In [1]:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

In [2]:

df = sns.load_dataset('titanic')

In [3]:

df.head()

Out[3]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_ma
0	0	3	male	22.0	1	0	7.2500	S	Third	man	Tr
1	1	1	female	38.0	1	0	71.2833	С	First	woman	Fal
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	Fal
3	1	1	female	35.0	1	0	53.1000	S	First	woman	Fal
4	0	3	male	35.0	0	0	8.0500	S	Third	man	Tr
4											•

In [4]: ▶

df.tail()

Out[4]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_ı
886	0	2	male	27.0	0	0	13.00	S	Second	man	
887	1	1	female	19.0	0	0	30.00	S	First	woman	F
888	0	3	female	NaN	1	2	23.45	S	Third	woman	F
889	1	1	male	26.0	0	0	30.00	С	First	man	
890	0	3	male	32.0	0	0	7.75	Q	Third	man	
4											•

In [5]: ▶

df.describe()

Out[5]:

	survived	pclass	age	sibsp	parch	fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [6]:

df.dtypes

Out[6]:

int64 survived pclass int64 object sex float64 age int64 sibsp parch int64 float64 fare embarked object class category object who ${\tt adult_male}$ bool category deck embark_town object object alive bool alone dtype: object

```
H
In [7]:
df.isna().sum()
Out[7]:
survived
                  0
pclass
                  0
                  0
sex
                177
age
sibsp
                  0
parch
                  0
fare
                  0
embarked
                  2
class
                  0
                  0
who
adult_male
                  0
deck
                688
embark_town
                  2
alive
                  0
alone
                  0
dtype: int64
In [8]:
                                                                                           M
df.shape
Out[8]:
(891, 15)
                                                                                           M
In [9]:
df = df.dropna(subset = 'age')
                                                                                           M
In [10]:
df.shape
Out[10]:
(714, 15)
In [ ]:
                                                                                           M
sns.histplot(data = df,y ='age', x = 'survived')
```

In [58]: ▶

sns.catplot(x='sex',data=df,kind='count')

Out[58]:

<seaborn.axisgrid.FacetGrid at 0x207d7e2eeb0>

In [47]: ▶

sns.factorplot('class',data=df,hue='sex',kind='count')

Out[47]:

<seaborn.axisgrid.FacetGrid at 0x207d5d3e340>

In [51]: ▶

sns.catplot(x='survived',data=df,hue='sex',kind='count')

Out[51]:

<seaborn.axisgrid.FacetGrid at 0x207d688b280>

In [49]: ▶

```
sns.histplot(data = df,x='sex',y='age',hue = 'survived')
```

Out[49]:

<Axes: xlabel='sex', ylabel='age'>


```
In [52]: ▶
```

```
df1 = df.copy()
df1['sex'] = df['sex'].map({'female': 0, 'male': 1})
```

In [53]: ▶

```
sns.boxplot(data = df,x='sex',y='age',hue = 'survived')
```

Out[53]:

<Axes: xlabel='sex', ylabel='age'>

In [56]: ▶

sns.catplot(x='alone',kind='count',data=df)

Out[56]:

<seaborn.axisgrid.FacetGrid at 0x207d6915c70>

In [59]:
sns.countplot(x='survived',hue ='sex',data = df)

Out[59]:

<Axes: xlabel='survived', ylabel='count'>

