CMPT 379 Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Parsing - Roadmap

- Parser:
 - decision procedure: builds a parse tree
- Top-down vs. bottom-up
- LL(1) Deterministic Parsing
 - recursive-descent
 - table-driven
- LR(k) Deterministic Parsing
 - LR(0), SLR(1), LR(1), LALR(1)
- Parsing arbitrary CFGs Polynomial time parsing

Top-Down vs. Bottom Up

Grammar: $S \rightarrow AB$ Input String: ccbca

 $A \rightarrow c \mid \epsilon$

 $B \rightarrow cbB \mid ca$

Top-Down/le	eftmost	Bottom-Up/rightmost						
$S \Rightarrow AB$	S→AB	ccbca ← Acbca	A→c					
⇒cB	A→c	← AcbB	B→ca					
⇒ ccbB	B→cbB	←AB	B→cbB					
⇒ccbca	B→ca	←S	S→AB					

Rightmost derivation for id + id * id

$$E \rightarrow E + E$$

 $E \rightarrow E * E$

$$E \rightarrow (E)$$

$$E \rightarrow -E$$

$$E \rightarrow id$$

$$E \Rightarrow E * E$$

$$\Rightarrow$$
 E * id

$$\Rightarrow$$
 E + E * id

$$\Rightarrow$$
 E + id * id

$$\Rightarrow$$
 id + id * id

reduce with
$$E \rightarrow id$$

$$E \Rightarrow^*_{rm} E + E \setminus^* id$$

Bottom-up parsing overview

- Start from terminal symbols, search for a path to the start symbol
- Apply shift and reduce actions: postpone decisions
- LR parsing:
 - L: left to right parsing
 - R: rightmost derivation (in reverse or bottom-up)
- $LR(0) \rightarrow SLR(1) \rightarrow LR(1) \rightarrow LALR(1)$
 - o or 1 or k lookahead symbols

Actions in Shift-Reduce Parsing

Shift

add terminal to parse stack, advance input

Reduce

- If α w is on the stack, α ,w \in (N U T)* and A \rightarrow w, and there is a $\beta \in$ T* such that S $\Rightarrow^*_{rm} \alpha A \beta \Rightarrow_{rm} \alpha w \beta$ then we can reduce α w to α A on the stack (called *pruning* the handle w)
- $-\alpha w$ is a viable prefix
- Error
- Accept

Questions

- When to shift/reduce?
 - What are valid handles?
 - Ambiguity: Shift/reduce conflict
- If reducing, using which production?
 - Ambiguity: Reduce/reduce conflict

LR Parsing

- Table-based parser
 - Creates rightmost derivation (in reverse)
 - For "less massaged" grammars than LL(1)
- Data structures:
 - Stack of states/symbols {s}
 - Action table: $action[s, a]; a \in T$
 - Goto table: $goto[s, X]; X \subseteq N$

F	Produ	ctions								
1	T →	F								
2	T →	T*F	Λ	ctio	n/C	sto ⁻	Tahl	^		
3	F→	id		Ctio	11/00		Tabl	<u> </u>		-
4	F→	(T)	*	()	id	\$	T	F	
		0		S5		S 8		2	1	
		1	R1	R1	R1	R1	R1			
		2	S 3				Acc!			
		3		S5		S 8			4	
		4	R2	R2	R2	R2	R2			
		5		S5		S 8		6	1	
		6	S 3		S 7					
		7	R4	R4	R4	R4	R4			
		8	R3	R3	R3	R3	R3			9

Trace "(id)*id"

Stack	Input	Action
0	(id) * id \$	Shift S5
0 5	id)*id\$	Shift S8
058) * id \$	Reduce 3 F→id,
		pop 8, goto [5,F]=1
051) * id \$	Reduce 1 $T \rightarrow F$,
		pop 1, goto [5,T]=6
056) * id \$	Shift S7
0567	* id \$	Reduce 4 $F \rightarrow (T)$,
		pop 7 6 5, goto [0,F]=1
0 1	* id \$	Reduce $1 T \rightarrow F$
		pop 1, goto [0,T]=2

