FOUILLE DE DONNEES Introduction, méthodes supervisées et non supervisées

Anne LAURENT

Pourquoi la fouille de données ?

- Données disponibles
- Limites de l'approche humaine
- Nombreux besoins :
 - Industriels,
 - Médicaux,
 - Marketing,
 - ...

Qu'est-ce que la fouille de données ?

- Fayyad (1996) Knowledge Discovery in Databases: "the non-trivial process of identifying valid, potentially useful and ultimately understandable patterns in data"
- KDD vs. Data Mining

Buts: exemples d'application

- diagnostic médical
- profils de clients, mailing, accord de prêts bancaires, ...
- reconnaissance de caractères manuscrits
- finance, prévision d'évolutions de marchés
- Customer Relationship Management (CRM): trouver, gagner et garder ses clients!
 - churning,
 - détection de fraudes,
 - détection de mauvais payeurs, ...

Fouille de données et reporting

- Nombreux outils de reporting, tableaux de bord, ...
- Outils décisionnels OLAP
 (ETL data warehouse/data marts)
- Mais pas d'automatisation

Tâches de fouille de données

- Classification
- Estimation
- Prédiction
- Extraction de motifs
- Segmentation
- **•** ...

Algorithmes supervisés et non supervisés

- Apprentissage supervisé :
 - On dispose d'un fichier décrivant des données alliant une description et une classe
 - On cherche une fonction de classification permettant d'induire la classe en fonction d'une description
- Apprentissage non supervisé :
 - On dispose d'un fichier de description des données sans classes connues a priori
 - On cherche à diviser ces données en catégories

Algorithmes prédictifs et descriptifs

Veut-on

- Trouver une fonction permettant de prédire la classe d'une données jamais vue Ou
- Trouver des descriptions résumées et pertinentes expliquant les données
- La limite entre les 2 est floue !
 (méthodes descriptives pour la prédiction)

Problématiques associées

- données pas forcément très propres :
 - données bruitées
 - données manquantes
 - Données aberrantes
 - doublons
- données numériques, symboliques
- pré-traitements
- post-traitements

Algorithmes du cours

- Classification supervisée :
 - Méthode de Bayes naïf
 - k plus proches voisins
 - Arbres de décision
 - Réseaux de neurones
- Classification non supervisée : k-means
- Évaluation des méthodes

Motifs fréquents

Méthode de Bayes naïf

- Comment classer un nouvel exemple en fonction d'un ensemble d'exemples pour lesquels on connaît la classe ?
- •• d = (d1, ..., dn) et c classes k = 1, ..., c Classe(d) = argmax $\Pi \hat{P}(di|k) \cdot \hat{P}(k)$ k i

proportion d'exemples di parmi ceux de la classe k proportion d'exemples de la classe k

Exemple: va-t-on faire du kite-surf?

	TEMPS	HUMIDITE	VENT	kite-surf
Ex1	Soleil	Haute	Oui	Oui
Ex2	Soleil	Basse	Non	Non
Ex3	nuageux	Basse	Oui	Oui
Ex4	pluvieux	Haute	Oui	Non
Ex5	pluvieux	Basse	Oui	Non
Ex6	Soleil	Basse	Oui	Oui
Ex7	pluvieux	Basse	Non	Non
	Soleil	haute	Non	?

Va-t-on jouer s'il y a du soleil, beaucoup d'humidité et pas de vent ? Apprentissage supervisé

k plus proches voisins

- Raisonnement à partir de cas
- Utilisation des cas similaires pour prendre une décision
- Pas d'étape d'apprentissage (avantages et inconvénients)

Algorithme

- Décider du nombre de voisins à utiliser k (souvent k = nbre d'attributs + 1)
- Pour un enregistrement sur lequel il faut décider :
 - trouver les k plus proches voisins
 - combiner les classes des k plus proches voisins en une classe c

Choix de la distance

Rappel: distance
$$d \Leftrightarrow d(A,A) = 0$$

$$d(A,B) = d(B,A)$$

$$d(A,C) < d(A,B) + d(B,C)$$

Distance sur chacun des attributs

$$d(x,y) = |x-y|$$
 $d(x,y) = |x-y| / distance_max$

• puis combinaison. distance euclidienne :

$$d(x,y) = \sqrt{[d_1(x_1,y_1)^2 + ... + d_n(x_n,y_n)^2]}$$

Choix de la classe

- on dispose des k classes des k plus proches voisins
- choix de la classe du nouvel exemple :
 - classe majoritaire
 - classe pondérée
- Le résultat change en fonction de tous ces choix (distance, combinaison, calcul de la classe)

Exemple : va-t-on faire du kite-surf avec cette méthode ?

