Textual Adversarial Attack and Defense

Hunar Preet Singh, 160301 Smarth Gupta, 160695 Suryateja BV, 160729

Motivation

- Adversarial attacks are effective in visual modality (imperceptible!)
- Can be used to improve the robustness of models
- But not so easy to generate in text due to its discrete nature

Motivation

- Generating a good adversarial example for the text counterpart that does not destroy the semantics is a highly non-trivial task.
- Since the text is discrete, even the smallest of perturbations can completely change the word and the sentence might not make sense at all.

A warm but realistic meditation on friendship, family and affection.

A farm but reyldktu meditation on friendship, family and affection. (perceptible!)

Hotflip Attack (Ebrahimi et al. 2018)

- Generating adversarial examples with character substitution ("flips")
- Uses the gradient with respect to a one-hot input representation
- Efficiently estimates which change has the highest estimated loss
- Uses beam search to find the optimal set of manipulations

South Africa's historic Soweto township marks its 100th birthday on Tuesday in a mood of optimism -- **World**

South Africa's historic Soweto township marks its 100th birthday on Tuesday in a mooP of optimism – Sci/Tech

Hotflip Objective

$$\max \nabla_x J(\mathbf{x}, \mathbf{y})^T \cdot \vec{v}_{ijb} = \max_{ijb} \frac{\partial J}{\partial x_{ij}}^{(b)} - \frac{\partial J}{\partial x_{ij}}^{(a)}$$

Differentiate loss J wrt sentence x Difference Operator

i-th word j-th character

(a) --> current

(b) --> flipped

South Africa's historic Soweto township marks its 100th birthday on Tuesday in a mood of optimism -- World South Africa's historic Soweto township marks its 100th birthday on Tuesday in a mooP of optimism – Sci/Tech

$$i = 14$$
, $j = 4$, $(a) = 4$, $(b) = 16$

Universal Adversarial Triggers

- Input-agnostic sequences of tokens that trigger a model to produce a specific prediction when concatenated to any input from a dataset
- Gradient guided search over the token space
- Built over word-level extension of Hotflip
- Wallace et al. (2019)

Example: Sentiment Analysis

<u>Input</u>: zoning tapping fiennes Visually imaginative, thematically instructive and thoroughly delightful, it takes us on a roller-coaster ride.

Model Prediction: 1 --> 0

Triggers Objective

$$\underset{\mathbf{t}_{adv}}{\operatorname{arg\,min}} \, \mathbb{E}_{\mathbf{t} \sim \mathcal{T}} \left[\mathcal{L}(\tilde{y}, f(\mathbf{t}_{adv}; \mathbf{t})) \right]$$

Find a **token** such that...

Over all sentences in the dataset **T**

The prediction is always a particular target class when sentence is appended with the token

<u>Input</u>: zoning tapping fiennes Visually imaginative, thematically instructive and thoroughly delightful, it takes us on a roller-coaster ride.

Model Prediction: 1 --> 0

token = zoning tapping fiennes target class = 0

Defense Techniques

- Adversarial Training
 - Find adversarial examples (Hotflip), augment the training set
 - Retraining the model => very expensive!
- Diagnostic Datasets
 - Q: What room is this? A: Kitchen
 - Q': Is there a kitchen? A': Yes
 - Q": Is there a bathroom? A": No [Sameer Singh et al. 2019]
- Adversary Recognition Models
 - Cheap, but can fail in interesting ways (more on this later!)
- Probing
 - Understand the inner workings of the model better
 - Bertology, Understanding Bias using Influence Functions, Probing Numeracy
 - AllenAl Interpret

Word-level Hotflip Attack

- Using allennlp's implementation (nightly version)
- Attack on SST-2 dev.txt (binary classification)
- Model: Simple BiLSTM using GloVe embeddings
- Doesn't make sense to use as an "adversary"

A beguiling splash of pastel colors and *prankish* comedy from Disney. (1)

A beguiling splash of pastel colors and unfunny comedy from Disney. (0)

Suffers from the lack of a compelling or comprehensible narrative. (0) noir from the collaborative of a compelling or comprehensible narrative. (1)

What is a good adversary?

- Attacked word (spellings changed) mostly taken as "UNK" in wordlevel models
- Replacing words with synonyms or other words (from vocab) changes the sentence structure (perceptible!)
- Most attacks seem to be only of academic interest. Can we have more realistic attacks? [Spam, Programmatic Censorship]
- Some inspiration from Psycholinguistics: don't change first and last letter of a word

Types of Character Attacks

- Add
 - Q: where is the elbephant?
 - A: Africa (38.1%)
- Drop
 - Q: where is the elephant?
 - A: Africa (38.7%)
- Swap
 - Q: wehre is the elephant?
 - A: yes (77%)
- Keyboard
 - Q: where is the elephsnt?
 - A: Africa (38.7%)

- Repeat
 - Q: wherre is the elephant?
 - A: yes (84%)

MS-CoCo VQA 1.0 Q: where is the elephant? A: Africa (56.5%)

Which attack works the best?

