Lab 11

Speech and Image Processing

Group assignment up to 3 students per group.

Abdul Ghaffar Kalhoro Mohammad Rehman Rabbani Hamad Nasir

Question 10 marks

Linear transformations like translation, rotation, scaling etc. can be applied on images by multiplying the image pixels by a 3x3 matrix

For translation of a pixel (x,y) by distance dx,dy pixels. Origin is the top left corner of the image. New coordinates are obtained by multiplying input coordinate vector with transformation matrix

$$|x'|$$
 | 1 0 dx | |x|
 $|y'|$ = | 0 1 dy | |y|
| 1 | | 0 0 1 | |1|

For rotation by angle θ

For scaling of image by Sx, Sy

Write a MATLAB/Octave *.m file script that calculates a transformed image B, given a transformation matrix and an input image A

Start of MATLAB/Octave code below

A=imread('cars.jpg'); A=double(A)/255;

transformation matrix is T

theta=0.5

T=[cos(theta) -sin(theta) 0; sin(theta) cos(theta) 0; 0 0 1]

figure;

imshow(A,[]);

[...rest of the code to calculate the transformed image B...]

Hint: In this problem, given the (x',y') coordinates in the "transformed" image, we need to calculate the "original" coordinates (x,y)

For calculating the colour values at non-integer pixel coordinates, use round() function

Deliverables:

MATLAB/Octave code file transform1.m

Original image e.g. *cars.jpg*. The image should be different for each group.

Translated image *translated.jpg* by some offset dx,dy pixels Rotated image *rotated.jpg* by some angle theta Scaled image *scaled.jpg* by some factors Sx,Sy

Example

Input image cars.jpg

Rotated image rotated.jpg by angle 0.5 radians

Solution:

```
close all;
imageCars=imread('cars.jpg');
%double image values
imageCars=double(imageCars)/255;
% here transMatrix is transformation matrix
val theta=0.5;
transMatrix=[cos(val theta) -sin(val theta) 0; sin(val theta)
cos(val theta) 0; 0 0 1];
figure;
imshow(imageCars,[]);
%B=zeros(tempi(1,1),tempi(1,2),3);
tempi = size(imageCars);
B = zeros(tempi (1,1), tempi (1,2),3);
for i = 1: tempi(1,1)
  for j =1:tempi(1,2)
    B(i,j,:)=[i;j;1];
  end
end
C=zeros(tempi(1,1),tempi(1,2),3);
for i=1:tempi(1,1)
  for j=1:tempi(1,2)
    C(i,j,:)=transMatrix*permute(B(i,j,:),[3,2,1]);
  end
C=round(C);
output=zeros(tempi);
tempi2 = size(C);
for i=1:tempi2(1,1)
  for j=1:tempi2(1,2)
    if C(i,j,1:2)>0 \&\& C(i,j,1) \le tempi(1,1) \&\& C(i,j,2) \le tempi(1,2)
      \verb"output(C(i,j,1),C(i,j,2),:) = \verb"imageCars(i,j,:);
    end
  end
end
figure;
imshow(output,[]);
% transformation matrix is transMatrix
dx=40; dy=20;
transMatrix=[1 0 dx; 0 1 dy; 0 0 1];
C=zeros(tempi(1,1),tempi(1,2),3);
for i=1:tempi(1,1)
  for j=1:tempi(1,2)
    C(i,j,:)=transMatrix*B(i,j,:)';
  end
end
```

```
C=round(C);
output=zeros(tempi);
tempi2 = size(C);
for i=1:tempi2(1,1)
  for j=1:tempi2(1,2)
    if C(i,j,1:2)>0 && C(i,j,1) \le tempi(1,1) && C(i,j,2) \le tempi(1,2)
      output(C(i,j,1),C(i,j,2),:)=imageCars(i,j,:);
    end
  end
end
figure;
imshow(output,[]);
% transformation matrix is transMatrix
Sx=0.5; Sy=0.5;
transMatrix=[Sx 0 0; 0 Sy 0; 0 0 1];
C=zeros(tempi(1,1),tempi(1,2),3);
for i=1:tempi(1,1)
  for j=1:tempi(1,2)
    C(i,j,:)=transMatrix*B(i,j,:)';
  end
end
C=round(C);
output=zeros(tempi);
tempi2 = size(C);
for i=1:tempi2(1,1)
  for j=1:tempi2(1,2)
    if C(i,j,1:2)>0 \&\& C(i,j,1) <= tempi(1,1) \&\& C(i,j,2) <= tempi(1,2)
      output(C(i,j,1),C(i,j,2),:)=imageCars(i,j,:);
    end
   end
end
figure;
imshow(output,[]);
```

OUTPUT

1. Original

2. Rotated

3. Translated

4. Scaled

