Introduction to Differentiation

Railway Engineering Mathematics

Sheffield Hallam University

Lecture 11

Learning Outcomes

- State what is meant by the gradient of a curve at a point.
- Differentiate simple functions to obtain their derivatives.

Introduction

Differentiation allows us to calculate the **gradient** of a curve or, more specifically, a **rate of change** of one variable with respect to another variable.

slope \equiv gradient \equiv derivative \equiv rate of change

Examples of rates of change:

- velocity (rate of change of displacement with respect to time)
- acceleration (rate of change of velocity w.r.t. time)
- power (rate of change of energy w.r.t. time)

Calculating Gradients

We have already seen how to calculate the gradient of linear functions (straight lines):

Here the gradient is:

$$m = \frac{\Delta y}{\Delta x} = \frac{7 - (-2)}{4 - 1} = \frac{9}{3} = 3$$

where Δ is the change, or difference in, y or x.

For a linear function the gradient is constant throughout, i.e. there is no dependence on \boldsymbol{x} .

Physical Example

Consider this piece-wise graph which illustrates the displacement S (m) of an object over time t (s).

Physical Example

From the graph we can see that the object is moving in regions A and C and is stationary in region B.

Calculating the gradient in region A:

$$m = \frac{\Delta S}{\Delta t} = \frac{8}{4} = 2$$

Consider the units:

$$\frac{\Delta S}{\Delta t} = \frac{\mathsf{m}}{\mathsf{s}}$$
 which is m/s.

So the gradient of a displacement-time curve gives a velocity (rate of change of displacement w.r.t. time). As the graph is a straight line, in A, the object has a constant velocity of 2 m/s.

Physical Example

Calculating the gradient in region B:

$$m = \frac{\Delta S}{\Delta t} = \frac{0 \text{ m}}{3 \text{ s}} = 0 \text{ m/s}$$

This indicates that the object is travelling at 0 m/s, i.e. it is stationary.

Looking back at the graph: at 4 seconds the object is at the 8 metre mark and at 7 seconds the object is still at the 8 metre mark, so cannot be moving.

Calculating Gradients

The physical example has provided us with two important results:

1) Consider the equation of the line in region A: it has form y=mx+c and specifically y=2x (think of x and y rather than t and S). The gradient here was simply 2. If the equation of the line was y=5x, then the gradient would be 5, etc.

Therefore, if:

$$y=ax$$
, then gradient: $m=\frac{\Delta y}{\Delta x}=\frac{\text{difference in }y}{\text{difference in }x}=\frac{\text{d}y}{\text{d}x}=a$

Calculating Gradients

Similarly for region B the equation of the line is of the form y=mx+c and specifically y=8.

2) The gradient here was simply 0. If the equation of the line was y=9, then the gradient would also be 0, as it is a straight horizontal line and has no steepness.

Therefore, if:

$$y=a$$
, then gradient: $m=\frac{\Delta y}{\Delta x}=\frac{\text{difference in }y}{\text{difference in }x}=\frac{\mathrm{d}y}{\mathrm{d}x}=0$

Gradients of linear or constant functions

y	$\frac{\mathrm{d}y}{\mathrm{d}x}$
a (any constant)	0
ax	a

The functions in the right-hand column of this table are known as the derivatives of the functions in the left-hand column.

We obtain the derivative of a function by differentiation.

Notation

 $\frac{\mathrm{d}y}{\mathrm{d}x}$ represents the gradient/derivative of a curve y=f(x).

y' and f'(x) are common alternatives to the symbol $\frac{\mathrm{d}y}{\mathrm{d}x}$. They all mean gradient/derivative/rate of change, where f(x) is another way of writing that y is a function f of x.

 \dot{y} is also another way to represent the derivative, but in the case specifically w.r.t. **time**, i.e. $\dot{y}=\frac{\mathrm{d}y}{\mathrm{d}t}$

If, instead of y=f(x), we have, say, r=f(t) then the derivative of r is written as $\frac{\mathrm{d}r}{\mathrm{d}t}$

1)
$$y = 6x$$

1)
$$y = 6x$$
 $\frac{\mathrm{d}y}{\mathrm{d}x} = 6$

2)
$$x = 9.7t$$

1)
$$y = 6x$$
 $\frac{\mathrm{d}y}{\mathrm{d}x} = 6$

$$2) x = 9.7t \frac{\mathrm{d}x}{\mathrm{d}t} = 9.7$$

$$3) \quad r = \frac{3}{5}\theta$$

1)
$$y = 6x$$
 $\frac{\mathrm{d}y}{\mathrm{d}x} = 6$

$$2) x = 9.7t \frac{\mathrm{d}x}{\mathrm{d}t} = 9.7$$

3)
$$r = \frac{3}{5}\theta$$
 $\frac{\mathrm{d}r}{\mathrm{d}\theta} = \frac{3}{5}\theta$

4)
$$y = -12$$

1)
$$y = 6x$$
 $\frac{\mathrm{d}y}{\mathrm{d}x} = 6$

$$2) x = 9.7t \frac{\mathrm{d}x}{\mathrm{d}t} = 9.7$$

3)
$$r = \frac{3}{5}\theta$$
 $\frac{\mathrm{d}r}{\mathrm{d}\theta} = \frac{3}{5}$

4)
$$y = -12$$
 $y' = 0$

5)
$$P = \frac{7}{8}$$

1)
$$y = 6x$$
 $\frac{\mathrm{d}y}{\mathrm{d}x} = 6$

$$2) x = 9.7t \frac{\mathrm{d}x}{\mathrm{d}t} = 9.7$$

3)
$$r = \frac{3}{5}\theta$$
 $\frac{\mathrm{d}r}{\mathrm{d}\theta} = \frac{3}{5}$

4)
$$y = -12$$
 $y' = 0$

5)
$$P = \frac{7}{9}$$
 $P' = 0$

Differentiation

Calculating the gradient of a **curve** is harder as the gradient varies along the curve, i.e. it depends on x.

