第 3 节 向量的分解与共线性质 (★★★)

强化训练

- 1. $(2022 \cdot 新高考 I 卷 \cdot ★)$ 在 $\triangle ABC$ 中,点 D 在边 AB 上,BD = 2DA,记 $\overrightarrow{CA} = m$, $\overrightarrow{CD} = n$,则 $\overrightarrow{CB} = ($
- (A) 3m-2n
- (B) -2m + 3n (C) 3m + 2n
- (D) 2m + 3n

答案: B

解法 1: 如图,由题意, $\overrightarrow{CB} = \overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{CA} + 3\overrightarrow{AD} = \overrightarrow{CA} + 3(\overrightarrow{CD} - \overrightarrow{CA}) = -2\overrightarrow{CA} + 3\overrightarrow{CD} = -2m + 3n$.

解法 2: 由题意, $\overrightarrow{AD} = \frac{1}{3}\overrightarrow{AB}$,根据内容提要第 2 点的结论②, $\overrightarrow{CD} = (1 - \frac{1}{3})\overrightarrow{CA} + \frac{1}{3}\overrightarrow{CB} = \frac{2}{3}\overrightarrow{CA} + \frac{1}{3}\overrightarrow{CB}$,

所以 $\overrightarrow{CB} = -2\overrightarrow{CA} + 3\overrightarrow{CD} = -2m + 3n$.

- 2. (2023•广东模拟•★★)在平行四边形 ABCD中, E 为 AD 中点, F 为 BE 与 AC 的交点, 则 DF = (

- (A) $\frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AD}$ (B) $\frac{1}{3}\overrightarrow{AB} \frac{2}{3}\overrightarrow{AD}$ (C) $\frac{1}{4}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AD}$ (D) $\frac{1}{4}\overrightarrow{AB} \frac{3}{4}\overrightarrow{AD}$

答案: B

解析: 从D到F,与基底 \overline{AB} , \overline{AD} 关联较强的路径可选 $D \to A \to F$,

由题意, $\overrightarrow{DF} = \overrightarrow{DA} + \overrightarrow{AF} = -\overrightarrow{AD} + \overrightarrow{AF}$ ①,

还需把AF也用基底表示,先分析F在AC上的位置,

由图可知 $\triangle AEF \hookrightarrow \triangle CBF$,所以 $\frac{AF}{CF} = \frac{AE}{BC} = \frac{1}{2}$,

故
$$\overrightarrow{AF} = \frac{1}{3}\overrightarrow{AC} = \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AD})$$
,

代入①整理得: $\overrightarrow{DF} = \frac{1}{3}\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AD}$.

3. $(2023 \cdot 宁夏银川模拟 \cdot ★★)已知 ABCD 为矩形,<math>P$ 为平面 ABCD 外一点,M,N 分别为 PC,PD 上 的点, $\overrightarrow{PM} = \overrightarrow{MC}$, $\overrightarrow{PN} = 2\overrightarrow{ND}$,若 $\overrightarrow{NM} = x\overrightarrow{AB} + y\overrightarrow{AD} + z\overrightarrow{AP}$,则x + y + z = (

- (A) $-\frac{1}{2}$ (B) $\frac{1}{2}$ (C) $\frac{5}{6}$ (D) 1

答案: B

解析: M M 到 M, 与基向量 \overline{AB} , \overline{AD} , \overline{AP} 关联较强的一条路径是 $N \to P \to M$,

由题意,
$$\overrightarrow{NM} = \overrightarrow{NP} + \overrightarrow{PM} = \frac{2}{3}\overrightarrow{DP} + \frac{1}{2}\overrightarrow{PC}$$

$$= \frac{2}{3}(\overrightarrow{AP} - \overrightarrow{AD}) + \frac{1}{2}(\overrightarrow{AC} - \overrightarrow{AP})$$

$$= \frac{2}{3}\overrightarrow{AP} - \frac{2}{3}\overrightarrow{AD} + \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AD}) - \frac{1}{2}\overrightarrow{AP} = \frac{1}{2}\overrightarrow{AB} - \frac{1}{6}\overrightarrow{AD} + \frac{1}{6}\overrightarrow{AP},$$

又
$$\overrightarrow{NM} = x\overrightarrow{AB} + y\overrightarrow{AD} + z\overrightarrow{AP}$$
,所以 $x = \frac{1}{2}$, $y = -\frac{1}{6}$, $z = \frac{1}{6}$,

故
$$x+y+z=\frac{1}{2}$$
.

