Obliczenia

Przyrządy pomiarowe

Woltomierz	Miernik DT890G	
Oscyloskop	RIGOL DS1062CA	

Miernik DT890G, pomiar napięcia DC					
Używany zakres Rozdzielczość Dokładność					
200 V 1 V $\pm (0.5\% + 2 \text{ dgts})$					

RIGOL DS1062CA, pomiar okresu				
zakres dokładność				
Evil Dan druidth	Single-shot	$\pm (1 \text{ sample interval} + 50 \text{ppm} \times \text{reading} + 0.6 \text{ ns})$		
Full Bandwidth $\frac{1}{16}$ averages $\frac{1}{16}$ (1 sample interval + 50ppm × reading + 0				

Pomiary

Niepewności typu B przyrządów cyfrowych obliczyliśmy w następujący sposób:

 $\Delta x = a\% \cdot wynik + b \cdot rozdzielczość$

gdzie a% – podawana w % klasa przyrządu, b-dgts

$$u_b(x) = \frac{\Delta x}{\sqrt{3}}$$

Na przykład niepewność pomiaru napięcia:

$$\Delta U = 0.5\% \cdot 115 \text{ V} + 2 \cdot 0.1 \text{ V} = 0.775 \text{ V}$$

$$u(U) = \frac{\Delta U}{\sqrt{3}} = 0.447 \text{ V}$$

Zależność okresu drgań relaksacyjnych od rezystancji T(R)

	U = 115 V							
	<i>C</i> =	470 nF	$C = 1 \mu\text{F}$ $C = 2 \mu\text{F}$		$C = 1 \mu\text{F}$ $C = 2 \mu\text{F}$		<i>C</i> =	$C_1 + 2 \mu F$
$R, k\Omega$	T,s	$u_b(T)$, s	T,s	$u_b(T)$, s	T,s	$u_b(T)$, s	T,s	$u_b(T)$, s
500	0.116	0.006	0.234	0.012	0.48	0.025	0.84	0.043
700	0.172	0.009	0.340	0.018	0.68	0.035	1.20	0.061
900	0.224	0.012	0.456	0.023	0.92	0.047	1.62	0.082
1100	0.30	0.016	0.58	0.030	1.20	0.061	2.08	0.105
1300	0.38	0.020	0.74	0.038	1.52	0.077	2.64	0.133
1500	0.46	0.024	0.92	0.047	1.54	0.078	3.36	0.169

Zależność okresu drgań relaksacyjnych od pojemności $T(\mathcal{C})$

	U = 115 V						
	R =	500 kΩ	$R = 900 \mathrm{k}\Omega$		$R = 1100 \text{ k}\Omega$		
C, μF	<i>T</i> ,s	$u_b(T)$, s	T,s	$u_b(T)$, s	<i>T</i> ,s	$u_b(T)$, s	
0.10	0.027	0.002	0.049	0.003	0.062	0.004	
0.47	0.120	0.007	0.226	0.012	0.300	0.016	
1.0	0.226	0.012	0.452	0.023	0.580	0.030	
2.0	0.476	0.024	0.920	0.047	1.20	0.061	
4.7	1.10	0.056	2.15	0.108	2.80	0.141	
10	2.16	0.109	4.20	0.211	5.48	0.275	

Zależność okresu drgań relaksacyjnych od napięcia zasilania $T(\boldsymbol{U})$

C =	2 μF	R = 5	500 kΩ
U, V	T, s	$u_b(U), V$	$u_b(T)$, s
110.0	0.56	0.75	0.029
115.1	0.48	0.78	0.025
120.0	0.43	0.80	0.022
125.0	0.38	0.83	0.019
130.0	0.36	0.85	0.019
135.0	0.32	0.86	0.017

Zależność okresu drgań relaksacyjnych od rezystancji

Współczynniki dopasowanych za pomocą regresji liniowej prostych

	$a, \frac{s}{k\Omega}$ b, s		$u(a), \frac{s}{k\Omega}$	<i>u</i> (<i>b</i>), s
C = 470 nF	0.00035	-0.07038	0.000016	0.0167
$C = 1 \mu F$	0.00068	-0.13414	0.000036	0.0383
$C = 2 \mu F$	0.00116	-0.10048	0.000094	0.0991
$C = C_1 + 2 \mu\text{F}$	0.00248	-0.52619	0.000157	0.1660

