ALESSANDRO SOARES DA SILVA

MATRICULA: 20231023705

1° LISTA DE ALGORITMO

1.1 – Para cada função f(n) e cada tempo t na tabela a seguir, determine o tamanho n de um problema que pode ser resolvido no tempo t, considerando que o algoritmo para resolver o problema demore f(n) microssegundos.

	1 segundo	1 minuto	1 hora	1 dia	1 mês	1 ano	1 século
$\log(n)$	2^{1x10^6}	2^{6x10^7}	$2^{3.6 \times 10^9}$	$2^{8.6 \times 10^{10}}$	$2^{2.6 \times 10^{12}}$	$2^{3.15x \cdot 10^{13}}$	$2^{3.15 \times 10^{15}}$
\sqrt{n}	$1x10^{12}$	3.6×10^{15}	1.29×10^{19}	7.46×10^{21}	6.72×10^{24}	9.95×10^{26}	9.96×10^{30}
n	$1x10^6$	6×10^7	3.6×10^9	8.6×10^{10}	2.6×10^{12}	3.15×10^{13}	3.15×10^{15}
$n\log(n)$	62805	2811900	133967668	2747894153	7.2×10^{10}	7.97×10^{11}	6.85×10^{13}
n^2	1000	7745	60000	293938	1609968	5615692	56176151
n^3	100	391	1532	4420	13736	31593	146679
2 ⁿ	19	25	31	36	41	44	51
n!	9	11	12	13	15	16	17

Sendo log na base 2.

$$f(n) = \log n :. \frac{\log(n)}{10^6} = 1 \text{segundo} :. \log(n) = 1 \times 10^6 :. 2^{1 \times 10^6}$$

$$f(n) = \sqrt{n}$$
 :: $\frac{n^{\frac{1}{2}}}{10^6} = 1$ segundo :: $n^{1 \setminus 2x^2} = 10^{6x^2}$:: $n = 10^{12}$

$$f(n) = n \log n :. p \setminus t = 1$$
minuto

$$n\log n = 6x \cdot 10^7$$
 : $n\frac{\log_{10} n}{\log_{10} 2} = 6x \cdot 10^7$: $n\log_{10} n = \log_{10} 2x \cdot 6x \cdot 10^7$: sendo $\log_{10} 2 \approx 0.301$

fazendo
$$a = \log_{10} n; n = 10^a \Rightarrow na = \log_{10} 2 \times 6 \times 10^7$$

$$\log_{10} n + \log_{10} a = \log_{10} 0.301 + \log_{10} 6 + \log_{10} 10^7 \Rightarrow a + \log_{10} a = 7.257$$

a	$a + \log_{10} a$		
7	7.845		
6.5	7.313	\Rightarrow	$a=6.449$; $n=10^a=2811900$
6.4	7.206		
6.44	7.249		
6.449	7.258		

```
f(n)=n^2 :: n^2=10^6 :: n^{2/2}=10^{6/2} :: n=10^3
f(n)=n^3 :: n^3=10^6 :: n^{3/3}=10^{6/3} :: n=10^2
f(n)=2^n :: 2^n=10^6 :: \log(2^n)=\log(10^6) :: n\log(2)=\log(10^6) :: n=\frac{\log_{10}10^6}{\log_{10}2}
n\approx 19
```

2.3 – O fragmento de código a seguir implementa a regra de Horner para avaliar um polinômio

 $P(x) = \sum_{k=0}^{n} a_k x^k$

$$P(x) = a_0 + x (a_1 + x (a_2 + ... + x (a_{n-1} + x a_n)...)),$$

dados os coeficientes a_0 , a_1 , ..., a_n e um valor para x.

```
\begin{array}{lll} 1 & & y=0 \\ 2 & & i=n \\ 3 & & \textbf{while} \ i \geq 0 \\ 4 & & \textbf{do} \ y = a_i + x * y \\ 5 & & i=i-1 \end{array}
```

a. Qual é o tempo de execução desse fragmento de código em termos da notação Θ para a regra de Horner?

R = Considerando que o restante das operações são realizadas em tempo contante $\Theta(1)$ e o loop está sendo execuata n vezes, podemos concluir que o tempo de execução é $\Theta(n)$

b. Escreva pseudocódigo para implementar o algoritmo ingênuo de avaliação polinomial que calcula cada termo do polinômio desde o início. Qual é o tempo de execução desse algoritmo? Como ele se comporta com a regra de Horner?

```
In [1]: def polinomio(poly, n, x):
    for j in range (0,n):
        result = poly[j]
        for i in range(1, n):
            result = result*x + poly[i]
        return result

In [2]: poly = [2, 0, 3, 1]
    x = 2
    n = len(poly)
    print("Value of polynomial is " , polinomio(poly, n, x))

Value of polynomial is 23
```

Este código tem tempo de execução $\Theta(n^2)$, porque precisa realizar **for** identado. Isso é mais lento que a regra de Horner.

c. Prove que a expessão a seguir é um loop invariante para o loop while das linhas 3 a 5.

No início de cada iteração do laço for nas linhas 2-3,

$$y = \sum_{k=0}^{n-(i+1)} a_{k+i+1} x^k$$

Interprete um somatório sem termos como igual a 0. Seguindo a estrutura do invariante de laço apresentado nesse capítulo, use esse invariante de laço para mostrar que, no término, $\sum a_k x^k$.

