CS280 – Data Structures

Introductory Algorithm Analysis

What is an algorithm?

Algorithm

- Any well-defined computational procedure that transforms some inputs into some outputs.
- Computer independent
- Programming language independent

Searching

- Input: A sequence of n numbers $\{a_1,a_2,...,a_n\}$ and a number k
- Output: true if k is found in the sequence and false otherwise

Sorting

- Input: A sequence of n numbers $\{a_1, a_2, ..., a_n\}$
- Output: A permutation $\{a_1, a_2, ..., a_n'\}$ of the input sequence such that $a_1 \le a_2' \le ... \le a_n'$

Algorithm Analysis

- Correctness analysis
- Complexity analysis

Algorithm Analysis

- Correctness analysis
- Complexity analysis

What is this for?

- The point of algorithm complexity analysis is to be able to say that one algorithm is better than the other.
 - What does it mean to be better?
 - How to quantify it?

Search Example 1

- Assume we have an array of random integers.
- We want to find out where x is in the array.

```
// Assume a declaration like: int a[SIZE];
int n = 0;
while (x != a[n])
++n;
```

- What is the least number of iterations?
- What is the most number of iterations?
- What is the average number of iterations?
- What search method did you use to arrive at these numbers?

Linear Search

Linear Search

```
int LinearSearch(int *array, int size, int value){
  //Assumption: value does exist in the array
  int i=0;
  while (value != array[i])
     ++i;
  return i + 1;
// Assume a is unsorted array of integers of size SIZE = 10000
// Search for random numbers (10 sets)
for (int j = 0; j < 10; ++j){
  int total = 0;
  int attempts = 1000;
  for (int i = 0; i < attempts; ++i)</pre>
     total += LinearSearch(a, SIZE, (rand() % SIZE));
  cout<<(j+1)<< ". Average = "<<(double)total/(double)attempts<<
  endl;
```

Results for SIZE=10,000

- 1. Average = 5115.57
- 2. Average = 5047.94
- 3. Average = 4915.73
- 4. Average = 4911.44
- 5. Average = 4856.43
- 6. Average = 4920.65
- 7. Average = 4910.12
- 8. Average = 4841.81
- 9. Average = 4860.79
- 10. Average = 4913.42

Bonus!

How would you generate an <u>unsorted</u> array of <u>unique</u> integers?

Shuffle!

Create sorted array and then shuffle it!

```
void Shuffle(int *array, int size){
    for (int i = 0; i < size; ++i){
        int r = rand() % size;
        int t = array[i];
        array[i] = array[r];
        array[r] = t;
    }
}</pre>
```

```
// Generate an array of unique integers
for (int i = 0; i < SIZE; ++i)
   a[i] = i;
// Mix it up
Shuffle(a, SIZE);</pre>
```

Search Example 2

Suppose the array was sorted.

What search method would you use?

Binary Search

Binary Search

```
int BinarySearch(int *array, int size, int value){
   if (size <= 1)
      return 1;
   int count = ∅; // record the number of iterations
   int left = 0, right = size - 1;
   while (right >= left){
       count++;
       int middle = (left + right) / 2;
       if (value == array[middle])
           return count;
       if (value < array[middle])</pre>
           right = middle - 1;
       else
           left = middle + 1;
   return count;
```

1 2 **3** 4 5 6 7 8 9 10

Sorted array

1 2 **3** 4 5 6 7 8 9 10

5 6 7 8 9 10

1 2 3 4

2

1

1 2 **3** 4

3

4

3 4

We're looking for 3

Middle index = (0 + 9)/2 = 4

Discard right part of array

Middle index = (0 + 3)/2 = 1

Discard left part of array

Middle index=(2+3)/2=2 Done!

Binary Search

- What is the least number of iterations?
- What is the most number of iterations?

