

Contenido

- 1. Introducción
- 2. Características del Patio
- 3. Descripción del problema
- 4. Algoritmos
- 5. Generación de instancias
- 6. Resultados
- 7. Trabajo futuro

1. INTRODUCCIÓN: Smart Ports

Puertos del futuro:

- ✓ Usar tecnologías para transformar los distintos servicios públicos de los enclaves portuarios en servicios interactivos
- ✓ Satisfacer necesidades con mayor eficiencia, transparencia y valor
 - Eficiencia
 - Aprovechamiento de recursos

1. INTRODUCCIÓN: Smart Ports

Puertos del futuro:

- ✓ Usar tecnologías para transformar los distintos servicios públicos de los enclaves portuarios en servicios interactivos
- ✓ Satisfacer necesidades con mayor eficiencia, transparencia y valor

Emisiones en el transporte marítimo

- Eficiencia
- Aprovechamiento de recursos
- Mejorar Salud

Un gran portacontenedor quemando combustible que contiene un 3% de azufre emite el mismo SOx que 50 millones de coches utilizando combustible diésel

1. INTRODUCCIÓN

1. INTRODUCCIÓN

Configuración del patio de contenedores

Asiático

Europeo

2. Características del Patio

2. Características del Patio: I/O Sea

2. Características del Patio: I/O Land SISTEMAS DE OPTIMIZACION APL

2. Características del Patio

Estructura de un bloque contenedores

Lista de Peticiones: PLAN DE CARGA/DESCARGA

TIPOS DE OPERACIONES CON CONTENEDORES

Satisfacer la Lista de Peticiones

Decisión:

- Secuenciación de los movimientos de la grúa de patio
- Asignar un I/O a cada contenedor

Teniendo en cuenta:

- Configuración europea
- > Un bloque
- Una grúa
- Congestión en I/O
- Reshuffling
- Minimizar el retraso total ponderado

TIPOS DE OPERACIONES CON CONTENEDORES

TIPO 1: Almacenar desde el mar

- Fecha llegada (r_c)
- > Posición destino conocida
- Asignar I/O de mar

- Fecha llegada (r_c)
- Posición destino conocida
- Asignar I/O de tierra

TIPO 2: Almacenar desde tierra

TIPO 3: Retirar hacia el mar

- Fecha entrega (d_c)
- Adelanto_c/Retraso_c
- Posición origen conocida
- Posible rehsuffling
- Asignar I/O de mar

- Tiempo llegada camión (e_c)
- Posición origen conocida
- Posible reshuffling
- Asignar I/O de tierra

TIPO 2: Retirar hacia tierra

Datos de entrada

- Configuración del patio
- ➤ Número de peticiones de contenedores (n)
- > Velocidades de grúa
- > Posición inicial de la grúa
- > Detalle de las peticiones de contenedores

Configuración

10 Input/Output (sea side)

3. Algoritmos: Constructivo

- Similitud con problemas de scheduling
 - Representación de la solución: permutación de contenedores (n=5)

5	2	3	4	1

Evaluación

Secuenciación de los movimientos de la grúa de patio: vecino más próximo

Asignar un I/O a cada contenedor

Patio (I/O asignado)-- d_a -- \rightarrow $\stackrel{>}{\iota}$ I/O?-- d_b -- \rightarrow I/O-- d_c - \rightarrow Patio Patio (I/O asignado)-- d_a -- \rightarrow $\stackrel{>}{\iota}$ I/O?--- d_b - \rightarrow Patio

FUNCIÓN OBJETIVO

$$\min \sum_{c \in \mathcal{C}_{1}} w_{1}^{R} (TGF_{c} - r_{c}) + \sum_{c \in \mathcal{C}_{2}} w_{2}^{R} (TGF_{c} - r_{c}) + \sum_{c \in \mathcal{C}_{3}} w_{3}^{R} (TOF_{c} - d_{c}) + \sum_{c \in \mathcal{C}_{4}} w_{4}^{R} (TOF_{c} - e_{c}) + \sum_{c \in \mathcal{C}_{4}} w_{1}^{C} (TOC_{c} - r_{c}) + \sum_{c \in \mathcal{C}_{2}} w_{2}^{C} (TOC_{c} - r_{c}) + \sum_{c \in \mathcal{C}_{3}} w_{3}^{C} Adelanto_{c} + \sum_{c \in \mathcal{C}_{4}} w_{4}^{C} (TOC_{c} - e_{c})$$

Retraso con respecto a fecha llegada

Retraso con respecto a fecha entrega

Retraso con respecto a llegada camión

FUNCIÓN OBJETIVO

$$\min \sum_{c \in \mathcal{C}_1} w_1^R (TGF_c - r_c) + \sum_{c \in \mathcal{C}_2} w_2^R (TGF_c - r_c) + \sum_{c \in \mathcal{C}_3} w_3^R (TOF_c - d_c) + \sum_{c \in \mathcal{C}_4} w_4^R (TOF_c - e_c) + \sum_{c \in$$

$$+\sum_{c\in\mathcal{C}_1} w_1^C \left(TOC_c - r_c\right) + \sum_{c\in\mathcal{C}_2} w_2^C \left(TOC_c - r_c\right) + \sum_{c\in\mathcal{C}_3} w_3^C Adelanto_c + \sum_{c\in\mathcal{C}_4} w_4^C \left(TOC_c - e_c\right)$$

