. s1 . 1 PN="5-10077"
?t 1/5/1

1/5/1

DIALOG(R) File 347: JAPIO

(c) 2000 JPO & JAPIO. All rts. reserv.

04198377 **Image available**
ELECTRON EMITTING ELEMENT

PUB. NO.: 05-190077 [JP 5190077 A] PUBLISHED: July 30, 1993 (19930730)

INVENTOR(s): IWAI HISAMI

NOMURA ICHIRO KANEKO TETSUYA

APPLICANT(s): CANON INC [000100] (A Japanese Company or Corporation), JP

(Japan)

APPL. NO.: 04-023334 [JP 9223334] FILED: January 14, 1992 (19920114)

INTL CLASS: [5] H01J-001/30

JAPIO CLASS: 42.3 (ELECTRONICS -- Electron Tubes)

JOURNAL: Section: E, Section No. 1457, Vol. 17, No. 608, Pg. 86,

November 09, 1993 (19931109)

ABSTRACT

PURPOSE: To enable the forming at lower voltage and manufacture it stably at excellent yield rate, and make it an image with brightness without flickering by providing a plurality of projections at the surface of a substrate in contact with at least an electron emitting member.

CONSTITUTION: A substrate 1 is provided with a plurality of projections, at least in the region where it contacts with the electron emitting part 5 provided between electrodes 3. And in case that the surface of the substrate 1 has a projection, the film thickness of a fine particle film 6 becomes nonuniform, and according to circumstances, a thin part and a thick part occur. Therefore, current density increases in the section where the film is thin when a current flows inside the film 6, and heat concentrates, whereby the section 6 can be formed at lower voltage. Accordingly, stable forming becomes possible, and the controllability can also be improved. Moreover, as to a plurality of elements, homogeneous elements without dispersion can be gotten between elements, and the yield rate in manufacture can be improved.

(19)日本国特許广(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-190077

(43)公開日 平成5年(1993)7月30日

(51)Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

H01J 1/30

A 9172-5E

審査請求 未請求 請求項の数3(全 7 頁)

(21)出願番号

特願平4-23334

(22)出願日

平成4年(1992) 1月14日

(71)出願人 000001007

キャノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 岩井 久美

東京都大田区下丸子3丁目30番2号キャノ

ン株式会社内

(72)発明者 野村 一郎

東京都大田区下丸子3丁目30番2号キャノ

ン株式会社内

(72)発明者 金子 哲也

東京都大田区下丸子3丁目30番2号キャノ

ン株式会社内

(74)代理人 弁理士 伊東 哲也 (外1名)

(54) 【発明の名称】 電子放出素子

(57)【要約】

【目的】 電子放出部のフォーミングをさらに低い電圧 で安定して行えるようにして、さらに素子のばらつきを 抑制して素子の均質化と歩留の向上を図る。

【構成】 絶縁性基板上に形成した一対の電極と、該電 極間に配置された微粒子から成る膜状の電子放出部材 と、これに通電することにより形成される電子放出部と を備えた電子放出素子において、少なくとも電子放出部 材と接する基板表面に複数の突起を有する。

1

【特許請求の範囲】

【請求項1】 絶縁性基板上に形成した一対の電極と、 該電極間に配置された微粒子から成る膜状の電子放出部 材と、これに通電することにより形成される電子放出部 とを備えた電子放出素子において、少なくとも電子放出 部材と接する基板表面に複数の突起を有することを特徴 とする電子放出素子。

【請求項2】 前記突起の高さが、前記微粒子の粒径の 1~10倍であることを特徴とする請求項1記載の電子 放出素子。

【請求項3】 前記電子放出部材と接する基板の表面積が、対面積比で1.5倍以上あることを特徴とする請求項1または2記載の電子放出素子。

【発明の詳細な説明】

[0001]

【<u>産業上の利用分野</u>】本発明は、表而伝導形電子放出素子に関するものである。

[0002]

