

PROPOSAL PROGRAM KREATIVITAS MAHASISWA

JUDUL PROGRAM

QETD (QUEDRIPLEGIA ELECTRIC THERAUPETIC DEVICE): RANCANG BANGUN ALAT TERAPI STIMULASI LISTRIK PADA PENDERITA QUADRIPLEGIA

BIDANG KEGIATAN: PKM KARSA CIPTA

Disusulkan oleh:

Robi'ah Adawiyyah	Ketua	NIM 081117023	Angkatan 2011
Niera Putri Kurniasih	Anggota	NIM 081117018	Angkatan 2011
Amila Sofiah	Anggota	NIM 081117022	Angkatan 2011
M. Dzaky Mahdi	Anggota	NIM 081211733021	Angkatan 2012
Ataul Karim	Anggota	NIM 081211731004	Angkatan 2012

UNIVERSITAS AIRLANGGA SURABAYA

2014

PENGESAHAN PKM-KARSA CIPTA

1. Judul Kegiatan

: QETD (Quedriplegia Electric Theraupetic Device): Rancang Bangun Alat Terapi Stimulasi Listrik pada Penderita

Quadriplegia : PKM-KC

2. Bidang Kegiatan

3. Ketua Pelaksana Kegiatan

a. Nama Lengkap

b. NIM

c. Jurusan

d. Universitas

e. Alamat Rumah dan Telp/HP

f. Alamat Email

4. Anggota Pelaksana Kegiatan

5. Dosen Pendamping

a. Nama Lengkap dan Gelar

b. NIDN

c. Alamat Rumah dan Telp/HP

6. Biaya Kegiatan Total

a. Dikti

b. Sumber lain /

7. Jangka Waktu Pelaksanaan

: Robi'ah Adawiyyah

: 081117023

: S1 Teknobiomedik

: Airlangga

: Jl. Raden Santri Gg 1A no.6 Bedilan

Gresik (085852432684)

: robiah.mahfudz@gmail.com

: 4 orang

: Akif Rahmatillah, S.T., M.T.

: 0704018601

: Jl. Simo Sido Mulyo IX No.6 Surabaya

(081938355831)

: Rp 11.900.000

: 5 bulan

Surabaya, 18 September 2014

Menyetujui,

Wakil Dekan I

Fakultas Sains dan Teknologi

Nanik Siti Aminah, M.Si.)

NIP. 19670514 199102 2 001

Mengetahui,

Direktur Kemahasiswaan Universitas Airlangga

(Drs. Eko Supeno, M.Si.)

NIP 19650403 198911 1 001

Ketua Pelaksana Kegiatan

(Robi'ah Adawiyyah)

NIM. 081117023

Dosen Pembimbing

(Akif Rahmátillah, S.T., M.T.)

NIDN. 0704018601

DAFTAR ISI

ĺ
i
ii
V
i
7
9
0
1
7
8
9
0

DAFTAR GAMBAR

Gambar 1:	Segmen Sumsum Tulang Belakang	3
Gambar 2 :	ASIA Imparment Scale	4
Gambar 3:	Diagram Blok PID	4
Gambar 4:	Contoh Block Dari Kontrol PID	7
Gambar 5:	Diagram Alir Program	7
	Skema Setup Kontrol Secara Real-Time	

DAFTAR TABEL

Tabel 1:	Anggaran Biaya	9
Tabel 2:	Jadwal Kegiatan	9

RINGKASAN

Quadriplegia adalah paralisis atau kelumpuhan yang terjadi pada empat anggota ekstremitas yang disebabkan oleh kerusakan medula spinalis pada segmen C1-C8 atau disebut segmen servikal (Spinal-Injury Network, 2009). Di Amerika Serikat tahun 2008, kasus cedera servikal mencapai 67% dari 100.000 kasus cedera tulang belakang (Arifin, 2012). Kelumpuhan pada keempat bagian ekstremitas membuat pasien Quadriplegia sangat bergantung pada orang lain di setiap aktivitas gerakan yang dilakukan (Journal of rehabilitation, 1971). Di Indonesia, penanganan bagi penderita quadriplegia adalah dengan pembedahan atau terapi ES (Electric Stimulator). Namun perkembangan teknologi saat ini mengupayakan penanganan non invasif sedapat mungkin dan melakukan upaya invasif setelah upaya non invasive tidak dapat dilakukan. ES merupakan alat terapi yang berguna untuk menstimulasi saraf otot extremitas. Namun, ES tidak memiliki kontrol feedback untuk mengetahui gerakan yang dihasilkan sebagai pengaturan stimulus pada gerakan. Ketiadaan pengaturan stimulus pada ES menyebabkan target pergerakan tidak tercapai. Dalam dunia teknologi rehabilitasi medis juga dikenalsebuah alat stimulus listrik FES (Functional Electrical Stimulation). FES merupakan alat terapi yang berguna untuk menstimulasi saraf otot extremitas hingga terjadi kontraksi otot. Hal yang membedakan ES dengan FES adalah kontrol feedback. FES memiliki Kontrol feedback yang memudahkan pengaturan pada pemberian stimulus listrik, sehingga target dapat tercapai. namun penggunaan FES di Indonesia dapat dikatakan jarang karena biaya harga FES yang mahal. Berdasarkan masalah di atas, tergagaslah ide untuk membuat functional electrical stimulation untuk penderita quadriplegia yang murah dan dapat dijangkau khususnya penderita quadriplegia. Alat ini bernama QETD (OUEDRIPLEGIA ELECTRIC THERAUPETIC DEVICE). dalam hal ini dibuat pemodelan gerak tangan menggunakan desain *Identification Toolbox* sedangkan kontrol yang diguanakan adalah kontrol PID.QEDT terdiri dari perangkat integrasi PC, Data Acquisition, Electrical Stimulation, dan sensor yang dikemas menjadi satu.

