Introdução à Computação Numérica Polinômios de Taylor e aproximação de funções

Prof. Daniel G. Alfaro Vigo dgalfaro@ic.ufrj.br DCC-IC-UFRJ

4 🗇 →

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

1/20

Aproximação linear

Interpretação geométrica da reta tangente: Aproximação linear:

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x$$

Expansão de Taylor

Teorema de Taylor

Sejam $n\geq 0$ inteiro e f uma função n vezes continuamente diferenciável em [a,b] que possui derivada de ordem n+1 em (a,b). Se $x_0,x\in [a,b]$ então

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x; x_0)$$

e existe um número ξ entre x_0 e x tal que

$$R_n(x;x_0) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

3 / 20

Expansão de Taylor

Teorema de Taylor

Sejam $n\geq 0$ inteiro e f uma função n vezes continuamente diferenciável em [a,b] que possui derivada de ordem n+1 em (a,b). Se $x_0,x\in [a,b]$ então

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x; x_0)$$

e existe um número ξ entre x_0 e x tal que

$$R_n(x;x_0) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

O resto $R_n(x;x_0)$ também pode ser representado na forma integral (ou de Cauchy)

$$R_n(x; x_0) = \int_{x_0}^x \frac{f^{(n+1)}(s)}{n!} (x - s)^n ds.$$

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

3/20

Expansão de Taylor (cont)

Expansão de Taylor de f(x) centrada em x_0

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x; x_0)$$

4 🗇 ▶

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

4 / 20

Expansão de Taylor (cont)

Expansão de Taylor de f(x) centrada em x_0

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x; x_0)$$

 \Rightarrow O polinômio na variável x (para x_0 fixo)

$$T_n(x;x_0) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$
$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k,$$

 $\acute{\mathrm{e}}$ o polinômio de Taylor de ordem n de f centrado em $x_0.$

Expansão de Taylor (cont)

Expansão de Taylor de f(x) centrada em x_0

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x; x_0)$$

 \Rightarrow O polinômio na variável x (para x_0 fixo)

$$T_n(x;x_0) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$
$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k,$$

é o polinômio de Taylor de ordem n de f centrado em x_0 .

 \Rightarrow O termo $R_n(x;x_0)$ é o **resto** da expansão.

44

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

4 / 20

Exemplo: $f(x) = e^x$

Lembretes: ⇒ O número de Euler

$$e = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n \approx 2,718281828459045\dots$$

$$\Rightarrow$$
 $f^{(k)}(x) = \frac{d^k e^x}{dx^k} = e^x$.

Temos que

$$T_n(x; x_0) = e^{x_0} + e^{x_0} (x - x_0) + \dots + \frac{e^{x_0}}{n!} (x - x_0)^n,$$

$$= e^{x_0} \sum_{k=0}^n \frac{(x - x_0)^k}{k!},$$

$$R_n(x; x_0) = \frac{e^{\xi}}{(n+1)!} (x - x_0)^{n+1}$$

em que ξ é um número entre x_0 e x.

4 🗗 1

Exemplo: $f(x) = e^x$ (cont)

Aproximação do número e.

Para $x_0 = 0$ e x = 1 temos

$$\mathbf{e} = \sum_{k=0}^n \frac{1}{k!} + \frac{\mathbf{e}^\xi}{(n+1)!}, \qquad \text{em que } \xi \in (0, \, 1).$$

Observe que $0 < R_n(1;0) < \frac{3}{(n+1)!} \Rightarrow \lim_{n \to \infty} R_n(1;0) = 0$

$$\Rightarrow \qquad e = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{1}{k!}$$

4 🗇 →

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

6 / 20

Exemplo: Aproximação do número e

n	$e \approx T_n(1;0)$	$R_n(1;0) \le$
1	2	3/2! = 1.5
5	2.71 6666666666666	$3/6! = 4.2 \times 10^{-3}$
7	2.7182 53968253968	$3/8! \approx 7.5 \times 10^{-5}$
10	2.7182818 01146385	$3/11! \approx 7.6 \times 10^{-8}$
15	2.718281828458995	$3/16! \approx 1.5 \times 10^{-13}$
18	2.718281828459045	$3/19! \approx 2.5 \times 10^{-17}$

Expansão de Taylor, de ordem n=0 centrada em $x_0=0$.