【従来の技術】従来、簡単な構造で電子の放出が得られ る素子として、例えばエム・アイ・エリンソン(M. I. Elinson)等によって発表された冷陰極素子 が知られている [ラジオ エンジニアリング エレクト ロン フィジックス (RadioEng. Electr on. Phys.)第10巻, 1290~1296頁, 1965年]。これは、基板上に形成された小面積の薄 膜に、膜内に平行に電流を流すことにより、電子放出が 生ずる現象を利用するもので、一般には表面伝導形電子 放出素子と呼ばれている。この表面伝導形電子放出素子 としては、前記エリンソン等により開発されたSnOュ (Sb)薄膜を用いたもの、Au薄膜によるもの[ジー ·ディトマー"スイン ソリッド フィルムス" (G. Dittmer: "Thin Solid Film s"), 9卷, 317頁, (1972年)]、ITO薄 膜によるもの [エム ハートウェル アンド ジーシー フォンスタッド "アイイーイーイートランス" イーデ ィーコンファレン (M. Hartwell and C. G. Fonstad: "IEEE Trans. ED Conf.")519頁,(1975年)]、力 ーボン薄膜によるもの[荒木久也: "真空"第26巻、 第1号, 22頁, (1983年)] などが報告されてい 40 る。

【0003】これらの表面伝導形電子放出紫子の典型的な紫子構成を図9に示す。同図において、2および3は電気的接続を得るための電極、11は電子放出材料で形成される薄膜、1は基板、5は電子放出部を示す。

【0004】従来、これらの表面伝導形電子放出素子においては、電子放出を行う前にあらかじめフォーミングと呼ばれる通電過熱処理によって電子放出部5を形成する。即ち、電極2と電極3の間に電圧を印加する事により、薄膜11に通電し、これにより発生するジュール熱 50

で薄膜11を局所的に破壊、変形もしくは変質せしめて 電気的に高抵抗な状態にした電子放出部5を形成するこ とにより電子放出機能を得ている。

【0005】なお、電気的に高抵抗状態とは、薄膜11の一部に0.5~5µmの亀裂を有し、且つ亀裂内が所謂島構造を有する不連続状態膜をいう。島構造とは一般に数十Åから数µm径の微粒子が基板1にあり、各微粒子は空間的に不連続で電気的に連続な膜をいう。

【0006】従来、表面伝導形電子放出素子は上述高抵抗不連続膜に電極2,3により電圧を印加し、素子表面に電流を流すことにより、上述微粒子より電子を放出せしめるものである。

[0007]

【発明が解決しようとする課題】しかしながら、上記の 様な従来の通電過熱によるフォーミング処理によって製 造された電子放出素子には、次のような問題点がある。 すなわち、①電子放出部となる島構造の設計が不可能な ため、素子の改良が難しく、索子間のばらつきも生じや すい、②島構造の寿命が短く且つ安定性が悪く、また外 界の電磁波ノイズにより素子破壊も生じやすい、3電気 的に高抵抗な状態にするために必要とする最小電圧であ るフォーミング電圧が大きく、フォーミング工程の際に 生じるジュール熱が大きいため、基板が破壊しやすくマ ルチ化が難しい、
の島構造の材料が金,銀, SnO2, ITO等に限定され仕事関数の小さい材料が使えないた め、大電流を得る事ができない、等の問題である。この ため、表面伝導形電子放出素子は、素子構造が簡単であ るという利点があるにもかかわらず、産業上積極的に応 用されるには至っていない。

0 【0008】本発明は電子放出素子を、複数の突起を有する基板上に作成することによって上記問題を解決することを目的とする。

[0009]

【課題を解決するための手段】上記目的を達成するため本発明では、絶縁性基板上に形成した一対の電極と、該電極間に配置された微粒子から成る膜状の電子放出部材と、これに通電することにより形成される電子放出部とを備えた電子放出素子において、少なくとも電子放出部材と接する基板表面に複数の突起を有するようにしている。

【0010】ところで、先述した図9に示すような典型的な表面伝導形電子放出素子において、電子放出材である薄膜の材料によっては、基板との密着が悪くそれが原因で特に、②島構造の安定性が悪く電子放出量の変動が大きい、②電子放出特性が悪く電子放出量が小さい、などの欠点を有するものがあり、これを改善するために基板の表面処理を行うという方法が報告されている[荒木久他: "真空"第26巻,第1号,22頁(1983年)]。この報告によれば基板の表面を研磨紙でこすることによって故意に基板表面に凹凸をつけ、薄膜との密

