

12bit DAC 双通道 I2C 转 0-5V/0-10V

DAC (Digital to Analog Convertor)

Datasheet

特性

- GP8403 通过I2C接口,线性转换成0-5V或0-10V的两路模拟电压输出。
- 一个I2C接口支持8路GP8202并联,通过三位硬件地址A2/A1/A0选择。
- 输入信号范围12Bit, 0x000-0xFFF
- 0-5V/0-10V输出电压通过内部数据控制
- 输入I2C信号高电平: 2.7V-5.5V
- 输出电压误差: < 0.5% (0.2%版本请联系客益电子)
- 输出电压线性度误差: 0.1%
- 输出短路保护,输出脚与地短路时芯片进入保护模式 停止输出。
- 电源电压: 10V 13.2 V
- 功耗: <4mA
- 启动时间: <2ms
- 工作温度: -40°C to 85°C

描述

GP8403是一个I2C信号转模拟信号转换器,即DAC,此芯片可以将12Bit数字量0x000-0xFFF线性转换成两路独立的0-5V或者0-10V模拟电压,输出电压误差为0.5%。注意:请确实当前DATASHEET为官网下载最新版本。

应用

- 通用信号转换
- 马达调速、LED调光
- 逆变器、电源
- 工业模拟信号隔离

1. 管脚定义

表-A 管脚分布

管脚名称	管脚功能
SCLK	I2C 协议时钟信号
SDA	I2C 协议数据信号
VCC	电源
GND	地
V5V	内部 LDO,5V 输出,必须外接大于 1uF 电容。
A0	第0位硬件地址
A1	第1位硬件地址
A2	第2位硬件地址
VOUT0	第一路模拟电压输出,必须外接一个 10uF 电容
VOUT1	第二路模拟电压输出,必须外接一个 10uF 电容

2. 绝对最大额定参数

工业操作温度:-40℃至85℃储存温度:-50℃至125℃输入电压:-0.3 v VCC + 0.3 v

最大电压: 40 v ESD保护: > 2000 v

*超过"绝对最大额定值"中列出的参数值可能会造成永久性损坏设备。不保证器件在超出规范中列出的条件下操作。长时间暴露于极端条件下可能影响设备可靠性或功能。

3. 典型应用

3.1 基本功能(典型电路)

当芯片在板内电路中使用时可以适当增加电容和TVS对电路进行稳定和保护。

注意:

- 1、V5V上大于1uF电容为必须
- 2、VOUT作为板级接口使用时,加12V单向TVS,反接、浪涌保护。

3.2 与3.3V MCU 接口

MCU输出3.3V的I2C接口连接到GP8403上。

3.3操作方法

3.3.1 Start、Stop条件、有效数据、数据变换格式

3.3.2 ACK 格式

3.3.3 设置下图中红色配置位,地址设置为 02,则对 VOUT0 进行操作。将 12bit DATA 数据分为 DATA0 Low 和 DATA0 High 写入,DATA0 Low 为低 Byte,DATA0 High 为高 Byte,并且无视 DATA0 Low 的低 4位。如果是 0-10V 模式,则输出相对应的电压为:

VOUT=DATA0/0xFFF*10V。如果是 0-5V 模式,则输出相对应的电压为: VOUT=DATA0/0xFFF*5V。

3.3.4 设置下图中红色配置位,地址设置为 04,则对 VOUT1 进行操作。将 12bit DATA 数据分为 DATA Low 和 DATA High 写入,DATA Low 为低 Byte,DATA High 为高 Byte,并且无视 DATA Low 的低 4 位。如果是 0-10V 模式,则输出相对应的电压为: VOUT=DATA/0xFFF*10V。如果是 0-5V 模式,则输出相对应的电压为: VOUT=DATA/0xFFF*5V。