	Pro	ductions					*	()	id	\$	T	F	
1	T	→ F						S5		S8		2	1	
2	(IU) IU					1	R1	R1	R1	R1	R1			
3						2	S 3				A			
			In	put	A	3		S5		S8			4	
4	F	\rightarrow (T)				4	R2	R2	R2	R2	R2			
				(id)*id\$)		S5		S8		6	1	
		0 5		id) * id \$	Sh	6	S 3		S7					
		058) * id \$	Re	7	R4	R4	R4	R4	R4			
					po	8	R3	R3	R3	R3	R3			
						Reduce $1 \text{ T} \rightarrow \text{F}$,								
						pop 1, goto [5,T]=6								
		056	Shift S7											
							Reduce 4 $F \rightarrow (T)$,							
				pop 7 6 5, goto [0,F]=1										
							Reduce $1 T \rightarrow F$							
	·						pop 1, goto [0,T]=2							

Trace "(id)*id"

Input	Action
* id \$	Reduce 1 T→F,
	pop 1, goto [0,T]=2
* id \$	Shift S3
id \$	Shift S8
\$	Reduce 3 F→id,
	pop 8, goto [3,F]=4
\$	Reduce 2 T→T * F
	pop 4 3 2, goto [0,T]=2
\$	Accept
	* id \$ * id \$ id \$ \$ \$

			I										
Productions							*	()	id	\$	T	F
$1 T \to F$						0		S5		S8		2	1
2 T→T*F (((id)*id))						1	R1	R1	R1	R1	R1		
3							S 3				A		
						3		S5		S8			4
4	$\mathbf{F} \rightarrow 0$	<u> </u>		т ,	A .	4	R2	R2	R2	R2	R2		
		Stack		Input	Actio	5		S5		S 8		6	1
	0 1 0 2			* id \$	Reduc	6	S 3		S7				
					pop 1,	7	R4	R4	R4	R4	R4		
			* id \$			R3	R3	R3	R3	R3			
		023		id \$ Shift S8									
		023	8	\$									
	·				8, goto [3,F]=4								
	·			1 3 2, goto [0,T]=2									
	0 2 \$ Accept												
					Ji								

Tracing LR: action[s, a]

- case **shift** u:
 - push state u
 - read new a
- case **reduce** r:
 - lookup production $r: X \rightarrow Y_1...Y_k$;
 - pop k states, find state u
 - push **goto**[u, X]
- case accept: done
- no entry in action table: error

Configuration set

- Each set is a parser state
- We use the notion of a dotted rule or item:

$$T \rightarrow T * \bullet F$$

 The dot is before F, so we predict all rules with F as the left-hand side

$$T \rightarrow T * \bullet F$$

$$F \rightarrow \bullet (T)$$

$$F \rightarrow \bullet id$$

- This creates a configuration set (or item set)
 - Like NFA-to-DFA conversion

Closure

Closure property:

- If $T \rightarrow X_1 \dots X_i$ $X_{i+1} \dots X_n$ is in set, and X_{i+1} is a nonterminal, then $X_{i+1} \rightarrow Y_1 \dots Y_m$ is in the set as well for all productions $X_{i+1} \rightarrow Y_1 \dots Y_m$
- Compute as fixed point
- The closure property creates a configuration set (item set) from a dotted rule (item).