着性を上げることによって上記問題点が解決され、特性の良い素子が得られたと述べられてる。

【0011】一方、先述した表面伝導形電子放出素子について本発明者等が鋭意検討した結果、特開平2-56822号において、電極間に微粒子膜を配置しこれに通電処理を施すことにより電子放出部を設ける新規な表面伝導形電子放出素子を提案している。この新規な電子放出素子の断面構成図を図8に示す。同図において、1は基板、2および3は基板1上に形成された電極、6は電極2上から電極3上に渡り基板1上に形成された微粒子10膜、5は微粒子膜6に形成された電子放出部である。

【0012】この電子放出素子の特徴としては次のようなことが挙げられる。すなわち、①フォーミング時の熱量を少なくすることができるため膜割れや基板割れを防止することができ、そして②島材の選択が可能で、且つ電子放出材に微粒子膜を用いることによりフォーミング工程に要する電圧(フォーミング電圧)が小さくて済むため、制御性もより向上させることができる。

【0013】本発明の目的は、このような特徴を有する図8に示すような電子放出素子を、少なくとも電子放出 20部材と接する表面に複数の突起を有する絶縁性基板上に作成することにより、電子放出部のフォーミングをさらに低い電圧で安定して行えるようにして、さらに素子のばらつきを抑制して素子の均質化と歩留の向上を図ることにある。

【0014】以下に本発明の構成要素及び作用について 詳細に説明する。図1は本発明の電子放出素子の一実施 態様を示す概略図であり、図2は図1のA-A断面図で ある。図1及び図2において1は基板であり、本発明に おいては少なくとも電極間に設けられる電子放出部材と 接する領域では複数の突起を有するもので、ガラスやセ ラミクス等の絶縁物で構成される。突起の形状は、例え ば電界放出型冷陰極に見られるような円錐形状である必 要はなく、また、突起の先端の断面形状は丸くても台形 状でも良い。即ち、基板の断面形状に凹凸を有するよう な形状であれば良い。突起の高さは電子放出部材である 微粒子の粒径の1~10倍が好ましい。 各突起間の間隔 は微粒子の粒径の2倍以上が好ましい。 絶縁性基板の電 子放出部材と接する部分の表面積は、対面積比で1.5 倍以上あることが望ましい。また、絶縁性基板として、 表面がすりガラス状のものを用いることも可能である が、通常の表面が平滑なガラスの表面をあらしたものを 用いることもできる。

【0015】絶縁性基板をあらす方法としては、Ar等の原子量の大きい原子を用いたスパッタリングや、フッ酸・酢酸溶液をエッチャントとして用いたウェットエッチング、耐水研摩紙でこする等の方法を用いることが可能であるが、これらに限るものではない。

【0016】更に2および3は電極で、一般的な導電材料、Au, Ag, Pt等の金属の他、SnO₂, ITO 50

等の酸化物導伝性材料のものも使用できる。電極の幅は数μm~数mmが適当である。電極間の最小間隔である電極ギャップGは数μm~数100μmが適当である。また、5は電子放出部、6は電子放出部材である微粒子膜である。

4

【0017】微粒子膜の材料としては、LaB6, C8B6, YB4, GdB4などの硫化物、TiC, ZrC, HfC, TaC, SiC, WCなどの炭化物、TiN, ZrN, HfNなどの窒化物、Nb, Mo, Rh, Hf, Ta, W, Re, Ir, Pt, Ti, Au, Ag, Cu, Cr, Al, Co, Ni, Fe, Pb, Pd, Ca, Baなどの金属、In2O3, SnO2, SuO2, Sb2O3などの金属酸化物、Si, Geなどの半導体、カーボン、AgMgなどを用いることができるがこれに限定されない。

【-0-0-1-8】-微粒子膜は、例えば、これらの材料のうちの1種類以上をディッピング法やスピナー法等の分散塗布法およびガスデポジション法等を用いて少なくとも電極ギャップGを含む電極2、3間に配置して形成される。この際、微粒子膜のシート抵抗は5×10³~1×107/□となるように形成するのが好ましい。【0019】

