Supervised Learning 1

Blaise Hanczar (812-E)

Outline

- Introduction to classification
- Bayes classifier
- Performance of a classifier
- Linear Discriminant Analysis

Principle

Objective: Learning a prediction model (classifier) from training examples.

Application : Handwritten recognition

Prediction of the zip code from handwritten digits

Class: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Handwritten digits

Application: medical

Gene expression

Prediction of a diagnostic or response to a treatment from clinical or genomic data

Class:

- Sick / Safe
- Good responder / Bad responder
- Type of cancer

Application: Image analysis

Prediction of the face expression from images

Class: Smile/ No smile

Face images

Applications

- Medical diagnostic
- Spam detection
- Credit decision
- Car design optimization
- Prediction of the winning hand in poker game
- Customer fidelity
- Etc...

Model construction

Use the model

Spécifier un objectif

Manger des champignons en évitant de mourir

Discerner les champignons:

• comestibles

• empoisonnés

Collection of objects

- Creation of a set of objects
- Identification of the class by an expert

Preprocessing of the data

Measure a set of feature

- Heigth/width of foot
- Heigth/width of hat
- smell
- weight

Modelisation

Identification of the following classification rule:

Apply the classification rule on new mushroom

Bayes theorem

Bayes theorem in classification context:

$$P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$$

- P(C): Prior probability of the classes
- P(X): Probability of the data X
- P(X/C): Likelihood (probability of see the data X given the class C)
- P(C|X): Posterior probability to belong to the class X given the data X

Bayes classifier

Posterior probability:

$$P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$$

Bayes classifier:

$$C^* = \operatorname{arg\,max}_C(P(C \mid X))$$

Decision function

Decision function of the classes

$$g(x) = P(\omega_1 | x) - P(\omega_2 | x)$$

$$= \ln \frac{P(x | \omega_1)}{P(x | \omega_2)} + \ln \frac{P(\omega_1)}{P(\omega_2)}$$

$$g_i(x) = \ln P(x | \omega_i) + \ln P(\omega_i)$$

The distribution of the classes is generally unknown

We could put some assumptions on this distribution.

Representation of the examples in the features space

Identification of the classes

Learning the model

Learning the model

Learning the model

Classifier

Types of errors

2 classes YES / NO

Confusion matrix

	Predict	Predict	Total
	Positve	negative	
True class	True Positive	False	P
positive	TP	Negative	
		FN	
True class	False Positive	True	N
negative	FP	Negative	
		TN	

True positive rate: TPR = TP / P

False positive rate: FPR = FP / P

True negative rate: TNR = TN / N

False negative rate: FNR = FN / N

Classification cost

 $cost = \pi_{P}C_{TP}TPR + \pi_{N}C_{FP}FPR + \pi_{N}C_{TN}TNR + \pi_{P}C_{FN}FNR$

	Predict	Predict
	YES	NO
True		
class	C_{TP}	C_{FN}
YES		
True		
class	C_{FP}	C_{TN}
NO		

Classification cost

$$cost = \pi_{P}C_{TP}TPR + \pi_{N}C_{FP}FPR + \pi_{N}C_{TN}TNR + \pi_{P}C_{FN}FNR$$

The costs of TP and TN are generally consider null

$$C_{TP} = C_{TN} = 0$$

$$cost = \pi_N C_{FP} FPR + \pi_P C_{FN} FNR$$

	Predict	Predict
	YES	NO
True		
class	C_{TP}	C_{FN}
YES		
True		
class	C_{FP}	C_{TN}
NO		

Classification cost

$$cost = \pi_P C_{TP} TPR + \pi_N C_{FP} FPR + \pi_N C_{TN} TNR + \pi_P C_{FN} FNR$$

The costs of TP and TN are generally consider null

$$C_{TP} = C_{TN} = 0$$

 $cost = \pi_N C_{FP} FPR + \pi_P C_{FN} FNR$

We can fix the cost to FN to 1

$$CFN = 1$$
, $R = C_{FP}/C_{FN}$
 $cost = \pi_N R FPR + \pi_P FNR$

	Predict	Predict
	YES	NO
True		
class	C_{TP}	C_{FN}
YES		
True		
class	C_{FP}	C_{TN}
NO		

If π_P and π_N are unknown, they can be estimated from the training examples

$$\pi_p = P/(N+P)$$
 and $\pi_N = N/(N+P)$
 $cost = R \frac{FP}{N+P} + \frac{FN}{N+P}$

Other performance measures

- Error rate: err = 1/2(FPR + FNR)It is a special case of the classification cost where: $C_{FP} = C_{FN} = 1$ and $\pi_p = \pi_N = 1/2$
- Accuracy: acc = 1 err
- Precision: pres = TP/(TP + FP)
- Recall, Sensitivity: rec = TP/P
- Specificity: spe = TN/(TN + FP)
- F-measure: Fmes = 2/(1/pres + 1/rec)

