Covariance Matching Kalman Filter for observable LTI Systems

Rahul Moghe, Renato Zanetti and Maruthi R. Akella

Aerospace Engineering and Engineering Mechanics The University of Texas at Austin

 $rahul.moghe@utexas.edu,\ renato@utexas.edu,\ makella@mail.utexas.edu$

IEEE Conference on Decision and Control, Miami, Florida, USA

December 19, 2018

Overview

Introduction

Motivation Literature Review

Derivation of the Filter

Stacked Dynamics
Time Series Formulation
Covariance Estimation

Outline of Proof

Convergence of Covariance Convergence of State Error Covariance

Results

Simulation Problem Matrix Estimation Error State Estimation Error

Motivation

System Description

$$x_k = Fx_{k-1} + w_{k-1}, \quad w_{k-1} \sim \mathcal{N}(0, Q), \ x_0 \sim \mathcal{N}(m_x, P_0)$$

 $y_k = Hx_k + v_k, \quad v_k \sim \mathcal{N}(0, R)$

Common issues with a linear Kalman Filter:

- Q and R matrices are inaccurately known
- F and H matrices are uncertain
- Either w_k or v_k are non Gaussian

Adaptive filters simultaneously estimate the state and the unknown quantities on-line.

Literature Review

Existing adaptive filters:

- Application specific algorithms
- Restrictive assumptions on F and H matrix
- Interdependence between the state and covariance estimate

Literature Review

Existing adaptive filters:

- Application specific algorithms
- Restrictive assumptions on F and H matrix
- Interdependence between the state and covariance estimate

Important properties of our algorithm:

- Either one of the Q or R matrices are completely known
- Does not need the state estimate for covariance estimation
- Assumes observability of the LTI system
- We provide a proof of convergence

Stacked Dynamics

Propagating the state dynamics in time,

$$x_{k+1} = Fx_k + w_k$$

$$x_{k+2} = F^2 x_k + Fw_k + w_{k+1}$$

$$x_{k+n-1} = F^{n-1} x_k + F^{n-2} w_k + \dots + w_{k+n-1}$$

Stacked Dynamics

Propagating the state dynamics in time,

$$x_{k+1} = Fx_k + w_k$$

$$x_{k+2} = F^2 x_k + Fw_k + w_{k+1}$$

$$x_{k+n-1} = F^{n-1} x_k + F^{n-2} w_k + \dots + w_{k+n-1}$$

Predicting future measurements from the current state,

$$y_{k} = Hx_{k} + v_{k}$$

$$y_{k+1} = HFx_{k} + Hw_{k} + v_{k+1}$$

$$y_{k+2} = HF^{2}x_{k} + HFw_{k} + Hw_{k+1} + v_{k+2}$$

$$y_{k+n-1} = HF^{n-1}x_{k} + HF^{n-2}w_{k} + Hw_{k+n-2} + v_{k+n-1}$$

Coagulating all the measurements

The observability matrix M_o , formed below has full column rank.

$$\begin{bmatrix}
y_{k+n-1} \\
y_{k+n-2} \\
\vdots \\
y_k
\end{bmatrix} = \begin{bmatrix}
HF^{n-1} \\
HF^{n-2} \\
\vdots \\
H
\end{bmatrix} x_k + \begin{bmatrix}
H & HF & HF^2 & \cdots & HF^{n-2} \\
0 & H & HF & \cdots & HF^{n-3} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & H \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
w_{k+n-2} \\
w_{k+n-3} \\
\vdots \\
w_k
\end{bmatrix} \\
\triangleq W_k$$

$$+ \underbrace{\begin{bmatrix}
v_{k+n-1}^T & v_{k+n-2}^T & \cdots & v_k^T\end{bmatrix}^T}_{\triangleq V_k}$$

Propagating the stacked measurements in time,

$$\mathcal{Y}_k = M_o x_k + M_w W_k + V_k$$

Propagating the stacked measurements in time,

$$y_k = M_o x_k + M_w W_k + V_k y_{k+1} = M_o x_{k+1} + M_w W_{k+1} + V_{k+1}$$

Propagating the stacked measurements in time,

$$y_k = M_o x_k + M_w W_k + V_k$$
$$y_{k+1} = M_o x_{k+1} + M_w W_{k+1} + V_{k+1}$$

Eliminating the state,

$$FM_o^{\dagger} \mathcal{Y}_k = Fx_k + FM_o^{\dagger} M_w W_k + FM_o^{\dagger} V_k$$

$$M_o^{\dagger} \mathcal{Y}_{k+1} = Fx_k + w_k + M_o^{\dagger} M_w W_{k+1} + M_o^{\dagger} V_{k+1}$$

Propagating the stacked measurements in time,

$$\mathcal{Y}_{k} = M_{o}x_{k} + M_{w}W_{k} + V_{k}$$

 $\mathcal{Y}_{k+1} = M_{o}x_{k+1} + M_{w}W_{k+1} + V_{k+1}$

Eliminating the state,

$$FM_o^{\dagger} \mathcal{Y}_k = Fx_k + FM_o^{\dagger} M_w W_k + FM_o^{\dagger} V_k$$

$$M_o^{\dagger} \mathcal{Y}_{k+1} = Fx_k + w_k + M_o^{\dagger} M_w W_{k+1} + M_o^{\dagger} V_{k+1}$$