Keyword: Quadriplegia, Terapi, Functional Electrical Stimulation.

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Quadriplegia adalah paralisis atau kelumpuhan yang disebabkan oleh cedera sumsum tulang belakang. Kasus cedera tulang belakang di dunia diperkirakan mencapai 40 sampai 80 juta penduduk per tahun dilihat dari semua penyebab kejadian cedera sumsum tulang belakang. Ini berarti bahwa setiap tahun, antara 250.000 hingga 500.000 orang mengalami cedera sumsum tulang belakang (WHO, 2013). Cedera sumsum tulang belakang pada segmen servikal atau segmen C1-C8 disebut dengan quadriplegia. Di Amerika Serikat tahun 2008, kasus cedera sumsum tulang belakang pada segmen servikal mencapai 67% dari 100.000 (Arifin,2012). Tingginya jumlah penderita quadriplegia dapat disebabkan oleh trauma akibat kecelakaan mobil, jatuh, cedera saat berolahraga, penyakit (*mielitis transversa*/ polio), atau kelainan bawaan seperti distrofi otot.

Quadriplegia memiliki level tertentu sesuai dengan cedera segmen servikal yang dialami. Pada segmen C6-C8 Akan menyebabkan hilangnya kemampuan fungsi lengan, pergelangan, dan jari (apparelyzed.com). Hilangnya kemampuan pada bagian tersebut secara tidak langsung membuat penderita kehilangan fungsi tangan seperti memegang, membawa, ataupun meletakkan. Gangguan fungsi tangan pada penderita quadriplegia C6-C8 akan menyebabkan kergantungan pada orang lain. Ketergantungan tersebut menjadi beban mental tersendiri bagi penderita quadriplegia. Oleh karena itu, penderita quadriplegia sangat membutuhkan penanganan tepat yang dapat mengembalikan fungsi ekstremitas penderita.

Di Indonesia, penanganan bagi penderita quadriplegia adalah dengan pembedahan bila terdapat gangguan neurologik progresif akibat penekanan. Namun, pembedahan adalah upaya terakhir ketika upaya non-invasif tidak dapat dilakukan seperti operasi bedah saraf untuk menyambungkan saraf yang putus. Penanganan lain yang diberikan adalah terapi ES (Electrical Stimulator) yang berguna untuk menstimulasi saraf otot pada bagian yang cedera. Namun terapi ES memiliki kelemahan dalam mengatur gerakan pada proses rehabilitisi medis. Hal ini disebabkan tidak adanya kontrol feedback (timbal balik) dari gerakan yang dihasilkan. Sehingga stimulasi listrik yang diberikan dapat dikatakan tetap atau bergantung pada pengaturan manual seorang dokter. Terapi lainnya yang digunakan adalah Functional Electrical Stimulation (FES). Perbedaan ES dan FES adalah pada kontrol *feedback*. FES memiliki kontrol *feedback* (timbal balik) yang memungkinkan untuk mengatur gerakan tangan sehingga target pergerakan dapat tercapai. Keunggulan lain dari FES adalah efektif untuk meningkatkan kecepatan langkah seseorang paska stroke (Robbins, dkk. 2006). Namun, penggunaan FES di Indonesia sebagai alat terapi maupun alat bantu (asistive) belum banyak digunakan karena harga FES yang mahal yaitu 288 juta rupiah.

Berdasarkan masalah di atas, tergagaslah ide untuk membuat functional electrical stimulation untuk penderita quadriplegia yang murah dan dapat dijangkau khususnya penderita quadriplegia. Alat ini bernama QETD (QUEDRIPLEGIA ELECTRIC THERAUPETIC DEVICE). QETD diharapkan dapat membantu penderita quadriplegia mendapatkan layanan rehabilitasi dengan biaya yang murah dan memberi dampak kemajuan fungsi motorik. Objek dari QETD adalah cedera otot klasifikasi C dan D dimana saraf sensorik dan motorik masih dapat berfungsi dengan batasan tertentu dan dapat memperbaiki diri sehingga terapi menuju kesembuhan masih dapat dicapai. Sebuah penelitian menyebutkan kondisi pasien cidera sumsum tulang belakang setelah melakukan rehabilitasi dengan functional electrical stimulation atau pun teknologi kursi roda mengamali kemajuan. (krishblum et al, 2007). Oleh karena itu, QETD berbasis FES dapat membantu penderita quadriplegia dan mengurangi tingkat ketergantungan pada orang lain.

1.2 Perumusan Masalah

Bagaimana rancang bangun *Quedriplegia Electric Theraupetic Device* untuk penderita quadriplegia?