- on choisit k = 4
- distance euclidienne

$$d(A,A)=0$$

 $d(A,B)=1$

- calcul des voisins
- combinaison des classes des voisins

Exemple: va-t-on faire du kite-surf?

	TEMPS	HUMIDITE	VENT	kite-surf
Ex1	Soleil	Haute	Oui	Oui
Ex2	Soleil	Basse	Non	Non
Ex3	nuageux	Basse	Oui	Oui
Ex4	pluvieux	Haute	Oui	Non
Ex5	pluvieux	Basse	Oui	Non
Ex6	Soleil	Basse	Oui	Oui
Ex7	pluvieux	Basse	Non	Non
	Soleil	haute	Non	?

Va-t-on jouer s'il y a du soleil, beaucoup d'humidité et pas de vent ?

Arbres de décision

- Représentation graphique d'une procédure de décision
- ◆ Représentation compréhensive ⇒ règles

Problématiques associées

Choix des attributs tests

divisions successives de la base d'apprentissage)

Critère d'arrêt

But : construire un arbre le plus petit possible

Heuristique. Algorithme *glouton*.

Plusieurs algorithmes (ID3, C4.5)

Algorithme de construction

- ♦ Nœud Courant ← racine
- Répéter
 - Si le nœud courant est terminal
 - Alors l'étiqueter Nœud Courant ← Classe
 - Sinon
 - Sélectionner un attribut test
 - Créer le sous-arbre
 - Passer au nœud suivant non exploré
- Jusqu'à obtention d'un arbre

Critère d'arrêt

- Plusieurs tests possibles pour décider si le nœud courant est terminal :
 - il n'y a plus assez d'exemples
 - les exemples ne sont pas trop mélangés (une classe se dégage). seuil d'impureté.

On étiquette avec la classe majoritaire

Sélection de l'attribut test

- Quel est l'attribut dont la connaissance nous aide le plus sur la classe ?
- Plusieurs critères possibles : test de Gini, gain d'information, entropie, ...
- ID3 : entropie de Shannon

Entropie de Shannon

- Entropie de l'attribut A
- A a i valeurs possibles X₁, ..., X_i
- ◆ Il y a k classes C₁, …, C_k

$$H_s(C|A) = -\sum_{i} P(X_i) \sum_{k} P(C_k|X_i). \log((P(C_k|X_i)))$$

Exemple : va-t-on faire du kite-surf avec cette méthode ?

- Construction de l'arbre
- Racine: choix du 1er attribut test
 - Calcul de H(C|temps)
 - Calcul de H(C|humidité)
 - Calcul de H(C|vent)
- Division de la base d'exemple
- Nœuds terminaux ?

Exemple: va-t-on faire du kite-surf?

	TEMPS	HUMIDITE	VENT	kite-surf
Ex1	Soleil	Haute	Oui	Oui
Ex2	Soleil	Basse	Non	Non
Ex3	nuageux	Basse	Oui	Oui
Ex4	pluvieux	Haute	Oui	Non
Ex5	pluvieux	Basse	Oui	Non
Ex6	Soleil	Basse	Oui	Oui
Ex7	pluvieux	Basse	Non	Non
	Soleil	haute	Non	?

Va-t-on jouer s'il y a du soleil, beaucoup d'humidité et pas de vent ?

