Example 1

Three balls are drawn at random without replacement from a box containing 2 white, 3 red and 4 black balls. If X denotes the number of white balls drawn and Y denotes the number of red balls drawn, find the joint probability distribution of (X, Y).

As there are only 2 white balls in the box, X can take the values 0, 1 and 2 and Y can take the values 0, 1, 2 and 3.

$$P(X=0, Y=0)$$
 = $P(\text{drawing 3 balls none of which is white or red})$
= $P(\text{all the 3 balls drawn are black})$

$$= 4C_3/9C_3 = \frac{1}{21}$$

$$P(X = 0, Y = 1) = P(\text{drawing 1 red and 2 black balls})$$

$$= \frac{3C_1 \times 4C_2}{9C_3} = \frac{3}{14}$$

Similarly,
$$P(X = 0, Y = 2) = \frac{3C_2 \times 4C_1}{9C_3} = \frac{1}{7}$$
; $P(X = 0, Y = 3) = \frac{1}{84}$

$$P(X = 1, Y = 0) = \frac{1}{7}$$
; $P(X = 1, Y = 1) = \frac{2}{7}$; $P(X = 1, Y = 2) = \frac{1}{14}$;

$$P(X = 1, Y = 3) = 0$$
 (since only 3 balls are drawn)

$$P(X = 2, Y = 0) = \frac{1}{21}$$
; $P(X = 2, Y = 1) = \frac{1}{28}$; $P(X = 2, Y = 2) = 0$;

$$P(X = 2, Y = 3) = 0$$

The joint probability distribution of (X, Y) may be represented in the form of a table as given below:

				la di di
X	$\mathbf{Y} = \mathbf{Y} = $			
	0	17	2	3
0	$\frac{1}{21}$	$\frac{3}{14}$	$\frac{1}{7}$	1 84
1	$\frac{1}{7}$	$\frac{2}{7}$	$\frac{1}{14}$	0
2	$\frac{1}{21}$	$\frac{1}{28}$	0	0

For the bivariate probability distribution of (X, Y) given below, find $P(X \le 1)$, $P(Y \le 3)$, $P(X \le 1, Y \le 3)$, $P(X \le 1/Y \le 3)$, $P(Y \le 3/X \le 1)$ and $P(X + Y \le 4)$.

X	1	2	3	4	5	6
0	0	0	1/32	2/32	2/32	3/32
1	1/16	1/16	1/8	1/8	1/8	1/8
2	1/32	1/32	1/64	1/64	0	2/64

$$= \sum_{j=1}^{6} P(X=0, Y=j) + \sum_{j=1}^{6} P(X=1, Y=j)$$

$$= \left(0 + 0 + \frac{1}{32} + \frac{2}{32} + \frac{2}{32} + \frac{3}{32}\right) + \left(\frac{1}{16} + \frac{1}{16} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right)$$

$$=\frac{1}{4}+\frac{5}{8}=\frac{7}{8}$$

 $P(X \le 1) = P(X = 0) + P(X = 1)$

$$P(Y \le 3) = P(Y = 1) + P(Y = 2) + P(Y = 3)$$

$$= \sum_{i=0}^{2} P(X=i, Y=1) + \sum_{i=0}^{2} P(X=i, Y=2)$$

$$+\sum_{i=0}^{2} P(X=i, Y=3)$$

$$= \left(0 + \frac{1}{16} + \frac{1}{32}\right) + \left(0 + \frac{1}{16} + \frac{1}{32}\right) + \left(\frac{1}{32} + \frac{1}{8} + \frac{1}{64}\right)$$

$$=\frac{3}{32}+\frac{3}{32}+\frac{11}{64}=\frac{23}{64}$$

$$P(X \le 1, Y \le 3) = \sum_{j=1}^{3} P(X = 0, Y = j) + \sum_{j=1}^{3} P(X = 1, Y = j)$$

$$= \left(0 + 0 + \frac{1}{32}\right) + \left(\frac{1}{16} + \frac{1}{16} + \frac{1}{8}\right) = \frac{9}{32}$$

$$P(X \le 1/Y \le 3) = \frac{P(X \le 1, Y \le 3)}{P(Y \le 3)} = \frac{9/32}{23/64} = \frac{18}{23}$$

$$P(Y \le 3/X \le 1) = \frac{P(X \le 1, Y \le 3)}{P(X \le 1)} = \frac{9/32}{7/8} = \frac{9}{28}$$

$$P(X + Y \le 4) = \sum_{j=1}^{4} P(X = 0, Y = j) + \sum_{j=1}^{3} P(X = 1, Y = j) + \sum_{j=1}^{2} P(X = 2, Y = j)$$

$$= \frac{3}{32} + \frac{1}{4} + \frac{1}{16} = \frac{13}{32}$$

Example 3

The joint probability mass function of (X, Y) is given by p(x, y) = k(2x + 3y), x = 0, 1, 2; y = 1, 2, 3. Find all the marginal and conditional probability distributions. Also find the probability distribution of (X + Y).

The joint probability distribution of (X, Y) is given below. The relevant probabilities have been computed by using the given law.

