مركز الدائرة الداخلة للمثلث
لاعه 🕃 منصفات زواياه الداخلة	🔗 محاور تماثل أض	⊖ ارتفاعاته	🕥 متوسطاته 🕦
78.	ـاوی	سومة في ثلث دائرة يس	🔭 قياس الزاوية المركزية المر
۰۳۰ ③	°7. ❷	°11. O	°7₹∙ ①
م فإن: ٢٠ =سم	قطریهما ۷سم ، ۲۰سـ	من الداخل طولا نصفى	😘 ۲ ، ۷ دائرتان متماستان
1. ③	VOM	W O	٣ 🛈
, i	/	12	🕟 في الشكل المقابل :
	Li	الرياه	√ح قطر في الدائرة م
> (or.		=	، ق (حَ) =٣٠٠ فإن : ق ﴿)
		°7. 😡	°11. ①
		° १ · ③	°4. 😥
		~ ~	📆 في الشكل المقابل :
			دائرة مركزها γ إذا كان : و
	••••		، ق (۱۶ م) = (ص + ۱۰)°
		° \(\cdot \cdot \overline \overline \overline \cdot \overline \ov	°V• ①
(ص + ۰۱)°		°11. (3)	°1… ❷
النهائية في الهندسة"	رادك" "المراجعة ا	"الصف الثالث الإعا	المحترف نى الدياضيات

,			🕜 في الشكل المقابل :	
		=(- ŝp) c	$_{\mathcal{O}}$ فإن : و $(\hat{q} \hat{\gamma} - \hat{q}) = \hat{\sigma}^{\circ}$ فإن	
		°1… ⊝	°0. ①	
		° 40. 3	°41. 🕥	
	************	محصورة بين	術 الزاوية المماسية هي زاوية	
آوتر وقطر	🔗 وتر ومماس	🔾 مماسین	() وترین	
ستقیم ل یکون	ن مركزها ٥سم فإن الم	م والمستقيم ل يبعد ع	۳۹ دائرة طول محیطها π٦ س	
 قطراً فى الدائرة 	﴿ خارج الدائرة		(مماساً للدائرة	
00	$\cdots = (\hat{f}) o$:	$\boldsymbol{v}(\hat{\boldsymbol{s}}) = \boldsymbol{v} \boldsymbol{v}(\hat{\boldsymbol{s}})$ فإن	🛪 🕯 🗝 و رباعی دائری فیه :	
·11.	°170 @	° 50 🔘	° 9. ①	
۲ = ۲ سم فإن : ۲ ، ۵	7سم ، ۳سم وکان ۲	الدائرتين 🗸 🕻 🗚 هما .	🖱 إذا كان طولا نصفى قطرى	
 آ متماستان من الخارج 	🔗 متباعدتان	🔾 متداخلتان	🕥 متقاطعتان	
	یساوی	دائرتين متحدثى المركز	🔫 عدد المماسات المشتركة لـ	
ے صفر	1 🙆	1 (r 0	
			ضى الشكل المقابل :	
			(52) v 18.=(4) v	
5	,18.————————————————————————————————————	<u> </u>	$$ فإن $: _{\mathcal{O}}\left(\widehat{a} ight) =$	
۵		° 2. ©	° 20 D	
	9	°40 Ø	°00 🕢	
			🚱 في الشكل المقابل :	
~ (25·	Carren	Maria	٥٤٠=(عَ) من ، <u>35</u> // اما	
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, L , P	\cdots فإن : ق $(\widehat{\mathbf{u}})$	
,)	° {• 😡	°7. ①	
	-	°17. 3	°۸۰ 🚱	
المشتركة معها في نفس القوس	ياس الزاوية المحيطية ا	ق	🔊 قياس الزاوية المركزية =	
1 3	۶ 🕖	1 0	1 D	
•••••	لدائرة √ =	مجموعة النقط داخل ال	📆 مجموعة نقط الدائرة 🕫	
﴿ محيط الدائرة ◊	\varnothing	😡 سطح الدائرة 🗸	⊕ الدائرة ب	
ہسم، نیں > ہ، م رہ = ۳ سم	ى الدائرتين ٥سم ، ^{نو}	من الداخل نصفى قطريا	→ دائرتان م ، ب متماستان	
		٠٠٠	فإن : ن =	
9 3	٧ 🕖	۸ 😡	7 ①	
	🕅 عدد الدوائر التي تمر بثلاث نقط على استقامة واحدة يساوي			
﴿ عدد لا نهائي	€ ثلاث	⊖ واحد	🛈 صفر	
النهائية في الهندسة" ٥	سادك" "المراجعة	"الصف الثالث الإع	المحترف نى الرياضيات	

		ِة يسمى	🤫 أطول الاوتار في الدائر
نصف قطر 🕙	🔗 قاطع	😡 مماس	🕦 قطر
5			😥 في الشكل المقابل :
		، سرخ ينصف (و حَ هـ)	
'(\)/~	•••••	$\omega(\hat{\mathfrak{f}})=\cdots$ فإن \mathfrak{b}	، ق (س حَ ه) = ٦٢°
71°.	°111 \		°71 D
	371°		°07 🔗
في القوس =	المركزية المشتركة معها	ية المحيطية وقياس الزاوية	🚯 النسبة بين قياس الزاو
٣:١ ③	1:1 🕢 🛮	1:1	7:1
اغة (س+۲) سم	S SYSTEM IN	عا (۲⊸ + ٦)سم والمستقي	😭 دائرة طول نصف قطره
	7000 7	ستقيم ل يكونس	حيث س>٠ فإن الم
🕉 ماراً بمركز الدائرة	 قاطعاً للدائرة 	🔾 مماساً للدائرة	﴿خارج الدائرة
	م ك ∩ سطح الدائرة م =	ائرة ٢ = {١، ١٠ فإن :	⊕ إذا كان: ﴿ كُونَ ﴾ الد
T- 0	चा 🗇 🔳	-10	{-· 1} ①
	ة تكون	تقابل قوساً أصغر في الدائر	😥 الزاوية المحيطية التَّي
ن حادة	🕳 منفرجة	⊖ قائمة	🕦 منعكسة
TEI	A		😥 في الشكل المقابل :
		$\circ \circ \cdot = (\hat{p}) \circ - (\hat{r})$	م دائرة فإذا كان : ق (
$\left(\left\langle \zeta \right\rangle \right)$	7/		\cdots فإن $: oldsymbol{o} \cdot (\hat{\mathbf{j}}) = \cdots$
	°₀∙ ⊖		٥٤٠ €
	°17. ③	THE PARTY OF THE P	∞ °۱…
	, Jum	111	🗈 في الشكل المقابل :
	, ,	110	-s=sr 6 5> 11 TP
2007	- Li	יענו	٥٩٠=(٤٦) الله ده ١٩٥٥
	**		فإن: ق (أحَ) =
\ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	°7. 😡		°\$0 (1)
	०५. 🚱		° ٣. 😥
, i			🐿 في الشكل المقابل :
5		تصف أح	و منتصف $\overline{ ho}$ ، a من
		، (و مُ هـ) =	، ق $(\hat{\mathfrak{f}})$ = ٥٥° فإن : و
	°17. 🔘		°17. ①
	°110 3		°170 @
	passed to be as ass	98 qv, 64 //G/R Herrette	
نهائية في الهندسة" (٦	سادك" "المراجعة ال	ت "الصف الثالث الإء	المحترف ف الرياضيا

			🚯 في الشكل المقابل :
	<i> =</i>	، م ب = ١٠ سم غان: ١	إذا كان : $\gamma = 7$ سم
(-1.	17 😡		1. D
5	٤ ③		V 🕑
ن مرکزهاسم	ناطعاً للدائرة فإنه يبعد عر	م فإذا كان المستقيم ل ة	🕦 دائرة طول قطرها ١٠
٤ ③	٧ 🕢	٦ 😡	1. D
بين المركز م والمستقيم ل ∈	خارج الدائرة مفإن البعد	اسم فإذا كان المستقيم ﴿	🕟 دائرة م طول قطرها ٠
]∞.0[③	[• . • [🔗]∘ . · [⊝	{○ ··} ①
	قطر الدائرة 🗸 فإن الدائر	لر الدائرة م 😑 طول نصف	🔞 إذا كان طول نصف قط
متقاطعتان	🕝 متطابقتان	😡 متباعدتان	🕥 متداخلتان
	ستقیم ل یکون	الدائرة م $arnothing oxedom = \emptyset$ فإن الم	🚱 إذا كان المستقيم ك
🕢 محور تماثل للدائرة	🔗 خارج الدائرة	🔾 خارج الدائرة	شاطعاً للدائرة
عد بین مرکزیهما ∈	ونان متماستين إذا كان الب	طریهما ۵ سم ، ۸سم تکو	🔊 دائرتان طولا نصفی ق
]17,7[3	[17,7[[17,7]	(1r · r) D
ھو	ست على استقامة واحدة د	ن رسمها تمر بثلاث نقط لي	🗞 عدد الدوائر التي يمكر
ن لا يوجد	🔗 عدد لا نهائی	1 0 1	- \(\bar{D} \)
			🔞 في الشكل المقابل :
	طول بح = سم	سم ، ن (عَ) = ۳۰ ° غَإِن : ر	ا مماسه ۱۲ = ۵
\	ÇV ⊖		o (1)
۰۲۰۰	1. ③	THE STATE OF	∧
لدائرتین تکونان	سم ، م ب – ١٦ سم غإن اا	صفی قطریهما ۹ سم ، ۶۰	🔞 دائرتان م ، 🗸 طولا ن
الداخل	🔾 متماستین من	الخارج	🕥 متماستین من
	ناعدتین	27	🔗 متقاطعتين
، روع على الترتيب ، مس = ٣ سم	م ، س ، ص منتصفا آب .	ويان في الطول في دائرة ٬	😿 🖵 ، حرج وتران متسا
		سم	فإن : م ص =
٣ 🕥	٤ 🕖	٦ 😡	T 1
•••••	{} فإن الدائرتين م ، ، ، ،	$\}= ee egin{array}{c} ho & > 1 \end{array}$ سطح الدائرة	🔊 إذا كان سطح الدائرة
آع متماستان من الخارج	🔗 متقاطعتان	⊜ متحدتا المركز	🕥 متباعدتان
		ىر بروۇس	🙉 لا يمكن رسم دائرة ته
المستطيل	🔗 المعين	⊜ المربع	() المثلث
ىاقين	ر تماثل مثلث متساوی الس	، دائرة عدد محاو	🕣 عدد محاور تماثل نصف
< ③	= ②	> 🔾	$\leq \mathbb{O}$
النهائية في الهندسة" ٧	عدادى" "المداحعة	ات "الصف الثالث الإ	المحترث فى الرياض

(١) في الشكل المقابل :

ق (أ) = ۲۰°، ه منتصف اح ، و منتصف آب أوجد: ق (ومُه)

ي البرهان ي

 $^{\circ}$ ۹ ·= ($^{\circ}$ آءَ · $^{\circ}$ نتصف آ $^{\circ}$ · $^{\circ}$ $^{\circ}$ نتصف آ $^{\circ}$ · $^{\circ}$ نتصف آ $^{\circ}$ · $^{\circ}$

$$\circ$$
 ۹۰= (۱هٔ ۲) منتصف اح $\overline{}$ $\overline{}$

·· مجموع قياسات زوايا الشكل الرباعي = ٣٦٠ °

$${}^{\circ}\mathsf{NF} \cdot = ({}^{\circ}\mathsf{A} \cdot + {}^{\circ}\mathsf{A} \cdot + {}^{\circ}\mathsf{A} \cdot) - {}^{\circ}\mathsf{MF} \cdot = (\mathfrak{A} \, \hat{\mathsf{C}} \, \mathsf{S}) \, \mathfrak{O} \, : \cdot$$

(٢) في الشكل المقابل :

دائرتان متحدتا المركز (م)

، اب وتر في الدائرة الكبري

، يقطع الدائرة الصغرى في ح ، و

م م $\overline{a} \perp \overline{b}$ أثبت أن : 1 = -2

ي البرهان ج

في الدائرة الكبري: ∵ م ه ⊥ اب نده منتصف ا () ← - - - - - - - ()

في الدائرة الصغرى: ∵ م ه ل ح و ن ه منتصف ح و .: حد = د ع → ٠

> بطرح \bigcirc من \bigcirc : \bigcirc هـ – ده = هـ – هـ و 5-= -1:

(٣) في الشكل المقابل :

ع المائرة م الدائرة م ، ١ح يقطع الدائرة م

فی ب، ر

 $(\hat{\gamma})= 0$ أوجد: δ ($\hat{\gamma}$) أوجد: δ

🛭 البرهان 🖒

·· ای مماس للدائرة م عند ۱ ، م و (نق)

$$^{\circ}$$
4 $\cdot = (\hat{s} r) \circ : \overline{s} \perp \overline{s} r :$

، ∵ه منتصف سح

 $^{\circ}$ مجموع قیاسات زوایا الشکل الرباعی $^{\circ}$

$$(^{\circ}9. + ^{\circ}07 + ^{\circ}9.) - ^{\circ}77. = (^{\circ}2.5) \circ :$$

$$^{\circ}175 = ^{\circ}777 - ^{\circ}77. =$$

﴿ فَي الشكل المقابل :

م ، 🗸 دائرتان طولا نصفی قطریهما ١٠سم ، ٦سم على الترتيب ومتماستان من الداخل في ١ ، 🚅 مماس مشترك لهما عند 🕽

 7 انت مساحة سطح : Δ ب 7 فأوجد: طول آب ؟

ي البرهان ي

٠٠٠ أَتُ مماس للدائرة م ٢٠٠٠ لـ أَتَ ·· الدائرتان م ، به متماستان من الداخل .. ۱۰= ۱-۱ = ۶سم $\gamma \times \nu \wedge \times \frac{1}{2} = \nu \wedge \nu \wedge \Delta$ and $\gamma = 0$ $-1 \times 1 \times \frac{1}{5} = 5 \times 1$

ن ال = ١١سم

(٥) في الشكل المقابل:

مو <u>له اسا، مه له ح</u>ق ، وس = ه ص أثبت أن:

(1) The = eq (7) Te = ea

البرهان &

·· > e = > a = io → ()

ى : سو= صه → ٦

بطرح ﴿ من ﴿ نَ مِس = ٢ ص

50 = uf : (أولاً)

، ن ب س منتصف آب ن س منتصف آب

ن اس = أ اب

·· م ص ل ح و . . ص منتصف ح و

∴ ح ص =

\(\frac{1}{2} = \frac{2}{3} = \frac{2}{3}

، : اب = حو ن اس = حص

∴ ۵۵ إس ، حصد فيهما:

(🛈 اس = حص

٠ س و = ص ه

ل الم ق (اسو) = ق (ح ص ه) = ٥٠ (الم ص ه) = ٥٠ (الم ص ه)

 $\Delta \land \triangle = \Delta$ اس و $\Delta = \Delta$ و وينتج أن : او $\Delta = \Delta$

٦) في الشكل المقابل :

م ، له دائرتان متقاطعتان في 🖣 ، ب

$$\begin{array}{ccc}
\sqrt{N} & \sqrt{N} & \sqrt{N} \\
\sqrt{N} & \sqrt{N} \\
\sqrt{N} & \sqrt{N} & \sqrt{N} \\
\sqrt{N} & \sqrt{N} \\
\sqrt{N} & \sqrt{N} \\$$

$$\circ$$
150 = $(s\hat{\nu}_f)\omega$

أثبت أن : حري مماس للدائرة 🗸 عند و

ي البرهان ي

∵ ﴿ خط المركزين ، ∵ ﴿ وَتَر مَشْتَركِ _

·· مجموع قياسات الشكل الرباعي الداخلة ٣٦٠ °

$$^{\circ}\mathbf{q}\cdot=(^{\circ}\mathbf{170}+^{\circ}\mathbf{q}\cdot+^{\circ}\mathbf{00})-^{\circ}\mathbf{77}\cdot=(\hat{\mathbf{v}}\hat{\mathbf{c}})\boldsymbol{\omega}\div$$

$$\therefore \sqrt{2} \perp \frac{1}{\sqrt{2}} \Rightarrow \frac{1}{\sqrt{2}}$$
 هماس للدائرة $\sqrt{2}$ عند و

نى الشكل المقابل :

م ، 🗸 دائرتان متقاطعتان في 🜓 🕳

فإذا كانت همنتصف حرى

اثبت أن: اس // حج

في الدائرة الصغري :

= 57, $\overline{3} \pm \overline{37}$, $\overline{37} \pm \overline{57}$. .. س ص = ع <u>ل</u>

(٩) في الشكل المقابل :

$$\overline{as} \perp \overline{oo} : \overline{oo} \perp \overline{sa}$$

$$\bigcirc$$
 ب سو = $2a$ ب مس = مص $\triangle \Delta \triangle$ في $\triangle \Delta \triangle$ اس م ، اص فيهما .

 $\Delta \uparrow$ س $\Delta \uparrow$ اس جام وینتج من التطابق أن:

$$\frac{1}{2}$$
 .. ب منتصف ب $\frac{1}{2}$ ب د

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

وبطرح () ، (ن اس - ب س = اص - عص SP € 31 .. 7

🕟 في الشكل المقابل:

م ، \wedge دائرتان متقاطعتان فی \uparrow ، \rightarrow

، بهص له هو

أثبت أن : بء = هو

في الدائرة م

·· س منتصف بو .. مس لـ بو

-1 1 Vc :

ي البرهان ي

∴ ﴿ أَنَّ خَطَ المركزين ﴿ ، ﴿ أَبُّ وَتَرْمَشْتُركُ

$$^{\circ} \mathbf{A} \cdot = (\mathbf{A} \cdot \mathbf{A}) \cdot \mathbf{A} \cdot \mathbf{A}$$

 $\mathfrak{s}(\mathfrak{c}(\mathfrak{d})) = \mathfrak{o}(\mathfrak{f}(\mathfrak{d})) = \mathfrak{d}^{\circ}$ "في وضع تناظر" :: 5> 1/ 4 :

\lambda في الشكل المقابل :

دائرتان متحدتا المركز م

، اب = اح

أثبت أن: سص=عل

العمل $oldsymbol{\lozenge}$ نرسم $\overline{\gamma_7} \perp \overline{\gamma_{12}}$ ، $\overline{\gamma_6} \perp \overline{\gamma_{22}}$

🛭 البرهان 🐹 في الدائرة الكبرى : $\exists l \perp \overline{a_l}$, $\overline{-l} \perp \overline{s_l}$, $\Rightarrow l = -l$:

المحترف نى الرياضيات

2 r = 5 r ∴

"الصف التالث الإعدادي" "المراجعة النهائية في الهندسة"

في الدائرة به

$$\therefore \overline{ \sqrt{8}} \perp \overline{ / - 1}, \overline{ \sqrt{8}} \perp \overline{ \sqrt{8}} = \sqrt{8}$$

(۱۱) في الشكل المقابل:

اثبت أن: ∆سصم متساوى الأضلاع

ي البرهان ي

$$^{\circ}$$
 که $(^{\circ}$ $($

∴ ∆س صم متساوى الأضلاع

(١٢) في الشكل المقابل :

م ، 🗸 دائرتان متقاطعتان في 🕴 🗘

$$\therefore \overbrace{\gamma \downarrow \zeta}$$
 محور تماثل $\overline{\gamma} \rightarrow \overline{\zeta} = -2$
فی $\Delta \Delta \uparrow C$ ، $-C$

- 5 = 5 (r)
- $\Delta = \Delta = \Delta = \Delta$ د کار د (٣) ح و ضلع مشترك

$$\therefore \overbrace{\gamma_{\nu}}$$
 محور تماثل $\overline{\gamma_{\nu}}$ $\therefore \gamma_{e} = - \sqrt{2}$

- 10 10 = -10
- وينتج من التطابق أن : $\upsilon(c\hat{\varsigma}) = \upsilon(c\hat{\varsigma})$

(١٣) في الشكل المقابل :

ي البرهان ي

ن
$$\overline{f}$$
 مماس للدائرة f عند g ، g نصف قطر f . f . f . f

مماس للدائرة
$$\gamma$$
 عند $\overline{\gamma}$ نصف قطر $\overline{\gamma}$ نصف قطر $\overline{\gamma}$ لم $\overline{\gamma}$ نصف قطر $\overline{\gamma}$.

😥 في الشكل المقابل :

- م دائرة ب (سصع) = ب (سعُ ص) ، و منتصف س ص ، ه منتصف سع
 - أثبت أن: مع = مه

البرهان ج

فی
$$\Delta$$
س ص ع \therefore v $(\widehat{\omega}) = v$ $(\widehat{\hat{s}})$
 \therefore v $\omega = v$ ω

$$\frac{\overline{0}}{0}$$
 و منتصف $\frac{\overline{0}}{0}$ $\frac{\overline{0}}{0}$ $\frac{\overline{0}}{0}$ $\frac{\overline{0}}{0}$ $\frac{\overline{0}}{0}$ $\frac{\overline{0}}{0}$ $\frac{\overline{0}}{0}$ $\frac{\overline{0}}{0}$

2 r = 5 r ··

١٥) في الشكل المقابل :

اب قطر في الدائرة م

52 1/ 486

ي البرهان ي

🐺 🕌 قطر في الدائرة م

$$\circ \land \cdot \cdot = \circ \land \cdot - \circ \land \land \cdot = (\widehat{\mathsf{s}_{\boldsymbol{\omega}}})_{\boldsymbol{\omega}} + (\widehat{\mathsf{s}_{\boldsymbol{\omega}}})_{\boldsymbol{\omega}} : \cdot$$

$$\circ \circ \cdot = \frac{1 \cdot \cdot \cdot}{5} = (\widehat{5} \cup) \cup = (\widehat{5} \cup) \cup \cdots \quad \overline{5} \cup \overline{5} \cup \overline{5} :$$

$$\widehat{\boldsymbol{S}}_{0} = \widehat{\boldsymbol{S}}_{0} \times \widehat{\boldsymbol{S}}_{0} = \widehat{\boldsymbol{S}_{0} \times \widehat{\boldsymbol{S}}_{0} = \widehat{\boldsymbol{S}}_{0} \times \widehat{\boldsymbol{S}}_{0} = \widehat{\boldsymbol{S}}_{0} \times \widehat$$

🛪 في الشكل المقابل:

وه قطر في دائرة مركزها م

ي البرهان ي

$$(1) \qquad (\widehat{\omega}) = (\widehat{\omega}) = (\widehat{\omega}) : : \epsilon \omega = (\widehat{\omega})$$

$$(\widehat{0}) = 0$$
 ($\widehat{0}$) محیطیتان مشترکتان فی $(\widehat{-0})$ (۲)

$$\mathfrak{C}(\widehat{-0}) = \mathfrak{G}(\widehat{3})$$
 محیطیتان مشترکتان فی $\widehat{(00)}$ (۳) $\mathfrak{C}(\widehat{0})$ (۳) محیطیتان مشترکتان فی $\mathfrak{C}(\widehat{0})$

$$\therefore \wp(\hat{\wp}) = \wp(\hat{\jmath}) \quad \therefore \wp(\hat{\wp}) = \wp(\hat{\jmath})$$

(٢٠) في الشكل المقابل :

٠٠٠ ١٩ = ١٠ = نق

*o·=(しfr)の=(fûr)の:

٠٨٠= ٥٠٠- ٥٠٠- ١٨٠=(١٦٠٠) ع :-

"محیطیة ومرکزیة مشترکتان فی $(\widehat{\{\gamma\}})$ "

ن د (المو) = د (احد) ن احد = حد

 $\circ \vee \cdot = \frac{\circ \xi \cdot - \circ \vee \wedge \cdot}{\circ} = (\hat{\mathcal{L}}) \circ = (\hat{\mathcal{L}}) \circ = (\hat{\mathcal{L}}) \circ \circ \cdot$

.. ق (ح أع)=٠٧٠ - ٥٥٠ =٠٦٥

(٢) في الشكل المقابل :

حري مماس للدائرة عند ح

 $^{\circ}\xi \cdot = ^{\circ}\Lambda \cdot \times \frac{1}{\Gamma} = (-\hat{\Gamma}) \circ \frac{1}{\Gamma} = (-\hat{\Gamma}) \circ \cdots \circ (-\hat{\Gamma}$

(٩) في الشكل المقابل:

، هس = هص

 $\{a\} = \overline{\bigcup_{n \in \mathbb{N}} \cap \overline{\bigcup_{n \in \mathbb{N}}}}$

أثبت أن : هع = هـل

ي البرهان ي

🛭 البرهان 🗴

- ·· وه قطر في الدائرة م
- \circ دائرة" \circ دائرة" محیطیة مرسومة فی نصف دائرة" \circ

$$\circ V = \circ 1 + \times \frac{1}{5} = \widehat{(5 \circ 6)} \circ \frac{1}{5} = \widehat{(5 \circ 6)} \circ \widehat{(5 \circ 6$$

(۱۷) في الشكل المقابل :ــ ا بر و مستطيل مرسوم داخل دائرة

رسم الوتر م آ بحیث م ه = م

$$\bigcirc \leftarrow (\widehat{as}) \circ = (\widehat{ss}) \circ \cdots \circ (\widehat{ss}) = (\widehat{ss}) \circ \cdots \circ (\widehat{ss}) = (\widehat{ss}) \circ \cdots \circ (\widehat{ss}$$

 $\mathfrak{o}(\widehat{\mathfrak{f}_{\omega}}) = \mathfrak{o}(\widehat{\mathfrak{c}_{\omega}})$ وبإضافة $\mathfrak{o}(\widehat{\mathfrak{o}_{\omega}})$ للطرفين

🕟 فى الشكل المقابل :

له قطر في الدائرة

°۱۱۰=(٧) ي د

أوجد: ق (و لُهُ)

ツァ=(uff) v, uf// 分文· أثبت أن : $\Delta < \{ - \}$ متساوى الأضلاع

ي البرهان ي

$$: \omega(\widehat{\mathcal{I}}_{\mathcal{L}}) = \frac{1}{7} \omega(\widehat{\mathcal{I}}_{\mathcal{I}}) = \frac{1}{7} \times \widehat{\mathcal{I}}_{\mathcal{I}} = \widehat{\mathcal{I}}_{\mathcal{I}} \times \widehat{\mathcal{I}}_{\mathcal{I}} \times \widehat{\mathcal{I}}_{\mathcal{I}} \times \widehat{\mathcal{I}}_{\mathcal{I}} = \widehat{\mathcal{I}}_{\mathcal{I}} \times \widehat{\mathcal{I}}_{\mathcal{$$

"محیطیة ومرکزیة مشترکتان فی $(\widehat{\gamma})$ "

∴ △ ح إ ب متساوى الأضلاع

ي البرهان ي

·· لَهُ قطر في الدائرة م

∴ ن (ل و و ه) = ۹۰° محیطیة مرسومة فی نصف دائرة "

 \circ ۱۸۰=($\hat{\omega}$) دائری $\hat{\omega}$ دائری $\hat{\omega}$ دائری $\hat{\omega}$

 $^{\circ}$ V $\cdot = ^{\circ}$) $\cdot - ^{\circ}$ $\wedge \cdot = (\widehat{a})$ $\leftrightarrow \cdots$

ن ق (و ل ه ا ع م ۱۸۰ - ۹۰ - ۲۰ = ۲۰ ° - ۲۰ • - ۲۰

(۲۲) في الشكل المقابل :

إبح مثلث متساوى الأضلاع مرسوم داخل دائرة

أخذت و $\in \widehat{\P}$ ، و $\in \overline{2e}$

بحيث 9 = 3 a أثبت أن $\Delta 1 < \alpha$ متساوى الأضلاع

ى البرهان ي

- ∴ ∆ إبر متساوى الأضلاع
- $^{\circ}$ ٦٠=($\hat{\omega}$) ن قیاس کل زاویهٔ من زوایا $^{\circ}$ ٦٠ ن $^{\circ}$
- $\widehat{(\hat{\varphi})}$ ، $\widehat{(\hat{\varphi})}$ محیطیتان مشترکتان فی القوس $\widehat{(\hat{\varphi})}$
 - \circ $1 \cdot = (\hat{s}) \circ = (\hat{\omega}) \circ :$
 - في △ اوه 😯 ق (اود اله عنه عنه العدد عنه العدد عنه ∴ ۵ او ۵ متساوی الأضلاع

٣) في الشكل المقابل :

ي البرهان ي

·· \(\frac{1}{2}\) | \(\frac{1}{2}\) \(\frac{1}2\) | \(\frac{1}2\) | \(\frac{1}2\) | \(\frac{1}2\) | \(\frac{1}2\) | \(\frac{1}2\) ن وه = وو

😢 في الشكل المقابل :

إذا كان حرى مماس للدائرة عندى ، ق (عَ) = ١٤٠

اوجد: ٥٠ (١٩٤) ، ٥٠ (١٩٤)

