Bayesian calibration of differentiable agent-based models

Arnau Quera-Bofarull, Ayush Chopra, Anisoara Calinescu, Michael Wooldridge, Joel Dyer

Calibration of ABMs

Calibration requirements

1. Uncertainty quantification

Ideally we want to get all θ that can generate x with a certain probability

Example

Epidemiological model with 2 parameters:

- 1. Reproduction number at schools
- 2. Reproduction number at companies

Calibration of ABMs

1. Uncertainty quantification (UQ)

Crucial for policy analysis

Calibration of ABMs

2. Expert (prior) knowledge

Need to include prior information in our calibration process

Bayesian inference

Allows to tackle both problems

Likelihood p(x | θ) is intractable for ABMs

Variational Inference: Bayesian inference as an optimisation problem

- 1. Assume posterior can be approximated by a family of distributions
- 2. Optimise for optimal parameters

Generalized Variational Inference (GVI)

Knoblauch et al., (2022)

Target optimization to generalised posterior

More robust to model miss-specification than classical posterior

Generalised Variational Inference

Gradients: path-wise vs score

Gradient-assisted calibration algorithms need

- Two ways of obtaining the gradient:
- 1. Differentiating the measure (score-based gradient)
- 2. Differentiating the simulator (path-wise gradient)

Typically path-wise gradient has (much) lower variance (see Mohamed (2019))

Differentiable simulators

- Leverage Automatic Differentiation to build simulators
- Use "reparameterisation" techniques to differentiate through randomness.

$$x \sim \mathcal{N}(\mu, \sigma) \iff x = \mu + \sigma r \quad r \sim \mathcal{N}(0, 1)$$

$$\frac{\mathrm{d}x}{\mathrm{d}\mu} = 1 \quad \frac{\mathrm{d}x}{\mathrm{d}\sigma} = r$$

Differentiable ABMs

The problem of discrete randomness

- Discrete sampling + flow control = no differentiability?
 - Gumbel-Softmax

Jang et al. (2016)

Differentiable Agent-Based Epidemiology

Chopra et al. (2023), Quera-Bofarull et al. (2023)

JUNE model 8 M agents (London)

	Simulation
JUNE	50 hours
GRADABM-JUNE (CPU)	5 minutes
GRADABM-June (GPU)	5 seconds

x40,000 speed-up

Bayesian Inference for Differentiable Simulators (BIRDS)

Normalizing Flows

What do we choose for q?

Image credit: Lilian Weng

Bayesian Inference for Differentiable Simulators (BIRDS)

Experiment with JUNE

- ABM model of Covid19
- Model
 - ~200k agents
 - 3 layers of interactions (household, company, school)
 - Calibrate to synthetic data

Conclusions

- 1. Bayesian approaches to calibrating ABMs have numerous benefits
- 2. ABMs can be made differentiable even with discrete randomness and control flow
- 3. Diff simulators + Bayesian inference (via Normalizing Flows) promising route to calibrate large-scale ABMs efficiently

Paper + slides: www.arnau.ai/iclr