Attributs continus

- ID3 ne les prend pas en charge
- discrétisation par un expert
- algorithme C4.5:
 - test et calcul de l'entropie avec toutes les coupures possibles entre les valeurs successives
 - exemple sur les valeurs 3,4,8 on testera
 - < 3,5 vs. > 3,5
 - < 6 vs. > 6

Avantages et inconvénients

- ◆ attention au sur-apprentissage ⇒ élagage
- performances moins bonnes si beaucoup de classes
- algorithme non incrémental
- on peut expliquer une décision
 permet la sélection des attributs pertinents
 (feature selection)
- classification rapide d'un nouvel exemple (parcours d'un chemin d'arbre)

Segmentation (Clustering)

- But : diviser la population en groupes
- Minimiser la similarité intra-groupe
- Maximiser la similarité inter-groupes
- Exemple : notes des IG4 2002-2003

Algorithme des k-moyennes

- 1. Choisir le nombre de groupes à créer k
- 2. Choisir k centres initiaux c_1 , ..., c_k
- 3. Pour chaque exemple, l'affecter au groupe i dont le centre est le plus proche
- 4. Si aucun exemple ne change de groupe
- Alors STOP
- 6. Sinon
 - a) Calculer les nouveaux centres :

```
Pour i = 1 à k
```

c_i est la moyenne des éléments du groupe

b) Aller en 3)

Exemple : faire 2 groupes d'étudiants

- Centres initiaux : c1=(11,13) c2=(14,18)
 - $d(e1,c1) = [(14-11)^2 + (14-13)^2]^{1/2} = 3.16$
 - $d(e1,c2) = [(14-14)^2 + (14-18)^2]^{1/2} \approx 4$
 - $d(e2,c1) = 4.12 d(e2,c2) \approx 2.24$
 - d(e3,c1) > d(e3,c2)
 - d(e4,c1) < d(e4,c2)
 - d(e5,c1) > d(e5,c2)
- Nouveaux centres :
 - c'1 = ((14+10)/2,(14+11)/2) = (12,12.5)
 - c'2 = ((12+16+14)/3), (17+20+16)/3) = (14,17.6)
- calcul de d(e1,c'1) d(e1,c'2) ...
- résultat inchangé ⇒ FIN

e 1	14	14
e 2	12	17
e 3	16	20
e 4	10	11
e 5	14	16

Problèmes

- Nécessité de l'existence d'une distance
- Choix de k
- Influence du choix des centres initiaux sur le résultat
- Normalisation des attributs

Evaluation des méthodes

- Apprentissage supervisé : évaluation sur une base d'exemples test
- Méthodes de séparation entre les bases d'apprentissage et de test.
 - on dispose de deux bases séparées
 - on coupe la base en deux
 - validation croisée. Leave One Out.

Validation croisée

- Découpage de la base d'exemples en n sous-base b₁, ..., b_n
- n apprentissages :
 - On apprend sur n-1 sous-bases
 - On teste sur la sous-base restante
 - Moyenne des n résultats
- ♦ n = 10 fonctionne bien
- Leave one out

Critères d'évaluation

- Taux de bon apprentissage
 Parmi tous les exemples, quelle proportion est bien classée ?
- Précision de la classe k
 Parmi les exemples classés dans la classe k, quelle proportion est effectivement de la classe k?
- Rappel de la classe k

 Parmi les exemples de la classe k, quelle proportion se retrouvent classés dans la classe k?
- Précision contre Rappel
- Matrice de confusion : table de contingence

Matrice de confusion

Prédit	OBSERVE			
•	Payé	Retardé	Impayé	TOTAL
Payé	80	15	5	100
Retardé	1	17	2	20
Impayé	5	2	23	30
TOTAL	86	34	30	150

- Validité du modèle (taux d'apprentissage) : nombre de cas exacts (=somme de la diagonale) divisé par le nombre total : 120/150 = 0.8
- **Rappel** de la classe Payé : nombre de cas prédits et observés « payé » divisé par le nombre total de cas observés « payés » : 80/86 = 0.93
- **Précision** de la classe Payé : nombre de cas observés et prédits « payé » divisé par le nombre total de cas prédits « payés » : 80/100 = 0.8

Warning!

- il existe de nombreuses (autres) méthodes
- il n'y a pas de meilleure méthode
- méthode à choisir selon
 - les données
 - (continues? manquantes? volumineuses? denses?...)
 - la tâche
 - le temps de calcul dont on dispose
- autres types de données

Logiciels de fouille de données

- ◆ R
- SAS Entreprise Miner
- RapidMiner
- Apache Mahout
- Scikit
- Weka
- ...