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

∢ 🗗 ▶

8 / 20

Exemplo: Função exponencial

Expansão de Taylor, de ordem n=1 centrada em $x_0=0$.

Expansão de Taylor, de ordem n=2 centrada em $x_0=0$.

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

4 🗗 ▶

8 / 20

Exemplo: Função exponencial

Expansão de Taylor, de ordem n=3 centrada em $x_0=0$.

Expansão de Taylor, de ordem n=4 centrada em $x_0=0$.

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

∢ 🗇 ▶

8 / 20

Exemplo: Função exponencial

Expansão de Taylor, de ordem n=5 centrada em $x_0=0$.

Expansão de Taylor, de ordem n=6 centrada em $x_0=0$.

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

4 🗇 ▶

8 / 20

Exemplo: Função exponencial

Expansão de Taylor, de ordem n=7 centrada em $x_0=0$.

Expansão de Taylor, de ordem n=12 centrada em $x_0=0$.

∢ 🗗 ▶

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

8 / 20

Exemplo: $f(x) = \ln(1+x)$

Lembretes: $\Rightarrow \ln(1+x)$ é contínua e infinitamente diferenciável em $x \in (-1, +\infty)$. $\Rightarrow f'(x) = \frac{1}{1+x}, \ f''(x) = -\frac{1}{(1+x)^2}, \ f'''(x) = \frac{2}{(1+x)^3}, \dots$ $\Rightarrow f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{(1+x)^k} \quad k \ge 1.$

Exemplo: $f(x) = \ln(1+x)$

Lembretes: $\Rightarrow \ln(1+x)$ é contínua e infinitamente diferenciável em $x \in (-1, +\infty)$.

$$\Rightarrow f'(x) = \frac{1}{1+x}, f''(x) = -\frac{1}{(1+x)^2}, f'''(x) = \frac{2}{(1+x)^3}, \dots$$
$$\Rightarrow f^{(k)}(x) = \frac{(-1)^{k-1}(k-1)!}{(1+x)^k} \quad k \ge 1.$$

Temos que para $x_0, x > -1$

$$T_n(x;x_0) = \ln(1+x_0) + \frac{(x-x_0)}{(1+x_0)} - \frac{(x-x_0)^2}{2(1+x_0)^2} + \dots + \frac{(-1)^{n-1}(x-x_0)^n}{n(1+x_0)^n},$$

$$= \ln(1+x_0) + \sum_{k=1}^n \frac{(-1)^{k-1}(x-x_0)^k}{k(1+x_0)^k},$$

$$R_n(x;x_0) = \frac{(-1)^n}{(n+1)(1+\xi)^{n+1}} (x-x_0)^{n+1}$$

em que ξ é um número entre x_0 e x.

4 A >

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

9 / 20

Exemplo: $f(x) = \ln(1+x)$ (cont)

Aproximação de $\ln(3/2)$

Para $x_0 = 0$ e x = 1/2 obtemos

$$\ln(3/2) = \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k \, 2^k} + \frac{(-1)^{n+2}}{(n+1)[2(1+\xi)]^{n+1}}$$

em que $\xi \in (0, 1/2)$.

