Tutorial 5 **MATH3301**

- 1. Let H and K be subgroups of a group G. Define $HK = \{hk : h \in H, k \in K\} \subset G$. Give an example to illustrate that HK may not be a subgroup. Show that HK is a subgroup of G if and only if HK = KH. Give examples to demonstrate the existence of G, H, K for (i) $HK \cong H \times K$, (ii) $HK \not\cong H \times K$ respectively.
- 2. Let G be a group and define [G,G] to be the subgroup generated by all elements $xyx^{-1}y^{-1}$ with $x, y \in G$, i.e. $[G, G] = \langle \{xyx^{-1}y^{-1} : x, y \in G\} \rangle$. If H is a subgroup of G, show that [H, H] is a subgroup of [G, G]. For simplicity write G' for [G, G]. Compute S_3' and S_3'' .
- 3. Let $G = \left\{ \begin{pmatrix} 1 & y & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$. Show that G is a group under matrix multiplication. Show that the center Z(G) of G equals its commutator subgroup. Find a group law * on \mathbb{R}^3 such (6(1),6(3)) = (13)4. Give a formula for the cycle $\sigma(i_1,i_2,\dots,i_k)\sigma^{-1}$ where $\sigma \in S_k$.

Consider $\alpha = (1,3)$, $\beta = (1,3)(2,4)$ and $\gamma = (1,2,3)$ in S_4 . List all the elements in centralizers (i) $C(\gamma)$, (ii) $C(\gamma)$, (iii) $C(\gamma)$ and (iv) it center $Z(S_4)$. Explain your calculation.

Remark. We defined the centralizer of a subgroup, but in fact, the definition makes sense when H is just a subset. Here $C(\alpha)$ means $C(\{\alpha\})$.

- 5. Describe the elements in (i) $\operatorname{Aut}(\mathbb{Z}_4)$ and (ii) $\operatorname{Aut}(\mathbb{Z}_8)$. Verify that $\operatorname{Aut}(G)$ is a group under the operation of function composition, for any group G. Show that $\operatorname{Aut}(\mathbb{Z}_4) \cong \mathbb{Z}_4^{\times}$ and $\operatorname{Aut}(\mathbb{Z}_8) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \cong \mathbb{Z}_8^{\times}.$
- 6. Let G be a group, H and K be its subgroups such that $H \subset K \subset G$. (a) Show that $H \triangleleft G$ implies $H \triangleleft K$. (b) Give an example that $H \triangleleft K$ but $H \not \triangleleft G$ (meaning H is not normal in G). (c) Give an example that $H \triangleleft K$ and $K \triangleleft G$ but $H \not \triangleleft G$.