WHAT IS CLAIMED IS:

	1
1	1. A method for identifying a ligand for a receptor comprising the
2	steps of:
3	a) providing a substrate comprising an adsorbent wherein the
4	receptor is bound to the adsorbent;
5	b) exposing the bound receptor to a sample containing the ligand
6	under conditions to allow binding between the receptor and the ligand; and
7	c) detecting bound/ligand by desorption spectrometry.
1	2. A method of detecting a genetic package containing a
2	polynucleotide that encodes a polypeptide agent that specifically binds to a target
3	adsorbent, the method comprising the steps of:
4	a) providing a substrate comprising a target adsorbent;
5	b) providing a display library that comprises a plurality of different
6	genetic packages, each different genetic package comprising a polynucleotide that
7	comprises a nucleotide sequence that encodes a polypeptide agent, and each different
8	genetic package having a surface on which the encoded polypeptide agent is displayed;
9	c) exposing the substrate to the display library under elution
10	conditions to allow specific binding between a polypeptide agent and the target adsorbent
11	whereby a genetic package comprising the polypeptide agent is retained on the substrate;
12	and
13	d) detecting a genetic package retained on the substrate by
14	desorption spectrometry.
1	3. The method of claim 2 wherein the display library is a phage
2	display library.
1	4. The method of claim 2 wherein the step of providing the substrate
_2	comprising_the target adsorbent comprises the steps of:
3	i) providing a substrate comprising an adsorbent, wherein
4	the adsorbent retains a target analyte under an elution condition; and

	,
5	ii) exposing the adsorbent to the target analyte under the
6	elution condition to allow retention of the target analyte by the adsorbent, whereby the
7	target analyte becomes the target adsorbent.
1	5. The method of claim 2 further comprising the step of (e)
2	sequencing the nucleotide sequence that encodes the polypeptide agent.
1	6. The method of claim 2 further comprising the step of (e) isolating
2	the retained genetic package.
1	7. The method of claim 2 further comprising the step of (e) producing
2	the polypeptide agent.
1	8. The method of claim 2 wherein the substrate comprises (1) an
2	adsorbent that binds an anchoring polypeptide and (2) at least one target genetic package
3	having a surface displaying the anchoring polypeptide and a target adsorbent polypeptide,
4	the target genetic package comprising a polynucleotide that comprises a nucleotide
5	sequence that encodes the target adsorbent, wherein the target genetic package is bound
6	to the adsorbent through the anchoring polypeptide.
1	9. The method of claim 2 wherein the substrate comprises a cell or
2	cell membrane.
1	10. The renethod of claim 2 wherein the target adsorbent comprises a
2	polypeptide that is differentially expressed between cells of different phenotypes.
1	11. The method of claim 3 wherein the phage is M13.
1	12. / The method of claim 4 wherein the target analyte is a target
2	polypeptide-and-the step of ii) exposing the adsorbent comprises the step of producing the
3	target polypeptide in situ on the adsorbent by in vitro translation of a polynucleotide
4	-udiu- the to-end malementide

1	13. The method of claim 5 wherein the step of sequencing comprises
2	amplifying the polynucleotide sequence in situ on the substrate.
1	14. The method of claim 7 wherein the step of producing comprises
2	reproducing the retained genetic package that displays the polypeptide agent.
	· /
1	15. The method of claim 7 comprising expressing the polypeptide agen
2	from an expression vector that comprises an expression control sequence operatively
3	linked to the nucleotide sequence encoding the polypeptide agent.
1	16. The method of claim 7 further comprising the step of producing a
2	substrate comprising an adsorbent that comprises the polypeptide agent.
1	17. The method of claim 8 wherein the at least one target genetic
2	package is selected from a target display library screened for genetic packages that bind
3	at least one primary target analyte and wherein the adsorbent comprises the primary
4	target analyte.
1	18. The method of claim 11 wherein the polypeptide agent is a single
2	chain antibody.
1	19. The method of claim 12 wherein the target polypeptide is produced
2	in situ by in vitro translation ϕ f a polynucleotide encoding the target polypeptide.
1	20. The method of claim 14 wherein the step of reproducing is carried
2	out in situ on the substrate.
1	21. The method of claim 19 wherein the polynucleotide encoding the
2	target polypeptide is produced in situ by in vitro transcription.
3	22. A substrate for desorption spectrometry comprising an adsorbent
4	that binds an anchoring polypeptide displayed on a surface of a genetic package, wherein
5	the surface of the genetic nackage further displays a target polypentide and wherein the