Starting Configuration

- Augment Grammar with S'
- Add production S' → S
- Initial configuration set is

$$closure(S' \rightarrow \bullet S)$$

Example: $I = closure(S' \rightarrow \bullet T)$

$$S' \rightarrow T$$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow id \mid (T)$$

Example: $I = closure(S' \rightarrow \bullet T)$

$$S' \rightarrow \bullet T$$
 $T \rightarrow \bullet T * F$
 $T \rightarrow \bullet F$
 $F \rightarrow \bullet id$
 $F \rightarrow \bullet (T)$

$$S' \rightarrow T$$
 $T \rightarrow F \mid T * F$
 $F \rightarrow id \mid (T)$

Successor(I, X)

Informally: "move by symbol X"

- move dot to the right in all items where dot is before X
- remove all other items (viable prefixes only!)
- 3. compute closure

Successor Example

$$I = \{S' \rightarrow \bullet T, \\ T \rightarrow \bullet F, \\ T \rightarrow \bullet T * F, \\ F \rightarrow \bullet id, \\ F \rightarrow \bullet (T) \}$$

$$S' \rightarrow T$$
 $T \rightarrow F \mid T * F$
 $F \rightarrow id \mid (T)$

Compute **Successor**(I, "(")

$$\{ F \rightarrow (\bullet T), T \rightarrow \bullet F, T \rightarrow \bullet T * F, F \rightarrow \bullet id, F \rightarrow \bullet (T) \}$$

Sets-of-Items Construction

```
Family of configuration sets

function items(G')

C = \{ closure(\{S' \rightarrow \bullet S\}) \};

do foreach I \in C do

foreach X \in (N \cup T) do

C = C \cup \{ Successor(I, X) \};

while C changes;
```


LR(o) Construction

1. Construct $F = \{I_0, I_1, ... I_n\}$ 2. a) if $\{A \rightarrow \alpha \bullet\} \in I_i$ and A := S'then action[i,] := reduce A $\rightarrow \alpha$ b) if $\{S' \rightarrow S \bullet \} \in I_i$ then action[i,\$] := accept c) if $\{A \rightarrow \alpha \bullet a\beta\} \in I_i$ and Successor $(I_i, a) = I_i$ then action[i,a] := shift j 3. if Successor(I_i ,A) = I_i then goto[i,A] := i

LR(o) Construction (cont'd)

- 4. All entries not defined are errors
- 5. Make sure I_0 is the initial state
- Note: LR(o) always reduces if {A → α•} ∈ I_i, no lookahead
- Shift and reduce items can't be in the same configuration set
 - Accepting state doesn't count as reduce item
- At most one reduce item per set

Set-of-items with Epsilon rules

LR(o) conflicts:

```
S' \rightarrow T
T \rightarrow F
T \rightarrow T * F
T \rightarrow id
F \rightarrow id \mid (T)
F \rightarrow id = T;
```

```
11: F \rightarrow id \bullet
F \rightarrow id \bullet = T
Shift/reduce conflict
```

```
1: F → id •

T → id •

Reduce/Reduce conflict
```

Need more lookahead: SLR(1)

LR(o) Grammars

- An LR(o) grammar is a CFG such that the LR(o) construction produces a table without conflicts (a deterministic pushdown automata)
- $S \Rightarrow^*_{rm} \alpha A\beta \Rightarrow_{rm} \alpha w\beta$ and $A \rightarrow w$ then we can prune the handle w
 - pruning the handle means we can reduce αw to αA on the stack
- Every viable prefix αw can recognized using the DFA built by the LR(o) construction

LR(o) Grammars

- Once we have a viable prefix on the stack, we can prune the handle and then restart the DFA to obtain another viable prefix, and so on ...
- In LR(o) pruning the handle can be done without any look-ahead
 - this means that in the rightmost derivation,
 - $S \Rightarrow^*_{rm} \alpha A \beta \Rightarrow_{rm} \alpha w \beta$ we reduce using a unique rule $A \rightarrow w$ without ambiguity, and without looking at β
- No ambiguous context-free grammar can be LR(o)

LR(o) Grammars ⊂ Context-free Grammars

FIRST and FOLLOW

$$a \in \text{FIRST}(\alpha) \text{ if } \alpha \Rightarrow^* a\beta$$

if $\alpha \Rightarrow^* \epsilon \text{ then } \epsilon \in \text{FIRST}(\alpha)$
 $a \in \text{FOLLOW}(A) \text{ if } S \Rightarrow^* \alpha A a\beta$
 $a \in \text{FOLLOW}(A) \text{ if } S \Rightarrow^* \alpha A \gamma a\beta$
and $\gamma \Rightarrow^* \epsilon$