ي البرهان ي

- ، ∵ (وم ۱) خارجة عن ۵ م وح
- $(\widehat{\varsigma}) \circ (\widehat{\varsigma}) \circ (\widehat{\varsigma}) \circ (\widehat{\varsigma} \circ (\widehat{\varsigma}$ °15.= °9.+ °5.=
- $\mathfrak{s}(\widehat{\mathfrak{f}}) = \mathfrak{o}(\widehat{\mathfrak{f}})$ "قوس مقابل لزاوية مركزية" $\mathfrak{s}(\widehat{\mathfrak{f}})$ ٠٠ ال (عَا) ع ١٣٠ = ١٣٠ (أولاً)
 - فی Δ ام Δ \Rightarrow د ام Δ فی Δ
- (ثانیاً) $\circ \circ \circ = \frac{\circ \circ \circ \circ \circ \circ}{\circ} = (\circ \circ \circ) \circ = (\circ \circ \circ) \circ = (\circ \circ \circ) \circ :$

(٢٥) في الشكل المقابل:

"الصف الثالث الإعدادي"

المحترف نى الرياضيات

م ، له دائرتان متقاطعتان في ﴿ ، ب

رسم 📆 يقطع الدائرة م 🔊 في ه والدائرة ◊ في و رسم 🚅 يقطع الدائرة م و في و والدائرة √ في ح

 \sqrt{e} افجد: \sqrt{e} اثبت أن: \sqrt{e} اثبت أن \sqrt{e}

- العمل في نرسم آب
 - لا البرهان ي
- ∵ الشكل إبح و رباعي دائري
- $^{\circ} \wedge \wedge \cdot = (\widehat{s}) \cup (\widehat{s}) \cup (\widehat{s}) \cup \cdots$
- ٠٠٠ = ٧٠ ١٨٠ = (۶٩٠) ن ن ن
 - ۰: الشکل ∤بو ۵ رباعی دائری
- $v(\hat{s})$ الخارجة $v(\hat{s})$ الداخلة المقابلة $v(\hat{s})$
- ن نه (و) =۱۱۰° (أولاً)
 - $^{\circ}$ \lambda \cdot = $^{\circ}$ \lambda + $^{\circ}$ \lambda \cdot = $^{\circ}$ \lambda + $^{\circ}$ \lambda \cdot = $^{\circ}$ \lam

وهما زاويتان داخلتان وفي جمة واحدة من القاطع 📆

· 25 // ae (ثانیاً)

(٢٦) في الشكل المقابل :

ا ق (ه ب و العسود) الله العسود)

البرهان ع

ن (ووُه) خارجه عن ∆ اوح

 $\cdot \cdot \circ (\overline{e}) = 187^{\circ}$ مقابل لزاویة محیطیة ($e \hat{s}$) ن

 $(\widehat{a}\widehat{a}\widehat{b})$ "محیطیتان مشترکتان فی

"مقابل لـ $(2\hat{e}^{-})$ المحيطية"

$$0.06 = \frac{10^{\circ} + 171^{\circ}}{1} = 10^{\circ}$$

(٧٧) في الشكل المقابل:

ى البرهان ي

∵ اسحورباعی دائری

(٢٩) في الشكل المقابل : ق (اب هر) = ۱۰۰

، ق (ح أي) = ٤٠

- ن $\mathfrak{o}(\widehat{\mathbf{y}} \hat{\mathbf{u}})$ الخارجة $= \mathfrak{o}(\widehat{\mathbf{y}})$ الداخلة المقابلة

 $(\widehat{s}) = \widehat{(s)} = \widehat{(s)}$ اثبت أن: $\widehat{o}(\widehat{s})$

- ٠٤٠= ٥٤٠ ١٠٠٥ : ٠٠٠ ن د (او عرب المواد الم
- $\widehat{(sl)} \circ \widehat{(sl)} \circ \widehat{(s$

📆 في الشكل المقابل :

रु । पिकार अ

$$\bigcirc \leftarrow \circ \gamma \cdot = \frac{\gamma}{\Gamma} = (\uparrow \hat{\gamma}) \circ \frac{1}{\Gamma} = (\uparrow \hat{\gamma}) \circ \cdots \circ (\downarrow \hat{\gamma}) \circ (\downarrow \hat{\gamma}) \circ \cdots \circ (\downarrow \hat{\gamma}) \circ \cdots \circ (\downarrow \hat{\gamma}) \circ$$

محيطية ومركزية مشتركتان في (اح)

ن عرد // إلى ، أع قاطع لهما

$$^{\circ}$$
 \circ $^{\circ}$ بالتبادل $^{\circ}$ $^{\circ}$ \circ $^{\circ}$ \circ $^{\circ}$ $^{\circ}$ \circ $^{\circ}$

من \bigcirc ، \bigcirc ن \bigcirc (\bigcirc \bigcirc) \bigcirc ن \bigcirc (\bigcirc \bigcirc) من

وبالتالي فإن: ند ده > ١٩

😙 في الشكل المقابل :

م دائرة

シリーシリーノリい

ي البرهان ي

- $\therefore \uparrow \gamma = \uparrow c = c \gamma$ ∴ $\triangle \uparrow c \gamma$ متساوى الأضلاع
 - "زاویة مستقیمة $^{\circ}$ ، \circ ($\sim \hat{\circ}$ مستقیمة $^{\circ}$ ، \circ
- ن ق (ب و ۱) = ۱۸۰ ۲۰ = ۱۲۰ ، وب = وا
 - $\mathfrak{O}(e^{\widehat{\mathsf{O}}}) = \mathfrak{O}(\widehat{\mathsf{O}}) = (\widehat{\mathsf{O}}) = (\widehat{\mathsf{O}})$
 - °٩٠=° ٣٠+° ٦٠=(دأب)ى ..
 - ∴ ﴿ بَ مماس للدائرة م عند ﴿

ي البرهان ي

محیطیة ومرکزیة مشترکتان فی (🗝 🤇)

، ∵ (وَبُ f) خارجة عن ∆ إبر

: م ب = م ح = نق

۰۰ ق (اح ۲) = ۲۰ – ۲۰ ° – ۲۰ ° .

🗥 في الشكل المقابل :

اب ، ح و وتران متوازيان في الدائرة

، طول نصف قطرها ١٥ سم

، ق (ح مُ ا) = ۸۰ ا

 $(\widehat{\{ e}) = \operatorname{deb}(\widehat{\{ e})$

أوجد: ق (م أب) ، ق (وع) وطول وو

ي البرهان ي

"قوس مقابل لزاوية مركزية"

- - $^{\circ}\Lambda\cdot=(\widehat{1})\omega=(\widehat{1})\omega:$
- ムト= ト・・・・ ペト= (山介) ル・・
- $\circ \circ \cdot = \frac{\circ \wedge \cdot \circ \wedge \wedge \cdot}{r} = (\widehat{\mathsf{pc}}_{r})_{o} = (\widehat{\mathsf{pf}}_{r})_{o} : :$
- $^{\circ}\Lambda \cdot = (\widehat{\mathfrak{sl}})_{\mathcal{O}} = (\widehat{\mathfrak{sl}})_{\mathcal{O}} : \overline{\mathfrak{ll}}_{\mathcal{O}} : \overline{\mathfrak{ll}}_{\mathcalO} : \overline{\mathfrak{ll}_{\mathcalO}} : \overline{\mathfrak{ll}}_{\mathcalO} : \overline{\mathfrak{ll}}_{\mathcalO} : \overline{\mathfrak{$
- \sim طول $\widehat{62} = \frac{170}{170} \times 7 \times \frac{77}{V} \times 01 = 3,17$ سم

📆 في الشكل المقابل :

﴿ وَ قطر في الدائرة م

sp = -p.

 $\widehat{(5)}$ اثبت أن: $\widehat{\upsilon}(\widehat{-2}) = \widehat{\upsilon}(\widehat{-2})$

في الشكل المقابل: $\frac{1}{\sqrt{2}}$ مماس للدائرة عند $\frac{1}{\sqrt{2}}$ ، $\frac{1}{\sqrt{2}}$ ، $\frac{1}{\sqrt{2}}$. $\frac{1}{\sqrt{2}}$. $\frac{1}{\sqrt{2}}$

ي البرهان ي

 $\overline{}$ س $\overline{}$ \overline

$$\bigcirc \longleftarrow (3\widehat{\mathcal{L}}_{-}) = \mathcal{O}(\widehat{\mathcal{L}}_{-}) + \widehat{\mathcal{L}}_{-}$$

$$\bigcirc \leftarrow (\hat{s}) \circ = (\hat{s} \circ s) \circ :$$

محيطية ومماسية مشتركتان في ﴿ ﴿ اَ ۖ ﴾

من () ، ()
$$\therefore$$
 $v(\omega_{\widehat{u}}) = v(\widehat{e})$

:: (صَسَ،) خارجة عن الشكل إس صو

ن اس صورباعی دائری ن

📆 في الشكل المقابل :

۶۶ <u>۱ سو</u> ، و۱۰ <u>۱</u>۶۲ اس اثبت ان :

- ﴿ الشكل أ√وح رباعي دائري
- $(\mathbf{s}\hat{\omega}) = (\mathbf{s}\hat{\omega}) \mathbf{v} \quad \mathbf{r}$

ي البرهان ي

- ٠٠ الآول = ٩٠ ن ق (الآور) = ٩٠ ن ق (الآور) = ٩٠ ن ق
- ° 4·=(シルト) ひ : ロートーマン・
 - : v(12c) = v(12c)
- " وهما مرسومتان على القاعدة ﴿ ﴿ وَفَي جِهَةَ وَاحِدَةً "
 - ∴ الشكل ألاء ح رباعي دائري

ومن الشكل الرباعي الدائري $٩ \sim ٥ حر$

- $\bigcirc \leftarrow (\hat{s}\hat{s}) = (\hat{s}\hat{s}) \circ :$
- - "محیطیتان مشترکتان فی $(\widehat{m{c}}\,\widehat{m{a}})$
- $\omega(0,0) : \mathcal{O}(0,0) = \mathcal{O}(0,0) = \mathcal{O}(0,0)$

$(\widehat{\mathfrak{sp}})_{\omega} = (\widehat{\mathfrak{sp}})_{\omega} = (\widehat{\mathfrak{sp}})_{\omega} = (\widehat{\mathfrak{sp}})_{\omega} = (\widehat{\mathfrak{sp}})_{\omega}$

🛭 البرهان 🖒

أح قطراً في الدائرة ٢

من (\bigcirc) وبالطرح: \therefore $\upsilon(\widehat{\upsilon e}) = \upsilon(\widehat{e})$

٣ في الشكل المقابل :

ا بح و شکل رباعی

، اب = او ، ق (اب ع) = ۳۰ ، ، ق (و و هـ) = ۱۲۰ °

، ۵۰(۱۳۵۶) = ۱۱۰ أثبت أن : الشكل إسحى رباعي دائري

ي البرهان ي

- $^{\circ}\mathbf{r} \cdot = (\mathbf{s} \, \hat{\mathbf{c}} \, \mathbf{l}) \cdot \mathbf{s} = (\mathbf{l} \, \hat{\mathbf{c}} \, \mathbf{l}) \cdot \mathbf{s} \cdot \mathbf{s} = \mathbf{l} \cdot \mathbf{l} \cdot \mathbf{s}$
 - .. (Î) = \(\lambda \cdot = \cdot \cdo
- $: \mathfrak{o}(\hat{\mathfrak{g}}) = \mathfrak{o}(\hat{\mathfrak{g}}(\hat{\mathfrak{g}}) : \mathfrak{o}(\hat{\mathfrak{g}}(\hat{\mathfrak{g}})) = \mathfrak{o}(\hat{\mathfrak{g}}(\hat{\mathfrak{g}}))$

∴ الشكل المحورباعى دائرى

ش فى الشكل المقابل: إسرى شكل رباعى دائرى

ا ب د ۶ شکل رباعی دائری ...

تقاطع قطراه في و 🕟

، س ∈ او ، ص ∈ وو · —.. -

حيث: سس // الآء

أثبت أن: الشكل س صحر الباعي دائري

ي البرهان ي

- " وهما مرسومتان على القاعدة $\overline{\gamma}$ وفي جهة واحدة
 - :: س ص ۱/ ۶۲
 - $(\hat{\beta}) = 0$ التناظر $(\hat{\beta}) = 0$
- " وهما مرسومتان على القاعدة صب وفي جهة واحدة " ∴ الشكل سصحبرباعي دائري

👣 في الشكل المقابل :

$$q = q = q \cdot q \cdot q$$
 ینصف ($-\hat{q} \cdot q$) اثبت ان:

- ١٥ وه = هر
- الشكل وسوه رباعى دائرى

ي البرهان ي

في ۵۵ اود ، احد فيهما:

$$(\hat{s}) = \hat{s}(\hat{s}) = \hat{s}(\hat{s})$$

وينتج من التطابق أن :
$$\Delta$$
 أو $a \equiv \Delta$ أح $a \equiv \Delta$ وينتج من التطابق أن : و $a = a = \Delta$ (أولاً)

"محیطیتان مشترکتان فی $\widehat{(\mathbf{q})}$ "

"من التطابق "
$$\sigma(\widehat{\mathbf{c}}) = \sigma(\widehat{\mathbf{f}}\widehat{\mathbf{c}})$$
 "من التطابق ::

🖔 في الشكل المقابل :

∆ إس صفيه:

$$\mathcal{O}(\hat{l}) = \mathcal{V}$$

، سَحَ ينصف (اسَ ص)

، صباع ينصف (اص س)

أثبت أن : الشكل ∤بح ورباعي دائري

في ∆∤س ص

$$\mathfrak{o}(\widehat{v-c}) = \mathfrak{o}(\widehat{v-c}) = \mathfrak{o}(\widehat{v-c})$$
 بالتقابل بالرأس $\mathfrak{o}(\widehat{v-c}) = \mathfrak{o}(\widehat{v-c})$

وهما زاويتان متقابلتين متكاملتين

∴ اسح و رباعی دائری

﴿ فَي الشَّكِلِ المُقَابِلِ :

sp = -p

أثبت أن: الشكل إبح ورباعي دائري

ي البرهان ي

$$\circ \circ \cdot = \frac{\circ \wedge \cdot - \circ \wedge \wedge \cdot}{5} = (-\hat{s}) \circ = (\hat{s}) \circ \cdot = (\hat{s}) \circ = (\hat{s}$$

وهما مرسومتان على القاعدة الله وفي جهة واحدة ... الشكل أبح ورباعي دائري

في الشكل المقابل :

اس ينصف (دأح)

، وص ينصف (ب و عر)