【反思】空间基底表示与平面基底表示方法类似,仍然是往与基底关联性较强的向量上化.

4. (2022•安徽芜湖模拟•★★★) 如图,O 是 $\triangle ABC$ 的重心,D 是边 BC 上一点,且 $\overrightarrow{BD} = 3\overrightarrow{DC}$,

$$\overrightarrow{OD} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}$$
, $y | \frac{\lambda}{u} = ($

- (A) $-\frac{1}{5}$ (B) $-\frac{1}{4}$ (C) $\frac{1}{5}$ (D) $\frac{1}{4}$

答案: A

解析: $\overrightarrow{OD} = \overrightarrow{OC} + \overrightarrow{CD} = \overrightarrow{OC} + \frac{1}{4}\overrightarrow{CB} = \overrightarrow{OC} + \frac{1}{4}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AC}$ ①, 还需把 \overrightarrow{OC} 用基底表示,可用重心分中线比例

来完成,

如图,延长CO交AB于E,则E为AB中点,

$$= -\frac{1}{3}\overrightarrow{AC} + \frac{1}{3}(\overrightarrow{AB} - \overrightarrow{AC}) = \frac{1}{3}\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AC},$$

所以
$$\overrightarrow{OC} = -\overrightarrow{CO} = -\frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$$
,代入①得:

$$\overrightarrow{OD} = \left(-\frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}\right) + \frac{1}{4}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AC} = -\frac{1}{12}\overrightarrow{AB} + \frac{5}{12}\overrightarrow{AC},$$

由题意, $\overrightarrow{OD} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}$,

所以
$$\lambda = -\frac{1}{12}$$
, $\mu = \frac{5}{12}$, 故 $\frac{\lambda}{\mu} = -\frac{1}{5}$.

【反思】设 O 为 $\triangle ABC$ 的重心,则 $\overrightarrow{AO} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$.

- 5. $(2022 \cdot 湖南益阳模拟 \cdot \star \star)$ 在如图所示的矩形 ABCD 中,E,F 满足 $\overline{BE} = \overline{EC}$, $\overline{CF} = 2\overline{FD}$,G 为 EF 的中点,若 $\overrightarrow{AG} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AD}$,则 $\lambda \mu = ($
- (A) $\frac{1}{2}$ (B) $\frac{2}{3}$ (C) $\frac{3}{4}$ (D) 2

答案: A

解析: G为EF中点,故容易把 \overline{AG} 表示成 \overline{AE} 和 \overline{AF} ,再把 \overline{AE} 和 \overline{AF} 换成 \overline{AB} 和 \overline{AD} 即可,

由向量中线定理, $\overrightarrow{AG} = \frac{1}{2}\overrightarrow{AE} + \frac{1}{2}\overrightarrow{AF}$ ①,而 $\overrightarrow{AE} = \frac{1}{2}\overrightarrow{AE}$

$$\overrightarrow{AB} + \overrightarrow{BE} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD}$$
, $\overrightarrow{AF} = \overrightarrow{AD} + \overrightarrow{DF} = \overrightarrow{AD} + \frac{1}{3}\overrightarrow{AB}$,

代入①得: $\overrightarrow{AG} = \frac{1}{2}(\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD}) + \frac{1}{2}(\overrightarrow{AD} + \frac{1}{3}\overrightarrow{AB})$

$$=\frac{2}{3}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AD}$$
,所以 $\lambda=\frac{2}{3}$, $\mu=\frac{3}{4}$,故 $\lambda\mu=\frac{1}{2}$.