Example First/Follow

$$S \rightarrow AB$$

$$A \rightarrow c \mid \epsilon$$

$$B \rightarrow cbB \mid ca$$

$$First(A) = \{c, \epsilon\}$$

$$First(B) = \{c\}$$

$$First(cbB) =$$

$$First(ca) = \{c\}$$

$$First(S) = \{c\}$$

$$Follow(A) = \{c\}$$

$$Follow(A) \cap$$

$$First(c) = \{c\}$$

$$Follow(B) = \{\$\}$$

$$Follow(S) = \{\$\}$$

Example First/Follow

$$S \rightarrow cAa$$

$$A \rightarrow cB \mid B$$

$$B \rightarrow bcB \mid \epsilon$$

First(A) =
$$\{b, c, \epsilon\}$$
 Follow(A) = $\{a\}$
First(B) = $\{b, \epsilon\}$ Follow(B) = $\{a\}$
First(S) = $\{c\}$ Follow(S) = $\{\$\}$

SLR(1): Simple LR(1) Parsing

$$S' \rightarrow T$$
 $T \rightarrow F \mid T * F \mid C (T)$
 $F \rightarrow id \mid id ++ \mid (T)$
 $C \rightarrow id$

What can the next symbol be when we reduce $F \rightarrow id$?

$$S'\$ \Rightarrow T\$ \Rightarrow F\$ \Rightarrow id\underline{\$}$$
 $S'\$ \Rightarrow T\$ \Rightarrow T*F\$ \Rightarrow T*id\$ \Rightarrow$ $F*id\$ \Rightarrow id\underline{*}id\$$

$$S'\$ \Rightarrow T\$ \Rightarrow C(T)\$ \Rightarrow C(F)\$ \Rightarrow C(id)\$$$

The top of stack will be id and the next input symbol will be either \$, or * or)

Follow(F) =
$$\{ *,), $ \}$$

SLR(1): Simple LR(1) Parsing

$$S' \rightarrow T$$
 $T \rightarrow F \mid T * F \mid C (T)$
 $F \rightarrow id \mid id ++ \mid (T)$
 $C \rightarrow id$

What can the next symbol be when we reduce $C \rightarrow id$?

$$S'\$ \Rightarrow T\$ \Rightarrow C(T)\$ \Rightarrow C(F)\$ \Rightarrow C(id) \Rightarrow id\underline{(id)}\$$$

$$Follow(C) = \{ (\}$$

SLR(1): Simple LR(1) Parsing

```
0: S' \to \bullet T
T \to \bullet F
T \to \bullet T * F
T \to \bullet C (T)
F \to \bullet id
F \to \bullet id ++
F \to \bullet (T)
C \to \bullet id
```

```
S' \rightarrow T
T \rightarrow F \mid T * F \mid C (T)
F \rightarrow id \mid id ++ \mid (T)
C \rightarrow id
Fallow(F) = (*) * (*) * (*)
```

1:
$$F \rightarrow id \bullet$$

$$F \rightarrow id \bullet ++$$

$$C \rightarrow id \bullet$$

Follow(F) =
$$\{ *,), $ \}$$

Follow(C) = $\{ (\}$

action[1,*]= action[1,)] = action[1,\$] = Reduce
$$F \rightarrow id$$

action[1,(] = Reduce $C \rightarrow id$
action[1,++] = Shift

Productions				
1	$T \rightarrow F$			
2	$T \rightarrow T^*F$			
3	$T \rightarrow C(T)$			
4	$F \rightarrow id$			
5	F → id ++			
6	$\mathbf{F} \rightarrow (\mathbf{T})$			
7	$C \rightarrow id$			

