Galois Theory

MATH 440

Steven Xia

January 29, 2023

Galois Theory is the study of symmetries among roots of polynomials.

— Professor (Spring 2023)

Contents

2 Groups

1 Introduction .

Introduction

can show $\{a_ib_i\}$ is an F-basis of L.

Definition 1.1. The degree of K over L is written $[K:L]$.
Proposition 1.1. Let $F \subseteq K$ and $K \subseteq L$ be field extensions. Then, $[L:F] = [L:K][K:F]$.
<i>Proof.</i> We may assume $[L:K]$ and $[K:F]$ are finite. Then, L

Definition 1.2. A field extension $F \subseteq K$ is **finite** if the degree of K over F is finite.

Definition 1.3. A field extension $F \subseteq K$ is **finitely generated** if there exists a finite set S such that F(S) = K.

Remark 1.1. A $F \subseteq K$ is finitely generated if it is finite.

Definition 1.4. For $F \subseteq K$, some $\alpha \in K$ is algebraic over F if there exists a non-constant $f \in F[x]$ such that $f(\alpha) = 0$.

Definition 1.5. The minimal polynomial of α over F is written $m_{\alpha,F}(\alpha) = 0$. Then, the degree of α over F is $\deg(m_{\alpha,F})$.

Definition 1.6. A $F \subseteq K$ is an algebraic field extension if every $\alpha \in K$ is algebraic.

Theorem 1.1. A $F \subseteq K$ is finite if and only if it is finitely generated and algebraic.

Proof. Suppose $F \subseteq K$ is finite. We will show K is algebraic over F (finitely generated follows from Proposition 1.1). Let $\alpha \in K$ be nonzero and see that $\alpha^0, \ldots, \alpha^m \in K$ is linearly dependent if $m \ge \deg(m_{\alpha,F}) = [K:F]$.

Now, suppose $K = F(\alpha_1, ..., \alpha_m)$ is algebraic and define $K_i = K_{i-1}(\alpha_i)$ with $K_0 = F$. By an implicit induction on i, we see that $K_m = K$ is finite.

Corollary 1.1.1. Finite composition of algebraic and finitely generated field extensions are also finite.

Definition 1.7. A field F is algebraically closed if every non-constant $f \in F[x]$ has a root in F.

Remark 1.2. If F is algebraically closed, every $f \in F[x]$ can be written as a product of linear factors.

Proposition 1.2. A field F is algebraically closed if and only if every field extension K of F satisfies [K:F]=1.

Proof. Assume F is algebraically closed. Then, the minimal polynomial of every element over F is linear, so any field extension over F is of degree one.

Now suppose every algebraic extension is of degree one. Consider some irreducible factor f of a polynomial in F[x] and the algebraic extension $F \to F[x]/\langle f \rangle$. Since the extension is of degree one, the degree of f is also one.

Theorem 1.2 (Kronecker). Let F be a field and $f \in F[x]$ be non-constant. There exists a finite extension $F \subseteq K$ such that f has a root in K.

Definition 1.8. An algebraic closure of a field F is an algebraic extension $F \subseteq K$ such that K is algebraically closed.

Theorem 1.3. Every field F has an algebraic closure.

Proof. Define S as the set of monic and irreducible polynomials in F[x], $R = F[y_f \mid f \in S]$, and $I = \langle f(y_f) \mid f \in S \rangle$.

We claim that I is a proper ideal, that is, $1 \notin I$. Towards a contradiction, suppose $1 \in I$. Then, we can write $1 = \sum a_i f_i(y_{f_i})$ for $f_i \in S$ and $a_i \in R$. However, repeating Kronecker's Theorem for each f_i generates a field extension for which there exist α_i such that $f_i(\alpha_i) = 0$ for all i, so we can plug these values into the sum to give 1 = 0, a contradiction.

Since every proper ideal is contained in a maximal ideal, there exists some $M \subseteq R$ such that $I \subseteq M$. Then, we define $F \subseteq K$ where K = R/M as an algebraic field extension of F generated by the y_f . Since K contains a root to every irreducible polynomial, we conclude that it is an algebraic closure of F. \square

Definition 1.9. A symmetric polynomial $p \in F[x_1, ..., x_n]$ satisfies $p(x_1, ..., x_n) = p(x_{\sigma(1)}, ..., x_{\sigma(n)})$ for all $\sigma \in S_n$.

Definition 1.10. The elementary symmetric polynomials in n

Theorem 1.4. All algebraic closures of a field are isomorphic.

variables are written e_i for $1 \le i \le n$ and are the sum of the *i*th degree monomials in the expansion of $\prod_{j=1}^{n} (1 + x_j)$.

th degree monomials in the expansion of $\prod_{j=1}^{\infty} (1+x_j)$. **Theorem 1.5** (Symmetric Polynomials). All symmetric polynomials can be uniquely written as a polynomial in the elementary symmetric polynomials.

roots $\alpha_1, \ldots, \alpha_n$ is $\Delta(f) = \prod_{i < j} (\alpha_i - \alpha_j)^2$. Remark 1.3. The **discriminant** of f is a symmetric polynomial in its roots, and the elementary symmetric polynomials are (up

Definition 1.11. The descriminant of a polynomial f with

to negation) the coefficients of f. **Theorem 1.6** (Algebra). Every non-constant polynomial with complex coefficients has at least one complex root.

2 Groups

Definition 2.1. The automorphism group of K, denoted Aut(K), is the set of automorphisms of K.

Definition 2.2. The **Galois group** of a field extension $F \subseteq K$, denoted Gal(K/F), is the set of automorphisms of K such that F is fixed pointwise.

Definition 2.3. A **left action** of a group G on a set X is a map $G \times X \to X$ written $(g, x) \mapsto g.x$ such that $e \in G$ satisfies e.x = x for all x and g.(h.x) = (gh).x for all $g, h \in G$.

e.x = x for all x and g.(h.x) = (gh).x for all $g, h \in G$. **Definition 2.4.** The **standard left action** of $H \leq G$ on G is

the left action defined $(h, g) \mapsto hg$.

defined $G.x = \{g.x : g \in G\}.$

Theorem 2.1. The orbits under an action form a partition.

Definition 2.7. The stabilizers of $x \in X$ under group action G is defined $G_x = \{g \in G : g.x = x\}.$

Theorem 2.2. Every stabilizer forms a group.

of H in G is defined $gH=\{gh:h\in H\}$. We write G/H to denote the set of left cosets of H in G.

Definition 2.8. For groups $H \leq G$ and $g \in \overline{G}$, a left coset

Definition 2.9. The **index** of H in G is the number of left cosets of H in G. We write [G:H] to denote this value.

cosets of H in G. We write [G:H] to denote this value.

Definition 2.10. Orbits under a conjugation action $H \leq G$

are called **conjugacy classes** under conjugation by H.

Theorem 2.3 (Orbit-stabilizer). Let $H \leq G$ be groups. For all $x \in G$, there is a bijection $G.x \to G/G_x$.

Proof. Define $\phi: G \to G.x$ where $\phi(g) = g.x$, a surjective map. We see that $\phi(g) = \phi(h) \iff g.x = h.x \iff g^{-1}h \in G_x$. By

Theorem 2.2, it follows that $gG_x = hG_x$. Therefore, the map $gG_x \mapsto g.x$ is a bijection.

Theorem 2.4 (Lagrange).