Zaawansowane techniki programowania

Laboratorium 6

Politechnika Krakowska im. Tadeusza Kościuszki

Piotr Jurek

15.04.2023 Systemy Inteligentne i Rozszerzona Rzeczywistość

WPROWADZENIE

W laboratorium omówiono problem transportu danych między procesami za pomocą socketów. Poruszona została też tematyka protokołu SSL/TLS.

MATERIAŁY

Do wykonania zadania wykorzystano dołączone pliki:

- steamer.py
- blocks.py
- features.py

PROCEDURA

1. W tym zadaniu użyto protokołu TCP do wysłania z klienta na serwer kilku wersów tekstu piosenki. Wykorzystano kod wzorowany na pliku streamer.py. Wynik działania programu pokazał, że po uruchomieniu skryptu z argumentem "-c" dane zostały wysłane na serwer, po czym ten wypisał tekst piosenki na standardowe wyjście.

```
> python3 assigment1.py
Run this script in another window with "-c" to connect
Listening at ('127.0.0.1', 1060)
Accepted connection from ('127.0.0.1', 56602)
Received 108 bytes
Received zero bytes - end of file
Message:

I like my toast done on one side
And you can hear it in my accent when I talk
I'm an Englishman in New York
```

2. W drugim zadaniu użyto struktury blokowej do transportu danych, wzorując się na pliku blocks.py. Dane były wysyłane po trochę w porcjach, zamiast próbować wysłać wszystko naraz, jak w poprzednim zadaniu. Wynik działania programu pokazał, że po uruchomieniu tego samego skryptu z parametrem "-c" dane zostały przesłane na serwer w postaci blokowej.

```
> python3 assigment2.py
Run this script in another window with "-c" to connect
Listening at ('127.0.0.1', 1060)
Accepted connection from ('127.0.0.1', 34438)
Block says: b'I like my toast done on one side'
Block says: b'And you can hear it in my accent when I talk'
Block says: b"I'm an Englishman in New York"
```

3. W tym zadaniu zbadano, za pomocą skryptu features.py, moduł SSL, to jest moduł odpowiedzialny za komunikacje zgodna z protokołem Secure Sockets Layer, pozwalającym na lepsze zabezpieczenie połączenia sieciowego. Zapewnia on poufność i integralność danych przesyłanych między aplikacjami. Po uruchomieniu skryptu, na ekranie pokazały się następujące dane:

> python3 features.py		
	protocol	
PROTOCOL_SSLv23	2	10
PROTOCOL_TLS	2	10
PROTOCOL_TLSv1	3	11
PROTOCOL_TLSv1_1	4	100
PROTOCOL_TLSv1_2	5	101
PROTOCOL_TLS_CLIENT	16	10000
PROTOCOL_TLS_SERVER	17	10001
	verify_mode	
CERT_NONE	0	0
CERT_OPTIONAL	1	1
CERT_REQUIRED	2	10
	verify_flags	
VERIFY_DEFAULT	0	0
VERIFY_CRL_CHECK_LEAF	4	100

VERIFY_CRL_CHECK_CHAIN	12	1100	
VERIFY_X509_STRICT	32	100000	
VERIFY_ALLOW_PROXY_CERTS	64	1000000	
VERIFY_X509_TRUSTED_FIRST	32768	1000000000000000	
VERIFY_X509_PARTIAL_CHAIN	524288	10000000000000000000	
	options -		
OP_NO_SSLv2	0	0	
OP_SINGLE_DH_USE	0	0	
OP_SINGLE_ECDH_USE	0	0	
OP_IGNORE_UNEXPECTED_EOF	128	10000000	
OP_NO_TICKET	16384	10000000000000	
OP_NO_COMPRESSION	131072	100000000000000000	
OP_ENABLE_MIDDLEBOX_COMPAT	1048576	100000000000000000000	
OP_CIPHER_SERVER_PREFERENCE	4194304	100000000000000000000000	
OP_NO_SSLv3	33554432	1000000000000000000000000000	
OP_NO_TLSv1	67108864	1000000000000000000000000000	
OP_NO_TLSv1_2	134217728	100000000000000000000000000000	
OP_NO_TLSv1_1	268435456	100000000000000000000000000000	
OP_NO_TLSv1_3	536870912	10000000000000000000000000000000	
OP_NO_RENEGOTIATION	1073741824	100000000000000000000000000000000000	
OP_ALL	2147483728	100000000000000000000000001010000	
	ature availab	pility	
HAS_NPN	0	0	
HAS_SSLv2	0	0	
HAS_SSLv3	0	0	
HAS_ALPN	1	1	
HAS_ECDH	1	1	
HAS_NEVER_CHECK_COMMON_NAME	1	1	
HAS_SNI	1	1	
HAS_TLSv1	1	1	
HAS_TLSv1_1	1	1	
HAS_TLSv1_2	1	1	
HAS_TLSv1_3	1	1	

Wypisane dane opisują działanie biblioteki SSL dostępnej w języku python. Pierwsza sekcja wypisuje listę protokołów obsługiwanych przez standard SSL/TLS. Wartości obok są binarną reprezentacją danych protokołów wykorzystywaną wewnętrznie przez bibliotekę SSL. Dalej widać reprezentacje binarne trzech trybów uwierzytelnienia wykorzystywanych przez agentów w trakcie komunikacji przez

protokół SSL. Jeszcze niżej wypisano flagi, kontrolujące zachowanie się protokołu SSL w czasie uwierzytelniania użytkownika. Kolejna sekcja zawiera opcje kontrolujące zachowanie się protokołu w trakcie komunikacji. Ostatnia sekcja opisuje dostępność różnych funkcjonalności biblioteki SSL.

PODSUMOWANIE

Podsumowując, w tym laboratorium omówiono różne metody transportu danych między procesami, w tym protokół TCP, strukturę blokową oraz zabezpieczanie połączeń sieciowych za pomocą protokołu SSL.