3.3.5 设置下图中红色配置位,地址设置为 02,并对 VOUT0 和 VOUT1 同时进行操作。将 12bit DATA0 数据分为 DATA0 Low 和 DATA0 High 写入, DATA0 Low 为低 Byte, DATA0 High 为高 Byte,并且无视 DATA0 Low 的低 4 位。如果是 0-10V 模式,则输出相对应的电压为: VOUT0=DATA0/0xFFF*10V。如果是 0-5V 模式,则输出相对应的电压为: VOUT0=DATA0/0xFFF*5V。同理,将 12bit DATA1 数据分为 DATA1 Low 和 DATA1 High 写入,

同理,将 12bit DATA1 数据分为 DATA1 Low 和 DATA1 High 与人,DATA1 Low 为低 Byte,DATA1 High 为高 Byte,并且无视 DATA1 Low 的低 4 位。如果是 0-10V 模式,则输出相对应的电压为: VOUT0=DATA1/0xFFF*10V。如果是 0-5V 模式,则输出相对应的电压为: VOUT1=DATA1/0xFFF*5V。

3.3.6 设置下图中红色配置位,地址设置为 01,如果写入数据 0x00,则芯片输出电压选择 0-5V;如果写入数据为 0x11,则芯片输出的电压选择为 0-10V。

3.3.7 GP8402 支持将电压数据保存在芯片内,保证掉电启动后依然能处于相应的电压输出状态。

通过发送下图所示数据,可以实现写入的数据固化到芯片内部。

4. 器件功能

GP8403是一款高性能双通道DAC芯片(I2C到模拟电压转换器),通过I2C将12BIT数据转换成模拟电压,输出电压范围为0-5V或者0-10V,通过芯片内部配置选择。详细参考章节3.3.6。芯片有硬件地址A0A1A2支持单路I2C控制8路GP8403。

GP8402的默认输出电压精度为0.5%,

当GP8402芯片作为系统的接口芯片使用,需要在VOUT输出脚上对地接一个10uF电容和一个12V的单向TVS,保证芯片的热插拔、静电、反接等保护。

GP8403

5. 表-B 交流特性

符号	描述	最小	默认	最大	单位
f _{pwm *1}	PWM 信号频率	50		50K	Hz
D_pwm	PWM 信号的占空比	0		100	%
K _{CYCLE}	PWM 识别周期数		1		PWM 周期
T _{ACT} *2	输出电压响应时间		100	200	uS

^{*1:}输入PWM信号的默认频率范围是50Hz-50KHz,如果输入PWM信号频率超过50KHz,输出电压精度降低,如果输入PWM信号频率低于50Hz,输出电压错误。如果需要低于50Hz的情况,需要请客益电子原厂定制参数。

6. 表-C 直流特性

符号	描述	测试条件	最小	典型	最大	单位
VCC 电源电压*1			10	12	40	V
ICC 电源功耗		VCC @24V 空载		5	10	mA
VOUT	输出电压	SEL 接地	0		5	V
		SEL 接 V5V	0		10	V
ΔVOUT	输出电压误差	与 VOUT 输出范围的比例			0.5	%
IOUT *2	VOUT 输出电流	VOUT>0.5V VCC@24V	20			mA
TC	温度系数			50		PPM/℃

^{*3:} V5V上外挂负载后可能会轻微影响芯片精度。

^{*2:} 输入PWM被识别后到输出电压稳定的时间。

7.4 订购须知

NO	50PPM/℃	0.5%	ESSOP10	-40℃-85℃	GP8403-F50-NF-EW	
高频调制	温度系数	精度	封装	工作温度	订购码	

7. 封装信息

CVMIDOI	MILLIMETER				
SYMBOL	MIN	NOM	MAX		
Α	_	_	1.75		
A1	0.10	_	0.225		
A2	1.30	1.40	1.50		
A3	0.60	0.65	0.70		
b	0.39	_	0.47		
b1	0.38	0.41	0.44		
c	0.20	_	0.24		
cl	0.19	0.20	0.21		
D	4.80	4.90	5.00		
Е	5.80	6.00	6.20		
E1	3.80	3.90	4.00		
e		1.00BS	С		
h	0.25	_	0.50		
L	0.50	_	0.80		
Ll	1.05REF				
θ	0	_	8°		

SECTION B-B

