Proyectos de Machine Learning y Series Temporales Análisis Completo de Datasets UCI

Tomás Travis Alonso Cremnitz

Septiembre 2025

Contenido

- Introducción y Objetivos
- 2 TEST 1: Clasificación de Calidad de Vinos
- 3 TEST 2: Forecasting de Series Temporales
- 4 Arquitectura y Metodología
- Resultados y Análisis
- 6 Conclusiones y Trabajo Futuro

Planteamiento del Caso

Objetivo General

Desarrollar e implementar dos sistemas completos de Machine Learning utilizando datasets reales de UCI ML Repository

TEST 1: Clasificación

- Dataset: Wine Quality UCI (6,497 muestras)
- **Resultado**: 69.31% accuracy con Random Forest
- Features: 11 propiedades fisicoquímicas
- Modelos: RF, SVM, XGBoost

TEST 2: Series Temporales

- Dataset: Gas Sensor Array Drift UCI (144 obs.)
- Resultado: 2.58 % MAPE con Random Forest
- Target: sensor_drift (degradación sensores)
- Modelos: RF, XGBoost, ARIMA

Metodología de Trabajo

- Análisis Exploratorio de Datos (EDA)
 - Carga y validación de datasets UCI reales
 - Análisis estadístico descriptivo completo
 - Visualización de distribuciones y correlaciones
- Preprocesamiento de Datos
 - Limpieza y tratamiento de valores faltantes
 - Escalado de características
 - División estratificada train/test
- Modelado y Evaluación
 - Implementación de múltiples algoritmos
 - Validación cruzada y métricas robustas
 - Comparación de rendimiento

Dataset UCI Wine Quality

Caract	erísticas	del	Datase

- Fuente: UCI ML Repository
- Total: 6.497 muestras reales
- Vinos tintos: 1,599 (24.6 %)
- Vinos blancos: 4,898 (75.4 %)
- Features: 11 propiedades fisicoquímicas
- Target: Calidad (escala 3-9)

 Calidad
 Muestras

 3
 30

 4
 216

 5
 2,138

 6
 2,836

 7
 1,079

 8
 193

Cuadro: Distribución de calidades

5

Principales Hallazgos del EDA

- Distribución centrada en calidades medias (5-7)
- Desbalance significativo en clases extremas (3, 9)

Modelos de Clasificación Implementados

0.31 % 68	. 30 % ∼29	5
5.62 % 65	$.72\%$ \sim 59	5
7.15 % 53	.80 % ~8s	5
	5.62 % 65	65.62% 65.72% ~ 59

Cuadro: Resultados de clasificación en Wine Quality UCI

Random Forest (Mejor Modelo)

- Hiperparámetros: 100 árboles, max_depth=10
- Ventajas: Robusto, interpretable
- Feature Importance: Alcohol, volatil acidity principales

Métricas de Validación

- Validación estratificada: 5-fold CV
- F1-Score weighted: Apropiado para desbalance
- Matriz de confusión: Análisis por clase

Dataset UCI Gas Sensor Array Drift

Características del Dataset

• Fuente: UCI ML Repository

• Total: 144 observaciones semanales

• Período: Enero 2008 - Octubre 2010

• Variables: 16 sensores químicos

• Target: sensor_drift (degradación)

Frecuencia: Mediciones semanales

Métrica	Valor	
Media drift	3.40	
Std drift	1.23	
Min drift	1.00	
Max drift	6.00	
Sensores	16	

Cuadro: Estadísticas sensor_drift

Compliance TEST 2

- ✓ Dataset NO financiero
- Variable NO estacional
- ✓ Forecasting implementado

Modelos de Forecasting Implementados

Modelo	MAE	RMSE	MAPE	Tiempo
Random Forest	0.128	0.159	2.58 %	\sim 0.06s
XGBoost	0.144	0.171	2.88 %	$\sim\!\!0.11$ s
ARIMA(1,1,1)	0.479	0.551	10.12 %	\sim 0.02s

Cuadro: Resultados de forecasting en Gas Sensor Array Drift

Random Forest (Modelo Principal)

- Configuración: 100 estimadores
- Performance: 2.58 % MAPE excelente
- Ventajas: Robusto, maneja no-linealidad

Performance Destacada

- MAPE 2.58 %: Excelente para series temporales
- 144 observaciones: Dataset compacto
- Reproducible: Scripts CLI automatizados

8 / 13

Arquitectura de los Proyectos

Estructura Modular

- src/: Código fuente organizado en paquetes
- notebooks/: Análisis interactivos (EDA + Modeling)
- tests/: Framework de testing con pytest
- data/: Pipeline raw \rightarrow processed \rightarrow final

Herramientas CLI

TEST 1 - Clasificación:

- train_model.py: Entrenamiento
- inference.py: Predicciones

TEST 2 - Series Temporales:

- train_model.py: Múltiples modelos
- forecast.py: Predicción de drift

Stack Tecnológico

- Core: pandas, scikit-learn, statsmodels
- **Deep Learning**: TensorFlow/Keras
- Viz: matplotlib, seaborn, plotly

Comparación de Resultados

1 Toycoto	mejor modero	weened i inicip	ai Bataset	Compilative	
TEST 1	Random Forest	69.31 % Accuracy	y Wine Quality (6,497)	✓ UCI Real	
TEST 2	Random Forest	2.58 % MAPE	Gas Sensor Drift (144)	√ No financiero	
TEST 1: Clasificación			TEST 2: Forecasting		
Fortalezas:	:	_	Fortalezas:		

Métrica Principal

Provecto

Accuracy superior al 65 % baseline

Major Modelo

- F1-Score balanceado para clases
- desbalanceadas

• Feature importance interpretable Desafíos:

- Desbalance en clases extremas (3, 9) Variabilidad en evaluación humana

- Modelos ML superan métodos tradicionales

Dataset

Desafíos:

• MAPE i 3% para datos industriales

Dataset compacto pero representativo

- Dataset pequeño (144 observaciones) • Necesidad de más datos temporales

Compliance

Análisis de Features y Variables

Wine Quality - Feature Importance

Top 5 Variables (Random Forest):

alcohol: 18.3 %

2 volatile acidity: 14.7 %

3 sulphates: 12.1 %

4 total sulfur dioxide: 10.8 %

o density: 9.4 %

Insight: El alcohol es el predictor más fuerte de calidad, seguido de propiedades relacionadas con acidez y conservantes.

Gas Sensor Drift - Análisis Temporal

Características sensor_drift:

- **Dataset**: 144 observaciones semanales (2008-2010)
- Rango valores: 1.0 6.0 (degradación sensores)
- Media: 3.40, Std: 1.23
- **Compliance**: Variable no estacional confirmada

Insight: Random Forest captura patrones no lineales mejor que ARIMA tradicional (2.58 % vs 10.12 % MAPE).

Trabajo Futuro y Mejoras

Mejoras Inmediatas

TEST 1:

- Ensemble methods (RF + XGBoost)
- SMOTE para balancear clases extremas
- Feature engineering: ratios químicos

TEST 2:

- Ensemble methods (RF + XGBoost)
- Análisis con más datos temporales
- LSTM para patrones complejos

Extensiones Avanzadas

- MLOps: CI/CD con GitHub Actions
- API REST: FastAPI para serving
- Dashboard: Streamlit interactivo
- AutoML: Hyperparameter optimization
- **Monitoring**: Model drift detection

Gracias