UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE DEPARTAMENTO DE ENGENHARIA ELÉTRICA

Controladores PIDs

Prof. Kurios Iuri Pinheiro de Melo Queiroz

Introdução

- Controladores PIDs
 - Mais utilizados na meio industrial.
 - Sua saída é composta por:
 - Uma ação Proporcional Presente.
 - Uma ação Integral Passado.
 - Uma ação Derivativa Futuro.
- Controladores Similares
 - Avanço-Atraso

Introdução

- PID x Avanço-Atraso
 - Características do PID
 - Mais intuitivo.
 - Quantidade menor de parâmetros => Mais fácil de projetar.
 - Características do Avanço-Atraso
 - Menos Intuitivo.
 - Quantidade maior de parâmetros => Mais complexo de projetar.

Conceitos Básicos

- Requisitos de desempenho
 - Tempo de Estabilização 2%.
 - Percentual de Overshut.
 - Erro em Regime.

Sinal de Controle

$$u(t) = K_P e(t)$$

Ajuste do Ganho K_P

GRANDE:

- * Erro em regime pequeno
- * Resposta mais rápida (podem ocorrer oscilações significativas)

PEQUENO

- * Erro em Regime Grande
- * Resposta mais lenta (oscilações menores ou sem oscilações)

Influência

 No início do transitório, a influência da parte proporcional é grande, enquanto que no regime permanente, sua influência é pequena.

Exemplo

Ganho Pequeno

Ganho Grande

- O sinal de saída é diretamente proporcional ao sinal de erro do processo;
- Quase sempre apresenta um erro em regime estacionário, conhecido por offset;
- Quanto maior o ganho Kp, menor será o off-set;

- Promove a estabilidade do sistema de controle;
- Acelera a resposta de um processo controlado.

Sinal de Controle

$$u(t) = K_i \int_0^t e(\tau) d\tau = \frac{K_p}{\tau_i} \int_0^t e(\tau) d\tau$$

Ajuste do Ganho K_i

GRANDE:

- * Resposta mais rápida (podem ocorrer oscilações significativas)
- * E.R.=0 mais rapidamente.

PEQUENO

- * Resposta mais lenta (oscilações menores ou sem oscilações).
- * E.R.=0 mais lentamente.

Influência

 No início do transitório, a influência da parte integrativa é pequena, enquanto que no regime permanente, sua influência é grande.

Exemplo

Ganho Pequeno

Ganho Grande

- Sinal de saída proporcional à integral do sinal de erro;
- Atua na eliminação do off-set;
- Produz respostas lentas, com longas oscilações;

Resumo

 Quanto menor a constante de tempo integral, mais rapidamente é reduzido o erro. Por conseguinte, mais oscilatório o sistema se torna.

Observações:

- Técnica Wind-Up.
- Integração Condicional.

Sinal de Controle

$$u(t) = K_d \frac{de(t)}{dt} = K_P \tau_d \frac{de(t)}{dt}$$

- Objetivo
 - Se opor a variações muito rápidas do erro para evitar oscilações.
- Ajuste do Ganho K_d

GRANDE:

* Resposta lenta e possivelmente sem oscilações.

PEQUENO

* Resposta mais rápida e possivelmente com oscilações.

Influência

- Ela é grande nos instantes em que a saída do sistema varia rapidamente (durante o transitório).
- Ela é pequena nos instantes em que a saída do sistema varia lentamente (início do transitório e no regime permanente).

Exemplo

Ganho Pequeno

Ganho Grande

- Antecipa futuros erros e introduz a ação apropriada. Com isso, há uma melhora na resposta dinâmica;
- Introduz efeito estabilizante na resposta da malha de controle e reduz overshoot;
- Não é indicado para processos com ruído.

Erros em Regime (M. F.)

Entrada	Expressão do erro estacionário	Tipo 0		Tipo 1		Tipo 2	
		Constante de erro estacionário	Erro	Constante de erro estacionário		Constante de erro estacionário	
Degrau, u(t)	$\frac{1}{1+K_p}$	$K_p =$ Constante	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Rampa, tu(t)	$\frac{1}{K_{v}}$	$K_v = 0$	œ	$K_v =$ Constante	$\frac{1}{K_v}$	$K_v = \infty$	0
Parábola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	∞	$K_a = 0$	∞	$K_a =$ Constante	$\frac{1}{K_a}$