神经网络风格迁移

5张图分别来自VGG的 conv1 1 (a), conv2 1 (b), conv3 1 (c), conv4 1 (d), conv5 1(e)。

微调 (Fine-tune) 原理

- 在自己的数据集上训练一个新的深度学习模型时,一般采取在预训练好的模型上进行微调的方法。
- VGGNet16

		ConvNet C	onfiguration						
A	A-LRN	В	C	D	E				
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers				
	i	nput (224 \times 2	24 RGB image)					
conv3-64									
		max	pool						
conv3-128	3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128								
		max	pool						
conv3-256 conv3-256	-256 conv3-256 conv3-256 conv3-256								
		max	pool						
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512				
		max	pool						
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512				
		max	pool						
			4096						
			4096						
			1000						
		soft	-max						

conv 1_1	conv 1_2	pool 1	conv 2_1	conv 2.2	pool 2	conv 3_1	conv 3.2	conv 3_3	pool 3	conv 4_1	conv 4.2	conv 4_3	pool 4	conv 5_1	conv 5_2	conv 5_3	pool 5	fc 6	fc7	fc 8	probabilities
----------	----------	--------	----------	----------	--------	----------	----------	----------	--------	----------	----------	----------	--------	----------	----------	----------	--------	------	-----	------	---------------

- VGG16的结构为卷积+全连接 = 16层。卷积层分为5个部分共13层,即图中的conv1~conv5。还有3层是全连接层,即图中的fc6、fc7、fc8。如果要将VGG16的结构用于一个新的数据集,首先要去掉fc8这一层。原因是fc8层的输入是fc7的特征,输出是1000类的概率,这1000类正好对应ImageNet模型中的1000个类别。采用符合数据集类别数的全连接层作为新的fc8。
- 在训练的时候,网络参数的初始值采用VGG16在ImageNet上已经训练好的参数作为训练的初始值。
- 载入VGG16的参数后,可以开始训练了。一般来说,可以选择以下几种范围进行训练:
 - 。 只训练fc8, 好处是训练速度快, 但往往性能不会太好。
 - 。 训练所有参数。训练速度慢,但是能取得较高的性能,可以充分发挥深度模型的威力。
 - o 训练部分参数。通常是固定浅层参数不变,训练深层参数。如固定coonv1、conv2部分的参数不训练,只训练conv3、conv4、conv5、fc6、fc7、fc8的参数。
- 微调的原理大致就是先看懂网络的结构图,然后把网络的一部分修改成子集需要的模型。这种训练方法就是 所谓的对神经网络模型做微调。借助微调,可以从预训练模型出发,将神经网络应用到自己的数据集上。

原始图像风格迁移

• VGGNet是输入图像,提取特征,并输出图像类别。图像风格迁移正好与其相反,输入的是特征,输出对应这种特征的图片。

• 还原图像的方法是梯度下降法。

还原图像的方法是梯度下降法。设原始图像为 \vec{p} ,期望还原的图像为 \vec{x} (即自动生成的图像)。使用的卷积是第l层,原始图像 \vec{p} 在第l层的卷积特征为 P_{ij}^l 。i表示卷积的第i个通道,j表示卷积的第j个位置。通常卷积的特征是三维的,三维坐标分别对应(高、宽、通道)。此处不考虑具体的高和宽,只考虑位置j,相当于把卷积"压扁"了。比如一个10x10x32的卷积特征,对应 $1\leqslant i\leqslant 32$, $1\leqslant j\leqslant 100$ 。对于生成图像 \vec{x} ,同样定义它在l层的卷积特征为 F_{ij}^l 。

有了上面这些符号后,可以写出"内容损失"(Content Loss)。内容损失 $L_{content}(\vec{p},\vec{x},l)$ 的定义是:

$$L_{content}(\vec{p}, \vec{x}, l) = \frac{1}{2} \sum_{i,j} (F_{ij}^l - P_{ij}^l)^2$$

 $L_{content}(\vec{p},\vec{x},l)$ 描述了原始图像 \vec{p} 和生成图像 \vec{x} 在内容上的"差异"。内容损失越小,说明它们的内容越接近;内容损失越大,说明它们的内容差距也越大。先使用原始图像 \vec{p} 计算出它的卷积特征 P_{ij}^l ,同时随机初始化 \vec{x} 。接着,以内容损失 $L_{content}(\vec{p},\vec{x},l)$ 为优化目标,通过梯度下降法逐步改变 \vec{x} 。经过一定步数后,得到的 \vec{x} 是希望的还原图像了。在这个过程中,内容损失 $L_{content}(\vec{p},\vec{x},l)$ 应该是越来越小的。

