## 近世代数 (H) 第十三周作业

涂嘉乐 PB23151786

2025年5月27日

Exercise 1 证明  $\mathbb{Z}^n \simeq \langle x_1, \cdots, x_n \mid x_i x_j = x_j x_i, \forall i \neq j \rangle$ 

**Proof** 记  $G = \langle x_1, \dots, x_n \mid x_i x_j = x_j x_i, \forall i \neq j \rangle$  考虑映射

$$f: \{x_1, \cdots, x_n\} \longrightarrow \mathbb{Z}^n$$
  
 $x_i \longmapsto \mathbf{e}_i$ 

则  $f(x_i) + f(x_j) = f(x_j) + f(x_i)$ , 则 f 可延拓至群同态  $\tilde{f}: G \to \mathbb{Z}^n$ , 下面证明  $\tilde{f}$  是双射单射: 若  $\tilde{f}(x_1^{a_1} \cdots x_n^{a_n}) = 0$ , 则  $a_1e_1 + \cdots + a_ne_n = 0$ , 由  $\{e_i\}_{i=1}^n$  是一组基知  $a_1 = \cdots = a_n = 0$ , 即  $\mathrm{Ker}(\tilde{f}) = 1_G$ ,故  $\tilde{f}$  是单射

满射: 对  $\forall a_1e_1+\cdots+a_ne_n$ ,它的原像为  $x_1^{a_1}\cdots x_n^{a_n}$  所以  $\tilde{f}$  是群同构,即  $\mathbb{Z}^n \sim < x_1,\cdots,x_n \mid x_ix_j=x_jx_i, \forall i\neq j>$ 

Exercise 2 假设  $N \leq G, N$  是有限生成的, G/N 也是有限生成的, 证明: G 是有限生成的

**Proof** 由 G/N 是有限生成的知,  $\exists g_1, \dots, g_s \in G$ , s.t.  $S = \{g_1N, \dots, g_sN\}$  是 G/N 的生成元集; 由 N 是有限生成的知,  $\exists n_1, \dots, n_t \in N$ , s.t.  $\{n_1, \dots, n_t\}$  是 N 的生成元集

Claim: G 有生成元集  $\{g_i n_j : 1 \leq i \leq s, 1 \leq j \leq t\}$ ,故 G 是有限生成的 对  $\forall g \in G$ ,因为  $G = \bigsqcup_{i=1}^s g_i N$ ,所以  $\exists ! 1 \leq i \leq s, \text{s.t. } g \in g_i N$ ,故

$$g = g_i(a_1n_1 + \dots + a_tn_t) = a_1g_ih_1 + \dots + a_tg_ih_t$$

**Exercise 3**  $A \in M_n(\mathbb{Z})$ ,  $M \in GL_n(\mathbb{Z}) \iff \phi_A : \mathbb{Z}^n \to \mathbb{Z}^n$  是群同构

**Proof** 首先  $\phi_A$  是群同态,所以  $\phi_A$  是群同构  $\iff \phi_A$  是双射,即  $\phi_A^{-1}$  存在

$$A \in GL_n(\mathbb{Z}) \iff \exists B \in GL_n(\mathbb{Z}), \text{s.t. } AB = I_n$$
 $\iff \exists B \in GL_n(\mathbb{Z}), \text{s.t. } \phi_{AB} = Id_{\mathbb{Z}^n}$ 
 $\iff \exists B \in GL_n(\mathbb{Z}), \text{s.t. } \phi_A \circ \phi_B = Id_{\mathbb{Z}^n}$ 
 $\iff \exists B \in GL_n(\mathbb{Z}), \text{s.t. } \phi_B = \phi_A^{-1}$ 
 $\iff \exists \phi_A : \mathbb{Z}^n \to \mathbb{Z}^n$ 是群同构



