Optimizing Disease Management in Crop Production

Affected Stakeholders

- Hop farmers
- Policymakers (e.g. US Department of Agriculture)
- The broader agricultural sector and consumer of hop products

Proportion

O 2.5 5 10 15 20

Kilometers

O 0.004

Proportion

O 2.5 5 10 15 20

Kilometers

O 0.004

N 2019 June Incidence • 2019 June Fields Sampled

Proportion

0.5

5 10 15 20 Proportion

No. 5 10 15 20 Proportion

Data Description

Our analysis utilizes a comprehensive dataset collected from hop yards in Oregon from 2014 to 2017. The dataset includes:

- Monthly disease assessments
- Cultivar information
- Weather data
- Market data for hop prices and quality standards
- Fungicide application records and costs

Modeling Components

Economic control model

 Time transition model that estimates the probability of disease between periods (May-June and June-July).

Auto-infection:

- Measures the spread of disease within a yard.
- Dispersal component:
 - Measures the spread of disease between yards.
 - Considers pathogen strain and host plant variety

Epidemiological network model

Epidemiological network model

$$\log\left(rac{p_i}{1-p_i}
ight) = \sum_{k=1}^K I_k^{(t)}(i) \left[eta_k + \delta_k\left(rac{ ilde{y}_i}{n_{ ilde{y}_i}}\exp\left(-\eta_{1k}s_i
ight)
ight) + \gamma_k\sum_{j=1}^{M_i}\left(rac{a_jz_j}{n_{z_j}}\exp\left(-\eta_{2k}s_j
ight)w_{ij}\exp\left(-lpha_kd_{ij}
ight)I_k^{(s)}(j)
ight)
ight]$$

Variable	
	Description
$ ilde{y}_i$	number of diseased plants at yard $oldsymbol{i}$ in the prior month
$n_{ ilde{y}_i}$	number of plants sampled at yard \emph{i} in the prior month
a_i	area (hectares) of yard \emph{i}
s_i	number of fungicide applications made in yard \emph{i} in the prior month
z_{j}	number of diseased plants at yard $oldsymbol{j}$ in the prior month
n_{z_j}	number of plants sampled at yard $oldsymbol{j}$ in the prior month
a_j	area (hectares) of yard j
s_j	number of fungicide applications made in yard $oldsymbol{j}$ in the prior month
d_{ij}	distance (km) from centroids of yard i to yard j
w_{ij}	wind vector on $oldsymbol{i}-oldsymbol{j}$ direction in the prior month

Source pathogen strain and target variety susceptibility

$$\log\left(\frac{p_i}{1-p_i}\right) = \sum_{k=1}^K I_k^{(t)}(i) \left[\beta_k + \delta_k \left(\frac{\tilde{y}_i}{n_{\tilde{y}_i}} \exp\left(-\eta_{1k} s_i\right)\right) + \gamma_k \sum_{j=1}^{M_i} \left(\frac{a_j z_j}{n_{z_j}} \exp\left(-\eta_{2k} s_j\right) w_{ij} \exp\left(-\alpha_k d_{ij}\right) I_k^{(s)}(j)\right)\right]$$

V6 Mildew	Non-V6 Mildew
R6 Variety	Nugget (R6)
DISEASE	NO DISEASE
non-R6 Variety	non-R6 Variety
DISEASE	DISEASE

- V6 pathogen strain can infect plants with R6 and non-R6 variety
- non-V6 pathogen strain can only infect plants with non-R6 variety

Modeling Components

Economic model

Epidemiological model

Economic model

- Profit function which is affected by disease levels.
- Revenue component:
 - Yield loss affects quantity.
 - Quality loss affects price.
 - Price affected by market demand scenarios.
- Cost component:
 - Fixed and variable costs.
 - Cost of fungicide sprays.

Economic model

$$\pi = \sum_{i=1}^{N} igg(R\left(p_{i}
ight) - C\left(ar{x}_{i}
ight) - C\left(s_{i}
ight) igg)$$

Variable	
	Description
π	total profit
N	number of yards
$R(p_i)$	revenue of a given yard \emph{i} adjusted by the damage caused by disease incidence $\emph{p}_\emph{i}$
$C(\overline{x}_i)$	fixed and variable costs of yard i
$C(s_i)$	average cost of fungicide sprays of yard \emph{i}

Damage Functions

Loss in quality

Loss in yield

Effect of market demand conditions on price

Modeling Components

Economic model

Epidemiological model

Linking the two components

Goal: Find optimal number of fungicide sprays to maximize profit over all yards in the landscape:

$$\max_{s_1,\ldots,s_N}\pi=\max_{s_1,\ldots,s_N}\sum_{i=1}^Nigg(R\left(p_i
ight)-C\left(ar{x}_i
ight)-C\left(s_i
ight)igg)$$

which is subject to probability of disease in a given yard:

$$\log\left(rac{p_i}{1-p_i}
ight) = \sum_{k=1}^K I_k^{(t)}(i) \left[eta_k + \delta_k\left(rac{ ilde{y}_i}{n_{ ilde{y}_i}}\exp\left(-\eta_{1k}s_i
ight)
ight) + \gamma_k\sum_{j=1}^{M_i}\left(rac{a_jz_j}{n_{z_j}}\exp\left(-\eta_{2k}s_j
ight)w_{ij}\exp\left(-lpha_kd_{ij}
ight)I_k^{(s)}(j)
ight)
ight]$$

Preliminary results

Example Scenario

Next Steps

We aim to develop a coupled epidemiological-economic model using machine learning techniques to:

- Predict disease spread based on environmental conditions, crop susceptibility, and management practices
- Optimize fungicide application strategies considering factors like primary inoculum dose, pathogen diversity, and market demand
- Forecast crop yields and quality based on disease progression and management interventions
- Simulate various scenarios to identify optimal disease management strategies that maximize profit while minimizing environmental impact