1.3 Tujuan Program

Untuk membuat rancang bangun Quedriplegia Electric Theraupetic Device

1.4 Luaran yang Diharapkan

- 1.4.1 Prototype Quedriplegia Electric Theraupetic Device
- 1.4.2 Publikasi ilmiah dan paten *Quedriplegia Electric Theraupetic Device*

1.5 Kegunaan Program

1.5.1 Bagi Mahasiswa

Merupakan suatu pengembangan dan pembelajaran teknologi sebagai alat terapi penderita quadriplegia maupun kelumpuhan akibat *spinal cord injury*, serta sebagai bentuk pengabdian insan akademis dalam pembelajaran masyarakat sebagai wujud Tri Dharma Perguruan Tinggi.

1.5.2 Bagi Masyarakat

Membantu para medis, yaitu dokter untuk membantu penanganan penderita quadriplegia. bagi masyarakat, memberikan solusi alternatif terapi stimulasi listrik fungsionalyang mudah dijangkau

1.5.3 Bagi Pemerintah

Membantu program pemerintah Indonesia dalam Pembangunan Jangka Panjang Bidang Kesehatan 2025 dalam ketersediaan alat kesehatan yang aman dan bermutu dengan memanfaatkan kemajuan IPTEK dalam rangka mendukung terwujudnya peningkatan derajat kesehatan masyarakat.

BAB II TINJAUAN PUSTAKA

2.1 Quadriplegia Dan Fisiologi Stimulasi Listrik

Cedera sumsum tulang belakang atau *spinal cord injury* dikelompokkon menjadi: cidera servikal, cidera thorak,dan lumbar dan sacral (WHO,2013). Kerusakan pada segmen servikal disebut quadriplegia dan kerusakan pada segmen thorak dan lumbar disebut paraplegia (Apparelyzed.com)

Segmen servikal tersusun oleh saraf sumsum tulang belakang dari C1-C8. Quadriplegia akan mengakibatkan kerugian lengkap atau gangguan fungsi tergantung pada level serviks yang cedera. C3,C4 dan C5 berpengaruh pada diafragma (kebanyakan C4) (otot besar antara dada dan perut yang kita gunakan untuk napas). C5 berpengaruh pada otot bahu (deltoid) dan otot yang kita gunakan untuk menekuk siku (bicep). C6 berpengaruh pada pergelangan tangan untuk menekuk (ekstensi) dan supinasi pada lengan. C7 meluruskan siku dan pergelangan tangan (trisep dan ekstensor pergelangan tangan). C8 berpengaruh pada gerakan membungkuk jari (fleksi) (Apparelyzed.com).

Gambar 1. Segmen Sumsum Tulang Belakang

Klasifikasi cidera otot menurut *American Spinal Injury Association* (ASIA) atau dikenal *ASIA Impairment Scale* (AIS) terbagi menjadi lima: AIS A, AIS B, AIS C, AIS D, dan AIS E sebagaimana pada gambar 2 (Oxford, 2014). Rehabilitasi teratur dapat menaikkan level cidera pasien pada satu atau dua tingkat yang lebih tinggi dari level semula. Faktor-faktor yang mempengaruhi hal itu adalah: intensitas rehabilitasi yang dilakukan, Usia, cedera sumsum tulang belakang dengan *traumatic dan non traumatic*, kelamin, identifikasi dini pada level cidera, layanan kesehatan pasca rehabilitasi (Wolfe *et al*, 2009).

Box 1 | The ASIA Impairment Scale Classification of spinal cord injury (SCI) severity using the American Spinal Injury Association (ASIA) Impairment Scale. The main categories of the Impairment Scale are as follows: C4 injury (quadriplegia) A (complete): No motor or sensory function is preserved Cervical (neck) in the sacral segments S4-S5. · B (incomplete): Sensory but not motor function is preserved below the neurological level and includes the sacral segments \$4-\$5. C (incomplete): Motor C6 injury function is preserved below the neurological level, and Thoracic more than a half of key (upper back) muscles below the neurological level have a muscle grade of <3. D (incomplete): Motor function is preserved below T6 injury the neurological level, and at (paraplegia) least a half of key muscles below the neurological level have a muscle grade of ≥3. E (normal): Motor and Lumbar (lower back) sensory functions are normal. Extent of injury after damage to L1 injury specific spinal segments is (paraplegia) illustrated in the figure (see American Spinal Injury Sacral Association in Online links box for the complete standard neurological classification of Coccygeal SCh.

Gambar 2. ASIA Impairment Scale

2.2 Electrical Stimulator

Electric stimulation adalah stimulasi listrik yang mengelurkan amplitudo arus agar terjadi kontraksi satu otot ataupun sekumpulan otot (Inverarity, 2014). Secara umum, stimulasi listrik tidak merangsang otot skeletal secara langsung. stimulasi listrik sebenarnya membangkitkan saraf motorik, bukan otot itu sendiri (Petrofsky, 2004). Parameter yang harus diperhatikan dalam penggunaan electrical stimulation adalah: frekuensi, lebar pulsa / durasi, siklus, intensitas / amplitudo, waktu jalan, pola pulsa, durasi program frekuensi, dan kelompok otot diaktifkan (Doucet at al, 2012).