Exercise 4 设  $P \in GL_n(\mathbb{Z}), Q \in GL_m(\mathbb{Z}), A, B \in M_{n \times m}(\mathbb{Z}), B = P^{-1}AQ$ ,则有如下交换图

$$\mathbb{Z}^{m} \xrightarrow{\phi_{A}} \mathbb{Z}^{n} \xrightarrow{\operatorname{can}} \operatorname{Coker}(\phi_{A})$$

$$\downarrow^{\phi_{Q}} \qquad \qquad \downarrow^{\phi_{P}} \qquad \qquad \uparrow^{\Phi_{P}}$$

$$\mathbb{Z}^{m} \xrightarrow{\phi_{B}} \mathbb{Z}^{n} \xrightarrow{\operatorname{can}} \operatorname{Coker}(\phi_{B})$$

证明  $\Phi_P$  是群同构, 其中

$$\Phi_P : \operatorname{Coker}(\phi_B) \longrightarrow \operatorname{Coker}(\phi_A)$$

$$\overline{\boldsymbol{v}} \longmapsto \overline{\phi_P(\boldsymbol{v})}$$

Proof 首先验证  $\Phi_P$  的良定性: 假设  $\overline{\boldsymbol{v}} = \overline{\boldsymbol{v}}'$ , 则  $\boldsymbol{v} - \boldsymbol{v}' \in \operatorname{Im}(\phi_B)$ , 因此  $\exists \boldsymbol{\mu} \in \mathbb{Z}^m$ , s.t.  $\phi_B(\boldsymbol{\mu}) = \boldsymbol{v} - \boldsymbol{v}'$ , 所以

$$\phi_P(\boldsymbol{v}-\boldsymbol{v}') = \phi_P \circ \phi_B(\boldsymbol{\mu}) = \phi_A \circ \phi_Q(\boldsymbol{\mu}) \in \operatorname{Im}(\phi_A)$$

所以 
$$\Phi_P(\overline{\boldsymbol{v}} - \overline{\boldsymbol{v}}') = \overline{\phi_P(\overline{\boldsymbol{v}} - \overline{\boldsymbol{v}}')} = \overline{\mathbf{0}}$$
, 故  $\Phi_P(\overline{\boldsymbol{v}}) = \Phi_P(\overline{\boldsymbol{v}}')$ 

同态:对 $\forall v_1, v_2 \in \mathbb{Z}^n$ ,因为

$$\Phi_P(\overline{\boldsymbol{v}}_1) + \Phi_P(\overline{\boldsymbol{v}}_2) = \overline{\phi_P(\boldsymbol{v}_1)} + \overline{\phi_P(\boldsymbol{v}_2)} = \overline{\phi_P(\boldsymbol{v}_1) + \phi_P(\boldsymbol{v}_2)} = \overline{\phi_P(\boldsymbol{v}_1 + \boldsymbol{v}_2)} = \Phi_P(\overline{\boldsymbol{v}}_1 + \overline{\boldsymbol{v}}_2)$$

单射: 若  $\Phi_P(\overline{v}) = \mathbf{0}$ , 则  $\phi_P(v) \in \operatorname{Im}(\phi_A)$ , 故  $\exists \boldsymbol{\mu} \in \operatorname{Im}(\phi_A)$ , s.t.  $\boldsymbol{\mu} = \phi_P(\boldsymbol{v})$ , 由  $\boldsymbol{\mu} \in \operatorname{Im}\phi_A$  知,  $\exists \boldsymbol{\eta} \in \mathbb{Z}^m$ , s.t.  $\phi_A(\boldsymbol{\eta}) = \boldsymbol{\mu}$ , 由  $\phi_A \circ \phi_Q = \phi_P \circ \phi_B$  知

$$\boldsymbol{v} = \phi_P^{-1}(\boldsymbol{\mu}) = \phi_P^{-1} \circ \phi_A(\boldsymbol{\eta}) = \phi_P^{-1} \circ \phi_A \circ \phi_Q \circ \phi_Q^{-1}(\boldsymbol{\eta}) = \phi_B(\phi_Q^{-1}(\boldsymbol{\eta}))$$

所以  $v \in \text{Im}\phi_B$ , 故  $\overline{v} = 0$ , 即  $\text{Ker}\Phi_P = \{0\}$ 