R = Inicialmente **i** = **n**, então, o limite superior da soma é -**1**, logo, a soma é avaliada como 0, que é o valor de y.

$$y = \sum_{k=0}^{n-n-1} a_{k+n+1} x^k y = \sum_{k=0}^{-1} 0 x^k$$

Na manutenção:. i = n-i

$$P = \sum_{k=0}^{i-1} a_{k+i+1} x^k = \text{Temos dentro do loop P} = A[i] + XP$$

$$P = A[i] + X \sum_{k=0}^{n-(i+1)} a_{k+i+1} x^k => P = A[i] + X \sum_{k=0+1}^{n-1-1+1} a_{k+i+1} x^{k-1} => P = A[i] X^0 + X \sum_{k=1}^{n-1} a_{k+i} x^{$$

$$P = \sum_{k=0}^{n-1} a_{k+i} x^k$$

Na Terminação:. O código termina quando i = -1

$$P = \sum_{k=0}^{n-i-1} a_{k+i+1} x^k => P = \sum_{k=0}^{n-(1)-1} a_{k+-1+1} x^k => P = \sum_{k=0}^{n} a_k x^k$$

d. Conclua demonstrando que o fragmento de código dado avalia corretamente um polinômio caracterizado pelos coeficientes a_0, a_1, \dots, a_n

Na Terminação:. O código termina quando i = -1

$$P = \sum_{k=0}^{n-i-1} a_{k+i+1} x^k => P = \sum_{k=0}^{n-(1)-1} a_{k+-1+1} x^k => P = \sum_{k=0}^{n} a_k x^k$$

3.1 – Seja

$$p(n) = \sum_{i=0}^d a_i n^i,$$

onde $a_d > 0$, um polinômio de grau dem n, e seja k uma constante. Use as definições das notações assintóticas para provar as propriedades a seguir:

a. Se $k \ge d$. então $p(n) = O(n^k)$.

R =
$$\exists c \in |R^*, p(n) \le g(n)$$
 para todo $n \ge m \in N^*$, suponha que:
 $p(n) \le c f(n) \Rightarrow \frac{p(n)}{f(n)} \le c \frac{f(n)}{f(n)} \qquad \frac{n^{(k)}}{n^k} = 1 \Rightarrow 1 \le c \text{ ou } \frac{n^{(k-1)}}{n^k} \Rightarrow \frac{1}{n} \le c$

b. Se $k \le d$, então $p(n) = \Omega(n^k)$.

 $R = \exists c \in |R^*, cg(n) \le p(n)$ para todo $n \ge m \in N^*$, suponha que:

$$cf(n) \le p(n) \Rightarrow c\frac{f(n)}{f(n)} \le \frac{p(n)}{f(n)} \qquad \frac{n^{(k)}}{n^k} = 1 \Rightarrow c \le 1 \text{ ou} \frac{n^{(k+1)}}{n^k} \Rightarrow c \le n$$

c. Se k = d, então $p(n) = \Theta(n^k)$.

R = Apartir das questões anteriores temos que $p(n)=O(n^k)$ e $p(n)=\Omega(n^k)$. Então temos que $p(n)=O(n^k)$, se e somente se $p(n)=O(n^k)$ e $p(n)=O(n^k)$.

d.Sek>d, então $p(n)=o(n^k)$.

 $R = \exists c \in |R^*, p(n) \le g(n)$ para todo $n \ge m \in N^*$, suponha que:

$$p(n) \le c f(n) \Rightarrow \frac{p(n)}{f(n)} \le c \frac{f(n)}{f(n)} \qquad \frac{n^{(k-1)}}{n^k} \Rightarrow \frac{1}{n} < c$$

a medida que n tende ao infinito, temos que para qualquer constante c o limite 0 < f(n) < cg(n) é válido.

$$e.Se k < d$$
, então $p(n) = \omega(n^k)$.

 $R = \exists c \in R^*, cg(n) \le p(n)$ para todo $n \ge m \in R^*$, suponha que:

$$cf(n) \le p(n) \Rightarrow c\frac{f(n)}{f(n)} \le \frac{p(n)}{f(n)} = \frac{n^{(k+1)}}{n^k} \Rightarrow c < n$$
 a medida que n tende ao infinito, temos que para qualquer constante c o limite $\mathbf{0} < \mathbf{cg(n)} < \mathbf{f(n)}$ é válido

3.2 – Indique, para cada par de expressões (A,B) na tabela a seguir, se A é O, o, Ω , ω ou Θ de B. Considere que $k \ge 1$, ε 0 e c > 1são constantes. Sua resposta deve estar na forma de tabela, com "sim" ou "não" escrito em cada retângulo.

A B	0	0	Ω	ω	Θ
$lg^k n$ n^{ε}	Sim	Sim	Não	Não	Não
n^k c^n	Sim	Sim	Não	Não	Não
\sqrt{n} n^{senn}	Não	Não	Não	Não	Não
2^n $2^{n/2}$	Não	Não	Sim	Sim	Não
n^{lgc} c^{lgn}	Sim	Não	Sim	Não	Sim
$lg(n!) lg(n^n)$	Sim	Não	Sim	Não	Sim