2.3 Identification Toolbox

Sistem identifikasi toolbox adalah sistem untuk membangun akurasi, menyederhanakan model komplek sistem dari noise data time-series. Identification toolbox memiliki tools untuk membuat model matematis dari sistem dinamis berdasarkan input/data yang dimati. Identikasi toolbox memiliki fitur antarmuka grafik user yang flesibel yang membantu dalam pengorganisasian data

dan model. Identification Tollbox berguna untuk sistem kontrol dan sinyal processing dalam analisis time-series dan vibrasi. Identifikasi dilakukan dengan tahapan prosedur: Plotting data, Melakukan analisis spectral dan korelasi, melakukan pengujian masalah, menemukan orde tuning dan struktur gangguan (Ljung,2003)

2.4 Proportional Integratif Derivatif (PID)

Pid Adalah Singkatan Dari Proportional, Integral, And Derivative. PID merupakan suatu kontroler untuk menentukan kepresisian suatu sistem instrumentasi dengan karakteristik adanya umpan balik pada sistem tersebut. Komponen PID terdiri dari 3 jenis, yaitu Proportional, Integratif, dan Derivatif. Ketiganya dapat dipakai bersamaan maupun sendiri-sendiri. PID memiliki keunggulan *rise time* yang cepat, memperkecil *error*, dan meredam *overshot/undershot* (Ogata, 1991).

Gambar 3. Diagram blok PID Paralel

PID memiliki suatu parameter pengontrol yang didapat atas tinjauan terhadap karakteristik yang diatur. Perilaku *plant* tersebut harus diketahui terlebih dahulu sebelum melakukan pencarian parameter PID. Untuk mendapatkan model plant, dapat dilakukan dengan metode matematis atau metode eksperimental. Metode eksperimental didasarkan pada reaksi *plant* yang dikenai suatu perubahan. Dengan menggunakan metode itu model matematik perilaku *plant* tidak diperlukan lagi, karena dengan menggunakan data yang berupa kurva keluaran, penalaan pengontrol PID telah dapat dilakukan. Penalaan bertujuan untuk mendapatkan kinerja sistem sesuai spesifikasi perancangan. Ogata menyatakan hal itu sebagai alat *control* (*controller tuning*). Dua metode pendekatan eksperimen adalah *Ziegler-Nichols* dan metode *Quarter decay* (Ogata, 1991). Keluaran pengontrol PID merupakan penjumlahan dari keluaran pengontrol *proportional*, *integral*, dan *derivative*. Karakteristik pengontrol PID sangat dipengaruhi oleh kontribusi besar dari ketiga parameter P, I dan D (Ogata, 1991).

3 Kontrol PID Pada LabVIEW

Program LabVIEW disebut *Virtual Instrument* (VIs), karena penampilan dan operasinya meniru instrumen fisik, seperti osiloskop dan multimeter. LabVIEW berisi seperangkat peralatan untuk memperoleh, menganalisis, menampilkan, dan menyimpan data.

Berdasarkan website resmi *Nasional Instrument* (www.ni.com, 2014), kontrol PID pada LabVIEW dapat diimplementasikan menggunakan LabVIEW PID *toolset*. Pada *toolset* ini terdapat beragam VI (*Virtual Instrument*) yang sangat membantu dalam desain sistem kontrol berbasis PID. Beberapa fitur yang menonjol diantaranya adalah kontrol *output range limiting*, integrator anti *wind*-up, dan kontroler *bumpless*. *Toolset* PID *advance* VI memiliki cakupan yang lebih rumit dan kompleks contohnya terdapat kontrol integral non linear, kontrol 2 DOF, serta kontrol kuadrat *error*. contoh *block* dari kontrol PID ditampilkan pada gambar 4.

Gambar 4. contoh *block* dari kontrol PID

3.1 DATA ACQUISITION (DAQ) HARDWARE

Akuisisi Data adalah proses mengukur gejala listrik atau fisik seperti tegangan, arus, suhu, tekanan, atau suara dengan komputer. Sebuah sistem DAQ terdiri dari sensor, perangkat keras pengukuran DAQ, dan komputer dengan software diprogram. Hardware DAQ bertindak sebagai antarmuka antara komputer dan sinyal dari dunia luar. Ini terutama berfungsi sebagai perangkat yang mendigitalkan sinyal analog yang masuk sehingga komputer menafsirkannya. Tiga komponen utama dari perangkat DAO yang digunakan untuk mengukur sinyal adalah sirkuit pengkondisian sinyal, analog-to-digital converter (ADC), dan computer bus. Computer bus berfungsi sebagai antarmuka komunikasi antara perangkat DAQ dan komputer untuk melewati instruksi dan data yang diukur. Perangkat DAQ yang ditawarkan pada bus komputer yang paling umum termasuk USB, PCI, PCI Express, dan Ethernet. Baru-baru ini, perangkat DAQ telah tersedia untuk 802.11 Wi-Fi untuk komunikasi nirkabel. Ada banyak jenis bus, dan masing-masing menawarkan keuntungan yang berbeda untuk berbagai jenis aplikasi (www.ni.com, 2014).

BAB III METODE PENULISAN

4.1 Tempat dan Waktu Pembuatan

Pembuatan alat QETD akan dilakukan di Laboratorium Instrumentasi Medis, Departemen Fisika, Fakultas Sains dan Teknologi, Universitas Airlangga selama lima bulan.

4.2 Tahapan Kegiatan

Tahapan kegiatan yang dilakukan dalam realisasi alat QETD ditunjukkan dengan gambar 5.