Na postawie wyznaczonych współczynników nachylenia: ${\it C}_1=(\frac{0.00248}{0.00116}-1)\cdot 2~\mu F\approx 2.276~\mu F$

Zapisy skrócone

C = 470 nF	$a = 3.50(16) \cdot 10^{-4} \frac{s}{k\Omega}$	b = -0.070(17) s
$C=1 \mu F$	$a = 6.80(36) \cdot 10^{-4} \frac{s}{k\Omega}$	b = 0.134(38) s
$C = 2 \mu F$	$a = 11.60(94) \cdot 10^{-4} \frac{s}{k\Omega}$	b = -0.100(99) s
$C = C_1 + 2 \mu\text{F}$	$a = 2.48(16) \cdot 10^{-3} \frac{s}{k\Omega}$	b = -0.53(17) s

Teoretyczna wartość współczynnika nachylenia otrzymanej prostej na podstawie wzoru teoretycznego

$$T = RC \ln \left(\frac{U - U_g}{U - U_z} \right)$$

 $U_g = 78.4~\mathrm{V}$ - napięcie gaśnięcia neonówki

 $U_z = 90.0 \, \mathrm{V}$ - napięcie zapłonu neonówki

$$T = a' \cdot R + b$$

$$a' = C \ln \left(\frac{U - U_g}{U - U_g} \right)$$

$$b = 0$$

$$u(y) = \sqrt{\sum_{i=1}^{k} \left(\frac{\partial y}{\partial x_i} u(x_i)\right)^2}$$

$$T = a' \cdot R + b$$

$$a' = C \ln\left(\frac{U - U_g}{U - U_z}\right)$$

$$b = 0$$
Niepewność współczynnika nachylenia z prawa propagacji niepewności
$$u(y) = \sqrt{\sum_{i=1}^k \left(\frac{\partial y}{\partial x_i} u(x_i)\right)^2}$$

$$u(a') = \sqrt{\left(\frac{\partial a'}{\partial U} u(U)\right)^2} = \sqrt{\left(C \cdot \left(\frac{1}{U - U_g} - \frac{1}{U - U_z}\right) u(U)\right)^2}$$

$$U = 115 V; u(U) = 0.447 V$$

C, nF	$a', \frac{s}{k\Omega}$	$u(a'), \frac{s}{k\Omega}$
470	0.000179	0.000003
1000	0.000381	0.00006
2000	0.000762	0.000011

C = 470 nF	$a' = 1.792(27) \cdot 10^{-4} \frac{s}{k\Omega}$
$C = 1 \mu\text{F}$	$a' = 3.812(57) \cdot 10^{-4} \frac{s}{k\Omega}$
$C = 2 \mu F$	$a' = 7.62(11) \cdot 10^{-4} \frac{s}{k\Omega}$

Warunek zgodności dwóch niezależnych pomiarów

$$|x_1 - x_2| < U(x_1 - x_2)$$

Niepewność rozszerzona

$$U(x_1 - x_2) = k\sqrt{[u(x_1)]^2 + [u(x_2)]^2}$$

$$k = 9$$

Zwyczajnie powinno przyjąć się k=2, jednak nasze poprzednie obliczenia niepewności nie uwzględniały, że pojemności kondensatorów i rezystancje rezystorów użytych w eksperymencie mogły nie być dokładnie takie jak zostały opisane na tych elementach.

	Regresja liniowa $a, \frac{s}{k\Omega}$	Wartość teoretyczna a' , $\frac{s}{k\Omega}$	a - a'	$U(a-a'), \frac{s}{k\Omega}$	Zgodność
C = 470 nF	0.00035	0.000179	0.000171	0.000147	Nie
C = 1 μF	0.00068	0.000381	0.000299	0.000328	Tak
$C = 2 \mu F$	0.00116	0.000762	0.000398	0.000852	Tak
ijihi)	COUNKIL				

Zależność okresu drgań relaksacyjnych od pojemności

Współczynniki dopasowanych za pomocą regresji liniowej prostych

R , k Ω	$a_{r}\frac{s}{\mu F}$	b,s	$u(a), \frac{s}{\mu F}$	u(b), s
500	0.216	0.0267	0.0043	0.0196
900	0.421	0.0519	8800.0	0.0401
1100	0.549	0.0655	0.0112	0.0516