【作用】電子放出部は、このようにして形成した電子放出素子を約1×10⁻⁵~1×10⁻⁶ torrの真空度の下におき、電極2、3間に電圧を印加して微粒子膜6内に形成されるが、このフォーミング工程に要する電圧(フォーミング電圧)は、平滑な基板上に形成する場合より小さくすることができる。即ちフォーミング電圧は、従来のように、電子放出材に薄膜を用いる場合、電子放出材により10~40Vであり、微粒子から成る電子放出部材を用いて平滑な基板上に形成する場合は5~10Vであるのに対し、微粒子から成る電子放出部材を用い、かつ表面に凹凸を有する基板上に形成する本発明の場合は4~6Vで足りる。

【0020】基板上の凹凸とフォーミング電圧の低下に どのような関連があるのかについては不明であるが、本 発明者等は次のように推測する。即ち、図3に示すよう に、平滑な基板 1 上に微粒子を塗布する際には、膜厚の ほぼそろった微粒子膜6が得られるが、本発明のように 基板1表面が4図に示すように突起を有する場合、微粒 子膜6の膜厚は不均一となり、場合によって薄い部分と 厚い部分が生じる。このため、本発明の場合、微粒子膜 6内に電流が流れる際に膜の薄い部分では電流密度が増 し、熱が集中することにより、より低い電圧で電子放出 部5をフォーミングできるものと推測される。このよう に本発明の電子放出素子では、低電圧でフォーミングで きるため安定にフォーミングでき、制御性もより向上さ せることができる。また、複数の素子について、素子間 でばらつくことなく均質な素子が得られ、作製上の歩留 まりが向上する。更に、電子放出材に薄膜を用いた場合

5

と同様に、基板表面に凹凸を有することにより、微粒子 膜と基板との密着が良くなるため、電子放出部内の島構 造の安定性が良くなり、電子放出量の変動量もより小さ くなる。

【0021】以下、本発明の実施例を説明する。

[0022]

【実施例】

実施例1

図5は本発明の一実施例に係る電子放出素子の構成を示 す斜視図であり、図6は図5のB-B断面図である。 【0023】図中、1は石英ガラス製の絶縁体基板、7 は絶縁体基板1上に形成されたSiO2の絶縁体膜、2 および3は絶縁体7上に形成された相対向する電極、4 は電極2,3間のギャップ、6は電極2から電極3に渡 って形成された微粒子膜、5は微粒子膜6中に形成され た電子放出部である。この素子は次のようにして製造さ れる。

【0024】まず、絶縁体基板1を十分洗浄し、基板全 体に絶縁体膜7を形成する。絶縁体膜7の材料として は、SiO2,ガラス,アルミナ等が好適であり、形成 20 を有し、以下のようにして製造される。 方法としては、通常良く用いられる蒸着技術や液体コー ティング法等を用いると良い。ここでは、蒸着法でSi O2 を用いて行った。また膜厚は5000Åとした。

【0025】次に、通常良く用いられるドライエッチン グ技術により、絶縁体膜7の表面をエッチングし、平坦 な表面を粗くし凹凸状にして突起を形成する。この時、 突起の高さは、微粒子膜6の微粒子の粒径の1~10倍 となるようにする。ここでは約1500Å程度となるよ うにした。また、各突起間の間隔は約2000人程度と した。

【0026】次に、ホトリソ・エッチング技術および蒸 着技術により、電極2および3を形成する。電極の材料 としては、下びきとしての厚さ50ÅのTi、および厚 さ950歳のNiを用いた。

【0027】更に、同様の方法により電極ギャップ4の 付近の必要な領域以外の領域にCrを500Åの厚さで 成膜した。そしてこの上に、粒径1000Å以下のSn O2微粒子1.0g、有機溶媒(メチルエチルケトン: シクロヘキサン=3:1、800cc)の各材料をガラ スピーズと共にペイントシェーカーで24時間攪拌して 40 得られた分散液をスピンコートし、250°Cで10分 焼成した。そしてこの後、先に成膜したCrをエッチア ウトした。これにより、電極2,3間および電極2,3 上により微粒子膜6が形成された。

【0028】そして最後に、以上の工程により作成した 電子放出素子を真空中におき、一対の電極2,3間に電 圧を印加してフォーミングを行う。この際6 Vの電圧で 安定にフォーミングすることができた。