أثبت أن: الشكل إس ص ورباعي دائري

$$\therefore \frac{1}{\sqrt{3}}$$
 ينصف $(-\hat{1}_{<})$ $\therefore \frac{1}{\sqrt{3}}$ ينصف $(-\hat{1}_{<})$ $\therefore \frac{1}{\sqrt{3}}$ $\cup (\hat{1}) = \frac{1}{\sqrt{3}}$ $\cup (\hat{2})$

$$(-\hat{\mathfrak{g}}_{-})_{0} = (-\hat{\mathfrak{g}}_{-})_{0} :$$

وهما مرسومتان على القاعدة سرس وفى جهة واحدة

∴ الشكل إس ص و رباعي دائري

🕄 في الشكل المقابل :

 $^{\circ}\Lambda = (\widehat{c})$ $^{\circ$

، ق (و حَوْد) = ٥٠٠

أثبت أن : الشكل أحر ورباعى دائرى

🛭 البرهان 🗴

$$\circ$$
 در \widehat{s}) + در \widehat{s} بالتبادل \widehat{s}

ن
$$\mathfrak{o}(\widehat{\omega}) + \mathfrak{o}(\widehat{s}) = 1$$
 ن $\mathfrak{o}(\widehat{\omega}) + \mathfrak{o}(\widehat{s}) + \mathfrak{o}(\widehat{s})$ دائری دائری

(٤٢) في الشكل المقابل:

 $\overline{1-}$ قطر $0 \in \overline{1-}$

، وح مماساً للدائرة عند ح ، ه ∈ حب بحيث وه = وح

أثبت أن: الشكل إح و هرباعي دائري

ي البرهان ي

$$\bigcirc \longleftarrow \qquad (\widehat{-(\hat{s}_{-1})}) = \widehat{(s_{-1})} = \widehat{$$

" مماسية ومحيطية مشتركتان في $(\widehat{\boldsymbol{\nu}},\widehat{\boldsymbol{c}})$

$$0 \leftarrow (2\widehat{a}) = (2\widehat{a}) \Rightarrow (2\widehat{a}) \Rightarrow$$

وهما مرسومتان على القاعدة حرو وفي جهة واحدة

٠٠ ١ح وه رباعي دائري

😭 في الشكل المقابل :

آب ، آح مماسان للدائرة

، ق (ب أح) = ٧٠٠

، سر = ب

اوجد : ب (۱۰)

21=11:

بحیث اب = اه

$$\therefore \omega(\widehat{\mathsf{J}}\widehat{\mathsf{L}}\underline{\mathsf{L}}) = \omega(\widehat{\mathsf{J}}\widehat{\mathsf{L}}\underline{\mathsf{L}}) = \frac{\mathsf{L}}{\mathsf{L}}\widehat{\mathsf{L}}\underline{\mathsf{L}} = \mathsf{L}$$

البرهان ج

ثانيا: أثبت أن الشكل ﴿ هُ حِ ٤ رباعي دائري

ن ن (س هُ \uparrow) الخارجة = ن (ح $\widehat{-}$) الداخلة المقابلة ...

ن $\mathfrak{o}(-0)$ الخارجة $\mathfrak{o}(\widehat{\gamma})$ الداخلة المقابلة $\mathfrak{o}(\widehat{\gamma})$

ن اوس ه رباعی دائری

في الدائرة ◊ ∵ إبور رباعي دائري

۰۱۸۰=(۶٠٩) + در (۶٠٩) د ۲۰۱۰

ن ق (س هُ ا) + ق (س وُ ا) = ١٨٠ ° ...

ابوء متوازی أضلاع ، ه ∈ سو

(ع) في الشكل المقابل:

، ب (ب أه) =٤٠ أوجد:

أولاً: ق (الأب) ، ق (و)

:: إبحر متوازي أضلاع

: ق (اهُ ح) خارجة عن ١ اسه

ن اهری رباعی دائری

اب ومثلث فيه اب = اح (بَ ينصف (بَ عَلَى اللهِ ع

🗈 في الشكل المقابل :

ويقطع √ح في س

(\widehat{c}) وينصف و ويقطع √ب في ص

أثبت أن: (١) الشكل صوس صرباعي دائري

r) سو // صس

ي البرهان ي

ن سَنَ ینصف (\hat{a}) ، حَصَّ ینصف (\hat{a}) : \cdot

$$\therefore \frac{1}{7} o(\hat{\omega}) = \frac{1}{7} o(\hat{\alpha})$$

ي البرهان ي

·· اب ، اح مماسان للدائرة · اب=اح

" مماسية ومحيطية مشتركتان في (بح) "

😥 في الشكل المقابل :

م ، ∿دائرتان

متقاطعتان في 🕽 ، ب

، حرو يمر بالنقطة ب

أثبت أن :

الشكل ∮وس ه رباعي دائري

العمل العمل العمل الم

لا البرهان ع

في الدائرة م ∵ هحب ﴿ رباعي دائري

"المراجعة النهائية في الهندسة "

"الصف الثالث الإعدادى"

المحترف فى الرياضيات

$$(\widehat{-\omega}\widehat{-\omega}) = \underbrace{(\widehat{-\omega}\widehat{-\omega})}_{\bullet} : \underbrace{(\widehat{$$

وهما مرسومتان على القاعدة سرص وفي جهة واحدة .: سحسص رباعی دائری

(٤٧) في الشكل المقابل :

اب دو متوازی أضلاع ه و ∈ حري

أثبت أن: الشكل إب و هرباعي دائري

ي البرهان ي

·· اسح و متوازی أضلاع

$$0 \leftarrow (\hat{\mathbf{z}}) = \mathbf{v}(\hat{\mathbf{z}}) \longrightarrow 0$$

من ()، ()
$$\therefore \omega(\hat{\uparrow}) = \omega(-\hat{a}_{<})$$

وهما مرسومتان على القاعدة 🗝 وفي جهة واحدة ∴ اسوه رباعی دائری

🚯 في الشكل المقابل :

اب ، أح قطعتان مماستان للدائرة

عند ب ، ح

، قر(أ) = ٠٤°

اوجد : ب (ب وُح)

ي البرهان ي

٠: ﴿ اللَّهِ مَا اللَّهُ مَا اللَّهُ عَنْدَ بِ مِ حَ

$$^{\circ} \vee \cdot = \frac{^{\circ} \xi \cdot - ^{\circ} | \Lambda \cdot}{\Gamma} = (-\widehat{\varphi} | \widehat{\varphi}) \circ = (-\widehat{\varphi} | \widehat{\varphi}) \circ :$$

"محيطية ومماسية مشتركتان في $(-\bar{c})$ "

٤٩) في الشكل المقابل :

اب ، اح قطعتان مماستان للدائرة م

 $(\hat{\mathfrak{f}})$ اوجد $(\hat{\mathfrak{f}})$

ي البرهان ي

"محيطية ومركزية مشتركتان في (*ص*َّع)"

$$0 \leftarrow 0 = 0 \quad (9 - 0) = 0 \quad (9 - 0) = 0 \quad 0 \rightarrow 0$$

ن
$$\overline{| - \rangle}$$
 ، $\overline{| - \rangle}$ قطعتان مماستان عند $| - \rangle$:

: مجموع قياسات الزوايا الداخلة للمثلث = ١٨٠ °

(a) في الشكل المقابل:

امح مثلث مرسوم داخل دائرة م ، ٢٠ نصفى قطرين فيهما

أوحد:

(しょう) いいしゅういいいかいいいいのの

لا البرهان ع

$$\gamma = \gamma$$
 = γ "أنصاف أقطار"

"محیطیة ومرکزیة مشترکتان فی $(\widehat{|\hspace{-0.1em}|\hspace{-0.1em}|})$ "

ن اسبح رباعی دائری

👀 في الشكل المقابل :

س ک مماسان ، ۳۰۰

للدائرة عند ۱، ب

، ن(س) = اثبت أن :

5P (

ي البرهان ي

$$^{\circ}V^{\bullet} = \frac{^{\circ}\xi^{\bullet} - ^{\circ}\lambda^{\bullet}}{^{\circ}} = (\hat{\psi} - \hat{\psi}) = (\hat{\psi} - \hat{\psi}) \circ :$$

🕜 في الشكل المقابل :

اب=اد

، ۱۶ ، وت مماسان للدائرة اثبت أن :

sul D

٠٠ 👣 ، وب مماسان للدائرة

$$(\hat{\xi})_{\mathcal{O}} = (\hat{\lambda})_{\mathcal{O}} : \hat{\zeta}$$

"مماسية ومحيطية مشتركتان في (اَ ۖ)"

$$(\hat{\mathbf{x}}) = (\hat{\mathbf{x}}) = (\hat{\mathbf{x}}) = (\hat{\mathbf{x}}) = (\hat{\mathbf{x}})$$

$$(\hat{r})_{\mathcal{O}} = (\hat{f})_{\mathcal{O}} : (\hat{\xi})_{\mathcal{O}} = (\hat{f})_{\mathcal{O}} : : (\hat{\xi})_{\mathcal{O}} = (\hat{f})_{\mathcal{O}} : : (\hat{f})_{\mathcal{O}} : (\hat{f})_{$$

$$(\hat{z}) = o(\hat{z}) = o(\hat{z})$$

🐨 في الشكل المقابل :

ي البرهان ي

$$\circ 9 \cdot = \bot \overline{\neg \neg}$$
 $\therefore \overline{\neg \neg} \bot \overline{\neg \neg}$ $\Rightarrow \overline{\neg} \overline{\neg}$ $\Rightarrow \overline{\neg} \overline{\neg}$ $\Rightarrow \overline{\neg}$ \Rightarrow

$$\bigcirc \leftarrow (\hat{\psi}) \circ \frac{1}{\Gamma} = (\hat{\psi}) \circ \cdot \cdot \cdot$$

"محيطية ومركزية مشتركتان في (س ب)"

$$\widehat{\sigma} \circ \widehat{\sigma} \circ$$

😥 في الشكل المقابل : 🦼

ا برو متوازى أضلاع فيه :

ا و= سو

. .1 -..6

أثبت أن :

حح مماس للدائرة الخارجة للمثلث إسر

ي البرهان ي

$$\bigcirc \longleftarrow (\hat{\hat{r}} = \hat{\hat{v}}) = \hat{\hat{v}} = \hat{\hat{v}}$$

$$(\widehat{-1})_{\omega} = (\widehat{-1})_{\omega} : \omega (\widehat{-1})_{\omega} :$$

00) في الشكل المقابل :

ابح مثلث مرسوم داخل دائرة → مماساً للدائرة عند ﴿ عه // - ح أثبت أن :

الله الله المارة بالنقط المرام و المارة بالنقط المرابع المرابع

ي البرهان ي

$$\bigcirc \bullet \bigcirc // \square \overline{e} : \mathfrak{o}(\widehat{e}) = \mathfrak{o}(\widehat{e}(\widehat{e}))$$
 .: $\widehat{e}(\widehat{e}) = \mathfrak{o}(\widehat{e}(\widehat{e}))$.:

"مماسية ومحيطية مشتركتان في ﴿ اللهِ الله

من
$$\bigcirc$$
 ، \bigcirc ن \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc من \bigcirc ، \bigcirc \bigcirc \bigcirc

١٠٠٠ مماس للدائرة المارة بالنقط ١٠٥٥ ، هـ ١٠٠١

67) في الشكل المقابل :

ق(بأح) =٩٠٠ • ، اح = ٣سم ، ب ح = ٢س

، ق (ب أو) = ۲۰ °

أثبت أن: ٢٠٠ مماس للدائرة الخارجة للمثلث ١٠٠

ي البرهان ي

∵ ∆ ب∫ح قائم الزاوية في ﴿

$$\widehat{(\mathbf{c})} \mathbf{v} = (\widehat{\mathbf{c}}) \mathbf{v} :$$

١٠٠٠ مماس للدائرة المارة برؤوس △ ١٩٠٨

(٥) في الشكل المقابل :

15=00 أثىت أن :

ي البرهان ي

Ps= - 2 ::

$$\mathfrak{o}(\widehat{(a-)}) = \mathfrak{o}(\widehat{(f)})$$
 وبإضافة $\mathfrak{o}(\widehat{(a-f)})$

$$(\widehat{\omega})_{\mathcal{O}} = (\widehat{\beta})_{\mathcal{O}} : \widehat{(\omega)_{\mathcal{O}}} = (\widehat{\beta})_{\mathcal{O}} : \widehat{(\omega)_{\mathcal{O}}} = \widehat{(\beta)_{\mathcal{O}}} : \widehat{(\omega)_{\mathcal{O}}} = \widehat{(\beta)_{\mathcal{O}}} : \widehat{(\omega)_{\mathcal{O}}} = \widehat{(\beta)_{\mathcal{O}}} : \widehat{(\beta)_{\mathcal{O}}} : \widehat{(\beta)_{\mathcal{O}}} : \widehat{(\beta)_{\mathcal{O}}} = \widehat{(\beta)_{\mathcal{O}}} : \widehat{(\beta)_{\mathcal{O}}$$

وبالطرح ∴ *د ه = ح* و

🔊 في الشكل المقابل :

 $\overline{-1}$ قطر في الدائرة $\overline{-1}$

でで=(しう)のい

، و منتصف أح $\{a\} = \overline{1} \cap \overline{1} = \{a\}$

(آ أوجد: ن (ب و ع) ، ن (ع)

(۲) اثبت ان: ۱۱ حری

ي البرهان ي

 $(\widehat{-})^{*}$ محیطیتان مشترکتان فی

، ·· أب قطر في الدائرة م ·· • • (أوب) = ١٨٠ °

، ٠٠ ومنتصف (اح)

$${}^{\circ}\mathbf{r} \cdot = \frac{{}^{\circ}\mathbf{r}}{\mathbf{r}} = (\widehat{\mathfrak{sp}}) \cdot \mathbf{r} \cdot \frac{\mathbf{r}}{\mathbf{r}} = (\widehat{\mathfrak{sp}}) \cdot \mathbf{r} \cdot \mathbf{r}$$

ن $\upsilon(s < \hat{r}) = \upsilon(s + \hat{r}) = \hat{r}$ وهما فی وضع تبادل \dot{r} 52/141:

9) في الشكل المقابل :

 Δ \uparrow -c مرسوم خارج الدائرة م

التى تمس أضلاعه

29 6 30 6 49

في ء ، ه ، وعلى الترتيب

، او = ٥ سم، بد = ٤ سم

، حو = ٣سم أوجد: محيط ∆ابح

ي البرهان ي

·· ﴿ ﴿ ، ﴿ هَ قطعتان مماستان عند ؟ ، هـ

 $\cdot \cdot \sqrt{5}$ $\cdot \sqrt{6}$ adaتان مماستان عند 5 $\cdot \cdot$

٠٠٠ حو ، حه قطعتان مماستان عند و ، ه

 $| -1 + - - + - | - - - | \Delta |$

$$-7 + 1 + 1 = 37$$

슋 في الشكل المقابل :