	*	()	id	++	\$	T	F	С
0		S2		S 1			5	3	4
1	R4	R7	R4		S2	R4			
2		S2		S 1			7	3	4
3	R1		R1			R1			
4		S 11							
5	S 9					A			
6	R5		R5			R5			
7	S9		S 8						
8	R6		R6			R6			
9		S2		S10				14	
10	R4		R4		S 6	R4			
11		S2		S1			12	3	
12	S 9		S13						
13	R3		R3			R3			
14	R2		R2			R2			

SLR(1) Construction

```
1. Construct F = \{I_0, I_1, \dots I_n\}
2. a) if \{A \rightarrow \alpha^{\bullet}\} \in I_i and A := S'
        then action[i, b] := reduce A \rightarrow \alpha
                                for all b \in Follow(A)
    b) if \{S' \rightarrow S \bullet \} \in I_i
        then action[i, $] := accept
   c) if \{A \rightarrow \alpha \bullet a\beta\} \in I_i and Successor(I_i, a) = I_i
        then action[i, a] := shift j
3. if Successor(I_i, A) = I_i then goto[i, A] := j
```

SLR(1) Construction (cont'd)

- 4. All entries not defined are errors
- 5. Make sure I_0 is the initial state
- Note: SLR(1) only reduces
 {A → α•} if lookahead in Follow(A)
- Shift and reduce items or more than one reduce item can be in the same configuration set as long as lookaheads are disjoint

SLR(1) Conditions

- A grammar is SLR(1) if for each configuration set:
 - For any item {A → α •xβ: x ∈ T} there is no {B → γ •: x ∈ Follow(B)}
 - For any two items {A → α •} and {B → β •} Follow(A) ∩ Follow(B) = Ø

LR(o) Grammars \subset SLR(1) Grammars

Is this grammar SLR(1)?

SLR limitation: lack of context

$$S' \rightarrow S$$

 $S \rightarrow L = R \mid R$
 $L \rightarrow *R \mid id$
 $R \rightarrow L$

S'

R

id

\$

id

$$Follow(R) = \{ =, \$ \}$$

2:
$$S \rightarrow L \bullet = R$$

 $R \rightarrow L \bullet$

R

id

\$

S'

Find all lookaheads for reduce $R \rightarrow L$ •

No! $R \rightarrow L \bullet$ reduce and $S \rightarrow L \bullet = R$ do not co-occur due to the $L \rightarrow *R$ rule

Solution: Canonical LR(1)

- Extend definition of configuration
 - Remember lookahead
- New closure method
- Extend definition of Successor

LR(1) Configurations

- [A $\rightarrow \alpha$ • β , a] for a \in T is valid for a viable prefix $\delta \alpha$ if there is a rightmost derivation S \Rightarrow * $\delta A \eta \Rightarrow$ * $\delta \alpha \beta \eta$ and $(\eta = a \gamma)$ or $(\eta = \epsilon)$ and $(\eta = \epsilon)$
- Notation: $[A \rightarrow \alpha \bullet \beta, a/b/c]$ - if $[A \rightarrow \alpha \bullet \beta, a], [A \rightarrow \alpha \bullet \beta, b], [A \rightarrow \alpha \bullet \beta, c]$

LR(1) Configurations

$$S \rightarrow B B$$

 $B \rightarrow a B \mid b$

$$S \Rightarrow BB \Rightarrow BaB \Rightarrow Bab$$

 $\Rightarrow aBab \Rightarrow aaBab \Rightarrow aaaBab$

- $S \Rightarrow^*_{rm} aaBab \Rightarrow_{rm} aaaBab$
- Item [B → a B, a] is valid for viable prefix
- $S \Rightarrow^*_{rm} BaB \Rightarrow_{rm} BaaB$
- Also, item [B → a B, \$] is valid for viable prefix Baa

$$S \Rightarrow BB \Rightarrow BaB \Rightarrow BaaB$$

LR(1) Closure

Closure property:

- If $[A \rightarrow \alpha \bullet B\beta, a]$ is in set, then $[B \rightarrow \bullet \gamma, b]$ is in set if $b \in First(\beta a)$
- Compute as fixed point
- Only include contextually valid lookaheads to guide reducing to B