6. (★★★) 已知 $\triangle ABC$ 内接于圆 O, $|\overrightarrow{CA} + \overrightarrow{CB}| = |\overrightarrow{CA} - \overrightarrow{CB}|$, 若 P 为线段 OC 的中点,则 $\overrightarrow{OP} = ($

(A)
$$\frac{1}{3}\overrightarrow{AC} - \frac{1}{2}\overrightarrow{AB}$$
 (B) $\frac{1}{4}\overrightarrow{AC} - \frac{1}{2}\overrightarrow{AB}$ (C) $\frac{1}{2}\overrightarrow{AC} - \frac{1}{4}\overrightarrow{AB}$ (D) $\frac{1}{2}\overrightarrow{AC} - \frac{1}{3}\overrightarrow{AB}$

(B)
$$\frac{1}{4}\overrightarrow{AC} - \frac{1}{2}\overrightarrow{AB}$$

(C)
$$\frac{1}{2}\overrightarrow{AC} - \frac{1}{4}\overrightarrow{AB}$$

(D)
$$\frac{1}{2}\overrightarrow{AC} - \frac{1}{3}\overrightarrow{AB}$$

答案: C

解析:给出了模的关系,想到将其平方,

$$\left| \overrightarrow{CA} + \overrightarrow{CB} \right| = \left| \overrightarrow{CA} - \overrightarrow{CB} \right| \Rightarrow \left| \overrightarrow{CA} + \overrightarrow{CB} \right|^2 = \left| \overrightarrow{CA} - \overrightarrow{CB} \right|^2,$$

所以
$$\overrightarrow{CA}^2 + \overrightarrow{CB}^2 + 2\overrightarrow{CA} \cdot \overrightarrow{CB} = \overrightarrow{CA}^2 + \overrightarrow{CB}^2 - 2\overrightarrow{CA} \cdot \overrightarrow{CB}$$
,

从而
$$\overrightarrow{CA} \cdot \overrightarrow{CB} = 0$$
,故 $CA \perp CB$,

所以 AB 是圆 O 的直径,O 即为 AB 中点,如图,

故
$$\overrightarrow{OP} = -\frac{1}{2}\overrightarrow{CO} = -\frac{1}{2} \times \frac{1}{2}(\overrightarrow{CA} + \overrightarrow{CB})$$

$$= -\frac{1}{4}\overrightarrow{CA} - \frac{1}{4}\overrightarrow{CB} = \frac{1}{4}\overrightarrow{AC} - \frac{1}{4}(\overrightarrow{AB} - \overrightarrow{AC}) = \frac{1}{2}\overrightarrow{AC} - \frac{1}{4}\overrightarrow{AB}.$$

7. (2023 • 陕西西安模拟 • ★★★) 在平行四边形 \overrightarrow{ABCD} 中, $\overrightarrow{AE} = \frac{1}{2}\overrightarrow{AD}$, $\overrightarrow{CF} = \frac{1}{2}\overrightarrow{CD}$,则 $\overrightarrow{BA} = ($)

(A)
$$\frac{6}{5}\overrightarrow{AF} - \frac{9}{5}\overrightarrow{CE}$$
 (B) $\frac{2}{5}\overrightarrow{AF} - \frac{3}{5}\overrightarrow{CE}$ (C) $\frac{6}{5}\overrightarrow{AF} + \frac{9}{5}\overrightarrow{CE}$ (D) $\frac{2}{5}\overrightarrow{AF} + \frac{3}{5}\overrightarrow{CE}$

(B)
$$\frac{2}{5}\overrightarrow{AF} - \frac{3}{5}\overrightarrow{CE}$$

(C)
$$\frac{6}{5}\overrightarrow{AF} + \frac{9}{5}\overrightarrow{CF}$$

(D)
$$\frac{2}{5}\overrightarrow{AF} + \frac{3}{5}\overrightarrow{CE}$$

答案: C

解析:如图,直接用AF,CE表示BA较难,考虑换基底,注意到用AB,AD容易表示其它向量,故若 设 $\overrightarrow{BA} = x\overrightarrow{AF} + y\overrightarrow{CE}$,则只要把 \overrightarrow{AF} 和 \overrightarrow{CE} 也用 \overrightarrow{AB} , \overrightarrow{AD} 表示,就能与 $\overrightarrow{BA} = -\overrightarrow{AB}$ 比较系数,求出x,y,