اب ، \overline{r} قطعتان مماستان \overline{r}

للدائرة عند ب ، ح

، ق (ح و ه ع = ١٢٥ = ١٢٥)

(۱) حب <u>= ح</u>ه

البرهان ج

🕦 في الشكل المقابل :

 $\overline{
ho }$ قطر فی دائرۃ م

$$(\widehat{s}) = (\widehat{s})$$

اوجد: ١٠ ٥٠ (١٠ ح)

(5 û P) v (T

ي البرهان ي

$$\circ$$
۱۸۰= ($\hat{\sigma}$ ورباعی دائری $\hat{\sigma}$ $\hat{\sigma}$ $\hat{\sigma}$

$$\hat{v} : \mathbf{v} = \hat{v} : \mathbf{v} = \hat{v} : \mathbf{v} = \hat{v} : \mathbf{v} :$$

، ∵ أب قطر في الدائرة م

$$\cdot: \mathfrak{o}(\widehat{\{e}_{\alpha}) = 9^{\circ}$$
"محیطیة مرسومة فی نصف دائرة"

$${}^{\circ}\Gamma = \frac{{}^{\circ}1\xi \cdot - {}^{\circ}1\Lambda \cdot}{\Gamma} = (\widehat{\omega_{5}}) \omega = (\widehat{\omega_{5}}) \omega :$$

😙 في الشكل المقابل :

اب قطر في دائرة م

 \overrightarrow{a} مماس للدائرة عند ح رسم \overline{a} \overline{a} \overline{a}

 $\frac{1}{4}$ بحیث: $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$

- (۱) الشكل أوور رباعي دائري
- المثلث هرو متساوى الساقين

ي البرهان ي

ن و $(\widehat{\mathbf{f}}_{\mathbf{c}}) = \mathbf{e}^{\circ}$ " مرسومة في نصف دائرة" \mathbf{e}°

ن $\mathfrak{o}_{(}$ $\widehat{\mathfrak{o}}_{(}$) الخارجة $\mathfrak{o}_{(}$) الداخلة المقابلة $\mathfrak{o}_{(}$

٠٠ ١٥ وح رباعي دائري

"مماسية ومحيطية مشتركتان في (حب)"

ومن الشكل الرباعي الدائري أورح

من 🕥 ، 🕥 🗠 🛆 هرو متساوى الساقين

😙 في الشكل المقابل :

اح قطرفی دائرة م

° マー(s こり) しい

أوجد بالبرهان :

رو (د برائر) ما در (د برائر)

و البرهان ي

٠: ﴿ ح قطر في الدائرة م

ن ورو $\widehat{(e^{-1})} = 9$ محیطیة مرسومة فی نصف دائرة" \cdot

 (\widehat{a}) محیطیتان مشترکتان فی

$$^{\circ}$$
V $\cdot = ^{\circ}$ T $\cdot + ^{\circ}$ E $\cdot = (5\hat{\mathsf{F}} -) \circ \cdot \cdot$

😥 في الشكل المقابل :

دائرة م فيها :

2- // 58

م س لـ الم ، م ص لـ وح

أثبت أن: مس = مص

:: الح // بحر

$$\bigcirc \longleftarrow \quad \Rightarrow S = \neg P : \widehat{(\neg S)} \circ = \widehat{(\neg P)} \circ :$$

∴ م س =م ص

슋 في الشكل المقابل :

س ک ، سع مماسان

للدائرة عند ص ، ع

- ، صع=لع
- °V·=(Ĵ)v·
- 🕦 أوجد بالبرهان : 👽 (🗝)
- آثبت أن: سع // صل

ي البرهان ي

"مماسية ومحيطية مشتركتان في (صع)

ن سَص ، سَعْ مماسان للدائرة عند ص ، ع

- ن س ص = سع
- ٠: ق (س صَ ع) = ق (س عُ ص) = ٧٠°
- $^{\circ}$ $\mathfrak{t} \cdot = ^{\circ}$ $\mathsf{V} \cdot ^{\circ}$ $\mathsf{V} \cdot ^{\circ}$ $\mathsf{I} \wedge \cdot = (\widehat{\mathfrak{p}})$ $\circ :$
 - ، ∵ صع=كع

📆 في الشكل المقابل :

م ، ◊ دائرتان متطابقتان رسم ﴿ لَ ﴿ ١/ ﴿ ٢٠٠٠

قطع الدائرة م

فی ۱ ، *ب*

 $_{lpha}$ وقطع الدائرة $_{lpha}$

فی ح ، و

اثبت أن : إح = بع

$rac{1}{2}$ العـصل $rac{1}{2}$ نرسم $rac{1}{2}$ $rac{1}{2}$ ، $\sqrt{2}$ \pm $\sqrt{2}$ البرهان $rac{1}{2}$

- $\therefore \overline{90} / \sqrt{\sqrt{80}} \therefore \overline{100} \times \sqrt{100} \times \sqrt{100}$
- $\therefore \gamma \alpha = \sqrt{2}$ ، $\therefore \gamma \rangle \sim \alpha$ دائرتان متطابقتان
- $\therefore 1 = -2$ وبإضافة -2 للطرفين $\therefore 1 = -2$

📆 في الشكل المقابل :

اَتَ ، اَحَ مماسان للدائرة م ، ق (ب أُح) = ۷۰°

اوجد: ق (۱ - ع)

ي البرهان ي

- ن أب ، أح مماسان للدائرة م
- $\circ \circ \circ = \frac{\circ \vee \cdot \circ \vee \wedge \cdot}{5} = (-\widehat{\mathsf{A}}) \circ :$
 - ٠٠ ق (ا عُو ا عَد) = ٥٥ ث ن ع د ا عَد ا

"مماسية ومحيطية مشتركتان في (بح)

- ان سو = دو
- ٠٠ ق (ال ح و) = ق (ال ع ح) = ٥٥ ثم نا
- ٠٠ د د (د و ي ع ١٨٠ = ٥٥٥ ٥٥٥) ٠٠ ن د د د و ي ع ١٨٠ = ٥٥٥ ٥٥٥ .
 - $^{\circ}$ 150 = $^{\circ}$ V·+ $^{\circ}$ 00 = (5 $\hat{\omega}$ f) ω :

🕠 في الشكل المقابل :

اب ، حوی مماسان

للدائرتين م ، ٧

أثبت أن :

50=-1

🛭 البرهان 🗴

- ·· هم ، هم مماسان للدائرة م
 - ∴ ه ا = هد → ()
- ، ∵ هـ ، هـ و مماسان للدائرة ب
 - (r) ← c = c ≥ (r)
 ∴ c = c ≥ (r)
 - بجمع () ، ()

(٦٩) في الشكل المقابل :

△ ابح مرسوم داخل دائرة الدائرة عند ب الدائرة عند ب

، احت الاثنان «

أثبت أن :

اً - مماسة للدائرة برؤوس ∆احر

ي البرهان ي

- :: ١٥٠ // تيسن
- $(\hat{\xi})_{\mathcal{O}} + (\hat{\Upsilon})_{\mathcal{O}} = (\hat{\mathbf{1}})_{\mathcal{O}} :$
- ، ∵ (۲) خارجة عن ۵ احرو
- $(\hat{\mathfrak{o}})_{\mathcal{O}} + (\hat{\mathfrak{t}})_{\mathcal{O}} = (\hat{\mathfrak{r}})_{\mathcal{O}} :$
 - $(\hat{1}) = \mathcal{O}(\hat{1}) = \mathcal{O}(\hat{1})$

$$(\hat{o})_{\mathcal{O}} + (\hat{\mathbf{i}})_{\mathcal{O}} = (\hat{\mathbf{i}})_{\mathcal{O}} + (\hat{\mathbf{r}})_{\mathcal{O}} :$$

- $(\hat{\mathfrak{o}})_{\mathfrak{o}} = (\hat{\mathfrak{r}})_{\mathfrak{o}} :$
- ∴ أب مماسة للدائرة المارة برؤوس ∆ احرى

🕢 في الشكل المقابل :

اب ، حرى وتران متساويان في الطول في الدائرة

أثبت أن: ∆ إحد متساوى الساقين

ي البرهان ي

- ·· و منتصف اح
- $\circ 4 \cdot = \sqrt{12} \perp \sqrt{12} \Rightarrow 0$
 - ·· به مماس للدائرة م عند ب
 - ، م ب نصف قطر

$$^{\circ}$$
9.= $(\hat{a}\hat{c})$ 0 \therefore \overline{a} \pm \overline{c} \cdot

$$(\hat{a} \circ (\hat{b} \circ a) = o \circ (\hat{b} \circ a) :$$

وهما مرسومتان على القاعدة ﴿ هَ وَفَي جِهة واحدة

∴ اهسی رباعی دائری

ومن الرباعي الدائري

- $\overline{\psi} = \psi(e^{\hat{\psi}})$ مرسومتان على القاعدة $\overline{\psi}$
 - (ロアン)の「=(ロアン)の:
 - "مرکزیة ومحیطیة مشترکتان فی $(\widehat{-c})$ "

$$\hat{\boldsymbol{\omega}}(\hat{\boldsymbol{\omega}}) = \boldsymbol{\nabla} \hat{\boldsymbol{\omega}}(\hat{\boldsymbol{\omega}}) = \boldsymbol{\nabla} \hat{\boldsymbol{\omega}}(\hat{\boldsymbol{\omega}})$$

🕅 في الشكل المقابل :

المحرو شكل رباعي مرسوم داخل دائرة

أوجد: ق (ب و حر)

ى البرهان ي

- ۰: ۱سری رہاعی دائری
- $\therefore v(\hat{x} \hat{y}) = v(\hat{z}) \cdot v(\hat{z})$
 - ٠٠ ق (ح و الم ع ع الم ع م ع الم ع
 - $\circ \circ \cdot = \frac{\circ \circ \cdot \cdot \cdot}{\mathsf{r}} = \widehat{(\mathsf{u})} \circ \frac{\mathsf{l}}{\mathsf{r}} = \widehat{(\mathsf{l})} \circ \cdots \circ \cdots \circ \widehat{\mathsf{l}} = \widehat{(\mathsf{l})} \circ \widehat{\mathsf{l}} = \widehat{\mathsf{l}} \circ \widehat{\mathsf$
 - ن ن (ب وُحر) = ٩٥ = ٥٠٠° = ٥٠٠° ن ن در ا
- (٣) أوجد قياس القوس الذي يمثل ثلث قياس الدائرة ثم أحسب طول هذا القوس إذا كان طول نصف قطر $(\frac{\Gamma\Gamma}{V} = \pi)$ الدائرة ۲۱سم

 $^{\circ}$ قياس القوس $\frac{1}{2}$ ع $^{\circ}$

طول القوس = $\frac{1}{\sqrt{r}} \times 7 \times \frac{77}{\sqrt{r}} \times 7 = 33$ سم

ي البرهان ي

- 5== 4 ::
- $\psi(\widehat{1-\varepsilon}) = \psi(\widehat{-\varepsilon})$ وبطرح $\psi(\widehat{-\varepsilon})$ من الطرفين ψ
 - $(\widehat{s})_{\omega} = (\widehat{s})_{\omega} :$
 - $(!) \omega = (\sim) \omega :$
 - "محيطيتان مقابلتان لقوسين متساويين في القياس"
 - ∴ ∆احد متساوی الساقین

(٧) في الشكل المقابل :

اب قطر في الدائرة م

- ، *ب ھ* مماس عند ب
 - ، و منتصف آح

 $(\hat{a}) \circ (\hat{c} \circ \hat{a}) = (\hat{a}) \circ (\hat{a})$

🕬 في الشكل المقابل :

﴿ وَ قطر في الدائرة م

to 172 .

عند ۱ ، ب

أثبت أن: ق ($\mathbf{u} \, \hat{\gamma} \, \mathbf{e}$) = ق ($\mathbf{f} \, \hat{\mathbf{e}} \, \mathbf{e}$)

ي البرهان ي

·· حَلَّ مماس للدائرة م عند ا ، مَ ا نصف قطر

$$^{\circ} \mathbf{q} \cdot = (\mathbf{r} \hat{\mathbf{l}} \Rightarrow \mathbf{q}) \circ \mathbf{q} : \qquad \stackrel{\circ}{\mathbf{q}} \Rightarrow \mathbf{q} \vdash \mathbf{q} :$$

·· حَبُّ مماس للدائرة معند ب ، م ب نصف قطر

$$^{\circ}$$
۱۸۰= ($e^{\hat{\mu}}$ ر) + $e^{\hat{\mu}}$ ر) \div \div (دائری دائری دائری

ن
$$(\hat{\varphi}(v))$$
 الخارجة = $\psi(\hat{\varphi}(v))$ الخارجة :

أثبت أن: سح // وه ي البرهان ي

في الدائرة الصغري

مماسية ومحيطية مشتركتان في $\widehat{(\cdot)}$ في الدائرة الكبري

"مماسية ومحيطية مشتركتان في (﴿وَ) "

$$\mathfrak{G}(\sqrt[4]{2} - \mathfrak{G}) = \mathfrak{G}(\sqrt[4]{2})$$
 وهما فی وضع تناظر $\mathfrak{G}(\sqrt[4]{2} - \mathfrak{G}) = \mathfrak{G}(\sqrt[4]{2})$

🕥 في الشكل المقابل :

احر ، الله مماسان للدائرة

عند ح ، ب

، ق (احرب) = ٥٥°

، ق (ح و ه) = ١٢٥°

أثبت أن: \(\sigma \) اثبت أن: \(\sigma \)

(٦) أثبت أن : حب = حه

·· حبه و رباعی دائری

ن
$$\mathfrak{G}(\sqrt{2} - \omega) = \mathfrak{G}(\sqrt{2} - \omega)$$
 وهما فی وضع تبادل $\therefore \sqrt{2} - \omega$ (أولاً)

ي البرهان ي

$$v \cdot v \cdot (c \cdot \hat{a} \cdot v) = v \cdot (\hat{a} \cdot \hat{a} \cdot v) = v \cdot \hat{a} \cdot \hat{$$

🕅 في الشكل المقابل :

م دائرة

حيث (ب مُ ح) قائمة

البرهان ي

 $(\widehat{-}\widehat{-})$ "محیطیة ومرکزیة مشترکتان فی

 $av () \cdot () \cdot (v + e) = o(\gamma - e)$

🕪 في الشكل المقابل :