满射: 对  $\forall \overline{\mu} \in \operatorname{Coker}(\phi_A), \mu \in \mathbb{Z}^n, \overline{\phi_P^{-1}(\mu)} \in \operatorname{Coker}(\phi_B)$  为  $\overline{\mu}$  的原像 综上  $\Phi_P$  是群同构

**Exercise 5**  $G_1, \dots, G_n$   $\not\in \mathcal{B}$ ,  $N_1 \triangleleft G_1, \dots, N_n \triangleleft G_n$ ,  $\not\in \mathcal{B}$ 

1. 
$$(N_1 \times \cdots \times N_n) \triangleleft (G_1 \times \cdots \times G_n)$$

2. 
$$\frac{(G_1 \times \cdots \times G_n)}{(N_1 \times \cdots \times G_n)} \simeq (G_1/N_1) \times \cdots \times (G_n/N_n)$$

## **Proof**

1. 因为  $N_i \triangleleft G_i$ ,所以对  $\forall x_i \in G_i, x_i N_i x_i^{-1} = N_i$ ,故对  $\forall (x_1, \cdots, x_n) \in G_1 \times \cdots \times G_n$ ,有  $(x_1, \cdots, x_n)(N_1 \times \cdots \times N_n)(x_1^{-1}, \cdots, x_n^{-1}) = (x_1 N_1 x_1^{-1}) \times \cdots \times (x_n N_n x_n^{-1}) = N_1 \times \cdots \times N_n$  所以  $N_1 \times \cdots \times N_n \triangleleft G_1 \times \cdots \times G_n$ 



## 2. 考虑满同态

$$\pi: G_1 \times \cdots \times G_n \longrightarrow (G_1/N_1) \times \cdots \times (G_n/N_n)$$
$$(g_1, \cdots, g_n) \longmapsto (\overline{g}_1, \cdots, \overline{g}_n)$$

因为

$$(g_1, \dots, g_n) \in \operatorname{Ker} \pi \iff (\overline{g}_1, \dots, \overline{g}_n) = (1, \dots, 1)$$

$$\iff g_1 \in N_1, \dots, g_n \in N_n$$

$$\iff (g_1, \dots, g_n) \in N_1 \times \dots \times N_n$$

所以  $Ker\pi = N_1 \times \cdots \times N_n$ , 由同态基本定理

$$\frac{(G_1 \times \dots \times G_n)}{(N_1 \times \dots \times G_n)} \simeq (G_1/N_1) \times \dots \times (G_n/N_n)$$

Exercise 6 G 是有限生成的扭群  $\iff$  G 是有限群

**Proof** (⇒): 设 g 是有限生成的扭群,则  $\exists s_1, \dots, s_n \in G$ , s.t.  $G = \langle s_1, \dots, s_n \rangle$ ,假设 G 是无限群,则  $\exists g \in G$ , s.t.  $\forall n \neq 0, ng \neq 0_G$ ,由  $G = \langle s_1, \dots, s_n \rangle$ ,可设

$$g = a_1 s_1 + \dots + a_n s_n$$

因为 G 是扭群, 设  $s_1, \dots, s_n$  的阶为  $l_1, \dots, l_n$ , 则

$$(l_1 \cdots l_n)g = a_1 l_2 \cdots l_n (l_1 s_1) + \cdots + a_n l_1 \cdots l_{n-1} (l_n s_n) = 0_G$$

矛盾! 故 G 是有限群

 $(\Leftarrow)$ : 因为 G 是有限群,所以 G 一定有限生成(取 G 为生成元集),只需证 G 是扭群,对  $\forall g \in G \setminus \{0_G\}$ ,因为  $(g) \leq G$ ,所以  $\operatorname{Ord}(g) \mid |G| < +\infty$ ,由  $g \in G \setminus \{0\}$  的任意性即证

Exercise 7 读  $G = \mathbb{Z}_2 \times \mathbb{Z}$ , 则  $t(G) = \mathbb{Z}_2 \times \{0\} = \{(\overline{0}, 0), (\overline{1}, 0)\}$ , 记

$$\begin{cases} F_1 = \overline{0} \times \mathbb{Z} = \{(\overline{0}, n) | n \in \mathbb{Z}\} \\ F_2 = \{(\overline{n}, n) | n \in \mathbb{Z}\} \end{cases}$$

证明: t(G) 仅有这两个补!

