Seminar 5 Decision with multiple samples

1. (Left-over from last week) A signal can have two values, $s_0(t) = 0$ (hypothesis H_0) or $s_1(t) = 6$ (hypothesis H_1).

The signal is affected by AWGN $\mathcal{N}(0, \sigma^2 = 1)$.

The receiver takes 5 samples with values $\{1.1, 4.4, 3.7, 4.1, 3.8\}$.

- a. What is decision according to Maximum Likelihood criterion?
- b. What is decision according to Minimum Probability of Error criterion, assuming $P(H_0) = 2/3$ and $P(H_1) = 1/3$?
- c. What is the decision according to Minimum Risk Criterion, assuming $P(H_0) = 2/3$ and $P(H_1) = 1/3$, and $C_{00} = 0$, $C_{10} = 10$, $C_{01} = 20$, $C_{11} = 5$?
- d. What are the values of $P(H_0)$ such that the decision according to MPE criterion to be D_0 ?
- 2. Consider detecting a signal $s_1(t) = 3\sin(2\pi f_1 t)$ that can be present (hypothesis H_1) or not $(s_0(t) = 0$, hypothesis H_0). The signal is affected by AWGN $\mathcal{N}(0, \sigma^2 = 1)$. The receiver takes 2 samples.
 - b. The receiver takes 2 samples with values $\{1.1, 4.4\}$, at sample times $t_1 = \frac{0.125}{f_1}$ and $t_2 = \frac{0.625}{f_1}$. What is decision according to Maximum Likelihood criterion?
- 3. A transmitted signal can be one of the following $s_0(t)$ or $s_1(t)$ (depicted below). The received signal is r(t). The signal is affected by AWGN $\mathcal{N}(0, \sigma^2 = 2)$. Find the receiverÈ's decision based on the Maximum Likelihood criterion, in two ways:
 - a. based on 3 samples taken at moments $t_1 = 0.5$, $t_2 = 1.5$ and $t_2 = 3.5$
 - b. with continuous observation

- 4. Consider the k-NN algorithm with the following training set, composed of 5 vectors of class A and another 5 vectors from class B:
 - Class A:

$$\vec{v}_1 = \begin{bmatrix} 2 \\ -4 \end{bmatrix} \ \vec{v}_2 = \begin{bmatrix} 1 \\ -5 \end{bmatrix} \ \vec{v}_3 = \begin{bmatrix} -2 \\ 6 \end{bmatrix} \ \vec{v}_4 = \begin{bmatrix} -3 \\ 4 \end{bmatrix} \ \vec{v}_5 = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$$

• Class B:

$$\vec{v}_6 = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \ \vec{v}_7 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \ \vec{v}_8 = \begin{bmatrix} -4 \\ -3 \end{bmatrix} \ \vec{v}_9 = \begin{bmatrix} -3 \\ 0 \end{bmatrix} \ \vec{v}_{10} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$

Compute the class of the vector $\vec{x} = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$ using the k-NN algorithm, with k=1, $k=3, \ k=5, \ k=7$ and k=9

5. Consider the following 10 values:

$$\vec{v} = \{v_i\} = [1.1, 0.9, 5.5, 0.6, 5, 6, 1.3, 4.8, 6, 0.8]$$

Perform 5 iterations of the k-Means algorithm in order to find two centroids \vec{c}_1 și \vec{c}_2 , starting from two random values $\vec{c}_1 = 0.95$ și $\vec{c}_2 = 0.96$.