اب قطر في الدائرة م

، ب و مماس يقطع آ ح في و

، ق (اً) = ٠٣° أثبت أن :

١ مماس للدائرة المارة برؤوس △ بحر

ي البرهان ي

١٠٠ قطراً في الدائرة م

 $\cdot \cdot \cdot \circ (\widehat{f} - \widehat{c} -) = 9 \circ$ "محیطیة مرسومة فی نصف دائرة"

، ·· بَى مَاس للدائرة عند ب ، مَب نصف قطر ·· · · · نصف قطر

$$^{\circ}$$
9.= $(\hat{\mathfrak{suc}})$ \mathfrak{o} \therefore $\overline{\mathfrak{suc}} \perp \overline{\mathfrak{uc}}$ \therefore

$$\hat{\mathbf{v}} : \hat{\mathbf{v}} = \hat{\mathbf{v}} \cdot \hat{\mathbf{v}} = \hat{\mathbf{v}} = \hat{\mathbf{v}} \cdot \hat{\mathbf{v}} = \hat{\mathbf{v}} = \hat{\mathbf{v}} \cdot \hat{\mathbf{v}} = \hat{\mathbf{$$

 $(\hat{s})_{\omega} = (\hat{s}_{\omega})_{\omega} : \omega$

1 مماس للدائرة المارة برؤوس $\Delta - - 2$

(٩) في الشكل المقابل :

🙀 🕏 مماس للدائرة م

ي البرهان ي

$$^{\circ} \mathsf{NT} \cdot = ^{\circ} \mathsf{NO} - ^{\circ} \mathsf{NO} - ^{\circ} \mathsf{NO} = ^{\circ} \mathsf{NO} \cdot \cdots$$

"مماسية ومركزية مشتركتان في (أبّ)"

فى الشكل المقابل:

-- ح قطر في الدائرة ^م

> 1/58 6

، ق (اقرب) = ٥٦٥

اوجد: (۱) به (پ أي)

(SP) v (P)

من (١) ١٠ $(\hat{\beta}) = o(\hat{\beta}) \circ \dot{\beta} \circ \dot{$

SC // -P :

(٨٢) في الشكل المقابل :

إبدى متوازى أضلاع

أثىت أن :

9 = 9 = 9

(٨٣) في الشكل المقابل:

∵ ∤بحرء متوازي أضلاع

·· هـ ح و رباعی دائری

٥٣٠=(١٠ ع) ع

45/100 6

، أب قطر في الدائرة م

أوجد: ق (ا مُ ی ، ق (ا ق)

البرهان ع

 $\cdot \cdot \cdot \circ (-\hat{\gamma}_{<}) = 9.9^{\circ}$ "محیطیة مرسومة فی نصف دائرة"

ي البرهان ي

 (\widehat{a}) .: (\widehat{a}) الخارجة = (\widehat{a}) الداخلة المقابلة (\widehat{a})

= sp ∴

ن ق (احرَ ب ع الله ع الله

 ${}^{\circ}\mathsf{T} \cdot = {}^{\circ}\mathsf{T} \cdot \times \mathsf{T} = (\mathsf{S} \,\widehat{\mathsf{L}}) \otimes \mathsf{T} = (\mathsf{S} \,\widehat{\mathsf{L}}) \otimes \mathsf{T}$

 \circ ۱۸۰ = $\widehat{\langle | a \rangle}$ ن و $\widehat{\langle | a \rangle}$

°15.=°1.-°11.=(25) 0 :.

٠٠ حق ١١ ي

 ${}^{\circ} \mathsf{T} \cdot = \frac{{}^{\circ} \mathsf{T} \cdot \mathsf{T}}{\mathsf{T}} = \widehat{(\mathsf{Q} \cdot \mathsf{Q})} \circ = \widehat{(\mathsf{Q} \cdot \mathsf{S})} \circ : :$

ي البرهان ي

: ق (آب) = كان (آهُ ب) = ٥٠ :

°0.=(25)0=(-1)0: 2-1/51:

 $\hat{\sigma}(\hat{s}) = \frac{1}{7} \omega(\hat{s}) = \hat{s}$

·· صح قطر في الدائرة ٢

٠١١٥= °٢٥+ °٩٠= (٩٤٠) ن ن

٠٠ ق (ت أح) = ١٨٠٠

 $^{\circ}\Lambda \cdot = ^{\circ}\circ \cdot - ^{\circ}\circ \cdot - ^{\circ}\Lambda \cdot = (\widehat{\mathfrak{sf}}) \circ \cdot \cdot$

(٨) في الشكل المقابل :

سح قطر في الدائرة م

50 1/48 6

، ق (و أح) = ٢٥ °

 $(\widehat{a} + \widehat{a} + \widehat{b}) = (\widehat{a} + \widehat{a} + \widehat{b})$

ي البرهان ي

"محيطية ومركزية مشتركتان في (حرَّ)"

ت تح قطر في الدائرة م

المحترف فى الرياضيات

🖈 في الشكل المقابل :

ابحرو شكل رباعي فيه:

البرهان ع

07X

$$(\hat{a} \circ \hat{a}) = \hat{b} \cdot (\hat{a} \circ \hat{a}) + \hat{b} \cdot (\hat{a} \circ \hat{a}) = \hat{b} \cdot \hat{a} \circ \hat$$

$$^{\circ}\mathsf{TA} = ^{\circ}\mathsf{TA} - ^{\circ}\mathsf{VI} = \widehat{(\mathsf{u} \circ \mathsf{u})} : \cdots$$

$$\mathfrak{r}(\hat{\mathfrak{f}}) = \mathfrak{r}(\hat{\mathfrak{f}}) = \mathfrak{r}(\hat{\mathfrak{f}}) = \mathfrak{r}$$
بالتبادل \mathfrak{r}

وهما مرسومتان على القاعدة إب وفي جهة واحدة

🗚 فى الشكل المقابل 🏎

ابحو شكل رباعي

مرسوم داخل دائرة م فإذا كان: ق (اب) = ق (وح) ، ق (و أح)=٣٠=

- 🕦 أثبت أن: ١ح = ٢٥
 - (٢) أوجد ق (١٩ هُ ي)

ي البرهان ي

$$\widehat{(\neg e)} + \widehat{(\neg e)} = \widehat{(\neg \widehat{(\neg e)}$$

"محيطيتان أقواسهما متساوية في القياس"

(٨٦) في الشكل المقابل:

من الخارج في ح

، أو تمس الدائرة م

 $\sqrt{|--|}$ تمس الدائرة $\sqrt{|--|}$

- (۱) أثبت أن: 12 = 14 = 14
- أوجد محيط الشكل إ ب ١٠٥٥
- $(\neg \hat{\nu})$ اثبت أن: $(\neg \hat{\nu})$ ينصف (ح $(\neg \hat{\nu})$

البرهان &

- ٠٠٠ و ، ﴿ حَ قطعتان مماستان عند ؟ ، ح
 - · 12=1< → (1)
- ن احم ، اب قطعتان مماستان عند ح ، ب ·: احم ، ا
 - · 12=1c → (1)

من () ا ا = اح = اح = اب

٠٠٠ م ٧ = ٢ سم ن ع + ٧ م = ٢ سم

 \sim محیط الشکل $1 - \sqrt{1 + 1 + 0 + 0} = 77$ سم

۵۵ اد ۱، ۱ م فیهما

 $|e^{-\beta}|$ ، $e^{-\beta}$ ، $e^{-\beta}$ ، $e^{-\beta}$

~~ | △ = ~ > | △ :

: ق (الأح) = ق (الأب) :

🕪 في الشكل المقابل :

· つうし (つうく) や

، ق (م حَ ب) = ۷۰ = ۷۰

أوجد ق (١٩ م ح)

العميل في نرسم ال

لا البرهان ي

 $\uparrow = \uparrow -$ "أنصاف أقطار"

٠٧٠=(عرب = ٥٠٠٥) ٠٠٠ : ٥٠١٥

:: ق (ت بُر ع) ح ۱۸۰ = ۲۰۰ ما۱۸۰ عند الله عند

ن ق (ا مُ و) = ۲۰ + ۲۰ = ۱۰۰ ث

ᠩ في الشكل المقابل :

الدائرة م الدائرة م

، آحَ ينصف (١٩٩٠)

، و منتصف آب

اثبت أن: 57 لم حم

ي البرهان ي

(٩٠) في الشكل المقابل :

ق (ص سَ ع) = ۹۰ °

، ق (ع لَ ص) =٩٠٠°

، ق (س مُص)=٥٠°

أوجد: ق (س ص ل)

، م منتصف صع

وهما مرسومتان على القاعدة صع وفي جهة واحدة

.. س صعل رباعی دائری

·· صع قطراً في الدائرة ، م منتصف صع

ي البرهان ي

 $^{\circ}$ ۹۰=($^{\circ}$ ۹۰) ن ن $\overline{^{\circ}}$ $^{\perp}$ $^{\perp}$ ن $^{\perp}$ $^{\circ}$ $^{\circ}$

∵ ۲۰ = مح "أنصاف أقطار"

ن د (۱۹ُح) = ن (۱۹ُح)
 ن د (۱۹ُح) = ن (۱۹ُح)

·· اح ينصف (بأم)

ن ق (باعر) = ق (باعر)
 ن ق (باعر) = ق (باعر)

من 🕦 ، 🛈

-11/2 :·

بالتداخل $^{\circ}9.=^{\circ}9.-^{\circ}1.$ بالتداخل $\overline{-5}$

🗚 في الشكل المقابل :

اب ، اح مماسان للدائرة م

، اح ، اح مماسان للدائرة ٧

١٥= ١٥ -

، ای = (ص -۲) سم

، اح = (اس - ٣) سم

أوجد قيمة: س ، ص

ي البرهان ي

·· الله ، اح مماسان للدائرة م

اب = اح

٠٠ ٢٠٠٠ - ٣ = ١٥ ن ٢٠٠٠ ن

 $A = \frac{1}{1} = 0$:

·· ﴿ ﴿ ﴾ ﴿ وَ مماسان للدائرة ﴿

-1=51 : -1=>1: s1=>1:

.: ص − ۲ = ۱۵ : ص = ۱۷

الجزء الأول الأسالة

أولا:أكمل ما يلى:

١ ـ القطعة المستقيمة التي طرفاها مركز الدائرة وأي نقطة على الدائرة تسمى
٢- القطعة المستقيمة التي طرفاها أي نقطتين على الدائرة تسمى
٣- الوتر المار بمركز الدائرة يسمى
٤ أكبر الاوتار طولا في الدائرة يسمى
٥ يوجد للدائرة عدد من محاور التماثل.
٦- المستقيم العمودى على أى وتر في الدائرة من منتصفه يكونللدائرة .
٧ - الدائرة تقسم المستوى الى مجموعات من النقط
 ٨ـ المستقيم العمودى على قطر الدائرة من احدى نهايته يكون
٩ ـ المماسان لدائرة عند نهايتي قطر فيها يكونان
١٠ الأوتار المتساوية في الطول في دائرة تكون على أبعاد متساوية من
١١ ـ إذا كانت الأوتار في دائرة على أبعاد متساوية من المركز فإنها تكون
١٢- إذا كانت أتقع خارج الدائرة م التي نصف قطرها نق فإن م أ نق
١٣ ـ خط المركزين لدائرتين متقاطعتين يكون
اء اذا کان سطح الدائرة م \cap سطح الدائرة ن \emptyset فإن الدائرتين م،ن
١٥ إذا كان سطح الدائرة م ∩ سطح الدائرة ن ={أ}، فإن الدائرتين م ،ن
17 عدد الدوائر التي يمكن رسمها وتمر بنقطتين معلومتين في المستوى يساوى

١٧ ـ إذا اشتركت دائرتان في ثلاث نقط فإنهما

ـ أصغر دائرة يمكن رسمها لتمر بنقطتين معلومتين في المستوى يكون طول نصف قطر ها ، ي	۱۸. یساو
رى ـ نقطة تقاطع محاور تماثل اضلاع المثلث هي	
ـ الدائرة م طول نصف قطرها نق ،أ نقطة في مستوى الدائرة . <u>أكمل</u> :	
رأ) إذا كانت م أ $=rac{1}{2}$ نق فإن أ الدائرة	
(ب) إذا كانت م أ = نق فإن أ الدائرة (ت) إذا كانت م أ = π نق فإن أ الدائرة (ت) إذا كانت م أ = π نق فإن أ الدائرة	
ـ الأقواس المتساوية في القياس في دائرة أوتارها	۲۱.
ـ قياس الزاوية المحيطية يساوى نصف قياس	۲۲.
- الزاوية المحيطية التي تقابل قوسا أصغر في الدائرة	۲۳
- الوتران المتوازيان في الدائرة يحصران بينهما قوسين	٤ ٢.
ـ قياس القوس من دائرة يساوى ضعف	٥٢ <u>.</u>
ا: اختر الإجابة الصحيحة من بين الإجابات المعطاة :	ثانيً
إذا كان طول قطر دائرة ٧سم ، المستقيم ل يبعد عن مركزها ٣.٥ سم فإن ل يكون :	(۱)
أ) قاطع للدائرة في نقطتين. ب) يقع خارج الدائرة.	
ج) مماس للدائرة. د) محور تماثل للدائرة.	
ا إذا كانت النقطه أتنتمي للدائرة م التى قطرها ٦سم فإن م أتساوى:	(۲)
أ) ٣سم ب)٤سم ج) ٥سم د) ٦سم	
إذا كان المستقيم ل مماسا للدائرة التي قطرها ٨سم فإنه يبعد عن مركزها بمقدار:	(٣)
أ) ٣سم ب) ٤سم ج) ٦سم د) ٨سم	

ىف قطر ھا ٣سم	الأصل م (۰،۰) ونص	مركزها نقطة	يم خارج دائرة _"	(٤) إذا كان ل مستق				
			، ن م مسافة س فإ					
],∞-[(2]∞,٦](ᠸ]∞,٣]	ب)[]∞،٣[(أ				
(٥) إذا كان المستقيم ل يبعد عن مركز الدائرة م مسافة س حيث س ∈]٠،نق[فإن ل								
	ب) يمس الدائرة.		لع الدائرة.	عقي (أ				
<u>.</u> :	د) يمر بمركز الدائرة		ع خارج الدائرة	ج) يق				
یساوی ٦سم ، وكان	رة م على المستقيم ل :		عمود المرسوم ه ر الدائرة يساوى					
	ب)يمس الدائرة.	ب	لع الدائرة.	أ) يقد				
	.) يمر بمركز الدائرة		ع خارج الدائرة	<u>ة</u> (ح				
فط الأتية لاتنتمى	رها ٧سم .أى من النا	لول نصف قط	نقطة الأصل وط	(٧) دائرة مركزها ا للدائرة ؟				
(٧	· _{\(\)} (2 (.	· ۲) (خ	(۲-۰۰) (ب	(Y ··) (İ				
يساوى:	القطعة المستقيمة أب	وتمر بطرفي	ی یمکن رسمها	(٨) عدد الدوائر التر				
ائى	د) عدد لا نه	٣ (ج	ب) ۲	١ (أ				
(٩)إذا كانت الدائرة م ∩ الدائرة ن= { أ ،ب } فإن الدائرتين م ، ن:								
	متحدتى المركز	ب)		أ) متباعدتان				
	متقاطعتان	(7	, من الخارج	ج) متماستان				
لر أحدهما ٥سم ،	رج و طول نصف قد يساوي :	•	رتان م ، ن متما إن طول نصف					
	سم د) ۱۶ سم	٧ (ح	ب کسم	أ) ٣سم				