Retraso por no asignación de I/O

Penalización por sacar antes de tiempo

Retraso por no asignación de I/O

Fase constructiva

Secuenciación de los movimientos de la grúa de patio: vecino más próximo

Asignar un I/O a cada contenedor

Patio (I/O asignado)---- \rightarrow $\stackrel{\stackrel{\cdot}{\downarrow}}{I}/O?---\rightarrow$ Patio Patio (I/O asignado)---- \rightarrow $\stackrel{\stackrel{\cdot}{\downarrow}}{I}/O?---\rightarrow$ Patio

Local Search

5	2	3	4	1
2	5	3	4	1
2	2	5	1	1
	3	<u> </u>	7	1
2	3	4	5	1
2	3	4	1	5

➤ Iterated Greedy (IG)

- Solución Inicial (Vecino más próximo-NN)
- Local Search
- Mientras no se cumpla el criterio de parada (#iteraciones)
 - Destrucción (3 contenedores)
 - Reconstrucción
 - Local Search
 - Criterio de Aceptación
- Fin

Instancias generadas (10 réplicas)

- > Pequeñas y Pequeñas "ajustadas" (tight)
 - > 5, 10, 15 peticiones (contenedores)
- Medianas
 - > 20, 30, 40 peticiones (contenedores)
- Grandes
 - > 50, 100, 150, 200 peticiones (contenedores)

4. Generación de instancias

Configuración

10 Input/Output (sea side)

Localizaciones

- Coordenadas (x,y,z): fila, columna (bay), altura.
 Generadas aleatoriamente para cada contenedor
- Posición inicial grúa (x,y,5): generada aleatoriamente
- Input/Output mar: columna (bay) 0, altura (z) 1
- Input/Output tierra: columna (bay) 43, altura (z) 2

Parámetro fecha

- Operaciones tipo 1, 2: release time (r_i)
- ➤ Operación tipo 3: due date (d_i)
- Operación tipo 4: llegada camión (e_j)

```
r_j = random(0;0,1*RoundTrip)
```

 $d_i(e_i) = random(0;0,4*RoundTrip)$

RoundTrip = n*bays

Parámetro peso

- Peso por retraso (w_t)
- Peso por congestión(wcong_t)
- > Generados aleatoriamente entre 1 y 9
- Todas las operaciones del mismo tipo tienen los mismos pesos

5. Resultados

- Constructivo Vecino más próximo y Local Search: NN+LS
- Iterated Greedy: IG+LS
- Criterio de parada (IG): 100 iteraciones
- Búsqueda local (LS):
 - √ Óptimo local: small, small tight, medium, large (50)
 - ✓ Una iteración: large (100, 150, 200). Mejor posición

$$RPD = \frac{Heu_{sol} - Best_{sol}}{Best_{sol}} \cdot 100$$

Instancias pequeñas

	NN+LS	IG+LS
Cont	Av. RPD(%)	Av. RPD(%)
5	1,69	0
10	0,87	0,31
15	0,87 3,95	0
Av.	2,17	0,1

Instancias pequeñas (tight)

	NN+LS	IG+LS
Cont	Av. RPD(%)	Av. RPD(%)
5	1,29	0,57
10	5,45	0,79
15 Av.	1,29 5,45 6,4 4,38	0
Av.	4,38	0,45

Instancias medianas

	NN+LS	IG+LS		NN+LS	IG+LS
Cont	Av. RPD(%)	Av. RPD(%)	Cont	Av.Time(sec)	Av.Time(sec)
20	6,9	0	20	0,43	9,9
30	4,64	0	30	2,1	37,9
40	3,63	0	40	8,2	91,8
40 Av.	5,1	0	Av.	3,6	46,5

Instancias grandes

	NN+LS	IG+LS		NN+LS	IG+LS
Cont	Av. RPD(%)	Av. RPD(%)	Cont	Av.Time(sec)	Av.Time(sec)
50	2,32	0	50	20,1	73,3
100	1,72	0	100	122,1	362,3
150	64,68	0	150	232,5	468,1
200	72,06	0	200	359,8	619,1
Av.	35,2	0	Av.	183,6	380,7

- > Instancias pequeñas (5 contenedores)
 - NN+LS obtiene 6 soluciones óptimas
 - IG+LS obtiene todos los óptimos

- > Instancias pequeñas (tight, 5 contenedores)
 - NN+LS obtiene 5 soluciones óptimas
 - IG+LS obtiene 6 soluciones óptimas

- > Instancias pequeñas (10 contenedores)
 - NN+LS obtiene 4 soluciones óptimas
 - IG+LS obtiene 5 soluciones óptimas
- > Instancias pequeñas (tight, 10 contenedores)
 - > NN+LS obtiene 1 solución óptima
 - IG+LS obtiene 5 soluciones óptimas

Instancia pequeña (tight)

iol1

Crane

ios1

ios2