Results for SIZE=10,000

```
1. Average = 13.51
2. Average = 13.492
3. Average = 13.501
4. Average = 13.483
5. Average = 13.46
6. Average = 13.445
7. Average = 13.517
8. Average = 13.451
9. Average = 13.465
10. Average = 13.516
```

```
for (int j = 0; j < 10; ++j){
   int total = 0;
   int attempts = 1000;
   for (int i = 0; i < attempts; ++i)
        total += BinarySearch(a, SIZE,
   (rand() % SIZE));
   cout<<(j+1)<< ". Average =
"<<(double)total/(double)attempts<<
endl;
}</pre>
```

Remember

- The simple search method is called a linear-time algorithm
 - The time is directly proportional to size of the problem
- Binary search is logarithmic-time algorithm
 - The time is proportional to the logarithm of the size of the problem
 - What property must the array have to use a binary search method?

Analysis Points

- Informally, we want to figure out the <u>number of</u> <u>steps</u> required to perform a computation.
- The goal is to write a formula for the computation time :

The Big-Oh Notation

O(): Worst case asymptotic time complexity

Number of elements	Linear Search	Binary Search
10	10	4
100	100	7
1,000	1,000	10
10,000	10,000	14
100,000	100,000	17
1,000,000	1,000,000	20

- Two algorithms whose running times are described as $N^2/4$ and $200+N\times log_2N$
- The computer is able to execute 10⁶ instructions/s

N	$N^2/4$	200+N×log ₂ N
10		
100		
1000		
10 000		
100 000		
1 000 000		

- Two algorithms whose running times are described as $N^2/4$ and $200+N\times\log_2N$
- The computer is able to execute 10⁶ instructions/s

N	$N^2/4$	200+N×log ₂ N	
10	25 μs*	233 μs	
100	2.5 ms**	864 μs	
1000	0.25 sec	0.01 sec	
10 000	25 secs	0.13 sec	
100 000	41.67 mins	1.66 sec	
1 000 000	2.89 days	19.93 sec	

^{*} μ s: microseconds, 1 μ s = 10⁻⁶ second; **ms: millisecond, 1 ms = 10⁻³ second

- In the O() notation, we only care about the dominant term.
- In other words, we only care about the term that will account for the biggest portion of the running time.

- We analyze both varying terms: n² and 2n separately
- $f(n)=n^2+2n+100$

n	f(n)	n ²	n² as % of total	2n	2n as % of total
10	220	100	45.455%	20	9.091%
100	10,300	10,000	97.087%	200	1.942%
1,000	1,002,100	1,000,000	99.790%	2,000	0.2%
10,000	100,020 ,100	100,000,000	99.980%	20,000	0.02%
100,000	10,000,200,100	10,000,000,000	99.99%	200,000	0.002%

Now let's add a cubic term:

$$f(n)=n^3+n^2+2n+100$$

n	f(n)	n ³	n ³ as % of total
10	1,220	1,000	81.967%
100	1,010,300	1,000,000	97.980%
1,000	1,001,002,100	1,000,000,000	99.890%
10,000	1,000,100,020,100	1,000,000,000,000	99.989%
100, 000	1,000,010,000,200,100	1,000,000,000,000,000	99.99%

Now let's add a exponential term:

$$f(n)=2^n+n^3+n^2+2n+100$$

n	f(n)	2 ⁿ	2 ⁿ as % of total
10	2,244	1,024	45.632799%
20	1,057,116	1,048,576	99.192142%
30	1,073,769,884	1,073,741,824	99.997387%
40	1,099,511,693,556	1,099,511,627,776	99.999994%

Big-Oh Notation

- The Big-Oh Notation
 - An upper bound for complexity of an algorithm
- Formally, f(n)'s complexity is O(g(n)) means: $\exists n_0 > 0, c > 0$, such that $\forall n \ge n_0$, $0 \le f(n) \le c \times g(n)$
- In other words, an algorithm's complexity is O(g(n)) means that there exists positive constant c and n_0 whereby when the problem size is greater than n_0 , the time required by the algorithm to run is always less than $c \times g(n)$.