State independent linear strictly stationary time series,

$$\underbrace{\frac{M_o^{\dagger} \mathcal{Y}_{k+1} - F M_o^{\dagger} \mathcal{Y}_k}_{\triangleq \mathcal{Z}_k}}_{\triangleq \mathcal{Z}_k} = \underbrace{\frac{w_k + M_o^{\dagger} M_w W_{k+1} - F M_o^{\dagger} M_w W_k}_{\triangleq \mathcal{W}_k} + \underbrace{M_o^{\dagger} V_{k+1} - F M_o^{\dagger} V_k}_{\triangleq \mathcal{Y}_k}$$

Covariance Estimation

 \mathcal{Z}_k is zero mean and has a constant covariance

$$\mathcal{Z}_k = N_0 y_k + N_1 y_{k+1} + \dots + N_n y_{k+n} = A_1 w_k + A_2 w_{k+1} + \dots + A_{n-1} w_{k+n-1} + B_0 v_k + B_1 v_{k+1} + \dots + B_n v_{k+n}$$

Covariance Estimation

 \mathcal{Z}_k is zero mean and has a constant covariance

$$\mathcal{Z}_k = N_0 y_k + N_1 y_{k+1} + \dots + N_n y_{k+n} = A_1 w_k + A_2 w_{k+1} + \dots + A_{n-1} w_{k+n-1} + B_0 v_k + B_1 v_{k+1} + \dots + B_n v_{k+n}$$

Covariance calculation

$$Cov(\mathcal{Z}_{k}) = A_{1}QA_{1}^{T} + \dots + A_{n-1}QA_{n-1}^{T} + B_{0}RB_{0}^{T} + \dots + B_{n}RB_{n}^{T}$$

$$Cov(\mathcal{Z})_{i} = \sum_{k=1}^{k=i} \frac{1}{k} \bar{\mathcal{Z}}_{k} \bar{\mathcal{Z}}_{k}^{T}$$

$$Cov(\mathcal{Z})_{i} - A_{1}QA_{1}^{T} - \dots - A_{n-1}QA_{n-1}^{T} = B_{0}\hat{R}_{i}B_{0}^{T} + \dots + B_{n}\hat{R}_{i}B_{n}^{T}$$

Q or R Estimation

Vectorizing the equation,

$$vec(C_k) = \underbrace{(B_0 \otimes B_0 + \cdots + B_n \otimes B_n)}_{\triangleq S} vec(\hat{R}_k)$$
$$vec(D_k) = \underbrace{(A_1 \otimes A_1 + \cdots + A_n \otimes A_n)}_{\triangleq T} vec(\hat{Q}_k)$$

Repetitive elements of the symmetric matrix and corresponding columns of S and T matrix are averaged out.

Outline of Proof

Time Series

$$\mathcal{Z}_k = N_0 y_k + N_1 y_{k+1} + \dots + N_n y_{k+n} = A_1 w_k + A_2 w_{k+1} + \dots + A_{n-1} w_{k+n-1} + B_0 v_k + B_1 v_{k+1} + \dots + B_n v_{k+n}$$

- We prove that $Cov(\mathcal{Z})_k \xrightarrow{\mathcal{P}} Cov(\mathcal{Z})$ using the CLT for time series with decaying autocovariance
- Then, $\hat{R}_k \xrightarrow{\mathcal{P}} R$ follows from the full rank assumption

State Error Covariance Convergence

• Formulate the following 3 Covariance matrices:

$$\hat{P}_{k+1} = \hat{\bar{F}}_k \hat{P}_k \hat{\bar{F}}_k^T + \hat{K}_k \hat{R}_k \hat{K}_k^T + Q$$

$$P_{k+1} = \hat{\bar{F}}_k P_k \hat{\bar{F}}_k^T + \hat{K}_k R \hat{K}_k^T + Q$$

$$P_{k+1,opt} = \bar{F}_k P_{k,opt} \bar{F}_k^T + K_k R K_k^T + Q$$

- We prove that $\hat{P}_k \stackrel{\mathcal{P}}{\longrightarrow} P_k$
- We prove that $P_k \xrightarrow{\mathcal{P}} P_{k,opt}$

Simulation Problem

A marginally stable system with T = 0.05,

$$x_{k} = \begin{bmatrix} 1 & T & 0.5T^{2} \\ 0 & 1 & T \\ 0 & 0 & 1 \end{bmatrix} x_{k-1} + w_{k-1}$$
$$y_{k} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} x_{k} + v_{k}$$

We use the same example to estimate R and then Q

$$R = \begin{bmatrix} 0.25 & 0 \\ 0 & 0.25 \end{bmatrix} \text{ and } Q = \begin{bmatrix} 0.25 & 0.04 & 0.04 \\ 0.04 & 0.25 & 0.04 \\ 0.04 & 0.04 & 0.25 \end{bmatrix}$$

Simulation for covariance matrices

Figure: *R* estimate vs. time

Figure: Q estimate vs. time

The Q matrix was assumed to be a constant

The *R* matrix was assumed to be a constant

In both the cases, the <u>initial</u> estimate of the covariance was 5I with suitable dimensions.

Simulation for state estimation (unknown R case)

Simulation for state estimation (unknown Q case)

Figure: P_{11} vs. t

Figure: P_{22} vs. t

Figure: P_{33} vs. t

Discussion

- Linearly dependent measurements (non-invertible S matrix) introduce ambiguity in R matrix estimation
- Methods like linear matrix inequalities and weighting the initial estimate can be used for covariance estimation
- The rate of convergence depends on difference in order of magnitude of the known and the unknown covariance

$$Cov(\mathcal{Z}_k) = (\text{terms with R}) + (\text{terms with Q})$$