Classification Ensemble

Huiping Cao

Outline

Intro

- 1 Intro
- 2 Bagging
- 3 Boosting
- Random Forests

Intro •000

Ensemble Methods

Construct a set of classifiers from the training data

Predict class label of test records by combining the predictions made by multiple classifiers

- Suppose there are 25 base classifiers
 - **Each** classifier has error rate $\epsilon = 0.35$
 - Assume errors made by classifiers are uncorrelated
 - Probability that the ensemble classifier makes a wrong prediction:

$$P(X \ge 13) = \sum_{i=13}^{25} {25 \choose i} \epsilon^{i} (1-\epsilon)^{25-i} = 0.06$$

Intro

0000

Classifiers

- Manipulate data distribution
 - Example: bagging, boosting

- Manipulate input features
 - Example: random forests

- Bootstrap aggregating (Bagging)
- Sampling with replacement

Original data	1	2	3	4	5	6	7	8	9	10
Bagging (round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
- Each sample has probability $1-(1-\frac{1}{n})^n$ of being selected. If n is sufficiently large, this probability converges to $1-\frac{1}{e}\approx 0.632$

Proof: https://juanitorduz.github.io/bootstrap/

Bagging Algorithm

Algorithm 4.5 Bagging algorithm.

- 1: Let k be the number of bootstrap samples.
- 2: for i = 1 to k do
- 3: Create a bootstrap sample of size N, D_i .
- 4: Train a base classifier C_i on the bootstrap sample D_i .
- 5: end for
- 6: $C^*(x) = \underset{\cdot}{\operatorname{argmax}} \sum_i \delta(C_i(x) = y).$

 $\{\delta(\cdot) = 1 \text{ if its argument is true and 0 otherwise.}\}$

Bagging Example

Consider 1-dimensional data set:

Consider 1 difficusional data set.											
Х	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
У	1	1	1	-1	-1	-1	-1	1	1	1	

- Classifier is a decision stump (one-level binary decision tree)
 - Decision rule: $x \le k$ versus x > k
 - Split point k is chosen based on entropy

Bagging Round 1:										
х	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9
у	1	1	1	1	-1	-1	-1	-1	1	1

 $x \le 0.35 \Rightarrow y = 1$ $x > 0.35 \Rightarrow y = -1$

Bagging R	ound 1:								
x 0	.1 0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9 0.9	x <= 0.35 → y = 1
У	1 1	1	1	-1	-1	-1	-1	1 1	$x > 0.35 \rightarrow y = -1$
Bagging R	ound 2:								
x 0	.1 0.2	0.3	0.4	0.5	0.5	0.9	1	1 1	$x \le 0.7 \Rightarrow y = 1$
У	1 1	1	-1	-1	-1	1	1	1 1	$x > 0.7 \rightarrow y = 1$
Bagging R			_						
x 0	.1 0.2	0.3	0.4	0.4	0.5	0.7	0.7	0.8 0.9	$x \le 0.35 \rightarrow y = 1$ $x > 0.35 \rightarrow y = -1$
У	1 1	1 1	-1	-1	-1	-1	-1	1 1	X = 0.55 -> y = -1
Bagging R	ound 4:								
x 0	.1 0.1	0.2	0.4	0.4	0.5	0.5	0.7	0.8 0.9	x <= 0.3 → y = 1
У	1 1	1	-1	-1	-1	-1	-1	1 1	$x > 0.3 \implies y = -1$
Bagging R	ound 5:								
x 0	.1 0.1	0.2	0.5	0.6	0.6	0.6	1	1 1	$x \le 0.35 \rightarrow y = 1$ $x > 0.35 \rightarrow y = -1$
у	1 1	1	-1	-1	-1	-1	1	1 1	X = 0.00 7 y = -1

Bagging Example (cont.)