【0029】比較のため、通常の平滑な基板上に、突起 を形成することなく、直接電極2,3および微粒子膜を

上記と同様の方法で形成することにより、同形状、同材 料の電子放出素子を作製し、上記と同様にしてフォーミ ングを行ったところ、フォーミング電圧は8 Vであっ た。即ち、基板に突起を有することによりフォーミング 電圧を低くすることができ安定に歩留まり良く素子を作 製することができることがわかる。更に、本実施例とこ の比較例それぞれの素子の上方に引出し電極(不図示) を設け、電子放出を行わせ、そのまま30分放置し、耐 久テストを行ったところ、両素子とも安定に電子放出し 10 たが、本実施例の素子の方が平滑な基板上に設けた比較 例の素子よりも電子放出量の変動量が小さく、0.8倍 に抑えることができた。

6

【0030】実施例2

図1は本発明の第2の実施例に係る電子放出素子の構成 を示す平面図であり、図2は図1のA-A断面図であ る。

【0031】この素子は、実施例1のように絶縁体膜7 上に突起を設ける代わりに、絶縁体基板1上に直接突起 を設けるようにしたもので、他は実施例1と同様の構成

【0032】まず、絶縁体基板(コーニング7059ガ ラス) 1を十分洗浄してから、水で濡らした耐水研磨紙 (エミリー#1000)上で表面を軽く研磨した。

【0033】次に、実施例1との同様の方法で電極2, 3を形成した。

【0034】次に、蒸着マスクを用い、ガスデポジショ ン法により、粒径O. 1mm以下のAu微粒子を電極ギ ャップ4および一部の電極2,3上に配置した。そし て、実施例1と同様にフォーミングすることにより、電 30 子放出素子が完成した。

【0035】そして、基板1を研磨せずに直接電極2, 3と微粒子膜6を同様の方法および同材料を用いて電子 放出素子を作製する場合と比較したところ、本実施例の 場合の方がより低電圧でフォーミングでき、電子放出量 の変動量の小さい電子放出素子を歩留まり良く得ること ができた。また、素子の特性の面でも実施例1と同様の 効果が得られている。

【0036】したがって、実施例1の場合と併せて考え れば、この効果は、基板や電子放出材および突起の製作 方法に関わらず、突起を設けることによって得られるも のであることがわかる。

【0037】実施例3

図7は本発明の第3の実施例に係る電子放出素子の構 成を示す断面図である。図中1は基板、8は基板1上の 絶縁層、9は絶縁層8上に形成された上電極、10は基 板1上に形成された下電極、4は電極9,10間のギャ ップ、6は上電極9から、下電極10に渡り絶縁層8側 面に形成された微粒子膜、5は電子放出部である。

【0038】この素子は、次のようにして製造される。 50 まず、絶縁体基板1を十分洗浄し、通常良く用いられる 7

ホトリソグラフィ技術および蒸着技術により下電極 1 0 を形成する。

【0039】次に、スパッタ法を用いて基板全面にSiO2を5000Åの厚さで成膜し、下電極10との同様の方法で上電極9を形成した。更に、ホトリソ・エッチング技術により不要な部分のSiO2をエッチングし絶縁8を形成した。

【0040】次に、フッ酸(50%溶液)、硝酸および 酢酸を1:1:80の割合で混合した溶液中で30秒間 撹拌することにより、絶縁層8の側面を粗して突起を形成した。

【0041】次に、実施例1の場合と同様に、膜厚500ÅのCrを、微粒子膜6を配置したくないところに成膜してから、有機パラジウム化合物溶液(奥野製薬(株)CCP4230)をディッピングにより塗布し、その後、300℃で10分間焼成し、Crをエッチアウトした。これにより、所定の位置に微粒子膜6が配置された。

【0042】以上の工程により作成した電子放出素子を実施例1と同様にしてフォーミングし、特性を評価した 20 ところ、フォーミング電圧は4Vであった。また、比較例として突起形成を行わない外は同様にして作製した素子についてフォーミング電圧を測定したところ、フォーミング電圧は6Vであった。即ち、本実施例の素子ではより低い電圧でフォーミングすることができる。更に実施例1と同様にこれらの素子の電子放出量の変動量を測定すると、本実施例の素子では比較例の3/4倍であり、変動量を抑える効果があることがわかる。

