AML 160 Major-2008

Time 2 Hours. Attempt all questions. Each carries 10 marks. State all assumptions clearly.

- 1. The pressure gauge on the pipe shows that the pressure decreases linearly from p_1 to p_2 over time T. At t=0, the flowrate is q_0 . Determine the amount of water that has flown out of the tank in this time. Assume inviscid, incompressible flow, and that the tank has a large cross sectional area, compared to the cross sectional area of pipe, a.
- 2. Consider a very small spherical object of radius a moving through a fluid of viscosity μ and density ρ . The Reynolds number $\frac{\rho V a}{\mu} \approx 0$, where V is the velocity of the sphere. We expect that the parameters for this problem are F, V, a, μ and ρ , where F is the drag force on the sphere.
 - i. Do you think inertia is important in this problem?
 - ii. Based on (i), is $\rho V^2 a^2$ the correct scaling for F? If not, what is the appropriate scaling for the drag force? (hint: pressure drag is zero for this flow)
 - iii. Based on (ii), is μ a repeating parameter? Which are the other repeating parameters?
 - iv. Determine the two non dimensional parameters (Π groups). The dependent parameter involves F. What is the independent Π group?
 - v. Can you determine what is the functional relation between the two Π groups (hint: Since the Reynolds number is nearly zero, it cannot influence the functional form).
- 3. Air is being pumped through a long, wide channel at qm³/s. The height of the channel is Bm. Water is present at the bottom of the channel to a height b. Calculate the flow rate of water, assuming fully developed flow in both air and water.
- 4. Estimate the power required to drive a raft with floor area of 4m by 4m in still water at 18kmph. The following is known. $\rho_{water} = 1000 \text{kg/m}^3$.

Boundary Layer	<u>δ</u>	C_f
	X	
Laminar	$\frac{5.48}{\sqrt{Re_x}}$	0.73
	$\sqrt{Re_x}$	$\overline{\sqrt{Re_x}}$
Turbulent	0.382	0.0594
	$\frac{0.382}{Re_x^{1/5}}$	$Re_x^{1/5}$

Problem 1.

air - q.m3/s B-b

Watu

Problem 3.