THERE IS NO FIBONACCI REPRESENTATION OF $\mathscr{H}_{k,q}(S_n)$

MILES JOHNSON & NATALIE STEWART

Let k be a field, and let $q \neq 0 \in k$ be the parameter of the Hecke algebra $\mathcal{H} := \mathcal{H}_{k,q}(S_n)$. We will show that there is no "Fibonacci" representation of \mathcal{H} .

First, let F be the vector space with basis given by the strings of length n+1 with alphabet $\{p,*\}$ such that no two * symbols appear in a row. This is given an action by the braid group that we will try to emulate. We want an action which is "local", i.e. the simple transposition T_i acts on the string from the ith to the (i+2)nd symbol, modifying only the middle character, defined by the following rule:

$$\widehat{(*pp)} := a(*pp)$$

$$\widehat{(*p*)} := b(*p*)$$

$$\widehat{(p*p)} := c(p*p) + d(ppp)$$

$$\widehat{(pp*)} := a(pp*)$$

$$\widehat{(ppp)} := d(p*p) + e(ppp).$$

For suitable constants $a, b, c, d, e \in k$.

Quadratic Relation. Note that the quadratic relation $T_i^2 = (q-1)T_i + q$ imposes the following restrictions on the constants:

(2)
$$a^{2} = (q-1)a + q$$
$$b^{2} = (q-1)b + q$$
$$c^{2} + d^{2} = (q-1)c + q$$
$$de = (q-1)d$$
$$e^{2} + d^{2} = (q-1)e + q$$
$$dc = (q-1)d$$

Note that we immediately have

(3)
$$a, b \in \left\{ \frac{q - 1 \pm \sqrt{(q - 1)^2 + 4q}}{2} \right\}$$
$$= \left\{ \frac{q - 1 \pm (q + 1)}{2} \right\}$$
$$= \left\{ -1, q \right\}.$$

Further, if d=0 then we have $c,e\in\{-1,q\}$; if $d\neq 0$ then we have that c=e=(q-1), and $d\in\{\pm\sqrt{q}\}$.

Braid Relations. Here's where we'll run into some issues.

We must verify the relation $T_iT_{i+1}T_i = T_{i+1}T_iT_{i+1}$. Let's begin with the case $d \neq 0$, which we can verify on the following strings:

• (*ppp) requires that abd = bcd + ade and $a^2e = ae^2 + bd^2$. The first of the above equivalently requires

(4)
$$ab = b(q-1) + a(q-1)$$

• (pppp) requires that $acd + de^2 = ade$. Equivalently, we require that $e^2 = 0$, i.e. d = q = 1. Then, by (4), we require that ab = 0, but $a, b \neq 0$; this is a contradiction, so there are no constants a, b, c, d, e which make this a representation of \mathscr{H} .

Now suppose that d=0. One thing which is immediately clear is the decomposition into onedimensional subrepresentations (the spans of each basis vector) if this is a representation. Note that (*ppp)requires that $a^2e=ae^2$, i.e. a=e. Similarly, (*p*p) requires that b=c. Further, we still satisfy the relations for (pppp), we always satisfy the relations for (*pp*), and the rest of the strings are compatible by symmetry. All that is left are the relations $T_iT_j=T_jT_i$ for |i-j|>1, which are easy to see. Hence, for each q, there are 4 "good" actions on F, each of which decomposes into a direct sum of one-dimensional subrepresentations.

A More General Case. Now, consider a modification of (1):

(5)
$$\widehat{(*pp)} := a(*pp)$$

$$\widehat{(*p*)} := b(*p*)$$

$$\widehat{(p*p)} := c(p*p) + d(ppp)$$

$$\widehat{(pp*)} := g(pp*)$$

$$\widehat{(ppp)} := f(p*p) + e(ppp).$$

This time, the quadratic relation reads

$$a^{2} = (q-1)a + q$$

$$b^{2} = (q-1)b + q$$

$$g^{2} = (q-1)g + q$$

$$(6)$$

$$c^{2} + df = (q-1)c + q$$

$$de = (q-1)d$$

$$e^{2} + df = (q-1)e + q$$

$$fc = (q-1)f$$

Notably, we have $a, b, g \in \{-1.q\}$ still. If d = 0 or f = 0, then $c, e \in \{-1, q\}$ still, and if d = 0 and $f \neq 0$, then c = (q - 1), and hence c = 1 and q = 2. If $d \neq 0$, we still have that c = e = (q - 1), and we have that df = q.

Now, suppose that $d, f \neq 0$. Now, (*ppp) requires that abf = bcf + aef and $a^2e = ae^2 + bf^2$, so as before we have that ab = (a+b)(q-1).

(pppp) now requires that $aef = acf + e^2f$. This requires that $e^2 = 0$, so that q = 1 and ab = 0, a contradiction again.

Now, suppose that $f \neq 0$ and d = 0, so that q = 2 and c = 1. Then, we have that $a(e - 1) = e^2$. Then, knowing that $e^2 \neq 0$, we have e = -1 so -2a = 1, a contradiction. By symmetry, we also arrive at a contradiction if $d \neq 0$ and f = 0.

Finally, suppose that d=f=0, and note that we now have a=e=g and b=c; hence our case is precisely the case with d=f and a=g, and there are exactly four actions of \mathscr{H} on F on which each T_i acts analogously on positions i, i+1, i+2 as each other, only modifying position i+1. Each of these actions decomposes into a direct sum of 1-dimensional subrepresentations.