			ين من الداخا طر الأخرى ب	ل و طول نصف قط بساوى :	ر أحدهما ٣سم ،
				د) ۱۲سم	
') م ، ن	رتان متقاط	تان و طولا	ا نصفی قطر	یهما ۵سم ، ۲سم ف	إن م ن ∈ .
[(] ٧	ب) [۳،] ٧	ر ۲ [۷ ، ۳]	[٧ , ٣] (
77E ()	ائر التي تمر	ِ بثلاث نقد	ل على استقاه	لة واحدة يسا <i>وى</i> :	
أ) ص	ب) وا	<u>:</u> 2-	ح) ثلاث	د) عدد لا نهائي	
٬) محور	ماثل للوتر ا	 امشترك أ د	 ب لدائرتين	متقاطعتین م، ن ہ	و :
→ أ) أ د	→ - (-	<u>-</u>	↔ ج) ن م	د) أن	
۱) مراکز	دوائر التى ت	ىر بالنقطتير	ن أ ، ب تقع	جمیعا علی:	
أ) مــ	بأب	ب (ب		ج) العمود المقام عا	ی ب أ
د) الـ	د المقام على	، ب أ من ب	۷		
۱) عدد ا	ائر التي تمر	بثلاث نقط	لیست علی ا	ستقامة واحدة:	
أ) ص		ب) ۱		ح) ۲	۲ (ع
۱) مرکز	ائرة الخارج	ة للمثلث هو	ر نقطة تقاطي	: ¿	
أ) مذ	ات زوایاه ا	داخلة	ب) منصفا	ت زواياه الخارجة	
ح) او	اعاته		د) محاور	تماثل أضلاعه	
-	، ب نقطتين ر بالنقطتين			ب = ٤سم ، فإن طو	ِل نصف قطر أص
أ) ٢٠		ب) ۳سم		ج) ۶سم	د) ۸سم

(١٩) إذا كان أ ، ب نقطتين ، أ ب =٦سم فإن عدد الدوائر التي طول نصف قطر كل منها ٥سم وتمر بالنقطتين أ ، ب يساوى :

أ) صفر ب) ١

(۲۰) في الشكل المقابل:

فى الدائرة م إذا كان ق (< أم ب) = ٥٢° ، فإن ق (\hat{v} أ) يساوى :

ج) ۱۲۸°

(٢١) في الشكل المقابل:

أب قطر في الدائرة م ، ق (<أ ب ح)= ٤٠ °

(٢٢) في الشكل المقابل:

إذا كان أب قطر في الدائرة م ، ق (<أ ب د) = $^{\circ}$ فإن :

أولا: ق (< د أ ب) تساوى :

ثانيا : ق (< د جب) تساوى :

(٢٣) في الشكل المقابل:

دائرتان متحدتا المركز في م ، أب \cap حد = $\{a\}$ ،

(٢٤) مستعينا بالأشكال الأتية اختر الأجابة الصحيحة

شکل (۱)

شكل (١) : دائرة مركزها م، ق (حم ب ح) = ٣٢٥ ، فإن ق (ب ج) يساوى :

- ب) ۲۳۰ ج) ۲۶۰ د) ۱۱۱ (۵
- اً) ۱۲ (ا

شكل (7) : إذا كان أب قطر في دائرة وكان :

$$\widehat{(\widehat{(e,e)})} = \widehat{(e,e)} = \widehat{(e,e)} = \widehat{(e,e)} = \widehat{(e,e)}$$

فإن ق (< د س ه) تساوى :

- ج) ٥٥٤ (د
- اً) ۱۸ ° ب
- - (٢٥) عدد المماسات التي يمكن رسمها من إحدى نقط دائرة تساوى :
- أ) واحد ب) اثنان ج) أربعة د) عدد لا نهائي

(٢٦) في الشكل المقابل:

اً) ۸۰ با ۱۳۰ می ۱۳۰ د) ۱۲۰ د) ۱۴۰

(۲۷) في الشكل المقابل:

أ ب مماس للدائرة م ، إذا كان م = 0سم ، أ = -1سم

، فإن أ ب = ____

أ) ٥سم ب) ١٠سم ج) ١٢سم د) ١٣ سم

(۲۸) یمکن رسم دائرة تمر برءوس:

د) مستطیل أ) شبه منحرف ب) معین ج) متوازی اضلاع

رابعا": أسئلة إنتاج الإجابة:

(١) في الشكل المقابل:

أب حمثلث مرسوم داخل دائرة مركزها م،

: مL أج ، مه L أب اثبت ان

(٢) في الشكل المقابل:

دائرة مركزها م وطول نصف قطرها ١٣ سم،

أب وتر فيها طوله ٢٤سم، حمنتصف أب

رسم م ج فقطع الدائرة في د أوجد:

___ أولا: طول مج ثانیا: م (۵ أ د ب)

(٣) في الشكل المقابل:

دائرة م محيطها ٤٤سم ، أب قطر فيها ،

---أوجد طول <u>ب</u> جـ

 $\left(\frac{1}{\sqrt{\lambda}} = 7\right)$

(٤) في الشكل المقابل:

م، ن دائرتان متقاطعتان ، من يقطع الدائرة م في ح ،

رسم جـ أ مماسا للدائرة م عند جـ

يقطع الدائرة ن في أ ، ب . أثبت ان :

أولا: جـ أ = جـ ب ثانيا: م أ = م ب

(٥) في الشكل المقابل:

م ، ن دائرتان متقاطعتان في أ ، ب ،

____ جـد وتر في الدائرة م ، يقطع م ن في ه ،

فإذا كان ه منتصف جدد . أثبت أن : أب // جد .

(٦) م، ن دائرتان متماستان من الداخل عند أ ، الدائرة م أكبر من الدائرة ن ، رسم أ ج مماسا مشتركا للدائرتين ، ورسم ن م فقطع الدائرة ن في ب ، ورسم ب د مماسا للدائرة ن فقطع الدائرة م في د ، ه . أثبت أن :

ثانیا: ب د = ب ه

(٧) في الشكل المقابل:

م ، ن دائرتان متطابقتان ، أج قطعة مماسة

 $\frac{--}{--}$ للدائرة م عند أ ، ود قطعة مماسة للدائرة ن عند د ، أ جـ | و د

ثانیا: أب = هد

أثبت أن : أولا : ب جـ = و هـ

(٨) في الشكل المقابل:

(٩)في الشكل المقابل:

الدائرتان م ، ن متقاطعتان

فی أ ، ب . م ن \cap أب = {ص} ،

أ ب = أ ح ، س منتصف أ ج.

أثبت أن :

ن ص = ن س

(11) Ikائرة م فيها أب، أجوتران د ، ه منتصفا أب ، أجعلى الترتيب رسم $\stackrel{\longrightarrow}{}$ د م فقطع $\stackrel{\longleftrightarrow}{}$ في و بحيث كان م ه = ه و . <u>أثبت أن :</u> ق (حب أ د) = ٥٤° (٢٢) أب قطر في دائرة م ، رسم الوتر جد // أب، رسم جس \bot أب ، $\overset{\longrightarrow}{}$ د $\overset{\longrightarrow}{}$ $\overset{\longrightarrow}{}}$ $\overset{\longrightarrow}{}$ $\overset{\longrightarrow}{}}$ $\overset{\longrightarrow}{}$ $\overset{\longrightarrow}{}}$ $\overset{\longrightarrow}{}$ $\overset{\longrightarrow}{}}$ $\overset{\longrightarrow}{}}$ $\overset{\longrightarrow}{}$ $\overset{\longrightarrow}{}}$ $\overset{\longrightarrow}{}$ $\overset{\longrightarrow}{}}$ $\overset{$

(۱۳) أ ، ب نقطتان حیث أ ب = ٦سم . أرسم دائرة تمر بالنقطتین أ ، ب بحیث یکون طول نصف قطرها ٥سم ، ثم اوجد بعد مرکز الدائرة عن أ ب .

ق (< ب أ ح) = 0.7° أرسم دائرة تمر بالنقطتيين أ ، جـ ، ومركزها \in أ ب.

(۱۰) أب قطر في دائرة م ، أجور فيها حيث ق (< ب أح) =٣٠٠ °، رسم بج

أو لا : أثبت أن : م د // بج

ثانيا: أثبت ان طول بج يساوى طول نصف قطر الدائرة.

(١٦) في الشكل المقابل:

ويقطع الدائرة في د ، ق(< م أ ب) = ٢٠٠ .

أوجد: أولا: ق (أ د) ثانيا: ق (< د ه ب).

الإجابات

أولا": أكمل ما ياتى:

- ١) نصف قطر الدائرة
 - ٢) الوتر
 - ٣) القطر
 - ٤) القطر
 - ٥) لانهائي
 - ٦) محور تماثل
 - ٣ (٧
 - ٨) مماسا للدائرة
 - ۹) متوازیان
 - ١٠) مركز الدائرة
- ١١) متساوية في الطول
 - < (17
- ١٣) عموديا على الوتر المشترك وينصفه
 - ۱٤) متباعدتان
 - ١٥) متماستان من الخارج
 - ١٦) عدد لا نهائي من الدوائر
 - ١٧) يتطابقان
- $\frac{1}{7}$ طول القطعة المستقيمة الواصلة بين النقطتين المعلومتين .
 - ١٩) مركز الدائرة الخارجه للمثلث
 - ۲۰ أ) داخل ب) على ج) خارج

ثانيا": أختر الاجابة الصحيحة:

- ١) مماس للدائرة
 - ۲) ۳سم
 - ۳) ۶سم
 -] ∞ , ٣ [(٤
 - ٥) يقطع الدائرة
- ٦) يقع خارج الدائرة
 - (Y , Y) (Y
 - ۸) عدد لا نهائی
 - ٩) متقاطعتان
 - ۱۰) کسم
 - ۱۱) ۱۱سم
 -] 7 , 7 [() 7
 - ۱۳) صفر
 - ↔ ن م (۱٤
 - ه۱) محور أب
 - 1 (17
- ١٧) محاور تماثل أضلاعه
 - ۱۸) ۲سم
 - 7 (19

ثالثا": أسئلة متنوعة:

$$\overline{\perp}$$
 د منتصف أج : د منتصف أج : د منتصف

$$\therefore \land (\Delta \land c \lor) = \frac{1}{7} \times \land \lor \times \div c$$

$$\Lambda \times \Upsilon \stackrel{\iota}{\iota} \times \frac{1}{\iota} =$$

$$\div$$
 ب ب \div = \div ا ب ب \div

.. ب ج
$$=\frac{\sqrt{\frac{\pi}{\pi}}}{2}=\frac{\sqrt{197}}{\pi}$$
 سم.

$$\Delta \stackrel{\cdot}{=} \Delta \equiv \Delta \stackrel{\cdot}{=} \Delta \stackrel{\cdot}{:} $

- (٥) نه م، ن دائرتان متقاطعتان في أ ، ب
 - .: من **⊥** أب
 - ·· همنتصف الوتر جد
 - ∴ م ه ً ل جـ د
 - \overrightarrow{l} \overrightarrow{l}

- (٦) أج، بد مماسان للدائرة ن عند أ، ب
 - ، أب قطر في الدائرة ن

 - .. ب منتصف د هـ .. ب د = د هـ
- العمل: نرسم أم ويقطع و هـ في س ، نرسم \overline{C} و يقطع \overline{C} في ص البرهان:
 - $\overrightarrow{\Box}$ \bot $\overrightarrow{\Box}$ $\overrightarrow{\Box$
 - : أج // و د : أس ـ و د
 - $\stackrel{\longleftrightarrow}{:}$ $\stackrel{\longleftrightarrow}{\mathsf{ce}}$ $\overset{\longleftrightarrow}{\mathsf{anim}}$ $\overset{\longleftrightarrow}{\mathsf{teliton}}$ $\overset{\longleftrightarrow}{\mathsf{ce}}$ $\overset{\longleftrightarrow}{\mathsf{ce}}$
 - ·· أص // سد، أس لـ و د ، ص د لـ د و
 - :. الشكل أس د ص مستطيل :. أس = ص د :.

$$\therefore$$
 $a \overrightarrow{w} \perp \overline{0} = w = w a$

(A) Iland: icum
$$\overline{a} \perp \overline{a} = \overline{a}$$

$$\cdot \overline{a} \perp \overline{b} \perp \overline{b} = \overline{b} \cdot \overline{b} \perp \overline{b} = \overline{b} \cdot \overline{b} = \overline{b} \cdot \overline{b} = \overline{b} \cdot \overline{b} = \overline{b} \cdot \overline{b} = \overline{b}$$

(٩) : الدائرتان م، ن متقاطعتان في أ، ب

في الدائرة ن : س منتصف أج

(۱۰) : همنتصف أب

$$\circ$$
 فی Δ أ د و ق $(\hat{c}) = \circ \circ \circ$ ، ق $(\hat{c}) = \circ \circ \circ$

فی Λ Λ د س م ، د ص م

$$\Delta = \Delta = \Delta = \Delta$$
 د ص م $\Delta = \Delta$

ن
$$\Delta$$
 م φ قائم الزاوية في φ

(15)

·· أب قطر في الدائرة م ·· م منتصف أب

·· م د // جـ ب ، أجـ قاطع

.. ق (< أ د م) = ق (< ج) = ۹ ۰ " بالتناظر "

في 🛕 أ ح ب

∵ ق (< ح) = ۰ ۹° ، ق (< أ) = ۰ ۳°</p>

 \therefore ج ب = $\frac{1}{7}$ أ ب = $\frac{1}{7}$ نق = نق \therefore

$$\circ \lor \cdot = (\circ \lor \cdot + \circ \lor \circ) - \circ \lor \land \cdot = (\circ \lor \circ) = \circ \lor \circ$$
.

$$\circ$$
 ق (د هُ ب) المحطية = $\frac{1}{7}$ ق (د ب) = \circ \circ .