Observe que $|R_n(\frac{1}{2};0)| < \frac{2^{-(n+1)}}{n+1} \implies \lim_{n \to \infty} R_n(\frac{1}{2};0) = 0$

$$\ln(3/2) = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k \, 2^k}$$

Exemplo: Aproximação de $\ln(3/2)$

n	$\ln(3/2) \approx T_n(\frac{1}{2};0)$	$ R_n(\frac{1}{2};0) \le$
1	0.5	$1/2^3 = 0.125$
5	0.40 72916666666667	$1/(6 \cdot 2^6) \approx 2.7 \times 10^{-3}$
10	0.4054 346478174603	$1/(11 \cdot 2^{11}) \approx 4.5 \times 10^{-5}$
15	0.4054657568451514	$1/(16 \cdot 2^{16}) \approx 9.6 \times 10^{-7}$
50	0.4054651081081644	$1/(51 \cdot 2^{51}) \approx 8.8 \times 10^{-18}$

∢ 🗗 →

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

11/20

Exemplo: Função logaritmo ln(1+x)

Expansão de Taylor, de ordem n=1 centrada em $x_0=0$.

Expansão de Taylor, de ordem n=2 centrada em $x_0=0$.

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

12 / 20

Exemplo: Função logaritmo ln(1+x)

Expansão de Taylor, de ordem n=3 centrada em $x_0=0$.

Expansão de Taylor, de ordem n=4 centrada em $x_0=0$.

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

12 / 20

Exemplo: Função logaritmo ln(1+x)

Expansão de Taylor, de ordem n=5 centrada em $x_0=0$.

Expansão de Taylor, de ordem n=6 centrada em $x_0=0$.

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

12 / 20

Exemplo: Função logaritmo ln(1+x)

Expansão de Taylor, de ordem n=7 centrada em $x_0=0$.

Expansão de Taylor, de ordem n = 50 centrada em $x_0 = 0$.

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

12 / 20

Observações

- ⇒ Podemos usar os polinômios de Taylor para aproximar os valores de uma função não elementar na vizinhança de um ponto onde conhecemos os valores exatos da função e suas derivadas.
- \Rightarrow O intervalo onde essas aproximações são apropriadas depende da função que está sendo estudada.
- ⇒ É possível usar a fórmula correspondente ao resto para obter uma estimativa do nível de erro cometido nessas aproximações.

- Derivadas
- Reta tangente
- Aproximação linear
- Teorema do valor médio

4 🗇 ▶

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

14 / 20

Derivadas

Considere a função real f(x).

- \Rightarrow A derivada de f em x_0 é dada por
 - $f'(x_0) = \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0}$ quando o limite existe.
- \Rightarrow Se f possui derivada em todo $x_0 \in (a,b)$ dizemos que ela é diferenciável em (a,b). Escrevemos $f \in C^1(a,b)$.

Interpretação geométrica: Reta tangente

Interpretação geométrica da derivada. Reta tangente:

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ Polinômios de Taylor

4 🗗 ▶ 16 / 20

Interpretação geométrica da derivada: Aproximação linear

Interpretação geométrica da derivada. Aproximação linear:

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x$$

O Teorema do valor médio

Teorema do valor médio (de Lagrange)

Seja f uma função contínua em [a,b] e diferenciável em (a,b). Então existe um número $c\in(a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

4 🗗 ▶

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

18 / 20

O Teorema do valor médio

Teorema do valor médio (de Lagrange)

Seja f uma função contínua em [a,b] e diferenciável em (a,b). Então existe um número $c\in(a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Interpretação geométrica do Teorema [Burden, 2013].

O Teorema do valor médio

Teorema de Rolle

Seja f uma função contínua em [a,b] e diferenciável em (a,b). Se f(a)=f(b) então existe um número $c\in(a,b)$ tal que

$$f'(c) = 0.$$

4 🗇 ▶

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

19 / 20

O Teorema do valor médio

Teorema de Rolle

Seja f uma função contínua em [a,b] e diferenciável em (a,b). Se f(a)=f(b) então existe um número $c\in(a,b)$ tal que

$$f'(c) = 0.$$

Interpretação geométrica do Teorema [Burden, 2013].

4 🗗 →

Referências

R.L. Burden e J.D. Faires, Análise Numérica.

Trad. 8a Edição, Cengage Learning, 2013.

4 🗗 ▶

Prof. Daniel G. Alfaro Vigo/Instituto de Computação/UFRJ

Polinômios de Taylor

20 / 20