- 还原图像的风格的方法是使用图像的卷积层特征的Gram矩阵。
 - o Gram矩阵:是为了表达图像的纹理特征。Gram就是对两个feature map求内积,结果和位置没有关系。
 - 在feature map中,每个数字都来自于一个特点滤波器在特定位置的卷积,因此每个数字代表一个特征的强度,而Gram计算的实际是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的。
 - 同时, Gram的对角线元素, 体现了每个特征在图像中出现的量。
 - 有助于把握整个图像的大体风格。

Gram矩阵是关于一组向量的内积的对称矩阵,例如,向量组 $\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_n}$ 的Gram矩阵是

$$\begin{bmatrix} (\overrightarrow{x_1},\overrightarrow{x_1}) & (\overrightarrow{x_1},\overrightarrow{x_2}) & \dots & (\overrightarrow{x_1},\overrightarrow{x_n}) \\ (\overrightarrow{x_2},\overrightarrow{x_1}) & (\overrightarrow{x_2},\overrightarrow{x_2}) & \dots & (\overrightarrow{x_2},\overrightarrow{x_n}) \\ \dots & \dots & \dots & \dots \\ (\overrightarrow{x_n},\overrightarrow{x_1}) & (\overrightarrow{x_n},\overrightarrow{x_2}) & \dots & (\overrightarrow{x_n},\overrightarrow{x_n}) \end{bmatrix}$$

通常取内积为欧几里得空间上的标准内积,即 $(\overrightarrow{x_i},\overrightarrow{x_j})=\overrightarrow{x_i}^T\overrightarrow{x_j}$ 。

设卷积层的输出为 F_{ij}^l ,那么这个卷积特征对应的Gram矩阵的第i行第j个元素定义为

$$G_{ij}^l = \sum\limits_k F_{ik}^l F_{jk}^l$$

设在第l层中,卷积特征的通道数为 N_l ,卷积的高、宽乘积为 M_l ,那么 F_{ij}^l 满足 $1\leqslant i\leqslant N_l$, $1\leqslant j\leqslant M_l$ 。G实际是向量组 F_1^l , F_2^l ,…, F_i^l ,…, $F_{N_l}^l$ 的Gram矩阵,其中,其中 $F_i^l=(F_{i1}^l,F_{i2}^l,\ldots,F_{ij}^l,\ldots,F_{iM_l}^l)$ 。

此处数学符号较多,因此再举一个例子来加深读者对此Gram矩阵的理解。假设某一层输出的卷积特征为10x10x32,即它是一个宽、高均为10,通道数为32的张量。 F_1^l 表示第一个通道的特征,它是一个100维的向量, F_2^l 表示第二个通道的特征,它同样是一个100维的向量,它对应的Gram矩阵G是

$$\begin{bmatrix} (F_1^l)^T(F_1^l) & (F_1^l)^T(F_2^l) & \dots & (F_1^l)^T(F_{32}^l) \\ (F_2^l)^T(F_1^l) & (F_2^l)^T(F_2^l) & \dots & (F_2^l)^T(F_{32}^l) \\ \dots & \dots & \dots & \dots \\ (F_{32}^l)^T(F_1^l) & (F_{32}^l)^T(F_2^l) & \dots & (F_{32}^l)^T(F_{32}^l) \end{bmatrix}$$

Gram矩阵可以在一定程度上反映原始图片中的"风格"。仿照"内容损失",还可以定义一个"风格损失"(Style Loss)。设原始图像为 \vec{a} ,要还原的风格图像为 \vec{x} ,先计算出原始图像某一次卷积的Gram矩阵为 A^l ,要还原的图像 \vec{x} 经过同样的计算得到对应卷积层的Gram矩阵是 G^l ,风格损失定义为

$$L_{style}(ec{p},ec{x},l)=rac{1}{4N_l^2M_l^2}\sum_{i,j}(A_{ij}^l-G_{ij}^l)^2$$

分母上的 $4N_l^2M_l^2$ 是一个归一化项,目的是<mark>防止风格损失的数量级相比内容损失过大。</mark>在实际应用中,常常利用多层而非一层的风格损失,多层的风格损失是单层风格损失的加权累加,即 $L_{style}(\vec{p},\vec{x})=\sum_i w_l L_{style}(\vec{p},\vec{x},l)$,其中 w_l 表示第l层权重。

