Lista #3

Curso: Ciência de Dados

Disciplina: Aprendizado de Máquina I

Prof^a. Cristiane Neri Nobre

Data de entrega: 22/09

Valor: 2,0 pontos

Nome: Gustavo Costa

Questão 01

A figura abaixo mostra uma árvore de decisão construída por um algoritmo de aprendizado indutivo a partir de um conjunto de dados em que as instâncias são descritas por quatro atributos: Tamanho da Pétala, largura da Pétala, Tamanho da Sépala e Largura da Sépala.

Dado um objeto de classe desconhecida, essa árvore classifica o objeto nas classes: Iris_Setosa, Iris_Virgínica e Iris_Versicolor. Esta árvore foi gerada com os hiperparâmetros (DecisionTreeClassifier(criterion='gini', max_depth=3)), usando a linguagem Python.

Com base nestas informações, qual as saídas da árvore para os seguintes registros de teste, respectivamente?

*	Registros de teste	Tamanho da Pétala	Largura da Pétala	Tamanho da Sépala	Largura da Sépala	
	Instância 1	3.46	0.87	2.45	1.78 Iris-Versicolor	
•		•	•			

Instância 2	1.67	1.89	0.78	1.32	Iris Setosa
Instância 3	2.56	2.34	2.45	1.78	Iris Versicolor
Instância 4	6.67	2.34	2.45	1.78	Iris Virginica

- a) Iris_Virgínica, íris_Setosa, Iris_Versicolor, Iris_Virgínica 🔺
- b) Iris_Setosa, iris_Setosa, Iris_Versicolor >>
- Iris_Versicolor, iris_Versicolor, Iris_Virgínica
- d) Íris_Setosa, Iris_Virgínica, Iris_Virgínica, Iris_Versicolor 😽
- e) Iris_Versicolor, Íris_Setosa, Iris_Versicolor, Íris_Setosa 7

Questão 02

Considerando a árvore da questão anterior, e as seguintes afirmações:

- I. Esta árvore possui 5 regras de classificação ✓
- II. Das regras geradas, há apenas uma com cobertura por classe de 100% 🗸
- III. A menor cobertura por classe é de 6.8% e corresponde à classe Iris_Virgínica

É correto o que se afirma em:

- a) I, apenas.
- b) III, apenas.
- c) I e II, apenas.
- d) I e III, apenas.

Questão 03

Considere a seguinte matriz de confusão obtida por meio do classificador, **Árvore de decisão**, para um problema de quatro classes:

		Foi classificado como				
		Α	В	С	D	
	Α	10	4	2	1	しき
Era da classe	В	1	15	2	0	13
	С	2	3	20	5	30
	D	4	1	2	50	ラ テ
T :		17	23	26	5	

Quais os valores para as métricas abaixo para cada uma das classes A, B, C e D?

	Precisão	Recall	F1Score	TVP	TFN	TFP	TVN
Α	10/17	10/17	0.588	10/17	7/17	7/105	98/105
В	15/ 23	15/18	0.732	15/18	3/18	8/104	96/104
С	20/26	20/30	0.714	20/30	10/30	6/92	86/92
D	50/56	50/57	0.885	50/57	7/57	6/65	59/65

Questão 04

Investigue o funcionamento da métrica GINI utilizada pelo algoritmo CART.

A métrica GINI mede a pureza dos nós quando a árvore vai ser construida. O objetivo do CART é criar divisões nos dados que maximizem a separação das classes nos nós, segue o mesmo sentido do ID3, C4.5. O índice de GINI quantifica o quão "puro" ou "impuro" um conjunto de dados entre as classes. Ele varia de 0 a 0.5, 0.5 representa a máxima impureza.

Questão 05

Faça um resumo dos arquivos que estão no CANVAS sobre etapas de pré-processamento:

- 1. Parte 1 Processsamento Balanceamento
- 2. Parte 2 Processamento Dados ausentes
- 3. Parte 3 Processamento Dados inconsistentes e redundantes
- 4. Parte 4 Processamento Conversão simbólica-numérica
- 5. Parte 5 Processamento Conversão numérico-simbólica
- 6. Parte 6 Processamento transformação de atributos numéricos
- 7. Parte 7 Processamento Redução de dimensionalidade

Importante:

- 1. Você deve apresentar todas as discussões necessárias para uma completa compreensão do que foi feito, em todas as questões.
- 2. Adicionar também o link para o código desenvolvido

Parte 1 - Processamento - Balanceamento

Quando a base é desbalanceada, o modelo aprenderá a classe majoritária com mais facilidade. Dito isso, é preciso realizar algumas "manobras" para o modelo não possuir um Vide. Há duas formas de se fazar isso:

- 1° Forma: Retirar instâncias da classe majoritária (UNDERSAMPLING) -> Retirar de forma aleatória ou utilizar métodos heurísticos para selecionar as melhores, as mais representativas.
- 2º Forma: Adicionar instâncias da classe minoritária (OVERSAMPLING) -> Adicionar aleatoriamente ou também utilizar métodos heurísticos como o uso do Smote.

Parte 2 - Processamento - Dados Ausentes

Nem sempre é viável apenas descartar os dados ausentes. Dependendo, isso impacta na quantidade de dados totais. Há 4 formas principais de lidar com essa situação:

- 1° Forma: Tentar preencher as ausências, nem sempre é possível também porque nem sempre é possível ir atrás da fonte dos dados.
- 2° Forma: Imputar a média para dados numéricos e a moda para dados categóricos. Não é recomendado porque gera muitos dados inconsistentes.
- 3° Forma: Imputar valores fixos, não é interessante porque você está atribuindo uma informação que não representa aquela instância.
- 4° Forma: Imputar valores utilizando algoritmos de Machine Learning como KNN Imputer, Miss Forest, etc. É o mais recomendado porque ele encontra as melhores informações por similaridade.

Parte 3 - Processamento - Dados Inconsistentes e Redundantes

Dados inconsistentes são JOGADOS FORA. Não há como escolher uma instância certa. A redundância são instâncias idênticas. Isso deixa o modelo VICIADO, portanto, precisam ser eliminadas as repetições.

Parte 4 - Processamento - Conversão Simbólica-Numérica

Dados Nominais:

- -> Dicotômico (binário): 0 e 1, LabelEncoder
- -> Não ordinal com poucas opções: OneHotEncoder
- -> Ordinal: LabelEncoder
- -> Não ordinal com muitas opções: Criar uma nova codificação, novos atributos que caracterizem um objeto.

Parte 5 - Processamento - Conversão Numérica-Simbólica

O objetivo é reverter a conversão anterior, transformando dados numéricos de volta para representações categóricas. Isso é ser útil para a interpretação de resultados, facilitando a compreensão dos dados e suas implicações.

Parte 6 - Processamento - Transformação de atributos numéricos.

São aplicadas técnicas para modificar atributos numéricos, por exemplo: a normalização, padronização e transformação logarítmica. Essas transformações ajudam a melhorar o desempenho dos modelos, garantindo que as variáveis estejam em escalas comparáveis e reduzindo a influência de outliers.

Parte 7 - Processamento - Redução de Dimensionalidade

A redução de dimensionalidade envolve técnicas como PCA (Análise de Componentes Principais) que visam simplificar conjuntos de dados complexos, mantendo a maior parte da informação relevante