# Week 10: Forecasting and Time Series Regression MATH-516 Applied Statistics

Tomas Masak

May 1st 2023

#### Section 1

# Forecasting with SARIMA

# Truth about Forecasting



#### Forecasting time series is like driving a car using the rear mirror only.

though arguably more useful as a skill (the field is huge!)

Depending on who you ask SARIMA models are either:

- fairly old and simple, but surprisingly powerful
- overcomplicated and easily outperformed by vanilla methods
  - e.g. fitting a regression model and extrapolating

```
library(forecast) # needed on every line below # fit \leftarrow auto.arima(AirPassengers) fit \leftarrow Arima(AirPassengers, order=c(2,1,1), seasonal=c(0,1,0)) # capital A preds \leftarrow forecast(fit, 12*10, c(0.5,0.95)) # 2-year ahead forecast autoplot(AirPassengers) + autolayer(preds)
```



#### Explanation

$$\Phi_{[P]}(B^s)\phi_{[p]}(B)(1-B^s)^D(1-B)^dX_t=\Theta_{[Q]}(B^s)\theta_{[q]}(B)Z_t$$

How are the point forecasts above calculated? In a recursive way:

- **1** Express  $X_t$  from the SARIMA equation above.
- 2 Replace t by N + h in the equation.
- 3 Replace future observations (up to N+h-1) by their forecasts, future errors by zeros, and past errors by the respective residuals. (these are BLUPs given the past)

Under certain assumptions:

- $Y_t = (1 B^s)^D (1 B)^d X_t$  must be
  - stationary
  - invertible, i.e. polynomial  $\Theta_{[Q]}(x^s)\theta_{[q]}(x)$  has no roots inside the unit circle, i.e.  $Z_t$  can be expressed as a linear combination of past X's
    - typically we also require *causality*, i.e. polynomial  $\Phi_{[P]}(x^s)\phi_{[p]}(x)$  has no roots inside the unit circle, i.e.  $X_t$  can be expressed as a linear combination of past Z's

the procedure above results in the best linear unbiased prediction. (under Gaussianity, it is the best prediction in the mean square sense)

# ARIMA(1,1,1) Example

Say that we fitted an ARIMA(1,1,1) model

$$(1-\widehat{\phi}B)(1-B)X_t=(1+\widehat{\theta}B)Z_t$$

The forecasting procedure above consists of the following steps:

$$\widehat{X}_{N+1} = X_N + \widehat{\phi}X_N - \widehat{\phi}X_{N-1} + 0 + \widehat{\theta}\widehat{Z}_N$$

This was a one-step ahead forecast. To do two steps ahead, replace N by N+1 in step 2 and repeat (replacing  $X_{N+1}$  by  $\widehat{X}_{N+1}$  that is now available).

#### Prediction Intervals

- constructed under Gaussian assumptions
  - i.e. as  $\widehat{X}_{N+h} \pm q_{1-\alpha/2}\widehat{\sigma}_h$ , where  $q_{1-\alpha/2}$  is a Gaussian quantile and  $\widehat{\sigma}_h$  is the standard error of the prediction, calculated with estimators plugged in (details omitted), hence
- only reflects uncertainty about future realizations of Z's!
- including uncertainty about parameter estimation possible via Monte Carlo simulation
  - i.e. parametric bootstrap, drawing parameter values for every simulation from their respective asymptotic distribution (was not discussed, but exists)
  - also possible to do non-parametric bootstrap instead to protect ourselves against non-Gaussian Z's (set bootstrap=T in forecast())
- including uncertainty about model selection requires a more careful simulation study
  - a relatively easy but somewhat arbitrary option is to simulate from an unnecessarily large model and perform automatic model selection for every simulation run

#### Section 2

# Time Series Regression

 say the trendin Air Passangers data set is linear (after log) and we want a confidence interval on the slope.