Gambar 5. Diagram Alir Program

3.3 Diagram Blok

Gambar 6. Skema Setup Kontrol Secara Real-Time

8

4.3 Rancang Bangun QETD

Rancang bangun QETD diawali dengan pemodelan tangan atau kaki menggunakan Identification Toolbox pada Matlab. Identification Toolbox Matlab membutuhkan data input dan output agar diperoleh rumusan pemodelan tangan. Dalam hal ini, input yang dibutuhkan adalah amplitudo arus dan frekuensi sedangkan output yang dibutuhkan adalah sudut tangan hasil pergerakan. Pengumpulan data dilakukan dengan memberikan stimulus elektrik pada orang coba. Langkah selanjutnya setelah pemodelan gerak tangan adalah desain kontrol PID. Kontrol PID didesain menggunakan software Labview yang diprogram didalam PC. Selanjutnya, PC dihubungkan pada data acquisition module. Dalam perancangan ini data acquisition yang digunakan adalah myDAQ. Data acquisition module berfungsi untuk mengubah input digital menjadi analog atau sebaliknya. Output data acquisition kemudian masuk pada Electrical Stimuation. Electrical Stimulation kemudian mengeuarkan ampitudo arus dan frekuensi yang digunakan untuk menstimuasi otot. Sensor sudut di pasang pada persendian yang diukur untuk dapat mengetahui sudut gerak yang dihasilkan. Sensor sudut merupakan elemen feedback sebagai media untuk mengetahui gerakan kontraksi otot. Hasil sensor sudut kemudian masuk kedalam data acquisition yang terhubung pada PC. Kontrol pada PC akan membandingkan θ_{actual} dengan $\theta_{setpoint}$. Ketika $\theta_{actual} < \theta_{setpoint}$ maka ampitudo arus dan frekuensi akan terus diberikan dengan kontrol PID sehingga $\theta_{actual} = \theta_{setpoint}$ oleh kontrol PID.

Gambaran produk yang akan dirancang terdapat pada lampiran 5.

BAB 4 BIAYA DAN JADWAL KEGIATAN

5.1 Anggaran Biaya

No	Jenis Pengeluaran	Biaya (Rp)			
1	1 Peralatan penunjang, ditulis sesuai kebutuhan (15-25%).				
2	Bahan habis pakai, ditulis sesuai dengan kebutuhan (20-	4.710.000			
2	35%).				
3	Perjalanan, jelaskan kemana dan untuk tujuan apa (15-25%)	977.500			
4	Lain-lain: administrasi, publikasi, seminar, laporan, lainnya	2.650.000			
4	sebutkan (maks. 15%)				
	11.900.000				

5.2 Jadwal Kegiatan

No	Kegiatan		Bu	lan [-			lan I				lan II		I	Bul		l]	Bul V		
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	Studi Literatur																				
2	Persiapan hardware dan software pemodelan																				
3	Pengumpulan data																				
4	Perumusan Model tangan dan kaki																				
5	Desain kontrol dengan LabVIEW																				
6	Integrasi LabVIEW, data Acquisition, dan Electrical stimulation																				
7	Uji coba QETD pada otot																				
8	Penyempurnaan Alat																				
9	Penyusunan Laporan																				

DAFTAR PUSTAKA

- Aldian, Retanto. 2009. Rancangan Bangun Electrical Stimulations untuk Functional Electrical Stimulation. Surabaya: Institut Teknologi Sepuluh November
- Arifin, Zafrullah dan Jefri henky. 2012. Analisis Nilai Functional Independence Measure Penderita Cedera Servikal dengan Perawatan Konservatif. Bandung: Universitas Padjajaran
- Data Acquisition, diakses pada tanggal 26 September 2014 http://www.ni.com/data-acquisition/
- Krishblum, Steven C *et al.* 2007. Spinal Cord Injury Medicine. 3. Rehabilitation Phase After Acute Spinal Cord Injury. Arch Phys med Rehabil
- Ljung, Lennart. 2013. System Identification Toolbox for use with Matlab. The Math works. Inc
- Ogata, Katsuhiko. 1991. Teknik Kontrol Otomatik, Jilid 1. Jakarta: Erlangga.
- PID control on Labview, diakses pada tanggal 26 September 2014
- Quadriplegia what does it mean? a national medical meeting in New York and the national convention of his fatternity phi delta theta. Journal of rehabilitation, 1971. www.creative-living.com/pdf/Dick%20Maxwell%20Quad%20Talk.pdf
- Quadriplegian and Quadriplegic diakses pada tangggal 25 September 2014 http://www.apparelyzed.com/quadriplegia-quadriplegic.html
- Robbins, Shawn M, dkk. 2006. The Theraupetic Effect Of Functional and Transcutaneous Electric Stimulation On Improving Gait Speed In Stroke Patients: A Meta-Analysis. Arch Phys Rehabil
- The National SCI Statistical Center. 2012. Spinal Cord Injury Facts and Figures at A Glance. Birmingham: Alabama University diakses pada tanggal 24 September 2014
- WHO, 2013. International perspectives on spinal cord injury. Switzerland: World Health Organization Press
- wolfe, dalton L et al. 2009. Rehabilitation practice. Spinal Cord Injury Rehabilitation Evidence (SCIRE). Versi 3.0
- www.ni.com/white_paper, diakses pada tanggal 24 September 2014