Differentiation

First, we would need a rigorous way of defining the gradient of a curve at a particular point:

The gradient of a curve at a point is equal to the gradient of the tangent line at that point.

A tangent line is a straight line that only just touches the curve at exactly that particular point. So we could draw such a line at the point we were interested in...

Differentiation

Then we would set up a triangle (as in linear cases) to calculate the gradient of the tangent. But ... how could we consistently draw perfect tangents to the curve at all infinitely-many points?

Differentiation from first principles

The gradient can be calculated by taking the *limit* that an estimate of the gradient tends to, as you zoom in on a smaller area around the point. For a general function y=f(x), the gradient at a point x_0 is then given by:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \frac{\text{approximate rise near } x_0}{\text{approximate run near } x_0}$$

This is called "differentiation from first principles". For standard functions, formulae for the derivatives have been proven using this process. We can just use these rules, so we will **not** need to draw tangents of use the above formula ourselves in this module.

Differentiation: Standard rules. See Formulae booklet!

For constant a, n:

y	$\frac{dy}{dx}$
a (any constant)	0
ax	a
ax^n	$n \times ax^{n-1}$
ae^{nx}	$n \times ae^{nx}$
$a \ln nx$	$\frac{a}{x}$
$a\sin nx$	$n \times a \cos nx$
$a\cos nx$	$-n \times a \sin nx$

Example 1

Calculate an expression for the gradient of $y = 7x^3$.

Looking in the left-hand-side of the table, we can see that this is in the form ax^n , where a=7 and n=3. The corresponding right-hand column instructs us on how to differentiate it:

If
$$y = ax^n$$
, then $\frac{\mathrm{d}y}{\mathrm{d}x} = n \times ax^{n-1}$

Therefore, in the case of $y = 7x^3$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 \times 7x^{3-1}$$
$$= 21x^2$$

Example 2

Calculate an expression for the gradient of $y = 4x^2$.

Again, this is in the form ax^n , where a=4 and n=2. Therefore

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2 \times 4x^{2-1}$$
$$= 8x$$

Note that this is an expression for the gradient, which is dependent upon x. If we wanted to calculate the gradient at a *specific point*, say x=5, then we simply substitute this value into the gradient expression:

$$\frac{\mathrm{d}y}{\mathrm{d}x}\bigg|_{x=5} = 8 \times 5 = 40$$

Determine expressions for the gradients of the following curves:

- 1) $y = 3x^4$
- 2) $y = -7x^9$
- 3) $x = 9t^{-2}$
- 4) $y = \frac{7}{2}x^3$, and calculate the gradient at the point x = 4.
- 5) $y=rac{2}{\phi^5}$, and calculate the gradient at the point $\phi=-2.4.$
- 6) $y = 4\sin(5x)$. This has the form $a\sin(nx)$. What are a and n?

Exercise: Solutions (I/II)

1)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}(3x^4) = 3 \times 4x^{4-1} = 12x^3$$

2)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}(-7x^9) = -7 \times 9x^{9-1} = -63x^8$$

3)
$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(9t^{-2}) = 9 \times (-2)t^{-2-1} = -18t^{-3}$$

4)
$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{7}{2}x^3\right) = \frac{7}{2} \times 3x^{3-1} = \frac{21}{2}x^2$$

Hence, at x=4, the gradient is: $\frac{dy}{dx}\Big|_{x=4} = \frac{21}{2}(4)^2 = 168$

Exercise: Solutions (II/II)

5) First, the function must be rewritten in the form: $y=2\phi^{-5}$

Then
$$\frac{\mathrm{d}y}{\mathrm{d}\phi}=\frac{\mathrm{d}}{\mathrm{d}\phi}\big(2\phi^{-5}\big)=2\times(-5)\phi^{-5-1}=-10\phi^{-6}$$

At
$$\phi = -2.4$$
, we have $\frac{\mathrm{d}y}{\mathrm{d}\phi}\bigg|_{\phi = -2.4} = -10(-2.4)^{-6} = -0.05$

6) a = 4 and n = 5, then the derivative is:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} (4\sin(5x)) = 4 \times 5\cos(5x) = 20\cos(5x)$$

Example 3

Calculate an expression for the gradient of:

$$y = 3x^2 + 7x - 3 + 2e^{5x}$$

When we have a sum of multiple terms, in order to differentiate this we simply differentiate each term and sum their gradients in the same way (this property of differentiation is called *linearity*).

$$\frac{dy}{dx} = \frac{d}{dx}(3x^2) + \frac{d}{dx}(7x) - \frac{d}{dx}(3) + \frac{d}{dx}(2e^{5x})$$
$$= (2 \times 3x^{2-1}) + (7) - (0) + (5 \times 2e^{5x})$$
$$= 6x + 7 + 10e^{5x}$$