- 1. Model: BiLSTM Word+Char level model trained on SST-2
 - No attack => **80.5** %
 - A combination of the three attacks works well. Tough to defend too...

	Add	Drop	Swap	Keyboard	All
Attack	39.8%	50.8%	52.3%	40.8%	35.6%
Defense	59%	65%	78%	62%	56.5%

The tasks we consider

- Sentiment Classification
 - Dataset: SST-2 dev set
 - Model: distilbert-base-uncased-finetuned-sst-2-english
 - Eval Metric: Accuracy
- Extractive Question Answering
 - Dataset: SQuAD v2.0 dev set
 - Model: distilbert-base-cased-distilled-squad
 - Eval Metric: Exact Score, F1 Score
- Paraphrase Identification
 - Dataset: MRPC
 - Model: bert-base-cased-finetuned-mrpc
 - Eval Metric: Accuracy

Defense using Word Recognition

- Input: word representation based on characters
 - concatenation of one-hot representation of first letter, last letter and a BoW representation of remaining letters
- Task: Predict which word in the vocabulary the representation corresponds to
- Output : One-hot vector (of dim V)
- Model: Vanilla BiLSTM

As a resulwt, Nelson nlw faces upto 10 years' jnail instead of life As a result, Nelson nlw faces upto 10 years' jail instead of life

Experimental Setup

- Task: [sst, squad, mrpc]
- Type of attack : [add, drop, swap, key, rep]
- Num_attacks : [1...10]
- Defense : BiLSTM Word Recognizer

Experimental Results

	Original	Attack	Defense
Sentiment Classification	0.91	0.75	0.87
Question Answering	0.79	0.35	0.49
Question Answering (F1)	0.84	0.46	0.56
Paraphrase Identification	0.93	0.69	0.75

Effect of Attack Strength

- We consider the sentiment classification task here
- Accuracy of both attack and defense techniques decreases as attack strength increases

	Original	Attack	Defense
NUM_ATTACKS = 1	0.91	0.88	0.90
NUM_ATTACKS = 3	0.91	0.83	0.89
NUM_ATTACKS = 5	0.91	0.79	0.88
NUM_ATTACKS = 7	0.91	0.69	0.87

An Example (Extractive QA)

- **Context**: In the early 1950s, student applications declined as a result of increasing crime and poverty in the Hyde Park neighborhood. In response, the university became a
- Question: Why did the university see a drop in applicants?
- Answer: crime and poverty
- Question: Wjty didd the uiversity see a dop in apllicants?
- Answer: the university became a major sponsor of a controversial urban renewal project
- Question: What did the university see a dip in applicants?
- Answer: Increasing crime and poverty

Future Work

- Character-level attacks:
 - Do not preserve semanticity.
 - Can be defended to some extent (as we have seen)

- Even more viscous attacks can be of the form:
 - Flights from New York to Florida
 - Flights from Florida to NYC
 - Flights from Florida to New York

High Lexical Overlap

Future Work

- PAWS: Paraphrase Adversaries from Word Scrambling (DATASET)
- Consists of challenging pairs (both paraphrase and non-paraphrase)
- Generated using controlled word-swap and back translation
- We will train encoder-decoder based models on this dataset

Another interesting line of work

- Learning Neural Templates for Text Generation
- Neural Generation system using hidden semi-markov models
- Learns latent discrete templates jointly with a generation model
- These templates make generation controllable and interpretable
- Can be used along with PAWS for generating adversaries

References

- Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. 2019. Universal adversarial triggers for nlp. arXiv preprint arXiv:1908.07125.
- Javid Ebrahimi, Daniel Lowd, and Dejing Dou. 2018a. On adversarial examples for characterlevel neural machine translation. arXiv preprint arXiv:1806.09030
- Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2018b. HotFlip: White-box adversarial examples for text classification.
- Zhang, Yuan, Jason Baldridge, and Luheng He. "PAWS: Paraphrase adversaries from word scrambling." arXiv preprint arXiv:1904.01130 (2019).
- Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." *arXiv preprint arXiv:1412.6572* (2014).
- Pruthi, Danish, Bhuwan Dhingra, and Zachary C. Lipton. "Combating adversarial misspellings with robust word recognition." arXiv preprint arXiv:1905.11268 (2019).
- Wiseman, Sam, Stuart M. Shieber, and Alexander M. Rush. "Learning neural templates for text generation." arXiv preprint arXiv:1808.10122 (2018).
- Brunet, Marc-Etienne, et al. "Understanding the origins of bias in word embeddings." arXiv preprint arXiv:1810.03611 (2018).
- Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Semantically equivalent adversarial rules for debugging nlp models." *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. 2018.

Thank You! Questions?