Tackling Big Data with Tensor Methods

Anima Anandkumar

U.C. Irvine

Learning with Big Data

SEE, THEY ASKED HOW MUCH MONEY I SPEND ON GWM EACH WEEK, SO I I PUT '43', AND WHEN THEY ASKED WHAT MY ENVORITE FLAVOR IS, I NROTE 'FLAVOR IS, I WROTE 'FLAVOR UNRY!'

• Missing observations, gross corruptions, outliers.

- Missing observations, gross corruptions, outliers.
- High dimensional regime: as data grows, more variables !

- Missing observations, gross corruptions, outliers.
- High dimensional regime: as data grows, more variables!

Data deluge also a data desert!

Learning in High Dimensional Regime

- Useful information: low-dimensional structures.
- Learning with big data: ill-posed problem.

Learning in High Dimensional Regime

- Useful information: low-dimensional structures.
- Learning with big data: ill-posed problem.

Learning is finding needle in a haystack

Learning in High Dimensional Regime

- Useful information: low-dimensional structures.
- Learning with big data: ill-posed problem.

Learning is finding needle in a haystack

• Learning with big data: computationally challenging!

Principled approaches for finding low dimensional structures?

How to model information structures?

Latent variable models

- Incorporate hidden or latent variables.
- Information structures: Relationships between latent variables and observed data.

How to model information structures?

Latent variable models

- Incorporate hidden or latent variables.
- Information structures: Relationships between latent variables and observed data.

Basic Approach: mixtures/clusters

• Hidden variable is categorical.

How to model information structures?

Latent variable models

- Incorporate hidden or latent variables.
- Information structures: Relationships between latent variables and observed data.

Basic Approach: mixtures/clusters

• Hidden variable is categorical.

Advanced: Probabilistic models

- Hidden variables have more general distributions.
- Can model mixed membership/hierarchical groups.

Application 1: Clustering

- Basic operation of grouping data points.
- Hypothesis: each data point belongs to an unknown group.

Application 1: Clustering

- Basic operation of grouping data points.
- Hypothesis: each data point belongs to an unknown group.

Probabilistic/latent variable viewpoint

- The groups represent different distributions. (e.g. Gaussian).
- Each data point is drawn from one of the given distributions. (e.g. Gaussian mixtures).

Application 2: Topic Modeling

Document modeling

- Observed: words in document corpus.
- Hidden: topics.
- Goal: carry out document summarization.

Application 3: Understanding Human Communities

Social Networks

- Observed: network of social ties, e.g. friendships, co-authorships
- Hidden: groups/communities of actors.

Application 4: Recommender Systems

Recommender System

- Observed: Ratings of users for various products, e.g. yelp reviews.
- Goal: Predict new recommendations.
- Modeling: Find groups/communities of users and products.

Application 5: Feature Learning

Label		Features				
	0	2.1	5.2	0	0	
	1	0	0	2	1	
	1	1.1	0	0	0 —	
	0	0	0	7	0	
					_	

Feature Engineering

- Learn good features/representations for classification tasks, e.g. image and speech recognition.
- Sparse representations, low dimensional hidden structures.

Application 6: Computational Biology

- Observed: gene expression levels
- Goal: discover gene groups
- Hidden variables: regulators controlling gene groups

Learning Algorithms through Tensor Factorization

VS.

• Co-occurrence of three-words in a document, e.g. [apple, orange, banana].

Tensor Eigenvectors

- Can learn the hidden topics by finding tensor eigenvectors.
- Common friends (neighbors) of triplets of nodes in a social networks.

Experimental Results on Yelp

Lowest error business categories & largest weight businesses

Rank	Category	Business	Stars	Review Counts
1	Latin American	Salvadoreno Restaurant	4.0	36
2	Gluten Free	P.F. Chang's China Bistro	3.5	55
3	Hobby Shops	Make Meaning	4.5	14
4	Mass Media	KJZZ 91.5FM	4.0	13
5	Yoga	Sutra Midtown	4.5	31

Experimental Results on Yelp

Lowest error business categories & largest weight businesses

Rank	Category	Business	Stars	Review Counts
1	Latin American	Salvadoreno Restaurant	4.0	36
2	Gluten Free	P.F. Chang's China Bistro	3.5	55
3	Hobby Shops	Make Meaning	4.5	14
4	Mass Media	KJZZ 91.5FM	4.0	13
5	Yoga	Sutra Midtown	4.5	31

Bridgeness: Distance from vector $[1/\hat{k},\ldots,1/\hat{k}]^{\top}$

Top-5 bridging nodes (businesses)

Business	Categories
Four Peaks Brewing	Restaurants, Bars, American, Nightlife, Food, Pubs, Tempe
Pizzeria Bianco	Restaurants, Pizza, Phoenix
FEZ	Restaurants, Bars, American, Nightlife, Mediterranean, Lounges, Phoenix
Matt's Big Breakfast	Restaurants, Phoenix, Breakfast& Brunch
Cornish Pasty Co	Restaurants, Bars, Nightlife, Pubs, Tempe

My Research Group and Resources

Furong Huang

Majid Janzamin

Hanie Sedghi

Niranjan UN

 ML summer school lectures available at http://newport.eecs.uci.edu/anandkumar/MLSS.html