summary(lmfit)\$coefficients

```
Estimate
                              Std. Error
                                             t value
                                                          Pr(>|t|)
## (Intercept)
               4.726780368 0.0188935382 250 1797341 1.966475e-177
## month2
               -0.022054823 0.0242108707
                                          -0.9109471
                                                      3 639964e-01
               0.108172299 0.0242117524
                                           4.4677600 1.691103e-05
## month3
## month4
               0.076903445 0.0242132220
                                           3.1760930 1.861594e-03
## month5
               0.074530803 0.0242152792
                                           3.0778420
                                                      2 539909e-03
               0.196677004 0.0242179239
                                           8.1211339 2.980730e-13
## month6
                                          12.4114362 7.210080e-24
## month7
               0.300619331 0.0242211560
                                          12 0257912
                                                      6.615459e-23
## month8
               0.291324492 0.0242249751
## month9
                                           6.0542153 1.392768e-08
               0.146689890 0.0242293811
                                          0.3520474 7.253684e-01
## month10
               0.008531649 0.0242343735
## month11
               -0.135186061 0.0242399521
                                          -5.5769937 1.343178e-07
## month12
               -0.021321065 0.0242461164
                                          -0.8793600
                                                      3.808163e-01
## t.
               0.010068805 0.0001193001
                                          84.3989506 4.561377e-116
confint(lmfit)["t".]
```

```
## 2.5 % 97.5 %
## 0.009832801 0.010304809
```

- Problem: data are not i.i.d.
- going back to the proof of the Gauss-Markov theorem, we would realize
  - the estimates are still unbiased (does not mean much)
  - they are no longer "best" (among linear unbiased estimators)
  - the standard errors, and hence also Cls, are wrong (thinking there is more df)

## Generalized Least Squares

- standard least squares (regression) model:
  - $Y = \mathbf{X}\beta + \epsilon$  with  $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$
- generalized least squares model:
  - $Y = \mathbf{X}\beta + \epsilon$  with  $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \Sigma)$
- ullet if we knew the dependency structure  $\Sigma$ , we could change the variables:
  - $\bullet \ \Sigma^{-1/2}Y = \Sigma^{-1/2}\mathbf{X}\beta + \Sigma^{-1/2}\epsilon$
  - $\widetilde{Y} = \widetilde{X}\beta + \widetilde{\epsilon}$  ... standard least squares work here (and they correspond to Gaussian MLE)
- if we knew the dependency structure up to a fixed no. of parameters  $\alpha \in \mathbb{R}^q$ , we could do the Gaussian MLE jointly for  $\beta, \sigma^2, \alpha$ 
  - this is exactly the case when the residuals follow an ARMA model
  - one could also iterate between the change of variables and fitting ARMA to the residuals
    - this is called Cochrane-Orcutt method, and it provably converges to the MLE, which is usually obtained numerically (gls() from the nlme package in R)

- ullet lets say that AR(1) is a good model for the residuals above
  - this is what we can decide doing time series analysis like last week

```
library(nlme)
R_struct <- corARMA(form=~t, p=1) # AR(1) correlation structure
glsfit <- gls(y~t+month, data=lmData, corr=R_struct, method="ML")
confint(lmfit)["t",]

## 2.5 % 97.5 %
## 0.009832801 0.010304809
confint(glsfit)["t",] # wider than above</pre>
```

```
## 2.5 % 97.5 %
## 0.009364262 0.010624771
```

- fitted values are typically very similar, and so are the residuals
  - if they are not, we should re-think our dependency structure

```
plot(as.numeric(lmData$y),type="l")
points(fitted(lmfit),type="l", col="red")
points(fitted(glsfit),type="l", col="blue", lty=2)

plot(resid(lmfit),type="l", col="red")
points(as.numeric(resid(glsfit)),type="l", col="blue", lty=2)
```





# Hypothesis Testing

Maximum likelihood theory (potentially with nuissance parameters) works here:

- let  $Y \sim \mathcal{N}_N(\mathbf{X}\beta, \sigma^2 \Sigma)$ , where  $\Sigma \in \mathbb{R}^{N \times N}$  depends on a parameter vector  $\alpha \in \mathbb{R}^r$  (of a fixed sized as  $N \to \infty$ )
- let  $\theta \in \mathbb{R}^p$  is a vector containing all the parameters, i.e.  $\beta, \sigma^2, \alpha$ , such that the hypothesis concerns the first q entries of  $\theta$ , namely:
- let  $\Theta_1 \times \Theta_c$ , where  $\Theta_1 \subset \mathbb{R}^q$  and  $\Theta_c \in \mathbb{R}^{p-q}$  is the parameter space, and  $\Theta_0 \subset \Theta_1$ 
  - $H_0: \theta \in \Theta_0 \times \Theta_c$
  - $H_1: \theta \in \Theta_1 \times \Theta_c$
- then under  $H_0$  and regularity assumptions the likelihood ratio statistics approaches the  $\chi^2$ -distribution:

$$LR_N = 2[\ell_N(\widehat{\theta}_1) - \ell_N(\widehat{\theta}_0)] \stackrel{\cdot}{\sim} \chi_q^2$$