LAMPIRAN-LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pembimbing

Lampiran Ketua

A. Identitas Diri Ketua

NamaLengkap	Robi'ah Adawiyyah			
JenisKelamin	Perempuan			
Program Studi	Teknobiomedik			
NIM	081117023			
TempatdanTanggalLahir	Gresik, 16 September 1992			
E-mail	Robiah.mahfudz@gmail.com			
NomerTelepon	085852432684			

B. RiwayatPendidikan

	SD	SMP	SMA		
NamaInstitusi	MI Salafiyyah Gresik	Mts Amanatul Ummah Surabaya	MA Amanatul Ummah Surabaya		
Jurusan			IPA		
TahunMasuk	1999-2005	2005-2008	2008-2011		

C. Pemakalahan Seminar

No.	NamaPertemuanIlmiah / Seminar	JudulArtikel	WaktudanTempat
-	/ -	-	-

D. Penghargaandalam 10 tahunterakhir

No.	JenisPenghargaan	InstitusiPemberiPenghargaan	Tahun	
1. Juara 1 Karya Tulis Ilmiah Alqur'an Juara 3 Lomba Karya 2. Tulis Ilmiah Alqur'an Nasional Penerima dana hibah PKM-GT		Universitas Airlangga	2012	
		Institut Teknologi Sepuluh November	2013	
		DIKTI	2013 dan 2014	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidak sesuaian dengan kenyataan, saya sanggung menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah Program Kreativitas Mahasiswa – Karsa Cipta.

Surabaya, 19 September 2014 Pengusul,

(Robi'ah Adawiyyah)

A. Identitas Diri

1	Nama Lengkap	Niera Putri Kurniasih			
2	Jenis Kelamin	Perempuan			
3	Program Studi	S1 Teknobiomedik			
4	NIM	081117018			
5	Tempat dan Tanggal Lahir	Jember, 10 Februari 1993			
6 E-mail		niera-putri-11@fst.unair.ac.id			
7	Nomer Telepon/HP	085258800427			

B. Riwayat Pendidikan

	SD	SMP	SMA			
Nama Institusi	SD Nasional	SMP Negeri I	SMA Negeri			
Ivama mstitusi	Kalisat-Jember	Kalisat-Jember	Kalisat-Jember			
Jurusan	-	-	IPA			
Tahun Masuk- Lulus	1999-2005	2005-2008	2008-2011			

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No	Nama Pertemuan Ilmiah / Seminar	Judul Artikel Ilmiah	Waktu dan Tempat
-	-	-	-

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
-	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak sesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah PKM-KC.

Surabaya, 17 September 2014 Pengusul,

(Niera Putri Kurniasih)

A. Identitas Diri Anggota

Nama Lengkap	Amila Sofiah	
Jenis Kelamin Perempuan		
Program Studi	S1 Teknobiomedik	
NIM	081117022	
Tempat dan Tanggal Lahir	Malang, 26 Oktober 1992	
E-mail	amilasofiah@gmail.com	
Nomer Telepon	085755677711	

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	SD Dharma Wanita Unibraw Malang	SMPN 3 Malang	SMAN 4 Malang
Jurusan	-	7	IPA
Tahun Masuk	1999 - 2005	2005 - 2008	2008 - 2011

C. Pemakalahan Seminar

No.	Nama Pertemuan Ilmiah / Seminar	Judul Artikel	Waktu dan Tempat
-	-	No	*

D. Penghargaan dalam 10 tahun terakhir

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Juara 1 UNITECH (UNY- National Innovation Techology)	Universitas Negeri Yogyakarta	2014

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggung menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk untuk memenuhi salah satu persyaratan dalam pengajuan Hibah Program Kreativitas Mahasiswa - Karsa Cipta.

Surabaya, 19 September 2014 Pengusul,

(Amila Sofiah)

A. Identitas Diri Anggota

Nama Lengkap	Ataul Karim	
Jenis Kelamin	Laki-laki	
Program Studi	S1 Teknobiomedik	
NIM	081211731004	
Tempat dan Tanggal Lahir	Surabaya, 09 Oktober 1994	
E-mail	Ataulkarim.ua@gmail.com	
Nomer Telepon	083839987190	

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	SDN Keboansikep IV Gedangan, Sidoarjo	SMPN 3 Waru Sidoarjo	SMAN 1 Gedangan Sidoarjo
Jurusan	-		IPA
Tahun Masuk	2000-2006	2006-2009	2009-2012

C. Pemakalahan Seminar

No.	Nama Pertemuan Ilmiah / Seminar	Judul Artikel	Waktu dan Tempat
-	-	-	-

D. Penghargaan dalam 10 tahun terakhir

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Juara 1 UNITECH (UNY- National Innovation Techology)	Universitas Negeri Yogyakarta	2014

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggung menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk untuk memenuhi salah satu persyaratan dalam pengajuan Hibah Program Kreativitas Mahasiswa - Karsa Cipta.