Baggir	ig Rour	nd 6:									
х	0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.9	1	$x \le 0.75 \Rightarrow y = -1$
у	1	-1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \rightarrow y = 1$
Baggir	ıg Rour	nd 7:									
х	0.1	0.4	0.4	0.6	0.7	0.8	0.9	0.9	0.9	1	$x \le 0.75 \Rightarrow y = -1$
У	1	-1	-1	-1	-1	1	1	1	1	1	$x > 0.75 \rightarrow y = 1$
Baggir	ıg Rour	nd 8:									
х	0.1	0.2	0.5	0.5	0.5	0.7	0.7	0.8	0.9	1	$x \le 0.75 \Rightarrow y = -1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \rightarrow y = 1$
Baggir	ıg Rour	nd 9:									
Baggir x	g Rour	nd 9:	0.4	0.4	0.6	0.7	0.7	0.8	1	1	x <= 0.75 → y = -1
	g Rour 0.1 1		0.4	0.4	0.6	0.7 -1	0.7	0.8	1	1	$x \le 0.75 \Rightarrow y = -1$ $x > 0.75 \Rightarrow y = 1$
	ng Rour 0.1 1		_		0.6 -1	_		0.8	1	1	
у	g Rour 0.1 1 g Rour	0.3	_		0.6 -1	_		0.8	1	1	x > 0.75 → y = 1
у	0.1 1	0.3	_		0.6	_		0.8	1 1 0.9	0.9	$x > 0.75 \Rightarrow y = 1$ $x <= 0.05 \Rightarrow y = 1$
x y Baggir	0.1 1 g Rour	0.3 1 and 10:	_	-1	-1	-1	-1	1	0.9	0.9	x > 0.75 → y = 1

Summary of Training sets

Round	Split Point	Left Class	Right Class
1	0.35	1	-1
2	0.7	1	1
3	0.35	1	-1
4	0.3	1	-1
5	0.35	1	-1
6	0.75	-1	1
7	0.75	-1	1
8	0.75	-1	1
9	0.75	-1	1
10	0.05	1	1

Bagging Example (cont.)

- Assume test set is the same as the original data
- Use majority vote to determine class of ensemble classifier

	Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
	1	1	1	1	<u>-1</u>	-1	-1	-1	-1	-1	-1
	2	1	1	1	1	1	1	1	1	1	1
	3	1	1	1	-1	-1	-1	-1	-1	-1	-1
Ε	4	1	1	1	-1	-1	-1	-1	-1	-1	-1
Е	5	1	1	1	-1	-1	-1	-1	-1	-1	-1
Ε	6	-1	-1	-1	-1	-1	-1	-1	1	1	1
Е	7	-1	-1	-1	-1	-1	-1	-1	1	1	1
	8	-1	-1	-1	-1	-1	-1	-1	1	1	1
	9	-1	-1	-1	-1	-1	-1	-1	1	1	1
	10	1	1	1	1	1	1	1	1	1	1
3	Sum	2	2	2	-6	-6	-6	-6	2	2	2
5	Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Boosting

 An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records

- Initially, all N records are assigned equal weights
- Unlike bagging, weights may change at the end of each boosting round

Random Forests

Boosting

- Records that are wrongly classified will have their weights increased
- Reords that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4/	9	4 /	2	5	1	7	4 /	2
Boosting (Round 3)	(4)	(4)	8	10	(4)	5	4	6	3	(4)

- Suppose example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

AdaBoost

- Adaptive Boosting (AdaBoost) is a common implementation of the boosting method.
- Base classifiers: C_1 , C_2 , \cdots , C_T

Error rate = (# of instances that are wrongly classied)/N = \sum (\delta)/N

■ Error rate of class C_i

$$\epsilon_i = rac{1}{N} \sum_{j=1}^{N} \delta(C_i(\mathbf{x}_j)
eq y_j)$$

Here, $\delta(p) = 1$ if the predicate p is true, and 0 otherwise.

 \blacksquare Importance of a classifier C_i

$$lpha_i = rac{1}{2} ln\left(rac{1-\epsilon_i}{\epsilon_i}
ight)$$
,

- α_i has a large positive value if ϵ_i is close to 0
- α_i has a large negative value if ϵ_i is close to 1, as shown in the right figure.

AdaBoost Algorithm

■ Weight update (Eq. 4.103)

where $Z_j = \sum_{i=1}^{N} w_i^{(j)}$ is the normalization factor.

- If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to $\frac{1}{n}$ and the resampling procedure is repeated
- Classification:

$$C^*(\mathbf{x}) = \operatorname{argmax}_y \sum_{i=1}^T \alpha_i \delta(C_i(\mathbf{x}) = y)$$

Algorithm 4.6 AdaBoost algorithm.

```
1: \mathbf{w} = \{w_j = 1/N \mid j = 1, 2, \dots, N\}. {Initialize the weights for all N examples.}
```

- 2: Let k be the number of boosting rounds. 3: **for** i = 1 to k **do**
- 4: Create training set D_i by sampling (with replacement) from D according to \mathbf{w} .
- 5: Train a base classifier C_i on D_i .
- 6: Apply C_i to all examples in the original training set, D.
- 7: $\epsilon_i = \frac{1}{N} \left[\sum_i w_i \ \delta(C_i(x_i) \neq y_i) \right]$ {Calculate the weighted error.}
- 8: if $\epsilon_i > 0.5$ then
- 9: $\mathbf{w} = \{w_j = 1/N \mid j = 1, 2, \dots, N\}.$ {Reset the weights for all N examples.}
- 10: Go back to Step 4.
- 11: end if
- 12: $\alpha_i = \frac{1}{2} \ln \frac{1 \epsilon_i}{\epsilon_i}$.
- 13: Update the weight of each example according to Equation 4.103.
- 14: **end for**
- 15: $C^*(\mathbf{x}) = \underset{y}{\operatorname{argmax}} \sum_{j=1}^{T} \alpha_j \delta(C_j(\mathbf{x}) = y)$.

