HyperLearning_EssayEvaluation

추가 보고서(1~5)

하이퍼러닝 과제전형 지원자 인재현

1. SHAP를 활용한 모델 해석

SHAP 그래프 해석

- 1) "평균 단어 길이"는 '구성 점수'와 '내용 점수'에 중요한 역할을 합니다.
- 2) "단어 수"는 모든 클래스에 고르게 영향을 미치며, 특히 '표현 점수'와의 연관성이 두드러 집니다.
- 3) "문장 수"는 세 점수 클래스에서 비교적 균형 잡힌 중요도를 나타내지만, '내용 점수'에 조금 더 큰 영향을 주는 경향을 보입니다.
- 4) "고유 단어 수"와 "문장 당 단어 수"는 전반적으로 영향력이 낮으나, "고유 단어 수"는 표현 점수에 밀접한 연관성을 보입니다.

2. 데이터 증강 기법 적용

- 1. 어떻게 증강했는가?
 - (1) Synonyms Replacement (유의어 대체)
 - 'augment_text'함수에서 유의어(synonyms)를 사용하여 주어진 텍스트의 일부 단어를 유사한 의미를 가진 단어로 대체했습니다.
 - synonyms는 유의어 사전을 의미하며, 특정 단어와 그 유사어 간의 매핑 정보를 포함하고 있을 가능성이 있어 사용했습니다.
 - (2) 증강 횟수
 - 각 텍스트마다 2개의 증강된 데이터를 생성합니다.
 - 예를 들어 100개의 텍스트가 있다면 100(원본) + 200(증강) = 300개의 데이터가 생성됩니다.
- 2. 증강된 데이터를 어떻게 처리했는가?
 - (1) 데이터 결합
 - 원본 데이터와 증강 데이터를 결합하여 하나의 데이터 프레임을 만들었습니다.
 - (2) 레이블 확장
 - 내용, 구성, 표현 점수를 증강 데이터 수만큼 복제하여, 증강된 데이터와 동일한 레이블을 갖도록 확장했습니다.
- 3. 왜 증강 기법을 적용했는가?
 - (1) 데이터 크기 부족 문제 해결
 - (2) 모델 일반화 능력 향상

	cleaned_paragraph	label_org	label_cont	label_exp
9250	인터넷 실명제는 실행되지 않아야 한다. 온라인 실명제의 문제점은 자유가 침해된다	3.000000	3.000000	3.000000
9251	인터넷 실명제에 반대하는 입장이다. 첫째 웹 실명제가 표현의 자유를 억압할 수 있기	2.916667	2.833333	3.000000
9252	인터넷 실명제에 반대하는 입장이다. 첫째 인터넷 실명제가 표현의 자유를 억압할 수	3.000000	2.916667	3.000000
9253	익명성에 숨어 악성댓글 등으로 특정 대상을 집단적으로 따돌리거나 집요하게 괴롭히는'	3.000000	2.833333	3.000000
9254	익명성에 숨어 악성댓글 등으로 특정 대상을 집단적으로 따돌리거나 집요하게 괴롭히는'	2.083333	1.833333	1.888889

<증강한 데이터 >

MAE 성능지표 및 교차검증

실제 점수와 예측 점수의 scatter plot

Test MAE: 0.3146

Cross-validation MAE: 0.3165 ± 0.0070

3. 다국어 지원 가능성 검토

1. 현재 모델의 다국어 확장 가능성 분석

- (1) 모델 한계
 - 제가 사용한 TF-IDF는 언어 간 확장성이 제한적입니다. 각 언어의 고유 단어 빈도와 패턴이 크게 다르기 때문입니다.
 - **다국어 확장을 위해서는 언어별로 별도의 TF-IDF 벡터화 과정**을 거쳐야 하며, 이후 각 언어의 벡터를 결합하거나 통합하는 추가 작업이 필요합니다.
- (2) 다국어 모델 활용 가능성
 - TF-IDF 외에도 BERT 기반 모델(KoBERT, Multilingual BERT, XLM-RoBERTa)을 활용하면, 언어 간 의미 표현이 포함된 임베딩 벡터를 생성할 수 있어 다국어 데이터 통합이 더용이합니다.
- (3) 데이터 관점
 - 증강 데이터 활용 :
 - 다국어 데이터 증강 기법으로 "**번역 기반 증강(Back-Translation)"**을 사용할 수 있습니다.
 - Back-Translation이란 예를 들어 한국어 문장을 영어, 중국어, 스페인어로 번역한 뒤 다시 한국어로 번역하여 데이터 다양성을 확보.
 - → 역번역된 문장은 원본과 같은 의미를 가지지만, 단어나 문장 구조가 달라질 수 있어 데이터 다양성을 높일 수 있습니다.
 - 다국어 데이터를 직접 수집하거나 공개 데이터셋을 활용
 - o 예를 들어 Al Hub, Hugging Face Datasets 등을 활용할 수 있습니다.

2. 다국어 지원 모델 개발을 위한 추가 고려사항

- (1) 모델 선택 및 아키텍처 변경
 - 현재 사용 중인 Dense 레이어 중심의 모델을 RNN, LSTM, Transformer 기반 구조로 변경하면 다국어 데이터를 더 잘 처리할 가능성이 높아집니다.
- (2) 하드웨어 및 자원 관리
 - 다국어 지원 모델은 더 많은 데이터를 다뤄야 하므로, **GPU** 메모리 및 학습 시간 관리를 위한 적절한 하드웨어 자원이 필요합니다.
- (3) 성능 평가
 - 다국어 확장성을 검증하기 위해 언어별로 독립적인 테스트 세트를 구성하고, 각 언어에 대해 모델 성능을 비교하는 것이 중요합니다.