Zapisy skrócone

$R = 500 \text{ k}\Omega$	$a = 0.2160(43) \frac{s}{\mu F}$	b = 0.027(20) s
$R = 900 \text{ k}\Omega$	$a = 0.4210(88) \frac{s}{\mu F}$	b = 0.052(40) s
$R = 1100 \text{ k}\Omega$	$a = 0.549(11) \frac{s}{\mu F}$	b = 0.066(52) s

Teoretyczna wartość współczynnika nachylenia otrzymanej prostej na podstawie wzoru teoretycznego

$$T = RC \ln \left(\frac{U - U_g}{U - U_z} \right)$$

$$T = a' \cdot C + b$$

$$a' = R \ln \left(\frac{U - U_g}{U - U_z} \right)$$

$$b = 0$$

$$u(a') = \sqrt{\left(\frac{\partial a'}{\partial U}u(U)\right)^2} = \sqrt{\left(R \cdot \left(\frac{1}{U - U_g} - \frac{1}{U - U_z}\right)u(U)\right)^2}$$

$U - U_z$		
b = 0		M.S.
$u(a') = \sqrt{\left(\frac{\partial a'}{\partial U}u(U)\right)^2} = \sqrt{\left(R \cdot \frac{\partial a'}{\partial U}u(U)\right)^2}$	$\left(\frac{1}{U-U_g}-\frac{1}{U-U_z}\right)u(U)\right)^2$	193/18/17/
R	$a', \frac{s}{\mu F}$	$u(a'), \frac{s}{\mu F}$
500	0.1906	0.0029
900	0.3431	0.0051
1100	0.4193	0.0063

Zapisy skrócone

$R = 500 \text{ k}\Omega$	$a' = 0.1906(29) \frac{s}{\mu F}$
$R = 900 \text{ k}\Omega$	$a' = 0.3431(51) \frac{s}{\mu F}$
$R = 1100 \text{ k}\Omega$	$a' = 0.4193(63) \frac{s}{\mu F}$

$R, k\Omega$	Regresja liniowa $a, \frac{s}{\mu F}$	Wartość teoretyczna $a', \frac{s}{\mu F}$	a - a'	$U(a-a'), \frac{s}{k\Omega}$	Zgodność
500	0.216	0.1906	0.0254	0.0467	Tak
900	0.421	0.3431	0.0779	0.0915	Tak
1100	0.549	0.4193	0.1297	0.1157	Nie

Zależność okresu drgań relaksacyjnych od napięcia zasilania

Wnioski

Zgodnie z oczekiwaniami teoretycznymi na wykresach widzimy, że okres drgań relaksacyjnych w układzie RC rośnie liniowo ze wzrostem pojemności kondensatora (wykres T = f(C)) oraz rośnie liniowo wraz ze wzrostem rezystancji rezystora (wykres T = f(R))). Widzimy też, że okres maleje wraz ze wzrostem napięcia (wykres T = f(U)), co jest spowodowane tym, że przy większym napięciu kondensator szybciej się ładuje. Nie wszystkie wyznaczone za pomocą regresji liniowej współczynniki nachylenia dopasowanych prostych zgadzały się ze współczynnikami nachylenia wyznaczonymi za pomocą wzoru teoretycznego $T=RC~ln\left(rac{U-U_g}{U-U_z}
ight)$. Może to wynikać z błędnego działania urządzeń pomiarowych (w szczególności oscyloskopu), błędnego oznaczenia pojemności na kondensatorach i rezystancji na rezystorach użytych w doświadczeniu, błędnego przyjęcia, że $U_a = 78.4\,\mathrm{V}$ oraz $U_z = 90.0\,\mathrm{V}$ (te wartości nie zostały zmierzone przez nas, tylko przyjęte na podstawie instrukcji do ćwiczenia) lub błędów z obliczeniach. Przeprowadzony eksperyment potwierdził również skuteczność i użyteczność histerezy, bo drgania nie wystapiłyby, gdyby napięcie gaśnięcia neonówki nie było mniejsze od napięcia jej zapłonu. Częstotliwość drgań w układzie RC można regulować zmieniając pojemność kondensatora, rezystancję rezystora lub napięcie zasilania, ch ge urach sygn dzięki temu układ ten ma szerokie zastosowanie w układach generujących sygnały o regulowanej częstotliwości, takich jak oscylatory, timery lub w generatorach sygnału.