MAT414 - Modern Algebra Isomorphisms [1]

Miraj Samarakkody

Tougaloo College

Updated - April 14, 2025

Motivation

Counting objects.....

Group Isomorphism

Definition

An $\mathit{Isomorphism}\ \phi$ from a group G to a group \overline{G} is a bijective mapping such that:

$$\phi(ab) = \phi(a)\phi(b) \quad \forall a, b \in G$$

If there is an isomorphism from G to \overline{G} , we say that G and \overline{G} are isomorphic and write $G \cong \overline{G}$.

G Operation	\overline{G} Operation	Operation Preservation
•	•	$\phi(a \cdot b) = \phi(a) \cdot \phi(b)$
•	+	$\phi(a \cdot b) = \phi(a) + \phi(b)$
+	•	$\phi(a+b) = \phi(a) \cdot \phi(b)$
+	+	$\phi(a+b) = \phi(a) + \phi(b)$

1. "Mapping." Define a candidate for the isomorphism; that is, define a function $\phi: G \to \overline{G}$.

- 1. "Mapping." Define a candidate for the isomorphism; that is, define a function $\phi: G \to \overline{G}$.
- 2. "Injective." Show that ϕ is injective (one-to-one). That is, assume that $\phi(a) = \phi(b)$ and prove that a = b.

- 1. "Mapping." Define a candidate for the isomorphism; that is, define a function $\phi: G \to \overline{G}$.
- 2. "Injective." Show that ϕ is injective (one-to-one). That is, assume that $\phi(a) = \phi(b)$ and prove that a = b.
- 3. "Surjective." Show that ϕ is surjective (onto). That is, show that for every $b \in \overline{G}$, there exists an $a \in G$ such that $\phi(a) = b$.

- 1. "Mapping." Define a candidate for the isomorphism; that is, define a function $\phi: G \to \overline{G}$.
- 2. "Injective." Show that ϕ is injective (one-to-one). That is, assume that $\phi(a) = \phi(b)$ and prove that a = b.
- 3. "Surjective." Show that ϕ is surjective (onto). That is, show that for every $b \in \overline{G}$, there exists an $a \in G$ such that $\phi(a) = b$.
- 4. "O.P." Prove ϕ is operation-preserving. That is, show that $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in G$.

Let G be the real numbers under addition, and let \overline{G} be the positive real numbers under multiplication. Prove that the G and the \overline{G} isomorphic under the mapping $\phi(x)=2^x$.

Any infinte cyclic group is isomorphic to $\ensuremath{\mathbb{Z}}.$

Prove that the mapping from $\mathbb R$ under addition to itself given by $\phi(x)=x^3$ is not an isomorphism.

Prove that $U(10)\cong \mathbb{Z}_4$ and $U(5)\cong \mathbb{Z}_4$.

Prove that there is no isomorphism from \mathbb{Q} , the group of rational numbers under addition, to \mathbb{Q}^* , the group of non-zero rational numbers under multiplication.

Let $G=SL(2,\mathbb{R})$, the group of 2×2 real matrices with determinant 1. Let M be any 2×2 real matrix with determinant 1. Define a mapping from G to G itself by $\phi_M(A)=MAM^{-1}$ for all $A\in G$. Prove that ϕ_M is an isomorphism.

References

Joseph A. Gallian.

Contemporary Abstract Algebra.

Cengage Learning, 9th edition, 2017.