Surabaya, 19 September 2014 Pengusal

(Ataul Karim)

A. Identitas Diri Anggota

Nama Lengkap	Muhammad Dzaky Mahdi
Jenis Kelamin	Laki-laki
Program Studi	S1 Teknobiomedik
NIM	081211733021
Tempat dan Tanggal Lahir	Surabaya,27 September 1995
E-mail	Dzakymahdi27@gmail.com
Nomer Telepon	

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	Ta'miriyah Surabaya	Mts Amanatul Ummah Surabaya	MBI Amanatul Ummah
Jurusan	-	-	IPA
Tahun Masuk	2001-2007	2007-2009	2009-2012

C. Pemakalahan Seminar

No.	Nama Pertemuan Ilmiah / Seminar	Judul Artikel	Waktu dan Tempat
	-		-

D. Penghargaan dalam 10 tahun terakhir

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
-	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggung menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk untuk memenuhi salah satu persyaratan dalam pengajuan Hibah Program Kreativitas Mahasiswa - Karsa Cipta.

Surabaya, 19 September 2014

Pengusul,

(Muhammad Dzaky Mahdi)

Dosen Pembimbing

A. Identitas Diri Dosen Pembimbing

Nama Lengkap	Akif Rahmatillah
Jenis Kelamin	Laki-laki
Program Studi	Teknobiomedik
NIDN	0704018601
Tempat dan Tanggal Lahir	Balikpapan, 4 Januari 1986
E-mail	akif.biomedeng@gmail.com
Nomer Telepon	085838255831

B. Riwavat Pendidikan

	S-1	S-2
Nama Institusi	Universitas Gadjah Mada	Institut Teknologi Bandung
Jurusan	Teknik Fisika	Teknik Elektro
Tahun Masuk	2003 - 2008	2010 - 2013

C. Pemakalahan Seminar

No.	Nama Pertemuan Ilmiah / Seminar	Judul Artikel	Waktu dan Tempat
1.	Seminar Nasional Fisika dan Aplikasinya II	Sistem Sistem Kontrol PID Kecepatan Turbin Miniatur <i>Plant</i> PLTA	2010, Universitas Airlangga Surabaya
2.	Seminar Nasional Basic Science VII	Sistem Pengaturan Jarak Menggunakan Metode PID dengan memanfaatkan Sensor Ultrasonik	2010, Universitas Brawijaya, Malang
3.	3 rd International Conference on Instrumentation, Computation and Informatics-Biomedical Eng	2.5-D Visual Servoing Experiment using Adept Viper s850 Robot (Case Study on USG Probe Pleacement)	2013, Bandung Institut of Technology

D. Penghargaan dalam 10 tahun terakhir

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
-	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk untuk memenuhi salah satu persyaratan dalam pengajuan Hibah Program Kreativitas Mahasiswa - Karsa Cipta.

Surabaya, 19 September 2014

Pembimbing,

(Akif Rahmatillah, S.T., M.T.)

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Peralatan Penunjang

1. Peraia	tan Penunjang			
Material	Instifikasi namakaian	Kuantitas	Harga Satuan	Keterangan
Materiai	Justifikasi pemakaian	Kuaninas	(Rp)	(Rp)
Multimeter	Pengukuran arus,	1	155.000	155.000
	tegangan, hambatan			
	komponen			
Probe	Kabel multimeter	1	6.200	6.200
multimeter	untuk mengukur			
	tegangan, hambatan,			
	arus komponenen			
Data	Perangkat antar muka	1	2.424.000	2.424.000
acquisition	computer, untuk			
module	digitalisasi sinyal			
C - 1.1	analog atau sebaliknya	1	CO 000	60,000
Solder	Sebagai penyambung rangkaian	1	60.000	60.000
Mata solder	Pengganti ujung	2	20.000	40.000
	solder jika terjadi			
	kerusakan			
Penyedot	Sebagai pembersih	1	45.500	45.500
timah	timah apabila ada			
	kesalahan sambungan			
Tang	Sebagai pemotong	1	25.000	25.000
potong	kabel			
Tang cupit	Pengambil	1	30.000	30.000
	komponen-komponen			
	jika terjadi kesalahan			
	peletakan			
Tang kupas	Pengupas baju kabel	1	23.000	23.000
kabel	agar serat kabel			
	terlihat			
Bor PCB	Pelubang PCB	1	49.000	49.000
Mata bor	Sebagai variasi	2	3.400	6.800
	besarnya pelubang bor			
	sesuai kebutuhan			
Jepit kabel	Penghubung	4	5.500	22.000
	rangkaian/komponen			
	satu dengan yang lain			

Gergaji	Pemotong PCB	1	45.000	45.000
PCB				
Tempat	Tempat meletakkan	4	3.500	14.000
baterai	baterai			
Breadboard	Tempat perancangan	2	50.000	100.000
	rangkaian sebelum			
	masuk ke PCB			
Obeng set		1	45.000	45.000
Solder stand	Tempat meletakkan	1	42.000	42.000
	solder			
Kabel	Menghubungkan	4	45.000	180.000
elektroda	elektroda dengan ES			
ES				
Tembakan	Menempelkan	1	47.000	47.000
lem	komponen pada			
	Rangkaian			
Pad Spons	Tempat meletakkan	4	37.000	148.000
	elektrode yang			
	ditempelkan pada			
	anggota tubuh pada			
	saat proses stimulus			
Subtotal				Rp.
				3.562.500