ROC space

ROC: Receiver Operating Characteristic

Graphic where x-axis is FPR and y-axis is TPR

O Classifer

FPR = 0.08

TPR = 0.50

△ Classifer

FPR = 0.28

TPR = 0.84

+ Classifer

FPR = 0.80

TPR = 1

ROC space

Visualisation of classifier performance by iso-cost lines in ROC space

Iso-cost line:
$$TPR = A FPR + B$$
 with $A = \frac{\pi_N C_{FP}}{\pi_P C_{FN}}$

ROC curves

- The output of classifiers is not a classes but a continuous values
- A decision threshold is then applied to this output to determine the class

if f(x) > T then assign class Positive if $f(x) \le T$ then assign class Negative

ROC curves

ROC curves

Courbe ROC

The area under (AUC) the ROC curve is a measure of performance over all cost values

Computation of the AUC:

$$AUC = \frac{S_0 - P(P+1)/2}{P.N}$$

S₀ is the sum of ranks of examples in the positive class

ROC curve in practice

ROC Convex Hull

ROC Convex Hull

Combined classifier:

$$C = \begin{cases} C1 & 75\% \\ C2 & 25\% \end{cases}$$

$$TPR_C = 0.75 TPR_{C1} + 0.25 TPR_{C2}$$

 $FPR_C = 0.75 FPR_{C1} + 0.25 FPR_{C2}$

ROC Convex Hull

Combined classifier:

$$C = \begin{cases} C1 & 75\% \\ C2 & 25\% \end{cases}$$

$$TPR_C = 0.75 TPR_{C1} + 0.25 TPR_{C2}$$

 $FPR_C = 0.75 FPR_{C1} + 0.25 FPR_{C2}$

Generalization VS Overfitting

- Training performance
 - Overfitting of the training data
- Test performance
 - Capacity to generalize the model
- We want classifier with high generalization performance
- It is always easy to obtain a good training performance

Example

Example

Model too complex

Simple model

Example

Example

Overfitting

How the overfitting impacts the performance of classifier?

Overfitting

How the overfitting impacts the performance of classifier?

Overfitting

How the overfitting impacts the performance of classifier?

Bias-variance decomposition

$$\operatorname{Err}(x_0) = E[(Y - \hat{f}(x_0))^2 | X = x_0]$$

$$= \sigma_{\varepsilon}^2 + [E\hat{f}(x_0) - f(x_0)]^2 + E[\hat{f}(x_0) - E\hat{f}(x_0)]^2$$

$$= \sigma_{\varepsilon}^2 + \operatorname{Bias}^2(\hat{f}(x_0)) + \operatorname{Var}(\hat{f}(x_0))$$

$$= \operatorname{Irreducible Error} + \operatorname{Bias}^2 + \operatorname{Variance}.$$

Training and test datatset

Training datatset

- The classes are known
- Use for model learning

Test datatset

- The classes are unknown
- Not use in the model learning
- Use to estimate the performance of the classifier

Training and test datatset

Decision function

Decision function of the classes

$$g(x) = P(\omega_1 | x) - P(\omega_2 | x)$$

$$= \ln \frac{P(x | \omega_1)}{P(x | \omega_2)} + \ln \frac{P(\omega_1)}{P(\omega_2)}$$

$$g_i(x) = \ln P(x | \omega_i) + \ln P(\omega_i)$$

The distribution of the classes is generally unknown

We could put some assumptions on this distribution.

-> Gaussian assumption is the simplest and most used

Gaussian distribution

2 parametrs

• µ : mean

 $p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)\right]$

• σ : standart deviation

Multivariate Gaussian distribution

Parameters:

- μ : mean vector
- Σ : covariance matrix

$$f_{\theta}(\boldsymbol{x}) = \frac{1}{(2\pi)^{N/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}.$$

Decision Fonction

The decision function is:

$$g_i(x) = -\frac{1}{2}\log|\Sigma_i| - \frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k)_i + \ln \pi_i$$

Parameters : $\mu_1, \Sigma_1, \mu_2, \Sigma_2$

Assumption: The covariance matrix of the classes is identic $\sum_i = \sum_i$ i.e. the classes have the same shape

The decision function becomes:

$$g_i(x) = x^T \Sigma^{-1} \mu_i - \frac{1}{2} \mu_i^T \Sigma^{-1} \mu_i + \ln \pi_i$$

Linear case

Linear case

Linear case

Stage de master

- Laboratoire de recherche: LIPADE
 - Approche méthodologique
 - Sujet applicatif (bioinformatique)

- Société privé
 - ArianaPharma: bioinformatique
 - Orange
 - Thalès