**Proof** 首先显然有  $G = t(G) \oplus F_1$ ,假设  $F \not\in t(G)$  的补,且  $F \neq F_1$ ,下面证明  $F = F_2$ ,因为  $(\overline{1},1) \in G$ ,且  $G = t(G) \oplus F_1$ ,因为

$$\begin{cases} (\overline{1},1) = (\overline{0},1) + (\overline{1},0) \\ (\overline{1},1) = (\overline{0},0) + (\overline{1},1) \end{cases}$$

## 近世代数 (H) 第十三周作业



由  $F \neq F_1$  知,  $(\overline{1},1)$  只能是第二种分解, 故  $(\overline{1},1) \in F_2$ , 因此  $F_2 \supset \{(\overline{n},n) | n \in \mathbb{Z}\}$ 

设  $(\overline{a},b) \in F_2$ ,则  $(\overline{a},b) - a(\overline{1},1) = (\overline{0},b-a) \in F_2$ , $(\overline{a},b) = (\overline{0},b-a) + a(\overline{1},1)$ ,所以  $(\overline{0},b-a) \in t(G) \cap F_2 = (\overline{0},0)$ ,故 b=a,即  $(\overline{a},b) = (\overline{a},a)$ ,即  $F_2 \subset \{(\overline{n},n)|n \in \mathbb{Z}\}$ 

**Exercise 8**  $D_8 = \langle a, b \mid a^4 = 1 = b^2 = (ab)^2 \rangle$ , 以下考虑共轭作用

- 1.  $\mathbb{R} N_1 = \langle a \rangle, H_1 = \langle b \rangle, \ \ \mathcal{P} \rho_1 : H_1 \to \operatorname{Aut}(N_1)$
- 2.  $\mathbb{R} N_2 = \langle a^2, b \rangle, H_2 = \langle ab \rangle, \quad \mathcal{P} \rho_2 : H_2 \to \operatorname{Aut}(N_2)$

**Proof** (1). 因为  $\forall a^4 = b^2 = 1$ ,所以  $\langle a \rangle = \{1, a, a^2, a^3\}, \langle b \rangle = \{1, b\}$ ,所以  $\rho_1(1) = \text{Id}$ ,下面计算  $\rho_1(b)$ ,因为  $(ab)^2 = b^2 \Longrightarrow abab = b^2 \Longrightarrow bab^{-1} = a^{-1} = a^3$ ,即  $\rho_1(b)(a) = bab^{-1} = a^3$ 

$$\rho_1(b): N_1 \longrightarrow N_1$$

$$1 \longmapsto 1$$

$$a \longmapsto a^{-1} = a^3$$

$$a^2 \longmapsto a^2$$

$$a^3 \longmapsto a^{-3} = a$$

因此

$$\rho_1(1) = \text{Id}, \quad \rho_1(b) = \text{ $\sharp$ $\Box{$\sharp$}$}$$

(2). 因为  $H_2=\{1,ab\}, N_2=\{1,a^2,b,a^2b=ba^2\}$ , 其中  $a^2b=ba^2$  是因为  $\rho_1(b)=ba^2b^{-1}=a^2$  因为  $\rho_2(1)=\mathrm{Id}$ ,下面计算  $\rho_2(ab)$ ,经计算

$$\rho_2(ab): N_2 \longrightarrow N_2$$

$$1 \longmapsto 1$$

$$a^2 \longmapsto a^2$$

$$b \longmapsto ba^2$$

$$a^2b \longmapsto b$$

因此

$$\rho_2(1) = \text{Id}, \quad \rho_2(ab) = (1 \mapsto 1, a^2 \mapsto a^2, b \mapsto a^2b, a^2b \mapsto b)$$