2. Bahan Habis Pakai

Material	Justifikasi pemakaian	Kuantitas	Harga Satuan (Rp)	Keterangan (Rp)
IC 555	Komponen Rangkaian	6	63000	378000
Resistor	Komponen Rangkaian	100	250	25000
Kapasitor	Komponen Rangkaian	59	3000	177000
IC Penguat	Komponen Rangkaian	11	24000	264000
(OP07)				
Dioda	Komponen Rangkaian	30	3500	105000
transformer	Komponen rangkaian	1	845.000	845.000
Sensor sudut	membaca sudut hasil	2	50000	100000
	stimulus			
Dispossable	Elektroda stimulus	20	48000	960000
Electrode ES	listrik			
Baterai alkaline	Sumber tegangan	15	25000	375000
kotak	stabil 9v			

Timah	Material penghubung rangkaian di PCB	4	25000	100000
Kabel Jumper	Penghubung	3	80000	240000
(male-male,	komponen/rangkaian	3	80000	240000
male-female,	satu dengan yang lain			
female-female)	satu dengan yang lam			
	Danahuhuna	14	60.000	60.000
Kabel Pelangi	Penghubung	1 set	00.000	60.000
	komponen daya yang			
DCD.	lebih besar dengan		00000	100000
PCB	Tempat perakitan	2	90000	180000
	komponen rangkaian			
Black house	Tempat IC	30	2000	60000
Isi lem tembak	Perekat	10	3000	30000
transistor	Komponen rangkaian	10	15000	150000
Penjepit buaya	penjepit	15	1000	15000
Microswitch	Switch on/off	2	68000	136000
Set Peralatan	Penunjang	1	50000	50000
ATK	penyusunan konsep			
	dan rangkaian			
Kertas A4 70	Bahan penyusun	2	35000	70000
gram	rangkaian dan			
	laporan			
Antistatis	Untuk menurunkan	2	180000	360000
	atau menghilangkan			
	listrik statis			
gel electrode	Media isolator pada	2	55000	11000
0	proses stimulus			
	T Table 2			Rp.
Sub total				4.710.000
Sao total				1.710.000

3. Perjalanan

Material	Justifikasi pemakaian	Kuantitas	Harga Satuan (Rp)	Keterangan (Rp)
pulang pergi Surabaya-Bandung	Studi literature dan wawancara	5	150.000	750.000
Surabaya-Dandung	dan wawancara			
pulang pergi keputih- rumah sakit Dr. Sutomo	Studi literature dan wawancara	15	6.500	97.500

pulang-pergi wilayah Surabaya	Perjalanan pembelian alat	20	6.500	130.000
Subtotal				Rp. 977.500

4. Lain-lain

Material	Justifikasi pemakaian	Kuantitas	Harga Satuan (Rp)	Keterangan (Rp)
Peminjaman lab	Laboratorium	5 Bulan	200.000	1.000.000
Instrumentasi Medis	pengerjaan alat			
Administrasi	Pembuatan	Pembuatan		250.000
	proposal, surat			
	ijin meliputi print			
	dan penggandaan			
Pembelian Buku dan	Download buku	4 jurnal	150.000	1.200.000
Jurnal Referensi	dan jurnal	2		
	berbayar	mahasis		
		wa		
Publikasi	Publikasi alat	4 bulan	50.000	200.000
	melalui website			
	dan domain			
	unair.ac.id			
Subtotal	Rp.			
				2.650.000

Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas

No.	Nama	Program Studi	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Robi'ah Adawiyyah/ 081117023	S-1 Teknobiomedik	4 jam	-Pengatur alur rancangan -Pusat Komunikasi -Penanggung Jawab Control PID
2	Niera Putri Kurniasih/081117018	S-1 Teknobiomedik	4 jam	Penanggung Jawab dalam pemodelan fisiologi
3	Amila Sofiah/081117022	S-1 Teknobiomedik	4 jam	Penanggung Jawab dalam electrical stimulation
4	Ataul Karim/081211731004	S-1 Teknobiomedik	4 jam	Penanggung jawab komunikasi data dengan DAQ
5	Muhammad Dzaky Al- Mahdi/0812117310021	S-1 Teknobiomedik	4 jam	-Penanggung jawab penyediaan alat, bahan dan administrasi -penanggung jawab fisiologi penerapan QETD

Lampiran 4. Surat Pernyataan Ketua Pelaksana

UNIVERSITAS AIRLANGGA

Kampus C Unair Mulyorejo Surabaya 60115 Telp. (031) 5929970, 5922267, Fax (031) 5911444 Website: http://www.km.unair.ac.id; e-mail: km@unair.ac.id

SURAT PERNYATAAN KETUA PELAKSANA

Yang bertanda tangan di bawah ini:

Nama

: Robi'ah Adawiyyah

NIM

: 081117023

Program Studi

: S1 Teknobiomedik

Fakultas

: Sains dan Teknologi

Dengan ini menyatakan bahwa usulan PKM-KC saya dengan judul: QETD (Quedriplegia Electric Theraupetic Device): Rancang Bangun Alat Terapi Stimulasi Listrik pada Penderita Quadriplegia yang diusulkan untuk tahun anggaran 2015 bersifat original dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara. Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Surabaya, 18 September 2014

Yang menyatakan,

Mengetahui, Direktur Kemahasiswaan

Universitas Airlangga

(Drs. Ello Supeno, M.Si.)

NIP. 19650403 198911 1 001

(Robi'ah Adawiyyah) NIM. 081117023

Lampiran 5. Gambaran Teknologi yang Hendak Diterapkembangkan