- $\widehat{\theta}_0 = \arg\max_{\theta \in \Theta_0 \times \Theta_c} \ell_N(\theta)$
- $\widehat{\theta}_1 = \arg\max_{\theta \in \Theta_1 \times \Theta_2} \ell_N(\theta)$

- anova() in R works
  - use method="ML" is used instead of "REML" when changing the mean structure

```
library(car)
\# qlsfit \leftarrow qls(y\sim t+month, data=lmData, corr=R_struct, method="ML")
Anova(glsfit, type=2)
## Analysis of Deviance Table (Type II tests)
##
## Response: v
##
        Df Chisq Pr(>Chisq)
## t. 1 966.02 < 2.2e-16 ***
## month 11 911.92 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# or half-manually:
subfit_1 <- gls(y~month, data=lmData, corr=R_struct, method="ML")</pre>
subfit_2 <- gls(y~t, data=lmData, corr=R_struct, method="ML")</pre>
```

```
anova(subfit_1, glsfit)
## Model df AIC BIC
                                      logLik Test L.Ratio p-value
## subfit 1 1 14 -498.1899 -456.6125 263.0950
## glsfit 2 15 -526.1789 -481.6317 278.0895 1 vs 2 29.989 <.0001
anova(subfit_2, glsfit)
          Model df AIC BIC logLik Test L.Ratio p-value
##
## subfit_2 1 4 -251.3892 -239.5100 129.6946
## glsfit 2 15 -526.1789 -481.6317 278.0895 1 vs 2 296.7897 <.0001
# or entirely manually:
1-pchisq(2*(glsfit$logLik - subfit_1$logLik),
        length(coef(glsfit)) - length(coef(subfit 1)))
## [1] 4.345036e-08
1-pchisq(2*(glsfit$logLik - subfit_2$logLik),
        length(coef(glsfit)) - length(coef(subfit_2)))
```

# Beaver Body Temperature

```
data(beavers)
beaver2 <- beaver2[,c(3,4)] # drop time
x <- ts(beaver2, start=0,frequency=6)
plot(x, main="", xlab="time [h]")</pre>
```



Question: What is the effect of activity on the body temperature?

#### Beaver Body Temperature

```
x1 <- window(x, start=0, end=max(which(x[,2]==0))/6-1)[,1]
x2 <- window(x, start=min(which(x[,2]==1))/6)[,1]
plot(x1,main="Inactive"); acf(x1, main="Inactive"); pacf(x1, main="Inactive")
plot(x2, main="Active"); acf(x2, main="Active"); pacf(x2, main="Active")</pre>
```



Lags have no meaning here, let's take AR(1) as the model

#### Beaver Body Temperature

```
beaver2$time <- seq_along(beaver2$temp)</pre>
R struct <- corARMA(form=~time, p=1) # AR(1) correlation structure
( glsfit <- gls(temp~activ, data=beaver2, corr=R_struct, method="ML") )
## Generalized least squares fit by maximum likelihood
##
    Model: temp ~ activ
## Data: beaver2
    Log-likelihood: 66.77523
##
##
## Coefficients:
   (Intercept) activ
##
   37.1919453 0.6141776
##
##
## Correlation Structure: AR(1)
## Formula: ~time
## Parameter estimate(s):
##
        Phi
## 0.8731771
## Degrees of freedom: 100 total; 98 residual
## Residual standard error: 0.2527856
```

# Beaver Body Temperature (Alternatively)

```
arima(x[,1], c(1,0,0), xreg=x[,2])

##
## Call:
## arima(x = x[, 1], order = c(1, 0, 0), xreg = x[, 2])
##
## Coefficients:
## ar1 intercept x[, 2]
## 0.8733 37.1920 0.6139
## s.e. 0.0684 0.1187 0.1381
##
## sigma^2 estimated as 0.01518: log likelihood = 66.78, aic = -125.55
```

- standard errors are slightly different with arima(), since calculated empirically, while gls() uses asymptotic formula
- in both cases, activity increases body temperature of the beaver by about 0.6 degrees
- we could test significance of this value as above (but we see from s.e. that clearly significant)