		Y	
X	1	2	3
0	3 <i>k</i>	6k	9 <i>k</i>
1	5 <i>k</i>	8 <i>k</i>	11 <i>k</i>
2	7 <i>k</i>	10k	13 <i>k</i>

$$\sum_{j=1}^{3} \sum_{i=0}^{2} p(x_i, y_j) = 1$$

i.e., the sum of all the probabilities in the table is equal to 1.

i.e.,
$$72k = 1$$
.

$$k = \frac{1}{72}$$

Marginal Probability Distribution of $X: \{i, p_{i*}\}$

X = i	$p_{i*} = \sum_{j=1}^{3} p_{ij}$
0	$p_{01} + p_{02} + p_{03} = \frac{18}{72}$
1	$p_{11} + p_{12} + p_{13} = \frac{24}{72}$
2	$p_{21} + p_{22} + p_{23} = \frac{30}{72}$
E. 88 1	Total $= 1$

Marginal Probability Distribution of $Y: \{j, p_{*j}\}$

Y = j	$p_{*j} = \sum_{i=0}^{2} p_{ij}$
1	15/27
2	24/72
3	33/72
	Total = 1

Conditional distribution of X, given Y = 1, is given by $\{i, P(X = i/Y = 1)\} = \{i, P(X = i, Y = 1)/P(Y = 1)\} = \{i, p_{i1}/p_{*1}\}, i = 0, 1, 2.$

The tabular representation is given below:

X = i	p_{i1}/p_{*1}
0	$3k/15k = \frac{1}{5}$
1	$5k/15k = \frac{1}{3}$
2	$7k/15k = \frac{7}{15}$
. DÉ	Total = 1

The other conditional distributions are given below:

C.P.D. of	C.P.D. of X , given $Y = 2$	
X = i	<i>p</i> _{i2} / <i>p</i> *2	
0	$\frac{6k}{24k} = \frac{1}{4}$	
1	$\frac{8k}{24k} = \frac{1}{3}$	
2	$\frac{10k}{24k} = \frac{5}{12}$	
de-	Total = 1	

C.P.D. of X, given $Y = 3$		
X = i	p_{i3}/p_{*3}	
0	$\frac{9k}{33k} = \frac{3}{11}$	
1	$\frac{11k}{33k} = \frac{1}{3}$	
2	$\frac{13k}{33k} = \frac{13}{33}$	
	Total = 1	

C.P.D. of Y , given $X = 0$	
Y = j	p_{oj}/p_{o*}
1	$\frac{3k}{18k} = \frac{1}{6}$
2	$\frac{6k}{18k} = \frac{1}{3}$
3	$\frac{9k}{18k} = \frac{1}{2}$
	Total = 1

C.P.D. of Y, given $X = 1$		
Y = j	p_{Ij}/p_{I*}	
1	$\frac{5k}{24k} = \frac{5}{24}$	
2	$\frac{8k}{24k} = \frac{1}{3}$	
3	$\frac{11k}{24k} = \frac{11}{24}$	
P Ly	Total = 1	

C.P.D. of Y , given $X = 2$	
Y = j	p_{2j}/p_{2*}
1	$\frac{7k}{30k} = \frac{7}{30}$
-2	$\frac{10k}{30k} = \frac{1}{3}$
3	$\frac{13k}{30k} = \frac{13}{30}$
	Total = 1

Probabilit	Probability distribution of $(X + Y)$	
(X+Y)	P	
1	$p_{01} = \frac{3}{72}$	
2	$p_{02} + p_{11} = \frac{11}{72}$	
3	$p_{03} + p_{12} + p_{21} = \frac{24}{72}$	
4	$p_{13} + p_{22} = \frac{21}{72}$	
5	$p_{23} = \frac{13}{72}$	
	Total = 1	

Example 4

A machine is used for a particular job in the forenoon and for a different job in the afternoon. The joint probability distribution of (X, Y), where X and Y represent the number of times the machine breaks down in the forenoon and in the afternoon respectively, is given in the following table. Examine if X and Y are independent RVs.

X	Y		
	0	1	2
0	0.1	0.04	0.06
1	0.2	0.08	0.12
2	0.2	0.08	0.12

X and Y are independent, if $P_{i*} \times P_{*j} = P_{ij}$ for all i and j. So, let us find $P_{i*} P_{*j}$ for all i and j.

$$P_{0*} = 0.1 + 0.04 + 0.06 = 0.2; P_{1*} = 0.4; P_{2*} = 0.4$$

$$P_{*0} = 0.5$$
; $P_{*1} = 0.2$; $P_{*2} = 0.3$

Now
$$P_{0*} \times P_{*0} = 0.2 \times 0.5 = 0.1 = P_{00}$$

$$P_{0*} \times P_{*1} = 0.2 \times 0.2 = 0.04 = P_{01}$$

$$P_{0*} \times P_{*2} = 0.2 \times 0.3 = 0.06 = P_{02}$$

Similarly we can verify that

$$P_{1*} \times P_{*0} = P_{10}$$
; $P_{1*} \times P_{*1} = P_{11}$; $P_{1*} \times P_{*2} = P_{12}$;

$$P_{2*} \times P_{*0} = P_{20}; P_{2*} \times P_{*1} = P_{21}; P_{2*} \times P_{*2} = P_{22}$$

Hence the RVs X and Y are independent.