一、振幅

$$A = |x_{\text{max}}|$$

二、周期与频率

$$x = A\cos(\omega t + \varphi)$$
$$= A\cos[\omega(t+T) + \varphi]$$

- \bullet 周期 $T = \frac{2\pi}{\omega}$
- 圆频率 $\omega = 2\pi \nu = \frac{2\pi}{T}$

弹簧振子周期:

$$T = 2\pi \sqrt{\frac{m}{k}}$$

周期和频率仅与振动系 统本身的物理性质有关。 简谐振动中,X和 U间不存在一一对应的关系。

$$\begin{cases} x = A\cos(\omega t + \varphi) \\ v = -A\omega\sin(\omega t + \varphi) \end{cases}$$

三、相位 $\omega t + \varphi$

- (1) $\omega t + \varphi \rightarrow (x, v)$ 存在一一对应的关系;
- (2) 相位在 $0 \sim 2\pi$ 内变化,在此相位变化范围内质点无相同的运动状态;相差为 $2n\pi$ (n为正整数)的质点运动状态完全相同。(周期性)
- (3) 初相位 $\varphi(t=0)$ 描述质点初始时刻的运动状态。 (φ 取 [$-\pi \to \pi$] 或 [$0 \to 2\pi$])

四、振幅 A 和初相位 φ 的确定

$$\begin{cases} x = A\cos(\omega t + \varphi) \\ v = -A\omega\sin(\omega t + \varphi) \end{cases}$$

由初始条件
$$t = 0$$
, $x = x_0$, $v = v_0$ 得:
$$x_0 = A\cos\varphi$$

$$v_0 = -\omega A\sin\varphi$$

$$\tan\varphi = \frac{-v_0}{\omega x_0}$$

对给定振动系统,周期由系统本身性质决定,振幅和初相由初始条件决定。

讨论

已知
$$t = 0, x = 0, v < 0 求 \varphi$$
?

$$0 = A\cos\varphi$$

$$\varphi = \pm \frac{\pi}{2}$$

$$v_0 = -A\omega\sin\varphi < 0$$

$$\therefore \sin \varphi > 0 \quad \mathbb{R} \varphi = \frac{\pi}{2}$$

$$x = A\cos(\omega t + \frac{\pi}{2})$$

