Plan d'étude et représentation graphique de $y = f(x) = \frac{1}{\sqrt[3]{x}}$

www.cafeplanck.com info@cafeplanck.com

Le domaine de définition de f

$$y = f(x) = \frac{1}{\sqrt[3]{x}} \Rightarrow D_f = -\{0\} = (-\infty, 0) \cup (0, -\infty) \cup (0, 0, 0)$$

Etudier la fonction au bornes de D_f

Etudier la fonction au bornes de I_1

A la borne gauche

$$\lim_{x \to -\infty} y = \lim_{x \to -\infty} \frac{1}{\sqrt[3]{x}} = 0$$

Alors la droite d'équation Y = 0 est une asymptote horizontale pour la courbe de f .

A la borne droite

$$\lim_{x \to 0^{-}} y = \lim_{x \to 0^{-}} \frac{1}{\sqrt[3]{x}} = \frac{1}{\sqrt[3]{0 - \varepsilon}} = \frac{1}{\sqrt[3]{-\varepsilon}} = -\infty$$

Alors la droite d'équation X = 0 est une asymptote verticale pour la courbe de f .

Etudier la fonction au bornes de I_2

A la borne gauche

$$\lim_{x \to 0^+} y = \lim_{x \to 0^+} \frac{1}{\sqrt[3]{x}} = \frac{1}{\sqrt[3]{0 + \varepsilon}} = \frac{1}{\sqrt[3]{+\varepsilon}} = +\infty$$

Alors la droite d'équation $\, X = 0 \,$ est une asymptote verticale pour la courbe de f .

1

A la borne droite

$$\lim_{x \to +\infty} y = \lim_{x \to +\infty} \frac{1}{\sqrt[3]{x}} = 0$$

Alors la droite d'équation $\,Y=0\,$ est une asymptote horizontale pour la courbe de f .

Le sens de variation de f

$$y' = f'(x) = \frac{-1}{3x\sqrt[3]{x}}$$

$$3x\sqrt[3]{x} = 0 \Rightarrow x = 0 \notin D_f$$

Convexité de f

$$y'' = f''(x) = \frac{4}{9x^2\sqrt[3]{x}}$$

$$9x^2\sqrt[3]{x} = 0 \Rightarrow x = 0 \notin D_f$$

Le tableau de variation

La courbe