الجزء الثاني الأسئلة

أولا:أكمل ما يلى:

١ ـ في الشكل الرباعي الدائري تكون الزاويتان المتقابلتان

٢_ في الشكل المقابل:

٤ - في الشكل المقابل:

- الزاويتان المحيطتان المرسومتان على قوس واحد في دائرة يكونان
 - ٦) ارتفاعات المثلث

٧) في الشكل المقابل:

 $\stackrel{\longrightarrow}{1}$ du ball $\stackrel{\longleftarrow}{1}$ $\stackrel{\longrightarrow}{1}$ $\stackrel{\longrightarrow}{1$

أكمل ما يأتى:

$$\widehat{(\ldots)}$$
 ق $\widehat{(+,-)}$ ق $\widehat{(+,-)}$ ق $\widehat{(+,-)}$ ق $\widehat{(+,-)}$

٩) عدد المماسات المشتركة المرسومة للدائراتين متباعدتين يساوي

١٠) مركز الدائرة الداخلة لأى مثلث هو نقطة تقاطع

ثانيًا: اختر الإجابة الصحيحة من بين الإجابات المعطاه:

١) في الشكل المقابل:

فإن ق (أد) يساوى:

٢) في الشكل المقابل:

إذا كان أب ، جد وتران في دائرة فإن ق (د أب) يساوى:

- ٥٨٠ (٦)
- °۲۰ (ج) °۰۰ (ب) °٤٠ (أ)

٣) القطعتان المماستان المرسومتان من نقطة خارج دائرة دائمًا:

- (ب) غير متساويتين
- (أ) متساويتان في الطول<u>.</u>
- (د) متوازیتان

(ج) متعامدتان

٤) الزاوية المماسية هي زاوية محصورة بين:

- (أ) وتران (ب) مماسان (ج) وتر ومماس (د) وتر وقطر

٥) عدد المماسات المشتركة لدائرتين متحدتي المركز تساوي:

- (د) ثلاثة

- (أ) صفر

٦) في الشكل المقابل:

- $\stackrel{\leftarrow}{\text{l}} \stackrel{\leftarrow}{\text{l}} \stackrel{\leftarrow}{\text{l$
- فإذا كان أب = ٤سم فإن طول جب تساوى:

- (د) ۸ سم

٧) عدد المماسات المشتركة لدائرتين متماستين من الداخل تساوي:

- (د) أربعة
- (أ) واحد (ب) اثنان (ج) ثلاثة

٨) مستعينا بالأشكال الآتية اختر الإجابة الصحيحة:

شکل (۱)

شكل(۱): إذا كانت ق (أ م جـ) = ۱٤٠ فإن ق (أ د جـ) تساوى:

شکل(۲): إذا کانت ق (أ \hat{y} ج) = ۷۰° فإن ق (\hat{y} د ج) تساوی:

شكل (٣): إذا كانت ق (ب أ د) = ١٢٠° فإن ق (ج ب د) تساوى:

٩) في الشكل المقابل:

 $\overline{}$ إذا كان $\overline{}$ مماس للدائرة م

ق (ب أ م) = ٢٥° فإن ق (أ ب د) تساوى:

١٠) في الشكل المقابل:

- °٤٠ (ب)
- (أ) ۲۰°
- (ج) °°۰ (ح)

ثالثاً: تمارين متنوعة:

(١) (أ) اثبت أنه إذا كان الشكل الرباعي دائريًا فإن كل زاويتين متقابلتين فيه متكاملتان.

$$^{\circ}$$
 اب = اد، ق (أ ب د) = ۳۰°،

أثبت أن: الشكل أب جد رباعي دائري.

أولا: الشكل أن
$$c = (1200)$$
 وائرى. ثانيًا: ق(ب نَ c) = ق (ب هَ c)

(٤) أ ب جـ مثلث متساوي الأضلاع مرسوم داخل دائرة ، د نقطة على أ ب ، أخذت نقطة هـ
$$\frac{1}{2}$$
 على $\frac{1}{2}$ على د جـ بحيث أ د = د هـ . أثبت أن:

(٥) في الشكل المقابل:

أ ب ج مثلث فيه أ ب = أ جـ

----ب جور في الدائرة م ،

أب، أج يقطعان الدائرة في د، هـ.

أوجد أولاً: ق (ب ه ج) ثانيًا: ق (ب م ج)

ثالثاً: ق (جـ د هـ)

(٦) (أ) أثبت أن الزاويا المحيطية التي تحصر نفس القوس في الدائرة متساوية في القياس.

(ب) في الشكل المقابل:

أ ب ج مثلث مرسوم داخل دائرة ،

يقطعه في ص ، ويقطع الدائرة في ع ، أثبت أن:

أولاً: الشكل أب ص س رباعي دائرى .

ثانيًا: ب ج ينصف (س ب ع).

أب قطر في الدائرة م ، حـ ∈ للدائرة ،

ق (جـ أُ ب)= ٣٠°، د منتصف أجـ،

د ب ∩ أج = { هـ }

أولاً: أوجد ق ($\hat{\mu}$ ، ق (أ $\hat{\mu}$ د)

ثانيًا: أثبت أن ∆ أب هـ متساوي الساقين.

٨) في الشكل المقابل:

رسم ب و مماس للدائرة فقطع أجفى و . أثبت أن:

أولاً: الشكل م ب و د رباعي دائري . ثانيًا : د هـ // ب جـ

٩) في الشكل المقابل:

ق (ب أَ ج) = ق (ب د ج) = ٩٠° هـ منتصف ب جـ ، ق (أ هـ د)= ٤٨°

اولاً: أوجد ق (أ بُ د).

$$(-)$$
 \hat{a} \hat{b} \hat{b} \hat{c} \hat

أو \hat{d} : الشكل أو هد رباعي دائري. ثانيًا: ق (ب \hat{m} و) = ق (هـ أ د)

١١) أ نقطة خارج دائرة رسم أب يقطع الدائرة في ب ، ج على الترتيب ، رسم أد يقطع الدائرة في د ، هـ على الترتيب، فإذا كان أجـ = أ هـ.

(a - c) = (a - c) ثانیًا : ق (ب ج) = ق أثبت أن : أو لأ: ب د // جـ هـ

١٢) في الشكل المقابل:

نصف دائرة مركزهام،

أد //بج ، أب = بد.

أثبت أن: الشكل أب جدد متوازى أضلاع.

أ ب جدد شكل رباعي مرسوم داخل الدائرة م ،

أس ينصف ب أج، دص ينصف ب دُج أثبت أن:

أولا: الشكل أ س ص د رباعي دائري.

ثانيًا: س ص // ب جـ

١٤) في الشكل المقابل:

ق (جـ) = ۲۰° ،

 $det \widehat{A} = \widehat{A} = Aeb$

 $\overbrace{\qquad \qquad } \cap \overline{\leftarrow c} = \{ \& \} .$

د أ ∩ الدائرة م = { هـ }

أوجد بالبرهان : ق (ب د ج) ، ق (ب أ د) ، ق (ب م هـ) .

أولاً: الشكل اجد هرباعي دائري.

ثانيًا: أهـ قطر للدائرة الخارجة للشكل أجده.

الإجابات

أولا: أكمل ما ياتى:

ثانيًا: اختر الإجابة الصحيحة:

ثالثا: تمارين متنوعة:

١) أ) اثبات نظرية.

.: الشكل أب جد رباعي دائري .

" وهما مرسومتان على القاعدة

أج وفي جهة واحدة منها"

.: الشكل أن د ج رباعي دائري.

(1)_

: (< بن د) حارجة عن الشكل الرباعي الدائري أن د ج

: (< ب هـ أ)، (< ب جـ أ) محطيتان مشتركتان في (أ ب) .

.: ق (< ب هد) = ق (< ب جاً)

.. ق(< ب ن د) = ق (< ب هـ د)

(Y) _____

- ع) : أ ب ج مثلث متساوي الأضلاع
 - .: ق (< أ ب ج) = ۲۰
- : ق (< أب ج) = ق (< أد ج) = ٠٦°
 - "محطيتان مشتركتان في (أج) "
 - ، ٠٠ د أ = د هـ
 - .: △ أ د هـ متساوي الأضلاع.
- : ق (< ب د ج) = ق (< ب أ ج) = ٢٠
- .. ق (< أ هـ د) = ق (< ب د ج) = ٢٠°
 - .. أهـ// دب
- ن ق (< ب أ ج) = ق (< هـ أ د) = ٢٠°
 - .. ق(< د أ ب) = ق (< هـ أ جـ)
 - ، : ق (< د ج ب) = ق (< د أ ب)
 - ∴ ق (< هـ أ ج) = ق (< د ج ب)
 - في ∆∆ أدب، أهج
- ن (حأدب) = ق (حأهج) = ۲۰°
 - ق (< د أ ب) = ق (< هـ أ جـ)
 - ا د = ا هـ
 - .. ∆ أدب ≡ ∆ أ هـ جـ

- Till 1
- " محطيتان مشتركتان في (ب ج)"
 - " وهما في وضع تبادل"
 - بطرح ق (< ب أ هـ) من الطرفين.

 - "محطیتان مشترکتان فی (د ب)"

- .. د ب = هـ جـ

: (< أ هد) خارجة عن الشكل الرباعي الدائرى د هجب .

ضع تناظر.
 ق (< أ جـ ب) وهما في وضع تناظر.

.. د هـ // ب **ج**ـ

٠: (< ب د ج) خارجة عن ∆ أ د ج.

، .: ق (< ب م ج) المركزية = ٢ق (< ب د ج) المحيطية = ٢ × ٨٠ = ١٦٠ °

" مشتركتان في (ب ج) "

٦) أ) أثبات نظرية

"وهما مرسومتان على القاعدة أب وفي جهة واحدة منها".

$$(-\infty)$$
 فی ($(-\infty)$ المحیطتان مشترکتان فی ($(-\infty)$)" .. ق ($(-\infty)$ المحیطتان مشترکتان فی ($(-\infty)$)"

$$(- + i + 3) = (- + i + 3)$$
 "محطیتان مشترکتان فی $(- + i + 3)$ " "محطیتان مشترکتان فی $(- + i + 3)$ "

$$^{\circ}$$
 .. ق (< أ ب د) المحيطية = $\frac{1}{7}$ ق (أ د) = $^{\circ}$ ث

$$\stackrel{\longrightarrow}{}$$
 $\stackrel{\longrightarrow}{}$ $\stackrel{\longrightarrow}{}}$ $\stackrel{\longrightarrow}{}$ $\stackrel{\longrightarrow}{}$ $\stackrel{\longrightarrow}{}}$ $\stackrel{\longrightarrow}{}$ $\stackrel{\longrightarrow}{}}$ $\stackrel{\longrightarrow}{}$ $\stackrel{\longrightarrow}{}}$ $\stackrel{\longrightarrow}{}}$ $\stackrel{\longrightarrow}{}$ $\stackrel{\longrightarrow}{}}$ $\stackrel{\longrightarrow}{}}$

: الشكل م ب و د رباعي دائرى.

.: جب // د هـ

"وهما مرسومتان على القاعدة بج وفي جهة واحدة منها".

: الشكل أب جد رباعي دائري.

.: ب ج قطر للدائرة الخارجة للشكل أ ب جد.

 $^{\circ}$ د ق(< أ ب د) المحيطية = $\frac{1}{7}$ ق (< أ هـ د) المركزية = $\frac{1}{7}$ × $^{\circ}$ + $^{\circ}$ = $^{\circ}$ ۲° .

"ومشتركتان في (أد)".

(1.

ن أب جد شكل رباعي دائري.

.: الشكل أو هد رباعي دائري.

..
$$\bar{g}(< c \mid A) = \bar{g}(< c \mid A)$$
... $\bar{g}(< c \mid A) = \bar{g}(< c \mid A)$...

- ن الشكل ب د ه جرباعي دائري.
- ض (< أ ب د) الخارجة = ق(< هـ)
- ضع تناظر (< أ ب د) = ق(< ج)
 - .. ب د // **ج** هـ
 - : ق(< ج) = ق(< هـ)
- .. ق ($\frac{1}{2}$ من الطرفين. .. ق ($\frac{1}{2}$ من الطرفين.
 - .: (جب) = ق (هد)
 - (١٢) : أب = ب د : ق (< أ) = ق(< د)
- : ق(< د) = ق(< ج) "محطیتان مشترکتان فی (ب هـ)"
 - .: ق (< أ) = ق(< ج)
 - ∴ أهـ // ب جـ ، أ ب قاطع
- .. ق (< أ) + ق(< أ ب ج) = ١٨٠° "داخلتان و في جهة واحدة من القاطع.
- ن. ق (< ج) + ق(< أ ب ج) = ۱۸۰° "و هما داخلتان وفي جهة واحدة من القاطع.
 - : أب // هج
 - في الشكل أب جه
 - ·· أ ب // هـ جـ ، أ هـ // ب جـ قاطع : الشكل أ ب جـ هـ متوازى أضلاع.

"وهما مرسومتان على القاعدة س ص وفي جهة واحدة منها".

"محطيتان مشتركتان في (د ج) "

"وهما في وضع تناظر"

(1)
$$\therefore \det (\widehat{(+ c)}) = \det (\widehat{(+ c)})$$

 $\therefore (\widehat{(+ c)}) = \underbrace{(\widehat{(+ c)})}_{::}$

٠٠ الشكل أب جد رباعي دائري

: (< هـ أ ب) خارجة عن الشكل الرباعي الدائري أ ب جـ د .

(10

- ٠٠ د جـ = د هـ
- .: ق(< د جه) = ق (< د هج)
 - ن د ج مماس للدائرة م عند ج.
- .. ق (< د جب) المماسية = ق (< جا ب) المحيطية مشتركتان في (+ ج).
 - .: ق (< جـ أ د) = ق (< جـ هـ د)</p>

"وهما مرسومتان على القاعدة جد وفي جهة واحدة منها"

- : الشكل أجد هرباعي دائرى .
 - ٠٠ أب قطر في الدائرة م
 - .. ق (< أجب) = ۹۰ ..
 - .. ق (< أجه الله على = ۹۰
- .: أه قطر للدائرة الخارجة للشكل أجده.
- ·· ق (< د أ هـ) = ق (د جـ هـ) "محطیتان مشترکتان فی (د هـ)".
 - ، : ق (< د جه) = ق(< د هج)
 - .. ق (< ب أ هـ) = ق (< دهـ ب)
 - .: د هـ مماس للدائرة المارة برؤوس المثلث أب ه.