

Pre- Video Summary

- ARMv8 ISA: A design example named as LEGv8
 - Instruction format
 - R-format, D-format, I-format, B format and CB fomat
 - Addressing modes
 - Register addressing
 - Immediate addressing
 - Base or displacement addressing
 - PC-relative addressing

Classification of LEGv8 Instruction based on Instruction format -Register (R) type

- All data values (operands/result) are located in registers.
- Rn and Rm: specify the first and the second source registers
- Rd: specifies the destination register
- shamt stands for shift amount: specifies the number of bit positions to be shifted (used in shift instructions.)
- Opcode: Operation Code: specifies the type of instruction.

Register (R) type - Register Addressing

- Instruction structure: <operation> <Rd>, <Rn>, <Rm>
- Eg: ADD X9, X20, X21 meaning: [X9] ← [X20]+[X21]

Control unit

0		
9	65	
19		
20	50	
21	15	
22		
31		

opcode	address	op2	Rn	Rt
11 bits	9 bits	2 bits	5 bits	5 bits

- Load/Store instructions,
- Rn: specify the base registers
- "address": constant offset from contents of base register (+/- 32 doublewords)
- Rt: specifies the destination register (load) or source (store) register number
 - ALU calculates the address (address+[Rn])
 - Data at memory location (address+[Rn]) is read
- The read data is saved in the destination register (Rt).

Base/ Displacement Addressing (load word)

LDUR X9, [X22, #64]: meaning [X9] ← mem[[R22] + 64]

Control unit

Base/displacement Addressing (store word)

1984	64	0	22	9
Opcode	Address	Op2	Rn	Rt
11 bits	9 bits	2 bits	5 bits	5 bits

STUR X9, [X22, #64]: meaning [X9] → mem[[R22] + 64]

Control unit

 Question: what is the max address and min address possible for base displacement?

LEGv8 Instruction format – Immediate(I) type

- Rn: source register

Rd: destination register

580	50	2	1
Opcode	immediate	Rn	Rd
10 bits	12 bits	5 bits	5 bits

- Immediate field is zero-extended
- Opcode is reduced to 10 bits to have more range for immediate field.
 - Example: ADDI X1, X2, #50 ([X1] ← [X2]+ 50)

Immediate (I) type - Immediate Addressing

• Example: ADDI X1, X2, #50: meaning [X1] ←[X2] + 50

Control unit

LEGv8 Instruction format – conditional branch (CB) type

- Based on a condition
 - CBZ (if register value is zero, then branch)
 - CBNZ (if register value is nonzero, then branch)

opcode	address	Rt	
	8 bits	19 bits	5 bits

- Example: CBZ X19, Exit // go to Exit if X19 == 0

	180	Exit	19
,	8 bits	19 bits	5 bits

- Addressing mode is (Program Counter) PC-relative
 - Address = PC + address (from instruction)

PC relative addressing (Part 1/2)

PC relative addressing (Part 2/2)

CBNZ X9, #3 meaning [X9] \neq 0, then PC will move to PC+ (3x4)

SUB X9, X22, X23

CBNZ X9, Else

ADD X19, X20, X21

B Exit

El se: SUB X9, X22, x23

Exit: ...

PC Address	Instruction mem	LAI C
0x00000000000000	SUB X9, X22, X23	
0x000000000000004	CBNZ X9, #3	Step 1 \rightarrow [X9] \neq 0, then nPC=PC+(3x4)
0x00000000000000	ADD X19, X20, X21	Skip instructions
0x0000000000000C	B Exit	
0x000000000000010	SUB X9, X22, x23	newPC (nPC) points to this location
0x00000000000014		

Else:

Exit:

0xFFFFFFFFFFFFF

0xFFFFFFFFFFF8

0xFFFFFFFFFFC

PC relative addressing mode:- Unconditional

branch (B) type

opcode address
5 8_{ten}
6 bits 26 bits

PC 0X000000000000004 Instruction B #8

then PC will move to PC+ $(8x4)=4 + 32= 36_{ten}(24_{hex})$

Find the address to which CBZ and B branches to?

Address	Instruction in mnemonic
0x00000	EOR X2, X3, X4
0x00004	CBZ X2, #4
80000x0	ADD X5, X1, X0
0x0000C	SUB X6, X7, X8
0x00010	ADD X31,X31,X31
0x00014	ADD X0,X31,X31
0x00018	B #-3
0x0001C	••••

Addressing mode summary

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