【0043】実施例4

図10は本発明の電子放出素子を利用した第4の実施例に係る電子源の部分的な斜視図である。図中、1は基板、2,3は素子電極、4は電極ギャップ、5は電子放出部、6は微粒子膜、12は配線電極である。

【0044】この電子源は次のようにして製造される。 まず、30cmX30cmの絶縁性基板(青板ガラス) 1を十分洗浄した後、実施例3と同様の工程を用いて基 板1の表面を粗らして突起を形成した。

【0045】次に、実施例1と同様の方法で素子電極2,3を線状に並べたものを複数形成した。更に実施例3と同様にして500Åの膜厚のCrを微粒子膜6を配40置したくないところに成膜してから、有機パラジウム化合物溶液(奥野製薬(株)CCP4230)をバーコート法により塗布し、その後300℃で10分間焼成し、Crをエッチアウトした。これにより、微粒子膜6が配置された。

【0046】次に、この上に、前記素子電極2,3を形成する場合と同様にして配線電極12を形成した。そして、このように作製した電子源を真空容器に入れ、配線電極12間に電圧を印加してフォーミングを行った。複数配置した素子の全てにつき4Vの電圧でフォーミング50

を安定して行うことができた。

【0047】これら複数の素子が安定にフォーミングできる理由としては次の事が考えられる。即ち、一般に、平滑な基板上に複数の素子を形成し、電子放出材を配置する際、電子放出材である微粒子膜をなるべく均一に配置し、微粒子膜のシート抵抗を揃えることで、複数の素子の特性を揃え、素子間のばらつきを少なくすることが望ましいが、基板面積が大きい場合は微粒子膜を均一に配置することは難しく、場所により膜厚分布ができやすい。このことから、膜厚の薄い部分では低い電圧でフォーミングし厚い部分ではフォーミング電圧が高くなる等のばらつきを生じてしまう。しかし、基板に突起を形成することにより、突起上では一様に膜厚が薄くなり、複数の素子間でばらつくことなくフォーミングできると考えられる。

【0048】更に、この電子源の5mm鉛直上に1kV の電圧を印加した蛍光体基板を設置して電子源からこれに対して電子を放出させ、そのまま30分放置して耐久テストを行ったところ、電子放出量の変動量も、平滑な基板上に同様の電子源を作製した場合の約0.8倍に抑えることができた。このように本発明の放出素子を用いて電子源を構成すれば、電子放出量の変動量が少なく、複数の素子間にばらつきが少ないため、ゆらぎ、ちらつき等のない電子源を歩留まり良く作成することができる。

[0049]

【発明の効果】以上説明したように本発明によれば、少なくとも電子放出部材と接する基板表面に複数の突起を設けるようにしたため、②より低電圧でフォーミングでき、安定に歩留まり良く電子放出素子を作製することができる。また、②微粒子膜の密着性が更に良くなるため、安定した電子放出が得られ、電子放出量の変動量を小さくすることができる。更に、③本発明の電子放出素子を用いて画像形成装置を形成すれば、同等の効果、即ち、歩留まり良く、ちらつきのない、均一な輝度の画像形成装置を得ることができる。

【図面の簡単な説明】

【図1】 本発明の実施態様及び第2の実施例に係る電子放出素子の平面図である。

【図2】 図1のA-A断面図である。

【図3】 従来の平滑な基板上の電子放出部近傍の断面 図である。

【図4】 本発明の電子放出素子の電子放出部近傍の断面図である。

【図5】 本発明の第1の実施例に係る電子放出素子の 斜視図である。

【図6】 図5のB-B断面図である。

【図7】 本発明の第3の実施例に係る電子放出素子の断面図である。

0 【図8】 従来の平滑な基板上の電子放出素子の断面図

である。

【図9】 従来の薄膜SCEの平面図である。

【図10】 本発明の電子放出素子を利用した第4の実施例に係る電子源の部分的な斜視図である。

9

【符号の説明】

1:基板、2,3:電極、4:電極ギャップ、5:電子 放出部、6:微粒子膜、7:絶縁体膜、8:絶縁層、 9:上電極、10:下電極、11:薄膜、12:配線電 極

【図9】

【図10】