Tight Big-Oh Bounds

- f(n)=8n+128
- So is f(n) in O(n) or $O(n^2)$?
 - Choose the tighter bound!
- Since n is in $O(n^2)$
 - O(n) is a tighter bound for f(n) than $O(n^2)$
 - "f(n) is in O(n)" is a more accurate analysis

Writing Big-Oh Expressions

- 1. Determine running time
 - $n^2 + (n \log_2 n) + 3n$
- 2. Drop all but the most significant terms
 - $O(n^2 + n\log_2 n + 3n) \Rightarrow O(n^2)$
 - $O(n \log_2 n + 3n) \Rightarrow O(n \log_2 n)$
- 3. Drop constant coefficients
 - $-0(3n) \Rightarrow 0(n)$
 - $-0(10) \Rightarrow 0(1)$

Common Growth Rates

Growth rate	Name
0(k)	Constant
$O(\log_2 N)$	Logarithm
O(N)	Linear(directly proportional to N)
$O(N \log_2 N)$	No formal name "N log N"
$O(N^2)$	Quadratic (proportional to square of N)
$O(N^3)$	Cubic (proportional to cube of N)
$O(N^k)$	Polynomial (proportional to N to the power of K)
$0(a^N)(a>1)$	Exponential (proportional to 2 to the power of N)

Common Growth Rates

Common Growth Rates

log_2N	$(\log_2 N)^2$	\sqrt{N}	N	Nlog ₂ N	$N(\log_2 N)^2$	N√N	N^2
3	9	3	10	30	90	30	100
6	36	10	100	60	3,600	1,000	10,000
9	8	31	1,000	9,000	81,000	31,000	1,000,000
13	169	100	10,000	1,300,000	1,690,000	1,000,000	100,000,0
16	256	316	100,000	1,600,000	25,600,000	31,600,000	10 billion
19	361	1,000	1,000,000	19,000,000	361,000,000	1 billion	1 trillion

Common Big-Oh Expressions

Big- Ω Notation

- The Big- Ω Notation
 - An lower bound for complexity of an algorithm
- Formally, f(n)'s complexity is $\Omega(g(n))$ means: $\exists n_0 > 0, c > 0$, such that $\forall n \ge n_0$, $f(n) \ge c \times g(n) \ge 0$
- In other words, an algorithm's complexity is $\Omega(g(n))$ means that there exists positive constant c and n_0 whereby when the problem size is greater than n_0 , the time required by the algorithm to run is always more than $c \times g(n)$.

Θ Notation

- Θ notation: the asymptotic <u>tight</u> bound of an algorithm
- Formally, f(n)'s complexity is $\Theta(g(n))$ means: $\exists n_0 > 0, c_1 > 0, c_2 > 0$, such that $\forall n \ge n_0$, $c_1 \times g(n) \ge f(n) \ge c_2 \times g(n) \ge 0$
- $f(n)=\Theta(g(n))$ if and only if f(n)=O(g(n)) and $f(n)=\Omega(g(n))$

Big-Theta, Big-Oh, Big-Omega

Performance V.S. Complexity

Performance:

- Time, memory, disk,
- Machine, compiler, code

Complexity:

Time complexity: big-O.

Estimating the Growth Rate

- Constant time elementary operations
 - one arithmetic operation (e.g., +, *).
 - one assignment
 - one test (e.g., x == 0)
 - one read
 - one write (of a primitive type)
 - **—** ...
 - $-T(n)=a\neq f(n)$

Estimating the Growth Rate

- Sequences
- Conditionals
- Loops (this is the big-ticket item)
- Function calls

Sequences

```
Sequence
statement 1;
statement 2;
statement k;
```

```
total time =
 T(statement 1)
+ T(statement 2)
+ T(statement k)
```

Conditionals

```
Total time = max(T(sequence 1), T(sequence 2))
```

```
if (condition) {
  sequence of statements 1
}
else {
  sequence of statements 2
}
```

Loops

Total time =N×T(statements)

```
for (i = 0; i < N; ++i) {
sequence of statements
}</pre>
```

Nested Loops

Total time = $N \times N \times T$ (statements)

```
for (i = 0; i < N; ++i) {
   for (j = 0; j < N; ++j) {
     sequence of statements
     }
   }
}</pre>
```

Function Calls

```
f(n); // O(1)
g(n); // O(n)

for (j = 0; j < N; ++j)
g(j);
```

total time = $O(N^2)$

Summary

- Algorithm complexity analysis
- Big Oh notation
 - Asymptotic analysis
 - Focus on the dominant term in the expression for running time of your algorithm