Convolutional Neural Networks

Data Mining & Neural Networks

Dr. Wilmer Garzón

Director, Master's Program in Data Science Department of Computer Engineering

Escuela Colombiana de Ingeniería Universidade da Coruña

Convolutional Neural Networks (CNNs)

- CNNs are a powerful class of DL algorithms used for tasks such as image recognition, classification, and computer vision.
- We will explore the architecture, key components, training process, and real-world applications of CNNs.

Definition and Purpose

- CNNs are a type of deep neural network designed to process data with a grid-like topology, such as images.
- CNNs automatically and adaptively learn spatial
 hierarchies of features through backpropagation.
- They are widely used in image classification, object detection, and even in natural language processing.

Basic Structure of CNNs

FNOUR

• CNN consists of three main types of layers: convolutional layers, pooling layers, and fully connected layers.

Example: Handwritten Digits

The CNN Model consists of 6 layers

UNIVERSIDAD

CNN Architecture

Typical CNN Architecture:

- Input: Raw pixel values from images (e.g., 28×28×1 or 224×224×3)
- Convolutional Layer: Applies filters to extract local features (edges, shapes)
- Activation (ReLU): Introduces non-linearity to learn complex patterns
- Pooling Layer: Reduces spatial size (e.g., MaxPooling) for dimensionality reduction
- Fully Connected Layer: Interprets high-level features
- Output Layer: Final prediction (e.g., softmax for class)

How Convolution Works

CONVOLUTION IN IMAGE PROCESSING

- A convolution is a mathematical operation that applies a filter to input data to extract local features such as edges or textures.
- In CNN, a Convolution is an operation in image processing.
- Extract features like **edges**, **textures**, **and patterns** from images.

How does a CNN work?

- The image passes through convolutional and pooling layers.
- 2. Relevant features are extracted.
- 3. The final layers classify the image.
- 4. The model learns by adjusting weights through backpropagation.

Beyond Basic CNNs

Modern CNNs include advanced architectures like:

- LeNet-5 (early CNN for digit recognition)
- **AlexNet** (won ImageNet 2012, deeper and wider)
- **VGGNet** (uses small 3×3 filters, very deep)
- ResNet (introduces residual connections to train very deep networks)
- **Inception** (uses multi-scale convolutions in parallel)

These models push the boundaries of accuracy and efficiency in computer vision tasks.

Advantages of CNNs

ADVANTAGES OF CNNS

(Convolutional Neural Networks)

AUTOMATIC FEATURE EXTRACTION

SPATIAL HIERARCHIES

PARAMETER SHARING

TRANSLATION INVARIANCE

HIGH ACCURACY

SCALABILITY

Automatic Feature Extraction

- Learn relevant patterns without manual engineering.
- Parameter Efficiency
 - Shared weights reduce the number of parameters.
- Translation Invariance
 - Detect patterns regardless of their position in the image.
- Scalability
 - Effective for high-dimensional inputs like images and videos.
- Strong Performance
- State-of-the-art results in computer vision tasks.

Disadvantages of CNNs

- Require Large Amounts of Data
 - Need extensive labeled datasets for good performance.
- High Computational Cost
 - Training can be slow and resource-intensive.
- Limited to Grid-like Data
 - Mainly designed for images or data with spatial structure.
- Lack of Explainability
 - Difficult to interpret how features are learned.
- Overfitting Risk
 - \circ Can overfit when data is scarce or not diverse

UNIVERSIDAD

Real-World Use Cases

CNNs are used in a wide range of applications:

- **Medical Imaging** (e.g., detecting tumors in MRI scans)
- Autonomous Vehicles (e.g., object detection, lane tracking)
- **Facial Recognition** (e.g., identity verification)
- Art Generation (e.g., style transfer and image synthesis)
- **Security** (e.g., surveillance and anomaly detection)

Their ability to learn from visual data makes them indispensable in modern AI systems.

MIANKUS

UNIVERSIDAD