	1
6	genetic package comprises a polynucleotide comprising a nucleotide sequence that
7	encodes the target polypeptide.
1	23. The substrate of claim 22 wherein the genetic package is an M13
2	phage.
1	24. The substrate of claim 22 wherein the anchoring polypeptide is a
2	fusion polypeptide with gene III protein and the target polypeptide is a fusion polypeptide
3	with gene VIII protein.
1	25. A substrate comprising an adsorbent that comprises a polypeptide
2	agent that specifically binds to a target analyte, the polypeptide agent identified by the
3	method of claim 33.
1	26. The substrate of claim 25 wherein the polypeptide agent is a single
2	chain antibody.
	1
1	27. A method for detecting translation of a polynucleotide comprising
2	the steps of:
3	a) providing a substrate comprising an adsorbent for use in
4	desorption spectrometry;
5	b) contacting the substrate with the polynucleotide encoding a
6	polypeptide and with agents for in vitro translation of the polynucleotide, whereby the
7	polypeptide is produced;
8	c) exposing the substrate to an eluant to allow retention of the
9	polypeptide by the adsorbent; and
10	d detecting retained polypeptide by desorption spectrometry;
11	whereby detection of the polypeptide provides detection of
12	translation of the polynucleotide.
1	28. A method comprising the steps of:
2	\int a) exposing a first sample to a primary adsorbent and to an eluant
3	to allow retention of a first analyte by the adsorbent, and detecting the adsorbed analyte $\int v^2$

4	by desorption spectrometry, whereby the retained first analyte becomes a secondary
5	adsorbent; /
6	b) exposing a second sample to the secondary adsorbent and to an
7	eluant to allow retention of a second analyte by the secondary adsorbent, and detecting
8	the adsorbed second analyte by desorption spectrometry, whereby the retained second
9	analyte becomes a tertiary adsorbent.
1	29. The method of claim 28 further comprising repeating step (b) at
2	least once for a subsequent sample or samples.
1	A screening method for determining whether an agent modulates
2	binding between a target analyte and an adsorbent comprising the steps of:
3	a) providing a substrate comprising an adsorbent to which the target
4	analyte binds under an elution condition;
5	b) exposing the substrate to the target analyte and to the agent
6	under the elution condition to allow binding between the target analyte and the adsorbent;
7	c) detecting an amount of binding between the target analyte and
8	the adsorbent by desorption spectrometry, and
9	d) determining whether the measured amount is different than a
10	control amount of binding when the substrate is exposed to the target analyte under the
11	elution condition without the agent;
12	whereby a difference between the measured amount and the control
13	amount indicates that the agent modulates binding.
1	31. The method of claim 30 wherein the adsorbent comprises a ligand
2	that specifically binds the target analyte.
1	The method of claim 30 wherein the adsorbent comprises a genetic
2	package having a surface that displays a polypeptide ligand that specifically binds the
3	target_analyte

The method of claim 30 for screening a combinatorial library of agents comprising exposing each of a plurality of agents in the library to each of a plurality of the adsorbents.

34. The method of claim 31 wherein the ligand is an enzyme and the target analyte is a substrate of, or an inhibitor for, the enzyme, or vice-versa.

35. The method of claim 31 wherein the ligand is a hormone and the target analyte is a cell surface receptor or an intracellular receptor of the hormone, or vice-versa.

add be

_