Starting Configuration

- Augment Grammar with S' just like for LR(0), SLR(1)
- Initial configuration set is

$$I = closure([S' \rightarrow \bullet S, \$])$$

Example: closure($[S' \rightarrow \bullet S, \$]$)

$$[S' \rightarrow \bullet S, \$]$$

$$[S \rightarrow \bullet L = R, \$]$$

$$[S \rightarrow \bullet R, \$]$$

$$[L \rightarrow \bullet * R, =]$$

$$[L \rightarrow \bullet id, =]$$

$$[R \rightarrow \bullet L, \$]$$

$$[L \rightarrow \bullet * R, \$]$$

 $[L \rightarrow \bullet id, \$]$

$$S' \rightarrow S$$

$$S \rightarrow L = R \mid R$$

$$L \rightarrow *R \mid id$$

$$R \rightarrow L$$

concisely written as:

LR(1) Successor(C, X)

- Let $I = [A \rightarrow \alpha \bullet B\beta, a]$ or $[A \rightarrow \alpha \bullet b\beta, a]$
- Successor(I, B) = closure([A $\rightarrow \alpha$ B • β , a])
- Successor(I, b) = closure([A $\rightarrow \alpha$ b • β , a])

LR(1) Example

LR(1) Example (contd)

LR(1) Example (contd)

Productions				
1	$S \rightarrow L = R$			
2	$S \rightarrow R$			
3	L → * R			
4	L → id			
5	$R \rightarrow L$			

	id	=	*	\$	S	L	R
0	S 1		S10		7	2	13
1		R4		R4			
2		S 3		R5			
3	S4		S8			5	6
4				R4			
5				R5			
6				R1			
7				Acc			
8	S4					5	9
9				R3			
10	S 1		S10			11	12
11		R5		R5			
12		R3		R3			
13				R2			

LR(1) Construction

1. Construct $F = \{l_0, l_1, ... l_n\}$ 2. a) if $[A \rightarrow \alpha^{\bullet}, a] \in I_i$ and A := S'then action[i, a] := reduce A $\rightarrow \alpha$ b) if $[S' \rightarrow S^{\bullet}, \$] \in I_i$ then action[i, \$] := accept c) if $[A \rightarrow \alpha \bullet a\beta, b] \in I_i$ and Successor(I_i , a)= I_i then action[i, a] := shift i 3. if Successor(I_i , A) = I_i then goto[i, A] := j

LR(1) Construction (cont'd)

- 4. All entries not defined are errors
- 5. Make sure I_0 is the initial state
- Note: LR(1) only reduces using A $\rightarrow \alpha$ for [A $\rightarrow \alpha$ •, a] if a follows
- LR(1) states remember context by virtue of lookahead
- Possibly many states!
 - LALR(1) combines some states

LR(1) Conditions

- A grammar is LR(1) if for each configuration set (itemset) the following holds:
 - For any item [A $\rightarrow \alpha \bullet x \beta$, a] with $x \in T$ there is no [B $\rightarrow \gamma \bullet$, x]
 - For any two complete items [A $\rightarrow \gamma \bullet$, a] and [B $\rightarrow \beta \bullet$, b] then a != b.
- Grammars:
 - $LR(0) \subset SLR(1) \subset LR(1) \subset LR(k)$
- Languages expressible by grammars:
 - $LR(0) \subset SLR(1) \subset LR(1) = LR(k)$

Set-of-items with Epsilon rules

Canonical LR(1) Recap

- LR(1) uses left context, current handle and lookahead to decide when to reduce or shift
- Most powerful parser so far
- LALR(1) is practical simplification with fewer states

Merging States in LALR(1)

- $S' \rightarrow S$ $S \rightarrow XX$ $X \rightarrow aX$ $X \rightarrow b$
- Same CoreSet
- Different lookaheads

R/R conflicts when merging

•
$$B \rightarrow d$$

 $B \rightarrow f X g$
 $X \rightarrow ...$

 If R/R conflicts are introduced, grammar is not LALR(1)!