AdaBoost Example

Consider 1-dimensional data set:

<u>Cor</u>	<u>ısıder</u>	<u>1-aım</u>								
Х	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0
у	1	1	1	-1	-1	-1	-1	1	1	1
	-	_								

- Classifier is a decision stump (one-level binary decision tree)
 - Decision rule: $x \le k$ versus x > k
 - Split point k is chosen based on entropy

AdaBoost Example (cont.)

■ Training sets for the first 3 boosting rounds:

Summary

Round	Split Point	Left Class	Right Class	alpha
1	0.75	-1	1/	1.738
2	0.05	1	1	2.7784
3	0.3	1	-1	4.1195

AdaBoost Example (cont.)

Weights

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.029	0.029	0.029	0.228	0.228	0.228	0.228	0.009	0.009	0.009

Classification

Random Forests

Build on the idea of bagging to use a different bootstrap sample of the training data for learning decision trees.

Key difference: the best splitting criterion is chosen from a small set of randomly selected attributes.

Training a random forest classifier

- Construct a bootstrap sample D_i of the training set by randomly sampling n instances (with replacement) from D.
- Use D_i to learn a decision tree T_i as follows: At every internal node of T_i , randomly sample a set of p attributes and choose an attribute from this subset for splitting.
- The final prediction of the random forest is based on majority voting.

Data Set	Number of	Decision	Bagging	Boosting	RF
	(Attributes, Classes,	Tree (%)	(%)	(%)	(%)
	Records)				' '
Anneal	(39, 6, 898)	92.09	94.43	95.43	95.43
Australia	(15, 2, 690)	85.51	87.10	85.22	85.80
Auto	(26, 7, 205)	81.95	85.37	85.37	84.39
Breast	(11, 2, 699)	95.14	96.42	97.28	96.14
Cleve	(14, 2, 303)	76.24	81.52	82.18	82.18
Credit	(16, 2, 690)	85.8	86.23	86.09	85.8
Diabetes	(9, 2, 768)	72.40	76.30	73.18	75.13
German	(21, 2, 1000)	70.90	73.40	73.00	74.5
Glass	(10, 7, 214)	67.29	76.17	77.57	78.04
Heart	(14, 2, 270)	80.00	81.48	80.74	83.33
Hepatitis	(20, 2, 155)	81.94	81.29	83.87	83.23
Horse	(23, 2, 368)	85.33	85.87	81.25	85.33
Ionosphere	(35, 2, 351)	89.17	92.02	93.73	93.45
Iris	(5, 3, 150)	94.67	94.67	94.00	93.33
Labor	(17, 2, 57)	78.95	84.21	89.47	84.21
Led7	(8, 10, 3200)	73.34	73.66	73.34	73.06
Lymphography	(19, 4, 148)	77.03	79.05	85.14	82.43
Pima	(9, 2, 768)	74.35	76.69	73.44	77.60
Sonar	(61, 2, 208)	78.85	78.85	84.62	85.58
Tic-tac-toe	(10, 2, 958)	83.72	93.84	98.54	95.82
Vehicle	(19, 4, 846)	71.04	74.11	78.25	74.94
Waveform	(22, 3, 5000)	76.44	83.30	83.90	84.04
Wine	(14, 3, 178)	94.38	96.07	97.75	97.75
Zoo	(17, 7, 101)	93.07	93.07	95.05	97.03

References

- Chapter 4: Introduction to Data Mining (2nd Edition) by Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar
- Python Scikit-learn Bagging Classifier https://scikit-learn.org/stable/modules/ generated/sklearn.ensemble.BaggingClassifier.html
- Python Scikit-learn AdaBoost Classifier https: //scikit-learn.org/stable/modules/generated/ sklearn.ensemble.AdaBoostClassifier.html
- Python Scikit-learn Random Forests https:
 //scikit-learn.org/stable/modules/generated/
 sklearn.ensemble.RandomForestClassifier.html