Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2019 EN3BS04 Engineering Chemistry

Programme: B.Tech. Branch/Specialisation: All

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

O 1	:	EDTA mad	:1		of bondages in a	1
Q.1	1.		-	•	of hardness is a	1
			igand. Choose	the correct ansv		
		(a) Bidentate		(b) Tridentate		
		(c) Hexadenta	ite	(d) Tetradenta	nte	
	ii.	Sodium Hexa	Meta Phospha	te is known as:		1
		(a) Calgon	(b) Gypsum	(c) Zeolite	(d) Lime	
	iii.	Choose the co	rrect match:			1
		(a) $1 \text{ BTU} = 2$	200 Cal	(b) $1 \text{kcal} = 3.9$	97 BTU	
		(c) $1 \text{ BTU} =$	1 ft ³	(d) 1 kcal/kg =	= 2 BTU / 1b	
	iv.	Iso-octane has	s an octane ratio	ng of:		1
		(a) 0	(b) 100	(c) 200	(d) Above 1000	
	v.	A lubricant sh	ould possess h	igh:		1
		(a) Volatility	(b) Acidity	(c) Oilness	(d) None of these	
	vi.	Which one of	the following i	s not a condens	sation polymer?	1
		(a) Dacron	(b) Neoprene	(c) Melamine	(d) Glyptal	
	vii.	Gypsum is:	_			1
		(a) CaSO ₄ .2H	₂ O	(b) CaSO ₄ .1/2	$2 H_2O$	
		(c) CaSO ₄ .3H ₂ O		(d) CaSO ₄ .3/2H ₂ O		
	viii.	Fullerene or b	oucky ball is ma	ade up of		1
		(a) 100	(b) 60	(c) 20		
	ix.	` '	` '	s-chromatograp	` '	1
		(a) He	(b) H		(d) All of these	

P.T.O.

(a) The minimum amount of oxygen and air necessary for

A lubricating oil has Saybolt universal viscosity of 58 seconds at 210°F and 564 seconds at 100°F. The low viscosity index standard Gulf oil has Saybolt universal viscosity of 58 seconds 210°F and 758 seconds at 100°F. The high viscosity index standard Pennsylvanian oil gave the Saybolt universal viscosity value of 58 seconds at 210°F and 420 seconds at 100°F. Calculate viscosity

complete combustion of 1 kg of coal sample. (b) Volume of air required; if 30% excess air is supplied

(c) Also calculate the dry product Composition

index of the lubricating oil.

Q.4 i.

6

6

Marking Scheme EN3BS04 Engineering Chemistry

Q.1	i.	EDTA used in complexometry titration of hamultidentate ligand. Choose the correct answer; (c) Hexadentate	ardness is a	1
	ii.	Sodium Hexa Meta Phosphate is known as:		1
		(a) Calgon		
	iii.	Choose the correct match:		1
		(b) $1kcal = 3.97 BTU$		
	iv.	Iso-octane has an octane rating of:		1
		(b) 100		
	v.	A lubricant should possess high:		1
		(c) Oilness		
	vi.	Which one of the following is not a condensation po	olymer?	1
		(b) Neoprene		
	vii.	Gypsum is:		1
		(a) CaSO ₄ .2H ₂ O		
	viii.	Fullerene or bucky ball is made up of carbon a	atoms:	1
		(b) 60		
	ix.	Which element is used in gas-chromatography:		1
		(a) He / (b) H		
	х.	The colour of electrolytes in solution is due to it:		1
		(a) Ions		
Q.2	i.	Calculate the BOD of sample.		4
		$BOD = [DO_b - DO_1] \times Dilution factor$	1 mark	
		$= (DO_b-DO_1) \times \frac{\text{ml of sample after dilution}}{\text{ml of sample before dilution}}$	1 mark	
		ini oi sampie before unution		
		$=(840-230)\times\frac{80}{50}$		
		= 976 ppm	2 marks	
	ii.	Calculate the quantities of lime and soda required		6
	11.	50,000 litres of hard water sample.	i for softening	U
		Lime requirement Ans = 49.95 kg	3 marks	
		Soda requirement Ans = 49.93 kg Soda requirement Ans = 39.75 kg	3 marks	
OR	iii.	Disadvantages of hard water	2 marks	6
		Ion exchange process of softening of hard water		

		Process + diagram	2 marks	
		Reaction + advantages / disadvantages	2 marks	
Q.3	i.	Power Alcohol.		3
		Definition	1 mark	
		Advantage	1 mark	
		Disadvantages	1 mark	
	ii.	Definition calorific value and its type	2 marks	7
		Principle of Bomb calorimeter	2 marks	
		Diagram for the determination of calorific value of	of solid fuel	
			2 marks	
		Formula	1 mark	
OR	iii.	Calculate		7
		Given data	1 mark	
		Oxygen required	1 mark	
		Air required	1 mark	
		Volume of air	1 mark	
		Dry product composition	3 marks	
Q.4	i.	Calculate viscosity index of the lubricating oil.		4
	ii.	Hydrodynamic lubrication mechanism	3 marks	6
		Boundary lubrication mechanism.	3 marks	
OR	iii.	Write short note on:		6
		(a) Vulcanization of rubber	3 marks	
		(b) Polythene	3 marks	
Q.5	i.	Setting of Portland cement with chemical reaction	ns involved in it	4
V .0		Zeving of I orving contour with one and rough	2 marks	-
		Hardening of Portland cement with chemical reac		
		it.	2 marks	
	ii.	Write detail note on the following:	2 marks	6
	111	(a) Optical Fibres	3 marks	v
		(b) Superconductors	3 marks	
OR	iii.	Definition refractory	2 marks	6
	111.	Classification	3 marks	v
		One example of each refractory.	1 mark	
		one champie of each fellactory.	1 IIIMIN	

Q.6	i.	Definition EMF	2 marks	4
		Applications of EMF measurements.	2 marks	
	ii.	Principle IR spectroscopy	2 marks	6
		Instrumentation IR spectroscopy	2 marks	
		Four Applications of IR spectroscopy		
		0.5 mark for each (0.5 mark * 4)	2 marks	
OR	iii.	Principle of UV-VIS spectroscopy	2 marks	6
		Instrumentation of UV-VIS spectroscopy	2 marks	
		Applications of UV-VIS spectroscopy	2 marks	