Biblio/Webo-graphie

Livres:

- Introduction au Data Mining. M.Jambu. Eyrolles. 1998.
- Data Mining: Concepts and Techniques. J. Han and M. Kamber, The Morgan Kaufmann Series in Data Management Systems, 2000.

Sites internet:

- KD Nuggets
- UCI machine learning repository
- kaagle

Pierre DAC

« Il est toujours dangereux de faire des prévisions, surtout quand c'est dans l'avenir. »

Complément

Réseaux de neurones

- Méthode de type boîte noire
 Nombreuses applications
 (notamment reconnaissance
 d'écriture manuscrite)
- Méthode coûteuse en temps de calcul
- Topologie à connaître

Une méthode issue des modèles biologiques

- Chaque neurone disposer en moyenne de 10.000 points de contacts (synapses) avec les neurones qui l'entourent, et jusqu'à 50.000!
- Nous disposons de quelques dizaines de milliards de ces neurones à l'intérieur de notre cerveau
- De synapse en synapse, l'information transite dans la totalité de notre corps, au travers d'environ 500 000 milliards de synapses

Neurone biologique

- un neurone (biologique) est un noeud qui a plusieurs entrées et une sortie
- Les entrées proviennent d'autres neurones ou organes sensoriels
- Les entrées sont pondérées
- Les **poids** peuvent être positifs ou négatifs
- Les entrées sont sommées au niveau du noeud pour produire une valeur d'activation
- Si l'activation est plus grande qu'un certain seuil, le neurone s'active

Problèmes linéairement ou non linéairement séparables

 on distingue 2 types de problèmes pour 2 types de solution

Approche informatique : perceptron

Perceptron multi-couches

COUCHE D'ENTREE

COUCHE DE SORTIE

Algorithme d'apprentissage des poids

- Initialiser les poids de manière aléatoire
- Répéter
 - Pour chaque exemple i
 - Si la sortie s n'est pas égale à la sortie attendue a
 - Alors poids $w_i \leftarrow w_i + (a s)x_i$
- Jusqu'à ce que tous les exemples soient bien classés

Exemple: apprentissage du OU logique

étape	w_0	w_1	w_2	Entrée	$\Sigma_0^2 w_i x_i$	0	c	w_0	w_1	w_2
init								0	1	-1

étape	w_0	w_1	w_2	Entrée	$\Sigma_0^2 w_i x_i$	o	c	w_0	w_1	w_2
init								0	1	-1
1	0	1	-1	100	0	0	0	0+0x1	1+0x0	-1+0x0

étape	w_0	w_1	w_2	Entrée	$\Sigma_0^2 w_i x_i$	o	c	<i>u</i> ₀	w_1	w_2
init								0	1	-1
1	0	1	-1	100	0	0	0	0+0x1	1+0x0	-1+0x0
2	0	1	-1	101	-1	0	1	0+1x1	1+1x 0	-1+1x1

étape	w_0	w_1	w_2	Entrée	$\Sigma_0^2 w_i x_i$	o	c	w_0	w_1	w_2
init								0	1	-1
1	0	1	-1	100	0	0	0	0+0x1	1+0x0	-1+0x0
2	0	1	-1	101	-1	0	1	0+1x1	1+1x 0	-1+1x1
3	1	1	0	110	2	1	1	1	1	0

étape	w_0	w_1	w_2	Entrée	$\Sigma_0^2 w_i x_i$	o	c	w_0	w_1	w_2
init								0	1	-1
1	0	1	-1	100	0	0	0	0+0x1	1+0x0	-1+0x0
2	0	1	-1	101	-1	0	1	0+1x1	1+1x 0	-1+1x1
3	1	1	0	110	2	1	1	1	1	0
4	1	1	0	111	2	1	1	1	1	0

étape	w_0	w_1	w_2	Entrée	$\Sigma_0^2 w_i x_i$	o	c	เหอ	w_1	w_2
init								0	1	-1
1	0	1	-1	100	0	0	0	0+0x1	1+0x0	-1+0x0
2	0	1	-1	101	-1	0	1	0+1x1	1+1x 0	-1+1x1
3	1	1	0	110	2	1	1	1	1	0
4	1	1	0	111	2	1	1	1	1	0
5	1	1	0	100	1	1	0	1+(-1)x1	1+(-1)x0	0+(-1)x0

