Exam 1 Formula Sheet

Wednesday, August 28, 2024

2:55 PM

Laplace Transforms:

Eaplace Transforms.	
f(t)	F(s)
1	1
	S
t^n	<u>n!</u>
	$\overline{s^{n+1}}$
e^{at}	1
	s-a
sin(at)	$\frac{a}{s^2 + a^2}$
cos(at)	<u>S</u>
	$\overline{s^2 + a^2}$
$e^{at}\sin(bt)$	<u> </u>
	$\overline{(s-a)^2+b}$
$e^{at}\cos(bt)$	s-a
	$\overline{(s-a)^2+b}$
f'(t)	sF(s) - f(0)
f''(t)	$s^2F(s) - sf(0) - f'(0)$
$f^n(t)$	$s^n F(s) - s^{n-1} f(0)$
	$-s^{n-2}f^1(0) - \cdots f^{n-1}(0)$
$e^{at}f(t)$	F(s-a)
f(ct)	$1_{E}(S)$
	$\frac{1}{c}F\left(\frac{s}{c}\right)$
$\delta(t-c)$	e^{-cs}
	F(s)
$\int_0^t f(t)dt$	S
$\lim_{s\to 0} sU(s)$	$\lim_{t\to\infty}u(t)$
$\lim_{s\to\infty} sU(s)$	<i>u</i> (0 ⁺)

First Order Differential Equation:

$$y' + p(t)y = q(t)$$

$$I(t) = e^{\int p(t)dt}$$

$$y = \frac{1}{I(t)} \left[\int I(t)q(t)dt + C \right]$$

Roots of Characteristic Equation:

$$s^2 + 2\zeta \omega_n + \omega_n^2 = 0$$

 $s = \eta \pm j\omega$
 $\eta = -\zeta \omega_n$
 $\omega = \omega_n \sqrt{1 - \zeta^2}$
Underdamped: $\zeta < 1$
Undamped: $\zeta = 0$
Critically Damped: $\zeta = 0$
Overdamped: $\zeta > 1$
Unstable: $\zeta < 0$

Linear Algebra Concepts:

$$\begin{aligned} Null(A) &\rightarrow rref(A) \begin{bmatrix} \dot{x}_1 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ adjoint(A) &= C(A)^T \\ C(A) &\rightarrow D(A_{row}) * A_{i,j} * (-1)^{(i+j)\%2} \\ Rank(A) &\rightarrow rref(A) \ number \ of \ non-zero \ rows \end{aligned}$$