COMP90043: Cryptography and security: Week 7: Polynomial Rings and Finite Field

- (1) Consider a finite filed \mathbf{F}_5 , the field of 5 elements. Given an example for each of the following:
 - (a) A polynomial of degree 3: $1 + x + 3 * x^3 + 4x^3$.
 - (b) A monic polynomial of degree 3: $1 + x + 3 * x^3 + x^3$.
 - (c) An irreducible polynomial of degree 2. $1 + 2x^2$;
- (2) Consider a finite filed \mathbf{F}_3 , the field of 3 elements. Answer the following:
 - (a) $(1+2x+x^3)*(1+x^2+2x^3) = 2*x^6+x^5+x^4+2*x^3+x^2+2*x+1$.
 - (b) $x^5 \mod (1+2 x + x^3) = 2 * x^2 + x + 2$.
 - (c) An irreducible polynomial of degree $2 = x^2 + 1$; $x^2 + 2 * x + 2$; $x^2 + x + 2$.
 - (d) $GCD((1+2x+x^3), (1+2x))=1$.
 - (e) Is the polynomial $2 + 2 * x^2$ is an irreducible polynomial? Yes
- (3) Use the irreducible polynomial $1+x^2+x^3$ in the the finite field GF(8) tab

i	Elements: x^i	As Polynomials	As Vectors
$-\infty$	0	0	[0, 0, 0]
0	1	1	[1, 0, 0]
1	x	x	[0, 1, 0]
2	x^2	x^2	[0, 0, 1]
3	x^3	$1 + x^2$	[1, 0, 1]
4	x^4	$1 + x + x^2$	[1,1,1]
5	x^5	1+x	[1, 1, 0]
6	x^6	$x+x^2$	[0, 1, 1]
7	x^7	1	[1, 0, 0]

Table 1. Elements of $GF(2^3)$ as powers of x

- (a) Complete the missing entries in the table.
- (b) What is tye multiplicative order of x? 7.
- (c) What is the multiplicative inverse of x^2 ? x^5

(d) Compute $x + x^2 + x^4 : 1$

(e) Compute $x^3 + x^6 + x^5 : 0$

(4) Consider the finite field GF(9) as discussed in class last week:

i	Elements: x^i	As Polynomials	As Vectors
$-\infty$	0	0	[0, 0]
0	1	1	[1,0]
1	x	x	[0,1]
2	x^2	1 + 2 * x	[1,2]
3	x^3 x^4	2+2x	[2,2]
4	x^4	2	[2, 0]
5	x^5	2x	[0, 2]
6	x^6	2+x	[2,1]
7	x^7	1+x	[1,1]
8	x^8	1	[1,0]

Table 2. Elements of $GF(3^2)$ as powers of x

- (a) Complete the missing entries by using the polynomial $2 + x + x^2$ as the irreducible polynomial for generating powers of x in the table.
- (b) What is the multiplicative order of x? 8
- (c) What is the multiplicative inverse of x^2 ? x^6
- (d) Compute $x + x^3$. 2
- (e) Compute $x^2 + x^6$ 0;