LALR(1)

- LALR(1) Condition:
 - Merging in this way does not introduce reduce/ reduce conflicts
 - Shift/reduce can't be introduced
- Merging brute force or step-by-step
- More compact than canonical LR, like SLR(1)
- More powerful than SLR(1)
 - Not always merge to full Follow Set

S/R & ambiguous grammars

- Lx(k) Grammar vs. Language
 - Grammar is Lx(k) if it can be parsed by Lx(k) method
 according to criteria that is specific to the method.
 - A Lx(k) grammar may or may not exist for a language.
- Even if a given grammar is not LR(k), shift/ reduce parser can sometimes handle them by accounting for ambiguities
 - Example: 'dangling' else
 - Preferring shift to reduce means matching inner 'if'

Dangling 'else'

- 1. $S \rightarrow if E then S$
- 2. $S \rightarrow \text{if E then S else S}$
- Viable prefix "if E then if E then S"
 - Then read else
- Shift "else" (means go for 2)
- Reduce (reduce using production #1)
- NB: dangling else as written above is ambiguous
 - NB: Ambiguity can be resolved, but there's still no LR(k) grammar

Precedence & Associativity

 $E \rightarrow E - E \mid E * E \mid id$ Consider Shift Reduce Reduce E - E• * E - E•* E - E - E id - id * id

id - id * id

id - id - id

Precedence Relations

- Let $A \rightarrow w$ be a rule in the grammar
- And b is a terminal
- In some state q of the LR(1) parser there is a shift-reduce conflict:
 - either reduce with A \rightarrow w or shift on b
- Write down a rule, either:

$$A \rightarrow w$$
, $< b$ or $A \rightarrow w$, $> b$

Precedence Relations

- A → w, < b means rule has less precedence and so we shift if we see b in the lookahead
- A → w, > b means rule has higher precedence and so we reduce if we see b in the lookahead
- If there are multiple terminals with shiftreduce conflicts, then we list them all:

$$A \rightarrow w, > b, < c, > d$$

Precedence Relations

- Consider the grammar
 E → E + E | E * E | (E) | a
- Assume left-association so that E+E+E is interpreted as (E+E)+E
- Assume multiplication has higher precedence than addition
- Then we can write precedence rules/relns:

$$E \rightarrow E + E, > +, < *$$

 $E \rightarrow E * E, > +, > *$

Precedence & Associativity

Handling S/R & R/R Conflicts

- Have a conflict?
 - No? Done, grammar is compliant.
- Already using most powerful parser available?
 - No? Upgrade and goto 1
- Can the grammar be rearranged so that the conflict disappears?
 - While preserving the language!

Conflicts revisited (cont'd)

- Can the grammar be rearranged so that the conflict disappears?
 - Yes: Is it worth it?
 - Yes, resolve conflict.
 - No: live with default or specified conflict resolution (precedence, associativity)

Compiler (parser) compilers

- Rather than build a parser for a particular grammar (e.g. recursive descent), write down a grammar as a text file
- Run through a compiler compiler which produces a parser for that grammar
- The parser is a program that can be compiled and accepts input strings and produces user-defined output

Compiler (parser) compilers

- For LR parsing, all it needs to do is produce action/goto table
 - Yacc (yet another compiler compiler) was distributed with Unix, the most popular tool. Uses LALR(1).
 - Many variants of yacc exist for many languages
- As we will see later, translation of the parse tree into machine code (or anything else) can also be written down with the grammar
- Handling errors and interaction with the lexical analyzer have to be precisely defined

Parsing - Summary

- Top-down vs. bottom-up
- Lookahead: FIRST and FOLLOW sets
- LL(1) Parsing: O(n) time complexity
 - recursive-descent and table-driven predictive parsing
- LR(k) Parsing : O(n) time complexity
 - LR(0), SLR(1), LR(1), LALR(1)
- Resolving shift/reduce conflicts
 - using precedence, associativity