

Introdução e Contexto Histórico

TCP/IP é um conjunto de protocolos de comunicação entre computadores em rede.

Consiste na combinação dos protocolos TCP (Transmission Control Protocol) e IP (Internet Protocol).

É a base fundamental para o funcionamento da **Internet** e das redes locais modernas.

Origem e Evolução:

Desenvolvido na década de 1970 pelo Departamento de Defesa dos EUA (ARPANET) para garantir comunicações robustas e confiáveis em ambientes distribuídos.

Tornou-se o padrão para a Internet na década de 1980, devido à sua flexibilidade e capacidade de interconectar redes heterogêneas.

Camadas da Arquitetura TCP/IP

A arquitetura TCP/IP organiza as funções de rede em camadas, facilitando o desenvolvimento e a manutenção. Existem duas representações principais:

Modelo de 4 Camadas (Original)

- Aplicação
- Transporte
- Internet
- Interface de Rede

Modelo de 5 Camadas (Didático)

- Aplicação
- Transporte
- Rede
- Enlace de Dados
- Física

Camada de Aplicação

A **camada de aplicação** é a camada superior da arquitetura TCP/IP, onde ocorre a interação com o usuário final e os serviços de rede.

Unidade de Dados (PDU): Dados

Nesta camada, a PDU é simplesmente chamada de **Dados** ou **Mensagem**. É a informação bruta que a aplicação deseja enviar, antes de qualquer encapsulamento.

Principais Protocolos

HTTP/HTTPS

Transferência de páginas web

Portas: 80/443

FTP

Transferência de arquivos

Portas: 20/21

SMTP

Envio de e-mails

Porta: 25

DNS

Resolução de nomes de domínio

Porta: 53

Camada de Transporte

A camada de transporte gerencia a comunicação entre dispositivos, garantindo:

Multiplexação

▲ Controle de erro

Unidade de Dados (PDU): Segmento (TCP) / Datagrama (UDP)

Nesta camada, os dados são divididos em **Segmentos** (para TCP) ou **Datagramas** (para UDP), que incluem cabeçalhos com informações de porta e controle.

Camada de Internet

A camada de Internet (ou Inter-redes) é responsável por:

Unidade de Dados (PDU): Pacote / Datagrama

Nesta camada, os segmentos ou datagramas da camada de transporte são encapsulados em **Pacotes** (ou Datagramas IP), que contêm endereços IP de origem e destino.

- Roteamento de tráfego e controle de fluxo
- Envio de pacotes entre diferentes redes
- Remontagem de pacotes no destino
- Comunicação entre hosts em redes distintas

IP (Internet Protocol)

Protocolo não orientado à conexão responsável pelo endereçamento e roteamento de pacotes.

Versões: IPv4 (32 bits) e IPv6 (128 bits)

ICMP (Internet Control Message Protocol)

Usado para diagnóstico e relatório de erros na comunicação IP.

Exemplo: ping, traceroute

Distribuição de Uso de Protocolos IP

Camada de Interface de Rede

É a camada de base da arquitetura TCP/IP, correspondente às camadas de enlace de dados e física do modelo OSI.

Unidade de Dados (PDU): Quadro (Frame)

Nesta camada, os pacotes da camada de Internet são encapsulados em **Quadros** (Frames), que contêm endereços MAC e informações para transmissão física.

Ethernet

- Padrão para redes locais (LAN)
- Velocidades de 10 Mbps até 400 Gbps
- Utiliza endereços MAC para identificação

PPP (Point-to-Point Protocol)

- Utilizado em conexões ponto a ponto
- Comum em conexões WAN e acesso remoto
- Suporta múltiplos protocolos de rede

Comparação: Modelo TCP/IP vs. Modelo OSI

器 Modelo TCP/IP

- 4 ou 5 camadas (mais flexível)
- Mais prático e amplamente utilizado
- 🐆 Foco na implementação e interoperabilidade

- 7 camadas (mais detalhado)
- Mais teórico e conceitual
- Desenvolvido para padronização

Encapsulamento de Dados

O encapsulamento de dados é o processo pelo qual cada camada da arquitetura TCP/IP adiciona informações de controle (cabeçalhos e, às vezes, rodapés) aos dados recebidos da camada superior, formando uma PDU (Unidade de Dados de Protocolo).

- Camada de Aplicação: Dados (Mensagem)
 Os dados originais da aplicação.
- Camada de Transporte: Segmento/Datagrama

 Adiciona cabeçalho TCP/UDP aos dados.
- Camada de Internet: Pacote/Datagrama IP

 Adiciona cabeçalho IP ao segmento/datagrama.
- Camada de Interface de Rede: Quadro (Frame)

 Adiciona cabeçalho e rodapé de enlace ao pacote IP.

Conclusão e Perguntas

Pontos principais sobre a **Arquitetura TCP/IP**:

- Base fundamental para o funcionamento da Internet e redes locais
- Modelo de 4 camadas: Aplicação, Transporte, Internet e Interface de Rede
- Protocolos principais: TCP, IP, UDP, HTTP, FTP, DNS, SMTP
- Benefícios: padronização, interconectividade, roteamento e robustez

Perguntas?

Estou à disposição para esclarecer dúvidas sobre a arquitetura TCP/IP e seus protocolos.

Obrigado pela atenção!