- 利用内容损失还原图像内容。
- 利用风格损失还原图像风格。
- 将内容损失和风格损失结合起来,在还原图像内容的同时还原图像风格。

设原始的内容图像为 \vec{p} ,原始的风格图像为 \vec{a} ,待生成的图像为 \vec{x} 。希望 \vec{x} 可以保持内容图像 \vec{p} 的内容,同时具备风格图像 \vec{a} 的风格。因此组合 \vec{p} 的内容损失和 \vec{a} 的风格损失,定义总的损失函数为

$$L_{total}(\vec{p}, \vec{a}, \vec{x}) = \alpha L_{content}(\vec{p}, \vec{x}) + \beta L_{style}(\vec{a}, \vec{x})$$

 α , β 是平衡两个损失的超参数。如果 α 偏大,还原的图像会更接近于 \vec{p} 中,如果 β 偏大,还原的图像会更接近 \vec{a} 。使用总的损失函数可以组合 \vec{p} 的内容和 \vec{x} 的风格,这实现了图像风格的迁移。部分还原的图像如下图所示

• 缺点:

一张较大的图片,这大大的限制了这项技术的使用场景。速度慢的原因在于,要使用总损失 $L_{total}(\vec{p},\vec{a},\vec{x})$ 优化图片 \vec{x} ,这意味着生成一张图片需要几百步梯度下降法的迭代,而每一步的迭代都需要耗费大量的时间。从另一个角度看,优化 \vec{x} 可以看作是一个"训练模型"的过程,以往都是针对模型参数训练,而这里训练的目标是图片 \vec{x} ,而训练模型一般都比执行训练好的模型要慢很多。下面将会讲到快速图像风格迁移,它把原来的"训练"的过程变成了一个"执行"的过程,因此大大加快了生成风格话图片的过程。

快速图像风格迁移原理

快速图像风格迁移的方法是:不使用优化的方法来逐步迭代生成x,而是使用一个神经网络生成x。网络结构如图:

整个系统由两个神经网络组成,他们在图中由两个休闲裤分别标出。左边是图像生成网络,右边是损失网络。损失网络实际是VGGNet。利用损失网络来定义内容损失、风格损失。这个损失用来实例图像生成网络。图像生成网络的职责是生成某一种风格的图像,它的输入是一张图像,输出同样是一张图像。由于输出图像只需要在网络中计算一遍,所以速度快。

同样使用数学符号严格地阐述上面地过程: 设输入的图像为 \vec{x} , 经过图像生成网络生成的图像为 \vec{y} 。 \vec{y} 在内容上应该与原始的内容图像 \vec{y}_c 接近,因此可以利用损失网络定义内容损失 $L_{content}(\vec{y},\vec{y}_c)$,内容损失使用的是VGG-16中的relu3_3层输出的特征,对应上图中的 $l_{feat}^{\phi,relu3_3}$ 。另一方面,我们还希望 \vec{y} 具有目标风格图像 \vec{y}_s 的风格,因此又可以定义一个风格损失 $L_{total}(\vec{y},\vec{y}_c,\vec{y}_s)$ 。定义风格损失时使用了VGG-16的四个中间层relu1_2,relu2_2,relu3_3,relu4_3,对应图中的 $l_{style}^{\phi,relu1_2}$ 、 $l_{style}^{\phi,relu3_3}$ 、 $l_{style}^{\phi,relu4_3}$ 。同样组合这两个损失得到一个总损失 $L_{total}(\vec{y},\vec{y}_c,\vec{y}_s)$ 。利用总损失可以训练图像生成网络。训练完成后直接使用图像生成网络生成图像。值得一提的是,在整个训练过程中,一般只固定一种风格 \vec{y}_s ,而内容图像 \vec{y}_c 取和输入 \vec{x} 一样,即 \vec{y}_s = \vec{x} 。

• 原始图像风格迁移与快速图像风格迁移比较

类型	损失定义	是否需要训练新网络	生成图像的方法				
原始图像风格迁移	组合内容损失L _{content}	否。只需要预训练好的 VGGNet	利用损失,通过梯度下 降法计算适合的图像				
快速图像风格迁移	与风格损失 <i>L</i> _{style}	是。除了预训练好的VGGNet, 还需要训练图像生成网络	利用训练好的图像生成 网络之间生成				

当在网络的低层上匹配内容,算法会匹配照片上的大部分像素细节信息,生成的图像似乎艺术图的纹理几乎不融合进照片中。相反,在网络高层上匹配内容特征,照片的像素细节信息没有很强的约束,艺术画的纹理和照片的内容恰当地融合在一起。也就是说,图像中明确的结构,比如边缘和颜色地图会被改变,使用艺术画的风格和照片的内容。