4. 웹 인터페이스 구현(Streamlit)

1. 목적

 사용자로부터 에세이 텍스트를 입력받아 예측 점수를 출력하는 웹 인터페이스 구현.

2. 사용 기술

• Streamlit: 웹 인터페이스개발

● TensorFlow / Keras : 학습된 딥러닝 모델 로드 및 예측

• Scikit-learn: TF-IDF Vectorizer를 사용한 텍스트 벡터화

3. 구현 과정

(1) TF-IDF Vectorizer 학습 및 저장

- (a) 데이터프레임의 텍스트 데이터를 기반으로 TfidfVectorizer를 학습
- (b) 학습된 Vectorizer를 pickle로 저장하여 재사용 가능하도록 처리
- (2) 딥러닝 모델 학습 및 저장
- (3) Streamlit 애플리케이션 구현
 - 저장된 모델 및 Vectorizer를 로드하여 사용자 입력 데이터를 처리/
 - 에세이 텍스트를 입력받아 TF-IDF로 벡터화 하고. 모델 예측값을 출력.
 - 결과는 구성, 내용, 표현 점수로 구분하여 시각적으로 표시.

4. 결과 확인

내용 점수 (Content Score): 1.19

표현 점수 (Expression Score): 1.24

- 사용자가 텍스트를 입력하면 점수를 출력하는 웹 페이지를 완성.
- 결과는 의도한 범위(1~3점) 내에서 출력되었으며, 웹 인터페이스가 정상적으로 작동함을 확인.

만대 텍스트 박스에 에세이를 입력하세요. 모델이 점수를 예측합니다. 에세이 입력 전절은 우리의 일상 속에서 가장 쉽게 실천할 수 있는 가치 중 하나입니다. 따뜻한 미소, 사소한 배려, 그리고 진심 어린 한마디는 누군가의 하루를 밝게 만들 수 있습니다. 우리는 바쁜 삶 속에서 종종 타인을 배려하는 것을 잊고 합니다. 하지만 작은 친절은 생각보다 큰 변화를 만들어냅니다. 친절은 단지 상대방에게 긍정적인 영향을 미칠 뿐 아니라, 우리 스스로에게도 만족감과 행복을 가져다줍니다. 더 나은 세상을 만들기 위해, 오늘부터 작은 친절을 실천해 보는 건 어떨까요? 점수 예측하기 구성 점수 (Structure Score): 1.53

Essay Score Prediction

아래 텍스트 박스에 에세이를 입력하세요. 모델이 점수를 예측합니다

에베이이

K-pop은 한국 대중음악으로, 전 세계적으로 독특한 매력과 화려한 퍼포먼스를 통해 사랑받고 있습니다. BTS, BLACKPINK와 같은 그룹은 뛰어난 음악성과 열정으로 글로벌 팬들을 사로잡았으며, K-pop은 단순한 음악 장 르를 넘어 문화적 교류의 중심으로 자리 잡았습니다. 다양한 언어와 문화를 초월해 소통하는 K-pop은 사람들에 게 희망과 영감을 주며, 세계인이 함께 즐길 수 있는 새로운 음악의 장을 열고 있습니다.

점수 예측하기

구성 점수 (Structure Score): 2.74

내용 점수 (Content Score): 2.36

표현 점수 (Expression Score): 2.43

5. 성능 최적화

1. Dense Layer 모델에서의 성능 최적화 방안

- a. 모델 구조 최적화
 - i. Hidden Layer 크기 및 개수 줄이기
 - 1. 예) 기존 Dense(128) -> Dense(64) 로 조정.
 - ii. Dropout 비율 최적화
 - 1. Dropout 비율을 0.3에서 낮추면서 추론 속도를 개선.
- b. 양자화 적용(Quantization)
 - i. 모델을 양자화하여 부동소수점 연산을 정수(8비트)로 변환.
 - ii. TensorFlow Lite의 Post-training Quantization 적용
- c. 가지치기(Pruning)
 - i. 중요하지 않은 가중치를 제거하여 모델 크기 축소.
- d. Batch Size 조정
 - i. 추론 시 Batch Size를 적절히 설정하여 속도와 메모리 사용량 간 균형을 맞춤.

2. TF-IDF 기반 모델에서의 성능 최적화 방안

- a. TF-IDF 벡터 크기 축소
 - i. 기존 고유 단어 수를 줄여 불필요한 특성 제거.
- b. 하드웨어 가속 활용
 - i. 모델 추론에 GPU를 활용하면 더 빠른 속도를 얻을 수 있음.
- c. ONNX(Open Neural Network Exchange)로 변환
 - i. 딥러닝 모델을 표준 형식으로 변환하여 다양한 플랫폼에서 추론 가능.

결론 및 기대효과

- 구조적 간소화, 양자화 등을 통해 추론 속도를 효과적으로 개선할 수 있습니다.
- GPU, ONNX, TensorFlow Lite 등의 하드웨어 및 소프트웨어 최적화를 활용하면 더 나은 실시간 응답성을 제공합니다.
- 이와 같은 최적화는 더 빠른 추론 속도 뿐만 아니라 메모리 사용량 감소와 더 작은 배포 모델을 가능하게 합니다.