étape	w_0	w_1	w_2	Entrée	$\Sigma_0^2 w_i x_i$	o	c	w_0	w_1	w_2
init								0	1	-1
1	0	1	-1	100	0	0	0	0+0x1	1+0x0	-1+0x0
2	0	1	-1	101	-1	0	1	0+1x1	1+1x 0	-1+1x1
3	1	1	0	110	2	1	1	1	1	0
4	1	1	0	111	2	1	1	1	1	0
5	1	1	0	100	1	1	0	1+(-1)x1	1+(-1)x0	0+(-1)x0
6	0	1	0	101	0	0	1	0+1x1	1+1x0	0+1x1

:0

étape	w_0	w_1	w_2	Entrée	$\Sigma_0^2 w_i x_i$	О	c	w_0	w_1	w_2
init								0	1	-1
1	0	1	-1	100	0	0	0	0+0x1	1+0x0	-1+0x0
2	0	1	-1	101	-1	0	1	0+1x1	1+1x 0	-1+1x1
3	1	1	0	110	2	1	1	1	1	0
4	1	1	0	111	2	1	1	1	1	0
5	1	1	0	100	1	1	0	1+(-1)x1	1+(-1)x0	0+(-1)x0
6	0	1	0	101	0	0	1	0+1x1	1+1x0	0+1x1
7	1	1	1	110	2	1	1	1	1	1

étape	w_0	w_1	w_2	Entrée	$\Sigma_0^2 w_i x_i$	О	c	w_0	w_1	w_2
init								0	1	-1
1	0	1	-1	100	0	0	0	0+0x1	1+0x0	-1+0x0
2	0	1	-1	101	-1	0	1	0+1x1	1+1x 0	-1+1x1
3	1	1	0	110	2	1	1	1	1	0
4	1	1	0	111	2	1	1	1	1	0
5	1	1	0	100	1	1	0	1+(-1)x1	1+(-1)x0	0+(-1)x0
6	0	1	0	101	0	0	1	0+1x1	1+1x0	0+1x1
7	1	1	1	110	2	1	1	1	1	1
8	1	1	1	111	3	1	1	1	1	1

étape	w_0	w_1	w_2	Entrée	$\Sigma_0^2 w_i x_i$	o	c	w ₀	w_1	w_2
init								0	1	-1
1	0	1	-1	100	0	0	0	0+0x1	1+0x0	-1+0x0
2	0	1	-1	101	-1	0	1	0+1x1	1+1x 0	-1+1x1
3	1	1	0	110	2	1	1	1	1	0
4	1	1	0	111	2	1	1	1	1	0
5	1	1	0	100	1	1	0	1+(-1)x1	1+(-1)x0	0+(-1)x0
6	0	1	0	101	0	0	1	0+1x1	1+1x0	0+1x1
7	1	1	1	110	2	1	1	1	1	1
8	1	1	1	111	3	1	1	1	1	1
9	1	1	1	100	1	1	0	1+(-1)x1	1+(-1)x0	1 + (-1)x0

étape	w_0	w_1	w_2	Entrée	$\Sigma_0^2 w_i x_i$	О	c	w_0	w_1	w_2
init								0	1	-1
1	0	1	-1	100	0	0	0	0+0x1	1+0x0	-1+0x0
2	0	1	-1	101	-1	0	1	0+1x1	1+1x 0	-1+1x1
3	1	1	0	110	2	1	1	1	1	0
4	1	1	0	111	2	1	1	1	1	0
5	1	1	0	100	1	1	0	1+(-1)x1	1+(-1)x0	0+(-1)x0
6	0	1	0	101	0	0	1	0+1x1	1+1x0	0+1x1
7	1	1	1	110	2	1	1	1	1	1
8	1	1	1	111	3	1	1	1	1	1
9	1	1	1	100	1	1	0	1+(-1)x1	1+(-1)x0	1 + (-1)x0
10	0	1	1	101	1	1	1	0	1	1