Tabla C.1 Número	de aproximaciones	aritméticas para una	matriz invertible A de $n \times n$

Técnica	Número de multiplicaciones	Número aproximado de multiplicaciones para n grande	Número de sumas	Número aproximado de sumas para <i>n</i> grande
 Solución de Ax = b por eliminación de Gauss-Jordan 	$\frac{n^3}{2} + \frac{n^2}{2}$	$\frac{n^3}{2}$	$\frac{n^3}{2} - \frac{n}{2}$	$\frac{n^3}{2}$
2. Solución de $Ax = b$ por la modificación a la eliminación de Gauss-Jordan	$\frac{n^3}{3} + n^2 - \frac{n}{3}$	$\frac{n^3}{3}$	$\frac{n^3}{3} + \frac{n^2}{2} - \frac{5n}{6}$	$\frac{n^3}{3}$
3. Solución de $Ax = b$ por eliminación de Gauss-Jordan con sustitución regresiva	$\frac{n^3}{3} + n^2 - \frac{n}{3}$	$\frac{n^3}{3}$	$\frac{n^3}{3} + \frac{n^2}{2} - \frac{5n}{6}$	$\frac{n^3}{3}$
4. Obtención de A ⁻¹ por eliminación de Gauss-Jordan	n^3	n^3	$n^3 + 2n^2 + n$	n^3
5. Cálculo de det A por reducción de A a una matriz triangular y multiplicación de los elementos en la diagonal	$\frac{n^3}{2} + \frac{2n}{2} - 1$	$\frac{n^3}{3}$	$\frac{n^3}{3} - \frac{n^2}{2} + \frac{n}{6}$	$\frac{n^3}{3}$

$$\frac{1}{3}n^3 + n^2 - \frac{1}{3}n \simeq \frac{n^3}{3}$$

Como $\frac{n^3}{3}$ es menor que $\frac{n^3}{2}$, se ve que la modificación descrita es más eficiente cuando n es grande (de hecho, es mejor cuando $n \ge 3$).

En la tabla C.1 se presenta el número de sumas y multiplicaciones requeridas para varios procesos presentados en los capítulos 1 y 2.

De los problemas 22 al 25 se pide al lector que derive estas fórmulas.

PROBLEMAS

En los problemas 1 al 13 convierta el número dado a un número de punto flotante con ocho lugares decimales de exactitud, ya sea truncando (T) o redondeando (R) como se indica.

1.
$$\frac{1}{3}(T)$$

2.
$$\frac{7}{8}$$

4.
$$\frac{7}{9}(R)$$

5.
$$\frac{7}{9}$$
(T)

5.
$$\frac{7}{9}$$
(T) **6.** $\frac{33}{7}$ (T)

7.
$$\frac{85}{11}$$
(R)

7.
$$\frac{85}{11}$$
(R) 8. $-18\frac{5}{6}$ (T)

9.
$$-18\frac{5}{6}(R)$$

9.
$$-18\frac{5}{6}(R)$$
 10. 237 059 628(T)

11. 237 059 628(R) **12.**
$$-23.7 \times 10^{15}$$

12.
$$-23.7 \times 10^{15}$$

13. 8 374.2
$$\times$$
 10⁻²⁴

De los problemas 14 al 21 se da el número x y una aproximación x*. Encuentre los errores absoluto y relativo ε_a y ε_r

14.
$$x = 5$$
; $x^* = 0.49 \times 10^1$

15.
$$x = 500$$
; $x^* = 0.4999 \times 10^3$