由题意,
$$\overrightarrow{CE} = \overrightarrow{CD} + \overrightarrow{DE} = -\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AD}$$
, $\overrightarrow{AF} = \overrightarrow{AD} + \overrightarrow{DF} = \overrightarrow{AD} + \frac{2}{3}\overrightarrow{AB}$,

设
$$\overrightarrow{BA} = x\overrightarrow{AF} + y\overrightarrow{CE}$$
, 则 $\overrightarrow{BA} = x(\overrightarrow{AD} + \frac{2}{3}\overrightarrow{AB}) + y(-\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AD}) = (\frac{2x}{3} - y)\overrightarrow{AB} + (x - \frac{2y}{3})\overrightarrow{AD}$ ①,

又
$$\overrightarrow{BA} = -\overrightarrow{AB}$$
,与①对比可得
$$\begin{cases} \frac{2x}{3} - y = -1\\ x - \frac{2y}{3} = 0 \end{cases}$$
,解得:
$$\begin{cases} x = \frac{6}{5}\\ y = \frac{9}{5} \end{cases}$$
,所以 $\overrightarrow{BA} = \frac{6}{5} \overrightarrow{AF} + \frac{9}{5} \overrightarrow{CE}$.

8. $(2023 \cdot 天津模拟改 \cdot \star \star \star \star)$ 已知 A, B, P 是直线 l 上不同的三点,点 O 在直线 l 外,若 $\overrightarrow{OP} = m\overrightarrow{AP} + (2m-3)\overrightarrow{OB}(m \in \mathbf{R}), \quad \emptyset m = \underline{\hspace{1cm}}.$

答案: 2

解析:如图,注意到A,B,P 共线,故我们将所给等式变形成 $\overrightarrow{OP} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB}$ 的形式,利用系数和结论 即可构建方程求m,只需将式中的 \overrightarrow{AP} 拆成 $\overrightarrow{OP} - \overrightarrow{OA}$,

$$\overrightarrow{OP} = m\overrightarrow{AP} + (2m-3)\overrightarrow{OB} = m(\overrightarrow{OP} - \overrightarrow{OA}) + (2m-3)\overrightarrow{OB}$$
,

整理得:
$$\overrightarrow{OP} = \frac{m}{m-1}\overrightarrow{OA} + \frac{3-2m}{m-1}\overrightarrow{OB}$$
,

因为
$$A$$
, B , P 共线,所以 $\frac{m}{m-1} + \frac{3-2m}{m-1} = 1$, 故 $m = 2$.

9. $(2022 \cdot \text{重庆模拟改} \cdot \star \star \star \star)$ 如图,已知点 $G \neq \Delta ABC$ 的重心,过点 G 作直线分别与 AB,AC 两边交于 M,N 两点(M,N 与 B,C 不重合),设 $\overrightarrow{AB} = x\overrightarrow{AM}$, $\overrightarrow{AC} = y\overrightarrow{AN}$,则 $x + y = \underline{\hspace{1cm}}$.

答案: 3

解析: 注意到 G 为重心, \overrightarrow{AG} 易用 \overrightarrow{AB} , \overrightarrow{AC} 表示,结合已知又可化为用 \overrightarrow{AM} , \overrightarrow{AN} 表示的结果,从而可由 M ,G ,N 三点共线找到 x ,y 的关系,

如图,延长AG交BC于点H,因为G是重心,所以H为BC的中点,且 $AG = \frac{2}{3}AH$,

所以
$$\overrightarrow{AG} = \frac{2}{3} \overrightarrow{AH} = \frac{2}{3} \times \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AC}) = \frac{1}{3} \overrightarrow{AB} + \frac{1}{3} \overrightarrow{AC}$$
,

又
$$\overrightarrow{AB} = x\overrightarrow{AM}$$
, $\overrightarrow{AC} = y\overrightarrow{AN}$, 所以 $\overrightarrow{AG} = \frac{x}{3}\overrightarrow{AM} + \frac{y}{3}\overrightarrow{AN}$,

结合 M, G, N 三点共线可得 $\frac{x}{3} + \frac{y}{3} = 1$, 故 x + y = 3.

